LINGUAGEM MATEMÁTICA E ELEMENTOS DE LÓGICA

Ana Carolina Boero

Quantificadores

Em Matemática, os quantificadores "existe" e "para todo", denotados respectivamente pelos símbolos \exists e \forall , são amplamente utilizados. Eles aparecem em afirmações que envolvem parâmetros (também chamados de variáveis). Cada parâmetro se refere a objetos num determinado conjunto, chamado universo de discurso.

Exemplos:

- $\bullet \ \exists x \in \mathbb{Q} \ x^2 = 2$
- $\forall x \in \mathbb{R} \ x^2 > 0$
- $\forall x \in \mathbb{R} \ \forall \epsilon > 0 \ \exists r \in \mathbb{Q} \ |x r| < \epsilon$
- $\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N \ |a_n a| < \epsilon$

O quantificador existencial ∃ ("existe")

Além da palavra "existe", há outras expressões que sugerem a presença do quantificador existencial, como: "para algum", "algum", "pelo menos (um)", "é possível encontrar" etc.

Exemplo:

• $\exists x \in \mathbb{Q} \ x^2 = 2$

Existe um número racional cujo quadrado é 2.

 $x^2 = 2$, para algum número racional x.

O quadrado de algum número racional é 2.

 $x^2 = 2$, para pelo menos um número racional.

É possível encontrar um número racional cujo quadrado é 2.

Observação: Em Matemática, "existe um" deve ser lido como "existe pelo menos um". O "um" em "existe um" é um artigo indefinido, e não um numeral. Quando quisermos frisar que existe exatamente um, escrevemos explicitamente "existe um único". O símbolo ∃! é usado para indicar que existe um único.

O valor-verdade de $\exists x \in A \ p(x)$

Uma afirmação da forma $\exists x \in A \ p(x)$ será verdadeira quando p(a) for verdadeira para algum elemento a do universo de discurso A. A proposição p(a) é obtida substituindo as ocorrências de x em p(x) por a. Se para cada a no universo de discurso tivermos que p(a) é falsa, então a afirmação $\exists \in Ax \ p(x)$ será falsa.

Exemplos:

- A afirmação " $\exists x \in \mathbb{Q} \ x^2 = 2$ " é falsa.
- A afirmação " $\exists x \in \mathbb{R} \ x^2 = 2$ " é verdadeira.²

O quantificador universal \forall ("para todo")

Além de "para todo", o símbolo ∀ pode ser lido como "para cada", "para qualquer", "sempre que", "todo", "cada", "qualquer" etc.

Exemplo:

• $\forall x \in \mathbb{R} \ x^2 \ge 0$

Para todo número real x vale que $x^2 \ge 0$.

 $x^2 \ge 0$, para cada número real x.

 $x^2 \ge 0$, para qualquer número real x.

 $x^2 \ge 0$ sempre que x é um número real.

O quadrado de todo número real é não-negativo.

O quadrado de cada número real é maior ou igual a 0.

O quadrado de qualquer número real é maior ou igual a 0.

O valor-verdade de $\forall x \in A \ p(x)$

Uma afirmação da forma $\forall x \in A \ p(x)$ será verdadeira quando p(a) for verdadeira para todos os elementos a do universo de discurso A. Se para algum a no universo de discurso tivermos que p(a) é falsa, então a afirmação $\forall \in Ax \ p(x)$ será falsa. Um elemento a do universo de discurso A tal que p(a) é falsa é chamado de contraexemplo para a afirmação $\forall x \in A \ p(x)$.

¹Mostraremos isso no fim deste artigo, ao ilustrar o método de demonstração por redução ao absurdo.

²Falaremos sobre isso nas aulas dedicadas ao estudo dos números reais.

Assim, para mostrar que $\forall x \in A \ p(x)$ é falsa, basta apresentar um contraexemplo. (Observe que não é suficiente exibir um exemplo de a em A tal que p(a) é verdadeira para concluir que $\forall x \in A \ p(x)$ é verdadeira).

Exemplos:

- A afirmação " $\forall x \in \mathbb{R} \ x^2 \geq 0$ " é verdadeira. De fato, basta lembrar que o produto de dois números reais positivo é um número positivo, que o produto de dois números reais negativos é um número positivo e que $0^2 = 0.3$
- A afirmação " $\forall x \in \mathbb{R} \ x^2 > 0$ " é falsa. De fato, essa afirmação é da forma $\forall x \in A \ p(x)$, onde $A = \mathbb{R} \ e \ p(x)$ é dada por $x^2 > 0$. Temos que 0 pertence ao universo de discurso, \mathbb{R} , e p(0) é falsa (pois $0^2 = 0$ e, portanto, 0^2 não é maior que 0). Em outras palavras, 0 é um contraexemplo para a afirmação $\forall x \in \mathbb{R} \ x^2 \geq 0$.

