ВЫСШЕЕ ОБРАЗОВАНИЕ

серия основана в 1996 г.

Л.Н. Журбенко, Г.А. Никонова, Н.В. Никонова, С.Н. Нуриева, О.М. Дегтярева

МАТЕМАТИКА В ПРИМЕРАХ И ЗАДАЧАХ

УЧЕБНОЕ ПОСОБИЕ

Допущено Министерством образования и науки Российской Федерации в качестве учебного пособия для студентов высших учебных заведений, обучающихся по техническим специальностям

Москва ИНФРА-М 2009 УДК 51(075.8) ББК 22.11я73 Ж91

Рецензенты:

Д-р физ.-мат. наук, проф. кафедры высшей математики КГАСУ *Б.А. Кац*;

Д-р физ.-мат. наук, проф., заведующий кафедрой прикладной математики КГУ *Н.Б. Плещинский*

Журбенко Л.Н., Никонова Г.А., Никонова Н.В., Ж91 Нуриева С.Н., Дегтярева О.М. Математика в примерах и задачах: Учеб. пособие. — М.: ИНФРА-М, 2009. — 373 с. — (Высшее образование).

ISBN 978-5-16-003449-2

Учебное пособие для студентов технических высших учебных заведений, обучающихся по программе бакалавров в соответствии с государственными образовательными стандартами высшего профессионального образования.

ББК 22.11я73

ПРЕДИСЛОВИЕ

Содержание учебного пособия позволяет получить практические навыки в соответствии с требованиями государственных образовательных стандартов высшего профессионального образования для бакалавров направления «Технические науки».

Данное учебное пособие и учебное пособие «Математика» Ю.М. Данилова, Л.Н. Журбенко, Г.А. Никоновой, Н.В. Никоновой, С.Н. Нуриевой [1] образуют единый учебно-методический комплект для студентов технических вузов, составленный в соответствии с модульной технологией.

Связывающим элементом пособий служат опорные конспекты к разделам (подмодулям), входящим в каждый модуль. Они отражают в сжатой форме основной смысл подмодуля и содержат необходимые сведения для практического применения материала подмодуля. Вместе с тем учебное пособие может использоваться и самостоятельно.

Подмодули включают учебные и практические задачи с решениями и задачи для самостоятельного решения с ответами. В каждом подмодуле приведены варианты контрольных работ и типовых расчетных заданий. Компоновка задач проводится по схеме: от простого (стандартного) ⇒ к сложному (нестандартному) ⇒ к задачам с практическим содержанием. Типовые расчетные задания составлены по дедуктивному методу: задания в них формулируются в виде задач с параметрами или записаны в виде общей формулы, куда необходимо подставить индивидуальные для каждого студента значения.

Пособие содержит достаточное количество задач для аудиторных занятий и для самостоятельной работы вне аудитории. В нем заложена структура дидактического процесса по схеме: 1) осмысление опорного конспекта, анализ задач с решениями \Rightarrow 2) самостоятельное решение задач с ответами, выполнение типового расчета \Rightarrow 3) в случае затруднения возвращение к 1) \Rightarrow 4) решение вариантов контрольных работ. Применение схемы делает возможным самостоятельное овладение практическими навыками по изученным темам, большое внимание уделено прикладным задачам.

СПИСОК ИСПОЛЬЗУЕМЫХ ОБОЗНАЧЕНИЙ

```
    равносильность (эквивалентность)

\Leftrightarrow
       — и (конъюнкция)
       — или (дизъюнкция)
      — любой
Ξ
       - существует
∃!
      — существует и единственно
∄
       — не существует
      — следует
\Rightarrow

    такое что

      — стремится выполнять равенство
\uparrow \uparrow

параллельны и одинаково направлены

\uparrow\downarrow

    параллельны и противоположно направлены

\perp

    перпендикулярность

\Delta, det — определитель
       — бесконечность, бесконечное множество
N, Z, Q, R, C — множества соответственно натуральных, целых,
          рациональных, действительных, комплексных чисел
\mathbf{R}^n
       — п-мерное векторное пространство с положительными
          значениями элементов
\mathbf{R}_{\perp}
       — множество неотрицательных действительных чисел
≡
      тождественно
      эквивалентно
\subset
     включает
\subset

включает или равно

      — принадлежит
\in
∉
     не принадлежит
Ø — пустое множество
U

    объединение множеств

    пересечение множеств

    разность множеств

→ отображение множеств, соответствие

    взаимно-однозначное соответствие

\leftrightarrow
O:
      — определение
Т: ... ■ — теорема
Л: ... ◆ — лемма
     — точка

    геометрическое место точек
```

4

```
1^{0}
     свойство 1
[ ]

целая часть числа

    элементы множества, неопределенность

1, n — все значения от 1 до n
б.м. — бесконечно малая функция
б.б.

бесконечно большая функция

Э.
      — экстремум
\alpha = o(\beta) — б.м. более высокого порядка малости по сравнению с \beta
D(f) — область определения функции
E(f) — область допустимых значений функции
U_{\delta}(a) — дельта-окрестность т. a, \check{U}_{\delta}(a) = U_{\delta}(a) \setminus \{a\}
C[X] — класс функций, непрерывных на множестве X
C^{1}[X] — класс функций, непрерывно дифференцируемых на мно-
          жестве X
       — класс функций, непрерывных на отрезке [a, b]
M
       — наибольшее значение функции на множестве
m
       — наименьшее значение функции на множестве
      — суперпозиция функций f и \phi
f∘φ
     точка разрыва
T.p.
Т.Π.
   — возрастает
— убу-

точка перегиба

− выпуклый вверх (выпуклый)

выпуклый вниз (вогнутый)

       — диаметр ограниченной фигуры (тела)
       — радиус-вектор
       — сумма
       факториал
\operatorname{rang} A — ранг матрицы A
Re
       — действительная часть комплексного числа

    мнимая часть комплексного числа

\operatorname{grad} U — градиент скалярного поля U
\operatorname{div}\vec{a}
     — дивергенция векторного поля \vec{a}
```

Глава 1 ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

1. ЛИНЕЙНАЯ АЛГЕБРА

Опорный конспект № 1

1.1. Определители, их свойства

$$A = egin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 — квадратная матрица II порядка

$$\Delta \equiv \det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$
 — определитель II порядка

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{13} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{21} & a_{22} \end{vmatrix} + a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} + a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a$$

определитель III порядка

Свойства:

- 1^{0} . Транспонирование.
- 2⁰. Разложение по \forall ряду: det $A = a_{i1}A_{i1} + a_{i2}A_{i2} + a_{i3}A_{i3}$, $A_{ij} = (-1)^{i+j}M_{ij}$ алгебраическое дополнение; M_{ii} минор элемента a_{ii} .
- 3^0 . Перестановка двух строк (столбцов) \Rightarrow смена знака Δ .
- 4^{0} . Условия равенства $\Delta = 0$.
- 5^{0} . Вынесение общего множителя ряда за знак Δ .
- 6^{0} . Прибавление к строке (столбцу) другой строки (столбца), умноженной на число $k \neq 0$, не меняет Δ .

1.2. Системы линейных уравнений. Методы Гаусса и Крамера

Метод Гаусса — последовательное исключение неизвестных Расширенная матрица

$$(A \backslash B) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix} \sim \text{матрице ступенчатого вида, чис-}$$

ло ее ненулевых строк = $\operatorname{rang}(A \setminus B)$.

Формулы Крамера: m = n,

$$\Delta \equiv \det A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} \neq 0, \quad x_j = \frac{\Delta_j}{\Delta}, \quad j = \overline{1, n};$$

 Δ_j получается из Δ заменой j-го столбца столбцом свободных членов

1.3. Действия над матрицами. Матричный способ решения СЛАУ

$$A = (a_{ij}), \quad B = (b_{ij}), \quad i = \overline{1,m}, \quad j = \overline{1,n}, \quad A = B \Leftrightarrow a_{ij} = b_{ij}$$

Сложение матриц: $C = A + B = (a_{ii} + b_{ii})$

Умножение матрицы на число μ : $B = \mu A = (\mu a_{ii})$

Умножение матриц: A — размерности $m \times p$, B — размерности $p \times n$

$$C = A \cdot B = (a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ip}b_{pj}), (AB \neq BA)$$

$$E = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ - & \text{обратная } \kappa \underbrace{A}_{-} = (a_{ij}), i, j = \overline{1,n} \Leftrightarrow AA^{-1} = E$$

T: $A = (a_{ij}), i, j = \overline{1,n}, \det A \neq 0 \Leftrightarrow \exists A^{-1}$

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix},$$

 A_{ii} — алгебраическое дополнение a_{ii}

Матричная форма записи СЛАУ:

$$AX = B$$
, $A = (a_{ij})$, i , $j = \overline{1,n}$, $X = (x_j)$, $B = (b_i)$ — матрицы-столбцы, det $A \neq 0 \Rightarrow X = A^{-1}B$

Задачи к разд. 1.1

Задача 1. Вычислить определители II порядка:

a)
$$\begin{vmatrix} -1 & 4 \\ -5 & 2 \end{vmatrix}$$
; 6) $\begin{vmatrix} \sin^2 \alpha & \cos^2 \alpha \\ \sin^2 \beta & \cos^2 \beta \end{vmatrix}$.

Решение: По определению:

a)
$$\begin{vmatrix} -1 & 4 \\ -5 & 2 \end{vmatrix} = (-1)2 - 4(-5) = 18;$$

$$\left| \begin{array}{ccc} \sin^2 \alpha & \cos^2 \alpha \\ \sin^2 \beta & \cos^2 \beta \end{array} \right| = \sin^2 \alpha \cos^2 \beta - \sin^2 \beta \cos^2 \alpha =$$

= $(\sin \alpha \cos \beta - \sin \beta \cos \alpha) \cdot (\sin \alpha \cos \beta + \cos \alpha \sin \beta) =$ = $\sin(\alpha - \beta)\sin(\alpha + \beta)$.

Задача 2. Вычислить определитель III порядка
$$\begin{vmatrix} 2 & -3 & 1 \\ 4 & 0 & -3 \\ 5 & -1 & 1 \end{vmatrix}$$
: a) по

определению; б) разложением по второму столбцу.

Решение: а) по определению

$$\begin{vmatrix} 2 & -3 & 1 \\ 4 & 0 & -3 \\ 5 & -1 & 1 \end{vmatrix} = 2 \begin{vmatrix} 0 & -3 \\ -1 & 1 \end{vmatrix} - (-3) \begin{vmatrix} 4 & -3 \\ 5 & 1 \end{vmatrix} + 1 \begin{vmatrix} 4 & 0 \\ 5 & -1 \end{vmatrix} = 2(-3) + 3 \cdot 19 - 4 = -6 + 57 - 4 = 47;$$

б) по свойству 2^{0}

$$\begin{vmatrix} 2 & -3 & 1 \\ 4 & 0 & -3 \\ 5 & -1 & 1 \end{vmatrix} = (-1)^3 (-3) \begin{vmatrix} 4 & -3 \\ 5 & 1 \end{vmatrix} + (-1)^5 (-1) \begin{vmatrix} 2 & 1 \\ 4 & -3 \end{vmatrix} =$$

$$= 3 \cdot 19 + (-10) = 47.$$

Задача 3. Упростить и вычислить определитель III порядка

$$\Delta = \begin{vmatrix} 1 & 2 & 5 \\ 3 & -4 & 7 \\ -3 & 12 & -15 \end{vmatrix}.$$

Решение: Пользуясь свойством 5^0 , вынесем множитель 3 из третьей строки за знак определителя, множитель 2 — из второго столбца, затем, пользуясь свойством 6^0 , умножим первую строку на (-3) и сложим со второй строкой, прибавим первую строку к

третьей, полученный определитель разложим по первому столбцу:

$$\Delta = 3 \begin{vmatrix} 1 & 2 & 5 \\ 3 & -4 & 7 \\ -1 & 4 & -5 \end{vmatrix} = 6 \begin{vmatrix} 1 & 1 & 5 \\ 3 & -2 & 7 \\ -1 & 2 & -5 \end{vmatrix} = 6 \begin{vmatrix} 1 & 1 & 5 \\ 0 & -5 & -8 \\ 0 & 3 & 0 \end{vmatrix} = 6 \cdot 1 \cdot (-1)^2 \begin{vmatrix} -5 & -8 \\ 3 & 0 \end{vmatrix} = 6 \cdot 24 = 144.$$

Задача 4. Упростить и вычислить определитель IV порядка

$$\Delta = \begin{vmatrix} 2 & 1 & 3 & -1 \\ 1 & 4 & 2 & 3 \\ 3 & 1 & -1 & 2 \\ -5 & 2 & -2 & 3 \end{vmatrix}.$$

Решение: Получим нули во втором столбце определителя. Для этого умножим первую строку на (-4), (-1), (-2), и сложим соответственно со второй, третьей, четвертой строками. Полученный определитель разложим по второму столбцу:

$$\Delta = \begin{vmatrix} 2 & 1 & 3 & -1 \\ -7 & 0 & -10 & 7 \\ 1 & 0 & -4 & 3 \\ -9 & 0 & -8 & 5 \end{vmatrix} = 1 \cdot (-1)^3 \begin{vmatrix} -7 & -10 & 7 \\ 1 & -4 & 3 \\ -9 & -8 & 5 \end{vmatrix} =$$

$$= -2 \begin{vmatrix} -7 & -5 & 7 \\ 1 & -2 & 3 \\ -9 & -4 & 5 \end{vmatrix} = -2 \left[-7 \begin{vmatrix} -2 & 3 \\ -4 & 5 \end{vmatrix} + 5 \begin{vmatrix} 1 & 3 \\ -9 & 5 \end{vmatrix} + 7 \begin{vmatrix} 1 & -2 \\ -9 & -4 \end{vmatrix} \right] =$$

$$= -2[-7(-10+12) + 5(5+27) + 7(-4-18)] = 16.$$

Задачи для самостоятельного решения

Вычислить определители II порядка:

1)
$$\begin{vmatrix} 3 & 10 \\ 2 & 6 \end{vmatrix}$$
; 2) $\begin{vmatrix} 2 & 3 \\ -1 & 2 \end{vmatrix}$; 3) $\begin{vmatrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{vmatrix}$; 4) $\begin{vmatrix} 1 & 1 \\ x_1 & x_2 \end{vmatrix}$; 5) $\begin{vmatrix} \sqrt{a} & -1 \\ a & \sqrt{a} \end{vmatrix}$

Вычислить определители двумя способами: пользуясь определением и разложив их по элементам указанного ряда:

7)
$$\begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix}$$
 по элементам 3-й строки;

9)
$$\begin{vmatrix} 3 & 4 & -5 \\ 8 & 7 & -2 \\ 2 & -1 & 8 \end{vmatrix}$$
 по элементам 2-й строки.

Упростить и вычислить определители:

Найти х из уравнений:

14)
$$\begin{vmatrix} 2 & x-4 \\ 1 & 4 \end{vmatrix} = 0;$$
 15) $\begin{vmatrix} x & x+1 \\ -4 & x+1 \end{vmatrix} = 0;$

16)
$$\begin{vmatrix} x^2 & 4 & 9 \\ x & 2 & 3 \\ 1 & 1 & 1 \end{vmatrix} = 0;$$
 $\begin{vmatrix} 3 & x & -x \\ 2 & -1 & 3 \\ x+10 & 1 & 1 \end{vmatrix} = 0.$

Упростить и вычислить определители IV порядка:

Задачи к разд. 1.2

Задача 1. Найти ранг матрицы
$$A = \begin{pmatrix} -1 & -2 & -3 \\ -1 & 1 & 2 \\ 2 & 7 & 11 \end{pmatrix}$$
.

Решение: Приведем путем элементарных преобразований матрицу A к ступенчатому виду. Для этого умножим первую строку на (-1), сложим со второй, затем умножим на 2 и сложим с третьей:

$$A \sim \begin{pmatrix} -1 & -2 & -3 \\ 0 & 3 & 5 \\ 0 & 3 & 5 \end{pmatrix}$$
. Умножим вторую строку на (-1) и сложим с

третьей, тогда
$$A \sim \begin{pmatrix} -1 & -2 & -3 \\ 0 & 3 & 5 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \operatorname{rang} A = 2.$$

Задача 2. Решить систему уравнений методами Гаусса и Крамера:

$$\begin{cases} 2x - y + z = 2, \\ 3x + 2y + 2z = -2, \\ x - 2y + z = 1. \end{cases}$$

Решение: а) метод Гаусса. Выписываем расширенную матрицу системы, умножаем первую строку последовательно на (–2), (–1) и складываем соответственно со 2-й, 3-й строками:

$$(A \backslash B) = \begin{pmatrix} 2 & -1 & 1 & 2 \\ 3 & 2 & 2 & -2 \\ 1 & -2 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & -1 & 1 & 2 \\ -1 & 4 & 0 & -6 \\ -1 & -1 & 0 & -1 \end{pmatrix}.$$

Далее умножаем вторую строку на (-1) и складываем с третьей:

$$(A \ B) \sim \begin{pmatrix} 2 & -1 & 1 & 2 \\ -1 & 4 & 0 & -6 \\ 0 & -5 & 0 & 5 \end{pmatrix}$$
; rang $A = \text{rang}(A \ B) = 3 \Rightarrow$ система имеет

единственное решение. Имеем систему, равносильную данной:

$$\begin{cases} 2x - y + z = 2, & y = -1, \\ -x + 4y = -6, & \Rightarrow x = 4y + 6 = 2, \\ -5y = 5; & z = 2 - 2x + y = -3; \end{cases}$$

б) метод Крамера.

$$\Delta = \begin{vmatrix} 2 & -1 & 1 \\ 3 & 2 & 2 \\ 1 & -2 & 1 \end{vmatrix} = \begin{vmatrix} 2 & -1 & 1 \\ -1 & 4 & 0 \\ -1 & -1 & 0 \end{vmatrix} = 1 \cdot (-1)^4 \begin{vmatrix} -1 & 4 \\ -1 & -1 \end{vmatrix} = 1 + 4 = 5,$$

$$\Delta_1 = \begin{vmatrix} 2 & -1 & 1 \\ -2 & 2 & 2 \\ 1 & -2 & 1 \end{vmatrix} = \begin{vmatrix} 2 & -1 & 1 \\ -6 & 4 & 0 \\ -1 & -1 & 0 \end{vmatrix} = 1 \cdot (-1)^4 \begin{vmatrix} -6 & 4 \\ -1 & -1 \end{vmatrix} = 6 + 4 = 10,$$

$$\Delta_2 = \begin{vmatrix} 2 & 2 & 1 \\ 3 & -2 & 2 \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 2 & 1 \\ -1 & -6 & 0 \\ -1 & -1 & 0 \end{vmatrix} = 1 \cdot (-1)^4 \begin{vmatrix} -1 & -6 \\ -1 & -1 \end{vmatrix} = 1 - 6 = -5,$$

$$\Delta_3 = \begin{vmatrix} 2 & -1 & 2 \\ 3 & 2 & -2 \\ 1 & -2 & 1 \end{vmatrix} = 2 \begin{vmatrix} 2 & -2 \\ -2 & 1 \end{vmatrix} + \begin{vmatrix} 3 & -2 \\ 1 & 1 \end{vmatrix} + 2 \begin{vmatrix} 3 & 2 \\ 1 & -2 \end{vmatrix} =$$

$$= 2 \cdot (-2) + 5 + 2 \cdot (-8) = -15,$$

$$x = \Delta_1/\Delta = 10/5 = 2; \ y = \Delta_2/\Delta = -5/5 = -1; \ z = \Delta_3/\Delta = -15/5 = -3.$$

$$Omeem: (x, y, z) = (2, -1, -3).$$

Задача 3. Найти решение системы

$$\begin{cases} 3x_1 + 2x_2 + x_3 + 3x_4 + 5x_5 = 0, \\ 6x_1 + 4x_2 + 3x_3 + 5x_4 + 7x_5 = 0, \\ 9x_1 + 6x_2 + 5x_3 + 7x_4 + 9x_5 = 0, \\ 3x_1 + 2x_2 + 4x_4 + 8x_5 = 0. \end{cases}$$

Решение: Применяем метод Гаусса (число уравнений меньше числа неизвестных, поэтому метод Крамера неприменим). Преобразования можно проводить с матрицей A в силу однородности системы ($b_i = 0$, $i = \overline{1,4}$), причем однородная система всегда совместна. Умножим первую строку матрицы A последовательно на (-2), (-3), (-1) и сложим соответственно со 2, 3, 4-й строками:

$$A = \begin{pmatrix} 3 & 2 & 1 & 3 & 5 \\ 6 & 4 & 3 & 5 & 7 \\ 9 & 6 & 5 & 7 & 9 \\ 3 & 2 & 0 & 4 & 8 \end{pmatrix} \sim \begin{pmatrix} 3 & 2 & 1 & 3 & 5 \\ 0 & 0 & 1 & -1 & -3 \\ 0 & 0 & 2 & -2 & -6 \\ 0 & 0 & -1 & 1 & 3 \end{pmatrix}.$$

Умножим теперь вторую строку последовательно на (-2), 1 и сложим соответственно с третьей, четвертой:

Получим систему, равносильную данной:

$$\begin{cases} 3x_1 + 2x_2 + x_3 + 3x_4 + 5x_5 = 0, \\ x_3 - x_4 - 3x_5 = 0. \end{cases}$$

Из второго уравнения $x_3 = x_4 + 3x_5$, где x_4 , x_5 — свободные неизвестные. Из первого уравнения находим x_2 через свободные неизвестные x_1 , x_4 , x_5 :

$$2x_2 = -3x_1 - (x_4 + 3x_5) - 3x_4 - 5x_5 = -3x_1 - 4x_4 - 8x_5 \Rightarrow x_2 = -1,5x_1 - 2x_4 - 4x_5.$$

Omeem: $(x_1; -1,5x_1-2x_4-4x_5; x_4+3x_5; x_4; x_5)$.

Задача 4. Найти решение системы

$$\begin{cases} x + 2y + 3z = 4, \\ 2x + y - z = 3, \\ 3x + 3y + 2z = 10. \end{cases}$$

Решение:

$$\Delta = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 1 & -1 \\ 3 & 3 & 2 \end{vmatrix} = \begin{vmatrix} 1 & -1 \\ 3 & 2 \end{vmatrix} - 2 \begin{vmatrix} 2 & -1 \\ 3 & 2 \end{vmatrix} + 3 \begin{vmatrix} 2 & 1 \\ 3 & 3 \end{vmatrix} =$$

$$= 5 - 2 \cdot 7 + 3 \cdot 3 = 0.$$

Применяем метод Гаусса. Выписываем ($A \setminus B$), умножаем первую строку последовательно на (-2), (-3) и складываем со второй, третьей строками соответственно:

$$(A \backslash B) = \begin{pmatrix} 1 & 2 & 3 & | & 4 \\ 2 & 1 & -1 & | & 3 \\ 3 & 3 & 2 & | & 10 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 & | & 4 \\ 0 & -3 & -7 & | & -5 \\ 0 & -3 & -7 & | & -2 \end{pmatrix}.$$

Умножаем вторую строку полученной матрицы на (-1) и складываем с третьей:

$$(A \backslash B) \sim \begin{pmatrix} 1 & 2 & 3 & | & 4 \\ 0 & -3 & -7 & | & -5 \\ 0 & 0 & 0 & | & 3 \end{pmatrix}, \operatorname{rang} A = 2, \operatorname{rang}(A \backslash B) = 3 \Rightarrow$$

система несовместна (последней строке соответствует уравнение 0 = 3).

Задачи для самостоятельного решения

Найти решения систем методом Крамера:

22)
$$\begin{cases} 5x + 2y = 4, \\ 7x + 4y = 8; \end{cases}$$
 23)
$$\begin{cases} 3x - 5y = 13, \\ 2x + 7y = 81; \end{cases}$$
 24)
$$\begin{cases} 3y - 4x = 1, \\ 3x + 4y = 18; \end{cases}$$
 25)
$$\begin{cases} 2x + 3y = 1, \\ 3x + 5y = 4. \end{cases}$$

24)
$$\begin{cases} 3y - 4x = 1, \\ 3x + 4y = 18; \end{cases}$$
 25) $\begin{cases} 2x + 3y = 1, \\ 3x + 5y = 4. \end{cases}$

Найти решения систем методом Крамера и методом Гаусса:

26)
$$\begin{cases} x + 2y + 3z = -1, \\ 2x + 4y - z = 12, \\ x + y - 3z = 9; \end{cases}$$
27)
$$\begin{cases} x + 2y + 3z = 5, \\ 2x - y - z = 1, \\ x + 3y + 4z = 6, \end{cases}$$
28)
$$\begin{cases} x + 2y + 3z = -1, \\ 2x - y - z = 1, \\ x + 3y + 4z = 6, \end{cases}$$

28)
$$\begin{cases} x + 2y + z = 4, \\ 3x - 5y + 3z = 1, \\ 2x + 7y - z = 8; \end{cases}$$
29)
$$\begin{cases} x + y + z = a, \\ x - y + z = b, \\ x + y - z = c; \end{cases}$$

26)
$$\begin{cases} x + 2y + 3z = -1, \\ 2x + 4y - z = 12, \\ x + y - 3z = 9; \end{cases}$$
27)
$$\begin{cases} x + 2y + 3z = 5, \\ 2x - y - z = 1, \\ x + 3y + 4z = 6; \end{cases}$$
28)
$$\begin{cases} x + 2y + z = 4, \\ 3x - 5y + 3z = 1, \\ 2x + 7y - z = 8; \end{cases}$$
29)
$$\begin{cases} x + y + z = a, \\ x - y + z = b, \\ x + y - z = c; \end{cases}$$
30)
$$\begin{cases} 2x_1 + 2x_2 - x_3 + x_4 = 4, \\ 4x_1 + 3x_2 - x_3 + 2x_4 = 6, \\ 8x_1 + 5x_2 - 3x_3 + 4x_4 = 12, \\ 3x_1 + 3x_2 - 2x_3 + 2x_4 = 6; \end{cases}$$
31)
$$\begin{cases} 2x_1 + 2y + 3z = 5, \\ 2x - y - z = 1, \\ x + 3y + 4z = 6; \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \\ 2x - y - z = 1, \\ x + 3y + 4z = 6; \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x - y - z = 1, \\ x + 3y + 4z = 6; \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x - y - z = 1, \\ x + 3y + 4z = 6; \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x - y - z = 1, \\ x + 3y + 4z = 6; \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x - y - z = 1, \\ x + 3y + 4z = 6; \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x - y - z = 1, \\ x + 3y + 4z = 6; \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x - y - z = 1, \\ x + 3y + 4z = 6; \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x - y - z = 1, \\ x + 3y + 4z = 6; \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x - y - z = 1, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x - y - z = 1, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x - y - z = 1, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x - y - z = 1, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 2y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 3y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 3y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 3y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 3y + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 3z + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 3z + 3z = 5, \end{cases}$$

$$\begin{cases} 2x + 3z + 3z + 3z +$$

Установить, являются ли системы совместными, в случае положительного ответа найти решения систем:

32)
$$\begin{cases} 2x_1 - x_2 + 3x_3 - 7x_4 = 5, \\ 6x_1 - 3x_2 + x_3 - 4x_4 = 7, \\ 4x_1 - 2x_2 + 14x_3 - 31x_4 = 18; \end{cases}$$

33)
$$\begin{cases} 9x_1 - 3x_2 + 5x_3 + 6x_4 = 4, \\ 6x_1 - 2x_2 + 3x_3 + x_4 = 5, \\ 3x_1 - x_2 + 3x_3 + 14x_4 = -8; \end{cases}$$
 34)
$$\begin{cases} x - y + z = 1, \\ x + y - z = 2, \\ 5x + y - z = 7; \end{cases}$$

32)
$$\begin{cases} 2x_1 - x_2 + 3x_3 - 7x_4 = 5, \\ 6x_1 - 3x_2 + x_3 - 4x_4 = 7, \\ 4x_1 - 2x_2 + 14x_3 - 31x_4 = 18; \end{cases}$$
33)
$$\begin{cases} 9x_1 - 3x_2 + 5x_3 + 6x_4 = 4, \\ 6x_1 - 2x_2 + 3x_3 + x_4 = 5, \\ 3x_1 - x_2 + 3x_3 + 14x_4 = -8; \end{cases}$$
34)
$$\begin{cases} x - y + z = 1, \\ x + y - z = 2, \\ 5x + y - z = 7; \end{cases}$$
35)
$$\begin{cases} 2x_1 + x_2 - x_3 + x_4 = 1, \\ 3x_1 - 2x_2 + 2x_3 - 3x_4 = 2, \\ 5x_1 + x_2 - x_3 + 2x_4 = -1, \\ 2x_1 - x_2 + x_3 - 3x_4 = 4; \end{cases}$$
36)
$$\begin{cases} 3x_1 + 5x_2 + 2x_3 = 0, \\ 4x_1 + 7x_2 + 5x_3 = 0, \\ 2x_1 + 9x_2 + 6x_3 = 0; \end{cases}$$

37)
$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 - x_5 = 0, \\ 2x_1 + x_2 - x_3 - x_4 + x_5 = 0, \\ x_1 + 7x_2 - 5x_3 - 5x_4 + 5x_5 = 0, \\ 3x_1 - x_2 - 2x_3 + x_4 - x_5 = 0. \end{cases}$$

Найти решения однородных систем двух и трех уравнений с тремя неизвестными:

38)
$$\begin{cases} x - 2y + z = 0, \\ 3x - 5y + 2z = 0; \end{cases}$$
 39) $\begin{cases} 2x - 5y + 2z = 0 \\ x + 4y - 3z = 0; \end{cases}$

38)
$$\begin{cases} x - 2y + z = 0, \\ 3x - 5y + 2z = 0; \end{cases}$$
39)
$$\begin{cases} 2x - 5y + 2z = 0, \\ x + 4y - 3z = 0; \end{cases}$$
40)
$$\begin{cases} -5x + y + z = 0, \\ x - 6y + z = 0, \\ x + y - 7z = 0; \end{cases}$$
41)
$$\begin{cases} x + y + z = 0, \\ 3x + 6y + 5z = 0, \\ x + 4y + 3z = 0; \end{cases}$$

42)
$$\begin{cases} 3x + 2y - z = 0, \\ 2x - y + 3z = 0, \\ x + 3y - 4z = 0; \end{cases}$$
43)
$$\begin{cases} 3x + 2y - z = 0, \\ 2x - y + 3z = 0, \\ x + y - z = 0. \end{cases}$$

- 44) 1) В общем случае нитрующая смесь составлена из трех компонентов, в состав которых входят азотная и серная кислоты и вода. Пусть заданы общее количество приготовленной смеси $J(\kappa \Gamma)$, содержание в ней азотной l(%), серной m(%) кислот и воды n(%), а также процентные содержания азотной и серной кислот и воды в компонентах J_i , $i = \overline{1,3}$, обозначение l_i , m_i , n_i соответственно. Найти количество (в кг) входящих в смесь компонентов J_i , $i = \overline{1,3}$.
- 2) Из Москвы в Казань необходимо перевезти оборудование трех типов: І типа — 95 ед., ІІ типа — 100 ед., ІІІ типа — 185 ед. Для перевозки оборудования завод может заказать три вида транспорта. Количество оборудования каждого типа, вмещаемого на определенный вид транспорта, приведено в таблице.

Тип оборудования	Количество оборудования		
	T1	T2	Т3
I	3	2	1
II	4	1	2
III	3	5	4

Записать в математической форме условия перевозки оборудования из Москвы в Казань. Установить, сколько единиц транспорта каждого вида потребуется для перевозки этого оборудования.

Задачи к разд. 1.3

Задача 1. Вычислить 3A + 2B, если

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & -4 \end{pmatrix}, \ B = \begin{pmatrix} -2 & 1 & 0 \\ -3 & 2 & 2 \end{pmatrix}.$$

Решение: Матрицы A и B одинаковой размерности 2×3 , поэтому выполняем действия согласно определениям:

$$C = 3A + 2B = \begin{pmatrix} 3 \cdot 2 + 2 \cdot (-2) & 3 \cdot 1 + 2 \cdot 1 & 3 \cdot (-1) + 2 \cdot 0 \\ 3 \cdot 0 + 2 \cdot (-3) & 3 \cdot 1 + 2 \cdot 2 & 3 \cdot (-4) + 2 \cdot 2 \end{pmatrix} =$$

$$= \begin{pmatrix} 2 & 5 & -3 \\ -6 & 7 & -8 \end{pmatrix}.$$

Задача 2. Вычислить C = AB, если

$$A = \begin{pmatrix} 2 & 3 & 1 \\ -1 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 3 & -2 \\ 0 & 2 & 1 \end{pmatrix}.$$

Решение: Матрица A имеет размерность 2×3 , $B-3\times3$, произведение будет иметь размерность 2×3 , по определению для получения элемента c_{ij} умножаем элементы i-й строки матрицы A на соответствующие элементы j-го столбца матрицы B и полученные произведения складываем:

$$C = AB =$$

$$= \begin{pmatrix} 2 \cdot 2 + 3 \cdot 1 + 1 \cdot 0 & 2 \cdot 1 + 3 \cdot 3 + 1 \cdot 2 & 2 \cdot (-1) + 3 \cdot (-2) + 1 \cdot 1 \\ (-1) \cdot 2 + 0 \cdot 1 + 1 \cdot 0 & (-1) \cdot 1 + 0 \cdot 3 + 1 \cdot 2 & (-1) \cdot (-1) + 0 \cdot (-2) + 1 \cdot 1 \end{pmatrix} =$$

$$= \begin{pmatrix} 7 & 13 & -7 \\ -2 & 1 & 2 \end{pmatrix}.$$

Задача 3. Найти обратную матрицу для матрицы $A = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}$. Peшениe: $\det A = \begin{vmatrix} 2 & -1 \\ 3 & 1 \end{vmatrix} = 5 \neq 0$, т.е. матрица A невырожденная и имеет обратную. Находим алгебраические дополнения: $A_{11} = 1$, $A_{12} = -3$, $A_{21} = 1$, $A_{22} = 2$; $A^{-1} = \frac{1}{\det A} \begin{vmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{vmatrix} = \frac{1}{5} \begin{vmatrix} 1 & 1 \\ -3 & 2 \end{vmatrix} = \begin{vmatrix} 1/5 & 1/5 \\ -3/5 & 2/5 \end{vmatrix}$.

Задача 4. Записать систему в матричной форме и решить:

$$\begin{cases} 2x_1 - x_2 = 4, \\ x_1 - 2x_2 + x_3 = 0, \\ 3x_1 - 4x_2 + 2x_3 = 3 \end{cases}$$

Решение:
$$AX = B$$
, где $A = \begin{pmatrix} 2 & -1 & 0 \\ 1 & -2 & 1 \\ 3 & -4 & 2 \end{pmatrix}$, $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, $B = \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}$;

Найдем A^{-1} . Вычислим

$$\det A = \begin{vmatrix} 2 & -1 & 0 \\ 1 & -2 & 1 \\ 3 & -4 & 2 \end{vmatrix} = -1 \neq 0, \quad A_{11} = \begin{vmatrix} -2 & 1 \\ -4 & 2 \end{vmatrix} = 0,$$

$$A_{12} = -\begin{vmatrix} 1 & 1 \\ 3 & 2 \end{vmatrix} = 1, \quad A_{13} = \begin{vmatrix} 1 & -2 \\ 3 & -4 \end{vmatrix} = 2, \quad A_{21} = -\begin{vmatrix} -1 & 0 \\ -4 & 2 \end{vmatrix} = 2,$$

$$A_{22} = \begin{vmatrix} 2 & 0 \\ 3 & 2 \end{vmatrix} = 4, \quad A_{23} = -\begin{vmatrix} 2 & -1 \\ 3 & -4 \end{vmatrix} = 5, \quad A_{31} = \begin{vmatrix} -1 & 0 \\ -2 & 1 \end{vmatrix} = -1,$$

$$A_{32} = -\begin{vmatrix} 2 & 0 \\ 1 & 1 \end{vmatrix} = -2, \quad A_{33} = \begin{vmatrix} 2 & -1 \\ 1 & -2 \end{vmatrix} = -3.$$

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = -\begin{pmatrix} 0 & 2 & -1 \\ 1 & 4 & -2 \\ 2 & 5 & -3 \end{pmatrix},$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = -\begin{pmatrix} 0 & 2 & -1 \\ 1 & 4 & -2 \\ 2 & 5 & -3 \end{pmatrix} \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix} = -\begin{pmatrix} 0 + 0 - 3 \\ 4 + 0 - 6 \\ 8 + 0 - 9 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix},$$

T.e. $x_1 = 3$, $x_2 = 2$, $x_3 = 1$.

Задачи для самостоятельного решения

45) Найти
$$-A + 4B$$
, AB , если $A = \begin{pmatrix} 1 & -3 & 2 \\ 3 & -4 & 1 \\ 2 & -5 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 5 & 6 \\ 1 & 2 & 5 \\ 1 & 3 & 2 \end{pmatrix}$.
46) Найти AB , BA , если $A = \begin{pmatrix} 3 & -2 \\ 5 & -4 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 4 \\ 2 & 5 \end{pmatrix}$.

Выполнить действия:

47)
$$\begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix}^3$$
; **48)** $\begin{pmatrix} 4 & 3 \\ 7 & 5 \end{pmatrix} \begin{pmatrix} -28 & 93 \\ 38 & -126 \end{pmatrix} \begin{pmatrix} 7 & 3 \\ 2 & 1 \end{pmatrix}$;

49)
$$\begin{pmatrix} 2 & -3 \\ 4 & -6 \end{pmatrix} \begin{pmatrix} 9 & -6 \\ 6 & -4 \end{pmatrix} + 2 \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$$
; **50)** $\begin{pmatrix} 4 & 0 & -2 & 3 & 1 \\ -1 & 5 \\ 2 \end{pmatrix}$;

51)
$$\begin{pmatrix} 5 & 0 & 2 & 3 \\ 4 & 1 & 5 & 3 \\ 3 & 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 6 \\ -2 \\ 7 \\ 4 \end{pmatrix}$$
; 52) $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 2 \\ 2 & 2 & 3 \\ 3 & 3 & 4 \end{pmatrix} \begin{pmatrix} -1 & -1 \\ 2 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix}$.

Найти матрицы, обратные для следующих матриц:

53)
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
; **54)** $\begin{pmatrix} 4 & 0 \\ -2 & 4 \end{pmatrix}$; **55)** $\begin{pmatrix} 2 & 7 & 3 \\ 3 & 9 & 4 \\ 1 & 5 & 3 \end{pmatrix}$; **56)** $\begin{pmatrix} 2 & 5 & 7 \\ 6 & 3 & 4 \\ 5 & -2 & -3 \end{pmatrix}$;

$$\begin{array}{cccc}
\mathbf{57}) & 1 & 2 & 2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}$$

Записать системы в матричной форме и решить, пользуясь обратной матрицей:

тной матрицеи: **58)**
$$\begin{cases} x - y = 1, & \textbf{59} \end{cases}$$
 $\begin{cases} 3x + 2y = 1, & \textbf{60} \end{cases}$ $\begin{cases} 2x_1 - 3x_2 + x_3 = 2, \\ x_1 + 5x_2 - 4x_3 = -5, \\ 4x_1 + x_2 - 3x_3 = -4; \end{cases}$

61)
$$\begin{cases} 2x_1 - 4x_2 + 3x_3 = 1, & \textbf{62}) \\ x_1 - 2x_2 + 4x_3 = 3, \\ 3x_1 - x_2 + 5x_3 = 2; \end{cases} \begin{cases} x_1 + 3x_2 = 2, \\ -x_1 - x_2 + x_3 = 3, \\ 2x_1 + 5x_3 = 13; \end{cases}$$

63)
$$\begin{cases} 5x_1 + x_2 - x_3 = 0, \\ 4x_1 + 3x_2 = 3, \\ x_1 + 2x_2 = 2. \end{cases}$$

2. ВЕКТОРНАЯ АЛГЕБРА

Опорный конспект № 2

2.1. Векторы и линейные операции

$$\vec{b} = \lambda \vec{a} \iff \vec{b} \colon |\vec{b}| = |\lambda||\vec{a}|; \ \vec{b} \uparrow \uparrow \vec{a}, \ \lambda > 0, \ \vec{b} \uparrow \downarrow \vec{a}, \ \lambda < 0$$

2.2. Базис в пространстве — \forall три некомпланарных вектора $\vec{e}_1,$ \vec{e}_2,\vec{e}_3

$$\begin{split} \vec{a} &= \alpha_1 \vec{e}_1 + \alpha_2 \vec{e}_2 + \alpha_3 \vec{e}_3, \\ \{\alpha_1, \alpha_2, \alpha_3\} &= \text{координаты } \vec{a} \text{ в базисе } \vec{e}_1, \vec{e}_2, \vec{e}_3, \\ \vec{b} &= \{\beta_1, \beta_2, \beta_3\} \Rightarrow \vec{a} + \vec{b} = \{\alpha_1 + \beta_1, \alpha_2 + \beta_2, \alpha_3 + \beta_3\} \\ \lambda \vec{a} &= \{\lambda \alpha_1, \lambda \alpha_2, \lambda \alpha_3\} \\ \text{Базис на плоскости} &= \forall \ \vec{e}_1, \ \vec{e}_2, \vec{e}_1 \mid \not \mid \vec{e}_2 \end{split}$$

2.3. Проекция вектора \vec{a} на ось l (пр $_{l}\vec{a}$), свойства

2.4. Прямоугольная система координат

2.5. Скалярное произведение

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \varphi = |\vec{a}| \pi p_{\vec{a}} \vec{b};$$

$$\vec{a} = \{a_x, a_y, a_z\}, \ \vec{b} = \{b_x, b_y, b_z\} \Rightarrow$$

$$\Rightarrow \vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$$

Свойства:

$$1^0. \ \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}.$$

$$2^0$$
. $(\lambda \vec{a}) \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b})$.

$$3^{0}$$
. $\vec{a}(\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$.

$$4^0$$
. $\vec{a}^2 = |\vec{a}|^2$.

$$5^0$$
. $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$

Основные приложения: Работа: $A = \vec{F} \cdot \overrightarrow{BC}$

Угол φ между \vec{a} и \vec{b} : $\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$

Проекция пр
$$_{\vec{a}}\vec{b}=rac{\vec{a}\cdot\vec{b}}{|\vec{a}|}$$

2.6. Векторное произведение

(1) $\vec{c} \perp \vec{a}$, $\vec{c} \perp \vec{b}$

$$\vec{c} = \vec{a} \times \vec{b} \iff \begin{cases} 2 \ |\vec{c}| = |\vec{a}| |\vec{b}| \sin \varphi \end{cases}$$

 \vec{a} , \vec{b} , \vec{c} — правая тройка

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

Свойства:

$$1^0. \ \vec{a} \times \vec{b} = -\vec{b} \times \vec{a}.$$

$$2^0$$
. $(\lambda \vec{a}) \times \vec{b} = \lambda (\vec{a} \times \vec{b})$.

$$3^0. \ \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}.$$

4°.
$$|\vec{a} \times \vec{b}| = S_{\Box}, \ S_{\Delta} = |\vec{a} \times \vec{b}|/2.$$

$$5^0$$
. $\vec{a} \parallel \vec{b} \iff \vec{a} \times \vec{b} = 0 \iff a_x/b_x = a_y/b_y = a_z/b_z$

Момент:
$$\vec{M}_0 = \vec{r} \times \vec{F}$$

2.7. Смешанное произведение

$$\vec{a}\vec{b}\vec{c} = (\vec{a} \times \vec{b}) \cdot \vec{c}, \ \vec{a}\vec{b}\vec{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

Свойства:

$$1^0. \ (\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c}).$$

$$2^0$$
. $\vec{a}\vec{b}\vec{c} = -\vec{b}\vec{a}\vec{c}$.

$$3^0$$
. $\vec{a}\vec{b}\vec{c} = \vec{b}\vec{c}\vec{a} = \vec{c}\vec{a}\vec{b}$.

 4^0 . Объем параллелепипеда, построенного на \vec{a} , \vec{b} , \vec{c} : $V_{\text{пар}} = |\vec{a}\vec{b}\vec{c}|$; объем треугольной пирамиды $V_{\Delta \text{пир}} = |\vec{a}\vec{b}\vec{c}|/6$.

$$5^0$$
. \vec{a} , \vec{b} , \vec{c} — компланарны $\Leftrightarrow \vec{a}\vec{b}\vec{c} = 0$

2.8. Линейное пространство. Евклидово пространство \mathbb{R}^n

 $\mathbf{R}^n = \{\vec{a} = \{\alpha_1, \alpha_2, ..., \alpha_n\}; \ \alpha_i \in \mathbf{R}, \ i = \overline{1, n}\}$ — *n*-мерное векторное пространство

$$\Leftrightarrow \vec{a} + \vec{b} = \{\alpha_1 + \beta_1, \alpha_2 + \beta_2, ..., \alpha_n + \beta_n\},\$$

$$\lambda \vec{a} = {\lambda \alpha_1, \lambda \alpha_2, ..., \lambda \alpha_n}, \quad \lambda \in \mathbf{R}, \quad \forall \vec{a}, \vec{b} \in \mathbf{R}^n.$$

Базис в $\mathbf{R}^n - \forall$ линейно независимые $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n \in \mathbf{R}^n$. Пусть базис

$$\vec{e}_1 = (1, 0, ..., 0), \vec{e}_2 = (0, 1, ..., 0), ..., \vec{e}_n = (0, 0, ..., 1),$$

$$\vec{a}\cdot\vec{b}=lpha_1eta_1+lpha_2eta_2+...+lpha_neta_n\Leftrightarrow \mathbf{R}^n-n$$
-мерное евклидово пространство, $|\vec{a}|=\sqrt{lpha_1^2+lpha_2^2+...+lpha_n^2}$

2.9. Линейные преобразования. Собственные значения и собственные векторы. Квадратичные формы в \mathbb{R}^n

A — линейное преобразование в $\mathbf{R}^n \Leftrightarrow \vec{x}' = A\vec{x}, \vec{x}, \vec{x}' \in \mathbf{R}^n$, $A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y}$, $A(\lambda \vec{x}) = \lambda A\vec{x} \ \forall \vec{x}, \vec{y} \in \mathbf{R}^n$, $\lambda \in \mathbf{R}$.

$$\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$$
 — базис в $\mathbf{R}^n \Rightarrow A = (a_{ii}), i, j = \overline{1, n}$

 \vec{x} — собственный вектор $A \Leftrightarrow \vec{x}$: $A\vec{x} = \lambda \vec{x}, \lambda \in \mathbf{R}$ — собственное значение

$$\det(A - \lambda E) = 0$$
 — характеристическое уравнение A .

A — самосопряженный в евклидовом пространстве $\mathbf{R}^n \Leftrightarrow A\vec{x} \cdot \vec{y} = \vec{x} \cdot A\vec{y} \Rightarrow$ в ортонормированном базисе $A = (a_{ij}) = (a_{ji})$, $i, j = \overline{1, n} \Rightarrow \exists$ ортонормированный базис из собственных векторов: матрица оператора A имеет диагональную форму

Квадратичная форма
$$f(x_1, x_2, ..., x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j, \ a_{ij} = a_{ji},$$

 $i, j = \overline{1, n}, A = (a_{ij})$ — ее матрица, приводится к каноническому виду $\sum_{i=1}^n \lambda_i x_i^2, \lambda_i$ — собственные значения A

Задачи к разд. 2.1, 2.2

Задача 1. В параллелограмме ABCD обозначены $\overline{AB} = \vec{a}$, $\overline{AD} = \vec{b}$. Выразить через векторы \vec{a} , \vec{b} векторы \overline{MA} , \overline{MB} , \overline{MC} , \overline{MD} , если M — точка пересечения диагоналей (рис. 2.1).

Решение: По определениям сложения и вычитания $\overrightarrow{AC} = \vec{a} + \vec{b}$, $\overrightarrow{BD} = \vec{b} - \vec{a}$. Так как диагонали в точке M делятся пополам, то, используя умножение вектора на число, имеем:

$$\overline{MA} = -\frac{1}{2}\overline{AC} = -\frac{1}{2}(\vec{a} + \vec{b}), \quad \overline{MC} = \frac{1}{2}\overline{AC} = \frac{1}{2}(\vec{a} + \vec{b}),$$
$$\overline{MB} = -\frac{1}{2}\overline{BD} = \frac{1}{2}(\vec{a} - \vec{b}), \quad \overline{MD} = \frac{1}{2}\overline{BD} = \frac{1}{2}(\vec{b} - \vec{a}).$$

Рис. 2.1

Задача 2. В прямоугольнике OACB заданы $|\overrightarrow{OA}| = 3, |\overrightarrow{OB}| = 4, M$ — середина BC, N — середина AC. Выразить \overrightarrow{OM} , \overrightarrow{ON} , \overrightarrow{MN} через единичные векторы \overrightarrow{i} , \overrightarrow{j} в направлении \overrightarrow{OA} , \overrightarrow{OB} соот-

Решение: По определению умножения вектора на число $\overrightarrow{OA}=3\vec{i}$, $\overrightarrow{OB}=4\vec{j}$, $\overrightarrow{BM}=\overrightarrow{MC}=1,5\vec{i}$, $\overrightarrow{NC}=\overrightarrow{AN}=2\vec{j}$. По определению сложения $\overrightarrow{OM}=\overrightarrow{OB}+\overrightarrow{BM}=4\vec{j}+1,5\vec{i}$, $\overrightarrow{ON}=\overrightarrow{OA}+\overrightarrow{AN}=3\vec{i}+2\vec{j}$, $\overrightarrow{MN}=\overrightarrow{MC}+\overrightarrow{CN}=1,5\vec{i}-2\vec{j}$.

Рис. 2.2

Задача 3. Известны координаты векторов в некотором базисе $\vec{a} = \{2; -1\}, \vec{b} = \{3; 2\}, \vec{c} = \{-1; 4\}$. Разложить вектор \vec{c} по базису \vec{a}, \vec{b} .

Решение: В базисе \vec{a} , \vec{b} вектор $\vec{c} = \alpha \vec{a} + \beta \vec{b}$, где α , β неизвестны. Запишем равенство через координаты: $\{-1; 4\} = \{2\alpha + 3\beta, -\alpha + 2\beta\}$. Имеем систему для нахождения α , β :

$$\begin{cases} 2\alpha + 3\beta = -1, \\ -\alpha + 2\beta = 4, \end{cases} \Rightarrow \alpha = \frac{\begin{vmatrix} -1 & 3 \\ 4 & 2 \end{vmatrix}}{\begin{vmatrix} 2 & 3 \\ -1 & 2 \end{vmatrix}} = -\frac{14}{7} = -2;$$

$$\beta = \frac{\begin{vmatrix} 2 & -1 \\ -1 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 3 \\ -1 & 2 \end{vmatrix}} = \frac{7}{7} = 1 \Rightarrow \vec{c} = -2\vec{a} + \vec{b}.$$

Задачи для самостоятельного решения

1) Проверить аналитически и геометрически векторные тождества:

Рис. 2.3

$$\vec{a} + \frac{\vec{b} - \vec{a}}{2} = \frac{\vec{a} + \vec{b}}{2}; \ \vec{a} - \frac{\vec{a} + \vec{b}}{2} = \frac{\vec{a} - \vec{b}}{2}.$$

2) В равнобедренной трапеции *OACB* угол $BOA = 60^{\circ}$, |OB| = |BC| = |CA| = 2, M и N— середины сторон BC и AC соответственно (рис. 2.3). Выразить \overrightarrow{AC} ,

 $\overrightarrow{OM}, \overrightarrow{ON}, \overrightarrow{MN}$ через единичные векторы $\overrightarrow{m}, \overrightarrow{n}$ в направлении $\overrightarrow{OA}, \overrightarrow{OB}$

Рис. 2.4

- **3)** В параллелепипеде ABCDA'B'C'D' обозначены: $\overrightarrow{AB} = \vec{m}; \ \overrightarrow{AD} = \vec{n}; \ \overrightarrow{AA'} = \vec{p}$ (рис. 2.4). Построить векторы $\vec{m} + \vec{n} + \vec{p};$ $\vec{m} + \vec{n} + \frac{1}{2}\vec{p}; \vec{m} + \vec{n} \vec{p}; \frac{1}{2}\vec{m} + \frac{1}{2}\vec{n} + \vec{p}.$
- **4)** В треугольнике ABC обозначены $\overline{AB} = \vec{a}, \overline{CA} = \vec{b}$. Выразить через \vec{a}, \vec{b} векторы, совпадающие с медианами треугольника.

- **5)** Векторы \vec{a} , \vec{b} взаимно перпендикулярны, причем $|\vec{a}| = 5$, $|\vec{b}| = 12$. Определить $|\vec{a} + \vec{b}|$; $|\vec{a} \vec{b}|$.
 - **6)** Известно, что $|\vec{a}| = 13$; $|\vec{b}| = 19$; $|\vec{a} + \vec{b}| = 24$. Найти $|\vec{a} \vec{b}|$.
- 7) Три силы \vec{M} , \vec{N} , \vec{P} , приложенные к одной точке, имеют взаимно перпендикулярные направления. Определить величину их равнодействующей \vec{R} , если $|\vec{M}| = 2$ H; $|\vec{N}| = 10$ H; $|\vec{P}| = 11$ H.
- **8)** Пусть в некотором базисе $\vec{a} = \{1; -2; 3\}; \ \vec{b} = \{0; 2; 1\}$. Найти $3\vec{a} + 2\vec{b}, \vec{a} 4\vec{b}$.
- **9)** На плоскости даны два вектора $\vec{p}=\{2;-3\}; \vec{q}=\{1;2\}$. Найти разложение вектора $\vec{a}=\{9;4\}$ по базису \vec{p},\vec{q} .
- **10)** Даны три вектора $\vec{p} = \{3; -2; 1\}; \vec{q} = \{-1; 1; -2\}; \vec{r} = \{2; 1; -3\}$. Найти разложение вектора $\vec{c} = \{11; -6; 5\}$ по базису $\vec{p}, \vec{q}, \vec{r}$.
- **11)** Даны четыре вектора $\vec{a}=\{2;1;0\}; \ \vec{b}=\{1;-1;2\}; \ \vec{c}=\{2;2;-1\}; \ \vec{d}=\{3;7;-7\}.$ Определить разложение каждого из этих четырех векторов, принимая в качестве базиса три остальных.
- **12)** Пусть в некотором базисе $\vec{a} = \{\lambda; -1; 2\}; \vec{b} = \{3, \mu, 6\}$. Найти λ , μ , при которых \vec{a}, \vec{b} коллинеарны.
- **13)** Даны три некомпланарных вектора \vec{a} , \vec{b} , \vec{c} . Найти λ и μ , при которых векторы $\lambda \vec{a} + \mu \vec{b} + \vec{c}$; $\vec{a} + \lambda \vec{b} + \mu \vec{c}$ коллинеарны.

Задачи к разд. 2.3, 2.4

Задача 1. Определить точку *B*, которая является концом вектора $\vec{a} = \{4; -3; 1\}$, если его начало — точка A(3; 1; -2).

Решение:
$$\vec{a} = \{4; -3; 1\} = \{x_B - 3; y_B - 1; z_B + 2\} \Rightarrow x_B = 4 + 3 = 7, y_B = -3 + 1 = -2, z_B = 1 - 2 = -1 \Rightarrow B(7; -2; -1).$$

Задача 2. Даны точки A(-1; 2; 3), B(0; 3; 5), C(1; -2; 3). Найти длину и направляющие косинусы вектора $\vec{a} = \overrightarrow{AB} - 3\overrightarrow{AC}$.

Решение: Найдем координаты векторов:

$$\overline{AB} = \{1; 1; 2\}, \ \overline{AC} = \{2; -4; 0\}; \ \vec{a} = \{1 - 3 \cdot 2; 1 - 3 \cdot (-4); 2 - 3 \cdot 0\} = \\ = \{-5; 13; 2\} \Rightarrow |\vec{a}| = \sqrt{25 + 169 + 4} = \sqrt{198}, \cos\alpha = \frac{-5}{\sqrt{198}}, \cos\beta = \frac{13}{\sqrt{198}}, \\ \cos\gamma = \frac{2}{\sqrt{198}}.$$

Задача 3. Вектор \vec{a} составляет с координатными осями *ОХ* и *ОУ* углы $\alpha=60^\circ$, $\beta=120^\circ$. Вычислить его координаты при условии, что $|\vec{a}|=2$.

Решение: Воспользуемся свойством 1^0 проекции вектора на ось, так как прямоугольные координаты вектора являются его проекциями на оси координат:

$$a_X = |\vec{a}|\cos\alpha = 2\cdot\frac{1}{2} = 1; \quad a_Y = |\vec{a}|\cos\beta = 2\left(-\frac{1}{2}\right) = -1.$$
 Тогда $2 = \sqrt{1^2 + (-1)^2 + a_Z^2} \Rightarrow a_Z^2 = 2; a_Z = \pm\sqrt{2}; \vec{a} = \{1, 1, \pm\sqrt{2}\}.$

Задачи для самостоятельного решения

- **14)** Зная проекции нескольких векторов на ось l: $\pi p_l \vec{a} = 5$; $\pi p_l \vec{b} = -3$; $\pi p_l \vec{c} = -8$; $\pi p_l \vec{d} = 6$, можно ли заключить, что они образуют замкнутую ломаную линию?
- **15)** Зная, что $|\vec{a}| = 6$; пр $_{l}\vec{a} = -3$, найти угол между вектором \vec{a} и осью l.
- **16)** Точка B(-1; 3; -4) является концом вектора $\vec{a} = \{2; 4; -1\}$. Определить координаты начала A.
- **17)** Зная одну из вершин $\triangle ABC \underline{\mathsf{T}}.A(2;-5;3)$ и векторы, совпадающие с двумя его сторонами, $-\overline{AB} = \{4;1;2\}; \overline{BC} = \{3;-2;5\},$ найти остальные вершины и сторону \overline{CA} .
- **18)** В точке A(2; 1; -1) приложена сила $|\vec{R}| = 7$. Зная две координаты этой силы X = 2; Y = -3, определить направление и конец вектора, изображающего силу.
- **19)** Даны три последовательные вершины параллелограмма A(1; -2; 3), B(3; 2; 1), C(6; 4; 4). Найти его четвертую вершину D.

Рис. 2.5

Рис. 2.6

- **20)** Даны векторы $\vec{a} = \{1; -2; 3\}; \vec{b} = \{0; 1; 2\};$ $\vec{c} = \{3; 0; -1\}$. Найти длину и направляющие косинусы вектора $\vec{d} = \vec{a} 2\vec{b} \vec{c}$.
- **21)** Определить координаты точки M, если ее радиус-вектор составляет с координатными осями одинаковые углы и его модуль равен 3.
- **22)** Стержни *AC* и *BC* соединены между собой и с вертикальной стеной при помощи шарниров (рис. 2.5). На шарнирный болт *C* действует вертикальная сила \vec{F} , $|\vec{F}|$ = 1000 H. Определить реакции этих стержней на шарнирный болт, если $\alpha = 30^\circ$; $\beta = 60^\circ$.
- **23)** Груз весом P подвешен на двух гибких нитях AB и AC, причем нить AC горизонтальна, AB составляет с вертикалью угол ϕ (рис. 2.6). Найти силы натяжения нитей AB и AC.

Задачи к разд. 2.5

Задача 1. Пусть $|\vec{a}|=1$; $|\vec{b}|=3$; $(\vec{a},\vec{b})=\frac{\pi}{3}$. Найти скалярное произведение $(4\vec{a}-\vec{b})\cdot(2\vec{a}+3\vec{b})$.

Решение: Пользуясь свойствами 1^0 — 3^0 , раскрываем скобки по правилу умножения многочленов, затем используем определение скалярного произведения и свойство 4^0 :

$$(4\vec{a} - \vec{b}) \cdot (2\vec{a} + 3\vec{b}) = 8\vec{a}^2 - 2\vec{a} \cdot \vec{b} + 12\vec{a} \cdot \vec{b} - 3\vec{b}^2 =$$

$$= 8|\vec{a}^2| + 10|\vec{a}| \cdot |\vec{b}|\cos(\hat{a}, \hat{b}) - 3|\vec{b}^2| =$$

$$= 8 \cdot 1 + 10 \cdot 1 \cdot 3\cos\frac{\pi}{3} - 3 \cdot 9 = 8 + 15 - 27 = -4.$$

Задача 2. Пусть $\vec{a} = \{4; -2; 3\}; \vec{b} = \{1; -2; 0\}; \vec{c} = \{2; 1; -3\}.$ Найти $(\vec{a} + 3\vec{b}) \cdot (\vec{a} - \vec{b} + \vec{c}).$

Решение: Находим координаты векторов $\vec{m} = \vec{a} + 3\vec{b}, \vec{n} = \vec{a} - \vec{b} + \vec{c}$: $\vec{m} = \{4 + 3 \cdot 1; -2 + 3 \cdot (-2); 3 + 3 \cdot 0\} = \{7; -8; 3\}; \vec{n} = \{4 - 1 + 2; -2 + 2 + 1; 3 - 0 - 3\} = \{5; 1; 0\} \Rightarrow \vec{m} \cdot \vec{n} = 7 \cdot 5 + (-8) \cdot 1 + 3 \cdot 0 = 35 - 8 = 27.$

Задача 3. Дано: $\vec{a}=\{-1;\,2;\,3\};\,\vec{b}=\{0;\,1;\,-2\};\,\vec{c}=\{2;\,1;\,-3\}.$ Найти угол ϕ между векторами \vec{a} и $\vec{d}=2\vec{b}-\vec{c}$.

Решение:
$$\vec{d} = \{2 \cdot 0 - 2; 2 \cdot 1 - 1; 2 \cdot (-2) - (-3)\} = \{-2; 1; -1\},$$

$$\cos \varphi = \frac{\vec{a} \cdot \vec{d}}{|\vec{a}||\vec{d}|} = \frac{(-1)(-2) + 2 \cdot 1 + 3 \cdot (-1)}{\sqrt{1 + 4 + 9}\sqrt{4 + 1 + 1}} = \frac{1}{\sqrt{14}\sqrt{6}} = \frac{1}{2\sqrt{21}},$$
$$\varphi = \arccos \frac{1}{2\sqrt{21}}.$$

Задача 4. Найти проекцию пр $_{\overline{CD}}\overline{AB}$, если A(-1; 2; 3); B(0; 1; 2); <math>C(1; -2; 3); D(3; 1; 0).

Решение: Найдем $\overrightarrow{AB} = \{1; -1; -1\}; \overrightarrow{CD} = \{2; 3; -3\},$ тогда

Задачи для самостоятельного решения

24) Известно, что
$$|\vec{a}| = 3$$
; $|\vec{b}| = 4$; $(\vec{a}, \vec{b}) = \frac{2\pi}{3}$. Найти: a) $(3\vec{a} - 2\vec{b})(\vec{a} + 2\vec{b})$;

- 6) $(\vec{a} + \vec{b})^2$.
- **25)** Известно, что $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1, \vec{a} + \vec{b} + \vec{c} = 0.$

Найти $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$.

- **26)** Известно, что $|\vec{a}| = 3, |\vec{b}| = 2, (\widehat{\vec{a}}, \widehat{\vec{b}}) = \frac{\pi}{3}$. Найти $|\vec{a} 2\vec{b}|$.
- **27)** Дано: $|\vec{a}| = 2$, $|\vec{b}| = 5$, $(\vec{a}, \vec{b}) = \frac{2\pi}{3}$. Найти α , при котором вектор $\vec{p} = \alpha \vec{a} + 17\vec{b}$ перпендикулярен вектору $\vec{q} = 3\vec{a} \vec{b}$.
- **28)** Дано: $\vec{a}=2\vec{m}-\vec{n}, |\vec{m}|=|\vec{n}|=1, (\widehat{\vec{m}},\widehat{\vec{n}})=120^\circ$. Найти $\cos \varphi$, где $\varphi=(\widehat{\vec{a}},\widehat{\vec{m}})$.
- **29)** Доказать, что угол между диагоналями прямоугольника, построенного на векторах \vec{a} , \vec{b} ($\vec{a} \perp \vec{b}$), определяется формулой $\cos \phi = \pm \frac{\vec{a}^2 \vec{b}^2}{\vec{a}^2 + \vec{b}^2}$.
- **30)** Какому условию должны удовлетворять векторы \vec{a} , \vec{b} , чтобы вектор \vec{a} + \vec{b} был перпендикулярен \vec{a} \vec{b} ?
- **31)** К вершине правильного тетраэдра с ребром *а* приложены три силы, направленные вдоль его ребер. Определить величину равнодействующей.
- **32)** Даны векторы $\vec{a}=\{5;\ 0;\ 4\};\ \vec{b}=\{0;\ -1;\ 2\};\ \vec{c}=\{3;\ 1;\ 4\}.$ Найти $(\vec{a}+\vec{c})(\vec{b}-2\vec{a}).$
- **33)** Даны точки A(-1; 3; -7); B(2; -1; 5); C(0; 1; -5).Вычислить $(2\overrightarrow{AB} \overrightarrow{CB})(2\overrightarrow{BC} + \overrightarrow{BA}).$
- **34)** Вычислить, какую работу производит сила $\vec{F} = \{6; -2; 1\}$, когда ее точка приложения, двигаясь прямолинейно, перемещается из положения A(3; 4; -2) в B(4; -2; -3).
- **35)** Даны три силы $\vec{P} = \{3; -4; 2\}; \vec{Q} = \{2; 3; -5\}; \vec{R} = \{-3; -2; 4\},$ приложенные к одной точке. Вычислить, какую работу производит равнодействующая этих сил, когда ее точка приложения перемещается, двигаясь прямолинейно, из положения $M_1(5; 3; -7)$ в положение $M_2(4; -1; -4)$.
- **36)** Даны вершины треугольника A(-1; -2; 4); B(-4; -2; 0); C(3; -2; 1). Найти внутренний угол при вершине <math>B.
- **37)** Даны вершины треугольника A(3; 2; -3); B(5; 1; -1); C(1; -2; 1). Определить внешний угол при вершине <math>A.

- **38)** Даны векторы $\vec{a}=\{2;-3;4\}; \vec{b}=\{4;0;5\}; \vec{c}=\{3;1;1\}$. Найти пр $_{\vec{d}}\vec{c}$, если $\vec{d}=2\vec{a}-\vec{b}$.
- **39)** Даны точки M(-5; 7; -6), N(7; -9; 9). Вычислить проекцию вектора $\vec{a} = \{1; -3; 1\}$ на ось вектора \overline{MN} .
- **40)** Определить, при каком значении α перпендикулярны векторы $\vec{c} = 2\vec{a} + \vec{b}$ и \vec{d} , если $\vec{a} = \alpha \vec{i} + 2\vec{j} \vec{k}$; $\vec{b} = 3\vec{i} + \vec{j} + \vec{k}$; $\vec{d} = \vec{i} 3\vec{k}$.
- **41)** Найти вектор \vec{x} , коллинеарный вектору $\vec{a} = \{2; 1; -1\}$ и удовлетворяющий условию $\vec{x} \cdot \vec{a} = 3$.
- **42)** Сила $\vec{R} = \{1; -8; -7\}$ разложена по трем направлениям, одно из которых задано вектором $\vec{a} = 2\vec{i} + 2\vec{j} + \vec{k}$. Найти составляющую \vec{F} силы \vec{R} в направлении \vec{a} .

Задачи к разд. 2.6

Задача 1. Известно, что $\vec{a} \perp \vec{b}, |\vec{a}| = 3, |\vec{b}| = 4.$

Найти $|(3\vec{a}-\vec{b})\times(\vec{a}-2\vec{b})|$.

Решение: Пользуясь свойствами 1^0 — 3^0 , раскрываем скобки в векторном произведении:

$$(3\vec{a} - \vec{b}) \times (\vec{a} - 2\vec{b}) = 3\vec{a} \times \vec{a} - \vec{b} \times \vec{a} - 6\vec{a} \times \vec{b} + 2\vec{b} \times \vec{b} = -5\vec{a} \times \vec{b}.$$

По свойству 5^0 векторные произведения $\vec{a} \times \vec{a} = 0, \vec{b} \times \vec{b} = 0$. Далее по определению векторного произведения

$$|(3\vec{a} - \vec{b}) \times (\vec{a} - 2\vec{b})| = |-5\vec{a} \times \vec{b}| = 5|\vec{a}||\vec{b}|\sin(\hat{a},\hat{b}) = 5 \cdot 3 \cdot 4 = 60.$$

Задача 2. Даны векторы $\vec{a} = \vec{i} - 2\vec{j} + \vec{k}, \vec{b} = 3\vec{i} + 4\vec{j}$.

Найти $(2\vec{a} - \vec{b}) \times (\vec{a} + 3\vec{b})$.

Решение: Найдем координаты векторов $2\vec{a} - \vec{b} = \{2 \cdot 1 - 3; -2 \cdot 2 - 4; 2 \cdot 1\} = \{-1; -8; 2\}, \vec{a} + 3\vec{b} = \{1 + 3 \cdot 3; -2 + 4 \cdot 3; 1\} = \{10; 10; 1\}.$ Тогда

$$(2\vec{a} - \vec{b}) \times (\vec{a} + 3\vec{b}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -1 & -8 & 2 \\ 10 & 10 & 1 \end{vmatrix} = \vec{i} \begin{vmatrix} -8 & 2 \\ 10 & 1 \end{vmatrix} - \vec{j} \begin{vmatrix} -1 & 2 \\ 10 & 1 \end{vmatrix} + \vec{k} \begin{vmatrix} -1 & -8 \\ 10 & 10 \end{vmatrix} = -28\vec{i} + 21\vec{j} + 70\vec{k}.$$

Задача 3. Дано: A(1; 2; 0), B(3; 0; -3), C(5; 2; 6). Найти площадь треугольника ABC.

Решение: Находим координаты векторов $\overrightarrow{AB} = \{2; -2; -3\}, \ \overrightarrow{AC} = \{4; 0; 6\}.$ По свойству $4^0 S_{\triangle ABC} = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|.$ Так как

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -2 & -3 \\ 4 & 0 & 6 \end{vmatrix} = -12\vec{i} - 24\vec{j} + 8\vec{k},$$

то
$$S_{\triangle ABC} = \frac{1}{2}\sqrt{12^2 + 24^2 + 8^2} = 14$$
 (кв. ед.).

Задачи для самостоятельного решения

- **43)** Даны: $|\vec{a}| = 2, |\vec{b}| = 3, (\widehat{\vec{a}}, \widehat{\vec{b}}) = \frac{2\pi}{3}$. Найти $[(3\vec{a} + 2\vec{b}) \times (\vec{a} 3\vec{b})]^2$.
- **44)** Даны: $|\vec{a}| = 10, |\vec{b}| = 2, \vec{a} \cdot \vec{b} = 12$. Вычислить $|\vec{a} \times \vec{b}|$.
- **45)** Векторы \vec{a} и \vec{b} составляют угол 45°. Найти площадь треугольника, построенного на векторах $\vec{a} 2\vec{b}$ и $3\vec{a} + 2\vec{b}$, если $|\vec{a}| = |\vec{b}| = 5$.
- **46)** При каком значении коэффициента α векторы $\vec{p} = \alpha \vec{a} + 5\vec{b}$ и $\vec{q} = 3\vec{a} \vec{b}$ окажутся коллинеарными, если \vec{a} и \vec{b} не коллинеарны.
- **47)** Найти координаты векторного произведения $(\vec{a} + \vec{b} + \vec{c}) \times (\vec{a} 2\vec{b})$, если $\vec{a} = 2\vec{i} + \vec{j}$; $\vec{b} = \vec{i} 3\vec{j} + \vec{k}$; $\vec{c} = \vec{j} + 2\vec{k}$.
- **48)** Вычислить площадь параллелограмма, построенного на векторах $\vec{a} = \{0; -1; 1\}; \vec{b} = \{1; 1; 1\}.$
- **49)** Даны точки A(2; -1; 2); B(1; 2; -1); C(3; 2; 1). Найти координаты векторного произведения $(\overrightarrow{BC} 2\overrightarrow{CA}) \times \overrightarrow{CB}$.
- **50)** Найти площадь и высоту *BD* треугольника *ABC* с вершинами A(1; -2; 8); B(0; 0; 4); C(6; 2; 0).
- **51)** Сила $\vec{F} = \{2; -4; 5\}$ приложена к точке A(4; -2; 3). Определить момент этой силы относительно точки C(3; 2; -1).
- **52)** Даны три силы $\vec{F}_1 = \{2; -1; -3\}; \vec{F}_2 = \{3; 2; -1\}; \vec{F}_3 = \{-4; 1; 3\},$ приложенные к точке A(-1; 4; -2). Найти величину и направляющие косинусы момента равнодействующей этих сил относительно точки B(2; 3; -1).
- **53)** Найти координаты вектора \vec{x} , перпендикулярного к векторам $\vec{a}=\{2;-3;\ 1\};\ \vec{b}=\{1;-2;\ 3\}$ и удовлетворяющего условию $\vec{x}\cdot(\vec{i}+2\vec{j}-7\vec{k})=10.$

Задачи к разд. 2.7

Задача 1. Векторы $\vec{a}, \vec{b}, \vec{c}$, образующие правую тройку, взаимно перпендикулярны, $|\vec{a}| = 2$, $|\vec{b}| = 3$, $|\vec{c}| = 4$. Найти \vec{a} \vec{b} \vec{c} .

Решение: Так как для правой тройки $\vec{a}\ \vec{b}\ \vec{c} = V_{\rm пар}$, построенного на $\vec{a}, \vec{b}, \vec{c}$, а $V_{\rm пар} = |\vec{a}| |\vec{b}| |\vec{c}|$ вследствие взаимной перпендикулярности векторов, то $\vec{a}\ \vec{b}\ \vec{c} = 24$.

Задача 2. Показать, что $(\vec{a} + \vec{b})(\vec{a} + \vec{c})\vec{b} = -\vec{a}\vec{b}\vec{c}$. *Решение:*

$$(\vec{a} + \vec{b})(\vec{a} + \vec{c})\vec{b} = (\vec{a} + \vec{b})(\vec{a} \times \vec{b} + \vec{c} \times \vec{b}) =$$

$$= \vec{a}\vec{a}\vec{b} + \vec{a}\vec{c}\vec{b} + \vec{b}\vec{a}\vec{b} + \vec{b}\vec{c}\vec{b} = \vec{a}\vec{c}\vec{b} = -\vec{a}\vec{b}\vec{c},$$

учитывая свойства 2^0 , 5^0 .

Задача 3. Даны векторы $\vec{a}=\{1;-1;3\}, \vec{b}=\{-2;2;1\}, \vec{c}=\{3;0;-1\}.$ Вычислить $(2\vec{b}+\vec{c})(\vec{a}+\vec{b}+\vec{c})(\vec{a}-\vec{b}).$

Решение: Находим координаты векторов $2\vec{b}+\vec{c}=\{-4;\ 4;\ 2\}+\{3;\ 0;-1\}=\{-1;\ 4;\ 1\},\ \vec{a}+\vec{b}+\vec{c}=\{2;\ 1;\ 3\},\ \vec{a}-\vec{b}=\{3;\ -3;\ 2\},\ \text{тогда}$

$$(2\vec{b} + \vec{c})(\vec{a} + \vec{b} + \vec{c})(\vec{a} - \vec{b}) = \begin{vmatrix} -1 & 4 & 1 \\ 2 & 1 & 3 \\ 3 & -3 & 2 \end{vmatrix} = 0.$$

Задача 4. Вычислить объем треугольной пирамиды *АВСD*, если A(2; -1; 1), B(5; 5; 4), C(3; 2; -1), D(4; 1; 3).

Решение: По свойству 4⁰ имеем

$$V_{\Delta \Pi \mu p} = \frac{1}{6} |\overrightarrow{AB} \overrightarrow{AC} \overrightarrow{AD}|, \overrightarrow{AB} = \{3; 6; 3\}, \overrightarrow{AC} = \{1; 3; -2\}. \overrightarrow{AD} = \{2; 2; 2\},$$

тогда

$$\overline{AB}\ \overline{AC}\ \overline{AD} = \begin{vmatrix} 3 & 6 & 3 \\ 1 & 3 & -2 \\ 2 & 2 & 2 \end{vmatrix} = -18.\ V_{\Delta \Pi \mu p} = \frac{1}{6} |-18| = 3$$
 (куб. ед.).

Задачи для самостоятельного решения

- **54)** Вектор \vec{c} перпендикулярен к векторам \vec{a} , \vec{b} , угол между \vec{a} , \vec{b} равен 30°, $|\vec{a}| = 6$, $|\vec{b}| = |\vec{c}| = 3$. Вычислить $\vec{a}\vec{b}\vec{c}$.
 - 55) Показать, что

$$(\vec{a} - \vec{b})(\vec{a} - \vec{b} - \vec{c})(\vec{a} + 2\vec{b} - \vec{c}) = 3\vec{a}\vec{b}\vec{c};$$

$$(\vec{a} + \vec{b})(\vec{b} + \vec{c})(\vec{c} + \vec{a}) = 2\vec{a}\vec{b}\vec{c}.$$

- **56)** Установить, образуют ли векторы $\vec{a}, \vec{b}, \vec{c}$ базис в пространстве \mathbb{R}^3 , если $\vec{a} = \{3; -2; 1\}, \vec{b} = \{2; 1; 2\}, \vec{c} = \{3; -1; 2\}.$
- **57)** Показать, что векторы $\vec{a} = -\vec{i} + 3\vec{j} + 2\vec{k}$, $\vec{b} = 2\vec{i} 3\vec{j} 4\vec{k}$, $\vec{c} = -3\vec{i} + 12\vec{j} + 6\vec{k}$ компланарны. Разложить \vec{c} по векторам \vec{a} и \vec{b} .
- **58)** Показать, что точки A(2; -1; -1); B(1; 2; 1); C(2; 3; 0); D(1; 6; 2) лежат в одной плоскости.
- **59)** При каком λ векторы $\vec{a} = \{\lambda; 3; 1\}, \vec{b} = \{5; -1; 2\}, \vec{c} = \{-1; 5; 4\}$ будут компланарны?
- **60)** Найти объем параллелепипеда, построенного на векторах $\vec{a} = 3\vec{i} + 4\vec{j}, \vec{b} = -3\vec{j} + \vec{k}, \vec{c} = 2\vec{j} + 5\vec{k}$.
- **61)** Вычислить объем и высоту треугольной пирамиды ABCD, опущенную из вершины D, если A(1; 1; 1), B(2; 0; 2), C(2; 2; 2), D(3; 4; -3).

Задачи к разд. 2.8

Задача 1. Найти базис и размерность подпространства решений однородной системы линейных уравнений

$$\begin{cases} 3x_1 - 2x_2 + x_3 - 4x_4 = 0, \\ 2x_1 - 3x_2 - 2x_3 + x_4 = 0, \\ 4x_1 - x_2 + 4x_3 - 9x_4 = 0. \end{cases}$$

Решение: Применяя метод Гаусса, найдем общее решение системы:

$$\begin{cases} x_2 = \frac{8}{7}x_1 - 4x_4, \\ x_3 = -\frac{5}{7}x_1 + 2x_4, \end{cases}$$

где x_1, x_4 принимают любые действительные значения. Рассмотрим два частных решения u и v, положив $x_1 = 1, x_4 = 0$, затем $x_1 = 0, x_4 = 1$: $\vec{u} = (1; 8/7; -5/7; 0), \vec{v} = (0; -4; 2; 1)$. Любое решение тогда представляется в виде $x = x_1 \vec{u} + x_4 \vec{v}$, что проверяется подстановкой координат \vec{u} и \vec{v} . Таким образом, мы можем утверждать, что векторы \vec{u} и \vec{v} образуют базис, если докажем их линейную независимость. Последняя следует из того, что равенство $x_1 \vec{u} + x_4 \vec{v} = 0$ может иметь место

лишь при $x_1 = 0$, $x_4 = 0$. По определению размерность такого линейного пространства решений системы равна двум.

Задача 2. Показать, что векторы $\vec{x}_1 = (1; 2, 1; 2), \vec{x}_2 = (-1; 3; 2, 1), \vec{x}_3 = (-13; -1, 2; -11)$ линейно зависимы. Найти эту зависимость.

Решение: Составим линейную комбинацию $\lambda_1 \vec{x}_1 + \lambda_2 \vec{x}_2 + \lambda_3 \vec{x}_3 = 0$. Это векторное уравнение эквивалентно следующей системе уравнений:

$$\begin{cases} \lambda_1 - \lambda_2 - 13\lambda_3 = 0, \\ 2\lambda_1 + 3\lambda_2 - \lambda_3 = 0, \\ \lambda_1 + 2\lambda_2 + 2\lambda_3 = 0, \\ 2\lambda_1 + \lambda_2 - 11\lambda_3 = 0. \end{cases}$$

Решая ее методом Гаусса, находим: $\lambda_1 = 8\lambda_3$; $\lambda_2 = -5\lambda_3$. Составленная линейная комбинация примет вид $8x_1 - 5x_2 + x_3 = 0$. Это равенство и доказывает линейную зависимость данной системы векторов.

Задача 3. Проверить ортогональность векторов $\vec{e}_1 = \{1; -2; 1; 3\},$ $\vec{e}_2 = \{2; 1; -3; 1\}$ и дополнить их до ортогонального базиса в \mathbf{R}^4 .

Решение: $\vec{e}_1 \cdot \vec{e}_2 = 2 - 2 + 3 - 3 = 0$. Пусть $\vec{e}_3 = \{\alpha_1; \ \alpha_2; \ \alpha_3; \ \alpha_4\}$, тогда из $\vec{e}_1 \cdot \vec{e}_3 = 0$; $\vec{e}_2 \cdot \vec{e}_3 = 0$ получаем систему

$$\begin{cases} \alpha_1 - 2\alpha_2 + \alpha_3 + 3\alpha_4 = 0, \\ 2\alpha_1 + \alpha_2 - 3\alpha_3 + \alpha_4 = 0. \end{cases}$$

Находим ее любое решение, это и будет \vec{e}_3 , например $\vec{e}_3 = \{-4; 2; -1; 3\}$. Пусть $\vec{e}_4 = \{\beta_1; \beta_2; \beta_3; \beta_4\}$, тогда из $\vec{e}_1 \cdot \vec{e}_4 = 0$, $\vec{e}_2 \cdot \vec{e}_4 = 0$, $\vec{e}_3 \cdot \vec{e}_4 = 0$ получаем систему

$$\begin{cases} \beta_1 - 2\beta_2 + \beta_3 + 3\beta_4 = 0, \\ 2\beta_1 + \beta_2 - 3\beta_3 + \beta_4 = 0, \\ -4\beta_1 + 2\beta_2 - \beta_3 + 3\beta_4 = 0. \end{cases}$$

Находим любое ее решение, это и будет \vec{e}_4 , например \vec{e}_4 = = {2; 4; 3; 1}.

Задачи для самостоятельного решения

- **62)** Образуют ли следующие векторы базис пространства \mathbb{R}^3 ?
- a) $\vec{x}_1 = (3; 0; 2), \vec{x}_2 = (7; 0; 9), \vec{x}_3 = (4; 1; 2);$
- 6) $\vec{x}_1 = (1; 1; 0), \vec{x}_2 = (3; 0; 1), \vec{x}_3 = (5; 2; 1).$

- **63)** Показать, что векторы \vec{e}_1 , \vec{e}_2 , \vec{e}_3 образуют базис, и найти координаты \vec{x} в этом базисе: \vec{e}_1 = (1; 1; 1), \vec{e}_2 = (1; 1; 2), \vec{e}_3 = (1; 2; 3), \vec{x} = = (6; 9; 14).
- **64)** Найти базис и размерность подпространства решений однородной системы линейных уравнений:

a)
$$\begin{cases} 2x_1 - 4x_2 + 5x_3 + 3x_4 = 0, \\ 3x_1 - 6x_2 + 4x_3 + 2x_4 = 0, \\ 4x_1 - 8x_2 + 17x_3 + 11x_4 = 0; \end{cases}$$

$$\begin{cases} 3x_1 + 5x_2 + 2x_3 = 0, \\ 4x_1 + 7x_2 + 5x_3 = 0, \\ x_1 + x_2 - 4x_3 = 0, \\ 2x_1 + 9x_2 + 6x_3 = 0. \end{cases}$$

- **65)** Найти угол между векторами $\vec{a} = (1; 0; 1; 0), \vec{b} = (1; 1; 1; 1).$
- **66)** Проверить ортогональность векторов в евклидовом пространстве \mathbb{R}^n и дополнить до ортогональных базисов:

a)
$$\vec{e}_1 = (2/3; 1/3; 2/3), \vec{e}_2 = (1/3; 2/3; -2/3), n = 3;$$

6)
$$\vec{e}_1 = (1; 1; 1; 2), \vec{e}_2 = (1; 2; 3; -3), n = 4.$$

Задачи к разд. 2.9

Задача 1. Найти собственные значения и собственные векторы линейного преобразования, заданного матрицей

$$A = \begin{pmatrix} -3 & 2 & 0 \\ -2 & 1 & 0 \\ 15 & -7 & 4 \end{pmatrix}.$$

Решение: Характеристическое уравнение

$$\begin{vmatrix} -3 - \lambda & 2 & 0 \\ -2 & 1 - \lambda & 0 \\ 15 & -7 & 4 - \lambda \end{vmatrix} = 0 \Leftrightarrow (4 - \lambda)(\lambda^2 + 2\lambda + 1) = 0.$$

Таким образом, $\lambda_1 = 4$, $\lambda_2 = \lambda_3 = -1$ — спектр матрицы A. Собственные векторы находим, решая систему

$$\begin{cases} (-3 - \lambda)x_1 + 2x_2 = 0, \\ -2x_1 + (1 - \lambda)x_2 = 0, \\ 15x_1 - 7x_2 + (4 - \lambda)x_3 = 0. \end{cases}$$

При $\lambda_1 = 4$ она имеет вид

$$\begin{cases}
-7x_1 + 2x_2 = 0, \\
-2x_1 - 3x_2 = 0, \\
15x_1 - 7x_2 = 0.
\end{cases}$$

Тогда первый собственный вектор получается равным $\vec{u} = k(0; 0; 1)$, где k — любое действительное число ($k \neq 0$). Второй собственный вектор определяется из системы при $\lambda = -1$:

$$\begin{cases} -2x_1 + 2x_2 = 0, \\ -2x_1 + 2x_2 = 0, \\ 15x_1 - 7x_2 + 5x_3 = 0. \end{cases}$$

Ее общее решение $x_1=x_2,\,x_3=-\frac{8}{5}x_2,\,$ т.е. $\vec{v}=l(1;\,1;\,-8/5),\,$ где l-1любое действительное число.

Задача 2. Найти диагональную форму матрицы A и новый базис, если

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Решение: Матрица *A* симметрическая, поэтому ее можно диагонализировать. Находим спектр матрицы *A*: $\lambda_1 = 3$, $\lambda_2 = \lambda_3 = 0$, затем собственные векторы, решая системы

$$\begin{cases}
-2x_1 + x_2 + x_3 = 0, \\
x_1 - 2x_2 + x_3 = 0, \\
x_1 + x_2 - 2x_3 = 0;
\end{cases} x_1 + x_2 + x_3 = 0.$$

Решение первой системы x_1 (1; 1; 1), второй — $(-(x_2+x_3); x_2; x_3)$. Тогда можно взять в качестве базиса $\vec{e}_1 = (1; 1; 1), \vec{e}_2 = (-1; 1; 0), \vec{e}_3 =$

$$(-1;0;1)$$
. Диагональная форма матрицы $\begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Задача 3. Привести квадратичную форму $f(x_1, x_2) = 3x_1^2 + 10x_1x_2 + 3x_2^2$ к каноническому виду.

Решение: Матрица квадратичной формы $A = \begin{pmatrix} 3 & 5 \\ 5 & 3 \end{pmatrix}$. Находим ее собственные значения:

$$\begin{vmatrix} 3 - \lambda & 5 \\ 5 & 3 - \lambda \end{vmatrix} = 0 \Rightarrow \lambda_1 = 8, \lambda_2 = -2.$$

Собственные векторы получаются из систем:

$$\begin{cases}
-5u_1 + 5u_2 = 0, & 5u_1 + 5u_2 = 0, \\
5u_1 - 5u_2 = 0.
\end{cases}$$

Решение первой $u_1=u_2$, второй — $u_1=-u_2$, собственные векторы $\vec{a}_1=u_1(1;1), \ \vec{a}_2=u_1(1;-1).$ Ортогональный базис (1;1); (1;-1); ортонормированный базис $\vec{e}_1'=(1/\sqrt{2};1/\sqrt{2}); \ \vec{e}_2'=(1/\sqrt{2};-1/\sqrt{2}).$ Таким образом, преобразованием

$$\begin{cases} x_1 = x_1'/\sqrt{2} + x_2'/\sqrt{2}, \\ x_2 = x_1'/\sqrt{2} - x_2'/\sqrt{2} \end{cases}$$

квадратичная форма приводится к виду $f(x_1, x_2) = 8(x_1')^2 - 2(x_2')^2$.

Задача 4. Проверить, является ли квадратичная форма $f(x_1, x_2, x_3) = 6x_1^2 + 5x_2^2 + 7x_3^2 - 4x_1x_2 + 4x_1x_3$ положительно определенной. *Решение:* Матрица квадратичной формы

$$A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 5 & 0 \\ 2 & 0 & 7 \end{pmatrix}.$$

Собственные значения находим из характеристического уравнения

$$\begin{vmatrix} 6-\lambda & -2 & 2 \\ -2 & 5-\lambda & 0 \\ 2 & 0 & 7-\lambda \end{vmatrix} = 0 \Rightarrow \lambda_1 = 3, \lambda_2 = 6, \lambda_3 = 9,$$

т.е. квадратичная форма является положительно определенной.

Задачи для самостоятельного решения

67) Найти матрицу преобразования суммы следующих линейных преобразований:

$$\begin{cases} x_1' = 3x_1 + 5x_2, & \begin{cases} x_1'' = 7x_1 - 8x_2, \\ x_2' = 4x_1 + 7x_2; \end{cases} & \begin{cases} x_2'' = x_1 - 5x_2. \end{cases} \end{cases}$$

68) Показать, что данное линейное преобразование невырожденное, и найти обратное преобразование:

a)
$$\begin{cases} x_1' = 2x_1 - 3x_2 + x_3, \\ x_2' = x_1 + 5x_2 - 4x_3, \\ x_3' = 4x_1 + x_2 - 3x_3; \end{cases}$$
 6)
$$\begin{cases} x_1' = 2x_1 - 4x_2 + 3x_3 \\ x_2' = x_1 - 2x_2 + 4x_3, \\ x_3' = 3x_1 - x_2 + 5x_3. \end{cases}$$

69) Даны два линейных преобразования. Найти преобразование, выражающее через x_1'', x_2'', x_3'' через x_1, x_2, x_3 :

a)
$$\begin{cases} x_1' = 5x_1 - x_2 + 3x_3, \\ x_2' = x_1 - 2x_2, \\ x_3' = 7x_2 - 3x_3; \end{cases}$$
 6)
$$\begin{cases} x_1'' = 2x_1' + x_3', \\ x_2'' = x_2' - 3x_3', \\ x_3'' = 2x_1'. \end{cases}$$

70) Найти собственные значения и собственные векторы линейных преобразований:

a)
$$\begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}$$
; 6) $\begin{pmatrix} -1 & -2 & 12 \\ 0 & 4 & 3 \\ 0 & 5 & 6 \end{pmatrix}$; B) $\begin{pmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{pmatrix}$.

71) Найти диагональную форму матрицы и новый ортонормированный базис (базис определен неоднозначно):

a)
$$\begin{pmatrix} 11 & 2 & -8 \\ 2 & 2 & 10 \\ -8 & 10 & 5 \end{pmatrix}$$
; 6) $\begin{pmatrix} 17 & -8 & 4 \\ -8 & 17 & -4 \\ 4 & -4 & 11 \end{pmatrix}$.

72) Привести квадратичные формы к каноническому виду и найти соответствующие преобразования:

a)
$$f(x_1, x_2) = 9x_1^2 - 4x_1x_2 + 6x_2^2$$
;

6)
$$f(x_1, x_2, x_3) = 11x_1^2 + 5x_2^2 + 2x_3^2 + 16x_1x_2 + 4x_1x_3 - 20x_2x_3$$
.

73) Проверить, являются ли квадратичные формы положительно определенными:

a)
$$x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$
;

6)
$$17x_1^2 + 14x_2^2 + 14x_3^2 - 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$
.

74) При каких значениях k квадратичная форма $Q(x_1, x_2, x_3)$ является положительно определенной?

a)
$$Q(x_1, x_2, x_3) = kx_1^2 + 2x_2^2 + 3x_3^2$$
;

6)
$$Q(x_1, x_2, x_3) = 3x_1^2 - kx_2^2 - 4x_1x_2$$
.

Разные залачи

- **1.** Образует ли линейное пространство заданное множество, в котором определены сумма любых двух элементов a и b и произведение любого элемента a на любое число α ?
- **1.1.** Множество всех векторов трехмерного пространства, координаты которых целые числа, сумма $\vec{a} + \vec{b}$, произведение $\alpha \vec{a}$.

Ответ: Нет.

1.2. Множество всех векторов, лежащих на одной оси: сумма $\vec{a} + \vec{b}$, произведение $\alpha \vec{a}$.

Ответ: Да.

1.3. Множество всех векторов, являющихся линейной комбинацией данных векторов $x_1, x_2, ..., x_n$ из \mathbf{R}^n .

Ответ: Да.

2. Вектор \vec{x} , перпендикулярный к векторам $\vec{a}=\{3;\ 2;\ 2\}$ и $\vec{b}=\{18;-22;-5\}$, образует с осью *OY* тупой угол. Найти его координаты, если |x|=14.

Ответ: {-4; -6; 12}.

3. Для системы векторов $\vec{x}_1 = \{1; 2; 1; 2\}; \vec{x}_2 = \{-1; 3; 2; 1\}; \vec{x}_3 = \{-13; -1; 2; -1\}$ найти все базисы.

Ответ: $\{\vec{x}_1; \vec{x}_2\}$ и $\{\vec{x}_2; \vec{x}_3\}$.

4. Даны векторы $\vec{a} = \{3; -5; 2\}; \vec{b} = \{4; 5; 1\}; \vec{c} = \{-3; 0; -4\}$ в некотором базисе. Показать, что векторы \vec{a} , \vec{b} , \vec{c} образуют базис, и разложить вектор $\vec{u} = \{4; 25; 10\}$ по этому базису.

Ответ: {-1; 4; 3}.

5. Определить длины диагоналей параллелограмма, построенного на векторах $\vec{a} = 2\vec{m} + \vec{n}$ и $\vec{b} = \vec{m} - 2\vec{n}$, если $|\vec{m}| = |\vec{n}| = 1$, $(\widehat{\vec{m}}, \widehat{\vec{n}}) = 60^{\circ}$.

Ответ: $\sqrt{7}$, $\sqrt{13}$.

- **6.** Доказать, что $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$, если $\vec{a} + \vec{b} + \vec{c} = 0$.
- 7. Вектор \vec{a} составляет с координатными осями *OY* и *OZ* углы $\beta=120^\circ$ и $\gamma=45^\circ$. Вычислить его координаты при условии, что $|\vec{a}|=6$.

Omeem: $\vec{a}_1 = \{3; -3; 3\sqrt{2}\}, \vec{a}_2 = \{-3; -3; 3\sqrt{2}\}.$

8. Векторы $\vec{a}=\{2;\ 1;\ -2\}$ и $\vec{b}=\{-3;\ -2;\ 6\}$ приложены к одной точке. Определить координаты вектора \vec{c} , направленного по биссектрисе угла между векторами \vec{a} и \vec{b} , при условии $|\vec{c}|=5\sqrt{42}$.

Ombem: $\vec{c} = \{25; 5; 20\}$.

9. Вычислить объем параллелепипеда, построенного на векторах $\vec{m} = \vec{a} + \vec{b} + \vec{c}$, $\vec{n} = \vec{a} - \vec{b} + \vec{c}$, $\vec{p} = \vec{a} - \vec{b} - \vec{c}$.

Ответ: $V = 4\vec{a}\vec{b}\vec{c}$.

- **10.** Доказать, что если для матриц A и B оба произведения AB и BA существуют, причем AB = BA, то матрицы A и B квадратные и имеют одинаковый порядок.
- **11.** Доказать, что сумма характеристических чисел матрицы A равна ее следу (т.е. сумме элементов главной диагонали), а произведение характеристических чисел равно определителю |A|.
- **12.** Вычислить косинус тупого угла между медианами, проведенными из вершин острых углов равнобедренного треугольника.

Omeem: $\cos \varphi = -4/5$.

13. Зная векторы \vec{a} и \vec{b} , на которых построен параллелограмм, выразить через них вектор, совпадающий с высотой параллелограмма, перпендикулярной к стороне \vec{a} .

Ombem:
$$h = \frac{\vec{a} \cdot \vec{b}}{\vec{a}^2} (\vec{a} - \vec{b}).$$

14. Вычислить объем параллелепипеда, построенного на векторах $\vec{a} = 3\vec{m} + 5\vec{n}$, $\vec{b} = \vec{m} - 2\vec{n}$, $\vec{c} = 2\vec{m} + 7\vec{n}$, где $|\vec{m}| = 0.5$; $|\vec{n}| = 3$, $(\vec{m}, \vec{n}) = 135^{\circ}$.

Ответ: V = 0.

- **15.** Доказать, что смешанное произведение трех векторов, из которых два коллинеарны, равно нулю.
- **16.** Вектор \vec{x} , коллинеарный вектору $\vec{a}=(6;-8;-7,5)$, образует острый угол с осью OZ. Зная, что $|\vec{x}|=50$, найти его координаты. *Ответ:* $\vec{x}=(-24;32;30)$.
- **17.** Доказать, что вектор $\vec{p} = \vec{b} \frac{\vec{a}(\vec{a} \cdot \vec{b})}{\vec{a}^2}$ перпендикулярен к вектору \vec{a} .
- **18.** Определить геометрическое место концов переменного вектора \vec{x} , если его начало находится в данной точке A и вектор \vec{x} удовлетворяет условию $\vec{x} \cdot \vec{a} = \alpha$, где вектор \vec{a} и число α заданы.

Ответ: Плоскость, перпендикулярная к оси вектора \vec{a} и отсекающая на нем отрезок, величина которого, считая от точки A, равна $\alpha/|\vec{a}|$.

19. Объем тетраэдра V = 5, три его вершины находятся в точках A(2; 1; -1), B(3; 0; 1), C(2; -1; 3). Найти координаты четвертой вершины D, если известно, что она лежит на оси OY.

Omsem: $D_1(0; 8; 0)$, $D_2(0; -7; 0)$.

20. Векторы \vec{a} и \vec{b} образуют угол $\phi = 60^\circ$, причем $|\vec{a}| = 5$, $|\vec{b}| = 8$. Определить $|\vec{a} + \vec{b}|$ и $|\vec{a} - \vec{b}|$.

Ответ: $\sqrt{129,7}$.

21. Вычислить длину $\vec{s}=\alpha\vec{a}+\beta\vec{b}+\gamma\vec{c}$, если \vec{a} , \vec{b} , \vec{c} взаимно перпендикулярны.

Omeem: $|\vec{s}| = \sqrt{\alpha^2 |\vec{a}| + \beta^2 |\vec{b}| + \gamma^2 |\vec{c}|}$.

- **22.** Даны векторы $\vec{p}, \vec{q}, \vec{r}, \vec{n}$. Доказать, что векторы $\vec{a} = \vec{p} \times \vec{n}; \vec{b} = \vec{q} \times \vec{n}; \vec{c} = \vec{r} \times \vec{n}$ компланарны.
- **23.** Точка M расположена вне прямоугольника ABCD. Доказать: $\overrightarrow{MA} \cdot \overrightarrow{MC} = \overrightarrow{MB} \cdot \overrightarrow{MD}, \left| \overrightarrow{MA} \right|^2 + \left| \overrightarrow{MC} \right|^2 = \left| \overrightarrow{MB} \right|^2 + \left| \overrightarrow{MD} \right|^2$.
- **24.** Доказать коллинеарность векторов $\vec{a}-\vec{d}$, $\vec{b}-\vec{c}$, если $\vec{a}\times\vec{b}=\vec{c}\times\vec{d}$, $\vec{a}\times\vec{c}=\vec{b}\times\vec{d}$.
- **25.** Найти проекцию вектора $\vec{s} = (4; -3; 2)$ на ось, составляющую с осями координат равные острые углы.

Ответ: $\sqrt{3}$.

26. Векторы \vec{a} , \vec{b} , \vec{c} имеют равные длины и образуют попарно равные углы. Найти координаты вектора \vec{c} , если $\vec{a} = \vec{i} + \vec{j}$, $\vec{b} = \vec{j} + \vec{k}$.

Ответ: (-1/3; 4/3; -1/3) или (1; 0; 1).

- **27.** Сила, определяемая вектором $\vec{R} = \{1, -8, -7\}$, разложена по трем направлениям, одно из которых задано вектором $\vec{a} = 2\vec{i} + 2\vec{j} + \vec{k}$. Найти составляющую силы \vec{R} в направлении вектора \vec{a} . *Ответ*: (-14/3; -14/3; -7/3).
- **28.** Зная векторы \vec{a} и \vec{b} , на которых построен параллелограмм, выразить через них вектор, перпендикулярный к плоскости параллелограмма, длина которого равна ρ .

Ответ:
$$\frac{\vec{a} \cdot \vec{b}}{|\vec{a} \cdot \vec{b}|} \cdot \rho$$
.

- **29.** Доказать, что векторы \vec{a} , \vec{b} , \vec{c} , удовлетворяющие условию $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$, компланарны.
 - **30.** Показать, что если $\vec{a} \perp \vec{b}$, $\vec{a} \perp \vec{c}$, то $\vec{a} \times (\vec{b} \times \vec{c}) = 0$.

- **31.** Доказать, что $|\vec{a}\vec{b}\vec{c}| \leq |\vec{a}||\vec{b}||\vec{c}|$. В каком случае здесь может иметь место знак равенства?
 - **32.** Доказать тождество $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} (\vec{a}\vec{c}) \vec{c} (\vec{a}\vec{b})$.
- **33.** Проверить справедливость равенства $(\vec{a} \times \vec{b}) \times \vec{c} + (\vec{b} \times \vec{c}) \times \vec{a} + (\vec{c} \times \vec{a}) \times \vec{b} = 0$.
- **34.** Изменится ли сумма \vec{s} компланарных векторов, если все слагаемые векторы будут повернуты в одном и том же направлении на один и тот же угол?

Ответ: $|\vec{s}|$ не изменится.

35. Найти равнодействующую пяти компланарных сил, равных по величине и приложенных к одной и той же точке, зная, что углы между каждыми двумя последовательными силами равны 72°.

Ответ: 0.

36. Даны вещества: CH_4 , CH_2O , O_2 , H_2O . Используя запись $A = \beta B$, где

$$A = \begin{pmatrix} CH_4 \\ CH_2O \\ O_2 \\ H_2O \end{pmatrix}, \quad B = \begin{pmatrix} H \\ C \\ O \end{pmatrix}, \quad \beta = \begin{pmatrix} 4 & 1 & 0 \\ 2 & 1 & 1 \\ 0 & 0 & 2 \\ 2 & 0 & 1 \end{pmatrix},$$

найти стехиометрические коэффициенты α_i , $i = \overline{1,4}$, реакции вида $\alpha_1 \text{CH}_4 + \alpha_2 \text{CH}_2 \text{O} + \alpha_3 \text{O}_2 + \alpha_4 \text{H}_2 \text{O} = 0$.

Ответ: Возможна одна независимая реакция $CH_4 + O_2 = CH_2O + H_2O$.

Yказание: Представить реакцию в матричном виде ($\alpha_1\alpha_2\alpha_3\alpha_4$) \times A=0 и перейти к системе линейных алгебраических уравнений.

37. Исходные вещества H₂, Br₂, продукт HBr.

а) взяв (см. задачу 36)
$$A = \begin{pmatrix} H \\ H_2 \\ Br \\ Br_2 \\ HBr \end{pmatrix}$$
, $B = \begin{pmatrix} H \\ Br \end{pmatrix}$, записать атомную

б) определить, используя запись $A = \beta B$, результатом каких стадий является брутто-реакция $H_2 + Br_2 = 2HBr$.

Ответ: $Br_2 \rightleftharpoons 2Br$, $Br + H_2 \rightleftharpoons HBr + H$, $H + Br_2 \rightleftharpoons HBr + Br$.

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ

Вариант № 1

1. Решить систему

$$\begin{cases} x + y + z = 3, \\ x - y + 5z = 5, \\ 3x + y - z = 3. \end{cases}$$

Ответ: (1; 1; 1).

2. Вершины треугольника находятся в точках A(2; -3; 1), B(4; 11; 6), C(4; -4; 3). Найти длины сторон AC, AB и угол BAC.

Ответ: |AC| = 3, |AB| = 15, $\angle BAC = 90^{\circ}$.

3. Раскрыть скобки и упростить выражение $2\vec{i}\cdot(\vec{j}\times\vec{k})+3\vec{j}\cdot(\vec{i}\times\vec{k})+4\vec{k}\cdot(\vec{i}\times\vec{j}).$

Ответ: 3.

4. При каком значении m векторы $\vec{a} = 7\vec{i} - 3\vec{j} + 2\vec{k}$; $\vec{b} = 3\vec{i} - 7\vec{j} + 8\vec{k}$; $\vec{c} = m\vec{i} - \vec{j} + \vec{k}$ компланарны?

Ответ: m = 1.

5. Найти вектор \vec{b} , коллинеарный вектору $\vec{a}=(2;1;-1)$ и удовлетворяющий условию $\vec{a}\cdot\vec{b}=12$.

Ответ: {4; 2; -2}.

6. Векторы \vec{a} и \vec{b} образуют угол $\phi = \pi/6, |\vec{a}| = \sqrt{3}, |\vec{b}| = 1$. Вычислить угол α между векторами $\vec{p} = \vec{a} + \vec{b}$ и $\vec{q} = \vec{a} - \vec{b}$.

Omeem: $\cos \alpha = 2/\sqrt{7}$.

Вариант № 2

1. Решить систему

$$\begin{cases} 3x + 2y - z = 0, \\ 2x - y + 3z = 0, \\ x + 3y - 4z = 0. \end{cases}$$
Omeem: (5k; -11k; -7k).

2. Определить острый угол между диагоналями параллелограмма, построенного на векторах $\overrightarrow{OA} = \vec{i} + \vec{j}$ и $\overrightarrow{OB} = 3\vec{j} + \vec{k}$.

Ombem: $\alpha = \arccos(4/\sqrt{27})$.

3. При каком значении α и β векторы $\vec{a} = \alpha \vec{i} + 2\vec{j} - 6\vec{k}$; $\vec{b} = \vec{i} + \beta \vec{j} - 3\vec{k}$ являются коллинеарными?

Omsem: $\alpha = 2$, $\beta = 1$.

4. Найти объем треугольной пирамиды с вершинами A(2; 2; 2), B(4; 3; 3), C(4; 5; 4), D(5; 5; 6).

Ответ: 7.

5. Вычислить косинус угла между векторами $\vec{a} \cdot \vec{b}$ и \vec{c} , если $\vec{a} = \{1; 0; 2\}$, $\vec{b} = \{3; 1; 0\}$, $\vec{c} = \{1; -2; 1\}$.

Omeem: $\cos \varphi = -4/\sqrt{41}$.

6. Какую работу совершает сила $\vec{F} = 3\vec{a} - 2\vec{b}$ при перемещении тела на $\vec{S} = 5\vec{a} - 6\vec{b}$, если $|\vec{a}| = 4$, $|\vec{b}| = 6$ и угол между векторами \vec{a} и \vec{b} равен $\pi/3$.

Ответ: 336 (усл. ед.).

Вариант № 3

1. Решить систему

$$\begin{cases} x + 2y + 3z = 4, \\ 2x + 2y - z = 3, \\ 3x + 3y + 2z = 10. \end{cases}$$

Ответ: Система несовместима.

2. Даны векторы $\vec{a} = (3; -2; 1), \vec{b} = (-1; 1; -2).$ Найти вектор $\vec{r} = (x; y; z)$, ортогональный векторам \vec{a} и \vec{b} , если его длина равна $\sqrt{35}$.

Ombem: $\vec{r_1} = (3; 5; 1), \vec{r_2} = (-3; -5; -1).$

3. Вычислить площадь треугольника с вершинами A(2; 2; 2), B(4; 0; 3) и C(0; 1; 0).

Ответ: $\sqrt{65}/2$.

- **4.** Показать, что точки A(5; 7; -2), B(3; 1; -1), C(9; 4; -4) и D(1; 5; 0) лежат в одной плоскости.
- **5.** Вектор \vec{a} составляет с осями координат равные углы. Найти координаты вектора, если $|\vec{a}| = 3\sqrt{3}$.

Omeem: (-3; -3; -3); (3; 3; 3).

6. Найти площадь параллелограмма, построенного на векторах $\vec{a} = \vec{m} + 2\vec{n}$ и $\vec{b} = 2\vec{m} + \vec{n}$, где $|\vec{m}| = |\vec{n}| = 1$, угол между векторами \vec{m} и \vec{n} равен 30°.

Ответ: 1,5.

Вариант № 4

1. Решить систему

$$\begin{cases} x - y + 5z = 5, \\ 3x + y + 7z = 11, \\ 4x + 2y = 6. \end{cases}$$

Ответ: (1; 1; 1).

2. Даны векторы $\vec{a}=(-2;1;1), \vec{b}=(1;5;0), \vec{c}=(4;4;-2).$ Вычислить пр $_{\vec{c}}(3\vec{a}-2\vec{b}).$

Ответ: -11.

3. Найти единичный вектор, перпендикулярный векторам $\vec{a} = \vec{i} + \vec{j} + 2\vec{k}$ и $\vec{b} = 2\vec{i} + \vec{j} + \vec{k}$.

Omeem:
$$\left(\frac{1}{\sqrt{11}}; \frac{-3}{\sqrt{11}}; \frac{1}{\sqrt{11}}\right); \left(\frac{-1}{\sqrt{11}}; \frac{3}{\sqrt{11}}; \frac{-1}{\sqrt{11}}\right)$$
.

- **4.** Найти смешанное произведение векторов $\vec{a}=(1;-1;1), \vec{b}=$ = (1; 1; 1), $\vec{c}=(2;3;4)$. Какую тройку составляют эти векторы? *Ответ*: 4, правую.
- **5.** Найти площадь треугольника, построенного на векторах $\vec{a}-2\vec{b}$ и $3\vec{a}+2\vec{b}$, если $|\vec{a}|=|\vec{b}|=5$, а угол между векторами \vec{a} и \vec{b} равен 45°.

