	~ .		~ .						_
Answer	Sheet	for	Spring	2024	ECE45	Final	Exam	Part	1

Name	
UCSD ID Number	
Signature	
	Override Answer
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$P9: \bigcirc \bigcirc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$P14:\bigcirc$	
P15: 0 0 0 0 0 0 0 0 0 0 0 0	
$P16:\bigcirc$	
$P17:\bigcirc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Problem 1:

Which of the following is $\underline{\text{not}}$ a periodic function of t?

- (a) $\cos^2(\pi t) \pi t + \cos(2\pi) + \sin^2(\pi t)$
- (b) $\cos(\cos(\cos t))$
- (c) $\cos(|t|)$
- (d) $\frac{1}{\sin t + \cos t}$
- (e) $\tan(3\pi t)\cos(3\pi t)$
- (f) $|\sin(5t)|$
- (g) $|\tan t + 3\sin(2t)|$
- (h) $\sqrt{1 \cos(999t)}$
- (i) $(\cos(1+\tan t))^{999}$
- (j) $e^{jt\sqrt{2}}$
- $\text{(k) } \sum_{n=1}^{\infty} \frac{e^{jnt}}{n^2}$
- (l) None of these

Problem 2:

What is the value of the Fourier transform $X(\omega)$ of the real-valued signal x(t) shown below, when $\omega = \pi/4$?

(a)
$$\frac{4\sqrt{2}}{\pi} \left(1 + \sqrt{2} - j \right)$$

(b)
$$-\frac{4\sqrt{2}}{\pi} \left(1 + \sqrt{2} - j\right)$$

(c)
$$-\frac{4}{\pi} \left(1 + \sqrt{2} - j \right)$$

(d)
$$-\frac{8\sqrt{2}}{\pi} \left(1 + \sqrt{2} - j\right)$$

(e)
$$-\frac{4\sqrt{2}}{\pi} \left(1 + \sqrt{2} + j\right)$$

(f)
$$-\frac{4\sqrt{2}}{\pi} \left(2 + \sqrt{2} - j\right)$$

(g)
$$-\frac{4\sqrt{2}}{\pi} \left(1 + 2\sqrt{2} - j\right)$$

(h)
$$-\frac{4\sqrt{2}}{\pi} \left(1 - \sqrt{2} - j\right)$$

(i)
$$-\frac{4\sqrt{2}}{\pi} \left(-1 + \sqrt{2} + j \right)$$

(j)
$$-4\sqrt{2}(1+\sqrt{2}-j)$$

(k)
$$\frac{8\sqrt{2}}{\pi} \left(1 + \sqrt{2} - j \right)$$

(l) None of these

Problem 3:

Suppose the signal x(t) is the input to a linear, time-invariant system whose impulse response is also x(t). What is the value of the output signal y(t) when t=0?

- (a) 16/3
- (b) 16
- (c) 8/3
- (d) 4/3
- (e) 1/3
- (f) 8
- (g) 4
- (h) 2
- (i) 1
- (j) 1/2
- (k) 32
- (l) None of these

Problem 4:

Let x(t) be a signal whose bilateral Laplace transform is $X(s) = \frac{s}{e^{\pi s} + s^2 e^{\pi s}}$ and such that the complex number $2^{2024} - j^{2024}$ lies in the region of convergence. What is the value of x(t) when $t = \pi/4$?

- (a) None of these
- (b) 1/2
- (c) -1/2
- (d) $\sqrt{3}/2$
- (e) $-\sqrt{3}/2$
- (f) 1
- (g) -1
- (h) $\sqrt{2}/2$
- (i) $-\sqrt{2}/2$
- (j) e
- (k) 1/e
- (l) 1/3

Problem 5:

What is the impedance of a parallel combination of a $1/\pi$ ohm resistor, a $1/\pi$ farad capacitor, and a $1/\pi$ henry inductor, if the voltage across them is a ten hertz sinusoid?

