Today:

Learning: inducing general functions from examples

Inductive Bias

What is a Concept?

What is a Concept?

- -A general category of things
- -A boolean-valued function

Concept Learning: Inferring a booleanvalued function from training examples of its inputs and outputs

A Concept Learning Task:

"Days in which Aldo enjoys his favorite water sport"

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1 2 3 4	Sunny Sunny Rainy Sunny	Warm Warm Cold Warm	Normal High High High	Strong Strong Strong	Warm Warm Cool	Same Same Change Change	Yes Yes No Yes
+	Cloudy	y					

Hypothesis Representation

- Hypothesis Representation
 - Simple representation: Conjunction of constraints on the 6 instance attributes
 - indicate by a "?" that any value is acceptable
 - specify a single required value for the attribute
 - indicate by a "∅" that no value is acceptable

Example:

```
h = (?, Cold, High, ?, ?, ?)
```

indicates that Aldo enjoys his favorite sport on cold days with high humidity (independent of the other attributes)

- -h(x)=1 if example x satisfies all the constraints h(x)=0 otherwise
- Most general hypothesis: (?, ?, ?, ?, ?, ?)
- Most specific hypothesis: (∅, ∅, ∅, ∅, ∅, ∅)

Notation

- Set of instances X
- Target concept $c: X \rightarrow \{0,1\}$ (*EnjoySport*)
- Training examples $\{x , c(x)\}$
- Data set $D \subset X \times \{0,1\}$
- Set of possible hypotheses H
- $h \in H$ $h: X \rightarrow \{0,1\}$

Goal: Find $h \mid h(x) = c(x)$

Goal: Find $h \mid h(x) = c(x)$

Really? Can we say that h(x)=c(x)?

Inductive Learning Hypothesis

Any hypothesis h found to approximate the target function c well over a sufficiently large set D of training examples x, will also approximate the target function well over other unobserved examples in X

Concept Learning as Search

Find $h \in H / h(x) = c(x)$

Concept Learning as Search

Find
$$h \in H / h(x) = c(x)$$

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1 2 3 4	Sunny Sunny Rainy Sunny	Warm Warm Cold Warm	Normal High High High	Strong Strong Strong Strong	Warm Warm Warm Cool	Same Same Change Change	Yes Yes No Yes
+	Cloud	y					

Concept Learning as Search

- Distinct instances in *X* : 3.2.2.2.2.2 = 96

Concept Learning as Search

- Distinct instances in *X* : 3.2.2.2.2.2 = 96
- Distinct hypotheses
 - syntactically
 - semantically

$$1 + (4.3.3.3.3.3) = 973$$

General-to-Specific Ordering of hypotheses

```
h_1=(sunny,?,?,Strong,?,?) h_2=(Sunny,?,?,?,?,?)
```

General-to-Specific Ordering of hypotheses

$$h_1$$
=(sunny,?,?,Strong,?,?) h_2 =(Sunny,?,?,?,?,?)

Definition: h_2 is more_general_than_or_equal_to h_1 (written $h_2 \ge_g h_1$) if and only if

$$(\forall x \in X) [h_1(x) = 1 \to h_2(x) = 1]$$

 \geq_g defines a partial order over the hypotheses space for *any* concept learning problem

 $x_1 = \langle Sunny, Warm, High, Strong, Cool, Same \rangle$ $x_2 = \langle Sunny, Warm, High, Light, Warm, Same \rangle$

$$h_1 = \langle Sunny, ?, ?, Strong, ?, ? \rangle$$

 $h_2 = \langle Sunny, ?, ?, ?, ?, ? \rangle$
 $h_3 = \langle Sunny, ?, ?, ?, Cool, ? \rangle$

Finding a Maximally Specific Hypothesis

Find-S Algorithm

- 1. Initialize h to the most specific hypothesis in H
- 2. For each positive training instance x
 - For each attribute constraint a_i in hIf the constraint a_i is satisfied by x

Then do nothing

Else replace a_i in h by the next more general constraint that is satisfied by x

3. Output hypothesis h

TABLE 2.3

FIND-S Algorithm.

 $x_1 = \langle Sunny \ Warm \ Normal \ Strong \ Warm \ Same \rangle, +$ $x_2 = \langle Sunny \ Warm \ High \ Strong \ Warm \ Same \rangle, +$ $x_3 = \langle Rainy \ Cold \ High \ Strong \ Warm \ Change \rangle, x_4 = \langle Sunny \ Warm \ High \ Strong \ Cool \ Change \rangle, +$

$$h_0 = \langle \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing \rangle$$
 $h_1 = \langle Sunny \ Warm \ Normal \ Strong \ Warm \ Same \rangle$
 $h_2 = \langle Sunny \ Warm \ ? \ Strong \ Warm \ Same \rangle$
 $h_3 = \langle Sunny \ Warm \ ? \ Strong \ Warm \ Same \rangle$
 $h_4 = \langle Sunny \ Warm \ ? \ Strong \ ? \ ? \rangle$

- Questions left unanswered:
 - Has the learner converged to the correct concept?
 - Why prefer the most specific hypothesis?
 - Are the training examples consistent?

Version Spaces and the Candidate-Elimination Algorithm

- The Candidate-Elimination Algorithm outputs a description of the set of all hypotheses consistent with the training examples
- Representation
 - Consistent hypotheses Consistent(h,D) \equiv (\forall {x,c(x)} \in D) h(x) = c(x)

- Version Space $VS_{H,D} \equiv \{h \in H \mid Consistent(h,D)\}$

- The List-Then-Eliminate Algorithm
 - Initialize the version space to H
 - Eliminate any hypothesis inconsistent with any training example
- ⇒ the version space shrinks to the set of hypothesis consistent with the data

Impractical!

- Compact Representation for Version Spaces
 - General Boundary G(H,D): Set of maximally general members of H consistent with D
 - Specific Boundary S(H,D): set of minimally general (i.e., maximally specific) members of H consistent with D

- Theorem: Version Space Representation
 - For all X, H, c and D such that S and G are well defined,

$$VS_{H,D} \equiv \{h \in H \mid (\exists s \in S) (\exists g \in G) (g \geq_g h \geq_g s)\}$$

Candidate-Elimination Learning Algorithm

Initialize G to the set of maximally general hypotheses in H Initialize S to the set of maximally specific hypotheses in H For each training example d, do

- If d is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each hypothesis s in S that is not consistent with d
 - Remove s from S
 - Add to S all minimal generalizations h of s such that
 - h is consistent with d, and some member of G is more general than h
 - Remove from S any hypothesis that is more general than another hypothesis in S
- If d is a negative example
 - Remove from S any hypothesis inconsistent with d
 - For each hypothesis g in G that is not consistent with d
 - Remove g from G
 - Add to G all minimal specializations h of g such that
 - h is consistent with d, and some member of S is more specific than h
 - Remove from G any hypothesis that is less general than another hypothesis in G

TABLE 2.5

CANDIDATE-ELIMINATION algorithm using version spaces. Notice the duality in how positive and negative examples influence S and G.

Training examples:

- 1. <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = Yes
- 2. <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = Yes

FIGURE 2.4

Candidate-Elimination Trace 1. S_0 and G_0 are the initial boundary sets corresponding to the most specific and most general hypotheses. Training examples 1 and 2 force the S boundary to become more general, as in the Find-S algorithm. They have no effect on the G boundary.

$$S_2$$
, S_3 : { < Sunny, Warm, ?, Strong, Warm, Same > }

Training Example:

3. <Rainy, Cold, High, Strong, Warm, Change>, EnjoySport=No

FIGURE 2.5

CANDIDATE-ELIMINATION Trace 2. Training example 3 is a negative example that forces the G_2 boundary to be specialized to G_3 . Note several alternative maximally general hypotheses are included in G_3 .

Training Example:

4.<Sunny, Warm, High, Strong, Cool, Change>, EnjoySport = Yes

FIGURE 2.6

CANDIDATE-ELIMINATION Trace 3. The positive training example generalizes the S boundary, from S_3 to S_4 . One member of G_3 must also be deleted, because it is no longer more general than the S_4 boundary.

FIGURE 2.7

The final version space for the *EnjoySport* concept learning problem and training examples described earlier.

Remarks

- Will the Candidate-Elimination converge to the correct hypothesis?
- What training example should the learner request next?
- How can partially learned concepts be used?

Instance	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
Α	Sunny	Warm	Normal	Strong	Cool	Change	?
В	Rainy	Cold	Normal	Light	Warm	Same	?
C	Sunny	Warm	Normal	Light	Warm	Same	?
D	Sunny	Cold	Normal	Strong	Warm	Same	?

TABLE 2.6New instances to be classified.

A=yes B=no C=1/2 yes - 1/2 no D=1/3 yes - 2/3 no

Inductive Bias

 The hypothesis space previously considered for the *EnjoySport* task is biased. For instance, it does not include disjunctive hypothesis like:

Sky=Sunny or Sky=cloudy

Can a hypothesis space that includes every possible hypothesis be used?

An unbiased H must contain the power set of X

PowerSet (X) = the set of all subsets of X

|Power Set (X)| = $2^{|X|}$ (= $2^{96} \sim 10^{28}$ for *EnjoySport*)

Unbiased Learning of EnjoySport

H = Power Set(X)

For example, "Sky=Sunny or Sky=Cloudy"
$$\in H$$
: (Sunny,?,?,?,?) $^{\vee}$ (Cloudy,?,?,?,?)

Suppose x_1 , x_2 , x_3 are positive examples and x_4 , x_5 negative examples

$$\Rightarrow$$
 S:{ $(x_1^{\vee} x_2^{\vee} x_3)$ } G:{ $\neg (x_4^{\vee} x_5)$ }

In order to converge to a single, final target concept, every instance in *X* has to be presented!

– Voting?

Each unobserved instance will be classified positive by exactly half the hypotheses in the version space and negative by the other half!!

The Futility of Bias-Free Learning

A learner that makes no a priori assumptions regarding the target concept has no rational basis for classifying unseen instances