Lineare Algebra S2

Raphael Nambiar

Version: 3. Juni 2022

Vektorgeometrie

Begriffe

Kollinear: Es existiert eine Gerade q, zu der beide Vektoren parallel

Komplanar: Existiert eine Ebene e, zu der alle drei Vektoren parallel.

Ortsvektor: Beginnt vim Ursprung. Schreibweise: $\vec{r}(P)$ **Nullvektor:** Vektor mit Betrag 0,keine Richtung.: $\vec{0}$

Betrag

$$\mid \vec{a} \mid = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \sqrt{x^2 + y^2 + z^2}$$

Skalarprodukt

$$\vec{a} \cdot \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \cdot \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = a_x b_x + a_y b_y + a_z b_z$$
$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\varphi)$$

$$\cos(\varphi) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} \to \arccos(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|})$$

Orthogonal

Wenn zwei Vektoren senkrecht zueinander sind.

$$\vec{a} \cdot \vec{b} = 0$$

Orthogonale Projektion

Projektion des Vektores \vec{b} auf den Vektor \vec{a} .

$$\vec{b}_a = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \cdot \vec{a}$$

$$|\vec{b}_a| = \frac{|\vec{a}| \cdot |\vec{b}|}{|\vec{a}|}$$

$$|\vec{b}_a| = |\vec{a}| \cdot \cos(\varphi)$$

Zwischenwinkel

$$\varphi = \cos^{-1}(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|})$$

Einheitsvektor

$$ec{e}_a = rac{1}{|ec{a}|} \cdot ec{a}$$
 ; $|ec{e}_a| = 1$

Vektorprodukt / Kreuzprodukt

$$\begin{pmatrix}
a_1 \\
a_2 \\
a_3
\end{pmatrix}
\begin{pmatrix}
b_1 \\
b_2 \\
b_3
\end{pmatrix} = \begin{pmatrix}
a_2b_3 - a_3b_2 \\
a_3b_1 - a_1b_3 \\
a_1b_2 - a_2b_1
\end{pmatrix}$$

$$\begin{pmatrix}
a_1 \\
a_2 \\
a_3
\end{pmatrix}
\begin{pmatrix}
b_1 \\
b_2 \\
b_3
\end{pmatrix}$$

$$\begin{pmatrix}
a_1b_2 - a_2b_1
\end{pmatrix}$$

$$\begin{array}{ll} \mid \vec{a} \times \vec{b} \mid = \mid \vec{a} \mid \cdot \mid \vec{b} \mid \cdot \cos(\alpha) & g : \vec{r}(P) + \\ \vec{a} \times \vec{b} \text{ ist orthogonal zu } \vec{a} \text{ und} & \text{P: Aufpunkt} \\ \text{zu } \vec{b} & \vec{a} = \overrightarrow{PQ}; = \end{array}$$

Kreuzprodukt in R²

Seien a und b zwei Vektoren, dann gilt für das Kreuzprodukt in R^2 :

$$\begin{split} \mathbf{a} &= \begin{bmatrix} a_x \\ a_y \end{bmatrix} \quad \text{ und } \quad \mathbf{b} = \begin{bmatrix} b_x \\ b_y \end{bmatrix} \\ \vec{\mathbf{a}} \times \vec{\mathbf{b}} &= \det \begin{pmatrix} \vec{\mathbf{a}} \, \vec{\mathbf{b}} \end{pmatrix} = \begin{vmatrix} \mathbf{a}_x & \mathbf{b}_x \\ \mathbf{a}_y & \mathbf{b}_y \end{vmatrix} = \mathbf{a}_x \cdot \mathbf{b}_y - \mathbf{b}_x \cdot \mathbf{a}_y \end{split}$$

Fläche / Parallelogramm

$$\mid \vec{a} imes \vec{b} \mid = \mathsf{A}$$
 $\mathsf{Dreieck} = \frac{1}{2} \, \mathsf{A}$

Volumen / Spatprodukt

Das Spatprodukt der drei Vektoren $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ und $\vec{c} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$

berechnest du mit

• $(\vec{a} \times \vec{b}) \cdot \vec{c}$ oder mit • der Determinante $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ Volumen: -> \mid Betrag nehmen \mid

Geraden

Parameterdarstellung

$$g: \vec{r}(P) + \lambda \cdot \vec{a}$$

 $\vec{a} = \overrightarrow{PQ}$; = Richtungsvektor

Koordinatendarstellung

$$g: ax + by + c = 0$$

Koordinatendarstellung zu Parameterdarstellung

Zwei Punkte auf q bestimmen: 2 beliebige x Koordinaten wählen und in q einsetzen. Danach jeweils q auslesen. Dies ergibt zwei Punkte P,Q. In Parameterdarstellung bringen.

