Определения

Общее

Определение 3.4. Алгебраическая система $\mathfrak A$ состоит из основного множества A и заданных на нём предикатов P_1, \dots, P_n , функций f_1, \dots, f_k и констант c_1, \dots, c_l .

Кортеж

$$\sigma = < P_1^{\ s_1}$$
 , ... , $P_n^{\ s_n}$, $f_1^{\ r_1}$, ... , $f_k^{\ r_k}$, c_1 , ... , $c_l >$ предикатных символов $P_1^{\ s_1}$, ... , $P_n^{\ s_n}$, функциональных символов

предикатных символов $P_1^{s_1}$, ..., $P_n^{s_n}$, функциональных символов $f_1^{r_1}$, ..., $f_k^{r_k}$ и константных символов c_1 , ..., c_l называется сигнатурой алгебраической системы $\mathfrak A$ и обозначается $\sigma = \sigma(\mathfrak A)$. При этом запись $P_i^{s_i}$ означает, что P_i является s_i -местным предикатом алгебраической системы $\mathfrak A$, а запись $f_i^{r_i}$ означает, что f_i является r_i -местной функцией алгебраической системы $\mathfrak A$.

Основное множество A также называется **универсумом** алгебраической системы $\mathfrak A$ и обозначается $A = |\mathfrak A|$.

Алгебраическая система

Определение 3.7. Пусть дана сигнатура
$$\sigma = \langle P_1^{s_1}, ..., P_n^{s_n}, f_1^{r_1}, ..., f_k^{r_k}, c_1, ..., c_l \rangle$$
.

Определим понятие формулы сигнатуры σ .

38

- 1. Если t_1 и t_2 термы, то $t_1 = t_2$ формула.
- 2. Если t_1, \dots, t_s термы и предикатный символ $P^s \in \sigma$, то $P(t_1, \dots, t_s)$ формула.
- 3. Если φ и ψ формулы, то $(\varphi \lor \psi)$, $(\varphi \& \psi)$, $(\varphi \to \psi)$, $\neg \varphi$, $\exists x \varphi(x)$ и $\forall x \varphi(x)$ формулы.
 - 4. Других формул нет.

Формулы логики предикатов

Гомоморфизмы

Определение 12.1. Пусть задана сигнатура σ , \mathfrak{A} и $\mathfrak{B} \in K(\sigma)$.

Пусть задано отображение $h: |\mathfrak{A}| \to |\mathfrak{B}|$, $\mathfrak{A} = \langle |\mathfrak{A}|; \sigma \rangle$, $|\mathfrak{A}| = A$.

h называется **гомоморфизмом**, если $\forall P^n, \ f^n, \ c \in \sigma, \ \forall a_1, \dots, a_n \in |\mathfrak{A}|$ выполняется:

- 1) $\mathfrak{A} \models P^{\mathfrak{A}}(a_1, \dots, a_n) \Rightarrow \mathfrak{B} \models P^{\mathfrak{B}}(h(a_1), \dots, h(a_n));$
- 2) $h(f^{\mathfrak{A}}(a_1,\ldots,a_n)) = f^{\mathfrak{B}}(h(a_1),\ldots,h(a_n));$
- 3) $h(c^{\mathfrak{A}}) = c^{\mathfrak{B}}$.

Гомоморфизм

Определение 12.2. Отображение $h: |\mathfrak{A}| \to |\mathfrak{B}|$ называется эпиморфизмом, если h — гомоморфизм и так же является сюръекцией (отображением "на").

Эпиморфизм

Определение 12.3. Отображение h называется **изоморфизмом**, если:

- 1) h -биекция;
- 2) $\forall P^n, \ f^n, \ c \in \sigma, \ \forall a_1, \dots, a_n \in |\mathfrak{A}|$ выполняется:
 - a) $\mathfrak{A} \models P^{\mathfrak{A}}(a_1, \dots, a_n) \Leftrightarrow \mathfrak{B} \models P^{\mathfrak{B}}(h(a_1), \dots, h(a_n));$
 - 6) $h(f^{\mathfrak{A}}(a_1,\ldots,a_n)) = f^{\mathfrak{B}}(h(a_1),\ldots,h(a_n));$
 - $B) h(c^{\mathfrak{A}}) = c^{\mathfrak{B}}.$

Изоморфизм

Определение 12.4. Отображение $h: |\mathfrak{A}| \to |\mathfrak{B}|$ называется изоморфным вложением, если:

- 1) h инъекция (разнозначное отображение);
- 2) $\forall P^n, \ f^n, \ c \in \sigma, \ \forall a_1, \dots, a_n \in |\mathfrak{A}|$ выполняется:

a)
$$\mathfrak{A} \models P^{\mathfrak{A}}(a_1, \dots, a_n) \Leftrightarrow \mathfrak{B} \models P^{\mathfrak{B}}(h(a_1), \dots, h(a_n));$$

6)
$$h(f^{\mathfrak{A}}(a_1,\ldots,a_n)) = f^{\mathfrak{B}}(h(a_1),\ldots,h(a_n));$$

$$B) h(c^{\mathfrak{A}}) = c^{\mathfrak{B}}.$$

Изоморфное вложение

Определение 13.1. Пусть $\mathfrak{A}, \mathfrak{B} \in K(\sigma)$.

