

### **ALDY BUDHI ISKANDAR**

**Data Scientist & Machine Learning** 

# **Projects**

- Customers Loan Status Predicting •
- E-Commerce General Customers Clustering •
- Video Game Sales Exploratory Data Analysis
  - Shipping Data Exploratory Data Analysis
    - Python Data Cleansing •

### **Educational**

**Data Science** 

May - Sept 2022 at **Dibimbing.id** 

Mechanical Engineering 2012 - 2016 at Polman Bandung



I'm a Data Scientist who interest in Math Logic and Statistics with a background as an Engineer in several manufacturing companies.

For programming skills, I prefer to use Python programming language, SQL query, & Tableau for visualization, because that's related to the software I always use for my projects.



### **Contents**



# Modeling

Current business problem

Collection and preparation of required dataset

Do the best modeling to solve existing problems.



Analyze modeling output

5

### **Recommendations**

Business insight & recommendations for company



# Case Study

In this modern era, there are more trade competitors are emerging, therefore service to customers must be improved to retain our customers because creating better relationships with customers will lead to increased company profits. But what efforts should be made to retain as many customers as possible?



# **Business problem**

Why should build good relation with customers?

Customers are assets for all types of companies, especially in the E-commerce field. So it must be maintained.

What strategy to do?

We can provide discounts for new users, attractive price offers, reminders to customers, post products for discounts, buy 2 get 3, etc.

What's the problem?

In order for the efforts to be successful, it requires high funds and effort to provide the best possible treatment to customers.



#### **Data**

There are 68,000+ user data & 56,000+ transaction data recorded only on the web store, not including offline transactions, E-commerce app transactions data, etc. Just only from the web store dataset.



### **Active user**

Must be defended





#### Not active user

Must be given an attractive offer



### **Problems**

With a large number of customers, it's difficult for E-commerce to divide and determine what treatment is right to offer customers, and surely there are other characteristics of the customer but it can't be defined yet

# **Objectives**



### **Modeling**

Perform customer
segmentation (clustering)
through the customer dataset.
use LRMFC indicators and
perform a K-means clustering
algorithm.



### **Analysis**

Analysis of the characteristics of each cluster resulting from segmentation.



### Recommendation

Provide business insight related to the analysis results.



# **PreProcessing steps**



## **Dataset information**

These datasets consist of:

# 24,354 rows

24.354 rows of order data where has no missing value in the database

# 7 features

- user\_id
- total\_transaction
- total\_money\_spent
- tran\_with\_disc

- last\_order\_date
- created\_at
- data\_pulled\_date

### **LRFMC Feature**

• L (Length Relation)

End time of the observation window-time to join (unit: month).

• R (Recency)

The time from the last order to the end of the observation window (unit: month).

• F (Frequency)

The number of orders in the observation window (unit: times).

M (Monetary Value)

The total customer spending money in the observation window (unit: IDR).

• C (Coefficient Value)

Percentage discount rate (unit: percent).

# **Data Cleansing**



**0** Missing value

**O Duplicate value** 

13 Outlier value

# **Data Distribution**

`L` and `R` columns have a fairly normal distribution, while `F`, `M`, and `C` columns have a positive skew distribution, where more outliers are in the right area.



# **Descriptive & Univariate Analysis**

- The average transaction is **1.7 transactions** per user.
- The average money spent is **IDR 332,469** per user.
- Most users join at **April** in every year.
- Most users join in 2019.

#### Year join distribution in the dataset



#### Month join distribution in the dataset



# **Multivariate Analysis**

It can be interpreted that the higher the value of `total transaction`, the higher the value of `total\_money\_spent` (directly proportional).



# **Data scaling**



StandardScaler to normalize the data so that the data used does not have large deviations.



### **Inertia**

Before doing clustering, it would be better to determine the best and right number of clusters first.

According to the graphic (Elbow method), the angle change starts to occur at point 4, then the correct K value for K-Means Clustering is K = 4.



# **Score plot**

The result of the **score plot** can be taken as the best and ideal value, which is at point 4, or **N = 4**.



# **K-Means Clustering**

From the results of this customer clustering and visualized with a scatterplot as shown below.

