「数値解析入門」正誤表

齊藤 宣一

2025年4月22日

この文書は,

齊藤宣一『数値解析入門(大学数学の入門9)』東京大学出版会

の正誤表です.

本書は、2012 年 10 月 23 日に初版が出版されました。その後、2024 年 6 月 10 日に第 2 刷が出版され、以下の B に挙げた誤植は修正されました。

A 第2刷の正誤表

最新更新日: 2025 年 4 月 22 日

頁/行	訂正前	訂正後	更新日
16/10,	$U^*U = (u_i^*u_j) = I, \ UU^* = (U^*U)^* = I$	$U^*U=(oldsymbol{u}_i^*oldsymbol{u}_j)=I$ なので, $U^{-1}=$	2025.04.22
11	(2.7) であるから, $U^{-1} = U^*$ であり	U^* に他ならない.したがって, $U^*U=$	
		$UU^*=I~(2.7)~$ が成り立つ.	

B 初版の正誤表

以下は、初版(2012年10月23日)の正誤表です。

最新更新日:2024年4月2日

頁/行	訂正前	訂正後	更新日
8/-1	0.12508	0.012508	2022.04.08
20/1	≥	>	2015.01.26
37/-4	G_k lt, $oldsymbol{g}_k = P_{n-1} \cdots P_{k+1} oldsymbol{f}_k = (l_i) \in oldsymbol{g}_k$	$G_k = (l_{i,j}) \text{ it, } P_{n-1} \cdots P_{k+1} f_k $ (2.45)	2013.08.27
	$\mid \mathbb{R}^n \ (2.45)$ に対応する	に対応する	
49/-6	$(p=\infty$ のときは $1/p=0$ と解釈する)	$(一般に, r = \infty $ のときは $1/r = 0$ と解	2013.07.19
		釈する)	
50/10	$n^{p(1/p-q)}$	$n^{p(1/p-1/q)}$	2015.01.26
50/6	$oxed{ \cdots \leq \ oldsymbol{x}\ _{\infty}^{q-p}\ oldsymbol{x}\ _p^p = \ oldsymbol{x}\ _p^{q-p}\ oldsymbol{x}\ _p^p = 0}$	$\ \cdots \le \ x \ _{\infty}^{q-p} \ x \ _{p}^{p} \le \ x \ _{p}^{q-p} \ x \ _{p}^{p} = \cdots$	2013.07.19
53/10	シュワルツの不等式 (6.14) により	コーシー-シュワルツの不等式(問題	2012.11.02
		2.2.6) により	
53/-10	$f(oldsymbol{y})$ は有界閉集合 D 上	$f(y) = \ y\ $ は有界閉集合 D 上	2012.10.22
57/8	$= \max_{1 \le j \le n} x_j \cdot \max_{1 \le i \le n} \sum_{j=1}^n a_{i,j} \le \alpha \boldsymbol{x} _{\infty}$	$\leq \max_{1\leq j\leq n} x_j \cdot \max_{1\leq i\leq n} \sum_{j=1}^n a_{i,j} = \alpha x _{\infty}$	2017.08.04
57/-2	$\cdots = \langle U^*BUy, Uy \rangle$	$\cdots = \langle U^*BU\boldsymbol{y}, \boldsymbol{y} \rangle$	2013.07.19

