

Università degli Studi di Genova

Fondamenti dell'Elaborazione di Segnali e Immagini

Lorenzo Vaccarecci

Indice

1	Intr	coduzione 3
	1.1	Segnali 1D e 2D
		1.1.1 Segnali 1D
		1.1.2 Segnali 2D
	1.2	Segnali a tempo continuo o discreto
		1.2.1 Segnali a tempo continuo
		1.2.2 Segnali a tempo discreto
	1.3	Segnali a valori continui o discreti
		1.3.1 Segnali a valori continui
		1.3.2 Segnali a valori discreti
	1.4	Analogico e digitale
	1.5	Campionamento
		1.5.1 Frequenza ideale di campionamento
	1.6	Quantizzazione
	1.7	Riepilogo digitalizzazione
	1.8	Ripasso: trasformazioni di segnali (1D)
		1.8.1 Traslazione
		1.8.2 Scalatura
		1.8.3 Segnali "notevoli"
		1.8.4 Treno di impulsi equispaziati
•	т ,	
2		trasformata di Fourier 9
	2.1	Introduzione
	2.2	Matematicamente
	0.0	2.2.1 Trasformata di Fourier Discreta
	2.3	Conclusione
	2.4	Approfondimento
		2.4.1 Proprietà
		2.4.2 FT di segnali a valori reali
		2.4.3 Coppie "famose"
3	Filt	raggio delle frequenze (segnali 1D)
•	3.1	Introduzione
	3.2	Filtrare nel dominio delle frequenze
		3.2.1 Schema
		3.2.2 Filtro ideale
		3.2.3 Filtro Gaussiano
		3.2.4 Filtro Butterworth
	3.3	Rumore
	3.4	Filtraggio nel tempo

3.4.1	Convoluzione	14
3.4.2	Teorema di convoluzione	14
3.4.3	Applicazioni tipiche	15
3.4.4	Convoluzione discreta	15
3.4.5	Filtri di enhancement e differenze finite	15

Capitolo 1

Introduzione

1.1 Segnali 1D e 2D

1.1.1 Segnali 1D

Un segnale 1D descrive una grandezza fisica che varia nel tempo, e può essere visto come una funzione di una variabile indipendente:

$$g = f(t)$$

dove g è il valore della grandezza fisica (variabile **dipendente**), f è la funzione (continua o discreta) e t è la variabile indipendente.

Esempi di segnali 1D sono:

- Segnali audio: come ad esempio la musica o il parlato.
- Segnali ECG
- Segnali EEG
- Sensori inerziali
- •

1.1.2 Segnali 2D

Un segnale 2D descrive una grandezza fisica che varia nello spazio, e può essere visto come una funzione di due variabili indipendenti.

Esempi di segnali 2D sono:

- Immagini: utilizzeremo questo termine per indicare una foto a colori o a scala di grigi (ci concentreremo su queste).
- Immagini biomediche: come ad esempio le radiografie, le ecografie oppure quelle di una risonanza.
- Immagini termiche
- Immagini satellitari
- Immagini microscopiche
- ...

Ciò che hanno in comunque tutte queste immagini è che hanno una matrice di pixel che rappresenta qualcosa, nel nostro caso ogni pixel rappresenta l'intensità luminosa nella posizione (r, c) della matrice.

1.2 Segnali a tempo continuo o discreto

$$g = f(t)$$

1.2.1 Segnali a tempo continuo

Nei segnali a tempo continuo t assume valori reali

Figura 1.1: Posso conoscere il valore del segnale in ogni istante di tempo

1.2.2 Segnali a tempo discreto

Nei segnali a tempo discreto t assume valori in un sottoinsieme discreto dei numeri reali, come risultato di un'operazione chiamata **campionamento**.

Figura 1.2: Posso conoscere il valore del segnale in certi istanti di tempo

1.3 Segnali a valori continui o discreti

1.3.1 Segnali a valori continui

Nei segnali a valori continui g assume valori reali.

1.3.2 Segnali a valori discreti

Nei segnali a valori discreti g assume valori in un sottoinsieme discreto dei numeri reali, come risultato di un'operazione chiamata **quantizzazione**.

Figura 1.3: In rosso i valori discreti di g

1.4 Analogico e digitale

- Segnali analogici: sono continui sia nel tempo che nei valori.
- Segnali digitali: sono discreti sia nel tempo che nei valori.

Figura 1.4: Segnale analogico in blu e segnale digitale in rosso

1.5 Campionamento

$$v_s = \frac{1}{\tau}$$

Dove v_s è la frequenza di campionamento e τ è l'ampiezza dell'intervallo di campionamento. Ovviamente se τ si avvicina a 0 allora il grafico risultante $f(n\tau)$ sarà più preciso (e vicino a quello continuo) ma userà più risorse per memorizzare i dati.

1.5.1 Frequenza ideale di campionamento

Bisogna stare attenti a non campionare a frequenze troppo basse, altrimenti si incorre nel fenomeno chiamato **punto di rottura** ossia il grafico risultante apparirà diverso da quello originale.

