Project

Project Description

It is required to develop a program to solve linear equations. The programs reads first an integer n which is the number of equations.

Then the program reads n lines containing the equations.

For example the input to the program is like:

3 2x1+3x2+4x3=16 1x1+2x2+1x3=8 3x1+1x2+2x3=13

Equation proper form: Any operation should first convert every equation to the proper form. The equation proper should have the following properties

1. variables are ordered alphabetically from left to right

2. Any variable should appears only one time

3. Only one constant term should appear in the equation and it should be on the right hand side

2x1+3x2+5+4x3-11=10 Should be 2x1+3x2+4x3=16

4. Coefficient when equals to one or -1 the digit 1 is optional

1x1+3x2-1x3=10 Can be input as be x1+3x2-x3=10

In the program, after reading the equations the program reads one or more commands from user and program should print the results of each operations and read another operation till the program read the operation quit which ends the program. Any result printed should be based on the proper form of equations.

Level	operation	Meaning	Action Required from the Program
1	num_vars	Print the number of variables	Print the number of variables in the equations.
	equation i	Print equation number i (i is integer)	Print equation of the equation number i
	column x2	Print the column of coefficients of variable (x2)	Print the vector of coefficients of the given variable name. (x2 can be replaced by any variable name)
2	add 1 3	Add equation 1 and equation 3 and print the result equation	Print the result equation from adding equation 1 and equation 3. (1 and 3 can be any integer numbers from 1 to n).

1	audatus at 4.2	Culatina at	Drint the recult assetted
	subtract 13	Subtract	Print the result equation
		equation 1	from subtracting equation
		minus equation	1 and equation 3. (1 and 3
		3 and print the	can be any integer
		result equation	numbers from 1 to n).
	substitute x2 1 3	Substitutes the	Remove the variable x2
		variable x2 in	from equation 1 by
		equation 1 by	substituting it with
		its equation in	equation 3 and print the
		equation 3 and	result equation
		print the result	
		equation	
3	D	Cramer's	Prints the Cramer's
		Coefficient	coefficients matrix.
		matrix	
	D x1	Cramer's	Prints the Cramer's
		Coefficient	coefficients matrix with
		matrix of	answer-column values in x1
		variable x1	columns values
	D_value	Cramer's	Prints the value of the
	_	coefficient	determinant of the
		matrix	Coefficient matrix.
		determinant	
		value	
	solve	Print the	Prints the value of each
		solution of the	variable that solves the
		equations	solution
		-	I no solution, the program
			should print "No Solution"

General Constraints:

- 1- User can input equations can be up to 100 equations.
- 2- All values are of float data types in general case.
- 3- Do not prompt user to enter anything , just read the input directly.
- 4- Output should not include any extra white spaces or any extra texts more than the results.

Hints:

1. While parsing the equations, you will need to convert from string to float and from float to string. Use the following example as a guide:

```
#include<iostream>
#include<string>
#include<cstdlib>
#include<sstream>
using namespace std;
int main() {
// To convert from string to float use atof function
// atof needs #include<cstdlib>
string s = "1.5";
float v;
v = atof(s.c str());
// To convert float-to string use ostringstream variable
// ostringstream needs #include<sstream>
// ostringstream variables are used in a similar way to cout
// Then get the string from the ostringstream using .str
float d = 1.55;
string str;
ostringstream ss;
ss << d;
str = ss.str();
return 0;
}
```

Input / Output Samples

User Input in Blue, Program Output in Red (Just for Clarification, not required in the program)

Example 1 (num_vars operation)

```
3
2x1+3x2+4x3=16
1x1+2x2+1x3=8
3x1+1x2+2x3+x4=13
num_vars
4
```

Example 2 (equation i operation)

```
3
2x1+3x2+4x3=16
1x1+2x2+1x3=8
3x1+1x2+2x3+x4=13
equation 2
1x1+2x2+1
```

Example 3 (column operation)

```
3
2x1+3x2+4x3=16
1x1+2x2+1x3=8
Page 6 of 10
3x1+1x2+2x3+x4=13
column x2
3
2
1
```

Example 4 (Add operation)

```
3
2x1+3x2+4x3=16
1x1+2x2+1x3=8
3x1+1x2+2x3+x4=13
add 1 3
4x1+4x2+6x3+x4=29
```

Example 5 (subtract operation)

```
3
2x1+3x2+4x3=16
1x1+2x2+1x3=8
3x1+1x2+2x3+x4=13
subtract 3 1
2x1-1x2+1x3+x4=5
```

Example 6 (substitute operation)

Example 7 (D operation)

```
3
2x1+3x2+4x3=16
1x1+2x2+1x3=8
3x1+1x2+2x3=13
D
2 3 4
1 2 1
3 1 2
```

Example 7 (D x2 operation)

```
3
2x1+3x2+4x3=16
1x1+2x2+1x3=8
3x1+1x2+2x3=13
D x2
2  16  4
1  8  1
3  13  2
```

Example 8 (D_value operation)

```
3 Page 8 of 10
2x1+3x2+4x3=16
1x1+2x2+1x3=8
3x1+1x2+2x3=13
D_value
-11
```

Example 9 (solve operation) note that the solution of $xi = (D xi)value/D_value$

```
3
2x1+3x2+4x3=16
1x1+2x2+1x3=8
3x1+1x2+2x3=13
solve
x1=3
x2=2
x3=1
```