Parameterdarstellung zu Koordinatendarstellung

Gerade
$$g: \begin{pmatrix} 7\\1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} -2\\-4 \end{pmatrix}$$

Gleichungssystem aufstellen und Lösen:

$$x = 7 - 2\lambda$$
$$y = 1 - 4\lambda$$

In Koordinatendarstellung bringen: -2x + y + 13 = 0

Abstand Punkt zu Geraden

Gerade g:
$$\begin{pmatrix} 1\\13\\-5 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 3\\5\\-4 \end{pmatrix}$$

Punkt A:
$$(3, -1, 4)$$

$$\overrightarrow{PA} = \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} - \begin{pmatrix} 1 \\ 13 \\ -5 \end{pmatrix} = \begin{pmatrix} 2 \\ -14 \\ 9 \end{pmatrix}$$

$$l = \frac{|PA \times \vec{a}|}{|\vec{a}|}$$

 $\vec{a} \Rightarrow$ aus der Parameterdarstellung

Ebene

Normalenvektor der Ebene (orthogonal zur Ebene)

Auf der Ebene E senkrecht stehnder Vektor \vec{n} .

$$\vec{n} = \vec{a} \times \vec{b}$$

Parameterdarstellung

$$E: \vec{r}(P) + \lambda \cdot \vec{a} + \mu \cdot \vec{b}$$

P: Aufpunkt

$$\vec{a} = \overrightarrow{PQ}$$
; $\vec{b} = \overrightarrow{PR} = \text{Richtungsvektoren}$

Koordinatendarstellung

$$E: ax + by + cz + d = 0$$

Parameterdarstellung zu Koordinatendarstellung

$$E: \begin{pmatrix} 2\\4\\1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1\\3\\1 \end{pmatrix} + \mu \cdot \begin{pmatrix} 2\\4\\-4 \end{pmatrix}$$
$$\vec{n} = \begin{pmatrix} 1\\3\\1 \end{pmatrix} \times \begin{pmatrix} 2\\4\\-4 \end{pmatrix} = \begin{pmatrix} -14\\6\\-4 \end{pmatrix}$$

- 2 Koordinatendarstellung E: -14x + 6y 4z + d = 0
- (3) Aufpunkt einsetzen: $\begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} \Rightarrow E: -14 \cdot 2 + 6 \cdot 4 4 \cdot 1 + d = 0$
- (4) d ausrechnen: $E: -14 \cdot 2 + 6 \cdot 4 4 \cdot 1 + d = 0 \Rightarrow d = 8$
- (5) E: -14x + 6y 4z + 8 = 0 $\Rightarrow \frac{-14x + 6y - 4z + 8 = 0}{2} \Rightarrow E: -7x + 3y - 2z + 4 = 0$

Koordinatendarstellung zu Parameterdarstellung

Wir bestimmen drei beliebige Punkte auf E, indem wir die x- und y- Koordinaten frei wählen und die zugehörigen z-Koordinaten aus der Koordinatendarstellung von E berechnen. Aus diesen drei Punkten können wir dann eine Parameterdarstellung von E gewinnen.

$$\begin{array}{lll} E: 2x + 7y - 4z + 1 = 0 \\ x = 0, y = 0 & -4z + 1 = 0 \Rightarrow z = 1/4 \Rightarrow P = (0; 0; 1/4) \\ x = 1, y = 0 & 2 - 4z + 1 = 0 \Rightarrow z = 3/4 \Rightarrow Q = (1; 0; 3/4) \\ x = 0, y = 1 & 7 - 4z + 1 = 0 \Rightarrow z = 2 \Rightarrow R = (0; 1; 2) \end{array}$$
 Eine mögliche Parameterdarstellung der Ebene $E: \begin{pmatrix} 0 \\ 0 \\ 1/4 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ 0 \\ \frac{1}{7} \end{pmatrix} + \mu \cdot \begin{pmatrix} 0 \\ 1 \\ \frac{7}{7} \end{pmatrix}$

