PK-Sim® Ontogeny Database Version 7.1

Table of contents

<u>1</u>	AIM	5
<u>2</u>	DATA MANAGEMENT	5
2.1	Literature data	5
2.2	Fit results	5
<u>3</u>	METHODS	5
<u>4</u>	RESULTS	6
4.3	CYP Enzymes in the liver	6
A.1	CYP1A2 in liver	6
	A.1.1 Original data	6
	A.1.2 Fit results	7
A.2	CYP2C18 in liver	9
	A.2.1 Original data	9
	A.2.2 Fit results	9
A.3	CYP2C19 in liver	11
	A.3.1 Original data	11
	A.3.2 Fit results	12
A.4	CYP2C8 in liver	14
	A.4.1 Original data	14
	A.4.2 Fit results	14
A.5	CYP2C9 in liver	16
	A.5.1 Original data	16
	A.5.2 Fit results	17
A.6	CYP2D6 in liver	19
	A.6.1 Original data	19
	A.6.2 Fit results	19
A.7	CYP2E1 in liver	21
	A.7.1 Original data	21
	A.7.2 Fit results	21
8.A	CYP3A4 in liver	23
	A.8.1 Original data	23
	A.8.2 Fit results	24
A.9	CYP3A5 in liver	26

	A.9.1	Original data	26
	A.9.2	Fit results	26
CYP	3A7 in l	liver	28
	A.9.3	Original data	28
	A.9.4	Fit results	28
4.4	UGT e	nzymes in liver	30
A.1	UGT1	A1 in liver	30
	A.1.1	Original data	30
	A.1.2	Fit results	31
A.2	UGT1	A4 in liver	33
	A.2.1	Original data	33
	A.2.2	Fit results	33
A.3	UGT1	A6 in liver	35
	A.3.1	Original data	35
	A.3.2	Fit results	35
A.4	UGT1	49 in liver	37
	A.4.1	Original data	37
	A.4.2	Fit results	37
A.5	UGT2I	B4 in liver	39
	A.5.1	Original data	39
	A.5.2	Fit results	39
A.6	UGT2I	B7 in liver	41
	A.6.1	Original data	41
	A.6.2	Fit results	42
4.5	CYP E	nzymes in the intestine	44
A.1	CYP3	A4 in duodenum	44
	A.1.1	Original data	44
	A.1.2	Fit results	44
4.6	Plasm	a Proteins	46
A.1	Huma	n Serum albumin (HSA)	46
	A.1.1	Original data	46
	A.1.2	Fit results	46
A.2	Alpha	-1-acid glycoprotein (AAG)	48
	A.2.1	Original data	48

48

1 Aim

This document represents a summary of literature data to derive the ontogeny of enzymes, and other ADME relevant proteins as well as fit results used for implementation of ontogeny functions in PK-Sim®.

2 Data management

2.1 Literature data

Used literature data are referenced in the respective enzyme sections.

2.2 Fit results

Fit results and figures are illustrated in the respective enzyme sections.

3 Methods

A maturation model based on a sigmoidal Emax model (corresponding to the Hill-equation), published by Tod et al. 2008 (Clin Pharmacokinet. 47(4):231-43) presents the best description of age dependent development of e.g. proteins (Fig. 1). This model was also presented at the EMEA Workshop on Modelling in Paediatric Medicines in 2008 (Presentation 'Prof. N. Holford, 2008, 'Mechanism-Based Concepts of Size and Maturity',

www.ema.europa.eu/docs/en_GB/document_library/Agenda/2009/11/WC500010017.pdf).

Figure 1. Slide taken from

'http://www.ema.europa.eu/docs/en_GB/document_library/Presentation/2009/11/WC500009792.pdf')

Maturation Models

ONHG Holford, 2008, all rights reserved.

Fitting of ontogeny data was therefore performed using the following Hill equation (Equation 1):

$$A = PMA^{n}/(PMA^{n} + A_{0.5}^{n})$$
 (1)

With:

PMA = Post-menstrual age in weeks

A = Relative activity at PMA

A_{0.5} = PMA (in weeks) at 50 % activity compared to adult

n = Hill coefficient

In the case of proteins showing decreased expression with increasing age, the following inverse fit function was applied (Equation 2):

$$A = 1-PMA^{n}/(A_{0.5}^{n} + PMA^{n}) + offset$$
 (2)

With offset = activity in adults

For fitting the ontogeny including variability, constituting variability in ontogeny as well as activity, a virtual population with 10000 individuals was created. Fitted were then the geometric mean and geometric standard deviation of the Hill coefficient (GeoSD n), the geometric mean and geometric standard deviation of PMA at 50% activity compared to adult (GeoSD A_{0.5}), and a geometric standard deviation as an activity variability factor (GeoSD adult).

All illustrated figures are shown in full age-length and a zoom-in version in the first period after birth. The presented tables are the implemented tables in PK-Sim, which are created from the fitted Hill equations.

4 Results

4.3 CYP Enzymes in the liver

A.1 CYP1A2 in liver

A.1.1 Original data

Reference	Used for fit
Br J Clin Pharmacol. 1994 May;37(5):405-12.; Biotransformation of caffeine in human	
liver microsomes from foetuses, neonates, infants and adults.;Cazeneuve C, Pons G,	
Rey E, Treluyer JM, Cresteil T, Thiroux G, D'Athis P, Olive G.	
Digital Object Identifyer (DOI): 10.1111/j.1365-2125.1994.tb05706.x	
→ Table 2 (Caffeine N-3 demethylation, and Caffeine N-7 demethylation)	Yes
Eur J Biochem. 1998 Feb 1;251(3):893-8.; Delayed ontogenesis of CYP1A2 in the	
human liver.; Sonnier M, Cresteil T.	
Digital Object Identifyer (DOI): 10.1046/j.1432-1327.1998.2510893.x	
→ Figure 2a	Yes
→ Figure 2b	Yes
→ Figure 3	Yes
Hepatology. 1991 Jun;13(6):1142-51.; Intralobular distribution and quantitation of	
cytochrome P-450 enzymes in human liver as a function of age.; Ratanasavanh D1,	
Beaune P, Morel F, Flinois JP, Guengerich FP, Guillouzo A.	
Digital Object Identifyer (DOI): 10.1002/hep.1840130622	
→Table 2 (protein content)	Yes

A.1.2 Fit results

A.1.2.1 Figure

Full range-plot

Zoom-in, x-axis

Fit Result:

GeoSD n

 $A_{0.5}$

= 10.015= 65.639

GeoSD $A_{0.5} = 2.130$

GeoSD adult = 1.628

= 1.241

Page 7 of 49

Date: 2017-03-29

A.1.2.2 Fit function

 $A = PMA^n/(A_{0.5}^n + PMA^n)$

With:

PMA = Post-menstrual age in weeks

A = Activity at PMA

 $A_{0.5}$ = PMA at 50 % activity compared to adult

n = Hill coefficient

GeoSD = geometric standard deviation

GeoSD adult = geometric standard deviation in activity observed in adults

A.1.2.3 Description for PK-Sim®

Values for CYP1A2 ontogeny are based on information to age dependency of Caffeine N-3 demethylation, Caffeine N-7 demethylation, Methoxyresorufin demethylation, Imipramine demethylation, and protein content, derived from the papers as mentioned in table A.1.1.

