Implementing a Capability Machine model into Iris

Aïna Linn Georges

Alix Trieu

Lars Birkedal

Aarhus University

ageorges@cs.au.dk

October 28, 2019

High-level Programming Language

Assembly

- ► Local state encapsulation
- ► Well bracketed control flow

High-level Programming Language

Assembly

- ► Local state encapsulation
- ► Well bracketed control flow

High-level Programming Language

Assembly

- ► Local state encapsulation
- Well bracketed control flow

- ► Local state encapsulation
- ► Well bracketed control flow

Programming Languages

- ► Local State Encapsulation
- ► Well Bracketed Control Flow

Assembly Language

- ▶ Programs lie in Memory, Program Counter, ...
- Arbitrary Pointer Manipulation
- Arbitrary Jumps

Machine Code

Instruction Decoding, Cache, etc.

Programming Languages

- Local State Encapsulation
- ► Well Bracketed Control Flow

Assembly Language

- Programs lie in Memory, Program Counter, ...
- Arbitrary Pointer Manipulation
- Arbitrary Jumps

Machine Code

Instruction Decoding, Cache, etc.

Programming Languages

- ► Local State Encapsulation
- Well Bracketed Control Flow

Assembly Language

- ▶ Programs lie in Memory, Program Counter, ...
- Arbitrary Pointer Manipulation
- Arbitrary Jumps

Machine Code

Instruction Decoding, Cache, etc.

Programming Languages

- ► Local State Encapsulation
- Well Bracketed Control Flow

Assembly Language

- Programs lie in Memory, Program Counter, ...
- Arbitrary Pointer Manipulation
- Arbitrary Jumps

Machine Code

Instruction Decoding, Cache, etc.

Programming Languages

- Local State Encapsulation
- Well Bracketed Control Flow

Assembly Language

- ▶ Programs lie in Memory, Program Counter, ...
- Arbitrary Pointer Manipulation
- Arbitrary Jumps

Machine Code

Instruction Decoding, Cache, etc.

Programming Languages

- ► Local State Encapsulation
- Well Bracketed Control Flow

Assembly Language

- Programs lie in Memory, Program Counter, ...
- Arbitrary Pointer Manipulation
- Arbitrary Jumps

Machine Code

Instruction Decoding, Cache, etc.

Programming Languages

- ► Local State Encapsulation
- ► Well Bracketed Control Flow

Assembly Language

- Programs lie in Memory, Program Counter, ...
- Arbitrary Pointer Manipulation
- Arbitrary Jumps

Machine Code

► Instruction Decoding, Cache, etc.

Overview

Capability Machines

Reasoning about Capability Safety

Program Logic

Proving Hoare Triples

A Unary Logical Relation for Reasoning about Semantic Properties of an Untyped Language

The Fundamental Theorem of Logical Relations

Reasoning about Unknown Code

Enforcing Local Stack Encapsulation using Capabilities

Local State Encapsulation


```
push r_stk 1
scall r
pop r_stk r_1
assert r_1 1
halt
```

Local State Encapsulation


```
push r_stk 1
scall r
pop r_stk r_1
assert r_1 1
halt
```

Local State Encapsulation


```
push r_stk 1
scall r
pop r_stk r_1
assert r_1 1
halt
```

Enforcing Well Bracketed Control Flow using Capabilities


```
push r_stk 1
scall r
pop r_stk r_1
assert r_1 1
push r_stk 2
scall r
halt
```



```
push r_stk 1
scall r
pop r_stk r_1
assert r_1 1
push r_stk 2
scall r
halt
```



```
push r_stk 1
scall r
pop r_stk r_1
assert r_1 1
push r_stk 2
scall r
halt
```



```
push r_stk 1
scall r
pop r_stk r_1
assert r_1 1
push r_stk 2
scall r
halt
```



```
push r_stk 1
scall r
pop r_stk r_1
assert r_1 1
push r_stk 2
scall r
halt
```



```
push r_stk 1
scall r
pop r_stk r_1
assert r_1 1
push r_stk 2
scall r
halt
```


