

XBit Labs - Software Training Institute

code.xbitlabs.in - Free Coding Tutorials

Live Training Sessions

Date :	Oct-19-2024	Board / STD	CBSE / 8
Subject :	Mathematics	Topic :	Factorization

Doubts:

$$\frac{15P9+99}{39(5P+3)+5(3+5P)}$$

$$(5P+3)(39+5)$$

$$(5P+3)(39+5)$$

$$\frac{z-7}{(z-7)+xy(-xyz)}$$

$$\frac{1(z-7)+xy(-2)}{(z-7)-xy(z-7)}$$

$$\frac{(z-7)(1-xy)}{(z-7)(1-xy)}$$

Factorization is the process of expressing an algebraic expression as the product of its factors. The three identities $(a+b)^2$, $(a-b)^2$, and (a+b)(a-b) help simplify quadratic expressions into factored forms. Let's break down how factorization works with these identities.

Identities:

- ullet $(a+b)^2$ helps factor perfect square trinomials of the form $a^2+2ab+b^2$.
- $(a-b)^2$ helps factor perfect square trinomials of the form $a^2-2ab+b^2$.
- (a+b)(a-b) helps factor the difference of squares of the form a^2-b^2 .

$$(a+b)^{2} = (a)+b)\times(a+b)$$

$$= a\times(a+b)+b(a+b)$$

$$= a^{2}+ab+ba+b^{2}$$

$$= a^{2}+ab\times2+b^{2}$$

$$= a^{2}+ab\times2+b^{2}$$

$$= a^{2}+2ab+b^{2}$$

$$ab + ba = 2ab$$
 $ba + ab = 2ab$
 $ab + ab = 2ab$
 $ba + ba = 2ab$
 $ba + ba = 2ab$

$$(a + b)^{2} = a^{2} + b^{2} + 2ab$$

$$(a - b)^{2} = a^{2} + b^{2} - 2ab$$

$$(a+b) \times (a-b) =$$

$$\Rightarrow a(a-b) + b \times (a-b)$$

$$\Rightarrow a^2 - ab + ba - b^2$$

$$\Rightarrow a^2 + ab(-1+1) - b^2$$

$$\Rightarrow a^2 - b^2 =$$

$$-\frac{1}{2} + \frac{1}{2} = 0$$

$$-\frac{1}{2} = 0$$

$$x^{2} + 6x + 9.$$

$$x^{2} + 2x3xx + 3^{2}$$

$$a^{2} + 2ab + 6^{2}$$

$$= (a+b)^{2} (x+3)(x+3)^{2}$$

$$= (a+b)^{2} (x+3)(x+3)^{2}$$

$$x^{2} + 16 - 8x$$

$$x^{2} + 43^{2} - 2x4xx$$

$$(a-b)^{2}$$

$$(x-4)^{2}$$

$$\chi^{2} - 81$$

$$\Rightarrow \chi^{2} - (9)^{2}$$

$$\Rightarrow \left((\chi + 9) (H - 9) \right)$$

Now Test your Knowledge:

Based on the identity $(a+b)^2 = a^2 + 2ab + b^2$:

- 1. Factorize: $x^2 + 6x + 9$
- 2. Factorize: $4y^2 + 12y + 9$
- 3. Factorize: $z^2 + 8z + 16$
- 4. Factorize: $25a^2 + 20a + 4$
- 5. Factorize: $49m^2 + 14m + 1$

Based on the identity $(a-b)^2=a^2-2ab+b^2$:

- 1. Factorize: $x^2 10x + 25$
- 2. Factorize: $9y^2-12y+4$
- 3. Factorize: $z^2 14z + 49$
- 4. Factorize: $16a^2 24a + 9$
- 5. Factorize: $100m^2-20m+1$

Based on the identity $(a + b)(a - b) = a^2 - b^2$:

- 1. Factorize: $x^2 25$
- 2. Factorize: $9y^2 16$
- 3. Factorize: $z^2 64$
- 4. Factorize: $36a^2 1$
- 5. Factorize: $49m^2 81$

END

