## جامعة طرابلس — كلية العلوم قسم الحاسب الآلي الامتحان النصفي الأول- الإجابة النموذجية مقرر نظرية الاتمتة (CS241/CS441) الفصل الدراسي ربيع 2024

اجب على جميع الأسئلة التالية:

سؤال رقم 1:

كون اوتومات منتهية لا حتمية على الابجدية  $\Sigma = \{0,1\} = \Sigma$  للغة كل السلاسل بها عدد زوجي من 0. الحل:



$$M = (Q, \Sigma, \delta, q_0, F) = (\{q_0, q_1, q_2\}, \{0,1\}, \delta, q_0, \{q_1\})$$

| δ                 | 0                 | 1                 |
|-------------------|-------------------|-------------------|
| $\rightarrow q_0$ | {q <sub>2</sub> } | $\{q_0,q_1\}$     |
| $q_1$             | {q <sub>2</sub> } | $\{q_1\}$         |
| * q <sub>2</sub>  | $\{q_1\}$         | {q <sub>2</sub> } |

سؤال رقم 2:

باستخدام الدالة  $\delta$  بين لو السلسلة 1001001 مقبولة او مرفوضة في الأوتومات المنتهية اللاحتمية التالية:



الحل:

علينا أو V إيجاد الدالة  $\delta$ 

| δ                 | 0           | 1              |
|-------------------|-------------|----------------|
| $\rightarrow q_0$ | $\{q_{0}\}$ | $\{q_0, q_1\}$ |
| $q_1$             | $\{q_{2}\}$ | Ø              |
| $*q_2$            | Ø           | Ø              |

علينا الان استخدام الدالة  $\hat{\delta}$  لمعرفة لو السلسلة 1001001 مقبولة او مرفوضة

$$\hat{\delta}(q_0, 1001001) = \delta(\hat{\delta}(q_0, 100100), 1) = \delta(q_0, 1) = \{q_0, q_1\}$$

$$\hat{\delta}(q_0, 100100) = \delta(\hat{\delta}(q_0, 10010), 0) = \delta(q_0, 0) \cup \delta(q_2, 0) = \{q_0\}$$

$$\hat{\delta}(q_0, 10010) = \delta(\hat{\delta}(q_0, 1001), 0) = \delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_2\}$$

$$\hat{\delta}(q_0, 1001) = \delta(\hat{\delta}(q_0, 100), 1) = \delta(q_0, 1) = \{q_0, q_1\}$$

$$\hat{\delta}(q_0, 100) = \delta(\hat{\delta}(q_0, 10), 0) = \delta(q_0, 0) \cup \delta(q_2, 0) = \{q_0\}$$

$$\hat{\delta}(q_0, 10) = \delta(\hat{\delta}(q_0, 1), 0) = \delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_2\}$$

$$\hat{\delta}(q_0, 1) = \delta(\hat{\delta}(q_0, \epsilon), 1) = \delta(q_0, 1) = \{q_0, q_1\}$$

$$\hat{\delta}(q_0, \epsilon) = \{q_0\}$$

$$\hat{\delta}(q_0, \epsilon) = \{q_0\}$$

$$\hat{\delta}(q_0, 1001001) = \{q_0, q_1\}$$

وهذا لا يتحقق حيث

$$\{q_0,q_1\}\cap\{q_2\}=\emptyset$$

عليه السلسلة 1001001 مرفوضة.

سؤال رقم 3:

صف اللغة التي تعبر عنها الاوتومات المنتهية الحتمية التالية ثم اوجد التعبير المنتظم المكافئ لها:



الحل:

نلاحظ ان هذه الاوتومات تقبل السلاسل التي بها عدد فردي من a وعدد فردي من b

 $L = \{ab, ba, aaabbb, ababab, abbaba, aabbab, ...\}$ 

التعبير المكافئ لها يمكن إيجاده بالطريقة التالية:

$$q_0 = \varepsilon + q_1 a + q_3 b$$
 1 المعادلة رقم 1  $q_1 = q_0 a + q_2 b$  2 المعادلة رقم 3 المعادلة رقم 3  $q_2 = q_1 b + q_3 a$  3 المعادلة رقم 4 المعادلة رقم 4 المعادلة رقم 5

بالتعويض في المعادلة رقم 3 من المعادلات رقم 2 و 4

$$q_{2} = q_{1}b + q_{3}a$$

$$q_{2} = (q_{0}a + q_{2}b)b + (q_{0}b + q_{2}a)a$$

$$q_{2} = q_{0}ab + q_{2}bb + q_{0}ba + q_{2}aa$$

$$q_{2} = q_{0}ab + q_{0}ba + q_{2}aa + q_{2}bb$$

$$q_{2} = q_{0}(ab + ba) + q_{2}(aa + bb)$$

$$q_{2} = q_{0}(ab + ba)(aa + bb)^{*}$$

بالتعويض عن قيم  $q_1$  و  $q_3$  باستعمال القانون رقم 10 باستعمال القانون رقم 6 باستعمال القانون رقم 9 باستخدام نظرية اردن نحصل على المعادلة رقم 5

