Big

A review of concepts of asymptotic notation

Notation	Name	Intuition	Informal definition: for sufficiently large $n\ldots$	Formal Definition
$f(n) \in O(g(n))$	Big Omicron; Big O; Big Oh	f is bounded above by g (up to constant factor) asymptotically	$ f(n) \leq g(n) \cdot k$ for some positive k	$\begin{array}{l} \exists k>0 \; \exists n_0 \; \forall n>n_0 \; f(n) \leq g(n)\cdot k \\ \text{or} \\ \exists k>0 \; \exists n_0 \; \forall n>n_0 \; f(n)\leq g(n)\cdot k \end{array}$
$f(n)\in\Omega(g(n))$	Big Omega	Two definitions: Number theory: f is not dominated by g asymptotically Complexity theory: f is bounded below by g asymptotically	Number theory: $f(n) \geq g(n) \cdot k \text{ for infinitely many values of } n \text{ and for some positive } k$ Complexity theory: $f(n) \geq g(n) \cdot k \text{ for some positive } k$	Number theory: $\exists k>0 \ \forall n_0 \ \exists n>n_0 \ g(n)\cdot k \leq f(n)$ Complexity theory: $\exists k>0 \ \exists n_0 \ \forall n>n_0 \ g(n)\cdot k \leq f(n)$
$f(n) \in \Theta(g(n))$	Big Theta	f is bounded both above and below by g asymptotically	$g(n) \cdot k_1 \leq f(n) \leq g(n) \cdot k_2$ for some positive $\mathbf{k_1}$, $\mathbf{k_2}$	$\exists k_1 > 0 \ \exists k_2 > 0 \ \exists n_0 \ \forall n > n_0$ $g(n) \cdot k_1 \le f(n) \le g(n) \cdot k_2$
$f(n) \in o(g(n))$	Small Omicron; Small O; Small Oh	f is dominated by g asymptotically	$ f(n) \leq k \cdot g(n) \text{, for every fixed}$ positive number k	$\forall k > 0 \; \exists n_0 \; \forall n > n_0 \; f(n) \le k \cdot g(n) $
$f(n) \in \omega(g(n))$	Small Omega	f dominates g asymptotically	$ f(n) \geq k \cdot g(n) $, for every fixed positive number k	$\forall k > 0 \; \exists n_0 \; \forall n > n_0 \; f(n) \ge k \cdot g(n) $
$f(n) \sim g(n)$	On the order of	f is equal to g asymptotically	$f(n)/g(n) \to 1$	$\forall \varepsilon > 0 \; \exists n_0 \; \forall n > n_0 \; \left \frac{f(n)}{g(n)} - 1 \right < \varepsilon$

http://en.wikipedia.org/wiki/Big_O_notation

Notation	Name	Intuition	Informal definition: for sufficiently large $n\ldots$
$f(n) \in O(g(n))$	Big Omicron; Big O; Big Oh	f is bounded above by g (up to constant factor) asymptotically	$ f(n) \leq g(n) \cdot k$ for some positive k
$f(n)\in\Omega(g(n))$	Big Omega	Two definitions :	
		Number theory:	Number theory:
		f is not dominated by g asymptotically	$f(n) \geq g(n) \cdot k$ for infinitely many values of n and for some positive k
		Complexity theory:	Complexity theory:
		f is bounded below by g asymptotically	$f(n) \geq g(n) \cdot k$ for some positive k
$f(n) \in \Theta(g(n))$	Big Theta	f is bounded both above and below by g asymptotically	$g(n) \cdot k_1 \leq f(n) \leq g(n) \cdot k_2$ for some positive $\mathbf{k_1}$, $\mathbf{k_2}$

http://en.wikipedia.org/wiki/Big_O_notation

Notation	Name	Intuition	Informal definition: for sufficiently large $n\ldots$
$f(n) \in O(g(n))$	Big Omicron; Big O; Big Oh	f is bounded above by g (up to constant factor) asymptotically	$ f(n) \leq g(n) \cdot k$ for some positive k
	Big Omega	Two definitions :	
		Number theory:	Number theory:
		f is not dominated by	$f(n) \geq g(n) \cdot k$ for infinitely many values
$f(n) \in \Omega(g(n))$		g asymptotically	of <i>n</i> and for some positive <i>k</i>
		Complexity theory:	Complexity theory:
		f is bounded below by	$f(n) \geq g(n) \cdot k$ for some positive k
		g asymptotically	
	Big Theta	f is bounded both	$g(n) \cdot k_1 \leq f(n) \leq g(n) \cdot k_2$ for
$f(n) \in \Theta(g(n))$		above and below by g asymptotically	some positive k_1 , k_2

http://en.wikipedia.org/wiki/Big_O_notation

$$f(n) \in O(g(n))$$

$$|f(n)| \le g(n) \cdot k$$

$$f(n) \in \Omega(g(n))$$

$$f(n) \ge g(n) \cdot k$$

$$f(n) \in \Theta(g(n))$$

$$g(n) \cdot k_1 \le f(n) \le g(n) \cdot k_2$$

0

 \leq

 Ω

>

 $f(n) \in \Theta(g(n))$

 $g(n) \cdot k_1 \le f(n) \le g(n) \cdot k_2$

0

 Ω

>

$$f(n) \in \Theta(g(n))$$

$$g(n) \cdot k_1 \le f(n) \le g(n) \cdot k_2$$

f(x) = x

g(x) = x + 2

 $f \in O(g)$?

