

4. 논리 게이트

학습목표 및 목차

- 논리 게이트와 논리 레벨의 기본 개념을 이해할 수 있다.
- 논리 게이트의 동작 원리 및 진리표, 게이트 기호들을 이해하고 이를 활용할 수 있다.
- 정논리와 부논리에 대해 설명할 수 있다.
- 게이트들의 전기적인 특성을 이해하고 이를 활용할 수 있다.

01. 논리 레벨

02. NOT 게이트와 버퍼 게이트

03. AND 게이트

04. OR 게이트

05. NAND 게이트

06. NOR 게이트

07. XOR 게이트

08. XNOR 게이트

09. 정논리와 부논리

10. 게이트의 전기적 특성

→ 1. 논리 레벨

TTL과 CMOS 논리 레벨 정의영역

Transistor

디지털 회로에서 전자스위치로 사용되는 반도체 소자. 베이스에 적절한 전압을 인가하여 컬렉터-에미터 접합이 개방 또는 단락된 스위치처럼 동작한다. · 2. NOT게이트와 버퍼 게이트

NOT 게이트

- 한 개의 입력과 한 개의 출력을 갖는 게이트로 논리 부정을 나타냄
- 입력이 0(off)이면 1(on)을 출력하고, 입력이 1(on)이면 0(off)를 출력
- NOT 게이트를 인버터(inverter)라고도 함

진리표	동작 파형	논리 기호
$\begin{array}{c c} A & F \\ \hline 0 & 1 \\ \hline 1 & 0 \\ \end{array}$	입력 A 1 0 1 0 출력 F 0 1 0 1	$A \longrightarrow F$

논리식

$$F = \overline{A} = A'$$

NOT 게이트

NOT 게이트

예제 4-1

NOT 게이트 2개를 직렬로 연결한 회로에서 입력 A에 구형파를 인가하였다. 출력 X와 Y의 파형을 그려 보시오.

 $\frac{2}{3}$ 출력 X는 입력 A의 반전된 파형이 나오고, 출력 Y는 X의 반전된 파형이 출력되므로 결과적으로 출력 Y는 입력 A와 동일한 파형이 출력된다.

버퍼 게이트

- 버퍼(buffer)는 입력된 신호를 변경하지 않고, 입력된 신호 그대로를 출력하는 게이트로 단순한 전송을 의미함 (지연 소자의 기능을 함)
- 입력 신호가 1인 경우에는 출력 신호는 1이 되고, 입력 신호가 0인 경우에는 출력 신호는 0이 됨

진리표	동작 파형	논리 기호
$oxedsymbol{A} oxedsymbol{F}$	A 0 1 0 1 0	
0 0	$F = 0 \boxed{1} 0 \boxed{1} 0$	$A \longrightarrow F$
1 1		

논리식

$$F = A$$

IC 7407 핀 배치도

3상태(tri-state) 버퍼

• 출력이 3개 레벨(High, Low, 하이 임피던스) 중의 하나를 갖는 논리소자

	진리표	Ē	논리 기호	핀 배치도	
A	$ar{E}$	$oxed{F}$	LOW면 버퍼처럼 출력 HIGH면 하이 임피던스 상태	V _{CC} 4C 4A 4Y 3C 3A 3Y 11 10 9 8	
0	0	0	2****		
1	0	1	$ar{E}$		
0	1	Hi-Z			
1	1	Hi-Z	$A \longrightarrow F$	1 2 3 4 5 6 7 74125	
				V _{CC} 4C 4A 4Y 3C 3A 3Y	
A	E	F	LOW면 하이 임피던스 상태	14 13 12 11 10 9 8	
0	0	Hi-Z	*****		
1	0	Hi-Z	E		
0	1	0			
1	1	1	$A \longrightarrow F$	1 2 3 4 5 6 7 1C 1A 1Y 2C 2A 2Y GND 74126	
	A 0 1 0 1 A 0 1 1 0 1 0 1 0 0	$egin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 1 0 1 0 1 Hi-Z 1 1 Hi-Z 0 0 Hi-Z 1 0 Hi-Z 0 1 0	A Ē F 0 0 0 1 0 1 0 1 Hi-Z 1 1 Hi-Z A E F LOW 면 하이 임피던스 상태 HIGH면 버퍼처럼 출력 HIGH면 버퍼처럼 출력 E 1 0 Hi-Z 1 0 0 1 0	

하이 임피던스 : 입력과 출력이 연결되어 있지 않은 상태(LOW도 HIGH도 아님)

버퍼 게이트

[그림 4-6](a)에서 입력 A와 제어 단자 $ar{E}$ 에 아래 그림과 같은 파형을 인가하였다. 출력 A의 파형을 그려 보시오.

