МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Физический факультет Кафедра общей физики

ОПИСАНИЕ ЛАБОРАТОРНЫХ РАБОТ

Часть 2. Молекулярная физика

АТОМНОЕ СТРОЕНИЕ, КИНЕТИЧЕСКАЯ ТЕОРИЯ ВЕЩЕСТВ

Лабораторная работа 1.3

ИЗМЕРЕНИЕ СРЕДНЕЙ ДЛИНЫ СВОБОДНОГО ПРОБЕГА АТОМОВ МЕТАЛЛА В ВАКУУМЕ

Цель работы - знакомство с одним из методов определения длины особенного пробега атомов металла в вакууме.

Оборудование: вакуумная установка с приспособленцам термического распыления металлов, микрофотометр МФ-2.

Осново нашего мировоззрения являются молекулярно-кинетичекие представления, в соответствии с которыми газообразное вещество состоит из больного числа сталкиващихся друг с другом молекул газа. В промежутках между столкновениями молекулы движутся "свободно", т.е. прямолинейно и равномерно (при отсутствии или при малом влиянии гравитационного и электрического полей). Взаимодействуют они только и в момент столкновений. Расстояние, проходимое молекулой между двумя последовательными столкновениям, называется длинной сговодного пробега λ . Очевидно, чем больше плотность молекул и чем больше их диаметр σ , тем меньше λ . В остальном величина каждой конкретной λ зависит от случая. Так как молекул много, то их. движения подчиняются статистическим закономерностям, т.е. имеет смысл говорить о вероятности свободного пробега с длиной

$$\overline{\lambda} = \frac{1}{\sqrt{2}\pi\sigma^2 n} \ (1)$$

здесь n - число молекул, $\pi = 3,14$. Полный смысл σ - диаметр эффективного поперочного сечения - статистическая величина, характеризующая вероятность процесса соударения молекул металла с молекулами воздуха.

Строгое рассмотрение задач, связанных с газон, возможно на основе решений уровнений Больцмана. Опнако часто удобнее пользоваться приближенными методами, основанными на молекулярно-кинетических представлениях.

Проиллюстрируем приближенный метод на примере одного из способов измерений $\overline{\lambda}$

Пусть в газе находится источник молекул, испускающий равномерно по всем направлениям N молекул в секунду. Обозначим через N_X число молекул, прошедших расстояние x без столкновения. Число молекул, испытавших столкновение на пути x до x+dx очевидно равно $\left(-dN_X\right)$ и пропорционально N_X и dx, т.е. $\left(-dN_X\right)=bN_Xdx$, где b- коэффициент пропорциональности.

Откуда, интегрируя, получим

$$\int_{N}^{N_X} \left(-\frac{dN_X}{N_X} \right) = \int_{0}^{X} b dx \; ; \; N_X = N \cdot e^{-bX}$$

Средняя длина свободного пробега этих молекул равна

$$\overline{\lambda} = \frac{1}{N} \int_{N}^{N_X} x \left(-dN_X\right) = \frac{1}{N} \int_{0}^{\infty} bx N_X dx = \int_{0}^{\infty} bx e^{-bx} dx = \frac{1}{b} (2)$$

И

$$N_X = N \cdot e^{-\frac{X}{\lambda}}$$

Отношение $N_X = N \cdot e^{-\frac{X}{\lambda}}$ можно понимать как вероятность отдельной молекулы пройти путь x без столкновений. (Полезно заметить, что вероятность аддитивного события имеет экспоненциальную зависимость.)

Подсчитаем число молекул, которые пересекут малую поверхность S, находящуюся на расстоянии x от источника под углом α к направлению пучка (рис. 1). Положим N_0 - число молекул, выходящих из точечного источника. Если считать, что по пути не происходит соударений молекул металла, то из этого числа на площадку S попадает $N_0 S \frac{1}{4\pi x^2} \cdot \sin \alpha$ молекул.