 \mathfrak{A} — <mark>подмодель</mark> \mathfrak{B} (обозначается $\mathfrak{A} \leqslant \mathfrak{B}$), если:

- 1) $|\mathfrak{A}| \subseteq |\mathfrak{B}|$;
- 2) $\forall P^n \in \sigma, \ \forall a_1, \dots, a_n \in |\mathfrak{A}|$ выполняется:

$$\mathfrak{A} \vDash P^{\mathfrak{A}}(a_1,\ldots,a_n) \Leftrightarrow \mathfrak{B} \vDash P^{\mathfrak{B}}(a_1,\ldots,a_n);$$

3)
$$\forall f^n \in \sigma, \ f^{\mathfrak{A}}(a_1, \dots, a_n) = f^{\mathfrak{B}}(a_1, \dots, a_n);$$

4)
$$\forall c \in \sigma, \ c^{\mathfrak{A}} = c^{\mathfrak{B}}.$$

Подмодель

Определение 22.3.

Пусть $\mathfrak{A}, \mathfrak{B} \in K_{\sigma}$. \mathfrak{A} - элементарная подмодель \mathfrak{B} (обозначается $\mathfrak{A} \preccurlyeq \mathfrak{B}$), если:

- 1) $|\mathfrak{A}| \subseteq |\mathfrak{B}|$;
- 2) $\forall \varphi(x_1,\ldots,x_n) \in F(\sigma), \forall a_1,\ldots,a_n \in |\mathfrak{A}|$ выполняется: $\mathfrak{A} \models \varphi(a_1,\ldots,a_n) \Leftrightarrow \mathfrak{B} \models \varphi(a_1,\ldots,a_n).$

Элементарная подмодель

Определение 13.3. Пусть $\mathfrak{B} \in K(\sigma)$, $A \subseteq |\mathfrak{B}|$. Будем говорить, что множество A замкнуто относительно операций модели \mathfrak{B} , если:

1)
$$\forall f^n \in \sigma, \ \forall a_1, \dots, a_n \in A \text{ имеем } f^{\mathfrak{B}}(a_1, \dots, a_n) \in A;$$

$$2) \ \forall c \in \sigma, \ c^{\mathfrak{B}} \in A.$$

Замкнутость относительно операций

ПРЕДЛОЖЕНИЕ 13.7. Пусть $\mathfrak{B} \in K(\sigma)$, $X \subseteq |\mathfrak{B}|$, $X \neq \varnothing$. Тогда существует подмодель $\mathfrak{C} \leqslant \mathfrak{B}$, которая является наименьшей по включению среди таких подмоделей $\mathfrak{A} \leqslant \mathfrak{B} : X \subseteq |\mathfrak{A}|$ (среди всех подмоделей, содержащих X, существует наименьшая подмодель). Эта подмодель называется подмоделью, порождаемой множеством X. $\mathfrak{C} = \mathrm{sub}_{\mathfrak{B}}(X)$.

Подмодель, порождаемая множеством

Определение 13.15. Рассмотрим $\mathfrak{A} \in K(\sigma)$, \sim — эквивалентность на $A = |\mathfrak{A}|$ называется конгруэнцией на \mathfrak{A} , если для $\forall f^n \in \sigma$, $\forall a_1, \ldots, a_n$, $b_1, \ldots, b_n \in |\mathfrak{A}|$, если $a_1 \sim b_1, \ldots, a_n \sim b_n$, то $f(a_1, \ldots, a_n) \sim f(b_1, \ldots, b_n)$. Иначе говоря, конгруэнция - это отношение эквивалентности, перестановочное с операциями.

Конгруэнция на модели

Определение 13.16. Пусть $\mathfrak{A} \in K(\sigma)$, \sim — конгруэнция на \mathfrak{A} . $a/_{\sim} = [a]_{\sim} = [a] = \{b \in |\mathfrak{A}| \mid a \sim b\}$ — класс эквивалентности (смежный класс).

Пусть
$$A = |\mathfrak{A}|, \ \mathfrak{A} = \langle A; \sigma \rangle$$
, тогда $A/_{\sim} = \{[a]_{\sim} \mid a \in A\}$,

$$\mathfrak{A}/_{\sim} = \langle A/_{\sim}; \sigma \rangle -$$
фактор-модель.

Пусть P^n , f^n , $c \in \sigma$, $a_1 \dots a_n \in |\mathfrak{A}|$. Тогда:

а)
$$\mathfrak{A}/_{\sim} \models P([a_1], \dots, [a_n])$$
 : $\exists b_1 \dots b_n \in |\mathfrak{A}|$, если $a_1 \sim b_1, \dots, a_n \sim b_n$, то $\mathfrak{A} \models P(b_1, \dots, b_n)$;

6)
$$f([a_1], \dots, [a_n]) = [f(a_1, \dots, a_n)];$$

$$B) c^{\mathfrak{A}/_{\sim}} = [c^{\mathfrak{A}}].$$

Класс эквивалентности, фактор модель

ТЕОРЕМА 13.23.(Основная теорема о гомоморфизмах).

Любой гомоморфизм является композицией факторизации и изоморфного вложения.

Основная теорема о гомоморфизмах

Секвенциальное исчисление предикатов

Определение 10.1. $\Gamma = \langle \varphi_1, \dots, \varphi_n \rangle$ — конечная последовательность формул.

Секвенциями называются выражения вида:

- 1) $\Gamma \vdash \varphi$ (из Γ выводимо φ)
- 2) $\vdash \varphi$ $(\varphi$ выводится)
- 3) $\Gamma \vdash (\Gamma$ противоречиво)

Определения секвенций

Определение 14.1.

