

S	i	f	r	a	k	a	n	d	i	d	a	t	a	

Državni izpitni center

JESENSKI IZPITNI ROK

FIZIKA Izpitna pola 1

Sobota, 28. avgust 2010 / 90 minut

Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali kemični svinčnik, svinčnik HB ali B, radirko, šilček, računalo brez grafičnega zaslona in možnosti računanja s simboli ter geometrijsko orodje. Kandidat dobi list za odgovore.

Priloga s konstantami in enačbami je na perforiranem listu, ki ga kandidat pazljivo iztrga.

SPLOŠNA MATURA

NAVODILA KANDIDATU

Pazljivo preberite ta navodila.

Ne odpirajte pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli.

Prilepite kodo oziroma vpišite svojo šifro (v okvirček desno zgoraj na tej strani in na list za odgovore).

Izpitna pola vsebuje 40 nalog izbirnega tipa. Vsak pravilen odgovor je vreden eno (1) točko. Pri reševanju si lahko pomagate s podatki iz periodnega sistema na strani 2 ter konstantami in enačbami v prilogi.

Rešitve, ki jih pišite z nalivnim peresom ali s kemičnim svinčnikom, vpisujte **v izpitno polo** tako, da obkrožite črko pred pravilnim odgovorom. Sproti izpolnite še **list za odgovore**. Vsaka naloga ima samo **en** pravilen odgovor. Naloge, pri katerih bo izbranih več odgovorov, in nejasni popravki bodo ocenjeni z nič (0) točkami.

Zaupajte vase in v svoje zmožnosti. Želimo vam veliko uspeha.

PERIODNI SISTEM ELEMENTOV

= 8 Φ :=	و ق و ت	o, r	u 8	∞ -	. to .	2 0		nor 4	<u>ر</u> کا	u 9		
He 76 4,00	≥ § Z S	9⋖	arg	83	krip	ر ا	·×	kse.	3 ™	<u>ø</u>		
5	19,0 fluor	32,5	klor 17	79,9	pro 2	127	i –	23 jod	(210) At	astat 85		
5	0, O , 8 is i ∞	32.1 V	žveplo 16	79,0 7	selen	128	<u>T</u> e	telur 52	(209) Po (polonij 84		
>	14,0 dušik	31,0 D	fosfor 15	74,9 Ac	arzen	122	Sp	antimon 51	209 B i	bizmut 83		
≥	12,0 ogljik ogljik	28,1 S i	silicij 4	72,6 G	germanij	119	Sn	kositer 50	207 Pb	svinec 82		
≡	10,8 bor •	27,0 AI	aluminij 13	69,7 Ga	galij	115	2	indij 6	204 T	talij 84		
		•		65,4 Zn	cip S	112	ပြ	kadmij 48	201 Hg	živo srebro 80		
				63,6 C.	baker	108	Ā	srebro 47	197 Au	zlato 79		
				58,7 N i	nikelj	106	P	paladij 46	195 7	platina 78		
				6'8 <u>9</u>	kobalt	103	格	rodij 45	192 r	iridij 77	(268) Mt	meitnerij 109
				55,9 FA	železo	101	Ru	rutenij 4	190 Os	osmij 76	(269) Hs	hassij 108
	a masa a			54,9 M	mangan	(26)	ြဲ	tehnecij 43	186 Re	renij 75	(264) Bh	bohrij 107
	relativna atomska masa simbol ime elementa vrstno število			52,0 C.r	krom 5	65 9	Ž Ž	molibden 42	184 W	volfram 74	(266) Sq	seaborgij 106
	relativr ir			50,9 V	vanadij	929	Ž	niobij 41	181 Ta	tantal 73	(262) Db	dubnij 105
		-		47,9 T	titan	91.2	Ż	cirkonij 40	179 H	hafnij 72	(261) Rf	rutherfordij 104
				45,0	skandij	88 0	<u>}</u>	.ji.	139 La	lantan 57	(227) Ac	aktinij 89
=	9,01 Be berilij	24,3 Mg	magnezij 12	40,1	kalcij	87.6	ွှဲလ	stroncij 38	137 Ba	barij 56	(226) Ra	radij 88
- 1,01 Lodik	6,94 Li itij	23,0 Na	natrij 11	39,1 X ,1	kalij K	85.5	8	rubidij 37	133 Cs	cezij 55	(223) Fr	francij 87
											•	

