

(1) Veröffentlichungsnummer: 0 267 396 B2

12

NEUE EUROPÄISCHE PATENTSCHRIFT

(45) Veröffentlichungstag der neuen Patentschrift: 09.02.94 Patentblatt 94/06

(51) Int. Cl.5: B65H 35/07

(21) Anmeldenummer: 87113944.0

(22) Anmeldetag: 24.09.87

- 54) Gerät zum Auftragen eines Klebstoff-Filmes.
- (30) Priorität : 13.11.86 DE 3638722
- (3) Veröffentlichungstag der Anmeldung : 18.05.88 Patentblatt 88/20
- (45) Bekanntmachung des Hinweises auf die Patenterteilung : 27.06.90 Patentblatt 90/26
- (5) Bekanntmachung des Hinweises auf die Entscheidung über den Einspruch: 09.02.94 Patentblatt 94/06
- Benannte Vertragsstaaten : AT BE CH DE ES FR GB GR IT LI LU NL SE
- (56) Entgegenhaltungen: WO-A-83/02586 DE-C-3 025 345 GB-A-1 009 607 US-A-3 930 697

- 66 Entgegenhaltungen : US-A- 3 969 180 US-A- 3 969 181 US-A- 4 112 536 US-A- 4 576 311
- (3) Patentinhaber: Pelikan Aktiengesellschaft Postfach 103, Podbielskistrasse 141 D-30001 Hannover (DE)
- 72 Erfinder: Manusch, Christoph Vossstrasse 17 D-3000 Hannover 1 (DE) Erfinder: Harp, Hans Jürgen Berliner Strasse 8 B D-3005 Hemmingen 1 (DE) Erfinder: van Swieten, Roy Dommerstraat 52 NL-5215 BP s'Hertogenbosch (NL)
- 74 Vertreter: Volker, Peter, Dr.
 Pelikan Aktiengesellschaft, Podbielskistrasse
 141, Postfach 103
 D-30001 Hannover (DE)

Die Erfindung bezieht sich auf ein Gerät zum Auftragen eines Klebstoff-Filmes gemäß dem Oberbegriff des Anspruchs 1.

Bei solchen bekannten Geräten (US-A-3 969 181, GB-A-1 009 607) sind in einer Ebene nebeneinanderliegend, ähnlich wie bei einer Tonbandkasette, eine Vorratsspule und eine Aufwickeleinrichtung angebracht. Auf der Vorratsspule ist ein einseitig mit einem Klebstoff-Film beschichtetes Trägerband aufgewickelt. Die Aufwickeleinrichtung, anfangs mit einer Tonbandkasettenleerspule vergleichbar, ist zur Aufnahme des verbrauchten Trägerbandes bestimmt. Beides ist in einem Gehäuse angeordnet, das einen Deckel aufweist, der das Auswechseln der Vorratsspule und das Entfernen des Wickels des verbrauchten Trägerbandes von der Aufwickeleinrichtung ermöglicht.

An der Außenseite des Gehäuses, und zwar an einer seiner Schmalseiten, ist eine Auftrageinrichtung angebracht. Das beschichtete Trägerband wird über die vom Gehäuse wegweisende und somit dem Substrat zugewandte Kante bzw. Seite der Auftrageinrichtung hinweggeführt. Diese Auftrageinrichtung wird auf das Substrat aufgesetzt, auf welches der Klebstoff aufzubringen ist. Durch die Relativbewegung zwischen Gerät und Substrat, und zwar in der Regel durch Bewegen des Gerätes über das ruhende Substrat, wird der Klebstoff-Film vom Trägerband getrennt, welches gleichzeitig - nun klebstoff-frei - von der Aufwickeleinrichtung wieder aufgewickelt wird.

Das Trägerband wird hierbei über eine Leiste oder drehbeweglich angeordnete Rolle strammgespannt hinweggeführt. Um die erforderliche Bandspannung zu erzielen und letztlich dann auch für einen hinlänglich strammen und sauberen Wickel auf der Aufwickeleinrichtung zu sorgen, sind Vorratsspule und Aufwickeleinrichtung durch eine Antriebsverbindung miteinander verbunden, welche eine Rutschkupplung aufweist. Die Antriebsverbindung ist hierbei so angelegt, daß, ähnlich wie bei einem Tonbandgerät, sich die Aufwickeleinrichtung so rasch zu drehen trachtet, daß sie in jedem Betriebsstadium nicht nur das von der Vorratsspule abgezogene Trägerband aufnimmt, sondern dieses auch noch strammgespannt hält.

Bei bekannten Geräten wird die Antriebsverbindung beispielsweise durch eine durchrutschende Transmission hergestellt, die als Übertragsungselement einen Riemen oder eine Spiralfederschlaufe verwendet hat, oder durch Zahnradtriebe in Verbindung mit einer separaten Rutschkupplung.

Wenn beim Auftragen der Klebstoffschicht auf ein Substrat das Gerät verkantet wird, oder ein Substrat vorliegt, welches nicht absolut eben ist oder nicht plan aufgelegt werden kann, so daß die Auftrageinrichtung nur einseitig auf dem Substrat aufliegt, dann erfolgt ein unkontrolliert s Einreißen des Klebstoff-Films. Hierdurch gelangt nicht nur weniger Klebstoff auf das Substrat als beabsichtigt, sondern außerdem kann der Abziehvorgang des Bandes von der Vorratsspule zum Stillstand kommen, oder es kann im Gegenteil am Trägerband, das weiter zur Aufwickeleinrichtung gefördert wird, noch ein nur teilwelse abgegrissener Klebstoff-Film anhaften, der seinerseits dann geneigt ist unter Umständen die im Innern des Gehäuses angeordneten Bandführungseinrichtungen und Antriebselemente zu verschmutzen oder sogar Betriebsstörungen bis zum Totalausfall zu verursachen.

Um diesem Nachteil abzuhelfen, hat man bisher jene Auflegezone der Auftrageinrichtung, die in Berührung mit dem zu beschichtenden Substrat gelangt, beiderseits zur Bewegungsrichtung des Geräts verbreitert, so daß bei verkantetem Aufsetzen des Gerätes der Klebstoff-Film noch nicht in Berührung mit dem Sutbstrat gelangt und anderereseits eine so breite Auflage geschaffen wird, daß es ohne weiteres möglich ist, das Gerät unverkantet zu halten.

Bei Klebebandspendern zur Abgabe eines Klebebandes auf ein Substrat ist es bekannt (DE-C-3,025,345), über eine an einer länglichen Blattfeder angeformte Andruckplatte das abgegebene Klebeband flach und mit geringem Druck gegen das Substrat zur Vermeidung einer Wellenbildung des Bandes beim Auftrag anzudrücken. Damit kann zwar das Band beim Auftrag geglättet werden, eine Übertragung merkliche Andruckkräfte, wie sie zum Übertragen eines Klebstoff-Filmes von einem Band auf ein Substrat erforderlich sind, ist damit allerdings nicht möglich. Auch dient bei diesem Gerät die Andruckkante nicht gleichzeitig als Umlenkelement für ein gespanntes, in das Gehäuse zurückzuführendes Trägerband. Die Problematik, die sich beim Übertragen eines Klebstoff-Filmes von einem Band auf ein Substrat, insbesondere bei verkanteter Halterung des Gerätes, ergibt, stellt sich bei diesem Gerät nicht, da der Klebstoffstreifen stets in Gänze aus dem Gerät abgegeben wird.

Nach vollzogenem Klebstofftransfer wird das gattungsgemäße Gerät vom Substrat abgehoben, wobei dem Anwender keine Kontrolle über den günstigsten Winkel der Abhebeeinrichtung und damit über den Gütegrad des Klebstoff-Filmabrisses möglich ist, der rechtwinklig zu den Seitenkanten des aufgetragenen Klebstoff-Films und vor allem im Abriß geradlinig verlaufend optimal wäre, bei den bekannten Geräten jedoch mehr oder weniger gezackt und/oder wellig verläuft, mit dem weiteren Nachteil, daß zwangsläufig auch die Startkante des nächsten Klebstofftransfers kongruent den gleichen, unregelmäßigen Kantenverlauf aufweist. Schärfer ausgebildete Klebstoffspitzen federn dann in der Regel zurück und bilden so auf dem Substrat eine Klebstoffanhäufung, die häufig ein Mehrfaches der übrigen Schichtdicke des Klebstoff-Films erreichen kann und sich in unschöner Weise auf der Oberfläche des zu verklebenden Objekts durchzeichn t.

Um diesen Nachteil zu vermeiden, wurd auch bereits vorgeschlagen, eine Bremse an Gerät n der eingangs genannten Art anzubringen, die das Nachführen des Trägerbandes hemmt und jedesmal dann von Hand zu betätigen ist, wenn der Transfer beendet werden soll.

Das Betätigen einer solchen Bremse erfordert jedoch eine erhöhte Konzentration, da unterschiedliche
Bewegungsabläufe zu koordinieren sind und schränkt
auch die ergonomischen Gestaltungsmöglichkeiten
erheblich ein, da der Bedienungsfinger immer im unmittelbaren Bereich der Auslöseeinrichtung liegen
muß und damit bei unterschiedlicher Körpergröße die
jeweilige Handfläche zwangsläufig unterschiedliche
Positionen auf der Gehäuseaußenkontur einzunehmen gezwungen ist.