This diagram shows the distribution of customer data which is divided into clusters according to the K-Means Clustering algorithm.



# **User Cluster Percentage**





### **Radar chart**



# **Customers Scoring**

| cluster | Length Relation(month) | Recency(month) | Frequency(times) | Monetary(IDR) | Coef_Value | M/F(IDR)      | Count | %         |
|---------|------------------------|----------------|------------------|---------------|------------|---------------|-------|-----------|
| 0       | 27.677647              | 25.805314      | 1.461538         | 4.109494e+05  | 94.654167  | 281175.871447 | 5200  | 21.363132 |
| 1       | 23.450224              | 22.123096      | 1.503516         | 2.192185e+05  | 1.272196   | 145803.906706 | 8391  | 34.472700 |
| 2       | 31.093894              | 20.576018      | 9.470297         | 1.689753e+06  | 33.757443  | 178426.600802 | 606   | 2.489627  |
| 3       | 41.632177              | 39.709286      | 1.331920         | 2.348089e+05  | 1.589610   | 176293.531123 | 10144 | 41.674541 |

| Cluster | Strong points | Average points | Weak points |
|---------|---------------|----------------|-------------|
| 0       | С             | M,R            | F,L         |
| 1       | -             | -              | L,R,F,M,C   |
| 2       | F,M           | C,L            | R           |
| 3       | R,L           | -              | F,M,C       |

### **Customer clusters**



#### The Discount-Hunter

New customers who only make transactions if there is a voucher/promo



### The Potential-Loyalist

new customers who have just made their first transaction



### The Superior-Buyer

Average customers who frequently make transactions and do not hesitate to spend money on shopping



### The Hibernating

No longer active user

# **Cluster Percentage**







#### **The Discount-Hunter**

This customer cluster can be interpreted as an economical type of customer because they are always waiting for a promo to orders, you should keep this type of customer so that they do not **Hibernate** and even stop subscribing. Business values that E-commerce can give example:

- Give vouchers (max 5%) to attract users' attention with a maximum redemption time limit of 1 week.
- Provide a big sale event voucher (remaining warehouse stock) to impress many discounted items at affordable prices.
- Hold an event to invite your friends to join by providing a referral code to add points that can be exchanged for vouchers, etc.



### **The Potential-Loyalist**

For this customer cluster, we must lead this user' to become a loyal customer in the future like the **Superior-Buyer** cluster, do not let this customer end up **Hibernating** and move to competitor brands. The business value that can be given to increase the value of transaction frequency and total money spent, for example:

- Provide special discount promos for new users to make transactions.
- Provide free shipping for the first 3 transactions, etc.



#### The Superior-Buyer

For this type of customer, we must maintain it, lest its performance decline and even move to competitor brands. Business values that E-commerce can give example:

- Offers VIP members with features providing the latest information about new products etc.
- give promo buy 2 get 3.
- give a discount with a minimum spend of 300,000 IDR, etc.



### The Hibernating

Many possibilities make each user no longer active for example, the price is too high, the transaction process is complicated, the choice of color does not attract the user, and many more. To attract the attention of this type of user, for example:

- Do a reminder via email or WhatsApp at least once a week.
- Provide recommendations for the best-selling items to remind users of Ecommerce products.
- Provide information about developments and changes in e-commerce applications such as the ease of online transactions now, the existence of one-day shipping services, better application display, etc.

### Reference

#### The following are references for working on this project:

https://www.programmersought.com/article/63823799496

https://www.kaggle.com/code/felixign/airline-clustering/notebook

https://www.kaggle.com/code/amarmaruf/homework-unsupervised-rakamin-ds8/notebook

https://www.clevertap.com/blog/rfm-analysis/

https://www.moengage.com/blog/rfm-analysis-using-rfm-segments/

https://towardsdatascience.com/rfm-segmentation-in-e-commerce-e0209ce8fcf6











Have any questions?
aldybudhi003@gmail.com
+62 896 5729 1021
www.linkedin.com/in/aldybudhi/
www.github.com/godym

**CREDITS:** This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik** 

Let's Check out my python code Jupyter notebook! Don't hesitate to contact me if you want to do some corrections or discussion!

#DataScience #ClusteringModeling