ARTICULATED ROBOTS

A/P ZHOU, Chunlin (周春琳)

Institute of Cyber-system and Control

College of Control Science and Engineering, Zhejiang University

Email: c_zhou@zju.edu.cn

4. INVERSE KINEMATICS I

$${}^{0}T_{6} = {}^{0}T_{3} {}^{3}T_{6} = \begin{bmatrix} {}^{0}R_{3} & {}^{0}\mathbf{d}_{3} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix} \begin{bmatrix} {}^{3}R_{6} & {}^{3}\mathbf{d}_{6} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix}$$

4.1 Inverse Kinematics

✓ Solving the inverse kinematics problem is a process to find all joint angles of a robot if the position and orientation of the end-effector are known.

$${}^{0}T_{6} = \begin{bmatrix} n_{x} & s_{x} & a_{x} & d_{x} \\ n_{y} & s_{y} & a_{y} & d_{y} \\ n_{z} & s_{z} & a_{z} & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \stackrel{?}{\longmapsto} \begin{bmatrix} \theta_{1} \\ \theta_{2} \\ \theta_{3} \\ \theta_{4} \\ \theta_{5} \\ \theta_{6} \end{bmatrix}$$

Notes

- ✓ Finding solution to inverse kinematics problem is more complicated than direct kinematics problem.
- ✓ It may suffer from various illnesses such as no analytical solutions, multiple solutions, or even no solution issues, etc.
- ✓ There is no standard and generally applicable method to solve the inverse kinematic problem.
 - Decoupling technique
 - Generic method
 - Numeric solution

Arm with a Spherical Wrist

It is the most common design that an industrial arm contains an anthropomorphic (elbow) manipulator serially-connected with a spherical wrist

Decomposition of the Structure

It is the most common design that an industrial arm contains an anthropomorphic (elbow) manipulator serially-connected with a spherical wrist

Determine the **position**

Determine the **orientation**

 x_0

Base

Global Pos. and Orient. of an End-effector

✓ A transformation ${}^{0}T_{6}$ is given as a function of the joint variables

$${}^{0}T_{6} = {}^{0}T_{1}{}^{1}T_{2}{}^{2}T_{3}{}^{3}T_{4}{}^{4}T_{5}{}^{5}T_{6} = {}^{0}T_{3}{}^{3}T_{6}$$

$$= \begin{bmatrix} r_{11} & r_{12} & r_{13} & r_{14} \\ r_{21} & r_{22} & r_{23} & r_{24} \\ r_{31} & r_{32} & r_{33} & r_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}R_{6} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$${}^{0}\mathbf{d}_{6} = \begin{bmatrix} r_{14} \\ r_{24} \\ r_{34} \end{bmatrix} = \begin{bmatrix} d_{X} \\ d_{Y} \\ d_{Z} \end{bmatrix}$$

$${}^{0}\mathbf{d}_{6} = \begin{bmatrix} r_{14} \\ r_{24} \\ r_{34} \end{bmatrix} = \begin{bmatrix} d_{X} \\ d_{Y} \\ d_{Z} \end{bmatrix}$$

Decoupling

- ✓ It is possible to decouple the inverse kinematics problem into two subproblems, known as inverse position and inverse orientation kinematics.
- ✓ Following the decoupling principle, the overall transformation matrix of a robot can be decomposed to a translation and a rotation.

$${}^{0}T_{6} = \begin{bmatrix} {}^{0}R_{6} & {}^{0}\mathbf{d}_{6} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix} = \begin{bmatrix} I & {}^{0}\mathbf{d}_{6} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} {}^{0}R_{6} & 0 \\ \mathbf{0} & 1 \end{bmatrix}$$

✓ ${}^{0}T_{6}$ can also be decomposed as

$${}^{0}T_{6} = {}^{0}T_{3} {}^{3}T_{6} = \begin{bmatrix} {}^{0}R_{3} & {}^{0}\mathbf{d}_{3} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix} \begin{bmatrix} {}^{3}R_{6} & {}^{3}\mathbf{d}_{6} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix} \\ \mathbf{0}_{1\times3} & \mathbf{1} \end{bmatrix}$$
3 unknowns
$$\theta_{1}, \theta_{2}, \theta_{3} & \theta_{4}, \theta_{5}, \theta_{6}$$

