# Analysis of dietary patterns and breast cancer

- 1 Abstract
- 2 Author
- · 3 Data processing
  - o 3.1 Missing data
  - 3.2 Occasional intake
  - 3.3 Smoking data
  - 3.4 Body Mass Index
  - 3.5 Physical activities
  - 3.6 Family history of cancer
  - 3.7 Reproductivity
  - 3.8 Food intake
  - 3.9 Retained variables
  - 3.10 Check data quality
  - 3.11 Finalized data
- 4 Exploratory analysis
  - 4.1 Univariate analysis
  - 4.2 Stratification
  - 4.3 Dietary variables
- 5 Identify dietary patterns
  - 5.1 PCs and variance explained
  - 5.2 Screeplot
  - 5.3 Factor loadings
  - 5.4 Projections on first two PCs
- 6 Dietary patterns and risk of BC
- 7 Future work

### 1 Abstract

The goal of this project is to

- 1. Identify potential factors (both dietary and non-dietary) that associate with the risk of breast cancer.
- 2. Identify dietary patterns based on consumption of food groups.
- 3. Identify the association between dietary patterns and the risk of breast cancer, controlling for potential confounding factors.

### 2 Author

# 3 Data processing

# 3.1 Missing data

I used the codebook to convert all the hard-coded values for missing data such as 0, 9, 99, and 999 (depending on specific variables) to the true, proper NA values for unified treatment.

### 3.2 Occasional intake

Most variables on diet intake are represented by the frequency of consumption per week and range from 0 to 97. The code 98 indicates "occasional consumption" around 1-3 times a month. Thus, I decided to **impute the code 98 with 0.5** (i.e. twice per 4 weeks).

### 3.3 Smoking data

I used fum1 to derive a new binary variable named is\_smoke, which assumes values 0 for never smoking subjects and 1 for current and ex-smokers.

### 3.4 Body Mass Index

I used weight (antr1) and height (antr2) to compute the BMI using the formula:

$$BMI = rac{weight}{height^2} imes 10000$$

### 3.5 Physical activities

Physical activities are divided into **work** (fis1, fis3, fis5, fis7) and **sport** (fis2, fis4, fis6, fis8). For the work category, I have:

- fis1: work activity at 12 years old
- fis3: work activity at 15-19 years old
- fis5: work activity at 30-39 years old
- fis7: work activity at 50-59 years old

These variables are in ordinal level, ranging from 1 (very heavy) to 5 (sedentary). This causes a problem of how to represent physical activity for each subject because the subjects are in different age ranges. For example, subjects younger than 50 years old don't have data on fis7. And similarly, those that are younger than 30 years old don't have data on both fis5 and fis7.

I want to utilize the data on physical activity but also don't want a large number of missing values. Thus, for each subject, I used **the activity closest to their age level** as a proxy for physical activity. Specifically, I derived a new variable named act\_work as follows.

- Younger than 12: use fis1 (but min(age) = 19, so this is not used)
- Younger than 30: use fis2
- Younger than 50: use fis3
- 50 or older: use fis5

I did the same for sports activities with a new variable named act\_sport.

**Note:** In the original coding for physical activities, 1 is used for the highest level while 4 and 5 are used for the lowest levels. I **chose to reverse this ordering** so that it will be more convenient later when selecting the reference group for computing odd ratios and running logistic regressions.

This means in the analysis, 1 is the group with **lowest exposure** to physical activity.

## 3.6 Family history of cancer

I created a binary variable named <code>rel\_cancer\_1st\_deg</code> to indicate whether the subject has **any** relatives of the first degree who had cancer. A first-degree relative person is defined as a parent, brother, sister, or child.

### 3.7 Reproductivity

I decided to include some variables related to the subjects' Reproductivity such as:

- Age at menarche (gin1)
- Number of miscarriages (gin8)
- Number of abortions ( gin9 )
- Number of children ( v11 )

### 3.8 Food intake

I chose to retain 83 food items and group them into 24 groups depending on their nature. The food groups and their corresponding individual food items are presented in the table below.