Ответ: $50\sqrt{2}$.

6. Найти разложение вектора $\vec{d}=(5;\,7;\,8)$ по векторам $\vec{a}=(4;\,5;\,2),\,\vec{b}=(3;\,0;\,1)$ и $\vec{c}=(-1;\,4;\,2).$

Ответ: (-1; 4; 3).

РАСЧЕТНОЕ ЗАДАНИЕ

Теоретические вопросы

- **1.** Дать определение минора и алгебраического дополнения элемента a_{ii} определителя.
- **2.** Записать разложение определителя III порядка по 2-й строке, по 3-му столбцу.
- **3.** В каких случаях можно утверждать, что определитель равен нулю, не вычисляя его?
- **4.** Когда можно найти решение системы линейных уравнений по формулам Крамера? Записать эти формулы.

- **5.** Какие линейные операции над векторами проводятся и как? Как проводятся линейные операции над векторами, заданными в координатах?
- **6.** Как определяется проекция вектора на ось, каковы свойства проекций?
- **7.** Каковы определения и свойства скалярного, векторного, смешанного произведений. Записать их через координаты перемножаемых векторов.
 - 8. Дать определение матрицы и действий над матрицами.
- **9.** Дать определение обратной матрицы и правило нахождения обратной матрицы.
- **10.** Что называется линейным пространством и его базисом? Определение собственного вектора и собственного значения.

Задания

В задачах используются следующие обозначения: n — номер студента по списку, $\alpha\beta\gamma\delta$ — цифры номера группы, $m=\left[\frac{n+\delta}{2}\right]+1$, $l=\left[\frac{\alpha+\beta+\gamma+\delta}{5}\right]+1$, где [...] обозначает целую часть.

1. Вычислить определитель III порядка двумя способами

$$\begin{vmatrix} (-1)^n m & m-4l & 2 \\ m-2l & m-3l & 5 \\ (-1)^n \cdot 2 & -3 & m-10 \end{vmatrix}.$$

2. Вычислить определитель IV порядка

$$\begin{vmatrix} 0 & m-5 & 0 & (-1)^n \\ (-1)^n \cdot 3 & m-7 & (-1)^n & 2 \\ 2 & 3 & -l & 4 \\ m-2l & -2 & l-1 & (-1)^n \cdot 3 \end{vmatrix}.$$

3. Решить систему уравнений по формулам Крамера:

$$\begin{cases} (-1)^n (m+1)x - (m+3)y = (-1)^n \cdot 2, \\ (-1)^{n+1} (l+3)x + (l+1)y = (-1)^{n+1} \cdot 2(l+m+3). \end{cases}$$

4. Решить систему уравнений

$$\begin{cases} (m - (-1)^n \cdot 5)x_1 + 5x_2 + x_3 = 2m, \\ (-1)^n mx_1 + 4x_2 - (-1)^n x_3 = (-1)^n \cdot 4, \\ (m - 3l)x_1 + (-1)^n \cdot 3lx_2 - 2x_3 = -m. \end{cases}$$

- а) по формулам Крамера; б) методом Гаусса; в) представив систему в виде матричного уравнения.
 - **5.** Дано: $|\vec{a}| = m + 1$, $|\vec{b}| = l + 1$.

Найти: а) скалярное произведение векторов

$$\vec{c} = (m-5)\vec{a} + (-1)^n \vec{b}$$
; $\vec{d} = (l+(-1)^n+2)\vec{a} + \vec{b}$; если $(\vec{a},\vec{b}) = \pi/3$;

- б) модуль векторного произведения $|\vec{c} \times \vec{d}|$, если $(\vec{a}, \vec{b}) = \pi/2$.
- **6.** Дано: $\vec{a} = (m-4)\vec{i} + ((-1)^n l)\vec{j} + 3\vec{k}$; $\vec{b} = (-1)^n l\vec{i} + (-1)^n \vec{j} + (m-3)\vec{k}$.

Найти: а) скалярное и векторное произведения векторов

$$\vec{c} = (-1)^n (l+1)\vec{a} + (m-l)\vec{b} \text{ M } \vec{d} = \vec{b} + (-1)^n (m+1)\vec{a};$$

- б) длину и направляющие косинусы вектора \vec{c} ;
- в) смешанное произведение $\vec{c} \, \vec{d} \, \vec{e}$, где $\vec{e} = 3\vec{j} + 2\vec{k}$.
- 7. Дано: $A((-1)^n m; -l; 0); B((-1)^n 2; 3; m-4); C(m-2l; 1; 3).$

Найти: а) $\cos \angle ABC$; б) $\operatorname{пр}_{\overline{AC}} \overline{AB}$; в) $S_{\triangle ABC}$; г) объем пирамиды с основанием $\triangle ABC$ и вершиной $D(0; (-1)^n; 2)$.

8. Сила $\vec{F} = (-1)^n m \vec{i} - l \vec{j} + 3 \vec{k}$ приложена в точке $A(m-1; 0; (-1)^n)$.

Найти: a) работу E силы \vec{F} на пути \overrightarrow{AB} , если $B(-3; (-1)^n; m-5);$

- б) величину момента $|\vec{M}|$ силы \vec{F} относительно точки O(0; 0; 0).
- **9.** Показать, что векторы $\vec{a}=(2;\,(-1)^n m;\,-l;\,1),\,\vec{b}=((-1)^n;\,3;\,-2;\,1),\,\vec{c}=((-1)^{n+1}m-2l;\,m((-1)^{n+1}l-3);\,l^2+2m;\,-(m+l))$ линейно зависимы, и найти эту зависимость.

Ответы к разд. 1, 2

1.1. Определители и их свойства

1) -2; 2) 7; 3) 1; 4) $x_2 - x_1$; 5) 2a; 6) 1; 7) 2; 8) -40; 9) 0; 10) $-4a^3$; 11) -10; 12) 72; 13) 0; 14) x = 12; 15) $x_1 = -1$; $x_2 = -4$; 16) $x_1 = 2$; $x_2 = 3$. Указание: Разложить определитель по 3-й строке: $\Delta = (12 - 18)$ —

 $-(3x^2-9x)+(2x^2-4x)=0;$ **17)** $x_{1,2}=-4\pm\sqrt{22};$ **18)** 4. *Указание*: Вычесть из первой строки вторую, затем, умножая полученную строку на 3, 4, -3 и складывая со 2, 3, 4-й строками соответственно, получаем

$$\Delta = \begin{vmatrix} -1 & -1 & -3 & -2 \\ 0 & -7 & -2 & -1 \\ 0 & -13 & -4 & -3 \\ 0 & 5 & 4 & 9 \end{vmatrix};$$

19) 0; **20)** 0; **21)** –1800.

1.2. Системы линейных алгебраических уравнений. Методы Гаусса и Крамера

22) x = 0; y = 2; **23)** x = 16; y = 7; **24)** x = 2; y = 3; **25)** x = -7; y = 5; **26)** x = 1; y = 2, z = -2; **27)** x = 1; y = -1; z = 2; **28)** x = y = z = 1; **29)** x = (b + c)/2; y = (a - b)/2; z = (a - c)/2; **30)** $x_1 = x_2 = 1$; $x_3 = x_4 = -1$; **31)** $x_1 = -2$; $x_2 = 0$; $x_3 = 1$; $x_4 = -1$; **32)** $x_3 = (34x_1 - 17x_2 - 29)/5$; $x_4 = (16x_1 - 8x_2 - 16)/5$; **33)** $x_3 = (26 - 27x_1 + 9x_2)/13$; $x_4 = (-13 + 3x_1 - x_2)/13$; **34)** Несовместна; **35)** Несовместна; **36)** $x_1 = x_2 = x_3 = 0$; **37)** $x_1 = x_2 = x_3 = 0$; $x_4 = x_5$; **38)** x = y = z = k. Указание: Решение проводится методом Гаусса или по формулам

$$\begin{cases} a_{1}x + b_{1}y + c_{1}z = 0, \\ a_{2}x + b_{2}y + c_{2}z = 0, \end{cases} \Rightarrow x = k \begin{vmatrix} b_{1} & c_{1} \\ b_{2} & c_{2} \end{vmatrix}, y = -k \begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix},$$

$$z = k \begin{vmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \end{vmatrix}, k \in \mathbf{R};$$

39) x = 7k; y = 8k; z = 13k; **40)** x = y = z = 0. Указание: $\Delta \neq 0$; **41)** x = k; y = 2k; z = -3k. Указание: $\Delta = 0$, решаем систему первых двух уравнений; **42)** x = 5k; y = -11k, z = -7k; **43)** x = y = z = 0;

44) 1)
$$J_1 = \frac{J}{\Delta} \begin{vmatrix} 1 & 1 & 1 \\ l & l_2 & l_3 \\ m & m_2 & m_3 \end{vmatrix}; J_2 = \frac{J}{\Delta} \begin{vmatrix} 1 & 1 & 1 \\ l_1 & l & l_3 \\ m_1 & m & m_3 \end{vmatrix}; J_3 = \frac{J}{\Delta} \begin{vmatrix} 1 & 1 & 1 \\ l_1 & l_2 & l \\ m_1 & m_2 & m \end{vmatrix};$$

компонентов в смеси определяется из уравнений $Jl = \sum_{i=1}^{3} J_{i}l_{i};$

$$Jm = \sum_{i=1}^{3} J_i m_i; Jn = \sum_{i=1}^{3} J_i n_i.$$
 Имеем систему четырех уравнений с тре-

мя неизвестными J_i ; i = 1, 2, 3. Одно из уравнений является следствием трех других, поэтому решаем методом Крамера систему

первых трех уравнений; **44)** 2) (15; 20; 10); **45)**
$$\begin{pmatrix} 7 & 23 & 22 \\ 1 & 12 & 19 \\ 2 & 17 & 5 \end{pmatrix}$$
,

$$\begin{pmatrix} 1 & 5 & -5 \\ 3 & 10 & 0 \\ 2 & 9 & -7 \end{pmatrix}; \mathbf{46}) \begin{pmatrix} 5 & 2 \\ 7 & 0 \end{pmatrix}, \begin{pmatrix} 29 & -22 \\ 31 & -24 \end{pmatrix}; \mathbf{47}) \begin{pmatrix} 13 & -14 \\ 21 & -22 \end{pmatrix}; \mathbf{48}) \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix};$$

49)
$$\begin{pmatrix} 6 & 0 \\ 0 & -4 \end{pmatrix}$$
; **50)** 31; **51)** $\begin{pmatrix} 56 \\ 69 \\ 17 \end{pmatrix}$; **52)** $\begin{pmatrix} 5 \\ 15 \\ 25 \\ 35 \end{pmatrix}$; **53)** $\begin{pmatrix} -2 & 1 \\ 3/2 & -1/2 \end{pmatrix}$;

54)
$$\begin{pmatrix} 1/4 & 0 \\ 1/8 & 1/4 \end{pmatrix}$$
; **55)** $\begin{pmatrix} -7/3 & 2 & -1/3 \\ 5/3 & -1 & -1/3 \\ -2 & 1 & 1 \end{pmatrix}$; **56)** $\begin{pmatrix} 1 & -1 & 1 \\ -38 & 41 & -34 \\ 27 & -29 & 24 \end{pmatrix}$;

57)
$$\begin{pmatrix} 1/9 & 2/9 & 2/9 \\ 2/9 & 1/9 & -2/9 \\ 2/9 & -2/9 & 1/9 \end{pmatrix}$$
; **58)** $x = 2, y = 1;$ **59)** $x = -1, y = 2;$ **60)** $x_1 = 5,$

$$x_2 = 6$$
, $x_3 = 10$; **61)** $x_1 = -1$, $x_2 = 0$, $x_3 = 1$; **62)** $x_1 = -1$, $x_2 = 1$, $x_3 = 3$; **63)** $x_1 = 0$, $x_2 = 1$, $x_3 = 1$.

2.1. Векторы и линейные операции над ними

2.2. Базис в пространстве и на плоскости

2)
$$\overrightarrow{AC} = 2(\overrightarrow{n} - \overrightarrow{m}), \overrightarrow{OM} = 2\overrightarrow{n} + \overrightarrow{m}, \overrightarrow{ON} = \overrightarrow{n} + 3\overrightarrow{m}; \overrightarrow{MN} = -\overrightarrow{n} + 2\overrightarrow{m};$$
4) $\overrightarrow{BM} = \overrightarrow{a} + \overrightarrow{b}/2; \overrightarrow{AN} = \overrightarrow{a}/2 - \overrightarrow{b}/2; \overrightarrow{CK} = \overrightarrow{a}/2 + \overrightarrow{b};$ 5) $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a} - \overrightarrow{b}| = 13;$ 6) $|\overrightarrow{a} - \overrightarrow{b}| = 22;$ 7) $|\overrightarrow{R}| = 15$ H; 8) $(3; -2; 11), (1; -10; -1);$ 9) $\overrightarrow{a} = 2\overrightarrow{p} + 5\overrightarrow{q};$ 10) $\overrightarrow{c} = 2\overrightarrow{p} - 3\overrightarrow{q} + \overrightarrow{r};$ 11) $\overrightarrow{d} = 2\overrightarrow{a} - 3\overrightarrow{b} + \overrightarrow{c}, \overrightarrow{c} = -2\overrightarrow{a} + 3\overrightarrow{b} + \overrightarrow{d}, \overrightarrow{a} = \frac{3}{2}\overrightarrow{b} - \frac{1}{2}\overrightarrow{c} + \frac{1}{2}\overrightarrow{d}; \overrightarrow{b} = \frac{2}{3}\overrightarrow{a} + \frac{1}{3}\overrightarrow{c} - \frac{1}{3}\overrightarrow{d};$ 12) $\lambda = 1, \mu = -3;$ 13) $\lambda = \mu = 1.$

2.3. Проекция вектора на ось, ее свойства

2.4. Прямоугольная система координат

14) Нельзя. Хотя пр $_l(\vec{a} + \vec{b} + \vec{c} + \vec{d}) = 0$, вектор $\vec{a} + \vec{b} + \vec{c} + \vec{d}$ может быть не равен нулю, а быть перпендикулярным к оси l. **15)** 120°;

16)
$$A(-3; -1; -3);$$
 17) $B(6; -4; 5), C(9; -6; 10), \overline{CA} = \{-7; 1; -7\};$

18)
$$B(4; -2; 5)$$
 или $B(4; -2; -7)$, $\cos \alpha = 2/7$, $\cos \beta = -3/7$, $\cos \gamma = \pm 6/7$;

19)
$$D(4; 0; 6);$$
 20) $|\vec{d}| = 2\sqrt{5}, \cos\alpha = -1/\sqrt{5}, \cos\beta = -2/\sqrt{5}, \cos\gamma = 0;$

21)
$$M(\pm\sqrt{3}, \pm\sqrt{3}, \pm\sqrt{3})$$
; **22)** $S_1 \approx 850 \text{ H}, S_2 = 500 \text{ H}.$ Указание: К шар-

нирному болту C, который находится в равновесии, приложены сила \vec{F} и реакции \vec{S}_1 и \vec{S}_2 стержней AC и BC на эту силу, направленные вдоль этих стержней, поэтому $\vec{F} + \vec{S}_1 + \vec{S}_2 = 0$.

Направим координатные оси вдоль AC и BC, т. C — начало координат, $\angle BCA = 90^\circ$ (рис. 2.7). Так как $\operatorname{пр}_X \vec{S}_1 = 0$, $\operatorname{пр}_Y \vec{S}_1 = S_1$, $\operatorname{пр}_X \vec{S}_2 = S_2$, $\operatorname{пр}_Y \vec{S}_2 = 0$, $\operatorname{пр}_X \vec{F} = -F \cos \beta$, $\operatorname{пр}_Y \vec{F} = -F \cos \alpha$, то условие равновесия $\vec{F} + \vec{S}_1 + \vec{S}_2 = 0$ в проекциях на координатные оси дает систему уравнений

Рис. 2.7

$$\begin{cases} S_1 - F\cos\alpha = 0, \\ S_2 - F\cos\beta = 0, \end{cases} \Rightarrow \begin{cases} S_1 = F\cos\alpha = F\sqrt{3}/2, \\ S_2 = F\cos\beta = F/2. \end{cases}$$

Направления реакций совпали с выбором направлений осей координат, поэтому получены положительные значения;

23)
$$T_1 = P\cos\varphi$$
, $T_2 = P\operatorname{tg}\varphi$.

2.5. Скалярное произведение

24) а) -61; б) 13; **25)** 3/2. *Указание*: Из условий задачи следует, что \vec{a} , \vec{b} , \vec{c} совпадают со сторонами равностороннего треугольника. **26)** $\sqrt{13}$. *Указание*: Используя свойство 4° скалярного произведения, имеем $|\vec{a}-2\vec{b}|=\sqrt{(\vec{a}-2\vec{b})^2}$; **27)** 40. *Указание*: Из условия перпендикулярности следует, что $(\alpha \vec{a}+17\vec{b})(3\vec{a}-\vec{b})=0$, далее необходимо раскрыть скобки. **28)** $5/(2\sqrt{7})$. *Указание*: $\cos(\widehat{a},\widehat{b})=\frac{(2\vec{m}-\vec{n})\vec{m}}{|2\vec{m}-\vec{n}|}$. Перемножим векторы в числителе, а знаменатель находим анало-

гично заданию 26. 29) Указание: Векторы, совпадающие с полови-

нами диагоналей:
$$(\vec{a}+\vec{b})/2$$
, $(\vec{a}-\vec{b})/2$; поэтому $\cos \phi = \pm \frac{\frac{1}{2}(\vec{a}-\vec{b})\frac{1}{2}(\vec{a}+\vec{b})}{\frac{1}{2}|\vec{a}-\vec{b}|\frac{1}{2}|\vec{a}+\vec{b}|}$;

30) $|\vec{a}| = |\vec{b}|$; **31)** $a\sqrt{6}$. Указание: $R = a\sqrt{(\vec{m} + \vec{n} + \vec{p})^2}$, где \vec{m} , \vec{n} , \vec{p} — единичные векторы данных сил; **32)** —129; **33)** —524; **34)** 17. Указание: Пользуемся формулой $E = \vec{F} \cdot \overrightarrow{AB}$; **35)** 13; **36)** $\pi/4$; Указание: $\cos(\angle ABC) = \frac{\overrightarrow{BA} \cdot \overrightarrow{BC}}{|\overrightarrow{RA}| \cdot |\overrightarrow{BC}|}$; **37)** $\arccos(-4/9)$; **38)** $-1/\sqrt{5}$; **39)** 3; **40)** —3;

41) $\vec{x} = (1; 1/2; -1/2)$. *Указание*: В силу коллинеарности $\vec{x} = (2\lambda; \lambda; -\lambda)$, λ находим, перемножая \vec{x} и \vec{a} ; **42)** $\vec{F} = (-14/3; -14/3; -7/3)$. *Указание*: В силу коллинеарности векторов \vec{a} и \vec{F} их координаты пропорциональны, $k = (\text{пр}_{\vec{a}}\vec{R})/|\vec{a}|$.

2.6. Векторное произведение

43) $(33\sqrt{3})^2$; **44)** 16; **45)** $50\sqrt{2}$. Указание: $S_{\Delta} = |(\vec{a} - 2\vec{b}) \times (3\vec{a} + 2\vec{b})|/2$; **46)** -15. Указание: $(\alpha\vec{a} + 5\vec{b}) \times (3\vec{a} - \vec{b}) = 0$; **47)** (-19; 6; 21); **48)** $\sqrt{6}$; **49)** (-12; 8; 12); **50)** $S_{\Delta} = 7\sqrt{5}$ кв. ед., $BD = 2\sqrt{21/3}$; **51)** (-4; 3; 4}. Указание: $\vec{M} = \vec{CA} \times \vec{F}$; **52)** $\sqrt{66}$, $\cos\alpha = 1/\sqrt{66}$, $\cos\beta = -4/\sqrt{66}$, $\cos\gamma = -7\sqrt{66}$; **53)** (7; 5; 1). Указание: Из условия перпендикулярности \vec{x} к векторам \vec{a} и \vec{b} имеем $\vec{x} = \alpha(\vec{a} \times \vec{b})$, α находим из второго условия.

2.7. Смешанное произведение

54) ± 27 ; (+) — тройка правая, (–) — тройка левая; **56)** Да. *Указание*: $\vec{a} \, \vec{b} \, \vec{c} \neq 0$; **57)** $\vec{c} = 5\vec{a} + \vec{b}$; **58)**. *Указание*: Проверить, что векторы \vec{AB} , \vec{AC} , \vec{AD} компланарны; **59)** $\lambda = -3$; **60)** 51; **61)** V = 2, $H = 6\sqrt{2}$. *Указание*: Воспользоваться формулой $H = 3V/S_{\text{осн}}$.

2.8. Линейное пространство. Евклидово пространство R^n

62) а) да; б) нет; **63)** (1; 2; 3); **64)** а) $\vec{u} = (1; 0; -5/2; 7/2), \vec{v} = (0; 1; 5; -7); б)$ система имеет нулевое решение, базис не существует; **65)** $\phi = 45^\circ$; **66)** а) $\vec{e}_3 = (2/3; -2/3; -1/3); б) <math>\vec{e}_3 = (1; -2; 1; 0); \vec{e}_4 = (25; 4; -17; -6).$

2.9. Линейные преобразования.

Собственные значения и собственные векторы.

Квадратичные формы в \mathbb{R}^n

67)
$$\begin{pmatrix} 10 & -3 \\ 5 & 2 \end{pmatrix}$$
;
68) a)
$$\begin{cases} x_1 = \frac{11}{2}x_1' + 4x_2' - \frac{7}{2}x_3', \\ x_2 = \frac{13}{2}x_1' + 5x_2' - \frac{9}{2}x_3', \\ x_3 = \frac{19}{2}x_1' + 7x_2' - \frac{13}{2}x_3'; \end{cases}$$

$$\begin{cases} x_1 = \frac{6}{25}x_1' - \frac{17}{25}x_2' + \frac{2}{5}x_3', \\ x_2 = -\frac{7}{25}x_1' - \frac{1}{25}x_2' + \frac{1}{5}x_3', \\ x_3 = -\frac{1}{5}x_1' + \frac{2}{5}x_2'; \end{cases}$$

$$\begin{cases} x_1'' = 10x_1 + 5x_2 + 3x_3, \\ x_2'' = x_1 - 23x_2 + 9x_3, \\ x_3'' = 10x_1 - 2x_2 + 6x_3; \end{cases}$$

1/3),
$$\vec{e}'_2 = (1/3; -2/3, 2/3), \ \vec{e}'_3 = (-2/3; 1/3; 2/3); \ 6) \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 27 \end{pmatrix}$$

$$\vec{e}_1' = (1/\sqrt{2}; 1/\sqrt{2}; 0), \vec{e}_2' = (1/\sqrt{18}; -1/\sqrt{18}; 4/\sqrt{18}), \vec{e}_3' = (2/3; -2/3; 1/3);$$

72) a)
$$5(x_1')^2 + 10(x_2')^2$$
,
$$\begin{cases} x_1 = \frac{1}{\sqrt{5}}x_1' + \frac{2}{\sqrt{5}}x_2', \\ x_2 = -\frac{2}{\sqrt{5}}x_1' + \frac{1}{\sqrt{5}}x_2'; \end{cases}$$
 6) $9(x_1')^2 - 9(x_3')^2 + \frac{1}{\sqrt{5}}x_2'$

$$\begin{cases} x_1 = \frac{2}{3}x_1' + \frac{2}{3}x_2' - \frac{1}{3}x_3', \\ x_2 = -\frac{1}{3}x_1' + \frac{2}{3}x_2' + \frac{2}{3}x_3', \mathbf{73}) \text{ а) нет; б) да; 74) a) $k > 0; \\ x_3 = \frac{2}{3}x_1' - \frac{1}{3}x_2' + \frac{2}{3}x_3'; \end{cases}$$$

 δ) ни при каких k.

3. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ: ПРЯМАЯ И ПЛОСКОСТЬ

Опорный конспект № 3

3.1. Прямая на плоскости

$$k = \operatorname{tg}\varphi, \ b \Leftrightarrow y = kx + b, \ M_0(x_0, y_0) \in L \Rightarrow y - y_0 = k(x - x_0),$$

$$\theta = (\widehat{L_1}, \widehat{L_2}), \quad \operatorname{tg}\theta = \frac{k_2 - k_1}{1 + k_2 k_1},$$

$$L_1 \mid L_2 \Leftrightarrow k_2 = k_1, \quad L_1 \perp L_2 \Leftrightarrow k_1 k_2 = -1.$$

$$Ax + By + C = 0 - \text{общее уравнение } L$$

$$(A^2 + B^2 \neq 0). \ M_1(x_1, y_1), \ M_2(x_2, y_2) \in L \Rightarrow$$

$$\Rightarrow \frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$d = \frac{|Ax_K + By_K + C|}{\sqrt{A^2 + B^2}}$$

3.2. Плоскость в пространстве

$$\cos\Theta = \cos(\widehat{\vec{N}_1}, \widehat{\vec{N}_2}) = \frac{N_1 \cdot N_2}{|\vec{N}_1| |\vec{N}_2|}$$

$$\Omega_1 \perp \Omega_2 \Leftrightarrow \widehat{N}_1 \cdot \widehat{N}_2 = 0 \Leftrightarrow A_1 A_2 + B_1 B_2 + A_2 + A_3 A_3 + A_4 A_4 + A_5 A_5 +$$

$$+C_1C_2 = 0$$

$$\Omega_1 || \Omega_2 \Leftrightarrow \vec{N}_1 \cdot \vec{N}_2 = 0 \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$$

$$d = \frac{|Ax_K + By_K + Cz_K + D|}{\sqrt{A^2 + B^2 + C^2}}$$

Взаимное расположение прямой и плоскости
$$\vec{S} = \{m, n, p\} \parallel L, \\ M_0(x_0, y_0, z_0) \in L, \\ \parallel \vec{S} \Leftrightarrow \\ \frac{x - x_0}{m} = \frac{y - y_0}{n} = \frac{z - z_0}{p}$$

$$M_1(x_1, y_1, z_1), M_2(x_2, y_2, z_2) \in L \Rightarrow \vec{S} = \overline{M_1 M_2} \Rightarrow \frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

$$L_1 \in \Omega, \vec{S}_i \parallel L_i, i = 1, 2 \Rightarrow \\ \cos\Theta = \cos(\widehat{S_1}, \overline{S_2}) = \frac{\vec{S}_1 \cdot \vec{S}_2}{|\vec{S}_1||\vec{S}_2|}$$

$$\sin\Theta = \left|\cos(\widehat{N}, \vec{S})\right| = \frac{|\vec{N} \cdot \vec{S}|}{|\vec{N}||\vec{S}|}$$

$$L \parallel \Omega \Leftrightarrow \vec{N} \cdot \vec{S} = 0,$$

$$L \perp \Omega \Leftrightarrow \vec{N} \times \vec{S} = 0$$

$$\vec{S} = \vec{N}_1 \times \vec{N}_2$$

$$L \cdot \left\{A_1 x + B_1 y + C_1 z + D_1 = 0, \\ -(A_2 x + B_2 y + C_2 z + D_2 = 0) \right.$$

$$= 0$$

$$= 0$$

$$\cos(M + B_1) \cdot \vec{S} = 0$$

$$\cos($$

Задачи к разд. 3.1

 Ω_1

Задача 1. L: 2x - 3y + 6 = 0. Построить L; найти k, b. *Решение*: Строим L по двум точкам: A(-3;0), B(0;2) (рис. 3.1). Так как $y = \frac{2}{3}x + \frac{6}{3}$, то $k = \frac{2}{3}$, b = 2. **Задача 2.** Даны вершины треугольника *ABC*: A(-2; 0), B(2; 6), C(4; 2). Написать уравнение высоты *BD*.

Решение: Уравнение пучка прямых, проходящих через т. *B*: y-6=k(x-2). Найдем k из условия $BD \perp AC$. Уравнение AC:

$$\frac{y - y_A}{y_B - y_A} = \frac{x - x_A}{x_B - x_A} \Leftrightarrow \frac{y - 0}{2 - 0} = \frac{x + 2}{4 + 2} \Leftrightarrow$$
$$\Leftrightarrow y = \frac{1}{3}(x + 2) \Rightarrow k_{AC} = \frac{1}{3}.$$

Так как $k_{AC} \cdot k_{BD} = -1$, имеем $k_{BD} = -3$; т.е. BD: $y - 6 = -3(x - 2) \Leftrightarrow 3x + y - 12 = 0$.

Задача 3. Полные издержки по производству пяти условных единиц продукции (одна условная единица = 1000 штук) составляют 5,5 млн рублей, а по производству 10 условных единиц — 9 млн рублей. Найти функцию издержек производства, считая ее линейной. Определить издержки по производству 7 условных единиц продукции.

Решение: По условию задачи можно считать, что даны две точки $M_1(5;5,5)$ и $M_2(10;9)$ искомой прямой. Используя уравнение прямой, проходящей через две заданные точки, имеем $\frac{y-5,5}{9-5,5} = \frac{x-5}{10-5} \Rightarrow y-5,5 = 0,7(x-5) \Rightarrow y=0,7x+2$. Следовательно, искомая линейная функция издержек имеет вид y=0,7x+2.

Подставив в найденную формулу y = 0.7x + 2 значение x = 7, подсчитаем издержки $y = 0.7 \cdot 7 + 2 = 6.9$ (млн руб.) по производству 7 условных единиц продукции.

Задача 4. Найти расстояние между параллельными прямыми L_1 : 2x - 3y - 6 = 0, L_2 : 4x - 6y - 25 = 0.

Решение: Выберем произвольную точку на прямой L_1 : A(3; 0). Тогда искомое расстояние $d(L_1, L_2) = L(A, L_2) = \frac{|4x_A - 6y_A - 25|}{\sqrt{4^2 + (-6)^2}} =$

$$\frac{|4 \cdot 3 - 6 \cdot 0 - 25|}{\sqrt{16 + 36}} = \frac{13}{\sqrt{52}} = \frac{\sqrt{13}}{2}.$$

Задачи для самостоятельного решения

- 1) Построить прямые: a) 5x 3y + 15 = 0; б) 4x y = 0.
- **2)** Точка движется прямолинейно и в некоторые моменты времени имеет координаты $M_1(-6; 1)$, $M_2(-4; 3)$. Лежат ли точки A(1; 8), B(3; 9) на ее траектории?
- **3)** Найти углы и площадь треугольника, стороны которого заданы уравнениями: 5x 2y 11 = 0; x + 2y + 5 = 0; x 2y + 1 = 0.
- **4)** Найти проекцию M точки P(-8; 12) на прямую, проходящую через точки A(2; -3) и B(-5; 1).
- **5)** Написать уравнение прямой, проходящей через точку пересечения прямых 3x y + 5 = 0 и 2x + 3y + 1 = 0 и параллельной прямой 7x 3y + 5 = 0.
- **6)** Даны вершины треугольника A(12; -4), B(0; 5) и C(-12; -11). Найти: а) длины сторон; б) уравнения сторон; в) уравнение высоты BD; г) уравнение медианы, проведенной из точки A; д) длину этой медианы; е) уравнение биссектрисы угла C; ж) площадь треугольника; з) угол C; и) центр тяжести треугольника.
- 7) Луч света направлен по прямой 2x 3y 12 = 0. Дойдя до оси абсцисс, он от нее отразился. Определить точку встречи луча с осью OX и уравнение отраженного луча.

Задачи к разд. 3.2

Задача 1. Найти расстояние от точки M(0; -3; 4) до плоскости, проходящей через точки $M_1(3; 0; 4)$, $M_2(5; 2; 6)$, $M_3(2; 3; -3)$.

Решение: Обозначим плоскость, проходящую через точки M_1 , M_2 , M_3 , через G. Пусть $M(x; y; z) \in \Omega$. Тогда векторы $\overline{M_1M} = (x-3;y-0;z-4)$, $\overline{M_1M_2} = (5-3;2-0;6-4)$, $\overline{M_1M_3} = (2-3;3-0;-3-4)$ компланарны, т.е. смешанное произведение

$$\overline{M_1M} \cdot \overline{M_1M_2} \cdot \overline{M_1M_3} = 0 \Leftrightarrow G: \begin{vmatrix} x-3 & y & z-4 \\ 2 & 2 & 2 \\ -1 & 3 & -7 \end{vmatrix} = 0 \Leftrightarrow$$

$$\Leftrightarrow 5x - 3y - 2z - 7 = 0.$$

Далее используем формулу для расстояния точки от плоскости:

$$d(M,G) = \frac{\left|5 \cdot 0 - 3(-3) - 2 \cdot 4 - 7\right|}{\sqrt{5^2 + (-3)^2 + (-2)^2}} = \frac{6}{\sqrt{38}}.$$

Задача 2. Найти уравнение плоскости G, параллельной оси OX и проходящей через точки $M_1(0; 1; 3)$, $M_2(2; 4; 5)$.

Решение: Составим уравнение связки плоскостей, проходящих через т. M_1 и параллельных оси OX: B(y-1)+C(z-3)=0. Так как $M_2 \in G$, то получаем уравнение для определения B, C: $B(4-1)+C(5-3)=0 \Leftrightarrow 3B+2C=0 \Leftrightarrow B=-2C/3$. Тогда G: -2C(y-1)/3+C(z-3)=0, $C \neq 0 \Leftrightarrow -2(y-1)/3+(z-3)=0$.

Получаем искомое уравнение G: 2y - 3z + 7 = 0.

Задачи для самостоятельного решения

- **8)** Построить плоскости, заданные уравнениями: 5x + 2y + 3z 15 = 0; 3x z = 0. Найти угол между плоскостями.
- **9)** Написать уравнение плоскости, проходящей через точки $M_1(3; 0; 4)$ и $M_2(5; 2; 6)$ и перпендикулярной к плоскости 2x + 4y + 6z 7 = 0.
- **10)** Найти уравнение плоскости, проходящей через три заданные точки: $M_1(1; 2; 0)$, $M_2(2; 1; 1)$, $M_3(3; 0; 1)$.
- **11)** Написать уравнение плоскости: а) параллельной плоскости XOY и проходящей через точку M(3; -5; 4); б) проходящей через ось OZ и точку N(2; -3; -2); в) параллельной оси OY и проходящей через точки Q(1; 3; 4) и P(2; 5; -6).
- **12)** Найти расстояние между параллельными плоскостями G_1 : 2x y + z 1 = 0, G_2 : -4x + 2y 2z 1 = 0.
- **13)** Через две точки $M_1(1; 1; -2)$ и $M_2(-2; 4; 1)$ провести плоскость под углом 60° к плоскости x-z=1.
- **14)** Установить, что три плоскости 2x 4y + 5z 21 = 0; x 3z + 18 = 0; 6x + y + z 30 = 0 имеют общую точку, и вычислить ее координаты.

Задачи к разд. 3.3

Задача 1. Найти угол между прямой L: $\begin{cases} 2x-y+z+3=0,\\ x+3y-5=0 \end{cases}$ и плоскостью G: 6x-3y+2z=0.

Peшениe: Чтобы воспользоваться формулой для вычисления $\sin(\widehat{L},\widehat{G})$, необходимо найти направляющий вектор \widehat{S} прямой L:

$$\vec{S} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -1 & 1 \\ 1 & 3 & 0 \end{vmatrix} = -3\vec{i} + \vec{j} + 7\vec{k}.$$

Теперь, учитывая, что нормальный вектор к плоскости G: $\vec{N} = \{6; -3; 2\}$, имеем

$$\sin(\widehat{L,G}) = \frac{-6 \cdot 3 - 3 \cdot 1 + 2 \cdot 7}{\sqrt{36 + 9 + 4}\sqrt{9 + 1 + 49}} = \frac{-1}{\sqrt{59}} \Rightarrow (\widehat{L,G}) = \arcsin\frac{-1}{\sqrt{59}}.$$

Задача 2. Найти проекцию т. A(4; -3; 1) на плоскость G: x + 2y - -z - 3 = 0.

Решение: Проекция A' точки A на плоскость G является точкой пересечения прямой AA', перпендикулярной к G, и плоскости G. Найдем канонические уравнения AA'. Ее направляющий вектор \vec{S} в силу $AA' \perp G$ можно взять равным параллельному вектору $\vec{N} = \{1; 2; -1\}$ плоскости G, т.е. $\vec{S} = \{1; 2; -1\}$, а канонические уравнения AA': $\frac{x-4}{1} = \frac{y+3}{2} = \frac{z-1}{-1}$. Находим теперь координаты точки A', решая совместно систему

$$\begin{cases} \frac{x-4}{1} = \frac{y+3}{2} = \frac{z-1}{-1}, & \Leftrightarrow \begin{cases} x = t+4, \\ y = 2t-3, \\ z = -t+1, \\ x+2y-z-3 = 0, \end{cases} \Leftrightarrow \begin{cases} x = t+4, \\ y = 2t-3, \\ z = -t+1, \\ x+2y-z-3 = 0, \end{cases} \Leftrightarrow \begin{cases} x = t+4, \\ y = 2t-3, \\ z = -t+1, \\ t+4+2(2t-3)-(-t+1)-3 = 0, \end{cases} \Leftrightarrow \begin{cases} x = t+4, \\ y = 2t-3, \\ z = -t+1, \\ t=1, \end{cases} \Rightarrow A'(5; -1; 0).$$

Задачи для самостоятельного решения

- **15)** Найти канонические и параметрические уравнения прямой, проходящей через т. $M_1(-1; 2; 3), M_2(3; 2; -5)$.
 - **16)** Найти угол между прямыми L_1 : $\begin{cases} y = 3x 5, \\ z = -2x + 3 \end{cases}$ и L_2 : $\begin{cases} y = x, \\ z = 1. \end{cases}$
- **17)** Написать канонические и параметрические уравнения прямой L: $\begin{cases} x-2y+3z-4=0,\\ 3x+2y-5z-4=0. \end{cases}$
- **18)** Найти точку пересечения прямой L: $\frac{x-7}{5} = \frac{y-4}{1} = \frac{z-5}{4}$ и плоскости G: 3x-y+2z-5=0.

- **19)** Найти проекцию точки A(1; -3; 2) на плоскость 6x + 3y z 41 = 0.
- **20)** Найти угол между прямой L: y = 3x 1, 2z = -3x + 2 и плоскостью 2x + y + z 4 = 0.
- **21)** При каких *A* и *l* прямая L: $\frac{x-2}{2} = \frac{y+1}{l} = \frac{z+5}{1}$ перпендикулярна плоскости *G*: Ax + y 5z + 3 = 0.
- **22)** При каком *A* прямая *L*: $\frac{x-1}{4} = \frac{y+2}{3} = \frac{7}{1}$ параллельна плоскости *G*: Ax + 3y 5z + 1 = 0?
- **23)** Составить уравнение плоскости, проходящей через точку $M_1(4;-3;1)$ и параллельно прямым $L_1:\frac{x-0}{6}=\frac{y-0}{2}=\frac{z-0}{-3}$ и $L_2:\frac{x+1}{5}=\frac{y-3}{4}=\frac{z-4}{2}$.

4. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ: КРИВЫЕ ІІ ПОРЯДКА

Опорный конспект № 4

4.1. Общее уравнение кр. Ип.

$$Ax^2 + Bxy + Cy^2 + 2Dx + 2Ey + F = 0,$$

 $(A^2 + B^2 + C^2 \neq 0).$
Частный случай — **окружность** — гмт M :
 $|CM| = R, C(x_0, y_0)$ — центр, R — радиус.
Нормальное уравнение окружности
 $(x - x_0)^2 + (y - y_0)^2 = R^2$
В общем уравнении кр. Пп. в случае окруж-

ности A = C, B = 0. Каноническое уравнение окружности: $x^2 + y^2 = R^2$

где a, b — большая и малая полуоси

 A_1, A_2, B_1, B_2 — вершины эллипса $c/a = \varepsilon < 1$ — эксцентриситет

4.3. Гипербола — гмт $M: |\overline{F_1M}| - |\overline{F_2M}| = 2a, F_1(-c, 0), F_2(c, 0)$ фокусы, 2c > 2a

Каноническое уравнение:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, $b^2 = c^2 - a^2$,

где a, b — действительная и мнимая полуоси

Асимптоты $y = \pm \frac{b}{a}x$ — прямые, к которым приближаются ветви гиперболы при $M \to \infty$.

 A_1, A_2 — вершины, $c/a = \varepsilon > 1$ — эксцентриситет

4.4. Парабола — гмт M: |FM| = |M'M|, F(p/2, 0) — фокус, где |M'M| — расстояние от т. M до заданной прямой (директрисы); p — расстояние от т. F до директрисы.

Каноническое уравнение: $y^2 = 2px$, уравнение директрисы: x = -p/2. Другие случаи:

4.5. Преобразования параллельного переноса

и поворота системы координат

$$M(x, y) \in XOY; O'(a, b),$$

 $M'(x', y') \in X'O'Y'$:

$$\int x = x' + a,$$

$$y = y' + b$$

Задачи к разд. 4

Задача 1. Построить гиперболу $16x^2 - 9y^2 = 144$. Найти: а) полуоси; б) координаты фокусов; в) эксцентриситет; г) уравнения асимптот.

Решение: Каноническое уравнение данной гиперболы получим, разделив обе части данного уравнения на 144: $\frac{x^2}{9} - \frac{y^2}{16} = 1$. Отсюда получаем полуоси a=3, b=4. Так как $b^2=c^2-a^2$, то $c=\sqrt{3^2+4^2}=5$, т.е. координаты фокусов $F_1(-5;\ 0),\ F_2(5;\ 0)$. Эксцентриситет $\varepsilon=c/a=5/3>1$, уравнения асимптот: $y=\pm 4x/3$.

Строим гиперболу, причем сначала строим ее асимптоты (рис. 4.1).

Задача 2. Привести уравнение $5x^2 + 9y^2 - 30x + 18y + 9 = 0$ к каноническому виду и построить кривую.

Решение: Выделим полные квадраты для членов, содержащих x, и членов, содержащих y: $5(x-3)^2 + 9(y+1)^2$

= 45. Введем новые переменные $\begin{cases} x-3=x', \\ y+1=y' \end{cases}$ и новое начало координат O'(3;-1). Тогда, разделив обе части уравнения на 45, получим каноничес-

кое уравнение эллипса в новой системе координат X'O'Y': $\frac{(x')^2}{9} + \frac{(y')^2}{5} = 1$, причем большая полуось a = 3, малая — $b = \sqrt{5}$. Учитывая, что $c = \sqrt{a^2 - b^2} = \sqrt{9 - 5} = 2$, имеем координаты фокусов в новой системе координат X'O'Y': $F_1(-2;0)$, $F_2(2;0)$. Строим эллипс в новой системе координат X'O'Y' (рис. 4.2).

Задача 3. Привести к каноническому виду уравнение $x^2 - 2xy + y^2 - 10x - 6y + 25 = 0$.

Решение: Квадратичная форма $f(x, y) = x^2 - 2xy + y^2$ имеет матрицу $A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$.

Находим ее собственные значения:

$$\begin{vmatrix} 1-\lambda & -1 \\ -1 & 1-\lambda \end{vmatrix} = 0 \Leftrightarrow (1-\lambda)^2 - 1 = 0 \Leftrightarrow \lambda^2 - 2\lambda = 0 \Leftrightarrow \lambda_1 = 0, \lambda_2 = 2.$$

Система для определения собственных векторов:

$$\begin{cases} (1 - \lambda)u_1 - u_2 = 0, \\ -u_1 + (1 - \lambda)u_2 = 0. \end{cases}$$

При $\lambda_1=0$ собственный вектор $\vec{a}_1=u_1(1;1)$, при $\lambda_2=2-\vec{a}_2=u_2(-1,1)$, ортогональный базис: (1; 1), (-1; 1), ортонормированный: $\vec{i}'=(1/\sqrt{2};1/\sqrt{2}), \ \vec{j}'=(-1/\sqrt{2};1/\sqrt{2}).$ Преобразование поворота системы координат имеет следующий вид: $x=x'/\sqrt{2}-y'/\sqrt{2};$ $y=x'/\sqrt{2}+y'/\sqrt{2}$, т.е. угол поворота $\alpha=45^\circ$.

Квадратичная форма в новой системе координат: $f(x, y) = 2(y')^2$, а остальные члены уравнения преобразуются к виду

$$-10x - 6y + 25 = -10(x'/\sqrt{2} - y'/\sqrt{2}) - 6(x'/\sqrt{2} + y'/\sqrt{2}) + 25.$$

В результате имеем уравнение $2y'^2 - 8\sqrt{2}x' + 2\sqrt{2}y' + 25 = 0$. Выделяем полный квадрат для y':

$$2\left(y' + \frac{\sqrt{2}}{2}\right)^2 = 8\sqrt{2}\left(x' - \frac{3\sqrt{2}}{2}\right) \Leftrightarrow \left(y' + \frac{\sqrt{2}}{2}\right)^2 =$$
$$= 4\sqrt{2}\left(x' - \frac{3\sqrt{2}}{2}\right).$$

Производим параллельный перенос системы координат X'OY':

$$\begin{cases} x'' = x' - \frac{3\sqrt{2}}{2}, \\ y'' = y' + \frac{\sqrt{2}}{2}, \end{cases} O'\left(\frac{3\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right),$$

тогда получаем каноническое уравнение в системе X''O'Y'': $y''^2 = 4\sqrt{2}x''$. Парабола симметрична относительно оси O'X'' и проходит через точки $M_{1,2}(2\sqrt{2},\pm 4)$ в системе X''O'Y'' (рис. 4.3).

Рис. 4.3

Задачи для самостоятельного решения

1) Построить кривые: a) $9x^2 + 25y^2 = 225$; б) $4x^2 - 5y^2 = 20$; в) $16x^2 - 9y^2 = -144$.

Найти их полуоси, координаты фокусов, эксцентриситеты, асимптоты (для гиперболы).

2) Построить параболы. Найти параметр p, координаты фокуса: a) $v^2 = -4x$; б) $x^2 = y/2$.

- **3)** Найти центр и радиус окружности $x^2 + y^2 4x + 6y 3 = 0$.
- 4) Привести уравнения к каноническому виду и построить кривые:
 - a) $5x^2 + 9y^2 30x + 18y + 9 = 0$; 6) $2x^2 12x + y + 13 = 0$; B) $5x^2 4y^2 + 30x + 8y + 21 = 0$; 7) $2y^2 x 12y + 14 = 0$.
- 5) Найти канонические уравнения кривых второго порядка с помощью преобразования поворота и построить кривые: a) x^2 – $-6xy + y^2 = 8$: 6) $x^2 + xy + y^2 = 1$.

5. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ: **ПОВЕРХНОСТИ ІІ ПОРЯДКА**

Опорный конспект № 5

5.1. Цилиндрические поверхности

Направляющая L:

образующие ||OZ|

$$L: \begin{cases} z = 0, \\ F(x, y) = 0, \end{cases}$$

L:
$$\begin{cases} z = 0, \\ F(x, y) = 0. \end{cases}$$
 L: $\begin{cases} y = 0, \\ F(x, z) = 0. \end{cases}$ L: $\begin{cases} x = 0, \\ F(x, z) = 0. \end{cases}$

$$L: \begin{cases} x = 0, \\ F(x, z) = 0 \end{cases}$$

5.2. Конус 2-го порядка

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

$$\begin{cases} x = 0, \\ \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0 \end{cases} - \text{прямые}$$

$$\begin{cases} z = h, \\ \frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{h^2}{c^2} \end{cases} - \text{эллипсы}$$

5.3. Эллипсоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

В сечениях x = h, y = h, z = h — эллипсы.

Частный случай — сфера:

 $C(x_0, y_0, z_0)$ — центр,

$$R$$
 — радиус \Rightarrow
 $\Rightarrow (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = R^2$

5.4. Гиперболоиды

Однополостный:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

$$\begin{cases} x = 0, \\ \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \end{cases}$$
— гипербола
$$\begin{cases} z = h, \end{cases}$$

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 + \frac{z^2}{c^2} - \text{эллипсы} \\ \text{Двуполостный: } \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1 \end{cases}$$

$$\begin{cases} x = 0, \\ \frac{z^2}{c^2} - \frac{y^2}{b^2} = 1 \end{cases}$$
 - гипербола
$$\begin{cases} z = h, \\ \frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{h^2}{c^2} - 1 \end{cases}$$
 - эллипсы

5.5. Параболоиды

Эллиптический:
$$\frac{x^2}{p} + \frac{y^2}{q} = 2z$$
, p, q — одного знака $p, q > 0$
$$\begin{cases} x = 0, \\ y^2 = 2qz \end{cases}$$
 — парабола
$$\begin{cases} z = h, \\ \frac{x^2}{p} + \frac{y^2}{q} = 2h \end{cases}$$

Задачи к разд. 5

Задача 1. Построить поверхность, заданную уравнением $x^2 = 2z$.

Решение: Так как уравнение не содержит y, то оно определяет цилиндрическую поверхность, образующие которой параллельны оси OY, а направляющая L: $\begin{cases} x^2 = 2z, \\ y = 0 \end{cases}$ лежит в плоскости XOZ и является параболой. Это параболический цилиндр. Парабола в плоскости y = 0 симметрична относительно OZ и проходит через точки O(0;0;0) (вершина), $M(\pm 2;0;2)$ (рис. 5.1).

Рис. 5.1

Задача 2. Построить поверхность, заданную уравнением $y = \frac{x^2}{4} + \frac{z^2}{9}$.

Решение: Применим метод параллельных сечений. В сечениях

ветственно. В сечениях плоскостями y = h, h > 0, получаем эллипсы $\left\{ \frac{x^2}{4h} + \frac{z^2}{9h} = 1, \text{Таким образом, данное уравнение является уравнени-} \right\}$

ем эллиптического параболоида, расположенного вдоль оси ОУ, с вершиной O(0; 0; 0) (рис. 5.2).

Рис. 5.2

Задачи для самостоятельного решения

- **1)** Найти центр и радиус сферы $x^2 + y^2 + z^2 4x 2y + 2z 19 = 0$.
- 2) Построить поверхности, заданные уравнениями:

a)
$$\frac{x^2}{9} + \frac{y^2}{25} + \frac{z^2}{9} = 1$$
; 6) $\frac{y^2}{9} - \frac{z^2}{4} = 1$; B) $\frac{x^2}{4} - \frac{y^2}{18} + z^2 = 1$;

r)
$$x^2 - \frac{y^2}{4} + \frac{z^2}{4} = -1$$
; $x = y^2 + z^2$; e) $\frac{x^2}{4} - y^2 = 2z$.

Разные задачи

1) Найти уравнение проекции прямой $\begin{cases} 4x - y - 7z + 1 = 0, \\ 2x + v + \tau - 1 = 0 \end{cases}$ на плоскость 4y - z = 0.

Omeem:
$$\frac{x+1}{17} = \frac{y}{1} = \frac{z}{4}$$
.

2) При каком значении параметра λ плоскость x + 2y + 4z - 1 = 0 будет перпендикулярна плоскости, проходящей через точки $M_1(1, -1, \lambda), M_2(2, -1, 1), M_3(1, 2, 2)$?

Ответ: $\lambda = -1$.

3) Найти уравнение проекции прямой $\begin{cases} x-2y+z-3=0, \\ 2x-y-z=0 \end{cases}$ на плоскость *XOZ*.

Omsem:
$$\frac{x}{1} = \frac{y}{0} = \frac{z-1}{1}$$
.

4) Найти уравнение плоскости, проходящей через линию пересечения плоскостей x+4y-3z-1=0, 2x-y+3z+1=0 и точку M(1,-1,0).

Omeem: x + y = 0.

5) Найти расстояние от точки M(2, 1, 2) до прямой

$$\begin{cases} x - 4y + z + 3 = 0, \\ x - z + 1 = 0. \end{cases}$$

Ответ: 1.

- **6)** Показать, что плоскость 2x + 2y 3z + 3 = 0 проходит через линию пересечения плоскостей x 3y + z 2 = 0 и 3x y 2z + 1 = 0.
- 7) Даны три точки: A(1; 0; 1); B(-1; 1; 0); C(0; 2; 1). Составить уравнение плоскости, проходящей через точку M(1, 1, 1) и параллельной плоскости, содержащей треугольник ABC.

Omeem: 2x + y - 3z = 0.

- **8)** Найти проекцию точки M(2, 0, 2) на прямую $\begin{cases} y x = 0, \\ 2y z = 0. \end{cases}$ *Ответ:* (1; 1; 2).
- **9)** Составить уравнение плоскости, проходящей через точки $M_1(1; 2; -1)$, $M_2(1; 3; 1)$ и перпендикулярной плоскости x + 2y 2z + 3 = 0.

Omsem: 6x - 2y + z - 1 = 0.

10) Найти проекцию точки M(0; 1; 5) на плоскость x - 4z + 3 = 0.

Ответ: (1; 1; 1).

11) Даны точки $M_1(1; 2; -3)$ и $M_2(3; 0; -1)$. Найти координаты точки пересечения прямой M_1M_2 с плоскостью x+z=0. Как расположена эта точка относительно точек M_1, M_2 ?

Ответ: (2; 1; –2). Эта точка является серединой отрезка M_1M_2 .

12) Даны точки A(1; 1; 1), B(-1; 0; 2), M(0; 0; 1). AM — медиана в треугольнике ABC. Найти уравнение прямой AC.

Omeem:
$$\frac{x-1}{0} = \frac{y}{1} = \frac{z}{1}$$
.

13) При каком значении параметра λ угол между плоскостями $\lambda x + y - 7 = 0$ и $x - \lambda z + 8 = 0$ будет равен 60°?

Ответ: $\lambda = 1$.

- **14)** Написать уравнение плоскости, проходящей через прямую $\frac{x-1}{1} = \frac{y}{-1} = \frac{z+1}{2}$ перпендикулярно к плоскости 6x + y + 5z 1 = 0. *Ответ:* x y z 2 = 0.
- **15)** Показать, что прямые $\begin{cases} 3x-z=0,\\ y+2z+1=0 \end{cases}$ и $\begin{cases} x-8y-8z=0,\\ x-4y+4=0 \end{cases}$ компланарны. Пересекаются ли они?

Ответ: Пересекаются.

16) Найти параметрические уравнения прямой, проходящей через точку M(0; -4; 3) и параллельной прямой $\begin{cases} 2x - y + z - 3 = 0, \\ x + y + z + 1 = 0, \end{cases}$ выбрав параметр t таким образом, чтобы точке M соответствовало значение t = -1.

Omeem:
$$\begin{cases} x = -2(t+1), \\ y = -(t+5), \\ z = 3(t+2). \end{cases}$$

17) Найти уравнения плоскостей, параллельных плоскости 2x - 6y - 3z + 1 = 0 и отстоящих от нее на расстояние d = 2.

Omeem: 2x - 6y - 3z + 15 = 0, 2x - 6y - 3z - 13 = 0.

18) Показать, что прямые $\begin{cases} 3x - y + 2 = 0, \\ 2x + y - z + 1 = 0 \end{cases}$ и $\begin{cases} x - z - 1 = 0, \\ y - x = 0 \end{cases}$ пересекаются, и найти уравнение плоскости, проходящей через эти прямые.

Omsem: x - 2y + z + 1 = 0.

19) Показать, что прямые $\begin{cases} x+y-z+1=0, \\ 2x-y-3=0 \end{cases}$ $\begin{cases} x-2y+z+5=0, \\ 3y-2z-5=0 \end{cases}$ параллельны, и написать уравнение плоскости, проходящей через

эти прямые. Omem: 10x + 7v - 8z + 5 = 0.

20) Найти уравнение перпендикуляра, опущенного из начала координат на прямую $\frac{x+4}{2} = \frac{y+3}{-1} = \frac{z}{0}$.

Ombem:
$$\frac{x}{1} = \frac{y}{2} = \frac{z}{0}$$
.

21) Найти точку пересечения прямой $\frac{x-1}{1} = \frac{y+1}{1} = \frac{z-3}{-2}$ и перпендикуляра, опущенного из начала координат на эту прямую.

Ответ: (2; 0; 1). **22)** Написать уравнение плоскости, проходящей через прямую $\frac{x-3}{-1} = \frac{y+3}{2} = \frac{z}{0}$ и точку пересечения прямой $\frac{x-3}{-1} = \frac{y+3}{2} = \frac{z}{1}$ с

плоскостью y = x. *Ответ:* 2x + y - 3 = 0.

23) Написать уравнение плоскости, проходящей через ось *OZ* и точку пересечения прямой $\frac{x+2}{2} = \frac{y+1}{1} = \frac{z}{-2}$ с плоскостью *XOY*.

Ответ: x - 2y = 0.

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ

Вариант № 1

1. Найти уравнение прямой L, проходящей через т. $M_1(4; 3)$ и через точку пересечения прямых L_1 : 2x + 5y - 8 = 0, L_2 : x - 3y + 4 = 0.

Omsem: 17x - 40y + 52 = 0.

2. Найти угол между плоскостями G_1 : 4x - 5y + 3z - 1 = 0, G_2 : x - 4y - z + 9 = 0.

Omeem: $\theta = \arccos 0.7$.

3. Привести уравнение к каноническому виду и построить кривую $16x^2 + 25y^2 + 32x - 100y - 284 = 0$.

Omeem:
$$\frac{{x'}^2}{25} + \frac{{y'}^2}{16} = 1$$
.

4. Построить поверхность, заданную уравнением $\frac{x^2}{4} - \frac{y^2}{9} = 1$.

Ответ: Гиперболический цилиндр.

Вариант № 2

1. Через точку $M_0(2; -5; 3)$ провести прямую, параллельную прямой $\begin{cases} 2x - y + 3z - 1 = 0, \\ 5x + 4y - z - 7 = 0. \end{cases}$

Omeem: $\frac{x-2}{11} = \frac{y+5}{17} = \frac{z-3}{13}$.

2. Вычислить угол между прямыми: L_1 : 2x + y - 5 = 0, L_2 : 6x --2y + 7 = 0.

Ombem: $\theta = 3\pi/4$.

3. Привести уравнение к каноническому виду и построить кри-BVIO $4x^2 - 8x - v + 7 = 0$.

Ombem: $x'^2 = \frac{1}{4}y'$.

4. Построить поверхность, заданную уравнением $-\frac{x^2}{4} + y^2 +$ $+z^2=1$.

Ответ: Однополостный гиперболоид.

Вариант № 3

1. Найти ординату точки C, лежащей на прямой, проходящей через точки A(-8; -6), B(-3; -1), если абсцисса точки C: x = 5.

Omвет: y = 7.

2. Написать уравнение плоскости, проходящей через т. M(2;1; 4) и перпендикулярной прямой $\begin{cases} x + y - z = 0, \\ 2x - y + 2 = 0. \end{cases}$

Omsem: x + 2v + 3z - 16 = 0.

3. Привести уравнение к каноническому виду и построить кри-Byto $16x^2 - 9y^2 - 64x - 18y + 199 = 0$.

Ombem: $\frac{{y'}^2}{16} - \frac{{x'}^2}{9} = 1$.

4. Построить поверхность, заданную уравнением $x = \frac{y^2}{4} + \frac{z^2}{9}$.

Ответ: Эллиптический параболоид.

РАСЧЕТНОЕ ЗАДАНИЕ

Теоретические вопросы

- **1.** Общее уравнение прямой на плоскости. Особые случаи общего уравнения.
- **2.** Уравнение прямой с угловым коэффициентом. Геометрический смысл параметров k и b.
- **3.** Общее уравнение плоскости. Геометрический смысл параметров *A*, *B*, *C*. Особые случаи общего уравнения плоскости.
- **4.** Канонические и параметрические уравнения прямой в пространстве. Направляющий вектор прямой.
- **5.** Общие уравнения прямой. Их геометрический смысл. Вычисление направляющего вектора прямой, заданной общими уравнениями.
- **6.** Определение эллипса. Его каноническое уравнение. Геометрический смысл параметров a, b, c и основное соотношение между ними.
- **7.** Определение гиперболы и ее асимптот. Каноническое уравнение гиперболы и уравнения ее асимптот. Геометрический смысл параметров a, b, c и основное соотношение между ними.
- **8.** Определение параболы. Ее канонические уравнения. Геометрический смысл параметра *p*.
- **9.** Формулы параллельного переноса осей координат на плоскости.

Задания

Ниже используются следующие обозначения: $\alpha\beta\gamma\delta$ — цифры номера группы, n — номер студента по списку, $\lambda - 1 = \frac{1}{n+\gamma} \frac{$

1. Даны точка $M_0(3 + \lambda + \nu; 3 + \mu - \nu)$ и прямая L: $(\lambda + 1)x + (\mu + 1)y = 2 - \lambda^2 - \mu^2 + (\lambda - \mu)\nu$.

Требуется:

- а) найти расстояние d от точки M_0 до прямой L; б) написать уравнение прямой L_1 , проходящей через точку M_0 и перпендикулярной прямой L; в) найти проекцию P точки M_0 на прямую L; г) проверить на чертеже результат пункта в).
- **2.** Даны две точки: $M_1(v-3; \lambda-3\mu+6); M_2(v-1; \lambda-\mu+1)$ и прямая $L: (2\mu-3)x-2v+2\lambda-5+v(3-2\mu)=0.$

Требуется:

- а) написать уравнение прямой M_1M_2 ; б) найти угол ϕ между прямыми M_1M_2 и L; в) найти точку пересечения Q прямых M_1M_2 и L; г) проверить на чертеже результат пункта в).
- **3.** Даны четыре точки: $M_0(\mu+1; 1-\lambda; \nu+1); M_1(\mu; -\lambda; \nu+1); M_2(2\mu; -2\lambda; \nu+2); M_3(\mu+1; 1-\lambda; \nu).$

Требуется:

- а) написать уравнение плоскости G, проходящей через точки M_1 , M_2 , M_3 ; б) найти расстояние d от точки M_0 до плоскости G; в) написать уравнение плоскости G_1 , проходящей через точку M_0 и параллельной плоскости G.
- **4.** Даны плоскость G: $(\lambda + 1)x + (1 \mu)y + z = \nu(\lambda + 1)$ и прямая L: $\begin{cases} \lambda x \mu y + z = \lambda \nu, \\ x + y + z = \mu + \lambda + \nu. \end{cases}$

Требуется:

- а) найти направляющий вектор прямой; б) найти угол θ между прямой и плоскостью; в) написать канонические и параметрические уравнения прямой; г) найти точку пересечения Q прямой и плоскости, используя параметрические уравнения прямой.
- **5.** Привести уравнения к каноническому виду и построить кривые:

a)
$$(\mu + 1)x^2 + (\lambda + 6)y^2 - 2(\lambda\mu + \lambda)x + 2(\lambda\mu + 6\mu)y + \lambda\mu(\lambda + \mu - 6) + \lambda(\lambda - 6) + 6\mu(\mu - 6) - 36 = 0;$$

6) $(\lambda + 1)x^2 - (\mu + 1)y^2 - 2(\lambda\mu + \mu)x + 2(\lambda\mu + \lambda)y + \lambda\mu(-\lambda + \mu - 4) + \lambda(\lambda + 4) + \mu(\mu - 4) - 4 = 0;$
B) $y^2 + (\mu + 1)x + 2\lambda y + \lambda^2 - \mu^2 - 3\mu - 2 = 0;$

r)
$$x^2 - 2\mu x - (\lambda + 1)y - \lambda^2 + \mu^2 - 3 - 4\lambda = 0$$
.

Ответы к разд. 3, 4, 5

3.1.Прямая на плоскости

2) $A \in L, B \notin L;$ **3)** arctg(8/9); arctg(4/3); arctg 12; <math>S = 12 KB. eд.;

4)
$$M(-12; 5);$$
 5) $77x - 33y + 133 = 0;$ **6)** a) $AB = 15, AC = 25, BC = 20;$

6)
$$AB: 3x + 4y - 20 = 0$$
; $AC: 7x - 24y - 180 = 0$; $BC: 4x - 3y + 15 = 0$;

в)
$$24x + 7y - 35 = 0$$
; г) $x + 18y + 60 = 0$; д) $AE = 5\sqrt{13}$; е) $9x - 13y - 35 = 0$; ж) $S = 150$ кв. ед.; з) $\cos \angle C = 0.352$; и) $M(0; -10/3)$;

7) B(6; 0); 2x + 3y - 12 = 0.

3.2. Плоскость в пространстве

8)
$$\theta = \arccos(6/\sqrt{95})$$
; 9) $x - 2y + z - 7 = 0$; 10) $x + y - 3 = 0$;

11) a)
$$z - 4 = 0$$
; b) $3x + 2y = 0$; b) $10x + z - 14 = 0$;

12)
$$3/(2\sqrt{6})$$
; **13)** $y - z - 3 = 0$; **14)** (3; 5; 7).

3.3. Прямая в пространстве.

Взаимное расположение прямой и плоскости

15)
$$\frac{x+1}{4} = \frac{y-2}{0} = \frac{z-3}{-8}$$
; $x = 4t - 1$, $y = 2$, $z = -8t + 3$;

16)
$$\varphi = \arccos(2\sqrt{7}/7);$$
 17) $\frac{x-2}{2} = \frac{y+1}{7} = \frac{z}{4};$ $x = 2t + 2,$ $y = 7t - 1,$

$$z = 4t$$
; **18)** (2; 3; 1); **19)** (7; 0; 1); **20)** $\sin \theta = 1/\sqrt{6}$;

21)
$$A = -10$$
, $l = -1/5$; **22)** $A = -1$; **23)** $16x - 27y + 14z - 159 = 0$.

4. Аналитическая геометрия на плоскости: кривые II порядка

1) a)
$$a = 5$$
, $b = 3$, $F_{1,2}(\pm 4; 0)$, $\varepsilon = 4/5$; 6) $a = \sqrt{5}$, $b = 2$,

$$F_{1,2}(\pm 3; 0), \ \epsilon = 3\sqrt{5}/5; \ y = \pm \frac{2}{15}x; \ B) \ b = 4, \ a = 3, \ F_{1,2}(0; \pm 5),$$

$$\varepsilon = 5/4$$
, $y = \pm 4x/3$; **2)** a) $p = 2$, $F(-1; 0)$; 6) $p = 1/4$, $F(0; 1/8)$;

3)
$$C(2; -3)$$
, $R = 4$; 4) a) $\frac{{x'}^2}{9} + \frac{{y'}^2}{5} = 1$; 6) ${x'}^2 = -\frac{1}{2}y'$;

B)
$$\frac{{x'}^2}{4} - \frac{{y'}^2}{5} = 1$$
; r) ${y'}^2 = \frac{1}{2}x'$; 5) a) $-\frac{{x'}^2}{4} + \frac{{y'}^2}{2} = 1$, $\varphi = 45^\circ$;

6)
$$\frac{{x'}^2}{2} + \frac{3y'^2}{2} = 1, \varphi = 135^\circ.$$

5. Аналитическая геометрия в пространстве:

поверхности II порядка

1) C(2; 1; -1), R = 5;**2)** а) эллипсоид; б) гиперболический цилиндр; в) однополостный гиперболоид; г) двухполостный гиперболоид; д) эллиптический параболоид; е) гиперболический параболоид.

Глава 2 ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ

6. ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ. ЭЛЕМЕНТАРНЫЕ ФУНКЦИИ

Опорный конспект № 6

6.1. Элементы теории множеств

$$A \cup B = \{x: x \in A \lor x \in B\}$$

$$A \cap B = \{x: x \in A \land x \in B\}$$

$$A \backslash B = \{x: x \in A \land x \notin B\}$$

$$B \subset A \Rightarrow A \backslash B = \overline{B}$$

6.2. Функции

 $y = f(x), x \in X, y \in Y \Leftrightarrow X \Rightarrow Y: \forall x \in X \exists ! y \in Y, X = D(f)$ — область определения, Y = E(f) — область значений, x — независимая переменная (функция), $\mathbf{R} = (-\infty, +\infty)$

6.3. Основные элементарные функции.

Элементарные функции

$$\begin{array}{c|c}
Y_{\uparrow} \\
\hline
C \\
O
\end{array}$$

- 1) v = c, c -const
- 2) $y = x^n$, $n \in \mathbb{R} \setminus \{0\}$ степенная, $\mathbb{E}(f)$

форма графика зависят от п

3) $y = a^x$, a > 0, $a \ne 1$ — показательная, $D(f) = (-\infty, +\infty)$, $E(f) = (0, +\infty)$

4) $y = \log_a x$, a > 0, $a \ne 1$ — логарифмическая, $D(f) = (0, +\infty)$, $E(f) = (-\infty, +\infty)$

5) Тригонометрические:

$$y = \sin x$$
, $D(f) = (-\infty, +\infty)$, $E(f) = [-1, +1]$;

$$y = \cos x$$
, $D(f) = (-\infty, +\infty)$, $E(f) = [-1, +1]$;

$$y = \text{tg} x$$
, $D(f) = \mathbb{R} \setminus \{\pi/2 + k\pi\}$, $k = 0, \pm 1, \pm 2, ..., E(f) = (-\infty, +\infty)$;

$$y = \text{ctg } x$$
, $D(f) = \mathbb{R} \setminus \{k\pi\}, k = 0, \pm 1, \pm 2, ..., E(f) = (-\infty, +\infty)$

6) Обратные тригонометрические:

$$y = \arcsin x$$
, D(f) = [-1, +1], гл. значение $y \in [-\pi/2, \pi/2]$;

$$y = \arccos x$$
, D(f) = [-1, +1], гл. значение $y \in [0, \pi]$;

$$y = \operatorname{arctg} x$$
, $D(f) = (-\infty, +\infty)$, гл. значение $y \in (-\pi/2, \pi/2)$;

$$y = \operatorname{arcctg} x$$
, $D(f) = (-\infty, +\infty)$, гл. значение $y \in (0, \pi)$

Сложная функция (суперпозиция функций) $y = \varphi[\psi(x)] \Leftrightarrow$

 $\Leftrightarrow y = \varphi(z), z = \psi(x), x \in X, z \in Z, y \in Y$

Элементарные функции (э.ф.) — записанные одной формулой, составленной из основных э.ф. с помощью символов (+), (–), (×), (:) и операции суперпозиции

Задачи к разд. 6.1

Задача 1. A — множество четных положительных чисел, B — множество нечетных положительных чисел. Определить $A \cap B$, $A \cup B$.

Решение: $A \cap B = \emptyset$, $A \cup B = \mathbb{N} = \{1, 2, ..., n, ...\}$.

Задача 2. A — множество всех чисел, делящихся на 2, B — множество всех чисел, делящихся на 5. Определить $A \cap B$.

Решение: $A \cap B$ определяет множество всех чисел, делящихся на 2 и на 5, т.е. $A \cap B$ — это множество всех чисел, делящихся на 10.

Задача 3.
$$A = \{1, 2, 3, 4, 5\}, B = \{3, 5\}.$$
 Определить $A \setminus B, B \setminus A$. *Решение:* $A \setminus B = \{1, 2, 4\}, B \setminus A = \emptyset$.

Задачи для самостоятельного решения

- 1) $A = \{1, 2, 3\}, B = \{2, 3, 4\}; A \cup B, A \cap B, A \setminus B ?$
- **2)** Если A множество студентов первого курса, B множество студенток первого курса, то какое из суждений верно: а) $B \subset A$; 6) $A \subset B$?

Задачи к разд. 6.2, 6.3

Задача 1. Найти области определения D(f) функций:

a)
$$y = \sqrt{1 - x^2}$$
; 6) $y = \frac{2x^2 - \lg(x + 5)}{\sqrt{8 - x^3}}$.

Решение: а) функция определена для значений переменной x, удовлетворяющей условию $1-x^2 \ge 0$, $(1-x)(1+x) \ge 0$, т.е. $x \in [-1, 1]$ (рис. 6.1) \Rightarrow D(f) = [-1, 1];

Рис. 6.1

б) переменная х должна удовлетворять условиям

$$\begin{cases} x+5>0, \\ 8-x^3>0, \end{cases} \Rightarrow \begin{cases} x>-5, \\ (2-x)(x^2+2x+4)>0, \end{cases} \begin{cases} x>-5, \\ 2-x>0, \end{cases} \begin{cases} x>-5 \end{cases}$$
T.e. $D(f)=(-5;2)$.

Задача 2. Найти множество значений $\mathrm{E}(f)$ функций:

a)
$$y = x^2 - 6x + 5$$
; 6) $y = 3 + 2\sin x$; B) $y = \sqrt{16 - x^2}$.

Решение: a) $y = x^2 - 6x + 5 = (x - 3)^2 - 4 \Rightarrow y \in [-4, +\infty)$, E(f) = $= [-4, +\infty);$

б) поскольку $-1 \le \sin x \le 1 \Rightarrow -2 \le 2 \sin x \le 2 \Rightarrow y \in [1, 5], E(f) =$ = [1, 5];

B) D(f): $16 - x^2 \ge 0$, $x^2 \le 16$, $-4 \le x \le 4$, D(f) = $= [-4; 4] \Rightarrow E(f) = [0, 4]$. Tak kak $y^2 = 16 - x^2 \Rightarrow$ $\Rightarrow y^2 + x^2 = 16$ — уравнение окружности ради- χ усом 4, $y = \sqrt{16 - x^2}$ — верхняя половина окружности (рис. 6.2).

Рис. 6.2

Задача 3. Найти основные периоды T функций: a) $f(x) = \cos 8x$; $6) f(x) = \sin 6x + \tan 4x.$

Решение: a) период функции $\cos x T_1 = 2\pi \Rightarrow T = 2\pi/8 = \pi/4$;

б) функции $\sin 6x$ и $\tan 4x$ имеют периоды $T_1 = 2\pi/6 = \pi/3$ и $T_2 = \pi/4$ соответственно. Основной период функции f(x) = $= \sin 6x + \tan 4x$ есть наименьшее общее кратное чисел $\pi/3$ и $\pi/4$, T.e. $T = \pi$.

Задача 4. Установить четность или нечетность функций:

a)
$$f(x) = 2^x + 2^{-x}$$
; 6) $f(x) = x^2 + 5x$; B) $f(x) = \lg \frac{x+3}{x-3}$.

Решение: a) $f(-x) = 2^{-x} + 2^x = f(x) \Rightarrow$ функция четная; б) $f(-x) = x^2 - 5x \neq -f(x) \neq f(x) \Rightarrow$ функция f(x) ни четная, ни нечетная;

в)
$$f(-x) = \lg \frac{-x+3}{-x-3} = \lg \frac{x-3}{x+3} = \lg \left(\frac{x+3}{x-3}\right)^{-1} = -\lg \frac{x+3}{x-3} = -f(x) \Rightarrow$$
 $\Rightarrow f(x)$ — нечетная функция.

Задача 5. Записать элементарную функцию $y=2^{\sin x^2}$ в виде цепочки основных элементарных функций.

Решение: Обозначим $\sin x^2 = z$, $x^2 = t$. Тогда имеем $y = 2^z$, $z = \sin t$, $t = x^2$.

Задачи для самостоятельного решения

Найти области определения функций:

3)
$$y = x^2 + 2x - 5$$
; **4)** $y = \frac{1}{x^2 - 3x + 2}$; **5)** $y = \frac{1}{\sqrt{x^2 + x - 6}}$;

6)
$$y = \sqrt{1-4x} + \arcsin\frac{3x-1}{2}$$
; 7) $y = \sqrt{x-1} + \sqrt{1-x} + \sqrt{x^2+1}$;

8) $y = \lg \sin x$.

Найти множества значений функций:

9)
$$y = -x^2 + 8x - 13$$
; 10) $y = 4^{-x^2}$; 11) $y = 1 - 3\cos x$.

Найти основные периоды функций:

12) $f(x) = \lg \cos 2x$; 13) $f(x) = -2\cos(x/3) + 1$; 14) $f(x) = \lg 3x + \cos 4x$.

Установить четность или нечетность функций:

- **15)** $f(x) = x^2 \sqrt[3]{x} + 2\sin x$; **16)** $f(x) = |x| 5e^{x^2}$; **17)** $f(x) = x^4 \sin 7x$; **18)** $f(x) = \lg \cos x$.
 - **19)** Дано $y = \sqrt{z}, z = \sin t, t = x^2$. Найти y(x).
 - **20)** Дано $y = \sin x$, $v = \lg y$, $u = \sqrt{1 + v^2}$. Найти u(x).
- **21)** Следующие сложные функции представить в виде цепочки из основных элементарных функций:
 - a) $y = \sin(\cos\sqrt{x})$; 6) $y = \lg \lg 2^x$; B) $y = \arcsin e^{\sqrt[3]{x}}$.
 - **22)** $f(x) = x^3 x$, $\varphi(x) = \sin 2x$. Найти:
 - a) $f(\phi(\pi/2))$; б) $\phi(f(1))$; в) $f(\phi(x))$; г) f(f(x)); д) $\phi(f(x))$.

7. ПРЕДЕЛЫ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Опорный конспект № 7

7.1. Предел последовательности

Геометрически:

$$n > N \Rightarrow x_n \in (a - \varepsilon, a + \varepsilon)$$

7.2. Предел функции в точке

7.3. Бесконечно малые и бесконечно большие функции

$$\alpha(x) - 6.\text{M.}, x \rightarrow a \iff \lim_{x \to a} \alpha(x) = 0,$$

$$f(x) - 6.6., x \rightarrow a (\lim_{x \rightarrow a} f(x) = \infty) \Leftrightarrow \forall M > 0 \exists \delta = \delta(M)$$
:

$$|x - a| < \delta \Rightarrow |f(x)| > M$$

Связь б.м. и б.б.: $1/0 = \infty$, $1/\infty = 0$

7.4. Леммы о б.м.

JI.1:
$$\alpha, \beta, \gamma - 6.m., x \rightarrow a \Rightarrow (\alpha + \beta - \gamma) - 6.m., x \rightarrow a \spadesuit$$

JI.2:
$$|f(x)| < M, \alpha(x) - 6.M., x \rightarrow a \Rightarrow f(x)\alpha(x) - 6.M., x \rightarrow a \spadesuit$$

7.5. Теоремы о пределах

T.1:
$$\lim c = c, c - \text{const} \blacksquare$$

Т.2 (о связи функции с ee lim):

$$f(x) = b + \alpha(x), \alpha(x) - 6.\text{M.}, x \to a \Leftrightarrow \lim_{x \to a} f(x) = b \blacksquare$$

T.3:
$$\lim_{x \to a} [f_1(x) \pm f_2(x)] = \lim_{x \to a} f_1(x) \pm \lim_{x \to a} f_2(x) \blacksquare$$

T.3:
$$\lim_{x \to a} [f_1(x) \pm f_2(x)] = \lim_{x \to a} f_1(x) \pm \lim_{x \to a} f_2(x) \blacksquare$$

T.4: $\lim_{x \to a} [f_1(x) \cdot f_2(x)] = \lim_{x \to a} f_1(x) \cdot \lim_{x \to a} f_2(x) \blacksquare$

T.5:
$$\lim_{x \to a} \frac{f_1(x)}{f_2(x)} = \frac{\lim_{x \to a} f_1(x)}{\lim_{x \to a} f_2(x)}, \quad \lim_{x \to a} f_2(x) \neq 0$$

7.6. Неопределенности

$$\left\{\frac{0}{0}\right\}, \left\{\frac{\infty}{\infty}\right\}, \left\{0 \cdot \infty\right\}, \left\{\infty - \infty\right\}, \left\{1^{\infty}\right\}$$

I замечательный предел: $\lim_{x\to 0} \frac{\sin x}{x} = \left\{\frac{0}{0}\right\} = 1$

II замечательный предел: $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = \{1^\infty\} = \lim_{n\to 0} (1+n)^{1/n} = e$

7.7. Сравнение б.м.

$$\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = \begin{cases} 0 \Leftrightarrow \alpha = o(\beta), \ x \to a \\ A \neq 0, \ \infty \Leftrightarrow \alpha, \beta - \text{одного порядка} \\ 1 \Leftrightarrow \alpha \sim \beta \\ \exists \Leftrightarrow \alpha, \beta - \text{несравнимы} \end{cases}$$

T:
$$\alpha(x) \sim \alpha'(x)$$
, $\beta(x) \sim \beta'(x)$, $x \to a \Rightarrow \lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to a} \frac{\alpha'(x)}{\beta'(x)} \blacksquare$

Задачи к разд. 7.1, 7.2

Задача 1. Доказать, что $\lim_{n\to\infty} \frac{n}{n+1} = 1$.

Решение: Пусть
$$\varepsilon > 0$$
: $|x_n - 1| < \varepsilon$, т.е. $\left| \frac{n}{n+1} - 1 \right| = \frac{1}{n+1} < \varepsilon \Rightarrow n > \frac{1-\varepsilon}{\varepsilon}$.

Таким образом, за N можно взять целую часть числа $(1 - \varepsilon)/\varepsilon$, т.е. $N = [(1 - \varepsilon)/\varepsilon]$. Неравенство $|x_n - 1| < \varepsilon$ будет справедливо при всех n > N, что и требовалось доказать.

Задача 2. Доказать, что $\lim_{n\to\infty} \frac{3^n-1}{3^n} = 1$.

Решение:
$$\forall \varepsilon > 0 \left| \frac{3^n - 1}{3^n} - 1 \right| = \left| 1 - \frac{1}{3^n} - 1 \right| = \frac{1}{3^n} < \varepsilon, \ 3^n > 1/\varepsilon$$
 или

 $\log_3 3^n > \log_3 (1/\epsilon) \Rightarrow n > \log_3 (1/\epsilon)$; таким образом, если выбрать $N = [\log_3 (1/\epsilon)]$, то при n > N будет выполняться неравенство $\left| \frac{3^n - 1}{3^n} - 1 \right| < \epsilon$, что и требовалось доказать.

Задача 3. Доказать, что число 2 не является пределом последовательности с общим членом $u_n = \frac{2n+1}{4n+2}$ при $n \to \infty$.

Решение: Рассмотрим величину
$$|u_n-2|=\left|\frac{2n+1}{4n+2}-2\right|=\left|-\frac{6n+3}{4n+2}\right|=$$
 $=\frac{6n+3}{4n+2}.$

Решим относительно n неравенство $\frac{6n+3}{4n+2} < \varepsilon$.

$$\frac{6n+3}{4n+2} = \frac{(4n+2)+2n+1}{4n+2} = 1+\frac{1}{2} > 1$$
, и следовательно, оно не мо-

жет быть меньше произвольно заданного $\varepsilon > 0$, например $\varepsilon = 0,5$.

Следовательно, число 2 не является пределом последовательности $\left\{ \frac{2n+1}{4n+2} \right\}$.

Задача 4. Доказать, что f(x)=3x-2 в точке x=1 имеет предел, равный 1, т.е. $\lim_{x\to 1}(3x-2)=1$.

Решение: $\forall \varepsilon > 0 \ |3x - 2 - 1| = |3(x - 1)| = 3|x - 1| < \varepsilon \Rightarrow$ ⇒ $|x - 1| < \varepsilon/3 \Rightarrow$ если взять $\delta \le \varepsilon/3$, то из $|x - 1| < \delta \Rightarrow$ ⇒ $|(3x - 2) - 1| < \varepsilon$, что и требовалось доказать.

Задача 5. Доказать, что $\lim_{x\to 0} x \sin\frac{1}{x} = 0 \ (x \neq 0).$

Решение: $\forall \varepsilon > 0 \ |x\sin(1/x) - 0| = |x\sin(1/x)| < \varepsilon \ |x\sin(1/x)| = |x||\sin(1/x)| \le |x| < \varepsilon \ (|\sin(1/x)| \le 1 \ \text{при } x \ne 0)$. Следовательно, если взять $\delta \le \varepsilon$, то из $|x| < \delta$ будет вытекать $|x\sin(1/x)| < \varepsilon$, что и требовалось доказать.

Задачи для самостоятельного решения

- 1) Доказать, что последовательность 1, 17/14, 37/29, 65/50, 101/77, ..., $(4n^2 + 1)/(3n^2 + 2)$ при $n \to \infty$ имеет предел, равный 4/3.
 - **2)** Доказать:
 - a) $\lim_{n \to \infty} (2 + \frac{1}{n}) = 2; 6$) $\lim_{n \to \infty} \frac{4n 3}{n + 1} = 4.$
- **3)** Доказать, что при $n \to \infty$ последовательность 1, 1/3, 1/5, ..., 1/(2n-1) является бесконечно малой.
 - **4)** Доказать, что: a) $\lim_{x \to 2} (3x 5) = 1$; б) $\lim_{x \to 2} x^2 = 4$.

Задачи к разд. 7.3-7.7

Задача 1. Вычислить: a)
$$\lim_{x\to 1} \frac{5x+2}{2x+3}$$
; б) $\lim_{x\to 2} (3x)^{x^2}$; в) $\lim_{x\to 1} \frac{3x+1}{x^2-1}$.

Решение: а) пользуясь теоремами о пределах (разд. 7.5 опорного конспекта (ОК)), для нахождения данного предела достаточно подставить в функцию предельное значение аргумента: $\lim_{x\to 1} \frac{5x+2}{2x+3} = \frac{5\cdot 1+2}{5\cdot 1+2}$

$$=\frac{5\cdot 1+2}{2\cdot 1+3}=\frac{8}{5};$$

б) переходим к пределу в основании и показателе: $\lim_{x\to 2} (3x)^{x^2} =$

$$= \lim_{x \to 2} (3x)^{\lim_{x \to 2} x^2} = 6^4 = 1296;$$

в) так как $\lim_{x\to 1}(x^2-1)=1-1=0$, то теорема о пределе частного не подходит, но можно применить теорему о связи бесконечно малой и бесконечно большой величин (разд. 7.3 ОК): $\lim_{x\to 1}\frac{3x+1}{x^2-1}==\left\{\frac{4}{0}\right\}=\infty$.

Задача 2. Вычислить: a)
$$\lim_{x\to 3} \frac{x^2-9}{x^2-2x-3}$$
; б) $\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x}$.

Решение: При подстановке предельного значения аргумента в функцию в случаях а) и б) получаются неопределенности вида {0/0}. Воспользуемся тем, что аргумент стремится к своему предельному значению, но не равен ему, и выполним тождественные преобразования:

a)
$$\lim_{x \to 3} \frac{x^2 - 9}{x^2 - 2x - 3} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{(x + 1)(x - 3)} = \lim_{x \to 3} \frac{x + 3}{x + 1} = \frac{6}{4} = \frac{3}{2};$$

6)
$$\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 0} \frac{(\sqrt{x+1} - 1)(\sqrt{x+1} + 1)}{x(\sqrt{x+1} + 1)} =$$
$$= \lim_{x \to 0} \frac{x+1-1}{x(\sqrt{x+1} + 1)} = \lim_{x \to 0} \frac{1}{\sqrt{x+1} + 1} = \frac{1}{1+1} = \frac{1}{2}.$$

Задача 3. Вычислить: a) $\lim_{x\to\infty} \frac{x^3-2x+3}{x^2-5}$; б) $\lim_{x\to\infty} \frac{x^3-2x+3}{x^4+2x}$;

B)
$$\lim_{x \to \infty} \frac{x^3 - 2x + 3}{3x^3 + 5}$$
.

Решение: Имеем неопределенности вида $\{∞/∞\}$, которые можно раскрыть, поделив числитель и знаменатель дробей на x^k , где k — старшая степень многочленов в числителе и знаменателе:

a)
$$\lim_{x \to \infty} \frac{x^3 - 2x + 3}{x^2 - 5} = \left\{ \frac{\infty}{\infty} \right\} = \lim_{x \to \infty} \frac{1 - \frac{2}{x^2} + \frac{3}{x^3}}{\frac{1}{x} - \frac{5}{x^3}} = \frac{1 - 0 + 0}{0 - 0} = \left\{ \frac{1}{0} \right\} = \infty;$$

6)
$$\lim_{x \to \infty} \frac{x^3 - 2x + 3}{x^4 + 2x} = \left\{ \frac{\infty}{\infty} \right\} = \lim_{x \to \infty} \frac{\frac{1}{x} - \frac{2}{x^3} + \frac{3}{x^4}}{1 + \frac{2}{x^3}} = \frac{0}{1} = 0;$$

B)
$$\lim_{x \to \infty} \frac{x^3 - 2x + 3}{3x^3 + 5} = \left\{ \frac{\infty}{\infty} \right\} = \lim_{x \to \infty} \frac{1 - \frac{2}{x^2} + \frac{3}{x^3}}{3 + \frac{5}{x^3}} = \frac{1 - 0 + 0}{3 + 0} = \frac{1}{3}.$$

Переходя к общему случаю, получим правило:

$$\lim_{x \to \infty} \frac{P_m(x)}{Q_n(x)} = \left\{ \frac{\infty}{\infty} \right\} = \lim_{x \to \infty} \frac{a_0 x^m + a_1 x^{m-1} + \ldots + a_m}{b_0 x^n + b_1 x^{n-1} + \ldots + b_n} = \begin{cases} \infty, m > n, \\ 0, m < n, \\ \frac{a_0}{b_0}, m = n. \end{cases}$$

Задача 4. Вычислить: a)
$$\lim_{x \to \infty} \left(\frac{x^3}{x^2 + 1} - x \right)$$
; б) $\lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x})$.

Решение: Имеем неопределенности вида $\{∞ - ∞\}$:

а) с помощью приведения к общему знаменателю переходим к неопределенности вида $\{\infty/\infty\}$:

$$\lim_{x \to \infty} \left(\frac{x^3}{x^2 + 1} - x \right) = \{\infty - \infty\} = \lim_{x \to \infty} \frac{x^3 - x^3 - x}{x^2 + 1} = \lim_{x \to \infty} \frac{-x}{x^2 + 1} =$$

$$= \left\{ \frac{\infty}{\infty} \right\} = \left\{ \text{степень числителя } m = 1 \\ \text{степень знаменателя } n = 2 \right\} = 0;$$

$$6) \lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x}) = \{\infty - \infty\} = \lim_{x \to \infty} \frac{(\sqrt{x + a} - \sqrt{x})(\sqrt{x + a} + \sqrt{x})}{(\sqrt{x + a} + \sqrt{x})} =$$

$$= \lim_{x \to \infty} \frac{x + a - x}{\sqrt{x + a} + \sqrt{x}} = \left\{ \frac{a}{\cos x + \cos x} \right\} = 0.$$

Задача 5. Вычислить: a)
$$\lim_{x\to 0} \frac{\operatorname{tg} x}{x}$$
; б) $\lim_{x\to 0} \frac{\arcsin x}{x}$; в) $\lim_{x\to 0} \frac{\operatorname{arctg} x}{x}$.

Решение: Имеем неопределенности вида {0/0}, которые раскрываются сведением к I замечательному пределу (ОК, разд. 7.6):

a)
$$\lim_{x \to 0} \frac{\lg x}{x} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x} = 1 \cdot 1 = 1;$$

6)
$$\lim_{x \to 0} \frac{\arcsin x}{x} = \left\{ \frac{0}{0} \right\} = \left\{ \frac{\arcsin x = y, y \to 0}{x = \sin y} \right\} = \lim_{y \to 0} \frac{y}{\sin y} = 1;$$

B)
$$\lim_{x \to 0} \frac{\arctan x}{x} = \left\{ \frac{0}{0} \right\} = \left\{ \frac{\arctan y}{x} = \sin y = 0 \right\} = \lim_{y \to 0} \frac{y}{\tan y} = 1.$$

Задача 6. Вычислить: a) $\lim_{x\to 0} \frac{\arcsin^2 2x}{x^3 - x^2}$; б) $\lim_{x\to 0} \frac{1 - \cos x}{x \sin 3x}$;

B)
$$\lim_{\alpha \to 0} \frac{\operatorname{tg} \alpha - \sin \alpha}{\alpha^3}$$
.

Решение: Имеем неопределенности вида $\{0/0\}$, которые легко раскрыть, используя теорему об эквивалентных бесконечно малых (б.м.) (разд. 7.7 ОК) и следующие б.м. (см. задачу 5): $\sin x \sim x$, $\tan x \sim$

a)
$$\lim_{x \to 0} \frac{\arcsin^2 2x}{x^3 - x^2} = \left\{ \frac{0}{0} \right\} = \left\{ \frac{\arcsin^2 2x - (2x)^2}{x \to 0} \right\} = \lim_{x \to 0} \frac{4x^2}{x^3 - x^2} = \lim_{x \to 0} \frac{4x^2}{x^2(x - 1)} = \frac{4}{0 - 1} = -4;$$

6)
$$\lim_{x \to 0} \frac{1 - \cos x}{x \sin 3x} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 0} \frac{2 \sin^2 \frac{x}{2}}{x \sin 3x} = \begin{cases} \sin^2 \frac{x}{2} - \left(\frac{x}{2}\right)^2, \\ \sin 3x - 3x, \\ x \to 0 \end{cases} =$$

$$=2\lim_{x\to 0}\frac{\frac{x^2}{4}}{3x^2}=2\cdot\frac{1}{12}=\frac{1}{6};$$

B)
$$\lim_{\alpha \to 0} \frac{\operatorname{tg} \alpha - \sin \alpha}{\alpha^3} = \left\{ \frac{0}{0} \right\} = \lim_{\alpha \to 0} \frac{\sin \alpha \left(\frac{1}{\cos \alpha} - 1 \right)}{\alpha^3} =$$

$$= \lim_{\alpha \to 0} \frac{\sin \alpha (1 - \cos \alpha)}{\alpha^3 \cos \alpha} = \lim_{\alpha \to 0} \frac{\sin \alpha \cdot 2 \sin^2 \frac{\alpha}{2}}{\alpha^3 \cos \alpha} =$$

$$= \begin{cases} \sin \alpha \sim \alpha, \sin^2 \frac{\alpha}{2} \sim \frac{\alpha^2}{4}, \\ \alpha \to 0, \end{cases} = 2 \lim_{\alpha \to 0} \frac{\alpha \cdot \frac{\alpha^2}{4}}{\alpha^3} \cdot 1 = \frac{2}{4} = \frac{1}{2}.$$

Задача 7. Вычислить $\lim_{x\to 1} (1-x) \operatorname{tg} \frac{\pi x}{2}$.

Решение: Имеем неопределенность $\{0 \cdot \infty\}$, преобразуем ее к виду $\{0/0\}$ и сделаем замену переменных $x-1=y,y\to 0$:

$$\lim_{x \to 1} (1 - x) \operatorname{tg} \frac{\pi x}{2} = \{0 \cdot \infty\} = \lim_{x \to 1} \frac{1 - x}{\operatorname{ctg} \frac{\pi x}{2}} = \left\{\frac{0}{0}\right\} =$$

$$= \left\{x - 1 = y, \atop x = 1 + y, y \to 0\right\} = \lim_{y \to 0} \frac{-y}{\operatorname{ctg}\left(\frac{\pi}{2} + \frac{\pi y}{2}\right)} = \lim_{y \to 0} \frac{-y}{-\operatorname{tg} \frac{\pi y}{2}} =$$

$$= \left\{ tg \frac{\pi y}{2} \sim \frac{\pi y}{2}, \right\} = \lim_{y \to 0} \frac{y}{\pi y} = \frac{2}{\pi}.$$

Задача 8. Вычислить: a)
$$\lim_{x\to 0} (1+\sin x)^{\frac{1}{x}}$$
; б) $\lim_{x\to \infty} \left(\frac{2x+3}{2x+9}\right)^{3x+1}$.

Решение: Имеем неопределенности вида $\{1^{\infty}\}$, которые раскрываем, используя II замечательный предел (ОК, разд. 7.6):

a)
$$\lim_{x \to 0} (1 + \sin x)^{\frac{1}{x}} = \{1^{\infty}\} = \lim_{x \to 0} ((1 + \sin x)^{\frac{1}{\sin x}})^{\frac{1}{\sin x}} = \lim_{x \to 0} \frac{\sin x}{x} = e^{\lim_{x \to 0} \frac{\sin x}{x}} = e^{1} = e;$$

б) при вычислении $\lim_{x\to\infty} \left(\frac{2x+3}{2x+9}\right)^{3x+1} = \{1^{\infty}\}$ воспользуемся известной формулой $\lim_{x\to a} u(x)^{v(x)} = e^{\lim_{x\to a} v(x)(u(x)-1)}$.

Имеем

$$\lim_{x \to \infty} \left(\frac{2x+3}{2x+9} \right)^{3x+1} = \lim_{x \to \infty} \left(1 - \frac{6}{2x+9} \right)^{3x+1} = e^{\lim_{x \to \infty} (3x+1) \left(-\frac{6}{2x+9} \right)} = e^{\lim_{x \to \infty} \frac{-18x-6}{2x+9}} = e^{\frac{-18}{2}} = e^{-9}.$$

Задачи для самостоятельного решения

Вычислить следующие пределы

7)
$$\lim_{x \to -2} \frac{x^2 + 6x + 8}{x^3 + 8}$$
; 8) $\lim_{x \to 1} \frac{x^2 + x - 2}{x^3 - x^2 - x + 1}$; 9) $\lim_{x \to 1} \left(\frac{1}{1 - x} - \frac{3}{1 - x^3} \right)$;

10)
$$\lim_{x \to 5} \frac{\sqrt{x-1}-2}{x-5}$$
; **11)** $\lim_{x \to 1} \frac{\sqrt[4]{x}-1}{x-1}$; **12)** $\lim_{x \to -1} \frac{\sqrt{4+x+x^2}-2}{x+1}$; **13)** $\lim_{x \to 9} \frac{\sqrt[3]{x-1}-2}{x-9}$; **14)** $\lim_{x \to \infty} (\sqrt{x^2+1}-\sqrt{x^2-1})$; **15)** $\lim_{x \to \infty} \frac{x\sqrt{x}+5}{\sqrt{x^2+3}}$;

13)
$$\lim_{x\to 9} \frac{\sqrt[3]{x-1-2}}{x-9}$$
; **14)** $\lim_{x\to \infty} (\sqrt{x^2+1} - \sqrt{x^2-1})$; **15)** $\lim_{x\to \infty} \frac{x\sqrt{x+5}}{\sqrt{x^2+3}}$;

16)
$$\lim_{n\to\infty} \frac{\sqrt{2n^2+3n-1}}{n+2}$$
; **17)** $\lim_{n\to\infty} \frac{\sqrt[5]{n^4+1}}{\sqrt[4]{n^5+3}+\sqrt{n^3}}$; **18)** $\lim_{x\to+\infty} (\sqrt{x^2+4x}-x)$;

19)
$$\lim_{x \to \infty} \left(\frac{x^4}{x^3 + 1} - x \right)$$
; **20)** $\lim_{x \to 0} \frac{\operatorname{tg}^2 2x}{\sin 3x \cdot \sin 5x}$; **21)** $\lim_{x \to 0} \frac{1 - \cos^3 x}{x \cdot \sin 2x}$;

22)
$$\lim_{x\to 0} \frac{\sin 3x}{\sqrt{x+2}-\sqrt{2}}$$
; 23) $\lim_{x\to 0} \frac{\cos \alpha x - \cos \beta x}{x^2}$; 24) $\lim_{x\to 0} \frac{\sqrt{2}-\sqrt{1+\cos x}}{\sin^2 x}$;

25)
$$\lim_{x \to \pi} \frac{\sin 3x}{\sin 2x}$$
; **26)** $\lim_{x \to \frac{\pi}{2}} \left(\frac{\pi}{2} - x\right) \operatorname{tg} x$; **27)** $\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\left(\frac{\pi}{2} - x\right)^2}$;

28)
$$\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{\lg x}\right)$$
; **29)** $\lim_{x\to 0} (1+x^2)^{\frac{1}{x\lg x}}$; **30)** $\lim_{n\to\infty} \left(1+\frac{5}{n}\right)^{\frac{n^2-1}{n}}$;

31)
$$\lim_{x \to \infty} \left(1 - \frac{3}{2x+1}\right)^{3x-2}$$
; **32)** $\lim_{x \to \infty} \left(\frac{3x-4}{3x+2}\right)^{\frac{x+1}{3}}$; **33)** $\lim_{x \to \infty} \left(\frac{x^2+5x+4}{x^2-3x+7}\right)^x$;

34)
$$\lim_{x \to \infty} (1 + \lg^2 \sqrt{x})^{\frac{1}{2x}}$$
; **35)** $\lim_{x \to +\infty} x(\ln(x+1) - \ln x)$.

Сравнить следующие бесконечно малые, пользуясь ОК разд. 7.7:

36)
$$\alpha(x) = \sin 5x$$
, $\beta(x) = x + x^3$, $x \to 0$; **37)** $\alpha(x) = \sqrt{6x + 1} - 1$, $\beta(x) = 3x$, $x \to 0$; **38)** $\alpha(x) = \frac{1 - x}{1 + x}$, $\beta(x) = 1 - \sqrt{x}$, $x \to 1$;

39)
$$\alpha(n) = \frac{1}{n^2 + 3}$$
, $\beta(n) = \frac{1}{\sqrt{n+5}}$, $n \to \infty$; **40)** $\alpha(n) = \frac{1}{\sqrt{n^2 + 3}}$

$$\beta(n) = \frac{1}{n+5}, \quad n \to \infty; \quad \textbf{41)} \quad \alpha(x) = 3x \sin x, \quad \beta(x) = \operatorname{tg} x, \quad x \to 0;$$

42)
$$\alpha(x) = x^2 - 2x - 3, \beta(x) = \frac{(x-3)^2}{x^2}, x \to 3.$$

43) Первоначальный вклад в банк Q_0 денежных единиц. Банк выплачивает ежедневно p% годовых. Найти размер вклада через t лет при непрерывном начислении процентов.

Указание: Найти размер вклада Q_n через t лет при начислении процентов по вкладу n раз в году и перейти к пределу при $n \to \infty$.

8. НЕПРЕРЫВНЫЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Опорный конспект № 8

8.1. Определения непрерывности

 $\Delta y = f(x_0 + \Delta x) - f(x_0)$ — приращение f(x) в точке x_0

O.1: f(x) непрерывна в т. $x_0 \Leftrightarrow$

 $f(x_0 + \Delta x)$ 1) f(x) определена в т. x_0 и ее окрестности;

$$2) \lim_{\Delta x \to 0} \Delta y = 0$$

условие 2')
$$\lim_{x \to x_0} f(x) = f(x_0)$$

$$(x_0 + \Delta x = x)$$

8.2. Точки разрыва (т.р.) — точки, в которых нарушается определение непрерывности

$$\lim_{x \to x_0 - 0} f(x) = f(x_0 - 0) - \lim \text{ слева, } x < x_0;$$

$$\lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) - \lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) - \lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) - \lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) - \lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) - \lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) - \lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) - \lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) - \lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) - \lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) - \lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) - \lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) - \lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) - \lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) - \lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) - \lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) - \lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) - \lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) - \lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) - \lim_{x \to x_0 + 0} f(x) = f(x) =$$

Классификация т.р.:

- 1) устранимая т.р.: $f(x_0 + 0) = f(x_0 0)$, но $f(x_0)$ \exists ;
- 2) т.р. 1-го рода: $f(x_0 + 0) \neq f(x_0 0)$;
- т.р. 2-го рода остальные т.р.

8.3. Свойства функций, непрерывных в т. x_0

1⁰.
$$\varphi(x)$$
, $\psi(x)$ — непрерывны в т. x_0

$$\Rightarrow \begin{cases} \varphi(x) + \psi(x), \\ \varphi(x) \cdot \psi(x), \\ \varphi(x)/\psi(x), \psi(x) \neq 0. \end{cases}$$
 —непрерывны в т. x_0 .

 2^{0} . $y = \varphi(z)$ непрерывна в т. z_{0} , $z = \psi(x)$ непрерывна в т. x_{0} , $z_0 = \psi(x_0) \Rightarrow \varphi[\psi(x)]$ непрерывна в т. x_0

Следствие: Элементарные функции непрерывны в областях определения.

8.4. Свойства функций, непрерывных на [a, b]

 $(множество C_{[a,b]})$

m — наименьшее, M — наибольшее значения f(x) на $[a, b] \Leftrightarrow$ \Leftrightarrow m $\leq f(x) \leq$ M

$$1^0$$
. $f(x) \in C_{[a,b]} \Rightarrow \exists x_1, x_2 \in [a, b]$: $f(x_1) = m, f(x_2) = M$. 2^0 . $f(x) \in C_{[a,b]}, f(a) \cdot f(b) < 0 \Rightarrow \exists c \in [a, b]$: $f(c) = 0$.

$$2^{0}$$
. $f(x) \in C_{[a,b]}, f(a) \cdot f(b) < 0 \Rightarrow \exists c \in [a, b]: f(c) = 0$.

$$3^0$$
. $f(x) \in C_{[a,\ b]} \Rightarrow \forall \mu$ между $f(a)$ и $f(b)$ $\exists \xi \in [a,\ b]$: $f(\xi) = \mu$

Задачи к разд. 8

Задача 1. Показать, что при x = 4 функция y = x/(x - 4) имеет разрыв.

Решение: Функция y = x/(x - 4) — элементарная, определенная для $x \in (-\infty; 4) \cup (4; \infty)$, в точке x = 4 она неопределена. Найдем пределы функции в точке x=4 слева и справа: $\lim_{x\to 4+0}\frac{x}{x-4}=+\infty$, $\lim_{x\to 4-0}\frac{x}{x-4}=-\infty, \text{ т.е. точка } x=4-\text{точка разрыва 2-го рода.}$

График функции показан на рис. 8.1.

Задача 2. Определить точку разрыва функции $f(x) = \frac{1}{1 + 2^{1/x}}$.

Решение: Точка, подозреваемая на разрыв, — это точка x = 0, $\lim_{x \to 0+} \frac{1}{1 + 2^{1/x}} = 0,$ в которой функция неопределена. Тогда

Рис. 8.1

 $\lim_{x\to 0^-}\frac{1}{1+2^{1/x}}=1$, т.е. в точке x=0 — разрыв 1-го рода и функция имеет скачок, равный 1 (рис. 8.2).

Задача 3. Найти точку разрыва функции $f(x) = \begin{cases} x^2, x \neq 2, \\ 1, x = 2. \end{cases}$

Решение: Задана составная функция, определенная при $x \in (-\infty, +\infty)$. На разрыв подозреваем точку x = 2: $\lim_{x \to 2-0} f(x) = 4$, $\lim_{x \to 2+0} f(x) = 4$, но f(2) = 1. Таким образом, точка x = 2 — точка устранимого разрыва.

Задача 4. Исследовать на разрыв функцию
$$g(x) = \begin{cases} x^2, x \neq 2, \\ 4, x = 2. \end{cases}$$

Решение: Здесь g(2-0)=g(2+0)=g(2)=4 ⇒ g(x) — непрерывна в точке x=2 ⇒ точек разрыва нет.

Задачи для самостоятельного решения

Определить точки разрыва функций:

1)
$$f(x) = x/|x|$$
; 2) $f(x) = \arctan(1/x)$; 3) $f(x) = \frac{x^3}{(x+1)(x+2)(x+3)}$;

4) $f(x) = 3^{1/(x-3)}$; **5)** $f(x) = \lg(x^2 + 3x)$.

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ

Вариант № 1

- **1.** $\lim_{x \to 5} \frac{2x^2 11x + 5}{x^2 7x + 10}$. *Ombem*: 3. **2.** $\lim_{x \to 0} \frac{\sin^3 2x}{5x^3}$. *Ombem*: 8/5.
- 3. $\lim_{x\to\infty} \left(\frac{x-3}{x}\right)^{\frac{x}{2}}$. Omsem: $e^{-3/2}$. 4. $\lim_{x\to\infty} \frac{3x^5-4}{2x^7+3x^3-1}$. Omsem: 0.
- 5. $\lim_{x\to 0} \sin 2x \cdot \operatorname{ctg} x$. *Omeem*: 2.

Вариант № 2

- **1.** $\lim_{x \to \frac{1}{2}} \frac{2x^2 3x + 1}{4x^2 4x + 1}$. *Omsem*: ∞ . **2.** $\lim_{x \to \infty} \frac{3x^3 + 3x + 5}{8x^3 7x + 10}$. *Omsem*: 3/8.
- 3. $\lim_{x\to 0} \frac{\cos 7x 1}{2x \operatorname{tg} 4x}$. Omsem: -49/16. 4. $\lim_{x\to 0} (1+10x)^{5/x}$. Omsem: e^{50} .
- 5. $\lim_{x\to\infty} (\sqrt[3]{x^2+1} \sqrt[3]{2x^2+5})$. Omsem: ∞ .

Вариант № 3

- **1.** $\lim_{x\to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$. Omsem: 4/3. **2.** $\lim_{x\to \infty} \frac{\sqrt[3]{n^3+n^2}+n}{n^2+1}$. Omsem: 0.
- 3. $\lim_{x \to -2} \frac{\arcsin(x+2)}{x^2+2x}$. Omsem: -1/2. 4. $\lim_{x \to 3} (3x-8)^{\frac{2}{x-3}}$. Omsem: e^6 .
- **5.** $\lim_{x \to \infty} \left(\frac{x^3}{2x^2 1} \frac{x^2}{2x + 1} \right)$. *Ombem:* 1/4.

Ответы к разд. 6, 7, 8

6.1. Элементы теории множеств

1)
$$A \cup B = \{1, 2, 3, 4\}, A \cap B = \{2, 3\}, A \setminus B = \{1\}; 2)$$
 a).