Come possiamo vedere dalla figura l'ultimo grafico risulta essere diverso da quello azzurro (originale), questo perché la frequenza di campionamento non è sufficientemente alta in questo caso si è verificato un punto di rottura.

1.6 Quantizzazione

Partendo da una funzione $f(n\tau)$ quantizziamo i valori associando ad ogni valore x il valore numerico xk che è più vicino ad x.

1.7 Riepilogo digitalizzazione

1.8 Ripasso: trasformazioni di segnali (1D)

1.8.1 Traslazione

$$f(t-t_0)$$

1.8.2 Scalatura

$$f(\alpha t)$$

• $\alpha > 1$: compressione

• $0 < \alpha < 1$: rilassamento

1.8.3 Segnali "notevoli"

• Segnale rettangolare:

$$f(t) = \begin{cases} 1 & |t| < \frac{1}{2} \\ 0 & |t| > \frac{1}{2} \end{cases}$$

• Segnale gradino:

$$f(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}$$

• Segnale impulsivo (o delta di Dirac):

$$\delta(t) = \begin{cases} \infty & t = 0\\ 0 & t \neq 0 \end{cases}$$

1.8.4 Treno di impulsi equispaziati

$$\delta_r(t) = \sum_{n = -\infty}^{+\infty} \delta(t - n\tau)$$

Campionamento

Moltiplichiamo il segnale f(t) per il treno di impulsi equispaziati e otteniamo:

$$f_s(t) = f(t) \cdot \delta_r(t) = \sum_{n=-\infty}^{+\infty} f(n\tau)\delta(t-n\tau)$$

8

Capitolo 2

La trasformata di Fourier

2.1 Introduzione

Le funzioni continue e periodiche possono essere rappresentate come somme (pesate) di seni e coseni e grazie alla serie di Fourier possiamo ottenere una rappresentazione alternativa del segnale periodico e uno strumento utile per approssimarlo (con compressione e riduzione del rumore).

Perchè Fourier? Per capire meglio il segnale.

Figura 2.1: A sinistra il segnale originale, a destra la sua rappresentazione come somma di una sinusoide e una cosinusoide

Una funzione continua e periodica può essere descritta attraverso una serie di sinusoidi e possiamo considerare una rappresentazione alternativa del segnale l'insieme dei coefficienti (pesi) dei sinusoidi.

Immagine qui

2.2 Matematicamente

Consideriamo una funzione f(t) continua e periodica di periodo τ

$$f(t) = a_0 + \sum_{k=1}^{+\infty} \left(a_k \cos\left(\frac{2\pi kt}{\tau}\right) + b_k \sin\left(\frac{2\pi kt}{\tau}\right) \right)$$

Dove a e b sono i coefficienti.

Riscriviamo applicando la formula di Eulero $e^{j\theta} = \cos(\theta) + j\sin(\theta)$ dove $j = \sqrt{-1}$ immaginario:

$$f(t) = \sum_{k=-\infty}^{+\infty} c_k e^{j\frac{2\pi kt}{\tau}}$$

$$c_k = \frac{1}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} f(t) e^{-j\frac{2\pi kt}{\tau}} dt$$

2.2.1 Trasformata di Fourier Discreta

N.B.: f(t) funzione continua, f[n] funzione discreta.

$$f[n] = \sum_{k=0}^{N-1} F[k] e^{j\frac{2\pi kn}{N}}$$

Dove $F[x] \equiv c_k$. La sommatoria è finita perchè nel caso di funzione discreta non mi occorrono infiniti sinusoidi per ricostruire tutti i dettagli.

Data una funzione discreta e finita f[n] con N campioni, la sua **DFT** è

$$F(k) = \sum_{n=0}^{N-1} f[n]e^{-j\frac{2\pi kn}{N}}$$

2.3 Conclusione

Nonostante la definizione di DFT appena fornita sia calcolabile $(O(n^2))$, esistono algoritmi per calcolare la DFT in modo efficiente $(O(n \log_2 n))$, menzoniamo la Fast Fourier Transform (FFT).

2.4 Approfondimento

Trasformata di Fourier di una funzione f(t):

$$F(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-j2\pi\omega t}dt$$

E l'inversa:

$$f(t) = \int_{-\infty}^{+\infty} F(\omega) e^{j2\pi\omega t} d\omega$$

2.4.1 Proprietà

Linearità

Se h(t) = af(t) + bg(t) con $a, b \in \mathbb{C}$ allora:

$$H(\omega) = aF(\omega) + bG(\omega)$$

Traslazione nel tempo

Se $h(t) = f(t - t_0)$ allora:

$$H(\omega) = e^{-i2\pi t_0 \omega} F(\omega)$$

Modulazione - Shift in frequenza

Se $h(t) = e^{i2\pi\omega_0 t} f(t)$ allora:

$$H(\omega) = F(\omega - \omega_0)$$

2.4.2 FT di segnali a valori reali

La FT di un segnale a valori reali ha una simmetria speciale:

- La parte reale è simmetica pari (f(x) = f(-x), rispetto all'asse y)
- La parte immaginaria è simmetrica dispari (f(x) = -f(-x), rispetto all'origine)

2.4.3 Coppie "famose"

Rettangolo

Nell'intervallo W:

$$F(\omega) = \int_{-\frac{W}{2}}^{\frac{W}{2}} A e^{-2\pi j\omega t} dt = \dots = AW \frac{\sin(\pi \omega W)}{\pi \omega W}$$

Funzione SINC.

