DS-GA 1008 HW 1

Long Chen Center for Data Science, New York University lc3424@nyu.edu

Fall 2021

1 Theory

1.1 Two-Layer Neural Nets

1.2 Regression Task

(a)

- Load data to model
- Initialize parameters (random normalized number, or zero)
- Forward step. Compute loss of training
- Backward step. Calculate derivatives
- Update parameters

(b)

- Linear_1:
 - Input: x
 - Output: $z_1 = W^{(1)}x + b^{(1)}$
- f (ReLU):
 - Input: $W^{(1)}x + b^{(1)}$
 - Output: $z_2 = \max(0, W^{(1)}x + b^{(1)})$
- Linear_2:
 - Input: $\max(0, W^{(1)}x + b^{(1)})$
 - Output: $z_3 = W^{(2)} \max(0, W^{(1)}x + b^{(1)}) + b^{(2)}$

$$\bullet\,$$
 g (identity):

- Input:
$$W^{(2)} \max(0, W^{(1)}x + b^{(1)}) + b^{(2)}$$

- Output:
$$\hat{y} = W^{(2)} \max(0, W^{(1)}x + b^{(1)}) + b^{(2)}$$

(c)

•
$$\frac{\delta \ell}{\delta z_2} = \frac{\delta \ell}{\delta \hat{u}} \frac{\delta \hat{y}}{\delta z_2}$$

$$\bullet \ \ \tfrac{\delta\ell}{\delta W^{(2)}} = \tfrac{\delta\ell}{\delta\hat{y}} \tfrac{\delta\hat{y}}{\delta z_3} \tfrac{\delta z_3}{\delta W^{(2)}} = \tfrac{\delta\ell}{\delta\hat{y}} \tfrac{\delta\hat{y}}{\delta z_3} \max(0, W^{(1)}x + b^{(1)})$$

•
$$\frac{\delta \ell}{\delta b^{(2)}} = \frac{\delta \ell}{\delta \hat{y}} \frac{\delta \hat{y}}{\delta z_2} \frac{\delta z_3}{\delta b^{(2)}} = \frac{\delta \ell}{\delta \hat{y}} \frac{\delta \hat{y}}{\delta z_2}$$

$$\bullet \ \ \frac{\delta \ell}{\delta W^{(1)}} = \frac{\delta \ell}{\delta \hat{y}} \frac{\delta \hat{y}}{\delta z_3} \frac{\delta z_3}{\delta z_2} \frac{\delta z_2}{\delta z_1} \frac{\delta z_1}{\delta W^{(1)}} = \frac{\delta \ell}{\delta \hat{y}} \frac{\delta \hat{y}}{\delta z_3} W^{(2)} \frac{\delta z_2}{\delta z_1} \ x$$

$$\bullet \ \ \tfrac{\delta\ell}{\delta b^{(1)}} = \tfrac{\delta\ell}{\delta \hat{y}} \tfrac{\delta \hat{y}}{\delta z_3} \tfrac{\delta z_3}{\delta z_2} \tfrac{\delta z_2}{\delta z_1} \tfrac{\delta z_1}{\delta b^{(1)}} = \tfrac{\delta\ell}{\delta \hat{y}} \tfrac{\delta \hat{y}}{\delta z_3} W^{(2)} \tfrac{\delta z_2}{\delta z_1}$$

(d)

•
$$\frac{\delta \ell}{\delta \hat{y}} = 2 \left(\hat{y} - y \right)$$

$$\bullet \ \frac{\delta \hat{y}}{\delta z_3} = 1$$

•
$$\frac{\delta z_2}{\delta z_1} = 0$$
 if $z_1 \le 0$ and 1 if $z_1 > 0$

1.3 Classification Task

a)

• Linear_1:

$$-$$
 Input: x

- Output:
$$W^{(1)}x + b^{(1)}$$

• f (Sigmoid):

- Input:
$$W^{(1)}x + b^{(1)}$$

- Output:
$$\frac{1}{1+\exp\{-(W^{(1)}x+b^{(1)})\}}$$

• Linear_2:

- Input:
$$\frac{1}{1+\exp\{-(W^{(1)}x+b^{(1)})\}}$$

- Output:
$$W^{(2)} \frac{1}{1+\exp\{-(W^{(1)}x+b^{(1)})\}} + b^{(2)}$$

• g (Sigmoid):

