

主要教材及参考书

- 翟健宏. 信息安全导论. 北京:科学出版社.2011.7
- Michael Goodrich, Roberto Tamassia,
 Introduction to Computer Security,
 Addison Wesley; 2010.10
- William Stallings. 密码编码学与网络安全一原理与实践. 北京: 电子工业出版 社.2006.11

考核方法

平时 10%

• 课后作业 20%

实验 10%

附加分5分

- 期末考试 60%

主要内容

- 信息安全及其关键技术
- ●信息安全的理解(1.1)
- ●信息安全威胁(1.2)
- ●互联网的安全性(1.3)
- ●信息安全体系结构(1.4)

关于信息安全的两个主要视点

信息安全分层结构 面向应用的信息安全框架

信息安全金三角(CIA) 面向属性的信息安全框架

两个被忽略的问题之一: 内容安全

- ●内容安全的本质是什么?
 - ○内容安全着眼点是依据内容来对安全问题进行判断,但需要通过技术方式来解决。
 - 内容安全技术的本质是对数据的攻击技术
 - ○国际社会经常将反网络病毒(Anti Vandalism)、 反垃圾邮件问题列入内容安全的范畴

两个被忽略的问题之二:信息内容对抗

- 一支从事信息安全的队伍研究的是信息对抗的问题,所引发的问题是:
 - ○信息对抗与信息安全的关系是什么?
 - 信息对抗自身也存在体系问题,包括不同层次的对抗问题,我们仅选择信息内容对抗来讨论
 - ○信息隐藏是典型的信息内容对抗的研究内容
- 站在信息安全的角度考虑这个问题,给出的命题 是:
 - ○一个客观存在的信息,如何发现?
 - 数据挖掘、情报分析、信息获取
 - ○如果我们不能掩盖一个信息,那就淹没这个信息
 - ○围绕信息利用的对抗行为(所谓虚虚实实真真假假)

信息安全的技术层次视点

信息系统 方面的安全

系统安全

层次结构

关于物理安全

- 指对网络与信息系统物理装备的保护。主要涉及网络与信息系统的机密性、可用性、完整性等属性。
- 所涉及的主要技术:
 - ○加扰处理、电磁屏蔽: 防范电磁泄露
 - 〇容错、容灾、冗余备份、生存性技术: 防范随 机性故障
 - ○信息验证: 防范信号插入

信息安全的技术层次视点

- 系统评估-测试评估能力
- 安全策略-信息对抗能力
- 访问控制-安全防护能力
- 入侵检测-安全预警能力
- 应急响应-应急响应能力

信息系统 方面的安全

系统安全

层次结构

运行安全

系统安全系统安全

物理安全

层面模型

关于运行安全

- 指对网络与信息系统的运行过程和运行状态的保护。主要涉及网络与信息系统的真实性、可控性、可用性等
- 主要涉及的技术
 - ○风险评估体系、安全测评体系: 支持系统评估
 - ○漏洞扫描、安全协议: 支持对安全策略的评估与保障
 - ○防火墙、物理隔离系统、访问控制技术、防恶意代码 技术: 支持访问控制
 - ○入侵检测及预警系统、安全审计技术: 支持入侵检测
 - ○反制系统、容侵技术、审计与追踪技术、取证技术、 动态隔离技术: 支持应急响应
 - ○网络攻击技术, Phishing、Botnet、DDoS、木马等技术

信息安全的技术层次视点

关于数据安全

- 指对信息在数据收集、处理、存储、检索、传输、交换、显示、扩散等过程中的保护,使得在数据处理层面保障信息依据授权使用,不被非法冒充、窃取、篡改、抵赖。主要涉及信息的机密性、真实性、完整性、不可否认性等
- 主要涉及的技术
 - ○对称与非对称密码技术及其硬化技术、VPN等 技术: 防范信息泄密
 - ○认证、鉴别、PKI等技术: 防范信息伪造
 - ○完整性验证技术: 防范信息篡改
 - ○数字签名技术: 防范信息抵赖
 - ○秘密共享技术: 防范信息破坏

信息安全的技术层次视点

关于内容安全

- 指对信息在网络内流动中的选择性阻断,以保证信息流动的可控能力。主要涉及信息的机密性、真实性、可控性、可用性等
- ●主要涉及的技术:
 - ○文本识别、图像识别、流媒体识别、群发邮件识别等:用于对信息的理解与分析;
 - ○面向内容的过滤技术(CVP)、面向URL的过滤技术(UFP)、面向DNS的过滤技术等:用于对信息的过滤。

