THE LNM INSTITUTE OF INFORMATION TECHNOLOGY JAIPUR, RAJASTHAN

Objective End Semester Exam (A)

MATH-II, 28^{th} April 2015

Time: 90 minutes, Maximum Marks: 40

Name:______ Roll No.:_____

Note: Fill in the blanks. Write the answers in the space provided. Submit this part of the question cum answer paper on or before 11 AM.

- 1. Dimension of all $n \times n$ skew-symmetric matrices over \mathbb{R} is $\frac{n(n-1)}{2}$ [3]
- 2. Set of all real polynomials of degree n is a vector space over \mathbb{R} . FALSE [3]
- 3. Consider $A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$. Then $A^{10} = \begin{bmatrix} 1 & 0 \\ -1023 & 1024 \end{bmatrix}$ [5]
- 4. The equation $(xy^2 + bx^2y)dx + (x+y)x^2dy = 0$ is exact for b = 3. [5]
- 5. The solution of $y' + y = e^{(y-1)^2}$, y(0) = 1 is $y \equiv 1$. [4]
- 6. Let y(x) be a non-trivial solution of $y'' + [\alpha + 2\sin(x + \pi/4)]y = 0$; $\alpha > 4$. Then the minimum number of zeros of y(x) in the interval $[0, 7\pi]$ is $\underline{7}$.
- 7. The orthogonal trajectories for the family of curves $y^2 = 4c(x+c)$ is

$$\underline{y^2 = 4c(x+c)}. [4]$$

- 8. The general solution of $xy'' y' = 6x^2$ is $\underline{a + bx^2 + 2x^3}$. [4]
- 9. The equation $y'' + e^x y = 0$ has a solution of the form $\phi(x) = \sum_{0}^{\infty} c_k x^k$ which satisfies $\phi(0) = 1, \phi'(0) = 0$. The value of c_2 is -1/2 and c_3 is -1/6. [4]
- 10. The inverse Laplace transform of $\frac{e^{-\pi s}}{(s+4)^{5/2}} + \frac{1}{s(s^2+1)}$ is $\frac{u(t-\pi)e^{-4(t-\pi)}(t-\pi)^{3/2}}{\Gamma(5/2)} + 1 \cos t \qquad [4],$

u- unit step function