Elliptic Curve Optimizations. EC Pairing.

Distributed Lab May 16, 2024

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩♡

Plan

- Preliminaries
- 2 Effective EC Point Addition
 - Classical Approach
 - Projective Coordinates
- 3 EC Pairing
 - Definition
 - Example Usage: BLS Signature
 - Primitives under the hood
 - Field Extensions
 - Twisted Curve

Preliminaries

Distributed Lab Elliptic Curves 3 / 38 May 16, 2024

Field

Definition

Field K is a set equipped with appropriate **addition** and **multiplication** operations with the corresponding well-defined inverses, where you can perform the basic arithmetic.

- $\bullet \mathbb{R}$ (real numbers) is a field.
- Q (rational numbers) is a field.
- ullet \mathbb{C} (complex numbers) is a field.
- \mathbb{N} (natural numbers) is not a field: there is no additive inverse for 2 (-2 is not in \mathbb{N}).
- \mathbb{Z} (integers) is not a field: additive inverse is defined, but the multiplicative is not (2^{-1}) is not defined).

Finite Field

Definition

Finite field \mathbb{F}_p is a set $\{0, 1, \dots, p-1\}$ equipped with basic arithmetic (+ and \times) modulo p.

Example

 \mathbb{F}_5 is a set with elements $\{0,1,2,3,4\}$. Examples of calculations:

- **1** 3+4=7=2 (in \mathbb{F}_5);
- 2 3-4=-1=4 (in \mathbb{F}_5);
- 3 $3 \times 4 = 12 = 2$ (in \mathbb{F}_5);
- **4** $3^{-1} = 2$ (since $3 \cdot 2 = 1$ in \mathbb{F}_5);

Typically, p is a large (e.g., 254-bit) **prime number**.

Distributed Lab Elliptic Curves 5 / 38 May 16, 2024 5 / 38

Finite Field Illustration

Figure: Illustration of performing addition in \mathbb{Z}_{12} (not really a field, but the rules are identical besides inversion).

6/38

Distributed Lab Elliptic Curves 6 / 38 May 16, 2024

Elliptic Curve

Definition

Elliptic Curve E(K) in short *Weierstraß form* over the field K is a set of coordinates (x, y) from K such that

$$y^2 = x^3 + ax + b$$
, $(a, b \in K)$

together with a "point at infinity" O.

BN254 (or **BN256/BN128**) is the curve over $K = \mathbb{F}_p$ where:

$$y^2 = x^3 + 3$$
 $(a = 0, b = 3)$

 $p = 0 \times 30644 e 72 e 131 a 029 b 85045 b 68181585 d 97...$

...816a916871ca8d3c208c16d87cfd47

7 / 38

Distributed Lab Elliptic Curves 7 / 38 May 16, 2024

Elliptic Curve on the Figure

Figure 2.1: Singular curve $y^2 = x^3 - 3x + 2$ over \mathbb{R} .

 $y^2 = x^3$ over \mathbb{R} .

Figure 2.2: Singular curve $y^2 = x^3$

Smooth curve $y^2 = x^3 + x + 1$ over \mathbb{R} .

2.3:

Figure

Figure 2.4: Smooth curve $y^2 = x^3 - x$ over \mathbb{R} .

Figure: Illustration of various elliptic curves over \mathbb{R} (that is, $E(\mathbb{R})$).

Distributed Lab Elliptic Curves 8 / 38 May 16, 2024 8 / 38

Actually, these are Elliptic Curves...

But actual elliptic curves look more like that...

Figure 2.9: The points (excluding \mathcal{O}) on $E(\mathbb{F}_{11})$.

Figure: Illustration of an elliptic curve $E(\mathbb{F}_{11}): y^2 = x^3 - 2x$.

Distributed Lab Elliptic Curves 9 / 38 May 16, 2024 9 / 38

Group structure

Definition

Group (\mathbb{G}, \oplus) is just a set with defined operation \oplus , which has "nice" properties (e.g., closure).

Idea: A set of objects is useless unless we have practical relations between elements. For example, 7 and 13 are integers, but the structure is worthless without the ability to add/multiply them.

Theorem

 $(E(\mathbb{F}_p),\oplus)$ is a group where operation \oplus between points $P,Q\in E(\mathbb{F}_p)$ means drawing a line between P and Q (or tangent line if P=Q), finding intersection with $E(\mathbb{F}_p)$ and "reflecting around Ox axis" (negating y component). We denote the group order by $q:=|E(\mathbb{F}_p)|$.

Also, we denote
$$[a]P = \underbrace{P \oplus P \oplus \cdots \oplus P}_{a \text{ times}}$$
 – scalar multiplication $(a \in \mathbb{F}_q)$.

