Artificial Intelligence Belief Propagation and Junction Trees

Andres Mendez-Vazquez

March 28, 2016

Outline

- Introduction
 - What do we want?
- Belief Propagation
 - The Intuition
 - Inference on Trees
 - The Messages
 - The Implementation
- Junction Trees
 - How do you build a Junction Tree?
 - Chordal Graph
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
 - Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
 - Potential Function
 - Propagating Information in a Junction Tree
 Example
 - Now, the Full Propagation
 - Example of Propagation

Outline

- Introduction
 - What do we want?
 - Belief Propagation
 - The Intuition
 - Inference on Trees
 - The Messages
 - The Implementation
- Junction Tree
 - How do you build a Junction Tree?
 - Chordal Graph
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
 - Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
 - Potential Function
 - Propagating Information in a Junction TreeExample
 - Now, the Full Propagation
 - Example of Propagation

We will be looking at the following algorithms

• Pearl's Belief Propagation Algorithm

We will be looking at the following algorithms

- Pearl's Belief Propagation Algorithm
- Junction Tree Algorithm

 The algorithm was first proposed by Judea Pearl in 1982, who formulated this algorithm on trees, and was later extended to polytrees.

We will be looking at the following algorithms

- Pearl's Belief Propagation Algorithm
- Junction Tree Algorithm

Belief Propagation Algorithm

 The algorithm was first proposed by Judea Pearl in 1982, who formulated this algorithm on trees, and was later extended to polytrees.

Something Notable

• It has since been shown to be a useful approximate algorithm on general graphs.

Junction Tree Algorithm

The junction tree algorithm (also known as 'Clique Tree') is a method used in machine learning to extract marginalization in general graphs.

Something Notable

 It has since been shown to be a useful approximate algorithm on general graphs.

Junction Tree Algorithm

- The junction tree algorithm (also known as 'Clique Tree') is a method used in machine learning to extract marginalization in general graphs.
- it entails performing belief propagation on a modified graph called a junction tree by cycle elimination

Outline

- Introduction
 - What do we want?
- Belief Propagation
 - The Intuition
 - Inference on Trees
 - The Messages
 - The Implementation
- 3 Junction Tree
 - How do you build a Junction Tree?
 - Chordal Graph
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
 - Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
 - Potential Function
 - Propagating Information in a Junction Tree
 Example
 - Now, the Full Propagation
 - Example of Propagation

Example

We can do the following

To pass information from below and from above to a certain node $\it{V}\rm$.

We can do the following

To pass information from below and from above to a certain node $\it{V}\rm$.

Thus

We call those messages

 \bullet π from above

λ from helow

We can do the following

To pass information from below and from above to a certain node $\it{V}\rm$.

Thus

We call those messages

 \bullet π from above.

We can do the following

To pass information from below and from above to a certain node $\it{V}\rm$.

Thus

We call those messages

- \bullet π from above.
- λ from below.

Outline

- Introduction
 - What do we want?
- Belief Propagation
 - The Intuition
 - Inference on Trees
 - The Messages
 - The Implementation
- Junction Trees
 - How do you build a Junction Tree?
 - Chordal Graph
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
 - Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
 - Potential Function
 - Propagating Information in a Junction Tree
 Example
 - Now, the Full Propagation
 - Example of Propagation

Recall

A rooted tree is a DAG

Recall

A rooted tree is a DAG

Now

 \bullet Let (G,P) be a Bayesian network whose DAG is a tree.

Recall

A rooted tree is a DAG

Now

- ullet Let (G,P) be a Bayesian network whose DAG is a tree.
- Let a be a set of values of a subset $A \subset V$.

- Imagine that each node has two children.
- The general case can be inferred from it.

Recall

A rooted tree is a DAG

Now

- ullet Let (G, P) be a Bayesian network whose DAG is a tree.
- Let a be a set of values of a subset $A \subset V$.

For simplicity

• Imagine that each node has two children.

Recall

A rooted tree is a DAG

Now

- Let (G, P) be a Bayesian network whose DAG is a tree.
- Let a be a set of values of a subset $A \subset V$.

For simplicity

- Imagine that each node has two children.
- The general case can be inferred from it.

Let D_X be the subset of A

 \bullet Containing all members that are in the subtree rooted at X

Let D_X be the subset of A

- ullet Containing all members that are in the subtree rooted at X
- Including X if $X \in A$

- \bullet Containing all members of A that are non-descendant's of X
 - This set includes X if $X \in A$

Let D_X be the subset of A

- ullet Containing all members that are in the subtree rooted at X
- Including X if $X \in A$

Let N_X be the subset

ullet Containing all members of A that are non-descendant's of X.

Let D_X be the subset of A

- ullet Containing all members that are in the subtree rooted at X
- Including X if $X \in A$

Let N_X be the subset

- ullet Containing all members of A that are non-descendant's of X.
- This set includes X if $X \in A$

Example

$$P(x|A) = P(x|d_X, n_X)$$

$$= \frac{P(d_X, n_X) P(x)}{P(d_X, n_X) P(x)}$$

$$= \frac{P(d_X, n_X) P(x) P(x)}{P(d_X, n_X) P(x)}$$

$$= \frac{P(d_X, n_X) P(x) P(x)}{P(d_X, n_X)}$$

$$P(x|A) = P(x|d_X, n_X)$$
$$= \frac{P(d_X, n_X|x) P(x)}{P(d_X, n_X)}$$

$$P(x|A) = P(x|d_X, n_X)$$

$$= \frac{P(d_X, n_X|x) P(x)}{P(d_X, n_X)}$$

$$= \frac{P(d_X|x, n_X) P(n_X|x) P(x)}{P(d_X, n_X)}$$

$$\begin{split} P\left(x|A\right) &= P\left(x|d_{X}, n_{X}\right) \\ &= \frac{P\left(d_{X}, n_{X}|x\right) P\left(x\right)}{P\left(d_{X}, n_{X}\right)} \\ &= \frac{P\left(d_{X}|x, n_{X}\right) P\left(n_{X}|x\right) P\left(x\right)}{P\left(d_{X}, n_{X}\right)} \\ &= \frac{P\left(d_{X}|x, n_{X}\right) P\left(n_{X}, x\right) P\left(x\right)}{P\left(x\right) P\left(d_{X}, n_{X}\right)} \end{split}$$

$$\begin{split} P\left(x|A\right) &= P\left(x|d_X, n_X\right) \\ &= \frac{P\left(d_X, n_X|x\right) P\left(x\right)}{P\left(d_X, n_X\right)} \\ &= \frac{P\left(d_X|x, n_X\right) P\left(n_X|x\right) P\left(x\right)}{P\left(d_X, n_X\right)} \\ &= \frac{P\left(d_X|x, n_X\right) P\left(n_X, x\right) P\left(x\right)}{P\left(x\right) P\left(d_X, n_X\right)} \\ &= \frac{P\left(d_X|x\right) P\left(x|n_X\right) P\left(n_X\right)}{P\left(d_X, n_X\right)} \text{ Here because d-speration if $X \notin A$} \end{split}$$

We have for each value of x

$$\begin{split} P\left(x|A\right) &= P\left(x|d_X, n_X|\right) \\ &= \frac{P\left(d_X, n_X|x\right) P\left(x\right)}{P\left(d_X, n_X\right)} \\ &= \frac{P\left(d_X|x, n_X\right) P\left(n_X|x\right) P\left(x\right)}{P\left(d_X, n_X\right)} \\ &= \frac{P\left(d_X|x, n_X\right) P\left(n_X, x\right) P\left(x\right)}{P\left(x\right) P\left(d_X, n_X\right)} \\ &= \frac{P\left(d_X|x\right) P\left(x|n_X\right) P\left(n_X\right)}{P\left(d_X, n_X\right)} \text{ Here because d-speration if $X \notin A$} \\ &= \frac{P\left(d_X|x\right) P\left(x|n_X\right) P\left(n_X\right)}{P\left(d_X|n_X\right) P\left(n_X\right)} \end{split}$$

Note:

We have for each value of x

$$\begin{split} P\left(x|A\right) &= P\left(x|d_X, n_X|x\right) \\ &= \frac{P\left(d_X, n_X|x\right) P\left(x\right)}{P\left(d_X, n_X\right)} \\ &= \frac{P\left(d_X|x, n_X\right) P\left(n_X|x\right) P\left(x\right)}{P\left(d_X, n_X\right)} \\ &= \frac{P\left(d_X|x, n_X\right) P\left(n_X, x\right) P\left(x\right)}{P\left(x\right) P\left(d_X, n_X\right)} \\ &= \frac{P\left(d_X|x\right) P\left(x|n_X\right) P\left(n_X\right)}{P\left(d_X, n_X\right)} \text{ Here because d-speration if $X \notin A$} \\ &= \frac{P\left(d_X|x\right) P\left(x|n_X\right) P\left(n_X\right)}{P\left(d_X|n_X\right) P\left(n_X\right)} \end{split}$$

Note: You need to prove when $X \in A$

We have for each value of x

$$P(x|A) = \frac{P(d_X|x) P(x|n_X)}{P(d_X|n_X)}$$
$$= \beta P(d_X|x) P(x|n_X)$$

where β , the normalizing factor, is a constant not depending on x.

Outline

- Introduction
 - What do we want?
- Belief Propagation
 - The Intuition
 - Inference on Trees
 - The Messages
 - The Implementation
- 3 Junction Tree
 - How do you build a Junction Tree?
 - Chordal Graph
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
 - Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
 - Potential Function
 - Propagating Information in a Junction Tree
 Example
 - Now, the Full Propagation
 - Example of Propagation

Now, we develop the messages

We want

- $\lambda(x) \simeq P(d_X|x)$
- \bullet $\pi(x) \simeq P(x|n_X)$
 - ► Where ≃ means "proportional to"

Now, we develop the messages

We want

- $\lambda\left(x\right) \simeq P\left(d_X|x\right)$
- $\pi(x) \simeq P(x|n_X)$

We want

- $\lambda(x) \simeq P(d_X|x)$
- $\pi(x) \simeq P(x|n_X)$
 - ▶ Where \simeq means "proportional to"

ivicalilis

 $\pi(x)$ may not be equal to $P\left(x|n_X\right)$, but $\pi(x)=k\times P\left(x|n_X\right)$

 $P(x|a) = \alpha \lambda(x) \pi(x)$

where $lpha_i$ the normalizing factor, is a constant not depending on

We want

- $\bullet \ \lambda (x) \simeq P(d_X|x)$
- $\pi(x) \simeq P(x|n_X)$
 - ▶ Where ≃ means "proportional to"

Meaning

 $\pi(x)$ may not be equal to $P(x|n_X)$, but $\pi(x) = k \times P(x|n_X)$.

We want

- $\lambda(x) \simeq P(d_X|x)$
- $\pi(x) \simeq P(x|n_X)$
 - ▶ Where ≃ means "proportional to"

Meaning

 $\pi(x)$ may not be equal to $P\left(x|n_X\right)$, but $\pi(x)=k\times P\left(x|n_X\right)$.

Once, we have that

$$P(x|a) = \alpha \lambda(x) \pi(x)$$

where α , the normalizing factor, is a constant not depending on

We want

- $\lambda(x) \simeq P(d_X|x)$
- $\bullet \ \pi\left(x\right) \simeq P\left(x|n_X\right)$
 - ▶ Where ≃ means "proportional to"

Meaning

 $\pi(x)$ may not be equal to $P(x|n_X)$, but $\pi(x) = k \times P(x|n_X)$.

