

OBJECT RECOGNITION

Is this a dog?

What is there in image and where?

Which pixels belong to which object?

Image Classification

Object Detection

Image Segmentation

TRADITIONAL IMAGE PROCESSING TECHNIQUES

Original Image

TRADITIONAL IMAGE PROCESSING TECHNIQUES

Binary Morphology

Dilate

Erode

Open (Erode ⇒ Dilate)

Close (Dilate ⇒ Erode)

People with no idea about AI, telling me my AI will destroy the world

People: Al so smart, it will distroy us! Al:

DEEP NEURAL NETWORK

BACKPROPAGATI

ON

CONVOLUTIONAL NEURAL NETWORK

CONVOLUTIONAL LAYER

DEEP LEARNING OBJECT DETECTORS

Task #1: Find an arbitrary number of objects (possibly even zero)

Task #2: Classify every single object and estimate its size with a bounding box.

DEEP LEARNING OBJECT DETECTORS

Two-stage

- RCNN and SPPNet (2014)
- Fast RCNN and Faster RCNN (2015)
- Mask R-CNN (2017)
- Pyramid Networks/FPN (2017)
- G-RCNN (2021)

One-stage

- YOLO (2016)
- SSD (2016)
- RetinaNet (2017)
- YOLOv3 (2018)
- YOLOv4, YOLOv5 (2020)
- YOLOR (2021)

YOLOv3 is 1000x faster than R-CNN and 100x faster than Fast R-CNN

R-CNN: REGION-BASED CONVOLUTIONAL **NEURAL NETWORK**

R-CNN: Regions with CNN features

warped region

1. Input image

2. Extract region proposals (~2k)

person? yes.

aeroplane? no.

Y OU

O NCE

LOOK

O NLY

Verzia 5

Before non-max suppression

Non-Max Suppression

After non-max suppression

INTERSECTION OVER UNION (IoU metrics) Area of Overlap Area of Union loU: 0.4034 loU: 0.7330 loU: 0.9264 **Excellent Poor** Good

YOU

O NCE

LOOK

O NLY

Verzia 5

- ✓ Webcam
- ✓ Image
- ✔ Video
- ✓ Directory
- ✔ Global File Type
- ✓ RTSP stream
- ✓ RTMP stream
- ✓ HTTP stream

English | 简体中文

YOLOv5 of is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.

Original image

RGBShift

HueSaturationValue

ChannelShuffle

RandomBrightness

YOLOv5 applies online imagespace and colorspace augmentations in the trainloader (but not the val_loader) to present a new and unique augmented Mosaic (original image + 3 random images) each time an image is loaded for training. Images are never presented twice in the same way.

https://github.com/ultralytics/yolov5

!git clone https://github.com/space-lab-sk/tle_detection.git

