Quantum information science

Géza Tóth

Lecture notes for the class during the 2nd trimester of the 2014/2015 school year.

${\bf Contents}$

1.	Lectures	3
II.	Introduction A. What is quantum information? B. Subfields of quantum information science	$\begin{array}{c} 3 \\ 4 \\ 4 \end{array}$
III.	General characteristics of multi-partite quantum systems A. Classcial bit B. Quantum bit - pure states C. Multi-qubit systems - pure states D. Measurement E. Mixed states and the density matrix F. Fidelity G. Geometry of quantum states 1. Qubits 2. Qudits (Qunits):d-dimensional systems H. Higher dimensional systems	4 4 5 5 6 6 7 7 7 7
IV.	Interesting quantum states A. Bipartite singlet state B. Werner states C. Schrödinger cat states D. Greenberger-Horne-Zeilinger (GHZ) state E. W-state OMITTED F. Symmetric Dicke states OMITTED	10 10 10 11 11 12
V.	Bell inequalities A. EPR paradox B. Local hidden variable models C. The CHSH Bell inequality D. Loopholes 1. Detection efficiency loophole 2. Locality loophole E. Mermin's inequality	13 13 15 15 15 16
VI.	Entanglement theory (entangled/not entangled) A. Bipartite case 1. Pure states 2. Mixed states B. Entanglement criteria 1. Partial transposition [Peres, Horodecki] 2. Entanglement witnesses 3. Variance based criteria C. Multipartite case	16 16 16 17 18 18 19 20 21
VII.	Entanglement measures (how much is it entangled?) A. POVM (Positive Operator Valued Measure) measurements B. Local operations and classical communication (LOCC)	21 21 22

	2
C. Von Neumann entropy	23
D. Entanglement of formation	23
E. Entanglement of distillation	23
F. Bound entanglement	23
G. Requirements for entanglement measures	24
VIII. No-go theorems and related issues	25
A. No-cloning Theorem	25
B. Measurement problem	26
C. Quantum teleportation	26
D. Imperfect cloning	27
E. Quantum cryptography	27
1. One-time Pad	27
2. Quantum money (70's)	27
3. BB84: No entanglement is used	27
4. Ekert protocol (E91)	28
IX. Quantum metrology	28
References	28