Les vecteurs sont désignés par des symboles gras : \overrightarrow{X} , X désignant la norme de \overrightarrow{X} . Dans tous les exercices, le référentiel galiléen \mathcal{R}_T , dans lequel règne le champ de pesanteur \overrightarrow{g} sera, sauf mention explicite, considéré galiléen pour la durée des phénomènes décrits.

On utilisera systématiquement les théorèmes relatifs à l'énergie ou à la puissance.

Exercices d'application : Freinage, travail d'une force fluide, tir à l'arc, point sur la sphère, puits de potentiel, portrait de phase du pendule simple (sauf la période), pendule sur plan incliné

Culture en sciences physiques : arc, tension du pendule, potentiel linéaire

Corrigés en TD: tir à l'arc, tension du pendule, puits de potentiel, énergie potentielle linéaire.

Calculs de forces et travaux

Exercice 1 : Travail d'une force de frottement fluide

Un point matériel est animé d'un mouvement sinusoïdal unidimensionnel d'amplitude x_0 et de fréquence ν . Il subit l'action d'une force de frottement fluide $\overrightarrow{f}_f = -\alpha \overrightarrow{\nu}$. Déterminer le travail de \overrightarrow{f}_f au cours d'une période.

Exercice 2: Forces conservatives et non-conservatives

On s'intéresse dans cet exercice à différents champs de force réalisés dans un plan. Les forces sont caractérisées par leurs composantes cartésiennes donnant la force en un point (x, y) du plan.

Pour chaque champ de force étudié on établira un schéma représentant qualitativement le vecteur \vec{F} en fonction de la position du type de celui représenté ci-contre pour le champ de force $\vec{F}_0 = F_0 \left(\overrightarrow{e_x} + \overrightarrow{e_y} \right)$.

- 1. On considère les champs de forces : $\begin{cases} \overrightarrow{F}_1 &= kx \ \overrightarrow{e}_x \\ \overrightarrow{F}_2 &= ky \ \overrightarrow{e}_x \end{cases}$, avec k = cste.
 - (a) Montrer que \vec{F}_1 dérive d'une énergie potentielle $\mathcal{E}_{pot}(x)$ dont on donnera l'expression vérifiant $\mathcal{E}_{pot}(0) = 0$.
 - (b) Calculer le travail de \vec{F}_1 le long d'une courbe quelconque joignant deux points M_1 et M_2 . Vérifier ainsi que \vec{F}_1 est conservative.
 - (c) Exhiber une courbe fermée simple sur laquelle le travail de \vec{F}_2 n'est pas nulle. En déduire que \vec{F}_2 n'est pas conservative.
- 2. Le champ de force \vec{F}_3 est défini par : $\vec{F}_3 = -k(x \vec{e}_x + y \vec{e}_y)$.
 - (a) Montrer que \overrightarrow{F}_3 est conservative.

- (b) Proposer une fonction une fonction $\mathscr{E}_{pot}(x, y)$ telle que : $\overrightarrow{F}_3 = -\overrightarrow{\text{grad}}\mathscr{E}_{pot}(x, y)$
- (c) Exprimer \mathcal{E}_{pot} en coordonnées polaires. Que retrouvez-vous?

Caractérisation de mouvements

Exercice 3 : Freinage

Calculer la distance de freinage d'une voiture lancée à la vitesse v_0 sur une route horizontale (coefficient μ de frottement solide entre les pneus et la route). A.N. pour $v_0 = 40 \,\mathrm{m \cdot s^{-1}}, \ g = 10 \,\mathrm{m \cdot s^{-2}}, \ \mu = 0,6$ (route sèche) et $\mu = 0,2$ (route mouillée).

Exercice 4: Tir à l'arc

On étudie un modèle simplifié du tir à l'arc. On considère que la résultante des forces exercées par la corde sur le point M de la Figure 1 est une force de rappel élastique idéale : son intensité est proportionnelle à l'écart de M par rapport à la position de repos, avec une constante de raideur k.

La flèche est assimilée à un point matériel de position M et de masse m en mouvement rectiligne selon l'axe Ox incliné d'un angle α par rapport à l'horizontale. On considère tout d'abord le cas $\alpha=0$.

Fig. 1: Arc au repos (gris clair) et armé.

- 1. L'archer arme l'arc pour amener le point matériel de la position *O* à la position *M*,d'abscisse *x*₀. Déterminer le travail qu'il doit fournir.
- 2. Il relâche ensuite la corde. Déterminer la module de la vitesse de la flèche quand elle repasse par le point O.
- 3. L'archer peut exercer une force maximale d'intensité maximale F₀ et l'amplitude maximale du mouvement de sa main est l. Justifier qualitativement qu'il existe une valeur optimale de la raideur k, notée k₀ permettant d'avoir ν₀ maximale puis déterminer son expression en fonction de F₀ et l.
- 4. On donne m = 30 g, $F_0 = 2.0 \cdot 10^2$ N et l = 70 cm. Déterminer l'expression de k_0 et calculer sa valeur, ainsi que celle de la valeur correspondante de la vitesse v_0 .
- 5. Quel autre travail doit on considérer si l'angle α est non nul, mais que l'opérateur arme en fournissant le même travail ? Est-ce possible en gardant la même amplitude. Montrer que dans ce cas la vitesse en *O* ne sera pas changée.
- 6. Quelle serait l'altitude maximale atteinte en l'absence de frottement pour $\alpha = \pi/4$? Commenter. Quelles critiques pourriez-vous faire au modèle?

Exercice 5: Tension d'un pendule

On considère le mouvement plan vertical d'un pendule simple constitué d'un point matériel de masse m au bout d'un fil idéal de longueur l dans le champ de pesanteur. On utilise les notations de la Figure 5.

1. Montrer que le mouvement est conservatif et déterminer l'expression de l'énergie potentielle du point matériel en fonction de l'angle θ , puis celle de son énergie mécanique.

- 2. Le point matériel est initialement en $\theta = 0$, animé d'une vitesse angulaire ω_0 . Déterminer l'expression de sa vitesse angulaire $\dot{\theta}$ en fonction de θ tant que le fil reste tendu.
- 3. Appliquer la loi de la quantité de mouvement pour déterminer, sous cette hypothèse, l'expression de la norme $\|\vec{T}\|$ de la tension \vec{T} du fil en fonction de l'angle θ . À quelle condition sur l'angle θ la tension peut-elle s'annuler?
- 4. En déduire les expressions de $cos(\theta)$ pour :
 - 1'angle $\theta_1 \ge 0$ où la vitesse s'annule tant quand le fil est tendu;
 - l'angle $\theta_2 \ge 0$ où la tension s'annule.
- 5. En déduire qu'on peut observer trois mouvements selon la valeur initiale de ω_0 :
 - un mouvement d'oscillations d'amplitude angulaire θ_{max} inférieure à $\pi/2$;
 - un mouvement révolutif ou le pendule tourne en permanence dans le même sens ;
 - un mouvement où le fil se détend avant que le pendule n'atteigne l'angle π .

Exercice 6 : Puits de potentiel

On étudie, dans un vide poussé, le mouvement unidimensionnel selon un axe Ox d'un atome de lithium 7 Li, modélisé par un point matériel de masse m.

0 exerce sur l'atome une force conservative à laquelle on peut associer l'énergie potentielle $\mathcal{E}_{\text{pot}}(x) = -\frac{U_0}{1+x^2/x_R^2}$, avec U_0 et x_R des constantes positives. La fonction $\mathcal{E}_{\text{pot}}(x)$ est représentée sur la Figure 6. L'axe Ox sera horizontal, sauf mention explicite du contraire. Le poids est alors compensé par une autre composante de la force exercée par le laser dont on ne se préoccupera pas.

