Division Lemma

Division Lemma

Division Lemma

The Division Lemma (Euclid)

Let $d \in \mathbb{N}$. Then for each $x \in \mathbb{Z}$, there exist unique numbers $q \in \mathbb{Z}$ and $r \in \{0, \dots, d-1\}$ such that x = (qd) + (r)

Outline of Proof.

quotient divisor

- **1** Prove existence of q and r when $x \in \omega$ by induction.
- (trea) P(x)

vemainder

2 Prove existence of q and r when $x \in \mathbb{Z}$.

(tre I) P(x)

- **1** Prove uniqueness of q and r.
- · (\den)(\frac{\frac{1}{2}}{2} = \frac{1}{2} \left(\frac{1}{2}\reft(\frac{1}2\reft)\reft(\frac{1}2\reft(\frac{1}2\reft(\frac{1}2\reft)\reft(\frac{1}2\reft(\frac{1}2\reft)\reft(\frac{1}2\reft)\reft(\frac{1}2\reft(\frac{1}2\reft)\reft(\frac{1}2\reft)\reft(\frac{1}2\reft)\reft(\frac{1}2\reft)\reft(\frac{1}2\reft)\reft(\frac{1}2\reft)\reft(\frac{1}2\reft)\reft(\frac{1}2\reft)\reft(\frac{1}2\reft)\reft(\frac{1}2\reft)\reft(\frac{1}2
 - γ(:
- . P(x) is a "unique existence" sentence.

Strategy for uniqueness proof (See Lee 7 on uniqueness)

 $(\forall q_1, q_2 \in \mathbb{Z})(\forall r_1, r_2 \in \{0, ..., d-1\}) (\lambda = q_1 d + r_1) \land (b_1 = q_2 d + r_2)$

 $\Rightarrow (q_1 = q_2) \wedge (r_1 = r_2)$

Part 1: Proof of Existence of q and r when $x \in \omega$

Let P(x) be the sentence

```
There exist numbers q\in\mathbb{Z} and r\in\{0,\ldots,d-1\} such that x=qd+r. (WTS: (\forall x\in\omega) \rho(x) by induction)

BASE CASE: \rho(0) is true because \rho(0)=0.
```

INDUCTIVE STEP: Let
$$x \in \omega$$
 such that $P(x)$ is true. So we can pick $g_0 \in \mathbb{Z}$ and $r_0 \in \{0, \cdots, d-1\}$ such that $x = g_0 d + r_0$. Then $x_0 + 1 = g_0 d + r_0 + 1$. Now either $r_0 \in \{0, \cdots, d-2\}$ or $r_0 = d-1$.

Case 1. Suppose $r_0 \in \{0, \cdots, d-2\}$. Then $r_0 + 1 \in \{0, \cdots, d-1\}$. Let $g_0 = g_0$ and $r_0 = r_0 + 1$.

Then $g_0 \in \mathbb{Z}$, $r_0 \in \{0, \cdots, d-1\}$, and $x_0 + 1 = g_0 d + d$.

Case 2. Suppose $r_0 = d-1$. Then $x_0 + 1 = g_0 d + d$. It is $g_0 = g_0 + 1$ and $g_0 = g_0 + 1$.

Thus in either case, $g_0 = g_0 + 1$ is true.

Scratch work

$$-11 = -3.5 + 4$$

$$= (-2-1).5 + 4$$

$$= -2.5 - 5 + 5 - 5$$

$$= (-2-1).5 + 4$$

$$= (-2-1).5 + 4$$

$$= (-2-1).5 + 4$$

€ {0, ..., 4}

Part 2: Proof of Existence of q and r when $x \in \mathbb{Z}$

Consider any $x \in \mathbb{Z}$. Then either $x \ge 0$ or $x \le -1$.

Case 1. Suppose $x \ge 0$. Then $x \in \omega$, so P(x) is true by Part 1.

Case 2. Suppose
$$x \le -1$$
. Then $-1 \in \omega$, so β (-1) is true

Case 2. Suppose $x \le -1$. Then $-t \in \omega$, so P(-t) is true by Part 1.

So we can pick
$$g_0 \in \mathbb{Z}$$
 and $r_0 \in \{0, \dots, d-1\}$ such that $-\chi = g_0 d + r_0$.

Then $n = -q_0 d - r_0$ and $n = q_0 d - r_0 + 1$. Now $r_0 = 0$ or $r_0 \in \{1, \dots, d\}$ Subcase a Suppose $r_0 = 0$. Then $n+k = -g_0d + k$. Let $g = -g_0$ and $r = x_0^0$.

Then
$$q \in \mathbb{Z}$$
, $r \in h_0, --, d-1 \in A$, and $d \neq k = qd + r$.

Subcase b Suppose
$$r_0 \in \{1, \dots, d-1\}$$
. Then $n! = -q_0 d - r_0 \neq = -q_0 d - d + d - r_0 \neq = -q_0 d$

$$= (g_0-1)d + (\chi d-r_0).$$
Since $1 \le r_0 \le d-1, 1-d \le -r_0 \le -1, s_0$

-Comment: In class, I mistakenly considered

needed.

141, which was not

Let $q = -q_0 - 1$ and $r = d - r_0$. Then $q \in \mathbb{Z}$, $r \in \{0, \dots, d + 1\}$, and d = qd + r.

Thus in either subcase, P(x) is true.

Thus in either case, P(x) is true.

Part 3: Proof of Uniqueness of q and r

Consider any $x \in \mathbb{Z}$. Suppose $q_1, q_2 \in \mathbb{Z}$, $r_1, r_2 \in \{0, \dots, d-1\}$, $x = q_1d + r_1$, and $x = q_2d + r_2$. We wish to show that $q_1 = q_2$ and $r_1 = r_2$.