MINOR PROJECT

UNIVERSITY MANAGEMENT SYSTEM

Submitted By: Madeeha Hasan **Submitted To**: Ms. Harkamal Kaur

Designation: Professor

<u>UID</u>: 23BCA10572 **Section**: 23BCA-2B

Branch: BCA

Subject Name: DBMS **Subject Code**: 23CAT-251

INTRODUCTION

The University Management System (UMS) is a database-driven application designed to efficiently manage and organize the academic and administrative activities of a university. It serves as a centralized system to handle various aspects of university operations such as student records, faculty information, course registrations, departmental structures, hostel allocations, and examination details.

In a real-world university setting, managing large volumes of data manually can lead to inefficiencies, errors, and a lack of coordination between departments. The UMS addresses these challenges by offering a structured and relational database solution built using principles of Database Management Systems (DBMS). It ensures data integrity, reduces redundancy, and supports easy retrieval and manipulation of data.

This project implements several interconnected tables including students, faculty, departments, courses, teaches, enrollments, hostels, and exams, each with at least 20 sample entries. These tables are normalized and related using primary and foreign keys to maintain consistency and logical relationships among data entities.

By providing a reliable backend database design, this University Management System acts as a foundational tool for developing a complete university ERP system, paving the way for future enhancements like automation, reporting, and real-time data access.

OBJECTIVE

The primary objective of the University Management System project is to design and implement a relational database that efficiently manages the core academic and administrative data of a university.

This system aims to:

- Organize and store data related to students, faculty, departments, courses, hostels, and examinations.
- Establish proper relationships between different entities using primary and foreign keys.
- Ensure data consistency, integrity, and security through normalization and constraints.
- Provide easy and efficient data retrieval, insertion, updating, and deletion operations using SQL.
- Reduce redundancy and manual workload through a centralized and systematic data structure.
- Lay the foundation for further development of a complete university ERP system.

MySQL Language

MySQL is an open-source Relational Database Management System (RDBMS) that uses Structured Query Language (SQL) to manage and manipulate databases. It is widely used in both academic and industrial applications due to its reliability, performance, and ease of use.

MySQL allows users to create, retrieve, update, and delete data efficiently while ensuring data integrity and security. It supports complex queries, transactions, indexing, and stored procedures, making it suitable for large-scale systems like a University Management System.

Some key features of MySQL include:

- Open-source and free under the GNU General Public License (GPL)
- Cross-platform compatibility
- Support for ACID compliance for reliable transaction processing
- Scalability and flexibility for managing growing datasets
- Integration with various programming languages and tools

In this project, MySQL is used as the backend database to manage the core functionalities of the University Management System through the design and implementation of normalized relational tables.

