Resolva numericamente o problema abaixo.

Considere uma bolinha que é solta do repouso no ponto A em um recipiente semi-esférico que contém um

fluido e de raio r=1,5~m. A aceleração tangencial da bolinha é dada por $a_t=g.\cos\theta-kv$, onde k representa o efeito da viscosidade do fluido.

Faça um gráfico de θ e $\dot{\theta}$ em função do tempo no intervalo $0 \le t \le 5$ s.

Determine quando $\theta = \theta_{m\acute{a}x}$ e $\dot{\theta} = \dot{\theta}_{m\acute{a}x}$.

Quando ela passa pelo ângulo $\theta = 90^{\circ}$.

Faça um gráfico de $\dot{\theta} \times \theta$.

Para cada valor de k, inicie a solução com uma escolha de um Δt , calcule $\theta(t)$. Diminua Δt pela metade e verifique se ouve mudança significativa no valor de $\theta(t)$, se sim continue dividindo novamente Δt pela metade e refazendo o cálculo até não haver mudança significativa em $\theta(t)$.

