Geometría Diferencial

Ejercicios para Entregar - Práctica 3

Guido Arnone

Sobre los Ejercicios

Elejí resolver los ejercicios (2), (8) y (9).

Recuerdo primero el siguiente resultado,

Observación. Sea M una variedad y $v \in T_pM$ una derivación en un punto $p \in M$. Entonces, existe una curva suave $c : (-\varepsilon, \varepsilon) \to M$ tal que c(0) = p y c'(0) = v.

En efecto, consideremos primero una carta (U,φ) con $\mathfrak{p}\in U\subset \mathbb{R}^n$. Componiendo con una traslación (que es un difeomorfismo de \mathbb{R}^n) si es necesario, podemos suponer que $\varphi(\mathfrak{p})=0$. Ahora, como los *ganchos* de φ en \mathfrak{p} son una base para $T_\mathfrak{p}M$, existen únicos coeficientes $\mathfrak{a}_1,\ldots,\mathfrak{a}_n\in\mathbb{R}$ tales que $\mathfrak{v}=\sum_{i=1}^n\mathfrak{a}_i\frac{\partial}{\partial\varphi^i}|_\mathfrak{p}$.

Ahora, tomando $\varepsilon > 0$ suficientemente pequeño como para que $B_{\varepsilon}(0) \subset \varphi(U)$, afirmo que la curva $c: t \in (-\varepsilon, \varepsilon) \mapsto \varphi^{-1}(tv) \in M$ cumple lo pedido. En primer lugar tenemos que $c(0) = \varphi^{-1}(0) = p$. Observemos también que c es suave, pues es la composición de φ^{-1} que es suave (pues φ es una carta de M) y la curva $\gamma: t \in \mathbb{R} \mapsto t(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ que también lo es.

Por último si $g \in C^{\infty}(M)$, entonces

$$\begin{split} d_0c\left(\frac{d}{dt}\Big|_0\right)(g) &= \frac{d}{dt}\Big|_0(gc) = \frac{d}{dt}\Big|_0(g\varphi^{-1}\gamma) = \sum_{i=1}^n \frac{\partial g\varphi^{-1}}{\partial x_i}\Big|_{c(0)} \cdot \gamma_i'(0) \\ &= \sum_{i=1}^n \frac{\partial g\varphi^{-1}}{\partial x_i}\Big|_p \cdot \alpha_i = \sum_{i=1}^n \alpha_i \frac{\partial}{\partial \varphi^i}\Big|_p(g) \\ &= \left(\sum_{i=1}^n \alpha_i \frac{\partial}{\partial \varphi^i}\Big|_p\right)(g) = \nu(g). \end{split}$$

de forma que c'(0) = v.

Ejercicio 2. Sean M una variedad y $f \in C^{\infty}(M)$. Si f tiene un máximo local en $p \in M$, entonces $d_p f = 0$.

Demostración. Como p es un máximo local de f, existe un abierto $U \ni p$ tal que $f(q) \le f(p)$ para cada $q \in U$. Fijemos $v \in T_pM$. Por la observación anterior, tenemos una curva $c : (-\epsilon, \epsilon) \to M$

Guido Arnone Práctica 3

tal que c(0) = p y $c'(0) = \nu$. Además por como construimos la curva en la observación anterior, tomando un carta (V, φ) con $p \in V \subset U$ podemos más aún suponer que im $c \subset U$. En consecuencia es $fc(t) \leq f(0) = f(p)$ para cada $t \in (-\epsilon, \epsilon)$. Esto es, 0 resulta un máximo local de la curva suave $fc: (-\epsilon, \epsilon) \to \mathbb{R}$ y entonces (fc)'(0) = 0. Esto dice que

$$0 = d_0(f \circ c) \left(\frac{d}{dt} \Big|_0 \right) = d_p f \left(d_0 c \left(\frac{d}{dt} \Big|_0 \right) \right) = d_p f(c'(0)) = d_p f(\nu).$$

Como $d_p f(v) = 0$ para cada $v \in T_p M$, en efecto $d_p f = 0$.

Probamos ahora la sugerencia del ejercicio (8).

Proposición 2. Sea G un grupo de Lie, \mathfrak{g} su álgebra de Lie y $X \in \mathfrak{g}$ un campo vectorial invariante a izquierda. Si $g, h \in G$ y $\gamma : (\mathfrak{a}, \mathfrak{b}) \to G$ es una curva integral de X que arranca en $g = \gamma(0)$ entonces la curva $\mathfrak{g} : \mathfrak{g} : \mathfrak{g}$

Demostración. Como $\eta(0) = h\gamma(0) = hg$, la curva η comienza en hg. Resta ver que es una curva integral. Fijemos ahora $s \in (a, b)$. Observando que por definición $\eta = L_h \circ \gamma$, es

$$\begin{split} d_s \eta \left(\frac{d}{dt} \bigg|_s \right) &= (d_{\gamma(s)} L_h \circ d_s \gamma) \left(\frac{d}{dt} \bigg|_s \right) = d_{\gamma(s)} L_h \left(d_s \gamma \left(\frac{d}{dt} \bigg|_s \right) \right) \\ &= d_{\gamma(s)} L_h (X_{\gamma(s)}) \stackrel{(X \in \mathfrak{g})}{=} X_{h \gamma(s)} = X_{\eta(s)}. \end{split}$$

Esto es precisamente que η sea integral.

Ejercicio 8. Sea G un grupo de Lie, \mathfrak{g} su álgebra de Lie y $X \in \mathfrak{g}$ un campo vectorial invariante a izquierda. Pruebe que X es *completo* y describa el flujo asociado.

