Model explanation

The model is conceptually zero-dimensional, and the initial conditions consider the minimal cell concentration recorded by Scalco et al. [2014] as gametogenesis trigger. Cell numbers and available nitrogen are expressed as abundance and concentration, respectively.

The simulation starts with a cell population (P) that enters the sexual reproduction phase after reaching a threshold value of a few thousand cells per ml (see Scalco et al. [2014]). During this phase of variable length, the population stops growing and experiences a prolonged burst of gametogenesis-induced mortality. Within the same span, a P fraction will undergo gametogenesis and generate an offspring population (F_1) that will start to grow the moment (t_{F_1I}) it appears. After t_{AE} days, the growth arrest will end and P will resumes its growth alongside F_1 . During the entire course of the simulation (set to ten days) cell growth is modulated by competition over nitrogen and cell size via an allometric relationship (see D'Alelio et al. [2010]). Fig. 1 shows the relative variation of allometric growth (plot **a**).

A fundamental assumption, discussed later in the text, is that parental and daughter cells share a common, exclusive space, so that only P and F_1 compete for N made available in such space. This assumption is translated in the model as a decrease in growth rate as the total population $(F_1 + P)$ converges toward the carrying capacity, set as the total nitrogen content of initial parental cells.

To understand better how event timing and response amplitudes impact over F_1 recruitment success, we compared simulation outputs across selected parameters range. Our selected parameters are the P fraction that will generate F_1 (α) , gametogenesis-induced extra mortality of parental cells (m), duration of the growth arrest (t_{AE}) , and growth rates ratio among parental and initial cells $(r_P:r_{F_1})$ We deployed an interactive version of the model at the URL https: //arfalas.shinyapps.io/pns_toy/, code and figures are available on https://github.com/bhym/Stec (currently private)

Model description

Parental (P) and offspring (F_1) dynamics are defined as ODE:

$$\frac{dP}{dt} = \kappa \mu_P P - \delta P \tag{1}$$

$$\frac{dP}{dt} = \kappa \mu_P P - \delta P \tag{1}$$

$$\frac{dF_1}{dt} = \kappa \mu_{F_1} F_1 \tag{2}$$

where κ is the competition for N, defined as

$$1 - \frac{[N]_t}{1.2[N]_{t=0}}$$

with

$$[N_t] = [P]_t[N]_P + [F_1]_t[N]_{F_1}$$

 μ_P and μ_{F_1} are defined as

$$\mu_P = \begin{cases} 0 & \text{if } t < t_{AE} \\ \lambda_P(t)r_P & \text{if } t \ge t_{AE} \end{cases} ; \qquad \mu_{F_1} = \begin{cases} 0 & \text{if } t < t_{F_1I} \\ \lambda_{F_1}(t)r_{F_1} & \text{if } t \ge t_{F_1I} \end{cases}$$

with $\lambda_i(t)$ representing allometric scaling on length (L), defined as

$$\lambda_i(t) = 0.25 + 0.04L_i(t) - 0.0005L_i(t)^2$$

Length dynamics are based on cell's age (a) and are defined by the rule

$$L_i(t) = L_{0,i} - 0.1a(t)$$
 with i either P or F_1

Age is counted from the appearance of the population, and does not increase during GA. Finally, δ is an extra mortality term defined as

$$\begin{cases} m & \text{if } t < t_{AE} \\ 0 & \text{if } t > t_{AE} \end{cases}$$

The parameters values and ranges are reported in **Table 1**.

References

Eleonora Scalco, Krzysztof Stec, Daniele Iudicone, Maria Immacolata Ferrante, and Marina Montresor. The dynamics of sexual phase in the marine diatom p seudo-nitzschia multistriata (b acillariophyceae). *Journal of Phycology*, 50 (5):817–828, 2014. doi: 10.1111/jpy.12225.

Domenico D'Alelio, Maurizio Ribera d'Alcala, Laurent Dubroca, Adriana Zingone, and Marina Montresor. The time for sex: A biennial life cycle in a marine planktonic diatom. Limnology and Oceanography, 55(1):106-114, 2010. doi: 10.4319/lo.2010.55.1.0106.

Figure 1: Simulated size dependent growth and impact on the population dynamics — (A) dependence of specific growth rate on cell length during the time interval considered in the model (10 days); (B) Size reduction for the two sub-populations. (C) and (D), examples of simulation outputs with the growth rates of the current work ($r_P = 1.06$, $r_{F1} = 0.58$) and (C) no growth arrest ($t_{AE} = 0$) or (D) duration of growth arrest as in the current work ($t_{AE} = 3$). In C and D: $\alpha = 0.012$, m = 0.4, all the other parameters as per **Tab. 1**.

.

