Temporal Difference Learning

- Das Temporal Difference (TD) Lernen ist eine bedeutende Entwicklung im Reinforcement Lernen.
- Im TD Lernen werden Ideen der Monte Carlo (MC) und dynamische Programmierung (DP) Methoden kombiniert.
- Im TD Lernen wird wie beim MC Lernen aus Erfahrung ohne Kenntniss eines Modells gelernt, d.h. dieses wird aus Daten/Beispielen gelernt.
- Wie beim DP werden Schätzungen für Funktionswerte durchgeführt $(V^{\pi}(s) \text{ oder } Q^{\pi}(s,a))$, die wiederum auf Schätzungen basieren (nämlich die Schätzungen $V^{\pi}(s')$ nachfolgender Zustände).
- Wir beginnen mit der Evaluation von Policies π , d.h. mit der Berechnung der Wertefunktionen V^{π} bzw. Q^{π} .

TD Evaluation

- TD und MC Methoden nutzen Erfahrung aus Beispiele um V^{π} bzw. Q^{π} für eine Policy π zu lernen.
- Ist s_t der Zustand zur Zeit t in einer Episode, dann basiert die Schätzung von $V(s_t)$ auf den beobachteten Return R_t nach Besuch des Zustand s_t
- In MC Methoden wird nun der Return R_t bis zum Ende der Episode bestimmt und dieser Schätzwert für $V(s_t)$ angesetzt.
- Eine einfache Lernregel nach der Every Visit MC Methode hat dann die folgende Gestalt:

$$V(s_t) := V(s_t) + \alpha \left[R_t - V(s_t) \right]$$
 mit $\alpha > 0$

• In den einfachen 1-Schritt TD Methoden nur der nächste Zustandsübergang $s \to s'$ abgewartet und der unmittelbar erzielte Reward zusammen mit V(s') benutzt.

• Ein 1-Schritt TD Algorithmus, der sog. TD(0) Algorithmushat die Lernregel

$$V(s_t) := V(s_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right] \quad \alpha > 0, \quad \gamma \in (0, 1]$$

Zur Erinnerung
 es gilt

$$V^{\pi}(s) = E_{\pi} \{ R_{t} \mid s_{t} = s \}$$

$$= E_{\pi} \{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+1+k} \mid s_{t} = s \}$$

$$= E_{\pi} \{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+2+k} \mid s_{t} = s \}$$

$$= E_{\pi} \{ r_{t+1} + \gamma V^{\pi}(s_{t+1}) \mid s_{t} = s \}$$

- Sollwert beim MC Lernen : R_t
- Sollwert beim TD Lernen : $r_{t+1} + \gamma V^{\pi}(s_{t+1})$

TD(0) – Schätzung von V^{π}

- 1. Initalize V(s) arbitrarily, π policy to be evaluated
- 2. Repeat (for each episode)

Initialize s

Repeat (for each step of episode):

$$a := \pi(s)$$

take a, observe reward r, and next state s'

$$V(s) := V(s) + \alpha \left[r + \gamma V(s') - V(s) \right]$$

$$s := s'$$

Until s is terminal

TD-Backup Diagramm

 $s,s'\in\mathcal{S}$ sind die offenen Kreise

 $a \in \mathcal{A}$ die Aktion $\pi(s)$ gefüllter Kreis

Sarsa

- Ziel ist das Erlernen der Q-Funktion statt der V-Funktion durch On Policy Methode, d.h. Schätzung der Werte $Q^{\pi}(s,a)$ für die verwendete Policy pi.
- ullet Es kann dasselbe Verfahren wie zur Schätzung der V-Funktion verwendet werden mit der Lernregel

$$Q(s_t, a_t) := Q(s_t, a_t) + \alpha \left[r + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right]$$

• Hierzu betrachten wir Zustandsübergänge:

Sarsa: Algorithmus

- 1. Initalize Q(s, a) arbitrarily,
- 2. Repeat (for each episode)

Initialize s

Choose a from s using policy derived from Q (e.g. ϵ -greedy)

Repeat (for each step of episode):

Take a, observe reward r, and next state s'

Choose a' from s' using policy derived from Q (e.g. ϵ -greedy)

$$Q(s,a) := Q(s,a) + \alpha \left[r + \gamma Q(s',a') - Q(s,a) \right]$$

$$s := s'; a := a'$$

Until s is terminal

Q-Learning

Q-Lernen ist das wichtigste Verfahren im Bereich des Reinforcement Lernens, es wurde von Watkins 1989 entwickelt.

Ist ein Off Policy TD Lernverfahren definiert durch die Lernregel

$$Q(s_t, a_t) := Q(s_t, a_t) + \alpha \left[r + \gamma \max_{a} Q(s_{t+1}, a - Q(s_t, a_t)) \right]$$

Q konvergiert direkt gegen Q^* (vereinfacht die Analyse des Verfahrens).