Abstand Punkt zu Ebene

Abstand
$$l=rac{|ax_A+bx_A+cz_A+d|}{|\vec{n}|}$$

Ebene
$$E: 3x - 6y - 2z + 67 = 0$$

Punkt $A = (3, -4, 1)$

(2)
$$l = \frac{(3\cdot3) - (6\cdot(-4)) - (2\cdot1)}{7} = 14$$

normierte Koordinatendarstellung der Ebene

$$E: 2x + 7y - 4z + 1 = 0$$

$$\vec{n} = \begin{pmatrix} 2 \\ -6 \\ 2 \end{pmatrix}$$
 $|\vec{n}| = \sqrt{2^2 + (-6)^2 + 3^2} = \sqrt{49} = 1$

normierte Koordinatendarstellung der Ebene

E:
$$\frac{2}{7} \cdot x - \frac{6}{7} \cdot y + \frac{3}{7} \cdot z + \frac{4}{7} = 0$$

Linearen Gleichungssysteme

Rang

Matrix muss in Zeilenstufenform sein.

rg(A) = Gesamtanzahl Zeilen - Anzahl Nullzeilen .

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 6 & 4 \\ 0 & 3 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & 6 & 4 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \underset{\mathsf{rang}(\mathsf{A}|\mathsf{b})}{\mathsf{rang}(\mathsf{A}|\mathsf{b})} = 2$$

Lösbarkeit von LGS

n = Anzahl Spalten(Variablen)

Das LGS $A \cdot \vec{x} = \vec{c}$ ist genau dann lösbar, wenn $\operatorname{rg}(A) = \operatorname{rg}(A \mid \vec{c})$. Es hat genau eine Lösung, falls **zusätzlich** gilt: $\operatorname{rg}(A) = n$. Es hat unendlich viele Lösungen, falls **zusätzlich** gilt: $\operatorname{rg}(A) < n$.

Freie Variable

Lösungsmenge: $\lambda_3=$ kann beliebig gewählt werden, ∞ -viele Lösungen.

Matrizen

Begriffe

Quadratische Matrix: gleich viele Zeilen und Spalten

Hauptdiagonale: Die Diagonale von links oben nach rechts unten

Untere- und obere Dreiecksmatrix

Beispiel	(a) (1. L. J.) .0 .4. S. .0 .6.	(b) (1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
	ale Nyl.	ale Nul.
Bezeichnung	Ober Oreichmatin	Unler Driechnah

Symmetrische Matrix : symmetrisch bzgl. Hauptdiagonale

$$\begin{pmatrix} 1 & 5 & 6 \\ 5 & 2 & 3 \\ 6 & 3 & 1 \end{pmatrix}$$

Multiplikation / Rechenregeln

$$A = \begin{pmatrix} 2 & -3 \\ 2 & 1 \end{pmatrix}$$

$$\begin{vmatrix} 2 & -3 \\ 2 & 1 \end{vmatrix}$$

$$A, B, C \in \mathbb{R}^{m \times n} \land \lambda, \mu \in \mathbb{R}$$

$$A + (B + C) = (A + B) + C$$

$$A + B = B + A$$

$$A + 0 = A$$

$$A - A = 0 \text{ (Null matrix)}$$

Transponieren

$$A = \begin{pmatrix} 2 & 3 & 0 \\ 1 & 4 & 5 \end{pmatrix} \rightarrow A^T = \begin{pmatrix} 2 & 1 \\ 3 & 4 \\ 0 & 5 \end{pmatrix}$$

Rechenregeln:

$$(A^T)^T = A$$
$$(A+B)^T = A^T + B^T$$
$$(A \cdot B)^T = B^T \cdot A^T$$

Gilt $A = A^T$, so heißt die Matrix A symmetrisch.

Gilt $A = -A^T$, so heißt die Matrix A antisymmetrisch.

