LaPIS Diagnostic Test Workbook - Mathematics

Name : Saranya V

Class: 7

Section : C

School : AKV Public School

Login ID : AKV194

Saranya V's Performance Report

Score: 12/40 Percentage: 30.0%

Saranya V's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sig
		Teacher's Fe	edback to Student		
	Class Teacher S		——————————————————————————————————————	pal Signature	

Basic arithmetic

Topics to be Improved		
Types of angles	Identification of types of angles	

Hi, here in this video you will learn Types of Angles

Question: 1

Find the angles.

Answer:

The angle ranges from $__$ ° to $__$ °.

The angle perpendicular to 0° is $___{\circ}$.

The straight line measures $___^{\circ}$.

Question: 2

The angle formed between the directions

(i) West and East is _____ angle.

(ii) North and East is angle.
(iii) East and South is angle.
Answer:
The angle formed between West and East is° and it is called angle.
The angle formed between North and East is° and it is called angle.
The angle formed between East and South is° and it is called angle.
Question: 3
The addition of straight angle and right angle is angle.
Answer:
The measurement of straight angle is°
The measurement of right angle is°.
Straight angle + Right angle = + = =
It is called as angle.

Mensuration

Topics to be Improved		
Perimeter Perimeter of triangle		
Area	Area of rectangle	

.....

Hi, here in this video you will learn **Perimeter**

Question: 4

Highlight the perimeter in the given image.

4				
4	n	271	101	r.
$\boldsymbol{\mathcal{I}}$		7 U.	/ (,)	

Perimeter is the _____ (outer / inner) boundary of the shape

Question: 5

Find the perimeter of the given figure.

Answer:

Sides of the given shape = _____

Perimeter of a shape is _____ (sum / difference) of _____ (all/ opposite) sides.

Perimeter of the given shape = _____ Question: 6 Find the length of the rectangular floor if its perimeter is 60 ft and breadth is 3 ft. Answer: Perimeter = ____ | Breadth = ____ Shape of the floor is _____ and its perimeter formula is _____. Given: floor perimeter = _____, and breadth = _____. Therefore, length of the rectangular floor is ______. Hi, here in this video you will learn **Area** Question: 7 Find which of the shaded portion in the given shape represent it's area. Answer: Given figure is ______ in shape. Area is the _____ (inside/ outside/ boundary) of a shape. Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

Answer:

The garden is in	shape.		
Length of garden is as	nd breadth of gar	den is	
Formula for area of the shape	=		
The area of garden $=$. x =	$ = cm^2 $	
Question: 9			
Shade the possible dimension	of the door whose	e area is $500 m^2$	
$\boxed{50 \ m \ \times \ 10 \ m}$	25 m × 25 m	$\boxed{25 \ m \ \times \ 20 \ m}$	$\boxed{ 30 \ m \ \times \ 20 \ m }$

$\underline{Answer:}$

Door is _____ in shape. Area of the _____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25 \text{m} \times 25 \text{m}$			
$25 \text{m} \times 20 \text{m}$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

Topics to be Improved		
Arithmetic mean, mode and median Mean, Median and Mode		
Chance of probability	Basis of probability	
Range	Finding the range	

Hi, here in this video you will learn Mean, Median, Mode

Question: 10	
Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67,	24, 19 and 98.
$\underline{Answer:}$	
Mode is the number that occurs (frequently / rarely) in a given list Arranging the data in ascending order:	of observations.
occurs most number of times. Then, mode of the given data is	
Question: 11	

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1

......

Answer:

Median is the _____(first/central/last) value of a data when the data is arranged in ascending or descending order.

Arrange the given data in ascending order: _____ of a data.

Question: 12

Marks scored	100	90	80	70
Number of students	$oxed{4}$	5	2	1

$Mean = \underline{\hspace{1cm}}$, $Median = \underline{\hspace{1cm}}$ and $Mode = \underline{\hspace{1cm}}$.
Answer:
$Mean = \frac{\text{of all observation}}{\text{number of observation}}.$
Here s sum of all observation =, number of observation = Therefore, mean = Arrange the data in ascending order : Here, median =, mode =
Hi, here in this video you will learn Basics of probability
Question: 13
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
Answer:
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event. Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 14
Probability of sure events is (greater / smaller) than probability of impossible events
Answer:
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Therefore, Probability of sure event $\underline{\hspace{1cm}}$ Probability of impossible event.
Question: 15
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.
Answer:
Things Raju have

