

ANS-BT102M 规格书 V1. 2

5.2 BLE 蓝牙模块

修订记录

版本	日期	记录	作者
1.0	2021/6/1	初始版本	QZY
1. 1	2023/3/5	更新引脚	KIWI
1. 2	2024/7/15	更正错误	KIWI

目录	
1 介绍	3
1.1 概述 1.2 特点 1.3 应用	3 3 3
2 一般规格	4
3 硬件规格	4
3.1 框图和引脚定义图 3.2 引脚定义说明	4 5
4物理接口	6
4.1 通用数字 I0 口 4.2 RF 接口 4.3 UART 接口 4.4 模数转换器	6 7 7 7
5 电气特性	7
5.2 推荐工作条件	8
6湿度敏感度等级 & 防静电等级	8
7 回流焊	8
8 模块结构参数	10
8.1 物理尺寸	10
9 硬件设计建议	10
9.3 布局指南(外部天线) 9.4 外置天线	11 12
10 产品包装信息	13
11 应用电路图	13

介绍

1.1 概述

ANS-BT102M是BLE蓝牙5. 2模块,它支持HID,GATT,ATT和其他配置文件,使用UART作为编程接口,用户可以使用AT命令通过UART读取或写入模块的配置,相关指令请参阅串口指令集。

1.2 特点

- BLE 蓝牙 5.2
- 邮票孔封装
- 功耗低
- 发射功率等级 Class 2
- 默认的 UART 波特率是 115200bps, 可以支持 1200bps 至 921.6Kbps
- UART 硬件接口
- 支持串口升级
- 蓝牙配置文件支持: HID, GATT, ATT, GAP
- 工作模式下的功耗 (3.3V 时的 VDD 3V3)
- RX 模式: 4.5mA @3.3V OdBm
- TX 模式: 4.3mA @3.3V OdBm
- 深度睡眠模式: 2.2uA (RTC 唤醒+GPIO 唤醒)
- 支持 Bluetooth SIG Mesh
- 支持 私有 Mesh
- 支持一对多,多连接
- 支持主模式,主从一体

•

1.3 应用

- 工业数传
- 健康与医疗设备
- 测量与监控系统
- 工业传感器和控件
- 蓝牙车钥匙
- 扫描枪
- 蓝牙 MESH 组网
- 灯具照明
- 家电无线传输

2 一般规格

表 1:

特征	详情
型号	ANS-BT102M
尺寸	13mm(W) X 27mm(L) X 2mm(H)
蓝牙规格	蓝牙 BLE 5.2
工作电压范围	3. 0 $^{\sim}$ 3. 6V
发射功率	最大 8 dBm
灵敏度	-97dBm@O.1%BER
频段	2.402GHz -2.483GHz ISM band
调制方式	GFSK, π/4-DQPSK, 8-DPSK
基带晶振	24MHz
跳频和频道	1600hops / sec, 1MHz 频道空间, 80 个频道
射频输入阻抗	50 欧姆
天线类型	PCB 板载天线
硬件接口	UART/I ² S
协议	HID, GATT, ATT
其它功能	支持低功耗
工作温度	-40° C to +80° C
存储温度	-40° C to +105° C
湿度	10%~95% 非冷凝
环境	符合 RoHS

3 硬件规格

3.1 框图和引脚定义图

ANS-BT102M 框图(顶视图)

ANS-BT102M 引脚定义图(顶视图)

3.2 引脚定义说明

表 2:

Ī	引脚	引脚名称	类型	引脚说明
	1	PA18_TX	I/O	UART 数据输出
	2	PA17_RX	I/0	UART 数据输入,ADC_CH_4
	3	PA16	I/0	UART_CTS 清除发送,低电平有效,默认用做普通
				GPIO, ADC_CH_O
	4	PA13	I/0	UART_RTS 请求发送,低电平有效,默认用做普通
				GPIO, ADC_CH_1