Bei der Benutzung eines solchen Gerätes treten stets Randbedingungen auf, die die Hauptabmessungen des Gerätes begrenzen. Die kritischen Abmessungen sind die Höhen- und Längenerstreckung des Gerätes, in dessen Bewegungsrichtung gesehen, da diese Abmessungen die Einsatzfähigkeit des Gerätes etwa zum Beschichten der Innenoberflächen von Behältern, Kisten und dgl. begrenzen.

Diese Hauptabmessungen begrenzen ihrerseits die Größe der verwendbaren Spulen, die bisher verhältnismäßig klein sind, so daß das bekannte Gerät oft nachgeladen werden muß.

Es wäre ferner wünschenswert, daß an dem Gerät der eingangs genannten Art eine Unterbringungsmöglichkeit für einen Ersatzvorratswickel aus beschichtetem Klebeband geschaffen werden sollte. Dies ist aber deshalb problematisch, weil die bekannten Geräte mit ihren im wesentlichen parallel zur Horizontalen liegenden Achse von Vorratsspule und Wickelkern hierzu keinerlei Unterbringungsmöglichkeiten bieten. Es müßte vielmehr ein Fach oder dgl. zur Unterbringung eines solchen Ersatzwickels zusätzlich an der Außenseite des Gerätes angeformt werden, wobei dieses Fach dann einen seitlich überstehenden, stets störenden Vorsprung des Gehäuses bilden würde

Schließlich wäre es auch wünschenswert, eine Einrichtung zu schaffen, mittels der von außen her die Art des eingelegten Bandes zu sehen ist, ohne in der Materialwahl auf transparent abspritzbare Typen eingeschränkt zu sein, um die Vorratsspule durch die Gehäusewandung erkennen zu können.

Wie eingangs näher beschrieben, wird nach Aufbrauch des Vorrats beschichteten Klebebandes der Wickel des verbrauchten Trägerbandes entfernt und die leere Vorratsspule durch einen vollen Vorratswickel ersetzt. Die bekannten Geräte haben den Nachteil, daß die Auswechselmanipulationen innerhalb des Gehäuses vorgenommen werden müssen,

da, wie ebenfalls eingangs erwähnt, die Spulen, wie auch die Antriebsmechanik In das Gehäuseinnere Integriert sind und somit nur schwer zugänglich sind, s daß viel Fingerspitzengefühl für das Entfernen des leeren Bandwickels und der leeren Vorratsspule, das Einsetzen der Ersatzspul, das richtige Einl gen des Bandvorspanns in die Führungskanäle und das Befestigen des Bandanfangs an der Aufwickeleinrichtung erforderlich ist, zumal diese Geräte als Tischgeräte in Kompaktbauweise nur wenig Raum für Handhabungen im Innern des Gehäuses zulassen.

Weiter ergibt sich durch diese ungünstigen Bedingungen, daß bei irrtümlich falsch eingelegter Vorratsspule und den übrigen Handhabungen beim Einlegen des Bandes neben der bereits erwähnten Verschmutzungsgfahr durch einseitiges Aufsetzen der Auftrageinrichtung eine zusätzliche Gefahr der Verteilung von Klebstoffpartikeln im Innern des Gerätes gegeben ist, zumal die Antriebselemente offen zugänglich angeordnet sind, was auch den Einsatz extrem gut haftender Klebstoffe ausschließt, da die Antriebselemente genau auf die für einen bestimmten Klebstofftyp erforderliche Bandspannung ausgelegt sein müssen und beispielsweise ein verklebter Zahnradtrieb die Rutschkupplung in ihrer Wirktoleranz überfordern würde. Den Klebstofftyp betreffend weisen die bekannten Geräte auch keine Sicherung gegen das Einsetzen von Fremdspulen mit Klebstoffen, für die die Antriebsfunktionen nicht ausgelegt sind, auf, was dann die Funktionssicherheit stark elnschränkt und in Unwissenheit des Anwenders in der Regel der Qualität des Gerätes angelastet wird.

Der Erfindung liegt die Aufgabe zugrunde, diese Nachteile zu beseitigen und die Handhabbarkeit des eingangs genannten Gerätes zu verbessern. Hierbei soll insbesondere ein exakter, gleichmäßiger, randscharfer Klebstoffauftrag mit einwandfreier Abrißkante auch bei verkanteter Haltung des Gerätes relativ zum Substrat ermöglicht werden.

Diese Aufgabe wird durch die Merkmale des Anspruchs eins gelöst.

Durch die Maßnahme gemäß der Erfindung wird erreicht, daß bei einem verkantet auf das Substrat aufgesetzten Gerät oder, wenn das Substrat selbst einen unebenen Oberflächenverlauf aufweist, die Auftrageinrichtung sich in einer Art Pendelbewegung an das Substrat anpassen kann, um so immer einen, über die gesamte Breite des Klebebandes verlaufenden, gleichmäßigen Anpreßdruck und damit eine einheitliche Ablösung des Klebstoffes zu erzielen.

Das elastisch biegbare Zwischenstück kann in herstellungstechnischer Hinsicht in besonders einfacher Weise realisiert werden, nämlich dadurch, daß die Auftragleiste mit einer blattfederähnlichen Wandstäkrenreduzierung ausgebildet wird. Die elastische Lagerung kann auch durch zwei unmittelbar über der Auftragleiste von beiden Schmalseiten über die Fläche zur Mitte verlaufenden Einkerbungen,

ähnlich einer Wespentaille erzielt werden deren verbleibender kleinster Querschnitt so gestaltet ist, daß die Taillenbreite kleiner als die Fußdick der Auftragleist ist.

Nach einer besonders vorteilhaften Ausführungsform der Erfindung ist vorgesehen, daß zu beiden Seiten der Auftrageinrichtung Gleitkufen angeordnet sind, die relativ zur Auftrageinrichtung in Richtung senkrecht zur Substratebene beweglich sind.

Eines der wesentlichen Merkmale des Klebstofftransfers ist die randscharfe Übertragung des Klebstoff-Films auf das Substrat, worin der Vorteil dieser Art von Geräten gegenüber Klebestiften, Klebeflaschen und anderen Applikatoren liegen sollte, was bei den längs des Klebefilms verlaufenden Kanten durch das technisch perfektionierte Schneiden des Klebebandvorratswickels vorgegeben ist, jedoch bezüglich des Abrisses, also der quer zur Längsrichtung verlaufenden Anfangs- und Endkante, bei den bekannten Geräten in der gewünschten Qualität noch nicht erreicht wird. Eine schlechte Abrißkante führt wiederum zu einer ebenso schlechten Startkante des nachfolgend aufgetragenen Klebstoffstreifens. Versuche haben ergeben, daß die Güte der Abrißkante weitgehend von dem Winkel abhängig ist, unter welchem die Auftrageinrichtung von dem Substrat abgehoben wird. Durch das Vorsehen der elastisch federnden Gleitkufen wurde überraschenderweise erreicht, daß auch bei unterschiedlichen, individuellen Handhabungsarten des Gerätes stets eine gleichbleibende, optimale Abhebbewegung der Auftrageinrichtung von dem Substrat nach Auftragen eines Klebstoffstreifens erzielt wurde, so daß eine erhebliche Qualitätssteigerung der Abrißkante durch das Vorsehen der federnden Gleitkufen erreicht werden konnte.

Eine weitere Steigerung der Qualität der Abrißkante wird gemäß einer weiteren vorteilhaften Ausgestaltung dadurch erreicht, daß die Auftrageinrichtung mindestens einen Nocken aufweist, der in eine Steuerkurve der Gleitkufen eingreift. Selbstverständlich wäre es auch möglich, die Gleitkufe mit einem Nocken und die Auftrageinrichtung mit einer entsprechenden Steuerkurve zu versehen. Durch diese Maßnahme kann die Bewegung der Gleitkufen mit der elastischen Pendelbewegung der Auftragleiste gekoppelt werden, wodurch insbesondere auch die Bewegung der Auftragleiste in Abstimmung mit der Bewegung der Gleitkufe in der Endphase des Klebstoffauftrages gesteuert werden kann. Darüber hinaus kann die elastische Lagerung der Auftragleiste zur elastischen Vorspannung der Gleitkufen in Richtung des Substrates verwertet werden. Dies ist in herstellungstechnischer Hinsicht besonders vorteilhaft, da für die Vorspannung der Gleitkufen keine zusätzlichen Federteile vorgesehen werden müssen. Darüber hinaus schützen die Gleitkufen bei Nichtgebrauch die Auftragleiste, indem sie über diese hinausragen und so der Klebstoff-Film mit der Stellfläche

nicht in Berührung kommen kann. Hierdurch wird die bequeme Handhabbarkeit des Gerätes ebenfalls gesteig rt.

Vorteilhaft ist ferner, wenn nach einer weiteren Ausgestaltung der Erfindung der Nocken in der Steuerkurve einrastbar ist, um eine sichere, jedoch lösbare Verbindung zwischen den Gleitkufen und der Auftagelnrichtung herzustellen.

Nach einer weitern vorteilhaften Ausführungsform ist vorgesehen, daß die Steuerkurve so ausgebildet ist, daß bei einem Anheben der Gleitkufen in Richtung auf die Auftrageinrichtung die Auftrageinrichtung in Abziehrichtung des Bandes verschwenkt wird. Dadurch wird erreicht, daß bei Einleitung eines Klebstofftransfers zunächst das Kufenpaar das Substrat berührt, beim Niederdrücken des Gerätes die Kufen zurückweichen, während die Auftragleiste und damit das Klebeband durch die Steuerkurve schräg nach vom bewegt wird, und das Klebeband Kontakt mit dem Substrat bekommt.