Does Raju have pen in his box, (Yes/ No). Then probability of getting pen from his box is $(0/1)$
Hi, here in this video you will learn Range
Question: 16
Range of the data =
Answer:
The difference between highest value and lowest value is Example: Find the range of 10, 5, 30, 23, 54, 39 and 16 Highest value = , Lowest value = Range = =
Question: 17
Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9
$-20 + 51$ $\frac{-38 - 51}{2}$ $51 + 38$ $\frac{51 + 20}{2}$
Answer:
Range = Arranging the data in ascending order, In the given data, Highest value = , Lowest value = , Range = =
Question: 18
Find the range of first 10 multiple of 5.
Answer:
First 10 multiple of 5 = Therefore, Highest value = , Lowest value = , Range = – =

Geometry

Topics to be Improved					
Related angles	Complementary angles				
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles				
Faces vertex and edges	Idenfication of faces, edges and vertices				
Right angle triangle and pythagoras property	Basics of Pythagoras property				
Types of triangle	Basics of types of triangle (sides)				

Hi,	here	in	this	video	you	will	learn	Related	Angles
-----	------	----	------	-------	-----	------	-------	---------	--------

Question: 19

- 1. Two angles are complementary if their sum is equal to _____.
- 2. Two angles are supplementary if their sum is equal to _____.

Answer:

- 1. When sum of the two angles is equal to 90°, they are called as _____ angle. Example: 45° and 45°, _____, and ____.
- 2. When sum of the two angles is equal to 180°, they are called as _____ angle. Example: 90° and 90°, _____, and ____.

Question: 20

Shade the complementary angles.

Answer:

Two angles are said be complementary if the sum of their angles are equal to _____.

 $85^{\circ} + 95^{\circ} =$ _____ and this is _____ (a / not a) complementary angles. $45^{\circ} + 45^{\circ} =$ and this is _____ angles. $6^{\circ} + 84^{\circ} =$ and this is _____ angles. $73^{\circ} + 107^{\circ} =$ _____ and this is _____ angles. $36^{\circ} + 64^{\circ} =$ _____ and this is ____ angles. $90^{\circ} + 90^{\circ} =$ _____ and this is _____ angles. Question: 21 Find the complement and supplement of 15° and 90° Answer: One angle is ____ (complements / supplements) to other angle, when sum of the two angles is equal to 90°. One angle is _____ (complements / supplements) to other angle, when sum of the two angles is equal to 180°. Complement of $15^{\circ} = \underline{\hspace{1cm}}$, Complement of $90^{\circ} = \underline{\hspace{1cm}}$. Supplement of $15^{\circ} = \underline{\hspace{1cm}}$, Supplement of $90^{\circ} =$ Hi, here in this video you will learn Criteria of congruence Question: 22 Circle the groups that contain congruent images. Answer: Two geometrical shapes are said to be congruent if they are _____ (identical/non-identical) in shapes and size. Example: Square and Rectangle are _____ (congruent/not congruent). Question: 23

If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two

triangles are congruent under _____ (SSS/ASA/SAS) criteria.

1				_
\boldsymbol{A}	ns	w	er	:

Two triangle are ______ (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, _____ and ____.

- 1. In SSS Congruence criteria (2/3/5) sides of the triangle are (equal/1) not equal) to the three corresponding sides of the other triangle.
- 2. In SAS Congruence criteria (2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
- 3. In ASA Congruence criteria (2/3/5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

Question: 24

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn Basics of 3D model

Question: 25	

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

Answer:
has two end point (line/line segment/ray).
Ais a point where two or more line segments meet(Vertex/ edges/ faces). Mark the vertices in the diagram,
Question: 26
Mark and find the number of vertices, edges and faces in a cube.
Answer:
Mark the vertex, edges and faces in a cube.
Count the number of vertex, edges and faces in a cube.
Cube have vertices, edges and faces.
Question: 27
How many vertices, edges and faces does dices have?

