Reinforcement Learning for Business, Economics, and Social Sciences

Unit 2-5: Policy Iteration

Davud Rostam-Afschar (Uni Mannheim)

How can we solve for the best policy of each state?

Policy Optimization

- Value iteration
 - Optimize value function
 - Extract induced policy in last step
- ► Can we directly optimize the policy?
 - Yes, by policy iteration

Readings: Policy Iteration

Sutton and Barto (2018, section 4.3)

Puterman (2014, sections 6.4-6.5)

Russell and Norvig (2016, section 17.3)

Policy Iteration

Alternate between two steps

$$\pi_0 \xrightarrow{E} V^{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} V^{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi^* \xrightarrow{E} V^*$$

1. Policy Evaluation

$$V^{\pi}(s) = \mathit{R}(s,\pi(s)) + \gamma \sum_{s'} \mathbb{P}\left(s' \mid s,\pi(s)\right) V^{\pi}\left(s'\right) \ orall s$$

2. Policy improvement

$$\pi(s) \leftarrow \operatorname*{argmax}_{a} R(s, a) + \gamma \sum_{s'} \mathbb{P}\left(s' \mid s, a\right) V^{\pi}\left(s'\right) \ \forall s$$

Policy Iteration Algorithm

```
policylteration(MDP)
Initialize \pi_0 to any policy n \leftarrow 0
Repeat
Eval: V_n = R^{\pi_n} + \gamma T^{\pi_n} V_n
Improve: \pi_{n+1} \leftarrow \operatorname{argmax} R^a + \gamma T^a V_n
n \leftarrow n+1
Until \pi_{n+1} = \pi_n
Return \pi_n
```

Example (Policy Iteration)

t	V(PU)	$\pi(\mathit{PU})$	V (<i>PF</i>)	$\pi(extit{PF})$	V (RU)	$\pi(\mathit{RU})$	V (RF)	$\pi(\mathit{RF})$
0	0	1	0	1	10	I	10	1
1	31.6	1	38.6	S	44.0	S	54.2	S
2	31.6	1	38.6	S	44.0	S	54.2	S

Monotonic Improvement

▶ **Lemma 1:** Let V_n and V_{n+1} be successive value functions in policy iteration. Then $V_{n+1} \ge V_n$.

Monotonic Improvement

- ▶ **Lemma 1:** Let V_n and V_{n+1} be successive value functions in policy iteration. Then $V_{n+1} \ge V_n$.
- Proof:
 - ightharpoonup We know that $H^*\left(V_n\right) \geq H^{\pi_n}\left(V_n\right) = \left(V_n\right)$

 - ► Then $H^*(V_n) = R^{\pi_{n+1}} + \gamma T^{\pi_{n+1}} V_n \ge V_n$
 - Rearranging: $R^{\pi_{n+1}} \ge (I \gamma T^{\pi_{n+1}}) V_n$
 - Hence $V_{n+1} = (I \gamma T^{\pi_{n+1}})^{-1} R^{\pi_{n+1}} \ge V_n$

Convergence

► **Theorem 2:** Policy iteration converges to π^* and V^* in finitely many iterations when S and A are finite.

Convergence

- ► **Theorem 2:** Policy iteration converges to π^* and V^* in finitely many iterations when S and A are finite.
- ► Proof:
 - ▶ We know that $V_{n+1} \ge V_n \quad \forall n$ by Lemma 1.
 - ► Since *A* and *S* are finite, there are finitely many policies and therefore the algorithm terminates in finitely many iterations.
 - At termination, $\pi_n = \pi_{n+1}$ and therefore V_n satisfies Bellman's equation:

$$V_n = V_{n+1} = \max_a R^a + \gamma T^a V_n$$

- ► Value Iteration:
 - ► Cost per iteration: $\mathcal{O}\left(|S|^2|A|\right)$
 - ► Many iterations: linear convergence
- ▶ Policy Iteration:
 - ► Cost per iteration: $\mathcal{O}\left(|S|^3 + |S|^2|A|\right)$
 - Few iterations: (early) linear, (late) quadratic convergence

Modified Policy Iteration Algorithm

- ► Alternate between two steps
 - Partial Policy evaluation Repeat k times:

$$V^{\pi}(s) = R(s,\pi(s)) + \gamma \sum_{s'} \mathbb{P}\left(s' \mid s,\pi(s)\right) V^{\pi}\left(s'\right) \ \forall s$$

2. Policy improvement

$$\pi(s) \leftarrow \operatorname*{argmax}_{a} R(s, a) + \gamma \sum_{s'} \mathbb{P}\left(s' \mid s, a\right) V^{\pi}\left(s'\right) \ \forall s$$

Modified Policy Iteration Algorithm

```
modifiedPolicyIteration(MDP)
Initialize \pi_0 and V_0 to anything
n \leftarrow 0
Repeat
       Eval: Repeat k times
       V_n \leftarrow R^{\pi_n} + \gamma T^{\pi_n} V_n
       Improve: \pi_{n+1} \leftarrow \operatorname{argmax} R^a + \gamma T^a V_n
       V_{n+1} \leftarrow \max_a R^a + \gamma T^a V_n
       n \leftarrow n + 1
Until ||V_n - V_{n-1}||_{\infty} < \epsilon
Return \pi_n
```

Convergence

- Same convergence guarantees as value iteration:
 - ► Value function V_n : $||V_n V^*||_{\infty} \leq \frac{\epsilon}{1-\gamma}$
 - ▶ Value function V^{π_n} of policy π_n :

$$\|V^{\pi_n}-V^*\|_{\infty}\leq rac{2\epsilon}{1-\gamma}$$

▶ Proof: somewhat complicated Puterman (see 2014, section 6.5)

- ► Value Iteration:
 - ▶ Each iteration: $\mathcal{O}(|S|^2|A|)$
 - ► Many iterations: linear convergence

- ► Value Iteration:
 - ► Each iteration: $\mathcal{O}\left(|S|^2|A|\right)$
 - ► Many iterations: linear convergence
- Policy Iteration:
 - ► Each iteration: $\mathcal{O}\left(|S|^3 + |S|^2|A|\right)$
 - ► Few iterations: linear-quadratic convergence

- Value Iteration:
 - ► Each iteration: $\mathcal{O}\left(|S|^2|A|\right)$
 - Many iterations: linear convergence
- Policy Iteration:
 - ► Each iteration: $\mathcal{O}\left(|S|^3 + |S|^2|A|\right)$
 - ► Few iterations: linear-quadratic convergence
- ► Modified Policy Iteration:
 - ► Each iteration: $\mathcal{O}\left(k|S|^2 + |S|^2|A|\right)$
 - ► Few iterations: linear-quadratic convergence

References I

- Puterman, M. L. (2014): *Markov decision processes: discrete stochastic dynamic programming.* John Wiley & Sons.
- RUSSELL, S. J., AND P. NORVIG (2016): Artificial intelligence: a modern approach. Pearson.
- SUTTON, R. S., AND A. G. BARTO (2018): "Reinforcement learning: An introduction," *A Bradford Book*, Available at http://incompleteideas.net/book/the-book-2nd.html.

Takeaways

How Does Policy Iteration Work?

- Alternates policy evaluation and improvement, ensuring monotonic value gains
- Converges in finite steps for finite MDPs to the optimal policy and value
- ► Modified policy iteration trades off full evaluation for efficiency
- Fewer iterations than value iteration, but each is costlier