Un faisceau laser focalisé au point O d'abscisse x =

- 1. On considère un atome initialement immobile en x = 0 au fond du puits de potentiel. On lui communique à l'instant t = 0 une vitesse v_0 positive selon $\overrightarrow{e_x}$.
 - (a) À quelle condition portant entre autres sur v_0 et U_0 l'atome demeure-t-il dans un état lié?
 - (b) S'il est mis dans un état de diffusion, déterminer l'expression de sa vitesse limite, notée v_{∞} , quand x tend vers l'infini.
- 2. On suppose que $v_0^2 \ll 2U_0/m$. Montrer, à l'aide d'un développement limité de $\mathscr{E}_{pot}(x)$ pour $x/x_R \ll 1$, que le mouvement de l'atome est quasi harmonique. On donnera l'expression de sa pulsation, notée ω_0 , dont on calculera la valeur.
- 3. Dans cette question seulement, l'axe Ox est vertical ascendant et on tient compte du poids. On ne suppose plus que $x/x_R \ll 1$.
 - (a) Déterminer une nouvelle expression de l'énergie potentielle totale du système, notée \mathscr{E}'_{pot} . On utilisera la variable $y = x/x_R$ et le paramètre sans dimension $\alpha = U_0/(mgx_R)$.
 - (b) Justifier brièvement, en traçant son allure, que $\mathcal{E}'_{pot}(y)$ peut présenter de nouveau un minimum local si α est supérieur à une valeur critique $\alpha_{\mathbb{C}}$ dont on ne cherchera pas à donner la valeur. Tracer l'allure de $\mathcal{E}'_{pot}(y)$ pour $\alpha > \alpha_{\mathbb{C}}$.
 - (c) On donne α_c = 1,54. Calculer la valeur de U₀ correspondante, les autres paramètres étant inchangés et commenter.
 - (d) Expliquer, sans mener les calculs, comment on calculerait la profondeur du piège ainsi constitué ainsi que sa position d'équilibre.

Données : masse d'un nucléon $m_n = 1,67 \cdot 10^{-27}$ kg, longueur $x_R = 3,0 \cdot 10^{-4}$ m. La profondeur U_0 est donnée en unité de température : $U_0 = k_{\rm B} T_0$ avec $k_{\rm B} = 1,38 \cdot 10^{-23} \, {\rm J \cdot K^{-1}}$ la constante de Boltzmann et $T_0 = 200 \, \mu {\rm K}$.

Établissement des équations du mouvement

Exercice 7 : Énergie potentielle linéaire

On considere un point matériel en mouvement unidimensionnel le long d'un axe Ox, soumis à une force $\overrightarrow{F} = F_x \overrightarrow{e_x}$ telle que $F_x = -F_0$ pour x > 0 et $F_x = F_0$ pour $F_x = F_0$ po

- 1. Montrer que la force est conservative et déterminer l'expression de l'énergie potentielle &pot associée. Tracer &pot(x). Le point matériel peut-il s'éloigner à l'infini?
- 2. Il se trouve à l'instant initial en x = 0, animé du vecteur vitesse $v_0 \overrightarrow{e_x}$. Déterminer l'amplitude x_{max} de son mouvement ultérieur.
- 3. On cherche à déterminer la période du mouvement.
 - (a) Exprimer l'expression de sa vitesse \dot{x} en fonction entre autres de v_0 quand le point matériel se trouve en x tel que $0 \le x \le x_{\text{max}}$ avec $\dot{x} \ge 0$.

- (b) En déduire la relation suivante entre les variations élémentaires dt et dx: $dt = dx/(v_0\sqrt{1-x/x_{max}})$.
- (c) Intégrer cette égalité pour obtenir la période T des oscillations. Commenter leur variation avec v_0 .

Exercice 8 : Point mobile sans frottements sur une sphère

On lance à l'instant t=0 un point matériel M de masse m avec une vitesse \vec{v}_0 horizontale du sommet de la face convexe d'une sphère (S), fixe de centre 0 et de rayon a sur laquelle il est susceptible de glisser sans frottement. L'ensemble est placé dans le champ de pesanteur terrestre et on néglige les frottements de l'atmosphère.

On note A le point de la sphère situé à la verticale de O.

- 1. Montrer que le mouvement est plan et définir le plan dans lequel il s'effectue.
- 2. Montrer que le système est conservatif.
- 3. On définit, à l'instant t l'angle $\theta = (\overrightarrow{OA}, \overrightarrow{OM})$. On suppose dans un premier temps que l'objet reste au contact de la sphère
 - (a) Exprimer l'énergie mécanique du point matériel en fonction de sa vitesse v et de sa position repérée par θ.
 En déduire la vitesse v et la vitesse angulaire θ en fonction de θ.
 - (b) Retrouver ce résultat par application du théorème de l'énergie cinétique.
 - (c) Déterminer la réaction de la sphère et montrer que, si la vitesse v_0 est suffisamment faible, le point M quitte la sphère pour un angle θ_1 dont on donnera l'expression. Que se passe-t-il si la vitesse v_0 est trop élevée?
 - (d) Déterminer la vitesse quand le point *M* atteint le sol. Aurait-on pu déterminer ce résultat directement? Comment serait qualitativement modifié ce résultat en présence de frottement?

Exercice 9 : Pendule sur un plan incliné

Un pendule simple, de masse m et de longueur l, oscille en glissant avec frottements sur un plan incliné faisant l'angle θ_0 constant avec l'horizontale. On désigne par α l'angle $(\vec{e}_x, \overrightarrow{OM})$, le vecteur unitaire \vec{e}_x pointant vers le bas selon la ligne de plus grande pente.

- 1. On considère dans un premier temps que le mouvement s'effectue sans frottement.
 - (a) Montrer que le système est conservatif.
 - (b) Exprimer la conservation de l'énergie mécanique. Que devient cette équation si l'angle α est petit?
 - (c) En déduire la nature et la période des petites oscillations.

2. **ﺳ**੬

On considère maintenant un frottement solide entre le point et le plan incliné de coefficient de frottement μ . Lâché en M_1 ($\overrightarrow{OM_1}$ fait l'angle α avec la ligne de plus grande pente), la masse remonte en M_2 ($\overrightarrow{OM_2}$ fait l'angle β avec la ligne de plus grande pente).

- (a) Déterminer μ en fonction de α β et θ_0 .
- (b) Le point matériel est-il à l'équilibre en M_2 ?

Gradients

Exercice 10 : Gradient en coordonnées cartésiennes 🗠

On considère un système de deux ressorts AM et BM identiques de longueur à vide ℓ_0 et de raideur k dont deux extrémités sont fixées en deux points $A(x = -\ell_0; z = 0)$ et $B(x = \ell_0; z = 0)$ situés dans un même plan horizontal. Une masse m est placée à l'extrémité commune M des deux ressorts, au voisinage de O(x = 0; z = 0).

- 1. On néglige dans cette question le poids de la masse m.
 - (a) Déterminer l'expression de l'énergie potentielle du système.
 - (b) On cherche dans cette question à maintenir la masse immobile en un point de coordonnées (x_0, y_0) en tirant sur un fil attaché à la masse M. Déterminer la direction et la tension du fil. Préciser leur valeurs pour $x_0 = z_0 = \ell_0/2$.
- 2. On n'utilise plus le fil et on prend désormais en compte le poids de la masse *m*. Déterminer la nouvelle position d'équilibre, en supposant qu'elle reste au voisinage de *O*.

Exercice 11 : Charge dans le champ d'un dipôle

On considère un dipôle formé de deux charges q et -q situées respectivement en z = d/2 et z = -d/2. On étudie leur interaction avec une charge q' mobile dont la position est repérée en coordonnées polaires r, θ ; d'origine O située au milieu du segment des deux charges et d'axe Oz.