Compreendendo afirmações matemáticas que envolvem quantificadores

Considere a seguinte afirmação matemática:

$$\forall x \in \mathbb{N} \ \exists y \in \mathbb{N} \ y > x.$$

Para entender o que uma afirmação matemática como essa, que envolve múltiplos quantificadores, diz, vamos analisá-la gradativamente.

Começamos olhando para a parte que não envolve quantificadores, y>x. Ela pode ser lida como "y é maior que x". Incorporando o quantificador mais próximo da parte que acabamos de analisar, obtemos $\exists y \in \mathbb{N} \ y>x$, que pode ser lida como "é possível encontrar um número natural y tal que y>x". Incorporando, por fim, o próximo quantificador, chegamos a $\forall x \in \mathbb{N} \ \exists y \in \mathbb{N} \ y>x$, que pode ser lida como "para cada número natural x, é possível encontrar um número natural y tal que y>x".

Agora que compreendemos o significado da afirmação $\forall x \in \mathbb{N} \ \exists y \in \mathbb{N} \ y > x$, vamos decidir se ela é verdadeira ou falsa. Sendo da forma $\forall x P(x)$, onde x percorre o universo de discurso — que, no caso, é conjunto dos números naturais —, ela será verdadeira se P(n) for verdadeira para todo $n \in \mathbb{N}$.

Vemos que P(1) é " $\exists y \in \mathbb{N} \ y > 1$ ", o que significa que é possível encontrar um número natural y tal que y > 1. Isso é verdade? Sim. Posso, por exemplo, tomar y = 2. E P(2), é verdadeira ou falsa? P(2) é " $\exists y \in \mathbb{N} \ y > 2$ ". Isso é verdade? Sim, pois conseguimos exibir um número natural

³Essas propriedades serão exploradas com mais detalhe nas aulas dedicadas ao estudo dos números reais.

maior que 2 — por exemplo, y = 3. Verificar que P(3), P(4), P(5) etc. são verdadeiras, uma por uma, é inviável, pois o conjunto dos números naturais é infinito, e seu tempo não o é. O que fazemos, neste caso?

A ideia é muito simples — e esperta! Precisamos mostrar que P(n) é verdadeira para todo $n \in \mathbb{N}$, correto? Para tanto, fixaremos m um número natural arbitrário (isto é, não específico) e apresentaremos um argumento que mostra que P(m) é verdadeira. Como a única coisa que sabemos a respeito desse m é que ele é um número natural, o argumento apresentado pode ser utilizado para mostrar que P(n) é verdadeira, qualquer que seja $n \in \mathbb{N}$. Fim!

Vamos aplicar essa ideia ao nosso exemplo. Fixemos m um número natural arbitrário. A fim de mostrar que P(m) dada por $\exists y \in \mathbb{N} \ y > m$ é verdadeira, precisamos exibir um número natural maior que m. Quem poderia ser? Bem, os casos específicos que tratamos nos dão uma ideia (para 1, tomamos 2; para 2, tomamos, 3). Que tal tomarmos m+1? Como m+1 é um número natural e m+1>m, concluímos que P(m) é verdadeira. Note que o argumento utilizado (de tomar o sucessor do número dado) funciona para qualquer número natural: se n=1, tomo 2; se n=2, tomo 3; se n=1024, tomo 1025. Com isso, fica provado que P(n) é verdadeira, qualquer que seja $n\in\mathbb{N}$.

Considere, agora, a seguinte afirmação matemática:

$$\exists y \in \mathbb{N} \ \forall x \in \mathbb{N} \ y > x$$

A diferença entre essa afirmação e a que acabamos de analisar é a ordem dos quantificadores. E essa alteração muda completamente o significado da afirmação considerada!

Vamos, primeiramente, entender o que essa nova afirmação significa. Começando pela parte sem quantificadores, y>x, nada muda: continuamos tendo "y é maior que x". Incorporando o quantificador mais próximo, obtemos $\forall x\in\mathbb{N}\ y>x$, que pode ser lida como "y é maior que qualquer número natural x". Incorporando o próximo quantificador, chegamos a $\exists y\in\mathbb{N}\ \forall x\in\mathbb{N}\ y>x$, que diz que "existe um número natural y que é maior que qualquer número natural x".

