

Effectively Managing Turnarounds and Shutdowns In Low Earth Orbit

How to contact me: Ed Van Cise

edward.a.vancise@nasa.gov

+1 281 483 9170

@Carbon_Flight

@Space_Station

http://www.nasa.gov/station

https://www.linkedin.com/in/edvancise https://www.facebook.com/carbon.flight Ed Van Cise Flight Director, NASA Johnson Space Center Flight Operations Directorate

International Space Station

- Microgravity research laboratory assembled in orbit between 1998-2011
- Occupied continuously since 2000
- Components built by companies across 16 nations
- 170+ launches from Florida, Virginia, Russia, Japan, and French Guiana
- Research crew of 6 astronauts and cosmonauts serve 6 month stay

Earth's Only Microgravity Research Laboratory

LARGE, CAPABLE LABORATORY:

Mass: 420,000 kg

Habitable Volume: 388 m³

Solar Power Generation Capability: 84 kW

Numerous external and internal research platforms

REMOTE OUTPOST:

Altitude: 415 km (250 mi)

Orbital Speed: 28,000 kph (7.8 km/sec)

17,500 mph (5 mi/sec)

Orbital Period: 90 minutes

(16 sunrises/sunsets per day)

ISS Assembly

- 163 launches to ISS between Nov 1998 and Nov 2015
 - 37 U.S. space shuttle assembly missions to ferry components, logistics, consumables, research, and crew between Earth and ISS
- Space Shuttle was primary vehicle used to assemble ISS
 - Tremendous mass-to-orbit and orbit-to-Earth capability
 - Carried up to 7 crewmembers
 - Capability for up to ~10 docked days
 - Had its own airlock and robotic arm
 - Crew training occurred up until very close to launch
 - » Late changes could be absorbed as the crews launched from the US

Supportability & Logistics

Original plan

- US Orbital Segment designed to be launched and serviced by the space shuttle
- Maintenance concept centers on the "Orbital Replacement Unit" (ORU)
- Minimize turnaround downtime by doing depot-level maintenance on Earth and refly the hardware

Plans changed – shuttle retirement

- Launch as many repair parts, especially parts only shuttle could launch, before the program ended
- Develop new means and methods for diagnostics and troubleshooting as well as in-situ repair
- Next generation spare parts now being designed to use same footprint but have separate, standalone components that are able to be launched on today's rockets

Lesson: Anticipate paradigm shifts if you can

- ISS was designed in the 1980s and 1990s when the expectation was that space shuttle would fly forever
- Adapting now is much harder and likely much more expensive

Logistics Skip Cycles Planning for Unexpected 'Shutdowns'

- ISS resupply requires Earth-launched cargo missions
- Spaceflight is complex and HARD
 - Launch schedules change frequently
 - Mission/cargo needs change
 - Weather happens
 - Rapid Unplanned Disassembly (RUD) happens
 - » Orbital Sciences "Orb-3" loss after liftoff 28 Oct 2014
 - 2,200 kg lost
 - » Russian Progress 59P loss at 3rd stage separation 28 Apr 2015
 - 2,400 kg lost
 - » SpaceX CRS-7 loss during 1st stage 28 June 2015
 - 1,900 kg + International Docking Adapter lost
 - » SpaceX AMOS-6 loss ~4 minutes prior to engine test
 - USD \$195M satellite, rocket, lost; significant launch pad damage

- Plan a skip cycle so you can tolerate schedule changes or logistics losses
 - ISS currently uses ~4-6 month skip cycles for critical consumables

Remote Control of a Space Station **TDRS Relay Orchestrating Operations From 415 km Away** Satellites **Mission Control Center - Houston** MCC-X MCC-D **International Space Station** HTV-CC Command Telemetry Voice Links MCC Tsukuba Columbus **Payload** Moscow **Control Center Control Center Control Center**

