Diszkrét matematika 2

11. előadás
Kódelmélet

Mérai László

merai@inf.elte.hu

https://sites.google.com/view/laszlomerai

Komputeralgebra Tanszék

2023 ősz

Kódtávolság – emlékeztető

Definíció

Egy $\mathcal C$ kód kódtávolsága a kódszavak közti minimális távolság: $d(\mathcal C) = \min\{d(\mathbf u, \mathbf v) : \mathbf u, \mathbf v \in \mathcal C, \mathbf u \neq \mathbf v\}.$

Példa

- Az ismétlő kód (0 \mapsto 000, 1 \mapsto 111) távolsága d=3.
- Paritásbit ($\mathbf{u} \mapsto (u_1, \dots, u_k, u_1 + u_2 + \dots + u_k \mod 2)$) távolsága d = 2.

Tétel (Biz.: HF)

Egy \mathcal{C} kód $d = d(\mathcal{C})$ kódtávolsággal:

- d-1 hibát tud jelezni;
- $t = \lfloor (d-1)/2 \rfloor$ hibát tud javítani.

Singleton-korlát

Legyen $\mathcal{C} \subset \Sigma^n$ egy kód $d = d(\mathcal{C})$ minimális távolsággal.

- n minél kisebb, a kódolás annál gazdaságosabb.
- d minél nagyobb, a kód annál több hibát tud jelezni, javítani.
- #C minél nagyobb, annál több szót tudunk kódolni.

Tétel (Singleton-korlát)

Egy $\mathcal{C} \subset \Sigma^n$ kód $d = d(\mathcal{C})$ minimális távolság esetén: $\#\mathcal{C} \leq (\#\Sigma)^{n-d+1}$.

Bizonyítás.

- Legyen $\mathcal{C}' \subset (\#\Sigma)^{n-d+1}$, amit \mathcal{C} kódszavaiból kapunk az utolsó d-1 koordináta eltörlésével.
- Ha $\mathbf{u}, \mathbf{v} \in \mathcal{C}$ ($\mathbf{u} \neq \mathbf{v}$), akkor $d(\mathbf{u}, \mathbf{v}) \geq d$, azaz legalább d pozicíóban különböznek. Spec., \mathbf{u}, \mathbf{v} kódok d-1 koordináta törlése után is különböznek.
- Azaz $\#C = \#C' \le (\#\Sigma)^{n-d+1}$.

Singleton-korlát

Singleton-korlát:

Ha $\mathcal{C} \subset \Sigma^n$ egy kód $d = d(\mathcal{C})$ minimális távolsággal, akkor: $\#\mathcal{C} \leq (\#\Sigma)^{n-d+1}$.

Egy \mathcal{C} kód maximális távolságú (vagy MDS–maximal distance separable), ha $\#\mathcal{C} = (\#\Sigma)^{n-d+1}$.

Példa

- Az ismétlő kód $(0 \mapsto 000, 1 \mapsto 111, n = 3, \#\mathcal{C} = 2, d = 3, \Sigma = \mathbb{Z}_2)$ MDS kód: $2 = 2^{3-3+1}$.
- A paritásbit kód $(u \mapsto (u_1, \dots, u_k, u_1 + \dots + u_k), n = k + 1, \#\mathcal{C} = 2^k, d = 2, \Sigma = \mathbb{Z}_2)$ MDS kód: $2^k = 2^{k+1-2+1}$.

Késöbb lesz példa további MDS kódokra.

Lineáris kódok

Most algebrai struktúrát vezetünk be a kódokon.

Definíció

Egy $\mathcal{C} \subset \mathbb{F}_q^n$ kód lineáris, ha \mathcal{C} egy lineáris altér \mathbb{F}_q^n -ben. Ekkor $k = \dim \mathcal{C}$ a kód dimenziója. Spec. $\#\mathcal{C} = q^k$. Ekkor \mathcal{C} egy (n, k) kód.

Példa

- Az ismétlő kód (0 \mapsto 000, 1 \mapsto 111) egy (3,1) lineáris kód.
- A paritásbit kód ($u \mapsto (u_1, \dots, u_k, u_1 + \dots + u_k \mod 2)$,) egy (k + 1, k) lineáris kód.

