Final Assessment Test - November 2019

Course: . Applied Linear Algebra

Class NBR(s): 0345 / 0346 / 0347 / 0514 / 0515 / 0516 / 0532 / 6564 / 7261

Slot: A2+TA2+TAA2+V3

Time: Three Hours

Max. Marks: 100

KEEPING MOBILE PHONE/SMART WATCH, EVEN IN 'OFF' POSITION, IS EXAM MALPRACTICE

Answer any FIVE Questions

(5 X 20 = 100 Marks)

solve the following system of linear equations using an LU factorization method $x_1 + x_2 + x_3 = 1, x_1 + 4x_2 + 5x_3 = 3$ and $x_1 + 4x_2 + 7x_1 = 5$.

[10]

Determine all values of the make the following system consistent

[10]

$$x + y - z = b_1, 2y + z = b_2, y - z = b_3.$$

Let U,W be subspaces of a vector space V .

[10]

(ii) Suppose that Z is a subspace of V contained in both U and W . Show that Z is also contained in

(ii) Suppose that Z is a subspace of V containing both U and W . Show that Z also contains U+W .

In the 3-space \mathbb{R}^3 let (x_1, x_2, x_3) satisfy the equation $x_1 - x_2 - x_3 = 0$ Prove that W is a subspace of \mathbb{R}^3 . Find a basis for the subspace W .

[10]

a) Let V, W be the subspaces of the vector space P₃(R) spanned by

[10]

$$\{ v_1(x) = 3 - x + 4x^2 + x^3, v_2(x) = 5 + 5x^2 + x^3, v_3(x) = 5 - 5x + 10x^2 + 3x^3 \}$$
 and
$$\{ w_1(x) = 9 - 3x + 3x^2 + 2x^3, w_1(x) = 5 - 5x + 10x^2 + 3x^3 \}$$

 $w_1(x) = 9 - 3x + 3x^2 + 2x^3, w_2(x) = 5 - x + 2x^2 + x^3, w_3(x) = 6 + 4x^2 + x^3$ respectively.

Find the dimensions and bases for V+W and VAW

Find the equation of a circle that passes through the three points (2, -2), (3, 5), and (-4, 6).

[10] [10]

Prove that two vector spaces V, W are isomorphic if and only if $\dim V = \dim W$.

[10]

b) Let
$$\alpha$$
 be the standard basis for \mathbb{R}^3 , and let $S,T:\mathbb{R}^3\to\mathbb{R}^3$ be two linear transformations given by $S(\overline{e_1})=(2,2,1), S(\overline{e_2})=(0,1,2), S(\overline{e_3})=(-1,2,1)$ and $T(\overline{e_1})=(1,0,1), T(\overline{e_2})=(0,1,1), T(\overline{e_3})=(1,1,2)$. Compute $[S+T]_\alpha$, $[2T-S]_\alpha$ and $[T\circ S]_\alpha$

5. a) Let $\beta = \{\overline{v_1, v_2, v_3}\}$ be a basis for the 3-space \mathbb{R}^3 where $\overline{v_1} = (1, 1, 0)$ $\overline{v_2} = (1, 0, 1)$ and $\overline{v_3} = (0, 1, 1)$.

Let T be the linear transformation \mathbb{R}^3 on given by the matrix $\llbracket T \rrbracket_{\mathfrak{g}} = 1 \ 2 \ 3$.

Let $\alpha \in \{e_1,e_2,e_3\}$ be the standard basis. Find the basis-change matrix [id] and [T]

In \mathbb{R}^2 equipped with an inner product $\langle \overline{X}, \overline{Y} \rangle = x_1 y_1 + x_2 y_2$, find the angle between $\overline{X} = (1,1), \overline{Y} = (1,0)$.

[5]

Find an orthogonal basis for the subspace W of the Euclidean space \mathbb{R}^3 given by x+2y-z=0.

[10

SPARCH MIT QUESTION PAPERS ON TELEGIRAM TO JOIN

