运筹学

15. 网络分析 (续完)

李 力清华大学

Email: li-li@tsinghua.edu.cn

2024.1.

主要内容

运输问题 指派问题

运输问题

某种物品有 m 个产地,记为 A_1, A_2, \dots, A_m ,各 产地产量分别是 a_1, a_2, \dots, a_m ; 有 n 个销地 B_n B_2, \dots, B_n , 各销地销量分别是 b_1, b_2, \dots, b_n ; 假 定从产地 A_i 向销地 B_i 运输单位物品的运价 是 c_{ii} ;问怎样调运这些物品能使总费用最小

销地 产地	B_1	B_2	•	B_n	产量		
A_{1}	x_{11}	x_{12}		X_{1n}	a_1		
A_2	x_{21}	x_{22}		X_{2n}	a_2		
:					÷		
A_{m}	x_{m1} C_{m1}	X_{m2}		\mathcal{X}_{mn}	a_{m}		
销量	$b_{_{1}}$	b_2	•••	b_n			

运输问题的网络描述

6 流量平衡和非负约束下极小化总的运输费用

$$\sum_{i=1}^{m} \sum_{j=1}^{n} C_{ij} X_{ij}$$

线性规划模型

$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}
\text{s.t.} \quad \sum_{j=1}^{n} x_{ij} = a_{i}, \ \forall 1 \le i \le m
- \sum_{i=1}^{m} x_{ij} = -b_{j}, \ \forall 1 \le j \le n
x_{ij} \ge 0, \ \forall 1 \le i \le m, 1 \le j \le n$$

$$\Rightarrow \quad \sum_{i=1}^{m} \sum_{j=1}^{n} P_{ij} x_{ij} = \begin{pmatrix} a_{1} \\ \vdots \\ a_{m} \\ -b_{1} \\ \vdots \\ -b_{n} \end{pmatrix}$$

由于等式约束右边所有行相加等于零,所以必须成立

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j \triangleq Q \qquad (产销平衡假定)$$

运输问题可化为最小费用流问题

用单纯形法求运输问题

如下例

销地产地	B_1	B_2	B_3	B_4	产量
$A_{ m l}$	<i>x</i> ₁₁ 8	x_{12}	<i>x</i> ₁₃ 10	<i>x</i> ₁₄ 9	35
A_2	x_{21}	x_{22}	x_{23}	<i>x</i> ₂₄ 7	50
A_3	<i>x</i> ₃₁ 14	<i>x</i> ₃₂	16 x ₃₃	<i>x</i> ₃₄ 5	40
销量	45	20	30	30	

数学规划模型为

$$\min \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} = 8x_{11} + 6x_{12} + 10x_{13} + 9x_{14} + 9x_{21} + 12x_{22} + 13x_{23} + 7x_{24} + 14x_{31} + 9x_{32} + 16x_{33} + 5x_{34}$$

s.t.
$$x_{11} + x_{12} + x_{13} + x_{14} = 35$$

 $x_{21} + x_{22} + x_{23} + x_{24} = 50$
 $x_{31} + x_{32} + x_{33} + x_{34} = 40$
 $x_{11} + x_{21} + x_{31} = 45$
 $x_{12} + x_{22} + x_{32} = 20$
 $x_{13} + x_{23} + x_{33} = 30$

$$x_{14} + x_{24} + x_{34} = 30$$
 $x_{ij} \ge 0, \ \forall 1 \le i \le 3, 1 \le j \le 4$

运输网络

如何在图上确定基本可行解

如何在图 上改进基 本可行解 如何计算选定进基变量后的基本可行解

如何选择进基变量使目标函数改进

如何判断已经找到最优的基本可行解

对于产销平衡运输问题的等式约束

$$\sum_{j=1}^{n} x_{ij} = a_i, \quad i = 1, 2, \dots, m; \sum_{i=1}^{m} x_{ij} = b_j, \quad j = 1, 2, \dots, n$$

$$\sum_{j=1}^{n} \hat{x}_{ij} = \frac{a_i}{Q} \sum_{j=1}^{n} b_j = a_i, \forall i$$

$$\Rightarrow \sum_{j=1}^{m} \hat{x}_{ij} = \frac{b_j}{Q} \sum_{j=1}^{m} a_i = b_j, \forall j$$

