

CURSO: Graduação em Matemática Aplicada – 1º semestre de 2020

DISCIPLINA: Equações Diferenciais Ordinárias PROFESSOR(ES): Maria Izabel Tavares Camacho

CARGA HORÁRIA: 60h

PRÉ-REQUISITO: Cálculo em várias Variáveis, Álgebra Linear

HORÁRIO E SALA DE ATENDIMENTO:

SALA: 530

PLANO DE ENSINO

1. Ementa

Equações Diferenciais Lineares de Primeira Ordem. Métodos clássicos de solução de EDOs de primeira ordem: fator de integração, equações separáveis, equações exatas, equação de Bernoulli. Modelagem com equações diferenciais ordinárias: a dinâmica de uma população, a equação de Malthus e a Logística; resfriamento d um corpo, diluição de soluções, explorando recursos naturais renováveis. Equações Lineares de Segunda Ordem. Método dos coeficientes a determinar, método da variação de parâmetros.

Teorema de Existência e Unicidade de Soluções. (uma ideia da demonstração).

Solução de Sistemas Lineares de EDOs. Exponencial de uma matriz. Retrato de fase, pontos de equilíbrio e estabilidade de sistemas lineares. Sistemas não lineares. Modelos baseados em sistemas de EDOs não lineares: predador-presa, competição entre espécies de população, o pêndulo, modelos de epidemiologia.

Métodos Numéricos: método de Euler, método de Runge-Kutta

2. Objetivos da disciplina

Neste curso serão apresentados os métodos clássicos de soluções de equações diferenciais ordinárias; o caso linear será destacado; modelos de equações diferenciais de primeira e segunda ordem serão apresentados.

Ao final do curso, espera-se que o(a) aluno(a) seja capaz de dominar os conteúdos estudados e de apresentar e resolver modelos matemáticos. Poderão usar técnicas de EDO para resolver problemas de epidemiologia, de segurança, de finanças, entre outros.

3. Procedimentos de ensino (metodologia)

O curso será baseado em aulas expositivas, na resolução de exercícios e na apresentação de modelos de EDO

4. Conteúdo programático detalhado

Datas	Tópico	
10/02	Equações Diferenciais de Primeira Ordem	X
12/02	Fator de Integração	X
17/02	Equações separáveis	X
19/02	Equações exatas	X
02/3	A dinâmica de uma população; Equação de Malthus e a Logística	X
04/3	Resfriamento de um corpo	
09/3	Diluição de soluções	
11/3	Curvas de perseguição	
16/3	Explorando recursos naturais renováveis	
18/3	Equações Diferenciais de Segunda Ordem;	
23/3	Método dos coeficientes a determinar	
25/3	Método de variação de parâmetros	
30/3	Teorema de Existência e Unicidade de Soluções(uma ideia da demonstração)	
01/4	Revisão da matéria para a A1	
06-17/4	A1	
22/4	Revisão de Álgebra Linear	
27/4	Sistemas Lineares	
29/4	Exponencial de uma Matriz	
04/5	Solução do problema: X'=AX	
6/5	Estudo dos sistemas lineares para n=2	
11/5	Caso 1: autovalores reais distintos	
13/5	Caso 2: autovalores repetidos	
18/5	Caso 3: autovalores complexos	
20/5	Pontos de equilíbrio; estabilidade; espaço de fase; plano traço-determinante	
25/5	Predador-presa; competição entre espécies de população	
27/5	Pêndulo amortecido	
01/6	Modelos de epidemiologia	
03/6	Modelos SIR, SIS	
08/6	Métodos numéricos	
10/6	Método de Euler	
15/6	Método de Runge-Kutta	
17/6	Revisão da matéria para a A2	
20-27/6	A2	
06-11/6	AS	

5. Procedimentos de avaliação

Serão realizados dois testes, um em cada período, e duas provas.

T1 = nota do primeiro teste

P1 = nota da primeira prova

T2 = nota do segundo teste

P2 = nota da segunda prova

$$A1 = T1 \times 0.3 + P1 \times 0.7$$

$$A2 = T2 \times 0.3 + P2 \times 0.7$$

Média final =
$$(A1 + A2) / 2$$

Se a média final for menor que 6,0, será feita a AS para substituir a menor entre as notas A1 e A2.

6. Bibliografia Obrigatória

Equações Diferenciais Elementares e Problemas de Valores de Contorno, W. E. Boyce e R.C.Di-Prima. LTC. 2006;

Cálculo II, James Stewart. Pioneira/Thompson, 2006;

Differential Equations. An introduction to modern methods and applications, J. Brannan e W. E. Boyce. John Wiley & Sons, Inc. (Digital), 2011.

7. Bibliografia Complementar

Equações Diferenciais, Dennis Zill; Michael S Cullen, Pearson Makron Books;

Equações Diferenciais Aplicadas, Djairo Figueiredo e Aloísio Freiria Neves. Coleção Matemática Universitária, IMPA, 2014;

An introduction to ordinary differential equations, James Robinson. Cambridge University Press, 2004;

Differential Equations, Dynamical Systems, and Linear Algebra; Morris W. Hirsch and Stephen Smale. Academic Press, Inc.

Álgebra Linear, Elon Lages Lima. Coleção Matemática Universitária – IMPA, 2012;

8. Minicurrículo do(s) Professor(s)

Possui graduação em Matemática pela Pontificia Universidade Católica de São Paulo (1967), mestrado em Matemática pela Associação Instituto Nacional de Matemática Pura e Aplicada (1972) e doutorado em Matemática pela Associação Instituto Nacional de Matemática Pura e Aplicada (1978). Pos-Doc na Universidade da Califórnia- Berkeley (1980). Atualmente é professora associada da Escola de Matemática Aplicada-FGV-RJ. Tem experiência na área de Matemática, com ênfase em Sistemas Dinâmicos, atuando principalmente nos seguintes temas: blowing up, hyperbolic singularities, dicritical singularity, topological equivalence e morse-smale vector fields.

9. Link para o Currículo Lattes

http://lattes.cnpq.br/0206961561900999