Cited in the European Seaton Report of EP03 76 83 28.1 Your Ref.: NSC-1958-@

Patent Abstracts of Japan

EUROPEAN PATENT OFFICE

PUBLICATION NUMBER

2002020838

PUBLICATION DATE

23-01-02

APPLICATION DATE

24-11-00

APPLICATION NUMBER

2000357753

APPLICANT: NIPPON STEEL CORP;

INVENTOR:

TOMOKIYO TOSHIMASA;

INT.CL.

C22C 38/00 C21D 9/46 C22C 38/16

TITLE:

LOW CORROSION RATE AND HIGH STRENGTH HOT ROLLED STEEL SHEET EXCELLENT IN HOLE EXPANSIBILITY AND DUCTILITY, AND ITS PRODUCTION

METHOD

ABSTRACT :

PROBLEM TO BE SOLVED: To provide a low corrosion rate and high strength hot rolled steel sheet having tensile strength of ≥590 N/mm2 and having excellent hole expansibility

and ductility.

SOLUTION: This steel sheet has a composition containing, by weight, 0.01 to 0.20% C. 0.05 to 1.5% Si, 0.5 to 2.5% Mn, 0.03 to 0.2% P, ≤0.09% S, 0.1 to 1.0% Cu, 0.1 to 1.0% Ni, ≤0.010% N, 0.0005 to 0.01% Mq, 0.002 to 0.07% Al and one or two kinds of 0.003 to 0.25% Ti and 0.003 to 0.04% Nb, and the balance iron with inevitable impurities. Also the steel sheet contains MgO whose particle size is within 0.005 to 5.0 µm or multiple oxide containing the MgO and one or more kinds of Al2O3, SiO2, MnO and Ti2O3 by 1.0×103 to 1.0×107 pieces/mm2 by controlling the oxide and has a steel structure mainly consisting of ferritic structure and the balance bainitic structure.

COPYRIGHT: (C)2002,JPO

Report of EP03768328.1 Your Ref.: NSC-H358-EP

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-20838

(P2002-20838A)

最終頁に続く

(43)公開日 平成14年1月23日(2002.1.23)

(51) Int.Cl.7	識別記号	. F I		テーマコート*(参考)
C 2 2 C 38	/00 3 0 1	. C22C	38/00 3 0 1 W	4K037
C 2 1 D 9	/46	C 2 1 D	9/46 T	
C 2 2 C 38	/16	C 2 2 C	38/16	

審査請求 未請求 請求項の数10 OL (全 15 頁

(21)出願番号	特願2000-357753(P2000-357753)	(71)出願人	000006655
		27 San Asta	新日本製鐵株式会社
(22)出願日	平成12年11月24日(2000.11.24)	Service Services	東京都千代田区大手町2丁目6番3号
	in the second	(72)発明者	岡本 力
(31)優先権主張番号	特顯2000-133418 (P2000-133418)		愛知県東海市東海町5-3 新日本製鐵株
(32)優先日	平成12年5月2日(2000.5.2)		式会社名古屋製鐵所内
(33)優先權主張国	「日本 (JP) PATA CAMA A A A	(72)発明者	上島 良之
		50 p.j. 1 4	愛知県東海市東海町5-3 新日本製鐵株
	The second secon	777, 75 8	式会社名古屋製鐵所內
The state of the s	1977年 文明节第4日 (A.A.) (A.A.) (A.A.)	(74)代理人	100078101
			弁理士 綿貫 達雄 (外2名)
4,500	等于"有一只有品种"。第二次 经验 的基本。		MARKER OF HISTORY

(54) 【発明の名称】 穴拡げ性と延性に優れた低腐食速度高強度熱延鋼板及びその製造方法

(57)【要約】

【課題】590N/mm²以上の引張強度を有し、優れた穴拡げ性と延性を有する低腐食度高強度熱延鋼板を提供する。 【解決手段】重量%で、 $C:0.01\sim0.20\%$, $S::0.05\sim1.5\%$, M $n:0.5\sim2.5\%$, $P:0.03\sim0.2\%$, S::0.009%以下, $Cu:0.1\sim1.0$ %, $Ni:0.1\sim1.0\%$, N:0.010%以下、 $Ms:0.0005\sim0.01\%$ 、 Al: $0.002\sim0.07\%$ 、及びTi: $0.003\sim0.25\%$, $Nb:0.003\sim0.04\%$ の1種又は2種含有し、残部が鉄及び不可避的不純物からなり、更に、酸化物の制御により、粒子径が 0.005μ m $\sim5.0\mu$ mの範囲にあるMs0又は、Ms0を含み Al_2O_3 , SiO_2 ,MnO, Ti_2O_3 の1種もしくは2種以上の複合酸化物が1平方mnあたり 1.0×10^3 個以上、 1.0×10^7 個以下含み、鋼組織をフェライト組織を主とし残ベイナイト組織とする。

【特許請求の範囲】

【請求項1】 重量%にて

C:0.01%以上、0.20%以下、

Si: 0.05%以上、1.5%以下、

Mn: 0.5%以上、2.5%以下、

P:0.03%以上、0.2%以下、

S:0.009%以下、

Cu: 0.1%以上、1.0%以下、

Ni:0.1%以上、1.0%以下、.