1)
$$\varphi \vdash \varphi$$
;

$$2) \vdash \forall x(x=x);$$

$$3) \vdash \forall x \forall y (x = y \rightarrow y = x);$$

4)
$$\vdash \forall x \forall y \forall z (x = y \& y = z \rightarrow x = z);$$

5)
$$t_1 = q_1, \dots, t_n = q_n, [\varphi]_{t_1, \dots, t_n}^{x_1, \dots, x_n} \vdash [\varphi]_{q_1, \dots, q_n}^{x_1, \dots, x_n}$$

или же

$$t_1 = q_1, \ldots, t_n = q_n, \ \varphi(t_1, \ldots, t_n) \vdash \varphi(q_1, \ldots, q_n)$$

При замене x_1 на t_1, \dots, x_n на t_n не возникают коллизии, т.е.

 $\forall i \leqslant n, \ \forall y \in FV(t_i) \ x_i$ не входит в область действия кванторов по y.

Определение секвенциального исчисления предикатов

Правила вывода:

1)
$$\frac{\Gamma \vdash \varphi; \ \Gamma \vdash \psi}{\Gamma \vdash (\varphi \& \psi)}$$
 2) $\frac{\Gamma \vdash (\varphi \& \psi)}{\Gamma \vdash \varphi}$ 3) $\frac{\Gamma \vdash (\varphi \& \psi)}{\Gamma \vdash \psi}$

$$2) \frac{\Gamma \vdash (\varphi \& \psi)}{\Gamma \vdash \varphi}$$

3)
$$\frac{\Gamma \vdash (\varphi \& \psi)}{\Gamma \vdash \psi}$$

4)
$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash (\varphi \lor \psi)}$$

5)
$$\frac{\Gamma \vdash \psi}{\Gamma \vdash (\varphi \lor \psi)}$$

4)
$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash (\varphi \lor \psi)}$$
 5) $\frac{\Gamma \vdash \psi}{\Gamma \vdash (\varphi \lor \psi)}$ 6) $\frac{\Gamma, \varphi \vdash \xi; \ \Gamma, \psi \vdash \xi; \ \Gamma \vdash (\varphi \lor \psi)}{\Gamma \vdash \xi}$

7)
$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash (\varphi \to \psi)}$$

7)
$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash (\varphi \to \psi)}$$
 8) $\frac{\Gamma \vdash \varphi; \ \Gamma \vdash (\varphi \to \psi)}{\Gamma \vdash \psi}$ (modus ponens)

9)
$$\frac{\Gamma, \neg \varphi \vdash}{\Gamma \vdash \varphi}$$

9)
$$\frac{\Gamma, \neg \varphi \vdash}{\Gamma \vdash \varphi}$$
 10) $\frac{\Gamma \vdash \neg \varphi; \ \Gamma \vdash \varphi}{\Gamma \vdash}$ 11) $\frac{\Gamma, \varphi, \psi, \Gamma_1 \vdash \xi}{\Gamma, \psi, \varphi, \Gamma_1 \vdash \xi}$

12)
$$\frac{\Gamma \vdash \varphi}{\Gamma, \psi \vdash \varphi}$$

12)
$$\frac{\Gamma \vdash \varphi}{\Gamma, \psi \vdash \varphi}$$
 13) $\frac{\Gamma \vdash \varphi}{\Gamma \vdash \forall x \varphi}$, $x \notin FV(\Gamma)$

14)
$$\frac{\Gamma, \ [\varphi]_t^x \vdash \psi}{\Gamma, \ \forall x \varphi \vdash \psi}$$

15)
$$\frac{\Gamma \vdash [\varphi]_t^x}{\Gamma \vdash \exists x \varphi}$$

14)
$$\frac{\Gamma, \ [\varphi]_t^x \vdash \psi}{\Gamma, \ \forall x \varphi \vdash \psi}$$
 15) $\frac{\Gamma \vdash [\varphi]_t^x}{\Gamma \vdash \exists x \varphi}$ 16) $\frac{\Gamma, \varphi \vdash \psi}{\Gamma, \ \exists x \ \varphi \vdash \psi}$, $x \notin FV(\Gamma \cup \{\psi\})$.

Правила вывода

Определение 14.2. Последовательность секвенций S_1, \ldots, S_n называется доказательством, если каждая секвенция S_i — это либо аксиома, либо получена из предыдущих однократным применением некоторого правила вывода.

Определение 14.3. Секвенция S называется доказуемой, если \exists доказательство S_1, \ldots, S_n , заканчивающееся на S ($S_n = S$).

Доказательство и доказуемость

Определение 14.5. Дерево секвенций: D, h(D), V(D):

- 1) Если S секвенция, то S дерево, $V(D) = S, \ h(D) = 1;$
- 2) Пусть $D_1, \dots D_k$ деревья, S секвенция, тогда конструкция $D = \frac{D_1; \dots; D_k}{S}$ дерево, $h(D) = \max(h(D_1), \dots h(D_k)) + 1,$ $V(D) = V(D_1) \cup \dots \cup V(D_k).$
- 3) Других деревьев нет.

Определение 14.6. Дерево секвенций называется деревом вывода, если все его вершины являются аксиомами, а все переходы являются частными случаями правил вывода.