Once, we have that

$$P(x|a) = \alpha \lambda(x) \pi(x)$$

where α , the normalizing factor, is a constant not depending on x.

Developing $\lambda(x)$

We need

 $\lambda\left(x\right) \simeq P\left(d_X|x\right)$

17 / 102

Developing $\lambda(x)$

We need

• $\lambda(x) \simeq P(d_X|x)$

Case 1: $X \in A$ and $X \in D_X$

Given any $X = \hat{x}$, we have that for $P(d_X|x) = 0$ for $x \neq \hat{x}$

17/102

Developing $\lambda(x)$

We need

• $\lambda(x) \simeq P(d_X|x)$

Case 1: $X \in A$ and $X \in D_X$

Given any $X = \hat{x}$, we have that for $P\left(d_X|x\right) = 0$ for $x \neq \hat{x}$

•
$$\lambda(\hat{x}) \equiv 1$$

Developing $\lambda\left(x\right)$

We need

 $\bullet \ \lambda(x) \simeq P(d_X|x)$

Case 1: $X \in A$ and $X \in D_X$

Given any $X = \hat{x}$, we have that for $P(d_X|x) = 0$ for $x \neq \hat{x}$

- $\lambda(\hat{x}) \equiv 1$
 - $\lambda(x) \equiv 0 \text{ for } x \neq \hat{x}$

Case 2: $X \notin A$ and X is a leaf

Then, $d_X = \emptyset$ and

$$P\left(d_X|x\right) = P\left(\emptyset|x\right) = 1$$
 for all values of x

 $\lambda\left(x\right)\equiv1$ for all values of x

Case 2: $X \notin A$ and X is a leaf

Then, $d_X = \emptyset$ and

$$P(d_X|x) = P(\emptyset|x) = 1$$
 for all values of x

$$\lambda(x) \equiv 1$$
 for all values of x

Finally

Case 3: $X \notin A$ and X is a non-leaf

Let Y be X's left child, W be X's right child.

 $D_X = D_Y \cup D_W$

Finally

Case 3: $X \notin A$ and X is a non-leaf

Let Y be X's left child, W be X's right child.

We have then

$$P\left(d_X|x
ight) = P\left(d_Y,d_W|x
ight)$$
 Because the d-separation at X
$$= \sum_{y} P\left(d_Y,y|x
ight) \sum_{y} P\left(d_W,y|x
ight)$$

We have then

$$P\left(d_X|x
ight) = P\left(d_Y,d_W|x
ight)$$
 = $P\left(d_Y|x
ight)P\left(d_W|x
ight)$ Because the d-separation at X

We have then

$$\begin{split} P\left(d_{X}|x\right) &= P\left(d_{Y}, d_{W}|x\right) \\ &= P\left(d_{Y}|x\right) P\left(d_{W}|x\right) \text{ Because the d-separation at } X \\ &= \sum_{y} P\left(d_{Y}, y|x\right) \sum_{w} P\left(d_{W}, w|x\right) \end{split}$$

we can get proportionality $P(x) = \sum_{y} P(y|x) \lambda(y)$

We have then

$$\begin{split} P\left(d_X|x\right) &= P\left(d_Y,d_W|x\right) \\ &= P\left(d_Y|x\right)P\left(d_W|x\right) \text{ Because the d-separation at } X \\ &= \sum_y P\left(d_Y,y|x\right)\sum_w P\left(d_W,w|x\right) \\ &= \sum_y P\left(y|x\right)P\left(d_Y|y\right)\sum_w P\left(w|x\right)P\left(d_W|w\right) \end{split}$$

We have then

$$\begin{split} P\left(d_X|x\right) &= P\left(d_Y,d_W|x\right) \\ &= P\left(d_Y|x\right)P\left(d_W|x\right) \text{ Because the d-separation at } X \\ &= \sum_y P\left(d_Y,y|x\right)\sum_w P\left(d_W,w|x\right) \\ &= \sum_y P\left(y|x\right)P\left(d_Y|y\right)\sum_w P\left(w|x\right)P\left(d_W|w\right) \\ &\simeq \sum_y P\left(y|x\right)\lambda\left(y\right)\sum_w P\left(w|x\right)\lambda\left(w\right) \end{split}$$

Thus, we can get proportionality by defining for all values of x

We have then

$$\begin{split} P\left(d_X|x\right) &= P\left(d_Y,d_W|x\right) \\ &= P\left(d_Y|x\right)P\left(d_W|x\right) \text{ Because the d-separation at } X \\ &= \sum_y P\left(d_Y,y|x\right)\sum_w P\left(d_W,w|x\right) \\ &= \sum_y P\left(y|x\right)P\left(d_Y|y\right)\sum_w P\left(w|x\right)P\left(d_W|w\right) \\ &\simeq \sum_y P\left(y|x\right)\lambda\left(y\right)\sum_w P\left(w|x\right)\lambda\left(w\right) \end{split}$$

Thus, we can get proportionality by defining for all values of x

- $\lambda_Y(x) = \sum_y P(y|x) \lambda(y)$
- •

We have then

$$\begin{split} P\left(d_X|x\right) &= P\left(d_Y,d_W|x\right) \\ &= P\left(d_Y|x\right)P\left(d_W|x\right) \text{ Because the d-separation at } X \\ &= \sum_y P\left(d_Y,y|x\right)\sum_w P\left(d_W,w|x\right) \\ &= \sum_y P\left(y|x\right)P\left(d_Y|y\right)\sum_w P\left(w|x\right)P\left(d_W|w\right) \\ &\simeq \sum_y P\left(y|x\right)\lambda\left(y\right)\sum_w P\left(w|x\right)\lambda\left(w\right) \end{split}$$

Thus, we can get proportionality by defining for all values of x

- $\lambda_Y(x) = \sum_y P(y|x) \lambda(y)$

We have then

$$\lambda\left(x\right)=\lambda_{Y}\left(x\right)\lambda_{W}\left(x\right)$$
 for all values x

We need

 $\bullet \ \pi\left(x\right) \simeq P\left(x|n_X\right)$

We need

• $\pi(x) \simeq P(x|n_X)$

Case 1: $X \in A$ and $X \in N_X$

Given any $X = \hat{x}$, we have:

•
$$P(\hat{x}|n_X) = P(\hat{x}|\hat{x}) = 1$$

We need

• $\pi(x) \simeq P(x|n_X)$

Case 1: $X \in A$ and $X \in N_X$

Given any $X = \hat{x}$, we have:

- $P(\hat{x}|n_X) = P(\hat{x}|\hat{x}) = 1$
- $P(x|n_X) = P(x|\hat{x}) = 0$ for $x \neq \hat{x}$

 \bullet $\pi(x) \equiv 0$ for

We need

 \bullet $\pi(x) \simeq P(x|n_X)$

Case 1: $X \in A$ and $X \in N_X$

Given any $X = \hat{x}$, we have:

- $P(\hat{x}|n_X) = P(\hat{x}|\hat{x}) = 1$
- $P(x|n_X) = P(x|\hat{x}) = 0$ for $x \neq \hat{x}$

- $\pi(\hat{x}) \equiv 1$
- - (-) 0 8-- /

We need

 \bullet $\pi(x) \simeq P(x|n_X)$

Case 1: $X \in A$ and $X \in N_X$

Given any $X = \hat{x}$, we have:

- $P(\hat{x}|n_X) = P(\hat{x}|\hat{x}) = 1$
- $P(x|n_X) = P(x|\hat{x}) = 0$ for $x \neq \hat{x}$

- $\pi(\hat{x}) \equiv 1$
- $\pi(x) \equiv 0 \text{ for } x \neq \hat{x}$

We need

• $\pi(x) \simeq P(x|n_X)$

Case 1: $X \in A$ and $X \in N_X$

Given any $X = \hat{x}$, we have:

- $P(\hat{x}|n_X) = P(\hat{x}|\hat{x}) = 1$
- $P(x|n_X) = P(x|\hat{x}) = 0$ for $x \neq \hat{x}$

- $\pi(\hat{x}) \equiv 1$
- $\pi(x) \equiv 0 \text{ for } x \neq \hat{x}$

Case 2: $X \notin A$ and X is the root

In this specific case $n_X = \emptyset$ or the empty set of random variables.

Then

 $P\left(x|n_X\right) = P\left(x|\emptyset\right) = P\left(x\right)$ for all values of x

 $\pi(x) \equiv P(x)$ for all values of x

Case 2: $X \notin A$ and X is the root

In this specific case $n_X = \emptyset$ or the empty set of random variables.

Then

$$P(x|n_X) = P(x|\emptyset) = P(x)$$
 for all values of x

 $\pi\left(x\right)\equiv P\left(x\right)$ for all values of x

Case 2: $X \notin A$ and X is the root

In this specific case $n_X = \emptyset$ or the empty set of random variables.

Then

$$P\left(x|n_X\right) = P\left(x|\emptyset\right) = P\left(x\right)$$
 for all values of x

Enforcing the proportionality, we get

 $\pi(x) \equiv P(x)$ for all values of x

Case 3: $X \notin A$ and X is not the root

Without loss of generality assume X is Z's right child and T is the Z's left child

Case 3: $X \notin A$ and X is not the root

Without loss of generality assume X is Z's right child and T is the Z's left child

$$P(x|n_X) = \sum_{z} P(x|z) P(z|n_X)$$

$$= \sum_{z} P(x|z) P(z|n_Z, d_T)$$

$$= \sum_{z} P(x|z) \frac{P(z, n_Z, d_T)}{P(n_Z, d_T)}$$

$$= \sum_{z} P(x|z) \frac{P(d_T, z|n_Z) P(n_Z)}{P(n_Z, d_T)}$$

$$= \sum_{z} P(x|z) \frac{P(d_T|z, n_Z) P(z|n_Z) P(n_Z)}{P(n_Z, d_T)}$$

$$= \sum_{z} P(x|z) \frac{P(d_T|z, n_Z) P(z|n_Z) P(n_Z)}{P(n_Z, d_T)} Agg$$

$$P(x|n_X) = \sum_{z} P(x|z) P(z|n_X)$$
$$= \sum_{z} P(x|z) P(z|n_Z, d_T)$$

$$P(x|n_X) = \sum_{z} P(x|z) P(z|n_X)$$
$$= \sum_{z} P(x|z) P(z|n_Z, d_T)$$
$$= \sum_{z} P(x|z) \frac{P(z, n_Z, d_T)}{P(n_Z, d_T)}$$

$$P(x|n_X) = \sum_{z} P(x|z) P(z|n_X)$$

$$= \sum_{z} P(x|z) P(z|n_Z, d_T)$$

$$= \sum_{z} P(x|z) \frac{P(z, n_Z, d_T)}{P(n_Z, d_T)}$$

$$= \sum_{z} P(x|z) \frac{P(d_T, z|n_Z) P(n_Z)}{P(n_Z, d_T)}$$

$$P(x|n_X) = \sum_{z} P(x|z) P(z|n_X)$$

$$= \sum_{z} P(x|z) P(z|n_Z, d_T)$$

$$= \sum_{z} P(x|z) \frac{P(z, n_Z, d_T)}{P(n_Z, d_T)}$$

$$= \sum_{z} P(x|z) \frac{P(d_T, z|n_Z) P(n_Z)}{P(n_Z, d_T)}$$

$$= \sum_{z} P(x|z) \frac{P(d_T|z, n_Z) P(z|n_Z) P(n_Z)}{P(n_Z, d_T)}$$

Then

We have

$$\begin{split} P\left(x|n_X\right) &= \sum_z P\left(x|z\right) P\left(z|n_X\right) \\ &= \sum_z P\left(x|z\right) P\left(z|n_Z, d_T\right) \\ &= \sum_z P\left(x|z\right) \frac{P\left(z, n_Z, d_T\right)}{P\left(n_Z, d_T\right)} \\ &= \sum_z P\left(x|z\right) \frac{P\left(d_T, z|n_Z\right) P\left(n_Z\right)}{P\left(n_Z, d_T\right)} \\ &= \sum_z P\left(x|z\right) \frac{P\left(d_T|z, n_Z\right) P\left(z|n_Z\right) P\left(n_Z\right)}{P\left(n_Z, d_T\right)} \\ &= \sum_z P\left(x|z\right) \frac{P\left(d_T|z\right) P\left(z|n_Z\right) P\left(n_Z\right)}{P\left(n_Z, d_T\right)} \text{ Again the d-separation for } z \end{split}$$

