14th International Symposium on Temporal Representation and Reasoning

(TIME'07)

Jordi Poveda, Mihai Surdeanu and Jordi Turmo

TALP Research Center
Technical University of Catalonia (UPC)
Barcelona, Spain
{jpoveda,surdeanu,turmo}@lsi.upc.edu

- Time Expression Recognition
 - Information Extraction
 - TERN (Time Expression Recognition and Normalization)
- Machine Learning for TE Recognition
 - Problem description: Chunking
 - Statistical: Support Vector Machines
 - Rule Induction: Inductive Logic Programming
- Results
 - Experiments
 - Support Vector Machines
 - Inductive Logic Programming
 - Comparison
- Conclusions

- Time Expression Recognition
 - Information Extraction
 - TERN (Time Expression Recognition and Normalization)
- - Problem description: Chunking
 - Statistical: Support Vector Machines
 - Rule Induction: Inductive Logic Programming
- - Experiments
 - Support Vector Machines
 - Inductive Logic Programming
 - Comparison

Example

Outline

"Yesterday, German giant E.ON's board of directors announced plans for takeover of Spanish ENDESA for \$20 million at an undisclosed date, just after receiving former CEO Bernotat's resignation notice." from Reuters, 11-24-2005

- 1 takeover EVENT: takeover_EVENT(id(EVENT1), acquirer(E.ON), target(ENDESA), amount(\$20 million), date(TIME1))
- 2 1 resignation EVENT: resignation_EVENT(id(EVENT2), company(E.ON), person(Bernotat), position(CEO))
- 1 precedes RELATION: precedes(EVENT2, EVENT1)
- ② 2 time expressions: timex(id(TIME1), type(date), mention(an undisclosed date), value(??-??-????)) timex(id(TIME2), type(date), mention(yesterday), value(11-23-2005))

Definition

Information Extraction (IE) is a subtask in Natural Language Processing whose objective is extracting information from unstructured machine-readable documents and arranging it into an structured, processable form.

Information is usually represented in a *relational form*, or structured by using *metadata* such as *XML tags*.

Objectives:

- Populating relational databases
- Monitoring information sources within a domain (e.g. news feeds on corporate mergers and acquisitions)
- Inference
- Structuring information for use in other NLP problems: QA (Question Answering), AS (Automatic Summarisation), ...

Example

Outline

To identify (Recognition) the mentions in text of time-denoting expressions and to capture their meaning in a canonical form (Normalization)

But even <TIMEX2 VAL="1999-07-22"> last Thursday </TIMEX2>, there were signs of potential battles <TIMEX2 VAL="FUTURE_REF" ANCHOR_DIR="AFTER" ANCHOR_VAL="1999-07-22"> ahead </TIMEX2>.

L. Ferro, L. Gerber, I. Mani, B. Sundheim, and G. Wilson. *TIDES Standard for the Annotation of Temporal Expressions v1.3*. Technical Report, MITRE Corporation, 2003.

Examples of time expressions

- Fully-specified time references: 16th June 2006, the twentieth century, Monday at 3pm
- Context-dependent: the previous month, three days after the meeting, February the following year
- Anaphoric and relative to the time when the expression is written:
- Durations or intervals: a month, three days, some hours in the afternoon

that day, yesterday, currently, then

- Frequencies or recurring times: monthly, every other day, once a week, every first Sunday of a month
- Culturally dependent time denominations: Easter, the month of Ramadan, St. Valentine
- Fuzzy or vaguely specified time references: the future, some day, eventually, anytime you so desire

- Time Expression Recognition
 - Information Extraction
 - TERN (Time Expression Recognition and Normalization)
- Machine Learning for TE Recognition
 - Problem description: Chunking
 - Statistical: Support Vector Machines
 - Rule Induction: Inductive Logic Programming
- - Experiments
 - Support Vector Machines
 - Inductive Logic Programming
 - Comparison

But/O even/O last/B Thursday/I ,/O there/O were/O signs/O of/O potential/O battles/O ahead/B ./O

- Limited to non-overlapping, non-recursive chunks (i.e. a chunk inside a longer chunk)
- Chunk need not be bounded in length

Outline

Token features (I)

Lexical:

Token form, token in lowercase, token w/o alphabetic chars (e.g. 3 for "3pm"), the token w/o alphanumeric chars (e.g. - - - for 1995-07-12)

- Syntactic: Basic syntactic chunk type
 (e.g. I-NP → inside noun phrase, B-VP → beginning of verb phrase, ...)
- Format features:
 - isAllCaps like "THU"
 - isAllCapsOrDots like "I.B.M"
 - isAllDigits like "2004"
 - isAllDigitsOrDots like "10.24"
 - initialCap like "February"

Token features (II)

