第8章 假设检验

8.1 内容提要

- 8.1.1 假设检验的基本概念
- 1. 实际推断原理(小概率原理)

概率很小的事件在一次试验中几乎是不会发生的.

2. 原假设和备择假设

待检验的假设称为原假设,记为 H_0 ;当原假设被否定时立即就成立的假设,称为备择假设或对立假设,记为 H_1 .

3. 假设检验的思想方法

先对检验的对象提出原假设,然后根据抽样结果,利用小概率原理做出拒绝或接受原假设的判断.

4. 拒绝域(否定域)

使检验问题作出否定原假设推断的样本值的全体所构成的区域.

5. 两类错误

若原假设 H_0 为真,但检验结果却否定了 H_0 ,因而犯了错误,这类错误称为第一类错误, 又称为"弃真"错误. 显著性水平 α 就是用来控制犯第一类错误的概率,即

$$P$$
{拒绝**执**₀**担**₀ }= α .

若原假设 H_0 为不真,但检验结果却接受了 H_0 ,这类错误称为第二类错误,又称为"纳伪"错误. 犯第二类错误的概率记为 β ,即

$$P$$
{接收**死**₀**儿**₀ }= β .

在样本容量一定时, α , β 不能同时减小.

6. 假设检验的基本步骤

- (1) 提出原假设 H_0 和备择假设 H_1 ;
- (2) 选择统计量, 求出在 H_0 成立的前提下, 该统计量的概率分布;
- (3) 由给定的显著性水平 α ,确定检验的拒绝域W;
- (4) 根据样本值, 计算统计量的观测值, 若它落入拒绝域W, 则拒绝 H_0 , 否则接受 H_0 .
- 8.1.2 单个正态总体参数的假设检验

有关单个正态分布参数假设检验的一般方法及常用统计量列表如下:

总体	假	设	检验统计量及分布	拒绝区域
条件	H_0	H_1		
σ^2	$\mu = \mu_0$	$\mu \neq \mu_0$	$U = \frac{\overline{X} - \mu_0}{\sqrt{n}} \sqrt{n}$	$ U > U_{\alpha/2}$
已知	$\mu \le \mu_0$	$\mu > \mu_0$	$U = \frac{1}{\sigma} \sqrt{n}$	$U > U_{\alpha}$
	$\mu \ge \mu_0$	$\mu < \mu_0$	~ <i>N</i> (0,1)	$U < -U_{\alpha}$
σ^2	$\mu = \mu_0$	$\mu \neq \mu_0$	$\overline{X} - \mu_0$	$ T > t_{\alpha/2}$
未知	$\mu \le \mu_0$	$\mu > \mu_0$	$T = \frac{X - \mu_0}{S} \sqrt{n}$	$T > t_{\alpha}$
小 加	$\mu \ge \mu_0$	$\mu < \mu_0$	~ t(n-1)	$T < -t_{\alpha}$
μ	$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\chi^2 < \chi^2_{1-\alpha/2} \stackrel{?}{\Longrightarrow} \chi^2 > \chi^2_{\alpha/2}$
未知	$\sigma^2 \leq \sigma_0^2$	$\sigma^2 > \sigma_0^2$	*	$\chi^2 > \chi_{\alpha}^2$
71+NH	$\sigma^2 \ge \sigma_0^2$	$\sigma^2 < \sigma_0^2$	$\sim \chi^2 (n-1)$	$\chi^2 < \chi^2_{1-lpha}$

表中的 \overline{X} , S^2 分别是总体 $X \sim N(\mu, \sigma^2)$ 的样本均值与样本方差:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$,

其中 n 是样本容量.

8.1.3 两个正态总体参数的假设检验

有关两个正态分布参数假设检验的一般方法及常用统计量列表如下:

总体	假	设	检验统计量及分布	拒绝区域
<u>条件</u>	H_0	H_1	型	担地区域
	$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$	$U = \overline{\overline{X} - \overline{Y}}$	$ U > U_{\alpha/2}$
$\sigma_{\scriptscriptstyle 1}^2$, $\sigma_{\scriptscriptstyle 2}^2$ 己知	$\mu_1 \leq \mu_2$	$\mu_1 > \mu_2$	$\sqrt{\frac{\sigma_{1}^{2} + \sigma_{2}^{2}}{n_{1} + n_{2}}}$	$U > U_{\alpha}$
	$\mu_1 \ge \mu_2$	$\mu_1 < \mu_2$	~ N(0,1)	$U < -U_{\alpha}$
_2 _2 _2	$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$	$T = \frac{\overline{X} - \overline{Y}}{\sqrt{1 + \frac{1}{1 + 1$	$ T > t_{\alpha/2}$
$\sigma_1^2 = \sigma_2^2 = \sigma^2$ σ^2 未知	$\mu_1 \leq \mu_2$	$\mu_1 > \mu_2$	$S_{w}\sqrt{(\frac{1}{n_{1}}+\frac{1}{n_{2}})}$	$T > t_{\alpha}$
	$\mu_1 \ge \mu_2$	$\mu_1 < \mu_2$	$\sim t(n_1 + n_2 - 2)$	$T < -t_{\alpha}$
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	S_1^2	$F > F_{\alpha/2}$ 或 $F < F_{1-\alpha/2}$
$\mu_1, \; \mu_2$	$\sigma^2 \leq \sigma_0^2$	$\sigma^2 > \sigma_0^2$	$F = \frac{S_1^2}{S_2^2}$	$F > F_{\alpha}$
未知	$\sigma^2 \ge \sigma_0^2$	$\sigma^2 < \sigma_0^2$	$\sim F(n_1 - 1, n_2 - 1)$	$F < F_{1-\alpha}$

表中的 \overline{X} , \overline{Y} , S_1^2 , S_2^2 分别是总体 $X\sim N(\mu_1,\sigma_1^2)$, $Y\sim N(\mu_2,\sigma_2^2)$ 的样本均值,样本方

差:

$$\overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i, \ \overline{Y} = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i, \ S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \overline{X})^2, \ S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \overline{Y})^2,$$

 S_w^2 是当 $\sigma_1^2 = \sigma_2^2$ 时, X,Y的联合样本方差:

$$S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2},$$

其中 n_1 , n_2 分别是X,Y的样本容量.

