MA571 Midterm 1: Practice Problems

Carlos Salinas

October 1, 2015

PROBLEM MID-1.1

Let $A \subset X$ and $B \subset Y$. Show that the space $X \times Y$,

$$\overline{A \times B} = \overline{A} \times \overline{B}.$$

Proof. Before we proceed, we need to prove the following nontrivial facts:

Claim 1 (Munkres §17, Ex. 3). If A is closed in X and B is closed in Y, then $A \times B$ is closed in $X \times Y$.

Proof of claim. We will show that the complement of $A \times B$ is open in $X \times Y$. Let $(x,y) \in (X \times Y) \setminus (A \times B)$. Then $x \notin A$ and $y \notin B$. Since A and B are closed in X and Y, respectively, there exist neighborhoods U and V of x and y, respectively, such that $U \subset X \setminus A$ and $V \subset Y \setminus B$. Then $U \times V \subset (X \times Y) \setminus (A \times B)$ is a neighborhood of (x,y) so, by Lemma C, $(X \times Y) \setminus (A \times B)$ is open. Thus, $A \times B$ is closed.

Claim 2 (Munkres §17, Ex. 6(a)). If $A \subset B$, then $\overline{A} \subset \overline{B}$.

Proof of claim. By Theorem 17.5(a), $x \in \overline{A}$ if and only if for every neighborhood $U \ni x$, $U \cap A \neq \emptyset$. In particular, since $A \subset B$, $U \cap B \neq \emptyset$ for every neighborhood $U \ni x$ for every $x \in \overline{A}$. Thus, $x \in \overline{B}$ and we have the following containment $\overline{A} \subset \overline{B}$.

Since $A \subset \overline{A}$ and $B \subset \overline{B}$ then $A \times B \subset \overline{A} \times \overline{B}$. Then by Claim $2 \ \overline{A \times B} \subset \overline{A} \times \overline{B}$, but by Claim $1 \ \overline{A} \times \overline{B} = \overline{A} \times \overline{B}$ so $\overline{A \times B} \subset \overline{A} \times \overline{B}$. To see the reverse containment, take an element $(x,y) \in \overline{A} \times \overline{B}$ then for $x \in \overline{A}$ and $y \in \overline{B}$. Thus, by Theorem 17.5(a) for every neighborhood $U \ni x$ and $V \ni y$, we have $U \cap A \ne \emptyset$ and $V \cap B \ne \emptyset$. Thus, $U \times V \cap A \times B \ne \emptyset$ so by Theorem 17.5(b), since $U \times V$ is a basis element for the topology on $X \times Y$, $(x,y) \in \overline{A \times B}$. Thus, $\overline{A \times B} \supset \overline{A} \times \overline{B}$ and the equality $\overline{A \times B} = \overline{A} \times \overline{B}$ holds.

Problem Mid-1.2

Let X be a topological space and let A be a dense subset of X. Let Y be a Hausdorff space and let $g, h: X \to Y$ be continuous functions which agree on A. Prove that g = h.

Proof. Suppose, towards a contradiction, that $g \neq h$. Then $g(x) \neq h(x)$ for some $x \in X \setminus A$. Since Y is Hausdorff, there exists neighborhoods $U \ni g(x)$ and $V \ni h(x)$ with $U \cap V = \emptyset$. Since g and h are continuous, $g^{-1}(U)$ and $h^{-1}(V)$ are neighborhoods of x. In particular, $g^{-1}(U) \cap h^{-1}(U)$ is a nonempty neighborhood of x. Since $\overline{A} = X$, by Theorem 17.5(a), $(g^{-1}(U) \cap h^{-1}(V)) \cap A \neq \emptyset$. Let $x_0 \in (g^{-1}(U) \cap h^{-1}(V)) \cap A$. Then $g(x_0) = h(x_0) \in U \cap V$. This contradicts the fact that U and V were chosen to be disjoint.

PROBLEM MID-1.3

Let X and Y be topological spaces and let $f: X \to Y$ be a continuous function. Let G_f (called the graph of f) be the subspace $\{x \times f(x) \mid x \in X\}$ of $X \times Y$. Prove that if Y is Hausdorff then G_f is closed.

Proof. We will show that the complement of G_f in $X \times Y$ is open. Let $(x, y) \in (X \times Y) \setminus G_f$. Since Y is Hausdorff, choose neighborhoods U and V of y and f(x) respectively, such that $U \cap V = \emptyset$. Then $U \times V \ni (x, y)$ is contained in the complement of G_f so, by Lemma C, G_f is open.

