

7주차: 데이터 시각화

ChulSoo Park

School of Computer Engineering & Information Technology

Korea National University of Transportation

학습목표 (7주차)

- ❖ 데이터 시각화 Library 사용법 이해
- ❖ 데이터 시각화 기본 기능 숙지
- ❖ 시각화를 이용한 데이터 해석
- ❖ 시각도 도구 숙지

06 대이터 시각화

6.1 데이터 시각화란?

6.2 시각화의 기본 기능

6.3 시각화 도구

6.4 시각화를 이용한 데이터 탐색

요약

■ 개론 7장 데이터 사이언스 방법 및 분석 기법

■ 입문 7장 데이터 마이닝

■ 기존의 컴퓨터 사이언스 와 인공지능(AI)

기존 컴퓨터 사이언스

인공지능(AI)

■ 인공지능(AI)과 데이터 사이언스 &........

Preview

- 데이터는 수많은 속성과 샘플로 구성되어 한눈에 의미 파악이 어려움
- 데이터의 의미를 통찰하고 전달하는 가장 좋은 방법은 시각적으로 표현 하는 것

출처: https://www.gapminder.org

■ 데이터 시각화의 필요성

- ✓ 데이터의 시각화는 데이터를 관찰하는 과정에서 선택 사항이 아니라 반드시 거쳐야 하는 필수 과정
- ✓ 엑셀로 Table과 같은 data 준비

	Α	В	С	D	E	F	G	Н
1	x1	x2	x3	x4	y1	y2	у3	y4
2	10	10	10	8	8.04	9.14	7.46	6.58
3	8	8	8	8	6.95	8.14	6.77	5.76
4	13	13	13	8	7.58	8.74	12.74	7.71
5	9	9	9	8	8.81	8.77	7.11	8.84
6	11	11	11	8	8.33	9.26	7.81	8.47
7	14	14	14	8	9.96	8.1	8.84	7.04
8	6	6	6	8	7.24	6.13	6.08	5.25
9	4	4	4	19	4.26	3.1	5.39	12.5
10	12	12	12	8	10.84	9.13	8.15	5.56
11	7	7	7	8	4.82	7.26	6.42	7.91
12	5	5	5	8	5.68	4.74	5.73	6.89

■ 데이터 시각화의 필요성

■ 데이터 시각화의 필요성

✓ 엑셀 data R로 불러오기

■ 데이터 시각화의 필요성

✓ 엑셀 data R로 불러오기

```
Console C:/RSources/
> library(readx1)
> a=read_excel("c:/rdata/6c/anscombe.xlsx",col_names = TRUE)
> head(a,11)
 A tibble: 11 x 8
      x1
             x2
                   x3
                          x4
                                у1
                                       y2
                                             у3
                                                    y4
                <db7>
   <db1> <db1>
                      <db1> <db1> <db1>
                                          <db7>
                              8.04
      10
             10
                   10
                                     9.14
                                           7.46
                                                  6.58
                              6.95
                    8
                                     8.14
              8
                                           6.77
                                                  5.76
 3
                              7.58
                                     8.74 12.7
      13
             13
                   13
                                                  7.71
                              8.81
              9
                                     8.77
                                           7.11
                                                  8.84
 5
                              8.33
      11
             11
                   11
                                     9.26
                                           7.81
                                                  8.47
 6
      14
             14
                   14
                             9.96
                                     8.1
                                           8.84
                                                  7.04
       6
              6
                    6
                              7.24
                                     6.13
                                           6.08
                                                  5.25
                              4.26
                                     3.1
                                           5.39 12.5
                          19
 9
                           8 10.8
      12
             12
                   12
                                     9.13
                                           8.15
                                                  5.56
10
              7
                           8
                             4.82
                                     7.26
                                          6.42
                                                  7.91
                                           5.73
11
                              5.68
                                     4.74
                                                  6.89
```


■ 데이터 시각화의 필요성

✔ 데이터 살펴보기(평균, 분산, 상관관계 등)

- 데이터 시각화의 필요성
 - ✓ 선형 회귀식 등을 통한 비교
 - 선형 회귀식도 거의 동일

$$y1 = 0.5001 \times x1 + 3.0001$$

 $y2 = 0.500 \times x2 + 3.001$
 $y3 = 0.4997 \times x3 + 3.0025$
 $y4 = 0.4999 \times x4 + 3.0017$