是该问题的可行解,因此一定有基本可行解,且一定存在有限的最优目标值。

运输问题的数学规划模型

$$\min \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij}$$

s.t.
$$\sum_{j=1}^{n} x_{ij} = a_i, \quad \forall 1 \le i \le m$$

$$\sum_{i=1}^{m} x_{ij} = b_j, \ \forall 1 \le j \le n$$

$$x_{ij} \ge 0, \ \forall 1 \le i \le m, 1 \le j \le n$$

产销平衡:
$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j = Q$$

如果
$$\sum_{j=1}^{n} x_{ij} = a_i, \ \forall 1 \le i \le m;$$
 $\sum_{i=1}^{m} x_{ij} = b_j, \ \forall 1 \le j \le n-1$

$$\sum_{i=1}^{m} x_{in} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} x_{ij} - \sum_{j=1}^{n-1} x_{ij} \right) = \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} - \sum_{i=1}^{m} \sum_{j=1}^{n-1} x_{ij}$$

$$\Rightarrow \qquad = \sum_{i=1}^{m} a_{i} - \sum_{j=1}^{n-1} \sum_{i=1}^{m} x_{ij} = Q - \sum_{j=1}^{n-1} b_{j} = b_{n}$$

最后一个约束多余,等式约束可写成

$$\sum_{j=1}^{n} x_{ij} = a_i, \ \forall 1 \le i \le m; \quad \sum_{j=1}^{m} x_{ij} = b_j, \ \forall 1 \le j \le n-1$$

有 m+n-1 个等式约束,和基本可行解变量个数相等

产生基本可行解

运输问题等式约束齐次方程 $\sum_{i=1}^{m} \sum_{j=1}^{n} P_{ij} x_{ij} = 0$ 的网络描述

部分变量的齐次方程可用对应边网络描述

例如 $P_{11}x_{11} + P_{21}x_{21} + P_{14}x_{14} + P_{24}x_{24} + P_{34}x_{34} = 0$ 可用以下红线构成的网络描述

如果部分变量的网络有回路,其齐次方程一定有非零解

齐次方程为 $P_{11}x_{11} + P_{21}x_{21} + P_{14}x_{14} + P_{24}x_{24} = 0$,有非零解 $x_{11} = -x_{21} = x_{14} = -x_{24}$

如果部分变量的网络无回路,其齐次方程一定无非零解

齐次方程为 $P_{11}x_{11} + P_{21}x_{21} + P_{14}x_{14} = 0$, 只有零解

结论:运输问题一组变量的系数向量线性无关的充要 条件是这些变量对应的网络不含回路

例、3个产地4个销地的产销平衡运输问题

用最小元素法产生基本可行解

基本思想: 优先安排单位运输成本最小的运输方式

<u>一定有支撑树构成基本可行解,基变量个数 m+n-1</u>

注意: 任意给定支撑树不一定能产生基本可行解

A₃ 处的流量平衡方程不可能满足

产生基本可行解的最小元素法

基本思想: 优先安排单位成本最小的运输方式

计算检验数

删除多余约束的线性规划模型

回忆检验数计算公式

$$\sigma_{ij} = c_{ij} - C_B^T B^{-1} \overline{P}_{ij} , \quad \forall i, j$$

令
$$\bar{Y}^T = C_B^T B^{-1}$$
 (对偶变量)

$$\Rightarrow C_B^T = \overline{Y}^T B \qquad \sigma_{ij} = c_{ij} - \overline{Y}^T \overline{P}_{ij} , \quad \forall i, j$$

由于
$$c_{ij} = (u_1 \cdots u_m \ v_1 \cdots v_{n-1}) \overline{P}_{ij} \ , \quad \forall \overline{P}_{ij} \in B$$

$$\Leftrightarrow c_{ij} = (u_1 \cdots u_m \ v_1 \cdots v_{n-1} \ v_n) P_{ij} , \quad \forall \overline{P}_{ij} \in B, \quad v_n = 0$$

$$\Leftrightarrow$$
 $c_{ij} = u_i - v_j$, $\forall \overline{P}_{ij} \in B$, $v_n = 0$

