Numération binaire

.....

Capacités attendues

 \checkmark Écriture d'un entier positif dans une base b ≥ 2 : passer de la représentation d'une base dans une autre.

(Les bases 2, 10 et 16 sont privilégiées.)

.....

La numération usuelle est une numération par position : à chaque chiffre correspond un « poids », d'autant plus élevé qu'il est situé à gauche. Par exemple pour le nombre 496 :

- le chiffre 4 est le chiffre des , de poids ;
- le chiffe 9 est le chiffre des, de poids;
- le chiffre 6 est le chiffre des, de poids

En résumé, on peut écrire que : $496 = 4 \times 10^2 + \dots$

Il utilise les 10 chiffres que nous connaissons bien.

1 Conversion binaire \rightarrow décimal

Le système binaire est fondé lui sur les puissances de ..., et il utilise ... chiffres, à savoir

Par exemple:

$$1\,1111\,0000_{\,2} = \mathbf{1}\times2^{8} + \mathbf{1}\times2^{7} + \mathbf{1}\times2^{6} + \mathbf{1}\times2^{5} + \mathbf{1}\times2^{4} + \mathbf{0}\times2^{3} + \mathbf{0}\times2^{2} + \mathbf{0}\times2^{1} + \mathbf{0}\times2^{0}$$

Pour convertir ce nombre dans le système décimal, il est utile de connaître les puissances de 2.

Ainsi: $111110000_2 = 2^8 + 2^7 + 2^6 + 2^5 + 2^4 = \dots$

binaire \rightarrow décimal

- Écrire sous chaque chiffre du nombre binaire la puissance de 2 correspondante en commençant par la à partir de ;
- Multiplier chaque puissance de 2 par 0 ou 1 selon le chiffre sous lequel elle est ;
- Additionner les précédents résultats pour trouver le total en base 10.

Exemple: convertissons 1001 en décimal

qui se traduit par : $1 \times 2^3 + 1 \times 2^0 = 8 + 1 = 9$

Exercice 1

Déterminer les valeurs décimales des nombres ci-dessous.

 $10_2 =$ $1_2 =$ $11_2 =$ $100_2 =$ $1001_2 =$ $1011_2 =$ $1101_2 =$ $1110_2 =$ $1000\,0000_{\,2} =$ $1010\,0000_{\,2} =$ $10001101_2 =$ $1010\,1001_{\,2} =$ $1111_2 =$ $1\,1111_{\,2} =$ $11\,1111_{\,2} =$ $111111111_2 =$

2 Opérations en binaires

Exercice 2

Effectuer les opérations ci-dessous et vérifier les résultats obtenus.

Exercice 3

Effectuer les opérations ci-dessous et vérifier les résultats obtenus.

3 Conversion décimal \rightarrow binaire

3.1 Méthode 1

Exercice 4

Convertir les nombres ci-dessous dans le système binaire.

4 =		5 =	
6 =		9 =	
16 =		32 =	
64 =		128 =	
33 =		65 =	
66 =		131 =	
150 =	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	180 =	
220 =		240 =	

3.2 Méthode 2

L'écriture binaire d'un nombre s'obtient en effectuant des divisions successives par 2. Explication sur un exemple :

L'écriture binaire de 496 s'obtient alors en

Exercice 5

Déterminer avec cette méthode l'écriture binaire de 903.

$d\acute{e}cimal \rightarrow binaire$

• Méthode 1:

- on prend la plus grande puissance de 2 inférieure ou égale au nombre à convertir ;
- on enlève sa valeur à la valeur initiale et on recommence le processus jusqu'à atteindre zéro ;
- on écrit la valeur en binaire en mettant des 1 pour toutes les puissances identifiées, et des 0 pour le reste.

Exemple: convertissons 5 en binaire

ou 1 selon le reste;

La plus grand puissance de 2 inférieure ou égale à 5 est $2^2=4$. On fait 5-4, il reste 1. La plus grand puissance de 2 inférieure ou égale à 1 est $2^0=1$. On fait 1-1, il reste 0 et on peut donc arrêter. On écrit ainsi : 1 pour 2^2 , 0 pour 2^1 (à ne pas oublier !) et 1 pour 2^0 . Ainsi 10 en binaire.

Méthode 2 :

- on **divise successivement par 2** la valeur décimale et on prend la partie entière du résultat à laquelle on ajoute 0
 - On lit les reste à l'envers, depuis le bas, pour écrire le nombre en binaire.

Confusion binaire/décimal

Il peut arriver de confondre les bases dans lesquelles on se trouve lorsqu'on en manipule plusieurs à la fois comme dans ce chapitre

Pour pallier ce souci, on peut préciser dans quelle base on se trouve en l'indiquant en exposant inférieur.

Exemple:

Pour ne pas confondre 1000 en base 2 et en base 10, on peut préciser : 1000_2 et 1000_{10} . En l'occurrence : $1000_{10}=1111101000_2$ et $1000_2=8_{10}$