ЛИПЕЦКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА ТРАНСПОРТНЫХ СРЕДСТВ И ТЕХНОСФЕРНОЙ БЕЗОПАСНОСТИ

РАСЧЁТНОЕ ЗАДАНИЕ

«Оценка параметров опасных и вредных факторов кухонного помещения жилого дома»

по дисциплине «Безопасность жизнедеятельности»

Выполнил: студент группы АИ-19

Улисков Н.В.

Принял: старший преподаватель Бочарникова О.А.

Оглавление

Содержание
Задание
Раздел 1. Определение требуемых параметров микроклимата
Раздел 2. Оценка воздухообмене
Раздел 3. Оценка освещения от естественного освещения
Раздел 4. Оценка освещения от искусственного освещения
Раздел 5. Оценка шума
Библиографический список

Задание кафедры

Постановка задачи выглядит следующим образом: произвести расчет опасных и вредных факторов кухонного помещения многоквартирного дома. Облик кухни, её размеры и площадь, высота от пола до потолка, высота от пола до низа окна и остальные архитектурные параметры выбираются студентами в зависимости от его места проживания.

Цель работы

Произвести оценку параметров опасных и вредных производственных факторов кухонного помещения жилого дома.

Рисунок 1 - План кухонного помещения (начертить свой план кухни с размерами длины, высоты и ширины)

Раздел 1. Определение требуемых параметров микроклимата <u>Исходные данные:</u> температура воздуха t=20°C, относительная влажность воздуха 50 %, подвижность воздуха 0,4 м/с, период года – теплый. Характер труда хозяйки в кухонном помещении – работа производится стоя, с ходьбой и переносом груза 1-10 кг. Напряженность труда – умеренное.

В соответствие с пунктом 5 приложения 1 СанПиН 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений» категория работ домохозяйки Пб.

В таком случае в соответствии с таблицей 1 СанПиН 2.2.4.548-96 оптимальные параметры микроклимата для категории работ Пб будут иметь следующий вид:

Период года	Категория	Температура	Относительная	Скорость
	работ по	воздуха, ^о С	влажность, %	движения
	уровню			воздуха, м/с
	энергозатрат,			
	Вт			
Теплый	IIб	19-21	60-40	0,2

Вывод: установлено, что труд домохозяйки относится к категории работ <u>Пб</u> и параметры микроклимата в кухонном помещении являются для него оптимальными.

Раздел 2. Оценка воздухообмена

<u>Исходные данные</u>: размеры помещения, как следует из рисунка $1 \times h \times b$ м. Коэффициент воздухообмена по заданию преподавателя k = 8. В кухонном помещении сгорает природный газ, его предельно-допустимая концентрация принимается по заданию преподавателя 21 мг/м³. Скорость движения воздуха установлена в предыдущем пункте 0,2 м/с.

1. Определяем фактическую загрязненность воздуха в кухонном помещении:

$$c = k*\Pi \Pi K = 168 \text{ (мг/м}^3)$$

2. Определяем массу загрязнителя воздуха:

$$m = c * V_{obsem} = 168 * 14,025 = 2356,2 \text{ (MG)}$$

3. Определяем требуемый воздухообмен через форточку:

$$L = k^* V_{obsem} = 8*14,025 = \underline{112,2} \text{ (M}^3)$$

4. Определяем площадь форточки:

$$F_{\phi} = \frac{L}{3600*v} = \underline{112,2}/3600*0,2=103,4/720=\underline{0,1559} \text{ (M}^2)$$

5. Определяем размеры форточки, предполагая, что она квадратная:

$$a_{\phi} = \sqrt{F} = \underline{0.3948} \text{ (M)}$$

Вывод: для обеспечения качества воздуха рабочей зоны в кухонном помещении размер форточки должен быть не менее 0.3948×0.3948 м.

Раздел 3. Оценка освещения от естественного света

Требуется провести оценку освещения рабочего места домохозяйки от естественного освещения.

T (1 T.	-		
Таблица	I — И	схолные	панные	помещения
т иолици		СМОДПЫС	данныс	помощопил

Исходные данные	Значения
Размеры помещения $1 \times h \times b$, м	2,55 × 2,2 × 2,5 M
Окна, размер, м	1,07 × 1,07 м
Остекление	тройное
Окна, материал	пластик

- 1. Площадь пола помещения $S_n = b*l = 2,55*2,5 = 6,375 \text{ м}^2$
- 2. Площадь оконных проёмов $S_0=1,07*1,07=\underline{1,145}$ м²
- 3. Найдём фактический коэффициент естественного освещения

$$e_p = \frac{100 \bullet S_0 \bullet \tau_0 \bullet r_0}{S_n \bullet k_3 \bullet k_{3m} \bullet k_0}., \varepsilon \partial e$$