MySQL Code

```
-- University Management System - MySQL Code
-- 1. Departments Table
CREATE TABLE departments (
  dept id INT PRIMARY KEY,
  dept name VARCHAR(100) NOT NULL
);
-- 2. Students Table
CREATE TABLE students (
  student id INT PRIMARY KEY,
  name VARCHAR(100),
  age INT,
  gender VARCHAR(10),
  dept id INT,
  FOREIGN KEY (dept id) REFERENCES departments(dept id)
);
-- 3. Faculty Table
CREATE TABLE faculty (
  faculty id INT PRIMARY KEY,
  name VARCHAR(100),
  dept id INT,
  designation VARCHAR(50),
  FOREIGN KEY (dept id) REFERENCES departments(dept_id)
);
-- 4. Courses Table
CREATE TABLE courses (
  course id INT PRIMARY KEY,
  course name VARCHAR(100),
  credits INT,
```

```
dept id INT,
  FOREIGN KEY (dept id) REFERENCES departments(dept id)
);
-- 5. Teaches Table
CREATE TABLE teaches (
  faculty id INT,
  course id INT,
  semester VARCHAR(10),
  PRIMARY KEY (faculty id, course id),
  FOREIGN KEY (faculty_id) REFERENCES faculty(faculty_id),
  FOREIGN KEY (course id) REFERENCES courses (course id)
);
-- 6. Enrollments Table
CREATE TABLE enrollments (
  student id INT,
  course id INT,
  semester VARCHAR(10),
  grade VARCHAR(2),
  PRIMARY KEY (student id, course id),
  FOREIGN KEY (student id) REFERENCES students(student id),
  FOREIGN KEY (course id) REFERENCES courses (course id)
);
-- 7. Hostel Table
CREATE TABLE hostel (
  hostel id INT PRIMARY KEY,
  hostel name VARCHAR(100),
  capacity INT
);
-- 8. Hostel Allocation
CREATE TABLE hostel allocation (
  student id INT PRIMARY KEY,
  hostel id INT,
  room number VARCHAR(10),
```

```
FOREIGN KEY (student id) REFERENCES students(student id),
  FOREIGN KEY (hostel id) REFERENCES hostel(hostel id)
);
-- 9. Exams Table
CREATE TABLE exams (
  exam id INT PRIMARY KEY,
  course id INT,
  exam date DATE,
  exam type VARCHAR(20),
  FOREIGN KEY (course id) REFERENCES courses (course id)
);
-- INSERT DATA FOR departments
INSERT INTO departments VALUES
(1, 'Computer Science'), (2, 'Electronics'), (3, 'Mechanical'), (4,
'Civil'), (5, 'Electrical'),
(6, 'Information Technology'), (7, 'Chemical'), (8, 'Biotechnology'), (9,
'Mathematics'), (10, 'Physics'),
(11, 'Chemistry'), (12, 'Management'), (13, 'Economics'), (14,
'English'), (15, 'History'),
(16, 'Geography'), (17, 'Political Science'), (18, 'Sociology'), (19,
'Philosophy'), (20, 'Statistics');
-- INSERT DATA FOR students
INSERT INTO students VALUES
(1, 'Alice', 20, 'Female', 1), (2, 'Bob', 21, 'Male', 2), (3, 'Charlie', 22,
'Male', 3), (4, 'Daisy', 19, 'Female', 4),
(5, 'Ethan', 20, 'Male', 5), (6, 'Fiona', 21, 'Female', 6), (7, 'George', 22,
'Male', 7), (8, 'Hannah', 19, 'Female', 8),
(9, 'Ian', 20, 'Male', 9), (10, 'Jane', 21, 'Female', 10), (11, 'Kyle', 22,
'Male', 11), (12, 'Lily', 19, 'Female', 12),
(13, 'Mike', 20, 'Male', 13), (14, 'Nina', 21, 'Female', 14), (15, 'Oscar',
22, 'Male', 15), (16, 'Paula', 19, 'Female', 16),
(17, 'Quinn', 20, 'Male', 17), (18, 'Rachel', 21, 'Female', 18), (19,
'Sam', 22, 'Male', 19), (20, 'Tina', 19, 'Female', 20);
```

-- INSERT DATA FOR faculty

INSERT INTO faculty VALUES

- (1, 'Dr. Smith', 1, 'Professor'), (2, 'Dr. Clark', 2, 'Associate Professor'),
- (3, 'Dr. Adams', 3, 'Professor'),
- (4, 'Dr. Baker', 4, 'Assistant Professor'), (5, 'Dr. Jones', 5, 'Professor'),
- (6, 'Dr. Lee', 6, 'Associate Professor'),
- (7, 'Dr. White', 7, 'Professor'), (8, 'Dr. Green', 8, 'Assistant Professor'),
- (9, 'Dr. Black', 9, 'Professor'),
- (10, 'Dr. Brown', 10, 'Associate Professor'), (11, 'Dr. Taylor', 11,
- 'Professor'), (12, 'Dr. Hall', 12, 'Assistant Professor'),
- (13, 'Dr. King', 13, 'Professor'), (14, 'Dr. Wright', 14, 'Associate Professor'), (15, 'Dr. Lopez', 15, 'Professor'),
- (16, 'Dr. Hill', 16, 'Assistant Professor'), (17, 'Dr. Scott', 17,
- 'Professor'), (18, 'Dr. Young', 18, 'Associate Professor'),
- (19, 'Dr. Walker', 19, 'Professor'), (20, 'Dr. Allen', 20, 'Assistant Professor');