Policy π legt die Aktion fest, und somit wird durch π die Folge von (s_t, a_t) festgelegt, die in der Episode vorkommen (und damit auch die Stellen an den die Q-Funktion gelernt wird).

Q-Learning: Algorithmus

- 1. Initalize Q(s, a) arbitrarily,
- 2. Repeat (for each episode)

Initialize s

Repeat (for each step of episode):

Choose a from s using policy derived from Q (e.g. ϵ -greedy)

Take a, observe reward r, and s'

$$a^*:=\arg\max_a Q(s',a)$$

$$Q(s,a):=Q(s,a)+\alpha\left[r+\gamma Q(s',a^*)-Q(s,a)\right]$$

$$s:=s';$$

Until s is terminal

Q-Learning Backup

 $s,s'\in\mathcal{S}$ sind die offenen Kreise $a,\in\mathcal{A}$ die Aktion $\pi(s)$ gefüllte Kreise

max durch Kreisboden

TD n-step Methoden

- Die bisher vorgestellten TD Lernverfahren verwenden den unmittelbar folgenden Reward (k=1-Schritt) r_{t+1} .
- Idee bei den Mehrschritt Methoden ist es, auch die nächsten $k = 2, 3, \dots n$ erzielten Rewards r_{t+k} einzubeziehen.
- Dazu betrachten wir die Zustands-Reward-Folge

$$s_t, r_{t+1}, s_{t+1}, r_{t+2}, \dots, r_T, s_T$$

 s_T der Endzustand.

• MC Methoden verwenden zum Backup von $V^{\pi}(s_t)$ den Return

$$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \gamma^{T-t-1} r_T$$

 R_t ist das Lehrersignal (Sollwert) für die MC Lernverfahren.

Für 1-Schritt TD Methoden ist das Lehrersignal

$$R_t^{(1)} = r_{t+1} + \gamma V_t(s_{t+1})$$

hier dient $\gamma V_t(s_{t+1})$ als Näherung für

$$\gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \gamma^{T-t-1} r_T$$

• Bei einem 2-Schritt-TD Verfahren ist der Sollwert

$$R_t^{(2)} = r_{t+1} + \gamma r_{t+2} + \gamma^2 V_t(s_{t+2})$$

wobei jetzt $\gamma^2 V_t(s_{t+2})$ die Näherung ist für

$$\gamma^2 r_{t+3} + \gamma^3 r_{t+4} + \ldots + \gamma^{T-t-1} r_T$$

ullet Allgemein ist der n-Schritt-Return $R_t^{(n)}$ zur Zeit t gegeben durch

$$R_t^{(n)} = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \gamma^{n-1} r_{t+n} + \gamma^n V_t(s_{t+n})$$

• Lernregel für die V-Funktion mit n Schritt Backups ist also

$$\Delta V_t(s_t) = \alpha \left[R_t^{(n)} - V_t(s_t) \right]$$

TD(\lambda)-Verfahren

• Backups können nicht nur auf der Basis von n-Schritt Returns $R_t^{(n)}$, sondern durch Mittelung verschiedener n-Schritt Returns erfolgen, z.B. Mittelwert eines 2- und 4- Schritt Returns

$$R_t^{ave} = \frac{1}{2}R_t^{(2)} + \frac{1}{2}R^{(4)}$$

- Allgemeine Mittelungen sind möglich. Nur die Gewichte sollten nichtnegativ sein und sich zu 1 summieren.
- Dies führt auf die $TD(\lambda)$ Verfahren, hier werden alle n-Schritt Returns gewichtet.
- Mit einem Nomalisierungsfaktor $1-\lambda$ (stellt sicher das die Summe der Gewichte =1 ist) definieren wir den λ -Return durch

$$R_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} R_t^{(n)} = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} R_t^{(n)} + \lambda^{T-t-1} R_t$$

$TD(\lambda)$ -Backup-Diagramm

Gewichtung von λ

Update (hier der V-Funktion) bei einem λ -Return Algorithmus

$$\Delta V_t(s_t) = \alpha \left[R_t^{\lambda} - V_t(s_t) \right]$$

Forward View/Backward View

Forward View: Ist nicht kausal und kann deshalb auch nicht so direkt implementiert werden.

Kummulative Trace-Variable

Backward View benötigt für jeden Zustand eine Trace-Variable $e_t(s)$ die definiert ist als

$$e_t(s) = \begin{cases} \gamma \lambda e_{t-1}(s) & s \neq s_t \\ \gamma \lambda e_{t-1}(s) + 1 & s = s_t \end{cases}$$

Dabei zeigt $e_t(s) > 0$ an, dass der Zustand s kürzlich besucht wurde. Kürzlich ist hierbei durch die Größe $\gamma\lambda$ definiert.

