Step-by-step simulation of radiation of radiation chemistry using Green Functions for diffusion-influenced reactions

Ianik Plante^{1,2} and Francis A. Cucinotta¹

¹NASA/JSC, Houston, TX; ²Division of Space Life Sciences, Universities Space Research Association, Houston, TX

Introduction

- The irradiation of biological systems leads to the formation of radiolytic species such as H·, ·OH, H₂, H₂O₂, e⁻_{aq}, etc. [1]
- These species react with neighboring molecules, which result in damage in biological molecules such as DNA.
- Radiation chemistry is therefore very important to understand the radiobiological consequences of radiation [2].
- In this work, we discuss an approach based on the exact Green Functions for diffusion-influenced reactions which may be used to simulate radiation chemistry and eventually extended to study more complex systems, including DNA.

Green functions

• The exact Green functions for an isolated pair are known analytically [3-4]:

• The coefficients α,β and γ are related to the reaction rate constants ($k_D=4\pi RD$):

 $\alpha + \beta + \gamma = -(1 + k_a / k_D) / R$ $\alpha \beta + \beta \gamma + \gamma \alpha = (k_e + k_d) / D$ $\alpha \beta \gamma = -[(1 + k_a / k_D)k_e + k_d] / DR$ Erfc(x) $\equiv \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-\xi^{2}} d\xi$ W(x,y) $\equiv \exp(2xy + y^{2}) \text{Erfc}(x + y)$ $\Omega(x) \equiv \exp(x^{2}) \text{Erfc}(x)$

Assumptions of the model

• The pair of particle may react as follow [3]:

 $A + B \xrightarrow[k_b]{k_a} (AB)^* \xrightarrow[k_e]{k_e} AB$

k_a: association rate constant
k_d: dissociation rate constant
k_e: product formation rate constant

• Transitions from a state to another are defined:

	State after one timestep							
Initial state		Free (x ₁)	Rev bound (*)	Products(**)				
	Free (x ₀)	$p(x_1,t x_0)$	$p(*,t x_0)$	$p(**,t x_0)$				
	Rev bound (*)	$p(x_1,t *)$	p(*,t *)	p(**,t *)				
	Products (**)	0	0	1				

Sampling of the Green functions

- We have developed exact algorithms to sample the random variates r for p(r,t|r₀) and p(r,t|*) [4].
- The algorithm allow the simulation to be done in several timesteps (time discretization)

Left: Green function $4\pi r^2 p(r,t|r_0)$ for R=1, r_0 =1.5, for k_a =4 π RD, k_d =1 and k_e =1 at t=1, 2, 4, 8, 16 and 32. Analytical functions: (—); Result of sampling: (\blacksquare). Right Survival probability Q(t|r_0), binding probability p(*,t|r_0) and reaction probability p(**,t|r_0) as function of time for R=1, r_0 =1.5, k_a =4 π RD, k_d =1 and k_e =0.1 (—), k_e =1 (---) and k_e =10 (···).

Assumptions of the model

• The pair of particles is initially at a distance r₀ and at they are at the distance r at t:

$$4\pi r_0^2 p(r, t \mid r_0) = \delta(r - r_0)$$

• The distance between particle obeys a diffusion equation:

$$\frac{\partial p(\mathbf{r}, \mathbf{t} \mid \mathbf{r}_0)}{\partial \mathbf{t}} = \mathbf{D} \frac{\partial^2}{\partial \mathbf{r}^2} p(\mathbf{r}, \mathbf{t} \mid \mathbf{r}_0)$$

The material balance condition is:

$$k_a p(r, t \mid *) = k_d p(*, t \mid r)$$

• The boundary condition is

$$\frac{dp(*,t|r_0)}{dt} = k_a p(R,t|r_0) - (k_d + k_e)p(*,t|r_0)$$

Survival and dissociation probabilities

$$Q(t | r_0) = \int_{R} 4\pi r^2 p(r, t | r_0) dr$$

$$Q(t \mid *) = \int_{R}^{\infty} 4\pi r^2 p(r, t \mid *) dr$$

Many-particles system

- When more particles are added to the system, the number of interactions grow quickly
- 2 Particles
 - -1-2 (1 interaction)
- 3 Particles
- -1-2,1-3, 2-3 (3 interactions)
- 4 Particles
- -1-2, 1-3, 1-4, 2-3, 2-4, 3-4 (6 interactions)
- N Particles
 - -N(N-1)/2 interactions \rightarrow Grows as $\sim N^2$!
- The Green Functions can be used to build a radiation chemistry code [4], by using average positions generated by sampling the inter-particle distance at each timestep

Chemical reactions and radiolytic yields

- The chemical reactions between radiolytic species with no electrostatic interaction (i.e. their charge product is 0) can be simulated by using the Green Functions described above.
- The radiation chemistry code can be used to simulate the time evolution of the radiolytic species (radiation chemistry) and radiochemical yields [5,6].

