

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm
- minimum spanning trees
- Prim, Kruskal, Boruvka
- single-link clustering
- min-cost arborescences

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm
- minimum spanning trees
- Prim, Kruskal, Boruvka
- ▶ single-link clustering
- min-cost arborescences

Single-pair shortest path problem

Problem. Given a digraph G = (V, E), edge lengths $\ell_e \ge 0$, source $s \in V$, and destination $t \in V$, find a shortest directed path from s to t.

destination t

length of path = 9 + 4 + 1 + 11 = 25

Single-source shortest paths problem

Problem. Given a digraph G = (V, E), edge lengths $\ell_e \ge 0$, source $s \in V$, find a shortest directed path from s to every node.

shortest-paths tree

Car navigation

- Q. Which kind of shortest path problem?
- A. Single-destination shortest paths problem.

Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Robot navigation.
- Texture mapping.
- Typesetting in LaTeX.
- Urban traffic planning.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- · Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Dijkstra's algorithm

Greedy approach. Maintain a set of explored nodes S for which algorithm has determined the shortest path distance d(u) from S to U.

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$
 shortest path to some node u in explored part, followed by a single edge (u, v)

Dijkstra's algorithm

Greedy approach. Maintain a set of explored nodes S for which algorithm has determined the shortest path distance d(u) from S to U.

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$
 shortest path to some node u in explored part, followed by a single edge (u, v)

• To recover path, set pred(v) = (u, v) that achieves min.

Dijkstra's algorithm: proof of correctness

Invariant. For each node $u \in S$, d(u) is the length of a shortest $s \rightarrow u$ path.

Pf. [by induction on |S|]

Base case: |S| = 1 is easy since $S = \{s\}$ and d(s) = 0.

Inductive hypothesis: Assume true for $|S| = k \ge 1$.

- Let v be next node added to S, and let (u, v) be the final edge.
- A shortest $s \rightarrow u$ path plus (u, v) is an $s \rightarrow v$ path of length $\pi(v)$.
- Consider any $s \rightarrow v$ path P. We show that it is no shorter than $\pi(v)$.
- Let (x, y) be the first edge in P that leaves S,
 and let P' be the subpath to x.
- *P* is already too long as soon as it reaches *y*.

$$\ell(P) \geq \ell(P') + \ell(x,y) \geq d(x) + \ell(x,y) \geq \pi(y) \geq \pi(v) \quad \blacksquare$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\text{non-negative inductive definition Dijkstra chose v hypothesis} \quad \text{of } \pi(y) \quad \text{instead of y}$$

Dijkstra's algorithm: efficient implementation

Critical optimization 1. For each unexplored node v, explicitly maintain $\pi(v)$ instead of computing directly from formula:

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e.$$

- For each $v \notin S$, $\pi(v)$ can only decrease (because S only increases).
- More specifically, suppose u is added to S and there is an edge (u, v) leaving u. Then, it suffices to update:

$$\pi(v) = \min \{ \pi(v), d(u) + \ell(u, v) \}$$

Critical optimization 2. Use a priority queue to choose an unexplored node that minimizes $\pi(v)$.

Dijkstra's algorithm: efficient implementation

Implementation.

- Algorithm stores $\pi(v)$ for each node v.
- Priority queue stores $\pi(v)$ for each unexplored node v.
- Recall that $\pi(v) = d(v)$ once vertex is deleted from priority queue.

```
DIJKSTRA (V, E, \ell, s)
pq \leftarrow \text{Create-Priority-Queue}().
FOREACH v \neq s: \pi(v) \leftarrow \infty; \pi(s) \leftarrow 0.
FOREACH v \in V: INSERT(pq, v, \pi(v)).
WHILE (IS-NOT-EMPTY(pq))
   u \leftarrow \text{DEL-MIN}(pq).
   FOREACH edge (u, v) \in E leaving u:
       IF \pi(v) > \pi(u) + \ell(u, v)
          DECREASE-KEY(pq, v, \pi(u) + \ell(u, v)).
          \pi(v) \leftarrow \pi(u) + \ell(u, v); pred(v) \leftarrow (u, v).
```

Dijkstra's algorithm: which priority queue?