可利用支撑树计算对偶变量(位势法),如下例所示

求得对偶变量后,又可以利用支撑树计算检验数

$$v_n = 0 \implies \sigma_{ij} = c_{ij} - \overline{Y}^T \overline{P}_{ij} = c_{ij} - Y^T P_{ij} = c_{ij} - (u_i - v_j)$$

$$u_{1} = 11$$
 A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{6}
 A_{7}
 A_{1}
 A_{1}
 A_{2}
 A_{2}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{5}
 A_{5}
 A_{6}
 A_{7}
 A_{1}
 A_{1}
 A_{2}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{5}
 A_{5}
 A_{6}
 A_{7}
 A_{1}
 A_{1}
 A_{2}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{5}
 A_{5}
 A_{6}
 A_{7}
 A_{1}
 A_{1}
 A_{2}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{5}
 A_{5}
 A_{5}
 A_{6}
 A_{7}
 A_{7}
 A_{1}
 A_{2}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{5}
 A_{5}
 A_{5}
 A_{7}
 A_{1}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{5}
 A_{5}
 A_{5}
 A_{5}
 A_{5}
 A_{5}
 A_{7}
 A_{7}

改进基本可行解

因为 σ_{24} <0 ,让 x_{24} 进基可改进基本可行解

加入 x₂₄ 必和某些基变量形成回路

下面的 δ 能保证流量平衡约束被满足

由变量非负约束可知 δ 最大值为2

$$\delta = 2 \implies x_{24} = 2, x_{14} = 4, x_{13} = 12, x_{23} = 0$$
(x_{24} 进基, x_{23} 出基)

算法总结

- 1) 通过求支撑树确定初始基本可行解
- 2) 用位势法计算所有非基变量的检验数
- 3) 如果所有检验数不小于零,已得最优解, 否则找出最小下标对应的非基变量 (按Bland法则进出基能保证收敛,所有可以 进基的x ij 排序构成的,先看i最小,再看i最 小的顺序选)以及与其形成回路的基变量, 据此确定相应非基变量的增加值以及回路基 变量的新值,然后回到上一步继续迭代

总产量大于总销量(产销不平衡)的运输问题

$$\sum_{i=1}^{m} a_i > \sum_{j=1}^{n} b_j$$

优化模型

$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

s.t.
$$\sum_{j=1}^{n} x_{ij} \le a_i, i = 1, 2, \dots, m$$

$$\sum_{i=1}^{m} x_{ij} = b_j, \quad j = 1, 2, \dots, n$$

$$x_{ij} \ge 0, \ i = 1, 2, \dots, m, \ j = 1, 2, \dots, n$$

处理办法

引入假想销地 B_{n+1}

定义假想销地 B_{n+1} 的销量 $b_{n+1} = \sum_{i=1}^{m} a_i - \sum_{j=1}^{n} b_j$

往假想销地的运量没有成本 \Rightarrow $c_{in+1}=0, i=1,2,\cdots,m$

优化模型

min
$$\sum_{i=1}^{m} \sum_{j=1}^{n+1} c_{ij} x_{ij}$$
s.t.
$$\sum_{j=1}^{n+1} x_{ij} = a_i, \quad i = 1, 2, \dots, m$$

$$\sum_{i=1}^{m} x_{ij} = b_j, \quad j = 1, 2, \dots, n+1$$

$$x_{ij} \ge 0, \quad i = 1, 2, \dots, m, \quad j = 1, 2, \dots, n+1$$

加整数约束的运输问题

min
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
s.t. $\sum_{j=1}^{n} x_{ij} = a_i$, $\forall 1 \le i \le m$

$$\sum_{i=1}^{m} x_{ij} = b_j$$
, $\forall 1 \le j \le n$

$$x_{ij} 为 非负整数, $\forall 1 \le i \le m, 1 \le j \le n$$$

当产量和销量均为整数时,由基本可行解的产生过程和改进过程可知,最终得到的最优解一定是非负整数,所值的重点的算法同样可以解决这种整数约束的运输问题

例 开办五家新商店,要五家建筑公司分别承建,各公司营造费用报价如下,如何指派使总造价最小

费用报价商店公司	\boldsymbol{B}_1	\boldsymbol{B}_2	B_3	B_4	B_5
A_1	4	8	7	15	12
A_2	7	9	17	14	10
A_3	6	9	12	8	7
A_4	6	7	14	6	10
A_5	6	9	12	10	6

标准指派问题的一般提法

有 n 件事要 n 个人完成,每人做一件事,已知第 i 个人做第 j 件事的成本是 c_{ij} ,要确定人和事之间一对一的指派方案,使完成这 n 件事的总费用最小

称 $C = (c_{ij})_{n \times n}$ 为指派问题的系数矩阵

整数规划模型

$$\min \sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}$$

s.t.
$$\sum_{j=1}^{n} x_{ij} = 1, i = 1, 2, \dots, n$$
$$\sum_{i=1}^{n} x_{ij} = 1, j = 1, 2, \dots, n$$

 $x_{ii} \in \{0, 1\}, \ \forall i, j$

去掉整数约束标准指派问题是下述产销平衡运输问题

整数容量约束 → 整数解 → 0-1约束自动满足!

