CALCULUS 2: Exercises MI1121E

Chapter 2: Multiple integrals

References: The list of suggested exercises in MI1121.

1.1 Double integrals

1. Change the order of integration

(a)
$$\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{1-x^2} f(x,y)dy$$
 (d) $\int_{0}^{\pi/2} dy \int_{\sin y}^{1+y^2} f(x,y)dx$ (e) $\int_{0}^{2} dy \int_{\sqrt{2x-x^2}}^{y} f(x,y)dx + \int_{\sqrt{2}}^{2} dy \int_{0}^{\sqrt{4-y^2}} f(x,y)dx$ (c) $\int_{0}^{2} dx \int_{\sqrt{2x-x^2}}^{\sqrt{2x}} f(x,y)dy$

2. Evaluate the integral.

(a)
$$\iint_D \frac{y}{1+xy} dxdy$$
, $D = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 1; 0 \le y \le 2\}$.

(b)
$$\iint_D x^2(y-x)dxdy$$
, D is bounded by $y=x^2$ and $x=y^2$.

(c)
$$\iint_D 2xydxdy$$
, D is enclosed by $x = y^2$, $x = -1$, $y = 0$ and $y = 1$.

(d)
$$\iint\limits_D (x+y)dxdy$$
, D is defined by $x^2+y^2\leq 1$ and $\sqrt{x}+\sqrt{y}\leq 1$.

(e)
$$\iint_D |x+y| dxdy$$
, $D = \{(x,y) \in \mathbb{R}^2 \mid |x| \le 1, |y| \le 1\}$.

(f)
$$\iint_{|x|+|y|\leq 1} (|x|+|y|) dxdy$$
. (g) $\int_{0}^{1} dx \int_{0}^{1-x^2} \frac{xe^{3y}}{1-y} dy$.

3. Find the limits of integration in polar coordinates of $\iint_D f(x,y) dx dy$, where D is described by

(a)
$$a^2 \le x^2 + y^2 \le b^2$$

 (b) $x^2 + y^2 \ge 4x$, $x^2 + y^2 \le 8x$, $y \ge x$, $y \le \sqrt{3}x$
 (c) $\frac{x^2}{a^2} + \frac{y^2}{b^2}$, $y \ge 0$ (a, b > 0)
 (d) $x^2 + y^2 \le 2x$, $x^2 + y^2 \le 2y$

4. Evaluate the given integral by changing to polar coordinates.

(a)
$$\int_{0}^{R} dx \int_{0}^{\sqrt{R^2 - x^2}} \ln(1 + x^2 + y^2) dy$$
 $(R > 0)$.

(b)
$$\iint_D xy dx dy$$
, where $D: (x-2)^2 + y^2 \le 1, y \ge 0$.

(c)
$$\iint_D (\sin y + 3x) dx dy$$
, where $D: (x - 2)^2 + y^2 \le 1$.

(d)
$$\iint\limits_{D} |x+y| dxdy$$
, where $D: x^2 + y^2 \le 1$.

5. Converting the following integral to an integral in variables u and v

(a)
$$I = \int_{0}^{1} dx \int_{-x}^{x} f(x,y)dy$$
, where $u = x + y$ and $v = x - y$.

- (b) Using the above change of variables to compute *I* where $f(x,y) = (2-x-y)^2$.
- **6**. Evaluate the double integral.

(a)
$$\iint_D \frac{2xy+1}{\sqrt{1+x^2+y^2}} dxdy$$
, where $D: x^2+y^2 \le 1$

(b)
$$\iint_D \frac{dxdy}{(x^2+y^2)^2}$$
, where $D: y \le x^2 + y^2 \le 2y; x \le y \le \sqrt{3}x$

(c)
$$\iint_D \frac{xy}{x^2 + y^2} dx dy$$
, where $D: 2x \le x^2 + y^2 \le 12$; $x^2 + y^2 \ge 2\sqrt{3}y$; $x \ge 0$; $y \ge 0$

(d)
$$\iint_D |9x^2 - 4y^2| dx dy$$
, where $D: \frac{x^2}{4} + \frac{y^2}{9} \le 1$

(e)
$$\iint_D (3x + 2xy) dxdy$$
, where $D: 1 \le xy \le 9; y \le x \le 4y$

1.2 Triple integrals

Evaluate the following triple integrals.