Inverse

Matrix muss quadratisch sein: $n \times n \rightarrow 2 \times 2, 3 \times 3$

2x2

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Die 2×2 -Matrix hat genau dann ein Invese wenn $ad-bc \neq 0$

3x3 und grösser

Determinante

2x2

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \cdot d - b \cdot c$$

3x3 Regel von Sarrus

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \cdot e \cdot i + b \cdot f \cdot g + c \cdot d \cdot h - g \cdot e \cdot c - h \cdot f \cdot a - i \cdot d \cdot b.$$

Laplacescher Entwicklungssatz (>3x3)

Vorzeichen:

Entwickeln nach derjenigen Zeile oder Spalte, in der die meisten Nullen stehen (hier gelb)

$$\begin{vmatrix} 2 & -1 & 3 & 0 & 5 \\ 0 & 4 & 1 & 3 & -2 \\ 0 & 0 & 2 & 0 & 0 \\ 6 & 2 & -1 & 0 & 3 \\ 3 & -1 & 4 & 0 & 2 \end{vmatrix} \rightarrow 2 \cdot det \begin{vmatrix} 2 & 1 & 0 & 5 \\ 0 & 4 & 3 & -2 \\ 6 & 2 & 0 & 3 \\ 3 & -1 & 0 & 2 \end{vmatrix}$$

Wichtig: häufig sind die entwickelten identisch! → Aufwand sparen!

$$A = \begin{bmatrix} \underline{a_{00}} & \underline{a_{01}} & \underline{a_{02}} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{bmatrix}$$

Entwicklen nach 1er

$$\det(A) = +\underline{a_{00}} \cdot \det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} - \underline{a_{01}} \cdot \det \begin{bmatrix} a_{10} & a_{12} \\ a_{20} & a_{22} \end{bmatrix} + \underline{a_{02}} \cdot \det \begin{bmatrix} a_{10} & a_{11} \\ a_{20} & a_{21} \end{bmatrix}
= +a_{00}(a_{11}a_{22} - a_{12}a_{21}) - a_{01}(a_{10}a_{22} - a_{12}a_{20}) + a_{02}(a_{10}a_{21} - a_{11}a_{20})
= +a_{00}a_{11}a_{22} + a_{01}a_{12}a_{20} + a_{02}a_{10}a_{21} - a_{00}a_{12}a_{21} - a_{01}a_{10}a_{22} - a_{02}a_{11}a_{20}$$

det **Dreiecksmatrix** = Produkt der Hauptdiagonale

Rechenregeln

- (1) Für die Einheitsmatrix E gilt: det(E) = 1
- (2) Für jede $n \times n$ -Dreiecksmatrix U gilt: $\det(U) = u_{11} \cdot u_{22} \cdot ... \cdot u_{nn}$
- (3) Für jede quadratische Matrix A gilt: $det(A^T) = det(A)$
- (4) Für alle $n \times n$ -Matrizen A und B gilt: $\det(A \cdot B) = \det(A) \cdot \det(B)$
- (5) Für jede invertierbare Matrix A gilt: $\det(A^{-1}) = \frac{1}{\det(A)}$
- (6) Für jede $n \times n$ -Matrix A und jedes $\lambda \in \mathbb{R}$ gilt: $\det(\lambda \cdot A) = \lambda^n \cdot \det(A)$

$$2 \times 2 \rightarrow det(5 \cdot A) = 5^2 \cdot det(A)$$

 $3 \times 3 \rightarrow det(5 \cdot A) = 5^3 \cdot det(A)$

Geometrische Interpretation der Determinante

2x2

Fläche von \vec{a} und \vec{b} = Betrag von $det \begin{vmatrix} a1 & b1 \\ a2 & b2 \end{vmatrix}^{\frac{5}{a}}$ 3x3

Volumen von \vec{a} , \vec{b} und \vec{c} = Betrag von $det \begin{vmatrix} a1 & b1 & c1 \\ a2 & b2 & c2 \\ a3 & b3 & c3 \end{vmatrix}$

Vektorräume

Unterräume

Eine Teilmenge U eines Vektorraums V heisst Unterraum von V wenn U selber auch ein Vektorraum ist.

Unterraumkriterien

- (1) Für beliebige Elemente $\vec{a}, \vec{b} \in U$ ist $\vec{a} + \vec{b} \in U$.
- (2) Für jeden Skalar $\lambda \in \mathbb{R}$ und jeden Vektor $\vec{a} \in U$ ist $\lambda \cdot \vec{a} \in U$.

