Analysis Notes

Rebekah Dix

March 25, 2019

Contents

1	Sequence and Series of Functions		2
	1.1	Uniform Convergence	2
	1.2	Power Series	4
2	Compactness in Metric Spaces		5
	2.1	Review of Basic Topology	5
	2.2	Basic Definitions	6
	2.3	Compactness and Continuity	10
	2.4	Sequential Compactness and Total Boundedness	
	2.5	Equicontinuity and the Arzela-Ascoli Theorem	
3	App	roximation Theory and Fourier Series	16
	3.1	Orthonormal Systems	16
	3.2	Trigonometric Polynomials	18
	3.3	Weierstrass Theorem	
	3.4	Stone-Weierstrass Theorem	
4	Linear Operators and Derivatives		27
5	Diff	erential Calculus in Rn	27
6	The	Baire category theorem	27
A	Review From Elementary Analysis		27
	A.1	The Real and Complex Number System	27
		Basic Topology	
		Numerical Sequences and Series	
		Continuity	
		Differentiation	

1 Sequence and Series of Functions

1.1 Uniform Convergence

Definition 1.1 (Pointwise Convergence). A sequence of functions $(f_n)_n$ **converges pointwise** to a function f on E if for every $\varepsilon > 0$ and for all $x \in E$ there is an integer N (which depends on x) such that for all $n \ge N$

$$|f_n(x) - f(x)| < \varepsilon$$

Definition 1.2 (Uniform Convergence). A sequence of functions $(f_n)_n$ converges uniformly to a function f on E if for every $\varepsilon > 0$ there is an integer N such that for all $n \ge N$ and for all $x \in E$ we have

$$|f_n(x) - f(x)| < \varepsilon$$

Theorem 1.1 (Limit of uniformly convergent, bounded sequence of functions is bounded.). If $(f_n)_n$ converges uniformly to f and each f_n is bounded, then f is bounded.

Proof. Fix $\varepsilon > 0$. Uniform convergence implies that $\exists N \in \mathbb{N}$ such that $\forall n \geq N$ and $\forall x \in X$ we have $|f_n(x) - f(x)| < \varepsilon$. Further, boundedness of the sequence of functions implies that $\forall n \in \mathbb{N}$ such that $|f_n(x)| \leq M_n \ \forall x \in X$. Fix an $n \geq N$. Then $\forall x \in X$

$$|f(x)| = |f(x) - f_n(x) + f_n(x)|$$

 $\leq |f(x) - f_n(x)| + f_n(x)$ (triangle inequality)
 $< \varepsilon + M_n$ (uniform convergence and boundedness)

Thus $|f(x)| < \varepsilon + M_n \ \forall x \in X$, so f(x) is bounded.

Theorem 1.2 (Limit of uniformly convergent, continuous sequence of functions is continuous.). If $(f_n)_n$ converges uniformly to f and each f_n is continuous, then f is continuous.

Proof. Fix $\varepsilon > 0$. Uniform convergence implies that $\exists N \in \mathbb{N}$ such that $\forall n \geq N$ and $\forall x \in X$ we have $|f_n(x) - f(x)| < \frac{\varepsilon}{3}$. Continuity of each function $f_n(x)$ at $x \in X$ in the sequence implies that $\exists \delta > 0$ such that $\forall y$ for which $|x - y| < \delta$ we have that $|f_n(x) - f_n(y)| < \frac{\varepsilon}{3}$. Then $\forall y$ for which $|x - y| < \delta$ we have that

$$|f(x) - f(y)| = |f(x) - f_n(x) + f_n(x) - f_n(y) + f_n(y) - f(y)|$$

$$\leq |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| \qquad (\Delta)$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \qquad \text{(uniform convergence and continuity of } f_n \text{ at } x)$$

$$= \varepsilon$$

Therefore f is continuous at x, $\forall x \in X$.

Definition 1.3 (Uniformly cauchy). A sequence of functions (f_n) is **uniformly cauchy** if $\forall \varepsilon > 0 \ \exists N \in \mathbb{N}$ such that $\forall n, m \geq N$ and $\forall x \in X$, we have $|f_n(x) - f_m(y)| < \varepsilon$.

Theorem 1.3 (Uniform convergence iff uniform cauchy). A sequence $(f_n)_n$ of functions on a metric space X converges uniformly if and only if it is uniformly Cauchy.

Proof. Fix $\varepsilon > 0$.

 \Rightarrow Uniform convergence implies $\exists N$ such that $\forall n \geq N$ and $\forall x \in X$ we have that $|f_n(x) - f(x)| < \frac{\varepsilon}{2}$. Then $\forall n, m \geq N$ and $\forall x \in X$ we have that

$$|f_n(x) - f_m(x)| = |f_n(x) - f(x) + f(x) - f_m(x)|$$

$$\leq |f_n(x) - f(x)| + |f(x) - f_m(x)|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Therefore $(f_n)_n$ is uniformly cauchy.

 \Leftarrow Notice that $(f_n)_n$ is a cauchy sequence in a complete metric space (\mathbb{R}), therefore it converges pointwise. We need to show uniform convergence. [[Incomplete]]

Theorem 1.4 (Weierstrass M-test). Let $(f_n)_n$ be a sequence of functions on a metric space X such that there exists a sequence of non-negative real numbers $(M_n)_n$ such that $\forall n$ we have that

$$|f_n(x)| \le M_n \tag{1.1}$$

If $\sum_{n=1}^{\infty} M_n$ converges, then the series $\sum_{n=1}^{\infty} f_n$ converges uniformly. That is, the sequence of partial sums $(\sum_{n=1}^{m} f_n)_m$ converges uniformly.

Proof. We will show that the sequence of partial sums is uniformly cauchy, which then implies that sequence of partial sums converges uniformly. Fix $\varepsilon > 0$. The Cauchy criterion (adapted for series: sequences of partial sums) implies that since $\sum_{n=1}^{\infty} M_n$ converges, there exists an N such that $\forall m, n \ m \ge n \ge N$ we have that

$$\left|\sum_{k=n}^{m} M_k\right| = \sum_{k=n}^{m} M_k < \varepsilon$$

Therefore $\forall m, n \ m \ge n \ge N$ and $\forall x \in X$ we have that

$$\left| \sum_{k=n}^{m} f_k(x) \right| \leq \sum_{k=n}^{m} |f_k(x)|$$

$$\leq \sum_{k=n}^{m} M_k$$

$$\leq \varepsilon$$
(\Delta)

Therefore $(\sum_{n=1}^{m} f_n)_m$ is uniformly cauchy, so the series converges uniformly.

1.2 Power Series

Definition 1.4 (Power Series). A power series is a function of the form

$$f(x) = \sum_{n=0}^{\infty} c_n x^n \tag{1.2}$$

where $c_n \in \mathbb{C}$ are complex coefficients.

Definition 1.5 (Radius of convergence). To a power series we can associate a number $R \in [0, \infty]$ (thus R is an *extended* real number) called its **radius of convergence** such that

- (i) $\sum_{n=0}^{\infty} c_n x^n$ converges for every |x| < R.
- (ii) $\sum_{n=0}^{\infty} c_n x^n$ diverges for every |x| > R.

Theorem 1.5 (Power series continuous on interval of convergence). A power series with radius of convergence R converges uniformly on $[-R + \varepsilon, R - \varepsilon]$ for every $0 < \varepsilon < R$, Therefore, power series are continuous on (-R, R).

Theorem 1.6 (Abel summation (summation by parts)).

$$\sum_{n=0}^{N} (a_n - a_{n-1})b_n = a_N b_N + \sum_{n=0}^{N-1} a_n (b_n - b_{n+1})$$
(1.3)

Proof. Assume that $a_{-1} = 0$. We can derive this formula by reordering terms:

$$\sum_{n=0}^{N} (a_n - a_{n-1})b_n = a_0b_0 + a_1b_1 - a_0b_1 + a_2b_2 - a_1b_2 + \dots + a_Nb_N - a_{N-1}b_N$$

$$= a_0(b_0 - b_1) + a_1(b_1 - b_2) + a_{N-1}(b_{N-1} - b_N) + a_Nb_N$$

$$= a_Nb_N + \sum_{n=0}^{N-1} a_n(b_n - b_{n+1})$$

Theorem 1.7 (Abel). Let $f(x) = \sum_{n=0}^{\infty} c_n x^n$ be a power series with radius of convergence R = 1. Assume $\sum_{n=0}^{\infty} c_n$ converges. Then

$$\lim_{x \to 1^{-}} f(x) = \sum_{n=0}^{\infty} c_n \tag{1.4}$$

Proof. We use summation by parts. Set $s_n = \sum_{k=0}^n c_k$ and by convention assume $s_{-1} = 0$.

