PCR Quantitativa

Alan Silva

PCR em tempo real

Conceitos

- Reação de PCR onde o acúmulo de produtos é medido em tempo real
- Medição dos produtos no final de cada ciclo
- Objetiva a quantificação do material inicial e não final
- Reação sensível, rápida, eficiente e reproduzível
- Permite uma enorme variedade de detecções

Aplicações

- Quantificação de DNA específico em uma amostra
- Quantificação dos níveis de expressão de um gene (mRNA)
- Quantificação como parte de outra técnica (ex.: ChIP)

Fases de uma PCR

- Fase basal
 - Apenas ruído de DNA-molde e início de amplificação
- Fase Exponencial
 - Duplicação de produto
- Fase Linear
 - Decaimento da reação
 - Alta variabilidade
- Fase de Platô
 - Limite da reação
 - Alta degradação de produto

PCR: tradicional vs tempo real

- PCR tradicional (end-point)
 - Resultado coletado na fase de platô
- PCR em tempo real
 - Resultado coletado na fase exponencial

Efeito Platô

- As amostras no platô não refletem a quantidade de DNA/RNA molde inicial
 - Mais DNA molde
 - Mais produto final

PCR em tempo real (quantitativa)

- Vantagens
 - Dados medidos na fase exponencial
 - Sem efeito platô
 - Quantificação precisa da quantidade de material inicial
- Componentes de uma PCR quantitativa
 - Reagentes:
 - Master mix: tampão de enzima, enzima e dNTPs
 - Primers
 - DNA/cDNA molde
 - água
 - Detecção: após cada ciclo de reação fluoróforos

Detecção em qPCR: Sondas de Hidrólise

- Sistema TaqMan[®]
 - Necessita de uma sonda específica para a região alvo
 - A sonda possui um reporter e um quencher nas pontas
 - Na amplificação, a polimerase degrada a sonda (5′-3′ exonuclease)
 - Separado do quencher, o reporter emite sinal fluorescente mais forte
 - Altamente específico porém exclusivo para um produto

Detecção em qPCR: Intercalante de DNA

- SYBR® green
 - Fluoróforo que se liga à qualquer DNA/cDNA dupla fita
 - Sinal muito mais forte quando conectado, permitindo a detecção
 - Quanto mais produto de PCR, mais sonda intercalada e mais sinal
 - Altamente versátil mas pouco específico
 - Pode ser utilizado para qualquer produto, apenas mudando primers
 - Detecta produtos inespecíficos ou até dímeros de primers

Nomenclaturas e Siglas

- *Baseline*: acúmulo de DNA-repórter abaixo do limite de detecção
 - Pode ser representado em forma de ruídos
 - Ruídos podem ultrapassar threshold se concentração de molde for alta
- *Threshold*: nível de detecção acima do sinal basal
 - Determinado automaticamente pelo equipamento (pode ser alterado)
 - Ao comparar diferentes placas, igualar os *threshold* antes de coletar dados
- Cq: Ciclo de PCR em que o sinal da amostra ultrapassa o threshold
 - Leitura que permite a análise dos dados
 - Quanto menor o Cq, mais DNA alvo na amostra inicial

Desenho de Primers para qPCR

- Critérios gerais: mesmos dos primers comuns
 - 18-23 pb, ΔTm ≤ 5 °C, 40-60 % CG, evitar repetições e estruturas secundárias
- Critérios específicos:
 - Tm de cada primer: ≈ 60 °C (indicado pelos kits)
 - Tamanho do amplicon: 75 250 pb, sendo ideal 90 150 pb
 - Método de purificação: RP-OC, HPLC ou mesmo PAGE (evitar dessalinização)
- Local de desenho dos primers:
 - qPCR para biomassa:
 - gene multicópia, não presente no hospedeiro
 - RT-qPCR para expressão de genes:
 - evitar introns, priorizar exons diferentes para cada primers ou junção entre exons

Primers para biomassa

- Região conservada de gene com múltiplas cópias: ITS
 - Maior sensibilidade e detecção
- Extrair DNA puro sem RNA
 - Contaminação com RNA superestima concentração de DNA medida
- Verificar match em outras espécies
 - Se desejar medir quantidade de uma espécie em um hospedeiro
 - Para distinguir alvos muito semelhantes, talvez evitar Sybr® Green

