

Vorlesung Fertigungstechnik

Prof. Dr.-Ing. Klaus Dröder, 02. Juli 2018 Institut für Werkzeugmaschinen und Fertigungstechnik

Kapitel 8: Generative Fertigung

Dr.-Ing. Anke Müller, 02. Juli 2018 Institut für Werkzeugmaschinen und Fertigungstechnik

Einheiten der Vorlesung Fertigungstechnik Einteilung der Fertigungsverfahren nach DIN 8580

Einteilung der Fertigungsverfahren nach DIN 8580 Zusatzmodule und Zusammenhalt Zusammenhalt Zusammenhalt Zusammenhalt Schwerpunkte schaffen beibehalten vermindern vermehren Trennen 4.1 Grundlagen der Zerspannung Mess-4.2 Spanen mit geom. best. Schneide Stoffeigentechnik / Generative Hybrider Urformen **Umformen** Fügen **Beschichten** schaften Prozess-4.3 Spanen mit geom. unbest. Schneide Fertigung Leichtbau überwachändern 4.4. Abtragen ung Bildquellen: Pexels

Einheiten der Vorlesung Fertigungstechnik Generative Fertigung

Einteilung der Fertigungsverfahren nach DIN 8580 Zusatzmodule und Zusammenhalt Zusammenhalt Zusammenhalt Zusammenhalt Schwerpunkte schaffen beibehalten vermindern vermehren Generative Fertigung Bildquellen: Pexels

Ziele der heutigen Vorlesung

Was ist Generative Fertigung?

Generative und Subtraktive Verfahren

Fertigungsverfahren

Generative Verfahren

- Schichtweiser Aufbau
- Keine Späne
- Keine Kühlschmierstoffe

Subtraktive Verfahren

- Trennverfahren
- Späne
- Kühlschmierstoffe

Generative Fertigung

Motivation

Trends wie Miniaturisierung, Vernetzung, Individualisierung, Nachhaltigkeit bedienen Flexibel und reaktionsschnell kundenspezifische Anforderungen umsetzen

GENERATIVE FERTIGUNG

Globale Entwicklung generativer Fertigungstechnik

Wachstumsraten von 40 % pro Jahr Vorhergesagt

Quelle: nach Roland Berger

Trends generativer Fertigung

Optimum im Spannungsfeld Zeit, Kosten und Qualität

Zeit

Multi-Laser-Konzepte ermöglichen eine Steigerung der Verarbeitungsgeschwindigkeit. Die Verarbeitungszeit wird so reduziert

Kosten

Höherer Automatisierungsgrad und erweiterte Produktionskonzepte reduzieren den Arbeitsaufwand und somit die Kosten

Qualität

Verschiedene Prozessüberwachungssysteme (Pulver, Atmosphere, Beschichtung, etc.) ermöglichen einen höheren Qualitätsstandard

Quelle: Roland Berger

Quelle: nach Roland Berger

Generative Fertigung

Komplexität des Produktionsprozesses

Generative Verfahren

Ausgangsstoffe

Generative Fertigung

Anwendung additiv gefertigter Bauteile

Kommunikation

- Interne Kommunikation / Kundenkommunikation
- Dokumentation
- Marktstudien

Quelle: eos

Anschauung

- geometrische Überprüfung des Entwurfs
- Überprüfung der Proportionen/Designs
- Validierung des CAD-Modells

Prozessplanung

- Referenzmodell zur Planung des Fertigungsprozesses
- Urmodell für Abformtechniken

Funktion

- funktionale Überprüfung
- ErgonomieVerifikation des Wirkprinzips

Generative Fertigung

Begrifflichkeiten

Virtuelle Prototypen

Anhand virtueller Prototypen können erste Berechnungen und Simulationen durchgeführt werden

Rapid Prototyping

Herstellung von Konzept- oder Design-, Geometrie- und Funktionsmodellen, die insbesondere hinsichtlich des Materials und der Oberflächenqualität nicht einem Endprodukt entsprechen

Rapid Tooling

Herstellung von Vorrichtungen, Werkzeugen und Formen

Quelle: 1zu1prototypen

Rapid Manufacturing

Herstellung von einzelnen kundenspezifischen Endprodukten in Einzel- oder Kleinstserien

Quelle:1zu1prototypen

Rapid Prototyping, Rapid Tooling, Rapid Manufacturing innerhalb eines Produktentstehungsprozesses

Generative Fertigung

Kennzeichen

Konstruktive Gestaltungsmöglichkeiten

Hohes Maß an Gestaltungsfreiheit additiver Fertigungsverfahren

- + Material und Bauteileinsparung
- + Strömungsgünstiger Kanal
- + Dünnere Wandstärken
- + Hohes Maß an Gestaltungsfreiheit

Laser-Sintering Schweißbaugruppe

- Lange Bauzeit (massive Bauweise)
- Strömungsungünstig
- Sacklöcher behindern Reinigung
- Begrenzte Gestaltungsmöglichkeit

