Folgen und Reihen: Teil 1

Andreas Henrici

MANIT1 IT18ta_ZH

22. Oktober 2018

Überblick

- Summenzeichen
- Begriff einer Folge
- Bildungsgesetze
- Spezielle Folgen

Summenzeichen: Grundlage

Ziel: Kurzschreibweise für eine Summe $a_1 + a_2 + \ldots + a_n$

Summe

$$a_1+a_2+a_3+\ldots+a_n$$

$$\sum_{k=1}^{n} a_k$$

$$a_s + a_{s+1} + a_{s+2} + \ldots + a_n$$

$$\sum_{k=s}^{n} a_k$$

Beispiel

a)
$$\sum_{k=3}^{7} (2k+1) =$$

b)
$$\frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} =$$

Summenzeichen: Rechenregeln

Regeln beim Umgang mit dem Summenzeichen:

(1)
$$\sum_{k=s}^{n} (c \cdot a_k) = c \cdot a_s + c \cdot a_{s+1} + \ldots + c \cdot a_n = c \cdot \sum_{k=s}^{n} a_k$$

(2)
$$\sum_{k=s}^{n} (a_k + b_k) = a_s + b_s + a_{s+1} + b_{s+1} + \dots + a_n + b_n = \sum_{k=s}^{n} a_k + \sum_{k=s}^{n} b_k$$

(3)
$$\sum_{k=s}^{n} a_k + \sum_{k=n+1}^{m} a_k = \sum_{k=s}^{m} a_k = \sum_{r=s}^{m} a_r = \sum_{i=s}^{m} a_i$$

Summen dürfen somit aufgespalten und zusammengefasst werden.

Bemerkung

Vorsicht:

$$\left(\sum_{k=0}^{n}(a_k\cdot b_k)\right)\neq\left(\sum_{k=0}^{n}a_k\right)\cdot\left(\sum_{k=0}^{n}b_k\right)$$

Summenzeichen: Indextransformation

Idee: Summationsindex verschieben – die Summationsgrenzen entsprechend anpassen!

Beispiel

Es gilt

$$\sum_{k=9}^{216} (k-4)^3 = \sum_{k=5}^{212} k^3 = 5^3 + 6^3 + \ldots + 212^3$$

- Faustregel: Summand um eine Konstante k_0 erhöhen, Summationsgrenzen um die gleiche Konstante k_0 senken (hier $k_0 = 4$)
- Formal: Index-Substitution l = k 4 in der Summe durchführen

Als allgemeine Formel:

$$\sum_{k=s}^{n} a_k = \sum_{k=s-k_0}^{n-k_0} a_{k+k_0}$$

Doppelsummen

Es sind auch Doppelsummen möglich, z.B. wenn die Summe aller Elemente einer $n \times n$ -Matrix $A = (A_{kl})_{1 < k, l < n}$ berechnet wird:

$$\sum_{k=1}^{n} \sum_{l=1}^{n} a_{kl} = \sum_{k=1}^{n} \left(\sum_{l=1}^{n} a_{kl} \right)$$

$$= \sum_{k=1}^{n} (a_{k1} + a_{k2} + \dots + a_{kn})$$

$$= (a_{11} + a_{12} + \dots + a_{1n}) + (a_{21} + a_{22} + \dots + a_{2n}) + \dots$$

$$+ (a_{n1} + a_{n2} + \dots + a_{nn})$$

Oft wird eine solche Summe auch als

$$\sum_{k,l=1}^n a_{kl}$$

notiert.

Folge: Definition

Definition

Zahlenfolge / Folge: Abbildung

$$\mathbb{N}^* \to \mathbb{R}, \quad n \mapsto a_n, \quad (\text{oder } \mathbb{N} \to \mathbb{R})$$

Darstellung als

$$(a_k) = (a_k)_{k>1} = (a_1, a_2, a_3, a_4, \ldots, a_n, a_{n+1}, \ldots).$$

Die Elemente der Folge heissen die *Glieder* der Folge, d.h. a_n ist das n-te Glied der Folge.