求解下述运输问题可得标准指派问题的解

min
$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

s.t. $\sum_{j=1}^{n} x_{ij} = 1, i = 1, 2, \dots, n$
 $\sum_{i=1}^{n} x_{ij} = 1, j = 1, 2, \dots, n$
 $x_{ij} \ge 0, \forall i, j$

例:某商业公司要开办五家新商店,要五家建筑公司分别承建,各公司营造费用报价如下,商业公司应如何分派使总造价最小

费用报价 商店公司	\boldsymbol{B}_1	B_{2}	B_3	B_4	B_5
A_1	4	8	7	15	12
A_2	7	9	17	14	10
A_3	6	9	12	8	7
A_4	6	7	14	6	10
A_5	6	9	12	10	6

可行解:

$$x_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

可行解:

$$x_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

尽管可以用求解运输问题的算法求解标准指派问题,由于存在大量的<u>退化解</u>,经常出现换基不能改进目标函数的情况,这种做法效率不高

进一步挖掘标准指派问题的特点可以获得更加有效的算法,这就是所谓的<u>匈牙利算法</u>

匈牙利树和匈牙利算法

匈牙利算法是一种在多项式时间内求解指派分配问题的组合 优化算法,并推动了后来的原始对偶方法。

1955年,Kuhn利用匈牙利数学家康尼格(D.Kőnig)的一个定理构造了这个解法,故称为匈牙利法(Hungarian matching algorithm)。

1957年,Munkres也独立给出了这个算法。因此,目前很多 文献将这个算法称为Kuhn-Munkres Algorithm。

H.W. Kuhn, "The Hungarian method for the assignment problem," Nav. Res. Logist. Q., 2 (1955), pp. 83-97.

J. Munkres, "Algorithms for the assignment and transportation problems," J. Soc. Ind. Appl. Math., 5 (1) (1957), pp. 32-38.

标准指派问题的第一个有用的性质

任取 $1 \le k \le n$ 和任意实数 A ,用 C_1 和 C_2 分别表示将 C 的第 k 行或第 k 列减去 A 以后得到的系数矩阵,则以 C , C_1 或 C_2 为系数矩阵的指派问题的最优方案相同

理曲:
$$\sum_{\substack{i=1\\i\neq k}}^{n}\sum_{j=1}^{n}c_{ij}x_{ij} + \sum_{j=1}^{n}(c_{kj}-A)x_{kj} = \sum_{i=1}^{n}\sum_{j=1}^{n}c_{ij}x_{ij} - A$$

$$\sum_{i=1}^{n}\sum_{\substack{j=1\\j\neq k}}^{n}c_{ij}x_{ij} + \sum_{i=1}^{n}(c_{ik}-A)x_{ik} = \sum_{i=1}^{n}\sum_{j=1}^{n}c_{ij}x_{ij} - A$$

目标函数差一个常数,约束相同,最优解也相同

标准指派问题的第二个有用的性质

如果 $C \in \mathbb{R}^{n \times n}$ 的所有元素中没有负数,且存在 n 个行列号都互不相同的零元素(简称为独立零元素),那么对应的标准指派问题的最优目标值等于零,最优方案可以由独立零元素的位置确定

例如

$$C = \begin{pmatrix} 1 & 3 & 0 & 11 & 8 \\ 0 & 0 & 6 & 6 & 2 \\ \hline 0 & 1 & 2 & 1 & 0 \\ 1 & 0 & 5 & 0 & 4 \\ 1 & 2 & 3 & 4 & 0 \end{pmatrix}$$

