R for Bioinformatics

Introduction, Programming, Data Analysis and Visualization
Basic data analysis and plotting using R

Gang Chen chengang@bgitechsolutions.com

November 16, 2013

Outline

- Overview of R Plotting
- 2 Traditional Plotting
- ggplot2
- 4 rgl
- Assignments. 1

Next

- Overview of R Plotting
- 2 Traditional Plotting
- ggplot2
- 4 rgl
- 5 Assignments. 1

Data Analysis and Visualization

PARTU-CV-AU-OU	NM_UUU0084	nonsynonymous anv	C. 510076	D. DILOR			1. 91E+08 C/G	39
06-CA-VS-NBPF9		splice_site					1. 45E+08 G>C	190
06-CA-VS-HIVEP3	NM_001127714	nonsynonymous SNV	c. 2681C>T	p. A894V			42047788 G>A	18
06-CA-VS-TTLL7	NH_024686	nonsynonymous SNV	c. 1367G>A	p. R456Q	1	84385515	84385515 C>T	48
06-CA-VS-PRKACB	NM_001242862	nonsynonymous SNV	c. 605G>A	p. G202D			84668367 G>A	58
06-CA-VS-SNG5	NH_015327	nonsynonymous SNV	c. 2213C>A	p. P738H	1	1.56E+08	1.56E+08 G>T	55
06-CA-VS-CREG1	NH_003851	stopgain SNV	c. 386T>A	p. L129X	1	1.68E+08	1. 68E+08 A>T	57
06-CA-VS-CRB1	NM_201253	nonsynonymous SNV	c. 952G>T	p. D318Y	1	1.97E+08	1. 97E+08 G>T	66
06-CA-VS-LYST	NH_000081	nonsynonymous SNV	c. 3509G>A	p. G1170E	1	2.36E+08	2. 36E+08 C>T	53
06-CA-VS-CCDC147	NH_001008723	nonsynonymous SNV	c. 1855C>T	p. R619W	10	1.06E+08	1. 06E+08 C>T	85
06-CA-VS-DOCK1	NH_001380	nonsynonymous SNV	c. 260C>T	p. P87L	10	1.29E+08	1. 29E+08 C>T	53
06-CA-VS-VVCE	NH_152718	nonsynonymous SNV	c. 2428A>G	p. T810A	11	61026587	61026587 T>C	31
06-CA-VS-CTTN	NH_001184740	nonsynonymous SNV	c. 1381G>A	p. V461I	11	70279800	70279800 G>A	26
06-CA-VS-GRIA4	NH_000829	nonsynonymous SNV	c. 2617G>A	p. V873I	11	1.06E+08	1. 06E+08 G>A	44
06-CA-VS-MLL	NH_001197104	nonsynonymous SNV	c. 11065A>T	p. I3689F	11	1.18E+08	1. 18E+08 A>T	55
06-CA-VS-C11orf63	NH_024806	nonsynonymous SNV	c. 1895A>C	p. K632T	11	1.23E+08	1. 23E+08 A>C	56
06-CA-VS-OR8G2	NH_001007249	nonsynonymous SNV	c. 339G>C	p.Q113H	11	1.24E+08	1. 24E+08 G>C	83
06-CA-VS-CACNA1C	NH_001129837	nonsynonymous SNV	c. 4559G>A	p. G1520E	12	2775917	2775917 G>A	46
06-CA-VS-TAS2R10	NM_023921	nonsynonymous SNV	c. 761A>G	p. E254G	12	10978108	10978108 T>C	58
06-CA-VS-ABCC9	NM_005691	nonsynonymous SNV	c. 1886A>T	p. E629V	12	22040785	22040785 T>A	78
06-CA-VS-ITPR2	NH_002223	nonsynonymous SNV	c. 5698A>T	p. N1900Y	12	26639150	26639150 T>A	67
06-CA-VS-C12orf35	NM_018169	nonsynonymous SNV	c. 905C>T	p. S302F	12	32134794	32134794 C>T	54
06-CA-VS-KRT83	NH_002282	nonsynonymous SNV	c. 673C>T	p. L225F	12	52711542	52711542 G>A	29
06-CA-VS-CRY1	NH_004075	nonsynonymous SNV	c. 815T>C	p. L272P	12	1.07E+08	1. 07E+08 A>G	50
06-CA-VS-RPH3A	NH_014954	nonsynonymous SNV	c. 1378G>A	p. V460M	12	1.13E+08	1. 13E+08 G>A	31
06-CA-VS-NAA16	NH_024561	nonsynonymous SNV	c. 1426A>G	p. H476V	13	41936182	41936182 A>G	58
06-CA-VS-SLC24A4	NM_153646	nonsynonymous SNV	c. 695T>G	p. L232R	14	92913726	92913726 T>G	49
06-CA-VS-EIF5	NH_183004	nonsynonymous SNV	c. 317A>C	p. E106A	14	1.04E+08	1. 04E+08 A>C	76
06-CA-VS-TMC5	NH_024780	nonsynonymous SNV	c. 899G>T	p. S300I	16	19477555	19477555 G>T	84
06-CA-VS-GPR139	NM_001002911	nonsynonymous SNV	c. 802G>A	p. D268N	16	20043317	20043317 C>T	105
06-CA-VS-SPATA22	NM_001170696	nonsynonymous SNV	c. 710A>T	p. Y237F	17	3346529	3346529 T>A	79
06-CA-VS-CANTA2	NM_001171166	nonsynonymous SNV	c. 2134C>T	p. R712W	17	4876953	4876953 G>A	34
06-CA-VS-TP53	NW 001126115	nonsynonymous SNV	c. 263A>G	p. Y88C	17	7578190	7578190 T>C	7