Wenn gemäß einer weitern vorteilhaften Ausführungsform die Steuerkurve so ausgebildet ist, daß bei einer Verschwenkung der Auftrageinrichtung in Abziehrichtung des Bandes auch umgekehrt die Gleitkufen in Richtung auf die Auftrageinrichtung angehoben werden, so wird bei in Bewegung gesetztem Gerät das Kufenpaar durch die Steuerkurve nach oben über den Bereich des Klebstoffauftrages angehoben, so daß anschließend nur noch die Auftragleiste mit dem Klebeband das Substrat berührt und die Gleitkufen im angehobenen Zustand verbleiben. All dies geschieht ohne Zutun des Anwenders durch einfaches Aufsetzen des Gerätes und Überstreichen des Substrats.

Wird anschließend der Klebstofftransfer beendet, geschieht dies durch einfaches Abheben des Gerātes, wobei automatisch der Abrißmechanismus wirksam wird, derart, daß durch die Druckentlastung das Gleitkufenpaar wieder das Transferniveau erreicht, auf das Substrat aufsetzt und bei weiterer Entlastung die Auftragleiste durch die Kurvensteuerung schräg vom Substrat weggeführt wird, wodurch erreicht wird, daß Abriß des Klebefilms, unabhängig von der individuellen Handhabung des Anwenders, immer in dem einmal er mittelten, optimalen, durch die Formgebung der Steuerkurven festgelegten Winkelbereich erfolgt. Als weitere Vorteile der Ausbildung der Gleitkufen ist das Ausrichten des Gerätes beim Aufsetzen des Substrates zu erwähnen. Dabei werden die Gleitkufen als Ausleger wirksam und erleichtern so die Vororientierung, während sie bei dem anschließenden Klebstofftransfer, also nach erfolgter Vororientierung, nur noch vom Substrat abgehoben mitgeführt werden.

In herstellungtechnischer Hinsicht hat sich eine Ausführungsform besonders bewährt, bei der die Vorratsspule die Aufwickelhaspel, die Auftrageinrichtung und die Antriebsverbindung an einer Grundplatte an-

55

geordnet sind.

Besonders vorteilhaft ist dabei, wenn nach einer weiteren Ausführungsform der Erfindung die Gleitkufen an einem an der Grundplatte angelenkten Hebelarm angeordnet sind.

Eine auf diese Weise ausgestaltete Grundplatte kann ohne großen technischen Aufwand schwenkbar an einem Gehäuse angeordnet werden, so daß sie im herausgeschwenkten Zustand gut zugänglich ist, beispielsweise für das Nachfüllen von Trägerband und gewissermaßen mit einem Handgriff in das haubenartige Gehäuse zurückgeschwenkt werden kann.

Zur Verriegelung der Grundplatte in dem Gehäuse ist es besonders vorteilhaft, wenn nach einer weiteren vorteilhaften Ausführungsform der Erfindung das Gehäuse einen hinterschnittenen Durchbruch aufweist, der vorzugsweise kreisbogenförmig ist, mit dem eine kreisbogenformige Zunge des Hebelarm bei in das Gehäuse eingeschwenkter Grundplatte verriegelbar ist. Bei dieser Bauweise kann somit der Hebelarm sowohl als Träger für die Gleitkufen wie auch als Verschlußkappe verwendet werden, die etwa in der Mitte einer Seite der Grundplatte gelagert ist. Die kreisbogenförmige Zunge greift im verriegelten Zustand, vergleichbar mit dem Verschluß eines Stahlblech-Benzinkanisters, in den Gehäusedurchbruch ein und stellt eine sichere Verbindung zwischen dem Gehäuse und der Grundplatte her. Wenn die an der Auftrageinrichtung angeordneten Nocken in die Steuerkurve einrasten, ist somit bereits eine sichere Verbindung hergestellt und der Hebel kann nicht in die Offenstellung zurückkehren. Wenn die kreisbogenförmige Verschlußzunge und das Gehäuse zumindest im Bereich des hinterschnittenen Durchbruches in Kontrastfarben gehalten werden, so kann der Benutzer ohne weiteres das Verschlußprizip erkennen und ohne Studium der Bedienungsanleitung den Verschluß bedienen.

Im Hinblick auf eine erleichterte Handhabbarkeit beim Auftragen des Klebstoffes hat sich eine Ausführungsform als besonders vorteilhaft erwiesen, bei der die Grundplatte (sowie das daran angepaßte Gehäuse) die Form eines schiefwinkligen Dreieckes aufweist, wobei an einer Ecke mit spitzem Winkel die Da die Auftrageinrichtung angeordnet ist Auftrageinrichtung als Auftragleiste ausgebildet ist, stellt diese Leiste die spitzwinklige Ecke des Dreieckes dar, so daß das Klebstoffträgerband gut dargeboten wird und insbesondre auch an Innenseiten von Behältern und dgl. gearbeitet werden kann. Durch diese Formgebung wird erreicht, daß ein die Funktionsteile umhüllendes Gehäuse ergonomisch optimal in Form eines Faustkeiles gestaltet werden kann, und daß die spitzwinklige Anordnung der Auftrageinrichtung einen zielgenauen Transfer des Klebstoffes auf das Substrat ermöglicht.

Nach einer weitem vorteilhaften Ausführungsform wird die Vorratsspule möglichst nahe an der Auftrageinrichtung angeordnet, d. h. in dem kleinstmöglichen Abstand, die eine volle Vorratsspule zuläßt. Der Drehpunkt der Vorratsspule liegt dabei etwa auf der Winkelhalbierenden des genannten spitzen Winkels des Dreiecks.

Im Bereich des stumpfen Winkels des Dreiecks ist nach einer weiteren vorteilhaften Ausführungsform die Anordnung der Aufwickelhaspel für das verbrauchte Trägerband vorgesehen. Für dieses wird weniger Platz benötigt, da wegen der zwischenzeitlich transferierten Klebstoffschicht das Trägerband weniger Raum einnimmt. Im Bereich des zweiten spitzen Winkels des Dreiecks ist unmittelbar anschließend an die Vorratsspule eine Kammer mit zylindrischem Freiraum für eine Ersatzspule vorgesehen. Die Seite zwischen den beiden spitzen Winkeln der dreieckförmigen Grundfläche wird vorzugsweise als Abstellfläche für das Gerät verwendet. Bei der oben beschriebenen Bauweise wird ereicht, daß bei äußerster Raumnutzung eine zusätzliche Kammer für die Aufnahme einer Ersatzvorratsspule bei äußerst geringen Außenabmessungen des Gehäuses realisiert werden kann. Darüber hinaus ermöglicht die Bauweise, daß zusätzlich im Bereich zwischen der Vorratsspule und der Ersatzspule Raum für die Unterbringung eines zuverlässigen Gehäuseverschlußsystems geschaffen ist.

Die Antriebsverbindung zwischen der Vorratsspule und der Aufwickelhaspel ist nach einer weiteren vorteilhaften Ausführungsform der Erfindung in einem verschlossenen Hohlraum der Grundplatte angeordnet. Durch diese Abkapselung der Antriebsverbindung ist diese vor Verschmutzung durch Klebstoffpartikel geschützt. Für den Fall, daß dennoch Klebstoffreste auf die Oberfläche der Grundplatte gelangen können, können diese mit einem Reinigungsmittel leicht entfernt werden, wozu es besonders vorteilhaft ist, wenn die Materialien reinigungsmittelbeständig sind, wie beispielsweise Polyolefine.

Die Antriebsverbindung wird üblicherweise so ausgelegt, daß von der Aufwickelhaspel immer ein Zug auf das Band ausgeübt wird, sei es durch eine durchrutschende Transmission oder durch einen Zahnradtrieb mit einer Rutschkupplung. Dieser Zugspannung trachtet jedes Antriebselement entspannend entgegenzuwirken, derart, daß sich die Vorratsspule und der Wickel des verbrauchten Trägerbandes entgegen der Betriebsdrehrichtung bis zum Abbau der Zugspannung zurückdreht und so das Band lockert. Wird nun noch das Gerät beim Klebstofftransfer, sei es aus Versehen oder in Unkenntnis der Betriebsanleitung, in entgegengesetzter Richtung über das Substrat geführt, so würde das Band derart gelockert, daß eine Schleifenbildung die Folge wäre und damit Klebstoff von dem Bandabschnitt zwischen der Vorratsspule bis zur Auftrageinrichtung an das Innere des Gerätes gelangen könnte. Um diese unerwünschte Schleifenbildung zu vermeiden, ist nach ei-

55

ner weiteren vorteilhaften Ausführungsform der Erfindung vorgesehen, daß die Antriebsverbindung mit einer Rücklaufsperre versehen wird. Hierdurch wird mit einfachen und kostengunstig herzustellenden Mittein sichergestellt, daß das Band stets straff gespannt bleibt. Im Gegensatz zu herkömmlichen Geräten, bei denen eine zusätzliche durch den Anwender zu bedienende Bremse vorgesehen ist, arbeitet die Rücklaufsperre vollkommen selbsttätig. Als Rücklaufsperre kann beispielsweise ein Zahnrad mit einer in die Zähne eingreifenden federnden Zunge vorgesehen sein. Dadurch, daß durch die Rücklaufsperre das Band stets straff gehalten wird, ist auch gewährleistet, daß beim Ansetzen des Gerätes zu Beginn des Transfervorgangs, der Klebstoffstreifen mit einer randscharfen Anfangskante hergestellt werden kann.