信息安全的技术层次视点

关于信息利用的安全

- 指对信息有效内容真实性的隐藏、保护与分析。主要涉及信息有效内容的机密性、完整性等
- 所涉及的主要技术:
 - ○数据挖掘技术: 发现信息
 - ○隐写技术、水印技术:保护信息
 - ○即时通、MSN等协议的分析技术:对特定协议的理解,
 - ○VoIP识别技术:对数字化语音信息的理解
 - ○音频识别与按内容匹配:锁定音频目标进行

信息安全的技术层次视点

三级信息

安全框架

ITU-X.800给出的相关属性的定义:

- 机密性(Confidentiality):
 - Prevent unauthorised disclosure of information
- 完整性(Integrity):
 - o assurance that data received are exactly as sent by an authorized sender
- 可用性(Availability):
 - services should be accessible when needed and without delay
- 真实性(Authentication):
 - assurance that the communicating entity is the one it claims to be
 - peer entity authentication
 - Data-origin authentication
- 不可抵赖性(Non-Repudiation):
 - protection against denial by one of the parties in a communication
 - Origin non-repudiation: proof that the message was sent by the specified party
 - Destination non-repudiation: proof that the message was received by the specified party

关于信息安全的基本属性

- 机密性(Confidentiality):反映了信息与信息系统的不可被非授权者所利用
- 真实性(Authentication): 反映了信息与信息系统的行为不被伪造、篡改、冒充
- ●可控性(controllability):反映了信息的流动与信息系统可被控制者所监控
- ●可用性(Availability):反映了信息与信息系统可被授权者所正常使用

信息安全的基本属性视点

信息安全四要素: CACA

信息安全经纬线—— 层次模型与要素模型的结合

	机密性	真实性	可控性	可用性
物理安全	√	√		√
运行安全		√	✓	✓
数据安全	√	√		✓
内容安全	√	√	✓	✓
信息内容对抗	√	√		

结论: 什么是信息安全?

信息安全从技术角度来看是对信息与信息系统的固有属性(即"序")的攻击与保护的过程。它围绕着信息系统、信息自身及信息利用的机密性、真实性、可控性、可用性这四个核心安全属性、可控性、可用性这四个核心安全人人数据安全、内容安全、信息内容对抗等五个层面上。

主要内容

- 信息安全及其关键技术
- ●信息安全的理解(1.1)
- ●信息安全威胁(1.2)
- ●互联网的安全性(1.3)
- ●信息安全体系结构(1.4)

1.1.1 信息与信息安全

- ○信息: 事物运动的状态与方式
 - ISO给出的解释:"信息是通过施加于数据上的某些约定而赋予这些数据的特定含义"。
 - ●通常我们可以把<mark>消息、信号、数据、情报和知识</mark>等都看作信息。信息本身是无形的,借助信息介质以多种形式存在或传播。
- ○信息安全
 - ■ISO给出的定义: "在技术上和管理上为数据处理系统建立的安全保护,保护信息系统的硬件、软件及相关数据不因偶然或者恶意的原因遭到破坏、更改及泄露"。
 - •信息安全的目的:"确保以电磁信号为主要形式的、在计算机网络化系统中进行获取、处理、存储、传输和应用的信息内容在各个物理及逻辑区域中的安全存在,并不发生任何侵害行为"。

- ○信息安全发展:
 - ●通信安全→ 信息安全→信息保障
- ○通信安全(COMSEC)
 - 20世纪90年代以前,这一阶段的信息安全可以简单称为通信安全,主要目的是保障传递的信息安全,防止信源、信宿以外的对象查看信息。

- 早期,所有的资产都是物理的,重要的信息也是物理的。
 - ○如古代刻在石头上,到后来写在纸上。
- 为了保护这些资产,只需要用墙、护城河、警卫等物理安全措施。
 - ○信息传递通常由信使完成,需要时可带有警卫。
- 除非用物理的掠夺,否则就无法得到信息。

- 物理安全存在缺陷
 - ○如果报文在传递中被截获,则报文的信息就会被 敌人知悉。因此就产生了<u>通信安全</u>的问题。
 - ○早在公元前600年Julius Caesar生成了Caesar密码,以使报文即使被截获也无法读出。

