

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический унверситет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Фундаментальные Науки»	
КАФЕДРА	ФН-12 «Математическое моделирование»	

ОТЧЕТ

ПО Лабораторной работе №2 по дисциплине «Типы и структуры данных» Тема: «Редакционные расстояния»

Выполнил студент гр. ФН12-31Б:		Лямин И.С.
	дата, подпись	Ф.И.О.
Проверил преподаватель:		Волкова Л. Л.
	дата, подпись	Ф.И.О.

Москва, 2024

СОДЕРЖАНИЕ

1	Аналитическая часть		
	1.1	Расстояние Левенштейна	4
	1.2	Расстояние Дамерау-Левенштейна	5
2	Кон	иструкторская часть	6
	2.1	Описание алгоритмов	6
	2.2	Анализ сложностей	10
3	Tex	нологическая часть	11
	3.1	Выбор средств реализации	11
	3.2	Реализация алгоритмов	11
	3.3	Тестирование программы	16
4	Исс	ледовательская часть	17
	4.1	Замеры процессорного времени выполнения реализации алгоритмов	17
3	АКЛ	ЮЧЕНИЕ	19
\mathbf{C}	ПИС	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	20

ВВЕДЕНИЕ

В данной лабораторной работе будут реализованы алгоритмы поиска минимального расстояния Левенштейна и Дамерау-Левенштейна на языке програмирования С++. Цель работы – выполнить оценку ресурсной эффективности алгоритмов Левенштейна, Дамерау-Левенштейна, рекурсивных алгоритмов и рекурсивного алгоритма с кэшем и их реализации.

Для достижения цели необходимо выполнить следующие задачи.

- 1. Описать математическую основу расстояния Левенштейна и Дамерау—Левенштейна,
- 2. Описать модель вычисления,
- 3. Реализовать программу для расчёта расстояний Дамерау-Левенштейна и Левенштейна,
- 4. Выполнить оценку трудоёмкости реализации алгоритмов,
- 5. Реализовать разработанные алгоритмы в программном обеспечении с 2-мя режимами работы одиночного расчёта и массированного замера процессорного времени,
- 6. Выполнить замеры процессорного времени выполнения реализации каждого алгоритма в зависимости от длины строк,
- 7. Выполнить сравнительный анализ рассчитанных трудоёмкостей и результатов замера процессорного времени,

1 Аналитическая часть

1.1 Расстояние Левенштейна

Расстояние Левенштейна — минимальное количество редакционных операций вставки, удаления, замены одного символа, необходимое для преобразования одной строки к другой.

Формула поиска расстояния Левенштейна [1]:

$$D_{s1,s2}(i,j) = \begin{cases} max \begin{cases} i \\ j \end{cases}, & i = 0 \text{ or } j = 0, \\ min \begin{cases} D_{s1,s2}(i-1,j) + 1, \\ D_{s1,s2}(i,j-1) + 1, \\ D_{s1,s2}(i-1,j-1) + n_{i,j} \end{cases}, & i > 0, j > 0, \end{cases}$$

$$(1)$$

где s1, s2 – сравниваемые строки;

 $D_{s1,s2}(i,j)$ — расстояние Левенштейна для подстрок строк s1,s2, где подстрока строки s1 — часть строки, начинающаяся с элемента строки с индексом 0 и заканчивающаяся элементом строки с индексом i-1, подстрока строки s2 — часть строки, начинающаяся с элемента строки с индексом 0 и заканчивающаяся элементом строки с индексом j-1.

Функция $n_{i,j}$:

$$n_{i,j} = \begin{cases} 0, & s1[i] = s2[j], \\ 1, & s1[i] \neq s2[j], \end{cases}$$
 (2)

где s1[i] — элемент строки s1 с индексом $i,\,s2[j]$ — элемент строки s2 с индексом j.

1.2 Расстояние Дамерау-Левенштейна

Расстояние Дамерау—Левенштейна — минимальное количество редакционных операций вставки, удаления, замены одного символа, перестановки двух соседних символов, необходимое для преобразования одной строки к другой.