- (a) $1/(\pi + 19.95j)$
- (b) $\frac{1}{\pi} + 20\pi j$
- (c) $\pi/(1+20\pi j)$
- (d) $1 + 20\pi j$
- (e) $\pi/(2\pi + 20\pi j)$
- (f) $2\pi/(1+20\pi j)$
- (g) 1 + 10.01j
- (h) 1 + 10j
- (i) 1/(1+10j)
- (j) $2\pi/(1+10j)$
- (k) $\pi + 19.95j$
- (l) None of these

${\bf Problem}\ 6:$

If x(t) is the convolution of 2rect(t) with itself, then what is x(1/4)?

- (a) 3
- (b) 3/4
- (c) 1/4
- (d) 1/2
- (e) 1
- (f) 0
- (g) 3/5
- (h) 2/5
- (i) 1/3
- (j) 1/5
- (k) -3
- (1) 3/2
- (m) None of these

Problem 7:

The Fourier series of a periodic signal x(t) is

$$x(t) = \sum_{n = -\infty}^{\infty} F_n e^{jnt}$$

where $F_n = 0$ for all n < 0, and $F_n = 1/e^n$ for all $n \ge 0$. What is x(t) when t = 0?

- (a) $\frac{e}{e-1}$
- (b) $\frac{e}{e+1}$
- (c) $\frac{1}{e-1}$
- (d) $\frac{1}{e+1}$
- (e) $\frac{1}{e}$
- (f) $\frac{1}{2}$
- (g) $\frac{e}{e-2}$
- (h) $\frac{e}{e+2}$
- (i) $\frac{1}{e-2}$
- $(j) \ \frac{1}{e+2}$
- (k) $\frac{1}{3}$
- (l) None of these

Problem 8:

If a system's output y(t) is related to its input x(t) by $y(t) = e^{tx(t)}$, then which of the following properties does the system have?

- (a) causal, not linear, not time-invariant, not stable
- (b) not causal, not linear, not time-invariant, not stable
- (c) causal, stable, not linear, not time-invariant,
- (d) causal, time-invariant, not linear, not stable
- (e) linear, time-invariant, not causal, not stable
- (f) linear, time-invariant, causal, not stable
- (g) linear, time-invariant, stable, not causal
- (h) linear, time-invariant, stable, causal
- (i) time-invariant, not causal, not stable, not linear
- (j) linear, not causal, not stable, time-invariant
- (k) None of these

${\bf Problem}\ 9:$

Suppose a signal $x(t) = \sum_{n=-\infty}^{\infty} \delta(t-4n)$ is the input to an LTI system whose frequency response is $H(\omega) = \text{rect}(\omega)$. What is the output signal y(t) of the system when t = 2024?

- (a) 1/4
- (b) 1/2
- (c) 1/8
- (d) 4
- (e) 2
- (f) 8
- (g) 1
- (h) $\pi/4$
- (i) $\pi/2$
- (j) $\pi/8$
- (k) π^2
- (l) None of these

Problem 10:

What is the Fourier transform of $\frac{1/\pi}{\cos(2t)-j\sin(2t)}?$

- (a) $2\delta(\omega-2)$
- (b) $\delta(\omega-2)$
- (c) $2\delta(\omega+2)$
- (d) $\delta(\omega+2)$
- (e) $2\pi\delta(\omega-2)$
- (f) $2\pi\delta(\omega+2)$
- (g) $\pi\delta(\omega-2)$
- (h) $\pi\delta(\omega+2)$
- (i) $\delta(\omega-2) + \delta(\omega+2)$
- (j) $\delta(\omega-2)-\delta(\omega+2)$
- (k) $2\delta(\omega-2) + 2\delta(\omega+2)$
- (l) $2\delta(\omega-2)-2\delta(\omega+2)$
- (m) None of these

Problem 11:

If the bilateral Laplace transform of x(t) is $X(s) = \frac{1}{s} + \frac{1}{s+4}$ and $X(e^{j\pi})$ exists, then what is x(t)?

