$^{8}/_{10}$

Energy in Nuclear Reactions T4

Mass defects, binding energies or energy yields in nuclear reactions require high precision data as calculations involve subtracting two very similar numbers. Use only data here (& on page iv), to all significant figures given: take $c = 2.998 \times 10^8 \text{ m s}^{-1}$, and the electronic charge as $1.602 \times 10^{-19} \text{ C}$.

- Calculate the mass defect of ${}_{26}^{56}$ Fe in kilograms. The 56 Fe **nucleus** has a J4.1 mass of 55.92068 u.
- Calculate the mass defect of ${}^{12}_{6}\text{C}$ in kilograms. The ${}^{12}\text{C}$ atom has a **I4.2** mass of 12.00000 u.
- Calculate the binding energy of ⁵⁶Fe in MeV. J4.3
- Calculate the binding energy per nucleon of ¹²C in MeV. **J4.4**
- One nuclear fusion reaction is ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$. The masses of the J4.5 nuclei are given below:

Deuterium (²H) mass 2.013 55 u Tritium (³H) mass 3.01550 u Helium (⁴He) mass 4.00151 u

Calculate the energy released by this reaction in MeV (it appears as

the kinetic energy of the reaction products). One nuclear fission reaction is $^{235}_{92}U+^1_0n \rightarrow ^{147}_{57}La+^{87}_{35}Br+2^1_0n$. The J4.6 masses of the **atoms** are given in the table below. Calculate the energy released by this reaction in MeV.

²³⁵ U	$3.90300 \times 10^{-25} \text{ kg}$
¹⁴⁷ La	$2.43981 \times 10^{-25} \text{ kg}$
⁸⁷ Br	$1.44335 \times 10^{-25} \text{ kg}$

- J4.7 a) Using the J4.5 data of nuclear masses, calculate the binding energy per nucleon in deuterium.
 - b) Calculate the energy released in the fusion reaction of J4.5, using the result in (a) and: Binding energy per nucleon of tritium is 2.8273 MeV, and of helium-4 is 7.0739 MeV.
- a) Using the J4.6 data table of atomic masses, calculate the binding J4.8 energy per nucleon in ²³⁵U in MeV.
 - b) Calculate the energy released in the fission reaction of J4.6, now using the result in (a) and the following data: The binding energy per nucleon for ¹⁴⁷La is 8.2227 MeV, and for ⁸⁷Br is 8.6055 MeV.