169	tulij	(258)	mendele
T	69	Md	101
167	erbij	(257)	fermij
E	68	Fm	100
5	holmij	(254)	einsteinij
우	67	Es	99
£	disprozij	(251)	kalifornij
∑	66	Cf	98
159	terbij	(247)	berkelij
Tb	65	Bk	97
157	gadolinij	(247)	kirij
Gd	64	Cm	96
152	evropij	(243)	americij
Eu	63	Am	95
150	samarij	(244)	plutonij
Sm	62	Pu	94
(145)	prometij	(237)	neptunij
PB	61	Np	93
∠ 4 ∆ 4 ∆	neodim 60	238 U	uran 92
‡ ₽	prazeodim	(231)	protaktinij
	59	Pa	91
0 49	cerij	232	torij
	58	Th	90

Lantanoidi

Aktinoidi

173 **Yb** iterbij 70 (259) **No** nobelij 102

KONSTANTE IN ENAČBE

težni pospešek $g = 9.81 \text{ m s}^{-2}$

hitrost svetlobe $c = 3,00 \cdot 10^8 \text{ m s}^{-1}$

osnovni naboj $e_0 = 1,60 \cdot 10^{-19} \text{ A s}$

Avogadrovo število $N_{\rm A} = 6,02 \cdot 10^{26} \ {\rm kmol}^{-1}$

splošna plinska konstanta $R=8,31\cdot 10^3~\mathrm{J~kmol}^{-1}\mathrm{K}^{-1}$

gravitacijska konstanta $G = 6.67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

influenčna konstanta $\varepsilon_0 = 8,85 \cdot 10^{-12} \ \mathrm{A \ s \ V^{-1} m^{-1}}$

indukcijska konstanta $\mu_0 = 4\pi \cdot 10^{-7} \mathrm{~V s A^{-1} m^{-1}}$

Boltzmannova konstanta $k = 1,38 \cdot 10^{-23} \text{ J K}^{-1}$

Planckova konstanta $h = 6.63 \cdot 10^{-34} \text{ J s} = 4.14 \cdot 10^{-15} \text{ eV s}$

Stefanova konstanta $\sigma = 5,67 \cdot 10^{-8} \ \mathrm{W \, m^{-2} K^{-4}}$

atomska enota mase $1u = 1,66 \cdot 10^{-27} \,\mathrm{kg}; \,\mathrm{za} \, m = 1u \,\mathrm{je} \, mc^2 = 931,5 \,\mathrm{MeV}$

ENERGIJA GIBANJE SILA s = vt $F = G \frac{m_1 m_2}{r^2}$ $A = \vec{F} \cdot \vec{s}$ $s = \bar{v}t$ $W_{\mathrm{k}} = \frac{mv^2}{2}$ $\frac{{t_0}^2}{r^3} = \text{konst.}$ $s = v_0 t + \frac{at^2}{2}$ $W_{\rm p}=mgh$ F = ks $v=v_{\scriptscriptstyle 0}+at$ $W_{\rm pr} = \frac{ks^2}{2}$ F = pS $v^2 = v_0^2 + 2 as$ $F = k_{t} F_{n}$ $P = \frac{A}{t}$ $\omega = 2\pi\nu = 2\pi \frac{1}{t}$ $F = \rho q V$ $A = \Delta W_{\rm k} + \Delta W_{\rm p} + \Delta W_{\rm pr}$ $\vec{F} = m\vec{a}$ $v = \omega r$ $A = -p\Delta V$ $\vec{G} = m\vec{v}$ $a_r = \omega^2 r$ $p + \frac{\rho v^2}{2} + \rho g h = \text{konst.}$ $s = s_0 \sin \omega t$ $\vec{F}\Delta t = \Delta \vec{G}$ $v = \omega s_0 \cos \omega t$ $\vec{M} = \vec{r} \times \vec{F}$ $a = -\omega^2 s_0 \sin \omega t$ $M = rF\sin\alpha$ $p = \rho g h$