- (a) $e^{-4t}u(t) u(-t)$
- (b) $e^{-4t}u(t) + u(-t)$
- (c) $e^{4t}u(t) u(-t)$
- (d) $e^{4t}u(t) + u(-t)$
- (e) $e^{-4t}u(t) e^{-t}u(-t)$
- (f) $e^{-4t}u(t) + e^{-t}u(-t)$
- $(g) e^{-4t}u(t) u(t)$
- (h) $e^{-4t}u(t) + u(t)$
- (i) $e^{-4t}u(-t) u(-t)$
- (j) $-e^{-4t}u(-t) + u(t)$
- (k) $-e^{-4t}u(-t) u(-t)$
- (l) None of these

Problem 12:

If x(t) is the convolution of $\cos(2024\pi t)$ and $\mathrm{rect}(t/45)$, then what is $x(\pi)$?

- (a) None of these
- (b) π
- (c) 2π
- (d) $2024\pi/45$
- (e) $\pi/45$
- (f) $2024/\pi$
- (g) $\cos(2024\pi/45)$
- (h) 1
- (i) -1
- (j) 2
- (k) -1
- (l) $\cos(2024\pi^2)$

Problem 13:

Suppose f(t) is a periodic function that can be written as $f(t) = \sum_{n=-\infty}^{\infty} \frac{e^{\pi j n t/2}}{1+n^2}$. If f(t) is the input to an LTI system with frequency response $H(\omega)$ shown below, then what is the output y(t)?

- (a) $\frac{\pi}{3}\cos(\pi t/2)$
- (b) $\frac{2\pi}{3}\cos(\pi t/2)$
- (c) $\frac{4\pi}{3}\cos(\pi t/2)$
- (d) $\frac{2}{3}\cos(\pi t/2)$
- (e) $\frac{2\pi}{3}\cos(t/2)$
- (f) $\frac{2}{3}\cos(t/2)$
- (g) $\frac{2\pi}{3}\cos(\pi t)$
- (h) $\frac{\pi}{3}\cos(\pi t)$
- (i) $\frac{\pi}{2}\cos(\pi t)$
- (j) $\frac{1}{2}\cos(\pi t)$
- (k) 0
- (l) None of these

Problem 14:

What is the Fourier transform of $e^{-3t}u(t-1)$?

- (a) $\frac{1}{(3+j\omega)e^{3+j\omega}}$
- (b) $\frac{2}{(3+j\omega)e^{3+j\omega}}$
- (c) $\frac{1}{(1+j\omega)e^{3+j\omega}}$
- (d) $\frac{1}{e^{3+j\omega}}$
- (e) $\frac{1}{(3+j\omega)}$
- (f) $\frac{1}{(3+j\omega)e^{j\omega}}$
- (g) $\frac{1}{(3-j\omega)e^{3+j\omega}}$
- (h) $\frac{1}{(3-j\omega)e^{3-j\omega}}$
- (i) $\frac{1}{(3+j\omega)e^3}$
- $(j) \ \frac{1}{(3+j\omega)e^{3\omega}}$
- (k) $\frac{1}{(3+j\omega)e^{3j\omega}}$
- (l) None of these

Problem 15:

If $x(t) = \sum_{n=-\infty}^{\infty} \frac{e^{\pi j n t}}{1 + n^4}$ then what is x(2024) - x(2022)?

- (a) None of these
- (b) 1
- (c) 2
- (d) 1/2
- (e) 4
- (f) π
- (g) 2π
- (h) $1/\pi$
- (i) 4π
- (j) -2
- (k) -1
- (l) $-\pi$

Problem 16:

The signal x(t) has Fourier transform $X(\omega)$ shown below. In the block diagram shown, y(t) is the output signal of the multiplier. What is the Fourier transform $Y(\omega)$ of the output when $\omega = 5$?

