Algorytmy probabilistyczne

Lista zadań nr 8

- 1. Podany na wykładzie prosty algorytm dla MaxSAT (każdej zmiennej przydzielamy niezależnie jedną z wartości 0 lub 1 z prawdopodobieństwem $\frac{1}{2}$) można zderandomizować metodą prawdopodobieństw warunkowych w następujący sposób: Dla zadanej formuły z wagami $F = C_1 \wedge \ldots \wedge C_m$ nad zbiorem zmiennych $\{x_1,\ldots,x_n\}$ przypisujemy kolejno wartości zmiennym z X. Załóżmy, że algorytm przypisał już wartości zmiennym $x_1=b_1,\ldots,x_{i-1}=b_{i-1}$ i zajmuje się zmienną x_i . Dla tej zmiennej wylicza on dwie warunkowe wartości oczekiwane $E[w(F)|x_1=b_1\wedge\ldots\wedge x_{i-1}=b_{i-1}\wedge x_i=b]$, gdzie $b\in\{0,1\}$ i wybiera dla x_i tę wartość, która daje większą z nich (wartości oczekiwane liczymy zgodnie z rozkładem zadanym powyżej). Wykazać, że współczynnik aproksymacji takiego algorytmu deterministycznego wynosi $\frac{1}{2}$. Jaka jest jego złożoność?
- 2. Zderandomizować w podobny sposób drugi z podanych na wykładzie algorytmów dla MaxSAT, gdzie dla zmiennych występujących w klauzulach jednoelementowych modyfikuje się prawdopodobieństwa wyboru jednej z wartości. Jaki jest współczynnik aproksymacji dla tego algorytmu? Jaka jest jego złożoność?
- 3. Rozważmy jeszcze jeden algorytm zrandomizowany dla MaxSAT (przy oznaczeniach jak z zad. 1), który losuje kolejno wartości dla zmiennych z X. Dla aktualnie rozważanej zmiennej x_i wyznacza on następująco prawdopodobieństwo p_i , z jakim wylosuje wartość 1 dla x_i : Niech W_i i \bar{W}_i oznaczają sumaryczne wagi klauzul, które nie są jeszcze spełnione (przez wartości zmiennych x_1,\ldots,x_{i-1}) i które zawierają odpowiednio x_i lub \bar{x}_i , ale nie zawierają literałów dla x_{i+1},\ldots,x_n . Niech F_i i \bar{F}_i oznaczają sumaryczne wagi pozostałych niespełnionych klauzul, które zawierają odpowiednio x_i lub \bar{x}_i . Wtedy niech $p_i = \max(0,\min(1,(F_i+W_i-\bar{W}_i)/(F_i+\bar{F}_i))$, gdzie przyjmujemy, że wynik dzielenia przez zero, to $+\infty$ lub $-\infty$ w zależności od znaku licznika. Uzupełnić szczegóły algorytmu i wykazać, że jego współczynnik aproksymacji wynosi co najmniej 3/4. Jaka jest jego złożoność?
- 4. Rozważmy następujący problem pokrycia zbiorów: dla danego ciągu zbiorów S_1, S_2, \ldots, S_n zawartych w $U = \{1, \ldots, m\}$, wyznaczyć najmniejszy zbiór $T \subseteq \{1, \ldots, n\}$, taki że $\bigcup_{i \in T} S_i = U$. W macierzowym sformułowaniu tego problemu trzeba dla danej macierzy 0-1 M o rozmiarach $m \times n$ wyznaczyć wektor 0-1 $\bar{c} = (c_1, c_2, \ldots, c_n)^T$ o minimalnej wadze $\sum_{i=1}^n c_i$, taki że iloczyn $M\bar{c}$ zawiera wszystkie pozycje dodatnie. Niech C(M) oznacza wagę takiego wektora.

Pokazać, jak przy pomocy programowania liniowego (w którym uzyskamy wyniki wymierne z przedziału [0,1] zamiast wartości 0 lub 1) i losowego zaokrąglania można wyznaczyć $(\log m)$ -przybliżone rozwiązanie tego problemu, tzn. taki wektor zero-jedynkowy $c' = (c'_1, c'_2, \dots, c'_n)^T$, że

$$(\sum_{i=1}^{n} c_i') \in O(C(M) \cdot \log m).$$

- 5. Pokazać, że dla dostatecznie dużego n istnieją grafy dwudzielne $G=(L\cup R,E)$ mające poniższe własności ekspandera. W tym celu można wylosować krawędzie grafu i wykazać, że z dodatnim prawdopodobieństwem wylosowany graf ma pożądane własności.
 - (a) |L| = |R| = n;
 - (b) każdy wierzchołek z L ma stopień $n^{3/4}$, a każdy wierzchołek z R ma stopień najwyżej $3n^{3/4}$;
 - (c) każdy $n^{3/4}$ -elementowy podzbiór wierzchołków L ma co najmniej $n-n^{3/4}$ sasiadów w R.

8 maja 2019 Marek Piotrów