예제 4-2

 ${\bf \Xi 0}$ 제어단자 \bar{E} 가 Low인 구간에서는 입력 A의 파형이 출력 F로 그대로 나오고, 제어단자 \bar{E} 가 High인 구간에서는 출력 F는 하이 임피던스 상태가 된다.

버퍼 게이트

예제 4-3

다음 3상태 논리 인버터의 진리표를 작성해보시오.

입력		출력	
A	S	F	
0	0	하이 임피던스	
1	0	하이 임피던스	
0	1	1	
1	1	0	

풀이

제어 단자 S가 Low이면 하이 임피던스 상태가 되고, S가 High이면 입력 A의 파형이 반전되어 출력된다.

· 3. AND 게이트

AND 게이트의 기본 개념(2입력)

• 입력이 모두 1(on)인 경우에만 출력은 1(on)이 되고, 입력 중에 0(off)인 것이 하나라도 있을 경우에는 출력은 0(off)이 된다.

진리표	Ē	동작	학 파형	논리 기호
$ \begin{array}{c cc} A & B \\ \hline 0 & 0 \\ \hline 0 & 1 \end{array} $	$egin{array}{c} F \\ 0 \\ 0 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 0	$A \longrightarrow F$
1 0 1 1	0	F 0 0	0 1 0	논리식
				$F = AB = A \cdot B$

AND 게이트의 회로 표현과 IC

스위칭 회로	트랜지스터 회로	IC 7408 핀 배치도
A B F	$A \circ \longrightarrow F$ $R \circ F$	V _{CC} 4B 4A 4Y 3B 3A 3Y 14 13 12 11 10 9 8 1 1 2 3 4 5 6 7 1 1 A 1B 1Y 2A 2B 2Y GND

AND 게이트의 기본 개념(3입력)

진리표							
A	В	C	F				
0	0	0	0				
0	0	1	0				
0	1	0	0				
0	1	1	0				
1	0	0	0				
1	0	1	0				
1	1	0	0				

1 1 1

1

두ᆍ	파혀
농실	TIL 64
\circ	

$$A \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0$$

$$B \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0$$

$$C$$
 0 1 0 1 0 1 0 0

논리식

$$F = ABC = A \cdot B \cdot C$$

논리 기호

IC 7411 핀 배치도

AND 게이트

예제 4-4

2입력 AND 게이트의 한 입력 A에 구형파를 인가하였다. 다른 입력인 B에 0을 인가한 경우와 1을 인가한 경우 각각의 개략적인 출력 파형을 그려 보시오.

(a) 입력 B에 0을 인가한 경우

(b) 입력 *B*에 1을 인가한 경우

AND 게이트를 이용한 자동차 좌석벨트 경보 시스템

- 점화스위치(A)가 켜지고(High) 좌석벨트(B)가 풀려있는 상태(High)를 감지
- 점화스위치가 켜지면 타이머가 작동되어 타이머 C가 30초 동안 High로 유지
- 점화 스위치가 켜지고, 좌석벨트가 풀려있고, 타이머가 작동하는 3가지 조건하에서 AND 게이트의 출력은 High가 되며, 운전자에게 주의를 환기시키는 경보음이 울리게 된다.
- 30초간 경보음 동작 후에는 경보음은 올리지 않으며, 처음부터 좌석벨트가 채워져 있으면 경보음은 올리지 않는다.

4. OR 게이트

OR 게이트의 기본 개념(2입력)

• 입력이 모두 0인 경우에만 출력은 0이 되고, 입력 중에 1이 하나라도 있으면, 출력은 1이 된다.

