Graduate Flomework In Mathematics

Probability 2

白永乐

25110180002

ylbai@m.fudan.edu.cn

2025年10月16日

General fire extinguisher

F胤雅是傻逼

 \mathbb{R}^{O} BEM I 设 μ^* 是 μ 生成的外测度,证明测度空间 $(\Omega, \mathcal{A}, \mu)$ 是完全的当且仅当 $\mathcal{A} \supset \{A \in \Omega : \mu^*(A) = 0\}$ 。

SOUTION . 先证充分性。设 $A \supset \{A \in \Omega : \mu^*(A) = 0\}$ 。考察 μ -零测集 A,由定义知 $\exists B \in \mathcal{A}, A \subset B, \mu(B) = 0$ 。故 $\{B\}$ 是 A 的一个覆盖,从而 $\mu^*(A) \leq \mu(B) = 0$,故 $\mu^*(A) = 0$,从而 $A \in \mathcal{A}$ 。

再证必要性。设 A 满足 $\mu^*(A)=0$ 。则由定义知 $\exists A_1,A_2,\dots\in\mathcal{A},B\subset\bigcup_nA_n,\mu(A_n)=0$ 。由 A 为 σ -代数知 $\bigcup_nA_n\in\mathcal{A}$,故 A 也是 μ -零测集。由完全性的定义知 $A\in\mathcal{A}$ 。

 \mathbb{R}^{O} BEM II \mathscr{S} 是半集代数, μ 是 \mathscr{S} 上有限测度。记 $(\Omega, \mathscr{A}^*, \mu^*)$ 是 μ 扩张至 $\sigma(\mathscr{S})$ 的完全化, 令

试证: $\mathscr{A}^* \supset \mathscr{A}_*$

SOLTION. 设 $A \in \mathcal{A}_*$,即 $\mu^*(A) = \mu_*(A)$,下证 $A \in \mathcal{A}^*$ 。由外测度的定义,结合 μ 有限,可得 $\forall \varepsilon = \frac{1}{n} > 0$, $\exists \mathcal{R} \subset \mathscr{S}$ 为 A 的可数覆盖,且 $\sum_{X \in \mathcal{R}} \mu(X) < \mu^*(A) + \varepsilon$ 。令 $A_n := \bigcup \mathcal{R}$,则 $A_n \supset A$ 且 $\mu(A_n) \searrow \mu^*(A)$ 。同样地,可以找到 $B_n \in \sigma(\mathscr{S})$,满足 $B_n \subset A$ 且 $\mu(B_n) \nearrow \mu_*(A)$ 。令 $O = \bigcap_n A_n \setminus \bigcup_n B_n$,则 $\forall n, \mu(O) \leq \mu(A_n \setminus B_n) = \mu(A_n) - \mu(B_n) \to 0$,故 $\mu(O) = 0$ 。又 $A \setminus \bigcup_n B_n \subset O$,从而 $A = \bigcup_n B_n \cup (A \setminus \bigcup_n B_n) \in \mathcal{A}^*$ 。

remark. 反向的包含一般不成立。令 $\Omega=\mathbb{N}, \mathscr{S}:=\{\{n\}:n\in\mathbb{N}_+\}\cup\{\{0\}\cup\{n,n+1,\cdots\}:n\in\mathbb{N}_+\},$ 则易于验证 \mathscr{S} 是半集代数。令 $\mu:\mathscr{S}\to\mathbb{R}, \mu(\{n\})=0, \mu(\{0\}\cup\{n,n+1,\cdots\})=1, \forall n\in\mathbb{N}_+,$ 则易于验证 μ 是测度。考查 $\{0\}$,由 $\{0\}\in\sigma(\mathscr{S})$ 可知 $\{0\}\in\mathcal{A}^*$,但易知 $\mu^*(\{0\})=1, \mu_*(\{0\})=0$ 。 $\mathbb{R}^{\mathrm{OBEM}}$ III 设 (Ω,\mathscr{A},μ) 为测度空间, μ^* 为由 μ 生成的外测度。证明 $N\subset\Omega$ 为 μ 零测集当且仅当 $\mu^*(N)=0$.

SOLTION. 一方面,设 $\mu^*(N) = 0$,则由II中证明可知 $\exists A_n \in \mathcal{A}, N \subset A_n$ 使 $\mu(A_n) \to 0$ 。故 $\mu(\bigcap_n A_n) \leq \mu(A_n) \to 0$,从而 $N \subset \bigcap_n A_n, \mu(\bigcap_n A_n) = 0$ 。故 $N \not\in \mu$ 零测集。

另一方面,设 N 是 μ 零测集,则 $\exists M \in \mathcal{A}, N \subset M, \mu(M) = 0$ 。从而 $\{M\}$ 为 N 的可数覆盖, $\mu^*(N) \leq \mu(M) = 0$ 。

 \mathbb{R}^{OBEM} IV 举例说明即使 Ω 可数,半集代数 \mathcal{T} 生成的 σ -代数不能表示为:

$$\sigma(\mathcal{T}) = \{ \sum_{n=1}^{\infty} A_n : \forall n \ge 1, A_n \in \mathcal{T} \}$$

SOUTION. 令 $\Omega = \mathbb{N}$, 令 $\mathcal{T} := \{A \subset \mathbb{N} : 0 \in A \perp A^c \neq A \perp A \neq A \neq A \neq A \}$ 。先证 \mathcal{T} 是半集代数。只需证 \mathcal{T} 是集代数。

1. $\Omega = \mathbb{N}$ 满足 $0 \in \Omega$, $\Omega^c = \emptyset$ 有限, 故 $\Omega \in \mathcal{T}$.

