

RF-Mehndi: A Fingertip Profiled RF Identifier

<u>Cui Zhao</u>¹, Zhenjiang Li², Ting Liu¹, Han Ding¹, Jinsong Han³, Wei Xi¹, Ruowei Gui¹

¹Xi`an Jiaotong University, China

²City University of Hong Kong, Hong Kong

³Zhejiang University, China

Transportation Card

Access Card

Credit Card

Any potential security risk with these cards?

Thievery

Loss

Why can't these cards resist loss and thievery?

Motivation

Sth you have?

Who are you?

Motivation

Device Authentication

User(Biometric) Authentication

Motivation

Issues with these approaches:

- Not convenient
- Not easy to customize
- Not light-weight
- Not fast to implement
- Not low cost
- **>** ...

User-dependent & Unique

Our goal

Device Authentication

User Authentication

Light-weight

Low-cost

Universal

Counterfeiting

Impersonation

Replay

Radiative & Inductive coupling

$$\theta = \left(\frac{4\pi d}{\lambda} + \theta_{reader} + \theta_{tag}\right) \mod 2\pi$$

Observation 1 --- Impact of tag coupling

➤ Tags in a vicinity → Their circuit characteristics change.

(a) Phase of individual tags $_{11}$

Observation 1 --- Impact of tag coupling

What will happen if we collect their phases together?

(b) Coupling phase of these tags

Why does the phase change due to coupling?

Observation 2

Impact of human impedance

Why does phase change with fingertip touch?

- (a) Phase of individual tags
- (b) Coupling phase of these tags

User-dependent & Unique Phase Fingerprint

$$\Delta\theta_{ij} = \theta_i - \theta_j = (\frac{4\pi d_{ij}}{\lambda} + \Delta\theta_{tag}^{ij}) \mod 2\pi$$
Phase Difference of Tags (PDoT)

Phase Difference of Tags (PDoT)

Challenge 1

The impact of touching is unstable.

- (b) Touch different tags
- (c) Touch Tag9 three times without conductor

Tackle with challenge 1

Introduce a conductor

Complexity of coupling & Size of array

Challenge 2

Phases change with distance.

Tackle with challenge 2

Phase shifting algorithm

Algorithm 1: Phase Shifting

```
Input: Unwrapped phase sequence:
      \theta = (\theta_{t_1}, \theta_{t_2}, ... \theta_{t_n}), n \in [1, N]
Output: Calibrated phase sequence: \theta' = (\theta'_{t_1}, \theta'_{t_2}, ..., \theta'_{t_n})
  1: Descending sort: \theta \leftarrow sort(\theta), i \in [1, N]
  2: i \leftarrow 1
  3: while i < N do
  4: \delta_i \leftarrow \theta_{t_i} - \theta_{t_{i+1}}
  5: if i == N then
  6: \delta_i \leftarrow \theta_{t_i} - \theta_{t_1} + 2\pi
  7: end if
  8: i \leftarrow i + 1
  9: end while
 10: Obtain maximum of \delta_i: \delta^{ma} \leftarrow max(\delta_i), i \in [1, N]
 11: if \delta^{ma} == \delta_N then
12: \theta'_{t_i} \leftarrow (\theta_{t_i} - (\theta_{t_N} - \frac{1}{2}\delta^{ma})) \mod 2\pi
13: else if \delta^{ma} == \delta_j, j \in [1, N-1] then
14: \theta'_{t_i} \leftarrow (\theta_{t_i} + (2\pi - \theta_{t_{j+1}} - \frac{1}{2}\delta^{ma})) \mod 2\pi
15: end if
16: Descending sort: \theta' \leftarrow sort(\theta'_{t_i}), i \in [1, N]
```


Tackle with challenge 2

Phase shifting algorithm

Tackle with challenge 2

Phase shifting algorithm

Challenge 3

Impact of accessories

- 1. Impinj R420 reader
- 2. Larid antenna A9028
- 3. Alien-9629 tag

Overall accuracy vs. Human diversity

- 7 females + 8 males
- 15 representative tag array layouts

Resisting impersonation attack

• 10 attackers try to use an authorized user's credential to access the system.

Resisting counterfeiting attack

- Attacker produces a counterfeited array with the same tag model and layout.
 - 90 Alien-9629 tags

Average FAR < 0.01

Tags' hardware differences will reflect in phases.

Resisting replay attack

- Effective read range < 30cm
- Tolerable space angle of tag rotation < 10° (w.r.t. x-y-z axis)

Effective authentication range \approx 15cm

±4cm region > 90% accuracy

Accuracy vs. rotation and accessories

Tolerable space angle < 10°

- Converting an array of tags attached on a card into an effective authentication credential.
- Light-weight, low-cost, universal solution for a fingertip profiled RF identifier, authenticating both the card and its holder's identity simultaneously.
- Demonstrated a working system implemented purely based on COTS RFID devices.

Thanks! Question?