Дерево секвенций и дерево вывода

ОПРЕДЕЛЕНИЕ 14.8. Дерево секвенций $\frac{S_1; \dots; S_n}{S}$ высоты 2 называется производным правилом вывода, если $\exists D = \frac{\bigcap}{S}$, заканчивающееся на эту секвенцию S, у которого все переходы являются частными случаями правил вывода, а вершины - либо аксиомы, либо одна из секвенций S_1, \dots, S_n .

Производное правило вывода

Определение 14.13. Формулы φ и ψ называются равносильными $(\varphi \equiv \psi)$, если секвенции $\varphi \vdash \psi$ и $\psi \vdash \varphi$ являются доказуемыми.

Равносильность формул

Определение 14.17.

- 1) Секвенция $\varphi_1, \ldots, \varphi_n \vdash \varphi$ называется тождественно истинной, если $\forall \mathfrak{A} \in K(\sigma(\{\varphi_1, \ldots, \varphi_n, \varphi\}))$ и $\forall \gamma : FV(\{\varphi_1, \ldots, \varphi_n, \varphi\}) \rightarrow |\mathfrak{A}|$ имеет место следующее утверждение: если $\mathfrak{A} \models \varphi_1[\gamma], \ldots, \mathfrak{A} \models \varphi_n[\gamma]$, то $\mathfrak{A} \models \varphi[\gamma]$;
- 2) Секвенция $\vdash \varphi$ называется тождественно истинной, если $\forall \mathfrak{A} \in K(\sigma(\varphi))$ и $\forall \gamma : FV(\varphi) \to |\mathfrak{A}|$ выполняется $\mathfrak{A} \vDash \varphi[\gamma];$
- 3) Секвенция $\varphi_1, \ldots, \varphi_n \vdash$ называется тождественно истинной, если $\forall \mathfrak{A} \in K(\sigma(\{\varphi_1, \ldots, \varphi_n\}))$ и $\forall \gamma : FV(\{\varphi_1, \ldots, \varphi_n\}) \rightarrow |\mathfrak{A}| \ \exists i \leqslant n : \mathfrak{A} \nvDash \varphi_i[\gamma].$

Семантика секвенций логики предикатов

Определение 14.22 (каноническая форма). Говорят, что формула φ находится в предваренной нормальной форме (ПНФ), если она имеет вид: $\varphi = Q_1 x_1 \dots Q_n x_n \psi(x_1, \dots, x_n)$, где ψ — бескванторная, $Q_i \in \{\forall, \exists\}$.

Предваренная нормальная форма (ПНФ)

Предложение 14.21. Пусть $x \notin FV(\xi)$, тогда имеют место следующие эквивалентности:

- 1) $\forall x \xi \equiv \xi$;
- 2) $\exists x \xi \equiv \xi$;
- 3) $\forall x \forall y \varphi \equiv \forall y \forall x \varphi$;
- 4) $\exists x \exists y \varphi \equiv \exists y \exists x \varphi$;
- 5) $\neg \exists x \varphi \equiv \forall x \neg \varphi$;
- 6) $\neg \forall x \varphi \equiv \exists x \neg \varphi$;
- 7) $(\forall x \varphi \& \forall x \psi) \equiv \forall x (\varphi \& \psi);$
- 8) $(\exists x \varphi \lor \exists x \psi) \equiv \exists x (\varphi \lor \psi);$
- 9) $((\forall x\varphi) \& \xi) \equiv \forall x(\varphi \& \xi);$
- 10) $((\exists x\varphi) \& \xi) \equiv \exists x(\varphi \& \xi);$
- 11) $((\forall x\varphi) \lor \xi) \equiv \forall x(\varphi \lor \xi);$
- 12) $((\exists x\varphi) \lor \xi) \equiv \exists x(\varphi \lor \xi);$
- 13) $\forall x[\varphi]_x^z \equiv \forall y[\varphi]_y^z$, если $\forall x\varphi(x) \equiv \forall y\varphi(y)$ (если не возникает коллизий);
- 14) $\exists x[\varphi]_x^z \equiv \exists y[\varphi]_y^z$, если $\exists x\varphi(x) \equiv \exists y\varphi(y)$ (если не возникает коллизий).

Доказательство: упражнение.

Эквивалентности

ТЕОРЕМА 14.23. Для всех формул φ существует эквивалентная ей формула $\psi \equiv \varphi$, находящаяся в ПНФ.

ДОКАЗАТЕЛЬСТВО: Алгоритм приведения формулы к ПНФ:

- Избавляемся от импликаций;
- С помощью тождеств 5, 6 из 14.21, а также законов де Моргана и снятия двойного отрицания, вносим отрицание под кванторы.
 - 3) С помощью тождеств 13, 14 переобозначаем переменные так, чтобы:
 - а) разные кванторы действовали по разным переменным;
 - б) каждая переменная имела либо только свободное, либо только связанное вхождение.
 - С помощью 9-12 выносим кванторы наружу.

В результате получим функцию, эквивалентную изначальной, но находящейся в ПНФ.

Теорема доказана.