63/5	$A_{\varepsilon}^{-1} \ge 0$	$A_{\varepsilon}^{-1} \geq \frac{O}{C}$	2015.01.26
66/8	$x_{i+1}^{(k+1)} = x_i^{(k)} + \omega \left(y_i^{(k+1)} - x_i^{(k)} \right)$	$x_i^{(k+1)} = x_i^{(k)} + \omega \left(y_i^{(k+1)} - x_i^{(k)} \right)$	2013.05.15
70/-3	$a_{i,i} > 0 \ $ b	D は実対角行列なので	2017.08.04
72/-1	$x_1 = 3.65, \ x_2 = 2.51$	$x_1 = 3.65, \ x_2 = -2.45$	2013.05.23
74/9	$A_1^{-1} = \frac{1}{1324} \begin{pmatrix} 135 & 265 \\ 125 & -245 \end{pmatrix},$	$A_1^{-1} = \frac{1}{1324} \begin{pmatrix} 135 & 265 \\ -125 & +245 \end{pmatrix},$	2013.05.23
	$A_2^{-1} = \begin{pmatrix} -135 & 265\\ 125 & 245 \end{pmatrix}$	$A_2^{-1} = \begin{pmatrix} -135 & 265\\ 125 & -245 \end{pmatrix}$	
75/-3	$\ \Delta x\ =$	$\ \Delta x\ \le$	2015.01.26
83/-6	$\beta_k - \alpha_k$	$\beta_{k+1} - \alpha_{k+1}$	2020.06.14
86/-2	g(x) を縮小写像	g(x) を J における縮小写像	2015.01.26
90/4	収束数列は,	収束数列 $(\lim_{k\to\infty} x_k = a)$ は、	2013.05.23
90/6	$f \in C^2(I), f'(a) \neq 0$ を仮定して,方程	$f \in C^2(I)$ に対して、方程式 $f(a) = 0$	2012.11.18
	式 $f(a) = 0$ には唯一の解 $a \in I$ が存在	には唯一の解 $a \in I$ が存在するとする.	
	するとする.	f'(a) eq 0 を仮定する.	
91/7	方程式 $f(a)=0$ には唯一の解 $a\in I$ が	このとき,方程式 $f(a)=0$ には唯一の	2012.11.18
	存在するとする.	解 $a \in I$ が存在する.	
106/6	で特徴づけられる.	で特徴づけられ、確かに2次収束してい	2012.11.18
		る.	
107/11	$K' = B(\boldsymbol{x}^0, \delta)$	$K' = B(\boldsymbol{x^{(0)}}, \delta)$	2012.10.22
113/9	卵型	卵形	2012.10.22
113/10	$C = \bigcup_{i,j=1}^{n} C_{i,j}$	$C = \bigcup_{i,j=1,i\neq j}^{n} C_{i,j}$ $\frac{1}{\ \boldsymbol{u}^{(k+1)}\ } \boldsymbol{u}^{(k+1)}$	2020.06.14
115/9	$ \underbrace{\frac{i,j=1}{\ oldsymbol{u}^{(k+1)}\ }}Aoldsymbol{u}^{(k+1)}$	$\frac{1}{\ \boldsymbol{u}^{(k+1)}\ }\boldsymbol{u}^{(k+1)}$	2021.07.13
116/9	λ_i^{-1} は A の	λ_i^{-1} は A^{-1} の	2021.07.13
136/3	X = 1	X = x	2015.01.26
140/11	$\cos^k x$	$\cos kx$	2021.07.05
140/-6	$\sin^k x$	$\sin kx$	2021.07.05
140/-4	問題 $6.2.7$ により, $\sin^k x$ は	削除	2021.07.05
	$\{1, \sin x, \dots, \sin kx\}$ の一次結合で表現できるので		
141/3	, $\sin^m x$ は, $\{\sin x, \sin 2x, \dots, \sin mx\}$ の一次結合で	削除	2021.07.05
143/12	$(0 \le x \le 2)$	$(0 \le \mathbf{c} \le 2)$	2013.04.07
149/7	$ f _{2,w} = \int_a^b f(x) ^2 w(x) dx$	$ f _{2,w} = \left(\int_a^b f(x) ^2 w(x) \ dx\right)^{1/2}$	2012.10.22
151/-9	$f \in C^0_{\mathrm{per}}[-\pi,\pi]$	$f \in C^1_{\mathrm{per}}[-\pi,\pi]$	2014.02.12
155/-1	ϕ_n	$\phi_n(x)$	2015.01.26
159/-7	$L_n(x) = \frac{e^x}{n!} \cdots$	$L_n(x) = e^x \cdots$	2018.12.12