2 Compactness in Metric Spaces

2.1 Review of Basic Topology

Definition 2.1 (Open, open relative to). Let $E \subset U \subset X$, where X is a metric space.

- (i) *E* is an **open** subset of *X* if for each point $p \in E$ there exists an r > 0 such that for all $q \in X$ for which d(p,q) < r we have that $q \in E$.
- (ii) *E* is **open relative to** *Y* if for each point $p \in E$ there exists an r > 0 such that for all $q \in Y$ for which d(p,q) < r we have that $q \in E$.

Example 2.1 (Relative open sets). Let (a, b) be an interval on the real line. Notice that $(a, b) \subset \mathbb{R} \subset \mathbb{R}^2$.

(i) (a, b) is an open subset of (or open relative to) \mathbb{R} .

(ii) (a,b) is *not* an open subset of \mathbb{R}^2 . Indeed, any ball around a point $x \in (a,b) \subset \mathbb{R}$ will leave the x-axis and intersect with points in the second dimension. Thus no point of (a,b) is interior relative to \mathbb{R}^2 .

Theorem 2.1 (Relative open sets). Let $Y \subset X$. A subset E of Y is open relative to Y if and only if $E = Y \cap G$ for some open subset G of X.

Proof. [[Todo]]

Example 2.2 (Relative open sets). Let $X = \mathbb{R}$ and A = [0,1]. Observe that $B = [0,\frac{1}{2}) \subset A \subset X$ is open in A, but not open in X. However, there exists a C open in X such that $B = C \cap A$. One example is $C = (-\frac{1}{2}, \frac{1}{2})$.

Definition 2.2 (Continuous). Suppose X and Y are metric spaces, $E \subset X$, $p \in E$, and f maps E into Y. Then f is **continuous** at p if for every $\varepsilon > 0$ there there exists a $\delta > 0$ such that for all $x \in E$ for which $d_X(x, p) < \delta$, we have that $d_Y(f(x), f(p)) < \varepsilon$.

Definition 2.3 (Uniformly Continuous). Let f be a mapping of a metric space X into a metric space Y. We say that f is **uniformly continuous** on X if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $p, q \in X$ for which $d_X(p,q) < \delta$, we have $d_Y(f(p), f(q)) < \varepsilon$.

Definition 2.4 (Dense). TFAE: *E* is **dense** in *X* if

- (i) Every point of *X* is a limit point of *E* or a point of *E* (or both).
- (ii) $\bar{E} = X$.
- (iii) $\forall \varepsilon > 0$ and $\forall x \in X$ we have that $B(x, \varepsilon) \cap E \neq \emptyset$.

Theorem 2.2 (Functions, inverses, and subsets). Let $f: X \to Y$

- (i) $E \subset Y \Rightarrow f(f^{-1}(E)) \subset E$
- (ii) $E \subset X \Rightarrow f(f^{-1}(E)) \supset E$

2.2 Basic Definitions

Definition 2.5 (Open Cover). Let *I* be an arbitrary index set. A collection $(G_i)_{i \in I}$ of open sets $G_i \subset X$ is called an **open cover** of X if $X \subset \bigcup_{i \in I} G_i$.

Definition 2.6 (Compact). X is **compact** if every open cover of X contains a finite subcover. More explicitly, for every open cover $(G_i)_{i \in I}$ there exists $m \in \mathbb{N}$ and $i_1, i_2, \ldots, i_m \in I$ such that $X \subset \bigcup_{j=1}^m G_{i_j}$.

Remark. This is also called the Heine-Borel property.

Definition 2.7 (Compact subset). A subset $A \subset X$ is called **compact subset** if $(A, d|_{A \times A})$ is a compact metric space. $d|_{A \times A}$ is the restriction of d to $A \times A$.

Theorem 2.3 (Heine-Borel). A subset $A \subset \mathbb{R}^n$ is compact if and only if A is closed and bounded.

Definition 2.8 (Relatively compact or precompact). A subset $A \subset X$ is called **relatively compact** or **precompact** if the closure $\bar{A} \subset X$ is compact.

Example 2.3 (Any finite metric space is compact). Let $X = \{x_i\}_{i=1}^n$ be a finite metric space. Let J be an arbitrary index set, and let $(G_j)_{j \in J}$ be an open cover of X. Therefore, each x_i must be in at least one G_j . Suppose that $x_i \in G_{j_i}$, $j_i \in J$. Then $\bigcup_{i=1}^n G_{j_i}$ is a finite subcover.

Example 2.4 $(K = \{0\} \cup \{1/n\}_{n=1}^{\infty} \subset \mathbb{R} \text{ is compact.})$. Let J be an arbitrary index set, and let $(G_j)_{j \in J}$ be an open cover of K. First note that 0 must be contained in some element of the open cover; call it G_i . Since G_i is open, each element of G_i is an interior element, so there exists a ball around 0 of radius $\varepsilon > 0$ contained in G_i . The ball also contains all the elements of K for which $n > \frac{1}{\varepsilon}$. Then, each for each of the finitely many $n \leq \frac{1}{\varepsilon}$ there exists a G_{j_n} that contains $\frac{1}{n}$. Therefore every open cover has a finite subcover.

Example 2.5 (Compactness and relative compactness in \mathbb{R}). Any closed and bounded interval [a, b] in \mathbb{R} is compact. Half open intervals [a, b), (a, b] and open intervals (a, b) in \mathbb{R} are relatively compact, since their closures are closed and bounded intervals (assuming b finite).

Example 2.6 (Unit circle in \mathbb{R}^n compact). The set $C = \left\{ x \in \mathbb{R}^n \ \middle| \ \sum_{i=1}^n |x_i|^2 = 1 \right\} \subset \mathbb{R}^n$ is compact. To show closedness, consider the map $f : \mathbb{R}^n \to \mathbb{R}$ defined by $f(\mathbf{x}) = \sum_{i=1}^n x_i^2$, $\mathbf{x} \in \mathbb{R}^n$. This map is continuous (since it is the sum of continuous functions). Then $C = f^{-1}(\{1\})$, and the singleton $\{1\}$ is a closed set in \mathbb{R} . To show boundedness, note that no single element of a vector can have an absolute value greater than one. Therefore $C \subset [-1,1]^n$. C is closed and bounded, and by Heine-Borel, compact.

Example 2.7 (Orthogonal matrices). The set of orthogonal $n \times n$ matrices with real entries (call this $O(n, \mathbb{R})$) is compact as a subset in \mathbb{R}^2 . To see this, let M_n be the set of all $n \times n$ matrices with real entries. Define a function $f: M_n \to M_n$ where $f(A) = A^T A$. This mapping is continuous. To see this, first note that $f: A \to A$ is the identity map and hence continuous. Also $f: A \to A^T$ is continuous: this follows since $||A|| = ||A^t||$, so

$$||f(A) - f(B)|| = ||B^t - A^t||$$

= $||(B - A)^t||$
= $||B - A||$

Thus whenever $||B - A|| < \varepsilon$, we have $||f(A) - f(B)|| < \varepsilon$ (hence we set $\delta = \varepsilon$). The product of two continuous functions is continuous.

Since an orthogonal matrix O has inverse O^T , we have that $f^{-1}(I) = O(n, \mathbb{R})$. The continuity of f implies that $O(n, \mathbb{R})$ is closed since it is the preimage of a singleton (which is a closed set).

To show boundedness, recall that the columns of orthogonal matrices are orthonormal. Therefore, the absolute value of an element cannot be larger than 1 in absolute value. Thus $O(n, \mathbb{R}) \subset [-1, 1]^{n^2}$. Then by Heine-Borel, $O(n, \mathbb{R})$ is compact.

Theorem 2.4 (Compact subsets of metric spaces are closed.).

Proof. Let X be a metric space and K a compact subset of X. To show K is closed, we will show that its complement K^c is open. To do this, we must show that for all $p \in K^c$, there exists a neighborhood of p completely contained in K^c (and hence does *not* intersect K).

Let $q \in K$. We will construct two types of neighborhoods:

$$W_q = \left\{ x \in X \,\middle|\, d(x,q) < \frac{1}{2} d(p,q) \right\}$$
 (neighborhood of q)
$$V_q = \left\{ x \in X \,\middle|\, d(x,p) < \frac{1}{2} d(p,q) \right\}$$
 (neighborhood of p)

Notice that the union of all W_q forms an open cover of K. Since K is compact, this open cover must have a finite subcover, $W = \bigcup_{i=1}^n W_{q_i}$. Define $V = \bigcap_{i=1}^n V_i$, which is still a neighborhood of p. By construction (since we have used open balls), $V_{q_i} \cap W_{q_i} = \emptyset$. Since $V \subseteq V_{q_i}$, $V \cap W_{q_i} \subseteq V_{q_i} \cap W_{q_i} = \emptyset$. Therefore

$$V \cap W = (V \cap W_1) \cup \cdots \cup (V \cap W_n) = \emptyset$$

Since $K \subseteq W$, we have that $V \subseteq K = \emptyset$. Thus V is a neighborhood of p completely contained in K^c . Since p was arbitrary, K^c is open, and K is closed.

