

SEQUENCE LISTING

<110> Gaiger, Alexander
McNeill, Patricia D.
Smithgall, Molly
Moulton, Gus
Vedvick, Thomas S.
Sleath, Paul R.
Mossman, Sally
Evans, Lawrence
Spies, A. Gregory
Boydston, Jeremy

<120> COMPOSITIONS AND METHODS FOR WT1
SPECIFIC IMMUNOTHERAPY

<130> 210121.465C6

<140> US
<141> 2001-10-30

<160> 413

<170> FastSEQ for Windows Version 3.0

<210> 1
<211> 17
<212> PRT
<213> Homo sapien

<400> 1

Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro Ser Leu Gly Gly Gly
1 5 10 15
Gly

<210> 2
<211> 23
<212> PRT
<213> Homo sapien

<400> 2

Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe Pro Asn Ala Pro
1 5 10 15
Tyr Leu Pro Ser Cys Leu Glu
20

<210> 3
<211> 23
<212> PRT
<213> Mus musculus

<400> 3

Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe Pro Asn Ala Pro
 1 5 10 15
 Tyr Leu Pro Ser Cys Leu Glu
 20

<210> 4
 <211> 19
 <212> PRT
 <213> Homo sapien

<400> 4
 Gly Ala Thr Leu Lys Gly Val Ala Ala Gly Ser Ser Ser Val Lys
 1 5 10 15
 Trp Thr Glu

<210> 5
 <211> 22
 <212> DNA
 <213> Homo sapien

<400> 5
 gagagtgcaga cttgaaagca gt 22

<210> 6
 <211> 20
 <212> DNA
 <213> Homo sapien

<400> 6
 ctgagcctca gcaaattggc 20

<210> 7
 <211> 27
 <212> DNA
 <213> Homo sapien

<400> 7
 gagcatgcat gggctccgac gtgcggg 27

<210> 8
 <211> 25
 <212> DNA
 <213> Homo sapien

<400> 8
 ggggtaccca ctgaacggtc cccga 25

<210> 9
 <211> 18
 <212> DNA
 <213> Mus musculus

<400> 9

tccgagccgc acctcatg	18
<210> 10	
<211> 18	
<212> DNA	
<213> Mus musculus	
<400> 10	
gcctggatg ctggactg	18
<210> 11	
<211> 27	
<212> DNA	
<213> Mus musculus	
<400> 11	
gagcatgcga tgggttccga cgtgcgg	27
<210> 12	
<211> 29	
<212> DNA	
<213> Mus musculus	
<400> 12	
gggttacctc aaagcgccac gtggagttt	29
<210> 13	
<211> 17	
<212> PRT	
<213> Mus musculus	
<400> 13	
Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Ser Ser Leu Gly Gly Gly	
1 5 10 15	
Gly	
<210> 14	
<211> 19	
<212> PRT	
<213> Mus musculus	
<400> 14	
Gly Ala Thr Leu Lys Gly Met Ala Ala Gly Ser Ser Ser Ser Val Lys	
1 5 10 15	
Trp Thr Glu	
<210> 15	
<211> 15	
<212> PRT	
<213> Homo sapien	
<400> 15	

Arg Ile His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg
1 5 10 15

<210> 16
<211> 15
<212> PRT
<213> Mus musculus

<400> 16
Arg Ile His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg
1 5 10 15

<210> 17
<211> 14
<212> PRT
<213> Mus musculus

<400> 17
Val Arg Arg Val Ser Gly Val Ala Pro Thr Leu Val Arg Ser
1 5 10

<210> 18
<211> 14
<212> PRT
<213> Homo sapien

<400> 18
Val Arg Arg Val Pro Gly Val Ala Pro Thr Leu Val Arg Ser
1 5 10

<210> 19
<211> 15
<212> PRT
<213> Homo sapien

<400> 19
Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val Arg His His
1 5 10 15

<210> 20
<211> 15
<212> PRT
<213> Mus musculus

<400> 20
Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val Arg His His
1 5 10 15

<210> 21
<211> 21
<212> DNA
<213> Mus musculus

<400> 21

cccaaggctgc aataagagat a	21
<210> 22	
<211> 21	
<212> DNA	
<213> Mus musculus	
<400> 22	
atgttgtat ggcggaccaa t	21
<210> 23	
<211> 20	
<212> DNA	
<213> Homo sapien	
<400> 23	
gtggggcgcc ccaggcacca	20
<210> 24	
<211> 24	
<212> DNA	
<213> Homo sapien	
<400> 24	
gtccttaatg ctacgcacga tttc	24
<210> 25	
<211> 21	
<212> DNA	
<213> Homo sapien	
<400> 25	
ggcatctgag accagtgaga a	21
<210> 26	
<211> 21	
<212> DNA	
<213> Homo sapien	
<400> 26	
gctgtcccac ttacagatgc a	21
<210> 27	
<211> 21	
<212> DNA	
<213> Homo sapien	
<400> 27	
tcaaagcgcc agctggagtt t	21
<210> 28	
<211> 9	
<212> PRT	
<213> Homo sapien	