	2 2 3 2 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
5	NC	NC	引脚悬空不接任何电路
6	NC	NC	引脚悬空不接任何电路
7	NC	NC	引脚悬空不接任何电路
8	NC	NC	引脚悬空不接任何电路
9	PA10_Tran	I/0	外部 IO 控制模块 UART 透传/指令传输模式外部 IO
			控制蓝牙连接断开(注:需要模块指令打开此 I0 功
			能,默认不打开)
10	PA09_Disc	I/0	外部 IO 控制蓝牙连接断开(注:需要模块指令打开
			此 I0 功能,默认不打开)
11	PA19_RESET	Ι	外部复位输入: 低电平有效
12	VDD_3V3	VDD	电源输入引脚: 3~3.6V
13	GND	VSS	电源地
14	NC	NC	引脚悬空不接任何电路
15	NC	NC	引脚悬空不接任何电路
16	PAO7_TX	I/0	软件烧录口,接串口工具的 RX
17	PA06_RX	I/0	软件烧录口,接串口工具的 TX
18	NC	NC	引脚悬空不接任何电路
19	NC	NC	引脚悬空不接任何电路
20	NC	NC	引脚悬空不接任何电路
21	GND	VSS	电源地
22	GND	VSS	电源地
23	NC	NC	引脚悬空不接任何电路
24	NC	NC	引脚悬空不接任何电路
25	NC	NC	引脚悬空不接任何电路
26	NC	NC	引脚悬空不接任何电路
27	PA08	1/0	电源模式,运行模式下为低电平,休眠时为高电平。
28	NC	NC	引脚悬空不接任何电路
29	PB01	I/0	可编程输入/输出脚
30	PB00	I/0	可编程输入/输出脚
31	NC	NC	引脚悬空不接任何电路
32	PA03	I/0	可编程输入/输出脚
33	PAO2	I\0	BLE 连接状态脚,未连接为低,连接为高
34	NC	NC	引脚悬空不接任何电路
35	GND		天线地
36	EXT_ANT		接外置天线

4物理接口

4.1 通用数字 I0 口

模块中定义了 21 个通用 GPIO。所有这些 GPIO 都可以通过软件进行配置,实现各种功能,如按钮控制, LED 驱动或主控制器的中断信号等。不使用时悬空,不需要接任何电路。每个 I / O 引脚的 I / O 类型可以由软件分别配置为输入或

输出模式。

4.2 RF 接口

- 2402 2480 MHz 蓝牙 LE 5.2
- TX 最高输出功率为 8dBm
- RX 最大灵敏度 -97dBm@0.1%BER

4.3 UART 接口

四个信号引脚用于实现 UART 功能。 当 ANS-BT102M 连接到另一个数字设备时,UART_RX 和 UART_TX 在两个设备之间传输数据。 其余两个引脚 UART_CTS 和 UART_RTS 可用于实现硬件流控制,且均为低电平有效,即低电平时允许传输,高电平时停止传输。

表 3:

-pc 0.			
	参数		可能值
		最低限度	4800 bps (≤2%Error)
波特率		标准	115200bps(≤1%Error)
		最大	4000000bps (≤1%Error)
流量控制			RTS/CTS, (默认无)
奇偶校验			无, 奇或偶
停止位的数量			1
每通道的位数			8

模块与主机的 UART 连接示意图:

模块与主机连接图

4.4 模数转换器ADC

支持一路 12 位 SAR ADC 引擎,转换率高达 1 MSPS 转换范围: VSSA 至 VDDA $(3.0 \Xi 3.6V)$ 。除 10 AD 通道外,还有三个内部通道: 芯片工作温度通道 ADC_CH_9,芯片工作电压 VBAT 通道 ADC_CH10,芯片内部 ADC 参考电压 (标准 1.4V) 通道 ADC CH11。

5 电气特性

5.1最大额定值

下面列出模块的数字和模拟引脚上电源电压和电压的绝对最大额定值。超过这些值会造成永久性损坏。平均GPIO引脚输出电流定义为在100mS周期内流过任何一个相应引脚的平均电流值。总平均GPIO引脚输出电流被定义为在100mS周期