Theorem 2.5 (Closed subsets of compact sets are compact.).

Proof with compactness. Let $F \subset K \subset X$, where F is closed (relative to X) and K is compact. Let $(G_{\alpha})_{\alpha \in I}$ be an open cover of F. Since F is closed, F^c is open and $F^c \cup (G_{\alpha})_{\alpha \in I}$ is an open cover of K. K is compact, so every open cover has a finite subcover: $K \subset F^c \cup (G_{\alpha_i})_{i=1}^n$. Since $F \subset K$, this finite open cover also covers F, but clearly we don't need F^c in the cover. Therefore F has a finite subcover: $F \subset (G_{\alpha_i})_{i=1}^n$.

Proof with sequential compactness. Let $F \subset K \subset X$, where F is closed (relative to X) and K is compact. Let (x_n) be a sequence of points in F (so is also in X). Since X is sequentially compact, there is a subsequence (x_{n_k}) converging to some point $x \in X$. Since F is closed, $x \in X$. Therefore F is sequentially compact since every sequence in F has a convergent subsequence.

Theorem 2.6 (The intersection of a nested sequence of compact nonempty sets is compact and nonempty.).

Proof. Let (A_n) be a sequence of compact nonempty sets. **Compact:** We know that each A_n is closed. The intersection of closed sets is closed, so $\cap A_n$ is closed. Notice that $\cap A_n \subset A_1$ is a closed subset of a compact set, so is also compact.

Nonempty: Since each A_n is nonempty, fix an $a_n \in A_n$. The sequence $(a_n) \subset A_1$. Sequential compactness of A_1 implies that there is a subsequence (a_{n_k}) converging to some point $a \in A_1$. Notice that this limit must also be in A_2 , since the sequence (a_{n_k}) is also in A_2 (except for potentially the first term, which does not affect convergence). This holds for all A_n , so $p \in \cap A_n$, which shows the intersection is nonempty.

Theorem 2.7. Let *X* be a compact metric space. Then there exists a countable, dense set $E \subset X$.

Proof. We will show that $\forall \varepsilon > 0$ and $\forall x \in X$ we can find a a set E such that for each open ball in X we have that $B(x,\varepsilon) \cap E \neq \emptyset$. Fix $\varepsilon > 0$ and define an open cover of X as follows:

$$B_n = \bigcup_{x \in X} B(x, \frac{1}{n}) \tag{2.1}$$

X is compact so the open cover B_n must have a finite subcover. Let E be the union of the centers of the balls of each finite subcover. E is the countable union of finite sets, so it is countable. Now fix $x \in X$. Choose n such that $\varepsilon < \frac{1}{n}$. Since B_n covers X, there must be some ball centered at a point of E, call it E, that contains E. Thus E is the countable union of finite sets, so it is countable. Now fix E is the countable union of finite sets, so it is countable. Now fix E is the countable union of finite sets, so it is countable. Now fix E is the countable union of finite sets, so it is countable. Now fix E is the countable union of finite sets, so it is countable. Now fix E is the countable union of finite sets, so it is countable. Now fix E is the countable union of finite sets, so it is countable. Now fix E is the countable union of finite sets, so it is countable. Now fix E is the countable union of finite sets, so it is countable. Now fix E is the countable union of finite sets, so it is countable. Now fix E is the countable union of finite sets, so it is countable.

2.3 Compactness and Continuity

Theorem 2.8 (Continuous mappings on compact sets are uniformly continuous.). Let X, Y be metric spaces and assume X is compact. If $f: X \to Y$ is continuous, then it is uniformly continuous.

Proof. Fix $\varepsilon > 0$. **Goal:** We need to find a $\delta > 0$ such that for all $x, y \in X$ for which $d_X(x, y) < \delta$, we have $d_Y(f(x), f(y)) < \varepsilon$.

Use continuity to create balls of points (which cover) X and are mapped by the function: Since f is continuous, we know that for each $x \in X$, there exists a number $\delta_x > 0$ such that for all $y \in X$ for which $d_X(x,y) < \delta_x$, we have that $d_Y(f(x),f(y)) < \varepsilon/2$. Now, let B_x be a ball of radius $\delta_x/2$ centered at x. Formally, we can write

$$B_x = B(x, \delta_x/2) = \{ y \in X | d_X(x, y) < \delta_x/2 \}$$

Then $(B_x)_{x \in X}$ is an open cover of X.

Use compactness to select a finite subcover of these balls and use the smallest radius to create uniformity: By compactness, there exists a finite subcover of X. Let x_1, \ldots, x_m be the x which generate this finite subcover. Define $\delta > 0$ as follows

$$\delta = \frac{1}{2} \min(\delta_{x_1}, \dots, \delta_{x_m}) \tag{2.2}$$

(notice that δ is indeed positive, since we are taking the minimum of finitely many positive numbers).

Show that our choice of δ **works:** Fix $x, y \in X$ such that $d_X(x, y) < \delta$. There exists and index $i \in \{1, ..., m\}$ such that $x \in B_{x_i}$ (i.e., an element of X is in some ball of the finite subcover). Then

$$d_X(x_i, y) \le d_X(x_i, x) + d_X(x, y) < \frac{1}{2}\delta_{x_i} + \delta < \delta_{x_i}$$
(2.3)

Now, using the definition of δ_{x_i} , we have that

$$d_Y(f(x), f(y)) \le d_Y(f(x), f(x_i)) + d_Y(f(x_i), f(y)) \le \varepsilon/2 + \varepsilon/2 = \varepsilon$$
(2.4)

since $d_X(x_i, x) < \delta_x/2 < \delta_x$ so continuity implies $d_Y(f(x), f(x_i)) < \varepsilon/2$, and $d_X(x_i, y) < \delta_{x_i}$ so continuity implies $d_Y(f(x_i), f(y)) < \varepsilon/2$.

Theorem 2.9 (The image of a continuous function which maps from a compact set is compact). Let X, Y be metric spaces and assume X is compact. If $f: X \to Y$ is continuous, then $f(X) \subset Y$ is compact.

Proof with compactness. Let $(V_i)_{i \in I}$ be an open cover of f(X). Since f is continuous, we have that $U_i = f^{-1}(V_i) \subset X$ is open for each i. Note that $U \subset f^{-1}(f(U))$ for every $U \subset X$. Therefore

$$X \subset f^{-1}(f(X)) \subset \bigcup_{i \in I} f^{-1}(V_i) = \bigcup_{i \in I} U_i$$
 (2.5)

which shows that $\bigcup_{i \in I} U_i$ is an open cover of X (the second subset relation uses that applying f^{-1} preserves unions). Since X is compact, there are finitely many indices, say up to m, such

$$X \subset \bigcup_{j=1}^{m} U_{i_{j}} \tag{2.6}$$

Applying f preserves inclusions and $V \supset f(f^{-1}(V))$, so we have that

$$f(X) \subset \bigcup_{j=1}^{m} f(U_{i_j}) \subset \bigcup_{j=1}^{m} V_{i_j}$$
(2.7)

Thus every open cover of f(X) has a finite subcover, so f(X) is compact.

Proof with sequential compactness. Let (y_n) be a sequence in $f(X) \subset Y$. For each $n \in \mathbb{N}$ choose a point x_n such that $f(x_n) = y_n$. By sequential compactness of X, there is some subsequence (x_{n_k}) converging to a point $x \in X$. The continuity of f implies that $f(x_{n_k})$ converges to $f(p) \in f(X)$. Therefore every sequence in f(X) has a convergent subsequence, so f(X) is sequentially compact.

Theorem 2.10 (Functions from compact sets to the reals achieve their minimum and maximum values). Let X be a compact metric space and $f: X \to \mathbb{R}$ a continuous function. Then there exists $x_0 \in X$ such that $f(x_0) = \sup_{x \in X} f(x)$.

Proof. Since X is compact, we know that the image f(X) is also compact. Since $f(X) \subset \mathbb{R}$, the Heine-Borel theorem tells us that f(X) is closed and bounded. Completeness of the real numbers (every nonempty subset of the real numbers that is bounded above has a supremum in \mathbb{R}). Since f(X) is closed, this supremum must be contained in f(X). Therefore there exists $x_0 \in X$ such that $f(x_0) = \sup_{x \in X} f(x)$.

