Machine Learning 4005

Notions de base sur l'apprentissage supervisé REGRESSION

Mohamed Heny SELMI

medheny.selmi@esprit.tn

Enseignant et Responsable option Data Science à ESPRIT

Régression Linéaire Multiple

PROBLÉMATIQUE – ÉCHANTILLON D'APPRENTISSAGE

	X1	X2	Х3	X4	Υ	
Modèle Véhicule	(Frs)	(cm3)	(kW)	(kg)	(l/100km)	
Wodele Verlicule						
	Prix	Cylindrée	Puissance	Poids	Consommation	
Daihatsu Cuore	11600	846	32	650	5,7	
Suzuki Swift 1.0 GLS	12490	993	39	790	5,8	
Fiat Panda Mambo L	10450	899	29	730	6,1	
VW Polo 1.4 60	17140	1390	44	955	6,5	
Opel Corsa 1.2i Eco	14825	1195	33	895	6,8	
Subaru Vivio 4WD	13730	658	32	740	6,8	
Toyota Corolla	19490	1331	55	1010	7,1	
Ferrari 456 GT	285000	5474	325	1690	21,3	
Mercedes S D	183900	5987	300	2250	18,7	
Maserati G	92500	2789	209	1485	4,5	
Opel Astr 66i 167	25000	1597	74	1080	7,4	
Peuge 6 Y 108	223	1761	74	00	9,0	
Renau so an 2.2 V	36,00	5 6 6 5		150	11,7	
Seat I za o GT	22500	1983	85	1075	9,5	
VW G GTI	31580	1984	85	1155	9,5	
Citroen ZX Volcane	28750	1998	89	1140	8,8	
Fiat Tempra 1.6 Liberty	22600	1580	65	1080	9,3	
Fort Escort 1.4i PT	20300	1390	54	1110	8,6	
Honda Civic Joker 1.4	19900	1396	66	1140	7,7	
Volvo 850 2.5	39800	2435	106	1370	10,8	
Ford Fiesta 1.2 Zetec	19740	1242	55	940	6,6	
Hyundai Son ta 3000	38990	2972	107	1400	11,7	
Lancia K 3.c LS/	Cylindr 650800		Poids = CO	nsomn	11,9	
Mazda Hayırıback V	Cyllliare 36200	uissunce ₄₉	122	1330	10,8	
Mitsubish, Galant	31990	1998	66	1300	7,6	
Opel Omega 2.5i V6	47700	2496	125	1670	11,3	
Peugeot 806 2.0	36950	1998	89	1560	10,8	
Nissan Primera 2.0	26950	1997	92	1240	9,2	
Seat Alhambra 2.0	36400	1984	85	1635	11,6	
Toyota Previa salon	50900	2438	97	1800	12,8	
Volvo 960 Kombi aut	49300	2473	125	1570	12,7	

PF	PROBLÉMATIQUE - ÉCHANTILLON D'APPRENTISSAGE											
	X	X X	,					x)	-Y			
	(1)	2, 1	3,		• • • • •			, An				
1	MT	RG	PRIX	BR	INV	PUB	FV	TPUB	VENTES			
2	369	118	59	9	17	89	177	225	5439			
3	476	138	71	18	4	63	279	206	5149			
4	432	152	73	16	-50	16	245	309	4704			
5	418	135	79	35		74	270	83	5036			
6	383	104	60	21	-4,	32	201	298	4110			
7	554	138	81	20		93	324	161	6180			
8	320	147	66	15		48	154	305	4888			
9	268	129	57	29		51	166	263	4290			
10	359	106	69	27	71	74	196	414	5397			
11	461	132	82	27	-18	91	267	170	5272			
12	420	136	70	10	8	91	213	429	4989			
13	536	111	73	27	128	74	296	273	5927			
14	311	143	67	22	-25	27	= V 20	7 2 45	4033			
K	(MT, R)	G, PRA	X, BR 74	NV, Pł	B, FV2 7	TPUB	= V 20 /	245	6124			
6	332	140	60	11	61	21	180	247	4708			
17	336	136	60	25	-30	40	213	328	4627			
18	394	146	59	13	143	52	209	407	4872			
19	415	148	69	8	47	29	207	80	5151			

Objectifs

Trouver le meilleur modèle (linéaire) liant Y et X

Qualifier la liaison par rapport à chaque X_i

Comparer les modèles de Prédiction : globale ou réduit

Détecter les individus atypiques

$$X_1, X_2, \dots, X_n = Y$$

Objectifs de la régression linéaire

✓ Le modèle de prédiction <u>LINEAIRE</u> consiste à prédire la valeur d'une variable cible <u>continue</u>, en fonction des valeurs <u>d'un certain nombre</u> <u>d'autres variables prédictives</u>

- ✓ Cette variable ≪ cible ≫ peut être par exemple :
 - le poids : en fonction de la taille
 - le prix d'un appartement : en fonction de sa superficie, de l'étage et du quartier
 - la consommation d'électricité : en fonction de la température extérieure et de l'épaisseur de l'isolation

Exemple de régression linéaire

Estimer le coût du loyer en fonction :
du nombre de pièces,
du niveau d'étage dans l'immeuble,
des services offerts ...

- La droite qui représente mieux les données
- La droite qui résume le mieux le nuage des points
- La droite qui explique mieux les Y en fonctions des X_i

- La droite qui représente mieux les données
- La droite qui résume le mieux le nuage des points
- La droite qui explique mieux les Y en fonctions des X_i

- la droite dont les points du nuage sont en moyenne les plus proches
- la droite qui passe à la plus faible distance de chaque point du nuage

la droite dont les points du nuage sont en moyenne les plus proches la droite qui passe à la plus faible distance de chaque point du nuage Trouver les valeurs des $lpha_i$ qui minimise la somme des carrés des écarts entre les valeurs réelles de Y et le valeurs prédites avec le modèle de prédiction $Y = \alpha_0 + \alpha_1 X_1 + \alpha_2 X_2 + \dots + \alpha_n X_n + \varepsilon$ Y: Variable cible / Décisionnelle

- la droite dont les points du nuage sont en moyenne les plus proches
 la droite qui passe à la plus faible distance de chaque point du nuage
 - Trouver les valeurs des α_i qui <u>minimise</u> la somme des carrés des écarts entre les valeurs réelles de Y et les valeurs rédites avec le modèle de prédiction

Y: Variable cible / Décisionnelle

Estimation par la méthode des moindres carrés

- La distance d'un point à la droite est la distance verticale entre l'ordonnée du point observé (x_i, y_i) et l'ordonnée du point correspondant sur la droite (x_i, \widehat{y}_i)
- Trouver les valeurs des α_i qui minimise la somme des carrés des écarts entre les valeurs réelles de Y et les valeurs prédites avec le modèle de prédiction

Objectifs de la méthode des moindres carrés

- La distance d'un point à la droite est la distance verticale entre l'ordonnée du point observé (x_i, y_i) et l'ordonnée du point correspondant sur la droite $(x_i, \widehat{y_i})$
- Minimiser toutes les erreurs => minimiser les ε;

Y: Variable cible / Décisionnelle

Diagramme Quantile-Quantile QQ-plot

le diagramme Quantile-Quantile ou diagramme Q-Q ou Q-Q plot est un outil graphique permettant d'évaluer la pertinence de l'ajustement d'une distribution donnée à un modèle théorique.

Le terme de quantile-quantile provient du fait que l'on compare la position de certains quantiles dans la population observée avec leurs positions dans la population théorique.

Le diagramme quantile-quantile permet également de comparer deux distributions que l'on estime semblables.

Diagramme Quantile-Quantile QQ-plot

Les termes de l'équation

Entrepôt d'apprentissage

$$\begin{array}{c|c}
SI & \mathcal{E}_{1} \\
M & \rightarrow 0 & \mathbf{ALORS} \\
\mathcal{E}_{n} & & \\
\end{array}$$

$$\begin{array}{c|c}
s = \sum \varepsilon_{i}^{2} = \sum (y_{i} - \widehat{y}_{i})^{2} \\
= \sum (y_{i} - \alpha x_{i} - \alpha_{0})^{2} \\
\frac{\partial s}{\partial \alpha} = 0 \text{ et } \frac{\partial s}{\partial \alpha_{0}} = 0
\end{array}$$