Demostración. Veamos primero que existe una curva integral definida en toda la recta que comienza en la identidad de G. Consideremos la curva integral maximal $\gamma:(a,b)\to G$ que satisface $\gamma(0)=e$. Veamos que supongamos que $b<+\infty$ y sea $\varepsilon\in(0,b)$. Ahora, definimos

$$\eta: (\alpha - \varepsilon, b - \varepsilon) \to G$$

$$t \longmapsto \gamma(t + \varepsilon)$$

que resulta suave pues es la composición de γ con la restricción de la traslación $s_{\epsilon}(t)=t+\epsilon$. Además,

Ejercicio 10. Sea $G = GL(n, \mathbb{R})$. Recordemos que podemos identificar T_IG con $M_n(\mathbb{R})$. Probar que:

- a) Para cada $A \in M_n(\mathbb{R})$, describa explicitamente el campo tangente X_A sobre G que es invariante a izquierda y tal que $(X_A)_I = A$.
- b) Determine la función exp : $T_eG \rightarrow G$.
- c) Muestre que exp : $T_eG \rightarrow G$ no es un homomorfismo de grupos.

Demostración. Hacemos cada inciso por separado.

Guido Arnone Práctica 3

a) Fijemos $A \in M_n\mathbb{R}$. Sabemos que en general, si G es un grupo de Lie, el campo tangente $X_v \in \mathfrak{X}(G)$ invariante a izquierda que vale $v \in T_eG$ en la identidad es

$$(X_{\nu})_{g} = (L_{g})_{*,e}(\nu).$$
 (1)

En este caso, la multiplicación está dada por la multiplicación matricial, y tenemos una identifiación $T_BM_n\mathbb{R} \equiv M_n\mathbb{R}$ para toda matriz B al ser $M_n\mathbb{R}$ un \mathbb{R} -espacio vectorial. Además, como la multiplicación a izquierda por una matriz fija es \mathbb{R} -lineal, bajo estas identificaciones es $L_B(C) = BC$ y $(L_B)_{*,I}(C) = BC$ para todo par de matrices B, $C \in M_n\mathbb{R}$. En este caso (1) nos dice entonces que

$$(X_A)_B = (L_B)_{*,I}(A) = BA$$

para cada $B \in M_n \mathbb{R}$.

b) Determinemos ahora $\exp: T_I M_n \mathbb{R} \to M_n \mathbb{R}$. Dada $A \in M_n \mathbb{R}$, bajo las identifiaciones de (a) la curva integral γ de X_A que comienza en I debe satisfacer la ecuación diferencial con datos iniciales dada por

$$\begin{cases} \gamma'(t) = (X_A)_{\gamma(t)} = A\gamma(t) \\ \gamma(0) = I \end{cases}$$
 (2)

La solución a ésta última es conocida, y es precisamente la curva

$$e^{t}A := \sum_{k>0} \frac{(tA)^k}{k!}.$$

En efecto, notemos que esta serie es absolutamente covergente para todo $t \in \mathbb{R}$ ya que

$$\sum_{k \geq 0} \left\| \frac{(tA^k)}{k!} \right\| = \sum_{k \geq 0} \frac{t^k}{k!} \|A^k\| \leq \sum_{k \geq 0} \frac{t^k}{k!} \|A\|^k = \sum_{k \geq 0} \frac{(\|A\|t)^k}{k!} = e^{t\|A\|} < +\infty.$$

Por lo tanto, podemos derivar término a término,

$$\frac{d}{dt}e^{tA} = \sum_{k \ge 0} \frac{d}{dt} \frac{(tA)^k}{k!} = \sum_{k \ge 0} \frac{d}{dt} \frac{t^k A^k}{k!} = \sum_{k \ge 1} \frac{kt^{k-1} A^k}{k!}$$
$$= A \sum_{k \ge 1} \frac{(tA)^{k-1}}{(k-1)!} = A \sum_{k \ge 0} \frac{(tA)^k}{k!} = Ae^{tA},$$

y es claro además que $e^{0\cdot A}=I+\sum_{k\geq 1}\frac{0^k}{k!}=I$. En conclusión, identificando $T_IM_n\mathbb{R}$ con $M_n\mathbb{R}$ obtenemos $\exp(A)=e^A$ para toda $A\in M_n\mathbb{R}$.

c) Consideremos las siguientes matrices nilpotentes de M₂R,

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$

Como $A^2 = B^2 = 0$, por un cálculo directo, es

$$\exp(A) = I + A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} y \exp(B) = I + B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

Guido Arnone Práctica 3

así que

$$\exp(A)\exp(B) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}.$$

Sin embargo, como $(A + B)^2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^2 = I$, es

$$\begin{split} exp(A+B) &= \sum_{k \geq 0} \frac{(A+B)^k}{k!} = \sum_{k \geq 0} \frac{(A+B)^2 k}{(2k)!} + \sum_{k \geq 0} \frac{(A+B)^{2k+1}}{(2k+1)!} \\ &= \sum_{k \geq 0} \frac{I}{(2k)!} + \sum_{k \geq 0} \frac{A+B}{(2k+1)!} \end{split}$$

Usando que las proyecciones a cada coordenada son continuas, vemos que

$$\pi_{21}(\exp(A+B)) = \sum_{k>0} \frac{I}{(2k)!} + \sum_{k>0} \frac{1}{(2k+1)!} = e.$$

Esto nos dice que $\exp(A+B)_{21} \neq (\exp(A)\exp(B))_{21}$ y por lo tanto $\exp(A+B) \neq \exp(A)\exp(B)$, lo que muestra que exp no es un morfismo de grupos.