2.4 Sequential Compactness and Total Boundedness

Definition 2.9 (Sequentially compact). A metric space X is **sequentially compact** if every sequence in X has a convergent subsequence.

Remark. This is also called the Bolzano-Weierstrass property. Recall that the Bolzano-Weierstrass theorem states that every bounded sequence in \mathbb{R}^n has a convergent subsequence.

Example 2.8 (Finite sets are sequentially compact). Suppose (x_n) is a sequence contained in a finite set. Then this sequence must repeat a term infinitely often. Define the subsequence which is constant at this term: this subsequence clearly converges.

Theorem 2.11 ((Sequentially) compact sets are closed and bounded).

Proof. Let *A* be a sequentially compact subset of a metric space *X*.

Closed: Let p be a limit point of A. Then there is a sequence (a_n) in A that converges to p. Sequential compactness of A implies that there is a subsequence of (a_{n_k}) which converges to some $q \in A$. However every subsequence of a convergent sequence must converge to the same limit as the full sequence, which implies $p = q \in A$. Therefore A is closed.

Bounded: Fix a point $x \in X$. Suppose A is not bounded. Then for each $n \in \mathbb{N}$ there must be some point a_n such that $d(x,a_n) \geq n$. However, sequential compactness implies that some subsequence (a_{n_k}) must converge. Convergent sequences are bounded, so we cannot have that $d(x,a_{n_k}) \to \infty$ as $k \to \infty$. Thus the sequence (a_n) cannot behave as assumed, and it must be that A is bounded for some $r \in \mathbb{R}$.

Definition 2.10 (Bounded metric space). A metric space X is **bounded** if it fits in a single fixed ball. More precisely, there exists some $x_0 \in X$ and r > 0 such that $X \subseteq B(x_0, r)$.

Definition 2.11 (Totally bounded). A metric space *X* is **totally bounded** if for every ε > 0 there exist finitely many balls of radius ε that cover *X*.

Claim 2.1 (Totally bounded implies bounded). Let *X* be a totally bounded metric space. Then it is bounded.

Proof. Fix $\varepsilon > 0$ and $x, y \in X$. Total boundedness implies there exists points $(x_i)_{i=1}^n$ such that $X \subseteq \bigcup_{i=1}^n B(x_i, \varepsilon)$. Suppose $x \in B(x_i, \varepsilon)$ and $y \in B(x_i, \varepsilon)$. Then

$$d(x,y) \le d(x,x_i) + d(x_i,x_j) + d(x_j,y) < d(x_i,x_j) + 2\varepsilon$$
(2.8)

There are only finitely many values of $d(x_i, x_j)$ we can set $M = \max_{i,j} d(x_i, x_j)$. Therefore $d(x, y) < M + 2\varepsilon$. Therefore X is bounded.

Example 2.9 (Closed and bounded interval in \mathbb{R} is totally bounded). A closed and bounded interval $I = [a, b] \subset \mathbb{R}$ is totally bounded.

Example 2.10 (Bounded but not totally bounded). The following are examples of metric spaces which are bounded but not totally bounded.

(i) ℓ^1 -space is defined to be the collection of all sequences $(a_n)_n$ with $\sum_{n=1}^{\infty} |a_n| < \infty$. We define a distance d on ℓ^1 as follows: $d((a_n)_n, (b_n)_n) = \sum_{n=1}^{\infty} |a_n - b_n|$. The unit ball of ℓ^1 centered at the zero-element (call this call B_1) (i.e., the zero sequence) is bounded but not totally bounded. More precisely,

$$B_1 = \left\{ (a_n)_n \left| \sum_{n=1}^{\infty} |a_n| \le 1 \right\} \right. \tag{2.9}$$

Boundedness is clear. Consider the set of sequences $A = \{a_n\}$ where each a_n is zero except for a 1 in the n-th entry. Each $a_n \in B_1$. However,

$$d(a_n, a_m) = \begin{cases} 2 & n \neq m \\ 0 & n = m \end{cases}$$
 (2.10)

If we take balls of radius $\varepsilon = \frac{1}{2}$, then a ball can cover at most one sequence in A. Therefore we can't cover A with finitely ε -balls and hence can't cover B_1 with finitely many ε -balls, so that B_1 is not totally bounded.

(ii) ℓ^{∞} -space is defined to be the collection of all sequences $(a_n)_n$ with $\sup_n |a_n| < \infty$. We define a distance d on ℓ^{∞} as follows: $d((a_n)_n, (b_n)_n) = \sup_n |a_n - b_n|$. Using the same set of sequences as the previous example, note that for all n we have that

$$d(a_n, \{0\}_{n=1}^{\infty}) = 1 (2.11)$$

so that $A \subset B_1$ (with the sup norm). Further,

$$d(a_n, a_m) = \begin{cases} 1 & n \neq m \\ 0 & n = m \end{cases}$$
 (2.12)

But again, if we take balls of radius $\varepsilon = \frac{1}{2}$, then a ball can cover at most one sequence in A. Therefore we can't cover A with finitely ε -balls and hence can't cover B_1 with finitely many ε -balls, so that B_1 is not totally bounded.

Theorem 2.12 (Characterizations of compactness). Let *X* be a metric space. The following are equivalent:

- (i) *X* is compact.
- (ii) *X* is sequentially compact.
- (iii) *X* is totally bounded and complete.

Proof of X is compact \Rightarrow *X is sequentially compact*. We argue by contradiction. Suppose *X* is compact but not sequentially compact. Thus there must exist some sequence $(x_n)_n \subset X$ without a convergence subsequence. Let *A* be the range of the sequence (more explicitly, $A = \{x_n \mid n \in \mathbb{N}\}$). Note that *A* has to be an infinite (if *A* were finite, then there would be a constant subsequence, which is convergent).

Further, A cannot have any limit points (by definition, a point is a limit point of a sequence if there exists a subsequence converging to it). Therefore for each x_n , we can find an open ball centered at x_n that only intersects A at x_n : $B_n \cap A = \{x_n\}$. A is also closed (since it has no limit points), so that X - A is open. We can construct an open cover of X as:

$$X \subseteq \bigcup_{n} B_n \cup \{X - A\} \tag{2.13}$$

Compactness of A implies this open cover has a finite subcover. Therefore the finite subcover can

only contain finitely many of the sets in $\bigcup_n B_n$, so can only contain finitely many of the points in A, which is a contradiction to the covering.

Proof of X is sequentially compact \Rightarrow *X is totally bounded and complete.* Suppose *X* is sequentially compact.

Complete: Fix $\varepsilon > 0$. Let $(x_n)_n \subset X$ be a Cauchy sequence. Sequential compactness implies $(x_n)_n$ has a convergent subsequence. Call this subsequence (x_{n_k}) and its limit x. Then there exists an N such that $d(x_{n_k}, x) < \varepsilon$ for all $n_k \geq N$. Since $(x_n)_n$ is Cauchy, there exists an N such that $n, m \geq M$ implies that $d(x_n, x_m) < \varepsilon$. But then

$$d(x_n, x) \le d(x_n, x_{n_k}) + d(x_{n_k}, x) < 2\varepsilon$$
 (2.14)

for all $n, n_k \ge \max\{N, M\}$. Therefore $(x_n)_n$ converges, so X is complete. In words, Cauchy sequences with convergence subsequences also converge.

Totally Bounded: We argue by contradiction. Suppose X is not totally bounded. Then there exists an $\varepsilon > 0$ such that X cannot be covered by finitely many balls of radius ε . We know that 1 ball of radius ε cannot cover X. Therefore there must be a point of X outside of this ball: call it x_1 . Similarly, 2 balls of radius ε cannot cover X, so pick a point outside of these two balls and call it x_2 . Proceeding in this manner generates an infinite sequence. Now consider the n-th term of this sequence. When we choose n+1, we must be able to choose a point such that $d(x_i, x_{n+1}) \ge \varepsilon$ for all $i \in \{1, \ldots, n\}$. Otherwise, we would have that $X \subseteq \bigcup_{i=1}^n B(x_i, \varepsilon)$, which would be a contradiction to X not being totally bounded. Thus we can construct such a sequence.

Next, since X is sequentially compact, we must be able to find a convergence subsequence. However, the sequence we've constructed has $d(x_i, x_j) \ge \varepsilon$ for all $i, j \in \mathbb{N}$ (hence no subsequence can be Cauchy, and we know that convergence sequences are Cauchy). Therefore we have reached a contradiction and it holds that X is totally bounded.

