设
$$A$$
, B , C , D 为 4 个 n 阶复方阵, 满足 $AC = CA$. 证明:

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |AD - CB|.$$

秩与相抵

- ① 对于矩阵 **A**, 我们仍然用 $A \begin{pmatrix} i_1 & i_2 & \dots & i_r \\ j_1 & j_2 & \dots & j_r \end{pmatrix}$ 来表示由 **A** 的第 $i_1 < i_2 < \dots < i_r$ 行、 第 $j_1 < j_2 < \dots < j_r$ 列元素构成的 r 阶子阵, 其行列式称为 **A** 的一个 r 阶子式.
- ② **A** 的非零子式的最高阶数称为 **A** 的秩 (rank), 记作 r(A) = rank(A). 约定: 零矩阵的秩为 0.

個

研究矩阵

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 5 & 6 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

注

- **⑤** 若 $\mathbf{A} \in \mathbf{F}^{m \times n}$, 则 $\operatorname{rank}(\mathbf{A}) < \min(m, n)$.
 - ② $\operatorname{rank}(\boldsymbol{A}) = r$ 的充要条件是 \boldsymbol{A} 有 r 阶非零子式, 且所有 r+1 阶子式为 0 (若 $r = \min(m, n)$, 最后一条视为自动成立).
- rank($\boldsymbol{A}^{\mathsf{T}}$) = rank(\boldsymbol{A}).
- **4** 对于 $\lambda \neq 0$, 有 $\operatorname{rank}(\lambda \mathbf{A}) = \operatorname{rank}(\mathbf{A})$.
- ③ $rank(\mathbf{A}) = 0$ 当且仅当 $\mathbf{A} = \mathbf{O}$. 若 $rank(\mathbf{A}) = 1$, 则 \mathbf{A} 的各个行向量互成比例, 其各个列向量也互成比例.

例 (阶梯形矩阵的秩是它的非零行数)

考虑阶梯形矩阵

$$\begin{pmatrix} 0 & \cdots & 0 & a_{1j_1} & \cdots & \cdots & a_{1n} \\ 0 & \cdots & 0 & a_{2j_2} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{rj_r} & a_{rn} \\ \vdots & \vdots & \vdots \\ 0 & \cdots & 0 \end{pmatrix},$$

其中 $i_1 < i_2 < \dots < i_r$, 并且对于 $i = 1, 2, \dots, r$ 有 $a_{ii} \neq 0$.

定理1

初等变换不改变矩阵的秩.

推论 2

设 A 为 $m \times n$ 矩阵, P 为 m 阶可逆矩阵, Q 为 n 阶可逆矩阵, 则 $\operatorname{rank}(PAQ) = \operatorname{rank}(A)$.

求矩阵的秩的常用方法

一般地, 我们会通过初等行变换, 将 A 化为阶梯形矩阵 B, 则 B 的非零行的行数 r 就是 A 的秩. 另外, 在求秩的时候, 没有必要计算其约化标准形, 阶梯标准形就够用了.

例

研究
$$4 \times 5$$
 矩阵 $\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 & 1 & 1 \\ 2 & -2 & 0 & 2 & 2 \\ 1 & 1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 1 & 1 \end{pmatrix}.$

矩阵的相抵等价

定义

若 $A \cap B$ 同为 $m \times n$ 矩阵, 且存在可逆的 m 阶矩阵 P 和可逆的 n 阶矩阵 Q 使得 B = PAQ, 则称 $A \cap B$ 相抵 (也称为等价, equivalent). 不难验证, 相抵关系是一个等价关系, 即满足:

- (反身性) A 与自身相抵;
- (对称性) 若 A 与 B 相抵, 则 B 与 A 也相抵;
- (传递性) A 与 B 相抵, 且 B 与 C 相抵, 则 A 与 C 也相抵.

所有的 $m \times n$ 矩阵依照相抵关系分为不同的相抵等价类 (同一相抵等价类的矩阵互相相抵,两个不同相抵等价类的矩阵互不相抵). 每个相抵等价类里都存在唯一的相抵标准形,形如 $\begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$.