6.2. Функции

6.3. Основные элементарные функции. Элементарные функции

3)
$$D(f) = (-\infty, \infty)$$
; 4) $D(f) = (-\infty, 1) \cup (1, 2) \cup (2, +\infty)$;

5)
$$D(f) = (-\infty, -3) \cup (2, +\infty);$$
 6) $D(f) = [-1/3; 1/4];$

7)
$$D(f) = 1;$$
 8) $D(f) = (2k\pi, (2k + 1)\pi), k \in \mathbb{Z};$

- 9) $E(f) = (-\infty, 3]$; 10) E(f) = (0, 1]; 11) [-2, 4]; 12) $T = \pi$;
- 13) $T = 6\pi$; 14) $T = \pi$; 15) Нечетная; 16) Четная; 17) Нечетная;
- **18)** Четная; **19)** $y = \sqrt{\sin x^2}$; **20)** $y = \sqrt{1 + \lg^2 \sin x}$; **21)** a) $y = \sin z$, $z = \cos t$, $t = \sqrt{x}$; 6) $y = \lg z$, $z = \operatorname{tg} t$, $t = 2^x$; B) $y = \arcsin z$, $z = \operatorname{e}^t$,
- $t = \sqrt[3]{x}$; **22)** a) $f(\varphi(\pi/2)) = 0$; б) $\varphi(f(1)) = 0$; в) $f(\varphi(x)) = \sin^3 2x \sin 2x$; г) $f(f(x)) = (x^3 x)^3 x^3 + x$; д) $\varphi(f(x)) = \sin 2(x^3 x)$.
 - 7.3—7.7. Бесконечно малые (б.м.) и бесконечно большие функции. Леммы о б.м. Теоремы о пределах. Неопределенности. Сравнение б.м.
- 5) a) $\sqrt{2}/4$; 6) ∞ ; 6) ∞ ; 7) 1/6; 8) ∞ ; 9) -1; 10) 1/4; 11) 1/4;
- 12) $-\frac{1}{4}$; 13) $\frac{1}{12}$; 14) 0; 15) ∞ ; 16) $\sqrt{2}$; 17) 0; 18) 2; 19) 0; 20) 4/15;
- **21)** $\frac{3}{4}$; **22)** $6\sqrt{2}$; **23)** $(\beta^2 \alpha^2)/2$; **24)** $\sqrt{2}/8$; **25)** -3/2; **26)** 1; **27)** 1/2;
- **28)** $\overset{\neg}{0}$; **29)** e; **30)** e^5 ; **31)** $e^{-9/2}$; **32)** $e^{-2/3}$; **33)** e^8 ; **34)** $e^{1/2}$; **35)** 1; **36)** Одного порядка; **37)** $\alpha \sim \beta$; **38)** $\alpha \sim \beta$; **39)** $\alpha = o(\beta)$; **40)** $\alpha \sim \beta$;
- **41)** $\alpha = o(\beta)$; **42)** $\beta = o(\alpha)$; **43)** $Q_n = Q_0 \left(1 + \frac{p}{100 \, \text{m}}\right)^{nt}, Q = Q_0 e^{\frac{pt}{100}}.$

8. Непрерывные функции одной переменной

1) x = 0 — разрыв 1-го рода, скачок равен 2; 2) x = 0 — разрыв 1-го рода, скачок равен π ; 3) x = -1, x = -2, x = -3 — разрыв 2-го рода; 4) x = 3 — разрыв 2-го рода; 5) x = 0, x = -3 — разрыв 2-го рода.

Глава 3 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

9. ДИФФЕРЕНЦИРУЕМЫЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Опорный конспект № 9

9.1. Определение производной, ее физический смысл

$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

s = s(t) — закон неравномерного прямолинейного движения \Rightarrow скорость v = s'(t)

9.2. Геометрический смысл y'

$$f'(x)=$$
 tg $\alpha=k$ — угловой коэффициент касательной в т. $M(x,\ y)$

$$y - y_0 = f'(x_0)(x - x_0)$$
 — касательная в т. $M_0(x_0, y_0)$

9.3. Существование производной и непрерывность

$$\exists f'(x) \Rightarrow f(x)$$
 — непрерывна

9.4. Свойства операции дифференцирования

1)
$$(c)' = 0, c = const;$$

2)
$$(u + v - w)' = u' + v' - w';$$

3)
$$(uv)' = u'v + uv', (cu)' = cu';$$

4)
$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}, v \neq 0$$

9.5. Производная сложной функции

$$(\varphi[\psi(x)])' = \varphi'[\psi(x)]\psi'(x)$$

Логарифмическая производная $(\ln y)' = y'/y$

Производная показательно-степенной функции

$$[u(x)^{v(x)}]' = vu^{v-1}u' + u^{v}\ln u \cdot v'$$

9.6. Производные основных элементарных функций

$$(x^n)' = nx^{n-1}, (a^x)' = a^x \ln a, (e^x)' = e^x,$$

 $(\log_a x)' = \frac{1}{x \ln a}, (\ln x)' = 1/x,$
 $(\sin x)' = \cos x, (\cos x)' = -\sin x,$
 $(\tan x)' = 1/\cos^2 x, (\cot x)' = -1/\sin^2 x,$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}, \ (\arccos x)' = -\frac{1}{\sqrt{1 - x^2}},$$

 $(\arctan x)' = \frac{1}{\sqrt{1 - x^2}}, \ (\arctan x)' = -\frac{1}{\sqrt{1 - x^2}},$

$$(\arctan x)' = \frac{1}{1+x^2}, \ (\arctan x)' = -\frac{1}{1+x^2}$$

9.7. Дифференциал

$$\mathrm{d}y=f'(x)\Delta x$$
 или $\mathrm{d}y=f'(x)\mathrm{d}x$, где $\mathrm{d}x=\Delta x$ — обозначение $\mathrm{d}y\sim\Delta y,\Delta x\to 0\Rightarrow f(x+\Delta x)\approx f(x)+\mathrm{d}y$

Свойства дифференциала:

$$1^{0}$$
. $dc = 0$, $c = const.$

$$2^0. d(u + v) = du + dv.$$

$$3^0. d(uv) = vdu + udv.$$

$$4^0$$
. $d(cu) = c du$.

$$5^{0}. d\left(\frac{u}{v}\right) = \frac{v du - u dv}{v^{2}}, v \neq 0.$$

$$6^0$$
. $d\phi[\psi(x)] = \phi'[\psi(x)]d\psi(x)$ — инвариантность формы dy

9.8. Производные и дифференциалы высших порядков

$$f^{(n)}(x) = [f^{(n-1)}(x)]', d^n y = d[d^{n-1}y] = f^{(n)}(x)dx^n$$

9.9. Производные параметрически заданной функции

$$\begin{cases} x = x(t), \\ y = y(t), \end{cases} y'_{x} = \frac{y'(t)}{x'(t)}, \ y''_{x} = \frac{(y'_{x})'_{t}}{x'(t)}$$

Задачи к разд. 9.1-9.6

Задача 1. Исходя из определения производной вычислить:

а)
$$y'(8)$$
, если $y = \sqrt[3]{x}$; б) $y'(1)$, если $y = x + (x - 1)\arcsin\sqrt{\frac{x}{x + 1}}$.

Решение: а) по определению производной

$$y'(8) = (\sqrt[3]{x})'\Big|_{x=8} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sqrt[3]{8 + \Delta x} - \sqrt[3]{8}}{\Delta x} = \left\{\frac{0}{0}\right\} =$$

$$= \lim_{\Delta x \to 0} \frac{8 + \Delta x - 8}{\Delta x (\sqrt[3]{(8 + \Delta x)^2} + 2\sqrt[3]{8 + \Delta x} + 4)} =$$

$$= \lim_{\Delta x \to 0} \frac{1}{(\sqrt[3]{(8 + \Delta x)^2} + 2\sqrt[3]{8 + \Delta x} + 4)} = \frac{1}{12};$$
6) $y'(1) = \lim_{\Delta x \to 0} \frac{1 + \Delta x + \Delta x \arcsin \frac{\sqrt{1 + \Delta x}}{\sqrt{2 + \Delta x}} - 1}{\Delta x} = 1 + \frac{\pi}{4}.$

Задача 2. Вычислить производные следующих функций, используя правила дифференцирования и таблицу производных:

a)
$$y = \frac{\sqrt[3]{x^2 + 3x^5 - 4}}{\sqrt[5]{x}}$$
; 6) $y = x^3 \arctan x$; $y'(1) = ?$ B) $y = \frac{e^x}{3\arccos x}$.
Pewenue: a) $y' = \left(x^{\frac{7}{15}} + 3x^{\frac{24}{5}} - 4x^{-\frac{1}{5}}\right)' = \frac{7}{15}x^{-\frac{8}{15}} + \frac{72}{5}x^{\frac{19}{5}} + \frac{4}{5}x^{-\frac{6}{5}}$;

6) $y' = (x^3)' \operatorname{arctg} x + x^3 (\operatorname{arctg} x)' = 3x^2 \operatorname{arctg} x + x^3/(1 + x^2);$ $y'(1) = \frac{3\pi}{4} + \frac{1}{2};$

B)
$$y' = \frac{1}{3} \left(\frac{e^x}{\arccos x} \right)' = \frac{1}{3} \frac{(e^x)'\arccos x - e^x(\arccos x)'}{\arccos^2 x} = \frac{1}{3} \frac{e^x\arccos x - \left(-\frac{e^x}{\sqrt{1 - x^2}} \right)}{\arccos^2 x} = \frac{e^x(\sqrt{1 - x^2}\arccos x + 1)}{3\sqrt{1 - x^2}\arccos^2 x}.$$

Задача 3. Вычислить производные сложных функций:

a)
$$y = \arcsin^2 x$$
; 6) $y = x \operatorname{tg}((3x + 1)/5)$; B) $y = \sqrt[3]{x + e^{x^2}}$; r) $y = (x^3 + 3)/\ln \sin x$.

Решение: a) $y' = ((\arcsin x)^2)' = 2\arcsin x \cdot (\arcsin x)' =$ $= 2\arcsin x \cdot \frac{1}{\sqrt{1-x^2}} = \frac{2\arcsin x}{\sqrt{1-x^2}};$

6)
$$y' = \left(x \operatorname{tg} \frac{3x+1}{5}\right)' = (x)' \operatorname{tg} \frac{3x+1}{5} + x \left(\operatorname{tg} \frac{3x+1}{5}\right)' =$$

$$= \operatorname{tg} \frac{3x+1}{5} + x \frac{1}{\cos^2 \frac{3x+1}{5}} \left(\frac{3x+1}{5}\right)' = \operatorname{tg} \frac{3x+1}{5} + \frac{x}{\cos^2 \frac{3x+1}{5}} \cdot \frac{3}{5};$$

B)
$$y' = (\sqrt[3]{x + e^{x^2}})' = ((x + e^{x^2})^{\frac{1}{3}})' = \frac{1}{3}(x + e^{x^2})^{-\frac{2}{3}}(x + e^{x^2})' = \frac{1}{3\sqrt[3]{(x + e^{x^2})^2}};$$

$$= \frac{1}{3\sqrt[3]{(x + e^{x^2})^2}}(1 + e^{x^2}(x^2)') = \frac{1 + 2xe^{x^2}}{3\sqrt[3]{(x + e^{x^2})^2}};$$

r) $y' = (\frac{x^3 + 3}{\ln \sin x})' = \frac{(x^3 + 3)' \ln \sin x - (x^3 + 3)(\ln \sin x)'}{\ln^2 \sin x} = \frac{3x^2 \ln \sin x - (x^3 + 3)\cot x}{\ln^2 \sin x}.$

Задача 4. Вычислить производные функций:

a)
$$y = (\ln x)^{x^2}$$
; 6) $y = \frac{(x+1)^3 \sqrt{x^2 - 3} \cdot e^{2x}}{(x^2 - 1)^5}$.

Решение: а) *первый способ* — логарифмическое дифференцирование:

$$\ln y = \ln(\ln x)^{x^2} \Rightarrow (\ln y)' = (x^2 \ln(\ln x))' \Rightarrow \frac{1}{y} \cdot y' = 2x \ln(\ln x) + x^2 \frac{1}{\ln x} \cdot \frac{1}{x} \Rightarrow y' = y(2x \ln \ln x + x^2 \frac{1}{x \ln x}) \Rightarrow y' = (\ln x)^{x^2} (2x \ln \ln x + \frac{x}{\ln x}).$$

Второй способ — производная показательно-степенной функции:

$$y' = \left((\ln x)^{x^2} \right)' = x^2 (\ln x)^{x^2 - 1} (\ln x)' + (\ln x)^{x^2} \ln(\ln x) (x^2)' =$$

$$= x^2 (\ln x)^{x^2 - 1} \frac{1}{x} + (\ln x)^{x^2} \ln \ln x \cdot 2x = 2x (\ln x)^{x^2} \ln \ln x +$$

$$+ x (\ln x)^{x^2 - 1};$$
6) $(\ln y)' = (3\ln(x+1) + \frac{1}{2}\ln(x^2 - 3) + 2x \ln e - 5\ln(x^2 - 1))' \Rightarrow$

$$\Rightarrow \frac{1}{y} \cdot y' = \frac{3}{x+1} + \frac{1}{2} \frac{1}{x^2 - 3} \cdot 2x + 2 - 5 \frac{1}{x^2 - 1} \cdot 2x;$$

$$y' = \frac{(x+1)^3 \sqrt{x^2 - 3} \cdot e^{2x}}{(x^2 - 1)^5} \left(\frac{3}{x+1} + \frac{x}{x^2 - 3} + 2 - \frac{10x}{x^2 - 1} \right).$$

Задача 5. Тело массой 3 кг движется прямолинейно по закону $s = 1 + t + t^2$ (s -в см, t -в с). Определить кинетическую энергию тела через 5 с после начала движения.

Решение: Кинетическая энергия $E = mv^2/2$, v = s' = 2t + 1, v(5) = 11 (cм/c), $E = 3 \cdot 121/2 = 181,5$ эрг.

Задача 6. Составить уравнение касательной и нормали к графику функции $y = 8a^3/(4a^2 + x^2)$ (a = const) в точке с абсциссой 2a.

Решение: Уравнение касательной приведено в ОК, разд. 9.2. Вычисляем:

$$y(2a)=8a^3/(4a^2+4a^2)=a,\;\;y'=\left(\frac{8a^3}{4a^2+x^2}\right)'=\frac{-8a^3\cdot 2x}{(4a^2+x^2)^2}=$$
 $=\frac{-16a^3x}{(4a^2+x^2)^2},\;\;y'(2a)=\frac{-16a^3\cdot 2a}{(8a^2)^2}=-\frac{1}{2}\Rightarrow y-a=-(x-2a)/2\Rightarrow$ $\Rightarrow y+x/2-2a=0$ — уравнение касательной.

Нормаль — прямая, перпендикулярная касательной, поэтому угловой коэффициент нормали $k_{\rm H}=-1/k_{\rm kac}=2$. Уравнение нормали: $y-a=2(x-2a)\Rightarrow y-2x+3a=0$.

Задачи для самостоятельного решения

Найти производную y' заданной функции или $y'(x_0)$, используя правила дифференцирования и формулу нахождения производной сложной функции:

1)
$$y = 2x^3 - \frac{1}{5\sqrt{x}} + \frac{3}{\sqrt[3]{x^2}}$$
; 2) $y = 5\sqrt{x} + 3x\sqrt[3]{x}$; 3) $y = \left(6\sqrt[3]{x} - \frac{1}{x^2}\right) \times (7x - 3)$; 4) $y = 3x^4 + 4x^3 - 5x^2 - 5x - 2$, $y'(0) = ?$ 5) $y = \frac{x^2 - 1}{x^2 + 1}$, $y'(1) = ?$ 6) $y = x \arctan(x)$, $y'(1) = ?$ 7) $y = \frac{\sin^2 x}{\sqrt{x}}$; 8) $y = \frac{\ln x}{x}$, $y'(e)$, $y'(1/e) = ?$; 9) $y = \frac{1}{x + 2} + \frac{3}{x^2 + 1}$, $y'(0) = ?$ 10) $y = \frac{\sin^2 e^x}{3} + \frac{3}{\sin^3 x}$; 11) $y = \cos x^5 \ln^2 x$; 12) $y = \sqrt[5]{\tan^3 x^2}$; 13) $y = \frac{\sin^5 x}{\cos 3x}$, $y'(\pi) = ?$; 14) $y = e^{x^2}$; 15) $y = 10^{1-5x^3}$; 16) $y = 5^{\sin^2 x}$; 17) $y = x^2 e^{-2x}$, $y'(1) = ?$ 18) $y = \sqrt{\arcsin x^2}$; 19) $y = x^2 \arctan(x)^5 \sqrt{x}$;

21)
$$y = x \operatorname{arctg}^2 \frac{1}{x}, y'(1) = ?$$
; **22)** $y = \frac{x}{\ln^2 x}$; **23)** $y = \sqrt{x} \log_3(\sqrt{x} + 3)$;

24)
$$y = \ln^4 \sin x$$
; **25)** $y = \ln^2 (x^2 - 4x)$, $y'(5) = ?$

Найти y'(x) или $y'(x_0)$, используя логарифмическое дифференцирование:

26)
$$y = x^{x+1}$$
; **27)** $y = (\operatorname{arctg} x)^{\sqrt{x^2+1}}$; **28)** $y = (\sqrt[3]{x})^{\cos 3x}$, $y'(\pi) = ?$; **29)** $y = \frac{\sqrt[4]{(6x+5)^3(4x-5)^2}}{(2x+7)^3}$; **30)** $y = \sqrt[5]{\frac{(1-x^2)\cos x}{(x^2+1)^3}}$, $y'(0) = ?$;

31)
$$y = x^{\sin 2x}$$
; **32)** $y = \frac{\ln^3 x}{\sqrt{x-1}\sin 2x}$; **33)** $y = \left(\frac{1}{x}\right)^{\arcsin x}$.

Найти y'(x) или $y'(x_0)$:

34)
$$y = \sqrt[3]{(x - \sin e^x)^2};$$
 35) $y = \frac{\ln(3x^2 + 3)}{x^3 + 3x + 5},$ $y'(0) = ?;$

36)
$$y = \frac{2x^2}{\sqrt{x}} + \frac{3x\sqrt{x}}{\sqrt[3]{x}} - \frac{4\sqrt{x}}{x} + 5$$
, $y'(1) = ?$; **37)** $y = xe^{1+tgx}$; **38)** $y = xe^{1+tgx}$

$$= x^{2}\sin x + x\log_{3}x, \ y'(1) = ?; \textbf{39}) \ y = (\cos x)^{3/x}; \textbf{40}) \ y = \frac{3}{\sqrt[3]{\left(\arctan\frac{x}{2}\right)^{4}}},$$

$$y'(2) = ?;$$
 41) $y = e^{\sqrt{\sin x}};$ **42)** $y = \sqrt[5]{(x+2)^2}(x^2-1)^3\sqrt{x-4};$

43)
$$y = \sqrt{e^x - 1} - \arctan \sqrt{e^x - 1};$$
 44) $y = \ln \operatorname{tg} \left(\frac{\pi}{4} - \frac{x}{2} \right);$

45)
$$y = 2 \ln \lg \frac{x}{8} + \frac{1}{\cos^2 \frac{x}{8}}$$
; **46)** $y = \sin^2(\lg x)$; **47)** $y = \sqrt[3]{\arcsin(2x+1)}$;

48)
$$y = \frac{\sqrt[3]{3x-1}\sqrt{2x+1}}{\sqrt[5]{15x+1}}$$
; **49)** $y = (\sin x)^{\sqrt{x}}$.

Показать, что функции y = f(x) удовлетворяют данным уравнениям вида F(x, y, y') = 0:

50) $y = x\sin x$ — уравнению $y'/\cos x - x = tgx$; **51)** $y = (x + 1)e^x$ — уравнению $y' - y = e^x$; **52)** $y = \sqrt{2\ln x - x^2} + c$ — уравнению $xyy' = 1 - x^2$.

Найти уравнения касательной и нормали к графику функции y = f(x) в точке $M_0(x_0, y_0)$:

53)
$$y = 2x^2 - 6x + 3$$
, $x_0 = 1$; **54)** $y = 1/(1 + x^2)$, $x_0 = 2$; **55)** $y = 6\sqrt[3]{x} + 2\sqrt{x}$, $x_0 = 64$.

- **56)** Точка движется прямолинейно по закону $s = t^3/3 + 2t^2 t$, s расстояние (в м), t время (в с). Найти скорость движения через 1 с после начала движения.
- **57)** Точка движется прямолинейно по закону $s = (t^4 4t^3 + 2t^2 12t)/4$, s расстояние (в м), t время (в с). В какой момент времени точка остановится?
- **58)** Тело массой 25 кг движется прямолинейно по закону $s = \ln(1 + t^2)$. Найти кинетическую энергию тела $(mv^2/2)$ через 2 с после начала движения.
- **59)** Определить силу тока в конце пятой секунды, если известно, что количество электричества, протекшее через проводник начиная с момента времени t=0 дается формулой $Q=2t^2+3t+1$ (кулонов).

Задачи к разд. 9.7-9.9

Задача 1. Найти дифференциал dy, если: a) $y = 5^{x^2} \arccos \frac{1}{x}$; 6) $y = x^{\arcsin x}$.

Решение:

a)
$$dy = \left(5^{x^2} \arccos \frac{1}{x}\right)' dx =$$

$$= \left(2x \cdot 5^{x^2} \ln 5 \arccos \frac{1}{x} + 5^{x^2} \left(-\frac{1}{\sqrt{1 - \left(\frac{1}{x}\right)^2}} \left(-\frac{1}{x^2}\right)\right)\right) dx =$$

$$= 5^{x^2} \left(2x \ln 5 \arccos \frac{1}{x} + \frac{1}{x\sqrt{x^2 - 1}}\right) dx;$$
6) $dy = (x^{\arcsin x})' dx =$

$$= \left(\arcsin x \cdot x^{\arcsin x - 1} \cdot 1 + x^{\arcsin x} \ln x \frac{1}{\sqrt{1 - x^2}}\right) dx.$$

Задача 2. Вычислить приближенно arctg 0,96.

Решение: Воспользуемся определением дифференциала (ОК, разд. 9.7). Обозначим $x_1=x_0+\Delta x=0.96,\ x_0=1,\ \text{тогда}\ \Delta x=0.04$. Так как $f(x)=\arctan x$, то $f'(x)=\frac{1}{x^2+1}, f'(1)=\frac{1}{2}, f(0.96)=f(1)+f'(1)\Delta x=\arctan 1+\frac{1}{2}(-0.04)=\frac{\pi}{4}-0.02\approx0.765$.

Задача 3. Найти производные указанного порядка:

a)
$$y = e^{x^2}, y'' = ?$$
; б) $y = x^5 \ln x, y'''(1) = ?$ в) $y = \sin 3x, y^{(n)} = ?$

a)
$$y' = (e^{x^2})' = 2xe^{x^2}$$
, $y'' = (y')' = (2xe^{x^2})' = 2e^{x^2} + 2xe^{x^2} \cdot 2x = 2e^{x^2}(1+2x^2)$;

6)
$$y' = (x^5 \ln x)' = 5x^4 \ln x + x^5 \frac{1}{x} = 5x^4 \ln x + x^4$$
; $y'' = (y')' = (5x^4 \ln x + x^4)' = 20x^3 \ln x + 9x^3$; $y''' = (y'')' = (20x^3 \ln x + 9x^3)' = 60x^2 \ln x + 20x^3 \frac{1}{x} + 27x^2 = 60x^2 \ln x + 47x^2$; $y'''(1) = 47$:

B)
$$y' = \cos 3x \cdot 3 = 3\cos 3x = 3\sin(3x + \pi/2), y'' = (3\cos 3x)' = -9\sin 3x = 3^2\sin(3x + \pi), y''' = (-9\sin 3x)' = -27\cos 3x = 3^3\sin(3x + 3\pi/2), y^{IV} = (-27\cos 3x)' = 3^4\sin(3x + 2\pi), ..., y^{(n)} = 3^n\sin(3x + n\pi/2).$$

Задача 4. Найти дифференциал второго порядка d^2y , если y == $\arcsin \sqrt{x}$.

Решение:
$$y' = (\arcsin \sqrt{x})' = \frac{1}{\sqrt{1-x}} \cdot \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{x-x^2}}; d^2y = y''dx^2 =$$
$$= \left(\frac{1}{2\sqrt{x-x^2}}\right)' dx^2 = -\frac{1}{2} \cdot \frac{1}{2} (x-x^2)^{-\frac{3}{2}} (1-2x) dx^2 = -\frac{1-2x}{4\sqrt{(x-x^2)^3}} dx^2.$$

Задача 5. Найти производные y'_x, y''_x параметрически заданной функции:

а) $x = a\cos^3 t$, $y = a\sin^3 t$, a = const. Найти уравнение касательной в точке $M_0(x_0, y_0)$ при $t_0 = \pi/4$.

Решение: Используем формулы ОК, разд. 9.9:
$$y'_{x} = \frac{y'(t)}{x'(t)} = \frac{(a\sin^{3}t)'}{(a\cos^{3}t)'} = \frac{3\sin^{2}t\cos t}{3\cos^{2}t(-\sin t)} = -\operatorname{tg}t,$$
$$y''_{xx} = \frac{(y'(t))'_{t}}{(x'(t))'_{t}} = \frac{(-\operatorname{tg}t)'}{(a\cos^{3}t)'} = \frac{-\frac{1}{\cos^{2}t}}{3a\cos^{2}t(-\sin t)} = \frac{1}{3a\cos^{4}t\sin t}.$$

Для определения уравнения касательной находим:

$$x_0 = x(t_0) = a \left(\frac{\sqrt{2}}{2}\right)^3 = \frac{a\sqrt{2}}{4}, y_0 = y(t_0) = a \left(\frac{\sqrt{2}}{2}\right)^3 = \frac{a\sqrt{2}}{4},$$

 $y_x'(t_0) = -\lg \frac{\pi}{4} = -1,$

тогда уравнение касательной:

$$y - \frac{a\sqrt{2}}{4} = -\left(x - \frac{a\sqrt{2}}{4}\right) \Rightarrow y + x - \frac{a\sqrt{2}}{2} = 0.$$

Задачи для самостоятельного решения

Найти dy, если:

60)
$$y = (1 + x - x^2)^3$$
; **61)** $y = 5^{\ln \sin x}$; **62)** $y = (x^3 + 1)^{\lg 2x}$; **63)** $y = \arctan^3 \frac{2x}{1 - x^2}$; **64)** $y = \frac{x}{\sqrt{\cos x}}$.

Вычислить приближенно:

65) $\sqrt[3]{8,01}$; **66)** $\cos 32^\circ$; **67)** $\arcsin 0.48$; **68)** $\lg 10.08$.

Найти производные указанного порядка:

69)
$$y = xe^{-x^2}$$
, $y'' = ?$; **70)** $y = x^6 - 4x^3 + 4$, $y^{IV}(1) = ?$; **71)** $y = e^{2x}\sin 3x$, $y'''(0) = ?$; **72)** $y = \ln^2 x$, $y'' = ?$; **73)** $y = e^{3x}$, $y^{(n)} = ?$; **74)** $y = \sin^2 x$, $y^{(n)} = ?$

Найти дифференциалы второго порядка:

75)
$$y = \arctan 3x$$
; **76)** $y = \frac{1+x}{\sqrt{x}}$; **77)** $y = \lg(1+x)$.

- **78)** Показать, что функция $y = 5e^{-2x} 3e^x$ удовлетворяет уравнению y''' 3y' + 2y = 0.
- **79)** Тело движется по прямой *OX* по закону $x = t^3/3 2t^2 + 3t$. Определить скорость и ускорение движения. В какие моменты времени тело меняет направление движения?

Найти y'_x , y''_{xx} для функций, заданных параметрически:

80)
$$\begin{cases} x = a(t - \sin t), \ 81) \end{cases} \begin{cases} x = \arcsin t, \ 82) \end{cases} \begin{cases} x = e^t \cos t, \\ y = a(1 - \cos t); \end{cases} \begin{cases} y = \ln(1 - t^2); \end{cases} \begin{cases} y = e^t \sin t. \end{cases}$$

83) Составить уравнения касательной и нормали к линии L: $x = \sin t$, $y = 2^t$ при $t_0 = 0$.

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ

Опорный конспект №10

10.1. Основные теоремы дифференциального исчисления Т. Лагранжа:

$$f(x) \in \mathcal{C}_{[a,b]}, \exists f'(x) \ \forall \ x \in (a, b) \Rightarrow \exists c \in (a, b):$$
$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Геометрическое истолкование:

$$k_{\text{Kac. B T. }C} = k_{AB}$$

Т. Коши:
$$f(x), g(x) \in C_{[a,b]}, \exists f'(x), g'(x) \forall x \in (a, b),$$
 $g'(x) \neq 0 \Rightarrow \exists c \in (a, b):$
$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)} \blacksquare$$

10.2. Правило Лопиталя

Выполняются условия теоремы Коши в окрестности т. $a \Rightarrow$

$$\Rightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = \left\{ \frac{0}{0} \lor \frac{\infty}{\infty} \right\} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

10.3. Монотонность

Достаточный признак:

$$f'(x) \begin{cases} > 0 \text{ Ha } (a,b) \Rightarrow f(x) \nearrow, \\ < 0 \text{ Ha } (a,b) \Rightarrow f(x) \searrow \end{cases}$$

10.4. Экстремумы (э.)

 x_0 — подозрительная на э. $\Leftrightarrow f'(x) = 0 \lor \exists$

Достаточный признак э. І:

 $f(x) \in C_{[a,b]}, x_0 \in (a,b)$ — подозрительная на э.,

$$f'(x)$$
: $\xrightarrow{+} \qquad \qquad \xrightarrow{-} \Rightarrow f(x_0) = y_{\text{max}}$
 $\xrightarrow{+} \Rightarrow f(x_0) = y_{\text{min}}$

10.5. Достаточный признак экстремума, использующий вторую производную

Достаточный признак э. II: $f'(x_0) = 0$,

$$f''(x_0) \begin{cases} <0 \Rightarrow x_0 - \text{T. max}, \\ >0 \Rightarrow x_0 - \text{T. min} \end{cases}$$

10.6. Выпуклость, вогнутость

Достаточный признак:

$$f''(x) \begin{cases} <0 \ \forall x \in (a,b) \Rightarrow \cap \\ >0 \ \forall x \in (a,b) \Rightarrow \cup \end{cases}$$

10.7. Точки перегиба (т.п.)

т. x_0 — подозрительная на перегиб \Leftrightarrow $⇔ f''(x_0) = 0 \lor$

Достаточный признак: $f(x) \in C_{[a,b]}$, $x_0 \in (a,b)$ — подозрительная на перегиб

$$f''(x)$$
: $\frac{+}{-}$ $\xrightarrow{x_0}$ $\xrightarrow{+}$ \Rightarrow $(x_0, f(x_0)) - \text{т.п.}$

10.8. Асимптоты

Асимптота \Leftrightarrow прямая $L: d(M, L) \to 0$ при $M \to \infty$ по графику. Вертикальная асимптота: x = a. Необходимое и достаточное условие:

$$\lim_{x \to a \pm 0} f(x) = \infty$$

Наклонная асимптота:

$$y = kx + b, k = \lim_{x \to \pm \infty} \frac{f(x)}{x}, b = \lim_{x \to \pm \infty} [f(x) - kx]$$

Задачи к разд. 10.1, 10.2

Задача 1. Вычислить пределы:

a)
$$\lim_{x \to 1} \frac{x^3 - 1}{\ln x}$$
; 6) $\lim_{x \to \infty} \frac{\pi - 2 \arctan x}{\ln \left(1 + \frac{1}{x}\right)}$; B) $\lim_{x \to +\infty} \frac{\ln^2 x}{x^3}$.

Решение: Пределы а), б) дают неопределенность $\left\{ \begin{matrix} 0 \\ 0 \end{matrix} \right\}$, в) $-\left\{ \begin{matrix} \infty \\ \infty \end{matrix} \right\}$, поэтому воспользуемся правилом Лопиталя:

a)
$$\lim_{x \to 1} \frac{x^3 - 1}{\ln x} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 1} \frac{(x^3 - 1)'}{(\ln x)'} = \lim_{x \to 1} \frac{3x^2}{\underline{1}} = \lim_{x \to 1} 3x^3 = 3;$$

6)
$$\lim_{x \to \infty} \frac{\pi - 2 \arctan x}{\ln \left(1 + \frac{1}{x}\right)} = \left\{\frac{0}{0}\right\} = \lim_{x \to \infty} \frac{-2\frac{1}{1 + x^2}}{\frac{1}{1 + 1/x} \left(-\frac{1}{x^2}\right)} = \lim_{x \to \infty} \frac{2(x^2 + x)}{(1 + x^2)} = \left\{\frac{\infty}{\infty}\right\}^{(*)} = 2\lim_{x \to \infty} \frac{2x + 1}{2x} = \left\{\frac{\infty}{\infty}\right\} = 2\lim_{x \to \infty} \frac{2}{2} = 2;$$

(Начиная с места (*) можно найти решение, поделив числитель и знаменатель дроби на x^2 .)

B)
$$\lim_{x \to +\infty} \frac{\ln^2 x}{x^3} = \left\{ \frac{\infty}{\infty} \right\} = \lim_{x \to +\infty} \frac{2 \ln x \cdot \frac{1}{x}}{3x^2} = \left\{ \frac{\infty}{\infty} \right\} = \lim_{x \to +\infty} \frac{2 \cdot \frac{1}{x}}{9x} = \frac{2}{9} \lim_{x \to +\infty} \frac{1}{x^3} = 0.$$

Задача 2. Вычислить пределы:

a)
$$\lim_{x \to \frac{\pi}{2}} \left(x - \frac{\pi}{2} \right) \operatorname{tg} x; \, 6) \lim_{x \to 1} \left(\frac{x}{x - 1} - \frac{1}{\ln x} \right).$$

Решение: От неопределенностей $\{0 \cdot \infty\}$, $\{\infty - \infty\}$ необходимо перейти к неопределенности {0/0}, чтобы применить правило Лопиталя:

a)
$$\lim_{x \to \frac{\pi}{2}} \left(x - \frac{\pi}{2} \right) \operatorname{tg} x = \{ 0 \cdot \infty \} = \lim_{x \to \frac{\pi}{2}} \frac{x - \frac{\pi}{2}}{\operatorname{ctg} x} = \left\{ \frac{0}{0} \right\} = \lim_{x \to \frac{\pi}{2}} \frac{1}{-\frac{1}{\sin^2 x}} = -1;$$

$$\begin{aligned}
6) & \lim_{x \to 1} \left(\frac{x}{x - 1} - \frac{1}{\ln x} \right) = \{ \infty - \infty \} = \lim_{x \to 1} \frac{x \ln x - x + 1}{\ln x (x - 1)} = \left\{ \frac{0}{0} \right\} = \\
& = \lim_{x \to 1} \frac{\ln x + x \cdot \frac{1}{x} - 1}{\frac{x - 1}{x} + \ln x} = \lim_{x \to 1} \frac{\ln x}{1 - \frac{1}{x} + \ln x} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 1} \frac{\frac{1}{x}}{\frac{1}{x^2} + \frac{1}{x}} = \\
& = \lim_{x \to 1} \frac{x}{1 + x} = \frac{1}{2}.
\end{aligned}$$

Задача 3. Вычислить пределы:

a)
$$\lim_{x\to 0+} x^{\lg x}$$
; 6) $\lim_{x\to +\infty} (\ln 2x)^{\frac{1}{\ln x}}$; B) $\lim_{x\to 1} x^{\frac{1}{1-x}}$.

а) $\lim_{x\to 0+} x^{\operatorname{tg} x}$; б) $\lim_{x\to +\infty} (\ln 2x)^{\frac{1}{\ln x}}$; в) $\lim_{x\to 1} x^{\frac{1}{1-x}}$. *Решение:* Неопределенности а) $\{0^0\}$, б) $\{\infty^0\}$, в) $\{1^\infty\}$ преобразуем в неопределенности $\{\frac{0}{0}\}$ или $\{\frac{\infty}{\infty}\}$, используя формулу

$$\lim_{x \to a} \varphi(x)^{\psi(x)} = e^{\lim_{x \to a} \psi(x) \ln \varphi(x)}$$
:

a)
$$\lim_{x \to 0+} x^{\lg x} = e^{\lim_{x \to 0+} \lg x \ln x} = e^0 = 1;$$

$$\lim_{x \to 0+} \lg x \ln x = \{0 \cdot \infty\} = \lim_{x \to 0+} \frac{\ln x}{\operatorname{ctg} x} = \lim_{x \to 0+} \frac{\frac{1}{x}}{-\frac{1}{\sin^2 x}} =$$

$$= -\lim_{x \to 0+} \frac{\sin x}{x} \cdot \sin x = 0;$$

6)
$$\lim_{x \to +\infty} (\ln 2x)^{\frac{1}{\ln x}} = e^{\lim_{x \to +\infty} \frac{1}{\ln x} \ln(\ln 2x)} = e^0 = 1;$$

$$\lim_{x \to +\infty} \frac{\ln \ln 2x}{\ln x} = \left\{ \frac{\infty}{\infty} \right\} = \lim_{x \to +\infty} \frac{\frac{1}{\ln 2x} \frac{2}{2x}}{\frac{1}{x}} = \lim_{x \to +\infty} \frac{1}{\ln 2x} = 0;$$

B)
$$\lim_{x \to 1} x^{\frac{1}{1-x}} = \left\{ 1^{\infty} \right\} = e^{\lim_{x \to 1} \frac{1}{1-x} \ln x} = e^{-1};$$

$$\lim_{x \to 1} \frac{\ln x}{1 - x} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 1} \frac{\frac{1}{x}}{-1} = -1.$$

Задачи для самостоятельного решения

Вычислить пределы:

1)
$$\lim_{x\to 0} \frac{e^x - 1}{\sin x}$$
; 2) $\lim_{x\to 1} \frac{\sin \pi x}{\ln x}$; 3) $\lim_{x\to a} \frac{x^m - a^m}{x^n - a^n}$; 4) $\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$;

5)
$$\lim_{x\to 0} \frac{e^{a\sqrt{x}}-1}{\sqrt{\sin bx}}$$
; 6) $\lim_{x\to 0} \frac{\ln \cos x}{x}$; 7) $\lim_{x\to 0} \frac{\operatorname{tg} x-x}{\sin x-x^2}$; 8) $\lim_{x\to 0+} \frac{\ln x}{\operatorname{ctg} x}$;

9)
$$\lim_{x \to 0} \frac{\ln \sin 2x}{\ln \sin x}$$
; 10) $\lim_{x \to +\infty} \frac{e^{3x}}{x^3 + 2x^2 - 3}$; 11) $\lim_{x \to \infty} x \sin \frac{a}{x}$;

12)
$$\lim_{x\to 0+} \sin x \cdot \ln x$$
; 13) $\lim_{x\to 0} (1-e^{2x}) \cot x$; 14) $\lim_{x\to 0} \left(\frac{1}{x \sin x} - \frac{1}{x^2}\right)$;

15)
$$\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x);$$
 16) $\lim_{x \to 0} \sin x^{\tan x};$ **17)** $\lim_{x \to \frac{\pi}{2}} (\tan x)^{2x - \pi};$

18)
$$\lim_{x\to 0} (e^{2x} + x)^{\frac{1}{x}}$$
; **19)** $\lim_{x\to 0} \left(\ln \frac{1}{x} \right)^x$; **20)** $\lim_{x\to 0} (\cos x)^{\operatorname{ctg}^2 x}$.

Задачи к разд. 10.3-10.8

Задача 1. Найти интервалы монотонности и экстремумы функции $y = \frac{2}{3}x^2\sqrt[3]{6x-7}$.

Решение: Проводим решение по следующей схеме:

- 1) находим D(f): $x \in (-\infty, +\infty)$;
- 2) находим точки, подозрительные на экстремум:

$$y' = \left(\frac{2}{3}x^2\sqrt[3]{6x - 7}\right)' = \frac{4}{3}x\sqrt[3]{6x - 7} + \frac{2}{3}x^2 \cdot \frac{6}{3\sqrt[3]{(6x - 7)^2}} = \frac{4x(6x - 7 + x)}{3\sqrt[3]{(6x - 7)^2}} = \frac{28x(x - 1)}{3\sqrt[3]{(6x - 7)^2}};$$

 $y' = 0 \Rightarrow x(x - 1) = 0 \Rightarrow x_1 = 0, x_2 = 1$ — подозрительные на экстремум точки;

 $y' \not\exists \Rightarrow 6x - 7 = 0 \Rightarrow x_3 = 7/6$ — подозрительная на экстремум точка;

3) разбиваем D(f) на интервалы монотонности, составляем таблицу интервалов монотонности, экстремумов:

x	(-∞, 0)	0	(0, 1)	1	$(1, 1^1/_6)$	$1^{1}/_{6}$	$(1^{1}/_{6}, +\infty)$
y		$y_{\text{max}} = 0$		$y_{\min} = -2/3$		Экстре- мума нет	
y'	+	0	_	0	+	∄	+

Задача 2. Найти интервалы выпуклости, вогнутости, точки перегиба функции $y = \ln(1 + x^2)$.

Решение: Проводим решение по следующей схеме:

- 1) находим D(f): $x \in (-\infty, +\infty)$;
- 2) находим точки, подозреваемые на перегиб:

$$y' = (\ln(1+x^2))' = \frac{1}{1+x^2} \cdot 2x,$$

$$y'' = \left(\frac{2x}{1+x^2}\right)' = \frac{2(1+x^2)-2x\cdot 2x}{(1+x^2)^2} = \frac{2(1-x^2)}{(1+x^2)^2},$$

 $y'' = 0 \Rightarrow 1 - x^2 = 0 \Rightarrow x = \pm 1$ — точки, подозрительные на перегиб, $y'' \exists$ при $x \in (-\infty, +\infty)$.

Разбиваем D(f) на интервалы выпуклости, вогнутости, составляем таблицу интервалов выпуклости, вогнутости, точек перегиба:

X	(-∞, -1)	-1	(-1, 1)	1	(1, +∞)
y		$y_{\text{\tiny T.H.}} = \ln 2$		$y_{\text{\tiny T.H.}} = \ln 2$	
y''	_	0	+	0	_

Задача 3. Найти асимптоты графиков следующих функций:

a)
$$y = \sqrt[3]{x^3 - 3x}$$
; 6) $y = \frac{e^x}{x + 2}$.

Решение: а) вертикальных асимптот нет, так как нет точек разрыва. Наклонные асимптоты: y = kx + b, $k = \lim_{x \to \pm \infty} \frac{\sqrt[3]{x^3 - 3x}}{x} =$

$$= \lim_{x \to \pm \infty} \sqrt[3]{1 - \frac{3}{x^2}} = 1, b = \lim_{x \to \pm \infty} (\sqrt[3]{x^3 - 3x} - x) = \{\infty - \infty\} =$$

$$= \lim_{x \to \pm \infty} \frac{x^3 - 3x - x^3}{\sqrt[3]{(x^3 - 3x)^2} + x\sqrt[3]{x^3 - 3x} + x^2} =$$

$$= \lim_{x \to \pm \infty} \frac{-\frac{3}{x}}{\sqrt[3]{\left(1 - \frac{3}{x^2}\right)^2} + \sqrt[3]{1 - \frac{3}{x^2}} + 1} = 0.$$

y = x — наклонная асимптота;

б) точка разрыва x=-2, поэтому нужно проверить необходимое и достаточное условие $\lim_{x\to a\pm 0} f(x)=\infty$: $\lim_{x\to -2\pm 0} \frac{e^x}{x+2}=\infty \Rightarrow x=-2$ — вертикальная асимптота.

Наклонные асимптоты:
$$y = kx + b$$
, $k = \lim_{x \to +\infty} \frac{e^x}{x(x+2)} = \left\{\frac{\infty}{\infty}\right\} = \lim_{x \to +\infty} \frac{e^x}{2x+2} = \left\{\frac{\infty}{\infty}\right\} = \lim_{x \to +\infty} \frac{e^x}{2} = \infty; \quad k = \lim_{x \to -\infty} \frac{e^x}{x(x+2)} = 0; \quad b = \lim_{x \to -\infty} \frac{e^x}{x(x+2)} = 0 \Rightarrow$ горизонтальная асимптота $y = 0$ при $x \to -\infty$.

Задача 4. Исследовать функцию и построить график: $y = 1/x + 4x^2$.

Решение: Исследование функции производится по следующей схеме:

- 1) находим D(f), точки разрыва;
- 2) находим асимптоты графика функции;
- 3) проверяем симметрию графика, периодичность;
- 4) находим интервалы монотонности, экстремумы;
- 5) находим интервалы выпуклости, вогнутости, точки перегиба;
 - 6) находим точки пересечения с осями координат;
- 7) проводим, в случае необходимости, исследование графика на концах D(f);
 - 8) строим график функции.

Итак, данную функцию исследуем по предложенной выше схеме:

- 1) D(f): $x \in (-\infty, 0) \cup (0, +\infty); x = 0$ точка разрыва;
- 2) вертикальная асимптота: проверяем для x=0 необходимое и достаточное условие: $\lim_{x\to\pm0}\left(\frac{1}{x}+4x^2\right)=\infty \Rightarrow x=0$ вертикальная

асимптота. Наклонная асимптота: y = kx + b, $\lim_{x \to \pm \infty} \frac{\frac{1}{x} + 4x^2}{x} = \lim_{x \to \pm \infty} \left(\frac{1}{x^2} + 4x\right) = \infty \Rightarrow$ наклонной асимптоты нет;

3)
$$f(-x) = \frac{1}{-x} + 4x^2 \neq f(x) \neq -f(x) \Rightarrow$$
 функция общего вида;

4) находим
$$y' = \left(\frac{1}{x} + 4x^2\right)' = \frac{1}{-x^2} + 8x = \frac{-1 + 8x^3}{x^2}$$
; $y' = 0 \implies$

 $\Rightarrow 8x^3 - 1 = 0 \Rightarrow x = 1/2$ — подозрительная на экстремум, y' \exists всюду в D(f). Точка x = 0 — точка разрыва, она не может быть точкой экстремума. Составляем таблицу интервалов монотонности и экстремумов:

x	(-∞, 0)	(0, 1/2)	1/2	(1/2, +∞)
y			$y_{\min} = 3$	—
y'	_	_	0	+

5) находим
$$y'' = \left(\frac{1}{-x^2} + 8x\right)' = \frac{2}{x^3} + 8 = \frac{2(4x^3 + 1)}{x^3}; \ y'' = 0 \Rightarrow 4x^3 + 1 = 0 \Rightarrow x = -\frac{1}{\sqrt[3]{4}} = -\frac{\sqrt[3]{2}}{2}$$
— подозрительная на перегиб, y'' \exists всюду в D(f). Составляем таблицу интервалов выпуклости, вогнутости, точек перегиба:

x	$\left(-\infty, -\frac{\sqrt[3]{2}}{2}\right)$	$-\frac{\sqrt[3]{2}}{2}$	$\left(-\frac{\sqrt[3]{2}}{2},0\right)$	(0, +∞)
у		$y_{\text{\tiny T.\Pi.}} = 0$		
y"	+	0	_	+

6) находим точки пересечения с осью *OX*: $y=0 \Rightarrow \frac{1}{x} + 4x^2 = 0 \Rightarrow 4x^3 = -1 \Rightarrow x = -\frac{\sqrt[3]{2}}{2}$ — точка перегиба. Точек пересечения с *OY* нет: $x \neq 0$;

7) строим график функции (рис. 10.1).

Задача 5. Газовая смесь состоит из окиси азота и кислорода. Требуется найти концентрацию кислорода, при которой содержа-

Рис. 10.1

щийся в смеси оксид азота (II) окисляется с максимальной скоростью.

Решение: В условиях практической необратимости скорость реакции 2NO + $O_2 = 2NO_2$ выражается формулой $v = kx^2y$, где x — концентрация NO в любой момент времени; y — концентрация O_2 ; k — константа скорости реакции, зависящая только от температуры. Тогда y = 100 - x, $v = kx^2(100 - x) = k(100x^2 - x^3)$.

Найдем
$$\frac{dv}{dx} = v_x' = k(200x - 3x^2) \Rightarrow \frac{dv}{dx} = 0$$
 при $x_1 = 0, x_2 = 66,7\%$

 $(k \neq 0)$. Для того чтобы установить, какое из полученных значений x соответствует максимальной скорости окисления, вычислим вторую производную $v''_{xx} = k(200-6x)$; находим $v''(x_1) = v''(0) > 0$, т.е. при $x_1 = 0$ — min; $v''(x_2) = k(200-6\cdot66,7) < 0$, откуда следует, что функция v, т.е. скорость окисления, при $x_2 = 66,7\%$ имеет максимальное значение.

Когда x=66,7%, y=100%-66,7%=33,3%, т.е. скорость окисления оксида азота будет максимальной в том случае, если в газовой смеси содержится 33,3% кислорода, т.е. при стехиометрическом соотношении x=0,5.

Задачи для самостоятельного решения

Найти интервалы монотонности и экстремумы функций:

21)
$$y = \frac{x^2}{4 - x^2}$$
; **22)** $y = \ln \cos x$; **23)** $y = \frac{x}{x^2 + 1}$; **24)** $y = \frac{x}{e^x}$.

Найти интервалы выпуклости, вогнутости, точки перегиба функций:

25)
$$y = a - \sqrt[3]{x - b}$$
; **26)** $y = x - \ln(x + 1)$; **27)** $y = x^3 - 3/x$; **28)** $y = \sqrt[3]{x^3 - 2x^2}$.

Найти асимптоты функций:

29)
$$y = \frac{1}{e^x - 1}$$
; **30)** $y = \frac{x^3}{3 - x^2}$.

- 31) Исследовать полностью функции задач 2, 3, 21-30 и построить их графики.
- **32)** Материальная точка движется по прямой по закону s = $= 6t^2 - t^3$. Какова ее наибольшая скорость?
- **33)** Кривая полных издержек имеет вид $k = x^3 6x^2 + 15x$ (х — объем производства). Рассчитать, при каком объеме производства средние издержки минимальны.
- 34) Реакционный аппарат имеет форму открытого сверху цилиндрического бака. Каковы должны быть радиус основания R и высота H, если на его изготовление отпущено заданное количество материала, чтобы его объем был наибольшим?

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ

Вариант № 1

1.
$$y = \frac{x^3 + 5}{\sin x^2}$$
; $y' = ?$ Ombem: $y' = \frac{x(3x\sin x^2 - 2x^3\cos x^2 - 10\cos x^2)}{\sin^2 x^2}$.
2. $y = \ln \arctan \sqrt{x}$; $dy = ?$ Ombem: $dy = \frac{dx}{2\sqrt{x}(x+1)\arctan \sqrt{x}}$.

2.
$$y = \ln \arctan \sqrt{x}$$
; $dy = ? Omsem$: $dy = \frac{dx}{2\sqrt{x}(x+1)\arctan \sqrt{x}}$

3.
$$y = (\operatorname{tg} 2x)^{\operatorname{ctg} \frac{x}{2}}; y' = ? \text{ Omsem: } y' = (\operatorname{tg} 2x)^{\operatorname{ctg} \frac{x}{2}} \left(\frac{4\operatorname{ctg} \frac{x}{2}}{\sin 4x} - \frac{\ln(\operatorname{tg} 2x)}{2\sin^2 \frac{x}{2}} \right).$$

4.
$$y = 3\frac{x}{\sqrt[3]{x}} + \lg 4x; y'' = ?$$
 Ombem: $y'' = -\frac{2}{3\sqrt[3]{x^4}} + \frac{32\sin 4x}{\cos^3 4x}$.

5.
$$\begin{cases} x = \sin t + \cos \frac{\pi}{5}, y''_{xx} = ? \textit{Omsem: } y''_{xx} = 2. \\ y = \sin^2 t; \end{cases}$$

6.
$$\lim_{x\to 0} \frac{x\cos x - \sin x}{x^3} = ? Omsem: -1/3.$$

7.
$$\lim_{x\to 0} x^{\frac{3}{1+\ln x}} = ? Omsem: e^3.$$

8. Найти интервалы монотонности, экстремумы $y=x\ln^2 x$. *Ответ:* $y_{\text{max}}=y(1/e^2)=4/e^2, y_{\text{min}}=y(1)=0.$

Вариант № 2

1.
$$y = \sqrt[3]{x^2} e^{\sin x}$$
; $y' = ?$ Ombem: $y' = \frac{e^{\sin x}}{3\sqrt[3]{x}} (2 + 3x \cos x)$.

2.
$$y = \arcsin \ln^2 x$$
; $dy = ?$ *Omeem*: $dy = \frac{2 \ln x}{x \sqrt{1 - \ln^4 x}} dx$.

3.
$$y = x^{\frac{tg^{\frac{1}{x}}}{x}}; y' = ? \textit{Omsem: } y' = x^{\frac{tg^{\frac{1}{x}}}{x}} \left(\frac{tg^{\frac{1}{x}}}{x} - \frac{\ln x}{x^2 \cos^2 \frac{1}{x}} \right).$$

4.
$$y = \arctan x^5; y'' = ? Ombem: y'' = \frac{10x^3(2-3x^{10})}{(1+x^{10})^2}.$$

5.
$$\begin{cases} x = \operatorname{arctg} t, \\ y = \ln(1 + t^2); \end{cases} y_{xx}'' = ? Omsem: y_{xx}'' = 2(1 + t^2).$$

6.
$$\lim_{x \to \frac{\pi}{4}} \frac{\operatorname{ctg} x - 1}{\sin 4x} = ? \textit{Omsem:} -\frac{1}{2}.$$

7.
$$\lim_{x \to 0} \left(\frac{1}{\arctan x} - \frac{1}{x} \right) = ? Omsem: 0.$$

8. Найти интервалы выпуклости, вогнутости, точки перегиба функции $y = \arctan y - x$. *Ответ:* $y_{\text{т.п.}} = y(0) = 0$.

РАСЧЕТНОЕ ЗАДАНИЕ

Пусть α β γ δ — цифры номера группы, n — номер студента по списку.

Задание 1. Исходя из определения производной вычислить значение y'(x), если $y(x) = \frac{f_j(x)(x+x_0+1)^k(x-k)^\sigma}{(x-x_0+1)^{\sigma+1}}$, где $k = \left[\frac{\alpha+\beta+\gamma+\delta}{2}\right]+1;$ $\sigma=\left[\frac{n}{2}\right]+3;$ $j=\left[\frac{n+\gamma}{4}\right]+1;$ $a=\left[\frac{n+\alpha}{5}\right]+2;$ $b=\left[\frac{n+\beta}{3}\right]+1;$ $f_j(x),$ x_0 находятся из таблицы:

j	1	2	3	4
$f_j(x)$	$\sin(ax + b)$	ln(x + a)	tg(ax + b)	$\sqrt{x+a}-1$
x_0	<i>−b/a</i>	1 - a	<i>−b/a</i>	1-a

Задание 2. Вычислить производную функции $y = \frac{\phi_i[\psi_j(x)]}{\left(\sqrt[\sigma]{x^k} + 1\right)^{(-1)^{\lambda}}},$ где j, σ , k, a берутся из задания 1, $i = \left]\frac{\gamma + \delta + n}{8} \right[+ 1; \lambda = \left]\frac{\beta + n}{4} \right[+ 2,$ а функции $\phi_i(x)$, $\psi_i(x)$ находятся из таблицы:

i	1	2	3	4	5	6	7	8
$\varphi_i(x)$	$\sin x$	cosx	tgx	ctgx	arcsin <i>x</i>	arccosx	arctgx	arcctgx
			1					

\dot{J}	1	2	3	4
$\psi_j(x)$	x^{σ}	a^{x}	$\log_a x$	lnx

Задание 3. Написать уравнение нормали к y(x) = f(x) в точке $x_0 = v$, если:

$$f(x) = \frac{x^r + \mu x + \nu}{x^r + \nu}, r = \left[\frac{n}{7}\right] + 2, \mu = \left[\frac{n + \delta}{6}\right] + 1, \nu = \left[\frac{n + \gamma}{3}\right] + 1.$$

Задание 4. Приближенно с помощью дифференциала вычислить значение y(x) в точке x_0 , если:

n	y(x)	x_0	n	<i>y</i> (<i>x</i>)	x_0	n	<i>y</i> (<i>x</i>)	x_0
1	$\sqrt[3]{x}$	0,98	11	x^{23}	0,998	21	x^7	2,003
2	$\sqrt[3]{x^3 + 7x}$	1,012	12	$\sqrt[4]{x^3}$	15,95	22	$\sqrt{4x-3}$	2,98
3	$\frac{x + \sqrt{5 - x^2}}{2}$	0,98	13	x^6	2,007	23	$\sqrt[3]{5x+7}$	4,003
4	$\sqrt[3]{x^2}$	27,17	14	$\sqrt[3]{5x+2}$	4,93	24	$\sqrt[5]{x^3}$	31,94
5	arcsin <i>x</i>	0,007	15	x^7	1,996	25	ln(1 + 4x)	0,007
6	$\sqrt[3]{x^2 + 2x + 5}$	0,97	16	$\sqrt[4]{5x+1}$	2,993	26	x^4	3,998
7	$\sqrt[5]{x}$	31,87	17	$\sqrt{4x+5}$	4,97	27	$\sqrt{1+x+\sin x}$	0,007
8	$\sqrt{x^2 + x + 3}$	1,97	18	$\frac{1}{\sqrt{2x^2 + x + 1}}$	1,006	28	$\sqrt[3]{3x + \cos x}$	0,005
9	x ¹¹	1,008	19	$\sqrt[3]{13x-1}$	4,97	29	$\sqrt[4]{2x - \sin\frac{\pi x}{2}}$	1,003
10	$\sqrt[3]{3x-8}$	2,97	20	$\frac{1}{\sqrt{x}}$	8,97	30	$\sqrt{x^2+5}$	1,995

Контрольные вопросы к заданиям 1-4

- **1.** Как определяется производная? Ее физический, геометрический смысл.
- **2.** Каковы правила дифференцирования? Производные основных элементарных функций.
- **3.** Как определяется дифференциал? Каковы его свойства и применение в приближенных вычислениях?

Задание 5. L: $\begin{cases} x = x(t), \\ y = y(t). \end{cases}$ Найти уравнение касательной в точке со значением $t = t_0$, если $x(t), y(t), t_0$, определяются по таблице:

n	x(t)	y(t)	t_0	n	x(t)	y(t)	t_0	n	x(t)	y(t)	t_0
1	asin3t	$a\cos^3 t$	π/3	11	at cos t	atsint	$\pi/2$	21	<i>t</i> − − <i>t</i> sin <i>t</i>	tcost	0
2	$\sqrt{3} \cdot \cos t$	sin t	π/3	12	sin ² t	$\cos^2 t$	π/6	22	$1/t^2$	$1:$: (t^2+1)	1
3	$a(t-\sin t)$	$a \times \times (1-\cos t)$	π/3	13	$\arcsin \frac{t}{\sqrt{1+t^2}}$	$\frac{t}{\sqrt{1+t^2}}$	1	23	$3\cos t$	4sin <i>t</i>	π/4
4	$2t-t^2$	$3t-t^3$	1	14	$\frac{t + \ln t}{t^2}$	$\frac{3 + 2\ln t}{t}$	1	24	$t-t^4$	t^2-t^3	1
5	$\cos t + \sin t$	sin 2t	π/4	15	$\frac{1+t}{t^2}$	$\frac{3}{2t^2} + \frac{2}{t}$	2	25	$t^3 + 1$	$t^2 + t + 1$	1
6	$\arcsin \frac{t}{\sqrt{1+t^2}}$	$\arccos \frac{t}{\sqrt{1+t}}$	-1	16	asin ⁴ t	$a\cos^4 t$	π/6	26	$2\cos t$	sin <i>t</i>	π/3
7	$t(t\cos t - 2\sin t)$	$t(t\sin t + 2\cos t)$	π/4	17	$a(t\sin t + \cos t)$	$a(\sin t - t\cos t)$	π/4	27	2 tg <i>t</i>	$2\sin^2 t + \\ + \sin 2t$	π/4
8	$\frac{3at}{1+t^2}$	$\frac{3at^2}{1+t^2}$	2	18	$\frac{t+1}{t}$	$\frac{t-1}{t}$	-1	28	t^3+1	t^2	-2
9	1 + + 2ln ctg <i>t</i>	tg t + + ctg t	π/4	19	$1-t^2$	$t-t^3$	2	29	sin t	e^t	0
10	$\frac{t^2}{2} - \frac{t^4}{4}$	$\frac{t^2}{2} + \frac{t^4}{4}$	0	20	$\ln(1+t^2)$	t-arctgt	1	30	sin <i>t</i>	cos2t	π/6

Задание 6. Найти производную *m*-го порядка от функции $y = f_{\mu}(x)$, если σ , a, b берутся из задания 1, λ — из задания 2, μ — из задания 3, $f_{\mu}(x)$ — из таблицы:

μ	1	2	3	4	5	6
$f_{\mu}(x)$	sin ax	$\sqrt[6]{\mathrm{e}^{ax+b}}$	$\log_a(x+b)$	$\frac{x+a}{x+b}$	$\frac{1}{ax+b}$	λ^{ax+b}

Задание 7. Применяя правило Лопиталя, найти $\lim_{x \to a} \frac{\varphi(x)}{\psi(x)}$, если:

		T	
n	$\varphi(x)$	$\psi(x)$ x^3	а
1	x - arctgx	x^3	0
2	$\pi - 2 \operatorname{arctg} x$	$\ln(1 + 1/x)$	∞
3	$x - \sin x$	x - tgx	0
4	$\pi - 2 \operatorname{arctg} x$	$\ln(x/(x+1))$	∞
5	$\pi - 2 \arcsin x$	$\sin 3(x-1)$	1
6	$e^x - e^{-x}$	$\sin x \cos x$	0
7	$1 - \sin(\pi x/2)$	ln <i>x</i>	1
8	$\sin(\pi x/2)$	ln(1-x)	0
9	$x \ln x - x + 1$	$(x-1)\ln x$	1
10	a^2-x^2	$ctg(\pi x/(2a))$	a
11	$e^{x^2}-1$	$\cos x - 1$	0
12	$ln(\sin 2x)$	ln(sinx)	0
13	$x\cos x - x\sin x$	xsinx	0
14	$e^{\alpha\sqrt{x}}-1$	$\sqrt{\sin \beta x}$	0
15	$a^x - b^x$	$x\sqrt{1-x^2}$	0
16	$1 - \cos 2x$	$\cos 7x - \cos 3x$	0
17	lnx	$1 + 2\ln(\sin x)$	+0
18	$e^{3x} - 3x - 1$	$\sin^2 5x$	0
19	$\cos x \ln(x-3)$	$ln(e^x - e^3)$	3 + 0
20	$tg(\pi x/2)$	ln(1 - x)	1 - 0
21	$e^x - e^{-x} - 2x$	$x - \sin x$	0
22	$e^{2x} - 1$	arcsin <i>x</i>	0
23	$e^x - 1 - x$	$x(e^x - 1)$	0
24	$(x-2\pi)^2$	$tg(\cos x - 1)$	2π
25	$\cos x$	$\sqrt[3]{(1-\sin x)^2}$	π/2
26	$1 - \sin x$	$(\pi/2-x)^2$	π/2
27	tgx - x	$\sin x - x$	0

n	$\varphi(x)$	$\psi(x)$	а
28	$1-\sqrt{\cos x}$	sin <i>x</i>	0
29	lnx	x^a	∞
30	$\ln(1 + x^2)$	$ln(\pi/2 - arctgx)$	8

Задание 8. Исследовать функции $y = \Phi_{\mu}(x), y = F_{\mu}(x)$ и построить их графики, если a берется из задания 1, r, μ — из задания 3; $\Phi_{\rm u}(x), F_{\rm u}(x)$ — из таблицы:

μ	1	2	3	4	5	6
$\Phi_{\mu}(x)$	$(x-a)^2(x-r)$	$ax^2(x-r)^2$	$ax^2(x^2-r^2)$	$ax(x^2-r^2)$	$\frac{ax^2}{x^2 + r^2}$	$\frac{ax}{x^2 + r^2}$
$F_{\mu}(x)$	$\frac{ax+r}{(x+a)^2}$	$\frac{ax^2}{x^2 - r^2}$	$\frac{(x+r)^2 + a^2}{a(x+r)}$	$\frac{ax^3}{r-x}$	$\frac{x^3 + 2r^3}{ax}$	$\frac{(x+a)^2}{x-r}$

Задание 9. Решить задачу на экстремум.

- 1. Два тела движутся с постоянными скоростями v_1 (км/ч) и v_2 (км/ч) по двум прямым, образующим угол $\pi/2$ в направлении к вершине этого угла. В начале движения первое тело находилось от вершины на расстоянии a (км), второе на расстоянии b (км). Через сколько минут после начала движения расстояние между телами будет наименьшим?
- **2.** Требуется изготовить закрытый цилиндрический бак вместимостью $V(\mathbf{m}^3)$. Каковы должны быть размеры бака (радиус R и высота H), чтобы на его изготовление пошло наименьшее количество материала?
- **3.** Окно имеет форму прямоугольника с полукругом сверху. Периметр окна равен a (м). Каковы должны быть его размеры (ширина и высота), чтобы окно пропускало наибольшее количество света?
- **4.** Требуется изготовить прямоугольный сосуд из прямоугольника со сторонами a (см) и b (см), вырезав углы и загнув края, причем объем сосуда должен быть максимальным.
- **5.** Требуется обтесать бревно с круглым сечением диаметром a (см), чтобы получилась балка с прямоугольным сечением наибольшей прочности. (В сопротивлении материалов установлено, что прочность прямоугольной балки пропорциональна bh^2 , где b основание прямоугольника в сечении балки, h его высота.)

6. Лодка находится на расстоянии a (км) от ближайшей точки A берега. Пассажир лодки должен попасть в точку B на берегу, находящуюся на расстоянии b (км) от точки A. Известны скорость лодки v_1 (км/ч), скорость пассажира v_2 (км/ч). К какому пункту на берегу должна прибыть лодка, чтобы пассажир добрался до точки B за кратчайшее время?

n	№ задачи	a	b	v_1	v_2	V	n	№ задачи	а	b	v_1	v_2	V
1	1	20	30	50	60		16	4	70	40			
2	2					8	17	5	21				
3	3	14					18	6	2	4	5	6	
4	4	40	30				19	1	50	40	30	20	
5	5	30					20	2					32
6	6	3	5	4	5		21	3	17,5				
7	1	40	20	10	30		22	4	50	32			
8	2					16	23	5	24				
9	3	10,5					24	6	3	6	3	5	
10	4	50	18				25	1	40	50	10	40	
11	5	27					26	2					64
12	6	4	5	3	6		27	3	42				
13	1	30	20	40	60		28	4	70	55			
14	2					4	29	5	33				·
15	3	7					30	6	2	3	4	6	

Контрольные вопросы к заданиям 6-9

- **1.** Как определяются производные и дифференциалы высших порядков?
 - 2. Запишите правило Лопиталя. Когда оно применяется?
 - 3. Как производится исследование функций?

Ответы к разд. 9, 10

9. Дифференцируемые функции одной переменной

1)
$$6x^2 + \frac{1}{10\sqrt{x^3}} - \frac{2}{\sqrt[3]{x^5}}$$
; 2) $\frac{5}{2\sqrt{x}} + 4\sqrt[3]{x}$; 3) $\left(\frac{2}{\sqrt[3]{x^2}} + \frac{2}{x^3}\right)(7x - 3) + 7\left(6\sqrt[3]{x} - \frac{1}{x^2}\right)$; 4) -5 ; 5) 1; 6) $\pi/4 + 1/2$;

7)
$$\frac{2\sqrt{x}\sin x \cos x - \frac{1}{2\sqrt{x}}\sin^2 x}{x}; 8) \ 0; 2e^2; 9) - \frac{1}{4}; 10) \ \frac{1}{3}\sin(2e^x)e^x - \frac{9\cos x}{\sin^4 x};$$
11)
$$-5x^4 \sin x^5 \ln^2 x + \frac{\cos x^5 2 \ln x}{x}; 12) \ \frac{6}{5}x tg^{-\frac{2}{5}}x^2 \frac{1}{\cos^2 x^2}; 13) \ 0;$$
14)
$$2xx^2; 15) \ 10^{1-5x^3}(-15x^2)\ln 10; 16) \ 5^{\sin^2 x} \sin 2x \ln 5; 17) \ 0;$$
18)
$$\frac{x}{\sqrt{(1-x^4)\arcsin x^2}}; 19) \ x \arctan tg^4 x \left(\frac{5x}{1+x^2} + 2\arctan tgx\right);$$
20)
$$-5\arccos^4 \sqrt{x} \frac{1}{\sqrt{1-x}} \frac{1}{2\sqrt{x}}; 21) \ \left(\frac{\pi}{4}\right)^2 - \frac{\pi}{4}; 22) \ \frac{\ln x - 2}{\ln^3 x};$$
23)
$$\frac{1}{2\sqrt{x}} \left(\log_3(\sqrt{x}+3) + \frac{\sqrt{x}}{(\sqrt{x}+3)\ln 3}\right); 24) \ 4\ln^3 \sin x \cot x; 25) \ \frac{12\ln 5}{5};$$
26)
$$x^{x+1} \left(\ln x + \frac{x+1}{x}\right); 27) \ (\arctan tgx)^{\sqrt{x^2+1}} \left(\frac{x \ln \arctan tgx}{\sqrt{x^2+1}} + \frac{1}{\arctan tgx}\sqrt{x^2+1}\right);$$
28)
$$-\frac{1}{3\sqrt[3]{\pi^4}}; 29) \ \frac{\sqrt[4]{(6x+5)^3}(4x-5)^2}{(2x+7)^3} \left(\frac{9}{2(6x+5)} + \frac{8}{4x-5} - \frac{6}{2x+7}\right);$$
30)
$$0; 31) \ x^{\sin 2x} \left(2\cos 2x \ln x + \frac{\sin 2x}{x}\right); 32) \ \frac{\ln^3 x}{\sqrt{x-1}\sin 2x} \times \left(\frac{3}{x \ln x} - \frac{1}{2(x-1)} - 2\cot 2x\right); 33) - \left(\frac{1}{x}\right)^{\arcsin x} \left(\frac{\ln x}{\sqrt{1-x^2}} + \frac{\arcsin x}{x}\right);$$
34)
$$\frac{2(1-e^x \cos e^x)}{3\sqrt[3]{x-\sin e^x}}; 35) \ \frac{-3\ln 3}{25}; 36) \ 8.5; 37) \ e^{1+tgx} \left(1 + \frac{x}{\cos^2 x}\right);$$
38)
$$2\sin 1 + \cos 1 + 1/\ln 3; 39) \ (\cos x)^{\sqrt[3]{x}} \left(\frac{1}{3\sqrt[3]{x^2}} \ln \cos x - \sqrt[3]{x} tgx\right);$$
40)
$$-\left(\frac{4}{\pi}\right)^{7/3}; 41) \ \frac{\cos x e^{\sqrt{\sin x}}}{2\sqrt{\sin x}}; 42) \ \frac{\sqrt[3]{(x+2)^2}(x^2-1)^3 \sqrt{x-4}}{\sqrt[3]{(x+2)^2}(x^2-1)^3 \sqrt{x-4}} \times \left(\frac{2}{5(x+2)} + \frac{6x}{x^2-1} + \frac{1}{2(x-4)}; 42) \ \frac{\sqrt[3]{(x+2)^2}(x^2-1)^3 \sqrt{x-4}}{\sqrt[3]{(x+2)^2}(x^2-1)^3 \sqrt{x-4}} \times \left(\frac{2}{5(x+2)} + \frac{6x}{x^2-1} + \frac{1}{2(x-4)}; 42) \ \frac{\sqrt[3]{(x+2)^2}(x^2-1)^3 \sqrt{x-4}}{\sqrt[3]{(x+2)^2}(x^2-1)^3 \sqrt{x-4}} \times \left(\frac{2}{5(x+2)} + \frac{6x}{x^2-1} + \frac{1}{2(x-4)}; 42) \ \frac{\sqrt[3]{(x+2)^2}(x^2-1)^3 \sqrt{x-4}}{\sqrt[3]{(x+2)^2}(x^2-1)^3 \sqrt{x-4}} \times \left(\frac{2}{5(x+2)} + \frac{6x}{x^2-1} + \frac{1}{2(x-4)}; 42) \ \frac{\sqrt[3]{(x+2)^2}(x^2-1)^3 \sqrt{x-4}}{\sqrt[3]{(x+2)^2}(x^2-1)^3 \sqrt{x-4}} \times \left(\frac{2}{5(x+2)} + \frac{6x}{x^2-1} + \frac{1}{2(x+4)}; 3\frac{\sqrt[3]{(x+2)^2}(x^2-1)^3 \sqrt{x-4}}{\sqrt[3]{(x+2)^2}(x^2-1)^3 \sqrt{x-4}} \times \left(\frac{2}{5(x+2)} + \frac{6x}{x^2-1} + \frac{1}{2(x+4)}; 3\frac{\sqrt[3]{(x+2)^2}(x^2-1)^3}{\sqrt[3]{(x+2)^2}(x^2-1)^3} \times (1-\frac{1}{2(x+1)^2}; 3\frac{\sqrt[3]{(x+2)^2}(x^2-1)^3}{\sqrt[3]{(x+2)^2}(x^2-1)^$$

$$\times \left(\frac{\ln\sin x}{2\sqrt{x}} + \sqrt{x}\operatorname{ctg}x\right)$$
; **53)** $y = -2x + 1$ — касательная; $y = x/2$ — $3/2$ — нормаль; **54)** $4x + 25y - 13 = 0$ — касательная; $125x - 20y$ — $-246 = 0$ — нормаль; **55)** $y = x/4 + 2$ — касательная; $y = 296$ — $4x$ — нормаль; **56)** $v(1) = 4$ м/c; **57)** 3 c; **58)** 8 Дж; **59)** $23A$; **60)** $3(1 + x - x^2)^2(1 - 2x) \, dx$; **61)** $5^{\ln\sin x}\operatorname{ctg}x\ln 5 \, dx$; **62)** $(x^3 + 1)^{\lg 2x}\left(\frac{2\ln(x^3 + 1)}{\cos^2 2x} + \frac{3x^2\lg 2x}{x^3 + 1}\right) dx$; **63)** $\frac{6}{1 + x^2}\operatorname{arctg}^2\frac{2x}{1 - x^2}dx$; **64)** $\frac{2\cos x + x\sin x}{2\cos x\sqrt{\cos x}}dx$; **65)** 2,008; **66)** 0,849; **67)** 0,5005; **68)** 1,0035; **69)** $2xe^{-x^2}(2x^2 - 3)$; **70)** 360 ; **71)** 9; **72)** $\frac{2(1 - \ln x)}{x^2}$; **73)** $3^n e^{3x}$; **74)** $-2^{n-1}\cos\left(2x + n\frac{\pi}{2}\right)$; **75)** $d^2y = -\frac{54x}{(1 + 9x^2)^2}dx^2$; **76)** $d^2y = -\frac{\sqrt{x}(3 - x)}{4x^3}dx^2$; **77)** $d^2y = \frac{2\sin(1 + x)}{\cos^3(1 + x)}dx^2$; **79)** $x' = t^2 - 4t + 3$; $x'' = 2t - 4$; $t_1 = 1$; $t_2 = 3$; **80)** $\operatorname{ctg}\frac{t}{2}$; $-\frac{1}{4a\sin^4\frac{t}{2}}$; **81)** $-\frac{2t}{\sqrt{1 - t^2}}$; $-\frac{2}{1 - t^2}$; **82)** $\frac{1 + \lg t}{1 - \lg t}$; $\frac{2}{e^t(\cos t - \sin t)^3}$; **83)** $y - x\ln 2 - 1 = 0$; $y\ln 2 + x - \ln 2 = 0$.

10. Исследование функций и построение графиков

1) 1; 2)
$$-\pi$$
; 3) $\frac{m}{n}a^{m-n}$; 4) 2; 5) $\frac{a}{\sqrt{b}}$; 6) 0; 7) 0; 8) 0; 9) 1; 10) ∞ ;

11) a; **12)** 0; **13)** -2; **14)** 1/6; **15)** 0; **16)** 1; **17)** 1; **18)** e^3 ; **19)** 1; **20)** $e^{-1/2}$; **21)** $y_{\min} = y(0) = 0$; **22)** $y_{\max} = y(2k\pi) = 0$;

23)
$$y_{\text{max}} = y(1) = 1/2; y_{\text{min}} = y(-1) = -1/2;$$
24) $y_{\text{max}} = y(1) = 1/e;$

25) $y_{\text{T.II}} = y(b) = a;$ **26)** T.II. Het; **27)** $y_{1\text{T.II}} = y(-1) = 2;$

 $y_{2_{\text{T.\Pi}}} = y(1) = -2$; **28)** $y_{\text{T.\Pi}} = y(2) = 0$; **29)** x = 0, y = 0, y = -1; **30)** $x = \pm \sqrt{3}$; x + y = 0;

31) графики:

32) 12 ед. скорости; **33)** 3; **34)** H = R.

Глава 4 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

11. ДИФФЕРЕНЦИРУЕМЫЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Опорный конспект № 11

11.1. Понятие функции нескольких переменных.

Элементы топологии в \mathbb{R}^n

O:
$$\mathbf{R}^{n} = \{(x_{1}, x_{2}, ..., x_{n}): x_{i} \in \mathbf{R}, i = 1, n\}$$

 $y = f(x_{1}, x_{2}, ..., x_{n}), (x_{1}, x_{2}, ..., x_{n}) \in \mathbf{D} \subset \mathbf{R}^{n}, y \in Y \subset \mathbf{R} \Leftrightarrow \mathbf{D} \Rightarrow Y: \forall (x_{1}, x_{2}, ..., x_{n}) \in \mathbf{D} \exists ! y \in Y \subset \mathbf{R}$

$$z = f(x, y), (x, y) \in D \subset \mathbf{R}^2$$
 — функция двух переменных; $f(x, y) = c, c = \text{const}$ — линии уровня

O:
$$\mathbf{U}_{\delta}(M_0) = \{M \in \mathbf{R}^2: |\overline{MM_0}| < \delta\} - \delta$$
-окрестность т. $M_0(x_0, y_0)$ D — открытая область $\Leftrightarrow \forall M \in \mathbf{D} \ \exists \delta > 0: \ \mathbf{U}_{\delta}(M) \subset \mathbf{D}$

11.2. Предел и непрерывность функций нескольких переменных

O:
$$A = \lim_{M \to M_0} f(x, y) \Leftrightarrow \forall \varepsilon > 0 \; \exists \; \delta(\varepsilon) : \; M \in U_{\delta}(M_0) \Rightarrow$$

$$\Rightarrow |f(x, y) - A| < \varepsilon$$

О:
$$z = f(x, y)$$
 непрерывна в т. $M_0(x_0, y_0) \Leftrightarrow$ 1) $f(x, y)$ определена в $\mathbf{U}_{\delta}(M_0)$; 2) $\lim_{M \to M_0} f(x, y) = f(x_0, y_0)$

11.3. Частные приращения и частные производные

Ha примере z = f(x, y):

0:
$$\Delta_x z = f(x + \Delta x, y) - f(x, y), \Delta_y z = f(x, y + \Delta y) - f(x, y)$$
 — частные приращения по *x* и *y*

О:
$$\frac{\partial z}{\partial x} = \lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x}, \frac{\partial z}{\partial y} = \lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y}$$
 — частные производные по x и y

11.4. Полное приращение и полный дифференциал, применение в приближенных вычислениях

0:
$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$
 — полное приращение функции $z = f(x, y)$

О: z = f(x, y) дифференцируема в т. $M(x, y) \Leftrightarrow \Delta z = A\Delta x + B\Delta y + \omega(\Delta x, \Delta y), \omega = o(\Delta \rho)$ при $\Delta \rho = \sqrt{(\Delta x)^2 + (\Delta y)^2} \to 0$, $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$ — полный дифференциал $(dx = \Delta x, dy = \Delta y)$.

 $f(x + \Delta x, y + \Delta y) \approx f(x, y) + \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y$ — применение дифференциала к приближенным вычислениям

11.5. Частные производные и полные дифференциалы высших порядков

В случае непрерывности $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$ $d^2 z = d(dz)$ — дифференциал 2-го порядка, $d^n z = d(d^{n-1}z) = \left(\frac{\partial}{\partial x} dx + \frac{\partial}{\partial x} dy\right)^n z$. $\frac{\partial z}{\partial y}$ $\frac{\partial z}{\partial y}$ $\frac{\partial z}{\partial y}$ $\frac{\partial^2 z}{\partial y^2}$ $\frac{\partial^2 z}{\partial y^2}$

11.6. Производные сложных функций

1)
$$z = f(x, y), x = x(t), y = y(t): \frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt};$$

2) $z = f(x, y), y = y(x): \frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \frac{dy}{dx};$
3) $z = f(x, y), x = x(u, v); y = y(u, v):$

$$\frac{dz}{du} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u}, \frac{dz}{dv} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$$

11.7. Неявные функции, их дифференцирование

1.
$$F(x, y) = 0$$
 задает неявно $y = y(x) \Rightarrow \frac{dy}{dx} = -\frac{\partial F}{\partial x} / \frac{\partial F}{\partial y}$
2. $F(x, y, z) = 0$ задает неявно $z = z(x, y) \Rightarrow \frac{\partial z}{\partial x} = -\frac{\partial F}{\partial x} / \frac{\partial F}{\partial z}$, $\frac{\partial z}{\partial y} = -\frac{\partial F}{\partial y} / \frac{\partial F}{\partial z}$

Задачи к разд. 11.1, 11.2

Задача 1. Найти область определения функции (ООФ) $z = \frac{1}{2x^2 + v^2}.$

Решение: Функция z определена для любой пары чисел x, y, кроме x=0, y=0, при которой ее знаменатель обращается в ноль. Поэтому ООФ z — плоскость XOY, кроме точки (0, 0) (точка разрыва) (рис. 11.1).

Рис. 11.1

Задача 2. Найти ООФ
$$z = \frac{1}{\sqrt{3xv}}$$
.

Решение: Чтобы функция *z* принимала действительные значения, подкоренное выражение должно быть неотрицательным, а знаменатель не должен обращаться в ноль \Rightarrow D = $\{(x, y) \in XOY | xy > 0\}$

$$xy > 0$$
} \Rightarrow $\begin{cases} x > 0, \text{ или } \\ y > 0 \end{cases}$ или $\begin{cases} x < 0, \\ y < 0. \end{cases}$

Точки, координаты которых удовлетворяют этим системам неравенств, лежат внутри первого и третьего квадрантов плоскости *XOY* (открытая область) (рис. 11.2).

Рис. 11.2

Задача 3. Найти ООФ $z = \arccos \frac{y-1}{x}$.

Решение: Из определения арккосинуса следует, что $D = \{(x, y) \in XOY | -1 \le (y - 1)/x \le 1, x \ne 0\}.$

Тогда, умножая неравенства на x, получим $\begin{cases} x < 0, \\ x \le y - 1 \le -x, \end{cases} \Rightarrow \begin{cases} x < 0, \\ x + 1 \le y \le 1 - x; \end{cases} \begin{cases} x > 0, \\ -x \le y - 1 \le x, \end{cases} \Rightarrow \begin{cases} x > 0, \\ 1 - x \le y \le x + 1. \end{cases}$

Таким образом, ООФ z являются внутренние части левого и правого углов, образованных прямыми y = x + 1 и y = 1 - x, включая эти прямые, но без точки их пересечения (рис. 11.3).

Рис. 11.3

Задача 4. Определить линии уровня функции $u=1-x^2-y^2$. *Решение*: Уравнения линий уровня имеют вид $1-x^2-y^2=c$ или $x^2+y^2=1-c$ (см. ОК, разд. 11.1). Это концентрические окружности радиусом $R=\sqrt{1-c}$ с центром в начале координат, если 1-c>0, т.е. c<1. При c=1 — точка (начало координат), при c>1 соответствующие линии уровня — пустые множества.

Задача 5. Построить линии уровня функции u = xy.

Решение: Уравнения линий уровня имеют вид xy = c, где $c \in \mathbf{R}$. Это гиперболы y = c/x и прямые x = 0, y = 0. Функция y = c/x нечетная, поэтому ее график симметричен относительно начала координат при любом c (рис. 11.4).

Рис. 11.4

Задача 6. Найти поверхности уровня функции $u = \frac{x^2 + y^2}{7}$.

Решение: Уравнения поверхностей уровня имеют вид $cz = x^2 + y^2$. Это параболоиды вращения.

Задача 7. Найти поверхности уровня функции $u=5^{2x+3y-z}$. *Решение:* Уравнения поверхностей уровня имеют вид $5^{2x+3y-z}=c$, или $5^{2x+3y-z}=5^{\tilde{c}}$, следовательно, $2x+3y-z=\tilde{c}$ — это параллельные плоскости.

Задача 8. Найти пределы: a) $\lim_{\substack{x \to 2 \ y \to 0}} \frac{\operatorname{tg}(xy)}{y}$; б) $\lim_{\substack{x \to 0 \ y \to 0}} \frac{1 - \sqrt{1 - xy}}{xy}$.

Решение:

a)
$$\lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{y} = \left\{ \frac{0}{0} \right\} = \lim_{\substack{x \to 2 \\ y \to 0}} \frac{x \operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{x \to 2} x \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}(xy)}{xy} = \lim_{\substack{x \to 2 \\ y \to 0}} \frac{\operatorname{tg}$$

6)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{1 - \sqrt{1 - xy}}{xy} = \left\{ \frac{0}{0} \right\} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{(1 - \sqrt{1 - xy})(1 + \sqrt{1 - xy})}{xy(1 + \sqrt{1 - xy})} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{1 - 1 + xy}{xy(1 + \sqrt{1 - xy})} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{1}{1 + \sqrt{1 - xy}} = \frac{1}{2}.$$

Задачи для самостоятельного решения

Найти ООФ: **1)**
$$z = \sqrt{3 - x^2 - 3y^2}$$
; **2)** $z = \frac{1}{4x^2 - y^2}$;

3)
$$z = \sqrt{2x} - \frac{2}{\sqrt{y}}$$
; 4) $z = \ln(x + y)$; 5) $z = \arcsin(x + y)$; 6) $u = \ln(-x^2 - y^2 + 2z)$.

Построить линии уровня функций: 7)
$$z = \frac{4}{x^2 + y^2}$$
; 8) $z = \arctan(y/x)$; 9) $z = x^2 - y^2$.

Построить поверхности уровня функций: **10)** $u = z - \frac{x^2}{4} - \frac{y^2}{9}$;

11)
$$u = x^2 + y^2 - z^2$$
.

Найти пределы: **12)**
$$\lim_{\substack{x \to 0 \ y \to 0}} \frac{3xy}{2 - \sqrt{4 - xy}}$$
; **13)** $\lim_{\substack{x \to 0 \ y \to 0}} \frac{\operatorname{tg}(x^2 + y^2)}{2x^2 + 2y^2}$.

Задачи к разд. 11.3-11.5

Задача 1. Найти частные производные функций:

a)
$$z = \sqrt[x]{e^y}$$
; 6) $z = \frac{x^2 y}{x + \sin y}$; B) $u = x^{\frac{y}{z^2}}$.

Решение: a) $z = \sqrt[x]{e^y}$ — функция двух переменных. Находим $\frac{\partial z}{\partial x}$,

$$\frac{\partial z}{\partial y}$$
, причем $\frac{\partial z}{\partial x} = \left(\frac{\mathrm{d}z}{\mathrm{d}x}\right)_{y=\mathrm{const}}$, $\frac{\partial z}{\partial y} = \left(\frac{\mathrm{d}z}{\mathrm{d}y}\right)_{x=\mathrm{const}}$. Имеем:

$$\frac{\partial z}{\partial x} = \left(e^{\frac{y}{x}}\right)'_{x(y=\text{const})} = e^{\frac{y}{x}} \cdot \left(\frac{y}{x}\right)'_{x} = e^{\frac{y}{x}} \cdot y \left(\frac{1}{x}\right)'_{x} = -\frac{y}{x^{2}} e^{\frac{y}{x}};$$

$$\frac{\partial z}{\partial y} = \left(e^{\frac{y}{x}}\right)'_{y(x=\text{const})} = e^{\frac{y}{x}} \cdot \left(\frac{y}{x}\right)'_{y} = e^{\frac{y}{x}} \cdot \frac{1}{x}(y)'_{y} = \frac{1}{x}e^{\frac{y}{x}};$$

б) решаем аналогично:

$$\frac{\partial z}{\partial x} = \left(\frac{x^2 y}{x + \sin y}\right)'_{x(y = \text{const})} = \frac{(x^2 y)'_x (x + \sin y) - x^2 y (x + \sin y)'_x}{(x + \sin y)^2} = \frac{(x^2 y)'_x (x + \sin y) - x^2 y (x + \sin y)'_x}{(x + \sin y)^2}$$

$$= \frac{y \cdot 2x(x + \sin y) - x^2 y(1 + 0)}{(x + \sin y)^2} = \frac{xy(x + 2\sin y)}{(x + \sin y)^2};$$

$$\frac{\partial z}{\partial y} = \left(\frac{x^2 y}{x + \sin y}\right)_{y(x = \text{const})} = \frac{(x^2 y)'_y(x + \sin y) - x^2 y(x + \sin y)'_y}{(x + \sin y)^2} =$$

$$=\frac{x^2(x+\sin y)-x^2y(0+\cos y)}{(x+\sin y)^2}=\frac{x^2(x+\sin y-y\cos y)}{(x+\sin y)^2};$$

в) $u = x^{\frac{y^2}{z^2}}$ — функция трех переменных. Находим:

$$\frac{\partial u}{\partial x} = \left(\frac{\mathrm{d}u}{\mathrm{d}x}\right)_{y,z=\mathrm{const}}, \frac{\partial u}{\partial y} = \left(\frac{\mathrm{d}u}{\mathrm{d}y}\right)_{x,z=\mathrm{const}}, \frac{\partial u}{\partial z} = \left(\frac{\mathrm{d}u}{\mathrm{d}z}\right)_{x,y=\mathrm{const}};$$

$$\frac{\partial u}{\partial x} = \left(x^{\frac{y}{z^2}}\right)'_x = \frac{y}{z^2}x^{\frac{y}{z^2}-1};$$

$$\frac{\partial u}{\partial y} = \left(x^{\frac{y}{z^2}}\right)'_{y} = x^{\frac{y}{z^2}} \ln x \left(\frac{y}{z^2}\right)'_{y} = x^{\frac{y}{z^2}} \ln x \frac{1}{z^2} = \frac{\ln x}{z^2} x^{\frac{y}{z^2}};$$

$$\frac{\partial u}{\partial z} = \left(x^{\frac{y}{z^2}}\right)'_{z} = x^{\frac{y}{z^2}} \ln x \left(\frac{y}{z^2}\right)' = x^{\frac{y}{z^2}} \ln x \cdot y (-2z^{-3}) = -\frac{2y \ln x}{z^3} x^{\frac{y}{z^2}}.$$

Задача 2. Найти полные дифференциалы: a) $z = x \ln(x^2 + y^2)$;

$$6) \ u = \frac{x^2 yz}{x^2 + z}.$$

Решение: По формуле из ОК, разд. 11.4, имеем:

a)
$$dz = (x \ln(x^2 + y^2))'_x dx + (x \ln(x^2 + y^2))'_y dy = (\ln(x^2 + y^2) + x \frac{1}{x^2 + y^2} \cdot 2x) dx + x \frac{1}{x^2 + y^2} \cdot 2y dy =$$

$$= \left(\ln(x^2 + y^2) + \frac{2x^2}{x^2 + y^2}\right) dx + \frac{2xy}{x^2 + y^2} dy;$$

б) используем формулу $\mathrm{d}u = \frac{\partial u}{\partial x}\mathrm{d}x + \frac{\partial u}{\partial y}\mathrm{d}y + \frac{\partial u}{\partial z}\mathrm{d}z$ для функции u = u(x, y, z):

$$du = \left(\frac{x^2yz}{x^2 + z}\right)'_x dx + \left(\frac{x^2yz}{x^2 + z}\right)'_y dy + \left(\frac{x^2yz}{x^2 + z}\right)'_z dz =$$

$$= \frac{2xyz(x^2 + z) - x^2yz \cdot 2x}{(x^2 + z)^2} dx + \frac{1}{x^2 + z}x^2zdy + \frac{x^2y(x^2 + z) - x^2yz}{(x^2 + z)^2} dz =$$

$$= \frac{2xyz^2}{(x^2 + z)^2} dx + \frac{x^2z}{x^2 + z} dy + \frac{x^4y}{(x^2 + z)^2} dz.$$

Задача 3. Вычислить приближенно $\sqrt{(4,05)^2 + (3,07)^2}$.

Решение: Искомое число является значением функции $z = \sqrt{x^2 + y^2}$ при $x_1 = 4,05, \ y_1 = 3,07.$ Обозначим $x_0 = 4, \ y_0 = 3$ и используем формулу $z(x_1,y_1) = z(x_0,y_0) + \left(\frac{\partial z}{\partial x}\right)_{(x_0,y_0)} \Delta x +$

$$+\left(\frac{\partial z}{\partial y}\right)_{(x_0,y_0)} \Delta y. \text{ Так как } \Delta x = x_1 - x_0 = 0.05, \Delta y = y_1 - y_0 = 0.07,$$

$$\frac{\partial z}{\partial y} \left(\frac{1}{(x_0^2 + y_0^2)^2}\right)' \qquad x \qquad \frac{\partial z}{\partial y} \left(\frac{1}{(x_0^2 + y_0^2)^2}\right)' \qquad y \qquad -1$$

$$\frac{\partial z}{\partial x} = \left(\sqrt{x^2 + y^2}\right)'_x = \frac{x}{\sqrt{x^2 + y^2}}; \frac{\partial z}{\partial y} = \left(\sqrt{x^2 + y^2}\right)'_y = \frac{y}{\sqrt{x^2 + y^2}}, \text{ To}$$

$$z(4,05;3,007) = \sqrt{(4,05)^2 + (3,07)^2} \approx \sqrt{4^2 + 3^2} + \frac{4}{\sqrt{4^2 + 3^2}} \cdot 0,05 + \frac{3}{\sqrt{4^2 + 3^2}} \cdot 0,07 \approx 5 + 0,08 = 5,08.$$

Задача 4. Найти частные производные высших порядков:

a)
$$z = 2^{xy}$$
; $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$, $\frac{\partial^2 z}{\partial y \partial x}$, $\frac{\partial^2 z}{\partial y^2}$ = ?

6)
$$u = e^{xyz}, \frac{\partial^3 u}{\partial x \partial y \partial z} = ?$$

Решение: а) сначала находим $\frac{\partial z}{\partial x} = 2^{xy} \ln 2 \cdot y$; $\frac{\partial z}{\partial y} = 2^{xy} \ln 2 \cdot x$; затем $\frac{\partial^2 z}{\partial x^2} = (2^{xy} \ln 2 \cdot y)'_x = y \ln 2(2^{xy})'_x = y \ln 2 \cdot 2^{xy} \ln 2 \times x$ $\times y = y^2 \ln^2 2 \cdot 2^{xy}$; $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = (2^{xy} \ln 2 \cdot y)'_y = \ln 2(2^{xy} \ln 2 \times x)$ $\times xy + 2^{xy}$ = $\ln 2 \times 2^{xy} (xy \ln 2 + 1)$; $\frac{\partial^2 z}{\partial y^2} = (2^{xy} \ln 2 \cdot x)'_y = x^2 \ln^2 2 \cdot 2^{xy}$.

б) сначала находим
$$\frac{\partial u}{\partial x} = (e^{xyz})'_x = yze^{xyz}$$
, затем $\frac{\partial^2 u}{\partial x \partial y} = (yze^{xyz})'_y = (yz)'_y e^{xyz} + yz(e^{xyz})'_y = ze^{xyz} + yze^{xyz} \cdot xz = (z + xyz^2)e^{xyz}$, окончательно $\frac{\partial^3 u}{\partial x \partial y \partial z} = ((z + xyz^2)e^{xyz})'_z = (1 + 2xyz)e^{xyz} + (z + xyz^2)e^{xyz}xy = e^{xyz}(1 + 3xyz + x^2y^2z^2)$.

Задача 5. Найти дифференциал второго порядка от функции z = y/x - x/y.

Решение: Воспользуемся формулой для полного дифференциала из ОК, разд. 11.5: $d^2z = \frac{\partial^2z}{\partial x^2} dx^2 + 2 \frac{\partial^2z}{\partial x \partial y} dx dy + \frac{\partial^2z}{\partial y^2} dy^2.$ Находим $\frac{\partial z}{\partial x} = \left(\frac{y}{x} - \frac{x}{y}\right)'_x = -\frac{y}{x^2} - \frac{1}{y}; \qquad \frac{\partial z}{\partial y} = \left(\frac{y}{x} - \frac{x}{y}\right)'_y = \frac{1}{x} + \frac{x}{y^2}; \qquad \frac{\partial^2z}{\partial x^2} = \left(-\frac{y}{x^2} - \frac{1}{y}\right)'_x = \frac{2y}{x^3}; \qquad \frac{\partial^2z}{\partial x \partial y} = \left(-\frac{y}{x^2} - \frac{1}{y}\right)'_y = -\frac{1}{x^2} + \frac{1}{y^2}; \qquad \frac{\partial^2z}{\partial y^2} = \frac{1}{x^2} + \frac{1}{y^2}; \qquad \frac{\partial^2z}{\partial y^2} = \frac{1}{y^2} + \frac{1}{y^2}; \qquad \frac{\partial^2z}{\partial y^2} = \frac{1}{y^2} + \frac{1}{y^2}; \qquad \frac{\partial^2z}{\partial y^2} = \frac{1}{y^2} + \frac{1}{y^2} + \frac{1}{y^2}; \qquad \frac{\partial^2z}{\partial y^2} = \frac{1}{y^2} + \frac{1}{y^2} + \frac{1}{y^2}; \qquad \frac{\partial^2z}{\partial y^2} = \frac{1}{y^2} + \frac{1}{y^2}; \qquad \frac{\partial^2z}{\partial y^2} = \frac{1}{y^2} + \frac{1}{y^2}; \qquad \frac{\partial^2z}{\partial y^2} = \frac{1}{y^2} + \frac{1}$

$$= \left(\frac{1}{x} + \frac{x}{y^2}\right)'_y = -\frac{2x}{y^3}, \quad \text{подставляем} \quad \text{в} \quad \text{формулу:} \quad \text{d}^2 z = \frac{2y}{x^3} \text{d} x^2 + 2\left(\frac{1}{y^2} - \frac{1}{x^2}\right) \text{d} x \text{d} y - \frac{2x}{y^3} \text{d} y^2.$$

Задачи для самостоятельного решения

Найти частные производные функций:

14)
$$z = x\sqrt{y} + \frac{y}{\sqrt[3]{x}};$$
 15) $z = \arctan \frac{y}{x};$ **16)** $z = \operatorname{tg} \frac{3x - y^2}{x};$

17)
$$z = xy \ln(x + y);$$
 18) $z = x^{x^y};$ **19)** $u = \ln(x^2 + y^3 + z^5);$

20)
$$u = (\sin x)^{yz}$$
; **21)** $u = xy^2z^3t^4 + 3x - 4y + 2z - t + 1$

Найти полные дифференциалы: **22)** $z = \frac{x^2 + y^2}{x^2 - y^2}$; **23)** $u = \frac{xy}{z}$ +

 $+\sin(y+3z)$.

Вычислить приближенно: **24)** $\ln(\sqrt[3]{1,03} + \sqrt[4]{0,98} - 1)$; **25)** $(2,01)^{3,03}$.

Найти частные производные второго порядка:

26)
$$z = \sin^2(2x + 3y)$$
; **27)** $z = \frac{x - y}{x + y}$; **28)** $z = \arcsin(xy)$;

29)
$$z = e^{xy^2}$$
, $\frac{\partial^3 z}{\partial x^2 \partial y} = ?$; **30)** $u = xy\sqrt{z} + x^2z + y^3$, $u'''_{xyz} = ?$; **31)** $u = xy\sqrt{z} + x^2z + y^3$, $u'''_{xyz} = ?$; **31)** $u = xy\sqrt{z} + x^2z + y^3$, $u'''_{xyz} = ?$;

$$=\frac{1}{\sqrt{x^2+y^2+z^2}}.$$
 Показать, что $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}=0;$ **32)** $z=$

$$= \ln(e^x + e^y). \ \Pi$$
оказать, что $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1, \ \frac{\partial^2 z}{\partial x^2} \cdot \frac{\partial^2 z}{\partial y^2} - \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 = 0.$

Найти дифференциалы второго порядка:

33)
$$z = \sqrt{x^2 + 2xy}$$
; **34)** $z = x\sin^2 y$.

Задачи к разд. 11.6, 11.7

Задача 1. Найти частные производные сложных функций:

a)
$$z = x \cdot 2^{y}$$
, $x = \arctan(2t)$, $y = t^{2} + 5$; $\frac{dz}{dt} = ?$ 6) $z = \log_{3}(e^{x} + e^{y})$, $y = \cot^{2}x$; $\frac{dz}{dx} = ?$ B) $z = \ln \tan \frac{x}{y}$, $x = \sin v + 2u$, $y = \cos v - u$; $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v} = ?$

Решение: а) имеем случай 1 из ОК, разд. 11.6:

$$\frac{dz}{dt} = (x \cdot 2^{y})'_{x}(\operatorname{arctg} 2t)'_{t} + (x \cdot 2^{y})'_{y}(t^{2} + 5)'_{t} = 2^{y} \frac{2}{1 + 4t^{2}} + x \cdot 2^{y} \ln 2 \cdot 2t = 2^{t^{2} + 5} \left(\frac{2}{1 + 4t^{2}} + 2t \operatorname{arctg} 2t \cdot \ln 2\right);$$

б) имеем случай 2 из ОК, разд. 11.6:

$$\frac{dz}{dx} = (\log_3(e^x + e^y))'_x + (\log_3(e^x + e^y))'_y (\cot^2 x)'_x = \frac{e^x}{(e^x + e^y)\ln 3} + \frac{1}{2}$$

$$+\frac{e^{y}}{(e^{x}+e^{y})\ln 3}2\operatorname{ctg} x\left(-\frac{1}{\sin^{2} x}\right) = \frac{e^{x}-e^{\operatorname{ctg}^{2} x}}{(e^{x}+e^{\operatorname{ctg}^{2} x})\ln 3};$$

в) имеем случай 3 из ОК, разд. 11.6:

$$\frac{\mathrm{d}z}{\mathrm{d}u} = \left(\ln \operatorname{tg}\frac{x}{y}\right)'_{x} (\sin v + 2u)'_{u} + \left(\ln \operatorname{tg}\frac{x}{y}\right)'_{y} (\cos v - u)'_{u} =$$

$$= \frac{2}{\sin 2\left(\frac{\sin v + 2u}{\cos v - u}\right) \cdot (\cos v - u)} \left(2 + \frac{\sin v + 2u}{\cos v - u}\right);$$

$$\frac{\mathrm{d}z}{\mathrm{d}v} = \left(\ln \operatorname{tg}\frac{x}{y}\right)'_{x} (\sin v + 2u)'_{v} + \left(\ln \operatorname{tg}\frac{x}{y}\right)'_{y} (\cos v - u)'_{v} =$$

$$= \frac{1}{\operatorname{tg}\frac{x}{y}} \cdot \frac{1}{\cos^{2}\frac{x}{y}} \cdot \frac{1}{y} \cdot \cos v + \frac{1}{\operatorname{tg}\frac{x}{y}} \cdot \frac{1}{\cos^{2}\frac{x}{y}} \cdot \left(-\frac{x}{y^{2}}\right) \cdot (-\sin v) =$$

$$= \frac{2}{\sin 2\left(\frac{\sin v + 2u}{\cos v - u}\right) \cdot (\cos v - u)} \cdot \left(\cos v + \sin v \frac{\sin v + 2u}{\cos v - u}\right).$$

Задача 2. Найти производные неявных функций:

a)
$$xy + \sin y + \sin x = 0$$
; $dy/dx = ?$ 6) $z = ye^{x/z}$; $\partial z/\partial x$, $\partial z/\partial y = ?$

Решение: а) имеем случай 1 ОК, разд. 11.7:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{(xy + \sin y + \sin x)_x'}{(xy + \sin y + \sin x)_y'} = -\frac{y + \cos x}{x + \cos y};$$

б) имеем случай 2 ОК, разд. 11.7:

$$\frac{dz}{dx} = -\frac{\left(z - ye^{\frac{x}{z}}\right)'_{x}}{\left(z - ye^{\frac{x}{z}}\right)'_{z}} = -\frac{-\frac{y}{z}e^{\frac{x}{z}}}{1 + \frac{xy}{z^{2}}e^{\frac{x}{z}}} = \frac{yze^{\frac{x}{z}}}{z^{2} + xye^{\frac{x}{z}}};$$

$$\frac{dz}{dy} = -\frac{\left(z - ye^{\frac{x}{z}}\right)'_{y}}{\left(z - ye^{\frac{x}{z}}\right)'_{y}} = -\frac{-e^{\frac{x}{z}}}{1 + \frac{xy}{z^{2}}e^{\frac{x}{z}}} = \frac{z^{2}e^{\frac{x}{z}}}{z^{2} + xye^{\frac{x}{z}}}.$$

Задачи для самостоятельного решения

Найти производные сложных функций:

35)
$$z = x^y$$
, $x = \ln t$, $y = \sin t$; $dz/dt = ?$ **36)** $z = x^2 + xy + y^2$, $x = \sin^2 t$, $y = \operatorname{tg} t$; $dz/dt = ?$ **37)** $z = \operatorname{arctg} \frac{x+1}{y}$, $y = e^{(x+1)^2}$; $\frac{dz}{dx} = ?$

38)
$$z = x^2 \ln y, \ x = \frac{u}{v}, \ y = 3u - 2v; \ \frac{\partial z}{\partial u}, \ \frac{\partial z}{\partial v} = ?$$
 39) $z = x^2 y - y^2 x, \ x = u \cos v, \ y = \sin v; \ \frac{\partial z}{\partial u}, \ \frac{\partial z}{\partial v} = ?$ **40)** $u = (yz)/x, \ x = e^t, \ y = \ln t, \ z = t^2 - 1; \ \frac{du}{dt} = ?$ **41)** $u = x + y^2 + z^3, \ y = xt, \ z = xtv; \ \frac{\partial u}{\partial x}, \ \frac{\partial u}{\partial t}, \ \frac{\partial u}{\partial v} = ?$

Найти производные неявных функций:

42)
$$x^2 + y^2 + \ln(x^2 + y^2) = 1$$
; $dy/dx = ?$ **43)** $\frac{y}{x} + \sin\frac{y}{x} = 2$; $\frac{dy}{dx} = ?$ **44)** $y^x = x^y$; $dy/dx = ?$ **45)** $e^z - xyz = 0$; $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y} = ?$

46)
$$x = z \ln \frac{z}{y}; \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} = ?$$
 47) $z = x + \arctan \frac{y}{z - x}; \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} = ?$

- **48)** Показать, что функция $y = \varphi(x at) + \psi(x + at)$, a = const, для любых дважды дифференцируемых функций φ , ψ удовлетворяет уравнению $y''_{tt} = a^2 y''_{xx}$.
- **49)** Показать, что функция $z = \varphi(x)\psi(y)$ удовлетворяет уравнению $zz''_{xy} = z'_xz'_y$.
- **50)** Показать, что для функции z = z(x, y) при $x = u \cos v$, $y = u \sin v$ имеет место равенство $yz'_x xz'_y = -z'_v$.

12. ПРИЛОЖЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Опорный конспект № 12

12.1. Экстремумы функции нескольких переменных

O: $\exists \delta > 0$:

$$\frac{f(x_0,y_0) > f(x,y)}{\forall (x,y) \in \mathsf{U}_\delta(M_0)} \Rightarrow \frac{\mathsf{T.}\,M_0 - \left| f(x_0,y_0) < f(x,y) \right|}{\mathsf{точка}\,\mathsf{max}} \forall (x,y) \in \mathsf{U}_\delta(M_0)} \Rightarrow \frac{\mathsf{T.}\,M_0 - \left| f(x_0,y_0) < f(x,y) \right|}{\mathsf{точка}\,\mathsf{min}}$$

Т. (необходимые условия экстремума):

$$\exists$$
 экстремум $z=f(x,\ y)$ в т. $M_0\Rightarrow\left(\frac{\partial z}{\partial x}\right)_{M_0},\left(\frac{\partial z}{\partial y}\right)_{M_0}=0\lor \not\exists$

Т. (достаточные условия экстремума):

$$A = \frac{\partial^2 f}{\partial x^2}, \ B = \frac{\partial^2 f}{\partial x \partial y}, \ C = \frac{\partial^2 f}{\partial y^2};$$

$$\Delta(M_0) = \begin{vmatrix} A & B \\ B & C \end{vmatrix}_{M_0} = \begin{cases} >0, A_{M_0} < 0 \Rightarrow \max, \\ >0, A_{M_0} > 0 \Rightarrow \min, \\ <0 \Rightarrow \text{экстремума нет,} \\ =0 \Rightarrow \text{требуются} \\ \text{дополнительные исследования} \blacksquare$$

12.2. Условный экстремум. Метод множителей Лагранжа

О:
$$z = f(x, y), (x, y) \in D, F(x, y) = 0$$
 задает $L \subset D,$ $M_0(x_0, y_0) \in L - \text{т. усл. max (min)} f(x, y) \Leftrightarrow \Leftrightarrow f(x, y) < f(x_0, y_0) (> f(x_0, y_0)) \ \forall \ (x, y) \in U_\delta(M_0) \cap L$ Необходимые условия условного экстремума:

$$\begin{cases} \frac{\partial \Phi}{\partial x} = \frac{\partial f}{\partial x} + \lambda \frac{\partial F}{\partial x} = 0, \\ \frac{\partial \Phi}{\partial y} = \frac{\partial f}{\partial y} + \lambda \frac{\partial F}{\partial y} = 0, \\ \frac{\partial \Phi}{\partial \lambda} = F(x, y) = 0, \end{cases}$$
(1)

где $\Phi(x, y, \lambda) = f(x, y) + \lambda F(x, y)$ — функция Лагранжа, $\lambda \in \mathbf{R}$ Достаточные условия условного экстремума:

$$\Delta_0 = - \begin{vmatrix} 0 & F_x'(M_0) & F_y'(M_0) \\ F_x'(M_0) & \Phi_{xx}''(M_0, \lambda_0) & \Phi_{yx}''(M_0, \lambda_0) \\ F_y'(M_0) & \Phi_{yx}''(M_0, \lambda_0) & \Phi_{yy}''(M_0, \lambda_0) \end{vmatrix} =$$

$$= \begin{cases} < 0 \Rightarrow \text{т. } M_0 - \text{т. усл. max,} \\ > 0 \Rightarrow \text{т. } M_0 - \text{т. усл. min} \end{cases}$$

$$M_0(x_0, y_0), \lambda_0 - \text{любое из решений (1)}$$

12.3. Уравнения касательной плоскости и нормали к поверхности. Линии как пересечение двух поверхностей

$$F(x, y, z) = 0 \text{ B T. } M_0(x_0, y_0, z_0):$$

$$\left(\frac{\partial F}{\partial x}\right)_{M_0}(x - x_0) + \left(\frac{\partial F}{\partial y}\right)_{M_0}(y - y_0) + \left(\frac{\partial F}{\partial z}\right)_{M_0}(z - z_0) = 0 - \frac{\partial F}{\partial x}$$

уравнение касательной плоскости

уравнение касательной ілюскости
$$\frac{x - x_0}{\left(\frac{\partial F}{\partial x}\right)_{M_0}} = \frac{y - y_0}{\left(\frac{\partial F}{\partial y}\right)_{M_0}} = \frac{z - z_0}{\left(\frac{\partial F}{\partial z}\right)_{M_0}} - \text{уравнение нормали}$$

$$L{:}egin{cases} F_1(x,y,z) = 0, \\ F_2(x,y,z) = 0 \end{cases}$$
 — линия пересечения двух поверхностей

$$\vec{S} = \vec{N}_1 \times \vec{N}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} & \frac{\partial F_1}{\partial z} \\ \frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} & \frac{\partial F_2}{\partial z} \\ \end{vmatrix}_{M_0}$$
 — направляющий вектор касательной к L

Задачи к разд. 12

Задача 1. Исследовать на экстремум функцию $z = x^4 + y^4 - 2x^2 + 4xy - 2y^2$.