Формула поиска расстояния Дамерау — Левенштейна:

$$d_{s1,s2}(i,j) = \begin{cases} max \left\{ i \atop j \right\}, & i = 0 \text{ or } j = 0, \\ d_{s1,s2}(i-1,j)+1, \\ d_{s1,s2}(i-1,j-1)+n_{i,j}, \\ d_{s1,s2}(i-2,j-2)+1, \\ d_{s1,s2}(i-1,j)+1, \\ d_{s1,s2}(i,j-1)+1, \\ d_{s1,s2}(i-1,j-1)+n_{i,j} \end{cases}, \quad i > 1, j > 1, m_{i,j} = 1,$$

$$(3)$$

где s1, s2 – сравниваемые строки;

 $d_{s1,s2}(i,j)$ — расстояние Дамерау — Левенштейна для подстрок строк s1,s2, где подстрока строки s1 — часть строки, начинающаяся с элемента строки с индексом 1 и заканчивающаяся элементом строки с индексом i, подстрока строки s2 — часть строки, начинающаяся с элемента строки с индексом 1 и заканчивающаяся элементом строки с индексом j;

Функция $m_{i,j}$ имеет вид:

$$m_{i,j} = \begin{cases} 0, & s1[i-1]! = s2[j] \text{ or } s1[i]! = s2[j-1], \\ 1, & s1[i-1] == s2[j] \text{ and } s1[i] == s2[j-1], \end{cases}$$
(4)

где s1[i] — элемент строки s1 с индексом $i,\,s2[j]$ — элемент строки s2 с индексом j.

2 Конструкторская часть

2.1 Описание алгоритмов

Алгоритм поиска редакционного расстояния, основанный на формуле нахождения растояния Левенштейна, представлен на блок-схеме алгоритма на рисунке 1. Алгоритм поиска редакционного расстояния, основанный на формуле нахождения расстояния Дамерау—Левенштейна, представлен на рис блок-схемы алгоритма 2. Рекурсивный алгоритм поиска редакционного расстояния, основанный на формуле нахождения расстояния Левенштейна, представлен на рисунке блок-схемы алгоритма 3.

Рисунок 1 — Схема алгоритма функции поиска расстояния Левенштейна

Рисунок 2 — Схема алгоритма функции поиска расстояния Дамерау-Левенштейна

Рисунок 3 — Схема рекурсивного алгоритма поиска расстояния Левенштейна

Подпрограмма MAIN_PART выполняет следующую работу: return min(alg (str_1, str_2, len_2, len_1 - 1) + 1, alg(m, len_2 - 1, len_1) + 1, alg(m, len_2 - 1, len_1) + 1, alg(m, len_2 - 1, len_1) + n), где alg — рекусивный алгоритм.

Рекурсивный алгоритм с кэшем поиска редакционного расстояния, основанный на формуле нахождения расстояния Левенштейна представлен на схеме алгоритма на рисунок 4. Рекурсивный алгоритм для расстояния Дамерау-Левенштейна аналогичен и отличен только тем, что при $m_{i,j} == 1$, часть MAIN_PART примет вид: return min(alg(str_1, str_2, len_2, len_1 - 1) + 1, alg(str_1, sre_2, len_2 - 1, len_1) + 1, alg(str_1, str_2, len_2 - 1, len_1 - 1) + n, alg(str_1, str_2, len_2 - 2, len_1 - 2) + 1);

Рисунок 4 — Схема алгоритма функции рекурсивного алгоритма поиска растояния Левенштейна с кэшем

2.2 Анализ сложностей

В таблице 1 представлены асимптотические сложности разобранных алгоритмов по времени и по памяти. Рекурсивный алгоритм затрачивает на порядок больше времени для вычисления (таблица№1) относительно обычному алгоритму и алгоритму с кэшем. А обычный алгоритм и алгоритм с кэшем затрачивают одинаковое количество ресурсов, что по памяти, что по времени.