Data Visualization

Data Visualization

Statistical Plotting in R

Graphic Systems in R

Graphic Systems

- Traditional Plotting
- grid and lattice
- ggplot2
- Graphic Systems for specific purposes: rgl,ggbio, scatterplot3d

Next

- Overview of R Plotting
- 2 Traditional Plotting
 - Overview
 - plot
 - Basic Plottings
 - layout
 - Output
- ggplot2
- 4 rg
- 6 Assignments 1

Functions

- plot
- boxplot, barplot, hist, ...
- par
- output: png, jpg, pdf, ...

mtcars

```
data(mtcars)
mtcars
##
                      mpg cyl disp hp drat wt qsec vs am gear carb
                     21.0 6 160.0 110 3.90 2.620 16.46 0 1
## Mazda RX4
                     21.0 6 160.0 110 3.90 2.875 17.02 0 1
## Mazda RX4 Wag
## Datsun 710
                     22.8 4 108.0 93 3.85 2.320 18.61 1 1
## Hornet 4 Drive
                     21.4 6 258.0 110 3.08 3.215 19.44 1 0
                     18.7 8 360.0 175 3.15 3.440 17.02 0
## Hornet Sportabout
## Valiant
                     18.1
                           6 225.0 105 2.76 3.460 20.22 1 0
                     14.3 8 360.0 245 3.21 3.570 15.84 0
## Duster 360
## Merc 240D
                     24.4 4 146.7 62 3.69 3.190 20.00 1
## Merc 230
                     22.8
                           4 140.8 95 3.92 3.150 22.90 1
                     19.2
## Merc 280
                          6 167.6 123 3.92 3.440 18.30 1
## Merc 280C
                     17.8 6 167.6 123 3.92 3.440 18.90 1
## Merc 450SE
                     16.4 8 275.8 180 3.07 4.070 17.40 0
## Merc 450SL
                     17.3
                           8 275.8 180 3.07 3.730 17.60 0
                     15.2 8 275.8 180 3.07 3.780 18.00 0 0
## Merc 450SLC
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0
## Fiat 128
                     32.4
                           4 78.7 66 4.08 2.200 19.47 1
                     30.4 4 75.7 52 4.93 1.615 18.52 1
## Honda Civic
## Toyota Corolla
                     33.9 4 71.1 65 4.22 1.835 19.90 1
## Toyota Corona
                     21.5 4 120.1 97 3.70 2.465 20.01 1
## Dodge Challenger
                     15.5
                          8 318.0 150 2.76 3.520 16.87 0
                                                                    2
## AMC Javelin
                     15.2
                          8 304.0 150 3.15 3.435 17.30 0
## Camaro Z28
                     13.3
                            8 350.0 245 3.73 3.840 15.41 0
                     19.2
## Pontiac Firebird
                            8 400.0 175 3.08 3.845 17.05
```

plot function

- plot() is the main graphing function
- Automatically produces simple plots for vectors, functions or data frames (OOP, S3)
- Many useful customization options...