Answer:				
The shape of dice is		2		
Dices have vertices,	_ edges and	faces.		
Hi, here in this video you wil	l learn Pyth	agoras pro	perty	
Question: 28				
In a right angled triangle, square of legs.	the		= sum of t	the squares of the
Answer:				
Pythagoras theorem is only applicable Longest side of the triangle is(hypotenuse/ legs).	(hyp	otenuse/ legs) a	and other two si	
Pythagoras theorem states that				·
<u>Question: 29</u>				
Find the hypotenuse of the triangle	ABC if base is	12 m and altitu	ude is 5 m.	
Answer:				
	A M M M M M M M M M M M M M M M M M M M	m	C	
Pythagoras theorem states that squa	are of the	= si	um of the square	es of its
$\overline{Given: Base} = \underline{\qquad}$, Altitude =	;			
Base and altitude are	(hypotenuse,	/ legs) of the tr	iangle.	

By Pythagoras theorem, $(\underline{\hspace{1cm}})^2$	= ($(-1)^2 + ($	$)^2$
	=	+	

Therefore, hypotenuse of the triangle is _____.

Question: 30

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem,
$$(____)^2 = (___)^2 + (___)^2$$

......

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Types of triangle

Question: 31

Polygon with three sides is called as _____

Answer:

A polygon is a simple _____ (open / closed) curve made up of only line segments.

Polygon with three sides is called _

Draw a diagram of polygon with three sides:

Identify the types of triangles.

Answer:

Triangle has _____ sides.

- Triangle with all sides are equal is called _____ triangle.
- Triangle with two sides of equal length is called _____ triangle.
- Triangle with three sides of different length is called _____ triangle.

Question:~33	
--------------	--

A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft. then the possible length of third side of park can be ______.

Answer:

The shape of the park is ______.

The shapes has ______ sides and this shape has _____ sides of equal length.

Given: length of sides of park is _____.

The possible length of third side is _____.

Number system

Topics to be Improved				
Law of Exponents	Law of Exponents			
Exponents	Solving exponents			
Fractions	Division of fraction			
Introduction to rational numbers	Basics of rational numbers			
Integers	Basics of integers			
Operations on rational numbers	Division of rational numbers			
Positive and negative rational numbers	Identification of positive rational numbers			

Hi,	here i	in	this	video	you	will	learn	Law	of	exponents
-----	--------	----	------	-------	-----	------	------------------------	-----	----	-----------

Question: 34		 	
$(x)^0$ is equal to	·		

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In
$$(x)^0$$
 base = _____
Power = ____

Any number or variable with power zero is equal to _____. Therefore, $(x)^0$ equal to _____.

Question: 35

i.
$$a^m \times a^n = \underline{\hspace{1cm}}$$

ii. $a^m \div a^n = \underline{\hspace{1cm}}$

Answer:

Multiplication of two numbers with same base with different power, their exponents are _____ (added/ subtracted)

Division of two numbers with same base with different power, their exponents are ______ (added/ subtracted).

Question: 36

Circle the result of the expression $(a^0 \times b^1) + (m^1 \times n^0) + (x^0 \times y^1)$

$$a+n+x$$
 bmy 1 $ab+mn+xy$ 0 anx $b+m+y$

Answer:

Any number with power zero is equal to______ (One/ Zero).

Any number with power one is equal to ______ (same/ different) number.

$$(a^{0} \times b^{1}) + (m^{1} \times n^{0}) + (x^{0} \times y^{1}) = (\underline{\hspace{1cm}}) + (\underline{\hspace{1cm}} \ddot{O} \underline{\hspace{1cm}}) + (\underline{\hspace{1cm}})$$

$$= \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$

Hi, here in this video you will learn Exponents and power

Question: 37

Find the exponential form of 1000.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

Exponents is also called as _____ (Base / Power).

......

......

1000 can be written as = $10 \times$ ____ \times ____ 10 is raised to the power of ____ = (10)

Question: 38

Find the value of $(-2)^3$.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form
$$(-2)^3$$
, base = ____, power = ____.
 $(-2)^3$ = ____ × ___ = ___.

Question: 39

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$.
- (ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$.

Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn Division on fractions

Question: 40

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

10	
35	

.....

	<u> </u>	
/	32	
	7	

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is _____ , 2 is _____ and 7 is _____

To convert mixed fraction into improper fraction, $\frac{(\text{Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + ---- }{7} = \frac{\square}{\square}$$

.....

Question: 41

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $__$ and divisor = $__$.

$$\frac{1}{3} \div \frac{14}{3} = \underline{1} \times \boxed{ } = \boxed{ }$$

Question: 42

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{} = \underline{\underline{}}$$

Then the answer is _____

Hi, here in this video you will learn Basics of rational numbers

.....

