(2)

NPS55-82-024

NAVAL POSTGRADUATE SCHOOL Monterey, California

STIC ELECTE MAR 1 1983

B

THESIS

ESTIMATING SURVIVAL PROBABILITY OR RELIABILITY: SIMULATION ASSESSMENTS OF THE DELTA METHOD, JACKKNIFE, AND BOOTSTRAP

by

Deniz Cora

October 1982

Thesis Advisor:

D. P. Gaver

Approved for public release; distribution unlimited

Prepared for: Chief of Naval Research Arlington, VA 22217

83 02 028 061.

NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

Rear Admiral J. J. Ekelund Superintendent

David A. Schrady Provost

This work was partially supported in part by the Office of Naval Research.

Reproduction of all or part of this report is authorized.

Released by:

William M. Tolles

Dean of Research

UNCLASSIFIED

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM		
NPS55-82-024 A725 FOO	S. RECIPIENT'S CATALOG NUMBER		
4. TITLE (and Results) Estimating Survival Probability or Reliability: Simulation Assessments of	A. TYPE OF REPORT & PERIOD COVERES Master's Thesis October 1982		
the Delta Method, Jackknife, and Bootstrap	6. PERFORMING ORG. REPORT NUMBER		
7. AUTHORYO	S. CONTRACT OR GRANT NUMBER(s)		
Deniz Cora			
7. PERFORMING ONCANIZATION HAME AND ASSORESS Naval Postgraduate School Monterey, California 93940	18. PROGRAM ELEMENT PROJECT TASK AREA & WORK UNIT NUMBERS 61153N: RR014-05-OE N-000-1482 WR 20017		
11. CONTROLLING OFFICE NAME AND ADDRESS	October 1982		
Chief of Naval Research Arlington, VA 22217	15. NUMBER OF PAGES 64		
14. MONIYOMNO ASENCY NAME & ADDRESSIII different from Controlling Office)	18. SECURITY CLASS. (of this report)		
	Unclassified		
	TEA DECLASSIFICATION/DOWNGRADING		

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 30, if different from Report)

16. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse olds if necessary and identify by block member)

Log-normal Distribution Confidence Intervals Delta Estimation Method Jackknife

Stretched Long-tailed Exponential Distribution Reliability

28. ABSTRACT (Cantinue as reverse olds if necessary and identify by block mather)

Three alternative procedures (Delta, Jackknife, Bootstrap) were investigated and compared with respect to their confidence interval estimation of survival probability of a system. Numerical results from simulations are presented in this report.

DD 1 JAN 73 1473

EDITION OF 1 NOV 68 IS OBSOLETE 5/N 0102-014-6001 |

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Sintered)

Approved for public release; distribution unlimited

Estimating Survival Probability or Reliability: Simulation Assessments of the Delta Method, Jackknife, and Bootstrap

by

Deniz Cora Lieutenant, Turkish Navy

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL October 1982

Author:	
Approved by:	Donald P. Gaver
	Thesis Advisor
	Second Reader
	Chairman, Department of Operations Research
	Lv. M. Woode
	Dean of Information and Policy Sciences

ABSTRACT

Three alternative procedures (Delta, Jackknife, Bootstrap) were investigated and compared with respect to their confidence interval estimation of survival probability of a system. Numerical results from simulations are presented in this report.

TABLE OF CONTENTS

I.	INTE	RODUC	TIO	N .	• •	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
	A.	OVEF	RVIE	N .		•			•	•	•	•	•	•	•	•	•	•	•	•	•	6
		1.	Mati	nema	tica	1 1	Form	ul	.at	io	n	•	•	•	•	•	•	•	•	•		8
	В.	PURE	POSE	AND	API	PRO	ACH	•	•	•	•		•	•	•	•	•	•	•	•	•	10
		1.	Dist	trib	utio	on-1	Free	A	pp	ro	ac	:h	•	•	•	•	•	•	•	•	•	10
		2.	Max:	imum	Lik	cel:	ihoc	d	Аp	pr	oa	ch	l	•	•	•	•	•	•	•	•	11
		3.	Del	ta M	etho	od	(DL)			•	•	•	•	•	•	•	•	•	•	•	•	13
		4.	Jacl	kkni	fe N	let!	hod	(J	K)		•		•	•		- •	•	•	•	•	•	14
		5.	Boot	tstr	ap M	let!	hod	(E	T)		•		•	•	•	•	•	•		•	•	16
II.	SIMU	JLAT I	CON 1	PROC	EDUI	RE		•	•	•	•	•	•	•	•	•	•	•	•	•	•	19
III.	ANAI	LYSIS	3 .			•		•		•		•	•		•	•		•		•	•	22
IV.	EXAN	(PLE	: Al	PPLI	CAT	CON	TO	OF	ER	AT	'IC)NA	T	DA	TA		•	•	•	•	•	35
v.	CONC	LUS	CONS	•		•		•	•	•		•			•	•			•	•	•	38
APPENI	X XIC	A. (COMP	UTER	PRO	GR	ams	•	•	•	•	•	•	•	•			•	•	•	•	40
APPENI	OIX E		LOG-1				-					ON	iG-	·TA	II	ED)					
		I	EXPO	NENT	IAL	DI	STRI	BU	ΤI	ON	i	•	•	•	•	•	•	•	•	•	•	53
APPENI	OIX (c. I	POWE	R TR	ANSI	FORI	MATI	ON	ī	•	•	•		•	•	•	•	•	•	•	•	55
APPENI) XI). P	1EAN	SQU	ARE	ER	ROR	OF	S	UF	VI	VA	L	PR	OE	AE	II	TI.	'Y	•	•	57
APPENI	OIX E	E. [DATA	POI	NTS	FO	R EX	(A)	ŒΙ	E	•	•	•	•	•	•	•	•	•	•	•	61
LIST C	OF RE	eferi	ENCE	s .		•		•	•	•	•	•			•		•	•	•	•	•	62
TNTTT 2	AT. DI	remp1	EITT.	TON	T.TQ1	r																63

THE WINDS AND THE PROPERTY OF THE PROPERTY OF

LIST OF TABLES

1.	Simulation Results for Log-Normal (μ = 1., σ = 1.) Case	•	24
2.	Simulation Results for Log-Normal (μ = 1., σ = .83) Case	•	25
3.	Simulation Results for Log-Normal (μ =1., σ =.48) Case	•	26
4.	Simulation Results for Log-Normal (μ =1., σ =1.44) Case	•	21
5.	Simulation Results for Stretched Long-Tailed Exponential (A = 3.225, C = 0.1948)	•	28
6.	Simulation Results for Exp(λ) Case Using Log Transformation. ($\lambda = 0.22$)	•	29
7.	Simulation Results for $Exp(\lambda)$ Case Using Log Transformation. ($\lambda = 0.13$)	•	30
8.	Simulation Results for Exp(λ) Case Using Log Transformation. ($\lambda = 0.26$)	•	31
9.	Simulation Results for Exp(λ) Case Using X ^P Transformation. (λ = 0.22, P = 0.33)	•	32
10.	Simulation Results for $\text{Exp}(\lambda)$ Case Using X^P Transformation. ($\lambda = 0.13$, $P = 0.33$)	•	33
11.	Simulation Results for Exp(λ) Case Using X ^P Transformation. (λ = 0.26, P = 0.33)	•	34
12.	Recovery Time Example: Results	•	36
13.	Simulation Results for P Algorithm Using Exponential Data. (λ = 0.22)	•	56
14.	Mean Square Error of Survival Probability for Exponential (λ = 0.22) Case Using Log Transformation		58
15.	Mean Square Error of Survival Probability for Exponential (λ = 0.13) Case Using Log Transformation	•	59
16.	Mean Square Error of Survival Probability for Exponential ($\lambda = 0.26$) Case Using Log Transformation		60

I. INTRODUCTION

A. OVERVIEW

A common problem in various areas of operations research and applied statistics, e.g. in reliability and maintainability studies, is that of predicting from available data the probability that a future observation exceeds a given value. An example arising in nuclear plant reliability is that a crucial repair or down time exceeds h (= 4.) hours. Another problem is to predict the "100-year flood", or earthquake, etc. The latter problem is difficult because there will usually be far less than 100-years worth of data to work with. Still another problem is that of predicting the probability of survival for h = 5 years for a cancer victim receiving a particular treatment.

1473

The simplest formulation is to assume that the data is a random sample from a probability distribution $F_X(x)$ (continuous, i.e. having a density), with density $f_X(x)$. That is, observed values are x_1, x_2, \ldots, x_n , being independent realizations of independent identically distributed random variables generically denoted by X. If one is willing to assume also that the mathematical form of $F_X(x) = F_X(x;\theta)$ is known (e.g. is Log-normal, or Gamma, or another candidate) then what one can do is:

(a) Estimate the possibly multidimensional parameter θ (e.g. θ could be μ , σ^2 , the population mean and variance for a log-normal model, estimated by $lnx = \hat{\mu}$ and

$$s_{lnx}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (lnx_i - l\overline{nx})^2$$
 classically).

- (b) Quote the point estimate $F_{\chi}(x;\theta)$, or, in the present case 1 $F_{\chi}(h;\hat{\theta})$ for probability of survival beyond h.
- (c) Utilize facts about the sampling distribution of $\hat{\theta}$ to find a standard error or confidence limits on $\overline{F}_{x}(h;\theta)$, the survival probability.

