Exploration of Cryptography

Whitfield Diffie

Distinguished Visiting Professor Zhejiang University

30 November 2020

Class 02 Basic Notions of Cryptography

Cryptography

Protection of data by transformations that turn useful and comprehensible plaintext into scrambled and meaningless ciphertext under control of secret keys.

What Drives Cryptography?

Like every other field of engineering, cryptography responds to the requirements by using the available tools, driven by the imaginations of its practitioners.

Cryptography Guarantees Confidentiality

- Only authorized receivers who know secret keys can decrypt
- Eavesdropper may intercept message, but cannot understand it.

Cryptography Guarantees Authenticity

- Message sent by Intruder will decrypt to nonsense.
- Intruder may inject messages, but cannot 'get them accepted.'

Cryptographic System

Plain \longrightarrow Cipher Text $\{\mathcal{S}_k\}_{\{k\}\in\mathcal{K}}$ Space

Representation of a Cipher

FIG. 1 REPRESENTATION OF A CIPHER

Representation of Encryption

Unkeyed map from plaintexts to plaintext representations.

Keyed map from plaintext representations to ciphertext representations.

Unkeyed map ciphertext representations to ciphertext.

Plaintext

Information In Usable and Comprehensible Form

(Definition by intention.)

Examples of Plaintext

- Written human language
- Spoken Language
- Accounting Legers
- Seismic Data

Examples of Plaintext (Cont'd)

- Computer program
- Formal commands (EFT, C²)
- Somebody else's ciphertext

Representations of Plaintext

- Messages drawn from a fixed set
- Fixed length strings over an alphabet
- Finite length strings ...

Characteristics of Plaintext

- Message (e.g., letter) frequencies
- Pair and triple frequencies
- Contact characteristics
- Gramatical restrictions

Ciphertext

Information in Useless Scrambled Form

(Definition by intention.)

Characteristics of Ciphertext

Unpredictable (random) at some level.

Scrambled and Useless

- Unreadable
- 'Destroyed' by Alteration
- Looks Like Random Noise

Substitution

Permutation of the space of plaintexts.

Full Substitution

Plaintext space, or message space, or alphabet: M of n elements.

 $k: M \mapsto M$ invertible

Number of keys = (Card(M))!where each $k \in S_{Card(M)}$.

Examples of Full Substitution

 Monoalphabetic substitution on Roman (or ASCII, etc.) alphabet: S-box.

$$k: \{A, \ldots, Z\} \mapsto \{A, \ldots, Z\}$$

(Induces function on Roman-alphabet text.) each $k \in S_{26}$.

Examples of Full Substitution (cont'd)

Prearranged message code

sell short TXDNL

go public PULID

fire CEO HADOS

file Chap. 11 AMBIT

. . .

Examples of Full Substitution (cont'd)

- Substitution on letters
- Substitution on words
- Substitution on phrases
- Substitution on Sentences

Maximal and Minimal Substitutions

Minimal Substitution: The Cyclic Shifts

Let: $a \rightarrow 0, b \rightarrow 1, \dots$ and let

 $k \in \{0, ..., 25\} \text{ map } \ell \mapsto \ell + k.$

Full or Maximal Substitution

For any set $\{p \ 1, \dots, p \ n\}$ of plaintexts and any set of ciphertexts

 $\{c \ 1, \ldots, c \ n\}$ there is a key such that

$$k(p \ i) = c \ i.$$

Transposition

Permute Elements of Message

whatisinitforme

hmiitsiotwrneaf

Identification Friend or Foe

Mark XII IFF

Challenger Responder

32-bit Random 32 bits in

Encrypt Locally 4 bits out

compare

General Systems and Specific Keys

- Cryptographic Systems
 - Standardized and Public

- Cryptographic Keys
 - Unique and Secret

Like Physical Locks and Keys

Cryptographic Systems

Standardized

Economy of Scale

• In Principle Public

Cryptographic Keys

Very Large Supply

Each Key Unique

Must Be Kept Secret

All Secrecy Resides In Key

Primary and Secondary Keys

The primary key is the one changed most frequently, perhaps with every message.

The secondary key is changed less frequently, perhaps every day, week, or month.

Cryptanalysis

Produce Plaintext from Ciphertext (Analytic)

or

Produce Ciphertext from Plaintext (Synthetic)

(Without Prior Knowledge of the Key)

Analytic Cryptanalysis

Analytic Cryptanalysis

 Extract Information from Cryptograms

Violates Confidentiality

Better Known Problem

Synthetic Cryptanalysis Synthetic Cryptanalysis

Create False Messages

Violates Authenticity

Harder Problem

Analytic vs. Synthetic Cryptanalysis

Synthetic crypta can be much harder than analytic.

Rolling Code Speech Scrambler

Filter Speech into multiple bands.

Rearange the Bands.

 Change Rearangement several times a second.

Food for Thought

Can synthetic ever be easier than analytic?

Applications of Cryptanalysis

Entertainment

Production of Intelligence

Certification of Systems

Cryptanalytic Circumstances

Cryptanalyst is Always Presumed to Know the General System

Matter of Definition

Sound Security Practice

Types of Attack

Ciphertext Only

Known Plaintext

Chosen Plaintext

Ciphertext Only

Statistics of Language

• Probable Words

Known Plaintext

Common Words and Phrases

Previously Secret Material

Good Certification Assumption

Chosen Plaintext

Best certification assumption

• Either plain or ciphertext

Can be interactive

Oneway Functions

Easy to Compute Forward

Hard to Go Back

Easy to Raise Numbers to Powers

$$x \to x^7$$

Hard to Extract Roots

$$x \to 7\sqrt{x}$$

Easy to Multiply

 $127 \times 997 = 126,619$

Hard to Factor

126,619

Public Key Cryptography

- Keys Come In Inverse Pairs
- Given One Can't Find the
 Other

Fundamental Property

- Public Key
 - In telephone directory

- Secret Key
 - In subscriber's safe(or cryptoequipment)

Solves Both Problems

Key Distribution: Encrypt With Public Key

Digital Signature: Encrypt With Secret Key

Signed and Sealed Message Sealed

Receiver

$$\left\{\{message\}^{ ext{Private Key}}, SenderID
ight\}^{ ext{Public Key}}$$

Signed

Information Theory

• Information resolves uncertainty

Perfect secrecy

Ideal secrecy

Finite Automaton

A finite automaton consists of a set of states S, a set of inputs I, a set of outputs O, and a distinguished starting state S_0 , together with two rules: a change of state map:

$$CS:I\times S\mapsto S$$

and an output map:

Finite Automaton (Cont'd)

$$Out: S \mapsto O$$

Moore

or

$$Out: S \times O \mapsto O$$

Mealy

