Математически анализ 2

Exonaut

9 март 2021 г.

Съдържание

1	Лекция 1: Пространството R^m			2
	1.1	Някол	іко важни неравенства	2
	1.2	Видове крайно мерни пространства		2
		1.2.1	Линейно(Векторно) пространство	2
		1.2.2	Евклидово пространство	3
		1.2.3	Метрично пространство	3
		1.2.4	Нормирано пространство	3
	1.3	Прост	ранството R^m - дефиниция и основни свойства	3
		1.3.1	Скаларно произведение	4
		1.3.2	Норма и метрика	4
		1.3.3	Скаларен квадрат	4
		1.3.4	Неравенство на Коши-Шварц, чрез скаларен квадрат	4
		1.3.5	Неравенство на Минковски, чрез скаларен квадрат	4
	1.4 Точки и множества в R^m		и и множества в R^m	4
		1.4.1	Паралелепипед	4
		1.4.2	Сфера и кълбо	5
	1.5	Редиц	и от точки в R^m	7
2	Лекция 2: Функция на няколко променливи. Граница и неп-			
	рекъснатост			7
3	Леъ	спия 3	: Частни производни. Диференцируемост на фун-	
	кпия на лве и повече променливи			7

1 Лекция 1: Пространството R^m

1.1 Няколко важни неравенства

Нека a_k и $b_k(k=1,2,...,m)$ са реални числа и $m \in N$

Теорема 1.1.1 (**Неравенство на Коши-Шварц**) В сила е следното неравенство:

$$\left(\sum_{k=1}^{m} a_k b_k\right)^2 \le \left(\sum_{k=1}^{m} a_k\right) \left(\sum_{k=1}^{m} b_k\right)$$

Равенство се достига само когато a_k и b_k са пропорционални:

 $(\exists \lambda_0 : b_k = \lambda_0 a_k)$

Равенството може да се запише:

$$\left| \sum_{k=1}^{m} a_k b_k \right| \le \sqrt{\left(\sum_{k=1}^{m} a_k\right)} \sqrt{\left(\sum_{k=1}^{m} b_k\right)}$$

Теорема 1.1.2 (**Неравенство на Минковски**) В сила е следното неравенство:

$$\sqrt{\sum_{k=1}^{m} (a_k + b_k)^2} \le \sqrt{\sum_{k=1}^{m} a_k^2} + \sqrt{\sum_{k=1}^{m} b_k^2}$$

Равенство се достига само когато a_k и b_k са пропорционални. Общ случай на неравенството на Минковски:

$$\left(\sum_{k=1}^{m} |a_k + b_k|^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{m} |a_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{m} |b_k|^p\right)^{\frac{1}{p}} (p \ge 1)$$

Теорема 1.1.3 В сила е следното неравенство:

$$|a_k + b_k| \le \sqrt{\sum_{k=1}^m (a_k + b_k)^2} \le \sum_{k=1}^m |a_k - b_k|$$

1.2 Видове крайно мерни пространства

1.2.1 Линейно(Векторно) пространство

Дефиниция 1.2.1 Нека L е линейно (векторно) пространство над полето R. B него има въведени две операции: събиране и умножение на вектор c число.

1.
$$x, y \in L \implies z = x + y \in L$$

$$2. \ x \in L, \lambda \in R \implies z = \lambda x \in L$$

1.2.2 Евклидово пространство

Дефиниция 1.2.2 Крайномерното пространство L се нарича евклидово, ако в него е въведено скаларно произведение, т.е за всеки два елемента $x,y \in L$ може да се съпостави реално число (x,y), удовлетворяващо свойствата за линейност, симетричност и положителна определеност.

1.
$$x, y, z \in L, \lambda \in R \implies (x + y, z) = (x, z) + (y, z); (\lambda x, y) = \lambda(x, y)$$

$$2. \ x,y \in L \implies (x,y) = (y,x)$$

3.
$$x \in L, x \neq 0 \implies (x, x) > 0$$

1.2.3 Метрично пространство

Дефиниция 1.2.3 Крайномерното пространство L се нарича метрично, ако в него е въведено разстояние (метрика) ρ , т.е за два елемента $x,y\in L$ може да се съпостави неотрицателно число $\rho\geq 0$ със следните свойства

