Exercice 1

a) Si $u_n = \frac{1}{n(n+1)(n+2)}$ pour tout $n \in \mathbb{N}^*$, alors :

$$n(n+1)(n+2) \text{ Particle of the problem}$$

$$\forall n \geq 1, \ u_n > 0, \quad u_n \sim \frac{1}{n^3} \quad \text{et} \quad \sum \frac{1}{n^3} \text{ converge (série de Reimann)}$$

$$\text{Donc, par le thm de comparaison de séries à termes positifs, la série } \sum u_n \text{ converge .}$$

$$\text{On a: } u_n = \frac{1}{2}(\frac{1}{n} - \frac{2}{n+1} + \frac{1}{n+2}), \text{ et donc, par téléscopage , on obtient :}$$

$$\sum_{k=1}^n u_n = \frac{1}{2}\left(\sum_{k=1}^n (\frac{1}{k} - \frac{1}{k+1}) + \sum_{k=1}^n (\frac{1}{k+2} - \frac{1}{k+1})\right)$$

$$= \frac{1}{2}(\frac{1}{1} - \frac{1}{n+1}) + \frac{1}{2}(-\frac{1}{2} + \frac{1}{n+2}) \rightarrow \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$
Et par suite:

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{4}$$

b) La série entière $\sum \frac{1}{n!}x^n$ a un rayon de convergence infini et pour tout $x \in \mathbb{R}$, $\sum_{n=0}^{\infty} \frac{1}{n!}x^n = e^x$.

Donc pour tout x, $xe^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^{n+1} = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} x^n$

En particulier pour x = 2, on a

$$\sum_{n=1}^{\infty} \frac{1}{(n-1)!} 2^n = 2e^2$$

Exercice 2

 $f:\mathbb{R}\to\mathbb{R}$ est une fonction paire, 2π -périodique telle que $f(x)=x^2$ pour tout $x\in[0,\pi]$

a) f étant paire, donc $b_n = 0$ pour tout n

$$a_0 = \frac{2}{\pi} \int_0^{\pi} x^2 dx = \frac{2\pi^2}{3}$$

Pour tout
$$n \ge 1$$
, on a: $a_n = \frac{2}{\pi} \int_0^{\pi} x^2 \cos(nx) dx$ $\stackrel{IPP}{=} \frac{2}{\pi} \left[x^2 \frac{1}{n} \sin(nx) \right]_{x=0}^{x=\pi} - \frac{2}{n\pi} \int_0^{\pi} 2x \sin(nx) dx$ $= -\frac{2}{n\pi} \int_0^{\pi} 2x \sin(nx) dx$ $\stackrel{IPP}{=} \frac{-4}{n\pi} \left[-x \frac{1}{n} \cos(nx) \right]_0^{\pi} - \underbrace{\frac{4}{n^2\pi} \int_0^{\pi} \cos(nx) dx}_{=0}$ $= \frac{4(-1)^n}{n^2}$

la série de Fourier de f est :

$$\frac{\pi^2}{3} + \sum_{n>1} \frac{4}{n^2} (-1)^n \cos(nx), \quad x \in \mathbb{R}$$

b) Comme f est continue et de classe C^1 par morceaux sur \mathbb{R} , alors par le théorème de Dérichlet de convergence normale, la série de Fourier de f converge normalement, donc uniformément sur \mathbb{R} vers la fonction f, en particulier:

$$\forall x \in [0, \pi], \ x^2 = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} (-1)^n \cos(nx).$$

Pour x = 0, on $a : 0 = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} (-1)^n$, donc

$$\sum_{n=1}^{\infty} \frac{1}{n^2} (-1)^n = -\frac{\pi^2}{12}$$

Pour $x = \pi$, on a : $\pi^2 = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} (-1)^n \cos(n\pi)$, donc :

$$\sum_{1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Par
$$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{n=1}^{\infty} \frac{1}{(2n)^2} + \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{1}{4} \frac{\pi^2}{6} + \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$$
, donc
$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = (\frac{1}{6} - \frac{1}{4} \cdot \frac{1}{6})\pi^2 = \frac{\pi^2}{8}$$

c) Par le théorème de Parseval, on a :

$$\frac{\pi^2}{9} + 16 \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{1}{\pi} \int_0^{\pi} x^4 dx = \frac{\pi^4}{90}$$

