- 3. A gray-level digital image X of size 100×100 is cropped into small images of size 3×3 by sliding the center of a 3×3 window to every pixel of X. If the center of the window is on the boundary of the image X, zero padding is used to obtain images of size 3×3 so that we get 10000 small images of size 3×3 . Each 3×3 image is flattened into a column vector and is expressed as $\mathbf{z}^k = (z_1^k, ..., z_9^k, 1)^T$, k = 1, ..., 10000, and is input to a typical fully-connected layer of a multilayer perceptron (MLP) with a linear activation function to generate the output vectors $\mathbf{y}^k = (y_1^k, ..., y_6^k)^T$. The network parameters of this layer are denoted by w_{ij} and b_i , 0 < i < 10, 0 < j < 7.
 - (a) Express the outputs y_j^k in terms of the inputs z_i^k .

 用输入z表示输出 v_s (5 Marks)
 - (b) Construct the matrix W that contains all network parameters, and express the output vector \mathbf{y}^k in terms of the input vector \mathbf{z}^k .

(5 Marks)

构造包含所有网络参数的矩阵W,用输入向量zk表示输出向量yk。

(c) 六张输出图像 Y_j , j=1,...,6 , 大小与输入图像 X 相同,由 10000 个输出向量 y^k , k=1,...,10000 构成。用输入图像 X 表示<mark>输出图像 Y_j 。</code> EE6222</mark>

(c) Six output images, Y_j , j = 1, ..., 6, of the same size with the input image X, are constructed by the 10000 output vectors \mathbf{y}^k , k = 1, ..., 10000. Express the output images Y_j in terms of the input image X.

(d) 假设该网络由100张大小为100×100的图像训练。 (10 Marks) 用于训练网络参数W 或者 wij & bi的训练样本数量是 多少? (d) Suppose this network is trained by 100 images of size 100×100. What is the number

(d) Suppose this network is trained by 100 images of size 100×100 . What is the number of training samples used to train the network parameters W or w_{ij} and b_i ?

Q:
$$3x3 \rightarrow 100\times100 \rightarrow 10000$$
 $\mathbb{Z}^{k} = (\mathbb{Z}_{1}^{k} \mathbb{Z}_{2}^{k} \cdots \mathbb{Z}_{q}^{k}, 1)^{T}, k=1 \sim 10000$

$$y = (y_{1}^{k}, \dots y_{6}^{k})^{T} \quad \text{Wij and b};$$

(a)
$$z_i^k \rightarrow y_j^k$$
?

we can construct the weight matrix w of size look where each column corresponds the the weight wije and the last one is bias by

$$W = \begin{bmatrix} W_{11} & W_{12} & \cdots & W_{16} \\ W_{21} & W_{22} & \cdots & W_{26} \\ \vdots & \vdots & \ddots & \vdots \\ W_{q1} & W_{q2} & \cdots & W_{q6} \\ b_1 & b_2 & \cdots & b_6 \end{bmatrix}$$

$$y^k = w^T z^k$$

Solution

(c)
$$W_{j} = \begin{bmatrix} w_{1j} & w_{2j} & w_{3j} \\ w_{4j} & w_{3j} & w_{4j} \\ w_{7j} & w_{8j} & w_{7j} \end{bmatrix}$$

(d) Each of the 100 training image of size 100×100

provide (0000 Samples

Therefore,

Number of training sample = 100 images × 10000 sample/image

= 1000,000

