Monoïdes - Groupes

III/ Groupe

1. Définition

Un ensemble E muni d'une opération * est un groupe si

- □ La loi * est associative
- □ E admet un élément neutre pour la loi *
- □ Chaque élément de *E* admet un symétrique pour la loi *

Si, de plus, la loi * est commutative, on dit que (E,*) est un groupe commutatif ou groupe abélien

Exemples de groupes abéliens :

- \triangleright $(\mathbb{Z},+),(\mathbb{R},+),(\mathbb{C},+):0$ est élément neutre. Le symétrique de x est son opposé -x
- \triangleright $(\mathbb{R}^*,\times),(\mathbb{C}^*,\times):1$ est élément neutre.

Le symétrique de x est son inverse $x^{-1} = \frac{1}{x}$. On note alors $\frac{y}{x} = y x^{-1} = x^{-1} y$

➤ Groupe(s) d'ordre 2

′_	GIU	upe	<i>y</i> a or	are 2											
	+	0	1	*	-1	1	XOR	false	true	o	id	Sym.%O	o	id	Sym.%Ox
	0	0	1	-1	-1	1	false	false	true				id	id	Sym.%Ox
							laise	laise	uue	id	id	Sym.%O			
	1	1	0	1	1	-1	true	true	false	Sym.%O	Sym.%O	id	Symn.%Ox	Sym.%Ox	id
		I			I					-,	,				

Quelques groupes finis

		$(\mathbb{Z}$	/6Z	(,+))			$(\mathbb{Z}/5\mathbb{Z}-\{0\},\times)$					Le groupe à 3 éléments				Un groupe à 4 éléments				
	0	1	2	3	4	5		1	2	3	4		e	a	b		a	b	С	d	
0	0	1	2	3	4	5	-														
1	1	2	3	4	5	0	1	1	2	3	4	е	e	a	b	a	a	b	С	d	
2	2	3	4	5	0	1	2	2	4	1	3		_		_	b	b	a	d	С	
3	3	4	5	0	1	2						a	a	b	е	c	c	d	а	b	
4	4	5	0	1	2	3	3	3	1	4	2	ь	ь	e	a		_	u	•		
5	5	0	1	2	3	4	4	4	3	2	1					d	d	С	b	a	

Exemples de groupes non commutatifs :

- \triangleright L'ensemble des isométries du plan euclidien \mathbb{R}^2 pour la composée.
- L'ensemble des permutations (bijections) d'un ensemble quelconque A.
- \triangleright L'ensemble GL(n) des matrices $n \times n$ inversibles, pour le produit.
- \triangleright L'ensemble des fonctions affines non constantes de \mathbb{R} dans \mathbb{R} .
- ➤ Le groupe des isométries d'un triangle équilatéral pour la composée →

Contre-exemples:

- \triangleright $(\mathbb{N},+)$, (\mathbb{R},\times) .
- $\triangleright \left(\mathbb{Z}/6\mathbb{Z}-\{0\},\times\right)$
- \triangleright L'ensemble des fonctions affines de \mathbb{R} dans \mathbb{R} .

Rappels: comme dans tout monoïde,

- \triangleright L'élément neutre est unique. On le note e (ou 1 en notation \times , ou 0 en notation +)
- \triangleright Le symétrique d'un élément donné a est unique. On le note a^{-1} (ou -a en notation +)
- Tout élément d'un groupe est régulier : $\forall a, x, y \in E / a * x = a * y \Rightarrow x = y$ et $x * a = y * a \Rightarrow x = y$

2. Propriété fondamentale

Soit (E,*) un groupe.

- \Box Pour tous a et b dans E, l'équation a * x = b a une solution unique : c'est $a^{-1} * b$
- \Box Pour tous a et b dans E, l'équation x * a = b a une solution unique : c'est $b * a^{-1}$

Autre formulation:

Pour tout élément a de E,

 \Box l'application $\varphi_a: \begin{matrix} E & \to & E \\ x & \to & a*x \end{matrix}$ est bijective (c'est une permutaion de E)

On l'appelle translation à gauche associée à l'élément aEn notation additive, $\varphi_a(x) = a + x$

On l'appelle translation à droite associée à l'élément aEn notation additive, $\psi_a(x) = x + a$

Corollaire:

Si (E,*) est un groupe fini, sa table de Pythagore est un **carré latin** : chaque élément figure une fois et une seule dans chaque ligne et une fois et une seule dans chaque colonne (mais réciproque fausse)

3. Morphisme de groupes

Définition

Soient (E, \star) et (F, \otimes) deux groupes et f une application de E dans F.