2. 设 $A, B \in \mathcal{T}$ 。须证 $A \setminus B \in \mathcal{T}$ 。若 A 有限且 $0 \notin A$,则有 $A \setminus B$ 也有限且 $0 \notin A \setminus B$,故 $A \setminus B \in \mathcal{T}$ 。若 A^c 有限且 $0 \in A$,B 有限且 $0 \notin B$,则 $(A \setminus B)^c = A^c \cup B$ 也有限且 $0 \in A \setminus B$,故 $A \setminus B \in \mathcal{T}$ 。若 A^c , B^c 有限且 $0 \in A$, B,则 $A \setminus B = A \cap B^c$ 有限,且 $0 \notin A \setminus B$,故 $A \setminus B \in \mathcal{T}$ 。综上, $\forall A, B \in \mathcal{T}$,

令 $\mathcal{S} := \{\sum_{n=1}^{\infty} A_n : \forall n \geq 1, A_n \in \mathcal{T}\}$,下证 $\mathcal{S} \neq \sigma(\mathcal{T})$ 。只需证 $\{0\} \in \sigma(\mathcal{T}), \{0\} \notin \mathcal{S}$ 。由 $\{n\} \in \mathcal{T}, \forall n \geq 1$ 可得 $\mathbb{N}_+ \in \sigma(\mathcal{T})$,故 $\{0\} = \mathbb{N}_+^c \in \sigma(\mathcal{T})$ 。反设 $\{0\} \in \mathcal{S}$,则 $\{0\} = \sum_n A_n, A_n \in \mathcal{T}$ 。由 $\{0\}$ 有限知 A_n 有限,由 \mathcal{T} 的定义知 $0 \notin A_n$,故 $0 \notin \sum_n A_n = \{0\}$,矛盾!故 $\{0\} \notin \mathcal{S}$ 。从而 $\mathcal{S} \neq \sigma(\mathcal{T})$ 。

$\mathbb{R}^{OB}\mathbb{E}M\ V$

- 1. 设 $g \in (\mathbb{R}^n, \overline{\mathcal{B}}^n)$ 上的实(复)可测函数, $f_1, \dots, f_n \in (\Omega, A)$ 上的实可测函数。则 $g(f_1, \dots, f_n)$ 是 (Ω, A) 上的实(复)可测函数。
- 2. 设 $g \in (\overline{\mathbb{C}}^n, \overline{\mathcal{B}}_c^n)$ 上的实(复)可测函数, $f_1, \dots, f_n \in (\Omega, \mathcal{A})$ 上的复可测函数。则 $g(f_1, \dots, f_n)$ 是 (Ω, \mathcal{A}) 上的实(复)可测函数。
- SOUTION . 1. 由定理 2.6 (2) 可知 $F := (f_1, \dots, f_n)$ 是 (Ω, A) 上的 n 维实(复)可测函数。故由定理 2.7 可得 $g \circ F = g(f_1, \dots, f_n)$ 是 (Ω, A) 上的实(复)可测函数。
- 2. 由定理 2.6 (2) 可知 $F := (f_1, \dots, f_n)$ 是 (Ω, A) 上的 n 维实(复)可测函数。故由定理 2.7 可得 $g \circ F = g(f_1, \dots, f_n)$ 是 (Ω, A) 上的实(复)可测函数。

ROBEM VI

- 1. 设 $g \in (\mathbb{R}^n, \overline{\mathcal{B}}^n)$ 上的实(复)可测函数, $f_1, \dots, f_n \in (\Omega, \mathcal{A}, \mathbb{P})$ 上的随机变量。且 $\mathbb{P}(|g(f_1, \dots, f_n)| = \infty) = 0$ 。则 $g(f_1, \dots, f_n) \in (\Omega, \mathcal{A}, \mathbb{P})$ 上的实(复)随机变量。
- 2. 设 $g \in (\overline{\mathbb{C}}^n, \overline{\mathcal{B}}_c^n)$ 上的实(复)可测函数, $f_1, \dots, f_n \in (\Omega, \mathcal{A}, \mathbb{P})$ 上的复随机变量。且 $\mathbb{P}(|g(f_1, \dots, f_n)| = \infty) = 0$ 。则 $g(f_1, \dots, f_n)$ 是 $(\Omega, \mathcal{A}, \mathbb{P})$ 上的实(复)随机变量。

SOUTION. 由V可知 $g(f_1, f_2, \dots, f_n)$ 是实(复)可测函数。又由 $\mathbb{P}(|g(f_1, \dots, f_n)| = \infty) = 0$ 知其几乎处处有限,故有 $g(f_1, \dots, f_n) \stackrel{\text{a.s.}}{=} \mathbb{1}_{|g(f_1, \dots, f_n)| < \infty} g(f_1, \dots, f_n)$ 。而后者值域为 \mathbb{R} (\mathbb{C}),故在几乎处处相等的意义下 $g(f_1, \dots, f_n)$ 是实(复)随机变量。