19 февраля 2024 года

ПРИМЕР: Пусть $B = \mathsf{Bl}_0 k^{n+1} - \mathsf{pаздутиe}$ векторного пространства в нуле. Тогда проекция $B \to \mathsf{P}^n$, $(x_0, x_1, \dots x_n) \mapsto (x_0 : x_1 : \dots : x_n)$ — нетривиальное линейное расслоение. Оно обозначается $\mathfrak{O}_{\mathsf{P}^n}(-1)$ и называется тавтологическим линейным расслоением на P^n . Двойственное к нему расслоение обозначается $\mathfrak{O}_{\mathsf{P}^n}(1)$, их m-е степени обозначаются $\mathfrak{O}_{\mathsf{P}^1}(\pm m)$.

ПРИМЕР: Пусть $B = \mathsf{Bl}_0 k^{n+1} - \mathsf{pаздутиe}$ векторного пространства в нуле. Тогда проекция $B \to \mathsf{P}^n$, $(x_0, x_1, \dots x_n) \mapsto (x_0 : x_1 : \dots : x_n) - \mathsf{нетривиальное}$ линейное расслоение. Оно обозначается $\mathfrak{O}_{\mathsf{P}^n}(-1)$ и называется тавтологическим линейным расслоением на P^n . Двойственное к нему расслоение обозначается $\mathfrak{O}_{\mathsf{P}^n}(1)$, их m-е степени обозначаются $\mathfrak{O}_{\mathsf{P}^1}(\pm m)$.

ЗАМЕЧАНИЕ: Даже если X проективно, пространство сечений $\Gamma(L,X)$ может быть ненулевым. Так, $\Gamma(\mathfrak{O}_{\mathsf{P}^n}(m),\mathsf{P}^n)=\operatorname{Sym}^m\left(k^{n+1}\right)$ при $m\geqslant 0$.

ПРИМЕР: Пусть $B = \mathsf{Bl}_0 k^{n+1} - \mathsf{pаздутиe}$ векторного пространства в нуле. Тогда проекция $B \to \mathsf{P}^n$, $(x_0, x_1, \dots x_n) \mapsto (x_0 : x_1 : \dots : x_n) - \mathsf{нетривиальное}$ линейное расслоение. Оно обозначается $\mathfrak{O}_{\mathsf{P}^n}(-1)$ и называется тавтологическим линейным расслоением на P^n . Двойственное к нему расслоение обозначается $\mathfrak{O}_{\mathsf{P}^n}(1)$, их m-е степени обозначаются $\mathfrak{O}_{\mathsf{P}^1}(\pm m)$.

ЗАМЕЧАНИЕ: Даже если X проективно, пространство сечений $\Gamma(L,X)$ может быть ненулевым. Так, $\Gamma(\mathfrak{O}_{\mathsf{P}^n}(m),\mathsf{P}^n)=\operatorname{Sym}^m\left(k^{n+1}\right)$ при $m\geqslant 0$.

ПРИМЕР: Рассмотрим покрытие $\mathsf{P}^1 = \{(z:w)\}$ двумя картами $\{w \neq 0\}$, $\{z \neq 0\}$. На каждой из них всякое линейное расслоение **тривиализуется**. Какие расслоения из них можно склеить? На пересечении $\mathsf{A}^1 \setminus \{0\}$ частное двух тривиализаций — нигде не зануляющаяся алгебраическая функция, **то есть** $(z/w)^m$. Для каждого m получается свое расслоение. Это **то же расслоение** $\mathfrak{O}_{\mathsf{P}^1}(m)$, что определено выше.

ПРИМЕР: Пусть $B = \mathsf{Bl}_0 k^{n+1}$ — **раздутие** векторного пространства в нуле. Тогда проекция $B \to \mathsf{P}^n$, $(x_0, x_1, \dots x_n) \mapsto (x_0 : x_1 : \dots : x_n)$ — нетривиальное линейное расслоение. Оно обозначается $\mathfrak{O}_{\mathsf{P}^n}(-1)$ и называется **тавтологическим** линейным расслоением на P^n . Двойственное к нему расслоение обозначается $\mathfrak{O}_{\mathsf{P}^n}(1)$, их m-е степени обозначаются $\mathfrak{O}_{\mathsf{P}^1}(\pm m)$.

ЗАМЕЧАНИЕ: Даже если X проективно, пространство сечений $\Gamma(L,X)$ может быть ненулевым. Так, $\Gamma(\mathfrak{O}_{\mathsf{P}^n}(m),\mathsf{P}^n)=\operatorname{Sym}^m\left(k^{n+1}\right)$ при $m\geqslant 0$.