Nach einer weitern vorteilhaften Ausführungsform der Erfindung ist die Rutschkupplung zwischen dem Vorratsspulenaufnahmendorn und einem diesen tragenden Antriebszahnrad angeordnet. Besonders vorteilhaft ist dabei, wenn der Vorratsspulenaufnahmedorn innen als Keilnabe ausgebildet ist, in dessen Verzahnung schräggestellte, federnde Klinken eingreifen, die an dem den Vorratsspulenaufnahmedorn tragenden Antriebszahnrad befestigt sind. Durch das vorgeschlagene Rutschkupplungsssystem, bestehend aus der Keilnabe und den federnden Klinken, wird erreicht, daß sich bei kontinuierlichem Bandabzug in der Größenordnung der Verzahnungsteilung periodisch Widerstandsspitzen einstellen, die auf die Klebstoffqualität eingestellt, eine zusätlich von Hand zu betätigende Bremsvorrichtung bekannter Geräte erübrigt, wobei der Wickelsprung nach Überwindung einer jeden Widerstandsspitze, dem ein Lockern der Bandspannung folgen würde, durch die elastisch gelagerte Auftrageinrichtung ausgeglichen wird und so eine immer gleichbleibende Bandspannung erzielt

Man erreicht weiter durch eine Schrägstellung der federnden Kinken, je nach Drehrichtung, bei geschleppten Klinken einen niedrigeren Rutschwiderstand und bei geschobenen Klinken einen höheren Widerstand, der dahingehend genutzt werden kann, daß der Transferbetrieb beim höheren Drehwiderstand und der Rücklauf, der dem Spannen des Bandes beim Bandwechsel durch Drehen der Aufwickelhaspel entspricht, dem niedrigeren Widerstand zugeordnet wird, so daß bei einem Wechsel der Vorratsspule das Spannen des Bandes mit geringem Kraftaufwand zu bewerkstelligen ist.

Zur Verbesserung der Handhabbar keit des Gerätes trägt weiter hin bei, wenn nach einer weiteren vorteilhaften Ausführungsform das Gehäuse mindestens ein dem Wickel der Vorratsspule und/oder der Leerspule gegenüberliegendes Schauloch aufweist, so daß der verfügbare Vorrat des Klebebandwickels jederzeit durch den Benutzer kontrolliert werden kann. Auch kann der Spulenkern der Vorratsspule,

der ebenfalls im Bereich des Schauloches liegen kann, mit einem Farbcode versehen s in, der die Klebstoffart, beispielsweise Permanent der Nichtpermanent, anzeigt Das Schauloch liegt vorzugsweise außerhalb desjenigen Bereiches, der bei der Bedienung des Gerätes von der Hand des Anwenders abgedeckt wird. Vorzugsweise ist das Schauloch rechteckig und seine Schmalseiten laufen parallel zur Radiuslinie der Vorratsspule, so daß sich das Rechteck in Längsrichtung über den gesamten Bereich der Wickelhöhe einschließlich des Wickelkerns der Vorratsspule erstreckt.

Nach einer weiteren vorteilhaften Ausführungsform ist das Gehäuse flach ausgeführt und an einer Schmalseite oberhalb der Auftragseinrichtung ist eine vorstehende, höckerförmige Fingerauflage vorgesehen. Diese, in ergonomischer Hinsicht besonders vorteilhafte Gestaltung des Gehäuses ist an die menschliche Handfläche in "Pfötchen-Griff-Haltung" angepaßt. Durch die Verrundung der Konturen des Basisdreiecks zusammen mit der angeformten höckerförmigen Nase als Fingerbremse oder Fingerauflage, deren Verrundungsradien sich von der Fingerauflage ausgehend nach hinten vergrößern, wird erreicht, daß die Konturencharakteristik bei Personen unterschiedlicher Handgröße geometrisch ähnlich bleibt und somit eine optimierte Gehäuseform für alle Handgrößen und auch annähernd ähnliche Druckverteilungen gewährleistet werden.

Die Erfindung wird im folgenden anhand des in den Figuren schematisch dargestellten Ausführungsbeispieles näher erläutert. Es zeigt:

FIGUR 1: ein Gerät zum Auftragen der Klebstoffschicht gemäß der Erfindung im Betrieb;

FIGUR 2: das Gerät in Figur 1, jedoch mit zurückgeklapptem Gehäuse;

FIGUR 3: die Grundolatte des Gerätes mit aufgesetzter Antriebsverbindung in der Draufsicht;

FIGUR 4: einen Vorratsspulenaufnahmedorn in der Draufsicht, im Teilaxialschnitt und in Teilseitenansicht;

FIGUR 5; einen Wickelkern einer Vorratsspule in einer Ansicht von unten und im Axialschnitt;

FIGUR 6: eine Ansicht des Gerätes gemäß Figur 1 von vorne gesehen.

In Figur 1 ist ein Substrat 1 zu erkennen, das bereits teilweise mit einer Klebstoffschicht 25 versehen ist. Das Gerät zum Auftragen der Klebstoffschicht weist ein Gehäuse 2 auf, das in der Ansicht der Figur 1 etwa die Form eines spitzwinkligen Dreiecks hat. Das Gerät weist eine Dicke von 1,5 bis 2,5, vorzugsweise 2 cm auf und kann mit der Hand wie ein Faustkeil gehalten werden, wobei zur Auflage des Zeigefingers eine höckerförmige Fingerauflage 24 dient. Zum Auftragen der Klebstoffschicht 25 wird das Gerät mit seinem Gehäuse 2 gegen das Substrat 1 gedrückt, so daß das über eine Auftragleiste 6 geführte Klebstoffträgerband 4 gegen das Substrat gepreßt wird und

55

30

dort haften bleibt. In diesem Zustand des Auftragbetriebes werden gabelförmig zu beiden Selten der Auftragleiste 6 angeordnete Gleitkufen 13, von denen in Figur 1 nur eine zu erkennen ist, vom Substrat abgehoben. Zum Abheben der Gleitkufen 13 dient ein mit der Auftragleiste 6 verbundener Nock n 14, der in eine entsprechende Steuerkurve der Gleitkufe 13 eingreift. Dies wird weiter unten noch näher erläutert. Dadurch, daß die Auftrageinrichtung 6 in einer Ecke mit spitzem Winkel angeordnet ist, kann mit dem Gerät auch an verhältnismäßig schwer zugänglichen Stellen, wie beispielsweise im Innern eines Behälters, punktgenau gearbeitet werden.

Figur 2 zeigt das Gerät gemäß Figur 1 mit weggeklapptem Gehäuse 2. Durch das Wegklappen des Gehäuse 2 wird eine Grundplatte 16 sichtbar, auf der drehbar gelagert - eine Vorratsspule 3 für ein mit Klebstoff beschichtetes Trägerband 4 angeordnet ist. Die Vorratsspule 3 besteht aus dem Bandwickel 3a und dem Wickelkern 3b. Der Wickelkern 3b sitzt auf einem Vorratsspulenaufnahmedorn 22. Auf der Grundplatte 16 ist des weiteren - ebenfalls drehbar gelagert - eine Aufwickelhaspel 5 zur Aufnahme des von der Klebstoffschicht befreiten Trägerbandes 4b vorgesehen. Die Aufwickelhaspel 5 weist einen Bandaufnahmeschlitz 26 in Zickzack-Form mit Einführschräge und einen Drehgriff 35 auf. Die Vorratsspule 3 und die Aufwickelhaspel 5 sind über eine Antriebsverbindung mit Rutschkupplung, die weiter unten beschrieben wird, antriebsmäßig verbunden.

Auf der Grundplatte 16 ist des weiteren eine Bandleiteinrichtung 27 befestigt. Die Bandleiteinrichtung 27 geht einstückig an ihrem der ersten spitzwinkligen Ecke der Grundplatte 16 zugewandten Ende in eine Auftragleiste 6 über, die mit der Bandleiteinrichtung 27 über ein Zwischenstück 12 mit verdünnter Wandstärke derart verbunden ist daß die Auftragleiste 6 unter elastischer Verformung des Zwischenstückes 12 eine Pendelbewegung, eventuell auch mit leichter Torsion, durchführen kann. An der Auftragleiste 6 sind zwei sich in Richtungsenkrecht zur Ebene der Grundplatte 16 ersteckende Nocken 14 befestigt, von denen in Figur 2 nur einer zu erkennen ist.

Auf der Grundplatte 16 ist des weiteren im Bereich der zweiten Ecke mit spitzem Winkel eine Aufnahmekammer 20 für eine Ersatzvorratsspule (nicht dargestellt) angeordnet. Die Kammer 20 ist an ihrer Schmalseite, die zwischen der Ecke mit stumpfem Winkel und der zweiten Ecke mit spitzem Winkel der dreieckförmigen Grundplatte 16 liegt, offen, so daß von dort nach weggeklapptem Gehäuse 2 die Ersatzvorratsspule leicht entnommen bzw. eingelegt werden kann. Auf der oberen Fläche der Kammer 20 ist eine Kurzbedienungsanleitung angebracht, die jedoch aus Gründen der Übersichtlichkeit der Darstellung in Figur 2 nicht gezeichnet ist.