- Bag-of-words:
 - 1 isNumber (e.g. one, two, ten, ...)
 - isMultiplier (e.g. hundred, thousands, . . .)
 - isDay (e.g. monday, mon, saturday, sat, ...)
 - isMonth (e.g. january, jan, june, jun., . . .)
- Contextual features: All of the above features, w.r.t. context tokens
- Dynamic features: The BIO tags for a window of previous tokens

Outline

YamCha (Yet Another Multi-purpose CHunk Annotator)

- YamCha ¹: Multipurpose chunker based on SVM (Vapnik, 1995)
- SVMs: Max-margin discriminative classifiers based on quadratic optimization
- Map a feature vector into a vector space of higher dimension, exploring combinations of features ("kernel trick")
- Requires with numeric features: 1 categorial feature with N tags → N binary features
- One-vs-rest classification: Train 3 classifiers (B against I/O, I against B/O, O against B/I)
- Classifiers' outputs are combined based on margins and previous tokens

Statistical: Support Vector Machines

Sample training data

		FORM	POS tag	SYNTAX	BIO tag
POS:	-3	But	CC	0	0
POS:	-2	even	RB	B-ADVP	0
POS:	-1	last	JJ	B-NP	B-TIMEX
POS:	0	Thursday	NNP	I-NP	I-TIMEX
POS:	+1	,	,	0	0
POS:	+2	there	EX	B-NP	0
POS:	+3	were	VBD	B-VP	0

Training: FOIL

- Inductive Logic Programming (ILP) attempts to learn a logic program for a set of target concepts from:
 - Target predicates: $p_i(X_1, ..., X_{n_i})$
 - Examples and counterexamples \mathcal{E} : ground facts $\langle x_1, \dots, x_n \rangle$
 - Background knowledge predicates \mathcal{B} : $q_i(X_1, \ldots, X_{m_i})$
 - Hypothesis language \mathcal{L}
- FOIL: An empirical (top-down, non-interactive) ILP system (Quinlan, 1993)
- The hypothesis language of FOIL are Horn clauses without functions
- Train 3 objective predicates: one for B (begin), one for I (inside), one for O (outside)
- Background knowledge predicates are the token features described earlier

Sample input and output

Input:

Outline

```
form last(tok100). // token 100 is 'last'
form_Thursday(tok101). // token 101 is 'Thursday'
POS_NNP(tok101). // token 101 is a proper noun
syn_I_NP(tok101). // token 101 is inside a noun phrase
context_r1_form_Thursday(tok100). // token right of tok100 is 'Thursday'
context 11.B.NP(tok101). // token left of tok101 is at the start of a
noun phrase
```

Output:

```
begin_timex(X) :- form_Thursday(X).
begin_timex(X) :- syn_I_NP(X), context_l1_B_PP(X),
not(context_l1_form(with)).
inside_timex(X) :- form_ago(X), context_12_POS_CD(X).
inside_timex(X) :- POS_CD(X), not(context_l1_t_O(X)).
```

Outline

Evaluation: PROLOG

- For evaluation, load learned predicates into PROLOG and a knowledge base with declarations of all the token features in the test data
- More than one predicate B/I/O can return yes for a given token → Combination of classifiers' outputs
- Assign a confidence to each learned rule (supporting) evidence): $conf(A \Leftarrow B) = \frac{\#(A \land B)}{\#B}$
- Two approaches:
 - **1** "best" \rightarrow Take $conf(A \leftarrow B)$ to be that of best clause satifistied by token
 - ② "sum" \rightarrow Take $conf(A \Leftarrow B)$ to be the sum of confidences of all satisfied clauses
- Enforce consistency rule: I cannot follow O or be the first tag beginning a sentence
- If all three B/I/O return $no \to \text{assign most probable (O)}$

- Information Extraction
- TERN (Time Expression Recognition and Normalization)
- 2 Machine Learning for TE Recognition
 - Problem description: Chunking
 - Statistical: Support Vector Machines
 - Rule Induction: Inductive Logic Programming
- Results
 - Experiments
 - Support Vector Machines
 - Inductive Logic Programming
 - Comparison
- 4 Conclusions

• ACE (Automatic Content Extraction) 2005 corpus

- 550 documents from five categories (NW, BN, BC, CTS and WL)
- 257K tokens, 8809 tokens in time expressions (3.42%), 4650 time expression mentions
- 80% for training, 20% for testing

Outline

Experiments

- Support Vector Machines (YamCha):
 - ullet temp. cost for training = 8 \pm 4 hours
 - **1** 5-fold cross-validation with optimal parameters
 - Incremental feature sets
 - 3 Varying kernel degree (1 ... 3)
 - Varying context window size (1 . . . 3)
- ILP (FOIL):
 - temp. cost for training = in the order of weeks
 - Same optimal parameters as SVM
 - Simplifying the training data

Outline

Precision: The rate of returned temporal expressions that are correctly identified (i.e. correctly tagged divided by total tagged).