Perceba que o significado mudou: antes, $\forall x \in \mathbb{N} \ \exists y \in \mathbb{N} \ y > x$ dizia que sempre que escolhíamos um número natural, era possível exibir um outro número natural maior do que aquele que havíamos escolhido; agora, $\exists y \in \mathbb{N} \ y > x$ diz que é possível exibir, a priori, um número natural maior que qualquer número natural que escolhamos.

Vamos, agora, decidir se a afirmação $\exists y \in \mathbb{N} \ \forall x \in \mathbb{N} \ y > x$ é verdadeira ou falsa. Para mostrar que ela é verdadeira, seria necessário apresentar um número natural y logo de cara e, depois, verificar que ele possui a propriedade desejada — no caso, ser maior que qualquer número natural x. É fácil ver por que o 5 não serve, né? Se eu falar "5", logo perceberei que 5 não

é maior que 6, por exemplo. O que está por trás desse raciocínio é o seguinte: para qualquer número natural y=n que eu pegue, consigo exibir alguém maior que ele — por exemplo, o seu sucessor x=n+1. Isso garante que a afirmação $\exists y\in\mathbb{N}\ \forall x\in\mathbb{N}\ y>x$ é falsa? Sim, pois mostramos que não é possível substituir y por um número natural n de modo que a afirmação $\forall x\in\mathbb{N}\ n>x$ seja verdadeira.

Conectivos

Além dos quantificadores "existe" e "para todo", os conectivos "e", "ou", "não" e "se... então" são elementos essenciais da linguagem matemática. Eles são utilizados para produzir afirmações mais complexas a partir de afirmações mais simples. O valor-verdade da afirmação mais complexa dependerá não apenas dos valores-verdade das afirmações mais simples que a compõem, mas também da maneira como essa afirmação mais complexa é construída a partir das mais simples, por meio dos conectivos.

O conectivo \(\lambda\) ("e")

Dadas duas afirmações p e q, podemos construir uma nova afirmação denominada a conjunção de p e q, a qual será denotada por $p \wedge q$ (leia "p e q").

Critério que estabelece o valor-verdade de $p \wedge q$ com base nos de p e q:

- $p \wedge q$ será verdadeira quando $p \in q$ forem ambas verdadeiras;
- em qualquer outro caso, $p \wedge q$ será falsa.

Esse critério pode ser apresentado de forma resumida por meio de uma tabela-verdade:

p	q	$p \wedge q$	
V	V	V	
V	F	\mathbf{F}	
F	V	F	
F	F	F	

Exemplo:

• n é primo e n é par. Para n=2, a afirmação "n é primo e n é par" é verdadeira, pois 2 é primo e 2 é par. Para n=3, a afirmação "n é primo e n é par" é falsa, porque embora 3 seja primo, 3 não é par.

Para n=4, a afirmação "n é primo e n é par" é falsa, porque embora 4 seja par, 4 não é primo.

Para n=9, a afirmação "n é primo e n é par" é falsa, porque 9 não é primo e 9 não é par.

O conectivo ∨ ("ou")

Dadas duas sentenças matemáticas p e q, podemos construir uma outra sentença matemática denominada a disjunção de p e q, a qual será denotada por $p \lor q$ (leia "p ou q").

Critério que estabelece o valor-verdade de $p \lor q$ com base nos de p e q:

p	q	$p \lor q$	
V	V	V	
V	F	V	
\mathbf{F}	V	V	
F	F	F	

Exemplo:

• n é primo ou n é impar.

Para n=2, a afirmação "n é primo ou n é impar" é verdadeira, porque 2 é primo, embora 2 não seja é par.

Para n=3, a afirmação "n é primo ou n é ímpar" é verdadeira, porque 3 é primo e 3 é ímpar.

Para n=9, a afirmação "n é primo ou n é impar" é verdadeira, porque embora 9 não seja primo, 9 é impar.

Para n=4, a afirmação "n é primo ou n é ímpar" é falsa, porque 4 não é primo e tampouco é ímpar.

Observe que o sentido do "ou" em Matemática é inclusivo, em vez de exclusivo: quando dizemos que uma afirmação da forma $p \lor q$ é verdadeira, estamos incluindo a possibilidade de p e q serem, ambas, verdadeiras.

O conectivo ¬ ("não")

Dada uma sentença matemática p, podemos construir uma outra sentença matemática denominada a negação de p, a qual será denotada por $\neg p$ (leia "não p").

Critério que estabelece o valor-verdade de $\neg p$ com base no de p:

$$\begin{array}{c|c} p & \neg p \\ \hline V & F \\ F & V \\ \end{array}$$

Exemplo:

• "n não é da forma 4m + 1 para algum inteiro m" é a negação de "n é da forma 4m + 1 para algum inteiro m".