Решение: Область определения функции ${\bf R}^2$. Находим стационарные точки:

$$\frac{\partial z}{\partial x} = 4x^3 - 4x + 4y = 0,$$

$$\frac{\partial z}{\partial y} = 4y^3 - 4y + 4x = 0.$$

Получаем систему $\begin{cases} x^3 - x + y = 0, \\ y^3 + x - y = 0, \end{cases}$ $\Rightarrow x^3 = -y^3 \Rightarrow x = -y$. Подставляем y = -x в первое уравнение: $x^3 - 2x = 0 \Rightarrow x_1 = 0, x_{2,3} = 0$

= $\pm\sqrt{2}$. Имеем три стационарные точки O(0, 0), $M_1(\sqrt{2}, -\sqrt{2})$, $M_2(-\sqrt{2}, \sqrt{2})$. Находим $A = \frac{\partial^2 z}{\partial x^2} = 12x^2 - 4$, $B = \frac{\partial^2 z}{\partial x \partial y} = 4$, $C = \frac{\partial^2 z}{\partial x^2} = \frac{\partial^$

$$= \frac{\partial^2 z}{\partial y^2} = 12y^2 - 4$$
 и вычисляем $\Delta(M) = \begin{vmatrix} A & B \\ B & C \end{vmatrix}$ (ОК, разд. 12.1):

$$\Delta(O) = 0$$
 — сомнительный случай; $\Delta(M_{1,2}) = \begin{vmatrix} 20 & 4 \\ 4 & 20 \end{vmatrix} > 0$, $A_{M_{1,2}} > 0 \Rightarrow M_1(\sqrt{2}, -\sqrt{2})$, $M_2(-\sqrt{2}, \sqrt{2})$, — точки минимума, $z_{\min} = 8$.

В точке O(0, 0) проводим дополнительное исследование. Исследуем знак приращения Δz на линиях y=0 и y=x. На y=0 функция $z=x^4-2x^2$ имеет в точке O $\Delta z<0$. На y=x функция $z=2x^4$ имеет в точке O $\Delta z>0$. Таким образом, экстремума в точке O(0, 0) нет.

Задача 2. Найти условный экстремум функции z = x + 2y при $x^2 + y^2 = 5$.

Решение: Составляем функцию Лагранжа (ОК, разд. 12.2): $\Phi(x, y, \lambda) = x + 2y + \lambda(x^2 + y^2 - 5)$. Находим $\partial \Phi/\partial x = 1 + 2\lambda x$, $\partial \Phi/\partial \lambda = x^2 + y^2 - 5$, $\partial \Phi/\partial y = 2 + 2\lambda y$ и составляем систему

$$\begin{cases} 1 + 2\lambda x = 0, \\ 2 + 2\lambda y = 0, \\ x^2 + y^2 - 5 = 0, \end{cases} \Rightarrow \begin{cases} x = -\frac{1}{2\lambda}, \\ y = -\frac{1}{\lambda}, \\ \frac{1}{4\lambda^2} + \frac{1}{\lambda^2} = 5, \end{cases} \Rightarrow \lambda_{1,2} = \pm 1/2, x_1 = -1,$$

$$y_1 = -2, x_2 = 1, y_2 = 2.$$

Итак, имеем две точки, подозрительные на условный экстремум: $M_1(-1, -2)$ при $\lambda = 1/2$, $M_2(1, 2)$ при $\lambda = -1/2$. Находим $\partial^2 \Phi/\partial x^2 = 2\lambda$, $\partial^2 \Phi/\partial x \partial y = 0$, $\partial^2 \Phi/\partial y^2 = 2\lambda$, $\frac{\partial F}{\partial x} = (x^2 + y^2 - 5)_x' = 2x$, $\frac{\partial F}{\partial y} = (x^2 + y^2 - 5)_y' = 2y$ и составляем (ОК, разд. 12.2) $\Delta = -\begin{vmatrix} 0 & F_x' & F_y' \\ F_x' & \Phi_{xx}'' & \Phi_{yy}'' \\ F_y' & \Phi_{xy}'' & \Phi_{yy}'' \end{vmatrix}$, т.е. $\Delta(M_1, \lambda_1) = -\begin{vmatrix} 0 & -2 & -4 \\ -2 & 1 & 0 \\ -4 & 0 & 1 \end{vmatrix} > 0$, $\Delta(M_2, \lambda_2) = -\begin{vmatrix} 0 & 2 & 4 \\ 2 & -1 & 0 \\ 4 & 0 & -1 \end{vmatrix} < 0$. Функция имеет в точке M_1 условный min,

 $z_{\min} = -5$, а в точке M_2 — условный $\max, z_{\max} = 5$.

Задача 3. Определить, каковы должны быть размеры прямоугольного бассейна, чтобы при данной площади его поверхности S объем бассейна был наибольшим.

Решение: Объем V = xyz, где x — длина, y — ширина, z — высота бассейна. Так как задана площадь S = xy + 2zx + 2zy, то можно выразить z через x, y и подставить в V: $z = (S - xy)/(2x + 2y) \Rightarrow V = xy(S - xy)/(2x + 2y)$.

Ищем экстремум функции, учитывая, что x > 0, y > 0. Имеем

$$\frac{\partial V}{\partial x} = \left(\frac{Sxy - x^2y^2}{2(x+y)}\right)'_x = \frac{(Sy - 2xy^2)(x+y) - (Sxy - x^2y^2)}{2(x+y)^2} =$$

$$= \frac{Sxy + Sy^2 - 2x^2y^2 - 2xy^3 - Sxy + x^2y^2}{2(x+y)^2} = \frac{Sy^2 - x^2y^2 - 2xy^3}{2(x+y)^2},$$

$$\frac{\partial V}{\partial y} = \left(\frac{Sxy - x^2y^2}{2(x+y)}\right)'_y = \frac{(Sx - 2yx^2)(x+y) - (Sxy - x^2y^2)}{2(x+y)^2} =$$

$$= \frac{Sx^2 - x^2y^2 - 2yx^3}{2(x+y)^2}.$$

Получаем систему

$$\begin{cases} Sy^2 - x^2y^2 - 2xy^3 = 0, \\ Sx^2 - x^2y^2 - 2yx^3 = 0, \end{cases} \Rightarrow \begin{cases} S - x^2 - 2xy = 0, \\ S - y^2 - 2yx = 0, \end{cases}$$

$$\Rightarrow x^2 = y^2 \Rightarrow x = y \Rightarrow S - 3x^2 = 0 \Rightarrow x = y = \sqrt{\frac{S}{3}}.$$

Нашли одну стационарную точку в первом квадранте: $M\left(\sqrt{\frac{S}{3}},\sqrt{\frac{S}{3}}\right)$. Так как функция $V\geq 0$ для $0\leq xy\leq S$ (V=0 при $x=0,\ y=0,\ xy=S$) и является непрерывной, то можно заключить, что в данной точке она имеет тах. Данный вывод можно проверить, используя достаточное условие экстремума (ОК, разд. 12.1). Таким образом, при $x=\sqrt{\frac{S}{3}},y=\sqrt{\frac{S}{3}},z=\frac{1}{2}\sqrt{\frac{S}{3}}$ объем будет наибольшим.

Задача 4. Дана поверхность $G: z = x^2 - 2xy + y^2 - x + 2y$. Найти уравнение касательной плоскости и нормали в точке $M_0(1, 1, 1)$.

Решение: Имеем:
$$F = x^2 - 2xy + y^2 - x + 2y - z$$
, $\left(\frac{\partial F}{\partial x}\right)_{M_0} = (2x - 2y - 1)_{M_0} = -1$, $\left(\frac{\partial F}{\partial y}\right)_{M_0} = (-2x + 2y + 2)_{M_0} = 2$, $\left(\frac{\partial F}{\partial z}\right)_{M_0} = -1$.
Уравнение касательной (ОК, разд. 12.3) $-(x - 1) + 2(y - 1) - (z - 1) = 0 \Rightarrow x - 2y + z = 0$; уравнение нормали $\frac{x - 1}{-1} = \frac{y - 1}{2} = \frac{z - 1}{-1}$.

Задачи для самостоятельного решения

Исследовать на экстремум следующие функции:

1)
$$z = 1 + 6x - x^2 - xy - y^2$$
; 2) $z = x^2 + y^2 - 2\ln x - 12\ln y$;
3) $z = x^3 + y^3 - 3xy$.

Исследовать функции на условный экстремум:

4)
$$z = 1 - 4x - 8y \text{ при } x^2 - 8y^2 = 8$$
; **5)** $z = xy \text{ при } 2x + 3y - 5 = 0$; **6)** $z = x^2 + y^2 \text{ при } x/4 + y/4 = 1$.

7) Стоимость сооружения 1 м^2 стен фасада равна p, а 1 м^2 остальных стен — q, стоимость крыши за 1 м^2 ее основания — s. Каковы должны быть соотношения между длиной, шириной, высотой для углового дома объемом $V(\text{м}^3)$, чтобы стоимость его стен и крыши была минимальной?

8) Палатка имеет форму цилиндра с насаженной на него конической верхушкой. При каких соотношениях между линейными размерами палатки для ее изготовления потребуется наименьшее количество материала при заданном объеме V?

Для данных поверхностей найти уравнения касательных плоскостей и нормалей в указанных точках:

9)
$$G: z = \sqrt{x^2 + y^2} - xy$$
, $M_0(3; 4; -7)$; 10) $G: z = \sin x \cos y$, $M_0\left(\frac{\pi}{4}; \frac{1}{4}; \frac{1}{2}\right)$; 11) $G: x^2yz + 2x^2z - 3xy + 2 = 0$, $M_0(1; 0; -1)$.

Составить уравнение касательной прямой и нормальной плоскости для данных линий в указанных точках:

12)
$$L:\begin{cases} y^2 + z^2 = 25, \\ x^2 + y^2 = 10, \end{cases}$$
 $M_0(1; 3; 4);$ **13)** $L:\begin{cases} 2x^2 + 3y^2 + z^2 = 47, \\ x^2 + 2y^2 = z, \end{cases}$

 $M_0(-2; 1; 6).$

 $\it Указание: В$ задачах 12), 13) воспользоваться формулой для направляющего вектора $\it \vec{s}$ касательной прямой.

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ

Вариант № 1

1.
$$z = (\lg x)^{\frac{1}{y}}; dz = ? \textit{Omsem:} dz = \frac{(\lg x)^{\frac{1}{y}-1}}{y \cos^2 x} dx - \frac{(\lg x)^{\frac{1}{y}} \ln \lg x}{y^2} dy.$$

2.
$$z = \frac{x^3}{\sqrt[3]{y}} - \lg^2 y; \frac{\partial^2 z}{\partial x \partial y} = ? Omegm: -\frac{x^2}{\sqrt[3]{y^4}}.$$

3.
$$z = \ln(x^3 + 3y), x = u \operatorname{tg} v, y = 1/u^3; \frac{\partial z}{\partial u}, \frac{\partial z}{\partial v} = ?$$

Omsem:
$$\frac{\partial z}{\partial u} = \frac{3x^2}{x^3 + 3y} \operatorname{tg} v - \frac{9}{(x^3 + 3y)u^4}, \frac{\partial z}{\partial v} = \frac{3x^2u}{(x^3 + 3y)\cos^2 v}.$$

4.
$$x^2 - x \cdot 2^{y+1} + 4^y - x + 2^y + 2 = 0; \frac{dy}{dx} = ? Omeem: \frac{1}{2^y \ln 2}.$$

5. Найти экстремумы функции $z = x^2 + xy + y^2 - 3x - 6y$. *Ответ:* $z_{min} = z(0; 3) = -9$.

Вариант № 2

1.
$$z = \frac{x^3 y}{x + \ln y}$$
; $dz = ?$

Omsem:
$$dz = \frac{2x^2y + 3x^2y \ln y}{(x + \ln y)^2} dx + \frac{x^4 - x^3 + x^3 \ln y}{(x + \ln y)^2} dy.$$

2.
$$z = \arccos x^2 y, x = e^{3t}, y = \cos 5t; \frac{dz}{dt} = ?$$

Omsem:
$$-\frac{6xye^{3t}}{\sqrt{1-x^4y^2}} + \frac{5x^2\sin 5t}{\sqrt{1-x^4y^2}}$$
.

3.
$$x\sin y + y\sin x + z\sin x = z^3; \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} = ?$$

Omeem:
$$\frac{\partial z}{\partial x} = \frac{\sin y + (y+z)\cos x}{3z^2 - \sin x}, \frac{\partial z}{\partial y} = \frac{x\cos y + \sin x}{3z^2 - \sin x}.$$

4.
$$z = y^{\ln x}$$
; $\frac{\partial^2 z}{\partial y^2} = ?$ *Omsem*: $\ln x (\ln x - 1) y^{\ln x - 2}$.

5. Найти касательную плоскость и нормаль к поверхности G: $z = \ln(x^2 + y^2)$ в точке $M_0(1, 0, 0)$. *Ответ*: 2x - z - 2 = 0, $\frac{x-1}{2} = \frac{y}{0} = \frac{z}{-1}$.

Ответы к разд. 11, 12

11. Дифференцируемые функции нескольких переменных

1) $\mathbf{D} = \{(x, y): x^2 + 3y^2 \le 3\}$ (замкнутая ограниченная область); 2) $\mathbf{D} = \{(x, y): y \ne \pm 2x\}$ (имеются две линии разрыва); 3) $\mathbf{D} = \{(x, y): x \ge 0, y > 0\}$; 4) $\mathbf{D} = \{(x, y): x + y > 0\}$; 5) $\mathbf{D} = \{(x, y): -1 \le x + y \le 1\}$; 6) $\mathbf{D} = \{(x, y): x^2 + y^2 < 2z\}$; 7) Окружности $x^2 + y^2 = \frac{4}{c}$; 8) Прямые y = cx; 9) Гиперболы $x^2 - y^2 = c$; 10) Эллиптические параболоиды $z = c + \frac{x^2}{4} + \frac{y^2}{9}$; 11) Гиперболоиды $z^2 + z^2 = c$; 12) 12; 13) 1/2; 14) $z'_x = \sqrt{y} - \frac{y}{3\sqrt[3]{x^4}}$; $z'_y = \frac{x}{2\sqrt{y}} + \frac{1}{\sqrt[3]{x}}$; 15) $z'_x = -\frac{y}{x^2 + y^2}$; $z'_y = \frac{x}{x^2 + y^2}$; 16) $z'_x = -\frac{y^2}{x^2 \cos^2 \frac{3x - y^2}{x}}$; $z'_y = \frac{2y}{x^2 \cos^2 \frac{3x - y^2}{x}}$; 17) $z'_x = y \ln(x + y) + \frac{xy}{x + y}$; $z'_y = x \ln(x + y) + \frac{xy}{x + y}$; $z'_y = x \ln(x + y) + \frac{xy}{x + y}$; 18) $z'_x = x^{xy} x^{y-1} (y \ln x + 1)$; $z'_y = x^y x^{xy} \ln^2 x$; 19) $u'_x = x^y x^{y} \ln^2 x$

$$= \frac{2x}{x^2 + y^3 + z^5}, \quad u'_y = \frac{3y^2}{x^2 + y^3 + z^5}, \quad u'_z = \frac{5z^4}{x^2 + y^3 + z^5}; \quad \textbf{20}) \quad u'_x = \\ = yz(\sin x)^{yz-1}\cos x; \quad u'_y = z(\sin x)^{yz}\ln\sin x; \quad u'_z = y(\sin x)^{yz}\ln\sin x; \quad \textbf{21}) \quad u'_x = \\ = y^2z^3t^4 + 3; \quad u'_y = 2xyz^3t^4 - 4; \quad u'_z = 3xy^2z^2t^4 + 2; \quad u'_t = 4xy^2z^3t^3 + \\ + 1; \quad \textbf{22}) \quad dz = \frac{4xy(xdy - ydx)}{(x^2 - y^2)^2}; \quad \textbf{23}) \quad du = \frac{y}{z}dx + (\cos(y + 3z) + \\ + \frac{x}{z})dy + (3\cos(y + 3z) - \frac{xy}{z^2})dz; \quad \textbf{24}) \quad 0,005; \quad \textbf{25}) \quad 8,29; \quad \textbf{26}) \quad z''_{xx} = \\ = 8\cos(4x + 6y); \quad z''_{xy} = 12\cos(4x + 6y); \quad z''_{yy} = 18\cos(4x + 6y); \\ \textbf{27}) \quad z''_{xx} = -\frac{4y}{(x + y)^3}; \quad z''_{xy} = \frac{2(x - y)}{(x + y)^3}; \quad z''_{yy} = \frac{4x}{(x + y)^3}; \quad \textbf{28}) \quad z''_{xx} = \\ = \frac{xy^3}{\sqrt{(1 - x^2y^2)^3}}; \quad z''_{xy} = \frac{1}{\sqrt{(1 - x^2y^2)^3}}; \quad z''_{yy} = \frac{yx^3}{\sqrt{(1 - x^2y^2)^3}}; \quad \textbf{29}) \quad z'''_{xxy} = \\ 2y^3(2 + xy^2)e^{xy^2}; \quad \textbf{30}) \quad u'''_{xyz} = \frac{1}{2\sqrt{z}}; \quad \textbf{33}) \quad \frac{-y^2dx^2 + 2xydxdy - x^2dy^2}{(x^2 + 2xy)^{3/2}}; \\ \textbf{34}) \quad 2\sin 2y \, dx \, dy + 2x\cos 2y \, dy^2; \quad \textbf{35}) \quad \frac{dz}{dt} = x^y \left(\frac{y}{xt} + \ln x\cos t\right); \\ \textbf{36}) \quad \frac{dz}{dt} = (2x + y)\sin 2t + (2y + x)\frac{1}{\cos^2 t}; \quad \textbf{37}) \quad \frac{dz}{dx} = \frac{y(1 - 2(x + 1)^2)}{y^2 + (x + 1)^2}; \\ -\frac{2u^2}{v^2(3u - 2v)}; \quad \textbf{39}) \quad \frac{\partial z}{\partial u} = (2xy - y^2)\cos v; \quad \frac{\partial z}{\partial v} = -(2xy - y^2)u\sin v + \\ + (x^2 - 2xy)\cos v; \quad \textbf{40}) \quad \frac{\partial u}{\partial t} = -yz/x + z/(xt) + 2ty/x; \quad \textbf{41}) \quad u'_x = 1 + \\ + xt^2(2 + 3xtv^3); \quad u'_t = xt^2(2 + 3xtv^3); \quad u'_y = 3x^3t^3v^2; \quad \textbf{42}) - \frac{x}{y}; \quad \textbf{43}) \quad \frac{y}{x}; \\ \textbf{44}) \quad \frac{y^2(\ln x - 1)}{x^2(\ln y - 1)}; \quad \textbf{45}) \quad \frac{\partial z}{\partial x} = \frac{vz}{e^z - xy}; \quad \frac{\partial z}{\partial y} = \frac{xz}{e^z - xy}; \quad \textbf{46}) \quad \frac{\partial z}{\partial x} = \frac{1}{1 + \ln \frac{z}{y}}; \\ \frac{\partial z}{\partial y} = \frac{z}{y(1 + \ln \frac{z}{y})}; \quad \frac{\partial z}{\partial x} = 1; \frac{\partial z}{\partial y} = \frac{z - x}{(z - x)^2 + y^2 + y}.$$

12. Приложения дифференциального исчисления функций нескольких переменных

1)
$$z_{\text{max}} = z(4, -2) = 13$$
; 2) $z_{\text{min}} = z(1, \sqrt{6}) = 7 - 6\ln 6$; 3) $z_{\text{min}} = z(1, 1) = -1$; 4) $z_{\text{max}} = z(4, -1) = -7$; $z_{\text{min}} = z(-4, 1) = 9$; 5) $z_{\text{max}} = z(5/4, 5/6) = 25/24$; 6) $z_{\text{min}} = z(36/25, 48/25) = 25/24$

=
$$z(1, 1) = -1$$
, 4) $z_{\text{max}} = z(4, -1) = -7$, $z_{\text{min}} = z(-4, 1) = -1$
5) $z_{\text{max}} = z(5/4, 5/6) = 25/24$; 6) $z_{\text{min}} = z(36/25, 48/25)$

= 144/25; 7) Основание дома — квадрат со стороной
$$\sqrt[3]{V \frac{p+q}{s}}$$
;

8)
$$R$$
 — радиус палатки, H — высота цилиндрической части, h — высота конической верхушки; тогда $R = \frac{h\sqrt{5}}{2}$, $H = \frac{h}{2}$; **9)** $17x + \frac{h\sqrt{5}}{2}$

+
$$11y + 5z = 60$$
; $\frac{x-3}{17} = \frac{y-4}{11} = \frac{z+7}{5}$; **10)** $x - y - 2z + 1 = 0$;

$$\frac{x - \frac{\pi}{4}}{1} = \frac{y - \frac{\pi}{4}}{-1} = \frac{z - 1/2}{-2};$$
11) $2x + 2y - z - 3 = 0;$ $\frac{x - 1}{2} = \frac{y}{2} = \frac{z + 1}{-1};$

12)
$$\frac{x-1}{12} = \frac{y-3}{-4} = \frac{z-4}{3}$$
; $12x - 4y + 3z - 12 = 0$; **13)** $\frac{x+2}{27} = \frac{y-1}{27} = \frac{z-6}{27}$

$$= \frac{y-1}{28} = \frac{z-6}{4}; 27x + 28y + 4z + 2 = 0.$$

Глава 5 КОМПЛЕКСНЫЕ ЧИСЛА. ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО

13. КОМПЛЕКСНЫЕ ЧИСЛА (к.ч.)

Опорный конспект № 13

13.1.Алгебраическая форма к.ч.

z = x + iy, x, $y \in \mathbb{R}$, $i = \sqrt{-1}$, $(i^2 = -1)$ — мнимая единица, $x = \operatorname{Re} z$, $y = \operatorname{Im} z$ — действительная и мнимая части

Равенство к.ч.: $z_1 = z_2 \iff \text{Re } z_1 = \text{Re } z_2$ и $\text{Im } z_1 = \text{Im } z_2$

 $\overline{z} = x - iy$ — комплексно-сопряженное к z

На комплексной плоскости:

z — точка M(x, y) или \overline{OM}

OX — действительная ось, OY — мнимая ось

13.2. Действие над к.ч. в алгебраической форме

$$z_1 = x_1 + iy_1, z_2 = x_2 + iy_2$$

1) $z_1 + z_2 = (x_1 + x_1) + i(y_1 + y_2)$

2)
$$z_1 - z_2 = z \Leftrightarrow z + z_2 = z_1$$

3) $z_1z_2 = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$ (по правилу умножения многочленов,

$$i^2 = -1$$

4)
$$\frac{z_1}{z_2} = z \Leftrightarrow zz_2 = z_1$$

Правило:
$$\frac{z_1}{z_2} = \frac{z_1\overline{z_2}}{z_2\overline{z_2}}, \ z_2\overline{z_2} = x_2^2 + y_2^2$$

13.3. Тригонометрическая и показательная формы к.ч.

$$M(r, \varphi)$$
 $r = |\overrightarrow{OM}| = |z|, \ \varphi = (OX, \overrightarrow{OM}) = \text{Arg } z$
Главное значение:

 $\arg z \in [0, 2\pi)$ или $\arg z \in [-\pi, \pi) \Rightarrow$

arg $z \in [0, 2\pi)$ или arg $z \in [-\pi, \pi) \Rightarrow$ Arg $z = \arg z + 2k\pi, k = 0, \pm 1, \pm 2, ..., x =$ $= r\cos\varphi, y = r\sin\varphi \Rightarrow z = r(\cos\varphi + i\sin\varphi),$

 $\cos \varphi + i \sin \varphi = e^{i\varphi} - \phi$ ормула Эйлера $\Rightarrow z = re^{i\varphi}$

 $z_1 = z_2 \Leftrightarrow |z_1| = |z_2|, \operatorname{Arg} z_1 = \operatorname{Arg} z_2 + 2k\pi$

13.4. Умножение и деление в тригонометрической и показательной формах

$$z_1 = r_1 e^{i\varphi_1} = r_1(\cos\varphi_1 + i\sin\varphi_1), z_2 = r_2 e^{i\varphi_2}$$

1)
$$z_1 z_2 = r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)) = r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$$

2)
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2)) = \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}$$

13.5. Возведение в степень $n \ (n \in \mathbb{N})$ и извлечение корня степени n из к.ч.

1)
$$z^n = \underbrace{z \cdot z \cdot \dots \cdot z}_{n} = r^n e^{in\varphi} = r^n (\cos n\varphi + i \sin n\varphi)$$

2)
$$\sqrt[n]{z} = w \Leftrightarrow w^n = z$$
, $w = \sqrt[n]{z} = \sqrt[n]{r}e^{i\varphi} = \sqrt[n]{r}e^{i(\varphi/n + 2k\pi/n)} =$
$$= \sqrt[n]{r}\left(\cos\frac{\varphi + 2k\pi}{n} + i\sin\frac{\varphi + 2k\pi}{n}\right),$$
$$k = 0, n-1$$

Задачи к разд. 13

Задача 1. Найти комплексные корни квадратного уравнения $z^2 - 4z + 5 = 0$ и изобразить их на комплексной плоскости.

Решение: Используем формулу для корней квадратного уравнения $az^2+bz+c=0$, у которого $\Delta=b^2-4ac<0$, т.е. в пространстве комплексных чисел $\sqrt{\Delta}=i\sqrt{4ac-b^2}$.

Тогда
$$z_{1,2}=rac{b\pm i\sqrt{4ac-b^2}}{2a}=rac{4\pm i\sqrt{20-16}}{2}=rac{4\pm 2i}{2}=2\pm i.$$

Строим комплексно-сопряженные числа $z_1 = 2 + i$, $z_2 = \overline{z_1} = 2 - i$ на комплексной плоскости (рис. 13.1).

Рис. 13.1

Задача 2. Записать комплексное число $z = \frac{2+3i}{4-5i} + \frac{7}{41} + \frac{19}{41}i$ в алгебраической форме.

Решение: Применим правила умножения, деления и сложения комплексных чисел в алгебраической форме (ОК, разд. 13.2):

$$z = \frac{2+3i}{4-5i} + \frac{7}{41} + \frac{19}{41}i = \frac{(2+3i)(4+5i)}{(4-5i)(4+5i)} + \frac{7}{41} + \frac{19}{41}i =$$

$$= \frac{(2+3i)(4+5i)}{16-25i^2} + \frac{7}{41} + \frac{19}{41}i = \frac{8+10i+12i+15i^2}{16+25} + \frac{7}{41} + \frac{19}{41}i =$$

$$= \frac{8-15+i(10+12)}{41} + \frac{7}{41} + \frac{19}{41}i = -\frac{7}{41} + \frac{22}{41}i + \frac{7}{41} + \frac{19}{41}i = \frac{41}{41}i = i.$$

Задача 3. Выполнить действия, используя показательную форму комплексного числа: $w = (-3 + 3\sqrt{3}i)^4 e^{\frac{2\pi i}{5}}$.

Решение: Запишем число $z = -3 + 3\sqrt{3}i$ в показательной форме $z = re^{i\phi}$, используя формулы ОК, разд. 13.3. Модуль числа z, изображенного на комплексной плоскости вектором \overrightarrow{OM} , равен $r = |\overrightarrow{OM}| = \sqrt{9 + 27} = 6$.

Для аргумента z имеем $tg\phi = 3\sqrt{3}/(-3) = -\sqrt{3}$. Поскольку \overline{OM} находится во второй четверти, то $\phi = 2\pi/3$ (рис. 13.2). Таким образом, $z = 6e^{2\pi i/3}$.

Находим $w = z^4 e^{2\pi i/5} = 6^4 e^{8\pi i/3} e^{2\pi i/5} = 1296 e^{(8\pi/3 + 2\pi/5)i} = 1296 e^{46\pi i/15} = 1296 e^{(2\pi + 16\pi/15)i} = 1296 e^{16\pi i/15}.$

Рис. 13.2

Задача 4. Найти все значения $w = \sqrt[4]{-16i}$.

Решение: Найдем показательную форму комплексного числа z = -16i. Определяем $r = \sqrt{0 + (-16)^2} = 16$, tgφ \mp в силу расположения чисто мнимого числа -16i, аргумент $\phi = 3\pi/2$.

Таким образом, $z = 16e^{3\pi i/2}$, $w = \sqrt[4]{16e^{\frac{3\pi}{2}i}} = 2e^{\left(\frac{3\pi}{8} + \frac{2\pi k}{4}\right)i}$. Имеем четыре различных значения w при k=0,1,2,3: $w_0=2\mathrm{e}^{3\pi i/8},$ $w_1=2\mathrm{e}^{i(3\pi/8+\pi/2)}=2\mathrm{e}^{7\pi i/8},$ $w_2=2\mathrm{e}^{i(3\pi/8+\pi)}=2\mathrm{e}^{11\pi i/8},$ $w_3=2\mathrm{e}^{i(3\pi/8+3\pi/2)}=2\mathrm{e}^{15\pi i/8}.$ Полученные значения располагаются на комплексной плоскости на окружности с центром в начале координат и радиусом 2 (рис. 13.3).

Рис. 13.3

Задачи для самостоятельного решения

- 1) Построить на комплексной плоскости комплексные числа: $z = -3 + 5i, z = 4 - i, z = 3i, z = \sqrt{3} + i$ и им сопряженные.
- 2) Найти комплексные корни следующих квадратных уравнений и изобразить их на комплексной плоскости:
 - a) $4z^2 2z + 1 = 0$; 6) $2z^2 + 4z + 3 = 0$.
- 3) Записать в алгебраической форме следующие комплексные числа:

a)
$$(1-i)^2(5+8i)$$
; 6) $(1+i\sqrt{3})^3$; B) $\frac{1}{1+3i}+\frac{1}{4-i}$;
r) $i^{12}+i^{17}$; d) $\frac{2+3i}{(1+i)^2}$; e) $\left(\frac{i^5+2}{i^{19}+1}\right)^2$.

г)
$$i^{12} + i^{17}$$
; д) $\frac{2+3i}{(1+i)^2}$; е) $\left(\frac{i^5+2}{i^{19}+1}\right)^2$.

- 4) Записать в алгебраической форме следующие комплексные числа:
 - а) $\frac{1}{2}e^{i\pi}$; б) $e^{4+\pi i/2}$; в) $6e^{\pi i/3}$; г) $3e^{-\pi i/4}$; д) $e^{1+2\pi i/3}$.
- 5) Представить в тригонометрической и показательной формах следующие комплексные числа:

a)
$$-1 + i$$
; 6) $\sqrt{3} + i$; B) $-5i$; Γ) 7;

д)
$$-\sqrt{2} + i\sqrt{6}$$
; e) $-\text{tg}\alpha + i$; ж) $\cos(\pi/7) + i\sin(\pi/7)$.

6) Используя показательную форму комплексного числа, выполнить указанные действия:

a)
$$\left(-\frac{\sqrt{3}}{2} + \frac{3}{2}i\right)^6$$
; 6) $(2 + 2i)^5$; B) $(1 - i)^3(-2\sqrt{3} + 2i)$;
r) $\left(\frac{1-i}{\sqrt{3}+i}\right)^4$.

- 7) Найти все значения следующих корней и изобразить их на комплексной плоскости:
 - a) $\sqrt[3]{i}$; 6) $\sqrt[6]{-8}$; B) $\sqrt[5]{-1+i}$; Γ) $\sqrt[4]{\sqrt{3}+i}$.

14. ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО (ФКП)

Опорный конспект № 14

14.1.Области и линии на комплексной плоскости Z. Понятие ФКП

Комплексная плоскость вместе с $z=\infty$ — расширенная комплексная плоскость Z

O: Οκρестность
$$U_{\delta}(z_0) \Leftrightarrow z: |z - z_0| < \delta$$

O:
$$w = f(z), z \in D \subset Z, w \in G \subset W \Leftrightarrow D \Rightarrow$$

$$\Rightarrow G: \forall z \in D \exists w \in G$$

W=f(z) — однозначная или многозначная $\Phi K\Pi$

$$W = f(z)$$
: $D \leftrightarrow G \Leftrightarrow f(z)$ — однолистна

$$z = x + iy, w = u + iv \Rightarrow w = f(z) = u(x, y) + iv(x, y),$$

$$u(x, y) = \text{Re}f(z), v(x, y) = \text{Im}f(z)$$

$$z = re^{i\varphi} \Rightarrow w = f(z) = u(r, \varphi) + iv(r, \varphi)$$

14.2. Предел и непрерывность ФКП

0:
$$a = \lim_{z \to 0} f(z) \Rightarrow \forall \varepsilon > 0 \ \exists \ \delta = \delta(\varepsilon) : 0 < |z - z_0| < \delta \Rightarrow$$

$$\Rightarrow |f(z) - a| < \varepsilon$$

T:
$$\lim_{z \to z_0} f(z) = a \Leftrightarrow \lim_{(x,y) \to (x_0,y_0)} u(x,y) = a_1$$
,

$$\lim_{(x,y)\to(x_0,y_0)} v(x,y) = a_2, \ a = a_1 + ia_2 \blacksquare$$

О:
$$w = f(z)$$
 непрерывна в т. $z_0 \Leftrightarrow$

- 1) f(z) определена в $U_{\delta}(z_0)$;
- 2) $\lim_{z \to z_0} f(z) = f(z_0)$.

Непрерывность f(z) в т. z_0 ⇔

непрерывности u(x, y), v(x, y) в т. (x_0, y_0)

14.3. Производная ФКП. Условия Коши—Римана

О: w = f(z) — однозначная ФКП,

$$f'(z) = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

Т: f(z) = u(x, y) + iv(x, y) — дифференцируема

в т.
$$z = x + iy \Leftrightarrow \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
 (условия Коши—Римана)

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}$$

14.4. Понятие аналитической функции.

Сопряженные гармонические функции

О: Однозначная функция w = f(z) аналитическая

в т. $z = z_0 \Leftrightarrow f(z)$ дифференцируема в $\mathbf{U}_{\delta}(z_0)$

Однозначные функции $w = z^n, n \in \mathbb{N}, z \neq 0, w = e^z,$

 $w = \sin z$, $w = \cos z$ аналитичны в Z

О: $u(x, y), (x, y) \in D$, — гармоническая в $D \Leftrightarrow \frac{\partial^2 u}{\partial x^2}, \frac{\partial^2 u}{\partial y^2}$ — непрерывны и $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$

Т: f(z) = u(x, y) + iv(x, y) — аналитическая в $D \Rightarrow u(x, y)$, v(x, y) — гармонические в D ■

0: u(x, y), v(x, y) — сопряженные гармонические функции при выполнении условий Коши—Римана

Т: u(x, y) — гармоническая в $D \Rightarrow \exists$ сопряженная к ней гармоническая функция v(x, y) такая, что f(z) = u(x, y) + iv(x, y) — аналитическая в D

Задачи к разд. 14

Задача 1. Какие множества точек комплексной плоскости задаются:

- a) paвенством $||z z_1|| ||z z_2|| = 2a$;
- б) неравенством $0 < \arg z < \pi/4$?

Решение: а) модуль разности двух комплексных чисел равен расстоянию между точками, изображающими эти числа: $|z-z_1|=|(x-x_1)+i(y-y_1)|=\sqrt{(x-x_1)^2+(y-y_1)^2}$, поэтому, обозначая точки M(z), $M_1(z_1)$, $M_2(z_2)$, получаем $\|MM_1\|-\|MM_2\|=2a$.

Используя определение гиперболы, делаем вывод, что это гипербола с фокусами в точках M_1 , M_2 и действительной полуосью a;

б) используя определение $\arg z$ как главного значения $\arg z$, заключаем, что это угол $\pi/4$ с вершиной в точке z=0, расположенный выше оси OX, которая является одной из его сторон.

Задача 2. Найти значения функций: a) $\sin 2i$; б) $\ln(1 + i)$.

Решение: а) по определению тригонометрической функции $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$ имеем $\sin 2i = \frac{e^{i(2i)} - e^{-i(2i)}}{2i} = \frac{e^{-2} - e^{2}}{2i} = \frac{e^{2} - e^{-2}}{2}i;$

б) по определению логарифмической функции $\text{Ln}\,z = \ln|z| + i \text{Arg}\,z; \, \text{Ln}(1+i) = \ln|1+i| + i \text{Arg}(1+i) = \ln\sqrt{2} + i \text{arg}(1+i) + 2\pi k = \ln\sqrt{2} + i(\pi/4 + 2\pi k).$

Задача 3. Найти действительную и мнимую части функции $w = \sin z$.

Решение: По определению при z = x + iy имеем

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = \frac{e^{ix - y} - e^{-ix + y}}{2i} =$$

$$= \frac{e^{-y}(\cos x + i\sin x) - e^{y}(\cos x - i\sin y)}{2i} =$$

$$= \frac{\cos x(e^{-y} - e^{y}) + i\sin x(e^{-y} + e^{y})}{2i} =$$

$$= \sin x \frac{(e^{-y} + e^{y})}{2} - i\cos x \frac{(e^{-y} - e^{y})}{2}.$$

Обозначим $\frac{e^y + e^{-y}}{2} = \text{ch } y$ — гиперболический косинус, $\frac{e^y - e^{-y}}{2} = \text{sh } y$ — гиперболический синус. Тогда $\text{Re } z = \sin x \text{ch } y$, $\text{Im } z = \cos x \text{sh } y$.

Задача 4. Установить, дифференцируемы ли функции, и найти производные, если они существуют: а) w = 1/z; б) w = |z|. Являются ли функции аналитическими?

Решение: Выделим действительную и мнимую части функций и проверим выполнение условий Коши—Римана:

a)
$$w = 1/z = \frac{1}{x + iy} = \frac{x - iy}{x^2 + y^2}$$
,

$$(\text{Re}\,w)_x' = \left(\frac{x}{x^2 + y^2}\right)_x' = \frac{x^2 + y^2 - 2x^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2},$$

$$(\text{Re}\,w)_y' = \left(\frac{x}{x^2 + y^2}\right)_y' = \frac{-2xy}{(x^2 + y^2)^2},$$

$$(\text{Im}\,w)_x' = \left(\frac{-y}{x^2 + y^2}\right)_x' = \frac{2xy}{(x^2 + y^2)^2},$$

$$(\text{Im}\,w)_y' = \left(\frac{-y}{x^2 + y^2}\right)_y' = \frac{-x^2 - y^2 + 2y^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}.$$

$$\text{Итак}, \frac{\partial \text{Re}\,w}{\partial x} = \frac{\partial \text{Im}\,w}{\partial y}, \frac{\partial \text{Re}\,w}{\partial y} = -\frac{\partial \text{Im}\,w}{\partial x}. \Phi \text{ункция}\,w = 1.$$

Итак, $\frac{\partial \operatorname{Re} w}{\partial x} = \frac{\partial \operatorname{Im} w}{\partial v}$, $\frac{\partial \operatorname{Re} w}{\partial v} = -\frac{\partial \operatorname{Im} w}{\partial x}$. Функция w = 1/z аналитическая при $z \neq 0$ и $w'(1/z)' = -1/z^2$;

б)
$$w = |z| = \sqrt{x^2 + y^2}$$
 — действительная функция, $\frac{\partial \operatorname{Re} w}{\partial x} = \frac{\partial w}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}}$, $\frac{\partial \operatorname{Im} w}{\partial y} = 0$. Функция не является аналитической.

Задача 5. Определить аналитическую функцию по известной действительной части $u = x^2 - v^2 + 2x$.

Решение: Если z_0 — точка аналитичности w = f(z), то $f(z) = 2u\left(\frac{z+\overline{z_0}}{2}, \frac{z-\overline{z_0}}{2}\right) - u(x_0, y_0) + ic, c - \text{const. Полагая } z_0 = 0,$ имеем $w = 2\left(\left(\frac{z}{2}\right)^2 - \left(\frac{z}{2i}\right)^2\right) + 2z + ic = z^2 + 2z + ic.$

Задачи для самостоятельного решения

1) Выяснить, какие множества точек комплексной плоскости задаются:

равенствами: a) $|z - z_1| + |z - z_2| = 2a$; б) Im z = 3; в) Re(1/z) = $= 1/2; \Gamma$) |z| = 1 - Re z;

- неравенствами: д) 1 < |z 2| < 3; e) 1 < Rez < 2.
- **2)** Найти значения функций: a) $\cos(1 + 3i)$; б) $\text{Ln}(\sqrt{3} + i)$; B) tg 5i.
- **3)** Используя уравнения $z = \sin w$, $z = \tan w$, вывести формулы: Arcsin $z = -i \operatorname{Ln}(iz + \sqrt{1-z^2})$, Arctg $z = -\frac{i}{2} \operatorname{Ln} \frac{i-z}{i+z}$.
 - 4) Найти действительную и мнимую части функций:

- a) $w = z^3 2z^2$; 6) $w = e^{z^2}$; B) w = tg z.
- **5)** Установить, являются ли аналитическими функции, и найти в случае положительного ответа производные: a) $w = z^2 2iz$; 6) $w = e^{2iz}$; в) $w = \overline{z}$.
- **6)** Определить аналитическую функцию по известной действительной части: a) $3x^2y y^3 + 5x$; б) $x^3 + 6x^2y 3xy^2 2y^3$.

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ

Вариант № 1

1. Записать комплексное число в алгебраической форме:

$$z = \frac{i^{17}}{3 - 2i} + (2 + i)(1 + 2i)$$
. Omsem: $z = -\frac{2}{13} + \frac{68}{13}i$.

2. Записать комплексное число в показательной форме:

$$w = (1 - i\sqrt{3})e^{-\frac{\pi}{5}i}$$
. Omeem: $w = 2e^{\frac{22\pi}{15}i}$.

- **3.** Найти все значения $w=\sqrt[5]{-32}$ и изобразить их на комплексной плоскости. *Ответ:* $w_k=2\mathrm{e}^{\left(\frac{\pi}{5}+\frac{2k\pi}{5}\right)^i}, k=\overline{0,4}.$
- **4.** Найти значение функции $w = z^3 + 2z$ при z = 1 + i. *Ответ:* 4*i*.

Вариант № 2

- 1. Записать комплексное число в алгебраической форме:
- $z = \frac{2-3i}{2i-1} \frac{i^7}{3-i}$. Ombem: -1,7 + 0,1i.
- **2.** Записать комплексное число в показательной форме: $w = (1 + i)^9$. *Ответ:* $w = 16\sqrt{2}e^{\frac{\pi}{4}i}$.
- **3.** Найти все значения $w = \sqrt[3]{4\sqrt{3} 4i}$. *Ответ*: $w_k = 8e^{\left(\frac{11\pi}{18} + \frac{2k\pi}{3}\right)i}$, $k = \overline{0, 2}$.
- **4.** Найти значение функции $w = z^2 + 2/z$ при z = 1 i. *Ответ*: 1 i.

РАСЧЕТНОЕ ЗАДАНИЕ

Теоретические вопросы

1. Алгебраическая форма комплексного числа, его изображения на комплексной плоскости, действия над комплексными числами в алгебраической форме.

- **2.** Тригонометрическая и показательная формы комплексного числа.
- **3.** Умножение, деление и возведение в целую положительную степень комплексных чисел, заданных в тригонометрической или показательной форме.
- **4.** Извлечение корня целой положительной степени из комплексного числа.

Задания

Введены следующие обозначения: n — номер студента в списке, $\lambda = \lfloor n/4 \rfloor$ — целая часть дроби, $\mu = \lfloor \frac{n}{4} \rfloor$ — остаток при делении числа на 4, ν — последняя цифра в номере группы.

Задание 1. Найти комплексные корни квадратного уравнения и изобразить их на комплексной плоскости: $(v+1)^2z^2-2z(\lambda+\mu)(v+1)+2\lambda^2+\mu^2+1+2\lambda(\mu+1)=0$.

Задание 2. Выполнить действия над комплексными числами в алгебраической форме:

$$\frac{5\lambda - 9\mu - 4 + i(\lambda^2 + \mu^2 - 7\lambda - 3\mu - 12)}{\lambda - 8 - (\mu - 4)i} + \frac{-\lambda - 1 + i(\nu^2 + \nu + (\lambda + 1)^2)}{\lambda + 1 + i(\nu + 1)}.$$

Задание 3. Дано комплексное число
$$z = \frac{(\sqrt{2})^{\lambda} i^{\mu+\nu}}{1 + i\sqrt{2 + (-1)^{\lambda}}}$$
:

- а) записать его в алгебраической, тригонометрической и показательной формах;
- б) вычислить произведение $w=z^3 \mathrm{e}^{\frac{i\pi}{\mu+1}}$, используя показательную форму числа z, ответ записать в тригонометрической форме со значением аргумента $0 \le \arg w < 2\pi$.

Задание 4. Найти все значения корня и изобразить на комплексной плоскости: $\sqrt[\mu+3]{(\sqrt{2})^{\lambda+1}(i^{\mu+\nu+1}\sqrt{2+(-1)^{\lambda+1}}+i^{\mu+\nu})}$.

Задание 5. Определить величину тока I в цепи (рис. 14.1), к которой подведено напряжение 220 В частотой 50 Гц, если активное сопротивление $R=\lambda+\mu$ (Ом), а индуктивность $L=0.012+(10(\mu+1)+\nu)\cdot 10^{-3}$ (Гн).

Рис. 14.1

Ответы к разд. 13, 14

13. Комплексные числа

2) a)
$$\frac{1}{4} \pm \frac{\sqrt{3}}{4}i$$
; 6) $-1 \pm \frac{\sqrt{2}}{2}i$; 3) a) $16 - 10i$; 6) -8 ; B) $57/170 - 41i/170$; г) $1 + i$; д) $1,5 - i$; e) $-2 + 1,5i$; 4) a) $-0,5$; 6) ie^4 ; B) $3 + 3\sqrt{3}i$; г) $\frac{3\sqrt{2}}{2} - \frac{3\sqrt{2}}{2}i$; д) $-\frac{e}{2} + \frac{e\sqrt{3}}{2}i$; 5) a) $\sqrt{2}e^{\frac{3\pi}{4}i}$; 6) $2e^{\frac{\pi}{6}i}$; B) $5e^{\frac{3\pi}{2}i}$; г) $7e^{i\cdot 0}$; д) $2\sqrt{2}e^{\frac{2\pi}{3}i}$; e) $\frac{1}{\cos\alpha}e^{\left(\alpha\pm\frac{\pi}{2}\right)i}$; ж) $\sqrt{2}e^{\frac{\pi}{7}i}$; тригонометрическая форма: $re^{i\alpha} = r(\cos\alpha + i\sin\alpha)$; 6) a) 27 ; 6) $-128 - 128i$; B) $8\sqrt{2}e^{\frac{\pi}{12}i}$; г) $\frac{1}{8} + \frac{\sqrt{3}}{8}i$; 7) a) $\pm \frac{\sqrt{3}}{2} + \frac{i}{2}$, $-i$; 6) $\sqrt{2}e^{i\left(\frac{\pi}{6} + \frac{k\pi}{3}\right)}$, $k = \overline{0,5}$; B) $10\sqrt{2}e^{i\left(\frac{3\pi}{20} + \frac{2k\pi}{5}\right)}$, $k = \overline{0,4}$; г) $\sqrt[4]{2}e^{i\left(\frac{\pi}{24} + \frac{k\pi}{2}\right)}$, $k = \overline{0,3}$.

14. Функции комплексного переменного

1) а) эллипс с фокусами z_1, z_2 ; б) прямая y=3; в) окружность $(x-1)^2+y^2=1$; г) парабола $y^2=1-2x$; д) кольцо между окружностями с центрами в начале координат; е) полоса между прямыми x=1, x=2; **2)** а) $\cos 1 \cosh 3 - i \sin 1 \sinh 3$; б) $\ln 2 + i \pi (1/6+2k)$; в) $\frac{\mathrm{e}^{-5}-\mathrm{e}^5}{i(\mathrm{e}^{-5}-\mathrm{e}^5)}$; **4)** а) $(x^3-3x^2y-2x^2+2y^2)+i(3x^2y-y^3-4xy)$; б) $\mathrm{e}^{x^2-y^2}\cos(2xy)+i\mathrm{e}^{x^2-y^2}\sin(2xy)$; в) $\frac{\mathrm{tg}\,x(1-\mathrm{th}^2y)}{1+\mathrm{tg}^2x\cdot\mathrm{th}^2y}+i\frac{\mathrm{th}\,y(1-\mathrm{tg}^2x)}{1+\mathrm{tg}^2x\cdot\mathrm{th}^2y}$, где $\mathrm{th}\,y=\frac{\mathrm{e}^y-\mathrm{e}^{-y}}{\mathrm{e}^y+\mathrm{e}^{-y}}$; **5)** а) w=2z-2i; б) $w=2i\mathrm{e}^{2iz}$; в) не аналитическая; **6)** а) $-iz^3+5z+ic$; б) $z^3(1-2i)+ic$.

Глава 6 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

15. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ (Н.И.)

Опорный конспект № 15

15.1. Понятие первообразной и н.и.

$$\int f(x)dx = F(x) + c$$
 — совокупность первообразных, $F'(x) = f(x)$, $c = \text{const}$

15.2. Свойства н.и.

$$1^0. (\int f(x) dx)' = f(x).$$

$$2^{0}$$
. $\int dF(x) = F(x) + c$.

$$3^{0}$$
. $\int (f_{1}(x) \pm f_{2}(x)) dx = \int f_{1}(x) dx \pm \int f_{2}(x) dx$.

$$4^0$$
. $\int cf(x)dx = c \int f(x)dx$.

$$5^{0}. \int f[\varphi(t)] d\varphi(t) = F(\varphi(t)) + c$$

Частный случай
$$\int f(ax+b) dx = \frac{1}{a}F(ax+b) + c$$

15.3. Таблица интегралов

1)
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c, n \neq -1;$$

$$2) \int \frac{\mathrm{d}x}{x} = \ln|x| + c;$$

$$3) \int \sin x \, dx = -\cos x + c;$$

4)
$$\int \cos x \, dx = \sin x + c;$$

$$5) \int \frac{\mathrm{d}x}{\cos^2 x} = \operatorname{tg} x + c;$$

$$6) \int \frac{\mathrm{d}x}{\sin^2 x} = -\operatorname{ctg} x + c;$$

7)
$$\int tgx dx = -\ln|\cos x| + c;$$

8)
$$\int \operatorname{ctg} x \, dx = \ln|\sin x| + c;$$

$$9) \int a^x dx = \frac{a^x}{\ln a} + c;$$

$$10) \int e^x dx = e^x + c;$$

11)
$$\int \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \arcsin x + c = -\arccos x + c;$$

12)
$$\int \frac{\mathrm{d}x}{\sqrt{x^2 \pm a^2}} = \ln|x + \sqrt{x^2 \pm a^2}| + c;$$

13)
$$\int \frac{\mathrm{d}x}{x^2 + 1} = \arctan x + c = -\arctan x + c;$$

14)
$$\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + c;$$

15)
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + c;$$

16)
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + c$$

15.4. Методы интегрирования

- 1. Метод разложения $(3^0, 4^0)$
- 2. Метод замены переменной

$$\int f(x) dx = \begin{cases} x = \varphi(t), \\ dx = \varphi'(t) dt \end{cases} = \int f[\varphi(t)] \varphi'(t) dt$$

3. Метод интегрирования по частям

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u.$$

Применяется для:

1)
$$\int P(x) \begin{Bmatrix} a^x \\ e^{kx} \end{Bmatrix} dx$$
, $P(x)$ — многочлен,

$$\int P(x) \begin{cases} \sin kx \\ \cos kx \end{cases} dx, \quad P(x) = u;$$

2)
$$\int P(x)\log_a x \, dx$$
, $\int P(x) \begin{cases} \arcsin x \\ \arccos x \\ \arctan x \end{cases} dx$, $\begin{cases} \operatorname{arccin} x \\ \operatorname{arcctg} x \end{cases} dx$,

$$P(x)\mathrm{d}x = \mathrm{d}v;$$

$$3) \int e^{ax} \begin{Bmatrix} \sin bx \\ \cos bx \end{Bmatrix} dx$$

Задачи к разд. 15

1. Интегрирование методом разложения (непосредственное интегрирование)

Метод заключается в переходе от данного неопределенного интеграла к табличным интегралам с помощью свойств 3^0 , 4^0 (OK, разд. 15.2).

Вычислить интегралы:

1.
$$J = \int \frac{11x^3 - 13x\sqrt{x} + 2}{6\sqrt[3]{x}} dx$$
.
Pewerue: $J = \frac{11}{6} \int x^{8/3} dx - \frac{13}{6} \int x^{7/6} dx + \frac{1}{3} \int x^{-1/3} dx = \frac{x^{11/3}}{2} - x^{13/6} + \frac{x^{11/3}}{2} + \frac{x^{11/3}}{$

$$+\frac{1}{2}x^{2/3}+c.$$

$$\mathbf{2.} \ J = \int \operatorname{ctg}^2 x \, \mathrm{d}x.$$

Решение:
$$J = \int \frac{1-\sin^2 x}{\sin^2 x} dx = \int \frac{dx}{\sin^2 x} - \int dx = -\operatorname{ctg} x - x + c.$$

3.
$$J = \int \frac{x^2}{x^2 + 4} dx$$
.

Решение:
$$J = \int \frac{x^2 + 4 - 4}{x^2 + 4} dx = \int \frac{x^2 + 4}{x^2 + 4} dx - 4 \int \frac{dx}{x^2 + 4} =$$

$$= x - 2\arctan(x/2) + c.$$

4.
$$J = \int \frac{2^x 3^x + 12^x}{6^x} dx$$
.

Решение:
$$J = \int \frac{6^x}{6^x} dx + \int \frac{12^x}{6^x} dx = x + \int 2^x dx = x + \frac{2^x}{\ln 2} + c.$$

Задачи для самостоятельного решения

1)
$$\int \frac{1-3x+4x^2}{x} dx$$
; 2) $\int \frac{13\sqrt[5]{x^4-7x\sqrt[4]{x}+4}}{\sqrt{x}} dx$; 3) $\int (1-x)(2+\sqrt{x}) dx$;
4) $\int \frac{dx}{\sqrt{7-3x^2}}$; 5) $\int \frac{\sqrt{x^2-3}-\sqrt{x^2+3}}{\sqrt{x^4-9}} dx$; 6) $\int \frac{2^x 5^x}{e^x} dx$; 7) $\int \frac{1-\cos 2x}{\sin x} dx$;

8)
$$\int tg^2 x dx$$
; 9) $\int \frac{\sqrt{4+x^2}-3\sqrt{4-x^2}}{\sqrt{16-x^4}}$; 10) $\int \frac{2+x^2}{1+x^2} dx$.

2. Интегрирование заменой переменных

Рассмотрим простейший случай метода замены переменной, когда применима формула

$$\int f[\varphi(x)]\varphi'(x)dx = \begin{cases} \varphi(x) = t, \\ \varphi'(x)dx = d\varphi(x) = dt \end{cases} = \int f(t)dt, \tag{15.1}$$

причем интеграл справа является табличным. В этом случае метод называется подведением под знак дифференциала. В частном случае, когда $\varphi(x) = ax + b$, пользуемся формулой

$$\int f(ax+b) dx = -\frac{1}{a} F(ax+b) + c.$$
 (15.2)

Вычислить интегралы:

1.
$$J = \int \sqrt[5]{1 - 2x} dx$$
.

Решение: По формуле (15.2) получаем ax + b = -2x + 1, a = -2,

$$J = -\frac{1}{2} \frac{(1 - 2x)^{\frac{1}{5} + 1}}{\frac{1}{5} + 1} + c = -\frac{5}{12} \sqrt[5]{(1 - 2x)^6} + c.$$

2.
$$J = \int \frac{x}{x^2 + a^2} dx$$
.

Решение: Так как $x dx = \frac{1}{2} d(x^2 + a^2)$, то

$$J = \frac{1}{2} \int \frac{\mathrm{d}(x^2 + a^2)}{x^2 + a^2} = \frac{1}{2} \ln|x^2 + a^2| + c.$$

Или с помощью замены переменной по формуле (15.1):

$$J = \begin{cases} x^2 + a^2 = t, & x dx = \frac{1}{2} dt, \\ 2x dx = dt \end{cases} = \frac{1}{2} \ln|x^2 + a^2| + c.$$

3.
$$J = \int \frac{\mathrm{d}x}{\cos^2 x \sqrt[3]{3 + 2 \lg x}}$$
.

Решение:
$$J = \begin{cases} 3 + 2 \operatorname{tg} x = t, & \frac{\mathrm{d}x}{\cos^2 x} = \frac{1}{2} \operatorname{d}t, \\ \frac{2}{\cos^2 x} \operatorname{d}x = \operatorname{d}t \end{cases} = \frac{1}{2} \int t^{-1/3} \mathrm{d}t = \frac{1}{2} \int t^{-1/3} \mathrm{d}t$$

$$= \frac{3}{4} \cdot \frac{3}{2} t^{2/3} + c = \frac{3}{4} \sqrt[3]{3 + 2 \lg x} + c.$$

4.
$$J = \int \frac{dx}{(4+x)\sqrt{x}}$$
.

Pewehue: $J = \begin{cases} \sqrt{x} = t, & \frac{dx}{\sqrt{x}} = 2dt, \\ \frac{1}{2\sqrt{x}}dx = dt \end{cases} = 2\int \frac{dt}{4+t^2} = arctg\frac{t}{2} + c = arctg\frac{\sqrt{x}}{2} + c.$

5. $J = \int e^{\cos x} \sin x dx.$

Pewehue: $J = \begin{cases} \cos x = t, & \sin x dx = -dt, \\ -\sin x dx = dt \end{cases} = -\int e^t dt = -e^t + c = -e^{\cos x} + c.$

Задачи для самостоятельного решения

11)
$$\int \cos(5x + \frac{\pi}{4}) dx$$
; 12) $\int e^{-2x+3} dx$; 13) $\int x e^{x^2} dx$; 14) $\int \frac{4 \sqrt{\ln^3 x}}{x} dx$; 15) $\int \frac{x dx}{\sqrt{4 - x^2}}$; 16) $\int \frac{3 \sqrt{\arctan x}}{1 + x^2} dx$; 17) $\int \frac{dx}{3 - 5x}$; 18) $\int \frac{5^{\sqrt{x}} dx}{\sqrt{x}}$; 19) $\int x^2 \sin x^3 dx$; 20) $\int \frac{\cos(\ln x)}{x} dx$; 21) $\int \frac{e^x dx}{\sqrt{e^{2x} + 5}}$; 22) $\int \sqrt{1 - \sin x} \cos x dx$; 23) $\int \frac{\arcsin x - 3}{\sqrt{1 - x^2}} dx$; 24) $\int \frac{x dx}{x^4 + 9}$; 25) $\int \cos \frac{1}{x} \frac{dx}{x^2}$; 26) $\int e^{3x^2 + \ln x} dx$; 27) $\int \frac{dx}{x\sqrt{4 - \ln^2 x}}$.

3. Интегрирование по частям

Метод интегрирования по частям заключается в применении формулы

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u \tag{15.3}$$

в случаях, когда интеграл, записанный справа, проще для вычисления, чем заданный. Наиболее важные случаи использования формулы приведены в ОК, разд. 15.4.

Вычислить интегралы:

1.
$$J = \int (x^2 - x + 2)e^{x/3} dx$$
.

Решение: Имеем случай 1) из п. 3 ОК, разд. 15.4:

$$J = \begin{cases} x^2 - x + 2 = u, & du = (2x - 1)dx, \\ e^{x/3}dx = dv, & v = \int e^{x/3}dx = 3e^{x/3} \end{cases} =$$
$$= 3(2x - x + 2)e^{x/3} - 3\int (2x - 1)e^{x/3}dx.$$

После применения формулы интегрирования по частям степень многочлена под знаком интеграла понизилась на единицу. Применим еще раз формулу (15.3), получим

$$J = \begin{cases} 2x - 1 = u, & du = 2dx, \\ e^{x/3}dx = dv, & v = \int e^{x/3}dx = 3e^{x/3} \end{cases} =$$

$$= 3(x^2 - x + 2)e^{x/3} - 9[(2x - 1)e^{x/3} - 2\int e^{x/3}dx] =$$

$$= 3(x^2 - x + 2)e^{x/3} - 9(2x - 1)e^{x/3} + 54e^{x/3} + c.$$
2. $J = \int \operatorname{arctg} 4x dx.$

Решение: Имеем случай 2) из п. 3 ОК, разд. 15.4:

$$J = \begin{cases} \arctan 4x = u, & du = \frac{4}{1 + 16x^2} dx, \\ dx = dv, & v = \int dx = x \end{cases} =$$

$$= x \arctan 4x - 4 \int \frac{x dx}{1 + 16x^2} = \begin{cases} 1 + 16x^2 = t, \\ dt = 32x dx, \\ x dx = dt/32 \end{cases} =$$

$$= x \arctan 4x - \frac{4}{32} \int \frac{dt}{t} = x \arctan x - \frac{1}{8} \ln|t| + c =$$

$$= x \arctan 4x - \frac{1}{8} \ln(1 + 16x^2) + c.$$

$$3. J = \int \frac{\ln x}{5/x} dx.$$

Решение: Имеем случай 2) из п. 3 ОК, разд. 15.4:

$$J = \begin{cases} \ln x = u, & \frac{dx}{x} = du, \\ \frac{dx}{\sqrt[4]{x}} = dv, & v = \int x^{-\frac{1}{5}} dx = \frac{5}{4} x^{\frac{4}{5}} \end{cases} = \frac{5}{4} x^{\frac{4}{5}} \ln x - \frac{5}{4} \int x^{\frac{4}{5}} \frac{dx}{x} = \frac{5}{4} x^{\frac{4}{5}} \ln x - \frac{5}{4} \int x^{-\frac{1}{5}} dx = \frac{5}{4} x^{\frac{4}{5}} \ln x - \frac{25}{16} x^{\frac{4}{5}} + c.$$

$$4. J = \int e^{2x} \cos 4x \, dx.$$

Решение: Имеем случай 3) из п. 3 ОК, разд. 15.4:

$$J = \int e^{2x} \cos 4x dx = \begin{cases} e^{2x} = u, & du = 2e^{2x} dx, \\ \cos 4x dx = dv, & v = \int \cos 4x dx = \frac{1}{4} \sin 4x \end{cases} =$$

$$= \frac{1}{4} \sin 4x e^{2x} - \frac{1}{2} \int e^{2x} \sin 4x dx.$$

Применяя еще раз формулу (15.3), придем к первоначальному интегралу.

$$J = \begin{cases} e^{2x} = u, & du = 2e^{2x} dx, \\ \sin 4x dx = dv, & v = \int \sin 4x dx = -\frac{1}{4} \cos 4x \end{cases} =$$

$$= \frac{1}{4} \sin 4x e^{2x} - \frac{1}{2} \left(-\frac{1}{4} \cos 4x e^{2x} + \frac{1}{2} \int e^{2x} \cos 4x dx \right),$$

$$J = \frac{1}{4} \sin 4x e^{2x} + \frac{1}{8} \cos 4x e^{2x} - \frac{1}{4} \int e^{2x} \cos 4x dx.$$

Получили уравнение с неизвестной величиной J:

$$J = \frac{1}{4}\sin 4xe^{2x} + \frac{1}{8}\cos 4xe^{2x} - \frac{1}{4}J,$$

откуда $J = \frac{1}{5}\sin 4xe^{2x} + \frac{1}{10}\cos 4xe^{2x} + c.$

Задачи для самостоятельного решения

28)
$$\int \left(\frac{x}{3} - 1\right) \cdot 4^x dx$$
; 29) $\int x \ln^2 x dx$; 30) $\int \arcsin 2x dx$; 31) $\int x^2 \sin 2x dx$; 32) $\int e^{2x} \sin \frac{x}{3} dx$; 33) $\int \arctan \sqrt{x} dx$; 34) $\int x^2 e^{-x} dx$; 35) $\int \frac{\arctan e^x}{e^x} dx$; 36) $\int (x^2 + x) \ln(x + 1) dx$; 37) $\int x \operatorname{tg}^2 x dx$; 38) $\int \ln(1 + x^2) dx$; 39) $\int x^3 e^{-x^2} dx$; 40) $\int \cos(\ln x) dx$.

16. КЛАССЫ ИНТЕГРИРУЕМЫХ ФУНКЦИЙ

Опорный конспект № 16

16.1. Интегрирование рациональных дробей

О:
$$R(x) = \frac{P_m(x)}{Q_n(x)} = \frac{B_0 x^m + B_1 x^{m-1} + ... + B_m}{A_0 x^n + A_1 x^{n-1} + ... + A_n} \Rightarrow \begin{cases} \text{неправильная} \\ \text{если } m \ge n \\ \text{правильная}, \\ \text{если } m < n \end{cases}$$

Неправильная
$$R(x) = \frac{P_m(x)}{O_n(x)} = L_l(x) + \frac{r_k(x)}{O_n(x)}, k < n$$

Правильная $R(x) = \sum$ простейших дробей 1—4 типов:

1 тип:
$$\int \frac{A}{x-a} \mathrm{d}x = A \ln |x-a| + c,$$

2 тип:
$$\int \frac{A}{(x-a)^k} dx = A \frac{(x-a)^{-k+1}}{-k+1} + c,$$

3 тип:
$$\int \frac{Mx+N}{x^2+px+q} dx = \begin{cases} t = \frac{1}{2}(x^2+px+q)' = x + \frac{p}{2} \\ x^2+px+q = t^2+q - \frac{p^2}{4} \end{cases},$$

4 тип:
$$\int \frac{Mx + N}{(x^2 + px + q)^k} dx$$

Пусть
$$Q_n(x) = (x - a_1) \dots (x - a_l)(x - b)^k (x^2 + px + q) \Rightarrow$$
 правильная $R(x) = \frac{A_1}{x - a_1} + \dots + \frac{A_l}{x - a_l} + \frac{B_k}{(x - b)^k} +$

$$+\frac{B_{k-1}}{(x-b)^{k-1}}+\ldots+\frac{B_1}{x-b}+\frac{Mx+N}{x^2+px+q}$$

16.2. Интегрирование тригонометрических функций

1.
$$\int R(\sin x, \cos x) dx = \int R^*(t) dt$$
,

если
$$tg(x/2) = t$$
, $x = 2 \arctan t$, $dx = \frac{2dt}{1+t^2}$, $\sin x = \frac{2t}{1+t^2}$,

$$\cos x = \frac{1 - t^2}{1 + t^2}$$

2.
$$\int \sin^m x \cos^n x dx$$
, m , $n \ge 0$, целые

a)
$$m = 2p + 1 \Rightarrow \cos x = t$$

 $n = 2q + 1 \Rightarrow \sin x = t$

б)
$$m = 2p, n = 2q \Rightarrow \sin^2 x = (1 - \cos 2x)/2,$$

 $\cos^2 x = (1 + \cos 2x)/2$
3. $\int R(\operatorname{tg} x) dx = \int R^*(t) dt,$
если $\operatorname{tg} x = t, x = \operatorname{arctg} t, dx = \frac{dt}{1 + t^2}$

16.3. Интегрирование иррациональных функций

1.
$$\int R(x, \sqrt[n]{(ax+b)^{m_1}}, ..., \sqrt[n]{(ax+b)^{m_j}}) dx = \int R^*(t) dt$$
, если $ax + b = t^k$, k — общий знаменатель $\frac{m_j}{n_j}$, $j = \overline{1,l}$, $x = \frac{1}{a}(t^k - b)$, $dx = \frac{1}{a}kt^{k-1}dt$
2. $\int \frac{Ax+B}{\sqrt{ax^2+bx+c}} dx$, замена $t = \frac{1}{2}\left(x^2 + \frac{bx}{a} + \frac{c}{a}\right)' = x + \frac{b}{2a}$, $ax^2 + bx + c = at^2 + c - \frac{b^2}{4a}$
3. $\int R(x, \sqrt{a^2 - x^2}) dx$, замена $x = a \sin t$, $\int R(x, \sqrt{a^2 + x^2}) dx$, замена $x = a t g t$, $\int R(x, \sqrt{x^2 - a^2}) dx$, замена $x = a/\cos t$

Задачи к разд. 16.1

Вычислить интегралы:

1.
$$I = \int \frac{x^3 + x^2 + 5}{x^2 + 3} dx$$
.

Решение: Под знаком интеграла — неправильная рациональная дробь. Делим числитель на знаменатель для выделения целой части:

Тогда

$$I = \int (x+1)dx + \int \frac{-3x+2}{x^2+3} dx = \frac{x^2}{2} + x - 3\int \frac{xdx}{x^2+3} + 2\int \frac{dx}{x^2+3} = \frac{x^2}{2} + 3 = t,$$

$$= \begin{cases} x^2 + 3 = t, \\ 2xdx = dt, & xdx = \frac{dt}{2} \end{cases} = \frac{x^2}{2} + x - \frac{3}{2}\int \frac{dt}{t} + 2\frac{1}{\sqrt{3}} \operatorname{arctg} \frac{x}{\sqrt{3}} = \frac{x^2}{2} + x - \frac{3}{2}\ln(x^2+3) + \frac{2}{\sqrt{3}} \operatorname{arctg} \frac{x}{\sqrt{3}} + c.$$

$$2. \quad I = \int \frac{xdx}{x^2 - 3x + 2}.$$

Решение: Под знаком интеграла — правильная рациональная дробь, причем знаменатель раскладывается на простые множители:

$$\begin{cases} x^2 - 3x + 2 = 0, \\ x_1 = 1, x_2 = 2 \end{cases} \Rightarrow x^2 - 3x + 2 = (x - 1)(x - 2).$$

Тогда раскладываем дробь на сумму простейших дробей:

$$\frac{x}{(x-1)(x-2)} = \frac{A}{x-1} + \frac{B}{x-2}.$$

Неизвестные коэффициенты A и B находим, приводя дроби справа к общему знаменателю и приравнивая числители справа и слева. Получим тождество, справедливое при любых x:

$$A(x-2) + B(x-1) = x,$$

$$x = 1 \begin{vmatrix} -A = 1 \\ x = 2 \end{vmatrix} \Rightarrow A = -1,$$

$$x = 2 \begin{vmatrix} B = 2 \end{vmatrix} \Rightarrow B = 2, \text{ имеем}$$

$$I = \int \frac{-\mathrm{d}x}{x-1} + \int \frac{2\mathrm{d}x}{x-2} = -\ln|x-1| + 2\ln|x-2| + c = \ln\left|\frac{(x-2)^2}{x-1}\right| + c.$$
3.
$$I = \int \frac{2x^2 - 3x + 3}{x^3 - 2x^2 + x} \mathrm{d}x.$$

Решение: Знаменатель $x^3 - 2x^2 + x = x(x-1)^2$ имеет простой корень x = 0 и корень x = 1 кратности 2, поэтому разложение на простейшие дроби данной правильной рациональной дроби имеет вид

$$\frac{2x^2 - 3x + 3}{x(x - 1)^2} = \frac{A}{x} + \frac{B}{(x - 1)^2} + \frac{C}{x - 1} \Rightarrow A(x - 1)^2 + Bx + Cx(x - 1)^2 + B$$

Приравниваем коэффициенты при одинаковых степенях х:

$$\begin{vmatrix} x^{2} \\ A + C &= 2 \\ -2A + B - C &= -3 \\ A &= 3 \end{vmatrix} \Rightarrow \begin{cases} 3 + C &= 2, \\ -6 + B - C &= -3, \Rightarrow \begin{cases} C &= -1, \\ B + 1 &= 3, \Rightarrow \\ A &= 3 \end{cases} \Rightarrow A = 3, B = 2, C = -1 \Rightarrow I = \int \frac{3}{x} dx + \int \frac{2}{(x-1)^{2}} dx + \int \frac{-1}{x-1} dx = 3 \ln|x| - \frac{2}{x-1} - \ln|x-1| + c.$$

$$4. I = \int \frac{(2x-3)dx}{x^{2} + 4x + 10}.$$

Решение: Дискриминант квадратного уравнения $x^2 + 4x + 10 = 0$: $\Delta = 16 - 40 < 0$, поэтому знаменатель не имеет действительных корней. Под знаком интеграла — простейшая дробь третьего типа:

$$I = \int \frac{(2x-3)dx}{(x^2+4x+4)+6} = \int \frac{(2x-3)dx}{(x+2)^2+6} = \begin{cases} x+2=t, \\ x=t-2, \\ dx=dt \end{cases} =$$

$$= \int \frac{2(t-2)-3}{t^2+6} dt = \int \frac{2tdt}{t^2+6} - 7 \int \frac{dt}{t^2+6} = \begin{cases} t^2+6=z, \\ 2tdt=dz \end{cases} =$$

$$= \int \frac{dz}{z} - \frac{7}{\sqrt{6}} \arctan \frac{t}{\sqrt{6}} = \ln(t^2+6) - \frac{7}{\sqrt{6}} \arctan \frac{t}{\sqrt{6}} + c =$$

$$= \ln(x^2+4x+10) - \frac{7}{\sqrt{6}} \arctan \frac{x+2}{\sqrt{6}} + c.$$
5.
$$I = \int \frac{(x^3+3)dx}{(x+1)(x^2+1)}.$$

Решение: Так как под знаком интеграла неправильная дробь, то выделим целую часть:

$$I = \int \frac{(x^3 + 3)dx}{(x+1)(x^2 + 1)} = \left\{ -\frac{x^3 + 3}{x^3 + x^2 + x + 1} \left| \frac{x^3 + x^2 + x + 1}{1} \right| \right\} =$$

$$= \int dx - \int \frac{x^2 + x - 2}{(x+1)(x^2 + 1)} dx.$$

Знаменатель правильной дроби имеет один простой корень x = -1, а второй множитель ($x^2 + 1$) не имеет действительных корней:

$$\frac{x^2 + x - 2}{(x+1)(x^2+1)} = \frac{A}{x+1} + \frac{Mx+N}{x^2+1} \Rightarrow A(x^2+1) + Mx(x+1) + Mx($$

Задачи для самостоятельного решения

1)
$$\int \frac{x^3 - 2x^2 - 4x + 7}{x^2 + x - 2} dx$$
; 2) $\int \frac{2x^2 - 1}{x^3 - 5x^2 + 6x} dx$; 3) $\int \frac{x^3 + 2}{x^3 - 4x} dx$;
4) $\int \frac{3x^2 + 2x - 1}{(x - 1)^2 (x + 2)} dx$; 5) $\int \frac{2x + 1}{(x - 2)^3 (x + 5)} dx$; 6) $\int \frac{(3x - 1) dx}{4x^2 - 4x + 17}$;
7) $\int \frac{(x^2 + 1) dx}{(x + 2)(x^2 + 4)}$; 8) $\int \frac{x dx}{x^3 - 1}$; 9) $\int \frac{dx}{(x^2 + 1)(x^2 + 4)}$;
10) $\int \frac{dx}{(x + 1)^2 (x^2 + 1)}$.

Задачи к разд. 16.2

Вычислить интегралы:

1.
$$I = \int \frac{dx}{5 - 3\cos x}$$
.

Решение: Имеем интеграл вида $\int \frac{\mathrm{d}x}{a\cos x + b\sin x + c}$, который с помощью универсальной подстановки приводится к интегралу от рациональной дроби (см. ОК, разд. 15.4):

$$I = \int \frac{dx}{5 - 3\cos x} = \begin{cases} tg\frac{x}{2} = t, & x = 2\arctan t, \\ \cos x = \frac{1 - t^2}{1 + t^2}, & dx = \frac{2dt}{1 + t^2} \end{cases} = \int \frac{\frac{2dt}{1 + t^2}}{5 - 3\left(\frac{1 - t^2}{1 + t^2}\right)} = \frac{1 - t^2}{1 - t^2}$$

$$= \int \frac{2dt}{5(1+t^2) - 3(1-t^2)} = 2\int \frac{dt}{2+8t^2} = \frac{1}{4} \int \frac{dt}{t^2 + \frac{1}{4}} =$$

$$= \frac{1}{4} \cdot 2 \operatorname{arctg}(2t) + c = \frac{1}{2} \cdot 2 \operatorname{arctg}\left(2 \operatorname{tg}\left(\frac{x}{2}\right)\right) + c.$$
2. $I = \int \frac{\sin^3 x}{\sqrt[3]{\cos x}} dx.$

Решение: Интеграл относится к случаю 2a) ОК, разд. 16.2. Так как степень $\sin x$ нечетная положительная, то делаем замену $\cos x = t$:

$$I = \int \frac{\sin x (1 - \cos^2 x) dx}{\sqrt[3]{\cos x}} = \begin{cases} \cos x = t, \\ -\sin x dx = dt \end{cases} = \int \frac{(1 - t^2)}{\sqrt[3]{t}} (-dt) =$$

$$= -\int t^{-\frac{1}{3}} dt + \int t^{\frac{5}{3}} dt = -\frac{3t^{\frac{2}{3}}}{2} + \frac{3t^{\frac{8}{3}}}{8} + c = -\frac{3\sqrt[3]{\cos^2 x}}{2} + \frac{3\sqrt[3]{\cos^8 x}}{8} + c.$$
3. $I = \int \sin^2 x \cos^2 x dx$.

Решение: Интеграл относится к случаю 26) ОК, разд. 16.2. Используем тригонометрические формулы $\sin^2 x = \frac{1-\cos 2x}{2}$, $\cos^2 x = \frac{1+\cos 2x}{2}$:

$$I = \int \left(\frac{1 - \cos 2x}{2}\right) \left(\frac{1 + \cos 2x}{2}\right) dx = \frac{1}{4} \int (1 - \cos^2 2x) dx =$$

$$= \frac{1}{4} \int dx - \frac{1}{4} \int \frac{1 + \cos 4x}{2} dx = \frac{1}{4} x - \frac{1}{8} x - \frac{1}{8} \cdot \frac{1}{4} \sin 4x + c =$$

$$= \frac{x}{8} - \frac{1}{32} \sin 4x + c.$$

$$4. I = \int \operatorname{ctg}^3 x \, \mathrm{d}x.$$

Решение: Интеграл относится к случаю 3 ОК, разд. 16.2, и решается заменой ${\rm ctg} x = t$:

$$I = \int \operatorname{ctg}^{3} x \, dx = \begin{cases} \operatorname{ctg} x = t, & x = \operatorname{arcctg} t, \\ dx = -\frac{dt}{1+t^{2}} \end{cases} = -\int \frac{t^{3}}{1+t^{2}} \, dt = 0$$

$$= \begin{cases} -\frac{t^3}{t^3 + t} | t^2 + 1 \\ \frac{t^3 + t}{-t} | t \end{cases} = -\int t dt + \int \frac{t dt}{t^2 + 1} = -\frac{t^2}{2} + \frac{1}{2} \ln|t^2 + 1| + c = -\frac{\cot^2 x}{2} + \frac{1}{2} \ln(\cot^2 x + 1) + c.$$

 $5. I = \int \sin 4x \cos 5x dx.$

Решение: Произведение функций под знаком интеграла преобразуется в сумму по формуле $\sin \alpha \cos \beta = \frac{1}{2}(\sin(\alpha+\beta)+\sin(\alpha-\beta))$:

$$I = \frac{1}{2} \int (\sin 9x + \sin(-x)) dx = -\frac{1}{2} \cdot \frac{\cos 9x}{9} + \frac{1}{2} \cos x + c =$$
$$= \frac{1}{2} \cos x - \frac{1}{18} \cos 9x + c.$$

Задачи для самостоятельного решения

11)
$$\int \frac{dx}{5 + \sin x + 3\cos x}$$
; 12) $\int \frac{dx}{1 - \sin x}$; 13) $\int \sin^5 x dx$; 14) $\int \frac{\cos^3 x}{\sin^6 x} dx$; 15) $\int \sin^4 x dx$; 16) $\int \cos^6 x dx$; 17) $\int \frac{dx}{1 + tgx}$; 18) $\int tg^7 x dx$; 19) $\int \cos x \cos 3x dx$.

Задачи к разд. 16.3

Вычислить интегралы:

1.
$$I = \int \frac{x + \sqrt[3]{x^2} + \sqrt[6]{x}}{x(1 + \sqrt[3]{x})} dx$$
.

Решение: Интеграл относится к случаю 1 ОК, разд. 16.3:

$$I = \int \frac{x + \sqrt[3]{x} + \sqrt[6]{x}}{x(1 + \sqrt[3]{x})} dx = \begin{cases} 6 - \text{общий знаменатель } \frac{2}{3}, \frac{1}{6}, \frac{1}{3} \Rightarrow \\ \Rightarrow x = t^6, \ dx = 6t^5 dt, \ t = \sqrt[6]{x} \end{cases} =$$

$$= 6 \int \frac{(t^6 + t^4 + t)}{t^6 (1 + t^2)} dt = 6 \int \frac{t^5 + t^3 + 1}{t^2 + 1} dt = \begin{cases} -\frac{t^5 + t^3 + 1}{t^5 + t^3} \Big| t^2 + 1 \\ -\frac{t^5 + t^3}{1} \Big| t^3 \end{cases} =$$

$$= 6 \int t^3 dt + 6 \int \frac{dt}{t^2 + 1} = \frac{3}{2}t^4 + 6 \arctan t + c = \frac{3}{2}\sqrt[3]{x^2} + 6 \arctan \sqrt[6]{x} + c.$$

2.
$$I = \int \frac{x dx}{\sqrt[3]{7x + 3}}$$
.

Решение: Имеем случай 1 ОК, разд. 16.3:

$$I = \int \frac{x \, dx}{\sqrt[3]{7x + 3}} = \begin{cases} 7x + 3 = t^3, & x = \frac{1}{7}(t^3 - 3), \\ dx = \frac{3}{7}t^2 dt, & t = \sqrt[3]{7x + 3} \end{cases} =$$

$$= \int \frac{\frac{1}{7}(t^3 - 3)\frac{3}{7}t^2 dt}{t} = \frac{3}{49} \int (t^4 - 3t) dt = \frac{3}{49} \left(\frac{t^5}{5} - \frac{3t^2}{2}\right) + c =$$

$$= \frac{3}{49} \left(\frac{1}{5}\sqrt[3]{(7x + 3)^5} - \frac{3}{2}\sqrt[3]{(7x + 3)^2}\right) + c.$$

3.
$$I = \int \frac{x dx}{\sqrt{1 - 7x - x^2}}$$
.

Решение: Интеграл относится к случаю 2 ОК, разд. 16.3:

$$I = \int \frac{x dx}{\sqrt{-\left(\left(x^2 + 7x + \frac{49}{4}\right) - \frac{49}{4} - 1\right)}} = \int \frac{x dx}{\sqrt{\frac{53}{4} - \left(x + \frac{7}{2}\right)^2}} =$$

$$= \begin{cases} x + \frac{7}{2} = t, & x = t - \frac{7}{2}, \\ dx = dt \end{cases} = -\int \frac{\left(\frac{7}{2} - t\right) dt}{\sqrt{\frac{53}{4} - t^2}} = -\frac{7}{2} \int \frac{dt}{\sqrt{\frac{53}{4} - t^2}} +$$

$$+ \int \frac{t dt}{\sqrt{\frac{53}{4} - t^2}} = \begin{cases} \frac{53}{4} - t^2 = z, \\ -2t dt = dz \end{cases} = -\frac{7}{2} \arcsin \frac{2t}{\sqrt{53}} - \frac{1}{2} \int \frac{dz}{\sqrt{z}} =$$

$$= -\frac{7}{2} \arcsin \frac{2t}{\sqrt{53}} - \sqrt{\frac{53}{4} - t^2} + c = -\frac{7}{2} \arcsin \frac{2x + 7}{\sqrt{53}} - \sqrt{1 - 7x - x^2} + c.$$

$$4. \quad I = \int \frac{dx}{\sqrt{(4 + x^2)^3}}.$$

Решение: Интеграл относится к случаю 3 ОК, разд. 16.3, и решается с помощью тригонометрической подстановки x = 2 tgt:

$$I = \begin{cases} x = 2 \operatorname{tg} t, & \sqrt{4 + t^2} = \sqrt{4 + 4 \operatorname{tg}^2 t} = 2 \frac{1}{\cos t} \\ \operatorname{d} x = 2 \frac{\operatorname{d} t}{\cos^2 t} \end{cases} = \int \frac{2 \operatorname{d} t}{\frac{\cos^2 t}{8}} = \int \frac{1}{4} \int \cos t \, dt = \frac{1}{4} \sin t + c = \frac{1}{4} \frac{\operatorname{tg} t}{\sqrt{1 + \operatorname{tg}^2 t}} + c = \frac{1}{4} \frac{x/2}{\sqrt{1 + (x/2)^2}} + c = \int \frac{x}{4\sqrt{4 + x^2}} \, dt$$

Задачи для самостоятельного решения

20)
$$\int \frac{dx}{\sqrt[3]{x} + \sqrt{x}};$$
 21) $\int \frac{x dx}{\sqrt{3x + 2} + 1};$ 22) $\int \frac{2}{(2 - x)^2} \sqrt[3]{\frac{2 - x}{2 + x}} dx;$ 23) $\int \frac{dx}{\sqrt{x^2 - x - 1}};$ 24) $\int \frac{3x + 2}{\sqrt{x^2 + x + 2}} dx;$ 25) $\int \frac{5x + 3}{\sqrt{5 + 4x - x^2}} dx;$ 26) $\int \sqrt{a^2 - x^2} dx;$ 27) $\int \frac{x^2 dx}{\sqrt{x^2 - 2}};$ 28) $\int \frac{dx}{x\sqrt{4 + x^2}}.$

Интегрирование разных функций:

29)
$$\int \frac{x dx}{\sqrt{5 + x - x^2}}$$
; **30)** $\int \frac{(x^3 + 2)dx}{x^2 + 4x + 5}$; **31)** $\int \frac{2^x dx}{\sqrt{4 - 4^x}}$; **32)** $\int \frac{dx}{3 + \cos x}$;

33)
$$\int \frac{\sin 2x dx}{\sqrt{3 - \cos^2 x}}$$
; 34) $\int x \arctan x dx$; 35) $\int \frac{5x^3 + 9x^2 - 22x - 8}{x^3 - 4x} dx$;

36)
$$\int \frac{\cos^5 x}{\sqrt{\sin x}} dx$$
; **37)** $\int x \sin^2 x^2 dx$; **38)** $\int \frac{dx}{\sqrt{x} - \sqrt[4]{x}}$; **39)** $\int x^2 \sqrt{x^2 - 1} dx$;

40)
$$\int \frac{5x+3}{\sqrt{3-x^2}} dx$$
; **41)** $\int e^{\arctan 3x} \frac{dx}{1+9x^2}$; **42)** $\int (x^2-2x+3)\sin 2x dx$;

43)
$$\int \frac{\log_2 x}{x^2} dx$$
; **44)** $\int (1 - \cos 2x)^2 dx$.

45) Выбрать для интеграла слева верный ответ справа:

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ

Вариант № 1

1.
$$\int \frac{\mathrm{d}x}{x\sqrt{\ln^2 x + 6}}$$
. Omsem: $\ln\left|\ln x + \sqrt{\ln^2 x + 6}\right| + c$.

2.
$$\int \frac{x dx}{\sin^2 x}$$
. Omsem: $-x \cot x + \ln|\sin x| + c$.

3.
$$\int \frac{(x+1)dx}{\sqrt{1-x-x^2}}$$
. Omsem: $-\sqrt{1-x-x^2} + \frac{1}{2}\arcsin\frac{2x+1}{\sqrt{5}} + c$.

4.
$$\int \frac{\mathrm{d}x}{\mathsf{tg}^3 x}$$
. *Omsem*: $\frac{1}{2} \ln |1 + \mathsf{tg}^2 x| - \ln |\mathsf{tg} x| - \frac{1}{2 \mathsf{tg}^2 x} + c$.

5.
$$\int \frac{x dx}{(x^2 + 2)(x - 1)} \cdot Omsem: \frac{1}{3} \ln|x - 1| - \frac{1}{6} \ln|x^2 + 2| + \frac{\sqrt{2}}{3} \arctan \frac{x}{\sqrt{2}} + c.$$

Вариант № 2

1.
$$\int 2^{-x^3} x^2 dx$$
. Omsem: $-\frac{2^{-x^3}}{3 \ln 2} + c$.

2.
$$\int \arccos 3x \, dx$$
. *Ombem*: $x \arccos 3x - \frac{1}{3}\sqrt{1 - 9x^2} + c$.

3.
$$\int \frac{x^4 dx}{x^3 + 3x^2}$$
. Omeem: $\frac{x^2}{2} - 3x + 9 \ln|x + 3| + c$.

4.
$$\int \frac{\mathrm{d}x}{2\sin x + 3\cos x + 2}$$
. *Omsem*: $\frac{1}{3} \ln \left| \frac{\lg \frac{x}{2} + 1}{\lg \frac{x}{2} - 5} \right| + c$.

5.
$$\int \frac{\sqrt{x+1}+1}{\sqrt{x+1}-1} dx$$
. Ombem: $x+1+4\sqrt{x+1}+4\ln|\sqrt{x+1}-1|+c$.

РАСЧЕТНОЕ ЗАДАНИЕ

1. Вычислить $\int \varphi_i(x) \psi_i(x) dx$, i = 1, 2, 3.

n	$\varphi_1(x)$	$\psi_1(x)$	$\varphi_2(x)$	$\psi_2(x)$	$\varphi_3(x)$	$\psi_3(x)$	
1	$\cos^3 x$	$\sin^{-7}x$	3 ^x	$(5-9^x)^{-1/2}$	1	$\ln(1+x^2)$	
2	e ^x	$(4 + e^{2x})^{-1}$	arcsin ⁻⁴ x	$(1-x^2)^{-1/2}$	$x^2 + 3x + 5$	ln <i>x</i>	
3	$\frac{1}{\arctan x + 4}$	$(1+x^2)^{-1}$	e^{3x}	$(7 - e^{6x})^{-1/2}$	$x^2 + 3x - 1$	e ^{2x}	
4	$\frac{1}{4 - 3 \operatorname{ctg} x}$	$\sin^{-2}x$	$\sqrt{1 + 4\sin^2 x}$	sin 2x	x^3	sin 2x	
5	x^9	$(x^{10}+1)^{-1}$	$e^{\cos^2 x}$	sin 2x	x^3	$\ln(x^2+1)$	
6	5 ^x	$(9+25x)^{-1}$	$(1+x^2)^{-1}$	$\frac{1}{1 + \operatorname{arcctg} x}$	arcsinx	$(1+x)^{-1/2}$	
7	sin <i>x</i>	$\cos^3 x$	$tg(\sin^2 x)$	sin2x	$\arcsin \sqrt{x}$	$(1-x)^{-1/2}$	
8	$arctg^3x$	$(1+x^2)^{-1}$	x^{-1}	$\frac{1}{\sqrt{3 - \log_5^2 x}}$	$\lg x$	x^{-2}	
9	$\sqrt{\lg x} + 1$	$\cos^{-2}x$	$5^{\cos^2 x}$	sin 2x	x^2	3 ^x	
10	$\sqrt{2 \operatorname{tg} x - 3}$	$\cos^{-2}x$	$x^{-2/3}$	$(\sqrt[3]{x} - 1)^{-1}$	$\sqrt{x^2-4}$	1	
11	x^2	e^{x^3+5}	$x^{-1/2}$	$(1+\sqrt{x})^{-1/2}$	$x\cos x$	$\sin^{-3}x$	
12	2 <i>x</i>	$\cos(x^2+1)$	arccos x - x	$(1-x^2)^{-1/2}$	5x - 2	e 3x	
13	$\sin^3 x$	$\cos^{-7}x$	2 ^x	$(9-4^x)^{-1/2}$	e ^{3x}	$\cos^2 x$	
14	2x + 1	e^{x^2+x}	x^{-1}	$(1-\ln^2 x)^{-1/2}$	4x - 2	$\cos 2x$	
15	$\ln^3 x + 1$	x^{-1}	sin2x	$e^{2\cos^2 x}$	$\sqrt{4+x^2}$	1	
16	sin(lnx)	x^{-1}	$x - \operatorname{arctg}^4 x$	$(1+x^2)^{-1}$	Х	$\sin^2 x$	
17	x^{-1}	$1 - \ln^2 x$	cosx	$\sin^{-2/3} x$	6x - 5	$e^{-\frac{2}{3}x}$	

n	$\varphi_1(x)$	$\psi_1(x)$	$\varphi_2(x)$	$\psi_2(x)$	$\varphi_3(x)$	$\psi_3(x)$	
18	sin(arctgx)	$(1+x^2)^{-1}$	e ^x	$(1 + e^{2x})^{-1}$	$\sqrt{2}-8x$	sin 3x	
19	x^{-1}	$(2 + \ln x)^{-1}$	sin 2x	$e^{3\cos 2x}$	х	e^{-3x}	
20	e ^{arcsinx}	$(1-x^2)^{-1/2}$	x^2	$(1+x^3)^{-1}$	$\sqrt{2}x - 3$	$\cos 2x$	
21	\sqrt{x}	$\sin(\sqrt{x^3} + 1)$	$arctg^3x$	$(1+x^2)^{-1}$	$\cos 2x$	$x+x^2$	
22	e ^{tgx}	$\cos^{-2}x$	х	$(1-x^4)^{-1/2}$	1 - 6x	e^{2x}	
23	$\arccos x - x$	$(1-x^2)^{-1/2}$	$tg^{-2/3} x$	$\cos^{-2}x$	х	arcsin <i>x</i>	
24	$1 - \arcsin x$	$(1-x^2)^{-1/2}$	$4 + \ln^2 x$	x^{-1}	arcsin ² x	1	
25	x^3	$(1+x^4)^{-1}$	sin 2x	$(1+\cos^2 x)$	ln^3x	x^{-2}	
26	$\sqrt[3]{x} + 1$	$x^{-1/5}$	cosx	$(9+\sin^2 x)^{-1}$	ln^2x	$x^{-5/2}$	
27	$1 + \ln^2 x$	x^{-1}	e ^{tgx}	$\cos^{-2}x$	ln^3x	1	
28	$1 + tg^2x$	cos ⁻² x	$8x^3$	$(3-2x^4)^{-1}$	$(\operatorname{arctg} x)^2$	х	
29	$\sqrt{1-\cos x}$	sinx	$\arcsin^2 x + 1$	$(1-x^2)^{-1/2}$	х	ln^2x	
30	cosx	e ^{sinx+3}	1 + ln <i>x</i>	x^{-1}	4 – 16x	sin4x	

2. Вычислить $\int \sin^m x \cos^k x dx$.

n	m	k	n	m	k	n	m	k	n	m	k	n	m	k
1	0	5	8	0	6	15	8	1	22	2	7	29	0	7
2	2	3	9	1/3	3	16	2	9	23	-1/2	5	30	5	1/2
3	3	2	10	3	1/2	17	9	0	24	3	1			
4	0	4	11	6	0	18	1	8	25	2	4			
5	4	0	12	3	6	19	0	9	26	5	2			
6	5	0	13	6	3	20	10	3	27	5	-1/2			
7	3	-1/2	14	-1/2	3	21	6	1	28	7	0			

3. Вычислить
$$\int \frac{x^4 + b}{(x - a)(x + d)} dx.$$

4. Вычислить
$$\int \frac{x \, \mathrm{d}x}{(x^2 + bx + c)(x - d)}.$$

5. Вычислить
$$\int \frac{\mathrm{d}x}{a\cos x + d\sin x + b}.$$

5. Вычислить
$$\int \frac{dx}{a\cos x + d\sin x + b}.$$
6. Вычислить
$$\int \frac{(x+d)dx}{\sqrt{(-1)^n x^2 + bx + c}}.$$

n	а	b	с	d	n	а	b	c	d
1	3	2	1	3	16	12	16	65	12
2	-2	2	4	1	17	-18	18	81	10
3	2	4	4	0	18	17	18	82	11
4	5	4	7	3	19	16	20	100	16
5	-6	6	9	2	20	-20	20	101	13
6	4	6	12	4	21	19	22	121	14
7	-8	8	16	5	22	21	22	122	15
8	4	8	18	6	23	22	24	144	22
9	7	10	25	1	24	-24	24	145	20
10	6	10	27	6	25	23	26	169	21
11	-12	12	36	7	26	25	26	170	25
12	10	12	38	8	27	-28	28	196	26
13	11	14	49	11	28	27	28	197	27
14	-14	14	51	3	29	29	30	225	28
15	13	16	64	9	30	-30	30	226	29

Теоретические вопросы

- 1. Определения первообразной и неопределенного интеграла.
- 2. Каковы свойства неопределенного интеграла?
- **3.** Назовите табличные интегралы от основных элементарных функций.
- **4.** Назовите табличные интегралы от функций, не являющихся основными элементарными.
 - 5. Какие методы интегрирования существуют?
- **6.** Интегралы от каких основных элементарных функций не являются табличными и как их найти?
- **7.** Как интегрируют рациональные дроби, тригонометрические и иррациональные функции?

Ответы к разделам 15, 16

15. Неопределенный интеграл

1)
$$\ln|x| - 3x + 2x^2 + c$$
; 2) $10x^{13/10} - 4x^{7/4} + 8x^{1/2} + c$; 3) $2x - x^2 + \frac{2}{3}\sqrt{x^3} - \frac{2}{5}\sqrt{x^5} + c$; 4) $\frac{1}{\sqrt{3}}\arcsin\frac{\sqrt{3}x}{\sqrt{7}} + c$; 5) $\ln\left|\frac{x + \sqrt{x^2 + 3}}{x + \sqrt{x^2 - 3}}\right| + c$;

6)
$$\left(\frac{10}{e}\right)^x \frac{1}{\ln 10 - 1} + c$$
; 7) $-2\cos x + c$; 8) $\tan x - x + c$; 9) $\arcsin \frac{x}{2} - 3\ln |x + \sqrt{x^2 + 4}| + c$; 10) $x + \arctan x + c$; 11) $\frac{1}{5}\sin \left(5x + \frac{\pi}{4}\right) + c$; 12) $-\frac{1}{2}e^{-2x+3} + c$; 13) $\frac{1}{2}e^{x^2} + c$; 14) $\frac{4}{7}\sqrt[4]{\ln^7 x} + c$; 15) $-\sqrt{4 - x^2} + c$; 16) $\frac{3}{4}\sqrt[3]{\arctan^4 x} + c$; 17) $-\frac{1}{5}\ln |5x - 3| + c$; 18) $\frac{2}{\ln 5}5^{\sqrt{x}} + c$; 19) $-\frac{1}{3}\cos x^3 + c$; 20) $\sin(\ln x) + c$; 21) $\ln(e^x + \sqrt{e^{2x} + 5}) + c$; 22) $-\frac{2}{3}\sqrt{(1 - \sin x)^3} + c$; 23) $\frac{\arcsin^2 x}{2} - 3\arcsin x + c$; 24) $\frac{1}{6}\arctan \frac{x^2}{3} + c$; 25) $-\sin \frac{1}{x} + c$; 26) $\frac{1}{6}e^{3x^2} + c$; 27) $\arcsin \frac{\ln x}{2} + c$; 28) $\left(\frac{x}{3} - 1\right)\frac{4^x}{\ln 4} - \frac{1}{3\ln^2 4}4^x + c$; 29) $\frac{x^2}{2}\left(\ln^2 x - \ln x + \frac{1}{2}\right) + c$; 30) $x \arcsin 2x + \frac{1}{2}\sqrt{1 - 4x^2} + c$; 31) $-\frac{1}{2}x^2\cos 2x + \frac{x}{2}\sin 2x + \frac{1}{4}\cos 2x + c$; 32) $\frac{3}{37}e^{2x} \times \left(6\sin \frac{x}{3} - \cos \frac{x}{3}\right) + c$; 33) $-\sqrt{x} + (1 + x)\arctan \sqrt{x} + c$; 34) $-e^x(x^2 + 2x + 2) + c$; 35) $x - \frac{1}{2}\ln(1 + e^{2x}) - e^{-x}\arctan(e^x) + c$; 36) $\frac{1}{6}(2x^3 + 3x^2 - 1)\ln|x + 1| - \frac{1}{9}x^3 - \frac{1}{12}x^2 + \frac{1}{6}x + c$; 37) $x \tan x - \frac{x^2}{2} + \ln|\cos x| + c$; 38) $x \ln(x^2 + 1) - 2x + 2\arctan x + c$; 39) $-\frac{x^2 + 1}{2}e^{-x^2} + c$; 40) $\frac{x}{2}(\cos(\ln x) + \sin(\ln x))$.

16. Классы интегрируемых функций

1)
$$\frac{x^2}{2} - 3x + \frac{1}{3}\ln|(x+2)(x-1)| + c$$
; 2) $-\frac{1}{6}\ln|x| - \frac{7}{2}\ln|x-2| + \frac{17}{13}\ln|x-3| + c$; 3) $x - \frac{1}{2}\ln|x| - \frac{3}{4}\ln|x+2| + \frac{5}{4}\ln|x-2| + c$; 4) $-\frac{4}{3(x-1)} + \frac{20}{9}\ln|x-1| + \frac{7}{9}\ln|x+2| + c$; 5) $\frac{9}{343}\ln\left|\frac{x+5}{x-2}\right| - \frac{9}{49(x-2)} - \frac{5}{14(x-2)^2} + c$; 6) $\frac{3}{8}\left(\ln|4x^2 - 4x + 17| + \frac{1}{6}\arctan\frac{2x-1}{4}\right) + c$; 7) $\frac{5}{8}\ln|x+2| + c$

$$+ \frac{3}{16}\ln(x^2+4) - \frac{3}{8}\arctan\frac{x}{2} + c; \, \mathbf{8}) \, \frac{1}{3}\ln\frac{|x-1|}{\sqrt{x^2+x+1}} + \frac{1}{\sqrt{3}}\arctan\frac{2x+1}{\sqrt{3}} + c; \\ \mathbf{9}) \, \frac{1}{3}\arctan\mathbf{x} - \frac{1}{6}\arctan\mathbf{x} \frac{x}{2} + c; \, \mathbf{10}) \, \frac{1}{2}\ln|x+1| - \frac{1}{4}\ln(x^2+1) - \frac{1}{2(x+1)} + c; \\ \mathbf{11}) \, \frac{2}{\sqrt{15}}\arctan\mathbf{x} \left(\frac{1+2\lg(x/2)}{\sqrt{15}}\right) + c; \, \mathbf{12}) - \frac{2}{\lg(x/2)-1} + c; \, \mathbf{13}) - \cos x + \\ + \frac{2}{3}\cos^3 x - \frac{1}{5}\cos^5 x + c; \, \mathbf{14}) \, \frac{1}{3\sin^3 x} - \frac{1}{5\sin^5 x} + c; \, \mathbf{15}) \, \frac{3}{8}x - \frac{1}{4}\sin 2x + \\ + \frac{1}{32}\sin 4x + c; \, \mathbf{16}) \, \frac{5}{16}x + \frac{1}{4}\sin 2x + \frac{3}{64}\sin 4x - \frac{1}{48}\sin^3 2x + c; \\ \mathbf{17}) \, \frac{1}{2}(x+\ln|\sin x + \cos x|) + c; \, \mathbf{18}) \, \frac{1}{6}\lg^6 x - \frac{1}{4}\lg^4 x + \frac{1}{2}\lg^2 x - \frac{1}{2}\ln(1+1) + \\ + \lg^2 x) + c; \, \mathbf{19}) \, \frac{1}{8}\sin 4x + \frac{1}{4}\sin 2x + c; \, \mathbf{20}) \, 6\left(\frac{\sqrt{x}}{3} - \frac{\sqrt{3}x}{2} + \sqrt{x} - \ln(1+1) + \frac{6}{\sqrt{x}}\right) + c; \, \mathbf{21}) \, \frac{2}{27}\sqrt{(3x+2)^3} - \frac{1}{9}(3x+2) - \frac{2}{9}\sqrt{3x+2} + \frac{2}{9}\ln|\sqrt{3x+2} + \frac{1}{9}\ln|x + \frac{1}{2} + \sqrt{x^2 - x - 1}| + c; \\ \mathbf{24}) \, 3\sqrt{x^2 + x + 2} + \frac{1}{2}\ln|x + \frac{1}{2} + \sqrt{x^2 + x + 2}| + c; \, \mathbf{25}) - 5\sqrt{6} + 4x - x^2 + \\ + \ln|x + \sqrt{x^2 - 2}| + c; \, \mathbf{28}) \, \frac{1}{2}\ln\left|\frac{\sqrt{4 + x^2 - 2}}{x}\right| + c; \, \mathbf{29}) - \sqrt{5 + x - x^2} + \\ + \frac{1}{2}\arcsin\frac{2x - 1}{\sqrt{21}} + c; \, \mathbf{30}) \, \frac{x^2}{2} - 4x + \frac{11}{2}\ln|x^2 + 4x + 5| + c; \\ \mathbf{31}) \, \frac{1}{\ln 2}\arcsin 2^{x-1} + c; \, \mathbf{32}) \, \frac{\sqrt{2}}{2} \arctan\left(\frac{\sqrt{2}}{2}\lg\frac{x}{2}\right) + c; \, \mathbf{33}) \, 2\sqrt{3 - \cos^2 x} + c; \\ \mathbf{34}) \, \frac{x^2 + 1}{2}\arctan x - \frac{x}{2} + c; \, \mathbf{35}) \, 5x + \ln x^2(x + 2)^4|x - 2|^3 + c; \\ \mathbf{36}) \, 2\sqrt{\sin x} - \frac{4\sqrt{\sin^5 x}}{5} + \frac{2\sqrt{\sin^9 x}}{9} + c; \, \mathbf{37}) \, \frac{x^2}{4} - \frac{\sin 2x^2}{8} + c; \\ \mathbf{38}) \, 4\left(\frac{\sqrt{x}}{2} + \sqrt[4]{x} + \ln|\sqrt[4]{x} - 1|\right) + c; \, \mathbf{39}) - \frac{1}{8}\ln(x + \sqrt{x^2 - 1}) + \\ + \frac{1}{8}x(2x^2 - 1)\sqrt{x^2 - 1} + c; \, \mathbf{40}) - 5\sqrt{3 - x^2} + 3\arcsin\frac{x}{\sqrt{3}} + c; \, \mathbf{41}) \, \frac{1}{3}e^{\arg 3x} + c; \\ \mathbf{41} \, \frac{1}{3}e^{\arg 3x} + c; + c; \, \mathbf{40}) - 5\sqrt{3 - x^2} + 3\arcsin\frac{x}{\sqrt{3}} + c; \, \mathbf{41}) \, \frac{1}{3}e^{\arg 3x} + c; \\ \mathbf{41} \, \frac{1}{3}e^{\arg 3x} + c; + c; \, \mathbf{40}) - 5\sqrt{3 - x^2} + 3\arcsin\frac{x}{\sqrt{3}} + c; \, \mathbf{41}) \, \frac{1}{3}e^{\arg 3x} + c; \\ \mathbf{41} \, \frac{1}{3}e^{\arg 3x} + c; + c; \, \mathbf{40}) - 5\sqrt{3 - x^2} + 3\arcsin\frac{x}{\sqrt{3}} + c; \, \mathbf{41}) \, \frac$$

42)
$$-\frac{1}{2}(x^2 - 2x + + 3)\cos 2x + \frac{1}{2}(x - 1)\sin 2x + \frac{1}{4}\cos 2x + c;$$
 43) $\frac{-\log_2 x}{x} - \frac{1}{x \ln 2} + c;$ **44)** $\frac{3}{2}x - \sin 2x + \frac{1}{8}\sin 4x + c.$

17. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ (О.И.)

Опорный конспект № 17

17.1. Задачи о площади, работе. Понятие о.и.

 $A = \int_{0}^{a} f(x) dx$ — работа силы $|\overrightarrow{F}| = f(x)$, направление которой совпадает с OX, на [a, b]

17.2. Свойства о.и.

1⁰.
$$\int_{a}^{b} (f(x) \pm \varphi(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} \varphi(x) dx$$
.

$$2^{0}. \int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx, k = \text{const.}$$

$$3^{0}. \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx.$$

$$3^0. \int_a^a f(x) dx = -\int_b^a f(x) dx.$$

$$4^0. \int_{a}^{a} f(x) \mathrm{d}x = 0.$$

$$5^{0}. \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

Геометрический смысл
$$(f(x) > 0)$$
 $S = S_1 + S_2$

$$6^{0}. \ \varphi(x) \leq \psi(x) \ \forall x \in [a,b] \Rightarrow \int_{a}^{b} \varphi(x) \mathrm{d}x \leq \int_{a}^{b} \psi(x) \mathrm{d}x.$$

Геометрический смысл

$$7^{0}$$
. Теорема о среднем $f(x) \in C_{[a,b]} \Rightarrow \exists \xi \in [a, b]$:
$$\int_{a}^{b} f(x) dx = f(\xi)(b-a)$$

Геометрический смысл

$$S_D = S_{\Box}$$

17.3. Формула Ньютона—Лейбница

$$\int_{a}^{b} f(x) dx = F(b) - F(a). \quad F'(x) = f(x)$$

17.4. Интегрирование заменой переменной и по частям в о.и.

1) Замена переменной:

$$\int_{a}^{b} f(x) dx = \begin{cases} x = \varphi(t) \\ dx = \varphi'(t) dt \end{cases} = \int_{\alpha}^{\beta} f[\varphi(t)] \varphi'(t) dt$$

2) Интегрирование по частям:

$$\int_{a}^{b} u \, \mathrm{d}v = uv|_{a}^{b} - \int_{a}^{b} v \, \mathrm{d}u$$

17.5. Несобственные интегралы (нс.и.)