- 통계 지표와 분석 수치만으로 비교해보면, 4개의 데이터 셋은 거의 동일하다고 판단할 수 있음
- 평균, 분산, 상관계수 거의 동일

■ 데이터 시각화의 필요성

✓ 시각화

■ 데이터 시각화의 필요성

✓ 시각화

■ 시각화의 기본 요소

- ✓ gapminder 데이터에는 5개 대륙, 총 142개 국가에 대한 1952~2007년의 인구 데이터가 5년 간격으로 저장 되어 있음
- ✓ 먼저 전체를 파악하기 위해 : 인구 변화의 추이를 대륙별로 보고자 함

표 5-1 gapminder 데이터 프레임의 구성 항목

열이름(변수명)	변수형	내용
country	142개 레벨의 범주형	국가명
continent	5개 레벨의 범주형	국가가 속한 대륙
year	int	1952~2007 관측 연도(5년 단위)
lifeExp	num	기대 수명(평균 수명)
pop	int	인구
gdpPercap	num	1인당 국내총생산(물가 상승 반영)

■ 시각화의 기본 요소

- ✓ gapminder 데이터에는 5개 대륙, 총 142개 국가에 대한 1952~2007년의 인구 데이터가 5년 간격으로 저장되어 있음
- ✓ 먼저 전체를 파악하기 위해 : 인구 변화의 추이를 대륙별로 보고자 함

	Α	В	С	D	E	F	G		
1	NO	country	continent	year	lifeExp	рор	gdpPercap	_	
841	840	Korea,Dem. Rep	Asia	2007	67.297	23,301,725	1593.07	_	
842	841	Korea, Rep.	Asia	1952	47.453	20,947,571	1030.59		
843	842	Korea, Rep.	Asia	1957	52.681	22,611,552	1487.59		
844	843	Korea, Rep.	Asia	1962	55.292	26,420,307	1536.34		
845	844	Korea, Rep.	Asia	1967	57.716	30,131,000	2029.23		
846	845	Korea, Rep.	Asia	1972	62.612	33,505,000	3030.88		
847	846	Korea, Rep.	Asia	1977	64.766	36,436,000	4657.22		
848	847	Korea, Rep.	Asia	1982	67.123	39,326,000	5622.94		
849	848	Korea, Rep.	Asia	1987	69.810	열이름(변수	명) 변	수형	내용
850	849	Korea, Rep.	Asia	1992	72.244	country	142개 레틸	벨의 범주형	국가명
851	850	Korea, Rep.	Asia	1997	74.647	continent	5개 레벨의		국가가 속한 대륙
852	851	Korea, Rep.	Asia	2002	77.045				1952~2007 관측 연도(5년 단위)
853	852	Korea,	Asia	2007	78.623	year	int		· · ·
854	853	Kuwait	Asia	1952	55.565	lifeExp	num		기대 수명(평균 수명)
855	854	Kuwait	Asia	1957	58.033	pop	int		인구
856	855	Kuwait	Asia	1962	60.47	gdpPercap	num		1인당 국내총생산(물가 상승 반영)
857	856	Kuwait	Asia	1967	64.624	575,003	80894.88		

■ 시각화의 기본 요소

✓ 년도별, 대륙별 인구 합구하기

```
Console C:/RSources/
                                                                       > library(gapminder)
> library(dplyr)
> y_c_pop <- gapminder %>% group_by(year, continent) %>% summarize(c_pop=sum
(pop))
`summarise()` has grouped output by 'year'. You can override using the `.grou
ps` argument.
> head(y_c_pop, 10)
# A tibble: 10 x 3
# Groups: year [2]
   year continent
                     c_pop
   <int> <fct>
                       <db1>
  1952 Africa 237640501
  1952 Americas 345152446
   1952 Asia
                  1395357351
   1952 Europe
                 418<u>120</u>846
   1952 Oceania
                10686006
               264<u>8</u>37738
   1957 Africa
   1957 Americas 386953916
                  1562780599
   1957 Asia
   1957 Europe 437890351
   1957 Oceania
                  11941976
```


