Examen de Álgebra Lineal I

NOTA IMPORTANTE: El espacio máximo para escribir las respuestas es de dos folios por las dos caras. Si se envían más de dos folios, solamente se leerán los dos primeros.

1.-A) Encontrar el valor del número real m para que exista alguna matriz cuadrada

2x2 no nula
$$B \in M_{2x2}(\mathbb{R})$$
, tal que $AB = 0$, siendo $A = \begin{pmatrix} -1 & 3 \\ -2 & m \end{pmatrix}$. (1 punto)

- B) Para dicho valor de m se considera $H = \{B \in M_{2x2}(\mathbb{R}) : AB = 0\}$. Probar que H es un subespacio de la matrices 2x2 sobre \mathbb{R} , $M_{2x2}(\mathbb{R})$, y obtener una de sus bases y su dimensión. (1,5 puntos)
- 2.- A) Sean V, W dos subespacios de un espacio vectorial E. Demostrar que $dim(V+W)=dim(V)+dim(W)-dim(V\cap W)$. (2 puntos)
- B) Sean a y b números reales y consideremos los subespacios de \mathbb{R}^4 dados por las ecuaciones siguientes (respecto a la base estándar de \mathbb{R}^4)

$$V: \begin{cases} x_1 - bx_2 + x_4 = 0 \\ x_3 = 0 \end{cases} \quad W: \begin{cases} (a-1)(2x_1 - x_2) - 2x_3 = 0 \\ 2bx_1 - (a+b)x_2 + 2x_4 = 0 \end{cases}$$

Encontrar para qué valores de a y b se tiene que V = W. (2 puntos)

3.- Sea V el espacio vectorial de los polinomios reales de grado menor o igual a 2, sean:

$$p(x) = 1 + x + x^2$$
, $q(x) = 1 + 2x^2$, $r(x) = x + x^2$
 $a = (2,0,1), b = (3,1,0), c = (1,-2,3)$ pertenecientes a \mathbb{R}^3 .

Considérese la aplicación líneal $f: V \to \mathbb{R}^3$, definida por f(p(x)) = a, f(q(x)) = b, f(r(x)) = c.

- A) Hallar la matriz de f respecto a las bases $(1,x,x^2)$ de V y la canónica de \mathbb{R}^3 . (1,5 puntos)
- B) Hallar una base B en V, tal que respecto a ella y la base canónica de \mathbb{R}^3 , la matriz identidad I es la matriz asociada a f. (2 puntos)