General Matrix Multiplication (GEMM)

$$\mathbf{Y} = \mathbf{W}^T \mathbf{X}$$

- trainable parameters: trainable parameters:
- model size: inference cost X

K = input dimension, N= output dimension, M = batch * sequence

GEMM with Weight Decomposition (e.g., truncated SVD)

 $Y \approx UVX$

K = input dimension, N= output dimension, M = batch * sequence L = intermediate dimension

ESPACE: Activation Dimensionality Reduction Using Static Projections

$$Y \approx W^T(PP^TX) = (P^TW)^T(P^TX)$$

K = input dimension, N = output dimension, M = batch * sequence, L = intermediate dimension

Eigenvalue index

Number of components retained

— GO-MSE — GO-MSE w/ L_2 -normalization — NL-MSE — NL-MSE with L_2 -normalization - MSE - NMSE

LLM size vs accuracy

GPT3-22B Compression

Llama2-7B perplexity and compression

General Matrix Multiplication (GEMM)

$$\mathbf{Y} = \mathbf{W}^T \mathbf{X}$$

- trainable parameters: expressivity model size: inference cost

Activation projection does not interfere with weight learnability in training, yet leads to model compression at inference

During Inference:

☐ model size: ☐ inference cost ☐

☐ M vectors stacked dimension

LLM size vs accuracy

Llama2-7B perplexity and compression

General Matrix Multiplication (GEMM)

$$\mathbf{Y} = \mathbf{W}^T \mathbf{X}$$

- trainable parameters: texpressivity model size: tinference cost

GEMM with Weight Decomposition (e.g., truncated SVD)

 $Y \approx UVX$

- U trainable parameters: U expressivity XU model size: U inference cost ✓

ESPACE: Activation Dimensionality Reduction Using Static Projections

$$\mathbf{Y} \approx \mathbf{W}^T (\mathbf{P} \mathbf{P}^T \mathbf{X}) = (\mathbf{P}^T \mathbf{W})^T (\mathbf{P}^T \mathbf{X})$$

LLM size vs accuracy