 $\Gamma = J\omega$

 $M \triangle t = \triangle \Gamma$

ELEKTRIKA

$$\begin{split} I &= \frac{e}{t} \\ F &= \frac{e_1 e_2}{4 \pi \varepsilon_0 r^2} \\ \overrightarrow{F} &= e \overrightarrow{E} \\ U &= \overrightarrow{E} \cdot \overrightarrow{s} = \frac{A_e}{e} \\ \sigma_e &= \frac{e}{S} \\ E &= \frac{\sigma_e}{2 \varepsilon_0} \\ e &= C U \\ C &= \frac{\varepsilon_0 S}{l} \\ W_e &= \frac{C U^2}{2} \\ w_e &= \frac{W_e}{V} \\ w_e &= \frac{\varepsilon_0 E^2}{2} \\ U &= R I \\ R &= \frac{\zeta l}{S} \\ P &= U I \end{split}$$

MAGNETIZEM

$$\overrightarrow{F} = I\overrightarrow{l} \times \overrightarrow{B}$$

$$F = IlB \sin \alpha$$

$$\overrightarrow{F} = e\overrightarrow{v} \times \overrightarrow{B}$$

$$B = \frac{\mu_0 I}{2\pi r}$$

$$B = \frac{\mu_0 NI}{l}$$

$$M = NISB \sin \alpha$$

$$\Phi = \overrightarrow{B} \cdot \overrightarrow{S} = BS \cos \alpha$$

$$U_i = lvB$$

$$U_i = lvB \sin \omega t$$

$$U_i = -\frac{\Delta \Phi}{\Delta t}$$

$$L = \frac{\Phi}{I}$$

$$L = \frac{\mu_0 N^2 S}{l}$$

$$W_m = \frac{LI^2}{2}$$

$$w_m = \frac{B^2}{2\mu_0}$$

NIHANJE IN VALOVANJE

$$t_0 = 2\pi \sqrt{\frac{m}{k}}$$

$$t_0 = 2\pi \sqrt{\frac{l}{g}}$$

$$t_0 = 2\pi \sqrt{LC}$$

$$c = \lambda \nu$$

$$\sin \alpha = \frac{N\lambda}{d}$$

$$j = \frac{P}{S}$$

$$E_0 = cB_0$$

$$j = wc$$

$$j = \frac{1}{2} \varepsilon_0 E_0^2 c$$

$$j' = j \cos \alpha$$

$$\nu = \nu_0 (1 \pm \frac{v}{c})$$

$$\nu = \frac{\nu_0}{1 \mp \frac{v}{c}}$$

TOPLOTA

$$n = \frac{m}{M}$$

$$pV = nRT$$

$$\Delta l = \alpha l \Delta T$$

$$\Delta V = \beta V \Delta T$$

$$A + Q = \Delta W$$

$$Q = cm \Delta T$$

$$Q = qm$$

$$W_0 = \frac{3}{2}kT$$

$$P = \lambda S \frac{\Delta T}{\Delta l}$$

$$j = \sigma T^4$$

OPTIKA

$$\begin{split} n &= \frac{c_0}{c} \\ \frac{\sin \alpha}{\sin \beta} &= \frac{c_1}{c_2} = \frac{n_2}{n_1} \\ \frac{1}{f} &= \frac{1}{a} + \frac{1}{b} \end{split}$$

MODERNA FIZIKA

$$\begin{split} W_{\mathrm{f}} &= h\nu \\ W_{\mathrm{f}} &= A_{\mathrm{i}} + W_{\mathrm{k}} \\ W_{\mathrm{f}} &= \Delta W_{\mathrm{n}} \\ \lambda_{\mathrm{min}} &= \frac{hc}{eU} \\ \Delta W &= \Delta m c^2 \\ N &= N_0 2^{-\frac{t}{t_{1/2}}} = N_0 e^{-\lambda t} \\ \lambda &= \frac{\ln 2}{t_{1/2}} \\ A &= N\lambda \end{split}$$

1. Nihajni čas nekega nihala je 0,0055 s. Na koliko mest natančno je zapisan nihajni čas?

- A Na 2 mesti.
- B Na 3 mesta.
- C Na 4 mesta.
- D Na 5 mest.