of the wrist point

$${}^{0}T_{6} = {}^{0}T_{3} {}^{3}T_{6} = \begin{bmatrix} {}^{0}R_{3} & {}^{0}\mathbf{d}_{3} \\ \mathbf{0}_{1\times 3} & 1 \end{bmatrix} \begin{bmatrix} {}^{3}R_{6} & {}^{3}\mathbf{d}_{6} \\ \mathbf{0}_{1\times 3} & 1 \end{bmatrix}$$

of the end-effector

✓ The position of the wrist point is

$${}^{0}\mathbf{d}_{wrist} = {}^{0}\mathbf{d}_{3} + {}^{0}R_{3} {}^{3}\mathbf{r}_{wrist} = {}^{0}\mathbf{d}_{6}$$
 (4-1)

✓ Chain rule implies that

$${}^{0}R_{6} = {}^{0}R_{3}{}^{3}R_{6} \implies {}^{3}R_{6} = {}^{0}R_{3}{}^{T}{}^{0}R_{6}$$
 (4-2)

Step 1: find θ_1 , θ_2 , θ_3 by equating corresponding elements of two sides of Eq. (4-1)

Step 2: substitute θ_1 , θ_2 , θ_3 into ${}^0R_3 = {}^0R_1{}^1R_2{}^2R_3$ to obtain 0R_3 and find 3R_6 using Eq. (4-2)

Step 3: find θ_4 , θ_5 , θ_6 from 3R_6

✓ The position of the wrist point is

$${}^{0}\mathbf{d}_{wrist} = {}^{0}\mathbf{d}_{3} + {}^{0}R_{3} {}^{3}\mathbf{r}_{wrist} = {}^{0}\mathbf{d}_{6}$$
 (4-1)

✓ Chain rule implies that

$${}^{0}R_{6} = {}^{0}R_{3}{}^{3}R_{6} \implies {}^{3}R_{6} = {}^{0}R_{3}{}^{T}{}^{0}R_{6}$$
 (4-2)

Anthropomorphic Manipulator

✓ Point $P=(d_x, d_y, d_z)^T$ at the end of the last link of an anthropomorphic manipulator is supposed to be the point where a spherical wrist will be attached.

No.	a_i	α_i	d_i	$ heta_i$
1	0	90°	l_1	θ_1 (90°)
2	l_2	0	d_2	$ heta_2$
3	0	90°	0	θ_3 (90°)

$${}^{0}R_{3} = \begin{bmatrix} c_{1}c_{23} & s_{1} & c_{1}s_{23} \\ s_{1}c_{23} & -c_{1} & s_{1}s_{23} \\ s_{23} & 0 & -c_{23} \end{bmatrix} \qquad {}^{0}\mathbf{d}_{3} = \begin{bmatrix} d_{2}s_{1} + l_{2}c_{1}c_{2} \\ l_{2}s_{1}c_{2} - d_{2}c_{1} \\ l_{1} + l_{2}s_{2} \end{bmatrix}$$

$${}^{0}\mathbf{d}_{wrist} = {}^{0}\mathbf{d}_{3} + {}^{0}R_{3}{}^{3}\mathbf{r}_{wrist} = {}^{0}\mathbf{d}_{6} \quad \Box$$

$$\begin{bmatrix}
d_{2}s_{1} + l_{2}c_{1}c_{2} \\
l_{2}s_{1}c_{2} - d_{2}c_{1} \\
l_{1} + l_{2}s_{2}
\end{bmatrix} + \begin{bmatrix}
c_{1}c_{23} & s_{1} & c_{1}s_{23} \\
s_{1}c_{23} & -c_{1} & s_{1}s_{23} \\
s_{23} & 0 & -c_{23}
\end{bmatrix} \begin{bmatrix}
0 \\
0 \\
l_{3}
\end{bmatrix} = \begin{bmatrix}
d_{x} \\
d_{y} \\
d_{z}
\end{bmatrix} \qquad \Longrightarrow \qquad \begin{bmatrix}
d_{x} = d_{2}s_{1} + l_{2}c_{1}c_{2} + l_{3}c_{1}s_{23} \\
d_{y} = l_{2}s_{1}c_{2} - d_{2}c_{1} + l_{3}s_{1}s_{23} \\
d_{z} = l_{1} + l_{2}s_{2} - l_{3}c_{23}$$
(1)
$$d_{y} = l_{2}s_{1}c_{2} - d_{2}c_{1} + l_{3}s_{1}s_{23} \\
d_{z} = l_{1} + l_{2}s_{2} - l_{3}c_{23}$$
(2)

