1. Matemáticos dizem que "a sentença P é mais forte que a sentença Q" se Q é verdadeira sempre que P for verdadeira, más não inversamente. (Em outras palavras, "P é mais forte que Q" significa que P \rightarrow Q é sempre verdade, mas Q \rightarrow P não é verdade, em geral.) Monte tabelas verdade para mostrar que:

a ∧ b é mais forte que a

а	b	a v b	a → a v b	a v b → a
V	>	V	V	٧
V	F	V	V	V
F	V	V	V	F
F	F	F	V	٧

2. Faça simplificação lógica da expressão usando apenas as leis da lógica:

$$(a \land (\neg(\neg a \lor b))) \lor (a \land b)$$

(a
$$\land (\neg(\neg a \lor b))) \lor (a \land b)$$
 De Morgan sobre $\neg(\neg a \lor b)$
(a $\land (a \land \neg b)) \lor (a \land b)$ associatividade sobre $(a \land (a \land \neg b))$
(a $\land a) \land \neg b) \lor (a \land b)$ idempotencia sobre $a \land a$
(a $\land \neg b) \lor (a \land b)$ distributividade sobre a expressão
a $\land (\neg b \lor b)$ $(\neg b \lor b) = t \acute{e}$ uma tautologia

3. Escreva uma sequência de prova para a asserção, jusificando cada etapa:

$$(a \rightarrow \neg b) \land (c \rightarrow (a \land b)) \rightarrow \neg c$$

1. a → ¬b	hipótese
2. $c \rightarrow (a \land b)$	hipótese
3. ¬a v¬b	1, condicional
4. ¬(a ∧ b)	3, De Morgan
5. ¬c	2, 4, modus tollens

4. Sendo $A = \{1,2,3,4,5\}$, determine o valor lógico (V ou F) de cada uma das proposições:

[F]
$$(\exists x \in A)(x + 3 = 10)$$

[
$$\vee$$
] ($\forall x \in A$)($x + 3 < 10$)

$$[\ \ \ \ \ \] \ (\exists x \in A)(x + 3 < 5)$$

[
$$\lor$$
] $(\forall x \in A)(x + 3 \le 10)$

5. Se:

```
E(x) para "x é elegante"
H(x) para "x é homem"
G(x,y) para "x gosta de y"
```

M para "Mario" P para "Paula"

Qual das sentencas corresponte à proposição: $(\forall x)(H(x) \rightarrow E(x))$?

- i) Todos os homens são elegantes.
- ii) Se são elegantes, são homens.
- iii) Existe um homem elegante.

Escreva também a proposição para as sentenças não correspondentes.

 $(\forall x)(H(x) \rightarrow E(x)]$ corresponde a (i) Todos os homens são elegantes.

- (ii) Se são elegantes, são homens corresponde $a E(x) \rightarrow H(x)$
- (iii) Existe um homem elegante corresponde $a (\exists x)(H(x) \rightarrow E(x)]$
- 6. Determine e justifique a alternativa incorreta:
 - i) Se $A = \{x \mid x = 2n \text{ para } n \text{ inteiro positivo}\}$, então $16 \in A$.
 - ii) Se $A = \{x \mid x = 2 + n(n-1) \text{ para n inteiro positivo} \}$, então $16 \notin A$.
 - iii) Se $A = \{x \mid x = 2^n \text{ para } n \text{ inteiro positivo}\}, \text{ então } 16 \notin A.$
 - iv) $A = \{2,4,6,8,...\}$ é um conjunto de números inteiros positivos.
 - iii) Se $A = \{x \mid x = 2^n \text{ para } n \text{ inteiro positivo}\}$, então $16 \notin A$ é a alternativa incorreta pois se n = 4, então $2^4 = 16$ e $16 \in A$

Mindeol Maternatica Discreta 1 avanação parciai 20/maio/22 resolução

7. Uma pesquisa dentre 150 estudantes revelou que 83 são proprietários de carros, 97 possuem bicicletas, 28 têm motocicletas, 53 são donos de carros e bicicletas, 14 têm carros e motocicletas, 7 possuem bicicletas e motocicletas, e 2 têm todos os três. Quantos estudantes possuem apenas bicicletas e quantos não têm gualquer um dos três, respectivamente?

```
Partindo das informações:
```

... dos 97 que possuem bicicletas, temos:

97

- (53-2) que tem carros e bicicletas
- (7 2) que possuem motociletas e bicicletas)
- 2 (que possuem todos os três)

obtemos 39 que possuem apenas bicicletas

... e dos 150 estudantes, verificamos que:

150

- [83 (53-2) (14-2) 2 = 18] possuem somente carros
- [97 (53-2) (7-2) 2 = 39] possuem soemnte bicicletas
- [28 (14-2) (7-2) = -2 = 9] possuem somente motocicletas
- 2 possuem os três veículos: carro, bicicleta e moto
- [53-2 = 51] possuem dois tipos: carro e bicicleta
- [14-2 = 12] possuem dois tipos: carro e motocicleta
- (7-2 = 5) possuem dois tipos: bicicleta e moto
- = 14 estudantes não possuem nenhum dos três.
- 8. Através da demonstração:

$$P(1): 1(1+1)(1+2) = 6$$
Assuma $P(k): k(k+1)(k+2) = 3m$ para algum m inteiro
$$P(k+1): (k+1)(k+2)(k+3) = 3m$$
 para algum m inteiro
$$(k+1)(k+2)(k+3) = k(k+1)(k+2) + 3((k+1)(k+2))$$

$$= 3m + 3(k+1)(k+2)$$

$$= 3[m+(k+1)(k+2)]$$

O que podemos concluir? Justifique

- i) O produto de três inteiros positivos consecutivos é divisível por 3.
- ii) A soma de três inteiros positivos consecutivos é divisível por 3.
- iii) O produto de três inteiros positivos é divisível por 3.
- iv) O produto de três inteiros é divisível por 3.
- \rightarrow "O produto de três inteiros positivos consecutivos é divisível por 3", é a conclusão para a proposição P(k): k(k+1)(k+2)=3m, que define a igualdade do produto k(k+1)(k+2), de 3 inteiros consecutivos, ser divisível por 3.

9. Verifique se as relações binárias nos conjuntos S dados a seguir são reflexivas, simétricas, antissimétricas ou transitivas.

i)
$$S = \mathbb{Q}, R = \{(x,y) \mid |x| \le |y|\}$$

R é reflexiva e transitiva

ii)
$$S = \mathbb{Z}$$
, $R = \{(x,y) \mid x - y \text{ \'e um m\'ultiplo inteiro de 3}\}$

R é reflexiva, simétrica e transitiva

iii)
$$S = N$$
, $R = \{(x,y) \mid x \cdot y \text{ } é \text{ } par\}$
R é simétrica

10. Seja P o conjunto de todas as pessoas (mortas ou vivas).

Seja m: $P \rightarrow P$ tal que m(x) é a mãe biológica de x.

Tem-se que fazer suposições biológicas razoáveis para considerar m uma função bem definida:

- i) todo mundo tem uma mãe biológica (por exemplo, nenhum clone) e,
- ii) nenhuma pessoa pode ter duas mães biológicas diferentes.

A função m é sobrejetora? Justifique. Ela é injetora? Justifique.

A função **m não é injetora**, pois duas pessoas podem ter a mesma mãe.

A função **m não é sobrejetora**, pois nem todas as pessoas são mães.