Huntsville, AL

Munich

Japan

Russia

Mission Control Center – Houston

MBSU Failure – Fall 2011

When a Choreographed Turnaround Turns into An Unplanned Shutdown

- Main Bus Switching Unit (MBSU)
- Key piece of hardware that routes primary power (~160 VDC) from the 8 solar array-fed power channels to downstream load distribution equipment
 - 4 MBSUs on ISS, each routing 2 power channels
 - Each can be 'cross tied' to 2 other MBSUs in times of failure so other channels can power a MBSU's loads
 - Computer commands direct the opening/closing of switches in each MBSU to perform power routing
 - » Switch states are generally not changed (can go unchanged for months at a time)

MBSU Failure – Fall 2011

- MBSU 1 had a circuit card failure in Fall 2011 where it stopped communicating with its controlling computer
 - Switches remained open/closed, power was still being passed, but switch position could not be changed
- Decided the current condition was acceptable in the short term but the MBSU needed to be replaced "soon"
 - Replacement spacewalk targeted for Fall 2012

Flight Operations Directorate Flight Director Office

Two Bolts – How Hard Can It Be?

EVA Start

8 Hours Later

Flight Operations Directorate Flight Director Office

Six Days to Fix the Problem

- Choreographed turnaround is now an unplanned shutdown
 - Need to restore core ISS power channel as soon as possible
- Found and utilized technicians that originally installed MBSU
- Sought input and expertise from hardware experts as well as crewmembers who had installed similar (H-Bolt) ORUs on ISS previously
- Determined there were two problems
 - Foreign Object Debris had likely damaged the truss's bolt receptacle; possibly when originally installed but also during last spacewalk
 - Managing side loads on the jacking bolt was critically important
 - » Once the bolt receptacle was cleaned, dithering would be required!

- How do you clean threads without a tap and die set?
 - In space
 - In a spacesuit
 - With only the tools and parts you have on hand
- Simple challenge your teams to do it and get out of their way

MBSU Replacement Attempt #2

- Step 1: Clean the threads
 - A: Take some 0 Gauge (large) wire, spread the individual conductors out, and create a 'wire brush.' Use Pistol Grip Tool (PGT, big cordless drill) to run wire brush in and out of receptacle

Chimney Sweep

On-orbit version

MBSU Replacement Attempt #2

- Step 1: Clean the threads
 - A: Take some 0 Gauge (large) wire, spread the individual conductors out, and create a 'wire brush.' Use Pistol Grip Tool (PGT, big cordless drill) to run wire brush in and out of receptacle
 - B: Disassemble spare computer in the ISS to retrieve its jacking bolt (same size bolt). Use it to chase the threads.

ACME Bolt

Flight Operations Directorate Flight Director Office

MBSU Replacement Attempt #2

Step 1: Clean the threads

- A: Take some 0 Gauge (large) wire, spread the individual conductors out, and create a 'wire brush.' Use Pistol Grip Tool (PGT, big cordless drill) to run wire brush in and out of receptacle
- B: Disassemble spare computer in the ISS to retrieve its jacking bolt (same size bolt). Use it, attached to PGT, to chase the threads.
- C: Use compressed air tool to blow debris out of threads
- D: Use modified toothbrush covered in grease for lubricating solar array joint, attached to PGT, to lubricate threads
 - » Dry film lubricant was expected to have been removed on first spacewalk or by wire brush

Toothbrush

MBSU Replacement Attempt #2

- Step 1: Clean the threads
 - A: Take some 0 Gauge (large) wire, spread the individual conductors out, and create a 'wire brush.' Use Pistol Grip Tool (PGT, big cordless drill) to run wire brush in and out of receptacle
 - B: Disassemble spare computer in the ISS to retrieve its jacking bolt (same size bolt). Use it, attached to PGT, to chase the threads.
 - C: Use compressed air tool to blow debris out of threads
 - D: Use modified toothbrush covered in grease for lubricating solar array joint, attached to PGT, to lubricate threads
 - » Dry film lubricant was expected to have been removed on first spacewalk or by wire brush
- Step 2: Install by dithering all the way

