Real Analysis - Final Exam

Philip Warton

December 9, 2020

Problem 1

Let $(M,d),(N,\rho)$ be metric spaces, and let $f:M\to N$ be continuous and onto. If (M,d) is separable then (N,ρ) is separable.

Proof. Suppose (M,d) is seperable. Then there exists some countable dense subset of $M,\{x_n\}_{n\in\mathbb{N}}$. Then for any non-empty open set in M, we have natural number n such that x_n belongs to this open set. We claim that $f(\{x_n\}_{n\in\mathbb{N}})$ is a countable dense subset of N. Being the image of a countable set, it is obviously countable. Suppose that this set is not dense. Then there exists some non-empty open set $V \subset N$ such that it is disjoint with $f(\{x_n\}_{n\in\mathbb{N}})$. Note that since f is continuous and onto, the pre-image of V, $U = f^{-1}(V)$ is a non-empty open set in M. Then, since f is onto we say $A \subset f^{-1}(f(A))$, and we have

$$\{x_n\}_{n\in\mathbb{N}} \cap U \subset f^{-1}(f(\{x_n\}_{n\in\mathbb{N}})) \cap f^{-1}(V)$$

$$= f^{-1}(f(\{x_n\}_{n\in\mathbb{N}}) \cap V)$$

$$= f^{-1}(\emptyset)$$

$$= \emptyset$$

However, this means that $\{x_n\}_{n\in\mathbb{N}}$ is not dense in M (contradiction). Therefore it must be the case that $f(\{x_n\}_{n\in\mathbb{N}})$ is dense in N. Thus (N,ρ) is separable.

Problem 2

Let $g:[0,1]\to\mathbb{R}$ be continuous. There exists a unique continuous function $f:[0,1]\to\mathbb{R}$ such that

$$f(x) + \int_0^x f(t)\sin(\pi t/4)dt = g(x) \quad \forall x \in [0, 1]$$

Proof. Let $h: \mathbb{R} \to \mathbb{R}$ be a function in $C^{2\pi}$ that equals g(0) on $[-\pi,0)$, g(1) on $(1,\pi]$ and equals g(x) on [0,1]. Then we say that for every ϵ there exists a trigonometric polynomial such that $||T(x) - g(x)||_{\infty} < \epsilon$ (Weierstrass's Second Theorem). Perhaps it is possible to find some trigonometric polynomial that is orthogonal to $\sin(\pi x/4)$, that is, $\int_{-\pi}^{\pi} f(t) \sin(\pi t/4) dt = 0$. Then it may be possible to some limit of such polynomials to provide some function that is orthogonal to $\sin(t\pi/4)$ and will have the property of

$$f_n(x) + \int_0^x f_n(t) \sin(\pi t/4) dt = f_n(x) \to g(x)$$

I do not know how to prove this.

Problem 3

Let $\mathcal{F} \subset C[0,1]$ where $\mathcal{F} = \{p \in \mathcal{P} : \max_{x \in [0,1]} |p(x)| \leq 2\}$. The closed unit ball $B = \{f \in C[0,1] : ||f||_{\infty} \leq 1\}$ is contained in the closure of \mathcal{F} .

Proof. Let $f \in B$ be arbitrary. Then $||f||_{\infty} \le 1$ by assumption. By the Weierstrass Approximation Theorem, for every $\epsilon > 0$ there exists some polynomial p such that $||f - p||_{\infty} < \epsilon$. Let $\epsilon < 1$, there will exist some polynomial p such that $||f - p||_{\infty} < \epsilon$. In other words

$$\max_{x \in [0,1]} |f(x) - p(x)| < \epsilon$$

Since f is bounded by 1, it follows that p must be bounded by $1+\epsilon<2$. Thus for every $\epsilon<1$ we say that $p\in\mathcal{F}$, thus as ϵ approaches 0 we can take a sequence of polynomials in \mathcal{F} and they will converge to f. Finally, f is a limit point of \mathcal{F} for any $f\in B$, and thus $B\subset\overline{\mathcal{F}}$.