진리표	동작 파형	논리식
$egin{array}{c c} A & B & F \end{array}$	$A 0 0 \boxed{1 1 0}$	F = A + B
$\begin{array}{c cccc} 0 & 0 & 0 \\ \hline 0 & 1 & 1 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1 0 1	$F \bigcirc 0 \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 0$	논리 기호
1 1 1		B— F

OR 게이트의 회로 표현과 IC

스위칭 회로	트랜지스터 회로	IC 7432 핀 배치도
A B F	$A \circ \begin{array}{c} +V_{CC} \\ \hline \\ R_E \end{array}$	V _{CC} 4B 4A 4Y 3B 3A 3Y 14 13 12 11 10 9 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

OR 게이트의 기본 개념(3입력)

	진리표			동작 파형	논리식
A = 0	<i>B</i> 0	<i>C</i> 0	F 0	A 0 0 0 0 1 1 1 0	F = A + B + C
0	0	1	1	B 0 0 1 1 0 0 1 1 0	
0	1	0	1	C 0 1 0 1 0 1 0	논리 기호
	1	1	1	F 0 1 1 1 1 1 1 0	$A \longrightarrow$
1	0	0	1		$B \longrightarrow F$
_1	0	1	1		
1	1	0	1		

OR 게이트

에제 4-5 2입력 OR 게이트의 한 입력 A에 구형파를 인가하였다. 다른 입력인 B에 0을 인가한 경우와 1을 인가한 경우 각각의 개략적인 출력 파형을 그려 보시오.

(a) 입력 *B*에 0을 인가한 경우

(b) 입력 *B*에 1을 인가한 경우

풀이

OR 게이트를 이용한 침입 탐지 시스템

- 일반 가정에서 출입문 1개와 창문 2개가 있다고 가정
- 출입문과 창문에 설치된 각 센서는 자기 스위치(magnetic switch)로서 문이 열려 있을 때 High를 출력하고, 닫혀있을 때에는 Low를 출력한다.

5. NAND 게이트

NAND 게이트의 기본 개념(2입력)

- 입력이 모두 1인 경우에만 출력은 0이 되고, 그렇지 않을 경우에는 출력은 1이 된다.
- 이 게이트는 AND 게이트와는 반대로 작동하는 게이트로서, NOT AND의 의미로 NAND 게이트라고 부른다.

	진리표		동작 파형			논리식	
A	В	F	A	0 0	1 1	0	$F = \overline{AB} = \overline{A \cdot B}$
$\frac{0}{0}$	0	1	B -	0 1	0 1	0	논리 기호
1	0	0	F	1 1	1 0	1	$A \longrightarrow F$
						-	$A \longrightarrow F$

NAND 게이트의 기본 개념(3입력)

진리표	동작 파형	논리식
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A 0 0 0 0 1 1 1 0 B 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0	$F = \overline{ABC} = \overline{A \cdot B \cdot C}$ 논리 기호 $A = \overline{B} = \overline{C}$
1 1 0 1		
1 1 1 0		

NAND 게이트의 IC

IC 7400 핀 배치도

V_{CC} 4B 4A 4Y 3B 3A 3Y 14 13 12 11 10 9 8 1 1 2 3 4 5 6 7 1 1 A 1B 1Y 2A 2B 2Y GND

IC 7410 핀 배치도

NAND 게이트

예제 4-6

3입력 NAND 게이트 입력에 그림과 같은 파형이 입력될 때 출력 *P*의 파형을 그려 보시오.

물이 출력 *F*는 3개의 입력이 모두 1일 때만 0이 되고, 나머지 경우에는 1이 되므로 시간구간 2,6에서는 출력이 0이 되고 시간구간 1,3,4,5,7,8,9에서는 1이 된다. 6. NOR 게이트

NOR 게이트의 기본 개념(2입력)

- 입력이 모두 0인 경우에만 출력은 1이 되고, 입력 중에 하나라도 1이 있는 경우는 출력은 0이 된다.
- 이 게이트는 OR 게이트와는 반대로 작동하는 게이트로, NOT OR의 의미로 NOR 게이트라고 부른다.

진리표	동작 파형	논리식
$egin{array}{c c} A & B & F \end{array}$	$A 0 0 \boxed{1} 1 0$	$F = \overline{A + B}$
0 0 1	$B = 0 \boxed{1} 0 \boxed{1} 0$	논리 기호
$\begin{array}{c cccc} 0 & 1 & 0 \\ \hline 1 & 0 & 0 \end{array}$	$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	$A \longrightarrow F$
1 1 0		$A \longrightarrow A$
		B————————————————————————————————————

NOR 게이트의 기본 개념(3입력)

진리표				동작 파형	논리식
A 0	<i>B</i> 0	<i>C</i> 0	<i>F</i> 1	A 0 0 0 0 1 1 1 0 B 0 0 1 1 0 0 1 1 0	$F = \overline{A + B + C}$
$\begin{array}{c} 0 \\ \hline 0 \\ \hline 0 \end{array}$	0 1 1	1 0 1	0 0	C	논리 기호 A——
1 1	0	0	0		B C F
1 1	1 1	0	0		'

NOR 게이트 IC

IC 7402 핀 배치도

IC 7427 핀 배치도

NOR 게이트

예제 4-7

3입력 NOR 게이트 입력에 그림과 같은 파형이 입력될 때 출력 F의 파형을 그려 보시오.