Алгоритм приведения к ПНФ

Теорема о существовании модели

Определение 15.1. Пусть σ — сигнатура, $\Gamma \subseteq F(\sigma), \ \varphi \in F(\sigma)$. Тогда:

- 1) $\Gamma \vdash \varphi$, если $\exists \varphi_1, \dots, \varphi_n \in \Gamma$ такие, что секвенция $\varphi_1, \dots, \varphi_n \vdash \varphi$ доказуема;
- 2) $\Gamma \vdash$, если $\exists \varphi_1, \dots, \varphi_n \in \Gamma$ такие, что секвенция $\varphi_1, \dots, \varphi_n \vdash -$ доказуема;
 - 3) $\Gamma \not\vdash$, если $\forall \varphi_1, \dots, \varphi_n \in \Gamma$ секвенция $\varphi_1, \dots, \varphi_n \vdash$ недоказуема;
- 4) $\Gamma \subseteq S(\sigma)$ называется **теорией** (в сигнатуре σ), если оно (множество Γ) является **дедуктивно замкнутым**, т.е. $\forall \varphi \in S(\sigma)$: $(\Gamma \vdash \varphi \Rightarrow \varphi \in \Gamma)$;
- 5) Множество $\Gamma \subseteq S(\sigma)$ **полное** на сигнатуре σ , если $\forall \varphi \in S(\sigma)$: $(\varphi \in \Gamma$ или $\neg \varphi \in \Gamma)$.

Теория, дедуктивная замкнутость, полное множество предложений

Определение 15.4. Пусть $\mathfrak{A} \in K(\sigma)$, тогда элементарной теорией модели \mathfrak{A} называют: $\mathrm{Th}(\mathfrak{A}) = \{ \varphi \in S(\sigma) \mid \mathfrak{A} \vDash \varphi \}.$

Элементарная теория

Определение 15.5. Пусть $\mathfrak{A}, \mathfrak{B} \in K(\sigma)$. Модели \mathfrak{A} и \mathfrak{B} называют элементарно эквивалентными ($\mathfrak{A} \equiv \mathfrak{B}$), если их элементарные теории

совпадают, т.е.
$$\operatorname{Th}(\mathfrak{A}) = \operatorname{Th}(\mathfrak{B})$$
, т.е. $\forall \varphi \in S(\sigma) : (\mathfrak{A} \models \varphi \Leftrightarrow \mathfrak{B} \models \varphi)$.

Элементарная эквивалентность моделей

Определение 15.14. Пусть модель $\mathfrak{A} \in K(\sigma)$ и X — множество переменных. Тогда отображение $\gamma : X \to |\mathfrak{A}|$ называется **интерпретацией** (означиванием) переменных из X на \mathfrak{A} .

Рассмотрим $\Gamma \subseteq F(\sigma)$ и $FV(\Gamma) = \{x \mid \exists \varphi \in \Gamma : x \in FV(\varphi)\}$. Пусть $FV(\Gamma) \subseteq X$. Тогда говорят, что Γ истинно на модели $\mathfrak A$ при означивании γ и пишут $\mathfrak A \models \Gamma[\gamma]$, если $\forall \varphi \in \Gamma : \mathfrak A \models \varphi[\gamma]$.

Говорят, что Γ выполнимо на модели \mathfrak{A} , если $\exists \gamma : FV(\Gamma) \to |\mathfrak{A}|$ такое, что $\mathfrak{A} \models \Gamma[\gamma]$.

Говорят, что Γ выполнимо (или имеет модель), если $\exists \mathfrak{A} \in K(\sigma(\Gamma))$ и $\exists \gamma : FV(\Gamma) \to |\mathfrak{A}|$ такие, что $\mathfrak{A} \models \Gamma[\gamma]$.

Выполнимость на модели

ТЕОРЕМА 15.15 (теорема о существовании модели). Любое непротиворечивое множество формул имеет модель, т.е.

 $\forall \Gamma \subseteq F(\sigma)$ таких, что $\Gamma \nvdash$, выполняется:

$$\exists \mathfrak{A} \in K(\sigma)$$
 и $\exists \gamma : FV(\Gamma) \to |\mathfrak{A}|$ такие, что $\mathfrak{A} \vDash \Gamma[\gamma]$.

Теорема о существовании модели (ТОСМ)

ЛЕММА 15.18 (Хенкина).

- a) T' непротиворечивое;
- б) T' полное;
- в) T' теория;
- Γ) $(\varphi \& \psi) \in T' \Leftrightarrow \varphi \in T'$ и $\psi \in T'$;
- д) $(\varphi \lor \psi) \in T' \Leftrightarrow \varphi \in T'$ или $\psi \in T'$;
- e) $\neg \varphi \in T' \Leftrightarrow \varphi \notin T'$;
- ж) $(\varphi \to \psi) \in T' \Leftrightarrow$ если $\varphi \in T'$, то $\psi \in T'$;
- з) $\exists x \psi(x) \in T' \Leftrightarrow \exists c \in C : \psi(c) \in T' \Leftrightarrow$ $\Leftrightarrow \exists t \in T(\sigma') : FV(t) = \emptyset$ (замкнутый терм) и $\psi(t) \in T'$;
- и) $\forall x \psi(x) \in T' \Leftrightarrow \forall c \in C : \psi(c) \in T' \Leftrightarrow$ $\Leftrightarrow \forall t \in T(\sigma') : если FV(t) = \emptyset$ (замкнутый терм), то $\psi(t) \in T'$.

Лемма Хенкина

Определение 15.34. Рассмотрим $\Gamma \subseteq F(\sigma)$. Говорят, что Γ совместно, если $\exists \mathfrak{A} \in K(\sigma), \ \exists \gamma : FV(\Gamma) \to |\mathfrak{A}|$ такие, что $\mathfrak{A} \models \Gamma[\gamma]$.