2. Kolikšna je relativna napaka vsote dveh dolžin, ki sta obe izmerjeni na 5% natančno?

- A 2,5 %
- B 5 %
- C 10 %
- $D \quad 25 \ \%$

3. Kateri od spodnjih grafov prikazuje gibanje, pri katerem se telo vrne v izhodišče?

4. Katera od izjav velja za premo enakomerno gibanje?

- A Telesu se v enakih časovnih intervalih hitrost enako poveča.
- B Primer premega enakomernega gibanja je enakomerno kroženje.
- C Hitrost je premosorazmerna s časom.
- D Pospešek telesa je nič.

5. Katera krivulja najbolje opisuje tir kamna, ki ga zalučamo s stolpa v vodoravni smeri?

- 6. Telesi A in B enakomerno krožita po različnih krožnicah. Radialni pospešek obeh teles je enak. Hitrost telesa A je dvakrat tolikšna kakor hitrost telesa B ($v_A = 2v_B$). Kolikšno je razmerje med polmeroma obeh krožnic?
 - $A \quad \frac{r_A}{r_B} = 4$
 - $B \quad \frac{r_A}{r_B} = 2$
 - $C \qquad \frac{r_A}{r_B} = \frac{1}{2}$
 - $D \quad \frac{r_A}{r_B} = \frac{1}{4}$
- 7. Homogena klada deloma leži na mizi. V katerem primeru je sila, s katero klado zadržujemo v mirovanju, najmanjša?

- 8. Teža nekega telesa na Zemlji je $10~\rm N$. Kolikšna je teža tega telesa na planetu, ki ima enako maso kakor Zemlja, a dvakrat večji polmer?
 - A 2,5 N
 - B 5 N
 - C 10 N
 - D 20 N
- 9. Dve telesi z enakima masama in nasprotno enakima hitrostma centralno trčita. Katera situacija po trku ni mogoča?
 - A Telesi obmirujeta.
 - B Telesi se odbijeta v nasprotnih smereh, z enako velikima hitrostma, kakor sta ju imeli pred trkom.
 - C Telesi se odbijeta v nasprotnih smereh tako, da je po trku velikost hitrosti obeh teles enaka polovici prvotne hitrosti.
 - D Telesi se odbijeta v nasprotnih smereh, tako da je po trku velikost hitrosti obeh teles dvakrat večja od prvotne hitrosti.

10.		net s koeficientom prožnosti $k=120~{ m Nm^{-1}}$ je raztegnjena za $10~{ m cm}$. Kolikšna je žnostna energija te vzmeti?
	A	$0,60~\mathrm{J}$
	В	$6,0\mathrm{J}$
	C	60 J
	D	6000 J
11.	glo	ebru je živo srebro, ki ima gostoto $13,6~{\rm kgdm^{-3}}$, natočeno do višine $0,50~{\rm m}$. Kako boko bi moralo biti jezero, da bi voda na dnu ustvarjala enak tlak, kakor ga živo srebro dnu čebra? Gostota vode je $1,0~{\rm kgdm^{-3}}$.
	A	6,8 m
	В	13,6 m
	C	27,2 m
	D	68 m
12.	Pliı	ı ohladimo pri stalnem tlaku. Katera izjava o tej spremembi NI pravilna?
	A	Notranja energija plina se spremeni.
	В	Prostornina plina se spremeni.
	C	Gostota plina se spremeni.
	D	Molska masa plina se spremeni.
13.	Zui tem kur	• •
13.	Zui tem kur	Molska masa plina se spremeni. nanje stene stanovanja imajo površino $300~\mathrm{m}^2$. Kolikšno temperaturno razliko med peraturo v stanovanju in zunaj njega je mogoče vzdrževati, če greje peč centralne jave z močjo $18~\mathrm{kW}$? Stene stanovanja so debele $40~\mathrm{cm}$ in narejene iz materiala s
13.	Zui tem kur top	Molska masa plina se spremeni. Molska masa plina se spremeni. manje stene stanovanja imajo površino $300~\mathrm{m}^2$. Kolikšno temperaturno razliko med speraturo v stanovanju in zunaj njega je mogoče vzdrževati, če greje peč centralne rjave z močjo $18~\mathrm{kW}$? Stene stanovanja so debele $40~\mathrm{cm}$ in narejene iz materiala s lotno prevodnostjo $0,6~\mathrm{Wm}^{-1}~\mathrm{K}^{-1}$.
13.	Zuntem kur top	Molska masa plina se spremeni. Molska masa plina se spremeni. manje stene stanovanja imajo površino $300~{\rm m}^2$. Kolikšno temperaturno razliko med speraturo v stanovanju in zunaj njega je mogoče vzdrževati, če greje peč centralne rjave z močjo $18~{\rm kW}$? Stene stanovanja so debele $40~{\rm cm}$ in narejene iz materiala s lotno prevodnostjo $0,6~{\rm Wm}^{-1}~{\rm K}^{-1}$.
13.	Zuitem kur top A B	Molska masa plina se spremeni. manje stene stanovanja imajo površino $300~{\rm m}^2$. Kolikšno temperaturno razliko med aperaturo v stanovanju in zunaj njega je mogoče vzdrževati, če greje peč centralne rjave z močjo $18~{\rm kW}$? Stene stanovanja so debele $40~{\rm cm}$ in narejene iz materiala s lotno prevodnostjo $0,6~{\rm Wm}^{-1}~{\rm K}^{-1}$. $4~{\rm ^{\circ}C}$ $18~{\rm ^{\circ}C}$

