Brain Tumor Grade Classification in MR images using Deep Learning

Eleftheria Chatzitheodoridou

Supervisor: Anders Eklund

External Supervisors: Iulian Emil Tampu

Neda Haj-Hosseini

Overview

- Motivation
- Background
- Aim
- Data Overview
- Research Questions
- Progress so far
- Next steps

Motivation

Brain Tumor

- High mortality rate
- Difficult to diagnose

Diagnostic tools

- Biopsy
- MR images

Deep Learning

- Automated feature extraction
- Fast inference

Biopsy & Radiology

- Invasive
- Dangerous
- Expensive

Computer-Aided Diagnosis (CAD)

- Deep Learning
- MR imaging

Background

Gliomas: most prevalent type of brain tumor, classified into 4 grades (WHO 2021)

- G1 → Benign tumor
- G2 • G3 Low-Grade Glioma
- G4 } High-Grade Glioma

Malignancy

Magnetic Resonance Imaging: uses non-ionizing radiation during scan, offers high-spatial resolution images of different tissue contrast with varying repetition times by means of powerful magnets

Background

DL algorithms:

- inspired by structure + function of human brain
- provide state-of-the-art results in image classification
- can perform automatic feature extraction

Convolutional Neural Networks (CNNs):

- subclass of DL, used with great success in analysis of images
- require minimal preprocessing + little prior knowledge
- can achieve great levels of abstraction by stacking many layers

Aim

To classify the grade of brain tumor in MR images of different modalities from adult patients using VGG-19 and ResNet50 & compare their performance using various performance metrics

Source: https://www.philips.se/healthcare/solutions/magnetic-resonance

Data Overview

Source: The Cancer Genome Atlas (TCGA) → Grade 2, 3

Brain Tumor Segmentation (BraTS 2020) → Grade 4

- 142 subjects (47 Grade 4 cases, 45 Grade 2 cases, 50 Grade 3 cases)
- Each subject has images of 4 MRI modalities (T1-weighted, T1-weighted post-contrast, T2-weighted, Fluid Attenuated Inversion Recovery (FLAIR))
- All images are: anonymized, registered to T1-weighted image, skull-stripped, bias-field corrected
- 3D volumes of 240 x 240 x 155 voxels with 1mm³ isotropic resolution
- 155 slices for each subject

TCGA dataset: https://portal.gdc.cancer.gov

BraTS 2020 dataset: https://arxiv.org/abs/1811.02629

Data Example – Grade 4 T1-weighted

Axial view (x-y plane)

Coronal view (x-z plane)

Sagittal view (y-z plane)

Data Example – Grade 4 (axial view)

Data Example – Grade 2 (axial view)

Data Example – Grade 4 (axial view)

T2-weighted

Annotated ROI

Research Questions

- 1. Which of the proposed CNN models performs best for brain tumor grade classification on the available dataset?
- 2. Which combination of MRI modalities yields the best results for classification?

Challenges:

- Little data available → need for data augmentation
- Images come from 19 different institutions
- Classification of grades in multiple classes as relatively new concept ⇒ not many experiments conducted, little supporting literature

Progress so far

- Familiarizing with the data set:
 - From 3D NIfTI files to 2D PNG
 - Identifying data quality problems: no tumor annotations for cases of Grades 2, 3, images with pixel intensity values not in [0, 1] range
- Pre-processing
 - Tumor extraction using nnUnet automated framework on cases of Grades 2, 3
 - Manual tumor boundary delineation on some cases of Grades 2, 3
 - Extraction of 2D tumor slices from 3D images
 - Intensity normalization on all images
 - Resizing all 2D slices to 224 x 224 pixels

Progress so far — Extraction of tumor slices from 3D image for a Grade 4 case

Sagittal view

Coronal view

Axial View

Progress so far — Extraction of tumor slices from 3D image for a Grade 4 case

Progress so far — Tumor extraction with nnUnet on Grade 3 case — segmentation result (1)

Progress so far — Tumor extraction with nnUnet on Grade 3 case — segmentation result (2)

Progress so far — Intensity normalization on Grade 4 case, T2-w, axial view

Original image

Normalized 2D slice

Progress so far – Pre-processed data set

Grade #	Frontal/coronal slices	Sagittal slices	Transversal/Axial slices
Grade 2	8,131	5,415	6,591
Grade 3	9,959	7,910	7,978
Grade 4	15,613	11,470	12,485
Total	33,703	24,795	27,054

- The classifier will be fed on the slices that contain only tumor
- Slices from all 3 categories will be used
- All slices are saved mentioning the percentage of the tumor in the image > CNNs will be fed with images that contain more than 40% of the tumor to increase accuracy

Next steps

- Train VGG-19, ResNet50 models on pre-processed data set
 - Use Transfer Learning pre-train VGG-19, ResNet50 on ImageNet dataset
 - Perform data augmentation with vertical+horizontal flipping, rotation by 45° 90°
- Evaluate model performance with default evaluation metrics, ROC curves and hypothesis testing
 - Confusion matrix, accuracy, precision, recall, specificity, F1-score
 - ROC curves
 - Wilcoxon Signed-Rank test
 - If time permits, include Occlusion Maps
- Finish the report

Thank you!