<400> 28
Ala Ala Gly Ser Ser Ser Ser Val Lys
1 5

<210> 29
<211> 9
<212> PRT
<213> Homo sapien

<400> 29
Ala Ala Gln Phe Pro Asn His Ser Phe
1 5

<210> 30
<211> 9
<212> PRT
<213> Homo sapien

<400> 30
Ala Glu Pro His Glu Glu Gln Cys Leu
1 5

<210> 31
<211> 9
<212> PRT
<213> Homo sapien

<400> 31
Ala Gly Ala Cys Arg Tyr Gly Pro Phe
1 5

<210> 32
<211> 9
<212> PRT
<213> Homo sapien

<400> 32
Ala Gly Ser Ser Ser Ser Val Lys Trp
1 5

<210> 33
<211> 9
<212> PRT
<213> Homo sapien

<400> 33
Ala Ile Arg Asn Gln Gly Tyr Ser Thr
1 5

<210> 34
<211> 9
<212> PRT
<213> Homo sapien

<400> 34
Ala Leu Leu Pro Ala Val Pro Ser Leu
1 5

<210> 35
<211> 9
<212> PRT
<213> Homo sapien

<400> 35
Ala Leu Leu Pro Ala Val Ser Ser Leu
1 5

<210> 36
<211> 9
<212> PRT
<213> Homo sapien

<400> 36
Ala Gln Phe Pro Asn His Ser Phe Lys
1 5

<210> 37
<211> 9
<212> PRT
<213> Homo sapien

<400> 37
Ala Gln Trp Ala Pro Val Leu Asp Phe
1 5

<210> 38
<211> 9
<212> PRT
<213> Homo sapien

<400> 38
Ala Arg Met Phe Pro Asn Ala Pro Tyr
1 5

<210> 39
<211> 9
<212> PRT
<213> Homo sapien

<400> 39
Ala Arg Ser Asp Glu Leu Val Arg His
1 5

<210> 40
<211> 9
<212> PRT
<213> Homo sapien

<400> 40
Ala Ser Ser Gly Gin Ala Arg Met Phe
1 5

<210> 41
<211> 9
<212> PRT
<213> Homo sapien

<400> 41
Ala Tyr Gly Ser Leu Gly Gly Pro Ala
1 5

<210> 42
<211> 9
<212> PRT
<213> Homo sapien

<400> 42
Ala Tyr Pro Gly Cys Asn Lys Arg Tyr
1 5

<210> 43
<211> 9
<212> PRT
<213> Homo sapien

<400> 43
Cys Ala Leu Pro Val Ser Gly Ala Ala
1 5

<210> 44
<211> 9
<212> PRT
<213> Homo sapien

<400> 44
Cys Ala Tyr Pro Gly Cys Asn Lys Arg
1 5

<210> 45
<211> 9
<212> PRT
<213> Homo sapien

<400> 45
Cys His Thr Pro Thr Asp Ser Cys Thr
1 5

<210> 46
<211> 9
<212> PRT
<213> Homo sapien

<400> 46
Cys Lys Thr Cys Gln Arg Lys Phe Ser
1 5

<210> 47
<211> 9
<212> PRT
<213> Homo sapien

<400> 47
Cys Leu Glu Ser Gln Pro Ala Ile Arg
1 5

<210> 48
<211> 9
<212> PRT
<213> Homo sapien

<400> 48
Cys Leu Ser Ala Phe Thr Val His Phe
1 5

<210> 49
<211> 9
<212> PRT
<213> Homo sapien

<400> 49
Cys Met Thr Trp Asn Gln Met Asn Leu
1 5

<210> 50
<211> 9
<212> PRT
<213> Homo sapien

<400> 50
Cys Arg Trp Pro Ser Cys Gln Lys Lys
1 5

<210> 51
<211> 9
<212> PRT
<213> Homo sapien

<400> 51
Cys Arg Tyr Gly Pro Phe Gly Pro Pro
1 5

<210> 52
<211> 9
<212> PRT
<213> Homo sapien

<400> 52
Cys Thr Gly Ser Gln Ala Leu Leu Leu
1 5

<210> 53
<211> 9
<212> PRT
<213> Homo sapien

<400> 53
Asp Glu Leu Val Arg His His Asn Met
1 5

<210> 54
<211> 9
<212> PRT
<213> Homo sapien

<400> 54
Asp Phe Ala Pro Pro Gly Ala Ser Ala
1 5

<210> 55
<211> 9
<212> PRT
<213> Homo sapien

<400> 55
Asp Phe Lys Asp Cys Glu Arg Arg Phe
1 5

<210> 56
<211> 9
<212> PRT
<213> Homo sapien

<400> 56
Asp Gly Thr Pro Ser Tyr Gly His Thr
1 5

<210> 57
<211> 9
<212> PRT
<213> Homo sapien

<400> 57
Asp His Leu Lys Thr His Thr Arg Thr
1 5

<210> 58
<211> 9
<212> PRT
<213> Homo sapien

<400> 58
Asp Leu Asn Ala Leu Leu Pro Ala Val
1 5

<210> 59
<211> 9
<212> PRT
<213> Homo sapien

<400> 59
Asp Pro Met Gly Gln Gln Gly Ser Leu
1 5

<210> 60
<211> 9
<212> PRT
<213> Homo sapien

<400> 60
Asp Gln Leu Lys Arg His Gln Arg Arg
1 5

<210> 61
<211> 9
<212> PRT
<213> Homo sapien

<400> 61
Asp Ser Cys Thr Gly Ser Gln Ala Leu
1 5

<210> 62
<211> 9
<212> PRT
<213> Homo sapien

<400> 62
Asp Val Arg Asp Leu Asn Ala Leu Leu
1 5

<210> 63
<211> 9
<212> PRT
<213> Homo sapien

<400> 63
Asp Val Arg Arg Val Pro Gly Val Ala
1 5

<210> 64
<211> 9
<212> PRT
<213> Homo sapien

<400> 64
Glu Asp Pro Met Gly Gln Gln Gly Ser
 1 5

 <210> 65
<211> 9
<212> PRT
<213> Homo sapien

 <400> 65
Glu Glu Gln Cys Leu Ser Ala Phe Thr
 1 5

 <210> 66
<211> 9
<212> PRT
<213> Homo sapien

 <400> 66
Glu Lys Pro Tyr Gln Cys Asp Phe Lys
 1 5

 <210> 67
<211> 9
<212> PRT
<213> Homo sapien

 <400> 67
Glu Lys Arg Pro Phe Met Cys Ala Tyr
 1 5

 <210> 68
<211> 9
<212> PRT
<213> Homo sapien

 <400> 68
Glu Pro His Glu Glu Gln Cys Leu Ser
 1 5

 <210> 69
<211> 9
<212> PRT
<213> Homo sapien

 <400> 69
Glu Gln Cys Leu Ser Ala Phe Thr Val
 1 5

 <210> 70
<211> 9
<212> PRT
<213> Homo sapien

<400> 70
Glu Ser Asp Asn His Thr Ala Pro Ile
1 5

<210> 71
<211> 9
<212> PRT
<213> Homo sapien

<400> 71
Glu Ser Asp Asn His Thr Thr Pro Ile
1 5

<210> 72
<211> 9
<212> PRT
<213> Homo sapien

<400> 72
Glu Ser Gln Pro Ala Ile Arg Asn Gln
1 5

<210> 73
<211> 9
<212> PRT
<213> Homo sapien

<400> 73
Glu Thr Ser Glu Lys Arg Pro Phe Met
1 5

<210> 74
<211> 9
<212> PRT
<213> Homo sapien

<400> 74
Phe Ala Pro Pro Gly Ala Ser Ala Tyr
1 5

<210> 75
<211> 9
<212> PRT
<213> Homo sapien

<400> 75
Phe Ala Arg Ser Asp Glu Leu Val Arg
1 5

<210> 76
<211> 9
<212> PRT
<213> Homo sapien

<400> 76
Phe Gly Pro Pro Pro Pro Ser Gln Ala
1 5

<210> 77
<211> 9
<212> PRT
<213> Homo sapien

<400> 77
Phe Lys Asp Cys Glu Arg Arg Phe Ser
1 5

<210> 78
<211> 9
<212> PRT
<213> Homo sapien

<400> 78
Phe Lys Leu Ser His Leu Gln Met His
1 5

<210> 79
<211> 9
<212> PRT
<213> Homo sapien

<400> 79
Phe Pro Asn Ala Pro Tyr Leu Pro Ser
1 5

<210> 80
<211> 9
<212> PRT
<213> Homo sapien

<400> 80
Phe Gln Cys Lys Thr Cys Gln Arg Lys
1 5

<210> 81
<211> 9
<212> PRT
<213> Homo sapien

<400> 81
Phe Arg Gly Ile Gln Asp Val Arg Arg
1 5

<210> 82
<211> 9
<212> PRT
<213> Homo sapien

<400> 82
Phe Ser Gly Gln Phe Thr Gly Thr Ala
1 5

<210> 83
<211> 9
<212> PRT
<213> Homo sapien

<400> 83
Phe Ser Arg Ser Asp Gln Leu Lys Arg
1 5

<210> 84
<211> 9
<212> PRT
<213> Homo sapien

<400> 84
Phe Thr Gly Thr Ala Gly Ala Cys Arg
1 5

<210> 85
<211> 9
<212> PRT
<213> Homo sapien

<400> 85
Phe Thr Val His Phe Ser Gly Gln Phe
1 5

<210> 86
<211> 9
<212> PRT
<213> Homo sapien

<400> 86
Gly Ala Ala Gln Trp Ala Pro Val Leu
1 5

<210> 87
<211> 9
<212> PRT
<213> Homo sapien

<400> 87
Gly Ala Glu Pro His Glu Glu Gln Cys
1 5

<210> 88
<211> 9
<212> PRT
<213> Homo sapien

<400> 88
Gly Ala Thr Leu Lys Gly Val Ala Ala
1 5

<210> 89
<211> 9
<212> PRT
<213> Homo sapien

<400> 89
Gly Cys Ala Leu Pro Val Ser Gly Ala
1 5

<210> 90
<211> 9
<212> PRT
<213> Homo sapien

<400> 90
Gly Cys Asn Lys Arg Tyr Phe Lys Leu
1 5

<210> 91
<211> 9
<212> PRT
<213> Homo sapien

<400> 91
Gly Glu Lys Pro Tyr Gln Cys Asp Phe
1 5

<210> 92
<211> 9
<212> PRT
<213> Homo sapien

<400> 92
Gly Gly Gly Gly Cys Ala Leu Pro Val
1 5

<210> 93
<211> 9
<212> PRT
<213> Homo sapien

<400> 93
Gly Gly Pro Ala Pro Pro Pro Ala Pro
1 5

<210> 94
<211> 9
<212> PRT
<213> Homo sapien

<400> 94
Gly His Thr Pro Ser His His Ala Ala
1 5

<210> 95
<211> 9
<212> PRT
<213> Homo sapien

<400> 95
Gly Lys Thr Ser Glu Lys Pro Phe Ser
1 5

<210> 96
<211> 9
<212> PRT
<213> Homo sapien

<400> 96
Gly Pro Phe Gly Pro Pro Pro Pro Ser
1 5

<210> 97
<211> 9
<212> PRT
<213> Homo sapien

<400> 97
Gly Pro Pro Pro Pro Ser Gln Ala Ser
1 5

<210> 98
<211> 9
<212> PRT
<213> Homo sapien

<400> 98
Gly Gln Ala Arg Met Phe Pro Asn Ala
1 5

<210> 99
<211> 9
<212> PRT
<213> Homo sapien

<400> 99
Gly Gln Phe Thr Gly Thr Ala Gly Ala
1 5

<210> 100
<211> 9
<212> PRT
<213> Homo sapien

<400> 100
Gly Gln Ser Asn His Ser Thr Gly Tyr
1 5

<210> 101
<211> 9
<212> PRT
<213> Homo sapien

<400> 101
Gly Ser Asp Val Arg Asp Leu Asn Ala
1 5

<210> 102
<211> 9
<212> PRT
<213> Homo sapien

<400> 102
Gly Ser Gln Ala Leu Leu Leu Arg Thr
1 5

<210> 103
<211> 9
<212> PRT
<213> Homo sapien

<400> 103
Gly Val Phe Arg Gly Ile Gln Asp Val
1 5

<210> 104
<211> 9
<212> PRT
<213> Homo sapien

<400> 104
Gly Val Lys Pro Phe Gln Cys Lys Thr
1 5

<210> 105
<211> 9
<212> PRT
<213> Homo sapien

<400> 105
Gly Tyr Glu Ser Asp Asn His Thr Ala
1 5

<210> 106
<211> 9
<212> PRT
<213> Homo sapien

<400> 106
Gly Tyr Glu Ser Asp Asn His Thr Thr
1 5

<210> 107
<211> 9
<212> PRT
<213> Homo sapien

<400> 107
His Glu Glu Gln Cys Leu Ser Ala Phe
1 5

<210> 108
<211> 9
<212> PRT
<213> Homo sapien

<400> 108
His His Asn Met His Gln Arg Asn Met
1 5

<210> 109
<211> 9
<212> PRT
<213> Homo sapien

<400> 109
His Gln Arg Arg His Thr Gly Val Lys
1 5

<210> 110
<211> 9
<212> PRT
<213> Homo sapien

<400> 110
His Ser Phe Lys His Glu Asp Pro Met
1 5

<210> 111
<211> 9
<212> PRT
<213> Homo sapien

<400> 111
His Ser Arg Lys His Thr Gly Glu Lys
1 5

<210> 112
<211> 9
<212> PRT
<213> Homo sapien

<400> 112
His Thr Gly Glu Lys Pro Tyr Gln Cys
1 5

<210> 113
<211> 9
<212> PRT
<213> Homo sapien

<400> 113
His Thr His Gly Val Phe Arg Gly Ile
1 5

<210> 114
<211> 9
<212> PRT
<213> Homo sapien

<400> 114
His Thr Arg Thr His Thr Gly Lys Thr
1 5

<210> 115
<211> 9
<212> PRT
<213> Homo sapien

<400> 115
His Thr Thr Pro Ile Leu Cys Gly Ala
1 5

<210> 116
<211> 9
<212> PRT
<213> Homo sapien

<400> 116
Ile Leu Cys Gly Ala Gln Tyr Arg Ile
1 5

<210> 117
<211> 9
<212> PRT
<213> Homo sapien

<400> 117
Ile Arg Asn Gln Gly Tyr Ser Thr Val
1 5

<210> 118
<211> 9
<212> PRT
<213> Homo sapien

<400> 118
Lys Asp Cys Glu Arg Arg Phe Ser Arg
1 5

<210> 119
<211> 9
<212> PRT
<213> Homo sapien

<400> 119
Lys Phe Ala Arg Ser Asp Glu Leu Val
1 5

<210> 120
<211> 9
<212> PRT
<213> Homo sapien

<400> 120
Lys Phe Ser Arg Ser Asp His Leu Lys
1 5

<210> 121
<211> 9
<212> PRT
<213> Homo sapien

<400> 121
Lys His Glu Asp Pro Met Gly Gln Gln
1 5

<210> 122
<211> 9
<212> PRT
<213> Homo sapien

<400> 122
Lys Lys Phe Ala Arg Ser Asp Glu Leu
1 5

<210> 123
<211> 9
<212> PRT
<213> Homo sapien

<400> 123
Lys Pro Phe Ser Cys Arg Trp Pro Ser
1 5

<210> 124
<211> 9
<212> PRT
<213> Homo sapien

<400> 124
Lys Pro Tyr Gln Cys Asp Phe Lys Asp
1 5

<210> 125
<211> 9
<212> PRT
<213> Homo sapien

<400> 125
Lys Gln Glu Pro Ser Trp Gly Gly Ala
1 5

<210> 126
<211> 9
<212> PRT
<213> Homo sapien

<400> 126
Lys Arg His Gln Arg Arg His Thr Gly
1 5

<210> 127
<211> 9
<212> PRT
<213> Homo sapien

<400> 127
Lys Arg Tyr Phe Lys Leu Ser His Leu
1 5

<210> 128
<211> 9
<212> PRT
<213> Homo sapien

<400> 128
Lys Thr Cys Gln Arg Lys Phe Ser Arg
1 5

<210> 129
<211> 9
<212> PRT
<213> Homo sapien

<400> 129
Lys Thr Ser Glu Lys Pro Phe Ser Cys
1 5

<210> 130
<211> 9
<212> PRT
<213> Homo sapien

<400> 130
Leu Asp Phe Ala Pro Pro Gly Ala Ser
 1 5

 <210> 131
<211> 9
<212> PRT
<213> Homo sapien

 <400> 131
Leu Glu Cys Met Thr Trp Asn Gln Met
 1 5

 <210> 132
<211> 9
<212> PRT
<213> Homo sapien

 <400> 132
Leu Glu Ser Gln Pro Ala Ile Arg Asn
 1 5

 <210> 133
<211> 9
<212> PRT
<213> Homo sapien

 <400> 133
Leu Gly Ala Thr Leu Lys Gly Val Ala
 1 5

 <210> 134
<211> 9
<212> PRT
<213> Homo sapien

 <400> 134
Leu Gly Gly Gly Gly Cys Ala Leu
 1 5

 <210> 135
<211> 9
<212> PRT
<213> Homo sapien

 <400> 135
Leu Lys Gly Val Ala Ala Gly Ser Ser
 1 5

 <210> 136
<211> 9
<212> PRT
<213> Homo sapien

<400> 136
Leu Lys Arg His Gln Arg Arg His Thr
1 5

<210> 137
<211> 9
<212> PRT
<213> Homo sapien

<400> 137
Leu Lys Thr His Thr Arg Thr His Thr
1 5

<210> 138
<211> 9
<212> PRT
<213> Homo sapien

<400> 138
Leu Pro Val Ser Gly Ala Ala Gln Trp
1 5

<210> 139
<211> 9
<212> PRT
<213> Homo sapien

<400> 139
Leu Gln Met His Ser Arg Lys His Thr
1 5

<210> 140
<211> 9
<212> PRT
<213> Homo sapien

<400> 140
Leu Arg Thr Pro Tyr Ser Ser Asp Asn
1 5

<210> 141
<211> 9
<212> PRT
<213> Homo sapien

<400> 141
Leu Ser His Leu Gln Met His Ser Arg
1 5

<210> 142
<211> 9
<212> PRT
<213> Homo sapien

<400> 142
Met Cys Ala Tyr Pro Gly Cys Asn Lys
1 5

<210> 143
<211> 9
<212> PRT
<213> Homo sapien

<400> 143
Met His Gln Arg Asn Met Thr Lys Leu
1 5

<210> 144
<211> 9
<212> PRT
<213> Homo sapien

<400> 144
Asn Ala Pro Tyr Leu Pro Ser Cys Leu
1 5

<210> 145
<211> 9
<212> PRT
<213> Homo sapien

<400> 145
Asn Lys Arg Tyr Phe Lys Leu Ser His
1 5

<210> 146
<211> 9
<212> PRT
<213> Homo sapien

<400> 146
Asn Leu Gly Ala Thr Leu Lys Gly Val
1 5

<210> 147
<211> 9
<212> PRT
<213> Homo sapien

<400> 147
Asn Leu Tyr Gln Met Thr Ser Gln Leu
1 5

<210> 148
<211> 9
<212> PRT
<213> Homo sapien

<400> 148
Asn Met His Gln Arg Asn Met Thr Lys
1 5

<210> 149
<211> 9
<212> PRT
<213> Homo sapien

<400> 149
Asn Met Thr Lys Leu Gln Leu Ala Leu
1 5

<210> 150
<211> 9
<212> PRT
<213> Homo sapien

<400> 150
Asn Gln Gly Tyr Ser Thr Val Thr Phe
1 5

<210> 151
<211> 9
<212> PRT
<213> Homo sapien

<400> 151
Asn Gln Met Asn Leu Gly Ala Thr Leu
1 5

<210> 152
<211> 9
<212> PRT
<213> Homo sapien

<400> 152
Pro Ala Ile Arg Asn Gln Gly Tyr Ser
1 5

<210> 153
<211> 9
<212> PRT
<213> Homo sapien

<400> 153
Pro Gly Ala Ser Ala Tyr Gly Ser Leu
1 5

<210> 154
<211> 9
<212> PRT
<213> Homo sapien

<400> 154
Pro His Glu Glu Gln Cys Leu Ser Ala
1 5

<210> 155
<211> 9
<212> PRT
<213> Homo sapien

<400> 155
Pro Ile Leu Cys Gly Ala Gln Tyr Arg
1 5

<210> 156
<211> 9
<212> PRT
<213> Homo sapien

<400> 156
Pro Pro Pro Pro His Ser Phe Ile Lys
1 5

<210> 157
<211> 9
<212> PRT
<213> Homo sapien

<400> 157
Pro Pro Pro Pro Pro His Ser Phe Ile
1 5

<210> 158
<211> 9
<212> PRT
<213> Homo sapien

<400> 158
Pro Pro Pro Pro Pro Pro His Ser Phe
1 5

<210> 159
<211> 9
<212> PRT
<213> Homo sapien

<400> 159
Pro Ser Cys Gln Lys Lys Phe Ala Arg
1 5

<210> 160
<211> 9
<212> PRT
<213> Homo sapien

<400> 160
Gln Ala Leu Leu Leu Arg Thr Pro Tyr
1 5

<210> 161
<211> 9
<212> PRT
<213> Homo sapien

<400> 161
Gln Ala Ser Ser Gly Gln Ala Arg Met
1 5

<210> 162
<211> 9
<212> PRT
<213> Homo sapien

<400> 162
Gln Cys Asp Phe Lys Asp Cys Glu Arg
1 5

<210> 163
<211> 9
<212> PRT
<213> Homo sapien

<400> 163
Gln Cys Lys Thr Cys Gln Arg Lys Phe
1 5

<210> 164
<211> 9
<212> PRT
<213> Homo sapien

<400> 164
Gln Asp Val Arg Arg Val Pro Gly Val
1 5

<210> 165
<211> 9
<212> PRT
<213> Homo sapien

<400> 165
Gln Phe Thr Gly Thr Ala Gly Ala Cys
1 5

<210> 166
<211> 9
<212> PRT
<213> Homo sapien

<400> 166
Gln Gly Ser Leu Gly Glu Gln Gln Tyr
1 5

<210> 167
<211> 9
<212> PRT
<213> Homo sapien

<400> 167
Gln Leu Glu Cys Met Thr Trp Asn Gln
1 5

<210> 168
<211> 9
<212> PRT
<213> Homo sapien

<400> 168
Gln Met Asn Leu Gly Ala Thr Leu Lys
1 5

<210> 169
<211> 9
<212> PRT
<213> Homo sapien

<400> 169
Gln Met Thr Ser Gln Leu Glu Cys Met
1 5

<210> 170
<211> 9
<212> PRT
<213> Homo sapien

<400> 170
Gln Pro Ala Ile Arg Asn Gln Gly Tyr
1 5

<210> 171
<211> 9
<212> PRT
<213> Homo sapien

<400> 171
Gln Gln Tyr Ser Val Pro Pro Pro Val
1 5

<210> 172
<211> 9
<212> PRT
<213> Homo sapien

<400> 172
Gln Arg Lys Phe Ser Arg Ser Asp His
1 5

<210> 173
<211> 9
<212> PRT
<213> Homo sapien

<400> 173
Gln Arg Asn Met Thr Lys Leu Gln Leu
1 5

<210> 174
<211> 9
<212> PRT
<213> Homo sapien

<400> 174
Gln Trp Ala Pro Val Leu Asp Phe Ala
1 5

<210> 175
<211> 9
<212> PRT
<213> Homo sapien

<400> 175
Gln Tyr Arg Ile His Thr His Gly Val
1 5

<210> 176
<211> 9
<212> PRT
<213> Homo sapien

<400> 176
Gln Tyr Ser Val Pro Pro Pro Val Tyr
1 5

<210> 177
<211> 9
<212> PRT
<213> Homo sapien

<400> 177
Arg Asp Leu Asn Ala Leu Leu Pro Ala
1 5

<210> 178
<211> 9
<212> PRT
<213> Homo sapien

<400> 178
Arg Phe Ser Arg Ser Asp Gln Leu Lys
1 5

<210> 179
<211> 9
<212> PRT
<213> Homo sapien

<400> 179
Arg Gly Ile Gln Asp Val Arg Arg Val
1 5

<210> 180
<211> 9
<212> PRT
<213> Homo sapien

<400> 180
Arg His His Asn Met His Gln Arg Asn
1 5

<210> 181
<211> 9
<212> PRT
<213> Homo sapien

<400> 181
Arg His Gln Arg Arg His Thr Gly Val
1 5

<210> 182
<211> 9
<212> PRT
<213> Homo sapien

<400> 182
Arg Ile His Thr His Gly Val Phe Arg
1 5

<210> 183
<211> 9
<212> PRT
<213> Homo sapien

<400> 183
Arg Lys Phe Ser Arg Ser Asp His Leu
1 5

<210> 184
<211> 9
<212> PRT
<213> Homo sapien

<400> 184
Arg Lys His Thr Gly Glu Lys Pro Tyr
1 5

<210> 185
<211> 9
<212> PRT
<213> Homo sapien

<400> 185
Arg Met Phe Pro Asn Ala Pro Tyr Leu
1 5

<210> 186
<211> 9
<212> PRT
<213> Homo sapien

<400> 186
Arg Asn Met Thr Lys Leu Gln Leu Ala
1 5

<210> 187
<211> 9
<212> PRT
<213> Homo sapien

<400> 187
Arg Arg Phe Ser Arg Ser Asp Gln Leu
1 5

<210> 188
<211> 9
<212> PRT
<213> Homo sapien

<400> 188
Arg Arg His Thr Gly Val Lys Pro Phe
1 5

<210> 189
<211> 9
<212> PRT
<213> Homo sapien

<400> 189
Arg Arg Val Pro Gly Val Ala Pro Thr
1 5

<210> 190
<211> 9
<212> PRT
<213> Homo sapien

<400> 190
Arg Ser Ala Ser Glu Thr Ser Glu Lys
1 5

<210> 191
<211> 9
<212> PRT
<213> Homo sapien

<400> 191
Arg Ser Asp Glu Leu Val Arg His His
1 5

<210> 192
<211> 9
<212> PRT
<213> Homo sapien

<400> 192
Arg Ser Asp His Leu Lys Thr His Thr
1 5

<210> 193
<211> 9
<212> PRT
<213> Homo sapien

<400> 193
Arg Ser Asp Gln Leu Lys Arg His Gln
1 5

<210> 194
<211> 9
<212> PRT
<213> Homo sapien

<400> 194
Arg Thr Pro Tyr Ser Ser Asp Asn Leu
1 5

<210> 195
<211> 9
<212> PRT
<213> Homo sapien

<400> 195
Arg Val Pro Gly Val Ala Pro Thr Leu
1 5

<210> 196
<211> 9
<212> PRT
<213> Homo sapien

<400> 196
Arg Trp Pro Ser Cys Gln Lys Lys Phe
1 5

<210> 197
<211> 9
<212> PRT
<213> Homo sapien

<400> 197
Ser Ala Ser Glu Thr Ser Glu Lys Arg
1 5

<210> 198
<211> 9
<212> PRT
<213> Homo sapien

<400> 198
Ser Cys Leu Glu Ser Gln Pro Ala Ile
1 5

<210> 199
<211> 9
<212> PRT
<213> Homo sapien

<400> 199
Ser Cys Leu Glu Ser Gln Pro Thr Ile
1 5

<210> 200
<211> 9
<212> PRT
<213> Homo sapien

<400> 200
Ser Cys Gln Lys Lys Phe Ala Arg Ser
1 5

<210> 201
<211> 9
<212> PRT
<213> Homo sapien

<400> 201
Ser Cys Arg Trp Pro Ser Cys Gln Lys
1 5

<210> 202
<211> 9
<212> PRT
<213> Homo sapien

<400> 202
Ser Cys Thr Gly Ser Gln Ala Leu Leu
1 5

<210> 203
<211> 9
<212> PRT
<213> Homo sapien

<400> 203
Ser Asp Glu Leu Val Arg His His Asn
1 5

<210> 204
<211> 9
<212> PRT
<213> Homo sapien

<400> 204
Ser Asp Asn His Thr Thr Pro Ile Leu
1 5

<210> 205
<211> 9
<212> PRT
<213> Homo sapien

<400> 205
Ser Asp Asn Leu Tyr Gln Met Thr Ser
1 5

<210> 206
<211> 9
<212> PRT
<213> Homo sapien

<400> 206
Ser Asp Val Arg Asp Leu Asn Ala Leu
1 5

<210> 207
<211> 9
<212> PRT
<213> Homo sapien

<400> 207
Ser Glu Lys Pro Phe Ser Cys Arg Trp
1 5

<210> 208
<211> 9
<212> PRT
<213> Homo sapien

<400> 208
Ser Glu Lys Arg Pro Phe Met Cys Ala
1 5

<210> 209
<211> 9
<212> PRT
<213> Homo sapien

<400> 209