Beispiel

- **a)** $(a_k) = (1, 2, 3, 4, \ldots)$
- **b)** $(b_k) = (1, 2, 0, 1, 2, 0, 1, \ldots)$
- c) $(c_k) = (-\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, ...)$
- **d)** $(d_k) = (1, 1, 2, 3, 5, 8, 13, ...)$ ("Fibonacci-Folge")

Beispiel (Fortsetzung)

Formel fürs n-te Glied?

a)
$$(a_k) = (1, 2, 3, 4, \ldots)$$
:

$$a_n = n$$

b)
$$(b_k) = (1, 2, 0, 1, 2, 0, 1, \ldots)$$
:

$$b_n = n \mod 3$$

c)
$$(c_k) = (-\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, \ldots)$$
:

$$c_n = \frac{(-1)^n}{n+1}$$

d)
$$(d_k) = (1, 1, 2, 3, 5, 8, 13, ...)$$
:

$$d_1 = 1, d_2 = 1, d_n = d_{n-1} + d_{n-2} (n \ge 3)$$

Bildungsgesetze: Prinzipien

a) Explizites/direktes Bildungsgesetz: Bildungsgesetz vom Typ

$$a_k = f(k),$$

d.h. das k-te Glied a_k wird direkt berechnet, ohne Kenntnis von a_1, \ldots, a_{k-1}

b) Rekursives Bildungsgesetz: Bildungsgesetz vom Typ

$$a_k = f(a_{k-1}, a_{k-2}, \ldots),$$

d.h. das k-te Glied a_k wird aus a_{k-1}, a_{k-2}, \ldots berechnet.

Beispiel (Fortsetzung)

- c) $(c_k) = (-\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, \dots)$: $c_n = \frac{(-1)^n}{n+1}$ (explizit)
- **d)** $(d_k) = (1, 1, 2, 3, 5, 8, 13, ...)$: $d_n = d_{n-1} + d_{n-2}$ $(n \ge 3)$ (rekursiv)

Arithmetische Folgen: Definition, Beispiele

Definition

Eine Folge (a_k) heisst *arithmetische Folge*, falls die Differenz zweier benachbarter Glieder immer gleich gross ist, d.h. falls

$$a_{k+1} - a_k = d$$

gilt für ein festes $d \in \mathbb{R}$ und für alle $k \geq 1$.

Andere Formulierung:

$$a_{k+1} = a_k + d$$

Rekursives Bildungsgesetz!

Beispiel

- $(a_k) = (1, 2, 3, 4, \ldots)$: Arithmetische Folge mit d = 1
- $(a_k) = (-1, -3, -5, -7, ...)$: Arithmetische Folge mit d = -2
- $(a_k) = (4, 4, 4, 4, ...)$: Arithmetische Folge mit d = 0

Arithmetische Folgen: Explizites Bildungsgesetz

Bemerkung

Für eine arithmetische Folge gilt

$$a_k = \frac{a_{k-1} + a_{k+1}}{2}, \qquad (k \ge 2)$$

d.h. a_k ist das arithmetische Mittel von a_{k-1} und a_{k+1}

Explizites Bildungsgesetz für arithmetische Folgen:

Satz

Sei (a_k) ein arithmetische Folge mit Differenz d und Anfangsglied $a_1 = A$. Dann gilt

$$a_n = A + (n-1) \cdot d$$
 $(n \ge 1)$.

Beispiel

Explizites Bildungsgesetz für die Folge $(a_k) = (1, 3, 5, 7, ...)$?

Geometrische Folgen: Definition, Beispiele

Definition

Eine Folge (a_k) heisst *geometrische Folge*, falls der Quotient zweier benachbarter Glieder immer gleich gross ist, d.h. falls

$$\frac{a_{k+1}}{a_k}=q$$

gilt für ein festes $q \in \mathbb{R}$ und alle k > 1.

Andere Formulierung als rekursives Bildungsgesetz:

$$a_{k+1} = a_k \cdot q$$

Beispiel

Verzinsung eines Anfangskapitals K_0 :

- K_n: Kapital nach n Zeitperioden
- p%: fester Zinssatz
- Wachstum: $K_{n+1} = K_n \cdot q$ mit $q = 1 + \frac{p}{100}$

Geometrische Folgen: Explizites Bildungsgesetz

Bemerkung

Für eine geometrische Folge gilt

$$|a_k| = \sqrt{a_{k-1} \cdot a_{k+1}}, \qquad (k \ge 2)$$

d.h. $|a_k|$ ist das geometrische Mittel von $|a_{k-1}|$ und $|a_{k+1}|$

Explizites Bildungsgesetz für geometrische Folgen:

Satz

Sei (a_k) ein geometrische Folge mit Quotient q und Anfangsglied $a_1 = A$. Dann gilt

$$a_n = A \cdot q^{n-1} = \frac{A}{q} \cdot q^n \qquad (n \ge 1).$$

Die Folgenglieder wachsen also exponentiell!