Proof of X is totally bounded and complete \Rightarrow *X is sequentially compact.* Suppose *X* is totally bounded and complete. Let $(x_n)_n \subset X$ be a sequence. We will construct an convergent subsequence. By the definition of total boundedness, for all $\varepsilon > 0$, *X* can be covered by finitely many balls of radius ε . **Observation:** One of these balls must contain infinitely many points of $(x_n)_n$. This inspires the following process:

- (i) **Step 1:** Cover *X* with balls of radius 1. One of these balls must contain infinitely many points of $(x_n)_n$. These infinitely many points form a subsequence, call it $(x_n^{(0)})_n$.
- (ii) **Step 2:** Cover *X* with balls of radius $\frac{1}{2}$. One of these balls must contain infinitely many points of $(x_n^{(0)})_n$. These infinitely many points form a subsequence, call it $(x_n^{(1)})_n$.
- (iii) **Step** n: Cover X with balls of radius $\frac{1}{2^n}$. One of these balls must contain infinitely many points of $(x_n^{(n-1)})_n$. These infinitely many points form a subsequence, call it $(x_n^{(n)})_n$.

Therefore we have founded nested sequences: $(x_n^{(0)})_n \subset (x_n^{(1)})_n \subset \cdots \subset (x_n^{(n-1)})_n \cdots$. Set $a_n = x_n^{(n)}$ (which is a subsequence of $(x_n)_n$).

Now we show that a_n is a Cauchy sequence. Fix $\varepsilon > 0$ and choose N such that $2^{-N+1} < \varepsilon$. Now for $m > n \ge N$ we have that

$$d(a_m, a_n) < 2 \cdot 2^{-n} < 2^{-N+1} < \varepsilon \tag{2.15}$$

since a_m and a_n are contained in the same ball of radius 2^{-n} . Therefore $(a_n)_n$ is a Cauchy sequence, and completeness implies it converges.

We have found a convergence subsequence, so X is sequentially compact.

2.5 Equicontinuity and the Arzela-Ascoli Theorem

[[To prove relatively compact, we construct a sequence of functions that converges uniformly.]]

3 Approximation Theory and Fourier Series

3.1 Orthonormal Systems

Theorem 3.1 (Best L^2 -approximation). Let

- $(\phi_n)_n$ be an orthonormal system
- $f \in pc([a,b])$
- $c_n = \langle f, \phi_n \rangle$

Define

- $s_N(x) = \sum_{n=1}^N c_n \phi_n(x)$
- $t_N(x) = \sum_{n=1}^N b_n \phi_n(x)$ for arbitrary coefficients $b_1, \dots, b_N \in \mathbb{C}$

Then

$$||f - s_N||_2 \le ||f - t_N||_2 \tag{3.1}$$

and equality holds iff $b_n = c_n$ for all n = 1, ..., N.

Proof. We compute the following elements:

$$\langle f, t_N \rangle = \sum_{n=1}^N \overline{b}_n \langle f, \phi_n \rangle = \sum_{n=1}^N \overline{b}_n c_n$$

$$\langle f, s_N \rangle = \sum_{n=1}^N \overline{c}_n \langle f, \phi_n \rangle = \sum_{n=1}^N \overline{c}_n c_n = \sum_{n=1}^N |c_n|^2$$

$$\langle t_N, t_N \rangle = \left\langle \sum_{n=1}^N b_n \phi_n, \sum_{m=1}^N b_m \phi_m \right\rangle$$

$$= \sum_{n=1}^N \sum_{m=1}^N b_n \overline{b}_m \left\langle \phi_n, \phi_m \right\rangle$$

$$= \sum_{n=1}^N |b_n|^2 \qquad ((\phi_n)_n \text{ orthonormal})$$

Then

$$||f - t_N||_2^2 = \langle f - t_N, f - t_N \rangle$$

$$= \langle f, f \rangle - \langle f, t_N \rangle - \langle t_N, f \rangle + \langle t_N, t_N \rangle$$

$$= \langle f, f \rangle - \sum_{n=1}^N \overline{b}_n c_n - \sum_{n=1}^N b_n \overline{c}_n + \sum_{n=1}^N |b_n|^2$$

$$|b_n - c_n|^2 = (b_n - c_n)(\overline{b_n - c_n})$$

$$= (b_n - c_n)(\overline{b_n} - \overline{c_n})$$

$$= b_n \overline{b_n} - b_n \overline{c_n} - c_n \overline{b_n} + c_n \overline{c_n}$$

$$= |b_n|^2 - b_n \overline{c_n} - c_n \overline{b_n} + |c_n|^2$$

Therefore

$$||f - t_N||_2^2 = \langle f, f \rangle - \sum_{n=1}^N \overline{b}_n c_n - \sum_{n=1}^N b_n \overline{c}_n + \sum_{n=1}^N |b_n|^2$$
$$= \langle f, f \rangle + \sum_{n=1}^N |b_n - c_n|^2 - \sum_{n=1}^N |c_n|^2$$

And

$$||f - s_N||_2^2 = \langle f - s_N, f - s_N \rangle$$

$$= \langle f, f \rangle - \langle f, s_N \rangle - \langle s_N, f \rangle + \langle s_N, s_N \rangle$$

$$= \langle f, f \rangle - 2 \sum_{n=1}^N |c_n|^2 + \sum_{n=1}^N |c_n|^2$$

$$= \langle f, f \rangle - \sum_{n=1}^N |c_n|^2$$

Finally

$$||f - t_N||_2^2 = ||f - s_N||_2^2 + \sum_{n=1}^N |b_n - c_n|^2$$

Thus the claim follows. Indeed, for equality to be achieved, we must have that $b_n = c_n$ for n = 1, ..., N.

Theorem 3.2 (Bessel's Inequality). If $(\phi_n)_n$ is an orthonormal system on [a,b] and $f \in pc([a,b])$,

$$\sum_{n} |\langle f, \phi_n \rangle|^2 \le ||f||_2^2 \tag{3.2}$$

Proof. In the proof of the previous theorem, we calculated that

$$0 \le \|f - s_N\|_2^2 = \langle f, f \rangle - \sum_{n=1}^N |c_n|^2$$
(3.3)

Therefore the following holds for all *N*

$$\sum_{n=1}^{N} |c_n|^2 \le \langle f, f \rangle \tag{3.4}$$

Take the limit $N \to \infty$ to get the claim

$$\sum_{n} |c_n|^2 = \sum_{n} |\langle f, \phi_n \rangle|^2 \le ||f||_2^2$$
 (3.5)

(Notice that the sum $\sum_{n=1}^{N} |c_n|^2$ converges.)

Corollary 3.3 (Riemann-Lebesgue Lemma). Let $(\phi_n)_n$ be an orthonormal system and $f \in pc([a,b])$, then

$$\lim_{n \to \infty} \langle f, \phi_n \rangle = 0 \tag{3.6}$$

Proof. In the proof of Bessel's inequality, we showed that the series $\sum_n |\langle f, \phi_n \rangle|^2$ converges. Therefore, a necessary condition of convergence, is that the terms go to zero.

Definition 3.1 (Complete Orthonormal System). An orthonormal system $(\phi_n)_n$ is called **complete** if

$$\sum_{n=1}^{\infty} \left| \langle f, \phi_n \rangle \right|^2 = \|f\|_2^2 \quad \forall f \in pc([a, b])$$
(3.7)

Theorem 3.4. Let

- $(\phi_n)_n$ be an orthonormal system
- $s_N(x) = \sum_{n=1}^N c_n \phi_n(x)$

Then $(\phi_n)_n$ is complete if and only if $(s_N)_N$ converges to f in the L^2 -norm. Precisely, $\lim_{N\to\infty} ||f-s_N||_2 = 0$ for every $f \in pc([a,b])$.

Proof. Again, from the best approximation theorem, we calculated that

$$||f - s_N||_2^2 = \langle f, f \rangle - \sum_n |\langle f, \phi_n \rangle|^2$$
(3.8)

Then this converges to 0 if and only if $(\phi_n)_n$ is complete.

3.2 Trigonometric Polynomials

Definition 3.2 (Trigonometric Polynomial, Degree). A trigonometric polynomial is a function

of the form

$$f(x) = \sum_{n=-N}^{N} c_n e^{2\pi i n x} \quad x \in \mathbb{R}$$
(3.9)

where $N \in \mathbb{N}$ and $c_n \in \mathbb{C}$. The largest N for which either c_N or c_{-N} is non-zero is called the **degree** of f.

Claim 3.1 (Alternative form of trigonometric polynomial). Every trigonometric polynomial can also be written in the form

$$f(x) = a_0 + \sum_{n=1}^{N} a_n \cos(2\pi nx) + b_n \sin(2\pi nx)$$
(3.10)

for coefficients a_n , b_n .