最优解

 $x_{13} = x_{22} = x_{31} = x_{44} = x_{55} = 1$

算法设想

- 一、利用第一个性质产生零元素
- 二、对给定矩阵找到最大的独立零元素组
- 三、当最大的独立零元素组的零元素数目不够时增加独立零元素的数目

通过以上步骤的迭代找到足够的独立零元素

例、对以下矩阵各行列减去最小值得到含零等价矩阵

$$\begin{pmatrix}
4 & 8 & 7 & 15 & 12 \\
7 & 9 & 17 & 14 & 10 \\
6 & 9 & 12 & 8 & 7 \\
6 & 7 & 14 & 6 & 10 \\
6 & 9 & 12 & 10 & 6
\end{pmatrix}
\rightarrow
\begin{pmatrix}
0 & 4 & 3 & 11 & 8 \\
0 & 2 & 10 & 7 & 3 \\
0 & 3 & 6 & 2 & 1 \\
0 & 1 & 8 & 0 & 4 \\
0 & 3 & 6 & 4 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
0 & 3 & 0 & 11 & 8 \\
0 & 1 & 7 & 7 & 3 \\
0 & 2 & 3 & 2 & 1 \\
0 & 0 & 5 & 0 & 4 \\
0 & 2 & 3 & 4 & 0
\end{pmatrix}$$

要解决的问题:

- 1) 如何找出最大的独立零元素组
- 2) 如果独立零元素不够怎么办

如何找出最大的独立零元素组?

用结点 α_i 表示第 i 行,结点 β_j 表示第 j 列,用边表示零元素位置,可得二分图(所有边端点分属两个点集)

$$\begin{pmatrix}
0 & 3 & 0 & 11 & 8 \\
0 & 1 & 7 & 7 & 3 \\
0 & 2 & 3 & 2 & 1 \\
0 & 0 & 5 & 0 & 4 \\
0 & 2 & 3 & 4 & 0
\end{pmatrix}$$

求左边矩阵最大独立零元素组等价于求右边<u>二分图的最</u> 太基对集,即,互相之间没有相同端点的边的最大集合 对于G = (N, E), 给定<u>对集</u> $M \subseteq E$ (用红线表示), 定义

M-(非)饱和点:和M的边(不)关联的点

M-交错路:由属于和不属于M的边交错形成的路

M-增广路: 起点和终点都是 M-非饱和点的交错路

匈牙利树: 起点是 M-非饱和点但终点不是的交错路

覆盖 $K \subseteq N$: E 中每条边都有端点属于 K

最小覆盖: 所含端点数最少的覆盖

右图 $\alpha_2 \rightarrow \beta_1 \rightarrow \alpha_4 \rightarrow \beta_4$ 是**M**-增广路 $\beta_2 \rightarrow \alpha_4 \rightarrow \beta_1 \rightarrow \alpha_1 \rightarrow \beta_2$ 是匈牙利树 $\{\alpha_1,\alpha_4,\alpha_5,\beta_1\}$ 是覆盖

对集的边数和覆盖的点数之间的关系:

任何对集的边数都不会大于任何覆盖的点数

理由:对集每条边的两个端点至少有一个在覆盖中

扩大给定对集 M的途径:

在 G 中找M-增广路

理由: 如右图用 $(\alpha_2, \beta_1), (\alpha_4, \beta_4)$ 替换 (β_1, α_4) 就可扩大 M

通过标号寻找二分图增广路

重新标号

由于从左边的非饱和点出发只能得到匈牙利树,可知不可能再有M-增广路

用 *S* 和 *T* 分别表示左右两边的点集合用 *L* 表示被标注点集合 可看出:

- 1) $S-L=\{\alpha_1,\alpha_4,\alpha_5\}$ 覆盖不属于匈牙 利树的对边;
- 2) $T \cap L = \{\beta_i\}$ 覆盖属于匈牙利树的对边;
- 3) S-L和 T∩L 不相交

行列数目不同的指派问题也可以用匈 牙利算法

 \Rightarrow $(S-L)\cup (T\cap L)$ 和对边数相等,因此是最小覆盖

M是G的最大对集的充要条件是G中没有M-增广路

以上过程可以直接在费用矩阵上实现

不能再标号,停止,利用最后的匈牙利树 $\{(3,1),(2,1)\}$ 可得最小覆盖 $(S-L)\cup (T\cap L)=\{1,4,5\}\cup \{1\}$

对 S-L用行线 $对 T \cap L$ 用列线 $\rightarrow 0 1
0 2
0 -0
0$

独立零元素不够怎么办?

