Model Isinga na regularnych grafach przypadkowych

Maciej Buczyński kadlubken5@gmail.com
Tomasz Szypuła tszypula@gmail.com

28 kwietnia 2017

1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z symulacją modelu Isinga na regularnych grafach przypadkowych.

2 Wstęp teoretyczny

2.1 Regularny graf przypadkowy

Spiny w układzie zostały połączone w tzw. regularny graf przypadkowy, gdzie reprezentowane są przez węzły grafu, a krawędzie symbolizują połączenia między nimi. Zgodnie z definicją takiego grafu, każdy węzeł ma taką samą liczbę krawędzi, które rozmieszczone są losowo.

W dalszej części będziemy oznaczać N jako całkowitą liczbę węzłów(spinów) oraz K jako stopień każdego węzła.

2.2 Model Isinga

Model Isinga opisuje układy, gdzie spiny mają do wyboru jeden z dwóch różnych stanów. Spiny te mogą następnie oddziaływać ze sobą, prowadząc do ewolucji czasowej(iteracyjnej) układu. W naszym przypadku stanami były liczby +1 i -1.

Energię dla pojedynczego spinu w modelu Isinga określa wzór:

$$E_i = -s_i \sum_j s_j J_{ij}$$

Gdzie s_i - i-ty spin, J_{ij} - stała oddziaływania między spinami i oraz j(w naszym przypadku równa 1- oddziaływanie ferromagnetyczne), a sumowanie odbywa się po wszystkich sąsiadach s_i

Z kolei magnetyzację obliczamy na podstawie wzoru:

$$M = \frac{\sum_{i=1}^{N} s_i}{N}$$

3 Metoda symulacji oraz temperatura krytyczna

W celu symulacji ewolucji czasowej układu posłużyliśmy się algorytmem Metropolis:

- Wybranie losowego spinu i ze zbioru wszystkich spinów w grafie
- Kalkulacja różnicy energii w przypadku zmiany spinu
- \bullet Jeśli energia zmaleje, zmiana spinu na przeciwny. Jeśli nie, zmiana spinu jedynie z pewnym prawdopodobieństwem $e^{\frac{-\Delta E}{k_BT}}$

Algorytm ten pozwala symulować Model Isinga. Dzięki uwzględnieniu temperatury możemy symulować m.in. przejście fazowe ferromagnetyk- paramagnetyk oraz odwrotnie. W czasie dążącym do nieskończoności układ z $T < T_c$ ulegnie samoistnej magnetyzacji(stan ferromagnetyczny). Jednak dla pewnej wartości T_c szumy termiczne będą tak duże, że układ nie będzie wykazywał uporządkowanej magnetyzacji, tzn. $M \approx 0$ (stan paramagnetyczny). Wzór teoretyczny dla temperatury krytycznej(dla regularnych grafów przypadkowych):

$$T_c = \frac{2}{\ln(\frac{K}{K-2})}$$

Gdzie K- stopień węzła(liczba sąsiadów)

4 Wyniki

4.1 Ewolucja czasowa

Na wykresie 1 możemy zobaczyć przykładową zależność czasową układu dla $T < T_c$ z magnetyzacją początkową bliską 0.

Rysunek 1: Magnetyzacja układu dla $T=2,\,N=10000,\,K=5$

Z kolei po zmianie temperatury powyżej T_c układ przechodzi w stan paramagnetyczny, a jego magnetyzacja spada do 0, gdzie oscyluje potem na skutek szumów termicznych. Widać to na wykresie 2

Rysunek 2: Magnetyzacja układu dla $T=4.5,\,N=10000,\,K=5$

4.2 Wykresy temperaturowe

Rysunek 3: Porównanie spektrów temperaturowych dla różnych warunków początkowych, $N=10000,\,K=5$

Na wykresie 3 można zobaczyć porównanie spektrum temperaturowego dla grafu zaczynającego się z różnym M. Oba zestawy danych są bardzo zbliżone, co daje podstawy do stwierdzenia, że magnetyzacja układu przy czasie dążącym do nieskończoności nie zależy od warunków początkowych.

Rysunek 4: Porównanie spektrów temperaturowych dla różnych wartości K, $N=10000\,$

Na wykresie 4 można zobaczyć, jak zmienia się moment przejścia w stan paramagnetyczny w zależności od parametru K. Zgodnie ze wzorem teoretycznym większe wartości K skutkują późniejszym przejściem w stan nieuporządkowany.

Na wykresach 6 oraz 7 wyraźnie widać, że wartość temperatury krytycznej bardzo szybko zbiega do teoretycznej wartości oczekiwanej. Na przykład dla grafu o stopniu węzłów równym 5, teoretyczna temperatura krytyczna wynosi około $T_c=3.9152$, już dla liczby węzłów mniejszej od 10^3 (około 650), błąd wynosi mniej niż 2%.

Wykresy 8 oraz 9 powstały po zlogarytmowaniu poprzednich wykresów. Na wykresach 6 oraz 7 było widać bardzo szybkie zbieganie temperatury krytycznej, która potencjalnie mogła mieć charakter logarytmiczny. Stąd po zlogarytmowaniu chcieliśmy zobaczyć czy dane rzeczywiście będą układać się w linię prostą. Rzeczywiście powyżej pewnej wartości krytycznej liczby węzłów , czy też, jak na wykresie, poniżej pewnej wartości krytycznej $\frac{1}{N}$, rzędu 10^-3 , temperatury krytyczne układają się w niemal poziomą linię prostą, zbiegającą do teoretycznej temperatury krytycznej.

Rysunek 5: Temperatura krytyczna zmierzona dla różnego stopnia węzła przy stałej liczbie węzłów

Wykres 5 podsumowuje poprawne, zgodne z oczekiwaniami, zachowanie się zmiany temperatury krytycznej od stopnia węzłów, dla ustalonej liczby węzłów (w tym przypadku dla około $15 \cdot 10^3$).

We wszystkich przypadkach już dla liczby węzłów mniejszych od stu tysięcy, błąd wynosi dużo mniej niż ułamki procenta. Dla przykładu dla liczby węzłów około N=40000 oraz stopnia węzłów K=5 błąd jest rzędu $10^{-6}\%$.

5 Wnioski

- Na podstawie wykresów można stwierdzić, że wyniki zgadzają się z przewidywaniami teoretycznymi, co może świadczyć o poprawnym wykonaniu symulacji.
- Szeregi czasowe układu są zgodne z przewidywaniami. Graf osiąga stan ferromagnetyczny dla $T<_T c$ oraz paramagnetyczny dla $T>T_c$

Rysunek 6: Temperatura krytyczna w zależności od $\frac{1}{N},$ dla różnych stopni węzła

Rysunek 7: Temperatura krytyczna w zależności od $\frac{1}{N},$ dla różnych stopni węzła

Rysunek 8: Logarytm naturalny z Temperatura krytyczna w zależności od $\ln(\frac{1}{N}),$ dla różnych stopni węzła.

Rysunek 9: Logarytm naturalny z Temperatura krytyczna w zależności od $\ln(\frac{1}{N}),$ dla różnych stopni węzła.