Algebra di Boole

Cenni (V1.0 2018)

Introduzione
Rappresentazione di una funzione combinatoria
Proprietà dell'algebra di commutazione
Forme canoniche
Teorema di espansione di Shannon

Introduzione

Operazione

▶ Una operazione α sull'insieme S={s₁,s₂,...} è una funzione che da S x S porta in S, cioè:

$$\alpha: S \times S \rightarrow S$$

- Esempio:
 - L'operazione di moltiplicazione sull'intervallo [0,1] consente di ottenere un valore incluso in [0,1] a partire da elementi inclusi in [0,1]
- Sistema algebrico:
 - Combinazione di un insieme e di una o più operazioni.
 - Esempio:
 - ([0,1], *) è un sistema algebrico

Introduzione

- Algebra Booleana B:
 - ▶ È un sistema algebrico identificato dalla quintupla:

$$(B, +, *, O, I)$$

- ▶ In cui:
 - B è l'insieme di specificazione (carrier)
 - +, * sono operatori binari (operazioni a due elementi)
 - Associano a coppie di elementi in B un elemento dello stesso insieme
 - + è il simbolo associato all'operazione somma
 - * è il simbolo associato all'operazione prodotto
 - O, I sono elementi speciali di B

Introduzione

- Le proprietà dei due operatori dedotte da assiomi
 - ► + (simbolo *somma*) e * (simbolo *prodotto*) sono commutative per ogni $x, y \in B$
 - La somma è distributiva rispetto al prodotto ed il prodotto è distributivo rispetto alla somma per ogni $x, y, z \in B$
 - O è l'elemento neutro rispetto a + ed I è l'elemento neutro rispetto a *
 - Ogni elemento x ∈ B ammette un elemento x' complemento di x tale che (x + x') = I e (x * x') = O
 - L'elemento x' complemento di x è unico.
 - Questa proprietà autorizza l'inserimento del nuovo operatore complemento (~) intendendo con ~x l'elemento x' complemento di x
 - ~ è il simbolo associato all'operazione complemento

- Algebra Booleana a due valori (o di commutazione)
 - ▶ È definita da

$$(\{0, 1\}, +, *, \sim, 0, 1)$$

- ▶ In cui
 - L'insieme di specificazione B = {0,1}
 - le operazioni \oplus , \odot e ~ sono definite come:

		k)
	+	0	1
2	0	0	1
a	1	1	1

	ď						
	*	0	1				
2	0	0	0				
a	1	0	1				
	-						

	~	
2	0	1
a	1	0

Nota: D'ora in poi si farà riferimento all'algebra di commutazione.

"Tra tutte le algebre booleane, l'algebra booleana a due valori... è la più utile. Essa è la base matematica della analisi e progetto di circuiti di commutazione che realizzano i sistemi digitali."

Lee, S.C Digital Circuit And Logic Design Prentice-Hall, 1976

Definizioni:

- Un letterale è una coppia (variabile, valore)
 - (x,1) È indicato come x mentre (x,0) È indicato come $\sim x$
- Un termine prodotto è il prodotto logico o disgiunzione (AND) di più letterali
 - Ad esempio, una funzione nelle variabili a,b,c e d potrebbe avere una espressione che contiene i termini prodotto (~a*b*~c) e (a*~b*c).
- Un termine somma è la somma logica o congiunzione (OR) di più letterali
 - Ad esempio, una funzione nelle variabili a,b,c e d potrebbe avere una espressione che contiene i termini somma (~a+b+~c) e (a+~b+c).

Espressione Boolana

- Una espressione Booleana E è definita in modo induttivo come parola composta da operatori booleani, parentesi, costanti e letterali nel modo seguente:
 - Sia gli elementi di B, chiamati costanti, che i letterali x,y,z,... sono espressioni booleane.
 - Se E1 e E2 sono espressioni booleane anche (E1 + E2) (E1 * E2) e (~E1) lo sono.
 - Non esistono altre espressioni booleane oltre a quelle che possono essere generate da un numero finito di applicazioni delle due regole precedenti.
- Nota: D'ora in avanti, i simboli degli operatori "+", "*" e "-" saranno sostituiti con "+", "*" e "!" (o "'") oppure da OR, AND e NOT.

