# Spambase Classification Models

Assignment 3

Computation EDA and Two-Eyed Algorithms in Binary Classification

Kevin Johnson

## Northwestern

## Data Description

- Source: UCI Machine Learning Repository
- Data Structure: 4601 Observations, 58 Variables
- 48 continuous [0,100] variables of type word\_freq\_WORD
- 6 continuous real [0,100] attributes of type char\_freq\_CHAR
- 1 continuous real [1,...] variable of type capital\_run\_length\_average
- 1 continuous integer [1,...] variable of type capital\_run\_length\_longest
- 1 continuous integer [1,...] attribute of capital\_run\_length+ total
- 1 nominal {0,1} class attribute of t

## Split into Train and Test Sets

- Train and Test set to be split 50/50
- Train Set Dimensions: (2318,58)
- Test Set Dimensions: (2283, 58)

## Decision Tree



### Decision Tree

Variable Importance Plot
 ROC Curve







### Decision Tree

In-Sample Results

|   | 0    | 1    |
|---|------|------|
| 0 | .961 | .039 |
| 1 | .169 | .831 |

|   | 0    | 1    |
|---|------|------|
| 0 | .940 | .060 |
|   | .176 | .824 |

#### Random Forest

Variable Importance Plot
 ROC Curve





#### Random/Forest

In-Sample Results

|   | 0    | 1    |
|---|------|------|
| 0 | .948 | .052 |
| 1 | .083 | .917 |

|   | 0    | 1    |
|---|------|------|
| 0 | .963 | .037 |
| 1 | .058 | .942 |

### GBM: Bernoulli

Variable Importance Plot



ROC Curve



### GBM: Bernoulli

In-Sample Results

|   | 0    | 1    |
|---|------|------|
| 0 | .967 | .033 |
| 1 | .114 | .886 |

|   | 0    | 1    |
|---|------|------|
| 0 | .938 | .062 |
|   | .067 | .933 |

### GBM: AdaBoost

Variable Importance Plot



ROC Curve



#### GBM: AdaBoost

In-Sample Results

|   | 0    | 1    |
|---|------|------|
| 0 | .958 | .042 |
| 1 | .082 | .918 |

|   | 0    | 1    |
|---|------|------|
| 0 | .944 | .056 |
|   | .066 | .934 |

### XGBoost: 500 Iterations

Variable Importance Plot
 ROC Curve







word\_freq\_edu

word\_freq\_our

### XGBoost: 500 Iterations

In-Sample Results

|   | 0    | 1     |
|---|------|-------|
| 0 | .999 | .001  |
| 1 | .000 | 1.000 |

|   | 0    | 1    |
|---|------|------|
| 0 | .958 | .042 |
|   | .050 | .950 |

## XGBoost: 1000 Iterations

Variable Importance Plot



ROC Curve



## XGBoost: 1000 Iterations

In-Sample Results

|   | 0    | 1     |
|---|------|-------|
| 0 | .999 | .001  |
| 1 | .000 | 1.000 |

|   | 0    | 1    |
|---|------|------|
| 0 | .957 | .043 |
|   | .054 | .946 |

# Model Comparison

#### In-Sample Results

| Metric         | Decision.Tree | Random.Forest | GBM.Bernoulli | GBM.AdaBoost | XGBoost.500 | XGBoost.1000 |
|----------------|---------------|---------------|---------------|--------------|-------------|--------------|
| Accuracy       | 0.896         | 0.933         | 0.927         | 0.933        | 1.000       | 1.000        |
| True Positive  | 0.831         | 0.918         | 0.886         | 0.918        | 1.000       | 1.000        |
| True Negative  | 0.961         | 0.948         | 0.967         | 0.958        | 0.999       | 0.999        |
| False Positive | 0.169         | 0.082         | 0.114         | 0.082        | 0.000       | 0.000        |
| False Negative | 0.039         | 0.052         | 0.033         | 0.052        | 0.001       | 0.001        |
| TP+TN          | 1.792         | 1.866         | 1.853         | 1.876        | 1.999       | 1.999        |
| Precision      | 0.831         | 0.918         | 0.886         | 0.918        | 1.000       | 1.000        |
| Recall         | 0.955         | 0.946         | 0.964         | 0.946        | 0.999       | 0.999        |
| Specificity    | 0.850         | 0.920         | 0.895         | 0.921        | 1.000       | 1.000        |
| F1             | 0.889         | 0.932         | 0.923         | 0.932        | 1.000       | 1.000        |
| AUC            | 0.896         | 0.944         | 0.978         | 0.979        | 1.000       | 1.000        |

|                |               |               | _             |              |             |              |
|----------------|---------------|---------------|---------------|--------------|-------------|--------------|
| Metric         | Decision.Tree | Random.Forest | GBM.Bernoulli | GBM.AdaBoost | XGBoost.500 | XGBoost.1000 |
| Accuracy       | 0.891         | 0.953         | 0.936         | 0.939        | 0.954       | 0.952        |
| True Positive  | 0.824         | 0.942         | 0.933         | 0.934        | 0.950       | 0.946        |
| True Negative  | 0.940         | 0.963         | 0.938         | 0.944        | 0.958       | 0.957        |
| False Positive | 0.176         | 0.058         | 0.067         | 0.066        | 0.050       | 0.054        |
| False Negative | 0.060         | 0.037         | 0.062         | 0.056        | 0.042       | 0.043        |
| TP+TN          | 1.764         | 1.905         | 1.871         | 1.878        | 1.908       | 1.903        |
| Precision      | 0.824         | 0.942         | 0.933         | 0.934        | 0.950       | 0.946        |
| Recall         | 0.954         | 0.962         | 0.938         | 0.943        | 0.958       | 0.957        |
| Specificity    | 0.842         | 0.943         | 0.933         | 0.935        | 0.950       | 0.947        |
| F1             | 0.884         | 0.952         | 0.935         | 0.939        | 0.954       | 0.951        |
| AUC            | 0.882         | 0.943         | 0.977         | 0.978        | 0.987       | 0.986        |

# Model Comparison: F1 Score

$$F_1 = 2 * \frac{precision * recall}{precision + recall}$$

- F1 maintains a balance between Precision and Recall
- Higher Recall important in spam classification
- XGBoost models have highest F1 in both datasets
- 500 Iteration model less overfit than 1000 Iteration model

| Model                    | Train | Test  |
|--------------------------|-------|-------|
| XGBoost: 500 Iterations  | 1.000 | 0.954 |
| XGBoost: 1000 Iterations | 1.000 | 0.951 |
| Random Forest            | 0.932 | 0.952 |
| GBM: Bernoulli           | 0.932 | 0.939 |
| GBM: AdaBoost            | 0.923 | 0.935 |
| Decision Tree            | 0.889 | 0.884 |

## XGBoost: Overfitting



- Model begins to overfit at about 50 iterations
- Slippage at 50 iterations
  ~.010
- Slippage increases to
   ~.011 at 200 iterations
- Slippage at 1000 iterations ~.0135