Proof. Using Euler's identity, recall that

$$e^{2\pi inx} = \cos(2\pi inx) + i\sin(2\pi inx) \tag{3.11}$$

Then, for $x \in \mathbb{R}$,

$$f(x) = \sum_{n=-N}^{N} c_n e^{2\pi i n x}$$

$$= \sum_{n=-N}^{N} \left[\cos(2\pi i n x) + i \sin(2\pi i n x) \right]$$

$$= c_0 + \sum_{n=1}^{N} \left[c_n (\cos(2\pi i n x) + i \sin(2\pi i n x)) + c_{-n} (\cos(2\pi i (-n) x) + i \sin(2\pi i (-n x))) \right]$$

$$= c_0 + \sum_{n=1}^{N} \left[(c_n + c_{-n}) \cos(2\pi i n x) + i (c_n - c_{-n}) \sin(2\pi i n x) \right]$$

Therefore the claim alternative holds for $(1 \le n \le N)$

$$a_0 = c_0$$

$$a_n = c_n + c_{-n}$$

$$b_n = i(c_n - c_{-n})$$

Definition 3.3 (Partial sums). For a 1-periodic function $f \in pc$ we define the partial sums

$$S_N f(x) = \sum_{n=-N}^{N} \hat{f}(n) e^{2\pi i n x}$$
 (3.12)

Definition 3.4 (Convolution). For two 1-periodic functions $f, g \in pc$ we define their **convolution** by

$$f * g(x) = \int_0^1 f(t)g(x - t)dt$$
 (3.13)

Definition 3.5 (Approximation of Unity). A sequence of 1-periodic continuous functions $(k_n)_n$ is called **approximation of unity** if for all 1-periodic continuous functions f we have that $f * k_n$ converges uniformly to f on \mathbb{R} . That is

$$\sup_{x \in \mathbb{R}} |f * k_n(x) - f(x)| \to 0 \tag{3.14}$$

as $n \to \infty$

Theorem 3.5 (Sufficient conditions for approximation of unity). Let $(k_n)_n$ be a sequence of 1-periodic continuous functions such that

- (i) Non-negative: $k_n(x) \ge 0$.
- (ii) Integrates to 1: $\int_{-1/2}^{1/2} k_n(t) dt = 1$.
- (iii) "Mass" of k_n concentrated near the origin: For all $1/2 \ge \delta > 0$ we have

$$\int_{-\delta}^{\delta} k_n(t)dt \to 1 \text{ as } n \to \infty$$
 (3.15)

Proof. Let f be a function that is 1-periodic and continuous. What can we say about f? Using continuity: Consider the interval [-1/2,1/2]. f is continuous on this compact set so that on [-1/2,1/2] it is

- (i) Bounded
- (ii) Uniformly continuous

Using periodicity: by periodicity, on all of \mathbb{R} , f is

- (i) Bounded
- (ii) Uniformly continuous

Thus there exists a $\delta > 0$ such that

$$|f(x-t) - f(x)| \le \varepsilon/2 \text{ for all } |t| < \delta, x \in \mathbb{R}$$
 (3.16)

Then we can write

$$f * k_n(x) - f(x) = \int_{-1/2}^{1/2} (f(x-t) - f(x)) k_n(t) dt$$
 (3.17)

Let's break this integral up into two pieces:

$$A = \int_{|t| \le \delta} (f(x-t) - f(x)) k_n(t) dt$$

$$B = \int_{1/2 > \delta > 0} (f(x - t) - f(x)) k_n(t) dt$$

To bound *A*, we use uniform continuity and (ii):

$$|A| = \left| \int_{|t| \le \delta} \left(f(x - t) - f(x) \right) k_n(t) dt \right|$$

Incomplete.

Theorem 3.6 (Fejér). For every 1-periodic, continuous function f we have

$$\sigma_N f \to f \text{ as } N \to \infty$$
 (3.18)

uniformly on \mathbb{R} .

In words, the sequence σ_n of Cesáro means of the sequence (s_n) of partial sums of the Fourier series of f converges uniformly to f on [0,1].

Corollary 3.7. Every 1-periodic continuous function can be uniformly approximated by trigonometric polynomials.

Proof.

Corollary 3.8 (Fejér kernel an approximation of unity).

Proof. We must verify the hypotheses of the above theorem.

Incomplete.

Theorem 3.9 (Partial sum convoluted with 1-periodic, continuous function converges in 2-norm). Let f be a 1-periodic and continuous function. Then

$$\lim_{N \to \infty} ||S_N f - f||_2 = 0 \tag{3.19}$$

Proof. Let $\varepsilon > 0$. By Fejer's theorem, there exists a trigonometric polynomial p that uniformly approximates f: That is, $|f(x) - p(x)| < \varepsilon/2$. Then

$$||f - p||_2 = \left(\int_0^1 |f(x) - p(x)|^2\right)^{1/2} \le \varepsilon/2$$
 (3.20)

Suppose p has degree N. Then

$$S_N f - f = S_N f - S_N p + S_N p - f = S_N (f - p) + p - f$$
(3.21)

Then by Minkowski's inequality

$$||S_N f - f||_2 \le ||S_N (f - p)||_2 + ||p - f||_2$$
(3.22)

Bessel's inequality implies that $||S_N f||_2 \le ||f||_2$. Therefore $||S_N (f - p)||_2 \le ||f - p||_2 = ||p - f||_2$. Then

$$||S_N f - f||_2 \le 2||f - p||_2 \le \varepsilon$$
 (3.23)

which proves the claim.

Corollary 3.10 (Parseval's Theorem). If f, g are 1-periodic, continuous functions, then

$$\langle f, g \rangle = \sum_{n = -\infty}^{\infty} \hat{f}(n) \overline{\hat{g}(n)}$$
 (3.24)

As a special case

$$||f||_2^2 = \sum_{n = -\infty}^{\infty} |\hat{f}(n)|^2$$
(3.25)

Proof. We compute

$$\langle S_N f, g \rangle = \left\langle \sum_{n=-N}^N \hat{f}(n) e^{2\pi i n x}, g \right\rangle$$

$$= \sum_{n=-N}^N \left\langle \hat{f}(n) e^{2\pi i n x}, g \right\rangle$$

$$= \sum_{n=-N}^N \hat{f}(n) \left\langle e^{2\pi i n x}, g \right\rangle$$

$$= \sum_{n=-N}^N \hat{f}(n) \int_0^1 e^{2\pi i n x} \overline{g(x)} dx$$

$$= \sum_{n=-N}^N \hat{f}(n) \overline{\hat{g}(n)}$$

Now notice that

$$\langle S_N f, g \rangle \to \langle f, g \rangle$$
 (3.26)

because

$$|\langle S_N f, g \rangle - \langle f, g \rangle| = |\langle S_N f - f, g \rangle|$$

 $\leq ||S_N f - f||_2 ||g||_2$ (Cauchy-Schwarz)
 $\to 0 \text{ as } N \to \infty$ (previous theorem)

The special case follows from setting f = g.

Theorem 3.11. Let f be a 1-periodic continuous function and let $x \in \mathbb{R}$. Suppose f is differentiable at x. Then

$$S_N f(x) \to f(x) \text{ as } N \to \infty$$
 (3.27)

Proof. First by definition

Proof incomplete.

3.3 Weierstrass Theorem

Theorem 3.12 (Weierstrass Theorem). For every $f \in C([a,b])$ there exists a sequence of polynomials that converges uniformly to f.

Proof. Let $\varepsilon > 0$.

Incomplete.

Remark. This shows that polynomials are dense in C([a, b]).

3.4 Stone-Weierstrass Theorem

Theorem 3.13 (Stone-Weierstrass Theorem (Sufficient conditions for a subset of C(K), K compact, to be dense)). Suppose

- *K* is a compact metric space.
- $\mathcal{A} \subset C(K)$ such that
 - (i) A is a self-adjoint algebra: for f, $g \in A$, $c \in \mathbb{C}$, we have

$$f + g \in \mathcal{A}, f \cdot g \in \mathcal{A}, c \cdot f \in \mathcal{A}, \bar{f} \in \mathcal{A}$$
 (3.28)

- (ii) \mathcal{A} separates points: for all $x,y\in K$ with $x\neq y$, there exists $f\in \mathcal{A}$ such that $f(x)\neq f(y)$.
- (iii) A vanishes nowhere: for all $x \in K$, there exists $f \in A$ such that $f(x) \neq 0$.

Then A is dense in C(K) (that is, $\bar{A} = C(K)$).