Distributed Lab Elliptic Curves 10 / 38 May 16, 2024 10 / 38

Illustration of addition

Figure 2.5: Elliptic curve addition.

Figure 2.6: Elliptic curve doubling.

Figure: Illustration of operation $R = P \oplus Q$

Distributed Lab Elliptic Curves 11 / 38 May 16, 2024 11 / 38

Effective EC Point Addition

Classical Approach

Definition

Point $P \in E(\mathbb{F}_p)$, represented by coordinates (x_P, y_P) is called the **affine** representation of P.

So, how do we add $(x_R, y_R) = (x_P, y_P) \oplus (x_Q, y_Q)$ where (x_P, y_P) and (x_Q, y_Q) are affine representation of points $P, Q \in E(\mathbb{F}_p)$?

Algorithm 1: Classical adding P and Q for $x_P \neq x_Q$

- Calculate the slope $\lambda \leftarrow (y_P y_Q)/(x_P x_Q)$.
- Set

$$x_R \leftarrow \lambda^2 - x_P - x_Q, \ y_R \leftarrow \lambda(x_P - x_R) - y_P.$$

Easy, right? What can go wrong?

Distributed Lab Elliptic Curves 1

Why this is bad?

Let

- M cost of multiplication;
- S cost of squaring;
- I cost of inverse.

(all in
$$\mathbb{F}_p$$
)

Algorithm 1: Calculating $P \oplus Q$

$$\lambda \leftarrow (y_P - y_Q) \times (x_P - x_Q)^{-1}$$
$$x_R \leftarrow \lambda^2 - x_P - x_Q$$
$$y_R \leftarrow \lambda \times (x_P - x_R) - y_P$$

Then, calculating the aforementioned formula costs:

$$2M + S + I$$

Well, just 4 operations... Easy right?

Main Problem!

Typically, I \approx 80M. So, the effective cost is roughly **80 operations**. Too bad.

Distributed Lab Elliptic Curves 14 / 38

Solution: Projective Coordinates

Definition

We now represent point $P \in E(\mathbb{F}_p)$ via three coordinates $(X_P : Y_P : Z_P)$. Such form is called **projective coordinates**. To convert this form to affine form, we use map $(X_P : Y_P : Z_P) \mapsto (X_P/Z_P, Y_P/Z_P), (0 : Y_P : 0) \mapsto \mathcal{O}$.

Definition

If points $(X_1:Y_1:Z_1)$ and $(X_2:Y_2:Z_2)$ map to the same affine point, they are called **equivalent**. Formally, if exists $\lambda \in \mathbb{F}_p$ such that $(X_1:Y_1:Z_1)=(\lambda X_2:\lambda Y_2:\lambda Z_2)$.

Geometrical interpretation: two points $(X_1:Y_1:Z_1)$ and $(X_2:Y_2:Z_2)$ are equivalent if the line through them intersects (0,0,0) in "3D space". The elliptic curve equation (or rather surface) is then:

$$Y^2Z = X^3 + aXZ^2 + bZ^3$$

Elliptic Curve in Projective Form

Figure: Elliptic Curve $Y^2Z = X^3 + 3Z^3$ visualized over reals $\mathbb R$ in 3D space. The "affine" curve is red, lying on a plane z = 1.

Distributed Lab Elliptic Curves 16 / 38 May 16, 2024 16 / 38

Equivalent points in projective form

Figure: Points P and P' are equivalent $(P \sim P')$ since line PP' intersects O = (0,0,0).

Distributed Lab Elliptic Curves 17 / 38 May 16, 2024 17 / 38

What does it give us?

Now we have three instead of two coordinates... Why is it better? Because addition now looks like:

$$\begin{split} X_3 &= (X_1Y_2 + X_2Y_1)(Y_1Y_2 - 3bZ_1Z_2) \\ &\quad - 3b(Y_1Z_2 + Y_2Z_1)(X_1Z_2 + X_2Z_1), \\ Y_3 &= (Y_1Y_2 + 3bZ_1Z_2)(Y_1Y_2 - 3bZ_1Z_2) + 9bX_1X_2(X_1Z_2 + X_2Z_1), \\ Z_3 &= (Y_1Z_2 + Y_2Z_1)(Y_1Y_2 + 3bZ_1Z_2) + 3X_1X_2(X_1Y_2 + X_2Y_1), \end{split}$$

Figure: Elliptic Curve addition in projective form.