-- INSERT DATA FOR courses

INSERT INTO courses VALUES

- (1, 'Data Structures', 4, 1), (2, 'Digital Electronics', 3, 2), (3,
- 'Thermodynamics', 3, 3), (4, 'Structural Engineering', 4, 4),
- (5, 'Power Systems', 3, 5), (6, 'Networking', 3, 6), (7, 'Fluid
- Mechanics', 4, 7), (8, 'Genetics', 3, 8),
- (9, 'Algebra', 3, 9), (10, 'Quantum Physics', 4, 10), (11, 'Organic
- Chemistry', 4, 11), (12, 'Marketing', 3, 12),
- (13, 'Microeconomics', 3, 13), (14, 'Literature', 2, 14), (15, 'Modern Lista and 2, 15), (16, 'Gasta and 12, 16)
- History', 3, 15), (16, 'Cartography', 2, 16), (17, 'Political Theory', 3, 17), (18, 'Social Research', 3, 18), (19,
- 'Logic', 2, 19), (20, 'Probability', 3, 20);

-- INSERT DATA FOR teaches

INSERT INTO teaches VALUES

- (1, 1, 'S1'), (2, 2, 'S1'), (3, 3, 'S1'), (4, 4, 'S1'), (5, 5, 'S1'),
- (6, 6, 'S1'), (7, 7, 'S1'), (8, 8, 'S1'), (9, 9, 'S1'), (10, 10, 'S1'),
- (11, 11, 'S1'), (12, 12, 'S1'), (13, 13, 'S1'), (14, 14, 'S1'), (15, 15, 'S1'),
- (16, 16, 'S1'), (17, 17, 'S1'), (18, 18, 'S1'), (19, 19, 'S1'), (20, 20, 'S1');

-- INSERT DATA FOR enrollments

INSERT INTO enrollments VALUES

- (1, 1, 'S1', 'A'), (2, 2, 'S1', 'B'), (3, 3, 'S1', 'C'), (4, 4, 'S1', 'A'), (5, 5, 'S1', 'B'),
- (6, 6, 'S1', 'A'), (7, 7, 'S1', 'C'), (8, 8, 'S1', 'B'), (9, 9, 'S1', 'A'), (10, 10, 'S1', 'A'),
- (11, 11, 'S1', 'B'), (12, 12, 'S1', 'C'), (13, 13, 'S1', 'A'), (14, 14, 'S1', 'B'), (15, 15, 'S1', 'A'),
- (16, 16, 'S1', 'C'), (17, 17, 'S1', 'A'), (18, 18, 'S1', 'B'), (19, 19, 'S1', 'C'), (20, 20, 'S1', 'A');

-- INSERT DATA FOR hostel

INSERT INTO hostel VALUES

- (1, 'Alpha', 100), (2, 'Beta', 90), (3, 'Gamma', 80), (4, 'Delta', 70), (5, 'Epsilon', 60),
- (6, 'Zeta', 50), (7, 'Eta', 45), (8, 'Theta', 40), (9, 'Iota', 35), (10, 'Kappa', 30),
- (11, 'Lambda', 25), (12, 'Mu', 20), (13, 'Nu', 15), (14, 'Xi', 10), (15, 'Omicron', 8),
- (16, 'Pi', 6), (17, 'Rho', 4), (18, 'Sigma', 3), (19, 'Tau', 2), (20, 'Upsilon', 1);

-- INSERT DATA FOR hostel_allocation

INSERT INTO hostel allocation VALUES

- (1, 1, 'A101'), (2, 2, 'B102'), (3, 3, 'C103'), (4, 4, 'D104'), (5, 5, 'E105'),
- (6, 6, 'F106'), (7, 7, 'G107'), (8, 8, 'H108'), (9, 9, 'I109'), (10, 10, 'J110'),
- (11, 11, 'K111'), (12, 12, 'L112'), (13, 13, 'M113'), (14, 14, 'N114'), (15, 15, 'O115'),
- (16, 16, 'P116'), (17, 17, 'Q117'), (18, 18, 'R118'), (19, 19, 'S119'), (20, 20, 'T120');

-- INSERT DATA FOR exams

INSERT INTO exams VALUES

(1, 1, '2025-04-01', 'Midterm'), (2, 2, '2025-04-02', 'Midterm'), (3, 3, '2025-04-03', 'Midterm'),

- (4, 4, '2025-04-04', 'Midterm'), (5, 5, '2025-04-05', 'Midterm'), (6, 6, '2025-04-06', 'Midterm'),
- (7, 7, '2025-04-07', 'Midterm'), (8, 8, '2025-04-08', 'Midterm'), (9, 9, '2025-04-09', 'Midterm'),
- (10, 10, '2025-04-10', 'Midterm'), (11, 11, '2025-04-11', 'Midterm'),
- (12, 12, '2025-04-12', 'Midterm'),
- (13, 13, '2025-04-13', 'Midterm'), (14, 14, '2025-04-14', 'Midterm'),
- (15, 15, '2025-04-15', 'Midterm'),
- (16, 16, '2025-04-16', 'Midterm'), (17, 17, '2025-04-17', 'Midterm'),
- (18, 18, '2025-04-18', 'Midterm'),
- (19, 19, '2025-04-19', 'Midterm'), (20, 20, '2025-04-20', 'Midterm');