■ 시각화의 기본 요소

✓ 년도별, 대륙별 인구 합구하기 → 1차 기본 시각화(년도 가로축, 인구 세로축)

```
R Script $
  1:1
       (Top Level) $
 Console C:/RSources/
> head(y_c_pop,10)
# A tibble: 10 x 3
# Groups:
          year [2]
    year continent
                           c_pop
                           <db7>
   <int> <fct>
   1952 Africa
                      237640501
    1952 Americas
                      345152446
    1952 Asia
                     1395357351
    <u>1</u>952 Europe
                      418120846
    1952 Oceania
                       10686006
    1957 Africa
                      264837738
    1957 Americas
                      386953916
    <u>1</u>957 Asia
                     1562780599
    1957 Europe
                      437890351
    <u>1</u>957 Oceania
                       11941976
> plot(y_c_pop$year, y_c_pop$c_pop)
```


>?plot

```
R: The Default Scatterplot Function •
                                  Find in Topic
Usage
## Default S3 method:
plot(x, y = NULL, type = "p", xlim = NULL, ylim = N
      log = "", main = NULL, sub = NULL, xlab = NULL,
      ann = par("ann"), axes = TRUE, frame.plot = axe
      panel.first = NULL, panel.last = NULL, asp = NA
      xgap.axis = NA, ygap.axis = NA,
      . . . )
Arguments
               the x and y arguments provide the x and y
X, V
               coordinates for the plot. Any reasonable way of
               defining the coordinates is acceptable. See the
               function xy.coords for details. If supplied
               separately, they must be of the same length.
                1-character string giving the type of plot desired
time
```


■ 시각화의 기본 요소

✓ 년도 별, 대륙 별 인구 합 구하기 → 1차 기본 시각화(년도 가로축, 인구 세로축)
 → 2차 대륙 별 구분 색상 부여하기 (col option 사용)

■ 시각화의 기본 요소

- ✓ 년도 별, 대륙 별 인구 합 구하기 → 1차 기본 시각화(년도 가로축, 인구 세로축)
 - → 2차 대륙 별 구분 색상 부여하기 (col option 사용)
 - → 3차 서로 다른 마커(Marker)로 표현하기(pch option 사용)

```
Console C:/RSources/ >> y <- gapminder %>% group_by(year, continent)
e(c_pop=sum(pop))
`summarise()` has grouped output by 'year'. You
e using the `.groups` argument.
> plot(y$year, y$c_pop, col=y$continent, pch=c(
> plot(y$year, y$c_pop, col=y$continent, pch=c(
els(y$continent))))
> |
```


pch option 사용

pch option 사용

- >plot (y\$year, y\$c_pop, col=y\$continent,pch=c(1:5))
- >plot (y\$year, y\$c_pop, col=y\$continent,pch=c(18:22))

■ 시각화의 기본 요소

- ✓ 년도 별, 대륙 별 인구 합 구하기 → 1차 기본 시각화(년도 가로축, 인구 세로축)
 - → 2차 대륙 별 구분 색상 부여하기 (col option 사용)
 - → 3차 서로 다른 마커(Marker)로 표현하기(pch option 사용)
 - → 4차 범례 표시하기(legend)

```
Console C:/RSources/
> y <- gapminder %>% group_by(year, continent) %>% summariz
                                                                                            + + + + + + +
e(c_pop=sum(pop))

    Africa

`summarise()` has grouped output by 'year'. You can overrid
e using the `.groups` argument.
                                                                           Americas
> plot(y$year, y$c_pop, col=y$continent, pch=c(1:5))
> # 번레 객수를 산수로 지전
                                                                           + Asia
                                                                     2e+09
                                                                           × Europe
> legend("topleft", legend=5, col=c(1:5), pch=(1:5))
                                                                              Oceania
> legend("topleft",legend=levels(y$continent), pch=c(1:leng
th(levels(y$continent))), col=c(1:length(levels(y$continen
t))))
                                                                        1950
                                                                                       1970
                                                                               1960
                                                                                              1980
                                                                                                     1990
                                                                                                             2000
                                                                                             y$year
```

Thank you