Совместность

Множество формул Γ называется **локально совместным**, если каждое его конечное подмножество является совместным, т.е. $\forall \Gamma_0 \subseteq \Gamma$, где Γ_0 - конечное и совместное.

Локальная совместность

ТЕОРЕМА 15.35 (Мальцева о компактности). Множество формул совместно ⇔ когда оно локально совместно.

Теорема Мальцева о компактности

ТЕОРЕМА 15.36 (Гёделя о полноте). Любая т.и. формула является доказуемой.

Теорема Геделя о полноте

ТЕОРЕМА 15.39 (Мальцева о расширении). Если множество предложений имеет бесконечную модель, то оно имеет сколь угодно большую модель, т.е. пусть $\Gamma \subseteq S(\sigma)$, $\mathfrak{B} \models \Gamma$, \mathfrak{B} - бесконечная. Тогда для \forall кардинала $\alpha \exists \mathfrak{A} \in K(\sigma)$ такая, что $\mathfrak{A} \models \Gamma$, $\|\mathfrak{A}\| \geqslant \alpha$.

Мальцева о расширении

7.3. Ординалы и кардиналы

Определение 7.22. *Ординальными числами* (*ординалами*) называются:

$$\begin{array}{c} \alpha_0 = 0 = \emptyset; \\ \alpha_1 = 1 = \{\emptyset\}; \\ \alpha_2 = 2 = \{\emptyset; \ \{\emptyset\}\}; \\ \alpha_3 = 3 = \Big\{\emptyset; \ \{\emptyset\}; \ \{\emptyset\}\}\Big\}; \\ \dots \\ \alpha_{n+1} = \alpha_n \cup \{\alpha_n\}; \\ \omega = \{\alpha_0, \alpha_1, \dots, \alpha_n \dots\}; \\ \omega + 1 = \omega \cup \{\ \omega\ \} = \{\ \alpha_0, \alpha_1, \dots, \alpha_n \dots, \omega\ \}; \\ 2\omega = \{\alpha_0, \alpha_1, \dots, \alpha_n, \dots, \omega, \omega + 1, \dots, \omega + n, \dots\}; \\ \dots \\ \alpha = \{\ \beta \mid \beta < \alpha\ \}. \end{array}$$

Определение 7.23. α называется **непредельным** ординалом, если существует ординал β такой, что $\alpha = \beta + 1$.

 α называется **предельным** ординалом, если не существует ординала β такого, что $\alpha = \beta + 1$.

Ординал

Определение 7.26. Ординал α называется **кардиналом**, если для любого ординала $\beta < \alpha$ имеет место $\|\beta\| \neq \|\alpha\|$.

Замечание 7.27.

- 1. $\alpha_0, \alpha_1, ..., \alpha_n, ..., \omega$ кардиналы.
- 2. $\omega + 1, \omega + 2, ..., 2\omega, ... -$ не кардиналы.

Доказательство: упражнение.

Кардинал

Эквивалентность классов вычислительных функций

Определение 9.3. Примитивно-рекурсивные функции (прф):

- а) простейшие функции являются примитивно-рекурсивными;
- б) функция, полученная из примитивно-рекурсивных функций однократным применением оператора суперпозиции или оператора примитивной рекурсии, является примитивно-рекурсивной;
 - в) других примитивно-рекурсивных функций нет.

Частично-рекурсивные функции (чрф):

- а) простейшие функции являются частично-рекурсивными;
- б) функция, полученная из частично-рекурсивных функций однократным применением оператора суперпозиции, оператора примитивной рекурсии или оператора минимизации, является частично-рекурсивной;
 - в) других частично-рекурсивных функций нет.

Общерекурсивными функциями (орф) называются всюду определённые частично-рекурсивные функции.

Класс всех примитивно-рекурсивных функций обозначается $\Pi P\Phi$, класс всех общерекурсивных функций — $OP\Phi$, а класс всех частично-рекурсивных функций — $\Psi P\Phi$.

ЧРФ, ПРФ, ОРФ

9.1. Основные определения и обозначения

Определение 9.1. Следующие функции называются простейшими:

- a) O(x) = 0;
- 6) S(x) = x + 1;
- B) $I_m^n(x_1,...,x_n) = x_m, m \le n.$

Определение 9.2.

а) Оператор суперпозиции. Рассмотрим функции

$$g(x_1,...,x_k)$$
, u $h_1(x_1,...,x_n)$,..., $h_k(x_1,...,x_n)$.

Говорят, что функция

$$f(x_1,...,x_n) = g(h_1(x_1,...,x_n),...,h_k(x_1,...,x_n))$$

 $f(x_1,\dots,x_n)=g(h_1(x_1,\dots,x_n),\dots,h_k(x_1,\dots,x_n))$ получена из функций g,h_1,\dots,h_k применением **оператора суперпо**зиции.

b) **Оператор примитивной рекурсии**. Рассмотрим функции $g(x_1,...,x_n)$ u $h(x_1,...,x_n,y,z)$.

Пусть выполнено
$$\begin{cases} f(x_1,...,x_n) & \text{if } h(x_1,...,x_n,y,z). \\ f(x_1,...,x_n,0) = g(x_1,...,x_n); \\ f(x_1,...,x_n,y+1) = h(x_1,...,x_n,y,f(x_1,...,x_n,y)). \end{cases}$$

Тогда говорят, что функция f получена из функций g и h применением оператора примитивной рекурсии.