Ser Glu Thr Ser Glu Lys Arg Pro Phe
1 5

<210> 210
<211> 9
<212> PRT
<213> Homo sapien

<400> 210
Ser Phe Ile Lys Gln Glu Pro Ser Trp
1 5

<210> 211
<211> 9
<212> PRT
<213> Homo sapien

<400> 211
Ser Gly Ala Ala Gln Trp Ala Pro Val
1 5

<210> 212
<211> 9
<212> PRT
<213> Homo sapien

<400> 212
Ser Gly Gln Ala Arg Met Phe Pro Asn
1 5

<210> 213
<211> 9
<212> PRT
<213> Homo sapien

<400> 213
Ser His His Ala Ala Gln Phe Pro Asn
1 5

<210> 214
<211> 9
<212> PRT
<213> Homo sapien

<400> 214
Ser Leu Gly Glu Gln Gln Tyr Ser Val
1 5

<210> 215
<211> 9
<212> PRT
<213> Homo sapien

<400> 215
Ser Leu Gly Gly Gly Gly Cys Ala
1 5

<210> 216
<211> 9
<212> PRT
<213> Homo sapien

<400> 216
Ser Gln Ala Ser Ser Gly Gln Ala Arg
1 5

<210> 217
<211> 9
<212> PRT
<213> Homo sapien

<400> 217
Ser Ser Asp Asn Leu Tyr Gln Met Thr
1 5

<210> 218
<211> 9
<212> PRT
<213> Homo sapien

<400> 218
Ser Val Pro Pro Pro Val Tyr Gly Cys
1 5

<210> 219
<211> 9
<212> PRT
<213> Homo sapien

<400> 219
Thr Cys Gln Arg Lys Phe Ser Arg Ser
1 5

<210> 220
<211> 9
<212> PRT
<213> Homo sapien

<400> 220
Thr Asp Ser Cys Thr Gly Ser Gln Ala
1 5

<210> 221
<211> 9
<212> PRT
<213> Homo sapien

<400> 221
Thr Glu Gly Gln Ser Asn His Ser Thr
1 5

<210> 222
<211> 9
<212> PRT
<213> Homo sapien

<400> 222
Thr Gly Lys Thr Ser Glu Lys Pro Phe
1 5

<210> 223
<211> 9
<212> PRT
<213> Homo sapien

<400> 223
Thr Gly Ser Gln Ala Leu Leu Leu Arg
1 5

<210> 224
<211> 9
<212> PRT
<213> Homo sapien

<400> 224
Thr Gly Thr Ala Gly Ala Cys Arg Tyr
1 5

<210> 225
<211> 9
<212> PRT
<213> Homo sapien

<400> 225
Thr Gly Tyr Glu Ser Asp Asn His Thr
1 5

<210> 226
<211> 9
<212> PRT
<213> Homo sapien

<400> 226
Thr Leu Val Arg Ser Ala Ser Glu Thr
1 5

<210> 227
<211> 9
<212> PRT
<213> Homo sapien

<400> 227
Thr Pro Ile Leu Cys Gly Ala Gln Tyr
1 5

<210> 228
<211> 9
<212> PRT
<213> Homo sapien

<400> 228
Thr Pro Ser His His Ala Ala Gln Phe
1 5

<210> 229
<211> 9
<212> PRT
<213> Homo sapien

<400> 229
Thr Pro Ser Tyr Gly His Thr Pro Ser
1 5

<210> 230
<211> 9
<212> PRT
<213> Homo sapien

<400> 230
Thr Pro Thr Asp Ser Cys Thr Gly Ser
1 5

<210> 231
<211> 9
<212> PRT
<213> Homo sapien

<400> 231
Thr Pro Tyr Ser Ser Asp Asn Leu Tyr
1 5

<210> 232
<211> 9
<212> PRT
<213> Homo sapien

<400> 232
Thr Ser Glu Lys Pro Phe Ser Cys Arg
1 5

<210> 233
<211> 9
<212> PRT
<213> Homo sapien

<400> 233
Thr Ser Glu Lys Arg Pro Phe Met Cys
1 5

<210> 234
<211> 9
<212> PRT
<213> Homo sapien

<400> 234
Thr Ser Gln Leu Glu Cys Met Thr Trp
1 5

<210> 235
<211> 9
<212> PRT
<213> Homo sapien

<400> 235
Thr Val His Phe Ser Gly Gln Phe Thr
1 5

<210> 236
<211> 9
<212> PRT
<213> Homo sapien

<400> 236
Val Ala Ala Gly Ser Ser Ser Ser Val
1 5

<210> 237
<211> 9
<212> PRT
<213> Homo sapien

<400> 237
Val Ala Pro Thr Leu Val Arg Ser Ala
1 5

<210> 238
<211> 9
<212> PRT
<213> Homo sapien

<400> 238
Val Phe Arg Gly Ile Gln Asp Val Arg
1 5

<210> 239
<211> 9
<212> PRT
<213> Homo sapien

<400> 239
Val Lys Pro Phe Gln Cys Lys Thr Cys
1 5

<210> 240
<211> 9
<212> PRT
<213> Homo sapien

<400> 240
Val Lys Trp Thr Glu Gly Gln Ser Asn
1 5

<210> 241
<211> 9
<212> PRT
<213> Homo sapien

<400> 241
Val Leu Asp Phe Ala Pro Pro Gly Ala
1 5

<210> 242
<211> 9
<212> PRT
<213> Homo sapien

<400> 242
Val Pro Gly Val Ala Pro Thr Leu Val
1 5

<210> 243
<211> 9
<212> PRT
<213> Homo sapien

<400> 243
Val Arg His His Asn Met His Gln Arg
1 5

<210> 244
<211> 9
<212> PRT
<213> Homo sapien

<400> 244
Val Thr Phe Asp Gly Thr Pro Ser Tyr
1 5

<210> 245
<211> 9
<212> PRT
<213> Homo sapien

<400> 245
Trp Asn Gln Met Asn Leu Gly Ala Thr
1 5

<210> 246
<211> 9
<212> PRT
<213> Homo sapien

<400> 246
Trp Pro Ser Cys Gln Lys Lys Phe Ala
1 5

<210> 247
<211> 9
<212> PRT
<213> Homo sapien

<400> 247
Trp Thr Glu Gly Gln Ser Asn His Ser
1 5

<210> 248
<211> 9
<212> PRT
<213> Homo sapien

<400> 248
Tyr Phe Lys Leu Ser His Leu Gln Met
1 5

<210> 249
<211> 9
<212> PRT
<213> Homo sapien

<400> 249
Tyr Gly His Thr Pro Ser His His Ala
1 5

<210> 250
<211> 9
<212> PRT
<213> Homo sapien

<400> 250
Tyr Pro Gly Cys Asn Lys Arg Tyr Phe
1 5

<210> 251
<211> 9
<212> PRT
<213> Homo sapien

<400> 251
Tyr Gln Met Thr Ser Gln Leu Glu Cys
1 5

<210> 252
<211> 9
<212> PRT
<213> Homo sapien

<400> 252
Tyr Arg Ile His Thr His Gly Val Phe
1 5

<210> 253
<211> 9
<212> PRT
<213> Homo sapien

<400> 253
Tyr Ser Ser Asp Asn Leu Tyr Gln Met
1 5

<210> 254
<211> 9
<212> PRT
<213> Mus musculus

<400> 254
Ala Glu Pro His Glu Glu Gln Cys Leu
1 5

<210> 255
<211> 9
<212> PRT
<213> Mus musculus

<400> 255
Ala Leu Leu Pro Ala Val Ser Ser Leu
1 5

<210> 256
<211> 9
<212> PRT
<213> Mus musculus

<400> 256
Ala Tyr Gly Ser Leu Gly Gly Pro Ala
1 5

<210> 257
<211> 9
<212> PRT
<213> Mus musculus

<400> 257
Ala Tyr Pro Gly Cys Asn Lys Arg Tyr
1 5

<210> 258
<211> 9
<212> PRT
<213> Mus musculus

<400> 258
Cys Met Thr Trp Asn Gln Met Asn Leu
1 5

<210> 259
<211> 9
<212> PRT
<213> Mus musculus

<400> 259
Cys Thr Gly Ser Gln Ala Leu Leu Leu
1 5

<210> 260
<211> 9
<212> PRT
<213> Mus musculus

<400> 260
Asp Gly Ala Pro Ser Tyr Gly His Thr
1 5

<210> 261
<211> 9
<212> PRT
<213> Mus musculus

<400> 261
Asp Leu Asn Ala Leu Leu Pro Ala Val
1 5

<210> 262
<211> 9
<212> PRT
<213> Mus musculus

<400> 262
Asp Pro Met Gly Gln Gln Gly Ser Leu
1 5

<210> 263
<211> 9
<212> PRT
<213> Mus musculus

<400> 263
Asp Ser Cys Thr Gly Ser Gln Ala Leu
1 5

<210> 264
<211> 9
<212> PRT
<213> Mus musculus

<400> 264
Asp Val Arg Asp Leu Asn Ala Leu Leu
1 5

<210> 265
<211> 9
<212> PRT
<213> Mus musculus

<400> 265
Glu Gln Cys Leu Ser Ala Phe Thr Leu
1 5

<210> 266
<211> 9
<212> PRT
<213> Mus musculus

<400> 266
Glu Ser Asp Asn His Thr Ala Pro Ile
1 5

<210> 267
<211> 9
<212> PRT
<213> Mus musculus

<400> 267
Phe Pro Asn Ala Pro Tyr Leu Pro Ser
1 5

<210> 268
<211> 9
<212> PRT
<213> Mus musculus

<400> 268
Gly Cys Asn Lys Arg Tyr Phe Lys Leu
1 5

<210> 269
<211> 9
<212> PRT
<213> Mus musculus

<400> 269
Gly Gln Ala Arg Met Phe Pro Asn Ala
1 5

<210> 270
<211> 9
<212> PRT
<213> Mus musculus

<400> 270
Gly Val Phe Arg Gly Ile Gln Asp Val
1 5

<210> 271
<211> 9
<212> PRT
<213> Mus musculus

<400> 271
Gly Tyr Glu Ser Asp Asn His Thr Ala
1 5

<210> 272
<211> 9
<212> PRT
<213> Mus musculus

<400> 272
His Ser Phe Lys His Glu Asp Pro Met
1 5

<210> 273
<211> 9
<212> PRT
<213> Mus musculus

<400> 273
His Thr His Gly Val Phe Arg Gly Ile
1 5

<210> 274
<211> 9
<212> PRT
<213> Mus musculus

<400> 274
Ile Leu Cys Gly Ala Gln Tyr Arg Ile
1 5

<210> 275
<211> 9
<212> PRT
<213> Mus musculus

<400> 275
Lys Phe Ala Arg Ser Asp Glu Leu Val
1 5

<210> 276
<211> 9
<212> PRT
<213> Mus musculus

<400> 276
Lys Arg Tyr Phe Lys Leu Ser His Leu
1 5

<210> 277
<211> 9
<212> PRT
<213> Mus musculus

<400> 277
Lys Thr Ser Glu Lys Pro Phe Ser Cys
1 5

<210> 278
<211> 9
<212> PRT
<213> Mus musculus

<400> 278
Leu Glu Cys Met Thr Trp Asn Gln Met
1 5

<210> 279
<211> 9
<212> PRT
<213> Mus musculus

<400> 279
Leu Gly Gly Gly Gly Gly Cys Gly Leu
1 5

<210> 280
<211> 9
<212> PRT
<213> Mus musculus

<400> 280
Leu Gln Met His Ser Arg Lys His Thr
1 5

<210> 281
<211> 9
<212> PRT
<213> Mus musculus

<400> 281
Met His Gln Arg Asn Met Thr Lys Leu
1 5

<210> 282
<211> 9
<212> PRT
<213> Mus musculus

<400> 282
Asn Ala Pro Tyr Leu Pro Ser Cys Leu
1 5

<210> 283
<211> 9
<212> PRT
<213> Mus musculus

<400> 283
Asn Leu Gly Ala Thr Leu Lys Gly Met
1 5

<210> 284
<211> 9
<212> PRT
<213> Mus musculus

<400> 284
Asn Leu Tyr Gln Met Thr Ser Gln Leu
1 5

<210> 285
<211> 9
<212> PRT
<213> Mus musculus

<400> 285
Asn Met Thr Lys Leu His Val Ala Leu
1 5

<210> 286
<211> 9
<212> PRT
<213> Mus musculus

<400> 286
Asn Gln Met Asn Leu Gly Ala Thr Leu
1 5

<210> 287
<211> 9
<212> PRT
<213> Mus musculus

<400> 287
Pro Gly Ala Ser Ala Tyr Gly Ser Leu
1 5

<210> 288
<211> 9
<212> PRT
<213> Mus musculus

<400> 288
Gln Ala Ser Ser Gly Gln Ala Arg Met
1 5

<210> 289
<211> 9
<212> PRT
<213> Mus musculus

<400> 289
Gln Met Thr Ser Gln Leu Glu Cys Met
1 5

<210> 290
<211> 9
<212> PRT
<213> Mus musculus

<400> 290
Gln Gln Tyr Ser Val Pro Pro Pro Val
1 5

<210> 291
<211> 9
<212> PRT
<213> Mus musculus

<400> 291
Gln Tyr Arg Ile His Thr His Gly Val
1 5

<210> 292
<211> 9
<212> PRT
<213> Mus musculus

<400> 292
Gln Tyr Ser Val Pro Pro Pro Val Tyr
1 5

<210> 293
<211> 9
<212> PRT
<213> Mus musculus

<400> 293
Arg Met Phe Pro Asn Ala Pro Tyr Leu
1 5

<210> 294
<211> 9
<212> PRT
<213> Mus musculus

<400> 294
Arg Thr Pro Tyr Ser Ser Asp Asn Leu
1 5

<210> 295
<211> 9
<212> PRT
<213> Mus musculus

<400> 295
Arg Val Ser Gly Val Ala Pro Thr Leu
1 5

<210> 296
<211> 9
<212> PRT
<213> Mus musculus

<400> 296
Ser Cys Leu Glu Ser Gln Pro Thr Ile
1 5

<210> 297
<211> 9
<212> PRT
<213> Mus musculus

<400> 297
Ser Cys Gln Lys Lys Phe Ala Arg Ser
1 5

<210> 298
<211> 9
<212> PRT
<213> Mus musculus

<400> 298
Ser Asp Val Arg Asp Leu Asn Ala Leu
1 5

<210> 299
<211> 9
<212> PRT
<213> Mus musculus

<400> 299
Ser Leu Gly Glu Gln Gln Tyr Ser Val
1 5

<210> 300
<211> 9
<212> PRT
<213> Mus musculus

<400> 300
Thr Cys Gln Arg Lys Phe Ser Arg Ser
1 5

<210> 301
<211> 9
<212> PRT
<213> Mus musculus

<400> 301
Thr Glu Gly Gln Ser Asn His Gly Ile
1 5

<210> 302
<211> 9
<212> PRT
<213> Mus musculus

<400> 302
Thr Leu His Phe Ser Gly Gln Phe Thr
1 5

<210> 303
<211> 9
<212> PRT
<213> Mus musculus

<400> 303
Thr Leu Val Arg Ser Ala Ser Glu Thr
1 5

<210> 304
<211> 9
<212> PRT
<213> Mus musculus

<400> 304
Val Leu Asp Phe Ala Pro Pro Gly Ala
1 5

<210> 305
<211> 9
<212> PRT
<213> Mus musculus

<400> 305
Trp Asn Gln Met Asn Leu Gly Ala Thr
1 5

<210> 306
<211> 9
<212> PRT
<213> Mus musculus

<400> 306
Tyr Phe Lys Leu Ser His Leu Gln Met
1 5

<210> 307
<211> 9
<212> PRT
<213> Mus musculus

<400> 307
Tyr Gln Met Thr Ser Gln Leu Glu Cys
1 5

<210> 308
<211> 9
<212> PRT
<213> Mus musculus

<400> 308
Tyr Ser Ser Asp Asn Leu Tyr Gln Met
1 5

<210> 309
<211> 6
<212> PRT
<213> Homo sapien

<400> 309
Gly Ala Ala Gln Trp Ala
1 5

<210> 310
<211> 12
<212> PRT
<213> Homo sapien

<400> 310
 Ala Ser Ala Tyr Gly Ser Leu Gly Gly Pro Ala Pro
 1 5 10

<210> 311
 <211> 15
 <212> PRT
 <213> Homo sapien

<400> 311
 Ala Phe Thr Val His Phe Ser Gly Gln Phe Thr Gly Thr Ala Gly
 1 5 10 15

<210> 312
 <211> 5
 <212> PRT
 <213> Homo sapien

<400> 312
 His Ala Ala Gln Phe
 1 5

<210> 313
 <211> 32
 <212> PRT
 <213> Homo sapien

<400> 313
 Cys His Thr Pro Thr Asp Ser Cys Thr Gly Ser Gln Ala Leu Leu Leu
 1 5 10 15

Arg Thr Pro Tyr Ser Ser Asp Asn Leu Tyr Gln Met Thr Ser Gln Leu
 20 25 30

<210> 314
 <211> 32
 <212> PRT
 <213> Homo sapien

<400> 314
 Arg Ile His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg Arg
 1 5 10 15

Val Pro Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser
 20 25 30

<210> 315
 <211> 4
 <212> PRT
 <213> Homo sapien

<400> 315
 Arg Tyr Phe Lys
 1

<210> 316
 <211> 14
 <212> PRT
 <213> Homo sapien

<400> 316
 Glu Arg Arg Phe Ser Arg Ser Asp Gln Leu Lys Arg His Gln
 1 5 10

<210> 317
 <211> 22
 <212> PRT
 <213> Homo sapien

<400> 317
 Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr
 1 5 10 15
 His Thr Gly Lys Thr Ser
 20

<210> 318
 <211> 21
 <212> PRT
 <213> Homo sapien

<400> 318
 Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val Arg His His Asn
 1 5 10 15
 Met His Gln Arg Asn
 20

<210> 319
 <211> 449
 <212> PRT
 <213> Homo sapien

<400> 319
 Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro
 1 5 10 15
 Ser Leu Gly Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala
 20 25 30
 Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr
 35 40 45
 Gly Ser Leu Gly Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro Pro
 50 55 60
 Pro Pro Pro Pro His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly
 65 70 75 80
 Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe
 85 90 95
 Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe
 100 105 110
 Gly Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe
 115 120 125
 Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile

130	135	140
Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr		
145	150	155
Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Phe		160
165	170	175
Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln		
180	185	190
Tyr Ser Val Pro Pro Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser		
195	200	205
Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp		
210	215	220
Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln		
225	230	235
Met Asn Leu Gly Ala Thr Leu Lys Gly Val Ala Ala Gly Ser Ser Ser		240
245	250	255
Ser Val Lys Trp Thr Glu Gly Gln Ser Asn His Ser Thr Gly Tyr Glu		
260	265	270
Ser Asp Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile		
275	280	285
His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg Arg Val Pro		
290	295	300
Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser Glu Lys		
305	310	315
Arg Pro Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys		320
325	330	335
Leu Ser His Leu Gln Met His Ser Arg Lys His Thr Gly Glu Lys Pro		
340	345	350
Tyr Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Ser Arg Ser Asp		
355	360	365
Gln Leu Lys Arg His Gln Arg Arg His Thr Gly Val Lys Pro Phe Gln		
370	375	380
Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr		
385	390	395
His Thr Arg Thr His Thr Gly Lys Thr Ser Glu Lys Pro Phe Ser Cys		400
405	410	415
Arg Trp Pro Ser Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val		
420	425	430
Arg His His Asn Met His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala		
435	440	445
Leu		

<210> 320
 <211> 449
 <212> PRT
 <213> Mus musculus

<400> 320			
Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Ser			
1	5	10	15
Ser Leu Gly Gly Gly Gly Cys Gly Leu Pro Val Ser Gly Ala Ala			
20	25	30	
Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr			
35	40	45	

Gly Ser Leu Gly Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro Pro Pro
 50 55 60
 Pro Pro Pro Pro His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly
 65 70 75 80
 Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe Thr Leu His Phe
 85 90 95
 Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe
 100 105 110
 Gly Pro Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe
 115 120 125
 Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Thr Ile
 130 135 140
 Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Ala Pro Ser Tyr
 145 150 155 160
 Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Phe
 165 170 175
 Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln
 180 185 190
 Tyr Ser Val Pro Pro Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser
 195 200 205
 Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp
 210 215 220
 Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln
 225 230 235 240
 Met Asn Leu Gly Ala Thr Leu Lys Gly Met Ala Ala Gly Ser Ser Ser
 245 250 255
 Ser Val Lys Trp Thr Glu Gly Gln Ser Asn His Gly Ile Gly Tyr Glu
 260 265 270
 Ser Asp Asn His Thr Ala Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile
 275 280 285
 His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg Arg Val Ser
 290 295 300
 Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser Glu Lys
 305 310 315 320
 Arg Pro Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys
 325 330 335
 Leu Ser His Leu Gln Met His Ser Arg Lys His Thr Gly Glu Lys Pro
 340 345 350
 Tyr Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Ser Arg Ser Asp
 355 360 365
 Gln Leu Lys Arg His Gln Arg Arg His Thr Gly Val Lys Pro Phe Gln
 370 375 380
 Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr
 385 390 395 400
 His Thr Arg Thr His Thr Gly Lys Thr Ser Glu Lys Pro Phe Ser Cys
 405 410 415
 Arg Trp His Ser Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val
 420 425 430
 Arg His His Asn Met His Gln Arg Asn Met Thr Lys Leu His Val Ala
 435 440 445
 Leu

<211> 9
<212> PRT
<213> Homo sapien and Mus musculus

<400> 321
Pro Ser Gln Ala Ser Ser Gly Gln Ala
1 5

<210> 322
<211> 9
<212> PRT
<213> Homo sapien and Mus musculus

<400> 322
Ser Ser Gly Gln Ala Arg Met Phe Pro
1 5

<210> 323
<211> 9
<212> PRT
<213> Homo sapien and Mus musculus

<400> 323
Gln Ala Arg Met Phe Pro Asn Ala Pro
1 5

<210> 324
<211> 9
<212> PRT
<213> Homo sapien and Mus musculus

<400> 324
Met Phe Pro Asn Ala Pro Tyr Leu Pro
1 5

<210> 325
<211> 9
<212> PRT
<213> Homo sapien and Mus musculus

<400> 325
Pro Asn Ala Pro Tyr Leu Pro Ser Cys
1 5

<210> 326
<211> 9
<212> PRT
<213> Homo sapien and Mus musculus

<400> 326
Ala Pro Tyr Leu Pro Ser Cys Leu Glu
1 5

<210> 327
<211> 1029
<212> DNA
<213> Homo sapiens

<400> 327
atgcagcatc accaccatca ccacatgagc gataaaatta ttcacctgac tgacgacagt 60
tttgacacgg atgtactcaa agccggacggg gcgatcctcg tcgatttctg ggcagagtgg 120
tgcggtccgt gcaaaaatgtat cgccccgatt ctggatgaaa tcgctgacga atatcagggc 180
aaactgaccg ttgcaaaaact gaacatcgat caaaaacctg gcactgcgcc gaaatatggc 240
atccgtggta tccccgactct gctgctgttc aaaaacggtg aagtggcggc aaccaaagtg 300
ggtgcactgt ctaaaaggta gttgaaagag ttccctcgacg ctaacctggc cggttctgg 360
tctggccata tgcagcatca ccaccatcac cacgtgtcta tcgaaggctcg tgctagctct 420
ggtggcagcg gtctggttcc gcgtggtagc tctggttcgg gggacgacga cgacaaatct 480
agtaggcaca gcacaggta cgagagcgat aaccacacaa cgcccatcct ctgcggagcc 540
caatacagaa tacacacgca cgggtgtttc agaggcattc aggtgtgcg acgtgtgcct 600
ggagtagccc cgactctgt acggtcggca tctgagacca gtgagaaacg ccccttcatg 660
tgtgttacc caggctgcaa taagagatat tttaagctgt cccacttaca gatgcacagc 720
aggaagcaca ctggtgagaa accataccag tgtgacttca aggactgtga acgaaggttt 780
tttcgttcag accagctcaa aagacaccaa aggagacata caggtgtgaa accattccag 840
tgtaaaactt gtcagcgaaa gtttcccg tccgaccacc tgaagaccca caccaggact 900
catacaggtg aaaaggccctt cagctgtcggt tggccaagtt gtcagaaaaaa gtttgcgg 960
tcagatgaat tagtccgcca tcacaacatg catcagagaa acatgaccaa actccagctg 1020
gcgcgttga 1029

