University of Mauritius

Faculty of Information, Communication and Digital Technologies

Computer Architecture and Organisation Assignment 1

Prepared by:

SOOBRAYEN Keshia 2412920

BEEDASSY Nirvana Luxmi 2413850

RAGHOONUNDUN Rishab 2412024

AUCKEL Ayush Manav 2412549

THUMMANAH Kentish 2411831

Course: BSc (Hons) Computer Science Level 1

Module: ICT 1206Y Computer Architecture and Organisation

Table of Contents

1. Sequence recognition problem	1
1.1 State transition diagram	1
1.2 State table	2
1.3 Assigned binary code to states	2
1.4 Determined flip-flop input values	2
1.5 Karnaugh maps	3
1.6 Logic circuits	4
1.6.1 Subcircuits	4
1.6.2 Main circuit	5
1.7 Circuit simulation	5
2. Vending machine problem	12
2.1 State transition diagram	12
2.2 State table	13
2.3 Assigned binary code to states	13
2.4 Determined flip-flop input values	14
2.5 Karnaugh maps	15
2.6 Logic circuits	16
2.6.1 Subcircuits	16
2.6.2 Main circuit	17
2.7 Circuit simulation	17

1. Sequence recognition problem

Implement a circuit (one input X and one output Z) that recognizes the occurrence of the sequence of bits 1001 on the input X by making the output Z equal to 1 when the previous three inputs to the circuit were 100 and current input is a 1. Use D flip-flops.

For example:

 $X: 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 1 1 1 \dots$

 $Z: 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 \dots$

1.1 State transition diagram

State	Meaning	$Q_1 Q_0$
A	No valid sequence detected	0 0
В	Sequence 1 detected	0 1
С	Sequence 10 detected	1 0
D	Sequence 100 detected	1 1

Notation : X|Z

1.2 State table

Present State	Input	Next State	Output
A	0	A	0
A	1	В	0
В	0	С	0
В	1	В	0
С	0	D	0
С	1	В	0
D	0	A	0
D	1	В	1

State	$Q_1 Q_0$
A =	0 0
B =	0 1
C =	1 0
D =	1 1

1.3 Assigned binary code to states

Present	State	Input	Next	State	Output
Q_1	Qo	X	Q_1	Q ₀	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1

1.4 Determined flip-flop input values

Preser	nt State	Input	Next	State	Flip-	Flop	Output
Q_1	Q ₀	X	Q1	Q ₀	D_1	D_0	Z
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	0	1	0	0
0	1	1	0	1	0	1	0
1	0	0	1	1	1	1	0
1	0	1	0	1	0	1	0
1	1	0	0	0	0	0	0
1	1	1	0	1	0	1	1

D excitation table :

Q ₁	Q_0	D	Operation
0	0	0	Reset
0	1	1	Set
1	0	0	Reset
1	1	1	Set

1.5 Karnaugh maps

For D_1 :

$$D_1 = \overline{Q}_1 Q_0 \overline{X} + Q_1 \overline{Q}_0 \overline{X}$$

For D₀:

$$D_0 = X + Q_1 \overline{Q}_0$$

For Z:

$$Z = Q_1Q_0X$$

1.6 Logic circuits

1.6.1 Subcircuits

Figure 2 - D Flip - flop 1

1.6.2 Main circuit

The main circuit consists of two D flip-flops.

1.7 Circuit simulation

Input test: 101001

Step 1 : Set X = 1 [101001]

 \geq Z = 0. Sequence 1001 is not detected. The sequence 1 has been detected.

Step 2 : Toggle clock

> Since $Q_1 Q_0 = 01$, circuit is in state B.

Step 3 : Set X = 0 [101001]

ightharpoonup Z = 0. Sequence 1001 is not detected.

Step 4 : Toggle clock

Since $Q_1 Q_0 = 10$, circuit moves to state C.

Step 5 : Set X = 1 [101001]

 \geq Z = 0. Sequence 1001 is not detected. The sequence 1 has been detected.

Step 6 : Toggle clock

> Since $Q_1 Q_0 = 01$, circuit moves to state B.

Step 7 : Set X = 0 [101001]

ightharpoonup Z = 0. Sequence 1001 is not detected. The sequence 10 has been detected.

Step 8 : Toggle clock

Since $Q_1 Q_0 = 10$, circuit moves to state C.

 \geq Z = 0. Sequence 1001 is not detected. The sequence 100 has been detected.

Step 10 : Toggle clock

Since Q_1 $Q_0 = 11$, circuit moves to state D.

Step 11 : Set X = 1 [101001]

ightharpoonup Z = 1. Sequence 1001 has been detected.

Step 12 : Toggle clock

Since $Q_1 Q_0 = 01$, circuit moves to state B.

2. Vending machine problem

You are to build a FSM (sequential circuit) for a vendor machine which can take only Rs 10 and Rs 5 coins via a coin slot. The vendor machine has internal mechanisms to deliver a can drink AND/OR change. Assuming a can drink costs Rs 20, build the sequential circuit to control the vendor machine.

