

Lab 7: Simple Image Processing Unit

Advisor: Lih-Yih Chiou

Speaker: John(張峻豪)

Date: 2018/04/25

Outline

- Introduction
- Architecture
- Image Format
- Grayscale
- Floyd—Steinberg dithering
- Components
- Boundary Cases
- Final Result
- Lab 7: Homework

Introduction

- Learn how to implement digital Image Processing Unit through Verilog code.
- Design a system to perform simple Image Processing Unit.
- We provide top module and sub modules skeleton, please follow our I/O ports specifications.

Architecture

LPHPLMB VLSI Design LAB

Image Format

- RGB (Red, Green, Blue)
 - Each pixel can be represented in the computer memory or interface as binary values for the red, green, and blue color components.

 Current typical display adapters use 24 bits of information for each pixel.

- → Each color has 8 bits (0-255)
- → Represent as (255, 0, 0)
- In hexadecimal #FF0000
- Total color

→ 256 * 256 * 256 = 16,777,216

RGB(0, 0, 0)

RGB(255, 0, 0)

Image Format

• Image decomposed into red, green and blue component

Red component

Green component

Blue component

Image Format

Bitmap image file (.bmp)

B M Size of BMP file (byte) The number of bits per pixel

Image Format

Image(Here we take 800 * 600 picture for example)

Grayscale

- How to turn RGB image into grayscale?
 - → Suppose the RGB value of a pixel is (r, g, b)
 - → The grayscale y=0.299r+0.587g+0.114b (0-255)
 - The pixel is now (y, y, y)
 - \rightarrow **For this Lab , y = 0.3125r + 0.5625g + 0.125b (0-255)

 Can you convert a grayscale value back to an RGB color code?

→ NO!

Floyd-Steinberg error diffusion

- For every pixel: (scan from the left to the right, top to bottom)
 - New data = $\begin{cases} 255, & \text{old data} \ge 128 \\ 0, & \text{old data} < 128 \end{cases}$
 - Error diffusion = Old data New data

$$\begin{bmatrix} * & \frac{7}{16} & \cdots \\ \cdots & \frac{3}{16} & \frac{5}{16} & \frac{1}{16} & \cdots \end{bmatrix}$$

- Right pixel = Right pixel data + $\frac{7}{16}$ Error diffusion $\begin{bmatrix} & * & \frac{7}{16} & \cdots \\ & & \frac{3}{16} & \frac{5}{16} & \frac{1}{16} & \cdots \end{bmatrix}$ Lower left pixel data $\begin{bmatrix} & * & \frac{7}{16} & \cdots \\ & & & \frac{3}{16} & \frac{5}{16} & \frac{1}{16} & \cdots \end{bmatrix}$
- → Lower left pixel = Lower left pixel data + $\frac{3}{16}$ Error diffusion
- Lower pixel = Lower pixel data + $\frac{5}{16}$ Error diffusion
- Lower right pixel = Lower right pixel data + $\frac{1}{16}$ Error diffusion

Floyd-Steinberg error diffusion

For example:(after grayscale)

	*	$\frac{7}{16}$	
 $\frac{3}{16}$	$\frac{5}{16}$	$\frac{1}{16}$	

Output_mem

•••	•••	•••	
•••	159	162	
1	200	120	

Out	put	_m	iem

Output_mem

•••	•••	•••	
•••	255	120	•••
0	170	114	•••
,	•	¬	¬

Center pixel:

Error = 159 - 255 = -96

Right pixel

$$162 + (-96)*(7/16) = 120$$

Lower left pixel

$$1 + (-96)*(3/16) = -17$$
 (less than 0, replace by 0)

Lower pixel

$$1 + (-96)*(3/16) = -17$$
 $200 + (-96)*(5/16) = 170$

Lower right pixel

$$120 + (-96)*(1/16) = 114$$

Input Memory

Components(Input / Output Memory)

Input Memory

- → Store pixels of the original image
- → Memory depth : 800x600=480000
- → Size per entry : 24-bit (B,G,R)

Output Memory

- → Store pixels of the processed image
- → Memory depth : 800x600=480000
- → Size per entry: 8-bit

depth = 480000 B G R B G R B G R

Output Memory

Components(Grayscale)

- Grayscale
 - \rightarrow The grayscale operation y = 0.3125r + 0.5625g + 0.125b (0-255)
 - → 24-bit input for pixel RGB value
 - → 8-bit output for pixel grayscale value

Components(Error Diffusion)

- **Error Diffusion**
 - → There is only one 8-bits input/output in this project.

LPHPLHB VLSI Design LAB

Components

Controller, Mux.

Components

Controller

** You can design your own FSM in this lab if you want *'

→ Control sub modules by a finite state machine (FSM)

LPHPLFIB VLSI Design LAB

Boundary Cases

Boundary cases you need to consider

Boundary Cases

- How to deal with boundary cases?
 - Focus on boundary address.
 - → How to define the address on boundary cases.

LPHPLHB VLSI Design LAB

Final Resluts

LPHPLMB VLSI Design LAB

Final Resluts

Lab 7: Homework

- Two people for each group!
- Deadline: 05/13 (Sunday) 23:50
- Demo time : 05/14 (Monday) ~ 05/18 (Friday)
- Lab 7 Homework :
 - → Design a SIPU system based on Lab 7 's structure.
 - → Your design should be synthesized.
 - You can use behavior modeling in this problem.
- % cp -r /home/user2/vlsi18/vlsi1890/Lab7.
- ** Remember to fill out the Demo timetable on moodle
 So we can make sure that each group 's Demo time will not conflict. **

Thank you for your participation and attendance!!