The basic assumption, then, is that data can reasonably be assumed to be a random sample from a fixed distribution, the form of which is known. There are various ways in which such convenient assumptions can be violated, one obvious one being that the fixed distribution idea is not justifiable (perhaps because of important detectable variation in the distribution from location to location, or plant to plant, from repair crew to repair crew, etc.). Another might be that some data points are missing: too-short ones (down times) are not written down or else are recorded incorrectly, and too-long ones are regarded as being so exceptional as never to recur, and hence are removed. Possible or likely departures from the basic assumption should be investigated. The raw data should be carefully examined in an exploratory spirit (see J. W. Tukey [Ref. 1]), e.g. by graphics to check

としている。 これのないのでは、 からからからないない。 アイルンスというと

for departures from the basic "stationary" assumption. In this discussion we rule out such variations.

This paper gives an account and some evaluation of several different ways of accomplishing step (c) above (confidence limits for the probability of survival or excedance of time h and related topics). It will discuss four different methods for attacking the estimation and confidence limits problem.

1. Mathematical Formulation

We shall assume that (x_1,x_2,\ldots,x_n) are the complete times of repair (or down times), and that they are independent realizations of the generic random variable X, where Y = lnX is normally distributed with mean μ and variance σ^2 , both unknown. This kind of assumption is often made in practice. This implies that the probability that a randomly selected, future, down or repair time exceeds h is given by the formula

$$\overline{F}_{\mathbf{x}}(\mathbf{x}; \mu, \sigma^2) = \int_{\frac{\ln h - \mu}{\sqrt{\sigma^2}}}^{\infty} e^{-\frac{1}{2}\mathbf{z}^2} \frac{d\mathbf{z}}{\sqrt{2\pi}} \equiv \int_{\mathbf{q}}^{\infty} e^{-\frac{1}{2}\mathbf{z}^2} \frac{d\mathbf{z}}{\sqrt{2\pi}}$$
(1.1)

In practice, this formula is not immediately applicable when μ and σ^2 are unknown but if we estimate

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \ln x_i = 1 \overline{nx}$$
 (1.2)

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (\ln x_i - \ln x)^2 , \qquad (1.3)$$

we can go ahead and quote a point estimate; the latter depends on

$$\frac{\ln h - \hat{\mu}}{\sqrt{\hat{\sigma}^2}} . \tag{1.4}$$

If we examine this quantity (integration limit) it will be seen to be a single realization of a random variable written as

$$\theta = \frac{H - \overline{Y}}{\sqrt{s_Y^2}} \tag{1.5}$$

where \overline{Y} is $N(\mu, \sigma^2)$ and $S_{\overline{Y}}^2$ is $\sigma^2 \chi^2_{(n-1)}$ proportional to a Chi-squared r.v., the latter being independent of \overline{Y} by the convenient (log) normal assumption. Now re-write θ as

$$\theta = \frac{(H - \mu) - (\overline{Y} - \mu)}{\sqrt{n} \cdot \sqrt{\frac{S_{\gamma}^{2}}{n}}}$$
 (1.6)

If $(H-\mu)=0$ then $(-\theta\sqrt{n})$ would be precisely distributed as a Student's t. On the other hand

$$-9\sqrt{n} = \frac{(\overline{Y} - \mu + \mu - H)\sqrt{n}}{S_{Y}}$$
 (1.7)

If we write $\delta = \mu$ -H then

$$-\theta\sqrt{n} = \frac{(\overline{Y} - \mu + \delta)\sqrt{n}}{S_{Y}}$$
 (1.3)

has a known density function, that of the <u>Non-central t</u> which is conveniently expressed in terms of the non-centrality parameter

$$\gamma = \frac{\sqrt{n} \delta}{\sigma}$$

Classical methods exist for utilizing this to establish tolerance limits. In this paper a different approach is followed. We examine the performance of several convenient approximate methods for assessing the uncertainty in the simple point estimate (1.1), where estimate (1.2) and (1.3) are used for the parameter values. These methods are the Delta method (linearization), the Jackknife, and the Bootstrap, as well as a completely distribution-free (Bernoulli trials) method. Details now follow.

B. PURPOSE AND APPROACH

1. Distribution-Free Approach

In general, suppose we want to solve the problem of estimating the survival probability without any distributional assumption, other than that observations are iid. The simplest way is to use the binomial approach. If (x_1, x_2, \ldots, x_n) indicates the iid. sample of down or repair times, we can estimate P(x>h), survival probability, by means of

$$\frac{\hat{\mathbf{p}}[X>h]}{\hat{\mathbf{p}}} = \frac{\#(X's>h)}{n} = \hat{\mathbf{p}}$$
 (1.9)

Then we can set up a confidence interval for the survival probability (1.9) by making use of the fact that for

rge n the binomial distribution can be approximated by a rmal distribution. An approximate $(1-\alpha) \cdot 100\%$ confidence terval for the binomial parameter p is given by

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} (1.10)$$

ere $z_{\alpha/2}(1-\alpha/2)\cdot 100$ % point of the tabled unit normal.

2. Maximum Likelihood Approach

We can assume along with others, that repair time ta comes as a random sample from a log-normal population: = lnX where X is Normal(μ , σ^2). This assumption will be ucial in all three methods. Then the maximum likelihood timates (M.L.E.) of the parameter are as stated before:

$$\hat{p} = \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$
 (1.11)

$$\partial^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2 = s_y^2$$
 (1.12)

Strictly speaking, $\hat{\sigma}^2$ (1.12) is the M.L.E. multiplied (n/n-1) and is unbiased for σ^2 . Furthermore, in repeated mples of size n we have that "exactly" (assuming the model correct):

(i)
$$\hat{\mu} = \overline{Y}$$
 is Normal $(\mu, \frac{\sigma^2}{n})$ (1.13)

(ii)
$$\hat{\sigma}^2 = S_y^2 \text{ is } \frac{\sigma^2 \chi^2 (n-1)}{n-1}$$
, (1.14)

where $E[\hat{\sigma}^2] = \sigma^2$, and $Var[\hat{\sigma}^2] = 2\sigma^4/(n-1)$

(iii) $\hat{\mu}$ and $\hat{\sigma}^2$ are statistically independent.

Thus for large n both $\hat{\mu}$ and $\hat{\sigma}^2$ tend to be close to their respective population values, guaranteeing a good approximation to the survival probability if model (1) is correct. Now according to the assumed model, the probability of exceeding h hours is

$$P(x>h) = \int_{\frac{\ln h - \mu}{\sigma}}^{\infty} e^{-\frac{1}{2}z^{2}} \frac{dz}{\sqrt{2\pi}}$$
 (1.15)

The maximum likelihood estimate of this probability is obtained by replacing $\hat{\mu}$ by $\hat{\mu},~\sigma^2$ by $\hat{\sigma}^2.$

$$\hat{P}(x>h) = \int_{\frac{\ln h - \hat{\mu}}{\hat{\sigma}^2}}^{\infty} e^{-\frac{1}{2}z^2} \frac{dz}{\sqrt{2\pi}}$$
(1.16)

Now find upper and lower limits for the parameter:

$$q = \frac{\ln h - \mu}{\sigma} \tag{1.17}$$

i.e. \overline{q} and \underline{q} are functions of the observations such that $\underline{q} \leq q \leq \overline{q}$ with prescribed probability $(1-\alpha) \cdot 100\%$, say 95%. These then translate into upper and lower limits on the probability of exceeding h

$$\int_{\underline{q}}^{\infty} e^{-\frac{1}{2}z^{2}} \frac{dz}{\sqrt{2\pi}} \le P(x>h) \le \int_{\underline{q}}^{\infty} e^{-\frac{1}{2}z^{2}} \frac{dz}{\sqrt{2\pi}}$$
 (1.18)

If we compute \underline{q} and \overline{q} from a sample, then, under the initial assumptions, we have the desired confidence limits for the probability of exceeding h.

3. Delta Method (DL)

The delta method is an approximate way of finding the distribution of q. It is known that functions such as q are approximately normally distributed for "sufficiently large" n (see Cramer [Ref. 2]). We estimate q by

$$\hat{q} = \frac{\ln h - \hat{\mu}}{\hat{\sigma}} \tag{1.19}$$

and use the "delta method", or method of linearization, or small errors, to estimate the variance:

$$\operatorname{Var}\left[\hat{q}\right] \approx \left(\frac{\partial q}{\partial \hat{\mu}}\right)^2 \operatorname{Var}\left[\hat{\mu}\right] + \left(\frac{\partial q}{\partial \hat{\sigma}^2}\right)^2 \operatorname{Var}\left[\hat{\sigma}^2\right]$$
 (1.20)

There is no covariance term because of the (theoretical) in- $^{\circ}$ dependence of $\hat{\mu}$ and $\hat{\sigma}^2$, see (iii) above in section 2. This formula yields

$$\frac{\partial q}{\partial \hat{\mu}} = -\frac{1}{\hat{\sigma}}, \text{ Var}[\hat{\mu}] = \frac{\sigma^2}{n}, \text{ Var}[\hat{\sigma}^2] = \frac{2\sigma^4}{n-1}, \frac{\partial q}{\partial \hat{\sigma}^2} = \frac{-(\ln h - \hat{\mu})}{2 \cdot (\hat{\sigma}^2)^{3/2}}, \quad (1.21)$$

SO

$$\operatorname{Var}\left[\hat{q}\right] \cong \frac{1}{\hat{\sigma}^2} \cdot \frac{\sigma^2}{n} + \frac{1}{4} \cdot \frac{\left(\ln h - \hat{\eta}\right)^2}{\left(\sigma^2\right)^3} \cdot \frac{2\sigma^4}{(n-1)}$$
 (1.22)

$$\operatorname{Var}\left[\hat{q}\right] \approx \frac{1}{n} + \frac{1}{2} \cdot \frac{\left(1 n h - \hat{\mu}\right)^{2}}{\hat{\sigma}^{2} \cdot (n-1)} \approx \frac{1}{n} \left\{ 1 + \frac{1}{2} \cdot \frac{\left(1 n h - \hat{\mu}\right)^{2}}{\hat{\sigma}^{2}} \right\} \equiv \hat{\sigma}_{q}^{2} \qquad (1.23)$$

Assume \hat{q} can be taken to be normal with mean q and variance $\hat{\sigma}_q^{\ 2}$ and quote these approximate confidence limits:

$$\bar{q}_{DL} = \hat{q} + z_{1-\alpha/2} \cdot \sqrt{\hat{q}_{q}^{2}}$$
 (1.24)

$$q_{DL} = \hat{q} - z_{1 - \alpha/2} \cdot \sqrt{\hat{q}^2}$$
 (1.25)

This translates into the desired (but approximate) confidence limits for the probability of exceeding h:

$$\frac{\int_{\mathbf{q}_{\mathrm{DL}}}^{\infty} e^{-\frac{1}{2}z^{2}} \frac{\mathrm{d}z}{\sqrt{2\pi}} \leq P(x>h) \leq \int_{\mathbf{q}_{\mathrm{DL}}}^{\infty} e^{-\frac{1}{2}z^{2}} \frac{\mathrm{d}z}{\sqrt{2\pi}} \tag{1.26}$$

Several approximations have been made in the process described and the validity, for moderate n, of such a relatively simple process, must be checked. Notice that the exact distribution of q is non-central t under the basic model assumption. This approach replaces the n-c.t by a convenient normal approximation.

