

ISUW2020

AI/ML application to power system protection

OD Naidu, Principal Scientist

Major blackouts in Asia

Year and place of the blackout	People affected (million)
2012 India	640
2001 India	230
2014 Bangladesh	150
2015 Pakistan	140
2019 Java	120
2005 Java-Bali	100

Major Causes:

- Load encroachment
- Power swings
- Human errors in relay settings

Load encroachment, power swings and human errors such as incorrect protection settings are major causes for blackouts

Can conventional protection safeguard the paradigm shift in power grids?

- Low fault current (1.1-1.3 p.u)
- No zero and negative sequence current
- Less transient stability margin

Protection challenges:

- Fault detection
- Fault classification
- · Faster fault clearing

Case 2: H= 2 sec; CCT =228 ms System is unstable

Case 3: H= 2 sec : CCT =130ms

Reduced inertia (to 33%) demands much faster fault clearing (by 40%) to keep system stable

Fault response is governed by law of physics

Fault response is governed by inverter /converter control systems

Penetration of renewable sources reduces the system stability margins and necessitates faster fault clearing. Limited fault currents due to inverter based resources (IBRs) pose challenges in fault detection, classification etc.

AI/ML based relaying concept for power grids

2012 Indian blackout

Evolving power grid

Motivation:

- Incorrect protection settings and human errors are major causes of blackouts
- Renewable integration necessitates faster fault clearing

Objective:

Line protection using **Artificial Intelligence** combined with **domain principles** aimed at

- reducing relay maloperations and improving reliability
- reducing human effort and errors in relay settings
- making relay choose its own settings and be autonomous
- improving the relay performance for conventional and evolving power grid

Results and conclusions:

- Improved speed of relay operation by 75%
- Improved reliability to 99.76%

Automation to Autonomous

AI/ML based protection for transmission grids – Block diagram

AI/ML based disturbance classification

Inputs & Outputs

Input Features

Voltage of each phase

RMS Voltage

Moving Average Filter

Rate of Change

First 3 Samples*

Input:

[ΔVArms, ΔVBrms, ΔVCrms]

Output:

[Fault, Power Swing, Load Change]

Dataset Coverage

Disturbance type	Parameter	Variations	Quantit y
Fault	Fault Type	ABC-g	-
	Swing Frequency (Hz)	0.5 to 10Hz with an increment of 0.1 Hz	
	Inception angle (degree)	0,90	
	Fault location (km)	5, 10, 20, 40, 50, 60, 80 and 95	816
	Fault resistance (Ω)	0.01, 10, 50	
	Source to line impedance ratios (SIR)	(0.1:1), (1:2), (2:0.5) and (5:2)	
Power Swing		0 to 10 Hz with an interval of 0.1 Hz. Here	
	Swing Frequency (Hz)	we considered both low (50-40Hz) and high (50 to 60Hz) frequency	950
Load Change	Power flow angle (deg)	5.5 to 55.5 degree with an interval of 0.5 degrees. And few random load changes using switching on the parallel line etc.	200

Validation of the concept

Results and conclusions

Accuracy

Producer's Accuracy

User's Accuracy

Average prediction accuracy of 99.49% within 4msec after disturbance

Al based Line Protection for transmission grids – Block diagram

AI/ML based distance protection

Data set coverage, Test system, Features

Dataset Coverage

Simulation parameters	Variation
System parameters	400 kV, 200 km
Source to line impedance ration (SIR (M:N))	(0.1:0.5), (0.5:0.5), (1:0.5)
Fault type	A-g, BC, BC-g and ABC
Fault location (%)	2, 20, 40, 64, 76, 84 and 95
Fault resistance (Ω)	0.1, 5 and 20
Fault inception angle (deg)	0, 15, 30, 60, 90, 120, 135, 210 and 270
Load as percentage of full load (%)	0, 40, 80 and 125