A.1.2.4 PK-Sim® Table

Post menstrual age [year(s)]	Ontogeny for CYP1A2	Standard Deviation
0.629999995	0.00099	74.55000305
0.769999981	0.007	24.93000031
0.879999995	0.026000001	11.80000019
0.980000019	0.071000002	6.539999962
1.049999952	0.140000001	4.420000076
1.139999986	0.25999999	3.150000095
1.340000033	0.649999976	1.870000005
1.440000057	0.790000021	1.639999986
1.549999952	0.879999995	1.590000033
1.610000014	0.920000017	1.549999952
1.74000001	0.959999979	1.529999971
1.929999948	0.99000001	1.519999981
2.519999981	1	1.559999943

A.2 CYP2C18 in liver

A.2.1 Original data

Reference	Used for fit
Pharmacogenetics. 1997 Dec;7(6):441-52.; Developmental expression of CYP2C and CYP2C-dependent activities in the human liver: in-vivo/in-vitro correlation and inducibility.; Treluyer JM, Gueret G, Cheron G, Sonnier M, Cresteil T.	
Pubmed ID (PMID): 9429229 (DOI not available)	
→ Figure 5 (mRNA expression)	Yes
Pharmacogenetics. 2003 Sep;13(9):565-75.; Differential expression and function of CYP2C isoforms in human intestine and liver.; Läpple F, von Richter O, Fromm MF, Richter T, Thon KP, Wisser H, Griese EU, Eichelbaum M, Kivistö KT.	
Digital Object Identifyer (DOI): 10.1097/01.fpc.0000054122.14659.1e	
Pubmed ID (PMID): 12972955 (DOI not functioning)	
→Table 3 (mRNA expression)	Yes

A.2.2 Fit results

A.2.2.1 Figure

Zoom-in, x-axis

Comment: For the intestine, the geometric standard deviation in activity observed in adults ('GeoSD adult') has been separately fitted and implemented with a GeoSD of 2.177.

A.2.2.2 Fit function

 $A = PMA^n/(A_{0.5}^n + PMA^n)$

With:

PMA = Post-menstrual age in weeks

A = Activity at PMA

 $A_{0.5}$ = PMA at 50 % activity compared to adult

n = Hill coefficient

GeoSD = geometric standard deviation

GeoSD adult = geometric standard deviation in activity observed in adults

GeoSD n = 1.034 GeoSD A_{0.5} = 1.002 GeoSD adult = 1.795

> Page 10 of 49 Date: 2017-03-29

= 12.590= 42.134

Fit Result:

 $A_{0.5}$

A.2.2.3 Description for PK-Sim®

Values for CYP2C18 ontogeny are based on information to age dependency of mRNA expression, derived from the papers as mentioned in table A.2.1.

A.2.2.4 PK-Sim® Table

Post menstrual age [year(s)]	Ontogeny for CYP2C18	Standard Deviation
0.469999999	0.00098	1.870000005
0.600000024	0.022	1.809999943
0.680000007	0.090999998	1.789999962
0.730000019	0.200000003	1.799999952
0.769999981	0.340000004	1.789999962
0.860000014	0.680000007	1.809999943
0.910000026	0.819999993	1.799999952
0.980000019	0.920000017	1.779999971
1.049999952	0.959999979	1.789999962
1.169999957	0.99000001	1.799999952
1.39999976	1	1.799999952

A.3 CYP2C19 in liver

A.3.1 Original data

Reference	Used for fit
J Pharmacol Exp Ther. 2004 Mar;308(3):965-74. Epub 2003 Nov 21.;	
Developmental expression of human hepatic CYP2C9 and CYP2C19.;	
Koukouritaki SB, Manro JR, Marsh SA, Stevens JC, Rettie AE, McCarver DG,	
Hines RN.	
D: '/ LOL' LL // / DOL) - 40 440 4/ 4 400 000407	
Digital Object Identifyer (DOI): 10.1124/jpet.103.060137	
N Figure 2 (protoin content)	Voc
→ Figure 3 (protein content)	Yes
→ Table 2 ((S)-Mephenytoin 4-hydroxylation)	Yes
Pharmacogenetics. 2003 Sep;13(9):565-75.; Differential expression and function of	
CYP2C isoforms in human intestine and liver.; Läpple F, von Richter O, Fromm	
MF, Richter T, Thon KP, Wisser H, Griese EU, Eichelbaum M, Kivistö KT.	
Digital Object Identifyer (DOI): 10.1007/01 fpg.0000054122.14650.16	
Digital Object Identifyer (DOI): 10.1097/01.fpc.0000054122.14659.1e	
Pubmed ID (PMID): 12972955 (DOI not functioning)	
1 domod 15 (1 Milb). 12012000 (501110t full offorming)	
→ Table 3 (mRNA expression)	Yes
→ Table 6 (protein content)	Yes

A.3.2 Fit results

A.3.2.1 **Figure**

Full range-plot

Zoom-in, y-axis

Comment:

Zoom-in, x-axis

Zoom-in, x-axis and y-axis

For the intestine, the geometric standard deviation in activity observed in adults ('GeoSD adult') has been separately fitted and implemented with a GeoSD of 2.883.

A.3.2.2 Fit function

 $A = PMA^n/(A_{0.5}^n + PMA^n)$

With:

PMA = Post-menstrual age in weeks

A = Activity at PMA

 $A_{0.5}$ = PMA at 50 % activity compared to adult

n = Hill coefficient

GeoSD = geometric standard deviation

GeoSD adult = geometric standard deviation in activity observed in adults

Fit Result:

n = 9.390 $A_{0.5} = 35.447$

GeoSD n = 1.055GeoSD A_{0.5} = 1.592GeoSD adult = 1.793

> Page 13 of 49 Date: 2017-03-29

A.3.2.3 Description for PK-Sim®

Values for CYP2C1* ontogeny are based on information to age dependency of mRNA expression, protein content and (S)-Mephenytoin 4-hydroxylation derived from the papers as mentioned in table A.3.1.