PROBLEM MID-1.4

Let X be a topological space and let $f, g: X \to \mathbf{R}$ be continuous. Define $h: X \to \mathbf{R}$ by

$$h(x) = \min\{(f(x), g(x))\}.$$

Use the pasting lemma to prove that h is continuous. (You will not get full credit for any other method.)

Proof. Define the sets

$$A = \{ x \in X \mid f(x) \le g(x) \} \text{ and } B = \{ x \in X \mid f(x) \ge g(x) \}.$$

Note $X = A \cup B$ and f(x) = g(x) for every $x \in A \cap B$. Moreover, we have that

$$h(x) = \min\{f(x), g(x)\} = \begin{cases} f(x) & \text{if } x \in A \\ g(x) & \text{if } x \in B \end{cases}.$$

Thus, by the pasting lemma, h is continuous if we can show that A and B are closed in X. We will prove that the complement of A in X is open; the proof of B is similar. Let $x \in X \setminus A$. Then f(x) > g(x). Take the interval $I = (g(x), f(x)) \subset \mathbf{R}$ then since f and g are continuous $f^{-1}(I)$ and $g^{-1}(I)$ are neighborhoods of g. Then we claim that $f^{-1}(I) \cap g^{-1}(I)$ is a neighborhood of g with $g^{-1}(I) \cap g^{-1}(I) \subset X \setminus A$.

PROBLEM MID-1.5

Let X and Y be topological spaces and let $f: X \to Y$ be a function with the property that

$$f(\overline{A}) \subset \overline{f(A)}$$

for all subsets A of X. Prove that f is continuous.

Proof.

PROBLEM MID-1.6

Let X and Y be topological spaces and let $f: X \to Y$ be a continuous function. Prove that

$$f(\overline{A}) \subset \overline{f(A)}$$

for all subsets A of X.

Proof.

PROBLEM MID-1.7

Let X be any topological space and let Y be a Hausdorff space. Let $f, g: X \to Y$ be continuous functions. Prove that the set $\{x \in X \mid f(x) = g(x)\}$ is closed.

Proof.

PROBLEM MID-1.8

Let X be a topological space and A a subset of X. Suppose that

$$A \subset \overline{X \setminus \overline{A}}$$
.

Prove that \overline{A} does not contain any nonempty open set.

PROBLEM MID-1.9

Let X be a topological space with a countable basis. Prove that every open cover of X has a countable subcover.

Proof.

PROBLEM MID-1.10

Let X_{α} be an infinite family of topological spaces.

- (a) Define the product topology on $\prod X_{\alpha}$.
- (b) For each α , let A_{α} be a subspace of X_{α} . Prove that $\overline{\prod A_{\alpha}} = \prod \overline{A_{\alpha}}$.

Proof.

PROBLEM MID-1.11

Suppose that we are given an indexing set A, and for each $\alpha \in A$ a topological space X_{α} . Suppose also that for each $\alpha \in A$ we are given a point $b_{\alpha} \in X_{\alpha}$. Let $Y = \prod X_{\alpha}$ with the product topology. Let $\pi_{\alpha} \colon Y \to X_{\alpha}$ be the projection. Prove that the set

$$S = \{ y \in Y \mid \pi_{\alpha}(y) = b_{\alpha} \text{ except for finitely many } \alpha \}$$

is dense in Y (that is, its closure is Y).

Proof. ■

PROBLEM MID-1.12

Let X be the Cartesian product $\mathbf{R}^{\omega} = \prod_{i=1}^{\infty} \mathbf{R}$ with the box topology (recall that a basis for this topology consists of all sets of the form $\prod_{i=1}^{\infty} U_i$, where each U_i is open in \mathbf{R}). Let $f: \mathbf{R} \to X$ be the function which takes t to (t, t, t, ...). Prove that f is not continuous.

Proof.

PROBLEM MID-1.13

Prove that the countable product \mathbf{R}^{ω} (with the product topology) has the following property: there is a countable family \mathcal{F} of neighborhoods of the point $\mathbf{0} = (0, 0, 0, ...)$ such that for every neighborhood V of $\mathbf{0}$ there is a $U \in \mathcal{F}$ with $U \subset V$.

Note: the book proves that \mathbf{R}^{ω} is a metric space, but you may not use this in your proof. Use the definition of the product topology.

Proof.

