



Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

## Geometría III Examen IV

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2023-2024

Asignatura Geometría III.

Curso Académico 2023-24.

Grado en Matemáticas.

Grupo B.

Profesor José María Espinar García.

Descripción Parcial de los Temas 1 y 2.

Fecha 7 de noviembre de 2023.

**Ejercicio 1.** Sean  $R_1$  y  $R_2$ ,  $R_1 \cap R_2 = \emptyset$ , dos rectas paralelas en un plano afín  $\mathcal{A}$ . Sean  $a_i, b_i, c_i \in R_i$ , i = 1, 2, tres puntos distintos en cada una de las rectas. Demostrar que si  $R_{a_1b_2} \|R_{a_2b_1}$  y  $R_{b_1c_2} \|R_{b_2c_1}$ , entonces  $R_{a_1c_2} \|R_{a_2c_1}$ .

Es la demostración del Teorema de Pappus en el caso de que las rectas sean paralelas.

**Ejercicio 2.** Sea  $T := \{a_1, a_2, a_3\}$  un triángulo en un plano afín  $\mathcal{A}$ . Denotemos por  $a'_i$ , i = 1, 2, 3, al punto medio del dado opuesto a  $a_i$ , es decir,  $a'_i = a_j + \frac{1}{2} \overrightarrow{a_j a'_k}$ ,  $i \neq j \neq k$  e  $i, j, k \in \{1, 2, 3\}$ . Demostrar que existe una homotecia  $h : \mathcal{A} \to \mathcal{A}$  tal que  $h(a_i) = a'_i$  para i = 1, 2, 3. Calcular el centro y la razón de dicha homotecia.

En la demostración del Teorema de Euler se vio que dicha homotecia existe y que su centro es el baricentro del triángulo y su razón es -1/2.

**Ejercicio 3.** Sean 
$$S_1 := \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + z = -1\}$$
 y  $S_2 = (1, 2, 0) + \mathcal{L}\{(-1, 1, 1), (0, 0, 1)\}.$ 

1. Calcula la intersección  $I := S_1 \cap S_2$  y la suma.

Calcularemos en primer lugar su intersección. Para ello, calculamos la ecuación implícita de  $S_2$ :

$$S_2 \equiv \begin{vmatrix} -1 & 0 & x - 1 \\ 1 & 0 & y - 2 \\ 1 & 1 & z \end{vmatrix} = 0 = - \begin{vmatrix} -1 & x - 1 \\ 1 & y - 2 \end{vmatrix} = y - 2 + x - 1 = y + x - 3$$

Por tanto, calculamos ahora  $I = S_1 \cap S_2$ :

$$\left\{ \begin{array}{l} x+2y+z=-1 \\ y+x-3=0 \end{array} \right\} \Longrightarrow \left\{ \begin{array}{l} x=\lambda+7 \\ y=-\lambda-4 \\ z=\lambda \end{array} \right. \quad \lambda \in \mathbb{R}$$

Por tanto,  $I = (7, -4, 0) + \mathcal{L}\{(-1, -1, 1)\}$ . Como  $S_1 \cap S_2 \neq \emptyset$ , por la fórmula de las dimensiones, tenemos que:

$$\dim S_1 \vee \dim S_2 = \dim S_1 + \dim S_2 - \dim S_1 \cap S_2 = 2 + 2 - 1 = 3$$

Además, como  $S_1 \vee S_2 \subset \mathbb{R}^3$ , tenemos que  $S_1 \vee S_2 = \mathbb{R}^3$ .

2. Sea  $\mathcal{R} := \{(1, -1, 0), (0, 0, 1), (1, 0, -1), (2, -2, 1)\}$ . Demostrar que es un sistema de referencia en  $\mathbb{R}^3$ .

Para ello, mostraremos que su base asociada es base de  $\mathbb{R}^3$ . Esta es:

$$\mathcal{B} = \{(-1, 1, 1), (0, 1, -1), (1, -1, 1)\}$$

Tenemos que:

$$\begin{vmatrix} -1 & 0 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{vmatrix} = -2 \neq 0$$

Por tanto,  $\mathcal{B}$  es base de  $\mathbb{R}^3$  y, por tanto,  $\mathcal{R}$  es un sistema de referencia en  $\mathbb{R}^3$ .

3. Sea el plano afín  $P := \{(\alpha, \beta, \gamma)_{\mathcal{R}} \in \mathbb{R}^3 \mid \gamma = 1\}$  dado en coordenadas respecto de  $\mathcal{R}$ . Calcular, si es posible, el ángulo de intersección entre P e I. En caso de no ser posible, decir por qué.

Tenemos que P es un hiperplano e I es una recta. Por tanto, sí se puede calcular el ángulo de intersección entre ambos. Para ello, necesitamos calcular en primer lugar un vector normal a P. Para ello, calculamos la ecuación implícita de P en el sistema de referencia usual. Como  $\gamma = 0 + x - y - z$ , tenemos que  $P \equiv x - y - z = 1$ , por lo que un vector normal a P es  $v_P = (1, -1, -1)$ . Por tanto, el ángulo de intersección entre P e I es:

$$\theta = \frac{\pi}{2} - \arccos\left(\frac{\langle (1, -1, -1) \ (-1, -1, 1)\rangle}{\sqrt{3}^2}\right) = \frac{\pi}{2} - \arccos\left(\frac{-1}{3}\right) \approx -0.34 \text{ rad}$$

**Ejercicio 4.** Sea  $f: \mathbb{R}^3 \to \mathbb{R}^3$  la aplicación afín dada por:

$$f(-1,1,0) = (\frac{11}{5}, \frac{-2}{5}, 3)$$
  $f(0,0,1) = (\frac{18}{5}, \frac{-1}{5}, 4)$   
 $f(1,0,-1) = (\frac{8}{5}, \frac{-6}{5}, 4)$   $f(2,-2,1) = (2,1,2)$ 

- 1. ¿Es f una isometría de  $\mathbb{R}^3$ ?
- 2. Calcular el conjunto de puntos fijos de f en el sistema de referencia usual.
- 3. Calcula las ecuaciones que representan a f respecto de los sistemas de referencia  $\mathcal{R}$  (en el dominio) y  $\mathcal{R}'$  (en el codominio); siendo:

$$\mathcal{R} = \{(1, -1, 0), (0, 0, 1), (1, 0, -1), (2, -2, 1)\}$$
$$\mathcal{R}' = \{(0, 0, 1), (1, -1, 0), (0, 0, 0), (-2, 0, 1)\}$$