WEEK 9 ASSIGNMENT

oalhasa

QUESTION 1

Use a weather forecast website, and utilize the psychometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapour in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving this exercise.

ANSWER:

	1:00 pm	14:00	4:00 pm	18:00	8:00 pm	21:00	22:00
	LightCloud	LightCloud	PartiyCloud	LightCloud	Sun	Sun	Sun
Effective temperature	9 ° C	10 ° C	8 ° C	6°C	4 ° C	2°C	2°C
Perceived temperature	7 ° C	10 ° C	6°C	4°C	2°C	0°C	0°C
Rainfall	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm
lumidity	67 %	65 %	69 %	70 %	75 %	83 %	87 %
Atmospheric pressure	1025 hPa	1025 hPa	1025 hPa	1026 hPa	1027 hPa	1027 hPa	1028 hPa
Vind intensity	15 km / h	14 km / h	9 km / h	9 km / h	7 km / h	8 km / h	8 km / h
Vind direction	←¬	← ¬	←¬	← 1	5	5	5
	IS	IS	IS	IS	SELF	SELF	SELF
Probability of fog	0 %	0 %	- 0-%-	0 %	0 %	0 %	0 %
Dew point	3 ° C	3 ° C	3 ° C	1 ° C	-1 ° C	0 ° C	-1 ° C
Clouds	21 %	13 %	42 %	15 %	2 %	3 %	3 %
ow clouds	11 %	7 %	42 %	15 %	2 %	3 %	3 %
Medium clouds	18 %	12 %	2 %	0 %	1 %	0 %	0 %
ligh clouds	0 %	0 %	0 %	0 %	0 %	0 %	0 %

a) Absolute Humidity

From the chart, taking dry bulb temperature as 4°C and relative Humidity as 75%, the specific humidity is 0.0037.

```
By formula Method
```

```
Φ = m_v/m_g

Φ = m_v/m_g

= P_v/P_g (P_v = P_{sat} @4°C = 0.8132 Kpa)

Partial pressure of water vapour

Φ = P_v/P_g

P_v = Φ \times P_g

P_v = 0.75 \times 0.8132 = 0.6099 Kpa

P_a = P - P_v

P_a = 102.7 kPa - 0.6099 = 102.0901 kPa

ω = 0.622 (P_v/P_a)

ω = 0.622 \times 0.6099/102.0901

ω = 0.00368 Kg vapour/Kg dry air
```

b) Wet bulb temperature

From the chart, taking dry bulb temperature as 4°C and relative Humidity as 75%, the specific humidity is 2°C.

c) Mass of water vapour in the air (m_{ν}) (taking classroom dimensions as 20mx5mx5m

```
\begin{split} &M_v \!\!=\! P_v x V_v \! / R_v x T \\ &m_v \!\!=\! 0.6099 x (20 x 5 x 5) \ / \ 0.4615 \ x \ (4 \!+\! 273) \\ &m_v \!\!=\! 2.38 kg \end{split}
```

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a *good* construction quality and with the same geometry as that of the example which is located in Brindisi, Italy.

ANSWER:

```
Internal Gains
a)
     Q_{ig.sensible} = 136 + 2.2 A_{cf} + 22 N_{oc}
                 = 136+2.2.200+22.2
                 = 620W
     \mathbf{Q}_{ig.latent} = 20+0.22A_{cf}+12 N_{oc}
                 = 20+0.22x200+12x2
                 = 88W
          Infiltration
b)
     Q_i = A_L. IDF
     A_{UL} = 1.4 \text{cm}^2/\text{m}^2 (From the table)
     Exposed surface = Wall area + roof area
                      A_{es} = 200 + 144
                      A_{es} = 344 m^2
     A_L = A_{es} x A_{UL} = 344 x 1.4
                        = 481.6 cm^{2}
     Infiltration rate
     Q_i = A_i \times IDF
     IDF_{heating} = 0.065 L/s
     IDF_{cooling} = 0.032 L/s
     Infiltration Rate- Winter
     V_{\text{ineating}} = (481.6 \text{cm}^2) (0.065 \text{ L/s})
             = 35.156 L/s
     V_{icooling} = (481.6cm2) (0.0375 L/s)
            = 18.06 L/s
          Ventilation
c)
     Q_v = 0.05 A_{cf} + 3.5 (N_{br} + 1)
     V(dot)_{Ventilation} = (0.05x200) + (3.5x(1+1)) = 17.0L/s
     V(dot) infiltration-ventilation heating = 31.30 L/s + 17 L/s
                                         = 48.3 L/s
     V(dot) infiltration-ventilation cooling = 15.41 L/s + 17 L/s
                                         = 32.41 L/s
     Sensible and Latent load
     C_{\text{sensible}} = 1.23
     C_{latent} = 3010
     \Delta T_{\text{heating}} = 20^{\circ} \text{C} - 4.1^{\circ} \text{C} = 15.9^{\circ} \text{C}
     \Delta T_{cooling} = 31.1^{\circ}C - 24^{\circ}C = 7.1^{\circ}C
     Q(dot)_{i-v \text{ heating sensible}} = C_{sensible}V(dot) \Delta T_{heating}
                              = 1.23 \times 48.3 \times 15.9
                              = 944.60W
     Q(dot)_{i-v cooling sensible} = C_{sensible}V(dot) \Delta T_{cooling}
                              = 1.23 \times 32.41 \times 7.1
                              = 283.04W
     Q(dot) i-v cooling latent = C_{latent}V(dot) \Delta\omega_{cooling}
```

 $= 3010 \times 32.41 \times (0.014-0.0095)$