CS 107, Probability, Spring 2019 Lecture 35

Michael Poghosyan

AUA

15 April 2019

Content

- Multivariate Normal (Gaussian) Distribution
- Transformation of Random Vectors
- Independent Random Variables

R Code

R Code for Bivariate Normal

```
mu \leftarrow c(0,0) # The Mean
Sigma \leftarrow matrix(c(1, .5, .5, 1), nrow = 2) #Cov Matrix
#Version 1
library (MASS)
data <- mvrnorm(5000, mu = mu, Sigma = Sigma)
plot(data, pch = 20, asp = 1, cex = 0.6)
#Version 2
#install.packages("mvtnorm")
library(mvtnorm)
data <- rmvnorm(1000, mean = mu, sigma = Sigma)
plot(data, pch = 20, asp = 1, xlim = c(-3,3))
```

Now, about the MultiVariate Normal Distribution. The definition goes in line with the 2D (BiVariate) case:

Now, about the MultiVariate Normal Distribution. The definition goes in line with the 2D (BiVariate) case: We assume we are given a vector in \mathbb{R}^n :

$$\mu = \left[\begin{array}{c} \mu_1 \\ \vdots \\ \mu_n \end{array} \right],$$

Now, about the MultiVariate Normal Distribution. The definition goes in line with the 2D (BiVariate) case: We assume we are given a vector in \mathbb{R}^n :

$$\mu = \left[\begin{array}{c} \mu_1 \\ \vdots \\ \mu_n \end{array} \right],$$

and a Symmetric Positive Definite Matrix

$$\Sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{bmatrix}$$

Multivariate Normal (Gaussian) Distribution

We say that the r. vector $\mathbf{X} = (X_1, X_2, ..., X_n)$ has a Multivariate Normal (or Gaussian) Distribution with the **mean** μ and the **covariance matrix** Σ , and we will write

$$\mathbf{X} \sim \mathcal{N}(\mu, \mathbf{\Sigma}),$$

Multivariate Normal (Gaussian) Distribution

We say that the r. vector $\mathbf{X} = (X_1, X_2, ..., X_n)$ has a Multivariate Normal (or Gaussian) Distribution with the **mean** μ and the **covariance matrix** Σ , and we will write

$$\mathbf{X} \sim \mathcal{N}(\mu, \mathbf{\Sigma}),$$

if the Joint PDF of X is given by

$$f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \det(\Sigma)}} \cdot \exp\left\{-\frac{1}{2}(\mathbf{x} - \mu)^T \cdot \Sigma^{-1} \cdot (\mathbf{x} - \mu)\right\},$$

for any $\mathbf{x} \in \mathbb{R}^n$.

Another, equivalent definition of the Multivariate Normal Distribution is the following:

Multivariate Normal (Gaussian) Distribution

We say that the r. vector $\mathbf{X} = (X_1, X_2, ..., X_n)$ has a Multivariate Normal (or Gaussian) Distribution, if for any numbers^a $a_1, a_2, ..., a_n \in \mathbb{R}$, the r.v.

$$Y = a_1 \cdot X_1 + a_2 \cdot X_2 + ... + a_n \cdot X_n$$

is Normally Distributed.

^aWe need to take care of the case $a_k = 0$ for all k. We can exclude this case, say, in the definition.

Marginals of Multivariate Normal Distribution

It is remarkable that the Marginal Distributions of Multivariate Normal Distribution are again Normal. In particular, if

$$(X, Y) \sim \mathcal{N}\left(\left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right], \left[\begin{array}{cc} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{array}\right]\right)$$

Marginals of Multivariate Normal Distribution

It is remarkable that the Marginal Distributions of Multivariate Normal Distribution are again Normal. In particular, if

$$(X, Y) \sim \mathcal{N}\left(\left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right], \left[\begin{array}{cc} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{array}\right]\right)$$

then

$$X \sim \mathcal{N}(\mu_1, \sigma_{11})$$
 and $Y \sim \mathcal{N}(\mu_2, \sigma_{22})$.

Assume we have 2 r.v.s X and Y, defined on the same Experiment.

¹It is enough to have our g defined not on the whole \mathbb{R}^2 but on all possible pairs (X, Y), in some subregion of \mathbb{R}^2 .