Performance. Depends on priority queue: n INSERT, n DELETE-MIN, m DECREASE-KEY.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- · Fibonacci/Brodal best in theory, but not worth implementing.

priority queue implementation	Insert	Delete-Min	Decrease-Key	total
unordered array	<i>O</i> (1)	O(n)	<i>O</i> (1)	$O(n^2)$
binary heap	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(m \log n)$
d-way heap (Johnson 1975)	$O(d \log_d n)$	$O(d \log_d n)$	$O(\log_d n)$	$O(m \log_{m/n} n)$
Fibonacci heap (Fredman-Tarjan 1984)	<i>O</i> (1)	$O(\log n)^{\dagger}$	O(1) †	$O(m + n \log n)$
Brodal queue (Brodal 1996)	<i>O</i> (1)	$O(\log n)$	<i>O</i> (1)	$O(m + n \log n)$

Extensions of Dijkstra's algorithm

Dijkstra's algorithm and proof extend to several related problems:

- Shortest paths in undirected graphs: $d(v) \le d(u) + \ell(u, v)$.
- Maximum capacity paths: $d(v) \ge \min \{ \pi(u), c(u, v) \}$.
- Maximum reliability paths: $d(v) \ge d(u) \times \gamma(u, v)$.
- •

Key algebraic structure. Closed semiring (tropical, bottleneck, Viterbi).

$$a + b = b + a$$

$$a + (b + c) = (a + b) + c$$

$$a + 0 = a$$

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

$$a \cdot 0 = 0 \cdot a = 0$$

$$a \cdot 1 = 1 \cdot a = a$$

$$a \cdot (b + c) = a \cdot b + a \cdot c$$

$$(a + b) \cdot c = a \cdot c + b \cdot c$$

$$a^* = 1 + a \cdot a^* = 1 + a^* \cdot a$$

SECTION 6.1

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm
- minimum spanning trees
- Prim, Kruskal, Boruvka
- ▶ single-link clustering
- min-cost arborescences

Cycles and cuts

Def. A path is a sequence of edges which connects a sequence of nodes.

Def. A cycle is a path with no repeated nodes or edges other than the starting and ending nodes.

cycle
$$C = \{ (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1) \}$$

Cycles and cuts

Def. A cut is a partition of the nodes into two nonempty subsets S and V-S.

Def. The cutset of a cut S is the set of edges with exactly one endpoint in S.

cutset
$$D = \{ (3, 4), (3, 5), (5, 6), (5, 7), (8, 7) \}$$

Cycle-cut intersection

Proposition. A cycle and a cutset intersect in an even number of edges.

Cycle-cut intersection

Proposition. A cycle and a cutset intersect in an even number of edges.

Pf. [by picture]

Spanning tree definition

Def. Let H = (V, T) be a subgraph of an undirected graph G = (V, E). H is a spanning tree of G if H is both acyclic and connected.

H = (V, T) is a spanning tree of G = (V, E)

Spanning tree properties

Proposition. Let H = (V, T) be a subgraph of an undirected graph G = (V, E). Then, the following are equivalent:

- *H* is a spanning tree of *G*.
- *H* is acyclic and connected.
- *H* is connected and has n-1 edges.
- H is acyclic and has n-1 edges.
- H is minimally connected: removal of any edge disconnects it.
- *H* is maximally acyclic: addition of any edge creates a cycle.
- *H* has a unique simple path between every pair of nodes.

Minimum spanning tree (MST)

Def. Given a connected, undirected graph G = (V, E) with edge costs c_e , a minimum spanning tree (V, T) is a spanning tree of G such that the sum of the edge costs in T is minimized.

$$MST cost = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7$$

Cayley's theorem. There are n^{n-2} spanning trees of complete graph on n vertices. \leftarrow can't solve by brute force

Applications

MST is fundamental problem with diverse applications.

- Dithering.
- Cluster analysis.
- Max bottleneck paths.
- Real-time face verification.
- LDPC codes for error correction.
- Image registration with Renyi entropy.
- Find road networks in satellite and aerial imagery.
- · Reducing data storage in sequencing amino acids in a protein.
- Model locality of particle interactions in turbulent fluid flows.
- · Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
- Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).
- Network design (communication, electrical, hydraulic, computer, road).

Fundamental cycle

Fundamental cycle. Let (V, T) be a spanning tree of G = (V, E).

- Adding any non-tree edge $e \in E$ to T forms unique cycle C.
- Deleting any edge $f \in C$ from $T \cup \{e\}$ results in a spanning tree.

