Logic Circuit Laboratory

Sequential Logic Circuits

1

Course Outline

- 1. Introduction
- 2. Logic Gates & Related Devices
- 3. Combination Circuits I
- 4. Combination Circuits II
- 5. Combination Circuits III
- 6. Combination Circuits IV, Kmap
- 7. Combination Circuits IV, Kmap

- 8. Sequential Circuit I
- 9. Sequential Circuit II
- 10. Sequential Circuit III
- 11. Sequential Circuit IV
- 12. FPGA + Logic circuit project I
- 13. FPGA + Logic circuit project II
- 14. Lab Exam

Week10 Sequential Circuit 4 "Register Memory"

Ref: Digital Systems: Principles and Applications, 11/e Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss

2

Agenda

- 1. Introduction Register
- 2. Serial In, Serial Out (SISO)
- 3. Serial In, Parallel Out (SIPO)
- 4. Parallel In, Serial Out (PISO)
- 5. Parallel In, Parallel Out (PIPO)

5

Register

หน่วยความจำ เรียงจาก การเข้าถึงข้อมูลได้เร็วที่สุดไปยังต่ำที่สุด

Computer Memory Hierarchy

Register

- Register หน่วยความจำที่ทำงาน ได้เร็วที่สุด
- ขนาดเล็กที่สุด และ ราคาแพงที่สุด
- เก็บไว้ในตัวโปรเซสเซอร์เอง
- โปรเซสเซอร์มีหน่วยความจำประเภทนี้ ไม่มาก
 ประมาณ 20 30 ตัว ขึ้นอยู่กับโปรเซสเซอร์เอง

CPU block diagram. The CPU communicates with the Memory and I/O

9

Register

Register มีการแบ่งประเภท โดยแบ่งตาม ข้อมูลขาเข้า และขาออก

- Serial In, Serial Out (SISO)
- Serial In, Parallel Out (SIPO)
- Parallel In, Serial Out (PISO)
- Parallel In, Parallel Out (PIPO)

1. Serial In, Serial Out (SISO)

74ALS166/74HC166

Serial in/serial out (SISO)

11

Register

1. Serial In, Serial Out (SISO)

74ALS166/74HC166

12

1. Serial In, Serial Out (SISO)

Function Table

S	JTPUT	Ol	INDUTO							
	RNAL	INTER	INPUTS							
Q _H	QB	Q _A	PARALLEL AH	SER	CLK	CLK INH	SH/LD	CLR		
L	L	L	Х	Х	Х	Х	Х	L		
QHO	Q _{B0}	Q _{A0}	x	X	L	L	X	Н		
h	b	а	ah	X	1	L	L	Н		
Q _{Gn}	Q _{An}	Н	Х	Н	1	L	Н	Н		
Q _{Gn}	Q _{An}	L	X	L	1	L	Н	Н		
Q _{H0}	Q _{B0}	Q _{A0}	X	X	1	Н	X	Н		

13

Register

2. Serial In, Parallel Out (SIPO)

74ALS164/74HC164 8-bit serial in/parallel out (SIPO)

2. Serial In, Parallel Out (SIPO)

74ALS164/74HC164

Register

3. Parallel In, Serial Out (PISO)

74ALS165/74HC165

8-bit parallel in/serial out (PISO)

3. Parallel In, Serial Out (PISO)

74ALS165/74HC165

17

Register

4. Parallel In, Parallel Out (PIPO)

74ALS174/74HC174
Parallel in/parallel out (PIPO)

4. Parallel In, Parallel Out (PIPO)

74ALS174/74HC174

Register

การนำข้อมูลออกแบบอนุกรม Serial

Shift Left

Shift Right

การนำข้อมูลออกแบบขนาน Parallel

Parallel load

Hold Data

21

START LAB 9 Sequential Circuit 4

- 1. ส่งการต่อ Design circuit ที่ออกแบบจาก LAB8 (Lab8.3)
- 2. Lab 9.1
- 3. Lab 9.2
- 4. Lab 9.3

23

LAB 9 Sequential Circuit 4

1. ส่งการต่อ Design circuit ที่ออกแบบจาก LAB8 (Lab8.3)

Lab8.3 ออกแบบ Counter circuit โดยใช้ IC เบอร์ 7473 JK Flip Flop

โจทย์ 8.1 Design Counter circuit โดยใช้ IC 7473

- 1. ให้นิสิตออกแบบวงจรนับ และให้แสดงผลตัวเลข บน 7Segment 4Bit HEX INPUT
- 2. วงจรนับนี้จะมีการนับดังต่อไปนี้ 0>6>5>2>4>0 (จะนับวนไปเรื่อยๆ)
- 3. ให้ออกแบบโดยใช้ IC 7473 JK Flip Flop นำมาใช้งาน