¹It is enough to have our g defined not on the whole \mathbb{R}^2 but on all possible pairs (X, Y), in some subregion of \mathbb{R}^2 .

Assume we have 2 r.v.s X and Y, defined on the same Experiment. Using X and Y, we can obtain new r.v.s.

• Say, we can use a Real-Valued function $g: \mathbb{R}^2 \to \mathbb{R}$ to obtain a 1D r.v. Z = g(X, Y).

¹It is enough to have our g defined not on the whole \mathbb{R}^2 but on all possible pairs (X, Y), in some subregion of \mathbb{R}^2 .

Assume we have 2 r.v.s X and Y, defined on the same Experiment. Using X and Y, we can obtain new r.v.s.

• Say, we can use a Real-Valued function $g: \mathbb{R}^2 \to \mathbb{R}$ to obtain a 1D r.v. Z = g(X, Y). Say, X + Y, $\sin(X + Y)$,...

¹It is enough to have our g defined not on the whole \mathbb{R}^2 but on all possible pairs (X, Y), in some subregion of \mathbb{R}^2 .

- Say, we can use a Real-Valued function $g: \mathbb{R}^2 \to \mathbb{R}$ to obtain a 1D r.v. Z = g(X, Y). Say, X + Y, $\sin(X + Y)$,...
- We can use 2 Real-Valued functions $g_1, g_2 : \mathbb{R}^2 \to \mathbb{R}$ to transform (X, Y) onto new r.vector (U, V) by

$$U = g_1(X, Y), \qquad V = g_2(X, Y);$$

¹It is enough to have our g defined not on the whole \mathbb{R}^2 but on all possible pairs (X, Y), in some subregion of \mathbb{R}^2 .

- Say, we can use a Real-Valued function $g: \mathbb{R}^2 \to \mathbb{R}$ to obtain a 1D r.v. Z = g(X, Y). Say, X + Y, $\sin(X + Y)$,...
- We can use 2 Real-Valued functions $g_1, g_2 : \mathbb{R}^2 \to \mathbb{R}$ to transform (X, Y) onto new r.vector (U, V) by

$$U = g_1(X, Y), \qquad V = g_2(X, Y);$$

Say,
$$U = X + Y$$
, $V = X - Y$;

It is enough to have our g defined not on the whole \mathbb{R}^2 but on all possible pairs (X, Y), in some subregion of \mathbb{R}^2 .

- Say, we can use a Real-Valued function $g: \mathbb{R}^2 \to \mathbb{R}$ to obtain a 1D r.v. Z = g(X, Y). Say, X + Y, $\sin(X + Y)$,...
- We can use 2 Real-Valued functions $g_1, g_2 : \mathbb{R}^2 \to \mathbb{R}$ to transform (X, Y) onto new r.vector (U, V) by

$$U = g_1(X, Y), \qquad V = g_2(X, Y);$$

Say,
$$U = X + Y$$
, $V = X - Y$; or $U = X + 2Y$, $V = X \cdot Y$,...

It is enough to have our g defined not on the whole \mathbb{R}^2 but on all possible pairs (X, Y), in some subregion of \mathbb{R}^2 .

Assume we have 2 r.v.s X and Y, defined on the same Experiment. Using X and Y, we can obtain new r.v.s.

- Say, we can use a Real-Valued function $g: \mathbb{R}^2 \to \mathbb{R}$ to obtain a 1D r.v. Z = g(X, Y). Say, X + Y, $\sin(X + Y)$,...
- We can use 2 Real-Valued functions $g_1, g_2 : \mathbb{R}^2 \to \mathbb{R}$ to transform (X, Y) onto new r.vector (U, V) by

$$U = g_1(X, Y), \qquad V = g_2(X, Y);$$

Say,
$$U = X + Y$$
, $V = X - Y$; or $U = X + 2Y$, $V = X \cdot Y$,...

• We can obtain 3 r.v.s from our X, Y, ...

It is enough to have our g defined not on the whole \mathbb{R}^2 but on all possible pairs (X, Y), in some subregion of \mathbb{R}^2 .

