Classical Machine Learning

Week 0

Plan

• Setting up your learning and programming environment

Getting started

- <u>Setting up your ML environment (Setup_NYU.ipynb)</u>
 - Choosing an ML environment
 (Choosing an ML Environment_NYU.ipynb)
- Quick intro to the tools (Getting Started.ipynb)

Week 1: Introduction

Plan

- Motivate Machine Learning
- Introduce notation used throughout course
- Plan for initial lectures
 - What: Introduce, motivate a model
 - How: How to use a model: function signature, code (API)
 - Why: Mathematical basis -- enhance understanding and ability to improve results
- Course Overview (Course_overview_NYU.ipynb)
- Machine Learning: Overview (ML_Overview.ipynb)
- Intro to Classical ML (Intro_Classical_ML.ipynb)

Using an Al Assistant

Al Assistants are often very good at coding.

But using one to just "get the answer" deprives you of a valuable tool

- you can ask the Assistant why it chose to do something
- keep on asking
- treat it as a private tutor!

<u>Learning about the Landscape of ML (https://www.perplexity.ai/search/i-am-interested-in-the-landsca-_yO63NWfSGS8iHR5nyQYVA)</u>

<u>Learning about KNN using an Assistant as a private tutor</u>
(https://www.perplexity.ai/search/using-python-and-sklearn-pleas-407oe3uzTXu1i9xEHVR2MQ)

Week 2 (early start in Week 1)

We began covering the Recipe, as illustrated by Linear Regression

The Recipe for Machine Learning: Solving a Regression task (Recipe via Linear Regression.ipynb)

- A process for Machine Learning
 - Go through the methodical, multi-step process
 - Quick first pass, followed by Deeper Dives

Week 2: Regression task

Plan

We will learn the Recipe for Machine Learning, a disciplined approach to solving problems in Machine Learning.

We will illustrate the Recipe while, at the same time, introducing a model for the Regression task: Linear Regression.

Our coverage of the Recipe will be rapid and shallow (we use an extremely simple example for illustration).

I highly recommend reviewing and understanding this <u>Geron notebook</u> (<u>external/handson-ml2/02_end_to_end_machine_learning_project.ipynb)</u> in order to acquire a more in-depth appreciation of the Recipe.

Recipe for Machine Learning

Recipe, as illustrated by Linear Regression

<u>The Recipe for Machine Learning: Solving a Regression task (continued)</u> (Recipe_via_Linear_Regression.ipynb#Create-a-test-set)

- A process for Machine Learning
 - Go through the methodical, multi-step process
 - Quick first pass, followed by Deeper Dives

Fitting a model: details

Recall: fitting a model (finding optimal value for the parameters) is found by minimizing a Loss function.

Let's examine a typical Loss function for Regression

• Regression: Loss Function (Linear_Regression_Loss_Function.ipynb)

Iterative training: when to stop

Increasing the number of parameters of a model improves in-sample fit (reduces Loss) but may compromise out-of-sample prediction (generalization).

We examine the issues of having too many/too few parameters.

When to stop iterating: Bias and Variance (Bias_and_Variance.ipynb)

Get the data: Fundamental Assumption of Machine Learning

Getting good training examples (Recipe_Training_data.ipynb)

Regression: final thoughts (for now)

Regression: coda (Regression_coda.ipynb)

Deeper dives

Fine tuning techniques (Fine_tuning.ipynb)

Recipe "Prepare the Data" step: Transformations

We discuss the importance of adding synthetic features to our Linear Regression example

• and preview the mechanical process of creating these features via Transformations

Transformations

<u>Prepare Data: Intro to Transformations (Prepare_data_Overview.ipynb)</u>

Validation

Our test dataset can be used only once, yet

- we have an iterative process for developing models
- each iteration requires a proxy for out of sample data to use in the Performance Metric

The solution: create a proxy for out of sample that is a *subset* of the training data.

- <u>Validation and Cross-Validation (Recipe_via_Linear_Regression.ipynb#Validation-and-Cross-Validation)</u>
- <u>Avoiding cheating in Cross-Validation (Prepare_data_Overview.ipynb#Using-pipelines-to-avoid-cheating-in-cross-validation)</u>

Week 3 (early start in Week 1)

Classification intro

- Classification: Overview (Classification_Overview.ipynb)
- <u>Classification and Categorical Variables</u>
 <u>(Classification_Notebook_Overview.ipynb)</u>
 - linked notebook (Classification_and_Non_Numerical_Data.ipynb)

Categorical variables (contained as subsections of Classification and Categorical Variables)

We examine the proper treatment of categorical variables (target or feature).

Along the way, we run into a subtle difficulty: the Dummy Variable Trap.

- <u>Classification and Categorical Variables: Categorical Variables</u>
 <u>(Classification_Notebook_Overview.ipynb#Categorical-variables)</u>
 - <u>Categorical variables, One Hot Encoding (OHE)</u>
 <u>(Categorical Variables.ipynb)</u>

Week 3: Classification task

Non-feature dimensions

In response to questions about Assignment 1,

• we will clarify the limitations in our ability to handle *timeseries* data with our current tools.

Non-feature dimensions: preview (Non-feature_dimensions_preview.ipynb)

Plan

- We introduce a model for the Classification task: Logistic Regression
- How to deal with Categorical (non-numeric) variables
 - classification target
 - features

Classification intro

- <u>Classification: Overview (Classification_Overview.ipynb)</u> Covered last week
- <u>Classification and Categorical Variables (continued)</u>
 (<u>Classification_and_Non_Numerical_Data.ipynb#Recipe-Step-B:-Exploratory-Data-Analysis-(EDA)</u>)
 - linked notebook (Classification_and_Non_Numerical_Data.ipynb)

Categorical variables (contained as subsections of Classification and Categorical Variables)

We examine the proper treatment of categorical variables (target or feature).