1. Нс.и. с бесконечными пределами интегрирования

О:
$$\int_{a} f(x) dx = \lim_{b \to \infty} \int_{a}^{\infty} f(x) dx$$
 — сходящиеся, если lim ∃, конечен; расходящиеся, если lim ∄
$$\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx$$
$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx$$

2. Нс.и. от разрывных функций

$$\mathbf{O:} \int_{a}^{b} f(x) \mathrm{d}x = \lim_{c \to b - 0} \int_{a}^{c} f(x) \mathrm{d}x,$$
 если $f(x) \in C_{[a,b]}$ и имеет разрыв 2-го рода при $x = b$
$$\int_{a}^{b} f(x) \mathrm{d}x = \lim_{c \to a + 0} \int_{c}^{b} f(x) \mathrm{d}x,$$
 если $f(x) \in C_{[a,b]}$ и имеет разрыв 2-го рода при $x = a$

Задачи к разд. 17.1-17.3

Применяя формулу Ньютона—Лейбница, вычислить определенные интегралы:

1.
$$\int_{-1}^{2} x^{2} dx = \frac{x^{3}}{3} \Big|_{-1}^{2} = \frac{2^{3}}{3} - \frac{(-1)^{3}}{3} = 3.$$
2.
$$\int_{1}^{4} \frac{1 + \sqrt{x}}{x^{2}} dx = \int_{1}^{4} \left(x^{-2} + x^{-\frac{3}{2}} \right) dx = \left(-\frac{1}{x} - \frac{2}{\sqrt{x}} \right) \Big|_{1}^{4} = \left(-\frac{1}{4} - \frac{2}{\sqrt{4}} \right) - (-1 - 2) = \frac{7}{4}.$$
3.
$$\int_{0}^{\frac{\pi}{4}} \cos^{2} x dx = \int_{0}^{\frac{\pi}{4}} \frac{1 + \cos 2x}{2} dx = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} (1 + \cos 2x) dx = \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} (1 + \cos 2x) d$$

$$= \left(\frac{1}{2}x + \frac{1}{4}\sin 2x\right)\Big|_{0}^{\pi/4} = \left(\frac{1}{2} \cdot \frac{\pi}{4} + \frac{1}{4}\sin \frac{\pi}{2}\right) - \left(\frac{1}{2} \cdot 0 + \frac{1}{4}\sin 0\right) =$$

$$= \frac{\pi}{8} + \frac{1}{4}.$$

4.
$$\int_{0}^{1} \sqrt{2+3x} dx = \frac{1}{3} \int_{0}^{1} (2+3x)^{\frac{1}{2}} d(2+3x) = \frac{2}{9} (2+3x)^{\frac{3}{2}} \Big|_{0}^{1} = \frac{2}{9} (5\sqrt{5} - 2\sqrt{2}).$$

5. Найти среднее значение $K(\xi)$ издержек $K(x) = 3x^2 + 3x + 1$, выраженных в денежных единицах, если объем продукции x меняется от 0 до 4 единиц. Указать объем продукции ξ , при котором издержки принимают среднее значение.

Решение: Среднее значение $f(\xi)$ функции f(x) на [a, b] определяется согласно теореме о среднем (см. ОК, разд. 17.2) формулой

$$f(\xi) = \frac{1}{b-a} \int_{a}^{b} f(x) dx, \xi \in (a, b). \text{ Тогда}$$

$$K(\xi) = \frac{1}{4} \int_{0}^{4} (2x^{2} + 3x + 1) dx = \frac{1}{4} \left(x^{3} + \frac{3}{2}x^{2} + x \right) \Big|_{0}^{4} =$$

$$= \frac{1}{4} (64 + 24 + 4) = 23 \text{ (ден. ед.)}.$$

Далее находим ξ , решая уравнение $3x^2 + 3x + 1 = 23 \Rightarrow 3x^2 + 3x - 22 = 0$.

Имеем
$$\xi = x = \frac{-3 + \sqrt{273}}{6}$$
 (ед. продукции).

Задачи для самостоятельного решения

Вычислить интегралы:

1)
$$\int_{0}^{3} e^{2x} dx$$
; 2) $\int_{0}^{3} \frac{dy}{9 + y^{2}}$; 3) $\int_{1}^{2} (x^{2} - 2x + 3) dx$; 4) $\int_{0}^{1} \frac{dx}{x^{2} + 4x + 5}$; 5) $\int_{0}^{8} (\sqrt{2x} + \sqrt[3]{x}) dx$; 6) $\int_{0}^{3\pi} \sin^{2} \frac{x}{3} dx$; 7) $\int_{0}^{2\pi} (1 - \cos x)^{2} dx$; 8) $\int_{-1}^{7} \sqrt{3x + 4} dx$; 9) $\int_{0}^{16} \frac{dz}{\sqrt{z + 9} - \sqrt{z}}$; 10) $\int_{1}^{4} \frac{1 + t}{\sqrt{t}} dt$; 11) $\int_{0}^{2} \frac{x + 3}{x^{2} + 4} dx$.

- **12)** Какую работу нужно затратить, чтобы растянуть пружину на 5 см, если сила в 1 H растягивает ее на 1 см. *Указание*: По закону Гука сила F возрастает пропорционально растяжению x пружины: F = kx.
- **13)** Определить объем продукции, произведенной рабочим за второй час рабочего дня, если производительность труда $f(t) = \frac{2}{3t+4} + 3(t-\text{время}).$

 $\it Указание:$ Если $\it f(t)$ — производительность труда в зависимости от времени $\it t$, то объем продукции $\it V$ при $\it t_1 \le \it t \le \it t_2$ вычисляется по формуле $\it V = \int\limits_{\it t_1}^{\it t_2} f(t) {\rm d}t.$

Задачи к разд. 17.4

1) Замена переменной в определенном интеграле Вычислить интегралы:

$$1. \int_{-\frac{\pi}{2}}^{-\frac{\pi}{4}} \frac{\cos^3 x}{\sqrt[3]{\sin x}} dx.$$

Решение: Подынтегральная функция относится к классу $f(x) = \sin^m x \cos^n x$ (см. ОК, разд. 16.2). Делаем подстановку $\sin x = t$ и применяем формулу замены переменных:

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \frac{\cos^{3} x}{\sqrt[3]{\sin x}} dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \frac{(1 - \sin^{2} x)\cos x dx}{\sqrt[3]{\sin x}} dx = \begin{cases} \frac{\sin x - t}{x}, & \cos x dx = dt, \\ x - \frac{\pi}{2} - \frac{\pi}{4}, & \cos x dx = dt, \\ x - \frac{\pi}{2} - \frac{\pi}{2}, & \cos x dx = dt, \\ x - \frac{\pi}{2}, & \cos x dx = dt, \\ x - \frac{\pi}{2}, & \cos x dx = dt, \\ x - \frac{\pi}{2}, & \cos x dx = dt, \\ x - \frac{\pi}{2}, & \cos x dx = dt, \\ x - \frac{\pi}{2}, & \cos x dx = dt, \\ x - \frac{\pi}{2}, & \cos x dx = dt, \\ x - \frac{\pi}{2}, & \cos x dx = dt, \\ x - \frac{\pi}{2}, & \cos x dx = dt, \\ x - \frac{\pi}{2}, & \cos$$

2.
$$\int_{5}^{1} \frac{x dx}{\sqrt{5+4x}}$$
.

Решение: Подынтегральная функция относится к классу $f(x) = R(x, \sqrt[m]{(ax+b)^n})$ (см. ОК, разд. 16.3):

$$\int_{5}^{1} \frac{x dx}{\sqrt{5+4x}} = \begin{cases} 5+4x = t^{2}, & x = \frac{1}{4}(t^{2}-5) \\ dx = \frac{1}{2}t dt, & \frac{x}{t} \frac{|5|}{|5|} \frac{1}{3} \end{cases} = \int_{5}^{3} \frac{\frac{1}{4}(t^{2}-5) \cdot \frac{1}{2}t dt}{t} = \frac{1}{8} \int_{5}^{3} (t^{2}-5) dt = \frac{1}{8} \left(\frac{t^{3}}{3}-5t\right) \Big|_{5}^{3} = \frac{1}{8} \left(9-15-\frac{125}{3}+25\right) = -\frac{17}{6}.$$

$$3. \int_{\frac{\sqrt{3}}{2}}^{1} \frac{\sqrt{1-x^{2}}}{x^{2}} dx.$$

Решение: Подынтегральная функция относится к классу $f(x) = R(x, \sqrt{a^2 - x^2})$ (см. ОК, разд. 16.3):

$$\int_{\frac{\sqrt{3}}{2}}^{1} \frac{\sqrt{1-x^2}}{x^2} dx = \begin{cases} x = \sin t, & dx = \cos t dt \\ \sqrt{1-x^2} = \sqrt{1-\sin^2 t} = \cos t, & \frac{x}{t} \left| \frac{\sqrt{3}}{2} \right| 1 \\ t \left| \frac{\pi}{3} \right| \frac{\pi}{2} \end{cases} =$$

$$= \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\cos^2 t \, dt}{\sin^2 t} = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1 - \sin^2 t}{\sin^2 t} \, dt = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{dt}{\sin^2 t} - \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} dt = -\operatorname{ctg} t \Big|_{\frac{\pi}{3}}^{\frac{\pi}{2}} - t \Big|_{\frac{\pi}{3}}^{\frac{\pi}{2}} =$$

$$= -\operatorname{ctg} \frac{\pi}{2} + \operatorname{ctg} \frac{\pi}{3} - \frac{\pi}{2} + \frac{\pi}{3} = \frac{\sqrt{3}}{3} - \frac{\pi}{6}.$$

2) Интегрирование по частям в определенном интеграле

4.
$$\int_{0}^{\frac{\pi}{2a}} (x+3)\sin ax dx = \begin{cases} x+3=u, & du=dx \\ \sin ax dx = dv, & v = \int \sin ax dx = -\frac{1}{a}\cos ax \end{cases} =$$

$$= \frac{-x+3}{a}\cos ax\Big|_0^{\frac{\pi}{2a}} + \frac{1}{a}\int_0^{\frac{\pi}{2a}}\cos ax \,dx = \frac{3}{a} + \frac{\sin ax}{a^2}\Big|_0^{\frac{\pi}{2a}} = \frac{3}{a} + \frac{1}{a^2} = \frac{1+3a}{a^2}.$$

Задачи для самостоятельного решения

Вычислить интегралы:

14)
$$\int_{1}^{2} \frac{e^{\frac{1}{x}} dx}{x^{2}};$$
 15) $\int_{1}^{\sqrt{e}} \frac{dx}{x\sqrt{1-(\ln x)^{2}}};$ 16) $\int_{1}^{e^{3}} \frac{dx}{x\sqrt{1+\ln x}};$
17) $\int_{0}^{\frac{\pi}{2}} \cos^{5} x \sin 2x dx;$ 18) $\int_{0}^{\frac{\pi}{2}} \frac{dx}{2+\cos x};$ 19) $\int_{-1}^{0} \frac{dx}{1+\sqrt[3]{x+1}};$ 20) $\int_{4}^{9} \frac{\sqrt{x}}{\sqrt{x}-1} dx;$
21) $\int_{\ln 2}^{\ln 4} \frac{dx}{\sqrt{e^{x}-1}};$ 22) $\int_{0}^{1} \frac{dx}{\sqrt{3+2x-x^{2}}};$ 23) $\int_{0}^{1} \sqrt{4-x^{2}} dx;$ 24) $\int_{1}^{\sqrt{3}} \frac{dx}{\sqrt{(1+x^{2})^{3}}};$
25) $\int_{1}^{2} \frac{\sqrt{x^{2}-1}}{x} dx;$ 26) $\int_{0}^{1} xe^{-2x} dx;$ 27) $\int_{0}^{3} \ln(x+3) dx;$ 28) $\int_{-\pi}^{0} (x-\pi)^{2} \cos 3x dx;$
29) $\int_{0}^{1/2} \arcsin x dx;$ 30) $\int_{0}^{\sqrt{3}} x \operatorname{arctg} x dx;$ 31) $\int_{0}^{\frac{\pi}{4}} \frac{x \sin x}{\cos^{3} x} dx;$ 32) $\int_{1}^{e^{2}} \frac{\ln x dx}{x^{2}}.$

Задачи к разд. 17.5

Задача 1. Вычислить несобственные интегралы 1-го рода (с бесконечными пределами интегрирования):

a)
$$\int_{5}^{\infty} \frac{dx}{x \ln x}$$
; 6)
$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 2}$$
.

Решение: а) имеем несобственный интеграл с бесконечным верхним пределом:

$$\int_{5}^{\infty} \frac{\mathrm{d}x}{x \ln x} = \lim_{b \to \infty} \int_{5}^{b} \frac{\mathrm{d}(\ln x)}{\ln x} = \lim_{b \to \infty} \left(\ln \ln x \Big|_{5}^{b} \right) = \lim_{b \to \infty} (\ln \ln b - \ln \ln 5) = \infty \Rightarrow$$

⇒ нс.и. расходится.

Если обозначить $\lim_{b\to +\infty} F(b) = F(+\infty)$, то можно записать решение, пользуясь обобщенной формулой Ньютона—Лейбница

$$\int_{a}^{\infty} f(x) dx = F(+\infty) - F(a), F'(x) = f(x)$$
178

$$\int_{5}^{\infty} \frac{\mathrm{d}x}{x \ln x} = \int_{5}^{\infty} \frac{\mathrm{d}(\ln x)}{\ln x} = \ln \ln x|_{5}^{\infty} = \ln \ln(\infty) - \ln \ln 5 = \infty;$$

6)
$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 2} = \int_{-\infty}^{0} \frac{dx}{(x+1)^2 + 1} + \int_{0}^{+\infty} \frac{dx}{(x+1)^2 + 1} =$$

$$= \lim_{a \to \infty} \int_{a}^{0} \frac{dx}{(x+1)^2 + 1} + \lim_{b \to \infty} \int_{0}^{b} \frac{dx}{(x+1)^2 + 1} = \lim_{a \to -\infty} \arctan(x+1) \Big|_{a}^{0} +$$

$$+ \lim_{b \to \infty} \arctan(x+1) \Big|_{0}^{b} = \frac{\pi}{2} + \frac{\pi}{2} = \pi.$$

Задача 2. Вычислить несобственные интегралы 2-го рода (от разрывных функций):

a)
$$\int_{0}^{1} \frac{dx}{\sqrt{x}}$$
; 6) $\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$.

Решение: а) подынтегральная функция $f(x) = \frac{1}{\sqrt{x}}$ терпит разрыв в точке x = 0:

$$\int_{0}^{1} \frac{dx}{\sqrt{x}} = \lim_{\varepsilon \to 0} \int_{\varepsilon}^{1} \frac{dx}{\sqrt{x}} = \lim_{\varepsilon \to 0} 2\sqrt{x} \Big|_{\varepsilon}^{1} = \lim_{\varepsilon \to 0} (2 - 2\sqrt{\varepsilon}) = 2;$$

6)
$$\int_{0}^{1} \frac{dx}{\sqrt{1 - x^{2}}} = \lim_{c \to 1 - 0} \int_{0}^{c} \frac{dx}{\sqrt{1 - x^{2}}} = \lim_{c \to 1 - 0} \left(\arcsin x \Big|_{0}^{c} \right) =$$
$$= \lim_{c \to 1 - 0} \left(\arcsin c - \arcsin 0 \right) = \frac{\pi}{2}.$$

Задачи для самостоятельного решения

33)
$$\int_{2}^{\infty} \frac{dx}{x\sqrt{\ln^{3} x}}$$
; 34) $\int_{2}^{\infty} \frac{x dx}{x^{2} - 1}$; 35) $\int_{1}^{\infty} \frac{dx}{\sqrt{3x + 5}}$; 36) $\int_{-\infty}^{\infty} \frac{dx}{x^{2} + 4x + 9}$;

37)
$$\int_{0}^{1} \frac{dx}{x}$$
; 38) $\int_{1}^{1/e} \frac{dx}{x \ln^{2} x}$; 39) $\int_{-3}^{-1} \frac{dx}{\sqrt[3]{(x+2)^{2}}}$; 40) $\int_{-1}^{0} \frac{x dx}{1+x}$.

41) Выбрать верный ответ из четырех вариантов:

1)
$$\int_{0}^{1} \frac{2x dx}{\sqrt{16 + x^2}}$$
; 1) 1; 2) 2; 3) 3; 4) 2,5;

2)
$$\int_{1}^{e} \ln^{2} x dx$$
; | 1) e ; | 2) e^{-1} | 3) $e - 2$ | 4) $1 + e$; | 3) $\int_{0}^{\infty} \frac{\arctan x dx}{1 + x^{2}}$; | 1) $\pi^{2}/8$; | 2) 1; | 3) ∞ ; | 4) π ; | 4) $\int_{\pi/2}^{\pi} \frac{\sin x dx}{(1 - \cos x)^{2}}$; | 1) 1; | 2) 1,5; | 3) 0,5; | 4) -1; | 5) $\int_{2}^{8} \frac{dx}{x^{2} + 6x + 8}$. | 1) $(\ln 3)/2$; | 2) $(\ln (3/4))/2$; 3) $(\ln (5/4))/2$; 4) $\ln (1/4)$.

18. ГЕОМЕТРИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА

Опорный конспект № 18

18.1. Вычисление площади плоской фигуры (S_D)

1. S_D в декартовых координатах

6)
$$\partial D:$$

$$\begin{cases} y = f_1(x), \\ y = f_2(x), \\ x = a, \\ y = b \end{cases}$$
 $S_D = \int_a^b (f_2(x) - f_1(x)) dx, f_1(x) \le f_2(x)$

2. Площадь криволинейной трапеции при параметрическом задании кривой

$$\partial D: \begin{cases} x = x(t), & y = y(t), & x(\alpha) = a, & x(\beta) = b \\ x = a, & x = b \, (a < b), & y = 0 \end{cases}$$

$$Y = \begin{cases} x = x(t) \\ y = y(t) \end{cases}$$

$$O = \begin{cases} a \\ b \end{cases}$$

$$S_D = \int_{\alpha}^{\beta} y(t) x_t' dt$$

3. Площадь криволинейного сектора в полярных координатах

$$\partial D: r = r(\varphi), \alpha \leq \varphi \leq \beta$$

$$S_D = \frac{1}{2} \int_{\alpha}^{\beta} [r(\varphi)]^2 d\varphi$$

18.2. Вычисление объемов тел

1. Объем тела Ω по известным площадям поперечных сечений Известны площади сечений S(x) тела Ω плоскостями $\bot OX$,

$$a \le x \le b \Rightarrow V_D = \int_a^b S(x) dx$$

2. Объем тела вращения

Криволинейная трапеция $D, \partial D$: $y = y(x), x = a, x = b \ (a < b),$ y = 0, вращается вокруг оси $OX \Rightarrow S(x) = \pi[y(x)]^2$,

$$V_x = \pi \int_a^b [y(x)]^2 dx$$

Криволинейная трапеция D,

 ∂D : x = x(y), y = c, y = d (c < d), x = 0, вращается вокруг оси OY ⇒

$$S(y) = \pi[x(y)]^2$$
, $V_y = \pi \int_{c}^{d} [x(y)]^2 dy$

18.3. Вычисление длины дуги кривой L

1. Длина дуги в прямоугольной системе координат

L:
$$y = y(x), x \in [a, b], y'(x) \in C_{[a,b]} \Rightarrow l = \int_{a}^{b} \sqrt{1 + (y'(x))^2} dx$$

2. Длина дуги при параметрическом задании L

L:
$$x = x(t), y = y(t), t \in [\alpha, \beta], x'(t), y'(t) \in C_{[\alpha,\beta]} \Rightarrow l = \int_{\alpha}^{\beta} \sqrt{(x'(t))^2 + (y'(t))^2} dt$$

3. Длина дуги в полярных координатах

$$L: r = r(\varphi), \ \varphi \in [\alpha, \ \beta], \ r'(\varphi) \in C_{[\alpha, \ \beta]} \Rightarrow$$

$$\Rightarrow l = \int_{\alpha}^{\beta} \sqrt{r^2(\varphi) + (r'(\varphi))^2} d\varphi$$

Задачи к разд. 18.1

Задача 1. ∂D : $y = x^2, x = -1, x = 2, y = 0$. Найти S_D .

Рис. 18.1

Решение: Граница области D (∂D) образована параболой $y=x^2$, прямыми x=-1, x=2 и осью OX (рис. 18.1). Это криволинейная трапеция, поэтому

$$S_D = \int_{-1}^{2} x^2 dx = \frac{x^3}{3} \Big|_{-1}^{2} = 3.$$

Задача 2. ∂D : y = -x, $y = 2x - x^2$. Найти S_D .

Решение: Находим точки пересечения параболы $y = 2x - x^2$ и прямой y = -x:

$$2x - x^2 = -x \Rightarrow x^2 - 3x = 0 \Rightarrow x_1 = 0, x_2 = 3 \Rightarrow A(0, 0), B(3, -3).$$

Строим область D (рис. 18.2) и вычисляем площадь:

$$S_D = \int_0^3 [(2x - x^2) - (-x)] dx = \int_0^3 (3x - x^2) dx = \left(\frac{3x^2}{2} - \frac{x^3}{3}\right) \Big|_0^3 = \frac{9}{2}.$$

Рис. 18.2

Задача 3. ∂D : $y = \sqrt{x}, y = 1, y = 2, x = 0$. Найти S_D .

Решение: Имеем криволинейную трапецию, прилежащую к оси OY (рис. 18.3):

$$S_D = \int_{1}^{2} y^2 dy = \frac{y^3}{3} \Big|_{1}^{2} = \frac{1}{3} (8 - 1) = \frac{7}{3}.$$

Рис. 18.3

Задача 4. ∂D : $y = a(1 - \cos t), \ x = a(t - \sin t), \ y = 0, 0 \le x \le 2\pi a$. Найти S_D .

Решение: Область *D* ограничена первой аркой циклоиды и осью OX (рис. 18.4). Это криволинейная трапеция при параметрическом задании кривой:

$$S_{D} = \int_{0}^{2\pi a} y dx = \begin{cases} y = a(1 - \cos t), & x = a(t - \sin t), \\ dx = a(1 - \cos t)dt, & \frac{x \mid 0 \mid 2\pi a}{t \mid 0 \mid 2\pi} \end{cases} =$$

$$= \int_{0}^{2\pi} a^{2} (1 - \cos t)^{2} dt = a^{2} \int_{0}^{2\pi} (1 - 2\cos t + \cos^{2} t) dt =$$

$$= a^{2} \int_{0}^{2\pi} dt - 2a^{2} \int_{0}^{2\pi} \cos t dt + a^{2} \int_{0}^{2\pi} \frac{1 + \cos 2t}{2} dt =$$

$$= a^{2} t \Big|_{0}^{2\pi} - 2a^{2} \sin t \Big|_{0}^{2\pi} + \frac{a^{2}}{2} t \Big|_{0}^{2\pi} + \frac{a^{2}}{4} \sin 2t \Big|_{0}^{2\pi} = 3\pi a^{2}.$$

Рис. 18.4

Задача 5.
$$\partial D$$
: $(x^2 + y^2) = a^2(x^2 - y^2)$. Найти S_D .

Решение: Кривая с данным уравнением называется лемнискатой Бернулли. Для ее построения и вычисления ограниченной ею площади удобно перейти к полярной системе координат:

$$x = r\cos\varphi, y = r\sin\varphi \Rightarrow r^4 = a^2r^2(\cos^2\varphi - \sin^2\varphi) \Rightarrow r^2 = a^2\cos^2\varphi.$$

Рис. 18.5

Для построения кривой (рис. 18.5) находим: $r_{\rm max}=a$ при $\cos 2\phi=1$, т.е. $\phi_0=0$, $\phi_1=\pi$; $r_{\rm min}=0$ при $\cos 2\phi=0$, т.е. $\phi_0=\frac{\pi}{4}$, $\phi_1=\frac{3\pi}{4}$, $\phi_2=\frac{5\pi}{4}$, $\phi_3=\frac{7\pi}{4}$. Вычислим четвертую часть площади:

$$\frac{1}{4}S = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} a^{2} \cos 2\phi d\phi = \frac{a^{2}}{4} \sin 2\phi \Big|_{0}^{\frac{\pi}{4}} = \frac{a^{2}}{4} \Rightarrow S = a^{2}.$$

Задачи для самостоятельного решения

Найти площади S_D областей со следующими границами:

1)
$$\partial D$$
: $y = x^2 + 1$, $x = 3$, $x = 0$, $y = 0$;

2)
$$\partial D: y = x^2, y = 2x + 3;$$
 3) $\partial D: y = 3 - 2x - x^2, y = 0;$

2)
$$\partial D: y = x^2, y = 2x + 3;$$
 3) $\partial D: y = 3 - 2x - x^2, y = 0;$ **4)** $\partial D: y = x^2 + 4x, y = x + 4;$ **5)** $\partial D: y = 4 - x^2, y = x^2 - 2x;$

6)
$$\partial D: xy = 1, x = 2, y = x$$
; **7)** $\partial D: y^2 = 2x + 4, x = 0$;

8)
$$\partial D: y^2 = -x + 1, y^2 = -\frac{x}{4} + 1;$$

9)
$$\partial D$$
: $y^2 = 2x + 1, x - y - 1 = 0$;

10)
$$\partial D: x = 3\cos t, y = 2\sin t;$$
 11) $\partial D: x = a\cos^3 t, y = a\sin^3 t;$

12)
$$\partial D: r = a(1 + \cos \varphi);$$
 13) $\partial D: r = 4\sin^2 \varphi;$

14)
$$\partial D: x^2 + y^2 = 1, x^2 + y^2 = 4, y = x, y = x\sqrt{3} \ (y > 0);$$

15)
$$\partial D: x^2 + y^2 - 2x = 0, y = x \ (y > 0).$$

Задачи к разд. 18.2

Задача 1. ∂D : $y^2 = x^3$, x = 1, y = 0. Найти: a) V_x ; б) V_y (объемы тел, полученных при вращении D вокруг OX и OY соответственно). Y

Рис. 18.6

Решение: а) при вращении области D вокруг оси ОХ получаем тело, изображенное на рис. 18.6, объем которого вычисляется по формуле

$$V_x = \pi \int_0^1 x^3 dx = \pi \frac{x^4}{4} \Big|_0^1 = \frac{\pi}{4};$$

б) объем тела вращения вокруг оси ОУ (рис. 18.7) находится как разность объемов V_{ν_1} цилиндра и V_{ν_2} тела, образованного вращением

криволинейной трапеции с границей

$$\partial D^*$$
: $x = \sqrt[3]{y^2}, y = 1, x = 0.$ Тогда
$$V_y = V_{y_1} - V_{y_2} = \pi \int_0^1 \mathrm{d}y - \pi \int_0^1 (\sqrt[3]{y^2})^2 \mathrm{d}y = \pi - \pi \frac{3y^{\frac{7}{3}}}{7} \Big|_0^1 = \frac{4\pi}{7}.$$

Задача 2. ∂D : $y = e^x$, x = 0, y = 0 (x < 0). Найти V_x .

Решение: Имеем бесконечное тело вращения (рис. 18.8). Используя определение несобственного интеграла 1-го рода и формулу ОК, разд. 18.2, находим

$$V_x = \pi \int_{-\infty}^{0} e^{2x} dx = \frac{\pi}{2} e^{2x} \Big|_{-\infty}^{0} = \frac{\pi}{2} (e^0 - e^{-\infty}) = \frac{\pi}{2}.$$

Рис. 18.8

Задачи для самостоятельного решения

16)
$$\partial D$$
: $y = x^3$, $y = 0$, $x = 2$. Найти: a) V_x ; б) V_y .

17)
$$\partial D$$
: $y = 2x - x^2$, $y = 0$. Найти V_x .

18)
$$\partial D: x^2 - y^2 = 4, y = \pm 2.$$
 Haйти V_y .

19)
$$\partial D$$
: $y = 1 - x^2, x + y = 1$. Найти V_y

19)
$$\partial D: y = 1 - x^2, x + y = 1$$
. Найти V_y .
20) $\partial D: x = a\cos^3 t, y = a\sin^3 t$. Найти V_y .

Задачи к разд. 18.3

Задача 1. Дана дуга AB: $v = \sqrt{x^3}$; A(0, 0), B(4, 8), Найти длину lдуги AB.

Решение: Дуга задана в прямоугольной системе координат. Ее длина

$$I = \int_{0}^{4} \sqrt{1 + \left(\left(x^{\frac{3}{2}}\right)'\right)^{2}} dx = \int_{0}^{4} \sqrt{1 + \left(\frac{3}{2}x^{\frac{1}{2}}\right)^{2}} dx = \int_{0}^{4} \sqrt{1 + \frac{9}{4}x} dx =$$

$$= \frac{2\left(1 + \frac{9}{4}x\right)^{\frac{3}{2}}}{3} \cdot \frac{4}{9}\Big|_{0}^{4} = \frac{8}{27}(\sqrt{10^{3}} - 1).$$

Задача 2. $L: x = a\cos^3 t, y = a\sin^3 t$. Найти l.

Решение: Находим длину четвертой части астроиды (рис. 18.9), заданной параметрически:

$$\frac{1}{4}l = \int_{0}^{\frac{\pi}{2}} \sqrt{(a\cos^{3}t)'^{2} + (a\sin^{3}t)'^{2}} dt =$$

$$= a \int_{0}^{\frac{\pi}{2}} \sqrt{(3\cos^{2}t \cdot \sin t)^{2} + (3\sin^{2}t \cdot \cos t)^{2}} dt =$$

$$= 3a \int_{0}^{\frac{\pi}{2}} \sqrt{\cos^{2}t \cdot \sin^{2}t \cdot (\cos^{2}t + \sin^{2}t)} dt = 3a \int_{0}^{\frac{\pi}{2}} \sin t \cdot \cos t dt =$$

$$= \frac{3a}{2} \int_{0}^{\frac{\pi}{2}} \sin 2t dt = -\frac{3a}{2} \frac{\cos 2t}{2} \Big|_{0}^{\frac{\pi}{2}} = -\frac{3a}{4} (\cos \pi - \cos 0) = \frac{3}{2}a \Rightarrow l = 6a.$$

Рис. 18.9

Задача 3. $L: r = a(1 - \cos \varphi)$. Найти l.

Решение: Находим длину половины кардиоиды (рис. 18.10), заданной в полярных координатах:

$$\frac{1}{2}l = \int_{0}^{\pi} \sqrt{(a(1-\cos\varphi))^{2} + (a(1-\cos\varphi)')^{2}} d\varphi = a\int_{0}^{\pi} \sqrt{(1-\cos\varphi)^{2} + \sin^{2}\varphi} d\varphi = a\int_{0}^{\pi} \sqrt{1-2\cos\varphi + \cos^{2}\varphi + \sin^{2}\varphi} d\varphi = a\int_{0}^{\pi} \sqrt{1-2\cos\varphi + \cos\varphi + \cos\varphi} d\varphi = a\int_{0}^{\pi} \sqrt{1-2\cos\varphi + \cos\varphi} d\varphi = a\int_{0}^{\pi} \sqrt{1-2\cos\varphi + \cos\varphi} d\varphi = a\int_{0}^{\pi} \sqrt{1-2\cos\varphi} d\varphi = a\int_{0}^{\pi} \sqrt{1-$$

$$a\int_{0}^{\pi} \sqrt{2(1-\cos\varphi)} d\varphi = 2a\int_{0}^{\pi} \sin\frac{\varphi}{2} d\varphi = 2a \cdot 2\left(-\cos\frac{\varphi}{2}\right)\Big|_{0}^{\pi} = 4a \Rightarrow l = 8a.$$

Рис. 18.10

Задачи для самостоятельного решения

Найти длины дуг следующих кривых:

21)
$$L$$
: $y = \frac{2}{\pi} \ln \sin \frac{\pi x}{2}$, $\frac{1}{2} \le x \le \frac{3}{2}$; **22)** L : $x = \frac{1}{4}y^2 - \frac{1}{2} \ln y$, $1 \le y \le 2$; **23)** $x = \frac{t^3}{3} - t$, $y = t^2 + 2$, $0 \le t \le 3$; **24)** L : $x = a(t - \sin t)$, $y = a(1 - \cos t)$, $0 \le t \le 2\pi$; **25)** L : $t = a\phi$, $0 \le \phi \le 2\pi$.

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ

Вариант № 1

1.
$$\int_{0}^{\pi/4} \cos^3 x \, dx$$
. *Ombem*: $\frac{5\sqrt{2}}{2}$.

2.
$$\int_{0}^{1} xe^{-x} dx$$
. *Omsem*: $\frac{e-2}{e}$.

3.
$$\partial D$$
: $y = x^2$, $y = 8 - x^2$. $S_D = ?$ Omsem: $\frac{64}{3}$.

4.
$$\partial D: xy = 1, x = 2, x = 3, y = 0.$$
 $V_x = ?$ Omsem: $\frac{\pi}{6}$.

5. L:
$$\begin{cases} x = \frac{t^2}{2}, \\ y = \frac{t^3}{6}, \end{cases} 0 \le t \le \sqrt{5}. l = ? Omsem: \frac{19}{6}.$$

Вариант № 2

1.
$$\int_{0}^{\pi/2} \sin^3 x \cdot \cos^2 x \, dx$$
. *Ombem*: $\frac{2}{15}$.

2.
$$\int_{1}^{e} x \ln x dx$$
. *Ombem*: $\frac{e^2}{4} + \frac{1}{4}$.

3.
$$\partial D$$
: $y = -x^2 + 4$, $y = 0$. $S_D = ?$ Ombem: $10\frac{2}{3}$.

4.
$$\partial D$$
: $y = x, y = 2x, y = 1$. $V_y = ?$. Omsem: $\frac{\pi}{4}$.

5. L:
$$\begin{cases} x = \frac{1}{3}t^3, \\ y = \frac{1}{2}t^2, \end{cases}$$
 $0 \le t \le \sqrt{3}. l = ? Omsem: \frac{7}{3}.$

Вариант № 3

1.
$$\int_{0}^{\sqrt{3}} x \arctan x \, dx$$
. *Ombem*: $\frac{2}{3}\pi - \frac{\sqrt{3}}{2}$.

2.
$$\int_{0}^{\pi} \sin^2 x \cdot \cos^2 x dx$$
. Omeem: $\frac{\pi}{8}$.

3.
$$\partial D$$
: $y = e^x$, $y = e^{2x}$, $x = 1$. $S_D = ?$ Ombem: $\frac{1}{2}(e-1)^2$.

4.
$$\partial D$$
: $x = -y^2 + 1$, $x = 0$. $V_y = ?$ Omsem: $\frac{406}{15}\pi$.

5.
$$L: \begin{cases} x = t^2, \\ y = \frac{2}{3}t^3, \end{cases} 0 \le t \le 1. l = ? Omsem: \frac{2}{3}(2\sqrt{2} - 1).$$

Дополнительные задания к вариантам контрольной работы

1. Как вычисляется
$$S_D$$
? $\partial D = \begin{cases} y = r_1(\varphi), \\ y = r_2(\varphi) & (r_1(\varphi) < r_2(\varphi)), \\ \varphi = \alpha, & \varphi = \beta. \end{cases}$
2. Как вычисляется V_x ? $\partial D = \begin{cases} y = f_1(x), \\ y = f_2(x) & (0 < f_1(x) < f_2(x)), \\ x = a, & x = b & (a < b). \end{cases}$

2. Как вычисляется
$$V_x$$
? $\partial D = \begin{cases} y = f_1(x), \\ y = f_2(x) \ (0 < f_1(x) < f_2(x)), \\ x = a, \ x = b \ (a < b). \end{cases}$

РАСЧЕТНОЕ ЗАДАНИЕ

Задание 1. Вычислить определенный интеграл: a)
$$\int_{a}^{b} x^{m} ((-1)^{n} x^{2} + c)^{\frac{l}{2}} dx;$$

N	т	n	l	а	b	с
1	2	1	-1	0	1	4
2	4	2	-7	0	1	1
3	4	2	-7	$\sqrt{2}$	2	-1
4	4	1	-7	0	1	2
5	2	2	-5	1	3	2 3
6	2	2	-7 -5 -5	2	$2\sqrt{2}$	-2
7	2	1	1	0	1	1
8	2	2	-5	0	2	4
9	0	2	-3	2	$2\sqrt{3}$	-3
10	2	1	-5	0	1	4
11	2	2	-7	0	$6\sqrt{6}$	2
12	0	2	-3	2	$\sqrt{6}$	-3
13	0	1	3	0	$\sqrt{3}$	3
14	0	2	-5	0	$\sqrt{2}$	2
15	-2	2	-3	2	$2\sqrt{3}$	-3
16	0	1	-3	1	$\sqrt{3}$	4
17	-2	2	-3	1	$\sqrt{3}$	3
18	-4	2	1	1	2	-1
19	-2	1	-3	1	$\begin{array}{c c} \sqrt{3} \\ 2 \\ \hline \sqrt{2} \end{array}$	4
20	-2	2	-1	$\sqrt{2}$	$\sqrt{6}$	2
21	-6	2	3	$\sqrt{2}$	2	-2
22	-2	1	1	$\sqrt{3}$	3	12
23	-4	1	1	1	2	4
24	-4	2	1	$\sqrt{2}$	$\sqrt{6}$	6
25	-8	2	5	2	4	-4
26	-4	1	-1	$\sqrt{2}$	2	8
27	-6	2	3	$\sqrt{3}$	3	3
28	-8	2	3	1	$\sqrt{2}$	-1

N	m	n	l	а	b	с
29	-4	2	-1	1	$\sqrt{3}$	3
30	-6	2	1	$\sqrt{3}$	2	-3

6)
$$\int_{a}^{b} (C_1 x^2 + C_2 x + C_3) f(x) dx$$
.

N	a	b	C_1	C_2	C_3	f(x)
1	3	4	0	2	-4	ln(x-2)
2	0	$\sqrt{3}$	3	6	0	$arctg \frac{x}{\sqrt{3}}$
3	0	$\frac{\pi}{4}$	0	2	-1	sin4x
4	0	π	0	2	3	$\cos 3x$
5	0	1	0	2	5	e^{2x}
6	4	5	3	2	0	ln(x-3)
7	0	2	3	4	0	$arctg \frac{x}{2}$
8	0	π	0	3	1	sin <i>x</i>
9	0	$\frac{\pi}{2}$	0	1	-3	$\cos 2x$
10	0	1	0	2	3	e^{3x}
11	5	6	3	1	0	ln(x-4)
12	0	1	3	2	0	arctgx
13	0	$\frac{\pi}{2}$	0	-3	1	$\sin \frac{x}{2}$
14	0	π	0	2	5	$\cos \frac{x}{3}$
15	0	1	0	3	-4	$e^{\frac{x}{4}}$
16	2	3	-3	4	0	ln(x-1)
17	0	$\sqrt{2}$	3	6	0	$arctg \frac{x}{\sqrt{2}}$
18	0	π/6	3	-2	0	sin <i>x</i>
19	0	$\frac{\pi}{4}$	1	0	0	$\cos 4x$
20	0	1	0	3	-1	e ^{-x}
21	3	4	1	0	-2	ln(x-2)
22	0	$\frac{4}{\sqrt{3}}$	3	4	0	$\arctan \frac{x}{\sqrt{3}}$

N	a	b	C_1	C_2	C_3	f(x)
23	0	1	1	-2	0	$e^{\frac{x}{2}}$
24	4	5	1	0	0	ln(x-3)
25	0	2	1	0	0	$arctg \frac{x}{2}$
26	0	π	3	4	0	$\sin x$
27	0	$\frac{\pi}{2}$	3	6	0	$\cos x$
28	0	1	3	2	0	e ^{-x}
29	0	π	0	2	-3	$\sin \frac{x}{4}$
30	-1	0	0	2	1	ln(x + 2)

Задание 2.

Вычислить площадь фигуры, ограниченной линиями: a) $y = ax^2 + bx + c$, bx - 2y + 2c = 0;

a)
$$y = ax^2 + bx + c$$
, $bx - 2y + 2c = 0$;

N	а	b	c	N	а	b	c
1	2	7	-4	16	4	-11	-3
2	3	8	-3	17	3	8	-4
3	2	9	4	18	-5	9	2
4	3	14	-5	19	-2	3	9
5	1	-1	6	20	-5	-8	4
6	1	-3	-10	21	-2	3	9
7	3	-7	-6	22	-4	-11	3
8	-2	9	-4	23	6	5	-1
9	-3	14	15	24	4	-3	-1
10	-1	-3	10	25	2	9	10
11	5	9	-2	26	2	5	3
12	2	3	-9	27	-2	7	-6
13	5	-8	-4	28	3	-10	3
14	3	4	-4	29	4	-13	3
15	2	3	-9	30	2	7	6

6)
$$x^2 + y^2 + ax + by = 0, y = cx,$$

 $y + x + (-1)^n y + (-1)^{n+1} x = 0.$

N	а	b	c	N	а	b	c
1	1	2	1	16	5	-1	$-\sqrt{3}$
2	-2	1	-1	17	-1	5	-1
3	3	4	$\sqrt{3}$	18	-4	3	$-\sqrt{3}/3$
4	-4	-3	$\sqrt{3}$	19	1	3	$\sqrt{3}$
5	1	-2	-1	20	-1	3	-1
6	3	2	$\sqrt{3}/3$	21	3	1	$\sqrt{3}/3$
7	2	-3	$-\sqrt{3}$	22	4	1	1
8	4	-1	-1	23	3	4	$\sqrt{3}$
9	2	5	1	24	3	-5	-1
10	-5	2	$-\sqrt{3}$	25	5	-2	$-\sqrt{3}/3$
11	3	-2	-1	26	1	-3	$-\sqrt{3}/3$
12	2	-1	$-\sqrt{3}$	27	-1	4	$-\sqrt{3}$
13	4	-3	-1	28	-2	-1	$\sqrt{3}/3$
14	-3	2	$-\sqrt{3}/3$	29	-3	1	-1
15	-4	-1	1	30	-2	3	$-\sqrt{3}$

Задание 3.

Определить объем тела, образуемого вращением фигуры D с границей:

а)
$$y = 0$$
, $x = b$, $x = c$, $y = (-1)^N (Ae^{ax} + B)$; вокруг оси OX ; A, B — две цифры номера группы;

N	а	b	c	N	а	b	c	N	а	b	c
1	-1	-1	1	11	4	2	3	21	-3	-5	0
2	-2	0	2	12	5	1	5	22	-4	-4	3
3	3	1	3	13	4	-4	0	23	-5	-3	5
4	-4	-2	1	14	-5	-3	1	24	3	-2	-1
5	5	-3	0	15	-1	3	5	25	4	-4	1
6	2	-4	-2	16	2	2	5	26	-5	0	5
7	-3	-1	2	17	-3	-3	3	27	4	-1	1
8	-4	0	4	18	-4	2	4	28	5	-4	4
9	-5	-1	3	19	5	-3	2	29	-1	-3	-2
10	3	-2	2	20	2	0	5	30	-2	-1	5

б)
$$\begin{cases} x = a\cos t, \\ y = b\sin t + c, \\ y = b\sin \beta + c, \ y = b\sin \alpha + c, \end{cases}$$
 $\beta \le t \le \alpha$; вокруг оси OY .

N	а	b	c	α	β	N	а	b	c	α	β
1	1	2	-1	$\pi/4$	0	16	4	6	-4	$-\pi/6$	$-\pi/2$
2	2	3	1	$\pi/3$	0	17	5	6	2	$\pi/3$	$\pi/6$
3	3	4	2	$\pi/2$	π/6	18	3	2	-2	$-\pi/6$	$-\pi/4$
4	4	5	1	0	$-\pi/3$	19	4	3	1	$\pi/2$	$\pi/3$
5	1	3	-1	0	$-\pi/4$	20	5	4	1	$-\pi/4$	$-\pi/2$
6	2	4	-2	$\pi/2$	0	21	6	5	-1	$-\pi/4$	$-\pi/3$
7	3	5	2	$-\pi/3$	$-\pi/2$	22	4	2	1	$\pi/4$	0
8	1	4	3	0	$-\pi/3$	23	5	3	2	$\pi/2$	$\pi/6$
9	2	5	-3	$\pi/3$	$\pi/4$	24	5	2	-1	0	$-\pi/2$
10	3	4	1	$\pi/6$	0	25	6	4	3	$-\pi/3$	$-\pi/2$
11	1	5	1	$\pi/2$	$\pi/4$	26	6	3	1	$\pi/2$	$-\pi/2$
12	2	4	-1	$-\pi/6$	$-\pi/3$	27	6	2	-1	$\pi/3$	$\pi/6$
13	1	6	3	$\pi/2$	$-\pi/2$	28	4	4	3	$-\pi/4$	$-\pi/2$
14	2	6	3	$\pi/4$	π/6	29	2	4	2	$\pi/3$	0
15	3	6	4	0	$-\pi/2$	30	4	5	-2	0	$-\pi/3$

Задание 4.

Определить длину кривой
$$\begin{cases} x = at^3, \\ y = bt^2 + c, \end{cases}$$
 $0 \le t \le \frac{\sqrt{5}}{3}m$, где $m = \frac{b}{a}$.

N	a	b	c	N	а	b	c	N	а	b	c
1	4	2	1	11	-2	2	-3	21	19	1	4
2	$\sqrt{19}$	1	-2	12	2	4	4	22	19	3	4
3	6	3	3	13	3	3	2	23	4	6	0
4	_√19	1	4	14	2	1	1	24	-4	4	6
5	2	2	5	15	-2	1	-1	25	$2\sqrt{19}$	4	-7
6	2	3	-1	16	-2	3	3	26	2	3	-8
7	1	3	3	17	4	6	-2	27	-2	3	0
8	1	6	-4	18	1	2	1	28	$3\sqrt{19}$	1	1
9	-1	3	-5	19	-4	6	3	29	3	1	2
10	-1	6	0	20	-1	2	-3	30	-3	6	-3

Теоретические вопросы

- 1. Дайте определение определенного интеграла.
- 2. Каковы свойства определенного интеграла?
- 3. Как связаны определенный и неопределенный интегралы?
- 4. Каковы методы интегрирования определенного интеграла?
- 5. Каковы приложения определенного интеграла?

Ответы к разд. 17, 18

17. Определенный интеграл

1)
$$\frac{1}{2}(e^6 - 1)$$
; 2) $\frac{\pi}{12}$; 3) $\frac{7}{3}$; 4) $\arctan 3 - \arctan 2$; 5) $33\frac{1}{3}$; 6) $\frac{3}{2}\pi$; 7) 3π ;

8)
$$\frac{248}{9}$$
; **9)** 12; **10)** $6\frac{2}{3}$; **11)** $\frac{3}{8}\pi + \frac{\ln 2}{2}$; **12)** 0,125 Дж; **13)** $\frac{2}{3}\ln \frac{10}{7} + 3$ ед.;

14)
$$e - \sqrt{e}$$
; **15)** $\pi/6$; **16)** 2; **17)** $\frac{2}{7}$; **18)** $\frac{\pi}{3\sqrt{3}}$; **19)** $\frac{3}{2}(\ln 4 - 1)$;

20)
$$7 + 2 \ln 2$$
; **21)** $\frac{\pi}{6}$; **22)** $\frac{\pi}{6}$; **23)** $\frac{\pi}{3} + \frac{\sqrt{3}}{2}$; **24)** $\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}$; **25)** $\sqrt{3} - \frac{\pi}{3}$;

26)
$$\frac{e^2-3}{4e^2}$$
; **27)** $3(\ln 12-1)$; **28)** $-\frac{2\pi}{3}$; **29)** $\frac{\pi}{12} + \frac{\sqrt{3}}{2} - 1$; **30)** $\frac{2\pi}{3} - \frac{\sqrt{3}}{2}$;

31)
$$\frac{\pi}{4} - \frac{1}{2}$$
; 32) $1 - \frac{3}{e^2}$; 33) $\frac{2}{\sqrt{\ln 2}}$; 34) Расходится; 35) Расходится;

36)
$$\frac{\pi\sqrt{5}}{5}$$
; **37)** Расходится; **38)** Расходится; **39)** 6; **40)** Расходится.

18. Геометрические приложения определенного интеграла

1) 12; 2)
$$10\frac{2}{3}$$
; 3) $\frac{32}{3}$; 4) $20\frac{5}{6}$; 5) 9; 6) $\frac{3}{2} - \ln 2$; 7) $\frac{16}{3}$; 8) 4; 9) $\frac{16}{3}$;

10)
$$6\pi$$
; **11)** $\frac{3\pi a^2}{8}$; **12)** $\frac{3\pi a^2}{2}$; **13)** 6π ; **14)** $\frac{\pi}{8}$; **15)** $\frac{\pi}{4} - \frac{1}{2}$; **16)** a) $\frac{128\pi}{7}$;

6)
$$\frac{64\pi}{5}$$
; 17) $\frac{16\pi}{15}$; 18) $\frac{64\pi}{3}$; 19) $\frac{\pi}{6}$; 20) $\frac{32}{105}\pi a^3$; 21) $\frac{4}{\pi} \ln \lg \frac{3\pi}{8} - \frac{4}{\pi} \ln \lg \frac{\pi}{8}$;

22)
$$\frac{3}{4} + \frac{1}{2} \ln 2$$
; **23)** 12; **24)** 8*a*; **25)** $\frac{a}{2} (2\pi \sqrt{1 + 4\pi^2} + \ln(2\pi + \sqrt{1 + 4\pi^2}))$.

19. ЭЛЕМЕНТЫ ТЕОРИИ ФУНКЦИЙ И ФУНКЦИОНАЛЬНОГО АНАЛИЗА

Опорный конспект № 19

19.1. Мера Лебега. Измеримые множества

 $\mathbf{R} = (-\infty, +\infty), A \in \mathbf{R}$

- **O:** M(m) верхняя (нижняя) грань $\Leftrightarrow a \leq M \ (a \geq m) \ \forall a \in A$ $M^* = \sup A \ (m^* = \inf A)$ точная верхняя (нижняя) грань A $\mathfrak{I} = [a, b] \lor (a, b) \lor [a, b) \lor (a, b]$
- **О:** $\{\Im\} \subset \mathbf{R}$ покрытие $A \Leftrightarrow \forall c \in A \exists \Im: c \in \Im$
- **O:** Mepa $\Im \Leftrightarrow \mu(\Im) = b a$
- **О:** Внешняя мера $A, A \subset [a, b] \Leftrightarrow \mu^*(A) = \inf_{\mathcal{S}_k \supset A} \sum_{b} \mu(\mathcal{S}_k)$

Внутренняя мера $A \Leftrightarrow \mu^*(A) = (b - a) - \mu^*(\overline{A}), \overline{A} = [a, b] \setminus A$

О: Ограниченное множество *A* измеримо с мерой $\mu(A) \Leftrightarrow \mu^*(A) = \mu^*(A) = \mu(A)$

19.2. Измеримые функции. Интеграл Лебега

- **O:** $f(x), x \in A$, измерима $\Leftrightarrow A$ измеримо $\land \forall$ конечного $c \in \mathbf{R}$ измеримо A(f(x) > c)
- Т. (Лузина): f(x) измерима и почти всюду конечна на $[a, b] \Rightarrow \forall \delta > 0 \; \exists \phi(x) \in C_{[a,b]} : \mu A \, (f(x) \neq \phi(x)) < \delta \, \blacksquare$
- **О:** $\int_{E} f(x) d\mu = \lim_{\max \Delta y_{i} \to 0} \sum_{i=1}^{n} \eta_{i} \mu(E_{i})$ интеграл Лебега, где f(x) измерима на измеримом E, $m = \inf_{x \in E} f(x)$, $M = \sup_{x \in E} f(x)$, [m, M] раз-

бивают на $[y_{i-1}, y_i)$, $i = \overline{1, n}$, $\Delta y_i = y_i - y_{i-1}$, $\eta_i \in [y_i - y_{i-1})$, $E_i = E \ (y_{i-1} \le f(x) < y_i)$

 $E_i = E \ (y_{i-1} \le f(x) < y_i)$ Т: $\exists \int_a^b f(x) dx = J \ ($ Римана $) \Rightarrow \int_a^b f(x) d\mu = J \blacksquare$

19.3. Функции с ограниченным изменением (ФОИ).

Интеграл Стилтьеса

- **O:** $f(x), x \in [a, b], \Phi O M \Leftrightarrow \exists c > 0: \forall \Im_n (a = x_0 < x_1 < ... < x_n = b) \Rightarrow \sum_{k=1}^n |f(x_k) f(x_{k-1})| \le c; V_a^b[f] = \sup_{\Im_n} \sum_{k=1}^n |f(x_k) f(x_{k-1})|$
- O: $\int_{a}^{b} f(x) dg(x) = \lim_{\max \Delta x_{i} \to 0} \sum_{i=1}^{n} f(\xi_{i}) [g(x_{i}) g(x_{i-1})]$ интеграл Рима-

на—Стилтьеса, где $f(x) \in C_{[a,b]}$, g(x) — ФОИ на [a, b], [a, b] разбивается на $[x_{i-1}, x_i]$, $i = \overline{1, n}$, $\Delta x_i = x_i - x_{i-1}$, $\xi_i \in [x_i - x_{i-1}]$

Задачи для самостоятельного решения к разд. 19.3

Показать, что для интеграла Стилтьеса выполняются свойства:

1)
$$\int_{a}^{b} (f_{1}(x) + f_{2}(x))dg(x) = \int_{a}^{b} f_{1}(x)dg(x) + \int_{a}^{b} f_{2}(x)dg(x);$$
2)
$$\int_{a}^{b} f(x)d(g_{1}(x) + g_{2}(x)) = \int_{a}^{b} f(x)dg_{1}(x) + \int_{a}^{b} f(x)dg_{2}(x);$$
3)
$$\int_{a}^{b} k_{1}f(x)d(k_{2}g(x)) = k_{1}k_{2}\int_{a}^{b} f(x)dg(x).$$

Глава 7 ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

20. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ І ПОРЯДКА

Опорный конспект № 20

20.1. Основные понятия

$$F(x, y, y', ..., y^{(n)}) = 0 - \mathrm{OДУ} \, n$$
-го порядка $y = \varphi(x) - \mathrm{решение} \, \mathrm{OДУ} \Leftrightarrow F(x, \varphi(x), \varphi'(x), ..., \varphi^{(n)}(x)) \equiv 0$

20.2. ОДУ І порядка

$$F(x, y, y') = 0 - ОДУ I порядка$$

$$y' = f(x, y)$$
 — разрешенное относительно y' ,

$$P(x, y)dx + Q(x, y)dy = 0$$
 — другой вид

Задача Коши:
$$y' = f(x, y), y(x_0) = y_0$$

Т:
$$f(x, y), f'_y(x, y)$$
 — непрерывны в окрестности т. $M_0(x_0, y_0)$ ⇒ решение задачи Коши ∃! в окрестности т. x_0 ■

Общее решение ОДУ при непрерывности f(x, y), $f'_y(x, y)$ в D — функция $y = \varphi(x, c)$, c = const, если:

1)
$$y = \varphi(x, c)$$
 — решение ОДУ $\forall c$;

2)
$$\forall y(x_0) = y_0 \; \exists ! \; c = c_0 : \; y = \varphi(x, \; c_0)$$
 — решение задачи Коши, $(x_0, \; y_0) \in D$

20.3. ОДУ с разделяющимися переменными

ОДУ, приводящиеся к виду $f_2(y)$ d $y = f_1(x)$ dx

a)
$$y' = \frac{f_1(x)}{f_2(x)} \Leftrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{f_1(x)}{f_2(y)} \ (\times f_2(y)\mathrm{d}x, \,$$
интегрируем) \Rightarrow

$$\Rightarrow \int f_2(y) dy = \int f_1(x) dx + c;$$

6)
$$P_1(x)P_2(y)dx + Q_1(x)Q_2(y)dy = 0$$

$$(:P_2(y)Q_1(x),$$
 интегрируем) \Rightarrow

$$\Rightarrow \int \frac{P_1(x)}{Q_1(x)} dx = -\int \frac{Q_2(y)}{P_2(y)} dy + c$$

20.4. Однородные ДУ І порядка

О:
$$f(x, y)$$
 — однородная функция n -го измерения \Leftrightarrow $\Leftrightarrow f(\lambda x, \lambda y) = \lambda^n f(x, y)$ для $\forall \lambda$

$$y'=f(x,\ y)$$
 — однородное ДУ $\Leftrightarrow f(\lambda x,\ \lambda y)=f(x,\ y)\Leftrightarrow\Leftrightarrow f(x,\ y)=f^*(y/x)$ Замена $y/x=u,\ y=xu\Rightarrow u+xu'=f^*(u)$ ОДУ с разделяющимися переменными $\Leftrightarrow \frac{\mathrm{d}u}{f^*(u)-u}=\frac{\mathrm{d}x}{x}$

20.5. Линейные ДУ І порядка

$$y' + p(x)y = q(x)$$
. Замена $y = uv$: $y' = u'v + uv' \Rightarrow$
 $\Rightarrow u'v + uv' + p(x)uv = q(x) \Leftrightarrow u'v + u(v' + p(x)v) = q(x)$

- 1) v' + p(x)v = 0 OДУ с разделяющимися переменными, ищем \forall частное решение v = v(x)
- 2) u'v = q(x) OДУ с разделяющимися переменными, ищем общее решение

Задачи к разд. 20.1-20.3

Решить следующие ОДУ I порядка:

1.
$$y'(1 + x^2) = xy$$
.

Решение: Выразим из уравнения производную $y' = \frac{xy}{1+x^2}$. Это

ОДУ с разделяющимися переменными (см. ОК, разд. 20.3a)). Заменим производную отношением дифференциалов и затем разделим переменные:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{1+x^2} \cdot y \bigg| \cdot \bigg(\frac{\mathrm{d}x}{y} \bigg) \Rightarrow \frac{\mathrm{d}y}{y} = \frac{x \mathrm{d}x}{1+x^2}, \text{интегрируем} \Rightarrow$$

$$\Rightarrow \int \frac{\mathrm{d}y}{y} = \int \frac{x \mathrm{d}x}{1+x^2} + c^* \Rightarrow \ln|y| = \frac{1}{2}\ln(1+x^2) + \ln c \Rightarrow$$

$$\Rightarrow y = c\sqrt{1+x^2} - \text{решение данного ОДУ}.$$

2.
$$\sin y \cos x dy = \cos y \sin x dx$$
; $y(0) = \frac{\pi}{4}$.

Решение: Это задача Коши для ОДУ с разделяющимися переменными (см. ОК, разд. 20.2, 20.3 б)). Сначала найдем общее решение ДУ путем разделения переменных и последующего интегрирования:

$$\frac{\sin y \, dy}{\cos y} = \frac{\sin x \, dx}{\cos x} \Rightarrow \int \frac{d\cos y}{\cos y} = \int \frac{d\cos x}{\cos x} + c^* \Rightarrow$$

 $\ln|\cos y| = \ln|\cos x| + \ln c \Rightarrow \cos y = c\cos x$ — общий интеграл. Далее, используя начальное условие $y(0) = \frac{\pi}{4}$, находим $c_0 = \frac{\cos\frac{\pi}{4}}{\cos 0} = \frac{1}{\sqrt{2}}$. Тогда $\cos y = \frac{\cos x}{\sqrt{2}}$ или $y = \arccos\frac{\cos x}{\sqrt{2}}$ — решение задачи Коши, т.е. частное решение данного ОДУ, удовлетворяющее начальному условию.

3. Торговыми учреждениями реализуется продукция B, о которой в момент времени t из числа потенциальных покупателей N знает X покупателей. Скорость изменения числа знающих покупателей пропорциональна как числу знающих, так и числу не знающих о продукции B покупателей. В начальный момент времени о товаре знало $\frac{N}{\gamma}$ человек. Найти X(t) (уравнение логистической кривой).

Решение: Так как скорость изменения числа знающих поку-

пателей
$$V=rac{\mathrm{d}X}{\mathrm{d}t},$$
 то имеем задачу Коши:
$$\begin{cases} rac{\mathrm{d}X}{\mathrm{d}t}=kX(N-X),\\ X|_{t=0}=rac{N}{\gamma}, \end{cases}$$

где k > 0 — коэффициент пропорциональности. Получено ОДУ 1-го порядка с разделяющимися переменными. Умножаем его на

$$\frac{\mathrm{d}t}{kX(N-X)} \Rightarrow \int \frac{\mathrm{d}X}{X(N-X)} = \int k \, \mathrm{d}t + c^* \Rightarrow \frac{1}{N} \left(\int \frac{\mathrm{d}X}{X} + \int \frac{\mathrm{d}X}{N-X} \right) =$$

$$= kt + c^* \Rightarrow \ln \frac{X}{N-X} = Nkt + c \Rightarrow \frac{X}{N-X} = Ae^{Nkt}, A = e^c.$$

Используя начальное условие, находим $\frac{N}{\gamma(N-N/\gamma)} = A \Rightarrow$ $\Rightarrow A = \frac{N}{N(\gamma-1)} = \frac{1}{\gamma-1}$, т.е. решение задачи Коши $\frac{X}{N-X} = \frac{\mathrm{e}^{Nkt}}{\gamma-1}$ или $X = \frac{N}{1+(\gamma-1)\mathrm{e}^{-Nkt}}$.

4. Материальная точка массой m=1 г движется прямолинейно под действием силы F, прямо пропорциональной времени t, отсчитываемому от t=0, и обратно пропорциональной скорости движения v. Известно, что при t=10 с скорость v=0.5 м/с,

 $F = 4 \cdot 10^{-5} \, \, \text{H.}$ Найти скорость ν через минуту после начала движения.

Решение: Согласно второму закону Ньютона $F=m\cdot\frac{\mathrm{d}v}{\mathrm{d}t}$. С другой стороны, по условию задачи $F=k\frac{t}{v}$ \Rightarrow приходим к дифференциальному уравнению $m\frac{\mathrm{d}v}{\mathrm{d}t}=k\frac{t}{v}$, где $m=10^{-3}$ кг, а коэффициент пропорциональности k находим из условия v(10)=0.5; $F(10)=4\cdot10^{-5}$: $k=\frac{Fv}{t}=\frac{4\cdot10^{-5}\cdot0.5}{10}=2\cdot10^{-6}$ \Rightarrow получим ДУ с разделяющимися переменными: $10^{-3}\frac{\mathrm{d}v}{\mathrm{d}t}=2\cdot10^{-6}\frac{t}{v}$ \Rightarrow $v\mathrm{d}v=2\cdot10^{-3}t\mathrm{d}t$ \Rightarrow $\Rightarrow \frac{v^2}{2}=10^{-3}t^2+c$. Подставив t=10, v=0.5, найдем значение c: $\frac{0.25}{2}=10^{-3}\cdot10^2+c$ \Rightarrow c=0.025 \Rightarrow $v^2=0.002t^2+0.05$ и v(60)=10000 $=\sqrt{0.002\cdot3600+0.05}=\sqrt{0.002\cdot3600+0.05}=\sqrt{0.002}$

Задачи для самостоятельного решения

Решить следующие ОДУ:

1)
$$\sqrt{1-x^2}y' = y$$
; 2) $\sqrt{y}dx + x^2dy = 0$; 3) $y' = e^{x+y}$; 4) $x\sqrt{1-y^2}dx + \sqrt{1-x^2}dy = 0$, $y(0) = 1$; 5) $xy' = tgy$; 6) $(1+y^2)dx = xydy$, $y(2) = 1$; 7) $y'\sin x = y\ln y$, $y\left(\frac{\pi}{2}\right) = e$.

- **8)** В процессе химической реакции жидкие химические вещества A и B объемом 10 и 20 л соответственно образуют новое жидкое химическое вещество C. Считая, что температура в процессе реакции не меняется, а также что из каждых двух объемов вещества A и одного объема вещества B образуется три объема вещества C, определить количество X вещества C в произвольный момент времени t, если за 20 мин его образуется 6 л.
- **9)** Производитель продает фрукты. При имеющихся запасах фруктов недельное предложение товара зависит как от ожидаемой цены в наступающей неделе, так и от предполагаемого изменения цен на следующей неделе. Пусть p цена на фрукты на текущей неделе, p' тенденция формирования цены, спрос q и предложение s определяются соотношениями: q = 4p' 2p + 29, s = 4p' 2p' + 2p'

=5p'+8p-71. Найти зависимость p от времени t, если p(0)=1 (ден. ед.).

Задачи к разд. 20.4

Решить следующие ОДУ I порядка:

1.
$$y' = \frac{y}{x} \ln \frac{y}{x}, y(1) = 1.$$

Решение: Это задача Коши для однородного ДУ I порядка. Введем замену u = y/x, y = ux, y' = xu' + u, которая сводит данное уравнение к ДУ с разделяющимися переменными:

$$u = x \frac{du}{dx} = u \ln u \Rightarrow x \frac{du}{dx} = u \ln u - u \Rightarrow \frac{du}{u \ln u - u} = \frac{dx}{x} \Rightarrow$$

$$\Rightarrow \int \frac{d(\ln u - 1)}{\ln u - 1} = \int \frac{dx}{x} \Rightarrow \ln |\ln u - 1| = \ln |x| + \ln c \Rightarrow$$

$$\Rightarrow \ln u - 1 = cx \Rightarrow \ln \frac{y}{x} = cx + 1 \Rightarrow y = xe^{cx + 1} - \text{общее решение.}$$

Используя начальное условие, имеем $1 = e^{c+1} \Rightarrow c = -1$, т.е. $y = xe^{-x+1}$ — решение задачи Коши.

2.
$$(x + y)dx + xdy = 0$$
.

Решение: Это однородное ДУ I порядка, так как при подстановке λx , λy вместо x, y оно не меняется. Находим $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x+y}{x}$ и делаем замену $\frac{y}{x} = u$:

$$u + x \frac{\mathrm{d}u}{\mathrm{d}x} = -(1+u) \Rightarrow x \mathrm{d}u = -(1-2u)\mathrm{d}x \Rightarrow \int \frac{\mathrm{d}u}{1+2u} =$$

$$= -\int \frac{\mathrm{d}x}{x} + c^* \Rightarrow \frac{1}{2}\ln|1+2u| = -\ln|x| + \ln|c| \Rightarrow \sqrt{1+2u} = \frac{c}{x} \Rightarrow$$

$$\Rightarrow 1 + \frac{2y}{x} = \frac{c^2}{x^2} \Rightarrow y = \frac{1}{2}\left(\frac{c^2}{x} - x\right) - \text{общее решение.}$$

Задачи для самостоятельного решения

Решить следующие ОДУ:

10)
$$y' = 1 + \frac{y}{x}$$
; **11)** $(y^2 + x^2) dx - xy dy = 0$; **12)** $y' = \frac{y}{x} + \frac{x}{y}$; **13)** $y^2 + x^2y' = 0$, $y(1) = 1$; **14)** $y + \sqrt{x^2 + y^2} - xy' = 0$;

15)
$$xy' = y + xe^{\frac{y}{x}}$$
; **16)** $xy' = x\sin\frac{y}{x} + y$, $y(1) = \frac{\pi}{2}$; **17)** $(y^2 - 3x^2)dy + 2xydx = 0$, $y(0) = 1$.

Задачи к разд. 20.5

Решить следующие ОДУ І порядка:

1.
$$y' + 2xy = xe^{-x^2}$$
.

Решение: Имеем линейное ОДУ 1-го порядка, которое решаем заменой y = uv, y' = u'v + v'u. При подстановке в уравнение получим $u'v + uv' + 2uvx = xe^{-x^2} \Rightarrow u'v + u(v' + 2vx) = xe^{-x^2}$.

Ищем v(x) как частное решение ОДУ:

1) v' + 2vx = 0, тогда для u(x) получаем ОДУ 2) $u'v = xe^{-x^2}$. Оба уравнения с разделяющимися переменными. Решаем первое.

1)
$$\frac{dv}{dx} = -2vx \Rightarrow \int \frac{dv}{v} = -\int 2x dx \Rightarrow \ln|v| = -x^2 \Rightarrow v = e^{-x^2}$$
.

Подставляем *v* во второе уравнение:

2)
$$u'e^{-x^2} = xe^{-x^2} \Rightarrow \frac{du}{dx} = x \Rightarrow \int du = \int xdx + c \Rightarrow u = \frac{x^2}{2} + c$$
.

Окончательно получаем общее решение: $y = e^{-x^2} \left(\frac{x^2}{2} + c \right)$.

2.
$$y' - \frac{3y}{x} = x$$
.

Решение: Это линейное ОДУ I порядка. На примере его решения рассмотрим еще один метод решения таких уравнений — метод вариации произвольной постоянной. Сначала решим соответствующее уравнение с нулевой правой частью (линейное однородное уравнение):

$$y' - \frac{3y}{x} = 0 \Rightarrow \frac{dy}{dx} = \frac{3y}{x} \Rightarrow \int \frac{dy}{y} = \int \frac{3dx}{x} \Rightarrow$$

$$\Rightarrow \ln|y| = 3\ln|x| + \ln c \Rightarrow y = cx^3$$
.

Далее, полагая $y = c(x)x^3$, найдем производную $y' = c'(x)x^3 + 3x^2c(x)$. Подставив в исходное уравнение y и y', получим

$$c'(x)x^3 + 3x^2c(x) - \frac{3c(x)x^3}{x} = x \Rightarrow c'(x)x^3 = x \Rightarrow c'(x) = \frac{1}{x^2} \Rightarrow$$

$$\Rightarrow c(x) = \int \frac{\mathrm{d}x}{x^2} = -\frac{1}{x} + c \Rightarrow y = \left(c - \frac{1}{x}\right)x^3 \Rightarrow y = cx^3 - x^2$$
— общее решение.

Задачи для самостоятельного решения

18)
$$y' - 3x^2y = x^2e^{x^3}$$
; **19)** $y' + 2y = e^{-2x}$, $y(0) = 0$; **20)** $xy' = 2x\ln x - y$; **21)** $y'\cos x - y\sin x = \sin 2x$; **22)** $xy' + 2y = x + 3$; **23)** $xy' + y - e^x = 0$, $y(a) = b$; **24)** $xy' - \frac{y}{x+1} = x$, $y(1) = 0$; **25)** $x^2y' = 2xy - 3$, $y(-1) = 1$;

26) Выбрать для дифференциального уравнения слева ответ справа:

1)
$$(x^{2} + 1)^{-1}y' - y/x = 0;$$

2) $y' - y/x = x^{2} + 1;$
3) $y' - y/x = x^{2}/y^{2};$
1) $y = x^{3}/2 + x\ln|x| + cx;$
2) $y = x\sqrt[3]{3\ln|cx|};$
3) $y = cxe^{\frac{x^{2}}{2}};$
4) $y = x^{3} + \ln|cx|.$

21. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ II ПОРЯДКА

Опорный конспект № 21

21.1. Основные понятия об ОДУ II порядка

О: F(x, y, y', y'') = 0 — общий вид ОДУ 2-го порядка, y'' = f(x, y, y') — ДУ, разрешенное относительно y''

Задача Коши:
$$y'' = f(x, y, y'), y|_{x=x_0} = y_0, y'|_{x=x_0} = y'_0$$

Общее решение ОДУ II порядка — функция $y = \varphi(x, c_1, c_2), c_1, c_2 = \text{const},$ при условиях:

- 1) $y = \varphi(x, c_1, c_2)$ решение ДУ при $\forall c_1, c_2$;
- 2) $\forall y|_{x=x_0}=y_0, \forall y'|_{x=x_0}=y_0'\exists !c_{10}, \exists !c_{20}: y=\varphi(x, c_{10}, c_{20})$ решение задачи Коши, $(x_0, y_0, y_0')\in D$ области $\exists !$ решения

21.2. ОДУ II порядка, допускающие понижение порядка

y'' = f(x, y') не содержит явно y

Замена: $y'=p(x),\ y''=p'\Rightarrow p'=f(x,\ p)$ — ОДУ I порядка. Пусть $p=\varphi(x,\ c_1)$ — его общее решение $\Rightarrow y'=\varphi(x,\ c_1)$ — ДУ с разделяющимися переменными

$$y'' = f(y, y')$$
 не содержит явно x

Замена:
$$y' = p(y), \ y'' = \frac{\mathrm{d}p}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = p \cdot p'; p'p = f(y, p)$$
 — ОДУ 1-го

порядка. Пусть $p = \varphi(y, c_1)$ — его общее решение $\Rightarrow y' = \varphi(y, c_1)$ — ДУ с разделяющимися переменными

21.3. Линейные дифференциальные уравнения II порядка

1. Линейное однородное ДУ II порядка

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = 0 (*)$$

Общее решение (*) $y = c_1 y_1 + c_2 y_2; y_1(x), y_2(x)$ — фундаментальная система решений (*), т.е. $W(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} \neq 0$ на (α, β)

2. Общее решение линейного однородного ДУ II порядка с постоянными коэффициентами

$$y'' + py' + qy = 0$$
, p , $q = \text{const}$
Характеристическое уравнение: $k^2 + pk + q = 0$

Корни
$$k^2 + pk + q = 0$$
 $k_1 \neq k_2 \in \mathbb{R}$ $k_1 = k_2 = k$ $k_1 = z, k_2 = \overline{z},$ $z \in \mathbb{C},$ $z = \alpha + i\beta$ Общее решение $y'' + py' + qy = c_1 e^{k_1 x} + c_2 e^{k_2 x}$ $y = e^{kx} (c_1 + c_2 x)$ $y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$

3. Линейное неоднородное ДУ ІІ порядка

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = b(x)$$
 (**)

Общее решение (**) $y = y^* + \overline{y}$, где y^* — общее решение (*), \overline{y} — частное решение (**).

4. Подбор \overline{y} для линейного неоднородного ДУ II порядка с постоянными коэффициентами

$$y'' + py' + qy = f(x)$$

Bид $f(x)$	$P_n(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$	$P_n(x)e^{mx}$	$M\cos mx + N\sin mx$
Выбор \overline{y}	$=x^r(A_0x^n+$	$[0,k_{1,2}\neq m,$	$\overline{y} = x^{r} (A \cos mx + B \sin mx),$ $r = \begin{cases} 0, k_{1} \neq m, \\ 1, k_{1} = m \end{cases}$

5. Метод вариации произвольных постоянных для нахождения \overline{y} $y^* = c_1 y_1 + c_2 y_2 \Rightarrow \overline{y} = c_1(x) y_1 + c_2(x) y_2$, где $c_1(x)$, $c_2(x)$ определяются из системы $c_1' y_1 + c_2' y_2 = 0$, $c_1' y_1' + c_2' y_2' = b(x)$

Задачи к разд. 21.1-21.2

Решить следующие ОДУ II порядка:

1.
$$y'' = y' + x$$
.

Решение: Это ОДУ II порядка вида y'' = f(x, y'), допускающее понижение порядка путем замены y' = p, p = p(x), y'' = p'. Приходим к линейному ДУ 1-го порядка: $p' = p + x \Rightarrow p = uv \Rightarrow$

$$u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x} - uv = x \Rightarrow \begin{cases} 1 & \frac{\mathrm{d}v}{\mathrm{d}x} - v = 0, \\ 2 & \frac{\mathrm{d}u}{\mathrm{d}x} \cdot v = x, \end{cases} \Rightarrow 1) \int \frac{\mathrm{d}v}{v} = \int \mathrm{d}x \Rightarrow$$

$$\Rightarrow \ln v = x \Rightarrow v = e^x;$$

2)
$$\frac{\mathrm{d}u}{\mathrm{d}x} e^x = x \Rightarrow \int \mathrm{d}u = \int x e^{-x} \mathrm{d}x + c_1 \Rightarrow u = -x e^{-x} - e^{-x} + c_1 \Rightarrow$$

$$\Rightarrow p = c_1 e^x - x - 1 = y' \Rightarrow \int dy = \int (c_1 e^x - x - 1) dx \Rightarrow$$

$$\Rightarrow y = c_1 e^x - \frac{x^2}{2} - x + c_2$$
 — общее решение.

2.
$$yy'' = (y')^2 - 3y'$$
.

Решение: Это ОДУ II порядка вида y'' = f(y, y'), допускающее понижение порядка путем замены $y' = p, p = p(y), y'' = p \frac{\mathrm{d}p}{\mathrm{d}y}$. По-

лучим $yp \frac{dp}{dy} = p^2 - 3p$ — уравнение с разделяющимися переменны-

ми
$$\Rightarrow$$
 (полагая $p \neq 0$) $\frac{\mathrm{d}p}{p-3} = \frac{\mathrm{d}y}{y} \Rightarrow \ln|p-3| = \ln|y| + \ln c_1 \Rightarrow$

$$\Rightarrow p = c_1 + 3 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = c_1 y + 3 \Rightarrow \frac{\mathrm{d}y}{c_1 y + 3} = \mathrm{d}x \Rightarrow \frac{\ln|c_1 y + 3|}{c_1} = x + c_2 - \frac{1}{2}$$

общий интеграл.

Рассмотрим теперь случай p=0: $\frac{\mathrm{d} y}{\mathrm{d} x}=0 \Rightarrow y=c$ — также решение исходного уравнения.

Задачи для самостоятельного решения

1) Ускорение прямолинейно движущейся материальной точки в зависимости от времени выражается формулой f(t) = 6t - 2. Найти закон движения, если в начальный момент времени t = 0 скорость v = 1 м/с, а путь s = 0.

Решить следующие ОДУ II порядка:

2)
$$y'' = \cos 2x$$
; 3) $xy'' = y'$; 4) $xy'' = 1 + x^2$; 5) $y''x \ln x = y'$, $y'|_{x=e} = 1$, $y|_{x=e} = 1$; 6) $y''(x^2 + 1) = 2xy'$, $y'|_{x=0} = 3$, $y|_{x=0} = 1$; 7) $yy'' - y'^2 = 0$; 8) $y''y' = e^{3y}$, $y'|_{x=0} = 1$, $y|_{x=0} = 0$; 9) $y''y^3 = 1$; 10) $y'' - \frac{4y'^2}{y-2} = 0$; 11) $y'' \operatorname{tg} y = 2(y')^2$; 12) $yy'' = (y')^2 - (y')^3$, $y'|_{x=1} = -1$, $y|_{x=1} = 1$.

Задачи к разд. 21.3

Решить следующие линейные однородные ДУ II порядка (ЛОДУ):

1.
$$y'' - y' - 2y = 0$$
.

Решение: Это ЛОДУ II порядка с постоянными коэффициентами. Составляем характеристическое уравнение $k^2-k-2=0$. Его корни $k_1=-1, k_2=2 \Rightarrow y=c_1 \mathrm{e}^{-x}+c_2 \mathrm{e}^{2x}$ — общее решение.

$$2. y'' - 4y' + 4y = 0.$$

Решение: Характеристическое уравнение $k^2 - 4k + 4 = 0$ имеет равные корни $k_1 = k_2 = 2 \Rightarrow y = e^{2x}(c_1 + c_2x)$.

3.
$$v'' + 2v' + 2v = 0$$
, $v(0) = 1$, $v'(0) = 1$.

Решение: Это задача Коши для ЛОДУ II порядка (ОК, разд. 21.1). Характеристическое уравнение $k^2 + 2k + 2 = 0$ имеет комплексно-сопряженные корни $k_{1,2} = -1 \pm i \Rightarrow y = e^{-x}(c_1\cos x + c_2\sin x)$ — общее решение. Отсюда $y' = e^{-x}(-c_1\cos x - c_2\sin x - c_1\sin x + c_2\cos x)$.

Подставив начальные условия в формулы для y и y', имеем систему для определения c_1, c_2 :

$$\begin{cases} e^0(c_1\cos 0 + c_2\sin 0) = 1, \\ e^0(-c_1\cos 0 - c_2\sin 0 - c_1\sin 0 + c_2\cos 0) = 1, \end{cases} \Rightarrow \begin{cases} c_1 = 1, \\ -c_1 + c_2 = 1, \end{cases} \Rightarrow \\ \Rightarrow \begin{cases} c_1 = 1, \\ c_2 = 2, \end{cases} \Rightarrow y = e^{-x}(\cos x + 2\sin x) - \text{решение задачи Коши.} \end{cases}$$

Задачи для самостоятельного решения

13) y'' - 5y' - 6y = 0; **14)** 4y'' + 4y' + y = 0; **15)** y'' + 4y = 0, y(0) = 3, y'(0) = 0; **16)** y'' + 4y' = 0, y(0) = 3, y'(0) = 1; **17)** 2y'' + 4y' + 3y = 0.

Решить следующие линейные неоднородные ДУ 2-го порядка (ЛНДУ):

4.
$$y'' - 6y' + 9y = e^{3x}$$
.

Решение: Это ЛНДУ II порядка с постоянными коэффициентами. Ищем общее решение в виде $y = y^* + \overline{y}$:

- а) y^* общее решение уравнения y'' 6y' + 9y = 0, его характеристическое уравнение $k^2 6k + 9 = 0$, т.е. $k_1 = k_2 = 3 \Rightarrow y^* = e^{3x}(c_1 + c_2x)$;
- б) \overline{y} частное решение уравнения $y'' 6y' + 9y = \mathrm{e}^{3x}$. Подберем его по виду правой части $f(x) = \mathrm{e}^{3x}$, используя таблицу ОК, разд. 21.3, п. 4: $\overline{y} = Ax^2\mathrm{e}^{3x}$. Так как $k_{1,2} = 3 = m$, то r = 2 и $\overline{y} = Ax^2\mathrm{e}^{3x}$. Найдем $\overline{y}' = 2Ax\mathrm{e}^{3x} + 3Ax^2\mathrm{e}^{3x} = \mathrm{e}^{3x}(2Ax + 3Ax^2)$; $\overline{y}'' = 3\mathrm{e}^{3x}(2Ax + 3Ax^2) + \mathrm{e}^{3x}(2A + 6Ax) = \mathrm{e}^{3x}(2A + 12Ax + 9Ax^2)$.

Уравнение примет вид

$$e^{3x}(2A + 12Ax + 9Ax^2 - 12Ax - 18Ax^2 + 9Ax^2) = e^{3x} \Rightarrow$$

 $\Rightarrow 2Ae^{3x} = e^{3x} \Rightarrow 2A = 1 \Rightarrow A = 0,5 \Rightarrow y = e^{3x}(c_1 + c_2x) +$
 $+ 0.5x^2e^{3x}.$

5.
$$v'' - 4v = 8x^3$$
.

Pешение: Ищем решение в виде $y = y^* + \overline{y}$:

- а) y^* общее решение уравнения y'' 4y = 0, его характеристическое уравнение $k^2 4 = 0$, т.е. $k_{1,2} = \pm 2 \Rightarrow y^* = c_1 e^{2x} + c_2 e^{-2x}$;
- б) \overline{y} частное решение уравнения $y'' 4y = 8x^3$, ищем его в виде $\overline{y} = Ax^3 + Bx^2 + Cx + D$, так как правая часть уравнения многочлен третьей степени и $k_{1,2} \neq 0$. Находим $\overline{y}' = 3Ax^2 + 2Bx + C$, $\overline{y}'' = 6Ax + 2B$. Подставим \overline{y} в уравнение: $6Ax + 2B 4Ax^3 4Bx^2 4Cx 4D = 8x^3 \Rightarrow -4A = 8$, -4B = 0, -4C + 6A = 0, $-4D + 2B \Rightarrow A = -2$, B = D = 0, $C = -3 \Rightarrow y = c_1e^{2x} + c_2e^{-2x} 2x^3 3x$.

6.
$$y'' + 9y = -\cos 3x$$
.

Решение: Ищем решение в виде $y = y^* + \overline{y}$:

а) y^* — общее решение уравнения y'' + 9y = 0, его характеристическое уравнение $k^2 + 9 = 0$, т.е. $k_{1,2} = \pm 3i \Rightarrow y^* = c_1 \cos 3x + c_2 \sin 3x$;

б) $\overline{y} = x(A\cos 3x + B\sin 3x)$, так как k = 3i — корень характеристического уравнения. Найдем \overline{y}' , y'' и подставим \overline{y} в уравнение:

$$\overline{y}' = A\cos 3x + B\sin 3x + x(-3A\sin 3x + 3B\cos 3x),
\overline{y}'' = -3A\sin 3x + 3B\cos 3x - 3A\sin 3x + 3B\cos 3x - 9x \times
\times (A\cos 3x + B\sin 3x) = -6A\sin 3x + 6B\cos 3x - 9\overline{y} \Rightarrow -9\overline{y} -
- 6A\sin 3x + 6B\cos 3x + 9\overline{y} = -\cos 3x \Rightarrow -6A\sin 3x +
+ 6B\cos 3x = -\cos 3x \Rightarrow -6A = 0, 6B = -1 \Rightarrow A = 0,
B = -\frac{1}{6} \Rightarrow y = c_1\cos 3x + c_2\sin 3x - \frac{1}{6}x\sin 3x.$$
7. $y'' + 4y' + 4y = \frac{e^{-2x}}{x^3}$.

Решение: Это ЛНДУ II порядка решим методом вариации произвольных постоянных (см. ОК, разд. 21.3, п. 5). Ищем общее решение в виде $y=y^*+\bar{y}$:

а) найдем y^* — общее решение уравнения y'' + 4y' + 4y = 0. Характеристическое уравнение $k^2 + 4k + 4 = 0$, $k_{1,2} = -2 \Rightarrow y^* = e^{-2x}(c_1 + c_2x)$;

$$\begin{array}{l} \text{ б) } \overline{y} = c_{\mathrm{l}}(x)\mathrm{e}^{-2x} + c_{2}(x)x\mathrm{e}^{-2x} \Rightarrow \begin{cases} c_{\mathrm{l}}'(x)\mathrm{e}^{-2x} + c_{2}'(x)x\mathrm{e}^{-2x} = 0, \\ -2c_{\mathrm{l}}'(x)\mathrm{e}^{-2x} + c_{2}'(x)(\mathrm{e}^{-2x} - 2x\mathrm{e}^{-2x}) = \frac{\mathrm{e}^{-2x}}{x^{3}}, \end{cases} \\ \Delta = \begin{vmatrix} \mathrm{e}^{-2x} & x\mathrm{e}^{-2x} \\ -2\mathrm{e}^{-2x} & \mathrm{e}^{-2x} - 2x\mathrm{e}^{-2x} \end{vmatrix} = \mathrm{e}^{-4x}, \Delta_{1} = \begin{vmatrix} 0 & x\mathrm{e}^{-2x} \\ \frac{\mathrm{e}^{-2x}}{x^{3}} & \mathrm{e}^{-2x} - 2x\mathrm{e}^{-2x} \end{vmatrix} = \\ = -\frac{\mathrm{e}^{-4x}}{x^{2}}, \\ \Delta_{2} = \begin{vmatrix} \mathrm{e}^{-2x} & 0 \\ -2\mathrm{e}^{-2x} & \frac{\mathrm{e}^{-2x}}{x^{3}} \end{vmatrix} = \frac{\mathrm{e}^{-4x}}{x^{3}}, c_{\mathrm{l}}'(x) = \frac{\Delta_{1}}{\Delta} = -\frac{1}{x^{2}}; c_{2}'(x) = \frac{\Delta_{2}}{\Delta} = \frac{1}{x^{3}}; \end{cases} \\ c_{\mathrm{l}}(x) = -\int \frac{\mathrm{d}x}{x^{2}} = \frac{1}{x}; c_{2}(x) = \int \frac{\mathrm{d}x}{x^{3}} = -\frac{1}{2x^{2}} \Rightarrow \\ \Rightarrow y = \mathrm{e}^{-2x}(c_{1} + c_{2}x) + \frac{\mathrm{e}^{-2x}}{x} - \frac{x\mathrm{e}^{-2x}}{2x^{2}} = \mathrm{e}^{-2x}\left(c_{1} + c_{2}x + \frac{1}{2x}\right) - \text{общее} \end{cases}$$
 решение.

Задачи для самостоятельного решения

18)
$$4y'' - y = x^3 - 24x$$
; **19)** $y'' - 3y' + 2y = e^x$; **20)** $y'' - 7y' + 6y = \sin x + 2\cos x$; **21)** $y'' + 4y' + 5y = 3x - 2$; **22)** $3y'' - 4y' = 5$; **23)** $y'' + y = -\sin 2x$, $y(\pi) = y'(\pi) = 1$; **24)** $y'' - 2y' + y = e^{3x}(2x + 1)$; **25)** $y'' + 4y = 12\cos 2x$; **26)** $y'' - y' = \frac{1}{1 + e^x}$, $y(0) = 1$, $y'(0) = 2$; **27)** $y'' + 2y' + y = \frac{e^{-x}}{x}$; **28)** $y'' - 4y' + 5y = \frac{e^{2x}}{\cos x}$; **29)** $y'' + y = \operatorname{tg}^2 x$; **30)** $y'' + 4y' + 4y = e^{-2x} \ln x$.

- **31)** Эластические свойства мышц приблизительно характеризуются уравнением биомеханики $\frac{\mathrm{d}^2 l}{\mathrm{d}t^2} + k \frac{\mathrm{d}l}{\mathrm{d}t} + Ll + M = 0$, где M общая масса мышц, параметры k и L определяют меру зависимости напряжения мышц от длины l и скорости ее изменения $V = \frac{\mathrm{d}l}{\mathrm{d}t}$. Найти l(t), исследовать ее механический смысл.
- **32)** Уравнение кинетики последовательных обратимых реакций имеет вил

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + (k_1 + k_2 + k_3 + k_4) \frac{\mathrm{d}x}{\mathrm{d}t} + (k_1 k_3 + k_2 k_4 + k_1 k_5) x = k_2 k_4,$$

где $k_i = \text{const}, i = \overline{1,5}$. Найти зависимость количества вещества x от времени t.

33) Тело массой m, подвешенное на пружине, находится в состоянии равновесия (положение x=0). Толчком оно выводится из состояния равновесия, при этом ему сообщается скорость V_0 . Найти закон движения тела, если жесткость пружины равна C.

22. ПОНЯТИЕ О РЕШЕНИИ ОДУ ВЫСШИХ ПОРЯДКОВ И СИСТЕМ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Опорный конспект № 22

22.1. Линейные ДУ *п*-го порядка

O:
$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = b(x)$$
 (*)

Общее решений ЛОДУ n-го порядка (b(x) = 0):

$$y = c_1 y_1 + c_2 y_2 + \dots + c_n y_n,$$

где $y_1(x)$, $y_2(x)$, ..., $y_n(x)$ —система фундаментальных решений Общее решение ЛНДУ (*):

$$y = y^* + \overline{y}$$
 (см. ОК, разд. 21.3, п. 3)

22.2. Нормальные системы ОДУ

O:
$$y'_i = f_i(x, y_1, ..., y_n), i = 1, n$$

Т. Коши:
$$f_i(t, x, y, z), i = 1, 2, 3, \frac{\partial f_i}{\partial x}, \frac{\partial f_i}{\partial y}, \frac{\partial f_i}{\partial z}$$
 — непрерывны

в $D\supset (t_0,\ x_0,\ y_0,\ z_0)\Rightarrow\exists!$ решение $x=x(t),\ y=y(t),\ z=z(t)$ задачи Коши $y_i'=f_i(t,\ x,\ y,\ z),\ i=1,\ 2,\ 3,\ x|_{t=t_0}=x_0,\ y|_{t=t_0}=y_0,$ $z|_{t=t_0}=z_0$

22.3. Численные методы решения ОДУ

$$\frac{dy}{dx} = f(x, y), x \in [a, b], y(x_0) = y_0$$

Метод Эйлера:
$$h = \frac{b - x_0}{n}$$
, $y_k = y_{k-1} + f(x_{k-1}, y_{k-1})h$

Метод Рунге—Кутта:

$$y_{i+1} = y_i + \Delta y_i, \ \Delta y_i = \frac{1}{6} (k_1^{(i)} + 2k_2^{(i)} + 2k_3^{(i)} + k_4^{(i)}),$$

$$k_1^{(i)} = f(x_i, y_i)h, \ k_2^{(i)} = f(x_i + \frac{h}{2}, y_i + \frac{k_1^{(i)}}{2})h,$$

$$k_3^{(i)} = f(x_i + \frac{h}{2}, y_i + \frac{k_2^{(i)}}{2})h, \ k_4^{(i)} = f(x_i + h, y_i + k_3^{(i)})h$$

Задачи к разд. 22

Задача 1. Решить систему уравнений
$$\begin{cases} x' = -5x + 2y + e^t, \\ y' = x - 6y + e^{-2t}. \end{cases}$$

Решение: Это нормальная система ОДУ, которая методом исключения сводится к одному ЛНДУ II порядка. Продифференцируем первое уравнение по t: $x'' = -5x' + 2y' + e^t$. Подставим y' из второго уравнения: $x'' = -5x' + 2x - 12y + 2e^{-2t} + e^t$, а y выразим и подставим из первого: $x'' = -5x' + 2x - 12\left(\frac{x' + 5x - e^t}{2}\right) + 2e^{-2t} + e^t$ или $x'' + 11x' + 28x = 7e^t + 2e^{-2t}$ — ЛНДУ II поряд-

Ищем решение в виде $x=x^*+\overline{x}$. Характеристическое уравнение $k^2+11k+28=0$, $k_1=-4$, $k_2=-7\Rightarrow x^*=c_1\mathrm{e}^{-4t}+c_2\mathrm{e}^{-7t}$. Подставим $\overline{x}=A\mathrm{e}^t+B\mathrm{e}^{-2t}$, $\overline{x}'=A\mathrm{e}^t-2B\mathrm{e}^{-2t}$, $\overline{x}''=A\mathrm{e}^t+4B\mathrm{e}^{-2t}$ в уравнение $\overline{x}''+11x+28x=7\mathrm{e}^t+2\mathrm{e}^{-2t}$, получим $A\mathrm{e}^t+4B\mathrm{e}^{-2t}+11(A\mathrm{e}^t-2B\mathrm{e}^{-2t})+28(A\mathrm{e}^t+B\mathrm{e}^{-2t})=7\mathrm{e}^t+2\mathrm{e}^{-2t}\Rightarrow (A+11A+28A)\mathrm{e}^t+(4B-22B+28B)\mathrm{e}^{-2t}=7\mathrm{e}^t+2\mathrm{e}^{-2t}\Rightarrow (A+11A+28A)\mathrm{e}^t+(4B-22B+28B)\mathrm{e}^{-2t}=7\mathrm{e}^t+2\mathrm{e}^{-2t}\Rightarrow (A+11A+28A)\mathrm{e}^t+(AB-22B+28B)\mathrm{e}^{-2t}=7\mathrm{e}^t+2\mathrm{e}^{-2t}\Rightarrow (A+11A+28A)\mathrm{e}^t+(AB-2B+2B)\mathrm{e}^{-2t}\Rightarrow (A+11A+28A)\mathrm{e}^t+(AB-2B)\mathrm{e}^{-2t}\Rightarrow (A+11A+2B)\mathrm{e}^{-2t}\Rightarrow (A+11A+2B)\mathrm$

Задача 2. Используя метод ломаных Эйлера, решить дифференциальное уравнение y' = -xy на отрезке [0; 1] при начальном условии y(0) = 1.

Решение: Положим n=10, h=0,1. Решение представим в табличном виде:

k	x_k	y_k	$f(x_k, y_k)$
0	0	1	0
1	0,1	1	-0,1
2	0,2	0,99	-0,198
3	0,3	0,9702	-0,2911
4	0,4	0,9411	-0,3764
5	0,5	0,9035	-0,4518

k	x_k	y_k	$f(x_k, y_k)$
6	0,6	0,8583	-0,5150
7	0,7	0,8068	-0,5648
8	0,8	0,7503	-0,6002
9	0,9	0,6903	-0,7213
10	1,0	0,6182	

Задача 3. Решить методом Рунге—Кутта задачу Коши на отрезке [0; 1]: y' = x - 3y, y(0) = 1.

Решение: Положим n = 5, h = 0,2. Решение представим в табличном виде:

x	у	x + h/2	k_1	$y + k_1/2$	k_2	$y + k_2/2$	k_3	$y+k_3$	k_4
0,000	1,000	0,100	-0,600	0,700	-0,400	0,800	-0,220	0,780	-0,428
0,200	0,622	0,300	-0,333	0,455	-0,213	0,515	0,558	1,180	-0,628
0,400	0,577	0,500	-0,266	0,444	-0,166	0,494	0,747	1,323	-0,674
0,600	0,614	0,700	-0,248	0,489	-0,154	0,537	0,968	1,5818	-0,789
0,800	0,712	0,900	-0,267	0,579	-0,167	0,629	1,214	1,9265	-0,956
1	0,857								

Задачи для самостоятельного решения

1)
$$y''' + 9y' = 0$$
; 2)
$$\begin{cases} x' = x - y, \\ y' = y - 4x; \end{cases}$$
 3)
$$\begin{cases} x' - x + 3y = 0, \\ y' - 3x - y = 0; \end{cases}$$

4)
$$\begin{cases} x' - y = 0, \\ y' - x = e^t - e^{-t}; \end{cases}$$
 5)
$$\begin{cases} x' = x - y + e^t, \\ y' = y - 4x + e^{3t}. \end{cases}$$

6) Методом Эйлера решить дифференциальное уравнение $y' = -\frac{x}{y}$ на отрезке [-1; 1] с начальным условием y(-1) = 0.2 и шагом h = 0.2.

7) Решить методом Рунге—Кутта с шагом h = 0,2 задачу Коши на отрезке [0; 1]: y' = 2x + 3y, y(0) = 1.

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ

Вариант № 1

1.
$$e^x(1 + e^y) + y'e^y(1 + e^x) = 0, y(0) = 0.$$
 Omsem: $y = \ln \frac{3 - e^x}{1 + e^x}$.

2.
$$(x + y)dy + ydx = 0$$
. *Ombem*: $y^2 + 2xy = c$.

3.
$$y' + y = e^x$$
. Omsem: $y = ce^{-x} + \frac{e^x}{2}$.

4.
$$x^2y'' = y'^2$$
. Ombem: $y = \frac{x}{c_1} - \frac{1}{c_1^2} \ln|c_1x + 1| + c_2, c_1 \neq 0$.

5.
$$2y'' + 5y' = 5x^2 - 2x - 1$$
. *Ombem:* $y = c_1 + c_2 e^{-5x/2} + \frac{1}{3}x^3 - \frac{3}{5}x^2 + \frac{7}{25}x$.

Вариант № 2

1.
$$\sqrt{y^2 + 1} dx - xy dy = 0$$
, $y(1) = 0$. *Ombem*: $\ln x = \sqrt{y^2 + 1} - 1$.

2.
$$y'(x - 2\sqrt{xy}) = y$$
. *Ombem*: $\sqrt{\frac{x}{y}} + \ln|y| = c$.

3.
$$y' + 2y = e^{-2x}x$$
. Omsem: $y = \left(\frac{x^2}{2} + c\right)e^{-2x}$.

4.
$$y'' = 2yy', y' > 0$$
. Omsem: $y = c_1 \operatorname{tg}(c_1(x - c_2))$.

5.
$$v'' - 3v' + 2v = 2\sin x$$
.

Omeem:
$$y = c_1 e^x + c_2 e^{2x} + \frac{3}{5} \cos x + \frac{1}{5} \sin x$$
.

Вариант № 3

1.
$$y' + x^2 = x^2y$$
, $y(0) = 2$. Omsem: $y = 1 + ce^{\frac{x^3}{3}}$.

2.
$$y'x^2 = y(x - y)$$
. *Ombem*: $x = ce^{-y}$

3.
$$y' + \frac{y}{x+3} = \frac{2x}{x+3}$$
. Omsem: $y = \frac{x^2 + c}{x+3}$.

4.
$$x^3y'' = 1 - x^2y'$$
. *Ombem*: $y = \frac{1}{x} + c_1 \ln|x| + c_2$.
5. $y'' + 2y' + 5y = 7e^{4x}$.

5.
$$v'' + 2v' + 5v = 7e^{4x}$$

Omsem:
$$y = e^{-x}(c_1 \cos 2x + c_2 \sin 2x) + \frac{7}{29}e^{4x}$$
.

Дополнительные задания к вариантам контрольной работы

Определить тип уравнений, наметить путь решения:

- 1) p(x)dy + ydx = q(x)dx;
- 2) y'' + p(y)y' = 0;
- 3) $y'' + py' + qy = x^2$.

РАСЧЕТНОЕ ЗАДАНИЕ

Задание 1. Решить дифференциальные уравнения:

a)
$$y' + p(x)y = q(x)$$
; 6) $y'' = F(x, y, y')$.

$\overline{}$		T	
n	p(x)	q(x)	F(x, y, y')
1	2x	$2xe^{-x^2}$	$(y')^2x^{-2}$
2	-tgx	cosx	$-y'(e^x+1)^{-1}$
3	-cosx	$-\sin 2x$	2yy'
4	$-3x^{-1}$	x	$y'(\ln x + 1)(x\ln x)^{-1}$
5	$-(x-1)^{-1}$	x x^{-1}	$\sin 2x - y' \operatorname{tg} x$
6	2 <i>x</i>	$-2x^{3}$	$(1-xy')x^{-2}$
7	tgx	$(\cos x)^{-1}$	$y'x^{-1} + xe^x$
8	tgx x^{-1}	$2 \operatorname{tg} x$	$-y'x^{-1}+1$
9	x^{-1}	$3x^2 + 1$	$[(y')^2 + 1](2y)^{-1}$
10	-tgx	$2\cos x$	$(1+x-y')x^{-1}$
11	2	e^{3x}	$x(y')^2$
12	$2\operatorname{ctg}2x$	$e^{\cos^2 x}$	$(y')^2(1-y)^{-1}$
13		$(1+x^2)^{-1}$ arctgx	$y'x^{-1} + \sin(y'x^{-1})$
14	x^{-1}	$2 \ln x + 1$	$2(y')^2(1+y)^{-1}$
15	x^{-1}	$e^x(1+x^{-1})$	$(y')^2(2y+1)^{-1}$
16	-ctgx	2xsinx	$2y(y')^2(1+y^2)^{-1}$
17	$-\operatorname{ctg} x$ $-x^{-1}$	$x\cos x$	$-y'(1+e^x)^{-1}$
18	x^{-1}	$e^{x}(2-x^{-1})$	$\sqrt{x} + y'x^{-1}$
19	-1	$e^x x^{-1}$	$y^{-0,5}$
20	-1 $-x^{-1}$ $1-x^{-1}$	xlnx	$-y'(x-1)^{-1} -y^{-3}$
21	$1 - x^{-1}$	-x	$-y^{-3}$
22	-4 <i>x</i> -2	$-x$ $4x^3$	$ 2xy'(1-x^2)^{-1} $
23		$e^x - x$	$2(y')^2 \operatorname{tg} y$
24	$-(x+1)^{-1}$	$(x+1)e^x$	$2(y')^2y^{-1}$

n	p(x)	q(x)	F(x, y, y')
25	$-2(x+1)^{-1}$	$e^{x}(x+1)^{2}$	$-(y')^2y^{-1}$
26	$3x^{-1}$	$2x^{-3}$	$(y')^2(1+\ln y)(y\ln y)^{-1}$
27	$(\cos x)^{-2}$	$tgx \cdot (\cos x)^{-2}$	$y'\cos x(1+\sin x)^{-1}$
28	-ctgx	$\sin^3 x$	$y'x^{-1} + x^{-5}$
29	$-x^{-1}$	$-2x^{-1}\ln x$	$y'(x-1)^{-1} + x(x-1)$
30	$2x(1+x^2)^{-1}$	$(1+x^2)^{-2}$	$(y')^2(2y+1)(y^2+y)^{-1}$

Задание 2. Решить дифференциальные уравнения:

a)
$$y'' + (p + (-1)^n p)y' + \frac{1}{2}(p^2 + (-1)^{n+1} p^2)y = Ax^2 + Bx + l,$$

 $y(0) = (-1)^n, y'(0) = (-1)^{n+1};$

6)
$$y'' - 2py' + q_1y = (Ax + B)e^{(m+1)x}$$
;

B)
$$y'' + 2py' + q_2y = A\cos(m+1)x + B\sin(m+1)x$$
.

Здесь введены обозначения: l — последняя цифра номера группы; $m=\left | \frac{n}{4} \right |$ — остаток от деления n на 4, $q_j=p^2+\frac{(m+1)^2}{2}((-1)^{j+1}+1)^2$

$$+ (-1)^n$$
, $j = 1, 2$.

n	p	A	В	n	p	A	В	n	p	A	В
1	1	1	1	11	6	-1	0	21	11	3	2
2	1	0	1	12	6	-2	2	22	11	-3	3
3	2	1	0	13	7	-2	0	23	12	-3	0
4	2	2	2	14	7	0	-2	24	12	0	-3
5	3	0	2	15	8	3	3	25	13	-2	3
6	3	2	0	16	8	3	0	26	13	3	-2
7	4	1	2	17	9	0	3	27	14	4	1
8	4	2	1	18	9	1	3	28	14	1	4
9	5	-1	1	19	10	3	1	29	15	4	2
10	5	0	-1	20	10	2	3	30	15	0	4

Задание 3. Решить дифференциальное уравнение y'' + py' + qy = f(x).

n	p	q	f(x)	n	p	q	f(x)	n	p	q	f(x)
1	0	1	$(\sin x)^{-1}$	4	-2	1	$e^{x}(1-x^2)^{-0.5}$	7	0	1	ctgx
2	0	4	$(\sin x)^{-2}$	5	-2	1	$e^x(1+x^2)^{-1}$	8	0	-1	$e^{x}(e^{x}+1)^{-1}$
3	3	2	$(e^x + 1)^{-1}$	6	0	1	tgx	9	-2	1	$e^{x}(1-x^2)^{-1}$

n	p	q	f(x)	n	р	q	f(x)	n	p	q	f(x)
10	0	4	$(\cos x)^{-2}$	17	-2	2	$e^x \sin x$	24	0	-4	$e^{2x}\cos 2x$
11	2	1	$e^{x}(4-x^2)^{-0.5}$	18	-2	2	$e^x \cos x$	25	4	4	$e^{-2x}\ln^2 x$
12	0	1	$(\cos x)^{-1}$	19	6	9	$e^{-3x}(1+x^2)^{-1}$	26	6	9	$e^{-3x}x^{-3}$
13	-2	1	$e^x \sqrt{x+1}$	20	-6	9	$xe^{3x}(1+x)^{-1}$	27	0	9	$3(\cos 3x)^{-1}$
14	2	1	$e^{-x} \ln x$	21	0	4	$(\cos 2x)^{-1}$	28	2	1	$3e^{-x}\sqrt{x+1}$
15	0	-1	e ^x sinx	22	0	4	$(\sin 2x)^{-1}$	29	0	1	2xsinx
16	0	-1	$e^x \cos x$	23	0	-4	$e^{2x}\sin 2x$	30	4	0	$(\sin x)^{-2}$

Задание 4. Решить систему дифференциальных уравнений:

$$\begin{cases} x' = ax + by + \varphi(t), \\ y' = cx + dy + \psi(t). \end{cases}$$

$n \mid a \mid b \mid c \mid d$	φ(<i>t</i>)	$\psi(t)$
1 1 1 3 -1	sin <i>t</i>	$-\cos t$
2 2 -1 3 -2	cost	sin <i>t</i>
3 2 -1 5 -2	sin t	$\cos t$
4 1 -1 -4 1	$-e^{-t}$	te^{-t}
5 4 -1 1 2	0	te^t
6 1 -1 3 1	0	0
7 1 3 1 -1	e^{2t}	te ^{2t}
8 2 3 1 -2	e^t	$2te^t$
9 -2 -1 5 2	0	$t^2 + 1$
10 1 -4 -1 1	0	e^{3t}
11 2 -1 1 4	0	te ^{3t}
12 1 -3 1 1	0	e^t
13 -1 1 3 1	t	t^2
14 -2 -1 3 2	e^{-t}	$-e^{-t}$
15 2 -5 1 -2	0	e^{2t}
16 2 2 3 1	0	0
17 4 1 -1 2	$-e^{3t}$	0
18 1 1 -3 1	0	$e^t \cos 2t$
19 -1 3 1 1	$2e^{-2t}$	$5e^{-2t}$
20 -2 3 -1 2	t^2	0
21 2 1 -5 -2	1	t
22 1 2 3 2	e^{4t}	0
23 2 1 -1 4	$-\cos 3t$	sin 3t

n	а	b	с	d	φ(<i>t</i>)	$\psi(t)$
24	1	3	-1	1	1	2 <i>t</i>
25	1	3	2	2	0	$-2e^{-t}$
26	2	3	1	4	0	0
27	-3	-1	1	-1	0	0
28	1	-2	1	4	e^t	0
29	0	1	2	1	$-5\cos t$	0
30	-5	-1	1	-3	e^t	0

Залание № 5.

Здесь $\alpha\beta\gamma\delta$ — цифры номера группы, n — номер студента по списку.

Задача о концентрации раствора

В резервуаре находится a литров водного раствора, содержащего b кг соли. Вода вливается в резервуар со скоростью v_1 л/мин и вытекает со скоростью v_2 л/мин, причем концентрация раствора поддерживается равномерной посредством перемешивания. Сколько соли будет содержаться в резервуаре по истечении одного часа?

Считаем, что

$$a = 100 \left(\left| \frac{\alpha + n}{4} \right| + 1 \right), b = 10 \left(\left| \frac{\beta + n}{5} \right| + 2 \right),$$
$$v_1 = 10 \left(\left| \frac{\gamma + \delta + n}{3} \right| + 2 \right), v_2 = 10 \left(\left| \frac{\gamma + \delta + n}{3} \right| + 1 \right).$$

Задача об охлаждении тела

Тело охлаждается за l минут от a °C до b °C. Температура окружающей среды поддерживается c °C. Когда тело остынет до d °C? (Скорость охлаждения пропорциональна разности температуры тела в данный момент времени и температуры среды.)

Считаем, что

$$l = \left| \frac{\delta + n}{3} \right| + 10, a = 10 \left(\left| \frac{\alpha + n}{5} \right| + 6 \right), b = 10 \left(\left| \frac{\alpha + n}{5} \right| + 4 \right),$$

$$c = 10 \left(\left| \frac{\gamma + n}{3} \right| + 1 \right), d = \left(\left| \frac{\beta + n}{4} \right| + 35 \right).$$

Задача о движении

Моторная лодка движется прямолинейно со скоростью v_0 км/ч. При движении она испытывает сопротивление воды, сила сопротивления пропорциональна квадрату скорости лодки с коэффициентом пропорциональности k=m/r, где m — масса лодки. Через сколько времени скорость лодки уменьшится в i раз и какой путь пройдет за это время лодка?

Считаем, что

$$r=50+\left]\frac{\alpha+\gamma+n}{4}\right[,v_0=20+\left]\frac{\alpha+\beta+n}{5}\right[,i=\left]\frac{\gamma+\delta+n}{3}\right[+1.$$

Теоретические вопросы

- **1.** Что такое обыкновенные дифференциальные уравнения, задача Коши, общее решение?
 - 2. Какие типы ОДУ 1-го порядка решаются в квадратурах?
- **3.** Какие типы ОДУ 2-го порядка допускают понижение порядка?
- **4.** Какова структура общего решения линейного ОДУ 2-го порядка?
- **5.** Как находится решение линейных ОДУ 2-го порядка с постоянными коэффициентами?