-- USEFUL QUERIES

- -- 1. Table Name: departments SELECT * FROM departments;
- -- 2. Table Name: students SELECT * FROM students;
- -- 3. Table Name: faculty SELECT * FROM faculty;
- -- 4. Table Name: courses SELECT * FROM courses;
- -- 5. Table Name: teaches SELECT * FROM teaches;
- -- 6. Table Name: enrollments SELECT * FROM enrollments;
- -- 7. Table Name: hostel SELECT * FROM hostel;
- -- 8. Table Name: hostel_allocation SELECT * FROM hostel_allocation;

```
-- 9. Table Name: exams SELECT * FROM exams;
```

-- 10. List all students in a specific department (e.g., Computer Science)

SELECT s.student_id, <u>s.name</u>, d.dept_name FROM students s

JOIN departments d ON s.dept_id = d.dept_id WHERE d.dept name = 'Computer Science';

-- 11. View courses taught by a specific faculty (e.g., Dr. Smith) SELECT <u>f.name</u> AS faculty_name, c.course_name, t.semester FROM faculty f

JOIN teaches t ON f.faculty_id = t.faculty_id

JOIN courses c ON t.course id = c.course id

WHERE <u>f.name</u> = 'Dr. Smith';

-- 12. See all enrollments of a student (e.g., Alice)

SELECT <u>s.name</u> AS student_name, c.course_name, e.semester, e.grade

FROM students s

JOIN enrollments e ON s.student id = e.student id

JOIN courses c ON e.course_id = c.course_id

WHERE <u>s.name</u> = 'Alice';

-- 13. Find faculty in a specific department (e.g., Electronics)

SELECT <u>f.name</u>, f.designation, d.dept_name

FROM faculty f

JOIN departments d ON f.dept_id = d.dept_id

WHERE d.dept name = 'Electronics';

-- 14. List exams scheduled for a particular course (e.g., Data Structures)

SELECT c.course_name, e.exam_date, e.exam_type

FROM exams e

JOIN courses c ON e.course_id = c.course_id

WHERE c.course name = 'Data Structures';

- -- 15. Show hostel allocations
 SELECT <u>s.name</u> AS student_name, h.hostel_name, ha.room_number
 FROM students s
 JOIN hostel_allocation ha ON s.student_id = ha.student_id
 JOIN hostel h ON ha.hostel id = h.hostel id;
- -- 16. Get all students along with their department and hostel SELECT s.student_id, s.name, d.dept_name, h.hostel_name FROM students s

 JOIN departments d ON s.dept_id = d.dept_id

 LEFT JOIN hostel_allocation ha ON s.student_id = ha.student_id

 LEFT JOIN hostel h ON ha.hostel_id = h.hostel_id;
- -- 17. Courses offered by each department SELECT d.dept_name, c.course_name, c.credits FROM departments d
 JOIN courses c ON d.dept_id = c.dept_id
 ORDER BY d.dept_name;

SCREENSHOT(OUTPUT)

1st Output: Departments Table

+	+	+
dept_id		dept_name
+	+	+
1		Computer Science
2		Electronics
] 3		Mechanical
4		Civil
5		Electrical
6		Information Technology
7		Chemical
8		Biotechnology
9		Mathematics
10		Physics
11		Chemistry
12		Management
13		Economics
14		English
15		History
16		Geography
17		Political Science
18		Sociology
19		Philosophy
20		Statistics
+	-+-	+

2nd Output: Students Table

+		+	+	·
student_id	name	age	gender	dept_id
1	Alice	20	Female	1
2	Bob	21	Male	2
3	Charlie	22	Male	3
4	Daisy	19	Female	4
5	Ethan	20	Male	5
6	Fiona	21	Female	6
7	George	22	Male	7
8	Hannah	19	Female	8
9	Ian	20	Male	9
10	Jane	21	Female	10
11	Kyle	22	Male	11
12	Lily	19	Female	12
13	Mike	20	Male	13
14	Nina	21	Female	14
15	Oscar	22	Male	15
16	Paula	19	Female	16
17	Quinn	20	Male	17
18	Rachel	21	Female	18
19	Sam	22	Male	19
20	Tina	19	Female	20
+		+	+	++

