Universidade Federal do Paraná

Setor de Tecnologia

Programa de Pós-Graduação em Engenharia de

Recursos Hídricos e Ambiental (PPGERHA)

Disciplina: ERHA7017 - Hidrologia Física

Prof.: Júlio Gomes

Entrega: 14/04/2022 (quinta-feira)

LISTA DE EXERCÍCIOS Nº 03

INFILTRAÇÃO

1) Um teste com um infiltrômetro de 35 cm de diâmetro produziu os seguintes resultados:

t (minutos)	0	2	5	10	20	30	60	90	150
Volume total									
adicionado (cm³)	0	278	658	1.173	1.924	2.500	3.345	3.875	4.595

Pede-se traçar o gráfico $f \times t$, onde $f \in a$ capacidade de infiltração dada em mm/h.

- 2) Ajustar a equação de Horton aos dados do Exercício 1;
- 3) Ajustar a equação de Philip aos dados do Exercício 1
- 4) Transformar a equação de Philip para trabalhar com f_t no lugar de V_t e ajustar novamente a equação de Philip aos dados do Exercício 1;
- 5) Comparar os ajustes realizados nos Exercícios 2, 3 e 4.

Obs: usar, como indicador da qualidade do ajuste, o coeficiente de determinação (R²), dado por:

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

onde: n = número de valores observados;

 y_i = valores observados (i = 1, 2, ...; n);

 \bar{y} = média dos valores observados;

 \hat{y}_i = valores estimados (i = 1, 2, ...; n).