Impulso

$$F(\omega) = \int_{-\infty}^{+\infty} \delta(t)e^{-2\pi j\omega t}dt = 1$$

Perchè $\delta(t) \neq 0$ se e solo se t = 0.

Impulso centrato in t_0

$$F(\omega) = \int_{-\infty}^{+\infty} \delta(t - t_0) e^{-2\pi j\omega t} dt = \cos(-2\pi j\omega t_0) - j\sin(-2\pi j\omega t_0) = e^{-2\pi j\omega t_0}$$

Capitolo 3

Filtraggio delle frequenze (segnali 1D)

3.1 Introduzione

Un filtro è una funzione che lascia passare alcune componenti del segnale e ne elimina altre. Nel dominio delle frequenze possiamo parlare di:

- Filtri passa basso: lasciano passare le basse frequenze eliminando le alte.
- Filtri passa alto: lasciano passare le alte frequenze eliminando le basse.
- Filtri passa banda: lasciano passare le frequenze comprese traa due valori.

3.2 Filtrare nel dominio delle frequenze

Filtrare un segnale corrisponde a moltiplicare un filtro H con la Trasformata di Fourier del segnale f

$$F_{\rm filt}(\omega) = H(\omega)F(\omega)$$

3.2.1 Schema

3.2.2 Filtro ideale

Un sistema che annulla "perfettamente" le armoniche in determinati intervalli di frequenza si chiama filtro ideale.

Esempio filtro passa basso

$$H(\omega) = \begin{cases} A & |\omega| < \omega_c \\ 0 & \text{altrimenti} \end{cases}$$

 ω_c rappresenta a quale frequenza io voglio tagliare.

Il primo grafico è $H(\omega)$, il secondo è $F(\omega)$ e il terzo è $F_{\rm filt}(\omega)$.

3.2.3 Filtro Gaussiano

Nel tempo:

$$g(t) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}}$$

Nelle frequenze:

$$G(\omega) = e^{-\frac{\omega^2}{2\sigma_f^2}}$$
$$\sigma_f = \frac{1}{2\pi\sigma}$$

Non produce un taglio "netto" delle frequenze indesiderate, più σ è grande più il taglia. Ricordo: $\sum_t g(t)=1$

3.2.4 Filtro Butterworth

E' un filtro "liscio" ma con un cut-off più deciso

$$|H(\omega)| = \frac{1}{|B_N(i\frac{\omega}{\omega_c})|} = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^{2N}}}$$

Più l'ordine N è alto, più il cut-off $\left(\frac{\omega}{\omega_c}\right)$ è deciso.

3.3 Rumore

La riduzione del rumore avviene tramite filtraggio, di solito passa-alto.

3.4 Filtraggio nel tempo

3.4.1 Convoluzione

Consideriamo due funzioni continue f(t) e g(t), la loro convoluzione è definita come:

$$(f * g)(t) = \int_{-\infty}^{+\infty} f(\tau)g(t - \tau)d\tau$$

Dove la funzione f è il filtro e t è il tempo desiderato. La convoluzione è commutativa: f*g=g*f.

3.4.2 Teorema di convoluzione

$$f(t) * h(t) \iff F(\omega)H(\omega)$$

 $f(t)h(t) \iff F(\omega) * H(\omega)$

In altre parole:

$$f(t)*h(t) = f_{\mathrm{filt}}(t) \quad F(\omega)H(\omega) = F_{\mathrm{filt}}(t)$$

3.4.3 Applicazioni tipiche

- Ridurre il rumore (filtri passa basso, nel tempo li chiamiamo filtri di smoothing)
- Mettere in evidenza punti di cambiamento "rapido" del segnale (filtri passa alto, nel tempo li chiamiamo filtri di enhancement)

3.4.4 Convoluzione discreta

Con Npunti nell'intervallo $[0,T] \to g[n],$ consideriamo un filtro f[n]

$$(f * g)[n] = \sum_{k=0}^{N-1} f[k]g[n-k] = \sum_{k=0}^{N-1} f[n-k]g[k]$$

Una pratica comune nel filtraggio digitale è quella di realizzare filtri di ampiezza finita W (quello che ci interessa studiare) da utilizzare come maschere nell'operazione di filtraggio.

3.4.5 Filtri di enhancement e differenze finite

In matematica discreta le differenze finite sono definite come

$$f'(x) = \frac{f(x+h) - f(x)}{h}$$

Solitamente h = 1.