A.3.2.4 PK-Sim® Table

Post menstrual age [year(s)]	Ontogeny for CYP2C19	Standard Deviation
0.33	0.001	46.35
0.47	0.03	10.04
0.53	0.09	5.56
0.58	0.18	3.76
0.62	0.3	2.96
0.72	0.64	1.96
0.77	0.76	1.84
0.81	0.83	1.75
0.87	0.91	1.68
0.94	0.95	1.71
1.09	0.99	1.69
1.39	1	1.72
1.42	1	1.75

A.4 CYP2C8 in liver

A.4.1 Original data

Reference	Used for fit
Pharmacogenetics. 1997 Dec;7(6):441-52.; Developmental expression of CYP2C and CYP2C-dependent activities in the human liver: in-vivo/in-vitro correlation and inducibility.; Treluyer JM, Gueret G, Cheron G, Sonnier M, Cresteil T.	
Pubmed ID (PMID): 9429229 (DOI not available)	
→ Figure 5 (mRNA expression)	Yes
Pharmacogenetics. 2003 Sep;13(9):565-75.; Differential expression and function of CYP2C isoforms in human intestine and liver.; Läpple F, von Richter O, Fromm MF, Richter T, Thon KP, Wisser H, Griese EU, Eichelbaum M, Kivistö KT.	
Digital Object Identifyer (DOI): 10.1097/01.fpc.0000054122.14659.1e	
Pubmed ID (PMID): 12972955 (DOI not functioning)	
→Table 3 (mRNA expression)	Yes
→ Table 4(protein content, D-703 formation from verapamil)	Yes

A.4.2 Fit results

A.4.2.1 Figure

Full range-plot

Zoom-in, x-axis

Comment:

For the intestine, the geometric standard deviation in activity observed in adults ('GeoSD adult') has been separately fitted and implemented with a GeoSD of 2.903

A.4.2.2 Fit function

 $A = PMA^n/(A_{0.5}^n + PMA^n)$

With:

PMA = Post-menstrual age in weeks

A = Activity at PMA

 $A_{0.5}$ = PMA at 50 % activity compared to adult

n = Hill coefficient

GeoSD = geometric standard deviation

GeoSD adult = geometric standard deviation in activity observed in adults

Fit Result:

n = 7.758 $A_{0.5} = 43.084$

GeoSD n = 1.522GeoSD $A_{0.5}$ = 1.000

GeoSD adult = 2.054

Page 15 of 49 Date: 2017-03-29

A.4.2.3 Description for PK-Sim®

Values for CYP2C8 ontogeny are based on information to age dependency of mRNA expression, protein content and D-703 formation from verapamil, derived from the papers as mentioned in table A.4.1.

A.4.2.4 PK-Sim® Table

Post menstrual age [year(s)]	Ontogeny for CYP2C8	Standard Deviation
0.34	0.001	9.23
0.45	0.0087	4.92
0.54	0.035	3.23
0.61	0.089	2.62
0.69	0.2	2.15
0.77	0.36	2.12
0.9	0.66	2.06
0.98	0.79	2.06
1.05	0.87	2.03
1.17	0.93	2.05
1.36	0.98	2.06
1.74	1	2.05

A.5 CYP2C9 in liver

A.5.1 Original data

Reference	Used for fit
J Pharmacol Exp Ther. 2004 Mar;308(3):965-74. Epub 2003 Nov 21.;	
Developmental expression of human hepatic CYP2C9 and CYP2C19.;	
Koukouritaki SB, Manro JR, Marsh SA, Stevens JC, Rettie AE, McCarver DG,	
Hines RN.	
Digital Object Identifyer (DOI): 10.1124/jpet.103.060137	
→ Figure 2 (protein content)	Yes
→ Table 1 (Diclofenac 4-hydroxylation)	Yes
→ Figure 5	No
Pharmacogenetics. 1997 Dec;7(6):441-52.; Developmental expression of CYP2C	
and CYP2C-dependent activities in the human liver: in-vivo/in-vitro correlation	
and inducibility.; Treluyer JM, Gueret G, Cheron G, Sonnier M, Cresteil T.	
D. I. LID (DMID) 0400000 (DOL (1111)	
Pubmed ID (PMID): 9429229 (DOI not available)	
→ Figure 3 (Tolbutamide hydroxylation)	Yes
→ Figure 5 (mRNA expression)	Yes
Pharmacogenetics. 2003 Sep;13(9):565-75.; Differential expression and function	163
of CYP2C isoforms in human intestine and liver.; Läpple F, von Richter O, Fromm	
MF, Richter T, Thon KP, Wisser H, Griese EU, Eichelbaum M, Kivistö KT.	
Digital Object Identifyer (DOI): 10.1097/01.fpc.0000054122.14659.1e	
Pubmed ID (PMID): 12972955 (DOI not functioning)	
→Table 3 (mRNA expression)	Yes
→ Table 5 (4'hydroxydiclofenac formation, protein content)	Yes
- 1 and 5 (1 injurish jurish and 10 initiation, protein somethy	

A.5.2 Fit results

A.5.2.1 Figure

Comment:

For the intestine, the geometric standard deviation in activity observed in adults ('GeoSD adult') has been separately fitted and implemented with a GeoSD of 4.016

A.5.2.2 Fit function

 $A = PMA^n/(A_{0.5}^n + PMA^n)$

With:

PMA = Post-menstrual age in weeks

A = Activity at PMA

 $A_{0.5}$ = PMA at 50 % activity compared to adult

n = Hill coefficient

GeoSD = geometric standard deviation

GeoSD adult = geometric standard deviation in activity observed in adults

Fit Result:

n = 8.135 $A_{0.5} = 36.773$

GeoSD n = 1.118 GeoSD $A_{0.5}$ = 1.049

GeoSD adult = 2.006

Page 18 of 49 Date: 2017-03-29

A.5.2.3 Description for PK-Sim®

Values for CYP2C9 ontogeny are based on information to age dependency of mRNA expression, protein content, tolbutamide hydroxylation, and 4'hydroxydiclofenac formation, derived from the papers as mentioned in table A.5.1.

A.5.2.4 PK-Sim® Table

Post menstrual age [year(s)]	Ontogeny for CYP2C9	Standard Deviation
0.3	0.00098	2.91
0.44	0.019	2.4
0.51	0.061	2.33
0.55	0.12	2.22
0.62	0.24	2.15
0.77	0.66	2.01
0.84	0.8	2.03
0.91	0.89	2.02
1	0.94	2.02
1.15	0.98	2.01
1.39	1	2.01

A.6 CYP2D6 in liver

A.6.1 Original data

Reference	Used for fit
Drug Metab Dispos. 2008 Aug;36(8):1587-93. doi: 10.1124/dmd.108.021873.	
Epub 2008 May 12.; Developmental changes in human liver CYP2D6	
expression.; Stevens JC, Marsh SA, Zaya MJ, Regina KJ, Divakaran K, Le M,	
Hines RN.	
Digital Object Identifyer (DOI): 10.1124/dmd.108.021873	
→ Figure 1A (Dextromethorphan-O-demethylation)	Yes
→ Figure 1B (Dextromethorphan-O-demethylation)	Yes
→ Figure 1C (Dextromethorphan-O-demethylation)	Yes
Eur J Biochem. 1991 Dec 5;202(2):583-8.; Expression of CYP2D6 in developing	
human liver.; Treluyer JM, Jacqz-Aigrain E, Alvarez F, Cresteil T.	
Digital Object Identifyer (DOI): 10.1111/j.1432-1033.1991.tb16411.x	
2.3 2.3,22	
→ Figure 1 (protein content)	Yes
→ Figure 5 (Dextromethorphan-O-demethylation)	Yes

A.6.2 Fit results

A.6.2.1 Figure

Zoom-in, x-axis

A.6.2.2 Fit function

 $A = PMA^n/(A_{0.5}^n + PMA^n)$

With:

PMA = Post-menstrual age in weeks

A = Activity at PMA

 $A_{0.5}$ = PMA at 50 % activity compared to adult

n = Hill coefficient

GeoSD = geometric standard deviation

GeoSD adult = geometric standard deviation in activity observed in adults

Fit Result:

n = 5.391 $A_{0.5} = 37.706$

GeoSD n = 1.139 $GeoSD A_{0.5} = 1.859$ GeoSD adult = 2.488

> Page 20 of 49 Date: 2017-03-29

A.6.2.3 Description for PK-Sim®

Values for CYP2D6 ontogeny are based on information to age dependency of protein content and dextromethorphan-O-demethylation activity, derived from the papers as mentioned in table A.6.1.