I- Découverte des fonctions tests

1. Soit A une partie de \mathbb{R} ,

 \Rightarrow) Si A est bornée dans \mathbb{R} ,alors il existe r>0 tel que $A\subset [-r,r]$, donc

 $\overline{A} \subset \overline{[-r,r]} = [-r,r]$ et par suite \overline{A} est bornée.

On sait que \overline{A} est toujours fermée, et puisque $\mathbb R$ est de dimension finie, on déduit que \overline{A} est une partie compacte

 \Leftarrow) Si \overline{A} est une partie compacte de \mathbb{R} , alors A est bornée dans \mathbb{R} et puisque $A \subset \overline{A}$, on déduit que A est bornée dans \mathbb{R} .

- 2. Quelques exemples:
 - a. Soit $u: \mathbb{R} \to \mathbb{R}$ une application paire telle que

$$u(x) = \left\{ \begin{array}{ll} 4 - x^2 & si \ x \in [0, 2] \\ 0 & si \ x > 2 \end{array} \right.$$

Il est clair que l'application u est continue sur \mathbb{R} et que $u(x) \neq 0$ si et seulement si $x \in]-2,2[$, donc Supp(u) = [-2, 2]

u est donc a support compact, mais u n'est pas une fonction test car u n'est pas dérivable en 2 $(D_q(u)(2))$ $-4 \neq 0 = D_d(u)(2)$

Représentation graphique de u:

- b. La fonction sin est une fonction de classe C^{∞} sur \mathbb{R} , mais son support est non borné car $(x_n = \frac{\pi}{2} + 2n\pi)_n$ est une suite de points de support de sin telle que $\lim x_n = +\infty$. Donc l'application sin n'est pas une fonction test.
- 3. Soit la fonction h définie par : $h(x)=\left\{\begin{array}{ll} \exp(-\frac{1}{x}) & si\; x>0\\ 0 & si\; x\leqslant 0 \end{array}\right.$
 - a. h est C^{∞} sur \mathbb{R}^* (par opérations) avec $h^{(k)}(x)=0$ pour tout $x\leq 0$ et tout entier $k\in\mathbb{N}$. Pour x>0, $h'(x)=\frac{1}{x^2}\exp(-\frac{1}{x}),$ on pose $P_1(X)=X^2$.

Soit $k \in \mathbb{N}^*$, supposons que $h^{(k)}(x) = P_k(\frac{1}{x}) \exp(-\frac{1}{x})$ pour tout x > 0, alors:

$$h^{(k+1)}(x) = \left(-\frac{1}{x^2}P_k'(\frac{1}{x}) + \frac{1}{x^2}P_k(\frac{1}{x})\right)\exp(-\frac{1}{x}) \text{ pour } x > 0$$

Par le principe de récurrence la suite polynomiale $(P_k)_k$ vérifie : $P_{k+1}(X) = -X^2P'_k + X^2P_k$ et $\deg(P_{k+1}) = -X^2P'_k + X^2P_k$ et $\deg(P_{k+1}) = -X^2P'_k + X^2P_k$ et $\deg(P_{k+1}) = -X^2P'_k + X^2P_k$ $\deg(P_k) + 2.$

Donc pour $k \in \mathbb{N}^*$, $\sum_{i=0}^{k-1} (\deg(P_{j+1}) - \deg(P_j)) = \sum_{i=0}^{k-1} 2 = 2k$ et par suite $\deg(P_k) = 2k$ car $\deg(P_0) = 0$ $(P_0 = 1)$