找出未覆盖处最小的数,在 没被行直线覆盖的行减去最 小数,然后在有负数的列加 上这个最小数

继续用找对集方法找最大的独立零元素组

得最优解
$$x_{13} = x_{22} = x_{31} = x_{44} = x_{55} = 1$$

矩阵操作的匈牙利算法

Step 1) 变换效率矩阵 C, 使每行每列至少有一个 0, 变换后的矩阵记为 B¶

行变换: 找出每行 min 值, 该行各元素减去它; ¶

列变换: 找出每列 min 值,该列各元素减去它;¶

若某行/列已有0元素,则不用减。¶

 \P

对于我们的作业题,得到¶

 $20014\P$

 $0\ 0\ 2\ 0\ 0\P$

 $20034\P$

 $1\ 0\ 0\ 1\ 1\P$

 $2\ 1\ 2\ 0\ 0\P$

Step 2)寻找零元素的最小覆盖:从含零元素最少的行或者列开始,圈出一个零元素,用〇表示,然后划去该〇所在的行和列种的其余零元素,用 \times 表示,依次类推,若能得到n个〇,则得到最优解停止¶

9

对于我们的作业题,得到¶

```
Step 3) 如果\bigcirc的个数少于 n,则进行: ¶
Step 3.1) 对没有圈 ○ 的行打 " √"; ¶
Step 3.2) 在已打"√"的行中,对×所在列打"√";¶
Step 3.3) 在已打"√"的列中,对圈〇的行打"√"; ¶
Step 3.4) 重复 2 和 3 步骤,直到再也找不到可以打"√"的行/列为止;¶
Step 3.5) 对没有打"√"的行画横线表示去掉这一行,对打"√"的列画横线表
示去掉这一列,这样就得到能覆盖所有0的最小横线。¶
对于我们的作业题,得到¶
2 \circ X \circ 1 \circ 4 \rightarrow \rightarrow 2 \circ X \circ 1 \circ 4 \rightarrow \rightarrow 2 \circ X \circ 1 \circ 4 \rightarrow \sqrt{\P}
O \times 2 \times \times \longrightarrow O \times 2 \times \times \longrightarrow O \times 2 \times \times 
2 \times 034 \rightarrow \rightarrow 2 \times 034 \rightarrow \rightarrow 2 \times 034 \rightarrow \sqrt{\P}
1 \times \times 11 \rightarrow \sqrt{\rightarrow} \rightarrow 1 \times \times 11 \rightarrow \sqrt{\rightarrow} \rightarrow 1 \times \times 11 \rightarrow \sqrt{\P}
212 \circ X \rightarrow \rightarrow 212 \circ X \rightarrow \rightarrow 212 \circ X
                                \sqrt{\sqrt{}} \rightarrow \rightarrow \sqrt{\sqrt{}}
```

得到最小覆盖: 第2列和第3列竖线, 第2行和第5行横线¶

2 O X 1 4¶

O X 2 X X ¶

2 X O 3 4¶

1 **X X** 1 1¶

2120X¶

9

Step 4)变换矩阵 B 以增加零元素。¶

在未被直线覆盖的所有元素中找到 min; ¶

然后在打"√"的所有行中减去这个 min; ¶

而在打"√"的所有列中加上这个 min,以保持原来 0 不变(为了消除负元素);¶

得到新的系数矩阵 C。¶

对于我们的作业题,显然上面的未被直线覆盖的所有元素中最小值为1,操作之后有¶

1 O X 0 3¶

O 1 3 X X¶

1 X O 2 3¶

 $0 \times \times 0 0$

2-2-3 O X¶

9

显然此时得到的矩阵很容易可以写出多种 5 个独立零元素组合,这说明原问题有多解。¶

•

Step 5) 如果还没有找到n个独立零元素,返回步骤(2),直到得到n个独立零元素,即得到最优解。¶

非标准指派问题

目标函数求最大

$$\max \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \iff \min \left(nA - \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \right)$$

$$= \min \left(A \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} - \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \right)$$

$$= \min \sum_{i=1}^{n} \sum_{j=1}^{n} (A - c_{ij}) x_{ij}$$

取
$$A = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij}$$
 , 令 $C' = (A - c_{ij})_{n \times n}$, 得标准指派问题

其它非标准情况

- 1)人数和事情不等
- 2) 某人可能不能做某些事

采取下述相应措施可转换成标准指派问题

- 1)增加虚拟的人或事,相应费用系数为0
- 2) 增加不存在的边,相应费用取为很大正数

全单模矩阵和整数解

设有如下整数规划问题S: $\min \left\{ c^Tx: Ax \leq b, x \in Z_+^n \right\}$ (1)

其连续松弛问题S1: $\min\left\{c^Tx:Ax\leq b,x\in R^n_+\right\}$ (2)