출력 F는 3개의 입력이 모두 0일 때만 1이 되고, 나머지 경우에는 0이 되므로 시간구간 2,6에서는 출력이 1이 되고 시간구간 1,3,4,5,7,8,9에서는 0이 된다. → 7. XOR 게이트

XOR 게이트의 기본 개념(2입력)

- 입력 중 홀수 개의 1이 입력된 경우에 출력은 1이 되고 그렇지 않은 경우에는 출력은 0이 된다.
- 2입력 XOR 게이트의 경우, 두 개의 입력 중 하나가 1이면 출력이 1이 되고, 두 개의 입력 모두가 0이거나 또는 두 개의 입력 모두가 1이라면 출력은 0이 된다.

진리표	동작 파형	논리식
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	A 0 0 1 1 0	$F = A \oplus B = \overline{A}B + A\overline{B}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B 0 1 0 1 0	논리 기호
$\begin{array}{c ccccc} \hline 1 & 0 & 1 \\ \hline 1 & 0 & 1 \\ \hline \end{array}$	F 0 1 1 0 0	$A \longrightarrow \Box$
1 1 0		B— F

XOR 게이트의 기본 개념

AND-OR 게이트 표현

IC 7486 핀 배치도

XOR 게이트의 기본 개념(3입력)

	진	리표		동작 파형	논리식
A = 0	В 0	<i>C</i> 0	F 0	A 0 0 0 0 1 1 1 1 0	$F = A \oplus B \oplus C$
0	0	1 0	1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	논리 기호
0	0	0	0	F 0 1 1 0 1 0 0 1 0	$A \longrightarrow F$
1	0	1 0	0		$C \longrightarrow C$

XOR 게이트

예제 4-8

2입력 XOR 게이트의 한 입력 A에 구형파를 인가하였다. 다른 입력인 B에 0을 인가한 경우와 1을 인가한 경우 각각의 개략적인 출력 파형을 그려 보시오.

- (a) 입력 *B*에 0을 인가한 경우
- (b) 입력 *B*에 1을 인가한 경우

풀이

(a) AB = 00이면 F = 0, AB = 10이면 F = 1, 그러므로 출력 F는 입력 A와 같은 파형 출력 (b) AB = 01이면 F = 1, AB = 11이면 F = 0, 그러므로 출력 F는 입력 A의 반전된 파형 출력

A	0	1	0	1	0	1	0	1	0
B	0	0	0	0	0	0	0	0	0
F	0	1	0	1	0	1	0	1	0

A	0	1	0	1	0	1	0	1	0
В	1	1	1	1	1	1	1	1	1
F	1	0	1	0	1	0	1	0	1

(a) B 입력을 0으로 한 경우

(b) B 입력을 1로 한 경우

XOR 게이트

예제 4-9 2입력 XOR 게이트 2개를 사용하여 3입력 XOR 게이트를 구성하시오.

풀이

	입력		출	력
A	В	C	1	F
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	0	1

3입력 OR

· 8. XNOR 게이트

XNOR 게이트의 기본 개념(2입력)

- 입력 중 짝수 개의 1이 입력될 때 출력이 1이 되고, 그렇지 않은 경우에는 출력은 0이 된다.
- 출력값은 XOR 게이트에 NOT 게이트를 연결한 것이므로 XOR 게이트와 반대이다.
- 2입력 XNOR 게이트의 경우 두 개의 입력이 다를 때 출력이 0이 되고, 두 개의 입력이 같으면 출력은 1이 된다.

진리표	동작 파형	논리식
A B F 0 0 1 0 1 0 1 0 0 1 1 1	$A = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ B & 0 & 1 & 0 & 1 & 0 \\ F & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$	$F = \overline{AB} + AB$ $= \overline{A \oplus B}$ $= A \odot B$
논리 기호	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A \rightarrow F$

XNOR 게이트의 기본 개념(3입력)

진	2	丑

\boldsymbol{A}	B	C	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0
			·

동작 파형

논리식

$$F = A \oplus B \oplus C$$
$$= A \odot B \odot C$$

논리 기호

IC 74266 핀 배치도

XNOR 게이트

예제 4-10

2입력 게이트를 사용하여 3입력 XNOR 게이트를 구성하시오.

