

Final Presentation Parking Lot Vehicle Classification

Team Members: Aniruddha Srinivasan, Coleman Todd, Fabianna Barbarino, Jacqueline Mioduski, Spencer Cho, Tyler Roosth

Problem Background

- ☐ Increased vehicle traffic as business growth occurs
- ☐ Security personnel need to identify a large number of cars simultaneously
- ■Analysts need to track heavier traffic flow

Goals & Objectives

Our main goal was to build a containerized app that detects and tracks vehicles across a parking lot and continually logs the driving patterns.

- Our 3 states are: parked, moving, and stopped
- Monitored through the user interface by <u>security personnel</u> or <u>data scientist</u>.

Vehicle detector can track at least 5 cars

Cameras will be 12 feet off the ground looking out. This has been successfully completed!

Bounding Boxes around the cars

The coordinates will be sent to our database.
This has been successfully completed!

Tie the back-end with the front-end successfully

GUI should show data associated with the video playing. This has been successfully completed! Implementation works as a desktop app on a GPU workstation/laptop

Evaluation of Alternative Solutions

System Level Description

Database

- MongoDB Database
- Information is stored into MongoDB Atlas
 - stored from ML side
- Connects using FastifyAPI and Fetched on Front End
- Contains information about the vehicles and videos
 - videold
 - time
 - changed
 - status
 - tracker_id
 - And more

Approach for Design Validation

- Main Goal: Full Stack Operation
- Web Application able to view annotated video feed, clickable timestamp, 2 separate views, and view details of parked, stopped, moving vehicles.
- Business analyst view updates with data from MongoDB database. Has historical data in table that can be filtered by state
- Application and ML run in separate Docker containers smoothly with reasonable usage of resources

ML Detection	Backend	GUI	Infrastructure
5 cars 10 FPS Vehicle status Optimized scenario	MongoDB Database Record position, time, status,id, etc	2 separate views Filter by status Show relevant information	Runs in Docker container 1GB VRAM Linux

37 cars 11.77 FPS

DEMO

Link to Video

Timeline

Project Management and Teamwork

- Members divide into 3 pairs
- > Tasked with module connections
- Assignments are flexible
- 2 in-person meetings weekly

ML Recognition

Aniruddha Srinivasan & Jacqueline Mioduski

Database Server Management

Tyler Roosth & Coleman Todd

User Interface

Fabianna Barbarino & Spencer Cho

Docker & Documentation

All Member & Rotating

Societal, Safety, and Environmental Analysis

Beneficial Impact

★ Increase in parking lot safety is a benefit to society

Detrimental Impact

- ★ Potential loss of privacy due to information being stored and cameras recording
- ★ Ethical concern

Safety Precautions we must take

★ Inclement weather may damage camera

Environmental Impact

★ Carbon emissions from streaming video footage, but these cameras have to be on.

Manufacturability, Sustainability, and Economics

Economics

creates a flexible, repeatable, efficient, & cost-effective process to assist parking lot monitoring

Sustainability

★ analytics may be used to reduce parking lot traffic density = lower carbon footprint

Manufacturability

★ will use existing architecture to gather, process, & store data

RESOURCES

- [1] "Parking lots & distracted driving," *National Safety Council*. [Online]. Available: https://www.nsc.org/road/safety-topics/distracted-driving/parking-lot-safety. [Accessed: 02-Feb-2023].
- "Wireless M-Gage Node," *Banner Engineering*. [Online]. Available: https://www.bannerengineering.com/us/en/products/wireless-sensor-networks/wireless-sensors/wireless-m-gage-node.html?s ort=1#all. [Accessed: 12-Feb-2023].
- [3] "Monitoring software," *Parksol*, 26-Aug-2022. [Online]. Available: https://parksol.lt/solutions/monitoring-software//. [Accessed: 12-Feb-2023].
- [4] Z. Yin, H. Xiong, X. Zhou, D. W. Goldberg, D. Bennett, and C. Zhang, "A deep learning based illegal parking detection platform," *Proceedings of the 3rd ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery*, 2019.
- [5] A Deep Learning Based Illegal Parking Detection Platform. YouTube, 2019.
- [6] S. parking, "Smartpark system," *Smart parking*, 07-Apr-2022. [Online]. Available: https://www.smartparking.com/smartpark-system. [Accessed: 12-Feb-2023].

RESOURCES cont.

- [7] R. Stiawan, A. Kusumadjati, N. S. Aminah, M. Djamal, and S. Viridi, "An ultrasonic sensor system for vehicle detection application," *Journal of Physics: Conference Series*, vol. 1204, p. 012017, 2019.
- [8] "Papers with code mot17 benchmark (multi-object tracking)," *The latest in Machine Learning*. [Online]. Available: https://paperswithcode.com/sota/multi-object-tracking-on-mot17. [Accessed: 13-Feb-2023].
- [9] Emergen Research, "Security cameras market size, share: Industry forecast by 2030," *Security Cameras Market Size, Share* | *Industry Forecast by 2030*. [Online]. Available: https://www.emergenresearch.com/industry-report/security-cameras-market#:~:text=Market%20Synopsis,18.7%25%20durin g%20the%20forecast%20period. [Accessed: 11-Feb-2023].
- [10] D. Hardawar, "FCC Bans Telecom and video surveillance gear from Huawei, ZTE and other Chinese companies," *Engadget*, 25-Nov-2022. [Online]. Available: https://www.engadget.com/fcc-officially-bans-telecom-and-video-surveillance-gear-from-several-chinese-companies-003040 729.html. [Accessed: 11-Feb-2023].
- [11] P. N. Service, "Turn off that camera during virtual meetings, environmental study says," *Purdue University News*. [Online]. Available: https://www.purdue.edu/newsroom/releases/2021/Q1/turn-off-that-camera-during-virtual-meetings,-environmental-study-say

THANK YOU!

Do you have any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**