Assume we have 2 r.v.s X and Y, defined on the same Experiment. Using X and Y, we can obtain new r.v.s.

- Say, we can use a Real-Valued function $g: \mathbb{R}^2 \to \mathbb{R}$ to obtain a 1D r.v. Z = g(X, Y). Say, X + Y, $\sin(X + Y)$,...
- We can use 2 Real-Valued functions $g_1, g_2 : \mathbb{R}^2 \to \mathbb{R}$ to transform (X, Y) onto new r.vector (U, V) by

$$U = g_1(X, Y), \qquad V = g_2(X, Y);$$

Say,
$$U = X + Y$$
, $V = X - Y$; or $U = X + 2Y$, $V = X \cdot Y$,...

• We can obtain 3 r.v.s from our X, Y, ...

Here we will consider the 1D case, when we transform our pair X, Y onto 1 r.v. Z.

¹It is enough to have our g defined not on the whole \mathbb{R}^2 but on all possible pairs (X, Y), in some subregion of \mathbb{R}^2 .

Now assume we have a r.vector (X, Y), and we form a new r.variable (1D r.v.!) from X and Y. Say, we take a function $g : \mathbb{R}^2 \to \mathbb{R}$, g = g(x, y), and consider the r.v.

$$Z = g(X, Y).$$

Now assume we have a r.vector (X, Y), and we form a new r.variable (1D r.v.!) from X and Y. Say, we take a function $g: \mathbb{R}^2 \to \mathbb{R}$, g = g(x, y), and consider the r.v.

$$Z = g(X, Y).$$

Example: Say, we are interested in the r.v. Z = 2X - 3Y, $T = X^2 + Y^2$, $K = \sin(X^2 + Y^2)$, ...

Now assume we have a r.vector (X, Y), and we form a new r.variable (1D r.v.!) from X and Y. Say, we take a function $g: \mathbb{R}^2 \to \mathbb{R}$, g = g(x, y), and consider the r.v.

$$Z = g(X, Y).$$

Example: Say, we are interested in the r.v. Z = 2X - 3Y, $T = X^2 + Y^2$, $K = \sin(X^2 + Y^2)$, ... The general problem here is:

Knowing the Joint Distribution of X and Y, find the Distribution of Z = g(X, Y).

Now assume we have a r.vector (X, Y), and we form a new r.variable (1D r.v.!) from X and Y. Say, we take a function $g: \mathbb{R}^2 \to \mathbb{R}, \ g = g(x, y)$, and consider the r.v.

$$Z = g(X, Y).$$

Example: Say, we are interested in the r.v. Z = 2X - 3Y, $T = X^2 + Y^2$, $K = \sin(X^2 + Y^2)$, ... The general problem here is:

Knowing the Joint Distribution of X and Y, find the Distribution of Z = g(X, Y).

In particular, very important is the question of distribution of the sum Z = X + Y, and, in general, of the sum of n r.v.s

$$Y = X_1 + X_2 + ... + X_n$$
.

Some Examples:

Some Examples:

 Say, my portfolio consists of 100 shares of Google (Alphabet Inc.) and 200 shares of Amazon.

Some Examples:

• Say, my portfolio consists of 100 shares of Google (Alphabet Inc.) and 200 shares of Amazon. So I am a Rich Man!!

Some Examples:

• Say, my portfolio consists of 100 shares of Google (Alphabet Inc.) and 200 shares of Amazon. So I am a Rich Man!! — Let Z be the price of my portfolio at the end of this year. Then

$$Z = 100 \cdot GOOG + 200 \cdot AMZN,$$

where *GOOG* and *AMZN* are r.v. showing the prices of Google and Amazon Stocks at the end of the year.

Some Examples:

• Say, my portfolio consists of 100 shares of Google (Alphabet Inc.) and 200 shares of Amazon. So I am a Rich Man!! — Let Z be the price of my portfolio at the end of this year. Then

$$Z = 100 \cdot GOOG + 200 \cdot AMZN$$
,

where *GOOG* and *AMZN* are r.v. showing the prices of Google and Amazon Stocks at the end of the year.