Unterraumkriterien überprüfen

(a) Ja, Vektorraum
$$1. \begin{pmatrix} a_1 & 0 \\ 0 & b_1 \end{pmatrix} + \begin{pmatrix} a_2 & 0 \\ 0 & b_2 \end{pmatrix} = \begin{pmatrix} a_1 + a_2 & 0 \\ 0 & b_1 + b_2 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \in M_1$$

$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$

$$2. \lambda \cdot \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} \lambda \cdot a & 0 \\ 0 & \lambda \cdot b \end{pmatrix} \in M_1$$

$$\begin{pmatrix} a & 1 \\ 1 & b \end{pmatrix} \text{ Nein } \rightarrow \begin{pmatrix} a_1 & 1 \\ 1 & b_1 \end{pmatrix} + \begin{pmatrix} a_2 & 1 \\ 1 & b_2 \end{pmatrix} = \begin{pmatrix} a_1 + a_2 & 2 \\ 2 & b_1 + b_2 \end{pmatrix} \neq \begin{pmatrix} a & 1 \\ 1 & b \end{pmatrix}.$$

Linearkombination

Stellen Sie
$$\vec{d} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$$
 als Linearkombination von $\vec{a} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \vec{b} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ und $\vec{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ dar.

Gesucht sind
$$\lambda$$
, μ und ν mit $\lambda \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \mu \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \nu \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$

Lineareabhängigkeit prüfen

Quadratische Matrix:

- $det(a) = 0 \Rightarrow$ Lineare Abhängigkeit
- $det(a) \neq 0 \Rightarrow$ Lineare Unabhängigkeit

Nicht Quadratische Matrix:

Vektoren nebeneinander in eine Matrix schreiben \to Gauss Nullzeile oder -Spalte in der Matrix \Longrightarrow Lineare Abhängigkeit der Vektoren

Keine Nullzeile oder-Spalte in der Matrix \implies Lineare Unabhängigkeit der Vektoren.

Linearer Spann (Lineare Hülle)

Diese Menge besteht aus allen Vielfachen der Vektoren und deren Summen, ist also die Menge aller möglichen Linearkombinationen, die mit den gegebenen Vektoren gebildet werden können.

$$span(\vec{a}, \vec{b}) = \mathsf{Ebene}$$

 $span(\vec{a}, \vec{b}, \vec{c}) = eine Gerade mit Aufpunkt.$

Dimension

Wir betrachten einen reellen Vektorraum V. Die Anzahl Vektoren, die eine Basis von V bilden, heisst Dimension von V.

Bezeichnung: dim(V)

Beispiele:

$$\begin{array}{l} \text{Vektorraum } \{ \vec{0} \} \rightarrow \text{dim } 0 \\ dim(span(\vec{a}, \vec{b})) = 2 \\ dim(R^{2 \times 2}) = 2 \end{array}$$

$$\begin{aligned} &\dim = rg(A) \\ &\dim(R^{3\times 3}) = 2 \end{aligned}$$

Erzeugendensystem

Eine Menge von Vektoren heißt Erzeugendensystem, wenn man mit ihnen alle Vektoren eines Vektorraumes durch Linearkombination erzeugen kann.

Menge von Vektoren auf Erzeugendeneigenschaft überprüfen

 \rightarrow Bestimmung des Rangs rg(A)

Wenn rg(A) < Anzahl Zeilen(m) \rightarrow kein Erzeugendensystem

Basis eines Vektorraums

Eine Basis eines Vektorraumes ist ein "minimales Erzeugendensystem"des Vektorraumes. Die Vektoren einer Basis nennt man Basisvektoren.

Überprüfung, ob eine Menge von Vektoren eine Basis ist Quadratische Matrix : $\rightarrow det(A) \neq 0$

Generell:

- ① Die Anzahl der Vektoren stimmt überein mit der Dimension des Vektorraumes.
- 2 Die Vektoren sind linear unabhängig.