N:0.010%以下、

Mg: 0.0005%以上、0.01%以下、

A1:0.002%以上、0.07%以下、 および

Ti:0.003%以上、0.25%以下、

Nb: 0.003%以上、0.04%以下

の1種または2種含有し、残部が鉄および不可避的不純物からなり、粒子径が $0.005\mu m \sim 5.0\mu m$ の範囲にあるMgOまたは、MgOを含み Al_2O_3 、 $SiO_2、MnO、<math>Ti_2O_3$ 01種もしくは2種以上の複合酸化物が1平方mmあたり 1.0×10^3 個以上、

1. 0×107 個以下含む、鋼組織をフェライト組織を 主とし残ベイナイト組織とすることを特徴とする穴拡げ 性と延性に優れた低腐食速度高強度熱延鋼板。

【請求項2】 重量%にて

C:0.01%以上、0.20%以下、

Si: 0.05%以上、1.5%以下、

Mn: 0.5%以上、2.5%以下、

P:0.03%以上、0.2%以下、

S : 0.009%以下、

Cu: 0.1%以上、1.0%以下、

Ni: 0.1%以上、1.0%以下、

N:0.010%以下、

Mg: 0.0005%以上、0.01%以下、

A1:0.002%以上、0.07%以下、 および

Ti:0.003%以上、0.25%以下、

Nb: 0.003%以上、0.04%以下

の1種または2種含有し、残部が鉄および不可避的不純物からなり、さらに、粒子径が $0.005\mu m \sim 5.0\mu m$ 以下のMgOまたは、MgOを含み $A1_2O_3$ 、 SiO_2 、MnO、 Ti_2O_3 の1種もしくは2種以上の複合酸化物とこれを核にして、その周辺に(Nb、Ti)Nを有する複合析出物のうち、そのサイズが $0.05\mu m \sim 5.0\mu m$ 以下の範囲の析出物が1平方m mあたり 1.0×10^3 個以上、 1.0×10^7 個以下含む、鋼組織をフェライト組織を主とし残ベイナイト組織とすることを特徴とする穴拡げ性と延性に優れた低腐食速度高強度熱延鋼板。

【請求項3】 重量%にて

C : 0.01%以上、0.20%以下、

Si: 0.05%以上、1.5%以下、

Mn: 0.5%以上、2.5%以下、

P:0.03%以上、0.2%以下、

S :: 0.009%以下、

Cu: 0.1%以上、1.0%以下、

Ni:0.1%以上、1.0%以下、

N:0.010%以下、

Mg: 0.0005%以上、0.01%以下、

A1:0.002%以上、0.07%以下、

および

Ti:0.003%以上、0.25%以下、

Nb: 0.003%以上、0.04%以下

の1種または2種含有し、残部が鉄および不可避的不純物からなり、さらに、

Ca:0.0005%以上、0.0100%以下 REM元素の合計:0.0005%以上、0.0100 %以下

の1種または2種含有し、残部が鉄および不可避的不純物からなり、粒子径が 0.005μ m \sim 5. 0μ mの範囲にあるMgOまたは、MgOを含みAl $_2$ O $_3$ 、SiO $_2$ 、MnO、Ti $_2$ O $_3$ の1種もしくは2種以上の複合酸化物が1平方mmあたり 1.0×10^3 個以上、

1.0×10⁷ 個以下含む、鋼組織をフェライト組織を 主とし残ベイナイト組織とすることを特徴とする穴拡げ 性と延性に優れた低腐食速度高強度熱延鋼板。

【請求項4】 重量%にて

C:0.01%以上、0.20%以下、

Si: 0.05%以上、1.5%以下、

Mn: 0.5%以上、2.5%以下、

P:0.03%以上、0.2%以下、

S:0.009%以下、

Cu: 0. 1%以上、1. 0%以下、

Ni: 0.1%以上、1.0%以下、

N:0.010%以下、

Mg: 0.0005%以上、0.01%以下、

A1:0.002%以上、0.07%以下、および

Ti:0.003%以上、0.25%以下、

Nb:0.003%以上、0.04%以下

の1種または2種含有し、残部が鉄および不可避的不純物からなり、さらに、

Ca:0.0005%以上、0.0100%以下 REM元素の合計:0.0005%以上、0.0100 %以下

の1種または2種含有し、残部が鉄および不可避的不純物からなり、粒子径が 0.005μ m \sim 5. 0μ mのMgOまたは、MgOを含みAl $_2$ O $_3$ 、SiO $_2$ 、MnO、Ti $_2$ O $_3$ の1種もしくは2種以上の複合酸化物とこれを核にして、その周辺に(Nb、Ti)Nを有する複合析出物のうち、そのサイズが 0.05μ m \sim 5.0