- (a) $\frac{1}{2\pi}$ (b) $\frac{1}{4\pi}$
- (c) $\frac{1}{4}$
- (d) $\frac{1}{2}$
- (e) $\frac{1}{\pi}$
- (f) 2
- (g) 1
- (h) 0
- (i) 4
- (j) 4π
- (k) 2π
- (l) None of these

Problem 17:

If $j\cos(t)$ is the output of an LTI system when $\cos(2t)\cos(3t)$ is the input, then what is the output of the LTI system when $4je^{-jt}$ is the input?

- (a) $-8e^{-jt}$
- (b) $4je^{-jt}$
- (c) $-4e^{-jt}$
- (d) $8je^{-jt}$
- (e) $-8e^{jt}$
- (f) $4je^{jt}$
- (g) $-4e^{jt}$
- (h) $8je^{jt}$
- (i) 0
- (j) Cannot be determined from the given information
- (k) None of these

Problem 18:

In the following four systems, the system's output y(t) and the system's input x(t) satisfy:

System 1:
$$y(t) = (t+1)^2 e^{(t+1)x(t-1)}$$
.
System 2: $y(t) = e^{x^2(t)}$.

System 2:
$$y(t) = e^{x^2(t)}$$
.

System 2:
$$y(t) = e^{x-(t)}$$
.
System 3: $y(t) = \sum_{n=-10}^{10} x(t+n)$.
System 4: $y(t) = e^{jx(t+2^{-99})}$.

System 4:
$$y(t) = e^{jx(t+2^{-99})}$$
.

Which of these 4 systems are causal?

- (a) Only 1 and 2
- (b) All of them
- (c) Only 1
- (d) Only 2
- (e) Only 3
- (f) Only 4
- (g) Only 2,3,4
- (h) Only 1,3,4
- (i) Only 1,2,4
- (j) Only 1,2,3
- (k) None of 1,2,3,4
- (l) Only 1 and 3
- (m) None of these answers

Answer	Sheet	for	Spring	2024	ECE45	Final	Exam	Part	2
Allswei	SHEEL	101	opring	4044	ECE49	rmai	Exam	ıaıı	4

Name	
UCSD ID Number	
Signature	
a b c d e f g h i j k l m n o P19:	Override Answer
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Problem 19:

Which one of the following values of A makes the function $x(t) = e^{te^A}$ periodic?

- (a) $j\pi/2$
- (b) 1
- (c) -1
- (d) $\sqrt{2}$
- (e) $j\pi$
- (f) $-j\pi$
- (g) $j\pi/4$
- (h) 1 + j
- (i) 1 j
- (j) 2π
- (k) $\pi/2$
- (l) j/2
- (m) None of these

Problem 20:

If $x(t) = \delta(t) - \delta(t-1)$ and y(t) = x(t) + x(t-1), then what is the Fourier transform $Y(\omega)$ when $\omega = \pi/12$?

- (a) $(j+2-\sqrt{3})/2$
- (b) $(j-2-\sqrt{3})/2$
- (c) $(j+2+\sqrt{3})/2$
- (d) $(-j+2-\sqrt{3})/2$
- (e) (j+1)/2
- (f) (j+2)/2
- (g) $(2j \sqrt{3})/2$
- (h) $j + 2 \sqrt{3}$
- (i) $-j + 2 \sqrt{3}$
- (j) $(j+2-\sqrt{2})/2$
- (k) $(j+2-\sqrt{3})/4$
- (l) None of these

Problem 21:

When the input to a certain LTI system is $\delta(t) - \delta(t-4)$, the output is y(t) as shown below. What is the output of the system at time $t = \sqrt{2} \cdot e^{\pi j}$ when the input is $2\delta(t) + 3\delta(t-1) + 5\delta(t+1)$?

