Teoria da Computação Formas Normais

Prof. Jefferson Magalhães de Morais

Formas normais

- Estabelecem restrições rígidas na definição das produções, sem reduzir o poder de geração das GLC.
- Usadas no desenvolvimento de algoritmos(reconhecedores de linguagem) e na prova de teoremas.
 - FN de Chomsky, onde as produções são da forma: A → BC ou A → a
 - FN de Greibach, onde as produções são da forma: A → aα (onde α é uma palavra de variáveis)

- Qualquer LLC é gerada por uma GLC na forma normal de Chomsky.
- A conversão segue 3 etapas
 - Simplificação da gramática;
 - Transformação do lado direito das produções de comprimento maior ou igual a dois;
 - Transformação do lado direito das produções de comprimento maior ou igual a três, em produções com exatamente duas variáveis.

Etapa 1

- Excluir produções vazias
- Exclui produções do tipo A → B (se o lado direito da produção tiver só um símbolo, ele deve ser terminal); e
- Exclui opcionalmente símbolos inúteis
- Use os algoritmos de simplificação mostrados anteriormente!

Etapa 2

- Garante que o lado direito das produções de comprimento maior ou igual a 2 seja composto exclusivamente por variáveis.
- Exclui um terminal substituindo-o por uma variável intermediária:
 - A \rightarrow aB, torna-se:
 - A \rightarrow TB, T \rightarrow a

Etapa 3

- Garante que o lado direito das produções de comprimento maior do que 1 seja composto exclusivamente por duas variáveis.
 - $A \rightarrow BCD$
 - $A \rightarrow BF$
 - $F \rightarrow CD$

- Exemplo: Transformação GLC para FNC. G = $(\{E\},\{+,*,[,],x\},P=\{E \rightarrow E+E \mid E*E \mid [E] \mid x\},E)$
- E1: tem algo para excluir (vazias, inúteis ou A → B)?

- Exemplo: Transformação GLC para FNC. G = $(\{E\},\{+,*,[,],x\},P=\{E \rightarrow E+E \mid E*E \mid [E] \mid x\},E)$
- E1: tem algo para excluir (vazias, inúteis ou A → B)?
 Não
- E2:
 - E \rightarrow E+E torna-se E \rightarrow EME, onde M \rightarrow +
 - E \rightarrow E*E torna-se E \rightarrow EVE, onde V \rightarrow *
 - E \rightarrow [E] torna-se E \rightarrow C¹EC², onde C¹ \rightarrow [e C² \rightarrow].
 - $E \rightarrow x$ (não mexe).

- Exemplo: Transformação GLC para FNC. G = $(\{E\},\{+,*,[,],x\},P=\{E \rightarrow E+E \mid E*E \mid [E] \mid x\},E)$
- E3: E \rightarrow EME | EVE | C¹EC² torna-se:
 - $E \rightarrow ED^1 \mid ED^2 \mid C^1D^3$
 - $D^1 \rightarrow ME$
 - $D^2 \rightarrow VE$
 - $D^3 \rightarrow EC^2$

- Exemplo: Transformação GLC para FNC. G = $(\{E\},\{+,*,[,],x\},P=\{E \rightarrow E+E \mid E*E \mid [E] \mid x\},E)$
- A gramática resultante é:
 - G = $({E,M,V,C^1,C^2,D^1,D^2,D^3},{+,*,[,],x},P,E)$
 - P={ $E \rightarrow ED^1 \mid ED^2 \mid C^1D^3 \mid x$, $D^1 \rightarrow ME, D^2 \rightarrow VE, D^3 \rightarrow EC^2$, $M \rightarrow +, V \rightarrow *, C^1 \rightarrow [, C^2 \rightarrow]$ }

- Colocar a GLC na FN de Chomsky
- G = ({S, A, B}, {a, b}, P, S)
- P: S → A | A B A
 A → a A | a
 B → b B | b