Observation. If $c_e < c_f$, then (V, T) is not an MST.

Fundamental cutset

Fundamental cutset. Let (V, T) be a spanning tree of G = (V, E).

- Deleting any tree edge f from T divides nodes of spanning tree into two connected components. Let D be cutset.
- Adding any edge $e \in D$ to $T \{f\}$ results in a spanning tree.

Observation. If $c_e < c_f$, then (V, T) is not an MST.

The greedy algorithm

Red rule.

- Let C be a cycle with no red edges.
- Select an uncolored edge of C of max weight and color it red.

Blue rule.

- Let D be a cutset with no blue edges.
- Select an uncolored edge in D of min weight and color it blue.

Greedy algorithm.

- Apply the red and blue rules (non-deterministically!) until all edges are colored. The blue edges form an MST.
- Note: can stop once n-1 edges colored blue.

Color invariant. There exists an MST (V, T^*) containing all of the blue edges and none of the red edges.

Pf. [by induction on number of iterations]

Base case. No edges colored \Rightarrow every MST satisfies invariant.

Color invariant. There exists an MST (V, T^*) containing all of the blue edges and none of the red edges.

Pf. [by induction on number of iterations]

Induction step (blue rule). Suppose color invariant true before blue rule.

- let D be chosen cutset, and let f be edge colored blue.
- if $f \in T^*$, T^* still satisfies invariant.
- Otherwise, consider fundamental cycle C by adding f to T^* .
- let $e \in C$ be another edge in D.
- e is uncolored and $c_e \ge c_f$ since
 - $e \in T^* \Rightarrow e \text{ not red}$
 - blue rule \Rightarrow *e* not blue and $c_e \ge c_f$
- Thus, $T^* \cup \{f\} \{e\}$ satisfies invariant.

Color invariant. There exists an MST (V, T^*) containing all of the blue edges and none of the red edges.

Pf. [by induction on number of iterations]

Induction step (red rule). Suppose color invariant true before red rule.

- let C be chosen cycle, and let e be edge colored red.
- if $e \notin T^*$, T^* still satisfies invariant.
- Otherwise, consider fundamental cutset D by deleting e from T^* .
- let $f \in D$ be another edge in C.
- f is uncolored and $c_e \ge c_f$ since
 - $f \notin T^* \Rightarrow f \text{ not blue}$
 - red rule \Rightarrow f not red and $c_e \ge c_f$
- Thus, $T^* \cup \{f\} \{e\}$ satisfies invariant. \blacksquare

Theorem. The greedy algorithm terminates. Blue edges form an MST.

Pf. We need to show that either the red or blue rule (or both) applies.

- Suppose edge *e* is left uncolored.
- · Blue edges form a forest.
- Case 1: both endpoints of e are in same blue tree.
 - \Rightarrow apply red rule to cycle formed by adding e to blue forest.

Case 1

Theorem. The greedy algorithm terminates. Blue edges form an MST.

Pf. We need to show that either the red or blue rule (or both) applies.

- Suppose edge *e* is left uncolored.
- · Blue edges form a forest.
- Case 1: both endpoints of e are in same blue tree.
 - \Rightarrow apply red rule to cycle formed by adding e to blue forest.
- Case 2: both endpoints of e are in different blue trees.
 - ⇒ apply blue rule to cutset induced by either of two blue trees. ■

Case 2

SECTION 6.2

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm
- minimum spanning trees
- Prim, Kruskal, Boruvka
- ▶ single-link clustering
- min-cost arborescences

Prim's algorithm

Initialize S = any node, $T = \emptyset$.

Repeat n-1 times:

- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

Theorem. Prim's algorithm computes an MST.

