Computer Communication Networks

Medium Access Control

Review

- Link layer
 - framing
 - error control
 - flow control
- How about you have more than one sender and one receiver share a link?

Medium access control

- Type of links
 - point-to-point link
 - e.g., PPP, switched Ethernet
 - broadcast link (shared medium)
 - e.g., traditional Ethernet, 802.11
 - collision by concurrent transmission
- Medium access
 - deterministic allocation: FDM/TDM/CDM
 - contention-based: ALOHA, CSMA, CSMA/CD

Aloha

• Pure Aloha: transmit, if collision, random back off

• Slotted Aloha: transmit in next slot, if collision, ...

Carrier sense multiple access

- p-persistent CSMA: if busy, wait; if idle, transmit w/p
- Non-persistent CSMA: if busy, back-off

CSMA/collision detection

- CSMA
- CD: if collision, abort! and back off
 - need: receiving while sending
 - minimal frame size

Ethernet

• Pervasive!

- speed: 10Mbps, 100Mbps, 1Gbps, 10Gbps
- medium: coaxial, twist-pair, fiber
- topology: bus, tree, star; range: LAN, MAN

Bytes	8	6	6	2	0-1500	0-46	4	
(a)	Preamble	Destination address	Source address	Туре	Data	Pad	Check- sum	DIX
))			
(b)	Preamble S F	1 Desiliation 1	Source address	Length	Data (Pad	Check- sum	802.3

Ethernet frame

- Destination/source addresses (6-byte each)
- Type (2-byte): e.g., 0x0800 (IP)
 - length in 802.3 frame with 802.2 LLC
- Data: 0~1500 bytes
- Pad: 0~46 bytes
 - minimal frame length
- CRC: 4-byte
- CSMA/CD with binary exponential backoff

Wireless LAN

- Very popular!
 - 802.11a: 5GHz, 54Mbps, 30ft
 - 802.11b: 2.4GHz, 11Mbps, 100ft
 - 802.11g: 2.4GHz, 54Mbps, 100ft
 - 802.11n: MIMO, 2.4GHz, 540Mbps
- Infrastructure mode
 - access point
- Ad-hoc mode

CSMA/CA

- CSMA
- CA: collision avoidance
 - if idle for DIFS, transmit
 - if busy, random backoff
 - count down when idle
 - transmit when count to 0
 - if no ack, collision or corruption
 - exponential backoff
 - CW: contention window

802.11 frame

- Frame control
- Duration: NAV (network allocation vector)
- Addresses: dst, src, receiving, transmitting

Layer 2 internetworking

How bridge works

· Objectives: plug-and-play

No hardware change, no software update, no setting of address, no downloading of routing tables or parameters.

·How

- 1. Each bridge connects with a number of LANs with a port connecting to a single LAN
- 2. Assume a packet is broadcasting in LAN1, bridge A needs to decide whether to forward it to its other ports, depending on the destination address. If the destination address in a hash table is in LAN1, no need; otherwise, forwards it.
- 3. Initially, the hash table is empty, then using flooding algorithm.
- 4. Anytime it hears a frame from a LAN, it adds the destination LAN for the source node, associated with the time. (backward learning).

Spanning tree

A tree of shortest paths

15

(b)

Architecture, again!

- Network architecture
 - services
 - protocols

-			
Application layer	Application gateway		
Transport layer	Transport gateway		
Network layer	Router		
Data link layer	Bridge, switch		
Physical layer	Repeater, hub		
	(a)		

Frame Packet TCP User header header header data CRC

(b)

Summary

- MAC
 - Ethernet
 - Aloha, slotted Aloha
 - CSMA, CSMA/CD
 - -802.11
 - CSMA/CA
 - RTS/CTS
 - internetworking
 - spanning tree

Some other algorithms

- Tree protocols
 - Collisions are resovled using divide-andconquer, collision resolution algorithm (CRA)
 - Assume:
 - Synchronous channel
 - Users are able to detect {idle, collision, success}
 - A user corresponds to a leaf of a binary tree.

Tree protocols (cont'd)

• Static tree algorithm

- Admission rule: newly arriving packets are admitted only after all the packets arrived during the previous collision resolution interval (CRI) are successfully transmitted
- Retransmission rule: When a collision occurs, try to divide the users involved in the collision into two groups and resolve the collision among one group of users at a time

Dynamic tree algorithm

 At each CRI, the level of initial node is adjusted based on the throughput and the length of the previous cycle