 $e_t(s)$ zeigt, für welche Zustände $s \in \mathcal{S}$ die Funktion V bzw. Q anzupassen ist.

Die Fehlersignale sind (hier für V-Funktion):

$$\delta_t = r_{t+1} + \gamma V_t(s_{t+1}) - V_t(s_t)$$

Alle kürzlich besuchten Zustände s werden damit adaptiert (wieder für V)

$$\Delta V_t(s_t) = \alpha \delta_t e_t(s)$$
 für alle $s \in \mathcal{S}$

Hierbei ist wieder $\gamma \in (0,1]$ der Diskontierungsfaktor und $\alpha>0$ eine konstante Lernrate.

$TD(\lambda)$

- 1. Initalize V(s) arbitrarily and e(s)=0; π policy to be evaluated
- 2. Repeat (for each episode)

Initialize s

Repeat (for each step of episode):

$$a := \pi(s)$$

take a, observe reward r, and next state s'

$$\delta := r + \gamma V(s') - V(s)$$

$$e(s) := e(s) + 1;$$

For all s:

$$V(s) := V(s) + \alpha \delta e(s)$$

$$e(s) := \gamma \lambda e(s)$$

$$s := s'$$

Until s is terminal

Äquivalenz der beiden Methoden

Wir zeigen nun, das die Updates von V der Vorwärts- und Rückwärtssicht für das Off-line-Lernen äquivalent sind.

- Es sei $\Delta V_t^{\lambda}(s_t)$ die Änderung von $V(s_t)$ zur Zeit t nach der λ -Return Methode (Vorwärtssicht).
- Es sei $\Delta V_t^{TD}(s)$ die Änderung von V(s) zur Zeit t von Zustand s nach dem TD(0) Algorithmus (Rückwärtssicht).

Ziel ist es also zu zeigen

$$\sum_{t=0}^{T-1} \Delta V_t^{\lambda}(s_t) \mathbf{1}_{[s=s_t]} = \sum_{t=0}^{T-1} \Delta V_t^{TD}(s) \quad \text{für alle } s \in \mathcal{S}$$

es ist $\mathbf{1}_{[s=s_t]}$ gleich 1 genau dann wenn $s=s_t$ ist. Wir untersuchen einen einzelnen Update $\Delta V_t^{\lambda}(s_t)=\alpha\left[R_t^{\lambda}-V_t(s_t)\right]$.

$$\frac{1}{\alpha} \Delta V_t^{\lambda}(s_t) = -V_t(s_t) + \\
(1 - \lambda) \lambda^0 \left[r_{t+1} + \gamma V_t(s_{t+1}) \right] + \\
(1 - \lambda) \lambda^1 \left[r_{t+1} + \gamma r_{t+2} + \gamma^2 V_t(s_{t+2}) \right] + \\
(1 - \lambda) \lambda^2 \left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \gamma^3 V_t(s_{t+3}) \right] + \\
(1 - \lambda) \lambda^2 \left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \gamma^3 r_{t+4} + \gamma^4 V_t(s_{t+4}) \right] + \\
\dots \dots \dots \dots$$

Summation spaltenweise nach den Rewards r_{t+k} durchführen , dh. zuerst die r_{t+1} mit den Gewichten $(1-\lambda)\lambda^k$ über $k=0,1,\ldots$ summieren ergibt den Wert 1 (geometrische Reihe), dann r_{t+2} mit den Gewichten $(1-\lambda)\gamma\lambda^k$ über $k=1,2,3,\ldots$ ergibt den Wert $\gamma\lambda$, usw. mit r_{t+k} für $k\geq 3,4,\ldots$

Wir können somit für die Summe der Updates durch λ -Return schreiben:

$$\sum_{t=0}^{T-1} \Delta V_t^{TD}(s) \mathbf{1}_{[s=s_t]} = \alpha \sum_{t=0}^{T-1} \left(\sum_{k=t}^{T-1} (\gamma \lambda)^{k-t} \delta_k \right) \mathbf{1}_{[s=s_t]}$$
$$= \alpha \sum_{t=0}^{T-1} \mathbf{1}_{[s=s_t]} \sum_{k=t}^{T-1} (\gamma \lambda)^{k-t} \delta_k.$$