Таблица 1 — Асимптотические сложности разобранных алгоритмов

Алгоритм	Сложность по времени	Сложность по памяти
Поиск расстояния	$O(n \cdot m)$	$O(n \cdot m)$
Левенштейна		
Поиск расстояния	$O(n \cdot m)$	$O(n \cdot m)$
Дамерау-Левенштейна		
Рекурсивный алгоритм	$O(4^{max(n,m)})$	$O(n \cdot m + 20 \cdot (n+m))$
Поиска расстояния		
Дамерау-Левенштейна		
Рекурсивный алгоритм	$O(n \cdot m)$	$O(n \cdot m)$
с кэшем		

3 Технологическая часть

3.1 Выбор средств реализации

Для программной реализации использовалась среда разработки Visual Studio, язык программирования, на котором была выполнена реализации — C++. Исследование проводилось на ноутбуке (64-разрядная операционная система, процессор х64, частота процессора 3.10 Ггц, оперативная память 16 ГБ)

Для замера времени использовались функции библиотеки Chrono [2].

3.2 Реализация алгоритмов

В листинге 1 можно увидеть программную реализацию описанных алгоритмов.

Листинг 1 — програмная реализация вспомогательной структуры

```
struct matrix {
           public:
           matrix(string str_1, string str_2) {
3
                     this \rightarrow rows = (str_2.size() + 1);
4
                     this -> columns = (str_1.size() + 1);
                     this -> str_1 = "_" + str_1;
                     this->str_2 = "_" + str_2;
                     this -> c = new int* [rows];
                     prepair_matrix();
           }
10
           ~matrix() {
                     delete[] c;
13
           }
15
           void print() {
16
                     cout << setiosflags(ios::left);</pre>
17
18
                     for (int i = 0; i < rows; i++) {</pre>
19
                              cout << setw(2) << "|";
                              for (int j = 0; j < columns; j++) {
                                        cout << setw(3) << c[i][j] << " ";
^{22}
^{23}
                              cout << "|" << endl;
24
                     }
^{25}
           }
^{26}
27
           int* operator[] (int row) {
28
                     return (this->c[row]);
^{29}
           }
30
31
```

```
string str(int ind) {
32
                     if (ind == 1) {
33
                               return str_1;
34
35
                     return str_2;
36
           }
37
38
            int ro() {
39
40
                     return rows;
           }
41
42
            int co() {
43
                     return columns;
44
           }
46
47
            private:
            string str_1;
            string str_2;
49
            int rows;
50
            int columns;
51
            int** c;
52
53
           void prepair_matrix() {
54
                     for (int i = 0; i < rows; i++) {</pre>
55
                               c[i] = new int[columns];
^{56}
                               for (int j = 0; j < (columns); j++) {
57
                                         if (i == 0) {
58
                                                  c[i][j] = j;
59
                                         }
60
                                         else if (j == 0) {
61
                                                  c[i][j] = i;
62
                                         }
63
                                         else {
64
                                                  c[i][j] = -1;
65
                                         }
66
                               }
67
                     }
68
           }
69
70 };
```