Question: 43

The numbers in the diagram represents____

Answer:

0, 4,5,2,3,1 are ______ numbers. -1,-2, -3, -4 are _____ numbers.

The combination of these circles are called ______.

Combination of all three circles are called as _____ numbers.

Question: 44

Shade the correct form of rational numbers.

.....

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____ (integer/ not a integer), denominator is equal to _____ (zero/ one/ any integer other than zero).

Question: 45

Circle the number which is not a rational number.

$$\frac{-5}{-8}$$
 $\frac{-3}{2}$ $\frac{12}{-6}$ $\frac{0}{-9}$ 256 $\frac{4}{0}$

Answer:

Rational number can be expressed as ______, where both numerator and denominator are ______(integer/ not a integer), denominator is equal to ______ (zero/ one/ any integer other than zero).

Here, ______ is/are rational number and ______ is/are not a rational number.

Hi, here in this video you will learn Basics of integers

Question: 46

Highlight the ring that contains whole numbers.

.....

.....

Answer:

The numbers inside the inner ring $(1, 2, 3, \ldots)$ are _____ numbers.

The numbers inside the middle ring are _____ numbers.

The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as ______.

Question: 47

Colour the frame of the box which contains the number 1, 4 and -10

Whole numbers

Negative numbers

Integers

.....

.....

Naturals numbers

4					
\boldsymbol{A}	$T_{oldsymbol{t}}$	su	IJ€	27	•

Whole number consists of <u>0,1,2,3,4,.....</u> Negative number consists of <u>_______</u>.

Natural numbers consists of <u>_______</u>. Integers consists of <u>_______</u>.

Now, 1, 4, -10 are in <u>_______</u>.

, , ,

Question: 48

State whether the statement is true or false. Every positive number is an integer.

Answer:

Positive numbers are ______. Integers consists of _____.

Therefore, positive numbers are _____ (in/not in) integers.

Hi, here in this video you will learn **Operation on rational numbers**

Question: 49

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor.

Here, dividend = _____ and divisor = ____

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

.....

 $\underline{Question \colon 50}$

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of $0.6 = \underline{\hspace{1cm}}$

when any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor. Here, dividend = _____ and divisor = _____.

$$\frac{18}{7} \div \boxed{ } = \frac{18}{7} \times \boxed{ } = \boxed{ }$$

Question: 51

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is _____

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 52

Segregate positive and negative rational number.

• If both the numerator and the denominator of a rational number are (positive/negative), then it is positive rational number.
• If either the numerator and the denominator of a rational number are negative, then it is (positive/negative) rational number.
In the given circle, positive rational numbers are and negative rational numbers are
$Question: \ 53$
$\frac{-3}{-4}$ is a (positive /negative / neither positive nor negative) rational number.
$\underline{Answer:}$
-3 is a number, -4 is a number.
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = \boxed{}$ and this rational number.
(Positive / Negative / Neither positive nor negative rational number)
Question:~54
The product of a positive rational number and a negative rational number isrational number. (Positive/ Negative/ neither positive nor negative)
$\underline{Answer:}$
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number

Comparing Quantities

Topics to be Improved		
Simple interest	Calculation of simple interest	
Equivalent ratios	Basic of proportion	
Percentage	Basic of percentage	
Conversion of fraction into percentage	Conversion of fraction into percentage	

 Hi , here in this video you will learn $\operatorname{\mathbf{Simple}}$ $\operatorname{\mathbf{Interest}}$

Question: 55

Match the following.

	Column A
i	Principle(P)
ii	Amount (A)
iii	Rate (R)
iv	Time period (T)

	Column B
a	Interest calculated based on this
b	Total sum you borrow
С	Number of years
d	Total sum with interest

Α	L7	$\imath s$	\boldsymbol{w}	$e\tau$	ે:

Formula for calculating simple interest $=$
Interest calculated based on
Total sum you borrow is known as
Number of years is Total sum with interest is
Question: 56
Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest she earned.
Answer:
Given:
$Amount = \underline{\hspace{1cm}}, Principle = \underline{\hspace{1cm}}, Time period = \underline{\hspace{1cm}}.$
If Amount and principle is given, then formula for calculating interest is
Interest = =
Question: 57
The simple interest on Rs.5000 for 3 years is Rs.1350. Find the rate of interest.