Remark. Polynomials and trigonometric polynomials satisfy the conditions of the Stone-Weierstrass Theorem (Theorem 3.13).

Show this.

We prove a sequence of lemmas before proving the theorem.

Lemma 3.14 (Sequence of polynomial (zero intercept) uniformly converging to absolute value function). For every a > 0 there exists a sequence of polynomials $(p_n)_n$ with real coefficients such that $p_n(0) = 0 \ \forall n$ and

$$\sup_{x \in [-a,a]} |p_n(x) - |x|| \to 0 \text{ as } n \to \infty$$
(3.29)

Proof. f(x) = |x| is a continuous function on [-a,a]. By Weierstrass' theorem, there exists a sequence of polynomials $(q_n)_n$ converging uniformly to f(x) = |x| on [-a,a]. Now set $p_n(x) = q_n(x) - q_n(0)$. It is clear that $p_n(0) = 0$. Further, $p_n(x)$ converges uniformly to |x|, since $q_n(x)$ uniformly converges to |x| and $q_n(0)$ converges to 0.

More formally: fix $\varepsilon > 0$. Then $\exists N$ such that $|q_n(x) - |x|| < \varepsilon$ for all n > N and $x \in [-a, a]$. Thus, for this N, $|q_n(0)| < \frac{\varepsilon}{2}$ and $|q_n(x)| < \frac{\varepsilon}{2}$ for all $x \neq 0$. Therefore

$$|p_n(x)| = |q_n(x) - q_n(0)| \le |q_n(x)| + |q_n(0)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
 (3.30)

Lemma 3.15. If $f \in \bar{A}$, then $|f| \in \bar{A}$.

Proof. By the previous lemma, there exists a sequence of polynomials (with zero intercept) converging uniformly to the absolute value function. Thus fix $\varepsilon > 0$. Let $a = \max_{x \in K} |f(x)|$. Then there exist coefficients $c_1, c_2, \ldots, c_N \in \mathbb{R}$ such that

$$\left| \sum_{i=1}^{n} c_i y^i - |y| \right| \le \varepsilon \quad \forall |y| \le a \tag{3.31}$$

Note: This sum does not have an intercept/constant term. Since $f \in \bar{A}$ and A is a self-adjoint algebra, we have that

$$g = \sum_{i=1}^{n} c_i f^i \in \bar{A} \tag{3.32}$$

But since Equation 3.31 holds for all values $y \in [-a, a]$, and we have that $|f(x)| \le a$, the same inequality holds for $y^i = f^i(x)$, $x \in K$. **Note:** This holds for every $x \in K$.

$$|g(x) - |f(x)|| = \left| \sum_{i=1}^{n} c_i f^i(x) - |f(x)| \right| \le \varepsilon \quad x \in K$$
(3.33)

This shows that |f| can be uniformly approximated by functions in \bar{A} . Since \bar{A} is closed, we have that $|f| \in \bar{A}$.

Lemma 3.16 (\bar{A} closed under max and min operations). If $f_1, \ldots, f_m \in \bar{A}$ then min $\{f_1, \ldots, f_n\} \in \bar{A}$ and max $\{f_1, \ldots, f_n\} \in \bar{A}$

Proof. We prove for m=2 (and the general case follows by induction). Let $f,g \in \bar{A}$. We can write $\min\{f,g\}$ and $\max\{f,g\}$ as linear combinations of functions in \bar{A} . Indeed, observe that

$$\min\{f,g\} = \frac{f-g}{2} - \frac{|f-g|}{2}$$
$$\max\{f,g\} = \frac{f-g}{2} + \frac{|f-g|}{2}$$

Therefore, since \bar{A} is a self-adjoint algebra and is closed under taking the absolute value, we have that \bar{A} is also closed under taking the max and min of finitely many functions.

Lemma 3.17 (Any two points that could lie on the graph of a function in \bar{A} do lie on the graph of a function in \bar{A}). For every $x_0, x_1 \in K$, $x_0 \neq x_1$ and $c_0, c_1 \in \mathbb{R}$, there exists $f \in \bar{A}$ such that $f(x_i) = c_i$ for i = 0, 1.

Proof. Using conditions (ii) and (iii) we have that there exist functions $g, h_0, h_1 \in \bar{A}$ such that

- (i) g separates points: $g(x_0) \neq g(x_1)$
- (ii) h_0 and h_1 don't vanish: $h_0(x_0) \neq 0$ and $h_1(x_1) \neq 0$.

Define

$$u_0(x) = (g(x) - g(x_1))h_0(x) \Rightarrow u_0(x_1) = 0, u_0(x_0) \neq 0$$

 $u_1(x) = (g(x) - g(x_0))h_1(x) \Rightarrow u_1(x_0) = 0, u_1(x_1) \neq 0$

Now let

$$f(x) = \frac{c_0 u_0(x)}{u_0(x_0)} + \frac{c_1 u_1(x)}{u_1(x_1)}$$
(3.34)

It is clear that

$$f(x_0) = c_0$$
$$f(x_1) = c_1$$

and these terms are well-defined (i.e., no issues with zero denominators).

Remark. We can extend this lemma to finitely many points. Thus if *K* were finite, we would have proved the Stone-Weierstrass theorem.

Claim 3.2. Let $f \in C(K)$ and $\varepsilon > 0$. For every $x \in K$ there exists $g_x \in \bar{A}$ such that

(i)
$$g_x(x) = f(x)$$

(ii)
$$g_x(t) > f(t) - \varepsilon$$

We are looking for g_x like shown in the following figure:

Proof. Take another point $y \in K$, $y \neq x$. By the previous lemma, we can find an $h_y \in \bar{A}$ such that

(i)
$$h_y(x) = f(x)$$

(ii)
$$h_y(y) = f(y)$$

Since h_y is continuous, there exists a $\delta_y > 0$ such that

$$t \in B_{\delta_y}(y) \Rightarrow |h_y(t) - f(t)| < \varepsilon$$
 (3.35)

Notice that this implies that $h_y(t) > f(t) - \varepsilon$. Now notice that $\left(B_{\delta_y}(y)\right)_{y \in K}$ is an open cover of K. Compactness implies the existence of a finite subcover, identified by points y_1, \ldots, y_m . Now let

$$g_x = \max\{h_{y_1}, \dots, h_{y_m}\}\tag{3.36}$$

We have, by a previous lemma, that $g_x \in \bar{A}$. Further, it is clear that

$$g_x(x) = f(x) \tag{3.37}$$

since each $h_{y_i}(x) = x$ and

$$g_x(t) > f(t) - \varepsilon \tag{3.38}$$

since by taking the max (pointwise) of elements for which this is true. This proves the claim.

Finally ready to complete the whole proof.

Proof of Stone-Weierstrass Theorem.

- 4 Linear Operators and Derivatives
- 5 Differential Calculus in \mathbb{R}^n
- 6 The Baire category theorem

A Review From Elementary Analysis

A.1 The Real and Complex Number System

Definition A.1 (Supremum, Infimum). Let *S* be an ordered set, $E \subset S$, and *E* be bounded above. Suppose there exists an $\alpha \in S$ with the following properties:

- (i) α is an upper bound of E.
- (ii) $If \gamma < \alpha$ then γ is not an upper bound of E.

Then α is called the least upper bound of E or **supremum** of E and we write $\alpha = \sup E$. Similarly, α is the greatest lower bound of E or **infimum** of E if

- (i) α is a lower bound of E.
- (ii) $If \beta > \alpha$ then β is not a lower bound of E.

and we write $\alpha = \inf E$.

Definition A.2 (Limit Superior, Inferior). Let (x_n) be a sequence of real numbers.

(i) The **limit superior** of the sequence is defined by

$$\limsup_{n \to \infty} x_n = \lim_{n \to \infty} \left(\sup_{m \ge n} x_m \right) \tag{A.1}$$

or

$$\limsup_{n \to \infty} x_n = \inf_{n \ge 0} \left(\sup_{m \ge n} x_m \right) = \inf \left\{ \sup \left\{ x_m \mid m \ge n \right\} \mid n \ge 0 \right\} \tag{A.2}$$

Alternatively, the limit superior of the sequence is the smallest $b \in \mathbb{R}$ such that $\forall \varepsilon > 0$ $\exists N$ such that $x_n < b + \varepsilon \ \forall n > N$. Thus, any number larger than the limit superior is an upper bound for the sequence after a finite number of terms (hence, only a finite number of elements are greater that $b + \varepsilon$).

Alternatively, the limit superior of the sequence is the supremum of the set of subsequential limits.