- 第二次世界大战,德国人使用一种称为Enigma的机器来加密报文,用于军队,当时他们认为Enigma是不可破译的。确实是这样,如果使用恰当,要破译它非常困难。
- 但经过一段时间发现,由于某些操作员的使用差错,Enigma被破译了。

- Navaho码的步话机
 - ○为了防止敌人窃听语音报文,美国军队曾使用一 种Navaho码的步话机
 - ONavaho用本土语言传送报文,敌人即使收听到 无线电通信,也无法懂得报文的意思。

- 通信安全的主要目的是解决数据传输的安全问题,主要的措施是密码技术。
 - ○除非不正确的使用密码系统,一般来说,好的密码难以破译。

在20世纪50年代发现了寻找在电话线上的信号来 达到获取报文的目的。

旁路密码的电子信号

1.1.2 信息安全的发展阶段

- ○信息安全(INFOSEC)
 - ●20世纪90年代以后,主要保证信息的机密性、完整性、可用性、可控性、不可否认性。
 - 机密性(Confidentiality)指信息只能为授权者使用而不泄漏给未经授权者的特性。
 - 完整性(Integrity)指保证信息在存储和传输过程中未经授权 不能被改变的特性。
 - 可用性(Availability)指保证信息和信息系统随时为授权者 提供服务的有效特性。
 - 可控性(Controllability)指授权实体可以控制信息系统和信息使用的特性。
 - 不可否认性(Non-Repudiation)指任何实体均无法否认其实施过的信息行为的特性,也称为抗抵赖性。

1.1.2 信息安全的发展阶段

- ○信息保障(IA, Information Assurance)
 - ●1996年美国人提出了信息保障:
 - 保护(Protect)、检测(Detect)、反应(React)、恢复(Restore)四个方面。
 - •我国也对信息保障给出了相关解释:
 - "信息保障是对信息和信息系统的安全属性及功能、效率进行保障的动态行为过程。它运用源于人、管理、技术等因素所形成的预警能力、保护能力、检测能力、反应能力、恢复能力和反击能力,在信息和系统生命周期全过程的各个状态下,保证信息内容、计算环境、边界与连接、网络基础设施的真实性、可用性、完整性、保密性、可控性、不可否认性等安全属性,从而保障应用服务的效率和效益,促进信息化的可持续健康发展。"。

1.1.2 信息安全的发展阶段

- 信息保障三大要素。
 - 人是信息保障的基础
 - 技术是信息保障的核心
 - 管理是信息保障的关键

1.2 信息安全威胁

1.2.1 信息安全威胁的基本类型

- 信息泄露:信息被有意或无意泄露给某个非授权的实体。
- **信息伪造**:某个未授权的实体冒充其他实体发布信息,或者从事其他网络行为。
- **完整性破坏**:非法手段窃取信息的控制权,未经授权对信息进行修改、插入、删除等操作,使信息内容发生不应有的变化。
- ○业务否决或拒绝服务:攻击者通过对信息系统进行过量的、非法的 访问操作使信息系统超载或崩溃,从而无法正常进行业务或提供 服务。
- **未经授权访问**:某个未经授权的实体非法访问信息资源,或者授权 实体超越其权限访问信息资源。

1.2 信息安全威胁

1.2.2 信息安全威胁的主要表现形式

- 攻击原始资料
 - 人员泄露,废弃的介质,窃取
- 破坏基础设施
 - 破坏电力系统,破坏通讯网络,破坏信息系统场所
- 攻击信息系统
 - 物理侵入,特洛伊木马,恶意访问,服务干扰,旁路控制,计算机病毒,
- 攻击信息传输
 - 窃听,业务流分析,重放,
- 恶意伪造
 - 业务欺骗,假冒,抵赖
- 自身失误
- 内部攻击

1.3 互联网的安全性

1.3.1 互联网的发展现状

- ○1983年,ARPA和美国国防部通信局研制TCP/IP协议,该协议被做为其BSD UNIX的一部分。
- ○1986年,NSF 利用Internet Protocol,连接5个科研教育服务机构,建立了NSFnet广域网。
- ○1987年开始,中国四大网络CSTnet、CERNET、Chinanet、GBnet与Internet直连。
- ○2007年底,我国互联网用户1.62亿,其中宽带上网用户达到1.22亿,中文网站89.8万个,IPv4地址总数9800多万个,国际出口带宽总量为368927 Mbps。