help(plot)

plot(mpg)


```
plot(mpg, wt)
```


plot(mpg, wt, pch = 19)

par and points

```
help(par)
help(points)
```

plot(mpg, wt, pch = c(17, 19))

plot(mpg, wt, pch = 19, cex = 2)

plot(mpg, wt, pch = 19, cex = 2, main = "MPG VS. WT")

plot(mpg, wt, pch = 19, cex = 2, main = "MPG VS. WT", sub = "Cre


```
plot(mpg, wt, pch = 19, cex = 2, main = "MPG VS. WT", sub = "Created"
    xlab = "MPG", ylab = "WT")
```



```
plot(mpg, wt, pch = 19, cex = 2, main = "MPG VS. WT", sub = "Created"
    xlab = "MPG", ylab = "WT", col = "red")
```



```
plot(mpg, wt, pch = 19, cex = 2, main = "MPG VS. WT", sub = "Created"
    xlab = "MPG", ylab = "WT", col = rgb(1, 0, 0, 0.4))
```



```
plot(mpg, wt, pch = 19, cex = 2, main = "MPG VS. WT", sub = "Created"
    xlab = "MPG", ylab = "WT", col = c("red", "blue", "green")
[as.factor(gear)])
```



```
plot(mpg, wt, pch = 19, cex = 2, main = "MPG VS. WT", sub = "Created by G. Chen",
    xlab = "MPG", ylab = "WT", col = c("red", "blue", "green")[as.factor(gear)])
legend("topright", legend = paste("Gear", unique(gear)), lwd = 2, col = c("red",
    "black", "blue", "green"))
```


legend

help(legend)

```
plot(mpg, wt, pch = 19, cex = 2, main = "MPG VS. WT", sub = "Created by G. Chen",
    xlab = "MPG", ylab = "WT", col = c("red", "blue", "green")[as.factor(gear)])
legend("topright", legend = paste("Gear", unique(gear)), lwd = 2, col = c("red",
    "black", "blue", "green"), bty = "n")
lines(loess.smooth(mtcars&mpg, mtcars&tt), col = rgb(1, 0, 0, 0.6), lwd = 10)
```


lines

```
help(lines)
help(abline)
```

```
plot(mpg, wt, pch = 19, cex = 2, main = "MPG VS. WT", sub = "Created by G. Chen",
    xlab = "MPG", ylab = "WT", col = c("red", "blue", "green")[as.factor(gear)])
legend("topright", legend = paste("Gear", unique(gear)), lwd = 2, col = c("red",
    "black", "blue", "green"), bty = "n")
lines(loess.smooth(mtcars$mpg, mtcars$vt), col = rgb(1, 0, 0, 0.6), lwd = 10)
text(mpg[1], wt[1], rownames(mtcars)[1], cex = 2)
```


text

help(text)

barplot

barplot(wt)

barplot

barplot(wt, width = 2, horiz = T, col = rainbow(10))

pie

```
pie(c(10, 10, 10, 20, 30, 20), c("Nature", "Science",
"Cell", "NG", "Nature Cancer", "Other"), col = 2:7)
```


pie

```
library(plotrix)
pie3D(c(10, 10, 10, 20, 30, 20), labels = c("Nature",
"Science", "Cell", "NG", "Nature Cancer", "Other"), col
= 2:7)
```


hist

```
hist(mpg, col = "lightblue")
```


hist

hist(rnorm(10000), breaks = 100)