Листинг 2 — Программная реализация разработанных алгоритмов

```
void aloritm_Lev(matrix* m) {
           int n;
2
3
           for (int i = 0; i < (*m).ro(); i++) {</pre>
                     for (int j = 0; j < (*m).co(); j++) {
4
                               //formula for finding the Levenshtein
5
     → distance
                              if (i == 0) {
6
                                        (*m)[i][j] = j;
7
8
                               else if (j == 0) {
                                        (*m)[i][j] = i;
10
                              }
11
                               else {
12
                                        if ((*m).str(2)[i] == (*m).str(1)[j])
13
         n = 0;
                                        else n = 1;
14
                                        (*m)[i][j] = min(min((*m)[i][j - 1] +
15
         1, (*m)[i - 1][j] + 1, ((*m)[i - 1][j - 1] + n);
16
                     }
17
           }
18
19
20
  void algoritm_Dam_Lev(matrix* m) {
           int n;
^{22}
           for (int i = 0; i < (*m).ro(); i++) {</pre>
23
                     for (int j = 0; j < (*m).co(); j++) {
^{24}
                              if (i == 0) {
^{25}
                                        (*m)[i][j] = j;
26
27
                               else if (j == 0) {
28
                                        (*m)[i][j] = i;
29
                               }
30
                               else {
31
                                        if ((*m).str(2)[i] == (*m).str(1)[j])
^{32}
         n = 0;
                                        else n = 1;
33
                                        if ((j > 1) \&\& (i > 1) \&\& ((*m).str
34
     \hookrightarrow (2)[i] == (*m).str(1)[j - 1]) && ((*m).str(2)[i - 1] == (*m).
     \hookrightarrow str(1)[j])) {
                                                  (*m)[i][j] = min(min((*m)[i][
35
     \hookrightarrow j - 1] + 1, (*m)[i - 1][j] + 1), min((*m)[i - 1][j - 1] + n, (*
     \hookrightarrow m)[i - 2][j - 2] + 1));
36
                                        else {
37
                                                  (*m)[i][j] = min(min((*m)[i][
38
     \hookrightarrow j - 1] + 1, (*m)[i - 1][j] + 1), (*m)[i - 1][j - 1] + n);
39
                              }
40
                     }
41
           }
42
```

```
}
43
44
  int alg_Lev_rec(matrix* m, int len_2, int len_1) {
4.5
           int n;
46
47
           //formula for finding the Levenshtein distance by recirsion
48
           if (len_1 == 0) {
49
                    return len_2;
50
51
           else if (len_2 == 0) {
52
                    return len_1;
53
54
           else {
55
                    if ((*m).str(2)[len_2] == (*m).str(1)[len_1]) n = 0;
56
                    else n = 1;
57
                    return min(min(alg_Lev_rec(m, len_2, len_1 - 1) + 1,
58
     \hookrightarrow alg_Lev_rec(m, len_2 - 1, len_1) + 1), alg_Lev_rec(m, len_2 -
     \hookrightarrow 1, len_1 - 1) + n);
           }
59
60
61
  int alg_Dam_Lev_rec(matrix* m, int len_2, int len_1) {
           int n;
63
64
           //formula for finding the Levenshtein distance by recirsion
65
           if (len_1 == 0) {
66
                    return len_2;
67
68
           else if (len_2 == 0) {
69
                    return len_1;
70
           }
71
           else {
72
                    if ((*m).str(2)[len_2] == (*m).str(1)[len_1]) n = 0;
73
                    else n = 1;
74
                    if ((len_1 > 1) && (len_2 > 1) && ((*m).str(2)[len_2]
75
     \hookrightarrow == (*m).str(1)[len_1 - 1]) && ((*m).str(2)[len_2 - 1] == (*m).

    str(1)[len_1])) {
                             return min(min(alg_Dam_Lev_rec(m, len_2,
76
     \rightarrow len_1 - 1) + 1, alg_Dam_Lev_rec(m, len_2 - 1, len_1) + 1), min(
     \hookrightarrow alg_Dam_Lev_rec(m, len_2 - 1, len_1 - 1) + n, alg_Dam_Lev_rec(m
     \rightarrow , len_2 - 2, len_1 - 2) + 1));
77
                    return min(min(alg_Dam_Lev_rec(m, len_2, len_1 - 1) +
78
         1, alg_Dam_Lev_rec(m, len_2 - 1, len_1) + 1), alg_Dam_Lev_rec(
     \hookrightarrow m, len_2 - 1, len_1 - 1) + n);
           }
79
  }
80
81
  int alg_Lev_rec_cash(matrix* m, int len_2, int len_1) {
           if ((*m)[len_2][len_1] != -1) {
83
                    return (*m)[len_2][len_1];
           }
85
```

```
86
            int n;
87
            if (len_1 == 0) {
88
                     return len_2;
89
            }
90
            else if (len_2 == 0) {
91
                     return len_1;
92
            }
93
            else {
94
                     if ((*m).str(2)[len_2] == (*m).str(1)[len_1]) {
95
                               n = 0;
96
                     }
97
                     else {
98
                               n = 1;
                     }
100
101
                     (*m)[len_2][len_1] = min(min(alg_Lev_rec_cash(m,
102
     \hookrightarrow len_2, len_1 - 1) + 1, alg_Lev_rec_cash(m, len_2 - 1, len_1) +
     \hookrightarrow 1), alg_Lev_rec_cash(m, len_2 - 1, len_1 - 1) + n);
                     return (*m)[len_2][len_1];
103
            }
104
  }
105
```

3.3 Тестирование программы

В таблице 2 представлены описания тестов по методологии чёрного ящика, все тесты пройдены успешно.