Problem 4

We define the colleciton of functions $\mathcal{F} \subset C[0,1]$ as

$$\mathcal{F} = \{ \sin(nx) \mid n \in \mathbb{N} \}$$

(a)

 ${\mathcal F}$ is uniformly bounded.

Proof. We know that $|\sin(x)|$ is bounded by 1 on all of \mathbb{R} . Then for any natural number n, $nx \in \mathbb{R}$. So it follows that $|\sin(nx)| \le 1$ for every natural number n, for every $x \in [0,1]$. Thus we say that this collection of functions is uniformly bounded $(|\sin(nx)||_{\infty} \le 1 \ \forall n \in \mathbb{N})$.

(b)

 \mathcal{F} is not equicontinuous.

Proof. Let x=0, and let $\epsilon=\frac{1}{2}$. Then choose any strictly positive δ . By the Archimedean Property there exists some natural number n such that $\frac{2\pi}{n}<\delta$. It follows then that since $\sin(x)$ is 2π periodic that $\sin(nx)$ is $\frac{2\pi}{n}$ periodic. Since $\sin(x)$ achieves its maximum 1 within this period then there must exist some $x\in[0,\frac{2\pi}{n}]$ such that $\sin(nx)=1$. Then since $\sin(n(0))=0$ and there exists $y\in[0,\frac{2\pi}{n}]\subset[0,\delta)$ such that $\sin(ny)=1$, we have $|\sin(nx)-\sin(ny)|=|0-1|>\frac{1}{2}=\epsilon$. If we choose $\epsilon=\frac{1}{2}$, then for every $\delta>0$ there is some $n\in\mathbb{N}$ such that $\sin(nx)$ is not uniformly continuous by this δ , and we say that the collection $\mathcal F$ is not equicontinuous.

(c)

 \mathcal{F} is not compact in C[0,1].

Proof. Observe the sequence $(\sin(x),\sin(2x),\sin(3x),\sin(4x),\cdots)$ we claim that there is no Cauchy subsequence, and that therefore the collection is not compact. Choose any $m\in\mathbb{N}$ arbitrarily. Then we say that $\sin(mx)$ is non-negative on $[0,\frac{\pi}{m}]$. Then choose any $n\geqslant 2m$, and we say that $\sin(nx)$ will be equal to -1 exactly at $x=\frac{3\pi}{2n}=\frac{3\pi}{4m}\in[0,\frac{\pi}{m}]$. It follows that since we have a non-negative function and a function that achieves -1 on this interval that

$$||\sin(mx) - \sin(nx)||_{\infty} \geqslant 1$$

Since any subsequence that is not eventually constant must contain some $n \ge 2m$ for any $m \in \mathbb{N}$ arbitrarily, there does not exist any Cauchy subsequence, thus \mathcal{F} is not totally bounded, and is not compact.

Problem 5

Let $a_n = \frac{1}{2^n}$ and consider the sequence of functions $f_n : [0,1] \to \mathbb{R}$ where

$$f_n(x) = \begin{cases} \frac{1}{a_{n+2}^2} (x - a_{n+1})(a_n - x) & x \in [a_{n+1}, a_n] \\ 0 & \text{otherwise} \end{cases}$$

(a)

 $\forall n \in \mathbb{N} \ \max_{x \in [0,1]} |f_n(x)| = 1$

Proof. We can first restrict our domain to $[a_{n+1}, a_n]$ since any non-zero value will immediately have an absolute value greater than 0. Since $f_n(x)$ is a product of 3 positive terms in this domain, we say that |f(x)| = f(x). Then by the given hint, we say that

$$\max_{x \in [a_{n+1}, a_n]} |f_n(x)| = (a_{n+2})^{-2} \left(\frac{a_{n+1} - a_n}{2} \right)^2 = (a_{n+2})^{-2} (a_1)^2 (a_{n+1} - a_n)^2$$