4. Jackknife Method (JK)

The jackknife is an alternative way of putting confidence limits on the parameter

$$q = \frac{\ln h - \mu}{\sigma}$$

For further discussion see Mosteller and Tukey [Ref. 3] and Efron [Ref. 4]. In brief, the jackknife method has the capacity to reduce the bias of estimates of such quantities

and, more importantly, to furnish confidence limits that behave in a satisfactory manner.

Jackknife estimates and confidence limits are constructed by successively leaving out parts of the available data to construct <u>pseudovalues</u>. These are then averaged, and the stability of the average assessed by use of Student's t or the Normal in order to obtain confidence limits. The procedure is given below for our case:

(1) Form the estimate

$$q_n(y_1, y_2, y_3, \dots, y_n) = \frac{\ln h - \overline{y}}{S_y}$$
 (1.27)

This is the m.l.e. using all the data, just as before.

- (2) Form the estimates $q_{(n-1),i}(y_1,y_2,\ldots,y_{i-1},y_1,\ldots,y_n)$ $i=1,2,\ldots,n$; these are similar to q_n , but omit successively each single observation y_1,y_2,\ldots,y_n ; at the next stage each observation is then restored and the following taken out, as i runs from 1 to n and thus there are n values $q_{(n-1),i}$.
 - (3) Compute the pseudovalues as follows:

$$u_i = nq_n - (n-1)q_{(n-1),i}$$
 $i = 1, 2, ..., n$ (1.28)

(4) Compute the mean and variance of the pseudovalues:

$$\overline{\mathbf{u}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{u}_{i} \tag{1.29}$$

$$s_u^2 = \frac{1}{n-1} \sum_{i=1}^{n} (u_i - \overline{u})^2$$
 (1.30)

(5) Approximate (accuracy increasing with n increasing) $(1-\alpha) \cdot 100\%$ confidence limits for q are given by:

$$\underline{q}_{JK} \equiv \overline{u} - \frac{s_u}{\sqrt{n}} t_{\alpha/2} \quad (n-1) \leq q \leq \overline{u} + \frac{s_u}{\sqrt{n}} t_{\alpha/2} \quad (n-1) \equiv \overline{q}_{JK} \quad (1.31)$$

where $t_{\alpha/2}$ (n-1) is the $(1-\alpha/2)\cdot 100$ percent point of Student's t (the standard, central, distribution). Also we can use $z_{\alpha/2}$ as before as an option.

(6) This means that, with approximate $(1-\alpha) \cdot 100\%$ confidence, the probability of survival is between the two confidence limits that follow:

$$\frac{\int_{\mathbf{q}_{JK}}^{\infty} e^{-\frac{1}{2}z^{2}} \frac{dz}{\sqrt{2\pi}} \leq P(x>h) \leq \int_{\mathbf{q}_{JK}}^{\infty} e^{-\frac{1}{2}z^{2}} \frac{dz}{\sqrt{2\pi}} \tag{1.32}$$

This procedure, based on the m.l.e., has been theoretically validated for large n. It competes with the delta method, but is somewhat more difficult to carry out.

5. Bootstrap Method (BT)

The bootstrap method (see Efron (1979) [Ref. 4]) is similar to the jackknife method, but differs in being a resampling procedure. The procedure is given as below for our case:

(1) Calculate

$$\hat{q} = q_n(y_1, y_2, \dots, y_n) = \frac{\ln h - \bar{y}}{S_y}$$
.

This is the m.l.e. using original data, same as before.

(2) Draw a "Bootstrap sample", using y_1, y_2, \ldots, y_n as basic distribution, value each having probability 1/n

$$y_1^*, y_2^*, y_3^*, \dots, y_n^*$$

and calculate
$$u = q_n(y_1^*, y_2^*, \dots, y_n^*) = \frac{\ln h - \overline{y}^*}{S_y^*}$$

(3) Independently repeat step (2) a large number of times, B, obtaining "bootstrap replications" u_i , $i=1,2,\ldots,B$, and calculate

$$\overline{u} = \frac{1}{B} \sum_{i=1}^{B} u_i$$
 (1.35)

$$s_{\overline{U}}^2 = \frac{1}{B-1} \sum_{i=1}^{B} (u_i - \overline{u})^2$$
 (1.36)

- (4) Approximate $(1-\alpha) \cdot 100\%$ confidence limits for q. Here are four different approaches:
- (a) Non-Parametric Approach (BT1): Take the order statistics of bootstrap sample

$$u_{(1)} < u_{(2)} < \dots < u_{(B)}$$

then let $j = \left[\frac{\alpha}{2} \cdot B\right]$, and take as confidence limits for q:

$$\underline{q}_{BT} \equiv u_{(J)} \leq q \leq u_{(B-J+1)} \equiv \overline{q}_{BT}$$
 (1.37)

(b) Normal Approximation Approach (BT2): If we assume the bootstrap sample is approximately normally distributed then approximate confidence limits for q can be set down:

$$\underline{q_{BT}} \equiv \overline{u} - z_{1-\alpha/2} \cdot s_{u} \leq q \leq \overline{u} + z_{1-\alpha/2} \cdot s_{u} \equiv \overline{q_{BT}}$$
 (1.38)

(c) Bias-Adjusted Non-Parametric Approach (BT3):
The bootstrap estimate of bias is

$$\widehat{BIAS} = \overline{u} - \hat{q}$$

where \hat{q} is the estimate of q from the original data. Confidence limits for this case:

$$q_{BT} \equiv u_{(J)} - \widehat{BIAS} \leq q \leq u_{(B-J+1)} - \widehat{BIAS} \equiv \overline{q}_{BT}$$
 (1.39)

(d) Bias-Adjusted Normal Approximation Approach (BT4): In this approach the confidence limits are:

$$q_{BT} = (\hat{q} - \hat{B} \hat{A} \hat{S}) - z_{1-\alpha/2} \cdot s_u \le q \le (\hat{q} - \hat{B} \hat{A} \hat{S}) + z_{1-\alpha/2} \cdot s_u = \bar{q}_{BT}$$
 (1.40)

Some simulation results for these four approaches will be presented in the analysis section. Identification for these cases are BT1, BT2, BT3, BT4.

II. SIMULATION PROCEDURE

A simulation procedure has been used to compare the three methods for obtaining confidence intervals for the probability a repair time exceeds h = 4 hours in the case in which the log-normal assumption is met and other cases in which it isn't (the exponential and long-tailed exponential). Specifically, simulation has been used to compute

- (a) The actual coverage of the true survival probability by the confidence intervals given by the procedures under study, when the nominal coverage is $(1-\alpha) \cdot 100\%$.
- (b) Measure of confidence interval size: the expected width and standard deviation of width.

The simulation programs were written in FORTRAN IV, and the simulations have been carried out on the IBM 3033 at the Naval Postgraduate School. The Naval Postgraduate School LLRANDOM package was used, along with the International Mathematical and Statistical Library (IMSL) random generator; 1000 replications were used to evaluate each procedure in each distributional situation. Also B = 200 bootstrap replications were taken for each trial, four sample sizes, n = 10, 20, 30, 40, and h = 4 hours and three distributions: Log-normal, Exponential, and a Long-tailed Exponential were investigated.

An outline of the simulation procedure now follows:

(A) Log-normal: In this case the basic variables, the down or repair times, are i.i.d. log-normal (see Appendix B).

This case was simulated for the following "population" parameter values:

(1)
$$\mu = 1$$
. $\sigma^2 = 1$

(2)
$$\mu = 1$$
. $\sigma^2 = \ln 2$

(3)
$$\mu = 1$$
. $\sigma^2 = 3 \ln 2$

(4)
$$\mu = 1$$
. $\sigma^2 = \ln 2/3$.

The procedures of the previous section were used to obtain confidence intervals for the probability a repair time exceeds h = 4 hours.

(B) Stretched long-tailed exponential: Down or repair times come independently from a stretched long-tailed exponential; see Appendix B. The simulated data was treated as if it was a sample from a log-normal distribution and procedures of the previous section were carried out. In this simulation we used the log transformation to tend to convert the long-tailed exponential observations towards normality (symmetrize them). The stretched long-tailed exponential model is:

$$X = AZ(1 + CZ) \tag{2.1}$$

X is stretched long-tailed exponential where Z has the Expon(1) distribution. Simulation was carried out for A=3.225, C=0.1948. These values were taken in order to compare the results with Exponential ($\lambda=0.22$) case.