Conclusion:

$$\forall x > 0, \ \forall k \in \mathbb{N}, \ h^{(k)}(x) = P_k(\frac{1}{x}) \exp(-\frac{1}{x}) \ et \ \deg(P_k) = 2k$$

La fonction h est continue sur \mathbb{R} , et de classe C^{∞} sur \mathbb{R}^* et de plus

$$\lim_{x \to 0^+} h^{(k)}(x) = \lim_{x \to 0^+} P_k(\frac{1}{x}) \exp(-\frac{1}{x}) + 0 , \quad \lim_{x \to 0^-} h^{(k)}(x) = 0.$$

 $\lim_{x \to 0^+} h^{(k)}(x) = \lim_{x \to 0^+} P_k(\frac{1}{x}) \exp(-\frac{1}{x}) + 0 , \quad \lim_{x \to 0^-} h^{(k)}(x) = 0.$ par le principe de récurrence, via le théorème du prolongement de la dérivée, on déduit que h est de classe C^{∞} sur \mathbb{R} et que pour tout $k \in \mathbb{N}$, $h^{(k)}(0) = 0$.

b. La fonction h est de classe C^{∞} sur \mathbb{R} mais n'est pas a support compact car h(x) > 0 pour tout x > 0, donc h n'est pas une fonction test.

h n'est pas développable en série entière au voisinage de 0 en effet : si h bes développable en série entière sur un voisinage de 0, alors, il existe r > 0 tel que :

$$\forall x \in]-r, r[, h(x) = \sum_{k=0}^{\infty} \frac{h^{(k)}(0)}{k!} x^k = 0 \text{ car } h^{(k)}(0) = 0 \text{ pour tout } k,$$

ce qui est impossible car h n'est pas identiquement nulle sur]0, r[.

4. Soit la fonction φ définie par $\varphi(x) = h(-(x+1)(x-1))$

Variations de la fonction φ

a. Soit $x \in \mathbb{R}$, $\varphi(x) \neq 0 \Leftrightarrow h(-(x+1)(x-1)) \neq 0 \Leftrightarrow (x-1)(x+1) > 0 \Leftrightarrow x \in]-1,1[$, Donc, $\operatorname{Supp}(\varphi) = [-1,1]$. La fonction φ est de classe C^{∞} sur \mathbb{R} comme composée de deux fonctions de classe C^{∞} et puisque son support est compact, l'application est donc une fonction test.

:						
	x		-1		+1	
	-(x-1)(x+1)	-	0	+	0	•
	$\varphi(x)$	0		$e^{\frac{1}{(x-1)(x+1)}}$		0

$$\varphi'(x) = -2xh'(-(x^2-1))$$
 où $h'(x) = \frac{1}{x^2}e^{-\frac{1}{x}} > 0$ pour tout $x > 0$

- b. La fonction $x \to h(-(x-3)(x-8))$ est une fonction test dont le support est [3, 8]. La fonction $x \to h(-(x-1)(x-2)) + h(-(x-5)(x-6))$ est une fonction test car elle est de classe C^{∞} et dont son support est $[1,2] \cup [5,6]$
- 5. Si une fonction est a support compact, alors celle-ci est nulle au voisinage de ∞, donc de limite nulle à l'infini.
- 6. Construction d'une suite régularisante :
 - a. Comme la fonction φ est continue sur \mathbb{R} et a support compact (la foction est nulle en dehors de [-1,1]), alors φ est intégrable sur $\mathbb R$ et $\int\limits_{\cdot}^{+1} \varphi > 0$ car φ est continue et strictement positive sur] -1,1[.

Posons $c=\int\limits_{-\infty}^{+1}\varphi=\int\limits_{-\infty}\varphi$ et $\rho(x)=\frac{1}{c}\varphi(x)$ pour tout x, alors ρ , comme φ , est une fonction test dont le support est [-1,1] et que ρ est une fonction intégrable sur \mathbb{R} avec $\int_{\mathbb{R}} \rho = \frac{1}{c} \int_{\mathbb{R}} \varphi = 1$.

