

From WiscKey to Bourbon: A Learned Index for Log-Structured Merge Trees

OSDI20

Indexes

- 在计算机系统中,查询数据是一个很重要的部分
- ▶ 传统的方法,使用特定的数据结构来便于查询
 - 在一个B+ tree中查询一个数据,时间复杂度在O(logN)

■ 一个问题:假设我们提前知道数据会怎样?

Bring Learning to Indexing

- 如果我们知道数据分布,查询数据可以更快
 - 用机器学习模型学的数据分布
 - 查询时间复杂度在O(1)
 - 查询空间复杂度在O(1)

Learned Indexes for Look-up

■ Learned index可以提高look-up性能

Learned Indexes for Writes

- Learned indexes可以提高查询性能,但是之前的关于learned indexes不支持数据更新
 - 因为数据更新会打乱数据分布,模型必须重新训练,从而影响性能
- 一个思考:LSMs会涉及到数据更新, learned indexes是否适用于LSMs?

- 一些观察:
 - 数据更新回改变LSM tree一部分的数据位置,但是大部分数据保持不变
 - 不变的sstable file适合learned indexes
 - sstable文件是有序的,只需要简单的模型训练就行

- 在sstable文件的学习粒度(learning granularity)
 - ▶ 不需要更新模型
 - 模型有固定的精度

- 在学习之前考虑的因素
 - SSTable的寿命
 - 一个模型能使用多久
 - 在SStable的查询次数
 - 一个模型的有效频率是多少

- SSTable的生命周期
 - L0:平均10秒
 - L4:平均1小时
 - 一些短暂的表: 小于1秒

(c) Lifetime distributions with varying write %

- 指导原则1:偏爱低level的表
 - 处于更低level的文件生存时间更长

- 指导原则2:在学习之前先等待
 - 避免学习到寿命很短的表

- 在SSTables的查询次数
 - 一个模型的有用频率
- 在SSTable查询的次数由多种因素影响
 - 负载的分布
 - 数据载入的顺序
 - 更高level的文件可能会处理多次内部的查询
- 学习指导3:不要忽略更高level的表

▶ 学习指导4:对负载和数据敏感

Learning Algorithm: Greedy-PLR

Greedy Piecewise Linear Regression

From Dataset D

Multiple linear segments $f(\cdot)$

 $\forall (x, y) \in D, |f(x) - y| < error$

error is specified beforehand

In bourbon, we set error = 8

Train complexity: O(n)

Typically ~40ms

Inference complexity: O(log #seg)

Typically <1µs

Learning Algorithm: Greedy-PLR

- Greedy-PLR一次处理一个数据点
 - 数据点在不违反误差范围小,如果不能加入到当前的line segment
 - 新生成一个line segment,然后将数据点加入到其中
- 模型训练好后,寻找数据很方便
 - 假设包含这个key的line segment找到了,直接可以从这个segment找到key
 - 假设key不在预测的位置,在误差范围决定的区域本地搜索这个key
 - 时间复杂度:O(log-s),s是segment的数量+本地搜索的常数时间复杂度

Level vs File Learning

- 一个问题:level learning or file learning?
 - 在write-heavy的负载下,file的模型比level生存更久

Workload	Baseline	File model		Level model	
	time (s)	Time(s)	% model	Time(s)	% model
Mixed:	82.6	71.5	74.2	95.1	1.5
Write-heavy		$(1.16 \times)$		$(0.87 \times)$	
Mixed:	89.2	62.05	99.8	74.3	21.4
Read-heavy	09.2	$(1.44 \times)$	99.6	$(1.2 \times)$	21.4
Read-only	48.4	27.2 (1.78 ×)	100	25.2 (1.92 ×)	100
		(1.70 //)		(1.72 //	

Table 1: **File vs. Level Learning.** The table compares the time to perform 10M operations in baseline WiscKey, filelearning, and level-learning. The numbers within the parentheses show the improvements over baseline. The table also shows the percentage of lookups that take the model path; remaining take the original path because the models are not rebuilt yet.

Bourbon: Putting it All Together

(a) Lookup paths

Cost-Benefit Analyzer

- 目标:减少总共的CPU时间
 - trade-off: always learn and no-learn

Learn!

Estimated benefit

Baseline path lookup time

Model path lookup time

Number of lookups served

Estimated cost Table size

Bourbon: Putting it All Together

(b) Lookup via model - detailed steps