풀이

	입력	출	력	
A	B	C	1	F
0	0	0	0	1
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	0	1
1	1	1	0	0

(a) 3입력 XNOR 게이트로 동작하는 경우

	입력	출	력	
\boldsymbol{A}	B	C	2	F
0	0	$\mid 0 \mid$	1	0
0	0	1	1	1
0	1	0	0	1
0	1	1	0	0
1	0	0	0	1
1	0	1	0	0
1	1	0	1	0
_1	1	1	1	1

(b) 3입력 XNOR 게이트로 동작하지 않는 경우

논리연산

- AND 연산
 - 불필요한 비트나 문자를 제거할 때 사용(삭제되는 비트를 <u>마스크</u>라고 함)

- OR 연산
 - 필요한 비트나 문자를 삽입할 때 사용

- XOR 연산
 - 두 개의 입력을 비교하는 경우 또는 특정 비트의 값을 선택적으로 반전시킬 때 사용

・9. 정논리와 부논리

논리 개념

전압레벨	정논리	부논리
+5V	High=1	High=0
0V	Low=0	Low=1

• 정논리 AND = 부논리 OR

진	선압레팀	벨	정	논리A	ND	투	'논리 C)R
A	В	F	A	В	F	A	В	F
L	L	L	0	0	0	1	1	1
$\mid L \mid$	H	L	0	1	0	1	0	1
H	L	L	1	0	0	0	1	1
H	Н	H	1	1	1	0	0	0

정논리 NAND = 부논리 NOR

전압레벨			정논	-리 NA	AND	부논리 NOR		
A	В	F	A	В	F	A	В	F
\overline{L}	L	H	0	0	1	1	1	0
L	H	H	0	1	1	1	0	0
H	L	H	1	0	1	0	1	0
$\underline{\hspace{1cm}} H$	Н	L	1	1	0	0	0	1

• 표현 방법이 다를 뿐 실제로 정논리와 부논리는 논리적으로는 같다.

정논리와 부논리간의 게이트 대용

정논리	\leftrightarrow	부논리	정논리	\leftrightarrow	부논리
AND		OR	XOR		XNOR
OR		AND	XNOR	_d	XOR
NAND	000000	NOR	NOT		NOT
NOR		NAND			

버블(bubble): NOT 게이트를 간단하게 표현하는 동그라미 모양의 기호

· 10. 게이트의 전기적 특성

게이트의 전기적 특성

- IC(집적회로)는 지난 60년간 기술적으로 다양하게 발전해옴
- SSI(small scale IC) : 하나의 칩에 게이트를 10개 가량 집적함
- MSI(medium scale IC): 게이트를 100개 가량 집적함
- LSI(large scale IC): 수천 개의 게이트로 구성
- VLSI(very large scale IC)와 ULSI(ultra large scale IC): 수십만 혹은 수백만 게이트로
 구성

게이트의 전기적 특성

- IC는 재료에 따라 그 특성이나 기능이 정해짐
- 특정 용도(전력 소모, 온도 등의 사용환경)에 따라 그룹으로 묶음
- TTL 계열은 NAND, ECL 계열은 NOR, CMOS는 inverter 게이트들에 사용되며 4가지 특성에 따라 평가됨

전파지연시간

 신호가 입력되어서 출력될 때까지의 시간을 말하며, 게이트의 동작 속도이다.

전력소모

• 게이트가 동작할 때 소모되는 전력량

잡음 여유도

• 최대로 허용된 잡음 마진

팬-아웃

- 하나의 게이트의 출력으로부터 다른 여러 개의 입력들로 공급되는 전류
- 정상적인 동작으로 하나의 출력이 최대 몇 개의 입력으로 연결되는가를 나타낸다.