Entrepôt d'apprentissage

$$\begin{array}{c|c}
\mathbf{SI} & \mathcal{E}_1 \\
\mathbf{M} & \rightarrow 0 \quad \mathbf{ALORS} \\
\mathcal{E}_n & \mathbf{1}
\end{array}$$

$$\frac{\partial s}{\partial \alpha} = 0 \ et \frac{\partial s}{\partial \alpha_0} = 0$$

$$\sum x_i y_i - \alpha \sum x_i^2 - \alpha_0 \overline{x} = 0$$

$$et \overline{y} - \alpha \overline{x} - \alpha_0 = 0$$

Entrepôt d'apprentissage

$$\frac{\mathbf{SI}}{\mathbf{SI}} \begin{bmatrix} \mathcal{E}_1 \\ \mathbf{M} \end{bmatrix} \to 0 \quad \mathbf{ALORS} - \mathbf{E}_n$$

$$\sum x_i y_i - \alpha \sum x_i^2 - \alpha_0 \, \overline{x} = 0$$

$$et \, \overline{y} - \alpha \overline{x} - \alpha_0 = 0$$

$$\widehat{\alpha} = \frac{\sum (y_i - \overline{y})(x_i - \overline{x})}{\sum (x_i - \overline{x})^2}$$

$$\widehat{\alpha_0} = \overline{y} - \widehat{\alpha}\overline{x}$$

$$\begin{array}{c|c}
\mathbf{SI} & \mathcal{E}_{1} \\
\mathbf{M} \\
\mathcal{E}_{n}
\end{array} \rightarrow 0 \quad \mathbf{ALORS} -
\begin{array}{c|c}
Y = X \alpha \\
X^{t}Y = \alpha \\
X^{t}Y = \alpha \\
X^{t}Y = \alpha \\
X^{t}Y = X^{t}X \\$$

$$\begin{array}{c|c}
\mathbf{SI} & \mathcal{E}_{1} \\
\mathbf{M} \\
\mathcal{E}_{n}
\end{array} \rightarrow 0 \quad \mathbf{ALORS} - \begin{cases}
Y = X \alpha \\
X^{t}Y = X^{t}X \alpha \\
X^{t}Y = [X^{t}X] \alpha \\
[X^{t}X]^{-1}X^{t}Y = [X^{t}X]^{-1} [X^{t}X] \alpha \\
[X^{t}X]^{-1}X^{t}Y = \alpha \\
[X^{t}X]^{-1}X^{t}Y = \alpha
\end{cases}$$

$$\begin{array}{c|c}
\mathbf{SI} & \mathcal{E}_{1} \\
\mathbf{M} & \rightarrow 0 \text{ ALORS} \\
\mathcal{E}_{n} & \mathbf{ALORS} \\
\end{array}$$

$$\begin{array}{c}
Y = X \alpha \\
X^{t}Y = X^{t}X \alpha \\
X^{t}Y = [X^{t}X] \alpha \\
[X^{t}X]^{-1}X^{t}Y = [X^{t}X]^{-1} [X^{t}X] \alpha \\
[X^{t}X]^{-1}X^{t}Y = \alpha \\
[X^{t}X]^{-1}X^{t}Y = \widehat{\alpha}
\end{array}$$

Entrepôt d'apprentissage

$$\begin{array}{c|c}
\mathbf{SI} & \mathcal{E}_{1} \\
\mathbf{M} \\
\mathcal{E}_{n}
\end{array} \rightarrow 0 \quad \mathbf{ALORS} - \begin{cases}
\begin{aligned}
Y &= X \alpha \\
X^{t}Y &= X^{t}X \alpha \\
X^{t}Y &= [X^{t}X] \alpha \\
X^{t}Y &= [X^{t}X] \alpha \\
[X^{t}X]^{-1}X^{t}Y &= [X^{t}X]^{-1}[X^{t}X] \alpha \\
[X^{t}X]^{-1}X^{t}Y &= \alpha \\
[X^{t}X]^{-1}X^{t}Y &= \alpha
\end{aligned}$$

Entrepôt d'apprentissage

Si on exige que ε ne contient plus de l'information X

 $Y-X\alpha$ a pu absorber l'information des X contenue dans Y

Inter – Indépendance entre X et $Y-X\alpha$

$$\langle X|Y - X\alpha \rangle = 0$$

Entrepôt d'apprentissage

Si on exige que ε ne contient plus de l'information X

 $Y-X\alpha$ a pu absorber l'information des X contenue dans Y

Inter – Indépendance entre X et $Y-X\alpha$

$$\langle X|Y - X\alpha \rangle = 0$$

Entrepôt d'apprentissage

Si on exige que ε ne contient plus de l'information X

 $Y-X\alpha$ a pu absorber l'information des X contenue dans Y

Inter – Indépendance entre X et $Y - X\alpha$

$$\langle X|Y - X\alpha \rangle = 0$$

Entrepôt d'apprentissage

Mohamed Heny SELMI ©

Si on exige que ε ne contient plus de l'information X

 $Y-X\alpha$ a pu absorber l'information des X contenue dans Y

Inter – Indépendance entre X et $Y-X\alpha$

$$\langle X|Y - X\alpha \rangle = 0$$

Entrepôt d'apprentissage

SI
$$\begin{bmatrix} \mathcal{E}_1 \\ \mathbf{M} \end{bmatrix} \rightarrow 0$$
 ALORS -

Mohamed Heny SELMI \odot

$$\langle X|Y-X\alpha\rangle=\mathbf{0}$$

$$\begin{array}{c|c}
\mathbf{SI} & \mathcal{E}_1 \\
\mathbf{M} & \rightarrow 0 \text{ ALORS} \\
\mathcal{E}_n & \mathbf{SELMI} \odot
\end{array}$$

$$\langle X|Y - X\alpha \rangle = 0$$

$$X^{t}(Y - X\alpha) = 0$$

$$X^{t}Y - X^{t}X\alpha = 0$$

$$X^{t}Y = X^{t}X\alpha$$

$$X^{t}Y = [X^{t}X]\alpha$$

$$[X^{t}X]^{-1}X^{t}Y = [X^{t}X]^{-1} [X^{t}X] \alpha$$

$$[X^{t}X]^{-1}X^{t}Y = \alpha$$

$$[X^{t}X]^{-1}X^{t}Y = \alpha$$

SI
$$\begin{bmatrix} \mathcal{E}_1 \\ \mathbf{M} \end{bmatrix} \rightarrow 0$$
 ALORS - Mohamed Heny SELMI \odot

$$\langle X|Y - X\alpha \rangle = 0$$

$$X^{t}(Y - X\alpha) = 0$$

$$X^{t}Y - X^{t}X\alpha = 0$$

$$X^{t}Y = X^{t}X\alpha$$

$$X^{t}Y = [X^{t}X]\alpha$$

$$[X^{t}X]^{-1}X^{t}Y = [X^{t}X]^{-1} [X^{t}X] \alpha$$

$$[X^{t}X]^{-1}X^{t}Y = \alpha$$

$$[X^{t}X]^{-1}X^{t}Y = \alpha$$

$$\langle X|Y - X\alpha \rangle = 0$$

$$X^{t}(Y - X\alpha) = 0$$

$$X^{t}Y - X^{t}X\alpha = 0$$

$$X^{t}Y = X^{t}X\alpha$$

$$X^{t}Y = [X^{t}X]\alpha$$

$$[X^{t}X]^{-1}X^{t}Y = [X^{t}X]^{-1} [X^{t}X] \alpha$$

$$[X^{t}X]^{-1}X^{t}Y = \alpha$$

$$[X^{t}X]^{-1}X^{t}Y = \alpha$$

$$\langle X|Y - X\alpha \rangle = 0$$

$$X^{t}(Y - X\alpha) = 0$$

$$X^{t}Y - X^{t}X\alpha = 0$$

$$X^{t}Y = X^{t}X\alpha$$

$$X^{t}Y = [X^{t}X]\alpha$$

$$[X^{t}X]^{-1}X^{t}Y = [X^{t}X]^{-1}[X^{t}X]\alpha$$

$$[X^{t}X]^{-1}X^{t}Y = \alpha$$

$$[X^{t}X]^{-1}X^{t}Y = \alpha$$

Entrepôt d'apprentissage

Mohamed Heny SELMI ©

$$\langle X|Y - X\alpha \rangle = 0$$

$$X^{t}(Y - X\alpha) = 0$$

$$X^{t}Y - X^{t}X\alpha = 0$$

$$X^{t}Y = X^{t}X\alpha$$

$$X^{t}Y = [X^{t}X]\alpha$$

$$[X^{t}X]^{-1}X^{t}Y = [X^{t}X]^{-1}[X^{t}X]\alpha$$

$$[X^{t}X]^{-1}X^{t}Y = \alpha$$

$$[X^{t}X]^{-1}X^{t}Y = \alpha$$

$$\langle X|Y - X\alpha \rangle = 0$$

$$X^{t}(Y - X\alpha) = 0$$

$$X^{t}Y - X^{t}X\alpha = 0$$

$$X^{t}Y = X^{t}X\alpha$$

$$X^{t}Y = [X^{t}X]\alpha$$

$$[X^{t}X]^{-1}X^{t}Y = [X^{t}X]^{-1} [X^{t}X] \alpha$$

$$[X^{t}X]^{-1}X^{t}Y = \alpha$$

$$[X^{t}X]^{-1}X^{t}Y = \alpha$$

SI
$$\begin{bmatrix} \mathcal{E}_1 \\ \mathbf{M} \end{bmatrix} \rightarrow 0$$
 ALORS - Mohamed Heny SELMI ©

$$\langle X|Y - X\alpha \rangle = 0$$

$$X^{t}(Y - X\alpha) = 0$$

$$X^{t}Y - X^{t}X\alpha = 0$$

$$X^{t}Y = X^{t}X\alpha$$

$$X^{t}Y = [X^{t}X]\alpha$$

$$[X^{t}X]^{-1}X^{t}Y = [X^{t}X]^{-1} [X^{t}X] \alpha$$

$$[X^{t}X]^{-1}X^{t}Y = \alpha$$

$$[X^{t}X]^{-1}X^{t}Y = \alpha$$

$$\begin{array}{c|c}
\mathbf{SI} & \mathcal{E}_1 \\
\mathbf{M} & \rightarrow 0 \text{ ALORS} \\
\mathcal{E}_n & & & & \\
\end{array}$$
Mohamed Heny SELMI ©

$$\langle X|Y - X\alpha \rangle = 0$$

$$X^{t}(Y - X\alpha) = 0$$

$$X^{t}Y - X^{t}X\alpha = 0$$

$$X^{t}Y = X^{t}X\alpha$$

$$X^{t}Y = [X^{t}X]\alpha$$

$$[X^{t}X]^{-1}X^{t}Y = [X^{t}X]^{-1} [X^{t}X] \alpha$$

$$[X^{t}X]^{-1}X^{t}Y = \alpha$$

$$[X^{t}X]^{-1}X^{t}Y = \widehat{\alpha}$$

Entrepôt d'apprentissage

$$\frac{\mathbf{SI}}{\mathbf{SI}} \begin{bmatrix} \mathcal{E}_1 \\ \mathbf{M} \\ \mathcal{E}_n \end{bmatrix} \to 0 \, \mathbf{ALORS} - \mathbf{SI}$$

