Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики Факультет программной инженерии и компьютерной техники

Вариант 55507

Выполнил: Беляков Дмитрий Группа: Р33122 Преподаватель: Харитонова А. Е.

Задание

- 1. Для указанной функции провести модульное тестирование разложения функции в степенной ряд. Выбрать достаточное тестовое покрытие.
- 2. Провести модульное тестирование указанного алгоритма. Для этого выбрать характерные точки внутри алгоритма, и для предложенных самостоятельно наборов исходных данных записать последовательность попадания в характерные точки. Сравнить последовательность попадания с эталонной.
- 3. Сформировать доменную модель для заданного текста. Разработать тестовое покрытие для данной доменной модели
 - 1. Функция соs(x)
 - 2. Программный модуль для обхода ориентированного графе методом поиска в ширину (http://www.cs.usfca.edu/~galles/visualization/BFS.html)
 - 3. Описание предметной области:

Лишь один человек стоял и смотрел в небо с грустью в глазах и с ватой в ушах. Он совершенно определенно знал, что происходит. Он узнал об этом, когда его суб-эфирный сенсор неожиданно замигал среди ночи и разбудил его. Он ждал этого момента долгие годы, но, расшифровав сигнал, сидя один в своей маленькой темной комнате, он похолодел, и сердце его сжалось. Почему из всех рас в Галактике, которые могли прийти и сказать "Привет!" планете Земля, подумал он, это должны были быть именно вогоны?

Код

Задание №1

градуса.

cos — периодичная, чётная функция. Для представлении её в рядах Тейлора, было выбрано разложение её в ряд Маклорена:

$$\cos x = \sum_{n=0}^{\infty} rac{(-1)^n x^{2n}}{(2n)!} = 1 - rac{x^2}{2!} + rac{x^4}{4!} - rac{x^6}{6!} + \dots$$

Следуя из выше перечисленных факторов, а также из указания Сергея Викторовича, что мы сами можем тут определять область действия нашей функции, аргумент может принимать значения $x \in [-2\pi; 2\pi]$ Тесты были проведены на границах значений Double, была протестирована точность (ниже нуля, равна нулю, обычная), а также основные значения косинуса + 23

180 degrees	passed	31 ms
270 degrees	passed	1 ms
360 degrees	passed	3 ms
Parity	passed	1 ms
23 degrees	passed	1 ms
Max double	passed	4 ms
Min double	passed	2 ms
a Min double value	passed	3 ms
The accuracy below zero	passed	4 ms
The accuracy zero	passed	3 ms
0 degrees	passed	1 ms
30 degrees	passed	1 ms
45 degrees		passed
60 degrees	passed	1 ms
90 degrees		passed

Задание №2

Для анализа алгоритма BFS было создано 2 графа, на которых протестировались различные контрольные точки: посещённые ноды алгоритмом и ноды, которые алгоритм должен был посетить теоретически. Также был протестирован случай, когда начальная и конечная нода не соединены.

UnconnectedNodes	passed	25 ms
Graph_0[1;7]	passed	2 ms
Graph_0[3;7]	passed	1 ms
Graph_1[4;1]	passed	1 ms
Graph_1[6;1]	passed	1 ms

Задание №3

Доменная модель

Основная задача для данного тестирования — проверить взаимодействия объектов, а также их состояния после наступления определённых событий. Основная линия в данной модели — изменение состояния Форда при получении сигнала.

Check Scan without Signal	passed	20 ms
Check existed signal with bad keys	passed	3 ms
Check existed signal with right keys	passed	2 ms
Test message right	passed	3 ms
Test ford status awaken	passed	1 ms
Test ford status worried	passed	1 ms

Вывод: в ходе данной лабораторной работы были изучены различные подходы к тестированию, проведено тестирование различных систем, а также понятие тестового сценария и тестового случая.