density + rug

```
x = rnorm(1000)
plot(density(x))
rug(x)
```


Q-Q plot

qqnorm(rnorm(10000))

boxplot

boxplot(rnorm(1000))

boxplot

boxplot(cbind(rnorm(1000), rnorm(1000) + rnorm(1000)), col =

stars

stars(mtcars)

layout

```
layout(matrix(c(1, 1, 2, 3), ncol = 2))
plot(mpg, wt, pch = 19, cex = 2, main = "MPG VS. WT", sub = "Created by G. Chen",
    xlab = "MPG", ylab = "WT", col = c("red", "blue", "green")[as.factor(gear)])
legend("topright", legend = paste("Gear", unique(gear)), lwd = 2, col = c("red",
    "black", "blue", "green"), bty = "n")
lines(loess.smooth(mtcars$mpg, mtcars$wt), col = rgb(1, 0, 0, 0.6), lwd = 10)
text(mpg[1], wt[1], rownames(mtcars)[1], cex = 2)
hist(mpg)
hist(wt)
```


layout

Graphic Devices

Graphic Devices

- Everything you draw in R must be drawn on a graphic device
- Different devices save graphical input in different ways
- raster device vs. vecter device

x11, windows(), quartz()

vecter device: pdf, postscript

raster device: png, bmp, jpeg, tiff

Next

- Overview of R Plotting
- 2 Traditional Plotting
- 3 ggplot2
 - Overview
 - qplot
- 4 rgl
- Same of the second of the s

ggplot2

ggplot2

ggplot2 is an R implementation of the grammar of grahics.

Installation

```
install.packages("ggplot2")
```

Website

http://had.co.nz/ggplot2

```
library(ggplot2)

##

## Attaching package: 'ggplot2'

##

## The following object is masked from 'mtcars':

##

## mpg
```

Wraps up all the details of ggplot with a familiar syntax borrowed from plot.

Additional features:

- Automatically scales data
- Can produce any type of plot
- Facetting and margins
- Creates objects that can be saved and modified

```
library(ggplot2)
qplot(mpg, wt, data = mtcars)
```



```
qplot(mpg, wt, data = mtcars, color = gear)
```


qplot(mpg, wt, data = mtcars, color = gear, size = qsec)

qplot(mpg, wt, data = mtcars, facets = gear ~ cyl, size = qsec)


```
qplot(mpg, data = mtcars, geom = "bar")
## stat_bin: binwidth defaulted to range/30. Use
'binwidth = x' to adjust this.
```



```
cxc <- ggplot(mtcars, aes(x = factor(cyl))) + geom_bar(width
cxc + coord_polar()</pre>
```


Reference

http://ygc.name/stats/ggplot2.html

- Overview of R Plotting
- 2 Traditional Plotting
- ggplot2
- 4 rgl
- 6 Assignments. 1

rgl package

The core of RGL is a shared library that acts as an interface between R and OpenGL. In order to provide convenient access to OpenGL–features, a set of R–functions which act as an API (Application Programming Interface) was written.

Shape Fcuntions

- rgl.points
- rgl.lines
- rgl.triangles
- rgl.surface
- rgl.quads
- rgl.spheres

Reference: RGL: A R-library for 3D visualization with OpenGL (RGL_REF.pdf)

3D Barplot

bgiR

```
library(devtools)
install_github("bgiR", "gangchen")
library(bgiR)
bgiR()
```

Next

- Overview of R Plotting
- 2 Traditional Plotting
- ggplot2
- 4 rgl
- S Assignments. 1

Assignments. 1

- Data: A subset of microarray dataset (exprData.tsv on eLearning)
 - Each column is a sample
 - Each row is a probeset

To Do:

- Read the file into R (Tip: read.table());
- Calculate mean and median of each column and each row (Tip: apply());
- *Calculate correlation between each pair of samples (Tip: apply());
- Draw boxplot of each sample, and output the plot to a pdf file (Tip: boxplot);
- * Read help information of heatmap function, plot a heatmap for this data (Tip: help(heatmap));
- Try your best to optimize the script and plots (Tip: ggplot2).