<210> 328
<211> 1233
<212> DNA
<213> Homo sapiens

<400> 328
atgcagcatc accaccatca ccacatgagc gataaaatta ttcacctgac tgacgacagt 60
tttgacacgg atgtactcaa agccggacggg gcgatcctcg tcgatttctg ggcagagtgg 120
tgcggtccgt gcaaaaatgtat cgccccgatt ctggatgaaa tcgctgacga atatcagggc 180
aaactgaccg ttgcaaaaact gaacatcgat caaaaacctg gcactgcgcc gaaatatggc 240
atccgtggta tccccgactct gctgctgttc aaaaacggtg aagtggcggc aaccaaagtg 300
ggtgcactgt ctaaaaggta gttgaaagag ttccctcgacg ctaacctggc cggttctgg 360
tctggccata tgcagcatca ccaccatcac cacgtgtcta tcgaaggctcg tgctagctct 420
ggtggcagcg gtctggttcc gcgtggtagc tctggttcgg gggacgacga cgacaaatct 480
agtagggct ccgacgttcg tgacactgaac gcactgtgc cggcagttcc gtccctgggt 540
ggtgtgggt gttgcgact gcccgttagc ggtgcagcac agtgggctcc gtttctggac 600
ttcgcaccgc cgggtgcata cgcatacggt tccctgggtg gtccggcacc gcccggcggca 660
ccggccggc cggccggc gcccggcggc acgtgggttca aacaggaacc gagctgggt 720
ggtcagaac cgacacgaa acagtgcctg agcgcattca cggttcaactt ctccggccag 780
ttcaactggca cagccggagc ctgtcgctac gggcccttcg gtccctctcc gcccagccag 840
gcgtcatccg gccaggccag gatgtttcct aacgcggccct acctgcccag ctgcctcgag 900
agccagcccg ctattcgcaa tcagggttac agcacgtca ctttcgacgg gacgcccagc 960
tacggtcaca cggccctcgca ccatgcggcg cagttccca accactcatt caagcatgag 1020
gatcccatgg gccagcaggc ctcgctgggt gaggcagcgt actcggtgcc gccccggc 1080
tatggctgcc acaccccccac cgacagctgc accggcagcc aggtttgtc gctgaggacg 1140
ccctacagca gtgacaattt ataccaaatg acatcccagc ttgaatgcat gacctggaat 1200
cagatgaact taggagccac cttaaaggc tga 1233

<210> 329

<211> 1776
 <212> DNA
 <213> Homo sapiens

<400> 329
 atgcagcatc accaccatca ccacatgagc gataaaatta ttacacctgac tgacgacagt 60
 tttgacacgg atgtactcaa agccggacggg gcgatcctcg tcgatttctg ggcagagtgg 120
 tgcggccgt gaaaaatgtat cgccccgatt ctggataaa tcgctgacga atatcaggc 180
 aaactgaccg ttgaaaactt gaacatcgat caaaaacctg gcactgcgcc gaaatatggc 240
 atccgtggtt tcccgaactt gctgctgttc aaaaacggt aagtggcggc aaccaaagtg 300
 ggtgcactgt ctaaaggta gttaaaagag ttccctgacg ctaacctggc cggttctgg 360
 tctggccata tgcagcatca ccaccatcac cacgtgtcta tcaaggtcg tgctagctct 420
 ggtggcagcg gtctgggtcc gcgtggtagc tctgggtcg gggacgacga cgacaaatct 480
 agtaggatgg gctccgacgt tcgtgacctg aacgcactgc tgccggcagt tccgtccctg 540
 ggtgggtgt gtgggtgcgc actgcccgtt agcgggtcag cacagtggc tccgggtctg 600
 gacttcgcac cgccgggtgc atccgcatac ggttccctgg gtgggtccggc accggccggc 660
 gcacccggcgc cgccggccgc gcccggccgc cactccctca tcaaaacagga accgagctgg 720
 ggtgggtcag aaccgcacga agaacagtgc ctgagcgcattt tcaccgttca cttctccggc 780
 cagttcactg gcacagccgg agcctgtcgc tacggggctt tccgggtctcc tccggccggc 840
 caggcgtcat cccggccaggc caggatgttt cctaacgcgc cctacctgccc cagctgcctc 900
 gagagccagc cccgttattcg caatcagggt tacagcacgg tcacccctgca cgggacgccc 960
 agctacggtc acacgccttc gcaccatgcg ggcgcaggcc ccaaccactc attcaagcat 1020
 gaggatccca tggggccagca gggctcgctg ggtgagcagc agtactcggt gccggccccc 1080
 gtctatggct gccacacccc caccgacagc tgcacccggca gccaggctt gctgctgagg 1140
 acggccctaca gcagtgacaa tttataccaa atgacatccc agcttgaatg catgacactgg 1200
 aatcatgatga acttaggagc caccttaaag ggcacacga cagggtacga gagcgataac 1260
 cacacaacgc ccattcccttgc cggagcccaa tacagaatac acacgcacgg tgcacccatc 1320
 ggcattcagg atgtgcgacg tggccttgc gtagcccgatctt ctcttgcacg gtcggcatct 1380
 gagaccagtg agaaaacgcggc cttcatgtgt gcttaccggc gctgcaataa gagatatttt 1440
 aagctgtccc acttacagat gcacacgcgg aagcacactg gtgagaaacc ataccagtgt 1500
 gacttcaagg actgtgaacg aagttttt cggtcagacc agctaaaaag acaccaaagg 1560
 agacatacag gtgtgaaacc attccagttt gaaacttgc agcgaaagtt ctccgggtcc 1620
 gaccacctga agacccacac caggactcat acaggtaaa agcccttcag ctgtcggtgg 1680
 ccaagttgtc agaaaaaagtt tgccgggtca gatgaatttgc tccggccatca caacatgcatt 1740
 cagagaaaca tgacccaaactt ccagctggcg ctttgc 1776

<210> 330
 <211> 771
 <212> DNA
 <213> Homo sapiens

<400> 330
 atgcagcatc accaccatca ccacggctcc gacgttcgtg acctgaacgc actgctgccc 60
 gcagttccgt ccctgggtgg tgggtgggtt tgccgcactgc cggttagccg tgcagcacag 120
 tgggctccgg ttctggactt cgccacccggc ggtgcacccg cccatcggtt cctgggtgg 180
 ccggcaccgc cgccggcacc gcccggccgc ccggccggc cccgcactc cttcatcaaa 240
 caggaaccga gctgggtgg tgccagaaccg cacgaagaac agtgcctgag cgcatcacc 300
 gttcacttct ccggccagtt cactggcaca gcccggccct gtcgcacccg gcccttcgg 360
 cccatcggtt ccagccaggc gtcacccggc caggccagga tgggtttccaa cccgcctac 420
 ctggcccgatc gcctcgagag ccaggccgtt attcgcacccg aggttacag cacggtcacc 480
 ttgcacggga cgcccgatca cggtcacacg ccctcgaccc atgcggccgca gttcccaac 540
 cactcattca agcatgagga tcccatgggc cagcagggtt cgtgggtga gcagcagttac 600
 tccggccgc ccccggtcta tggtgcaccc accccacccg acagctgcac cggcagccag 660
 gcttgcgttc tgaggacgccc ctacagcagt gacaattttt accaaatgtac atcccaatctt 720

gaatgcatga cctggaatca gatgaactta ggagccacct taaaggcgtg a 771

<210> 331

<211> 567

<212> DNA

<213> Homo sapiens

<400> 331

atgcagcatc accaccatca ccaccacagc acagggtacg agagcgataa ccacacaacg 60
 cccatcctct gcggagccca atacagaata cacacgcacg gtgtcttcag aggcatttcag 120
 gatgtgcac gtgtgcctgg agtagccccg actctttgtac ggctggcatc tgagaccagt 180
 gagaaaacgcc ccttcatgtg tgcttaccca ggctgcaata agagatattt taagctgtcc 240
 cacttacaga tgcacagcag gaagcacact ggtgagaaaac cataccagtg tgacttcaag 300
 gactgtgaac gaagggtttt tcgttcagac cagctaaaaa gacaccaaag gagacataca 360
 ggtgtaaac cattccagtg taaaacttgt cagcgaaagt tctcccggtc cgaccacctg 420
 aagacccaca ccaggactca tacaggtgaa aagccctca gctgtcggtg gccaagttgt 480
 cagaaaaagt ttgcccggtc agatgaatta gtccgcac acaacatgca tcagagaaaac 540
 atgacccaaac tccagctggc gctttga 567

<210> 332

<211> 342

<212> PRT

<213> Homo sapiens

<400> 332

Met	Gln	His	His	His	His	His	His	Met	Ser	Asp	Lys	Ile	Ile	His	Leu
5								5	10				15		
Thr	Asp	Asp	Ser	Phe	Asp	Thr	Asp	Val	Leu	Lys	Ala	Asp	Gly	Ala	Ile
	20							20	25				30		
Leu	Val	Asp	Phe	Trp	Ala	Glu	Trp	Cys	Gly	Pro	Cys	Lys	Met	Ile	Ala
	35							35	40				45		
Pro	Ile	Leu	Asp	Glu	Ile	Ala	Asp	Glu	Tyr	Gln	Gly	Lys	Leu	Thr	Val
	50							50	55				60		
Ala	Lys	Leu	Asn	Ile	Asp	Gln	Asn	Pro	Gly	Thr	Ala	Pro	Lys	Tyr	Gly
	65							65	70				80		
Ile	Arg	Gly	Ile	Pro	Thr	Leu	Leu	Phe	Lys	Asn	Gly	Glu	Val	Ala	
	85							85	90				95		
Ala	Thr	Lys	Val	Gly	Ala	Leu	Ser	Lys	Gly	Gln	Leu	Lys	Glu	Phe	Leu
	100							100	105				110		
Asp	Ala	Asn	Leu	Ala	Gly	Ser	Gly	Ser	Gly	His	Met	Gln	His	His	His
	115							115	120				125		
His	His	His	Val	Ser	Ile	Glu	Gly	Arg	Ala	Ser	Ser	Gly	Gly	Ser	Gly
	130							130	135				140		
Leu	Val	Pro	Arg	Gly	Ser	Ser	Gly	Ser	Gly	Asp	Asp	Asp	Asp	Lys	Ser
	145							145	150				155		160
Ser	Arg	His	Ser	Thr	Gly	Tyr	Glu	Ser	Asp	Asn	His	Thr	Thr	Pro	Ile
	165							165	170				175		
Leu	Cys	Gly	Ala	Gln	Tyr	Arg	Ile	His	Thr	His	Gly	Val	Phe	Arg	Gly
	180							180	185				190		
Ile	Gln	Asp	Val	Arg	Arg	Val	Pro	Gly	Val	Ala	Pro	Thr	Leu	Val	Arg
	195							195	200				205		

Ser Ala Ser Glu Thr Ser Glu Lys Arg Pro Phe Met Cys Ala Tyr Pro
 210 215 220
 Gly Cys Asn Lys Arg Tyr Phe Lys Leu Ser His Leu Gln Met His Ser
 225 230 235 240
 Arg Lys His Thr Gly Glu Lys Pro Tyr Gln Cys Asp Phe Lys Asp Cys
 245 250 255
 Glu Arg Arg Phe Phe Arg Ser Asp Gln Leu Lys Arg His Gln Arg Arg
 260 265 270
 His Thr Gly Val Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe
 275 280 285
 Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr Gly Glu
 290 295 300
 Lys Pro Phe Ser Cys Arg Trp Pro Ser Cys Gln Lys Lys Phe Ala Arg
 305 310 315 320
 Ser Asp Glu Leu Val Arg His His Asn Met His Gln Arg Asn Met Thr
 325 330 335
 Lys Leu Gln Leu Ala Leu
 340

<210> 333
 <211> 410
 <212> PRT
 <213> Homo sapiens

<400> 333
 Met Gln His His His His His Met Ser Asp Lys Ile Ile His Leu
 5 10 15
 Thr Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile
 20 25 30
 Leu Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Cys Lys Met Ile Ala
 35 40 45
 Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln Gly Lys Leu Thr Val
 50 55 60
 Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr Ala Pro Lys Tyr Gly
 65 70 75 80
 Ile Arg Gly Ile Pro Thr Leu Leu Leu Phe Lys Asn Gly Glu Val Ala
 85 90 95
 Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln Leu Lys Glu Phe Leu
 100 105 110
 Asp Ala Asn Leu Ala Gly Ser Gly Ser Gly His Met Gln His His His
 115 120 125
 His His His Val Ser Ile Glu Gly Arg Ala Ser Ser Gly Gly Ser Gly
 130 135 140
 Leu Val Pro Arg Gly Ser Ser Gly Ser Gly Asp Asp Asp Asp Lys Ser
 145 150 155 160
 Ser Arg Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val
 165 170 175
 Pro Ser Leu Gly Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala
 180 185 190
 Ala Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala
 195 200 205
 Tyr Gly Ser Leu Gly Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro

210	215	220
Pro Pro Pro Pro His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly		
225	230	235
Gly Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe Thr Val His		240
245	250	255
Phe Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro		
260	265	270
Phe Gly Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met		
275	280	285
Phe Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala		
290	295	300
Ile Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser		
305	310	315
Tyr Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser		320
325	330	335
Phe Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu Gln		
340	345	350
Gln Tyr Ser Val Pro Pro Pro Val Tyr Gly Cys His Thr Pro Thr Asp		
355	360	365
Ser Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser		
370	375	380
Asp Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn		
385	390	395
Gln Met Asn Leu Gly Ala Thr Leu Lys Gly		400
405	410	

<210> 334

<211> 591

<212> PRT

<213> Homo sapiens

<400> 334

Met Gln His His His His His Met Ser Asp Lys Ile Ile His Leu		
5	10	15
Thr Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile		
20	25	30
Leu Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Cys Lys Met Ile Ala		
35	40	45
Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln Gly Lys Leu Thr Val		
50	55	60
Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr Ala Pro Lys Tyr Gly		
65	70	75
Ile Arg Gly Ile Pro Thr Leu Leu Leu Phe Lys Asn Gly Glu Val Ala		
85	90	95
Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln Leu Lys Glu Phe Leu		
100	105	110
Asp Ala Asn Leu Ala Gly Ser Gly Ser Gly His Met Gln His His His		
115	120	125
His His His Val Ser Ile Glu Gly Arg Ala Ser Ser Gly Gly Ser Gly		
130	135	140
Leu Val Pro Arg Gly Ser Ser Gly Ser Gly Asp Asp Asp Asp Lys Ser		
145	150	155
Ser Arg Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala		160

165	170	175
Val Pro Ser Leu Gly Gly Gly Gly Cys Ala Leu Pro Val Ser Gly		
180	185	190
Ala Ala Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser		
195	200	205
Ala Tyr Gly Ser Leu Gly Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro		
210	215	220
Pro Pro Pro Pro Pro His Ser Phe Ile Lys Gln Glu Pro Ser Trp		
225	230	235
Gly Gly Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe Thr Val		
245	250	255
His Phe Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly		
260	265	270
Pro Phe Gly Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg		
275	280	285
Met Phe Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro		
290	295	300
Ala Ile Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro		
305	310	315
Ser Tyr Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His		
325	330	335
Ser Phe Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu		
340	345	350
Gln Gln Tyr Ser Val Pro Pro Pro Val Tyr Gly Cys His Thr Pro Thr		
355	360	365
Asp Ser Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr Pro Tyr Ser		
370	375	380
Ser Asp Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp		
385	390	395
Asn Gln Met Asn Leu Gly Ala Thr Leu Lys Gly His Ser Thr Gly Tyr		
405	410	415
Glu Ser Asp Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln Tyr Arg		
420	425	430
Ile His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg Arg Val		
435	440	445
Pro Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser Glu		
450	455	460
Lys Arg Pro Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe		
465	470	475
Lys Leu Ser His Leu Gln Met His Ser Arg Lys His Thr Gly Glu Lys		
485	490	495
Pro Tyr Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Phe Arg Ser		
500	505	510
Asp Gln Leu Lys Arg His Gln Arg Arg His Thr Gly Val Lys Pro Phe		
515	520	525
Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys		
530	535	540
Thr His Thr Arg Thr His Thr Gly Glu Lys Pro Phe Ser Cys Arg Trp		
545	550	555
Pro Ser Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val Arg His		
565	570	575
His Asn Met His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala Leu		
580	585	590

<210> 335
 <211> 256
 <212> PRT
 <213> Homo sapiens

<400> 335

Met	Gln	His	His	His	His	Gly	Ser	Asp	Val	Arg	Asp	Leu	Asn		
									5	10			15		
Ala	Leu	Leu	Pro	Ala	Val	Pro	Ser	Leu	Gly	Gly	Gly	Gly	Cys	Ala	
									20	25			30		
Leu	Pro	Val	Ser	Gly	Ala	Ala	Gln	Trp	Ala	Pro	Val	Leu	Asp	Phe	Ala
									35	40			45		
Pro	Pro	Gly	Ala	Ser	Ala	Tyr	Gly	Ser	Leu	Gly	Gly	Pro	Ala	Pro	Pro
									50	55			60		
Pro	Ala	Pro	His	Ser	Phe	Ile	Lys								
											65	70	75		80
Gln	Glu	Pro	Ser	Trp	Gly	Gly	Ala	Glu	Pro	His	Glu	Glu	Gln	Cys	Leu
									85	90			95		
Ser	Ala	Phe	Thr	Val	His	Phe	Ser	Gly	Gln	Phe	Thr	Gly	Thr	Ala	Gly
									100	105			110		
Ala	Cys	Arg	Tyr	Gly	Pro	Phe	Gly	Pro	Pro	Pro	Ser	Gln	Ala	Ser	
									115	120			125		
Ser	Gly	Gln	Ala	Arg	Met	Phe	Pro	Asn	Ala	Pro	Tyr	Leu	Pro	Ser	Cys
									130	135			140		
Leu	Glu	Ser	Gln	Pro	Ala	Ile	Arg	Asn	Gln	Gly	Tyr	Ser	Thr	Val	Thr
									145	150			155		160
Phe	Asp	Gly	Thr	Pro	Ser	Tyr	Gly	His	Thr	Pro	Ser	His	His	Ala	Ala
									165	170			175		
Gln	Phe	Pro	Asn	His	Ser	Phe	Lys	His	Glu	Asp	Pro	Met	Gly	Gln	Gln
									180	185			190		
Gly	Ser	Leu	Gly	Glu	Gln	Gln	Tyr	Ser	Val	Pro	Pro	Val	Tyr	Gly	
									195	200			205		
Cys	His	Thr	Pro	Thr	Asp	Ser	Cys	Thr	Gly	Ser	Gln	Ala	Leu	Leu	Leu
									210	215			220		
Arg	Thr	Pro	Tyr	Ser	Ser	Asp	Asn	Leu	Tyr	Gln	Met	Thr	Ser	Gln	Leu
									225	230			235		240
Glu	Cys	Met	Thr	Trp	Asn	Gln	Met	Asn	Leu	Gly	Ala	Thr	Leu	Lys	Gly
									245	250			255		

<210> 336
 <211> 188
 <212> PRT
 <213> Homo sapiens

<400> 336

Met	Gln	His	His	His	His	His	Ser	Thr	Gly	Tyr	Glu	Ser	Asp		
									5	10			15		
Asn	His	Thr	Thr	Pro	Ile	Leu	Cys	Gly	Ala	Gln	Tyr	Arg	Ile	His	Thr
									20	25			30		
His	Gly	Val	Phe	Arg	Gly	Ile	Gln	Asp	Val	Arg	Arg	Val	Pro	Gly	Val
									35	40			45		

Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser Glu Lys Arg Pro
 50 55 60
 Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys Leu Ser
 65 70 75 80
 His Leu Gln Met His Ser Arg Lys His Thr Gly Glu Lys Pro Tyr Gln
 85 90 95
 Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Phe Arg Ser Asp Gln Leu
 100 105 110
 Lys Arg His Gln Arg Arg His Thr Gly Val Lys Pro Phe Gln Cys Lys
 115 120 125
 Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr
 130 135 140
 Arg Thr His Thr Gly Glu Lys Pro Phe Ser Cys Arg Trp Pro Ser Cys
 145 150 155 160
 Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val Arg His His Asn Met
 165 170 175
 His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala Leu
 180 185

<210> 337

<211> 324

<212> DNA

<213> Homo sapiens

<400> 337

atgcagcatt accaccatca ccacgggtcc gacgtgcggg acctgaacgc actgctgccg 60
 gcagttccat ccctgggtgg cgggtggaggc tgcgcactgc cggttagcgg tgcagcacag 120
 tgggctccag ttctggactt cgacccgcct ggtgcatccg catacgggttc cctgggtgg 180
 ccagcacctc cgcccgcaac gccccccaccg cctccaccgc ccccgcaactc cttcatcaaa 240
 caggaaccta gctgggggtgg tgcagaaccg cacgaagaac agtgcctgag cgcatctga 300
 gaattctgca gatatccatc acac 324