Рис. 1. Схема распыления атомов: AB - прозрачная горизонтальная пластина на расстоянии - x_0 ; CD - горизонтатьная диафрагма с несколькими круглыми отверстиями

Учитывая столкновения молекул, надо написать

$$N_X = N_0 S \frac{1}{4\pi x^2} \cdot \sin \alpha$$

или, заменяя $1/4\pi \cdot N_0 S = C = const$ для данных условий эксперимента,

$$N_X = \frac{C}{x^2} \cdot \sin \alpha \cdot e^{-\frac{x}{\overline{\lambda}}}$$
 (3)

Формула (3) является основой для определения длины свободного пробега. Пусть 0 - крупинка распыляемого в вакууме металла (рис. 1).

Рассмотрим два пятна, напыленных на пластине AB: m-e и n-e пятна. Расстояние до них соответственно X_m и X_n . Заменив в (3) $\sin \alpha = \frac{x_0}{x}$ и $cx_0 = c'$ для точек m и n предполагая $X_m \approx X_n$, можно записать

$$N_m = \frac{c'}{x_m^3} \cdot e^{-x_m/\lambda} \tag{4}$$

$$N_n = \frac{c'}{x_n^3} \cdot e^{-x_n/\lambda}$$

Назовем непрозрачностью в данной точке пластинки величину $\eta = \ln \frac{i_0}{i}$, где i - фототок, полученный при прохождении света из источника через пластинку с напыленным слоем металла, i_0 - через чистую пластинку.

Для тонких слоев с достаточной точностью можно считать, что непрозрачность η пропорциональна числу молекул металла, находящихся на единице поверхности в данном месте пластинки $\eta = aN$, где a - коэффициент пропорциональности. Выражение (4) перепишем в виде

$$\eta_m = aN_m = \frac{c'}{x_m^3} \cdot e^{-x_m/\lambda}$$

$$\eta_n = aN_n = \frac{c'}{x_n^3} \cdot e^{-x_n/\lambda}$$

Разделив первое выражение на второе, получим

$$\frac{\eta_m}{\eta_n} = \frac{x_n^3}{x_m^3} \cdot e^{-(x_m - x_n)/\overline{\lambda}}$$

Откуда находил:
$$\overline{\lambda} = \frac{x_n - x_m}{\ln(\eta_m/\eta_n \cdot x_m^3/x_n^3)}$$
.

Приведенное рассмотрение имеет допущение, которое может быть справедливым в узком диапазоне давлений: учитывались лишь первичные столкновения молекул. В плотном газе все молекулы, дошедшие до пластин AB и CD, вторичные, их поток определятся диффузией. При хорошем вакууме (при больших $\overline{\lambda}$) столкновение молекул мало, поэтому эффект различных степеней почернения пластин может уменьшаться до величины приборных ошибок.

Описание установки

Для экспериментального определения средней дайны свободного пробега

частиц металла в вакууме используется вакуумная установка, способная давать разрежение порядка 10^{-3} – 10^{-5} мм рт.ст. (рис. 2).

Рис. 2. Принципиальная схема установки: NV - форвакуумный насос, ND - диффузионный насос, CV - рабочий объем, V_1 , V_2 , V_3 ... -краны, PT_1 , PA_1 , PT_2 ... - манометрические лампы.

Испаритель, диафрагма и подложка устанавливаются под стеклянным колпаком. Рабочее давление создается форвакуумным (NV) и диффу зионным (ND) насосами. Давление в рабочем объеме контролируется вакуумметром BUT-2 с помощью термопарного(PT_I) и ионизационного (PA_1) манометров. Регулировка температуры испарителя производится понижающим трансформатором.

Порядок выполнения работы

ВНИМАНИЕ! Перед выполнением лабораторной работы необходимо ознакомиться с принципом действия и устройством форвакуумного и диффузионного насосов и методами измерения вакуума.