(C) Exponential down or repair time: In this situation simulations were carried out for two cases. First taking the

log of exponential down or repair times, and treating these as having the normal distribution; that is treating the data as log-normally distributed. Second, taking the p power of data values, and then treating the transformed values as normally distributed. Also Appendix C gives an algorithm for estimating the p value from the data. Simulations are also carried out for p=0.33 (the classical Wilson-Hilferty value), and for three λ values.

III. ANALYSIS

The methods for obtaining 95% confidence intervals for the probability that a repair time exceeds h = 4 hours described in chapter 1 were performed on simulated data having various distributions; these distributions were described in chapter 2. Simulation results for each method are shown in Tables 1 to 11.

If we examine these tables case by case, we can find these results:

- (A) Log-normal data: All three methods work very well for this case except BT1 and BT3; they seem to consistently have less than nominal coverage. The simple delta method exhibits good coverage, and always has relatively small average width, and also low standard deviation. It seems to work as well as JX and BT4 for small sample sizes (n = 10, 20). In large sample sizes all methods agree in their coverage except for BT1. The method BT4 always appears to exhibit over-coverage.
- (B) Stretched long-tailed exponential data: Table 5 shows that JK and BT4 exhibit over-coverage when the sample size n = 10. JK, DL, BT4 appear to exhibit correct coverage for n = 20, 30, 40, the others don't; especially at sample size n = 40 they are very poor. Also there is decreased coverage for all methods when sample size increases; the

JK and BT4 methods have lower average width than does DL, when sample size increases. This is results of the bias.

(C) Exponential case: Tables 6, 7, 8 show that the log-transformation may give very poor results for the exponential case, especially at Table 7. If we examine Table 6 and Table 8, these tables show DL, JK, BT4 work well for small sample sizes. Tables 9, 10 and 11 indicate that the power transformation works better than the log transformation. The JK, BT2, and BT4 methods always have better coverage than the DL method. Also all methods agree in their coverage when the sample size increases, as was true for the log-normal case. Generally JK and BT4 exhibit acceptable coverage.

Table 1: Simulation results for log-Normal (μ =1., σ =1.) case.

h	=4		0
11		•	v

Sample			Average	Std.Dev
Siz e	Method	Coverage	Width	Width
10	DL	0.9420	0.4353	0.0409
	JK	0.9520	0.4985	0.1202
	BT1	0.894)	0.4688	0.0979
	BT2	0.9480	0.5105	0.1131
	BT3	0.9150	0.4857	0,0940
	B T4	0.9720	0.5380	0.1205
20	DL	0.9380	0.3221	0.0184
	JK	0.9560	0.3455	0.0510
	, BT 1	0.9060	0.3339	0.0461
	BT2	0.9400	0.3389	0.0452
	. BT3	0.9290	0.3405	0.0469
	BT4	0.9620	0.3495	0.0491
30	DL	0.9450	0.2670	0.0114
	JК	0.9520	0.2795	0.0302
	BT 1	0.9240	0.2748	0.0306
	BT 2	0.9430	0.2737	0.0296
	BT 3	0,9380	0.2772	0.0308
	BT4	0.9550	0.2804	0.0298
40	DL	0.9500	0.2329	0.0084
	JK	0.9560	0.2408	0.0215
	BT 1	0.9280	0.2375	0.0246
	BT2	0.9360	0.2369	0.0227
	BT 3	0.9460	0.2385	0.0234
	BT4	0.9610	0.2405	0.0226

Table 2: Simulation results for log-Normal (μ =1., σ =.83) case.

		h=4.0		
Sample			Average	Std.Dev
Size	Method	Coverage	Width	Width
10	DL	0.9420	0.4278	0.0468
	JK	0.9550	0.4931	0.1284
	BT 1	0.8750	0.4464	0.1069
	BT 2	0.9390	0.4952	0.1151
	BT3	0.9190	0.4717	0.1002
	BT4	0.9750	0.5352	0.1281
2)	DL	0.9370	0.3165	0.0218
	JK	0.9520	0.3407	0.0567
	BT1	0.9130	0.3259	0.0506
	BT2	0.9380	0.3330	0.0499
	BT3	0.9280	0.3325	0.0506
	BT4	0.9600	0.3452	0.0538
30	DL	0.9450	0.2624	0.0137
	JK	0.9520	0.2755	0.0342
	3 T 1	0.9300	0.2681	0.0332
	BT 2	0.9430	0.2704	0.0316
	3 T 3	0.9390	0.2713	0.0334
	BT4	0.9540	0.2764	0.0330
40	DL	0.9520	0.2283	0.0101
	JK	0.9580	0.2369	0.0246
	3 T 1	0.9310	0.2316	0.0250
	BT2	0.9440	0.2332	0.0240
	BT 3	0.9470	0.2335	0.0253

BT4 0.9560 0.2363 0.0249

Table 3: Simulation results for log-Normal (μ =1., σ =.48) case.

h	=4	_	Ω
-		•	v

Sample			y nerads	Std.Dev
Size	Method	Coverage	Width	width
10	DL	0.9430	0.3829	0.0700
	JK	0.9580	0.4621	0.1640
	BT 1	0.8530	0.3525	0.1263
	BT 2	0.9490	0.4404	0.1440
	BT 3	0.9190	0.3944	0.1218
	B T 4	0.9810	0.5180	0.1615
29	DL	0.9460	0.2813	0.0366
	JK	0.9520	0.3104	0.0771
	BT 1	0.9020	0.2713	0.0630
	BT2	0.9380	0.2896	0.0646
	BT3	0.9290	0.2845	0.0633
	B[x] =	0.9580	0.3167	0.0714
30	DL	0.9460	0.2325	0.0241
	JK	0.9480	0.2483 -	0.0480
	BT1	0.92.20	0.2275	0.0417
	BT 2	0.9420	0.2360	0.0421
	3T 3	0.9350	0.2345	0.0421
	BT4	0.9510	0.2500	0.0446
40	DL	0.9580	0.2022	0.0181
	JK	0.9560	0.2113	0.0349
	BT 1	0.9260	0.1979	0.0317
	9 T 2	0.9480	0.2033	0.0315
	BT3	0.9450	0.2024	0.0322
	BT 4	0.9550	0.2121	0.0333

Table 4: Simulation results for log-Normal (μ =1., σ =1.44) case.

		h=4.0		
Sample			Average	Std.Dev
Size	Method	Coverage	Width	Width
10	DL	0.9420	0.4447	0.0324
	JK	0.9520	0.5046	0.1093
	BT 1	0.8883	0.4851	0.0886
	BT 2	0.9430	0.5168	0.0988
	B T 3	0.9210	0.5027	0.0849
	BT 4	0.9730	0.5417	0.1101
20	DL	0.9410	0.3285	0.0135
	JK	0.9550	0.3508	0.0423
	BT 1	0.9180	0.3464	0.0410
	BT2	0.9400	0.3483	0.0394
	BT3	0.9290	0.3499	0.0413
	BT 4	0.9620	0.3544	0.0421
30	DL	0.9440	0.2724	0.0081
	JK	0.9520	0.2862	0.0241
	BT 1	0.9280	0.2825	0.0271
	BT 2	0.9390	0.2822	0.0245
	BT 3	0.9360	0.2841	0.0273
	B T 4	0.9560	0.2849	0.0254
40	DL	0.9520	0.2375	0.0059
	JK	0.9600	0.2451	0.0165
	BT 1	0.9390	0.2435	0.0209
	BT 2	0.9480	0.2434	0.0186
	3T 3	0.9490	0.2444	0.0210

BT4

0.9570 G.2449 0.0191

Table 5: Simulation results for Stretched Long-tailed Exponential.

		h=4.0 A=	3.225	C=0.1948
Sample			Average	Std. De▼
Size	Method	Coverage	Width	Width
10	DL	0.9530	0.4341	0.0350
	JK	0.9720	0.4973	0.1094
	B T 1	0.8550	0.4404	0.1052
	BT2	0.9280	0.4632	0.1055
	B T 3	0.9090	0.4563	0.1001
	BT4	0.9850	0.4893	0.1058
20	DL	0.9650	0.3195	0.0170
	JK	0.9590	0.3170	0.0499
	BT 1	0.8910	0.3013	0.0485
	BT2	0.9170	0.3015	0.0460
	BT3	0.9200	0.3044	0.0476
	BT4	0.9590	0.3079	0.0453
30	DL	0.9570	0.2642	0.0110
	JK	0.9460	0.2493	0.0321
	BT 1	0.9020	0.2424	0.0333
	BT 2	0.9150	0.2415	0.0313
	BT3	0.9173	0.2440	0.0329
	BT4	0.9420	0.2445	0.0309
40	DL	0.9430	0.2301	0.0087
	JK	0.9160	0.2115	0.0245
	BT1	0.8750	0.2076	0.0260
	BT2	0.8940	0.2063	0.0244
	BT3	0.8950	0.2085	0.0258
	BT4	0.9240	0.2087	0.0241

Table 6: Simulation results for EXP(λ) case using Log transformation.