Pf. Special case of greedy algorithm (blue rule repeatedly applied to *S*). ■

Prim's algorithm: implementation

Theorem. Prim's algorithm can be implemented to run in $O(m \log n)$ time. Pf. Implementation almost identical to Dijkstra's algorithm.

```
PRIM(V, E, c)
Create an empty priority queue pq.
                                                \pi(v) = weight of cheapest
T \leftarrow \emptyset.
                                                       known edge
                                                     between v and S
s \leftarrow any \ node \ in \ V.
FOREACH v \neq s : \pi(v) \leftarrow \infty; \pi(s) \leftarrow 0.
FOREACH v \in V: INSERT(pq, v, \pi(v)).
WHILE ( IS-NOT-EMPTY(pq))
   u \leftarrow \text{DEL-MIN}(pq).
   T \leftarrow T \cup pred(u).
   FOREACH edge (u, v) \in E incident to u:
       IF \pi(v) > c(u, v)
          DECREASE-KEY(pq, v, c(u, v)).
          \pi(v) \leftarrow c(u, v); pred(v) \leftarrow (u, v).
```

Kruskal's algorithm

Consider edges in ascending order of weight:

· Add to tree unless it would create a cycle.

Theorem. Kruskal's algorithm computes an MST.

Pf. Special case of greedy algorithm.

• Case 1: both endpoints of e in same blue tree.

⇒ color red by applying red rule to unique cycle.

Case 2. If both endpoints of e are in different blue trees.

⇒ color blue by applying blue rule to cutset defined by either tree. ■

no edge in cutset has smaller weight (since Kruskal chose it first)

all other edges in cycle are blue

Kruskal's algorithm: implementation

Theorem. Kruskal's algorithm can be implemented to run in $O(m \log m)$ time.

- Sort edges by weight.
- Use union-find data structure to dynamically maintain connected components.

```
KRUSKAL (V, E, c)
SORT m edges by weight so that c(e_1) \le c(e_2) \le ... \le c(e_m).
T \leftarrow \emptyset.
Foreach v \in V: Make-Set(v).
FOR i = 1 TO m
   (u, v) \leftarrow e_i.
   IF FIND-SET(u) \neq FIND-SET(v) \leftarrow are u and v in same component?
       T \leftarrow T \cup \{e_i\}.
       UNION(u, v). \leftarrow make u and v in same component
RETURN T.
```

Reverse-delete algorithm

Consider edges in descending order of weight:

Remove edge unless it would disconnect the graph.

Theorem. The reverse-delete algorithm computes an MST.

- Pf. Special case of greedy algorithm.
 - Case 1: removing edge e does not disconnect graph.
 - \Rightarrow apply red rule to cycle C formed by adding e to existing path between its two endpoints f any edge in C with larger weight would have been deleted when considered
 - Case 2: removing edge e disconnects graph.
 - \Rightarrow apply blue rule to cutset D induced by either component.

e is the only edge in the cutset
(any other edges must have been colored red / deleted)

Fact. [Thorup 2000] Can be implemented to run in $O(m \log n (\log \log n)^3)$ time.

Review: the greedy MST algorithm

Red rule.

- Let C be a cycle with no red edges.
- Select an uncolored edge of C of max weight and color it red.

Blue rule.

- Let D be a cutset with no blue edges.
- Select an uncolored edge in D of min weight and color it blue.

Greedy algorithm.

- Apply the red and blue rules (non-deterministically!) until all edges are colored. The blue edges form an MST.
- Note: can stop once n-1 edges colored blue.

Theorem. The greedy algorithm is correct.

Special cases. Prim, Kruskal, reverse-delete, ...

Borůvka's algorithm

Repeat until only one tree.

- Apply blue rule to cutset corresponding to each blue tree.
- Color all selected edges blue.

Pf. Special case of greedy algorithm (repeatedly apply blue rule). •

Borůvka's algorithm: implementation

Theorem. Borůvka's algorithm can be implemented to run in $O(m \log n)$ time. Pf.

- To implement a phase in O(m) time:
 - compute connected components of blue edges
 - for each edge $(u, v) \in E$, check if u and v are in different components; if so, update each component's best edge in cutset
- At most $\log_2 n$ phases since each phase (at least) halves total # trees.

Borůvka's algorithm: implementation

Node contraction version.

- After each phase, contract each blue tree to a single supernode.
- · Delete parallel edges (keeping only cheapest one) and self loops.
- Borůvka phase becomes: take cheapest edge incident to each node.

graph G

1 6 2 8 3
3 5 4 2
4 7 5 9 6

delete parallel edges and self loops

Borůvka's algorithm on planar graphs

Theorem. Borůvka's algorithm runs in O(n) time on planar graphs. Pf.

- To implement a Borůvka phase in O(n) time:
 - use contraction version of algorithm
 - in planar graphs, $m \le 3n 6$.
 - graph stays planar when we contract a blue tree
- Number of nodes (at least) halves.
- At most $\log_2 n$ phases: cn + cn/2 + cn/4 + cn/8 + ... = O(n).

