

Automated and Early Detection of Disease Outbreaks

Kasper Schou Telkamp

Section for Dynamical Systems

DTU Compute

Department of Applied Mathematics and Computer Science

Outline

- Data exploration
- Hierachical Poisson-Normal model
 - Formulation
 - Results
- Hierachical Poisson-Gamma model
 - Formulation
 - ullet Probability function for Y
 - Inference on individual group means
 - Results

Data exploration VTEC / STEC

Date	ageGroup	y_{it}	x_{it}
2008-01-01	<1 year	2	64137
2008-01-01	1-4 years	2	259910
2008-01-01	5-14 years	2	680529
2008-01-01	15-24 years	1	635838
2022-12-01	5-14 years	5	634139
2022-12-01	15-24 years	1	721286
2022-12-01	25-64 years	10	3031374
2022-12-01	65+ years	12	1204892

Data exploration

VTEC / STEC

Data exploration

VTEC / STEC

Data exploration

DTU

VTEC / STEC

Formulation

The conditional distribution, Y|u, of the count observations are assumed to be a Poisson distribution with intensities λ_{it} . Also, we shall assume that the count is proportional to the population size, x_{it} , within each age group, i, at a given time point, t. Hence, in terms of the canonical link for the Poisson distribution the model for the fixed effect is

$$\log(\lambda_{it}) = \mathbf{X}_i^T \beta_{it} + \log(x_{it}) \tag{1}$$

Here \mathbf{X}_i is $T \times 6$ -dimensional, and β_{it} contains the corresponding fixed effect parameter. The random effects u_{it} are assumed to be Gaussian.

$$u_{it} = \epsilon_{it} \tag{2}$$

where $\epsilon_{it} \sim N(0, \sigma^2)$ is a white noise process, and σ is a model parameter.

Fomulation

Henceforth, the model can be formulated as a two-level hierarchical model

$$Y_{it}|u_{it} \sim \text{Pois}(\lambda_{it}e^{u_{it}})$$
 (3a)

$$u_{it} \sim N(0, \sigma^2)$$
 (3b)

Hierachical Poisson-Normal model

Results

Parameter	Estimate	Std. Error
$\beta_{<1year}$	10.83	0.11
$\beta_{1-4years}$	13.64	0.09
$\beta_{5-14years}$	13.94	0.10
$\beta_{15-24years}$	14.05	0.09
$\beta_{25-64years}$	16.61	0.08
$\beta_{65+years}$	14.83	0.09
σ	1.01	0.04

Hierachical Poisson-Normal model

Results

Hierachical Poisson-Normal model

Results

Formulation

Likewise, in the compound Poisson-Gamma model the conditional distribution, Y|u, of the count observations are assumed to be a Poisson distribution, but this time the intensities, λ_{it} , are defined as

$$\log(\lambda_{it}) = \mathbf{X}_i^T \beta_{it} + \log(x_{it}) \tag{4}$$

Here \mathbf{X}_i is $T \times 6$ -dimensional, and β_{it} contains the corresponding fixed effect parameter. Additionally, the random effects u_{it} are assumed to be Gamma distributed.

Formulation

Subsequently, the model can be formulated as a two-level hierarchical model

$$Y_{it}|u_{it} \sim \text{Pois}(\lambda_{it}u_{it})$$
 (5a)

$$u_{it} \sim G(1/\phi_i, \phi_i)$$
 (5b)

Probability function for *Y*

$$P[Y = y_i] = g_Y(y; \lambda, \phi)$$

$$= \frac{\lambda^y}{y!\Gamma(1/\phi)\phi^{1/\phi}} \frac{\phi^{y+1/\phi}\Gamma(y+1/\phi)}{(\lambda\phi+1)^{y+1/\phi}}$$

$$= \frac{\Gamma(y+1/\phi)}{\Gamma(1/\phi)y!} \frac{1}{(\lambda\phi+1)^{1/\phi}} \left(\frac{\lambda\phi}{\lambda\phi+1}\right)^y$$

$$= \left(\frac{y+1/\phi-1}{y}\right) \frac{1}{(\lambda\phi+1)^{1/\phi}} \left(\frac{\lambda\phi}{\lambda\phi+1}\right)^y, \text{ for } y = 0, 1, 2, \dots$$
(6)

where we have used the convention

The marginal distribution of Y is a negative binomial distribution, $Y \sim NB(1/\phi, 1/(\lambda \phi + 1))$