14. Svinec ima specifično toploto $130~\rm J\,kg^{-1}\,K^{-1}$. Kos segretega svinca z maso $1,0~\rm kg$ spustimo v liter hladne vode, ki je v toplotno izolirani posodi. Toplotno ravnovesje se vzpostavi, ko se svinec ohladi za $65~\rm ^{\circ}C$. Za koliko stopinj se med ohlajanjem svinca segreje voda? Specifična toplota vode je $4200~\rm J\,kg^{-1}\,K^{-1}$. Izmenjavo toplote s posodo zanemarimo.

- A 2,0 K
- B 20 K
- C 65 K
- $D = 275~\mathrm{K}$

15. V točkah I, II in III mirujejo majhne, električno pozitivno nabite kroglice. Na zgornji sliki je prikazana vsota sil naboja I in II na naboj III. Kateri vektor pravilno ponazarja vsoto sil, s katerima naboja I in II delujeta na naboj III, če naboja zamenjamo (naboj I postavimo tja, kjer je bil naboj II, in obratno)?

16. Na kateri sliki so silnice v okolici dveh različno nabitih delcev narisane pravilno?

17. Na sliki je s silnicami ponazorjeno električno polje. Jakost električnega polja je $10~\rm kV\,m^{-1}$. Kolikšna je napetost med točkama A in B?

- A 200 V
- B 300 V
- C 400 V
- D 500 V

18. Tri enake upornike z upornostmi po $8,0~\Omega$ vežemo tako, kakor kaže skica. Vezje priključimo na vir napetosti 12~V. Katera od spodnjih izjav o tokovih skozi upornike in padcih napetosti na njih je pravilna?

- A Napetosti so na vseh upornikih enake, tokova skozi R_2 in R_3 sta manjša od toka skozi R_1 .
- B Napetost na uporniku R_1 je večja od napetosti na upornikih R_2 in R_3 , tokovi skozi upornike so enaki.
- C Napetost na uporniku R_1 je večja od napetosti na upornikih R_2 in R_3 , tokova skozi R_2 in R_3 sta manjša od toka skozi R_1 .
- D Napetost na uporniku R_1 je manjša od napetosti na upornikih R_2 in R_3 , tokova skozi R_2 in R_3 sta manjša od toka skozi R_1 .

19. Vezja na sliki sestavljajo trije upori in baterija. Katera od spodaj navedenih izjav je pravilna?

- A Upor R₂ porablja v vseh primerih enako električno moč.
- B Upor R₂ porablja največjo električno moč v primeru I.
- C Upor R₂ porablja največjo električno moč v primeru II.
- D Upor R_2 porablja največjo električno moč v primeru III.