8.1.4 分布拟合检验-皮尔逊 χ² 拟合检验法

设总体 X 的分布函数 $F(X,\theta)$, θ 为 r 维未知参数向量, (X_1,X_2,\cdots,X_n) 是总体 X 的一个样本,根据样本观测值的范围,把 $(-\infty,+\infty)$ 分为 m 个小区间: $[a_{i-1},a_i)$, $i=1,2,\cdots m$,其中 $-\infty=a_0< a_1<\cdots< a_m=+\infty$,落入区间 $[a_{i-1},a_i)$ 中样本的个数为 v_i ,显然 $\sum_{i=1}^m v_i=n$.

注 一般要求 $v_i \geq 5, 5 \leq m \leq 15$.

用 θ 的极大似然估计值 $\hat{\theta}$ 代替 θ ,得 $\hat{p}_i = F(a_i;\theta) - F(a_{i-1};\theta)$,由 v_i 和 \hat{p}_i 建立统计量

$$\chi^{2} = \sum_{i=1}^{m} \frac{(v_{i} - np_{i})^{2}}{np_{i}}$$

当n 充分大时, 统计量 χ^2 的极限分布服从自由度为m-r-1的 χ^2 分布.于是,对于给定的显著性水平 α ,有

$$P\{\chi^2 \geq \chi^2_{1-\alpha}(m-r-1)\} = \alpha,$$

得到拒绝域为 $C = \{\chi^2 \ge \chi^2_{1-\alpha}(m-r-1)\}.$

8.2 习题详解

习题八

1. 设某产品的指标服从正态分布, 它的标准差 $\sigma = 150$, 今抽了一个容量为 26 的样本, 计算得平均值为 1637. 问在显著性水平 5%下能否认为这批产品的指标的期望值 μ 为 1600?

解 此题是在显著性水平 $\alpha = 0.05$ 下检验假设检验假设

$$H_0: \mu = \mu_0 = 1600, H_1: \mu \neq \mu_0 = 1600.$$

在原假设 H_0 为真时,检验统计量

$$U = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} \sim N(0,1),$$

此时拒绝域为 $C = \{|u| > u_{\alpha/2}\}.$

已知 \bar{x} =1637, σ =150, n=26, α =0.05, 且查表得 $u_{\alpha/2}$ = $u_{0.025}$ =1.96, 于是

$$|u| = \frac{|\overline{x} - \mu_0|}{\sigma / \sqrt{n}} = \frac{1637 - 1600}{150 / \sqrt{26}} = 1.2578 < 1.96$$

故应接受原假设 H_0 ,即认为这批产品的指标的期望值 μ 为 1600.

2. 按规定, 100g 罐头番茄汁中的平均维生素 C 含量不得少于 21mg/g. 先从工厂的产品中抽取 17 个罐头, 其 100g 番茄汁中, 测得维生素 C 含量 (mg/g) 记录如下:

设维生素含量服从正态分布 $N(\mu, \sigma^2)$, μ, σ^2 均未知, 问这批罐头是否符合要求($\alpha = 0.05$).

解 据题意,需作如下形式的左侧假设检验

$$H_0: \mu = \mu_0 = 21, \ H_1: \mu < \mu_0 = 21.$$

由于总体的方差未知,故在原假设 Ho为真时,统计量

$$T = \frac{\overline{X} - \mu_0}{S} \sqrt{n} \sim t(n-1) ,$$

此时的拒绝域为 $C = \{t < -t_{\alpha}(n-1)\}$.

由题设算出 $\overline{x}=20$, s=3.9843 , 且 $\alpha=0.05$, n=17 , 查表得 $t_{0.05}(16)=1.7459$, 于是

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} = \frac{20 - 21}{3.9843 / \sqrt{17}} = -1.0348 > -1.7459,$$

故应接受 H_0 ,即认为这批罐头符合要求.

3. 要求一种元件使用寿命不得低于 1000 小时, 今从一批这种元件中随机抽取 25 件, 测得寿命的平均值为 950 小时. 已知该种元件的寿命服从标准差为 $\sigma=100$ 小时的正态分布, 试在显著性水平 $\alpha=0.05$ 下确定这批元件是否合格?设总体均值为 μ , 即需检验假设 H_0 : $\mu=1000$, H_1 : $\mu<1000$.

解 此题是关于如下形式的单侧假设检验问题

$$H_0: \mu = 1000, H_1: \mu < 1000.$$

由于 $\sigma = 100$,故在原假设 H_0 为真时,统计量

$$U = \frac{\overline{X} - 1000}{\sigma / \sqrt{n}} \sim N(0,1),$$

检验的拒绝域为 $C = \{u < -u_{\alpha}\}.$

由题设可知 $\overline{x}=950$, 又当 n=25 , $\alpha=0.05$ 时, 查表得 $u_{0.05}=1.645$, 于是

$$u = \frac{\overline{x} - 1000}{\sigma / \sqrt{n}} = \frac{950 - 1000}{100 / \sqrt{25}} = -2.5 < -1.645$$

检验统计量的观察值落在拒绝域内, 故拒绝 H_0 , 即认为这批元件不合格.

4. 测定某种溶液中的水分, 它的 10 个测定值给出样本均值为 0. 452%, 样本标准差为 0. 037%, 设测定值总体服从正态分布 $N(\mu, \sigma^2)$ 试在显著性水平 $\alpha = 0.05$ 下, 分别检验假

设: (1) H_0 : $\mu = 0.5\%$; (2) H_0 : $\sigma = 0.04\%$.

解 (1) 据题意是在总体方差未知情况下,对均值的假设检验,即

$$H_0: \mu = \mu_0 = 0.5\%$$
, $H_1: \mu \neq \mu_0 = 0.5\%$.

在原假设 H_0 为真时,统计量

$$T = \frac{\overline{X} - \mu_0}{S} \sqrt{n} \sim t(n-1).$$

此时拒绝域为 $C = \{ |t| \ge t_{\alpha/2}(n-1) \}$.