 $\tau_0 = \tau_1 * \tau_2 = \underline{0.8*0.9} = 0.72$ - общий коэффициент светопропускания,

где $\tau_1 = \underline{0,8}$ - коэффициент светопропускания материала (стекло оконное двойное листовое);

 $\tau_2 = \underline{0,9}$ – коэффициент, учитывающий потери света в переплетах светопроема (деревянные, двойные, раздельные);

 r_0 =1,5 — коэффициент, учитывающий повышение КЕО при боковом освещении благодаря свету, отраженному от поверхности помещения и подстилающего слоя, прилегающего к зданию (средневзвешенный коэффициент отражения);

 $k_3 = 1,5$ — коэффициент запаса (жилого здания, вертикальное расположение окон);

 $k_{\mbox{\tiny 3T}} = \underline{0,6}$ — коэффициент, учитывающий изменения отраженной составляющей КЕО в помещении при наличии противостоящих зданий;

 $k_o = 11,5$ — коэффициент эффективности освещения.

Определим нормативное значение коэффициента естественного освещения. Наименьший объект различения — 0.5 мм до 1 мм, т.е. работы средней точности (I разряд, подразряд «в»). Освещение боковое при совмещенном освещении $e_{_{\rm H}}^{_{\rm Taбл}}=0.9\%$.

$$e_N = e_H^{\text{Ta}\delta\pi} * m_N = 0,9*0,9 = \underline{0,81}\%.$$
 $m_N = 0,9,$ $e_p = \underline{2,03}\%;$

 $e_p = 1.87\% > e_N = 0.81\%$, следовательно, освещение достаточное, все в норме.

Раздел 4. Оценка освещенности от искусственного освещения

Требуется произвести оценку освещения рабочего места домохозяйки от искусственного освещения.

Таблица 2 – Исходные данные помещения с освещением

Исходные данные	Значения
Размеры помещения 1 x h x b, м	$2,55 \times 2,2 \times 2,5$
Окна, размеры м	1,07 x 1,07
Остекление	тройное
Окна, материал	пластик
Тип светильника	4 точечных светильников, в каждом
	лампа накаливания
Световой поток лампы (40 Вт), лм	400

1. Площадь пола помещения $S_n = b*l = 2,35*2,5 = \underline{6,375}$ м²

- 2. Площадь оконных проемов $S_o=1,07*1,07=\underline{1,145}$ м²
- 3. Найдем фактическую освещенность искусственным светом:

$$E_p = \frac{\Phi * N * n *_{\eta}}{S_n * k_3 * k_H} = \frac{400 * 1 * 4 * 0,21}{6,375 * 1,5 * 1,4} = \frac{336}{12,3375} = 25,1$$
лк

N=1-количество светильников;

n=4 -количество ламп в светильнике;

 $\eta = 0.21$ –коэффициент использования светового потока, зависит от индекса помещения i.

$$i = \frac{b*l}{h*(b+l)} = \frac{2,55*2,5}{2,2*(2,55+2,5)} = \frac{6,375}{2,2*5,05} = \frac{6,375}{11,11} = 0,57$$

 $k_3 = 1,5$ - коэффициент запаса;

 $k_{\scriptscriptstyle H} = \!\! \frac{1,4}{-}$ –коэффициент неравномерности освещения.

 $E_N = 300$ лк (I разряд зрительных работ, подразряд «в»).

 $E_p = \underline{25,1}$ лк $< E_N = \underline{300}$ лк, следовательно, освещения недостаточно. Требуется установка дополнительных светильников.

Раздел 4. Оценка шума

Произвести оценку шума в кухонном помещении от работы мясорубки. Численные (фактические L_{φ} , Дб) значения уровня звукового давления от работы мясорубки на частотах: 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Γ ц следующие: 103, 91, 88, 78, 75, 63, 61, 57 Дб. Нормативные значения для кухонных и жилых помещений ($L_{\rm H}$, Дб)

(по СН 2.2.4/2.1.8.562-96) следующие: 71, 61, 54, 49, 45, 42, 40, 38.

Уровни звукового Значения уровней звукового давления в Дб в октавных давления звуковых полосах со среднегеометрическими частотами, Гц 63 125 250 500 1000 2000 4000 8000 91 78 Мясорубка, L_ф, 103 88 75 63 61 57 Дб Нормативные для 71 61 54 49 45 42 40 38 кухонных и жилых помещений, L_н, Чрезмерный шум 32 30 34 29 30 21 21 19

Таблица 3 - Оценка шума от мясорубки

Произвести расчет звукоизоляции кирпичной перегородки Вариант №2

Исходные данные:

Вариант №1

 $\Delta L = L_{\Phi} - L_{H}$, Дб

- 1. Кирпич глиняный.
- 2.Толщина перегородки -7 см (0,07 м.)
- 3.Плотность материала 1600 кг/м^3

$$R = 20 \ell g \rho \delta f_i - 42.5$$

где R_{fi} — звукоизоляция конструкции в дБ на октавной нормативной звуковой полосе со среднегеометрическими значениями частот fi; ρ — плотность материала, кг/м³;

 f_i — частота октавной нормативной звуковой полосы, Γ ц; δ (дельта) — толщина перегородки, м.

