

CLAIMS

We claim:

- 1 1. A method, comprising:
2 partitioning a cache array dynamically based upon requests for memory
3 from an integrated device having a plurality of processors.

- 1 2. The method as claimed in claim 1, further comprising
2 subdividing one or more ways within the cache array.

- 1 3. The method as claimed in claim 1, further comprising
2 subdividing one or more sets within the cache array.

- 1 4. The method as claimed in claim 1, further comprising using
2 a single least recently used array to replace ways.

- 1 5. The method as claimed in claim 1, further comprising
2 applying a multiple pseudo least recently used update based on an entry
3 hit.

- 1 6. The method as claimed in claim 1, further comprising
2 partitioning dynamically the cache array into a direct-mapped cache.

- 1 7. A device comprising:

2 a cache memory array dynamically partitioned when multiple memory
3 requests are received from an integrated device having a plurality of
4 processors.

1 8. The device as claimed in claim 7 further comprising:
2 an integrated device having a plurality of processors connected to the
3 cache memory array.

1 9. The device as claimed in claim 7 further comprising a main
2 memory device connected to the cache memory array.

1 10. The device as claimed in claim 8 wherein the integrated
2 device includes a graphics processor and a central processing unit.

1 11. A computer-readable medium having stored thereon a
2 plurality of instructions, said plurality of instructions when executed by a
3 computer, cause said computer to perform the method of:
4 partitioning a cache array dynamically based upon requests for memory
5 from an integrated device having a plurality of processors.

1 12. The computer-readable medium of claim 11 having stored
2 thereon additional instructions, said additional instructions when executed
3 by a computer, cause said computer to further perform the method of
4 subdividing one or more ways within the cache array.

1 13. The computer-readable medium of claim 11 having stored
2 thereon additional instructions, said additional instructions when executed
3 by a computer, cause said computer to further perform the method of
4 subdividing one or more sets within the cache array.

1 14. The computer-readable medium of claim 11 having stored
2 thereon-additional instructions, said additional instructions when executed
3 by a computer, cause said computer to further perform the method of
4 using a single least recently used array to replace ways.

1 15. The computer-readable medium of claim 11 having stored
2 thereon-additional instructions, said additional instructions when executed
3 by a computer, cause said computer to further perform the method of
4 applying a multiple pseudo least recently used update based on an entry
5 hit.

1 16. The computer-readable medium of claim 11 having stored
2 thereon-additional instructions, said additional instructions when executed
3 by a computer, cause said computer to further perform the method of
4 partitioning dynamically the cache array into a direct-mapped cache.

1 17. A method, comprising:
2 converting an N-way set associative cache dynamically into a direct
3 mapped cache; including
4 removing M least significant bits from a tag address, and

5 adding the M least significant bits to M most significant bits of a set
6 address of the direct-mapped cache.

1 18. The method of claim 17, wherein N equals 2 to the power M.

1 19. A method, comprising:
2 converting an N-way set associative cache dynamically into a Z x N-way
3 set associative cache; including
4 providing Y+1 virtual copies of a pseudo-LRU array for the N-way set
5 associative cache, wherein the pseudo-LRU array is not replicated,
6 and
7 selecting a virtual copy with Y most significant bits of a set address for
8 the N-way set associative cache.

1 20. The method of claim 19, wherein Z is 2 to the power Y,
2 where Y is greater than or equal to 1.

1 21. The method of claim 19, wherein the Y most significant bits
2 of the set address for the N-way set associative cache become the Y least
3 significant bits of the tag address for the Z x N-way set associative cache.