	h=4.0	$\lambda = 0.22$	P (X>4.0)=0.4148	
Sample			Average	Std.Dev	Point
Size	Method	Coasigde	Width	width	Estimate
10	DL	0.9480	0.4432	0.0265	0.3731
	JK	0.9290	0.4476	0.1000	0.3689
	BT1	0.8450	0.4650	0.0989	0.3707
	BT2	0.9090	0.4808	0.1043	0.3707
	BT3	0.9010	0.4772	0.0974	0.3707
	BT4	0.9740	0.4975	0.1036	0.3763
20	DL	0.9520	0.3261	0.0127	0.3685
	JK	0.9060	0.3025	0.0473	0.3665
	BT1	0.8680	0.3133	0.0489	0.3670
	BT2	0.8840	0.3105	0.0457	0.3670
	BT3	0.8930	0.3151	0.0483	0.3670
	BT4	0.9310	0.3136	0.0445	0.3702
30	DL	0.9380	0.2697	0.0081	J. 3661
	JK	0.8790	0.2416	0.0310	0.3651
	BT1	0.8530	0.2497	0.0338	0.3649
	BT2	0.8680	0.2467	0.0311	0.3649
	BT3	0.8810	0.2504	0.0335	0.3649
	BT4	0.8990	0.2481	0.0306	0.3674
40	DL	0.9010	0.2349	0.0065	0.3650
	JK	0.8280	0.2068	0.0237	0.3644
	BT1	0.8110	0.2124	0.0265	0.3641
	BT2	0.8160	0.2105	0.0245	0.3641
	BT3	0.8250	0.2128	0.0263	0.3641
	BT4	0.8440	0.2112	0.0241	0.3660

Table 7: Simulation results for EXP(λ) case using Log transformation.

	h=4.0	λ=0.13	P(X>4.3) =0.5945			
Sample			Average	Std.Dev	Point	
Size	Method	Covelage	Width	Width	Estimate	
10	DL	0.9100	0.4475	0.0298	0.5492	
	JK	0.9010	0.5282	0.1199	0.5218	
	BT1	0.8690	0.5064	0.0922	0.5718	
	BT2	0.9110	0.5490	0.1102	0.5718	
	BT3	0.9020	0.5280	0.0932	0.5718	
	BT4	0.9410	0.5728	0.1213	0.5245	
20	DL	0.8810	0.3329	0.0103	0.5385	
	JK	0.8660	0.3774	0.0665	0.5250	
	BT1	0.8970	0.3705	0.0462	0.5500	
	BT2	0.8820	0.3740	0.0521	0.5500	
	BT3	0.9010	0.3750	0.0502	0.5500	
	BT4	0.8840	0.3796	0.0585	0.5267	
30	DL	0.8470	0.2763	0.0057	0.5343	
	JK	0.8390	0.3053	0.0409	0.5256	
	BT1	0.8840	0.3031	0.0319	0.5421	
	BT2	0.8600	0.3018	0.0322	0.5421	
	BT3	0.8890	0.3048	0.0336	0.5421	
	BT4	0.8460	0.3043	0.0354	0.5264	
40	DL	0.7900	0.2411	0.0035	0.5315	
	JK	0.7810	0.2615	0.0293	0.5251	
	BT1	0.8330	0.2594	0.0266	0.5375	
	BT2	0.8120	0.2594	0.0256	0.5375	
	BT3	0.8370	0.2604	0.0276	0.5375	
	BT4	0.7860	0.2607	0.0273	0.5255	

Table 8: Simulation results for $\text{EXP}(\lambda)$ case using Log transformation.

	h=4.0	$\lambda = 0.26$	P(X>4.0) =0.3535			
Sample			Average	Std.Dev	Point	
Size	Method	Coverage	Width	Width	Estimate	
10	PL	0.9630	0.4322	0.0343	0.3197	
	JK	0.9530	0.4188	0.0994	0.3225	
	BT1	0.8460	0.4276	0.1072	0.3097	
	BT2	0.9260	0.4478	0.1062	0.3097	
	BT3	0.9060	0.4427	0.1021	0.3097	
	BT4	0.9880	0.4726	0.1052	0.3311	
20	DL	0.9660	0.3173	0.0171	0.3178	
	JK	0.9380	0.2789	0.0458	0.3192	
	BT1	0.8790	0.2859	0.0489	0.3124	
	BT2	0.8980	0.2857	0.0459	0.3124	
	BT3	0.9070	0.2841	0.0478	0.3124	
	BT4	0.9500	0.2917	0.0447	0.3232	
30	DL	0.9550	0.2621	0.0111	0.3161	
	JK	0.9160	0.2228	0.0298	0.3174	
	BT1	0.8700	0.2282	0.0332	0.3122	
	BT2	0.8890	0.2271	0.0309	0.3122	
	BT3	0.8960	0.2298	0.0327	0.3122	
	BT4	0.9350	0.2301	0.0302	0.3199	
40	DL	0.9370	0.2282	0.0088	0.3155	
	JK	0.8840	0.1910	0.0229	0.3167	
	BT1	0.8390	0.1947	0.0258	0.3127	
	BT2	0.8510	0.1938	0.0241	0.3127	
	BT3	0.8650	0.1956	0.0255	0.3127	
	BT4	0.8940	0.1956	0.0236	0.3185	

Table 9: Simulation results for $EXP(\lambda)$ case using X^P transformation.

		$h=4.0 \lambda=0.22$	p=0.33	
Sample			Average	Std.Dev
S <u>i</u> z e	Method	Co ve rage	Width	Width
10	DL	0.9300	0.4463	0.0302
	JK	0.9410	0.5038	0.0944
	BT 1	0.8690	0.4941	0.0857
	BT 2	0.9333	0.5234	0.0929
	BT3	0.9050	0.5101	0.0829
	BT4	0.9760	0.5459	0.0990
20	DL	0.9390	0.3307	0.0118
	JK	0.9610	0.3556	0.0363
	B T 1	0.9150	0.3515	0.0356
	BT 2	0.9450	0.3535	0.0335
	BT3	0.9350	0.3545	0.0359
	BT 4	0.9630	0.3588	0.0360
30	DL	0.9410	0.2742	0.0069
	JK	0.9570	0.2883	0.0200
	9 <u>T</u> 1	0.9213	0.2875	0.0250
	BT2	0.9423	0.2874	0.0220
	BT 3	0.9310	0.2887	0.0254
	BT4	0.9570	0.2897	0.0232
40	DL	0.9270	0.2390	0.0055
	ĴК	0.9440	0.2491	0.0133
	B T 1	0.9200	0.2480	0.0193
	BT 2	0.9373	0.2479	0.0163
	BT3	0.9270	0.2487	0.0194
	BT 4	0.9440	0.2492	0.0167

Table 10: Simulation results for EXP(λ) case using χ^P transformation.

	h=	4.0 $\lambda = 0.13$	p=0.33	
Sample			Average	Std.Dev
Size	Method	Coverage	Width	Width
10	DL	0.9353	0.4440	0.0291
	JK	0.9530	0.4911	0.0912
	BT 1	0.8670	0.4804	0.0896
	BT 2	0.9490	0.5133	0.0933
	BT3	0.9070	0.4969	0.0843
	B T 4	0.9760	0.5377	0.1005
20	DL	0.9480	0.3282	0.0127
	JK	0.9670	0.3411	0.0351
	BT 1	0.9153	0.3409	0.0403
	BT 2	0.9480	0.3427	0.0372
	BT 3	0.9350	0.3439	0.0403
	BT4	0.9700	0.3479	0.0385
30	DL	0.9510	0.2723	0.0084
	JK	0.9610	0.2762	0.0195
	BT 1	0.9180	0.2775	0.0274
	BT2	0.9450	0.2770	0.0235
	BT3	0.9360	0.2788	0.0273
	BT 4	0.9710	0.2792	0.0237
40	DL	0.9420	0.2372	0.0060
	JK	0.9520	0.2380	0.0140
	BT 1	0.9130	0.2385	0.0213
	BT 2	0.9370	0.2386	0.0178
	BT 3	0.9220	0.2392	0.0212
	BT 4	0.9530	0.2399	0.0179

Table 11: Simulation results for EXP(λ) case using K P transformation.

		h=4.0	=9.26	p=3.33	
Sample				Average	Std. Dev
Size	Method	Co ver	age	Width	Width
10	DL	0.92	270	0.4345	0.0420
	JK	0.93	90	0.4970	0.1106
	BT 1	0.86	60	0.4677	0.1027
	BT2	0.93	10	0.5082	0.1072
	BT3	0.91	100	0.4892	0.0974
	BT 4	0.97	760	0.5415	0.1127
20	DL	0.93	80	0.3224	0.0136
	JK	0.95	73	0.3505	0.0482
	B T 1	0.90	6)	0.3381	0.0436
	BT 2	0.94	20	0.3439	0.0423
	BT 3	0.92	290	0.3434	0.0435
	BT4	0.96	10	0.3534	0.0453
30	DL	0.93	80	0.2672	0.0117
	JK	0.95	603	0.2945	0.0285
	BT 1	0.92	223	0.2781	0.0294
	BT 2	0.94	30	0.2805	0.0277
	BT3	0.92	90	0.2805	0.0297
	9 T 4	0.95	33	0.2851	0.0291
40	DL	0.92	240	0.2329	0.0094
	JK	0.93	99	0.2454	0.0198
	BT1	0.91	150	0.2412	0.0225
	BT 2	0.92	290	0.2422	0.0207
	BT 3	0.92	2 10	0.2427	0.0226
	BT 4	0.94	10	0.2451	0.0212

IV. EXAMPLE: APPLICATION TO OPERATIONAL DATA

In this chapter four methods were applied to a real data set. The methods are Binomial (BN), Delta (DL), Jackknife (JK), Bootstrap (see section I-b); specifically, the data refer to recovery times from loss of offsite power at nuclear plants. The problem was to estimate survival probabilities for h = 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 (hours). Data points (n = 42) are shown in appendix D. We initially applied several statistical goodness-of-fit tests to inquire into the evidence for the adequacy of the Log-Normal distribution as a model for these data. The results of these goodness of fit tests are as follows:

- (1) Chi-square test: See Arnold, D. [Ref. 5]; this accepts the log-normal model at the significance level α = 0.05.
- (2) Kolmogorov-Smirnov test: See Arnold, D. [Ref. 5]; this test rejects the log-normal model with the tabulated value C = 0.1367 and test statistic D = 0.21 for α = 0.05.
- (3) Wilk-Shapiro test: See Hahn, G. J. [Ref. 6]; this test accepts log-normal model for $\alpha = 0.05$.