 My expenses at AUA cafeteria next week can be written as

$$Z = X_1 + X_3 + X_5$$

where X_i is

Some Examples:

• Say, my portfolio consists of 100 shares of Google (Alphabet Inc.) and 200 shares of Amazon. So I am a Rich Man!! — Let Z be the price of my portfolio at the end of this year. Then

$$Z = 100 \cdot GOOG + 200 \cdot AMZN$$
,

where *GOOG* and *AMZN* are r.v. showing the prices of Google and Amazon Stocks at the end of the year.

 My expenses at AUA cafeteria next week can be written as

$$Z = X_1 + X_3 + X_5$$

where X_i is the amount I will spend on the day i of the week.

Some Examples:

• Say, my portfolio consists of 100 shares of Google (Alphabet Inc.) and 200 shares of Amazon. So I am a Rich Man!! — Let Z be the price of my portfolio at the end of this year. Then

$$Z = 100 \cdot GOOG + 200 \cdot AMZN$$
,

where *GOOG* and *AMZN* are r.v. showing the prices of Google and Amazon Stocks at the end of the year.

 My expenses at AUA cafeteria next week can be written as

$$Z = X_1 + X_3 + X_5$$

where X_i is the amount I will spend on the day i of the week. Of course, X_{i-} s are r.v.s depending on how much I will be hungry.

Another Example:

Another Example:

 Usually, insurance companies are interested in the amount they will pay for some future time interval, say, for the upcoming week.

Another Example:

 Usually, insurance companies are interested in the amount they will pay for some future time interval, say, for the upcoming week. This amount can be written as:

$$Y = X_1 + X_2 + ... + X_7,$$

where X_i is the claim size for the day i of the week. X_{i-} s are r.v., so Y is a r.v.

Another Example:

 Usually, insurance companies are interested in the amount they will pay for some future time interval, say, for the upcoming week. This amount can be written as:

$$Y = X_1 + X_2 + ... + X_7,$$

where X_i is the claim size for the day i of the week. X_i -s are r.v., so Y is a r.v.

• Going further, the same companies can also model they daily claims: If they will have M claims in a day, with sizes $X_1, X_2, ..., X_M$, then their daily claim size will be

$$Z = X_1 + X_2 + ... + X_M$$
.

Examples

Another Example:

 Usually, insurance companies are interested in the amount they will pay for some future time interval, say, for the upcoming week. This amount can be written as:

$$Y = X_1 + X_2 + ... + X_7,$$

where X_i is the claim size for the day i of the week. X_i -s are r.v., so Y is a r.v.

• Going further, the same companies can also model they daily claims: If they will have M claims in a day, with sizes $X_1, X_2, ..., X_M$, then their daily claim size will be

$$Z = X_1 + X_2 + ... + X_M$$
.

Here important is that M will be a r.v. itself (!), and the distribution of Z is an 18+ topic.

Examples

Another Example:

 Usually, insurance companies are interested in the amount they will pay for some future time interval, say, for the upcoming week. This amount can be written as:

$$Y = X_1 + X_2 + ... + X_7,$$

where X_i is the claim size for the day i of the week. X_{i} -s are r.v., so Y is a r.v.

• Going further, the same companies can also model they daily claims: If they will have M claims in a day, with sizes $X_1, X_2, ..., X_M$, then their daily claim size will be

$$Z = X_1 + X_2 + ... + X_M.$$

Here important is that M will be a r.v. itself (!), and the distribution of Z is an 18+ topic. By, can you give a Model for M?

First, let us consider the problem of expressing the CDF of Z = g(X, Y) in terms of the Joint CDF of X and Y.

First, let us consider the problem of expressing the CDF of Z = g(X, Y) in terms of the Joint CDF of X and Y. Assume that $F_{X,Y}(x, y)$ is the CDF of (X, Y).

First, let us consider the problem of expressing the CDF of Z = g(X, Y) in terms of the Joint CDF of X and Y. Assume that $F_{X,Y}(x, y)$ is the CDF of (X, Y). That is,

$$F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y), \quad \forall x, y.$$

First, let us consider the problem of expressing the CDF of Z = g(X, Y) in terms of the Joint CDF of X and Y. Assume that $F_{X,Y}(x, y)$ is the CDF of (X, Y). That is,

$$F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y), \quad \forall x, y.$$

We want to find the CDF of Z, $F_Z(x)$.

