

Introduction to Machine Learning Final Project Announcement

Presenter: TA Jui-Che (Ben)

Lastest update: 2023/12/05 16:30

Final Project

- Deadline: 23:59, Jan. 5th (Fri), 2024
- Performance (60%)
 - Participate in a **Kaggle competition** and optimize your model's performance to achieve the highest possible results.
- Report (40%)
 - o Provide a detailed description of your research process and implementation in the report.

Bird Recognition Competition

Tips

- Fine-Grained Image Classification
 - A task in computer vision where the goal is to classify images into subcategories within a larger category.
- You can find numerous resources on the internet!

Join the Competition

• Link

Download the Dataset

Set the Team Name

• You must set your team name as your **student ID**.

Competition Rules

- You are allowed to use any open-source resources/libraries but you must specify them in the report.
 - o model architecture (ex: ResNet, ViT, etc.)
 - o pre-trained weights (ex: ImageNet)
- The only rule is that you have to train (finetune) your model by yourself!
 - Do not use model weights which are trained for image fine-grained classification (bird recognition).

Framework

- PyTorch (Quick Start)
- <u>Keras</u>
- <u>Tensorflow</u>

Environment

- Python version: 3.8 or newer
- If you have a GPU:
 - o <u>Conda</u>
 - o <u>Miniconda</u>
 - o <u>virtualenv</u>
- If you don't have a GPU:
 - o Google Colab

Grading Criteria – Performance (60%)

- Public leaderboard
 - For your reference
- Private leaderboard
 - \circ (45%) Baseline: accuracy \geq 0.75
 - (15%) Compete with your classmates

Grading Criteria – Report (40%)

- Environment details (5%)
 - Python version
 - o Framework
 - Hardware
- Implementation details (15%)
 - Model architecture
 - Hyperparameters
 - Training strategy
- Experimental results (15%)
 - Evaluation metrics
 - Learning curve
 - Ablation Study
- Bonus (5%)
 - Such as comparisons, clear plots, methods/papers review and discussion, etc.

Submission

- Zip all of the following files/directories into <STUDENT_ID>_final .zip and submit it to E3.
 - Training code
 - Place all of your training code in the ./training/ directory.
 - Inference code
 - STUDENT ID> inference.ipynb/.py
 - o Report
 - <STUDENT_ID>_report.pdf
 - Model weight
 - STUDENT ID>_weight.txt
 - Provide a cloud drive link to your model weights & ensure access permissions are granted.
 - Environmental setting
 - requirements.txt (if you are using .py files)

Submission

```
zip -r 0716040_final.zip training 0716040_inference.py 0716040_report.pdf 0716040_weight.txt requirements.txt adding: training/ (stored 0%)
adding: 0716040_inference.py (stored 0%)
adding: 0716040_report.pdf (stored 0%)
adding: 0716040_weight.txt (stored 0%)
adding: requirements.txt (stored 0%)
```


Kaggle Submission Reproduction

- Your inference file should be able to reproduce your kaggle submission.
- You will load the model in your inference file (with the model weights you provide) and then generate your kaggle submission file.
- For python file (inference.py)
 - It will be checked on our lab's servers. (NVidia 2080Ti, cuda 11.3)
 - Please provide a <u>requirements.txt</u> file which can help us quickly rebuild your environment and accurately reproduce your results. (see <u>tutorial</u>)
- For jupyter notebook file (inference.ipynb)
 - It will be checked on <u>Google Colab</u>.
 - Please include the necessary **pip install instructions** in the first cell.

Notes

- Kaggle Submission Reproduction Failure
 - No points will be given for your performance part (60%).
- Plagiarism
 - No points will be given for the entire assignment.
- Late policy
 - There is **no late submission** policy for the final project. No points will be given if you submit your final project late.

Have Fun

