It so happens that this function can be simplified as:

 $V(k) = \frac{-125 + k^3}{-20 - k + k^2}$

 $= \frac{(k-5) \ \left(k^2+5 \ k+25\right)}{(k-5) \ (k+4)}$ $= \frac{k^2+5 \ k+25}{k+4}$ To find the vertical asymptote :

$$k_{\,+}\,4_{\,=}0$$
 $k_{\,=\,-}\,4$ There is a vertical asymptote at $k_{\,=\,-}\,4$ To find the horizontal asymptote :

First we must compare the degrees of the polynomials. The numerator contains a 3rd degree polynomial while the

The numerator contains a 3rd degree polynomia denominator contains a 2nd degree polynomial. Since the polynomial in the numerator is a b

Since the polynomial in the numerator is a higher degree than the denominator, there is no horizontal asymptote. To find the oblique asymptote :

we must divide the numerator by the denominator $\frac{-125+k^3}{-20-k+k^2} = \frac{k^2+5}{k+4} = \frac{21}{k+4} + (k+1)$ There is an oblique asymptote at e=k+1

ere is an oblique asymptote at e=k+1 $\begin{pmatrix} e \\ 60 \\ -20 \end{pmatrix}$ $= 10 \qquad 15 \qquad k$