Lecture 12 – Clustering

Bulat Ibragimov

bulat@di.ku.dk

Department of Computer Science University of Copenhagen

UNIVERSITY OF COPENHAGEN

Clustering

- Unsupervised
 - Try to understand underlying structure of the data and nothing specific
- What sub-populations exist in the data?
 - How many clusters?
 - How big?
 - Outliers?

Clustering types

Goal

- Monothetic: looking for specific properties for cluster members
 - e. g. all people younger than 15 cluster of kids
- Polythetic: cluster members are similar to each other
 - We compute distance between elements for clustering

Overlap

- Hard clustering no overlap is allowed
- Soft clustering estimate "membership strength" for datapoints

Depth

- Flat
- Hierarchy

k-mean clustering

- Properties
 - Polythetic clustering
 - Data partitioned into k sub-populations (k must be specified)
 - Datapoints in sub-population are similar to its "centroid"
 - Clusters are hard
 - Clusters form flat structure

k-mean clustering

- Input: K, set of points $x_1, ..., x_n$
- Generate random $c_1, ..., c_k$ centroids
- Repeat:
 - Assign each x_i to the nearest centroid c_j argmin $D(x_i, c_j)$

Distance metric

• Selecting a suitable distance metric is paramount for success

Euclidian distance:

$$D(x,x') = \sqrt{\sum_{d} \left| x_d - x'_d \right|^2}$$

Manhattan distance:

$$D(x, x') = \sum_{d} |x_d - x'_d|$$

Logical distance (categorical attributes):

$$D(x,x') = \sum_{d} 1_{x_d \neq x'_d}$$

Distance metric

• The Euclidian distance works well most of the times:

Distance metric

- Let's compare these two examples.
- Is the left one worse than the right one?

Distance metric: Pearson correlation coefficient

- We can put stress on matching patterns in features but not the actual values.
- Do features go "up" and "down" together for two data

Distance metric: Pearson correlation coefficient

 We're shifting the expression profiles down (subtracting the means) and scaling by the standard deviations (i.e., making the data have mean = 0 and std = 1)

$$\rho(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$

Distance metric: Pearson correlation coefficient

- Pearson linear correlation (PLC) is a measure that is invariant to scaling and shifting (vertically) of the expression values
- Always between -1 and +1 (perfectly anti-correlated and perfectly correlated)
- This is a similarity measure, but we can easily make it into a dissimilarity measure:

$$d_p = \frac{1 - \rho(\mathbf{X}, \mathbf{y})}{2}$$

Distance metric: Complex examples

- More sophisticated metrics may be needed to capture more complex relationships between samples
- Hopefully, it is very unlikely

Distance metric: Missing values

- What if some values are missed in the data?
- We can simply ignore a feature, if its value is missed in one sample
- We can train regressors to reconstruct missing feature values
- If we miss a categorical feature, we can duplicate the sample with all possible feature values, cluster them and average the clustering result

k-mean clustering: visualization

k-mean clustering

- Solution:
 - Minimized intra-cluster distance $\sum_{j} \sum_{x_i \in c_j} D(c_j, x_i)^2$
 - Converges to local minimum.
 - Different seed centroids -> different results
 - Run several times and select solution with lowest cost, i.e. intracluster distance
 - Nearby points may be assigned to different clusters

k-mean clustering: optimal k

- How many cluster are in the data:
 - Prior knowledge, e.g. for clustering of digits k=10
 - Try different Ks
 - Record the behavior of cost function

What is the problem with this idea?

- The cost will always go down. The optimal k = n.
- Elbow method

k-mean clustering: silhouette score

- Intra-cluster distance $x \in c_i$:
 - $a(x) = \frac{1}{|c_i|-1} \sum_{y \in c_i} D(x, y)$
- Inter-cluster distance $x \in c_i$:

•
$$b(\mathbf{x}) = \min_{i \neq j} \frac{1}{|c_i|} \sum_{\mathbf{z} \in c_i} \mathbf{D}(\mathbf{x}, \mathbf{z})$$

Silhouette:

•
$$s(\mathbf{x}) = \begin{cases} 1 - a(\mathbf{x})/b(\mathbf{x}) & \text{if } a(\mathbf{x}) < b(\mathbf{x}) \\ 0 & \text{if } a(\mathbf{x}) = b(\mathbf{x}), \text{ or } |\mathbf{c}_i| = 1 \\ b(\mathbf{x})/a(\mathbf{x}) - 1 & \text{if } a(\mathbf{x}) > b(\mathbf{x}) \end{cases}$$