Pour $n \in \mathbb{N}$, on pose $\rho_n(x) = n\rho(nx)$ pour tout $x \in \mathbb{R}$.

b. Soit $n \in \mathbb{N}^*$, l'application ρ_n est de classe C^{∞} (opérations sur les foctions de classe C^{∞}) sur \mathbb{R} . De plus

$$\rho_n(x) \neq 0 \Leftrightarrow \rho(nx) \neq 0 \Leftrightarrow nx \in]-1, 1[\Leftrightarrow x \in]-\frac{1}{n}, \frac{1}{n}[$$

donc $Supp(\rho_n) = \left[-\frac{1}{n}, \frac{1}{n}\right].$

La fonction ρ_n est intégrable sur \mathbb{R} et $\int\limits_R \rho_n = n \int\limits_{-\frac{1}{n}}^{\frac{1}{n}} \rho(nx) dx = \int\limits_{-1}^{1} \rho(t) dt = 1$.

En conclusion : Pour tout $n \in \mathbb{N}^*$, ρ_n est une fonction test et que $\underline{\int} \rho_n = 1$.

- II- Approximation uniforme sur $\mathbb R$ par des fonctions de classe C^{∞} ou par des fonctions tests
 - 7. L'approximation polynomiale ne convient plus

Soit $(P_n)_n$ une suite de fonctions plynomiales qui converge uniformément vers f sur \mathbb{R} tout entier.

- a. Soit $\varepsilon=1>0$, comme $(p_n)_n$ est de Cauchy pour la norme de convergence uniforme, il existe $N\in\mathbb{N}^*$, tel que : $\forall n,\ m\in\mathbb{N},\ n\geqslant m\geqslant N\Rightarrow \forall x\in\mathbb{R},\ |P_n(x)-P_m(x)|\leqslant \varepsilon=1$. En particulier pour m=N, on a le résultat demandé .
 - Pour $n \ge N$, la fonction poynomiale $P_n P_n$ est bornée sur \mathbb{R} , donc constante, et par suite $\deg(P_n P_N) \in \{-\infty, 0\}$.
- b. D'après la question 7.a), il existe $N \in \mathbb{N}^*$ tel que : $\forall n \geq N, \exists C_n \in \mathbb{R}; \forall x \in R, P_n(x) P_N(x) = C_n$. Comme la suite $(P_n)_n$ converge simplement vers f sur, il en résulte que la suite $(C_n)_n$ converge. Si $C = \lim_n C_n$, alors $C = \lim_n C_n = \lim_n (P_n(x) P_N(x)) = f(x) P_N(x)$ pour tout $x \in \mathbb{R}$, et par suite $f(x) = P_N(x) + C$ pour tout x.

Conclusion : $f = P_N + C$ est donc une fonction polynôme sur $\mathbb R$.

8. Approximation d'une fonction continue à l'infini par une suite de fonctions continues à support compact : Pour $n \in \mathbb{N}$, z_n est une fonction définie sur \mathbb{R} paire telle que :

$$z_n(x) = \begin{cases} 1 & \text{si } x \in [0, n[\\ -x + n + 1 & \text{si } x \in [n, n + 1[\\ 0 & \text{si } x \in [n + 1, +\infty[\\ \end{cases}]$$

a. Représentation garphique de z_n :

Limite simple de la suite (z_n) :

Comme z_n est paire pour tout entier n, il suffit d'étudier la convergence pour $x \ge 0$.

Soit $x \ge 0$, pour tout entier $n \ge E(x) + 1$, on a alors $x \in [0, n[$ et par suite $z_n(x) = 1$ et donc $\lim_{n \to \infty} z_n(x) = 1$.

En conclusion : la suite de fonctions $(z_n)_n$ converge simplement vers la fonction constante 1.