Calling Convention

 $r_stk \mid (RWLX, Local, b, e, a)$

Calling Convention

 $r_stk \mid (RWLX, Local, b, e, a)$

Reasoning about Capability Safety

- using a Program Logic
- using a logical relation to capture invariants on the type system
- using a logical relation on an untyped (or uni-typed)
 language to capture semantic properties of the language

- using a Program Logic
- using a logical relation to capture invariants on the type system
- using a logical relation on an untyped (or uni-typed)
 language to capture semantic properties of the language

- using a Program Logic
- using a logical relation to capture invariants on the type system
- using a logical relation on an untyped (or uni-typed)language to capture semantic properties of the language

- using a Program Logic
- using a logical relation to capture invariants on the type system
- using a logical relation on an untyped (or uni-typed)
 language to capture semantic properties of the language

- using a logical relation on an untyped (or uni-typed) language to capture semantic properties of the language
 - 1. embed the language into Iris
 - 2. define a program logic by proving Hoare Triples
 - 3. define the logical relation
 - 4. prove the fundamental theorem of logical relations
 - use the logical relation to prove examples that rely on local state encapsulation and well-bracketed control flow with calls to unknown adversary

- using a logical relation on an untyped (or uni-typed) language to capture semantic properties of the language
 - 1. embed the language into Iris
 - 2. define a program logic by proving Hoare Triples
 - 3. define the logical relation
 - 4. prove the fundamental theorem of logical relations
 - use the logical relation to prove examples that rely on local state encapsulation and well-bracketed control flow with calls to unknown adversary

- using a logical relation on an untyped (or uni-typed)
 language to capture semantic properties of the language
 - 1. embed the language into Iris
 - 2. define a program logic by proving Hoare Triples
 - define the logical relation
 - 4. prove the fundamental theorem of logical relations
 - use the logical relation to prove examples that rely on local state encapsulation and well-bracketed control flow with calls to unknown adversary

- using a logical relation on an untyped (or uni-typed)
 language to capture semantic properties of the language
 - 1. embed the language into Iris
 - 2. define a program logic by proving Hoare Triples
 - 3. define the logical relation
 - 4. prove the fundamental theorem of logical relations
 - use the logical relation to prove examples that rely on local state encapsulation and well-bracketed control flow with calls to unknown adversary

- using a logical relation on an untyped (or uni-typed)
 language to capture semantic properties of the language
 - 1. embed the language into Iris
 - 2. define a program logic by proving Hoare Triples
 - 3. define the logical relation
 - 4. prove the fundamental theorem of logical relations
 - use the logical relation to prove examples that rely on local state encapsulation and well-bracketed control flow with calls to unknown adversary

- using a logical relation on an untyped (or uni-typed) language to capture semantic properties of the language
 - 1. embed the language into Iris
 - 2. define a program logic by proving Hoare Triples
 - 3. define the logical relation
 - 4. prove the fundamental theorem of logical relations
 - use the logical relation to prove examples that rely on local state encapsulation and well-bracketed control flow with calls to unknown adversary

Program Logic

$$(\textit{reg}, \textit{mem}) \rightarrow (\textit{reg}', \textit{mem}')$$

- Instr Executable
- ► Instr Halted → HaltedV
- ▶ Instr Failed → FailedV

$$(\textit{reg}, \textit{mem}) \rightarrow (\textit{reg}', \textit{mem}')$$

- ► Instr Executable
- ► Instr Halted → HaltedV
- ▶ Instr Failed → FailedV

$$(\textit{reg}, \textit{mem}) \rightarrow (\textit{reg}', \textit{mem}')$$

- ► Instr Executable
- ▶ Instr Halted → HaltedV
- ► Instr Failed → FailedV

$$(\textit{reg}, \textit{mem}) \rightarrow (\textit{reg}', \textit{mem}')$$

- ► Instr Executable
- ▶ Instr Halted → HaltedV
- ► Instr Failed → FailedV

$$(\textit{reg}, \textit{mem}) \rightarrow (\textit{reg}', \textit{mem}')$$

- Instr Executable
- ▶ Instr Halted → HaltedV
- ▶ Instr Failed \rightarrow FailedV

