ДЗ номер 3 по сборке транскриптома. Чангалиди Антон

Task 2020

Dataset: https://www.ncbi.nlm.nih.gov/sra/?term=srp003186

Возьму два семпла (один - рак, другой - обычный):

- paired-end sequencing of normal breast cDNA
- 1 ILLUMINA (Illumina Genome Analyzer II) run: 6.6M spots, 735.2M bases, 468.2Mb downloads Accession: SRX025833
- ✓ paired-end sequencing of KPL-4 cDNA
- 1 ILLUMINA (Illumina Genome Analyzer II) run: 6.8M spots, 680M bases, 424.8Mb downloads Accession: SRX025832

Acession numbers:

SRR064287 (cancer)

SRR064437 (normal)

mkdir data

fastq-dump -split-3 -O data/ --gzip SRR064287
fastq-dump -split-3 -O data/ --gzip SRR064437

0. хочу проверить качество, и запустить обычный триммоматик.

fastqc -o data/ data/*.fastq.gz

1. Run adapter-trimming software of your choice to get clean reads Fastqc показывает, что адаптеров нет (те скачки контента в начале - возможно просто сайты рестрикции):

Значит, ничего резать не надо. Окей, переходим к следующему пункту.

2. **Run rnaSPAdes** (http://cab.spbu.ru/software/rnaspades/) to assemble the combined transcriptome of normal tissues and a cancer cell line of your choice **Буду использовать rnaSPADES**, так как есть небольшой опыт. После установки запустим:

```
rnaspades -1 data/SRR064437_1.fastq -2 data/SRR064437_2.fastq
-m 10 -t 8 -o out_normal/
rnaspades -1 data/SRR064287_1.fastq -2 data/SRR064287_2.fastq
-m 10 -t 8 -o out cancer/
```

3. run cd-hit-est (http://weizhongli-lab.org/cd-hit/) to cluster similar transcripts

Запускается так: ~/tools/cdhit/cd-hit-est

```
~/tools/cdhit/cd-hit-est -i out_normal/transcripts.fasta -o
out_normal/hit_est_output
~/tools/cdhit/cd-hit-est -i out_cancer/transcripts.fasta -o
out cancer/hit est output
```

Получил что-то, пойдем дальше.

4. Annotate with blast+

(ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/) using Uniprot SwissProt (can be downloaded here https://www.uniprot.org/downloads) as a reference

Тут надо было разбираться, я решил не доделывать эти шаги, и приступить к 5-7.

5. Find fusion transcripts with pizzly (https://github.com/pmelsted/pizzly)

Скачаю референсы:

```
wget
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/releas
e_36/gencode.v36.annotation.gtf.gz
wget
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/releas
e_36/gencode.v36.transcripts.fa.gz

# не забудь, что надо палочки в аннотации заменить
zcat gencode.v36.transcripts.fa.gz | tr '|' ' ' | gzip -1 >
gencode.v36.transcripts.fixed.fa.gz
# и индексы для каллисто строить по fixed референсу!
```

```
#
# To activate this environment, use
#
# $ conda activate pizzly
#
# To deactivate an active environment, use
#
# $ conda deactivate
```

conda activate pizzly

First we create the kallisto index

```
kallisto index -i index.idx -k 31 transcripts.fa.gz (этот файл я скачал у Ларисы - их должно быть 2):
```

```
      ■ index.cache.txt
      53.1 MB
      11 Dec

      ■ index.cache.txt.gz
      10.3 MB
      Wed

      ■ index.idx
      3.2 GB
      10 Dec

      ■ index.idx.gz
      2.4 GB
      Wed
```

Next we quantify using kallisto with fusion detection enabled

```
kallisto quant -i ./references/index.idx --fusion -o output_1 data/SRR064287_1.fastq.gz data/SRR064287_2.fastq.gz

pizzly -k 31 --gtf ./references/gencode.v36.annotation.gtf
--cache test_1.index.cache.txt --align-score 2 --insert-size

400 --fasta references/gencode.v36.transcripts.fa.gz --output

test_1 output_1/fusion.txt

kallisto quant -i ./references/index.idx --fusion -o output_2

data/SRR064437_1.fastq.gz data/SRR064437_2.fastq.gz

pizzly -k 31 --gtf ./references/gencode.v36.annotation.gtf
--cache test_2.index.cache.txt --align-score 2 --insert-size

400 --fasta references/gencode.v36.transcripts.fa.gz --output

test 2 output 2/fusion.txt
```

conda deactivate

Итак, у нас были датасеты:

SRR064287 (cancer)

SRR064437 (normal)

Поэтому файлы _1 - раковые, _2 - обычные.

Фьюжнов в 3 раза меньше в обычных клетках. makes sense.