Mohamed Heny SELMI ©

$$\langle X|Y - X\alpha \rangle = 0$$

$$X^{t}(Y - X\alpha) = 0$$

$$X^{t}Y - X^{t}X\alpha = 0$$

$$X^{t}Y = X^{t}X\alpha$$

$$X^{t}Y = [X^{t}X]\alpha$$

$$[X^{t}X]^{-1}X^{t}Y = [X^{t}X]^{-1} [X^{t}X] \alpha$$

$$[X^{t}X]^{-1}X^{t}Y = \alpha$$

$$[X^{t}X]^{-1}X^{t}Y = \widehat{\alpha}$$

$$[X^t X]^{-1} X^t Y = \widehat{\alpha}$$

Les coefficients estimateurs sont d'autant plus précis que :

- i. La variance de l'erreur est faible :la droite de régression passe bien au milieu des points
- ii. La dispersion des X est forte :les X couvrent bien l'espace de représentation

$$[X^t X]^{-1} X^t Y = \widehat{\alpha}$$

Les coefficients estimateurs sont d'autant plus précis que :

- La variance de l'erreur est faible :
 la droite de régression passe bien au milieu des points
- ii. La dispersion des X est forte : les X couvrent bien l'espace de représentation

X^tX	$ ^{-1}X^tY$	$= \widehat{\alpha}$
--------	--------------	----------------------

Y	
(l/100km)	
Consommation	
5,7	
5,8	
6,1	
6,5	
6,8	
6,8	
7,1	
21,3	
18,7	
14,5	
7,4	_
9,0	ı
9,5	_
9,5	
8,8	
9,3	
8,6	
7,7	
10,8	
6,6	
11,7	
11,9	
10,8	
7,6	
11,3	
10,8	
9,2	
11,6	
12,8	
12,7	

17140 1390 44 955 14825 1195 33 895 13730 658 32 740 19490 1331 55 1010 285000 5474 325 1690 183900 5987 300 2250 92500 2789 209 1485 25000 1597 74 1080 22350 1761 74 1100 36600 2165 101 1500 22500 1983 85 1075 31580 1984 85 1155 28750 1998 89 1140 22600 1580 65 1080	X ₁	X2	Х3	X4
11600 846 32 650 12490 993 39 790 10450 899 29 730 17140 1390 44 955 14825 1195 33 895 13730 658 32 740 19490 1331 55 1010 285000 5474 325 1690 183900 5987 300 2250 92500 2789 209 1485 25000 1597 74 1080 22350 1761 74 1100 36600 2165 101 1500 22500 1983 85 1075 31580 1984 85 1150 28750 1998 89 1140 22600 1580 65 1080 22300 1390 54 110 19900 1396 66 1140 39800	(Frs)	(cm ₃)	(kW)	(kg)
11600 846 32 650 12490 993 39 790 10450 899 29 730 17140 1390 44 955 14825 1195 33 895 13730 658 32 740 19490 1331 55 1010 285000 5474 325 1690 183900 5987 300 2250 92500 2789 209 1485 25000 1597 74 1080 22350 1761 74 1100 36600 2165 101 1500 22500 1983 85 1075 31580 1984 85 1150 28750 1998 89 1140 22600 1580 65 1080 22300 1390 54 110 19900 1396 66 1140 39800				
12490				
10450 899 29 730 17140 1390 44 955 14825 1195 33 895 13730 658 32 740 19490 1331 55 1010 285000 5474 325 1690 183900 5987 300 2250 92500 2789 209 1485 25000 1597 74 1080 22350 1761 74 1110 36600 2165 101 1500 22500 1983 85 1075 31580 1984 85 1155 28750 1998 89 1140 22600 1580 65 1080 22300 1390 54 1110 19900 1396 66 1140 39800 2435 106 1370 19740 1242 55 940 38990 2972 107 1400 50800 2495 1598 89 1550 31990 1998 66 1300 31990 1998 66 1300 31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 1560 26950 1998 89 1560 26950 1997 92 1240 36400 1984 85 1635				
17140 1390 44 955 14825 1195 33 895 13730 658 32 740 19490 1331 55 1010 285000 5474 325 1690 183900 5987 300 2250 92500 2789 209 1485 25000 1597 74 1080 22350 1761 74 1100 36600 2165 101 1500 22500 1983 85 1075 31580 1984 85 1155 28750 1998 89 1140 22600 1580 65 1080 20300 1399 54 1110 19900 1396 66 1140 39800 2435 106 1370 19740 1242 55 940 38990 2972 107 1400 50800<				
14825 1195 33 895 13730 658 32 740 19490 1331 55 1010 285000 5474 325 1690 183900 5987 300 2250 92500 2789 209 1485 25000 1597 74 1080 22350 1761 74 1100 36600 2165 101 1500 22500 1983 85 1075 31580 1984 85 1155 28750 1998 89 1140 22600 1580 65 1080 20300 1390 54 1110 19900 1396 66 1140 39800 2435 106 1370 19740 1242 55 940 38990 2972 107 1400 50800 2958 150 1550 36200 2497 122 1330 31990 1998 66			29	730
13730 658 32 740 19490 1331 55 1010 285000 5474 325 1690 183900 5987 300 2250 92500 2789 209 1485 25000 1597 74 1080 22350 1761 74 1100 36600 2165 101 1500 22500 1983 85 1075 31580 1984 85 1155 28750 1998 89 1140 22600 1580 65 1080 20300 1390 54 1110 19900 1396 66 1140 39800 2435 106 1370 19740 1242 55 940 38990 2972 107 1400 50800 2958 150 1550 36200 2497 122 1330 31			44	955
19490 1331 55 1010 285000 5474 325 1690 183900 5987 300 2250 92500 2789 209 1485 25000 1597 74 1080 22350 1761 74 1100 36600 2165 101 1500 22500 1983 85 1075 31580 1984 85 1155 28750 1998 89 1140 22600 1580 65 1080 20300 1390 54 1110 19900 1396 66 1140 39800 2435 106 1370 19740 1242 55 940 38990 2972 107 1400 50800 2958 150 1550 36200 2497 122 1330 31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 </td <td>14825</td> <td></td> <td>33</td> <td>895</td>	14825		33	895
285000 5474 325 1690 183900 5987 300 2250 92500 2789 209 1485 25000 1597 74 1080 22350 1761 74 1100 36600 2165 101 1500 22500 1983 85 1075 31580 1984 85 1155 28750 1998 89 1140 22600 1580 65 1080 20300 1390 54 1110 19900 1396 66 1140 39800 2435 106 1370 19740 1242 55 940 38990 2972 107 1400 50800 2958 150 1550 36200 2497 122 1330 31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 1560 26950 1997 92 </td <td></td> <td>658</td> <td>32</td> <td>740</td>		658	32	740
183900 5987 300 22500 92500 2789 209 1485 25000 1597 74 1080 22350 1761 74 1100 36600 2165 101 1500 22500 1983 85 1075 31580 1984 85 1155 28750 1998 89 1140 22600 1580 65 1080 20300 1390 54 1110 19900 1396 66 1140 39800 2435 106 1370 19740 1242 55 940 38990 2972 107 1400 50800 2958 150 1550 36200 2497 122 1330 31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 1560 26950 1997 92 1240 36400 1984 85 <td>19490</td> <td>1331</td> <td>55</td> <td>1010</td>	19490	1331	55	1010
92500 2789 209 1485 25000 1597 74 1080 22350 1761 74 1100 36600 2165 101 1500 22500 1983 85 1075 31580 1984 85 1155 28750 1998 89 1140 22600 1580 65 1080 20300 1390 54 1110 19900 1396 66 1140 39800 2435 106 1370 19740 1242 55 940 38990 2972 107 1400 50800 2958 150 1550 36200 2497 122 1330 31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 1560 26950 1998 89 1560 269	285000	5474	325	1690
25000 1597 74 1080 22350 1761 74 1100 36600 2165 101 1500 22500 1983 85 1075 31580 1984 85 1155 28750 1998 89 1140 22600 1580 65 1080 20300 1390 54 1110 19900 1396 66 1140 39800 2435 106 1370 19740 1242 55 940 38990 2972 107 1400 50800 2958 150 1550 36200 2497 122 1330 31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 1560 26950 1997 92 1240 36400 1984 85 1635	183900	5987	300	2250
22350 1761 74 1100 36600 2165 101 1500 22500 1983 85 1075 31580 1984 85 1155 28750 1998 89 1140 22600 1580 65 1080 20300 1390 54 1110 19900 1396 66 1140 39800 2435 106 1370 19740 1242 55 940 38990 2972 107 1400 50800 2958 150 1550 36200 2497 122 1330 31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 1560 26950 1997 92 1240 36400 1984 85 1635	92500	2789	209	1485
36600 2165 101 1500 22500 1983 85 1075 31580 1984 85 1155 28750 1998 89 1140 22600 1580 65 1080 20300 1390 54 1110 19900 1396 66 1140 39800 2435 106 1370 19740 1242 55 940 38990 2972 107 1400 50800 2958 150 1550 36200 2497 122 1330 31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 1560 26950 1997 92 1240 36400 1984 85 1635	25000	1597	74	1080
22500 1983 85 1075 31580 1984 85 1155 28750 1998 89 1140 22600 1580 65 1080 20300 1390 54 1110 19900 1396 66 1140 39800 2435 106 1370 19740 1242 55 940 38990 2972 107 1400 50800 2958 150 1550 36200 2497 122 1330 31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 1560 26950 1997 92 1240 36400 1984 85 1635	22350	1761	74	1100
31580 1984 85 1155 28750 1998 89 1140 22600 1580 65 1080 20300 1390 54 1110 19900 1396 66 1140 39800 2435 106 1370 19740 1242 55 940 38990 2972 107 1400 50800 2958 150 1550 36200 2497 122 1330 31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 1560 26950 1997 92 1240 36400 1984 85 1635	36600	2165	101	1500
31580 1984 85 1155 28750 1998 89 1140 22600 1580 65 1080 20300 1390 54 1110 19900 1396 66 1140 39800 2435 106 1370 19740 1242 55 940 38990 2972 107 1400 50800 2958 150 1550 36200 2497 122 1330 31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 1560 26950 1997 92 1240 36400 1984 85 1635	22500	1983	85	1075
22600 1580 65 1080 20300 1390 54 1110 19900 1396 66 1140 39800 2435 106 1370 19740 1242 55 940 38990 2972 107 1400 50800 2958 150 1550 36200 2497 122 1330 31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 1560 26950 1997 92 1240 36400 1984 85 1635	31580	1984	85	1155
22600 1580 65 1080 20300 1390 54 1110 19900 1396 66 1140 39800 2435 106 1370 19740 1242 55 940 38990 2972 107 1400 50800 2958 150 1550 36200 2497 122 1330 31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 1560 26950 1997 92 1240 36400 1984 85 1635	28750	1998	89	1140
19900 1396 66 1140 39800 2435 106 1370 19740 1242 55 940 38990 2972 107 1400 50800 2958 150 1550 36200 2497 122 1330 31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 1560 26950 1997 92 1240 36400 1984 85 1635		1580	65	1080
39800 2435 106 1370 19740 1242 55 940 38990 2972 107 1400 50800 2958 150 1550 36200 2497 122 1330 31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 1560 26950 1997 92 1240 36400 1984 85 1635		1390	54	1110
39800 2435 106 1370 19740 1242 55 940 38990 2972 107 1400 50800 2958 150 1550 36200 2497 122 1330 31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 1560 26950 1997 92 1240 36400 1984 85 1635	19900	1396	66	1140
19740 1242 55 940 38990 2972 107 1400 50800 2958 150 1550 36200 2497 122 1330 31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 1560 26950 1997 92 1240 36400 1984 85 1635			106	
38990 2972 107 1400 50800 2958 150 1550 36200 2497 122 1330 31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 1560 26950 1997 92 1240 36400 1984 85 1635			55	
50800 2958 150 1550 36200 2497 122 1330 31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 1560 26950 1997 92 1240 36400 1984 85 1635				
36200 2497 122 1330 31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 1560 26950 1997 92 1240 36400 1984 85 1635				
31990 1998 66 1300 47700 2496 125 1670 36950 1998 89 1560 26950 1997 92 1240 36400 1984 85 1635				
47700 2496 125 1670 36950 1998 89 1560 26950 1997 92 1240 36400 1984 85 1635				
36950 1998 89 1560 26950 1997 92 1240 36400 1984 85 1635				
26950 1997 92 1240 36400 1984 85 1635				
36400 1984 85 1635				
7-7 *7,0 7/				
				1570

