Úloha č. 2: Konvexní obálky a jejich konstrukce

 $\mathit{Vstup: mno\check{z}ina}\ P = \{p_1, ..., p_n\},\ p_i = [x, y_i].$

Výstup: $\mathcal{H}(P)$.

Nad množinou P implementujete následující algoritmy pro konstrukci $\mathcal{H}(P)$:

- Jarvis Scan.
- Quick Hull.
- Incremental Construction.

Vstupní množiny bodů včetně vygenerovaných konvexních obálek vhodně vizualizujte. Grafické rozhraní realizujte s využitím frameworku QT. Dynamické datové struktury implementujte s využitím knihovny STL.

Pro množiny $n \in <1000, 1000000>$ vytvořte grafy ilustrující doby běhu algoritmů pro zvolená n. Měření proveď te pro různé typy vstupních množin (náhodná množina, rastr, clustrovaná data) opakovaně (10x) a různá n (celkem 10) s uvedením rozptylu. Naměřené údaje uspořádejte do přehledných tabulek.

Zamyslete se nad problematikou možných singularit pro různé typy vstupních množin a možnými optimalizacemi. Zhodnoť
te dosažené výsledky. Rozhodněte, která z těchto metod je s ohledem na časovou složi
tost a typ vstupní množiny P nejvhodnější.

Hodnocení:

Krok	Hodnocení
Konstrukce konvexních obálek metodami Jarvis Scan, Quick Hull, Incremental Construction.	15b
Konstrukce konvexní obálky metodou Graham Scan	+5b
Konstrukce striktně konvexních obálek pro všechny uvedené algoritmy.	+5b
Ošetření singulárního případu u Jarvis Scan: existence kolineárních bodů v datasetu.	+2b
Konstrukce Minimum area enclosing box některou z metod.	+5b
Algoritmus pro automatické generování konvexních/nekonvexních množin bodů různých tvarů (kruh,	+4b
elipsa, čtverec, hvězda, popř. další).	
Max celkem:	36b

Čas zpracování: 2 týdny.