La convergence de la suite n'est pas uniforme, car pour $x_n = n + 1$, on a $|z_n(x_n) - 1| = 1$ ne tend pas vers 0 quand n tend vers $+\infty$.

b. Soit g une fonction continue sur \mathbb{R} , nulle à l'infini

Montrons que g est bornée sur \mathbb{R} :

Soit $\varepsilon = 1 > 0$, comme $\lim_{|x| \to +\infty} g(x) = 0$, il existe a > 0 tel que : $\forall x \in R, |x| \geqslant a$ on a $|g(x)| \leqslant 1$, donc g est bornée sur $]-\infty, -a] \cup [a, +\infty[$.

g étant continue sur \mathbb{R} , en particulier g est continue sur le compact [-a,a] et par suite g est bornée sur [-a,a]

En conclusion : q est bien bornée sur $\mathbb R$.

Pour $n \in \mathbb{N}$, posons $\alpha_n = \sup_{|x| \ge n} |g(x)|$

c. Etude de la monotonie de la suite $(\alpha_n)_n$:

Soit $n \in \mathbb{N}$, comme $\{|g(x)|, |x| \ge n+1\} \subset \{|g(x)|, |x| \ge n\}$, il en résulte que

$$\alpha_{n+1} = \sup\{|g(x)|, |x| \ge n+1\} \le \sup\{|g(x)|, |x| \ge n\} = \alpha_n.$$

Donc la suite $(\alpha_n)_n$ est monotone décroissante . De plus $(\alpha_n)_n$ est minorée par 0, donc converge dans $\mathbb R$. Montrons que $\lim \alpha_n = 0$:

soit $\varepsilon>0$, puisque $\lim_{|x|\to+\infty}g(x)=0$, il exite c>0 et l que : $\forall x\in\mathbb{R},\ |x|\geqslant c,\ |g(x)|\leqslant \varepsilon$

En particulier pour $n \ge c$, on a : $\forall x, |x| \ge n \Rightarrow |g(x)| \le \varepsilon$ et par suite pour tout $n \ge c$, $0 \le \alpha_n = \sup_{|x| \ge n} |g(x)| \le \varepsilon$.

En définitive :

$$\lim_{n} \alpha_n = 0.$$

d. Pour $n \in \mathbb{N}$, on pose $g_n = gz_n$:

Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on a : $g(x) - g_n(x) = g(x)(z_n(x) - 1)$, et que pour $x \ge 0$, $z_n(x) - 1 = \begin{cases} 0 & si \ x \in [0, n] \\ -x + n & si \ x \in [n, n + 1[& (\text{ on n'oublie pas que la fonction } z_n \text{ est paire}). \\ -1 & si \ |x| \ge n + 1 \end{cases}$

D'autre part
$$||g_n - g||_{\infty} = \max(\sup_{x \in [-n,n]} |g(x) - g_n(x)|, \sup_{|x| \geqslant n} |g(x) - g_n(x)|)$$

 $= \sup_{|x| \geqslant n} |g(x) - g_n(x)| \operatorname{car} g(x) - g_n(x) = 0 \operatorname{pour} x \in [-n,n]$

Mais pour

$$|x| \ge n, |g(x) - g_n(x)| = |g(x)| |z_n(x) - 1| \le |g(x)| (|z_n(x)| + 1) \le \alpha_n (|z_n(x)| + 1) \le 2\alpha_n.$$

En conclusion:

$$||g_n - g||_{\infty} \leqslant 2\alpha_n$$
.

e. Comme la suite $(\alpha_n)_n$ converge vers 0 (indépendement de x), il en résulte, d'après l'inégalité précèdente, que $(g_n)_n$ converge uniformément vers g sur \mathbb{R} tout entier. De plus, pour tout $n \in \mathbb{N}$, g_n est une fonction continue sur \mathbb{R} de support [-n-1, n+1] qui est compact.

En conclusion : Toute fonction g continue sur \mathbb{R} , nulle à l'infini est limùite uniforme de suite de fonctions continue sur \mathbb{R} à support compact.

f est une fonction continue sur \mathbb{R} et g continue sur \mathbb{R} et à support compact :

$$\exists R > 0, \ Supp(g) \subset [-R, R]$$

9. Convolution:

a. Pour x un réel fixé, l'application $t\mapsto g(t)f(x-t)$ est continue sur $\mathbb R$ (par opérations) et nulle sur |- $\infty, -R[\cup]R, +\infty[$, donc intégrable sur \mathbb{R} . On pose $g * f(x) = \int_{\mathbb{R}} g(t)f(x-t)dt$

b. Pour x fixé, l'application $t\mapsto f(t)g(x-t)$ est continue sur \mathbb{R} , et nulle sur $]-\infty, -R-x[\cup]R-x, +\infty[$, donc intégrable sur \mathbb{R} .

On note $f * g(x) = \int_{\mathbb{R}} f(t)g(x-t)dt$.

On fait le changement de variable $t \mapsto u = x - t$ qui est un C¹-différomorphisme, dans l'intégrale f * g(x), on aura:

$$f * g(x) = \int_{-\infty}^{+\infty} f(t)g(x-t)dt$$

=
$$\int_{+\infty}^{-\infty} f(x-u)g(u)(-du)$$

=
$$\int_{-\infty}^{+\infty} f(x-u)g(u)du = g * f(x).$$

10. Support d'une convolution :

a. Ici on suppose de plus que f est à support compact : $\exists S>0$ tel que $Supp(f)\subset [-S,S]$

Si x > S + R, alors $(f * g)(x) = \int_{-S}^{S} f(t)g(x - t)dt$ car f est nulle en dehors de [-S, S]. Si $t \in [-S, S]$, alors $x - t \in [-S + x, S + x]$ et comme x > R + S, on a $x - t > R + \underbrace{S - t}_{>0} \geqslant R$, donc g(x - t) = 0 et par suite

$$(f * g)(x) = 0$$

Si x < -R - S, alors $(f * g)(x) = (g * f)(x) \int_{-R}^{R} f(x)g(t)dt$ car gest nulle en dehors de [-R, R] S $t \in [-R, R]$, alors $x - t \in [-R + x, R + x]$ et comme x < -R - S, on a x - t < -R - S, donc f(x - t) = 0 et

par suite (f * g)(x) = 0.

En conclusion : f * q est à support compact.

b. Supposons f n'est pas à support compact, montrons que f * g n'est pas necessairement a support comapct. Prendre par exemple g positive non ulle et f=1.

11. Dérivation d'une convolution :

a. Soit
$$a$$
 un réel strictement positif et $x \in [-a,a]$, on a :
$$(f*g)(x) = \int\limits_{-\infty}^{+\infty} f(x-t)g(t)dt = \int\limits_{-R}^{R} f(x-t)g(t)dt \text{ car } g \text{ est nulle en } dehors \text{ de } [-R,R].$$

Avec le chagement de variable affine $t \to u = x - t$, on a : $f * g(x) = -\int\limits_{-\infty}^{x-R} f(u)g(x-u)du = \int\limits_{-\infty}^{x+R} f(u)g(x-u)du$

Pour $u \in [-a-R, x-R]$, on a : -u > R-x et puis x-u > R, donc g(x-u) = 0.

De même pour $u \in]x + R, a + R]$, on a : -u < -x - R et puis x - u < R, donc g(x - u) = 0

En concluison:

$$f * g(x) = \int_{x-R}^{x+R} f(u)g(x-u)du = \int_{-a-R}^{a+R} f(u)g(x-u)du.$$

b. On suppose de plus que g est de classe C^1 sur \mathbb{R} , alors l'application

$$\Psi: \ \mathbb{R} \times [-a-R, a+R] \quad \to \quad \mathbb{R}$$

$$(x,t) \quad \mapsto \quad f(t)g(x-t)$$

est continue et admet une dérivée partielle par rapport à x: de plus l'application $(x,t)\mapsto \frac{\partial}{\partial x}\Psi(x,t)=$ f(t)g'(x-t) qui est continue sur $\mathbb{R} \times [-a-R,a+R]$, donc par le théorème de dérivation sous le signe intgrale, la fonction f*g est de classe C^1 et $(f*g)'(x) = \int_{-a-R}^{a+R} f(t)g'(x-t)dt = \int_{-\infty}^{+\infty} f(t)g'(x-t)dt$ car

g' est aussi a support compact avec $Supp(g') \subset [-R,R]$ (g est toujours nulle en dehors de [-R,R], donc aussi g'...).

En conclusion : (f * g)' = f * g'.

Par le principe de rédurence on démontre que si g est calsse C^{∞} alors f * g est de classe C^{∞} sur \mathbb{R} et que $(f * g)^{(k)} = f * g^{(k)}$ pour tout entier k.

- 12. Application à l'approximation :
 - a. Soit $n \in \mathbb{N}^*$, et $x \in \mathbb{R}$, on a :

$$f * \rho_n(x) - f(x) = \int_{-\infty}^{+\infty} f(x - t) \rho_n(t dt - f(x))$$

$$= \int_{-\infty}^{+\infty} f(x - t) \rho_n(t dt - \int_{-\infty}^{+\infty} f(x) \rho_n(t) dt \operatorname{car} \int_{-\infty}^{+\infty} \rho_n(t) dt = 1$$

$$= \int_{-\infty}^{+\infty} (f(x - t) - f(x)) \rho_n(t dt)$$

$$\int_{-\infty}^{\frac{1}{n}} (f(x - t) - f(x)) \rho_n(t dt \operatorname{car} \operatorname{Supp}(\rho_n)) = [-\frac{1}{n}, \frac{1}{n}]$$

 $\mathrm{D}^{\prime}\mathrm{où}\,\left|f*\rho_{n}(x)-f(x)\right| = \left|\int\limits_{-\frac{1}{n}}^{\frac{1}{n}}\left(f(x-t)-f(x)\right)\rho_{n}(tdt)\right| \leqslant \int\limits_{-\frac{1}{n}}^{\frac{1}{n}}\left|f(x-t)-f(x)\right|\rho_{n}(tdt).$

b. On suppose ici f est de plus uniformément continue, soit $\varepsilon > 0$, il existe alors un réel $\eta > 0$ tel que : $\forall y,z \in R, |y-z| \leq \eta \Rightarrow |f(y)-f(z)| \leq \varepsilon$ (*).

Posons $n_0 = E(\eta) + 1 \geqslant 1$, pour $n \in \mathbb{N}^*$ tel que $n \geqslant n_0$, et pour tous $x \in \mathbb{R}$, $t \in [-\frac{1}{n}, \frac{1}{n}]$, on a : $|(x-t)-x| = |t| \leqslant \frac{1}{n} \leqslant \eta$ et par (*), on déduit que $|f(x-t)-f(x)| \leqslant \varepsilon$.

 $\text{Doù } |f*\rho_n(x)-f(x)| \leqslant \int\limits_{-\frac{1}{n}}^{\frac{1}{n}} |f(x-t)-f(x)| \, \rho_n(tdt \leqslant \varepsilon \int\limits_{-\frac{1}{n}}^{\frac{1}{n}} \rho_n(tdt = \varepsilon \text{ pour tout } x \text{ et tout entier } n \geqslant n_0.$

En conclusion : $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}^*$, $\forall n \in \mathbb{N}$, $n \ge n_0 \Rightarrow \forall x \in \mathbb{R}$, $|f * \rho_n(x) - f(x)| \le \varepsilon$ c'est à dire la suite de fonctions $(f * \rho_n)_{n \in \mathbb{N}^*}$ converge uniformément sur \mathbb{R} vers la fonction f.

c. Soit f une fonction continue sur R a support compact.

Pour $n \in \mathbb{N}^*$, la fonction $f * \rho_n$ est aussi à support compact (question 10) et comme ρ_n est de classe \mathbb{C}^{∞} sur \mathbb{R} (Questions 4 et 6), on a $f * \rho_n$ est une fonction de classe \mathbb{C}^{∞} sur R et par suite $f * \rho_n$ est une fonction test. La fonction f est nulle a l'infini, car f est support compact, donc f est uniformément continue sur \mathbb{R} . Par la question 12, la suite de fonction $(f * \rho_n)_{n\geqslant 1}$ converge unformément vers f sur R.

- III. Théorème de Whitney
- 13. Soit f une fonction de classe C^{∞} sur R, posons $Z(f) = \{x \in \mathbb{R}, f(x) = 0\}$ ensemble des zeros de f. On a alors $Z(f) = f^{-1}\{0\}$ est un fermé comme image réciproque d'un fermé par une fonction continue.
- 14. Une première tentative de preuve...infructueuse

Soit F une partie fermée de \mathbb{R} .

Cherchons $Z(d_F)$ où $d_F(x) = d(x, F)$.

Soit $x \in \mathbb{R}$, on a : $x \in Z(d_F) \Leftrightarrow d(x, F) = 0 \Leftrightarrow x \in \overline{F} = F$ car F est fermée, donc $Z(d_F) = F$.

Si l'application d_F est C^{∞} sur \mathbb{R} , alors le théorème de Witney est démontré.

Représentation de d_F dans le cas de $F =]-\infty, -1] \cup [1, +\infty[$:

on a
$$d_F(x) = \begin{cases} 1 - x & si \quad x \in [0, 1] \\ x + 1 & si \quad x \in [-1, 0[\\ 0 & \text{ailleurs} \end{cases}$$

 d_F ne vérifie la propriété car d_F n'est pas dérivable sur $\mathbb R$, donc d_F n'est pas de classe $\mathrm C^\infty$.

- 15. Utilisation de foction test
- i) On suppose que F est le complémentaire de]a,b[avec a < b, donc $F =]-\infty,a] \cup [b,+\infty[$: On considère la fonction f telle f(x) = h(-(x-a)(x-b)) où h est la fonction définie dans la question 3, alors f est une fonction test (f est de classe C^∞ et a support compact : Supp(f) = [a,b]), avec Z(f) = F. Donc le théorème est démontré .

- ii) On suppose que F est le complémentaire de $]a,b[\cup [c,d[$ avec a < b < c < d:On considère la fonction f telle f(x) = h(-(x-a)(x-b)) + h(-(x-c)(x-d)) où h est la fonction définie dans la question 3, alors f est une fonction test (f est de classe C^{∞} et a support compact : $Supp(f) = [a, b] \cup [c, d]$), avec Z(f) = F. Donc le théorème est démontré.
- 16. Démontrons le Théorème dans le cas général : Soit F une partie fermée de \mathbb{R} , notons par Ω le complémentaire de F dans \mathbb{R} , alors Ω est un ouvert de \mathbb{R} . Soit Solution of the partie fermed de $\mathbb R$, notons par M le comprehentante de I' dans $\mathbb R$, alors M est un ouvert de $\mathbb R$. Solution $([a_k,b_k])_{k\in I}$ une partie non vide de $\mathbb N$ et $a_k < b_k$ pour tout k, on a : $\Omega = \bigcup_{k\in I} [a_k,b_k]$. Si I est fini, la fonction f telle que $f(x) = \sum_{k\in I} h(-(x-a_k)(x-b_k))$ pour tout x, est une fonction de classe C^∞ a support compact $(Supp(f) \subset \bigcup_{k\in I} [a_k,b_k]$. A avec Z(f) = F. Donc la théorème est démonté. Si I est infini, on se ramène à $I = \mathbb N$ et on considère la fonction

$$f = \sum_{k=0}^{\infty} h_k$$
 où $h_k(x) = h(-(x - a_k)(x - b_k))$ pour tout x ,

on a : f est de classe C^{∞} et que Z(f) = F.

