	3.6 - independent sets & events	
	independence - "unaffected by previous events" - M(ANB) = N(A) N(B)	
	Proposition - A ind. B => A ind. BC	
	Ex- sequence of A, Az, An	
	if Bk= Ak or Ack, then B1, B2, Bn are all independent	
	- churging one set to complement doesn't affect independence of multiple sets.	
		_
	3.7	
	Raudom results still exhibit order sometimes - coinflip example	_
	"higher degrees of order" events take larger to observe	_
	A Just because temporary order is observed does not mean there is order in the underlying process	_
	=> Apply to binary expansions	
	Jenna 3,15-pg. 127;	_
	The set of all binary digits of a sequence $d(x)$ is a subinterval of $l(0,1)$ of length 2^{-r} .	_
		_
	Proposition 3,17:	_
	Let O_1 , O_2 , O_3 be a finite sequence of O_3 and O_4 .	_
	Let D be the set of all $x \in [0,1)$ s.t. the sequence above does not occur in the binary expansion of x ,	_
_) has measure zero.	_
	The Recurrence Theorem - there is a subset $Z = \{0,1\}$ w/ measure zero and the following property:	_
	if $x \in \mathbb{Z}$, every finite sequence of 0s and 1s occurs in the Lineary digit sequence of x .	_
	Avg. # of complips until heads = \(\frac{1}{2} n \cdot \frac{1}{2} = 2 \); mean =	_
	3.8 Rademacher Functions	
	Radenacher - $r_n(x)$ $\begin{cases} -1 & \text{if } x \in \left[\frac{k-1}{2^n}, \frac{k}{2^n}\right) \text{ and } k \text{ is odd} \end{cases}$ $\chi \in \left[\frac{k-1}{2^n}, \frac{k}{2^n}\right) \text{ and } k \text{ is even.} \end{cases}$	_
	i.e. only for -1 depending on the Sinary digit (2d, -1)	
	Like a binary suntch - O or). Behaves like cointlip when you sample randomly from X.	_
	$\int r = 0$, integral of a radonalor is zero	

(Alternate between -1 and) along on interval of length 2"	
almost every number between [0,1), excluding a small measure zero set, has the same number of Os and	lls in its binay expansion.
Property - integral of the products of distinct Rademacher functions is zero. — very strong	
3.9 randomness, law of averages	
Borel's Theorem - $\frac{S_n(x)}{2} = \frac{1}{2}$ for all $x \in [0, 1)$ except for some small measure zero set.	
- i.e. a brost all numbers in [0,1) have an equal number of 0 and 1 in binary expansion.	
"Normal Numbers"	
Proof was way too long.	
3.10 - Dynamical Systems Approach	
$\mathcal{L}(x)$ $\int 2x$ $0 \le x < \frac{1}{2}$	
$f(x) \int 2x 0 \le x < \frac{1}{2}$ $2x-1 \frac{1}{2} \le x < 1$	
Shifts binary representation of x leftward, and discards integer part.	
\Rightarrow if we apply f repeatedly fo x , half of the time its orbit will be in $[0,\frac{1}{2}]$ and other	half in $\left(\frac{1}{2},1\right)$.
Behones similarly to the left shift operator	
Structural equivalence between the dynamical system ([0,1), f) and the system of biling se	equerces (Z ₂ , 2)
i.e. studying the action of f on real numbers = studying how kiving sequences one shift	
Proof of countability:	
Why is Q measure zer? inferrum - "greatest lower bound" like a minimum.	
define of measure (n) : in f $\begin{cases} \sum_{j=1}^{\infty} \mathcal{L}(\mathbb{T}_{\bar{j}}) A \subseteq \bigcup_{j=1}^{\infty} \mathbb{T}_{\bar{j}} \end{cases}$	
Cx. (a, b) - no minimum value, since you can get as close as you want to a	
Add up the legatis of all intervals:	
Consider a b, c on a number line. $I_{1,2,3}$ of legth $\frac{\epsilon}{3}$, $\epsilon > 0$	
\Rightarrow the length of all $I_{1\rightarrow 3}$ is $\leq \epsilon$.	
$\Rightarrow \text{ the neason of length } \alpha, b, c \leq \mathcal{E}. \text{ But } \mathcal{E} \text{ can be any number, so measure } (a, b, c) = C$	
(a;) je N = {a, az, az, az, a, } - ordered set, can sum since countribly infinite	