Total number of test cases for one load case =2268 and for all load cases =9072

Input Features

3-phase voltages and currents

Calculation of incremental quantities

Calculation of slope of incremental quantities

12 samples after fault detection

Input: [ΔVa, ΔVb, ΔVc Δla, Δlb, Δlc] Al Trained Model Output:

ABB CPB 420

Bodgan's model

/Nas3, VNbs3, VNcs3

VNas4, VNbs4, VNcs4

INas1, INbs1, INcs1

INas2, INbs2, INcs2

IEC model

TPX model CT

Faster saturation

VMas2, VMbs2, VMcs2

IMas2, IMbs2, IMcs2

TPX model CT

Faster saturation

[Fault classification, Fault reach identification]

Fault Classification

Analytical Workflow

Data

Exploratory Analysis

Feature Selection

Selected 4 features

- Rise Time X
- Peak Value
- Slope
- Area ×

Model Building

5 Trees for fault classification 25 Trees for zone

Model

Model Validation

K-Fold Cross Validation 2 out of 3 voting

Fault Classification

Random Forest Model Validation

Accuracy

Producer's Accuracy

User's Accuracy

Average Fault Classification accuracy of 99.59% within 3-5ms after disturbance

Fault Zone/Reach Identification

Random Forest Model Validation

Accuracy

Producer's Accuracy

User's Accuracy

Average Fault Zone identification accuracy of 99.3% within 4ms after disturbance

AI Algorithm – Practical Deployment

Sample Use case

Machine Learning Model

```
# First XGBoost model for Pima Indians dataset
from numpy import loadtxt
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy score
import m2cgen as m2c
# load data
dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",")
# split data into X and y
X = dataset[:,0:8]
Y = dataset[:,8]
# split data into train and test sets
seed = 7
test size = 0.33
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size, random_state=seed)
# fit model no training data
model = XGBClassifier()
model.fit(X_train, y_train)
# make predictions for test data
y_pred = model.predict(X_test)
predictions = [round(value) for value in y_pred]
# evaluate predictions
accuracy = accuracy_score(y_test, predictions)
print("Accuracy: %.2f%%" % (accuracy * 100.0))
code = m2c.export_to_c(model)
print(code, file=open('Code.txt', 'w'))
```

Interpretation

Deployable Code

#include <math.h> #include <string.h> void score(double * input, double * output) { double var0: if ((input[1]) >= (127.5)) { if ((input[5]) >= (28.1499996)) { if ((input[1]) >= (165.5)) { var0 = 0.151020408;} else { varo = 0.0458715595; ((input[1]) >= (145.5)) { var0 = -0.0117647061;else { var0 = -0.14782609: } else { ((input[7]) >= (28.5)) { if ((input[5]) >= (26.3500004)) { var0 = -0.0324786343;else { var0 = -0.1733333332; ((input[5]) >= (30.9500008)) { var0 = -0.12888889;else { var0 = -0.185585588;double var1: if ((input[1]) >= (127.5)) {
 if ((input[5]) >= (28.1499996)) { if ((input[6]) >= (0.434000015)) { var1 = 0.124070883;} else { var1 = 0.0292990096;} else { ((input[1]) >= (145.5)) { var1 = -0.010865353;else { var1 = -0.136249229:

Risk identified: Challenges in practical deployment of AI based solutions Mitigation: Generated practically deployable deterministic code

Results and Conclusions

	Proposed Method	
Technology Performance index	No facility within with	
Dependability	99.3%	
Security	98.6%	
Operating time	~2.5ms	
Sampling rate	4.8 kHz	
Product cost	Low	
Algorithm complexity	Medium	
Setting complexity	Low	

Outstanding dependability and security - close to 100% - with decision time in range of 2-3 milliseconds!!

Achieve the excellent performance without the additional cost/ hardware burden and reduced engineering costs!!

Boost digital substation business by encouraging deployment of applications at process bus level!!

Self-learning solution - No more manuals !! Less dependent on human domain expertise !!

#