

A1

Változat: 1

Kiadva: 2010. február 12.

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK

Hajlítás

POLIMEREK HAJLÍTÓ VIZSGÁLATA

A JEGYZET ÉRVÉNYESSÉGÉT A TANSZÉKI WEB OLDALON KELL ELLENŐRIZNI! WWW.PT.BME.HU

Változat: 1

Kiadva: 2010. február 12.

A LABORGYAKORLAT HELYSZÍNE

TARTALOMJEGYZÉK

1.	A G	YAKORLAT CÉLJA	3
2.	ELN	MÉLETI HÁTTÉR	3
	2.1.	MÉRÉSI KÖRÜLMÉNYEK	5
	2.2.	A PRÓBATEST	. 7
	2.3.	A HAJLÍTÓVIZSGÁLATBÓL MEGHATÁROZHATÓ MECHANIKAI JELLEMZŐK	. 8
3.	A M	ÉRÉS LEÍRÁSA, ELVÉGZENDŐ FELADATOK	10
4.	A M	ÉRÉS SORÁN HASZNÁLT GÉPEK, BERENDEZÉSEK	11
5.	A TI	ÉMÁHOZ KAPCSOLÓDÓ FONTOSABB SZAVAK ANGOLUL, NÉMETÜL	11
6.	AJÁ	NLOTT IRODALOM	12
M	ÉRÉSI .	JEGYZŐKÖNYV	13

Változat: 1

Kiadva: 2010. február 12.

1. A gyakorlat célja

Ha egy anyag tulajdonságait meg akarjuk ismerni, a hétköznapi gyakorlatban is gyakran alkalmazzuk azt a módszert, hogy elkezdjük hajlítgatni. Bizonyos esetekben azt tapasztaljuk, hogy az egyik anyagot -azonos körülmények és geometria esetén- alig tudjuk deformálni, annyira merev, míg a másikra szinte csomót lehet kötni, annyira lágy. Ugyanígy tapasztalhattuk már, hogy az anyagok egy csoportja üvegszerűen rideg, törik, míg mások nagy alakváltozást is elviselnek anélkül, hogy akár csak megrepednének.

A gyakorlat célja a polimerek hajlító igénybevétellel szembeni viselkedésének a vizsgálata, a fenti jelenségek magyarázata és számszerűsítése. Célkitűzésünk, hogy a hallgatók különböző anyagú próbatestek példáján keresztül megismerjék a kvázistatikus hajlítóvizsgálat módszerét és a meghatározható mechanikai tulajdonságokat, továbbá a hajlítóvizsgálat során a polimer anyagok esetén tapasztalható speciális jelenségeket, illetve a fémek viselkedésétől történő eltéréseket.

2. Elméleti háttér

A hajlítás során a szabványban leírt geometriájú próbatestet két végénél feltámasztva, közepét meghatározott mérési körülmények (terhelési sebesség, hőmérséklet, nedvességtartalom) mellett nyomó igénybevétellel terheljük, eközben mérjük és regisztráljuk a deformáció (lehajlás) függvényében fellépő erőt. A hárompontos hajlító vizsgálat kiértékelése során meg kell határoznunk a jellemző szilárdságot (ami a maximális teherviselő képességgel arányos) és a hajlító rugalmassági modulust (ami pedig az anyag merevségét jellemzi). Az 1. ábrán található a mérés elvi elrendezése, lehajlási, nyomatéki és nyíróerő ábrája.

1. ábra Hárompontos hajlítás elvi elrendezése, lehajlása, nyomatéki és nyíróerő ábrája

A polimer anyagok legfontosabb, a hajlítás során figyelembe veendő mechanikai tulajdonságai eltérőek a fémekhez viszonyítva:

- a húzó és a nyomó rugalmassági modulusok nagymértékben különbözhetnek, ami a semleges szál eltolódását okozza,
- nem lineáris a feszültség-alakváltozás kapcsolata,
- viszonylag kis terhelésre is nagy alakváltozás lép fel,
- fajlagos tömegük kicsi.

A mechanikai jellemzők meghatározása során a húzó és nyomó modulusok különbözőségének hatását speciálisan erre az esetre levezetett összefüggésekkel lehet figyelembe venni. A hajlító karakterisztika lineáristól eltérő jellegét a modulus meghatározásánál, a törés előtti

Változat: 1

Kiadva: 2010. február 12.

nagy alakváltozást pedig a határhajlító feszültség kiszámításával, korlátozó feltételek alkalmazásával vesszük figyelembe.