- (a) 7
- (b) 0
- (c) 10
- (d) 8
- (e) 2
- (f) 3
- (g) 5
- (h) 6
- (i) -2
- (j) -3
- (k) -8
- (l) None of these

Problem 22:

What is the bilateral Laplace transform of

$$\int_0^\infty e^{-\tau} u(t-\tau) u(\tau) d\tau?$$

- (a) $\frac{1}{s+s^2}$
- (b) $\frac{1}{s+1}$
- (c) $\frac{1}{s}$
- (d) $\frac{1}{s-s^2}$
- (e) $\frac{1}{s^2 s}$
- (f) $\frac{1}{s-1}$
- (g) $\frac{s}{s+1}$
- $(h) \frac{s}{s-1}$
- $(i) \ \frac{s-1}{s+s^2}$
- $(j) \ \frac{2}{s+s^2}$
- (k) $\frac{1}{s+s^3}$
- (l) None of these

Problem 23:

In the steady-state circuit below, the inductor is L=25 milihenries, the resistors are $R_1=2$ and $R_2=1$ ohm, and the magnitude of the circuit's frequency response is 0.2 when the voltage source is $v_i(t)=8\cos(\omega t)$ with $\omega>0$. What is the value of ω ?

- (a) 160
- (b) 80
- (c) 320
- (d) 16
- (e) 40
- (f) 16π
- (g) 8π
- (h) 1/10
- (i) 1/40
- (j) 25
- (k) 0.0025
- (l) None of these

Problem 24:

If $x(t) = e^{-2t}u(t)$ and y(t) is the convolution of x(t) and $\mathrm{rect}\,(t)$, then what is y(1) ?

- (a) $\frac{e^2-1}{2e^3}$
- (b) $\frac{e^2-1}{2e^2}$
- (c) $\frac{e^2-1}{e^3}$
- (d) $\frac{e-1}{2e^3}$
- (e) $\frac{e^2+1}{2e^3}$
- $(f) \ \frac{e^3 1}{2e^3}$
- $(g) \ \frac{e^2 1}{2e}$
- (h) $\frac{e^2-1}{e^2}$
- (i) $\frac{e^2+1}{4e^3}$
- $(j) \ \frac{e-1}{e^3}$
- (k) $e^2 e$
- (l) None of these

Problem 25:

Suppose a periodic signal f(t) with period π has Fourier series coefficients given by $F_n = (2 + n^2)^{-1}$ for all integers n. When f(t) is the input to an LTI system with impulse response $e^{-3t}u(t)$, the output y(t) is periodic with Fourier series coefficients Y_n . What is Y_{-2} ?

- (a) $\frac{1/6}{3-4j}$
- (b) $\frac{1}{3-4j}$
- (c) $\frac{1/6}{3+4j}$
- (d) $\frac{1/6}{3+2j}$
- (e) $\frac{1/6}{3-2j}$
- $(f) \ \frac{1/6}{3-2\pi j}$
- (g) $\frac{1/6}{3+2\pi j}$
- (h) $\frac{1/6}{3+\pi j}$
- (i) $\frac{1/6}{3-\pi j}$
- (j) 0
- (k) 1/6
- (l) None of these

Problem 26:

In the following four systems, the system's output y(t) and the system's input x(t) satisfy:

$$\begin{array}{l} \text{System 1: } y(t) = \frac{1}{1+x(t)}. \\ \text{System 2: } y(t) = \tan(x(t)). \\ \text{System 3: } y(t) = \tan(\sin(e^{x(t)})). \\ \text{System 4: } y(t) = e^{1-x^2(t)}. \end{array}$$

Which of these 4 systems are stable?

- (a) Only 3 and 4
- (b) All of them
- (c) Only 1,2,3
- (d) Only 1
- (e) Only 2
- (f) Only 3
- (g) Only 4
- (h) Only 1,3,4
- (i) Only 2,3,4
- (j) None of 1,2,3,4
- (k) Only 1 and 3
- (l) None of these answers

Problem 27:

If $x(t) = \cos(t)(\cos(2t) + \cos(3t))$ is the input to an LTI system with frequency response $H(\omega)$, where $H(\omega) = 0$ if $|\omega/\pi| < 1$ and $H(\omega) = 1$ otherwise, then what is the output time signal?