A Capability Points-to Predicate

$$a\mapsto_a [RWL]w$$

$$a \mapsto_a [RWL]w \Longrightarrow a \mapsto_a [RWL]((p, Local), b, e, l)$$

$$a \mapsto_a [RWL]w \Longrightarrow a \mapsto_a [RWL]((p, Local), b, e, l)$$

$$\Longrightarrow a \mapsto_a [RW]((p, Local), b, e, l)$$

$$a \mapsto_{a} [RWL]w \Longrightarrow a \mapsto_{a} [RWL]((p, Local), b, e, l)$$

$$\Longrightarrow a \mapsto_{a} [RW]((p, Local), b, e, l)$$

$$\Longrightarrow a \mapsto_{a} [RW]((p', Local), b', e', l')$$

Proving Hoare Triples

Successful Execution

Hoare Triples of the Program Logic: Success

```
decode(w) = Load dst src
   \land isCorrectPC ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc})
   \land readAllowed p_{src} \land withinBounds (b_{src}, e_{src}, a_{src})
\{\{\{PC \mapsto_r ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc}) * a_{pc} \mapsto_a [p_{pc}]w\}
      * dst \mapsto_r w_{dst} * src \mapsto_r ((p_{src}, g_{src}), b_{src}, e_{src}, a_{src})
      * a_{src} \mapsto_a [p_{src}] w_{src} \} \}
     Instr Executable
\{\{\{PC \mapsto_r ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc} + 1) * a_{pc} \mapsto_a [p_{pc}]w\}
      * dst \mapsto_r w_{src} * src \mapsto_r ((p_{src}, g_{src}), b_{src}, e_{src}, a_{src})
      * a_{src} \mapsto_a [p_{src}] w_{src} \} \}
```

Hoare Triples of the Program Logic: Success

```
decode(w) = Load dst src
   \land isCorrectPC ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc})
   \land readAllowed p_{src} \land withinBounds (b_{src}, e_{src}, a_{src})
\{\{\{PC \mapsto_r ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc}) * a_{pc} \mapsto_a [p_{pc}]w\}
      * dst \mapsto_r w_{dst} * src \mapsto_r ((p_{src}, g_{src}), b_{src}, e_{src}, a_{src})
      * a_{src} \mapsto_a [p_{src}] w_{src} \} \}
     Instr Executable
\{\{\{PC \mapsto_r ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc} + 1) * a_{pc} \mapsto_a [p_{pc}]w\}
      * dst \mapsto_r w_{src} * src \mapsto_r ((p_{src}, g_{src}), b_{src}, e_{src}, a_{src})
      * a_{src} \mapsto_a [p_{src}] w_{src} \} \}
```

Hoare Triples of the Program Logic: Success

```
decode(w) = Load dst src
   \land isCorrectPC ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc})
   \land readAllowed p_{src} \land withinBounds (b_{src}, e_{src}, a_{src})
\{\{\{PC \mapsto_r ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc}) * a_{pc} \mapsto_a [p_{pc}]w\}
      * dst \mapsto_r w_{dst} * src \mapsto_r ((p_{src}, g_{src}), b_{src}, e_{src}, a_{src})
      * a_{src} \mapsto_a [p_{src}] w_{src} \} \}
     Instr Executable
\{\{\{PC \mapsto_r ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc} + 1) * a_{pc} \mapsto_a [p_{pc}]w\}
      * dst \mapsto_r w_{src} * src \mapsto_r ((p_{src}, g_{src}), b_{src}, e_{src}, a_{src})
      * a_{src} \mapsto_a [p_{src}] w_{src} \} \}
```

