37 Lecture 37: April 26

Last time

• Theoretical background of linear model

Today

- Course evaluation (5/17)
- HW3 review
- Theoretical background of linear models cont.
 - Estimability
 - Idempotent matrix
 - Projections
 - Geometry of least squares solution

Additional reference

Course notes by Dr. Hua Zhou "A Primer on Linear Models" by Dr. John F. Monahan

Estimable function

Assume the linear mean model: $\mathbf{Y} = \mathbf{X}\mathbf{b} + \mathbf{e}$, $\mathbf{E}(\mathbf{e}) = \mathbf{0}$. One main interest is estimation of the underlying parameter \mathbf{b} . Can \mathbf{b} be estimated or what functions of \mathbf{b} can be estimated?

- A parametric function $\Lambda \mathbf{b}$, $\Lambda \in \mathbb{R}^{m \times p}$ is said to be (linearly) <u>estimable</u> if there exists an <u>affinely unbiased estimator</u> of $\Lambda \mathbf{b}$ for all $\mathbf{b} \in \mathbb{R}^p$. That is there exist constants $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{c} \in \mathbb{R}^m$ such that $\mathrm{E}(\mathbf{A}\mathbf{y} + \mathbf{c}) = \Lambda \mathbf{b}$ for all \mathbf{b} .
- Theorem: Assuming the linear mean model, the parametric function $\Lambda \mathbf{b}$ is (linearly) estimable if and only if $\mathcal{C}(\Lambda) \subset \mathcal{C}(\mathbf{X}^T)$, or equivalently $\mathcal{N}(\mathbf{X}) \subset \mathcal{N}(\Lambda)$.

 " $\Lambda \mathbf{b}$ is estimable \iff the row space of Λ is contained in the row space of \mathbf{X} \iff the null space of \mathbf{X} is contained in the null space of Λ ."

 Proof:
- $\lambda^T \mathbf{b}$ is linearly estimable if and only if $\lambda^T \mathbf{b}$ is a linear combination of the components in $\mu_Y = \mathbf{E}(\mathbf{Y})$
- Corollary: **Xb** is estimable. "Expected value of any observation $E(y_i)$ and their linear combinations are estimable."
- Corollary: If **X** has full column rank, then any linear combinations of **b** are estimable.

- If $\Lambda \mathbf{b}$ is (linearly) estimable, then its least squares estimator $\Lambda \hat{\mathbf{b}}$ is invariant to the choice of the least squares solution $\hat{\mathbf{b}}$.

 Proof:
- The least squares estimator $\Lambda \hat{\mathbf{b}}$ is a linearly unbiased estimator of $\Lambda \mathbf{b}$. Proof:

Estimability example: One-way ANOVA model

Consider the following example with one-way ANOVA model.

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$$
 $i = 1, 2, 3, j = 1, 2$

In matrix form:

$$\begin{bmatrix} Y_{11} \\ Y_{21} \\ Y_{31} \\ Y_{12} \\ Y_{22} \\ Y_{32} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} + \begin{bmatrix} \epsilon_{11} \\ \epsilon_{21} \\ \epsilon_{31} \\ \epsilon_{12} \\ \epsilon_{22} \\ \epsilon_{32} \end{bmatrix}$$

Note: replication doesn't help with estimability. What functions of $\lambda^T \mathbf{b}$ are estimable? Solutions:

Idempotent matrix

Assume $\mathbf{A} \in \mathbb{R}^{n \times n}$.

- A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is idempotent if and only if $\mathbf{A}^2 (= \mathbf{A} \mathbf{A}) = \mathbf{A}$.
- Any idempotent matrix **A** is a generalized inverse of itself.
- The only idempotent matrix of full rank is I.