A viszkoelasztikus anyagok jellemző sajátossága, hogy általában kis rugalmassági modulusúak, azaz nagyon deformábilisak. A törés előtti nagy deformáció a feszültségek szempontjából azt jelenti, hogy hajlításnál a vizsgálati minták alakváltozása, azaz f lehajlása adott esetben már elérheti, illetőleg túlhaladhatja azt az értéket, ameddig a klasszikus számítási összefüggéseink érvényesek. Túl nagy lehajlás esetén ugyanis megszűnik a tiszta hajlítási állapot, egyre nagyobb szerepet játszanak a nyíróerők, megszűnnek függőlegesnek lenni a reakcióerők, a próbatest terhelt és terheletlen alakja egyre inkább eltér egymástól, stb. Ez gyakorlatilag annyit jelent, hogy ha az L alátámasztási távolság 10%- át a lehajlás (f) meghaladja, a Navier feltételek megszűnnek, és már nem alkalmazhatjuk a szokásos számítási képleteket. A problémát a deformáció korlátozásával lehet megoldani. A mérési diagramot csak addig a lehajlás értékig vesszük figyelembe, ameddig feltételezhetjük a klasszikus számítási összefüggések érvényességét. Ezt a lehajlás értéket határlehajlásnak nevezzük és f* -gal jelöljük, értéke pedig a mindenkori L alátámasztási távolság 10%-a (f* =0,1°L). Ha tehát ezen f*határlehajlás érték elérése előtt eltörik az anyag, akkor a törési ponthoz tartozó F_t törőerőből számolt nyomatékkal a σ_{bh} hajlítószilárdságot határozzuk meg, és ezzel jellemezzük a vizsgált anyag teherbírását. Abban az esetben viszont, ha az f* határlehajlás érték eléréséig nem törik el az anyag, hanem csak f* -nál nagyobb f értéknél törik, vagy egyáltalán nem törik el, akkor az f^* -hoz tartozó F^* határhajlító erőből számított nyomatékkal a σ_h ún. határhajlító feszültséget határozzuk meg, és alkalmazzuk a vizsgált anyag szilárdsági jellemzésére, összehasonlítására.

2.1. Mérési körülmények

Hajlítási sebesség: Nagyobb hajlítási sebességek esetén az anyag merevebben viselkedik, nagyobb a modulusa és általában a szilárdsága is nagyobb értékre adódik.

Vizsgálati hőmérséklet: A polimerek esetén már viszonylag kis hőmérsékletváltozás is jelentősen befolyásolja a merevséget, a szilárdságot, illetve a hajlítási karakrerisztika jellegét. Az üvegesedési hőmérséklet alatt a polimerek ridegen, nagyrugalmas állapotban szívósabban viselkednek, modulusuk alacsonyabb (2. ábra).

2. ábra Hajlítási hőmérséklet hatása a hajlítógörbékre két különböző típusú epoxigyanta esetében (EP-a és EP-b) 1: EP-a, 50°C 2: EP-a, 23°C 3: EP-b, 50°C 4: EP-b, 23°C

Nedvesség tartalom: Vannak olyan szintetikus polimerek, amelyek képesek a tulajdonságaikat befolyásoló mennyiségű nedvesség abszorbeálására (pl. a PA, szálerősített kompozitok). A nedvességnek lágyító hatása van, azaz csökkenti a rugalmassági modulust és a szilárdságot. Különösen igaz ez a különböző természetes (pl. fa), és természetes alapú (pl. keményítő) polimerek, vagy a természetes szálakkal erősített kompozitok esetében.

Kompozitok hajlítása: A polimer mátrixú kompozitok jellemzői jelentős mértékben eltérnek az erősítetlen rendszerek viselkedésétől. A hajlítás során igen lényeges a próbatestekben lévő szálak orientációja. A hajlítás tengelyébe eső szálak adják a legnagyobb merevséget, míg ettől egyre nagyobb mértékben eltérve a próbatestek modulusza egyre alacsonyabb (3. ábra).

Külön kell említeni a szendvicsszerkezeteket. Ezek jellemzője a kis anyagmennyiség növekedéssel elérhető nagy hajlítómerevség növekedés (D=IE, ahol I a másodrendű nyomaték, E a modulusz).

3. ábra A kompozit próbatestek orientációjának hatása a hajlító moduluszra.

2.2. A próbatest

A próbatest egyszerű téglalap alapú hasáb, melynek vizsgálatát a 4. ábra szerinti elrendezésben végezzük el. A szabványos próbatestek közül a leggyakrabban használt méretek az 1. táblázatban találhatóak, az alkalmazott mérőfej és alátámasztási távolság adataival együtt.

4. ábra Hárompontos hajlítás elvi elrendezése.