Ответы к разд. 20-22

20. ОДУ І порядка

1)
$$y = c e^{\arcsin x}$$
; 2) $2\sqrt{y} = c + 1/x$; 3) $y = -\ln(c - e^x)$; 4) $\arcsin y = \frac{\pi}{2} - 1 + \sqrt{1 - x^2}$; 5) $\sin y = cx$; 6) $x^2 = 2(1 + y^2)$; 7) $y = e^{\frac{tg\frac{x}{2}}{2}}$; 8) $x = 15\left(1 - \left(\frac{2}{3}\right)^{3t}\right) / \left(1 - \frac{1}{4}\left(\frac{2}{3}\right)^{3t}\right)$. Указание: Решение сводится к решению задачи Коши $\frac{dx}{dt} = k\left(10 - \frac{2x}{3}\right)\left(20 - \frac{x}{3}\right)$, $x(0) = 0$, коэффициент k определяется из условия $x\left(\frac{1}{3}\right) = 6$; 9) $p = -9e^{-10t} + 10$. Указание: Используем закон спроса и предложения: $s = q$, причем $p' = \frac{dp}{dt}$; 10) $x = c e^{-\frac{y}{x}}$; 11) $x = c e^{y^2/2x^2}$; 12) $y = \pm \sqrt{2\ln cx}$; 13) $x + y = \frac{dp}{dt}$

=
$$2xy$$
; **14)** $y + \sqrt{x^2 + y^2} = cx^2$; **15)** $\ln|cx| = -e^{-y/x}$; **16)** $\lg \frac{y}{2x} = x$; **17)** $y^3 = y^2 - x^2$; **18)** $y = e^{x^3} \left(\frac{x^3}{3} + c\right)$; **19)** $y = xe^{-2x}$; **20)** $y = \frac{c}{x} + x \ln x - \frac{x}{2}$; **21)** $y = \frac{c - \cos 2x}{2\cos x}$; **22)** $y = \frac{x}{3} + \frac{3}{2} + \frac{c}{x^2}$; **23)** $y = \frac{e^x + ab - e^a}{x}$; **24)** $y = \frac{x(x + \ln|x| - 1)}{x + 1}$; **25)** $y = 2x^2 + \frac{1}{x}$.

21. ОДУ II порядка

1)
$$s'''_{11} = 6t - 2$$
, $s(t) = t^3 - t^2 + t$; 2) $y = \frac{1}{4}\cos 2x + c_1x + c_2$; 3) $y = c_1x^2 + c_2$; 4) $y = \frac{x^3}{6} + x \ln x + c_1x + c_2$; 5) $y = x(\ln x - 1) + 1$; 6) $y = x^3 + 3x + 1$; 7) $y = c_2e^{c_1x}$; 8) $y = -\ln|1 - x|$; 9) $c_1y^2 = 1 + (c_1x + c_2)^2$; 10) $y = 2 - \frac{1}{\sqrt[3]{3(c_1x + c_2)}}$; 11) $\operatorname{ctg} y = c_1x + c_2$; 12) $y - x = 2\ln|y|$; 13) $y = c_1e^{-x} + c_2e^{6x}$; 14) $y = e^{-\frac{1}{2}x}(c_1x + c_2)$; 15) $y = c_1\cos 2x + c_2\sin 2x$; 16) $y = 3\frac{1}{4} - \frac{1}{4}e^{-4x}$; 17) $y = e^{-x}\left(c_1\cos\frac{\sqrt{2}}{2}x + c_2\sin\frac{\sqrt{2}}{2}x\right)$; 18) $y = c_1e^{x/2} + c_2e^{-x/2} - x^3$; 19) $y = c_1e^{2x} + c_2e^x - xe^x$; 20) $y = c_1e^x + c_2e^{6x} - \frac{9}{74}\sin x + \frac{17}{74}\cos x$; 21) $y = e^{-2x}(c_1\cos x + c_2\sin x) + \frac{3}{5}x - \frac{22}{25}$; 22) $y = c_1 + c_2e^{\frac{4}{3}x} - \frac{5}{4}x$; 23) $y = -\cos x - \frac{1}{3}\sin x + \frac{1}{3}\sin 2x$; 24) $y = e^x(c_1 + c_2x) + e^{3x}\left(\frac{1}{2}x - \frac{1}{4}\right)$; 25) $y = c_1\cos 2x + c_2\sin 2x + 3x\sin 2x$; 26) $y = (1 + e^x)\ln(1 + e^x) + e^x(3 - \ln 2 - x) - (2 + \ln 2 + x)$; 27) $y = (c_1 + c_2x)e^{-x} + xe^{-x}(1 + \ln|x|)$; 28) $y = e^{2x}(c_1\cos x + c_2\sin x + \cos x \ln|\cos x| + x\sin x$; 29) $y = -2 + c_1\cos x + c_2\sin x + \sin x \ln t g\left(\frac{x}{2} + \frac{\pi}{4}\right)$; 30) $y = e^{-2x}\left(c_1 + c_2x + \frac{x^2\ln|x|}{2} - \frac{3x^2}{4}\right)$; 31) $l = c_1e^{k_1l} + c_2e^{k_2l} - \frac{M}{L}$; $k_1, k_2 - e^{-2x}\left(c_1 + c_2x + \frac{x^2\ln|x|}{2} - \frac{3x^2}{4}\right)$; 31) $l = c_1e^{k_1l} + c_2e^{k_2l} - \frac{M}{L}$; $k_1, k_2 - e^{-2x}\left(c_1 + c_2x + \frac{x^2\ln|x|}{2} - \frac{3x^2}{4}\right)$; 31) $l = c_1e^{k_1l} + c_2e^{k_2l} - \frac{M}{L}$; $k_1, k_2 - e^{-2x}\left(c_1 + c_2x + \frac{x^2\ln|x|}{2} - \frac{3x^2}{4}\right)$; 31) $l = c_1e^{k_1l} + c_2e^{k_2l} - \frac{M}{L}$; $k_1, k_2 - e^{-2x}\left(c_1 + c_2x + \frac{x^2\ln|x|}{2} - \frac{3x^2}{4}\right)$; 31) $l = c_1e^{k_1l} + c_2e^{k_2l} - \frac{M}{L}$; $k_1, k_2 - e^{-2x}\left(c_1 + c_2x + \frac{x^2\ln|x|}{2} - \frac{3x^2}{4}\right)$; 31) $l = c_1e^{k_1l} + c_2e^{k_2l} - \frac{M}{L}$; $k_1, k_2 - e^{-2x}\left(c_1 + c_2x + \frac{x^2\ln|x|}{2} - \frac{3x^2}{4}\right)$; 31) $l = c_1e^{k_1l} + c_2e^{k_2l} - \frac{M}{L}$; $k_1, k_2 - e^{-2x}\left(c_1 + c_2x + \frac{x^2\ln|x|}{2} - \frac{x^2\ln|x|}{2}\right)$; 31) $l = c_1e^{k_1l} + c_2e$

корни характеристического уравнения. В зависимости от значений параметров k и L сокращение мышц может протекать как затухающее, сверхзатухающее или незатухающее вынужденное колеба-

ние; **32)** $x = c_1 e^{r_1 t} + c_2 e^{r_2 t} + \frac{k_2 k_4}{k_1 k_3 + k_2 k_4 + k_1 k_5}$; **33)** $x = \frac{V_0}{\omega} \sin \omega t$, $\omega^2 = \frac{C}{m}$. Указание: По закону Ньютона mx'' = -Cx, т.е. имеем задачу Коши: $x'' + \omega^2 x = 0$, x(0) = 0, $x'(0) = v_0$.

22. ОДУ высших порядков и системы ДУ

1) $y = c_1 \cos 3x + c_2 \sin 3x + c_3$; 2) $x = c_1 e^{-t} + c_2 e^{3t}$, $y = 2c_1 e^{-t} - 2c_2 e^{3t}$; 3) $x = e^t (c_1 \cos 3t + c_2 \sin 3t)$, $y = e^t (-c_2 \cos 3t + c_1 \sin 3t)$; 4) $x = c_1 e^t + c_2 e^{-t} + t \sinh t$, $y = c_1 e^t - c_2 e^t + t \cosh t + \sinh t$; 5) $x = c_1 e^{-t} + c_2 e^{3t} + e^t + \frac{1 - 4t}{16} e^{3t}$, $y = 2c_1 e^{-t} - 2c_2 e^{3t} + \frac{1}{8} (1 + 4t) e^{3t} + e^t$;

6)

k	x_k	y_k	$f(x_k, y_k)$
0	-1	0,2000	5,000
1	-0,8	1,2000	0,6667
2	-0,6	1,33333	0,4500
3	-0,4	1,42333	0,2810
4	-0,2	1,47954	0,1352
5	0	1,50657	0,0000
6	0,2	1,50657	-0,1328
7	0,4	1,4800	-0,2703
8	0,6	1,42597	-0,4208
9	0,8	1,34182	-0,5962
10	1	1,22258	-0,81794

7)

X	у	x + h/2	k_1	$y + k_1/2$	k_2	$y + k_2/2$	k_3	$y+k_3$	k_4
0,00	1,00	0,100	0,200	1,100	0,260	1,130	0,153	1,153	0,311
0,20	1,223	0,300	0,325	1,385	0,397	1,421	0,262	1,4849	0,457
0,40	1,573	0,500	0,475	1,810	0,562	1,854	0,385	1,958	0,632
0,60	2,073	0,700	0,655	2,400	0,760	2,453	0,525	2,5982	0,840
0,80	2,750	0,900	0,870	3,185	0,997	3,249	0,685	3,4353	1,087
1	3,637								

Глава 8 ИНТЕГРИРОВАНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

23. ДВОЙНОЙ ИНТЕГРАЛ

Опорный конспект № 23

23.1. Определение ДИ

D разбивается на ΔD_i , $i = \overline{1, n}$, с площадями Δs_i , $\Delta D_i \cap \Delta D_i = 0$, $i \neq j$, $M_i(\xi_i, \eta_i) \in \Delta D_i \Rightarrow$ $\Rightarrow \iint_D f(x, y) ds = \lim_{\lambda \to 0} \sum_{i=1}^n f(\xi_i, \eta_i) \Delta s_i,$

 $\lambda = \max \operatorname{diam} \Delta D_i$

Т: f(x, y) непр. в $\bar{D} \Rightarrow ДИ ∃ ■$

Цилиндрическое тело $\Omega \Leftrightarrow \partial \Omega$: $z = f(x, y), z = 0, F(x, y) = 0 \Rightarrow$

23.2. Свойства ДИ

1⁰.
$$\iint_{D} [f(x, y) + \varphi(x, y)] ds = \iint_{D} f(x, y) ds + \iint_{D} \varphi(x, y) ds.$$

$$2^{0}. \iint_{D} cf(x, y) ds = c \iint_{D} f(x, y) ds, c = \text{const.}$$

$$1^{0} \cdot \iint_{D} [f(x,y) + \varphi(x,y)] ds = \iint_{D} f(x,y) ds + \iint_{D} \varphi(x,y) ds.$$

$$2^{0} \cdot \iint_{D} cf(x,y) ds = c \iint_{D} f(x,y) ds, c = \text{const.}$$

$$3^{0} \cdot D = D_{1} + D_{2} \Rightarrow \iint_{D} f(x,y) ds = \iint_{D_{1}} f(x,y) ds + \iint_{D_{2}} f(x,y) ds.$$

$$4^0$$
. $\iint_D ds = S$ — площадь D .

5⁰.
$$\varphi(x, y) \le \psi(x, y)$$
 B $D \Rightarrow \iint_D \varphi(x, y) ds \le \iint_D \psi(x, y) ds$.

$$6^0$$
. Теорема о среднем: $f(x, y)$ непр. в $\overline{D} \Rightarrow \exists M(\xi, \eta) \in \overline{D}$:
$$\iint_D f(x, y) \mathrm{d}s = f(\xi, \eta) S$$

23.3. Вычисление ДИ

$$\begin{split} \partial D: \ y &= \varphi_1(x), y = \varphi_2(x) \ (\varphi_1(x) < \varphi_2(x)), x = a, x = b \ (a < b) \Rightarrow \\ &\Rightarrow \iint\limits_D f(x, y) \mathrm{d}s = \int\limits_a^b \int\limits_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) \mathrm{d}y, \\ \partial D: \ x &= \psi_1(y), x = \psi_2(y) \ (\psi_1(y) < \psi_2(y)), y = c, y = d \ (c < d) \Rightarrow \\ &\Rightarrow \iint\limits_D f(x, y) \mathrm{d}s = \int\limits_c^d \int\limits_{\psi_1(x)}^{\psi_2(x)} f(x, y) \mathrm{d}x \end{split}$$

23.4. ДИ в полярных координатах

$$\begin{cases} x = x(u,v), \\ y = y(u,v), \end{cases} D^* \leftrightarrow D \Rightarrow \iint\limits_D f(x,y) \mathrm{d}s = \iint\limits_{D^*} f^*(u,v) |J| \mathrm{d}u \, \mathrm{d}v$$

$$J = \begin{vmatrix} x'_u & x'_v \\ y'_u & y'_v \end{vmatrix} - \text{якобиан}$$

23.5. Приложения ДИ

1. Геометрические приложения

Вычисления площадей (см. разд. 23.2) Вычисление объемов (см. разд. 23.1) Вычисление площади поверхности *G*:

$$\sigma = \iint_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \, \mathrm{d}s$$

2. Физические приложения

Статические моменты плоской пластины D:

$$\mu_x = \iint_D y \rho(x, y) ds, \ \mu_y = \iint_D x \rho(x, y) ds,$$

ρ — поверхностная плотностьКоординаты центра масс *D*:

$$\overrightarrow{X}$$
 $x_c = \frac{\mu_y}{m}, \ y_c = \frac{\mu_x}{m}, \ m = \iint_D \rho(x, y) ds -$
Macca D

Задачи к разд. 23.1-23.4

Вычислить двойные интегралы:

Задача 1.
$$I = \iint_D (x - y) dx dy$$
, ∂D : $y = x^2 + x - 2$, $y = x + 2$.

Решение: а) построим область D. Первая линия — парабола с вершиной в точке (-1/2; -9/4), проходящая через точки (-2; 0), (1; 0).

Вторая линия — прямая. Решая совместно данные уравнения, найдем координаты точек пересечения:

$$x^2 + x - 2 = x + 2 \Rightarrow x^2 - 4 = 0 \Rightarrow$$

 $\Rightarrow x = \pm 2 \Rightarrow A(-2; 0), B(2; 4)$
(рис. 23.1).

Область D является правильной в направлении оси OV, так как любая прямая, параллельная данной оси, проходящая

Рис. 23.1

через внутренние точки области, пересекает границу ∂D только в двух точках;

б) для данной области $-2 \le x \le 2$. Снизу область ограничена

параболой
$$y = x^2 + x - 2$$
, сверху — прямой $y = x + 2$. Пользуясь формулой $\iint_D f(x,y) \mathrm{d}s = \int_a^b \mathrm{d}x \int_{\phi_1(x)}^{\phi_2(x)} f(x,y) \mathrm{d}y$, получим

$$I = \int_{-2}^{2} dx \int_{x^2 + x - 2}^{x + 2} (x - y) dy.$$

При вычислении интеграла по формуле

$$\iint_D f(x, y) ds = \int_c^d dy \int_{\psi_1(x)}^{\psi_2(x)} f(x, y) dx$$

область D пришлось бы разбить на две части D_1 и D_2 с границами ∂D_1 и ∂D_2 соответственно:

$$\partial D_1$$
: $x = -\frac{1}{2} - \sqrt{y + \frac{9}{4}}$ (слева), $x = -\frac{1}{2} + \sqrt{y + \frac{9}{4}}$ (справа), $-9/4 \le y \le 0$:

$$\partial D_2$$
: $x = y - 2$ (слева), $x = -\frac{1}{2} + \sqrt{y + \frac{9}{4}}$ (справа), $0 \le y \le 4$.

Тогда
$$I=\int\limits_{-9/4}^{0}\mathrm{d}y\int\limits_{-\frac{1}{2}-\sqrt{y+\frac{9}{4}}}^{-\frac{1}{2}+\sqrt{y+\frac{9}{4}}}(x-y)\mathrm{d}x+\int\limits_{0}^{4}\mathrm{d}y\int\limits_{y-2}^{-\frac{1}{2}+\sqrt{y+\frac{9}{4}}}(x-y)\mathrm{d}x.$$
 В данном

случае удобнее пользоваться первой формулой;

в) вычисляем внутренний интеграл (х считается постоянным):

$$\int_{x^2+x-2}^{x+2} (x-y) dy = (xy - \frac{y^2}{2}) \Big|_{x^2+x-2}^{x+2} = 0.5x^4 - 2x^2 - 4x - 4 \Rightarrow$$

$$\Rightarrow I = \int_{-2}^{2} (0.5x^4 - 2x^2 - 4x - 4) dx = (0.1x^5 - \frac{2}{3}x^3 - 2x^2 - 4x) \Big|_{-2}^{2} =$$

$$= -20 \frac{4}{15}.$$

Задача 2.
$$I = \iint_D \frac{x}{2} dx dy$$
, ∂D : $x = 2 + \sin y$, $x = 0$, $y = 0$, $y = 2\pi$.

Решение: а) строим область D (рис. 23.2);

б) область D является правильной только в направлении OX, поэтому переходим к повторному интегралу, пользуясь формулой OK, разд. 23.3:

$$I = \int_{0}^{2\pi} dy \int_{0}^{2+\sin y} \frac{x}{2} dx = \int_{0}^{2\pi} dy \frac{x^{2}}{4} \Big|_{0}^{2+\sin y} = \frac{1}{4} \int_{0}^{2\pi} (2+\sin y)^{2} dy =$$

$$= \frac{1}{4} \int_{0}^{2\pi} (4+2\sin y + \sin^{2} y) dy = \frac{1}{4} \cdot 4y \Big|_{0}^{2\pi} - \frac{1}{4}\cos y \Big|_{0}^{2\pi} +$$

$$+ \frac{1}{4} \int_{0}^{2\pi} \frac{1-\cos 2y}{2} dy = 2\pi + \frac{1}{8} y \Big|_{0}^{2\pi} - \frac{1}{8} \cdot \frac{1}{2} \sin 2y \Big|_{0}^{2\pi} = \frac{9\pi}{4}.$$

Задача 3.
$$\iint_D x \, \mathrm{d}x \, \mathrm{d}y, \ D: \ x^2 + y^2 < 2x, \ y > 0.$$

Решение: а) строим область D. Это половина круга $(x-1)^2+y^2=1$ (рис. 23.3), поэтому удобно перейти к полярной системе координат.

Используем формулы $x = r\cos\varphi$, $y = r\sin\varphi$, тогда ∂D : $r = 2\cos\varphi$, $\varphi = 0$ ($0 \le \varphi \le \pi/2$). Интеграл в полярной системе координат примет вид (см. ОК, разд. 23.4): $I = \iint_D r\cos\varphi \cdot r \, dr \, d\varphi = \iint_D r^2 \cos\varphi \, dr \, d\varphi$;

б) переходим к повторному интегралу (ОК, разд. 23.3):

Рис. 23.3

$$I = \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{2\cos\varphi} r^{2} \cos\varphi dr = \int_{0}^{\frac{\pi}{2}} \cos\varphi d\varphi \frac{r^{3}}{3} \Big|_{0}^{2\cos\varphi} = \frac{8}{3} \int_{0}^{\frac{\pi}{2}} \cos^{4}\varphi d\varphi =$$

$$= \frac{8}{3} \int_{0}^{\frac{\pi}{2}} \left(\frac{1 + \cos 2\varphi}{2} \right)^{2} d\varphi = \frac{8}{3} \int_{0}^{\frac{\pi}{2}} \left(\frac{1}{4} + \frac{\cos 2\varphi}{2} + \frac{1 + \cos 4\varphi}{8} \right) d\varphi =$$

$$= \frac{2}{3} \varphi \Big|_{0}^{\frac{\pi}{2}} + \frac{2}{3} \sin 2\varphi \Big|_{0}^{\frac{\pi}{2}} + \frac{1}{3} \varphi \Big|_{0}^{\frac{\pi}{2}} + \frac{1}{12} \sin 4\varphi \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi}{2}.$$

Задачи для самостоятельного решения

Вычислить интегралы:

1)
$$\iint_D (y + e^x) dx dy$$
, D — четырехугольник $ABCD$: $A(2; 1)$, $B(3; 1)$, $C(2; 4)$, $D(3; 4)$.

2)
$$\iint_D (x-2) dx dy$$
: a) ∂D : $y = x$, $y = 3x$, $x = 1$; 6) ∂D : $y = x$, $y = 3x$, $y = 1$.

3) a)
$$\iint_D e^{\frac{x}{y}} dx dy$$
, ∂D : $x = y^2$, $x = 0$, $y = 1$; 6) $\iint_D \cos(x + y) dx dy$,

$$\partial D$$
: $x = 0, y = x, y = \pi$.

4) a)
$$\iint_D (x+2y) dx dy$$
, ∂D : $y = x^2$, $y = 5x - 6$; 6) $\iint_D (2x-y) dx dy$,

$$\partial D$$
: $y^2 = 4 - x, y^2 = x$.

5)
$$\iint_D \frac{x^2}{y^2} dx dy$$
, ∂D : $yx = 1$, $y = x$, $x = 2$.

6)
$$\iint_D 2xy \, dx \, dy$$
, D — треугольник ABC с вершинами $A(1; 1)$,

B(3; 3), C(2; -2).

7)
$$\iint_{D} (x - y) dx dy, D: x^{2} + y^{2} < 9, x > 0, y > 0.$$

8)
$$\iint_{D} \sqrt{1 - x^2 - y^2} \, dx \, dy, \ D: \ x^2 + y^2 < 1, x < y, x > -y.$$

9)
$$\iint_D x \, dx \, dy$$
, ∂D : $x^2 + y^2 = 4y$.

10)
$$\iint_{D} \frac{\mathrm{d}x \, \mathrm{d}y}{x^2 + y^2 + 1}, \ \partial D: \ y = \sqrt{1 - x^2}, y = 0.$$

11)
$$\iint_D y \, dx \, dy$$
, ∂D : $x^2 + y^2 = -2x$, $x^2 + y^2 = -4x$, $y = 0$ ($y \ge 0$).

12)
$$\iint_{D} \frac{\sin\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} dx dy, \ \partial D: \ x^2 + y^2 = \frac{\pi^2}{9}, \ x^2 + y^2 = \pi^2.$$

13)
$$\iint_D x \, dx \, dy$$
, ∂D : $x^2 + y^2 = 2x$, $x^2 + y^2 = 2y$.

Изменить порядок интегрирования:

14)
$$\int_{0}^{1} dx \int_{x^{3}}^{x^{2}} f(x, y) dy;$$
 15)
$$\int_{0}^{3} dx \int_{x}^{8x} f(x, y) dy;$$
 16)
$$\int_{-2}^{2} dx \int_{0}^{4-x^{2}} f(x, y) dy;$$
 17)
$$\int_{-2}^{1} dy \int_{-\sqrt{2}+y}^{0} f(x, y) dx + \int_{-1}^{0} dy \int_{-\sqrt{-y}}^{0} f(x, y) dx;$$
 18)
$$\int_{0}^{1} dy \int_{-\sqrt{y}}^{0} f(x, y) dx + \int_{0}^{1} dy \int_{0}^{0} f(x, y) dx;$$
 19)
$$\int_{-\sqrt{2}}^{1} dx \int_{0}^{0} f(x, y) dy + \int_{-1}^{0} dx \int_{x}^{0} f(x, y) dy.$$

Задачи к разд. 23.5

Задача 1. ∂D : $y = x^2 - 1$, y = 2. Найти S_D . *Решение*: a) строим область D (рис. 23.4);

б) площадь вычисляется по формуле (см. ОК, разд. 23.2, свойство 4^0)

$$S = \iint_{D} dx \, dy$$
, причем удобнее в силу симметрии вычислить $\frac{1}{2}S$.

Переходим к повторному интегралу:

Рис. 23.4

$$\frac{1}{2}S = \int_{0}^{\sqrt{3}} dx \int_{x^{2}-1}^{2} dy = \int_{0}^{\sqrt{3}} dx \cdot y \Big|_{x^{2}-1}^{2} = \int_{0}^{\sqrt{3}} (3-x^{2}) dx = \left(3x - \frac{x^{3}}{3}\right) \Big|_{0}^{\sqrt{3}} = 3\sqrt{3} - \sqrt{3} = 2\sqrt{3}.$$

Задача 2. $\partial\Omega$: $y+z=2,y=x^2,z=0$. Найти V_{Ω} .

Решение: Имеем цилиндрическое тело с накрывающей z = 2 - y плоскостью и боковой цилиндрической поверхностью $y = x^2$ (рис. 23.5, *a*) Основанием его *D* является проекция тела на плоскость z = 0, т.е. ∂D : $y = x^2$, y = 2 (рис. 23.5, δ).

По формуле ОК, разд. 23.1

$$V = \iint_{D} (2 - y) dx dy = \int_{-\sqrt{2}}^{\sqrt{2}} dx \int_{x^{2}}^{2} (2 - y) dy = \int_{-\sqrt{2}}^{\sqrt{2}} dx \left(2y - \frac{y^{2}}{2} \right) \Big|_{x^{2}}^{2} =$$

Рис. 23.5

$$= \int_{-\sqrt{2}}^{\sqrt{2}} \left(4 - 2 - 2x^2 + \frac{x^4}{2} \right) dx = \left(2x - \frac{2}{3}x^3 + \frac{x^5}{10} \right) \Big|_{-\sqrt{2}}^{\sqrt{2}} =$$

$$= 4\sqrt{2} - \frac{4}{3}(\sqrt{2})^3 + \frac{1}{5}(\sqrt{2})^5 = \frac{32\sqrt{2}}{15}.$$

Задача 3. $\partial \Omega$: $z = 4 - x^2 - y^2, z = 0$. Найти V_{Ω} .

Решение: Имеем цилиндрическое тело Ω с накрывающей $z=4-x^2-y^2$ (рис. 23.6, a), проекция D на плоскость z=0 — круг с границей ∂D : $x^2+y^2=4$ (рис. 23.6, δ). Для вычисления $V=\iint_D (4-x^2-y^2) \mathrm{d}x\,\mathrm{d}y$ переходим к полярной системе координат,

в которой ∂D : r=2:

$$V = \iint_{D} (4 - r^{2}) r dr d\phi = \int_{0}^{2\pi} d\phi \int_{0}^{2} (4 - r^{2}) r dr = \int_{0}^{2\pi} \left(2r^{2} - \frac{r^{4}}{4} \right) \Big|_{0}^{2} d\phi =$$

$$= 4 \int_{0}^{2\pi} d\phi = 8\pi.$$

Рис. 23.6

Задача 4. Вычислить площадь σ поверхности $G: z = x^2 + y^2, 0 \le z \le 9.$

Решение: Так как $z_x'=2x, z_y'=2y$, то по формуле ОК, разд. 23.5, п. 1, $\sigma=\iint_D \sqrt{1+4x^2+4y^2} \,\mathrm{d}x\,\mathrm{d}y$ (рис. 23.7, a). Проекция D поверхно-

сти G на плоскость XOY — круг с границей $x^2 + y^2 = 9$ (рис. 23.7, δ). Переходя к полярным координатам, получим

$$\sigma = \iint_{D} \sqrt{1 + 4r^{2}} r \, dr \, d\phi = \int_{0}^{2\pi} d\phi \int_{0}^{3} \sqrt{1 + 4r^{2}} r \, dr =$$

$$= \int_{0}^{2\pi} d\phi \cdot \frac{1}{8} \int_{0}^{3} (1 + 4r^{2})^{\frac{1}{2}} d(1 + 4r^{2}) = \int_{0}^{2\pi} d\phi \frac{(1 + 4r^{2})^{\frac{3}{2}}}{12} \Big|_{0}^{3} =$$

$$= \frac{1}{12} \left((37)^{\frac{3}{2}} - 1 \right) \cdot \phi \Big|_{0}^{2\pi} = \frac{\pi}{6} (37\sqrt{37} - 1).$$

Рис. 23.7

Задача 5. Вычислить массу и координаты центра тяжести пластины D постоянной плотности $\rho(x, y) = 1$, если ∂D : $y = \cos x$, $y = 0, x = 0, x = \frac{\pi}{2}$.

Решение: По формулам ОК, разд. 23.5, п. 2, имеем

$$x_c = \frac{1}{m} \iint_D x \, \mathrm{d}x \, \mathrm{d}y, \ y_c = \frac{1}{m} \iint_D y \, \mathrm{d}x \, \mathrm{d}y, \ m = \iint_D \mathrm{d}x \, \mathrm{d}y,$$

где область D имеет вид, изображенный на рис. 23.8. Вычисляем

$$m = \int_{0}^{\frac{\pi}{2}} dx \int_{0}^{\cos x} dy = \int_{0}^{\frac{\pi}{2}} \cos x \, dx = 1;$$

$$x_{c} = \int_{0}^{\frac{\pi}{2}} dx \int_{0}^{\cos x} x \, dy = \int_{0}^{\frac{\pi}{2}} x \cos x \, dx = x \sin x \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \sin x \, dx = \frac{\pi}{2} - 1;$$

$$y_c = \int_0^{\frac{\pi}{2}} dx \int_0^{\cos x} y \, dy = \frac{1}{2} \int_0^{\frac{\pi}{2}} \cos^2 x \, dx = \frac{1}{4} \int_0^{\frac{\pi}{2}} (1 + \cos 2x) dx = \frac{\pi}{8}.$$

Для обнаружения грубых вычислительных ошибок полезно проверить, что центр тяжести лежит внутри пластины.

Задачи для самостоятельного решения

Найти площади S_D областей D с границами:

20)
$$\partial D$$
: $y^2 = 10x + 25$, $y^2 = -6x + 9$; **21)** ∂D : $xy = 4$, $x + y = 5$.

Найти объемы V_{Ω} тел Ω с границами:

22)
$$\partial \Omega$$
: $z = x^2 + y^2, x + y = 4, x = 0, y = 0, z = 0.$

23)
$$\partial \Omega$$
: $z = 4 - y^2, y = \frac{x^2}{2}, z = 0.$

24)
$$\partial \Omega$$
: $z = x + y + 1$, $y = -x$, $x = \sqrt{y}$, $y = 2$, $z = 0$.

25)
$$\partial \Omega$$
: $y = 1 - z^2$, $x + 2z = 4$, $x = -1$, $y = 0$.

Указание: Тело удобно проектировать на плоскость YOZ.

26)
$$\partial \Omega$$
: $z = my, x^2 + y^2 = a^2, z = 0$.

27)
$$\partial\Omega$$
: $z = \frac{4}{x^2 + y^2}, x^2 + y^2 = 1, x^2 + y^2 = 4, z = 0.$

28)
$$\partial\Omega$$
: $x^2 + y^2 = a^2$, $x^2 + y^2 + z^2 = 4a^2$ (вне цилиндра).

28)
$$\partial\Omega$$
: $x^2 + y^2 = a^2$, $x^2 + y^2 + z^2 = 4a^2$ (вне цилиндра). **29)** $\partial\Omega$: $z = x^2 + y^2$, $x^2 + y^2 = x$, $x^2 + y^2 = 2x$, $x + y = 0$, $x - y = 0$, $z = 0$.

Найти площадь криволинейной поверхности G:

30) G:
$$2x = z^2, \frac{z}{2} < y < 2z, \ 0 < z < 2\sqrt{2}$$
.

31) G:
$$z + y = 2x^2$$
, $0 < x < 3$, $0 < y < 4x$.

31) *G*:
$$z + y = 2x^2$$
, $0 < x < 3$, $0 < y < 4x$.

32) *G*: $x^2 + y^2 = z^2$, внутри цилиндра $x^2 + y^2 = 4$.

33) *G*: $x^2 + z^2 = 2y$, внутри цилиндра $x^2 + z^2 = 4$.

33) *G*:
$$x^2 + z^2 = 2y$$
, внутри цилиндра $x^2 + z^2 = 4$.

Найти координаты центра тяжести однородной пластины D:

- **34)** $D: y > x^3, y < 4x, x > 0.$ **35)** $D: x^2 + y^2 < -2y, x > 0.$ **36)** $D: y < 2 x^2, x > 0, y > x.$
- **37)** D: $0 < y < \sin 2x$, $0 < x < \frac{\pi}{9}$.

24. ТРОЙНЫЕ *n*-КРАТНЫЕ ИНТЕГРАЛЫ

Опорный конспект № 24

24.1. Понятие ТИ

 Ω разбивается на $\Delta\Omega_i$, $i=\overline{1,n}$, с объемами ΔV_i ,

$$\Delta\Omega_i \cap \Delta\Omega_i = \emptyset, i \neq j,$$

$$M_i(\xi_i, \eta_i, \varsigma_i) \in \Omega_i \Rightarrow \iiint_{\Omega} f(x, y, z) dv = \lim_{\lambda \to 0} \sum_{i=1}^n f(\xi_i, \eta_i, \varsigma_i) \Delta v_i,$$

$$\lambda - \max \operatorname{diam} \Delta \Omega_i$$

Т: f(x, y, z) непр. в $\overline{\Omega}$ ⇒ ТИ \exists ■

 $\rho(x, y, z)$ — плотность в

T.
$$M(x, y, z) \in \Omega \Rightarrow m = \iiint_{\Omega} \rho dv -$$

масса Ω

24.2. Свойства ТИ

1⁰.
$$\iiint_{\Omega} (f(x, y, z) + \varphi(x, y, z)) dv = \iiint_{\Omega} f dv + \iiint_{\Omega} \varphi dv.$$

$$2^0$$
. $\iiint_{\Omega} cf \, dv = c \iiint_{\Omega} f \, dv$, $c = \text{const.}$

10.
$$\iiint_{\Omega} (f(x, y, z) + \varphi(x, y, z)) dv = \iiint_{\Omega} f dv + \iiint_{\Omega} \varphi dv.$$
20.
$$\iiint_{\Omega} cf dv = c \iiint_{\Omega} f dv, c = \text{const.}$$
30.
$$\Omega = \Omega_1 + \Omega_2 \Rightarrow \iiint_{\Omega} f dv = \iiint_{\Omega_1} f dv + \iiint_{\Omega_2} f dv.$$

$$4^0$$
. $\iiint_{\Omega} \mathrm{d}v = V$ — объем Ω .

5⁰.
$$\varphi(x, y, z) \le \psi(x, y, z) \operatorname{B} \Omega \Rightarrow \iiint_{\Omega} \varphi dv \le \iiint_{\Omega} \psi dv$$
.

6° . Теорема о среднем:

$$f(x, y, z)$$
 непр. в $\overline{\Omega} \Rightarrow \exists M(\xi, \eta, \zeta) \in \overline{\Omega}$:
$$\iiint f(x, y, z) dv = f(\xi, \eta, \zeta) V \blacksquare$$

24.3. Вычисление ТИ

В прямоугольных координатах: Ω правильная, проектируется в D на XOY,

$$\begin{split} \partial D &: \begin{cases} y = \varphi_1(x), \ y = \varphi_2(x), \\ (\varphi_1(x) \leq \varphi_2(x)), \\ x = a, \ x = b \ (a < b), \end{cases} \Rightarrow \iiint_{\Omega} f(x, y, z) \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \\ &= \iint_{D} \mathrm{d}x \, \mathrm{d}y \int_{z_1(x, y)}^{z_2(x, y)} f(x, y, z) \mathrm{d}z = \int_{a}^{b} \mathrm{d}x \int_{\varphi_1(x)}^{\varphi_2(x)} \mathrm{d}y \int_{z_1(x, y)}^{z_2(x, y)} f(x, y, z) \mathrm{d}z \end{split}$$

В цилиндрических координатах:

$$\begin{cases} x = r\cos\varphi, \\ y = r\sin\varphi, \quad \partial D: \\ z = z, \end{cases} \begin{cases} r = r_1(\varphi), \\ r = r_2(\varphi) \\ (r_1 < r_2), \\ \varphi = \alpha, \varphi = \beta \end{cases}$$

$$r = |\overline{OM'}|, \varphi = (\overline{OM'}, OX).$$

$$\iiint_{\Omega} f(x, y, z) dv = \iint_{D} r dr d\varphi \int_{z_1^*}^{z_2^*} f^*(r, \varphi, z) dz =$$

$$= \int_{\alpha}^{\beta} d\varphi \int_{r_1}^{r_2} r dr \int_{z_1^*}^{z_2^*} f^*(r, \varphi, z) dz, \quad z_i^*(r, \varphi) = z_i^* = z_i (r\cos\varphi, r\sin\varphi),$$

$$i = 1, 2, \quad f^*(r, \varphi, z) = f(r\cos\varphi, r\sin\varphi, z)$$

В сферических координатах:

$$\begin{cases} x = r \cos \varphi \sin \theta, \\ y = r \sin \varphi \sin \theta, \\ z = r \cos \theta, \end{cases} \begin{cases} r = |\overline{OM}|, \\ \varphi = (\overline{\widehat{ON}}; OX), \\ \theta = (\overline{\widehat{OM}}; OZ), \end{cases}$$

$$\iiint_{\Omega} f(x, y, z) dv = \iiint_{\Omega} f^*(r, \theta, \varphi) r^2 \sin \theta dr d\varphi d\theta$$

24.4. Приложения ТИ

- 1. Объем тела Ω (см. 24.2, свойство 4^0)
- 2. Физические приложения:
- а) статические моменты:

$$\mu_{xy} = \iiint_{\Omega} z \rho(x, y, z) dv, \ \mu_{yz} = \iiint_{\Omega} \rho x dv, \ \mu_{xz} = \iiint_{\Omega} \rho y dv;$$

б) координаты центра масс Ω :

$$x_c = \frac{\mu_{yz}}{m}, \ y_c = \frac{\mu_{xz}}{m}, \ z_c = \frac{\mu_{xy}}{m},$$

 ρ — плотность, m — масса Ω

Задачи к разд. 24.1-24.3

Задача 1. Вычислить тройной интеграл $\iiint_{\Omega} (x+2y) dx dy dz$ по

области
$$\Omega$$
: $y = x^2$, $y + z = 4$, $z = 0$.

Решение: Заметим (рис. 24.1), что первая поверхность — параболический цилиндр с образующими, параллельными оси OZ, вторая — плоскость, параллельная оси OX, и третья — координатная плоскость XOY. Сверху тело ограничено плоскостью z=4-y, снизу — поверхностью z=0, а его проекцией на плоскость XOY служит область с границей ∂D : $y=x^2$, y=x. Согласно формуле OK, разд. 24.3,

$$\iiint_{\Omega} (x+2y) dx dy dz = \int_{-2}^{2} dx \int_{x^{2}}^{4} dy \int_{0}^{4-y} (x+2y) dz =$$

$$= \int_{-2}^{2} dx \int_{x^{2}}^{4} dy (xz+2yz) \Big|_{0}^{4-y} = \int_{-2}^{2} dx \int_{x^{2}}^{4} (4x-xy+8y-2y^{2}) dy =$$

$$= \int_{-2}^{2} dx \left(4xy - \frac{1}{2}xy^2 + 4y^2 - \frac{2}{3}y^3 \right) \Big|_{x^2}^{4} =$$

$$= \int_{-2}^{2} \left(16x - 8x + 64 - \frac{128}{3} - 4x^3 + \frac{1}{2}x^5 - 4x^4 + \frac{2}{3}x^6 \right) dx = \frac{2048}{35}.$$

Рис. 24.1

Задача 2. Вычислить тройной интеграл $\iiint x \, dx \, dy \, dz$, где $\partial \Omega$:

$$x^2 + y^2 = z$$
, $z = 2 - x^2 - y^2$.

 $x^2 + y^2 = z$, $z = 2 - x^2 - y^2$. Решение: Поверхности $x^2 + y^2 = z$ и $z = 2 - x^2 - y^2$ представляют собой параболоиды (рис. 24.2). Найдем линию их пересечения: $2 - x^2 - y^2 = x^2 + y^2 \Rightarrow x^2 + y^2 = 1$. Следовательно, проекцией области Ω на плоскость XOY служит круг D радиусом 1. Удобно перейти к цилиндрической системе координат (см. ОК, разд. 24.3):

$$z = 2 - x^2 - y^2 = 2 - (r\cos\varphi)^2 - (r\sin\varphi)^2 = 2 - r^2,$$

$$z = x^2 + y^2 = (r\sin\varphi)^2 + (r\cos\varphi)^2 = r^2, \ \partial D: \ r = 1.$$

Рис. 24.2

Тогда

$$\iiint_{\Omega} x \, dx \, dy \, dz = \iiint_{\Omega} r \cos \varphi r \, dr \, d\varphi \, dz = \int_{0}^{2\pi} d\varphi \int_{0}^{1} r \, dr \int_{r^{2}}^{2-r^{2}} r \cos \varphi \, dz = \int_{0}^{2\pi} \cos \varphi \, d\varphi \int_{0}^{1} r^{2} (1 - r^{2} - r^{2}) dr = 0.$$

Задача 3. Вычислить тройной интеграл $\iiint\limits_{\Omega}z\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z$ по области

$$\Omega$$
: $x^2 + y^2 + z^2 < 1, x > 0, y > 0, z > 0$.

Решение: Областью интегрирования служит восьмая часть шара, находящаяся в первом октанте (рис. 24.3), поэтому удобно перейти к сферической системе координат (см. ОК, разд. 24.3). Так как пределы изменения сферических координат $0 \le \phi \le \frac{\pi}{2}, 0 \le \Theta \le \frac{\pi}{2}$

$$0 \le r \le 1, \text{ TO}$$

$$\iiint_{\Omega} z \, dx \, dy \, dz = \iiint_{\Omega} r \cos \theta r^2 \sin \theta \, dr \, d\phi \, d\theta =$$

$$= \int_{0}^{\pi/2} d\phi \int_{0}^{\pi/2} \cos \theta \sin \theta \, d\theta \int_{0}^{1} r^3 dr = \frac{\pi}{12}.$$

Рис. 24.3

Задачи для самостоятельного решения

Вычислить тройные интегралы:

1)
$$\iiint_{\Omega} z \, dx \, dy \, dz, \ \partial \Omega: \ x + y = 2, \ x = 0, \ y = 0, \ z = 0, \ z = 2;$$

2)
$$\iiint_{\Omega} \frac{z^2}{1 + e^{3xy}} dx dy dz, \Omega: 0 < y < x < 1, -1 < z < e^{xy};$$

3)
$$\iint_{\Omega} (x + 2y + 3z) dx dy dz, \ \Omega: \ x > 0, \ y > 0, \ z > 0, \ x + y + z < 3;$$

4)
$$\iiint_{\Omega} x^{2} y \cos\left(\frac{\pi}{2} xyz\right) dx dy dz, \ \Omega: \ -1 < x < 1, \ 0 < y < 1, \\ -1 < z < 1:$$

5)
$$\iiint_{\Omega} \frac{1}{\sqrt{4z - 2xz - yz}} dx dy dz, \ \Omega: \ x > 0, \ y > 0, \ z > 0, \ 2x + y + z < 4;$$

6)
$$\iiint_{\Omega} xz \, dx \, dy \, dz, \ \partial \Omega \colon \ x^2 + y^2 = 4, \ y = 0, \ z = 0, \ z = 2$$

$$(y \ge 0);$$

7)
$$\iiint_{\Omega} \frac{z}{16 - (x - y)^2} dx dy dz, \ \Omega: \ x^2 + y^2 < 4, \ x - y < z < 4;$$

8)
$$\iiint_{\Omega} \frac{x^2 + y^2}{(z+1)\ln(2-x^2-y^2)} dx dy dz, \ \Omega: \ 0 < z < 1 - x^2 - y^2;$$

9)
$$\iiint_{\Omega} \sqrt{x^2 + y^2} dx dy dz, \ \Omega: \ x^2 + y^2 < 4, \ 1 < z < 2 + x^2 + y^2;$$

10)
$$\iiint_{\Omega} \sqrt{(x^2 + y^2 + z^2)^3} dx dy dz, \ \Omega: \ x^2 + y^2 + z^2 < 4, \ y \ge 0.$$

Задачи к разд. 24.4

Задача 1. Вычислить объем внутренней части цилиндра $x^2 + y^2 = 1$, находящейся в шаре $x^2 + y^2 + z^2 < 2$.

Решение: В силу симметрии (рис 24.4) достаточно найти объем одной восьмой части тела, расположенной в первом октанте. Эта

Рис. 24.4

часть Ω ограничена снизу плоскостью z=0, а сверху — поверхностью $z=\sqrt{2-x^2-y^2}$, проекция которой на плоскость XOY — область D с границей ∂D : $x^2+y^2=2$, x=0, y=0.

Поэтому
$$\frac{1}{8}V = \iiint_D dx dy dz$$
 (см. ОК, разд. 24.2).

При вычислении тройного интеграла перейдем к цилиндрическим координатам:

$$V = \iiint_D dx \, dy \, dz = 8 \int_0^{\pi/2} d\phi \int_0^1 r \, dr \int_0^{\sqrt{2-r^2}} dz = -4 \frac{\pi}{3} (2 - r^2)^{3/2} \Big|_0^1 = \frac{4\pi}{3} (2\sqrt{2} - 1).$$

Задача 2. Вычислить координаты центра масс тела Ω : $x^2+y^2+z^2<9, x>0, y>0, z>0$, если плотность $\rho(x,y,z)=1$.

Решение: Рассматриваемое тело представляет собой восьмую часть шара радиусом 3, расположенную в первом октанте (см. рис. 24.3). Применяем формулы ОК, разд. 24.4, и переходим в интегралах к сферическим координатам:

$$\begin{split} m &= \iiint\limits_{D} \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z = \int\limits_{0}^{\pi/2} \mathrm{d}\phi \int\limits_{0}^{\pi/2} \sin\theta\,\mathrm{d}\theta \int\limits_{0}^{3} r^2\mathrm{d}r = \frac{9\pi}{2}, \\ x_c &= \frac{1}{m} \iiint\limits_{\Omega} x\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z = \frac{2}{9\pi} \int\limits_{0}^{\pi/2} \cos\phi\,\mathrm{d}\phi \int\limits_{0}^{\pi/2} \sin^2\theta\,\mathrm{d}\theta \int\limits_{0}^{3} r^3\mathrm{d}r = \frac{2}{9\pi} \cdot \frac{81\pi}{16} = \frac{9}{8}. \\ \mathrm{B} \ \mathrm{силу} \ \mathrm{симметрии} \ y_c &= z_c = \frac{9}{8}. \end{split}$$

Задачи для самостоятельного решения

Вычислить объемы тел Ω с границами:

11)
$$\partial\Omega$$
: $z = x$, $z = 2x$, $y = x^2$, $y^2 = x$; **12)** $\partial\Omega$: $z = x^2$, $z = 1$, $y = 0$, $y = 1$; **13)** $\partial\Omega$: $x^2 + y^2 = 2z$, $x^2 + y^2 = z^2$.

Вычислить координаты центра тяжести однородного ($\rho = 1$) тела Ω :

14)
$$\Omega$$
: $z > x^2 + y^2$, $z < 8 - x^2 - y^2$; **15)** Ω : $x + 2y + 3z < 1$, $x > 0$, $y > 0$, $z > 0$; **16)** Ω : $1 < x^2 + y^2 + z^2 < 2$, $y > 0$; **17)** Ω : $x^2 + y^2 < z^2 < 2$, $x > 0$; **18)** Ω : $x^2 + y^2 < 4$, $x + z < 2$, $z > 0$.

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ

Вариант № 1

1. Найти площадь (координаты центра массы) однородной плоской пластины D, если D: $0 < x < \sin y$, $0 < y < \pi/2$. *Ответ:*

$$1, \left(\left(\frac{\pi}{8}, 1 \right) \right).$$

- **2.** Вычислить двойной интеграл $\iint_{D} \sin(x+y) dx dy$, где ∂D : y=0, $y=x, x+y=\pi$. *Ответ*: 1/2.
 - **3.** Найти объем тела Ω , если: a) $\partial \Omega$: $z = 4 x^2 y^2$, z = 0;
- 6) $\partial \Omega$: $z = x^2$, $z = 4 x^2$, y = 2, y = 4. Omeem: a) 8π ;
- 6) $32\sqrt{2}/3$. **4.** Поменять порядок интегрирования $\int_{0}^{2} dx \int_{x^{2}}^{3x} f(x, y) dy$. *Ответ:*

$$\int_{0}^{4} dy \int_{y/3}^{\sqrt{y}} f(x, y) dx + \int_{4}^{6} dy \int_{y/3}^{2} f(x, y) dx.$$

Вариант № 2

- **1.** Найти площадь (координаты центра массы) однородной плоской пластины D, если D: $x > y^2$, x + 5y + 6 < 0. *Ответ*: 1/6, ((6,8; -2,5)).
 - **2.** Вычислить двойной интеграл $\iint_D (x-2y) dx dy$, где ∂D :

$$x^2 + y^2 = -2x$$
. *Ombem*: $-\pi$.

- 3. Найти объем тела Ω , если: а) $\partial\Omega$: $z=x^2+y^2$, y=x, y=2x, z=0, y=2; б) $\partial\Omega$: $z=x^2+y^2$, $z=6-x^2-y^2$. Ответ: а) 19/6; б) 9π .
 - **4.** Поменять порядок интегрирования $\int_{-2}^{2} dx \int_{x^2}^{4} f(x, y) dy$. *Ответ*:

$$\int_{0}^{4} dy \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y) dx.$$

Вариант № 3

1. Найти площадь (координаты центра массы) однородной плоской пластины D, если D: $x^2+y^2>2x$, $x^2+y^2<4x$. *Ответ*: 3π , ((7/3; 0)).

2. Вычислить двойной интеграл
$$\iint_D (x + 5y) dx dy$$
, где $\partial D: x = y^2$,

$$x + 7y + 12 = 0$$
. *Omeem:* -0.85 .

3. Найти объем тела
$$\Omega$$
, если: a) $\partial\Omega$: $z=4-x^2-y^2$, $z=0$, $x^2+y^2=1$; б) $\partial\Omega$: $x=z^2$, $x=4-z^2$, $y=0$, $y=6$. Ответ: a) $9\pi/2$; б) $32\sqrt{2}$.

9π/2; 0) 32
$$\sqrt{2}$$
.
4. Изменить порядок интегрирования $\int_{-2}^{1} dy \int_{v^2}^{2-y} f(x, y) dx$. *Ответ:*

$$\int_{0}^{1} dx \int_{-\sqrt{x}}^{\sqrt{x}} f(x, y) dy + \int_{1}^{4} dx \int_{-\sqrt{x}}^{2-x} f(x, y) dy.$$

РАСЧЕТНОЕ ЗАДАНИЕ

Здесь n — номер студента по списку группы, $\alpha\beta\gamma\delta$ — четыре цифры номера группы,

$$\lambda = \left| \frac{n+\alpha}{4} \right| + 1; \ \mu = \left| \frac{n+\beta}{5} \right| + 1; \ \nu = \left| \frac{n+\gamma+\delta}{5} \right| + 1; \ l = \left[\frac{n+3}{4} \right];$$

$$k = \left[\frac{n+3}{2} \right].$$

]...[— остаток от деления, [...] — целая часть от деления.

1. Вычислить двойной интеграл

$$\iint_{\Omega} ((\lambda + (-1)^{n} \lambda)x + (\mu + (-1)^{n+1} \mu)y) dx dy,$$

D — треугольник *ABO*: O(0; 0),

$$A\left(2v\sin\frac{\pi n}{2};2v\cos\frac{\pi n}{2}\right),$$

$$B\left(\nu\left(\sin\frac{\pi n}{2}+\cos\frac{\pi n}{2}\right);\nu\left(\cos\frac{\pi(n+1)}{2}+\sin\frac{\pi(n+1)}{2}\right)\right).$$

2. Вычислить двойной интеграл $\iint\limits_{D} \sqrt{(x^2+y^2)^{\lambda}} \, \mathrm{d}x \, \mathrm{d}y,$

$$D: \begin{cases} x^2 + y^2 \le \mu^2, \\ x \sin \frac{\pi n}{2} \le y \cos \frac{\pi n}{2}, \\ (-1)^l y \le (-1)^n x. \end{cases}$$

3. Найти объем $V_{\rm O}$:

$$\partial \Omega: \begin{cases} z = l^2 - \mu x \cos \frac{\pi n}{2} - \lambda y \sin \frac{\pi n}{2}, \\ \left(\frac{1 + (-1)^n}{2}\right) x + \left(\frac{1 + (-1)^{n+1}}{2}\right) y = \lambda x^2 \sin \frac{\pi n}{2} + \mu y^2 \cos \frac{\pi n}{2}, \\ z = 0. \end{cases}$$

4. Найти координаты центра тяжести однородной пластинки D, если

$$\partial D: \begin{cases} y = \sin\frac{x-\lambda}{l}\sin\frac{\pi n}{2} + (x^2 - (2\lambda + l)x + \lambda^2 + l\lambda)\cos\frac{\pi n}{2}, \\ y = \frac{2(x-\lambda)}{\pi l}\sin\frac{\pi n}{2} - \frac{l(x-\lambda)}{2}\cos\frac{\pi n}{2}, \\ (-1)^k x > 0. \end{cases}$$

5. Вычислить
$$\iint_{\Omega} \left(\left(\frac{1 + (-1)^n}{2} \right) x^2 z + \left(\frac{1 + (-1)^{n+1}}{2} \right) y^2 z \right) dx dy dz,$$
 $\partial \Omega$:
$$\begin{cases} z = \lambda, \ z = \mu + 3, \\ (x + y) \sin \frac{\pi n}{2} + (x - y) \cos \frac{\pi n}{2} = \nu, \\ x = 0, \ y = 0. \end{cases}$$

6. Найти массу тела Ω : $x^2 + y^2 \le z \le 2v^2 - x^2 - y^2$, если его плотность $\rho = (\mu + (-1)^n \mu) x^2 + (\lambda + (-1)^{n+1} \lambda) y^2$.

Ответы к разд. 23, 24

23. Двойной интеграл

1)
$$\frac{15}{2} + 3(e^3 - e^2)$$
; 2) a) $-4/3$; 6) $-14/27$; 3) a) $1/2$; 6) -2 ;
4) a) $\frac{51}{20}$; 6) $\frac{64\sqrt{2}}{3}$; 5) $9/4$; 6) 12; 7) 0; 8) $\frac{\pi}{6}$; 9) 0; 10) $\frac{\pi}{2}\ln 2$; 11) 0;
12) 3π ; 13) $\frac{\pi}{4} - \frac{1}{2}$; 14) $\int_{0}^{1} dy \int_{\sqrt{y}}^{\sqrt{y}} f(x, y) dx$; 15) $\int_{0}^{3} dy \int_{y/8}^{y} f(x, y) dx +$

$$+ \int_{3}^{24} dy \int_{y/8}^{3} f(x, y) dx; \quad \mathbf{16}) \int_{0}^{4} dy \int_{-\sqrt{4-y}}^{\sqrt{y}} f(x, y) dx; \quad \mathbf{17}) \int_{-1}^{0} dx \int_{x^{2}-2}^{-x^{2}} f(x, y) dy;$$

18)
$$\int_{-1}^{0} dx \int_{x^{2}}^{\sqrt{2-x^{2}}} f(x, y) dy; 19) \int_{-1}^{0} dy \int_{-\sqrt{2-y^{2}}}^{y} f(x, y) dx; 20) \frac{16\sqrt{15}}{3}; 21) 7,5 -$$

- 8ln2; **22)**
$$42\frac{2}{3}$$
; **23)** $12\frac{4}{21}$; **24)** $\frac{44}{15}\sqrt{2} + \frac{13}{3}$; **25)** $\frac{20}{3}$; **26)** $\frac{2a^3m}{3}$;

27) 8ln 2; **28)**
$$4\pi\sqrt{3}a^3$$
; **29)** $\frac{45}{64}\pi + \frac{15}{8}$; **30)** 13; **31)** $(73\sqrt{146} - \sqrt{2})/6$;

32)
$$4\sqrt{2}\pi$$
; **33)** $2\pi(5\sqrt{5}-1)/3$; **34)** $\left(\frac{16}{15}; \frac{64}{21}\right)$; **35)** $\left(\frac{4}{3\pi}; -1\right)$; **36)** $\left(\frac{5}{14}; \frac{38}{35}\right)$;

37)
$$\left(\frac{-\sqrt{2}\pi + 4\sqrt{2}}{8(2-\sqrt{2})}; \frac{\pi-2}{8(2-\sqrt{2})}\right)$$
.

24. Тройные и *n*-кратные интегралы

1) 2; 2)
$$1/6$$
; 3) $\frac{81}{4}$; 4) $-\frac{32}{\pi^3} + \frac{16}{\pi^2}$; 5) 8; 6) 0; 7) 2π ; 8) $\frac{\pi}{2}$; 9) $\frac{272\pi}{15}$;

10)
$$\frac{64\pi}{3}$$
; **11)** $\frac{3}{20}$; **12)** 4/3; **13)** $\frac{4\pi}{3}$; **14)** (0; 0; 4); **15)** $\left(\frac{1}{12}; \frac{1}{24}; \frac{1}{36}\right)$;

16)
$$\left(0; \frac{3}{\pi(2\sqrt{3}-1)}; 0\right);$$
 17) $\left(\frac{\sqrt{2}}{\pi}; 0; \frac{3}{2\sqrt{2}}\right);$ **18)** $\left(-\frac{1}{2}; 0; \frac{5}{4}\right).$

Глава 9 ВЕКТОРНЫЙ АНАЛИЗ

25. КРИВОЛИНЕЙНЫЙ ИНТЕГРАЛ ПО ДЛИНЕ ДУГИ (І РОДА)

Опорный конспект № 25

25.1. Понятие КИ Ір

$$\mathbf{O}$$
: $f(x, y)$ непр. в D , $\overrightarrow{AB} \subset D$, \overrightarrow{AB} разбивается на $A_{i-1}A_i$ длиной Δl_i , $i=\overline{1,n}, M_i(\xi_i, \eta_i) \in \Delta l_i \Rightarrow$
$$\int\limits_{AB} f(x,y) \mathrm{d}l = \lim_{\max \Delta l_i \to 0} \sum_{i=1}^n f(\xi_i, \eta_i) \Delta l_i$$

$$\rho(x, y) -$$
линейная плотность $\stackrel{\cup}{AB} \Rightarrow$

$$m = \int_{AB} f(x, y) dl - \text{масса } AB$$

25.2.Свойства КИ Ір

10.
$$\int_{AB} (f_{1}(x, y) + f_{2}(x, y)) dl = \int_{AB} f_{1} dl + \int_{AB} f_{2} dl.$$
20.
$$\int_{AB} cf(x, y) dl = c \int_{AB} f(x, y) dl, c = \text{const.}$$
30.
$$L = L_{1} + L_{2} \Rightarrow \int_{L} f(x, y) dl = \int_{L_{1}} f dl + \int_{L_{2}} f dl.$$

$$2^{0}. \int_{AB} cf(x, y)dl = c \int_{AB} f(x, y)dl, c = \text{const.}$$

3⁰.
$$L = L_1 + L_2 \Rightarrow \int_L^{AB} f(x, y) dl = \int_{L_1} f dl + \int_{L_2} f dl$$

$$4^0$$
. $\int_L dl = l$ — длина L .

5⁰.
$$\int_{AB}^{B} f(x, y) dl = \int_{BA}^{C} f(x, y) dl$$

25.3. Вычисление КИ Ір

25.3. Вычисление КИ Ір

а)
$$AB: x = x(t), y = y(t)$$
 — непр. дифф. на $[\alpha, \beta] \Rightarrow \int_{AB} f(x, y) dl = \int_{\alpha} f(x(t), y(t)) \sqrt{{x'}^2 + {y'}^2} dt;$

б)
$$\stackrel{\cup}{AB}$$
: $y = y(x)$ — непр. дифф. на $[a, b] \Rightarrow$

$$\Rightarrow \int_{AB} f(x, y) dl = \int_{a}^{b} f(x, y(x)) \sqrt{1 + (y'(x))^{2}} dx$$

Задачи к разд. 25

Задача 1. Вычислить криволинейный интеграл $J=\int_L \frac{(x^2-3)y \mathrm{e}^y \mathrm{d}l}{\sqrt{27x^2+9xy+82}}$, где L- дуга кубической параболы $y=x^3-9x$,

заключенная между точками A и B с абсциссами, равными -3 и -2 соответственно.

Решение: Элемент дуги dl вычисляется по формуле dl = $\sqrt{1 + (y'(x))^2} dx$. Так как $y' = 3x^2 - 9$, то $1 + (y'(x))^2 = 1 + (3x^2 - 9)^2 = 9x^4 - 54x^2 + 82$. Подставляя выражение для y и dl, получим (см. OK, разд. 25.3)

$$J = \int_{L} \frac{(x^2 - 3)(x^3 - 9x)e^{x^3 - 9x}}{\sqrt{27x^2 + 9x(x^3 - 9x) + 82}} \sqrt{9x^4 - 54x^2 + 82} dx =$$

$$= \int_{-3}^{-2} \frac{(x^2 - 3)(x^3 - 9x)e^{x^3 - 9x}}{\sqrt{9x^4 - 54x^2 + 82}} \sqrt{9x^4 - 54x^2 + 82} dx =$$

$$= \int_{-3}^{-2} (x^2 - 3)(x^3 - 9x)e^{x^3 - 9x} dx = \begin{cases} x^3 - 9x = t, & x \mid -3 \mid -2 \\ (3x^2 - 9)dx = dt, & t \mid 0 \mid 10 \end{cases} =$$

$$= \frac{1}{3} \int_{0}^{10} te^t dt = \frac{1}{3} (te^t - e^t) \Big|_{0}^{10} = \frac{1}{3} (10e^{10} - e^{10} + e^0) = \frac{1}{3} (9e^{10} + 1).$$

Задача 2. Вычислить $\int_L (x+y) dl$, где L — контур треугольника ABO с вершинами A(1; 0), B(0; 1), O(0; 0).

Решение: Уравнение прямой, проходящей через точки A и B, имеет вид $y=1-x,\ 0\le x\le 1$, уравнение прямой OB-x=0, $0\le y\le 1$, уравнение прямой $OA-y=0,\ 0\le x\le 1$.

Тогда

$$\int_{L} (x+y) dl = \int_{AB} (x+y) dl + \int_{BO} (x+y) dl + \int_{OA} (x+y) dl =$$

$$= \int_{0}^{1} \sqrt{2} dx + \int_{0}^{1} y dy + \int_{0}^{1} x dx = \sqrt{2} + 1.$$

Задача 3. Вычислить криволинейный интеграл $\int\limits_{L} \sqrt{2y} \, \mathrm{d}l$, где L —

дуга циклоиды $x = a(t - \sin t), y = a(1 - \cos t), 0 \le t \le \pi$.

Решение: Находим

$$dI = \sqrt{a^2(1 - \cos t)^2 + a^2 \sin^2 t} dt = \sqrt{a^2(2 - 2\cos t)} dt = a\sqrt{2(1 - \cos t)} dt.$$

В исходный интеграл подставляем выражение для y и dl:

$$\int_{L} \sqrt{2y} dt = \int_{0}^{\pi} \sqrt{2a(1 - \cos t)} a \sqrt{2(1 - \cos t)} dt = 2a \sqrt{a} \int_{0}^{\pi} (1 - \cos t) dt =$$

$$= 2a \sqrt{a} (t - \sin t) \Big|_{0}^{\pi} = 2\pi a \sqrt{a}.$$

Задачи для самостоятельного решения

Вычислить криволинейные интегралы:

- 1) $\int_{L} \frac{x \, dl}{y}$, где L дуга параболы $y^2 = 2x$ между точками $A(1; \sqrt{2})$, B(2; 2);
- **2)** $\int_L \frac{\mathrm{d}l}{x+y}$, где L отрезок прямой y=x+2, соединяющий точки $A(2;\ 4),\ B(1;\ 3);$
 - 3) $\int_L xy \, \mathrm{d}l$, где L контур прямоугольника, ограниченного пря-

мыми x = 0, y = 0, x = 4, y = 2;

- **4)** $\int_L x \, \mathrm{d}l$, где L отрезок прямой, соединяющий точки $A(0;\ 0)$ и $B(1;\ 2);$
- **5)** $\int_{L} y^3 dl$, где L первая арка циклоиды $x = a(t \sin t)$, $y = a(1 \cos t)$;
 - 6) $\int_{L} xy \, dl$, где L четверть эллипса $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, лежащая в пер-

вом квадранте;

- 7) С помощью криволинейного интеграла найти длину астроиды $x = a\cos^3 t$, $y = a\sin^3 t$.
- **8)** Найти массу m дуги окружности $x = \cos t$, $y = \sin t$ $(0 \le t \le \pi)$, если линейная плотность ее в точке (x, y) равна y.

26. КРИВОЛИНЕЙНЫЙ ИНТЕГРАЛ ПО КООРДИНАТАМ (КИ II РОДА)

Опорный конспект № 26

2)
$$\stackrel{\cup}{AB}$$
: $y = y(x)$ — непр. дифф. на $[a, b] \Rightarrow$ $\Rightarrow \int\limits_{\stackrel{\cup}{AB}} P \, \mathrm{d}x + Q \, \mathrm{d}y = \int\limits_{a}^{b} (P(x, y(x)) + Q(x, y(x)))y'(x)) \mathrm{d}x$

26.4. Связь между КИ Ір и Пр

$$L_M$$
 — касательная к $\stackrel{\frown}{AB}$ в т. M , $\alpha = (\widehat{L_M, OX})$, $\beta = (\widehat{L_M, OY})$, $\gamma = (\widehat{L_M, OZ}) \Rightarrow \int\limits_{\stackrel{\frown}{AB}} P(x, y, z) \mathrm{d}x + Q(x, y, z) \mathrm{d}y + R(x, y, z) \mathrm{d}z = \int\limits_{\stackrel{\frown}{AB}} (P\cos\alpha + Q\cos\beta + R\cos\gamma) \mathrm{d}l$

26.5. Формула Грина

$$P(x, y), Q(x, y)$$
 непр. в D вместе с $\frac{\partial P}{\partial y}, \frac{\partial Q}{\partial x}$,

$$L = \partial D \Rightarrow \oint_L P \, \mathrm{d}x + Q \, \mathrm{d}y = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \! \mathrm{d}x \, \mathrm{d}y$$

26.6. Условия независимости КИ Пр от контура интегрирования

1.
$$\int_{L^*} P \, \mathrm{d}x + Q \, \mathrm{d}y = 0 \, \forall L^* \subset D \Leftrightarrow$$

$$2. \int_{\stackrel{\cup}{AB}}^{L*} P \, \mathrm{d}x + Q \, \mathrm{d}y \text{ не зависит от } \stackrel{\cup}{AB} \subset D \Leftrightarrow$$

3.
$$Pdx + Qdy = du, u = u(x, y), (x, y) \in D \Leftrightarrow$$

4.
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
 в D

26.7. Интегрирование полных дифференциалов

$$P dx + Q dy = du \Rightarrow u(x, y) = \int_{(x_0, y_0)}^{(x, y)} P dx + Q dy + c =$$

$$= \int_{AC} + \int_{CB} + c = \int_{x_0}^{x} P(x, y_0) dx + \int_{y_0}^{y} Q(x, y) dy + c$$

26.8. Уравнения в полных дифференциалах

$$P(x, y)$$
d $x + Q(x, y)$ d $y = 0,$
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \Rightarrow \int\limits_{x_0}^x P(x, y_0) \mathrm{d}x + \int\limits_{y_0}^y Q(x, y) \mathrm{d}y = c - \text{общий интеграл}$$

Задачи к разд. 26.1-26.3

Задача 1. Вычислить интеграл $\int_{L} xy \, dx + (x+y) dy$, принимая за линию L:

- а) отрезок прямой, соединяющий точки O(0; 0) и A(1; 1);
- б) дугу параболы $y = x^2$, соединяющую эти же точки;
- в) ломаную ONA: O(0; 0), N(1; 0), A(1; 1) (рис. 26.1).

Решение: а) кривой интегрирования L служит прямая y=x, следовательно, $\mathrm{d} x=\mathrm{d} y$ и (см. ОК, разд. 26.3) $I=\int\limits_0^1 (x^2+2x)\mathrm{d} x=$ $=\left(\frac{x^3}{3}+x^2\right)\Big|_0^1=\frac{4}{3};$

- б) интегрирование ведется по параболе $y = x^2$. Поэтому dy = 2x dx и $I = \int_0^1 (x^3 + (x + x^2) \cdot 2x) dx = \frac{17}{12}$;
- в) контур интегрирования L разбиваем на две части. На участке $ON\ y=0,\ \mathrm{d}y=0;$ на участке $NA\ x=1,\ \mathrm{d}x=0.$ Поэтому $I=\int_0^1 (1+y)\mathrm{d}y = \frac{(1+y)^2}{2}\bigg|_0^1 = \frac{3}{2}.$

Задача 2. Вычислить интеграл $\int_L y \, dx - x \, dy$, где L — первая арка циклоиды $x = 2(t - \sin t), y = 2(1 - \cos t), 0 \le t \le 2\pi$.

Решение: Так как $dx = 2(1 - \cos t)dt$, $dy = 2\sin t dt$, то (см. OK, разд. 26.3)

$$I = \int_{0}^{2\pi} [4(1-\cos t)^{2} - 4(t-\sin t)\sin t]dt = 4\int_{0}^{2\pi} (2-2\cos t - t\sin t)dt =$$

$$= 4[(2t-2\sin t)|_{0}^{2\pi} - \int_{0}^{2\pi} t\sin t dt].$$

Интегрируя последний интеграл по частям, получим $I=16\pi-4(-t\cos t+\sin t)|_0^{2\pi}=24\pi.$

Задачи для самостоятельного решения

Вычислить криволинейные интегралы:

1)
$$\int_{L} (xy - y^2) dx + x dy$$
, где L : $y = 2x^2$ от т. $A(0; 0)$ до т. $B(1; 2)$;

2)
$$\int_{L}^{2} 2xy \, dx + x^2 dy$$
, где L : а) отрезок прямой AB ; б) $y = x^2$;

B)
$$x = y^2$$
; r) $y = x^3$ or $A(0; 0)$, $B(1; 1)$;

$$x = y^2$$
; г) $y = x^3$ от $A(0; 0)$, $B(1; 1)$;
3) $\int_L (3x^2 + y) dx + (x - 2y^2) dy$, где L : ломаная $ABCA$: $A(0; 0)$,

B(1; 0), C(0; 1);

4)
$$\int_L xy \, dx$$
, где L — дуга синусоиды $y = \sin x$ от $x = 0$ до $x = \pi$;

5)
$$\int_{L} y \, dx + z \, dy + x \, dz$$
, если: a) L — ломаная *OABC*: $O(0; 0; 0)$,

A(1; 0; 0), B(1; 1; 0), C(1; 1; 1); б) L — отрезок прямой OC;

6)
$$\int_{L} e^{x+y} dx + y dy$$
, где L — ломаная OAB : $O(0; 0)$, $A(4; 0)$, $B(0; 2)$;

7)
$$\int_L x^2 dx + xy dy$$
, где L — дуга окружности $x = \cos t$, $y = \sin t$,

 $0 \le t \le \pi/2$:

8)
$$\int \frac{x^2 \mathrm{d}y - y^2 \mathrm{d}x}{x^{5/3} + y^{5/3}}$$
, где L — часть астроиды $x = a \cos^3 t$, $y = a \sin^3 t$, $0 \le t \le \pi/2$;

9)
$$\int_L (y-z) dx + (z-x) dy + (x-y) dz$$
, где L — виток винтовой линии $x=2\cos t$, $y=2\sin t$, $z=3t$, $0 \le t \le 2\pi$.

10) Найти работу, совершаемую силой $F\{y, -x\}$ вдоль эллипса $x = a\cos t, y = b\sin t, 0 \le t \le 2\pi.$

Задачи к разд. 26.5

Задача 1. Используя формулу Грина, вычислить криволинейный интеграл

$$\int_{I} (x^3 - 2y + x^2 \sin(x^3 + y^3)) dx + (2xy + y^2 \sin(x^3 + y^3)) dy,$$

где L — окружность $x^2 + y^2 = 2x$, пробегаемая против хода часовой стрелки.

Решение: С помощью элементарных преобразований приведем уравнение окружности $x^2 + y^2 = 2x$ к виду $(x - 1)^2 + y^2 = 1$. Отсюда следует, что центр окружности находится в точке C(1; 0), а радиус равен 1 (рис. 26.2). Для нашего интеграла

$$P(x, y) = x^3 - 2y + x^2 \sin(x^3 + y^3), Q(x, y) = 2xy + y^2 \sin(x^3 + y^3),$$

тогда

$$\frac{\partial P}{\partial y} = -2 + x^2 \cos(x^3 + y^3) \cdot 3y^2, \ \frac{\partial Q}{\partial x} = 2y + y^2 \cos(x^3 + y^3) \cdot 3x^2,$$
 следовательно, $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 2y + 2.$

Для вычисления исходного интеграла используем формулу Грина

$$I = \iint\limits_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \iint\limits_{D} (2x + 2) dx dy.$$

Так как область D — круг, перейдем к полярным координатам: $x = r \cos \varphi$, $y = r \sin \varphi$, $dx dy = r dr d\varphi$. Уравнение заданной окружности в полярной системе координат имеет вид $r = 2 \cos \varphi$. Тогда

$$\begin{split} I &= \int\limits_{-\pi/2}^{\pi/2} \mathrm{d}\phi \int\limits_{0}^{2\cos\phi} (2r\sin\phi + 2)r\,\mathrm{d}r = \int\limits_{-\pi/2}^{\pi/2} \mathrm{d}\phi \left[2\frac{r^3}{3}\sin\phi + 2\frac{r^2}{2}\right] \bigg|_{0}^{2\cos\phi} = \\ &= \int\limits_{-\pi/2}^{\pi/2} (\frac{16}{3}\cos^3\phi\sin\phi + 4\cos^2\phi)\mathrm{d}\phi = -\frac{16}{3}\int\limits_{-\pi/2}^{\pi/2} \cos^3\phi\,\mathrm{d}\cos\phi + \\ &+ 2\int\limits_{\pi/2}^{\pi/2} (1+\cos2\phi)\mathrm{d}\phi = -\frac{16}{3}\frac{\cos^4\phi}{4}\bigg|_{-\pi/2}^{\pi/2} + 2\phi\bigg|_{-\pi/2}^{\pi/2} + \sin2\phi\bigg|_{-\pi/2}^{\pi/2} = 2\pi. \end{split}$$

Рис. 26.2

Задача 2. Вычислить криволинейный интеграл

$$\int_{I} (2^{\cos x} + xy) dx + (2^{\cos y} - xy) dy,$$

где L — контур четырехугольника с вершинами O(0; 0), A(2; 2), B(5; 2), C(3; 0), указанными в порядке обхода (рис. 26.3).

Рис. 26.3

Решение: Так как обход контура интегрирования проводится в отрицательном направлении, то формула Грина имеет вид

$$\int_{L} P(x, y) dx + Q(x, y) dy = -\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

В нашем случае $P(x, y) = 2^{\cos x} + xy$, $Q = 2^{\cos y} - xy$. Следовательно, $\frac{\partial P}{\partial y} = x$, $\frac{\partial Q}{\partial x} = -y$ и $I = -\iint_D (-x - y) dx dy = \iint_D (x + y) dx dy$.

Находим уравнения *OA* и *CB* как уравнения прямых, проходящих через две заданные точки: $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}$; *OA*: $\frac{x-2}{0-2} = \frac{y-2}{0-2} \Rightarrow x = y$; *CB*: $\frac{x-5}{3-5} = \frac{y-2}{0-2} \Rightarrow x = y+3$.

Значит
$$I = \int_0^2 dy \int_y^{y+3} (x+y) dx = \int_0^2 \left(\frac{(y+3)^2}{2} - \frac{y^2}{2} + 3y \right) dy = 21.$$

Задачи для самостоятельного решения

Вычислить с помощью формулы Грина:

11)
$$\oint_L xy^2 dy - x^2 y dx$$
, где L — окружность $x^2 + y^2 = a^2$;

12)
$$\oint_L (2xy - 2x) dx + x^2 dy$$
, L — контур фигуры, ограниченной линиями $v = 2x^2$, $v = 4$:

13) $\oint_L y^2 dx + (x+y)^2 dy$, L — контур треугольника ABC с вершинами A(2; 0), B(2; 2), C(0; 2);

14) $\oint_L (x^2y^3 + x) dx + (x^3y^2 + xy) dy$, где L — контур фигуры, огра-

ниченной линиями $y = x^2$, y = 1, x = 0, пробегаемый в положительном направлении;

15)
$$\oint_L e^{-x^2+y^2} (\cos(2xy) dx + \sin(2xy) dy)$$
, где $L: x^2 + y^2 = R^2$.

Задачи к разд. 26.6-26.8

Задача 1. Вычислить $\int_{0}^{(2;1)} 2xy \, dx + x^2 dy$.

Решение: Так как $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = 2x$, то криволинейный интеграл не

зависит от пути интегрирования. В качестве пути интегрирования, связывающего точки (0; 0) и (2; 1), возьмем ломаную *ONM* (рис. 26.4).

 ON : $y=0,\,\mathrm{d} y=0,\,0\le x\le 2;\,\,\mathit{NM}$: $x=2,\,\mathrm{d} x=0,\,0\le y\le 1.$ Следовательно,

$$\int_{(0;0)}^{(2;1)} 2xy \, dx + x^2 dy = 0 + \int_{0}^{1} 2^2 dy = 4$$

(на звене \emph{ON} ломаной подынтегральное выражение равно нулю).

Задача 2. Найти первообразную функцию U(x, y), если $dU = (y + \ln(x + 1))dx + (x + 1 - e^y)dy$.

Решение: Имеем $P(x, y) = y + \ln(x + 1), Q(x, y) = x + 1 - e^y,$ $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = 1.$

Пусть $x_0 = 0$, $y_0 = 0$ и контуром L является ломаная OMN (рис. 26.5). Тогда

Рис. 26.5

$$U(x, y) = \int_{0}^{x} \ln(x+1) dx + \int_{0}^{y} (x+1-e^{y}) dy + c = (x \ln(x+1) - x + \ln(x+1))|_{0}^{x} + (xy+y-e^{y})|_{0}^{y} + c = (x+1)\ln(x+1) - x + xy + y - e^{y} + 1 + c.$$

Задача 3. Найти
$$U(x, y)$$
, если $dU = \left(\frac{1}{x} + \frac{1}{y}\right) dx + \left(\frac{2}{y} - \frac{x}{y^2}\right) dy$.

Решение: В этом случае $P(x, y) = \frac{1}{x} + \frac{1}{y}$, $Q(x, y) = \frac{2}{y} - \frac{x}{y^2}$,

 $\frac{\partial P}{\partial y} = -\frac{1}{y^2} = \frac{\partial Q}{\partial x}.$

В качестве начальной точки (x_0, y_0) возьмем, например, т. A(1; 1). Тогда

$$U(x, y) = \int_{1}^{x} \left(\frac{1}{x} + 1\right) dx + \int_{1}^{y} \left(\frac{2}{y} - \frac{x}{y^{2}}\right) dy + c = \ln x + 2\ln y + \frac{x}{y} - 1 + c.$$

Задача 4. Решить дифференциальное уравнение $(4x^3y^3 - 3y^2 + 8)dx + (3x^4y^2 - 6xy - 1)dy = 0.$

Решение: $P(x, y) = 4x^3y^3 - 3y^2 + 8$, $Q(x, y) = 3x^4y^2 - 6xy - 1$, $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = 12x^3y^2 - 6y$.

Следовательно, $P \mathrm{d} x + Q \mathrm{d} y = \mathrm{d} U$. Таким образом, $\mathrm{d} U = 0 \Rightarrow U = c$. Пусть $(x_0, y_0) = (0; 0)$. Тогда

$$U = \int_{0}^{x} 8 dx + \int_{0}^{y} (3x^{4}y^{2} - 6xy - 1) dy = c,$$

T.e. $8x + x^4y^3 - 3xy^2 - y = c$.

Задачи для самостоятельного решения

Вычислить криволинейные интегралы:

16)
$$\int_{(-1,2)}^{(2,3)} x \, dy + y \, dx;$$
17)
$$\int_{(2,1)}^{(1,2)} \frac{y \, dx - x \, dy}{x^2};$$
18)
$$\int_{(1,0)}^{(6,8)} \frac{x \, dx + y \, dy}{\sqrt{x^2 + y^2}};$$
19)
$$\int_{(1,\pi)}^{(2,\pi)} \left(1 - \frac{y^2}{x^2} \cos \frac{y}{x}\right) dx + \left(\sin \frac{y}{x} + \frac{y}{x} \cos \frac{y}{x}\right) dy;$$
20)
$$\int_{(1,0)}^{(2,1)} e^{2y} dx + \left(2xe^{2y} + 1\right) dy.$$

Установить существование первообразной u(x, y) и найти ее для дифференциальных выражений:

21)
$$(4x^3y^3 - 3y^2 + 5)dx + (3x^4y^2 - 6xy - 4)dy$$
; 22) $(3x^2y - \frac{y^3}{3})dx + (x^3 - xy^2)dy$; 23) $(3x^2y + \frac{1}{y})dx + (x^2 - \frac{x}{y^2})dy$.

Найти первообразную функцию u(x, y) по ее полному дифференциалу:

24)
$$du = (e^{2y} - 5y^3 e^x) dx + (2xe^{2y} - 15y^2 e^x) dy;$$
 25) $du = (12x^2y + \frac{1}{y^2}) dx + (4x^3 - \frac{2x}{y^3}) dy;$ **26)** $du = (e^{x+y} + \cos(x - y)) dx + (e^{x+y} - \cos(x - y) + 2) dy.$

Решить дифференциальные уравнения:

27)
$$(3x^2y + 1)dx + (x^3 - 1)dy = 0$$
; **28)** $(2xye^{x^2} + \ln y)dx + \left(e^{x^2} + \frac{x}{y} + e^y\right)dy = 0$; **29)** $(x + y + 1)(e^x - e^y)dx + (e^x - (x + y + 1)e^y)dy = 0$.

27. ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ

Опорный конспект № 27

27.1. Поверхности в R³

 $G: z = z(x, y), M(x, y) \in \mathbf{R}^2, z(x, y), z'_x, z'_y$ — непрерывны в $D \Leftrightarrow G$ — гладкая поверхность, являющаяся двусторонней. Единичный вектор нормали $\vec{n} = \{\cos\alpha, \cos\beta, \cos\gamma\}, \alpha = (\widehat{\vec{n}}, \widehat{\vec{t}}), \beta = (\widehat{\vec{n}}, \widehat{\vec{t}}), \gamma = (\widehat{\vec{n}}, \widehat{\vec{k}}), \vec{n}(M)$ — непрерывная функция т. M

27.2. ПИ Ір

1. Определение ПИ Ір

 $f(x,\ y,\ z)$ непрерывна в $\Omega,\ G\subset\Omega,\ G_i\cap G_j=\varnothing,\ G=\bigcup_{i=1}^n\Delta G_i,$ $\Delta\sigma_i$ — площадь $\Delta G_i,$

$$M_i(\xi_i,\eta_i,\zeta_i)\in\Delta G_i\Rightarrow \iint\limits_G f(x,y,z)\mathrm{d}\sigma=\lim_{\lambda\to 0}\sum_{i=1}^n(f(\xi_i,\eta_i,\zeta_i)\Delta\sigma_i),$$
 $\lambda=\max\mathrm{diam}\Delta G_i,\ \mu(M)$ — поверхностная плотность $G\Rightarrow\mathrm{m}=\iint\limits_G\mu(x,y,z)\mathrm{d}\sigma$ — масса G

2. Вычисление ПИ Ір

$$G: z = z(x, y), (x, y) \in D$$
— гладкая поверхность $\Rightarrow \iint_G f(x, y, z) d\sigma = \iint_D f(x, y, z(x, y)) \sqrt{1 + (z'_x)^2 + (z'_y)^2} d\sigma$

27.3. ПИ Пр

1. Определение ПИ Пр

P(x, y, z), Q(x, y, z), R(x, y, z) непрерывны в $\Omega \subset \mathbb{R}^3$, $G \subset \Omega$ — двусторонняя ориентированная поверхность, $\Delta D_i^{xy} = \prod_{XOZ} \Delta G_i, \ \Delta D_i^{xz} = \prod_{XOZ} \Delta G_i, \ \Delta D_i^{yz} = \prod_{YOZ} \Delta G_i, \ i = \overline{1, n}; \ \Delta S_i^{xy}, \ \Delta S_i^{yz}, \ \Delta S_i^{yz} = (\pm)$ площади $\Delta D_i^{xy}, \Delta D_i^{yz}, \Delta D_i^{yz}, \Delta D_i^{xz}; M_i(\xi_i, \eta_i, \zeta_i) \in \Delta G_i \Rightarrow$

$$\Rightarrow \iint_G P \, \mathrm{d}y \, \mathrm{d}z + Q \, \mathrm{d}x \, \mathrm{d}z + R \, \mathrm{d}y \, \mathrm{d}x =$$

$$= \lim_{\lambda \to 0} \sum_{i=1}^{n} P(M_i) \Delta S_i^{yz} + Q(M_i) \Delta S_i^{xz} + R(M_i) \Delta S_i^{yx}.$$

Связь ПИ Ір и ПИ Пр:

$$\iint_{G} P \, dy \, dz + Q \, dx \, dz + R \, dy \, dx = \iint_{G} (P \cos \alpha + Q \cos \beta + R \cos \gamma) d\sigma$$

 $\vec{v}(x, y, z) = \{P, Q, R\}$ — скорость жидкости, протекающей через $G \Rightarrow$ поток жидкости

$$\Pi_G = \iint_G P \, dy \, dz + Q \, dx \, dz + R \, dy \, dx = \iint_G \vec{v} \cdot \vec{n} \, d\sigma$$

2. Вычисление ПИ Пр

$$D_{xy} = \operatorname{np}_{XOY}G, D_{xz} = \operatorname{np}_{XOZ}G, D_{yz} = \operatorname{np}_{YOZ}G,$$

 $G: z = z(x, y) \lor y = y(x, z) \lor x = x(y, z) \Rightarrow$

G:
$$z = z(x, y) \lor y = y(x, z) \lor x = x(y, z) =$$

$$\Rightarrow \iint_G P \, \mathrm{d}y \, \mathrm{d}z + Q \, \mathrm{d}x \, \mathrm{d}z + R \, \mathrm{d}x \, \mathrm{d}y = \pm \iint_{D_{yz}} P(x(y,z), y, z) \, \mathrm{d}y \, \mathrm{d}z \pm$$

$$\pm \iint\limits_{D_{xz}} Q(x, y(x, z), z) \mathrm{d}x \, \mathrm{d}z \pm \iint\limits_{D_{xy}} R(x, y, z(x, y)) \mathrm{d}x \, \mathrm{d}y,$$

где (+) — для острых углов
$$(\widehat{\vec{n}},\widehat{\vec{i}}),(\widehat{\vec{n}},\widehat{\vec{j}}),(\widehat{\vec{n}},\widehat{\vec{k}});$$
 (–) — для тупых

27.4. Фомула Остроградского—Гаусса

P(M), Q(M), R(M) — непрерывны вместе с частными производными в Ω , $\partial\Omega = G$ — ориентированная поверхность \Rightarrow

P(M), Q(M), R(M) — непрерывные вместе с частными производными на ориентированной поверхности $G, L = \partial G$ — гладкая \Rightarrow

$$\overrightarrow{Y} = \oint_{L} P \, dx + Q \, dy + R \, dz = \iint_{G} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy + \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy \, dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dx \, dz$$

Задачи к разд. 27

Задача 1. Вычислить $J=\iint_G \left(z+2x+\frac{4}{3}y\right) \mathrm{d}\sigma$, где $G:\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$ $(x\geq 0,\ y\geq 0,\ z\geq 0).$

Решение: Так как $z=4\left(1-\frac{x}{2}-\frac{y}{3}\right), z_x'=-2, z_y'=-\frac{4}{3}$, то по формуле ОК, разд. 27.2, п. 2,

$$J = \iint_{D} \left(4 \left(1 - \frac{x}{2} - \frac{y}{3} \right) + 2x + \frac{4}{3} y \right) \sqrt{1 + (-2)^{2} + \left(-\frac{4}{3} \right)^{2}} dx dy =$$

$$= \iint_{D} \frac{4\sqrt{61}}{3} dx dy.$$

Граница области D — проекции плоскости G на плоскость XOY — треугольник с границей ∂D : $x=0, y=0, \frac{x}{2}+\frac{y}{3}=1$ (рис. 27.1).

Переходим к повторному интегралу:

$$J = \frac{4\sqrt{61}}{3} \int_{0}^{2} dx \int_{0}^{3-\frac{3}{2}x} dy = \frac{4\sqrt{61}}{3} \int_{0}^{2} dx \left(3 - \frac{3}{2}x\right) = 4\sqrt{61}.$$

Двойной интеграл можно вычислить проще, так как $\iint_D dx \, dy =$ = $S_D = \frac{1}{2} \cdot 2 \cdot 3 = 3$.

Задача 2. Вычислить $I = \bigoplus_G x \, \mathrm{d} y \, \mathrm{d} z + y \, \mathrm{d} x \, \mathrm{d} z + z \, \mathrm{d} x \, \mathrm{d} y$, где G — внешняя сторона куба, составленного плоскостями x=0, y=0, z=0, x=1, y=1, z=1.

Рис. 27.1

Решение: 1-й способ. Пользуясь свойством аддитивности интегралов, разобьем интеграл I на сумму шести слагаемых по каждой грани куба:

$$I = I_1(x = 0) + I_2(y = 0) + I_3(z = 0) + I_4(x = 1) + I_5(y = 1) + I_6(z = 1).$$

Рассмотрим каждое слагаемое, пользуясь ОК, разд. 27.3, п. 2:

Рассмотрим каждое слагаемое, пользуясь ОК, разд. 27.3, п.
$$I_1 = \iint_{G_1(x=0)} x \, dy \, dz + y \, dx \, dz + z \, dx \, dy = -\iint_{D_{yz}} 0 \cdot dy \, dz - 0 - 0 = 0,$$

где учтено, что нормаль к поверхности x = 0 составляет тупой угол с осью OX (знак минус перед интегралом) и что слагаемые y dx dz и zdxdy равны нулю, так как на грани x=0 они при проектировании не дают области (рис. 27.2).

Аналогично $I_2 = I_3 = 0$.

$$I_4(x=1) = \iint_{G_{4(x=1)}} z \, dy \, dz + y \, dx \, dz + z \, dx \, dy = + \iint_{D_{yz}} 1 \cdot dy \, dz + 0 + 0,$$

где D_{vz} — единичный квадрат на плоскости YOZ и учтено, что нормаль к поверхности x = 1 составляет острый угол с осью OX.

Так как $\iint\limits_{D_{yz}} \mathrm{d}y\,\mathrm{d}z$ — площадь области D_{yz} , т.е. квадрата с длиной

стороны, равной 1, то $I_4=1$. Аналогично $I_5=I_6=1$. Окончательно I=3.

2-й способ. По формуле Остроградского—Гаусса (ОК, разд. 27.4) имеем

$$I = \iiint_{\Omega} 3 dx dy dz = \int_{0}^{1} dx \int_{0}^{1} dy \int_{0}^{1} dz = 3.$$

Задача 3. Вычислить $I = \iint_G x dy dz$, где G — внешняя сторона

части параболоида $x = y^2 + z^2$, отсеченная плоскостью x = 2.

Решение: По формуле ОК, разд. 27.3, п. 2, имеем

$$I = \iint\limits_{D_{yz}} (y^2 + z^2) \mathrm{d}y \, \mathrm{d}z,$$

где D_{yz} : $y^2 + z^2 = 2$ (рис. 27.3).

Переходим к полярным координатам:

$$I = \iint_{D_{yz}} r^2 r \, dr \, d\phi = \int_{0}^{2\pi} d\phi \int_{0}^{\sqrt{2}} r^3 dr = \int_{0}^{2\pi} 2d\phi = 4\pi.$$

Рис. 27.3

Задачи для самостоятельного решения

Вычислить поверхностные интегралы I рода:

1)
$$\iint_G xyz d\sigma$$
, $G: x + y + z = 1 \ (x \ge 0, y \ge 0, z \ge 0)$;

2)
$$\iint_G x d\sigma$$
, $G: x^2 + y^2 + z^2 = R^2 (x \ge 0, y \ge 0, z \ge 0)$;

3)
$$\iint_G y \, d\sigma$$
, G : $z = \sqrt{R^2 - x^2 - y^2}$.

Вычислить поверхностные интегралы II рода:

4)
$$\iint_G x^2 y^2 z \, dx \, dy$$
, $G: x^2 + y^2 + z^2 = R^2$ ($z \le 0$, внешняя сторо-

на);

5)
$$\iint_G x \, dy \, dz + y \, dx \, dz + z \, dx \, dy, G: x + y + z = a$$
 (верхняя сторона в I октанте):

6)
$$\oint_G z \, dx \, dy$$
, G : $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (внешняя сторона);

7)
$$\iint_G xz \, dx \, dy + xy \, dy \, dz + yz \, dx \, dz$$
, G: $x = y = z = 0$, $x + y + z = 0$

= 1(внешняя сторона);

8)
$$\bigoplus_{G} yz \, dx \, dy + xz \, dy \, dz + xy \, dx \, dz, G: x = y = z = 0, z = H, x^2 + xy \, dx \, dz$$

 $+ y^2 = R^2$ (в I октанте, внешняя сторона).

28. СКАЛЯРНОЕ И ВЕКТОРНОЕ ПОЛЯ

Опорный конспект № 28

28.1. Скалярное поле (СП)

1. Определение СП. Линии и поверхности уровня СП $u(M), M(x, y) \in D \subseteq \mathbb{R}^2$ или $M(x, y, z) \in \Omega \subseteq \mathbb{R}^3$ u(x, y) = c, c = const - линии уровня, u(x, y, z) = c - поверхности уровня

2. Производная по направлению СП

$$\begin{split} & l = \{\cos\alpha, \cos\beta, \cos\gamma\} \parallel \text{прямой } L, \text{ т. } M, M_1 \in L \Rightarrow \\ & \frac{\partial u}{\partial l} = \lim_{M_1 \to M} \frac{u(M_1) - u(M)}{|MM_1|} = \frac{\partial u}{\partial x} \cos\alpha + \frac{\partial u}{\partial y} \cos\beta + \frac{\partial u}{\partial z} \cos\gamma \end{split}$$

3. Градиент СП

O: grad
$$u = \frac{\partial u}{\partial x}\vec{i} + \frac{\partial u}{\partial y}\vec{j} + \frac{\partial u}{\partial z}\vec{k} = \nabla u$$

Т: $\frac{\partial u}{\partial l} = \operatorname{grad} u \cdot \vec{l}$, $(\operatorname{grad} u)_{M_0}$ направлен по нормали к поверхности уровня u(x, y, z) = c ■

28.2. Векторное поле (ВП)

1. Определение ВП. Векторные линии

B
$$\Pi$$
: $\vec{v}(M) = \{v_x(M), v_y(M), v_z(M)\},$

$$M \in \Omega \subset \mathbf{R}^2 \vee M \in \Omega \subset \mathbf{R}^3$$

Векторные линии ВП $\vec{v}(M)$, $M \in \Omega$ — кривые L: касательные к L в т. M совпадают с $\vec{v}(M)$, их уравнения

$$\frac{\mathrm{d}x}{v_x} = \frac{\mathrm{d}y}{v_y} = \frac{\mathrm{d}z}{v_z}$$

2. Поток и дивергенция ВП

O: Ποτοκ BΠ $\vec{v}(M)$, $M \in \Omega$:

$$\Pi_G = \iint_C \vec{v}(M) \cdot \vec{n}(M) d\sigma$$

О: Дивергенция ВП $\vec{v}(M)$, $M \in \Omega$:

$$\operatorname{div} \vec{v}(M) = \lim_{V \to 0} \frac{\Pi_G}{V}$$
, где $M \in \Omega^* \subset \Omega$,

$$G = \partial \Omega^*, V$$
— объем Ω^*

T:
$$\operatorname{div} \vec{v}(M) = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = \nabla \vec{v}(M) \blacksquare$$

Векторная запись формулы Остроградского—Гаусса:

$$\bigoplus_{G} \vec{v}(M) \cdot \vec{n}(M) d\sigma = \iiint_{\Omega} \operatorname{div} \vec{v}(M) dv$$

3. Циркуляция и ротор ВП

О: Циркуляция $\vec{v}(M), M \in \Omega$, по L:

$$\coprod_{L} = \oint_{L} \vec{v}(M) d\vec{r} = \oint_{L} v_{x} dx + v_{y} dy + v_{z} dz$$

O: Potop $\vec{v}(M)$, $M \in \Omega$:

$$\operatorname{rot} \vec{v}(M) = \nabla \times \vec{v}(M) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_{x} & v_{y} & v_{z} \end{vmatrix}$$

Векторная запись формулы Стокса:

$$\coprod_{L} = \oint_{L} \vec{v}(M) \cdot d\vec{r} = \iint_{G} \operatorname{rot} \vec{v}(M) \cdot \vec{n}(M) d\sigma$$

4. Простейшие ВП

а) **O**: Трубчатое соленоидальное ВП $\Leftrightarrow \vec{v}(M)$,

 $M \in \Omega$: div $\vec{v}(M) = 0$;

б) **О:** Потенциальное (безвихревое) ВП $\Leftrightarrow \vec{v}(M)$,

 $M \in \Omega, \exists u(M): \vec{v}(M) = \operatorname{grad} u(M);$

в) **О:** Гармоническое ВП $\Leftrightarrow \vec{v}(M)$,

 $M \in \Omega$: rot $\vec{v}(M) = 0$, div $\vec{v}(M) = 0$

Для гармонического ВП $\exists u(M)$: $\Delta u = 0$,

где
$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
 — оператор Лапласа

Задачи к разд. 28.1

Задача 1. Найти $\frac{\partial u}{\partial l}$ в точке $M_0(1; -1; 2)$ по направлению \vec{l} :

$$\vec{a} = \{2; -1; 0\},$$
если $u = 2x^3yz + x^2 + y^3 + z^3.$

Решение: Воспользуемся формулой ОК, разд. 28.1, п. 2. Имеем

$$\left(\frac{\partial u}{\partial x}\right)_{M_0} = (6x^2yz + 2x)_{M_0} = -12 + 2 = -10,$$

$$\left(\frac{\partial u}{\partial y}\right)_{M_0} = (2x^3z + 3y^2)_{M_0} = 4 + 3 = 7,$$

$$\left(\frac{\partial u}{\partial z}\right)_{M_0} = (2x^3y + 3z^2)_{M_0} = -2 + 12 = 10.$$

Находим направляющие косинусы вектора \vec{a} :

$$\cos\alpha = \frac{a_x}{|\vec{a}|} = \frac{2}{\sqrt{2^2 + (-1)^2 + 0}} = \frac{2}{\sqrt{5}}; \cos\beta = \frac{a_y}{|\vec{a}|} = \frac{-1}{\sqrt{5}}; \cos\gamma = \frac{a_z}{|\vec{a}|} = 0.$$

Следовательно, получаем

$$\frac{\partial u}{\partial l} = -10\frac{2}{\sqrt{5}} + 7\left(-\frac{1}{\sqrt{5}}\right) + 10 \cdot 0 = -\frac{27\sqrt{5}}{5}.$$

Задача 2. Найти величину наибольшей производной по направлению в точке $M_0(1; 1; 2)$ скалярного поля $u = x^2y^2z - \ln(z - 1)$.

Решение: Так как $\frac{\partial u}{\partial t} = \operatorname{grad} u \cdot \vec{l}$ (ОК, разд. 28.1, п. 3), то $\left(\frac{\partial u}{\partial I}\right)_{u=0} = |\operatorname{grad} u|$. Находим $(\operatorname{grad} u)_{M_0}$ по формуле (ОК, разд. 28.1, п. 2. Имеем $\left(\frac{\partial u}{\partial x}\right)_{M_0} = (2xy^2z)_{M_0} = 4$, $\left(\frac{\partial u}{\partial y}\right)_{M_0} = (2x^2y^2z)_{M_0} = 4$, $\left(\frac{\partial u}{\partial z}\right)_{\mathcal{H}} = \left(x^2 y^2 - \frac{1}{z-1}\right)_{\mathcal{H}} = 0. \quad \text{Тогда} \quad (\text{grad } u)_{M_0} = 4\vec{i} + 4\vec{j},$ $\left(\frac{\partial u}{\partial I}\right)_{u=0} = \sqrt{16+16} = 4\sqrt{2}.$

Задачи для самостоятельного решения

Найти $\frac{\partial u}{\partial I}$ в точке M_0 по направлению \vec{l} :

1) a)
$$u = \operatorname{arctg} \frac{y}{x}$$
, $M_0(1; 3), \vec{l} : \vec{a} = 3\vec{i} + 4\vec{j}; 6$) $u = xy^2 + z^2 - xyz$, $M_0(1; -1; 2), \vec{l} : \vec{a} = \{-2; 4; -1\}$.

Найти
$$\frac{\partial u}{\partial l}$$
 в точке M_0 по направлению $\overline{M_0M_1}$:
2) а) $u = \ln(x^2 + 3yx + \frac{y}{z^2})$; $M_0(1; -1; 2)$, $M_1(2; 1; 1)$; б) $u = \frac{x}{2}$
 $= e^{\frac{x}{3}}(xy^2 + 2z)$; $M_0(0; 1; 1)$, $M_1(1; 1; 2)$.

Найти grad u в точке M_0 :

3) a)
$$u = \sqrt{4 + x^2 + y^2}$$
, $M_0(2; 1)$; 6) $u = \sin^2(xy - 2xz + 3yz)$, $M_0\left(1; \frac{\pi}{4}; 0\right)$.

- **4)** Найти угол между градиентами скалярных полей u(x, y, z) и v(x, y, z) в точке $M: u = \frac{1}{xvz}, v = x^2 + 9y^2 + 6z^2, M\left(1; \frac{1}{3}; \frac{1}{\sqrt{6}}\right)$
- **5)** Найти градиент скалярного поля потенциала $\varphi = \frac{e}{}$ электростатического заряда e, помещенного в начале координат, если r расстояние от точки M(x, y, z) до заряда e.
- **6)** Дано скалярное поле $u = x^2yz^2 4y$. Найти направление и величину наибольшей скорости изменения поля в т. M(3; 0; 4).

Задачи к разд. 28.2

Задача 1. Найти векторные линии векторного поля $\vec{v} = 2x\vec{i} - y\vec{j} + z\vec{k}$.

Решение: По формуле ОК, разд. 28.2, п. 1, имеем дифференциальные уравнения векторных линий: $\frac{dx}{2x} = -\frac{dy}{v} = \frac{dz}{z}$ или

$$\begin{cases} \frac{\mathrm{d}x}{2x} = -\frac{\mathrm{d}y}{y}, \\ \frac{\mathrm{d}x}{2x} = \frac{\mathrm{d}z}{z}, \end{cases} \Rightarrow \begin{cases} \int \frac{\mathrm{d}x}{2x} = -\int \frac{\mathrm{d}y}{y} + \ln c_1, \\ \int \frac{\mathrm{d}x}{2x} = \int \frac{\mathrm{d}z}{z} + \ln c_2. \end{cases}$$

Таким образом, получаем уравнения линий:

$$\begin{cases} \ln \sqrt{x} = \ln \frac{c_1}{y}, \\ \ln \sqrt{x} = \ln c_2 z, \end{cases} \Rightarrow \begin{cases} y = \frac{c_1}{\sqrt{x}}, \\ z = \frac{\sqrt{x}}{c_2}. \end{cases}$$

Задача 2. Найти поток векторного поля $\vec{v}=\{0;\ 0;\ z\}$ через часть плоскости z=x, расположенную внутри цилиндра $x=0,\ y=0,\ x+y=1,$ если угол между нормалью \vec{n} к плоскости и осью OZ — острый.

Решение: По формуле ОК, разд. 28.2, п. 2, используя для вычисления ОК, разд. 27.2, п. 2, имеем $\Pi = \iint_G z \, dx \, dy = \iint_{D_{xy}} x \, dx \, dy$, где ∂D_{xy} :

$$x = 0, y = 0, x + y = 1$$
 (puc. 28.1).

Рис. 28.1

Переходим к повторному интегралу:

$$\Pi = \int_{0}^{1} dx \int_{0}^{1-x} x \, dy = \int_{0}^{1} x \, dx \cdot y \Big|_{0}^{1-x} = \int_{0}^{1} x (1-x) dx = \left(\frac{x^{2}}{2} - \frac{x^{3}}{3}\right) \Big|_{0}^{1} = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}.$$

Задача 3. Найти поток векторного поля $\vec{v} = (3x - y^2)\vec{i} + xz^2\vec{j} + z^2\vec{k}$ через замкнутую поверхность $G: z = x^2 + y^2, z = 0, x^2 + y^2 = 4$.

Решение: Найдем div $\vec{v} = (3x - y^2)'_x + (xz)'_y + (4z^2)'_z = 3 + 8z$ и воспользуемся векторной записью формулы Остроградского—Гаусса:

$$\Pi = \iiint_{\Omega} \operatorname{div} \vec{v} \, dV = \iiint_{\Omega} (3 + 8z) \, dx \, dy \, dz = \iint_{D} dx \, dy \int_{0}^{x^{2} + y^{2}} (3 + 8z) \, dz =$$

$$\iint_{D} dx \, dy \left(3z + \frac{8z^{2}}{2} \right) \Big|_{0}^{x^{2} + y^{2}} = \iint_{D} (3(x^{2} + y^{2}) + 4(x^{2} + y^{2})^{2}) \, dx \, dy.$$

Так как ∂D : $x^2 + y^2 = 4$ (рис. 28.2), переходим к полярным координатам:

$$\Pi = \iint_{D} (3r^{2} + 4r^{4})r \, dr \, d\phi = \int_{0}^{2\pi} d\phi \int_{0}^{2} (3r^{3} + 4r^{5}) dr =$$

$$= \int_{0}^{2\pi} d\phi \left(\frac{3r^{4}}{4} + \frac{4r^{6}}{6} \right) \Big|_{0}^{2} = \int_{0}^{2\pi} \left(12 + \frac{128}{3} \right) d\phi = \frac{164}{3} \cdot 2\pi = \frac{328}{3}\pi.$$

Рис. 28.2 **Задача 4.** Вычислить дивергенцию и ротор векторного поля $\vec{v} = \{xy, xz, -yz\}.$

Решение: Имеем div $\vec{v} = \frac{\partial(xy)}{\partial x} + \frac{\partial(xz)}{\partial y} + \frac{\partial(-yz)}{\partial z} = y + 0 - y = 0.$

$$\cot \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xy & xz & -yz \end{vmatrix} = \vec{i} \left(\frac{\partial(-yz)}{\partial y} - \frac{\partial(xz)}{\partial z} \right) - \vec{j} \left(\frac{\partial(-yz)}{\partial x} - \frac{\partial(xy)}{\partial z} \right) + \vec{k} \left(\frac{\partial(xz)}{\partial x} - \frac{\partial(xy)}{\partial y} \right) = \vec{i} \left(-z - x \right) - \vec{j} \left(-0 - 0 \right) + \vec{k} \left(z - x \right) = \\
= -(x + z)\vec{i} + (z - x)\vec{k}.$$

Следовательно, поле \vec{v} является соленоидальным (ОК, разд. 28.2, п. 4):

Задача 5. Найти циркуляцию векторного поля $\vec{v} = \{y; -x; z\}$ вдоль окружности $x = R\cos t, y = R\sin t, z = 1 \ (0 \le t \le 2\pi).$

Решение: Используем определение циркуляции (см. ОК, разд. 28.2, п. 3):

$$\coprod = \oint_L y \, dx - x \, dy + z \, dz = \begin{cases}
x = R \cos t, & dx = -R \sin t \, dt, \\
y = R \sin t, & dy = R \cos t \, dt, \\
z = 1, & dz = 0,
\end{cases} =$$

$$\int_{0}^{2\pi} (R\sin t(-R\sin t) - R\cos t \cdot R\cos t) dt = -R^{2} \int_{0}^{2\pi} dt = -R^{2} t|_{0}^{2\pi} = -2\pi R^{2}.$$

Задача 6. Показать, что поле $\vec{v} = (y+z)\vec{i} + (x+z)\vec{j} + (x+y)\vec{k}$ потенциально, и найти его потенциал.

Решение: Находим

$$\operatorname{rot} \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y + z & x + z & x + y \end{vmatrix} = \vec{i} (1 - 1) - \vec{j} (1 - 1) + \vec{k} (1 - 1) = 0.$$

Следовательно, поле \vec{v} потенциально. Также div $\vec{v}=0 \Rightarrow$ поле \vec{v} гармоническое.

Потенциал u(M) удовлетворяет условию $\operatorname{grad} u(M) = \vec{v}(M)$, т.е. $\frac{\partial u}{\partial x} = y + z$, $\frac{\partial u}{\partial y} = x + z$, $\frac{\partial u}{\partial z} = x + y$, du = (y + z)dx + (x + z)dy + y

Рис. 28.3

+
$$(x + y)$$
dz, $u = \int_{(0.00)}^{(x,y,z)} (y+z)$ dx + $(x + z)$ dy + $(x + y)$ dz. Так как интег-

рал не зависит от пути интегрирования, то берем путь, изображенный на рис. 28.3:

$$u = \int_{0}^{x} 0 dx + \int_{0}^{y} x dy + \int_{0}^{z} (x + y) dz + c = xy + (x + y)z + c.$$

Задачи для самостоятельного решения

7) Найти векторные линии поля $\vec{v}(M) = xy\vec{j} - 2x(x-1)\vec{j}$.

Найти поток векторного поля \vec{v} через поверхность G:

- **8)** $\vec{v} = \{0; 0; -z\}$, G: z = y, в цилиндре x = 0, y = 0, x + y = 2 (\vec{n}, OZ) тупой;
- 9) $\vec{v} = (x 2z)\vec{i} + (3z 4x)\vec{j} + (5x + y)\vec{k}$, G верхняя сторона $\triangle ABC$ с вершинами A(1; 0; 0), B(0; 1; 0), C(0; 0; 1);
- **10)** $\vec{v} = \{x, y, z\}$, $G: x^2 + y^2 = R^2$, z = x, z = 0 ($z \ge 0$) замкнутая поверхность;
- 11) $\vec{v} = (1+2x)\vec{i} + y\vec{j} + z\vec{k}$, $G: x^2 + y^2 = z^2$, z = 4 ($z \ge 0$) замкнутая поверхность;
 - **12)** $\vec{v} = \{0; \ 0; \ z^2\}, G: x^2 + y^2 + z^2 = 1.$

Вычислить дивергенцию и ротор векторного поля:

13)
$$\vec{v} = (8x - 5yz)\vec{i} + (8y - 5xz)\vec{j} + (8z - 5xy)\vec{k};$$

14)
$$\vec{v} = (v^2 + z^2)\vec{i} + (z^2 + x^2)\vec{j} + (x^2 + v^2)\vec{k}$$
;

- **15)** $\vec{v} = \text{grad}(x^2 + v^2 + z^2)$.
- **16)** Дано векторное поле $\vec{v} = (y x^2)\vec{i} + (z y)\vec{j} + (x + \frac{1}{z})\vec{k}$. Найти grad div $\vec{v}(M_0)$, где $M_0(1; 1; 1)$.
- **17)** Дано скалярное поле $u = x^2yz^3$. Найти divgrad $u(M_0)$, где $M_0(-1; 1; 1)$.