Primers para expressão gênica: gene com intron

- Primers pulando íntron
 - DNA e RNA com amplicons de tamanhos diferentes (*Melting curve*)
 - DNA não amplifica se íntrons forem grandes (não é o caso de fungos)
- Primers na junção entre exons
 - Não amplifica a partir de DNA
 - Expressão de um mRNA variante em genes com splicing alternativo
 - Exige cDNA para o teste dos primers (expressão baixa / fase específica)

Primers para expressão gênica: gene sem íntron

- Garantir ausência de DNA contaminante
 - Colunas de kits costumam reter resíduos de DNA
 - Tratar com DNAse na coluna ou após extração com Trizol
- Distinção de genes semelhantes: Primers na região UTR
 - Região UTR costuma ser menos conservada
 - mRNAs de diferentes espécies carregam maior ou menor região 3'-UTR

Especificidade dos Primers

- Testar os primers em reação *end-point*
 - Incluir controles com gDNA e NTC
 - Verificar bandas esperadas e inespecíficas
 - Se necessário, sequenciar o produto para confirmar
 - Ao confirmar amplificação, fazer análise de eficiência

172 - 123 - 133 - 198 - 118 - 135 - 189 - 227 - 197 - 238 - 208 - 292

Eficiência dos Primers

- Definição:
 - 100% eficiência: 2ⁿ
 - Eficiência qPCR: 90–105%

- Amplificação Exponencial:
 - Escala logarítmica

$$2^{n} = 10 \rightarrow 2^{n} = 2^{3.321} \rightarrow n = 3.32$$

Eficiência = esperado x observado

Eficiência dos Primers: Simulação Ideal

- Passos
 - Diluição seriada 1:10 de uma amostra
 - Plotar o Log10 das diluições x Cqs
 - Construir uma regressão linear

Conc.	Cq	Log10 DNA
100	16,27	2
10	19,59	1
1	22,91	0
0,1	26,23	-1
0,01	29,55	-2
0,001	32,87	-3

Eficiência =
$$-1 + 10^{(-1/\text{slope})}$$

$$y = -3,32x + 22,91$$

X = Log10 concentração Y = Cq

Ex: Amostra Cq = 18,15

x = (y - 22,91)/-3,32x = (18,15 - 22,91)/-3,32x = -4,76/-3,32x = 1,43373

$$10^{1,43373} = 27,14 \text{ ng}$$

Eficiência dos Primers

Princípio:

- 100% eficiência: dobro de produto em cada ciclo (2ⁿ)
- Eficiência aceita para qPCR: 90–105%
- Amplificação exponencial = escala logarítmica
- Diluição seriada = amplificação constante → alta eficiência
- Ex.: DNA de concentração conhecida a 100 ng
 - Diluição seriada 1:10 (100ng 10ng 1ng 0,1ng 0,01ng 0,001ng)
 - $-2^n = 10$ ou $Log_2 10$; n = 3,321928
 - qPCR: Ct baixo = alvo detectado antes = amostra mais concentrada
 - A diferença de Ct das diluições será exatamente 3,32 ciclos
 - Ex: 100ng Ct 16,27, se o primer é 100% eficiente, a amostra de 10ng terá Ct 18,27 + 3,32 = 19,59
 - Valores de Cts plotados em uma Regressão linear

Alvos ideais para teste de eficiência

Questões importantes:

- 1) Eficiência: entre 90 e 105 %
- 2) Limites da eficiência: entre a menor e maior diluição da série
- 3) Possibilidade de conhecimento da quantidade de alvo

Target location	Copies in 1 ng	Conditions		
genomic DNA	17,682	C. graminicola, single copy gene, 51.6 Mb genome		
Plasmid	130,344,108	One gene copy in a 7 Kb plasmid		
PCR product	760,353,535	1200 bp PCR product purified		
cDNA specific primers	760,353,535	Pure 1200 bp cDNA product/ high RT efficiency		
cDNA oligo-dT/random	X	Depends on gene expression/ RT efficiency		
RNA	X	Depends on gene expression and total RNA quantity		

Alan Silva

Cálculo do número de cópias

Número de cópias em um plasmídeo ou DNA genômico

F1: Massa do Genoma (ng)

genoma haplóide (bp) x 1.096×10^{-18}

F2: Massa por cópia

F1 ÷ nº cópias por plasmídeo/genoma

F3: Número total de cópias

amostra em ng ÷ F2

Ex: Quantas cópias do gene H3 (1 por genoma) em 50 ng de *Cg* gDNA

F1: 51600000 x 1.096 x 10^{-18} = 0.0000565536 ng (peso do genoma)