Para n=5, temos que $n=4\cdot 1+1$ e, portanto, a afirmação "n é da forma 4m+1 para algum inteiro m" é verdadeira. Neste caso, a afirmação "n não é da forma 4m+1 para algum inteiro m" é falsa.

Para n=6, a afirmação "n é da forma 4m+1 para algum inteiro m" é falsa (porque o único número m que satisfaz a igualdade 6=4m+1 é 5/4, que não é inteiro). Neste caso, a afirmação "n não é da forma 4m+1 para algum inteiro m" é verdadeira.

O conectivo \rightarrow ("se ... então")

Dadas duas sentenças matemáticas p e q, podemos construir uma outra sentença matemática denominada o condicional com antecedente p e consequente q, a qual será denotada por $p \to q$ (leia "se p, então q").

Critério que estabelece o valor-verdade de $p \rightarrow q$ com base nos de p e q:

p	q	$p \rightarrow q$	
V	V	V	
V	F	\mathbf{F}	
F	V	V	
F	F	V	

Exemplo:

• Se n é primo e n > 1 então n é par.

Para n=2, a afirmação "se n é primo e n>1 então n é par" é verdadeira, pois "2 é primo e 2>1" é verdadeira e "2 é par" é verdadeira.

Para n=3, a afirmação "se n é primo e n>1 então n é par" é falsa, pois "3 é primo e 3>1" é verdadeira e "3 é par" é falsa.

Para n=4, a afirmação "se n é primo e n>1 então n é par" é verdadeira, pois "4 é primo e 4>1" é falsa e "4 é par" é verdadeira.

Para n=9, a afirmação "se n é primo e n>1 então n é par" é verdadeira, pois "9 é primo e 9>1" é falsa e "9 é par" é falsa.

Uma analogia para tornar a tabela-verdade de $p \rightarrow q$ mais palatável.

Pense em $p \to q$ como "se p acontecer, então eu prometo que q acontecerá".

- $p \rightarrow q$ será falsa quando a promessa for descumprida;
- $p \rightarrow q$ será verdadeira quando a promessa não for descumprida.

Por exemplo, considere a seguinte promessa: "se eu for aprovada no vestibular, subirei de joelhos a escadaria da Igreja da Penha". Quando ela é descumprida? Somente no caso de o antecedente ser verdadeiro (isto é, de eu ser aprovada no vestibular) e o consequente ser falso (eu não subir de joelhos a escadaria da Igreja da Penha).

Qual a motivação dos matemáticos para interpretar $p \to q$ dessa forma?

Considere a seguinte afirmação:

"Todos os cães são mamíferos."

Para um matemático, é útil reescrevê-la da seguinte maneira:

"Para todo animal x, se x é cão então x é mamífero."

Utilizando símbolos, podemos denotar o conjunto de todos os animais por A, a frase "x é cão" por C(x) e a frase "x é mamífero" por M(x), obtendo

$$\forall x \in A(C(x) \to M(x)).$$

Aprendemos na escola que todos os cães são mamíferos. Logo, a afirmação $\forall x \in A(C(x) \to M(x))$ é verdadeira. O que isso nos diz? Isso nos diz que, para cada elemento a do conjunto A, a afirmação $C(a) \to M(a)$ é verdadeira.

Se tomo, por exemplo, a= Bob, meu cachorro, a afirmação $C(\text{Bob}) \to M(\text{Bob})$ será verdadeira. Se tomo a= Jade, a gatinha de uma aluna, a afirmação $C(\text{Jade}) \to M(\text{Jade})$ será verdadeira. Se tomo a= Nemo, um peixinho, a afirmação $C(\text{Nemo}) \to M(\text{Nemo})$ será verdadeira.

Observe que tanto o antecedente quanto o consequente do condicional $C(Bob) \to M(Bob)$ são verdadeiros, uma vez que Bob é cachorro e Bob é mamífero. No caso do condicional $C(Jade) \to M(Jade)$, o antecedente é falso (pois Jade não é um cachorro) e o consequente é verdadeiro (pois Jade é um mamífero) — o que corresponde à terceira linha da tabela-verdade de \to . Por fim, tanto o antecedente quanto o consequente do condicional $C(Nemo) \to M(Nemo)$ são falsos (pois Nemo não é um cachorro e tampouco é um mamífero) — e essa situação corresponde à quarta linha da tabela-verdade de \to .

Portanto, para que um matemático possa considerar que "todos os cães são mamíferos" e "para todo animal x, se x é cão então x é mamífero" dizem a mesma coisa, é necessário que a terceira e quarta linhas da tabela-verdade do conectivo \rightarrow sejam definidas da forma como apresentamos.