• Score = $\max_{x} s(x)$

Hierarchical clustering

- Selecting k is difficult, even for a human
- Alternative is to create hierarchy of clusters:
 - Top-down approach: start with one cluster, and recursively split clusters
 - Bottom-up approach: start with individual datapoints, iteratively merge by some criterion

Hierarchical k-means

- Top-down approach
- Select a relatively low k, e.g. 2.
- Run k-mean clustering on original data $x_1, ..., x_n$
- For each of the resulting clusters c_i : i = 1, ..., k:
 - Recursively run k-means on centroids in c_i

 There is still a problem of close points being assigned to different clusters

Agglomerative clustering

- Bottom-up approach
- Start with a collection C of n single-datapoint clusters
 - Each cluster contains one single point: $c_i = \{x_i\}$
- Repeat until only one cluster left:
 - Find a pair of clusters that is closest using some **distance** metric
 - Merge clusters c_i , c_i into a new cluster c_r
 - Remove c_i , c_j from the collection C, add c_r
- Slow: $O(n^2d + n^3)$, because need to recompute distance matrices multiple times
- There is still a problem of close points being assigned to different clusters

Agglomerative clustering: example

Agglomerative clustering: example

What kind of distance metrics are possible?

Maximum distance (complete-linkage):

$$D = \max\{d(a, b): a \in c_i, b \in c_i\}$$

Tends to produce very tight clusters

What kind of distance metrics are possible?

Minimum distance (single-linkage):

$$D = \min\{d(a, b): a \in c_i, b \in c_i\}$$

• Tends to produce long, "loose" clusters

What kind of distance metrics are possible?

Average linkage distance:

$$D = \frac{1}{|c_i||c_j|} \sum_{a \in c_i} \sum_{b \in c_j} d(a, b)$$

Tends to produce tight clusters

26

Agglomerative clustering: distance metric

What kind of distance metrics are possible?

Centroid distance metric:

$$D = \left\| \bar{c}_i - \bar{c}_j \right\|$$

What kind of distance metrics are possible?

Centroid distance metric:

$$D = \left\| \bar{c}_i - \bar{c}_j \right\|$$

28

Agglomerative clustering: distance metric

What kind of distance metrics are possible?

Minimum energy distance:

$$D = \frac{2}{|c_i||c_j|} \sum_{a \in c_i} \sum_{b \in c_j} d(a,b) - \frac{1}{|c_i|^2} \sum_{a \in c_i} \sum_{a' \in c_i} d(a,a') - \frac{1}{|c_j|^2} \sum_{b \in c_j} \sum_{b' \in c_j} d(b,b')$$

Minimal energy distance: example

Minimal energy distance:

$$D = \frac{2}{|c_i||c_j|} \sum_{a \in c_i} \sum_{b \in c_j} d(a,b) - \frac{1}{|c_i|^2} \sum_{a \in c_i} \sum_{a' \in c_i} d(a,a') - \frac{1}{|c_j|^2} \sum_{b \in c_j} \sum_{b' \in c_j} d(b,b')$$

- Let's define:
 - d(a, a') = 1, d(b, b') = 1, d(a, b) = 3
- Scenario $|c_i| = 3$, $|c_j| = 3$:

$$D = \frac{2}{3 \cdot 3} \cdot 9 \cdot 2 - \frac{1}{3^2} \cdot 6 \cdot 1 - \frac{1}{3^2} \cdot 6 \cdot 1 = 4 - \frac{2}{3} - \frac{2}{3} = \frac{8}{3}$$

• Scenario $|c_i| = 3$, $|c_i| = 1$:

$$D = \frac{2}{3 \cdot 1} \cdot 3 \cdot 2 - \frac{1}{3^2} \cdot 6 \cdot 1 - \frac{1}{1^2} \cdot 1 \cdot 1 = 4 - \frac{2}{3} - 1 = \frac{7}{3}$$

• Scenario $|c_i| = 1$, $|c_j| = 1$:

$$D = \frac{2}{1 \cdot 1} \cdot 1 \cdot 2 - \frac{1}{1^2} \cdot 1 \cdot 1 - \frac{1}{1^2} \cdot 1 \cdot 1 = 4 - 1 - 1 = \frac{6}{3}$$

Clustering: summary

- Clustering discover underlying sub-populations in the data
- K-means:
 - Fast, iterative. Leads to a local minimum
 - K is the key parameter of the algorithm
- Hierarchical clustering:
 - Top-down k-means clustering
 - Fast, iterative
 - Bottom-up approach. Agglomerative clustering
 - Slow, iterative
 - Requires specific distance metric

Questions?