Sobre el Principio de Mínima Acción

A. Blato

Licencia Creative Commons Atribución 3.0 (2015) Buenos Aires

Argentina

En mecánica clásica, este artículo obtiene el principio de mínima acción de una manera didáctica y sencilla para una sola partícula.

Introducción

Consideremos la siguiente ecuación tautológica (ecuación que no se puede refutar empíricamente) para una sola partícula:

$$\frac{d(\mathbf{v} \cdot \delta \mathbf{r})}{dt} = \delta \frac{1}{2} \mathbf{v} \cdot \mathbf{v} + \mathbf{a} \cdot \delta \mathbf{r}$$

Ahora integrando con respecto al tiempo desde t_1 a t_2 , resulta:

$$\int_{t_1}^{t_2} \left[\frac{d(\mathbf{v} \cdot \delta \mathbf{r})}{dt} \right] dt = \int_{t_1}^{t_2} \left[\delta \frac{1}{2} \mathbf{v} \cdot \mathbf{v} + \mathbf{a} \cdot \delta \mathbf{r} \right] dt$$

El lado izquierdo de la ecuación es igual a cero, por lo tanto, se obtiene:

$$0 = \int_{t_1}^{t_2} \left[\delta \frac{1}{2} \mathbf{v} \cdot \mathbf{v} + \mathbf{a} \cdot \delta \mathbf{r} \right] dt$$

Esta última ecuación aún es tautológica y sería la ecuación, la estructura o la base matemática del principio de mínima acción en mecánica clásica para una sola partícula.

Ahora si multiplicamos por la masa m de la partícula que es un invariante nos da la siguiente ecuación que también es tautológica:

$$0 = \int_{t_1}^{t_2} \left[\delta \frac{1}{2} m (\mathbf{v} \cdot \mathbf{v}) + m \mathbf{a} \cdot \delta \mathbf{r} \right] dt$$

Pero como en todo sistema inercial $\mathbf{a} = \mathbf{F}/m$ (así como en todo sistema no inercial considerando a las fuerzas ficticias) entonces reemplazando nos da la siguiente ecuación que ya es empírica:

$$0 = \int_{t_1}^{t_2} \left[\delta \frac{1}{2} m (\mathbf{v} \cdot \mathbf{v}) + \mathbf{F} \cdot \delta \mathbf{r} \right] dt$$

Si sobre la partícula sólo actúan fuerzas conservativas entonces $\delta V = -{\bf F}\cdot \delta {\bf r}$ y como $T=\frac{1}{2}m({\bf v}\cdot {\bf v})$ reemplazando queda:

$$0 = \int_{t_1}^{t_2} \left[\delta T - \delta V \right] dt$$

Esto es:

$$0 = \delta \int_{t_1}^{t_2} \left[T - V \right] dt$$

O bien:

$$\delta \int_{t_1}^{t_2} \left[T - V \right] dt = 0$$

Finalmente se obtiene:

$$\delta \int_{t_1}^{t_2} L \, dt = 0$$

Puesto que L = T - V.

Anexo

$$\frac{d}{dt}(\mathbf{v} \cdot \delta \mathbf{r}) = \dots$$

$$\frac{d}{dt}(m\mathbf{v}\cdot\delta\mathbf{r})=\dots$$

$$\sum_{i} \frac{d}{dt} (m_i \, \mathbf{v}_i \cdot \delta \mathbf{r}_i) = \dots$$

$$\sum_{i,j} \frac{d}{dt} (m_i \mathbf{v}_i \cdot \frac{\partial \mathbf{r}_i}{\partial q_j} \, \delta q_j) = \dots$$

$$\textstyle \sum_{i,j} \frac{d}{dt} (m_i \, \mathbf{v}_i \cdot \frac{\partial \mathbf{r}_i}{\partial q_j} \, \, \delta q_j) = \sum_{i,j} m_i \, \mathbf{v}_i \cdot \frac{d}{dt} (\frac{\partial \mathbf{r}_i}{\partial q_j} \, \, \delta q_j) + \sum_{i,j} m_i \, \mathbf{a}_i \cdot \frac{\partial \mathbf{r}_i}{\partial q_j} \, \, \delta q_j$$

$$\textstyle \sum_{i,j} \frac{d}{dt} (m_i \, \mathbf{v}_i \cdot \frac{\partial \mathbf{r}_i}{\partial q_j} \, \, \delta q_j) - \sum_{i,j} m_i \, \mathbf{v}_i \cdot \frac{d}{dt} (\frac{\partial \mathbf{r}_i}{\partial q_j} \, \, \delta q_j) = \sum_{i,j} m_i \, \mathbf{a}_i \cdot \frac{\partial \mathbf{r}_i}{\partial q_j} \, \, \delta q_j$$

$$\sum_{i,j} \left[\frac{d}{dt} (m_i \, \mathbf{v}_i \cdot \frac{\partial \mathbf{r}_i}{\partial q_j}) - m_i \, \mathbf{v}_i \cdot \frac{d}{dt} (\frac{\partial \mathbf{r}_i}{\partial q_j}) \right] \delta q_j = \sum_{i,j} m_i \, \mathbf{a}_i \cdot \frac{\partial \mathbf{r}_i}{\partial q_j} \, \delta q_j$$

$$\textstyle \sum_{i,j} \big[\frac{d}{dt} (m_i \, \mathbf{v}_i \cdot \frac{\partial \mathbf{r}_i}{\partial q_i}) - m_i \, \mathbf{v}_i \cdot \frac{d}{dt} (\frac{\partial \mathbf{r}_i}{\partial q_j}) \big] \, \delta q_j = \sum_{i,j} \mathbf{F}_i \cdot \frac{\partial \mathbf{r}_i}{\partial q_j} \, \delta q_j$$

Bibliografía

http://forum.lawebdefisica.com/threads/28510-Estructura-del-principio-de-mínima-acción http://es.wikipedia.org/wiki/Principio_de_mínima_acción

http://es.wikipedia.org/wiki/Desplazamiento_virtual