Universidad de la República Facultad de Ingeniería IMERL: Matemática Discreta 2, semipresencial

Tercer prueba - 3 de noviembre de 2018. Solución

Ejercicio 1. (15 puntos)

a. Demostrar el Teorema de Lagrange: Si G es un grupo finito y H < G, entonces |H| divide a |G|.

Solución:

Copiamos aquí la demostración que aparecen en las notas de teórico.

La idea de la demostración es la siguiente: definiremos en G una relación de equivalencia de forma tal que si C es una clase de equivalencia, entonces #C = |H|. Entonces, como G es finito, la cantidad de clases de equivalencia también lo es; sean C_1, C_2, \cdots, C_k las clases de equivalencia distintas. Sabemos que el conjunto de clases de equivalencia (de cualquier relación de equivalencia) es una **partición** de G; es decir que $G = C_1 \cup C_2 \cup \cdots \cup C_k$ y esta unión es disjunta $(C_i \cap C_j = \emptyset$ si $i \neq j)$. Por lo tanto tendremos que $|G| = \#C_1 + \#C_2 + \cdots + \#C_k = |H| + |H| + \cdots + |H| = k|H|$ y por lo tanto obtendremos que |H| divide a |G|.

k veces

Resta entonces definir la relación de equivalencia en G que cumpla con lo deseado: para $g, g' \in G$ definimos $g \sim g'$ si existe $h \in H$ tal que g = hg'; o equivalentemente, $g \sim g'$ si $g(g')^{-1} \in H$. Veamos primero que esto define una relación de equivalencia:

- (reflexiva) Para todo $g \in G$, tenemos que $g \sim g$ pues g = eg y $e \in H$ (pues H es subgrupo de G.)
- (simétrica) Sean $g, g' \in G$ tales que $g \sim g'$. Entonces $g(g')^{-1} \in H$. Al ser H un subgrupo, es cerrado por inversos y por lo tanto $(g(g')^{-1})^{-1} \in H$. Por lo tanto $g'g^{-1} \in H$ y entonces $g' \sim g$.
- (transitiva) Si $g \sim g'$ y $g' \sim g''$ entonces existen $h, h' \in H$ tales que g = hg' y g' = h'g''. Por lo tanto tenemos que g = hg' = h(h'g'') = (hh')g''. Al ser H un subgrupo (en particular cerrado con la operación) tenemos que $hh' \in H$ y entonces $g \sim g''$.

Resta ver entonces que una clase de equivalencia tiene tantos elementos como H. Observar que si $g' \in G$ entonces la clase de equivalencia de g' es $C = \{g \in G : g \sim g'\} = \{g \in G : \exists h \in H : g = hg'\}$. Por lo tanto $C = \{hg' : h \in H\}$. Además, al multiplicar a todos los elementos de H por g', no hay repeticiones; es decir que si $h_1 \neq h_2$ entonces $h_1g' \neq h_2g'$ (por la propiedad cancelativa). Por lo tanto #C = |H|.

b. Demostrar los siguientes puntos:

Si (G, *, e) es un grupo de orden finito y $g \in G$ entonces:

- i) o(g) | |G|.
- ii) $g^{|G|} = e$.
- iii) Si |G| es primo, entonces G es cíclico.

Solución:

Copiamos aquí las demostraciones que aparecen en las notas de teórico.

Consideramos $H = \langle g \rangle$; sabemos que H es un subgrupo de G y que |H| = o(g). Entonces, por el Teorema de Lagrange tenemos que o(g) = |H| divide a |G| y hemos probado la primer parte.

Además, como |G| es un múltiplo de o(g), se deduce que $g^{|G|} = e$.

Para la tercer parte, como $|G| \ge 2$ entonces existe un $g \in G$ tal que $g \ne e$. Por el Teorema de Lagrange debemos tener que $|\langle g \rangle|$ divide a |G|. Como $|\langle g \rangle| > 1$ y |G| es primo tenemos que $|\langle g \rangle| = |G|$ y entonces $\langle g \rangle = G$.

c. Escriba la tabla de multiplicación de U(18). Hallar los órdenes de los elementos de U(18). ¿Es U(18) cíclico?

Solución:
$$U(18) = \{1, 5, 7, 11, 13, 17\}.$$

La tabla del producto en U(18) es:

•	1	5	7	11	13	17
1	1	5	7	11	13	17
5	5	7	17	1	11	13
7	7	17	13	5	1	11
11	11	1	5	13	17	7
13	13	11	1	17	7	5
17	17	13	11	7	5	1

Luego los órdenes de los elementos son:
$$o(1) = 1$$
; $o(5) = 6$; $o(7) = 3$; $o(11) = 6$; $o(13) = 3$; $o(17) = 2$.

Como existen dos elementos: 5 y 11, con orden igual a la cantidad de elementos del grupo U(18), entonces U(18) es cíclico (tanto 5 como 11 son generadores).

0