Null Hypothesis: 拒绝、怀疑的 Alternative Hypothesis: 希望得到的结论 设假设 =放在原假设中,因为连续型随机变量分布的原因,例如,P(x=3)=0,其发生概率为零(不可能发生),因此我们假设其为假的事件,如果放在备择假设中,则备择假设中就包含了一个假的事件,从而产生悖论 $1 \uparrow \mu - z/t$ 独立 — t 不独立 - 成对数检验 Critical Test-statistic Test type Assumptions H_o value Normally distributed population, known $\mu=0$ N(0,1)population variance Normally distributed population, <u>unknown</u> $\mu=0$ t(n-1) Test Population Mean population variance Independent populations, $\left(\overline{x_1} - \overline{x_2}\right) - \left(\mu_1 - \mu_2\right)$ Mean $\begin{array}{c} \underline{unknown} \ population \\ \underline{variances} \ assumed \ equal \end{array} \mid \mu_1 - \mu_2 = 0$ $\sqrt{s_{\rho}^2/n_1 + s_{\rho}^2/n_2}$ hypothesis $|t(n_1 + n_2 - 2)|$ where $s_{\rho}^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ testing <u>Independent</u> populations, <u>unknown</u> population $t = \frac{\left(\overline{x_{\!1}} - \overline{x_{\!2}}\right) - \left(\mu_{\!1} - \mu_{\!2}\right)}{\sqrt{s_{\!1}^2 / n_{\!1} + s_{\!2}^2 / n_{\!2}}}$ t* 画分布 (本质: 判断对谁进行检验) $|\mu_1 - \mu_2 = 0|$ variances not assumed <u>equal</u> Samples <u>not independent</u>, paired comparisons test $t = \overline{d} / S_{\overline{d}}$ $\mu_{\text{d}}{=}0$ t(n-1) 1个方差 — Chi-squared分布 2个方差 — F分布 Introduction to the Steps of Test Test-statistic Critical value **Assumptions** H_o Hypothesis Testing type Normally Test Population Variance distributed $\sigma^2 = \sigma_0^2$ $\chi^2(n-1)$ Variance population hypothes Two independent is testing normally $F(n_1-1,n_2-1)$ $\sigma_1^2 = \sigma_2^2$ distributed populations 双尾: 不等号 画出拒绝域(本质:根据备择假设判断双尾还是单尾) 拒绝域在右边:大于号 拒绝域在左边: 小于号 找出拒绝域的面积(本质:确定显著性水平) 找出k值(本质:根据分布和显著性水平找出对应的关键值 Test Statistic = **R12 Hypothesis Testing** 计算检验统计量 需要掌握对1个总体均值检验的检验统计量的计算方式 Test Statistic = -Reject H0 if |test statistic|>critical value Fail to reject H0 if |test statistic| < critical value 比较k值和检验统计量 is significantly different from 总结陈词 cannot say "accept the null hypothesis", only can say "cannot reject" fail to reject is not significantly different from P-value值就是能够使得原假设被拒绝的最小的显著性水平 P-Value P-value<α — reject H₀ 判断: 越小越拒绝 P-value>α — do not reject H₀ Type I error: 拒真("错杀好人"),即HO是真的,反而被拒绝 Type II error: 取伪("放走坏人"),即H0是假的,反而没有被拒绝 $P(Type\ I\ error)=a$ Power of test=1-P(Type II error) 假设检验的势,正确的拒绝一个错误的原假设的概率 其他条件不变时,P(I)和P(II)此消彼长 n增大,P(I)和P(II)都减小 一类错误的概率和二类错误的概率相加并不一定等于1 二类错误更为危险,应该尽量避免二类错误的发生 Type I Error and Type II Error → 接受

✓ Degree of Confidence 上 拒绝× P(I)=p(×H₀|H₀真) =α F 接受 ✓ P(II)=p(✓ H₀ |H₀假) =1-Power of test - 拒绝× Power of test Parametric Test: 对总体参数进行检验 不满足分布的假设 非正态分布小样本 Parametric and Nonparametric Tests 序数排列 第1名,第2名 Nonparametric Test 检验的不是参数 (++--++)

1912 Reading 12