Systems Engineering

Stefan Henkler

E-Mail: stefan.henkler@hshl.de

Homework recap

- ► Consider your Microcontroller project from last semester
 - Specify the parametric constraints and activity diagrams on analysis level
 - ▶ Use paper and pen
 - ▶ In addition, if you have the possiblity, use the SysML tool papyros

► Readings

- ► Tim Weilkiens, "Systems Engineering with SysML/UML" (see: https://learning.oreilly.com/library/view/systems-engineering-with/9780123742742/)
 - ▶ 4.6. Parametric block diagrams and 4.8 Activity Diagram (recap)
 - ► Further readings: all sections of chapter 4 that have not yet been covered

► 3(4) Sequence Diagrams

- ► Sequences diagrams can be used to model communications among block structures arranged in time order.
- ► A Sequence diagram specifies a series of interactions in terms of message flows. A message combines control and data-flow.

► Application:

► Can be used to specify the required interactions between the elements of a system.

► 4Basics

► Sequence Diagram Frame

- ▶ Lifeline
- ExecutionSpecification
- ► InteractionUse
- CombinedFragment
- DestructionEvent

► 5 Time Restrictions (UML)

- Duration Constraint/ Duration Observation
 - ▶ Passage of time
 - ► Identifies two occurences (start and end occurrence)
- ▶ Time Constraint/ Time Observation
 - Applies to a single occurrence
 - With respect to the expression t=now

► 6 Example

Drive Car

► High level view which references other sequence diagrams via an InteractionUse

7 Black-box View

► 8 White-Box View

Coherent partial models

System of Coherent Partial Models

▶10 V Analysis and Design

- 1. Introduction
- 2. Methods
- 3. Analysis
- 4. Design
- 5. Advanced Design Concepts
- 6. Discussion & Summary
- 7. Bibliography

►11 V.4 Design

- ► The designer focuses on the solution of the problem (solution domain) which involves many tasks (subsystem decomposition, selection of the hardware platform, data management system, etc.).
- ► The design model therefore should describe the solution but may also include required or existing structure and behavior of the application identified during analysis.
- ► Main stake holders: designer, implementer

▶12 Analysis vs. Design

- ► The exact boundary between analysis and design is hard to determine. But there is a different purpose:
 - Analysis concerns the description of the problem and the user requirements
 - ▶ Design concerns the construction of a **solution** which satisfies the previously recorded requirements.
- ► There are no miracles
 - transition to design must transform analysis objects into design objects.

▶13 Design with SysML

- ▶ (5) State Machine Diagram
- ► (6) Allocation Diagram

▶14What can/should be Designed?

- ► (1) Block Diagrams
 - Construct internal structures and interfaces
- ▶ (2) Parametric Constraint Diagram
 - ▶ Define which dependencies/constraints should hold between given elements as well as invented elements
- ► (3) Activity Diagrams
 - Scenarios describing the flow of activities including the internal processing
- ► (4) Sequence Diagrams
 - ► Required/Likely interaction scenarios including internal elements
- ▶ (5) State Machine Diagram
 - Complete state-dependent reactive behavior of constructed elements
- ► (6) Allocation Diagram
 - Describe/record which elements fulfill which requirements

▶15(5) State Machine Diagram

- ► The State Machine can be used to model discrete behavior through finite state transition systems in terms of its transitions and states.
- ► The activities that are invoked during the transition, entry, and exit of the states are specified along with the associated event and guard conditions.
- ► Activities that are invoked while beeing in a state are specified as do Activities, and can be either continuous or discrete (Hybrid behavior!)
- ► A composite state has nested states that can be sequential or concurrent.

▶16 Operational States (Drive)

Transition notation: trigger[guard]/action

▶17 Allocation Diagram

- ► Allocation is the term used by systems engineers to denote the organized cross-association (mapping) of elements within the various structures or hierarchies of a user model.
- ► Allocation is the term used by systems engineers to describe a design decision that assigns responsibility for meeting a requirement (requirements allocation) or implementing a behavior (functional allocation) to structural elements of the system.
- ► The allocation relationship can provide an effective means for **navigating** the model by establishing **cross relationships**, and ensuring the various parts of the model are properly integrated.

«allocated» «allocated» {allocatedFrom= ElementName} {allocatedTo= ElementName} ElementName

BlockName

«allocated»
{allocatedFrom = ElementName}

▶18 Example: Allocation Behavior

▶19 Table view

table [package] On-board computer control [allocation

type	name	end	relation	end	type	name
port	k:Card readerPort	from	allocateStructure	to	port	r:RS232
action	Transmit card data	from	allocateBehavior	to	block	Customer card
action	Read customer card	from	allocateBehavior	to	block	Card reader
action	Identify customer	from	allocateBehavior	to	block	On-board computer control

matrix [package] On-board computer control [allocations]

Source	Target			
	r:RS232	Customer card	Card reader	On-board computer control
k:Card readerPort	allocate			
Transmit customer data		allocate		
Read customer card			allocate	
Identify customer				allocate

>20 SYSMOD

Analysis

► Model base

▶21 SYSMOD

Design

▶22 Discussion & Summary

- ► There exists different decomposition principles such as functional structuring, data-flow structuring and object-oriented structuring which may occur in combination when analyzing or designing a complex system.
- ► **SysML** (UML) provides a rich set of modeling concepts for the analysis and design of softwareintensive systems.
- ► While analysis focuses on the requirements and **problem domain**, the design describes the proposed **solution** (which might include some elements of the problem domain).

References

- ▶ Online Modeling Tool
 - https://online.visual-paradigm.com/drive/#diagramlist:proj=0&new
- ▶ International Council on Systems Engineering INCOSE
 - https://www.incose.org/