전파지연시간(gate propagation delay time)

- 신호가 입력되어서 출력될 때까지의 시간을 말하며, 게이트의 동작 속도를 나타낸다.
- t_{PHL} 와 t_{PLH} 은 입력이 50%가 될때부터 출력이 50%가 될 때까지 측정
- 게이트마다 그리고 IC의 제조 방법에 따라 조금씩 차이가 있음

주요 디지털 IC 계열별 특성표

	t _{PLH} (max) [ns]	t _{PHL} (max) [ns]	$egin{array}{c} V_{OH} \ (ext{min}) \ [V] \end{array}$	V _{OL} (max) [V]	V _{IH} (min) [V]	V _{IL} (max) [V]	I _{OH} (max) [mA]	I _{OL} (max) [mA]	I _{IH} (max) [μA]	I _{IL} (max) [mA]
7400	22	15	2.4	0.4	2	0.8	-0.4	16	40	- 1.6
74S00	4.5	5	2.7	0.5	2	0.8	- 1	20	50	-2
74LS00	15	15	2.7	0.5	2	0.8	-0.4	8	20	-0.4
74ALS00	11	8	2.5	0.5	2	0.8	-0.4	8	20	- 0.1
74F00	5	4.3	2.5	0.5	2	0.8	- 1	20	20	- 0.6
74HC00	23	23	3.84	0.33	3.15	1.35	- 4	4	1.0	- 0.1
74AC00	8	6.5	3.86	0.44	3.15	1.35	-24	24	1.0	- 0.1
74ACT00	9	7	3.86	0.44	2	0.8	- 24	24	1.0	- 0.1

 t_{PHL} : H에서 L로 변할 때의 전파지연시간

 V_{OH} : 논리 레벨H일 때 출력전압

 V_H : 논리 레벨H일 때 입력전압

 I_{OH} , I_{OL} , I_{IH} , I_{IL} : 위와 같을 때 전류

 t_{PLH} : L에서 H로 변할 때의 전파지연시간

 V_{OL} : 논리 레벨 L일 때 출력전압

 V_{IL} : 논리 레벨 L일 때 입력전압

전파지연시간

게이트 \mathcal{X} 의 t_{PHL} 은 5ns이며, t_{PLH} 는 4.5ns이다. 게이트 \mathcal{Y} 의 t_{PHL} 는 8ns이며, 예제 4-11 t_{PLH} 는 7.5ns이다. 각 게이트의 전파지연시간을 계산하고, 어느 게이트가 더 높은 주파수에서 동작하는지 설명하여라.

署()

게이트 X와 Y의 전파지연시간을 계산하면 다음과 같다.

- 게이트 X의 전파지연시간 : 5ns + 4.5ns = 9.5ns
- 게이트 Y의 전파지연시간 : 8ns + 7.5ns = 15.5ns

동작 가능한 최대 주파수는 전파지연시간의 역수이므로 게이트 X가 더 높은 주파수에서 동작함을 알 수 있다.

- 게이트 X의 최대 동작 주파수 : 1/9.5ns = 105.26MHz
- 게이트 *Y*의 최대 동작 주파수: 1 / 15.5ns = 64.52MHz

전력소모(power dissipation)

• 게이트가 동작할 때 소모되는 전력

- $P_{CC} = V_{CC} \times I_{CC}$
- 전력 소모(P_{cc})는 궁급 전압(V_{cc})과 궁급 전류(I_{cc})의 곱
- 궁급 전압과 궁급 전류는 각 제조사와 IC의 특성에 따라 다르며, 궁급사에서 제공하는 데이터시트에 표시되어 있음
- 일반적으로 TTL IC에 공급되는 양의 전원은 V_{cc} , 음 전원은 GND, 공급되는 전류를 I_{cc} 라고 함

예제 4-12

어떤 논리 게이트가 +5V DC 전압에서 동작하고 평균 4mA의 전류가 흐른다면 전력소모는 얼마인가?

 $P = 5 \times 4 \times 10^{-3} \text{ W} = 20 \times 10^{-3} \text{ W} = 20 \text{ mW}$

- 디지털 회로에서 데이터의 값에 변경을 주지 않는 범위 내에서 최대로 허용된 Noise Margin을 의미
- 잡음 면역 : 입력 전압의 잡음을 견뎌낼 수 있는 회로의 능력
- 잡음 여유도 : 잡음 면역의 정도

입출력 전압 범위

LS-TTL의 입출력 레벨

· 전기적인 잡음 : 원치 않은 전기적 불규칙성으로 인해 디지털 논리 레벨을 변화시키는 것

예제 4-13 주어진 파라미터를 이용하여 74HC 계열 IC의 잡음 여유도를 계산하여라.