f est un morphisme de groupes si :

$$\forall a, b \in E / f(a \star b) = f(a) \otimes f(b)$$

Exemples:

- Si (E,+) est un groupe commutatif, pour tout $n \in \mathbb{Z}$, $\stackrel{E}{a} \stackrel{E}{\to} \stackrel{E}{na}$ est un morphisme de groupe Mais si le groupe (E,\times) n'est pas commutatif, $\stackrel{E}{a} \stackrel{E}{\to} \stackrel{E}{a}$ n'est pas un morphisme de groupe
- ➤ Si (E, \star) est un groupe, pour tout $a \in E$, $\begin{bmatrix} \mathbb{Z} & \to & E \\ a & \to & a^n \end{bmatrix}$ est un morphisme de groupes
- $\nearrow \quad \stackrel{\mathbb{Z}}{x} \quad \stackrel{\longrightarrow}{\to} \quad \stackrel{\mathbb{Z}/n\mathbb{Z}}{\text{classe de } x \text{ mod n}} \quad \text{est un morphisme de groupes additifs.}$
- Soit $(GL(n),\times)$ le groupe des matrices $n\times n$ inversibles.
 - $GL(n) \to \mathbb{R}^*$ est un morphisme du groupe GL(n) (non commutatif) vers (\mathbb{R}^*,\times) (commutatif)
- $ightharpoonup x
 ightharpoonup \ln(x)$ est un morphisme du groupe multiplicatif \mathbb{R}^* , vers le groupe additif \mathbb{R} .
- $ightharpoonup heta o e^{i heta}$ est un morphisme du groupe additif $\mathbb R$ vers le groupe multiplicatif $\mathbb C^*$.

Propriétés

- $ightharpoonup \operatorname{Si} f\left(E,\star\right) o \left(F,\otimes\right)$ est un morphisme de groupes, e l'élément neutre de $E,\ \varepsilon$ celui de F, alors
 - $\Box \quad f(e) = \varepsilon \text{ (en notation additive, } f(0) = 0 \text{)}$
- La composée de deux morphismes de groupes est un morphisme de groupes.
- La réciproque d'un morphisme de groupes inversible est un morphisme de groupes.

Noyau

Soit $f(E,\star) \to (F,\otimes)$ un morphisme de groupes, e l'élément neutre de E, ε celui de F. Le **noyau** de f est l'ensemble des éléments de E ont l'image par f est ε Notation $Ker f = \{x \in E / f(x) = \varepsilon\}$

- \triangleright C'est un sous-groupe de E (voir § 4)
- ightharpoonup f est injective si et seulement si $Ker f = \{e\}$

Isomorhisme de groupes

Soit $f(E, \star) \to (F, \otimes)$ un morphisme de groupes.

f est un **isomorhisme de groupes** si f est inversible (bijective)

On dit alors que (E, \star) et (F, \otimes) sont **isomorphes**.

Exemples:

 \triangleright $(\mathbb{Z}/4\mathbb{Z},+)$ et $(\mathbb{Z}/5\mathbb{Z}-\{0\},\times)$ sont isomorphes, mais pas $(\mathbb{Z}/4\mathbb{Z},+)$ et (G,\star)

		($(\mathbb{Z}/5$	$\mathbb{Z}-\{$	$[0], \times$:)	$(\mathbb{Z}/5\mathbb{Z}-\{0\},\times)$						(G,\star)						
	0	1	2	3		1	2	3	4		1	2	4	3		a	b	c	d
0	0	1	2	3	1	1	2	3	4	1	1	2	4	3	a	a	b	С	d
1	1	2	3	0	2	2	4	1	3	2	2	4	3	1	b	b	a	d	С
2	2	3	0	1	3	3	1	4	2	4	4	3	1	2	С	С	d	a	b
3	3	0	1	2	4	4	3	2	1	3	3	1	2	4	d	d	С	b	a
	$0 \rightarrow 1$, $1 \rightarrow 2$, $2 \rightarrow 4$, $3 \rightarrow 3$														-				

- \triangleright Le groupe des permutations de $\{A,B,C\}$ est isomorphe au groupe des isométries d'un triangle équilatéral ABC
- \triangleright Le groupe des permutations de $\{A,B,C,D\}$ n'est pas isomorphe au groupe des isométries d'un carré ABCD
- $ightharpoonup x o \ln(x)$ est un isomorphisme de \mathbb{R}_+^* vers \mathbb{R} .
- > Tous les groupes d'ordre 3 sont isomorphes.
- > Si (E,\star) est un groupe, pour tout $a \in E$, $\stackrel{E}{x} \rightarrow \stackrel{E}{a^{-1}} \star x \star a$ est un isomorphisme de groupes (automorphisme intérieur)

4. Sous-groupe

Définition

Soient (E, \star) un groupe d'élément neutre e et F une partie de E.

