

INVESTIGATING THE CONTRIBUTIONS OF

NARROWBAND GAMMA AND BROADBAND GAMMA TO POSITIVE AND NEGATIVE BOLD RESPONSES

DOROTTYA HETENYI

BRAIN IMAGING AND COGNITIVE NEUROSCIENCE MSc

INTRODUCTION

- Positive (PBR) and negative (NBR) haemodynamic signal changes (relative to baseline) to stimulus [1]
- Two frequency ranges within the gamma band
 - Narrowband gamma (NBG) 30-60Hz
 - Broadband gamma (BBG) 50-200Hz
 - Different neuronal source originations and stimulus contrast-level dependencies [2]
- Haemodynamic signatures of underlying NBG and BBG activity are not identical [3]

Fig. 1: A) Decomposed EEG data: increased NBG to Michelson contrast (MC - 100%) and suppressed NBG to spatially randomised grating (SR - 60%) B) BOLD measurements: SR - 60% indicates the highest metabolic demand [3]

AIMS

- Gaining better insights of neural correlates of PBR and NBR responses in sensory cortex
- Characterising gamma band with non-invasive imaging technique (MEG) in humans and their relation to fMRI signals

Fig. 2: Power spectra of recorded BBG with MEG to checkerboard stimulation [2]

METHODS

EXPERIMENTAL PARADIGM			
BLACK/WHITE		BLACK/WHITE	AUDITORY
CHECKERBOARD		GRATING	DETECTION TASK
16 Hz		3cpd, 6Hz drift freq	1kHz beeps at
Right/Left visual field stimulati		l field stimulation	6Hz with 0,1,2
80% or 40%		100% or 60% spatial	deviant +/-
contrast-level		randomisation	50Hz tones
tasks		MEG	fMRI
visual	2 runs	6s 'on', 6s 'off' 40 trials, 8mins each	6s 'on', 15s 'off'
auditory 1	1 run		20 trials, 7mins
			l each

ACKNOWLEDGEMENT STEPHEN MAYHEW, PhD

REFERENCES

[1] Logothetis, N. K. (2002). The neural basis of the blood—oxygen—level—dependent functional magnetic resonance imaging signal. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences,

357(1424), 1003-1037.
[2] Kupers, E. R., Wang, H. X., Amano, K., Kay, K. N., Heeger, D. J., & Winawer, J. (2018). A non-invasive, quantitative study of broadband spectral responses in human visual cortex. PloS one, 13(3).
[3] Butler, R., Bernier, P. M., Lefebvre, J., Gilbert, G., & Whittingstall, K. (2017). Decorrelated input dissociates narrow band γ power and BOLD in human visual cortex. Journal of Neuroscience, 37(22), 5408-5418.

NOISE-POOL ALGORITHM

- Identifies 100 MEG sensors with lowest response to checkerboard
- Computes principal components for each 1-s epochs
- Projects out computed noise components from dataset

fMRI DATA

- Using FSL
- Preprocessing
- General Linear Models
- Z-statistics

Fig. 3: A) Checkerboard stimulation on high and low contrast (modified) [2] B) High and low spatially randomised grating stimuli (modified) [3]

60%

MEG DATA

- Using FieldTrip Toolbox
- 6-s active / 6-s control
- 1-s epochs each blocks
- 4 frequency bands of interest (alpha, beta, NBG, BBG)
- LCMV beamformer

Comparing the power extracted timecourses of MEG data amplitude the changes of PBR and NBR in visual cortex

EXPECTED RESULTS

fMRI PBR NBR contralateral ipsilateral activation deactivation to right visual field stimulation

MEG

- Contralateral gamma event-relatedsynchronisation (ERS)
- Decreased alpha and beta power in both hemisphere
- Ipsilateral alpha, beta and gamma eventrelateddesynchronisation (ERD)
- Induced NBG to higher contrast-level - 80%
- Induced BBG to spatially randomised grating -100%

DISCUSSION

- Replication and extension of Kupers et al., 2018 [2]
- Identification and manipulation of the interaction between the power of neural activity fluctuations and haemodynamic responses (PBR, NBR)
- Supporting the theory of different neuronal source originations and contributions of NBG and BBG to PBR and NBR [2][3]
- Alternative signal-to-noise ratio improvement of MEG recordings with denoising algorithm [2]