Wie in Figur 2 zu erkennen ist, wird das mit Kleb-

stoff beschichtete Trägerband 4a von der Vorratsspule 3 abgezogen und über di Auftragleiste 6 geleitet. Danach wird s-von Klebstoff befr it-üb r die Bandleiteinrichtung 27 bis in die Nähe der Aufwickelhaspel 5 geführt. die Drehrichtung der Aufwickelhaspel 5 ist wie weiter unten noch näher erläutert wird - so ausgelegt, daß die Seite des Bandes, die mit Klebstoff beschichtet war, mit der Oberfläche der Haspel in Kontakt gebracht werden kann.

An der Seite der dreieckförmigen Grundplatte 16, die zwischen den beiden Ecken mit spitzem Winkel liegt, ist etwa in der Mitte ein Hebel 17 angelenkt, der in Richtung des eingezeichneten Pfeiles F verschwenkbar ist. An seinem freien Ende weist der Hebel zwei in Richtung auf das Substrat weisende Gleitkufen 13 auf, die die Auftragleiste beidseitig gabelförmig umschließen, wenn der Hebel entgegen der Pfeilrichtung in Richtung auf die Grundplatte 16 verschwenkt ist. Die Wandung der Gleitkufen 13 ist des weiteren mit einer als Steuerkurve 15 wirkenden Ausnehmung versehen, in die jeweils der an der Auftragleiste 6 befestigte Nocken 14 einrastbar ist. Die Funktion der Steuerkurve wird weiter unten beschrieben. An der Außenwandung der Gleitkufen 13 ist eine Riffelung 28 angebracht, damit der Anwender den Hebel 17 mit den Fingern sicher greifen kann. In der Nähe des Anlenkpunktes des Hebels 17 ist dieser mit einer kreisbogenförmiger Zunge 19 versehen, die senkrecht von dem Hebel 17 in Richtung auf die Grundplatte 16 ausgeht und deren Kreisbogenform so gewählt ist, daß der Krümmungsmittelpunkt des Kreisbogens etwa mit dem Anlenkpunkt des Hebels 17 übereinstimmt. In der Ecke, in der die Kammer 20 für die Ersatz-Vorratsspule vorgesehen ist, ist das Gehäuse 2 angelenkt.

Das Gehäuse 2 besteht im wesentlichen aus zwei etwa dreieckförmigen Platten, die an zwei Außenschmalseiten miteinander verbunden sind und deren Form etwa der Form der Grundplatte 16 entspricht. An derjenigen Schmalseite, die bei geschlossenem Gehäuse im Bereich ober halb der Auftrageinrichtung 6 liegt, ist eine Fingerauflage 24 vorgesehen. An derjenigen Seite, die bei geschlossenem Gehäuse im Bereich des Hebels 17 liegt, ist ein an die Form der kreisbogenförmigen Zunge 19 angepaßter Durchbruch 18 vorhanden. Das Gehäuse umschließt somit die Grundplatte 16 haubenartig. Die Ausführung des Außengehäuses als Haube hat den Vorteil, daß diese, besonders unter Berücksichtigung größer Entformungsschrägen für Spritzgießteile mit strukturierter Oberfläche und entgegen einem Verschluß-Deckel, mit größeren Kantenverrundungen versehbar, absolut symmetrisch ausgebildet werden kann, wodurch für Rechts- und für Linkshänder das gleiche Handlinbg gewährleistet ist.

Das Gerät wird wie folgt bedient:

Zum Offnen des Gerätes wird der Hebel 17 an der Riffelung 28 und der entsprechenden - in der Figur 2 nicht erkennbaren - Riffelung an der anderen Seite mit Daumen und Zeigefinger gegriffen und in Richtung des gezeigten Pfeiles F verschwenkt. Dabei rasten die Nocken 14 aus der Steuerkurve 15 unter leichter Verformung des elastischen Zwischenstückes 12 der Auftragleiste 6 aus. Der Hebel 17 wird dann soweit in Richtung des Pfeiles F verschwenkt, bis die kreisbogenförmige Zunge 19 vollständig aus dem Durchbruch 18 des Gehäuses 2 herausgezogen ist, so daß das Gehäuse 2 in die in Figur 2 gezeigte Position geschwenkt werden kann. In dieser Position ist das Innere des Gerätes vollkommen zugänglich, soweit dies für einen Wechsel des Trägerbandes oder für Reinigungsarbeiten erforderlich ist. Die Vorratsrolle 3 wird auf den Vorratsspulenaufnahmedorn 22 gesetzt. Mit diesen steht sie über eine Mitnehmerverbindung nach Art eines Keilwellen-Keilnaben-Profils, wie weiter unten genauer beschrieben, in Verbindung. Das Trägerband 4 wird dann wie in der Figur 2 ohne weiteres zu erkennen ist, über die Auftragleiste 6 gezogen und bis zur Aufwickelhaspel 5 geführt, wo es in den Aufnahmeschlitz 26 eingeführt werden kann. Durch einige Umdrehungen der Aufwickelhaspel 5 wird das Bandende an dieser sicher befestigt. Die Befestigung des Bandendes ist auch ohne Gebrauch des Aufnahmeschlitzes 26 möglich. Die Seitenidentität von Klebebandbeschichtung und Aufwickelhaspeloberfläche hat den Vorteil, daß bie einer manuellen, wie auch automatischen Erstbestückung das Band selbst oder ein vorgeschaltetes Vorspannband mit, aus fertigungstechnischen Gründen vorzugsweise auf der gleichen Seite versehenem Haftfilm, an die Aufwickeleinrichtung geheftet werden kann, ohne in aufwendiger Weise durch Drehen der Haspel den Aufnahmeschlitz ausrichten und das Bandende einführen zu müssen, wobei dem Anwender für spätere Vorratsspulen-Wechsel alternativ der zusätzliche Aufnahmeschlitz zur Verfügung steht, dessen zickzackförmige Gestaltung das Bandende in Position hält, bis es durch Drehen der Haspel mittels des oben erwähnten Drehgriffs, dank der speziellen Anordnung der federnden Klinken, mit geringem Kraftaufwand vorgewickelt und gespannt wird.

Die Vorratsspule 3 steht mit der Aufwickelhaspel 5 über eine Rutschkupplung in Antriebsverbindung, wie ebenfalls weiter unten im Detail erläutert wird.

Zum Schließen des Gerätes wir zunächst das Gehäuse 2 entgegen der eingezeichneten Pfeilrichtung G auf die Grundplatte 16 zurückgeschwenkt, so daß die beiden Seitenflächen des Gehäuses 2 die Grundplatte und die auf ihr angeordneten Bauteile vollkommen umschließen. Danach wird der Hebel 17 entgegen der eingezeichneten Pfeilrichtung F zurückgeschwenkt, so daß die kreisbogenförmige Zunge 19

nach Art eines Blechkanisterverschlusses in die Durchbrüche 18 in den Gehäusewandungen 2 eingreift und das Gehäuse in der Verschlußpositi n verriegelt. Der Hebel 17 wird soweit in Richtung auf die Grundplatte 16 geschoben, bis di Nocken 14 in die Steuerkurve 15 unter leichter Verformung des elastischen Zwischenstückes 12 der Auftragleiste 6 einrasten.

Beim Auftragen von Klebstoff auf ein Substrat (vgl. Figur I) wird das Gerät wie in Figur 1 gezeigt, auf das Substrat gedrückt, wobei zuerst die Gleitkufen 13 das Substrat berühren. Durch weiteres Niederdrücken des Gerätes in Richtung auf das Substrat wird der Hebel 17 weiter in Richtung auf die Auftragleiste verschwenkt, bis die Auftragleiste 6 über das Niveau der Gleitkufen 13 vorsteht und das mit Klebstoff beschichtete Trägerband 4a dem Substrat darbietet. Durch die Wahl der Form der Steuerkurve 15 in der Seitenwandung der Gleitkufen 13 wird die Auftragleiste über die Nocken 14 nach vorne, d.h. entgegengesetzt zur Bewegungsrichtung des Gerätes, bewegt. Dieselbe Auslenkung erfährt die Auftragleiste 6, wenn das Gerät über das Substrat gezogen wird. Die Wahl der Form der Steuerkurve 15 bedingt in diesem Fall, daß die Gleitkufen 13 angehoben werden und nur die Auftragleiste 6 mit dem über sie laufenden Trägerband 4 mit dem Substrat 1 in Berührung kommt (vgl. Figur 1). Unebenheiten des Substrates werden beim Klebstofftransfer durch die elastische Lagerung 12 der Auftragleiste 6 ausgeglichen, so daß eine randscharfe Klebstoffübertragung möglich ist. Nach Beendigung des Klebstofftransfervorganges federt die Auftragleiste 6 in ihre Gleichgewichtslage zurück, wobei die Gleitkufen 13 über die Nocken 14 und die Steuerkurve 15 in Richtung auf das Substrat bewegt werden und über die Auftragleiste 6 hinausragen, so daß die Auftragleiste 6 von dem Substrat abgehoben wird. Dieses Abheben der Auftragleiste 6 erfolgt entsprechend den durch die Geometrie des Gerätes vorgegebenen Bedingungen, die so gewählt sind, daß eine optimale Abrißkante des Klebstoffes gewährleistet ist. Die Abrißbedingungen sind somit in weiten Grenzen unabhängig von der Art der Handhabung des Gerätes durch den Benutzer.