$$[X^t X]^{-1} X^t Y = \widehat{\alpha}$$

VENTES	1	MT	RG	PRIX	BR	INV	PUB	FV	TPUB		
5439	2	369	118	59	9	17	89	177	225		$\widehat{\alpha_1}$
5149	3	476	138	71	18	4	63	279	206		
4704	4	432	152	73	16	-50	16	245	309		$\widehat{\alpha_2}$
5036	5	418	135	79	35	142	74	270	83		
4110	6	383	104	60	21	-45	32	201	298	_	$\widehat{\alpha_3}$
6180	7	554	138	81	20	42	93	324	161		
4888	8	320	147	66	15	10	48	154	305		•
4290	9	268	129	57	29	89	51	166	263		•
5397	10	359	106	69	27	71	74	196	414		
5272	11	461	132	82	27	-18	91	267	170		•
4989	12	420	136	70	10	8	91	213	429		$\widehat{\alpha_8}$
5927	13	536	111	73	27	128	74	296	273		000
4033	14	311	143	67	22	-25	27	181	60		
6124	15	517	142	74	27	27	75	307	345		
4708	16	332	140	60	11	61	21	180	247		
4627	17	336	136	60	25	-30	40	213	328		
4872	18	394	146	59	13	143	52	209	407		
5151	19	415	148	69	8	47	29	207	80		

$$[X^t X]^{-1} X^t Y = \widehat{\alpha}$$

	_											
VENTES		1	MT	RG	PRIX	BR	INV	PUB	FV	TPUB		
5439		2	369	118	59	9	17	89	177	225		$\widehat{\alpha_1}$
5149		3	476	138	71	18	4	63	279	206		
4704		4	432	152	73	16	-50	16	245	309		$\widehat{\alpha_2}$
5036		5	418	135	79	35	142	74	270	83		
4110		6	383	104	60	21	-45	32	201	298	_	$\widehat{\alpha_3}$
6180		7	554	138	81	20	42	93	324	161		
4888		8	320	147	66	15	10	48	154	305		
4290		9	268	129	57	29	89	51	166			
5397		10	359	106	69	27	71	74	196	414		
5272		11	461	132	82	27	-18	91	267	170		
4989		12	420	136	70	10	8	91	213	429		$\widehat{\alpha_8}$
5927		13	536	111	73	27	128	74	296	273		ug
4033		14	311	143	67	22	-25	27	181	60		
6124		15	517	142		27	27	75	307	345		
4708		16	332	140	_	11	61		180			
4627		17	336	136	60	25	-30	40	213			
4872		18	394	146	59	13	143	52	209	407		
5151		19	415	148		8			207			

AIC

BIC

- Critère d'information d'Akaike
 - la différence entre 2 fois le nombre de paramètres (k)
- deux fois la log-vraisemblance du modèle estimé.
 - $AIC = 2k 2 \ln L$

$$AIB = -2 \ln L + k \ln N$$

Critères de sélection de variables pertinentes

Les méthodes pas à pas consistent à considérer d'abord un modèle faisant intervenir toutes les variables explicatives: puis on procède par élimination ou ajout successif de variables.

- la méthode descendante ou élimination en arrière lorsque on élimine des variables
- la méthode ascendante ou sélection en avant lorsque on ajoute des variables
- La méthode stepwise est une combinaison de ces deux méthodes

Exemple : cas de Ventes semestrielles

• Variable à prédire : VENTES = Ventes semestrielles

Variables prédictives :

MT = Marché total

RG = Remises aux grossistes

PRIX = Prix

BR = Budget de Recherche

INV = Investissement

PUB = Publicité

FV = Frais de ventes

TPUB = Total budget publicité de la branche

	А	В	С	D	E	F	G	Н	1
1	MT	RG	PRIX	BR	INV	PUB	FV	TPUB	VENTES
2	369	118	59	9	17	89	177	225	5439
3	476	138	71	18	4	63	279	206	5149
4	432	152	73	16	-50	16	245	309	4704
5	418	135	79	35	142	74	270	83	5036
6	383	104	60	21	-45	32	201	298	4110
7	554	138	81	20	42	93	324	161	6180
8	320	147	66	15	10	48	154	305	4888
9	268	129	57	29	89	51	166	263	4290
10	359	106	69	27	71	74	196	414	5397
11	461	132	82	27	-18	91	267	170	5272
12	420	136	70	10	8	91	213	429	4989
13	536	111	73	27	128	74	296	273	5927
14	311	143	67	22	-25	27	181	60	4033
15	517	142	74	27	27	75	307	345	6124
16	332	140	60	11	61	21	180	247	4708
17	336	136	60	25	-30	40	213	328	4627
18	394	146	59	13	143	52	209	407	4872
19	415	148	69	8	47	29	207	80	5151

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.898 ^a	.806	.752	256.29

a. Predictors: (Constant), Total publicité de la branche, Marché total, Remises aux grossistes, Budget de recherche, Investissements, Publicité, Prix, Frais de ventes