己知 $\overset{-}{x}=0.425\%$, s=0.037% , 当 $\alpha=0.05$, n=10 时, 查表得 $t_{0.025}(9)=2.2622$, 故

$$|t| = \frac{|\overline{x} - \mu_0|}{s / \sqrt{n}} = \frac{|0.425\% - 0.5\%|}{0.037\% / \sqrt{10}} = 6.41 > 2.2622,$$

故应拒绝 H_0 .

(2) 此问是当总体均值未知时,对方差的假设检验,即

$$H_0: \sigma = 0.04\%$$
, $H_1: \sigma \neq 0.04\%$.

在原假设 H_0 为真时,检验统计量

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
.

此时拒绝域为 $C = \{\chi^2 \leq \chi^2_{1-\alpha/2}(n-1)\} \cup \{\chi^2 \geq \chi^2_{\alpha/2}(n-1)\}$. 当 $\alpha = 0.05$,n = 10 时,查表可得 $\chi^2_{0.025}(9) = 19.023$, $\chi^2_{0.975}(9) = 2.7$,从而 $C = (0, 2.7) \cup (19.203, +\infty)$.由题设可计算

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2} = \frac{9 \times (0.037\%)^2}{(0.04\%)^2} = 7.7006 \notin C$$

故应接受 H_0 .

5. 随机地挑选 8 个人, 分别测量了他们在早晨起床时和晚上就寝时的身高(cm), 得到以下的数据

序号	1	2	3	4	5	6	7	8
早上 (x_i)	172	168	180	181	160	163	165	177
晚上 (y _i)	172	167	177	179	159	161	166	175

设各对数据的差 $d_i = x_i - y_i$ ($i = 1, 2, \dots, 8$) 是来自正态总体 $N(\mu, \sigma^2)$ 的样本, μ, σ^2 均未知. 问是否可以认为早晨的身高比晚上的身高要高($\alpha = 0.05$)?

解 因为 $d_i \sim N(\mu, \sigma^2)$ ($i=1,2,\cdots,8$), 所以该题即为方差未知情况下, 单个正态总体均值的单侧假设检验问题. 即检验假设

$$H_0: d_i = 0, H_1: d_i > 0.$$

在原假设 H_0 为真时,统计量

$$T = \frac{\overline{D} - 0}{S_d / \sqrt{n}} \sim t(n - 1).$$

此时拒绝域为 $\{t \ge t_{\alpha}(n-1)\}$. 当 $\alpha = 0.05$ 时, 查表得 $t_{0.05}(7) = 1.8946$, 即 $C = (1.8946, +\infty)$.

又因为 $d_i=x_i-y_i$, 所以 d_i 依次为 0,1,3,2,1,2,-1,2 . 计算得 $\overline{d}=1.25$, s=1.2817 , 则

$$t = \frac{\overline{d} - 0}{s / \sqrt{n}} = \frac{1.25 - 0}{1.2817 / \sqrt{8}} = 2.7585 \in C$$

故应拒绝 H_0 ,即能认为早晨的身高比晚上的身高要高.

6. 为了比较两种枪弹的速度 (m/s), 在相同的条件下进行速度测试. 算得样本均值和样本标准差如下:

枪弹甲: $n_1 = 110$, $\bar{x} = 2805$, $s_1 = 120.41$

枪弹乙: $n_2 = 100$, $\overline{y} = 2680$, $s_2 = 105.00$

在显著性水平 $\alpha = 0.05$ 下,这两种枪弹在速度方面及均匀性方面有无显著差异?

分析 这是关于两个正态总体的均值和方差的检验问题,但是由于两总体的方差是未知的,所以对两总体均值差异的检验应该用t-检验法.注意到此处的t-检验法必须有"两总体的方差相等"这一前提,因此我们需要先用F-检验对两总体的方差是否相等加以验证,然后对两总体的均值是否存在差异进行检验.

解 设枪弹甲、乙的速度分别为X,Y,并且 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$.

首先需在显著性水平 $\alpha = 0.05$ 时,检验两种枪弹在均匀性方面有无显著差异,即

$$H_0: \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 \neq \sigma_2^2$$

在原假设 H_0 为真时,检验统计量

$$F = \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1),$$

此时拒绝域为 $C = \left\{ F \le F_{1-\alpha/2}(n_1 - 1, n_2 - 1)$ 或 $F \ge F_{\alpha/2}(n_1 - 1, n_2 - 1) \right\}.$

 $\pm n_1 = 110$, $n_2 = 100$, $s_1 = 120.41$, $s_2 = 105.00$, $F_{0.025}(109,99) > F_{0.025}(120,120) = 1.43$,

$$F_{0.975}(109,99) = \frac{1}{F_{0.025}(99,109)} < \frac{1}{F_{0.005}(120,120)} = \frac{1}{1.43} = 0.6993$$
,可以算得

$$F = \frac{s_1^2}{s_2^2} = \frac{120.41^2}{105.00^2} = 1.315 \notin C,$$

故接受 H_0 ,即认为两种枪弹在均匀性方面无显著差异.

其次需检验当 $\alpha = 0.05$ 时两种枪弹在速度方面有无显著差异, 即需检验

$$H_0: \mu_1 - \mu_2 = 0$$
, $H_1: \mu_1 - \mu_2 \neq 0$.

由于可以认为两者的方差相等,故可取检验统计量为

$$T = \frac{\overline{X} - \overline{Y}}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}, \ (\sharp + S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}).$$

此时的拒绝域为 $C = \{ |t| \geq t_{\alpha/2}(n_1 + n_2 - 2) \}$.

由于 n_1, n_2 很大, 故有 $t_{0.025}(208) \approx z_{0.025} = 1.96$. 又计算可得

$$|t| = \frac{|\overline{x} - \overline{y}|}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = 12.4292 > 1.96,$$

故拒绝 H_0 ,认为两种枪弹在速度方面有显著差异.

