TYPE YOUR NAME HERE HW 15: 3.8-3.10 M328K

March 20th, 2012

3.8 Theorem. Suppose $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$ is a polynomial of degree n > 0 with integer coefficients. Let a, b, and m be integers with m > 0. If $a \equiv b \pmod{m}$, then $f(a) \equiv f(b) \pmod{m}$.

Proof. Type your proof here! \Box

3.9 Corollary. Let the natural number n be expressed in base 10 as

$$n = a_k a_{k-1} \dots a_1 a_0.$$

Let $m = a_k + a_{k-1} + \ldots + a_1 + a_0$. Then 9|n if and only if 9|m.

Proof. Type your proof here!

3.10 Corollary. Let the natural number n be expressed in base 10 as

$$n = a_k a_{k-1} \dots a_1 a_0.$$

If $m = a_k + a_{k-1} + \ldots + a_1 + a_0$. Then 3|n if and only if 3|m.

Proof. Type your proof here!