F2: 0.0000565536 / 1 copy por genoma= 0.0000565536 ng por cópia do gene

F3: 50 ng / 0.0000565536 ng/cópia= **884,117 cópias**

Número de cópias em um preparado puro (PCR)

Quantidade (ng) x 6.022×10^{23}

Tamanho (pb) x 1 x 10⁹ x 660

Em 50ng de H3 purificado de produto de PCR (522 bp):

87,400,000,000 copies

Outros aspectos da Eficiência dos Primers

Alguns fatores que podem afetar a quantificação

Situation	Solutions
Maior diluição da série com curva ruim	Confira se ela não veio direto da extração sem diluição, pois mesmo com kit existem inibidores que atrapalham a qPCR. Nem a primeira concentração da série pode vir direto da extração sem diluição. Procure uma amostra mais concentrada pra diluir ou exclua essa diluição.;
Última diluição da série sem amplificação ou com variação	Primers não são eficientes para essa concentração de alvo em amostra: Tenha certeza que só acontece após o ciclo 30 Aumente a concentração de DNA/RNA do experimento para garantir a detecção do alvo.
Amostras com Cq fora dos limites de eficiência dos primers	Aumente ou diminua a concentração de DNA/RNA da reação Todas amostras devem ter o Cq dentro dos limites em que a eficiência dos primers foi testada
Primers testados em gDNA x experimentos em planta	Testar primers em uma mistura de DNA fixo de planta e variável do fungo Usar controle só com a planta para excluir amplificação de alvos nela
Primers testados em gDNA x Experimentos com RNA	Faça uma reação <i>end-point</i> com kit de qPCR com DNA e RNA Genes com íntrons: desenhe primers antes e depois do íntron para diferenciar amplificação a partir de DNA e RNA com base na curva de dissociação (<i>melting</i>) ou em gel de agarose
Primers testados em plasmídeo x Experimento em gDNA/cDNA/RNA	Calcular quanto de gDNA corresponde ao mesmo número de cópias Testar amplificação com máximo e mínimo de amostra dos experimentos
Primers testados em gDNA/plasmídeo x Experimento com amostra mista	Testar primers contra outros possíveis alvos da amostra como controle negativo Talvez preferir <i>Taqman</i> ao invés de Sybr Green

Teste de Primers: XIn1 de C. graminicola

Ī	Well ◊	Fluor Δ	Target ◊	Content 🔷	Sample 🔷	Cq ◊	SQ ◊
	A04	SYBR	XIn1	Std-08		16.02	1.000E+02
	A05	SYBR	XIn1	Std-08		16.00	1.000E+02
	A06	SYBR	XIn1	Std-08		16.02	1.000E+02
	B04	SYBR	XIn1	Std-09		19.17	1.000E+01
	B05	SYBR	XIn1	Std-09		19.14	1.000E+01
	B06	SYBR	XIn1	Std-09		19.19	1.000E+01
	C04	SYBR	XIn1	Std-10		22.81	1.000E+00
	C05	SYBR	XIn1	Std-10		22.62	1.000E+00
	C06	SYBR	XIn1	Std-10		22.84	1.000E+00
	D04	SYBR	XIn1	Std-11		26.11	1.000E-01
	D05	SYBR	XIn1	Std-11		26.32	1.000E-01
	D06	SYBR	XIn1	Std-11		26.23	1.000E-01
	E04	SYBR	XIn1	Std-12		29.67	1.000E-02
	E05	SYBR	XIn1	Std-12		29.53	1.000E-02
	E06	SYBR	XIn1	Std-12		29.80	1.000E-02
	F04	SYBR	XIn1	Std-13		32.55	1.000E-03
	F05	SYBR	XIn1	Std-13		32.44	1.000E-03
	F06	SYBR	XIn1	Std-13		33.38	1.000E-03
	G04	SYBR	XIn1	Std-14		N/A	1.000E-04
	G05	SYBR	XIn1	Std-14		36.14	1.000E-04
	G06	SYBR	XIn1	Std-14		N/A	1.000E-04
	H04	SYBR	XIn1	NTC		N/A	N/A
	H05	SYBR	XIn1	NTC		N/A	N/A
	H06	SYBR	XIn1	NTC		N/A	N/A

