Cryptographie – Feuille d'exercices 2

Introduction à la cryptographie

M1 Informatique – 2014-2015

1 Exercice

On cherche à chiffrer un message $M \in \{0, 1, 2\}$ au moyen d'une clé aléatoire partagée $K \in \{0, 1, 2\}$.

- 1. Supposons qu'on procède de la façon suivante : on représente K et M en utilisant deux bits (00, 01 ou 10), puis en XORant les deux représentations. Est-ce que ce protocole vous paraît bon? Expliquer.
- 2. Donner un bon schéma de chiffrement dans ce contexte.

2 Chiffrement de Hill

Le schéma de chiffrement symétrique suivant a été inventé en 1929 par Lester S. Hill.

Soit m un entier strictement positif.

- L'ensemble des messages clairs est $\mathcal{P}=(\mathbb{Z}/26\mathbb{Z})^m$, et l'ensemble des messages chiffés est $\mathcal{C}=(\mathbb{Z}/26\mathbb{Z})^m$.
- L'ensemble des clés est $\mathcal{K} = \{\text{matrices } m \times m \text{ inversibles dans } \mathbb{Z}/26\mathbb{Z}\}.$
- Pour toute clé $K \in \mathcal{K}$, on définit la fonction de chiffrement \mathcal{E}_K par $\mathcal{E}_K(x) = x \cdot K$, et la fonction de déchiffrement par $\mathcal{D}_K(y) = y \cdot K^{-1}$, où toutes les opérations sont faites dans $\mathbb{Z}/26\mathbb{Z}$. Supposons que l'on sache que le texte clair

conversation

donne le texte chiffré

HIARRTNUYTUS

par le chiffrement de Hill (où m n'est pas spécifié). Déterminer la clé utilisée.

3 Chiffrement par transposition

 \mathcal{A} est l'alphabet romain et $\mathcal{B} = \mathcal{A}$. Soit σ une permutation (i.e. une bijection) sur $\{1, \ldots, n\}$ où n est la longueur du clair. L'opération de chiffrement d'un message $m = m_1 \ldots m_n$ est :

$$c = \mathcal{E}_{\sigma}(m) = m_{\sigma(1)} \dots m_{\sigma(n)}.$$

La clé secrète est σ .

1. Montrer comment, connaissant cette clé, on peut déchiffrer.

2. Montrer qu'il existe une matrice A_σ telle que :

$$c = m \times A_{\sigma}$$
.

Expliciter la matrice A_{σ} .

- 3. Supposons que l'attaquant dispose de n paires clair-chiffré. Montrer qu'il peut, avec une probabilité non négligeable, retrouver la clé.
- 4. Calculer la probabilité de succès de l'attaque, ainsi que sa complexité.