SANTA CLARA UNIVERSITY	ELEN 115 – Spring 2023	S. Krishnan
Homework #6		

- 1. For each circuit, the diodes are ideal.
 - (i) Clearly explain how the circuit functions by showing conditions when each diode is on and when it is off.
 - (ii) For his design plot the transfer characteristic v_{INB} versus v_{IN} indicating the values of all significant points and the values of the slopes of all segments
 - (iii)Which of these circuits **DOES** function as a diode clamp that keeps the output voltage between -5 and +5 volts. **Explain your answer.**
 - (iv) Which of these circuits **DOES NOT** function as a diode clamp that keeps the output voltage between -5 and +5 volts. **Explain your answer.**

- 2. A young design engineer decides to try a new configuration for a rectifier. His attempt is the circuit shown in Figure 2 where identical diodes D_a and D_b are used. Assume diodes are ideal. The designer gives the input $v_{in} = 5\sin 4\pi t$ to the circuit.
 - (i) For each half cycle indicate the ON and OFF state of the diodes.
 - (ii) Draw the input voltage and the corresponding output voltage v₀ vs. time.
 - (iii) Find the average value of the output voltage.
 - (iv) Is this rectifier efficient? Explain your answer.
 - (v) Find the peak diode current in each diode.
 - (vi) Find the maximum reverse voltage seen by each diode.

Elen 115 Homework

3. **4.74**

- 4. A designer has to build a regulator circuit as shown in Figure 4 to provide an output voltage v_{OUT} of 5V using one of two types of diodes. Given that **both types of diodes** have a voltage of 0.715V at 1mA current. For the diode **of TYPE A** the voltage changes by 0.1V/decade change in current while for the diode **of TYPE B** the voltage increases by 0.1V when the current through it doubles. **Do not assume the values for V**_T.
 - (i) Which type of diode should the designer pick for building an efficient regulator? Clearly explain the reasons for your choice.
 - (ii) How many diodes of the type chosen in (a) would be in the string to obtain the required v_{OUT} at nominal I_{supply} and no load condition.
 - (iii) Find the percentage change in vour when a load current of 5mA is drawn from the circuit.

- 5. The regulator in Figure 5 employs a zener diode D_Z that is specified to have a 8V drop at a test current of 25mA with $r_z = 10\Omega$ and $I_{ZK} = 0.2$ mA.
- (a) Find the value of R needed to obtain an output voltage $V_{out} = 7.8V$ at nominal supply voltage Vs and no load.
- (b) With the value of R as obtained in (a) and nominal Vs find the **the value of V**_{out} with a load resistance of
 - (i) $R_L = 10k\Omega$
 - (ii) $R_L=1k\Omega$