- Recall: The rate of existing temporal expressions that are correctly identified (i.e. correctly tagged divided by those that should have been tagged).
- F_1 Score: It is the harmonic mean of the two previous values: $F_1 = \frac{2 \times Precision \times Recall}{(Precision + Recall)}$.
- Accuracy: The percentage of correct BIO tag assignments predicted by the classifier at the token level (i.e. whether the predicted tag coincides with the target tag).

Optimal Model

	PREC	RECALL	F_1	ACC
Round 1	81.33	75.23	78.16	98.68
Round 2	77.74	70.46	73.92	98.60
Round 3	75.92	71.22	73.50	98.47
Round 4	80.05	73.71	76.75	98.65
Round 5	80.34	72.54	76.24	98.66
AVERAGE	79.08	72.63	75.71	98.61
STD DEV.	2.20	1.91	1.97	0.17

Support Vector Machines

Degree of polynomial kernel

KERNEL	PREC	RECALL	F_1	ACC
pol. lineal	72.39 (-7.66)	70.08 (-3.63)	71.21 (-5.54)	98.25 (-0.40)
pol. quadratic	80.05	73.71	76.75	98.65
pol. cubic	81.30 (+1.25)	71.73 (-1.98)	76.21 (-0.54)	98.65 (+0.00)

FEATURES	PREC	RECALL	F_1	ACC
Model 1	80.00 (-0.05)	66.89 (-6.82)	72.86 (-3.89)	98.56 (-0.09)
Model 2	80.10 (+0.05)	71.73 (-1.98)	75.68 (-1.07)	98.60 (-0.05)
Model 3	80.05	73.71	76.75	98.65

- Model 1: token form + lowercase
- Model 2: Model 1 + POS tags + format features (isAllCaps, isAllDigits, etc) + form w/o alphabetic chars + form w/o alphanumeric chars
- Model 3: Model 2 + syntactic chunks + bag-of-words (isNumber, isMultiplier, isDay, isMonth)

Support Vector Machines

Context window size

WINDOW	PREC	RECALL	F_1	ACC
-1 +1	74.47 (-5.58)	72.83 (-0.88)	73.64 (-3.11)	98.41 (-0.24)
-2 +2	80.05	73.71	76.75	98.65
-3 +3	80.30 (+0.25)	71.29 (-2.42)	75.52 (-1.23)	98.59 (-0.06)

Optimal model (for SVM)

CLASSIFIER	PREC	RECALL	F ₁	ACC
FOIL (best)	77.58	52.15	62.37	97.95
FOIL (sum)	81.32	50.28	62.13	97.98

best \rightarrow Take $conf(A \Leftarrow B)$ to be that of best clause satisfistied by token

sum \rightarrow Take $conf(A \leftarrow B)$ to be the sum of confidences of all satisfied clauses

Outline

Reducing model complexity

- Unaffordable temporal complexity with the full model (over $3\frac{1}{2}$ weeks each classifier B/I/O)
- With 1-arity predicates, FOIL's complexity is quadratic on $\|\mathcal{B}\|$ (predicates) and $\|\mathcal{E}\|$ (examples)
- Reducing the volume of the training data:
 - Filtering less common predicates
 - Filtering less relevant counterexamples
- Temporal cost considerably reduced (in the order of days), at the expense of approx. -8% prec/recall

Comparison

SVM and ILP side by side

CLASSIFIER	PREC	RECALL	F_1	ACC
FOIL	81.32 (+1.27)	52.15 (-21.56)	62.37 (-14.38)	97.98 (-0.67)
SVM	80.05	73.71	76.75	98.65

SVM clearly superior

- Information Extraction
- TERN (Time Expression Recognition and Normalization)
- 2 Machine Learning for TE Recognition
 - Problem description: Chunking
 - Statistical: Support Vector Machines
 - Rule Induction: Inductive Logic Programming
- Results

Outline

- Experiments
- Support Vector Machines
- Inductive Logic Programming
- Comparison
- 4 Conclusions

Final thoughts

- ILP is a dead end: elegant representation for "toy" problems and/or small datasets, unusable for large corpora
- Alternatives approaches for rule induction: Statistical Rule Learning, simpler rule languages (propositional, N-term clauses), semi-supervised IE pattern learning
- Combination methods (Statistical + Rules)
- Machine-learning vs. grammar-based approaches (complementary?)
 - Best performance with statistical ML around 80% (depending on "feature engineering" and training corpus size)
 - Best performance with handwritten grammars around 90%-95%
 - Difficult to define a grammar to cover difficult cases ("easy" cases account for a majority)
 - Grammars must be specifically written for each new extraction domain
 - On the other hand, Normalization lends itself to the grammar approach

Thanks

Many thanks for your attention Any questions? Comments?