<210> 338

<211> 462

<212> DNA

<213> Homo sapiens

<400> 338

atgcagcatt accaccatca ccaccacgaa gaacagtgc tgagcgcatt caccgttcac 60
 ttctccggcc agttcactgg cacagccgga gcctgtcgct acggggccctt cggtcctcct 120
 ccccccagcc aggcgtcattc cggccaggcc aggtatttt ctaacgcgcc ctacctgccc 180
 agtgcctcg agagccagcc cgttattcgc aatcagggtt acacgcggt caccttcgac 240
 gggacgccccca gctacggtca cacgcctcg caccatgcgg cgcatgtccc caaccactca 300
 ttcaagcatg aggtatccat gggccagcag ggctcgctgg gtgagcagca gtactcggtg 360
 cccggggccgg tctatggctg ccacaccccc accgacagct gcacccggcag ccaggcttg 420
 ctgctgagga cgccctacag cagtgacaat ttatactgat ga 462

<210> 339

<211> 405

<212> DNA

<213> Homo sapiens

<400> 339

atgcagcatt accaccatca ccaccaggct ttgctgctga ggacgcccata cagcagtgcac 60

aatttatacc aaatgacatc ccagcttcaa tgcacatgaccc ggaatcagat gaacttagga 120
 gccaccctaa aaggccacag cacagggtaa gagagcgata accacacaac gcccattcctc 180
 tgcggagccc aatacagaat acacacgcac ggtgtttca gaggcattca ggtatgtgcga 240
 cgtgtgcctg gagtagcccc gactttgttca cggtcgccat ctgagaccag tgagaaacgc 300
 cccttcatgt gtgcttaccc aggctgcaat aagagatatt ttaagctgtc ccacttacag 360
 atgcacagca ggaagcacac tggtgagaaa ccataccagt gatga 405

<210> 340
 <211> 339
 <212> DNA
 <213> Homo sapiens

<400> 340
 atgcagcatc accaccatca ccaccacagc aggaagcaca ctggtgagaa accataccag 60
 tgtgacttca aggactgtga acgaaggattt tttcggttca accagctaa aagacaccaa 120
 aggagacata caggtgtgaa accattccag tgtaaaactt gtcagcgaaa gttctcccg 180
 tccgaccacc tgaagaccca caccaggact catacaggtg aaaagccctt cagctgtcgg 240
 tggccaagtt gtcagaaaaa gtttgcccg tcagatgaat tagtccgcca tcacaacatg 300
 catcagagaa acatgaccaa actccagct ggcgtttga 339

<210> 341
 <211> 1110
 <212> DNA
 <213> Homo sapiens

<400> 341
 atgcagcatc accaccatca ccaccactcc ttcatcaaacc aggaaccgag ctgggtgg 60
 gcagaaccgc acgaagaaca gtgcctgagc gcattcaccg ttcacttctc cggccagtcc 120
 actggcacag ccggagccctg tcgctacggg cccttcggc ctcctccggc cagccaggcg 180
 tcataccggcc aggccaggat gttcctaacc gcgcctacc tgcccagctg cctcgagagc 240
 cagcccgcta ttgcataatca gggttacagc acggtcaccc tcgacgggac gcccagctac 300
 ggtcacacgc cctcgccacca tgccggcgcag ttcccaacc actcattcaa gcatgaggat 360
 cccatggcc accagggtctc gctgggttag cagcagtaact cggtgccgccc cccggcttat 420
 ggctgccaca ccccccaccga cagctgacc ggcaggccagg ctttgcgtgct gaggacgccc 480
 tacagcgtg acaatttata ccaaattgaca tcccagttt aatgcatgac ctgaaatcag 540
 atgaacttag gagccaccc aaagggccac agcacaggat acgagagcga taaccacaca 600
 acgccccatcc tctgcggagc ccaatacaga atacacacgc acgggtctt cagaggcatt 660
 caggatgtgc gacgtgtgcc tggagtagcc cccactttg tacggcggc atctgagacc 720
 agtgagaaac gccccttcat gtgtgtttac ccaggctgca ataagagata tttaagctg 780
 tcccacttac agatgcacag caggaagcac actgggtgaga aaccatacca gtgtgacttc 840
 aaggactgtg aacgaaggat ttttcgttca gaccagctca aaagacacca aaggagacat 900
 acaggtgtga aaccatttcca gtgtaaaact tgcacccgaa agttctcccg gtccgaccac 960
 ctgaagaccc acaccaggac tcatacaggt gaaaagccct tcagctgtcgg tgcccaagt 1020
 tgtcagaaaaa agtttgcggc gtcagatgaa tttagtccgcca atcacaacat gcatcagaga 1080
 aacatgacca aactccagct ggcgtttga 1110

<210> 342
 <211> 99
 <212> PRT
 <213> Homo sapiens

```

<400> 342
Met Gln His His His His His Gly Ser Asp Val Arg Asp Leu Asn
      5           10           15
Ala Leu Leu Pro Ala Val Pro Ser Leu Gly Gly Gly Gly Cys Ala
      20          25          30
Leu Pro Val Ser Gly Ala Ala Gln Trp Ala Pro Val Leu Asp Phe Ala
      35          40          45
Pro Pro Gly Ala Ser Ala Tyr Gly Ser Leu Gly Gly Pro Ala Pro Pro
      50          55          60
Pro Ala Pro Pro Pro Pro Pro Pro Pro His Ser Phe Ile Lys
      65          70          75          80
Gln Glu Pro Ser Trp Gly Gly Ala Glu Pro His Glu Glu Gln Cys Leu
      85          90          95
Ser Ala Phe

```

<210> 343
<211> 152
<212> PRT
<213> *Homo sapiens*

<210> 344
<211> 133
<212> PRT
<213> *Homo sapiens*

<400> 344
Met Gln His His His His His Gln Ala Leu Leu Leu Arg Thr Pro
5 10 15
Tyr Ser Ser Asp Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met
20 25 30

Thr Trp Asn Gln Met Asn Leu Gly Ala Thr Leu Lys Gly His Ser Thr
 35 40 45
 Gly Tyr Glu Ser Asp Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln
 50 55 60
 Tyr Arg Ile His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg
 65 70 75 80
 Arg Val Pro Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr
 85 90 95
 Ser Glu Lys Arg Pro Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg
 100 105 110
 Tyr Phe Lys Leu Ser His Leu Gln Met His Ser Arg Lys His Thr Gly
 115 120 125
 Glu Lys Pro Tyr Gln
 130

<210> 345
 <211> 112
 <212> PRT
 <213> Homo sapiens

<400> 345
 Met Gln His His His His His Ser Arg Lys His Thr Gly Glu
 5 10 15
 Lys Pro Tyr Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Phe Arg
 20 25 30
 Ser Asp Gln Leu Lys Arg His Gln Arg Arg His Thr Gly Val Lys Pro
 35 40 45
 Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu
 50 55 60
 Lys Thr His Thr Arg Thr His Thr Gly Glu Lys Pro Phe Ser Cys Arg
 65 70 75 80
 Trp Pro Ser Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val Arg
 85 90 95
 His His Asn Met His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala Leu
 100 105 110

<210> 346
 <211> 369
 <212> PRT
 <213> Homo sapiens

<400> 346
 Met Gln His His His His His Ser Phe Ile Lys Gln Glu Pro
 5 10 15
 Ser Trp Gly Gly Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe
 20 25 30
 Thr Val His Phe Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg
 35 40 45
 Tyr Gly Pro Phe Gly Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln
 50 55 60
 Ala Arg Met Phe Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser
 65 70 75 80

Gln Pro Ala Ile Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly
 85 90 95
 Thr Pro Ser Tyr Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro
 100 105 110
 Asn His Ser Phe Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Leu
 115 120 125
 Gly Glu Gln Gln Tyr Ser Val Pro Pro Pro Val Tyr Gly Cys His Thr
 130 135 140
 Pro Thr Asp Ser Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr Pro
 145 150 155 160
 Tyr Ser Ser Asp Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met
 165 170 175
 Thr Trp Asn Gln Met Asn Leu Gly Ala Thr Leu Lys Gly His Ser Thr
 180 185 190
 Gly Tyr Glu Ser Asp Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln
 195 200 205
 Tyr Arg Ile His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg
 210 215 220
 Arg Val Pro Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr
 225 230 235 240
 Ser Glu Lys Arg Pro Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg
 245 250 255
 Tyr Phe Lys Leu Ser His Leu Gln Met His Ser Arg Lys His Thr Gly
 260 265 270
 Glu Lys Pro Tyr Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Phe
 275 280 285
 Arg Ser Asp Gln Leu Lys Arg His Gln Arg Arg His Thr Gly Val Lys
 290 295 300
 Pro Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His
 305 310 315 320
 Leu Lys Thr His Thr Arg Thr His Thr Gly Glu Lys Pro Phe Ser Cys
 325 330 335
 Arg Trp Pro Ser Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val
 340 345 350
 Arg His His Asn Met His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala
 355 360 365
 Leu

<210> 347
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Primer

<400> 347
 ggctccgacg tgcgggacct g

<210> 348
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>		
<223> Primer		
<400> 348		
gaattctcaa agcgccagct ggagtttgg	30	
<210> 349		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 349		
ggctccgacg tgcgggacct g	21	
<210> 350		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 350		
gaattctcaa agcgccagct ggagtttgg	30	
<210> 351		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 351		
cacagcacag ggtacgagag c	21	
<210> 352		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 352		
gaattctcaa agcgccagct ggagtttgg	30	
<210> 353		
<211> 29		
<212> DNA		

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 353	29
cacgaagaac agtgcctgag cgcatcac	
<210> 354	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 354	32
ccggcgaatt catcagtata aattgtcact gc	
<210> 355	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 355	24
caggctttgc tgctgaggac gccc	
<210> 356	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 356	34
cacggagaat tcatcaactgg tatggttct cacc	
<210> 357	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 357	28
cacagcagga agcacactgg tgagaaac	
<210> 358	
<211> 30	

<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 358		
ggatatctgc agaattctca aagcgccagc		30
<210> 359		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 359		
cactccttca tcaaacagga ac		22
<210> 360		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 360		
ggatatctgc agaattctca aagcgccagc		30
<210> 361		
<211> 33		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 361		
ggttccgacg tgcgggacct gaacgcactg ctg		33
<210> 362		
<211> 40		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 362		
ctgccggcag cagtgcgttc aggtcccgca cgtcgaaacc		40
<210> 363		

<211> 35		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 363		
ccggcagttc catccctggg tggcggtgga ggctg		35
<210> 364		
<211> 38		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 364		
cggcagtgcg cagcctccac cgccacccag ggatggaa		38
<210> 365		
<211> 35		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 365		
cgcactgccg gtttagcggtg cagcacagtg ggctc		35
<210> 366		
<211> 33		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 366		
cagaactgga gcccaactgtg ctgcaccgct aac		33
<210> 367		
<211> 38		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 367		
cagttctgga cttcgcacccg cctggtgcat ccgcatac		38

<210> 368		
<211> 39		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 368		
cagggAACCG tatgcggatg caccaggcgg tgcgaagtc		39
<210> 369		
<211> 38		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 369		
ggttccctgg gtggtccAGC acctccgccc gcaacGCC		38
<210> 370		
<211> 38		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 370		
ggcggtgggg gcgttgcggg cggaggtgt ggaccacc		38
<210> 371		
<211> 40		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 371		
cccacccgcct ccaccgcccc cgcactcctt catcaaacag		40
<210> 372		
<211> 39		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 372		
ctagggttcct gtttgcgtttt ggatgcggg ggcgggttggaa		39

<210> 373	
<211> 38	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 373	38
gaacctagct ggggtggtgc agaaccgcac gaagaaca	
<210> 374	
<211> 39	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 374	39
ctcaggcact gttttcgtg cggttctgca ccacccag	
<210> 375	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 375	32
gtgcctgagc gcattctgag aattctgcag at	
<210> 376	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 376	34
gtgtgatgga tatctgcaga attctcagaa tgcg	
<210> 377	
<211> 1292	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> 253, 256, 517, 518, 520, 521, 522, 743, 753, 754,	

758

<223> n = A,T,C or G

<400> 377

atgggctccg acgttcgtga cctgagcgcg ctgctccgg cagttccgtc cctgggtgat 60
 ggtgggtgtt ggcactgccc ggttagcggt gcagcacagt gggtccgggt tctggacttc 120
 gcaccggccgg gtgcacccgc acacgggtcc ctgggtggtc cggcgccggc gtcggcaccg 180
 ccgcccggccgc cgccggccgc gcccactcc ttcatcaaac aggaccgag ctgggggtggc 240
 gcgaaactgc ackaakaaca gtacactgagc gcgttccaccg ttcactcctc cggtcaggtt 300
 cactggcactg gcccggccgt gtcgctacgg gcccctcggc cccctccgc ccagccaggc 360
 gtcatccggc caggccagga tgtctcttag cgcccccgtc ctgcccagcc gcctcgagag 420
 ccagcccgct acccgcaatc gggctacag cacggtcacc ttgcacgggg cgtccggcta 480
 cggtcacacacg ccctcgaccc atgcggcgca gttctcsmar yyactcgta ggcgtgagga 540
 tcccatgggc cagcagggtc cgctgggtga gcagcagtgc tcggcgccgc ccccgccctg 600
 tggccggccac accccccggc acagctgcgc cggcagccag gcttgcgtc tgagggcgcc 660
 ctgtagcagc gacggtttat accaagtgcac gtcccagctt gagtgcatgg cctggagtca 720
 gatgagectc gggggccct tamggggcca cakyacargg tacgagagcg atgatcacac 780
 aacgcccggc ctctgcggag cccaaatacag aatacacacg cacgggtgcct tcagggcggt 840
 tcaggggtgtg cgccgtgtgc ctggagtagc cccgacttt gtacgggtcg catctgaggc 900
 cagtgaggaa cgccccctca tgtgtgctta cccagggtgc aataggaggt atctgaagct 960
 gccccgctta cagatgcacg gtaggaagca cgctgggtgag agaccatacc agtgtgactt 1020
 caaggactgt ggacggaggt ttttctgctc agaccggctc aaaagacacc aggggaggca 1080
 tacagatgtg aagccattcc agcgtaaagac ctgtcagcga gggttctccc ggcacaacca 1140
 cctgaagacc cacggccagga ctcatgcagg tgaaaagccc cccagctgtc ggtggcaga 1200
 ttgtcagaga aaggctgccc ggtcaagtga gttggccgc catcgacata tgcatacaga 1260
 gggcatgacc gaactccagc tggcgctttg aa 1292

<210> 378

<211> 1291

<212> DNA

<213> Homo sapiens

<400> 378

atgggctccg acgttcgtga cctaaacgca ctgctccgg cagttccgtc cccgggtggt 60
 ggtgggtgtt ggcactgccc ggttagcggt gcaacacagt gggtccgggt tctggacttc 120
 gtaccggccgg gtgcgcctgt atgcgggtcc ctgggtggcc cggcaccggc gccagcgccg 180
 ccgcccgtgc cgccggccgc gtgcactcc ttcatcaaac aggaccgag ttgggggtgg 240
 acagagccgc acgcaggaca gggccggagc gcactcggtc ctcaactcctc cggccagttc 300
 actggcacag cccggagcctg tcgctacggg cccttcggc ctccctccgc cagccaggcg 360
 tcatccggcc aggccaggat gttcctaacc ggcgcctacc tgcccagctg cctcgagagc 420
 cagcccgcta ttgcacatca gggttacagc acggtcaccc tcgacgggac gcccagctac 480
 ggtcacacgc cctcgcacca tgccggcgcag ttcccccaacc actcatccaa gcatgaggac 540
 cccatggggc agcagggtc gcccgggtgag cagcagttact cggcgccgc cccggctgtc 600
 ggctgcccga ccccccaccgg cagctgcacc ggcagccagg ctttgcgtct gagggcgccc 660
 tacagcggtg gcgatctaca ccaaaccgaca tcccagctt gacacatggc ctggaatcag 720
 acgaacttag gagccacatt aaaggccac ggcacagggt acgagagcga tgaccacaca 780
 acgccccatcc tctgcggaaac ccagtacagg atacgcgcgc gccggcgtcct cccgggtact 840
 caggatgtgc ggtgtgtgcc tgggggtggcc cccgacttt tgccgtcgcc atctgagacc 900
 agtggagaagc gccccctcat gtgtgcctac ccaggctgca ataagagaca cttaagccg 960
 tcccgcttgc ggggtgcgcgg caggagcgc actggtgaga aaccatacca ggcgcacttc 1020
 aaggaccgtg gacgagggtct tctccgttca gaccagctca aaaggccacca gagggggcat 1080
 acaggtgtga aaccctctcca gtgtgaagct tgacggcgga gggcccccgg acccgccac 1140
 ctgaaggtcc acaccaggac ccatacaggt ggagaccct tcaagtgtcg gtggccaagt 1200
 tgtcaggaga agtctggccg gccagatgaa tcagccggcc gtcataaacat gcatcagaga 1260

aacatgacca aactccagct ggccgtttga a

1291

<210> 379
 <211> 1281
 <212> DNA
 <213> Homo sapiens

<400> 379
 atgggctccg acgttcgtga cctgagtgca ttgctaccga cggcccccgtc cctgggtgg 60
 ggcggtgact gcacactgcc ggtagcggt acagcacagt gggctccggc cccggctcc 120
 gcacccggcc ggcgcattccg atacgattcc ctgggtggcc cggcaccggc gccggccgg 180
 ccgcggccgc cgccggccgc gccgcactcc tgccggcaac agggggccgag ctgggtgg 240
 gcagaaccgc gcgaggggca atgcctgagt gcccggccg tccgcttctc cggccgggttc 300
 accggcacag tcggagcctg tcgttatggg cccctcggtc ctccctccggc cagccaggcg 360
 ccatccggcc agaccaggat gttgcccagc gcccctatc tgtcgagttg cctcaggagc 420
 cggcccgcta tccgtatgca gggccgcagc acggcacctt cagccccggc cccagctatg 480
 gcacccaccc tcgcaccacc ggcgcagtcc cactactccc aacatgggtt cctacatggg 540
 ccagcaggc tcgctgggtg agcagcagta ctcggtgccg ccccccgtct atggctgcca 600
 caccggccacc gacagctgca cccgcagcc ggtttgtctg ctgaggacgc cctacagcag 660
 tgacaattt taccaaatttga catcccgat tgaatgcattt accttggaaatc agatgaactt 720
 aggagccacc ttaaaggggcc acagcacagg gtacgagagc gataaccaca caacgccccat 780
 cctctgcca gcccaatata gaatacacac gcacgggttc ttccagaggca ttccaggatgt 840
 ggcacgtgtg cctggagtag ccccgactt tgcgttgcacg taagggttat tttaagccgt cccacttacg 900
 gccccttggg gtgtgttacc gggctgcag taagggttat tttaagccgt cccacttacg 960
 ggtgcacago aggaagcgcg ttgggtgagac gccacggccag tgcgttgcacg agggccgtgg 1020
 acgaggccct ctccgttccgg gaccagccca agggacacca aaggagacat acaggtaacgc 1080
 aaccacttca gtgttaaggct tgcgttgcacg ggttcccccg gtccgaccac ctgaggggccc 1140
 acgcccaggc ccacacgggt gggaaagccccc tcagctggccg gtggccaagc tgccagagag 1200
 gggtcgccca gtcagaccaa tttagtccgtc atcacaacat gtatcagcga aacatgacta 1260
 aactccagct ggccgtttga a 1281