A.6.2.4 PK-Sim® Table

Post menstrual age [year(s)]	Ontogeny for CYP2D6	Standard Deviation
0.2	0.001	27.88
0.32	0.012	14.29
0.41	0.046	8.25
0.49	0.1	5.76
0.58	0.23	4.13
0.77	0.58	2.65
0.86	0.71	2.46
0.96	0.82	2.38
1.09	0.9	2.35
1.26	0.95	2.3
1.52	0.98	2.38
1.86	0.99	2.41
2.61	1	2.41

A.7 CYP2E1 in liver

A.7.1 Original data

Reference	Used for fit
J Pharmacol Exp Ther. 2003 Oct;307(1):402-7.; Human hepatic CYP2E1	
expression during development.; Johnsrud EK, Koukouritaki SB, Divakaran K,	
Brunengraber LL, Hines RN, McCarver DG.	
Digital Object Identifyer (DOI): 10.1124/jpet.102.053124	
Pubmed ID (PMID): 12972955 (DOI not functioning)	
Publified ID (FINID). 12972933 (DOI Not full clioning)	
→ Figure 2A (protein content)	Yes
→ Figure 2B (protein content)	Yes
→ Figure 3 (protein content)	Yes
Eur J Biochem. 1996 Jun 1;238(2):476-83.; Developmental expression of	
CYP2E1 in the human liver. Hypermethylation control of gene expression	
during the neonatal period.; Vieira I, Sonnier M, Cresteil T.	
Digital Object Identifyer (DOI): 10.1111/j.1432-1033.1996.0476z.x	
→ Figure 1 (protein content)	Yes
→ Figure 2 (Chlorzoxazone hydroxylation)	Yes
 → Figure 2 (Chlorzoxazone hydroxylation) → Figure 3 (mRNA expression) 	Yes Yes

A.7.2 Fit results

A.7.2.1 Figure

Zoom-in, x-axis

A.7.2.2 Fit function

 $A = PMA^n/(A_{0.5}^n + PMA^n)$

With:

PMA = Post-menstrual age in weeks

A = Activity at PMA

 $A_{0.5}$ = PMA at 50 % activity compared to adult

n = Hill coefficient

GeoSD = geometric standard deviation

GeoSD adult = geometric standard deviation in activity observed in adults

Fit Result: n = 9.277 A_{0.5} = 52.268

 $\begin{array}{lll} \text{GeoSD n} &= 1.022 \\ \text{GeoSD A}_{0.5} &= 1.409 \\ \text{GeoSD adult} &= 1.350 \\ \end{array}$

A.7.2.3 Description for PK-Sim®

Values for CYP2E1 ontogeny are based on information to age dependency of mRNA expression, protein content and chlorzoxazone hydroxylation activity, derived from the papers as mentioned in table A.7.1.

A.7.2.4 PK-Sim® Table

Post menstrual age [year(s)]	Ontogeny for CYP2E1	Standard Deviation
0.48	0.00099	21.07
0.66	0.021	9.07
0.77	0.077	4.85
0.82	0.13	3.67
0.9	0.26	2.51
1.05	0.6	1.63
1.12	0.73	1.47
1.21	0.85	1.39
1.3	0.92	1.33
1.43	0.96	1.32
1.62	0.99	1.33
2.12	1	1.34

PK-Sim® Ontogeny Database Version 7.1

A.8 CYP3A4 in liver

A.8.1 Original data

Reference	Used for fit
Eur J Biochem. 1997 Jul 15;247(2):625-34.; Expression of CYP3A in the human	
liverevidence that the shift between CYP3A7 and CYP3A4 occurs immediately	
after birth.; Lacroix D, Sonnier M, Moncion A, Cheron G, Cresteil T.	
Digital Object Identifyer (DOI): 10.1111/j.1432-1033.1997.00625.x	
Digital Object Identityel (DOI): 10.1111/j.1432-1033.1997.00023.x	
→ Figure 3 (mRNA expression)	Yes
→ Figure 4A-B (Testosterone 6 beta hydroxylation)	Yes
Drug Metab Dispos. 2003 Mar;31(3):275-81.; Oxidative metabolism of	
amprenavir in the human liver. Effect of the CYP3A maturation.; Tréluyer JM,	
Bowers G, Cazali N, Sonnier M, Rey E, Pons G, Cresteil T.	
D: " O : (("O) 40 4404/	
Digital Object Identifyer (DOI): 10.1124/dmd.31.3.275	
→ Table 5 (Amprenavir M2, M3 and M5 and formation)	Yes
J Pharmacol Exp Ther. 2003 Nov;307(2):573-82. Epub 2003 Sep 15.;	
Developmental expression of the major human hepatic CYP3A enzymes.;	
Stevens JC, Hines RN, Gu C, Koukouritaki SB, Manro JR, Tandler PJ, Zaya MJ.	
Digital Object Identifyer (DOI): 10.1124/jpet.103.054841	
→ Figure 8 (protein content)	Yes
Drug Metab Dispos. 2000 Apr;28(4):379-82.; Human cytochrome P450 maximal	163
activities in pediatric versus adult liver.; Blanco JG1, Harrison PL, Evans WE,	
Relling MV.	
PMID: 10725303 (DOI not available)	
N Figure 2 (Mideraless 4) hadron detics)	NIS
→ Figure 2 (Midazolam 1' hydroxylation) Pharmacogenetics. 1997 Dec;7(6):441-52.; Developmental expression of CYP2C	No
and CYP2C-dependent activities in the human liver: in-vivo/in-vitro correlation	
and GTT 2G-dependent activities in the Hamair liver. In-vivo/in-vitro correlation and inducibility.; Treluyer JM, Gueret G, Cheron G, Sonnier M, Cresteil T.	
Pubmed ID (PMID): 9429229 (DOI not available)	
→ Figure 4B (Diazepam hydroxylation)	No

A.8.2 Fit results

A.8.2.1 Figure

Full range-plot

Zoom-in, x-axis

Comment:

The old PK-Sim® version was not fitted using the Hill equation but using spline functions allowing for the 'overshoot' of relative expression compared to adults. According to Edginton et al. 2006 an ontogeny factor of 1.3 was found for children from 1-3 y.