$$(1) & (2) \Rightarrow d_x s_1 - d_y c_1 = d_2 \\ \text{Let } d_y = r \sin \alpha, d_x = r \cos \alpha \end{cases} \Rightarrow \sin(\theta_1 - \alpha) = \frac{d_2}{r} \Rightarrow \cos(\theta_1 - \alpha) = \pm \frac{1}{r} \sqrt{r^2 - d_2^2} \Rightarrow$$

$$\Rightarrow \quad \theta_1 = \operatorname{atan2}(d_2, \pm \sqrt{r^2 - d_2^2}) + \alpha \quad \text{where} \quad r = \sqrt{d_x^2 + d_y^2}, \quad \alpha = \operatorname{atan2}(d_y, d_x)$$

$$d_x c_1 + d_y s_1 = (d_2 s_1 + l_2 c_1 c_2 + l_3 c_1 s_{23}) c_1 + (l_2 s_1 c_2 - d_2 c_1 + l_3 s_1 s_{23}) s_1 = l_2 c_2 + l_3 s_{23}$$

$$\tag{4}$$

(3) & (4)
$$\Rightarrow$$
 $(l_3 s_{23})^2 + (l_3 c_{23})^2 = (d_x c_1 + d_y s_1 - l_2 c_2)^2 + (l_1 + l_2 s_2 - d_z)^2$
 $\Rightarrow m s_2 - n c_2 = s \Rightarrow \theta_2 = \tan 2(s, \pm \sqrt{t^2 - s^2}) + \beta$
where $t = \sqrt{m^2 + n^2}$, $\beta = \tan 2(m, n)$

$$m = 2l_2(l_1 - d_z)$$
 $n = 2l_2(d_xc_1 + d_ys_1)$ $s = l_3^2 - l_1^2 - l_2^2 - d_z^2 - (d_xc_1 + d_ys_1)^2 + 2l_1d_z$

(3) & (4)
$$\Rightarrow \begin{cases} l_3 s_{23} = d_x c_1 + d_y s_1 - l_2 c_2 \\ l_3 c_{23} = l_1 + l_2 s_2 - d_z \end{cases} \Rightarrow \theta_3 = \operatorname{atan2}(d_x c_1 + d_y s_1 - l_2 c_2, l_1 + l_2 s_2 - d_z) - \theta_2$$

If the position of the end-effector is known

$${}^{0}\mathbf{d}_{wrist} = \begin{bmatrix} d_{x} \\ d_{y} \\ d_{z} \end{bmatrix}$$

✓ There are four sets of solutions to the inverse kinematics problem

$$\theta_{1} = \operatorname{atan2}(d_{2}, \pm \sqrt{d_{x}^{2} + d_{y}^{2} - d_{2}^{2}}) + \operatorname{atan2}(d_{y}, d_{x})$$

$$\theta_{2} = \operatorname{atan2}(s, \pm \sqrt{m^{2} + n^{2} - s^{2}}) + \operatorname{atan2}(m, n)$$

$$m = 2l_{2}(d_{x}c_{1} + d_{y}s_{1})$$

$$n = 2l_{2}(l_{1} - d_{z})$$

$$s = l_{3}^{2} - l_{1}^{2} - l_{2}^{2} - d_{z}^{2} - (d_{x}c_{1} + d_{y}s_{1})^{2} + 2l_{1}d_{z}$$

$$\theta_{3} = \operatorname{atan2}(d_{x}c_{1} + d_{y}s_{1} - l_{2}c_{2}, \quad l_{1} + l_{2}s_{2} - d_{z}) - \theta_{2}$$

Ex 4-1-1

For an anthropomorphic arm, find solution to its forward kinematics problem given $L_1 = L_2 = L_3 = 1$, $d_2 = 0.1$, $(q_1, q_2, q_3) = (0, \pi/4, -\pi/2)$. Prove that $(0, -\pi/4, \pi/2)$ and $(-3.2828, -3\pi/4, -\pi/2)$ are also solutions.

