Universidade de Aveiro Departamento de Matemática

Cálculo I - Agrupamento IV

2018/2019

Soluções do Exame Final - Época Normal de Exames

- 1. (a) $-\infty$.
 - (b) $D_{f^{-1}} =]0, \frac{\pi}{2}[, CD_{f^{-1}} = \mathbb{R}^-, f^{-1}(x) = \ln(\cos x).$
- 2. Sugestão: Utilize o Teorema de Rolle.
- 3. (a) $\frac{1}{5}$ sen (x^5) + arctg $(\cos x)$ + C, $C \in \mathbb{R}$.
 - (b) $\frac{4}{3} \left(x^{\frac{3}{4}} \ln(1 + x^{\frac{3}{4}}) \right) + C$, $C \in \mathbb{R}$.
 - (c) $2 \ln |x| \ln(4 + x^2) + C$, $C \in \mathbb{R}$.
- 4. (a) Pelo Teorema Fundamental do Cálculo Integral, F é diferenciável em \mathbb{R} e

$$F'(x) = 2x^3 \ln(1 + e^{x^2}), \quad x \in \mathbb{R}.$$

- (b) F é estritamente decrescente em \mathbb{R}^- e estritamente crescente em \mathbb{R}^+ . Como F é contínua, podemos concluir que F(0) = 0 é mínimo local de F.
- $5. \ \frac{2e-2}{e}.$
- 6. O integral é convergente.
- 7. (a) A série é absolutamente convergente (Sugestão: utilizar o Critério do Quociente ou o Critério da Raiz).
 - (b) A série é simplemente convergente.
- 8. (a) A série é divergente (pela condição necessária de convergência).
 - (b) A série é divergente.