20. Iz vroče katode prileti na anodo vsako sekundo 1000 elektronov. Kolikšen električni tok predstavljajo ti elektroni?

- A $1, 6 \cdot 10^{-19}$ A
- B $1, 6 \cdot 10^{-16}$ A
- C 1,0 mA
- D 1000 A

21. Curek hitrih elektronov potuje vodoravno, tik nad severnim polom navpično postavljenega paličastega magneta. V katero smer deluje magnetna sila na elektron, ko je v položaju, ki ga kaže slika?

- A Navzdol proti magnetu.
- B Navzgor, proč od magneta.
- C Ven iz ravnine skice.
- D Navznoter v ravnino skice.

22. Katera trditev o katodni cevi je pravilna?

- A V katodni cevi pospešujemo protone z električnim poljem.
- B V katodni cevi pospešujemo protone z magnetnim poljem.
- C V katodni cevi pospešujemo protone proti anodi tako, da grejemo katodo.
- D V katodni cevi ne pospešujemo protonov.

23. Sklenjeno kovinsko zanko potiskamo v magnetno polje, kakor kaže slika. Katera trditev o toku po zanki velja med vstopanjem zanke v polje?

- A Tok po zanki ne teče.
- B Tok po zanki teče v smeri gibanja urinih kazalcev.
- C Tok po zanki teče v nasprotni smeri gibanja urinih kazalcev.
- D Tok po zanki teče najprej v smeri gibanja urinih kazalcev, nato pa v nasprotni smeri.

24. Kakšna je pravilna zveza med pospeškom in odmikom pri sinusnem nihanju?

- A Pospešek je premosorazmeren z odmikom.
- B Pospešek je obratnosorazmeren z odmikom.
- C Pospešek je premosorazmeren s kvadratom odmika.
- D Pospešek je obratnosorazmeren s kvadratom odmika.

25. Izmenično napetost z amplitudo $310~\rm V$ želimo transformirati v napetost z amplitudo $17~\rm V$. Kateri od spodnjih transformatorjev bi bil ustrezen za ta namen?

- A Primarna tuljava $N_1 = 620$ ovojev, sekundarna tuljava $N_2 = 34$ ovojev.
- B Primarna tuljava $N_1 = 17$ ovojev, sekundarna tuljava $N_2 = 310$ ovojev.
- C Primarna tuljava $N_1=620\,$ ovojev, sekundarna tuljava $N_2=310\,$ ovojev.
- D Primarna tuljava $N_1=17\,$ ovojev, sekundarna tuljava $N_2=620\,$ ovojev.

26. Slika kaže štiri različna nitna nihala. Katero nihalo ima najdaljši nihajni čas?

- 27. Nihalo na vijačno vzmet ima lastni nihajni čas 1,2 s. Vzmet zamenjamo s tršo vzmetjo, ki se raztegne za enak raztezek kakor prva vzmet, če jo razteguje štirikrat večja sila. Kolikšen je lastni nihajni čas novega nihala, če je utež v obeh primerih ista?
 - A 0,15 s
 - B $0.30 \ s$
 - C = 0,40 s
 - D 0,60 s
- 28. Če se poslušalec približuje viru, ki oddaja zvok s konstantno frekvenco, je zaradi Dopplerjevega pojava frekvenca, ki jo sliši, povečana. Kateri graf pravilno kaže, kako se frekvenca, ki jo sliši poslušalec, spreminja s časom, če se viru približuje enakomerno pospešeno?

- 29. Po dolgi vrvi potujejo valovi s hitrostjo $24~{\rm m\,s}^{-1}$. Posamezni deli vrvi nihajo z nihajnim časom $0,50~{\rm s}$. Kolikšna je valovna dolžina valovanja na vrvi?
 - A 6,0 m
 - B 12 m
 - C 24 m
 - D 48 m
- 30. Na 80 cm dolgi struni nastane stoječe valovanje, kakor kaže slika. Struna niha s frekvenco 880 Hz. Kolikšna je hitrost širjenja valovanja po tej struni?
 - $A \quad 352~\mathrm{m\,s^{-1}}$
 - $B = 704 \text{ m s}^{-1}$
 - $C = 1408 \text{ m s}^{-1}$
 - $D = 2816 \text{ m s}^{-1}$

- 31. Slika kaže dva zvočnika, ki oddajata enaki zvočni valovanji, in poslušalca, ki sedi pred zvočnikoma. Če zvočnika oddajata zvok, katerega frekvenca s časom narašča, bo poslušalec slišal:
 - A zvok, katerega jakost se izmenoma veča in manjša;
 - B zvok, katerega jakost se enakomerno povečuje;
 - C zvok, katerega jakost se enakomerno zmanjšuje;
 - D zvok, katerega jakost je ves čas enaka.