 $O + \Omega$

$$f(x) = x$$
$$g(x) = x + 2$$

$$f \in O(g)$$
?
$$g \in \Omega(f)$$
?

$$f(x) = x$$

$$g(x) = x + 2$$

$$f \in O(g)$$
?

$$g \in \Omega(f)$$
?

$$g \in O(f)$$
?

$$x+2 \leq x \cdot ?$$

 $g \in O(f)$?

$$f \in O(g)$$
?

$$f(x) = x^{2}$$

$$g(x) = x^{2} + 2$$

$$h(x) = x^{2} + 3x + 2$$

$$f \in O(g)$$
?

$$f(x) = x^{2}$$

 $g(x) = x^{2} + 2$
 $h(x) = x^{2} + 3x + 2$

$$f \in O(h)$$
?

$$f \in O(g)$$
?

$$f(x) = x^2$$

$$g(x) = x^2 + 2$$

$$h(x) = x^2 + 3x + 2$$

$$f \in O(h)$$
?

$$f \in \Omega(g)$$
?

$$f \in O(g)$$
?

$$f(x) = x^2$$

$$g(x) = x^2 + 2$$

$$h(x) = x^2 + 3x + 2$$

$$f \in O(h)$$
?

$$f \in \Omega(g)$$
?

$$f \in \Omega(h)$$
?

$$f \in \Omega(g)$$
?

$$f(x) = x^2$$

$$g(x) = 10000x^2 + 500x + 100$$

$$1000x^2 + 500x + 100 \in \Theta(x^2)$$

$1000x^2 \in \Theta(x^3)$?

$$g \in O(f)$$
?

$$f(x) = 1000x^2$$

$$g(x) = x^3$$

$$g \in O(f)$$
?

$$g \in \Omega(f)$$
?

$$f(x) = 1000x^2$$

$$g(x) = x^3$$

$$f(x) = 1000x^2$$

 $g(x) = x^3$

$$g \in O(f)$$
?
 $g \in \Omega(f)$?
 $f \in O(g)$?

$$g \in O(f)$$
?
 $f(x) = 1000x^2$
 $g \in \Omega(f)$?
 $f \in O(g)$?
 $f \in \Omega(g)$?

$$f(x) = 1000x^2$$

$$g(x) = x^3$$

$$g \in O(f)$$
?

$$g \in \Omega(f)$$
?

$$f \in O(g)$$
?

$$f \in \Omega(g)$$
?

$$f \in \Theta(g)$$
?

$$f(x) = 1000x^2$$
$$g(x) = x^3$$

$$g \in O(f)$$
?
 $g \in \Omega(f)$?
 $f \in O(g)$?
 $f \in \Omega(g)$?
 $f \in \Theta(g)$?
 $g \in \Theta(f)$?

$$f \in O(g)$$
?

$$f \in \Omega(g)$$
?

$$f \in O(g)$$
?
$$f \in \Omega(g)$$
?
$$g \in O(f)$$
?

$$f \in \Omega(g)$$
?
 $f \in \Omega(g)$?
 $g \in \Omega(f)$?
 $g \in \Omega(f)$?

$$f \in \Omega(g)$$
?
 $f \in \Omega(g)$?
 $g \in \Omega(f)$?
 $g \in \Omega(f)$?

 $f \in \Theta(g)$?

one last exercise

$$f \in O(g)$$
?

$$f(n) = n \log_2 n$$
$$g(n) = n^2$$

$$f \in O(g)$$
?

$$f(n) = n \log_2 n \qquad f \in \Omega(g)?$$

$$g(n) = n^2$$

$$f(n) = n \log_2 n$$
$$g(n) = n^2$$

$$f \in O(g)$$
?
$$f \in \Omega(g)$$
?
$$g \in O(f)$$
?

$$f(n) = n \log_2 n$$
$$g(n) = n^2$$

$$f \in O(g)$$
?
 $f \in \Omega(g)$?
 $g \in O(f)$?
 $g \in \Omega(f)$?

$$f(n) = n \log_2 n$$
$$g(n) = n^2$$

$$f \in O(g)$$
?
 $f \in \Omega(g)$?
 $g \in O(f)$?
 $f \in \Omega(f)$?

$$n^2 \in O(100 \cdot n \log_2 n)?$$

$$n^{2} \in O(100 \cdot n \log_{2} n)?$$

$$n^{2} \in \Omega(n \log_{2} n)?$$

$$n^2 \in O(100 \cdot n \log_2 n)?$$

$$n^2 \in \Omega(n \log_2 n)?$$

$$n^{2} \in O(100 \cdot n \log_{2} n)?$$

$$n^{2} \in \Omega(n \log_{2} n)?$$

$$f(n) = n \log_{2} n \quad \log_{2} n \in O(n \log_{2} n)?$$

$$\log_{2} n \in \Theta(n \log_{2} n)?$$

$$n^{2} \in O(100 \cdot n \log_{2} n)?$$

$$n^{2} \in \Omega(n \log_{2} n)?$$

$$\log_{2} n \in O(n \log_{2} n)?$$

$$\log_{2} n \in \Theta(n \log_{2} n)?$$

$$n \in O(\log_{2} n + n)?$$

$$n^2 \in O(100 \cdot n \log_2 n)$$
?
 $n^2 \in \Omega(n \log_2 n)$?
 $\log_2 n \in O(n \log_2 n)$?
 $\log_2 n \in \Theta(n \log_2 n)$?
 $n \in O(\log_2 n + n)$?
 $n^2 \in \Omega(n^2 + n)$?

$$n^2 \in O(100 \cdot n \log_2 n)$$
?
 $n^2 \in \Omega(n \log_2 n)$?
 $\log_2 n \in O(n \log_2 n)$?
 $\log_2 n \in \Theta(n \log_2 n)$?
 $n \in O(\log_2 n + n)$?
 $n^2 \in \Omega(n^2 + n)$?
 $n^2 \in \Theta(n^2 + n)$?