7. 下表分别给出两个文学家马克. 吐温的 8 篇小品文以及思诺特格拉斯的 10 篇小品文中由 3 个字母组成的词的比例:

马克.吐温	0.225	0.262	0.217	0.240	0.230	0.229	0.235	0.217		
思诺特格拉斯	0.209	0.205	0.196	0.210	0.202	0.207	0.224	0.223	0.220	0.201

设两组数据分别来自两个方差相等而且相互独立的正态总体,问两个作家所写的小品文中包含由 3 个字母组成的词的比例是否有显著的差异(取 $\alpha = 0.05$)?

解 设两总体分别为 X,Y,并设 $X \sim N(\mu_1,\sigma_1^2),Y \sim N(\mu_2,\sigma_2^2)$,由题设知,需检验假设 $H_0: \mu_1-\mu_2=0$, $H_1: \mu_1-\mu_2\neq 0$.

在原假设 H_0 为真时,检验统计量

$$T = \frac{\overline{X} - \overline{Y}}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2), \ (\sharp + S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}).$$

由题设算得 $\overline{x}=0.2319,\ \overline{y}=0.2097,\ s_1=0.0146,\ s_2=0.0097,\ \ensuremath{\mathcal{R}}\ n_1=8,\ n_2=10$, 故

$$s_{w} = \sqrt{\frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}} = \sqrt{\frac{7 \times 0.0146^{2} + 9 \times 0.0097^{2}}{8 + 10 - 2}} = 0.012.$$

又查表得 $t_{0.025}(16)=2.1199$, 因此拒绝域为 $C=\{|t|\geq 2.1199\}$. 因观测值

$$|t| = \frac{|0.2319 - 0.2097|}{0.012\sqrt{\frac{1}{8} + \frac{1}{10}}} = 3.900 > 2.1199,$$

故拒绝 H_0 ,认为两个作家所写的小品文中包含由 3 个字母组成的词的比例有显著的差异.

8. 某机床厂某日从两台机器所加工的同一种零件中,分别抽若干个样品测量零件尺寸,得

第一台机器	15. 0	14.5	15. 2	15.5	14.8	15. 1	15. 2	14.8	
第二台机器	15. 2	15.0	14.8	15. 2	15.0	15.0	14.8	15. 1	14.8

设零件尺寸服从正态分布,问第二台机器的加工精度是否比第一台机器的高($\alpha = 0.05$)?

 \mathbf{K} 设两台机器加工零件的尺寸分别为X,Y, 且 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$. 检验假设

$$H_0: \sigma_1^2 = \sigma_2^2, \ H_1: \sigma_1^2 > \sigma_2^2.$$

当原假设 H_0 为真时,检验统计量

$$F = \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1),$$

于是拒绝域为 $C = \{F \mid F \geq F_{\alpha}(n_1 - 1, n_2 - 1)\}$. 又因为 $n_1 = 8$, $n_2 = 9$, 当 $\alpha = 0.05$ 时, 查表得 $F_{0.05}(7,8) = 3.5$, 即 $C = \{F \mid F \geq 3.50\}$. 由题设可计算

$$F = \frac{s_1^2}{s_2^2} = \frac{0.3091^2}{0.1616^2} = 3.6586 > F_{0.05}(7,8) = 3.5,$$

所以接受 H_1 ,即可以认为第二台机器的加工精度比第一台机器的高.

9. 为了考察感觉剥夺对脑电波的影响, 加拿大某监狱随机地将囚犯分成两组, 每组 10 人, 其中一组中每人被单独地关禁闭, 另一组的人不关禁闭, 几天后, 测得这两组人脑电波中的 α 波的频率如下

没关禁闭	10.7	10.7	10.4	10.9	10.5	10.3	9.6	11.1	11.2	10.4
关禁闭	9.6	10.4	9.7	10.3	9.2	9.3	9.9	9.5	9.0	10.9

设这两组数据分别来自两个相互独立的正态总体,问在显著性水平 $\alpha = 0.05$ 下,能否认为这两个总体的均值与方差有显著的差别?

分析 先用 F -检验对两总体的方差是否相等加以验证, 然后用 t -检验法对两总体的均值是否存在差异进行检验.

解 设关禁闭和不关禁的人脑电波中的 α 波的频率分别为X,Y,并且 $X\sim N(\mu_1,\sigma_1^2)$, $Y\sim N(\mu_2,\sigma_2^2)$. 首先需在显著性水平 $\alpha=0.05$ 时,检验两总体的方差是否有差异,即

$$H_0: \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 \neq \sigma_2^2$$

在原假设 H_0 成立时,检验统计量

$$F = \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1).$$

此时拒绝域为 $C = \left\{ F \le F_{1-\alpha/2}(n_1-1,n_2-1)$ 或 $F \ge F_{\alpha/2}(n_1-1,n_2-1) \right\}$. 又已知 $n_1 = n_2 = 10$,当 $\alpha = 0.05$ 时,查表得 $F_{0.025}(9,9) = 4.03$, $F_{0.975}(9,9) = \frac{1}{F_{0.025}(9,9)} = 0.2481$,

即 $C = (0, 0.2481) \cup (4.03, +\infty)$. 由题设计算得到 $s_1 = 0.4590$, $s_2 = 0.5978$, 于是

$$F = \frac{s_1^2}{s_2^2} = \frac{0.2107}{0.3574} = 0.5895 \notin C,$$

故接受 H_0 ,认为两个总体的方差相等.

然后, 检验当 $\alpha = 0.05$ 时两个总体的均值是否存在差异, 即检验

$$H_0: \mu_1 - \mu_2 = 0$$
, $H_1: \mu_1 - \mu_2 \neq 0$.

由于可以认为两者的方差相等,故原假设 H_0 成立时,可取检验统计量为

$$T = \frac{\overline{X} - \overline{Y}}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2) \; , \; (\sharp + S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}) \; .$$

拒绝域为 $C = \{ |t| \ge t_{a/2}(n_1 + n_2 - 2) \}$,又查表得 $t_{0.025}(18) = 2.1009$,即 $C = \{ t | |t| \ge 2.1109 \}$.