- 1. Par analogie avec l'énergie potentielle de gravitation, établir l'expression de l'énergie potentielle d'interaction électrostatique entre les charges q et q' en fonction de $q, q', \varepsilon_0, r, \theta, d$. En déduire l'expression de l'énergie potentielle d'interaction \mathscr{E}_{pot} entre la charge q' et le dipôle.
- 2. Montrer que pour $r \gg d$, on peut écrire :

$$\mathcal{E}_{\text{pot}} = \frac{q'}{4\pi\varepsilon_0} \frac{\overrightarrow{p} \cdot \overrightarrow{e_r}}{r^2}.$$

- 3. Toujours pour $r \gg d$:
 - (a) En déduire l'expression de la force \overrightarrow{F} subie par la charge q' en fonction de sa position.

- (b) Estimer son ordre de grandeur pour un ion OH^- situé à une distance r = 10 Å d'une molécule de H_2O et comparer à son poids.
- (c) Déterminer et représenter cette force en différents points d'un cercle de rayon r, définis par les angles : $\theta = 0; \theta = \pi/4; \theta = \pi/2; \theta = \pi; \theta = 3\pi/2.$

Portrait de phase

Exercice 12 : Portrait de phase du pendule simple

Un pendule simple est constitué d'une masse ponctuelle m reliée par une tige rigide de longueur l et de masse négligeable à un point fixe O du référentiel terrestre \mathcal{R}_T . On suppose que le mouvement de la petite masse s'effectue dans un plan vertical et on repère à chaque instant le position du pendule par l'angle θ que fait la tige avec la verticale descendante passant par O. Le pendule sera lâché sans vitesse initiale d'un angle α .

- 1. Montrer que le mouvement est conservatif. Établir l'intégrale première du mouvement et l'écrire sous forme adimensionnée en faisant apparaître la pulsation caractéristique ω_0 .
- 2. Retrouver les équations bien connues de son mouvement pour les petits angle θ .
- 3. On ne considère plus maintenant des petits angles.
 - (a) Tracer l'énergie potentielle $\mathscr{E}_{pot}(\theta)$ (on choisira la constante pour avoir $\mathscr{E}_{pot}(0) = 0$) pour $\theta \in [-2\pi; 2\pi]$.
 - (b) Discuter la nature des mouvements possibles en fonction de la valeur de l'énergie mécanique \mathscr{E}_{m0} . Quelles différences pourrait présenter un pendule dans lequel la tige rigide serait remplacée par un fil idéal?
 - (c) Tracer dans le plan de phase θ , $\dot{\theta}$ l'allure des trajectoires des mouvements correspondants. Quelle est leur équation pour $\mathcal{E}_{m0} \ll mgl$?
- (a) En écrivant dt = dθ/θ, exprimer la période des mouvements liés en fonction de l'énergie ℰ_{m0} sous forme d'une intégrale.
 - (b) Mettre cette équation sous la forme :

$$T = 4\sqrt{\frac{l}{g}}f\left(\sin\frac{\alpha}{2}\right)$$
 avec $f(x) = \int_0^{\pi/2} \frac{\mathrm{d}u}{\sqrt{1 - x^2\sin^2 u}}$

et retrouver le développement à l'ordre 2 en α établi sur la feuille d'exercices précédente.

Correction de l'exercice 1

L'équation horaire du mouvement est $x = x_0 \cos\left(2\pi v t + \varphi\right)$, sa vitesse est $\dot{x} = -2\pi v x_0 \sin\left(2\pi v t + \varphi\right)$. Lors d'un déplacement élémentaire $dx = \dot{x}dt$, le travail élémentaire vaut $\delta W(\overrightarrow{f}_f) = -\alpha \dot{x}^2 dt = -4\pi^2 v^2 \alpha x_0^2 \sin^2\left(2\pi t / T + \varphi\right) dt$. Le travail sur une période vaut donc :

$$W_T(\vec{f}_f) = \int \delta W(\vec{f}_f) = -4\pi^2 \alpha v^2 x_0^2 \int_{t=0}^{1/v} \sin^2 \left(2\pi t / T + \varphi \right) dt = -2\pi^2 v \alpha x_0^2.$$

en reconnaissant la valeur moyenne d'un sinus carré sur une période, égale à 1/2.

Correction de l'exercice 2

On représente les cartes de forces ci-dessous.

Fig. 2

1. (a) La force \vec{F}_1 est dirigée selon \vec{e}_x et ne dépend que de x: on se trouve dans le cas d'un système unidimensionnel. On identifie immédiatement:

$$\vec{F}_1 = -\frac{\mathrm{d}\mathscr{E}_{\mathrm{pot}}}{\mathrm{d}x} \vec{e_x}$$
, avec $\mathscr{E}_{\mathrm{pot}}(x) = -kx^2/2 + cste$.

On choisit une constante nulle pour avoir $\mathcal{E}_{pot}(0) = 0$.

(b) Le travail élémentaire de la force \vec{F}_1 lors d'un déplacement $d\vec{M}$ vaut $\delta W(\vec{F}_1) = kx \vec{e}_x \cdot (dx \vec{e}_x + dy \vec{e}_y) = kx dx = d(kx^2/2)$. Lors d'un déplacement quelconque d'un point $M_1(x_1, y_1)$ à $M_2(x_2, y_2)$, le travail qu'elle fournit vaudra :

$$W_{M_1 \to M_2}(\vec{F}_1) = \int_{x_1}^{x_2} d(x^2/2) = \frac{1}{2}k(x_2^2 - x_1^2),$$

indépendant du chemin suivi.

(c) On peut par exemple considérer le triangle de sommets : A(0,0), $B(x_0,0)$, $C(x_0,y_0)$ (voir la figure 2b). Le travail le long du trajet ACBA vaut : $W_{ACBA} = W_{AC} + W_{CB} + W_{BA}$. Les deux derniers sont nuls puisque : $\begin{cases} x \text{ est constant sur } C \to B \\ y \text{ est nul sur } B \to A \end{cases}$. Sur la portion $A \to C$, on a $y = y_0 x/x_0$. Le travail y vaut ainsi

 $W_{AC} = \int_{x=0}^{x_0} k \frac{y_0}{x_0} x dx = \frac{1}{2} k y_0 x_0$. Le travail sur la courbe fermée est donc non nul ce qui équivaut à dire que le travail dépend du chemin suivi (travail différent pour aller de A à C directement ou en passant par B). La force \overrightarrow{F}_2 n'est donc pas conservative.

2. (a) Le travail élémentaire de la force \vec{F}_3 lors d'un déplacement élémentaire $dx \vec{e}_x + dy \vec{e}_y$ vaut $\delta W(\vec{F}_3) = -k(x dx + y dy)$. Pour un déplacement d'un point $M_1(x_1, y_1)$ à $M_2(x_2, y_2)$, on aura donc :

$$W(\overrightarrow{F}_3) = -\frac{1}{2}k(x_2^2 + y_2^2 - x_1^2 - y_1^2).$$

- (b) En coordonnées cartésiennes, on a $\overrightarrow{F} = -\left(\frac{\partial \mathscr{E}_{pot}(x,y)}{\partial x}\overrightarrow{e}_x + \frac{\partial \mathscr{E}_{pot}(x,y)}{\partial y}\overrightarrow{e}_y\right)$, La fonction $\mathscr{E}_{pot}(x,y) = \frac{1}{2}k(x^2 + y^2)$ convient.
- (c) On a $\mathcal{E}_{pot}(r,\theta) = \frac{1}{2}kr^2$: on retrouve l'énergie potentielle d'un ressort idéal de longueur au repos nulle et dont une extrémité est fixée à l'origine du repère. On vérifie en coordonnées polaires :

$$\overrightarrow{F} = -\frac{\partial \mathcal{E}_{pot}(r, \theta, z)}{\partial r} \overrightarrow{e_r} - (1/r) \frac{\partial \mathcal{E}_{pot}(r, \theta, z)}{\partial \theta} \overrightarrow{e_\theta} - \frac{\partial \mathcal{E}_{pot}(r, \theta, z)}{\partial z} \overrightarrow{e_z}.$$