1: nyomófej, 2: alátámasztás, 3: próbatest, h: a próbatest vastagsága, L: az alátámasztási távolság

Változat:	1

Kiadva: 2010. február 12.

Γ	Szabvány	Pró	batest mérete	ei [mm]	Alátámasztási	Lekerekíté	sek [mm]
ı	száma	Hossz,	Szélesség,	Vastagság,	távolság, <i>L</i>		r_2
L		L_t	b	h	[mm]	11	
Γ	DIN 53452	120	15	10	100	10	1
	ISO/R 178	80	10	4	64	5	2

1. táblázat Szabványos próbatest és alátámasztási méretek

2.3. A hajlítóvizsgálatból meghatározható mechanikai jellemzők

A hajlító vizsgálatot a szakítógépeknél szokásos módon, állandó sebességű deformáció gerjesztéssel, azaz időben egyenletesen növelt lehajlás mellett végezzük, és a lehajlás függvényében, mint válaszfüggvényt regisztráljuk az ébredő erőt.

Hajlító szilárdság meghatározása:

A σ_{bh} hajlító szilárdság, vagyis a töréskor elérhető maximális hajlító feszültség meghatározásához az (1) összefüggést használhatjuk:

$$\sigma_{bh} = \frac{M}{K} \tag{1}$$

ahol σ_{bh} a keresett hajlítószilárdság, M a próbatestben ébredő maximális hajlító nyomaték, K a keresztmetszeti tényező. Behelyettesítve az összefüggésbe az 1. ábra szerinti maximális nyomatékot: $M = \frac{F}{2} \frac{l}{2} = \frac{FL}{4}$ valamint a keresztmetszeti tényezőt: $K = \frac{bh^2}{6}$ és elvégezve az egyszerűsítéseket, a következő, az EN ISO 178:2001-es szabványban is szereplő összefüggést kapjuk (2):

$$\sigma_{bh} = \frac{3FL}{2hh^2} \quad [MPa] \tag{2}$$

ahol F a töréshez tartozó erő Newtonban, L az alátámasztási távolság milliméterben, b a próbatest szélessége milliméterben, h a próbatest vastagsága milliméterben.

Határhajlító feszültség meghatározása:

Amennyiben a próbatest az alátámasztási távolság 10%-ának megfelelő lehajlás esetén sem törik el, akkor jellemzésére a hajlító szilárdság helyett a σ_h határhajlító feszültséget használhatjuk.

Változat: 1

Kiadva: 2010. február 12.

Számítása az előbbivel azonos, kivéve, hogy törőerő helyett a határlehajláshoz tartozó erőt használjuk.

Rugalmassági modulusz meghatározása:

Az E_h hajlító rugalmassági modulus számításánál a semleges szál differenciálegyenletéből indulunk ki, ami a z 1. ábrán látható mérési elrendezés esetén adódó peremfeltételek figyelembe vételével a mi esetünkben:

$$y'' \approx \frac{1}{R} = \frac{M}{IE} \tag{3}$$

ahol *I* a keresztmetszet semleges szálra számított másodrendű nyomatéka. Az egyenletet megoldva kapjuk a klasszikus "járulékképletet" erre az elrendezésre (kéttámaszú tartó középen terhelve):

$$f = \frac{Fl^3}{48IE} \tag{4}$$

ahol f a lehajlás értéke. Ennek az egyenletnek az átrendezésével és az $I = \frac{bl^3}{12}$ másodrendű nyomaték behelyettesítésével kapjuk meg a hajlító modulusz szabványban is leírt összefüggését (5):

$$E_h = \frac{1}{4} \frac{L^3}{bh^3} \frac{\Delta F}{\Delta f}$$
 [MPa] (5)

ahol L az alátámasztási távolság, b a próbatest szélessége, h a próbatest vastagsága, $\Delta F/\Delta f$ az erőlehajlás görbe meredeksége. A felvett erő-lehajlás görbe azonban **nem egyenes**. Ezt a nemlinearitást Δf és ΔF meghatározásánál vesszük figyelembe.

A gyakorlaton ún. kezdeti rugalmassági modulust határozunk meg. Ez azt jelenti, hogy a hajlító vizsgálat során felvett erő-lehajlás diagram kezdeti lineáris szakaszához érintőt húzunk, és ennek az érintőnek a meredekségével lesz arányos a kezdeti hajlító rugalmassági modulus. Ezt a szakítógörbében a kezdeti szakaszhoz húzott érintő tetszőleges pontjainak felhasználásával az 5. ábra szerint határozzuk meg.

