* Composition n°1 Remplacement de Physique / Chimie – 2^{de}– 2h – 2024/2025 – École Amirouche *

Exercice 01 : « Plongée profonde » (05 points)

Trimix est la contraction du mot « tri » (trois) et « mix » (mélange). C'est un mélange gazeux constitué de dioxygène (O_2) , d'hélium (He) et de diazote (N_2) . Il est utilisé à la place de l'air lors des plongées profondes, pour limiter l'action narcotique du diazote et l'effet du dioxygène qui devient toxique au-delà d'une certaine profondeur. Un trimix 14/55 désigne un mélange composé de 14 % de dioxygène en volume et de 55 % d'hélium. Il permet de plonger à 90 m de profondeur.

- 1. Rappeler la composition volumique approchée de l'air.
- 2. Justifier alors que la composition du trimix 14/55 permet de limiter les effets toxiques du dioxygène et du diazote lors d'une plongée profonde.
- 3. Une bouteille de trimix a un volume de 20 L. Déterminer le volume de chacun des gaz contenus dans le mélange, à la pression des gaz de la bouteille.

Exercice 02: « Calculer une masse d'ions dans une eau minérale » (05 points)

L'étiquette d'une eau minérale indique les concentrations en masse en mg \cdot L⁻¹ des ions qu'elle contient.

• Calculer la masse d'ions calcium dans une bouteille de volume 330 mL contenant cette eau minérale.

Pour 1 litre / Voor 1 liter	: En mg :	AJR*/ADH*
✓ Calcium	468	58 %
✓ Magnésium	74,5	19 %
Sodium Na ⁺	9	0,4
Sulfate SO ₄ ²⁻	11	121)
Hydrogénocarbonate	ICO₃ 3	372)

Exercice 03: « Vous avez dit magnésium? » (05 points)

Pour lutter contre le stress ou pour aider notre système immunitaire, notre organisme ne peut pas se passer de magnésium. Celui-ci combat aussi le vieillissement des cellules et les problèmes cardiaques!
Le symbole du noyau d'un atome de magnésium est 24 M g.

Données :

Masse du nucléon : $m_{nu} = 1,67 \times 10^{-27} \text{ kg.}$ Masse de l'électron : $m_e = 9,11 \times 10^{-31} \text{ kg.}$

- Donner la composition de ce noyau.
- 2. a. Calculer la masse m_1 d'un atome de magnésium en tenant compte de tous ses constituants.
- **b.** Calculer la masse m_2 du noyau.
- Comparer ces résultats et conclure.

Exercice 04 : « Place des éléments silicium et oxygène dans le tableau périodique » (05 points)

Données:

- Numéro atomique de l'oxygène O: 8

- Numéro atomique du silicium Si : 14

Le silicium Si et l'oxygène O sont les éléments les plus abondants dans la croûte terrestre. Le silicium est essentiel à la réalisation des puces électroniques présentes dans les ordinateurs.

L'élément oxygène est vital pour l'homme, il est présent dans l'eau et le dioxygène.

1 • Déterminer la position de ces éléments dans le tableau périodique.

> Wafer de silicium permettant de réaliser des puces électroniques

2. Donner la représentation de Lewis de la molécule de dioxyde de silicium SiO₂

Données:

- Numéro atomique de l'oxygène O:8
- Numéro atomique du silicium **Si** : **14**

BONNE CHANGE!

Corrigé de la composition 01 Remplacement -2024/2025 - 2de

Exercice 01: « Plongée profonde »5

- 1. L'air est composé d'environ 78 % de diazote, 21 % de dioxygène et 1 % d'autres gaz.
- 2. Une bouteille de trimix 14/55 contient moins de dioxygène (14%) et de diazote 100 – (14 + 55) = 31 % que l'air. Les effets toxiques de ces gaz sont donc limités.
- 3. Le volume total de la boutelle est : $V_{\text{tot}} = 20 \text{ L}$.

Le mélange contient 14 % de dioxygène, 55 % d'hélium et 31 % de diazote. Ce sont respectivement les pourcentages volumiques $P_v(O_2)$, $P_v(He)$ et $P_v(N_2)$ en dioxygène, hélium et diazote du mélange.

On peut donc calculer les volumes $V(O_2)$, V(He) et $V(N_2)$ de chaque gaz :

$$V(O_{2}) = P_{v}(O_{2}) \times V_{tot}$$

$$V(O_{2}) = \frac{14}{100} \times 20 \text{ L}$$

$$V(O_{2}) = 2.8 \text{ L}$$

$$V(He) = P_{v}(He) \times V_{tot}$$

$$V(N_{2}) = P_{v}(N_{2}) \times V_{tot}$$

$$V(N_{2}) = \frac{31}{100} \times 20 \text{ L}$$

$$V(N_{2}) = \frac{31}{100} \times 20 \text{ L}$$

$$V(N_{2}) = 6.2 \text{ L}$$

Exercice 02: « Calculer une masse d'ions dans une eau minérale » 505

La masse d'ions calcium dans la bouteille de 330 mL s'écrit :

$$m = t \times V_{\text{solution}}$$

 $m = t \times V_{\text{solution}}$ Dans cette relation, m s'exprime en g, t en $g \cdot L^{-1}$ et V_{solution} en L.

Soit
$$t = 468 \text{ mg} \cdot \text{L}^{-1} = 468 \times 10^{-3} \text{ g} \cdot \text{L}^{-1}$$

 $V_{\text{solution}} = 330 \text{ mL} = 330 \times 10^{-3} \text{ L}^{-1}$

La masse m d'ions calcium dissous dans la bouteille de 330 mL est : m = 0,154 g.

Exercice 03: « Vous avez dit magnésium? »5

- 1. Le noyau de l'atome de magnésium est constitué de 12 protons et 12 neutrons.
- 2. a. $m_1 = 24 \times m_{\text{nu}} + 12 \times m_{\text{e}}$, donc $m_1 = 4.01 \times 10^{-26} \text{ kg}$. **b.** $m_2 = 24 \times m_{\text{nu}}$, donc $m_2 = 4.01 \times 10^{-26}$ kg. (1)
- c. On pouvait négliger la masse des électrons : la masse de l'atome est donc essentiellement concentrée dans son noyau.

Exercice 04 : « Place des éléments silicium et oxygène dans le tableau périodique » 5 pks

La configuration électronique de valence du silicium est 3s² 3p² et celle de l'oxygène

Les électrons de valence du silicium occupent la couche n=3, donc l'élément silicium est à la 3^e période du tableau périodique.

Les électrons de valence de l'oxygène occupent la couche n = 2, donc l'élément oxygène est à la 2^e période du tableau périodique.

La configuration électronique de l'atome de silicium se termine en 3p². On en déduit que l'élément silicium est placé à la 2^e colonne du bloc p, soit la colonne 14. La configuration électronique de l'atome d'oxygène se termine en 2p4. On en déduit que l'élément oxygène est placé à la 4^e colonne du bloc p, soit à la colonne 16. Dans le tableau périodique :

- l'élément silicium est placé à la 3^e période et à la 14^e colonne ;
- l'élément oxygène est placé à la 2^e période et à la 16^e colonne.

