LOGICAL AGENTS

CHAPTER 7

Outline

- ♦ Knowledge-based agents
- ♦ Wumpus world
- ♦ Logic in general—models and entailment
- ♦ Propositional (Boolean) logic
- ♦ Equivalence, validity, satisfiability
- \Diamond Inference rules and theorem proving
 - forward chaining
 - backward chaining
 - resolution

Knowledge bases

Knowledge base = set of sentences in a **formal** language

Declarative approach to building an agent (or other system):

TELL it what it needs to know

Then it can Ask itself what to do—answers should follow from the KB

Agents can be viewed at the knowledge level

i.e., what they know, regardless of how implemented

Or at the implementation level

i.e., data structures in KB and algorithms that manipulate them

Logic in general

Logics are formal languages for representing information such that conclusions can be drawn

Syntax defines the sentences in the language

Semantics define the "meaning" of sentences; i.e., define truth of a sentence in a world

E.g., the language of arithmetic

 $x + 2 \ge y$ is a sentence; x2 + y > is not a sentence

 $x+2 \ge y$ is true iff the number x+2 is no less than the number y

 $x+2 \ge y$ is true in a world where x=7, y=1

 $x + 2 \ge y$ is false in a world where x = 0, y = 6

Entailment

Entailment means that one thing follows from another:

$$KB \models \alpha$$

Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true

E.g., the KB containing "the Giants won" and "the Reds won" entails "Either the Giants won or the Reds won"

E.g.,
$$x + y = 4$$
 entails $4 = x + y$

Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Note: brains process syntax (of some sort)

Models

Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated

We say m is a model of a sentence α if α is true in m

 $M(\alpha)$ is the set of all models of α

Then $KB \models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$

E.g. KB = Giants won and Reds won $\alpha = \text{Giants won}$

Inference

 $KB \vdash_i \alpha = \text{sentence } \alpha \text{ can be derived from } KB \text{ by procedure } i$

Consequences of KB are a haystack; α is a needle. Entailment = needle in haystack; inference = finding it

Soundness: i is sound if whenever $KB \vdash_i \alpha$, it is also true that $KB \models \alpha$

Completeness: i is complete if whenever $KB \models \alpha$, it is also true that $KB \vdash_i \alpha$

Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows from what is known by the KB.

Propositional logic: Syntax

Propositional logic is the simplest logic—illustrates basic ideas

The proposition symbols P_1 , P_2 etc are sentences

If S is a sentence, $\neg S$ is a sentence (negation)

If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)

If S_1 and S_2 are sentences, $S_1 \vee S_2$ is a sentence (disjunction)

If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)

If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

E.g.
$$P_{1,2}$$
 $P_{2,2}$ $P_{3,1}$ $true true false$

(With these symbols, 8 possible models, can be enumerated automatically.)

Rules for evaluating truth with respect to a model m:

```
\neg S
 is true iff S is false S_1 \wedge S_2 is true iff S_1 is true S_1 \vee S_2 is true iff S_1 is true S_1 \vee S_2 is true iff S_1 is false S_2 is true S_1 \Rightarrow S_2 is true iff S_1 is false S_2 is true iff S_1 is false S_2 is false S_1 \Leftrightarrow S_2 is true iff S_1 \Rightarrow S_2 is true S_2 \Rightarrow S_1 is true S_1 \Leftrightarrow S_2 \Rightarrow S_2 is true iff S_1 \Rightarrow S_2 \Rightarrow S_1 is true
```

Simple recursive process evaluates an arbitrary sentence, e.g.,

$$\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (false \lor true) = true \land true = true$$

Truth tables for connectives

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Inference by enumeration

Depth-first enumeration of all models is sound and complete

```
function TT-ENTAILS? (KB, \alpha) returns true or false
   inputs: KB, the knowledge base, a sentence in propositional logic
            \alpha, the query, a sentence in propositional logic
   symbols \leftarrow a list of the proposition symbols in KB and \alpha
   return TT-CHECK-ALL(KB, \alpha, symbols, [])
function TT-CHECK-ALL(KB, \alpha, symbols, model) returns true or false
   if EMPTY?(symbols) then
       if PL-True?(KB, model) then return PL-True?(\alpha, model)
       else return true
   else do
        P \leftarrow \text{First}(symbols); rest \leftarrow \text{Rest}(symbols)
       return TT-CHECK-ALL(KB, \alpha, rest, Extend(P, true, model)) and
                  TT-CHECK-ALL(KB, \alpha, rest, EXTEND(P, false, model))
```

 $O(2^n)$ for n symbols; problem is **co-NP-complete**

Logical equivalence

Two sentences are logically equivalent iff true in same models:

$$\alpha \equiv \beta$$
 if and only if $\alpha \models \beta$ and $\beta \models \alpha$

```
(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}
```