Well ◊	Fluor Δ	Target ◊	Content 💠	Sample 🔷	Melt Temp ◊
A06	SYBR	XIn1	Std-08		78.00
B04	SYBR	XIn1	Std-09		78.00
B05	SYBR	XIn1	Std-09		78.00
B06	SYBR	XIn1	Std-09		78.00
C04	SYBR	XIn1	Std-10		78.00
C05	SYBR	XIn1	Std-10		78.00
C06	SYBR	XIn1	Std-10		78.00
D04	SYBR	XIn1	Std-11		78.50
D05	SYBR	XIn1	Std-11		78.00
D06	SYBR	XIn1	Std-11		78.00
E04	SYBR	XIn1	Std-12		78.00
E05	SYBR	XIn1	Std-12		78.00
E06	SYBR	XIn1	Std-12		78.00
F04	SYBR	XIn1	Std-13		78.00
F05	SYBR	XIn1	Std-13		78.00
F06	SYBR	XIn1	Std-13		78.00
G04	SYBR	XIn1	Std-14		None
G05	SYBR	XIn1	Std-14		78.00
G06	SYBR	XIn1	Std-14		None
H04	SYBR	XIn1	NTC		None
H05	SYBR	XIn1	NTC		None
H06	SYBR	XIn1	NTC		None

Teste de Primers: Xln2 de C. graminicola

Well ♦	Fluor Δ	Target ♦	Content 💠	Sample 💠	Melt Temp
A07	SYBR	XIn2	Std-15		83.00
A08	SYBR	XIn2	Std-15		83.00
A09	SYBR	XIn2	Std-15		83.00
B07	SYBR	XIn2	Std-16		83.00
B08	SYBR	XIn2	Std-16		83.00
B09	SYBR	XIn2	Std-16		83.00
C07	SYBR	Xln2	Std-17		83.00
C08	SYBR	XIn2	Std-17		83.00
C09	SYBR	XIn2	Std-17		83.00
D07	SYBR	XIn2	Std-18		83.00
D08	SYBR	Xln2	Std-18		83.00
D09	SYBR	Xln2	Std-18		83.00
E07	SYBR	Xln2	Std-19		83.00
E08	SYBR	Xln2	Std-19		83.00
E09	SYBR	Xln2	Std-19		83.00
F07	SYBR	XIn2	Std-20		83.00
F08	SYBR	Xln2	Std-20		83.00
F09	SYBR	Xln2	Std-20		83.00
G07	SYBR	XIn2	Std-21		83.00
G08	SYBR	XIn2	Std-21		83.00
G09	SYBR	Xln2	Std-21		None
H07	SYBR	Xln2	NTC		None
H08	SYBR	XIn2	NTC		76.50

Tipos de Quantificação

Relativa (Comparativa)

- Quantidade de DNA/RNA inicial em relação a um controle
- Controle: exógeno, endógeno, lista de referências
- Não necessita de curva padrão ou quantidades conhecidas
- Amostras normalizadas em relação ao controle
- Amostras normalizadas comparadas:
 - Tratamento x controle
 - Selvagem x mutante
 - Indivíduos saudáveis x doentes

Tipos de Quantificação

Absoluta

- Quantidade de DNA/RNA inicial "relativa" a uma curva padrão
- Curva padrão na mesma placa ou feita nas mesmas condições
 - Mesmo kit, mesmo aparelho, mesma threshold
- Amostras comparadas com a curva padrão
- Quantificação relacionada a um parâmetro biológico
 - Massa de tecido coletado
 - Quantidade de células
 - Número de cópias de um gene
 - Massa total de DNA do alvo na amostra (em µg, ng, pg...)

Desenho Experimental: Réplicas ou Repetições

Réplica biológica

- Repetições experimentais da mesma amostra
- Importante para avaliar variações biológicas do experimento
 - 3 coletas independentes no mesmo local
 - organismo selvagem inoculado 3x independentemente
 - 3 plantas independentes tratadas com o promotor de crescimento

Réplica técnica

- Repetições de uma amostra experimental durante a análise
- Importante para avaliar variações de manuseio/pipetagem
 - DNA da mesma amostra biológica em 3 poços da placa de qPCR

Desenho Experimental: Réplicas ou Repetições

Outros Tipos de Réplicas (menos utilizadas)

Réplica de extração

- Mesma amostra biológica submetida a mais de uma extração de DNA/RNA independentes
- Importante para avaliar variações da extração

Réplica de conversão RNA → cDNA

- RNA extraído de uma amostra convertido em cDNA mais de uma vez independentemente
- Importante para avaliar variações de eficiência de conversão