Borůvka-Prim algorithm

- Run Borůvka (contraction version) for $log_2 log_2 n$ phases.
- · Run Prim on resulting, contracted graph.

Theorem. The Borůvka–Prim algorithm computes an MST and can be implemented to run in $O(m \log \log n)$ time.

Pf.

- Correctness: special case of the greedy algorithm.
- The $\log_2 \log_2 n$ phases of Borůvka's algorithm take $O(m \log \log n)$ time; resulting graph has at most $n / \log_2 n$ nodes and m edges.
- Prim's algorithm (using Fibonacci heaps) takes O(m+n) time on a graph with $n/\log_2 n$ nodes and m edges. •

$$O\left(m + \frac{n}{\log n} \log \left(\frac{n}{\log n}\right)\right)$$

Does a linear-time MST algorithm exist?

deterministic compare-based MST algorithms

year	worst case	discovered by
1975	$O(m \log \log n)$	Yao
1976	$O(m \log \log n)$	Cheriton-Tarjan
1984	$O(m \log^* n) \ O(m + n \log n)$	Fredman–Tarjan
1986	$O(m \log (\log^* n))$	Gabow-Galil-Spencer-Tarjan
1997	$O(m \alpha(n) \log \alpha(n))$	Chazelle
2000	$O(m \alpha(n))$	Chazelle
2002	optimal	Pettie-Ramachandran
20xx	O(m)	???

Remark 1. O(m) randomized MST algorithm. [Karger–Klein–Tarjan 1995]

Remark 2. O(m) MST verification algorithm. [Dixon–Rauch–Tarjan 1992]

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm
- minimum spanning trees
- Prim, Kruskal, Boruvka
- single-link clustering
- min-cost arborescences

Clustering

Goal. Given a set U of n objects labeled $p_1, ..., p_n$, partition into clusters so that objects in different clusters are far apart.

outbreak of cholera deaths in London in 1850s (Nina Mishra)

Applications.

- Routing in mobile ad hoc networks.
- Document categorization for web search.
- Similarity searching in medical image databases
- Skycat: cluster 109 sky objects into stars, quasars, galaxies.

• ...

Clustering of maximum spacing

k-clustering. Divide objects into k non-empty groups.

Distance function. Numeric value specifying "closeness" of two objects.

- $d(p_i, p_j) = 0$ iff $p_i = p_j$ [identity of indiscernibles]
- $d(p_i, p_j) \ge 0$ [non-negativity]
- $d(p_i, p_j) = d(p_j, p_i)$ [symmetry]

Spacing. Min distance between any pair of points in different clusters.

Goal. Given an integer k, find a k-clustering of maximum spacing.

Greedy clustering algorithm

"Well-known" algorithm in science literature for single-linkage k-clustering:

- Form a graph on the node set U, corresponding to n clusters.
- Find the closest pair of objects such that each object is in a different cluster, and add an edge between them.
- Repeat n k times until there are exactly k clusters.

Key observation. This procedure is precisely Kruskal's algorithm (except we stop when there are k connected components).

Alternative. Find an MST and delete the k-1 longest edges.

Greedy clustering algorithm: analysis

Theorem. Let C^* denote the clustering $C^*_1, ..., C^*_k$ formed by deleting the k-1 longest edges of an MST. Then, C^* is a k-clustering of max spacing.

- Pf. Let C denote some other clustering $C_1, ..., C_k$.
 - The spacing of C^* is the length d^* of the $(k-1)^{st}$ longest edge in MST.
 - Let p_i and p_j be in the same cluster in C^* , say C^*_r , but different clusters in C, say C_s and C_t .
 - Some edge (p,q) on $p_i p_j$ path in C^*_r spans two different clusters in C.
 - Edge (p, q) has length $\leq d^*$ since it wasn't deleted.
 - Spacing of C is $\leq d^*$ since p and q are in different clusters. $lacktrel{\bullet}$

Dendrogram of cancers in human

Tumors in similar tissues cluster together.