Reassessing in the light of additional data, the references quoted by Edginton et al 2006, such a high expression value for this age range could not be confirmed. The only CYP-mediated process found to yield an ontogeny factor of approx. 1.44 for children aged 3-12 months was reported by Treluyer et al. 1997 for the hydroxylation of diazepam (Fig. 4B). This metabolization, however, is not specific for CYP3A4 but is also mediated by CYP2C19 as reported by Riss et al. 2008 (Acta Neurol Scand. 118(2):69-86). Therefore, the age-dependency of this process was not considered for fitting CYP3A4 ontogeny in liver. Nevertheless, even if this dataset would have been considered, due to the different fit function the new ontogeny profile of CYP3A4 in liver would be significantly different than the old one.

A.8.2.2 Fit function

$$A = PMA^{n}/(A_{0.5}^{n} + PMA^{n})$$

With:

PMA = Post-menstrual age in weeks

A = Activity at PMA

 $A_{0.5}$ = PMA at 50 % activity compared to adult

n = Hill coefficient

GeoSD = geometric standard deviation

GeoSD adult = geometric standard deviation in activity observed in adults

Fit Result:

n = 3.331 $A_{0.5} = 73.019$

GeoSD n = 1.255 $GeoSD A_{0.5} = 1.345$ GeoSD adult = 1.182

Page 24 of 49

Date: 2017-03-29

A.8.2.3 Description for PK-Sim®

Values for CYP3A4 ontogeny in liver are based on information to age dependency of mRNA content, testosterone 6 beta hydroxylation activity, protein content as well as amprenavir metabolite formation, derived from the papers as mentioned in table A.8.1.

A.8.2.4 PK-Sim® Table

Post menstrual age [year(s)]	Ontogeny for CYP3A4	Standard Deviation
0.18	0.001	4.63
0.37	0.011	3.22
0.5	0.03	2.73
0.63	0.064	2.46
0.77	0.12	2.22
0.92	0.2	1.92
1.39	0.49	1.45
1.55	0.58	1.37
1.73	0.67	1.31
1.91	0.74	1.26
2.08	0.79	1.23
2.26	0.83	1.22
2.5	0.87	1.19
2.84	0.91	1.18
3.19	0.94	1.18
3.81	0.97	1.18
4.69	0.98	1.19
6.48	0.99	1.18
11.17	1	1.18

A.9 CYP3A5 in liver

A.9.1 Original data

Reference	Used for fit
J Pharmacol Exp Ther. 2003 Nov;307(2):573-82. Epub 2003 Sep 15.; Developmental expression of the major human hepatic CYP3A enzymes.; Stevens JC, Hines RN, Gu C, Koukouritaki SB, Manro JR, Tandler PJ, Zaya MJ.	yes →Although, no ontogeny visible for this
Digital Object Identifyer (DOI): 10.1124/jpet.103.054841	protein.
→ Figure 2 (protein content)	

A.9.2 Fit results

A.9.2.1 Figure

Zoom-in, x-axis

Comment:

Due to the variability of the data, no ontogeny fit for CYP3A5 is possible. The ontogeny function for this enzyme therefore is equal to one for all age groups.

A.9.2.2 Fit function

The ontogeny is equal to 1 for all ages. The geometric standard deviation in activity observed in adults is 2.246.

A.9.2.3 Description for PK-Sim®

CYP3A5 activity in liver is assumed to be at 100 % adult activity at all ages based on the data from Stevens et al. 2003 J Pharmacol Exp Ther 307(2):573-82.

A.9.2.4 PK-Sim® Table

Post menstrual age [year(s)]	Ontogeny for CYP3A5	Standard Deviation
0	1	2.25
0.77	1	2.25

CYP3A7 in liver

A.9.3 Original data

Reference	Used for fit
Eur J Biochem. 1997 Jul 15;247(2):625-34.; Expression of CYP3A in the human	
liverevidence that the shift between CYP3A7 and CYP3A4 occurs immediately	
after birth.; Lacroix D, Sonnier M, Moncion A, Cheron G, Cresteil T.	
Digital Object Identifyer (DOI): 10.1111/j.1432-1033.1997.00625.x	
→ Figure 4A-B (Dehydroepiandrosterone hydroxylation)	Yes
J Pharmacol Exp Ther. 2003 Nov;307(2):573-82. Epub 2003 Sep 15.;	
Developmental expression of the major human hepatic CYP3A enzymes.; Stevens	
JC, Hines RN, Gu C, Koukouritaki SB, Manro JR, Tandler PJ, Zaya MJ.	
Digital Object Identifyer (DOI): 10.1124/jpet.103.054841	
→ Figure 8 (protein content)	Yes

A.9.4 Fit results

A.9.4.1 Figure

Zoom-in, x-axis

A.9.4.2 Fit function

 $A = 1-PMA^{n}/(A_{0.5}^{n} + PMA^{n}) + offset$

With:

PMA = Post-menstrual age in weeks

A = Activity at PMA

 $A_{0.5}$ = PMA at 50 % activity compared to adult

n = Hill coefficient

GeoSD = geometric standard deviation

GeoSD adult = geometric standard deviation in activity observed in adults

Offset = activity in adults

A.9.4.3 Description for PK-Sim®

Values for CYP3A7 ontogeny are based on information to age dependency of protein content and dehydroepiandrosterone hydroxylation activity, derived from the papers as mentioned in table A.10.1.

Fit Result:

GeoSD n

Offset

n

 $A_{0.5}$

= 27.615

= 48.051

GeoSD adult = 1.254

= 1

= 0.0253

GeoSD $A_{0.5} = 1$

A.9.4.4 PK-Sim® Table

Post menstrual age [year(s)]	Ontogeny for CYP3A7	Standard Deviation
0.72	1	1.25
0.77	0.99	1.25
0.83	0.95	1.26
0.87	0.85	1.25
0.9	0.71	1.25
0.95	0.36	1.25
0.98	0.2	1.26
1.02	0.078	1.25
1.05	0.054	1.26
1.12	0.03	1.25
1.83	0.025	1.26
3.36	0.025	1.25
3.41	0.025	1.25
3.56	0.025	1.26

