Grundlagen der Algebra

Stephan Epp hjstephan86@gmail.com

12. Juli 2025

Inhaltsverzeichnis

1	Einleitung	2
2	Definitionen	2

1 Einleitung

Was ist Algebra? Von seiner Wortbedeutung her bedeutet Algebra die Lehre von den Gleichungen oder die Theorie der Verknüpfungen mathematischer Strukturen. Um Aussagen darüber treffen zu können, was Gleichungen oder Verknüpfungen sind, muss definiert werden, wie die Strukturen aussehen, die miteinander verglichen oder verknüpft werden. Um den Begriff Struktur besser zu verstehen, lohnt sich ein Blick in die Informatik. Mögliche Strukturen in der Informatik sind zum Beispiel Listen oder Stacks. Dabei enthält ein Liste eine Menge von Elementen, wobei die Elemente jeweils einen Wert annehmen. Die Beschreibung der Liste als Datenstruktur eignet sich aber auch schon für die Beschreibung der mathematischen Struktur des Vektors. Mögliche Verknüpfungen von Vektoren sind zum Beispiel die Addition oder Multiplikation zweier Vektoren, die in dieser Verknüpfung wieder einen Vektor als Ergebnis haben. Es ist nicht unüblich in der Informatik auch eine Liste von Listen zu nutzen, um zur Laufzeit effizient auf die Datenstruktur zugreifen zu können. Die Beschreibung der Liste von Listen eignet sich aber auch für die Beschreibung der mathematischen Struktur der Matrix. Mögliche Verknüpfungen von Matrizen sind zum Beispiel die Addition oder Multiplikation zweier Matrizen, die in dieser Verknüpfung wieder eine Matrix als Ergebnis haben.

2 Definitionen

Zur Betrachtung der Algebra folgen Definitionen, die für den weiteren Verlauf dieser Arbeit nützlich sind.

Definiton 2.1. Ein Vektor $\mathbf{v} = (v_1, \dots, v_n)$ aus dem Raum \mathbb{R}^n hat die Größe n und ist ein Tupel von n Elementen, wobei jedes Element $v_i \in \mathbb{R}$.

Zu beachten ist, dass der Vektor v fett geschrieben ist. Zum Beispiel ist 0 der Vektor, bei dem alle Elemente den Wert null haben.

Definiton 2.2. Eine Matrix A aus dem Raum $\mathbb{R}^{n \times m}$ hat die Größe $n \times m$ und besteht aus n Zeilen und m Spalten, wobei jedes Element $a_{ij} \in \mathbb{R}$.

Definiton 2.3. Zwei Vektoren u und v projezieren den Vektor w genau dann, wenn es Konstanten k_1 und k_2 gibt, so dass

$$k_1 \boldsymbol{u} + k_2 \boldsymbol{v} = \boldsymbol{w} \neq \boldsymbol{0},$$

dabei haben \mathbf{u} , \mathbf{v} und \mathbf{w} dieselbe Größe und $k_i \in \mathbb{R}$, $k_i \neq 0$.

Das heißt, die Vektoren \boldsymbol{u} und \boldsymbol{v} bilden eine *Projektion* \boldsymbol{w} in Abhängigkeit der Konstanten k_1, k_2 , wobei die Konstanten nicht den Wert null haben.

Definiton 2.4. Für die Projektion w durch die Vektoren u und v liegen u und v in der Umgebung von w im Raum \mathbb{R}^n , wobei u, v und w jeweils Größe n haben.

Nicht alle Vektoren u und v liegen in der Umgebung von w. Es gibt Vektoren im Raum \mathbb{R}^n , durch die w niemals projeziert werden kann.

Definiton 2.5. Eine Projektion w durch die Vektoren u und v und Konstanten k_1 , k_2 ist minimal, wenn für alle Konstanten k_i gilt, wird eine Konstante $k_i = 0$, dann ist

$$k_1 \boldsymbol{u} + k_2 \boldsymbol{v} = \boldsymbol{0}.$$

Das bedeutet, wenn eine minimale Projektion gefunden wurde, entferne die eine Konstante k, d.h., k = 0, und erhalte mit $k_1 \mathbf{u} + k_2 \mathbf{v} = \mathbf{0}$ die $gr\ddot{o}\beta te$ Einheit, mit der, egal wie

ihre Vektoren miteinander kombiniert werden, nichts mehr projeziert werden kann außer **0**. Damit wurde eine größte und nicht mehr projezierbare Einheit gefunden, der *Kern*.

Der Kern in seiner Umgebung des Raumes ist nicht teilbar, er kann nicht weiter reduziert werden. Der *triviale Kern* besteht nur aus den Vektoren, bei denen jeweils nur ein Element den Wert eins hat, sonst haben alle anderen Elemente den Wert null.

Definiton 2.6. Die Einheitsmatrix E ist gegeben durch den trivialen Kern in entsprechender Ordnung,

$$E = (e_1 e_2 e_3 e_4) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

wobei E die Größe vier hat und die Vektoren e_1, \ldots, e_4 jeweils die Größe vier haben.

Man beachte, dass bei den Vektoren e_1, \ldots, e_4 jeweils nur ein Element den Wert eins hat, sonst haben alle anderen Elemente den Wert null. Außerdem gilt:

$$k_1e_1 + k_2e_2 + k_3e_3 + k_4e_4 = 0$$

egal, welchen Wert die Konstanten $k_i \in \mathbb{R}$ annehmen. In dieser Ordnung e_1, \dots, e_4 bilden sie die Einheitsmatrix und auch einen Kern im Raum $\mathbb{R}^{4\times 4}$.

Es ist bekannt, dass bei der Vektoraddition oder -multiplikation zwei Vektoren im Allgemeinen nicht miteinander addiert oder multipliziert werden können. Zwei Vektoren können zum Beispiel nur dann miteinander multipliziert werden, wenn sie dieselbe Größe haben. Erst dann ergibt das Produkt der beiden Vektoren wieder einen Vektor derselben Größe.

Es ist auch bekannt, dass bei der Matrixaddition oder -multiplikation zwei Matrizen im Allgemeinen nicht miteinander addiert oder multipliziert werden können. Zwei Matrizen können zum Beispiel nur dann miteinander multipliziert werden, wenn die Anzahl der Spalten der ersten Matrix gerade die Anzahl der Zeilen der zweiten Matrix ist. Erst dann ergibt das Produkt der beiden Matrizen wieder eine Matrix mit folgender Größe: Die Anzahl der Zeilen der Produktmatrix ist die Anzahl der Spalten der ersten Matrix und die Anzahl der Spalten der Produktmatrix ist die Anzahl der Spalten der zweiten Matrix.

Idee: Halte die Wertebereiche von Elementen einer Matrix in ihrer Größe klein, finde die Menge aller Kerne, mit Hilfe derer Ergebnisse von Matrixoperationen effizienter nachgeschaut werden können. Vergrößere den Wertebereich um ein Delta, das für das effizientere Nachschauen im vergrößerten Wertebereich genutzt wird.