Optimierte Baugruppe durch Laser-Sintering

Ursprüngliche Schweiß-Baugruppe

Quelle: nach VDI 3405 Blatt 3

Generative Fertigung Schaustücke

Ziele der heutigen Vorlesung

- Erlernen der Grundlagen generativer Fertigung
- Kennenlernen typischer generativer Fertigungsverfahren

Technologien zur generativen Fertigung

Technologien zur generativen Fertigung

Material	Technologien				
	Aufbau durch Polymerisation	Aufbau durch Verkleben	Aufbau durch Verschmelzen		
Keramik		Binder Jetting	Laser Melting		
Metall		BJ	SLM Electron Beam Melting EBM		
Sand					
Kunststoff	Stereolith- ography SL Photopolymer Jetting PJ		Fused Depo- sition Modeling Laser Sintering LS		
Wachs			FDM Material Jetting MJ		
	Tiefer	Beständigkeit			
	Glatter Oberfläche Rauer				
	Höher Detailgenauigkeit Tiefer				
	Prototypen Anwendungsbereich Funktionale Teile				

Quelle: nach additively

Stereolithography (SLA, SL)

- UV-Laser härtet flüssiges Photopolymer an der Oberfläche eines Bades
- Durch Absenken der Plattform wird das Bauteil aufgebaut

Photopolymere

Schichtdicken: 0,05 mm – 0,1 mm

Genauigkeit: +/- 0,15 mm

Nachbehandlung in Nachbenetzungsöfe

Stereolithography (SLA, SL)

Vorteile

Fertigung großer Teile

Gute Oberflächenqualität

Große Palette an Materialien

Duroplastischer Kunststoff

Technologie nur für Photopolymere geeignet

Photoypolymere altern und sind nicht beständig

Materialien kostenintensiv

Langsamer Bauprozess

Quelle: nach additively.com, goprint3d

Photopolymer Jetting (PJ)

- Druckköpfe sprühen flüssige Photopolymere auf eine Bauplattform
- Materialaushärtung findet mittels UV-Lampen statt

Quelle: nach additively.com

Photopolymer Jetting (PJ)

Vorteile

Auftrag mehrerer verschiedener Materialien möglich

Technologie nur für Photopolymere geeignet

Abstufung der Härte des Bauteils möglich

Photoypolymere altern und sind nicht beständig

Sehr genaue Bauteile mit hoher Oberflächengüte

Materialien kostenintensiv

Langsamer Bauprozess

Quelle: nach additively, sculpteo

Technologien zur generativen Fertigung

Material	Technologien				
	Aufbau durch Polymerisation	Aufbau durch Verkleben	Aufbau durch Verschmelzen		
Keramik		Binder Jetting	Laser Melting SLM		
Metall		BJ	Electron Beam Melting EBM		
Sand					
Kunststoff	Stereolith- ography SL Photopolymer Jetting PJ		Fused Depo- sition Modeling Sintering LS		
Wachs			FDM Material Jetting MJ		
	Tiofor	Poetändiakoit	Höher		
	Tiefer Beständigkeit Höher Glatter Oberfläche Rauer				
	Höher Detailgenauigkeit Tiefer				
	Prototypen Anwendungsbereich Funktionale Teile				

Quelle: nach additively

Binder Jetting (BJ)

- Druckköpfe applizieren flüssigen Kleber auf dünne Pulverschichten
- Verklebung der Pulverschichten erzeugt Bauteil

Keramik, Metalle, Kunststoffe, Sand

Schichtdicken: 0,09 mm

Genauigkeit: +/- 0,13 mm 🤿

Nachbehandlung nur bedingt möglich

Binder Jetting (BJ)

Vorteile

Herstellung bunter Bauteile möglich (Zufuhr über Klebstoff)

Beschränkte mechanische Eigenschaften

Schnelle und preiswerte Technologie

Nachgelagertes Sintern zur Steigerung der Festigkeit nötig

Viele Materialien können verarbeitet werden

Schrumpfungen im Sinterprozess

Stützstruktur wird nicht benötigt (nicht verklebtes Pulver stützt)

Quelle: nach additively, 3dhubs

Technologien zur generativen Fertigung

Material	Technologien				
	Aufbau durch Polymerisation	Aufbau durch Verkleben	Aufbau durch Verschmelzen		
Keramik		Binder Jetting	Laser Melting		
Metall		BJ	SLM Electron Beam Melting EBM		
Sand					
Kunststoff	Stereolith- ography SL Photopolymer Jetting PJ		Fused Depo- sition Modeling Laser Sintering LS		
Wachs			FDM Material Jetting MJ		
	Tiefer Beständigkeit Höher				
	Glatter Oberfläche Rauer				
	Höher Detailgenauigkeit Tiefer				
	Prototypen Anwendungsbereich Funktionale Teile				

Quelle: nach additively

Selective Laser Melting (SLM)