2

Then we can write this out using the definition of a_n , giving us

$$\left(\frac{1}{2^{n+2}}\right)^{-2} \left(\frac{1}{2^{1}}\right)^{2} \left(\left(\frac{1}{2^{n+2}}\right)^{2} - 2\left(\frac{1}{2^{n+1}}\right)\left(\frac{1}{2^{n}}\right) + \left(\frac{1}{2^{n}}\right)^{2}\right) = \left(\frac{1}{2^{n+2}}\right)^{-2} \left(\frac{1}{2^{1}}\right)^{2} \left(\left(\frac{1}{2^{n+1}}\right)^{2} - \left(\frac{1}{2^{n}}\right)\left(\frac{1}{2^{n}}\right) + \left(\frac{1}{2^{n}}\right)^{2}\right)$$

$$= \left(\frac{1}{2^{n+2}}\right)^{-2} \left(\frac{1}{2^{1}}\right)^{2} \left(\left(\frac{1}{2^{n+1}}\right)^{2} - \left(\frac{1}{2^{n}}\right)^{2} + \left(\frac{1}{2^{n}}\right)^{2}\right)$$

$$= \left(\frac{1}{2^{n+2}}\right)^{-2} \left(\frac{1}{2^{1}}\right)^{2} \left(\frac{1}{2^{n+1}}\right)^{2}$$

$$= \left(\frac{1}{2^{n+2}}\right)^{-2} \left(\frac{1}{2^{n+2}}\right)^{2}$$

$$= \left(\frac{1}{2^{n+2}}\right)^{-2} \left(\frac{1}{2^{n+2}}\right)^{2}$$

Thus for any $n \in \mathbb{N}$, $\max_{x \in [0,1]} |f_n(x)| = 1$.

(b)

The pointwise limit of $f_n(x)$ is 0 for all x.

Proof. If x=0, then for every $n \in \mathbb{N}, 0 < \frac{1}{2^{n+1}}$, so we say $f_n(x)=0$ for all n, thus the constant sequence $(f_n(0))=(0)\to 0$. Now let $x\in (0,1]$ be fixed. Then by the convergence of the geometric series, we know that $\exists n\in \mathbb{N}$ such that $\frac{1}{2^n}< x$. Thus this sequence is also eventaully the constant sequence (0) which converges to 0. Therefore at any point $x\in [0,1]$ the point-wise limit is 0.

(c)

I invoke my proof of the following property in order to answer the question:

A sequence of real valued functions $f_n: X \to \mathbb{R}$ is uniformly continuous if and only if it is uniformly Cauchy.

Proof. We must show the bi-conditional by showing that the implication holds in both directions.

 \Rightarrow Assume that f_n is uniformly convergent. Then $||f_n - f||_{\infty} \to 0$. Equivalently, we say that $\sup_{x \in X} |f_n(x) - f(x)| \to 0$. Thus we say that for every $\epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n \geqslant N \sup_{x \in X} |f_n(x) - f(x)| < \epsilon$.

Choose some $\epsilon'>0$ arbitrarily. Then $\exists N_{\epsilon'/2}\in\mathbb{N}$ such that $\forall n\geqslant N_{\epsilon'/2},\ |||f_n-f||_{\infty}<\epsilon'/2$. Then choose $m,n\geqslant N_{\epsilon'/2}$ and it follows that

$$\sup_{x \in X} |f_n(x) - f_m(x)| = \sup_{x \in X} |f_n(x) - f(x)| + f(x) - f_m(x)| \le \sup_{x \in X} |f_n(x) - f(x)| + \sup_{x \in X} |f_m(x) - f(x)| \le 2\epsilon'/2 = \epsilon'$$

 \sqsubseteq Assume that f_n is uniformly Cauchy. Then it must be the case that f_n is pointwise Cauchy, and therefore pointwise convergent. Thus $f_n \to f$ pointwise. Suppose that this convergence is not uniform. Then $\exists \epsilon > 0$ such that $||f_n - f||_{\infty} \geqslant \epsilon \ \forall n$. Choose some $\epsilon > \delta > 0$ arbitrarily. Then $\exists x \in X$ such that $|f_n(x) - f(x)| > \epsilon - \delta > 0 \forall n$. Therefore f_n is not pointwise convergent at some x (contradiction). Finally f_n must be uniformly convergent.

 f_n does not converge uniformly.