- 2. Lab 9.1
- 3. Lab 9.2
- 4. Lab 9.3

เอกสาร นิสิตสามารถ Download ไฟล์จาก link ด้านล่างนะครับ

Folder Material: https://goo.gl/3V5WUa

Week1: https://goo.gl/6UtmH1 Week2: https://goo.gl/GpJMvE Week3: https://goo.gl/dLJy7o Week4: https://goo.gl/amzoYt Week5: https://goo.gl/pSskjy Week6: https://goo.gl/MJqjLY

---- Midterm ----

Week7: https://goo.gl/ewMbxJ
Week8: https://goo.gl/vMD5LR
Week9: https://goo.gl/2DGGiK
Week10: https://goo.gl/aoJ9ja

25

LAB 9 Sequential Circuit 4

- 2. Lab 9.1
- 3. Lab 9.2
- 4. Lab 9.3

Datasheet Lab9.1 - Lab9.3

2. Lab 9.1

Lab9.1 IC เบอร์ 74160 BCD Decade/4-BIT Binary Counters

โจทย์ IC 74160

- 1. ให้นิสิตออกแบบการใช้งาน ให้แสดงผลตัวเลข ตัวเลขจะวิ่งวน 0-9 บน 7Segment
- 2. ให้สามารถสั่งให้ Reset การนับได้ ตัวเลขที่แสดงจะกลับมาเป็นเลข 0 (Q0 = 0, Q1 = 0, Q2 = 0, Q3 = 0) และนับต่อ
- 3. ให้สามารถสั่งให้ Set การนับได้ ตัวเลขที่แสดงจะตั้งให้เป็นเลข 9 (Q0 = 1, Q1 = 0, Q2 = 0, Q3 = 1) และนับต่อ
- 4. ให้ไอซีนับ<u>ค้าง</u>ที่เลข 5 (Q0 = 1, Q1 = 0, Q2 = 1, Q3 = 0)

27

LAB 9 Sequential Circuit 4

2. Lab 9.1

PIN NAME	ES .	LOADII	NG (Note a)
		HIGH	LOW
PE	Parallel Enable (Active LOW) Input	1.0 U.L.	0.5 U.L.
P_0-P_3	Parallel Inputs	0.5 U.L.	0.25 U.L.
CEP	Count Enable Parallel Input	0.5 U.L.	0.25 U.L.
CET	Count Enable Trickle Input	1.0 U.L.	0.5 U.L.
<u>CP</u>	Clock (Active HIGH Going Edge) Input	0.5 U.L.	0.25 U.L.
<u>MR</u>	Master Reset (Active LOW) Input	0.5 U.L.	0.25 U.L.
SR	Synchronous Reset (Active LOW) Input	1.0 U.L.	0.5 U.L.
Q_0-Q_3	Parallel Outputs (Note b)	10 U.L.	5 (2.5) U.L.
TC	Terminal Count Output (Note b)	10 U.L.	5 (2.5) U.L.

- a) 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.
- b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

MODE SELECT TABLE

*SR	PE	CET	CEP	Action on the Rising Clock Edge (J「)
L	Χ	X	X	RESET (Clear)
Н	L	X	X	LOAD (P _n Q _n)
Н	Н	Н	Н	COUNT (Increment)
H	Н	L	X	NO CHANGE (Hold)
Н	Н	X	L	NO CHANGE (Hold)

*For the LS162A and LS163A only.

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

3. Lab 9.2

Lab9.2 IC เบอร์ 74170 4x4 Register File Open-Collector

โจทย์ IC 74170

- 1. ให้นิสิตออกแบบการใช้งาน ตามที่ Datasheet กำหนดเพื่อให้ไอซี สามารถ<u>บันทึก</u>และ<u>อ่าน</u>ข้อมูลได้
- 2. ให้บันทึกข้อมูล Address = 0b00 ข้อมูลที่บันทึก 0b0001
- 3. ให้บันทึกข้อมูล Address = 0b01 ข้อมูลที่บันทึก 0b0010
- 4. ให้บันทึกข้อมูล Address = 0b10 ข้อมูลที่บันทึก 0b0100
- 5. ให้บันทึกข้อมูล Address = 0b11 ข้อมูลที่บันทึก 0b1000
- 6. เมื่อบันทึกข้อมูลทั้งหมดครบ ให้นิสิตทดลองอ่านข้อมูล 0b00>0b01>0b10>0b11

29

LAB 9 Sequential Circuit 4

3. Lab 9.2

S	LOADING (Note a)				
	HIGH	LOW			
Data Inputs	0.5 U.L.	0.25 U.L.			
Write Address Inputs	0.5 U.L.	0.25 U.L.			
Write Enable (Active LOW) Input	1.0 U.L.	0.5 U.L.			
Read Address Inputs	0.5 U.L.	0.25 U.L.			
Read Enable (Active LOW) Input	1.0 U.L.	0.5 U.L.			
Outputs (Note b)	Open-Collector	5 (2.5) U.L.			
	Data Inputs Write Address Inputs Write Enable (Active LOW) Input Read Address Inputs Read Enable (Active LOW) Input	HIGH			

b. The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges. The Output HIGH drive must be supplied by an external resistor to VCC.