$\underline{Answer:}$					
Interest =	$_{}$, Time period = $_{-}$		_ , Principal	l =	·
Rate of interest =	x 100				
Rate of interest =	Principal x				
Substituting values i					
	x 100				
Rate of interest =	Principal x				
Rate of interest $=$ $_$					
Therefore, the rate of	of interest is	%			
Hi, here in this	video you will learn	Basics of p	proportio	n	
Question: 58					
If a:b and c:d are eq	uivalent ratio, then it can	n be expressed	l as		
$\underline{Answer:}$					
\-	on / ratio) is used to exp press proportion is		(one/two) e	equivalent ra	tios.
Question: 59					
Find the ratio of sha	ded part to unshaded pa	art of A and B	3. Are the tw	vo ratios equ	uivalent?
					٦
					+
	A				_
			В		
4					
Ratio of shaded to u Shaded part of B = Unshaded part of B	•	Fractio			
Fractional form = Fraction form of A _	(equal/ not equal	al) to Fraction	form of B.		

If a: b:: c: d is proportion, shade the correct expression

Question: 60

$\boxed{ a = \frac{bc}{d} } \boxed{ c = \frac{ad}{b} } \boxed{ ad=cd}$
Answer:
Two equivalent ratio which are proportion, it can be written as a : b :: c : d or $___=$ (in fraction) . First and fourth term are called $___$ and second and third term are called $___$. In proportion, product of extreme terms is $___$ (equal to/ not equal to) product of middle terms.
Therefore, $a \times d = \underline{\hspace{1cm}}$, then $a = \underline{\hspace{1cm}}$ and $c = \underline{\hspace{1cm}}$
Hi, here in this video you will learn Basics of percentage
Question: 61
2% can be written as
Answer:
Percentages are numerators of fractions with denominator $2\% = { }$
Question: 62
Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?
Answer:
Arun attended LaPIS test for marks. He got marks.
75 % can be written in fraction form
Then the mark scored by Arun = Total mark \times 75% = \times =
Question: 63

Question: 03

There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten apples.

 $\underline{Answer:}$

There are apples in a basket. Number of rotten apples are
Fraction form of rotten apples in a basket =
Convert it into a percent= x% =
Hi, here in this video you will learn Converting fraction into percentage
Question: 64
Complete the box in the given equation.
$5\% = \frac{5}{\Box}$
Answer:
Percentage are the fraction with the denominator
Therefore, 5% can be expressed as
Question: 65 Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.
(i) $\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$
(ii) $\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$
(iii) $\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$
Answer:
To convert fraction into percentage, the value of (denominator / numerator)should be 100 or (multiply / divide) the fraction with 100 %. Therefore, correct conversion form is
Question: 66
Find the percentage of shaded part of square.

$\underline{Answer:}$
The square shape is divided into parts. Number of shaded part of square is Shaded part of square in fraction is
To Convert into percentage , x 100

Algebra

Topics to be Improved					
Monomials, binomials, trinomials and polynomials	Types of algebraic expression				
Basics of simple equation	Formating of simple equation, Solving of simple equation				
subtraction of algebraic expressions	subtraction of algebraic expressions				
Addition and subtraction of algebraic expressions	Like terms and Unlike terms				
Terms of an expression	Identification of terms in an expression				

Hi.	here in	this	video	vou	will	learn	Types	of	expression
,	11010 111	. 01110	VIGCO	$y \circ \alpha$	** 111	100111	- ., P \co	-	Chpi Cobion

Question:	67
a accomon.	$\boldsymbol{\sigma}$

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

.....

The terms in the expression are $____$, $____$, and $____$.

Therefore, there are ______ terms in the expression.

Question: 68

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____.
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.