TPUB = Total budget publicité de la branche

Coefficients^a

		Unstandardized Coefficients		
Model	В	Std. Error	t	Sig.
1 (Const	tant) 3129.231	641.355	4.879	.000
MT	4.423	1.588	2.785	.009
RG	1.676	3.291	.509	.614
PRIX	-13.526	8.305	-1.629	.114
BR	-3.410	6.569	519	.608
INV	1.924	.778	2.474	.019
PUB	8.547	1.826	4.679	.000
FV	1.497	2.771	.540	.593
TPUB	-2.15E-02	.401	054	.958

Modèle complet (sans restriction de variables)

Coefficientsa

		Unstandardized Coefficients			
Model		В	Std. Error	t	Sig.
1	(Constant)	3129.231	641.355	4.879	.000
	MT	4.423	1.588	2.785	.009
	RG	1.676	3.291	.509	.614
	PRIX	-13.526	8.305	-1.629	.114
	BR	-3.410	6.569	519	.608
	INV	1.924	.778	2.474	.019
	PUB	8.547	1.826	4.679	.000
	FV	1.497	2.771	.540	.593
	TPUB	-2.15E-02	.401	054	.958

a. Dependent Variable: VENTES

VENTE = 3129,231 + 4,423 X MT + 1,676 X RG - 13,526 X PRIX – 3,410 X BR +1,924 X INV + 8,328 X PUB + 1,497 X FV – 0,00215 X TPUB

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.898 ^a	.806	.760	251.99

- a. Predictors: (Constant), Frais de ventes, Remises aux grossistes, Publicité, Investissements, Budget de recherche, Prix, Marché total
- b. Dependent Variable: Ventes

BR = Budget de Recherche

Coefficientsa

			Unstandardized Coefficients		
Model		В	Std. Error	t	Sig.
1	(Constant)	3115.648	579.517	5.376	.000
	MT	4.426	1.561	2.836	.008
	RG	1.706	3.191	.535	.597
	PRIX	-13.445	8.029	-1.675	.104
	BR	-3.392	6.451	526	.603
	INV	1.931	.756	2.554	.016
	PUB	8.558	1.784	4.798	.000
	FV	1.482	2.710	.547	.588
-	•		-		

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.897 ^a	.804	.766	249.04

 a. Predictors: (Constant), Frais de ventes, Remises aux grossistes, Publicité, Investissements, Prix, Marché total

b. Dependent Variable: Ventes

FV = Frais de ventes

Coefficients

		Unstand Coeffi			
Model		В	Std. Error	t	Sig.
1	(Constant)	3137.547	571.233	5.493	.000
	MT	4.756	1.412	3.368	.002
	RG	1.705	3.153	.541	.593
	PRIX	-14.790	7.521	-1.966	.058
	INV	1.885	.742	2.539	.016
	PUB	8 5 1 9	1 761	4 837	000
	FV	.950	2.484	.382	.705

Model Summary

			Adjusted	Std. Error of
Model	R	R Square	R Square	the Estimate
1	.896 ^a	.803	.772	245.69

a. Predictors: (Constant), Publicité, Remises aux grossistes, Marché total, Investissements, Prix

b. Dependent Variable: Ventes

RG = Remises aux grossistes

Coefficientsa

	Unstand Coeffi			
Model	В	Std. Error	t	Sig.
1 (Constant)	3084.009	546.374	5.645	.000
MT	5.222	.704	7.415	.000
RG	1.700	3.111	.546	.589
PRIX	-13.467	6.589	-2.044	.049
INV	1.984	.686	2.893	.007
PUB	8.328	1.666	4.998	.000

Coefficients^a

		Unstand Coeffi			
Model		В	Std. Error	t	Sig.
1	(Constant)	3084.009	546.374	5.645	.000
	MT	5.222	.704	7.415	.000
	PRIX	-13.467	6.589	-2.044	.049
	INV	1.984	.686	2.893	.007
	PUB	8.328	1.666	4.998	.000

a. Dependent Variable: VENTES

VENTE₂ = 3084,009 + 5,222 X MT -13,467 X PRIX + +1,984 X INV + 8,328 X PUB

PRÉDICTION ET ÉVALUATION SUR UN ENTREPÔT DE TEST

Modèle global

1	MT	RG	PRIX	BR	INV	PUB	FV	TPUB	VENTES	pred.full
2	328	123	77	20	59	88	211	141	4787	4722,93
3	285	105	63	8	-28	12	176	218	4123	3646,53
4	441	120	80	16	-22	50	267	405	4801	4847,31
5	462	112	73	15	68	93	283	212	5712	5406,63
6	417	120	81	35	148	83	257	111	5512	5330,98
7	408	131	66	13	120	62	235	141	5313	5138,27
8	362	145	67	23	117	73	220	239	4942	5092,38
9	436	123	73	32	100	43	276	280	5366	5004,36
10	456	128	65	22	144	52	253	93	5741	5401,29
11	364	120	64	14	128	96	195	107	5383	5269,58
12	433	124	68	8	122	25	258	291	5140	4839,73
13	277	135	62	11	76	68	175	410	4842	4476,9
14	455	126	78	22	18	95	233	118	5316	5626,29
15	398	138	56	12	50	77	229	98	5540	5175,03
16	412	149	78	36	30	26	258	124	4647	4752,77
17	415	119	75	20	-40	41	211	315	4630	4844,78
18	484	111	58	13	107	40	258	321	5502	5358,06
19	515	120	77	23	126	21	328	398	5288	5139,33
20	429	125	74	11	88	83	218	118	5095	5452,81
21	355	131	65	24	113	77	208	307	5094	5082,23

PRÉDICTION ET ÉVALUATION SUR UN ENTREPÔT DE TEST

Modèle global

Modèle réduit

1	MT	RG	PRIX	BR	INV	PUB	FV	TPUB	VENTES	pred.full
2	328	123	77	20	59	88	211	141	4787	4722,93
3	285	105	63	8	-28	12	176	218	4123	3646,53
4	441	120	80	16	-22	50	267	405	4801	4847,31
5	462	112	73	15	68	93	283	212	5712	5406,63
6	417	120	81	35	148	83	257	111	5512	5330,98
7	408	131	66	13	120	62	235	141	5313	5138,27
8	362	145	67	23	117	73	220	239	4942	5092,38
9	436	123	73	32	100	43	276	280	5366	5004,36
10	456	128	65	22	144	52	253	93	5741	5401,29
11	364	120	64	14	128	96	195	107	5383	5269,58
12	433	124	68	8	122	25	258	291	5140	4839,73
13	277	135	62	11	76	68	175	410	4842	4476,9
14	455	126	78	22	18	95	233	118	5316	5626,29
15	398	138	56	12	50	77	229	98	5540	5175,03
16	412	149	78	36	30	26	258	124	4647	4752,77
17	415	119	75	20	-40	41	211	315	4630	4844,78
18	484	111	58	13	107	40	258	321	5502	5358,06
19	515	120	77	23	126	21	328	398	5288	5139,33
20	429	125	74	11	88	83	218	118	5095	5452,81
21	355	131	65	24	113	77	208	307	5094	5082,23

pred.sel

4976,03

4070,95

5139,34

5636,19

5336,96

5100,06

4991,94

5051,22

5226,66

5215,42 4869,75

4556,15

5622,77 5194,05

4782,91

4936,43 5243,04

5207,94

5391,9

4997,16

PRÉDICTION ET ÉVALUATION SUR UN ENTREPÔT DE TEST

Modèle global

Modèle réduit

		i			i		i	i			
1	MT	RG	PRIX	BR	INV	PUB	FV	TPUB	VENTES	pred.full	pred.sel
2	328	123	77	20	59	88	211	141	4787	4722,93	4976,03
3	285	105	63	8	-28	12	176	218	4123	3646,53	4070,95
4	441	120	80	16	-22	50	267	405	4801	4847,31	5139,34
5	462	112	73	15	68	93	283	212	5712	5406,63	5636,19
6	417	120	81	35	148	83	257	111	5512	5330,98	5336,96
7	408	131	66	13	120	62	235	141	5313	5138,27	5100,06
8	362	145	67	23	117	73	220	239	4942	5092,38	4991,94
9	436	123	73	32	100	43	276	280	5366	5004,36	5051,22
10	456	128	65	22	144	52	253	93	5741	5401,29	5226,66
11	364	120	64	14	128	96	195	107	5383	5269,58	5215,42
12	433	124	68	8	122	25	258	291	5140	4839,73	4869,75
13	277	135	62	11	76	68	175	410	4842	4476,9	4556,15
14	455	126	78	22	18	95	233	118	5316	5626,29	5622,77
15	398	138	56	12	50	77	229	98	5540	5175,03	5194,05
16	412	149	78	36	30	26	258	124	4647	4752,77	4782,91
17	415	119	75	20	-40	41	211	315	4630	4844,78	4936,43
18	484	111	58	13	107	40	258	321	5502	5358,06	5243,04
19	515	120	77	23	126	21	328	398	5288	5139,33	5207,94
20	429	125	74	11	88	83	218	118	5095	5452,81	5391,9
21	355	131	65	24	113	77	208	307	5094	5082,23	4997,16