First, let us consider the problem of expressing the CDF of Z = g(X, Y) in terms of the Joint CDF of X and Y. Assume that $F_{X,Y}(x, y)$ is the CDF of (X, Y). That is,

$$F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y), \quad \forall x, y.$$

We want to find the CDF of Z, $F_Z(x)$. We know that

$$F_Z(x) = \mathbb{P}(Z \leq x) =$$

First, let us consider the problem of expressing the CDF of Z = g(X, Y) in terms of the Joint CDF of X and Y. Assume that $F_{X,Y}(x, y)$ is the CDF of (X, Y). That is,

$$F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y), \quad \forall x, y.$$

We want to find the CDF of Z, $F_Z(x)$. We know that

$$F_Z(x) = \mathbb{P}(Z \leq x) = \mathbb{P}(g(X, Y) \leq x).$$

First, let us consider the problem of expressing the CDF of Z = g(X, Y) in terms of the Joint CDF of X and Y. Assume that $F_{X,Y}(x, y)$ is the CDF of (X, Y). That is,

$$F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y), \quad \forall x, y.$$

We want to find the CDF of Z, $F_Z(x)$. We know that

$$F_Z(x) = \mathbb{P}(Z \leq x) = \mathbb{P}(g(X, Y) \leq x).$$

Unfortunately, it is not possible to express this in terms of $F_{X,Y}(x,y)$ in the general case.

First, let us consider the problem of expressing the CDF of Z = g(X, Y) in terms of the Joint CDF of X and Y. Assume that $F_{X,Y}(x, y)$ is the CDF of (X, Y). That is,

$$F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y), \quad \forall x, y.$$

We want to find the CDF of Z, $F_Z(x)$. We know that

$$F_Z(x) = \mathbb{P}(Z \leq x) = \mathbb{P}(g(X, Y) \leq x).$$

Unfortunately, it is not possible to express this in terms of $F_{X,Y}(x,y)$ in the general case.

Btw, we have calculated this kind of thing some lecture ago: we were calculating $\mathbb{P}(Y-X\leq x)$, i.e., the CDF of Z=Y-X.

Assume now X and Y are Discrete with values $x_1, x_2, ...$ and $y_1, y_2, ...$, and with the Joint PMF

$Y \setminus X$	<i>x</i> ₁	<i>x</i> ₂	
<i>y</i> ₁	$p_{1,1}$	$p_{2,1}$	
<i>y</i> ₂	$p_{1,2}$	$p_{2,2}$	
÷	:	:.	:

Assume now X and Y are Discrete with values $x_1, x_2, ...$ and $y_1, y_2, ...$, and with the Joint PMF

$Y \setminus X$	<i>x</i> ₁	<i>x</i> ₂	
<i>y</i> ₁	$p_{1,1}$	$p_{2,1}$	
<i>y</i> ₂	$p_{1,2}$	$p_{2,2}$	
i	:	:	:

Assume also that $g: \mathbb{R}^2 \to \mathbb{R}$ is a given function, and Z = g(X, Y).

Assume now X and Y are Discrete with values $x_1, x_2, ...$ and $y_1, y_2, ...$, and with the Joint PMF

$Y \setminus X$	<i>x</i> ₁	<i>x</i> ₂	
<i>y</i> ₁	$p_{1,1}$	$p_{2,1}$	
<i>y</i> ₂	$p_{1,2}$	$p_{2,2}$	
i l	÷	:	::

Assume also that $g: \mathbb{R}^2 \to \mathbb{R}$ is a given function, and Z = g(X, Y). It is easy to see that Z is a Discrete r.v., and our aim is to find the PMF of Z.

Assume now X and Y are Discrete with values $x_1, x_2, ...$ and $y_1, y_2, ...$, and with the Joint PMF

$Y \setminus X$	<i>x</i> ₁	<i>x</i> ₂	
<i>y</i> ₁	$p_{1,1}$	$p_{2,1}$	
<i>y</i> ₂	$p_{1,2}$	$p_{2,2}$	
:	:	:	

Assume also that $g: \mathbb{R}^2 \to \mathbb{R}$ is a given function, and Z = g(X, Y). It is easy to see that Z is a Discrete r.v., and our aim is to find the PMF of Z.

