Compressed Sensing – Sheet 12

Ferdinand Vanmaele

October 31, 2022

Exercise 1 (Programming project part 1).

- The generation of sensors is done in sheet12_ex1/sensors.py. To make the matrices work
 with the assumptions of CoSaMP, OMP, SP and MP as defined in the lecture, the columns are
 normalized.
 - m rows are drawn uniformly at random (without repetition) by generating a random permutation $S(m) \to S(m)$.
- Random s-sparse vectors $x \in \mathbb{R}^n$ with $1 \le s \le m$ are constructed in sheet12_ex1/main.py. The generate_problems() function takes the problem dimension n and bounds for s, as well as the number repetitions for each sparsity value.
- Algorithms are run in sheet12_ex1/main.py. Every algorithm is implemented in its own function¹ and can be enabled or disabled selectively.

Remark. The following modifications were made:

- A tolerance of 10^{-8} was chosen to reduce oscillations for different sparsity levels.
- Iterative hard thresholding was implemented with a variable step size [TBDR12],

$$g := A^* r^{(k)}, \quad T := \begin{cases} \sup(\mathcal{T}(g, s)) & \text{if } k > 0 \\ \sup(\mathcal{T}(x^{(0)}, s)) & \text{if } k = 0 \end{cases}, \quad \mu := \frac{\|g_T\|_2^2}{\|A_T g_T\|_2^2}$$

instead of $\mu = 1$. In the experiments performed, this was done to avoid divergence with $\mu = 1$.

• Let $RE(\hat{x}) := ||x - \hat{x}||_2 / ||x||_2$. We consider successful recovery of a vector of sparsity $1 \le s \le m$ as the maximum s, such that

$$s_{\text{max}} := \max_{s} \left\{ \forall s' \le s : \frac{1}{100} \sum_{i \in [100]} \text{RE}(\hat{x}_{s',i}) < 10^{-6} \right\}$$

holds. Summary of the trials, with n = 128, $m = 2^7$:

 $^{^{1}}$ This is a bit repetitive, especially for closely related algorithms such as CoSaMP and SP. However, every different algorithm to be tested is self-contained in this way. Outside of this exercise, I would likely summarize some functions and add additional parameters.

Matrix		Algorithm	$s_{ m max}$	$\approx \sum RE$
Random (A)	1	ℓ_1 -min. (BP)	s = 17	10^{-9}
	2	OMP	s = 13	10^{-15}
	3	MP	s=5	10^{-9}
	4	IHT	s = 10	10^{-9}
	5	CoSaMP	s = 14	10^{-15}
	6	BT	s = 0	_
	7	HTP	s = 10	10^{-15}
	8	SP	s = 15	10^{-15}
Fourier (F)	1	ℓ_1 -min. (BP)	s = 40	10^{-10}
	2	OMP	s = 34	10^{-15}
	3	MP	s = 10	10^{-7}
	4	IHT	s = 26	10^{-9}
	5	CoSaMP	s = 25	10^{-15}
	6	BT	s = 0	_
	7	HTP	s = 26	10^{-15}
	8	SP	s = 31	10^{-15}

• Conclusions:

- Methods using orthogonal projection recover the solution at a high accuracy (close to machine precision) for $1 \le s$ sufficiently small. IHT is still competitive in terms of s_{\max} , with a higher recovery level.
- The recovery error increased steeply from s_{max} to higher levels $s > s_{\text{max}}$. Some trials also had oscillatory behavior.
- The Fourier matrix was recovered for higher sparsity levels for all algorithms except Basic Thresholding. The coherence of this matrix is much lower than the Gaussian one (≈ 0.08 vs. ≈ 1.00) so this is unsurprising.
- ℓ_1 -minimization had constant performance for all trials. Methods using orthogonal projection had their CPU time increase exponentially. (See Figure 3 and 4)

Figure 1: Relative recovery error (y-axis) over 100 trials per sparsity $1 \le s \le m$ (x-axis) for **Gaussian matrix** $A \in \mathbb{R}^{64 \times 128}$ with normalized columns.

Figure 2: Relative recovery error (y-axis) averaged over 100 trials, by sparsity level $1 \le s \le m$ (x-axis) for **partial Fourier matrix** $F \in \mathbb{R}^{64 \times 128}$ with normalized columns.

Figure 3: Combined CPU time in seconds per iteration (y-axis) averaged over 100 trials, by sparsity level $1 \le s \le m$ for **Gaussian matrix** $A \in \mathbb{R}^{64 \times 128}$ with normalized columns.

Figure 4: Combined CPU time in seconds per iteration (y-axis) averaged over 100 trials, by sparsity level $1 \le s \le m$ for **partial Fourier matrix** $F \in \mathbb{R}^{64 \times 128}$ with normalized columns.

Exercise 2. The robust face recognition problem is given by

$$\min_{w \in \mathbb{R}^{m+n}} \frac{1}{2} \|Bw - b\|_2^2 + \lambda \|w\|_1$$

where

- $\lambda \in \mathbb{R}_{>0}$ is a regularization parameter,
- $B = [A \ I] \in \mathbb{R}^{m \times (m+n)}$ with $A \in \mathbb{R}^{m \times n}$, $I \in \mathbb{R}^{m \times m}$ a highly correlated dictionary of m face images $v \in \mathbb{R}^n$, stacked column-wise;
- I the identity matrix $\in \mathbb{R}^{n \times n}$, b = Ax + e a face image to be recognized not in the dictionary A, with $e \in \mathbb{R}^n$ an unknown error;
- \bullet w the minimization variable.

The term $F(w) := \frac{1}{2} ||Bw - b||_2^2$ is differentiable,

$$\nabla F(w) = B^T (Bw - b) \tag{1}$$

with Lipschitz constant $L := ||B^T B||_F$,

$$||B^{T}(Bw - b) - B^{T}(Bz - b)||_{2} = ||B^{T}Bw - B^{T}b - B^{T}Bz + B^{T}b||_{2}$$
$$= ||B^{T}Bw - B^{T}Bz||_{2}$$
$$\leq ||B^{T}B||_{F}||w - z||_{2}.$$

The norm $||w||_1$ is proper, convex and lsc and has as proximal operator **soft shrinkage**, given component-wise by

$$\left[\operatorname{Prox}_{\gamma \| \cdot \|}(w) \right]_i = \begin{cases} w_i + \gamma & \text{if } w_i < \gamma, \\ 0 & \text{if } -\gamma \le w_i \le \gamma, \\ w_i - \gamma & \text{if } w_i > \gamma. \end{cases}$$

Multiplying by $\lambda > 0$ we have:

$$[\operatorname{Prox}_{\gamma R}(w)]_{i} = \lambda^{-1} \left[\operatorname{Prox}_{\lambda^{2} \gamma \| \cdot \|} (\lambda w) \right]_{i}$$

$$= \begin{cases} w_{i} + \lambda \gamma & \text{if } w_{i} < \lambda \gamma, \\ 0 & \text{if } -\lambda \gamma \leq w_{i} \leq \lambda \gamma, \\ w_{i} - \lambda \gamma & \text{if } w_{i} > \lambda \gamma. \end{cases}$$

The non-zero entries of x_* in the solution $w_* = [x_*^T, e_*^T]^T$ of problem (1) represent the person the image belongs to.

Remark. When we consider images without noise, we have the optimization problem

$$\min_{x \in \mathbb{R}^m} \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1$$

with gradient $\nabla F(w) = A^T(Ax - b)$ and proximal operator as above. The non-zero entries of the solution x_* represent the person the image belongs to.