#### Definition of food groups

| food_group | n items                                                                  |
|------------|--------------------------------------------------------------------------|
| beef       | 3 steak, boiled, stew                                                    |
| beer       | 1 regular                                                                |
| coffee     | 3 capu, other, decaff                                                    |
| dairy      | 2 ricotta, cheese                                                        |
| egg        | 2 boiled, fried                                                          |
| fat        | 1 general                                                                |
| fish       | 3 boiled, fried, tuna                                                    |
| fruit      | 9 apple_pear, banana, kiwi, cooked, citrus, peaches, melon, grape, berry |

| food_group     | n  | items                                                                              |
|----------------|----|------------------------------------------------------------------------------------|
| grain          | 5  | bread, wheat_bread, crackers, maize, rice                                          |
| juice          | 2  | unsweetened, sweetened                                                             |
| liquor         | 4  | grappa, whisky, after_dinner, other                                                |
| milk           | 4  | whole, skimmed_part, skimmed, yoghurt                                              |
| organ          | 1  | liver                                                                              |
| pasta          | 5  | butter, tomato, ragu, pesto, lasagne                                               |
| pizza          | 1  | general                                                                            |
| pork           | 2  | weiner, general                                                                    |
| potato         | 2  | boiled, fried                                                                      |
| poultry        | 2  | boiled, roasted                                                                    |
| processed_meat | 3  | prosciutto, ham, salami                                                            |
| snack          | 10 | biscuit, croissant, custard, cake, jampie, chocolate, soft_drink, candy, icecream, |
| Silack         | 10 | general                                                                            |
| soup           | 2  | light, veggie                                                                      |
| sweet          | 4  | sugar, sacca, other, honey_jam                                                     |
| voggio         | 11 | bean, salad, carrot_raw, carrot_cooked, onion, artichoke, cruciferae, spinach,     |
| veggie         | 11 | tomato, mixed_salad, zucchini                                                      |
| wine           | 1  | regular                                                                            |

To keep the analysis simple, I decided to work at food group levels instead of food item levels. To do so, I computed the total intake for each group by summing up the frequency of consumption of each individual food item. This is not perfect, but it is the best I could do.

One note is that I **tried to utilize the serving sizes** ( porz variables) as weights for frequency consumption, but most of them have **large portion of missing values** (code 0 and 9). One possible solution is to impute the missing serving size by the mode of the distribution (because serving sizes are in the ordinal scale). But there is still a lot of uncertainty in doing so, and I chose to leave this option out. Thus, I only use the raw frequency count in the analysis.

In summary, there are two problems in my aggregation method.

- 1. Simple, unweighted summation of the frequencies of different food items as a representation of overall intake for each food group is not perfect. If we have additional information such as calories per portion of food or something similar to use as weights, then it would be nicer.
- 2. I couldn't able to incorporate the serving size in the aggregation (which I should) due to missing data.

### 3.9 Retained variables

I decide to retain the following variables for further analyses.

- 1. Ground truth for case-control
  - has\_cancer: 0 = not having cancer, 1 = having cancer
- 2. Smoking information

- is smoke: 0 = non-smoker, 1 = current/ex-smokers
- smoke\_yrs: number of years smoking
- 3. Height and weight
  - height: height
  - $\circ$  weight: weight
  - o bmi: BMI computed from height and weight
- 4. Education
  - edu : years of schooling
- 5. Marital status
  - marital\_status: with 3 levels: never, married\_coliving, and divorced\_widowed
- 6. Physical activities
  - act\_work : level of work activity: 1 = mostly seated to 5 = very heavy
  - act\_sport : level of sport activity: 1 = 2h/week to 4 = more than 7h/week
- 7. Family history of cancer
  - rel\_cancer\_1st\_deg: whether the subject has any first-degree relative having cancer
- 8. Reproducibility characteristics
  - age\_menarche : age at menarche
  - n\_children: number of children
  - n\_abortions : number of abortions
  - n\_miscarriages: number of miscarriages
- 9. Aggregate frequencies of consumption for each food group
  - These are 24 variables on the aggregated frequencies of consumption per week for 24 food groups.
  - Examples: fat total, beef total, pork total, veggie total, etc.

### 3.10 Check data quality

After the cleaning step, I run a for loop to generate the plot of distribution for each retained variable to make sure there is no anomaly. For example, the below plots is the distribution of total pasta consumption. We can see that

- Code 98 is already replaced with 0.5
- There is a bar at the end for true missing value instead of code 99

I repeat this check for all the retained variables.



### 3.11 Finalized data

The original dataset contains 5157 rows. After the decision on what variables to keep, I explore the proportion of missing data in the cleaned dataset to decide whether to just discard the missing data or to perform some imputation.

Here are the top 10 variables with the highest number of missing values.