Now, the values of Z will be

Assume now X and Y are Discrete with values $x_1, x_2, ...$ and $y_1, y_2, ...$, and with the Joint PMF

$Y \setminus X$	<i>x</i> ₁	<i>x</i> ₂	
<i>y</i> ₁	$p_{1,1}$	$p_{2,1}$	
<i>y</i> ₂	$p_{1,2}$	$p_{2,2}$	
i l	÷	:	::

Assume also that $g: \mathbb{R}^2 \to \mathbb{R}$ is a given function, and Z = g(X, Y). It is easy to see that Z is a Discrete r.v., and our aim is to find the PMF of Z.

Now, the values of Z will be $z_{ij} = g(x_i, y_j)$, and the Probability of Z being z_{ij} will be

Assume now X and Y are Discrete with values $x_1, x_2, ...$ and $y_1, y_2, ...$, and with the Joint PMF

$Y \setminus X$	<i>x</i> ₁	<i>x</i> ₂	
<i>y</i> ₁	$p_{1,1}$	$p_{2,1}$	
<i>y</i> ₂	$p_{1,2}$	$p_{2,2}$	
i l	÷	:	::

Assume also that $g: \mathbb{R}^2 \to \mathbb{R}$ is a given function, and Z = g(X, Y). It is easy to see that Z is a Discrete r.v., and our aim is to find the PMF of Z.

Now, the values of Z will be $z_{ij} = g(x_i, y_j)$, and the Probability of Z being z_{ij} will be

$$\mathbb{P}(Z=z_{ij})=\sum_{g(x_k,y_m)=z_{ij}}\mathbb{P}(X=x_k,Y=y_m).$$

Transform of Joint Discrete R.V.s, Example

And also in this case, we can calculate the CDF of Z:

$$F_Z(x) = \mathbb{P}(Z \le x) = \mathbb{P}(g(X, Y) \le x) =$$

Transform of Joint Discrete R.V.s, Example

And also in this case, we can calculate the CDF of Z:

$$F_Z(x) = \mathbb{P}(Z \leq x) = \mathbb{P}(g(X, Y) \leq x) = \sum_{g(x_i, y_i) \leq x} \mathbb{P}(X = x_i, Y = y_j).$$

Transform of Joint Discrete R.V.s, Example

And also in this case, we can calculate the CDF of Z:

$$F_Z(x) = \mathbb{P}(Z \leq x) = \mathbb{P}(g(X, Y) \leq x) = \sum_{g(x_i, y_j) \leq x} \mathbb{P}(X = x_i, Y = y_j).$$

Example: Assume *X* and *Y* are given by

$Y \setminus X$	-1	1
3	0.1	0.2
2	0.3	0.1
4	0.1	0.2

- Find the PMF of Z = X + Y:
- Find the CDF of Z = 2X Y.

Now assume X and Y are Continuous r.v.s with Joint PDF $f_{X,Y}(x,y)$. Also, $g: \mathbb{R}^2 \to \mathbb{R}$ is a given function. Let Z=g(X,Y). Again we are interested in the Distribution of Z.

Now assume X and Y are Continuous r.v.s with Joint PDF $f_{X,Y}(x,y)$. Also, $g: \mathbb{R}^2 \to \mathbb{R}$ is a given function. Let Z=g(X,Y). Again we are interested in the Distribution of Z. **Note:** First, note that although (X,Y) is continuous, Z is not always continuous: it can be both Discrete or Continuous.

Now assume X and Y are Continuous r.v.s with Joint PDF $f_{X,Y}(x,y)$. Also, $g: \mathbb{R}^2 \to \mathbb{R}$ is a given function. Let Z=g(X,Y). Again we are interested in the Distribution of Z.

Note: First, note that although (X, Y) is continuous, Z is not always continuous: it can be both Discrete or Continuous.