同型的矩阵 \boldsymbol{A} 和 \boldsymbol{B} 相抵的充要条件是 $\operatorname{rank}(\boldsymbol{A}) = \operatorname{rank}(\boldsymbol{B})$.

例

检验矩阵

检验矩阵
$$m{A} = \begin{pmatrix} -1 & 0 & 1 & 1 \\ 1 & -2 & -1 & -3 \\ 2 & -1 & -2 & -3 \end{pmatrix}$$
 和 $m{B} = \begin{pmatrix} 2 & -1 & 7 & 0 \\ 0 & -1 & 1 & 2 \\ 1 & -1 & 4 & 1 \end{pmatrix}$

是否相抵.

茂省相抵.

设 A 和 B 为任意矩阵, 证明:

$$\operatorname{rank}\begin{pmatrix} \mathbf{A} & \\ & \mathbf{B} \end{pmatrix} = \operatorname{rank}(\mathbf{A}) + \operatorname{rank}(\mathbf{B}).$$

对于矩阵

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & b \\ 2 & 3 & a & 4 \\ 3 & 5 & 1 & 7 \end{pmatrix},$$

若已知 $rank(\mathbf{A}) = 3$, 求出 $a \rightarrow b$.

对于矩阵 $\mathbf{A} \in F^{m \times n}$, $\mathbf{B} \in F^{n \times p}$, 证明:

 $\operatorname{rank}(\boldsymbol{A}\boldsymbol{B}) \leq \min(\operatorname{rank}(\boldsymbol{A}), \operatorname{rank}(\boldsymbol{B})).$

- - $\mathbf{0} \quad \operatorname{rank}(\mathbf{A} \mathbf{B}) \geq \operatorname{rank}(\mathbf{B}).$
 - $(\mathbf{0} \operatorname{rank}(\mathbf{A} \mathbf{B}) \geq \operatorname{rank}(\mathbf{A} + \mathbf{B}).$
- rank(rank(rank(<math> rank(rank() <math> rank(rank() <math> rank(rank() <math> rank() <math> rank() <math> rank() rank() <math> rank() rank() <math> rank() rank(rank() rank(rank() rank(rank(rank(rank(rank(rank(rank(rank(rank(rank(
- $\operatorname{rank}(\boldsymbol{A}) + \operatorname{rank}(\boldsymbol{B}) \ge \operatorname{rank}(\boldsymbol{A} + \boldsymbol{B}).$ $\operatorname{rank}\begin{pmatrix} \boldsymbol{A} & \boldsymbol{C} \\ \boldsymbol{O} & \boldsymbol{B} \end{pmatrix} \ge \operatorname{rank}(\boldsymbol{A}) + \operatorname{rank}(\boldsymbol{B}).$

例 (Frobenius 不等式)

假定 A, B, C 分别为 $n \times m$, $m \times p$, $p \times q$ 矩阵. 试证: $\operatorname{rank}(AB) + \operatorname{rank}(BC) < \operatorname{rank}(B) + \operatorname{rank}(ABC)$.

推论 4

假定 A, B, C 分别为 $n \times m, m \times p, p \times q$ 矩阵.

- **①** (Sylvester 不等式): $rank(\mathbf{A}) + rank(\mathbf{B}) \leq m + rank(\mathbf{A}\mathbf{B})$.
- ② 当 $rank(\mathbf{AB}) = rank(\mathbf{B})$ 时,有 $rank(\mathbf{BC}) = rank(\mathbf{ABC})$.

设 n 阶方阵 A 为幂等矩阵, 即 A 满足 $A^2 = A$. 证明: tr(A) = rank(A).

对于 n 阶方阵 A, 证明:

 $\mathbf{A}^2 = \mathbf{A} \qquad \Longleftrightarrow \qquad \operatorname{rank}(\mathbf{A}) + \operatorname{rank}(\mathbf{I} - \mathbf{A}) = \mathbf{n}.$

设 n 阶方阵 A 为对合矩阵, 即 A 满足 $A^2 = I$. 求方阵 $\operatorname{diag}(I + A, I - A)$ 的相抵标准形.