A noção de implicação

Voltemos nossa atenção à afirmação $C(x) \to M(x)$. Ela é da forma $p \to q$. Podemos pensar em p e q como propriedades que dependem de um parâmetro x, que varia em um conjunto (no caso, A, o conjunto de todos os animais).

Quando dizemos que p implica q, ou seja, que "ser cão" implica "ser mamífero", estamos dizendo que a afirmação

$$\forall x \in A \ (C(x) \to M(x))$$

é verdadeira. Isso significa que para cada substituição do parâmetro x por um elemento a do universo de discurso A, o condicional $C(a) \to M(a)$ é verdadeiro. A notação utilizada para indicar que "p implica q" é $p \Rightarrow q$.

Exemplos:

• $x > 3 \Rightarrow x \ge 3$, para $x \in \mathbb{N}$. De fato, esta é uma afirmação da forma $p \Rightarrow p \lor q$, onde p é dada por x > 3 e q é dada por x = 3. Portanto, para cada valor assumido por x no universo de discurso \mathbb{N} , a afirmação $x > 3 \rightarrow x \ge 3$ será verdadeira. (Por quê?)

- $x=2 \Rightarrow x^2=4$, para $x \in \mathbb{R}$. De fato, quando substituímos x por um número real a diferente de 2, o condicional $a=2 \to a^2=4$ é verdadeiro, pois seu antecendente é falso. Tomando a=2, temos que o condicional $a=2 \to a^2=4$ é verdadeiro, pois tanto o antecedente quando o consequente são verdadeiros.
- $x=2 \Rightarrow x^3=8$, para $x \in \mathbb{R}$. Analogamente, quando substituímos x por um número real a diferente de 2, o condicional $a=2 \Rightarrow a^3=8$ é verdadeiro, pois seu antecendente é falso. Tomando a=2, temos que o condicional $a=2 \Rightarrow a^3=8$ é verdadeiro, pois tanto o antecedente quando o consequente são verdadeiros.

Outras maneiras de ler " $p \Rightarrow q$ " são:

- p é condição suficiente para q;
- q é condição necessária para p.

Note que essa nomenclatura faz sentido: por um lado, é suficiente saber que p é verdadeira para concluir que q é verdadeira; por outro, se q for falsa, então p também deve ser falsa — logo, é necessário que q seja verdadeira para que p seja verdadeira.

Exemplos revisitados (aqui, novamente, o universo de discurso é o conjunto dos números reais):

- Como $x>3\Rightarrow x\geq 3$, podemos dizer que x>3 é condição suficiente para $x\geq 3$ e que $x\geq 3$ é condição necessária para x>3. Contudo, $x\geq 3\not\Rightarrow x>3$ (leia " $x\geq 3$ " não implica "x>3"), uma vez que $3\geq 3\to 3>3$ é falso. Portanto, $x\geq 3$ não é condição suficiente para x>3 e x>3 não é condição necessária para $x\geq 3$.
- Como $x=2 \Rightarrow x^2=4$, podemos dizer que x=2 é condição suficiente para $x^2=4$ e que $x^2=4$ é condição necessária para x=2. Contudo, $x^2=4 \not\Rightarrow x=2$, uma vez que $(-2)^2=4 \rightarrow -2=2$ é falso. Portanto, $x^2=4$ não é condição suficiente para x=2 e x=2 não é condição necessária para $x^2=4$.
- Como $x=2 \Rightarrow x^3=8$ e $x^3=8 \Rightarrow x=2$, dizemos que p é condição necessária e suficiente para q e, analogamente, que q é é condição necessária e suficiente para p.

Quando $p \Rightarrow q$ e $q \Rightarrow p$, dizemos que p e q são equivalentes e escrevemos $p \Leftrightarrow q$.

Exemplo (aqui, o universo de discurso continua sendo o conjunto dos números reais):

• $x=2 \Leftrightarrow x^3=8$. Isso significa que $\forall x \in \mathbb{R}[(x=2 \to x^3=8) \land (x^3=8 \to x=2)]$ é verdadeira. Observe que, dentro dos colchetes, apareceu uma expressão da forma $(p \to q) \land (q \to p)$. Os matemáticos costumam reescrevê-la de modo sucinto como $p \leftrightarrow q$ (leia "p se, e somente se, q"). O conectivo \leftrightarrow é chamado de bicondicional.

Observação importante: Em diversas ocasiões, vocês se depararão com frases do tipo "demonstre/prove/mostre que se p então q" e "demonstre/prove/mostre que p se, e somente se, q". Vocês devem entender esse pequeno abuso de linguagem da seguinte maneira: "demonstre/prove/mostre que p implica q" e "demonstre/prove/mostre que p e q são equivalentes (ou seja, que p implica q e que q implica p)", respectivamente.