3rd Output: Faculty Table

++	+	+	+
faculty_id	name	dept_id	designation
++		+	+
1	Dr. Smith	1	Professor
2	Dr. Clark	2	Associate Professor
3	Dr. Adams	3	Professor
4	Dr. Baker	4	Assistant Professor
5	Dr. Jones	5	Professor
6	Dr. Lee	6	Associate Professor
7	Dr. White	7	Professor
8	Dr. Green	8	Assistant Professor
9	Dr. Black	9	Professor
10	Dr. Brown	10	Associate Professor
11	Dr. Taylor	11	Professor
12	Dr. Hall	12	Assistant Professor
13	Dr. King	13	Professor
14	Dr. Wright	14	Associate Professor
15	Dr. Lopez	15	Professor
16	Dr. Hill	16	Assistant Professor
17	Dr. Scott	17	Professor
18	Dr. Young	18	Associate Professor
19	Dr. Walker	19	Professor
20	Dr. Allen	20	Assistant Professor
++		· +	+

4th Output: Courses Table

++		·	++
course_id	course_name	credits	dept_id
++		+	++
1	Data Structures	4	1
2	Digital Electronics	3	2
3	Thermodynamics	3	3
4	Structural Engineering	4	4
5	Power Systems	3	5
6	Networking	3	6
7	Fluid Mechanics	4	7
8	Genetics	3	8
9	Algebra	3	9
10	Quantum Physics	4	10
11	Organic Chemistry	4	11
12	Marketing	3	12
13	Microeconomics	3	13
14	Literature	2	14
15	Modern History	3	15
16	Cartography	2	16
17	Political Theory	3	17
18	Social Research	3	18
19	Logic	2	19
20	Probability	3	20
+			

5th Output: Teaches Table

++	+	+
faculty_id	course_id	semester
++		+
1	1	S1
2	2	S1
3	3	S1
4	4	S1
5	5	S1
6	6	S1
7	7	S1
8	8	S1
9	9	S1
10	10	S1
11	11	S1
12	12	S1
13	13	S1
14	14	S1
15	15	S1
16	16	S1
17	17	S1
18	18	S1
19	19	S1
20	20	S1
++		+

6th Output: Enrollments Table

+	++		++
student_id	course_id	semester	grade
+	++		++
1	1	S1	A
2	2	S1	B
3	3	S1	C
4	4	S1	A
5	5	S1	B
6	6	S1	A
7	7	S1	C
8	8	S1	B
9	9	S1	A
10	10	S1	A
11	11	S1	B
12	12	S1	C
13	13	S1	A
14	14	S1	B
15	15	S1	A
16	16	S1	C
17	17	S1	A
18	18		B
19	19		C
20			A
+	+		++

7th Output: Hostel Table

+	·	+
hostel_id	hostel_name	capacity
+		+
1	Alpha	100
2	Beta	90
3	Gamma	80
4	Delta	70
5	Epsilon	60
6	Zeta	50
7	Eta	45
8	Theta	40
9	Iota	35
10	Карра	30
11	Lambda	25
12	Mu	20
13	Nu	15
14	Xi	10
15	Omicron	8
16	Pi	6
17	Rho	4
18	Sigma	3
19	Tau	2
20	Upsilon	1
+	+	+

8th Output: Hostel_allocation Table

+	++	+
student_id	hostel_id	room_number
+	++	+
1	1	A101
2	2	B102
3	3	C103
4	4	D104
5	5	E105
6	6	F106
7	7	G107
8	8	H108
9	9	I109
10	10	J110
11	11	K111
12	12	L112
13	13	M113
14	14	N114
15	15	0115
16	16	P116
17	17	Q117
18	18	R118
19	19	S119
20	20	T120
+	++	+