F est un **sous-groupe de** E si (F, \star) est un groupe

Condition nécessaire et suffisante

En notation additive
$$(F,+)$$
 est un sous-groupe de $(E,+)$ \Leftrightarrow
$$\begin{cases} F \neq \emptyset \\ \forall a,b \in F / a + b \in F \\ \forall a,b \in F / b - a \in F \end{cases} \Leftrightarrow \begin{cases} e \in F \\ \forall a,b \in F / b - a \in F \end{cases}$$

Exemples

- \triangleright (E,\star) et $(\{e\},\star)$ sont des sous-groupes (triviaux) de (E,\star) .
- \triangleright Tout sous-groupe de \mathbb{Z} est de la forme $n\mathbb{Z}$, pour un certain entier n.
- ightharpoonup L'ensemble U des complexes de module 1 est un sous-groupe de $\left(\mathbb{C}^*,\times\right)$
- \triangleright L'ensemble R_n des racines $n^{\text{ièmes}}$ de l'unité est un sous-groupe de U.
- L'ensemble des translations est un sous-groupe commutatif du groupe (non commutatif) des isométries du plan.
- \triangleright L'ensemble des matrices orthogonales de déterminant +1 est un sous-groupe de l'ensemble des matrices orthogonales 2×2
- \triangleright Le noyau d'un morphisme de groupes $(E, \star) \to (F, \otimes)$ est un sous-groupe de E.

Sous-groupe engendré par un élément

Soient (E, \star) un groupe d'élément neutre e et a un élément de E.

Le sous-groupe engendré par a est l'ensemble des puissances de a.

Notation :
$$\langle a \rangle = \{ a^n / n \in \mathbb{Z} \} = \{ ..., a^{-2}, a^{-1}, e, a, a^2, a^3, ... \}$$

en notation additive : $\langle a \rangle = \{ n \ a / n \in \mathbb{Z} \} = \{ ..., -2a, -a, 0, a, 2a, 3a, ... \}$

Exemples:

- Pour une rotation r d'angle $2\pi/5$ dans l'ensemble des isométries, $\langle r \rangle = \{id, r, r^2, r^3, r^4\}$
- ightharpoonup Pour une rotation r d'angle θ tel que $\frac{\theta}{\pi}$ n'est pas une fraction, les rotations

..., r^{-2} , r^{-1} , id, r, r^2 , r^3 ,... sont toutes distinctes 2 à 2.

 \triangleright Dans $(\mathbb{Z},+)$, $\langle n \rangle = n\mathbb{Z}$

L'**ordre** d'un élément dans un groupe est l'**ordre** (i.e. le cardinal) du sous-groupe qu'il engendre. Exemples :

- \triangleright Dans $(\mathbb{Z}/4\mathbb{Z},+)$, 0 est d'ordre 1, 1 et 3 d'ordres 4 et 2 d'ordre 2
- ightharpoonup Dans $\left(\mathbb{Z}/5\mathbb{Z}-\{0\},\times\right)$, 1 est d'ordre 1 , 2 et 3 sont d'ordre 4 et 4 est d'ordre 2

Si un groupe fini est engendré par un élément, on dit que c'est un groupe cyclique. Tout groupe cyclique d'ordre n est isomorphe à $\mathbb{Z}/n\mathbb{Z}$.

5. Classes suivant un sous-groupe

Soient (E, \star) un groupe et H un sous-groupe de E.

À tout élément $x \in E$ on associe sa **classe à gauche suivant** $H : xH = \{x \star a / a \in H\}$ en notation additive, la classe de x suivant H est $x + H = \{x + a / a \in H\}$

Exemples

Soit $n \in \mathbb{Z}^*$. $n\mathbb{Z}$ est un sous-groupe. Il y a n classes : classe de $0 = n\mathbb{Z} = \{n \, k \, / \, k \in \mathbb{Z}\}$, classe de $1 = 1 + n\mathbb{Z} = \{n \, k + 1 \, / \, k \in \mathbb{Z}\}$, ..., classe de (n-1) = classe de (-1) = $n\mathbb{Z} + (n-1) = n\mathbb{Z} - 1$