1.3 互联网的安全性

1.3.2 互联网的安全现状

- ○2000年开始,病毒制造产业化操作,黑色产业 链每年的整体利润预计高达数亿元。
- ○窃取的个人资料
 - ●QQ密码、网游密码、银行账号、信用卡帐号,任何可以直接或间接转换成金钱的东西,都成为不法分子窃取的对象。
- ○CERT统计,
 - 在1988年安全事件6件,2001年5万件,2003年为13万7千多件,在2003年以后发生呈线性增长。
 - ●据CCERT统计,2006年26476件,是2005年9112件的三倍。

- ○互联网安全不仅影响普通网民的信息和数据的安 全性,而且严重的影响国家的健康发展。
 - 网络安全与政治
 - 网络安全与经济
 - 网络安全与军事
 - 网络安全与社会稳定

1.3.3 互联网的安全性分析

- 互联网的设计原始背景
- 网络传输的安全性
- 信息系统的安全性
 - ○基础网络应用成为黑客及病毒的攻击重点。
 - ○系统漏洞带来的安全问题异常突出。
 - ○Web程序安全漏洞愈演愈烈。
- 社会工程学攻击越来越多

1.4 信息安全体系结构

●1.4.1 面向目标的知识体系结构

信息安全的三个基本目标(金三角)

CIA三元组

- CIA三元组是信息安全的三个最基本的目标
 - 机密性Confidentiality: 指信息在存储、传输、使用过程中,不会泄漏给非授权用户或实体;
 - ●完整性Integrity: 指信息在存储、使用、传输过程中,不会被非授权用户篡改或防止授权用户对信息进行不恰当的篡改;
 - ●可用性Availability: 指确保授权用户或实体对信息资源的正常使用不会被异常拒绝,允许其可靠而及时地访问信息资源。
- ODAD (Disclosure、Alteration、Destruction)是最普遍的三类风险

围绕CIA三元组展开的知识体系

- 密码学是三个信息安全目标的技术基础
- CIA技术存在着一定程度上的内容交叉

1.4.2 面向应用的层次型技术体系架构

- 信息系统基本要素
 - ○人员、信息、系统
- 安全层次
 - 三个不同部分存在五 个的安全层次与之对 应
 - ○每个层次均为其上层 提供基础安全保证

面向应用的层次型信息安全技术体系结构

安全层次

- 物理安全
 - ○指对网络及信息系统物理装备的保护。
- 运行安全
 - ○指对网络及信息系统的运行过程和运行状态的保护。
- 数据安全
 - 指对数据收集、存储、检索、传输等过程提供的保护,不被非法冒充、 窃取、篡改、抵赖。
- 内容安全
 - 指依据信息内涵判断是否违反特定安全策略,采取相应的安全措施。
- 管理安全
 - 指通过针对人的信息行为的规范和约束,提供对信息的机密性、完整性、可用性以及可控性的保护。

1.4.3 面向过程的信息安全保障体系

- ●美国国防部提出的"信息安全保障体系"为诠释了安全保障的内涵。
- •信息安全保障体系包括四个 部分内容,即PDRR。
 - ○保护 (Protect)
 - ○检测 (Detect)
 - ○反应(React)
 - ○恢复(Restore)

信息保障体系

1.4.3 面向过程的信息安全保障体系

信息安全保障是一个完整的动态过程,而保护、检测、反应和恢复可以看作信息安全保障四个子过程。

PDRR 模型安全保障动态过程示意图

PDRR

这四个部分组成了一个动态的信息安全周期。

安全策略

• 防御

- 根据系统已知的所有的安全问题做出防御的措施。
- 如打补丁、访问控制、数据加密等等。

● 检测

- 攻击者如果穿过了防御系统,检测系统就会检测出来。
- 检测的功能就是检测出入侵者的身份,包括攻击源、系统损失等。

• 响应

- 一旦检测出入侵,响应系统开始响应包括事件处理和其他业务。
- 恢复。
 - 在入侵事件发生后,把系统恢复到原来的状态。

1.4.4 OSI开放系统互连安全体系结构

- ISO7498-2 (1989)
 - 《信息处理系统、开放系统互连、基本参考模型—第 2部分:安全体系结构》。描述的开放系统互联安全 体系结构是一个普遍适用的安全体系结构

IS07498-2 安全体系结构三维图

安全服务(Security Service)

- 鉴别服务 确保某个实体身份的可靠性。
- 访问控制 确保只有经过授权的实体才能访问受保护的资源。
- 数据机密性 确保只有经过授权的实体才能理解受保护的信息。
- 数据完整性 防止对数据的未授权修改和 破坏。
- 抗抵赖性 用于防止对数据源以及数据提交的否认。

