Course Title: Algorithms Design & Analysis

Course Code: CSE - 225

Question Patterns

Q.1	a.	Suppose we find the 8th term using the recursive implementation. The arguments passed to the function calls will be as follows and justify the answer:								
		fibonacci(8) fibonacci(7) + fibonacci(6) fibonacci(6) + fibonacci(5) + fibonacci(5) + fibonacci(4) fibonacci(5) + fibonacci(4) + fibonacci(4) + fibonacci(3) + fibonacci(4) + fibonacci(3)								
		Which property is shown by the above function calls? a) Memoization b) Optimal substructure c) Overlapping sub-problems d) Greedy								
	b.	Solve the following instance of the 0/1 knapsack problem using dynamic programming approach. Assume that the knapsack capacity is 7.								
			Item	Weight	Benefit	7				
			1	3	\$5	1				
			2	4	\$6					
			3	5	\$7					
			4	6	\$8					
	c.	Using substitution method proves that the running time of Merge so algorithm is O(nlogn).								

	a	Daduga the best assa or	mplovity	v of Oniols o	ort						
	d.	Deduce the best case complexity of Quick sort.									
0.2											
Q.2	a.	Find an optimal solution to the fractional knapsack problem, where the knapsack capacity is $M = 13$.									
			Item	Weight	Profit						
			1	2	10						
			2	3	5						
			3	5	15						
			4	7	7						
	b.	What is the advantage	of Huff	nan's Graad	 v_alconiti	hm in data compression?					
	υ.	What is the advantage of Huffman's Greedy algorithm in data compression? Suppose A,B,C,D,E,F,G and H are 8 items and suppose they are assigned									
		weights as follows:	o una r	i ure o men	is una sa	ppose they are assigned					
		Data items: A B	\mathbf{C}		F G	H					
		Weight: 22 5	11	19 2 1	1 25	5					
		Now construct the Tree	hy usin	o Huffman	Algorith	m and encoding the each					
		node.	Aigorium	in and encouning the each							
	c.	Determine the space complexity of following code:									
		<pre>int sum(int a[], int n) { int r = 0; for (int i = 0; i < n; ++i)</pre>									
		r += a[i]; } return r;									
		}									
Q.3	a. Explain the following statement with correct answer:										
		The main time taking step in fractional knapsack problem is a) Breaking items into fraction b) Adding items into knapsack c) Sorting									
		d) Looping through sorted items									
	b.		Sequences "ABCD" and								
		"AED" is "AD" of length	gth 2.								


```
unsigned long factorial(int n)
                   unsigned long fact = 1;
                   int i;
                   for (i = 1; i \le n; i++)
                          fact = fact * i;
                   return fact;
           // Program to find factorial of a number
           int main()
                   int n = 5;
                   printf("The Factorial of %d is %lu", n, factorial(n));
                   return 0;
           What type of dynamic programming it is (Bottom up or top down)? Also
           clarify the reason.
           Apply Bipartite Graph to assign job Y = \{1,4,5\} to X = \{0,2,3\} on Graph.
      b.
            What is the basic distinction between greedy method and dynamic method?
      c.
Q.9
           Apply DFS by using topological sorting on the graph F in Fig. 6
```


Fig. 6: A directed graph F

What would be the time complexity of following code: b. #include <stdio.h> int main() { int n, i, flag = 0; printf("Enter a positive integer: "); scanf("%d", &n); for(i = 2; i <= n/2; ++i) { // condition for nonprime number if(n%i == 0) { flag = 1; break; } } if (n == 1)printf("1 is neither a prime nor a composite number."); }

else

```
if (flag == 0)
                       printf("%d is a prime number.", n);
                     else
                       printf("%d is not a prime number.", n);
                }
                 return 0;
          What are the disadvantages of recursion?
     c.
10.
          Apply Topological sorting on graph P in Fig. 5
                                    Fig. 5: A directed graph P
          Using tree recursion method proves that the running time of Quick sort
     b.
          algorithm is O(nlogn) in best case; where n is the number of input.
          Define the worst case and best case of Depth first search and also determine the
     c.
          complexity.
```