BIOS 667, Spring 2017 Midterm

- 1. Consider the model $E[Y] = X\beta$, $cov(Y) = \Sigma$, where Y is an $n \times 1$ random vector distribted as multivariate normal with mean $X\beta$ and covariance matrix Σ ; β is $p \times 1$ and Σ depends on a $q \times 1$ vector θ that is functionally unrelated to β .
 - (a) True or false: The REML estimator of the regression coefficients β are obtained by maximizing the REML likelihood with respect to β . Explain briefly (1–3 sentences).
 - (b) True or false: The REML estimator of β is unbiased. Explain briefly.
 - (c) True or false: The maximum-likelihood (full likelihood, not REML likelihood) estimator of β is unbiased. Explain briefly.
- 2. In the TLC study, in the "Active" group, suppose that, using i to index subjects, the otucome vector $(Y_{i1}, Y_{i2}, Y_{i3}, Y_{i4})^{\top}$ is distributed as multivariate normal with mean $(25, 14, 16, 18)^{\top}$ in $\mu g/dL$, and covariance matrix

$$50 \left[\begin{array}{cccc} 1 & 0.5 & 0.5 & 0.4 \\ & 1 & 0.6 & 0.5 \\ & & 1 & 0.5 \\ & & & 1 \end{array} \right].$$

Define $A_i = (Y_{i2} + Y_{i3} + Y_{i4})/3$.

All numerical values must be simplified and reduced as much as possible.

- (a) Find the mean and variance of A_i .
- (b) Find $cov(Y_{i1}, A_i)$.
- (c) Find the conditional mean and variance of A_i given Y_{i1} .
- (d) What is the point of this question?
- 3. In the TLC study, one of the study statisticians asked for fitting 6 separate linear regression models: regression of Y_{ij} on Y_{i1} (with intercept), j = 2, 3, 4, for i in the Active group, and separately for i in the Placebo group. The estimated slopes (standard errors) were:

$$\begin{array}{cccc} & A & P \\ j{=}2 & 0.613(0.202) & 0.901(0.0877) \\ j{=}3 & 0.600(0.208) & 0.961(0.0898) \\ j{=}4 & 0.912(0.231) & 0.848(0.106) \end{array}$$

- (a) The said statistician wanted to test the hypothesis that, at each occasion j, the corresponding true population slopes, say α_{1j} (A) and α_{0j} (P) are equal in the two groups. Why?
- (b) Perform the test for j = 2 only (the test can be either exact or approximate).
- (c) The tests above for j=2,3,4 are correlated. How would you test all three hypotheses as a single hypothesis, $H_0: \alpha_0 = \alpha_1$ (vectors) versus $H_0: \alpha_0 \neq \alpha_1$? You can use the full original data set.