Теперь воспользуемся json-файлом и командами:

```
pizzly_flatten_json.py test_1.json cancer_fusion.txt
pizzly_flatten_json.py test_2.json normal_fusion.txt
```

И отфильтруем полученные транскрипты (чтобы не ноль), получим:

Обычный транскрипт:

	geneA.name	geneB.name	paircount	splitcount
24	HLA-C	HLA-B	87	9
47	CCDC32	CBX3	2	1
27	NPEPPS	TBC1D3D	1	3
28	NPEPPS	TBC1D3I	1	3
29	NPEPPS	TBC1D3L	1	3
30	NPEPPS	TBC1D3K	1	3
31	NPEPPS	TBC1D3	1	3
32	NPEPPS	TBC1D3G	1	3
33	NPEPPS	TBC1D3E	1	3
34	NPEPPS	TBC1D3C	1	3
35	NPEPPS	TBC1D3H	1	3

Раковый транскрипт:

	geneA.name	geneB.name	paircount	splitcount
43	BSG	NFIX	19	3
100	NPEPPS	TBC1D3D	6	1
107	NPEPPS	TBC1D3K	6	1
106	NPEPPS	TBC1D3L	6	1
105	NPEPPS	TBC1D3C	6	1
104	NPEPPS	TBC1D3H	6	1
103	NPEPPS	TBC1D3E	6	1
101	NPEPPS	TBC1D3	6	1
102	NPEPPS	TBC1D3G	6	1
99	NPEPPS	TBC1D3I	6	1
113	NOTCH1	NUP214	5	4
132	PTMA	HMGB1	5	2
56	EEF1A1	HSP90AB1	3	1
64	SET	PTMA	3	1
156	HSP90AB1	HSP90AA1	3	2
92	PPP1R12A	SEPTIN10	2	4
78	RPS2	FTH1	1	1
75	CENPX	DUS1L	1	1
74	RCN1	ERBB2	1	1
130	RPL15	CANX	1	1

Логично, что в раковом больше фьюжн-транскриптов, так как там по идее происходит больше мутаций всяких

6. Find viral transcripts from BLAST annotation/via kraken2 (https://github.com/DerrickWood/kraken2/wiki/Manual)

Кракен сам установлен первой версии, чтобы я мог использовать предсобранную БД:

Note: the databases below were built for Kraken v1

kraken --db minikraken_20171013_4GB \

- MiniKraken DB_4GB (2.9 GB): A pre-built 4 GB database constructed from complete bacterial, archaeal, and viral genomes in RefSeq (as of Oct. 18, 2017). This can be used by users without the computational resources needed to build a Kraken database. However this contains only 2.7% of kmers from the original database.
 - DustMasked MiniKraken DB 4GB (2.9 GB): This 4GB database constructed from dustmasked bacterial, archaeal, and viral
 genomes in Refseg as of Oct. 18, 2017.
 - Bracken files for this database can be found at https://ccb.jhu.edu/software/bracken/
 - seqid2taxid.map (11 MB)

Usage:

```
--threads 8 \
--paired \
--fastq-input \
data/SRR064287_1.fastq\
data/SRR064287_2.fastq \
--only-classified-output \
--classified-out kraken classified cancer.fasta \
--output kraken cancer.kraken
Out:
75748 sequences classified (1.11%)
  6724418 sequences unclassified (98.89%)
Make labels:
kraken-translate --db minikraken 20171013 4GB \
kraken cancer.kraken > kraken cancer.labels
And one more for non-cancer (normal):
Usage:
kraken --db minikraken_20171013_4GB \
--threads 8 \
--paired \
--fastq-input \
data/SRR064437_1.fastq\
data/SRR064437_2.fastq\
--only-classified-output \
--classified-out kraken classified normal.fasta \
--output kraken normal.kraken
Out:
40169 sequences classified (0.61%)
  6524388 sequences unclassified (99.39%)
Make labels:
```

kraken-translate --db minikraken_20171013_4GB \
kraken normal.kraken > kraken normal.labels

Отфильтруем по вирусам:

```
(base) toharhymes@toharhymes-ThinkPad-L388:-/work/IB/2_gene_expression/homeworks/hw_3/all_data$ cat kraken_cancer.labels | grep -c Viruses
3788
(base) toharhymes@toharhymes-ThinkPad-L380:-/work/IB/2_gene_expression/homeworks/hw_3/all_data$ cat kraken_cancer.labels | grep -e Viruses > kraken_cancer_viruses.labels
(base) toharhymes@toharhymes-ThinkPad-L380:-/work/IB/2_gene_expression/homeworks/hw_3/all_data$ cat kraken_normal.labels | grep -c Viruses
6148
(base) toharhymes@toharhymes-ThinkPad-L380:-/work/IB/2_gene_expression/homeworks/hw_3/all_data$ cat kraken_normal.labels | grep -e Viruses > kraken_normal_viruses.labels
```

В нашем случае, получилось, что найдено больше в нормальных клетках (в 2 раза) - учитывая, что всего было 70 тысяч классифицировано в раковых, и 40 тысяч в не раковых.

Далее снова маленький анализ в питоне:

(Смержил, и отфильтровал, чтобы встречались хотя бы у 1 из сэмпла более 10 раз - получил график встречаемости рида каждого вируса)

В целом, можно сказать, что из всех ридов, очень маленький процент оказывается вирусным (в основном, все идентифицированные риды -

бактериальные). Причем, выделяется только два: BeAn 58058 Virus и Simbu orthobunyavirus. Интересные вирусы, один - родом из Бразилии, другой - из Уганды:)