Last Step

We have

$$P(x|n_X) = \sum_{z} P(x|z) \frac{P(z|n_Z) P(n_Z) P(d_T|z)}{P(n_Z, d_T)}$$
$$= \gamma \sum_{z} P(x|z) \pi(z) \lambda_T(z)$$

where
$$\gamma = \frac{P(n_Z)}{P(n_Z,d_T)}$$

 $\pi_X(z) \equiv \pi(z) \,\lambda_T(z)$

 $\pi\left(x
ight)\equiv\sum P\left(x|z
ight)\pi_{X}\left(z
ight)$ for all values of x

Last Step

We have

$$P(x|n_X) = \sum_{z} P(x|z) \frac{P(z|n_Z) P(n_Z) P(d_T|z)}{P(n_Z, d_T)}$$
$$= \gamma \sum_{z} P(x|z) \pi(z) \lambda_T(z)$$

where
$$\gamma = \frac{P(n_Z)}{P(n_Z, d_T)}$$

Thus, we can achieve proportionality by

$$\pi_X(z) \equiv \pi(z) \lambda_T(z)$$

Last Step

We have

$$P(x|n_X) = \sum_{z} P(x|z) \frac{P(z|n_Z) P(n_Z) P(d_T|z)}{P(n_Z, d_T)}$$
$$= \gamma \sum_{z} P(x|z) \pi(z) \lambda_T(z)$$

where $\gamma = \frac{P(n_Z)}{P(n_Z, d_T)}$

Thus, we can achieve proportionality by

$$\pi_X(z) \equiv \pi(z) \lambda_T(z)$$

Then, setting

$$\pi\left(x\right)\equiv\sum P\left(x|z\right)\pi_{X}\left(z\right)$$
 for all values of x

Outline

- Introduction
 - What do we want?
- Belief Propagation
 - The Intuition
 - Inference on Trees
 - The Messages
 - The Implementation
- Junction Tree
 - How do you build a Junction Tree?
 - Chordal Graph
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
 - Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
 - Potential Function
 - Propagating Information in a Junction Tree
 Example
 - Now, the Full Propagation
 - Example of Propagation

How do we implement this?

We require the following functions

- initial_tree
- update-tree
- intial_tree has the following input and outputs
 - Input: ((G, P), A, a, P(x|a))
 - Output: After this call A and a are both empty making $P\left(x|a\right)$ the prior probability of x.

- Input: $((G, P), A, a, V, \hat{v}, P(x|a))$
- Output: After this call V has been added to A, \hat{v} has been added to a and for every value of x, $P\left(x|a\right)$ has been updated to be the conditional probability of x given the new a.

How do we implement this?

We require the following functions

- initial_tree
- update-tree

intial_tree has the following input and outputs

Input: ((G, P), A, a, P(x|a))

Output: After this call A and a are both empty making $P\left(x|a\right)$ the

prior probability of x.

Input: $((G, P), A, a, V, \hat{v}, P(x|a))$

Output: After this call V has been added to A, \hat{v} has been added to a and for every value of x, $P\left(x|a\right)$ has been updated to be the conditional probability of x given the new a.

How do we implement this?

We require the following functions

- initial_tree
- update-tree

intial_tree has the following input and outputs

Input: ((G, P), A, a, P(x|a))

Output: After this call A and a are both empty making P(x|a) the prior probability of x.

Then each time a variable $\,V\,$ is instantiated for $\,\hat{v}\,$ the routine update-tree is called

Input: $((G, P), A, a, V, \hat{v}, P(x|a))$

Output: After this call V has been added to A, \hat{v} has been added to a and for every value of x, P(x|a) has been updated to be the conditional probability of x given the new a.

Algorithm: Inference-in-trees

Problem

Given a Bayesian network whose DAG is a tree, determine the probabilities of the values of each node conditional on specified values of the nodes in some subset.

Bayesian network (G, P) whose DAG is a tree, where G = (V, E), and as set of values a of a subset $A \subseteq V$.

The Bayesian network (G,P) updated according to the values in a. The a and π values and messages and P(x|a) for each X \in V are considered part of the network.

Algorithm: Inference-in-trees

Problem

Given a Bayesian network whose DAG is a tree, determine the probabilities of the values of each node conditional on specified values of the nodes in some subset.

Input

Bayesian network (G, P) whose DAG is a tree, where G = (V, E), and a set of values a of a subset A \subseteq V.

The Bayesian network (G,P) updated according to the values in a. The λ and π values and messages and P(x|a) for each X \in V are considered part

Algorithm: Inference-in-trees

Problem

Given a Bayesian network whose DAG is a tree, determine the probabilities of the values of each node conditional on specified values of the nodes in some subset.

Input

Bayesian network (G, P) whose DAG is a tree, where G = (V, E), and a set of values a of a subset A \subseteq V.

Output

The Bayesian network (G,P) updated according to the values in a. The λ and π values and messages and P(x|a) for each X \in V are considered part of the network.

void initial_tree

input: (Bayesian-network& (\mathbb{G},P) where $\mathbb{G}=(V,E)$, set-of-variables& A, set-of-variable-values& a)

- $a = \emptyset$

void initial_tree

input: (Bayesian-network& (\mathbb{G},P) where $\mathbb{G}=(V,E)$, set-of-variables& A, set-of-variable-values& a)

- ② a = ∅
- for (each $X \in V$)
- for (each value x of X)

void initial_tree

```
input: (Bayesian-network& (\mathbb{G},P) where \mathbb{G}=(V,E), set-of-variables& A, set-of-variable-values& a)
```

- ② a = ∅
- **③** for (each X∈V)
- for (each value x of X)
- o ioi (each value x of X)
- $\lambda (x) = 1 // Compute \lambda values.$

void initial_tree

6

0

8

```
input: (Bayesian-network& (\mathbb{G}, P) where \mathbb{G} = (V, E), set-of-variables& A,
                set-of-variable-values& a)
2 a = ∅
\bigcirc for (each X \in V)
          for (each value x of X)
                \lambda(x) = 1
                                         // Compute \lambda values.
          for (the parent Z of X)
                                         // Does nothing if X is the a root.
                for (each value z of Z)
                      \lambda_X(z) = 1 // Compute \lambda messages.
```

void initial tree

6

0

8

```
input: (Bayesian-network& (\mathbb{G}, P) where \mathbb{G} = (V, E), set-of-variables& A,
                 set-of-variable-values& a)
\mathbf{0} \quad \mathbf{A} = \emptyset
2 a = ∅
\bigcirc for (each X \in V)
           for (each value x of X)
                 \lambda(x) = 1
                                             // Compute \lambda values.
                                            // Does nothing if X is the a root.
           for (the parent Z of X)
                 for (each value z of Z)
                        \lambda_X(z) = 1
                                            // Compute \lambda messages.
    for (each value r of the root R)
          P(r|\mathbf{a}) = P(r)
                                                // Compute P(r|\mathbf{a}).
          \pi(r) = P(r)
                                              // Compute R's \pi values.
```

void initial tree

6

6

0

8

•

B

```
input: (Bayesian-network& (\mathbb{G}, P) where \mathbb{G} = (V, E), set-of-variables& A,
                set-of-variable-values& a)
2 a = ∅
\bigcirc for (each X\inV)
          for (each value x of X)
                \lambda(x) = 1
                                         // Compute \lambda values.
          for (the parent Z of X)
                                        // Does nothing if X is the a root.
                for (each value z of Z)
                      \lambda_X(z) = 1
                                        // Compute \lambda messages.
    for (each value r of the root R)
          P(r|\mathbf{a}) = P(r)
                                            // Compute P(r|\mathbf{a}).
          \pi(r) = P(r)
                                          // Compute R's \pi values.
    for (each child X of R)
          send \pi msg(R,X)
```

void update_tree

Input: (Bayesian-network& (\mathbb{G}, P) where $\mathbb{G} = (V, E)$, set-of-variables& A, set-of-variable-values& a, variable V, variable-value \hat{v})

 $\textbf{0} \ \ \mathsf{A} = \mathsf{A} \cup \{\,V\}, \ \mathsf{a} = \mathsf{a} \cup \{\,\hat{v}\}, \ \lambda\,(\hat{v}) = 1, \ \pi\,(\hat{v}) = 1, \ P(\hat{v}|\mathsf{a}) = 1 \ // \ \mathsf{Add} \ \ V$ to A and instantiate V to \hat{v}

void update_tree

Input: (Bayesian-network& (\mathbb{G}, P) where $\mathbb{G} = (V, E)$, set-of-variables& A, set-of-variable-values& a, variable V, variable-value \hat{v})

- $\textbf{0} \ \ \mathsf{A} = \mathsf{A} \cup \{\,V\}, \ \mathsf{a} = \mathsf{a} \cup \{\,\hat{v}\}, \ \lambda\left(\hat{v}\right) = 1, \ \pi\left(\hat{v}\right) = 1, \ P(\hat{v}|\mathsf{a}) = 1 \ // \ \mathsf{Add} \ \ V$ to A and instantiate V to \hat{v}
- $\mathbf{a} = \emptyset$

void update_tree

Input: (Bayesian-network& (\mathbb{G},P) where $\mathbb{G}=(V,E)$, set-of-variables& A, set-of-variable-values& a, variable V, variable-value \hat{v})

- $\textbf{0} \ \ \mathsf{A} = \mathsf{A} \cup \{\,V\}, \ \mathsf{a} = \mathsf{a} \cup \{\,\hat{v}\}, \ \lambda\,(\hat{v}) = 1, \ \pi\,(\hat{v}) = 1, \ P(\hat{v}|\mathsf{a}) = 1 \ // \ \mathsf{Add} \ \ V$ to A and instantiate V to \hat{v}
- $\mathbf{a} = \emptyset$
- **3** for (each value of $v \neq \hat{v}$)
- $\lambda(v) = 0, \ \pi(v) = 0, \ P(v|\mathbf{a}) = 0$

void update_tree

Input: (Bayesian-network& (\mathbb{G}, P) where $\mathbb{G} = (V, E)$, set-of-variables& A, set-of-variable-values& a, variable V, variable-value \hat{v})