Proprietà

Associativa

- Somma: a+(b+c)=(a+b)+c
- ▶ Prodotto: a* (b*c) = (a*b) *c
- Distributiva
 - Somma: a*(b+c)=a*b+a*c
 - Prodotto: a+(b*c)=(a+b)*(a+c)
- Idempotenza
 - ► Somma: a+a=a
 - ▶ Prodotto: a*a=a
- Elemento neutro
 - ▶ Somma: a+1=1 a+0=a
 - ▶ Prodotto: a*0=0 a*1=a

Proprietà

Assorbimento

- Somma: a+(a*b)=a
- ▶ Prodotto: a* (a+b) = a
- Involuzione
 - Negazione: (a')'=a
- Leggi di De Morgan
 - ▶ Somma: (a+b) '=a' *b'
 - Prodotto: (a*b) '=a'+b'
- Consenso
 - ▶ Somma: a*b+a'*c+b*c = a*b + a'*c
 - ▶ Prodotto: (a+b)*(a'+c)*(b+c)=(a+b)*(a'+c)

Principio di dualità

- Ogni identità deducibile dai postulati dell'algebra di Boole è trasformata in un'altra identità se:
 - Ogni somma è sostituita da un prodotto, e viceversa
 - Ogni elemento identità 0 è sostituito da un elemento identità 1, e vice versa
- Esempi:

Dimostrazioni

- Dimostrazioni delle proprietà
 - Metodo esaustivo
 - Metodo algebrico
- \bullet Esempio: a + a'b = a + b

Metodo algebrico

Operazione	Proprietà
a*1 + a'b	Elemento neutro
a(b+b') + a'b	Negazione: x+x'=1
ab + ab' + a'b	Proprietà distributiva
ab + ab + ab' + a'b	Idempotenza
a(b+b') + b(a+a')	Distributiva
a*1 + b*1	Negazione: x+x'=1
a + b	Elemento neutro

Metodo esaustivo

a b	a+a'*b	a+b
0 0	0+1*0=0	0+0=0
0 1	0+1*1=1	0+1=1
1 0	1+0*0=1	1+0=1
1 1	1+0*1=1	1+1=1

Rappresentazione di una funzione

- Funzione di commutazione
 - ▶ Una funzione di commutazione a n variabili $f(x_0, ... x_{n-1})$ è una funzione che ha dominio in $\{0,1\}^n$ e codominio in $\{0,1\}$: $f: \{0,1\}^n \rightarrow \{0,1\}$
- Una funzione di commutazione f: {0, 1}ⁿ→{0, 1} può essere rappresenta in modo comodo utilizzando una tabella della funzione o tabella della verità
 - ► Una tabella della verità specifica la relazione tra ogni elemento del dominio {0, 1}ⁿ di f e l'immagine nel codominio.

Rappresentazione di una funzione

Esempio:

a	b	С	f(a,b,c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

- Una funzione booleana di n variabili può essere espressa
 - Da una espressione booleana di n variabili E
- Le proprietà dell'algebra di commutazione
 - Possono essere utilizzate per manipolare una espressione booleana ed ottenerne una equivalente
 - Due espressioni booleane E1 e E2 sono equivalenti se e solo se sono riconducibili alla stessa funzione booleana

Esempio:

```
f(a,b,c) = (a'b')'a = (a+b)*a = aa + ba = a + ba = a

E1 = (a'b')'a; E2 = (a+b)*a; E3 = aa + ba

E4 = a + ba; E5 = a
```

E1, E2, E3, E4 ed E5 sono espressioni booleane equivalenti

- Relazione tra funzioni ed espressioni:
 - Ad una espressione E di n variabili corrisponde un'unica funzione f di n variabili
 - Viceversa, ad una funzione f di n variabili corrispondono infinite espressioni di n variabili.

- Data una funzione booleana, il problema è identificare almeno una espressione booleana ad essa corrispondente
 - In molte applicazioni dell'algebra booleana uno scopo fondamentale è determinare una buona rappresentazione della funzione booleana
 - ▶ È necessario definire una metrica che indichi la qualità di una soluzione rispetto ad uno o più aspetti (es. Costo, prestazioni, energia...)
 - Esempio: se l'obiettivo è minimizzare il costo del circuito corrispondente a un'espressione, una possibile metrica è il numero di letterali presenti nell'espressione.
 - Si osservi che la metrica è caratterizzata da un valore atteso e da una varianza; quindi, due soluzioni di costo simile (es. \pm 20%) sono da considerarsi equivalenti.