Como controlar variações

Variação biológica

- Variação real existente entre amostras
- Aquela que queremos analisar e comparar

Variação técnica

- Variações introduzidas em qualquer etapa:
 - Coleta: peso, número de células ou fragmentos coletados
 - Processamento: armazenamento, transporte, resfriamento, extração
 - Análise: tipo de detecção (TaqMan ou SybrGreen), primers eficientes, repetições técnicas, controles positivo, negativo, NTC e NRT.
- Maior fonte de variação: Extração de DNA/RNA
- Podemos reduzir por meio da *NORMALIZAÇÃO*

Normalização

- Concentração e qualidade do DNA/RNA
 - Nanodrop, gel de agarose, bioanalyzer, qbit...
- Controle de amplificação
 - DNA/RNA externo ou alvo interno de valores constantes
 - Controle exógeno: DNA conhecido (plasmídeo) adicionado imediatamente antes de iniciar a extração, em quantidade igual para todas amostras.
 Amplificar por qPCR o alvo na amostra e o alvo no plasmídeo, usado para normalizar.
 - Desvantagens: não valida as fases anteriores (lise de células)
 - Controle endógeno: Outro alvo na mesma amostra de expressão constitutiva, sendo usado para normalizar a quantificação do alvo principal.
 - Desvantagens: gene não pode ser afetado pelo experimento

Estudo de Caso: Biomassa de C.g. in planta

- Objetivo: Avaliar patogenicidade de linhagens mutantes
- Método: quantificar a colonização do fungo por sua biomassa
- Desenho experimental
 - Linhagens: WT, Ec e 3 mutantes independentes
 - Repetições Biológicas: 3
 - Cada repetição biológica= pool de pontos inoculados = 1 tubo de extração de DNA
 - Repetições técnicas: 3
 - Cada repetição técnica = 1 repetição biológica em 3 poços da placa de qPCR
 - Prevenção de erros:
 - Mesmo volume e concentração de inoculação (10 μL, 10⁶ spores/mL)
 - Mesmo número de fragmentos no pool (cobrindo toda a área da lesão)
 - Usar normalizador para a extração de DNA (plasmídeo adicionado à amostra)
 - Alvos:
 - ITS2 para o fungo (~60 cópias no genoma de *C. graminicola*)
 - M13 para o plasmídeo pUC18: normalização de variação durante extração de DNA

Desenho Experimental

- Repetições: mínimo 3
- Linhagens: WT, Ect and 3 mutantes independentes
- Cada repetição: um pool de pontos de inoculação

Alan Silva

qPCR: Biomassa de C.g. em milho

Quantificação Relativa

- Valores de Quantificação:
 - Relativo a um controle (valor 1 or 100%)
- Não precisa de curva de calibração
- Cálculo via método Livak ou ΔΔCt:
 - ∆Cq = Cq alvo Cq normalizador
 - $\Delta\Delta$ Cq = Δ Cq tratamento Δ Cq controle
 - Expressão Relativa = 2 (ΔΔCt)
 - Expressão em relação ao controle (fold):
 - ≥1: = Expressão Relativa
 - < 1: (1/Expressão Relativa)

Expressão Relativa Expressão em vezes

 ΔCt

qPCR: Biomasss of C.g. em milho

Quantificação Absoluta

- Valores para quantificação:
 - Massa de DNA do fungo por amostra (ng, μg)
 - Número de cópias do gene por amostra
 - Massa/cópias de DNA por mg vegetal
- Precisa de curva de calibração atualizada

Standard Curve:

ITS: Log10: =(Ct - 17,889)/-3,3897

pUC18: Log10: =(Ct - 28,946)/-3,2442

a de canbração acadiiza	add '		1	
√ o ooo¬		ng/ ection	20 ng/ reaction	
/-3,3897 -6)/-3,2442			Ct /	
<i>3,2 : 12</i>	ITS 14.19	M13 22.38	ITS 18,93	M13 23.10
Log10	1.091247	2.02392	-0.30711	1.801985
DNA no poço (10 ^{Log10})	12.33 ng	105.66 fg	0.4930 ng	63.384 fg
DNA em 100 μL extração	4133.25 ng	35.397 pg	177.499 ng	22.818 pg
DNA corrigido (50 pg pUC18)	5838.45 ng	50 pg	388.94 ng	50 pg

WT

67 ng/µL

Elution

 $100 \mu L$

Mut

72 ng/μL