- $\textbf{0} \ \ \mathsf{A} = \mathsf{A} \cup \{\,V\}, \ \mathsf{a} = \mathsf{a} \cup \{\,\hat{v}\}, \ \lambda\,(\hat{v}) = 1, \ \pi\,(\hat{v}) = 1, \ P(\hat{v}|\mathsf{a}) = 1 \ // \ \mathsf{Add} \ \ V$ to A and instantiate V to \hat{v}
- **②** a = ∅
- **3** for (each value of $v \neq \hat{v}$)
- $\lambda(v) = 0, \ \pi(v) = 0, \ P(v|\mathbf{a}) = 0$
- \bullet if (V is not the root && V 's parent $Z \notin A$)
- \bullet send_ λ _msg(V, Z)

void update tree

Input: (Bayesian-network& (\mathbb{G}, P) where $\mathbb{G} = (V, E)$, set-of-variables& A, set-of-variable-values & a, variable V, variable-value \hat{v})

- **1** A = A \cup { V}, a= a \cup { \hat{v} }, $\lambda(\hat{v}) = 1$, $\pi(\hat{v}) = 1$, $P(\hat{v}|a) = 1$ // Add V to A and instantiate V to \hat{v}
- $\mathbf{a} = \emptyset$
- for (each value of $v \neq \hat{v}$)
- $\lambda(v) = 0, \, \pi(v) = 0, \, P(v|\mathbf{a}) = 0$
- **5** if (V is not the root && V 's parent $Z \notin A$)
- send $\lambda \operatorname{msg}(V,Z)$ 6
- of for (each child X of V such that $X \notin A$)
- $send_{\pi}_msg(V,X)$ 8

void update_tree

Input: (Bayesian-network& (\mathbb{G},P) where $\mathbb{G}=(V,E)$, set-of-variables& A, set-of-variable-values& a, variable V, variable-value \hat{v})

- $\textbf{0} \ \ \mathsf{A} = \mathsf{A} \cup \{\,V\}, \ \mathsf{a} = \mathsf{a} \cup \{\,\hat{v}\}, \ \lambda\left(\hat{v}\right) = 1, \ \pi\left(\hat{v}\right) = 1, \ P(\hat{v}|\mathsf{a}) = 1 \ // \ \mathsf{Add} \ V$ to A and instantiate V to \hat{v}
- **②** a = ∅
- **3** for (each value of $v \neq \hat{v}$)
- $\lambda(v) = 0, \ \pi(v) = 0, \ P(v|\mathbf{a}) = 0$
- \bullet if (V is not the root && V 's parent $Z \notin A$)
- \bullet send_ λ _msg(V, Z)
- for (each child X of V such that $X \notin A$)
- $send_{\pi}_{msg}(V, X)$

void send_ λ _msg(node Y , node X)

- for (each value of x)
- $2 \hspace{1cm} \lambda_{\,Y}\,(x) = \textstyle\sum_{y} P\left(y|x\right) \lambda\left(y\right) \hspace{1cm} //\hspace{1cm} Y \hspace{1cm} \text{sends} \hspace{1cm} X \hspace{1cm} \text{a} \hspace{1cm} \lambda \hspace{1cm} \text{message}$

void send_ λ _msg(node Y , node X)

- for (each value of x)
- $\lambda_{Y}(x) = \sum_{y} P(y|x) \lambda(y) \qquad // Y \text{ sends } X \text{ a } \lambda \text{ message}$
- $\delta \lambda \left(x \right) = \prod_{U \in CH_X} \lambda_U \left(x \right) \qquad // \text{ Compute } X's \ \lambda \text{ values}$
- $P(x|\mathbf{a}) = \alpha \lambda (x) \pi (x) // \text{ Compute } P(x|\mathbf{a})$
- \bullet normalize $P(x|\mathbf{a})$

void send_ λ _msg(node Y , node X)

- for (each value of x)
- $\lambda_{Y}(x) = \sum_{y} P(y|x) \lambda(y)$ // Y sends X a λ message
- $P(x|\mathbf{a}) = \alpha \lambda (x) \pi (x) // \text{ Compute } P(x|\mathbf{a})$
- **o** normalize P(x|a)
- **6** if $(X \text{ is not the root and } X's \text{ parent } Z \notin A)$
- $oldsymbol{o}$ send_ λ _msg(X,Z)

void send_ λ _msg(node Y , node X)

- for (each value of x)
- $\lambda_{Y}(x) = \sum_{y} P(y|x) \lambda(y)$ // Y sends X a λ message
- $P(x|\mathbf{a}) = \alpha \lambda (x) \pi (x) // \text{ Compute } P(x|\mathbf{a})$
- **o** normalize P(x|a)
- **1** if $(X \text{ is not the root and } X's \text{ parent } Z \notin A)$
- o send_ λ _msg(X,Z)
- for (each child W of X such that $W \neq Y$ and $W \in A$)

Sending the π message

void send $_\pi$ msg(node Z, node X)

- for (each value of z)
- 2 $\pi_{X}\left(z\right)=\pi\left(z\right)\prod_{Y\in CH_{Z}-\left\{ X\right\} }\lambda_{Y}\left(z\right) \qquad //\ Z\text{ sends }X\text{ a }\pi\text{ message}$

Sending the π message

void send $_\pi$ msg(node Z, node X)

- for (each value of z)
- \odot for (each value of x)

Sending the π message

void send $_\pi$ msg(node Z, node X)

- for (each value of z)
- \odot for (each value of x)

- **o** normalize P(x|a)
- of for (each child Y of X such that $Y \notin A$)
- send_ π _msg(X, Y)

Example of Tree Initialization

We have then

• A= \emptyset , a= \emptyset

←□ → ←□ → ← □ → ← □ → □ □

We have then

A=∅, a=∅

Compute λ values

- $\lambda(h1) = 1; \lambda(h2) = 1;$
 - $\lambda(b1) = 1; \lambda(b2) = 1$
 - $\lambda(l1) = 1; \lambda(l2) = 1;$
 - $\lambda(c1) = 1; \lambda(c2) = 1;$

We have then

A=∅, a=∅

Compute λ values

- $\lambda(h1) = 1; \lambda(h2) = 1;$
 - $\lambda(b1) = 1; \lambda(b2) = 1;$
 - $\lambda(i1) = 1; \lambda(i2) = 1;$

- $\lambda_C(l1) = 1; \lambda_C(l2) = 1;$

We have then

A=∅, a=∅

Compute λ values

- $\lambda(h1) = 1; \lambda(h2) = 1;$
 - $\lambda(b1) = 1; \lambda(b2) = 1;$
 - $\lambda(l1) = 1; \lambda(l2) = 1;$

• $\lambda_B(h1) = 1; \lambda_B(h2) = 1;$ • $\lambda_L(h1) = 1; \lambda_L(h2) = 1;$

We have then

A=∅, a=∅

Compute λ values

- $\lambda(h1) = 1; \lambda(h2) = 1;$
 - $\lambda(b1) = 1; \lambda(b2) = 1;$
 - $\lambda(l1) = 1; \lambda(l2) = 1;$
 - $\lambda(c1) = 1; \lambda(c2) = 1;$

- $\lambda_B(h1) = 1; \lambda_B(h2) = 1;$
- $\lambda_L(h1) = 1; \lambda_L(h2) = 1;$
- $\lambda_C(l1) = 1: \lambda_C(l2) = 1:$

We have then

A=∅, a=∅

Compute λ values

- $\lambda(h1) = 1; \lambda(h2) = 1;$
- $\lambda(b1) = 1; \lambda(b2) = 1;$
- $\lambda(l1) = 1; \lambda(l2) = 1;$
- $\lambda(c1) = 1; \lambda(c2) = 1;$

Compute λ messages

• $\lambda_B(h1) = 1; \lambda_B(h2) = 1;$

We have then

• A= \emptyset . a= \emptyset

Compute λ values

- $\lambda(h1) = 1; \lambda(h2) = 1;$
 - $\lambda(b1) = 1; \lambda(b2) = 1;$
 - $\lambda(l1) = 1; \lambda(l2) = 1;$
 - $\lambda(c1) = 1; \lambda(c2) = 1;$

Compute λ messages

- $\lambda_B(h1) = 1; \lambda_B(h2) = 1;$
- $\lambda_L(h1) = 1; \lambda_L(h2) = 1;$

We have then

A=∅, a=∅

Compute λ values

- $\lambda(h1) = 1; \lambda(h2) = 1;$
 - $\lambda(b1) = 1; \lambda(b2) = 1;$
 - $\lambda(l1) = 1; \lambda(l2) = 1;$
 - $\lambda(c1) = 1; \lambda(c2) = 1;$

Compute λ messages

- $\lambda_B(h1) = 1; \lambda_B(h2) = 1;$
 - $\lambda_L(h1) = 1; \lambda_L(h2) = 1;$
 - $\lambda_C(l1) = 1; \lambda_C(l2) = 1;$

Compute $P(h|\emptyset)$

• $P(h1|\emptyset) = P(h1) = 0.2$

Cinvestav

36 / 102

Compute $P(h|\emptyset)$

- $P(h1|\emptyset) = P(h1) = 0.2$
- $P(h2|\emptyset) = P(h2) = 0.8$

 $\bullet \ \pi(h2) = P(h2) = 0.8$

Compute $P(h|\emptyset)$

- $P(h1|\emptyset) = P(h1) = 0.2$
- $P(h2|\emptyset) = P(h2) = 0.8$

•
$$\pi(h1) = P(h1) = 0.2$$

Compute $P(h|\emptyset)$

- $P(h1|\emptyset) = P(h1) = 0.2$
- $P(h2|\emptyset) = P(h2) = 0.8$

- $\pi(h1) = P(h1) = 0.2$
- $\pi(h2) = P(h2) = 0.8$

- ullet send_ π _msg(H,B)
- ullet send_ π _msg(H,L)

Compute $P\left(h|\emptyset\right)$

- $P(h1|\emptyset) = P(h1) = 0.2$
- $P(h2|\emptyset) = P(h2) = 0.8$

Compute H's π values

- $\pi(h1) = P(h1) = 0.2$
- $\pi(h2) = P(h2) = 0.8$

Send messages

• $\operatorname{send}_{\pi}\operatorname{msg}(H,B)$

Compute $P(h|\emptyset)$

- $P(h1|\emptyset) = P(h1) = 0.2$
- $P(h2|\emptyset) = P(h2) = 0.8$

Compute H's π values

- $\pi(h1) = P(h1) = 0.2$
- $\pi(h2) = P(h2) = 0.8$

Send messages

- $\operatorname{send}_{\pi}\operatorname{msg}(H,B)$
- $\operatorname{send}_{\pi} \operatorname{msg}(H, L)$

The call send_ π _msg(H, B)

H sends B a π message

•
$$\pi_B(h1) = \pi(h1)\lambda_L(h1) = 0.2 \times 1 = 0.2$$

The call $send_{\pi}_{msg}(H, B)$

H sends B a π message

- $\pi_B(h1) = \pi(h1)\lambda_L(h1) = 0.2 \times 1 = 0.2$
- $\pi_B(h2) = \pi(h2)\lambda_L(h2) = 0.8 \times 1 = 0.8$

