ONDERZOEKSVOORSTEL

Scholieren met dyslexie in het derde graad middelbaar onderwijs ondersteunen bij het lezen van wetenschappelijke artikelen via tekstvereenvoudiging.

Bachelorproef, 2022-2023

Dylan Cluyse

E-mail: dylan.cluyse@student.hogent.be Co-promotors:

- · J. Decorte (Hogeschool Gent, johan.decorte@hogent.be)
- · J. Van Damme (Hogeschool Gent, jana.vandamme@hogent.be)

Samenvatting

Ingewikkelde woordenschat en zinsbouw hinderen scholieren met dyslexie in het derde graad middelbaar onderwijs bij het lezen van wetenschappelijke artikelen. Adaptieve tekstvereenvoudiging heeft een bewezen effect om deze scholieren bij hun lees- en verwerkingssnelheid te helpen. Kunstmatige intelligentie (AI) kan dit proces automatiseren om de werkdruk bij leraren en scholieren te verminderen. Het doel van dit onderzoek is om te achterhalen met welke technologische en logopedische aspecten AI ontwikkelaars rekening moeten houden bij de ontwikkeling van een AI-toepassing voor adaptieve en geautomatiseerde tekstvereenvoudiging voor deze scholieren. Hiervoor is de volgende onderzoeksvraag opgesteld: "Hoe kan de inhoud van een wetenschappelijk artikel automatisch worden vereenvoudigd, met specifiek oog voor de unieke noden van scholieren met dyslexie in het derde graad middelbaar onderwijs?" Een vergelijkende studie beantwoordt deze onderzoeksvraag en is uitgevoerd met bestaande toepassingen en een prototype voor adaptieve en geautomatiseerde tekstvereenvoudiging. Uit de vergelijkende studie blijkt dat toepassingen om wetenschappelijke artikelen te vereenvoudigen, gemaakt zijn voor één centrale doelgroep en geen rekening houden met de unieke noden van een scholier met dyslexie in het derde graad middelbaar onderwijs. De tools om adaptieve software voor tekstvereenvoudiging bestaat, maar ontwikkelaars moeten meer inzetten op de unieke noden van scholieren met dyslexie.

Keuzerichting: Al & Data Engineering

Sleutelwoorden: Machineleertechnieken en kunstmatige intelligentie, tekstvereenvoudiging, dyslexie

Inhoudsopgave

7	Introductie
2	State-of-the-art
	Methodologie
	Verwacht resultaat, conclusie 4
	Referenties

1. Introductie

Het Vlaamse middelbaar onderwijs staat nu op barsten, want leraren en scholieren worden overspoeld door werkdruk en stress. Bovendien is de derde graad van het middelbaar onderwijs een belangrijke mijlpaal voor de verdere loopbaan van scholieren, hoewel scholieren in die graad het moeilijk hebben om grip te krijgen op de vakliteratuur binnen STEM-vakken (Dapaah & Maenhout, 2022). Het STEM-agenda van de Vlaamse Overheid bestaat uit aandachtspunten om het STEM-onderwijs tegen 2030 aantrekkelijker te maken, door de ondersteuning voor zowel leerkrach-

ten als scholieren te verbeteren. Toch wordt het aanpakken van de steeds complexere wetenschappelijke taal, zoals beschreven in Barnett en Doubleday (2020), niet opgenomen in het STEM-agenda. Wetenschappelijke artikelen vereenvoudigen, op maat van de verschillende noden voor een scholier met dyslexie in het middelbaar onderwijs, is tijd- en energie-intensief voor leerkrachten en scholieren. Geautomatiseerde en adaptieve tekstvereenvoudiging biedt hier een baanbrekende oplossing om de werkdruk te verminderen.

Het doel van dit onderzoek is om te achterhalen aan welke technologische en logopedische aspecten Al ontwikkelaars rekening mee moeten houden bij het ontwikkelen van een geautomatiseerde toepassing voor adaptieve tekstvereenvoudiging aan scholieren met dyslexie in de derde graad middelbaar onderwijs. De volgende onderzoeksvraag wordt opgesteld: "Hoe kan de inhoud van een wetenschappelijke artikel op een geautomatiseerde wijze vereenvoudigd worden, specifiek gericht op de verschillende behoeften van scholieren met dyslexie in de derde graad middelbaar onderwijs?"