Demonstração direta e demonstração do tipo "se e somente se"

Afirmamos, acima, que $x^3=8 \Rightarrow x=2$. Como justificamos isso? Já sabemos que não precisamos nos preocupar com os $x \in \mathbb{R}$ tais que $x^3 \neq 8$ (pois, neste caso, o antecedente do condicional $x^3=8 \rightarrow x=2$ será falso e, portanto, o condicional será verdadeiro). Tomamos x um número real arbitrário, tal que $x^3=8$. Sabemos que, se somarmos -8 a ambos os membros dessa equação, obteremos $x^3-8=0$. Esse argumento mostra que $x^3=8 \Rightarrow x^3-8=0$. Sabemos, ainda, que $x^3-8=(x-2)(x^2+2x+4)$, donde segue que $x^3-8=0 \Rightarrow (x-2)(x^2+2x+4)=0$. Por fim, sabemos que a única raíz da equação $(x-2)(x^2+2x+4)=0$ é 2. Disto decorre que $(x-2)(x^2+2x+4) \Rightarrow x=2$. Juntando tudo, obtemos $x^3=8 \Rightarrow x^3-8=0 \Rightarrow (x-2)(x^2+2x+4) \Rightarrow x=2$. Portanto, $x^3=8 \Rightarrow x=2$.

O raciocínio empregado no exemplo acima indica que, a fim de mostrar que $p \Rightarrow q$, basta assumir a $hip\acute{o}tese,\ p$, como verdadeira e, valendo-se de raciocínios "preservadores da verdade", chegar à conclusão de que a $tese,\ q$, é verdadeira. Uma demonstração que segue essa estrutura é chamada de demonstração direta.

Para mostrar que $x=2 \Leftrightarrow x^3=8$ precisamos mostrar que $x=2 \Rightarrow x^3=8$ e que $x^3=8 \Rightarrow x=2$. Como fazemos isso? Simples: tratamos de cada implicação separadamente. Já mostramos que $x^3=8 \Rightarrow x=2$ utilizando a técnica de demonstração direta. Faremos o mesmo, agora, para mostrar que $x=2 \Rightarrow x^3=8$. Essa técnica nos diz que devemos assumir a hipótese, x=2 como verdadeira e, por meio de argumentos corretos e claros, verificar que a tese, $x^3=8$, é verdadeira. Mãos à obra! Começamos tomando um número real arbitrário x tal que x=2. Elevando ambos os membros da igualdade x=2 ao cubo, obtenho $x^3=8$. Logo, $x=2 \Rightarrow x^3=8$. Isto encerra a demonstração.

Resumindo: a fim de provar que $p \Leftrightarrow q$ basta provar que $p \Rightarrow q$ e $q \Rightarrow p$. E isso é feito em duas etapas distintas: a "ida", $p \Rightarrow q$, e a "volta", $q \Rightarrow p$. Essa técnica se aplica a demonstrações do tipo "se e somente se".

Recíproca e contrapositiva

Dado um condicional
$$p \to q$$
, a sua rec íproca é o condicional $q \to p$.

Exemplos:

- Já vimos que o condicional " $-2 = 2 \rightarrow (-2)^2 = 4$ " é verdadeiro. Contudo, a sua recíproca " $(-2)^2 = 4 \rightarrow -2 = 2$ " é falsa.
- O condicional " $x=2 \to x^3=8$ " é verdadeiro para todo número real x, bem como sua recíproca " $x^3=8 \to x=2$ ".

Os exemplos acima mostram que um condicional e sua recíproca não têm, necessariamente, os mesmos valores-verdade.

Dado um condicional
$$p \to q$$
, a sua contrapositiva é o condicional $(\neg q) \to (\neg p)$.

Exemplos:

- A contrapositiva do condicional " $x=2 \to x^2=4$ " é o condicional " $x^2 \neq 4 \to x \neq 2$ ".
- A contrapositiva do condicional " $x=2 \rightarrow x^3=8$ " é o condicional " $x^3 \neq 8 \rightarrow x \neq 2$ ".