WRITE FUNCTION TABLE (SEE NOTES A, B, AND C)

WF	RITE INPU	JTS		WO	RD	
W _B	WA	EW	0	1	2	3
L	L	L	Q = D	Q ₀	Q ₀	Q ₀
L	Н	L	Q_0	Q = D	Q_0	Q_0
H	L	L	Q_0	Q_0	Q = D	Q_0
H	Н	L	Q_0	Q_0	Q_0	Q = D
X	X	Н	Qn	Q_0	Q_0	Q_0

READ FUNCTION TABLE (SEE NOTES A AND D)

RE	AD INPU	JTS	OUTPUTS				
RB	R_A	ER	Q ₁	Q_2	Q ₃	Q ₄	
L	L	L	W0B1	W0B2	W0B3	W0B4	
L	Н	L	W1B1	W1B2	W1B3	W1B4	
H	L	L	W2B1	W2B2	W2B3	W2B4	
H	Н	L	W3B1	W3B2	W3B3	W3B4	
Х	Х	Н	Н	Н	Н	Н	

NOTES: A. H = HIGH Level. L = LOW Level, X = Irrelevant.

- B. (Q = D) = The four selected internal flip-flop outputs will assume the states applied to the four external data inputs C. Q_D = the level of Q before the indicated input conditions were established. D. W_{0B1} = The first bit of word 0, etc.

4. Lab 9.3

Lab9.3 IC เบอร์ 74194 4-Bit Bidirectional Universal Shift Register

โจทย์ IC 74194

- 1. ให้นิสิตออกแบบการใช้งาน ตามที่ Datasheet กำหนดเพื่อให้ไอซี สามารถ<u>บันทึก</u>และ<u>อ่าน</u>ข้อมูลได้
- 2. ให้บันทึกข้อมูล Address = 0b00 ข้อมูลที่บันทึก 0b0001
- 3. ให้บันทึกข้อมูล Address = 0b01 ข้อมูลที่บันทึก 0b0010
- 4. ให้บันทึกข้อมูล Address = 0b10 ข้อมูลที่บันทึก 0b0100
- 5. ให้บันทึกข้อมูล Address = 0b11 ข้อมูลที่บันทึก 0b1000
- 6. เมื่อบันทึกข้อมูลทั้งหมดครบ ให้นิสิตทดลองอ่านข้อมูล 0b00>0b01>0b10>0b11

31

LOADING (Note a)

LAB 9 Sequential Circuit 4

4. Lab 9.3

			- (
	-	HIGH	LOW
So, S1	Mode Control Inputs	0.5 U.L.	0.25 U.L.
P0-P3	Parallel Data Inputs	0.5 U.L.	0.25 U.L.
DSR	Serial (Shift Right) Data Input	0.5 U.L.	0.25 U.L.
DSL	Serial (Shift Left) Data Input	0.5 U.L.	0.25 U.L.
CP	Clock (Active HIGH Going Edge) Input	0.5 U.L.	0.25 U.L.
MR	Master Reset (Active LOW) Input	0.5 U.L.	0.25 U.L.
Q0-Q3	Parallel Outputs (Note b)	10 U.L.	5 (2.5) U.L.

NOTES:

PIN NAMES

- a. 1 TTL Unit Load (U.L.) = 40 µA HIGH/1.6 mA LOW.
- b. The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

MODE SELECT — TRUTH TABLE

OPERATING MODE	INPUTS					OUTPUTS				
OPERATING MODE	MR	s ₁	s ₀	DSR	D _{SL}	Pn	Q ₀	Q ₁	Q ₂	Q ₃
Reset	L	X	X	Х	Х	Х	L	L	L	L
Hold	Н	- 1	- 1	Х	Х	Х	90	91	q ₂	q ₃
Shift Left	нн	h h		X X	l h	X X	91 91	92 92	93 93	L
Shift Right	H	I	h h	l h	X X	X X	L H	90 90	91 91	q ₂ q ₂
Parallel Load	Н	h	h	Х	Х	Pn	P ₀	P ₁	P ₂	P ₃

L = LOW Voltage Level

H = HIGH Voltage Level

X = Don't Care

I = LOW voltage level one set-up time prior to the LOW to HIGH clock transition

 $[\]ensuremath{\mathsf{h}} = \ensuremath{\mathsf{HIGH}}$ voltage level one set-up time prior to the LOW to HIGH clock transition

pn (qn) = Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the LOW to HIGH clock transition.