¹https://www.vlaanderen.be/publicaties/stem-agenda-2030-stem-competenties-voor-een-toekomst-enmissiegericht-beleid

Er wordt gestart met een theoretische basis voor tekstvereenvoudiging en een literatuurstudie naar welke uitdagingen een dergelijke toepassing in acht moet nemen. In een vervolgstap wordt met een veldonderzoek gekeken naar bestaande AI toepassingen voor tekstvereenvoudiging in Nederlandstalige en Engelstalige teksten. Hierna beschrijft het onderzoek een pipeline voor geautomatiseerde tekstvereenvoudiging en staat het stil bij de verschillende metrieken om een vereenvoudigde tekst te beoordelen. Daarna vindt een vergelijkende studie. De resultaten van het onderzoek worden gebruikt om inzicht te krijgen in hoe wetenschappelijke artikelen op een geautomatiseerde en adaptieve manier vereenvoudigd kunnen worden, specifiek voor scholieren met dyslexie in het derde graad middelbaar onderwijs. Dit leidt tot verdere ontwikkeling voor Al-ontwikkelaars om een bruikbare toepassing te creëren voor gebruik in het onderwijs.

2. State-of-the-art

De voorbije tien jaar is kunstmatige intelligentie (AI) sterk verder ontwikkeld. De toename in kennis zorgde voor nieuwe toepassingen (Vasista, 2022). Tekstvereenvoudiging vloeide hier uit voort. Momenteel bestaan er al robuuste toepassingen die teksten kunnen vereenvoudigen, zoals Resoomer², Paraphraser³ en Prepostseo⁴. Binnen het kader van tekstvereenvoudiging is er bestaande documentatie beschikbaar waar onderzoekers het voordeel van toegankelijkheid aanhalen, maar volgens Gooding (2022) ontbreken deze toepassingen de extra noden die scholieren met dyslexie in het derde graad middelbaar onderwijs vereisen.

Shardlow (2014) haalt aan dat het algemene doel van tekstvereenvoudiging is om ingewikkelde bronnen toegankelijker te maken. Het zorgt voor verkorte teksten zonder de kernboodschap te verliezen. Siddharthan (2014) haalt verder aan dat tekstvereenvoudiging op één van drie manieren gebeurt. Er is conceptuele vereenvoudiging waarbij documenten naar een compacter formaat worden getransformeerd. Daarnaast is er uitgebreide modificatie die kernwoorden aanduidt door gebruik van redundantie. Als laatste is er samenvatting die documenten verandert in kortere teksten met alleen de topische zinnen. Met deze concepten zijn ontwikkelaars volgens Siddharthan (2014) in staat om ingewikkelde woorden te vervangen door eenvoudigere synoniemen of zinnen te verkorten zodat ze sneller leesbaar zijn.

Tekstvereenvoudiging behoort tot de zijtak van natuurlijke taalverwerking (NLP) in kunstmatige intelligentie. NLP omvat methodes om, door machinaal leren, menselijke teksten om te zetten in

tekst voor machines. Documenten vereenvoudigen met NLP kan volgens Chowdhary (2020) op twee manieren: extract of abstract. Bij extractieve simplificatie worden zinnen gelezen zoals ze zijn neergeschreven. Vervolgens bewaart een document de belangrijkste taalelementen om de tekst te kunnen hervormen. Deze vorm van tekstvereenvoudiging komt volgens (Sciforce, 2020) het meeste voor. Daarnaast is er abstracte simplificatie die de kernboodschap van de zin bewaart en daarmee een nieuwe zin opbouwt. Volgens het onderzoek van Chowdhary (2020) heeft deze vorm potentieel dankzij de menselijke interpretatie, maar zit nog in de kinderschoenen.

Het onderzoek van Franse wetenschappers Gala en Ziegler (2016) illustreert dat manuele tekstvereenvoudiging schoolteksten toegankelijker maakt voor kinderen met dyslexie. Dit deden ze door simpelere synoniemen en zinsstructuren te gebruiken. Verwijswoorden werden vermeden en woorden kort gehouden. De resultaten waren veelbelovend. Het leestempo lag hoger en de kinderen maakten minder leesfouten. Ook bleek er geen verlies van begrip in de tekst bij geteste kinderen. Resultaten van de studie werden gebundeld voor de mogelijke ontwikkeling van een Al hulpmiddel.