Reaction	$k_{obs} (M^{-1}s^{-1})$	R (nm)	$k_{dif} (M^{-1}s^{-1})$	$k_{act} (M^{-1}s^{-1})$	P _{React}	α (nm ⁻¹)
$H_{\bullet} + .OH \rightarrow H_2O$	1.55 x 10 ¹⁰	0.41	2.86 x 10 ¹⁰	3.40×10^{10}	0.33	5.34
$H_{\bullet} + H_2O_2 \rightarrow H_2O + \bullet OH$	3.50×10^7	0.40	2.82×10^{10}	3.50×10^7	0.00	2.50
$H_{\bullet} + OH^{-} \rightarrow H_{2}O + e_{aq}^{-}$	2.51×10^7	0.52	4.84×10^{10}	2.51×10^{10}	0.00	1.92
$H_{\bullet} + O_2 \rightarrow HO_{2\bullet}$	2.10×10^{10}	0.36	2.56×10^{10}	1.17×10^{11}	0.67	15.4
$H_{\bullet} + HO_{2\bullet} \rightarrow H_2O_2$	1.00×10^{10}	0.40	2.82×10^{10}	1.55×10^{10}	0.19	3.88
$H_{\bullet} + O_{2\bullet}^{-} \rightarrow HO_{2}^{-}$	1.00×10^{10}	0.41	2.72×10^{10}	1.58×10^{10}	0.20	3.86
$.OH + .OH \rightarrow H_2O_2$	5.50×10^9	0.44	7.32×10^9	2.21×10^{10}	0.55	9.14
\cdot OH + H ₂ O ₂ \rightarrow HO ₂ \cdot + H ₂ O	2.88×10^7	0.43	1.46×10^{10}	2.88×10^7	0.00	2.33
\cdot OH + H ₂ \rightarrow H \cdot + H ₂ O	3.28×10^7	0.36	1.91×10^{10}	3.29×10^7	0.00	2.78
$\cdot OH + e_{aq}^{-} \rightarrow OH^{-}$	2.95×10^{10}	0.72	3.87×10^{10}	1.25×10^{11}	0.49	5.87
\cdot OH + OH $^- \rightarrow$ O \cdot + H ₂ O	6.30×10^9	0.55	3.12×10^{10}	7.90×10^9	0.08	2.28
\cdot OH + HO ₂ \cdot \rightarrow O ₂ + H ₂ O	7.90×10^9	0.43	1.46×10^{10}	1.72×10^{10}	0.33	5.05
$\cdot OH + O_2 \cdot \rightarrow O_2 + OH^2$	1.07×10^{10}	0.44	1.32×10^{10}	5.76×10^{10}	0.64	12.2
$\cdot OH + HO_2^- \rightarrow HO_2 \cdot + OH^-$	8.32×10^9	0.47	1.28×10^{10}	2.38×10^{10}	0.42	6.08
$\cdot OH + O \cdot \rightarrow HO_2^-$	1.00×10^9	0.47	1.49×10^{10}	1.07×10^9	0.03	2.28
$\cdot OH + O_3 \cdot \rightarrow O_2 \cdot \rightarrow HO_2 \cdot$	8.50×10^9	0.42	1.34×10^{10}	2.34×10^{10}	0.42	6.55

Reaction rate constants (k_{obs} , k_{dif} and k_{act}), reaction radii (R), probability of geminate recombination, and α for reactions between radiolytic species [5].

Radiation track structure and evolution in time

Time-dependent yields of chemical species produced by 300 MeV protons (LET ~0.3 keV/ μ m) [6]. Calculations: IONLYS-IRT (---); SBS (____); The dots are experimental data.

Time evolution, in 3D, of a 24-MeV 4 He 2 +, LET \sim 26 keV/ μ m, at 10^{-13} , 10^{-9} , 10^{-7} and 10^{-6} s. Each dot is a radiolytic species

Conclusion

- This approach has been used successfully to simulate the time evolution of radiolytic species and to calculate radiochemical yields.
- The radiation track structure code RITRACKS [7] and the chemistry code will be of crucial importance in future models of DNA damage.

References

- [1] Ferradini, C. and Jay-Gerin, J.-P. Can J. Chem. 77, 1542-1575 (1999).
- [2] O'Neill, P. and Wardman, P. Int. J. Radiat. Biol. 85, 9-25 (2009).
- [3] Park, S. and Agmon, N. J. Phys. Chem. B 112, 5977-5987 (2008).
- [4] Plante, I. et al. *Phys. Rev. E*, submitted.
- [5] Plante, I. *Radiat. Env. Biophys.* **50**, 389-403 (2011).
- [6] Plante, I. Radiat. Env. Biophys. **50**, 405-415 (2011).
- [7] Plante, I. and Cucinotta, F.A. New J. Phys. 10, 125020 (2008).