Artificial Intelligence AI-2002 Lecture 8

Mahzaib Younas

Lecturer Department of Computer Science
FAST NUCES CFD

Al 2002

Adversarial Search

 Competitive environments, in which the agents' goals are in conflict, giving rise to adversarial search problems—often known as games

Why do AI researchers study game playing?

- It's a good reasoning problem, formal and nontrivial.
- Offer an opportunity to study problems involving {hostile, adversarial, competing} agents.
- Direct comparison with humans and other computer programs is easy.

Adversarial Search

Mainly games of strategy with the following characteristics:

- Sequence of moves to play
- Rules that specify possible moves
- Rules that specify a payment for each move
- Objective is to maximize your payment

AI 2002

Games

Compititve: Commonly Zero Sum

- One player wins and the other loses
- A zero-sum game is defined as one where the <u>total</u> payoff to all players is the same for every instance of the game. Chess is zero-sum because every game has payoff of either 0 + 1, 1 + 0 or $\frac{1}{2}$, $\frac{1}{2}$.

Perfect Information:

- Players knows the results of the all previous moves
- There is one best way to win the game for all players

Imperfect Information

Players do not know all of the previous moves

AI 2002

Games

- Initial State (s_0) : The initial state, which specifies how the game is set up at the start.
- Players: defines which player has the move in a state.
- Actions: The set of legal moves.
- Result (s, a): The transition model, which defines the result of a move. The state after action a is the state s.
- Terminal Test: A terminal test, which is true when the game is over and false otherwise.

Games

- Terminal State: States where the game has ended are called terminal states.
- Utility: A utility function (also called an objective function or payoff function), defines the final numeric value for a game that ends in terminal state s for a player p.
 - In chess, the outcome is a win, loss, or draw, with values +1, 0, or ½.
 - Some games have a wider variety of possible outcomes; the payoffs in backgammon range from 0 to +192.

Game Tree

- The initial state, actions, and results define the game tree for the game.
- A game tree where the nodes are the game states and the edges are moves.
- The game tree is best thought of as a theoretical construct that we cannot realize in the physical world.
 - For <u>tic-tac-toe</u> the game tree is relatively small—fewer than 9! = 362, 880 terminal nodes.
 - For chess there are over 10⁴⁰ nodes,

Game Tree: tic-tac-toe

- Minimax is a method used to evaluate game trees.
- Given a game tree, the optimal strategy can be determined from the minimax value of each node.
- A static evaluator is applied to <u>leaf nodes</u>, and the values are passed back up the tree to determine the <u>best score</u> the computer can obtain against a rational opponent.

AI 2002

MAX

- Wants to maximize the result of the utility function
- Winning strategy if, on MIN's turn, a win is obtainable for MAX for all moves that MIN can make

<u>MIN</u>

- Wants to minimize the result of the utility function
- Winning strategy if, on MAX's turn, a win is obtainable for MIN for all moves that MAX can make

$$\begin{cases} \text{Utility}(s) & \text{if Terminal-Test}(s) \\ \max_{a \in Actions(s)} \text{Minimax}(\text{Result}(s, a)) & \text{if Player}(s) = \text{max} \\ \min_{a \in Actions(s)} \text{Minimax}(\text{Result}(s, a)) & \text{if Player}(s) = \text{min} \end{cases}$$

$$\begin{cases} \text{UTILITY}(s) & \text{if Terminal-Test}(s) \\ \max_{a \in Actions(s)} \text{Minimax}(\text{Result}(s, a)) & \text{if Player}(s) = \text{max} \\ \min_{a \in Actions(s)} \text{Minimax}(\text{Result}(s, a)) & \text{if Player}(s) = \text{min} \end{cases}$$

$$\begin{cases} \text{UTILITY}(s) & \text{if Terminal-Test}(s) \\ \max_{a \in Actions(s)} \text{Minimax}(\text{Result}(s, a)) & \text{if Player}(s) = \text{max} \\ \min_{a \in Actions(s)} \text{Minimax}(\text{Result}(s, a)) & \text{if Player}(s) = \text{min} \end{cases}$$

```
function MINIMAX-DECISION(state) returns an action
  return arg \max_{a \in ACTIONS(s)} MIN-VALUE(RESULT(state, a))
function MAX-VALUE(state) returns a utility value
  if TERMINAL-TEST(state) then return UTILITY(state)
  v \leftarrow -\infty
  for each a in ACTIONS(state) do
     v \leftarrow \text{MAX}(v, \text{Min-Value}(\text{Result}(s, a)))
  return v
function MIN-VALUE(state) returns a utility value
  if TERMINAL-TEST(state) then return UTILITY(state)
  v \leftarrow \infty
  for each a in ACTIONS(state) do
     v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a)))
  return v
```

Properties of Minimax

Complete?

Yes (if tree is finite).

Optimal?

Yes

Time complexity?

• $O(b^m)$, m is the maximum depth of the tree and b is the legal moves.

Space complexity?

- 0(bm)
 - (depth-first search, generate all actions at once)
- O(m)
 - (backtracking search, generate actions one at a time)

Multiplayer Games

Each node must hold a vector of values

For example, for three players A, B, C (VA, VB, VC)

• The backed up vector at node n will always be the one that maximizes the payoff of the player choosing at n

Searching Game Trees

- Exhaustively searching a game tree is not usually a good idea.
- Even for a simple game like
 - **tic-tac-toe** there are over **350,000 nodes** in the complete game tree.
- An additional problem is that the computer only gets to choose every other path through the tree and the opponent chooses the others.

Pruning

$$\begin{aligned} \mathbf{Minimax}(root) &= \max(\min(3, 12, 8), \min(2, x, y), \min(14, 5, 2)) \\ &= \max(3, \min(2, x, y), 2) \end{aligned}$$

Pruning

$$\begin{aligned} \text{Minimax}(\textit{root}) &= \max(\min(3, 12, 8), \min(2, x, y), \min(14, 5, 2)) \\ &= \max(3, \min(2, x, y), 2) \\ &= \max(3, z, 2) \quad \text{where } z = \min(2, x, y) \leq 2 \\ &= 3. \end{aligned}$$

Do we need z?

Pruning

 We can use a branch-and-bound technique to reduce the number of states that must be examined to determine the value of a tree.

Branch-and-bound Technique:

- We keep track of a lower bound on the value of a maximizing node, and don't bother evaluating any trees that cannot improve this bound.
- Keep track of an upper bound on the value of a minimizing node. Don't bother with any sub-trees that cannot improve this bound.

Minimax with Alpha-Beta Cutoffs

Alpha Cutoffs:

Alpha is the lower bound on maximizing nodes.

Beta Cutoffs:

Beta is the upper bound on minimizing nodes.

 Both alpha and beta get passed down the tree during the Minimax search.

Minimax with Alpha-Beta Cutoffs

- At minimizing nodes, we stop evaluating children if we get a child whose value is less than the current lower bound (alpha).
- At maximizing nodes, we stop evaluating children as soon as we get a child whose value is greater than the current upper bound (beta).
- Some branches will never be played by rational players since they include sub-optimal decisions (for either player)

Alpha-Beta Pruning: Effectiveness

 The effectiveness depends on the order in which children are visited.

- In the best case, the effective branching factor will be reduced from b to sqrt(b).
- In an average case (random values of leaves) the branching factor is reduced to $\frac{b}{\log b}$.

Reading Material

- Artificial Intelligence, A Modern Approach
 Stuart J. Russell and Peter Norvig
 - Chapter 5.