SGN-13000/SGN-13006 Introduction to Pattern Recognition and Machine Learning (5 cr)

Black Box Models in Machine Learning

<u>Joni</u>-Kristian Kämäräinen September 2018

Department of Signal Processing Tampere University of Technology

Material

- Lecturer's notes
- T.M. Mitchell. Machine Learning. McGraw-Hill, 1997: Chapter 4
- A.R. Webb and K.D. Copsey. *Statistical Pattern Recognition*. 3rd. Wiley, 2011: Sections 5.4 and 6.3
- Computer examples

Contents

Black boxes

Neural networks

Physiological background

Convolutional Neural Networks (CNNs)

Support vector machines

Black boxes

Black box methods

S. B. Kotsiantis. "Supervised Machine Learning: A Review of Classification Techniques". In: *Informatica* 31 (2007), pp. 249–268

	Decision Trees	Neural Networks	Naïve Bayes	kNN	SVM	Rule- learners
Accuracy in general	**	***	a a	**	****	**
Speed of learning with respect to number of attributes and the number of instances	***	*	***	***	*	**
Speed of classification	****	****	***	8	****	****
Tolerance to missing values	***	*	****		**	**
Tolerance to irrelevant attributes	***	*	**	**	****	**
Tolerance to redundant attributes	**	**	*	**	888	**
Tolerance to highly interdependent attributes (e.g. parity problems)	**	***	*	*	***	**
Dealing with	****	***(not	***(not	***(not	**(not	***(not
discrete/binary/continuous attributes		discrete)	continuous)	directly discrete)	discrete)	directly continuous)
Tolerance to noise	**	**	***		**	*
Dealing with danger of overfitting	**	*	***	***	**	**
Attempts for incremental learning	**	***	***	****	**	*
Explanation ability/transparency of knowledge/classifications	****	*	****	**	*	****
Model parameter handling	***	*	***	8 8 8	*	***

Table 4. Comparing learning algorithms (**** stars represent the best and * star the worst performance)

Neural networks

Neural networks

Physiological background

Brain is a neural network

- Neuron is the smallest computational unit in the brains
- Single neuron provides simple processing, but their huge interconnected network establishes human cognition

Neural network (Multi-layer perceptron, MLP)

Figure 1: Neural network http://en.wikipedia.org .

Neural networks

Convolutional Neural Networks (CNNs)

Deep Convolutional Neural Networks

 Neural networks dominated machine learning and pattern recognition in 80's and 90's, but were subsided by support vector machine (SVM) learning in late 90's.

Deep Convolutional Neural Networks

- Neural networks dominated machine learning and pattern recognition in 80's and 90's, but were subsided by support vector machine (SVM) learning in late 90's.
- Thanks to a small but active community led by Geoffrey Hinton, Yann LeCun (@ylecun) and Yoshua Bengio, NNs continued developing and since 2012 they again dominate

Figure 2: Y. Lecun, Y. Bengio, and G.E. Hinton. "Deep Learning". In: *Nature* 521 (2015), pp. 436–444

The old NN workflow for image classification

Figure 3: M. Ranzato tutorial

Improved NN workflow for image classification

Figure 4: M. Ranzato tutorial

Convolutional Neural Network (CNN)

Figure 5: M. Ranzato tutorial

Deep CNN architecture

A. Krizhevsky, I. Sutskever, and G.E. Hinton. "ImageNet Classification with Deep Convolutional Neural Networks". In: *NIPS*. 2012