Although looks much more complicated, it takes only 14M compared to 80M.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - からぐ

Distributed Lab Elliptic Curves 18 / 38 May 16, 2024 18 / 38

Illustration of adding two points

Distributed Lab Elliptic Curves 19 / 38 May 16, 2024 19 / 38

General Strategy

- **①** Convert affine form (X_P, Y_P) to the projective $(X_P : Y_P : 1)$.
- ② Make many additions, doubling, multiplications etc. in projective form, getting $(X_R : Y_R : Z_R)$ at the end.
- Onvert back to affine coordinates:

$$(X_R:Y_R:Z_R)\mapsto (X_R/Z_R,Y_R/Z_R)$$

Figure: General strategy with EC operations.

Distributed Lab Elliptic Curves 20 / 38 May 16, 2024 20 / 38

EC Pairing

Distributed Lab Elliptic Curves 21 / 38 May 16, 2024

Definition

Definition

EC Pairing $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ is a magical map satisfying the following property:

$$e([a]P, [b]Q) = e([ab]P, Q) = e(P, [ab]Q) = e(P, Q)^{ab}.$$

Pairing for BN254

For BN254, we have:

- \mathbb{G}_1 "regular" points on the curve $E(\mathbb{F}_p)$.
- \mathbb{G}_2 "good" points on the twisted curve $E'(\mathbb{F}_{p^2})$ over the field extension \mathbb{F}_{p^2} $(y^2 = x^3 + b', b \neq b' \in \mathbb{F}_{p^2})$.
- \mathbb{G}_T multiplicative scalars from extension $\mathbb{F}_{p^{12}}$ (namely, μ_r).

Distributed Lab Elliptic Curves 22 / 38 May 16, 2024 22 / 38

EC Pairing Illustration

Figure: Pairing illustration. It does not matter what we do first: (a) compute [a]P and [b]Q and then compute e([a]P,[b]Q) or (b) first calculate e(P,Q) and then transform it to $e(P,Q)^{ab}$.

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (C)

Example: BLS Signature

Suppose we have pairing $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ (with generators G_1, G_2 , respectively), and a hash function H, mapping message space \mathcal{M} to \mathbb{G}_1 .

Definition

BLS Signature consists of the following algorithms:

- Gen(·): Key generation. sk $\stackrel{R}{\leftarrow} \mathbb{Z}_a$, pk \leftarrow [sk] $G_2 \in \mathbb{G}_2$.
- Sign(sk, m). Signature is $\sigma \leftarrow [sk]H(m) \in \mathbb{G}_1$.
- Verify(pk, m, σ). Check whether $e(H(m), pk) = e(\sigma, G_2)$.

Let us check the correctness:

$$e(\sigma, G_2) = e([sk]H(m), G_2) = e(H(m), [sk]G_2) = e(H(m), pk)$$

Remark: \mathbb{G}_1 and \mathbb{G}_2 might be switched: public keys might live instead in \mathbb{G}_1 while signatures in \mathbb{G}_2 .

Distributed Lab Elliptic Curves 24 / 38 May 16, 2024

24 / 38

What it takes to implement?

Figure: Various things under the hood.

Distributed Lab Elliptic Curves 25 / 38 May 16, 2024 25 / 38

What are field extensions?

These are "like" complex numbers \mathbb{C} . Recall that the complex number is a+ib where $a,b\in\mathbb{R}$ and $i^2=-1$. So that:

$$(a+ib)(c+id) = ac + (ad)i + (bc)i + (bd)i^2$$

= $(ac-bd) + (ad+bc)i$

Field extension \mathbb{F}_{p^2} is a+ib where $a,b\in\mathbb{F}_p$ and $i^2=-1$. The same structure, essentially :)

Problems happen with \mathbb{F}_{p^6} and $\mathbb{F}_{p^{12}}$ though since the intuition with complex numbers break...

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (C)

Distributed Lab Elliptic Curves 26 / 38 May 16, 2024 26 / 38

Polynomials

Definition

Polynomial K[X] is an expression

$$p(X) = c_0 + c_1 X + c_2 X^2 + \cdots + c_n X^n, \ c_i \in K$$

Definition

Polynomial $p \in K[X]$ is said to be irreducible if there are two non-constant polynomials $q, r \in K[X]$ such that p = qr.

Example: $X^2 + 4 \in \mathbb{R}[X]$ is irreducible.

Definition

Quotient group $K[X]/\langle p \rangle$ (which is a field) over irreducible polynomial p is polynomials from K[X] modulo p.

