100 1 11 to 0 to 12 1	5-6pm QUIZ7
Try merlating dollarent paths of approach show that $(x,y) \rightarrow (0,0)$, where $f(x,y) = \frac{xy}{ xy }$	the Eurotron-Phas no limit
Soldin	
Put $x=1$ then $\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{4}{y\to0} \frac{4}{14} = \int_{-1}^{+1}$	
Since $\frac{y}{191} = \begin{cases} 1 & \text{if } y > 0 \\ -1 & \text{if } y < 0 \end{cases}$	
2) Find fx, fy, fxy, fxx, Sor the Sundian f(x,y) = 0	FE(XY)
Find f_x, f_y, f_{xy}, f_{xx} , Sor the Junction $f(x,y) = C$ $\frac{2}{50} \frac{1}{5} (x,y) = -\sin(xy) \cdot 2(xy) = -\sin(xy) \cdot y$	
$\frac{d}{dy} = \int y(x,y) = -\sin(xy) \cdot \chi (\sin x x + y)$	
$f_{\chi y}(x,y) = \frac{\partial}{\partial y} (f_{\chi})(x,y) = \frac{\partial}{\partial y} (-\operatorname{Cin}(\chi y) \cdot y) = \frac{\partial}{\partial y} (\operatorname{pred.rule})$ $= - \left[\operatorname{Sin}(\chi y) + u \operatorname{Orc}(\chi y) \right]$	- 2 (Sin(xy) · y)
$= - \left[Sin(xy) + y cos(xy) \right]$	
$= -Sin(xy) - x \cdot y \cdot Cos(x)$	y)

 $f_{\infty}(x,y) : \frac{\partial}{\partial x} (x,y) : -y^2 \cos(xy)$