We applied four estimation methods to these data, utilizing the log-normal assumption. The results are shown in Table 12.

Table 12: Recovery Time Example Results (h in hours)

		Upper Conf.	Point	Lower Conf.	
Н	Method	Limits	Estimation	Limits	width -
1.5	BN	0.476	0.333	0.191	0.285
	DL	0.445	0.324	0.219	0.226
	JK	0.432	0.324	0.230	0.202
	BT 1	0.435	0.318	0.215	0.220
	BT2	0.438	0.318	0.214	0.224
	BT 3	0-441	0.318	0.215	0.226
	BT4	0.451	0.330	0.224	0.227
2.0	BN	0.422	0.286	0.149	0.273
	DL	0.400	0.280	0.182	0.218
	JK	0.384	3. 282	0.195	0.189
	BT 1	0.379	0.278	0.198	0.180
	BT 2	0.374	0.278	0.197	0.177
	BT 3	0.381	0.278	0.198	0.182
•	BT4	0.378	J. 282	0.200	0.178
2.5	BN	0.422	0.286	0.149	0.273
	DL	0.366	0.249	0.155	0.211
	JK	0.348	0.250	0.169	0.179
	BT 1	0.330	0.250	0.175	0.155
	BT 2	0.345	0.250	0.171	0.174
	BT 3	0.329	0.250	0.175	0.153
	BT4	0.342	0.247	0.169	0.173
3.0	BN	0.395	0.262	0.129	0.266
	DL	0.339	0.224	0.135	0.204
	JK	0.320	0.226	0.150	0.170
	BT 1	0.309	0.223	0.135	0.174
	BT 2	0.324	0.223	0.143	0.182
	BT3	0.311	0.223	0.135	0.176
	BT 4	0.327	0.225	0.144	0.183

3.5	BN	0.395	0.262	0.129	0.266
	DL	0.318	0.204	0.120	0.198
	JK	0.298	0.207	0.135	0.163
	BT 1	0.287	0.204	0.140	0.147
	BT 2	0.289	0.204	0.136	0.152
	BT3	0.288	0.204	0.140	0.132
	BT4	0.290	0.205	0.137	0.153
4.0	Эи	0.367	0.238	0.109	0.258
	DL	0.299	J. 188	0.107	0.192
	JK	0.279	0.191	0.122	0.157
	BT 1	0.263	0.185	0.113	0.150
	BT 2	0.273	0.1 85	0.117	0.156
	BT 3	0.257	0.185	0.113	0.154
	BT4	0.292	0.192	0.122	0.160

V. CONCLUSIONS

The Delta, Jackknife and Bootstrap methods applied to the log-normal model work well when down or repair times are truly log-normal. Especially notice that DL, JK, and BT4 seem to work much better than BT1, BT2, BT3. Recall that these procedures do not appear sensitive to the population variance; see section III. It is comparatively easy to use JK and BT4 when sample size is small (n = 10, 20). The delta method is always convenient, but especially when the sample is large (n = 40 or more) because it is a very simple procedure to apply, requiring much less computation than the others. As Table 12 shows, the Binomial method gives some idea of the survival probability for practical purposes.

Note that Binomial confidence limits are much wider than those that assume the log-normal model.

Use of the log transform on exponential data produces biased estimates of survival. Use of the power transformation with (p = 1/3) always gives a better coverage of the survival probability when data are exponential. One procedure was described in Appendix C for estimating the p value from data. Table 13 gives simulation results for the exponential case. As our results show, this procedure is not estimating p value correctly. If this procedure were to work correctly (if it could be calibrated) then we could use the

transformation (for converting data towards the normal orm) without making any assumption (e.g. this data coming com exponential or gamma or log-normal, etc.). Then after his is done, methods DL, JK, BT4 might produce considerably etter confidence limits for the actual survival probability.

APPENDIX A

COMPUTER PROGRAMS

Simulation programs consist of two main programs for three methods (DL, JK, BT). These main programs compute survival probability confidence limits, and scores the coverage for each replication. Then, after 1000 replications the program computes the statistics of these parameters and prints out the results.

There is another program, called SURVP. This program computes point estimates, confidence limits, and widths of confidence limits on survival probability, using the BN, DL, JK, BT procedures on a given data set, under the log-normal model assumption.

Variables List:

- R = Down or repair times.
- R1 = Log of down or repair times.
- RBAR = Mean of down or repair times.
- RSD = Standard deviation of down or repair times.
- GHAT = Point estimation of q parameter (see 1.17) for delta method
- GJK = Point estimation of q parameter for jackknife method.
- GBOOT = Point estimation of q parameter for bootstrap method.
- VARG = Variance of point estimation for delta method.

SE = Standard error of point estimation for jackknife
 method.

- PHAT = Point estimation of survival probability.
- BUP = Upper confidence limit estimation of q parameter.
- BLOW = Lower confidence limit estimation of q parameter.
- CUP = Upper confidence limit estimation of survival probability.
- CLOW = Lower confidence limit estimation of survival probability.
- AINT = Width of estimated confidence limits of survival probability.
- G = Pseudovalues.
- F = Bootstrap replications.
- N = Number of data points.
- N1 = Number of replications.
- N2 = Number of bootstrap replications.

```
DIMENSION R(100), R1(100), IOPT(5), STAT(5), A(100), G(100), F(10

10), IR(100), GH(400)

100, IR(100), G(100), G(100), F(100), G(100), G(100), F(100), G(100), F(100), G(100), G(100), F(100), G(100), G(
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 WRITE(6,200) H.CUP.PHAT.CLOW.AINT
FORMAT(101,5X,F3.1,3X,18N1,3X,F6.3,3X,F6.3,3X,F6.3)
                           THIS PROGRAP COMPUTES POINT ESTIMATES AND CONFIDENCE
LIMITS OF SURVAVIL PROBABILITY USING BN.DL.JK.BT
PROCEDURES ON A GIVEN DATA SET UNDER THE LOG-NORMAL
MODEL ASSUMPTION.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CUP=PHAT+(1.96*((PHAT*(1.-PHAT)/N)**.5))
CLOW=PHAT-(1.96*((PHAT*(1.-PHAT)/N)**.5))
AINT=CUP-CLOW
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  OUTPUT FOR BINOMIAL METHOD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1CON=0

DO 800 1=1.N

IF(R(I).GE.H) ICON=ICON+1

CONTINUE

PHAT=FLOAT(ICON)/N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    COMPUTE CONFIDENCE LIMITS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         BINOMIAL METHOD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DELTA METHOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             READ DATA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       901
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             800
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               200
COCCO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 COU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ပပပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ပပပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              J
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      UUU
```

```
WRITE(6,201) CUP, PHAT, CLOW, AINT
FORMAT(10", 11X, 10L", 3X, F6.3, 3X, F6.3, 3X, F6.3)
                                  RSD=STAT(5) **.5
GHAT=(ALOG(H)-RBAR)/RSD
VARG=(GHAT**2./((N-1)*2.))+(1./FLOAT(N))
         ĒĪUĢR (RI , N, IOPT, STAT, IER )
                                                                               COMPUTE CONFIDENCE LIMITS
                                                                                                                                                                                                                         OUTPUT FOR DELTA METHOD
                                                                                                                                                                                                                                                                                                                                                                                                                                                         F[K.GT.NA) GO TO 103
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                GI NA) GO TO 103
                                                                                                                                                    CALL MONDR( BUP, E2)
CLOW=1.-E2
CALL MONDR( BLOW, E3)
CUP=1.-E3
AINT=CUP-CLOW
                                                                                                                                                                                                                                                                                  JACK-KNIFE METHOD
100
                                                                                                                                                                                                                                                                                                                                            10
                                                                                                                                                                                                                                                           201
                                                                                                                                                                                                                                                                                                                                                                                         100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            102
                                                                                                                                                                                                                                                                                                                                                                                                                                                  101
                                                                      COC
                                                                                                                                                                                                                                                                        000
```

```
WRITE(6,202) CUP.PHAT.CLOW.AINT
FORMAT("O",11X,"JK",3X,F6.3,3X,F6.3,3X,F6.3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  GH(JJ)=(ALOG(H)-STAT(1))/(STAT(5)**.5)
CONTINUE
CALL BEIUGR(GH,N2,IOPT,STAT,IER)
                                                             BAR=STAT(1)
SD1=STAT(5) **.5
At.1 = (N*GHAT)-(NA*(ALOG(H)-BAR1/SD1)
GO TO 100
103 CALL BEIUGR(B,NA,IOPT,STAT,IER)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F(J1)=R1(IR(J1))
CONTINUE
CALL BEIUGR(F,N,IOPT,STAT,IER)
                                                                                                                   UGR (G, N, IOPT, STAT, IER
                                                                                                                                                                                                                                                                                          CUIPUT FOR JACKKNIFE METHOD
                                                                                                                                                                                                                                                                                                                                                                                                                                           DO 32 JJ=1,N2
CALL GGUDIDSEED,N,N,IR)
DO 33 J1=1,N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           BOOTSTRAP REPLICATIONS
                                    CALCULATE PSEDOVALUES
                                                                                                                                                                                                           NOŘ(BUP, Z2)
NOŘ(BLOW, Z3)
                                                                                                                                                                                                                                                                                                                                                          BOOTSTRAP METHOD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              BOOTSTRAP SAMPLE
                                                                                                                                                                                                                                                                                                                                                                                      CALL VSRTA(R1,N)
                                                                                                                                                                                                                                                       UP=1 -Z3
INT=CUP-CLOW
                                                                                                                                                                                                                                                                                                                                                                                                              RESAMPLING
                                                                                                                                                                                                                                                                                                                                    202
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    32
                           COC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                UUU
```

```
CONF(BUP, BLOW, GHAT, PHAT, GBOOT, GH, BIAS, STAT, ICA)
1.STAT(5)
1.GO TO 150
                                                                      WRITE(61203) ICA,CUP, PHAT,CLOW,AINT
FORMATINUE
CONTINUE
STOP
END
                                                                                                                                                         THIS SUBROUTINE GIVES CONF. LIMITS FOR BT1, BT2, BT3, BT4
P.BLOW, GHAT, PHAT, GBOOT, GH, BIAS, STAT, ICA)
                                                                   OUTPUT FOR BCOTSTRAP METHOD
                                                                                                                                                                                                                        H(195)
MONOR(STAT(1),S1)
1.-S1
                      MONOR( BUP, S3)
                                                 INT=CUP-CLOW
                                                                                                  203
154
900
                                                                                                                                                                                                                                                          150
                                                                                                                                                                                                                                                                                                                                      152
                                                                                                                                                                                                                                                                                                                                                                            153
                                                                                                                                                                                                                                                                                               151
                                                             ပပပ
                                                                                                                                                 COU
```

