Hydrogen alpha line

The following transitions correspond to the H- α line of the hydrogen spectrum. See "Atomic Transition Probabilities Volume I," issued May 20, 1966, page 2.

Transition	λ (Å)	$A_{ki} (\operatorname{second}^{-1})$
2p-3s	6562.86	6.313×10^{6}
2s-3p	6562.74	2.245×10^{7}
2p-3d	6562.81	6.465×10^7

 A_{ki} is the spontaneous emission rate where i is the lower state and k is the upper state. Orbital names correspond to the following azimuthal quantum numbers ℓ .

Orbital	ℓ
s	0
p	1
d	2

Each transition in the table has multiple processes due to the magnetic quantum number m_{ℓ} . (Recall that $m_{\ell} = 0, \pm 1, \dots, \pm \ell$.)

There are three ways to transition from 3s to 2p.

$$\psi_{3,0,0} \to \psi_{2,1,1} \psi_{3,0,0} \to \psi_{2,1,0} \psi_{3,0,0} \to \psi_{2,1,-1}$$

There are three ways to transition from 3p to 2s.

$$\psi_{3,1,1} \to \psi_{2,0,0}$$

$$\psi_{3,1,0} \to \psi_{2,0,0}$$

$$\psi_{3,1,-1} \to \psi_{2,0,0}$$

Finally, there are fifteen ways to transition from 3d to 2p. (Some of these transitions have zero amplitude.)

For each H- α line, an average A_{ki} is computed by summing over A_{ki} for individual processes and dividing by the number of distinct initial states. For example, $3d \to 2p$ has five distinct initial states, so the divisor is five.

 A_{ki} is computed from the following formula.

$$A_{ki} = \frac{e^2}{3\pi\varepsilon_0\hbar c^3} \,\omega_{ki}^3 \,|r_{ki}|^2$$

The transition frequency ω_{ki} is given by Bohr's frequency condition.

$$\omega_{ki} = \frac{1}{\hbar} (E_k - E_i)$$

The transition probability (multiplied by a physical constant) is

$$|r_{ki}|^2 = |x_{ki}|^2 + |y_{ki}|^2 + |z_{ki}|^2$$

These are the transition amplitudes.

$$x_{ki} = \int_0^{2\pi} \int_0^{\pi} \int_0^{\infty} \psi_i^* r \sin \theta \cos \phi \, \psi_k \, r^2 \sin \theta \, dr \, d\theta \, d\phi$$
$$y_{ki} = \int_0^{2\pi} \int_0^{\pi} \int_0^{\infty} \psi_i^* r \sin \theta \sin \phi \, \psi_k \, r^2 \sin \theta \, dr \, d\theta \, d\phi$$
$$z_{ki} = \int_0^{2\pi} \int_0^{\pi} \int_0^{\infty} \psi_i^* r \cos \theta \, \psi_k \, r^2 \sin \theta \, dr \, d\theta \, d\phi$$

Using Eigenmath we obtain the following values for average A_{ki} . The results are essentially identical to the values found in "Atomic Transition Probabilities."

$$A_{3s2p} = 6.31358 \times 10^6 \text{ second}^{-1}$$

 $A_{3p2s} = 2.24483 \times 10^7 \text{ second}^{-1}$
 $A_{3d2p} = 6.4651 \times 10^7 \text{ second}^{-1}$