PENGOLAHAN CITRA DIGITAL

TUGAS 2

Nama Mahasiswa : Retno Meisharoch

NIM/Rombel : 5301414008 / 2

Nama Dosen : Dr. Hari Wibawanto, M.T.

Kuntoro Adi Nugroho, S.T., M.Eng

PROGRAM STUDI PENDIDIKAN TEKNIK ELEKTRO JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG

SOAL

Buatlah filter image menggunakan High Pass Filter Low Pass Filter dan kemudian buat Histogram dari hasil filter tersebut!

JAWAB:

Coding:

High Pass Filter

```
import numpy as np #memanggil library numpy
import cv2 #memanggil library opency
import matplotlib.pyplot as plt #memanggil library matplotlib
from scipy import ndimage #memangil library ndimage dari scipy
im = cv2.imread ('eifel.jpg')#membaca file gambar
gray = cv2.cvtColor(im, cv2.COLOR BGR2GRAY)
data = np.array(gray, dtype=float)
kernel = np.array([[-1, -1, -1, -1, -1],
                   [-1, 1, 2, 1, -1],
                   [-1, -1, -1, -1, -1]])#matrik untuk operasi hpf
highpass_5x5 = ndimage.convolve(data, kernel)#operasi hpf
hist1,bins1 = np.histogram(highpass_5x5.flatten(),256,[0,256]) #
cdf1 = hist1.cumsum() # membuat histogram gambar dari hasil highpassfilter pass filter pada highpass 5x5
norm1 = cdf1 * hist1.max()/ cdf1.max()
cv2.imshow('Grayscale',gray)
cv2.imshow('Highpass_5x5',highpass_5x5)
plt.plot(norm1, color = 'b')
plt.hist(highpass_5x5.flatten(),256,[0,256], color = 'r')
plt.xlim([0,256])
plt.legend(('cdf','histogram'), loc = 'upper left')
plt.show()
cv2.waitKey(0)
cv2.destroyAllWindows()
```

Penjelasan:

```
import numpy as np #memanggil library numpy
import cv2 #memanggil library opencv
import matplotlib.pyplot as plt #memanggil library matplotlib
from scipy import ndimage #memangil library ndimage dari scipy
```

(line 1-4 digunakam untuk mengimpor libarary yang akan digunakan)

```
im = cv2.imread ('eifel.jpg')#membaca file gambar
```

(line 7 digunakan untuk memanggil file gambar bernama eifel.jpg)

```
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
data = np.array(gray, dtype=float)
```

(line 8-9 digunakan untuk mengubah gambar asli ke gambar keabu-abuan)

(line 11-15 merupakan angka matrik yang akan digunakan pada high pass filter image dengan matrik 5 x 5)

highpass_5x5 = ndimage.convolve(data, kernel)#operasi hpf

(line 16 digunakan untuk operasi matrik)

```
hist1,bins1 = np.histogram(highpass_5x5.flatten(),256,[0,256]) #
cdf1 = hist1.cumsum() # membuat histogram gambar dari hasil highpassfilter
pass filter pada highpass_5x5
norm1 = cdf1 * hist1.max()/ cdf1.max()
```

(line 18-20 merupakan rumus dari matrik yang udah diolah ke high pass filter menjadi histogram)

```
cv2.imshow('Grayscale',gray)
cv2.imshow('Highpass_5x5',highpass_5x5)
```

(line 22-23 digunakan untuk menampilkan gambar keabuan dan gambar yang sudah diproses dengan high pass filter)

```
plt.plot(norm1, color = 'b')
plt.hist(highpass_5x5.flatten(),256,[0,256], color = 'r')
plt.xlim([0,256])
plt.legend(('cdf','histogram'), loc = 'upper left')
```

(line 24-27 digunakan untuk menentukan plot warna, histogram, dan penentuan upper leftnya)

plt.show()

(line 29 digunakan untuk menampilkan gambar)

```
cv2.waitKey(0)
cv2.destroyAllWindows()
```

(line 31-32 digunakan untuk perintah keluar dari aplikasi)

Gambar:

Gambar Asli 'eifel.jpg'