进一步假设b是整数向量

定理2.1: 若线性规划问题P1的最优基矩阵 B 满足 $det(B) = \pm 1$,这里 B 是矩阵 (A,I) 的 $m \times m$ 维子方阵,则线性规划问题P1 的最优解 x^* 是整数解。

证明:由线性规划的基本理论可知 $x^* = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$,根据克莱默法则可知 $B^{-1} = B^*/\det{(B)}$ 。

由假设条件1可知 伴随矩阵 B^* 的所有元素也是整数,同时由于 $det(B) = \pm 1$,易知 B^{-1} 的所有元素也是整数的。再根据 B^{-1}, b 都是整数的,可知 x^* 也是整数的。

全单模矩阵(totally unimodular matrix)定义:设矩阵 $A_{m\times n}$,若矩阵 A 的任意子方阵的行列式为0,-1,+1,则称矩阵 A 为全单模矩阵。(子方阵是指把一个矩阵的一部分行和一部分列的交点所构成的方阵)

定理2.2:若矩阵 A 是全单模矩阵,向量b 的所有元素都是整数,则问题P1所构成的可行域(也是一个多面体) $\{x \in R^n_+ : Ax \leq b\}$ 的顶点都是整数点。

定理2.2:若矩阵 A 是全单模矩阵,向量b 的所有元素都是整数,则问题P1所构成的可行域(也是一个多面体) $\{x \in \mathbb{R}^n_+ : Ax \leq b\}$ 的顶点都是整数点。

证明:多面体可以表示为 $Ax + Iy = b, x \in R_+^n, y \in R_+^m$ 。设 (A,I) = (B,N) ,其中 B 是基矩阵,有定理2.1可知 B^{-1} 是整数矩阵,从而 $(x,y)^T = (B^{-1}b,0)^T$ 是线性规划P1的一个基本可行解,也就是说所有的基本可行解都是整数点。

然后,由多面体顶点和基本可行解的对应关系(一个多面体顶点至少有一个基本可行解与之对应),进一步可知所有多面体的顶点都是整数点。

性质1: 若矩阵 A 是全单模矩阵,则矩阵中的元素只能为0, -1或者+1。

其逆否命题为:若矩阵中有任意一个元素不等于0,-1或者+1,则矩阵 A 不是全单模矩阵。好了这个逆否命题是非常实用的,一下子就把很多矩阵排除出了全单模矩阵的范畴。

性质2:设整数矩阵 A 是全单模矩阵 P 对 P 进行一下运算不改变其全单模性质:

- (1) 对矩阵 *A* 进行转置
- (2) 矩阵 (A, I) 是全单模的
- (3) 去掉 A 的一行或者一列
- (4) 将 A 的一行或者一列乘以 -1
- (5) 互换 A 的两行或者两列
- (6) 对 *A* 进转轴运算

推论1:设矩阵 A 的任意元素都是0,-1或者+1,并且每列至多有2个非0元素,则矩阵 A 是全单模矩阵当且仅当存在 A 的行分割 Q_1,Q_2 使得同一列中的两个非0元素满足以下条件:

- (1) 若符号相同,则一个元素位于 Q_1 ,另一个元素位于 Q_2
- (2) 若符号相反,则这两个元素同时属于 Q_1 或者同时属于 Q_2

推论2:设矩阵 A 的任意元素都是0,-1或者+1,若 A 满足以下两个条件则矩阵 A 是全单模的;

- (1) A 的每一列至多含有2个非0元素
- (2) 若某列含有2个非0元素,则两个元素之和为0

最后强调一点就是推论1和2都是充分条件,也就是说满足推论1和2的那肯定是全单模矩阵,但是不满足的也可能是全单模矩阵也可能不是全单模矩阵,这一点大家在使用的时候需要注意。

常见的全单模矩阵整数规划问题

1. 二分图问题

其 $V \times E$ 关联矩阵(行表示节点数,列表示边)为

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}_{4\times 3}$$

- 2. 指派问题
- 3. 最小费用最大流问题

因为最小费用最大流问题约束矩阵为全单模、因此整数规划模型的解等价于线性规划的解

可以证明每一个整数流方案都对应线性规划问题的一个顶点

而我们最小费用最大流问题算法的每次迭代的过程就是,从线性规划的一个顶点跳到一个更优的顶点。 根据线性规划问题的性质,一定能够在指数时间内 找到最优解。