1.
$$(q_1, q_2, q_3) = (0, \pi/4, -\pi/2)$$

$$\square \rangle \theta_1 = \pi/2, \theta_2 = \pi/4, \theta_3 = 0$$

$$d_{x} = d_{2}s_{1} + l_{2}c_{1}c_{2} + l_{3}c_{1}s_{23} = 0.1$$

$$d_{y} = l_{2}s_{1}c_{2} - d_{2}c_{1} + l_{3}s_{1}s_{23} = 1.4142$$

$$d_{z} = l_{1} + l_{2}s_{2} - l_{3}c_{23} = 1$$

2.
$$(0, -\pi/4, \pi/2)$$

$$\Rightarrow$$
 $\theta_1 = \pi/2$, $\theta_2 = -\pi/4$, $\theta_3 = \pi$

$$d_{x} = d_{2}s_{1} + l_{2}c_{1}c_{2} + l_{3}c_{1}s_{23} = 0.1$$

$$d_{y} = l_{2}s_{1}c_{2} - d_{2}c_{1} + l_{3}s_{1}s_{23} = 1.4142$$

$$d_{z} = l_{1} + l_{2}s_{2} - l_{3}c_{23} = 1$$

 $d_r = d_2 s_1 + l_2 c_1 c_2 + l_3 c_1 s_{23} = 0.1$

3.
$$(-3.2828, -3\pi/4, -\pi/2)$$

$$\Box \Rightarrow \theta_1 = -1.712, \ \theta_2 = -3\pi/4, \ \theta_3 = 0 \ \Box \Rightarrow \ d_y = l_2 s_1 c_2 - d_2 c_1 + l_3 s_1 s_{23} = 1.4142$$
$$d_z = l_1 + l_2 s_2 - l_3 c_{23} = 1$$

Anthropomorphic Arm + Spherical Wrist

✓ Orientation and position of the end-effector is supposed to be represented by a homogeneous rotation transformation matrix ${}^{0}T_{6}$

$${}^{0}T_{6} = \begin{bmatrix} n_{x} & o_{x} & a_{x} & d_{x} \\ n_{y} & o_{y} & a_{y} & d_{y} \\ n_{z} & o_{z} & a_{z} & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

No.	a_i	α_i	d_i	θ_i
0	0	90°	l_1	$\theta_1(90^\circ)$
1	l_2	0	d_2	$ heta_2$
2	0	90°	0	$\theta_3(90^{\circ})$
3	0	-90°	l_3	$ heta_4$
4	0	90°	0	θ_5
5	0	0	0	θ_6

Anthropomorphic Arm + Spherical Wrist

$${}^{0}T_{6} = \begin{bmatrix} n_{x} & o_{x} & a_{x} & d_{x} \\ n_{y} & o_{y} & a_{y} & d_{y} \\ n_{z} & o_{z} & a_{z} & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{3}T_{4} = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & l_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{4}T_{5} = \begin{bmatrix} c_{5} & 0 & s_{5} & 0 \\ s_{5} & 0 & -c_{5} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{5}T_{6} = \begin{bmatrix} c_{6} & -s_{6} & 0 & 0 \\ s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{3}T_{6} = {}^{3}T_{4} {}^{4}T_{5} {}^{5}T_{6} = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -s_{4}c_{6} - c_{4}c_{5}s_{6} & c_{4}s_{5} \\ c_{4}s_{6} + s_{4}c_{5}c_{6} & c_{4}c_{6} - s_{4}c_{5}s_{6} & s_{4}s_{5} \\ -s_{5}c_{6} & s_{5}s_{6} & c_{5} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} {}^{3}R_{6}$$

Alternatively,
$${}^{3}R_{6} = {}^{0}R_{3}^{T \ 0}R_{6} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

By comparing both ${}^{3}R_{6}$, wrist joint angles can be obtained.