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm
- minimum spanning trees
- Prim, Kruskal, Boruvka
- ▶ single-link clustering
- min-cost arborescences

Arborescences

Def. Given a digraph G = (V, E) and a root $r \in V$, an arborescence (rooted at r) is a subgraph T = (V, F) such that

- *T* is a spanning tree of *G* if we ignore the direction of edges.
- There is a directed path in *T* from *r* to each other node $v \in V$.

Warmup. Given a digraph G, find an arborescence rooted at r (if one exists). Algorithm. BFS or DFS from r is an arborescence (iff all nodes reachable).

Arborescences

Def. Given a digraph G = (V, E) and a root $r \in V$, an arborescence (rooted at r) is a subgraph T = (V, F) such that

- *T* is a spanning tree of *G* if we ignore the direction of edges.
- There is a directed path in *T* from *r* to each other node $v \in V$.

Proposition. A subgraph T = (V, F) of G is an arborescence rooted at r iff T has no directed cycles and each node $v \neq r$ has exactly one entering edge. Pf.

- \Rightarrow If T is an arborescence, then no (directed) cycles and every node $v \neq r$ has exactly one entering edge—the last edge on the unique $r \rightarrow v$ path.
- \Leftarrow Suppose T has no cycles and each node $v \neq r$ has one entering edge.
 - To construct an $r \rightarrow v$ path, start at v and repeatedly follow edges in the backward direction.
 - Since T has no directed cycles, the process must terminate.
 - It must terminate at *r* since *r* is the only node with no entering edge. •

Min-cost arborescence problem

Problem. Given a digraph G with a root node r and with a nonnegative cost $c_e \ge 0$ on each edge e, compute an arborescence rooted at r of minimum cost.

Assumption 1. G has an arborescence rooted at r.

Assumption 2. No edge enters r (safe to delete since they won't help).

Simple greedy approaches do not work

Observations. A min-cost arborescence need not:

- Be a shortest-paths tree.
- Include the cheapest edge (in some cut).
- Exclude the most expensive edge (in some cycle).

A sufficient optimality condition

Property. For each node $v \ne r$, choose one cheapest edge entering v and let F^* denote this set of n-1 edges. If (V, F^*) is an arborescence, then it is a min-cost arborescence.

Pf. An arborescence needs exactly one edge entering each node $v \neq r$ and (V, F^*) is the cheapest way to make these choices. \blacksquare

A sufficient optimality condition

Property. For each node $v \ne r$, choose one cheapest edge entering v and let F^* denote this set of n-1 edges. If (V, F^*) is an arborescence, then it is a min-cost arborescence.

Note. F^* may not be an arborescence (since it may have directed cycles).

Reduced costs

Def. For each $v \ne r$, let y(v) denote the min cost of any edge entering v. The reduced cost of an edge (u, v) is $c'(u, v) = c(u, v) - y(v) \ge 0$.

Observation. T is a min-cost arborescence in G using costs c iff T is a min-cost arborescence in G using reduced costs c'. Pf. Each arborescence has exactly one edge entering v.

Edmonds branching algorithm: intuition

Intuition. Recall F^* = set of cheapest edges entering v for each $v \neq r$.

- Now, all edges in F^* have 0 cost with respect to costs c'(u, v).
- If F^* does not contain a cycle, then it is a min-cost arborescence.
- If F^* contains a cycle C, can afford to use as many edges in C as desired.
- Contract nodes in C to a supernode (removing any self-loops).
- Recursively solve problem in contracted network G' with costs c'(u, v).

Edmonds branching algorithm: intuition

Intuition. Recall F^* = set of cheapest edges entering v for each $v \neq r$.

- Now, all edges in F^* have 0 cost with respect to costs c'(u, v).
- If F^* does not contain a cycle, then it is a min-cost arborescence.
- If F* contains a cycle C, can afford to use as many edges in C as desired.
- Contract nodes in C to a supernode (removing any self-loops).
- Recursively solve problem in contracted network G' with costs c'(u, v).

Edmonds branching algorithm

EDMONDS-BRANCHING (G, r, c)

FOREACH $v \neq r$

 $y(v) \leftarrow min\ cost\ of\ an\ edge\ entering\ v.$

 $c'(u, v) \leftarrow c'(u, v) - y(v)$ for each edge (u, v) entering v.

FOREACH $v \neq r$: choose one 0-cost edge entering v and let F^* be the resulting set of edges.

IF F^* forms an arborescence, RETURN $T = (V, F^*)$.

