

CHAPITRE II

FONCTIONS DE Rⁿ DANS R^p: CONTINUITE ET CONTINUITE PARTIELLE

1. GRAPHES DES FONCTIONS DE DEUX VARIABLES

On considère une fonction f de R dans R : $x \rightarrow f(x)$; le graphe de f est l'ensemble des points (x,y) de R^2 tels que y=f(x). Cet ensemble définit une courbe de R^2 .

Si f est maintenant une fonction de R^2 dans $R:(x,y) \rightarrow f(x,y)$; son graphe est l'ensemble des points (x,y,z) de R^3 tels que z=f(x,y). Cet ensemble définit une surface de R^3 .

Quelques graphes connus:

Le paraboloïde d'équation : $f(x, y) = x^2 + y^2$

2014-2015 MAT2052 17

Le plan d'équation z=1+x-y:

La selle d'équation $f(x, y) = x^2 - y^2$:

Le cylindre circulaire d'équation : $x^2 + y^2 = 1$, z quelconque :

Le cône d'équation $f(x,y) = \sqrt{x^2 + y^2}$:

La sphère d'équation $x^2 + y^2 + z^2 = 1$:

2. CONTINUITE DES FONCTIONS DE Rⁿ DANS R^p

En dimension finie, toutes les normes sont équivalentes ; donc pour étudier la continuité des fonctions de Rⁿ dans R^p, nous pouvons utiliser la norme la mieux adaptée aux calculs à développer.

Par exemple, considérons la fonction définie par

$$f(x,y) = \begin{cases} \frac{(x^2 - y^2)\sin(xy)}{(x^2 + y^2)} & si(x,y) \neq (0,0) \\ 0 & si(x,y) = (0,0) \end{cases}$$

MAT2052

Pour étudier la continuité de cette fonction f au point (0,0), compte tenu, de l'expression analytique de f, nous choisissons la norme euclidienne. Pour tout (x,y) au voisinage de (0,0) dans de R^2 on a , comme : $|\sin(x)| \le |x|$,

$$|f(x,y) - f(0,0)| = \left| \frac{(x^2 - y^2)\sin(xy)}{(x^2 + y^2)} \right| \le \frac{(x^2 + y^2)|\sin(xy)|}{(x^2 + y^2)} \le |xy|$$

Or
$$|x|^2 \le |x|^2 + |y|^2$$
 d'où : $|x| \le \sqrt{|x|^2 + |y|^2} = ||(x, y)||_2$ de même $|y| \le \sqrt{|x|^2 + |y|^2} = ||(x, y)||_2$

On obtient alors:

$$|f(x,y)-f(0,0)| \le ||(x,y)||_2^2$$

Donc quand
$$(x,y) \rightarrow (0,0)$$
: $\lim_{(x,y)\to(0,0)} ||(x,y)||_2 = 0$

On alors :
$$\lim_{(x,y)\to(0,0)} |f(x,y)-f(0,0)| = 0$$
; soit $\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0)$

f est donc continue au point (0,0).

Observons son graphe:

$$f(x,y) = \begin{cases} \frac{(x^2 - y^2)\sin(xy)}{(x^2 + y^2)} si(x,y) \neq (0,0) \\ 0 & si(x,y) = (0,0) \end{cases}$$

18

D'un point (x,y,z) de la surface - avec (x,y) voisin de (0,0) - nous pouvons atteindre le point (0,0,0).

Exemple 2 : Observons le graphe suivant :

$$f(x,y) = \begin{cases} \frac{xy}{(x^2 + y^2)} si(x,y) \neq (0,0) \\ 0 & si(x,y) = (0,0) \end{cases}$$

D'un point (x,y,z) de la surface - avec (x,y) voisin de (0,0) - nous ne pouvons pas toujours atteindre le point (0,0,0). Ce la dépend des directions suivies.

Quelques résultats sur les fonctions continues et la notion de limite :

- Comme pour les fonctions d'une variable réelle, lorsque l'on somme, que l'on compose, que l'on multiplie des fonctions continues, on obtient une fonction continue.
- La notion de limite dans R² (ou Rn), ne dépend pas du « chemin suivi » : Soit f une application de R² dans R, a un point de R², si $\lim_{(a,b)} f(x,y) = l$, alors pour toute courbe continue passant par (a,b),

paramétrée par
$$\begin{cases} x = \alpha(t) \\ y = \beta(t) \end{cases}$$
, $t \in I$; $(\alpha(t_0), \beta(t_0)) = (a, b)$ on a : $\lim_{t_0} f(\alpha(t), \beta(t)) = l$

• Dans la pratique, on utilise ce dernier résultat pour montrer qu'une fonction n'est pas continue en un point (a,b) : on choisit des chemins différents passant par (a,b) le long desquels f(x,y) tend vers des valeurs différentes.

Exemple : Etudions la continuité au point (0,0) de l'application f définie par :

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & si(x,y) \neq (0,0) \\ 0 & si(x,y) = (0,0) \end{cases}$$

Pour x=0 et y non nul, on a : f(0,y) =0 ; d'où (1) $\lim_{x\to 0} f(0,y) = 0$ Par ailleurs, pour x=y non nul, on a f(x,x)=1/2 ; d'où (2) $\lim_{x\to 0} f(x,x) = 1/2$

Les résultats (1) et (2) prouvent que f n'a pas de limite en (0,0), et donc qu'elle n'est pas continue en ce point.

Continuité partielle des fonctions de plusieurs variables réelles, cas des fonctions de deux variables.

Soient f une fonction de R^2 dans R et a=(a_1 , a_2) un élément de R^2 . Les applications définies de R dans R par :

$$\varphi_1: x \mapsto f(x, a_2) \text{ et } \varphi_2: y \mapsto f(a_1, y)$$

sont appelées première et deuxième applications partielles de f au point a.

Si l'application φ_1 est continue en a_1 , on dit que f est continue par rapport à sa première variable au point a.

De même, $\sin \varphi_2$ est continue en a₂, on dit que f est continue par rapport à sa deuxième variable au point a.

Si φ_1 et φ_2 sont continues en a_1 et a_2 , respectivement, on dit que f est partiellement continue au point a.

Remarque : La continuité partielle correspond à la continuité suivant des chemins particuliers, lesquels?

Visualisation des fonctions partielles de f :
$$f(x, y) = -(x^2 + y^2)$$
 au point (0,0) :

Exercices:

- a) Montrer que si f une application de R² dans R, est continue en un point a de R², alors elle y est partiellement continue.
- b) En étudiant au point (0,0) la fonction f définie

par :
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & si(x,y) \neq (0,0) \\ 0 & si(x,y) = (0,0) \end{cases}$$
, montrer qu'on n'a pas l'équivalence

entre continuité et continuité partielle. Enoncer clairement le résultat obtenu.

3. EXERCICES

Exercice 1:

Les fonctions représentées par les graphes suivants sont-elles continues ? Partiellement continues ?

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

$$f(x,y) = \begin{cases} \frac{x^3 y}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$