Nachfolgend wird die Antriebsverbindung zwischen der Vorratsspule und der Aufwickelhaspel unter Bezugnahme insbesondere auf Figur 3 erläutert. Die Grundplatte 16 ist doppelschalig ausgeführt, so daß in dem Hohlraum zwischen den beiden Schalen Zahnräder für die Antriebsverbindung zwischen der Vorratsrolle 3 und der Aufwickelhaspel 5 untergebracht werden können. Durch die nahezu hermetische Abkapselung der aus Zahnräder bestehenden Antriebsverbindung wird sichergestellt, daß keine Klebstoffreste an die Zahnräder gelangen und ihre Funktion stören können. In Figur 3 ist die obere Halbschale der Grundplatte 16 abgenommen, so daß nur

30

noch die untere Halbschale 16a zu erkennen ist Dadurch sind drei Zahnräder sicht bar, nämlich die Zahnräder 7, 8 und 9. Auf dem Zahnrad 7, das unterhalb der Vorratsrolle 3 liegt, sind fünf sich in Umfangsrichtung erstreckende federnde Klinken 10 angeordnet, die Teil einer Rutschkupplung sind. Das Zahnrad 7 kämmt mit einem Zwischenzahnrad 8, das weniger Zähne und einen kleineren Druchmesser aufweist. Das Zwischenzahnrad 8 kämmt wiederum mit einem noch kleineren Zahnrad 9. Das Zahnrad 9 ist einstückig mit der bereits beschriebenen Aufwickelhaspel 5. In die Zähne des Zwischenzahnrades 8 greift eine an der Halbschale 16a angeordnete Federzunge nach Art eines Richtgesperres ein. Durch die Wahl des Übersetzungsverhältnisses wird erreicht, daß sich die Aufwickelhaspel stets ausreichend genug schnell drehen kann, um das von der Vorratsrolle 3 abgezogene Band aufzuwickeln und zu spannen. Die aus dem Zwischenzahnrad 8 und der Federzunge 21 bestehende Rücklaufsperre sorgt dafür, daß das Band 4 stets straff gehalten und eine Gerät bedienung mit Klebstoffauftrag in der "falschen" Richtung vermieden wird. Die zweite in Figur 3 nicht enthaltene Halbschale der Grundplatte 16 wird über eine Hülsen-Zapfen-Steckverbindung (nicht dargestellt) in bekannter Weise auf der Halbschale 16a befestigt. Sie weist zu dieser im Bereich der Zahnräder 7, 8 und 9 nur einen geringen Abstand von wenigen Millimetern auf, der ausreicht, um die Zahnräder 7, 8, 9 aufzunehmen, während in dem übrigen Bereich zur Bildung der Aufnahmekammer 20 (in Figur 2) für die Ersatzspule der Abstand zwischen beiden Gehäusehalbschalen vergrößert ist.

Der Vorratsspulenaufnahmedorn 22 wird nachfolgend anhand der Figur 4 erläutert. In der linken Hälfte der Figur 4 ist der Aufnahmedorn 22 in der Draufsicht dargestellt, während die rechte Hälfte der Figur 4 den Aufnahmedorn teilweise im Axialschnitt und teilweise in der Seitenansicht zeigt. Der Vorratsspulenaufnahmedorn 22 besteht im wesentlichen aus einem zylindrischen Teil 29, dessen Höhe etwa der Breite des Klebstoffträgerbandes 4 entspricht. Der zylindrische Teil 29 ist durch eine Deckplatte 30 an einer Stirnseite abgeschlossen. An dem offenen Ende geht der zylindrische Teil 29 in einen erweiterten Auflageflansch 31 über. Am Außenmantel des zylindrischen Teils 29 sind Rippen 32 angeformt, deren Höhe, d.h. deren Abmessung in Radialrichtung, sich in Richtung auf das durch die Deckplatte 30 verschlossene Ende des Aufnahmedorns 22 verkleinert, so daß sich eine konisches Außenprofil ergibt. An der Innenwandung des Aufnahmedorns 22 im Bereich des Auflageflansches 31 sind Axialrillen 11 vorgesehen. Der Vorratsspulenaufnahmedorn 22 liegt auf dem Zahnrad 7 (Figur 3) auf. Dabei greifen die elastischen Klinken 10 in die Axialrillen 11 ein und bilden mit diesen eine Rutschkupplung. In Axialrichtung wird der Aufnahmedorn 22 durch die obere Halbschale der

Grundplatte 16 gehalten, die zu diesem Zweck ine kreisförmige Ausnehmung aufweist, deren Durchmesser etwas kleiner als der Durchmesser des Auflageflansches 31 ist.

Der Wickelkern 3b d r Vorratsspule 3 wird nachfolgend anhand von Figur 5 beschrieben. Die linke Hälfte der Figur 5 zeight den Wickelkern in einer Ansicht von unten, die rechte Hälfte im Axialschnitt. Der Wickelkern 3b besteht aus einem zylindrischen an beiden Stirnseiten offenen Teil, über dessen Außenumfang das Klebstoffträgerband (in Figur 5 nicht dargestellt) gewickelt ist. An der Innenwand sind in gleichmäßigem Umfangsabstand Rippen 33 angeordnet, deren Breite kleiner als der Abstand der Rippen 32 am Außenumfang des Aufnahmedorns 22 ist. Der Wickelkern 3b weist des weiteren an einer Stirnseite einen Innenringbund 34 auf. Die Vorratsspule 3 mit ihrerr Wickelkern 3b kann auf dem Vorratsspulenaufnahmedorn 22 unter leichtem Spiel aufgesetzt werden wobei die Rippen 32 des Aufnahmedornes 22 mit der Rippen 33 des Wickeikernes 3b eine formschlüssige Mitnehmerverbindung nach Art einer KeilwellenKeilnaben-Verbindung herstellen. Durch die konische Abflachung der Rippen 32 des Aufnahmedorns 22 wird das Aufsetzen erleichtert. Da der Innendurchmesser des Innenringbundes 34 kleiner ist als der Durchmesser des Hüllkreises der Rippen 32 des Aufnahmedornes 22, kann der Innenring bund 34 nicht über die Rippen 32 des Aufnahmedornes 22 geschoben werden.

Durch diese Anordnung wird erreicht, daß der Innenbund des Vorratsspulenkerns bei dem Versuch, die Vorratsspule versehentlich falsch einzusetzen, durch die Stirnflächen der zurückgesetzten Vorratsspulenaufnahmerrippen gestoppt wird und damit ein Einsetzen der Vorratsspule mit falscher Abzugsrichtung unmöglich gemacht wird, was einerseits das funktionsgerechte Einsetzen sichert und andererseits ein Verschmutzen des Gerätes durch Klebstoffübertragung, was bei falsch eingesetzter Spule durch die zwangsläufigen Manipulationen mit dem Klebeband unvermeidbar wäre, ausschließt, wobei durch den Sitz des Vorratsspulenkerns 3b auf dem Aufnahmedorn, der ausschließlich durch Rippen-Nut-Kontakte mit zylindrischen Hüllflächen bestimmte wird, eine axiale Kraftkomponente entstehen kann, die ein seitliches Abdrängen der Vorratsspule zur Folge hätte, während die konische Wirk-Hüllfläche des Vorratsspulenaufnahmedorns 22 jedoch verhindert, daß der Anwender Vorratsspulen einzusetzen versucht, für deren Abmessungen und auch Klebstoffeigenschaften das Gerät nicht konzipiert ist.

In Figur 6 ist das fertig zusammengesetzte Gerät in einer Frontansicht (in Figur I von links gesehen) dargestellt. Es ist das Gehäuse 2 mit der Fingerauflage 24 zu erkennen. Im Bereich der Trägerbandführung ist das Gehäuse offen, so daß beobachtet werden kann, wie das Trägerband 4 von der Auftragleiste

25

35

40

45

50

6 kommend über die Bandleiteinrichtung 27 geleitet wird. In der Figur 6 sind auch die an dem Hebel 17 zu beiden Seiten angeordneten Gleitkufen 13 zu erkennen, die die Auftragleiste 6 beidseitige gabelförmig umschließen. Ferner sind die beidseitigen Nock n 14 zu sehen, die in Steuerkurven in der Seitenwandung der Gleitkufen 13 eingreifen.

Gemäß einer nicht dargestellten Ausführungsvariante ist vorgesehen, daß, unter Beibehaltung aller übrigen Funktionen, Vorratsspulenaufnahme und Aufwickelkern in Mitnehmerstifte umfunktioniert sind und Getriebekastenoberteil. Rücklaufsperre, Auftrageinrichtung und Bandleiteinrichtung, ergänzt durch eine Abdeckung, zu einer Kassette zusammengefaßt werden, wobei diese Kassette eine volle Vorratsspule enthält, deren Vorlaufband bereits an einer zusätzlichen Leerspule befestigt ist und beide Spulenkerne profilierte Aufnahmebohrungen aufweisen, die in ihrer Kontur auf die An- und Abtriebs-Mitnehmerstifte des verbliebenen Getriebes abgestimmt sind, während die Rücklaufsperre gesplittet, einteilig in das Unterteil der Kassette integriert, in zusätzlich an den vorzugsweise gleich gestalteten Spulenkemen angeformte Verzahnungen eingreifen. Für die Kassettenabdeckung ist ein Durchbruch kongruent zum Schauloch der Gehäusehaube vorgesehen.

Dadurch wird erreicht, daß ähnlich einer Farbbandkassette, in einfacher Weise das gesamte Nachfüllhandling durch einen Kassettenwechsel bewerkstelligt werden kann, das Anheften oder Einsetzen des Vorlaufbandes an eine Aufwickelhaspel entfällt und der Zahnradtrieb nicht mehr verkapselt zu sein braucht, da eine Verschmutzungsgefahr nicht mehr gegeben ist, während eine geringe Verschmutzung des Kassetteninneren akzeptiert werden kann, da Versuche ergeben haben, daß der Durchlauf nur eines Bandes, mit dem damit begrenzten Anfall möglicher Klebstoffpartikel, bewältigt wird, auch, weil sich keine Funktionsteile im Inneren der Kassette befinden.