$${}^{3}R_{6} = {}^{0}R_{3}^{T \ 0}R_{6} = \begin{bmatrix} c_{1}c_{23} & s_{1}c_{23} & s_{23} \\ s_{1} & -c_{1} & 0 \\ c_{1}s_{23} & s_{1}s_{23} & -c_{23} \end{bmatrix} \begin{bmatrix} n_{x} & o_{x} & a_{x} \\ n_{y} & o_{y} & a_{y} \\ n_{z} & o_{z} & a_{z} \end{bmatrix}$$

$$= \begin{bmatrix} n_{x}c_{1}c_{23} + n_{y}s_{1}c_{23} + n_{z}s_{23} & o_{x}c_{1}c_{23} + o_{y}s_{1}c_{23} + o_{z}s_{23} & a_{x}c_{1}c_{23} + a_{y}s_{1}c_{23} + a_{z}s_{23} \\ n_{x}s_{1} - n_{y}c_{1} & o_{x}s_{1} - o_{y}c_{1} & a_{x}s_{1} - a_{y}c_{y} \\ n_{x}c_{1}s_{23} + n_{y}s_{1}s_{23} - n_{z}c_{23} & o_{x}c_{1}s_{23} + o_{y}s_{1}s_{23} - o_{z}c_{23} & a_{x}c_{1}s_{23} + a_{y}s_{1}s_{23} - a_{z}c_{23} \end{bmatrix}$$

$$= \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$${}^{3}R_{6} = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -s_{4}c_{6} - c_{4}c_{5}s_{6} & c_{4}s_{5} \\ s_{4}c_{5}c_{6} + c_{4}s_{6} & c_{4}c_{6} - s_{4}c_{5}s_{6} & c_{5}s_{6} \end{bmatrix}$$

If
$$\theta_5 \neq k\pi$$

$$\theta_5 = \operatorname{atan2}(\pm \sqrt{1 - r_{33}^2}, r_{33})$$

$$\theta_4 = \operatorname{atan2}(\frac{r_{23}}{s_5}, \frac{r_{13}}{s_5})$$

$$\theta_6 = \operatorname{atan2}(\frac{r_{32}}{s_5}, -\frac{r_{31}}{s_5})$$

If θ_5 = 0, the wrist is in a SINGULAR position, θ_4 and θ_6 have infinite number of combinations and they should be specially treated, e.g. manually assigning zero to θ_4 or θ_6 ,

Location of the Tool

In real applications, the position of the wrist point is usually not explicitly obtained. Instead, we can easily know the position of the tool mounted on the end link of a manipulator (${}^{0}\mathbf{d}_{n}$). In this case, ${}^{0}\mathbf{d}_{6}$ should be calculated first.

- 1. Model the tool as a vector in coordinate frame 6, or
- 2. Set the 7th coordinate frame attached to the tool mounted on the end link

$${}^{6}\mathbf{d}_{n} = \begin{bmatrix} 0 \\ 0 \\ d_{7} \end{bmatrix} \quad \text{or} \quad {}^{6}T_{7} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{7} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{6}R_{6} = {}^{0}R_{n}$$

Summary: 6-DoF Manipulator

$$\theta_{1} = \operatorname{atan2}(d_{2}, \pm \sqrt{d_{x}^{2} + d_{y}^{2} - d_{2}^{2}}) + \operatorname{atan2}(d_{y}, d_{x})$$

$$\theta_{2} = \operatorname{atan2}(s, \pm \sqrt{m^{2} + n^{2} - s^{2}}) + \operatorname{atan2}(m, n)$$

$$\theta_{3} = \operatorname{atan2}(d_{x}c_{1} + d_{y}s_{1} - l_{2}c_{2}, l_{1} + l_{2}s_{2} - d_{z}) - \theta_{2}$$

$$\theta_{5} = \operatorname{atan2}(\pm \sqrt{1 - r_{33}^{2}}, r_{33}) \qquad (\theta_{5} \neq k\pi)$$

$$\theta_{4} = \operatorname{atan2}(\frac{r_{23}}{s_{5}}, \frac{r_{13}}{s_{5}})$$

$$\theta_{6} = \operatorname{atan2}(\frac{r_{32}}{s_{5}}, -\frac{r_{31}}{s_{5}})$$

$${}^{0}R_{n}, {}^{0}\mathbf{d}_{n}$$

$${}^{0}R_{6} = {}^{0}R_{n}$$
 ${}^{0}\mathbf{d}_{6} = {}^{0}\mathbf{d}_{n} - {}^{0}R_{6} {}^{6}\mathbf{d}_{n}$

$${}^{0}T_{6} = \begin{bmatrix} R_{6} & \mathbf{d}_{6} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} n_{x} & o_{x} & a_{x} & d_{x} \\ n_{y} & o_{y} & a_{y} & d_{y} \\ n_{z} & o_{z} & a_{z} & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}R_{6} = {}^{0}R_{n} \qquad {}^{0}\mathbf{d}_{6} = {}^{0}\mathbf{d}_{n} - {}^{0}R_{6} {}^{6}\mathbf{d}_{n}$$

