

Creating Models of Truss Structures with Optimization

Jeff Smith,
Jessica Hodgins, Irv Oppenheim
Carnegie Mellon University
Andrew Witkin
Pixar Animation Studios

Truss Structures

- Rigid beams
 - Axial forces only
- Pin-connected
 - Concentric joints
 - Welded or bolted
- Bridges, towers, exoskeletons

Why do we want a way to generate truss structures?

- Common
- Complex
 - Many joints and beams
- Time-consuming to build by hand

Our Approach

Use optimization to design truss structures to support user-specified loads

7 minutes, 275Mhz R10000 SGI Octane

How Do We Model Truss Structures?

- Mass is "lumped" at pin-joints
 - Structure much larger than beams
- Discrete external loads
 - Road surface, cars, utility wires, etc.
- Anchored to ground

User specifies:

Load locations

User specifies:

- Load locations
- Anchor locations

User specifies:

- Load locations
- Anchor locations

Code adds:

Pin-joints

User specifies:

- Load locations
- Anchor locations

Code adds:

- Pin-joints
- Beams connecting joints, anchors, and loads

User specifies:

- Load locations
- Anchor locations

Code adds:

- Pin-joints
- Beams connecting joints, anchors, and loads

2 minutes, 275Mhz R10000 Octane

Optimize to find best structure

Why Use Optimization?

- Truss designs are usually not dominated by aesthetic concerns
 - Utilitarian
 - Inexpensive (minimal mass)
- Beam and joint construction
 - Simple mathematical representation

Joints and Beams

Joints and Beams

Joints and Beams

Forces on a Pin-Joint

$$F_i = gm_i + a \frac{l_j}{|l_j|} l_j$$

For stability:

$$F_i = 0$$

```
F_i - Force on joint i
m_i - Mass of joint i
l_j - Vector of beam j
l_j - Force of beam j
```

Mass Functions

A joint's mass depends on:

- External loads
- The beams that connect to it

A beam's mass depends on:

- Length $|i_j|$
- Workless force it exerts / j
- Tension or compression

Beam Mass Functions

Under tension:

• $I_{j} < 0$

$$m_{j} = -k_{T} I_{j} \| l_{j} \|$$

- Length
- Area
 - Proportional to workless force

Beam Mass Functions

Under compression:

$$^{\bullet}I_{j}>0$$

- Euler buckling
 - Length
 - Area
 - "Radius of gyration"

Euler Buckling

Force limit:
$$I_{\text{max}} = \frac{p^2 E r^2 A}{\left\|l_j\right\|^2}$$

$$A^2 \mu \frac{I_{\text{max}} \left\|l_j\right\|^2}{p^2 E}$$

$$m_j = r A_j \left\|l_j\right\| = k_C \sqrt{I_j} \left\|l_j\right\|^2$$

$$\min G(I^r, P) = \sum_{i=1}^{N_f} m_i$$

Minimize mass

$$\min_{G(I', p) = a m_i} m_i$$

s.t. $F_i(I', p) = 0$ $i = 1...N_J$

Subject to force balance constraints

$$\min G(l', p) = \sum_{i=1}^{N_J} m_i$$
s.t.
$$F_i(l', p) = 0 \qquad i = 1...N_J$$

$$l_{\min} \pounds ||l_j|| \pounds l_{\max} \qquad j = 1...N_B$$

$$l_i \pounds l_{\max} \qquad i = 1...N_J$$

Subject to "realism" constraints

$$\min G(l', p) = \bigvee_{i=1}^{N_J} m_i$$

$$\operatorname{s.t.} F_i(l', p) = 0 \qquad i = 1...N_J$$

$$l_{\min} f \| l_j \| f l_{\max} \qquad j = 1...N_B$$

$$l_i f l_{\max} \qquad i = 1...N_J$$

Optimize with respect to:

- Workless forces:
- Positions of pin-joints

Optimization Method

Sequential Quadratic Programming:

- Fast and robust
- Handles:
 - Non-linear objective function
 - Non-linear constraints
- Local minima

Spherical Obstacle Constraints

Planar Constraints

3 minutes, 275Mhz R10000 Octane ~1.5 hours in Maya

3 minutes, 275Mhz R10000

Railroad Bridge

3 minutes, 275Mhz R10000 Octane

Eiffel Tower

15 minutes, 275Mhz

Limitations and Future Work

- Simple Objective Function
 - True cost of construction
- Simple mass functions
 - Better column formula
- Single set of loads
 - Multi-objective optimization

Future Work

Aesthetic criteria

- Symmetry
- Visual weight
- Geometric forms

15 minutes, 275Mhz