对付典型网络威胁的安全服务

安全威胁	安全服务				
假冒攻击	鉴别服务				
非授权侵犯	访问控制服务				
窃听攻击	数据机密性服务				
完整性破坏	数据完整性服务				
服务否认	抗抵赖服务				
拒绝服务	鉴别服务、访问控制服务、数据完整性服务等				

安全机制(Security Mechanism)

- 加密 用于保护数据的机密性。
- 数字签名 保证数据完整性及不可否认性的一种重要手段。
- 访问控制 访问实体成功通过认证,访问控制对访问请求进行处理,查看是否具有访问所请求资源的权限,并做出相应的处理。
- 数据完整性 用于保护数据免受未经授权的修改。
- 鉴别交换 用于实现通信双方实体的身份鉴别。
- 业务流填充 针对的是对网络流量进行分析攻击。
- 路由控制 可以指定数据报文通过网络的路径。路径上的节点都是可信任的
- 公证机制 由第三方来确保数据完整性、数据源、时间及目的地的正确。

OSI安全服务与安全机制的关系

	机制							
服务	加密	数字 签名	访问 控制	数据 完整性	鉴别 交换	通信业 务填充	路由 控制	公证
对等实体鉴别	Y	Y			Y			
数据原发鉴别	Y	Y						
访问控制服务			Y					
连接机密性	Y						Y	
无连接机密性	Y						Y	
选择字段机密性	Y							
通信业务流机密性	Y					Y	Y	
带恢复的连接完整性	Y			Y				
不带恢复的连接完整性	Y			Y				
选择字段连接完整性	Y			Y				
无连接完整性	Y	Y		Y				
选择字段无连接完整性	Y	Y		Y				
有数据原发证明的抗抵赖		Y		Y				Y
有交付证明的抗抵赖		Y		Y				Y

说明. Y表示机制适合提供该种服务,空格表示机制不适合提供该种服务。

密码学基础

- ●对称密码
- ●非对称密码

Symmetric Encryption

- or conventional / private-key / single-key
- sender and recipient share a common key
- all classical encryption algorithms are private-key(私钥)
- was only type prior to invention of publickey in 1970's
- and by far most widely used

Some Basic Terminology

- plaintext (明文)- original message
- Ciphertext (密文) coded message
- cipher (加密算法)- algorithm for transforming plaintext to ciphertext
- Key (密钥)- info used in cipher known only to sender/receiver
- encipher (encrypt) (加密)- converting plaintext to ciphertext
- decipher (decrypt) (解密)- recovering ciphertext from plaintext
- cryptography (密码编码学)- study of encryption principles/methods
- cryptanalysis (codebreaking) (密码分析学)- study of principles/ methods of deciphering ciphertext without knowing key
- cryptology (密码学)- field of both cryptography and cryptanalysis

Symmetric Cipher Model

Requirements

- two requirements for secure use of symmetric encryption:
 - a strong encryption algorithm
 - a secret key known only to sender / receiver
- mathematically have:

$$Y = E_{\kappa}(X)$$

$$X = D_{\kappa}(Y)$$

- assume encryption algorithm is known
- implies a secure channel to distribute key

Model of Conventional Cryptosystem

Cryptography

- characterize cryptographic system by:
 - Otype of encryption operations used
 - ●Substitution(代换) / transposition(置换) / product(乘积)
 - Onumber of keys used
 - single-key or private / two-key or public
 - way in which plaintext is processed
 - block / stream

Cryptanalysis

- objective to recover key not just message
- general approaches:
 - Ocryptanalytic attack
 - ○brute-force attack(穷举攻击)

Cryptanalytic Attacks

- ciphertext only
 - only know algorithm & ciphertext, is statistical, know or can identify plaintext
- known plaintext
 - know/suspect plaintext & ciphertext
- chosen plaintext
 - select plaintext and obtain ciphertext
- chosen ciphertext
 - select ciphertext and obtain plaintext
- chosen text
 - select plaintext or ciphertext to en/decrypt

More Definitions

unconditional security

Ono matter how much computer power or time is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext

computational security

ogiven limited computing resources (eg time needed for calculations is greater than age of universe), the cipher cannot be broken

Brute Force Search

- always possible to simply try every key
- most basic attack, proportional to key size
- assume either know / recognise plaintext