由题设算得 \overline{x} = 10.58, \overline{y} = 9.78, s_1 = 0.4590, s_2 = 0.5978, 且 n_1 = n_2 =10, 于是

$$s_{w} = \sqrt{\frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}} = \sqrt{\frac{9 \times 0.4590^{2} + 9 \times 0.5978^{2}}{10 + 10 - 2}} = 0.5330.$$

进而得到

$$|t| = \frac{|\overline{x} - \overline{y}|}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{(10.58 - 9.78)}{0.5330} \sqrt{5} = 3.3562 \in C,$$

故拒绝 H_0 ,即可以认为两个总体的均值有显著差异.

10. 两台车床生产同一型号的滚珠, 根据经验可以认为两车床生产的滚珠的直径均服从正态分布, 先从两台车床的产品中分别抽出8个和9个, 测得滚珠直径的有关数据如下:

甲车床:
$$\sum_{i=1}^{8} x_i = 120.8$$
, $\sum_{i=1}^{8} (x_i - \overline{x})^2 = 0.672$
乙车床: $\sum_{i=1}^{9} y_i = 134.91$, $\sum_{i=1}^{9} (y_i - \overline{y})^2 = 0.208$

设两个总体的方差相等, 问是否可以认为两车床生产的滚珠直径的均值相等 $(\alpha = 0.05)$?

解 设两车床生产的滚珠直径分别为 X 和 Y,且 $X \sim N(\mu_1, \sigma^2)$, $Y \sim N(\mu_2, \sigma^2)$. 于是本题就可以归结为如下形式的双侧假设检验问题:

$$H_0: \mu_1 - \mu_2 = 0, \ H_1: \mu_1 - \mu_2 \neq 0.$$

由于X和Y的方差相等,所以在 H_0 为真时,统计量

$$T = \frac{\overline{X} - \overline{Y}}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2) , \ (\sharp + S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}) .$$

此时的拒绝域为 $C = \{ |t| \ge t_{\alpha/2}(n_1 + n_2 - 2) \}$,又查表得 $t_{0.025}(15) = 2.1315$,即 $C = \{ |t| \ge 2.1315 \}$.由题设算得

$$\overline{x} = \frac{1}{8} \sum_{i=1}^{8} x_i = 15.1, \quad (n_1 - 1)s_1^2 = \sum_{i=1}^{8} (x_i - \overline{x})^2 = 0.672,$$

$$\overline{y} = \frac{1}{9} \sum_{i=1}^{9} y_i = 14.99, \qquad (n_2 - 1)s_2^2 = \sum_{i=1}^{9} (y_i - \overline{y})^2 = 0.208.$$

于是

$$s_{w} = \sqrt{\frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}} = \sqrt{\frac{0.672 + 0.208}{15}} = 0.24.$$

由此便可得

$$|t| = \frac{|\overline{x} - \overline{y}|}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{15.1 - 14.99}{0.24 \sqrt{\frac{1}{8} + \frac{1}{9}}} = 0.17 < 2.1315,$$

故接受原假设 H_0 ,即认为两车床生产的滚珠直径的均值相等.

11. 某种零件的椭圆度服从正态分布, 改变工艺前抽取 16 件, 测得数据并算得 $\bar{x}=0.081$, $s_x=0.025$; 改变工艺后抽取 20 件, 测得数据并计算得 $\bar{y}=0.07$, $s_y=0.02$, 问:

(1)改变工艺前后, 方差有无明显差异; (2)改变工艺前后, 均值有无明显差异?(α 取为 0.05)

分析 该题的第一部分是在均值未知的情况下,对两正态总体方差比的检验问题,可以采用 F-检验法. 第二问则是基于第一问的结论,即在两个方差未知但是相等的条件下,对两个正态总体的均值差的假设检验问题,此时应该采用 t-检验法.

解 设改变工艺前后的椭圆度分别为X,Y,并且 $X\sim N(\mu_1,\sigma_1^2)$, $Y\sim N(\mu_2,\sigma_2^2)$.

首先在显著性水平下 $\alpha = 0.05$ 下, 检验假设

$$H_0: \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 \neq \sigma_2^2.$$

在原假设 H_0 成立时,检验统计量

$$F = \frac{S_x^2}{S_y^2} \sim F(n_1 - 1, n_2 - 1).$$

此时拒绝域为 $C = \{ F \le F_{1-\alpha/2}(n_1 - 1, n_2 - 1)$ 或 $F \ge F_{\alpha/2}(n_1 - 1, n_2 - 1) \}$. 又表可得

$$F_{0.025}(15,19) = 2.6171$$
, $F_{0975}(15,19) = \frac{1}{F_{0025}(19,15)} = 0.3629$,

即 $C = \{ F \le 0.3629$ 或 $F \ge 2.671 \}$.

根据题设计算

$$F = \frac{s_x^2}{s_y^2} = \frac{0.025^2}{0.02^2} = 1.5625 \notin C$$
,

故接受原假设 H_0 ,即可以认为改变工艺前后椭圆度的方差没有显著差异.

然后在显著性水平 $\alpha = 0.05$ 下检验假设

$$H_0: \mu_1 - \mu_2 = 0$$
, $H_1: \mu_1 - \mu_2 \neq 0$.

由于X和Y的方差相等,所以在 H_0 为真时,统计量

$$T = \frac{\overline{X} - \overline{Y}}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2), \ (\sharp + S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}).$$

此时的拒绝域为 $C = \{ |t| \geq t_{\alpha/2}(n_1 + n_2 - 2) \}$,又查表得 $t_{0.025}(34) = 2.0322$,即 $C = \{ t \mid |t| \geq 2.0322 \}$.

由题设,可算得

$$|t| = \frac{|\overline{x} - \overline{y}|}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = 0.8988 < 2.0322,$$

所以接受原假设 H_0 ,即可以认为改变工艺前后椭圆度的均值没有显著差异.

12. 有两台机器生产金属部件,分别在两台机器所生产的部件中各取一容量 $n_1=60$, $n_2=40$ 样本,测得部件重量的样本方差分别为 $s_1^2=15.46$, $s_2^2=9.66$. 设两样本相互独立. 问在显著性水平 $(\alpha=0.05)$ 下能否认为第一台机器生产的部件重量的方差显著地大于第二台机器生产的部件重量的方差?