Проверить, являются ли следующие векторные поля потенциальными или соленоидальными:

18)
$$\vec{v} = (x + y^2)\vec{i} - (x^2 + y^3)\vec{j} + z(3y^2 + 1)\vec{k};$$

19) $\vec{v} = e^x \sin y \vec{i} + e^x \cos y \vec{j} + \vec{k}$.

Найти циркуляцию векторного поля вдоль контура L:

20)
$$\vec{v} = z\vec{i} + x\vec{j} + y\vec{k}, L: \begin{cases} x^2 + y^2 = 4, \\ z = 0; \end{cases}$$

21) $\vec{v} = \{x + y, x - z, y + z\}, L - \text{контур } \triangle ABC, A(1; 0; 0), B(0; 1; 0), C(0; 0; -1);$

22)
$$\vec{v} = y\vec{i} - x\vec{j} + (x + y)\vec{k}, L: \begin{cases} z = x^2 + y^2, \\ z = 1. \end{cases}$$

Доказать, что векторное поле является потенциальным, и найти его потенциал:

23)
$$\vec{v} = (yz + 1)\vec{i} + xz\vec{j} + xy\vec{k};$$

24)
$$\vec{v} = (2xy + z)\vec{i} + (x^2 - 2y)\vec{j} + x\vec{k}$$
.

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ

Вариант № 1

- **1.** Вычислить криволинейный интеграл $\int_{L}^{L} (x+y) dx + (x-3y) dy$, где L ломаная ABC: A(1; 2), B(2; 4), C(3; 0). *Omsem*: 8.
- **2.** Вычислить криволинейный интеграл $\int_{L} (x-2y) dx + x dy$, где L четверть эллипса $x = 2\cos t$, $y = 4\sin t$, $0 \le t \le \pi/2$. *Ответ*: $6\pi 2$.
- **3.** Найти первообразную функцию u(x, y) по ее полному дифференциалу $du=(x^2-2xy^2+3)dx+(y^2-2x^2y+3)dy$. *Ответ:* $u=x^3/3+y^3/3-x^2y^2+3x+3y+c$.
- **4.** Используя формулу Грина, вычислить $\oint_L (2xye^{x^2y} + \sin\sqrt{x})dx + (x^2e^{x^2y} y^2 + x^2)dy$, где L контур треугольника с вершинами в точках A(0; 0), B(1; 1), C(1; 0), указанными в порядке обхода. *Ответ:* -2/3.
- **5.** Дано скалярное поле $u = xe^{x^2yz^3}$. Найти величину наибольшей скорости изменения поля в точке M(0; 1; 1). *Ответ:* 1.
- **6.** Найти поток векторного поля $\vec{v} = x\vec{i} + y\vec{j} + z\vec{k}$ через замкнутую поверхность $x^2 + y^2 = 4 z, z = 0$ ($z \ge 0$). *Ответ:* 8π .

Вариант № 2

1. Вычислить криволинейный интеграл $\int_L (x-3y) dx + (y-2x) dy$, где L — ломаная *ABC*: A(1; 0), B(2; 1), C(3; 3). *Ответ:* -12.

- **2.** Вычислить криволинейный интеграл $\int_L (x-y) dx + y dy$, где L арка циклоиды $x = a(t-\sin t), \ y = a(1-\cos t), \ 0 \le t \le 2\pi$. *Ответ:* $a^2\pi(2\pi-1)$.
 - **3.** Вычислить $\int_{(0,-1)}^{(1,1)} (x-y) dx (x-y) dy$. *Ответ*: $-\frac{1}{2}$.
 - 4. Используя формулу Грина, вычислить

$$\oint_{L} \left(\frac{x}{\sqrt{x^2 + y^2 + 1}} - yx^2 \right) dx + \left(\frac{y}{\sqrt{x^2 + y^2 + 1}} + xy^2 \right) dy,$$

где L — окружность $x^2 + y^2 = 4x$, пробегаемая против хода часовой стрелки. *Ответ*: 24π .

- **5.** Дано векторное поле: $\vec{v} = (2xy + z^2)\vec{i} + (2y^2z^2 + x^2)\vec{j} + (2xz + y^2)\vec{k}$. Найти grad div $\vec{v}(M_0)$, где $M_0(1; -1; 1)$. Ответ: $2\vec{i} + 6\vec{j} 2\vec{k}$.
- **6.** Найти поток векторного поля $\vec{v} = \{0, 0, z\}$ через плоскость G: z = y + 2, заключенную в цилиндре x = 0, y = 2, y = x, если $(\widehat{\vec{n}, OZ})$ острый. *Ответ*: $\frac{20}{3}$.

Вариант № 3

- **1.** Вычислить работу силового поля $\vec{F} = y^2 \vec{i} + x^2 \vec{j}$ вдоль ломаной *ОАВ*, где O(0; 0), A(1; 0), B(1; 1). *Omeem*: 1.
- **2.** Вычислить $\int_L (x+y) dx + (y-x) dy$, где L парабола $\begin{cases} x=3t, \\ y=3t^2, \end{cases}$ от точки $A(0;\ 0)$ до точки $B(-3;\ 3)$. *Ответ*: 12.
- **3.** Решить дифференциальное уравнение $(3x^2 + 2y)dx + (2x y)dy = 0$. *Ответ:* $x^3 + 2xy y^2/2 = c$.
- **4.** Используя формулу Грина, вычислить $\oint_L x^2 y \, dx + x^3 dy$, где L контур, ограниченный параболами $y^2 = x$ и $x^2 = y$, пробегаемый против хода часовой стрелки. *Ответ*: $\frac{6}{35}$.
- **5.** Векторное поле задано вектором $\vec{v} = x^2 \vec{i} + y^2 \vec{j} + 6z^2 \vec{k}$. Является ли оно потенциальным, соленоидальным или гармоническим? *Ответ:* Векторное поле потенциальное.

6. Найти поток вектора
$$\vec{v} = yz\vec{i} + y\vec{j} + yz\vec{k}$$
 через замкнутую поверхность $G: \begin{cases} z = 0, \ z = x, \\ x = 1, \ x = 2, \textit{Omeem: } 15/4. \\ y = 1, \ y = 2. \end{cases}$

РАСЧЕТНОЕ ЗАДАНИЕ

Здесь n — номер студента по списку, $\alpha\beta\gamma\delta$ — четыре цифры номера группы, $\lambda = \left]\frac{n+\alpha}{5}\right[+2; \ \mu = \left]\frac{n+\beta}{3}\right[+2; \ \nu = \left]\frac{n+\gamma+\delta}{4}\right[+2; \ k = \left[\frac{\alpha+\beta+\gamma+\delta}{5}\right], l = \left[\frac{n}{4}\right]$ (]...[— остаток от деления, [...] — целая часть числа).

- **1.** а) Найти работу силы \vec{F} на отрезке прямой AB, если $\vec{F} = (x + 2\lambda y)\vec{i} + (2\beta x + z)\vec{j} + (2\nu z + y)\vec{k}$, $A(1; 1; \lambda)$, $B(\mu; 1; 1)$.
- б) Вычислить криволинейный интеграл $\int_L (x + 2\lambda y^2) dx + (2\mu xy + 4\mu y^3) dy$, где L дуга параболы $x = y^2 + \lambda y$ от O(0; 0) до $A(1 + \lambda; 1)$.
- в) Вычислить с помощью формулы Грина криволинейный интеграл $\oint_L (e^{(\lambda+1)y} + y\sqrt{xy+y^{\lambda+1}}) dx + (x+(\lambda+1)y^{\lambda})\sqrt{xy+y^{\lambda+1}} dy$, где

L — контур треугольника с вершинами $A(\mu; 3)$, $B(\mu; 3 + 2\mu)$, $C(2\mu; 3 + 2\mu)$, указанными в порядке обхода.

2. а) Вычислить криволинейный интеграл

$$\int\limits_{A}^{B}\!\!\left(\cos\lambda y+\frac{\mu+1}{2}x^{\mu}((-1)^{n}+1)\right)\!\mathrm{d}x-\!\left(\lambda x\sin\lambda y-\frac{\mu+1}{2}y^{\mu}((-1)^{n+1}+1)\right)\!\mathrm{d}y,$$
 если $A\!\left(v;\frac{\pi}{6}\right),B\!\left(v+1;\frac{\pi}{4}\right).$

б) Решить дифференциальное уравнение

$$((1+(-1)^n)\lambda x^{\lambda-1}y^{\nu}e^{x^{\lambda}} + (1+(-1)^{n+1})\lambda x^{\lambda-1}\ln(y+\mu))dx +$$

$$+\left((1+(-1)^n)\nu y^{\nu-1}y^{\nu}e^{x^{\lambda}} + (1+(-1)^{n+1})\frac{x^{\lambda}}{y+\mu} + \nu e^{\nu y}\right)dy = 0.$$

3. Вычислить grad u(M) и $\frac{\partial u}{\partial l}$ в направлении \vec{l} : $\vec{a} = (-1)^n \vec{i} + (k+1) \vec{j} + (l+1) \vec{k}$, если $u(M) = \phi[\psi(M)]$, а $\phi(t)$, $\psi(M)$ находятся из таблицы:

n	φ(<i>t</i>)	ψ(<i>M</i>)	n	φ(<i>t</i>)	ψ(<i>M</i>)	n	φ(<i>t</i>)	ψ(<i>M</i>)
1	ln ⁴ t	xy - 3z	11	ln ctg t	5x - 2yz	21	cost	$7x\ln z - 3y^2$
2	3^t	$4x^2 - y\sqrt{z}$	12	e ^{sint}	4y - 9xz	22	sin t	$x \operatorname{arctg} y - z^3$
3	$\log_3^3 t$	3y + 2xz	13	lnsin <i>t</i>	$yx + 9z^2$	23	e^t	$y \arcsin z - x^3$
4	$\sin^2 t$	2yz - 3x	14	e ^{cost}	$2x^3-9yz$	24	ln cos t	3xz-7y
5	tg^2t	$4z^2 - 5xy$	15	ln <i>t</i>	$2xy^2 - \cos z$	25	ln <i>t</i>	$\arcsin x + 2yz$
6	$\cos^2 t$	$8xy - 5z^2$	16	e ^{sint}	$9y^2 - 11xz$	26	$\log_3 t$	$-\arccos y + 3xz$
7	ctg^2t	$2x^2-9yz$	17	e^t	$3yz^2 - \sin x$	27	arctg t	$x \ln z - y^2$
8	$\sqrt{\operatorname{tg} t}$	xy - 5z	18	sin <i>t</i>	$7x^2z - 2^y$	28	e^t	$z \operatorname{arctg} y - x^2$
9	lntg <i>t</i>	2xy-z	19	ln <i>t</i>	$x\sin y - z^2$	29	$\sqrt{\arcsin t}$	xz + 2y
10	$\sqrt{\operatorname{ctg} t}$	yz - 3x	20	e^t	$27\cos y - 3x^2$	30	$\sqrt{\arccos t}$	3xy-2z

- **4.** Дано векторное поле $\vec{v}(M) = \{v_x, v_y, v_z\}$ (координаты приведены в таблице).
- а) Найти $\operatorname{div} \vec{v}(M)$, $\operatorname{rot} \vec{v}(M)$. Является ли поле потенциальным или соленоидальным?
- б) Записать формулы Остроградского—Гаусса и Стокса (в векторной и координатной формах).

n	v_x	v_y	v_z	n	v_x	v_y	v_z	n	v_x	v_y	v_z
1	xy	XZ	<i>−yz</i>	11	2xz	- <i>yz</i>	-xy	21	XZ	уz	xy
2	<i>−yx</i>	-xz	yz	12	XZ	-2yz	xy	22	xy	-xz	уz
3	yz	xy	-xz	13	2 <i>y</i>	2x	-3z	23	-yz	xy	zχ
4	- <i>yz</i>	-xy	xz	14	-5y	-5x	4 <i>z</i>	24	XZ	yz	-xy
5	XZ	<i>−yz</i>	xy	15	-7x	3z	3 <i>y</i>	25	<i>−yx</i>	-zx	xy
6	-xz	zy	-xy	16	9 <i>x</i>	-8z	-8 <i>y</i>	26	-zy	-yx	zχ
7	2xy	XZ	<i>−yz</i>	17	4 <i>z</i>	- у	-4x	27	<i>−yx</i>	XZ	2 <i>zy</i>
8	xy	-xz	-2yz	18	-2z	3 <i>y</i>	-2x	28	-zy	-2yx	zχ
9	yz	2xy	-xz	19	xy	XZ	yz	29	6z	-5y	-6 <i>x</i>
10	<i>−yz</i>	xy	-2xz	20	yz	xy	xz	30	-xy	zx	-zy

5. Найти поток векторного поля $\vec{v}(M) = \{v_x, v_y, v_z\}$ через внешнюю сторону замкнутой поверхности G, если
а) G: $z^2 = x^2 + y^2, z = l + 1 (z \ge 0);$ б) G: $x^2 + y^2 + z^2 = (l + 1)^2, z = 0 (z \ge 0);$ в) G: $z = x^2 + y^2, z = l + 1$ г) G: $z = l + 1 - x^2 - y^2, z = 0;$

a)
$$G: z^2 = x^2 + y^2, z = l + 1 (z \ge 0)$$

6)
$$G: x^2 + y^2 + z^2 = (l+1)^2, z = 0 (z \ge 0);$$

B)
$$G: z = x^2 + v^2, z = l + 1$$

r)
$$G: z = l + 1 - x^2 - v^2, z = 0$$

д)
$$G: x + y + z = l + 1, x = 0, y = 0, z = 0$$

и задана таблица:

n	v_x	v_y	v_z	G	n	v_x	v_y	v_z	G
1	$x + xy^2$	$y + yx^2$	-2z + 3	a)	16	XZ	yz	$z^2 - 1$	a)
2	x	y + 2yz	$-z^2$	б)	17	x+z	y	z-x	б)
3	xy	-3y	3z	в)	18	x^2	z	x+y	в)
4	x-y	x + y	z^2	г)	19	z	X	y + 2z	г)
5	3x	$4y^2$	-3z	д)	20	2xy	-5 <i>y</i>	5 <i>z</i>	д)
6	x+y	y-2x	z^2	a)	21	XZ	x + y	y-z	a)
7	x	y + yz	-2z	б)	22	5x + y	3xy	-3xz	б)
8	3x	-у	2 <i>z</i>	в)	23	x + y	y^2	x-z	в)
9	-x	z	x + y	г)	24	$x^2 + 3y$	5 <i>y</i>	y-5z	г)
10	$2x^2$	3 <i>y</i>	-3z	д)	25	4 <i>x</i>	-5xy	-4z	д)
11	xy	$-x^2$	3	a)	26	xz + y	zy-x	$z^2 - 2$	a)
12	x + 2xz	-2y	z	б)	27	z-x	2 <i>y</i>	x+z	б)
13	2x	<i>−yx</i>	-2z	в)	28	у	x-y	$z + x\sqrt{z}$	в)
14	z-y	у	y-2x	г)	29	$2z + y^2$	y-4x	3z-2	г)
15	3 <i>x</i>	-3y	2xz	д)	30	6x + y	2y - xy	-8z	д)

6. Вычислить циркуляцию векторного поля $\vec{v} = \{v_x, v_y, v_z\}$ вдоль замкнутого контура *ABCA*, если *ABC* — треугольник, A(k+1; 0; 0), B(0; l+1; 0), $C(0; 0; (-1)^n)$ и задана таблица:

n	v_x	v_y	v_z	n	v_x	v_y	v_z
1	2x + yz	$2xz-3y^2$	$2x^2 + y^2$	16	$x^2 - yz$	$y^2 - xz$	$z^2 - xy$
2	$2xz + y^2$	$3y^2 + 2xz$	$-3x^2 + y^2$	17	$3x^2-y^2$	y + 2z	$x^2 + y + z$
3	$x^2 + y^2 + z^2$	2xz-y	3x - 1	18	x + y	x^2-y^2	$(x+y)^2$
4	$3x^2 + 3yz$	z + x	$y + 4x^2$	19	x+y-z	$3x^2-2y$	$zx-3y^2$
5	$3x^2 + 3y^2$	$-z-2x^2$	$y-2x^2$	20	zx + y - 1	$2y^2 - 3x^2$	x + 3y - z
6	$2xy+z^2$	$x^2 - z^2$	$-3z^2 + x^2$	21	yz + 2x + 1	y-3+zx	x+y-z
7	$2xy+z^2$	$x^2 + 2xz$	$-3z^2 + 2x^2$	22	yz-1	zx-1	<i>xy</i> – 1
8	2xy + 4	$-3y^2 + 3z^2$	$x^2 + 2y^2$	23	$x+y^2-z$	$2x^2 - 2y^2$	<i>zxy</i> – 1
9	$2xz-y^2$	$-3y^2 + z^2$	$x^2 - 2xy$	24	$x^2 - y^2 - z/2$	$(x^2 - y^2)/3$	xz - yx
10	2xz + y	$-3y^2 + 2z$	$x^2 + 2y$	25	-2xz - 2y + x	$x^2 - y^2 - z^2$	x+y-1
11	$2xz + y^2$	$-3y^2 + 2xz$	$x^2 + 2y^2$	26	$y^2 + 2xy$	(x-y)z	$y^2 + zx$
12	-2x + 2y	$y^2 + xz$	z^2-x^2	27	$3x^2 - z + x$	$3yz + 4x^2$	y-x+z
13	-2x + yz	$y^2 + 2xz$	$x^2 + y^2 + z^2$	28	$x + 2y^2 + z$	$x^2 - 2z^2 + y$	$z^2 + 2x$
14	$x^2 + y^2 + z^2$	-2y + 2z	$z^2 + xy$	29	3x - 3y	$xz^2 - yx^2$	z + 3y
15	$x^2 + y^2 - z^2$	$2x-y^2$	x^2-z^2	30	$x+y^2-z$	$3(x^2-y^2)$	$y^2 + zx$

7. Вычислить циркуляцию плоского векторного поля $\vec{v} = \{v_x, v_y\}$ вдоль замкнутого контура L, если а) L: $x^2 + y^2 = 2(l + l)$

+ 1)x; б) L: $x^2 + y^2 = 2(l+1)y$; в) L: $x^2 + y^2 = (l+1)^2$ и задана таблица:

n	v_x	v_y	L
1	$\frac{v_x}{2x + x\sqrt{9 - x^2 + y^2} + 2y}$	$\frac{v_y}{xy - y\sqrt{9 - x^2 + y^2}}$	в)
2	$e^{x^2} + x\sqrt{5 + x^2 + y^2} + 2y^2$	$x + y\sqrt{5 + x^2 + y^2}$	a)
3	$x\sqrt{8+x^2+y^2}+xy$	$y\sqrt{8+x^2+y^2}+x^2$	б)
4	$e^{2x} + x^2 e^{x^3 + y^3}$	$3xy + y^2e^{x^3+y^3}$	в)
5	$\frac{y}{xy+2} + y^2$	$\frac{x}{xy+2} + 8x$	a)
6	$x\sqrt{5-x^2-y^2}-yx^2$	$xy^2 + y\sqrt{5 - x^2 - y^2}$	б)
7	$2x - x\sqrt{9 + x^2 + y^2} + 2y$	$xy - y\sqrt{9 + x^2 + y^2} + 4x$	в)
8	$xye^{x^2y} + xy^2$	$\frac{x^2}{2}e^{x^2y} + e^y + 2x$	a)
9	$\sqrt{y/x} - y^2$	$\sqrt{x/y} + \sin y$	б)
10	$\frac{y^2}{2}\cos(xy^2) + \frac{x}{2} + 3y$	$4xy + xy\cos(xy^2)$	в)
11	$e^x - x^2y$	$e^y + y^2x$	a)
12	$x^2 e^{x^3 + y^3} + 2y + e^x$	$y^2 e^{x^3 + y^3} + 4x$	б)
13	$x^3 + x\sqrt{4 + x^2 + y^2} + y$	$5xy + y\sqrt{4 + x^2 + y^2}$	в)
14	$x^2 + x\sqrt{9 - x^2 + y^2} - y^2$	$xy - y\sqrt{9 - x^2 + y^2}$	a)
15	$x^2 e^{x^3 + y^3} + 2y + e^x$	$y^2 e^{x^3 + y^3} + 4x + 3e^y$	б)
16	$ye^{5xy}-2xy$	$xe^{5xy} + 4x + e^y$	в)
17	$\frac{y^2}{2}\cos(xy^2) - 2x^2y$	$xy\cos(xy^2) + 2y^2x$	a)
18	$x\cos(x^2+y^2)+xy$	$y\cos(x^2+y^2)+x^2y$	б)
19	$xe^{x^2+y^2}-xy$	$ye^{x^2+y^2}+e^y$	в)
20	$e^{x^2} + 3x^2y$	$e^{y^2} - 3xy^2 + y$	a)
21	$xy + xe^{x^2 + y^2 + 3}$	$y^2 + ye^{x^2 + y^2 + 3}$	б)
22	$x^2y + \sqrt{y/x}$	$y^2x + \sqrt{x/y}$	в)

n	v_x	v_v	L
23	$e^{5x} + x\sqrt{7 + x^2 + y^2} + 3y^2$	$y\sqrt{7+x^2+y^2}-e^{5y}$	a)
24	$2xy\arcsin(x^2y+1)-x^2y$	$x^2 \arcsin(x^2 y + 1) + xy$	б)
25	$xy\cos(x^2y) + 3x - y^2$	$\frac{x^2}{y}\cos(x^2y) + xy$	в)
26	$x \cdot 2^{x^2 + y^2} + 2xy$	$y \cdot 2^{x^2 + y^2} + x^2 - y^2$	a)
27	$-2xe^{x^2+y^2}+2y$	$-2ye^{x^2+y^2}+3x$	б)
28	$x^2y + 3 - x\sqrt{x^2 - y^2}$	$y + y\sqrt{x^2 - y^2}$	в)
29	$y \cdot 3^{xy} - 4y$	$x \cdot 3^{xy} + 2x$	a)
30	$x^2 \arcsin(x^3 + y^3) - xy$	$y^2 \arcsin(x^3 + y^3) + y$	б)

Ответы к разд. 25-28

25. Криволинейный интеграл по длине дуги

1)
$$(5\sqrt{5} - 3\sqrt{3})/6$$
; 2) $(\sqrt{2}\ln 2)/2$; 3) 24; 4) $\frac{\sqrt{3}}{2}$; 5) $\frac{256}{15}a^3$; $ab(a^2 + ab + b^2)$ 7) (2) 2

6)
$$\frac{ab(a^2+ab+b^2)}{3(a+b)}$$
; **7)** 6a; **8)** 2.

26. Криволинейный интеграл по координатам

1)
$$\frac{31}{30}$$
; 2) a) 1; 6) 1; B) 1; F) 1; 3) 0; 4) π ; 5) a) 1,5; 6) 1;

6)
$$2e^2 - e^4 + 1$$
; **7)** 0; **8)** $\frac{3}{16}\pi a^{\frac{4}{3}}$; **9)** -20π ; **10)** $-2\pi ab$; **11)** $\frac{\pi a^4}{2}$; **12)** 0;

13) 16/3; **14)** 1; **15)** 0; **16)** 8; **17)**
$$-3/2$$
; **18)** 9; **19)** $\pi + 1$; **20)** $2e^2$;

21)
$$x^4y^3 - 3xy^2 + 5x - 4y + c$$
; **22)** $x^3y - \frac{xy^3}{3} + c$; **23)** $x^2y + \frac{x}{y} + c$;

24)
$$xe^{2y} - 5y^3e^x + c$$
; **25)** $4x^3y + \frac{x}{y^2} + c$; **26)** $e^{x+y} + \sin(x-y) + 2y + c$

$$y^{2}$$

+ c ; **27**) $x^{3}y + x - y = c$; **28**) $ye^{x^{2}} + x \ln y + e^{y} = c$; **29**) $(x + y) \times (e^{x} - e^{y}) + c$.

27. Поверхностные интегралы

1)
$$\sqrt{3}/120$$
; 2) $\frac{\pi R^3}{4}$; 3) 0; 4) $-\frac{2\pi R^7}{105}$; 5) $\frac{a^3}{2}$; 6) $4\pi abc/3$; 7) 1/8;

$$8) R^2H\bigg(\frac{2R}{3}+\frac{\pi H}{8}\bigg).$$

28. Скалярное и векторное поля

1) a)
$$-0.1$$
; 6) $-27/\sqrt{21}$; **2)** a) $\frac{17}{9\sqrt{6}}$; 6) $\frac{11}{3\sqrt{2}}$; **3)** a) $\frac{2}{3}\vec{i} + \frac{1}{3}\vec{j}$;

6)
$$\frac{\pi}{4}\vec{i} + \vec{j} + \left(\frac{3\pi}{4} - 2\right)\vec{k}$$
; **4)** $\cos \varphi = -\frac{11}{2\sqrt{34}}$; **5)** $-\frac{e}{\sqrt{(x^2 + y^2 + z^2)^3}} \times$

$$\times (x\vec{i} + y\vec{j} + z\vec{k});$$
 6) 140 \vec{j} ; 140; **7)** $(x-1)^2 + \frac{y^2}{2} = c;$ **8)** 4/3; **9)** 5/3;

10) 0; **11)** 256
$$\pi$$
/3; **12)** 0; **13)** 24; 0; **14)** 0; 2(($y - z$) $\vec{i} + (z - x)\vec{j} + (x - y)\vec{k}$); **15)** 6; 0; **16)** $-2\vec{i} + 2\vec{k}$; **17)** 8; **18)** соленоидальное;

19) потенциальное; **20)** 4; **21)**
$$-1$$
; **22)** -2π ; **23)** $x + xyz + c$;

24)
$$x^2y - y^2 + xz + c$$
.

Глава 10 ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ

29. ЧИСЛОВЫЕ РЯДЫ

Опорный конспект № 29

29.1. Понятие ч.р. и его суммы

$$\mathbf{O:} \ \sum_{n=0}^{\infty} u_n = u_1 + u_2 + \dots + u_n + \dots - \text{числовой ряд}$$

$$S_n = u_1 + u_2 + \dots + u_n - n$$
-я частичная сумма

$$\lim_{n\to\infty} S_n = S \neq \infty \Rightarrow$$
ч.р. сходящийся, S — его сумма,

$$\lim S_n = \infty \lor \mathbb{Z} \Leftrightarrow \text{ч.р. расходящийся}$$

Примеры: 1. Геометрическая прогрессия

$$\sum_{n=1}^{\infty} aq^{n-1} \begin{cases} \text{сходится, } |q| < 1, \\ \text{расходится, } |q| \ge 1 \end{cases}$$

2. Обобщенный гармонический ряд (p > 0)

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \begin{cases} \text{сходится, } p > 1, \\ \text{расходится, } p \le 1 \end{cases}$$

29.2. Свойства сходящихся ч.р.

$$1^0$$
. $\sum_{n=1}^{\infty} u_n - \text{сходится} \Rightarrow \sum_{n=k}^{\infty} u_n - \text{сходится}$.

$$2^0$$
. $\sum_{n=1}^{\infty} u_n$ — сходится, S — его сумма $\Rightarrow \sum_{n=1}^{\infty} c u_n$ — сходится (c =

= const), cS — сумма.

$$3^{0}$$
. $\sum_{n=1}^{\infty} u_{n}$, $\sum_{n=1}^{\infty} v_{n}$ — сходятся, S , σ — суммы $\Rightarrow \sum_{n=1}^{\infty} (u_{n} + v_{n})$ — схо-

дится, $S + \sigma$ — сумма

29.3. Необходимый признак сходимости ч.р.

$$\sum_{n=1}^{\infty} u_n \operatorname{сходится} \Rightarrow \lim_{n \to \infty} u_n = 0$$

Следствие:
$$\lim_{n\to\infty} u_n \neq 0 \Rightarrow \sum_{n=1}^{\infty} u_n$$
 — расходится

29.4. Достаточные признаки сходимости знакоположительных ч.р.

1. Признаки сравнения

Пр. 1:
$$\sum_{n=1}^{\infty} u_n$$
, $\sum_{n=1}^{\infty} v_n$, $0 \le u_n \le v_n$, $\forall n$, тогда:

1)
$$\sum_{n=1}^{\infty} v_n - \text{сходится} \Rightarrow \sum_{n=1}^{\infty} u_n - \text{сходится};$$

2)
$$\sum_{n=1}^{\infty} u_n$$
 — расходится $\Rightarrow \sum_{n=1}^{\infty} v_n$ — расходится

Πp. 2:
$$\sum_{n=1}^{\infty} u_n$$
, $\sum_{n=1}^{\infty} v_n$, $u_n ≥ 0$, $v_n ≥ 0$, $∀n$,

 $\lim_{n\to\infty} \frac{u_n}{v_n} = A \neq 0 \lor \infty \Rightarrow$ ч.р. сходятся одновременно

2. Признак Даламбера

$$\sum_{n=1}^{\infty} u_n, \ u_n > 0, \forall n, \ \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = l$$

$$\{ < 1 \Rightarrow \text{ч.р. сходится,} \\ > 1 \Rightarrow \text{ч.р. расходится,} \\ = 1 \Rightarrow \text{сомнительный случай}$$

3. Интегральный признак

$$\sum_{n=1}^{\infty} u_n, \ u_n > 0, \ f(x) > 0: \ f(n) = u(n), \ \text{непрерывна}, \ \ \ \text{на [1, ∞)},$$

$$\int_{1}^{\infty} f(x) \mathrm{d}x \begin{cases} \text{сходится} \Rightarrow \text{ч.р. сходится}, \\ \text{расходится} \Rightarrow \text{ч.р. расходится} \end{cases}$$

29.5. Знакочередующиеся ч.р. Признак Лейбница

O:
$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n = u_1 - u_2 + u_3 - u_4 + \dots + (-1)^{n-1} u_n + \dots$$

Признак Лейбница: $\sum_{n=1}^{\infty} (-1)^{n-1} u_n, \ u_n > 0, \forall n,$

1)
$$u_1 > u_2 > ... > u_n > ...$$
 $\Rightarrow \begin{cases} \text{ч.р. сходится,} \\ S - \text{сумма, } 0 < S \le u_1 \end{cases}$

29.6. Знакопеременные ряды.

Абсолютная и условная сходимости

O:
$$\sum_{n=1}^{\infty} u_n, \ u_n \stackrel{>}{<} 0$$

Т: (признак абсолютной сходимости)

$$\sum_{n=1}^{\infty} |u_n| \operatorname{сходится} \Rightarrow \sum_{n=1}^{\infty} u_n \operatorname{сходится} \blacksquare$$

О:
$$\sum_{n=1}^{\infty} u_n$$
 — абсолютно сходящийся $\Leftrightarrow \sum_{n=1}^{\infty} |u_n|$ сходится;

$$\sum_{n=1}^{\infty} u_n$$
 — условно сходящийся $\Leftrightarrow \sum_{n=1}^{\infty} |u_n|$ расходится,

хотя
$$\sum_{n=1}^{\infty} u_n$$
 сходится

Задачи к разд. 29.1-29.4

Задача 1. Исследовать сходимость следующих числовых рядов:

a)
$$\sum_{n=1}^{\infty} \frac{n^3}{n^3 + 3}$$
; 6) $\sum_{n=1}^{\infty} \frac{3^n}{(2n+1)!}$; b) $\sum_{n=2}^{\infty} \frac{-1}{n \ln n}$; Γ) $\sum_{n=1}^{\infty} \frac{n}{(n+3)(n^2+5)}$.

Решение: Исследование данных рядов с положительными элементами проводим по схеме:

- 1) проверяем выполнение необходимого условия сходимости ряда (ОК, разд. 29.3). Если $\lim_{n\to\infty}u_n\neq 0$, то делаем вывод, что ряд расходится; при выполнении условия $\lim_{n\to\infty}u_n=0$ переходим к следующему пункту;
- 2) используем достаточные признаки сходимости рядов (ОК, разд. 29.4):

a)
$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{n^3}{n^3+3} = \left\{\frac{\infty}{\infty}\right\} = \lim_{n\to\infty} \frac{1}{1+\frac{3}{n^3}} = 1 \Rightarrow$$
 ряд расходится;

б) так как $u_n = \frac{3^n}{(2n+1)!}$ содержит показательную функцию 3^n и факториал (достаточно наличия одного из них), то исследование ряда на сходимость проводим с помощью признака Даламбера (ОК, разд. 29.4) и п. 1) схемы пропускаем.

$$2) \ u_{n+1} = \frac{3^{n+1}}{(2(n+1)+1)!} = \frac{3^{n+1}}{(2n+3)!},$$

$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{3^{n+1}}{(2n+3)!} \frac{(2n+1)!}{3^n} = 3\lim_{n\to\infty} \frac{(2n+1)!}{(2n+1)!(2n+2)(2n+3)} =$$

$$= 3\lim_{n\to\infty} \frac{1}{(2n+2)(2n+3)} = \left\{\frac{1}{\infty}\right\} = 0 < 1 \Rightarrow \text{ряд сходится};$$

- в) 1) знак «минус» выносим за знак суммы, получим $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ и исследуем ряд с $u_n > 0$: $\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{1}{n \ln n} = \left\{ \frac{1}{\infty} \right\} = 0$.
- 2) Удобно использовать интегральный признак сходимости (ОК, разд. 29.4): $f(x) = 1/(x \ln x)$ непрерывна и убывает на $[2, +\infty)$, и первообразную такой функции найти несложно. Имеем $\int_{2}^{\infty} \frac{\mathrm{d}x}{x \ln x} = \int_{1}^{\infty} \frac{\mathrm{d}\ln x}{\ln x} = \ln \ln x |_{2}^{\infty} = \infty \Rightarrow$ ряд расходится.

$$\Gamma) 1) \lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{n}{(n+3)(n^2+5)} = \left\{ \frac{\infty}{\infty} \right\} = \lim_{n \to \infty} \frac{1/n^2}{(1+3/n)(1+5/n^2)} = 0.$$

2) Так как u_n является рациональной дробью, то удобно применить второй признак сравнения (ОК, разд. 29.4). Ряд для сравнения получаем, оставляя в числителе и знаменателе дроби только n в старшей степени: $\sum_{n=1}^{\infty} \frac{n}{n^3} = \sum_{n=1}^{\infty} \frac{1}{n^2}$ — обобщенный гармонический ряд (ОК, разд. 29.1), сходящийся.

Находим
$$\lim_{n\to\infty} \frac{u_n}{v_n} = \lim_{n\to\infty} \frac{n}{(n+3)(n^2+5)} : \frac{1}{n^2} = \lim_{n\to\infty} \frac{n^3}{(n+3)(n^2+5)} = \lim_{n\to\infty} \frac{1}{(1+3/n)(1+5/n^2)} = 1 \neq 0 \neq \infty \Rightarrow$$
 ряд сходится.

Задачи для самостоятельного решения

Исследовать на сходимость следующие числовые ряды:

1) a)
$$\sum_{n=1}^{\infty} \frac{n^3 + 2n^2 + 1}{3 + 7n^3}$$
; 6) $\sum_{n=1}^{\infty} \frac{n+3}{n^3 - 5n + 1}$; B) $\sum_{n=1}^{\infty} \frac{-3n^2}{(2n+1)(n^2 + 3)}$;
2) a) $\sum_{n=1}^{\infty} \frac{3^n}{2^n (2n+3)}$; 6) $-2 - \frac{2 \cdot 4}{3!} - \frac{2 \cdot 4 \cdot 6}{5!} - \frac{2 \cdot 4 \cdot 6 \cdot 8}{7!} - \dots$;

3) a)
$$\sum_{n=2}^{\infty} \frac{1}{n^{3} \sqrt{\ln^{2} n}}$$
; 6) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{(3n+2)^{3}}}$;

4)
$$\frac{1}{\sqrt{2}-1} + \frac{1}{\sqrt{3}-1} + \frac{1}{\sqrt{4}-1} + \dots$$
; **5)** $\sum_{n=1}^{\infty} \frac{2^n n^2}{5^n}$;

6)
$$1 + \frac{1}{5} + \frac{1 \cdot 2}{5^2} + \frac{1 \cdot 2 \cdot 3}{5^3} + \dots; 7$$
) $\sum_{n=2}^{\infty} \frac{1}{n \ln^3 n};$

8)
$$10 + \frac{10^2}{2} + \frac{10^3}{3} + \frac{10^4}{4} + \dots$$
; 9) $\frac{1}{1^2 + 3} + \frac{1}{2^2 + 3} + \frac{1}{3^2 + 3} + \dots$;

10)
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt[3]{2n^3+3}}$$
.

Задачи к разд. 29.5, 29.6

Задача 1. Исследовать на сходимость следующие числовые ряды:

a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{(2n+1)(n+3)}$$
; 6) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[4]{(3n+4)^3}}$; B) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot 2^n}$; r) $\sum_{n=3}^{\infty} \frac{(-1)^{n-1} \ln n}{n}$.

Решение: Исследование данных знакочередующихся числовых рядов $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ проводим по схеме:

- 1) проверяем выполнение необходимого условия сходимости. Если $\lim_{n\to\infty}u_n\neq 0$, то делаем вывод, что ряд расходится; при выполнении условия $\lim_{n\to\infty}u_n=0$ переходим к следующему пункту;
- 2) исследуем на сходимость ряд $\sum_{n=1}^{\infty} u_n$ из абсолютных величин членов данного ряда, применяя достаточные признаки сходимости для рядов с положительными элементами, а затем признак абсолютной сходимости (ОК, разд. 29.6). Если ряд $\sum_{n=1}^{\infty} u_n$ сходится, то ряд

$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n$$
 сходится абсолютно; если $\sum_{n=1}^{\infty} u_n$ расходится, то переходим к следующему пункту;

3) применяем признак Лейбница (ОК, разд. 26.5).

a) 1)
$$\lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{n^2}{(2n+1)(n+3)}=\left\{\frac{\infty}{\infty}\right\}=\lim_{n\to\infty}\frac{1}{(2+1/n)(1+3/n)}=$$
 $=\frac{1}{2}\neq0\Rightarrow$ ряд расходится;

6) 1)
$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{1}{\sqrt[4]{(3n+4)^3}} = \left\{\frac{1}{\infty}\right\} = 0;$$

2) ряд из абсолютных величин: $\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{(3n+4)^3}}$. Можно применить для исследования достаточный признак сравнения или интегральный признак (ОК, разд. 29.4, Пр. 2). Ряд для сравнения: $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{4}}}$ обобщенный гармонический ряд, расходится.

$$\lim_{n\to\infty}\frac{u_n}{v_n}=\lim_{n\to\infty}\sqrt[4]{\left(\frac{n}{3n+4}\right)^3}=\left\{\frac{\infty}{\infty}\right\}=\lim_{n\to\infty}\sqrt[4]{\left(\frac{1}{3+4/n}\right)^3}=\sqrt[4]{\left(\frac{1}{3}\right)^3}\neq$$

 $\neq 0 \neq \infty \Rightarrow$ ряд из абсолютных величин расходится;

3) применяем признак Лейбница.

Члены ряда
$$\frac{1}{\sqrt[4]{(3n+4)^3}}$$
 убывают с возрастанием n ; $\lim_{n\to\infty}u_n=0$.

Таким образом, ряд сходится по признаку Лейбница и, следовательно, сходимость условная;

- в) так как в u_n входит показательная функция, то п. 1) не проверяем;
- 2) ряд из абсолютных величин $\sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n}$ исследуем по признаку Даламбера: $u_n = \frac{1}{n \cdot 2^n}$; $u_{n+1} = \frac{1}{(n+1)2^{n+1}}$; $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{n \cdot 2^n}{(n+1)2^{n+1}} = \left\{\frac{\infty}{\infty}\right\} = \frac{1}{2}\lim_{n \to \infty} \frac{1}{1+1/n} = \frac{1}{2} < 1 \Rightarrow$ ряд из абсолютных величин сходится, т.е. данный ряд сходится абсолютно;

$$\Gamma) 1) \lim_{n \to \infty} \frac{\ln n}{n} = \left\{ \frac{\infty}{\infty} \right\} = \lim_{n \to \infty} \frac{(\ln n)'}{(n)'} = \lim_{n \to \infty} \frac{1}{n} = \left\{ \frac{1}{\infty} \right\} = 0;$$

2) составляем ряд из абсолютных величин $\sum_{n=3}^{\infty} \frac{\ln n}{n}$, к которому применяем интегральный признак: $f(x) = \frac{\ln x}{x}$ непрерывна при $x \in [3; +\infty)$. Исследуем ее на монотонность: $f'(x) = \frac{1 - \ln x}{x^2} \Rightarrow f'(x) < 0$ при $x > e \Rightarrow f(x)$ убывает при $x \in [3; +\infty)$. Находим

 $\int_{-\infty}^{\infty} \frac{\ln x}{x} dx = \frac{\ln^2 x}{2} \Big|_{\infty}^{\infty} = \infty \Rightarrow \text{ ряд из абсолютных величин расхо-}$ дится;

3) оба условия признака Лейбница выполняются, что уже установлено в пп. 1), 2) \Rightarrow ряд сходится условно. Отметим, что по свойству 1^0 (ОК, разд. 29.2) условно сходится и ряд $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\ln n}{n}$.

Задачи для самостоятельного решения

Исследовать на сходимость числовые ряды:

11) a)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \sqrt[3]{\frac{2n+1}{n+3}};$$
 6) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt[5]{(2n+1)^2}};$ B) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(n-\sqrt{n})}{2n^3+1};$
12) a) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}4^n}{n^3};$ 6) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}n^4}{(2n+3)!};$ 13) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n+1)\sqrt[4]{\ln(n+1)}};$
14) $\frac{1}{3} - \frac{2}{5} + \frac{3}{7} - \frac{4}{9} + \dots;$ 15) $\sum_{n=2}^{\infty} \frac{(-1)^n}{n\sqrt{\ln^5 n}};$ 16) $1 - 1 + 1 - 1 + \dots + 1 +$

14)
$$\frac{1}{3} - \frac{2}{5} + \frac{3}{7} - \frac{4}{9} + \dots$$
; **15)** $\sum_{n=2}^{\infty} \frac{(-1)^n}{n\sqrt{\ln^5 n}}$; **16)** $1 - 1 + 1 - 1 + \dots + (-1)^{n+1} \dots$

30. СТЕПЕННЫЕ РЯДЫ

Опорный конспект № 30

30.1. Понятие функционального и степенного рядов.

Теорема Абеля

O:
$$\sum_{n=1}^{\infty} u_n(x)$$
 — функциональный ряд,

$$\sum_{n=1}^{n=1} a_n (x - x_0)^n - \text{ряд по степеням } (x - x_0),$$

$$\sum_{n=1}^{\infty} a_n x^n - \text{ряд по степеням } x,$$
(2)

$$\sum_{n=1}^{\infty} a_n x^n - \text{ряд по степеням } x,$$
 (2)

 $(x_0, a_n \in \mathbf{R}), (2)$ — частный случай (1)

Т. Абеля: Ряд (2) сходится в т. $x = x_1 \Rightarrow$ (2) сходится $\forall x$: $|x| < |x_1|$. Ряд (2) расходится в т. $x = x_1 \Rightarrow$ (2) расходится $\forall x: |x| > |x_1| \blacksquare$

30.2. Радиус и интервал сходимости с.р.

Для ряда (2) радиус сходимости $R=\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|$, интервал абсолютной сходимости $(-R,\ R)$, для ряда (1) интервал абсолютной сходимости $(x_0-R,\ x_0+R)$

30.3. Дифференцирование и интегрирование с.р.

Дифференцирование и интегрирование с.р. проводятся почленно в интервале абсолютной сходимости, интервал сохраняется

30.4. Ряды Тейлора и Маклорена

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots =$$

$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n - \text{ряд Тейлора, } (0! = 1)$$

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n - \text{ряд}$$

Маклорена

30.5. Необходимое и достаточное условия разложения функции в ряд Тейлора

$$S_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

O: $R_n(x) = f(x) - S_n(x)$ — остаточный член

Т: f(x) — сумма ряда Тейлора ⇔

$$\lim_{n\to\infty} R_n(x) = 0, \ R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1} - \text{ остаточный член в}$$
форме Лагранжа (ξ между x_0 и x)

30.6. Разложение в ряд Маклорена основных элементарных функций

$$e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}+\ldots,\ x\in(-\infty,\infty)$$

$$\sin x=\frac{x}{1!}-\frac{x^{3}}{3!}+\ldots+(-1)^{n-1}\frac{x^{2n-1}}{(2n-1)!}+\ldots,\ x\in(-\infty,\infty)$$

$$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots+(-1)^{n}\frac{x^{2n}}{(2n)!}+\ldots,\ x\in(-\infty,\infty)$$

$$(1+x)^{m}=1+\frac{m}{1!}x+\frac{m(m-1)}{2!}x^{2}+\ldots+\frac{m(m-1)\ldots(m-n+1)}{n!}x^{n}+\ldots,$$
 $x\in(-1,\ 1),$ — биномиальный ряд,

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots, \ x \in (-1,1),$$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{2n-1} + \dots, \ x \in (-1,1)$$

30.7. Применение рядов к приближенным вычислениям

1. Вычисление значений функции

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
, $(x_0 - R, x_0 + R)$ — интервал абсо-

лютной сходимости

 $x_1 \in (x_0 - R, x_0 + R) \Rightarrow f(x_1) \approx S_n(x_1)$, абсолютная погрешность $\Delta = |R_n(x_1)|$

2. Вычисление интегралов с помощью рядов

$$\int_{a}^{x} f(x) dx \approx \int_{a}^{x} S_{n}(x) dx.$$

3. Решение дифференциальных уравнений с помощью рядов

Задача Коши:

$$y'' = f(x, y, y'), y|_{x_0} = y_0, y'|_{x_0} = y'_0$$

Решение y(x) ищем в виде

$$y = y(x_0) + \frac{y'(x_0)}{1!}(x - x_0) + \frac{y''(x_0)}{2!}(x - x_0)^2 + \dots;$$

$$y(x_0) = y_0, y'(x_0) = y'_0, y''(x_0) = f(x_0, y_0, y'_0),$$

$$y'''(x_0) = \left(\frac{\partial f}{\partial x}\right)_{x_0} + \left(\frac{\partial f}{\partial y}y'\right)_{x_0} + \left(\frac{\partial f}{\partial y'}y''\right)_{x_0}, \dots$$

Задачи к разд. 30.1-30.6

Задача 1. Найти интервал сходимости степенного ряда и исследовать его на концах интервала:

a)
$$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n} \cdot 2^n}$$
; 6) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{(x+2)^n}{n^3+3}$.

Решение: а) это степенной ряд по степеням x, можно воспользоваться формулой для радиуса сходимости (см. ОК, разд. 30.2):

$$|a_n| = \frac{1}{\sqrt{n} \cdot 2^n}, |a_{n+1}| = \frac{1}{\sqrt{n+1} \cdot 2^{n+1}} \Rightarrow R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{\sqrt{n+1} \cdot 2^{n+1}}{\sqrt{n} \cdot 2^n} = \lim_{n \to \infty} \frac{1}{\sqrt{n+1} \cdot 2^{n+1}} = \lim_{n \to \infty}$$

$$=\left\{ \frac{\infty}{\infty} \right\} = 2\lim_{n\to\infty} \sqrt{1+\frac{1}{n}} = 2 \Rightarrow$$
 ряд сходится абсолютно при $x\in(-2;\ 2).$

Исследуем ряд на концах интервала:

$$x = -2$$
, $\sum_{n=1}^{\infty} \frac{(-2)^n}{\sqrt{n} \cdot 2^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ (*); $x = 2$, $\sum_{n=1}^{\infty} \frac{2^n}{\sqrt{n} \cdot 2^n} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ (**).

Ряд (**) — обобщенный гармонический ряд (ОК, разд. 29.1), расходится, ряд (*) — знакочередующийся, для которого (**) — ряд из абсолютных величин. Проверяем ряд (*) на условную сходимость. Условия признака Лейбница выполняются:

1) $\frac{1}{\sqrt{n}}$ убывает с возрастанием n; 2) $\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0\Rightarrow$ ряд (*) сходится условно.

Таким образом, данный степенной ряд сходится на интервале [-2; 2);

б) составляем ряд из абсолютных величин: $\sum_{n=1}^{\infty} \frac{|x+2|^n}{n^3+3}$ — и применяем признак Даламбера:

$$u_{n} = \frac{|x+2|^{n}}{n^{3}+3}, \ u_{n+1} = \frac{|x+2|^{n+1}}{(n+1)^{3}+3} \Rightarrow \lim_{n \to \infty} \frac{u_{n+1}}{u_{n}} = \lim_{n \to \infty} \frac{|x+2|^{n+1}(n^{3}+3)}{|x+2|^{n}((n+1)^{3}+3)} = \left\{\frac{\infty}{\infty}\right\} = |x+2| \lim_{n \to \infty} \frac{1+3/n^{3}}{(1+1/n)^{3}+3/n^{3}} = |x+2| < 1.$$

Решаем неравенство $-1 < x + 2 < 1 \Rightarrow -3 < x - 1 \Rightarrow$ ряд сходится абсолютно при $x \in (-3; -1)$.

Исследуем на концах интервала:

$$x = -3$$
, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3 + 3} (*)$; $x = -1$, $\sum_{n=1}^{\infty} \frac{1}{n^3 + 3} (**)$.

Ряд (*) знакочередующийся, для которого ряд (**) является рядом из абсолютных величин. Сравниваем (**) с рядом $\sum_{n=1}^{\infty} \frac{1}{n^3}$ — сходящийся обобщенный гармонический ряд \Rightarrow (**) сходится, (*) сходится абсолютно. Итак, данный ряд сходится абсолютно на

[-3, -1].

Залача 2. Разложить в ряд Тейлора по степеням (x - a): a) $\sin^2 x$

Задача 2. Разложить в ряд Тейлора по степеням (x - a): a) $\sin^2 x$, a = 0; б) $x^4 + 3x$, a = 1.

Решение: При разложении в ряд необходимо найти коэффициенты ряда Тейлора (ОК, разд. 30.4) или воспользоваться известными разложениями (ОК, разд. 30.6):

а) так как $\sin^2 x = (1 - \cos 2x)/2$, то используем разложение в ряд Маклорена $\cos x$, тогда

$$\cos 2x = 1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} - \dots + \frac{(-1)^n (2x)^{2n}}{(2n)!} + \dots \Rightarrow$$

$$\Rightarrow \sin^2 2x = \frac{1}{2} \left(\frac{2^2 x^2}{2!} - \frac{2^4 x^4}{4!} + \dots + \frac{(-1)^{n+1} 2^{2n} x^{2n}}{(2n)!} + \dots \right).$$

Ряд сходится на (-∞, +∞) абсолютно;

б) используем разложение f(x) в ряд Тейлора, поэтому находим $f^{(n)}$ (1):

$$f(x) = x^4 + 3x, f(1) = 4; f'(x) = 4x^3 + 3, f'(1) = 7; f''(x) = 12x^2,$$

$$f''(1) = 12; f'''(x) = 24x, f'''(1) = 24; f^{IV}(x) = 24; f^{IV}(1) = 24;$$

$$f^{V}(x) = 0, ..., f^{(n)}(x) = 0, n > 4.$$

$$f(x) = x^4 + 3x = 4 + 7(x - 1) + \frac{12}{2!}(x - 1)^2 + \frac{24}{3!}(x - 1)^3 + \frac{24}{4!}(x - 1)^4 = 4 + 7(x - 1) + 6(x - 1)^2 + 4(x - 1)^3 + (x - 1)^4.$$

Задачи для самостоятельного решения

Найти интервал сходимости и исследовать на концах:

1)
$$\sum_{n=1}^{\infty} \frac{nx^n}{2^n}$$
; 2) $x + 2!x^2 + 3!x^3 + \dots$; 3) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n!}$; 4) $1 + 5x + 5^2x^2 + \dots + 5^nx^n + \dots$; 5) $\sum_{n=1}^{\infty} \frac{x^n}{4^n n^2}$; 6) $\frac{x-1}{1 \cdot 2} + \frac{(x-1)^2}{3 \cdot 2^2} + \frac{(x-1)^3}{5 \cdot 2^3} + \dots$; 7) $\sum_{n=1}^{\infty} \frac{(2x-3)^n}{n}$; 8) $\frac{x^2}{3} - \frac{x^4}{3^2\sqrt{2}} + \frac{x^6}{3^3\sqrt{3}} - \frac{x^8}{3^4\sqrt{4}} + \dots$; 9) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1}$; 10) $\frac{5}{x} + \frac{5^2}{x^2} + \frac{5^3}{x^3} + \dots$

Разложить в ряд Тейлора по степеням (x - a):

11)
$$x^4 - 4x^2$$
, $a = -2$; 12) a) e^{3x} , $a = 0$; 6) $e^{\frac{x}{3}}$, $a = 3$;
13) $\ln(1 - 2x)$, $a = 0$; 14) $\frac{1}{\sqrt{1 + x^2}}$, $a = 0$; 15) 2^x , $a = 0$;
16) $\frac{x}{-2x^2 + x + 1}$, $a = 0$; 17) $\ln(2x - 3)$, $a = 3$; 18) $\frac{1}{x - 5}$, $a = -2$.

Задачи к разд. 30.7

Задача 1. Вычислить $\sqrt[3]{10}$ с точностью до 0,001.

Решение: Так как $\sqrt[3]{10} = \sqrt[3]{8+2} = 2\sqrt[3]{1+1/4}$, то необходимо использовать разложение в биномиальный ряд (ОК, разд. 30.6) с m = 1/3:

$$\sqrt[3]{10} = 2\left(1 + \frac{1}{4}\right)^{1/3} = 2\left(1 + \frac{1}{3} \cdot \frac{1}{4} - \frac{1}{3^2} \cdot \frac{2}{2!} \cdot \frac{1}{4^2} + \frac{1}{3^3} \cdot \frac{2 \cdot 5}{3!} \cdot \frac{1}{4^3} - \frac{1}{3^4} \cdot \frac{2 \cdot 5 \cdot 8}{4!} \cdot \frac{1}{4^4} + \ldots\right).$$

Имеем знакочередующийся ряд, причем $\frac{1}{3^2} \cdot \frac{2}{2!} \cdot \frac{1}{4^2} < 0,001$, $\frac{1 \cdot 2 \cdot 5}{3^3 3!} \cdot \frac{1}{4^4} > 0,001$, поэтому по признаку Лейбница достаточно сохранить первые три члена:

$$\sqrt[3]{10} \approx 2\left(1 + \frac{1}{3} \cdot \frac{1}{4} - \frac{1}{3^2} \cdot \frac{2}{2!} \cdot \frac{1}{4^2}\right) = \frac{155}{72}.$$

Задача 2. Решить приближенно задачу Коши, сохранив в разложении решения в степенной ряд четыре первых члена: y'' + xy' + 4y - x = 0, y(0) = 1, y'(0) = 2.

Решение: Ищем решение задачи Коши в виде ряда Маклорена:

$$y(x) = y(0) + y'(0)x + \frac{y''(0)}{2!}x^2 + \frac{y'''(0)}{3!}x^3 + \dots$$
, где $y(0) = 1, y'(0) = 2$.

Находим
$$y''(0) = (-xy'^2 - 4y + x)_{x=0} = -4$$
, $y'''(0) = (-xy'^2 - 4y + x)'_{x=0} = (-y'^2 - 2xy'y'' - 4y' + 1)_{x=0} = -11$.

Таким образом,
$$y(x) \approx 1 + 2x - 2x^2 - \frac{11}{6}x^3$$
.

Задачи для самостоятельного решения

Вычислить:

- **19)** $\sin 18^{\circ}$ с точностью до 0,0001; **20)** $\sqrt[3]{e}$ с точностью до 0,01;
- **21)** $\sqrt[3]{30}$ с точностью до 0,01; **22)** $\int_{0}^{1} \frac{\sin x}{x}$ с точностью до 0,01;
- **23)** $\int_{0}^{1} e^{-x^2} dx$ с точностью до 0,001; **24)** $\int_{0}^{0.5} \cos \sqrt{x} dx$ с точностью до 0,001;

25)
$$\int_{0}^{0.2} \sqrt{1+x^3} dx$$
 с точностью до 0,0001; **26)** ln 1,04 с точностью до 0,0001;

Используя степенные ряды, решить дифференциальные уравнения, оставив в разложении первые пять членов:

27)
$$y'' + 2y' + 2xy = 0$$
, $y(0) = y'(0) = 1$;

28)
$$y'' - y\cos x - x = 0$$
, $y(0) = 1$, $y'(0) = 0$.

31. РЯДЫ ФУРЬЕ

Опорный конспект № 31

31.1. Тригонометрический ряд

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx,$$
 (1)

f(x) имеет период 2π

T:
$$\frac{|a_0|}{2} + \sum_{n=1}^{\infty} |a_n| + |b_n|$$
 сходится \Rightarrow

 \Rightarrow (1) правильно сходится $\forall x \in \mathbf{R} \blacksquare$

31.2. Коэффициенты Фурье.

Ряд Фурье для функции с периодом 2π

Ряд (1) — ряд Фурье, где

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx, \ a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx, \ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$

31.3. Достаточные условия разложения f(x)

с периодом 2π в ряд Фурье

- **О:** f(x) называется удовлетворяющей условиям Дирихле на [a, b], если:
 - 1) $f(x) \in C_{[a,b]}$, кроме конечного числа точек разрыва I рода;
 - 2) f(x) кусочно-монотонна на [a, b]
- **Т.** (Дирихле): f(x) с периодом 2π удовлетворяет условиям Дирихле $\forall [a, b] \in \mathbf{R} \Rightarrow \mathbf{p}$. Φ . для f(x) сходится $\forall x \in \mathbf{R}$, f(x) = S(x) в точках непрерывности,

$$S(\xi) = (f(\xi - 0) + f(\xi + 0))/2$$
 в точках разрыва $x = \xi$

31.4. Ряд Фурье для четных и нечетных функций

$$f(x)$$
 — четная с периодом $2\pi \implies f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$, $a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx$, $a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx$;

$$f(x)$$
 — нечетная с периодом $2\pi \Rightarrow f(x) = \sum_{n=1}^{\infty} b_n \sin nx$,

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, \mathrm{d}x$$

31.5. Ряд Фурье для функции f(x) с периодом 2l

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi}{l} x + b_n \sin \frac{n\pi}{l} x,$$

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx, \ a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi}{l} x dx,$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi}{l} x dx$$

Задачи к разд. 31

Задача 1. Разложить в ряд Фурье функцию f(x) с периодом 2π (рис. 31.1), если

$$f(x) = \begin{cases} 0, x \in (-\pi, 0), \\ x, x \in [0, \pi). \end{cases}$$

Рис. 31.1

Решение: Функция удовлетворяет условиям Дирихле (ОК, разд. 31.3), поэтому в точках непрерывности является суммой составленного для нее ряда Фурье (ОК, разд. 31.2).

Находим коэффициенты ряда Фурье:

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{0} 0 \, dx + \int_{0}^{\pi} x \, dx = \frac{1}{\pi} \frac{x^{2}}{2} \Big|_{0}^{\pi} = \frac{\pi}{2};$$

$$a_{n} = \frac{1}{\pi} \int_{0}^{\pi} x \cos nx \, dx = \begin{cases} u = x, \, du = dx, \\ dv = \cos nx \, dx, \, v = \int \cos nx \, dx = \frac{1}{n} \sin nx \end{cases} = \frac{1}{\pi} \left(\frac{x \sin nx}{n} \Big|_{0}^{\pi} - \frac{1}{n} \int_{0}^{\pi} \sin nx \, dx \right) = \frac{(-1)^{n} - 1}{\pi n^{2}};$$

$$b_{n} = \frac{1}{\pi} \int_{0}^{\pi} x \sin nx \, dx = \frac{1}{\pi} \left(-\frac{x \cos nx}{n} \Big|_{0}^{\pi} + \frac{1}{n} \int_{0}^{\pi} \cos nx \, dx \right) = \frac{(-1)^{n}}{n}.$$

Тогда

$$f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left(\frac{\cos x}{1^2} + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \dots \right) + \sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} + \dots$$

В точках разрыва $x_n = (2n - 1)\pi$ имеем

$$\frac{f(x_n - 0) + f(x_n + 0)}{2} = \frac{\pi + 0}{2} = \frac{\pi}{2}.$$

Задача 2. Разложить в ряд Фурье функцию $f(x) = \begin{cases} -1, x \in (-\pi, 0), \\ 1, x \in [0, \pi) \end{cases}$ с периодом 2π .

Решение: Функция f(x) нечетная (рис. 31.2), поэтому (ОК, разд. 31.4)

$$a_0 = a_n = 0; \ b_n = \frac{2}{\pi} \int_0^{\pi} \sin nx \, dx = -\frac{2}{\pi} \frac{\cos nx}{n} \Big|_0^{\pi} = \begin{cases} \frac{4}{\pi n}, & n = 2k - 1, \\ 0, & n = 2k. \end{cases}$$

Рис. 31.2

Таким образом,
$$f(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin nx}{n}, x \neq 0, \pm 1, \pm 2, \dots$$

Задача 3. Разложить в ряд Фурье по косинусам функцию

$$f(x) = \begin{cases} x, x \in [0, 1], \\ 2, x \in (1, 2] \end{cases}$$
 с периодом 4.

Решение: В силу условия задачи функция f(x) продолжается на [-2, 0] четным образом (рис. 31.3). Разложение f(x) будет иметь вид $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{2}$.

Рис. 31.3

Коэффициенты $a_0,\ a_n$ находим по формулам $a_0=\frac{2}{l}\int\limits_0^l f(x)\mathrm{d}x,$ $a_n=\frac{2}{l}\int\limits_0^l f(x)\cos\frac{n\pi x}{l}\mathrm{d}x$ в соответствии с формулами ОК, разд. 31.4,

Таким образом, имеем

31.5.

$$a_{0} = \frac{2}{2} \left(\int_{0}^{1} x \, dx + \int_{1}^{2} 2 dx \right) = \frac{x^{2}}{2} \Big|_{0}^{1} + 2x \Big|_{1}^{2} = 2\frac{1}{2};$$

$$a_{n} = \frac{2}{2} \left(\int_{0}^{1} x \sin \frac{n\pi x}{2} \, dx + \int_{1}^{2} 2 \cos \frac{n\pi x}{2} \, dx \right) =$$

$$= \begin{cases} x = u, & du = dx, \\ \cos \frac{n\pi x}{2} \, dx = dv, & v = \frac{2}{n\pi} \sin \frac{n\pi x}{2} \end{cases} = \frac{2x}{n\pi} \sin \frac{n\pi x}{2} \Big|_{0}^{1} + \frac{2^{2}}{(n\pi)^{2}} \cos \frac{n\pi x}{2} \Big|_{0}^{1} + \frac{4}{n\pi} \sin \frac{n\pi x}{2} \Big|_{0}^{2} = -\frac{2}{n\pi} \sin \frac{n\pi}{2} - \frac{4}{n^{2}\pi^{2}}.$$

Окончательно получаем

$$f(x) = \frac{5}{2} + \sum_{n=1}^{\infty} \left(\frac{(-1)^n \cdot 2}{(2n-1)\pi} \cos \frac{(2n-1)\pi x}{2} - \frac{4}{n^2 \pi^2} \cos \frac{n\pi x}{2} \right).$$

Задачи для самостоятельного решения

Разложить в ряд Фурье функции с периодом 2π :

1)
$$f(x) =\begin{cases} -x, & x \in [-\pi, 0), \\ 2x, & x \in [0, \pi]; \end{cases}$$
 2) $f(x) =\begin{cases} -\frac{\pi}{4} - \frac{x}{2}, & x \in [-\pi, 0), \\ \frac{\pi}{4} - \frac{x}{2}, & x \in [0, \pi]; \end{cases}$

3)
$$f(x) = \begin{cases} 0, x \in (-\pi/2, \pi/2), \\ |x|, x \in [-\pi, -\pi/2] \cup [\pi/2, \pi]; \end{cases}$$

- **4)** $f(x) = -x/2, x \in [-\pi; 0], \text{ по синусам};$
- 5) $f(x) = \sin x, x \in [-\pi, \pi];$
- **6)** f(x) задана графиком (рис. 31.4);

Рис. 31.4

7)
$$f(x) = \begin{cases} \pi, x \in (-\pi, 0), \\ \pi - x, x \in [0, \pi]. \end{cases}$$

Разложить в ряд Фурье функции с периодом 2*l*:

8)
$$f(x) = \begin{cases} 1, x \in [-1, 0), \\ x, x \in [0, 1], \end{cases}$$
 $l = 1;$ **9)** $f(x) = 1 - \frac{x}{2}, x \in [-2, 2], l = 2;$

10)
$$f(x) = x^2, x \in [-1, 1], l = 1.$$

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ

Вариант 1

1. Исследовать на сходимость: a) $\sum_{n=1}^{\infty} \frac{3n}{4n+5}$; б) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}(n+3)!}$.

Ответ: а) расходится; б) сходится абсолютно.

2. Найти интервал сходимости и исследовать на концах:

a)
$$\sum_{n=1}^{\infty} \frac{(-x)^n}{\sqrt{n^3 \cdot 2^n}}$$
; 6) $\sum_{n=1}^{\infty} \frac{(x-2)^n n!}{n^2}$.

Ответ: a) [-2; 2]; б) сходится при x = 2.

3. Разложить в ряд Маклорена $f(x) = \ln(10 + x)$.

Omsem:
$$\ln 10 + \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n \cdot 10^n}$$
.

4. Разложить в ряд Фурье функцию $f(x) = \begin{cases} 1, x \in (-\pi, 0], \\ 3, x \in (0, \pi). \end{cases}$

Omsem:
$$2 + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n+1)x}{2n+1}$$
.

Вариант 2

1. Исследовать на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{n^2}{(3n+1)(n^2+3)}$$
; 6) $\sum_{n=2}^{\infty} \frac{(-1)^n}{n^6 \sqrt{\ln^5 n}}$.

Ответ: а) расходится; б) сходится условно.

2. Найти интервал сходимости и исследовать на концах:

a)
$$\sum_{n=1}^{\infty} \frac{x^n}{(2n+3)!}$$
; 6) $\sum_{n=1}^{\infty} \frac{nx^{2n}}{4^n}$. Ombem: a) $(-\infty; +\infty)$; 6) $(-2; 2)$.

3. Разложить в ряд Тейлора по степеням (x - 3) функцию

$$f(x) = 1/x$$
. Omsem: $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-3)^{n-1}}{3^n}$.

4. Разложить в ряд Фурье по косинусам функцию $f(x) = \frac{\pi}{4} - \frac{x}{2}$,

$$x \in (0, \pi)$$
. Omsem: $\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos n(2n+1)x}{(2n+1)^2}$.

РАСЧЕТНОЕ ЗАДАНИЕ

Здесь N — номер студента по списку, $p=\left[\frac{N}{5}\right]$, $\alpha\beta\gamma\delta$ — цифры номера группы, $q=\left[\frac{\alpha+\beta+\gamma+\delta}{5}\right]+1$.

Задание 1

Исследовать на сходимость числовые ряды:

а)
$$\sum_{n=1}^{\infty} a_n$$
; б) $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$, если задана таблица:

N - 5p + 1	a_n	u_n	
1	$\frac{n^{p+1}}{qn^{p+1}+3}$	$\frac{1}{\sqrt[5]{(3n+q)^{2(p+1)}}}$	
2	$\frac{1}{\sqrt[4]{(qn+5)^{2p+1}}}$	$\frac{q^n}{(3n+p)!}$	
3	$\frac{(p+n)^q}{((p+1)n+2)!}$	$\frac{1}{(n+1)\sqrt[6]{(\ln(n+1))^{2p+1}}}$	
4	$\frac{1}{(n+1)\sqrt[5]{(\ln(n+1))^{2(p+1)}}}$	$\frac{n^3 + p}{(n+1)(n^{p+3} + q)}$	
5	$\frac{n^2 + 3}{n(n+q)(n^{p+1} + 4)}$	$\frac{n(n^2+p)}{qn^3+p+1}$	

Задание 2

Найти интервал сходимости степенных рядов и исследовать на концах интервала:

а)
$$\sum_{n=1}^{\infty} a_n x^n$$
; б) $\sum_{n=1}^{\infty} b_n (x-p-1)^n$, если задана таблица:

N-5p+1	a_n	b_n	
1	$\frac{1}{n^{p+1}(q+2)}$	$\frac{n^{p+q}}{(2n)!}$	
2	$\frac{1}{\sqrt{n+p+1}}$	$\frac{n!}{(p+2)^n}$	
3	$(p+2)^n$	$\frac{1}{qn+p+1}$	
4	$\frac{n^{p+3}}{(n+p+q)!}$	$\frac{1}{n^q(p+2)^{2n}}$	
5	$\frac{(n+p)!}{(p+3)^n}$	$\frac{(p+2)^{2n}}{(p+1)n+q}$	

Задание 3

Разложить функцию $f(x) = x^6 + x^p + qx^{N-5p+1}$ по степеням $(x + (-1)^N(p+1))$.

Задание 4

Вычислить приближенно $\int_{0}^{1} f(x) dx$ со степенью точности $\delta = 10^{-3}$, если задана таблица: 0

N - 5p + 1	f(x)
1	$\sqrt[p+3]{1+x^2}$
2	$\sqrt[p+2]{x}\cos x$
3	$\ln(1+\sqrt[p+2]{x})$
4	$\sin^{p+2}\sqrt{x}$
5	$\mathrm{e}^{p+2\sqrt{X}}$

Задание 5

Найти четыре первых отличных от нуля члена приближенного решения задачи Коши: ay'' + by' + cy = f(x), y(0) = y'(0) = 1, если задана таблица:

N - 5p + 1	а	b	С	f(x)
1	1	x^{p+1}	$(-1)^{N}q$	<i>p</i> + 1
2	у	<i>p</i> + 1	0	cosx
3	1	y^{p+1}	0	qe^x
4	x+p+1	q	x^{p+1}	p + 3
5	p + 1	$(\sin x)^{p+1}$	$(-1)^{N}$	q

Ответы к разд. 29-31

29. Числовые ряды

1) а) расх.; б) сход.; в) расх.; 2) а) расх.; б) сход.; 3) а) расх.; б) сход.; 4) расх.; 5) сход.; 6) расх.; 7) сход.; 8) расх.; 9) сход.; 10) расх.; 11) а) расх.; б) сход. усл.; в) сход. абс.; 12) а) расх.; б) сход. абс.; 13) сход. усл.; 14) расх.; 15) сход. абс.; 16) расх.

30. Степенные ряды

1) (-2; 2); 2) сход. при
$$x = 0$$
; 3) (- ∞ ; ∞); 4) (-1/5; 1/5);

5)
$$[-4; 4]$$
; 6) $[-1; 3)$; 7) $(1; 2]$; 8) $[-\sqrt{3}; \sqrt{3}]$; 9) $[-1; 1]$; 10) $(-\infty; -1/5) \cup (1/5; +\infty)$; 11) $(x + 2)^4 - 8(x + 2)^3 + 20(x + 2)^4$

10)
$$(-\infty; -1/5) \cup (1/5; +\infty);$$
 11) $(x + 2)^4 - 8(x + 2)^3 + 20(x + 1)^4$

$$(-\infty; \infty)$$

6)
$$e\left(1 + \frac{(x-3)}{3 \cdot 1!} + \dots + \frac{(x-3)^n}{3^n n!} + \dots\right); (-\infty; \infty); \mathbf{13}) - 2x - \frac{2^2}{2}x^2 - \frac{2^3}{3}x^3 - \frac{2^n}{3^n} + \dots$$

$$-\dots -\frac{2^n}{n}x^n - \dots; \ (-1/2; \ 1/2); \ 14) \ 1 + \sum_{n=1}^{\infty} \frac{(-1)^n \cdot 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)x^{2n}}{2^n n!};$$

$$(-1; 1); 15) 1 + \frac{\ln 2}{1!} x + \frac{(\ln 2)^2}{2!} x^2 + \dots + \frac{(\ln 2)^n}{n!} x^n + \dots; (-\infty; \infty);$$

16)
$$\frac{1}{3} \sum_{n=1}^{\infty} (1 - (-2)^n) x^n; -\frac{1}{2} < x < \frac{1}{2};$$
 17) $\ln 3 + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{2^n (x-3)^n}{n \cdot 3^n};$

$$(3/2; 9/2);$$
 18) $-\frac{1}{7}\sum_{n=0}^{\infty}\frac{(x+2)^n}{7^n};$ (-9; 5); **19)** 0,3091; **20)** 1,39; **21)** 3,12;

22) 0,94; **23)** 0,748; **24)** 0,440; **25)** 0,2002; **26)** 0,392; **27)** 1 +
$$x - x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4$$
; **28)** $1 + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{5x^6}{6!}$.

31. Ряды Фурье

1)
$$\frac{3\pi}{4} - \frac{6}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2n-1)x}{(2n-1)^2} + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sin nx}{n}$$
; 2) $\sum_{n=1}^{\infty} \frac{\sin 2nx}{2n}$;

3)
$$\frac{3\pi}{8} + \sum_{n=1}^{\infty} (-1)^n \left(\frac{2}{n^2 \pi} \cos nx + \frac{1}{2n-1} \cos(2n-1)x + \frac{1}{(2n)^2 \pi} \cos 2nx \right);$$

4)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sin nx}{n}$$
; 5) $\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{2n-1}$; 6) $\frac{\pi}{2} + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2n-1)x}{(2n-1)^2}$;

7)
$$\frac{3\pi}{4} - \sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sin nx}{n} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2n-1)x}{(2n-1)^2}$$
;

8)
$$\frac{3}{4} + \sum_{n=1}^{\infty} \frac{((-1)^n - 1)}{(n\pi)^2} \cos n\pi x - \frac{1}{n\pi} \sin n\pi x$$
; 9) $1 + \sum_{n=1}^{\infty} (-1)^n \frac{2}{\pi n} \sin \frac{n\pi}{2} x$;

10)
$$\frac{1}{3} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} (-1)^n \frac{\cos n\pi x}{n^2}$$
.

Глава 11 УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

32. ОСНОВНЫЕ ТИПЫ УРАВНЕНИЙ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Опорный конспект № 32

32.1. Понятие об основных УМФ

1. Волновое уравнение
$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$$
, $a = \text{const}$ (1)

2. Уравнение теплопроводности (уравнение Фурье)

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}, a = \text{const}$$

$$\frac{\partial t}{\partial t} \frac{\partial x^2}{\partial x^2}$$
 3. Уравнение Лапласа $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ (3)

Задаются начальные и граничные условия, обеспечивающие корректность задач

32.2. Классификация линейных дифференциальных уравнений с частными производными II порядка

$$a_{11}\frac{\partial^2 u}{\partial x^2} + 2a_{12}\frac{\partial^2 u}{\partial x \partial y} + a_{22}\frac{\partial^2 u}{\partial y^2} + b_1\frac{\partial u}{\partial x} + b_2\frac{\partial u}{\partial y} + cu = F(x,y), \tag{*}$$

 a_{11} , a_{12} , a_{22} , b_1 , b_2 , c—const $a_{11}(\mathrm{d}y)^2 + 2a_{12}\mathrm{d}y\mathrm{d}x + a_{22}(\mathrm{d}x)^2 = 0$ — характеристическое уравнение ⇒

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-a_{12} \pm \sqrt{a_{12}^2 - a_{11}a_{22}}}{a_{11}} = \alpha_{1,2} \Rightarrow y = \alpha_{1,2}x + c_{1,2}$$

1) $\Delta = a_{12}^2 - a_{11}a_{22} > 0$ — гиперболический тип, приводится к виду

$$\frac{\partial^2 u}{\partial \xi \partial \eta} = \Phi \bigg(\xi, \eta, u, \frac{\partial u}{\partial \xi}, \frac{\partial u}{\partial \eta} \bigg) \ \text{или} \ \frac{\partial^2 u}{\partial \xi^2} - \frac{\partial^2 u}{\partial \eta^2} = \Phi;$$

2)
$$\Delta = 0$$
 — параболический тип $\frac{\partial^2 u}{\partial \xi^2} = \Phi$;

3)
$$\Delta < 0$$
 — эллиптический тип $\frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial n^2} = \Phi$

Три типа задач:

- 1) задача Коши для уравнений 1-го, 2-го типов;
- 2) краевая задача для уравнений 2-го типа;
- 3) смешанная задача для уравнений 1-го, 2-го типов (задаются начальные и граничные условия)

Задачи для самостоятельного решения

Определить типы следующих уравнений:

1)
$$\frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + 2u - x^2 y = 0;$$

2)
$$2\frac{\partial^2 u}{\partial x^2} + 2\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} + 2\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} - u = 0;$$

3)
$$\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + 3u - xy^2 = 0.$$

33. МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЙ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Опорный конспект № 33

33.1. Метод Даламбера

Состоит в упрощении уравнения (*) гиперболического типа (см. ОК, разд. 32.2) путем замены

$$\xi = y - \alpha_1 x, \ \eta = y - \alpha_2 x.$$
 Пример — решение задачи Коши:

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, t > 0, x \in \mathbf{R}, \\ u(x, 0) = \varphi(x), \frac{\partial u}{\partial t}\Big|_{t=0} = \psi(x), \end{cases} \Rightarrow$$

$$u(x,t) = [\varphi(x - at) + \varphi(x + at)]/2 + \frac{1}{2a} \int_{x-at}^{x+at} \psi(x) dx$$

33.2. Метод Фурье

Он основан на разделении переменных в (*) путем замены u(x, y) = X(x)Y(y).

1. Решение смешанной задачи:

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \ t > 0, \ 0 < x < l, \\ u(x,0) = u(l,t) = 0, \ t \ge 0, \end{cases} \Rightarrow \\ u(x,0) = f(x), \frac{\partial u}{\partial t}\Big|_{t=0} = \varphi(x), \ 0 \le x \le l \\ u(x,t) = \sum_{n=1}^{\infty} \left(C_n \cos \frac{an\pi}{l} t + D_n \sin \frac{an\pi}{l} t \right) \sin \frac{n\pi}{l} x, \\ \Rightarrow \\ C_n = \frac{2}{l} \int_0^l f(x) \sin \frac{n\pi}{l} x \, dx, \ D_n = \frac{2}{an\pi} \int_0^l \varphi(x) \sin \frac{n\pi}{l} x \, dx \end{cases}$$

2. Решение смешанной задачи:

$$\begin{cases} \frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}, \ t > 0, \ 0 < x < l; \\ u(0,t) = u(l,t) = 0, \ t \ge 0, \\ u(x,0) = \psi(x), \ 0 \le x \le l, \end{cases} \Rightarrow \begin{aligned} u(x,t) &= \sum_{n=1}^{\infty} B_n \mathrm{e}^{-\left(\frac{an\pi}{l}\right)^2 t} \sin\frac{n\pi}{l} x, \\ B_n &= \frac{2}{l} \int_0^l \psi(x) \sin\frac{n\pi}{l} x \, \mathrm{d}x \end{cases}$$

3. Решение задачи Дирихле в круге:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0; \ D: x^2 + y^2 < R^2; \ u|_{\partial D} = f(x, y)$$

Переходим к полярным координатам:

$$r^{2} \frac{\partial^{2} u}{\partial r^{2}} + r \frac{\partial u}{\partial r} + \frac{\partial^{2} u}{\partial \varphi^{2}} = 0, \ u|_{r=R} = \Phi(\varphi) \Rightarrow$$

$$\Rightarrow u = \frac{A_{0}}{2} + \sum_{n=1}^{\infty} (A_{n} \cos n\varphi + B_{n} \sin n\varphi) r^{n},$$

$$A_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} \Phi(t) dt, \ A_{n} = \frac{1}{\pi R^{n}} \int_{-\pi}^{\pi} \Phi(t) \cos nt dt,$$

$$B_{n} = \frac{1}{\pi R^{n}} \int_{-\pi}^{\pi} \Phi(t) \sin nt dt$$

Задачи к разд. 33

Задача 1. Найти общие решения дифференциальных уравнений в частных производных:

а)
$$\frac{\partial^2 u(x,y)}{\partial x^2} = 0$$
; б) $\frac{\partial^2 u(x,y)}{\partial x \partial y} = x^2 - y$.
Решение: а) перепишем уравнение в виде $\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) = 0$. Отсюда

Решение: а) перепишем уравнение в виде $\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) = 0$. Отсюда видно, что $\frac{\partial u}{\partial x}$ не зависит от x, так как его частная производная по x равна нулю. Поэтому $\frac{\partial u}{\partial x} = \varphi_1(y)$. Проинтегрировав уравнение

 $\frac{\partial u}{\partial x} = \varphi_1(y)$, получим решение задачи:

 $u(x,y) = \int \varphi_1(y) dx = x \varphi_1(y) + \varphi_2(y)$, где $\varphi_1(y)$, $\varphi_2(y)$ — произвольные функции от y;

б) переписав уравнение в виде $\frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \right) = x^2 - y$ и проинтегрировав по y, получим $\frac{\partial u}{\partial x} = \int (x^2 - y) \mathrm{d}y = x^2 y - \frac{y^2}{2} + \phi_1(x)$. Проинтегрировав по x, получим

$$u(x, y) = \int \left[x^2 y - \frac{y^2}{2} + \varphi_1(x) \right] dx = \frac{x^3 y}{3} - \frac{y^2 x}{2} + \int \varphi_1(x) dx + \varphi_2(y).$$

Задача 2. Решить задачу Коши для бесконечной струны:

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}, \ t > 0, x \in \mathbf{R}, \\ u(x, 0) = x^2, \ \frac{\partial u}{\partial t} \Big|_{t=0} = x, \ -\infty < x < \infty. \end{cases}$$

Решение: Используем для нахождения функции u(x, y) формулу, полученную методом Даламбера (см. ОК, разд. 33.1), в которой $a=2, \phi=x^2, \psi=x$:

$$u(x,t) = \left[(x-2t)^2 + (x+2t)^2 \right] / 2 + \frac{1}{4} \int_{x-2t}^{x+2t} x \, dx =$$

$$= \frac{1}{2}(2x^2 + 8t^2) + \frac{1}{8}x^2\Big|_{x=2t}^{x+2t} = x^2 + 4t^2 + xt.$$

Имеем решение $u(x, t) = x^2 + 4t^2 + xt$.

Задача 3. Найти форму струны, определяемой уравнением $\frac{\partial^2 u}{\partial t^2} = 9 \frac{\partial^2 u}{\partial x^2}$, в момент времени $t = \pi/6$, если $u|_{t=0} = \sin x$, $\frac{\partial u}{\partial t}|_{t=0} = 1$.

Решение: Так как в задаче a=3, $\phi=\sin x$, $\psi=1$, то согласно формуле ОК, разд. 33.1, получим $u(x, t)=[\sin(x-3t)+\sin(x+3t)]/2+\frac{1}{6}\int\limits_{x-3t}^{x+3t}\mathrm{d}x$, т.е. $u=\sin x\cos 3t+\frac{1}{6}x|_{x-3t}^{x+3t}=\sin x\cos 3t+t$. Если $t=\pi/6$, то $u=\pi/6$, т.е. струна параллельна оси абснисс.

Задача 4. Найти решение смешанной задачи для уравнения колебания струны конечной длины l:

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}, \ t > 0, \ 0 < x < l, \\ u(0, t) = u(l, t) = 0, \ t \ge 0, \\ u(x, 0) = 0, \ \frac{\partial u}{\partial t} \bigg|_{t=0} = \sin \frac{2\pi x}{l}, \ 0 \le x \le l. \end{cases}$$

Решение: Используем для нахождения u(x, t) формулу, полученную методом Фурье (ОК, разд. 33.2, п. 1), в которой a=2, f(x)=0, $\phi(x)=\sin(2\pi/l)x$: $u(x,t)=\sum_{n=1}^{\infty}D_n\sin\frac{2n\pi}{l}t\sin\frac{n\pi}{l}x$. Коэффициент D_n находим по формуле

$$D_{n} = \frac{1}{n\pi} \int_{0}^{l} \sin \frac{2\pi}{l} x \cdot \sin \frac{n\pi}{l} x \, dx = \{n \neq 2\} =$$

$$= \frac{1}{2n\pi} \int_{0}^{l} \left(\cos \frac{\pi}{l} (2 - n) x - \cos \frac{\pi}{l} (2 + n) x \right) dx =$$

$$= \frac{1}{2n\pi} \left(\frac{l}{\pi (2 - n)} \sin \frac{\pi (2 - n)}{l} x - \frac{l}{\pi (2 + n)} \sin \frac{\pi (2 + n)}{l} x \right) \Big|_{0}^{l} =$$

$$= \frac{l}{2n\pi^{2}} \left(\frac{1}{2 - n} \sin \pi (2 - n) - \frac{1}{2 + n} \sin (2 - n) \right) = 0;$$

$$D_{2} = \frac{1}{2\pi} \int_{0}^{l} \sin^{2} \frac{2\pi}{l} x \, dx = \frac{1}{2\pi} \int_{0}^{l} \frac{1 - \cos \frac{4\pi x}{l}}{2} \, dx =$$

$$= \frac{1}{4\pi} x \Big|_0^l - \frac{1}{4\pi} \cdot \frac{l}{4\pi} \sin \frac{4\pi x}{l} \Big|_0^l = \frac{l}{4\pi}.$$
 Окончательно $u(x,t) = \frac{l}{4\pi} \sin \frac{4\pi}{l} t \cdot \sin \frac{2\pi}{l} x.$

Задача 5. На окружности круга $x^2 + y^2 \le R^2$ температура распределяется по закону $u|_{x^2+y^2=R^2} = x^2 - y^2 + \frac{1}{2}y$. Найти распределение температуры внутри круга, полагая, что оно стационарно.

Решение: Поставленная задача — задача Дирихле для круга (ОК, разд. 33.2, п. 3): требуется найти функцию $u(r, \varphi)$, принимающую на границе круга заданные значения $\Phi(\varphi) = R^2 \cos^2 \varphi - R^2 \sin^2 \varphi + (R \sin \varphi)/2 = R^2 \cos^2 \varphi + (R \sin \varphi)/2$.

Тогда
$$u(r, \varphi) = \frac{A_0}{2} + \sum_{n=1}^{\infty} (A_n \cos n\varphi + B_n \sin n\varphi) r^n$$
, где $A_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} \Phi(t) dt$, $A_n = \frac{1}{\pi R^n} \int_{-\pi}^{\pi} \Phi(t) \cos nt \, dt$, $B_n = \frac{1}{\pi R^n} \int_{-\pi}^{\pi} \Phi(t) \sin nt \, dt$.

Из граничного условия

$$u(R, \varphi) = R^2 \cos 2\varphi + \frac{1}{2} R \sin \varphi = \frac{A_0}{2} + \sum_{n=1}^{\infty} (A_n \cos n\varphi + B_n \sin n\varphi) R^n.$$

Откуда, сравнивая коэффициенты при $\cos 2\phi$ и $\sin \phi$, получим $R^2 = R^2 A_2$, $R/2 = R B_1$.

Следовательно, $A_2 = 1$, $B_1 = 1/2$. Остальные коэффициенты будут равны нулю. Подставляя найденные коэффициенты в формулу для нахождения решения $u(r, \phi)$, получим

$$u(r, \varphi) = r^2 \cos 2\varphi + \frac{1}{2}r\sin\varphi = r^2(\cos^2\varphi - \sin^2\varphi) + \frac{1}{2}r\sin\varphi =$$
$$= x^2 - y^2 + \frac{1}{2}y.$$

Окончательно $u(x, y) = x^2 - y^2 + y/2$.

Задачи для самостоятельного решения

Найти общее решение уравнений с частными производными:

1)
$$\frac{\partial^2 u(x,y)}{\partial x^2} = 6x$$
; 2) $\frac{\partial^2 u(x,y)}{\partial x \partial y} = 2x$; 3) $\frac{\partial^2 u(x,y)}{\partial y^2} = e^{x+y}$.

Найти решение задачи Коши для бесконечной струны:

4)
$$\begin{cases} \frac{\partial^{2} u}{\partial t^{2}} = \frac{\partial^{2} u}{\partial x^{2}}, \ t > 0, \ x \in \mathbb{R}, \\ u(x,0) = x^{2}, \frac{\partial u}{\partial t}\Big|_{t=0} = 0; \end{cases}$$
5)
$$\begin{cases} \frac{\partial^{2} u}{\partial t^{2}} = 16\frac{\partial^{2} u}{\partial x^{2}}, \ t > 0, \ x \in \mathbb{R}, \\ u(x,0) = 0, \frac{\partial u}{\partial t}\Big|_{t=0} = \cos x; \end{cases}$$
6)
$$\begin{cases} \frac{\partial^{2} u}{\partial t^{2}} = \frac{\partial^{2} u}{\partial x^{2}}, \ t > 0, \ x \in \mathbb{R}, \\ u(x,0) = x, \frac{\partial u}{\partial t}\Big|_{t=0} = -x. \end{cases}$$

Решить методом Фурье:

- 7) Однородная струна длиной l, закрепленная на концах, изогнута так, что приняла форму синусоиды $u = 2\sin(\pi x/l)$. Струна отпущена без начальной скорости. Найти закон колебания струны.
- **8)** Однородная струна длиной l с закрепленными концами оттянута в точке x = l/3 на малое расстояние h от положения равновесия и затем отпущена без сообщения точкам начальной скорости. Найти отклонение u(x, t) точек струны.
- **9)** Найти форму струны, определяемой уравнением $\frac{\partial^2 u}{\partial t^2} = 9 \frac{\partial^2 u}{\partial x^2}$, в момент времени $t = \pi$, если $u|_{t=0} = \sin x$, $\frac{\partial u}{\partial t}|_{t=0} = \cos x$.
- **10)** Концы однородного стержня длиной 100 см поддерживаются при температуре, равной нулю. Найти распределение температуры вдоль стержня u(x, t), если известно начальное распреде-

ление температуры
$$u(x, 0) = \begin{cases} x, & 0 \le x \le 50; \\ 100 - x, & 50 < x \le 100. \end{cases}$$

- **11)** Найти решение уравнения $\frac{\partial u}{\partial y} = \frac{\partial^2 u}{\partial x^2}$, удовлетворяющее граничным условиям $u(0, y) = u(\pi, y) = 0$ и начальному условию $u(x, 0) = 3\sin 2x$.
- **12)** Решить задачу Дирихле для круга радиусом R с центром в начале координат, если заданы граничные условия:

a)
$$u|_{r=R} = \frac{3x}{R}$$
; 6) $u|_{r=R} = 3 - 5y$; B) $u|_{r=R} = 3R\varphi(2\pi - \varphi)$.

Расчетное задание

Обозначим n — номер студента по списку, $\alpha\beta\gamma\delta$ — четыре цифры номера группы, $a = \left[\frac{\gamma + \delta + n}{4}\right] + 2$, $l = \left[\frac{\alpha + \delta + n}{3}\right] + 2$, $b = b = \left[\frac{\alpha + \beta + n}{5}\right] + 3$.

Залание 1

Найти решение задачи Коши для бесконечной струны:

$$\begin{cases} \frac{\partial^{2} u}{\partial t^{2}} = a^{2} \frac{\partial^{2} u}{\partial x^{2}}, \ t > 0, \ x \in \mathbf{R}, \\ u(x,0) = (-1)^{n} x^{2} + (-1)^{n+1} x^{3} + x^{2} + x^{3}, \\ \frac{\partial u}{\partial t}\Big|_{t=0} = a \cos x + b \sin x + (-1)^{n} a \cos x + (-1)^{n+1} b \sin x, \ -\infty < x < \infty. \end{cases}$$

Залание 2

Найти решение смешанной задачи:

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \ t > 0, \ 0 < x < l, \\ u(0,t) = u(l,t) = 0, \ t \ge 0, \\ u(x,0) = b \sin \frac{\pi}{l} x + a \cos \frac{\pi}{l} x + (-1)^n b \sin \frac{\pi}{l} x + (-1)^{n+1} a \cos \frac{\pi}{l} x, \\ \frac{\partial u}{\partial t}\Big|_{t=0} = ax^2 + bx + l + (-1)^n ax^2 + (-1)^{n+1} (bx + l), \ 0 \le x \le l. \end{cases}$$

Залание 3

Найти решение смешанной задачи:

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \ t > 0, \ 0 < x < l, \\ u(0, t) = u(l, t) = 0, \ t \ge 0, \\ u(x, 0) = ax + l + bx^2 + (-1)^n (ax + l) + (-1)^{n+1} bx^2. \end{cases}$$

Задание 4

Найти решение задачи Дирихле:

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \ 0 < x < a, \ 0 < y < b, \\ u(0, y) = (ly + 3) + ((l+1)y + 2) + (-1)^n (ly + 3) + (-1)^{n+1} ((l+1)y + 2), \\ u(x, 0) = b \cos \frac{\pi}{l} x + a \sin \frac{\pi}{l} x + (-1)^n b \cos \frac{\pi}{l} x + (-1)^{n+1} a \sin \frac{\pi}{l} x. \end{cases}$$

Указание: Для решения использовать следующие формулы, полученные методом Фурье:

$$u(x,y) = \sum_{n=1}^{\infty} \frac{1}{\sinh \frac{n\pi a}{b}} \left[\Psi_n \sinh \frac{n\pi (a-x)}{b} + g_n \sinh \frac{n\pi x}{b} \right] \sin \frac{n\pi y}{b} +$$

$$+ \frac{1}{\sinh \frac{n\pi b}{a}} \left[f_n \sinh \frac{n\pi (b-y)}{a} + \varphi_n \sinh \frac{n\pi y}{a} \right] \sin \frac{n\pi x}{a},$$

$$\Psi_n = \frac{2}{b} \int_0^b \Psi(y) \sin \frac{n\pi}{b} y \, dy, \ g_n = \frac{2}{b} \int_0^b g(y) \sin \frac{n\pi}{b} y \, dy,$$

$$f_n = \frac{2}{a} \int_0^a f(x) \sin \frac{n\pi}{a} x \, dx, \ \varphi_n = \frac{2}{a} \int_0^a \varphi(y) \sin \frac{n\pi}{a} x \, dx,$$

$$\text{если } u(0, y) = \Psi(y), \ u(a, y) = g(y), \ 0 \le y \le b; \ u(x, 0) = f(x),$$

$$u(x, b) = \varphi(x), \ 0 \le x \le a \left(\sinh x = \frac{e^x - e^{-x}}{2} \right).$$

Ответы к разд. 32, 33

32. Основные типы УМФ

1) гиперболический; 2) эллиптический; 3) параболический.

33. Методы решения УМФ

1)
$$u = x^3 + x\varphi_1(y) + \varphi_2(y)$$
; 2) $u = yx^2 + \varphi_1(y) + \varphi_2(x)$; 3) $u = e^{x+y} + y\varphi_1(x) + \varphi_2(x)$; 4) $u = x^2 + t^2$; 5) $u = (\cos x \cdot \sin 4t)/4$; 6) $u = x(1-t)$; 7) $u = 2\cos \frac{\pi at}{l} \sin \frac{\pi x}{l}$; 8) $u(x,t) = \frac{9h}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{n\pi}{3} \times \frac{\pi n}{n}$

$$\times \cos \frac{n\pi a}{l} t \sin \frac{n\pi x}{l}; \mathbf{9}) \ u(\pi) = -\sin x; \mathbf{10}) \ u = \frac{4l}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{n\pi}{2} e^{-\frac{a^2 n^2 t}{l^2}} \times \\ \times \sin \frac{\pi nx}{l}, \ l = 100; \mathbf{11}) \ u = 3e^{-4y} \sin 2x; \mathbf{12}) \ a) \ u = 3x/R; \ 6) \ u = \\ = 3 - 5y; \ B) \ u(r, \varphi) = 2\pi R^2 - 12 \sum_{n=1}^{\infty} \frac{1}{n^2 R^n} r^n \cos n\varphi.$$

Глава 12 ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

34. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ

Опорный конспект № 34

34.1.Понятие пространства элементарных событий Ω и случайного события (с.с.). Основные формулы комбинаторики

О: $\Omega = \{\omega\}$ — множество всевозможных исходов опыта, ω — элементарное событие

О: С.с. $A \Leftrightarrow A \subset \Omega$. Ω — достоверное событие, \varnothing — невозможное событие

Формулы комбинаторики:

$$P_n = n!$$
 — число перестановок из n элементов, $A_n^m = \frac{n!}{(n-m)!}$ —

число размещений из n по m, $C_n^m = \frac{n!}{(n-m)!m!}$ — число сочетаний из n по m

34.2. Действия над с.с.

Сумма $A \cup B = \{\omega : \omega \in A \vee \omega \in B\}$

Произведение $AB = \{\omega: \omega \in A \land \omega \in B\}$

Разность $A \setminus B = \{ \omega : \omega \in A \land \omega \notin B \}$

 $\overline{A} = \Omega \backslash A$ — дополнение A до Ω

A, B несовместны $\Leftrightarrow AB = \emptyset \Rightarrow A \cup B = A + B$

О: $S = \{A_i\}, A_i \subset \Omega, i \in N$ — полная группа событий $\Leftrightarrow \sum_{i=1}^{N} A_i = \Omega$

$$\Leftrightarrow \sum_i A_i = \Omega$$

34.4. Сложение и умножение вероятностей

T:
$$AB = \emptyset \Rightarrow P(A + B) = P(A) + P(B)$$

$$AB \neq \emptyset \Rightarrow P(A \cup_B) = P(A) + P(B) - P(AB)$$

$$A + \overline{A} = \Omega \Rightarrow P(\overline{A}) = 1 - P(A) \blacksquare$$

О: P(A/B) — условная вероятность (наступления A при условии, что B произошло). A, B — независимы $\Leftrightarrow P(A/B) = P(A)$, P(B/A) = P(B)

Т: P(AB) = P(A/B)P(B); A, B — независимы $\Rightarrow P(AB) = P(A)P(B)$ ■

T:
$$S = \{H_i\}: \sum_{i=1}^n H_i = \Omega \Rightarrow P(A) = \sum_{i=1}^n P(H_i)P(A/H_i), \forall A \subset \Omega \blacksquare$$

34.3. Различные определения вероятности

1. Аксиоматическое и классическое определения

$$\Omega = \{\omega_1, \omega_2, ..., \omega_n, ...\}$$

О: Вероятность $P(\omega_i) \Leftrightarrow P(\omega_i) \in \mathbf{R}$:

1)
$$P(\omega_i) \ge 0 \ \forall \ i, 2) \sum_{\omega_i \in \Omega} P(\omega_i) = 1;$$

 $P(\omega_i)$ — мера наступления ω_i

О: Вероятность
$$P(A) = \sum_{\omega_i \in \Omega} P(\omega_i), A \subset \Omega$$

$$P(\Omega) = 1, P(\emptyset) = 0, 0 < P(A) < 1$$

В классическом определении:

 $\Omega=(\omega_1,\ \omega_2,\ ...,\ \omega_n),\ \omega_i,\ i=\overline{1,n},$ — равновозможны, m эл. событий $\omega_i\in A\Rightarrow P(A)=m/n$

2. Геометрическое определение

О: E^* , E — измеримые множества из \mathbf{R}^n , $E^* \subset E$, A — попадание т. $a \in E$ в $E^* \Rightarrow P(A) = \mu(E^*)/\mu(E)$, $\mu(E)$ — мера E

3. Статистическое определение

О: $P(A) \approx P^*(A) = m/n$ — относительная частота; m — число наступлений A при повторении эксперимента n раз

34.5. Схема испытаний Бернулли

Вероятность появления с.с. A в n независимых испытаниях m раз:

$$P_n(m) = C_n^m p^m q^{n-m}, P(A) = p, P(\overline{A}) = 1 - p = q$$

Задачи к разд. 34.1, 34.2

Задача 1. В теннисном турнире участвуют 10 мужчин и 6 женщин. Сколькими способами можно составить четыре смешанные пары?

Peшение: Четырех мужчин из десяти можно выбрать A_{10}^4 способами, так как соединения из 10 мужчин по четыре в этом случае могут отличаться и самими элементами, и их порядком, т.е. являются размещениями. Аналогично, четырех женщин из шести можно выбрать A_6^4 способами, причем каждому способу выбора четырех мужчин соответствует A_6^4 способов выбора женщин. Следовательно,

общее число способов
$$A_{10}^4 \cdot A_6^4 = \frac{10!}{6!} \frac{6!}{2!} = \frac{10!}{2!}$$
.

Задача 2. Бросают три монеты одновременно. Случайное событие A состоит в появлении герба только на одной монете. Описать пространство элементарных событий Ω и определить, сколько элементарных событий содержится в Ω и входит в случайное событие A.

Решение: Обозначим через r выпадение герба, а через p — выпадение решки на одной монете. Пространство элементарных событий Ω включает следующие события: (r, r, r), (r, r, p), (r, p, r), (p, r, r), (r, p, p), (p, p, r), (p, p, p), т.е. включает восемь элементарных событий. Случайное событие <math>A включает элементарные события (r, p, p), (p, r, p), (p, p, r), т.е. содержит три события.

Задача 3. В урне 5 черных и 6 белых шаров. Из нее случайным образом вынимают 4 шара. Случайное событие A состоит в том, что из четырех шаров два — белые. Описать пространство элементарных событий, определить их число и число элементарных событий, входящих в A.

Решение: Пространство элементарных событий Ω состоит из ω_i , каждое из которых есть выбор четырех шаров из 11, их число $n=C_{11}^4=\frac{11!}{4!7!}=330$. Случайное событие A включает те ω_i , для которых два шара белые. Это значит, что из четырех вынутых шаров — 2 белых и 2 черных. Два белых шара из шести белых в урне выбираем C_6^2 способами, два черных — C_5^2 способами. Тогда в событие A входит $m=C_6^2C_5^2=\frac{6!}{2!4!}\frac{5!}{2!3!}=\frac{6\cdot 5}{2}\frac{5\cdot 4}{2}=150$ элементарных событий.

Задача 4. Из таблицы случайных чисел наугад выбраны два числа. Событие A — выбрано хотя бы одно простое число, событие B — выбрано хотя бы одно четное число. Что означают события AB и $A \cup B$?

Решение: Событие AB означает наступление и события A, и события B, т.е. из двух выбранных чисел одно — простое, другое — четное. Событие $A \cup B$ означает наступление или события A, или события B, т.е. или хотя бы одно из двух выбранных чисел простое, или хотя бы одно из них — четное. В последнем случае оба числа могут быть простыми или четными, или одно — простое, другое — четное.

Задачи для самостоятельного решения

- 1) Из 10 роз и 8 георгинов нужно составить букет, содержащий 2 розы и 3 георгина. Сколько можно составить различных букетов?
- **2)** В колоде 36 карт, из них 4 туза. Сколькими способами можно сдать 6 карт так, чтобы среди них было 2 туза?
- **3)** Сколько сигналов можно составить из 10 флажков различного цвета, взятых по два?
 - 4) Сколькими способами можно расставить на полке 6 книг?
- В задачах 5)—7) описать пространство элементарных событий Ω и определить, сколько элементарных событий содержится в Ω и входит в случайное событие A.
- **5)** Бросают игральную кость. Событие A на верхней грани появится четное число.
- **6)** Бросают 4 монеты. Событие A только на двух монетах появится герб.
- 7) В партии из 10 изделий 3 бракованных. Наугад взяли 5 изделий. Событие A два из пяти взятых бракованные.
- **8)** Событие A хотя бы один из трех проверяемых приборов брак, событие B все приборы —доброкачественные. Что означают события A + B, AB?
- **9)** Событие A выбранное наугад число делится на 5, событие B данное число оканчивается нулем. Что означают события $A \backslash B$, $A\overline{B}$?
- **10)** Два шахматиста играют одну партию. Событие A выигрывает первый игрок, событие B выигрывает второй. Какое событие нужно добавить к указанной совокупности, чтобы получить полную группу событий?

Задачи к разд. 34.3

Задача 1. В урне 4 белых и 6 черных шаров. Выбрали наугад один шар. Найти вероятность того, что этот шар будет белым.

Решение: Пространство элементарных событий Ω содержит 10 равновозможных элементарных событий ω_i (выбор одного шара). Случайное событие A — выбор белого шара, т.е. A содержит 4 элементарных события. Вероятность P(A) события A определяется по формуле определения вероятности: P(A) = m/n, где m = 4, а n = 10. Имеем P(A) = 4/10 = 2/5.

Задача 2. Набирая номер телефона, абонент забыл последние две цифры и, помня, что они различны, набрал их наугад. Найти вероятность того, что набраны нужные цифры.

Решение: Пространство элементарных событий Ω содержит элементарные события $\omega_i = (n_i, m_i), n_i, m_i \in 0, 1, 2, ..., 9, n_i \neq m_i$. Их число N есть число размещений из 10 по 2, т.е. по формуле ОК, разд. 34.1, N = 10!/8! = 90. Событие A содержит только одно элементарное событие; таким образом, искомая вероятность P(A) = 1/90.

Задача 3. В партии из 10 деталей семь деталей — стандартных. Найти вероятность того, что среди взятых наугад пяти деталей три детали стандартные.

Решение: Пространство элементарных событий Ω содержит элементарные события ω_i (выбор пяти деталей из десяти), число которых N определяется как число сочетаний из 10 по 5, т.е. $N=C_{10}^5=\frac{10!}{5!5!}=252$. Случайное событие A включает такие ω_i , для которых из этих пяти деталей три — стандартные. Их число M есть произведение числа способов, которыми можно из имеющихся 7 деталей выбрать 3 (число сочетаний из 4 по 4 по 4 детали и 4 по 4 детали можно выбрать оставшиеся 4 детали и 4 по 4 детали и 4 детали и 4 детали и 4 детали (число сочетаний из 4 по 4 детали и 4 детали и детали и детали и 4 детали и 4 детали и 4 детали и детали

В общем виде задача формулируется следующим образом. В партии из n изделий k стандартных. Определить вероятность P того, что среди выбранных наудачу m изделий (m < n) l изделий окажутся стандартными. Формула для определения вероятности P события A: «l изделий из выбранных m стандарные» запишется в

виде
$$P(A) = \frac{C_k^l C_{n-k}^{m-l}}{C_n^m}$$
. В случае $l=m$ формула упрощается: $P(A) = \frac{C_k^m}{C_n^m}$.

Задача 4. Слово МАТЕМАТИКА составлено из карточек, на которых написано по одной букве. Карточки перемешивают и берут безвозвратно по одной. Найти вероятность того, что буквы будут взяты в нужном порядке.

Решение: Пространство элементарных событий Ω содержит элементарные события $\{\omega_i\}$, где $\{\omega_i\}$ — некоторая последовательность букв. Число элементарных событий N определяется числом перестановок из 10 букв, так как в данном слове 10 букв. Тогда по формуле ОК, разд. 34.1, N=10! Событие A состоит в получении слова МАТЕМАТИКА. Так как буква «М» встречается в слове 2 раза, буква «А» — три раза, буква «Т» — 2 раза, то возможны перестановки, при которых слово не меняется. Число этих перестановок M=2!3!2! и составляет число элементарных событий, входящих в событие A. Окончательно получим вероятность $P(A)=M/N=\frac{2!3!2!}{10!}=1/151\,200$.

Задача 5. Два игрока по очереди бросают игральную кость, каждый по одному разу. Выигрывает тот, кто получит большее число очков. Найти вероятность выигрыша первого игрока.

Решение: Пространство элементарных событий Ω содержит элементарные события $\omega_i = (n_i, m_i), n_i, m_i \in 0, 1, 2, ..., 6$. Его можно изобразить в виде матрицы

$$\Omega = \begin{pmatrix} (1,1) & (1,2) & (1,3) & \dots & (1,6) \\ (2,1) & (2,2) & (2,3) & \dots & (2,6) \\ \dots & \dots & \dots & \dots \\ (6,1) & (6,2) & (6,3) & \dots & (6,6) \end{pmatrix}.$$

Очевидно, что число элементарных событий N равно N=36. Событие A включает те, для которых $n_i>m_i$, их число M легко можно определить из матрицы: M=15. Отсюда вероятность P(A)=M/N=15/36=5/12.

Задача 6. На отрезке AB длиной 20 см помещен меньший отрезок CD длиной 10 см. Найти вероятность того, что наугад брошенная на отрезок AB точка попадет внутрь отрезка CD.

Решение: Необходимо использовать геометрическое определение вероятности, причем в данном случае $P(A) = L_{AB}/L_{CD} = 10/20 = 1/2$.

Задачи для самостоятельного решения

11) Куб, все грани которого окрашены, распилен на 1000 маленьких кубиков одинакового размера, которые затем перемеша-

- ны. Найти вероятность того, что наугад взятый кубик будет иметь одну окрашенную грань.
- **12)** Брошены одновременно две монеты. Какова вероятность появления герба («орла») на одной из них?
- **13)** Из карточек составлено слово ПОБЕДА. Буквы перемешаны. Найти вероятность того, что две наугад выбранные буквы гласные.
- **14)** Из колоды карт (52 штуки) наугад выбирают три карты. Какова вероятность того, что это будут тройка, семерка, туз?
- **15)** Кодовый замок состоит из пяти барабанов. Каждый барабан имеет 6 граней с цифрами от 1 до 6. Замок открывается, если набрано определенное число. Найти вероятность того, что при случайном наборе пяти цифр замок откроется.
- **16)** Девять книг расставлены наугад на полке. Найти вероятность того, что две определенные книги окажутся рядом.
- **17)** Брошены три игральные кости. Найти вероятность того, что сумма выпавших на них цифр будет равна 6.
- 18) Круглая мишень быстро вращается с постоянной скоростью. Пятая часть площади мишени окрашена в черный цвет, остальная часть в белый. По мишени производится выстрел, причем попадание достоверное событие. Найти вероятность того, что пуля попадет в окрашенную в черный цвет часть мишени.
- **19)** На плоскости начерчены концентрические окружности радиусами 5 и 10 см. Найти вероятность того, что брошенная наугад в большой круг точка попадет в кольцо между большей и меньшей окружностями.

Задачи к разд. 34.4

Задача 1. В денежно-вещевой лотерее на серию 1000 билетов приходится 120 денежных и 80 вещевых выигрышей. Найти вероятность какого-либо выигрыша на один лотерейный билет.

Решение: Пространство элементарных событий Ω содержит элементарные события ω_i , состоящие в приобретении i-го билета, $i \in \overline{1,1000}$. Случайное событие A состоит в денежном выигрыше на купленный билет, случайное событие B — в вещевом выигрыше, случайное событие C — в любом выигрыше. Тогда C = A + B ($AB = \emptyset$, т.е. A и B — несовместные события). По теореме сложения вероятностей P(C) = P(A + B) = P(A) + P(B). Так как P(A) = A

=
$$120/1000 = 0.12$$
, $P(B) = 80/1000 = 0.08$, To $P(C) = 0.12 + 0.08 = 0.2$.