内流过所有相应引脚的平均电流值。最大输出电流被定义为流经任何一个相应引脚的峰值电流值。

表 4:

参数	最小值	最大值	单位
V _{IN} - I/O 电源电压 (VDDIO)	-0.3	+3.6	V
V _{IN} - 模拟/数字电源电压 (VDD)	-0.3	+3.6	V
T _{or} - 工作温度	-40	+80	° C
T _{st} - 存储温度	-40	+105	° C

5.2 推荐工作条件

表 5:

	参数	最小值	典型	最大值	单位
$V_{\scriptscriptstyle \rm IN}$ $-$	核心供电电压 (VDD)	3.0	3. 3	3.6	V
$V_{\scriptscriptstyle \rm IN}$ $-$	I/O 口电源电压 (VDDIO)	3.0	3. 3	3.6	V

6湿度敏感度等级 & 防静电等级

表 6:湿度敏感度等级和防静电等级

参数		值	
湿度敏感度等级:	等级 3		
防静电等级:	人体放电模式:	Class-2	
奶	机器放电模式:	Class-B	

7回流焊

在进行任何回流焊接之前,重要的是要确保模块为防潮湿包装。包装包含干燥剂(吸收水分)和湿度指示卡以显示在储存和装运期间保持的干燥水平。如果需要烘烤模块,请检查下面的表格并按照IPC / JEDEC J-STD-033指定的说明进行操作。

注意:托盘不能在65°C以上加热。如果使用下表中的高温烘烤方式(65°C以上),则必须将模块从运输托盘中取出。

任何打开包装的模块且规定时间内未上线贴片的模块应重新包装,包装内需放置有效干燥剂和温湿度指示卡。在30°C/60%RH的环境温度下,MSL(湿度敏感等级)3模块在空气中存放的时间小于168小时。建议的烘烤时间和温度如下:表7:

	125°C 烘烤温度		90°C/≤ 5%RH 烘烤温 度		40° C/ ≤ 5%RH 烘烤温 度	
MSL	饱和的 @ 30°	最低的限 制	饱和的@ 30°C/85%	最低的限 制	饱和的@ 30°C/85%	最低的限 制
	C/85%	+ 72 小时@		+ 72 小时		+ 72小时@

		30° C/60%		@ 30° C/60%		30° C/60%
3	9 小时	7 小时	33 小时	23 小时	13 天	9 天

表面贴装模块的设计易于制造,包括回流焊接到PCB主板。最终,客户有责任选择合适的焊膏并确保回流期间的炉温温度符合焊膏的要求。表面贴装模块符合回流焊接温度的J-STD-020D1标准。焊接配置文件取决于需要为每个应用程序设置的各种参数,这里的数据仅用于回流焊的指导。

预热区(A) - 该区以控制的速率升温,典型值为0.5-2° C / s。该区域的目的是将PCB板和元件预热到120~150℃。这个阶段需要将热量均匀地分配到PCB板上,并完全去除溶剂以减少组件的热冲击。

平衡区1(B) - 在此阶段,助焊剂变得柔软并均匀地封装焊料颗粒并散布在PCB板上,防止它们被重新氧化。随着温度的升高和助熔剂的液化,每种活化剂和松香都被激活并开始消除每个焊料颗粒和PCB板表面上形成的氧化膜。对于该区域,建议温度为150°至210°,时间为60至120秒。

平衡区2(C)(可选) - 为了解决直立部件问题,建议将温度保持在210-217约20至30秒。

回流区 (D) - 图中的曲线是为Sn / Ag3.0 / Cu0.5设计的。它可以成为其他无铅焊料的参考。峰值温度应该足够高以达到良好的润湿性,但不能太高以至于导致组件变色或损坏。过长的焊接时间会导致金属间的生长,从而导致脆性焊点。推荐的峰值温度 (Tp) 为230~250℃。当温度高于217° C时,焊接时间应该是30到90秒。