- (a) $\cos(4t)/2$
- (b) $\cos(4t)$
- (c) $\cos(3t)/2$
- (d) $\cos(3t)$
- (e) $\cos(2t)/2$
- (f) $\cos(2t)$
- (g) $\cos(t)/2$
- (h) $\cos(t)$
- (i) $\pi \cos(3t)$
- (j) $\pi \cos(2t)$
- (k) 0
- $(1) \cos(2t) + \cos(3t)$
- (m) $\pi(\cos(2t) + \cos(3t))$
- (n) None of these

Problem 28:

What is the Fourier transform of rect $(t/5) \cdot \operatorname{rect}(t/4) \cdot \operatorname{rect}(t/3) \cdot \operatorname{rect}(t/2) \cdot \operatorname{rect}(t)$ when $\omega = \pi/2$?

- (a) $2\sqrt{2}/\pi$
- (b) $\sqrt{2}/\pi$
- (c) $2/\pi$
- (d) $2\sqrt{2}$
- (e) $4\sqrt{2}/\pi$
- (f) $4/\pi$
- (g) $1/\pi$
- (h) $2\sqrt{2}\pi$
- (i) 2/5
- (j) 1/4
- (k) $120/\pi$
- (l) None of these

Problem 29:

What is the bilateral Laplace transform X(s) of x(t) = u(1-2t) if the real part of s lies in the interval (-4, -3)?

- (a) $-1/(s\sqrt{e^s})$
- (b) $1/(s\sqrt{e^s})$
- (c) $-1/(se^s)$
- (d) $1/(se^s)$
- (e) 1/s
- (f) -1/s
- (g) 1/(s-1)
- (h) 1/(s-2)
- (i) 1/(s+1)
- (j) 1/(s+2)
- (k) e^{3s}/s
- (l) e^{-s}
- (m) None of these

Problem 30:

If y(t) is the convolution of x(t) with itself, where x(t) is drawn below, then what is $y(\pi)$?

- (a) 4π
- (b) π
- (c) 2π
- (d) $\pi 3$
- (e) 3π
- (f) $\pi + 1$
- (g) 1
- (h) 0
- (i) 2π
- (j) $\pi 2$
- (k) $\pi 1$
- (l) None of these

Problem 31:

Suppose x(t) (shown below) is the output of an LTI system when $2\delta(t-1)$ is the input. If y(t) is the output from the LTI system when u(t) is the intput, then what is y(0)?

- (a) 5/2
- (b) 7/4
- (c) 1
- (d) 5
- (e) 7/2
- (f) 1/3
- (g) 1/8
- (h) 2
- (i) 5/4
- (j) 7/8
- (k) 1/2
- (l) None of these

Problem 32:

What is the Fourier transform of $cos(3t) + 2(1 - \delta(t - 3))$?

(a)
$$\pi\delta(\omega-3) + \pi\delta(\omega+3) + 4\pi\delta(\omega) - 2e^{-3j\omega}$$

(b)
$$\delta(\omega - 3) + \delta(\omega + 3) + 4\pi\delta(\omega) - 2e^{-3j\omega}$$

(c)
$$2\pi\delta(\omega-3) + 2\pi\delta(\omega+3) + 4\pi\delta(\omega) - 2e^{-3j\omega}$$

(d)
$$\pi\delta(\omega - 3) - \pi\delta(\omega + 3) + 4\pi\delta(\omega) - 2e^{-3j\omega}$$

(e)
$$\pi\delta(\omega-3) + \pi\delta(\omega+3) + \delta(\omega) - 2e^{-3j\omega}$$

(f)
$$\pi\delta(\omega-3) + \pi\delta(\omega+3) + 2\pi\delta(\omega) - 2e^{-3j\omega}$$