Example: $Z_1 = X^2 + 3X \cdot Y$ is continuous, and

Now assume X and Y are Continuous r.v.s with Joint PDF $f_{X,Y}(x,y)$. Also, $g: \mathbb{R}^2 \to \mathbb{R}$ is a given function. Let Z=g(X,Y). Again we are interested in the Distribution of Z. **Note:** First, note that although (X,Y) is continuous, Z is not

always continuous: it can be both Discrete or Continuous.

Example: $Z_1 = X^2 + 3X \cdot Y$ is continuous, and $Z_2 = [X + Y]$ or

Now assume X and Y are Continuous r.v.s with Joint PDF $f_{X,Y}(x,y)$. Also, $g: \mathbb{R}^2 \to \mathbb{R}$ is a given function. Let Z=g(X,Y). Again we are interested in the Distribution of Z.

Note: First, note that although (X, Y) is continuous, Z is not always continuous: it can be both Discrete or Continuous.

Example: $Z_1 = X^2 + 3X \cdot Y$ is continuous, and $Z_2 = [X + Y]$ or

$$Z_3 = \begin{cases} -2, & X^2 - Y \le 2\\ 3, & X^2 - Y > 2 \end{cases}$$

are Discrete.

Now assume X and Y are Continuous r.v.s with Joint PDF $f_{X,Y}(x,y)$. Also, $g: \mathbb{R}^2 \to \mathbb{R}$ is a given function. Let Z=g(X,Y). Again we are interested in the Distribution of Z.

Note: First, note that although (X, Y) is continuous, Z is not always continuous: it can be both Discrete or Continuous.

Example: $Z_1 = X^2 + 3X \cdot Y$ is continuous, and $Z_2 = [X + Y]$ or

$$Z_3 = \begin{cases} -2, & X^2 - Y \le 2\\ 3, & X^2 - Y > 2 \end{cases}$$

are Discrete.

Note: Second, we can find the CDF of *Z* by:

$$F_Z(x) = \mathbb{P}(g(X, Y) \le x) = \iint_{g(u,v) \le x} f_{X,Y}(u, v) dudv.$$

Now, finding the PMF or the PDF of Z = g(X, Y) in the Continuous case is not so easy.

Now, finding the PMF or the PDF of Z = g(X, Y) in the Continuous case is not so easy. In principle, we can calculate first the CDF by the formula above, and then differentiate it (if Z is continuous) to obtain the PDF.

Now, finding the PMF or the PDF of Z = g(X, Y) in the Continuous case is not so easy. In principle, we can calculate first the CDF by the formula above, and then differentiate it (if Z is continuous) to obtain the PDF. Try to solve some problems for yourself!

Now, finding the PMF or the PDF of Z = g(X, Y) in the Continuous case is not so easy. In principle, we can calculate first the CDF by the formula above, and then differentiate it (if Z is continuous) to obtain the PDF. Try to solve some problems for yourself!

Here we will consider one very important case:

Now, finding the PMF or the PDF of Z = g(X, Y) in the Continuous case is not so easy. In principle, we can calculate first the CDF by the formula above, and then differentiate it (if Z is continuous) to obtain the PDF. Try to solve some problems for yourself!

Here we will consider one very important case: we will restrict our attention to the sum of X and Y,

$$Z = X + Y$$
.

Now, assume

$$Z = X + Y$$
.

Now, assume

$$Z = X + Y$$
.

• If X and Y are **Discrete**, then Z = X + Y will be Discrete too, with a PMF

$$\mathbb{P}(Z=x) = \mathbb{P}(X+Y=x) = \sum_{x_i+y_j=x} \mathbb{P}(X=x_i, Y=y_j).$$

Now, assume

$$Z = X + Y$$
.

• If X and Y are **Discrete**, then Z = X + Y will be Discrete too, with a PMF

$$\mathbb{P}(Z=x) = \mathbb{P}(X+Y=x) = \sum_{x_i+y_j=x} \mathbb{P}(X=x_i, Y=y_j).$$

• If X and Y are **Jointly Continuous** with the Joint PDF $f_{X,Y}(x,y)$, then Z=X+Y will be a Continuous r.v. with the PDF

$$f_{X+Y}(x) = \int_{-\infty}^{\infty} f_{X,Y}(t,x-t) dt \quad \forall x \in \mathbb{R}.$$