De visuele weergave van tekst beïnvloedt de leessnelheid bij scholieren met dyslexie. Zo haalt het onderzoek van Rello e.a. (2012) tips aan waarmee teksten en documenten rekening moeten houden bij scholieren met dyslexie in het derde graad middelbaar onderwijs. Het gaat over speciale lettertypes, spreiding tussen woorden en het gebruik van inzoomen op aparte zinnen. Het onderzoek haalt verder aan dat teksten voor deze unieke noden aanpassen tijdrovend is, dus tekstvereenvoudiging door kunstmatige intelligentie kan een revolutionaire oplossing bieden.

De Universiteit van Kopenhagen is met bovenstaande idee aan de slag gegaan. Onderzoekers Bingel e.a. (2018) hebben gratis software ontwikkeld, genaamd Hero⁵, om tekstvereenvoudiging voor scholieren in het middelbaar onderwijs met dyslexie te automatiseren. De software bestudeert met welke woorden de gebruiker moeite heeft, en vervangt die door simpelere alternatieven. Hero bevindt zich nu in beta-vorm en wordt enkel in het Engels en Deens ondersteund.

Roldós (2020) haalt aan dat NLP in de laatste decennia volop in ontwikkeling is, maar ontwikkelaars botsen nog op uitdagingen. Het gaat om zowel interpretatie- als dataproblemen bij Al machines. Het onderzoek haalt twee punten aan. Allereerst is het voor een machine moeilijk om de context van homoniemen te achterhalen. Bijvoorbeeld bij het woord 'bank' is het niet duidelijk voor de machine of het gaat over de geldinstelling of het meubel. Daarnaast zijn synoniemen geen

²https://resoomer.com/nl/

³https://www.paraphraser.io/nl/tekst-samenvatting

⁴https://www.prepostseo.com/tool/nl/text-summarizer

⁵https://beta.heroapp.ai/

probleem voor tekstverwerking.

Het onderzoek van Sciforce (2020) haalt aan dat het merendeel van NLP-toepassingen Engelstalige invoer gebruikt. Niet-Engelstalige toepassingen zijn zeldzaam. De opkomst van Al technologieën die twee datasets gebruiken, biedt een oplossing voor dit probleem. De software vertaalt eerst de oorspronkelijke tekst naar de gewenste taal, voordat de tekst wordt herwerkt. Hetzelfde onderzoek bewijst dat het vertalen van gelijkaardige talen, zoals Duits en Nederlands, een minimaal verschil opleverd.

Voor scholieren met dyslexie in het derde graad middelbaar onderwijs bestaan digitale hulpmiddelen die voor een betere visuele presentatie zorgen van teksten. De Vlaamse overheid leent gratis abonnementen⁶ uit voor voorlees- en schrijfsoftware. De voornaamste zijn SprintPlus⁷, Alinea⁸ en Kurzweil3000⁹. Vlaamse scholieren met dyslexie in het middelbaar onderwijs kunnen voor deze software een gratis abonnement of licentie aanvragen. Al bieden de vijf softwarepakketten elk een samenvattingsfunctie aan, echter ligt de focus op spreek- en luisterfuncties waarbij het samenvatten en markeren van tekst als extra wordt gehouden.

Vlaanderen heeft weinig zicht op de geïmplementeerde Al software in scholen. Dit werd vastgesteld door (Martens e.a., 2021a), een samenwerking tussen de Vlaamse universiteiten en overheid voor Al. Vergeleken met andere Europese landen, maakt België het minst gebruik van leerlingeen alternatief is op de vooraf aangehaalde Simgeoriënteerde hulpmiddelen. Degenen die wel gebruikt worden, zijn vooral online leerplatformen voor zelfstandig werken. Ook maakt België amper gebruik van beschikbare software die de leermethoden en -noden van leerlingen evalueert (Martens e.a., 2021b).