- Data una funzione booleana
 - La soluzione iniziale al problema di determinare una sua espressione consiste nel ricorso alle forme canoniche
 - La soluzione iniziale può essere manipolata per raggiungere l'obiettivo desiderato
 - Ad esempio, riduzione del costo
- Le forme canoniche più comuni sono:
 - La forma somma di prodotti, o SoP
 - La forma prodotto di somme, o PoS
- Data una funzione boolena è rappresentata da
 - Una ed una sola forma canonica SoP (disgiuntiva)
 - Una ed una sola forma canonica PoS (congiuntiva)

Si consideri il seguente esempio:

a	b	f(a,b)
0	0	0
0	1	1
1	0	0
1	1	1
1	1	1

È intuitivo osservare che la funzione possa essere ottenuta dalla somma (OR) delle seguenti funzioni:

a b	f(a,b)		a	b	f ₁ (a,b)		a	b	f ₂ (a,b)
0 0	0		0	0	0		0	0	0
0 1	1	=	0	1	1	+	0	1	0
1 0	0		1	0	0		1	0	0
1 1	1		1	1	0		1	1	1

Per cui, intuitivamente, si ottiene:

a b	f(a,b)	- -	a	b	f ₁ (a,b)		a	b	f ₂ (a,b)
0 0	0	-	0	0	0		0	0	0
0 1	1	=	0	1	1	+	0	1	0
1 0	0		1	0	0		1	0	0
1 1	1		1	1	0		1	1	1
		-							

- Infatti
 - Quando a=0 e b=1 il prodotto a'b assume valore 1 mentre vale 0 in tutti gli altri casi (f_1)

 $f_1(a,b) = a'b$ $f_2(a,b) = ab$

- Quando a=1 e b=1 il prodotto ab assume valore 1 mentre vale 0 in tutti gli altri casi (f₂)
- Osservazione: "a=0 e b=1" significa anche letterale (a,0) in AND con la coppia (variabile, valore) (b,1) cioè, termine prodotto a'b

Forme canoniche: Definizioni

Mintermine

- ▶ È un termine prodotto in cui compaiono letterali corrispondenti a tutte le variabili della funzione
- Ad esempio, una funzione nelle variabili a,b,c e d potrebbe avere una espressione che contiene i mintermini a'bc'd e ab'cd'.

Ne consegue:

- In genérále
 - Mettendo in OR i mintermini della funzione si ottiene una espressione della funzione: Prima Forma Canonica
 - Nel mintermine una variabile compare:
 - Nella forma x se nella configurazione di ingresso ha valore 1
 - Nella forma x' se nella configurazione di ingresso ha valore 0

Esempio

Tabella della verità:

abc	f(a,b,c)	Mintermini
0 0 0	0	
0 0 1	1	a'b'c
0 1 0	1	a'bc'
0 1 1	1	a'bc
1 0 0	1	ab'c'
1 0 1	0	
1 1 0	0	
1 1 1	1	abc

Prima forma canonica:

$$f(a,b,c) = a'b'c + a'bc' + a'bc + ab'c' + abc$$

Si consideri il nuovamente l'esempio iniziale

a	b	f(a,b)
0	0	0
0	1	1
1	0	0
1	1	1

È intuitivo osservare che la funzione possa essere ottenuta dal prodotto (AND) delle seguenti funzioni:

a b	f(a,b)		a b	f ₁ (a,b)		a b	f ₂ (a,b)
0 0	0		0 0	0		0 0	1
0 1	1	=	0 1	1	*	0 1	1
1 0	0		1 0	1		1 0	0
1 1	1		1 1	1		1 1	1

Per cui, intuitivamente, si ottiene:

		_					
a b	f(a,b)		a b	f ₁ (a,b)		a b	f ₂ (a,b)
0 0	0	•	0 0	0		0 0	1
0 1	1	=	0 1	1	*	0 1	1
1 0	0		1 0	1		1 0	0
1 1	1		1 1	1		1 1	1
		-					

$$f_1(a,b) = (a'b')' f_2(a,b) = (ab')'$$

Infatti

- Quando a=0 e b=0 il termine (a'b')' assume valore 0 mentre vale 1 in tutti gli altri casi (f₁)
- Quando a=1 e b=0 il termine (ab')' assume valore 0 mentre vale 1 in tutti gli altri casi (f₂)