= (0.25) (0.2) + (0.05) (0.8) = 0.09 $\pi (b2) = P (b2|h1) \pi_B (h1) + P (b2|h2) \pi_B (h2)$ = (0.75) (0.2) + (0.95) (0.8) = 0.91

The call $send_{\pi}msg(H, B)$

H sends B a π message

- $\pi_B(h1) = \pi(h1)\lambda_L(h1) = 0.2 \times 1 = 0.2$
- $\pi_B(h2) = \pi(h2)\lambda_L(h2) = 0.8 \times 1 = 0.8$

$$\pi(b1) = P(b1|h1) \pi_B(h1) + P(b1|h2) \pi_B(h2)$$

The call $send_{\pi}_{msg}(H, B)$

H sends B a π message

- $\pi_B(h1) = \pi(h1)\lambda_L(h1) = 0.2 \times 1 = 0.2$
- $\pi_B(h2) = \pi(h2)\lambda_L(h2) = 0.8 \times 1 = 0.8$

$$\pi (b1) = P (b1|h1) \pi_B (h1) + P (b1|h2) \pi_B (h2)$$

= (0.25) (0.2) + (0.05) (0.8) = 0.09

The call send_ π _msg(H, B)

H sends B a π message

- $\pi_B(h1) = \pi(h1)\lambda_L(h1) = 0.2 \times 1 = 0.2$
- $\pi_B(h2) = \pi(h2)\lambda_L(h2) = 0.8 \times 1 = 0.8$

$$\pi (b1) = P (b1|h1) \pi_B (h1) + P (b1|h2) \pi_B (h2)$$

$$= (0.25) (0.2) + (0.05) (0.8) = 0.09$$

$$\pi (b2) = P (b2|h1) \pi_B (h1) + P (b2|h2) \pi_B (h2)$$

The call $send_{\pi}msg(H, B)$

H sends B a π message

- $\pi_B(h1) = \pi(h1)\lambda_L(h1) = 0.2 \times 1 = 0.2$
- $\pi_B(h2) = \pi(h2)\lambda_L(h2) = 0.8 \times 1 = 0.8$

$$\pi (b1) = P (b1|h1) \pi_B (h1) + P (b1|h2) \pi_B (h2)$$

$$= (0.25) (0.2) + (0.05) (0.8) = 0.09$$

$$\pi (b2) = P (b2|h1) \pi_B (h1) + P (b2|h2) \pi_B (h2)$$

$$= (0.75) (0.2) + (0.95) (0.8) = 0.91$$

The call send_ π _msg(H, B)

Compute $P(b|\emptyset)$

• $P(b1|\emptyset) = \alpha\lambda(b1)\pi(b1) = \alpha(1)(0.09) = 0.09\alpha$

38 / 102

The call send_ π _msg(H, B)

Compute $P(b|\emptyset)$

- $\bullet \ P\left(b1|\emptyset\right) = \alpha\lambda\left(b1\right)\pi\left(b1\right) = \alpha\left(1\right)\left(0.09\right) = 0.09\alpha$
- $P(b2|\emptyset) = \alpha\lambda(b2)\pi(b2) = \alpha(1)(0.91) = 0.91\alpha$

 $P(b1|\emptyset) = \frac{0.034}{0.09\alpha + 0.91\alpha} = 0.09$ $P(b2|\emptyset) = \frac{0.91\alpha}{0.091\alpha} = 0.91$

The call $send_{\pi}_{msg}(H, B)$

Compute $P\left(b|\emptyset\right)$

- $\bullet \ P\left(b1|\emptyset\right) = \alpha\lambda\left(b1\right)\pi\left(b1\right) = \alpha\left(1\right)\left(0.09\right) = 0.09\alpha$
- $\bullet \ P\left(b2|\emptyset\right) = \alpha\lambda\left(b2\right)\pi\left(b2\right) = \alpha\left(1\right)\left(0.91\right) = 0.91\alpha$

Then, normalize

$$P\left(b1|\emptyset\right) = \frac{0.09\alpha}{0.09\alpha + 0.91\alpha} = 0.09$$

The call send_ π _msg(H, B)

Compute $P(b|\emptyset)$

- $\bullet \ P\left(b1|\emptyset\right) = \alpha\lambda\left(b1\right)\pi\left(b1\right) = \alpha\left(1\right)\left(0.09\right) = 0.09\alpha$
- $\bullet \ P\left(b2|\emptyset\right) = \alpha\lambda\left(b2\right)\pi\left(b2\right) = \alpha\left(1\right)\left(0.91\right) = 0.91\alpha$

Then, normalize

$$P(b1|\emptyset) = \frac{0.09\alpha}{0.09\alpha + 0.91\alpha} = 0.09$$

$$P(b2|\emptyset) = \frac{0.91\alpha}{0.09\alpha + 0.91\alpha} = 0.91$$

Send the call $\operatorname{send}_{-\pi}\operatorname{msg}(H,L)$

H sends L a π message

•
$$\pi_L(h1) = \pi(h1) \lambda_B(h1) = (0.2)(1) = 0.2$$

H sends L a π message

- $\pi_L(h1) = \pi(h1) \lambda_B(h1) = (0.2)(1) = 0.2$
- $\pi_L(h2) = \pi(h2) \lambda_B(h2) = (0.8)(1) = 0.8$

H sends L a π message

- $\pi_L(h1) = \pi(h1) \lambda_B(h1) = (0.2)(1) = 0.2$
- $\pi_L(h2) = \pi(h2) \lambda_B(h2) = (0.8)(1) = 0.8$

$$\pi (l1) = P (l1|h1) \pi_L (h1) + P (l1|h2) \pi_L (h2)$$

= (0.003) (0.2) + (0.00005) (0.8) = 0.00064

H sends L a π message

- $\pi_L(h1) = \pi(h1) \lambda_B(h1) = (0.2)(1) = 0.2$
- $\pi_L(h2) = \pi(h2) \lambda_B(h2) = (0.8)(1) = 0.8$

Compute $L's \pi$ values

$$\pi (l1) = P (l1|h1) \pi_L (h1) + P (l1|h2) \pi_L (h2)$$

$$= (0.003) (0.2) + (0.00005) (0.8) = 0.00064$$

$$\pi (l2) = P (l2|h1) \pi_B (h1) + P (l2|h2) \pi_B (h2)$$

$$= (0.997) (0.2) + (0.99995) (0.8) = 0.99936$$

Compute $P(l|\emptyset)$

•

H sends L a π message

- $\pi_L(h1) = \pi(h1) \lambda_B(h1) = (0.2)(1) = 0.2$
- $\pi_L(h2) = \pi(h2) \lambda_B(h2) = (0.8)(1) = 0.8$

Compute $L's \pi$ values

$$\pi (l1) = P (l1|h1) \pi_L (h1) + P (l1|h2) \pi_L (h2)$$

$$= (0.003) (0.2) + (0.00005) (0.8) = 0.00064$$

$$\pi (l2) = P (l2|h1) \pi_B (h1) + P (l2|h2) \pi_B (h2)$$

$$= (0.997) (0.2) + (0.99995) (0.8) = 0.99936$$

Compute $P(l|\emptyset)$

- $P(l1|\emptyset) = \alpha\lambda(l1)\pi(l1) = \alpha(1)(0.00064) = 0.00064\alpha$
- •

Send the call $\operatorname{send}_{-}\pi\operatorname{\!_msg}(H,L)$

H sends L a π message

- $\pi_L(h1) = \pi(h1) \lambda_B(h1) = (0.2)(1) = 0.2$
- $\pi_L(h2) = \pi(h2) \lambda_B(h2) = (0.8)(1) = 0.8$

Compute $L's \pi$ values

$$\pi (l1) = P (l1|h1) \pi_L (h1) + P (l1|h2) \pi_L (h2)$$

$$= (0.003) (0.2) + (0.00005) (0.8) = 0.00064$$

$$\pi (l2) = P (l2|h1) \pi_B (h1) + P (l2|h2) \pi_B (h2)$$

$$= (0.997) (0.2) + (0.99995) (0.8) = 0.99936$$

Compute $P(l|\emptyset)$

- $\bullet \ P\left(l1|\emptyset\right) = \alpha\lambda\left(l1\right)\pi\left(l1\right) = \alpha\left(1\right)\left(0.00064\right) = 0.00064\alpha$
- $\bullet \ P\left(l2|\emptyset\right) = \alpha\lambda\left(l2\right)\pi\left(l2\right) = \alpha\left(1\right)\left(0.99936\right) = 0.99936\alpha$

Then, normalize

$$P(l1|\emptyset) = \frac{0.00064\alpha}{0.00064\alpha + 0.99936\alpha} = 0.00064$$
$$P(l2|\emptyset) = \frac{0.99936\alpha}{0.00064\alpha + 0.99936\alpha} = 0.99936$$

40 / 102

Then, normalize

$$P(l1|\emptyset) = \frac{0.00064\alpha}{0.00064\alpha + 0.99936\alpha} = 0.00064$$
$$P(l2|\emptyset) = \frac{0.99936\alpha}{0.00064\alpha + 0.99936\alpha} = 0.99936$$

L sends C a π message

•
$$\pi_C(l1) = \pi(l1) = 0.00064$$

• $\pi_C(l2) = \pi(l2) = 0.99936$

L sends C a π message

- $\pi_C(l1) = \pi(l1) = 0.00064$
- $\pi_C(l2) = \pi(l2) = 0.99936$

Send the call $\operatorname{send}_{-\pi}\operatorname{msg}(L,C)$

L sends C a π message

- $\pi_C(l1) = \pi(l1) = 0.00064$
- $\pi_C(l2) = \pi(l2) = 0.99936$

$$\pi(c1) = P(c1|l1) \pi_C(l1) + P(c1|l2) \pi_C(l2)$$

$$= (0.6) (0.00064) + (0.02) (0.99936) = 0.02037$$

$$\pi(c2) = P(c2|l1) \pi_C(h1) + P(c2|l2) \pi_C(l2)$$

$$= (0.4) (0.00064) + (0.98) (0.99936) = 0.97963$$

Compute $P(c|\emptyset)$

• $P(c1|\emptyset) = \alpha\lambda(c1)\pi(c1) = \alpha(1)(0.02037) = 0.02037\alpha$

42 / 102

Compute $P(c|\emptyset)$

- $\bullet \ P\left(c1|\emptyset\right) = \alpha\lambda\left(c1\right)\pi\left(c1\right) = \alpha\left(1\right)\left(0.02037\right) = 0.02037\alpha$
- $\bullet \ P\left(c2|\emptyset\right) = \alpha\lambda\left(c2\right)\pi\left(c2\right) = \alpha\left(1\right)\left(0.97963\right) = 0.97963\alpha$

 $P(c2|\emptyset) = \frac{0.99930\alpha}{0.02037\alpha + 0.97963\alpha} = 0.97963$

Send the call $\operatorname{send}_{\pi}\operatorname{msg}(L,C)$

Compute $P\left(c|\emptyset\right)$

- $\bullet \ P\left(c1|\emptyset\right) = \alpha\lambda\left(c1\right)\pi\left(c1\right) = \alpha\left(1\right)\left(0.02037\right) = 0.02037\alpha$
- $\bullet \ P\left(\left.c2\right|\emptyset\right) = \alpha\lambda\left(\left.c2\right)\pi\left(\left.c2\right) = \alpha\left(1\right)\left(0.97963\right) = 0.97963\alpha$

Normalize

$$P(c1|\emptyset) = \frac{0.02037\alpha}{0.02037\alpha + 0.97963\alpha} = 0.02037$$

$$P(c2|\emptyset) = \frac{0.99936\alpha}{0.02037\alpha + 0.97963\alpha} = 0.97963$$

Final Graph

For the Generalization Please look at...