9th Output: Exams Table

++	+	+	+
exam_id	course_id	exam_date	exam_type
++	+	+	+
1	1	2025-04-01	Midterm
2	2	2025-04-02	Midterm
3	3	2025-04-03	Midterm
4	4	2025-04-04	Midterm
5	5	2025-04-05	Midterm
6	6	2025-04-06	Midterm
7	7	2025-04-07	Midterm
8	8	2025-04-08	Midterm
9	9	2025-04-09	Midterm
10	10	2025-04-10	Midterm
11	11	2025-04-11	Midterm
12	12	2025-04-12	Midterm
13	13	2025-04-13	Midterm
14	14	2025-04-14	Midterm
15	15	2025-04-15	Midterm
16	16	2025-04-16	Midterm
17	17	2025-04-17	Midterm
18	18	2025-04-18	Midterm
19	19	2025-04-19	Midterm
20	20	2025-04-20	Midterm
++	+	+	+

10 th Output: List all students in a specific department (e.g., Computer Science)			
student_id name dept_name	I		
1 Alice Computer Sci	ence		
11 th Output: View courses taught by a specific Smith)	c faculty (e.g., Dr.		
++ faculty_name course_name ++	semester		
Dr. Smith Data Structures S1			
12th Output: See all enrollments of a student (e.g., Alice)			
student_name course_name se	mester grade		
Alice Data Structures S1	A		
13th Output: Find faculty in a specific departr	, c		
name	dept_name		
Dr. Clark Associate Professor	Electronics		

14th Output: List exams scheduled for a particular course (e.g., Data Structures)

+	+	++
course_name	. – .	
Data Structures		-
+	+	+

15th Output: Show hostel allocations

		++ room_number
+	+	++
Alice	Alpha	A101
Bob	Beta	B102
Charlie	Gamma	C103
Daisy	Delta	D104
Ethan	Epsilon	E105
Fiona	Zeta	F106
George	Eta .	G107
Hannah	Theta	H108
Ian	Iota	I109
Jane	Карра	J110
Kyle	Lambda	K111
Lily	Mu	L112
Mike	Nu	M113
Nina	Xi	N114
Oscar	Omicron	0115
Paula	Pi	P116
Quinn	Rho	Q117
Rachel	Sigma	R118
Sam	Tau	S119
Tina	Upsilon	T120
+		++

16th Output: Get all students along with their department and hostel

+ student_id	+ name	+ dept_name	++ hostel_name
+	+	+	++
1	Alice	Computer Science	Alpha
2	Bob	Electronics	Beta
] 3	Charlie	Mechanical	Gamma
4	Daisy	Civil	Delta
5	Ethan	Electrical	Epsilon
6	Fiona	Information Technology	Zeta
7	George	Chemical	Eta
8	Hannah	Biotechnology	Theta
9	Ian	Mathematics	Iota
10	Jane	Physics	Kappa
11	Kyle	Chemistry	Lambda
12	Lily	Management	Mu
13	Mike	Economics	Nu
14	Nina	English	Xi
15	Oscar	History	Omicron
16	Paula	Geography	Pi
17	Quinn	Political Science	Rho
18	Rachel	Sociology	Sigma
19	Sam	Philosophy	Tau
20	Tina	Statistics	Upsilon
+	+	+	++

17th Output: Courses offered by each department

+	+	++
dept_name	course_name	credits
+	+	++
Biotechnology	Genetics	3
Chemical	Fluid Mechanics	4
Chemistry	Organic Chemistry	4
Civil	Structural Engineering	4
Computer Science	Data Structures	4
Economics	Microeconomics	3
Electrical	Power Systems	3
Electronics	Digital Electronics	3
English	Literature	2
Geography	Cartography	2
History	Modern History	3
Information Technology	Networking	3
Management	Marketing	3
Mathematics	Algebra	3
Mechanical	Thermodynamics	3
Philosophy	Logic	2
Physics	Quantum Physics	4
Political Science	Political Theory	3
Sociology	Social Research	3
Statistics	Probability	3
+	+	++

CONCLUSION

The University Management System (UMS) project successfully demonstrates the effective use of a relational database to manage and organize the essential operations of a university. By implementing this system using MySQL, we have created a structured and efficient way to store and retrieve information related to students, faculty, departments, courses, hostels, and examinations.

Through the use of normalization, relational integrity, and SQL queries, the project ensures minimal data redundancy, consistent relationships between entities, and accurate data handling. This system not only simplifies administrative processes but also provides a strong foundation for future expansion, such as adding a user interface, automation features, and advanced reporting tools.

Overall, this project highlights the practical importance of Database Management Systems in solving real-world problems and showcases how database design can improve the efficiency and reliability of institutional data management.