

Assumption University (ABAC) Classwork 8 (19 Aug 2020)

Name. TOOSAYA.d.

ID.....6114215.

- a. Obtain forward kinematic equations for this mechanism with 1 DOF wrist.
- b. Obtain the End point position when

$$\theta_1^* = 0 = 0, d_2^* = 10, d_3^* = 5, d_4 = 0.5, \theta_4^* = 0$$

- c. Obtain the End point position when $\theta_1^* = 90^\circ = 0, d_2^* = 10, d_3^* = 5, d_4 = 0.5, \theta_4^* = 0$
- d. Obtain the End point position when $\theta_1^* = 90^\circ = 0, d_2^* = 10, d_3^* = 5, d_4 = 0.5, \theta_4^* = 90^\circ$

Attached your code and answers from workspace.

Links	Ž	7		~
FILIKO	<u> </u>	u	u	<u> </u>
1	θ*	d ₁	0	0
2	0	ďž	0 -	-90°
B	0	d*	0	0
4	θ *	d4	0	0

1 DOF Wrist Mechanism

CW8Robotequation = (L)

b)
$$P_{end} = \begin{bmatrix} 0 \\ 5.5 \\ 10 \\ 1 \end{bmatrix}$$

C) Pend =
$$\begin{bmatrix} -5.5 \\ 0 \\ 10 \\ 1 \end{bmatrix}$$

Wrong due to theta position **y**1 (-7.75,-1.95)

Introduce Introduce

Introduction to Robotics

Assumption University (ABAC) Classwork 10 (26 Aug 2021) 1/2021

Name TOUSANYOUD T ID 6114215

RRR with no offset configuration.

- a. Let $\alpha_2 = 3$ and $\alpha_3 = 5$, $d_1 = 2$, obtain one set of the possible values of θ_1 , θ_2 and θ_3 for point (7.75, 1.95, 1.8). Compute with using Atan2 function. Show calculation steps.
- b. Draw the following configurations of RRR, specify arm up and arm down configuration.

$$(0) \frac{x_c^2 + y_c^2 + (z_c - d_1)^2 - a_2^2 - a_3^2}{2a_2a_3} := D$$

$$\theta_3 = A \tan 2(D, \pm \sqrt{1 - D^2})$$

$$\theta_3 = \frac{1}{100} = \frac{1}{100}$$

$$\theta_2 = A \tan 2 \left(\sqrt{x_c^2 + y_c^2}, z_c - d_1 \right) - A \tan 2 \left(a_2 + a_3 \cos(\theta_3), a_3 \sin(\theta_3) \right)$$

$$\theta_2 = tan^{1}2d\left[(1.9-2), (7.75)^{2}+(1.95)^{2}\right] - \left[tan^{1}2d(55in4.56, 3+5\cos(4.56))\right] = -4.2845^{\circ}$$

$$\theta_1 = A \tan 2(x_c, y_c)$$

$$\theta_1 = \tan^{1} 2d \left[7.75, 1.95 \right] = 14.1232^{\circ}$$

Ž	4		\ \ \
Δ*.	<u>d</u> .	<u> </u>	90°
01	u1	U	90
0 *2			0
⊖ *₃	0	a _s	0
	∂ *	θ * 0	

Robotics Engg

Assumption University (ABAC) Classwork 11 (2 Sept 2021)

Name Tods Wad T ID. 6114215

Please obtain required data for position (2.5, 1, 6) for the end point using Geometry method. Given $d_1 = 5$, and $a_2 = 2$ for RRP robot with no offset. After obtained the variables, check with FK from your above answer.

	Titel obtaine	a the varia
	X X	
Links	θ d a α α α α α α α α α α α α α α α α α α	
1	0 90°	
2	θ_{2}^{*} 0 α_{2} 90° 90° 0 0 90° 0 0	
B	90° 0 0 90°	
4	0 d ₃ 0 0	x _c /
= \((2.5)	$\overline{)^{2}+(1)^{2}}=\chi_{0}$ 69	x_0
= 6-F	=1	

$$\theta_2 = A \tan 2(r,s) = A \tan 2(\sqrt{x_c^2 + y_c^2}, z_c - d_1)$$

 $\theta_1 = A \tan 2(x_c, y_c)$

 d_1

$$d_3 = \sqrt{(2.5)^2 + (1)^2 + (1)^2} - 2 = 0.072$$

$$\theta_2 = \tan^{7}2d\left[\sqrt{(2.5)^2+(1)^2}, 6-5\right] = 20.37^{\circ}$$

$$\theta_1 = \tan^{1} 2d \left[2.5, 1 \right] = 21.40^{\circ}$$

- 2.4999
- 0.9999
- 5.9997
- 1.0000

Robotics Engg

Assumption University (ABAC) Classwork 12 (7 Sept 2021) 1/2021

Name 1005MYAO 1 1D 6114215

i) Find the required values fo θ_1^*, d_2^*, d_3^* , if desire position is P(-1, 1.732, 3), with $L_1 = 1.5$ and $L_2 = 1.75$. Show your working steps.