Look at pages 123 - 156 at

Richard E. Neapolitan. 2003. Learning Bayesian Networks. Prentice-Hall, Inc

History

Invented in 1988

Invented by Lauritzen and Spiegelhalter, 1988

Something Notabl

The general idea is that the propagation of evidence through the network can be carried out more efficiently by representing the joint probability distribution on an undirected graph called the Junction tree (or Join tree)

History

Invented in 1988

Invented by Lauritzen and Spiegelhalter, 1988

Something Notable

The general idea is that the propagation of evidence through the network can be carried out more efficiently by representing the joint probability distribution on an undirected graph called the Junction tree (or Join tree).

More in the Intuition

High-level Intuition

Computing marginals is straightforward in a tree structure.

The junction tree has the following characteristics

- It is an undirected tree
- Its nodes are clusters of variables (i.e. from the original BN)
- Given two clusters, C_1 and C_2 , every node on the path between then

The junction tree has the following characteristics

- It is an undirected tree
- Its nodes are clusters of variables (i.e. from the original BN)

The junction tree has the following characteristics

- It is an undirected tree
- Its nodes are clusters of variables (i.e. from the original BN)
- ullet Given two clusters, C_1 and C_2 , every node on the path between them contains their intersection $C_1 \cap C_2$

The junction tree has the following characteristics

- It is an undirected tree
- Its nodes are clusters of variables (i.e. from the original BN)
- ullet Given two clusters, C_1 and C_2 , every node on the path between them contains their intersection $C_1 \cap C_2$

In addition

A Separator, S, is associated with each edge and contains the variables in the intersection between neighboring nodes

Outline

- Introduction
 - What do we want?
- Belief Propagation
 - The Intuition
 - Inference on Trees
 - The Messages
 - The Implementation
- Junction Trees
 - How do you build a Junction Tree?
 - Chordal Graph
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
 - Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
 - Potential Function
 - Propagating Information in a Junction Tree
 Example
 - Now, the Full Propagation
 - Example of Propagation

Outline

- Introduction
 - What do we want?
 - Belief Propagation
 - The Intuition
 - Inference on Trees
 - The Messages
 - The Implementation
- Junction Trees
 - How do you build a Junction Tree?
 - Chordal Graph
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
 - Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
 - Potential Function
 - Propagating Information in a Junction Tree
 Example
 - Now, the Full Propagation
 - Example of Propagation

Simplicial Node

Simplicial Node

In a graph G, a vertex v is called **simplicial** if and only if the subgraph of G induced by the vertex set $\{v\} \cup N\left(v\right)$ is a clique.

• N(v) is the neighbor of v in the Graph.

Example

Perfect Elimination Ordering

Definition

A graph G on n vertices is said to have a **perfect elimination ordering** if and only if there is an ordering $\{v_1, ..., v_n\}$ of G's vertices, such that each v_i is simplicial in the subgraph induced by the vertices $\{v_1, ..., v_i\}$.

Definition

A Chordal Graph is one in which all cycles of four or more vertices have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle.

For any two vertices $x,y\in G$ such that $(x,y)\in E$, a x-y separator is a set $S\subset V$ such that the graph G-S has at least two disjoint connected components, one of which contains x and another of which contains y.

Definition

A Chordal Graph is one in which all cycles of four or more vertices have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle.

Definition

For any two vertices $x,y\in G$ such that $(x,y)\in E$, a x-y separator is a set $S\subset V$ such that the graph G-S has at least two disjoint connected components, one of which contains x and another of which contains y.

Theorem

For a graph $\,G$ on $\,n$ vertices, the following conditions are equivalent:

Theorem

For a graph G on n vertices, the following conditions are equivalent:

 $oldsymbol{0}$ G has a perfect elimination ordering.

Theorem

For a graph G on n vertices, the following conditions are equivalent:

- $oldsymbol{0}$ G has a perfect elimination ordering.
- \bigcirc G is chordal.

$\mathsf{Theorem}$

For a graph G on n vertices, the following conditions are equivalent:

- $oldsymbol{0}$ G has a perfect elimination ordering.
- \bigcirc G is chordal.
- lacksquare If H is any induced subgraph of G and S is a vertex separator of H of minimal size, S's vertices induce a clique.

Maximal Clique

Definition

A maximal clique is a clique that cannot be extended by including one more adjacent vertex, meaning it is not a subset of a larger clique.

Maximal Clique

Definition

A maximal clique is a clique that cannot be extended by including one more adjacent vertex, meaning it is not a subset of a larger clique.

We have the the following Claims

 $\textbf{ 0} \ \, \textbf{ A chordal graph with } N \ \, \text{vertices can have no more than } N \ \, \text{maximal cliques}.$

Maximal Clique

Definition

A maximal clique is a clique that cannot be extended by including one more adjacent vertex, meaning it is not a subset of a larger clique.

We have the the following Claims

- $\textbf{ 0} \ \, \textbf{ A chordal graph with } N \ \, \text{vertices can have no more than } N \ \, \text{maximal cliques}.$
- ② Given a chordal graph with G=(V,E), where |V|=N, there exists an algorithm to find all the maximal cliques of G which takes no more than $O\left(N^4\right)$ time.

Elimination Clique

Definition (Elimination Clique)

Given a chordal graph $\,G$, and an elimination ordering for $\,G$ which does not add any edges.

 Suppose node i (Assuming a Labeling) is eliminated in some step of the elimination algorithm, then the clique consisting of the node i along with its neighbors during the elimination step (which must be fully connected since elimination does not add edges) is called an elimination clique.

Suppose node i is eliminated in the k^{th} step of the algorithm, and let $G^{(k)}$ be the graph just before the k^{th} elimination step. Then, the clique $C_i = \{i\} \cup N^{(k)}(i)$ where $N^{(k)}(i)$ is the neighbor of i in the Graph $G^{(k)}$.

Elimination Clique

Definition (Elimination Clique)

Given a chordal graph $\,G$, and an elimination ordering for $\,G$ which does not add any edges.

 Suppose node i (Assuming a Labeling) is eliminated in some step of the elimination algorithm, then the clique consisting of the node i along with its neighbors during the elimination step (which must be fully connected since elimination does not add edges) is called an elimination clique.

Formally

Suppose node i is eliminated in the k^{th} step of the algorithm, and let $G^{(k)}$ be the graph just before the k^{th} elimination step. Then, the clique $C_i = \{i\} \cup N^{(k)}\left(i\right)$ where $N^{(k)}\left(i\right)$ is the neighbor of i in the Graph $G^{(k)}$.

From This

Theorem

Given a chordal graph and an elimination ordering which does not add any edges. Let $\mathcal C$ be the set of maximal cliques in the chordal graph, and let $\mathcal C_e=(\cup_{i\in V}C_i)$ be the set of elimination cliques obtained from this elimination ordering. Then, $\mathcal C\subseteq\mathcal C_e$. In other words, every maximal clique is also an elimination clique for this particular ordering.

From This

Theorem

Given a chordal graph and an elimination ordering which does not add any edges. Let \mathcal{C} be the set of maximal cliques in the chordal graph, and let $\mathcal{C}_e = (\cup_{i \in V} C_i)$ be the set of elimination cliques obtained from this elimination ordering. Then, $\mathcal{C} \subseteq \mathcal{C}_e$. In other words, every maximal clique is also an elimination clique for this particular ordering.

Something Notable

The theorem proves the 2^{nd} claims given earlier. Firstly, it shows that a chordal graph cannot have more than N maximal cliques, since we have only N elimination cliques.

From This

Theorem

Given a chordal graph and an elimination ordering which does not add any edges. Let $\mathcal C$ be the set of maximal cliques in the chordal graph, and let $\mathcal C_e=(\cup_{i\in V}C_i)$ be the set of elimination cliques obtained from this elimination ordering. Then, $\mathcal C\subseteq\mathcal C_e$. In other words, every maximal clique is also an elimination clique for this particular ordering.

Something Notable

The theorem proves the 2^{nd} claims given earlier. Firstly, it shows that a chordal graph cannot have more than N maximal cliques, since we have only N elimination cliques.

It is more

It gives us an efficient algorithm for finding these N maximal cliques.

 Simply go over each elimination clique and check whether it is maximal.

Therefore

Even with a brute force approach

It will not take more than $|\mathcal{C}_e|^2 \times D = O(N^3)$ with $D = \max_{C \in \mathcal{C}} |C|$.

Since both clique size and number of elimination cliques is bounded by ${\cal N}$

The maximum clique problem, which is NP-hard on general graphs, is easy on chordal graphs.

Therefore

Even with a brute force approach

It will not take more than $|\mathcal{C}_e|^2 \times D = O\left(N^3\right)$ with $D = \max_{C \in \mathcal{C}} |C|$.

Because

Since both clique size and number of elimination cliques is bounded by ${\it N}$

The maximum clique problem, which is NP-hard on general graphs, is easy on chordal graphs.

Therefore

Even with a brute force approach

It will not take more than $|\mathcal{C}_e|^2 \times D = O\left(N^3\right)$ with $D = \max_{C \in \mathcal{C}} |C|$.

Because

Since both clique size and number of elimination cliques is bounded by N

Observation

The maximum clique problem, which is NP-hard on general graphs, is easy on chordal graphs.

Outline

- Introduction
 - What do we want?
 - Belief Propagation
 - The Intuition
 - Inference on Trees
 - The Messages
 - The Implementation
- Junction Trees
 - How do you build a Junction Tree?
 - Chordal Graph
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
 - Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
 - Potential Function
 - Propagating Information in a Junction Tree
 Example
 - Now, the Full Propagation
 - Example of Propagation

Definition

- C is a minimal compacted graph over 11 houses Minimal
- \bigcirc G is a minimal connected graph over N nodes.
- (Important) G is a graph over N nodes, such that for any 2 node
 - and j in G , with $i \neq j$, there is a unique path from i to j in G

Definition

- $oldsymbol{0}$ G is a connected, acyclic graph over N nodes.
- igotimes G is a connected graph over N nodes with N-1
- (Important) G is a graph over N nodes, such that for any 2 nodes and i in G with $i \neq i$ there is a unique path from i to i in G
 - heorem or any graph $G=(\,V,E)$, the following statements are equivalent:
 - A has a junction tree.
- - $oldsymbol{\Theta}$ is chordal.

Definition

- $oldsymbol{0}$ G is a connected, acyclic graph over N nodes.
- ${\bf 2}$ G is a connected graph over N nodes with N-1 edges.

Definition

- $oldsymbol{0}$ G is a connected, acyclic graph over N nodes.
- ${f 2}$ G is a connected graph over N nodes with N-1 edges.
- $oldsymbol{\circ}$ G is a minimal connected graph over N nodes.