Proof

The probability function for the conditional distribution of \boldsymbol{Y} for given \boldsymbol{u}

$$f_{Y|u}(y;\lambda,u) = \frac{(\lambda u)^y}{y!} \exp(-\lambda u)$$
(8)

and the probability density function for the distribution of \boldsymbol{u} is

$$f_u(u;\phi) = \frac{1}{\phi\Gamma(1/\phi)} \left(\frac{u}{\phi}\right)^{1/\phi - 1} \exp(-u/\phi)$$
 (9)

Proof

Given (8) and (9), the probability function for the marginal distribution of Y is determined from

$$g_Y(y;\lambda,\phi) = \int_{u=0}^{\infty} f_{Y|u}(y;\lambda,u) f_u(u;\phi) du$$

$$= \int_{u=0}^{\infty} \frac{(\lambda u)^y}{y!} \exp(-\lambda u) \frac{1}{\phi \Gamma(1/\phi)} \left(\frac{u}{\phi}\right)^{1/\phi - 1} \exp(-u/\phi) du \qquad (10)$$

$$= \frac{\lambda^y}{y! \Gamma(1/\phi) \phi^{1/\phi}} \int_{u=0}^{\infty} u^{y+1/\phi - 1} \exp\left(-u(\lambda \phi + 1)/\phi\right) du$$

Proof

In (10) it is noted that the integrand is the *kernel* in the probability density function for a Gamma distribution, $G\left(y+1/\phi,\phi/(\lambda\phi+1)\right)$. As the integral of the density shall equal one, we find by adjusting the norming constant that

$$\int_{u=0}^{\infty} u^{y+1/\phi-1} \exp\left(-u/\left(\phi/(\lambda\phi+1)\right)\right) du = \frac{\phi^{y+1/\phi}\Gamma(y+1/\phi)}{(\lambda\phi+1)^{y+1/\phi}} \tag{11}$$

and then (6) follows

Inference on individual group means

Consider the hierarchical Poisson-Gamma model in (5), and assume that a value Y=y has been observed. Then the conditional distribution of u for given Y=y is a Gamma distribution,

$$u|Y = y \sim G\left(y + 1/\phi, \phi/(\lambda\phi + 1)\right) \tag{12}$$

with mean

$$E[u|Y=y] = \frac{y\phi + 1}{\lambda\phi + 1} \tag{13}$$

and variance

$$V[u|Y = y] = \frac{(y\phi^2 + \phi)}{(\lambda\phi + 1)^2}$$
 (14)

Proof

The conditional distribution is found using Bayes Theorem

$$g_{u}(u|Y=y) = \frac{f_{y,u}(y,u)}{g_{Y}(y;\lambda,\phi)}$$

$$= \frac{f_{y|u}(y;u)g_{u}(u)}{g_{Y}(y;\lambda,\phi)}$$

$$= \frac{1}{g_{Y}(y;\lambda,\phi)} \left(\frac{(\lambda u)^{y}}{y!} \exp(-\lambda u) \frac{1}{\phi\Gamma(1/\phi)} \left(\frac{u}{\phi}\right)^{1/\phi-1} \exp(-u/\phi)\right)$$

$$\propto u^{y+1/\phi-1} \exp\left(-u(\lambda\phi+1)/\phi\right)$$
(15)

We identify the *kernel* of the probability density function

$$u^{y+1/\phi-1}\exp(-u(\lambda\phi+1)/\phi) \tag{16}$$

as the kernel of a Gamma distribution, $G(y+1/\phi,\phi/(\lambda\phi+1))$

Results

Parameter	Estimate	Std. Error
$\beta_{<1year}$	11.23	0.08
$\beta_{1-4years}$	13.94	0.06
$\beta_{5-14years}$	14.30	0.07
$\beta_{15-24years}$	14.42	0.07
$\beta_{25-64years}$	16.87	0.06
$\beta_{65+years}$	15.24	0.06
ϕ	0.45	0.03

Hierachical Poisson-Gamma model

DTU

Results

Hierachical Poisson-Gamma model

Results

