Quantum Computing and Modern Physics (PHY102)

(For All IT Streams) Unit-I : Quantum Mechanics

MCQ's

1. An experimental evidence for matter waves is

	(a) photoelectric effect	et		
	(b) compton effect			
	(c) electron diffractio	n		
	(d) interference of lig	ht		
	Ans: c			
2.	A wave packet is used	l to represent		
	(a) A light wave			
	(b) a stationary wave			
	(c) Matter wave			
	(d) a transverse wave			
	Ans: c			
3.	Wave function associa	ated with matter wave	es is a quantum mechanic	cal equivalent of
	(a) wavelength of the	wave		
	(b) frequency of the v	ave		
	(c) amplitude of the v	ave		
	(d) phase of the wave			
	Ans: c			
4.	The concept of matter	wave was suggested b	DY	
	(a) Heisenberg	(b) de Broglie	(c) Schrodinger	(d) Laplace
	Ans: b			

5. The function represent	ting matter waves must	t be	
(a) complex	(b) real	(c) zero	(d) infinity
Ans: a			
6. A particle with rest ma with it is	ass m _o is moving with s	speed c. The de-broglie	wavelength associated
(a) zero	(b) infinity	(c) $h\gamma/c^2$	(d) m_0c
Ans: a			
7. The matter waves are			
(a) light waves	(b) sound waves	(c) probablistic w	vaves (d) e.m.waves
Ans: c			
8. The wavelength of ma	tter waves does not dep	pend on	
(a) charge	(b) mass	(c) velocity	(d) momentum
Ans: a			
9. de Broglie wave lengt	th of a body of mass m	and kinetic energy E is	given by:
(a) $\lambda = \sqrt{2meV}/h$	(b) $\lambda = h / meV$	(c) $\lambda = h / \sqrt{2}$	$\frac{1}{2}$ (d) $\lambda = h/2$ meV
Ans: c			
10. If the energy of a par	ticle is reduced to one-	fourth then the percenta	ge increase in the de-
broglie wavelength is	S		
(a) 41%	(b) 100%	(c) 144%	(d) 70%
Ans: b			
11. The kinetic energy of	f electron and proton is	the same. The relation l	between their de-broglie
wavelengths λ_e and λ	p is		
(a) $\lambda_e = \lambda_p$	(b) $\lambda_e < \lambda_p$	(c) $\lambda_e > \lambda_p$	(d) $\lambda_e = 2\lambda_p$
Ans: c			
12. The wave nature asso	ociated with electrons i	n motion was verified by	y
(a) Photoelectric effect	et		
(b) Compton effect			
(c) Diffraction by crys	tals		
(d) incidence of electron	ons on metallic surface		
Ans: c			

13 o	f a wave is the velocity wi	ith which variations in the	shape of modulation or				
envelop of th	ne wave propagate through	n space.					
a) The elliptic	al velocity						
b) The phase v	b) The phase velocity						
c) The group v	velocity						
d) The circular	r velocity						
Ans: c							
14. The phase and	group velocities does not	depend on which of the f	ollowing?				
(a) Frequency	(b) Wavelength	(c) Phase constant	(d) Attenuation constant				
Ans: d							
15. de Broglie way	velength can be assigned	to					
(a) only electro							
(b) any stationa							
(c) any moving							
(d) only subato	•						
Ans: c	-						
16. Which one of t wavelength?	he following objects, mov	ving at the same speed, ha	s the greatest de Broglie				
(a) Neutron							
(b) Electron							
(c) Tennis ball							
(d) Foot ball							
Ans: b							
17. The group velo	ocity of matter waves asso	ociated with a moving par	ticle is:				
a) The same a	as phase velocity						
b) Less than t	he particle velocity						
c) Equal to th	e particle velocity						

d) More that	n the particle velocity			
Ans: c				
18. Uncertainty p	principle is applicable to			
(a) Macroscop	pic particles			
(b) Microscop	pic particles			
(c) gases				
(d) None				
Ans: b				
19. According to	o Heisenberg uncertainty	principle,		
(a) $E = mc^2$	(b) $\Delta x \times \Delta p >= h/4\pi$	(c) $\lambda = h / p$	(d) $\Delta x \times \Delta p = h/6\pi$	
Ans: b				
20. If uncertainty	y in the position of an elec	ctron is zero, the	e uncertainty in its momentum would	d be
(a) zero	(b) $< h/2\lambda$	(c) $> h/2\lambda$	(d) Infinite	
Ans: d				
21. How is the s	tate of a quantum mechan	nical system con	npletely specified?	
a) By its posib) By its timec) By its wayd) By its ang	2			
Ans: c				
22. The wave fur	nction is an acceptable wa	ave function if it	is is	
(a) finite ever	rywhere			
(b) continous	everywhere			
(c) single valu	ued everywhere			
(d) having all	these properties			
Ans: d				

23. Schrodinger's time	independent equation	n is applicable for t	he particles	with
(a) constant energy				
(b) variable energy				
(c) only constant po	tential energy			
(d) all of these				
Ans: a				
24. The Steady-state fo	orm of Schrodinger w	ave equation is		_
(a) Linear	(b) Quadratic	(c) Cubic (d) Nonline	ar
Ans: a				
	gy for which Schrodi (b) Eigen Values		_	n be solved is called as (d) Operators
26. The Schrodinger w	ave equation is a			
a.) Linear differents	ial equation			
b.) Non-linear diffe	rential equation			
c.) Second-order eq	uation			
d.) First-order equa	tion			
Ans: a				
27. For a quantum way	re particle, E =			
(a) ħ k	(b) ħ ω	(c) $\hbar \omega/2$	(d) ħ k/2
Ans: b				
28. Which of the follow	wing can be a wave fu	unction?		
(a) tan x	(b) sin x	(c) cot x	(d) sec x
Ans: b				