 Proof. Interpretation: all idempotent matrices are singular except for the identity matrix.
- **A** is idempotent if and only if \mathbf{A}^T is idempotent if and only if $\mathbf{I}_n \mathbf{A}$ is idempotent.
- For a general matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, the matrices $\mathbf{A}^{-}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{-}$ are idempotent and

$$\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^{-}\mathbf{A}) = \operatorname{rank}(\mathbf{A}\mathbf{A}^{-})$$
$$\operatorname{rank}(\mathbf{I}_{n} - \mathbf{A}^{-}\mathbf{A}) = n - \operatorname{rank}(\mathbf{A})$$
$$\operatorname{rank}(\mathbf{I}_{m} - \mathbf{A}\mathbf{A}^{-}) = m - \operatorname{rank}(\mathbf{A}).$$

Projection

- A matrix $\mathbf{P} \in \mathbb{R}^{m \times n}$ is a projection onto a vector space \mathcal{V} if and only if
 - 1. **P** is idempotent
 - 2. $\mathbf{P}\mathbf{x} \in \mathcal{V}$ for any $\mathbf{x} \in \mathbb{R}^n$

- 3. $\mathbf{Pz} = \mathbf{z}$ for any $\mathbf{z} \in \mathcal{V}$.
- Any idempotent matrix \mathbf{P} is a projection onto its own column space $\mathcal{C}(\mathbf{P})$. *Proof:*
- $\mathbf{A}\mathbf{A}^-$ is a projection onto the column space $\mathcal{C}(\mathbf{A})$. *Proof:*
- The projection matrix

$$\mathbf{P}_{\mathbf{X}} = \mathbf{X}_{n \times p} (\mathbf{X}^T \mathbf{X})^{-} \mathbf{X}^T$$

$$_{p \times p}$$

is unique.

Proof:

- Proposition: Let X, A, B be matrices, then $X^TXA = X^TXB$ if and only if XA = XB. Proof:
- $\mathbf{P}_{\mathbf{X}} \mathbf{X}_{n \times n} = \mathbf{X}_{n \times p}$ Proof:
- Predicted values $\hat{\mathbf{Y}} = \mathbf{X}\hat{\mathbf{b}}_{ls}$ are invariant to choice of solution to the normal equation, where

$$\hat{\mathbf{b}}_{ls} = (\mathbf{X}^T \mathbf{X})^{-} \mathbf{X}^T \mathbf{Y}$$

is not necessarily unique.

Proof:

• Start with $\mathbf{P}_{\mathbf{X}}\mathbf{X} = \mathbf{X}$, we have $\mathbf{X}(\mathbf{X}^T\mathbf{X})^-\mathbf{X}^T\mathbf{X} = \mathbf{X}$. Therefore, $(\mathbf{X}^T\mathbf{X})^-\mathbf{X}^T$ is a generalized inverse of \mathbf{X} which is sometimes called the <u>least-squares inverse</u>. And $\mathbf{P}_{\mathbf{X}}$ is a projection onto $\mathcal{C}(\mathbf{X})$.

Geometry of least squares

- $\mathbf{P}_{\mathbf{X}}^2 = \mathbf{P}_{\mathbf{X}}$ and $\hat{\mathbf{Y}} = \mathbf{P}_{\mathbf{X}}\mathbf{Y}$ is unique.
- Recall the column space of \mathbf{X} is $\mathcal{C}(\mathbf{X}) = \left\{ \mathbf{y} : \mathbf{y} = \mathbf{X} \mathbf{b} \text{ for some } \mathbf{b} \right\}$
- The vector in $C(\mathbf{X})$ that is closest in terms of squared norm $(L_2 \text{ norm: } ||\mathbf{a} \mathbf{b}||_2 = \sqrt{(\mathbf{a} \mathbf{b})^T(\mathbf{a} \mathbf{b})})$ to \mathbf{Y} is given by $\hat{\mathbf{Y}} = \mathbf{X}\hat{\mathbf{b}}_{ls} = \mathbf{P}_{\mathbf{X}}\mathbf{Y}$.

 Proof:
- $\hat{\mathbf{Y}} \in \mathcal{C}(\mathbf{X})$
- $\hat{\mathbf{e}}_{n \times 1} = \mathbf{Y} \hat{\mathbf{Y}} = (\mathbf{I} \mathbf{P}_{\mathbf{X}})\mathbf{Y} \in \mathcal{N}(\mathbf{X}^T) \text{ where } \mathcal{N}(\mathbf{X}^T) = \left\{ \mathbf{v}_{n \times 1} : \mathbf{X}^T \mathbf{v} = \mathbf{0} \right\} \text{ is the } \frac{\text{null space of } \mathbf{X}^T.}{Proof:}$