Durch die Splittung der Rücklaufsperre wird erreicht, daß Vorratsspule wie Leerspule gegen ein Lockern des Bandes gesichert sind, insbesondere in der Phase der Bevorratung, in welcher die Spulen nicht mit einem Getriebe in Kontakt stehen und der Durchbruch in der Kassettenabdeckung sichert auch bei dieser Variante die Kontrolle des Klebebandvorrates, wie in der Art des geladenen Klebebandes.

Bezüglich des Bandwechselhandlings sollte neben den beschriebenen Varianten eine dritte Ausführungsmöglichkeit nicht unerwähnt bleiben, bei der nur der Aufwickelkern der ersten Lösung durch einen Mitnehmerstift ersetzt wird und die Ersatzvorratsspule mit einem Leerspulenkern, dessen Aufnahmebohrung entsprechend dem Mitnehmersfit profiliert ist, wobei das Vorlaufband bereits an der Leerspule befestigt ist.

Man erreicht dadurch, daß bei einem Bandwech-

sel nur die Einheit leerer Vorratsspulenkern mit v Ilem Aufwickelkern durch die Einheit Ersatzvorratsspule mit leerem Aufwickelkern rsetzt zu werd n
braucht und, daß als Abfall das verbrauchte Band als
Wickel anfällt und nicht als Knäuel, wie bei der erst n
Lösung.

Patentansprüche

- Gerät zum Auftragen eines Klebstoff-Filmes auf ein Substrat (1), mit einem Gehäuse (2), in dem eine Vorratsspule (3) für ein mit einem Klebstoff-Film beschichtetes Trägerband (4a), eine Aufwickelhaspel (5) zur Aufnahme des vom Klebstoff-Film getrennten Trägerbandes (4b) und eine das Band (4) umlenkende Auftrageinrichtung angebracht sind, die aus dem Gehäuse (2) herausragt und die mit Klebstoff-Film beschichtete Seite des Trägerbandes (4) der Außenseite des Gerätes und somit dem Substrat (1) darbietet, wobei zwischen der Vorratsspule (3) und der Aufwickelhaspel (5) eine Antriebsverbindung (7, 8, 9) mit einer Rutschkupplung (10, 11) ausgebildet ist, die beim Antrieb der Vorratsspule (3) durch Abziehen des Trägerbandes (4) die Aufwickelhaspel (5) mit einer solchen Drehzahl antreibt, daß das Trägerband (4) stets gespannt bleibt, dadurch gekennzeichnet, daß die Auftrageinrichtung (6) als eine über ein elastisch deformierbares Zwischenstück (12) gelagerte Auftragleiste ausgebildet ist, die unter elastischer Verformung des Zwischenstückes (12) eine Pendelbewegung ausführen kann.
- Gerät nach Anspruch 1, dadurch gekennzelchnet, daß zu beiden Seiten der Auftrageinrichtung
 (6) relativ zu dieser in Richtung senkrecht zur Substratebene bewegliche Gleitkufen (13) angeordnet sind, die elastisch in Richtung auf das Substrat (1) vorgespannt sind.
- Gerät nach Anspruch 2, dadurch gekennzeichnet, daß die Auftrageinrichtung (6) mindestens eine Nocken (14) aufweist, der in eine Steuerkurve (15) der Gleitkufen (13) eingreift.
- Gerät nach Anspruch 3, dadurch gekennzeichnet, daß der Nocken (14) in der Steuerkurve (15) einrastbar ist.
- Gerät nach Anspruch 3, dadurch gekennzeichnet, daß die Steuerkurve (15) so ausgebildet ist, daß bei einem Anheben der Gleitkufen (13) in Richtung auf die Auftrageinrichtung (6) die Auftrageinrichtung (6) in Abziehrichtung des Bandes (4) verschwenkt wird.

20

25

30

35

40

45

- 6. Gerät nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß die Steuerkurve (15) so ausgebildet ist, daß bei einer Verschwenkung d r Auftrageinrichtung (6) in Abziehrichtung des Bandes (4) die Gleitkufen (13) in richtung auf die Auftrageinrichtung (6) angehoben werden.
- Gerät nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Vorratsspule (3), die Aufwickelhaspel (5), die Auftrageinrichtung (6) und die Antriebsverbindung (7, 8, 9) an einer Grundplatte (16) angeordnet sind.
- Gerät nach Anspruch 7 und mindestens einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß die Gleitkufen (13) an einem an der Grundplatte (16) angelenkten Hebelarm (17) angeordnet sind.
- Gerät nach Anspruch 7, dadurch gekennzeichnet, daß die Grundplatte (16) aus dem Gehäuse
 herausschwenkbar ist.
- 10. Gerät nach Anspruch 8 und Anspruch 9, dadurch gekennzeichnet, daß das Gehäuse (2) einen hinterschnittenen Durchbruch (18) aufweist, mit dem eine kreisbogenförmige Zunge (19) des Hebelarms (17) bei in das Gehäuse (2) eingeschwenkter Grundplatte (16) verriegelbar ist.
- 11. Gerät nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß die Grundplatte (16) die Form eines schiefwinkeligen Dreiecks aufweist und daß an einer Ecke mit spitzem Winkel die Auftrageinrichtung (6) angeordnet ist.
- Gerät nach Anspruch 11, dadurch gekennzeichnet, daß die Vorratsspule (3) möglichst nahe an der Auftrageinrichtung (6) angeordnet ist.
- Gerät nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß im Bereich der stumpfen Ecke des Dreiecks die Aufwickelhaspel (5) angeordnet ist.
- 14. Gerät nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß im Bereich der zweiten spitzen Ecke des Dreiecks eine Vorratskammer (20) für eine Ersatzspule angeordnet ist.
- 15. Gerät nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, daß die Antriebsverbindung (7, 8, 9) in einem verschlossenen Hohlraum der Grundplatte (16) angeordnet ist.
- Gerät nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Antriebsverbindung (7, 8, 9) eine Rücklaufsperre (8, 21) enthält.

- 17. Gerät nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die Rutschkupplung (10, 11) zwischen dem Vorratsspulenaufnahmedorn (22) und einem diesen tragenden Antriebszahnrad (7) angeordnet ist.
- 18. Gerät nach Anspruch 17, dadurch gekennzeichnet, daß die Rutschkupplung aus an der Innenseite des Vorratsspulenaufnahmedorns (22) angeordneten Axialrillen (11) und an der Nabe des Antriebszahnrades (7) angeordneten, in die Axialrillen (11) eingreifenden federnden Klinken (10) besteht.
- 15 19. Gerät nach Anspruch 18, dadurch gekennzeichent, daß der Wickelkern (3b) der Vorratsspule (3) einen das verkehrte Aufsetzen auf den Vorratsspulenaufnahmedorn (22) verhindernden Innenringbund (34) aufweist.
 - 20. Gerät nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß das Gehäuse (2) mindestens ein dem Wickel der Vorratsspule und/oder der Abwickelhaspel (5) gegenüberliegendes Schauloch (23) aufwelst.
 - 21. Gerät nach einen der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß das Gehäuse (2) flach ist und an einer Schmalseite oberhalb der Auftrageinrichtung (6) eine vorstehende Fingerauflage (24) aufweist.
 - 22. Gerät nach einem der Anspruch 1 bis 21, dadurch gekennzeichnet, daß die Vorratsspule (3) in einer Kassette angeordnet ist.
 - Gerät nach Anspruch 22, dadurch gekennzeichnet, daß die Kassette die Aufwickelhaspel (5) enthält.
 - 24. Gerät nach Anspruch 22 oder 23, dadurch gekennzeichnet, daß die Rücklaufsperre in der Kassette angeordnet ist.
 - Gerät nach einem der Ansprüche 22 bis 24, dadurch gekennzeichnet, daß die Kassette die Bandleiteinrichtung (27) enthält.

50 Claims

Apparatus for applying an adhesive film to a substrate (1), comprising a casing (2) containing a supply reel (3) for a backing tap (4a) coated with and adhesive film, a winder (5) for holding the backing tape (4b) when separated from the adhesive film, and an applicator which guides the tape (4) and projects from the casing (2) and by means

20

25

30

35

40

of which the sid of the backing tape (4) coated with the adhesive film is presented to the outside of the apparatus and consequently to the substrate (1), an a drive connection (7, 8, 9) comprising a slipping clutch (10, 11) is formed betwe n the supply reel (3) and the winder (5) and, when driving the supply reel (3) pulls off the backing tape (4) and thus drives the winder (5) at a speed such that the backing tape (4) always remains stretched, characterized in that the applicator (6) is made in the form of a strip mounted by a resiliently flexible intermediate member (12), said strip being adapted to move like a pedulum by resiliently deforming the intermediate member (12).

