0.1 Å lage ligninger

Hver gang vi i hverdagen må utføre en regneoperasjon, løser vi egentlig en ligning!

Tenk for eksempel at du skal kjøpe 2 kg epler i butikken, og eplene koster $10~\rm kr/kg$. Regnestykket ditt blir da dette:

 $hva\ jeg\ må\ betale\ for\ eplene = antall\ kg\ epler\cdot kiloprisen\ for\ epler$

Hvis vi bestemmer oss for at x betyr det samme som hva jeg må betale for eplene, blir ligningen vår seende slik ut:

 $x = antall \ kg \ epler \cdot kiloprisen \ for \ epler$

Og fordi vi vet både hva antall kg epler og kiloprisen for epler er, kan vi finne svaret:

$$x = 2 \cdot 10$$
$$= 20$$

Vi må altså betale 20 kr for eplene.

Her kunne vi selvsagt regnet ut prisen for eplene direkte, men for lengre utregninger er det lurt å lage en ligning. Og det blir oftere lettere for oss å lage ligningen hvis vi gjør som i det korte eksempelet med eplene.

0.1 Å lage en ligning

Når vi skal beskrive et spørsmål som en ligning kan det være lurt å gjøre følgende:

- Sette opp regnestykket i ord.
- Erstatte den ukjente størrelsen med x.

Eksempel 1

Tenk at klassen ønsker å dra på en klassetur som til sammen koster $11\,000\,\mathrm{kr}$. For å dekke utgiftene har dere allerede skaffet $2\,000\,\mathrm{kr}$, resten skal skaffes gjennom loddsalg. For hvert lodd som selges, tjener dere $25\,\mathrm{kr}$.

a) Lag en ligning for hvor mange lodd klassen må selge for å få råd til klasseturen.

b) Løs ligningen.

Svar:

a) Vi starter med å tenke oss regnestykket i ord:

 $penger\ allerede\ skaffet+\ antall\ lodd\cdot\ penger\ per\ lodd=\ prisen\ på\ turen$

Den eneste størrelsen vi ikke vet om er $antall \ lodd$. Vi erstatter derfor $antall \ lodd$ med x, og setter inn verdien til de andre:

$$2\,000 + x \cdot 25 = 11\,000$$

b)
$$25x = 11\,000 - 2\,000$$
$$25x = 9\,000$$
$$\frac{25x}{25} = \frac{9\,000}{25}$$
$$x = 360$$

 $x \cdot 25$ er skrevet om til 25x.

Eksempel 2

"Broren min er dobbelt så gammel som meg. Til sammen er vi 9 år gamle. Hvor gammel er jeg?".

Svar:

"Broren min er dobbelt så gammel som meg." betyr at:

$$brors\ alder = 2 \cdot min\ alder$$

"Til sammen er vi 9 år gamle." betyr at:

$$brors\ alder + min\ alder = 9\ år$$

Erstatter vi brors alder med " $2 \cdot min$ alder", får vi:

$$2 \cdot min \ alder + min \ alder = 9 \ ar$$

Det som er ukjent for oss er min alder:

$$2x + x = 9$$
$$3x = 9$$
$$\frac{3x}{3} = \frac{9}{3}$$
$$x = 3$$

"Jeg" er altså 3 år gammel.

0.2 Formler

Tenk at du har en jobb der du tjener 200 kr i timen, og at du jobber 5 timer hver arbeidsdag. Regnestykket for hvor mange kroner du tjener på en arbeidsdag (dagslønnen) er dette:

$$dagslønn = 200 \cdot 5$$
$$= 1000$$

Hvis du istedenfor tjener 500 kr i timen og jobber 3 timer hver dag, blir regnestykket seende slik ut:

$$dagslønn = 500 \cdot 3$$
$$= 1500$$

Saken er at selv om timelønnen og timetallet forandrer seg, er selve regnemetode for dagslønnen akkurat den samme: Vi ganger timelønnen med timetallet. Når en regnemetode forblir den samme, selv om tallene forandrer seg, sier vi at vi har en formel. En formel forteller oss hvordan vi skal regne ut det vi ønsker å vite. Når vi regnet ut dagslønnen vår ganget vi timelønnen med timeantallet, formelen for dagslønnen kan vi da skrive slik:

I de to regnestykkene

$$2 \cdot 3 = 6$$

og

$$4 \cdot 5 = 20$$

er regnemetoden den samme (vi ganger to tall), men ikke resultatet.

$$dagslønn = timelønnn \cdot timetall$$

For å gjøre formlene våre enda kortere bruker vi også å forkorte størrelsene, gjerne med bokstaver som har sammenheng med navnet på størrelsen. For eksempel kan vi kalle dagslønnen for D, timelønnen for L og timetallet for T, da blir formelen vår seende ut som dette

$$D = T \cdot L$$

Fordi D står alene på den ene siden av "='-tegnet, sier vi at dette er en formel for D.