Gambar eifel Grayscale dan High Pass Filter

Gambar histogram High Pass Filter

Coding:

Low Pass Filter

```
import cv2 #memanggil library opency
import numpy as np #memanggil library numpy
import matplotlib.pyplot as plt #memanggil library matplotlib
img=cv2.imread('ty.jpg')
gray=cv2.cvtColor(img, cv2.COLOR BGR2GRAY)
img=cv2.GaussianBlur(gray,(3,3),0)
laplacian=cv2.Laplacian(img, cv2.CV 64F)
sobelx=cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
sobely=cv2.Sobel(img,cv2.CV 64F,0,1,ksize=5)
plt.subplot(2,2,1),plt.imshow(img,cmap='gray'),plt.title('Gambar Asli')
plt.xticks([]), plt.yticks([])
plt.subplot(2,2,2),plt.imshow(laplacian,cmap='gray'),plt.title('Laplacian')
plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3),plt.imshow(sobelx,cmap='gray'),plt.title('Sobel X')
plt.xticks([]), plt.yticks([])
plt.subplot(2,2,4),plt.imshow(sobely,cmap='gray'),plt.title('Sobel Y')
plt.xticks([]), plt.yticks([])
plt.show()
```

Penjelasan:

```
import cv2 #memanggil library opencv
import numpy as np #memanggil library numpy
import matplotlib.pyplot as plt #memanggil library matplotlib
```

(line 1-3 digunakam untuk mengimpor libarary yang akan digunakan)

```
img=cv2.imread('ty.jpg')
```

(line 5 digunakan untuk memanggil file gambar bernama ty.jpg)

```
gray=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img=cv2.GaussianBlur(gray,(3,3),0)
```

(line 7-8 digunakan untuk mengubah gambar asli ke gambar keabu-abuan)

```
laplacian=cv2.Laplacian(img, cv2.CV_64F)
sobelx=cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
sobely=cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)
```

(line 10-12 berisikan rumus low pass filter dengan cara laplacian, sobel x dan sobel y)

```
plt.subplot(2,2,1),plt.imshow(img,cmap='gray'),plt.title('Gambar Asli')
plt.xticks([]), plt.yticks([])
plt.subplot(2,2,2),plt.imshow(laplacian,cmap='gray'),plt.title('Laplacian')
plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3),plt.imshow(sobelx,cmap='gray'),plt.title('Sobel X')
plt.xticks([]), plt.yticks([])
```

```
plt.subplot(2,2,4),plt.imshow(sobely,cmap='gray'),plt.title('Sobel Y')
plt.xticks([]), plt.yticks([])
plt.show()
```

(line 14-22 digunakan untuk menampilkan gambar dalam satu figure)

Gambar:

Gambar Asli ty.jpg

Gambar Low Pass Filter ty.jpg

Coding

Histogram

```
import numpy as np #memanggil library numpy
import cv2 #memanggil library opencv
import matplotlib.pyplot as plt #memanggil library pyplot

img=cv2.imread('ty.jpg', cv2.IMREAD_GRAYSCALE)
cv2.imshow('ty', img)
hist=cv2.calcHist([img],[0],None,[256],[0,256])

plt.hist(img.ravel(),256,[0,256])
plt.title('Histogram for gray scale picture')
plt.show()
```

Penjelasan:

```
import numpy as np #memanggil library numpy
import cv2 #memanggil library opencv
import matplotlib.pyplot as plt #memanggil library pyplot
```

(line 1-3 digunakam untuk mengimpor libarary yang akan digunakan)

```
img=cv2.imread('ty.jpg', cv2.IMREAD_GRAYSCALE)
cv2.imshow('ty', img)
```

(line 5-6 digunakan untuk memanggil gambar ty.jpg)

```
hist=cv2.calcHist([img],[0],None,[256],[0,256])
(line 7 merupakan rumusan histogram)
```

```
plt.hist(img.ravel(),256,[0,256])
plt.title('Histogram for gray scale picture')
plt.show()
```

(line 9-11 digunakan untuk menampilkan gambar histogram dalam satu figure)

Gambar:

Gambar Asli ty.jpg

Gambar Grayscale ty.jpg

Gambar histogram ty.jpg