- 32. Površina, na katero pravokotno vpada svetlobni tok z gostoto $2,0~{\rm W\,m^{-2}}$, absorbira $0,50~{\rm W\,m^{-2}}$. Kolikšen je albedo (odbojnost) te površine?
 - A 0,25
 - B 0,50
 - C = 0,75
 - D 1,5
- 33. Dve plošči iz različnih stekel mejita druga na drugo. V prvi vrsti stekla je hitrost svetlobe $c_1=200000~{\rm km\,s^{-1}}$, v drugi pa $c_2=215000~{\rm km\,s^{-1}}$. Kolikšen je mejni kot za popolni odboj na meji med ploščama?
 - A $\alpha_{\rm m}=21,5^{\circ}$
 - $B \quad \alpha_{\rm m} = 42,9^{\circ}$
 - C $\alpha_{\rm m} = 68,5^{\circ}$
 - D $\alpha_{\rm m} = 93,0^{\circ}$

- 34. Kateri dve elektromagnetni valovanji imata višje frekvence od frekvenc vidne svetlobe?
 - A Mikrovalovi in radijski valovi.
 - B Mikrovalovi in rentgenska svetloba.
 - C Infrardeča svetloba in rentgenska svetloba.
 - D Ultravijolična svetloba in rentgenska svetloba.
- 35. Kaj je fotoefekt?
 - A Pojav, ko električni tok povzroči, da kovina seva fotone.
 - B Pojav, ko fotoni izbijejo elektrone iz kovine.
 - C Pojav, pri katerem jedra atomov sevajo fotone.
 - D Pojav, ko elektroni pri zaviranju v snovi sevajo fotone.

- 36. Plin seva fotone z energijo 2,95 eV . Kako to energijo še pravilno zapišemo?
 - A 2,95 J
 - B $2,95 \cdot 10^{-19} e_0 J$
 - C $4,72 \cdot 10^{-19} \text{ J}$
 - D $4,72 \cdot 10^{-19} e_0 J$
- 37. Pri razpadu β^- radioaktivno jedro razpade in nastane novo jedro. Katera od spodnjih izjav je pravilna?
 - A Novonastalo jedro ima več nevtronov kot začetno jedro.
 - B Novonastalo jedro ima manj protonov kot začetno jedro.
 - C Novonastalo jedro ima več nukleonov kot začetno jedro.
 - D Novonastalo jedro ima več protonov kot začetno jedro.
- 38. Masno število atoma označimo s črko A, vrstno število atoma označimo s črko Z, atomsko enoto mase označimo z u. V katerem od spodnjih odgovorov je pravilno izražena masa atoma?
 - $\mathbf{A} \quad \mathbf{A} u$
 - $\mathbf{B} \quad \mathbf{Z}u$
 - C (A-Z)u
 - $D \quad (A+Z)u$
- 39. Razpolovni čas radioaktivnega izotopa je $4,0\,$ mesece. Po kolikšnem času je v vzorcu le še $1,6\,$ % začetne množine radioaktivnih atomov?
 - A Po 1 letu.
 - B Po 2 letih.
 - C Po 3 letih.
 - D Po 4 letih.
- 40. Z meritvijo ugotovimo, da so spektralne črte neke zvezde premaknjene proti modremu delu spektra. Kaj lahko na podlagi tega podatka povemo o tej zvezdi?
 - A Zvezda je hladnejša od Sonca.
 - B Zvezda je bolj vroča od Sonca.
 - C Zvezda se Zemlji približuje.
 - D Ta zvezda bo gotovo kmalu eksplodirala.

Prazna stran

Prazna stran