Key Size (bits)	Number of Alternative Keys	Time required at 1 decryption/µs		Time required at 10 ⁶ decryptions/µs
32	$2^{32} = 4.3 \times 10^9$	2 ³¹ µs	= 35.8 minutes	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	2 ⁵⁵ µs	= 1142 years	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	2 ¹²⁷ µs	$= 5.4 \times 10^{24} \text{ years}$	5.4×10^{18} years
168	$2^{168} = 3.7 \times 10^{50}$	2 ¹⁶⁷ µs	$= 5.9 \times 10^{36} \text{ years}$	5.9×10^{30} years
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu s$	$= 6.4 \times 10^{12} \text{ years}$	6.4×10^6 years

密码学重要进步

- New Directions in Cryptography
 Whitfield Diffie, Hellman 1976
 - ○提出了公钥密码算法的概念和思路
 - ○提出了鉴别和签名问题
 - ○提出了D-H密钥协商协议
- 其他

Bobby Inman/NSA, James Ellis, Clifford Cocks

公钥密码算法的思路

- 对称算法的缺陷
 - ○为事先协商密钥,需另外的安全信道或KDC
 - ○不能满足签名的需求
- ●非对称算法

密钥 $K = (K_d, K_e)$, K_d 即私钥 K_e 即公钥

加密: $E(P, K_e) = C$

解密: $D(C, K_d) = P$

要求从K_e K_d

理论上能够

实际上需要计算量太大因而很难

公开密钥加密过程

公开密钥认证过程

(b) Authentication

Figure 9.1 Public-Key Cryptography

常规和公开密钥加密的重要特征

TABLE 6.1 CONVENTIONAL AND PUBLIC-KEY ENCRYPTION

Conventional Encryption

Needed to Work:

- The same algorithm with the same key is used for encryption and decryption.
- The sender and receiver must share the algorithm and the key.

Needed for Security:

- The key must be kept secret.
- It must be impossible or at least impractical to decipher a message if no other information is available.
- Knowledge of the algorithm plus samples of ciphertext must be insufficient to determine the key.

Public-Key Encryption

Needed to Work:

- One algorithm is used for encryption and decryption with a pair of keys, one for encryption and one for decryption.
- The sender and receiver must each have one of the matched pair of keys (not the same one).

Needed for Security:

- One of the two keys must be kept secret.
- It must be impossible or at least impractical to decipher a message if no other information is available.
- Knowledge of the algorithm plus one of the keys plus samples of ciphertext must be insufficient to determine the other key.

公开密钥密码系统的应用

- ●加密/解密:发送方用接收方的公开密钥加密报文
- 数字签名: 发送方用自己的私有密钥"签署"报文
- ●密钥交换:两方合作以交换会话密钥

Applications for Public-Key Cryptosystems

Algorith m	Encryption /Decryption	Digital Signature	Key Exchang e
RSA	Yes	Yes	Yes
Elliptic Curve	Yes	Yes	Yes
Diffie- Hellman	No	No	Yes
DSS	No	Yes	No

对公开密钥密码编码系统的要求

- ○容易计算公开密钥k_e和私有密钥k_d
- ○不难计算C=E(k_e, m)和m=D(k_d, c)
- ○不知道k_d,即使知道k_e, E, D及c,计算m也不可 行
- 〇即使知道 k_e , E, D及c, 计算 k_d 也不可行
- $\bigcirc D(k_d, E(k_e, m))=m, \exists E(k_e, D(k_d, c))=c$
- ○加密变换和解密变换可以互换顺序,即 D(E(m))=E(D(m))

对公开密钥密码编码系统的要求

- 1976年,Whitfield Diffie和Martin Hellman 提出这样的设想:
 - 〇每个用户A有一加密密钥 k_a ,不同于解密密钥 k_a ',可将加密密钥 k_a 公开, k_a '保密,要求 k_a 的公开不影响 k_a '的安全。若B要向A秘密发送明文m,可查A的公开密钥 k_a ,加密得密文 $C=E_{ka}$ (m)
 - \bigcirc A收到C后用只有A才拥有的解密密钥 k_a '对C进行解密得 $m=D_{ka}$ '(C).

公钥密码算法的实现

- 对称算法
 - ○替换
 - ○混乱
- 基于某些数学特性
 - 从公钥推导私钥理论可能,但计算困难 (从私钥到公钥容易)
 - ○实用方案的发展依赖于单向陷井函数
- 单向函数(one-way function)

Any question?