Correction de l'exercice 3

La voiture est soumise à son poids $\overrightarrow{P} = m\overrightarrow{g}$ et à la réaction \overrightarrow{R} de la route. La composante normale du poids compense exactement le poids : $\overrightarrow{R}_{\perp} = -m\overrightarrow{g}$ et ces deux forces ne travaillent pas puisqu'elles sont orthogonales au déplacement. En revanche la réaction tangentielle : $\overrightarrow{R}_{||} = -\mu \overrightarrow{R}_{\perp} \frac{\overrightarrow{v}}{v}$ travaille et puisqu'elle est constante, son travail lors d'un déplacement de longueur d vaut : $W_{M_1 - M_2}(\overrightarrow{R}_{||}) = -\mu mgd$. On applique donc le théorème de l'énergie cinétique entre l'instant initial où elle vaut $\frac{1}{2}mv_0^2$ et l'instant final où elle est nulle :

$$-\frac{1}{2}mv_0^2 = -\mu mgd \quad \text{soit} \quad d = \frac{v_0^2}{2\mu g},$$

et donc $d_{0.6} = 133 \,\mathrm{m}$ et $d_{0.2} = 400 \,\mathrm{m}$. Elle varie inversement proportionnellement au coefficient de frottement.

Correction de l'exercice 4

1. La flèche est soumis à son poids P, à la tension T, et à la force de l'archer F_a. L'arc étant considéré idéal, on néglige sa masse et tout frottement. L'énergie mécanique de la flèche est la somme de l'énergie cinétique et des énergies potentielles associées au poids ℰ_{pot,P} et à la force de tension de l'arc ℰ_{pot,T}. Tant que le mouvement est horizontal, le poids ne travaille pas. L'énergie potentielle associée à la tension de l'arc est ℰ_{pot,T} = kx²/2, avec OM = xēx.

Quand l'archer arme l'arc, la flèche est immobile au début et à la fin du mouvement : l'énergie cinétique reste donc nulle. En revanche l'énergie potentielle élastique croît de 0 à $\frac{1}{2}kx_0^2$. On applique le théorème de l'énergie mécanique au point matériel M: sa variation est égale au travail de la force non conservative de l'archer, qu'on note W_a . On a donc :

$$\Delta \mathcal{E}_{\mathrm{m}} = \Delta \mathcal{E}_{\mathrm{c}} + \Delta \mathcal{E}_{\mathrm{pot},T} = \frac{1}{2} k x_0^2 = W_a.$$

2. Lors de la phase ultérieure du mouvement, l'archer n'exerce plus de force et l'énergie mécanique se conserve. De l'état $x = x_0$, v = 0 à l'état x = 0, $v = v_0$, on a donc :

$$\frac{1}{2}kx_0^2 = \frac{1}{2}m\nu_0^2 \quad \text{soit} : \nu_0 = x_0\sqrt{\frac{k}{m}}.$$

- 3. La norme de la force \overrightarrow{T} vaut k|x|. L'archer doit exercer une force de même intensité pour maintenir l'arc armé. Si la raideur est très importante l'archer ne pourra pas armer l'arc d'une distance importante. Si elle est trop faible, le travail W_a qu'il effectuera pour armer l'arc de l sera trop faible. Plus précisément, on a $W_a = kx_0^2/2 = F_0x_0/2$ puisque la force $\overrightarrow{F_a}$ compense $\overrightarrow{T} = kx_0\overrightarrow{e_x}$ quand l'arc est armé au maximum. Ce travail sera maximal quand x_0 prend sa valeur maximale l. Comme $kx_0 = F_0$, on doit avoir $k_0 = F_0/l$.
- 4. On calcule:

$$k_0 = 2.8 \cdot 10^2 \,\mathrm{N} \cdot \mathrm{m}^{-1}$$
 $v_0 = \sqrt{\frac{2Wa}{m}} = \sqrt{\frac{F_0 \,l}{m}} = 68 \,\mathrm{m} \cdot \mathrm{s}^{-1}.$

5. Si l'angle α n'est pas nul, le poids travaille quand on arme l'arc et quand on lâche la corde. Néanmoins son travail sur un aller-retour est nul puisqu'il s'agit d'une force conservative : la vitesse d'éjection de la flèche ne sera pas changée si le travail musculaire reste le même.

Néanmoins, Le poids «aide » l'archer en rajoutant une force vers le bas ; celui-ci devra donc armer sur une distance plus grande pour fournir le même travail s'il n'est pas déjà au maximum de ce que la longueur de ses bras lui permet.

6. Une fois le point O atteint, le point matériel n'est plus soumis qu'à son poids si on ne prend pas en compte les frottements. On écrit de nouveau la conservation de l'énergie mécanique entre l'état initial (O, v₀) et le sommet de la trajectoire d'altitude h par rapport à O. La vitesse n'est cependant pas nulle au sommet de la trajectoire, seule sa composante verticale l'est. On a vu lors de l'étude de la chute libre, que la composante horizontale de la vitesse, v₀ cos(α), ne varie pas lors du mouvement. On a donc v² = v₀² cos²(α) au sommet de la trajectoire. En choisissant son origine au point O, l'énergie potentielle de pesanteur varie quant à elle de 0 à mgh, et la conservation de l'énergie mécanique s'écrit :

$$\frac{1}{2}mv_0^2 = \frac{1}{2}mv_0^2\cos^2(\alpha) + mgh \quad \text{soit}: h = \frac{v_0^2(1-\cos(\alpha)^2)}{2g} = \frac{F_0l}{2mg}(1-\cos(\alpha)^2) = 1, 2 \cdot 10^2 \,\text{m}.$$

Il est bien évident qu'on atteint pas une telle altitude. Il faudrait bien sûr prendre en compte le frottement de l'air mais aussi le fait qu'une partie de l'énergie est communiquée au bois de l'arc qui possède une vitesse non nulle au moment où la flèche se sépare de l'arc. Signalons que d'autres géométries d'arc permettent d'éliminer ce défaut.

Correction de l'exercice 5

1. Le point matériel est soumis à son poids, conservatif, d'énergie potentielle associée $\mathscr{E}_{pot,P} = mgz + \text{cste}$ et à la tension du fil \overrightarrow{T} qui ne travaille pas : le mouvement est donc conservatif, et l'énergie potentielle du point matériel est celle du poids. On peut choisir la constante pour lui imposer d'être nulle en $\theta = 0$, on a alors $\mathscr{E}_{pot} = mgl(1 - \cos(\theta))$.