PROBLEM MID-1.14

Let X be the two-point set $\{0,1\}$ with the discrete topology. Let Y be a countable product of copies of X, thus an element of Y is a sequence of 0's and 1's. For each $n \geq 1$, let $y_0 \in Y$ be the element (1,1,1,...,1,0,0,0,..), with n 1's at the beginning and all other entries 0. Let $y \in Y$ be the element with all 1s. Prove that the set $\{y_n\}_{n\geq 1} \cup \{y\}$ is closed. Give a clear explanation. Do not use a metric.

PROBLEM MID-1.15

Let X be the two-point set $\{0,1\}$ with the discrete topology. Let Y be a countable product of copies of X; thus an element of Y is a sequence of 0's and 1's. Let A be the subset of Y consisting of sequences with only a finite number of 1's. Is A closed? Prove or disprove.

Proof.

PROBLEM MID-1.16

Let Y be a topological space.Let X be a set and let $f: X \to Y$ be a function. Give X the topology in which the open sets are the sets $f^{-1}(V)$ with V open in Y (you do not have to verify that this is a topology). Let $a \in X$ and let B be a closed set in X not containing a. Prove that f(a) is not in the closure of f(B).

Proof.

PROBLEM MID-1.17

Let $f: X \to Y$ be a function that takes closed sets to closed sets. Let $y \in Y$ and let U be an open set containing $f^{-1}(y)$. Prove that there is an open set V containing y such that $f^{-1}(V)$ is contained in U.

Proof.

PROBLEM MID-1.18

Let X be a topological space with an equivalence relation \sim . Suppose that the quotient space X/\sim is Hausdorff. Prove that the set $S = \{x \times y \in X \times X \mid x \sim y \}$ is a closed subset of $X \times X$.

PROBLEM MID-1.19

Let $p: X \to Y$ be a quotient map. Let us say that a subset S of X is saturated if it has the form $p^{-1}(T)$ for some subset T of Y. Suppose that for every $y \in Y$ and every open neighborhood U of $p^{-1}(y)$ there is a saturated open set V with $p^{-1}(y) \subset V \subset U$. Prove that p takes closed sets to closed sets.

Proof.

PROBLEM MID-1.20

Let X be a topological space, let D be a connected subset of X, and let $\{E_{\alpha}\}$ be a collection of connected subsets of X.

Proof.

PROBLEM MID-1.21

Let X and Y be connected. Prove that $X \times Y$ is connected.

Proof.

PROBLEM MID-1.22

For any space X, let us say that two points are "inseparable" if there is no separation $X = U \cup V$ into disjoint open sets such that $x \in U$ and $y \in V$. Write $x \sim y$ if x and y are inseparable. Then \sim is an equivalence relation (you don't have to prove this). Now suppose that X is locally connected (this means that for every point x and every open neighborhood U of x, there is a connected open neighborhood V of x contained in U). Prove that each equivalence class of the relation \sim is connected.

PROBLEM MID-1.23

Let X be a topological space. Let $A\subset X$ be connected. Prove \overline{A} is connected.

Proof.

PROBLEM MID-1.24

Let $X_1, X_2, ...$ be topological spaces. Suppose $\prod_{n=1}^{\infty} X_n$ is locally connected. Prove that all but finitely many X_n are connected.

Proof.

PROBLEM MID-1.25

LEt X be a connected space and let $f: X \to Y$ be a function which is continuous and onto. Prove that Y is connected. (This is a theorem in Munkres—prove it from the definitions).

Proof.

PROBLEM MID-1.26

Given:

- (i) $p: X \to Y$ is a quotient map.
- (ii) Y is connected.
- (iii) For every $y \in Y$, the set $p^{-1}(y)$ is connected.

Prove that X is connected.

PROBLEM MID-1.27

Let A be a subset of \mathbb{R}^2 which is homeomorphic to the open unit interval (0,1). Prove that A does not contain a nonempty set which is open in \mathbb{R}^2 .

Proof.

PROBLEM MID-1.28

Let X be a connected space. Let \mathcal{U} be an open covering of X and let U be a nonempty set in \mathcal{U} . Say that a set V in \mathcal{U} is reachable from U if there is a sequence $U = U_1, U_2, ..., U_n = V$ of sets in \mathcal{U} such that $U_i \cap U_{i+1} \neq \emptyset$ for each i from 1 to n-1. Prove that every nonempty V in \mathcal{U} is reachable from U.

Proof.

PROBLEM MID-1.29

Suppose that X is connected and every point of X has a path-connected open neighborhood. Prove that X is path-connected.

Proof.

PROBLEM MID-1.30

Let X be a topological space and let $f, g: X \to [0, 1]$ be continuous functions. Suppose that X is connected and f is onto. Prove that there must be a point $x \in X$ with f(x) = g(x).