EE5327 Optimization

Anshika Chaurasia Razat Shanker Bhavani Machnoori

EE18MTECH11017 EE18MTECH11016 EE18ACMTECH11006

28 Feb 2019

Question 51

Q. Maximize

$$w = 11x - z$$

with constraints

$$10x + y - z \le 1$$
$$2x + 2y + z \le 2$$
$$x, y, z \ge 0$$

Then, the maximum value of w is equal to

Adding slack variables $s_1 \ge 0$, $s_2 \ge 0$

$$\begin{aligned} &10x + y - z + s_1 = 1 \\ &2x - 2y + z + s_2 = 2 \\ &\text{Objective function } f(x) = 11x + 0y - z + 0s_1 + 0s_2 \end{aligned}$$

Initial Simplex Table

	C_j	11	0	-1	0	0		
		×	у	z	s ₁	s ₂	RHS	θ
0	s ₁	10	1	-1	1	0	1	$\frac{1}{10} \rightarrow$
0	s ₂	2	-2	1	0	1	2	1
	$C_j - w_j$	11 ↑	0	-1	0	0	$w_{RHS} = 0$	

x - Entering Variable

 s_1 - Leaving variable

10 - pivot

$$\begin{aligned} w_1 &= \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 10 \\ 2 \end{pmatrix} \\ w_2 &= \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \end{pmatrix} \\ w_3 &= \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix} \\ w_4 &= \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ w_5 &= \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{aligned}$$

$$w_{RHS} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} . \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

 $\frac{\theta = RHSValue}{\text{Corresponding value in columns of x}}$

First iteration

$$R_1 o rac{R_1}{10}$$

$$R_2 \rightarrow R_2 - 2R_1$$

$$R_3 \rightarrow R_3 - 11R_1$$

	C_j	11	0	-1	0	0		
		×	у	Z	s ₁	s ₂	RHS	θ
11	Х	1	$\frac{1}{10}$	$\frac{-1}{10}$	$\frac{1}{10}$	0	$\frac{1}{10}$	-
0	s ₂	0	<u>-11</u> 5	<u>6</u> 5	$\frac{-1}{5}$	1	<u>9</u> 5	$\frac{3}{2} \rightarrow$
	$C_j - w_j$	11 ↑	0	-1	0	0	$W_{RHS} = \frac{11}{10}$	

x - Entering Variable

 s_1 - Leaving variable

 $\frac{6}{5}$ - Pivot

Second iteration:

$$R_2 \rightarrow R_2 x \frac{5}{6}$$
 $R_1 \rightarrow R_1 + \frac{R_2}{10}$
 $R_3 \rightarrow R_3 - \frac{R_2}{10}$

	C_j	11	0	-1	0	0	
		Х	у	Z	s_1	s ₂	RHS
11	Х	1	$\frac{-1}{12}$	0	$\frac{1}{10}$	$\frac{1}{12}$	$\frac{1}{4}$
-1	Z	0	$\frac{-11}{6}$	1	$\frac{-1}{6}$	<u>5</u>	$\frac{3}{2}$
	$C_j - w_j$	0	$\frac{-11}{12}$	0	$\frac{-13}{12}$	$\frac{-1}{12}$	$W_{RHS} = \frac{5}{4}$

Here all $C_j - w_j$ values are either zero or negative.

So, maximum value of
$$w = w_{RHS} = \frac{5}{4}$$
 for $x = \frac{1}{4}$ and $z = \frac{3}{2}$.

Question 51

Q. Use cvxopt to obtain a solution to problem 51.

$$\min_{x} c^{T}x$$

subject to $Ax \leq b$

$$c = \begin{bmatrix} -11 \\ 0 \\ 1 \end{bmatrix}, A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -2 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Code:

cost function=
[[1.25000003]]

```
from cvxopt import matrix, solvers
A = matrix([10.0, 1.0, -1.0], [2.0, -2.0, 1.0], [-1.0, 0.0, 0.0],
             [0.0, -1.0, 0.0], [0.0, 0.0, -1.0]])
b = matrix([1.0, 2.0, 0.0, 0.0, 0.0])
c = matrix([-11.0, 0.0, 1.0])
sol = solvers.lp(c, A.T, b)
print(sol['x'])
print("cost function=")
print(-1 * np.dot(np.reshape(c,(1,3)),sol['x']))
 Optimal solution found.
  [ 2.50e-01]
  [-3.88e-08]
   1.50e+00]
```