Government College of Engineering, Ch. Sambhajinagar (An Autonomous Institute of Government of Maharashtra)

End Semester Examination December 2023

F.Y. M.C.A. Examination MCPCC1001: Data Structures

Time: 2 1/2 Hours

1 1 DEC 2023

Max. Marks: 60

Vishal Jatti

"Verify the Course Code and check whetheryou have got the Correct Question Paper"

N.B.

1. Attempt all questions.

2. Figures to the right indicate full marks

3. Assume suitable data if necessary and state it clearly

4. Use of Non-Programmable Calculator and Data Sheet is allowed

Q1	Attempt any Two	CO	Level	Marks
	a. Apply push and pop operations to add and remove following data in the stack. Also define stack. add (2) add (50) add (20) remove two elements from this stack.	C02	К3	06
	b. Write an algorithm for evaluation of postfix expression. Convert the following expression into postfix form. (A + B) * C - (D - E) * (F + G)	CO4	K5	06
3.4	c. Define data structures. Compare array based and linked list based stack implementation.	CO1	К3	06
Q2	Attempt any Two	CO	Level	Marks
Tall	a. Which data structure is used for dictionary and spell checker? Justify your answer.	,CO4	K5	06
renio X	b. Compare singly linked list, doubly linked list and circular linked list. Write steps to implement insert and delete operations of linked list.	COI	K 3	06
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	c. Compare between sequential search and binary search. Write an algorithm for binary search.	CO2	K2	06
Q3	Attempt any Two	CO	Level	Marks
	 a. Write any two applications of binary tree. Create the binary search tree using following data. Search an element 11 from the given list. 43, 10, 79, 90, 12, 54, 11, 9, 50 	CO2	K5	06

	b. Traverse the following tree using preorder, postorder and inorder traversal methods.	СОЗ	K4	06
		i a tr		7.2
	2		A SAFT	Eign
P. B.	4 5 6 7		;	
3				
q	c. Explain AVL tree and B-tree with example.	CO2	K2	06
Q4	Attempt any Two	СО	Level	Marks
oa a	a. Write an algorithm for merge sort and sort the following numbers with merge sort method. Analyze merge sort algorithm using time complexity. 23, 5, 67, 1, 20, 8	CO4	K5	06
	b. Compare sequential search and binary search. Search number 7 in the following list using binary search method. 23 4 12 5 4 7 9 15	CO4	К 3	06
	c. Find minimum spanning tree with Prim's and Kruskal's algorithm for the following graph.	CO2	K4	06
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Otron, Srig		
	5 18 4 3			
Q5	Attempt any Two	CO	Level	Marks
	a. Describe DFS and BFS methods. Write algorithm for BFS traversal.	CO1	К3	06

		A second second	
b. Define a hash table. Explain it briefly.	CO1	K2	06
c. What is collision resolution in hashing? Give names of searching and hashing algorithms each.	of <i>CO3</i>	KI	06
		to part	
	Ower		
		<i>y</i>	
	-3	2)	
		A 原	
	ラ農		
是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	A STATE OF THE STA	- 1014	一种