Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий

Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по лабораторной работе № 1

Дисциплина: Низкоуровневое программирование

Тема: Машина Тьюринга-Поста

Вариант: 4

Выполнил студент гр. 3530901/00002	(подпис	Н.А. Васихин
Принял преподаватель	(подпись	Д.С. Степанов)
6	; ;;	2021 г.

Санкт-Петербург

Задача

Построить машину Тьюринга, совершающую перевод унитарного кода в десятичный.

Алфавит

0,1,2,3,4,5,6,7,8,9,X

Начальное и конечное состояния

Перед первым символом числа в унитарном коде записан "0X". 0- минимальный ответ, X- разделитель ответа и числа.

Головка должна находиться на первом символе числа в унитарном коде.

После остановки машины головка должна находиться на левом символе конечного числа.

Алгоритм

Головка, начиная с правого края, стирает ноль и после следует к итоговому числу слева от символа X. Производит добавление 1. Далее возвращается в правый край и повторяет действия до тех пор, пока не встретит единицу справа.

Диаграмма состояний

На диаграмме пробел обозначен буквой «В». В скобках массив входных значений.

Рис. 1 Диаграмма состояний

Описание работы

Машина начинает работу в состоянии Q1. Двигаясь вправо, доходит до первого пробела после числа в унитарном коде. Дойдя до пробела, головка сдвигается влево, и машина переходит в состояние Q2.

В состоянии Q2 при 0 происходит его затирание, сдвиг головки влево и переход в состояние Q3. Если встречается 1, то происходит её затирание и сдвиг головки влево. Если встречается X, то происходит его затирание, сдвиг головки влево и остановка программы, т.к перевод уже успешно завершён.

Состояние Q3 осуществляет перенос головки до первого символа итогового числа, что идёт после символа X. После машина переходит в состояние Q4, чтобы добавить единицу.

В состоянии Q4 происходит добавление единицы. При значениях от 0 до 8 произойдёт добавление единицы, сдвиг вправо, переход в состояние 1. Если встречается пробел, то записывается 1 и машина переходи в состояние

Q1, чтобы вернуться в левый край и продолжить отслеживание нулей. При 9 запишется 0 и сдвиг влево.

Пример выполнения программы на симуляторе

Перевод числа 1000000000000000000000000000 в унитарном коде в десятичный.

Рис. 2 Начальные условия

	DE 04 00 0	2 21 20 10	10 17 10	15 14 10 10	11 10		7 0		4 2	Ţ	-1 /0	1	2	2 4	_		, ,		10.1		2 12	1.4	10	10.	7 4	0 10	
K	25 -24 -23 -2	2 -21 -20 -13	-18 -17 -18 -	15 -14 -13 -12	-11 -10	-3 -0	-/ -e	T T	-4 -3	-2\ 2	1	T	2	3 4	_5 	6	7 8 T	_9 	10 1	Τ	2 13	14	15	16	17 1	6 13	T
	\Box																				_				L/		1
Алф	оавит 0123	3456789X																							107	1Mel	-
	_ф ш ш _ф ц	M																				ľ					
	Q ₁	Q ₂	Q ₃	Q ₄																		1					
0	0 → Q ₁	_ ← Q ₃	0 ← Q ₃	1 → Q ₁																							
1	1 → Q ₁	_ ← Q ₂	1 ← Q ₃	2 → Q ₁																							
2	2 → Q ₁			3 → Q ₁																							
3	3 → Q ₁			4 → Q ₁																							
4	4 → Q ₁			5 → Q ₁																							
5	5 → Q ₁			6 → Q ₁																							
6	6 → Q ₁			7 → Q ₁																							
7	7 → Q ₁			8 → Q ₁																							
8	8 → Q ₁			9 → Q ₁																							
9	9 → Q ₁			0 ← Q4																							
Х	x → Q ₁	_ ← 👄	x ← Q ₄																								
	← Q ₂			1 → Q ₁																							

Рис. 3 Результат работы машины

Вывод

В данной работе я познакомился с принципом работы машины Тьюрингаи общими правилами реализации алгоритмов на ней на примере перевода унитарного кода в десятичный.

Список использованных источников

http://kspt.icc.spbstu.ru/media/files/2021/lowlevelprog/euc.pdf
http://kspt.icc.spbstu.ru/media/files/2021/lowlevelprog/euctm.pdf
http://kpolyakov.spb.ru/prog/turing.htm