PK-Sim® Ontogeny Database Version 7.1

Page 29 of 49 Date: 2017-03-29

4.4 UGT enzymes in liver

A.1 UGT1A1 in liver

A.1.1 Original data

Reference	Used for fit
Dev Pharmacol Ther. 1989;13(2-4):70-7.; Development of human liver UDP-	
glucuronosyltransferases.; Burchell B, Coughtrie M, Jackson M, Harding D,	
Fournel-Gigleux S, Leakey J, Hume R.	
Pubmed ID (PMID): 2515047 (DOI not available)	
N. Table 4 (Dilimbia altramazidation)	Nie
→ Table 1 (Bilirubin glucuronidation)	No
→ Table 2 (Bilirubin glucuronidation)	Yes
Drug Metab Dispos. 2011 May;39(5):912-9. doi: 10.1124/dmd.110.037192. Epub	
2011 Jan 25.; The development of UDP-glucuronosyltransferases 1A1 and 1A6 in	
the pediatric liver.; Miyagi SJ, Collier AC.	
Divital Ohio at Islandif and (DOI): 40 4404/dead 440 007400	
Digital Object Identifyer (DOI): 10.1124/dmd.110.037192	
→ Figure 1A (Bilirubin glucuronidation)	No
Gut. 2002 Feb;50(2):259-65.; Developmental aspects of human hepatic drug	110
glucuronidation in young children and adults.; Strassburg CP, Strassburg A, Kneip	
S, Barut A, Tukey RH, Rodeck B, Manns MP.	
S, Barat A, Takey Ki I, Redook B, Marine Wi	
Digital Object Identifyer (DOI): 10.1136/gut.50.2.259	
→ Figure 2 (mRNA expression)	No
Biochem J. 1979 Dec 15;184(3):705-7.; Postnatal development of uridine	
diphosphate glucuronyltransferase activity towards bilirubin and 2-aminophenol in	
human liver.; Onishi S, Kawade N, Itoh S, Isobe K, Sugiyama S.	
Digital Object Identifyer (DOI): 10.1042/bj1840705	
→ Figure 1 (Bilirubin glucuronidation)	Yes

A.1.2 Fit results

A.1.2.1 Figure

A.1.2.2 Fit function

 $A = PMA^n/(A_{0.5}^n + PMA^n)$

With:

PMA = Post-menstrual age in weeks

A = Activity at PMA

A_{0.5} = PMA at 50 % activity compared to adult

n = Hill coefficient

GeoSD = geometric standard deviation

GeoSD adult = geometric standard deviation in activity observed in adults

Fit Result:

 $\begin{array}{rcl}
n & = 20.670 \\
A_{0.5} & = 50.754
\end{array}$

 $\begin{array}{lll} \text{GeoSD n} &= 1.066 \\ \text{GeoSD A}_{0.5} &= 1.084 \\ \text{GeoSD adult} &= 1.367 \end{array}$

A.1.2.3 Description for PK-Sim®

Values for UGT1A1 ontogeny are based on information to age dependency of mRNA expression, and bilirubin glucuronidation activity, derived from the papers as mentioned in table A.2.1.

A.1.2.4 PK-Sim® Table

Post menstrual age [year(s)]	Ontogeny for UGT1A1	Standard Deviation
0.698271871	0.000979058	2.552011728
0.769230783	0.007233677	2.38158989
0.858116925	0.064657465	2.010226488

0.890073895	0.130265653	1.816496134
0.919260323	0.224505559	1.637136698
1.029093981	0.755379558	1.228398442
1.075121403	0.884206295	1.176906228
1.128819823	0.954406977	1.152582049
1.226630092	0.991511762	1.140699267
1 361833453	0.999002397	1 138464808

A.2 UGT1A4 in liver

A.2.1 Original data

Reference	Used for fit
Drug Metab Dispos. 2007 Sep;35(9):1587-92. Epub 2007 Jun 7.; Pediatric development of glucuronidation: the ontogeny of hepatic UGT1A4.; Miyagi SJ,	Yes → although
Collier AC.	no ontogeny
Digital Object Identifyer (DOI): 10.1124/dmd.107.015214	visible for this protein
→ Figure 3A (Trifluoperazine glucoronidation)	timo protoni

A.2.2 Fit results

A.2.2.1 Figure

Comment:

Due to the variability of the data, no ontogeny fit using the Hill equation for UGT1A4 is possible. The ontogeny function for this enzyme therefore is equal to one for all age groups.

The curve shown in Miyagi et al. 2007 is a result of modeling hepatic UGT1A4 liver clearance assuming a constant rate of development. It therefore does not represent a true fit.

A.2.2.2 Fit function

The ontogeny is equal to 1 for all ages. The geometric standard deviation in activity observed in adults is 1.506.

A.2.2.3 Description for PK-Sim®

UGT1A4 activity in liver is assumed to be at 100 % adult activity at all ages based on the data from Miyagi 2007 Drug Metab Dispos 35(9):1587-1592.

A.2.2.4 PK-Sim® Table

Post menstrual age [year(s)]	Ontogeny for UGT1A4	Standard Deviation
0	1	1.51
0.77	1	1.51

A.3 UGT1A6 in liver

A.3.1 Original data

Reference	Used for fit
Drug Metab Dispos. 2011 May;39(5):912-9. doi: 10.1124/dmd.110.037192. Epub 2011 Jan 25.; The development of UDP-glucuronosyltransferases 1A1 and 1A6 in the pediatric liver.; Miyagi SJ, Collier AC.	
Digital Object Identifyer (DOI): 10.1124/dmd.110.037192	
→ Figure 2A (Serotonin glucuronidation)	Yes

A.3.2 Fit results

A.3.2.1 Figure

Zoom-in, x-axis

Comment:

The old PK-Sim fit was based on in vivo data of paracetamol glucuruonidation, i.e. paracetamol glucuronide to sulfate ratios (Edginton et al. 2006). The fit using in vitro serotonin glucuronidation data, however, shows a similar representation of UGT1A6 ontogeny.

A.3.2.2 Fit function

 $A = PMA^n/(A_{0.5}^n + PMA^n)$

With:

PK-Sim® Ontogeny Database Version 7.1

Fit Result:

n = 3.369 $A_{0.5} = 41.030$

 $\begin{array}{ll} \text{GeoSD n} &= 1.064 \\ \text{GeoSD A}_{0.5} &= 1.192 \\ \text{GeoSD adult} &= 1.769 \end{array}$

PMA = Post-menstrual age in weeks

A = Activity at PMA

 $A_{0.5}$ = PMA at 50 % activity compared to adult

n = Hill coefficient

GeoSD = geometric standard deviation

GeoSD adult = geometric standard deviation in activity observed in adults

A.3.2.3 Description for PK-Sim®

Values for UGT1A6 ontogeny are based on information to age dependency of serotonin glucuronidation as reported by Miyagi 2011 Drug Metab Dispos 39(5): 912-919.