解 由题意,这是关于两个正态总体方差比的单边假设检验问题,即

$$H_0: \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 > \sigma_2^2.$$

当 H 。为真时, 检验统计量

$$F = \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1).$$

此时拒绝域为 $C = \{F \mid F \ge F_{\alpha}(n_1 - 1, n_2 - 1)\}.$

由题设 $s_1^2 = 15.46$, $s_2^2 = 9.66$, 可以算得

$$F = \frac{s_1^2}{s_2^2} = \frac{15.46}{9.66} = 1.6004,$$

查表得 $F_{0.05}(60,40) = 1.64$,则 $F_{0.05}(59,39) > F_{0.05}(60,40) = 1.64$. 故 $F < F_{0.05}(60,40) < F_{0.05}(59,39)$,即 F 没有落入拒绝域内,因此接受 H_0 ,即不能认为第一台机器生产的部件重量的方差显著地大于第二台机器生产的部件重量的方差.

13. 下表是上海 1875 年到 1955 年的 81 年间, 根据其中 63 年观察到的一年中(5 月到 9 月)下暴雨次数的整理资料

一年中暴雨次数	0	1	2	3	4	5	6	7	8	≥9	
实际年数 n_i	4	8	14	19	10	4	2	1	1	0	

试检验一年中暴雨次数是否服从泊松分布($\alpha = 0.05$)?

解 记一年中暴雨次数为 X, 依题意需在 $\alpha = 0.05$ 下检验假设

$$H_0$$
: X 的分布律为 $P\{X = k\} = \frac{\lambda^k e^{-\lambda}}{k!}, k = 0, 1, 2, \cdots$

由于参数 λ 未知,所以首先在假设 H_0 为真的条件下,根据样本求得 λ 的极大似然估计

$$\hat{\lambda} = \overline{x} = \frac{1}{63}(0 \times 4 + 1 \times 8 + \dots 9 \times 0) = 2.8571.$$

根据泊松分布,得到

$$\hat{p}_i = P\{X = i\} = \frac{(2.8571)^i e^{-2.8571}}{i!}, (i = 0, 1, 2, \dots).$$

计算结果列表如下:

i	V_i	\hat{p}_{i}	$n\hat{p}_{i}$	$v_i - n\hat{p}_i$	$(v_i - n\hat{p}_i^2)^2 / np_i$
0	4	0.0574	3. 62	-1.96	0. 2752
1	8	0. 1641	10. 34	-1. 90	0.2752
2	14	0. 2344	14. 77	-0. 77	0.0401
3	19	0. 2233	14. 07	4. 93	1.7274
4	10	0. 1595	10.05	-0.05	0.0002
5	4	0.0911	5. 74		
6	2	0.0434	2.73		
7	1	0.0177	1.12	-2. 16	0. 4592
8	1	0.0083	0. 52		
≥9	0	0.0008	0.05		
Σ	63				$\chi^2 = 2.5021$

表中对于不满足 $n\hat{p}_i > 5$ 的组适当合并,并组后的组数为 m = 10 - 5 = 5. 对于给定的显著性水平 $\alpha = 0.05$,未知参数 r = 1,查表可得 $\chi^2_{1-\alpha}(m-r-1) = \chi^2_{0.975}(3) = 7.815 > \chi^2$,所以接受 H_0 ,即认为一年的暴雨次数服从泊松分布.

14. 某工厂近5年来发生了63次事故, 按星期几分类如下:

星期	_	二	三	四	五.	六
次数	9	10	11	8	13	12

(注:该厂的休息日是星期天,星期一至星期六是工作日)

问:事故的发生是否与星期几有关?($\alpha = 0.05$)

解 用 X 表示这样的随机变量:若事故发生在星期 i ,则 X = i .由于该厂的休息日是星期天,于是 X 的可能值是1,2,…6.由此我们要检验的假设是:

$$H_0: P\{X=i\} = \frac{1}{6}(i=1,2,\cdots,6).$$

检验统计量

$$\chi^{2} = \sum_{i=1}^{m} \frac{(v_{i} - np_{i})^{2}}{np_{i}} = \sum_{i=1}^{6} \frac{(v_{i} - n/6)^{2}}{n/6} \sim \chi^{2}(m-1) = \chi^{2}(5),$$

其中 v_i 是发生在星期i的事故次数.

计算结果列表如下:

i	$\nu_{_i}$	\hat{p}_{i}	$n\hat{p}_{_{i}}$	$v_i - n\hat{p}_i$	$(v_i - n\hat{p}_i^2)^2 / np_i$
1	9	1/6	10.5	-1.5	0. 2143
2	10	1/6	10.5	-0.5	0. 02381
3	11	1/6	10.5	0. 5	0. 02381
4	8	1/6	10.5	-2.5	0. 5952
5	13	1/6	10.5	2. 5	0. 5952
6	12	1/6	10.5	1. 5	0. 2143
Σ	63	1	1		$\chi^2 = 1.6667$

查 χ^2 分布表可得 $P\{\chi^2(5)>11.07\}=0.05$,于是 $\chi^2=1.67<11.07$,故不能拒绝原假设 H_0 ,即不能认为事故发生与星期几有关.

15. 1996 年某高校工科研究生有 60 名以数理统计作为学位课, 考试成绩如下:

试用 χ^2 检验法检验考试成绩是否服从正态分布 ($\alpha = 0.05$)?

 \mathbf{H} 考虑检验 $H_0: X \sim N(\mu, \sigma^2)$, 因 μ, σ^2 未知, 故利用极大似然估计得

$$\hat{\mu} = \overline{x} = 80.1$$
, $\hat{\sigma}^2 = \frac{n-1}{n} s^2 = 92.72$.

