1. Load the basic libraries and packages

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import GaussianNB, BernoulliNB, MultinomialNB

from sklearn.metrics import confusion_matrix, accuracy_score

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import classification_report

2. Load the dataset

data = pd.read_excel('/content/default_of_credit_card_clients.xls' , skiprows=1)
data

	ID	LIMIT_BAL	SEX	EDUCATION	MARRIAGE	AGE	PAY_0	PAY_2	PAY_3	PAY_4	•••	BILL_AMT4	BILL_AMT5	BILL_AMT6	PAY_AMT1	PAY_AI
0	1	20000	2	2	1	24	2	2	-1	-1		0	0	0	0	•
1	2	120000	2	2	2	26	-1	2	0	0		3272	3455	3261	0	10
2	3	90000	2	2	2	34	0	0	0	0		14331	14948	15549	1518	15
3	4	50000	2	2	1	37	0	0	0	0		28314	28959	29547	2000	20
4	5	50000	1	2	1	57	-1	0	-1	0		20940	19146	19131	2000	36€
29995	29996	220000	1	3	1	39	0	0	0	0		88004	31237	15980	8500	200
29996	29997	150000	1	3	2	43	-1	-1	-1	-1		8979	5190	0	1837	3
29997	29998	30000	1	2	2	37	4	3	2	-1		20878	20582	19357	0	
29998	29999	80000	1	3	1	41	1	-1	0	0		52774	11855	48944	85900	34
29999	30000	50000	1	2	1	46	0	0	0	0		36535	32428	15313	2078	18
30000 rows × 25 columns																
4																•

3. Analyse the dataset

data.describe()

	ID	LIMIT_BAL	SEX	EDUCATION	MARRIAGE	AGE	PAY_0	PAY_2	PAY_3		
count	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000	
mean	15000.500000	167484.322667	1.603733	1.853133	1.551867	35.485500	-0.016700	-0.133767	-0.166200	- C	
std	8660.398374	129747.661567	0.489129	0.790349	0.521970	9.217904	1.123802	1.197186	1.196868	1	
min	1.000000	10000.000000	1.000000	0.000000	0.000000	21.000000	-2.000000	-2.000000	-2.000000	-2	
25%	7500.750000	50000.000000	1.000000	1.000000	1.000000	28.000000	-1.000000	-1.000000	-1.000000	-1	
50%	15000.500000	140000.000000	2.000000	2.000000	2.000000	34.000000	0.000000	0.000000	0.000000	C	
75%	22500.250000	240000.000000	2.000000	2.000000	2.000000	41.000000	0.000000	0.000000	0.000000	С	
max	30000.000000	1000000.000000	2.000000	6.000000	3.000000	79.000000	8.000000	8.000000	8.000000	8	
8 rows × 25 columns											
4										•	

4. Normalize the data

 ${\tt def\ Feature_Normalization}({\tt X})\colon$

 $X = (X - np.mean(X)) \ / \ np.std(X) \ \# Calculate mean and std across the entire 1D array return <math>X$

```
Pre-process the data
x = data.iloc[: , :-1].values
y = data.iloc[: , -1].values
# Initialize x_norm as a list to store normalized features
x_norm = []
for i in range(x.shape[1]): # Iterate through columns of x
    norm_feature = Feature_Normalization(x[:, i])
    x_norm.append(norm_feature) # Append normalized feature to the list
# Convert the list of normalized features to a NumPy array
x_norm = np.array(x_norm).T # Transpose to get the desired shape
x_norm
[-1.7318776 , -0.3659805 , 0.81016074 , ..., -0.24422965 , -0.31413612 , -0.18087821] , [-1.73176213 , -0.59720239 , 0.81016074 , ..., -0.24422965 ,
              -0.24868274, -0.01212243],
            [ 1.73176213, -1.05964618, -1.23432296, ..., -0.03996431,
              -0.18322937, -0.11900109],
             [ 1.7318776 , -0.67427636, -1.23432296, ..., -0.18512036,
            3.15253642, -0.19190359],

[ 1.73199307, -0.90549825, -1.23432296, ..., -0.24422965, -0.24868274, -0.23713013]])
        Visualize the Data
# 6.
sns.pairplot(data)
```

plt.show()


```
# 7.
                       Separate the training and testing data
x_{train}, x_{train}, y_{train}, y_{
# 8.
                       Apply the Bernoulli Naïve Bayes algorithm
model = BernoulliNB()
model.fit(x_train , y_train)
  \overline{2}
                           BernoulliNB ① ?
                BernoulliNB()
                       Predict the testing dataset
y_pred_Bernoulli = model.predict(x_test)
# 10. Obtain the confusion matrix
 cm = confusion_matrix(y_test , y_pred_Bernoulli)
  \overline{\Rightarrow}
             array([[3525, 1162],
                                    [ 780, 533]])
# 11. Obtain the accuracy score
 accuracy_score(y_test , y_pred_Bernoulli)
  Visualize the classified dataset
plt.figure(figsize=(8, 6))
 sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False)
plt.xlabel('Predicted Label')
plt.ylabel('True Label')
plt.title('Confusion Matrix')
plt.show()
  \overline{\mathbf{T}}
                                                                                                                                 Confusion Matrix
                                                                                          3525
                                                                                                                                                                                                                 1162
                          0
                                                                                           780
                                                                                                                                                                                                                   533
```

Predicted Label

1

o

```
# 13. Apply the Gaussian Naïve Bayes algorithm
model = GaussianNB()
model.fit(x\_train , y\_train)
\overline{\pm}
      ▼ GaussianNB ① ?
     GaussianNB()
# 14. Predict the testing dataset
y_pred_GaussianNB = model.predict(x_test)
# 15. Obtain the confusion matrix
cm = confusion_matrix(y_test , y_pred_GaussianNB)
→ array([[3396, 1291],
            [ 458, 855]])
# 16. Obtain the accuracy score
accuracy_score(y_test , y_pred_GaussianNB)

→ 0.7085
# 17. Visualize the classified dataset
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False)
plt.xlabel('Predicted Label')
plt.ylabel('True Label')
```

plt.title('Confusion Matrix')

