```
In [8]: ▶ import numpy as np
            import pandas as pd
           import seaborn as sns
           import matplotlib.pyplot as plt
           from sklearn import preprocessing,svm
           from sklearn.model_selection import train_test_split
           from sklearn.linear model import LinearRegression
```

۱ı.
 1 I

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	sqft_above	sqft_basement	у
0	2014- 05-02 00:00:00	3.130000e+05	3.0	1.50	1340	7912	1.5	0	0	3	1340	0	
1	2014- 05-02 00:00:00	2.384000e+06	5.0	2.50	3650	9050	2.0	0	4	5	3370	280	
2	2014- 05-02 00:00:00	3.420000e+05	3.0	2.00	1930	11947	1.0	0	0	4	1930	0	
3	2014- 05-02 00:00:00	4.200000e+05	3.0	2.25	2000	8030	1.0	0	0	4	1000	1000	
4	2014- 05-02 00:00:00	5.500000e+05	4.0	2.50	1940	10500	1.0	0	0	4	1140	800	
4595	2014- 07-09 00:00:00	3.081667e+05	3.0	1.75	1510	6360	1.0	0	0	4	1510	0	
4596	2014- 07-09 00:00:00	5.343333e+05	3.0	2.50	1460	7573	2.0	0	0	3	1460	0	
4597	2014- 07-09 00:00:00	4.169042e+05	3.0	2.50	3010	7014	2.0	0	0	3	3010	0	
4598	2014- 07-10 00:00:00	2.034000e+05	4.0	2.00	2090	6630	1.0	0	0	3	1070	1020	
4599	2014- 07-10 00:00:00	2.206000e+05	3.0	2.50	1490	8102	2.0	0	0	4	1490	0	

4600 rows × 18 columns


```
In [10]: #taking selected columns from dataset
df=df[['sqft_living','yr_built']]
df
```

Out[10]:		sqft_living	yr_built
	0	1340	1955
	1	3650	1921
	2	1930	1966
	3	2000	1963
	4	1940	1976
	4595	1510	1954
	4596	1460	1983
	4597	3010	2009
	4598	2090	1974
	4599	1490	1990

4600 rows × 2 columns

In [11]: ► df.head(10)

Out[11]:		sqft_living	yr_built
	0	1340	1955
	1	3650	1921
	2	1930	1966
	3	2000	1963
	4	1940	1976
	5	880	1938
	6	1350	1976
	7	2710	1989
	8	2430	1985
	9	1520	1945

In [12]: In sns.lmplot(x="sqft_living",y="yr_built",order=2,data=df,ci=None)
plt.show()


```
In [13]: ► df.describe()
```

Out[13]:

	sqft_living	yr_built
count	4600.000000	4600.000000
mean	2139.346957	1970.786304
std	963.206916	29.731848
min	370.000000	1900.000000
25%	1460.000000	1951.000000
50%	1980.000000	1976.000000
75%	2620.000000	1997.000000
max	13540.000000	2014.000000

In [14]: ► df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4600 entries, 0 to 4599
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- 0 sqft_living 4600 non-null int64
1 yr_built 4600 non-null int64
dtypes: int64(2)
memory usage: 72.0 KB
```

In [15]: M df.fillna(method="ffill",inplace=True)
 df

C:\Users\MY HOME\AppData\Local\Temp\ipykernel_14416\2729279820.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ret urning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method="ffill",inplace=True)

Out[15]:

	sqft_living	yr_built
0	1340	1955
1	3650	1921
2	1930	1966
3	2000	1963
4	1940	1976
4595	1510	1954
4596	1460	1983
4597	3010	2009
4598	2090	1974
4599	1490	1990

4600 rows × 2 columns

In []: •

###step 5:Training our model

C:\Users\MY HOME\AppData\Local\Temp\ipykernel_14416\285053503.py:6: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ret urning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

Out[16]:

	sqft_living	yr_built
0	1340	1955
1	3650	1921
2	1930	1966
3	2000	1963
4	1940	1976
4595	1510	1954
4596	1460	1983
4597	3010	2009
4598	2090	1974
4599	1490	1990

4600 rows × 2 columns

```
In [18]: #Data scatter to predict the values
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


r2 Score: 0.09303377068504926

conclusion:

The dataset we have taken is acceptable.but, it may cannot be a best fit.p