Top 10 variables having NAs

| variable           | num_NA | pct_NA |
|--------------------|--------|--------|
| rel_cancer_1st_deg | 362    | 7.02   |
| act_work           | 187    | 3.63   |
| pasta_total        | 187    | 3.63   |
| act_sport          | 186    | 3.61   |
| sweet_total        | 59     | 1.14   |
| edu                | 37     | 0.72   |
| bmi                | 15     | 0.29   |
| fruit_total        | 10     | 0.19   |
| weight             | 9      | 0.17   |
| height             | 9      | 0.17   |

Since the amount of missing data is negligible, I decided to simply discard rows that have NA in any cell. And the finalized data without any missing values have 4307 rows. I were still able to retained 83.52% of the original dataset.

# 4 Exploratory analysis

# 4.1 Univariate analysis

Distribution of continuous variables



Comment: no clear signal.

For discrete and categorical variables, I compute the (unadjusted) odd ratio (95% confidence interval included). However, to have reliable estimates, only groups with more than 100 observations are kept.

Odd ratio for is\_smoke (95%-CI)

| value | odd_ratio | lower | upper | case | control |
|-------|-----------|-------|-------|------|---------|
| 0     | 1         | •     | •     | 1398 | 1520    |
| 1     | 1.13      | 0.995 | 1.285 | 708  | 681     |

Comment: no clear signal.

Odd ratio for rel\_cancer\_1st\_deg (95%-CI)

| value | odd_ratio | lower | upper | case | control |
|-------|-----------|-------|-------|------|---------|
| 0     | 1         | •     | •     | 1153 | 1348    |
| 1     | 1.306     | 1.157 | 1.475 | 953  | 853     |

**Comment:** Having first-degree relatives who have cancer tend to **increase** the risk of breast cancer.

Odd ratio for n\_children (95%-CI)

| value | odd_ratio | lower | upper | case | control |
|-------|-----------|-------|-------|------|---------|
| 0     | 1         | •     | •     | 334  | 327     |
| 1     | 1.106     | 0.905 | 1.352 | 480  | 425     |
| 2     | 0.994     | 0.829 | 1.192 | 802  | 790     |
| 3     | 0.789     | 0.639 | 0.974 | 327  | 406     |
| 4     | 0.678     | 0.502 | 0.916 | 97   | 140     |

#### Comment:

- Having more children tends to **reduce** the risk of breast cancer (perhaps reproductivity capability is the common cause)
- Other levels were removed due to too few observations

Odd ratio for n\_abortions (95%-CI)

| value | odd_ratio | lower | upper | case | control |
|-------|-----------|-------|-------|------|---------|
| 0     | 1         | •     | •     | 1841 | 1969    |
| 1     | 1.405     | 1.097 | 1.800 | 155  | 118     |
| 2     | 1.121     | 0.787 | 1.597 | 65   | 62      |

#### Comment:

- Having had abortions tends to **increase** the risk of breast cancer
- Other levels were removed due to too few observations

Odd ratio for n\_miscarriages (95%-CI)

| value | odd_ratio | lower | upper | case | control |
|-------|-----------|-------|-------|------|---------|
| 0     | 1         | •     | •     | 1650 | 1672    |
| 1     | 0.835     | 0.706 | 0.987 | 299  | 363     |
| 2     | 1.08      | 0.822 | 1.418 | 114  | 107     |

#### **Comment:**

- Experiencing miscarriage tends to **reduce** the risk of breast cancer (very counter-intuitive)
- Other levels were removed due to too few observations

Odd ratio for act\_work (95%-CI)

| value | odd_ratio | lower | upper | case | control |
|-------|-----------|-------|-------|------|---------|
| 1     | 1         | •     | •     | 231  | 194     |
| 2     | 0.791     | 0.638 | 0.980 | 772  | 820     |
| 3     | 0.795     | 0.643 | 0.983 | 890  | 940     |
| 4     | 0.754     | 0.574 | 0.990 | 193  | 215     |

#### Comment:

- act\_work = 5 (very heavy work) was removed due to too few observations
- Heavier level of work tends to **reduce** the risk of breast cancer

Odd ratio for act\_sport (95%-CI)

| value | odd_ratio | lower | upper | case | control |
|-------|-----------|-------|-------|------|---------|
| 1     | 1         | •     | •     | 1562 | 1628    |
| 2     | 1.042     | 0.892 | 1.218 | 396  | 396     |
| 3     | 0.877     | 0.667 | 1.153 | 101  | 120     |
| 4     | 0.859     | 0.580 | 1.272 | 47   | 57      |

#### **Comment:**

No clear signal

Odd ratio for marital\_status (95%-CI)

| value            | odd_ratio | lower | upper | case | control |
|------------------|-----------|-------|-------|------|---------|
| never            | 1         | •     | •     | 179  | 203     |
| married_coliving | 1.155     | 0.933 | 1.429 | 1562 | 1534    |
| divorced_widowed | 0.892     | 0.699 | 1.138 | 365  | 464     |

#### Comment:

- marital status = 'never' was chosen as the reference group
- No clear signal

### 4.2 Stratification

From the previous analysis, we already identified rel\_cancer\_1st\_deg and act\_work as potential factors that associate with the risk of breast cancer. Thus, conditioning on these two factors, we will explore the distribution of other (continuous) variables such as age\_menarche, age, edu, and bmi to see if there is any signal.

