lecture 09, issues in translation: conjunction

phil1012 introductory logic

overview

this lecture

- \bullet a general strategy for determining how to translate a proposition using the connectives of PL
- issues arising with respect to the translation of conjunction

learning outcomes

- after doing the relevant reading for this lecture, listening to the lecture, and attending the relevant tutorial, you will be able to:
 - \bullet pursue a general strategy for determining how to translate a proposition using the connectives of PL
 - translate sentences which are not obviously conjunctions into PL using the connective conjunction

required reading

• section 6.2 of chapter 6

a general strategy for translation

a general strategy for translation

- at the end of section 6.1 of the textbook, there's a brief discussion of how to approach translating a proposition where we are unsure what connective is involved
- suppose, for instance you have a proposition which seems to be of the form α \alpha * β \beta where * is some two-place connective, but you aren't sure how to translate it
- well, one thing you can to is attempt to construct a truth table for the proposition
- for example, suppose we have the proposition "I went to bed, even though I was angry"
- \bullet the proposition appears to be of the form $\alpha\$ * $\beta\$ beta where * is some two-place connective
- but which connective is it?
- let's try to construct a truth table for the proposition

α \alpha	β\beta	$(\alpha * \beta)$ (\alpha	*	\beta)
Т	Т			
T	F			
F	Т			

- now let's ask whether "I went to bed, even though I was angry" is true if "I went to bed" / α alpha is false
- "I went to bed, even though I was angry" is false if "I went to bed" / $\alpha \backslash alpha$ is false
- so we fill in our table:

(x\alpha	β\beta	$(\alpha * \beta)$ (\alpha	* \beta)
	Т	Т		
	T	F		
	T F F	Т	F	
	F	F	F	

- now let's ask whether "I went to bed, even though I was angry" is true if "I was angry" / $\beta\$ talse
- "I went to bed, even though I was angry" is false if "I was angry" / β \beta is false
- so we fill in our table:

	α\alpha	β\beta	$(\alpha * \beta)$ (\alpha * \beta)	
-	Т	Т		
	Т	F	F	
	F	Т	F	
	F	F	F	

- finally, let's ask whether "I went to bed, even though I was angry" is true if both "I went to bed" / α alpha and "I was angry" / β beta are true
- "I went to bed, even though I was angry" is true if both "I went to bed" / α alpha and "I was angry" / β beta are true
- (remember that we are focussing on what is said, not what it implied or implicated)
- so we fill in our table:

$\alpha \alpha$	β\beta	$(\alpha * \beta)$ (\alpha * \beta)
T	Т	Т
T	F	F
F	Т	F
F	F	F

- of course, this is just the table for conjunction, so we have discovered that the two-place connective here is conjunction
- \bullet so we would use conjunction in our translation
- things do not always work out so well, however
- suppose we use the method to determine which two-place connective to use to translate "I went to bed because I was angry"
- this is true only if both propositions which make it up are true
- so we can fill out our table like this:

α \alpha	β\beta	$(\alpha * \beta)$ (\alpha	*	\beta)
Т	Т			

Τ	F	F
F	Т	F
F	F	F

- but now let us ask whether it is true if both propositions which make it up are true
- not necessarily
- I could have been angry, and I could have gone to bed, and yet, I might not have gone to bed because I was angry
- if we can't fill in the truth table, we can conclude that the connective is not a truth-functional connective
- if we can fill in the table, then we know what connective it is
- let's look at some more examples in connection with conjunction now

issues with conjunction

issues with conjunction

- we translate 'and' as a conjunction
- but we also translate 'but' as a conjunction
- why? and are we right to do so?
- consider:
 - (1) Jane is tall but smart
 - TT: Jane is tall
 - SS: Jane is smart
- (1) is false if TT is false(1) is false if SS is false
- (1) is false if both TT and SS are false
- suppose: (1) is true if both TT and SS are true
- if so, then 'but' is equivalent to 'and'
 - TT: Jane is tall
 - SS: Jane is smart
 - ∘ (TAS) (T \land S)
- but this fails to capture the sense in which 'Jane is tall but smart' conveys that being tall contrasts with being smart
- suppose: (1) is not necessarily true if both TT and SS are true
- if so, then 'but' isn't equivalent to 'and'
- instead, we might translate it as follows
 - TT: Jane is tall
 - SS: Jane is smart
 - CC: Being tall contrasts with being smart
 - $((T\Lambda S) \Lambda C) ((T \land S) \land C)$
- but this seems to be too strong
 - saying 'Jane is smart but tall' doesn't seem to be equivalent to saying 'Jane is tall and smart and being tall contrasts with being smart'
- solution . . .
 - claim that 'but' merely conventionally implicates a contrast

wrapping up

this lecture

- \bullet a general strategy for determining how to translate a proposition using the connectives of PL
- issues arising with respect to the translation of conjunction

next lecture

• lecture 10, trees for PL