1.
$$\rho(x,x) = 0; \rho(x,y) > 0, x \neq y$$

2.
$$\rho(x, y) = \rho(y, x)$$

3.
$$\rho(x,z) \le \rho(x,y) + \rho(y,z) \forall x,y,z \in L$$

Метрично пространство L с метрика ρ се означава (L, ρ)

1.2.4 Нормирано пространство

Дефиниция 1.2.4 Пространството се нарича нормирано, ако в него е въведена норма $||.||,\ m.e\ ||.||:L\to R_0^+$ със свойства

1.
$$x = 0 \implies ||x|| = 0, x \neq 0 \implies ||x|| > 0$$

2.
$$x \in L, \lambda \in R \implies ||\lambda x|| = |\lambda|||x||$$

$$3. \ x, y \in L \implies ||x+y|| \le |x| + |y|$$

Теорема 1.2.1 Ако L е нормирано пространство c дадена норма ||.||, то L е метрично пространство, т.е равенството $\rho(x,y) = ||x-y||$ дефинира разстоянието в L

1.3 Пространството R^m - дефиниция и основни свойства

Дефиниция 1.3.1 Множесството от наредени т-торки $a=(a_1,a_2,...,a_m)$ от реални числа. Числата $a_1,a_2,...,a_m$ се наричат съответно първа, втора, ..., т-та кордината на a.

Ако имаме
$$a = (a_1, a_2, ..., a_m), b = (b_1, b_2, ..., b_m), ; \lambda \in R$$
 то

1.
$$a+b=(a_1,a_2,...,a_m)+(b_1,b_2,...,b_m)=(a_1+b_1,a_2+b_2,...,a_m+b_m)\in R^m$$

2.
$$\lambda a = (\lambda a_1, \lambda a_2, ..., \lambda a_m) \in \mathbb{R}^m$$

1.3.1 Скаларно произведение

Скаларно произведение се дефинира:

$$(a,b) = \left(\sum_{k=1}^{m} a_k b_k\right)$$

С така въведено скаларно произведение пространството \mathbb{R}^m се превръща в евклидово.

1.3.2 Норма и метрика

С равенството:

$$||a|| := \sqrt{\sum_{k=1}^{m} (a_k)^2}$$

се въвежда норма в \mathbb{R}^m .

Нормата генерира метрика в R^m с формула:

$$\rho(a,b) := ||a - b|| = \sqrt{\sum_{k=1}^{m} (a_k - b_k)^2}$$

1.3.3 Скаларен квадрат

Скаларен квадрат: $a^2 = (a, a) = \sum_{k=1}^m a_k^2$

1.3.4 Неравенство на Коши-Шварц, чрез скаларен квадрат

Коши-Шварц чрез скаларен квадрат: $(a,b)^2 \leq a^2b^2$ и $|(a,b)| \leq ||a||||b||$

1.3.5 Неравенство на Минковски, чрез скаларен квадрат

Неравенство на Минковски чрез скаларен квадрат: $||a+b|| \le ||a|| + ||b||$

1.4 Точки и множества в R^m

1.4.1 Паралелепипед

Дефиниция 1.4.1 Множеството

$$\Pi(a; \delta_1, \delta_2, ..., \delta_m) = \{x \in R^m : -\delta_k < x_k - a_k < \delta_k\}$$

ce нарича отворен паралелепипед в R^m c център точката a.

Множеството

$$\widetilde{\Pi}(a; \delta_1, \delta_2, ..., \delta_m) = \{x \in \mathbb{R}^m : -\delta_k \le x_k - a_k \le \delta_k\}$$

ce нарича затворен паралелепипед в R^m c център точката a.

Ако $\delta_1 = \delta_2 = ... = \delta_m = \delta$, получените множества $\Pi(a; \delta)$ и $\widetilde{\Pi}(a; \delta)$ се наричат съответно отворен и затворен куб в R^m с център a.