ChatGPT¹⁰ van OpenAI is een chatbot gebouwd op het GPT-3 model. Helaas moet de chatbot expliciet gevraagd worden om tekst te vereenvoudigen via de online toepassing. Verhoeven (2023) haalt aan dat toepassingen zoals ChatGPT een wondermiddel zijn om de werklast van routinematig en boilerplate werk te verminderen in het onderwijs. Het is mogelijk om toepassingen te ontwikkelen met het GPT-3 model, maar de API van GPT-3 is alleen tegen betaling beschikbaar. Daarnaast haalt Deckmyn (2021) aan dat GPT-3 sterker staat in het maken van Engelstalige teksten, dan Nederlandstalige teksten. De databank waar het GPT-3 model mee is getraind, bestaat 92% uit Engelse teksten, slechts immers voor 0,35% is Nederlands. Ontwikkelaars moeten de

Python staat bovenaan de lijst van programmeertalen voor NLP-toepassingen. Volgens het onderzoek van Thangarajah (2019) is dit te wijten aan de eenvoudige syntax, kleine leercurve en grote beschikbaarheid van kant-en-klare bibliotheken. Moeilijke wiskundige berekeningen of statistische analyses kunnen worden uitgevoerd door middel van één lijn code. Malik (2022) haalt de twee meest voorkomende aan, namelijk NLTK¹² en Spacy¹³. Deep Martin¹⁴ bouwt verder op het onderzoek van Shardlow (2014) naar een pipeline voor lexicale vereenvoudiging. Deep Marting maakt gebruik van custom transformers om invoertekst om te zetten naar een vereenvoudigde versie van de tekstinhoud.

In de Nederlandse taal zijn er een schaars aantal vereenvoudigde datasets en word embeddings beschikbaar. Binnen Germaanse talen zijn er meer datasets en word embeddings beschikbaar die de complexiteit van woorden bijhouden. Zo zijn er in de Duitse taal Klexicon¹⁵ en TextComplexityDE¹⁶. Een onderzoek van Suter e.a. (2016) bouwde een rule-based NLP-model met 'Leichte Sprache', wat ple English dataset van Wikipedia.

Volgens Garbacea e.a. (2021) is het belangrijk dat AI ontwikkelaars niet alleen aandacht besteden aan het aanpassen van woorden en zinnen, maar ook aan het begrijpen waarom ze aangepast moeten worden. Zij wijzen op twee ethische aspecten die belangrijk zijn voor Al taaltoepassingen ten aanzien van de eindgebruiker. Eerst moet de toepassing duidelijk aangeven waarom een zin of woord is aangepast. Het model moet de moeilijkheidsgraad van de woorden of zinnen bewijzen. lavarone e.a. (2021) beschrijft bijvoorbeeld een methode met regressiemodellen om de moeilijkheidsgraad te bepalen, door een gemiddeld moeilijkheidspercentage per zin te berekenen. Daarnaast benadrukt Garbacea e.a. (2021) het belang van het markeren van de complexere delen van een tekst. Hiervoor kunnen methoden zoals lexicale of deep learning worden gebruikt.

Er is een tactvolle aanpak nodig om een vereenvoudigde tekst met AI te beoordelen. De studie van Swayamdipta (2019) haalt aan dat er ex-

¹⁶https://github.com/babaknaderi/TextComplexityDE

evolutie van dit model opvolgen, vooraleer er een Nederlandstalige toepassing wordt gemaakt. Readable is een Engelstalige AI toepassing dat zinnen beoordeeld met leesbaarheidsformules. Bij beide tools is het enkel mogelijk om tekst op de webpagina te plakken, dus er kunnen geen PDFdocumenten of scans worden geüpload en eenzelfde werking verwachten.

⁶https://onderwijs.vlaanderen.be/nl/onderwijspersoneel/vanbasis-tot-volwassenenonderwijs/lespraktijk/ict-in-deklas/voorleessoftware-voor-leerlingen-met-leesbeperkingen

⁷https://www.sprintplus.be/

⁸https://sensotec.be/product/alinea-suite/

⁹https://sensotec.be/product/kurzweil-3000/

¹⁰https://chat.openai.com/chat

¹¹https://readable.com/

¹²https://www.nltk.org/

¹³https://spacy.io/

¹⁴https://github.com/chrislemke/deep-martin

¹⁵https://github.com/dennlinger/klexikon

Figuur 1: (Readable, 2021)

tra nood is aan NLP-modellen waarbij de tekst zijn kernboodschap behoudt. Samen met Microsoft Research bouwden ze NLP-modellen die gericht waren op de bewaring van zinsstructuur en context door scaffolded learning. Hiervoor maakten de onderzoekers gebruik van een voorspellingsmethode die de positie van woorden en zinnen in een document beoordeelde. De Flesch-Kincaid leesbaarheidstest is volgens Readable (2021) een alternatieve manier om vereenvoudigde tekstinhoud te beoordelen, zonder de nood van vooraf 4. Verwacht resultaat, conclugetrainde modellen. Met de Python-library textstat¹⁷ kan deze score eenvoudig worden berekend.

