Interferometro di Michelson

Laboratorio di Ottica, Elettronica e Fisica Moderna C.d.L. in Fisica, a.a. 2023-2024 Università degli Studi di Milano

Lucrezia Bioni, Leonardo Cerasi, Giulia Federica Bianca Coppi Matricole: 13655A, 11410A, 11823A

9 novembre 2023

1 Introduzione

1.1 Scopo

In questa esperienza ci si propone di misurare - mediante l'utilizzo dell'interferometro di Michelson - le seguenti quattro quantità: la lunghezza d'onda di un fascio di luce monocromatica, l'indice di rifrazione dell'aria a pressione atmosferica, la lunghezza dei pacchetti d'onda di una sorgente non monocromatica e la separazione tra le due lunghezze d'onda del doppietto del sodio.

1.2 Metodo

Per la misurazione delle quattro grandezze interessate, si utilizza l'apparato sviluppato da Michelson riportato in figura riferimento. L'interferometro è costituito da quattro lastre di vetro (S_1, S_2, S_3, L_c) : S_1 è una lastra semiriflettente - rivolta verso S_2 -a facce piane e parallele, S_2 e S_3 sono completamente riflettenti sulla faccia rivolta verso S_1 , L_c è una lastra trasparente il cui scopo è quello di rendere uguali i cammini ottici compiuti dai raggi lungo i due bracci dello strumento.

Essendosi assicurati che S_2 e S_3 siano perpendicolari e che formino un angolo di 45° con S_1 , il raggio luminoso inciderà su S_1 sdoppiandosi: il primo verrà riflesso da S_2 e dalla faccia riflettente di S_1 , per poi proseguire verso lo schermo, il secondo - riflesso da S_1 - verrà riflesso da S_3 ed inciderà sullo schermo dove formerà delle figure di interferenza con il primo raggio - douvuta alla coerenza dei due fasci luminosi-.

1.2.1 Lunghezza d'onda di un fascio di luca monocromatica

Si vuole misurare la lunghezza d'ond di un fascio di luce laser: agendo sulla variazione di cammino ottico dei due fasci - spostando lo specchio S_3 - si conta il numero di frange chiare (o scure) passanti per un punto prefissato dello schermo. La misura della lunghezza d'onda è pertanto data dalla formula

$$\lambda = \frac{2n_a \Delta x}{N_1} \tag{1.2.1}$$

dove λ è la lunghezza d'onda incognita, n_a è l'indice di rifrazione dell'aria, Δx è lo spostamento dello specchio S_3 e N_1 è il numero di frange chiare (o scure) contate.

1.2.2 Indice di rifrazione dell'aria

Tra gli specchi S_1 e S_2 viene inserita una cameretta contenente una pompa per la creazione del vuoto. Il cammino ottico percorso dal fascio luminoso nel vuoto cambia - poichè questo è legato all'indice di rifrazione del mezzo che attraversa come mostrato dall'equazione 1.2.1 - e quindi, facendo rientrare lentamente l'aria nella cameretta e contando le frange di interferenza passanti per un dato punto sullo schermo, si riuscirà a fornire una stima del valore dell'indice di rifrazione dell'aria n_a seocndo la seguente equazione:

$$2(n_a - 1) = N_2 \lambda \tag{1.2.2}$$

dove n_a è l'indice di rifrazione dell'aria, N_2 è il numero di frange contate su un punto dello schermo e λ è la lunghezza d'onda del fascio emesso dalla sorgente monocromatica.

1.2.3 Lunghezza dei pacchetti d'onda di una sorgente non monocromatica

Il fascio di luce prodotto da una sorgente non monocromatica è costituita da impulsi di lunghezza limitata. L'inferferenza dei fasci luminosi riflessi dagli specchi S_2 e S_3 si manifesta quando la distanza tra le due sorgenti immagine è inferiore alla lunghezza del pacchetto: quando viene superata tale lunghezza, si osserva sullo schermo una figura unifermemente illuminata e quindi si misura la distanza tra due zone di uniforme illuminazione - mediante la misura dello spostamento di S_3 - per quantificare tale grandezza.

1.2.4 Separazione tra le due righe spettrali del doppietto del sodio

Si utilizza ora una sorgente luinosa al sodio per misurare le due lunghezze d'onda che emette e la loro c
nseguente separazione: quando le frange di interferenza delle due lunghezze d'onda si vanno a sovrap-
porre, sullo schermo si vede una figura di interferenza con frange molto nette - in particolare quando la
 differenza di cammino ottico trta i fasci pr
pvenieni da S_2 ed S_3 è nulla -. Si misura quindi lo spostamento
 dello specchio S_3 e di ricava:

$$\lambda_2 - \lambda_1 = \frac{m\lambda^2}{2\Delta x} \tag{1.2.3}$$

dove λ_1 e λ_2 sono le due lunghezze d'onda del doppietto del sodio, m è il numero di alternanze tra le condizioni di interferenza netta, λ è la media delle due lunghezze d'onda e Δx è lo spostamento dello spechio S_3 .