A.3.2.4 PK-Sim® Table

Post menstrual age [year(s)]	Ontogeny for UGT1A6	Standard Deviation
0.1	0.001	2.49
0.22	0.013	2.36
0.3	0.038	2.23
0.39	0.088	2.14
0.45	0.13	2.16
0.53	0.21	1.99
0.77	0.48	1.85
0.87	0.58	1.87
0.99	0.69	1.77
1.07	0.74	1.82
1.15	0.78	1.81
1.24	0.82	1.79
1.38	0.87	1.74
1.57	0.91	1.78
1.86	0.95	1.77
2.37	0.98	1.78
3.34	0.99	1.76
6.13	1	1.76

A.4 UGT1A9 in liver

A.4.1 Original data

Reference	Used for fit
Gut. 2002 Feb;50(2):259-65.; Developmental aspects of human hepatic drug glucuronidation in young children and adults.; Strassburg CP, Strassburg A, Kneip S, Barut A, Tukey RH, Rodeck B, Manns MP.	
Digital Object Identifyer (DOI): 10.1136/gut.50.2.259	
→ Figure 2 (mRNA expression)	Yes

A.4.2 Fit results

A.4.2.1 Figure

Zoom-in, x-axis

A.4.2.2 Fit function

 $A = PMA^n/(A_{0.5}^n + PMA^n)$

With:

PMA = Post-menstrual age in weeks

A = Activity at PMA

 $A_{0.5}$ = PMA at 50 % activity compared to adult

n = Hill coefficient

GeoSD = geometric standard deviation

GeoSD adult = geometric standard deviation in activity observed in adults

Fit Result:

 $\begin{array}{ll} n & = 2.362 \\ A_{0.5} & = 84.220 \end{array}$

GeoSD n = 1.122 $GeoSD A_{0.5} = 1.997$ GeoSD adult = 1.169

A.4.2.3 Description for PK-Sim®

Values for UGT1A9 ontogeny are based on information to age dependency of mRNA expression as reported by Strassburg et al. 2002 Gut 50:259–265.

A.4.2.4 PK-Sim® Table

Post menstrual age [year(s)]	Ontogeny for UGT1A9	Standard Deviation
0.09	0.00099	5.48
0.29	0.016	4.63
0.4	0.035	3.99
0.5	0.059	3.64
0.64	0.1	3.03
0.77	0.15	2.62
1.47	0.44	1.61
1.74	0.54	1.47
2.01	0.63	1.38
2.34	0.7	1.3
2.69	0.77	1.26
3.14	0.83	1.22
3.7	0.88	1.19
4.47	0.92	1.17
5.03	0.94	1.17
5.95	0.96	1.16
7.45	0.97	1.16
10.49	0.99	1.16
16.12	1	1.17

A.5 UGT2B4 in liver

A.5.1 Original data

Reference	Used for fit
Biochem J. 1979 Dec 15;184(3):705-7.; Postnatal development of uridine diphosphate glucuronyltransferase activity towards bilirubin and 2-aminophenol in human liver.; Onishi S, Kawade N, Itoh S, Isobe K, Sugiyama S.	
Digital Object Identifyer (DOI): 10.1042/bj1840705	
→ Figure 2 (2-aminophenol glucuronidation)	Yes
Gut. 2002 Feb;50(2):259-65.; Developmental aspects of human hepatic drug glucuronidation in young children and adults.; Strassburg CP, Strassburg A, Kneip S, Barut A, Tukey RH, Rodeck B, Manns MP.	
Digital Object Identifyer (DOI): 10.1136/gut.50.2.259	
→ Figure 2 (mRNA expression)	Yes

A.5.2 Fit results

A.5.2.1 Figure

A.5.2.2 Fit function

 $A = PMA^n/(A_{0.5}^n + PMA^n)$

With:

PMA = Post-menstrual age in weeks

A = Activity at PMA

 $A_{0.5}$ = PMA at 50 % activity compared to adult

n = Hill coefficient

GeoSD = geometric standard deviation

GeoSD adult = geometric standard deviation in activity observed in adults

Fit Result: n = 6.983A_{0.5} = 79.785

GeoSD n = 1.596GeoSD A_{0.5} = 1.125GeoSD adult = 1.314

A.5.2.3 Description for PK-Sim®

Values for UGT2B4 ontogeny are based on information to age dependency of 2-aminophenol Glucuronidation, and mRNA expression, derived from the papers as mentioned in table A.5.1.

A.5.2.4 PK-Sim® Table

Post menstrual age [year(s)]	Ontogeny for UGT2B7	Standard Deviation
0.479999989	0.00099	17.12999916
0.660000026	0.0073	12.78999996
0.769999981	0.02	8.729999542
0.910000026	0.057	5.679999828
1.029999971	0.119999997	3.970000029
1.149999976	0.219999999	2.960000038
1.24000001	0.310000002	2.480000019
1.5	0.620000005	1.769999981
1.639999986	0.74000001	1.669999957
1.75999999	0.819999993	1.610000014
1.889999986	0.879999995	1.570000052
2.069999933	0.930000007	1.539999962
2.349999905	0.970000029	1.519999981
2.859999895	0.99000001	1.559999943
4.010000229	1	1.590000033

PK-Sim® Ontogeny Database Version 7.1

A.6 UGT2B7 in liver

A.6.1 Original data

Reference	Used for fit
Gut. 2002 Feb;50(2):259-65.; Developmental aspects of human hepatic drug glucuronidation in young children and adults.; Strassburg CP, Strassburg A, Kneip	
S, Barut A, Tukey RH, Rodeck B, Manns MP.	
Digital Object Identifyer (DOI): 10.1136/gut.50.2.259	
→ Figure 2 (mRNA expression)	No
Drug Metab Dispos. 2006 Dec;34(12):2097-101.; Epub 2006 Sep 19. Epirubicin glucuronidation and UGT2B7 developmental expression.; Zaya MJ1, Hines RN, Stevens JC.	
Digital Object Identifyer (DOI): 10.1124/dmd.106.011387	
→ Figure 6 A (Epirubicin glucuronidation)	Yes
Eur J Clin Pharmacol. 1982;22(6):553-8.; Morphine glucuronidation in human fetal and adult liver.; Pacifici GM, Säwe J, Kager L, Rane A.	
Digital Object Identifyer (DOI): 10.1007/BF00609630	
→ Figure 2 (Morphine glucuronidation)	Yes
Am J Dis Child. 1992 Aug;146(8):972-6.; The maturation of morphine clearance and metabolism.; McRorie TI, Lynn AM, Nespeca MK, Opheim KE, Slattery JT.	
Digital Object Identifyer (DOI): 10.1001/archpedi.1992.02160200094036	
→ Figure 2 (Morphine glucuronide clearance)	Yes
Clin Pharmacokinet. 2006;45(10):1013-34.; Development and evaluation of a generic physiologically based pharmacokinetic model for children.; Edginton AN, Schmitt W, Willmann S.	
Digital Object Identifyer (DOI): 10.2165/00003088-200645100-00005	
→Table 3 (Lorazepam and morphine clearance)	Yes

A.6.2 Fit results

A.6.2.1 Figure

Full range-plot

Zoom-in, x-axis

Morphine glucuronidation (Pacifici 1982)

X Morphine glucuronide clerance (McRorie 1982)

Fit Result:

GeoSD n

GeoSD A_{0.5}

 $A_{0.5}$

= 6.543

GeoSD adult = 1.595

= 72.533

= 1.023

= 1.554

A.6.2.2 Fit function

$$A = PMA^{n}/(A_{0.5}^{n} + PMA^{n})$$

With:

PMA = Post-menstrual age in weeks

A = Activity at PMA

 $A_{0.5}$ = PMA at 50 % activity compared to adult

X Morphine glucuronide clerance (McRorie 1982)

n = Hill coefficient

GeoSD = geometric standard deviation

GeoSD adult = geometric standard deviation in activity observed in adults

A.6.2.3 Description for PK-Sim®

Values for UGT2B7 ontogeny are based on information to age dependency morphine glucuronidation activity, epirubicin glucuronidation activity, as well as in vivo morphine and lorazepam glucuronide clearance, derived from the papers as mentioned in table A.6.1.