Examples

Arithmetic in quotient group

Suppose $K = \mathbb{R}$ and $p(X) = X^2 + 1$ – irreducible over \mathbb{R} . Then, example elements are $1+2X, 2+3X \in \mathbb{R}[X]/\langle X^2+1 \rangle$. You can do the regular arithmetic with them:

- Addition: (1+2X) + (2+3X) = 3+5X
- **Multiplication:** $(1 + 2X)(2 + 3X) = 2 + 7X + 6X^2$. But, we need to reduce mod $(X^2 + 1)$. So notice that

$$6X^2 + 7X + 2 = 6(X^2 + 1) + \underbrace{(-4 + 7X)}_{\text{result}}$$

• Division (except for by 0 + 0X) and subtraction is also allowed.

May 16, 2024

28 / 38

Distributed Lab Elliptic Curves 28 / 38

Analogy!

In fact, $\mathbb{R}[X]/(X^2+1)$ is the same structure as complex numbers! (Formally, they are isomorphic $\mathbb{R}[X]/\langle X^2+1\rangle\cong\mathbb{C}$). For example, when we multiplied (1+2X)(2+3X), we got -4+7X. But...

$$(1+2i)(2+3i) = 2+7i + \underbrace{6i^2}_{=-6} = -4+7i$$

Notice, that $\mathbb{R}[X]/(X^2+9)$ would have a similar structure and is also isomorphic to \mathbb{C} . Thus, the choice of p(X) is **not unique**.

Distributed Lab Elliptic Curves 29 / 38 May 16, 2024 29 / 38

Tower of Extensions

We are ready to define $\mathbb{F}_{p^{12}}$. So,

Tower of Extensions

To define $\mathbb{F}_{p^{12}}$, we use the following objects with $\beta = -1 \in \mathbb{F}_p$, $\xi = 9 + u \in \mathbb{F}_{p^2}$:

$$\mathbb{F}_{p^2} = \mathbb{F}_p[u]/\langle u^2 - \beta \rangle$$

$$\mathbb{F}_{p^6} = \mathbb{F}_{p^2}[v]/\langle v^3 - \xi \rangle$$

$$\mathbb{F}_{p^{12}} = \mathbb{F}_{p^6}[w]/\langle w^2 - v \rangle$$

30 / 38

Distributed Lab Elliptic Curves 30 / 38 May 16, 2024

Visualization (sort of)

Figure: Tower of extensions visualized

Distributed Lab Elliptic Curves 31 / 38 May 16, 2024 31 / 38

Formulating more simply

More simply:

- \mathbb{F}_{p^2} is a number a + bu where $a, b \in \mathbb{F}_p$ and $u^2 = -1$.
- \mathbb{F}_{p^6} is a number $a + bv + cv^2$ where $a, b, c \in \mathbb{F}_{p^2}$ and $v^3 = 9 + u$.
- ullet $\mathbb{F}_{p^{12}}$ is a number a+bw where $a,b\in\mathbb{F}_{p^6}$ and $w^2=v$.

Intuition

You should regard an element from \mathbb{F}_{p^k} as a regular number, but composed of k scalars from \mathbb{F}_p in a "special" way.

Distributed Lab Elliptic Curves 32 / 38 May 16, 2024 32 / 38

Curves used

As mentioned, \mathbb{G}_1 is a regular curve $y^2 = x^3 + 3$. However, \mathbb{G}_2 is a curve (called **twisted curve**):

$$y^2 = x^3 + \frac{3}{9+u}$$
, where $x, y \in \mathbb{F}_{p^2}$

So the element in \mathbb{G}_2 is described using four scalars from \mathbb{F}_p :

$$(a + bu, c + du), a, b, c, d \in \mathbb{F}_p$$

To conclude:

- ullet \mathbb{G}_1 is a group of points on the curve $y^2=x^3+3$ over \mathbb{F}_p .
- \mathbb{G}_2 is a group of points on the curve $y^2 = x^3 + \frac{3}{9+u}$ over the field extension \mathbb{F}_{p^2} .
- ullet $\mathbb{G}_{\mathcal{T}}$ "=" $\mathbb{F}_{p^{12}}^{\star}$ is a multiplicative subgroup of scalars from $\mathbb{F}_{p^{12}}$.

- (ロ) (個) (重) (重) (重) の(()

33 / 38

What it takes to implement?

Calculating pairing e(P, Q)

- \odot return f.

So, one needs to:

- Implement MillerLoop that outputs the scalar f in $\mathbb{F}_{p^{12}}$, also called a *Tate pairing*.
- ② Implement final exponentiation (FinalExp) that raises f to the power of $(p^{12}-1)/q$ this ensures there are no equivalence classes in the output (called *Reduced Tate pairing* or simply *ate pairing*).

Again, understanding the construction requires ton of theory (in particular, from abstract geometry), but the algorithms are quite concrete.