Definition

- $oldsymbol{0}$ G is a connected, acyclic graph over N nodes.
- ② G is a connected graph over N nodes with N-1 edges.
- $oldsymbol{3}$ G is a minimal connected graph over N nodes.
- **(Important)** G is a graph over N nodes, such that for any 2 nodes i and j in G, with $i \neq j$, there is a unique path from i to j in G.

- For any graph $\,G=(\,V,E),$ the following statements are equivalent:
- lacktriangle G has a junction tree.
- 0 :- ----

Definition

The following are equivalent to the statement "G is a tree"

- $oldsymbol{0}$ G is a connected, acyclic graph over N nodes.
- ② G is a connected graph over N nodes with N-1 edges.
- $oldsymbol{\circ}$ G is a minimal connected graph over N nodes.
- **(Important)** G is a graph over N nodes, such that for any 2 nodes i and j in G, with $i \neq j$, there is a unique path from i to j in G.

Theorem

For any graph G=(V,E), the following statements are equivalent:

Definition

The following are equivalent to the statement "G is a tree"

- $oldsymbol{0}$ G is a connected, acyclic graph over N nodes.
- ② G is a connected graph over N nodes with N-1 edges.
- $oldsymbol{\circ}$ G is a minimal connected graph over N nodes.
- **(Important)** G is a graph over N nodes, such that for any 2 nodes i and j in G, with $i \neq j$, there is a unique path from i to j in G.

Theorem

For any graph G=(V,E), the following statements are equivalent:

- $oldsymbol{0}$ G has a junction tree.
- \bigcirc G is chordal.

Outline

- Introduction
 - What do we want?
 - Belief Propagation
 - The Intuition
 - Inference on Trees
 - The Messages
 - The Implementation
- Junction Trees
 - How do you build a Junction Tree?
 - Chordal Graph
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
 - Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
 - Potential Function
 - Propagating Information in a Junction Tree
 Example
 - Now, the Full Propagation
 - Example of Propagation

Definition

Junction Tree

Given a graph G=(V,E), a graph G'=(V',E') is said to be a Junction Tree for G, iff:

- The nodes of G' are the maximal cliques of G (i.e. G' is a clique graph of G.)
- \mathbf{Q} G' is a tree.
- Sunning Intersection Property / Junction Tree Property:
 - For each $v \in V$, define G'_v to be the induced subgraph of G' consisting of exactly those nodes which correspond to maximal cliques of G that contain v. Then G'_v must be a connected graph.

Outline

- Introduction
 - What do we want?
- Belief Propagation
 - The Intuition
 - Inference on Trees
 - The Messages
 - The Implementation
- Junction Trees
 - How do you build a Junction Tree?
 - Chordal Graph
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
 - Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
 - Potential Function
 - Propagating Information in a Junction Tree
 Example
 - Now, the Full Propagation
 - Example of Propagation

Given a DAG G = (V, E) and |V| = N

Chordalize the graph using the elimination algorithm with an arbitrary elimination ordering, if required.

Given a DAG G = (V, E) and |V| = N

Chordalize the graph using the elimination algorithm with an arbitrary elimination ordering, if required.

For this, you can use the following greedy algorithm

Given a list of nodes:

Given a DAG G = (V, E) and |V| = N

Chordalize the graph using the elimination algorithm with an arbitrary elimination ordering, if required.

For this, you can use the following greedy algorithm

Given a list of nodes:

1 Is the vertex simplicial? If it is not, make it simplicial.

Given a DAG G = (V, E) and |V| = N

Chordalize the graph using the elimination algorithm with an arbitrary elimination ordering, if required.

For this, you can use the following greedy algorithm

Given a list of nodes:

- 1 Is the vertex simplicial? If it is not, make it simplicial.
- If not remove it from the list.

Another way

- By the Moralization Procedure.
- Triangulate the moral graph.
- Moralization P
 - Add edges between all pairs of nodes that have a common child

Another way

- By the Moralization Procedure.
- 2 Triangulate the moral graph.

Moralization Procedure

- 4 Add edges between all pairs of nodes that have a common child.
- Make all edges in the graph undirected.

Another way

- By the Moralization Procedure.
- 2 Triangulate the moral graph.

Moralization Procedure

- Add edges between all pairs of nodes that have a common child.
- Make all edges in the graph undirected.

Triangulate the moral graph

An undirected graph is triangulated if every cycle of length greater than 3 possesses a chord.

Find the maximal cliques in the chordal graph

List the N Cliques

- $(\{v_N\} \cup N(v_N)) \cap \{v_1, ..., v_N\}$
- $\bullet \ (\{v_{N-1}\} \cup N (v_{N-1})) \cap \{v_1, ..., v_{N-1}\}$
- . . .
- $\{v_1\}$

Note: If the graph is Chordal this is not necessary because all the cliques are maximal.

Compute the separator sets for each pair of maximal cliques and construct a weighted clique graph

For each pair of maximal cliques $(\mathit{C}_i,\mathit{C}_j)$ in the graph

Compute the separator sets for each pair of maximal cliques and construct a weighted clique graph

For each pair of maximal cliques $(\mathit{C}_i,\mathit{C}_j)$ in the graph

• We check whether they posses any common variables.

Compute the separator sets for each pair of maximal cliques and construct a weighted clique graph

For each pair of maximal cliques $(\mathit{C}_i,\mathit{C}_j)$ in the graph

• We check whether they posses any common variables.

If yes, we designate a separator set

Between these 2 cliques as $S_{ij} = C_i \cap C_j$.

Compute the separator sets for each pair of maximal cliques and construct a weighted clique graph

For each pair of maximal cliques $(\mathit{C}_i,\mathit{C}_j)$ in the graph

• We check whether they posses any common variables.

If yes, we designate a separator set

Between these 2 cliques as $S_{ij} = C_i \cap C_j$.

Then, we compute these separators trees

We build a clique graph:

Compute the separator sets for each pair of maximal cliques and construct a weighted clique graph

For each pair of maximal cliques (C_i, C_j) in the graph

• We check whether they posses any common variables.

If yes, we designate a separator set

Between these 2 cliques as $S_{ij} = C_i \cap C_j$.

Then, we compute these separators trees

We build a clique graph:

• Nodes are the Cliques.

Compute the separator sets for each pair of maximal cliques and construct a weighted clique graph

For each pair of maximal cliques $(\mathit{C}_i,\mathit{C}_j)$ in the graph

• We check whether they posses any common variables.

If yes, we designate a separator set

Between these 2 cliques as $S_{ij} = C_i \cap C_j$.

Then, we compute these separators trees

We build a clique graph:

- Nodes are the Cliques.
- Edges (C_i, C_j) are added with weight $|C_i \cap C_j|$ if $|C_i \cap C_j| > 0$.

This step can be implemented quickly in practice using a hash table

Running Time: $O\left(|\mathcal{C}|^2 D\right) = O\left(N^2 D\right)$

Compute a maximum-weight spanning tree on the weighted clique graph to obtain a junction tree

You can us for this the Kruskal and Prim for Maximum Weight Graph

We will give Kruskal's algorithm

For finding the maximum-weight spanning tree

Compute a maximum-weight spanning tree on the weighted clique graph to obtain a junction tree

You can us for this the Kruskal and Prim for Maximum Weight Graph

We will give Kruskal's algorithm

For finding the maximum-weight spanning tree

Maximal Kruskal's algorithm

Initialize an edgeless graph $\ensuremath{\mathcal{T}}$ with nodes that are all the maximal cliques in our chordal graph.

We will add edges to ${\mathcal T}$ until it becomes a junction tree.

We have for $e_1, e_2, ..., e_m$ with $w_1 \geq w_2 \geq \cdots \geq w_1$

Maximal Kruskal's algorithm

Initialize an edgeless graph $\ensuremath{\mathcal{T}}$ with nodes that are all the maximal cliques in our chordal graph.

Then

We will add edges to ${\mathcal T}$ until it becomes a junction tree.

We have for $e_1, e_2, ..., e_m$ with $w_1 \geq w_2 \geq \cdots \geq$

Maximal Kruskal's algorithm

Initialize an edgeless graph $\ensuremath{\mathcal{T}}$ with nodes that are all the maximal cliques in our chordal graph.

Then

We will add edges to ${\mathcal T}$ until it becomes a junction tree.

Sort the m edges e_i in our clique graph from step 3 by weight w_i

We have for $e_1, e_2, ..., e_m$ with $w_1 \geq w_2 \geq \cdots \geq w_1$

For i = 1, 2, ..., m

- **1** Add edge e_i to \mathcal{T} if it does not introduce a cycle.
- ② If |C| 1 edges have been added, quit.
- Running Time given that $|E|=O\left($
 - $\mathcal{O}\left(|\mathcal{C}|^2\log|\mathcal{C}|^2\right) = \mathcal{O}\left(|\mathcal{C}|^2\log|\mathcal{C}|\right) = \mathcal{O}\left(N^2\log N\right)$

For i = 1, 2, ..., m

- **1** Add edge e_i to \mathcal{T} if it does not introduce a cycle.
- ② If $|\mathcal{C}| 1$ edges have been added, quit.

Running Time given that $|E| = O(|\mathcal{C}|^2)$

$$O\left(|\mathcal{C}|^2 \log |\mathcal{C}|^2\right) = O\left(|\mathcal{C}|^2 \log |\mathcal{C}|\right) = O\left(N^2 \log N\right)$$

Outline

- Introduction
 - What do we want?
 - Belief Propagation
 - The Intuition
 - Inference on Trees
 - The Messages
 - The Implementation
- Junction Trees
 - How do you build a Junction Tree?
 - Chordal GraphTree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
 - Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
 - Potential Function
 - Propagating Information in a Junction TreeExample
 - Now, the Full Propagation
 - Example of Propagation

Outline

- Introduction
 - What do we want?
 - Belief Propagation
 - The Intuition
 - Inference on Trees
 - The Messages
 - The Implementation
- Junction Trees
 - How do you build a Junction Tree?
 - Chordal Graph
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
 - Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
 - Potential Function
 - Propagating Information in a Junction Tree
 Example
 - Now, the Full Propagation
 - Example of Propagation

How do you build a Junction Tree?

Build a Chordal Graph

Moral Graph – marry common parents and remove arrows

How do you build a Junction Tree?

Given a General DAG

Build a Chordal Graph

• Moral Graph – marry common parents and remove arrows.

Outline

- Introduction
 - What do we want?
 - Belief Propagation
 - The Intuition
 - Inference on Trees
 - The Messages
 - The Implementation
- Junction Trees
 - How do you build a Junction Tree?
 - Chordal Graph
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
 - Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
 - Potential Function
 - Propagating Information in a Junction Tree
 Example
 - Now, the Full Propagation
 - Example of Propagation

How do you build a Junction Tree?

Triangulate the moral graph

• An undirected graph is triangulated if every cycle of length greater than 3 possesses a chord.

Outline

- Introduction
 - What do we want?
 - Belief Propagation
 - The Intuition
 - Inference on Trees
 - The Messages
 - The Implementation
- 3 Junction Trees
 - How do you build a Junction Tree?
 - Chordal Graph
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
 - Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
 - Potential Function
 - Propagating Information in a Junction Tree
 Example
 - Now, the Full Propagation
 - Example of Propagation

Listing of Cliques

Identify the Cliques

• A clique is a subset of nodes which is **complete** (i.e. there is an edge between every pair of nodes) and **maximal**.