Le point matériel est animé d'un mouvement circulaire, le module de sa vitesse est donc $l\dot{\theta}$ et son énergie cinétique est $\mathcal{E}_{\rm C}=ml^2\dot{\theta}^2/2$. On en déduit l'énergie mécanique :

$$\mathscr{E}_{\mathrm{m}} = \frac{ml^2\dot{\theta}^2}{2} + mgl(1 - \cos(\theta)).$$

- 2. On écrit la conservation de l'énergie mécanique entre :
 - l'instant initial où $\theta = 0$ et $v_0 = l\omega_0$;

• un instant ultérieur où la vitesse est $v_0 = l\dot{\theta}$ à la position θ . On a :

$$\mathcal{E}_{\rm m} = \frac{ml^2\omega_0^2}{2} = \frac{ml^2\dot{\theta}^2}{2} + mgl(1 - \cos(\theta))$$

soit: $\dot{\theta}^2 = \omega_0^2 - \frac{2g}{l}(1 - \cos(\theta))$. (1)

3. La loi de la quantité de mouvement s'écrit : $m\vec{a}(M) = \vec{T} + \vec{P}$. Sur un mouvement circulaire, on a $\vec{a}(M) = -l\dot{\theta}^2 \vec{e_r} + l\ddot{\theta} \vec{e_\theta}$. Comme $\vec{P} = mg\left(\cos(\theta)\vec{e_r} - \sin(\theta)\vec{e_\theta}\right)$ et $\vec{T} = T_r\vec{e_r}$ est radiale, on projette sur $\vec{e_r}$ pour obtenir :

$$-ml\dot{\theta}^2 = T_r + mg\cos(\theta) \tag{2}$$

soit:
$$T_r = -ml\dot{\theta}^2 - mg\cos(\theta) = -ml\omega_0^2 + mg(2 - 3\cos(\theta)).$$
 (3)

La tension \overrightarrow{T} ne peut être que selon $-\overrightarrow{e_r}$ quand le fil est tendu. Son module est donc :

$$\|\overrightarrow{T}\| = -T_r = mg\cos(\theta) + ml^2\dot{\theta}^2.$$

Il faut donc que $\cos(\theta)$ soit négatif pour que $\|\vec{T}\|$ puisse s'annuler, soit $|\theta| \ge \pi/2$. Tant que M ne s'élève pas au dessus de O, le fil restera tendu.

4. • L'angle θ_1 annule l'expression (1), il vérifie donc :

$$\cos(\theta_1) = \left(1 - \frac{l\omega_0^2}{2g}\right).$$

• L'angle θ_2 annule quant à lui l'expression (3), il vérifie :

$$\cos(\theta_2) = \frac{2 - l\omega_0^2/g}{3} = \frac{2}{3}\cos(\theta_1).$$

- 5. Si ω₀² ≤ 2g/l, cos(θ₁) est positif, et la décroissance de cos sur [0; π] assure que θ₁ ≤ θ₂ ≤ π/2. On vérifie que la vitesse s'annule avant que le fil ne se détende et donc que le pendule oscille de −θ₁ à θ₁ avec le fil tendu, comme vu précédemment.
 - Si $\omega_0^2 \ge 2g/l$ les expressions définissant $\cos(\theta_1)$ et $\cos(\theta_2)$ sont négatives, on a donc $0 \ge \cos(\theta_2) \ge \cos(\theta_1)$, soit $\pi/2 \le \theta_2 \le \theta_1$ en vertu de la décroissance de cos. Si la détente du fil se produit, ce sera avant que la vitesse ne s'annule et on n'atteint pas l'altitude maximale prédite par l'intégrale première du mouvement. La détente se produira si l'expression définissant $\cos(\theta_2)$ est supérieure à -1 soit pour $\omega_0^2 = 5g/l$. Dans le cas contraire, il n'existe pas d'angle θ_2 tel que $\cos(\theta_2) = \frac{2}{3}(1 l\omega_0^2/(2g))$.
 - Si $\omega_0^2 \ge 5g/l$, les deux expressions définissant θ_1 et θ_2 sont inférieures à -1. Le fil ne se détend jamais et sa vitesse ne s'annule jamais. Son mouvement est révolutif autour de O.

Correction de l'exercice 6

1. L'énergie mécanique $\mathscr{E}_{\rm m} = \frac{1}{2} m \dot{x}^2 + \mathscr{E}_{\rm pot}(x)$ est conservée.

- (a) L'atome sera dans un état lié si son énergie mécanique est inférieure à la valeur asymptotique de \mathscr{E}_{pot} quand x tend vers l'infini, soit pour $\mathscr{E}_m < 0$. On calcule $\mathscr{E}_m = \frac{1}{2} m v_0^2 U_0$ à l'état initial, la condition est donc : $v_0 < \sqrt{2U_0/m}$.
- (b) On écrit la conservation de l'énergie mécanique entre l'état initial et l'état final asymptotique quand x tend vers l'infini. L'énergie potentielle & pot tend alors vers 0 et on a :

$$\frac{1}{2}mv_0^2 - U_0 = \frac{1}{2}mv_\infty^2 \quad \text{soit} : v_\infty^2 = v_0^2 - \frac{2U_0}{m}.$$

2. Pour $z \ll 1$, on a : $(1+z)^u \simeq 1 + uz$. En appliquant ce résultant pour $z = (x/x_R)^2$ et u = -1, on peut donc écrire $\mathscr{E}_{\text{pot}}(x) \simeq -U_0(1-\frac{x^2}{x_n^2})$, de la forme :

$$U_0 + \frac{1}{2}kx^2$$
 avec : $\frac{k}{2} = \frac{U_0}{x_R^2}$.

On reconnaît l'énergie potentielle d'un oscillateur harmonique, dont la pulsation sera :

$$\omega_0 = \sqrt{k/m} = \sqrt{2U_0/(mx_R^2)} = 2.3 \cdot 10^3 \,\text{rad} \cdot \text{s}^{-1},$$

avec $m = 7 \times 1,67 \cdot 10^{-27} \text{ kg et } U_0 = k_B \times 2,0 \cdot 10^2 \,\mu\text{K}.$

3. (a) On rajoute l'énergie potentielle de pesanteur mgx à l'expression précédente. On obtient :

$$\mathcal{E}_{\text{pot}}' = mgx - \frac{U_0}{1 + \frac{x^2}{x_p^2}} = mgx_Ry - \frac{U_0}{1 + y^2} = mgx_R \left(y - \frac{\alpha}{1 + y^2}\right).$$

(b) On a représenté l'allure de $\mathscr{E}_{pot}(y)$ pour différentes valeurs de α sur la Figure 3. Pour α faible, on retrouve la droite de l'énergie potentielle, dans laquelle l'énergie potentielle \mathscr{E}_{pot} due au laser creuse une indentation d'autant plus grande que α est grand. Si α est suffisamment important, la contribution de \mathscr{E}_{pot} peut rendre \mathscr{E}_{pot}^l localement décroissante : on a alors un minimum local d'énergie potentielle, soit un nouvel équilibre stable.

Fig. 3 : Allure de \mathcal{E}'_{pot} pour différentes valeurs de y.

(c) La valeur $\alpha=1,54$ marque l'apparition de ce minimum local. On calcule alors $U_0=\alpha_c mgx_R=k_{\rm B}\times 3,8\cdot 10^{-6}\,\mu{\rm K}$. Cette valeur est bien inférieure à celle donnée précédemment. Avec $T_0=200\,\mu{\rm K}$, le système possédera bien un minimum local.

(d) La profondeur du piège est la grandeur U_0' représentée sur la Figure 3. On détermine les abscisses du minimum x_{\min} et du maximum x_{\max} locaux de \mathcal{E}'_{pot} en annulant sa dérivée. La profondeur U_0' est alors $\mathcal{E}'_{pot}(x_{\max}) - \mathcal{E}'_{pot}(x_{\min})$. La position d'équilibre est en $x = x_{\min}$.

Correction de l'exercice 7

1. On a $F_x = -\frac{\mathrm{d}\mathscr{E}_{\mathrm{pot}}}{\mathrm{d}x}$. Pour x > 0, on peut donc choisir $\mathscr{E}_{\mathrm{pot}} = F_0 x$. Pour x < 0, on aura $\mathscr{E}_{\mathrm{pot}} = -F_0 x$. On a finalement $\mathscr{E}_{\mathrm{pot}} = F_0 |x|$, représentée sur la Figure 7. L'énergie potentielle tend vers l'infini quand x s'éloigne à l'infini. Un point matériel sera donc toujours dans un état lié.