Ne consegue:

a b	f(a,b)		a b	f ₁ (a,b)		a	b	f ₂ (a,b)
0 0	0		0 0	0		0	0	1
0 1	1	=	0 1	1	*	0	1	1
1 0	0		1 0	1		1	0	0
1 1	1		1 1	1		1	1	1
f	f(a,b)		(a	'b')'	*		(a	b')'

Applicando le leggi di De Morgan:

$$f(a,b) = (a'b')' * (ab')' = (a + b) * (a' + b)$$

In generale

- Mettendo in AND i maxtermini della funzione si ottiene una espressione della funzione: Seconda Forma Canonica
- ▶ Nel maxtermine una variabile compare:
 - Nella forma x se nella configurazione di ingresso ha valore 0
 - Nella forma x ' se nella configurazione di ingresso ha valore 1
- Dove, Maxtermine
 - È un termine somma in cui compaiono letterali corrispondenti a tutte le variabili della funzione
 - Ad esempio, una funzione nelle variabili a,b,c e d potrebbe avere una espressione che contiene i maxtermini a'+b+c'+d e a+b'+c+d'.

Esempio

Tabella della verità:

a b c	f(a,b,c)	Maxtermini
0 0 0	0	a + b + c
0 0 1	1	
0 1 0	1	
0 1 1	1	
1 0 0	1	
1 0 1	0	a' + b + c'
1 1 0	0	a' + b' + c
1 1 1	1	

Seconda forma canonica:

$$f(a,b,c)=(a + b + c)*(a' + b + c')*(a' + b' + c)$$

Prima forma canonica

La prima forma canonica ha come espressione generale

$$f = (x_1' ... x_n') * f(0,...,0) + (x_1' ... x_n) * f(0,...,1) + ... + (x_1 ... x_n) * f(1,...,1)$$

Mintermini della funzione £

$$(x_1' ... x_n')$$
, $(x_1' ... x_n)$, ..., $(x_1 ... x_n)$

 Valori che la funzione assume quando la configurazione delle variabili in ingresso è (0,...,0), ..., (1,...,1)

$$f(0,...,0)$$
, $f(0,...,1)$, ..., $f(1,...,1)$

Prima forma canonica

La seconda forma canonica ha come espressione generale

```
f = ((x_1' + ... + x_n') + f(1,...,1)) *
* ((x_1' + ... + x_n) + f(1,...,0)) *
* ... *
* ((x_1 + ... + x_n) + f(0,...,0))
```

Maxtermini della funzione £

$$(x_1' + ... + x_n')$$
, $(x_1' + ... + x_n)$, ..., $(x_1 + ... + x_n)$

 Valori che la funzione assume quando la configurazione delle variabili in ingresso è (0,...,0), ..., (1,...,1)

$$f(0,...,0)$$
, $f(0,...,1)$,, $f(1,...,1)$

- La descrizione formale introdotta in precedenza deriva direttamente dall'applicazione iterativa del Teorema di espansione di Shannon
- Sia $\mathbf{f} : B^n \rightarrow B \ \dot{\mathbf{e}} \ una funzione booleana$
 - ▶ Per ogni ($\mathbf{x}1$, $\mathbf{x}2$, ..., $\mathbf{x}n$) in B^n , si ha: $\mathbf{f}(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n) = \mathbf{x}_1' * \mathbf{f}_{\mathbf{x}1} + \mathbf{x}_1 * \mathbf{f}_{\mathbf{x}1} = \mathbf{x}_2' * \mathbf{f}_{\mathbf{x}2} + \mathbf{x}_2 * \mathbf{f}_{\mathbf{x}2} = \mathbf{x}_2'$