3. Methodologie

Een mixed-methods toont aan hoe toepassingen de inhoud van een wetenschappelijke paper geautomatiseerd kunnen vereenvoudigen, specifiek gericht op scholieren in de derde graad middelbaar. Het onderzoek houdt vijf grote fases in. De eerste fase is het proces van geautomatiseerde tekstvereenvoudiging beschrijven. Dit gebeurt via een grondige studie van vakliteratuur en wetenschappelijke teksten. Ook blogs van experten komen hier aan bod. Na het verwerven van de nodige inzichten wordt er een verklarende tekst opgesteld.

De tweede fase bestaat uit het analyseren van wetenschappelijke werken over de bewezen voordelen van tekstvereenvoudiging bij scholieren met dyslexie van het derde graad middelbaar onderwijs. Hiervoor zijn geringe thesissen beschikbaar, die zorgvuldigheid vragen tijdens interpretatie. De resulterende tekst bevat de voordelen samen met hun wetenschappelijke onderbouwing.

De derde fase is opnieuw een beschrijving. Hier worden de valkuilen bij taalverwerking met Al-software nagegaan. Deze fase van het onderzoek brengt mogelijke nadelen en tekortkomingen van Al-software bij tekstsimplificatie aan het licht. Dit gebeurt aan de hand van een technische uitleg.

De vierde fase omvat een toelichting over beschikbare AI toepassingen voor tekstvereenvoudiging. Aan de hand van een veldonderzoek op het internet en bij bedrijven wordt een longlist opgesteld van beschikbare toepassingen voor tekstvereenvoudiging in het onderwijs. Met een requirementsanalyse wordt er een shortlist opgesteld van software. De shortlist vormt de basis voor de ontwikkeling van een prototype voor geautomatiseerde en adaptieve tekstvereenvoudiging.

De vijfde en laatste fase van het onderzoek richt zich op het testen en beoordelen van de geselecteerde Al-toepassingen. In dit experiment zullen scholieren met dyslexie in het derde graad middelbaar onderwijs de shortlisted AI toepassingen en het prototype uitproberen. Het doel is om de effectiviteit en gebruikersvriendelijkheid van deze toepassingen te beoordelen. Na een grondige analyse wordt er met de resultaten van de testfase bepaalt of de toepassingen aan de vereisten voldoen om wetenschappelijke papers te vereenvoudigen voor scholieren in het middelbaar onderwijs.

sie

Er wordt verwacht dat de huidige softwareoplossingen voor tekstvereenvoudiging onvoldoende aansluiten bij de noden van scholieren met dyslexie in het derde graad middelbaar onderwijs. Het prototype is moeilijk af te stemmen op de specifieke noden van deze doelgroep. Er is nood aan aangepaste transformers om bevredigende resultaten te bereiken. Bovendien is er een gebrek aan Nederlandstalige word embeddings die de complexiteit van elk woord kunnen bijhouden en aan kant-en-klare modellen die de inhoud van wetenschappelijke papers kunnen vereenvoudigen. Word embeddings uit een Germaanse taal gebruiken, gevolgd door vertaling naar het Nederlands is wel een aanvaardbaar alternatief.

Referenties

Barnett, A., & Doubleday, Z. (2020). Meta-Research: The growth of acronyms in the scientific literature (P. Rodgers, Red.). eLife, 9, e60080.

Bingel, J., Paetzold, G., & Søgaard, A. (2018). Lexi: A tool for adaptive, personalized text simplification. Proceedings of the 27th International Conference on Computational Linguistics, 245-258.

Chowdhary, K. (2020). Fundamentals of Artificial Intelligence. Springer, New Delhi.