COMPARAISON DES MODÈLES DE PRÉDICTION

Modèle global

Modèle réduit

VENTES	pred.full	pred.sel
4787	4722,93	4976,03
4123	3646,53	4070,95
4801	4847,31	5139,34
5712	5406,63	5636,19
5512	5330,98	5336,96
5313	5138,27	5100,06
4942	5092,38	4991,94
5366	5004,36	5051,22
5741	5401,29	5226,66
5383	5269,58	5215,42
5140	4839,73	4869,75
4842	4476,9	4556,15
5316	5626,29	5622,77
5540	5175,03	5194,05
4647	4752,77	4782,91
4630	4844,78	4936,43
5502	5358,06	5243,04
5288	5139,33	5207,94
5095	5452,81	5391,9
5094	5082,23	4997,16

Les points atypiques

• Repérer les observations qui jouent un rôle anormal dans la régression

Atypique (aberrant)

- Elle prend une valeur inhabituelle sur une variable
- Elle prend une combinaison de valeurs inhabituelles sur plusieurs variables

Influent

- Elle pèse de manière exagérée dans la régression
- les résultats sont très différents selon que le point est pris en compte ou pas dans la régression

Atypique (régression)

- Elle est très mal reconstituée (expliquée) par la régression
- le résidu observé est très élevé, le point n'obéit pas à la relation qui a été établie par la régression

Les points atypiques Max des $\boldsymbol{\mathcal{E}_i}$

Régression Logistique Binaire

Variable cible à K (K = 2) modalités

MT	RG	PRIX	BR	INV	PUB	FV	TPUB	VENTES
369	118	59	9	17	89	177	225	5439
476	138	71	18	4	63	279	206	5149
432	152	73	16	-50	16	245	309	4704
418	135	79	35	142	74	270	83	5036
383	104	60	21	-45	32	201	298	4110
554	138	81	20	42	93	324	161	6180
320	147	66	15	10	48	154	305	4888
268	129	57	29	89	51	166	263	4290
359	106	69	27	71	74	196	414	5397
461	132	82	27	-18	91	267	170	5272
420	136	70	10	8	91	213	429	4989
536	111	73	27	128	74	296	273	5927
311	143	67	22	-25	27	181	60	4033
517	142	74	27	27	75	307	345	6124
332	140	60	11	61	21	180	247	4708
336	136	60	25	-30	40	213	328	4627
394	146	59	13	143	52	209	407	4872
415	148	69	8	47	29	207	80	5151

1	age	sexe	typedouleur	sucre	tauxmax	angine	depression	coeur
2	70	masculin	D	Α	109	non	24	presence
3	67	feminin	С	Α	160	non	16	absence
4	57	masculin	В	Α	141	non	3	presence
5	64	masculin	D	Α	105	oui	2	absence
6	74	feminin	В	Α	121	oui	2	absence
7	65	masculin	D	Α	140	non	4	absence
8	56	masculin	С	В	142	oui	6	presence
9	59	masculin	D	Α	142	oui	12	presence
10	60	masculin	D	Α	170	non	12	presence
11	63	feminin	D	Α	154	non	40	presence
12	59	masculin	D	Α	161	non	5	absence
13	53	masculin	D	Α	111	oui	0	absence
14	44	masculin	С	Α	180	non	0	absence
15	61	masculin	Α	Α	145	non	26	presence
16	57	feminin	О	Α	159	non	0	absence
17	71	feminin	О	Α	125	non	16	absence
18	46	masculin	D	Α	120	oui	18	presence
19	53	masculin	D	В	155	oui	31	presence
20	64	masculin	Α	Α	144	oui	18	absence
21	40	masculin	Α	Α	178	oui	14	absence
22	67	masculin	D	Α	129	oui	26	presence
23	48	masculin	В	Α	180	non	2	absence
24	43	masculin	D	Α	181	non	12	absence
25	47	masculin	D	Α	143	non	1	absence
26	54	feminin	В	В	159	oui	0	absence

Si la variable à prédire est une variable Binaire ? Peut-on faire une régression linéaire ?

1	age	sexe	typedouleur	sucre	tauxmax	angine	depression	coeur
2	70	masculin	D	Α	109	non	24	presence
3	67	feminin	С	Α	160	non	16	absence
4	57	masculin	В	Α	141	non	3	presence
5	64	masculin	D	Α	105	oui	2	absence
6	74	feminin	В	Α	121	oui	2	absence
7	65	masculin	D	Α	140	non	4	absence
8	56	masculin	С	В	142	oui	6	presence
9	59	masculin	D	Α	142	oui	12	presence
10	60	masculin	D	Α	170	non	12	presence
11	63	feminin	D	Α	154	non	40	presence
12	59	masculin	D	Α	161	non	5	absence
13	53	masculin	D	Α	111	oui	0	absence
14	44	masculin	С	Α	180	non	0	absence
15	61	masculin	Α	Α	145	non	26	presence
16	57	feminin	D	Α	159	non	0	absence
17	71	feminin	D	Α	125	non	16	absence
18	46	masculin	D	Α	120	oui	18	presence
19	53	masculin	D	В	155	oui	31	presence
20	64	masculin	Α	Α	144	oui	18	absence
21	40	masculin	Α	Α	178	oui	14	absence
22	67	masculin	D	Α	129	oui	26	presence
23	48	masculin	В	Α	180	non	2	absence
24	43	masculin	D	Α	181	non	12	absence
25	47	masculin	D	Α	143	non	1	absence
26	54	feminin	В	В	159	oui	0	absence

- Visiblement la régression linéaire ne convient pas
- La droite linéaire ne représente pas bien les données
- La droite linéaire n'est pas la meilleure courbe qui résume mieux le nuage de points
- La droite linéaire n'explique pas bien les Y en fonction des X_i

1	V		
	I	=	cœur

1	age	sexe	typedouleur	sucre	tauxmax	angine	depression	coeur
2	70	masculin	D	Α	109	non	24	presence
3	67	feminin	С	Α	160	non	16	absence
4	57	masculin	В	Α	141	non	3	presence
5	64	masculin	D	Α	105	oui	2	absence
6	74	feminin	В	Α	121	oui	2	absence
7	65	masculin	D	Α	140	non	4	absence
8	56	masculin	С	В	142	oui	6	presence
9	59	masculin	D	Α	142	oui	12	presence
10	60	masculin	D	Α	170	non	12	presence
11	63	feminin	D	Α	154	non	40	presence
12	59	masculin	D	Α	161	non	5	absence
13	53	masculin	D	Α	111	oui	0	absence
14	44	masculin	С	Α	180	non	0	absence
15	61	masculin	Α	Α	145	non	26	presence
16	57	feminin	D	Α	159	non	0	absence
17	71	feminin	D	Α	125	non	16	absence
18	46	masculin	D	Α	120	oui	18	presence
19	53	masculin	D	В	155	oui	31	presence
20	64	masculin	Α	Α	144	oui	18	absence
21	40	masculin	Α	Α	178	oui	14	absence
22	67	masculin	D	Α	129	oui	26	presence
23	48	masculin	В	Α	180	non	2	absence
24	43	masculin	D	Α	181	non	12	absence
25	47	masculin	D	Α	143	non	1	absence
26	54	feminin	В	В	159	oui	0	absence

- Visiblement la régression linéaire ne convient pas
- La droite linéaire ne représente pas bien les données
- La droite linéaire n'est pas la meilleure courbe qui résume mieux le nuage de points
- La droite linéaire n'explique pas bien les Y en fonction des X_i
- La résolution : trouver une autre régression dont la forme de sa représentation est plus proche de la nature du nuage de points

1	age	sexe	typedouleur	sucre	tauxmax	angine	depression	coeur
2	70	masculin	D	Α	109	non	24	presence
3	67	feminin	С	Α	160	non	16	absence
4	57	masculin	В	Α	141	non	3	presence
5	64	masculin	D	Α	105	oui	2	absence
6	74	feminin	В	Α	121	oui	2	absence
7	65	masculin	D	Α	140	non	4	absence
8	56	masculin	С	В	142	oui	6	presence
9	59	masculin	D	Α	142	oui	12	presence
10	60	masculin	D	Α	170	non	12	presence
11	63	feminin	D	Α	154	non	40	presence
12	59	masculin	D	Α	161	non	5	absence
13	53	masculin	D	Α	111	oui	0	absence
14	44	masculin	С	Α	180	non	0	absence
15	61	masculin	Α	Α	145	non	26	presence
16	57	feminin	D	Α	159	non	0	absence
17	71	feminin	D	Α	125	non	16	absence
18	46	masculin	D	Α	120	oui	18	presence
19	53	masculin	D	В	155	oui	31	presence
20	64	masculin	Α	Α	144	oui	18	absence
21	40	masculin	Α	Α	178	oui	14	absence
22	67	masculin	D	Α	129	oui	26	presence
23	48	masculin	В	Α	180	non	2	absence
24	43	masculin	D	Α	181	non	12	absence
25	47	masculin	D	Α	143	non	1	absence
26	54	feminin	В	В	159	oui	0	absence

- Visiblement la régression linéaire ne convient pas
- La droite linéaire ne représente pas bien les données
- La droite linéaire n'est pas la meilleure courbe qui résume mieux le nuage de points
- La droite linéaire n'explique pas bien les Y en fonction des X_i
- La résolution : trouver une autre régression dont la forme de sa représentation est plus proche de la nature du nuage de points
 - L'estimation des proportions par régression logistique

