### Санкт-Петербургский национальный исследовательский университет информационных технологий, механикии оптики



#### УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

| Группа                                              | P3211             | _ К работе допущен       | 26.10.2023 |  |  |  |
|-----------------------------------------------------|-------------------|--------------------------|------------|--|--|--|
| Студент                                             | Болорболд Аригуун | Работа выполнен <u>а</u> | 12.12.2023 |  |  |  |
| Преполаватель Коробков Максим Петровии Отчет принат |                   |                          |            |  |  |  |

# Рабочий протокол и отчет по лабораторной

работе №1.05

ИССЛЕДОВАНИЕ КОЛЕБАНИЙ ФИЗИЧЕСКОГО МАЯТНИКА

#### 1. Цель работы.

Изучение характеристик затухающих колебаний физического маятника.

#### 2. Задачи, решаемые при выполнении работы.

Зависимости амплитуды колебаний от времени и квадрата периода от момента инерции

Вывод о преобладающем типе трения

Определение экспериментальной и теоретической приведенной длины маятника при разных его конфигурациях.

#### 3. Объект исследования.

Физический маятник и его колебания.

#### 4. Метод экспериментального исследования.

Замер таких величин, амплитуда отклонения и время колебаний.

#### 5. Рабочие формулы и исходные данные.

T — период колебаний, R — расстояние центров грузов, I — момент инерции,  $l_{\rm np}$  — приведённая длина,  $l_1$  — расстояние от оси вращения до первой риски,

 $l_0$  — расстояние между соседними рисками, b — размер груза вдоль спицы,

 $A_0$  — амплитуда в начальный момент времени,  $\beta$  — коэффициент затухания,

m — масса маятника,  $m_{\rm rp}$  — масса груза,  $l_{\rm reop}$  — расстояние от оси вращения до центра масс.

$$R = l_1 + (n-1)l_0 + \frac{b}{2} \qquad I_{\rm rp} = m_{\rm rp} \left( R_{\rm Bepx}^2 + R_{\rm HMW}^2 + 2 R_{\rm 60K}^2 \right) \qquad T = 2\pi \sqrt{\frac{I}{mgl}}$$

$$I_{\rm np} = \frac{I}{ml} = \frac{I_0}{ml} + l \qquad \ln \frac{A}{A_0} = -\beta t \qquad T = \frac{\bar{t}}{N} \qquad I = I_{\rm rp} + I_0$$

$$m_{\Gamma} = 408 \ \Gamma; \ l_1 = 57 \ \text{мм}; \ l_0 = 25 \ \text{мм}; \ b = 40 \ \text{мм}; \ \beta = -\frac{\ln\frac{A}{A_0}}{t} = -\frac{\ln\frac{15}{30}}{16,604} \approx 0,0417$$
 
$$t_1 = 17,8 \ (\text{c}) \qquad \qquad t_2 = 23,1 \ (\text{c}) \qquad \qquad t_3 = 28,4 \ (\text{c})$$

#### 6. Измерительные приборы.

Таблица 1.

| Наименование<br>средства измерения | Предел<br>измерений | Цена<br>деления | Погрешность, $\Delta_{\rm H}$ |
|------------------------------------|---------------------|-----------------|-------------------------------|
| Шкала                              | 60°                 | 1°/дел.         | 1°                            |
| Секундомер                         |                     |                 | •••                           |

#### 7. Схема установки (перечень схем, которые составляют Приложение 1).



Рис. 4. Универсальный стенд

В работе используется передняя крестовина.

Угол отклонения маятника отсчитывается по шкале в угловых градусах. Время измеряется механическим или электронным секундомером. Характеристики средств измерений привести в табл. 1.