171/5	$\left \left(\frac{p-1}{2p-1} \right)^{(p-1)/p} \right (1 \le p < \infty)$	$ \left(\frac{1}{2p-1} , \frac{(p-1)/p}{(p-1)/p} \right) $ $(1$	2012.11
171/12,	$ f'' ^2$	$ (2p-1) $ $ f'' ^p $	2021.07
13	水+ 元 次 :□ 1½ 1** HH 水 Γ	X1· 元 次 元 元 1 □ 1 □ 1 □ 1 □ 1 □ 1 □ 1 □ 1 □ 1 □	0010 11
174/13	狭義単調増加関数 1	狭義単調 <mark>減少</mark> 関数	2012.11
177/4	$C'_{p} = \frac{1}{2} \left(\frac{p-1}{3p-1} \right)^{(p-1)/p} (1 \le p < \infty)$	$C_1' = \frac{1}{2},$ $1 (n-1)^{(p-1)/p}$	2012.11
		$C'_p = \frac{1}{2} \left(\frac{p-1}{3p-1} \right)^{(p-1)/p} (1$	
186/2	$h = \frac{b-a}{2n}$	$h = \frac{b-a}{n+2}$	2015.01
192/3	小区間 $\bar{J}_j = [x_{j-1}, x_{j+1}]$	$h = (b-a)/(2m), x_k = a + kh \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	2020.06
	m-1	て、小区間 $J_j = [x_{2j-2}, x_{2j}]$	
192/4	$\tilde{S}_h(f) = \sum_{i=1}$	$\tilde{S}_h(f) = \sum_{i=1}$	2020.06
	$\tilde{S}_h(f) = \sum_{j=1}^{\infty} \frac{f(x_{j-1}) + 4f(x_j) + f(x_{j+1})}{6} (h_j + h_{j+1})$	$\frac{f(x_{2j-2}) + 4f(x_{2j-1}) + f(x_{2j})}{6}2h$	
192/7-9	なお, ・・・ と書ける.	削除	2020.06
197/-1	$f \in C^0[0,2\pi]$ が (7.70) をみたすとき	$f \in C^1_{ m per}[0,2\pi]$ に対して	2014.02
209/-4	具体例で確認	具体例 <mark>を</mark> 確認	2012.11
208/-1	$Q_{w,2}(f)$	$Q_{w,1}(f)$	2021.06
212/-7	T(x,t)	u(x,t)	2014.02
212/-5	$\frac{\partial}{\partial t}T(x,t) = \frac{\partial^2}{\partial x^2}T(x,t) + g(x,t)$	$\frac{\partial}{\partial t}u(x,t) = \frac{\partial^2}{\partial x^2}u(x,t) + g(x,t)$	2014.02
219/7	$\sqrt{(1-k)/(1+k)}$	$\sqrt{(1+k)/(1-k)}$	2014.10
222/-2	この場合は $oldsymbol{ au}(t,r) = oldsymbol{ au}(T-r,r)$	このときは $oldsymbol{u}(t+r) = oldsymbol{u}(T)$	2013.04
226/-7	定理 8.3.2	定理 8.3.6	2023.01
235/-4	誤差の h への依存性	h の誤差への依存性	2012.11
236/-6			
239/11	誤差 h への依存性	h の誤差への依存性	2012.11
246/-9	$c_1 \lambda_1 e^{\lambda_1 t} \boldsymbol{v}_1, \ c_m \lambda_m e^{\lambda_m t} \boldsymbol{v}_m$	$c_1 e^{\lambda_1 t} \boldsymbol{v}_1, c_m e^{\lambda_m t} \boldsymbol{v}_m$	2015.01
246/-7	1 1 11 11 11 11 11 11 11 11 11 11 11 11	$ c_1 e^{\lambda_1 t} \boldsymbol{v}_1 _{\infty}, c_m e^{\lambda_m t} \boldsymbol{v}_m _{\infty}$	2015.01
	$v_m = (\beta^m - \alpha^m)/(\beta - \alpha)$	$v_m = \frac{\mathbf{v_1}}{(\beta^m - \alpha^m)} / (\beta - \alpha)$	2021.07
269/-4	$0 = v_{n+1} = \beta^{n+1} (1 - z^{n+1}) / (\beta - \alpha)$	$0 = v_{n+1} = \frac{\mathbf{v}_1 \beta^{n+1} (1 - z^{n+1}) / (\beta - \alpha)}{2}$	2021.07
269/-2	$\theta = \pi/(n+1)$ とおくと, $\alpha = e^{ik\theta}$, $\beta = e^{-ik\theta}$.	$ heta=\pi/(n+1)$ とおいて、 $lpha=e^{i heta}$ 、 $eta=e^{-i heta}$ と選ぶ.	2021.07
269/-1	$\cos k\theta$ (2 箇所), $\sin k\theta$, $\sin km\theta$	$\cos \theta (2$ 箇所), $\sin \theta$, $\sin m\theta$	2021.07
270/1	$v_m = (1/\sin(k\theta))\sin(mk\theta)$	$v_m = \sin(m\theta)$	2021.07
274/-7	x' (4 箇所)	$ ilde{m{x}}$	2013.07
276/11	$ j $ j j , $ v_j \ge v_i \; (orall i \ne k)$ を	$j \neq k$ が、 $ v_k > v_j \ge v_i $ $(\forall i \neq k, i \neq j)$ を	2021.06

276/14	第 $i(\neq k)$ 成分に着目して, $0 = \lambda v_i = \sum_{l=1}^{n} a_{i,l} v_l = a_{i,k} v_k$. したがって,	削除	2021.06.23
	$ v_k >0$ より, $a_{i,k}=0$ である.一方		
	で、		
277/21	$\liminf_{p\to\infty} \ f\ _p \le$	$\lim\inf_{p\to\infty}\ f\ _p\geq$	2015.01.26
279/-14	$L_0(x) = L_2(x) = \frac{1}{2}x(x-1)$	$L_0(x) = \frac{1}{2}x(x-1), L_2(x) = \frac{1}{2}x(x+1)$	2013.07.19
279/6	$n \ge m$	n > m	2018.12.12
281/5	$\hat{h}_j = h_j + h_{j+1}$ と書くと、	削除	2020.06.14
281/6	$x_{j-1}, x_j, x_{j+1}, \hat{h}_j$	$x_{2j-2}, x_{2j-1}, x_{2j}, (2h)$	2024.04.02
281/8	$m-1,h_j^4\hat{h}_j,\hat{h}_j$	$m, h^4(2h), (2h)$	2024.04.02
281/-15	$Q_{w,2}(f)$	$Q_{w,1}(f)$	2021.06.23

C 質問への回答・補足説明

頁/行	コメント	更新日
全体	例えば、 $f(x)=g(x)$ $(x\in I)$ のような表現は、すべて、 $\forall x\in I,\ f(x)=g(x)$ の意味で用いています.	2012.10.16

一以上一