← Key concepts on Deep Neural Networks

10/10 分 (100%)

测验, 10 个问题

恭喜	喜! 您通过了!	下一项
~	1/1分	
1。 What is propag	s the "cache" used for in our implementation of forward propagation and gation?	backward
	It is used to cache the intermediate values of the cost function during tra	ining.
	We use it to pass variables computed during backward propagation to the forward propagation step. It contains useful values for forward propagations.	
	It is used to keep track of the hyperparameters that we are searching overcomputation.	er, to speed up
0	We use it to pass variables computed during forward propagation to the backward propagation step. It contains useful values for backward propagatives.	
	ect, the "cache" records values from the forward propagation units and se ward propagation units because it is needed to compute the chain rule do	
2° Among	1/1分 g the following, which ones are "hyperparameters"? (Check all that apply.)	
	bias vectors $b^{[l]}$	
未选扣	圣的是正确的	
	size of the hidden layers $n^{[l]}$	
正确		
	activation values $a^{[l]}$	
未选扣	圣的是正确的	

分 (100%)

	number of layers L in the neural network	
Key conçe	pts on Deep Neural Networks	10/10 分
测验, 10 个问题		
	weight matrices $W^{\left[I ight]}$	
未选	译的是正确的	
	number of iterations	
正确		
	learning rate $lpha$	
正确		
3。 Which	1/1分 of the following statements is true? The deeper layers of a neural network are typically computing more complex features o input than the earlier layers.	of the
正确	input didir die ediner layers.	
	The earlier layers of a neural network are typically computing more complex features of input than the deeper layers.	the
~	1/1分	
	ization allows you to compute forward propagation in an L -layer neural network without tfor-loop (or any other explicit iterative loop) over the layers I=1, 2,,L. True/False?	an
	True	
0	False	

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ($a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: ($a^{[l]}=g^{[l]}(z^{[l]})$, $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$, ...).

1/1分

5。

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will

Key concepts on Deep Neural Notworks?

10/10 分 (100%)

测验, 10 个问题

正确

1/1分

6.

Consider the following neural network.

How many layers does this network have?

0

The number of layers \boldsymbol{L} is 4. The number of hidden layers is 3.

正硝

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

个问题 The number of layers L is 5. The number of hidden layers is 4.	
	_
✔ 1/1分	
7_{\circ} During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l , since the gradient depends on it. True/False?	
True	
正确	
Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.	
C False	
✔ 1/1分	
8。 There are certain functions with the following properties:	
(i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?	
True	
正确	
C False	
✔ 1/1分	
9。 Consider the following 2 hidden layer neural network:	
Which of the following statements are True? (Check all that apply).	

 $b^{[1]}$ will have shape (4, 1)

Key concepts on Deep Neural Networks

10/10 分 (100%)

测验, 10 个问题es. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

$W^{[1]}$ will have shape (3, 4)未选择的是正确的
$b^{[1]}$ will have shape (3, 1) 未选择的是正确的
$W^{[2]}$ will have shape (3, 4) 正确 Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.
$b^{[2]}$ will have shape (1, 1) 未选择的是正确的
$W^{[2]}$ will have shape (3, 1) 未选择的是正确的
$b^{[2]}$ will have shape (3, 1) 正确 Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.
$W^{[3]}$ will have shape (3, 1) 未选择的是正确的
$b^{[3]}$ will have shape (1, 1) 正确 Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.
$W^{[3]}$ will have shape (1, 3) 正确 Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.
$b^{[3]}$ will have shape (3, 1)

Key concepts on Deep Neural Networks

10/10 分 (100%)

1/1分

10。

Whereas the previous question used a specific network, in the general case what is the dimension of $W^{[l]}$, the weight matrix associated with layer l?

- $W^{[l]}$ has shape $(n^{[l-1]}, n^{[l]})$
- $W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$
- $W^{[l]}$ has shape $(n^{[l+1]}, n^{[l]})$
- $W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$

正确

True