1.4.2 Сфера и кълбо

Дефиниция 1.4.2 *Нека числото* r > 0. *Множеството*

$$B(a;r) = \{x | x \in \mathbb{R}^m, \rho(x,a) < r\} = \{x | x \in \mathbb{R}^m, ||x - a|| < r\}$$

се нарича отворено кълбо в R^m с център а и радиус r, множеството

$$\widetilde{B}(a;r) = \{x | x \in \mathbb{R}^m, \rho(x,a) \le r\} = \{x | x \in \mathbb{R}^m, ||x-a|| \le r\}$$

се нарича затворено кълбо в R^m с център а и радиус r, а множеството

$$S(a;r) = \{x | x \in \mathbb{R}^m, \rho(x,a) = r\} = \{x | x \in \mathbb{R}^m, ||x - a|| = r\}$$

се нарича сфера в R^m с център а и радиус r, а множеството

Дефиниция 1.4.3 Точката а се нарича

- $\bullet\,$ вътрешна за множеството A, ако съществува отворено кълбо $B(a,\varepsilon):$ $B(a,\varepsilon)\subset A$
- външна за A, ако съществува $B(a,\varepsilon):B(a,\varepsilon)\subset R^m\backslash A$
- контурна за A, ако за всяко $\varepsilon > 0$: $B(a, \varepsilon) \cap A \neq \emptyset$ u $B(a, \varepsilon) \cap (R^m \backslash A) \neq \emptyset$
- изолирана ако съществува $\varepsilon > 0$: $B(a, \varepsilon) \cap A = \{a\}$

Дефиниция 1.4.4 Множеството $A \subset R^m$ се нарича

- отворено, ако всяка негова точка е вътрешна
- $\bullet\,$ затворено, ако неговото допълнение $R^m\backslash A$ е отворено

Дефиниция 1.4.5 Околност на дадена точка $a \in R^m$ се нарича всяко отворено множество, което я съдържа. Означава се с U_a .

Дефиниция 1.4.6 Точка а се нарича точка на сетстяване на множеството $A \subset R^m$, ако всяка нейна околност U_a съдържа поне една точка на A, различна от a, $m.e\ U_a \cap (A \setminus \{a\} \neq \emptyset)$

Дефиниция 1.4.7 Величината

$$d = d(A) = \sup_{a', a'' \in A} \rho(a'; a'')$$

се нарича диаметър на множеството $A\subset R^m.$

Дефиниция 1.4.8 Множеството $A \subset R^m$ се нарича ограничено, ако съшествува кълбо(с краен радиус), което го съдържа.

Дефиниция 1.4.9 Множеството $A \subset R^m$ се нарича компактно, ако A е затворено и ограничено.

Дефиниция 1.4.10 Множесството $x=(x_1,x_2,...,x_m) \in R^m$, чийто кординати са непрекъснати функции $x_k=x_k(t)(k=1,2,...,m)$, дефинирани върху даден интервал [a,b] се нарича непрекъсната крива в R^m . t се нарича параметър на кривата.

Точките $x(a)=(x_1(a),x_2(a),...,x_m(a))$ и $x(b)=(x_1(b),x_2(b),...,x_m(b))$ се наричат начало и край на дадената крива. Ако x(a)=x(b) кривата е затворена

Дефиниция 1.4.11 $He \kappa a \ x^0 = (x_1^0, x_2^0, ..., x_m^0) \in R^m \ u \ \alpha_1, \alpha_2, ..., \alpha_m \ ca фиксирани числа за които <math>\sum_{k=1}^m \alpha_k > 0$. Множеството от точки $x = (x_1, x_2, ..., x_m)$ чисто кординати се представят във вида

$$x_k = x_k^0 + \alpha_k t, k = 1, 2, ..., m, -\infty < t < \infty$$

се нарича права линия в пространството R^m , минаваща през точка x^0 по направление $(\alpha_1, \alpha_2, ..., \alpha_m)$.

Дефиниция 1.4.12 Множеството $A \subset R^m$ се нарича свързано, ако за всеки две негови точки съществува непрекъсната крива γ , която ги свързва и $\gamma \subset A$.

Дефиниция 1.4.13 Множеството $A \subset R^m$ се нарича област, ако е отворено и свързано. Ако е и затворено, то се нарича затворена област.

Дефиниция 1.4.14 Област, всеки две точки на която могат да се съединят с отсечка, изияло лежаща в нея, се нарича изпъкнала област.

Дефиниция 1.4.15 Областа $A \subset R^m$ се нарича звездообразна област, отностно точката $x^0 \in A$, ако за вскяка точка $x \in A$ отсечката $[x^0, x]$ лежи изияло в A.

- 1.5 Редици от точки в R^m
- 2 Лекция 2: Функция на няколко променливи. Граница и непрекъснатост
- 3 Лекция 3: Частни производни. Диференцируемост на функция на две и повече променливи