## 8. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*).

#### Таблица 2.

| Амплитуда<br>отклонения, ° | 25  | 20       | 15   | 10       | 5        |
|----------------------------|-----|----------|------|----------|----------|
| t <sub>1</sub>             | 3,9 | 9,4      | 16,6 | 22,1     | 31,1     |
| t <sub>2</sub>             | 3,7 | 9,2      | 14,7 | 21,8     | 30,9     |
| t <sub>3</sub>             | 3,8 | 9,1      | 16,4 | 23,7     | 32,7     |
| tcp                        | 3,8 | 9,233333 | 15,9 | 22,53333 | 31,56667 |

#### Таблица 3.

| Положение | t <sub>1</sub> | t <sub>2</sub> | t <sub>3</sub> | t <sub>cp</sub> | T        |
|-----------|----------------|----------------|----------------|-----------------|----------|
| 1 риска   | 16,2           | 16,2           | 16,2           | 16,2            | 1,62     |
| 2 риски   | 17,1           | 17,2           | 17,1           | 17,13333        | 1,713333 |
| 3 риски   | 18,2           | 18,2           | 18,2           | 18,2            | 1,82     |
| 4 риски   | 19,6           | 19,5           | 19,7           | 19,6            | 1,96     |
| 5 рисок   | 20,9           | 20,9           | 20,9           | 20,9            | 2,09     |
| 6 рисок   | 22,6           | 22,6           | 22,5           | 22,56667        | 2,256667 |

#### Таблица 4.

| Риски        | 1        | 2        | 3        | 4        | 5        | 6        |
|--------------|----------|----------|----------|----------|----------|----------|
| Rверх        |          | 77       |          |          |          |          |
| Rниж         |          | 202      |          |          |          |          |
| Rбок         | 77       | 102      | 127      | 152      | 177      | 202      |
| Ігр          | 23905,13 | 27556,73 | 32228,33 | 37919,93 | 44631,53 | 52363,13 |
| I            | 23905,14 | 27556,74 | 32228,34 | 37919,94 | 44631,54 | 52363,14 |
| Іпри<br>эксп | 0,664768 | 0,743574 | 0,839041 | 0,973089 | 1,106453 | 1,289957 |
| Iпр<br>теор  | 379446,6 | 437408,5 | 511560,9 | 601903,7 | 708437,1 | 831160,9 |

#### 9. Графики (перечень графиков, которые составляют Приложение 2).

График зависимости амплитуды колебаний от времени.





В ходе проб и ошибок выяснилось, что больше всего подходит полиномиальное распределение.

Полиномиальное:  $R^2 = 0,9993$ , линия тренда:  $0,0204762x^2 - 1,99095x + 40,84$  Линейное: r=-0.9958, линия тренда: -1,37667x + 37.2567

График зависимости квадрата периода от момента инерции маятника.



В ходе проб и ошибок выяснилось, что больше всего подходит полиномиальное распределение.

Полиномиальное:  $R^2 = 0,9996$ , линия тренда:  $127,897x^2 - 74,5229x - 0,119586$ 

Линейное: r=0.9997, линия тренда: 86,3003x - 0,138925

График зависимости убывания амплитуды  $ln \frac{A}{A_0} = -\beta t$  при наличии вязкого трения (амплитуда убывает по экспоненциальному закону  $A = A_0 e^{-\beta t}$ )



#### 10. Окончательные результаты.

$$l_{\text{пр эксп}} = 9.36 \cdot 10^{-2} \text{ M}$$

$$l_{\rm np \, Teop} = 7.05 \, \cdot 10^{-2} {\rm M}$$

#### 11. Выводы и анализ результатов работы

В ходе проведения и оформления этой лабораторной работы мы узнавали и изучали много информации про маятниковое колебание и влияющих сил, как разные типы трения, масса груза и расстояния от опоры до груза. По графике A(t) невозможно сделать конкретный вывод, так как наши данные не подчиняется никакому простому закону. Причиной этого может являться разные факторы, как человеческая ошибка и смешанный тип трения. И если сравнить полученные результаты, то можно сделать вывод о том, что существенного различия между полученного и теоретического расстояния почти отсутствует.