由于X是连续变量,故先离散如下表:

区间	V_{i}	\hat{p}_{i}	$n\hat{p}_{i}$	$v_i - n\hat{p}_i$	$(v_i - n\hat{p}_i)^2 / np_i$
$(-\infty,70)$	8	0.4169	8.14	-0.14	0.002
[70, 75)	6	0.1512	9.072	-3.072	1.040
[75,80)	14	0.1979	11.874	2.126	0.381
[80, 85)	13	0.1990	11.94	1.06	0.094
[85,90)	8	0.1535	9.21	-1.12	0.159
[90,100)	11	0.1515	9.09	1.91	0.401
\sum					$\chi^2 = 2.077$

表中区间的划分是按照每个区间 $[a_{i-1},a_i)$ 至少要包含 5 个样本的原则确立的,其中

$$\hat{p}_i = \Phi(\frac{a_i - \hat{\mu}}{\hat{\sigma}}) - \Phi(\frac{a_{i-1} - \mu}{\sigma}), \quad i = 1, 2, \dots 6.$$

因为m=6,故m-r-1=3. 查表有 $\chi^2_{1-\alpha}(m-r-1)=\chi^2_{0.05}(3)=7.815$. 而检验统计量

$$\chi^2 = \sum_{i=1}^m \frac{(v_i - np_i)^2}{np_i} = 2.077 < 7.815$$

故接受原假设 H_0 ,即认为成绩服从正态分布.

16. 有甲乙两个试验员, 对同样的试样进行分析, 各人试验分析结果如下(分析结果服从正态分布):

试验号数	1	2	3	4	5	6	7	8
甲	4.3	3. 2	3.8	3. 5	3. 5	4.8	3. 3	3. 9
乙	3. 7	4. 1	3.8	3.8	4.6	3. 9	2.8	4. 4

试问甲、乙两试验员试验分析结果之间有无显著差异($\alpha = 0.05$)?

分析 这是对方差未知且不相等的两个正态总体均值的假设检验,由于取自两个总体的样本容量相同,因此可以采用配对 *t* 检验法.

解 设X,Y分别为甲、乙两个试验员检验试验分析的结果,并假设X和Y分别服从正态分布 $N(\mu_1,\sigma_1^2)$ 与 $N(\mu_2,\sigma_2^2)$.令Z=X-Y,则 $Z\sim N(d,\sigma_1^2+\sigma_2^2)$.现检验假设:

$$H_0: d = 0, H_1: d \neq 0.$$

在原假设 H_0 为真时,统计量

$$T = \frac{Z - 0}{S / \sqrt{n}} \sim t(n - 1),$$

此时拒绝域为 $C = \{|t| \ge t_{\alpha/2}(n-1)\}$. 又查表得 $t_{0.025}(7) = 2.3646$,即 $C = \{|t| \ge 2.3646\}$.

因为 $z_i = x_i - y_i$,所以 z_i 依次为 0.6, -0.9, 0, -0.3, -1.1, 0.9, 0.5, -0.5. 因而计算得到 $\overline{z} = -0.1, s = 0.7270$,于是

$$|t| = \frac{0.1}{0.7270 / \sqrt{8}} = 0.3891 \notin C$$

故应接受 H_0 ,即认为甲、乙两试验员试验分析结果之间无显著差异.

17. 有一种新安眠药, 据说在一定剂量下, 能比某种旧安眠药平均增加睡眠时间 3 小时, 根据资料用某种旧安眠药时, 平均睡眠时间为 20. 8 小时, 根方差为 1. 6 小时, 为了检验这个说法是否正确, 收集到一组使用新安眠药的睡眠时间为

试问: 从这组数据能否说明新安眠药已达到新的疗效(假定睡眠时间服从正态分布, $\alpha = 0.05$).

解 设睡眠时间为 X,并且 $X \sim N(\mu, \sigma^2)$,据题意知需在显著性水平 $\alpha = 0.05$ 下检验假设考虑假设 $H_0: \mu \leq \mu_0 + 3$, $H_0: \mu > \mu_0 + 3$,这等价于检验

$$H_0: \mu = \mu_0 + 3$$
, $H_0: \mu > \mu_0 + 3$.

当原假设 H_0 成立时,检验统计量

$$U = \frac{\overline{X} - (\mu_0 + 3)}{\sigma / \sqrt{n}} \sim N(0,1).$$

此时的拒绝域为 $C = \{|u| > u_{\alpha/2}\}$. 当 $\alpha = 0.05$ 时, 查表得 $u_{0.025} = 1.96$,即 $C = \{|u| > 1.96\}$. 又由题设, 可计算 $\overline{x} = 24.2$,且 $\mu_0 = 20.8$, $\sigma = 1.6$,于是

$$u = \frac{\overline{x} - (\mu_0 + 3)}{\sigma / \sqrt{n}} = \frac{24.2 - (20.8 + 3)}{1.6 / \sqrt{7}} = 0.6614 \notin C,$$

因此接受原假设 H_0 ,即不能认为这组数据说明了新安眠药已达到新的疗效.

18. 设总体 X 的概率密度为

$$f(x,\theta) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1 \\ 0, & \text{ i.e.} \end{cases}$$

 $\theta=1,2$. 作假设 $H_0:\theta=1$, $H_1:\theta=2$. 现从总体 X 中抽出容量为 2 的样本 (x_1,x_2) , 拒绝域为 $C=\{(x_1,x_2)|\frac{3}{4x_1}\leq x_2\}$, 试求犯第一类错误的概率 α 和犯第二类错误的概率 β .