▶ E, dualmente:

$$f(x_1, x_2, ..., x_n) = (x_1' + f_{x1}) * (x_1 + f_{x1'}) =$$

$$= (x_2' + f_{x2}) * (x_2 + f_{x2'}) =$$

$$= ...$$

Esempio, SoP:

$$f(a, b, c) = a' * f(0,b,c) + a * f(1,b,c) =$$

$$= b' * f(a,0,c) + b * f(a,1,c) =$$

$$= c' * f(a,b,0) + c * f(a,b,1)$$

Esempio, PoS:

$$f(a, b, c) = (a' + f(1,b,c)) * (a + f(0,b,c)) =$$

$$= (b' + f(a,1,c)) * (b + f(a,0,c)) =$$

$$= (c' + f(a,b,1)) * (c + f(a,b,0))$$

Ad esempio:

a b c	f(a,b,c)	Prima Forma Canonica a'b'c+a'bc+ab'c'+ab'c+abc
0 0 0	0	The second of th
0 0 1	1	
0 1 0	0	
0 1 1	1	
1 0 0	1	
1 0 1	1	
1 1 0	0	
1 1 1	1	
	•	(a+b+c) * (a+b'+c) * (a'+b'+c)
		Seconda forma Canonica

Esempio di espansione completa

```
f(a,b,c) = a'b'c'*f(0,0,0) + a'b'c*f(0,0,1) +
+ a'bc' *f(0,1,0) + a'bc *f(0,1,1) +
+ ab'c' *f(1,0,0) + ab'c *f(1,0,1) +
+ abc' *f(1,1,0) + abc *f(1,1,1)
```

a	b	С	f(a,b,c)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

```
Prima forma canonica
```

$$f(a,b,c) = a'b'c + a'bc + ab'c' + ab'c + abc$$

Seconda forma canonica

```
f(a,b,c) = (a+b+c) * (a+b'+c) * (a'+b'+c)
```

- Può essere utilizzato anche su espressioni Booleane
 - Espandendo rispetto ad a l'espressione booleana:

```
f(a,b,c) = ab + b' + a'bc'
```

Si ottiene la forma equivalente:

```
f = ab + (ab'+a'b') + a'bc'

f = a'(b'+bc') + a(b+b') = a'b' + a'bc' + a
```

▶ Espandendo rispetto ad a, b e c l'espressione booleana:

```
f(a,b,c) = ab + b' + a'bc'
```

Si ottiene la forma equivalente:

```
f = a'(b'+bc') + a(b+b') =

= a'(b'1+bc') + a(b'1+b1) =

= a'(b'(c'+c)+b(c')) + a(b'(c'+c)+b(c'+c)) =

= a'b'c' + a'b'c + a'bc' + ab'c' + ab'c +

+ abc' + abc
```

- Data un'espressione di una funzione booleana
 - L'algebra di commutazione permette di manipolarla per ottenere un'espressione equivalente, ma di forma diversa
 - Eventualmente con caratteristiche meglio rispondenti a particolari requisiti
- Esempio:
 - Sia data la forma canonica:

$$f(x, y, z) = x'yz' + xyz' + xyz$$

- E sia data la funzione di costo costituita dal numero di letterali presenti
 - In questo caso vale 9
- Obiettivo: ridurre il costo

Dall'espressione di partenza:

$$f(x,y,z) = x'yz' + xyz' + xyz$$

Applicando la proprietà distributiva e quella della complementazione si ottiene:

$$f(x,y,z) = (x'+x)yz' + xyz =$$

= 1*yz' + xyz = yz' + xyz

Applicando di nuovo la proprietà distributiva si ottiene:

$$f = y(z' + xz)$$

 \bullet E ricordando che a + a'b = a + b, si ottiene infine:

$$f = y(z' + x) = yz' + xy$$

La nuova espressione ha un costo di 4 letterali

Allo stesso risultato si sarebbe giunti anche:

$$f(x,y,z) = x'yz' + xyz' + xyz$$

Applicando la proprietà dell'idempotenza si ottiene:

$$f(x,y,z) = x'yz' + xyz' + xyz' + xyz$$

Applicando la proprietà distributiva

$$f = yz'(x'+x) + xy(z'+z)$$

Da cui infine

$$f = yz'1 + xy1 = yz' + xy$$

- In conclusione
 - L'applicazione delle trasformazioni algebriche non permette di identificare una procedura sistematica
- Di conseguenza
 - Non è possibie identificare un algoritmo
 - non si possono realizzare strumenti CAD che consentano di produrre una soluzione ottima a due livelli utilizzando le prorpietà dell'algebra
 - ▶ Non è possibile sapere se una espressione è quella minima
 - L'immediatezza della bontà del risultato dipende molto dalla scelta delle proprietà da applicare e dall'ordine in cui sono applicate
- Quindi, non è questa la via che si sceglie!