- \triangleright Dans le groupe $\{id, r, r^2, s_1, s_2, s_3\}$ des isométries d'un triangle équilatéral,
- l'ensemble $\{id, r, r^2\}$ des rotations constitue un sous-groupe H. Les classes à gauche sont : $id\ H = r\ H = r^2\ H = H\$ (les rotations) et $s_1H = s_2H = s_3H = \{s_1, s_2, s_3\}\$ (les symétries)
- \Box l'ensemble $\{id, s_1\}$ constitue un sous-groupe K. Les classes à gauche sont :

$$id\ K = s_1 K = K$$
, $s_2 K = r^2 K = \left\{ s_2, r^2 \right\}$ et $s_3 K = r K = \left\{ s_3, r \right\}$

1	id	г	г2	s1	s2	s3
id	id	r	r2	s1	s2	s3
г	r	r2	id	s3	s1	s2
r2	r2	id	r	s2	s3	s1
s1	s1	s2	s3	id	r	r2
s2	s2	s3	s1	r2	id	r
s3	s3	s1	s2	r	r2	id

A	id	r	r2	s1	s2	s3
id	id	r	г2	s1	s2	s3
г	r	г2	id	s3	s1	s2
г2	r2	id	r	s2	s3	s1
s1	s1	s2	s3	id	г	r2
s2	s2	s3	s1	г2	id	г
s3	s3	s1	s2	г	г2	id

Classes à gauche=classes à droite

Classes à gauche

Classes à droite

Propriété

Soient (E, \star) un groupe et H un sous-groupe de E.

Les classes à gauche suivant H forment une partition de E en parties équipotentes.

Théorème de Lagrange

Soient (E, \star) un groupe fini et H un sous-groupe de E. L'ordre de H divise l'ordre de G.

Corollaire

- Dans un groupe fini, l'ordre tout élément est un diviseur de l'ordre du groupe.
- > Tout groupe d'ordre égal à un entier premier est cyclique.

6. Indicatrice d'Euler

Définition

Soit *n* un naturel ≥ 2 .

L'indicatrice d'Euler, notée $\varphi(n)$ est le nombre d'entiers compris entre 1 et n-1 qui sont premiers avec n

Propriété

 $\varphi(n)$ est le nombre d'éléments inversibles du monoïde $(\mathbb{Z}/n\mathbb{Z},\times)$.

C'est donc aussi l'ordre du groupe multiplicatif $(\mathbb{Z}/n\mathbb{Z})^{\times}$ des éléments inversibles de $\mathbb{Z}/n\mathbb{Z}$.

Théorème d'Euler

Soient *n* un naturel ≥ 2 et *x* un naturel premier avec *n*.

Alors
$$x^{\varphi(n)} \equiv 1 \mod n$$

Application: RSA (Rivest, Shamir, Adelman 1978)

Clé privée :

2 nombres premiers "grands" p et q, leur produit n, un exposant "de décodage" d premier avec $\varphi(n)$

$$x = (p, q, d)$$

Clé publique:

Le produit n = pq et l'entier r compris entre 1 et $\varphi(n) - 1$ el que $e.d \equiv 1 \mod \varphi(n)$

$$v = (n, e)$$

Protocole:

Chaque message M est un entier inférieur à n

 $C_{v}(M) = M^{e} \mod n$ Codage:

Décodage : $D_{x}(M) = M^{d} \mod n$

$$(M^e)^d \equiv M \mod n \text{ car } n = p.q \text{ et que } e.d = k.\phi(n) + 1$$

Alice

 $M \xrightarrow{codage} M^e \mod n \xrightarrow{décodage} M^{ed} \mod n = M$

			Alice	Bob
Public	Clef de Codage	Exposant :e	4519	3893
		Modulo : <i>n</i>	68557	81493
Privé	Clef de décodage	Exposant : d	3867	2681
		Modulo : <i>n</i>	68557	81493
Pour		p	383	359
mémoire		q	179	227
		$\varphi(n) = (p-1).(q-1)$	67996	80908
			4519 x 3867	3893 x 2681
			= 17474973	=10437133
			$= 257 \times 67996 + 1$	$=129 \times 80908 + 1$

Exemple : Si Alice envoie à Bob le message M = 65432,

 $C(M) = 65432^{3893} \mod 81493 = 40694$, $D(C(M)) = 40694^{2681} \mod 81493 = 65432$

Si Bob envoie à Alice le message M = 23456,

 $C(M) = 23456^{4519} \mod 68557 = 35780, D(C(M)) = 35780^{3867} \mod 68557 = 23456$