- **Задача 2.** Для двух химических реакторов вероятности бесперебойной работы на протяжении одного часа $p_1 = 0.75$ и $p_2 = 0.8$. Определить вероятность того, что:
 - а) оба реактора выйдут из строя в течение часа;
- б) оба реактора будут работать бесперебойно в течение часа, в течение трех часов;
- в) будет работать бесперебойно в течение часа хотя бы один реактор;
- г) будет работать бесперебойно в течение часа только один реактор.

Решение: Пространство элементарных событий не рассматриваем, так как заданы вероятности событий.

а) Введем случайные события: A_1 — бесперебойная работа 1-го реактора в течение часа, A_2 — бесперебойная работа 2-го реактора в течение часа, $\overline{A_1}$, $\overline{A_2}$ — события, противоположные событиям A_1 и A_2 , соответствующие выходу реакторов из строя в течение часа, \overline{B} — оба реактора вышли из строя в течение часа.

Так как $P(A_1) = p_1 = 0.75$ и $P(A_2) = p_2 = 0.8$, имеем (см. ОК, разд. 34.4) $P(\overline{A_1}) = 1 - P(A_1) = 1 - 0.75 = 0.25$, $P(\overline{A_2}) = 1 - 0.8 = 0.2$. События $\overline{A_1}$, $\overline{A_2}$ — независимые, при этом $\overline{B} = \overline{A_1} \overline{A_2}$. Тогда по теореме об умножении вероятностей $P(\overline{B}) = P(\overline{A_1} \overline{A_2}) = P(\overline{A_1}) \times P(\overline{A_2}) = 0.25 \cdot 0.2 = 0.05$.

- б) Пусть случайное событие C бесперебойная работа обоих реакторов в течение часа, D бесперебойная работа обоих реакторов в течение трех часов. Тогда C = AB, D = CCC и имеем $P(C) = P(A)P(B) = 0.8 \cdot 0.75 = 0.6$; $P(D) = (P(C))^3 = (0.6)^3 = 0.216$.
- в) Событие B работает хотя бы один реактор противоположно событию \overline{B} , поэтому $P(B)=1-P(\overline{B})=1-0.05=0.95$ (вероятность $P(\overline{B})$ найдена в а)). Вероятность события C может быть найдена и другим образом, если учесть, что $C=A\cup B$, и тогда P(C)=P(A)+P(B)-P(AB)=0.75+0.8-0.6=0.95.
- г) Событие E бесперебойная работа только одного реактора в течение часа записывается в виде $E = A\overline{B} + \overline{A}B$, тогда

$$P(E) = P(A\overline{B}) + P(\overline{A}B) = P(A)P(\overline{B}) + P(\overline{A})P(B) =$$

= 0.8 \cdot 0.25 + 0.2 \cdot 0.75 = 0.35.

Задача 3. Вероятность попадания в цель при одном выстреле p=0,2. Какова вероятность поразить цель, если 2% взрывателей дают отказы?

Решение: Пусть случайное событие A — попадание в цель при сделанном выстреле, событие B — взрыватель не дал отказа, событие C — поражение цели. Тогда C = AB, условная вероятность P(A/B) = p = 0.2, $P(\bar{B}) = 0.02$, $P(B) = 1 - P(\bar{B}) = 0.98$. Следовательно, $P(C) = P(AB) = P(A)P(B) = 0.98 \cdot 0.2 = 0.196$.

Задача 4. В пирамиде 19 винтовок, из них 3 с оптическим прицелом. Стрелок, стреляя из винтовки с оптическим прицелом, может поразить мишень с вероятностью 0,81, без оптического прицела — с вероятностью 0,46. Найти вероятность того, что стрелок поразит мишень, стреляя из винтовки, взятой наугад из пирамиды.

Решение: Введем случайные события: H_1 — взята винтовка с оптическим прицелом, H_2 — взята винтовка без оптического прицела, A — стрелок поразит мишень. События H_1 и H_2 — несовместные, $H_1+H_2=\Omega$, т.е. H_1 и H_2 образуют полную группу событий, причем $P(H_1)=3/19$, а $P(H_2)=16/19$. Из условия задачи известны условные вероятности $P(A/H_1)=0.81$, $P(H_2)=0.46$. Воспользуемся формулой полной вероятности $A\in\Omega$: $P(A)=P(H_1)\times P(A/H_1)+P(H_2)\cdot P(A/H_2)=(3/19)\cdot 0.81+(16/19)\cdot 0.46=0.515$.

Задачи для самостоятельного решения

- **20)** При стрельбе по мишени вероятность сделать выстрел на оценку «отлично» $p_1 = 0.3$, на «хорошо» $p_2 = 0.4$. Найти вероятность выстрела на оценку не ниже «хорошо».
- **21)** Вероятность изготовить детали 1-го сорта на первом станке $p_1 = 0.7$, на втором станке $p_2 = 0.8$. На первом станке изготовлено две детали, на втором три. Найти вероятность того, что все они первого сорта.
- **22)** Вероятность попадания в цель из первого орудия $p_1 = 0.8$, из второго $p_2 = 0.7$, из третьего $p_3 = 0.9$. Найти вероятность того, что при залпе из всех трех орудий: а) хотя бы одно попадет в цель, б) только одно попадет в цель.
- **23)** Студент знает 20 из 25 вопросов программы. Найти вероятность того, что студент знает предложенные ему экзаменатором два вопроса.

24) Электрическая цепь между точками M и N приведена на рис. 34.1. Выход из строя различных элементов цепи за время t — независимые события с известными вероятностями p_i :

	A_1	A_2	B_1	B_2	B_3
p_i	0,5	0,5	0,4	0,7	0,9

Определить вероятность разрыва цепи за время t.

Рис. 34.1

25) В цехе при одинаковой производительности станки первого типа производят 94% деталей первого сорта, станки второго типа — 90%, третьего типа — 85%, причем все произведенные за смену детали сложены в нерассортированном виде на складе. Определить вероятность того, что взятая наугад деталь будет первого сорта, если в цехе 5 станков первого типа, 3 — второго и 3 — третьего.

Задачи к разд. 34.5

Задача 1. В урне 20 белых шаров и 10 черных. Вынули подряд 4 шара, причем каждый раз вынутый шар возвращали в урну. Какова вероятность того, что два раза были вынуты белые шары?

Решение: Введем случайное событие A — вынут белый шар, тогда $P(A) = p = \frac{20}{30} = \frac{2}{3}, P(\overline{A}) = q = \frac{10}{30} = \frac{1}{3},$ причем событие A должно появиться при четырех независимых испытаниях два раза. По формуле Бернулли (см. ОК, разд. 34.5) искомая вероятность $P_4(2) = C_4^2 p^2 q^2 = C_4^2 (2/3)^2 (1/3)^2 = \frac{4!}{2!2!} \frac{4}{9} \frac{1}{9} = \frac{8}{27}.$

Задача 2. Определить вероятность того, что в семье из пяти детей три девочки. Вероятности рождения мальчика и девочки одинаковы.

Решение: Введем случайное событие A — рождение девочки, тогда P(A) = p = 1/2, $P(\overline{A}) = q = 1/2$. Имеем схему испытаний Бернулли, где n = 5, m = 3, т.е. искомая вероятность $P_5(3) = C_5^3(1/2)^3(1/2)^2 = \frac{5!}{3!2!} \frac{1}{8} \frac{1}{4} = \frac{5}{16}$.

Задачи для самостоятельного решения

- **26)** Вероятность изготовления на станке стандартной детали равна 0,9. Определить вероятность того, что из шести изготовленных на этом станке деталей четыре детали будут стандартными.
- **27)** Что вероятнее выиграть у равносильного противника (ничейный исход партий исключен): три партии из четырех или пять партий из восьми?
- **28)** Оптовая база снабжает 10 магазинов, от каждого из которых может поступить заявка с вероятностью 0,4 независимо от заявок других магазинов. Найти наивероятнейшее число µ заявок в день и вероятность получения этого числа заявок.

Указание: Наивероятнейшее значение μ числа m появлений события A при n независимых испытаниях, в каждом из которых вероятность появления события A равна p, вычисляется по формуле $\mu = \lceil (n+1)p \rceil$ — целая часть числа.

35. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Опорный конспект № 35

35.1. Дискретные и непрерывные СВ. Закон распределения

O: CB
$$\xi \Leftrightarrow \xi = \xi(\omega), \omega \in \Omega, \xi \in \mathbf{R}$$
. Дискретная CB $\Leftrightarrow \xi = (x_1, x_2, ..., x_n)$. Непрерывная CB $\Leftrightarrow \xi \in (a, b)$

О: Ряд распределения СВ — таблица

ξ	x_1	x_2		x_n	$\sum p_i = 1$
P	p_1	p_2	•••	p_n	$\frac{2}{i}$

О: Функция распределения CB ξ : $F(x) = P(\xi < x), x \in \mathbf{R}$

О: Плотность распределения непр. CB $\Leftrightarrow \varphi(x)$: $F'(x) = \varphi(x)$.

$$F(x) = \int_{-\infty}^{\infty} \varphi(t) dt, \int_{-\infty}^{\infty} \varphi(x) dx = 1.$$

$$P(x_1 \le \xi \le x_2) = \int_{x_1}^{x_2} \varphi(x) \mathrm{d}x$$

35.2. Числовые характеристики СВ

О: Математическое ожидание дискретной СВ

$$\xi = (x_1, x_2, ..., x_n), P(\xi = x_i) = p_i \iff M(\xi) = \sum_{i=1}^n x_i p_i$$

Математическое ожидание непр. СВ ξ с плотностью вероятности $\phi(x) \iff M(\xi) = \int\limits_{-\infty}^{\infty} x \phi(x) \mathrm{d}x$

Дисперсия CB $\xi \Leftrightarrow D(\xi) = M((\xi - M(\xi))^2)$. Среднее квадратическое отклонение CB $\xi \Leftrightarrow \sigma(\xi) = \sqrt{D(\xi)}$

35.3. Примеры распределений дискретных и непрерывных СВ

О: Равномерное распределение дискретной СВ

$$\xi = (x_1, x_2, ..., x_n) \Leftrightarrow P(\xi = x_i) = 1/n, i = \overline{1, n} \Rightarrow$$

$$\Rightarrow M(\xi) = \frac{1}{n} \sum_{i=1}^{n} x_i, \ D(\xi) = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} x_i\right)^2$$

О: Биномиальное распределение

$$CB \xi = (1, 2, ..., n) \Leftrightarrow P(\xi = i) = C_n^i p^i q^{n-i},$$

 $i = \overline{1, n}; \ p, \ q$ определены в разд. 34.5 $\Rightarrow M(\xi) = np, D(\xi) = npq$

О: Распределение Пуассона CB
$$\xi = (1, 2, ..., n) \Leftrightarrow P(\xi = i) = (1/2) e^{-\lambda}$$

$$=(\lambda^i/i!)e^{-\lambda}, \lambda=np; p$$
 определено в разд. 34.5 $\Rightarrow M(\xi)=D(\xi)=\lambda$

О: Равномерное распределение непрерывной
$$CB \xi \in [a, b] \Leftrightarrow \varphi(x) = c, c = const, $x \in [a, b] \Rightarrow c = 1/(b-a)$,$$

$$M(\xi) = (a + b)/2, D(\xi) = (b - a)^2/12$$

О: Нормальное распределение

CB
$$\xi \Leftrightarrow \varphi(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-m)^2}{2\sigma^2}}, x \in (-\infty, +\infty);$$

$$m = M(\xi), \ \sigma = \sqrt{D(\xi)}$$

35.4. Многомерные СВ

O: Многомерная CB $\zeta \Leftrightarrow \zeta = \zeta(\omega) = (\xi_1(\omega), \ \xi_2(\omega), \ ..., \ \xi_n(\omega)), \ \zeta \in \mathbf{R}^n, \ \omega \in \Omega$

О: Функция распределения вероятностей СВ $\zeta = (\xi, \eta) \Leftrightarrow F(x, y) = P(\xi < x, \eta < y)$

$$F(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} \varphi(t_1, t_2) dt_1 dt_2, \ \varphi(x, y)$$
 — плотность вероятности,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi(x, y) dx dy = 1, \ P(\zeta \in D) = \iint_{D} \varphi(x, y) dx dy.$$

$$M(\zeta) = (M(\xi), \ M(\eta)), \quad M(\xi) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \varphi(x, y) dx dy,$$

$$M(\eta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y \varphi(x, y) dx dy$$

O: CB ξ , η независимы \Leftrightarrow плотность вероятности $\phi(x, y)$ CB $\zeta = (\xi, \eta)$: $\phi(x, y) = \phi_{\xi}(x)\phi_{\eta}(y)$

О: Распределение $\chi^2 \Leftrightarrow$ распределение CB $\chi^2 = \sum_{i=1}^n \xi_i^2$, если ξ_i , $i = \overline{1,n}$, независимы и нормально распределены с параметрами m = 0, $\sigma = 1$. Для независимых CB: $M(\xi \cdot \eta) = M(\xi) \cdot M(\eta)$. Для зависимых CB: $R(\xi, \eta) = \frac{M(\xi \cdot \eta) - M(\xi) \cdot M(\eta)}{\sigma(\xi) \cdot \sigma(\eta)}$ — коэффициент корреляции

Т. (Ляпунова): СВ ξ_i , $i = \overline{1, n}$, независимы и нормально распределены с m, σ ;

$$\overline{\xi_n} = \frac{1}{\sigma \sqrt{n}} \sum_{i=1}^n \xi_i \implies \lim_{n \to \infty} P(\overline{\xi_n} < x) = \Phi(x), \ \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{x^2}{2}} dx \blacksquare$$

Задачи к разд. 35.1

Задача 1. Из партии, содержащей 100 изделий, среди которых 10 дефектных, выбраны случайным образом 5 изделий для проверки их качества. Построить многоугольник распределения, ряд распределений, найти функцию распределения случайной величины ξ — числа дефектных изделий в выборке. Построить график функции распределения.

Решение: В выборке из пяти деталей число дефектных изделий — случайная величина $\xi = \{0, 1, 2, 3, 4, 5\}$. Вероятность $P(\xi = k)$ того, что в выборке окажется k дефектных изделий, определяется по формуле (см. задачу 3 к разд. 34.3)

$$P_k = P(\xi = k) = \frac{C_{10}^k C_{10}^{5-k}}{C_{100}^5}, \ k = \overline{0, 5}.$$

Ряд распределений при вычислении с точностью до 0,001 имеет вид

ξ	0	1	2	3	4	5
P	0,583	0,340	0,070	0,007	0	0

 $\sum_{i=0}^{5} p_i = 1.$ Функция распределения определяется как F(x) = P(F < x) те

$$F(x) = \begin{cases} P(\xi < x), \text{ r.e.} \\ 0, x \le 0, \\ 0,583, \ 0 \le x \le 1, \\ 0,923, \ 1 \le x \le 2, \\ 0,993, \ 2 \le x \le 3, \\ 1, x > 3. \end{cases}$$

На рис. 35.1 изображен многоугольник распределения, а на рис. 35.2 — график функции распределения.

Задача 2. Непрерывная случайная величина ξ имеет следующую плотность распределения: $\varphi(x) = \begin{cases} a \sin x, & 0 \le x \le \pi, \\ 0, & x < 0 \cup x > \pi. \end{cases}$

а) Найти величину коэффициента a; б) найти функцию распределения F(x); в) построить графики $\varphi(x)$, F(x); г) определить вероятность попадания случайной величины ξ в интервал от 0 до $\pi/4$ ($P(0 \le \xi \le \pi/4)$).

Peшениe: а) для определения величины коэффициента a воспользуемся свойством $\int\limits_{-\infty}^{\infty} \phi(x) \mathrm{d}x = 1,$

T.e.
$$a \int_{0}^{\pi} \sin x \, dx = 1 \Rightarrow a(-\cos x|_{0}^{\pi}) = 1 \Rightarrow a = 0,5;$$

б) используем формулу
$$F(x) = \int\limits_{-\infty}^{x} \varphi(t) \mathrm{d}t \Rightarrow$$

$$F(x) = \begin{cases} 0, & x \le 0, \\ \frac{1}{2} \int_{0}^{x} \sin x \, dx, & 0 \le x < \pi, \\ \frac{1}{2} \int_{0}^{\pi} \sin x \, dx, & x \ge \pi, \end{cases} \Rightarrow F(x) = \begin{cases} 0, & x \le 0, \\ \frac{1}{2} - \frac{1}{2} \cos x, & 0 \le x < \pi, \\ 1, & x \ge \pi; \end{cases}$$

в) графики $\varphi(x)$, F(x) изображены на рис. 35.3 и 35.4 соответственно;

Рис. 35.4

г) находим
$$P(0 \le \xi \le \pi/4)$$
 по формуле
$$P(0 \le \xi \le \pi/4) = \frac{1}{2} \int\limits_0^{\pi/4} \varphi(t) \mathrm{d}t = \frac{1}{2} \int\limits_0^{\pi/4} \sin x \, \mathrm{d}x = -\frac{1}{2} \cos x \Big|_0^{\pi/4} =$$
$$= -\frac{1}{2} \Big(\frac{\sqrt{2}}{2} - 1 \Big) \approx 0.15.$$

Можно также получить вероятность $P(0 \le \xi \le \pi/4)$ как $F(\pi/4) =$ $= 1/2 - \cos(\pi/4) = 0.15.$

Задачи для самостоятельного решения

- 1) Опыт состоит из трех независимых бросаний монеты. Для случайного числа появления герба построить ряд распределения, многоугольник распределения, функцию распределения.
- 2) На пути движения автомашины 4 светофора. Каждый из них с вероятностью 0,5 либо разрешает, либо запрещает дальнейшее

движение. Построить многоугольник распределения вероятностей числа светофоров, пройденных автомашиной без остановки.

3) Плотность вероятности случайной величины ξ равна

$$\varphi(x) = \begin{cases} 0, \ x < 0, \\ ax^2 e^{-kx}, \ 0 \le x < \infty. \end{cases}$$

Найти: а) коэффициент а; б) функцию распределения случайной величины ξ ; в) вероятность попадания ξ в интервал (0; 1/k).

4) Проекция ξ радиуса-вектора случайной точки окружности радиусом а на диаметр имеет функцию распределения

$$F(x) = \begin{cases} 0, & x \le -a, \\ \frac{1}{2} + \frac{1}{\pi} \arcsin \frac{x}{a}, & -a \le x < a, \\ 1, & x \ge a. \end{cases}$$

Определить: а) вероятность попадания случайной величины ξ в интервал (-a/2; a/2); б) плотность распределения $\varphi(x)$.

Задачи к разд. 35.2

Задача 1. Случайная величина задана рядом распределения

ξ	3	5	7	11
P	0,14	0,20	0,49	0,17

Найти математическое ожидание $M(\xi)$, дисперсию $D(\xi)$, среднее квадратическое отклонение $\sigma(\xi)$.

Pешение: Математическое ожидание $M(\xi)$ дискретной случайной величины ξ определяется по формуле $M(\xi) = \sum_{i=1}^{4} x_i p_i = 3 \cdot 0.14 + 0.14$

$$+ 5 \cdot 0.20 + 7 \cdot 0.49 + 11 \cdot 0.17 = 6.72.$$

Дисперсия

дисперсия
$$D(\xi) = M(\xi^2) - (M(\xi))^2 = 9 \cdot 14 + 25 \cdot 0,20 + 49 \cdot 0,49 + 121 \cdot 0,17 - (6,72)^2 \approx 5,682.$$

Среднее квадратическое отклонение: $\sigma(\xi) = \sqrt{D(\xi)} = \sqrt{5,682}$.

Задача 2. Найти математическое ожидание $M(\xi)$, дисперсию $D(\xi)$ и среднее квадратическое отклонение $\sigma(\xi)$ для непрерывной случайной величины ξ из задачи 2 к разд. 35.1.

Решение: Математическое ожидание $M(\xi)$ непрерывной случайной величины ξ вычисляется по формуле

$$M(\xi) = \int_{-\infty}^{\infty} x \varphi(x) dx = \frac{1}{2} \int_{0}^{\pi} x \sin x dx =$$

$$= \begin{cases} x = u, & du = dx, \\ \sin x dx = dv, & v = \int \sin x dx = -\cos x \end{cases} =$$

$$= \frac{1}{2} \left(-x \cos x \Big|_{0}^{\pi} + \int_{0}^{\pi} \cos x dx \right) = \frac{\pi}{2} + \sin x \Big|_{0}^{\pi} = \frac{\pi}{2}.$$
Дисперсия $D(\xi)$ определяется по формуле
$$D(\xi) = M(\xi^{2}) - (M(\xi))^{2} = \frac{1}{2} \int_{0}^{\pi} x^{2} \sin x dx - \frac{\pi^{2}}{4} =$$

$$= \begin{cases} x^{2} = u, & du = 2x dx, \\ \sin x dx = dv, & v = \int \sin x dx = -\cos x \end{cases} =$$

$$= -\frac{1}{2} x^{2} \cos x \Big|_{0}^{\pi} + \int_{0}^{\pi} x \cos x dx - \frac{\pi^{2}}{4} = \begin{cases} x = u, & du = dx, \\ \cos x dx = dv, & v = \sin x \end{cases} =$$

$$= \frac{\pi^{2}}{2} + x \sin x \Big|_{0}^{\pi} + \cos x \Big|_{0}^{\pi} - \frac{\pi^{2}}{4} = \frac{\pi^{2}}{4} - 2.$$

Среднее квадратическое отклонение $\sigma(\xi) = \sqrt{\frac{\pi^2}{4} - 2}$.

Задачи для самостоятельного решения

- 5) Найти $M(\xi)$, $D(\xi)$ и $\sigma(\xi)$ дискретной случайной величины: а) задачи 1 к разд. 35.1; б) задачи 1) из задач для самостоятельного решения к разд. 35.1.
 - 6) Задана функция распределения непрерывной случайной ξ:

a)
$$F(x) = \begin{cases} 0, & x \le -a, \\ \frac{x^2}{4}, & 0 \le x \le 2, \text{ б}) \end{cases}$$
 $F(x) = \begin{cases} 0, & x < 0, \\ 1 - e^{-\lambda x}, & x \ge 0 \end{cases}$ (показатель-

ное распределение).

Определить $M(\xi)$, $D(\xi)$.

7) Определить $M(\xi)$, $D(\xi)$ для непрерывной случайной величины ξ задачи 3) из задач для самостоятельного решения к разд. 35.1.

Задачи к разд. 35.3

Задача 1. По цели производится три независимых выстрела. Вероятность попадания в цель при каждом выстреле p=0,4. Построить ряд распределения случайного числа попаданий в цель, найти $M(\xi)$, $D(\xi)$ и $\sigma(\xi)$.

Решение: Случайная величина ξ числа попаданий в цель: ξ = $\{0, 1, 2, 3\}$, причем $P(\xi = i) = C_3^i \cdot (0,4)^i \cdot (0,6)^{3-i}$, т.е. ряд распределения имеет вид

ξ	0	1	2	3
P	0,216	0,432	0,288	0,064

Так как имеем биномиальный закон распределения, то $M(\xi) = np = 3 \cdot 0,4 = 1,2, D(\xi) = npq = 3 \cdot 0,4 \cdot 0,6 = 0,72$ и $\sigma(\xi) = \sqrt{0,72} = 0,85$.

Задача 2. Радиоаппаратура состоит из 1000 электроэлементов. Вероятность отказа одного элемента в течение одного года равна 0,001 и не зависит от состояния других элементов. Какова вероятность отказа двух и не менее двух электроэлементов в течение года?

Pешение: Считаем случайную величину ξ — число отказавших в течение года элементов — подчиняющейся закону Пуассона. Тогда

$$p_i = p(\xi = i) = \frac{\lambda^i}{i!} e^{-\lambda}, \ \lambda = np = 1000 \cdot 0,001 = 1.$$

Вероятность отказа в течение года двух элементов равна: $p_2 = p(\xi = 2) = \frac{1}{2e} \approx 0,184$.

Вероятность отказа не менее двух элементов равна

$$p(\xi \ge 2) = \sum_{i=2}^{1000} p_i = 1 - p_0 - p_1 = 1 - \frac{2}{e} \approx 0,264.$$

Задача 3. Определить среднее квадратическое отклонение σ случайных ошибок прибора, если они подчиняются нормальному

закону. Систематических ошибок прибор не имеет (m=0), а случайные с вероятностью 0,8 не выходят за пределы ± 20 (м).

Решение: Из условия задачи следует, что $P(|x| \le 20) = 0.8$. Известно, что для нормального распределения $P(\alpha \le \xi \le \beta) = 0.8$

$$=\Phi\left(rac{eta-m}{\sigma}
ight)-\Phi\left(rac{lpha-m}{\sigma}
ight)$$
, где $\Phi(u)=rac{1}{\sqrt{2\pi}}\int\limits_0^u e^{-rac{u^2}{2}}\mathrm{d}u$ — функция Лап-

ласа, значения которой находим в таблице (Приложение 1). Так

как
$$P(|x| \le 20) = \Phi\left(\frac{20}{\sigma}\right) - \Phi\left(-\frac{20}{\sigma}\right) = 2\Phi\left(\frac{20}{\sigma}\right) = 0,8$$
, то по таблице находим, что $20/\sigma = 1,90$, т.е. $\sigma = 10,5$ (м).

Задачи для самостоятельного решения

- **8)** В районе 5 молочных магазинов, от каждого из которых может поступить заявка с вероятностью 0,6 независимо от заявок других магазинов. Построить ряд распределения случайного числа заявок, найти $M(\xi)$, $D(\xi)$ и $\sigma(\xi)$.
- **9)** Вероятность того, что любой абонент позвонит на коммутатор в течение часа, равна 0,01. Телефонная станция обслуживает 300 абонентов. Какова вероятность того, что в течение часа позвонят 4 абонента?
- **10)** Все значения равномерно распределенной непрерывной случайной величины ξ принадлежат интервалу (2, 8). Определить: а) вероятность попадания ξ в интервал (3, 5); б) найти $M(\xi)$, $D(\xi)$.
- 11) При измерении дальности до объекта систематическая ошибка равна 50 м в сторону занижения дальности (m=50). Случайные ошибки подчиняются нормальному закону со средним квадратическим отклонением $\sigma=100$ м. Найти вероятность измерения дальности с ошибкой, не превосходящей по абсолютной величине 150 м.
- **12)** Случайная величина ξ распределена по нормальному закону с математическим ожиданием $M(\xi) = 40$ и дисперсией $D(\xi) = 200$. Вычислить вероятность попадания случайной величины в интервал (20, 80).

Задачи к разд. 35.4

Задача 1. Двумерная случайная величина $\varsigma=(\xi,\ \eta)$ имеет плотность вероятности $\varphi(x,y)=\frac{A}{\pi^2(16+x^2)(25+y^2)}.$

Найти: а) значение параметра A; б) функцию распределения F(x, y).

Pешение: а) значение параметра A определяем, используя формулу

$$\int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy \varphi(x, y) = 1 \Rightarrow \frac{A}{\pi^2} \int_{-\infty}^{\infty} \frac{dx}{16 + x^2} \int_{-\infty}^{\infty} \frac{dy}{25 + y^2} =$$

$$= \frac{A}{\pi^2} \left(\frac{1}{4} \operatorname{arctg} \frac{x}{4} \Big|_{-\infty}^{\infty} \cdot \frac{1}{5} \operatorname{arctg} \frac{y}{5} \Big|_{-\infty}^{\infty} \right) = \frac{A}{20\pi^2} \left(\frac{\pi}{2} + \frac{\pi}{2} \right) \left(\frac{\pi}{2} + \frac{\pi}{2} \right) =$$

$$= \frac{A}{20} = 1 \Rightarrow A = 20;$$

б) функция распределения находится по формуле

$$F(x,y) = \int_{-\infty}^{x} dx' \int_{-\infty}^{y} dy' \varphi(x',y') = \int_{-\infty}^{x} \frac{20dx'}{\pi^{2}(16+x'^{2})} \int_{-\infty}^{y} \frac{20dy'}{\pi^{2}(25+y'^{2})} =$$

$$= \frac{20}{\pi^{2}} \left(\frac{1}{4} \operatorname{arctg} \frac{x'}{4} \Big|_{-\infty}^{x} \cdot \frac{1}{5} \operatorname{arctg} \frac{y'}{5} \Big|_{-\infty}^{y} \right) = \left(\frac{1}{\pi} \operatorname{arctg} \frac{x}{4} + \frac{1}{2} \right) \left(\frac{1}{\pi} \operatorname{arctg} \frac{y}{5} + \frac{1}{2} \right).$$

Задача 2. Функция распределения двумерной случайной величины $\zeta(\xi, \eta)$ имеет вид $F(x, y) = \sin x \cdot \sin y, \ 0 \le x \le \pi/2, \ 0 \le y \le \pi/2.$

Определить: а) плотность вероятности; б) математическое ожидание; в) вероятность попадания ζ в D^* с границей ∂D^* : $\{y=x, y=0, x=\pi/2\}$.

Решение: а) плотность вероятности находим по формуле

$$\varphi(x, y) = \frac{\partial^2 F}{\partial x \partial y}; \ \frac{\partial F}{\partial x} = \cos x \sin y, \ \frac{\partial^2 F}{\partial x \partial y} = \cos x \cos y;$$

б) математическое ожидание $M(\zeta) = (M(\xi), M(\eta)),$ причем

$$M(\xi) = \int_{0}^{\pi/2} dx \int_{0}^{\pi/2} dy \, x \cos x \cos y = \int_{0}^{\pi/2} dx \, x \cos x \sin y \Big|_{0}^{\pi/2} =$$

$$= \int_{0}^{\pi/2} dx \, x \cos x = x \sin x \Big|_{0}^{\pi/2} - \int_{0}^{\pi/2} dx \sin x = \frac{\pi}{2} + \cos x \Big|_{0}^{\pi/2} = \frac{\pi}{2} - 1;$$

$$M(\eta) = M(\xi) = \frac{\pi}{2} - 1;$$

в) вероятность попадания ζ в D^* (рис. 35.5) вычисляется по формуле

$$P(\xi \in D^*) = \iint_{D^*} dx \, dy \cos x \cos y = \int_0^{\pi/2} dx \cos x \int_0^x dy \cos y =$$

$$= \int_0^{\pi/2} dx \cos x \sin x = \frac{1}{2} \int_0^{\pi/2} dx \sin 2x = -\frac{1}{2} \cdot \frac{1}{2} \cos 2x \Big|_0^{\pi/2} = \frac{1}{4} (1+1) = \frac{1}{2}.$$

$$\frac{\pi}{2} \int_0^{\pi/2} dx \cos x \sin x dx = \frac{1}{2} \int_0^{\pi/2} dx \sin 2x = -\frac{1}{2} \cdot \frac{1}{2} \cos 2x \Big|_0^{\pi/2} = \frac{1}{4} (1+1) = \frac{1}{2}.$$

Рис. 35.5 Задачи для самостоятельного решения

13) Плотность распределения двумерной случайной величины $\zeta(\xi, \eta)$ задается формулой $\varphi(x, y) = \frac{1}{\pi^2(1+x^2)(1+y^2)}$.

Найти вероятность попадания случайной величины ζ в D^* : $\{0 \le x \le 1, 1/\sqrt{3} \le y \le \sqrt{3}\}.$

14) Плотность вероятности случайной величины $\zeta(\xi, \eta)$ задается формулой

$$\varphi(x,y) = \begin{cases} c(R^2 - \sqrt{x^2 + y^2}), \ x^2 + y^2 \le R^2, \\ 0, \ x^2 + y^2 > R^2. \end{cases}$$

Определить: а) постоянную c; б) вероятность попадания случайной величины ζ в D^* : $\{x^2 + y^2 \le \rho^2 < R^2\}$.

- **15)** Определить математическое ожидание случайной величины $\zeta(\xi, \eta)$, если плотность вероятности $\varphi(x, y) = \frac{2}{\pi(x^2 + y^2 + 1)^2}$.
- **16)** Плотность вероятности случайной величины $\zeta(\xi, \eta)$ имеет вид $\varphi(x, y) = \cos x \cdot \cos y, \ 0 \le x \le \pi/2, \ 0 \le y \le \pi/2$. Определить дисперсию $D(\zeta) = (D(\xi), D(\eta))$ и коэффициент корреляции случайной величины ζ .
- 17) Определить плотность вероятности случайной величины $\zeta(\xi_1, \xi_2, \xi_3)$ по заданной функции распределения: $F(x, y, z) = (1 e^{-ax})(1 e^{-by})(1 e^{-cz}), x, y, z \ge 0.$

36. ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

Опорный конспект № 36

36.1. Основные понятия математической статистики

О: Выборка $(x_1, x_2, ..., x_n)$ — совокупность значений СВ ξ , полученных в результате n независимых экспериментов

О: Статистический ряд:

ξ	<i>x</i> ₁ *	<i>x</i> ₂ *	•••	x_l^*
<i>P</i> *	p_1^*	<i>p</i> ₂ *		p_l^*

 $x_i^* \in (x_1, x_2, ..., x_n), x_{i-1}^* < x_i^*, i = \overline{1, l},$

 $p_i^* = m_i/n$ — относительная частота,

 m_i — частота появления x_i

О: Статистический ряд по интервалам:

ξ	(a_0, a_1)	(a_1, a_2)		(a_{l-1}, a_l)
P*	p_1^*	p_2^*	•••	p_l^*

 m_i — число значений СВ ξ , попавших в (a_{i-1}, a_i). Графическое изображение:

0: Эмпирическая функция распределения:

$$F^*(x) = \begin{cases} 0, x \le a_1; \\ \sum_{i=1}^k p_i^*, \ a_{k-1} < x \le a_k, \ k = \overline{1, l} \\ 1, x > a_n. \end{cases}$$

36.2. Определение неизвестных параметров распределения

О: Среднее арифметическое M^* , дисперсия D^* выборки:

$$M^* = \frac{1}{n} \sum_{i=1}^{n} x_i, \ D^* = \frac{1}{n} \sum_{i=1}^{n} (x_i - M^*)^2;$$

статист. ряда:

$$M^* = \sum_{i=1}^n x_i p_i^*, \ D^* = \sum_{i=1}^l (x_i - M^*)^2 p_i^*;$$

 $M(\xi),\ D(\xi)$ — числовые характеристики СВ ξ с выборкой $(x_1,\ x_2,\ ...,\ x_n)$ \Rightarrow $M(\xi)$ \approx $M^*,\ D(\xi)$ \approx D^*

О: Доверительный интервал

$$(\Theta^* - \Delta, \ \Theta^* + \Delta) \Leftrightarrow P(|\Theta - \Theta^*| \leq \Delta) = \gamma,$$

 Δ — точность оценки Θ^* параметра Θ в функции распределения $F(x, \Theta)$ СВ ξ, γ — коэффициент доверия

Для нормального распределения с параметрами m, σ при $m \approx M^* \Rightarrow P(m^* - \Delta \le m \le m^* + \Delta) = 2\Phi(\Delta\sqrt{n}/\sigma)$. Для двумерной СВ $\zeta = (\xi, \eta)$ с выборкой $((x_1, y_1), (x_2, y_2), ..., (x_n, y_n))$ выборочный коэффициент корреляции

$$R^*(\xi, \eta) = \frac{M^*(\xi \cdot \eta) - M^*(\xi) \cdot M^*(\eta)}{\sqrt{D^*(\xi) \cdot D^*(\eta)}},$$

$$M^*(\xi \cdot \eta) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i$$

36.3. Проверка статистических гипотез

Выдвинуты гипотезы о параметрах распределения:

 H_0 : $M(\xi) = M(\eta)$; H_1 : $M(\xi) > M(\eta)$, где ξ , η — нормальные генеральные совокупности, выборки из них объемами n и l имеют выборочные средние m_{ξ}^* , m_{η}^* , дисперсии $D^*(\xi)$, $D^*(\eta)$, $n \ge 30$, $l \ge 30$. В качестве критерия выбирается

$$Z = |m_{\xi}^* - m_{\eta}^*| / \sqrt{D^*(\xi)/n + D^*(\eta)/l},$$

строится правосторонняя критическая область $P(Z > Z_{\text{кр.пр}}) = \alpha$, α — уровень значимости (малая вероятность ошибочно отвергнуть

$$H_0$$
), $Z_{\text{кр.пр}} = \Phi^{-1} \left(\frac{1 - 2\alpha}{2} \right)$. При вычисленном по выборкам

 $Z_{{
m Had}\pi} > Z_{{
m Kp.np}}$ гипотеза H_0 отвергается и принимается H_1 .

Выдвинута гипотеза H_0 о функции распределения $F(x) = P(\xi < x)$ СВ ξ при выборке $(x_1, x_2, ..., x_n)$ и построенном статистическом ряде по интервалам (a_{i-1}, a_i) , i = 1, l — мера расхождения между m_i и np_i $(p_i$ — теоретические вероятности):

$$\chi^{*2} = \sum_{i=1}^{l} \frac{(m_i - np_i)^2}{np_i}.$$

Т. (Пирсона):
$$P(\chi^{*2} < x) \xrightarrow[n \to \infty]{x} \varphi_k(x) dx$$
,

где $\varphi_k(x)$ — плотность распределения χ^2 с k=l-1 степенями своболы ■

Критерий согласия Пирсона:

- 1) выбирается уровень значимости а, равный вероятности того, что H_0 будет ошибочно отвергнута;
 - 2) из уравнения

$$P(\chi^2 > \chi^2_{\alpha}) = \int_{\chi^2_{\alpha}}^{\infty} \varphi_k(x) dx = \alpha$$

 $P(\chi^2>\chi^2_{lpha})=\int\limits_{\chi^2_{lpha}}^{\infty}\phi_k(x)\mathrm{d}x=lpha$ определяется χ^2_{lpha} — предел значимости (для определения χ^2_{lpha} пользу-

3) при $\chi^{*2} > \chi_{\alpha}^2$ гипотеза H_0 отвергается, при $\chi^{*2} \leq \chi_{\alpha}^2$ опытные данные совместимы с гипотезой H_0

Задачи к разд. 36

Задача 1. Измерен диаметр у 270 валов хвостовика. Величины измеренных диаметров оказались в диапазоне 66-90 см. Разбив диапазон на интервалы длиной в 2 см, подсчитали частоту m_i попадания диаметра в данный интервал (см. таблицу):

No	1	2	3	4	5	6	7	8	9	10	11	12
d, cm	66-68	68-70	70-72	72-74	74-76	76-78	78-80	80-82	82-84	84-86	86-88	88-90
m_i	4	12	24	41	50	53	39	26	13	5	2	1

Построить гистограмму и эмпирическую функцию распределения.

Решение: Вычисляя относительные частоты по формуле $p_i^* =$ $= m_i/m$, получим статистический ряд по интервалам:

d, cm	<i>p</i> *	<i>d</i> , см	<i>p</i> *
66-68	0,015	78-80	0,144
68-70	0,045	80-82	0,096
70-72	0,090	82-84	0,048
72-74	0,152	84–86	0,019
74–76	0,185	86-88	0,007
76–78	0,196	88-90	0,003

причем $\sum_{i=1}^{12} p_i^* = 1$. Эмпирическая функция распределения F(x) определяется по формуле ОК, разд. 36.1:

$$F(x) = \begin{cases} 0, & x \le 68, \\ 0,015, & 68 \le x \le 70, \\ 0,060, & 70 \le x \le 72, \\ 0,150, & 72 \le x \le 74, \\ 0,302, & 74 \le x \le 76, \\ 0,487, & 76 \le x \le 78, \\ 0,683, & 78 \le x \le 80, \\ 0,827, & 80 \le x \le 82, \\ 0,923, & 82 \le x \le 84, \\ 0,971, & 84 \le x \le 86, \\ 0,990, & 86 \le x \le 88, \\ 0,997, & 88 \le x \le 90, \\ 1, & x > 90. \end{cases}$$

Гистограмма и эмпирическая функция распределения изображены на рис. 36.1 и рис. 36.2 соответственно.

Задача 2. Используя данные задачи 1 и гистограмму, делаем предположение о нормальном законе распределения значений диаметра. Найти параметры этого распределения.

Решение: Плотность вероятности нормального распределения

задается формулой
$$\varphi(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-m)^2}{2\sigma^2}}.$$

По формулам ОК, разд. 36.2, имеем:

$$m \approx M^* = \sum_{i=1}^{12} x_i^* p_i^*;$$

$$\sigma^2 \approx D^* = \sum_{i=1}^{12} (x_i^* - M^*)^2 p_i^* = \sum_{i=1}^{12} x_i^{*2} p_i^* - (M^*)^2.$$

Выбирая в качестве x_i^* середины интервалов, получим $m=67\cdot 0.015+69\cdot 0.045+71\cdot 0.090+73\cdot 0.152+\\ +75\cdot 0.185+77\cdot 0.186+79\cdot 0.144+81\cdot 0.096+\\ +83\cdot 0.048+85\cdot 0.019+87\cdot 0.007+89\cdot 0.003=76.21;$ $\sigma^2=(67)^2\cdot 0.015+(69)^2\cdot 0.045+...+(89)^2\cdot 0.003-\\ -(76.21)^2=16.47, <math>\sigma^2\approx \sqrt{16.47}=4.06.$

Задача 3. Среднее значение расстояния до ориентира, полученное по четырем независимым измерениям, равно 2250 м. Среднее квадратическое отклонение для измерительного прибора $\sigma=40$ м. Систематическая ошибка отсутствует. Найти с надежностью 95% доверительный интервал для измеряемой величины.

Решение: Так как случайные ошибки подчиняются нормальному закону распределения, воспользуемся формулой ОК, разд. 36.2:

$$p(m^* - \Delta \le m \le m^* + \Delta) = 2\Phi(\Delta\sqrt{n}/\sigma),$$

где $\Phi(x)$ — функция Лапласа; Δ — точность оценки; m^* — среднее значение m. Из условий задачи известно, что $m^*=2250, n=4$, $2\Phi(\Delta\sqrt{n}/\sigma)=0.95$. По таблице Приложения 1 имеем ($\Delta\sqrt{n}/\sigma$) = 1.96, т.е. $\Delta=1.96 \cdot 40/2=39.2$ (м), $m^*-\Delta=2250-39.2=2210.8$ (м), $m^*+\Delta=2250+39.2=2289.2$ (м). Доверительный интервал (2210.8-2289.2) покрывает истинное значение расстояния до ориентира с точностью 0.95.

Задача 4. По выборке ξ объемом n=30 найден средний вес $m_{\xi}^*=130$ г изделий, изготовленных на первом станке; по выборке η объемом l=40 найден средний вес $m_{\eta}^*=125$ г изделий, изготовленных на втором станке, причем случайные величины ξ и η распределены нормально. Генеральные дисперсии этих величин известны: $D(\xi)=60$ г², $D(\eta)=80$ г². Требуется при уровне значимости 0,05 проверить нулевую гипотезу H_0 : $M(\xi)=M(\eta)$.

Решение: Найдем наблюдаемое значение критерия Z (ОК, разд. 36.3):

$$Z_{\text{набл}} = \frac{|m_{\xi}^* - m_{\eta}^*|}{\sqrt{D(\xi)/n + D(\eta)/l}} = \frac{130 - 125}{\sqrt{\frac{60}{30} + \frac{80}{40}}} = \frac{5}{2} = 2,5.$$

Критическая область в этом случае двусторонняя ($-Z_{\rm kp},\ Z_{\rm kp}$).

При $Z_{\text{набл}} \in (-Z_{\text{кр}}, Z_{\text{кр}})$ принимается гипотеза H_0 . Найдем $Z_{\text{кр}} = \Phi^{-1}((1-0.05)/2) = 1.96$ по таблице функции Лапласа $\Phi(x)$. Так как $Z_{\text{набл}} > Z_{\text{кр}}$, то H_0 отвергается и принимается гипотеза H_1 .

Задача 5. На автоматической линии, работающей 12 часов, проводились наблюдения над случайной величиной ξ — моментом отказа линии (500 наблюдений). Проверить согласованность теоретического и эмпирического законов распределения случайной величины по критерию χ^2 Пирсона при уровне значимости $\alpha=0.05$.

Решение: 1) Выдвигаем гипотезу: распределение случайной величины ξ является равномерным на интервале [0, 12].

2) Разбиваем [0, 12] на 12 интервалов и определяем частоту попадания ξ в эти интервалы:

ξ	(0, 1)	(1, 2)	(2, 3)	(3, 4)	(4, 5)	(5, 6)	(6, 7)	(7, 8)	(8, 9)	(9, 10)	(10, 11)	(11, 12)
m	41	34	54	39	49	45	41	33	37	41	47	49

3) Находим χ^{*2} по формуле ОК, разд. 36.3:

$$\chi^{*2} = \sum_{i=1}^{12} \frac{(m_i - np_i)^2}{np_i},$$

где n=500, $p_i=1/12$ по выдвинутой гипотезе о равномерном распределении. Тогда имеем $\chi^{*2}=[(41-500/12)^2+(34-500/12)^2]\approx 10$.

- 4) Находим число степеней свободы k=12-1=11 и по таблице χ^{*2} (Приложение 2) при уровне значимости $\alpha=0.05$ находим $\chi^2_{\alpha}=19.67$.
 - 5) Так как $\chi^{*2} < \chi_{\alpha}^{2}$, то гипотезу можно принять.

Задача 6. По одной и той же теме проведены две контрольные работы. Выбранные пять студентов получили следующие оценки. Первая контрольная: 3, 4, 5, 3, 3; вторая контрольная: 2, 4, 4, 3, 4. Найти коэффициент корреляции между оценками и прямые регрессии.

Решение: Найдем средние арифметические и средние квадратические отклонения выборки $(\xi, \eta) = ((3, 2), (4, 4), (5, 4), (3, 3), (3, 4))$:

$$M^*(\xi) = \frac{3+4+5+3+3}{5} = 3,6; \ M^*(\eta) = \frac{2+4+2+3+4}{5} = 3,4;$$

$$\sigma^*(\xi) = \sqrt{\frac{3^2+4^2+5^2+3^2+3^2}{5} - (3,6)^2} = \sqrt{0,64};$$

$$\sigma^*(\eta) = \sqrt{\frac{2^2+4^2+4^2+3^2+4^2}{5} - (3,4)^2} = \sqrt{0,64}.$$

Находим далее, используя формулы ОК, разд. 36.2, $M^*(\xi, \eta)$ и коэффициент корелляции $R^*(\xi, \eta)$:

коэффициент корелляции
$$R^*(\xi, \eta)$$
:
$$M^*(\xi \cdot \eta) = \frac{3 \cdot 2 + 4 \cdot 4 + 5 \cdot 4 + 3 \cdot 3 + 3 \cdot 4}{5} = 12,6;$$

$$R^*(\xi, \eta) = \frac{12,6 - 3,6 \cdot 3,4}{\sqrt{0.64 \cdot 0.64}} = \frac{9}{16} \approx 0,6.$$

Прямая регрессии ξ на η имеет уравнение

$$x - M^*(\xi) = R^*(\xi, \eta) \frac{\sigma^*(\xi)}{\sigma^*(\eta)} (y - M^*(\eta)),$$

$$x - 3.6 = 0.6(y - 3.4)$$
: Imaging perpec

т.е. x-3,6=0,6(y-3,4); прямая регрессии η на ξ — уравнение $y-M^*(\eta)=R^*(\xi,\eta)\frac{\sigma^*(\eta)}{\sigma^*(\xi)}(x-M^*(\xi)),$

$$\text{T.e. } y - 3.4 = 0.6(x - 3.6).$$

Задачи для самостоятельного решения

1) При 100 определениях дальности получены результаты, на основании которых построена следующая таблица:

٤	:	80-110	110-140	140-170	170-200	200-230	230-260	260-290	290-320
n	i_i	2	5	16	24	28	18	6	1

- а) построить гистограмму и эмпирическую функцию распределения; б) найти среднее арифметическое и дисперсию, написать выражение закона распределения случайной величины.
- 2) Постоянная величина измерена 25 раз с помощью прибора, систематическая ошибка которого равна нулю, а случайные ошибки распределены нормально со средним квадратическим отклонением $\sigma = 10$ см. Определить границы доверительного интервала для заданной измеряемой величины при коэффициенте доверия $\gamma = 0.95$, если среднее арифметическое $M^* = 100$ м.
- **3)** Произведен выбор 200 деталей из текущей продукции прецизионного токарного автомата. Проверяемый размер деталей измерен с точностью до 1 мкм. Составлен статистический ряд по интервалам:

№	1	2	3	4	5	6	7	8	9	10
ζ	(-20, -15)	(-15, -10)	(-10, -5)	(-5, 0)	(0, 5)	(5, 10)	(10, 15)	(15, 20)	(20, 25)	(25, 30)
m_i	7	11	15	24	49	41	26	17	7	3
p_i^*	0,035	0,055	0,075	0,120	0,245	0,205	0,130	0,085	0,035	0,015

Оценить с помощью критерия χ^2 гипотезу о согласии выборочного распределения с законом нормального распределения при уровне значимости $\alpha=0.05$.

4) По двум независимым выборкам n=40, l=50, извлеченным из нормальных генеральных совокупностей ξ и η соответственно, найдены выборочные средние арифметические $m_{\xi}^{*}=130$, $m_{\eta}^{*}=140$. Известны генеральные дисперсии $D(\xi)=80$, $D(\eta)=100$. Требуется при уровне значимости 0,001 проверить нулевую гипотезу H_0 : $M(\xi)=M(\eta)$ при конкурирующей гипотезе H_1 : $M(\xi)\neq M(\eta)$.

Разные залачи

- **5)** В ящике 4 новых и 6 старых инструментов. Рабочему выдали 3 инструмента. Найдите вероятность того, что: а) все выданные инструменты старые; б) два из трех инструментов старые.
- **6)** Элементы A_1 , A_2 , A_3 электрической цепи работают независимо друг от друга (рис. 36.3). Известны вероятности безотказной работы элементов за время T: $P(A_1) = 0.6$, $P(A_2) = 0.8$, $P(A_3) = 0.7$. Найти вероятность безотказной работы системы за время T.

Рис. 36.3

- 7) В магазин поступает продукция трех фабрик. Продукция первой фабрики составляет 20%, второй 45%, третьей 35% изделий. Известно, что средний процент нестандартных изделий для первой фабрики равен 3%, для второй 2%, для третьей 4%. Найти вероятность того, что оказавшееся нестандартным изделие произведено на первой фабрике.
- **8)** График функции распределения случайной величины ξ имеет вид, представленный на рис. 36.4. Найти математическое ожидание $M(2\xi+3)$, дисперсию $D(2\xi+3)$.

Рис. 36.4

9) График плотности распределения случайной величины ξ имеет вид, представленный на рис. 36.5. Найти математическое ожидание $M(2\xi+1)$, дисперсию $D(2\xi+1)$, функцию распределения.

Рис. 36.5

10) Даны случайные величины ξ и η:

η	0	1	2	
p	0,3	0,3	0,4	

۲	-1	0	1	2
p	0,2	0,3	0,1	0,4

Найти $M(\xi + \eta)$.

- **11)** Случайная величина ξ задана формулой $\varphi = \frac{1}{2\sqrt{2\pi}} e^{-\frac{(x-1)^2}{8}}$. Найти $M(3\xi + 2)$, $D(3\xi + 2)$.
- **12)** По 100 парам проданной мужской обуви составлена эмпирическая функция распределения

$$F_{100}(x) = \begin{cases} 0, & x \le 37, \\ 0,04, & 37 < x \le 38, \\ 0,14, & 38 < x \le 39, \\ 0,29, & 39 < x \le 40, \\ 0,52, & 40 < x \le 41, \\ 0,78, & 41 < x \le 42, \\ 0,92, & 42 < x \le 43, \\ 1, & x > 43. \end{cases}$$

Составить ряд распределения числа проданной продукции обуви. Сколько обуви 39 размера было продано?

- **13)** Случайная величина ξ распределена по нормальному закону с параметрами m, σ , причем наблюдаемые значения случайной величины 35, 15, 5, 25, 5. Найти значение параметра m.
- **14)** Случайная величина ξ распределена по показательному закону с параметром λ . По результатам наблюдаемых значений 15, 5, 25, 35 этой случайной величины оценить параметр λ .
 - 15) По данным измерений двух переменных построена таблица:

ξ	9	1	12	5
η	6	4	7	3

Найти выборочный коэффициент корреляции и прямые регрессии.

- **16)** В ящике среди 100 фотокарточек находится одна разыскиваемая. Наудачу извлекли 10 фотокарточек. Найти вероятность того, что среди них окажется нужная.
- 17) В сигнализатор поступили сигналы от двух устройств, причем поступление каждого из сигналов равновозможно в любой момент времени T. Моменты поступления сигналов независимы один от другого. Сигнализатор срабатывает, если разность между моментами поступления сигналов меньше t (t < T). Найти вероятность того, что сигнализатор срабатывает за время T, если каждое из устройств пошлет по одному сигналу.
- **18)** В первой урне 4 белых и 8 черных шаров, во второй 3 белых и 5 черных шаров. Из второй урны в первую переложили один шар, а затем из первой урны вынули наугад один шар. Найти вероятность того, что вынутый шар белый.
- **19)** В группе 20 юношей и 10 девушек. На 3 заданных преподавателем вопроса получены 3 ответа. Найти вероятность того, что среди отвечавших два юноши и одна девушка.
 - 20) Дана плотность распределения случайной величины ξ:

$$\varphi(x) = \begin{cases} 0, & x \le 0; \\ x - \frac{x^3}{4}, & 0 < x \le 2; \\ 0, & x > 2. \end{cases}$$

Найти функцию распределения.

- **21)** Известно, что в одной из трех партий 2/3 деталей бракованные, а в двух других все доброкачественные. Для контроля продукции наугад взята одна деталь. Найти вероятность обнаружения бракованной продукции.
 - 22) Дана функция распределения случайной величины ξ:

$$F(x) = \begin{cases} 0, & x \le 2; \\ (x-2)^2, & 2 < x \le 3; \\ 1, & x < 3. \end{cases}$$

Найти математическое ожидание $M(3\xi + 2)$.

23) Дана функция

$$\varphi(x) = \begin{cases} 0, & x \le 0; \\ ax^2, & 0 < x \le 1; \\ a(2x - x^2), & 1 < x \le 2; \\ 0, & x > 2. \end{cases}$$

При каком значении $a \varphi(x)$ является плотностью распределения случайной величины $\xi \in (0, 2)$? Найти математическое ожидание M(x).

24) Дискретная случайная величина задана рядом распределения:

ξ	-5	2	3	4
р	0,4	0,3	0,1	p_4

Найти p_4 , функцию распределения, среднее квадратическое отклонение.

25) Выборка задана в виде распределения частот:

ξ	4	7	8	12
m	5	2	3	10

Записать статистический ряд, построить полигон, эмпирическую функцию распределения, математическое ожидание, дисперсию.

- **26)** В результате испытания случайная величина ξ приняла следующие значения: 16, 17, 9, 13, 21, 11, 7, 7, 19, 5, 17, 5, 20, 18, 11, 4, 6, 22, 21, 15, 15, 23, 19, 25, 1. Составить интервальный статистический ряд, разбив промежуток (0, 25) на 5 интервалов с одинаковыми длинами. Построить гистограмму.
- **27)** Пятнадцать студентов группы, выбранных случайным образом, имеют следующие оценки по результатам сессии: 5, 4, 4, 3, 2, 2, 4, 3, 3, 5, 3, 3, 4, 2, 3. Составить статистический ряд, найти эмпирическое математическое ожидание, моду (наиболее вероятное значение), среднее квадратическое отклонение, построить полигон.
- **28)** Из нормальной генеральной совокупности с известными m=130, $\sigma=40$ извлечена выборка объемом n=64 и найдено выборочное математическое ожидание $m^*=136,5$. Требуется при уровне значимости 0,01 проверить нулевую гипотезу H_0 : $m^*=m$ при конкурирующей: а) $m \neq m^*$; б) $m^*>m$.

(*Указание*: воспользоваться критерием
$$u = \frac{|m-m^*|\sqrt{n}}{\sigma}$$
.)

- **29)** Установлено, что средний вес таблетки лекарства сильного действия должен быть равен m=0.5 мг, причем вес таблеток распределен нормально, $\sigma=0.11$ мг. При выборочной проверке 121 таблетки из партии лекарств получено выборочное математическое ожидание $m^*=0.53$ мг. Требуется при уровне значимости 0.01 проверить нулевую гипотезу H_0 : $m=m^*$ при конкурирующей гипотезе H_1 : $m^*>m$.
- **30)** Одним и тем же прибором со средним квадратическим отклонением случайных ошибок измерения $\sigma=40$ м произведено пять равноточных измерений расстояния от орудия до цели. Среднее арифметическое результатов измерений $m^*=2000$ м. Найти доверительный интервал для оценки истинного расстояния до цели с надежностью $\gamma=0.95$.

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ

Вариант 1

- **1.** Бросают одновременно три монеты. Найти вероятность появления герба на двух из них. *Ответ*: 3/8.
- **2.** В группе 20 лыжников, 4 бегуна, 6 велосипедистов. Вероятность выполнения нормы для лыжника 0,9, для велосипедиста 0,8, для бегуна 0,75. Найти вероятность того, что наудачу выбранный спортсмен выполнит норму. *Ответ:* $p = \frac{2}{3} \cdot 0,9 + \frac{1}{5} \cdot 0,8 + \frac{2}{15} \cdot 0,75$.
- **3.** Непрерывная случайная величина ξ имеет следующую функцию распределения:

$$F(x) = \begin{cases} 0, & x < 0; \\ 2x - x^2, & 0 \le x \le 1; \\ 1, & x \ge 1. \end{cases}$$

Найти плотность вероятности $\phi(x)$, математическое ожидание $M(\xi)$, дисперсию $D(\xi)$. *Ответ:* $M(\xi) = 1/3$; $D(\xi) = 1/18$.

4. По выборке (n = 15) построен статистический ряд случайной величины:

٤	2	4	6	8
<i>p</i> *	1/5	2/5	1/15	m/15

Найти
$$m$$
, $F^*(x)$, $M^*(2\xi + 3)$. Ответ: $m = 5$; $M^*(2\xi + 3) = 13\frac{2}{15}$.

Вариант 2

1. В урне 4 белых и 5 черных шаров. Найти вероятность того, что среди выбранных наудачу трех шаров будут два белых шара.

Ombem:
$$\frac{C_4^2 C_5^1}{C_9^3} = \frac{5}{14}$$
.

- **2.** Вероятность поражения первой мишени для данного стрелка равна 2/3. Если при первом выстреле зафиксировано попадание, то стрелок получает право на выстрел по второй мишени. Вероятность поражения обеих мишеней при двух выстрелах равна 0,5. Определить вероятность поражения второй мишени. *Ответ*: 0,75.
- **3.** Производятся последовательные независимые испытания пяти приборов на надежность. Каждый следующий прибор испытывается только в том случае, если предыдущий оказался надежным. Построить ряд распределения случайного числа испытанных приборов, если вероятность выдержать испытания для каждого прибора равна 0,9. Найти функцию распределения. *Ответ:* $p_i = P(x = i) = 0,1 \cdot (0,9)^{i-1}$, $i = \overline{1,4}$, $p_5 = (0,9)^4$.
- **4.** По выборке m=10 построена эмпирическая функция распределения:

$$F(x) = \begin{cases} 0, & x \le 1; \\ 0, 2, & 1 < x \le 2; \\ 0, 5, & 2 < x \le 3; \\ 0, 8, & 3 < x \le 4; \\ 1, & x > 4. \end{cases}$$

Построить статистический ряд. Сколько раз наблюдалось значение 3? Найти $M(3\xi + 5)$. *Ответ*: 3 раза; $M(3\xi + 5) = 12,5$.

Ответы к разд. 34, 35, 36

34. Основные понятия теории вероятностей

1)
$$C_8^3 \cdot C_{10}^2$$
; 2) $C_{32}^4 \cdot C_4^2$; 3) A_{10}^2 ; 4) $p_6 = 6!$; 5) $n = 6$, $m = 3$; 6) $n = 16$, $m = 6$; 7) $n = C_{10}^3$, $m = C_3^2 \cdot C_7^3$; 8) $A + B = \Omega$, $AB = 0$; 9) Число оканчивается цифрой 5; 10) Событие C — ничейный результат; 11) $P(A) = \frac{384}{1000} = \frac{48}{125}$; 12) $P(A) = \frac{1}{2}$. Указание: $\Omega = \{(r, r), (r, p), (p, r), (p, p)\}$; 13) $P(A) = \frac{1}{5}$. Указание: $m = C_3^2$, $n = C_6^2$; 14) $P(A) = 0,0029$. Указание: $m = 4^3$, $n = C_{52}^3$; 15) $P(A) = \frac{1}{6^5}$; 16) $P(A) = \frac{2}{9}$. Указание: $m = 8 \cdot 7! \cdot 2!$, $n = 9!$; 17) $P(A) = \frac{5}{108}$. Указание: $m = 4 + 3 + 2 + 1 = 10$, $n = 6 \cdot 6 \cdot 6$; 18) $P(A) = \frac{1}{5}$; 19) $P(A) = 0,75$; 20) $P(A) = 0,7$; 21) $P(A) = 0,25$; 22) а) $P(A) = 0,25$; $P(A) = 0$

35. Случайные величины

1)					2)					
ξ	0	1	2	3	ξ	0	1	2	3	4
p	0,125	0,375	0,375	0,125	p	0,5	0,25	0,125	0,0625	0,0625

Указание: $p_i = 0.5 \cdot (0.5)^{i-1}$, $i = \overline{1.4}$; $p_5 = 0.5^4$;

3) a)
$$a = k^2/2$$
; 6) $F(x) = 1 - e^{-kx} \frac{k^2 x^2 + 2kx + 2}{2}$; B) 0,086;

4) a)
$$1/3$$
; 6) $\varphi(x) = \frac{1}{\pi\sqrt{(a^2 - x^2)}}, x \in (-a, a)$; **5)** a) $M(\xi) = 0.501$,

$$D(\xi) = 0.077$$
; 6) $M(\xi) = 1.5$, $D(\xi) = 0.75$; 6) $M(\xi) = 4/3$; $D(\xi) = 2/9$; 7) $M(\xi) = 0$; $D(\xi) = a^2/2$; 8) $P(\xi = i) = C_5^i(0.6)^i(0.4)^{5-i}$;

$$M(\xi) = 3;$$
 $D(\xi) = 1,2;$ **9)** $P(\xi = 4) = \frac{3^4 e^{-3}}{4!} = 0,17;$ **10)** a) $P(3 < \xi < 5) = 1/3;$ 6) $M(\xi) = 5;$ $D(\xi) = 3;$ **11)** $P(|\xi| < 150) = 0,819;$ **12)** $p = 0,758;$ **13)** $P(\zeta \in D^*) = 1/24;$ **14)** a) $C = \frac{3}{\pi R^3};$ 6) $P = \frac{3a^2}{R^3} \left(1 - \frac{2a}{3R}\right);$ **15)** $M(\xi) = (0, 0);$ **16)** $D(\xi) = D(\eta) = \pi - 3;$ $R(\xi, \eta) = 0;$ **17)** $\varphi(x, y, z) = abce^{-(ax+by+cz)}.$ Указание: $\varphi(x, y, z) = \frac{\partial^3 F}{\partial x \partial y \partial z}.$

36. Элементы математической статистики

1) б) $M^* = 201$; $D^* = 1754$. Нормальный закон распределения; **2)** (94.9 m, 105.1 m); **3)** k = 6; $\gamma^{*2} = 7.09$. Гипотезу можно принять. Указание: Последние два интервала объединяются; 4) Принимаetch H_1 ; 5) a) 1/6; 6) 1/4; 6) 0,844; 7) 6/29; 8) M = 7; D = 4/3; 9) M = 1; D = 16/3; 10) 3,2; 11) 5; 36; 12) 15; 13) 17; 14) 1/17; 15) 0,806; 16) 0,1; 17) $\frac{t(2T-t)}{t^2}$; 18) 15/26; 19) 4/9;

20)
$$F(x) = \begin{cases} 0, & x \le 0; \\ \frac{x^2}{2} - \frac{x^4}{16}, & 0 < x \le 2; \text{21}) & 2/9; \text{22}) & 10; \text{23}) & a = 1, M(\xi) = 1, & x > 2; \end{cases}$$

= $1\frac{1}{6}$; 24) $p_4 = 0,2, \sigma(\xi) = 3,9$; 25) $M^*(\xi) = 8,9$; $D^*(\xi) = 18,475$;

$$= 1\frac{1}{6}; 24) p_4 = 0.2, \ \sigma(\xi) = 3.9; 25) M^*(\xi) = 8.9; D^*(\xi) = 18,475;$$

$$F^*(x) = \begin{cases} 0, & x \le 4; \\ 0.25, \ 4 < x \le 7; \\ 0.35, \ 7 < x \le 8; ; \\ 0.5, \ 8 < x \le 12; \\ 1, & x > 12; \end{cases}$$
26)
$$\frac{\xi}{p^*} \frac{(0.5)}{0.12} \frac{[5,10)}{0.2} \frac{[10,15)}{0.16} \frac{[15,20)}{0.32} \frac{[20,25)}{0.2}$$
27) $M^*(\xi) = 10/3; \ \sigma^*(\xi) = 2\sqrt{2}/3; \ \text{мода } m^* = 3; 28) \ \text{a)} \ u_{\text{Hafi}} = 10.5$

26)
$$\xi$$
 (0,5) [5,10) [10,15) [15,20) [20,25) p^* 0,12 0,2 0,16 0,32 0,2

27) $M^*(\xi) = 10/3$; $\sigma^*(\xi) = 2\sqrt{2}/3$; мода $m^* = 3$; **28)** а) $u_{\text{набл}} =$ = 1,3; $u_{\rm kp}$ = 2,57; принимается H_0 ; б) $u_{\rm kp}$ = 2,33; принимается H_0 . **29)** $u_{\text{Ha6}} = 3$; принимается H_1 ; **30)** 1964,94; 2035,06.

РАСЧЕТНОЕ ЗАДАНИЕ

Здесь n — номер студента по списку, $\alpha\beta\gamma\delta$ — цифры номера группы; $a-1=\lfloor (n+\gamma+\delta)/5 \rfloor$, $b-1=\lfloor (n+\beta)/4 \rfloor$, $k-1=\lfloor (n+\alpha)/3 \rfloor$, $d=\lfloor n/2 \rfloor$.

- **1.** В партии из 12 + a + b деталей 6 + b + k стандартных. Найти вероятность того, что среди отобранных наудачу 5 + b + d деталей 4 + d стандартные.
- **2.** Бросают одновременно 2+d игральных костей. Найти вероятность того, что сумма выпавших цифр меньше $3+k+b+(-1)^{n+1}$.
- **3.** Слово содержит 2 + a + b + k различных букв. Буквы перемешаны. Какова вероятность, что, беря случайным образом по одной букве и складывая их последовательно, мы получим заданное слово из (2 + a) букв.
- **4.** Имеется b+1 различных станков. Вероятность отказа каждого в течение одного часа 0, b. Какова вероятность, что в течение a+1 часа: а) ни одному из станков не потребуется ремонт; б) хотя бы одному станку не потребуется ремонт; в) только одному станку потребуется ремонт?
- 5. На фабрике болты изготавливают 3+d станков, причем первая машина изготавливает $b\cdot 10\%$ всех болтов, а остальные равные количества болтов. Брак продукции составляет для первой машины a%, а для остальных k%. Найти вероятность того, что оказавшийся бракованным болт изготовлен на первой машине.
- **6.** По цели производится 2 + k независимых выстрелов. Вероятность попадания при каждом выстреле равна (a + 2)/10. Составить ряд распределения случайного числа попаданий. Найти F(x), $M(\xi)$, $D(\xi)$, $\sigma(\xi)$.
- 7. Производят последовательные независимые испытания 2 + b приборов на надежность. Каждый следующий прибор испытывают только в том случае, если предыдущий оказался надежным. Построить ряд распределения числа испытанных приборов, если вероятность выдержать испытание для каждого равна (k + 4)/10. Найти F(x), $M(\xi)$, $D(\xi)$, $\sigma(\xi)$.
 - 8. Плотность распределения случайной величины ξ

$$\varphi(x) = \begin{cases} \frac{1}{c}, & a < x < a + b + k; \\ 0, & x < a, x > a + b + k. \end{cases}$$

Найти c, F(x), $M(\xi)$, $D(\xi)$.

9. Функция распределения случайной величины ξ

$$F(x) = \begin{cases} 0, & x < 0; \\ 1 - e^{-(a+b)x}, & x \ge 0. \end{cases}$$

Найти $M(\xi)$, $D(\xi)$, $P(0 < \xi < b)$.

10. Плотность распределения случайной величины ξ

$$\varphi(x) = \frac{1}{k\sqrt{2\pi}} e^{\frac{-(x-b)^2}{2k^2}}.$$

Найти $M(a\xi + b + k)$, $D(a\xi + b + k)$.

11. Выборка задана в виде ряда распределения частот:

ξ	k + 1	k + 3	k + 5	k + 7
m	b + 2	а	b + 1	a + 3

Записать статистический ряд, построить полигон, найти эмпирическую функцию распределения, математическое ожидание, дисперсию, среднее квадратическое отклонение.

12. По данным измерений двух переменных построена таблица:

ξ	k + 1	b + 1	a + 2	k + 3	a + 3
η	k + 2	b	a + 4	k + 5	a + 2

Найти выборочный коэффициент корелляции и прямые регрессии.

Глава 13 ДИСКРЕТНАЯ МАТЕМАТИКА

37. ЛОГИЧЕСКИЕ ИСЧИСЛЕНИЯ

Опорный конспект № 41

37.1. Логика высказываний

Высказывание $a = \{0, 1\}$ — логическая переменная Логические операции:

1. Коньюнкция:

$$c = a \wedge b = egin{cases} 1, & \text{если } a = 1, b = 1, \\ 0, & \text{в остальных случаях} \end{cases}$$

2. Дизъюнкция:

$$c=a\vee b=\begin{cases} 0, \text{ если } a=0, b=0,\\ 1, \text{ в остальных случаях} \end{cases}$$

3. Импликация:

$$c=a\Rightarrow b= egin{cases} 0, \ {
m ec}$$
ли $a=1,b=0, \ 1, \ {
m B}$ остальных случаях

4. Отрицание:

$$b = \overline{a} = \begin{cases} 0, \text{ если } a = 1, \\ 1, \text{ если } a = 0 \end{cases}$$

5. Эквивалентность:

$$c=a \Leftrightarrow b= \begin{cases} 1, \ \text{если} \ a=b=1 \ \text{или} \ a=b=0, \\ 0, \ \text{в остальных случаях} \end{cases}$$

Формула $q = F(p_1, p_2, ..., p_n)$ — булева функция n переменных

37.2. Равносильные формулы логики высказываний

1.
$$\overline{\overline{a}} = a$$
.

$$2. \ a \wedge b = b \wedge a, \ a \vee b = b \vee a.$$

3.
$$(a \wedge b) \wedge c = a \wedge (b \wedge c), (a \vee b) \vee c = a \vee (b \vee c).$$

4.
$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c); a \vee (b \wedge c) =$$

$$= (a \vee b) \wedge (a \vee c).$$

5.
$$\overline{a \wedge b} = \overline{a} \vee \overline{b}, \overline{a \vee b} = \overline{a} \wedge \overline{b}.$$

6.
$$a \wedge a = a$$
, $a \vee a = a$.

7.
$$a \wedge 1 = a, a \vee 1 = 1.$$

8.
$$a \wedge 0 = 0$$
, $a \vee 0 = a$.

9.
$$a \wedge \overline{a} = 0, a \vee \overline{a} = 1.$$

10.
$$a \Rightarrow b = \overline{a} \vee b$$
.

11.
$$a \Rightarrow b = \overline{b} \Rightarrow \overline{a}$$
.

12.
$$a \Leftrightarrow b = (a \Rightarrow b) \land (b \Rightarrow a) = (a \land b) \lor (\overline{a} \land \overline{b})$$

Т: Любая булева функция n переменных представима в виде дизъюнктивной нормальной формы (дизъюнкции конъюнкций из $a_i, \ \overline{a_i}$)

37.3. Элементы логики предикатов

О: Предикат $P(x_1, x_2, ..., x_n)$ — функция: $x_i \in M$, $i = \overline{1, n}$, $P = \{0, 1\}$

 $P(x_1, x_2, ..., x_n) -$ тождественно истинный на M, если при любых $x_i = a_i \in M$, $i = \overline{1, n}$, $P(a_1, a_2, ..., a_n) = 1$

Кроме логических операций вводятся:

а) квантор общности $\forall x$:

 $\forall x P(x) \Leftrightarrow$ для всех x из M значение P(x) = 1;

б) квантор существования $\exists x$:

$$\exists x P(x) \Leftrightarrow$$
 существует x из M , что $P(x) = 1$;

$$\forall x_i P(x_1, x_2, ..., x_n) = Q(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$$

37.4. Понятие о формальных системах, языках и грамматиках

О: Алфавит $V = \{a_1, a_2, ..., a_n\}, a_i$ — символы (буквы, цифры, знаки операций)

Слова (цепочки) α , ξ — последовательности k символов

Формальная грамматика $G = \langle V, W, J, R \rangle$, где V — алфавит основных символов; W — алфавит вспомогательных символов, $V \cap W = \emptyset$; J — начальный символ (аксиома); R — конечное множество правил вывода $\xi \models \eta$; ξ, η — цепочки в алфавите $V \cup W$

Язык L(G) — множество всех цепочек в V, выводимых из J

Задачи к разд. 37

Задача 1. Записать таблицу истинности для формулы $q = p_1 \vee \bar{p}_2 \Rightarrow p_3$.

Решение: Запишем таблицу истинности для $q^* = p_1 \vee \overline{p}_2$, используя ОК, разд. 37.1:

p_1	p_2	\overline{p}_2	$q^* = p_1 \vee \overline{p}_2$
1	1	0	1
1	0	1	1

p_1	p_2	\overline{p}_2	$q^* = p_1 \vee \overline{p}_2$
0	1	0	0
0	0	1	1

Тогда, используя определение импликации, имеем для q следующую таблицу истинности:

p_1	p_2	p_3	q
1	1	1	1
1	0	1	1
1	1	0	0
1	0	0	0
0	1	1	1
0	0	1	1
0	1	0	1
0	0	0	0

Задача 2. Группа из нескольких человек планирует воскресный поход за город. Решено, что два организатора похода придут на место сбора в любом случае, но поход состоится лишь при одном из условий:

- 1) если не найдется палатки, то не должно быть дождя;
- 2) если пойдет дождь, то должна быть палатка и компания больше пяти человек.

Требуется записать высказывание q — «поход состоится» в виде нормальной дизъюнктивной формы, упростить ее и сформулировать условия 1), 2) более кратко.

Решение: Пусть p_1 — высказывание «пойдет дождь», p_2 — «найдется палатка», p_3 — «собралось больше пяти человек»; запишем $q=f(p_1,\;p_2,\;p_3)$ по заданным условиям в виде таблицы истинности:

p_1	p_2	p_3	q
1	1	1	1
1	0	1	0
1	1	0	0
1	0	0	0
0	1	1	1
0	0	1	1

p_1	p_2	p_3	q
0	1	0	1
0	0	0	1

Запишем нормальную дизьюнктивную форму, используя строки с q=1:

$$q = (p_1 \wedge p_2 \wedge p_3) \vee (\overline{p}_1 \wedge p_2 \wedge p_3) \vee (\overline{p}_1 \wedge \overline{p}_2 \vee p_3) \vee (\overline{p}_1 \wedge p_2 \wedge \overline{p}_3) \vee (\overline{p}_1 \wedge p_2 \wedge \overline{p}_3) \vee (\overline{p}_1 \wedge \overline{p}_2 \wedge \overline{p}_3).$$

Упростим ее, используя равносильности 2—4, 7, 9 OK, разд. 37.2:

$$\begin{array}{l} q = (p_{1} \wedge p_{2} \wedge p_{3}) \vee [\overline{p}_{1} \wedge ((p_{2} \wedge p_{3}) \vee (\overline{p}_{2} \wedge p_{3}) \vee \\ \vee (p_{2} \wedge \overline{p}_{3}) \vee (\overline{p}_{2} \wedge \overline{p}_{3}))] = (p_{1} \wedge p_{2} \wedge p_{3}) \vee [\overline{p}_{1} \wedge (p_{3} \wedge (p_{2} \wedge \overline{p}_{2})) \vee (\overline{p}_{3} \wedge (p_{2} \vee \overline{p}_{2}))] = (p_{1} \wedge p_{2} \wedge p_{3}) \vee \\ \vee [\overline{p}_{1} \wedge (p_{3} \vee \overline{p}_{3}))] = (\overline{p}_{1} \wedge p_{2} \wedge p_{3}) \vee \overline{p}_{1} = (p_{1} \vee \overline{p}_{1}) \wedge \\ \wedge ((p_{2} \wedge p_{3}) \vee \overline{p}_{1}) = \overline{p}_{1} \vee (p_{2} \wedge p_{3}). \end{array}$$

Из последней формулы следует краткая формулировка условий, при которых поход состоится: а) не будет дождя или б) соберется больше пяти человек с палаткой.

Задача 3. Построить булеву функцию, отражающую работу устройства, которое состоит из трех узлов, пропускающих некоторый сигнал, если его пропустило большинство узлов. Если сигнал прошел через конкретный узел a_i , в таблице истинности имеем 1, в противном случае — 0.

Решение: Устройство реализует «высказывание» $A(a_1, a_2, a_3)$, таблица истинности которого имеет вид:

a_1	a_2	a_3	$A(a_1, a_2, a_3)$
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	0
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1

При этом функция $A(a_1, a_2, a_3)$ может быть представлена в виде

$$A(a_1, a_2, a_3) = (\overline{a}_1 \wedge a_2 \wedge a_3) \vee (a_1 \wedge \overline{a}_2 \wedge a_3) \vee (a_1 \wedge a_2 \wedge \overline{a}_3) \vee (a_1 \wedge a_2 \wedge a_3).$$

Задача 4. Истинны или ложны следующие предикаты, если $x, y \in \mathbb{R}$:

a) $\forall x \ (x^2 > x \iff x > 1 \lor x < 0)$; 6) $\forall x, \ y \ (x^2 \neq 2y^2)$.

Решение: а) решение неравенства $x^2 - x > 0 \Leftrightarrow x(x - 1) > 0$ находится методом интервалов:

т.е. $x \in (-\infty, 0) \cup (1, +\infty)$, поэтому предикат тождественно истинный:

б) уравнение $x^2 = 2y^2$ записывается в виде $x = \pm \sqrt{2}y$, т.е. для точек (x, y), удовлетворяющих равенству $x \pm \sqrt{2}y = 0$, не выполняется $x^2 \neq 2y^2$, т.е. предикат ложный.

Задачи для самостоятельного решения

- 1) Составить таблицы истинности для следующих формул:
- a) $(a_1 \Rightarrow a_2) \vee \overline{a_3}$; б) $(a_1 \wedge \overline{a_2}) \Rightarrow (a_2 \vee a_3)$; в) $(\overline{a_1} \wedge a_2) \vee (a_2 \Rightarrow a_1)$; г) $(a_1 \Rightarrow a_2) \vee (a_1 \Rightarrow (a_2 \wedge a_1))$.
- 2) С помощью таблиц истинности доказать:
- а) равносильности формул ОК, разд. 37.2; б) формулы поглощения $a \lor (a \land b) = a$; $a \land (a \lor b) = a$.
 - 3) Упростить, пользуясь равносильностями ОК, разд. 37.2:
 - a) $(a \wedge b) \vee (a \wedge \overline{b})$; $(a \vee b) \wedge (a \vee \overline{b})$;
 - B) $p_2 \vee (p_1 \wedge \overline{p}_2 \wedge p_3)$; Γ) $(p_1 \wedge \overline{p}_2 \wedge p_3) \vee (\overline{p}_2 \wedge p_3 \wedge \overline{p}_1)$;
 - д) $(p_1 \Rightarrow p_2) \wedge \overline{p}_2$.
- **4)** По таблицам истинности построить дизъюнктивные нормальные формы для $F_1(p_1, p_2, p_3)$, $F_2(p_1, p_2, p_3)$, $F_3(p_1, p_2, p_3)$ и упростить их.

p_1	p_2	p_3	F_1	F_2	F_3
1	1	1	1	0	0
1	0	1	0	1	0
1	1	0	0	0	1
1	0	0	0	0	1
0	1	1	1	1	1
0	0	1	0	1	1
0	1	0	0	0	0
0	0	0	0	0	0

- **5)** Истинны или ложны следующие предикаты, если $x, y \in \mathbf{R}$:
- a) $P = \forall x \exists y (x + y = 3)$; 6) $P = \exists y \forall x (x + y = 3)$;
- B) $P = \exists x, \ y(x > y > 0 \land x + y = 0);$
- $\Gamma) P = \forall x, y(x < y) \Leftrightarrow \exists z(x < z < y);$
- д) $P = \forall x(x > 2 \land \overline{x > 3} \Leftrightarrow 2 < x \le 3).$

38. ГРАФЫ

Опорный конспект № 38

38.1. Основные понятия и способы задания графов

- **О:** Граф $G = \{V, E\}, V = \{a_1, a_2, ..., a_n\}$ вершины,
- $E = \{(a_i, a_j)\}, i, j = \overline{1, n}$ ребра, $l_{ij} = (a_i, a_j)$ инцидентно a_i, a_j
- G ориентированный граф, если $(a_i,\ a_j),$ $i,j=\overline{1,n},$ упорядоченные пары из V
 - О: Мультиграф граф, имеющий кратные ребра
- \mathbf{O} : Степенью вершины графа G называется число ребер, инцидентных a

Граф изображается диаграммой или задается матрицей смежности (δ_{ij}) n-го порядка, в которой δ_{ij} равно числу ребер, инцидентных a_i и a_i для неориентированниго графа

38.2. Маршруты, цепи и циклы

O: Маршрут M в графе $G = \{V, E\} \iff M = \{l_{ij}\}$, где два соседних ребра имеют общую инцидентную вершину

Цепь — маршрут M, у которого все ребра различны. Простая цепь — маршрут M, у которого все вершины, кроме, быть может, первой и последней, различны

Цикл — цепь, в которой начальная и конечная вершины совпалают

- **О:** Граф G **связный**, если любая пара его вершин соединяется цепью
- **О:** Эйлеров граф ⇔ связный неориентированный мультиграф, для которого существует цикл, содержащий все ребра
- **Т:** Связный неориентированный мультиграф эйлеров т. и т.т., когда степени его вершин четны ■

38.3. Некоторые классы графов

О: Дерево — связный граф без циклов, лес — несвязный граф без циклов

Любая цепь в таком графе — простая. Любые две вершины дерева связаны одной и только одной цепью

- **О:** Остовом графа $G=\{V,\ E\}$ называется дерево $H=\{V,\ E^*\},$ $E^*\subseteq E$
- **О:** Двудольный граф $G = \{V, E\} \Leftrightarrow V = V_1 + V_2$, причем каждое ребро имеет один конец из V_1 , другой из V_2

38.4. Понятие об автоматах, их задание графами

О: Конечный автомат $S = \{A, Q, V, \delta, \lambda\},$

 $A = \{a_1, \ a_2, \ ..., \ a_m\}$ — входной алфавит,

 $V = \{v_1, v_2, ..., v_l\}$ — выходной алфавит,

 $Q = \{q_1, q_2, ..., q_n\}$ — алфавит состояний,

 $q_k = \delta(q_i, a_i)$ — функция переходов,

 $v_r = \lambda(q_i, a_i)$ — функция выходов

Наглядным способом задания автомата является ориентированный мультиграф (граф переходов)

Задачи к разд. 38

Задача 1. Неориентированный граф задан списком ребер (a, b), (a, c), (b, c), (c, d), (d, e). Построить диаграмму и записать матрицу смежности. Привести пример маршрута, не являющегося цепью, и цикла в этом графе.

Решение: Диаграмма графа имеет, например, вид, представленный на рис. 38.1.

Рис. 38.1

Запишем матрицу смежности пятого порядка (δ_{ij}) , в которой элемент (δ_{ii}) равен числу ребер, инцидентных вершинам a_i , a_i :

$$\begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

Пример маршрута, не являющегося цепью: *acbcde*, пример цикла: *abca*.

Задача 2. Построить ориентированный граф по матрице смежности:

$$\begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Каковы степени вершин графа?

Решение: Обозначим вершины графа через a, b, c, d. Поскольку элемент δ_{ij} соответствует числу ребер с началом в a_i и концом в a_j , имеем следующий список ребер: (a,b), (a,c), (b,b), (b,c), (c,d), (d,c) соответственно. Можем построить диаграмму (рис. 38.2).

Рис. 38.2

Определим степени вершин: $S_a = 2$, $S_b = 3$, $S_c = 4$, $S_d = 2$.

Задача 3. Расстояние между потребителями электроэнергии A, Б, Г, Д, Е в десятках километров дано в табл. 38.1. Требуется построить сеть линий электропередач так, чтобы количество затраченных проводов было минимальным и можно было передать энергию из каждого города в любой другой.

Решение: Построим граф G_6 , имеющий шесть заданных вершин, соединенных между собой.

Число ребер соответствует числу элементов в таблице (матрице) расстояний, лежащих выше (ниже) главной нулевой диагонали.

Около каждого ребра указано расстояние между потребителями. Эти величины называют весом соответствующего ребра. Всего можно построить $6^{6-2} = 1296$ деревьев, соединяющих данные пункты. Ищем дерево W, имеющее наименьшую суммарную длину ребер. Число ребер Q графа W можно определить, зная γ — цикломатическое число графа G, число вершин n, число ребер m, число

Рис. 38.3

компонент k графа G_6 : $\gamma = m - n + k = 15 - 6 + 1 = 10, <math>Q = 10$ $= m - \gamma = 15 - 10 = 5$ (pe6ep).

Строим граф W. Для этого:

- 1) выбираем ребро наименьшей длины $l(\Pi, E) = 1$;
- 2) среди оставшихся выбираем ребро меньшей длины: $l(\Gamma, \Pi) = 2$;
- 3) из оставшихся ребер выбираем ребро наименьшей длины, не образующее циклов с уже выбранными: $l(B, \Gamma) = 3$;
- 4) из оставшихся ребер выбираем ребро l(B, Д) = 6, так как оно не образует циклов с уже выбранными;
 - 5) по аналогии с п. 4 выбираем ребро $l(A, \Gamma) = 6$.

На рис. 38.3 остовное дерево W выделено жирной линией. Таким образом, суммарная длина графа L = 1 + 2 + 3 + 6 + 6 = 18.

Задачи для самостоятельного решения

1) Написать матрицы смежности для следующих графов (рис. 38.4):

Рис. 38.4

2) По матрице смежности постройте граф:

a)
$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$
; 6)
$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$
; B)
$$\begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$
.

$$\mathbf{B}) \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}; \ \mathbf{r}) \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix}.$$

3) Доказать, что на рис. 38.5, a и b изображен один и тот же граф.

Рис. 38.5

- 4) Граф с *n* ≥ 2 вершинами называется полным, если каждая его вершина соединена ребром с каждой из остальных вершин. Каково должно быть число вершин полного графа, если известно, что этот граф эйлеров?
- 5) Расстояние между соседними пунктами на графе обозначено цифрой над ребром, соединяющим эти пункты (рис. 38.6). Выбрать кратчайший маршрут из S в R так, чтобы побывать в каждом пункте один раз.

Рис. 38.6

- **6)** Имеется 5 предприятий, из них каждое сотрудничает только с двумя. Возможно ли это? Показать на графе.
- 7) Доказать, что в двудольном графе цикл всегда имеет четное число ребер.
- 8) Пусть имеется 18 команд, желающих участвовать в турнире. С помощью графа дерева спланируйте этапы соревнований: 1/16, 1/8, 1/4, 1/2, финал. Каким должно быть исходное число команд, для того чтобы на любом этапе соревнований каждая команда, дошедшая до этого этапа, участвовала в игре?
- **9)** Из пункта A в пункт B выехали пять машин одной марки разного цвета: белая, черная, красная, синяя, зеленая. Черная едет впереди синей, зеленая впереди белой, но позади синей, красная впереди черной. Каков порядок их движения?

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ

Вариант № 1

- 1. Записать таблицу истинности для формулы $q=(\overline{p}_1\vee p_2) \Leftrightarrow \overline{p}_3.$
- **2.** По табл. 1 истинности построить дизъюнктивную нормальную форму и упростить ее:

 $F(p_1, p_2, p_3)$ p_1 p_2 p_3

Таблица 1

Ответ: $F = \overline{p}_2 \wedge (p_1 \Leftrightarrow \overline{p}_3).$

- 3. Привести пример эйлерова графа.
- **4.** Чему равно выражение $(a \land b) \lor c \lor a \land b \lor a$ при c = 0? *Ответ: a.*

Вариант № 2

1. Проверить равносильность $(a \land b) \land c = a \land (b \land c)$ с помощью таблиц истинности.

2. По табл. 2 истинности построить дизъюнктивную нормальную норму и упростить ее:

Tr ~	_
Таблица	_/
Iuonuuu	_

p_1	p_2	p_3	$F(p_1, p_2, p_3)$
1	1	1	0
1	0	1	1
1	1	0	0
1	0	0	1
0	1	1	0
0	0	1	0
0	1	0	0
0	0	0	0

Ответ: $p_1 \wedge \overline{p}_2$.

3. Записать матрицу смежности для неориентированного графа, заданного диаграммой:

Рис. 38.7

4. Чему равно выражение $(a \lor b) \land c \lor a \land (b \lor c) \land b$ при b = 1? *Ответ*: $c \lor a$.

Ответы к разд. 37, 38

37. Логические исчисления

3) а) a; б) a; в) $p_2 \vee (p_1 \wedge p_3)$; г) $\overline{p}_2 \wedge p_3$; д) $p_1 \vee p_2$; **4)** а) $p_2 \wedge p_3$; б) $p_3 \wedge (\overline{p}_2 \vee \overline{p}_1)$; в) $p_1 \Leftrightarrow \overline{p}_3$; **5)** а) истинен (P=1); б) 0; в) 0; г) 1; д) 1.

38. Графы

$$\textbf{1) a) } \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}; \ \mathbf{r)} \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}; \ \mathbf{д)} \begin{pmatrix} 0 & 2 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix};$$

2)

4) n — нечетное число. *Указание*: Использовать критерий эйлерова графа; **5)** *SCADHFBR*;

8) 16; **9)** 1 — красная, 2 — черная, 3 — синяя, 4 — зеленая, 5 — белая. *Указание*: Строится орграф для отношения: x едет сзади y.

ПРИЛОЖЕНИЯ К ГЛАВЕ 12

Приложение 1

Значения функции Лапласа
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int\limits_0^x \mathrm{e}^{-\frac{x^2}{2}} \mathrm{d}x.$$

х	Ф(х)	x	Ф(х)	x	Ф(х)	x	$\Phi(x)$
0,00	0,00000	0,85	0,30234	1,70	0,45543	2,55	0.49461
0,05	0,01994	0,90	0,31594	1,75	0,45994	2,60	0,49534
0,10	0,03983	0,95	0,32894	1,80	0,46407	2,65	0,49598
0,15	0,05962	1,00	0,34134	1,85	0,46784	2,70	0,49653
0,20	0,07926	1,05	0,35314	1,90	0,47128	2,75	0,49702
0,25	0,09871	1,10	0,36433	1,95	0,47441	2,80	0,49744
0,30	0,11791	1,15	0,37493	2,00	0,47725	2,85	0,49781
0,35	0,13683	1,20	0,38493	2,05	0,47982	2,90	0,49813
0,40	0,15542	1,25	0,39435	2,10	0,48214	2,95	0,49841
0,45	0,17364	1,30	0,40320	2,15	0,48422	3,00	0,49865
0,50	0,19146	1,35	0,41149	2,20	0,48610	3,20	0,49931
0,55	0,20884	1,40	0,41924	2,25	0,48778	3,40	0,49966
0,60	0,22575	1,45	0,42647	2,30	0,48928	3,60	0,499841
0,65	0,24215	1,50	0,43319	2,35	0,49061	3,80	0,4999963
0,70	0,25804	1,55	0,43943	2,40	0,49180	4,00	0,4999997
0,75	0,27337	1,60	0,44520	2,45	0,49286	4,50	0,4999999
0,8	0,28	1,65	0,45053	2,50	0,49379	5,00	0,5000000

Приложение 2

$$\chi^2$$
 — распределение. Значения χ^2 для $P(\chi^2 > \chi^2_\alpha) = \int\limits_{\chi^2_\alpha}^\infty \phi_k(x) \mathrm{d}x = \alpha$

k^{α}	0,99	0,98	0,95	0,90	0,80	0,20	0,10	0,05	0,02	0,01
1	0,0002	0,0063	0,393	0,0158	0,0642	1,642	2,706	3,841	5,412	6,635
2	0,0201	0,0404	0,103	0,211	0,446	3,219	4,605	5,991	7,824	9,210
3	0,115	0,185	0,357	0,584	1,005	4,642	6,251	7,815	9,837	11,341
4	0,297	0,429	0,711	1,064	1,649	5,989	7,779	9,488	11,608	13,277
5	0,554	0,752	1,145	1,610	2,343	7,289	9,236	11,070	13,388	15,086
6	0,872	1,134	1,635	2,204	3,070	8,558	10,645	12,592	15,033	16,812
7	1,239	1,564	2,167	2,833	3,822	9,803	12,017	14,067	16,622	18,475
8	1,646	2,032	2,733	3,490	4,594	11,030	13,362	15,507	18,168	20,090
9	2,088	2,532	3,325	4,168	5,380	12,242	14,684	16,919	19,679	21,666
10	2,558	3,059	3,940	4,865	6,179	13,442	15,987	18,307	21,161	13,209
11	3,053	3,609	4,575	5,578	6,989	14,631	17,275	19,675	22,618	24,725
12	3,571	4,178	5,226	6,304	7,807	15,812	18,549	21,026	24,054	26,217
13	4,107	4,765	5,892	7,042	8,634	16,985	19,812	22,362	25,472	27,688
14	4,660	5,368	6,571	7,790	9,467	18,151	21,064	23,685	26,873	29,141
15	5,229	5,985	7,261	8,547	10,307	19,311	22,307	24,996	28,259	30,578
16	5,812	6,614	7,962	9,312	11,152	20,465	23,542	26,296	29,633	32,000
17	6,408	7,255	8,672	10,085	12,002	21,615	24,769	27,587	30,995	33,409
18	7,015	7,909	9,390	10,865	12,857	22,760	25,989	28,869	32,346	34,805
19	7,633	8,567	10,117	11,651	13,716	23,900	27,204	30,144	33,687	36,191
20	8,260	9,237	10,851	12,443	14,578	25,038	28,412	31,410	35,020	37,566
21	8,897	9,915	11,591	13,240	15,445	26,171	29,615	32,671	36,343	38,932
22	9,542	10,600	12,338	14,041	16,314	27,301	30,813	33,924	37,659	40,289
23	10,196	11,293	13,091	14,848	17,187	28,429	32,007	35,172	38,968	41,638
24	10,856	11,998	13,848	15,659	18,062	29,553	33,196	36,415	40,270	42,980
25	11,524	12,697	14,611	16,473	18,940	30,675	34,382	37,652	41,566	44,314
26	12,198	13,409	15,379	17,292	19,820	31,795	35,563	38,885	42,856	45,642
27	12,879	14,125	16,151	18,114	20,703	32,912	36,741	40,112	44,140	46,963
28	13,565	14,847					37,916	41,337	45,419	48,278
29	14,256	15,574	17,708	19,768	22,475	35,139	39,087	42,557	46,693	49,588
30	14,953	16,306	18,493	20,599	23,364	36,250	40,256	43,773	47,962	50,892

ЛИТЕРАТУРА

- 1. *Баврин И.И.* Высшая математика / И.И. Баврин. М.: Высш. школа, 2001.
- 2. *Берман Г.Н.* Сборник задач по курсу математического анализа / Г.Н. Берман. М.: Наука, 2003.
- 3. *Бугров Л.С.* Сборник задач по курсу математического анализа / Л.С. Бугров, О.М. Никольский. Ростов н/Д: Феникс, 1997.
- 4. *Гмурман В.Е.* Руководство к решению задач по теории вероятностей и математической статистике / В.Е. Гмурман. М.: Высш. школа, 2003.
- 5. *Горбатов В.А.* Дискретная математика / В.А. Горбатов, А.В. Горбатов, М.В. Горбатова. М.: АСТ, 2003.
- 6. *Данко П.Е.* Высшая математика в упражнениях и задачах. В 2 ч. Ч. II / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова. М.: Высш. школа, 1999.
- 7. Задачи и упражнения по математическому анализу для втузов / Г.С. Бараненков и др. М.: Астрель, 2002.
- 8. Математика / Ю.М. Данилов и др. М.: ИНФРА-М, 2006.
- 9. Практикум по дополнительным главам по математике для инженеров / Л.Н. Журбенко и др. Казань: изд-во Казанск. гос. технол. ун-та, 2007.
- 10. Практикум по математике для инженеров / Л.Н. Журбенко и др. Казань: изд-во Казанск. гос. технол. ун-та, 2007.
- 11. Сборник задач по математике / В.А. Болгов и др. М.: Наука, 1981.
- 12. *Щипачев В.С.* Задачник по высшей математике / В.С. Щипачев. М.: Высш. школа, 2003.

СОДЕРЖАНИЕ

Предисловие	3
Список используемых обозначений	4
Глава 1. Элементы линейной алгебры и аналитической	
геометрии	6
1. Линейная алгебра	6
Опорный конспект № 1	6
Задачи к разд. 1.1	8
Задачи для самостоятельного решения	9
Задачи к разд. 1.2	
Задачи для самостоятельного решения	
Задачи к разд. 1.3	. 16
Задачи для самостоятельного решения	. 17
2. Векторная алгебра	. 19
Опорный конспект № 2	. 19
Задачи к разд. 2.1, 2.2	
Задачи для самостоятельного решения	. 23
Задачи к разд. 2.3, 2.4	
Задачи для самостоятельного решения	
Задачи к разд. 2.5	
Задачи для самостоятельного решения	
Задачи к разд. 2.6	
Задачи для самостоятельного решения	
Задачи к разд. 2.7	
Задачи для самостоятельного решения	
Задачи к разд. 2.8	
Задачи для самостоятельного решения	
Задачи к разд. 2.9	
Задачи для самостоятельного решения	
Разные задачи	
Варианты контрольной работы	
Расчетное задание	
Теоретические вопросы	
Задания	
Ответы к разд. 1, 2	. 45
3. Аналитическая геометрия на плоскости	
и в пространстве: прямая и плоскость	
Опорный конспект № 3	. 51

Задачи к разд. 3.1	. 52
Задачи для самостоятельного решения	
Задачи к разд. 3.2	
Задачи для самостоятельного решения	. 55
Задачи к разд. 3.3	. 55
Задачи для самостоятельного решения	. 56
4. Аналитическая геометрия на плоскости:	
кривые II порядка	
Опорный конспект № 4	
Задачи к разд. 4	
Задачи для самостоятельного решения	. 61
5. Аналитическая геометрия в пространстве:	
поверхности II порядка	
Опорный конспект № 5	
Задачи к разд. 5	
Задачи для самостоятельного решения	
Разные задачи	
Варианты контрольной работы	
Расчетное задание	
Теоретические вопросы	
Задания	
Ответы к разд. 3, 4, 5	. 71
Глава 2. Введение в математический анализ	. 73
6. Функции одной переменной. Элементарные функции	. 73
Опорный конспект № 6	. 73
Задачи к разд. 6.1	. 75
Задачи для самостоятельного решения	
Задачи к разд. 6.2, 6.3	. 75
Задачи для самостоятельного решения	. 76
7. Пределы функции одной переменной	
Опорный конспект № 7	
Задачи к разд. 7.1, 7.2	
Задачи для самостоятельного решения	
Задачи к разд. 7.3—7.7	
Задачи для самостоятельного решения	
8. Непрерывные функции одной переменной (НФОП)	. 86
Опорный конспект № 8	. 86
Задачи к разд. 8	
Задачи для самостоятельного решения	
Варианты контрольной работы	
Ответы к разд. 6, 7, 8	. 89

Глава 3. Дифференциальное исчисление функции	
одной переменной	91
9. Дифференцируемые функции одной переменной.	91
Опорный конспект № 9	91
Задачи к разд. 9.1—9.6	92
Задачи для самостоятельного решения	95
Задачи к разд. 9.7—9.9	97
Задачи для самостоятельного решения	99
10. Исследование функций и построение графиков.	100
Опорный конспект №10	100
Задачи к разд. 10.1, 10.2	102
Задачи для самостоятельного решения	104
Задачи к разд. 10.3—10.8	104
Задачи для самостоятельного решения	108
Варианты контрольной работы	109
Расчетное задание	110
Контрольные вопросы к заданиям 1—4	
Контрольные вопросы к заданиям 6—9	
Ответы к разд. 9, 10	115
Глава 4. Дифференциальное исчисление функций	
нескольких переменных	119
11. Дифференцируемые функции нескольких	
переменных	
Опорный конспект № 11	
Задачи к разд. 11.1, 11.2	
Задачи для самостоятельного решения	
Задачи к разд. 11.3—11.5	
Задачи для самостоятельного решения	
Задачи к разд. 11.6, 11.7	
Задачи для самостоятельного решения	129
12. Приложения дифференциального исчисления	
функций нескольких переменных	
Опорный конспект № 12	
Задачи к разд. 12	
Задачи для самостоятельного решения	
Варианты контрольной работы	
Ответы к разд. 11, 12	136
Глава 5. Комплексные числа. Функции комплексного	
переменного	
13. Комплексные числа (к.ч.)	139

Опорный конспект № 13	. 139
Задачи к разд. 13	. 140
Задачи для самостоятельного решения	. 142
14. функции комплексного переменного (ФКП)	. 143
Опорный конспект № 14	
Задачи к разд. 14	. 144
Задачи для самостоятельного решения	. 146
Варианты контрольной работы	. 147
Расчетное задание	. 147
Теоретические вопросы	. 147
Задания	. 148
Ответы к разд. 13, 14	. 149
Глава 6. Интегральное исчисление функции одной	
переменной	
15. Неопределенный интеграл (н.и.)	
Опорный конспект № 15	
Задачи к разд. 15	. 152
Задачи для самостоятельного решения	. 152
Задачи для самостоятельного решения	. 154
Задачи для самостоятельного решения	. 156
16. Классы интегрируемых функций	
Опорный конспект № 16	. 157
Задачи к разд. 16.1	. 158
Задачи для самостоятельного решения	. 161
Задачи к разд. 16.2	. 161
Задачи для самостоятельного решения	. 163
Задачи к разд. 16.3	. 163
Задачи для самостоятельного решения	. 165
Варианты контрольной работы	. 166
Расчетное задание	. 167
Теоретические вопросы	. 169
Ответы к разделам 15, 16	. 169
17. Определенный интеграл (О.И.)	. 172
Опорный конспект № 17	. 172
Задачи к разд. 17.1—17.3	. 174
Задачи для самостоятельного решения	. 175
Задачи к разд. 17.4	. 176
Задачи для самостоятельного решения	. 178
Задачи к разд. 17.5	
Задачи для самостоятельного решения	. 179

18. Геометрические приложения определенного	
интеграла	. 180
Опорный конспект № 18	
Задачи к разд. 18.1	. 182
Задачи для самостоятельного решения	
Задачи к разд. 18.2	. 185
Задачи для самостоятельного решения	. 186
Задачи к разд. 18.3	. 186
Задачи для самостоятельного решения	. 188
Варианты контрольной работы	. 188
Расчетное задание	
Теоретические вопросы	
Ответы к разд. 17, 18	. 195
19. Элементы теории функций и функционального	
анализа	
Опорный конспект № 19	
Задачи для самостоятельного решения к разд. 19.3	. 197
Глава 7. Обыкновенные дифференциальные уравнения	. 198
20. Обыкновенные дифференциальные уравнения	
I порядка	. 198
Опорный конспект № 20	
Задачи к разд. 20.1—20.3	. 199
Задачи для самостоятельного решения	
Задачи к разд. 20.4	. 202
Задачи для самостоятельного решения	. 202
Задачи к разд. 20.5	. 203
Задачи для самостоятельного решения	. 204
21. Обыкновенные дифференциальные уравнения	
II порядка	. 204
Опорный конспект № 21	. 204
Задачи к разд. 21.1—21.2	. 206
Задачи для самостоятельного решения	. 207
Задачи к разд. 21.3	. 207
Задачи для самостоятельного решения	. 208
Задачи для самостоятельного решения	. 210
22. Понятие о решении ОДУ высших порядков и систем	
дифференциальных уравнений	
Опорный конспект № 22	
Задачи к разд. 22	
Задачи для самостоятельного решения	
Вапианты контрольной работы	

Дополнительные задания к вариантам контрольной	
работы	
Расчетное задание	
Задача о концентрации раствора	
Задача об охлаждении тела	
Задача о движении	
Теоретические вопросы	
Ответы к разд. 20-22	219
22. ОДУ высших порядков и системы ДУ	221
Глава 8. Интегрирование функций нескольких переменных	222
23. Двойной интеграл	222
Опорный конспект № 23	222
Задачи к разд. 23.1—23.4	224
Задачи для самостоятельного решения	227
Задачи к разд. 23.5	228
Задачи для самостоятельного решения	232
24. Тройные <i>n</i> -кратные интегралы	233
Опорный конспект № 24	233
Задачи к разд. 24.1—24.3	235
Задачи для самостоятельного решения	
Задачи к разд. 24.4	238
Задачи для самостоятельного решения	239
Варианты контрольной работы	240
Расчетное задание	241
Ответы к разд. 23, 24	242
Глава 9. Векторный анализ	244
25. Криволинейный интеграл по длине дуги (І рода)	244
Опорный конспект № 25	244
Задачи к разд. 25	245
Задачи для самостоятельного решения	246
26. Криволинейный интеграл по координатам	
(КИ II рода)	247
Опорный конспект № 26	247
Задачи к разд. 26.1—26.3	249
Задачи для самостоятельного решения	251
Задачи к разд. 26.5	251
Задачи для самостоятельного решения	
Задачи к разд. 26.6—26.8	
Задачи для самостоятельного решения	256
27. Поверхностные интегралы	257

Опорный конспект № 27	257
Задачи к разд. 27	259
Задачи для самостоятельного решения	261
28. Скалярное и векторное поля	
Опорный конспект № 28	
Задачи к разд. 28.1	
Задачи для самостоятельного решения	265
Задачи к разд. 28.2	266
Задачи для самостоятельного решения	
Варианты контрольной работы	270
Расчетное задание	
Ответы к разд. 25–28	276
Глава 10. Числовые и функциональные ряды	278
29. Числовые ряды	278
Опорный конспект № 29	
Задачи к разд. 29.1—29.4	280
Задачи для самостоятельного решения	281
Задачи к разд. 29.5, 29.6	282
Задачи для самостоятельного решения	284
30. Степенные ряды	284
Опорный конспект № 30	284
Задачи к разд. 30.1—30.6	286
Задачи для самостоятельного решения	288
Задачи к разд. 30.7	
Задачи для самостоятельного решения	289
31. Ряды Фурье	
Опорный конспект № 31	290
Задачи к разд. 31	
Задачи для самостоятельного решения	
Варианты контрольной работы	
Расчетное задание	
Ответы к разд. 29-31	297
Глава 11. Уравнения математической физики	299
32. Основные типы уравнений математической физики	299
Опорный конспект № 32	299
Задачи для самостоятельного решения	300
33. Методы решения уравнений математической	
физики	300
Опорный конспект № 33	
Задачи к разд. 33	302

Задачи для самостоятельного решения	 304
Расчетное задание	
Ответы к разделам 32, 33	 307
Глава 12. Элементы теории вероятностей и математической	
статистики	 309
34. Основные понятия теории вероятностей	
Опорный конспект № 34	
Задачи к разд. 34.1, 34.2	
Задачи для самостоятельного решения	
Задачи к разд. 34.3	
Задачи для самостоятельного решения	
Задачи к разд. 34.4	
Задачи для самостоятельного решения	 317
Задачи к разд. 34.5	
Задачи для самостоятельного решения	 319
35. Случайные величины	 319
Опорный конспект № 35	 319
Задачи к разд. 35.1	
Задачи для самостоятельного решения	
Задачи к разд. 35.2	
Задачи для самостоятельного решения	
Задачи к разд. 35.3	
Задачи для самостоятельного решения	
Задачи к разд. 35.4	
Задачи для самостоятельного решения	
36. Элементы математической статистики	
Опорный конспект № 36	
Задачи к разд. 36	
Задачи для самостоятельного решения	
Разные задачи	
Варианты контрольной работы	
Ответы к разд. 34, 35, 36	
Расчетное задание	 346
Глава 13. Дискретная математика	 348
37. Логические исчисления	 348
Опорный конспект № 41	 348
Задачи к разд. 37	
Задачи для самостоятельного решения	
38. Графы	
Опорный конспект № 38	 353

Задачи к разд. 38	. 354
Задачи для самостоятельного решения	. 356
Варианты контрольной работы	. 358
Ответы к разд. 37, 38	. 359
Приложения к главе 12	. 361
Приложение 1	. 361
Приложение 2	. 362
Литература	. 363

По вопросам приобретения книг обращайтесь:

Отдел продаж «ИНФРА-М» (оптовая продажа):

127282, Москва, ул. Полярная, д. 31в, тел.: (495) 380-4260; факс: (495) 363-9212 E-mail: books@infra-m.ru

Магазин «Библиосфера» (розничная продажа):

109147, Москва, ул. Марксистская, д. 9, тел. (495) 670-5218, 670-5219

Отдел «Книга-почтой»:

тел. (495) 363-4260 (доб. 232, 246)

Центр комплектования библиотек:

119019, Москва, ул. Моховая, д. 16 (Российская государственная библиотека, кор. K) тел. (495) 202-9315

Учебное издание

Лариса Никитична Журбенко, Галина Анатольевна Никонова, Наталья Владимировна Никонова, Серафима Наилевна Нуриева, Ольга Михайловна Дегтярева

МАТЕМАТИКА В ПРИМЕРАХ И ЗАДАЧАХ

УЧЕБНОЕ ПОСОБИЕ

Редактор Г.Н. Багдасарова

Корректор Л.С. Куликова

Компьютерная верстка А.И. Паркани

Оформление серии К.В. Пономарев

Подписано в печать 20.07.2008.

Формат 60х90/16. Бумага офсетная. Печать офсетная. Гарнитура Newton. Усл. печ. л. 24,0. Уч.-изд. л. 23,8.

Тираж 2000 экз. Заказ №

Издательский Дом «ИНФРА-М»

127282, Москва, ул. Полярная, д. 31в

Тел.: (495) 380-05-40, 380-05-43. Факс: (495) 363-92-12.

E-mail: books@infra-m.ru http://www.infra-m.ru