Along the way, we run into a subtle difficulty: the Dummy Variable Trap.

- <u>Classification and Categorical Variables: Categorical Variables</u>
 <u>(Classification_Notebook_Overview.ipynb#Categorical-variables)</u>
 - <u>Categorical variables, One Hot Encoding (OHE)</u>
 <u>(Categorical Variables.ipynb)</u>

Multinomial Classification

We generalize Binary Classification into classification into more than two classes.

Multinomial Classification (Multinomial_Classification.ipynb)

Classification and Categorical variables wrapup

- Classification Loss Function (Classification_Loss_Function.ipynb)
- Baseline model for Classification (Classification_Baseline_Model.ipynb)
- OHE issue: Dummy variable trap (Dummy_Variable_Trap.ipynb)

Classification: final thoughts (for now)

Classification: coda (Classification_coda.ipynb)

Dlan Deener dives

Week 4: Transformations

Plan

Still one major missing piece in our in-depth coverage of the Recipe for Machine Learning

Transformations

We explain

- why it is often necessary to create *synthetic* features to augment or replace *raw* feature
- the mechanical process in sklearn that makes the application of transformations easy and consistent

Transformations: the "why"

Part of becoming a better Data Scientist is transforming raw features into more useful synthetic features.

We focus on the necessity (the "why"): transforming raw data into something that tells a story.

We will then discuss the <u>mechanics (Prepare_data_Overview.ipynb)</u> (how to use sklearn to implement transformation Pipelines) of Transformations.

- Becoming a successful Data Scientist
 (Becoming a successful Data Scientist.ipynb)
- <u>Transformations: overview (Transformations_Overview.ipynb)</u>
 - linked notebooks:
 - <u>Transformations: adding a missing feature</u> (<u>Transformations_Missing_Features.ipynb</u>)

Transformations: the "how"

Having hopefully motivated the use of transformations in theory

• we turn to the *mechanical* process of creating these features via *Transformations* in *sklearn*

Transformations

<u>Prepare Data: Intro to Transformations (Prepare_data_Overview.ipynb)</u>

Transformations: Avoiding cheating when using Cross-Validation

Our test dataset can be used only once, yet

- we have an iterative process for developing models
- each iteration requires a proxy for out of sample data to use in the Performance Metric

The solution: create a proxy for out of sample that is a *subset* of the training data.

• <u>Validation and Cross-Validation (Recipe_via_Linear_Regression.ipynb#Validation-and-Cross-Validation)</u> (<u>Covered in week 1</u>)

Good news

- You now know two main tasks in Supervised Learning
 - Regression, Classification
- You now know how to use virtually every model in sklearn
 - Consistent API
 - ∘ fit, transform, predict
- You survived the "sprint" to get you up and running with ML

Time to re-visit, in more depth, several important topics

Error Analysis

We can only improve our model's out of sample Performance Metric

- by diagnosing the in-sample errors
- that is the goal of the Error Analysis step of the Recipe
- We explain Error Analysis for the Classification Task, with a detailed example
- How Training Loss can be improved

The conversion of a probability (e.g., model output) to a Class (categorical variable) for Classification

- often involves the comparison of a probability to a threshold
- we show how varying the threshold changes the conditional Performance Metric for Classification
 - the threshold is a hyper-parameter, thus this is a kind of Fine-Tuning
- Error Analysis (Error_Analysis_Overview.ipynb)
 - linked notebook (Error_Analysis.ipynb)
 - Summary statistics
 - Conditional statistics
 - Worked example (Error_Analysis_MNIST.ipynb)
- Loss Analysis: Using training loss to improve models (Training Loss.ipynb)

Imbalanced data

Additional Deep Learning resources

Here are some resources that I have found very useful.

Some of them are very nitty-gritty, deep-in-the-weeds (even the "introductory" courses)

- For example: let's make believe PyTorch (or Keras/TensorFlow) didn't exists; let's invent Deep Learning without it!
 - You will gain a deeper appreciation and understanding by re-inventing that which you take for granted

<u>Andrej Karpathy course: Neural Networks, Zero to Hero (https://karpathy.ai/zero-to-hero.html)</u>

- PyTorch
- Introductory, but at a very deep level of understanding
 - you will get very deep into the weeds (hand-coding gradients!) but develop a deeper appreciation

fast.ai

fast.ai is a web-site with free courses from Jeremy Howard.

- PyTorch
- Introductory and courses "for coders"
- Same courses offered every few years, but sufficiently different so as to make it worthwhile to repeat the course!
 - Practical Deep Learning (https://course.fast.ai/)
 - Stable diffusion (https://course.fast.ai/Lessons/part2.html)
 - Very detailed, nitty-gritty details (like Karpathy) that will give you a deeper appreciation

<u>Stefan Jansen: Machine Learning for Trading</u> (<u>https://github.com/stefan-jansen/machine-learning-for-trading</u>)

An excellent github repo with notebooks

- using Deep Learning for trading
- Keras
- many notebooks are cleaner implementations of published models

Assignments

Your assignments should follow the <u>Assignment Guidelines</u> (<u>assignments/Assignment_Guidelines.ipynb</u>)

Regression

- Assignment notebook: <u>Using Machine Learning for Hedging</u>
 (<u>assignments/Regression%20task/Using Machine Learning for Hedging.ipynb)</u>
- Data
- There is an archive file containing the data
- You can find it
 - Under the course page: Content --> Data --> Assignments -->
 Regression task
 - You won't be able to view the file in the browser, but you will be able to Download it
- You should unzip this archive into the the same directory as the assignment notebook
- The end result is that the directory should contain
 - The assignment notebook and a helper file
 - A directory named Data

```
In [1]: print("Done")
```

Done