

Domain Adaptation for Violence Detection in Camera Surveillance

Group 6 & Group 14

Motivation

Motivation: Domain Gap in CCTV

The Background

- CCTV (Camera surveillance) shown to be effective at crime prevention
- Automatic Violence Detection required for large-scale adoption

The Challenge

- Each camera installation presents new domain
- Few instances of crime captured by any given camera
- Laborious to label

We require approaches to improve performance without **labeled training data**

Unsupervised Domain Adaptation: Improve classification performance on real-world CCTV dataset using only labeled Hockey dataset

Source Dataset: Hockey

- Dataset of hockey games
- Labels available
- 50% fight, 50% non fight

Target Dataset: UCF

- Dataset of real-world CCTV
- No labels available
- Dataset with bias towards non violence
- Extra difficulty: very diverse conditions (lighting, quality, ...)

The Goal:

Achieving good classification accuracy on UCF

The Problem:

Hockey-finetuned model performs badly on UCF due to large domain gap

Our Task – Unsupervised Domain Adaptation:

Investigating approach to improve UCF performance using only labeled source data and unlabeled target data

Methodology

Methodology

Method 1 – UDA:

 Aligning latent representations between source and target domain

Method 2 – SSL:

 Improving feature representation for target domain through maximum entropy coding

Key Contribution – Combination:

 UDA and SSL can be combined to achieve significant performance gains on the target domain

Overview Experiments

Unsupervised Domain Adaptation

Self Supervised Learning UDA + SSL = Significantly Improved Performance

Experiments

Unsupervised Learning To Align Latent Representation Between Source and Target Domain

The Approach:

- Good performance on source-domain due to labeled training data
- Align distribution of source and target domain in feature space
- → Good performance on source translates to good performance on target

How to Align Domains:

- 1. Adversarial Approach: Good performance but very unstable
- 2. Discrepancy approach: Investigated
 - a) Maximum Mean Discrepancy and
 - b) Wasserstein Distance

Unsupervised Domain Adaptation Effective At Improving Target Domain Performance

Performance Values Train, Validation, and Test Set [All values measured in % accuracy]

- UDA effective and improves accuracy on all datasets
- Wasserstein Loss more effective than Maximum Mean Discrepancy
- Ablation: Best performance when average pooling time dimension. Hypothesis:
 - Simplified latent space easier to align
 - Videos are uniformly violent → time information not that important

Self-Supervised Learning To Learn Good Representations for Target Domain

The Approach:

- Effective task performance in source domain due to labeled training data
- Self-Supervised Learning is used to learn a good feature space for the target domain
- → Good Representation space for **both task and target**

Choosing a self-supervised task:

- 1. Contrastive Method: Good performance but need large batches and negative pairs
- 2. Non-Contrastive Method: No need for negative pairs and large batches but representation collapse risk
- Maximum-Entropy Coding: Combination of both contrastive and non-contrastive leading to robust performance with small batch size

Self-Supervised Learning To Learn Good Representations for Target Domain

The Approach:

- Effective task performance in source domain due to labeled training data
- Self-Supervised Learning is used to learn a good feature space for the target domain
- → Good Representation space for both task and target

Choosing a self-supervised task:

- 1. Contrastive Method: Good performance but need large batches and negative pairs
- 2. Non-Contrastive Method: No need for negative pairs and large batches but representation collapse risk
- 3. Maximum-Entropy Coding: Combination of both contrastive and non-contrastive leading to robust performance with small batch size

Self-Supervised Learning Improves Target Domain Performance

Performance Values Train, Validation, and Test Set

[All values measured in % accuracy]

- SSL(MEC) improves performance in the target domain
- Source Domain Performance degrades slightly
- Ablation: Better than dividing into target encoder pretraining and source domain classifier fine-tuning into separate stages. Hypothesis:
 - The encoder is not suitable for the source domain due to the domain gap when pretrained separately
 - Features more related to violence are likely to be learned more.

UDA and **SSL** are Complementary

Method 1: UDA

Strength: Alignment between source

and target domain

Weakness: Difficulty in learning diverse features from the target domain

Method 2: SSL

Strength: Ability to learn diverse features from the target domain

Weakness: Lack of alignment between source and target domains

UDA and SSL are Complementary

- UDA & SSL have separate strengths & weaknesses
- Let's mix the two methods into one to see if they each cover up other's weakness.

UDA + SSL to learn the best representation space for task on target domain

The Approach:

- Align domain between source and target
- Learn rich representations for target domain
- → Achieve the best representation space for task, source, and target

Choose Best Performing methods:

- Wasserstein Loss: Better performance over Maximum Mean Discrepancy Loss
- Maximum-Entropy Coding: Works well with small batch sizes

UDA + SSL to learn the best representation space for task on target domain

The Approach:

- Align domain between source and target
- Learn rich representations for target domain
- → Achieve the best representation space for task, source, and target

Choose Best Performing methods:

- Wasserstein Loss: Better performance over Maximum Mean Discrepancy Loss
- Maximum-Entropy Coding: Works well with small batch sizes

UDA + SSL Improves Target Domain Performance

Performance Values Train, Validation, and Test Set

[All values measured in % accuracy]

- Mixing UDA and SSL improves over the methods applied individually
- Source domain performance degrades by over 6%, indicating that source domain overfitting has decreased
- The source-target domain accuracy gap decreased from 29% to 12%

Future Work

Can Temporal Attention Help to Improve Latent Space Representation With More Information?

- Unsupervised Domain Adaptation
- Self-Supervised Learning
- ⇒ Both done in the **latent representation space**. (align, learn rich features for the representation space)

But video has time axis. Can't **temporal information** be more used for UDA or SSL? ⇒ **Attention**?

Conclusion

Conclusion

- Targeted realistic unsupervised domain adaptation challenge for CCTV footage.
- Adapted unsupervised domain adaptation and self-supervised learning methods normally
 used in the image domain to the video domain.
- Analyzed design choices, the reason behind it, leading to an 8% improvement.
- Combined methodologies (UDA + SSL) boosted performance by an additional 3%.
- Future Direction: Exploring temporal attention mechanisms for further enhancements.

Appendix

MoViNet

The Challenge

- CCTV cameras operate on non-high-performance devices
- Violence detection in real time

MoViNet

- Very efficient general-purpose network for video analysis
- Can easily be run on "The Edge" or on smartphones
- Good baseline performance