ПРИМЕР: Рассмотрим покрытие $\mathsf{P}^1 = \{(z:w)\}$ двумя картами $\{w \neq 0\}$, $\{z \neq 0\}$. На каждой из них всякое линейное расслоение **тривиализуется**. Какие расслоения из них можно склеить? На пересечении $\mathsf{A}^1 \setminus \{0\}$ частное двух тривиализаций — нигде не зануляющаяся алгебраическая функция, **то есть** $(z/w)^m$. Для каждого m получается свое расслоение. Это **то же расслоение** $\mathfrak{O}_{\mathsf{P}^1}(m)$, что определено выше.

TEOPEMA: (Биркгофа — Гротендика) Всякое векторное расслоение над P^1 есть прямая сумма $\bigoplus_i \mathfrak{O}_{\mathsf{P}^1} (m_i)$.

Обобщим построение $\mathfrak{O}_{\mathsf{P}^1}(1)$ при помощи склейки на любую кривую.

Обобщим построение $\mathcal{O}_{\mathsf{P}^1}(n)$ при помощи склейки на любую кривую. Пусть $x \in C$ — точка гладкой проективной кривой, и $z \in k(C)$ — **локальный параметр** в x (то есть z(x) = 0), регулярный на $U \subset C$. Рассмотрим покрытие C двумя картами: $C = U \cup (C \setminus \{x\})$. Склеим два тривиальных линейных расслоения $\mathsf{A}^1 \times U$ и $\mathsf{A}^1 \times (C \setminus \{x\})$ так:

$$A^1 \times U \ni (t, u) \sim (z^n t, u) \in A^1 \times (C \setminus \{x\}).$$

Обобщим построение $\mathcal{O}_{\mathsf{P}^1}(n)$ при помощи склейки на любую кривую. Пусть $x \in C$ — точка гладкой проективной кривой, и $z \in k(C)$ — **локальный параметр** в x (то есть z(x) = 0), регулярный на $U \subset C$. Рассмотрим покрытие C двумя картами: $C = U \cup (C \setminus \{x\})$. Склеим два тривиальных линейных расслоения $\mathsf{A}^1 \times U$ и $\mathsf{A}^1 \times (C \setminus \{x\})$ так:

$$\mathsf{A}^1 \times U \ni (t,u) \sim (z^n t,u) \in \mathsf{A}^1 \times (C \setminus \{x\}).$$

ПРЕДЛОЖЕНИЕ: Получившееся линейное расслоение **не зависит** от выбора локального параметра. Оно обозначается $\mathfrak{O}_C(nx)$.

ЗАМЕЧАНИЕ: Если $n \geqslant 0$, сечение $C \setminus \{x\} \ni p \mapsto (1,p)$ продолжается в точку x нулем кратностью n.

Обобщим построение $\mathcal{O}_{\mathsf{P}^1}(n)$ при помощи склейки на любую кривую. Пусть $x \in C$ — точка гладкой проективной кривой, и $z \in k(C)$ — **локальный параметр** в x (то есть z(x) = 0), регулярный на $U \subset C$. Рассмотрим покрытие C двумя картами: $C = U \cup (C \setminus \{x\})$. Склеим два тривиальных линейных расслоения $\mathsf{A}^1 \times U$ и $\mathsf{A}^1 \times (C \setminus \{x\})$ так:

$$A^1 \times U \ni (t, u) \sim (z^n t, u) \in A^1 \times (C \setminus \{x\}).$$

ПРЕДЛОЖЕНИЕ: Получившееся линейное расслоение **не зависит** от выбора локального параметра. Оно обозначается $\mathfrak{O}_C(nx)$.

ЗАМЕЧАНИЕ: Если $n \geqslant 0$, сечение $C \setminus \{x\} \ni p \mapsto (1,p)$ продолжается в точку x нулем кратностью n.

ПРЕДЛОЖЕНИЕ: Если $\mathfrak{O}_C(x) \cong \mathfrak{O}_C(y)$ для двух точек $x \neq y \in C$, то кривая C рациональна.

ДОКАЗАТЕЛЬСТВО: По построению, это расслоение имеет два сечения: s_x с нулем в x и s_y с нулем в y. Их частное s_x/s_y — рациональная функция с одним нулем и одним полюсом, то есть изоморфизм с P^1 .