2.1 State transition diagram

State	Meaning	$Q_1 Q_0$
S0	No money has been inserted	0 0
S1	Rs 5 has been inserted	0 1
S2	Rs 10 has been inserted	1 0
S3	Rs 15 has been inserted	1 1

Notation: TF|DC where T = Rs 5, F = Rs 10, D = Drink, C = Change

2.2 State table

Present State	Input		Next State	Ou	tput
	T	F		D	С
S0	0	0	S0	0	0
S0	0	1	S1	0	0
S0	1	0	S2	0	0
S0	1	1	S0	X	X
S1	0	0	S1	0	0
S1	0	1	S2	0	0
S1	1	0	S3	0	0
S1	1	1	S1	X	X
S2	0	0	S2	0	0
S2	0	1	S3	0	0
S2	1	0	S0	1	0
S2	1	1	S2	X	X
S3	0	0	S3	0	0
S3	0	1	S0	1	0
S3	1	0	S0	1	1
S3	1	1	S3	X	X

State	$Q_1 Q_0$
S0	0 0
S1	0 1
S2	1 0
S3	1 1

2.3 Assigned binary code to states

Present State	Input		Next State		Ou	tput
	T	F	Q_1	Q ₀	D	С
S0	0	0	0	0	0	0
S0	0	1	0	1	0	0
S0	1	0	1	0	0	0
S0	1	1	0	0	X	X
S1	0	0	0	1	0	0
S1	0	1	1	0	0	0
S1	1	0	1	1	0	0
S1	1	1	0	1	X	X
S2	0	0	1	0	0	0
S2	0	1	1	1	0	0
S2	1	0	0	0	1	0
S2	1	1	1	0	X	X
S3	0	0	1	1	0	0
S3	0	1	0	0	1	0
S3	1	0	0	0	1	1
S3	1	1	1	1	X	X

2.4 Determined flip-flop input values

D excitation table:

Q ₁	Q_0	D	Operation
0	0	0	Reset
0	1	1	Set
1	0	0	Reset
1	1	1	Set

Present State		Input		Next State		Output		Flip-Flop	
Q1	Qo	T	F	Q1	Q ₀	D	C	D1	Do
0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	1
0	0	1	0	1	0	0	0	1	0
0	0	1	1	0	0	X	X	0	0
0	1	0	0	0	1	0	0	0	1
0	1	0	1	1	0	0	0	1	0
0	1	1	0	1	1	0	0	1	1
0	1	1	1	0	1	X	X	0	1
1	0	0	0	1	0	0	0	1	0
1	0	0	1	1	1	0	0	1	1
1	0	1	0	0	0	1	0	0	0
1	0	1	1	1	0	X	X	1	0
1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	0	1	0	0	0
1	1	1	0	0	0	1	1	0	0
1	1	1	1	1	1	X	X	1	1

2.5 Karnaugh maps

For D:

 $D = TQ_1 + FQ_1Q_0$

For C:

$$C = TQ_1Q_0$$

For D_1 :

$$D_1 = \overline{T}\overline{F}Q_1 + \overline{T}Q_1\overline{Q}_0 + \overline{T}F\overline{Q}_1Q_0 + TFQ_1 + T\overline{F}\overline{Q}_1$$

For D₀:

$$D_0 = \overline{T}\overline{F}Q_0 + \overline{T}F\overline{Q}_0 + TFQ_0 + T\overline{Q}_1Q_0$$

2.6 Logic circuits

2.6.1 Subcircuits

Figure 4 - Output C (Give change)

Figure 5 - Output D (Give drink)

Figure 6 - D Flip-flop 1

Figure 7 - D Flip-flop 0

2.6.2 Main circuit

The main circuit consists of two D flip-flops.

2.7 Circuit simulation

Input test 1: 10,5,5

Step 1 : Set T = 1 [10,5,5]

Step 2 : Toggle clock then reset T.

Since $Q_1Q_0 = 10$, circuit is in state S2.

Step 3 : Set F = 1 [10, 5, 5]

Step 4 : Toggle clock then reset F.

Since $Q_1Q_0 = 11$, circuit moves to state S3.

Step 5 : Set F = 1 [10,5,5]

ightharpoonup C = 0, D = 1. Machine must give drink only.

Step 6: Toggle clock then reset F.

ightharpoonup Since $Q_1Q_0 = 00$, circuit moves to state S0.

Input test 2:5,5,5,10

Step 1 : Set F = 1 [5,5,5,10]

Step 2 : Toggle clock then reset F.

> Since $Q_1Q_0 = 01$, circuit is in state S1.

Step 3 : Set F = 1 [5, 5, 5, 10]

Step 4 : Toggle clock then reset F.

> Since $Q_1Q_0 = 10$, circuit moves to state S2.

Step 5 : Set $F = 1 [5,5,\frac{5}{10}]$

Step 6: Toggle clock then reset F.

> Since $Q_1Q_0 = 11$, circuit moves to state S3.

Step 7 : Set $T = 1 [5,5,5,\frac{10}{10}]$

ightharpoonup C = 1, D = 1. Machine must give drink and change.

Step 8: Toggle clock then reset T.

Since $Q_1Q_0 = 00$, circuit moves to state S0.