

Fake News Detection Using NLP

Phase-1 Documentation Submission

Presented By: Team Member Muhesh S

CONTENT

01

Introduction

02

Data Description

03

Modules

04

Results

INTRODUCTION:

- This project aims to develop a machine learning model that can distinguish between genuine and fake news articles.
 - The model will analyze the titles and text of news articles and classify them as either genuine or fake.

Data Description:

• The dataset used in this project is obtained from Kaggle.

https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset

• It contains news articles along with their labels indicating whether they are genuine or fake.

Modules

01 Data Collection Module

03

04

05

02 Data Preprocessing Module

Feature Extraction Module

Model Building Module

Documentation Module

Data Collection Module:

• This module involves collecting the dataset from Kaggle. The dataset contains news articles along with their labels (genuine or fake).

Data Preprocessing Module:

- This module involves cleaning and preprocessing the textual data to prepare it for analysis.
- This includes tasks such as tokenization, stop word removal, stemming, etc.

Feature Extraction Module:

- This module involves converting the preprocessed text into numerical features that can be used by a machine learning algorithm.
- Techniques like TF-IDF (Term Frequency-Inverse Document Frequency) or word embeddings can be used for this purpose.

Model Building Module:

• This module involves selecting a suitable machine learning algorithm for the task (e.g., Logistic Regression, Random Forest, or Neural Networks) and training it on the preprocessed data.

```
Epoch 1/5
102/102 [=============== ] - 204s 1s/step - loss: 0.1709 - Accurac
v: 0.7617 - Precision: 0.7751 - Recall: 0.6818 - val_loss: 0.1052 - val_Accuracy:
0.8667 - val_Precision: 0.7959 - val_Recall: 0.9512
Epoch 2/5
102/102 [=============== ] - 151s 1s/step - loss: 0.0343 - Accurac
v: 0.9753 - Precision: 0.9758 - Recall: 0.9706 - val_loss: 0.0192 - val_Accuracy:
0.9667 - val_Precision: 0.9524 - val_Recall: 0.9756
Epoch 3/5
y: 0.9988 - Precision: 1.0000 - Recall: 0.9973 - val_loss: 0.0048 - val_Accuracy:
1.0000 - val_Precision: 1.0000 - val_Recall: 1.0000
Epoch 4/5
102/102 [============= ] - 109s 1s/step - loss: 0.0052 - Accurac
y: 1.0000 - Precision: 1.0000 - Recall: 1.0000 - val_loss: 0.0087 - val_Accuracy:
0.9778 - val_Precision: 0.9535 - val_Recall: 1.0000
Epoch 5/5
102/102 [============== ] - 108s 1s/step - loss: 0.0043 - Accurac
y: 1.0000 - Precision: 1.0000 - Recall: 1.0000 - val_loss: 0.0075 - val_Accuracy:
0.9778 - val_Precision: 0.9535 - val_Recall: 1.0000
```


Evaluation Module:

• This module involves evaluating the performance of the trained model using metrics like accuracy, precision, recall, F1-score, and ROC-AUC.

- Accuracy on testing set: 0.9860801781737194
- Precision on testing set: 0.9812413154238073
- **Recall on testing set:** 0.9897220275636534