MSRA SH Triton Study Group 0. GPU Basic Knowledge

2025/06/27

CPU Architecture

CPU vs. GPU

Modern GPU Example:

- Warp Level:
 - Computation:
 - 32 clock-synchronized threads (lanes)
 - 32/64-bit CUDA cores
 - 1 big 8/16-bit tensor core
 - SFU: special function units
 - Communication:
 - LD/ST: 8 load/store units
 - 4-clock shuffle-sync on registers
 - Memory:
 - L0 instruction cache
 - 255 32-bit registers / thread

Modern GPU Example:

- SM (Streaming Multiprocessor):
 - 4 physical warps
 - L1 Cache
 - Shared Memory
 - Logical: thread-block

CUDA Core, Tensor Core and Matrix Multiplication

- $C = AB, A \in \mathbf{R}^{[M,K]}, B \in \mathbf{R}^{[K,N]}, C \in \mathbf{R}^{[M,N]}$
- Parallelized: $C_{ij} = \sum_k A_{ik} B_{kj}$
- FLOPS: float-point operations per second, 2MNK/Latency
 - 2 means multiplication and addition

		A100 80GB PCle	A100 80GB SXM
CUDA	FP64	9.7 TFLOPS	
	FP64 Tensor Core	19.5 TFLOPS	
	FP32	19.5 TFLOPS	
	Tensor Float 32 (TF32)	156 TFLOPS 312 TFLOPS*	
	BFLOAT16 Tensor Core	312 TFLOPS 624 TFLOPS*	
	FP16 Tensor Core	312 TFLOPS 624 TFLOPS*	
	INT8 Tensor Core	624 TOPS	1248 TOPS*

Modern GPU Example: A100

- TPC (texture processing cluster): Group of SMs
- GPC: Group of TPCs

- L2 Cache
- HBM: Global Memory

How Logical Kernel Code Maps to Physical Hardware

Kernel

• GPU

Thread Block

Streaming Multiprocessor

• (Warp)

Warp

Thread

Lane

Modern GPU Example: A100

Computation:

- 1 thread (lane) = 1 independent slow CPU core
- 1 warp = 32 threads + 1 tensor core
- 1 thread block (SM) = several warps
- 1 kernel = several thread blocks on different SMs

• Memory:

- Registers
- Shared Memory (programmable in thread-block level) & L1 Cache
- L2 Cache
- Global Memory

Parallelization & Overlap

- Single instruction, multiple data
 - Warp-level parallelism requires data independence
 - Warp-level data sharing: shuffle-sync
 - A warp can cooperate with other warps by SM-level data sharing
 - Information exchange between thread-blocks can only occur through global memory
- Computation is fast, memory access is slow
 - Hierarchical memory
 - Buffer, double buffer and multi-stage

Reading Materials

- https://www.nvidia.com/en-us/data-center/a100/
- nvidia-ampere-architecture-whitepaper.pdf
- https://hao-ai-lab.github.io/cse234-w25/index.html
- https://people.maths.ox.ac.uk/~gilesm/cuda/