Alexandru Ioan Cuza University of Iași Faculty of Computer Science

DISSERTATION

A Model for Heart Sounds Segmentation and Classification using Neural Networks

Student: Oriana-Maria Oniciuc

Scientific Coordinator: Conf. Dr. Liviu Ciortuz

Leading Causes Of Death In Perspective

Source:https://gifer.com/en/2mFO

Problem description

Predict with a high rate of trust if a person has **arrhythmia** or **murmurs** through a **phonocardiogram**.

Data specifications

The .wav 585 recordings have the following properties:

- varying lengths, between 1 and 30 seconds
- 44100 Hz and 4000 Hz samplerate
- 3 classes: normal, murmur, extrasystole

State of the art - PASCAL Classifying Heart Sounds Challenge (2012)

		ISEP/IPP Portugal J48 / MLP	CS UCL	SLAC Stanford
Challenge 1 A	Total error	4 219 736.5	3 394 378.8	1 243 640.7
Challenge 1 B	Total error	72 242.8	75 569.8	76 444.4
Challenge 2 A	Precision of Normal	0.25 / 0.35	0.46	
	Precision of Murmur	0.47 / 0.67	0.31	
,	Precision of ExtraS	0.27 / 0.18	0.11	
	Precision of Artifact	0.71 / 0.92	0.58	
	Artifact Sensitivity	0.63 / 0.69	0.44	
	Artifact Specificity	0.39 / 0.44	0.44	
	Youden Idx Artifact	0.01 / 0.13	-0.09	
	F-score	0.20 / 0.20	0.14	
	Total Precision	1.71 / 2.12	1.47	
Challenge 2 B	Precision of Normal	0.72 / 0.70	0.77	
	Precision of Murmur	0.32 / 0.30	0.37	
	Precision of ExtraS	0.33 / 0.67	0.17	
	Heart prb Sensitivity	0.22 / 0.19	0.51	
	Heart prb Specificity	0.82 / 0.84	0.59	
	Youden ldx Hrt prb	0.04 / 0.02	0.01	
	Discriminant Power	0.05 / 0.04	0.09	
	Total Precision	1.37 / 1.67	1.31	

State of the art - Other research

- Singh, Mandeep & Cheema, Amandeep. (2013). Heart Sounds
 Classification using Feature Extraction of Phonocardiography Signal.
 International Journal of Computer Applications.
 - Accuracy of Normal 93.33%
 - Accuracy of Murmur 93.33%
- Randhawa, Simarjot & Singh, Mandeep. (2015). Classification of Heart Sound Signals Using Multi-modal Features. Procedia Computer Science.
 - Accuracy 99.6% / 98.8% / 93.3%
- Zhang, Wenjie & Han, Jiqing & Deng, Shi-wen. (2017). Heart sound classification based on scaled spectrogram and partial least squares regression. Biomedical Signal Processing and Control.
 - Precision of Normal (A) 0.67 / 0.6
 - Precision of Murmur (A) 0.91 / 0.91
 - Precision of Extra Heart Sound (A) 0.37 / 0.44
 - Precision of Normal (B) 0.74 / 0.76
 - Precision of Murmur (B) 0.66 / 0.65
 - Precision of Extrasystole (B) 0.24 / 0.33

Data processing

Peak analysis
Normalization
Sliding window for data selection
Feature extraction

A Model for Heart Sounds Segmentation and Classification using Neural Networks - Methodology and research methods - Data processing

Classification Models

- Multi-Class Convolutional Neural Network
- Multi-Task Learning

Convolutional Neural Network

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	
0	101	98	104	102	100	
0	99	101	106	104	99	1
0	104	104	104	100	98	
						9

Kernel Matrix

0	-1	0
-1	5	-1
0	-1	0

320			
		2	20
), te 54)	

Image Matrix

$$0*0+0*-1+0*0$$

$$+0*-1+105*5+102*-1$$

$$+0*0+103*-1+99*0=320$$

Output Matrix

Source: http://machinelearninguru.com/ Convolution with horizontal and _images/topics/computer_vision/basics /convolutional_layer_1/stride1.gif

vertical strides = 1

Multi-Class CNN

Results - Multi-class CNN

Test accuracy: 65.74%

CNN Normal heartbeat

Results - CNN Normal heartbeat

Test accuracy: 55.65%

CNN Murmur heartbeat

Results - CNN Murmur heartbeat

Test accuracy: 79.81%

Feature extraction

- Mean Peak Frequency and Amplitude
- Peak Frequency and Amplitude Standard Deviation
- Minimum and Maximum Peak Distance
- Minimum and Maximum Peak Amplitude
- Mean Amplitude
- Standard Deviation Amplitude
- Number of Peaks

Other approaches are presented in [3-4].

Feature extraction

No.	Feature	Decision tree importance	Random Forest impor- tance	AdaBoost importance
1	Peak Frequency	0.06358505	0.10835463	0.1
2	Peak Frequency Standard Deviation	0.05584003	0.08143857	0.02
3	Peak Amplitude	0.07775618	0.08109412	0.04
4	Peak Amplitude Standard Deviation	0.05335595	0.07786953	0.12
5	Minimum Peak Distance	0.22781165	0.12076171	0.28
6	Maximum Peak Distance	0.0940705	0.10498685	0.18
7	Minimum Peak Amplitude	0.03635814	0.07228694	0.02
8	Maximum Peak Amplitude	0.03169072	0.07434332	0.04
9	Mean Amplitude	0.15517295	0.11145975	0.02
10	Standard Deviation Amplitude	0.18334003	0.15667982	0.14
11	Number of Peaks	0.02251938	0.01072477	0.04

Results - Extrastole heartbeat Models

Test accuracy (using all features): 53.94% / 58.67% / 70.03%

Test accuracy (using top features): 55.2% / 57.72% / 65.61%

Technologies

Bibliography

- The PASCAL Classifying Heart Sounds Challenge 2011, Bentley P. and Nordehn G. and Coimbra M. and Mannor S. Available: http://www.peterjbentley.com/heartchallenge/index.html
- 2. Singh, Mandeep, Cheema, Amandeep. (2013). Heart Sounds Classification using Feature Extraction of Phonocardiography Signal. International Journal of Computer Applications.
- 3. M Debbal, S, bereksi reguig, Fethi. (2008). Frequency analysis of the heartbeat sounds. IJBSCHS.
- 4. Philip de Chazal, M. O'Dwyer and R. B. Reilly, "Automatic classification of heartbeats using ECG morphology and heartbeat interval features," in IEEE Transactions on Biomedical Engineering, 2004.
- 5. Randhawa, Simarjot & Singh, Mandeep. (2015). Classification of Heart Sound Signals Using Multi-modal Features. Procedia Computer Science.
- 6. Zhang, Wenjie & Han, Jiqing & Deng, Shi-wen. (2017). Heart sound classification based on scaled spectrogram and partial least squares regression. Biomedical Signal Processing and Control.