Um condicional $p \to q$ será falso exatamente quando p for verdadeira e q for falsa. O que podemos dizer acerca de sua contrapositiva? Ora, por também se tratar de um condicional, $(\neg q) \to (\neg p)$ será falso exatamente quando o antecedente $\neg q$ for verdadeiro e o consequente, $\neg p$, for falso — ou seja, exatamente quando q for falsa e p for verdadeira. Em outras palavras, um condicional $p \to q$ e a sua contrapositiva $(\neg q) \to (\neg p)$ têm, sempre, os mesmos valores-verdade.

p	q	$p \rightarrow q$	$\neg p$	$\neg q$	$(\neg q) \to (\neg p)$
V	V	V	F	F	V
V	F	F	F	V	F
F	V	V	V	F	V
F	F	V	V	V	V

Embora um condicional e sua contrapositiva sejam equivalentes, a importância da contrapositiva é que, às vezes, ela é mais fácil de ser verificada do que o condicional original.

Exemplo:

Seja n um número inteiro. Prove que se n² é par então n é par.
A contrapositiva de "se n² é par então n é par" é o condicional "se n é impar então n² é impar". Como um condicional e sua contrapositiva são equivalentes, a fim de concluir que n² é par ⇒ n é par, basta provar que n é impar ⇒ n² é impar. Verificar a segunda implicação é mais fácil. (Por quê?) Tome n um número impar arbitrário. Temos que n = 2k + 1, para algum k ∈ Z. Como n² = (2k + 1)² = 4k² + 4k + 1 = 2(2k² + 2k) + 1 e 2k² + 2k é um número inteiro, concluímos que n² é impar.

Resumindo: a fim de provar que $p \Rightarrow q$ basta provar que $(\neg q) \Rightarrow (\neg p)$. Essa técnica é chamada de demonstração por contraposição.

Como negar afirmações matemáticas?

Vimos acima que, para construir a contrapositiva de um condicional, é necessário negar afirmações matemáticas. Essa necessidade também se fará presente quando formos fazer demonstrações por redução ao absurdo.

A negação de uma dada afirmação matemática é uma outra afirmação matemática que será falsa exatamente quando a afirmação dada for verdadeira. Portanto, para negar uma afirmação matemática, devemos nos perguntar: o que precisa ser verdadeiro para que a afirmação dada seja falsa? A resposta dessa pergunta será a negação da afirmação dada.

Negação de $\exists x \in A \ p(x)$

Para que $\exists x \in A \ p(x)$ seja falsa, é necessário que, para cada $a \in A$, a afirmação p(a) seja falsa. Em outras palavras, é necessário que, para cada $a \in A$, $\neg p(a)$ seja verdadeira — ou seja, que $\forall x \in A \ (\neg p(x))$ seja verdadeira.

A negação de uma afirmação da forma
$$\exists x \in A \ p(x)$$
 será a afirmação $\forall x \in A \ (\neg p(x))$.

Exemplo:

Negando "existe um número primo ímpar" obtemos "todos os números primos são pares".
De fato, podemos reescrever "existe um número primo ímpar" como "∃p ∈ P p é ímpar", onde P denota o conjunto dos números primos. A negação dessa afirmação é dada por "∀p ∈ P p não é ímpar" (ou, equivalentemente, "∀p ∈ P p é par").

Negação de $\forall x \in A \ p(x)$

Para que $\forall x \in A \ p(x)$ seja falsa, é necessário que exista $a \in A$ tal que a afirmação p(a) seja falsa. Em outras palavras, é necessário que exista $a \in A$ tal que $\neg p(a)$ seja verdadeira — ou seja, que $\exists x \in A \ (\neg p(x))$ seja verdadeira.

A negação de uma afirmação da forma $\forall x \in A \ p(x)$ será a afirmação $\exists x \in A \ (\neg p(x))$.

Exemplos:

- Negando "todo número primo é ímpar" obtemos "existe um número primo que é par".
 De fato, podemos reescrever "todo número primo é ímpar" como "∀p ∈ P p é ímpar", onde P denota o conjunto dos números primos. A negação dessa afirmação é dada por "∃p ∈ P p não é ímpar" (ou, equivalentemente, "∃p ∈ P p é par").
- $\neg(\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N \ |a_n a| < \epsilon)$ pode ser obtida por etapas, aplicando sucessivamente as regras de negação de quantificadores. De fato, $\neg(\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N \ |a_n a| < \epsilon)$ é dada por $\exists \epsilon > 0 \ \neg(\exists N \in \mathbb{N} \ \forall n \geq N \ |a_n a| < \epsilon)$. Mas $\neg(\exists N \in \mathbb{N} \ \forall n \geq N \ |a_n a| < \epsilon)$ é dada por $\forall N \in \mathbb{N} \ \neg(\forall n \geq N \ |a_n a| < \epsilon)$. Contudo, $\neg(\forall n \geq N \ |a_n a| < \epsilon)$ é dada por $\exists n \geq N \ \neg(|a_n a| < \epsilon)$, ou seja, por $\exists n \geq N \ |a_n a| \geq \epsilon$. Juntando tudo, temos que $\neg(\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N \ |a_n a| < \epsilon)$ é a afirmação $\exists \epsilon > 0 \ \forall N \in \mathbb{N} \ \exists n \geq N \ |a_n a| \geq \epsilon$.