Variable	Meaning	Units	Value	Reference
$\overline{P_0}$	initial concentration of P cells	cells/ml	4E3	Experiment detailed in the paper
α	fraction of P that will generate F_1		[0.01, 0.2]	Explored via simulations
r_P	net growth rate of P	day^{-1}	[0.5, 3]	Explored via simulations
r_{F_1}	net growth rate of F_1	day^{-1}	1	_
t_{AE}	end day of the growth arrest	day	[0,6]	Explored via simulations
t_{F_1I}	day of appearence of the offspring	day	3	Experiment detailed in the paper
$L_{0,P}$	starting length for P cells	$\mu\mathrm{m}$	40	Experiment detailed in the paper
L_{0,F_1}	starting length for F_1 cells	$\mu\mathrm{m}$	80	Experiment detailed in the paper
\underline{m}	gametogenesis-induced mortality	day	[0.1, 0.9]	Explored via simulations

Table 1: Values and ranges for model parameters

	0.01	0.03	0.05	0.08	0.1	0.12	0.15	0.17	0.2
3	-1.72	-1.23	-1.00	-0.79	-0.68	-0.59	-0.48	-0.42	-0.34
2.7	-1.71	-1.23	-1.00	-0.78	-0.68	-0.59	-0.48	-0.42	-0.34
2.5	-1.71	-1.23	-1.00	-0.78	-0.68	-0.59	-0.48	-0.42	-0.34
2.2	-1.71	-1.22	-0.99	-0.78	-0.67	-0.59	-0.48	-0.42	-0.33
2	-1.70	-1.22	-0.99	-0.77	-0.67	-0.58	-0.47	-0.41	-0.33
1.7	-1.70	-1.21	-0.98	-0.77	-0.66	-0.58	-0.47	-0.41	-0.33
1.5	-1.69	-1.20	-0.98	-0.76	-0.66	-0.57	-0.47	-0.41	-0.33
1.2	-1.67	-1.19	-0.96	-0.75	-0.65	-0.56	-0.46	-0.40	-0.32
1	-1.66	-1.18	-0.95	-0.74	-0.63	-0.55	-0.45	-0.39	-0.31

(a) $\alpha, r_p : r_{f1}$, with m = 0.2

	0.01	0.03	0.05	0.08	0.1	0.12	0.15	0.17	0.2
3	-1.56	-1.06	-0.83	-0.60	-0.49	-0.39	-0.27	-0.20	-0.10
2.7	-1.55	-1.06	-0.82	-0.59	-0.48	-0.39	-0.26	-0.19	-0.10
2.5	-1.55	-1.05	-0.82	-0.59	-0.48	-0.38	-0.26	-0.19	-0.09
2.5	-1.55	-1.05	-0.82	-0.59	-0.48	-0.38	-0.25	-0.19	-0.09
2.2	-1.54	-1.05	-0.81	-0.58	-0.47	-0.37	-0.25	-0.18	-0.09
2	-1.53	-1.04	-0.80	-0.57	-0.46	-0.37	-0.25	-0.17	-0.08
1.7	-1.52	-1.03	-0.79	-0.56	-0.45	-0.35	-0.23	-0.16	-0.07
1.5	-1.51	-1.01	-0.78	-0.55	-0.44	-0.34	-0.22	-0.15	-0.06
1.2	-1.48	-0.99	-0.75	-0.52	-0.41	-0.32	-0.20	-0.13	-0.04
1	-1.46	-0.96	-0.72	-0.50	-0.39	-0.29	-0.18	-0.11	-0.02

(b) $\alpha, r_p: r_{f1}$, with m = 0.4

	0.01	0.03	0.05	0.08	0.1	0.12	0.15	0.17	0.2
3	-1.45	-0.95	-0.71	-0.47	-0.34	-0.24	-0.10	-0.02	0.10
2.7	-1.44	-0.94	-0.70	-0.46	-0.33	-0.23	-0.09	-0.01	0.11
2.5	-1.44	-0.94	-0.69	-0.45	-0.33	-0.22	-0.08	0.00	0.11
2.2	-1.42	-0.92	-0.68	-0.44	-0.31	-0.21	-0.07	0.01	0.13
2	-1.42	-0.91	-0.67	-0.42	-0.30	-0.20	-0.06	0.02	0.14
1.7	-1.40	-0.89	-0.65	-0.40	-0.28	-0.17	-0.03	0.05	0.16
1.5	-1.38	-0.88	-0.63	-0.38	-0.26	-0.15	-0.01	0.07	0.18
1.2	-1.34	-0.84	-0.59	-0.34	-0.21	-0.11	0.03	0.11	0.21
1	-1.30	-0.79	-0.54	-0.29	-0.17	-0.06	0.07	0.14	0.24

(c) $\alpha, r_p : r_{f1}$, with m = 0.6

Table 2: Tabular data of $\log_{10}(F_1/P)$ for different values of parameters showed at bottom and growth arrest duration of three days. All other parameters were assigned as per **Tab. 1**