Dithering

MBSU Replacement Attempt #2

- Step 1: Clean the threads
 - A: Take some 0 Gauge (large) wire, spread the individual conductors out, and create a 'wire brush.'
 Use Pistol Grip Tool (PGT, big cordless drill) to run wire brush in and out of receptacle
 - B: Disassemble spare computer in the ISS to retrieve its jacking bolt (same size bolt). Use it, attached to PGT, to chase the threads.
 - C: Use compressed air tool to blow debris out of threads
 - D: Use modified toothbrush covered in grease for lubricating solar array joint, attached to PGT, to lubricate threads
 - » Dry film lubricant was expected to have been removed on first spacewalk or by wire brush
- Step 2: Install by dithering all the way
- Step 3: Complete any tasks possible that were supposed to be performed on previous spacewalk

Success!

- Successful due to having pre-established a culture of high performance and independent leadership
 - Could not have turned this around in 6 days if stovepipes,
 micromanagement, and management oversight bottlenecks had prevailed

Q: Why didn't we have an accident?

A: We leveraged off our heritage of being a High Performing, High Reliability Organization

High Performing Organizations

- Leadership Leadership is aligned and effective deep within the organization
- Design The structure is lean and reflects the organization's strategic focus
- People The organization effectively translates business strategy into a powerful people strategy, attracting and retaining the most capable individuals
- Change Management The organization can drive and sustain large-scale change and anticipate and adapt
- Culture and Engagement The culture is shaped to achieve strategic goals.
 Employees pursue corporate objectives.

High Reliability Organizations

- We were mindful that we had the right ...
- Circumstances
 - Sensitivity to Operations
- Processes
 - Reluctance to Simplify Interpretations
- Culture
 - Preoccupation with Failure
 - Commitment to Resilience
 - Deference to Expertise

Source: Weick, Karl E.; Kathleen M. Sutcliffe (2001). Managing the Unexpected - Assuring High Performance in an Age of Complexity. San Francisco, CA, USA: Jossey-Bass. pp. 10–17. ISBN 0-7879-5627-9

Success Enablers

- Leadership development
 - Infuse in culture of management, engineering, operations, crews
 - Purposeful development from the very beginning
 - Empower leadership at the lowest possible levels
- Collaboration across organization
 - Not just within operations organizations but across management, engineering, customers, operations, crew
 - Collaboration is a success multiplier as long as the team at the end of the spear (operations) can translate it into execution
- Paradigm shifts
 - Look for them, be open to them, welcome them even when it's painful
- Designing for operability, reliability, and maintainability increases mission adaptability and flexibility

Links and Information

Social Media

Twitter

» Ed: @Carbon_Flight

» NASA: @NASA

» Space Station: @Space_Station

» Astronauts: @NASA_Astronauts

- Snapchat

Ed: cflight78NASA: NASA

Facebook: carbonfd@gmail.com

LinkedIn: https://www.linkedin.com/in/edvancise

Internet Links

- Spot the Space Station from nearly anywhere on Earth: http://spotthestation.nasa.gov
- More on the Space Station:
 http://www.nasa.gov/mission_pages/station/main/index.ht
 ml
- More on humans going beyond Earth: http://www.nasa.gov/topics/journeytomars/index.html
- More on our solar system: http://www.nasa.gov/topics/solarsystem/index.html

Video:

 NASA Television: <u>www.nasa.gov/multimedia/nasatv/index.html</u>

 NASA High Definition Earth Views from ISS: http://www.ustream.tv/channel/iss-hdev-payload

Live video (external or internal) from ISS:
 http://www.ustream.tv/channel/iss-hdev-payload

ISS Symphony: https://youtu.be/wgdbZhnFD5g

Riding the Boosters: https://youtu.be/2aCOyOvOw5c

Longer booster video: https://youtu.be/cLl7oqdm_B8

