- 1. $\frac{1}{2}e^{j\pi} = -\frac{1}{2} + 0 j$, $\frac{1}{2}e^{-j\pi} = -\frac{1}{2} + 0 j$, $e^{j\pi/2} = 0 + j$, $e^{-j\pi/2} = 0 j$, $e^{j5\pi/2} = e^{j\pi/2} = 0 + j$, $\sqrt{2}e^{j\pi/4} = 1 + j$, $\sqrt{2}e^{j9\pi/4} = \sqrt{2}e^{j\pi/4} = 1 + j$.
- 2. $5 = 5e^{j\,0}, -2 = 2e^{j\,\pi}, -3\,j = 3e^{-j\,\pi/2}, 1 + j = \sqrt{2}e^{j\,\pi/4}, (1-j)^2 = 1 2\,j + j^2 = -2\,j = 2e^{-j\,\pi/2}, \ j(1-j) = j j^2 = 1 + j = \sqrt{2}e^{j\,\pi/4}, \ \frac{1+j}{1-j} = \frac{(1+j)(1+j)}{(1-j)(1+j)} = \frac{1+2\,j+j^2}{1+1} = j = e^{j\,\pi/2}.$
- 3. (a) The function f function is not injective since f(-1) = f(1), so "distinctness" is not preserved. It is not surjective either, since $f^{-1}(-1) = \emptyset$. We have $\operatorname{im}_f(\mathbb{R}) = [0, \infty) = \{x \in \mathbb{R} : x \geq 0\}$, i.e., the range of f is the set of nonnegative real numbers.
 - (b) The function g is not injective since g(-1) = g(1); however, g is surjective since $g^{-1}(y) = \{\pm \sqrt{y}\}$, which is not empty for any $y \in [0, \infty)$. As in the previous question, $\operatorname{im}_g(\mathbb{R}) = [0, \infty)$.

This problem shows that associated with any nonsurjective function is a surjective function obtained from the original function by redefining its codomain to agree with its range. The two functions f and g are considered different, since their codomains are not the same.

- (c) The complex exponential function is not injective, since, for example, $\exp(0) = \exp(2\pi \mathbf{j}) = 1$. It is not surjective since $\exp(z) \neq 0$ for any $z \in \mathbb{C}$. The range of the complex exponential function is $\mathbb{C} \setminus \{0\}$, i.e., the entire complex plane excluding the origin.
- (d) The function L is injective, since if $L\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = L\left(\begin{bmatrix}y_1\\y_2\end{bmatrix}\right)$ we must have $x_1+x_2=y_1+y_2$ and $x_1-x_2=y_1-y_2$. By adding these equations we deduce that $2x_1=2y_1$, i.e., $x_1=y_1$. By subtracting these equations we deduce that $2x_2=2y_2$, i.e., $x_2=y_2$. Thus L never maps distinct elements of the domain to the same element of the codomain. The function L is surjective since every element $\begin{bmatrix}y_1\\y_2\end{bmatrix}$ of the codomain has the singleton set $\left\{\frac{1}{2}\begin{bmatrix}y_1+y_2\\y_1-y_2\end{bmatrix}\right\}$ as its inverse image under mapping by L. Being both injective and surjective, we can conclude that L is bijective. The inverse function is given as $L^{-1}: \mathbb{R}^2 \to \mathbb{R}^2$ where $\begin{bmatrix}y_1\\y_2\end{bmatrix} \overset{L^{-1}}{\mapsto} \frac{1}{2}\begin{bmatrix}y_1+y_2\\y_1-y_2\end{bmatrix}$. The range of L is \mathbb{R}^2 .
- 4. Let $A = \{a_1, \ldots, a_{|A|}\}$. Consider defining a function $f : A \to B$. We have |B| distinct choices for $f(a_1)$, we have |B| distinct choices for $f(a_2)$, and so on, up to and including |B| distinct choices for $f(a_{|A|})$. These choices can be combined freely, so in total we will have $|B| \cdot |B| \cdot \cdots \cdot |B| = |B|^{|A|}$ distinct functions from A to B. Stated more succinctly, $|B^A| = |B|^{|A|}$.

- 5. (a) x[n-3] has support $\{1,2,\ldots,7\}$, (b) x[n+4] has support $\{-6,-5,\ldots,0\}$, (c) x[-n] has support $\{-4,-3,\ldots,2\}$, (d) x[-n+2] has support $\{-2,-1,\ldots,4\}$, (e) x[-n-2] has support $\{-6,-5,\ldots,0\}$.
- 6. x(t) is guaranteed to be zero for values of t outside of its support, i.e., for all t < 3. Thus (a) x(1-t) is guaranteed to be zero for all t > -2, (b) x(1-t) + x(2-t) is guaranteed to be zero for all t > -1, (c) x(1-t)x(2-t) is guaranteed to be zero for all t > -2, (d) x(3t) is guaranteed to be zero for all t < 1, (e) x(t/3) is guaranteed to be zero for all t < 9.
- 7. (a) Note that

$$S = 1 + \alpha + \alpha^2 + \dots + \alpha^{N-1},$$

while

$$\alpha S = \alpha + \alpha^2 + \alpha^3 + \dots + \alpha^N$$

It follows that $S - \alpha S = 1 - \alpha^N$. Thus $S(1 - \alpha) = 1 - \alpha^N$ for any value of α . If $\alpha \neq 1$, we can divide both sides by $(1 - \alpha)$ to obtain $S = \frac{1 - \alpha^N}{1 - \alpha}$. If $\alpha = 1$, we find $S = 1 + 1 + \cdots + 1 = N$.

- (b) When $|\alpha| < 1$, $\lim_{N \to \infty} \frac{1-\alpha^N}{1-\alpha} = \frac{1}{1-\alpha}$, since $\lim_{N \to \infty} \alpha^N = 0$.
- (c) For any integer k, assuming $|\alpha| < 1$,

$$\sum_{n=k}^{\infty} \alpha^n = \alpha^k \sum_{n=0}^{\infty} \alpha^n = \frac{\alpha^k}{1-\alpha}.$$