Стеклянную пластинку тщательно промойте, просушите и вложите в рамку под колпаком. Положите на молибденовую пластинку (испаритель) кусочек меди, измерьте расстояние от испарителя до пластинки (x_0) и установите колпак с защитной сеткой.

Перед началом откачки все краны установки (рис. 2) должны быть закрыты. Включите форвакуумный насос NV. Соедините NV с колпаком, открыв кран V_4 , и включите термопарный вакуумметр PT_I . Когда давление под колпаком достигнет 10^{-2} мм рт.ст., закройте V_4 , соедините NV с диффузионным насосом ND (кран V_3), а ND с колпаком через V_2 . Подключите воду для охлаждения диффузионного насоса и включите подогреватель. Когда давление достигнет 10^{-3} мм рт.ст, включите ионизационный вакууметр PA_I .

Напыление производится при давлении $(1-5)10^{-4}$ мм рт.ст. Для этого включите тумблер "*испаритель*" и, медленно поворачивая ручку трансформатора, доведите температуру испарителя до точки плавления меди. Запишите установившееся давление и следите за ходом напыления. Весь процесс напыления продолжается до тех пор, пока на стеклянной пластинке не образуется 4-5 полупрорачных пятен.

Выключите ионизационный вакуумметр PA_{I} , закройте V_{2} и отключите подогреватель.

Включите "*испаритель*". Отключите диффузионный насос от рабочего объема CV, закрыв V_2 . Напустите в рабочий объем атмосферу.

ВНИМАНИЕ! Не допускайте попадания атмосферного воздуха в горячий диффузионный насос. Его рабочее давление не должно превышать 5.10⁻² мм рт.ст.

Откройте V_I для напуска воздуха под колпак. Снимите колпак и выньте пластинку. Если необходимо провести повторное напыление, то установите в рамку новую пластинку, установите колпак и закройте V_I . Произведите предварительную откачку рабочего объема CV форвакуумным насосом NV. Для этого отключите его от диффузионного насоса ND, закрыв V_3 , после чего откройте V_4 . После того как давление под колпаком достигнет значения 10^{-2} мм рт.ст, переключите форвакуумный насос на откачку диффузионного (закройте V_4 , откройте V_3),а диффузионный насос подключите к рабочему объему (кран V_2). Повторите напыление.

Для окончательного отключения вакуумной установки необходимо проделать следующее: отключите диффузионный насос от рабочего объема (кран V_2), выключите подогреватель. Кран V_3 остается открытым до полного остывания диффузионного насоса! Только после этого закройте V_3 , выключите форвакуумный насос NV и напустите в него атмосферный воздух через V_5 . Отключите подачу воды.

Для фотометрирования пластинки поместите ее на столик микрофотометра. На незапыленном участке пластинки отрегулируйте ширину щели и световой клин так, чтобы на шкале установилось 800 - 900 делений, далее, перемещая столик, подведите под световой луч каждое из напыленных пятен в точке наиболее плотного напыления, что соответствует минимуму фототока. Одновременно отметьте по шкале на передней стенке столика расстояние между первым пятном и остальными. Результаты занесите в таблицу. Рассчитайте расстояние от испарителя до каждого из пятен и постройте график, откладывая по оси абсцисс $\ln(\eta x^3)$, а по оси ординат x. Тангенс угла наклона полученной прямой даст значение $\overline{\lambda}$.

Определите диаметр эффективного сечения σ . Оцените погрешность измерений $\overline{\lambda}$ и σ . Предложите, как экспериментально проверить критерий "тонкого" напыления, когда η пропорциональна числу молекул металла, находящихся на единице поверхности пластинки.

См. библиографический список: /12/, /38/. 21

Интернет версия подготовлена на основе издания: Описание лабораторных работ. Часть 2. Молекулярная физика. Новосибирск: Изд-во, НГУ, 1988

© Физический факультет НГУ, 1999

© www.phys.nsu.ru

© Лаборатория молекулярной физики НГУ, 1999, http://www.phys.nsu.ru/molecules/