Wichtige Basen

Für \mathbb{R}^n : Basis S heisst Standardbasis

Für $P_n[x]$: Basus M heisst Monombasis

Umrechnung von Basis ${\cal B}$ zur Standardbasis ${\cal S}$

$$\vec{a} = a_1 \cdot \vec{b_1} + a_2 \cdot \vec{b_2} + a_3 \cdot \vec{b_3} \dots + a_n \cdot \vec{b_n}$$

Beispiel:
$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} \right\}$$

(7,-3,-1) von B nach S

$$\vec{b} = \begin{pmatrix} 7 \\ -3 \\ 1 \end{pmatrix}_{\mathcal{B}} = 7 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}_{\mathcal{S}} - 3 \cdot \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}_{\mathcal{S}} + 1 \cdot \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}_{\mathcal{S}} = \begin{pmatrix} 4 \\ -3 \\ 3 \end{pmatrix}_{\mathcal{S}}$$

Umrechnung von Standardbasis ${\cal S}$ zur Basis ${\cal B}$

LGS bilden:

Beispiel:
$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} \right\}$$

(2,-1,3) von S nach B

Lineare Abbildungen

Definition: Lineare Abbildung

Gegeben sind zwei reelle Vektorräume V und W (können auch identisch sein).

Eine Abbildung $f:V\to W$ heisst $lineare\ Abbildung$, wenn für alle Vektoren $\vec{x},\vec{y}\in V$ und jeden Skalar $\lambda\in\mathbb{R}$ gilt:

(1)
$$f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y})$$

(2)
$$f(\lambda \cdot \vec{x}) = \lambda \cdot f(\vec{y})$$

Der Vektor $\vec{x} \in W$, der herauskommt, wenn f auf einen Vektor \vec{x} angewendet, heisst **Bild** von \vec{x} .

Beispiele:

(a)
$$f: \mathbb{R}^2 \to \mathbb{R}^2: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

(c)
$$f: \mathbb{R}^2 \to \mathbb{R}^2: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + 2x_2 \\ x_2 \end{pmatrix}$$

(e)
$$f: \mathbb{R}^3 \to \mathbb{R}^2: \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 2x_1 - x_2 \\ -3x_1 + 5x_3 \end{pmatrix}$$

(a) Bed 1:
$$f\left(\binom{x_1}{x_2} + \binom{y_1}{y_2}\right) = f\left(\binom{x_1 + y_1}{x_2 + y_2}\right) = \binom{0}{0}$$

 $f\left(\binom{x_1}{x_2}\right) + f\left(\binom{y_1}{y_2}\right) = \binom{0}{0} + \binom{0}{0} = \binom{0}{0}$ o.k

Bed 2:
$$f\left(\lambda \cdot {x_1 \choose x_2}\right) = f\left({\lambda \cdot x_1 \choose \lambda \cdot x_2}\right) = {0 \choose 0}$$

 $\lambda \cdot f\left({x_1 \choose x_2}\right) = \lambda \cdot {0 \choose 0} = {0 \choose 0}$ o.k. $\Rightarrow f$ ist linear

(b) Bed 1:
$$f\left(\binom{x_1}{x_2} + \binom{y_1}{y_2}\right) = f\left(\binom{x_1 + y_1}{x_2 + y_2}\right) = \binom{x_1 + y_1 + 2}{x_2 + y_2}$$

 $f\left(\binom{x_1}{x_2}\right) + f\left(\binom{y_1}{y_2}\right) = \binom{x_1 + 2}{x_2} + \binom{y_1 + 2}{y_2} = \binom{x_1 + y_1 + 4}{x_2 + y_2}$
nicht gleich $\Rightarrow f$ ist nicht linear

(c) Bed 1:
$$f\left(\binom{x_1}{x_2} + \binom{y_1}{y_2}\right) = f\left(\binom{x_1 + y_1}{x_2 + y_2}\right) = \binom{x_1 + y_1 + 2(x_2 + y_2)}{x_2 + y_2}$$

 $f\left(\binom{x_1}{x_2}\right) + f\left(\binom{y_1}{y_2}\right) = \binom{x_1 + 2x_2}{x_2} + \binom{y_1 + 2y_2}{y_2} = \binom{x_1 + 2x_2 + y_1 + 2y_2}{x_2 + y_2}$
o.k.

Bed 2:
$$f\left(\lambda \cdot {x_1 \choose x_2}\right) = f\left({\lambda \cdot x_1 \choose \lambda \cdot x_2}\right) = {\lambda \cdot x_1 + 2\lambda \cdot x_2 \choose \lambda \cdot x_2}$$

 $\lambda \cdot f\left({x_1 \choose x_2}\right) = \lambda \cdot {x_1 + 2x_2 \choose x_2} = {\lambda \cdot (x_1 + 2x_2) \choose \lambda \cdot x_2}$ o.k. $\Rightarrow f$ ist linear.