<210> 380
 <211> 3020
 <212> DNA
 <213> Homo sapiens

<400> 380
 gttcaaggca gcccacac ccgggggttc tccgcacacc gaccgcctgt ccgtcccccc 60
 acttccggcc ctccctccca cctacttattt caccaccca cccacccaga gccgggacgg 120
 cagcccgaggc gcccggggcc cgcgttcc tcgcccggat cctggacttc ctcttgcgtc 180
 aggacccggc ttccacgtgt gtccggagc cggcgcttca gcacacgcgc cgctccggc 240
 ctgggtgcctt acagcagccca gggcggcaggc ggttccggga cccggggccgc atctggccca 300
 agttaggcgc cgcggaggcc agcgttgcac gtttccgggg cccggaggagc cgcggggcgt 360
 ccgggtctga gcctcagcaa atgggttcgg acgttgcggg cctgaacgcgc ctgttgcggc 420
 ccgtccccctc cctgggtggc ggccggccgt gtggccgttgc tgcgttgcgc gccggccgt 480
 gggccgggt gtttccggg ggcgttccgc ttacgggtcg ttggggcc 540
 cccggccggcc accggctccg cccgcacccccc cgcggccggcc gccttactcc ttcatcaaacc 600
 aggagccgag ctggggccggc gcggagccgc acggaggacgc gtgcgttgcgc gccttactg 660
 tccacttttc cggccaggcc actggcacaag cccggccgttgc tgcgttgcggg cccttgcgtc 720
 ctcctccggcc cagccaggccg tcatccggcc agggccaggat gtttccataac gccgccttacc 780
 tgcccagctg cctcgagagc cagcccgcta ttgcataatc ggttacagc acggtcaccc 840
 tcgacgggac gcccagctac ggttacacgc cctcgaccca tggccggcc 900

actcattcaa gcatgaggat cccatggcc agcagggtc gctgggttag cagcagact 960
 cgggccgccc cccggcttat ggctgccaca ccccccacca cagctgcacc ggcagccagg 1020
 ctttgcgtct gaggacgccc tacagcagt acaattata ccaaattgaca tcccgactt 1080
 aatgcatgac ctggaatcag atgaacttag gagccaccc aaaggaggt gctgctgg 1140
 gctccagctc agtgaatgg acagaaggc agagcaacca cagcacagg tacgagagcg 1200
 ataaccacac aacgcccattt ctctgcggag cccaaatacag aatacacacag cacgggtt 1260
 tcagaggcat tcaggatgtg cgacgtgtgc ctggagtagc cccgactt gtacggtcgg 1320
 catctgagac cagtggaaaaa cgcggccattca tgggtgttca cccaggctgc aataagagat 1380
 attttaagct gtcccaactt cagatgcaca gcaggaagca cactggtagg aaaccatacc 1440
 agtgtgactt caaggactgt gaacgaaggt tttctcggtt agaccagctc aaaagacacc 1500
 aaaggagaca tacaggtgtg aaaccattcc agtgtaaaac ttgtcagcga aagttctccc 1560
 ggtccgacca cctgaagacc cacaccaggta ctcatacagg taaaacaagt gaaaaggccct 1620
 tcagctgtcg gtggccaagt tggtagaaaaa agtttgcgg gtcagatgaa tttagtccgccc 1680
 atcacaacat gcatcagaga aacatgacca aactccagct ggcgcttga ggggtctccc 1740
 tcggggaccg ttcaagtgtcc caggcagcac agtgtgtgaa ctgcttcaa gtctgactct 1800
 ccactccctcc tcactaaaaaa ggaaacttca gttgatcttc ttcatccaa ttccaagaca 1860
 agataccggt gcttctggaa actaccaggta gtgcctggaa gagttggct ctgcctgccc 1920
 tacttttagt tgactcacag gcccggaga agcagcta ac aatgtctgg tagttaaaag 1980
 cccattgcca tttggtctgg attttctact gtaagaagag ccatagctga tcatgtcccc 2040
 ctgacccttc ctttctttt ttatgctcg tttcgctgg gatggattt ttgtaccatt 2100
 ttctatcatg gaatattttt agggcaggac atgtgtatgt gtctgtaat gtaaacttt 2160
 tcatggttt catttactaa cagcaacagc aagaaataaa tcagagagca aggcatcg 2220
 ggtgaatctt gtctaacatt cccggaggta gcccggctc taacctggaa agcaggatgt 2280
 agttctgcca ggcaactttt aaagctcatg cattcaagc agtgaagaa agaatcagaa 2340
 ctaaccagta cttctgtata gaaatctaa agaatttttac cattcagttt attcaatgt 2400
 aacactggca cactgctttt aagaaactat gaagatctga gatttttt gttatgtttt 2460
 tgactctttt gagtggtat catatgtgtc tttatagatg tacataccctc cttgcacaaa 2520
 tggagggaa ttcatttca tcactgggac tggccttagt gtataaaaac catgctggta 2580
 tatggcttca agttgtaaaaa atgaaagtga cttaaaaaga aaataggga tggtccagga 2640
 tctccactga taagactgtt tttaagtaac ttaaggaccc ttgggtctac aagtatatgt 2700
 gaaaaaaaaatg agacttactg ggtggggaaa tccattgttt aaagatggtc gtgtgtgtgt 2760
 gtgtgtgtgt gtgtgtgtt tgggtgttt tgggtttaa gggagggaa ttattattta 2820
 ccgttgcttggcc aaattactgt gtaaatatat gtctgataat gatttgctt ttgacaacta 2880
 aaatttaggac tgtataagta ctagatgcat cactgggtt tgatcttaca agatattgt 2940
 gataaacactt aaaattgtaa cctgcatttt tcactttgtc ctcaattaaa gtctattcaa 3000
 aaggaaaaaa aaaaaaaaaaa 3020

<210> 381
 <211> 1291
 <212> DNA
 <213> Homo sapiens

<400> 381
 atgggctccg acgttcgtga cctgaacgca ctgctggccg cagttccgtc cctgggtgg 60
 ggtgggtt ggcgcactgccc ggttagcggt gcagcacagt gggctccggc tctggactt 120
 gcaccggccgg gtgcattccgc atacgggttcc ctgggtggc cggcaccggc gccggcaccg 180
 cccggccggc cgccggccggc gcccacactcc ttcatcaaaac aggaaccggc ctgggtgg 240
 gcagaaccggc acgaagaaca gtgcctgagc gcattcacgg ttcacttctc cggccaggttc 300
 actggcacag ccggggcctg tcgctacggg cccttcggc ctccctccggc cagccaggcg 360
 tcattccggcc agggccaggat gtttcttaac ggcgcctacc tgcccagctg cctcgagagc 420
 cagccggcta ttgcataatca ggggtacagc acggtcaccc tgcacgggac gcccagctac 480
 ggtcacacgc cctcgccacca tgcggcgccag ttcccccaacc actcattcaa gcatgaggat 540
 cccatgggccc agcagggtc gctgggttag cagcagactt cgggtccggc cccggcttat 600
 ggctgcccaca ccccccacca cagctgcacc ggcagccagg ctgtgttgc gaggacgccc 660

tacagcagtg acaatttata ccaaatttaca tcccagctt aatgcatttac ctgaaatcag 720
 atgaacttag gagccaccc aaaggggccac agcacagggt acgagagcga taaccacaca 780
 acgccccatcc tctgcggagc ccaatacaga atacacacgc acgtgtctt cagaggcatt 840
 caggatgtgc gacgtgtgcc tggatgtcc cccacttgc tacgggtcgcc atctgagacc 900
 agtgagaaac gccccttcat gtgtgtttac ccaggctgca ataagagata ttttaagctg 960
 tcccacttac agatgcacag caggaagcac actgggtgaga aaccatacca gtgtgacttc 1020
 aaggactgtg aacgaaggtt ttttcgttca gaccagctca aaagacacca aaggagacat 1080
 acaggtgtga aaccatttca gtgtaaaact tgtcagcgaa agttctcccg gtccgaccac 1140
 ctgaagaccc acaccagac tcatacaggt gaaaagccct tcagctgtcg gtggccaagt 1200
 tgtcagaaaa agtttgcgg gtcagatgaa tttagtccgatc atcacaacat gcatcagaga 1260
 aacatgacca aactccagct ggccgtttga g 1291

11
 10
 09
 08
 07
 06
 05
 04
 03
 02
 01

<210> 382
 <211> 1491
 <212> DNA
 <213> Homo sapiens

<400> 382
 atggcgccccc ccggcgcccg gcggcgctg ctccctgtgc tgctggcagg cttgcacat 60
 ggcgcctcag cactcttga ggatctaattt ggctccgacg ttctgtgaccc gaacgcactg 120
 ctggccggcag ttccgtccct gggtgggtt ggtgggttgcg cactgcccgt tagcggtgca 180
 gcacagtggg ctcccggttgc ggacttcgca ccggccgggtg catccgcata cggttccctg 240
 ggtgggtccgg caccggccgc ggcaccggcc ccggccggcgc cgccgcactc cttcatcaaa 300
 caggaaccga gctgggggtgg tgcagaaccg cacgaagaac agtgccttgcg cgcatttacc 360
 gttcacttct ccggccagtt cactggcaca gccggagccct gtcgttgcg gcccttcgg 420
 cctccctccgc ccagccaggc gtcatccggc caggccagga tggttccctaa cgccgcctac 480
 ctgcccagct gcctcgagag ccagcccgct attcgcaatc agggttacag cacggtcacc 540
 ttcgacggga cgcccagcta cggcacacg ccctcgaccat atgcggcgca gttcccaac 600
 cactcattca agcatgagga tcccatgggc cagcagggtt cgcgtgggtga gcagcgttac 660
 tcggtggccgc ccccggtcta tggtgtccac acccccccaccc acagctgcac cgccagccag 720
 gctttgtgc tgaggacgcc ctacagcgt gacaattttt accaaatgac atcccaagctt 780
 gaatgcatga cctggaatca gatgaactt ggagccaccc taaaggccca cagcacagg 840
 tacgagagcg ataaccacac aacgcccattt ctctgggag cccaaatcag aatacacacag 900
 cacgggtgtct tcagaggcat tcaggatgtg cgacgtgtgc ctggagtagc cccgacttt 960
 gtacgggtgg catctgagac cagtgagaaa cggcccttca tggatgttca cccaggctgc 1020
 aataagagat attttaagct gtcccaactt cagatgcaca gcaggaagca cactgggtgag 1080
 aaaccatacc agtgtgtactt caaggactgt gaacgaaggt ttttcgttca agaccagctc 1140
 aaaagacacc aaaggagaca tacaggtgtg aaaccattcc agtgtaaaac ttgtcagcga 1200
 aagttctccc ggtccgacca cctgaagacc cacaccaggc ctatcatacagg tgaaaagccc 1260
 ttcagctgtc ggtggccaaag ttgtcagaaaa aagtttgcgg ggtcagatga attagtccgc 1320
 catcacaaca tgcattcagag aaacatgacc aaactccaggc tggcgcttca taacaacatg 1380
 ttgatccccca ttgtgtggg cgggtccctg gcagggttgg tcctcatcgat cctcattgcc 1440
 tacctcatttgc caggaagag gagtcacgca ggctatcaga ccatcttagt a 1491

<210> 383
 <211> 1251
 <212> DNA
 <213> Homo sapiens

<400> 383

atggcgcccc gcagcgcccc gcgaccctg ctgctgctac tgcctgtgc tgctgctcg 60
 cctcatgcat tgcgtcagc agccatgttt atggtaaaa atggcaacgg gaccgcgtgc 120
 ataatggcca acttctctgc tgccttctca gtgaactacg acaccaagag tggccccaag 180
 aacatgacct ttgacatgtcc atcagatgcc acagtggtc tcaaccgcag ctccctgtgga 240
 aaagagaaca cttctgaccc cagtcgtg attgctttg gaagaggaca tacactcact 300
 ctcaatttca cgagaaatgc aacacgttac agcgttacg tcatgagtt tgtttataac 360
 ttgtcagaca cacaccttt ccccaatgcg agctccaaag aaatcaagac tgtggaatct 420
 ataactgaca tcagggcaga tatagataaa aaatacagat gtgttagtgg caccaggc 480
 cacatgaaca acgtgaccgt aacgctccat gatgccacca tccaggcgtt ccttccaac 540
 agcaacctca gcaggggaga gacacgctgt gaacaagaca ggccttcccc aaccacagcg 600
 ccccctgcgc caccatggcc ctcgcctca cccgtgccc agagccccc tggacaag 660
 tacaacgtga gcccaccaa cgggacatgc ctgctggcca gcatgggct gcaactgaac 720
 ctcacccatg agaggaagga caacacgacg gtgacaaggc ttctcaacat caaccccaac 780
 aagacctcgcc ctagcgggag ctgcggcgcc cacctggta ctctggagct gcacagcgag 840
 ggcaccaccc tcctgcttt ccagttcggg atgaatgc aaatcttcct gttcttagccg 900
 caagaatcc agttgaatac aattcttcct gacgccagag accctgcctt taaagctgcc 960
 aacgctccc tgcgagcgct gcagggccaca gtcggcaatt cctacaagtgc caacgccc 1020
 gagcacgtcc gtgtcacaa ggcgtttca gtcaatataat tcaaagtgtg ggtccaggct 1080
 ttcaaggtgg aagggtggcc gtttggctt gtggaggagt gtctgctgga cgagaacagc 1140
 acgctgatcc ccatcgctgt ggggtggcc ctggcggggc tggcctcat cgtcctcatc 1200
 gcctacctcg tcggcaggaa gaggagtcac gcaggctacc agactatcta g 1251

<210> 384
 <211> 228
 <212> DNA
 <213> Homo sapiens

<400> 384
 atgcagatct tcgtgaagac tctgactggg aagaccatca ccctcgaggt ggagcccg 60
 gacaccatcg agaatgtcaa ggccaaagatc caagataagg aaggcattcc tcctgatcag 120
 cagagggttga tctttgcgg aaaacagctg gaagatggtc gtaccctgtc tgactacaac 180
 atccagaaaag agtccaccatc gcacctggta ctccgtctca gaggtggg 228

<210> 385
 <211> 1515
 <212> DNA
 <213> Homo sapiens

<400> 385
 atgcagatct tcgtgaagac cctgaccggc aagaccatca ccctggaagt ggagcccg 60
 gacaccatcg aaaatgtgaa ggccaaagatc caggataaaag aaggcattcc tcccgaccag 120
 cagagggttca tctttgcagg caagcagcta gaagatggcc gcactcttc tgactacaac 180
 atccagaagg agtcgaccct gcacctggc tcctcgctca gaggtgccat gggctccgac 240
 gttcgtgacc tgaacgcact gtcggccca gttccgtccc tgggtggtgg tgggtgtgc 300
 gcactgcccgg ttagcggtgc agcacagtgg gctccgttc tggacttcgc accgcccgg 360
 gcatccgcatt acggttccct ggggtggccg gcaccggcgc cggcaccggc gcccggccg 420
 cccggccgcg actccttcatt caaaacaggaa ccgagctggg gtgggtgcaga accgcacgaa 480
 gaacagtggc ttagcgccatt caccgttac ttctccggcc agttcaactgg cacagccgga 540
 gcctgtcgct acggggccctt cgggttccct ccggcccaagcc aggcgttac ccggccaggcc 600
 aggtatgtttc ctaacgcgccc ctatctgccc agctgcctcg agagccagcc cgctattcgc 660
 aatcagggtt acagcacggc taccatcgac gggacggccca gctacggtca cacggccctcg 720
 caccatcgcc cgcaatccca accactca ttcaagcatg agatcccat gggccagcag 780

ggctcgctgg gtgagcagca gtactcggtg ccgccccgg tctatggctg ccacacccc 840
 accgacagct gcaccggcag ccaggcttg ctgctgagga cgcctacag cagtacaat 900
 ttataccaaa tgacatccca gcttgaatgc atgaccttgc atcagatgaa cttaggagcc 960
 accttaaagg gccacacac aggtacgag agcgataacc acacaacgac catcctctgc 1020
 ggagcccaat acagaataca cacgcacggc gtcttcagag gcattcagga tgtgcacgt 1080
 gtgcctggag tagccccgac tcttgcacgg tcggcatctg agaccagtga gaaaccccc 1140
 ttcatgtgtg cttacccagg ctgcaataag agatattta agtgcaccc cttacagatg 1200
 cacagcagga agcacactgg tgagaaacca taccagtgtg acttcaagga ctgtgaacga 1260
 aggtttttc gttcagacca gctaaaaga caccaaaagga gacatacagg tgtgaaacca 1320
 ttccagtgtt aaacttgta gcgaaagttc tcccggtccg accacctgaa gaccacacc 1380
 aggactata caggtaaaa gcccggcagc tgtcgggtgc caagttgtca gaaaaagttt 1440
 gcccggcag atgaattagt ccgcacatcac aacatgcac agagaaacat gaccaactc 1500
 cagctggcgc tttga 1515

<210> 386
 <211> 648
 <212> DNA
 <213> Homo sapiens

<400> 386
 atgcactcct tcatcaaaca ggaaccgagc tgggggtggtg cagaaccgca cgaagaacag 60
 tgcctgagcg cattcaccgt tcacttctcc ggccagttca ctggcacagc cggagcctgt 120
 cgctacgggc ccttcggtcc tcctccggcc agccaggcgt catccggcca ggccaggatg 180
 tttcctaacg cgccctaccc gcccagctgc ctcgagagcc agcccgctat tcgcaatcag 240
 gtttacagca cggtcaccc cgacgggacg cccagctacg gtcacacgac ctcgcaccat 300
 gccccgcagt tcccccaacca ctcatcaag catgaggatc ccatgggcca gcagggctcg 360
 ctgggtgagc agcagtactc ggtgcccggcc ccggcttatg gtcgcacac cccaccgac 420
 agctgcaccc gcagccaggc tttgctgtc aggacccc acagcagtga caatttatac 480
 caaatgacat cccagcttga atgcatgacc tggaaatcaga tgaacttagg agccaccta 540
 aaggccaca gcacagggtt cggagacgt aaccacacaa cggccatcct ctgcggagcc 600
 caatacagaa tacacacgca cgggttcttcc agaggcattc agatgtgcg acgtgtgc 660

<210> 387
 <211> 1089
 <212> DNA
 <213> Homo sapiens

<400> 387
 atgcactcct tcatcaaaca ggaaccgagc tgggggtggtg cagaaccgca cgaagaacag 60
 tgcctgagcg cattcaccgt tcacttctcc ggccagttca ctggcacagc cggagcctgt 120
 cgctacgggc ccttcggtcc tcctccggcc agccaggcgt catccggcca ggccaggatg 180
 tttcctaacg cgccctaccc gcccagctgc ctcgagagcc agcccgctat tcgcaatcag 240
 gtttacagca cggtcaccc cgacgggacg cccagctacg gtcacacgac ctcgcaccat 300
 gccccgcagt tcccccaacca ctcatcaag catgaggatc ccatgggcca gcagggctcg 360
 ctgggtgagc agcagtactc ggtgcccggcc ccggcttatg gtcgcacac cccaccgac 420
 agctgcaccc gcagccaggc tttgctgtc aggacccc acagcagtga caatttatac 480
 caaatgacat cccagcttga atgcatgacc tggaaatcaga tgaacttagg agccaccta 540
 aaggccaca gcacagggtt cggagacgt aaccacacaa cggccatcct ctgcggagcc 600
 caatacagaa tacacacgca cgggttcttcc agaggcattc agatgtgcg acgtgtgc 660
 ggagtagccc cgactctgt acggtcggca tctgagacca gtgagaaacg ccccttcatt 720
 tgtgcttacc caggctgcaa taagagatat tttaagctgt cccacttaca gatgcacac 780
 aggaagcaca ctggtgagaa accataccag tgtgactca aggactgtga acgaaggttt 840
 ttccgttccatc accagctcaa aagacaccaa aggagacata caggtgtgaa accattccat 900

tgtaaaactt gtcagcgaaa gttctccgg tccgaccacc tgaagaccca caccaggact 960
 catacaggtg aaaagccctt cagctgtcg tggcaagtt gtcaaaaaaa gttgcccgg 1020
 tcagatgaat tagtccgcca tcacaacatg catcagagaa acatgaccaa actccagctg 1080
 gcgcgttga 1089