Failed Execution

Hoare Triples of the Program Logic: Failure

```
\begin{aligned} & decode(w) = \text{Load dst src} \\ & \land \text{ isCorrectPC } ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc}) \\ & \land \neg \text{readAllowed } p_{src} \lor \neg \text{withinBounds } (b_{src}, e_{src}, a_{src}) \\ & \{ \{ \mathsf{PC} \mapsto_r ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc}) * a_{pc} \mapsto_a [p_{pc}] w \\ & * \mathit{src} \mapsto_r ((p_{src}, g_{src}), b_{src}, e_{src}, a_{src}) \} \} \\ & \text{Instr Executable} \\ & \{ \{ \{ \mathsf{FailedV}, \top \} \} \} \end{aligned}
```

Hoare Triples of the Program Logic: Failure

```
\begin{aligned} & \textit{decode}(w) = \mathsf{Load} \; \mathsf{dst} \; \mathsf{src} \\ & \land \; \mathsf{isCorrectPC} \; ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc}) \\ & \land \; \neg \mathsf{readAllowed} \; p_{src} \; \lor \; \neg \mathsf{withinBounds} \; (b_{src}, e_{src}, a_{src}) \\ & \{ \{ \; \mathsf{PC} \; \mapsto_r \; ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc}) * \; a_{pc} \; \mapsto_a \; [p_{pc}] w \\ & * \; \mathit{src} \; \mapsto_r \; ((p_{src}, g_{src}), b_{src}, e_{src}, a_{src}) \} \} \} \\ & \mathsf{Instr} \; \mathsf{Executable} \\ & \{ \{ \; \mathsf{FailedV}, \top \} \} \} \end{aligned}
```

A Unary Logical Relation for Reasoning about Semantic Properties of an Untyped Language

A unary logical relation of an un-typed language

$$\mathcal{V}: \textit{Word} \rightarrow \textit{iProp} \ \Sigma$$

World: A collection of state transition systems to reason about *local state*

$$\mathcal{V}(W)(z) \triangleq \exists z' \in \mathbb{Z}. z = z'$$

$$\mathcal{V}(W)(((RO, g), b, e, a)) \triangleq \mathsf{read_write_cond}(RO, b, e)$$

$$\mathcal{V}(W)(((RX, g), b, e, a)) \triangleq \mathsf{read_write_cond}(RX, b, e)$$

$$* \Box \mathsf{exec_cond}(W)(RX, g, b, e)$$

A unary logical relation of an un-typed language

$$\mathcal{V}: \begin{subarray}{ll} World
ightarrow & Word
ightarrow iProp \ \Sigma \ \end{subarray}$$

World: A collection of state transition systems to reason about *local state*

$$\mathcal{V}(W)(z) \triangleq \exists z' \in \mathbb{Z}.z = z'$$

$$\mathcal{V}(W)(((RO,g),b,e,a)) \triangleq \mathsf{read_write_cond}(RO,b,e)$$

$$\mathcal{V}(W)(((RX,g),b,e,a)) \triangleq \mathsf{read_write_cond}(RX,b,e)$$

$$* \ \Box \ \mathsf{exec_cond}(W)(RX,g,b,e)$$

A unary logical relation of an un-typed language

$$\mathcal{V}: \begin{subarray}{ll} World
ightarrow & Word
ightarrow iProp \begin{subarray}{ll} \Sigma \end{subarray}$$