نحصل على المعادلة رقم 6

 $q_{0} = \varepsilon + q_{1}a + q_{3}b$   $q_{0} = \varepsilon + (q_{0}a + q_{2}b)a + (q_{0}b + q_{2}a)b$   $q_{0} = \varepsilon + q_{0}aa + q_{2}ba + q_{0}bb + q_{2}ab$   $q_{0} = \varepsilon + q_{0}aa + q_{0}bb + q_{2}ba + q_{2}ab$   $q_{0} = \varepsilon + q_{0}(aa + bb) + q_{2}(ba + ab)$   $q_{0} = \varepsilon + q_{2}(ba + ab) + q_{0}(aa + bb)$   $q_{0} = (\varepsilon + q_{2}(ba + ab))(aa + bb)^{*}$ 

بالتعويض عن قيم  $q_1$  و  $q_3$  باستعمال القانون رقم 10 باستعمال القانون رقم 6 باستعمال القانون رقم 9 باستعمال القانون رقم 6 باستعمال القانون رقم 6 باستخدام نظرية اردن

بالتعويض في المعادلة رقم 1 من المعادلات رقم 2 و 4

بالتعويض في المعادلة رقم 5 من المعادلة رقم 6 نحصل على التالي

$$q_2 = q_0(ab + ba)(aa + bb)^*$$
 ومن المعادلة رقم  $q_0$  المعادلة رقم  $q_0$  المعادلة رقم  $q_0$  المعادلة رقم  $q_0$  المعادلة رقم  $q_2 = (\varepsilon + q_2(ba + ab))(aa + bb)^*(ab + ba)(aa + bb)^*$  10

 $q_2 = (\varepsilon((aa + bb)^*(ab + ba)(aa + bb)^*)$  3

 $q_2 = (aa + bb)^*(ab + ba)(aa + bb)^*(ab + ba)(aa + bb)^*$  3

 $q_2 = (aa + bb)^*(ab + ba)(aa + bb)^*$  4

 $q_2 = (aa + bb)^*(ab + ba)(aa + bb)^*(ab + ba)(aa + bb)^*$  4

 $q_2 = (aa + bb)^*(ab + ba)(aa + bb)^*$  15

 $q_2 = ((aa + bb)^*(ab + ba)(aa + bb)^*(ab + ba)(aa + bb)^*)^*$  15

 $q_2 = ((aa + bb)^*(ab + ba)(aa + bb)^*(ab + ba)(aa + bb)^*$  4

 $q_2 = ((aa + bb)^*(ab + ba)(aa + bb)^*(ab + ba)(aa + bb)^*$  4

 $q_3 = ((aa + bb)^*(ab + ba)(aa + bb)^*(a$ 

سوال رقم 4:

اوجد الاوتومات المنتهية اللاحتمية بحركة 3 للتعبير المنتظم \*(11 + 00). الحل: بتطبيق خطوات تحويل التعبير المنتظم الى اوتومات نحصل على الاوتومات M التالية



حبث :

$$M = (Q, \Sigma \cup \{\epsilon\}, \delta, q_0, F)$$
 
$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, q_{10}, q_{11}\}$$
 
$$q_0 = q_{10}$$
 
$$\Sigma = \{0, 1\}$$

 $F = \{q_{11}\}$ 

## والدالة 8 معرفة بالجدول التالي:

| δ        | 0                         | 1                         | ε                         |
|----------|---------------------------|---------------------------|---------------------------|
| $q_0$    | $\{q_1\}$                 | Ø                         | Ø                         |
| $q_1$    | Ø                         | Ø                         | { <b>q</b> <sub>2</sub> } |
| $q_2$    | { <b>q</b> <sub>3</sub> } | Ø                         | Ø                         |
| $q_3$    | Ø                         | Ø                         | $\{q_9\}$                 |
| $q_4$    | Ø                         | { <b>q</b> <sub>5</sub> } | Ø                         |
| $q_5$    | Ø                         | Ø                         | $\{q_6\}$                 |
| $q_6$    | Ø                         | { <b>q</b> <sub>7</sub> } | Ø                         |
| $q_7$    | Ø                         | Ø                         | $\{q_9\}$                 |
| $q_8$    | Ø                         | Ø                         | $\{q_0,q_4\}$             |
| $q_9$    | Ø                         | Ø                         | $\{q_{8},q_{11}\}$        |
| $q_{10}$ | Ø                         | Ø                         | $\{q_{8},q_{11}\}$        |
| $q_{11}$ | Ø                         | Ø                         | Ø                         |

سؤال رقم 5(الأخير):

لغة L على الابجدية  $\Sigma = \{0,1\} = \Sigma$  معرفة بالتعبير المنتظم  $\Sigma = \{0,1\}$ , اوجد التعبير المنتظم للغة L. الحل:

L أو V علينا التعرف على اللغة الناتجة عن التعبير المنتظم باستخدام الدالة

$$L((0+1)^*) = (L((0+1)))^* = (L(0+1))^* = (L(0) \cup L(1))^*$$
$$= (\{0\} \cup \{1\})^* = \{0,1\}^*$$

 $\Sigma^*$  عليه الفئة الشاملة هي كُلُ السلاسُلُ على هذه الابجدية  $\Sigma = \{0,1\}$  من المعطيات الابجدية  $\Sigma^* = \{0,1\}^*$ 

نلاحظ ان اللغة الناتجة عن لتعبير المنتظم تكافئ الفئة الشاملة

$$L((0+1)^*) \equiv \Sigma^*$$

 $\overline{L}=\emptyset$  عليه اللغة  $\overline{L}$ هي مكملة الفئة الشاملة و عليه و و بذلك يكون التعبير المنتظم الذي يمثل اللغة  $\overline{L}$ هو

تمنياتي للجميع بالتوفيق