Remarquons que la force n'est pas définie en x = 0. Une étude plus fine du modèle au voisinage de x = 0 permettrait de résoudre cette discontinuité.

2. On écrit la conservation de l'énergie mécanique entre l'état initial $(x = 0, \dot{x} = v_0)$ et la position extrêmale $(x = x_{\text{max}}, \dot{x} = 0)$. On a :

$$\frac{1}{2}mv_0^2 = F_0 x_{\text{max}} \quad \text{soit} : x_{\text{max}} = \frac{mv_0^2}{2F_0}.$$

3. (a) On écrit la même relation avec pour état final ($x \le x_{\text{max}}, \dot{x} \ge 0$). On obtient :

$$\frac{1}{2}mv_0^2 = \frac{1}{2}m\dot{x}^2 + F_0x \quad \text{soit} : \dot{x}^2 = v_0^2 - \frac{2F_0x}{m}.$$

(b) Tant que $\dot{x} \ge 0$, on a $\dot{x} = \sqrt{\dot{x}^2}$, on peut donc écrire :

$$\dot{x} = \frac{\mathrm{d}x}{\mathrm{d}t} \quad \text{soit}: \, \mathrm{d}t = \frac{\mathrm{d}x}{\dot{x}} = \frac{\mathrm{d}x}{\nu_0 \sqrt{1 - \frac{2F_0 x}{m \nu_0^2}}} = \frac{\mathrm{d}x}{\nu_0 \sqrt{1 - \frac{x}{x_{\mathrm{max}}}}}.$$

(c) En posant $y = x/x_{\text{max}}$, on a d $x = x_{\text{max}}$ dy. De plus le mouvement du point matériel de x = 0 à x_{max} correspond à un quart de période, on a donc : $\frac{T}{4} = (x_{\text{max}}/v_0) \int_0^{x_{\text{max}}/x_{\text{max}}} dy/\sqrt{1-y}$. Une primitive de $1/\sqrt{1-y}$ est $-2\sqrt{1-y}$, on en déduit :

$$T = \frac{4x_{\text{max}}}{v_0} \left[-2\sqrt{1-y} \right]_{y=0}^1 = \frac{8x_{\text{max}}}{v_0} = \frac{4mv_0}{F_0}.$$

On constate qu'elle dépend de l'énergie du mouvement par l'intermédiaire de v_0 : les oscillations ne sont pas harmoniques.

Correction de l'exercice 8

 Le mouvement s'effectuera dans le plan P défini par la vitesse initiale et le poids. En effet, la réaction du support étant colinéaire à OM, aucune force n'induira de mouvement dans la direction perpendiculaire à P.

- Le point matériel est soumis au poids, conservatif, et à la réaction du support qui ne travaille pas en l'absence de frottement. Son énergie mécanique se conserve donc dans un référentiel galiléen.
- 3. (a) L'énergie potentielle de pesanteur peut être définie comme $\mathscr{E}_{pot} = mgz = mga\cos\theta$. L'énergie mécanique est alors $\mathscr{E}_m = \frac{1}{2}mv^2 + mga\cos\theta = \mathscr{E}_{m0} = cste = \frac{1}{2}mv_0^2 + mga$. On a donc :

$$v = \sqrt{v_0^2 + 2ga(1 - \cos\theta)}$$
 soit $\dot{\theta} = v/a = \sqrt{v_0^2/a^2 + 2g(1 - \cos\theta)/a}$.

- (b) Le travail de la seule force qui travaille, le poids, lorsque le l'altitude varie de z=a à $z=a\cos\theta$ vaut $mg(a-a\cos\theta)$, la variation d'énergie cinétique vaut donc : $\frac{1}{2}m(v^2-v_0^2)=mg\,a(1-\cos\theta)$. On retrouve évidemment le même résultat puisque le théorème de l'énergie cinétique et l'intégrale première de l'énergie décrivent exactement la même idée, la seule différence étant le côté du signe égal où l'on écrit le travail des forces conservatives.
- (c) Le principe fondamental de la dynamique s'écrit, dans la base polaire, en utilisant les expressions de l'accélération pour un mouvement circulaire : $\begin{cases} ma\ddot{\theta} &= mg\sin\theta \\ -ma\dot{\theta}^2 &= -mg\cos\theta + R \end{cases}$. La deuxième équation permet de déterminer la réaction $R = mg\cos\theta ma\dot{\theta}^2 = 3mg\cos\theta 2mg mv_0^2/a$. Cette dernière s'annule pour l'angle θ_1 vérifiant $\cos\theta_1 = 2/3 + v_0^2/(3ag)$. La vitesse v_0 doit être inférieure ou égale à \sqrt{ag} pour que cette expression soit inférieure ou égale à 1 et que l'angle θ_1 soit bien défini. Dans le cas contraire, le point matériel décolle instantanément de la sphère.
- (d) À cet instant, l'altitude est $z_1 = a\cos\theta_1$ et la vitesse $v_1 = \sqrt{ga\cos\theta_1}$. La conservation de l'énergie mécanique entre cet instant et l'instant où il touche le sol où z=0 assure que : $\frac{1}{2}mv_1^2 + mgz_1 = \frac{1}{2}mv_{\text{sol}}^2$, soit $v_{\text{sol}}^2 = ga\cos\theta_1 + 2ga\cos\theta_1 = 3ga\cos\theta_1 = 2ga + v_0^2$. Bien évidemment on aurait pu (et dû) obtenir ce résultat directement par conservation de l'énergie mécanique entre le sommet de la sphère et le sol : $\frac{1}{2}mv_0^2 + mga = \frac{1}{2}mv_{\text{sol}}^2$. En présence de frottement, dont le travail est toujours résistif, la vitesse au sol sera plus faible.

Correction de l'exercice 9

- (a) Le point matériel n'est soumis qu'à son poids, conservatif, et à la réaction normale du support qui ne travaille pas, son énergie mécanique se conserve.
 - (b) L'énergie potentielle de pesanteur se met sous la forme $\mathscr{E}_{pot} = mgz = mgl(1 \cos\alpha)\sin\theta_0$, en choisissant l'origine des énergies potentielles en $\alpha = 0$ et en l'exprimant en fonction du seul degré de liberté du problème. En effet, en repérant les altitudes par rapport à O, on a $z = -x\sin\theta_0$ et x est relié à α par $x = l\cos\alpha$. L'énergie cinétique, pour ce mouvement circulaire, vaut $v = l\dot{\alpha}$ et l'intégrale première du mouvement s'écrit donc :

$$\frac{1}{2}ml^2\dot{\alpha}^2 + mgl(1 - \cos\alpha)\sin\theta_0 = cste.$$

Pour $\alpha \ll 1$, on retrouve (en développant $\cos \alpha \simeq 1 - \alpha^2/2$) un oscillateur harmonique avec : $\dot{\alpha}^2 + \omega_0^2 \alpha^2 = cste$, avec $\omega_0 = \sqrt{g \sin \theta_0/l}$.