1	age	sexe	typedouleur	sucre	tauxmax	angine	depression	coeur
2	70	masculin	D	Α	109	non	24	presence
3	67	feminin	С	Α	160	non	16	absence
4	57	masculin	В	Α	141	non	3	presence
5	64	masculin	D	Α	105	oui	2	absence
6	74	feminin	В	Α	121	oui	2	absence
7	65	masculin	D	Α	140	non	4	absence
8	56	masculin	С	В	142	oui	6	presence
9	59	masculin	D	Α	142	oui	12	presence
10	60	masculin	D	Α	170	non	12	presence
11	63	feminin	D	Α	154	non	40	presence
12	59	masculin	D	Α	161	non	5	absence
13	53	masculin	D	Α	111	oui	0	absence
14	44	masculin	С	Α	180	non	0	absence
15	61	masculin	Α	Α	145	non	26	presence
16	57	feminin	D	Α	159	non	0	absence
17	71	feminin	D	Α	125	non	16	absence
18	46	masculin	D	Α	120	oui	18	presence
19	53	masculin	D	В	155	oui	31	presence
20	64	masculin	Α	Α	144	oui	18	absence
21	40	masculin	Α	Α	178	oui	14	absence
22	67	masculin	D	Α	129	oui	26	presence
23	48	masculin	В	Α	180	non	2	absence
24	43	masculin	D	Α	181	non	12	absence
25	47	masculin	D	Α	143	non	1	absence
26	54	feminin	В	В	159	oui	0	absence

- Visiblement la régression linéaire ne convient pas
- La droite linéaire ne représente pas bien les données
- La droite linéaire n'est pas la meilleure courbe qui résume mieux le nuage de points
- La droite linéaire n'explique pas bien les Y en fonction des X_i
- La résolution : trouver une autre régression dont la forme de sa représentation est plus proche de la nature du nuage de points
 - L'estimation des proportions par régression logistique

FONCTION LOGISTIQUE

- Un nuage de points dont la variable décisionnelle est une variable qualitative binaire {0,1} ne peut pas être résumer par une droite
- ✓ Un tel nuage ne peut être représenté que par une fonction mathématique qui donne une courbe en **S**:
- ✓ Solution:

Fonction Logistique TT

$$\pi(x) = P(Y = 1/X) = \frac{e^{eta_0 + eta_1 x}}{1 + e^{eta_0 + eta_1 x}}$$
: régression logistique binaire simple

$$\pi(x) = P(Y = 1/X = x) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}$$
: régression logistique binaire multiple

INTERPRÉTATION DE Y – PROBABILITÉ DE SUCCÈS

- Prédire une variable décisionnelle ayant deux modalités Y = {0 (absence), 1 (présence)}
- L'une désigne un succès (Y = 1) et l'autre un échec (Y = 0)
- Le principe de la régression dans ce cas est de <u>chercher la probabilité</u> d'obtenir le succès P(Y = 1)
- Obtenir la probabilité du cas succès Obtenir la probabilité de l'échec

•
$$P(Y = 0) = 1 - P(Y = 1)$$

Pour décider :

- ✓ Se munir d'une règle de décision
- ✓ Pour un seuil θ :

$$Y = \begin{cases} 1 \text{ si } P(Y = 1) > \theta \\ 0 \text{ si } P(Y = 1) \leq \theta \end{cases}$$

✓ En approximation : $\theta = 0.5$

OBTENTION DES COEFFICIENTS CLASSIFIEURS $oldsymbol{eta}_i$

$$\pi(X) = P(Y = 1 | X = x_i) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}$$

$$\pi(X) + \pi(X) \cdot e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}$$

$$\pi(X) = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} \cdot (1 - \pi(X))$$

$$e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} = \frac{\pi(X)}{1 - \pi(X)}$$

$$\ln(e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}) = \ln(\frac{\pi(X)}{1 - \pi(X)})$$

$$\beta_0^{\text{Mohamed He}} \beta_1^{\text{SELML}} + \dots + \beta_k x_k = \ln(\frac{\pi(X)}{1 - (Y)})$$

OBTENTION DES COEFFICIENTS CLASSIFIEURS $oldsymbol{\mathcal{B}}_{i}$

$$\pi(X) = P(Y = 1 | X = x_i) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}$$

$$\pi(X) + \pi(X) \cdot e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}$$

$$\pi(X) + \pi(X) \cdot e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}$$

$$\pi(X) = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} \cdot (1 - \pi(X))$$

$$e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} = \frac{\pi(X)}{1 - \pi(X)}$$

$$\ln(e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}) = \ln(\frac{\pi(X)}{1 - \pi(X)})$$

$$\beta_0^{\text{Mohamed He}} \beta_1^{\text{SELML}, 0} + \dots + \beta_k x_k = \ln(\frac{\pi(X)}{1 - (Y)})$$

OBTENTION DES COEFFICIENTS CLASSIFIEURS $oldsymbol{\mathcal{B}}_{i}$

$$\pi(X) = P(Y = 1 | X = x_i) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}$$

$$\pi(X) + \pi(X) \cdot e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}$$
$$\pi(X) = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} \cdot (1 - \pi(X))$$

$$\pi(X) = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} \cdot \left(1 - \pi(X)\right)$$

$$e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} = \frac{\pi(X)}{1 - \pi(X)}$$

$$\ln(e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}) = \ln(\frac{\pi(X)}{1 - \pi(X)})$$

$$\beta_0^{\text{Mohamed He}} \beta_1^{\text{SELML}, 0} + \dots + \beta_k x_k = \ln(\frac{\pi(X)}{1 - (Y)})$$

OBTENTION DES COEFFICIENTS CLASSIFIEURS $oldsymbol{eta_i}$

$$\pi(X) = P(Y = 1 | X = x_i) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}$$

$$\pi(X) + \pi(X) \cdot e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}$$

$$\pi(X) = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} \cdot (1 - \pi(X))$$

$$e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} = \frac{\pi(X)}{1 - \pi(X)}$$

$$\ln(e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}) = \ln(\frac{\pi(X)}{1 - \pi(X)})$$

$$\beta_0^{\text{Mohamed He}} \beta_1^{\text{SELML}, \circ} + \dots + \beta_k x_k = \ln(\frac{\pi(X)}{1 - (Y)})$$

OBTENTION DES COEFFICIENTS CLASSIFIEURS $oldsymbol{\mathcal{B}}_{i}$

$$\pi(X) = P(Y = 1 | X = x_i) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}$$

$$\pi(X) + \pi(X) \cdot e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}$$

$$\pi(X) = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} \cdot (1 - \pi(X))$$

$$e^{\beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k} = \frac{\pi(X)}{1 - \pi(X)}$$

$$\ln(e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}) = \ln(\frac{\pi(X)}{1 - \pi(X)})$$

$$\beta_0^{\text{Mohamed He}} \beta_1^{\text{SELML}} x_1^{\circ} + \dots + \beta_k x_k = \ln(\frac{\pi(X)}{1 - (Y)})$$

OBTENTION DES COEFFICIENTS CLASSIFIEURS $oldsymbol{eta}_{i}$

$$\pi(X) = P(Y = 1 | X = x_i) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}$$

$$\pi(X) + \pi(X) \cdot e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}$$

$$\pi(X) = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} \cdot (1 - \pi(X))$$

$$e^{\beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k} = \frac{\pi(X)}{1 - \pi(X)}$$

$$\ln(e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}) = \ln(\frac{\pi(X)}{1 - \pi(X)})$$

$$\beta_0^{\text{Mohamed He}} \beta_1^{\text{SELML}} x_1 + \dots + \beta_k x_k = \ln(\frac{\pi(X)}{1 - \pi(Y)})$$

OBTENTION DES COEFFICIENTS CLASSIFIEURS $oldsymbol{\mathcal{B}}_{i}$

Objectifs: trouver les meilleurs
$$\pi(X) = P(Y = 1 | X = x_i) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}$$

$$\pi(X) + \pi(X) \cdot e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}$$

$$\pi(X) = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} \cdot (1 - \pi(X))$$

$$e^{\beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k} = \frac{\pi(X)}{1 - \pi(X)}$$

$$\ln(e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}) = \ln(\frac{\pi(X)}{1 - \pi(X)})$$

OBTENTION DES COEFFICIENTS CLASSIFIEURS $oldsymbol{eta}_{i}$

$$\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k = \ln(\frac{\pi(X)}{1 - \pi(X)})$$

PROBABILITÉ DU CAS 'SUCCÈS'

	X ₁	X ₂	Υ	
	1	2	OUI	
	1	1	OUI	
	2	2	OUI	
	2	2	OUI	
			NON	
			NON	
			NON	
				1
P(Y = OU)	$I \mid X_1 =$	$1 et X_2 =$	$= 2) = \frac{1}{2}$	$\frac{1}{4}=0,25$
P(Y = 0)	$ X_1 =$	1 et X ₂	= 1) =	$\frac{1}{4} = 0,25$
P(Y = 0)	$UI \mid X_1 =$	$2 et X_2$	= 2)=	$\frac{2}{4}=0,5$
P(Y = C	OUI X ₁ :	$= 2 et X_{i}$	2 = 1) =	$=\frac{0}{4}=0$

utilité de la fonction $oldsymbol{\pi}(X)$

X ₁	X ₂	Υ	P(Y=OUI X _i)	
1	2	OUI	0,25	
1	1	OUI	0,25	
2	2	OUI	0,5	
2	2	OUI	0,5	
NON				
NON				
NON				

$$P(Y = OUI \mid X_1 = 1 \text{ et } X_2 = 2) = \frac{1}{4} = 0,25$$

$$P(Y = OUI \mid X_1 = 1 \text{ et } X_2 = 1) = \frac{1}{4} = 0,25$$

$$P(Y = OUI \mid X_1 = 2 \text{ et } X_2 = 2) = \frac{2}{4} = 0,5$$

$$P(Y = OUI \mid X_1 = 2 \text{ et } X_2 = 1) = \frac{1}{4} = 0$$

Supposons qu'on va considérer les valeurs des probabilités de Y : [0,1]