파라미터	74LS
V_{IH} (min)	3.15V
$V_{IL(\mathrm{max})}$	1.35V
V _{OH} (min)	3.84V
V_{OL} (max)	0.33V

• Low level의 잡음 여유도 : $V_{NL} = V_{IL} (\max) - V_{OL} (\max) = 1.35 \text{V} - 0.33 \text{V} = 1.02 \text{V}$

• High level의 잡음 여유도 : $V_{NH} = V_{OH} \text{ (min)} - V_{IH} \text{ (mim)} = 3.84 \text{V} - 3.15 \text{V} = 0.69 \text{V}$

예제 4-14

다음 표에는 세 종류의 게이트에 대한 전압 파라미터가 표시되어 있다. 잡음이 많은 산업 환경에서 사용할 수 있는 최선의 게이트를 선택하시오.

게이트 종류	V_{OH} (min)	V_{OL} (max)	V_{IH} (min)	V_{IL} (max)
게이트 A	2.4V	0.4V	2.0V	0.8V
게이트B	3.5V	0.2V	2.5V	0.6V
게이트 <i>C</i>	4.2V	0.2V	3.2V	0.8V

풀이

게이트A	• Low 레벨의 잡음 여유도 : $V_{NL}=V_{IL}(\max)-V_{OL}(\max)=0.8\mathrm{V}-0.4\mathrm{V}=0.4\mathrm{V}$ • High 레벨의 잡음 여유도 : $V_{NH}=V_{OH}(\min)-V_{IH}(\min)=2.4\mathrm{V}-2.0\mathrm{V}=0.4\mathrm{V}$
게이트 B	• Low 레벨의 잡음 여유도 : $V_{NL}=V_{IL}(\max)-V_{OL}(\max)=0.6\mathrm{V}-0.2\mathrm{V}=0.4\mathrm{V}$ • High 레벨의 잡음 여유도 : $V_{NH}=V_{OH}(\min)-V_{IH}(\min)=3.5\mathrm{V}-2.5\mathrm{V}=1.0\mathrm{V}$
게이트C	• Low 레벨의 잡음 여유도 : $V_{NL}=V_{IL}(\max)-V_{OL}(\max)=0.8\mathrm{V}-0.2\mathrm{V}=0.6\mathrm{V}$ • High 레벨의 잡음 여유도 : $V_{NH}=V_{OH}(\min)-V_{IH}(\min)=4.2\mathrm{V}-3.2\mathrm{V}=1.0\mathrm{V}$

팬-인(fan-in)과 팬-아웃(fan-out)

- 팬-아웃은 1 개의 게이트에서 다른 게이트의 입력으로 연결 가능한 최대 출력단의 수를 의미
- 팬-인은 1 개의 게이트에 입력으로 접속할 수 있는 단수를 의미

팬-인(fan-in)과 팬-아웃(fan-out)

	t _{PLH} (max) [ns]	t _{PHL} (max) [ns]	$V_{OH} \ (min) \ [V]$	$V_{OL} \ (ext{max}) \ [ext{V}]$	$V_{IH} \ ext{(min)} \ ext{[V]}$	$V_{IL} \ (ext{max}) \ [ext{V}]$	$I_{OH} \ ({ m max}) \ [{ m mA}]$	$I_{OL} \ ({ m max}) \ [{ m mA}]$	$I_{IH} \ (ext{max}) \ [\mu ext{A}]$	$I_{IL} \ ({ m max}) \ [{ m mA}]$
74F00	5	4.3	2.5	0.5	2	0.8	-1	20	20	-0.6

예제 4-15 [표 4-1]을 참조하여 74F00의 팬-아웃을 계산하시오.

풀이

• High level인 경우:
$$\frac{I_{OH}(\text{max})}{I_{IH}(\text{max})} = \frac{1\text{mA}}{20\mu\text{A}} = \frac{1\text{mA}}{0.02\text{mA}} = 50$$
기

• Low level인 경우:
$$\frac{I_{OL}(\text{max})}{I_{IL}(\text{max})} = \frac{20\text{mA}}{0.6\text{mA}} = 33$$
기

팬-아웃은 최악의 경우를 고려하여 33개다.

싱크 전류(sink current)와 소스 전류(source current)

소스 전류 출력에서 바깥으로 전류가 흐른다는 의미

싱크 전류로 점등 소스 전류로 점등 $+V_{cc}$ sourcing a current chip output chip의 출력이 330Ω 330Ω Low(OV)일 때 LED가 점등됨 chip의 출력이 $High(+V_{CC})$ 일 때 **LED** LED가 점등됨 sinking a current chip output

74시리즈 TTL의 경우에 많은 칩에서 싱크 전류는 16mA까지 가능하며, 소스 전류는 0.25mA 이하다.