World: A collection of state transition systems to reason about *local state*

$$\mathcal{V}(W)(z) \triangleq \exists z' \in \mathbb{Z}.z = z'$$

$$\mathcal{V}(W)(((RO,g),b,e,a)) \triangleq \mathsf{read_write_cond}(RO,b,e)$$

$$\mathcal{V}(W)(((RX,g),b,e,a)) \triangleq \mathsf{read_write_cond}(RX,b,e)$$

$$* \Box \mathsf{exec_cond}(W)(RX,g,b,e)$$

The Execute Condition

The Execute Condition

$$\mathsf{exec_cond}(\mathsf{W})(\mathsf{p},\mathsf{g},\mathsf{b},\mathsf{e}) \triangleq \begin{cases} \forall \mathsf{a} \in [b\ e], W' \sqsubseteq_{\mathsf{pub}} W. \\ \rhd \ \mathcal{E}(W')(((\mathsf{p},\mathsf{g}),\mathsf{b},\mathsf{e},\mathsf{a})) \quad \mathsf{g} = \mathsf{Local} \end{cases}$$

$$\forall \mathsf{a} \in [b\ e], W' \sqsubseteq_{\mathsf{priv}} W. \\ \rhd \ \mathcal{E}(W')(((\mathsf{p},\mathsf{g}),\mathsf{b},\mathsf{e},\mathsf{a})) \quad \mathsf{g} = \mathsf{Global} \end{cases}$$

```
\mathcal{E}(W)(pc) \triangleq \forall r, \mathcal{R}(W)(r) * \operatorname{context}(W)(r[\operatorname{PC} := pc])
-* \operatorname{WP} \operatorname{Seq} (\operatorname{Instr} \operatorname{Executable})
\{v, v = \operatorname{\textit{HaltedV}} \implies \exists W'r', W' \sqsubseteq_{\textit{priv}} W
* \operatorname{context}(W')(r')\}
```

```
\mathcal{E}(W)(pc) \triangleq \forall r, \mathcal{R}(W)(r) * \operatorname{context}(W)(r[PC := pc])
-* WP Seq (Instr Executable)
\{v, v = HaltedV \implies \exists W'r', W' \sqsubseteq_{priv} W
* \operatorname{context}(W')(r')\}
```

$$context(W)(r) = ?$$

$$\mathcal{E}(W)(pc) \triangleq \forall r, \mathcal{R}(W)(r) * \operatorname{context}(W)(r[PC := pc])$$

$$-* WP Seq (Instr Executable)$$

$$\{v, v = HaltedV \implies \exists W'r', W' \sqsubseteq_{priv} W$$

$$* \operatorname{context}(W')(r')\}$$

$$context(W)(r) = (\underset{r_i \mapsto w \in r}{\bigstar} r_i \mapsto_r w) \land full_map r$$

```
\mathcal{E}(W)(pc) \triangleq \forall r, \mathcal{R}(W)(r) * \operatorname{context}(W)(r[PC := pc])
-* WP Seq (Instr Executable)
\{v, v = HaltedV \implies \exists W'r', W' \sqsubseteq_{priv} W
* \operatorname{context}(W')(r')\}
```

$$\frac{\mathsf{context}(W)(r)}{r_i \mapsto w \in r} = (\underset{r_i \mapsto w \in r}{\bigstar} r_i \mapsto_r w) \land \mathsf{full_map} \ r$$

$$* \mathsf{na_inv} \ \gamma_{na} \top$$

```
\mathcal{E}(W)(pc) \triangleq \forall r, \mathcal{R}(W)(r) * \operatorname{context}(W)(r[PC := pc])
-* WP Seq (Instr Executable)
\{v, v = HaltedV \implies \exists W'r', W' \sqsubseteq_{priv} W
* \operatorname{context}(W')(r')\}
```

$$\mathcal{E}(W)(pc) \triangleq \forall r, \mathcal{R}(W)(r) * \operatorname{context}(W)(r[PC := pc])$$

$$-* WP Seq (Instr Executable)$$

$$\{v, v = HaltedV \implies \exists W'r', W' \sqsubseteq_{priv} W$$

$$* \operatorname{context}(W')(r')\}$$

$$\mathsf{context}(W)(r) = (\underset{r_i \mapsto w \in r}{\bigstar} r_i \mapsto_r w) \land \mathsf{full_map} \ r$$
 $* \mathsf{na_inv} \ \gamma_{na} \top$
 $* \mathsf{sts_full} \ W$
 $* \mathsf{region} \ W$