Alors on va construire un modèle linéaire qui explique les probabilités $P(Y|X_i)$ par les X_i

Lors de la prédiction : on risque d'avoir des valeurs de probabilités

$$P(Y|X_i) < 0$$
 ou $P(Y|X_i) > 1$

Absurde: Modèle non significatif / erroné

UTILITÉ DE LA FONCTION $oldsymbol{\pi}(X)$

X ₁	X ₂	Υ	P(Y=OUI X _i)	
1	2	OUI	0,25	
1	1	OUI	0,25	
2	2	OUI	0,5	
2	2	OUI	0,5	
NON				
NON				
		NON		

$$P(Y = OUI \mid X_1 = 1 \text{ et } X_2 = 2) = \frac{1}{4} = 0,25$$

$$P(Y = OUI \mid X_1 = 1 \text{ et } X_2 = 1) = \frac{1}{4} = 0,25$$

$$P(Y = OUI \mid X_1 = 2 \text{ et } X_2 = 2) = \frac{2}{4} = 0,5$$

$$P(Y = OUI \mid X_1 = 2 \text{ et } X_2 = 1) = \frac{2}{4} = 0$$

✓ Transformer l'intervalle des probabilités en des valeurs réelles moyennant une fonction inversible

UTILITÉ DE LA FONCTION $oldsymbol{\pi}(X)$

X ₁	X ₂	Υ	P(Y=OUI X _i)	
1	2	OUI	0,25	
1	1	OUI	0,25	
2	2	OUI	0,5	
2	2	OUI	0,5	П
NON				
NON				
		NON		

$$P(Y = OUI \mid X_1 = 1 \text{ et } X_2 = 2) = \frac{1}{4} = 0,25$$

$$P(Y = OUI \mid X_1 = 1 \text{ et } X_2 = 1) = \frac{1}{4} = 0,25$$

$$P(Y = OUI \mid X_1 = 2 \text{ et } X_2 = 2) = \frac{2}{4} = 0,5$$

$$P(Y = OUI \mid X_1 = 2 \text{ et } X_2 = 1) = \frac{0}{4} = 0$$

- ✓ Passer à la transformation Logistique
- ✓ Transformer l'intervalle des probabilités en des valeurs réelles moyennant une fonction inversible
- ✓ La Fonction LOGIT est une fonction bijective
- ✓ Elle permet de récupérer les probabilités dans un sens inverse

APPLICATION DE LA FONCTION $ln(\frac{\pi(X)}{1-\pi(X)})$

X ₁	X ₂	Υ	P(Y=OUI X _i)	
1	2	OUI	0,25	
1	1	OUI	0,25	
2	2	OUI	0,5	
2	2	OUI	0,5	
NON				
NON				
NON				

$$\pi_1(Y = OUI \mid X_1 = 1 \text{ et } X_2 = 2) = \frac{1}{4} = 0,25$$
 $\pi_2(Y = OUI \mid X_1 = 1 \text{ et } X_2 = 1) = \frac{1}{4} = 0,25$
 $\pi_3(Y = OUI \mid X_1 = 2 \text{ et } X_2 = 2) = \frac{2}{4} = 0,5$
 $\pi_4(Y = OUI \mid X_1 = 2 \text{ et } X_2 = 1) = \frac{0}{4} = 0$

$$ln(\frac{\pi_1(X)}{1-\pi_1(X)}) = ln(\frac{0,25}{1-0,25}) = -1,098612287$$

$$ln(\frac{\pi_2(X)}{1-\pi_2(X)}) = ln(\frac{0,25}{1-0,25}) = -1,098612287$$

$$ln(\frac{\pi_3(X)}{1-\pi_3(X)}) = ln(\frac{0,5}{1-0,5}) = 0$$

$$ln(\frac{\pi_4(X)}{1-\pi_4(X)}) = ln(\frac{0}{1-0}) = -\infty$$

APPLICATION DE LA FONCTION
$$ln(rac{\pi(X)}{1-\pi(X)})$$

Information purement quantitative

Régression Logistique Polytomique

Variable cible à K (K > 2) modalités

Famille de méthodes

Régression logistique multinomiale

- La variable cible est nominale à K >2 modalités
- Les modalités ne sont pas ordonnées
- On ne veut pas tenir compte d'un éventuel ordonnancement
- LOGITS par rapport à une modalité de référence

Régression logistique ordinale

- La variable cible est nominale à K >2 modalités
- Plus que la prédiction, c'est l'interprétation des coefficients qui importe
- LOGITS adjacents : on applique des régressions logit entre chaque couple de deux modalités voisines.
- ODDS-RATIO cumulatifs : on choisit un seuil et on applique la régression logit entre les modalités avant ce seuil, et le restant.

Régression logistique multinomiale

Principe:

Modéliser la probabilité d'appartenance d'un individu à une catégorie « k »

$$\pi_k(\omega) = P[Y(\omega) = y_k / X(\omega)]$$

$$\sum_{k} \pi_{k}(\omega) = 1$$

- Prendre une modalité de référence, la dernière par exemple, et estimer (K-1) LOGITS

$$LOGIT_k(\omega) = \ln\left[\frac{\pi_k(\omega)}{\pi_K(\omega)}\right] = a_{0,k} + a_{1,k}X_1(\omega) + \dots + a_{J,k}X_J(\omega)$$

Stratégie de modélisation :

- modéliser (K-1) rapports de probabilités
- exprimer (K-1) LOGIT par rapport à cette référence

Prendre une modalité comme référence (exp. la dernière)
$$\ln \frac{P(Y=k/X)}{P(Y=K/X)} = a_{0,k} + a_{1,k}X_1 + \dots + a_{J,k}X_J, k = 1,\dots, K-1$$

Régression logistique Ordinale LOGITS adjacents

Principe:

- Calculer le LOGIT du passage d'une catégorie à l'autre
- (K-1) équations LOGIT sont calculés \rightarrow (K-1) x (J+1) paramètres à estimer

$$\begin{bmatrix} LOGIT_{1}(\omega) = \ln\left[\frac{\pi_{1}(\omega)}{\pi_{2}(\omega)}\right] = a_{0,1} + a_{1,1}X_{1}(\omega) + \dots + a_{J,1}X_{J}(\omega) \\ \dots \\ LOGIT_{K-1}(\omega) = \ln\left[\frac{\pi_{K-1}(\omega)}{\pi_{K}(\omega)}\right] = a_{0,K-1} + a_{1,K-1}X_{1}(\omega) + \dots + a_{J,K-1}X_{J}(\omega) \end{bmatrix} = a_{0,K-1} + a_{1,K-1}X_{1}(\omega) + \dots + a_{J,K-1}X_{J}(\omega)$$

$$\begin{bmatrix} \ln\left[\frac{\pi_{2}(\omega)}{\pi_{1}(\omega)}\right] = -LOGIT_{1}(\omega) \\ \ln\left[\frac{\pi_{3}(\omega)}{\pi_{1}(\omega)}\right] = -LOGIT_{2}(\omega) - LOGIT_{1}(\omega) \\ \ln\left[\frac{\pi_{K}(\omega)}{\pi_{1}(\omega)}\right] = -LOGIT_{K-1}(\omega) - \dots - LOGIT_{M}(\omega) \end{bmatrix}$$

Même idée que le modèle multinomial, sauf que la catégorie de référence change à chaque étape : on procède par des couples de références en alternance.

On évalue le passage de la modalité (k) à (k-1)

Régression logistique Ordinale LOGITS cumulatifs

Principe : Calculer le LOGIT d'être au delà ou en deçà du niveau y, de la variable Y

$$\text{LOGITS cumulatifs} \quad \left| LOGIT_k = \ln \left(\frac{P(Y \le k \, / \, X)}{P(Y > k \, / \, X)} \right) = \ln \left(\frac{P(Y \le k \, / \, X)}{1 - P(Y \le k \, / \, X)} \right) = \ln \left(\frac{\pi_1 + \dots + \pi_k}{\pi_{k+1} + \dots + \pi_K} \right) \right|$$

$$\ln \frac{P(Y \le k / X)}{P(Y > k / X)} = a_{0,k} + a_{1,k} X_1 + \dots + a_{J,k} X_J, k = 1, \dots, K - 1$$

Evaluation

Mesure de la qualité de la modélisation

• R² de Cox & Snell

$$R^{2} = 1 - \left[\frac{1(cte)}{1(cte, X)}\right]^{\frac{2}{n}}$$

$$Max R^2 = 1 - [1(cte)]^{\frac{2}{n}}$$

• Pseudo R² (McFadden)

$$Pseudo - R^2 = 1 - \left[\frac{-2L(cte, X)}{-2L(cte)}\right]$$

• R² ajusté de Nagelkerke

$$R_{adj}^2 = \frac{R^2}{R_{max}^2}$$