0.2 Formler

En formel viser sammenhengen mellom størrelser.

Eksempel 1

Hvis du kjører med den samme farten hele tiden, finner du lengden du har kjørt ved å gange farten med tiden. Kall lengden du har kjørt for l, farten for f og tiden for t.

Lag en formel for l.

Svar:

Oppgaveteksten forteller oss at vi finner l ved å gange f med t:

$$l = f \cdot t$$

Dette er altså formelen for l.

Eksempel 2

En vennegjeng ønsker å spleise på en bil som koster $50\,000$ kr, men det er usikkert hvor mange personer som skal være med på å spleise.

- a) Kall "antall personer som blir med på å spleise" for P og "utgift per person i kroner" for U og lag en formel for U.
- b) Finn utgiften per person hvis 20 personer blir med.

Svar:

a) Siden prisen på bilen skal deles på antall personer som er med i spleiselaget, må formelen bli:

$$U = \frac{50\,000}{P}$$

b) Vi erstatter $P \mod 20$, og får:

$$U = \frac{50\,000}{20} = 2\,500$$

Utgiften per person er altså $2\,500$ kr.

0.3 Omgjøring av formler

Vi har sett ($Eksempel\ 1$, s. ??) at lengden l vi har kjørt, farten f vi har holdt og tiden t vi har brukt kan settes i sammenheng via formelen:

$$l = f \cdot t$$

Ut ifra denne formelen kan vi altså finne lengden hvis vi vet hvor fort og hvor lenge vi har kjørt. Men hva om vi isteden vet hvor langt og hvor lenge vi har kjørt, men ikke hvor fort?

Det vi må gjøre, er å skrive om formelen så det blir en formel for f istedenfor l. Det vi nå må ha med oss, er at l, f og t er alle tall, derfor kan vi bruke punktene fra ?? for å gjøre om på ligningen vår. Og fordi vi ønsker en formel for f, ønsker vi at f skal stå alene på den ene siden av likhetstegnet:

$$l = f \cdot t$$

$$\frac{l}{t} = \frac{f \cdot t}{t}$$

$$\frac{l}{t} = f$$

0.3 Omforming av formler

Når vi skal omforme en størrelse, bruker vi ligningsreglene fra ?? for å få størrelsen vi ønsker til å stå på én side av likhetstegnet.

Eksempel 1

 $Ohms\ lov\ sier\ at\ strømmen\ I\ gjennom\ en\ metallisk\ leder\ (med\ konstant\ temeperatur)\ er\ gitt\ ved\ formelen:$

$$I = \frac{U}{R}$$

hvor U er spenningen og R er resistansen.

a) Skriv om formelen til en formel for R.

Strøm måles i Ampere (A), spenning i Volt (V) og motstand i Ohm (Ω).

b) Hvis strømmen er 2 A og spenningen 12 V, hva er da resistansen?

Svar:

a) Vi gjør om formelen slik at R står alene på én side av likhetsregnet:

$$I \cdot R = \frac{U \cdot \mathcal{R}}{\mathcal{R}}$$

$$I \cdot R = U$$

$$\frac{\mathcal{I} \cdot R}{\mathcal{I}} = \frac{U}{I}$$

$$R = \frac{U}{I}$$

b) Vi bruker formelen vi fant i a) og får at:

$$R = \frac{U}{I}$$
$$= \frac{12}{2}$$
$$= 6$$

Resistansen er altså 6Ω .

Eksempel 2

Si vi har målt en temperatur T_C i grader Celsius (°C). Temperaturen T_F målt i Fahrenheit (°F) er da gitt ved formelen:

$$T_F = \frac{9}{5} \cdot T_C + 32$$

- a) Skriv om formelen til en formel for T_C .
- **b)** Hvis en temperatur er målt til 59°F, hva er da temperaturen målt i °C?

Svar:

a)

$$T_F = \frac{9}{5} \cdot T_C + 32$$

$$T_F - 32 = \frac{9}{5} \cdot T_C$$

$$5(T_F - 32) = \cancel{5} \cdot \frac{9}{\cancel{5}} \cdot F_C$$

$$5(T_F - 32) = 9T_C$$

$$\frac{5(T_F - 32)}{9} = \frac{\cancel{9}T_C}{\cancel{9}}$$

$$\frac{5(T_F - 32)}{9} = T_C$$

b) Vi bruker formelen fra a), og finner at:

$$T_C = \frac{5(59 - 32)}{9}$$

$$= \frac{5(27)}{9}$$

$$= 5 \cdot 3$$

$$= 15$$