CS & IT

ENGINERING

COMPUTER ORGANIZATION AND ARCHITECTURE

Basics of COA

Lecture No.- 02

Recap of Previous Lecture

CPU

mem.

Topics to be Covered

Topic: CPU Registers

small memories inside CPU to carry out

processing

CPU

RAM

Regam

values

CPU Register

- General Purpose Registers (GPRs) ⇒ Used for any
- Special Purpose Registers

Used for specific purpose

work.

(denoted by

RO, R1, R2,....)

Topic: CPU Registers

CPU Register

- General Purpose Registers (GPRs)
- Special Purpose Registers
- Accumulator (AC)
- Program Counter (PC)
 - Instruction Register (IR)
 - Stack Pointer (SP)
 - 5. Flag Register / Program Status Word (PSW) / 5 Talus Register
 - Address Register (AR) / Memory Address Register (MAR)
 - 7. Data Register (DR) / Memory Data Register (MDR) / MBR (Memory Buffer Reg.)

Topic: Accumulator

one

Used to store result of ALU and sometimes on of the operand₅for ALU too.

Topic: Types of Architecture

Based on ALU input:

- AC-Based Architecture (single Ac based architecture)
- Register Based Architecture
- Register-Memory Based Architecture
- Complex System Architecture
- Stack Based Architecture

Topic: AC-Based Architecture

a, b, c, d are in memory

$$AC \Leftarrow AC + b$$
 $AC \Leftarrow AC + d$
 $AC \Leftarrow AC \leftarrow AC + d$
 $AC \Leftarrow AC \Leftarrow AC * R^1$

Topic: Register-Based Architecture

$$\frac{(a+b) * (c+d)}{R1}$$

$$R1 \leftarrow a$$
 $R2 \leftarrow b$

a, b, c, d

are in memory

Topic: Register-Memory Based Architecture

in memory

$$(a+b) * (c+d)$$

$$a,b,c,d \text{ are in memory }$$

$$R1 \Leftarrow a$$

$$AC \Leftarrow R1 + b$$

$$R1 \Leftarrow AC$$

$$R2 \Leftarrow C$$

$$Ac \Leftarrow R2 + d$$

$$R2 \Leftarrow AC$$

$$R2 \Leftarrow R1 + R2 + d$$

$$R2 \Leftarrow R1 + R2$$

$$AC \Leftarrow a+b$$
 $R1 \Leftarrow AC$
 $AC \Leftarrow C+d$
 $R2 \Leftarrow AC$
 $AC \Leftarrow R1 * R2$
 $AC \Leftarrow R1 * R2$

Topic : Stack-Based Architecture

(not used now a days)

From stack (In memory)

Topic: Program Counter

Stores address of next instruction to be executed

address 500 501 502 I3 If instruction I2 is in execution in CPU, then PC stores => address of I3 502

Topic: Instruction Register

Stores the current instruction to be executed

Topic: Stack Pointer

Stores the address of the top of the stack

Topic: Flag or Status Register

Stores the status of the ALU result

it is used for conditions checking

Topic: Address Register or MAR

Used to send address to memory

Topic: Data Register or MDR

- Used to send data to memory
- And to receive data from memory

[NAT]

- #Q. A CPU has 4 bytes instructions. A program (Instructions I_1 to I_{200}) starts at address 200 (in decimal). Find the address of following instructions:
 - 1. I₁
 - 2. I₅
 - 3. I₁₂₀

#Q. A CPU has 4 bytes instructions. A program (Instructions I_1 to I_{200}) starts at address 500 (in decimal). What should be the PC value when instruction I_6 will be executing in CPU?

#Q. A CPU has 4 bytes instructions. A program (Instructions I_1 to I_{200}) starts at address 500 (in decimal). What should be the PC value when instruction i will be executing in CPU?

2 mins Summary

Topic CPU Registers

Topic Types of Architecture

Topic Program Counter

Topic Instruction Register

Topic Stack Pointer

Tomarrow

AR, C DR

Memory, address, pc,

Happy Learning THANK - YOU