<210> 388

<211> 1035

<212> DNA

<213> Homo sapiens

<400> 388

atgacggccg cgtccgataa cttccagctg tcccagggtg ggcagggatt cgccattccg 60
 atcgggcagg cgatggcgat cgccggccag atcaagcttc ccaccgttca tattcggcct 120
 accgccttcc tcggcttggg tggatcgac aacaacggca acggcgcacg agtccaacgc 180
 gtggtcggga ggcgtccggc ggcaagtctc ggcatcttca cccggcgacgt gatcaccgcg 240
 gtcgacggcg ctccgatcaa ctccggccacc gcgatggcg gacgcgttac cgggcatcat 300
 cccgggtgacg tcatctcggt gacctggcaa accaagtctgg gccgcacgcg tacagggAAC 360
 gtgacattgg ccgagggacc cccggccgaa ttccacttcc tcatcaaaaca ggaaccgagc 420
 tgggggtgtg cagaaccgca cgaagaacag tgcctgagcg catttaccgt tcacttctcc 480
 ggcacgttca ctggcacacg cggagcctgt cgctacggc ctttccgttcc tccctccccc 540
 agccaggcgt catccggca ggcaggatg tttccataacg cgcccttacct gcccagctgc 600
 ctcgagagcc agcccgctat tcgcaatcag gtttacagca cggtcacctt cgacgggacg 660
 cccagactacg gtcacacgcc ctcgcaccat gcccggcgacgt tcccaacca ctcattcaag 720
 catgaggatc ccatggggca gcagggtctg ctgggtgagc agcagtaactc ggtgccccc 780
 ccggctatcg gctgccacac cccaccgac agctgcaccg gcaaggccaggc ttgtctgctg 840
 aggacgcctt acagcagtga caatttatac caaatgacat cccagcttga atgcatgacc 900
 tggaatcaga tgaacttagg agccaccta aaggggccaca gcacagggtt cggagcgat 960
 aaccacacaa cgcccatctt ctggggagcc caatacagaa tacacacgcg cggtgttcc 1020
 agaggcattt agtga 1035

<210> 389

<211> 1263

<212> DNA

<213> Homo sapiens

<400> 389

atgacggccg cgtccgataa cttccagctg tcccagggtg ggcagggatt cgccattccg 60
 atcgggcagg cgatggcgat cgccggccag atcaagcttc ccaccgttca tattcggcct 120
 accgccttcc tcggcttggg tggatcgac aacaacggca acggcgcacg agtccaacgc 180
 gtggtcggga ggcgtccggc ggcaagtctc ggcatcttca cccggcgacgt gatcaccgcg 240
 gtcgacggcg ctccgatcaa ctccggccacc gcgatggcg gacgcgttac cgggcatcat 300
 cccgggtgacg tcatctcggt gacctggcaa accaagtctgg gccgcacgcg tacagggAAC 360
 gtgacattgg ccgagggacc cccggccgaa ttccctgg tggcgccgg cagcccgatg 420
 ggctccgacg ttccggaccc gaacgcactg ctggccggcag ttccgtccct ggggtgtgt 480
 ggtgggtcg cactgccgt tagcggtgca gcacagtggg ttccgggttct ggacttcgca 540
 ccggccgggtg catccgcata cggcccttcc ggtggccgg caccggccgc ggcaccggc 600
 ccggccggcgc cgccggccgc gcactccctt atcaaacagg aaccgagctg ggggtgtca 660
 gaaccgcacg aagaacagtg cctgagcgca ttccgggttcc acttctccgg ccagttact 720
 ggcacagccg gggccgtcg ctacggggcc ttccgggttcc ttccggcccg ccaggcgtca 780
 tccggccagg ccaggatgtt ttccaaacgcg ccctacccgc ccagctgcct cggagggcc 840
 cccgcttattt gcaatcaggg ttacagcgac gtcacccgttcc acggggccgc cagctacgg 900
 cacacgcctt cgccaccatgc ggcgcgttcc cccaaaccact cattcaagca tgaggatccc 960
 atggggccagg agggctcgct ggggtgagcg cagttactgg tggccggccccc ggtctatggc 1020
 tgccacaccc ccaccggacag ctggccggc agccaggctt tgctgtcgag gacgccttac 1080

agcagtgaca atttatacc aatgacatcc cagcttgaat gcatgacctg gaatcagatg 1140
 aacttaggag ccacctaaa gggccacagc acagggtacg agagcgataa ccacacaacg 1200
 cccatcctct gcggagccca atacagaata cacacgcacg gtgtcttcag aggcattcag 1260
 tga 1263

<210> 390

<211> 1707

<212> DNA

<213> Homo sapiens

<400> 390

atgacggccg cgtccgataa cttccagctg tcccagggtg ggcagggatt cgccattccg 60
 atcgggcagg cgatggcgt cgccggccag atcaagcttc ccaccgttca tattcggcct 120
 accgccttcc tcggcttggg tgggtgcac aacaacggca acggcgcacg agtccaaacgc 180
 gtggtcgggaa ggcgtccggc ggcaagtctc ggcacatctca ccggcgcacgt gatcaccgcg 240
 gtcgacggcg ctccgatcaa ctccgcccacc gcgatggcg acgcgcctaa cgggcattcat 300
 cccgggtgacg tcatctcggt gacctggcaa accaagtctgg ggggcacgcg tacagggaaac 360
 gtgacattgg ccgagggacc cccggccgaa ttcccgctgg tgccgcgcgg cagcccgtatg 420
 ggctccgacg ttccggacct gaacgcactg ctgcggcag ttccgtccct gggtggtgg 480
 ggtggttgcg cactgcccgt tagcggtgca gcacagtggg ctccgggttct ggacttcgca 540
 ccgcgggtg catccgatca cgggtccctg ggtggtccgg caccgcgcgc ggcaccgcg 600
 ccgcgcgcgc cggccgcgc gcactccttc atcaaacagg aaccgagctg gggtggtgca 660
 gaaccgcacg aagaacagt cctgagcgc ttacccgttc acttctccgg ccagttcact 720
 ggcacagccg gagcctgtcg ctacgggccc ttccgtccct ctccgcggcag ccaggcgtca 780
 tccggccagg ccaggatgtt tcctaacgcg ccctaccgtc ccagctgcct cggagaccag 840
 ccccttattc gcaatcaggg ttacagcactg gtcacccgt acgggacgc cagctacgg 900
 cacacgcct cgcaccatgc ggcgcgttc cccaaaccact cattcaagca tgaggatccc 960
 atgggccagc agggctcgct gggtgagcag cagtaactcg tgccgcggg ggtctatggc 1020
 tgccacaccc ccaccgacag ctgcaccggc agccaggctt tgctgctgag gacgcctac 1080
 agcagtgaca atttatacc aatgacatcc cagcttgaat gcatgacctg gaatcagatg 1140
 aacttaggag ccacctaaa gggccacagc acagggtacg agagcgataa ccacacaacg 1200
 cccatcctct gcggagccca atacagaata cacacgcacg gtgtcttcag aggcattcag 1260
 gatgtgcac gtgtgcctgg agtagccccg actcttgcac ggtcggcatc tgagaccagt 1320
 gagaaaacgcc cttcatgtg tgcttaccca ggctgcaata agagatattt taagctgtcc 1380
 cacttacaga tgcacagcag gaagcacaat ggtgagaaac cataccagt tgacttcaag 1440
 gactgtgaac gaagggtttt tcgttcagac cagctaaaaa gacacccaaag gagacataca 1500
 ggtgtgaaac cattccagtg taaaacttgt cagcgaaagt tctccggc tgaccacctg 1560
 aagaccacca ccaggactca tacaggtgaa aagccctca gctgtcggtg gccaagttgt 1620
 cagaaaaaagt ttgcccggc agatgaatta gtccggccatc acaacatgca tcagagaaac 1680
 atgacccaaac tccagctggc gctttga 1707

<210> 391

<211> 344

<212> PRT

<213> Homo sapiens

<400> 391

Met Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gly Gln Gly
 5 10 15

Phe Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Lys
 20 25 30

Leu Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly Leu Gly Val

35	40	45
Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val Val Gly Ser		
50	55	60
Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile Thr Ala		
65	70	80
Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala Asp Ala Leu		
85	90	95
Asn Gly His His Pro Gly Asp Val Ile Ser Val Thr Trp Gln Thr Lys		
100	105	110
Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly Pro Pro		
115	120	125
Ala Glu Phe His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly Ala		
130	135	140
Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe Ser		
145	150	160
Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe Gly		
165	170	175
Pro Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe Pro		
180	185	190
Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile Arg		
195	200	205
Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr Gly		
210	215	220
His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Phe Lys		
225	230	240
His Glu Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln Tyr		
245	250	255
Ser Val Pro Pro Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser Cys		
260	265	270
Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp Asn		
275	280	285
Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln Met		
290	295	300
Asn Leu Gly Ala Thr Leu Lys Gly His Ser Thr Gly Tyr Glu Ser Asp		
305	310	320
Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile His Thr		

325

330

335

His Gly Val Phe Arg Gly Ile Gln
 340

<210> 392
 <211> 568
 <212> PRT
 <213> Homo sapiens

<400> 392
 Met Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gly Gln Gly
 5 10 15
 Phe Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Lys
 20 25 30
 Leu Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly Leu Gly Val
 35 40 45
 Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val Val Gly Ser
 50 55 60
 Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile Thr Ala
 65 70 75 80
 Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala Asp Ala Leu
 85 90 95
 Asn Gly His His Pro Gly Asp Val Ile Ser Val Thr Trp Gln Thr Lys
 100 105 110
 Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly Pro Pro
 115 120 125
 Ala Glu Phe Pro Leu Val Pro Arg Gly Ser Pro Met Gly Ser Asp Val
 130 135 140
 Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro Ser Leu Gly Gly
 145 150 155 160
 Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala Gln Trp Ala Pro Val
 165 170 175
 Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr Gly Ser Leu Gly Gly
 180 185 190
 Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro Pro Pro Pro Pro His
 195 200 205
 Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly Ala Glu Pro His Glu
 210 215 220

Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe Ser Gly Gln Phe Thr
 225 230 235 240
 Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe Gly Pro Pro Pro Pro
 245 250 255
 Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe Pro Asn Ala Pro Tyr
 260 265 270
 Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile Arg Asn Gln Gly Tyr
 275 280 285
 Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr Gly His Thr Pro Ser
 290 295 300
 His His Ala Ala Gln Phe Pro Asn His Ser Phe Lys His Glu Asp Pro
 305 310 315 320
 Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln Tyr Ser Val Pro Pro
 325 330 335
 Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser Cys Thr Gly Ser Gln
 340 345 350
 Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp Asn Leu Tyr Gln Met
 355 360 365
 Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln Met Asn Leu Gly Ala
 370 375 380
 Thr Leu Lys Gly His Ser Thr Gly Tyr Glu Ser Asp Asn His Thr Thr
 385 390 395 400
 Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile His Thr His Gly Val Phe
 405 410 415
 Arg Gly Ile Gln Asp Val Arg Arg Val Pro Gly Val Ala Pro Thr Leu
 420 425 430
 Val Arg Ser Ala Ser Glu Thr Ser Glu Lys Arg Pro Phe Met Cys Ala
 435 440 445
 Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys Leu Ser His Leu Gln Met
 450 455 460
 His Ser Arg Lys His Thr Gly Glu Lys Pro Tyr Gln Cys Asp Phe Lys
 465 470 475 480
 Asp Cys Glu Arg Arg Phe Phe Arg Ser Asp Gln Leu Lys Arg His Gln
 485 490 495
 Arg Arg His Thr Gly Val Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg
 500 505 510

Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr
 515 520 525

Gly Glu Lys Pro Phe Ser Cys Arg Trp Pro Ser Cys Gln Lys Lys Phe
 530 535 540

Ala Arg Ser Asp Glu Leu Val Arg His His Asn Met His Gln Arg Asn
 545 550 555 560

Met Thr Lys Leu Gln Leu Ala Leu
 565

<210> 393

<211> 420

<212> PRT

<213> Homo sapiens

<400> 393

Met Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gly Gln Gly
 5 10 15

Phe Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Lys
 20 25 30

Leu Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly Leu Gly Val
 35 40 45

Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val Val Gly Ser
 50 55 60

Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile Thr Ala
 65 70 75 80

Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala Asp Ala Leu
 85 90 95

Asn Gly His His Pro Gly Asp Val Ile Ser Val Thr Trp Gln Thr Lys
 100 105 110

Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly Pro Pro
 115 120 125

Ala Glu Phe Pro Leu Val Pro Arg Gly Ser Pro Met Gly Ser Asp Val
 130 135 140

Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro Ser Leu Gly Gly
 145 150 155 160

Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala Gln Trp Ala Pro Val
 165 170 175

Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr Gly Ser Leu Gly Gly
 180 185 190

Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro Pro Pro Pro Pro His
 195 200 205

Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly Ala Glu Pro His Glu
 210 215 220

Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe Ser Gly Gln Phe Thr
 225 230 235 240

Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe Gly Pro Pro Pro Pro
 245 250 255

Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe Pro Asn Ala Pro Tyr
 260 265 270

Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile Arg Asn Gln Gly Tyr
 275 280 285

Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr Gly His Thr Pro Ser
 290 295 300

His His Ala Ala Gln Phe Pro Asn His Ser Phe Lys His Glu Asp Pro
 305 310 315 320

Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln Tyr Ser Val Pro Pro
 325 330 335

Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser Cys Thr Gly Ser Gln
 340 345 350

Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp Asn Leu Tyr Gln Met
 355 360 365

Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln Met Asn Leu Gly Ala
 370 375 380 385

Thr Leu Lys Gly His Ser Thr Gly Tyr Glu Ser Asp Asn His Thr Thr
 390 395 400

Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile His Thr His Gly Val Phe
 405 410 415

Arg Gly Ile Gln
 420

<210> 394
 <211> 362
 <212> PRT
 <213> Homo sapiens

<400> 394
 Met His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly Ala Glu Pro

5	10	15
His Glu Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe Ser Gly Gln		
20	25	30
Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe Gly Pro Pro		
35	40	45
Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe Pro Asn Ala		
50	55	60
Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile Arg Asn Gln		
65	70	75
Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr Gly His Thr		
85	90	95
Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Phe Lys His Glu		
100	105	110
Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln Tyr Ser Val		
115	120	125
Pro Pro Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser Cys Thr Gly		
130	135	140
Ser Gln Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp Asn Leu Tyr		
145	150	155
160		
Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln Met Asn Leu		
165	170	175
Gly Ala Thr Leu Lys Gly His Ser Thr Gly Tyr Glu Ser Asp Asn His		
180	185	190
Thr Thr Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile His Thr His Gly		
195	200	205
Val Phe Arg Gly Ile Gln Asp Val Arg Arg Val Pro Gly Val Ala Pro		
210	215	220
Thr Leu Val Arg Ser Ala Ser Glu Thr Ser Glu Lys Arg Pro Phe Met		
225	230	235
240		
Cys Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys Leu Ser His Leu		
245	250	255
Gln Met His Ser Arg Lys His Thr Gly Glu Lys Pro Tyr Gln Cys Asp		
260	265	270
Phe Lys Asp Cys Glu Arg Arg Phe Phe Arg Ser Asp Gln Leu Lys Arg		
275	280	285
His Gln Arg Arg His Thr Gly Val Lys Pro Phe Gln Cys Lys Thr Cys		

290

295

300

Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr
 305 310 315 320

His Thr Gly Glu Lys Pro Phe Ser Cys Arg Trp Pro Ser Cys Gln Lys
 325 330 335

Lys Phe Ala Arg Ser Asp Glu Leu Val Arg His His Asn Met His Gln
 340 345 350

Arg Asn Met Thr Lys Leu Gln Leu Ala Leu
 355 360

<210> 395

<211> 214

<212> PRT

<213> Homo sapiens

<400> 395

Met His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly Ala Glu Pro
 5 10 15

His Glu Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe Ser Gly Gln
 20 25 30

Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe Gly Pro Pro
 35 40 45

Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe Pro Asn Ala
 50 55 60

Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile Arg Asn Gln
 65 70 75 80

Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr Gly His Thr
 85 90 95

Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Phe Lys His Glu
 100 105 110

Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln Tyr Ser Val
 115 120 125

Pro Pro Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser Cys Thr Gly
 130 135 140

Ser Gln Ala Leu Leu Arg Thr Pro Tyr Ser Ser Asp Asn Leu Tyr
 145 150 155 160

Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln Met Asn Leu
 165 170 175

Gly Ala Thr Leu Lys Gly His Ser Thr Gly Tyr Glu Ser Asp Asn His
 180 185 190

Thr Thr Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile His Thr His Gly
 195 200 205

Val Phe Arg Gly Ile Gln
 210

<210> 396

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 396

gacgaaagca tatgcactcc ttcatcaaac

30

<210> 397

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 397

cgcgtgaatt catcaactgaa tgccctctgaa g

31

<210> 398

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 398

cgataagcat atgacggccg cgtccgataaa c

31

<210> 399

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 399

cgcgtgaatt catcaactgaa tgccctctgaa g

31

<210> 400		
<211> 31		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 400		31
cgataagcat atgacggccg cgtccgataaa c		
<210> 401		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 401		28
gtctgcagcg gccgctcaaaa gcgccagc		
<210> 402		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 402		30
gacgaaagca tatgcactcc ttcatcaaac		
<210> 403		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 403		28 .
gtctgcagcg gccgctcaaaa gcgccagc		
<210> 404		
<211> 449		
<212> PRT		
<213> Homo sapiens		
<400> 404		
Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro		
1	5	10
		15

Ser Leu Gly Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala
 20 25 30
 Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr
 35 40 45
 Gly Ser Leu Gly Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro Pro
 50 55 60
 Pro Pro Pro Pro His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly
 65 70 75 80
 Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe
 85 90 95
 Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe
 100 105 110
 Gly Pro Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe
 115 120 125
 Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile
 130 135 140
 Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr
 145 150 155 160
 Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Phe
 165 170 175
 Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln
 180 185 190
 Tyr Ser Val Pro Pro Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser
 195 200 205
 Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp
 210 215 220
 Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln
 225 230 235 240
 Met Asn Leu Gly Ala Thr Leu Lys Gly Val Ala Ala Gly Ser Ser Ser
 245 250 255
 Ser Val Lys Trp Thr Glu Gly Gln Ser Asn His Ser Thr Gly Tyr Glu
 260 265 270
 Ser Asp Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile
 275 280 285
 His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg Arg Val Pro
 290 295 300
 Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser Glu Lys
 305 310 315 320
 Arg Pro Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys
 325 330 335
 Leu Ser His Leu Gln Met His Ser Arg Lys His Thr Gly Glu Lys Pro
 340 345 350
 Tyr Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Ser Arg Ser Asp
 355 360 365
 Gln Leu Lys Arg His Gln Arg Arg His Thr Gly Val Lys Pro Phe Gln
 370 375 380
 Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr
 385 390 395 400
 His Thr Arg Thr His Thr Gly Lys Thr Ser Glu Lys Pro Phe Ser Cys
 405 410 415
 Arg Trp Pro Ser Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val
 420 425 430
 Arg His His Asn Met His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala
 435 440 445

