Multifidelity Example

Saul Toscano-Palmerin

We consider the following problem

$$\max_{x \in A} F(x)$$

where $A \subset \mathbb{R}^n$ is the feasible set.

We have two information sources of F, f and g. We suppose that f is an unbiased estimate of F, but it is noisy, and g is a biased estimate of F, but it is deterministic.

We place two independent Gaussian processes on F and g - F. This implies a Gaussian process on (F, g) with parameters μ_0 and Σ_0 .

We define the value of information functions as

$$V_n(x,h) = \mathbb{E}\left[\max_z \mu_{n+1}(z,h_1) - \max_z \mu_n(z,h_1) \mid x_{n+1} = x, h(x)\right]$$

where $h, h_1 \in \{F, g\}$.

Algorithm.

- 1. (First stage of samples) Use maximum likelihood or maximum a posteriori estimation to fit the parameters $\alpha_0(\cdot)$, $\beta_0(\cdot, \cdot)$ of the GP prior on F, and $\rho_0(\cdot)$, $\Lambda_0(\cdot, \cdot)$ of the GP prior on $\delta = F g$. We denote the parameters of the joint GP on F and g by μ_0, Σ_0
- 2. (Main stage of samples) For $n \leftarrow 1$ to N do
 - (a) Update our joint Gaussian process posterior on F, g using all samples by time n.
 - (b) Solve $(x_{n+1}, h_{n+1}) \in \arg \max_{x \in A, h \in \{F, g\}} V_n(x, h)$
 - (c) Evaluate $h_{n+1}(x_{n+1})$
- 3. Return $x^* = \arg \max_x \mu_{N+1}(x, h)$ where $h \in \{F, g\}$.

Example. We draw $F \sim GP(0, \Sigma_0)$ where $\Sigma_0(x, y) = \exp\left(\sum_{i=1}^4 \frac{1}{2}(x_i - y_i)^2\right)$, and we define $g = F + GP(0, \Sigma^*)$ where $\Sigma^*(x, y) = 0.5 \exp\left(\sum_{i=1}^4 \frac{1}{10}(x_i - y_i)^2\right)$. We also define f = F + N(0, 1).