싱크 전류(sink current)와 소스 전류(source current)

- 높은 팬-아웃 IC를 LSI 출력측에 접속하기 위한 소자로서 74LS06, 74LS07과 같은 버퍼를 사용한다.
- 이들은 게이트에 외부로부터 궁급되는 싱크 전류를 40mA까지 허용하며, 게이트가 궁급하는 소스 전류는 0.25mA다.

버퍼의 싱크 전류	인버터의 싱크 전류
74LS07	74LS06
L L 성크 전류 $I_{OL} \leq 40 \mathrm{mA}$	<i>H</i> 성크 전류 $I_{OL} \le 40 \text{mA}$

싱크 전류로 점등

소스 전류로는 점등 안됨

풀-업 저항과 풀-다운 저항

- 입력레벨의 불확실성을 제거하여 정확한 신호를 얻기 위하여 사용하는 저항
- 풀-업 저항: 전원 쪽으로 연결할 때 사용
- 풀-다운 저항: 접지 쪽으로 연결할 때 사용
- 적절한 Ξ 업, Ξ 다운 저항으로서는 $3\sim10$ K Ω 을 사용

floating

디지털 회로에서 High도 Low도 아닌 논리 레벨

풀-업 저항을 사용하지 않으면 불확실한 입력신호가 될 수 있다.

풀-업 저항과 풀-다운 저항

풀 업 저항

IC 계열별 특징

- 디지털 IC : TTL (Transistor—Transistor Logic),
 CMOS (Complementary Metal Oxide Semiconductor)
- TTL: BJT와 Diode로 구성
- CMOS: NMOS와 PMOS FET로 구성
 - CMOS의 장점: TTL에 비해 소비전력이 적고 사용전압 범위가 넓다
 - CMOS의 단점: TTL에 비해서 속도가 떨어진다.
 - 고속의 CMOS IC가 개발되어 TTL과 비슷한 보급 성향을 보이고 있다.
- TTL 중에서는 74계열 외에 군용과 같이 열악한 환경에서도 동작할 수 있도록 개발된 54 계열이 있다.
 - 74 계열의 작동 온도 범위: 0~70℃
 - 54 계열은 작동 온도 범위 : -55~125 ℃
- TTL은 LS(low power-schottky), F(fast) 타입이 CMOS는 4000B 계열, HC(high speed CMOS) 타입이 주로 사용된다.

TTL과 CMOS 특성비교

구분	TTL	CMOS
전원전압	4.75~5.25V	종래형 : 3~8V, 고속형 : 2~6V
논리레벨 전압(Low)	0~0.8V	1~1/3 <i>V</i> _{DD}
논리레벨 전압(High)	2.4~5.0V	2/3~V _{DD}
팬-아웃	10개	50개
소비전력	10mW	10μW
최대 동작주파수	LS형 : 45MHz, ALS형 : 100MHz	종래형 : 2MHz, 고속형 : 45MHz
형태	74LSxx, 74ALSxx, 74Fxx, 74ASxx	40xxx, 14xxx, 74HCxxx
잡음 여유도(V)	2.4V	3V
장단점	 전파지연시간이 짧다. 소비전력이 크다. 잡음 여유도가 작다. 온도에 따라 threshold 전압이 크게 변한다. 	 소비전력이 작다. 낮은 전압에서 동작한다. 잡음 여유도가 크다. 구조가 간단하여 집적화가 쉽다. 전원 전압 범위가 넓다. 정전 파괴가 쉽다.

TTL / CMOS Family 이름 규칙

SN: Texas Instrument

MC: Motorola

DM: National Semiconductor

IM: Intersil N: Signetics

MM: Monolithic Memories

P:Intel H: Harries F: Fairchild

AM: Advanced Micro Devices

CD: RCA HD: Hitach

DN/MN: Mitsubishi

MB : Fujitsu TC: Toshiba HY: Hyundai GD: GoldStar K-: Samsung

시리즈명

74: TTL 40 : CMOS

기능에 따른 고유번호

W: Flat Pack

패키지 외형 N: Plastic DIP J: Ceramic DIP

회로타입

S: High Speed Schottky

L: Low Power

LS: Low Power Schottky

H: High Spees

F : Fast

HC: High Speed CMOS(CMOS compatible)

HCT: High Speed CMOS TTL(LS TTL compatible)

AC: Advanced

AS: Advanced Schottky

ALS: Advanced Low Power Schottky

Q & A