29. Which of the following	owing is not a chara	cteristic of wave fu	unction?	
(a) Continuous	(b) Single valued	(c) Normalizab	ole (d) Multi valued
Ans: d				
30. The total probabi	lity of finding the pa	article in space mus	st be	
(a) zero	(b) unity	(c) infinity	(d) (double
Ans: b				
31. The normalized v	vave function must l	nave nor	rm	
(a) Unit (b) z	ero (c)	finite	(d) infin	iite
Ans: a				
32. The square of the	magnitude of the w	rave function is cal	led	_
(a) current density	(b) probability de	ensity (c) Norma	alization	(d) volume density
Ans: b				
33. According to the	wave function and i	t first partial deriva	ative should	be functions for
all values of X				
(a) Zero	(b) Continous	(c) Infinity	(d)	Discontinous
Ans: b				
34. For $E > 0$, the par	ticle has a k	tinetic energy		
(a) Zero	(b) Positive	(c) N	Vegative	(d) Infinity
Ans: b				
35. According to Max	x Born's interpretati	on, $ \psi ^2$ represen	ts	
(a) energy density				
(b) particle density	y			
(c) probability der	nsity			
(d) charge density				
Ans: c				
36. In a one dimension	onal infinite potentia	l well, energy of th	he particle E	n =
(a) $n^2h^2/8mL^2$	(b) $n^2\hbar^2/8mL^2$	(c) n^2h^2	$\frac{1}{2}$ mL ²	(d) $n^2h^2/4mL^2$
Ans: a				

37. The energy corre	sponding to the	lowest permitted ene	rgy level for	r a particle in an infinite		
potential well is	potential well is called					
(a) Excited energ	(a) Excited energy					
(b) Zero point end	(b) Zero point energy					
(c) Metastable sta	ate energy					
(d) None of these	;					
Ans: b						
38. For a particle in t	he ground state	in an one-dimension	al potential	well of width L and of		
infinite height, the	probability of f	finding it will be max	cimum at a c	distance of		
(a) L/2 from the	wall					
(b) L/4 from the	wall					
(c) 3L/4 from the	wall					
(d) L=0 from the	wall					
Ans: a						
39. According to the (a) $x > 0$	particle in a box (b) x < 0		of the partic x < L	le lies in which region? (d) x > L		
Ans: c						
40. The Energy of the	e particle is prop	oortional to				
(a) n	(b) n ⁻¹	(c) n^2		(d) n^{-2}		
Ans: c						
41. The wave function	n shown in the t	figure for which quar	ntum state co	orresponding to		
(a) Ground st(d) Third excited st		(b) First excited state	e (c) S	Second excited state		
Ans: b						
42. The de Broglie w	avelength associ	iated with a particle of	of mass 6.62	2 x 10 ⁻²⁹ kg travelling with	n a	
velocity 10 ⁵ ms ⁻¹	is equal to					
(a) 10 nm						
(b) 1 nm						

	(c) 0.1 nm			
	(d) 0.01nm			
	Ans: c			
43.	What is the energy of $n = 1$ to $n = 4$ is (a) $E_1/9$	of electron in term	s of its ground state ener	rgy (E ₁) when it jumps from
	(b) $E_1/16$			
	(c) $16 E_1$			
	(d) $4 E_1$			
	Ans: c			
44.			sional potential well of v	vidth 1 Å. How much energy o second excited state?
	(b) 4.82 x 10 ⁻¹⁸ J			
	(c) $1.81 \times 10^{-17} \text{ J}$			
	(d) 1.81 x 10 ⁻¹⁸ J			
	Ans: a			
45.	Calculate the deBrog	glie wavelength as	ssociated with an electro	n with a kinetic energy of
	2000 eV is (a) 2.74 Å Ans: b	(b) 0.274 Å	(c) 27.4 Å	(d) 0.0274 Å
46.	The product of phas	se velocity and gro	oup velocity is equal to	
	a) particle velocity	, ,	b) velocity of light	
	c) square of velocit	y of light	•	ity of light.
	Ans: c	-	-	
47.	Calculate the Zero-p	point energy for a	particle in an infinite po	tential well for an electron
	confined to a 1 nm a	tom.		
	(a) $3.9 \times 10^{-29} \text{ J}$	(b) 4.9 X 10 ⁻²⁹ J	(c) $5.9 \times 10^{-29} \text{ J}$	(d) 6.9 X 10 ⁻²⁹ J
	Ans: c			

Ans: c				
49. The ratio of en	ergy of a photon with	that of a neutron w	hen both are associated with	
wavelength of	1 Å., given that the m	ass of neutron is 1.	678 x 10 ⁻²⁷ Kg.	
(a) 2.5×10^5	(b) 1.5×10^5	(c) 0.5 X 1	0^5 (d) 3.5×10^5	
Ans: b				
50. An electron is	confirmed to move be	tween two rigid wa	lls separated by 20 Å. The de	e Broglie
wavelength rep	presenting the groun st	ate energy of an ele	ectron is (assume the potential	al to be
zero)				
(a) 0.6 Å	(b) 0.2 Å	(c) $0.4 \mathrm{\AA}$	(d) 0.8 Å	
Ans: c				
		* *	* * * * *	

48. The de Broglie wavelength associated with an electron moving with a speed of $10^5 \mbox{m/s}$

(c) 72.7 Å

(d) 727 Å

(b) 7.27 Å

(a) 0.727 Å