A lineáris kódok kényelmesek.

Singleton-korlát

Egy $\mathcal{C} \subset \mathbb{F}_q^n$ egy (n,k) lineáris kód $d=d(\mathcal{C})$ minimális távolság.

Ekkor:
$$\#\Sigma = \#\mathbb{F}_q = q, \, \#\mathcal{C} = q^k, \, \mathrm{fgy} \,\, q^k \leq q^{n-d+1}, \, \mathrm{azaz}$$

$$k \le n - d + 1$$
.

Lineáris kódok

Definíció

Legyen $\mathcal{C} \subset \mathbb{F}_q^n$ egy kód. Az $\mathbf{u} \in \mathcal{C}$ kódszó Hamming-súlya, $w(\mathbf{u}) = \#\{i : u_i \neq 0\}$.

Egy lineáris $\mathcal{C} \subset \mathbb{F}_q^n$ kód súlya: $w(\mathcal{C}) = \min\{w(\mathbf{c}) : \mathbf{c} \in \mathcal{C} \setminus \{0\}\}$

Tétel

Legyen \mathcal{C} egy lineáris kód. Ekkor $d(\mathcal{C}) = w(\mathcal{C})$.

Bizonyítás.

- Minden \mathcal{C} kódra $d(\mathcal{C}) = \min_{\mathbf{u} \neq \mathbf{v}} d(\mathbf{u}, \mathbf{v}) \leq \min_{\mathbf{u} \neq 0} d(\mathbf{u}, 0) = w(\mathcal{C})$ (ahol $\mathbf{u}, \mathbf{v} \in \mathcal{C}$).
- Ha \mathcal{C} lineáris és $d(\mathcal{C}) = d(\mathbf{u}, \mathbf{v})$, akkor $\mathbf{u} \mathbf{v} \in \mathcal{C}$ és $d(\mathbf{u}, \mathbf{v}) = w(\mathbf{u} \mathbf{v})$, azaz $d(\mathcal{C}) = w(\mathcal{C})$.

Azaz lineáris kódok esetén a kódtávolság kiszámításához nem kell a $\binom{q^k}{2} \approx q^{2k}/2$ távolságot ellenőrizni, elég a q^k Hamming-súlyt kiszámnolni.

Hamming-korlát

Tétel (Hamming-korlát)

Legyen $\mathcal{C} \subset \mathbb{F}_q^n$ egy lineáris (n,k) kód, mely t hibát tud javítani. Ekkor

$$\sum_{i=0}^{t} \binom{n}{i} (q-1)^i \le q^{n-k}.$$

Bizonyítás.

- Tekintsünk egy t sugarú gömböt minden kódszó körül.
- Egy \mathbf{u} kódszó körül azok az \mathbf{s} szavak vannak, melyekre $d(\mathbf{u}, \mathbf{s}) \leq t$.
- Ezen s szavak száma (egy gömb mérete): $G = \sum_{i=0}^{t} \binom{n}{i} (q-1)^i$
- $\#\mathcal{C} = q^k$ gömb van, ezek diszjunktak, így $q^k \cdot G \leq q^n$.

Hamming-korlát

Hamming-korlát:
$$\sum_{i=0}^{t} \binom{n}{i} (q-1)^i \leq q^{n-k}$$
.

Egy kód perfekt, ha a Hamming-korlátot egyenlőséggel teljesíti.

Példa

- Az ismétlő kód (0 \mapsto 000, 1 \mapsto 111) perfekt: 1 + 3 = 2^{3-1} .
- A négyszeres ismétlő kód (0 \mapsto 0000, 1 \mapsto 1111) nem perfekt: 1 + 4 < 2⁴⁻¹. (Itt n = 4, k = 1, d = 4, t = 1.)

A további célunk optimális kódok konstrukciója Singleton- és Hamming-korlát szempontjából) tetszőleges n-re.