ii) Check your answer and show how your working steps.

```
[-\sin(th1), 0, \cos(th1), \cos(th1)*(L2 + d3)]
   cos(th1), 0, sin(th1),
                               sin(th1)*(L2 + d3)]
            0, 1,
                            0,
1
            0, 0,
                            0,
                                                    1]
                                                                                      T03 =
                                                                                          -0.8660
                                                                                                        0.0000
                                                                                                                   -0.5000
                                                                                                                                -1.0000
                                                                                          -0.5000
                                                                                                       -0.0000
                                                                                                                    0.8660
                                                                                                                                 1.7320
    [ -sin(th1), 0, cos(th1)]
                                                                                                                    0.0000
                                                                                                        1.0000
                                                                                                                                 3.0000
      cos(th1), 0, sin(th1)]
                                                                                                                                 1.0000
  Sin \theta_1(\lfloor 2 + d_3)^* = -1 \rightarrow Sin 120.0^{\circ}(\lfloor 2 + d_3) = -1 \rightarrow d_3 = 0.25
  \cos\theta_1(L_2 + d_3)^* = 1.732
                                            \theta_1 = \text{Atana}(\chi_{c_9} y_c)
                                                                                          -1.0000
                                                                                           1.7320
                                                                                           3.0000
                                            \theta_1 = \tan^{1}2d(1.732-1)
          L_1 + d_2 = 3
                                                                                           1.0000
                                                =120.0^{\circ}
                d_2 = 1.5
```

MCE4101

Assumption University (ABAC) Classwork 13 (16 Sept 2021)

Name Todswand T ID 6114215

The RRR manipulator with spherical 3 DOF wrist, where d1 = 5; a2 =3; a3 = 5; d6 = 0.1;

Table 1: DH parameter for Cylindrical manipulator

Link	a_i	α_i	d_i	θ_i
1	0	90	d_1	θ_1^*
2	a_2	0	0	θ_2^*
3	a_3	0	0	θ_3^*

Table 2: DH parameter for Spherical wrist

Link	a_i	α_i	d_i	θ_i
4	0	-90	0	θ_4^*
5	0	90	0	θ_5^*
6	0	0	d_6	θ_6^*

Obtain the inverse kinematic solutions in degree for P(0,7,3) by MATLAB.

Using IG as $IG = [0.1 -0.1 \ 0 -0.1 \ 0.1 \ 0.1]$

Ans: $\theta_1 = 90^{\circ}$ $\theta_2 = 46.14^{\circ}$ $\theta_3 = 49.66^{\circ}$ $\theta_4 = 266.46^{\circ}$ $\theta_5 = -90^{\circ}$ $\theta_3 = 360^{\circ}$

Check your obtained answer with forward kinematic function by MATLAB. Is your end point location obtained agreed with the given point? Write down T_{end}^0 matrix value.

value. $T_{end}^{0} = \begin{bmatrix} 1.0000 & -0.0000 & 0.0000 & 0.0000 \\ 0.0000 & 1.0000 & 0.0000 & 7.0000 \\ -0.0000 & -0.0000 & 1.0000 & 3.0000 \\ 0 & 0 & 0 & 1.0000 \end{bmatrix}$

```
Px = 0;
Py = 7;
Pz = 3;
a2 = 3;
a3 = 5;
d1= 5;
d6 = 0.1;
D = (Px^2+Py^2+(Pz-d1)^2-a2^2-a3^2)/(2*a2*a3)
th3 = atan2d(sqrt(1-D^2), D)
th2 = atan2d(Pz-d1, sqrt(Px^2+Py^2))-atan2d(a3*sind(th3), (a2+a3*cosd(th3)))
th1 = atan2d(Py, Px)
th1rad = deg2rad(th1)
th2rad = deg2rad(th2)
th3rad = deg2rad(th3)
L1 = link([pi/2 0 th1rad d1, 0]);
L2 = link([0 a2 th2rad 0, 0]);
L3 = link([0 a3 th3rad 0, 0]);
RRR = robot(\{L1 L2 L3\});
R03 = fkine(RRR,[th1rad th2rad th3rad])
th4rad = 0
th5rad = 0
L4 = link([-pi/2 0 th4rad 0, 0]);
L5 = link([pi/2 0 th5rad 0, 0]);
L6 = link([0 0 th6rad d6, 0]);
wrist = robot({L4 L5 L6});
R36 = fkine(wrist, [th4rad th5rad th6rad])
U = transpose (R03) * (R03*R36)
S = solve(atan2(U(2,1),U(1,1))-th6rad == 0, th6rad)
th6 = rad2deg(s)
R36 = fkine(wrist, [th4rad th5rad S])
T0end = round(R03*R36)
Pend = T0end*[0;0;0;1]
```