Since act\_work has 5 levels and rel\_cancer\_1st\_deg has 2 levels, they make up 10 groups in total. This will make some groups to have too few observations to be meaningful. Thus, I created a variable named work\_level with only two values: "low" (for act\_work = 1, 2) and "high" (for act\_work = 3, 4, 5)

#### Unfortunately, no obvious signal was found.

Density for age\_menarche



### Density for age



### Density for edu



### Density for bmi



# 4.3 Dietary variables

I replicate a similar analysis for intake of each food group and review all the plots. Unfortunately, there is no clear signal. All the plots look similar to the one below.

### Density for veggie\_total



# 5 Identify dietary patterns

I perform a PCA on 24 food groups (mean-centered and unit standard deviation).

# 5.1 PCs and variance explained

Principal components

| рс    | eigenvalue | pct_var | cum_pct_var |
|-------|------------|---------|-------------|
| Dim.1 | 2.220      | 9.249   | 9.249       |
| Dim.2 | 1.535      | 6.394   | 15.643      |
| Dim.3 | 1.430      | 5.959   | 21.602      |
| Dim.4 | 1.300      | 5.416   | 27.019      |
| Dim.5 | 1.196      | 4.984   | 32.002      |
| Dim.6 | 1.143      | 4.762   | 36.764      |
| Dim.7 | 1.108      | 4.616   | 41.380      |
| Dim.8 | 1.064      | 4.433   | 45.813      |
|       |            |         |             |

| pc     | eigenvalue | pct_var | cum_pct_var |
|--------|------------|---------|-------------|
| Dim.9  | 1.024      | 4.265   | 50.078      |
| Dim.10 | 0.984      | 4.101   | 54.180      |
| Dim.11 | 0.939      | 3.911   | 58.091      |
| Dim.12 | 0.903      | 3.764   | 61.855      |
| Dim.13 | 0.886      | 3.693   | 65.548      |
| Dim.14 | 0.864      | 3.602   | 69.150      |
| Dim.15 | 0.849      | 3.539   | 72.689      |
| Dim.16 | 0.842      | 3.509   | 76.197      |
| Dim.17 | 0.829      | 3.455   | 79.652      |
| Dim.18 | 0.803      | 3.347   | 82.999      |
| Dim.19 | 0.776      | 3.234   | 86.233      |
| Dim.20 | 0.744      | 3.102   | 89.335      |
| Dim.21 | 0.706      | 2.941   | 92.276      |
| Dim.22 | 0.675      | 2.811   | 95.087      |
| Dim.23 | 0.627      | 2.611   | 97.699      |
| Dim.24 | 0.552      | 2.301   | 100.000     |

**Comment:** The first 9 PCs have eigenvalues > 1 and together they explain around 50% of the variance of the data.

# 5.2 Screeplot



# 5.3 Factor loadings



#### Comments:

- PC1: **traditional eating pattern** with balanced consumption of most traditional food groups including coffee, sweet, grain, eggs, vegetable, beef, pork, potato, fruit, and snacks.
- PC2: **healthy pattern** with milk, poultry (white meat), vegetable, fruit, and juice. Besides, this pattern avoids beef (red meat), fat, pork, and processed meat.
- PC3: drinkers pattern with main consumption of wine, beer, and liquor.
- PC4: **healthy 2** with main consumption of fish, organ, poultry, pasta, soup, vegetable, and potato. Besides, this pattern avoids alcohol, snacks, coffee, sweets, and processed dairy products.
- No clear interpretation found for PC >= 5

# 5.4 Projections on first two PCs

I tried to project the data on the first two PCs to see if they can well separate out cases and controls. However, they can't, which is expected because the first 2 PCs only explain only less than 16% of the total variation.