DIMENSION R (50), 10PT(5), STAT(5), BUP(1000), BLOW(1000), PUP(1000), PLD
EX=1.
\$D=0.48
N1=1000
BO BO LL=1.4
MRITE(6,100) EX.SD SUBROUTINE DELT(N.N), EX, SD, H, GREL)
REAL R(50), BUP(1000), BLOW(1000), PUP(1000), PLOW(1000), AIN(1000), STA
I(5)
INTEGER 10P I(5), N, N1 ** HETHOD . 5 X . SIZE . 5 X . H . 5 X . COVERAGE . 5 X . WIDTH . 5 X . /// 15X, SAMPLE , 25X, AVERAGE, 2X, VARIANCE 1 THIS PROGRAM SIMULATES LOG-NORMAL CASE USING DL AND JK PROCEDURES. EX. NORMAL (', F3.1, ', ', F4.2, ')') UGR(R,N,IOPT,STAT,IER) X.R.N. 16807,01 DELTA METHOD M IN 101 100 102 807 800 800

ပပပ

```
GREL)
)001, Pup (1000), Plow(1000), Ain(1000), A(1
                                                                                                                                                                                                                                                                                                                                                                                  ) N'H'PROB.TINT.SINT
7X, DL",7X, I2, 6X,F3.1,5X,F6.4,6X,F6.4,5X,F6.4)
                                                                                                            iÓR(CU.E2)
2-62
2-61
6E. BLOW(I).AND.GREL.LE.BUP(I)) J=J+1
. /FLOAT(N))
                                                                                                                                                                                        ĽĎAT(J)/NI
EIUGR (PLOW.NI,IOPT,STAT,IER)
STAT(1)
EIUGR (PUP,NI,IOPT,STAT,IER)
                                                                                                                                                                                                                                                                                                                                                 ĜŘ (BLOW, NI, IOPT, STAT, IER)
                                                                                                                                                                                                                                                                      ĠŔ (AIN, NI, IOPT, STAT, I ER)
                                                                                                                                                                                                                                                                                                      (5)**.5
GR (BUP,N1,IOPT,STAT,IER)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        KB=1 N1
LNORM IX,R,N,16807,0)
KC=1,N
= (SD*R(KC))+EX
INUE
BEIUGR(R,N,IOPT,STAT,IER)
                                                                                                                                                                                                                                                                                                                                                                                                                                                               JACKKNIFE METHOD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       22
                                                                                                                                                                                                                                                                                                                                                                                                  103
```

ပပပ

```
E.BIOW(KB).AND.GREL.LE.BUP(KB)) JJ=JJ+1
                                                                                                                                                                                                        BAR=STAT(1)
SD1=STAT(5) **.5
G(J)=(N*GHAT)-(NA*(ALOG(H)-BAR)/SD1)
                                                                                                                                                ÍOTÍÐÐ
L BEIUGR (B, NA, 1 OPT, STAT, IER)
                                                                                                                                                                                                                                                     <u> Ugr (g, n, iopt , stat , ier )</u>
            9999.1 60 TO 101
                                                                                                                                                                                                                                                                                                 .05, F, X, IER)
                                                                                                                                                                                 CALCULATE PSEDOVALUES.
                                                                K.GT.NA! GO TO 103
                                                                                                                          GO TO 103
                                                                                                                                                                                                                                                                          ($ \ /N) **.5
100
                                                                                                               102
                                                                                                                                                            103
                                                       101
                                                                                                                                                                                                                                                                                       ပပ
```

| 503) N'H'PROB, TINT, SINT JN:

ACOB=FL.

CALL BEIUGR (PUP. n.
TPUP=STAT(1)
CALL BEIUGR (AIN, NI, 10P.,
TINT=STAT(2)
SINT=STAT(3)
SINT=STAT(4)
CALL BEIUGR (BUP, NI, 10PT, STAT, 1ER.

CUI=STAT(1)

ALL BEIUGR (BLOW.NI, 10PT, STAT, 1ER.

AT(1)
AT UAT(JJ)/NI TUGR (PLOW,NI, IOPT, STAT, IER) TAT(1) UÇR (PUP.NI "... 21

```
STAT(5), BUP (1000), BLOW(1000), PUP(1000), PLO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         fSTRAP METHOD*,/,11X,*---------*)
X SD
IfTION=*,14,/,5X,*SAMPLE SIZE=*,12,//,5X,*EXPE
X,*STAND DEV=*,F4.2,//)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     4X, "LOWER G", 1X, "REAL G", 2X, "UPPER G", 2X, "PROB", 5X, "PUPPER G", 2X, "PROB", 5X, "PLOW", 5X, "SD(PUP-PLOW)", 6X, /, "------
                       THIS PROGRAM SIMULATES LOG-NORMA: CASE USING BT4 PROCEDURES.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              DO 30 I=1,N1
CALL LNDRM(IX,R,N,1,1)
DO:31 II=1,N
R(II)=(SD*R(II))+EX
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                GENERATE NORMAL (EX, SD)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 DO 32 JJ=1,NZ
                                                                                                                                                         *# 1000 AIN BOUND BOUND BOUND BE PRECOND BOUND B
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              RESAMPLING
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 SD = 1
100 P = 1
MR 1 T
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             102
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       31
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       101
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                coo
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ပပပ
COCO
```

```
WRITE(6,103) H,CL1,GREL,CU1,PROB,TPLOW,TPUP,TINT,SINT
FORMAT('0',5X,F3.1,3X,F5.2,3X,F5.2,3X,F5.2,3X,F6.4,3X,F6.4,3X,F6.4
                                                                                                                                                                                                                                GH(JJ)=(ALOG(H)-STAT(1))/(STAT(5)**.5)
CONTINUE
CALL BEIUGP (GH, NZ, IOPT, STAT, IER)
BIAS=STAT(1, -GHAT
GBOOT=(2, -GHAT)-STAT(1)
CALL VSRTA(GH, NZ)
                                                                                                                                                                                                                                                                                                                                                                                                                                           UĞĀ (BLOW,NI, IOPT, STAT, IER)
                                                                                                                                                                                                                                                                                                                                                                                                             † { $ }** . 5
UGR (BUP , N1 , I DPT , STAT , I ER )
                                                                                                                                                                                                                )=GBOOT-(1.96*(STAT(5)**.5)
=GBOOT+(1.96*(STAT(5)**.5))
                                                  F(J1)=R(IR(J1))
CONTINUE
CALL BEIUGR(F,N,IOPT,STAT,IER)
                                                                                                                                                                                          COMPUTE CONFIDENCE LIMITS
CALL GGUDIDSEED,K,NR,IR)
DO 33 JI=1,N
                                                                                              BOUTSTRAP REPLICATIONS
                                                                                                                                                                                                                BLOW(1)=GB00T-(1.96
BUP(1)=GB00T+(1.96
CL=RLOW(1)
CALL MDNOR(CL,E1)
PLOW(1)=1.-E1
                               BOOTSTRAP SAMPLE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DUT PUT
                                                               33
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           103
                                                                                                                              32
                       UUU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ررر
                                                                                     ပပပ
                                                                                                                                                                                   COO
```


APPENDIX B

LOG-NORMAL AND STRETCHED LONG-TAILED EXPONENTIAL DISTRIBUTION

(1) Let x be log-normal random variable which $\ln(x)$ $1, \sigma^2$) k moment of x as follows:

$$E[x^{k}] = \exp(k\mu + 1/2 \cdot k^{2}\sigma^{2})$$

! [Ref. 7] so

$$E[x] = \exp(\mu + 1/2 \cdot \sigma^2)$$

 $E[x^2] = \exp(2\mu + 2 \cdot \sigma^2)$
 $Var[x] = (E[x])^2 (e^{\sigma^2} - 1)$

"coefficient of variation" as follows:

$$\frac{\operatorname{Var}[x]}{(\operatorname{E}[x])^2} = \operatorname{e}^{\sigma^2} - 1$$

(2) Let W be stretched long-tailed exponential variable ich W = $A \cdot z(1 + C \cdot z)$ where z is unit exponential and A and are constant. If we write CDF for this distribution as:

$$P(W \le w) = P[A \cdot z(1 + C \cdot z) \le w] = P[Z \le z(w)]$$

= $A \cdot z (1 + C \cdot z)$. If we solve this equation for z we can get z) as

$$z(w) = \frac{-A \pm \sqrt{A^2 + 4ACw}}{2AC}$$

$$E[w] = A(1 + 2C)$$

$$E[w^2] = A^2[2 + 12C + 24C]$$

$$Var[w] = A^2[1 + 8C + 20C]$$

$$(cv)^2 = \frac{Var[w]}{(E[w])^2} = \frac{1 + 8C + 20C^2}{1 + 4C + 4C^2}$$

If we look at w as a log-normal (μ, σ^2) variable then

$$\frac{1 + 8C + 20C^2}{1 + 4C + 4C^2} = e^{\sigma^2} - 1$$

We can get C value from this equation, then

$$E[w] = A(1 + 2C) = e^{\mu + \frac{1}{2}\sigma^2}$$

gives A value.