Proof. Firstly $f_n \in C[0,1]$ for every $n \in \mathbb{N}$. This is the case because the piece on (a_{n+1},a_n) can be expressed as a finite polynomial which is of course continuous. Then outside of this interval we have the continuous constant function 0. Finally at $x = a_{n+1}$ and $x = a_n$ both functions have a limit point at these values of x and the value of their limits is the same, that is

$$\lim_{x \to a_n} \frac{1}{a_{n+2}^2} (x - a_{n+1})(a_n - x) = 0, \quad \lim_{x \to a_n} 0 = 0$$

And similarly,

$$\lim_{x \to a_{n+1}} \frac{1}{a_{n+2}^2} (x - a_{n+1})(a_n - x) = 0, \quad \lim_{x \to a_{n+1}} 0 = 0$$

Thus $f_n \in C[0,1]$.

Having established this, suppose it does converge uniformly, then it must be uniformly Cauchy in C[0,1] (by Uniform Convergence Def. and Uniform Convergence Uniform Cauchy Equivalence). However, choose any distinct $m,n\in\mathbb{N}$, and it is guaranteed that $||f_m-f_n||_{\infty}\geqslant 1$. This is the case because we know that f_n achieves its absolute maximum at the midpoint of a_n and a_{n+1} . Since the sequence (a_n) is monotone decreasing it must be the case that this midpoint does not lie in $[a_{m+1},a_m]$ (that is, these intervals must overlap only at endpoints, so no midpoint will lie in two). At the point $x=\frac{a_{n+1}+a_n}{2}, |f_n(x)-f_m(x)|=1$ so it follows that $||f_n-f_m||_{\infty}\geqslant 1$. Therefore the sequence is not uniformly Cauchy, and thus not uniformly continuous.

(d)

Let
$$g_n = f_{2n}$$
. For any $m, n \in \mathbb{N}$, $||g_m - g_n||_{\infty} = 1$.

Proof. We have already demonstrated most of the steps in order to prove that this is true. Note that with our new series, we choose only every even $n \in \mathbb{N}$. This means that the intervals $[a_{n+1}, a_n]$ and $[a_{m+1}, a_m]$ will always be disjoint for any distinct natural numbers m, n, as they can never share an endpoint now. Then it follows that

$$||g_m - g_n||_{\infty} = \max \left\{ \max_{x \in [a_{n+1}, a_n]} |g_m(x) - g_n(x)|, \max_{x \in [a_{m+1}, a_m]} |g_m(x) - g_n(x)|, \max_{x \notin [a_{n+1}, a_n] \cup [a_{m+1}, a_m]} |g_m(x) - g_n(x)| \right\}$$

This is equal to $\max\{1,1,0\}$ since the intervals are disjoint, and $g_n(x)$ achieves its maximum of 1 within the its interval $[a_{n+1},a_n]$, while g_n will be the constant function 0 there. Therefore $||g_m-g_n||_{\infty}=1$.

(e)

The set
$$\mathcal{F} = \{f_n \mid n \in \mathbb{N}\}$$
 is not totally bounded in $C[0,1]$

Proof. Choose the sequence $(f_1, f_2, f_3, f_4, \cdots)$. As we established in part (c) for any two natural numbers $n, m ||f_n - f_m||_{\infty} \ge 1$. This means it is impossible to take any non-constant Cauchy subsequence of our sequence (f_1, f_2, \cdots) . Since a set is totally bounded if and only if every sequence yields some Cauchy sub-sequence, it must be the case that \mathcal{F} is not totally bounded.