解 犯第一类错误的概率为

$$\alpha = P\{(x_1, x_2) \in C \mid H_0 \not\ni \exists \} = P\{\frac{3}{4x_1} \le x_2 \mid \theta = 1\}.$$

当 $\theta = 1$ 时, x_1, x_2 的联合概率密度为

$$f_{H_0}(x_1, x_2) = \begin{cases} 1, & 0 < x_1, x_2 < 1 \\ 0, & 其他 \end{cases}$$

$$\alpha = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{H_0}(x_1, x_2) dx_1 dx_2 = \iint_D dx_1 dx_2 = \int_{\frac{3}{4}}^{1} dx_1 \int_{\frac{3}{4x_1}}^{1} dx_2 = \frac{1}{4} + \frac{3}{4} \ln \frac{3}{4}.$$

犯第二类错误的概率为

$$\beta = P\{(x_1, x_2) \notin C \mid H_0 为 假 \} = P\{\frac{3}{4x_1} > x_2 \mid \theta = 2\}.$$

当 θ =2时, x_1, x_2 的联合概率密度为

$$f_{H_1}(x_1, x_2) = \begin{cases} 4x_1x_2, & 0 < x_1, x_2 < 1 \\ 0, & \text{其他} \end{cases},$$

$$\beta = \iint_{D_1} f_{H_1}(x,\theta) dx_1 dx_2 = \int_0^1 dx_1 \int_0^1 4x_1 x_2 dx_2 - \int_{\frac{3}{4}}^1 dx_1 \int_{\frac{3}{4x_1}}^1 4x_1 x_2 dx_2 = \frac{9}{16} - \frac{9}{8} \ln \frac{3}{4}.$$

19. 一药厂生产一种新的止痛片,厂方希望验证服用新药片后至开始起作用的时间间隔较原有止痛片至少缩短一半,因此厂方提出需检验假设

$$H_0: \mu_1 = 2\mu_2, \ H_1: \mu_1 > 2\mu_2$$

此处 μ_1 , μ_2 分别是服用原有止痛片和服用新止痛片后至起作用的时间间隔的总体的均值. 设 两总体均为正态且方差分别为已知值 σ_1^2 , σ_2^2 . 现分别在两总体中取一样本 $x_1, x_2, \cdots, x_{n_1}$ 和 $y_1, y_2, \cdots, y_{n_2}$,设两个样本独立. 试给出上述假设 H_0 的拒绝域, 取显著性水平为 α .

 \mathbf{m} 本题是在显著性水平 α 下, 检验假设

$$H_0: \mu_1 = 2\mu_2, \ H_1: \mu_1 > 2\mu_2.$$

已知 $x_i \sim N(\mu_1, \sigma_1^2), i = 1, 2, \cdots, n_1$; $y_i \sim N(\mu_2, \sigma_2^2), i = 1, 2, \cdots, n_2$, 且样本 $x_1, x_2, \cdots, x_{n_1}$ 和 $y_1, y_2, \cdots, y_{n_2}$ 相互独立. 若记 $\overline{x} = \sum_{i=1}^{n_1} x_i$, $\overline{y} = \sum_{i=1}^{n_2} y_i$, 则拒绝域的形式为 $\{\overline{x} - 2\overline{y} \geq k\}$.

以下确定k.

 $P{拒绝$ **执**₀**山** $₀ } }=P_{H_0}{\overline{x}-2\overline{y}} \ge k}$

$$\begin{split} &= P_{\mu_1 - 2\mu_2 = 0} \left\{ \frac{\overline{x} - 2\overline{y}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{4\sigma_2^2}{n_2}}} \ge \frac{k}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{4\sigma_2^2}{n_2}}} \right\} \\ &= P_{\mu_1 - 2\mu_2 = 0} \left\{ \frac{(\overline{x} - 2\overline{y}) - (\mu_1 - 2\mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{4\sigma_2^2}{n_2}}} \ge \frac{k}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{4\sigma_2^2}{n_2}}} \right\}. \end{split}$$

要控制 P{拒绝**执**,其I。

$$\} \le \alpha$$
,只需令上式右边 $= \alpha$.由于

$$\frac{(\overline{x}-2\overline{y})-(\mu_{\!_{1}}\!-\!2\mu_{\!_{2}})}{\sqrt{\frac{\sigma_{\!_{1}}^2}{n_{\!_{1}}}\!+\!\frac{4\sigma_{\!_{2}}^2}{n_{\!_{2}}}}}\sim N(0,1)\,,$$

即得
$$\frac{k}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{4\sigma_2^2}{n_2}}} = \mu_{\alpha}$$
,因而 $k = \mu_{\alpha} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{4\sigma_2^2}{n_2}}$.

因此在给定的显著性水平
$$\alpha$$
下,检验的拒绝域为 $\overline{x}-2\overline{y} \ge \mu_{\alpha}\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{4\sigma_{2}^{2}}{n_{2}}}$.

20. 设有 A 种药随机地给 8 个病人服用,经过一个固定时间后,测得病人身体细胞内药的浓度,其结果如下;又有 B 种药给 6 个病人服用,并在同样固定时间后,测得病人身体细胞内药的浓度,得数据如下.并设两种药在病人身体细胞内的浓度都服从正态分布.

细胞内A种药的浓度	1.40	1.42	1.41	1.62	1.55	1.81	1.60	1. 52
细胞内B种药的浓度	1.76	1.41	1.81	1.49	1.67	1.81		

试问 A 种药在病人身体内的浓度的方差是否为 B 种药在病人身体细胞内浓度方差的 $\frac{2}{3}$? $(\alpha = 0.10)$.

解 设两种药在身体细胞内的浓度分别为 X 和 Y , 且 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$. 依题意, 即检验假设:

$$H_0: \sigma_1^2 = \frac{2}{3}\sigma_2^2, H_1: \sigma_1^2 \neq \frac{2}{3}\sigma_2^2.$$

当原假设 H_0 成立时,检验统计量

$$F = \frac{S_1^2}{\frac{2}{3}S_2^2} \sim F(n_1 - 1, n_2 - 1),$$

此时拒绝域为 $C = \left\{ F \leq F_{1-\alpha/2}(n_1 - 1, n_2 - 1)$ 或 $F \geq F_{\alpha/2}(n_1 - 1, n_2 - 1) \right\}$.

由已知算得 $s_1^2=0.0192$, $s_2^2=0.0293$, 又 $n_1=7$, $n_2=5$, $\alpha=0.01$, 于是可以计算

$$F = \frac{S_1^2}{\frac{2}{3}S_2^2} = \frac{0.0192}{\frac{2}{3} \times 0.0293} = 0.983,$$

查表得 $F_{0.05}(7,5) = 0.252$, $F_{0.95}(7,5) = 4.88$.于是 0.252 < F = 0.983 < 4.88,即 $F \not\in C$.故接受 H_0 , A 种药在病人身体内的浓度的方差是 B 种药在病人身体细胞内浓度方差的 $\frac{2}{3}$.