6 $p: \tilde{X} \to X$ oneo locale + propria => privest grado finito \tilde{X}, X var top connesse $p: \widetilde{X} \longrightarrow X$ propria \iff $\left(K \subset X \text{ compatto} \implies p^{-1}(K) \subset \widetilde{X} \text{ compatto}\right)$ \widetilde{X}, X var top $\Longrightarrow \widetilde{X}, X \cong \mathbb{R}^n \xrightarrow{\text{Borel}} \widetilde{X}, X$ localmente compatti Lemma (online "When is the image of a propor map chosed?"): $p: \widetilde{X} \longrightarrow X$ propria \mathcal{X}, X beat. compatti $\mathcal{X} = P$ chiusa p oneomorfismo locale => p continua + aperta => $p(\tilde{X}) \subseteq X$ aperto p aperta + chivsa \Rightarrow $p(\widetilde{X}) \subseteq X$ aperto + chivso $\int = p(\widetilde{X}) = X \Rightarrow p$ surjettiva X connesso \int P oneo locale $\stackrel{P}{=}> P^{-1}(x)$ topologia discreta $\stackrel{??}{=}$ $Sia x \in X$, $\{\tilde{x}_1,...,\tilde{x}_n\} = P^{-1}(x)$ X var top => X Hausdorff \Rightarrow $\exists \ \tilde{U}_1,...,\tilde{U}_n \ \text{aperti} \ | \ \tilde{U}_i \ni \tilde{x}_i \ \wedge \ \tilde{U}_i \cap \tilde{U}_j = \emptyset, \ i \neq j$ costringiamo \tilde{U} ; sino a che $p(\tilde{U}_i) \cong U_i \ni X$

 $U := (\bigcap_{i} U_{i}) \setminus p(C) \subseteq X$ aperto

$$p^{-1}(x) \in \bigcup_{i=1}^{n} \widetilde{U}_{i} \implies p^{-1}(x) \cap C = \emptyset$$

$$\implies x \notin p(C)$$

$$\implies x \in U \quad \text{intorno aperto } di \ x, \quad \forall x \in X$$

$$Generalizzando \quad p^{-1}(x) \implies p^{-1}(V) = \bigsqcup_{i=1}^{n} \widetilde{U}_{i}, \quad \widetilde{U}_{i} \stackrel{P}{=} V, \quad \forall i \in \{r, ..., n\}$$
siccone p suriettiva $\implies p$ rivestinento grado finito