**PCRS** 

Quests

Code Editor ▼

Logged in as zhan4662



## Prep7 - Part 2 of 2

## **Functional Dependencies**



Consider this instance of a relation R(L, M, N, O):

L|M|N|O

-----

8 | 5 | 6 | 0 8 | 5 | 7 | 0

6 1 8 9

7 | 1 | 9 | 8

Which of the following functional dependencies are satisfied by this instance?

- $\checkmark$  LO  $\rightarrow$  M
- $\bigvee$  N  $\rightarrow$  M
- $\square$  M  $\rightarrow$  O
- $\bigcirc$  O  $\rightarrow$  M
- $\square$  MO  $\rightarrow$  LN

History

Submit

✓ Your solution is complete.

Submitted after the deadline!

## FD conclusion



Suppose a functional dependency is satisfied by an instance of relation R. Does that mean that the FD holds in R?

No, we need to see more instances of R before we can make this conclusion.

| <ul> <li>No, we need to know that it must be satisfied by every possible instance of R before we can make this conclusion.</li> <li>Yes, this is sufficient to conclude that the FD holds in R.</li> </ul> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| History                                                                                                                                                                                                    |
| ✓ Your solution is complete.                                                                                                                                                                               |
| Submitted after the deadline!                                                                                                                                                                              |
| How many, part 1                                                                                                                                                                                           |
| Suppose that we have a relation R(A, B, C, D), and that B $\rightarrow$ ACD. Suppose also that we have just a single tuple {5, 2, 1, 9}. How many more tuples can we add with the value 5 for A?           |
| none                                                                                                                                                                                                       |
| <ul><li>at most one, and the values of the other attributes can be anything</li><li>at most one, but there are constraints on the values of the other attributes</li></ul>                                 |
| <ul> <li>an unlimited number, and the values of the other attributes can be<br/>anything</li> </ul>                                                                                                        |
| an unlimited number, but there are constraints on the values of the<br>other attributes                                                                                                                    |
| History                                                                                                                                                                                                    |
| ✓ Your solution is complete.                                                                                                                                                                               |
| Submitted after the deadline!                                                                                                                                                                              |
| How many, part 2                                                                                                                                                                                           |
| Again, suppose that we have a relation R(A, B, C, D), and that B $\rightarrow$ ACD, and that we have just a single tuple $\{5, 2, 1, 9\}$ . How many more tuples can we add with the value 2 for B?        |

none

| <ul> <li>at most one, but there are constraints on the values of<br/>attributes</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                    | of the other    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| <ul> <li>an unlimited number, and the values of the other attri<br/>anything</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                       | butes can be    |
| <ul> <li>an unlimited number, but there are constraints on the other attributes</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                    | e values of the |
| History                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Submit          |
| ✓ Your solution is complete.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
| Submitted after the deadline!                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
| Equivalent sets of FDs  Suppose we have a relation R(A, B, C, D) and that this set $C \to D$ , $C \to D$ , $C \to D$ . Which of these sets of FDs are equivaled $C \to D$ , $C \to D$ . Which of these sets of FDs are equivaled $C \to D$ , $C \to D$ . Which of these sets of FDs are equivaled $C \to D$ . And $C \to D$ . |                 |
| History                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Submit          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Casimi          |
| ✓ Your solution is complete.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
| ✓ Your solution is complete. Submitted after the deadline!                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |