Distributed Laplacian Solver

Rahul V

September 13, 2019

Problem Statement

- ▶ Solve Lx = b where L = D A.
- ▶ Properties of *L*:
 - 1. Symmetric, diagonally dominant
 - 2. Singular, Positive semi-definite
 - 3. Sum of each row is 0
- ightharpoonup One sink: $b_n = -\sum_{i=1}^{n-1} b_i$

Approach: Random walk

- Solve Data Collection Problem (DCP)
 - ullet Each node generates a packet with probability $eta J_u$
 - \bullet Random packet from queue and a random neighbor v with probability directly propotional to w_{uv}
 - The packet is then transmitted to this neighbor
 - Packets sunk at the sink immediately
- ▶ At stationarity, $\eta^T(I-P) = \beta J^T$ or $(\eta^T D^{-1})L = \beta J^T$ holds
- ▶ Ergodic iff $\beta < \beta^*$, and we have a lower limit for β^* . So we binary search on β .
- ▶ Scale and shift x for canonical solution, i.e., $\langle x, 1 \rangle = 0$

Status quo: Practical concerns

Testing

► Guarantee by the algorithm:

$$|x_u - \hat{x_u}| < (\epsilon_1 + \epsilon_2)x_u$$
 , whenever $\kappa < x_u d_u$

- Test set construction:
 - m = random from [n-1, n(n-1)/2]
 - Generate Random MST with random weights in [0, 100]
 - Generate random edges by selecting 2 random nodes
 - b_i is chosen randomly from [0, 1000]

Status quo: Practical concerns

Performance

- $(\kappa, \epsilon_1, \epsilon_2) = (0.1, 0.1, 0.1)$
- ▶ Shared memory model with 4 threads
- ightharpoonup Fixed number of rounds (O(nlogn)), sampling from the start

(b) Accuracy

Near future

- Use Message Passing instead of Shared memory model
- Graph partitioning to reduce communications, who should be at the boundary:
 - Work as long as possible without need for checking queue
 - Get very few packets in the first place

Thank you