- (c) Les petites oscillations sont donc harmoniques, de période $T = 2\pi/\omega_0 = 2\pi\sqrt{l/g\sin\theta_0}$.
- 2. (a) La variation d'énergie mécanique entre M_1 et M_2 sera égale au travail, résistif, de la force de frottement $\overrightarrow{R}_{||}$ solide. D'après la loi de Coulomb du frottement cinétique, la norme de cette dernière vaudra μR_{\perp} . La relation fondamentale de la dynamique, projetée perpendiculairement au plan assure que $R_{\parallel} = mg \cos \theta_0$. On aura

donc $R_{||} = \mu mg \cos \theta_0 = cste$. Son travail sur $M_1 \to M_2$ sera alors $R_{||} l(\alpha + \beta)$ puisque la longueur de l'arc qu'elle parcourt est $l(\alpha + \beta)$ (les angles sont ici géométriques). Finalement $W(\overrightarrow{R}_{||}) = -\mu mg \cos \theta_0 (\alpha + \beta)$. On a donc :

$$0 + mgz(\alpha) = 0 + mgz(\beta) - \mu mg\cos\theta_0 g(\alpha + \beta)$$
$$\mu = \frac{mgl\sin\theta_0 \left(\cos\beta - \cos\alpha\right)}{mg\cos\theta_0 (\alpha + \beta)} = \tan\theta_0 \frac{\cos\beta - \cos\alpha}{\alpha + \beta}$$

(b) On considère l'équilibre du point matériel sous l'effet de la tension du fil, de son poids et de la réaction tangentielle $\overrightarrow{R}_{||}$. La projection de la relation fondamentale de la dynamique dans le plan xOy s'écrit, en coordonnées polaires : $\begin{cases} \overrightarrow{e}_T : 0 & = -T + mg\sin\theta_0\cos\beta \\ \overrightarrow{e}_\theta : 0 & = -mg\sin\theta_0\sin\beta + R_{||} \end{cases}$. On a toujours $R_\perp = mg\cos\theta_0$ et donc $R_{||}/R_\perp = \tan\theta_0\sin\beta$. Il ne restera donc immobile que si $\tan\theta_0\sin\beta < \mu$.

Correction de l'exercice 10

1. (a) Les forces de tension des ressorts sont conservatives, d'énergies potentielles $\mathcal{E}_{\text{pot}_A} = k(AM - \ell_0)^2/2$ et $\mathcal{E}_{\text{pot}_B} = k(BM - \ell_0)^2/2$ soit, en coordonnées cartésiennes :

$$\mathcal{E}_{\text{pot}} = \frac{k}{2} \left[\left(\sqrt{(x - \ell_0)^2 + z^2} - \ell_0 \right)^2 + \left(\sqrt{(x + \ell_0)^2 + z^2} - \ell_0 \right)^2 \right]$$

(b) Notons \overrightarrow{F}_r la résultante des forces des ressorts et \overrightarrow{F}_f celle du fil. On a :

$$\begin{split} \overrightarrow{F}_r &= -\overrightarrow{\text{grad}} \mathcal{E}_{\text{pot}} = -k \left(\frac{(x - \ell_0) \left(\sqrt{(x - \ell_0)^2 + z^2} - \ell_0 \right)}{\sqrt{(x - \ell_0)^2 + z^2}} + \frac{(x + \ell_0) \left(\sqrt{(x + \ell_0)^2 + z^2} - \ell_0 \right)}{\sqrt{(x + \ell_0)^2 + z^2}} \right) \overrightarrow{e_x} \\ &- k \left(\frac{z \left(\sqrt{(x - \ell_0)^2 + z^2} - \ell_0 \right)}{\sqrt{(x - \ell_0)^2 + z^2}} + \frac{z \left(\sqrt{(x + \ell_0)^2 + z^2} - \ell_0 \right)}{\sqrt{(x + \ell_0)^2 + z^2}} \right) \overrightarrow{e_x} \end{split}$$

On vérifie bien qu'elle est nulle en (x=0;z=0) qui constitue donc une position d'équilibre. À l'équilibre on a $\overrightarrow{F}_r + \overrightarrow{F}_f = \overrightarrow{0}$. En notant α l'angle entre le vecteur $\overrightarrow{e_x}$ et la direction du fil, on a : $\tan(\alpha) = F_{fz}/F_{fx}$. Pour $x_0 = z_0 = \ell_0/2$, on calcule :

$$\overrightarrow{F}_f = k\ell_0 \left[\left(2 - \frac{1}{\sqrt{2}} - \frac{3}{\sqrt{10}} \right) \overrightarrow{e_x} + \left(1 - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{10}} \right) \overrightarrow{e_z} \right] = k\ell_0 \left(3, 4 \cdot 10^{-1} \overrightarrow{e_x} - 2, 3 \cdot 10^{-2} \overrightarrow{e_z} \right)$$

$$\tan(\alpha) = 6, 8 \cdot 10^{-2} \text{ rad} \rightarrow \alpha = -3, 9^{\circ}.$$

2. On doit rajouter la force $\vec{P} = -mg\vec{e_z}$ et on recherche la nouvelle position pour laquelle $\vec{F}_r + \vec{P} = \vec{0}$. Par symétrie, elle sera en x = 0 et on peut simplifier, au moyen d'un développement limité pour $z \ll \ell_0$:

$$\overrightarrow{F}_r = -2kz \left(1 - \frac{\ell_0}{\sqrt{\ell_0^2 + z^2}} \right) \overrightarrow{e_z} = -2kz \left(1 - \left(1 + (z/\ell_0)^2 \right)^{-1/2} \right) \simeq -\frac{kz^3}{\ell_0^2}.$$

On aura donc équilibre en $z = -z_e$ tel que :

$$\frac{kz_e^3}{\ell_0} = mg \to z_e = \left(\frac{mg\ell_0}{k}\right)^{1/3}.$$

Correction de l'exercice 11

1. La force de gravitation et la force électrostatique sont toutes les deux proportionnelles aux grandeurs caractéristiques (masses et charges) et à l'inverse de la distance au carré. Seule change la constante : $-\mathcal{G}$ pour la gravitation et $1/(4\pi\epsilon_0)$ pour l'électrostatique. On peut donc écrire, pour l'énergie potentielle d'interaction entre deux charges distantes de r :

$$\mathscr{E}_{\text{pot}_c} = \frac{qq'}{4\pi\varepsilon_0 r}.$$

Les distances sont ici :

$$r_{+} = \sqrt{(r\cos(\theta) - d/2)^{2} + (r\sin(\theta))^{2}} = \sqrt{r^{2} - rd\cos(\theta) + d^{2}/4}$$

$$r_{-} = \sqrt{(r\cos(\theta) + d/2)^{2} + (r\sin(\theta))^{2}} = \sqrt{r^{2} + rd\cos(\theta) + d^{2}/4}.$$

On calcule donc:

$$\mathscr{E}_{\text{pot}} = \frac{qq'}{4\pi\varepsilon_0} \left(\frac{1}{r_+} - \frac{1}{r_-} \right).$$

 On peut utiliser un développement limité pour d ≪ r, ou simplifier comme on l'a fait pour la différence de marche en trous d'Young car on a r₋ ≈ r₊ ≈ r :

$$\frac{1}{r_{+}} - \frac{1}{r_{-}} = \frac{r_{-} - r_{+}}{r_{-} r_{+}} = \frac{r_{-}^{2} - r_{+}^{2}}{r_{+} r_{-} (r_{-} + r_{+})} = \frac{2rd\cos(\theta)}{r_{+} r_{-} (r_{-} + r_{+})}$$
$$\approx \frac{2rd\cos(\theta)}{2r^{3}} = \frac{d\cos(\theta)}{r^{2}}.$$

Comme $cos(\theta) = \overrightarrow{e_z} \cdot \overrightarrow{e_r}$, on en déduit :

$$\mathscr{E}_{\text{pot}} = \frac{q'}{4\pi\varepsilon_0} \frac{d\overrightarrow{e_z} \cdot \overrightarrow{e_r}}{r^2} = \frac{q'}{4\pi\varepsilon_0} \frac{\overrightarrow{p} \cdot \overrightarrow{e_r}}{r^2}.$$