- Apparatus according to claim 1, characterised in that sliding runners (13) are disposed on both sides of the applicator (6) and are movable in the direction at right angles to it, and are resiliently prestressed in the direction towards the substrate (1).
- Apparatus according to claim 2, charaterised in that the applicator (6) has at least one cam (14) which engages in a control curve (15) in the sliding runners (13).
- Apparatus according to claim 3, characterised in that the cam (14) is lockable in the control curve (15).
- Apparatus according to claim 3, characterised in that the control curve (15) is constructed so that, when the sliding runners (13) are raised in the direction towards the applicator (6), the applicator (6) is pivoted in the direction for pulling off the tape (4).
- Apparatus according to any of claims 3 to 6, characterised in that the control curve (15) is shaped so that, when the applicator (6) pivots in the direction for pulling off the tape (4), the sliding runners (13) are lifted in the direction towards the applicator (6).
- Apparatus according to any of claims 1 to 6, characterised in that the supply reel (3), the winder (5), the applicator (6) and the drive connection (7, 8, 9) are disposed on a baseplate (16).
- Apparatus according to claim 7 and at least one of claims 2 to 5, characterised in that the sliding runners (13) are disposed on a lever arm (17) pivoted to the baseplate (16).
- 9. Apparatus according to claim 7, characterised in that the baseplate (16) is pivotable out of the cas-

ing (2).

- 10. Apparatus according to claim 8 and 9, characterised in that the casing (2) has an undercut aperture (18) for locking on arcuate tongue (19) of the lever arm (17) when the baseplate (16) is pivoted into the casing (2).
- 11. Apparatus according to any of claims 7 to 10, characterised in that the baseplate (16) is shaped as a scalene triangle and the applicator (6) is disposed at an acute-angled corner.
- Apparatus according to claim 11, characterized in that the supply reel (3) is disposed very near the applicator (6).
- Apparatus according to claim 11 or 12, characterized in that the winder (5) is disposed near the obtuse corner of the triangle.
- 14. Apparatus according to any of claims 11 to 13, characterized in that a storage chamber (20) for a spare reel is disposed near the second acute corner of the triangle.
- 15. Apparatus according to any of claims 11 to 14, characterised in that the drive connection (7, 8, 9) is disposed in a closed cavity in the baseplate (16).
- 'Apparatus according to any of claims 1 to 15, characterised in that the drive connection (7, 8, 9) contains a back stop (8, 21).
- 17. Apparatus according to any of claims 1 to 16, characterised in that the sliding clutch (10, 11) is disposed between a spindle (22) holding the supply reel and a drive gearwheel (7) holding the spindle.
- 18. Apparatus according to claim 17, characterised in that the sliding clutch comprises axial grooves (11) disposed on the inside of the spindle (22) holding the supply reel and resilient pawls (10) disposed on the hub of the drive gearwheel (7) and engaging in the axial grooves (11).
- 19. Apparatus according to claim 18, characterised in that the core (3b) of the supply reel (3) has an inner annular collar (34) preventing it from being placed the wrong way round on the spindle (22).
- 20. Apparatus according to any of claims 1 to 19, characterised in that the casing (2) has at least one inspection hole (23) opposite the winder (5) and/or the package on the supply reel.

20

25

- Apparatus according to any of claims 1 to 20, characterised in that the casing (2) is flat and has a finger grip (24) projecting to one narrow side above the applicator (6).
- Apparatus according to any of claims 1 t 21, characterised in that the supply reel (3) is disposed in a cassette.
- 23. Apparatus according to claim 22, characterised in that the cassette contains the winder (5).
- Apparatus according to claim 22 or 23, characterised in that the back stop is disposed in the cassette.
- Apparatus according to any of claims 22 to 24, characterised in that the cassette contains a tape guide (27).

Revendications

- 1. Outillage pour application d'un film adhésif sur un substrat (1) comprenant un carter (2), dans lequel sont installés une bobine de réserve (3) pour une bande-support (4a) enduite d'un film adhésif, un tourniquet d'enroulement (5) pour recevoir la bande-support (4b) séparée du film adhésif et un dispositif d'étalement guidant la bande (4), qui dépasse du carter (2) et présente le côté enduit de film adhésif de la bande-support (4) Isur le côté extérieur de l'outillage et donc au substrat (1), une liaison de mouvement (7, 8, 9) entre la bobine de réserve (3) et le tourniquet d'enroulement (5) étant réalisée par un accouplement à friction (10, 11), qui par un mouvement de la bobine de réserve (3) par traction de la bande-support (4) commande le tourniquet d'enroulement (5) à une vitesse de rotation telle, que la bandesupport (4) reste toujours tendue, caractérisé en ce que le dispositif d'étalement (6) est réalisé sous forme de barre d'étalement fixée à une plèce intermédiaire (12) pouvant se courber élastiquement, laquelle barre d'étalement pouvant par déformation élastique de la pièce intermédiaire (12) effectuer un mouvement pendulaire.
- Outillage selon la revendication 1, caractérisé en ce que des deux côtés du dispositif d'étalement (6) perpendiculairement à celui-ci, sont disposés des patins (13) mobiles par rapport au plan du substrat, et qui sont mis en précontrainte élastique en direction du substrat (1).
- Outillage selon la revendication 2, caractérisé en ce que le dispositif d'étalement (6) comprend au moins une came (14), qui engrène dans une cour-

be de commande (15) des patins (13).

- Outillage selon la r vendication 3, caractérisé en ce que la came (14) peut s'enclencher dans la courbe de commande (15).
- Outillage selon la revendication 3, caractérisé en ce que la courbe de commande (15) est réalisée, de facon que par soulèvement des patins (13) en direction du dispositif d'étalement (6), le dispositif d'étalement pivote dans le sens de traction sur la bande (4).
- 6. Outillage selon l'une quelconque des revendications 3 à 5, caractérisé en ce que la courbe de commande (15) est réalisée, de facon que dans un pivotement du dispositif d'étalement (6) dans le sens de traction, sur la bande (4), les patins (13) sont soulevés en direction du dispositif d'étalement (6).
- Outillage selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la bobine de réserve (3), le tourniquet d'enroulement (5), de dispositif d'étalement (6) et la liaison de mouvement (7, 8, 9) sont disposés sur une plaque de base (16).
- Outillage selon la revendication 7 et au moins une quelconque des revendications 2 à 5, caractérisé en ce que les patins (13) sont disposés sur un bras de levier (17) articulé sur la plaque de base (16).
- Outillage selon la revendication 7, caractérisé en ce qu'on peut séparer la plaque de base (16) du carter (2) en la faisant pivoter.
 - 10. Outillage selon les revendications 8 et 9, caractérisé en ce que le carter (2) présente une ouverture (18) en contre-dépouille, dans laquelle une languette (19) du bras de levier (17) en forme d'arc de cercle peut verrouiller la plaque de base (16) sur le carter (2) après pivotement.
 - 11. Outillage selon l'une quelconque des revendications 7 à 10, caractérisé en ce que la plaque de base (16) présente la forme d'un triangle scalène et en ce que sur un coin à angle aigu est placé le dispositif d'étalement (6).
 - Outillage selon la revendication 11, caractérisé en ce que la bobine de réserve (3) est placée le plus près possible du dispositif d'étalement (6).
 - 13. Outillage selon l'une ou l'autre des revendications 11 ou 12, caractérisé en ce que dans la zone de l'angle émoussé du triangle est placé le tour-

45

niquet d'enroulement (5).

- 14. Outillage selon l'une quelconque des revendications 11 à 13, caractérisé en ce que dans la zone du deuxième angle aigu du triangle, est disposée une chambre de réserve (20) pour une bobine de remplacement.
- 15. Outillage selon l'une quelconque des revendications 11 à 14, caractérisé en ce que la liaison de mouvement (7, 8, 9) est placée dans un espace creux fermé de la plaque de base (16).
- Outillage selon l'une quelconque des revendications 1 à 15, caractérisé en ce que la liaison de mouvement (7, 8, 9) contient un cliquet antiretour (8, 21).
- 17. Outillage selon l'une quelconque des revendications 1 à 16, caractérisé en ce que l'accouplement par friction (10, 11) est placé entre le mandrin de la bobine de réserve (22) et une roue dentée du mouvement (7) portant celui-ci.
- 18. Outillage selon la revendication 17, caractérisé en ce que l'accouplement de friction se compose de rainures (11) axiales placées sur le côté intérieur du mandrin porte bobine de réserve (22) et de cliquets (10) élastiques fixés au moyen de la roue dentée du mouvement (7) et engrenant dans les rainures axiales (11).
- 19. Outillage selon la revendication 18, caractérisé en ce que le noyau d'enroulement (3b) de la bobine de réserve (3) comprend un collet annulaire intérieur (34) empéchant la mise en place inversée sur le mandrin-support de la bobine de réserve (22).
- 20. Outillage selon l'une quelconque des revendications 1 à 19, caractérisé en ce que le carter (2) comprend au moins un trou de visite (23) situé en face de l'enroulement de la bobine de réserve et/ou du tourniquet d'enroulement (5).
- 21. Outillage selon l'une quelconque des revendications 1 à 20, caractérisé en ce que le carter (2) est plat et comporte sur son côté étroit au-dessus du dispositif d'étalement (6) un appui en saillie (24) pour les doigts.
- Outillage selon l'une quelconque des revendications 1 à 21, caractérisé en ce que la bobine de réserve (3) est placée dans une cassette.
- 23. Outillage selon la revendication 24, caractérisé en ce que la cassette contient le tourniquet-enrouleur (5).

- 24. Outillage selon l'une ou l'autre d s revendications 22 à 23, caractérisé en ce que le cliquet antiretour est disposé dans la cassette.
- 25. Outillage selon l'une quelconque des revendications 22 à 24, caractérisé en ce que la cassette contient le dispositif de guidage de bande (27).