Nun die Updates des TD(0) Verfahrens: Zunächst gilt

$$e_t(s) = \sum_{k=0}^{t} (\gamma \lambda)^{t-k} \mathbf{1}_{[s=s_k]}$$

Einsetzen liefert nun

$$\sum_{t=0}^{T-1} \Delta V_t^{TD}(s) = \sum_{t=0}^{T-1} \alpha \delta_t \sum_{k=0}^{t} (\gamma \lambda)^{t-k} \mathbf{1}_{[s=s_k]}$$

$$= \alpha \sum_{k=0}^{T-1} \sum_{t=0}^{k} (\gamma \lambda)^{k-t} \mathbf{1}_{[s=s_t]} \delta_k$$

$$= \alpha \sum_{t=0}^{T-1} \sum_{k=t}^{T-1} (\gamma \lambda)^{k-t} \mathbf{1}_{[s=s_t]} \delta_k$$

$$= \alpha \sum_{t=0}^{T-1} \mathbf{1}_{[s=s_t]} \sum_{k=t}^{T-1} (\gamma \lambda)^{k-t} \delta_k$$

Sarsa(λ)

- Idee von Sarsa(λ) ist, den Sarsa-Algorithmus zum Erlernen der Q-Funktion mit der TD(λ) Methoden zu kombinieren.
- Statt der Variablen $e_t(s)$ für alle $s \in \mathcal{S}$ brauchen wir Variablen $e_t(s, a)$ für alle $(s, a) \in \mathcal{S} \times \mathcal{A}$.
- Dann ersetzen wir V(s) durch Q(s,a) und $e_t(s)$ durch $e_t(s,a)$. Also

$$Q_{t+1}(s,a) = Q_t(s,a) + \alpha \delta_t e_t(s,a)$$
 für alle $s \in \mathcal{S}, \ a \in \mathcal{A}$

$$\delta_t = r_{t+1} + \gamma Q_t(s_{t+1}, a_{t+1}) - Q_t(s_t, a_t)$$

und

$$e_t(s,a) = \begin{cases} \gamma \lambda e_{t-1}(s) + 1 & \text{falls } s_t = s \text{ und } a_t = a \\ \gamma \lambda e_{t-1}(s) & \text{sonst} \end{cases}$$

Sarsa Backup Diagramm

Sarsa Algorithmus (Q als Tabelle)

- 1. Initalize Q(s, a) arbitrarily and e(s, a) = 0 all s, a
- 2. Repeat (for each episode)

Initialize s, a

Repeat (for each step of episode):

Take a, observe reward r, and next state s'

Choose a' from s' using policy derived from Q (e.g. ϵ -greedy)

$$\delta := r + \gamma Q(s', a') - Q(s, a)$$

$$e(s,a) := e(s,a) + 1$$

For all s, a:

$$Q(s,a) := Q(s,a) + \alpha \delta e(s,a)$$

$$e(s, a) := \lambda \gamma e(s, a)$$

$$s := s'; a := a'$$

Until s is terminal

$Q(\lambda)$ -Lernverfahren

- Es gibt 2 Varianten: Watkin's $Q(\lambda)$ und Peng's $Q(\lambda)$ Verfahren (Letzterer ist schwerer implementierbar, deshalb hier nur Watkin's Q-Lernverfahren).
- Q-Lernen ist ein Off-Policy Verfahren.
- Beim Q-Lernen folgt der Agent einer explorativen Policy (z.B. ϵ -Greedy Verfahren bzgl. der Q-Funktion) und adaptiert die Q-Funktion nach der Greedy-Policy (bzgl. der Q-Funktion).
- Hier muss in Betracht gezogen werden, dass der Agent explorative Aktionen durchführt, die keine Greedy Aktionen sind.
- Zum Erlernen der zur Greedy Policy gehörenden Q-Funktionen dürfen diese explorativen Aktionen nicht berücksichtigt werden.
- Deshalb werden die n-step Returns beim $Q(\lambda)$ Verfahren auch nur bis zum Auftreten der nächsten explorativen Aktion berücksichtigt, und nicht stets bis zum Ende einer Episode.

$Q(\lambda)$ Backup-Diagramm (Watkins)

$Q(\lambda)$ -Algorithmus (Q als Tabelle)

- 1. Initalize Q(s, a) arbitrarily and e(s, a) = 0 all s, a
- 2. Repeat (for each episode)

```
Initialize s, a
```

Repeat (for each step of episode):

Take a, observe reward r, and next state s'

Choose a' from s' using policy derived from Q (e.g. ϵ -greedy)

 $a^* := \arg \max_b Q(s', b)$ (if a' ties for the max, then $a^* := a'$).

$$\delta := r + \gamma Q(s', a^*) - Q(s, a)$$

$$e(s, a) := e(s, a) + 1$$

For all s, a:

$$Q(s, a) := Q(s, a) + \alpha \delta e(s, a)$$

if
$$a' = a^*$$
 then $e(s, a) := \lambda \gamma e(s, a)$ else $e(s, a) := 0$

$$s := s'; a := a'$$

Until s is terminal