The Fundamental Theorem of Logical Relations

The Fundamental Theorem of logical relations

If we can read a region, and every word in that region is safe, then we can safely execute it

- ▶ "If we can read a region" : $p = RX \lor p = RWX \lor p = RWLX$
- "and every word in that region is safe":
 read_write_cond (p, b, e)
- ▶ "then we can safely execute it": $\mathcal{E}(W)(((p,g),b,e,a))$

$$(p = \text{RX} \lor p = \text{RWX} \lor p = \text{RWLX}) \Longrightarrow$$

read_write_cond $(p, b, e) \Longrightarrow \mathcal{E}(W)(((p, g), b, e, a))$

- ▶ "If we can read a region" : $p = RX \lor p = RWX \lor p = RWLX$
- "and every word in that region is safe": read_write_cond (p, b, e)
- ▶ "then we can safely execute it": $\mathcal{E}(W)(((p,g),b,e,a))$

$$(p = \text{RX} \lor p = \text{RWX} \lor p = \text{RWLX}) \Longrightarrow$$

read_write_cond $(p, b, e) \Longrightarrow \mathcal{E}(W)(((p, g), b, e, a))$

- ▶ "If we can read a region" : $p = RX \lor p = RWX \lor p = RWLX$
- "and every word in that region is safe": read_write_cond (p, b, e)
- ▶ "then we can safely execute it": $\mathcal{E}(W)(((p,g),b,e,a))$

$$(p = \text{RX} \lor p = \text{RWX} \lor p = \text{RWLX}) \Longrightarrow$$

read_write_cond $(p, b, e) \Longrightarrow \mathcal{E}(W)(((p, g), b, e, a))$

- ▶ "If we can read a region" : $p = RX \lor p = RWX \lor p = RWLX$
- "and every word in that region is safe": read_write_cond (p, b, e)
- ▶ "then we can safely execute it": $\mathcal{E}(W)(((p,g),b,e,a))$

$$(p = \text{RX} \lor p = \text{RWX} \lor p = \text{RWLX}) \Longrightarrow$$

read_write_cond $(p, b, e) \Longrightarrow \mathcal{E}(W)(((p, g), b, e, a))$

Reasoning about Unknown Code

Reasoning about Unknown Code

We use the fundamental theorem to reason about calls to an unknown adversary

$$\mathcal{E}(W)(pc) \triangleq \forall r, \mathcal{R}(W)(r) * \operatorname{context}(W)(r[\operatorname{PC} := pc])$$

$$-* \operatorname{WP} \operatorname{Seq} (\operatorname{Instr} \operatorname{Executable})$$

$$\{v, v = \operatorname{Halted}V \implies \exists W'r', W' \sqsubseteq_{\operatorname{priv}}W$$

$$* \operatorname{context}(W')(r')\}$$

Conclusion

- Embed a capability machine into Iris
- ► Define its program logic
- Mechanize a unary logical relation for an untyped capability machine language
- Prove the fundamental theorem of logical relations
- Reason about examples that rely on Local Stack Encapsulation and Well-Bracketed Control Flow with calls to an unknown adversary

References

Lau Skorstengaard, Dominique Devriese, and Lars Birkedal (2018) Reasoning About a Machine with Local Capabilities ESOP *Programming Languages and Systems* 475–501.

Derek Dreyer, Georg Neis, Lars Birkedal (2012)

The impact of higher-order state and control effects on local relational reasoning

Journal of Functional Programming 22(4-5) 477-528.

Derek Dreyer, Amal Ahmed, Lars Birkedal (2011) Logical Step-Indexed Logical Relations *LMCS* 7(2:16).