Jean-Marie Dufour Janvier 2002

Compilé: 19 janvier 2002

THÉORIE ÉCONOMÉTRIQUE AVANCÉE EXERCICES 5

ESTIMATION SANS BIAIS

- 1. Montrez que, si une fonction $g(\theta)$ d'un paramètre est non identifiable, il n'existe pas d'estimateur sans biais de $g(\theta)$.
- 2. (a) Quand un modèle paramétrique dominé est-il régulier?
 - (b) Énoncez l'inégalité de Fréchet-Darmois-Cramer-Rao.
 - (c) Démontrez l'inégalité de Fréchet-Darmois-Cramer-Rao.
- 3. Énoncez et démontrez le théorème de Lehmann-Scheffé.
- 4. Soit $T^*(Y)$ un estimateur optimal sans biais de $g(\theta)$ et soit T(Y) tout autre estimateur sans biais de $g(\theta)$. [La fonction de risque utilisée est le risque quadratique matriciel.]
 - (a) Montrez que $T^*(Y)$ et $T(Y) T^*(Y)$ sont non corrélés.
 - (b) Montrez que l'estimateur optimal sans biais est unique.
- 5. Considérez le modèle linéaire classique

$$y = X\beta + u$$

où X est une matrice fixe de dimension $n \times k$ telle que $1 \le \operatorname{rang}(X) = k < n$ et $u \sim N[0, \sigma^2 I_n]$.

- (a) Montrez que $\hat{\beta} = (X'X)^{-1}X'y$ et $s^2 = \hat{u}'\hat{u}/(n-k)$, où $\hat{u} = y X\hat{\beta}$, sont des statistiques exhaustives pour le vecteur de paramètres $(\beta', \sigma^2)'$.
- (b) Montrez que $\hat{\beta}$ et s^2 sont optimaux parmi tous les estimateurs sans biais de β et σ^2 (au sens de l'erreur quadratique matricielle).