Обобщим построение $\mathcal{O}_{\mathsf{P}^1}(n)$ при помощи склейки на любую кривую. Пусть $x \in C$ — точка гладкой проективной кривой, и $z \in k(C)$ — **локальный параметр** в x (то есть z(x) = 0), регулярный на $U \subset C$. Рассмотрим покрытие C двумя картами: $C = U \cup (C \setminus \{x\})$. Склеим два тривиальных линейных расслоения $\mathsf{A}^1 \times U$ и $\mathsf{A}^1 \times (C \setminus \{x\})$ так:

$$\mathsf{A}^1 \times U \ni (t,u) \sim (z^n t,u) \in \mathsf{A}^1 \times (C \setminus \{x\}).$$

ПРЕДЛОЖЕНИЕ: Получившееся линейное расслоение **не зависит** от выбора локального параметра. Оно обозначается $\mathfrak{O}_C(nx)$.

ЗАМЕЧАНИЕ: Если $n \geqslant 0$, сечение $C \setminus \{x\} \ni p \mapsto (1,p)$ продолжается в точку x нулем кратностью n.

ПРЕДЛОЖЕНИЕ: Если $\mathfrak{O}_C(x) \cong \mathfrak{O}_C(y)$ для двух точек $x \neq y \in C$, то кривая C рациональна.

ДОКАЗАТЕЛЬСТВО: По построению, это расслоение имеет два сечения: s_x с нулем в x и s_y с нулем в y. Их частное s_x/s_y — рациональная функция с одним нулем и одним полюсом, то есть изоморфизм с P^1 .

ОПРЕДЕЛЕНИЕ: Если $D = \sum_i n_i x_i$ — дивизор на кривой C, то линейное расслоение $\bigotimes_i \mathcal{O}_C(n_i x_i)$ называется линейным расслоением дивизора D, и обозначается $\mathcal{O}_C(D)$.

ПРЕДЛОЖЕНИЕ: Пусть $L \to C$ — линейное расслоение, и s — его ненулевое сечение (возможно, рациональное). **Тогда** $L \cong \mathcal{O}_C((s))$.

ПРЕДЛОЖЕНИЕ: Пусть $L \to C$ — линейное расслоение, и s — его ненулевое сечение (возможно, рациональное). **Тогда** $L \cong \mathcal{O}_C((s))$.

ЛЕММА: У всякого линейного расслоения на проективном многообразии есть ненулевое рациональное сечение. ■

ПРЕДЛОЖЕНИЕ: Пусть $L \to C$ — линейное расслоение, и s — его ненулевое сечение (возможно, рациональное). **Тогда** $L \cong \mathcal{O}_C((s))$.

ЛЕММА: У всякого линейного расслоения на проективном многообразии есть ненулевое мероморфное сечение. ■

ЗАМЕЧАНИЕ: Для любых двух ненулевых сечений $s_1, s_2 \in \Gamma(L, C)$ частное s_1/s_2 — мероморфная функция, а потому дивизоры (s_1) и (s_2) отличаются на главный. Итак, линейное расслоение определяет класс дивизоров. В частности, степень — инвариант линейного расслоения.

ПРЕДЛОЖЕНИЕ: Пусть $L \to C$ — линейное расслоение, и s — его ненулевое сечение (возможно, рациональное). Тогда $L \cong \mathcal{O}_C((s))$.

ЛЕММА: У всякого линейного расслоения на проективном многообразии есть ненулевое рациональное сечение. ■

ЗАМЕЧАНИЕ: Для любых двух ненулевых сечений $s_1, s_2 \in \Gamma(L, C)$ частное s_1/s_2 — рациональная функция, а потому дивизоры (s_1) и (s_2) отличаются на главный. Итак, линейное расслоение определяет класс дивизоров. В частности, степень — инвариант линейного расслоения.

ПРИМЕР: Пусть $X \subset \mathsf{P}^n$ — кривая, и $L = \mathfrak{O}_{\mathsf{P}^n}(1)|_X$. Тогда всякий эффективный дивизор из класса (L) высекается на X гиперплоскостью.

ПРИМЕР: Пусть $L \to X$ — линейное расслоение, и $V = H^0(L, X)$. Для точки $x \in X$ рассмотрим $V_x = \{s \in V : s(x) = 0\} \subset V$. Сопоставление $x \mapsto V_x \in P(V^*)$ — рациональное отображение. Если оно — изоморфизм на образ, говорят, что L очень обильно. В этом случае $L = \mathfrak{O}_{P(V^*)}(1)|_X$.