Validity and satisfiability

A sentence is valid if it is true in all models,

e.g.,
$$True$$
, $A \vee \neg A$, $A \Rightarrow A$, $(A \wedge (A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the Deduction Theorem:

$$KB \models \alpha$$
 if and only if $(KB \Rightarrow \alpha)$ is valid

A sentence is satisfiable if it is true in some model

e.g.,
$$A \vee B$$
, C

A sentence is unsatisfiable if it is true in **no** models

e.g.,
$$A \wedge \neg A$$

Satisfiability is connected to inference via the following:

$$KB \models \alpha$$
 if and only if $(KB \land \neg \alpha)$ is unsatisfiable

i.e., prove α by reductio ad absurdum

Proof methods

Proof methods divide into (roughly) two kinds:

Application of inference rules

- Legitimate (sound) generation of new sentences from old
- Proof = a sequence of inference rule applications
 Can use inference rules as operators in a standard search alg.
- Typically require translation of sentences into a normal form

Model checking

```
truth table enumeration (always exponential in n) improved backtracking, e.g., Davis-Putnam-Logemann-Loveland heuristic search in model space (sound but incomplete) e.g., min-conflicts-like hill-climbing algorithms
```

Forward and backward chaining

Horn Form (restricted) $\begin{array}{l} \mathsf{KB} = \mathbf{conjunction} \ \mathsf{of} \ \mathbf{Horn} \ \mathbf{clauses} \\ \mathsf{Horn} \ \mathsf{clause} = \\ & \diamondsuit \ \mathsf{proposition} \ \mathsf{symbol}; \ \mathsf{or} \\ & \diamondsuit \ (\mathsf{conjunction} \ \mathsf{of} \ \mathsf{symbols}) \ \Rightarrow \ \mathsf{symbol} \\ \mathsf{E.g.,} \ C \wedge (B \ \Rightarrow \ A) \wedge (C \wedge D \ \Rightarrow \ B) \end{array}$

Modus Ponens (for Horn Form): complete for Horn KBs

$$\frac{\alpha_1, \dots, \alpha_n, \qquad \alpha_1 \wedge \dots \wedge \alpha_n \Rightarrow \beta}{\beta}$$

Can be used with forward chaining or backward chaining. These algorithms are very natural and run in **linear** time

Forward chaining

Idea: fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

Forward chaining algorithm

```
function PL-FC-ENTAILS?(KB, q) returns true or false
   inputs: KB, the knowledge base, a set of propositional Horn clauses
            q, the query, a proposition symbol
  local variables: count, a table, indexed by clause, initially the number of premises
                      inferred, a table, indexed by symbol, each entry initially false
                      aqenda, a list of symbols, initially the symbols known in KB
   while agenda is not empty do
       p \leftarrow \text{Pop}(agenda)
       unless inferred[p] do
            inferred[p] \leftarrow true
            for each Horn clause c in whose premise p appears do
                 decrement count[c]
                 if count[c] = 0 then do
                     if HEAD[c] = q then return true
                     Push(Head[c], agenda)
   return false
```


Backward chaining

```
Idea: work backwards from the query q: to prove q by BC, check if q is known already, or prove by BC all premises of some rule concluding q
```

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal

- 1) has already been proved true, or
- 2) has already failed

Forward vs. backward chaining

FC is data-driven, cf. automatic, unconscious processing, e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving, e.g., Where are my keys? How do I get into a PhD program?

Complexity of BC can be much less than linear in size of KB

Resolution

Conjunctive Normal Form (CNF—universal)
conjunction of disjunctions of literals
clauses

E.g.,
$$(A \vee \neg B) \wedge (B \vee \neg C \vee \neg D)$$

Resolution inference rule (for CNF): complete for propositional logic

$$\frac{\ell_1 \vee \cdots \vee \ell_k, \quad m_1 \vee \cdots \vee m_n}{\ell_1 \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n}$$

where ℓ_i and m_j are complementary literals. E.g.,

$$\frac{P_{1,3} \vee P_{2,2}, \qquad \neg P_{2,2}}{P_{1,3}}$$

Resolution is sound and complete for propositional logic

Conversion to CNF

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.

$$(B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$

2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$.

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$$

3. Move \neg inwards using de Morgan's rules and double-negation:

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$$

4. Apply distributivity law (\vee over \wedge) and flatten:

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

Resolution algorithm

Proof by contradiction, i.e., show $KB \wedge \neg \alpha$ unsatisfiable

```
function PL-RESOLUTION(KB, \alpha) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
\alpha, the query, a sentence in propositional logic
clauses \leftarrow the set of clauses in the CNF representation of KB \land \neg \alpha
new \leftarrow \{\}
loop do

for each C_i, C_j in clauses do
resolvents \leftarrow \text{PL-RESOLVE}(C_i, C_j)
if resolvents contains the empty clause then return true
new \leftarrow new \cup resolvents
if new \subseteq clauses then return false
clauses \leftarrow clauses \cup new
```

Resolution example

$$KB = (B_{1,1} \iff (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1} \ \alpha = \neg P_{1,2}$$

Summary

Logical agents apply inference to a knowledge base to derive new information and make decisions

Basic concepts of logic:

- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundess: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.

Forward, backward chaining are linear-time, complete for Horn clauses Resolution is complete for propositional logic

Propositional logic lacks expressive power