¹⁷https://pypi.org/project/textstat/

- Dapaah, J., & Maenhout, K. (2022, juli 8). Iedereen heeft boter op zijn hoofd (D. Standaard, Red.). https://www.standaard.be/cnt/ dmf20220607_97763592
- Deckmyn, D. (2021, maart 19). Robot schrijft mee De Standaard (D. Standaard, Red.). https: //www.standaard.be/cnt/dmf20210319_ 05008561
- Gala, N., & Ziegler, J. (2016). Reducing lexical complexity as a tool to increase text accessibility for children with dyslexia. Proceedings of the Workshop on Computational Linguistics for Linguistic Complexity (CL4LC), 59-66.
- Garbacea, C., Guo, M., Carton, S., & Mei, Q. (2021). Explainable Prediction of Text Complexity: The Missing Preliminaries for Text Simplification. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 1086–1097. https://doi.org/10.18653/v1/2021. acl-long.88
- Gooding, S. (2022). On the Ethical Considerations of Text Simplification. Ninth Workshop on Speech and Language Processing for Assistive Technologies (SLPAT-2022), 50-57. https://doi.org/10.18653/v1/2022.slpat-1.7
- Sentence Complexity in Context. Proceedings and Computational Linguistics, 186–199. https: //doi.org/10.18653/v1/2021.cmcl-1.23
- Malik, R. S. (2022, juli 4). Top 5 NLP Libraries To Use in Your Projects (T. Al, Red.). https:// towardsai.net/p/l/top-5-nlp-libraries-touse-in-your-projects
- Martens, M., De Wolf, R., & Evens, T. (2021a). Algoritmes en Al in de onderwijscontext: Een studie naar de perceptie, mening en houding van leerlingen en ouders in Vlaanderen. Kenniscentrum Data en Maatschappij. Verkregen maart 30, 2022, van https: //data - en - maatschappij.ai/publicaties/ survey-onderwijs-2021
- Martens, M., De Wolf, R., & Evens, T. (2021b, juni 28). School innovation forum 2021. Kenniscentrum Data en Maatschappij. Verkregen april 1, 2022, van https://data-enmaatschappij.ai/nieuws/school-innovationforum-2021
- Readable. (2021). Flesch Reading Ease and the Flesch Kincaid Grade Level. https://readable. com / readability / flesch - reading - ease flesch-kincaid-grade-level/
- Rello, L., Kanvinde, G., & Baeza-Yates, R. (2012). Layout Guidelines for Web Text and a Web Service to Improve Accessibility for Dyslexics. Proceedings of the International Cross-

- Disciplinary Conference on Web Accessibility.
- Roldós, I. (2020, december 22). Major Challenges of Natural Language Processing (NLP). MonkeyLearn. Verkregen april 1, 2022, van https: //monkeylearn.com/blog/natural-languageprocessing-challenges/
- Sciforce. (2020, februari 4). Biggest Open Problems in Natural Language Processing. Verkregen april 1, 2022, van https://medium. com/sciforce/biggest-open-problems-innatural-language-processing-7eb101ccfc9
- Shardlow, M. (2014). A Survey of Automated Text Simplification. International Journal of Advanced Computer Science and Applications(IJACSA), Special Issue on Natural Language Processing 2014, 4(1). https://doi. org/10.14569/SpecialIssue.2014.040109
- Siddharthan, A. (2014). A survey of research on text simplification. ITL - International Journal of Applied Linguistics, 165, 259–298.
- Suter, J., Ebling, S., & Volk, M. (2016). Rule-based Automatic Text Simplification for German.
- Swayamdipta, S. (2019, januari 22). Learning Challenges in Natural Language Processing. Verkregen april 1, 2022, van https://www. microsoft.com/en-us/research/video/ learning-challenges-in-natural-languageprocessing/
- lavarone, B., Brunato, D., & Dell'Orletta, F. (2021). Thangarajah, V. (2019). Python current trend applicationsan overview.
 - of the Workshop on Cognitive Modeling Vasista, K. (2022). Evolution of Al Design Models. Central Asian Journal of Theoretical and Applied Science, 3(3), 1-4. https://www. cajotas . centralasianstudies . org / index . php/CAJOTAS/article/view/415
 - Verhoeven, W. (2023, februari 8). Applaus voor de studenten die ChatGPT gebruiken (Trends, Red.). https://trends.knack.be/economie/ bedrijven/applaus - voor - de - studenten die-chatgpt-gebruiken/article-opinion-1934277.html?cookie_check=1676034368