# 6 Dietary patterns and risk of BC

|                     | odd_ratio | lower  | upper  | p_val  | z_val   | estimate | std_error |
|---------------------|-----------|--------|--------|--------|---------|----------|-----------|
| (Intercept)         | 1.5077    | 0.7657 | 2.9715 | 0.2351 | 1.1872  | 0.4106   | 0.3458    |
| is_smoke1           | 1.027     | 0.8981 | 1.1743 | 0.6967 | 0.3898  | 0.0267   | 0.0684    |
| rel_cancer_1st_deg1 | 1.2977    | 1.1476 | 1.4677 | 0.0000 | 4.1529  | 0.2606   | 0.0628    |
| age_menarche        | 0.9579    | 0.9233 | 0.9937 | 0.0216 | -2.2966 | -0.0430  | 0.0187    |
| n_children          | 0.8871    | 0.8451 | 0.9307 | 0.0000 | -4.8652 | -0.1198  | 0.0246    |
| n_abortions         | 1.0671    | 0.9809 | 1.1615 | 0.1308 | 1.5109  | 0.0650   | 0.0430    |
| n_miscarriages      | 0.9574    | 0.8847 | 1.0356 | 0.2779 | -1.0851 | -0.0435  | 0.0401    |
| act_work2           | 0.8517    | 0.6836 | 1.0602 | 0.1513 | -1.4349 | -0.1606  | 0.1119    |
| act_work3           | 0.8674    | 0.6967 | 1.0791 | 0.2022 | -1.2754 | -0.1423  | 0.1116    |
| act_work4           | 0.8326    | 0.6279 | 1.1034 | 0.2027 | -1.2739 | -0.1832  | 0.1438    |
| act_work5           | 0.559     | 0.3021 | 1.0126 | 0.0582 | -1.8944 | -0.5816  | 0.3070    |
| bmi                 | 1.0082    | 0.9939 | 1.0226 | 0.2629 | 1.1195  | 0.0081   | 0.0073    |
| pc12                | 1.1821    | 0.9746 | 1.4340 | 0.0895 | 1.6979  | 0.1673   | 0.0985    |
| pc13                | 1.2519    | 1.0307 | 1.5211 | 0.0236 | 2.2636  | 0.2247   | 0.0993    |
| pc14                | 1.34      | 1.1003 | 1.6327 | 0.0036 | 2.9074  | 0.2927   | 0.1007    |
| pc15                | 1.4119    | 1.1528 | 1.7304 | 0.0009 | 3.3298  | 0.3450   | 0.1036    |
| pc22                | 0.9002    | 0.7427 | 1.0909 | 0.2835 | -1.0725 | -0.1052  | 0.0981    |
| pc23                | 0.9144    | 0.7534 | 1.1097 | 0.3649 | -0.9060 | -0.0895  | 0.0987    |
| pc24                | 0.7984    | 0.6578 | 0.9686 | 0.0225 | -2.2816 | -0.2252  | 0.0987    |
| pc25                | 0.8608    | 0.7094 | 1.0444 | 0.1287 | -1.5191 | -0.1499  | 0.0986    |
| pc32                | 1.5461    | 1.2649 | 1.8911 | 0.0000 | 4.2481  | 0.4357   | 0.1026    |
| pc33                | 1.4199    | 1.1543 | 1.7476 | 0.0009 | 3.3134  | 0.3506   | 0.1058    |
| pc34                | 1.3722    | 1.1158 | 1.6883 | 0.0027 | 2.9950  | 0.3164   | 0.1056    |
| pc35                | 1.3478    | 1.1003 | 1.6518 | 0.0040 | 2.8805  | 0.2985   | 0.1036    |
| pc42                | 0.8195    | 0.6747 | 0.9951 | 0.0446 | -2.0082 | -0.1991  | 0.0991    |
| pc43                | 0.7875    | 0.6462 | 0.9593 | 0.0178 | -2.3706 | -0.2389  | 0.1008    |
| pc44                | 0.7674    | 0.6271 | 0.9385 | 0.0100 | -2.5755 | -0.2648  | 0.1028    |
| pc45                | 0.6699    | 0.5446 | 0.8234 | 0.0001 | -3.7996 | -0.4006  | 0.1054    |

#### **Comments:**

- Traditional and drinker patterns (PC1 and PC3) are associated with increased risk of breast cancer
- Healthy patterns (PC2 and PC4) are associated with reduced risk of breast cancer

# 7 Future work

Due to limited time and knowledge of the domain, my analysis has several limitations. However, it can be improved in the future in the following dimensions.

- 1. Improve the representation of diet intake beyond the simple frequency of food consumption with external data such as weighting intake by serving size and nutritional contents (There are some free and commercial databases providing detailed nutritional contents for each type of food)
- 2. Find a better representation of physical activities
- 3. Incorporate information on the subjects' history of medical treatment
- 4. Replicate the analysis for the food item level and nutrition level