APPENDIX C

POWER TRANSFORMATION

The problem is in the x^p transformation (toward the normal form) finding the p value for given data. One method for finding the p value is as follows [Ref. 8]: x_1, x_2, \ldots, x_p data points and M = Median of this data.

(1) Take order statistic of given data

$$x_{(1)} < x_{(2)} < \dots < x_{(n)}$$

(2) Then compute q_{i} values as

$$q_{j} = 1 - p_{j} = \left[\frac{(x_{(n-j+1)} - M) - (M - x_{(j)})}{(x_{(n-j+1)} - M)^{2} + (M - x_{(j)})^{2}} \right] 2 \cdot M \quad j = 1, 2, ..., n/2$$

where M is the median of the data.

(3) Take the median or mean of $q_{\dot{1}}$:

$$\tilde{q} = \text{median}(q_j) \text{ or } \tilde{q} = \frac{1}{[n/2]} \sum_{j=1}^{n/2} q_j$$

(4) Then we can get p value as $\tilde{p} = 1 - \tilde{q}$.

Table 13 gives simulation results for this algorithm for the exponential case. For the exponential case the best p value is p = 1/3. Simulation results do not give this value so this algorithm is not working correctly.

Table 13: Simulation results for P algorithm using Exponential data.

	λ=0.22			
Sample	Average	Variance	Skewness	
Size	of P	of P	of P	
10	0.7434	0.9174	0.7535	
20	0.6039	0.3507	1.3270	
30	0.5336	0.2455	1.3619	
40	0.5121	0.1872	1.8234	
50	0.4903	0.1397	1.4981	
60	0.4859	0.1122	1.4225	
70	0.4658	0.0912	1.5475	
80	0.4571	0.0814	1.6633	
90	0.4498	0.0710	1.5987	
100	0.4470	0.0669	1.8234	
110	0.4403	0.0580	1.9513	
120	0.4323	0.0515	1.4446	
130	0.4298	0.0434	1.3154	
140	0.4263	0.0452	1.4466	
150	0.4196	0.0394	1.5704	

APPENDIX D

MEAN SQUARE ERROR OF SURVIVAL PROBABILITY

Mean-square errors were calculated for exponential case using the log transformation for three values and h=4.0. The procedure is as follows:

- (1) Generate exponential sample $x_1, x_2, ..., x_n$, n = 10, 20, ..., 250.
 - (2) Find actual survival probability as:

$$P(x>h) = e^{-\lambda h}$$

(3) Estimate survival probability (incorrectly) as:

$$\hat{P}(x>h) = \int_{\frac{\ln h - \hat{u}}{\hat{\sigma}}}^{\infty} e^{-\frac{1}{2}z^{2}} \frac{dz}{\sqrt{2\pi}}$$

- (4) Calculate $(P(h) \hat{P}(h))^2$
- (5) Repeat this procedure 1000 times.
- (6) Calculate MSE as:

$$\widehat{MSE} = \frac{1}{1000} \sum_{i=1}^{1000} [P(h) - \hat{P}_{i}(h)]^{2}$$

Simulation results for mean square error of survival probability were shown in Tables 14, 15 and 16.

Table 14: Mean Square Error of Survival probability for EXP(λ) case using Log transformation.

h=4.0	$\lambda = 0.22$
-------	------------------

	11-4.0 \	• 2 4
Sample	Mean Square	Square Root
Size	Error (MSE)	of MSE
10	0.0166	0.1288
20	0.0085	0.0920
30	0.0063	0.0795
40	0.0056	0.0746
50	0.0049	0.0699
60	0.0045	0.0673
70	0.0041	0.0642
80	0.0040	0.0635
90	0.0038	0.0614
100	0.0038	0.0612
110	0.0037	0.3604
120	0.0035	0.0594
130	0.0034	0.0585
140	0.0033	0.0578
150	0.0033	0.0575
160	0.0033	0.0572
170	0.0032	0.0564
180	0.0031	0.0560
190	0.0032	0.0562
200	0.0032	0.0563
210	0.0031	0.3561
220	0.0031	0.0557
230	0.0031	0.0558
240	0.0031	0.0557
250	0.0031	0.0553

Table 15: Mean Square Error of Survival probability for $\text{EXP}(\lambda)$ case using log transformation.

 $h=4.0 \lambda=0.13$

	H=4.0 X=0	• 13
Sample	Hean Square	Square Root
Size	Error (MSE)	of MSE
10	0.0234	0.1531
20	0.0128	0.1132
30	0.0098	0.0991
40	0.0089	0.0942
50	0.0081	0.0897
60	0.0076	0.0869
70	0.0070	0.0834
80	0.0068	0.0824
90	0.0065	0.0803
100	0.0064	0.0802
1 10	0.0063	0.0792
120	0.0061	0.0781
130	0.0059	0.0770
140	0.0059	0.0765
150	0.0058	0.0762
160	0.0058	0.0758
170	0.0057	0.0753
180	0.0055	0.3745
190	0.0056	0.0746
200	0.0056	0.3747
210	0.0056	0.3747
220	0.0055	0.3744
230	0.0056	0.0745
240	0.0055	0.0743
250	0.0054	0.0737

Table 16: Mean Square Error of Survival probability for $EXP(\lambda)$ case using Log transformation.

h=4	-0	λ=	: 0	. 25
44 4		Λ-	- •	

	11-4-0 X-0	• 4 5
Sample	Mean Square	Square Root
Size	Error (MSE)	of MSE
10	0.0135	0.1160
20	0.0066	0.0812
30	0.0047	0.0688
40	0.0041	0.0637
50	0.0034	0.0585
60	0.0031	0.0559
73	0.0028	0.0526
80	0.0027	0.0519
90	0.0025	0.0495
100	0.0024	0.0492
110	0.0023	0.0483
120	0.0022	0.0472
130	0.0022	0.0465
140	0.0021	0.0456
150	0.0021	0.0453
160	0.0020	0.0448
170	0.0019	0.0439
180	0.0019	0.0435
190	0.0019	0.0437
200	0.0019	0.0438
210	0.0019	0.0435
220	0.0019	0.0431
230	0.0019	0.0431
240	0.0018	0.0429
250	0.0018	0.0425

APPENDIX E

DATA POINTS FOR EXAMPLE

These	are recovery	times (hours)	from LOSP at	nuclear
plants:				
24.6160	25.6660	11.0830	0.0038	0.3333
0.6166	1.5000	1.1833	0.0333	0.0500
0.2666	5.8000	4.9830	1.8330	0.5000
6.4660	0.2833	1.0000	0.9000	0.1666
0.6666	0.4333	0.1333	0.0166	5.5833
0.4833	0.0028	0.9333	0.2333	4.9833
0.1500	2.6660	4.7500	0.1333	1.0166
0.0666	0.0166	8.9000	3.5000	0.9166

0.3333 0.0041

LIST OF REFERENCES

- 1. Mosteller, F., and Tukey, J. W., <u>Data Analysis and Regression</u>, Addison-Wesley, 1977.
- Cramér, Harald, <u>Mathematical Methods of Statistics</u>, Princeton University Press, 1946.
- Mosteller, F., and Tukey, J. W., <u>Data Analysis</u>, <u>Including Statistics</u>, <u>Addison-Wesley</u>, 1968-1970.
- 4. Efron, Bradley, The Jackknife, The Bootstrap, and Other Resampling Plans, Technical Report No. 63, Stanford University, Department of Statistics, December 1980.
- 5. Arnold, D. Allen, <u>Probability</u>, <u>Statistics and Queueing</u>
 <u>Theory with Computer Science Applications</u>, 1978.
- 6. Hahn, G. J., and Shapiro, S. S., <u>Statistical Models in Engineering</u>, John Wiley and Sons, Inc., New York, 1967.
- 7. Johnson, N. L., and Kotz, S., <u>Continuous Univariate Distributions</u>, Vol. 1., John Wiley and Sons, Inc., 1970.
- 8. Emerson, John D., and Stoto, Michael A., <u>Journal of the American Statistical Association</u>, Vol. 77, Number 377, March 1982.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22314		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940		. 2
3.	Department Chairman, Code 55 Department of Operations Research Naval Postgraduate School Monterey, California 93940	1.01	1 (*)
	Professor D. P. Gaver, Code 55Gv Department of Operations Research Naval Postgraduate School Monterey, California 93940		5
5.	Bogazici Universitesi Yon Eylem Analizi Bolumu Besiktas, Istanbul, Turkey		1
6.	Dz.K.K.ligi Bakanliklar, Ankara, Turkey		5
7.	Deniz Harpokulu K.ligi Heybeliada, Istanbul, Turkey		1
8.	Professor P. A. Jacobs, Code 55Jc Department of Operations Research Naval Postgraduate School Monterey, California 93940		1
9.	LT Cora Deniz Oyak Sitesi 27, Block D.1 Yenilevend, Istanbul, Turkey		1

		No. Copies
10.	Chief of Naval Research Arlington, VA 22217	1
11.	Dean of Research Code 012A Naval Postgraduate School Monterey, CA 93940	1
12.	Library, Code 55 Naval Postgraduate School Monterey, CA 93940	1