$${}^{0}R_{6} = {}^{0}R_{n} \qquad {}^{0}\mathbf{d}_{6} = {}^{0}\mathbf{d}_{n} - {}^{0}R_{6} {}^{6}\mathbf{d}_{n}$$

$${}^{0}R_{6} = {}^{0}R_{n} \qquad {}^{0}\mathbf{d}_{6} = {}^{0}\mathbf{d}_{n} - {}^{0}R_{6} {}^{6}\mathbf{d}_{n}$$

$${}^{0}R_{6} = {}^{0}\mathbf{d}_{n} - {}^{0}R_{6} {}^{0}\mathbf{d}_{n}$$

$${}^{0}R_{6} = {}^{0}\mathbf{d}_{n} - {}^{0}R_{6} {}^{6}\mathbf{d}_{n}$$

Ex 4-1-2

For the 6-DOF manipulator, find solution to its forward kinematics problem given $L_1 = L_2 =$ L_3 = 1, d_2 = 0.1, $(q_1, q_2, q_3, q_4, q_5, q_6)$ = $(0, \pi/4, -\pi/2, 0, \pi/4, \pi/2)$, and d_7 = 0.15. Prove that $(0, \pi/4, -\pi/2, -\pi, -\pi/4, \pi/2)$ is a solution to the inverse kinematics problem.

$$\begin{array}{l}
{}^{0}T_{7} = {}^{0}T_{3} {}^{3}T_{6} {}^{6}T_{7} = {}^{0}T_{6} {}^{6}T_{7} \\
= \begin{bmatrix} 1 & 0 & 0 & 0.1 \\ 0 & 0 & 1 & 1.4142 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0.15 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0.1 \\ 0 & 0 & 1 & 1.5642 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\theta_{5} = \operatorname{atan2}(\pm \sqrt{1 - r_{33}^{2}}, r_{33}) = \operatorname{atan2}(\pm \sqrt{1 - 0.7071^{2}}, 0.7071) = \begin{cases} 45^{\circ} \\ -45^{\circ} \end{cases}$$

$${}^{0}T_{3} = {}^{0}T_{1} {}^{1}T_{2} {}^{2}T_{3}$$

$$= \begin{bmatrix} c_{1}c_{23} & s_{1} & c_{1}s_{23} & l_{2}c_{1}c_{2} + d_{2}s_{1} \\ s_{1}s_{23} & -c_{1} & s_{1}s_{23} & l_{2}c_{1}s_{2} - d_{2}c_{1} \\ s_{23} & 0 & -c_{23} & l_{1} + l_{2}s_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0.1 \\ 0.7071 & 0 & 0.7071 & 0.7071 \\ 0.7071 & 0 & -0.7071 & 1.7071 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\theta_5 = \operatorname{atan2}(\pm\sqrt{1-r_{33}^2}, r_{33}) = \operatorname{atan2}(\pm\sqrt{1-0.7071^2}, 0.7071) = \begin{cases} 45^{\circ} \\ -45 \end{cases}$$

$$\theta_4 = \operatorname{atan2}(\frac{r_{23}}{\sin_5}, \frac{r_{13}}{s_5}) = \operatorname{atan2}(\frac{0}{0.7071}, \pm \frac{0.7071}{0.7707}) = \begin{cases} 0^{\circ} \\ -180^{\circ} \end{cases}$$

$$\theta_6 = \operatorname{atan2}(\frac{r_{32}}{s_5}, -\frac{r_{31}}{s_5}) = \operatorname{atan2}(\pm \frac{0.7071}{0.7071}, \mp \frac{0}{0.7071}) = \begin{cases} 90^{\circ} \\ 90^{\circ} \end{cases}$$

point

Notes on Spherical Wrist

 X_3 Spherical wrist has 3 different d_7 Link to mechanism types, each of them has Type 1: RPR forearm different coordinate frames and different Z_6 Z_5 Z_3 X_2 Wrist point configurations of DH notations. y_1 y_2 Link to Wrist point forearm Type 2: RPY $\overline{z_2}$ x_6 x_5 x_2 Wrist point Link to y_0 forearm Base d_{7} Type 3: PYR Wrist