3. The terms in expression $7m +$ Here, expression has term		
Question: 69		
$5m^2 + m + 0$ is a ex	epression. (Monomial/Binomial/Trinomial)	
Answer:		
The terms in expression $5m^2 + m +$		
Here, the expression has	terms and it is called a	expression.
Hi, here in this video you wil	ll learn Solving an equation using	
Question: 70		
S) B	OX A BOX B	
Box B contains times the nu	umber of chocolates in Box A	
Answer:		
Box A contains chocolates. Box B contains chocolates. No. of chocolates in Box B =	$_{-}$ × (No. of chocolates in Box A)	
Question: 71		
Write the equation for the following Subtracting four times of m from 4 is	statement.	
Answer:		
	Four times of m	
Subtracti	Four times of $m = \underline{\hspace{1cm}}$ ng four times of m from $4 = \underline{\hspace{1cm}}$	
Subtraction		
The equation is		
Question: 72		
Compare the given two statements (Sum of $2a$ and $9 \square$ Add 9 to the property of the propert	(<,>,=)	
Answer:		

Sum of 2a and 9 =

Product of a and $2 = \underline{\hspace{1cm}}$

Add 9 to the product of a and 2 =

Therefore, sum of 2a and 9 \square Add 9 to the product of a and 2

Hi, here in this video you will learn Solving an equation

Question: 73

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley © is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 74

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

......

 $7 \cap + 3 = -4$

Answer:

The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

7× ___+3= ___

 $7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$

7× ____+3 = ____

 $7 \times$ ____+3 = ____ $7 \times$ ___+3 = ____

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 75

Arrange the terms in the descending order when the value of x is 2.

 $\underline{Answer:}$

The given expression are ______.

The value of x is ______substituting value of x

 $2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$

 $2x - 4 = 2 \times \underline{\qquad} - 4 = \underline{\qquad}$ $\frac{1}{2}x = \frac{1}{2} \times \underline{\qquad} = \underline{\qquad}$

		ng order:,, raic terms are,				
Hi,	here in this vi	deo you will learn	Subtraction	on expressi	on some	
\overline{Que}	stion: 76					
Find	the sum of two ex	expressions $a + b + c a$	and $b + c + d$			
Ans	wer:					
The The	two terms will get	ions are and _ added only if they are sions = +	e(Like/	Unlike) terms.		
\overline{Que}	stion: 77					
			School A	School B		
		Number of boys	100b	250b		
		Number of girls	150g	200g		
		Number of teachers	25t	45t		
(i)	Total number of	boys in school A and	B is			
(ii)	Total number of	students in school B i	s			
(iii)	How many more	teachers are there in s	school B than sch	hool A?	-	
Ans	wer:					
(i)	Number of boys	in school A = in school B = boys in school A and	-•	+=	:	
(ii)	(ii) Number of boys in school $B = \underline{\hspace{1cm}}$, Number of girls in school $B = \underline{\hspace{1cm}}$. Total number of students in school B is $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.					
(iii)	Number of teachers school A =	ers more in school B t	han school A =	Teachers in scho	ol B — Teachers in	
\overline{Que}	stion: 78					

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{cccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{2cm}}
 \end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

Hi, here in this video you will learn Addition on expression

Question: 79

Shade the like terms.

Answer:

Given terms are _____

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are _____

 $Question:\ 80$

Complete the expression $7r^2 + r \square - 2 \square = \underline{r^2}$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$$_{7r^2+ r} \square_{-2} \square = (_{7} + \underline{ } - 2)_{r^2} = \underline{ }$$

......

Question: 81

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

(i) Total chocolates Ram and Sam have : _____.

(ii) How many icecreams Sam have more than Ram: ______.

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i) Total chocolates Ram and Sam have:

Ram's chocolate + Sam's chocolates = _____ + ____ = ___

(ii) How many icecreams Sam have more than Ram:

1000r00m	1000room —		_
icecream	icecream =	_	_

Hi, here in this video you will learn Terms of an expression

Question: 82

Separate the variables and constants for all the terms given in the box

.....

Answer:

In algebraic expression, variables are represented by _____ and Constant is a

Terms	Constants	Variables

Question: 83

Mark the expression that contains two terms.

$$3x + 5$$
 $12a$ $4xy$ $12a + b + 1$ $7m + 0$

Answer:

The terms in the expression 3x + 5 is/are _____.

The terms in the expression 12a is/are _____.

The	terms i	n the	expression	4xy	is/are	e		·	
The	terms i	n the	expression	12a	+ b +	1 is/	'are		
The	terms i	n the	expression	7m -	+0 is,	/are			

Question: 84

Shade the outline of circle that contains the term of the given expression.

$$6m^2 - 7mn + nl$$

$\underline{Answer:}$

In algebraic expression, $___$ (variables/ terms) are connected together with operations of addition.

Here, _____, are the terms of the given expression.