Week 3	C5224n: NI	_P with Deep Lear	ring
Lecture 5 : Dedend			
Phrase structure		into nested cons	tituents
· Constituency =			
· Dedendency =		-	
Look in the la	arge crate in	the Kitchen by	the door
Machine needs to w	nderstand senten	æ structure to	interpret language
CPP ottachment a	mbiguities multip	oly]	
The board approved	L[its ocquisition]	[of]	foront of spare
			.s monthly meeting]
[Coordination sc	ope ambiguity]		
[Adjectival Modi	fier ambiguity']		
Everb phrase att	achment ambiguity?		
Dependency Struct	ture: a tree	cacyclic, conne	cted, single-head)
the rise of annota	ted data: Uni	versal Dependenc	ies tree bank
· very reusable · broad coverage			
· Frequencies and	distributional inj	formation	
	aluate systems.		
Sources of infor			
· Bilexical off	, , , , , , , , , , , , , , , , , , ,		

- . distance
- · intervening material
- · valency of heads
- a sentence is parsed by choosing for each word what other word Cincluding Root) is it a dependent of

evaluation:

$$Acc = \frac{\# correct deps}{\# of deps}$$

- □ a neural dependency parser?
 - problem: Indicator feature revisited

 - sparse
 incomplete
 expensive computation
 more than 95% of parsing time is by feature computation.
- Distributed representations
 - · represent as d-dimensional dense vector
 - · Part of Speach (POS) and dependency labels as as d-dimensional dense vector

Model architecture:

Output layer y
y=softmax(Vh+b2) Hidden layer h Input layer x lookup tooncat

Lecture 6: Language Models and RNNs

· Language Modeling: predict what words come next.

compute $P(\chi^{(t+)}|\chi^{(t)},...,\chi'')$, where $\chi \in V$ vocabulary

advantage: can process any length input *Computation for step t can (in theory) use information from many steps back · Model size doesn4 increase for longer size disadvantage: tecurrent computation is slow back different to assess information from many steps Training RNN Language Model 1. get a very large corpus of text 2. Feed into RNN-LM; compute distribution y ct) for every 3. Loss function on step t is cross-entropy between predicted probability distribution $\hat{y}^{(t)}$, and the true next word $y^{(t)}$ (1-hot vector): $J(t) = CE C y(t), \hat{y}(t) = -E y''' \log \hat{y}(t) = -\log \hat{y}_{x+t}^{(t)}$ 4. Average this to get overall loss for entire training set. $J(\theta) = + \sum_{t=1}^{t} J(t)(\theta) = + \sum_{t=1}^{t} -\log \hat{y}_{x+t}^{(t)}$ Houever, compute loss and gradient across entire corpus is too expensive! Use [SGD] in real practice training. $\frac{\partial J^{(t)}}{\partial W_n} = \frac{t}{i=1} \frac{\partial J^{(t)}}{\partial W_n} \Big|_{(i)}$ " Back pro pagation" through lime