5.ábra Az erő-lehajlás diagram kezdeti meredekségének grafikus meghatározása

Az így megkapott $\Delta F/\Delta f$ érték helyett szabványos mérések esetén az ε_1 =0,0005 és ε_2 =0,0025 nyúlásokhoz tartozó lehajlásértékeknél kell számolni, vagyis szabványos mérés esetén a modulusz a megadott értékek közötti húrmodulusz.

3. A mérés leírása, elvégzendő feladatok

A mérés tárgya különböző anyagokból és módszerekkel készített próbatestek 3 pontos hajlító vizsgálatának elvégzése, majd a jellemző szilárdság és a hajlító rugalmassági modulus meghatározása.

A mérés menete:

- 1. Hajlító vizsgálat elvégzése különböző anyagokon a 4. ábra szerinti elrendezésben.
- 2. A diagramon a kezdeti érintő megszerkesztése, ΔF és Δf értékek meghatározása.
- 3. A jegyzőkönyvben található táblázat szerinti paraméterek kiszámítása: a próbatest vastagsága (h), szélessége (b), teljes hossza (l), tömege (m), sűrüsége (ρ).
- 4. A törőerő, illetve a határlehajlás elérése esetén a határhajlító erő meghatározása.
- 5. A hajlító rugalmassági modulus (E_h) és a hajlítószilárdság (σ_{bh}), vagy a határhajlító feszültség (σ_h) kiszámítása.
- 6. A meghatározott anyagjellemzők és a sűrűség viszonyának meghatározása.

Változat: 1

Kiadva: 2010. február 12.

4. A mérés során használt gépek, berendezések

ZWICK 050 TÍPUSÚ SZÁMÍTÓGÉP VEZÉRLÉSŰ UNIVERZÁLIS SZAKÍTÓGÉP

A gép méréshatára: 50 kN

Keresztfej sebesség tartománya: 0,001..500 mm/perc

6. ábra ZWICK Z050 típusú számítógép vezérlésű univerzális szakítógépre helyezhető hajlító feltét

5. A témához kapcsolódó fontosabb szavak angolul, németül

Magyar	Angol	Német
3 pontos hajlító vizsgálat	3-point bending test	e 3-Punkt-Biegeprüfung
alátámasztási távolság	support distance	s Auflagerabstand
hajlító merevség	bending stiffness	e Biegesteifigkeit
hajlító nyomaték	bending moment	s Biegemoment
hajlító szilárdság	bending strength	e Biegefestigkeit
határhajlító erő	limit bending force	e Grenzbiegekraft
határhajlító feszültség	limit bending stress	e Grenzbiegespannung
határlehajlás	limit deflection	e Grenzdurchbiegung
másodrendű nyomaték	second moment	s Trägheitsmoment
rugalmassági modulus	elastic modulus	r Elastizitätsmodul
semleges szál	neutral axis	e Neutralachse

Változat: 1

Kiadva: 2010. február 12.

6. Ajánlott irodalom

- 1. Czvikovszky T., Nagy P., Gaál J.: A polimertechnika alapjai. Műegyetemi Kiadó, Budapest (2000).
- 2. EN ISO 178:2001 szabvány: Plastics- Determination of flexural properties (2001).
- 3. EN ISO 527:1998 szabvány: Fibre-reinforced plastics composites- Determination of flexural properties (1998).

Változat: 1

Kiadva: 2010. február 12.

MÉRÉSI JEGYZŐKÖNYV

Név:		Jegy:	
Neptun kód:			
Dátum:		Ellenőrizte:	
Gyakorlatvezető:			
1. Alapadatok			
Hőmérséklet, T: Relatív légnedvesség: Alátámasztási távolság	 [%]		

A próbatest adatai							Mért és számított eredmények				
		h	b	1	m	ρ	ΔF	Δf	E_h	σ_{bh} vagy σ_{h}	Ε/ρ
	Anyaga	[mm]	[mm]	[mm]	[g]	[g/cm ³]	[N]	[mm]	[MPa]	[MPa]	$\left[\frac{MPa \cdot cm^3}{g}\right]$
1											
2											
3											
4											
5											
6											
7											
8											
9											
10											

Polimerek hailító vizsgálata	12/15
Polimerek hajlitó vizsgálata	13/13

Változat: 1

Kiadva: 2010. február 12.

2. Összefoglaló diagramok

	$\rho [g/cm^3]$
Polimerek hajlító vizsgálata	14/15

 $\frac{\mathsf{E/p}}{\left[\frac{\mathit{MPa}\cdot\mathit{cm}^3}{\mathit{g}}\right]}$

Minta

Változat: 1