

Principles of Compiler Construction

Prof. Wen-jun LI

School of Computer Science and Engineering Inslwj@mail.sysu.edu.cn

Lecture 2. Formal Languages

- what Is a Language, Formally?
- 2. **How** to Define a Specific Language?
- 3. Context-Free Grammar
- 4. Parse Tree
- 5. Ambiguity
- 6. Chomsky Hierarchy

Formal System

- Don't care the meaning of symbols.
 - Symbols can be substituted.
- Only depend on formally defined rules.
- Programs are formal systems.

1. What Is a Language, Formally?

- O Alphabet ::= a set of symbols
 - Non-empty and finite
 - Symbol is a meta-definition
- String (sentence or word) ::= a sequence of symbols which are from the alphabet
 - Finite; Permit empty string ε [epsilon]
 - Manipulation: empty, length, prefix, suffix, substring, proper ~, subsequence, concatenation, Kleene star (closure)
- $\circ \Sigma^* :: =$ the set of all possible strings on Σ
 - Mathematically, a monoid (semigroup with an identity) generated by Σ .

Formal Definition of Language

- Language ::= A set of strings
 - Maybe infinite, or an empty set {} (or ∅)
- Language manipulation
 - Union: $L_1 \cup L_2$
 - Concatenation: L₁ L₂
 - Exponential: $L^0 = \{\epsilon\}$, $L^1 = L$, $L^2 = LL$, ...
 - Kleene closure (star): $L^* = \bigcup_{i=0}^{\infty} L^i$
 - Positive closure (plus): $L^+ = \bigcup_{i=1}^{\infty} L^i = L^* L^i$
- What is a meta-definition?

Mapping (Binding) to Practice

- Binding
 - Abstract: formal definition of a language
 - Concrete: programming languages

Discussion

- For C programs
 - ∘ Alphabet $\Sigma \rightarrow$?
 - $\circ \Sigma^* \rightarrow ?$
 - o Language → ?
 - A string in the language → ?
- For Java programs
 - ∘ Alphabet $\Sigma \rightarrow$?
 - A string in the language → ?

2. How to Define a Specific Language?

- Essentially, how to define a set:
 - Enumeration
 - o { aa, ab, ba, bb }
 - Partial enumeration
 - ∘ { a, ab, abb, abbb, ... }
 - Predicate description
 - $\circ \{ x \mid \mathbf{P}(x) \land x \in \Sigma^* \}$
- Problem: how to define the predicate P?
 - Described (by an expression)
 - Generated (by a grammar)
 - Recognized (by an automaton)

3. Context-Free Grammar (CFG)

- \circ CFG is a 4-tuple (Σ , N, P, S)
 - Σ : alphabet, set of terminals
 - N $\cap \Sigma = \emptyset$: set of nonterminals
 - P: set of rewriting rules (productions)
 - o Each production has the form $A \rightarrow \alpha$, where $A \in N \land \alpha \in (\Sigma \cup N)^*$
 - S ∈ N: start (goal) symbol

An Example

- A Context-Free Grammar
 - $G_1 = (\{a, b, c\}, \{A, B\}, \{A \rightarrow aB, A \rightarrow bB, A \rightarrow cB, B \rightarrow a, B \rightarrow b, B \rightarrow c\}, A)$
- Brief notation

$$A \rightarrow aB \mid bB \mid cB$$

 $B \rightarrow a \mid b \mid c$

Derivation

- Derive (rewrite)
 - $A \Rightarrow bB \Rightarrow bc$
 - Direct derivation: bB ⇒ bc
 - n-step derivation: $A \Rightarrow^2 bc$
 - 0 or more steps derivation: $A \Rightarrow^* bc$
 - 1 or more steps derivation: $A \Rightarrow^+ bc$
 - Left-most derivation: A ⇒^{*}_{lm} bc
 - Every step must be left-most derivation
 - Right-most derivation: A ⇒^{*}_{rm} bc
 - Every step must be right-most derivation
 - Canonical derivation: right-most