2 Misure

2.1 Lunghezza d'onda di un fascio di luce monocromatica

La misura della lunghezza d'onda del fascio laser viene effettuata prendendo 5 misure dello spostamento dello specchio mobile e contando le frange passanti per un punto fissato dello schermo, le misure sono riportate nella seguente Tabella.

N_1	$x_1 [\mathrm{mm}]$	$x_2 [\mathrm{mm}]$
195	10.00	10.30
194	10.00	10.30
150	10.00	10.23
150	10.00	10.23
180	10.00	10.28

Tab. 1: Misure di N_1 , x_1 e x_2 effetuate per valutare la lunghezza d'onda della sorgente laser

Al conteggio N_1 viene fornito un errore di ± 5 , a seguito di una valutazione dell'errore commesso dagli sperimentatori, mentre alle misure di x_1 e x_2 viene fornita l'incertezza strumentale pari a 0.01 mm.

2.2 Indice di rifrazione dell'aria

La camera usata per creare il vuoto ha lunghezza $D=0.05\,\mathrm{m}$ - valore considerato senza incertezza. Fissato un punto dello schermo, durante la reimmissione dell'aria nella camera, si conta il numero di frange d'interferenza che vi passano: in 5 misurazioni di fila, si è sempre ottenuto il valore $N_2=42\pm5.$

2.3 Lunghezza dei pacchetti d'onda di una sorgente non monocromatica

Vengono fatte 6 misure dello spostamento dello specchio per valutare la lunghezza del treno di impulsi come descritto nel paragrafo 1.2.3. I risultati sono riportati in tabella.

$x_1 [\mathrm{mm}]$	$x_2 [\mathrm{mm}]$
15.58	15.54
15.58	15.54
15.57	15.54
15.57	15.54
15.57	15.54
15.57	15.54

Tab. 2: Misure della posizione iniziale e finale dello specchio S_3

A queste misure viene sempre fornita l'incertezza strumentale pari a 0.01mm.

2.4 Separazione tra le due lunghezze d'onda del doppietto del sodio

Per valutare la distanza delle due lunghezze d'onda emesse dal sodio vegono prese 8 misure dello spostamento dello specchio S_3 , fornendo anche il valore m di numero di alternanze di interferenze nette viste sullo schermo durante lo spostamento dello specchio mobile. Le misure vengono riportate in tabella.

m	$x_1 [\mathrm{mm}]$	$x_2 [\mathrm{mm}]$
1	16.24	17.73
1	17.73	19.11
1	19.11	20.66
1	20.66	22.07
1	22.07	23.58
1	23.58	24.98
1	17.72	19.15
2	19.15	22.17

Tab. 3: Misure di $m,\,x_1$ e x_2 effettuate per valutare $\Delta\lambda$ del doppietto di Na

Alle misure di m non viene fornita alcuna incertezza, a quelle di x_1 e x_2 viene fornita l'incertezza strumentale di 0.01mm.

3 Analisi Dati

3.1 Lunghezza d'onda di un fascio di luce monocromatica

A partire dai dati in Tab. 1, tramite la relazione 1.2.1, possiamo ricavare i valori di λ :

$\lambda \pm \sigma_{\lambda} \text{ [nm]}$
615 ± 33
617 ± 33
613 ± 43
613 ± 43
622 ± 36

Tab. 4: Valori della lunghezza d'onda ricavati dal set di misure.

Dove l'incertezza è stata attribuita mediante propagazione degli errori sulle grandezze Δx e N_1 nella 1.2.1:

$$\sigma_{\lambda} = \sqrt{\left(\frac{2n}{N_1}\right)^2 \sigma_{\Delta x}^2 + \left(\frac{2n\Delta x}{N_1}\right)^2 \sigma_{\Delta x}^2} \tag{3.1.4}$$

Attraverso la media ponderata dei valori di λ ottenuti, si ottiene una stima della misura della lunghezza d'onda della luce laser:

$$\lambda = 617 \pm 16 \,\mathrm{nm}$$
 (3.1.5)

dove l'incertezza è quella di una media ponderata.

3.2 Indice di rifrazione dell'aria

A partire dalle equazioni 1.2.1 e 1.2.2, si possono ricavare le seguenti espressioni per $n \in \lambda$:

$$n = \frac{N_1 D}{N_1 D - N_2 \Delta x}$$
 $\lambda = \frac{2\Delta x D}{N_1 D - N_2 \Delta x}$ (3.2.6)

A questo punto, incrociando i dati in Tab. 1 con quelli riportati nel Par. 2.2, si ottengono i valori riportati in Tab. riferimento - alla - tabella. Il valore finale e la rispettiva incertezza di n e λ sono stati determinati tramite media ponderata:

$$n = 1.000259 \pm 0.000007$$
 $\lambda = 616 \pm 7 \,\text{nm}$ (3.2.7)

Si può osservare che il valore della lunghezza d'onda del laser così ottenuto è in perfetto accordo con il valore in 3.1.5.

3.3 Lunghezza dei pacchetti d'onda di una sorgente non monocromatica