Teoria das Filas

_

Laboratório 07

-

Modelo 04 – M/M/c/Kf – Capacidade Finita

#

Utilizando o sistema de comunicação esquematizado a seguir, temos 3 (três) servidores e três computadores (C_1 , C_2 , C_3) interligados através de serviços de dados (modens, fibra ótica etc.). Vamos utilizar o Modelo de Fila 04 e o Kf = 6 para simular o comportamento do sistema com os dados fornecidos:

Dados do sistema:

- a = 110 msg/h (razão de chegada das msg no sistema)
- $ts_{m\'edio}$ (gerar 20 amostras de tempos dos servidores a distr. exponencial) \Rightarrow [$ts_1 = -\theta.ln(r_1)$, $ts_2 = -\theta.ln(r_2)$, $ts_3 = -\theta.ln(r_3)$,, $ts_{20} = -\theta.ln(r_{20})$]
- $\theta = 8$ segundos
- Parâmetro de $C_1 \rightarrow ts = 2.0 s$
- Parâmetro de $C_2 \rightarrow ts = 4.0 s$
- Parâmetro de $C_3 \rightarrow ts = 12,15 s$

Obs: Considerar os três servidores idênticos

Projeto do Simulador - Modelo M/M/c/kf/∞/FIFO - Capacidade Finita CPU 1 (Servidor 01) Dados de Entrada PoC1 ts= Po= 0,759462 2,00 CPU 2 M C1 Roteador M (Servidor 02) 110 msg/h a = 0,0306 msq/s CPU 3 Outra Formula (Servidor 03) Po= 110 msglh a = PoC2 0,0306 msats ts= 4.00 M C2 110 Distribuição Tipo de msg/h Exponencial Geração: 0.0306 msqls 0 = 114 = de Amostras 20 s Servidores PoC3 110 msq/h a = 6,95 0,0306 msgłs Ts = C3 5,512 ts= 12,150 sd =

	Dados de S M/M/C - F						
C1	μ =	0,5000	msg/s		Lsc1=	0,0611	msg
Kf =	ts=	2,00	s		Lwc1=	0,0000	msg
6	r=	0,0611	ρ=	0,0204	aefc1=	0,0306	msg/s
1 2 3 4	P0=	0,9408	P(0)	0,940752	Trc1=	2,0001	s
	P(I)(n=0)	1,0000	P(1)	0,057490	Twc1=	0,0000	s
	P(I)(n=1)	0,0611	P(2)	0,001757	Uc1 =	0,0204	\$
	P(I)(n=2)	0,0019	P(3)	0,000036	nc1 =	3	nc1 =
			P(4)	0,000001	Pnc1 = 1	0,000036	Pnc1=
	P(II) - (n=4	0,0204	P(5)	0,000000			
	P(II) - (n=5	0,0004	P(6)	0,000000			
е	P(II) - (n=6	0,0000					

- #
- Com os resultados da simulação determinar qual é o computador mais rápido e comparar com os servidores?
- Compare a simulação do Modelo 02 com a simulação do Modelo 04.
- Elaborar os gráficos das variações de Tr e Lw com relação a razão de chegada "a"?
- Quais conclusões podemos chegar com os gráficos e os cálculos de Tr, , Tw, Lw,

Ls, Po, $P_{(n=2)}$?

Sugestão para a criação da tabela que vai gerar os gráficos

$$\rho = \frac{a}{c.\mu}; \qquad r = \frac{a}{\mu}; \qquad \text{ts} = \frac{1}{\mu}$$

$$aef = a.(1-P_{kf})$$

$$U = \frac{\text{aef}}{\text{c.}\mu} = \rho.(1 - P_{kf})$$

Duas formas de calcular o P_0 :

$$P_{0} = \left\{ \sum_{n=0}^{c-1} \left(\frac{1}{n!} \right) \cdot \left(\frac{a}{\mu} \right)^{n} + \frac{1}{c!} \cdot \left(\frac{a}{\mu} \right)^{c} \cdot \left[\sum_{n=c+1}^{Kf} \left(\frac{a}{c \cdot \mu} \right)^{n-c} \right] \right\}^{-1}$$

Ou

$$P_0 = \left\{ \sum_{n=1}^{c-1} \left(\frac{1}{n!} \right) \cdot \left(\frac{a}{\mu} \right)^n + \frac{(1 - \rho^{Kf - (c-1)}) \cdot (c \cdot \rho)^c}{c! \cdot (1 - \rho)} + 1 \right\}^{-1}$$

$$P_n = \begin{cases} \left(\frac{1}{n!}\right) \cdot \left(\frac{a}{\mu}\right)^n \cdot P_0 & \text{para } n = 0, 1, \dots, c - 1 \\ \frac{1}{c! \cdot c^{n-c}} \cdot \left(\frac{a}{\mu}\right)^n \cdot P_0 & \text{para } n = c, c + 1, \dots kf \\ 0 & \text{para } n > kf \end{cases}$$

$$Ls = \sum_{n=1}^{Kf} n * P_n$$

$$Lw = \sum_{n=c+1}^{Kf} (n-c) * P_n$$

$$Tw = \frac{Lw}{aef}$$

$$Tr = \frac{Ls}{aef}$$

Tp = a.Pkf -> Taxa de perda por unidade de tempo