Binding to Practice

Arithmetic expressions

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid n$$

Each nonterminal represents a subset of the language

- Derivation of n+n*n
 - $\mathbf{E} \Rightarrow \mathsf{E} + \mathbf{T} \Rightarrow \mathbf{E} + \mathsf{T}^*\mathsf{F} \Rightarrow \mathsf{T} + \mathsf{T}^*\mathsf{F} \Rightarrow \mathsf{F} + \mathsf{T}^*\mathsf{F} \Rightarrow \mathsf{F} + \mathsf{F}^*\mathsf{F} \Rightarrow \mathsf{F} + \mathsf{F}^*\mathsf{n} \Rightarrow \mathsf{F} + \mathsf{n}^*\mathsf{n} \Rightarrow \mathsf{n} + \mathsf{n}^*\mathsf{n}$
 - Not canonical!
- Canonical derivation of n+n*n
 - $\mathbf{E} \Rightarrow E + \mathbf{T} \Rightarrow E + T^* \mathbf{F} \Rightarrow E + T^* \mathbf{n} \Rightarrow E + \mathbf{F}^* \mathbf{n} \Rightarrow \mathbf{E} + \mathbf{n}^* \mathbf{n} \Rightarrow \mathbf{T} + \mathbf{n}^* \mathbf{n} \Rightarrow \mathbf{F} + \mathbf{n}^* \mathbf{n} \Rightarrow \mathbf{n} + \mathbf{n}^* \mathbf{n}$

Reduction

- Reduce
 - Derive in reverse order
 - Direct reduction
 - n-step reduction
 - Left-most (canonical) reduction
 - Right-most reduction

Sentences and Handles

- Sentential form
 - If $S \Rightarrow^* \alpha$, α is a sentential form of G.
 - Right (Left) sentential form
- Sentence
 - A sentential form with no nonterminals.
- Phrase
 - If $S \Rightarrow^* \alpha A \omega \wedge A \Rightarrow^+ \beta$, β is a phrase of $\alpha \beta \omega$ on A.
- Simple phrase
 - If $S \Rightarrow^* \alpha A \omega \wedge A \Rightarrow \beta$, β is a simple phrase.
- Handle
 - If $S \Rightarrow_{rm}^* \alpha A \omega \Rightarrow_{rm} \alpha \beta \omega$, $A \to \beta$ in the position following α is a handle of $\alpha \beta \omega$.

Define a Language by Grammar

- Language defined by a given CFG G
 - L(G) = $\{\alpha \mid S \Rightarrow^* \alpha \land \alpha \in \Sigma^*\}$
 - That is the set of all sentences of G
- Set of all sentential forms of G is
 - SF(G) = $\{\alpha \mid S \Rightarrow^* \alpha \land \alpha \in (\Sigma \cup N)^*\}$
- o Thus we have L(G) = SF(G) \cap Σ*.

BNF (Backus-Naur Form)

- Equivalent to CFG
 - Change "→" to "::="
 - De facto standard to define a computer language
- EBNF (Extended BNF)
 - ISO/IEC 14977:1996(E). The Standard Metalanguage Extended BNF.
 - =, "terminals", [optional], {repetition},(group), (*comment*), etc.

4. Parse Tree

- Graphic representation of derivations
 - Root: start symbol
 - Leafs: terminals or ε
 - Interior nodes: nonterminals
 - Offspring of a nonterminal: a production
- An example
 - $\mathbf{E} \Rightarrow E+\mathbf{T} \Rightarrow E+T*\mathbf{F}$ $\Rightarrow E+\mathbf{T}*\mathbf{n} \Rightarrow E+\mathbf{F}*\mathbf{n}$ $\Rightarrow \mathbf{E}+\mathbf{n}*\mathbf{n} \Rightarrow \mathbf{T}+\mathbf{n}*\mathbf{n}$ $\Rightarrow \mathbf{F}+\mathbf{n}*\mathbf{n} \Rightarrow \mathbf{n}+\mathbf{n}*\mathbf{n}$

Insight into a Parse Tree

- An abstraction of derivations
 - Derivation order is discarded.

Sentences and Sentential Forms in a Parse Tree

- Sentence
 - Frontier of the parse tree, e.g. n+n*n
- Sentential Form
 - Frontier of the pruned parse tree, e.g. T+n*n

Phrases and Handles in a Parse Tree

- For a given sentential form, e.g. T+n*n
 - Phrase: frontier of a nonterminal subtree
 - Simple phrase: frontier of a 2-level subtree
 - Handle: left-most simple phrase

Discussions

- What is ...
 - The sentential form
 - All simple phrases
 - The only one handle

Parsing

- There are 2 questions that must be answered by parsing
 - Is the source program well-formed (legal in syntax)?
 - o That is, is it a sentence of the language?
 - If it is, what's the syntax construction of the program?
 - Tree is an ideal data structure to present part-of relationship.
- 2 parsing strategies
 - Top-down vs. bottom-up