Leu

<210> 405
 <211> 428
 <212> PRT
 <213> Homo sapiens

<400> 405
 Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro
 1 5 10 15
 Ser Pro Gly Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Thr
 20 25 30
 Gln Trp Ala Pro Val Leu Asp Phe Val Pro Pro Gly Ala Pro Val Cys
 35 40 45
 Gly Ser Leu Gly Gly Pro Ala Pro Pro Ala Pro Pro Pro Leu Pro
 50 55 60
 Pro Pro Pro Ser His Ser Phe Thr Lys Gln Glu Pro Ser Trp Gly Gly
 65 70 75 80
 Thr Glu Pro His Ala Gly Gln Gly Arg Ser Ala Leu Val Ala His Ser
 85 90 95
 Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe
 100 105 110
 Gly Pro Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe
 115 120 125
 Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile
 130 135 140
 Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr
 145 150 155 160
 Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Ser
 165 170 175
 Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Pro Gly Glu Gln Gln
 180 185 190
 Tyr Ser Ala Pro Pro Pro Val Cys Gly Cys Arg Thr Pro Thr Gly Ser
 195 200 205
 Cys Thr Gly Ser Gln Ala Leu Leu Arg Ala Pro Tyr Ser Gly Gly
 210 215 220
 Asp Leu His Gln Thr Thr Ser Gln Leu Gly His Met Ala Trp Asn Gln
 225 230 235 240
 Thr Asn Leu Gly Ala Thr Leu Lys Gly His Gly Thr Gly Tyr Glu Ser
 245 250 255
 Asp Asp His Thr Thr Pro Ile Leu Cys Gly Thr Gln Tyr Arg Ile Arg
 260 265 270
 Ala Arg Gly Val Leu Arg Gly Thr Gln Asp Val Arg Cys Val Pro Gly
 275 280 285
 Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser Glu Lys Arg
 290 295 300
 Pro Leu Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg His Phe Lys Pro
 305 310 315 320
 Ser Arg Leu Arg Val Arg Gly Arg Glu Arg Thr Gly Glu Lys Pro Tyr
 325 330 335
 Gln Arg Asp Phe Lys Asp Arg Gly Arg Gly Leu Leu Arg Pro Asp Gln
 340 345 350

Leu Lys Arg His Gln Arg Gly His Thr Gly Val Lys Pro Leu Gln Cys
 355 360 365
 Glu Ala Arg Arg Arg Pro Pro Arg Pro Gly His Leu Lys Val His Thr
 370 375 380
 Arg Thr His Thr Gly Gly Glu Pro Phe Ser Cys Arg Trp Pro Ser Cys
 385 390 395 400
 Gln Glu Lys Ser Ala Arg Pro Asp Glu Ser Ala Arg Arg His Asn Met
 405 410 415
 His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala Leu
 420 425

<210> 406
 <211> 414
 <212> PRT
 <213> Homo sapiens

<220>
 <221> VARIANT
 <222> 85, 86, 172, 173, 242, 245, 246, 247
 <223> Xaa = Any Amino Acid

<400> 406
 Met Gly Ser Asp Val Arg Asp Leu Ser Ala Leu Leu Pro Ala Val Pro
 1 5 10 15
 Ser Leu Gly Asp Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala
 20 25 30
 Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala His
 35 40 45
 Gly Pro Leu Gly Gly Pro Ala Pro Pro Ser Ala Pro Pro Pro Pro Pro
 50 55 60
 Pro Pro Pro His Ser Phe Ile Lys Gln Gly Pro Ser Trp Gly Gly
 65 70 75 80
 Ala Glu Leu His Xaa Xaa Gln Tyr Leu Ser Ala Phe Thr Val His Ser
 85 90 95
 Ser Gly Gln Val His Trp His Gly Arg Gly Leu Ser Leu Arg Ala Pro
 100 105 110
 Arg Pro Pro Ser Ala Gln Pro Gly Val Ile Arg Pro Gly Gln Asp Val
 115 120 125
 Ser Arg Ala Leu Pro Ala Gln Pro Pro Arg Glu Pro Ala Arg Tyr Pro
 130 135 140
 Gln Ser Gly Leu Gln His Gly His Leu Arg Arg Gly Val Arg Leu Arg
 145 150 155 160
 Ser His Ala Leu Ala Pro Cys Gly Ala Val Leu Xaa Xaa Thr Arg Ala
 165 170 175
 Gly Ser His Gly Pro Ala Gly Ser Ala Gly Ala Ala Val Leu Gly Ala
 180 185 190
 Ala Pro Gly Leu Trp Pro Pro His Pro Arg Arg Gln Leu Arg Arg Gln
 195 200 205
 Pro Gly Phe Ala Ala Glu Gly Ala Leu Gln Arg Arg Phe Ile Pro Ser
 210 215 220
 Asp Val Pro Ala Val His Gly Leu Glu Ser Asp Glu Pro Arg Gly Arg
 225 230 235 240
 Leu Xaa Gly Pro Xaa Xaa Xaa Val Arg Glu Arg Ser His Asn Ala Arg

245	250	255	
Pro Leu Arg Ser Pro Ile Gln Asn Thr His Ala Arg Cys Leu Gln Gly			
260	265	270	
Arg Ser Gly Cys Ala Pro Cys Ala Trp Ser Ser Pro Asp Ser Cys Thr			
275	280	285	
Val Gly Ile Gly Gln Gly Thr Pro Pro His Val Cys Leu Pro Arg Leu			
290	295	300	
Gln Glu Val Ser Glu Ala Ala Pro Leu Thr Asp Ala Arg Glu Ala Arg			
305	310	315	320
Trp Glu Thr Ile Pro Val Leu Gln Gly Leu Trp Thr Glu Val Phe Leu			
325	330	335	
Leu Arg Pro Ala Gln Lys Thr Pro Gly Glu Ala Tyr Arg Cys Glu Ala			
340	345	350	
Ile Pro Ala Asp Leu Ser Ala Arg Val Leu Pro Ala Gln Pro Pro Glu			
355	360	365	
Asp Pro Arg Gln Asp Ser Cys Arg Lys Ala Pro Gln Leu Ser Val Val			
370	375	380	
Arg Leu Ser Glu Lys Ala Cys Pro Val Lys Val Gly Pro Pro Ser Arg			
385	390	395	400
His Ala Ser Glu Gly His Asp Arg Thr Pro Ala Gly Ala Leu			
405	410		

<210> 407

<211> 417

<212> PRT

<213> Homo sapiens

<400> 407

Met Gly Ser Asp Val Arg Asp Leu Ser Ala Leu Leu Pro Thr Ala Pro			
1	5	10	15
Ser Leu Gly Gly Gly Asp Cys Thr Leu Pro Val Ser Gly Thr Ala			
20	25	30	
Gln Trp Ala Pro Val Pro Ala Ser Ala Pro Pro Gly Ala Ser Ala Tyr			
35	40	45	
Asp Ser Leu Gly Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro Pro			
50	55	60	
Pro Pro Pro Pro His Ser Cys Gly Glu Gln Gly Pro Ser Trp Gly Gly			
65	70	75	80
Ala Glu Pro Arg Glu Gly Gln Cys Leu Ser Ala Pro Ala Val Arg Phe			
85	90	95	
Ser Gly Arg Phe Thr Gly Thr Val Gly Ala Cys Arg Tyr Gly Pro Leu			
100	105	110	
Gly Pro Pro Pro Ser Gln Ala Pro Ser Gly Gln Thr Arg Met Leu			
115	120	125	
Pro Ser Ala Pro Tyr Leu Ser Ser Cys Leu Arg Ser Arg Ser Ala Ile			
130	135	140	
Arg Ser Gln Gly Arg Ser Thr Ala Pro Ser Ala Gly Arg Pro Ala Met			
145	150	155	160
Ala Pro Thr Leu Ala Pro Pro Ala Gln Ser His Tyr Ser Gln His Gly			
165	170	175	
Val Leu His Gly Pro Ala Gly Leu Ala Gly Ala Ala Val Leu Gly Ala			
180	185	190	
Ala Pro Gly Leu Trp Leu Pro His Pro His Arg Gln Leu His Arg Gln			

195	200	205													
Pro	Gly	Phe	Ala	Ala	Glu	Asp	Ala	Leu	Gln	Gln	Gln	Phe	Ile	Pro	Asn
210					215				220						
Asp	Ile	Pro	Ala	Met	His	Asp	Leu	Glu	Ser	Asp	Glu	Leu	Arg	Ser	His
225					230				235				240		
Leu	Lys	Gly	Pro	Gln	His	Arg	Val	Arg	Glu	Arg	Pro	His	Asn	Ala	His
					245				250				255		
Pro	Leu	Arg	Ser	Pro	Ile	Gln	Asn	Thr	His	Ala	Arg	Cys	Leu	Gln	Arg
					260			265				270			
His	Ser	Gly	Cys	Ala	Thr	Cys	Ala	Trp	Ser	Ser	Pro	Asp	Ser	Cys	Thr
					275			280				285			
Val	Ala	Pro	Glu	Thr	Ser	Glu	Asn	Ala	Pro	Trp	Cys	Val	Leu	Pro	Gly
					290			295			300				
Leu	Gln	Gly	Val	Phe	Ala	Val	Pro	Leu	Thr	Gly	Ala	Gln	Gln	Glu	Ala
					305			310			315			320	
His	Trp	Asp	Ala	Thr	Pro	Val	Arg	Leu	Gln	Gly	Pro	Trp	Thr	Arg	Ala
					325				330				335		
Ser	Pro	Phe	Gly	Thr	Ser	Pro	Arg	Asp	Thr	Lys	Gly	Asp	Ile	Gln	Val
					340			345				350			
Arg	Asn	His	Ser	Ser	Val	Arg	Leu	Val	Ser	Glu	Gly	Ser	Pro	Gly	Pro
					355			360			365				
Thr	Thr	Gly	Pro	Thr	Pro	Gly	Pro	Thr	Arg	Val	Gly	Ser	Pro	Ser	Ala
					370			375			380				
Ala	Gly	Gly	Gln	Ala	Ala	Arg	Glu	Gly	Ser	Pro	Ser	Gln	Thr	Asn	Ser
					385			390			395			400	
Val	Ile	Thr	Thr	Cys	Ile	Ser	Glu	Thr	Leu	Asn	Ser	Ser	Trp	Arg	Phe
					405				410				415		
Glu															

<210> 408
 <211> 429
 <212> PRT
 <213> Homo sapiens

<400> 408															
Met	Gly	Ser	Asp	Val	Arg	Asp	Leu	Asn	Ala	Leu	Leu	Pro	Ala	Val	Pro
1				5				10				15			
Ser	Leu	Gly	Gly	Gly	Gly	Cys	Ala	Leu	Pro	Val	Ser	Gly	Ala	Ala	
						20			25			30			
Gln	Trp	Ala	Pro	Val	Leu	Asp	Phe	Ala	Pro	Pro	Gly	Ala	Ser	Ala	Tyr
						35			40			45			
Gly	Ser	Leu	Gly	Gly	Pro	Ala	Pro	Pro	Ala	Pro	Pro	Pro	Pro	Pro	Pro
					50			55			60				
Pro	Pro	Pro	Pro	His	Ser	Phe	Ile	Lys	Gln	Glu	Pro	Ser	Trp	Gly	Gly
					65			70			75			80	
Ala	Glu	Pro	His	Glu	Glu	Gln	Cys	Leu	Ser	Ala	Phe	Thr	Val	His	Phe
						85			90			95			
Ser	Gly	Gln	Phe	Thr	Gly	Thr	Ala	Gly	Ala	Cys	Arg	Tyr	Gly	Pro	Phe
					100			105			110				
Gly	Pro	Pro	Pro	Pro	Ser	Gln	Ala	Ser	Ser	Gly	Gln	Ala	Arg	Met	Phe
					115			120			125				
Pro	Asn	Ala	Pro	Tyr	Leu	Pro	Ser	Cys	Leu	Glu	Ser	Gln	Pro	Ala	Ile

130	135	140
Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr		
145	150	155
Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Phe		
165	170	175
Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln		
180	185	190
Tyr Ser Val Pro Pro Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser		
195	200	205
Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp		
210	215	220
Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln		
225	230	235
Met Asn Leu Gly Ala Thr Leu Lys Gly His Ser Thr Gly Tyr Glu Ser		
245	250	255
Asp Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile His		
260	265	270
Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg Arg Val Pro Gly		
275	280	285
Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser Glu Lys Arg		
290	295	300
Pro Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys Leu		
305	310	315
Ser His Leu Gln Met His Ser Arg Lys His Thr Gly Glu Lys Pro Tyr		
325	330	335
Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Phe Arg Ser Asp Gln		
340	345	350
Leu Lys Arg His Gln Arg Arg His Thr Gly Val Lys Pro Phe Gln Cys		
355	360	365
Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His		
370	375	380
Thr Arg Thr His Thr Gly Glu Lys Pro Phe Ser Cys Arg Trp Pro Ser		
385	390	395
Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val Arg His His Asn		
405	410	415
Met His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala Leu		
420	425	

<210> 409
<211> 495
<212> PRT
<213> *Homo sapiens*

```

<400> 409
Met Ala Ala Pro Gly Ala Arg Arg Ser Leu Leu Leu Leu Leu Ala
      1           5           10          15
Gly Leu Ala His Gly Ala Ser Ala Leu Phe Glu Asp Leu Met Gly Ser
      20          25          30
Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro Ser Leu Gly
      35          40          45
Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala Gln Trp Ala
      50          55          60
Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr Gly Ser Leu

```

65	70	75	80
Gly	Gly	Pro	Ala
Pro	Pro	Pro	Pro
Pro	Pro	Pro	Pro
Ala	Pro	Pro	Pro
Pro	Pro	Pro	Pro
Pro	Pro	Pro	Pro
Pro	Pro	Pro	Pro
Pro	Pro	Pro	Pro
His			
85		90	95
Ser	Phe	Ile	Lys
Gln	Glu	Pro	Ser
Trp	Gly	Gly	Ala
Glu	Ala	Glu	Pro
Pro	His	Glu	
100		105	110
Glu	Gln	Cys	Leu
Cys	Leu	Ser	Ala
Phe	Thr	Val	His
Thr	His	Phe	Ser
Gly	Gly	Gly	Gln
Arg	Tyr	Pro	Phe
Tyr	Gly	Pro	Pro
130	135	140	
Ser	Gln	Ala	Ser
Ser	Gly	Gln	Ala
Arg	Arg	Met	Phe
Met	Phe	Pro	Asn
Pro	Asn	Ala	Pro
Tyr			
145	150	155	160
Leu	Pro	Ser	Cys
Leu	Glu	Ser	Gln
Pro	Ala	Ile	Arg
Ile	Arg	Asn	Gln
Gly	Tyr		
165	170	175	
Ser	Thr	Val	Thr
Phe	Asp	Gly	Thr
Thr	Pro	Ser	Tyr
Gly	His	Thr	Pro
His	Thr	Pro	Ser
180	185	190	
His	His	Ala	Gln
Ala	Phe	Pro	Asn
His	Ser	Phe	Lys
Gly	Gly	Asp	Pro
195	200	205	
Met	Gly	Gln	Gly
Gly	Ser	Leu	Gly
Gly	Glu	Gly	Gln
Gly	Gln	Tyr	Ser
210	215	220	
Pro	Val	Tyr	Gly
Gly	Cys	His	Thr
His	Thr	Pro	Asp
Ser	Cys	Ser	Ser
Asp	Thr	Tyr	Asn
225	230	235	240
Ala	Leu	Leu	Arg
Leu	Arg	Thr	Pro
Leu	Thr	Pro	Tyr
Arg	Ser	Ser	Asp
245	250	255	
Thr	Ser	Gln	Gly
Leu	Gly	Gly	Asp
Cys	Met	Trp	Asn
260	265	270	
Thr	Leu	Lys	Gly
Leu	Gly	His	Ser
Lys	His	Thr	Gly
275	280	285	
Pro	Ile	Leu	Cys
Ile	Cys	Gly	Ala
Gly	Tyr	Arg	Ile
290	295	300	
Arg	Gly	Ile	Gln
Gly	Ile	Gln	Asp
Asp	Val	Arg	Arg
305	310	315	320
Val	Arg	Ser	Ala
Arg	Ser	Gly	Glu
Ser	Ala	Thr	Ser
Glu	Thr	Ser	Gly
Lys	Cys	Lys	Arg
325	330	335	
Tyr	Pro	Gly	Cys
Cys	Asn	Lys	Arg
Arg	Tyr	Phe	Lys
340	345	350	
His	Ser	Arg	Lys
Arg	His	Thr	Gly
Lys	Thr	Gly	Glu
355	360	365	
Asp	Cys	Glu	Arg
Arg	Arg	Arg	Phe
Phe	Phe	Arg	Arg
370	375	380	
Arg	Arg	His	Thr
Arg	His	Gly	Val
His	Val	Lys	Pro
385	390	395	400
Lys	Phe	Ser	Arg
Ser	Arg	Ser	Asp
Asp	His	Leu	Lys
405	410	415	
Gly	Glu	Lys	Pro
Phe	Phe	Pro	Phe
420	425	430	
Ala	Arg	Ser	Asp
Arg	Ser	Glu	Leu
Ser	Glu	Leu	Val
Asp	Leu	Val	Arg
435	440	445	
Met	Thr	Lys	Leu
Lys	Lys	Gln	Leu
450	455	460	
Ala	Val	Gly	Ala
Ala	Leu	Ala	Gly
Leu	Leu	Gly	Leu
465	470	475	480
Tyr	Leu	Ile	Gly
Ile	Gly	Arg	Lys
Arg	Lys	Arg	Ser
485	490	495	
His	His	Gly	Tyr
Ala	Ala	Gly	Gln
Ile	Ile	Ile	Ala

<210> 410
 <211> 504
 <212> PRT
 <213> Homo sapiens

<400> 410
 Met Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu
 1 5 10 15
 Val Glu Pro Ser Asp Thr Ile Glu Asn Val Lys Ala Lys Ile Gln Asp
 20 25 30
 Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Lys
 35 40 45
 Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn Ile Gln Lys Glu
 50 55 60
 Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Ala Met Gly Ser Asp
 65 70 75 80
 Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro Ser Leu Gly Gly
 85 90 95
 Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala Gln Trp Ala Pro
 100 105 110
 Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr Gly Ser Leu Gly
 115 120 125
 Gly Pro Ala Pro Pro Ala Pro Pro Pro Pro Pro Pro Pro His
 130 135 140
 Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly Ala Glu Pro His Glu
 145 150 155 160
 Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe Ser Gly Gln Phe Thr
 165 170 175
 Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe Gly Pro Pro Pro Pro
 180 185 190
 Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe Pro Asn Ala Pro Tyr
 195 200 205
 Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile Arg Asn Gln Gly Tyr
 210 215 220
 Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr Gly His Thr Pro Ser
 225 230 235 240
 His His Ala Ala Gln Phe Pro Asn His Ser Phe Lys His Glu Asp Pro
 245 250 255
 Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln Tyr Ser Val Pro Pro
 260 265 270
 Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser Cys Thr Gly Ser Gln
 275 280 285
 Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp Asn Leu Tyr Gln Met
 290 295 300
 Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln Met Asn Leu Gly Ala
 305 310 315 320
 Thr Leu Lys Gly His Ser Thr Gly Tyr Glu Ser Asp Asn His Thr Thr
 325 330 335
 Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile His Thr His Gly Val Phe
 340 345 350
 Arg Gly Ile Gln Asp Val Arg Arg Val Pro Gly Val Ala Pro Thr Leu
 355 360 365
 Val Arg Ser Ala Ser Glu Thr Ser Glu Lys Arg Pro Phe Met Cys Ala

370	375	380
Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys Leu Ser His Leu Gln Met		
385	390	395
His Ser Arg Lys His Thr Gly Glu Lys Pro Tyr Gln Cys Asp Phe Lys		400
405	410	415
Asp Cys Glu Arg Arg Phe Phe Arg Ser Asp Gln Leu Lys Arg His Gln		
420	425	430
Arg Arg His Thr Gly Val Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg		
435	440	445
Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr		
450	455	460
Gly Glu Lys Pro Phe Ser Cys Arg Trp Pro Ser Cys Gln Lys Lys Phe		
465	470	475
Ala Arg Ser Asp Glu Leu Val Arg His His Asn Met His Gln Arg Asn		
485	490	495
Met Thr Lys Leu Gln Leu Ala Leu		
500		

<210> 411

<211> 10

<212> PRT

<213> Homo sapiens

<400> 411

Val Leu Asp Phe Ala Pro Pro Gly Ala Ser		
1	5	10

<210> 412

<211> 15

<212> PRT

<213> Homo sapiens

<400> 412

Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala		
1	5	10
		15

<210> 413

<211> 15

<212> PRT

<213> Homo sapiens

<400> 413

Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr Gly Ser Leu		
1	5	10
		15