Solução

- a) P': S → a A | a | A B A A → a A | a B → b B | b
- b) P'': $S \rightarrow A_a A \mid a \mid A B A$ $A \rightarrow A_a A \mid a$ $B \rightarrow A_b B \mid b$ $A_a \rightarrow a$ $A_b \rightarrow b$
- c) P''': $S \rightarrow A_a A | a | A B'$ $B' \rightarrow B A$ $A \rightarrow A_a A | a$ $B \rightarrow A_b B | b$ $A_a \rightarrow a$ $A_b \rightarrow b$

Forma normal Greibach

- Uma GLC está na Forma Normal de Greibach se ela é ε-livre e apresenta todas as produções na forma:
 - A \rightarrow a α
 - onde $A \in N$, $a \in T \in \alpha \in N^*$.

Forma normal Greibach

- Para achar a gramática equivalente a G = (N, T, P, S), na GNF, deve-se seguir os seguintes passos:
 - achar G' = (N', T, P', S) tal que L(G') = L(G) e que G' esteja na CNF (opcional)
 - ordenar os não-terminais de G' em uma ordem quaisquer por exemplo: N' = {
 A1, A2, ..., Am }
 - modificar as regras de P' de modo a que, se Ai → Aj γ é uma regra de P', então j > i
 - a gramática obtida do passo anterior, G", apresentará todas as regras de Am com o lado direito iniciando por um terminal; através de substituições sucessivas dos primeiros termos das regras Ai anteriores, coloca-se estas também nessa forma
 - se no item 3 tiverem sido incluídos novos não-terminais Bi (para retirar recursões à esquerda), fazer também para as regras correspondentes a estes, as devidas substituições dos primeiros termos (que serão sempre terminais ou Ai)
 - 6. a gramática final, G", está na GNF

Exemplo: Obtenha a FNG.

$$P: S \rightarrow AS|a$$

$$A \rightarrow SA|b$$

Solução:

- 1. G já está na FNC;
- 2. Renomear os não-terminais: $S = A_1$ e $A = A_2$;

$$P: A_1 \rightarrow A_2 A_1 | a$$

$$A_2 \rightarrow A_1 A_2 | b$$

Formal normal de Greibach

3. se $A_i \to A_i \gamma \in P'$, então j > i. A única regra a modificar é:

$$A_2 \to A_1 A_2$$
.

Substituindo A_1 nesta regra:

$$A_2 \rightarrow A_2 A_1 A_2 |aA_2| b$$
.

Retirando a recursão à esquerda de

$$A_2 \rightarrow A_2 A_1 A_2 | A_1 A_2 | A_2 | A_2 | A_3 A_2 |$$

obteremos:

$$P'': A_1 \rightarrow A_2 A_1 | a$$

$$A_2 \rightarrow aA_2 B_2 | b B_2$$

$$B_2 \rightarrow A_1 A_2 B_2 | \varepsilon$$

Formal normal de Greibach

Retirando o ε por substituições:

$$P'': A_1 \rightarrow A_2A_1|a$$

$$A_2 \rightarrow aA_2B_2|bB_2|aA_2|b$$

$$B_2 \rightarrow A_1A_2B_2|A_1A_2$$

Teoria da Computação Formas Normais

4. Fazendo as substituições finais para tornar todos os lados direitos na forma $A \to a\alpha$, $A \in N$, $a \in T$ e $\alpha \in N^*$:

$$P''': A_1 \rightarrow aA_2B_2A_1|bB_2A_1|aA_2A_1|bA_1|a$$
 $A_2 \rightarrow aA_2B_2|bB_2|aA_2|b$
 $B_2 \rightarrow aA_2B_2A_1A_2B_2|bB_2A_1A_2B_2|$
 $aA_2A_1A_2B_2|bA_1A_2B_2|aA_2B_2|$
 $aA_2B_2A_1A_2|bB_2A_1A_2|aA_2A_1A_2|$
 $bA_1A_2|aA_2$