A.6.2.4 PK-Sim® Table

Post menstrual age [year(s)]	Ontogeny for UGT2B7	Standard Deviation
0.479999989	0.00099	17.12999916
0.660000026	0.0073	12.78999996

0.769999981	0.02	8.729999542
0.910000026	0.057	5.679999828
1.029999971	0.119999997	3.970000029
1.149999976	0.219999999	2.960000038
1.24000001	0.310000002	2.480000019
1.5	0.620000005	1.769999981
1.639999986	0.74000001	1.669999957
1.75999999	0.819999993	1.610000014
1.889999986	0.879999995	1.570000052
2.069999933	0.930000007	1.539999962
2.349999905	0.970000029	1.519999981
2.859999895	0.99000001	1.559999943
4.010000229	1	1.590000033

4.5 CYP Enzymes in the intestine

A.1 CYP3A4 in duodenum

A.1.1 Original data

Reference	Used for fit
Br J Clin Pharmacol. 2001 May;51(5):451-60.; Enterocytic CYP3A4 in a paediatric population: developmental changes and the effect of coeliac disease and cystic fibrosis.; Johnson TN, Tanner MS, Taylor CJ, Tucker GT.	
Digital Object Identifyer (DOI): 10.1046/j.1365-2125.2001.01370.x	
→ Figure 2 (Protein content and Testosterone 6 beta hydroxylation)	Yes

A.1.2 Fit results

A.1.2.1 Figure

Full range-plot

Zoom-in, x-axis

A.1.2.2 Fit function

$$A = PMA^n/(A_{0.5}^n + PMA^n)$$

With:

PMA = Post-menstrual age in weeks

A = Activity at PMA

A_{0.5} = PMA at 50 % activity compared to adult

n = Hill coefficient

GeoSD = geometric standard deviation

Fit Result:

 $\begin{array}{ll} n & = 1.237 \\ A_{0.5} & = 74.055 \end{array}$

 $\begin{array}{lll} \text{GeoSD n} &= 1.872 \\ \text{GeoSD A}_{0.5} &= 1.000 \\ \text{GeoSD adult} &= 1.451 \end{array}$

GeoSD adult = geometric standard deviation in activity observed in adults

A.1.2.3 Description for PK-Sim®

Values for CYP3A4 ontogeny in intestine are based on information to age dependency of protein content and testosterone 6 beta hydroxylation activity as described by Johnson et al. 2001 Br J Clin Pharmacol. 51(5):451-60.

A.1.2.4 PK-Sim® Table

Post menstrual age [year(s)]	Ontogeny for CYP3A4	Standard Deviation
0.01	0.0011	13.99
0.03	0.0086	5.87
0.53	0.23	1.67
0.59	0.25	1.63
0.77	0.32	1.52
1.08	0.41	1.45
1.44	0.5	1.45
1.92	0.59	1.47
2.41	0.66	1.48
3.13	0.73	1.49
3.97	0.78	1.49
5.17	0.83	1.49
6.87	0.87	1.46
9.29	0.91	1.47
13.18	0.94	1.48
17.8	0.96	1.47
25.51	0.97	1.47
38.25	0.98	1.45
60.21	0.99	1.46
101.04	1	1.43

4.6 **Plasma Proteins**

A.1 Human Serum albumin (HSA)

A.1.1 Original data

Reference	Used for fit
AAPS PharmSci. 2002;4(1):E4.; Protein binding predictions in infants.; McNamara PJ1, Alcorn J.	
Digital Object Identifyer (DOI): 10.1208/ps040104	
→ Figure 1 (serum protein concentrations)	Yes

A.1.2 Fit results

A.1.2.1 **Figure**

A.1.2.2 Fit function

 $A = PMA^n/(A_{0.5}^n + PMA^n)$

With:

PMA = Post-menstrual age in weeks

= Activity at PMA

A_{0.5} = PMA at 50 % activity compared to adult

= Hill coefficient

GeoSD = geometric standard deviation

Fit Result:

= 3.240

 $A_{0.5}$ = 21.533

GeoSD n = 1.284GeoSD A_{0.5} = 1.205

GeoSD adult = 1.177

GeoSD adult = geometric standard deviation in activity observed in adults

A.1.2.3 Description for PK-Sim®

Values for Human Serum albumin ontogeny are based on information to age dependency of serum albumin concentrations, as reported by McNamara et al., AAPS PharmSci. 2002;4(1):E4.

A.1.2.4 PK-Sim® Table

Post menstrual age [year(s)]	Ontogeny for HSA	Standard Deviation
0.05	0.0011	4.46
0.1	0.011	2.8
0.16	0.04	2.2
0.23	0.13	1.74
0.46	0.59	1.29
0.55	0.71	1.24
0.64	0.81	1.2
0.77	0.88	1.19
0.88	0.92	1.2
1.06	0.96	1.17
1.42	0.98	1.18
2.17	1	1.18

A.2 Alpha-1-acid glycoprotein (AAG)

A.2.1 Original data

Reference	Used for fit
AAPS PharmSci. 2002;4(1):E4.; Protein binding predictions in infants.; McNamara PJ1, Alcorn J.	
Digital Object Identifyer (DOI): 10.1208/ps040104	
→ Figure 1 (AAG)	Yes

A.2.2 Fit results

A.2.2.1 Figure

A.2.2.2 Fit function

 $A = PMA^n/(A_{0.5}^n + PMA^n)$

With:

PMA = Post-menstrual age in weeks

A = Activity at PMA

 $A_{0.5}$ = PMA at 50 % activity compared to adult

n = Hill coefficient

GeoSD = geometric standard deviation

GeoSD adult = geometric standard deviation in activity observed in adults

A.2.2.3 Description for PK-Sim®

Values for A.2 Alpha-1-acid glycoprotein ontogeny are based on information to age dependency of serum Alpha-1-acid glycoprotein concentrations, as reported by McNamara et al., AAPS PharmSci. 2002;4(1):E4.

A.2.2.4 PK-Sim® Table

Post menstrual age [year(s)]	Ontogeny for AAG	Standard Deviation
0.43	0.001	55.73
0.53	0.035	8.11
0.58	0.12	3.86
0.61	0.24	2.63
0.69	0.74	1.39
0.73	0.87	1.27
0.77	0.94	1.23
0.84	0.99	1.21
0.92	1	1.21

Fit Result:

 $\begin{array}{ll} n & = 16.441 \\ A_{0.5} & = 33.898 \end{array}$

GeoSD n = 1.284 GeoSD $A_{0.5}$ = 1.358

GeoSD adult = 1.235