(ii) The **limit inferior** of the sequence is defined by

$$\liminf_{n \to \infty} x_n = \lim_{n \to \infty} \left(\inf_{m \ge n} x_m \right) \tag{A.3}$$

or

$$\liminf_{n \to \infty} x_n = \sup_{n \ge 0} \left(\inf_{m \ge n} x_m \right) = \sup \left\{ \inf \left\{ x_m \mid m \ge n \right\} \mid n \ge 0 \right\} \tag{A.4}$$

Theorem A.1 (Properties of limit superiors). Let (x_n) and (y_n) be sequence of real numbers. Then

(i)
$$\limsup_{n\to\infty} (x_n + y_n) \le \limsup_{n\to\infty} x_n + \limsup_{n\to\infty} y_n$$
 (as long as the RHS is not of the form $\infty - \infty$)

Proof. We prove each item in turn.

(i) We have that

$$\lim_{n \to \infty} \sup (x_n + y_n) = \lim_{n \to \infty} \left(\sup_{m \ge n} \{ x_m + y_m, x_{m+1} + y_{m+1}, \dots \} \right)$$
 (A.5)

Then

$$M_n := \sup_{m \ge n} \{x_m + y_m, x_{m+1} + y_{m+1}, \ldots\} = \sup_{m \ge n} \{x_m + y_m\} \le \sup_{m \ge n} \{x_m\} + \sup_{m \ge n} \{y_m\}$$
 (A.6)

Take the limit of both sides to get

$$\lim_{n\to\infty} M_n \le \lim_{n\to\infty} \sup_{m>n} \{x_m\} + \lim_{n\to\infty} \sup_{m>n} \{y_m\}$$
(A.7)

Thus

$$\limsup_{n \to \infty} (x_n + y_n) \le \limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n \tag{A.8}$$

A.2 Basic Topology

In what follows, assume *X* is a metric space.

Definition A.3 (Limit point). A point p is a **limit point** of the set E if every neighborhood of p contains a point $q \neq p$ such that $q \in E$.

Definition A.4 (Closed). *E* is **closed** if every limit point of *E* is a point of *E*.

Definition A.5 (Interior). A point p is an **interior point** of E if there is a neighborhood N of p such that $N \subset E$.

Definition A.6 (Open). *E* is **open** if every point of *E* is an interior point of *E*.

Definition A.7 (Bounded). *E* is **bounded** if there is a real number *M* and a point $q \in X$ such that d(p,q) < M for all $p \in E$.

Definition A.8 (Separated, Connected). Two subsets A and B of a metric space X are said to be **separated** if both $A \cap \overline{B}$ and $\overline{A} \cap B$ are empty (i.e., if no point of A lies in the closure of B and no point of B lies in the closure of A). A set $E \subset X$ is said to be **connected** if E is not a union of two nonempty separated sets.

A.3 Numerical Sequences and Series

A.3.1 Sequences

Definition A.9 (Convergent Sequence). A sequence (p_n) in a metric space X is said to **converge** if there is a point $p \in X$ such that for every $\varepsilon > 0$ there is an integer N such that $n \ge N$ implies $d(p_n, p) < \varepsilon$.

Definition A.10 (Subsequence, Subsequential Limit). Given a sequence (p_n) , consider a sequence (n_k) of positive integers such that $n_1 < n_2 < n_3 < \cdots$. Then the sequence (p_{n_i}) is called a **subsequence** of (p_n) . If (p_{n_i}) converges, its limit is called a **subsequential limit** of (p_n) .

Observations:

• (p_n) converges to p if and only if every subsequence of (p_n) converges to p.

Theorem A.2 (Sequences in compact metric spaces have a convergent subsequence). If (p_n) is a sequence in a compact metric space X, then some subsequence of (p_n) converges to a point of X.

Theorem A.3 (Bolzano-Weierstrass). Every bounded sequence in \mathbb{R}^k has a convergent subsequence.

Definition A.11 (Cauchy Sequence). A sequence (p_n) in a metric space X is said to be a **Cauchy Sequence** if for every $\varepsilon > 0$ there is an integer N such that $d(p_n, p_m) < \varepsilon$ if $n \ge N$ and m > N.

Definition A.12 (Diameter). Let *E* be a nonempty subset of a metric space *X*, and let *S* be the set of all real numbers of the form d(p,q) with $p \in E$ and $q \in E$. The sup of *S* is called the **diameter** of *E*.

Theorem A.4 (Facts about Cauchy sequences). We have that

- (i) In any metric space *X*, every convergent sequence is a Cauchy sequence.
- (ii) If X is a compact metric space and if (p_n) is a Cauchy sequence in X, then (p_n) converges to some point of X.
- (iii) In \mathbb{R}^k , every Cauchy sequence converges.

Definition A.13 (Complete). A metric space in which every Cauchy sequence converges is **complete**.

Definition A.14 (Monotonically increasing, decreasing). A sequence (s_n) of real numbers is said to be

- (i) **Monotonically increasing** if $s_n \leq s_{n_1}$ for all n.
- (ii) Monotonically decreasing if $s_n \ge s_{n_1}$ for all n.

Theorem A.5 (Convergence of monotonic sequences). Let (s_n) be a monotonic sequence. Then (s_n) converges if and only if it is bounded.

A.3.2 Series

Definition A.15 (Convergent Series). Let $\sum_{n=1}^{\infty} a_n$ be an infinite series. Define $s_n = \sum_{k=1}^{n} a_k$ to be the nth partial sum of the series. If the sequence of partial sums $\{s_n\}$ converges to s, we say the series **converges**.

Theorem A.6 (Cauchy Criterion for Series). $\sum a_n$ converges iff

$$\forall \varepsilon > 0 \; \exists N \; \text{s.t.} \; m, n \ge N \Rightarrow \left| \sum_{k=n}^{m} a_k \right| \le \varepsilon$$
 (A.9)

Theorem A.7 (Necessary condition for convergence: individual terms of series go to 0.). If $\sum a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

Theorem A.8. A series of nonnegative terms converges if and only if its partial sums form a bounded sequence.

Theorem A.9 (Root Test). Given $\sum a_n$, let $\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$. Then

- (i) If $\alpha < 1$, $\sum a_n$ converges.
- (ii) If $\alpha > 1$, $\sum a_n$ diverges.
- (iii) If $\alpha = 1$, the test gives no information.

A.4 Continuity

Definition A.16 (Limit). Let X and Y be metric spaces, $E \subset X$, f map E into Y, and p be a limit point of E. We write $f(x) \to q$ as $x \to p$ or $\lim_{\mathbf{x} \to \mathbf{p}} \mathbf{f}(\mathbf{x}) = \mathbf{q}$ if there is a point $q \in Y$ such that for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $x \in E$ for which $0 < d_X(x, p) < \delta$, we have $d_Y(f(x), q) < \varepsilon$.

Definition A.17 (Continuous). Suppose *X* and *Y* are metric spaces, $E \subset X$, $p \in E$, and *f* maps *E* into *Y*. Then *f* is **continuous** at *p* if for every $\varepsilon > 0$ there there exists a $\delta > 0$ such that for all $x \in E$ for which $d_X(x, p) < \delta$, we have that $d_Y(f(x), f(p)) < \varepsilon$.

Definition A.18 (Uniformly Continuous). Let f be a mapping of a metric space X into a metric space Y. We say that f is **uniformly continuous** on X if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $p, q \in X$ for which $d_X(p,q) < \delta$, we have $d_Y(f(p), f(q)) < \varepsilon$.

Observations:

- Uniform continuity is a property of a function on a set, whereas continuity can be defined at a single point.
- If f is continuous on X, then for each $\varepsilon > 0$ and each $p \in X$, we can find a $\delta > 0$ that satisfies the condition in the definition. For uniform continuity, we can find one $\delta > 0$ that works for all points $p \in X$.
- Every uniformly continuous function is continuous. The two concepts are equivalent on compact sets.

A.5 Differentiation

Definition A.19 (Differentiable, Derivative). Let f be defined (and real-valued) on [a, b]. For any $x \in [a, b]$ define

$$f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}$$
 (A.10)

provided this limit exists. If f' is defined at a point x, we say that f is **differentiable** at x. f' is called the **derivative** of f.

Theorem A.10 (Mean Value Theorem). If f is a real continuous function on [a,b] which is differentiable on (a,b), then there is a point $x \in (a,b)$ at which

$$f(b) - f(a) = (b - a)f'(x)$$
 (A.11)

References

Humpherys, J., Jarvis, T. J., and Evans, E. J. (2017). *Foundations of Applied Mathematics, Volume 1: Mathematical Analysis.* SIAM.

Roos, J. (2018). Analysis Lecture Notes.

Rudin, W. (1976). Principles of Mathematical Analysis, volume 3. McGraw-Hill New York.