Distributed Lab Elliptic Curves 34 / 38 May 16, 2024 34 / 38

Some excerpts from papers...

Algorithm 1 Optimal ate pairing over Barreto-Naehrig curves.

```
Input: P \in \mathbb{G}_1 and Q \in \mathbb{G}_2.
Output: a_{\text{opt}}(Q, P).
 1. Write s = 6t + 2 as s = \sum_{i=0}^{L-1} s_i 2^i, where s_i \in \{-1, 0, 1\};
 2. T \leftarrow Q. f \leftarrow 1:
 3. for i = L - 2 to 0 do
 4. f \leftarrow f^2 \cdot l_{T,T}(P); T \leftarrow 2T;
 5. if s_i = -1 then
 6. f \leftarrow f \cdot l_{T,-Q}(P); T \leftarrow T - Q;
 7. else if s_i = 1 then
 8. f \leftarrow f \cdot l_{T,Q}(P); T \leftarrow T + Q;
        end if
10. end for
11. Q_1 \leftarrow \pi_p(Q); Q_2 \leftarrow \pi_{n^2}(Q);
12. f \leftarrow f \cdot l_{T,O_1}(P): T \leftarrow T + Q_1:
13. f \leftarrow f \cdot l_{T,-Q_2}(P); T \leftarrow T - Q_2;
14. f \leftarrow f^{(p^{12}-1)/r}:
15. return f;
```

Distributed Lab Elliptic Curves 35 / 38 May 16, 2024 35 / 38

Some excerpts from papers...

```
Algorithm 31 Final Exponentiation
Require: f \in \mathbb{F}_{n^{12}} = \mathbb{F}_{n^6}[w]/(w^2 - \gamma), where f = g + hw.
Ensure: f^{(p^{12}-1)/r} \in \mathbb{F}_{-12}.

 f<sub>1</sub> ← f̄;

 f<sub>2</sub> ← f<sup>-1</sup>;

 f ← f<sub>1</sub> · f<sub>2</sub>;

 f ← f<sup>p<sup>2</sup></sup> · f; {Algorithm 29}

 5. ft_1 \leftarrow f^t; {Algorithm 25}

 ft<sub>2</sub> ← f<sup>t<sup>2</sup></sup>;

 7. ft_3 \leftarrow f^{t^3}

 fp<sub>1</sub> ← f<sup>p</sup>; {Algorithm 28}

 fp<sub>2</sub> ← f<sup>p<sup>2</sup></sup>; {Algorithm 29}

 fp<sub>2</sub> ← f<sup>p<sup>3</sup></sup>; {Algorithm 30}

11. y_0 \leftarrow fp_1 \cdot fp_2 \cdot fp_3;
12. y_1 \leftarrow f_1:
13. y_2 \leftarrow (ft_2)^{p^2}; {Algorithm 29}
14. y_3 \leftarrow (ft_1)^p; {Algorithm 28}
15. v_3 \leftarrow \bar{v_3};

 y<sub>4</sub> ← (ft<sub>2</sub>)<sup>p</sup> · ft<sub>1</sub>; {Algorithm 28}

 17. u<sub>4</sub> ← ū<sub>4</sub>;

 18. y<sub>5</sub> ← ft

<sub>n</sub>;

    y<sub>6</sub> ← (ft<sub>3</sub>)<sup>p</sup> · ft<sub>3</sub>; {Algorithm 28}

 t<sub>0</sub> ← y<sub>6</sub><sup>2</sup> · y<sub>4</sub> · y<sub>5</sub>; {Algorithm 24 for squaring}

22. t_1 \leftarrow y_3 \cdot y_5 \cdot t_0:

 t<sub>1</sub> ← (t<sub>1</sub><sup>2</sup> · t<sub>0</sub>)<sup>2</sup>; {Algorithm 24 for squaring}

25. t_0 \leftarrow t_1 \cdot y_1;
26. t_1 \leftarrow t_1 \cdot y_0;
27. t_0 \leftarrow t_0^2; {Algorithm 24}

 f ← t<sub>1</sub> · t<sub>0</sub>;

29. return f;
```

Figure: Final Exponentiation formalized.

36 / 38

Distributed Lab Elliptic Curves 36 / 38

So many are still uncovered...

- Useful curve endomorphisms (Kobitz curves) for ecmul.
- GLV decomposition.
- 3 Arithmetics over NonNativeFields.
- Divisors and line function evaluations.
- **\odot** Embedding degree and what r-torsion subgroups are.
- **1** Torus \mathbb{T}_2 compression.
- **0** ...

Thanks for your attention!