– Input:
$$z_2 = W^{(2)} \frac{1}{1 + \exp\{-(W^{(1)}x + b^{(1)})\}} + b^{(2)}$$

- Output:
$$\frac{1}{1+\exp\{-z_2\}}$$

Note For derivatives, no much is changed from regression tasks as we are taking derivatives w.r.t. $W\ \&\ b$

•
$$\frac{\delta \ell}{\delta z_3} = \frac{\delta \ell}{\delta \hat{y}} \frac{\delta \hat{y}}{\delta z_3}$$

$$\bullet \ \ \frac{\delta \ell}{\delta W^{(2)}} = \frac{\delta \ell}{\delta \hat{y}} \frac{\delta \hat{y}}{\delta z_3} \frac{\delta z_3}{\delta W^{(2)}} = \frac{\delta \ell}{\delta \hat{y}} \frac{\delta \hat{y}}{\delta z_3} \frac{z_2}{\delta W^{(2)}}$$

•
$$\frac{\delta \ell}{\delta b^{(2)}} = \frac{\delta \ell}{\delta \hat{y}} \frac{\delta \hat{y}}{\delta z_3} \frac{\delta z_3}{\delta b^{(2)}} = \frac{\delta \ell}{\delta \hat{y}} \frac{\delta \hat{y}}{\delta z_3}$$

$$\bullet \ \ \frac{\delta \ell}{\delta W^{(1)}} = \frac{\delta \ell}{\delta \hat{y}} \frac{\delta \hat{y}}{\delta z_3} \frac{\delta z_3}{\delta z_2} \frac{\delta z_2}{\delta z_1} \frac{\delta z_1}{\delta W^{(1)}} = \frac{\delta \ell}{\delta \hat{y}} \frac{\delta \hat{y}}{\delta z_3} W^{(2)} \frac{\delta z_2}{\delta z_1} \ x$$

$$\bullet \ \ \frac{\delta \ell}{\delta b^{(1)}} = \frac{\delta \ell}{\delta \hat{y}} \frac{\delta \hat{y}}{\delta z_3} \frac{\delta z_3}{\delta z_2} \frac{\delta z_2}{\delta z_1} \frac{\delta z_1}{\delta b^{(1)}} = \frac{\delta \ell}{\delta \hat{y}} \frac{\delta \hat{y}}{\delta z_3} W^{(2)} \frac{\delta z_2}{\delta z_1}$$

•
$$\frac{\delta \ell}{\delta \hat{y}} = 2(\hat{y} - y)$$

•
$$\frac{\delta \hat{y}}{\delta z_3} = \sigma(z_3)(1 - \sigma(z_3))$$

$$\bullet \ \frac{\delta z_2}{\delta z_1} = \sigma(z_1)(1 - \sigma(z_1))$$

Where
$$\sigma(x) = \frac{1}{1 + \exp\{-x\}}$$

(b) Gradient vanishment issues with sigmoid. As $x \to \infty$, gradient of sigmoid converges to zero, which does not happen for ReLU. Therefore, in the intermediate layers of a deeper network, we prefer ReLU over sigmoid.

1.4 Conceptual Questions

- (a) because softmax is a smooth approximation of the argmax function, as it returns (normalized) index of the maximum value
- (b) When there are outliers (very very large numbers relatively), softmax could incur underflow issues where values of relatively small numbers are observed (by the computer) as 0's.
- (c) Two consecutive linear layers are essentially ONE linear layer, as could be very easily checked by looking at forward steps. Therefore, some non-linear function (activation function) need to be added.

(d)

- ReLU
 - Pro: Computationally cheap. No vanishing gradient issue.
 - Con: If input is negative, the cell is completely inactive, which could be problematic in some situations.
- Tanh
 - Pro: Smooth gradient, differentiable

- Con: Vanishing tradient problem.

• Sigmoid:

- Pro: Normalized to [-1,1].
- Con: Non-zero mean output.

$\bullet \ \, {\rm LeakyReLU:}$

- Pro: When negative input is observed, the cell does not go to complete inactivity, which could be useful in some situations.
- Con: Computationally more expensive than ReLU (multiplication needed).

(e) Rotation, skewing (sheer), projection, scaling

For linear: efficiently combines output from nodes for a mixed node, thus discovering inter-relationships.

For non-linear: captures much complex signal (information) of the dataset for better models.

(f) Increase proportionally w.r.t batch size.