(g)
$$\pi\delta(\omega-3) + \pi\delta(\omega+3) + 4\pi\delta(\omega-1) - 2e^{-3j\omega}$$

(h)
$$\pi\delta(\omega-3) + \pi\delta(\omega+3) + 4\pi\delta(\omega) + 2e^{-3j\omega}$$

(i)
$$\pi\delta(\omega - 3) + \pi\delta(\omega + 3) + 4\pi\delta(\omega) - e^{-3j\omega}$$

(j)
$$\pi\delta(\omega-3) + \pi\delta(\omega+3) + 4\pi\delta(\omega) - 2e^{3j\omega}$$

(k) None of these

Problem 33:

What is the value of the integral $\int_{-\infty}^{\infty} \sin^3(t/8) \left(\delta(t-\pi) + \delta(t+\pi)\right) dt$?

- (a) 0
- (b) 1
- (c) -1
- (d) 1/8
- (e) -1/8
- (f) 2
- (g) $\sqrt{3}/2$
- (h) $\sqrt{3}$
- (i) $2\sqrt{2}$
- $(j) -2\sqrt{2}$
- (k) -2
- (l) None of these

Problem 34:

What is the convolution of $\sum_{n=-\infty}^{\infty} \delta(t-4n)$ and $\sin(2\pi t) \cdot \text{rect}\left(t-\frac{1}{2}\right)$ when t=76.75?

- (a) -1
- (b) 1
- (c) -1/2
- (d) 1/2
- (e) $\sqrt{3}/2$
- (f) $-\sqrt{3}/2$
- (g) $\sqrt{2}/2$
- (h) $-\sqrt{2}/2$
- (i) 0
- (j) 2
- (k) -2
- (l) None of these

Problem 35:

Suppose an LTI system has frequency response $H(\omega) = \omega \cdot \text{rect}(\omega/10)$. If the input to the system is the complex signal $\sin(\pi t) + j\cos(\pi t)$ then what is the output at time t = 0.25?

- (a) $-\pi(1+j)/\sqrt{2}$
- (b) $\pi(1+j)/\sqrt{2}$
- (c) $\pi(1-j)/\sqrt{2}$
- (d) $\pi(-1+j)/\sqrt{2}$
- (e) $-\pi(1+j)$
- (f) $\pi(1+j)$
- (g) $\pi(1-j)$
- (h) $\pi(-1+j)$
- (i) $-(1+j)/\sqrt{2}$
- (j) $(1+j)/\sqrt{2}$
- (k) $(1-j)/\sqrt{2}$
- (l) $(-1+j)/\sqrt{2}$
- (m) None of these

Problem 36:

In the following four systems, the system's output y(t) and the system's input x(t) satisfy:

$$\begin{array}{l} \text{System 1: } y(t) = \int_t^{t+1} x(\tau) d\tau. \\ \text{System 2: } y(t) = \int_{t-1}^t x(\tau) d\tau. \\ \text{System 3: } y(t) = \int_{-\infty}^t x(\tau) d\tau. \\ \text{System 4: } y(t) = \int_{-\infty}^{t+1} x(\tau) d\tau. \end{array}$$

System 2:
$$y(t) = \int_{t-1}^{t} x(\tau) d\tau$$

System 3:
$$y(t) = \int_{-\infty}^{t} x(\tau) d\tau$$

System 4:
$$y(t) = \int_{-\infty}^{t+1} x(\tau) d\tau$$

Which of these 4 systems are both linear and time-invariant?

- (a) All of them
- (b) Only 4
- (c) Only 1 and 2
- (d) Only 1
- (e) Only 2
- (f) Only 3
- (g) Only 2,3,4
- (h) Only 1,3,4
- (i) Only 1,2,4
- (j) Only 1,2,3
- (k) None of 1,2,3,4
- (l) Only 3 and 4
- (m) None of these answers