7.
$$\iiint\limits_V z dx dy dz, \text{ where } V \colon \begin{cases} 0 \le x \le 1 \\ x \le y \le 2x \\ 0 \le z \le \sqrt{5 - x^2 - y^2} \end{cases}$$

8.
$$\iiint\limits_{V} (3xy^2 - 4xyz) dx dy dz, \text{ where } V \colon \begin{cases} 1 \le y \le 2 \\ 0 \le xy \le 2 \\ 0 \le z \le 2 \end{cases}$$

9.
$$\iiint\limits_V xye^{yz^2}dxdydz, \text{ where } V \colon \begin{cases} 0 \le x \le 1\\ 0 \le y \le 1\\ x^2 \le z \le 1 \end{cases}$$

10.
$$\iiint_V (x^2 + y^2) dx dy dz, \text{ where } V \colon \begin{cases} x^2 + y^2 + z^2 \le 1 \\ x^2 + y^2 - z^2 \le 0 \end{cases}$$

11.
$$\iiint\limits_V z\sqrt{x^2+y^2}dxdydz$$
, where

- (a) *V* is bounded by the cylinder $x^2 + y^2 = 2x$ and the planes z = 0, z = a ($y \ge 0$, a > 0);
- (b) *V* is a half of the sphere $x^2 + y^2 + z^2 \le a^2$, $z \ge 0$ (a > 0);
- (c) *V* is a half of the ellipsoid $\frac{x^2 + y^2}{a^2} + \frac{z^2}{b^2} \le 1, z \ge 0 \ (a, b > 0).$
- **12.** $\iiint\limits_V y dx dy dz$, where *V* is bounded by $y = \sqrt{x^2 + z^2}$ and y = h $(h \ge 0)$.

13.
$$\iiint\limits_V \frac{x^2}{a^2} dx dy dz, \text{ where } V \colon \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 \ (a, b, c > 0).$$

14.
$$\iiint\limits_{V} (x^2 + y^2 + z^2) dx dy dz, \text{ where } V \colon \begin{cases} 1 \le x^2 + y^2 + z^2 \le 4 \\ x^2 + y^2 \le z^2. \end{cases}$$

15.
$$\iiint\limits_V \sqrt{x^2 + y^2} dx dy dz$$
, where *V* is bounded by $x^2 + y^2 = z^2$ and $z = -1$.

16.
$$\iiint\limits_{V} \frac{dxdydz}{(x^2 + y^2 + (z - 2)^2)^2}, \text{ where } V \colon \begin{cases} x^2 + y^2 \le 1 \\ |z| \le 1. \end{cases}$$

17.
$$\iiint_V \sqrt{x^2 + y^2 + z^2} dx dy dz, \text{ where } V \colon x^2 + y^2 + z^2 \le z.$$

1.3 Applications of multiple integrals

- **18**. Find the area of the domain *D* bounded by $\begin{cases} y^2 = x, y^2 = 2x \\ x^2 = y, x^2 = 2y \end{cases}$.
- **19**. Find the area of the domain *D* bounded by $\begin{cases} y = 0, y^2 = 4ax \\ x + y = 3a, y \le 0 \end{cases}$ $(a \ge 0)$.
- **20**. Find the area of the domain *D* defined by $\begin{cases} 2x \le x^2 + y^2 \le 4x \\ 0 \le y \le x \end{cases}$
- **21**. Find the area of the domain *D* defined by $r \ge 1$, $r \le \frac{2}{\sqrt{3}} \cos \varphi$.
- **22**. Find the area of the domain D bounded by (a > 0)

a)
$$(x^2 + y^2)^2 = 2a^2xy$$

b)
$$r = a(1 + \cos \varphi)$$

23. Show that the area of the domain *D* defined by $x^2 + (ax - y)^2 \le 4$ is unchanged when *a* runs over the set of real numbers.

- **24**. Find the volume of the object defined by $\begin{cases} x+y \ge 1 \\ x+2y \le 2 \\ y \ge 0, 0 \le z \le 2 \le 2-x-y \end{cases}$.
- **25.** Find the volume of the object bounded by $\begin{cases} z = 4 x^2 y^2 \\ 2z = 2 + x^2 + y^2 \end{cases}$.
- **26**. Find the volume of the object defined by $|x y| + |x + 3y| + |x + y + z| \le 1$.
- **27**. Find the volume of the object bounded by the surface $z = 1 + x^2 + y^2$, the cylinder $x^2 + 4y^2 = 4$ and the plane Oxy.
- **28.** Find the volume of the object bounded by the surfaces $az = x^2 + y^2$, $z = \sqrt{x^2 + y^2}$ (a > 0).
- **29**. Find the area of the part of the sphere $x^2 + y^2 + z^2 = 4a^2$ that lies inside the cylinder $x^2 + y^2 2ay = 0$ (a > 0).