Negação de $p \wedge q$

Para que $p \wedge q$ seja falsa, preciso que pelo menos uma entre p e q seja falsa. Em outras palavras, preciso que pelo menos uma entre $\neg p$ e $\neg q$ seja verdadeira — ou seja, que $(\neg p) \vee (\neg q)$ seja verdadeira.

A negação de uma afirmação da forma $p \wedge q$ será a afirmação $(\neg p) \vee (\neg q)$.

Exemplo:

• Negando "n é primo e n é par" obtemos "n não é primo ou n não é par".

Negação de $p \vee q$

Para que $p \lor q$ seja falsa, preciso que p e q sejam ambas falsas. Em outras palavras, preciso que $\neg p$ e $\neg q$ sejam ambas verdadeira — ou seja, que $(\neg p) \land (\neg q)$ seja verdadeira.

A negação de uma afirmação da forma $p \vee q$ será a afirmação $(\neg p) \wedge (\neg q)$.

Exemplos:

- Negando "n é primo ou n é impar" obtemos "n não é primo e n não é impar".
- Negando " $x \ge 2$ " (ou seja, " $x > 2 \lor x = 2$ ") obtemos x < 2 (pois a negação de "x > 2" é " $x \le 2$ " e a negação de "x = 2" é " $x \ne 2$ ").

Negação de $\neg p$

Para que $\neg p$ seja falsa, preciso que p seja verdadeira.

A negação de uma afirmação da forma $\neg p$ será a afirmação p.

Exemplo:

• Negando "n não é da forma 4m + 1 para algum inteiro m" obtemos "n é da forma 4m + 1 para algum inteiro m". Observe que "∀m ∈ Z n ≠ 4m + 1" é uma outra forma de escrever a afirmação "n não é da forma 4m + 1 para algum inteiro m" e que a negação de "∀m ∈ Z n ≠ 4m + 1" é "∃m ∈ Z n = 4m + 1", que diz justamente que "n é da forma 4m + 1 para algum inteiro m".

Negação de $p \rightarrow q$

Para que $p \to q$ seja falsa, preciso que p seja verdadeira e que q seja falsa. Em outras palavras, preciso que p seja verdadeira e que $\neg q$ seja verdadeira — ou seja, que $p \land (\neg q)$ seja verdadeira.

A negação de uma afirmação da forma $p \to q$ será a afirmação $p \wedge (\neg q)$.

Exemplo:

• Negando "se n é primo e n > 1 então n é par" obtemos "n é primo e n > 1 e n é impar".

O método de redução ao absurdo

O método de redução ao absurdo, mencionado em duas ocasiões neste artigo, é uma técnica de demonstração bastante útil e frequentemente utilizada. Ele se baseia no princípio da não-contradição (que diz que uma afirmação matemática não pode ser, simultaneamente, verdadeira e falsa) e no princípio do terceiro excluído (que diz que, fixado um contexto específico, uma afirmação matemática ou a sua negação é verdadeira).

A fim de provar que uma afirmação matemática p é verdadeira, supomos "por absurdo" que $\neg p$ seja verdadeira. Usando a informação de que $\neg p$ é verdadeira (além de outros fatos que já sabemos ser verdadeiros), derivamos que uma afirmação matemática q e a sua negação $\neg q$ são ambas verdadeiras, o que viola o princípio da não-contradição. Deste absurdo, concluímos que $\neg p$ não pode ser verdadeira, donde segue (pelo princípio do terceiro excluído) que a sua negação, p, é verdadeira.

Exemplo:

• Desejamos provar que √2 (isto é, o número real positivo cujo quadrado é 2) é irracional. Por absurdo, suponhamos que √2 seja racional. Nesse caso, existem p e q inteiros positivos e relativamente primos (isto é, tais que mdc(p,q) = 1) satisfazendo √2 = p/q. Dessa igualdade segue que p = q√2. Elevando ambos os membros ao quadrado obtemos p² = 2q², donde segue que p² é par. Sendo p² par, temos que p é par. Logo, p = 2k para algum k ∈ Z. Substituindo p = 2k em p² = 2q², obtemos q² = 2k², donde segue que q² é par e, portanto, que q é par. Mas o fato de p e q serem ambos pares contradiz o fato de que mdc(p,q) = 1. Este absurdo nos permite concluir que √2 é irracional.