Top-Down Parsing

- Beginning at the start symbol
 - Usually expanding nonterminals in depth-first manner (predictive in nature)
 - Left-most derivation
 - Pre-order traversal of the parse tree
- Example: LL(k)
 - Read from Left, and Left-most derivation, with k lookaheads
 - Recursive descent (predictive) parsing

Bottom-Up Parsing

- Beginning from the terminal input string
 - Determining the production used to generate leaves
 - Right-most derivation in reverse order
 - Post-order traversal of the parse tree
- Example: LR(k)
 - Read from Left, and Right-most derivation, with k lookaheads
 - Parser generator yacc

5. Ambiguity

 A grammar with more than one parse tree for at least one sentence in the language

•
$$E \rightarrow E + E \mid E * E \mid (E) \mid n$$

2 parse trees for the sentence **n** + **n** * **n**

Ambiguous: Grammar vs. Language

- Ambiguous Language (inherent)
 - There exists no unambiguous grammar to define the language.
- Ambiguous Grammar (postnatal)
 - May be transformed to an equivalent unambiguous grammar.
 - The following two grammars define the same language

```
 \circ E \rightarrow E + E \mid E * E \mid (E) \mid n 
 \circ E \rightarrow E + T \mid T 
 T \rightarrow T * F \mid F 
 F \rightarrow (E) \mid n
```

Binding to Practice

- Ambiguity in Programming Languages
 - Operators in an expression
 - Dangling else in embedded if statements
- Both of them are postnatal
 - Can be removed by additional disambiguation rules
 - Precedence and associativity
 - Inner "if" matched
 - Two approaches to resolving ambiguities
 - Rewrite the ambiguous grammar
 - Ad hoc solution: application of additional rules

6. Chomsky Hierarchy

	Class	Grammar	Restriction	Recognizer
Useful in Pra	3 actice	Regular	$A \rightarrow aB$ or $A \rightarrow a$, where $A, B \in N \land a \in \Sigma \cup \{\epsilon\}$. $A \rightarrow \epsilon$ permitted if A is the start symbol and does not appear on the right of any production.	Finite-State Automaton (FSA)
	2	Context-Free	$A \rightarrow \alpha$, where $A \in \mathbb{N} \land \alpha \in (\Sigma \cup \mathbb{N})^*$.	Push-Down Automaton (PDA)
Useful in Th	1 neory	Context-Sensitive	$\alpha \to \beta$, where $\alpha, \beta \in (\Sigma \cup \mathbb{N})^* \land \alpha \neq \varepsilon \land \alpha \leq \beta $. β can't be ε , unless α is the start symbol and does not appear on the right of any production.	Linear-Bounded Automaton (LBA)
	0	Unrestricted	$\alpha \to \beta$, where α , $\beta \in (\Sigma \cup N)^* \land \alpha \neq \varepsilon$.	Turing Machine (TM)

Regular Language

- Ability of regular languages
 - What is it able to define?
 - Identifiers
 - Decimal constants
 - What isn't it able to define?
 - Matched parentheses
- Satisfy the requirement of lexical descriptions

Context-Free Language

- Ability of context-free languages
 - What is it able to define?
 - Matched constructs
 - What isn't it able to define?
 - Only use declared variables
 - Matched parameter passing
- Satisfy the requirement of syntactic descriptions

Exercise 2.1

Given the following grammar:

$$S \rightarrow (L) \mid a$$

 $L \rightarrow L, S \mid S$

Construct a parse tree for the sentence (a, ((a, a), (a, a)))

Exercise 2.2

Given the following grammar:

```
bexpr \rightarrow bexpr or bterm | bterm
bterm \rightarrow bterm and bfactor | bfactor
bfactor \rightarrow not bfactor | (bexpr) | true | false
```

Construct a parse tree for the sentence **not (true or false)**

Exercise 2.3

o Is the grammar: $S \rightarrow a \ S \ b \ S \ | \ b \ S \ a \ S \ | \ \epsilon$ ambiguous? Why?

Further Reading

- Dragon Book, 2nd Edition (DBv2)
 - Comprehensive reading:
 - Section 2.1 2.3, 4.2.1 4.2.6 for the concepts of CFG, derivation, parse tree and ambiguity.
 - Section 4.5.1 4.5.2 for the concepts of reduction and handle.
 - Skip reading:
 - Section 2.4 for top-down parsing.
- Skip reading: definition of languages
 - BNF or EBNF of Oberon-0, Oberon, OMG IDL, and Lua from our course website
- Skip reading: EBNF standard
 - ISO/IEC. The Standard Metalanguage EBNF.

Enjoy the Course!