- Dünne Metallpulverschicht wird durch Laser selektiv aufgeschmolzen
- Bauteile werden Schicht um Schicht im Pulverbett aufgebaut

Quelle: nach additively

Selective Laser Melting (SLM)

Vorteile

Herstellung von Bauteilen mittels Standardmetallen

Zur Wärmeabfuhr werden Stützstrukturen benötigt

Gute mechanische Eigenschaften

Oberflächenqualität und Toleranzen limitiert

Weiterverarbeitung wie geschweißtes Bauteil

Langsame und teure Technologie

Ausbildung von Geometriesprüngen

Quelle: nach additively.com, nlmetaalmagleena

Electron Beam Melting (EBM)

- Dünne Metallpulverschicht wird durch Elektronenstrahl selektiv aufgeschmolzen
- Bauteile werden Schicht um Schicht im Pulverbett aufgebaut

Metalle

Schichtdicken 0,05 mm

Nachbehandlung zur Verbesserung der Oberfläch

Electron Beam Melting (EBM)

Vorteile

Herstellung von Bauteilen mittels Standardmetallen

Zur Wärmeabfuhr werden Stützstrukturen benötigt

Gute mechanische Eigenschaften

Oberflächenqualität schlechter als beim Laser Sintern

Weniger thermische Spannungen als beim Laser Sintern

Langsame und teure Technologie

Quelle: nach, additively osti

Fused Deposition Modeling (FDM)

0.2 mm

Fused Deposition Modeling (FDM)

Vorteile

Herstellung von funktionalen Bauteilen aus Kunststoffen

Anisotropie durch Schichtaufbau

Gute mechanische Eigenschaften

Zeitbeständig

Stufenstruktur der Oberfläche

Feine Details nicht zu realisieren

Quelle: 3d-activation.de

Quelle: nach additively

Selective Laser Sintering (SLS)

- Dünne Kunststoffschicht wird von Laser selektiv aufgeschmolzen
- Bauteile werden Schicht um Schicht im Pulverbett aufgebaut

Selective Laser Sintering (SLS)

Vorteile

Herstellung von funktionalen Bauteilen aus Kunststoffen

Gute mechanische Eigenschaften

Viele Materialien verfügbar

Preiswertes Verfahren

Postprozess relativ aufwendig

Oberflächenqualität bedingt gut

Prozessgase

Quelle: nach additively, ziffdavisinternet

Material Jetting (MJ)

- Druckköpfe sprühen geschmolzenes Wachs auf eine Bauplattform
- Wachs verfestigt sich bei schichtweisem Aufbau

Wachs

Schichtdicken: 0.1 mm

Nachbehandlung nur bedingt möglich

Material Jetting (MJ)

Vorteile

Hohe Genauigkeit

Nur Wachs-ähnliche Materialien einsetzbar

Gute Oberflächengüte

Herstellung von Guss-Wachsen

Bauteile fragil

Langsamer Prozess

Quelle: nach additively, chemx.

Visionen generativer Fertigungsverfahren

Neue Technologien / Prozesse im Fahrzeugbau

Anlagen

Betriebsmittel

produktflexibe

additiv

"intelligente"

Steuerung

parallel

flexibler

Materialfluss

Visionen generativer Fertigungsverfahren

"Incremental Manufacturing Lab" (DFG-Großgerät)

Motivation: "Additive Großserienfertigung"

- Additive Fertigung ist Zukunftstechnologie zur flexiblen Herstellung (variantenreicher) Bauteile
- Additive Fertigung erreicht nur in Kombination mit volumenfähigen Verfahren eine hohe Produktivität

Finalisierung und Detailausprägung durch additive & subtraktive Verfahren

Lösungsansatz:

"Low-Cost-Vorform"

Anspritzen / Fügen

Spanen

"Andrucken" (z.B. FDM)

(Lokales) Verpressen

Forschung: Flexible Automatisierung, Fertigungsverfahren, Werkstoffe, Produktionsmesstechnik, MRK

Denkanstöße, Vertiefungen

- 1. Nennen Sie drei Unterscheidungsmerkmale subtraktiver und additiver Fertigungsverfahren!
- 2. Was ist Rapid Tooling?
- 3. Welche vier Modellarten gibt es?
- 4. Nennen sie die Ausgangsstoffe der generativen Verfahren sowie ein zugehöriges Verfahren!
- 5. Wie funktioniert das Fused Deposition Modeling und welche Ausgangsstoffe werden eingesetzt?
- 6. Nennen Sie ein wesentlichen Vor- und Nachteil der Stereolithographie!

Formulieren Sie eine **geeignete Klausuraufgabe** zu den Inhalten des heutigen Themas der Vorlesung und posten Sie diese im StudIP.

Etwa 30 % der von Ihnen formulierten Fragen werden in der Klausur verwendet!

Vorlesung Fertigungstechnik

Prof. Dr.-Ing. Klaus Dröder, 02. Juli 2018 Institut für Werkzeugmaschinen und Fertigungstechnik