Таблица 2 — Описание тестов по методологии чёрного ящика

	Описание те-	Входные	Ожидаемый ре-	Полученный ре-
	ста	данные	зультат	зультат
1	проверка на об-	3	оповещение о некор-	оповещение о некор-
	работку не ва-		ректности данных и	ректности данных и
	лидных данных		запрос новых	запрос новых
2	проверка на ко-	1	Левенштейн: 3	Левенштейн: 3
	ректность рабо-	123456	Дамерау-	Дамерау-
	ты алгоритмов	132546	Левенштейн: 2	Левенштейн: 2
3	проверка на	1	Левенштейн: 0	Левенштейн: 0
	единичные	2	Дамерау-	Дамерау-
	строки	2	Левенштейн: 0	Левенштейн: 0
4	проверка на ко-	1	Левенштейн: 5	Левенштейн: 5
	ректность рабо-	1	Дамерау-	Дамерау-
	ты с матрицей 1	123456	Левенштейн: 5	Левенштейн: 5
	на n			

4 Исследовательская часть

4.1 Замеры процессорного времени выполнения реализации алгоритмов

На рисунке 5 можно увидеть графики, иллюстрирующие зависимость процессорного времени выполнения реализации алгоритма расчета редакционного расстояния от длины строки для рекурсивного алгоритма и для обычного с кэшем. Пусть длины строк совпадают.

Рисунок 5 — Визуализация зависимости процессорного времени при выполнении реализации рекурсивного и обычного алгоритма поиска расстояния Левенштейна от длины строк.

Из этого можно сделать вывод, что рекурсивный алгоритм намного более затратный с точки зрения числа выполненных операций (затраченного на расчёт времени). Так, для строк длиной 7 затрачено в 140 раз больше времени.

Визуализацию проведенного замеров затрачиваемого процессорного времени обычным алгоритмом с кэшем и рекурсивным с кэшем, можно увидеть на рисунке 6.

Рисунок 6 — Визуализация зависимости процессорного времени выполнения реализации рекурсивного с кэшем и обычного алгоритмов поиска расстояния Левенштейна от длины строк.

Проанализировав графики, можно отметить, что процессорное время, затрачиваемое на выполнение реализации алгоритмов поиска расстояния Дамерау – Левенштейна, как рекурсивного с кэшем, так и нерекурсивного, намного меньше, чем то время, которое затрачивается на выполнение реализации рекурсивного алгоритма поиска расстояния Левенштейна даже на строках маленькой длины.

Рекурсивный алгоритм с кэшем и обычный алгоритм с кэшем показывают примерно равные результаты.

ЗАКЛЮЧЕНИЕ

В результате лабораторной работы были выполнены все поставленные задачи.

- 1. Описана математическая основа расстояния Левенштейна и Дамерау—Левенштейна,
- 2. Описана модель вычисления,
- 3. Реализована программу для расчёта расстояний Дамерау-Левенштейна и Левенштейна,
- 4. Выполнена оценка трудоёмкости реализации алгоритмов,
- Реализованы разработанные алгоритмы в программном обеспечении с двумя режимами работы – одиночного расчёта и массированного замера процессорного времени,
- 6. Выполнены замеры процессорного времени выполнения реализации каждого алгоритма в зависимости от длины строк,
- 7. Выполнен сравнительный анализ рассчитанных трудоёмкостей и результатов замера процессорного времени,

Цель работы достигнута: выполнена оценка ресурсной эффективности алгоритмов нахождения расстояния Левенштейна и Дамерау—Левенштейна.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Ульянов М. В. Ресурсно эффективные компьютерные алгоритмы / Учебное пособие 2007.
- 2. Microsoft. GetProcessTimes function. [Электронный ресурс] URL:https://learn.microsoftru/cpp/standard-library/processthreadsapi/chrono

(дата обращения: 20.09.2024).

3. AlgoLib. [Электронный ресурс] - URL: https://www.algolib.narod/Math/Matrix (дата обращения: 20.09.2024).