с) Оператор минимизации. Рассмотрим функцию $g(x_1,...,x_n,y)$. Пусть выполнено:

$$f(x_1, \dots, x_n, y)$$
. Пусть выполнено:
$$g(x_1, \dots, x_n, y) = 0,$$
 $\forall i < y \ g(x_1, \dots, x_n, i) \ \text{определена}$ и $\forall i < y \ g(x_1, \dots, x_n, i) \neq 0;$ не определена, в противном случае.

Тогда говорят, что функция f получена из функции g применением оператора минимизации. Это обозначается так:

$$f(x_1, \dots, x_n) = \mu y [g(x_1, \dots, x_n, y) = 0].$$

Простейшие функции, оператор суперпозиции, оператор примитивной рекурсии, оператор минимизации

ТЕОРЕМА 17.17 (о нормальной форме Клини)

Пусть функция $f(x_1, ..., x_n)$ — вычислимая на МТ. Тогда существует **прф** $g(x_1, ..., x_n, y)$ такая, что $f(x_1, ..., x_n) = l(\mu y[g(x_1, ..., x_n, y) = 0])$, т.е. берем **прф**, применяем к ней оператор минимизации и берем левую компоненту с вышедшей канторовской нумерации.

Теорема о нормальной форме Клини

Следствие 17.20 (основная теорема о вычислимых функциях). $\Psi P \Phi = BT = \Pi BT$.

Основная теорема о вычислимых функциях

ТЕОРЕМА 17.23 (Тезис Чёрча).

Любая интуитивно вычислимая функция является частично рекурсивной.

Тезис Черча

Универсальные вычислимые функции

Определение 18.1. Пусть K- множество частичных функций вида $g:N^n\to N$. Функция $f(x_0,x_1,\ldots,x_n)$ называется универсальной для класса K, если:

- a) $\forall m \in \mathbb{N} : f(m, x_1, \dots, x_n) \in K$;
- 6) $\forall g(x_1,...,x_n) \in K \ \exists m \in \mathbb{N} : \ g(x_1,...,x_n) = f(m,x_1,...,x_n),$

Если объединить два условия, то выходит, что класс

 $K = \{f(m, x_1, \dots, x_n) \mid m \in \mathbb{N}\}$. Или же, иными словами, функция f осуществляет нумерацию всех функций класса K.

Универсальная функция

Замечание 18.2. Класс K имеет универсальную функцию \Leftrightarrow класс конечен или счётен.

Доказательство: упражнение.

СЛЕДСТВИЕ 18.3. Если класс K континуален, то он не имеет универсальной функции.

Доказательство: упражнение.

Следствие 18.4. Класс всех n—местных частичных функций не имеет универсальной функции.

Доказательство: упражнение.

18.2 - 18.4

Определение 18.14. Следующие функции называются клиниевскими скобками: [x, y] = c (l(x), c(r(x), y)).

Клиниевские скобки

Определение 18.24. Функция $\mathfrak{E}(n)=K^2(n,x)$ называется клиниевской нумерацией ЧР Φ^1 , т.е. $\mathfrak{E}:\mathbb{N}\to \mathbf{ЧР}\Phi^1$.

Клиниевская нумерация ЧРФ (ae\ae)

ТЕОРЕМА 18.26. (теорема Райса). Пусть класс $K \subseteq \mathbf{ЧР}\Phi^1, K \neq \varnothing,$ $K \neq \mathbf{ЧР}\Phi^1$. Тогда множество номеров $M = \{n \mid æ(n) \in K\}$ не рекурсивно, т.е. функция $\chi_M(x) = \begin{cases} 1, & x \in M \\ 0, & x \notin M \end{cases}$ не является $\mathbf{чр}\Phi$.

Теорема Райса

Рекурсивные и рекурсивно-перечислимые множества

Определение 19.2. Множество $A \subseteq \mathbb{N}^k$ называется называется **рекурсивным** (примитивно рекурсивным), если его характеристическая функция $\chi_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$ является орф (прф).

Определение 19.3. Множество $A \subseteq \mathbb{N}^k$ называется **рекурсивно пе**речислимым, если $A = \emptyset$ или существуют орф¹ f_1, \dots, f_k такие, что $A = \{\langle f_1(n), \dots, f_k(n) \rangle \mid n \in \mathbb{N} \}.$

В частности, если $A \subseteq \mathbb{N}$ и существует $\mathbf{op}\Phi^1$ f такая, что $A = \rho f =$ $= \{f(n) \mid n \in \mathbb{N}\} - \text{область значений, то } A \text{ является рекурсивно перечислимым.}$

Примитивно рекурсивные и рекурсивно перечислимые множества

ТЕОРЕМА 19.10 (Поста). Пусть $A \subseteq \mathbb{N}^k$. Тогда A рекурсивно $\Leftrightarrow A, \overline{A}$ являются **рпм**.

Теорема Поста

Формальная арифметика Пеано. Неразрешимые проблемы

Определение 20.1. Сигнатура $\Sigma_0 = \langle <^2, +^2, *^2, S^1, 0 \rangle$ является сигнатурой арифметики Пеано. Введем обозначения:

 $T(\Sigma_0)$ - множество термов Σ_0 .

 $F(\Sigma_0)$ - множество формул Σ_0 .

 $S(\Sigma_0)$ - множество предложений Σ_0 .