Расчет:

$$R_{f63}=20 \lg *(1600*63*0,07) - 42,5 = 34,4712$$

$$R_{f125}=20 \lg *(1600*125*0,07) - 42,5 = 40,4226$$

$$R_{f250}=20 \lg *(1600*250*0,07) - 42,5 = 46,4432$$

$$R_{f1500}=20 \lg *(1600*500*0,07) - 42,5 = \underline{52,4638}$$

$$R_{f11000}=20 \lg *(1600*1000*0,07) - 42,5 = 58,4844$$

$$R_{f12000}=20 \lg *(1600*2000*0,07) - 42,5 = 64,505$$

$$R_{f14000} = 20 \lg *(1600*4000*0,07) - 42,5 = 70,5256$$

$$R_{f18000} = 20 \lg *(1600*8000*0,07) - 42,5 = \underline{76,5462}$$

Методы борьбы с шумом.

Защита от шума осуществляется средствами:

- акустическими,
- архитектурно-планировочными,
- организационно-техническими.

Акустические:

- Снижение шума в источнике;
- Снижение шума на пути распространения от источника.

I. Снижение шума в источнике:

- 1. Конструирование технологического оборудования и инструмента с учётом требований безопасности, путём:
 - замена более шумного оборудования на менее шумное;
 - замена более шумных зубчатых передач на менее шумные: цепные и ременные;

- замена прямозубчатых передач на косозубчатые (шевронные) передачи;
- замена в оборудовании возвратно-поступательного движения рабочего органа на вращательное;
- замена металлических деталей в соединениях и передачах на пластмассовые;
- уменьшение зазоров в сопрягаемых деталях (например, между зубьями в коробках передач);
- применение смазочных материалов в зубчатых и цепных передачах;
- замена менее эффективных смазочных материалов на более эффективные.
- 2. Укрытие малогабаритных источников шума защитными кожухами.
- 3.Использование глушителей шума, возникающих, например при заборе воздуха в вентиляторах или при выбросе выхлопных газов из двигателей.
- <u>II. Снижение шума на пути распространения достигается проведением строительно-акустических мероприятий (по СНиП II12-77 «Защита от шума.»).</u>
 - Применение защитных экранов и звукоизолирующих перегородок;
 - использование звукопоглощающих предметов (например, на потолке);
 - использование звукопоглощающих облицовок.

Архитектурно-планировочные мероприятия.

- Размещение шумного оборудования в одном месте (например, в торце здания), отгороженном от менее шумного пространства цеха звукоизолирующей перегородкой.
- Защита работающего персонала в производственном здании от шума транспорта и близко расположенного шумного производства:
- а) зелёнными насаждениями;
- б) насыпями, выемками;
- в) временными сооружениями;
- г) средствами наглядной агитации (рекламными щитами).

Защита от шума производственного персонала производится путём применения индивидуальных средств защиты (вкладышей типа «беруша», наушников ВЦНИИОТ (Всесоюзный центральный научно-исследовательский институт охраны труда), шлемов.

Организационно-технические связаны с:

• организацией планово-предупредительного ремонта и обслуживания технологического оборудования;

Библиографический список

- 1. СНиП 23-05-95. Естественное и искусственное освещение. Нормы проектирования. М.: Госстрой СССР, 1987.-55с.
- 2. СанПиН 2.2.4.548-96. Гигиенические требования к микроклимату производственных помещений. М.: Минздрав России, 1997г.-50с.
- 3. Пчельников,В.А. Охрана труда в строительстве/ В.А. Пчельников, Д.В. Коптев, Г.Г. Орлов.-М.: Высшая школа, 1991.-272с.
- 4. С.В. Белов, и др. «Безопасность жизнедеятельности», Учеб. для вузов / Под общ. ред. С.В. Белова. 7-е изд., стер.- М.: Высш. шк., 2007г.-616с.
- 5. Бочарников А.С. «Вопросы безопасности строительного производства в дипломных работах» [Текст]: учебное пособие / А.С. Бочарников, О.А. Бочарникова., В.В. Поляков.- Липецк, ЛГТУ.- 2008.-72с.
- 6. Бочарников А.С. «Оценка параметров производственных факторов и средств защиты от них: учебное пособие / А.С. Бочарников, О.А. Бочарникова, В.В. Поляков.- Липецк: Издательство ЛГТУ, 2011.-59с.