Generátormátrix

Legyen \mathcal{C} egy lineáris (n,k) kód. Ekkor \mathcal{C} egy altér, így létezik $\mathbf{c}_1, \dots \mathbf{c}_k \in \mathcal{C}$ melyek generálják a \mathcal{C} alteret: $\langle \mathbf{c}_1, \dots, \mathbf{c}_k \rangle = \{a_1\mathbf{c}_1 + \dots + a_k\mathbf{c}_k : a_1, \dots, a_k \in \mathbb{F}_q\} = \mathcal{C}$.

Definíció

Legyen \mathcal{C} egy lineáris (n,k) kód $\mathbf{c}_1,\ldots,\mathbf{c}_k$ generátorokkal. Ekkor a \mathcal{C} egy generátormátrixa $G=(\mathbf{c}_1,\ldots,\mathbf{c}_k)\in\mathbb{F}_q^{n\times k}$.

Példa

- Az *n*-szeres ismétléses kód generátormátrixa: $G = (1, 1, ..., 1)^T = \mathbf{1}^T \in \mathbb{F}_q^{n \times 1}$.
- A paritásbit generátormátrixa:

$$G = egin{pmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & 1 \ 1 & 1 & \dots & 1 \end{pmatrix} = egin{pmatrix} \mathbf{I}_k \ \mathbf{1} \end{pmatrix} \in \mathbb{F}_2^{(k+1) imes k}$$

Generátormátrix

Példa

- Az *n*-szeres ismétléses kód generátormátrixa: $G = \mathbf{1}^T = (1, 1, \dots, 1)^T \in \mathbb{F}_a^{n \times 1}$.
- A paritásbit generátormátrixa: $G = \begin{pmatrix} \mathbf{I}_k \\ \mathbf{1} \end{pmatrix} \in \mathbb{F}_2^{(k+1) \times k}$

Megjegyzések

- A generátormátrix nem egyértelmű. Ha $P \in \mathbb{F}_q^{k \times k}$ invertálható, akkor $G \cdot P$ is generátormátrix.
- Az $\mathbf{u} \mapsto G\mathbf{u}$ egy kódolás.

Definíció

Egy $\mathbf{u}\mapsto G\mathbf{u}$ kódolás szisztematikus, ha a kódszavak utolsó n-k elemét elhagyva a kódolandó szót kapjuk, azaz

$$G = egin{pmatrix} \mathbf{I}_k \ B \end{pmatrix} \in \mathbb{F}_q^{n imes k}, \quad B \in \mathbb{F}_q^{(n-k) imes k}$$

alakú.

Ellenőrző mátrix

Példa

- Az n-szeres ismétléses kód generátormátrixa: $G = (1, 1, ..., 1)^T = \mathbf{1}^T \in \mathbb{F}_q^{n \times 1}$. Kapott $\mathbf{w} \in \mathbb{F}_q^n$ szó ellenőrzése: $w_1 \stackrel{?}{=} w_2 \stackrel{?}{=} ... \stackrel{?}{=} w_n$
- A paritásbit generátormátrixa: $G = \begin{pmatrix} \mathbf{I}_k \\ \mathbf{1} \end{pmatrix} \in \mathbb{F}_2^{(k+1) \times k}$ Kapott $w \in \mathbb{F}_2^{k+1}$ szó ellenőrzése: $w_1 + w_2 + \cdots + w_{k+1} \stackrel{?}{=} 0$

Definíció

Legyen \mathcal{C} egy (n,k) kód. Ekkor \mathcal{C} ellenőrző mátrixa az a $H \in \mathbb{F}_q^{(n-k)\times n}$ mátrix melyre $H\mathbf{c} = 0$ pontosan akkor, ha $\mathbf{c} \in \mathcal{C}$.

Példa

- ullet n-szeres ismétléses kód ellenőrző mátrixa: $H=(\mathbf{I}_{n-1},\mathbf{1})\in\mathbb{F}_a^{(n-1) imes n}$
- A paritásbit ellenőrző mátrixa: $H = \mathbf{1} = (1, \dots, 1) \in \mathbb{F}_q^{1 \times (k+1)}$