 $\{v_i \mid i \in \mathbb{N}\}$ - множество переменных.

Сигнатура арифметики Пеано

Определение 20.4. Пусть $X\subseteq T(\Sigma_0)\cup F(\Sigma_0)$. Множество X является разрешимым, если $\gamma(X)=\{\gamma(y)\mid y\in X\}$ - рм. Множество X является перечислимым, если $\gamma(X)$ - рпм.

Разрешимое и перечислимое множество

...- p---

Определение 20.14. Пусть $f: \mathbb{N}^k \to N$. Говорят, что f представима в A_0 , если существует формула $\varphi(v_0, \dots, v_k) \in F(\Sigma_0)$ такая, что для $\forall n_0 \dots n_k \in \mathbb{N}$ выполняется:

1)
$$f(n_0, ..., n_{k-1}) = n_k \Rightarrow A_0 \vdash \varphi(n_0, ..., n_k);$$

2)
$$f(n_0, \dots, n_{k-1}) \neq n_k \Rightarrow A_0 \vdash \neg \varphi(\underline{n_0}, \dots, n_k)$$
.

Представимость функции в арифметике Пеано

ТЕОРЕМА 20.16 (Гёделя о неразрешимости).

Пусть $T \subseteq S(\Sigma_0)$, $A_0 \subseteq T$, T - непротиворечивая теория. Тогда T неразрешима.

Это означает, что система аксиом A_0 наследственно неразрешима, то есть любая содержащая её непротиворечивая теория является неразрешимой.

Теорема Геделя о неразрешимости

ТЕОРЕМА 20.17. (Чёрча о неразрешимости).

Множество доказуемых формул (теорем логики предикатов) И Π_{Σ_0} является неразрешимым.

Теорема черча о неразрешимости

Теорема 20.20.(Гёделя о неполноте).

Пусть $T \subseteq S(\Sigma_0)$, $A_0 \subseteq T$, T - перечислимая, непротиворечивая теория. Тогда T не полна, т.е. система аксиом арифметики Пеано A_0 не имеет непротиворечивых перечислимых пополнений.

Теорема Геделя о неполноте

Аксиоматизируемые классы

Определение 21.1.

Рассмотрим $K_{\sigma} = \{\mathfrak{A} \mid \mathfrak{A} - \text{модель сигнатуры } \sigma \}$. Пусть класс моделей $K \subseteq K_{\sigma}$. Тогда **теорией класса** называется множество предложений $Th(K) = \{\varphi \in S(\sigma) \mid \forall \mathfrak{A} \in K : \mathfrak{A} \models \varphi \}$.

Теория класса

Определение 21.2.

Пусть
$$\Gamma \subseteq S(\sigma)$$
. Тогда $K(\Gamma) = \{ \mathfrak{A} \in K_{\sigma} \mid \forall \varphi \in \Gamma \colon \mathfrak{A} \models \varphi \}$.

Класс множества предложений

Определение 21.3.

Пусть $K \subseteq K_{\sigma}$. Класс K называется **аксиоматизируемым**, если $\exists \Gamma \subseteq S(\sigma)$ такое, что $K = K(\Gamma)$. В нашем случае Γ есть множество аксиом.

Аксиоматизируемый класс

Определение 21.11.

Класс K является конечно аксиоматизируемым $\Leftrightarrow \exists \Gamma \in S(\sigma)$ - конечное и $K = K(\Gamma)$.

Конечно аксиоматизируемый класс

Определение 22.7.

Пусть $\mathfrak{A} \in K_{\sigma}$. Элементарной диаграммой модели \mathfrak{A} называют множество предложений $D(\mathfrak{A}) = \{ \varphi \in S(\sigma_A) \mid \mathfrak{A}_A \vDash \varphi, \ \varphi \text{ - бескванторная} \}.$

Полной диаграммой модели $\mathfrak A$ называют множество предложений $FD(\mathfrak A) = \{ \varphi \in S(\sigma_A) \mid \mathfrak A_A \vDash \varphi \}.$

Элементарная и полная диаграмма

Определение 22.11.

Пусть $\psi(x_1,\ldots,x_n,y_1,\ldots,y_m)$ - бескванторная формула. Тогда следующими формулами называются:

$$\exists x_1 \exists x_2 \dots \exists x_n \psi(x_1, \dots, x_n, y_1, \dots, y_m)$$
 - \exists -формула(экзистенциальная); $\forall x_1 \forall x_2 \dots \forall x_n \psi(x_1, \dots, x_n, y_1, \dots, y_m)$ - \forall -формула(универсальная).

Определение 22.12.

Пусть $K \subseteq K_{\sigma}$. Тогда \exists -теорией называют множество предложений $Th_{\exists} = \{ \varphi \in Th(K) \mid \varphi - \exists - \text{формула} \}$, а \forall -теорией называют $Th_{\forall} = \{ \varphi \in Th(K) \mid \varphi - \forall - \text{формула} \}$.

Е и А формулы, теории

Определение 22.14. Пусть $K \subseteq K_{\sigma}$. Тогда:

Класс \exists -аксиоматизируем, если $\exists \Gamma \subseteq S(\sigma) \colon K = K(\Gamma), \ \Gamma$ - множество \exists -формул;

Класс \forall -аксиоматизируем, если $\exists \Gamma \subseteq S(\sigma) \colon K = K(\Gamma), \ \Gamma$ - множество \forall -формул.

Е и А аксиоматизируемые классы