Build the Clique Graph

Clique Graph

ullet Add an edge between C_j and C_i with weight $|C_i \cap C_j| > 0$

Getting The Junction Tree

Getting The Junction Tree

Outline

- Introduction
 - What do we want?
 - Belief Propagation
 - The Intuition
 - Inference on Trees
 - The Messages
 - The Implementation
- Junction Trees
 - How do you build a Junction Tree?
 - Chordal Graph
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
 - Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
 - Potential Function
 - Propagating Information in a Junction Tree
 Example
 - Now, the Full Propagation
 - Example of Propagation

Potential Representation for the Junction Tree

Something Notable

- \bullet The joint probability distribution can now be represented in terms of potential functions, $\phi.$
 - ► This is defined in each clique and each separator

Potential Representation for the Junction Tree

Something Notable

- \bullet The joint probability distribution can now be represented in terms of potential functions, $\phi.$
 - ► This is defined in each clique and each separator

Thus

$$P(\boldsymbol{x}) = \frac{\prod_{i=1}^{n} \phi_{C}(x_{c_{i}})}{\prod_{j=1}^{m} \phi_{S}(x_{s_{j}})}$$

where $x=(x_{c_1},...,x_{c_n})$ and each variable x_{c_i} correspond to a clique and x_{s_j} correspond to a separator.

Potential Representation for the Junction Tree

Something Notable

- \bullet The joint probability distribution can now be represented in terms of potential functions, $\phi.$
 - ► This is defined in each clique and each separator

Thus

$$P\left(\boldsymbol{x}\right) = \frac{\prod_{i=1}^{n} \phi_{C}\left(x_{c_{i}}\right)}{\prod_{j=1}^{m} \phi_{S}\left(x_{s_{j}}\right)}$$

where $x=(x_{c_1},...,x_{c_n})$ and each variable x_{c_i} correspond to a clique and x_{s_j} correspond to a separator.

Basic idea is to represent probability distribution corresponding to any graph as a product of clique potentials

$$P(\boldsymbol{x}) = \frac{1}{Z} \prod_{i=1}^{n} \phi_{C}(x_{c_{i}})$$

Then

Main idea

The idea is to transform one representation of the joint distribution to another in which for each clique, c, the potential function gives the marginal distribution for the variables in c, i.e.

$$\phi_C\left(x_c\right) = P\left(x_c\right)$$

This will also apply for each separator, s.

Now, Initialization

To initialize the potential functions

- Set all potentials to unity
- lacktriangledown For each variable, x_i , select one node in the junction tree (i.e. one clique) containing both that variable and its parents, $pa(x_i)$, in the original DAG.
- lacksquare Multiply the potential by $P\left(x_i|pa\left(x_i\right)\right)$

Now, Initialization

To initialize the potential functions

- Set all potentials to unity
- ② For each variable, x_i , select one node in the junction tree (i.e. one clique) containing both that variable and its parents, $pa(x_i)$, in the original DAG.

Now, Initialization

To initialize the potential functions

- Set all potentials to unity
- ② For each variable, x_i , select one node in the junction tree (i.e. one clique) containing both that variable and its parents, $pa(x_i)$, in the original DAG.
- **3** Multiply the potential by $P\left(x_i|pa\left(x_i\right)\right)$

Then

Outline

- Introduction
 - What do we want?
- Belief Propagation
 - The Intuition
 - Inference on Trees
 - The Messages
 - The Implementation
- Junction Trees
 - How do you build a Junction Tree?
 - Chordal Graph
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
 - Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
 - Potential Function
 - Propagating Information in a Junction Tree
 - Example
 - Now, the Full Propagation
 - Example of Propagation

Passing Information using the separators

Passing information from one clique \mathcal{C}_1 to another \mathcal{C}_2 via the separator in between them, \mathcal{S}_0 , requires two steps

Obtain a new potential for S_0 by marginalizing out the variables in C_1 that are not in S_0 :

Passing Information using the separators

Passing information from one clique ${\cal C}_1$ to another ${\cal C}_2$ via the separator in between them, ${\cal S}_0$, requires two steps

First Step

Obtain a new potential for S_0 by marginalizing out the variables in C_1 that are not in S_0 :

$$\phi_{S_0}^* = \sum_{C_1 - S_0} \phi_{C_1}$$

Second Step

Obtain a new potential for C_2 :

$$\phi_{C_2}^* = \phi_{C_2} \lambda_{S_0}$$

Second Step

Obtain a new potential for C_2 :

$$\phi_{C_2}^* = \phi_{C_2} \lambda_{S_0}$$

Where

$$\lambda_{S_0} = \frac{\phi_{S_0}^*}{\phi_{S_0}}$$

An Example

Outline

- Introduction
 - What do we want?
- Belief Propagation
 - The Intuition
 - Inference on Trees
 - The Messages
 - The Implementation
- Junction Trees
 - How do you build a Junction Tree?
 - Chordal Graph
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
 - Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
 - Potential Function
 - Propagating Information in a Junction Tree
 Example
 - Now, the Full Propagation
 - Example of Propagation

An Example

Initial representation

$\phi_{BSL} = P(B S) P(L S) P(S)$			
	l_1	l_2	
s_1, b_1	0.00015	0.04985	
s_1, b_2	0.00045	0.14955	
s_2, b_1	0.000002	0.039998	
s_2, b_2	0.000038	0.759962	

D/D(Q) D/I(Q) D/Q

$\phi_{BL} = 1$				
l_1 l_2				
b_1	1	1		
b_2	1	1		
	1	1		

ϕ_{BLF}	$\phi_{BLF} = P(F B, L) P(B) P(L) = P(F B, L)$			
	l_1	l_2		
f_1, b_1	0.75	0.1		
f_1, b_2	0.5	0.05		
f_2, b_1	0.25	0.9		
f_2, b_2	0.5	0.95		

An Example

After Flow

$\phi_{BSL} = P(B S) P(L S) P(S)$			
	l_1	l_2	
s_1, b_1	0.00015	0.04985	
s_1, b_2	0.00045	0.14955	
s_2, b_1	0.000002	0.039998	
s_2, b_2	0.000038	0.759962	

$\phi_{BL} = 1$			
	l_1 l_2		
b_1	0.000152	0.089848	
b_2	0.000488	0.909512	

$\phi_{BLF} = P\left(F B,L\right)$			
	l_1	l_2	
f_1, b_1	0.000114	0.0089848	
f_1, b_2	0.000244	0.0454756	
f_2, b_1	0.000038	0.0808632	
f_2, b_2	0.000244	0.8640364	

Now Introduce Evidence

We have

A flow from the clique $\{B,S,L\}$ to $\{B,L,F\}$, but this time we he information that Joe is a smoker, $S=s_1$.

Now Introduce Evidence

We have

A flow from the clique $\{B,S,L\}$ to $\{B,L,F\}$, but this time we he information that Joe is a smoker, $S=s_1$.

Incorporation of Evidence

$\phi_{BSL} = P(B S) P(L S) P(S)$					ϕ_{BLF}	= P(F)	B, L)	
	l_1	l_2	ϕ_{j}	$_{BL} =$	1		l_1	l_2
s_1, b_1	0.00015	0.04985		l_1	l_2	f_1, b_1	0.75	0.1
s_1, b_2	0.00045	0.14955	b_1	1	1	f_1, b_2	0.5	0.05
s_2, b_1	0	0	b_2	1	1	f_2, b_1	0.25	0.9
s_2, b_2	0	0				f_2, b_2	0.5	0.95

An Example

After Flow

$\phi_{BSL} = P(B S) P(L S) P(S)$		
	l_1	l_2
s_1, b_1	0.00015	0.04985
s_1, b_2	0.00045	0.14955
s_2, b_1	0	0
s_2, b_2	0	0

$\phi_{BL} = 1$				
	l_1 l_2			
b_1	0.00015	0.04985		
b_2	0.00045	0.14955		

$\phi_{BLF} = P\left(F B,L\right)$			
	l_1	l_2	
f_1, b_1	0.0001125	0.004985	
f_1, b_2	0.000245	0.0074775	
f_2, b_1	0.0000375	0.044865	
f_2, b_2	0.000255	0.1420725	

Outline

- Introduction
 - What do we want?
- Belief Propagation
 - The Intuition
 - Inference on Trees
 - The Messages
 - The Implementation
- Junction Trees
 - How do you build a Junction Tree?
 - Chordal Graph
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
 - Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
 - Potential Function
 - Propagating Information in a Junction Tree
 Example
 - Now, the Full Propagation
 - Example of Propagation

Two phase propagation (Jensen et al, 1990)

lacktriangle Select an arbitrary clique, C_0

Distribution Phase – flows passed from C_0 to periphery

Two phase propagation (Jensen et al, 1990)

- lacktriangle Select an arbitrary clique, C_0
- 2 Collection Phase flows passed from periphery to C_0

Two phase propagation (Jensen et al, 1990)

- lacktriangle Select an arbitrary clique, C_0
- 2 Collection Phase flows passed from periphery to C_0
- 3 Distribution Phase flows passed from C_0 to periphery

Outline

- Introduction
 - What do we want?
- 2 Belief Propagation
 - The Intuition
 - Inference on Trees
 - The Messages
 - The Implementation
- Junction Trees
 - How do you build a Junction Tree?
 - Chordal Graph
 - Tree Graphs
 - Junction Tree Formal Definition
 - Algorithm For Building Junction Trees
 - Example
 - Moralize the DAG
 - Triangulate
 - Listing of Cliques
 - Potential Function
 - Propagating Information in a Junction Tree
 Example
 - Now, the Full Propagation
 - Example of Propagation

Example

Example

After the two propagation phases have been carried out

• The Junction tree will be in equilibrium with each clique containing the joint probability distribution for the variables it contains.

After the two propagation phases have been carried out

- The Junction tree will be in equilibrium with each clique containing the joint probability distribution for the variables it contains.
- Marginal probabilities for individual variables can then be obtained from the cliques.

- By selecting a clique for each variable for which evidence is available
- The potential for the clique is then set to 0 for any configuration

After the two propagation phases have been carried out

- The Junction tree will be in equilibrium with each clique containing the joint probability distribution for the variables it contains.
- Marginal probabilities for individual variables can then be obtained from the cliques.

Now, some evidence E can be included before propagation

• By selecting a clique for each variable for which evidence is available.

After the two propagation phases have been carried out

- The Junction tree will be in equilibrium with each clique containing the joint probability distribution for the variables it contains.
- Marginal probabilities for individual variables can then be obtained from the cliques.

Now, some evidence E can be included before propagation

- By selecting a clique for each variable for which evidence is available.
- The potential for the clique is then set to 0 for any configuration which differs from the evidence.

After propagation the result will be

$$P(x, E) = \frac{\prod_{c \in C} \phi_c(x_c, E)}{\prod_{s \in S} \phi_s(x_s, E)}$$

$$P\left(x|E\right) = \frac{\prod_{c \in C} \phi_c\left(x_c|E\right)}{\prod_{s \in S} \phi_s\left(x_s|E\right)}$$

After propagation the result will be

$$P(x, E) = \frac{\prod_{c \in C} \phi_c(x_c, E)}{\prod_{s \in S} \phi_s(x_s, E)}$$

After normalization

$$P(x|E) = \frac{\prod_{c \in C} \phi_c(x_c|E)}{\prod_{c \in S} \phi_s(x_s|E)}$$