3. (a) On a $\vec{F} = -\overrightarrow{\text{grad}}\mathscr{E}_{\text{pot}}$. On utilise le gradient en coordonnées sphériques, en gardant à l'esprit que le vecteur \vec{p} est constant.

$$F_r = -\frac{d\mathcal{E}_{pot}}{dr}$$

$$= \frac{q'}{2\pi\varepsilon_0} \frac{\cos(\theta)}{r^3}$$

$$F_\theta = -\frac{1}{r} \frac{d\mathcal{E}_{pot}}{d\theta}$$

$$= -\frac{q'}{4\pi\varepsilon_0} \frac{\sin(\theta)}{r^3}$$

(b) La charge de l'ion OHm est -e. Le moment dipolaire de la molécule H_2O a pour intensité $1.85D = 7.8 \cdot 10^{-30} \, \text{C} \cdot \text{m}$. On en déduit :

$$F \simeq \frac{pe}{4\pi\varepsilon_0 r^3} = 1.1 \cdot 10^{-8} \,\mathrm{N},$$

très grand devant son poids $g(M(H) + M(O)) / \mathcal{N}_A = 2.8 \cdot 10^{-25} \,\text{N}.$

(c) Considérons par exemple le cas $\theta = \pi/4$, on y calcule :

$$F_r = \frac{q'p}{2\pi\sqrt{2}\varepsilon_0 r^3}$$
$$F_\theta = \frac{-q'p}{4\pi\sqrt{2}\varepsilon_0 r^3}$$

Correction de l'exercice 12

1. Le point matériel n'est soumis qu'à des forces conservatives (son poids) ou qui ne travaillent pas (la tension de la tige), le système est donc conservatif. L'énergie potentielle peut s'exprimer selon :

$$\mathcal{E}_{\mathrm{pot}}(\theta) = mgl(1-\cos\theta) \text{ soit } \mathcal{E}_{\mathrm{m}} = \mathcal{E}_{\mathrm{pot}} + \mathcal{E}_{\mathrm{cin}} = mgl(1-\cos\theta) \underbrace{+\frac{1}{2}ml^2\dot{\theta}^2}_{\overrightarrow{v} \text{ mvmt circulairs}}$$
$$\frac{2\mathcal{E}_{\mathrm{m}}}{ml^2} = \dot{\theta}^2 + 2\omega_0^2 (1-\cos\theta).$$

2. Pour les petits angles, $(1-\cos\theta) \simeq \theta^2/2$ et on retrouve l'intégrale première du mouvement d'un oscillateur harmonique :

$$\dot{\theta}^2 + \omega_0^2 \theta^2 = cste.$$

3. (a) et (b)

L'énergie potentielle est représentée sur la figure ci-contre.

- Pour une énergie mécanique ℰ_{m0} inférieure à 2mgl, le mouvement sera périodique, le point matériel oscillant entre deux points de rebroussement en ±θ₀, avec θ₀ ∈ [-π; π].
- Pour $\mathscr{E}_{m0} \ge 2mgl$, le point matériel effectuera une infinité té de tours, sa vitesse étant minimale en $\pi[2\pi]$ mais sans jamais s'annuler.

Dans le cas d'un fil, ces mouvements ne pourront être observés que si le fil reste tendu en permanence. On vérifierait cette condition en calculant la tension et en s'assurant qu'elle est toujours centripète (comme étudié dans l'exercice sur l'enroulement).

Les trajectoires dans l'espace des phases correspondant aux valeurs de l'énergie indiquées sur le graphe de l'énergie potentielle sont représentées sur la figure ci-contre dans les coordonnées θ et $\dot{\theta}/\omega_0$.

Les valeurs indiquées correspondent aux valeurs respectives de $\alpha = \mathcal{E}_{\mathrm{m}}/(mg\,l)$.

(c) On retrouve pour $\alpha = 3$ le mouvement périodique de révolution, des mouvements périodiques oscillants pour $\alpha = 3$ et $\alpha = 1$. On vérifie également que pour les faibles valeurs de α donc pour les petits angles, la trajectoire tend vers une ellipse (un cercle pour ce choix particulier de variable) : on retrouve les oscillations harmoniques du pendule simple pour les petits angles.

4. (a) et (b) On a:

$$\frac{\mathrm{d}\theta^2}{\mathrm{d}t} = \frac{2\mathcal{E}_{\mathrm{m0}}}{mt^2} - 2\omega_0^2 (1 - \cos\theta) = 2\omega_0^2 (\cos\theta - \cos\theta_{\mathrm{max}})$$

avec $\theta \le \theta_{\max}$ tel que $\mathscr{E}_{pot}(\theta_{\max}) = \mathscr{E}_{m0}$. Sur le quart de période, $\begin{cases} t & \in [0; T/4] \\ \theta & \in [0; \theta \max] \end{cases}$, où θ est croissant, on aura alors :

$$\begin{split} \omega_0 \sqrt{2} \sqrt{\cos\theta - \cos\theta_{\text{max}}} &= \frac{\mathrm{d}\theta}{\mathrm{d}t} \\ \sqrt{2} \omega_0 \mathrm{d}t &= \frac{\mathrm{d}\theta}{\sqrt{\cos\theta - \cos\theta_{\text{max}}}} \\ \sqrt{2} \omega_0 \int_0^{T/4} \mathrm{d}t &= \int_0^{\theta_{\text{max}}} \frac{\mathrm{d}\theta}{\sqrt{\cos\theta - \cos\theta_{\text{max}}}} &= \int_0^{\theta_{\text{max}}} \frac{\sqrt{2} \mathrm{d}\theta}{\sqrt{\sin^2\frac{\theta_{\text{max}}}{2} - \sin^2\frac{\theta}{2}}} \\ \frac{\omega_0 T}{2} &= \int_0^{\theta_{\text{max}}} \frac{\mathrm{d}\theta / (\sin\frac{\theta_{\text{max}}}{2})}{\sqrt{1 - \frac{\sin^2\frac{\theta}{2}}{\sin^2\frac{\theta_{\text{max}}}{2}}}}. \end{split}$$

En effectuant le changement de variable $\frac{\sin \frac{\theta}{2}}{\sin \frac{\theta_{\max}}{2}} = \sin x$, on obtient :

$$\sin \frac{\theta}{2} = \sin \frac{\theta_{\text{max}}}{2} \sin x \to \frac{d\theta}{\sin \frac{\theta_{\text{max}}}{2}} = \frac{2\cos x}{\cos \frac{\theta}{2}} dx$$

$$\frac{\omega_0 T}{2} = \int_0^{\pi/2} \frac{2}{\cos \frac{\theta}{2}} dx = \int_0^{\pi/2} \frac{2}{\sqrt{1 - \sin^2 \frac{\theta}{2}}} dx$$

$$\omega_0 T = \int_0^{\pi/2} \frac{4}{\sqrt{1 - \sin^2 \frac{\theta_{\text{max}}}{2} \sin^2 x}} dx, \quad \text{de la forme annoncée.}$$

5. Pour $\theta_{\text{max}} \ll 1$, on a $k = \sin \frac{\theta_{\text{max}}}{2} \simeq \frac{\theta_{\text{max}}}{2} \ll 1$ et on peut développer le dénominateur selon :

$$\left(1 - k^2 \sin^2 x\right)^{-\frac{1}{2}} \approx 1 + \frac{k^2}{2} \sin^2 x \approx 1 + \frac{\theta_{\max}^2}{8} \sin^2 x \text{ et calculer } \frac{\omega_0 T}{4} \approx \left(\frac{\pi}{2} + \frac{\pi \theta_{\max}^2}{32}\right)$$
 soit $\omega_0 T = 2\pi \left(1 + \frac{\theta_{\max}^2}{16}\right)$ On retrouve bien le résultat précédemment établi.