ELSE

 $C \leftarrow directed\ cycle\ in\ F^*.$

Contract C to a single supernode, yielding G' = (V', E').

 $T' \leftarrow \text{EDMONDS-BRANCHING}(G', r, c')$

Extend T' to an arborescence T in G by adding all but one edge of C.

RETURN T.

Edmonds branching algorithm

Q. What could go wrong?

A.

- Min-cost arborescence in G' has exactly one edge entering a node in C (since C is contracted to a single node)
- But min-cost arborescence in G might have more edges entering C.

min-cost arborescence in G

Edmonds branching algorithm: key lemma

Lemma. Let C be a cycle in G consisting of 0-cost edges. There exists a mincost arborescence rooted at r that has exactly one edge entering C.

Pf. Let T be a min-cost arborescence rooted at r.

Case 0. T has no edges entering C.

Since *T* is an arborescence, there is an $r \rightarrow v$ path fore each node $v \Rightarrow$ at least one edge enters *C*.

Case 1. *T* has exactly one edge entering *C*.

T satisfies the lemma.

Case 2. *T* has more than one edge that enters *C*.

We construct another min-cost arborescence T' that has exactly one edge entering C.

Edmonds branching algorithm: key lemma

Case 2 construction of T'.

- Let (a, b) be an edge in T entering C that lies on a shortest path from r.
- We delete all edges of T that enter a node in C except (a, b).
- We add in all edges of C except the one that enters b.

 path from r to C uses only one node in C

Edmonds branching algorithm: key lemma

Case 2 construction of T'.

- Let (a, b) be an edge in T entering C that lies on a shortest path from r.
- We delete all edges of T that enter a node in C except (a, b).
- We add in all edges of C except the one that enters b.

path from r to C uses only one node in C

Claim. T' is a min-cost arborescence.

- The cost of T' is at most that of T since we add only 0-cost edges.
- T' has exactly one edge entering each node $v \neq r$.

• T' has no directed cycles.

(T had no cycles before; no cycles within C; now only (a, b) enters C)

and the only path in T' to a is the path from r to a (since any path must follow unique entering edge back to r)

Edmonds branching algorithm: analysis

Theorem. [Chu-Liu 1965, Edmonds 1967] The greedy algorithm finds a min-cost arborescence.

Pf. [by induction on number of nodes in *G*]

- If the edges of F^* form an arborescence, then min-cost arborescence.
- Otherwise, we use reduced costs, which is equivalent.
- After contracting a 0-cost cycle C to obtain a smaller graph G', the algorithm finds a min-cost arborescence T' in G' (by induction).
- Key lemma: there exists a min-cost arborescence T in G that corresponds to T'.

Theorem. The greedy algorithm can be implemented to run in O(m n) time. Pf.

- At most n contractions (since each reduces the number of nodes).
- Finding and contracting the cycle C takes O(m) time.
- Transforming T' into T takes O(m) time. \blacksquare

Min-cost arborescence

Theorem. [Gabow–Galil–Spencer–Tarjan 1985] There exists an $O(m + n \log n)$ time algorithm to compute a min-cost arborescence.

Combinatorica 6 (2) (1986) 109—122

EFFICIENT ALGORITHMS FOR FINDING MINIMUM SPANNING TREES IN UNDIRECTED AND DIRECTED GRAPHS

H. N. GABOW*, Z. GALIL**, T. SPENCER*** and R. E. TARJAN

Received 23 January 1985 Revised 1 December 1985

Recently, Fredman and Tarjan invented a new, especially efficient form of heap (priority queue). Their data structure, the *Fibonacci heap* (or F-heap) supports arbitrary deletion in $O(\log n)$ amortized time and other heap operations in O(1) amortized time. In this paper we use F-heaps to obtain fast algorithms for finding minimum spanning trees in undirected and directed graphs. For an undirected graph containing n vertices and m edges, our minimum spanning tree algorithm runs in $O(m \log \beta(m, n))$ time, improved from $O(m\beta(m, n))$ time, where $\beta(m, n) = \min \{i | \log^{(1)} n \le m/n\}$. Our minimum spanning tree algorithm for directed graphs runs in $O(n \log n + m)$ time, improved from $O(n \log n + m \log \log \log_{(m/n+2)} n)$. Both algorithms can be extended to allow a degree constraint at one vertex.