1. MEĐUISPIT IZ NUMERIČKE MATEMATIKE 20.04.2012.

1. (3 boda)

- a) (2 boda) Izračunajte aproksimaciju $T_4(2)$ vrijednosti e^2 koristeći Taylorov polinom stupnja 4 za funkciju $f(x) = e^x$ oko točke c = 0, te potom izračunajte stvarnu relativnu pogrešku za takvu aproksimaciju.
- b) (1 bod) Kako nazivamo pogrešku koju smo napravili aproksimacijom vrijednosti e^2 s $T_4(2)$?

Uputa: Treba koristiti Taylorovu formulu $e^x = \sum_{k=0}^n \frac{x^k}{k!} + \frac{e^{\xi}}{(n+1)!} x^{n+1}$ gdje je ξ neka točka između 0 i x.

2. (5 bodova)

- a) (3 boda) Neka je za prikaz normaliziranog fp-broja raspoloživo 15 bitova za eksponent te 64 bita za prikaz mantise. Izračunajte vrijednost takvog najvećeg pozitivnog fp-broja.
- **b)** (1 bod) Za fp-brojeve iz a) dijela zadatka odredite strojni epsilon.
- c) (1 bod) Kako biste reformulirali izraz $\sqrt{x+1}-1$ da izbjegnete dokidanje značajnih znamenaka kada je $x \approx 0$ te objasnite zašto je takav izraz "bolji" od gore navedenog.

3. (3 boda)

- a) (1 bod) Pretpostavimo da je za neku matricu $A \in \mathbb{R}^{n \times n}$ poznata LU faktorizacija. Kako biste izračunali determinantu matrice A pomoću elemenata matrica L i U.
- b) (2 bod) Navedite jedan primjer singularne matrice $A \in \mathbb{R}^{3\times 3}$ čiji su elementi različiti od nule za koju postoji LU rastav te bez računanja faktorizacije obrazložite zašto za tu matricu takav rastav sigurno postoji.

4. (8 bodova)

- a) (2 boda) Navedite barem tri svojstva permutacijskih matrica.
- b) (6 bodova) Gaussovom metodom eliminacija s parcijalnim pivotiranjem odredite matrice P, L, U tako da je PA = LU. Nakon toga, koristeći dobivenu faktorizaciju riješite sustav Ax = b ako je zadano:

$$A = \begin{bmatrix} 1 & 1 & 4 & -3 \\ -2 & -1 & 1 & 4 \\ 2 & 2 & 2 & 1 \\ 3 & 0 & 0 & 0 \end{bmatrix} \quad b = \begin{bmatrix} 1 \\ 4 \\ 3 \\ 3 \end{bmatrix}.$$

5. (6 bodova)

- a) (1 bod) Napišite definiciju pozitivno definitne matrice.
- b) (2 boda) Pokažite sljedeću tvrdnju: Neka matrica $A \in \mathbb{R}^{n \times n}$ ima faktorizaciju Choleskog, tj. da se zapisati u obliku $A = GG^T$, gdje je G donjetrokutasta matrica s pozitivnim elementima na dijagonali. Tada je A simetrična pozitivno definitna matrica.
- c) (3 boda) Koristeći faktorizaciju Choleskog ispitajte za koje $\alpha \in \mathbb{R}$ je matrica

$$A = \begin{bmatrix} 49 & 14 & 21 \\ 14 & 5 & 11 \\ 21 & 11 & 44 - \alpha \end{bmatrix}.$$

pozitivno definitna. Objasnite svoju tvrdnju.

6. (3 boda)

a) (2 boda) Odredite uvjetovanost simetične pozitivno definitne matrice

$$B = \begin{bmatrix} 4 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

b) (1 bod) Za općenitu regularnu matricu $A \in \mathbb{R}^{n \times n}$ definirajte uvjetovanost $\kappa(A)$.

7. (6 bodova)

a) (2 boda) Za dani skup točaka (x_i, f_i) i = 0, ..., n te danu bazu $\{\psi_0(x), \psi_1(x), ..., \psi_n(x)\}$ interpolacijski problem svodi se na nalaženje polinoma

$$p(x) = a_0 + a_1\psi_1(x) + a_2\psi_2(x) + \dots + a_n\psi_n(x)$$

tj. njegovih koeficijenata. Izvedite sustav koji dobivamo ukoliko uzmemo $\psi_i(x) = x^i$ tj. standardnu bazu prostora polinoma P_n , te izvedite sustav koji dobivamo ukoliko odaberemo $\psi_i(x) = \varphi_i(x)$, gdje su $\varphi_i(x)$ elementi Lagrangeove baze. Koje su prednosti odabira Lagrangeove baze?

b) (4 boda) Podaci zadani tablicom:

predstavljaju vrijednosti neke fizikalne veličine koja je opisana funkcijom:

$$f(x) = e^{-2x}.$$

- (i) (1 bod) Odredite Lagrangeov interpolacijski polinom p(x).
- (ii) (3 boda) Bez računanja Lagrangeovog interpolacijskog polinoma ocijenite grešku interpolacije u točki $x=\frac{5}{2}$.

8. (6 bodova)

- a) (2 boda) Poznavajući jednostavnu trapeznu formulu izvedite kompozitnu trapeznu formulu te ocijenite pripadnu pogrešku integracije.
- b) (4 boda) Odredite koliko čvorova mreže je potrebno da bismo izračunali integral

$$\int_{1}^{2} \ln x dx$$

kompozitnom trapeznom formulom s točnošću $\varepsilon=10^{-2}$, te za dobiveni broj čvorova izračunajte aproksimaciju integrala.

Napomena: Vrijeme pisanja je 120 minuta. Dozvoljena je upotreba džepnog kalkulatora (koji nije programabilan).

Upute i formule.

1. Greška polinomijalne interpolacije

Neka je $f \in C^{n+1}(a,b)$ zadana funkcija i neka su $x_0, x_1, \ldots, x_n \in [a,b]$ međusobno različite točke. Neka je $p_n \in \mathcal{P}_n$ polinom koji interpolira funkciju f u čvorovima x_0, x_1, \ldots, x_n . Tada za svako $x \in [a,b]$ postoji točka $\xi_x \in (a,b)$ takva da je

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} w_{n+1}(x),$$

gdje je
$$w_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$$
.

2. Greška integracije jednostavne trapezne formule.

$$f \in C^2(\mathbb{R}), \ I(f) = \int_a^b f(x)dx; \quad I(f) - T(f) = -\frac{(b-a)^3}{12}f''(\tau), \ \tau \in (a,b)$$