冷却区(E) - 冷却速度应该很快,以保持焊料粒小,这将提供一个更持久的焊点。 典型的冷却速度应该是4 \mathbb{C} 。

8 模块结构参数

8.1 物理尺寸

• 模块标称尺寸: 13mm(W) x 27mm(L) x 2.2 mm(H) 公差: ±0.2mm

• 焊盘尺寸: 1.6mmX0.8mm 公差: ±0.1mm

• 焊盘间距: 1.5mm 公差: ±0.1mm

ANS-BT102M 封装 (顶视图)

9 硬件设计建议

9.1 焊接建议

ANS-BT102M与无铅焊料的工业标准回流曲线兼容,所使用的回流曲线取决于整个组装好的PCB的热质量,烘箱的传热效率以及所使用的特定类型的焊膏,请查阅特定焊膏的数据表以了解型材配置。将提供以下焊接模块的建议,以确保焊接后模块的焊点和操作的可靠性。由于所使用的回流焊曲线是依赖于工艺和布局的,因此应该逐案研究最佳回流焊曲线。

9.2布局指南(模块内置天线)

强烈建议使用良好的布局实践来确保模块正常运行,将铜或任何金属放置在靠近天线的位置会影响天线性能,从而降低天线工作效率。天线周围的金属屏蔽将阻止信号辐射,因此金属外壳不应该与模块一起使用,请在接地区域的边缘使用较多的接地过孔。以下建议有助于避免设计中出现EMC问题,因每种设计都是独一无二的,以下描述不考虑所有基本设计规则,例如避免信号线之间的电容耦合。以下描述旨在避免由模块的RF部分引起的EMC问题,以避免设计中的数字信号出现问题,确保信号线的回路尽可能短。例如,如果信号通过通孔进入内层,请始终在焊盘周围使用接地通孔,并将它们紧密对称地放置在信号过孔周围,任何敏感信号的走线和回路应该尽量在PCB的内层完成。敏感的信号线应该在上面和下面有一个地线包围区域,如果这不可行,请确保返回路径最短(例如,使用信号线旁边的接地线)。

9.3 布局指南(外部天线)

在没有板载天线设计的情况下,模块摆放和PCB布局对于优化模块RF性能至 关重要。

- 1、微带线(天线到模块端EXT ANT端口的走线)应为50欧姆阻抗;
- 2、微带线尽可能走直线和尽可能短,不得已要拐弯时,尽可能走弧线;
- 3、微带线线宽约0.5mm, 覆铜到微带线的距离约0.5mm比较合适;
- 4、以避免对模块信号造成干扰;外部天线和模块的EXT_ANT端口的位置应远离任何噪声源和数字线路,天线靠板边摆放,周围不能放元器件和覆铜,并尽可能不要走线,保持完整地;
- 5、微带线之间需要一个II型匹配网络电路,并尽可能的靠近天线摆放,以 更好地匹配阻抗;
 - 6、模块的RF关键电路应与系统板上的任何数字电路明确分开。

9.4 外置天线

一般无线产品在设计时不适合使用外部金属外壳,以及周边有大金属元器件PCB走线线或连线的长度应尽可能短。顶层上的连接和接地区域之间的距离应该至少与电介质厚度一样大,应避免将RF靠近系统板的数字部分。为了减少信号损耗,应避免微带线以尖角形式布线,倒角或圆角走线优选于矩形走线,45度斜角布线优于纯90度布线。应避免在模块的另外一面布置射频连接,微带线到接收器底部的接地平面的距离非常小,并且具有巨大的公差,因此这部分走线的阻抗无法控制,尽可能多地使用过孔来连接地平面。

推荐的走线连接天线和模块

10产品包装信息

- 托盘包装
- 托盘尺寸: 180mm * 195mm
- 50pcs/盘
- 最小包装 1000pcs

11应用电路图