μmの範囲の析出物が1平方mmあたり1.0×10⁸ 個以上、1.0×10⁷ 個以下含む、鋼組織をフェライト組織を主とし残ベイナイト組織とすることを特徴とする穴拡げ性と延性に優れた低腐食速度高強度熱延鋼板。

【請求項5】 請求項1又は請求項2又は請求項3又は 請求項4に記した鋼を、圧延終了温度をAr3 変態点以 上とする圧延をし、引き続き20℃/sec以上の冷却 速度で冷却し、350℃~600℃で捲取ることを特徴 とする、鋼組織をフェライト組織を主とし残ベイナイト 組織とすることを特徴とする穴拡げ性と延性に優れた低 腐食速度高強度熱延鋼板の製造方法。

【請求項6】 請求項1又は請求項2又は請求項3又は請求項4に記した鋼を、圧延終了温度をAr₃変態点以上とする圧延をした後、20℃/sec以上の冷却速度で650℃~700℃まで冷却し、該温度で15秒以下空冷した後、再度冷却して、350℃~600℃で捲取ることを特徴とする、鋼組織をフェライト組織を主とし残ベイナイト組織とすることを特徴とする穴拡げ性と延性に優れた低腐食速度高強度熱延鋼板の製造方法。

【請求項7】 請求項1又は請求項2又は請求項3又は 請求項4に記した鋼、および、請求項5又は請求項6に 記した鋼の製造方法における溶製工程の成分調整段階に おいて、SiとMnを添加した後、Tiを添加、その後 にMgとA1を添加することを特徴とする穴拡げ性と延 性に優れた低腐食速度高強度熱延鋼板の製造方法。

【請求項8】 請求項5又請求項6又は請求項7において、Mgの希釈溶媒金属としてSi、Ni、Cu、Al、REM(希土類元素)の1種あるいは2種以上から成るMg合金を用いることを特徴とする穴拡げ性と延性に優れた低腐食速度高強度熱延鋼板の製造方法。

【請求項9】 請求項8において、Mg合金中のMg濃度が1%以上10%未満であることを特徴とする穴拡げ性と延性に優れた低腐食速度高強度熱延鋼板の製造方法。

【請求項10】 請求項7から9において、Mg合金中のFe、Mn、Crの濃度の和が10%未満であることを特徴とする穴拡げ性と延性に優れた低腐食速度高強度熱延鋼板及びその製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、主としてプレス加工される自動車用鋼板を対象とし、1.0~6.0 mm程度の板厚で、590N/mm²以上の引張強度を有し、穴拡げ性と延性に優れた低腐食速度高強度熱延鋼板及びその製造方法に関するものである。

[0002]

【従来の技術】近年、自動車の燃費改善対策としての車 体軽量化、部品の一体成形によるコストダウンのニーズ が強まり、プレス成形性に優れた熱延高強度鋼板の開発 が進められてきた。従来、加工用熱延鋼板としてはベイ

ナイトを主体とした組織から構成される鋼板が提案され ている。例えば、特開平4-88125号公報、特開平 3-180426号公報にベイナイトを主体とした組織 から構成される穴拡げ性の優れた熱延鋼板の製造方法が 提案されている。さらに、特開平6-293910号公 報では2段冷却を用いることによってフェライト占積率 を制御することで穴拡げ性と延性を両立する製造方法が 提案されている。これら穴拡げに優れた鋼板は主に自動 車の足廻り部品を中心として利用される。しかし、自動 車足廻り部品での軽量化では、穴拡げ等の加工性の他に 耐食性も求められている。足廻り部品は融雪材による塩 害や道路からの水分、石はねによるチッピング等の問題 により、車体でも腐食条件が最も厳しい部品の一つであ り、従来はその対策として「錆しろ」を見込んだ厚肉設 計となっていた。防錆鋼板としては一般的に表面処理鋼 板の1つである亜鉛めっき鋼板が使用されているが、足 廻り部品ではアーク溶接が施されるため溶接時に亜鉛が 気化して気泡になり、溶接ビード内部に封じ込まれる溶 接欠陥 (ブローホール) が発生してしまう。このため、 足廻り部品にはめっきを施さない鋼自身に耐食性を高め た鋼板が求められている。素地耐食性鋼板としては従来 からCu、Pなどを添加した鋼板が報告されている(特 公昭60-32709)。また、特開平7-11874 0では2段冷却を用いることによって穴拡げ等の加工性 と素地耐食性の両立に着目し提案がされているものの、 Cu、P添加による穴拡げ性の劣化を完全に補えるもの ではなく、自動車のさらなる軽量化指向、部品の複雑化 等を背景に素地耐食性の優れた鋼板において更に高い穴 拡げ性が求められ上記技術では対応しきれない高度な加 工性、高強度化が要求されている。

[0003]

【発明が解決しようとする課題】本発明は590N/m m² クラス以上の熱延鋼板に関するもので、優れた穴拡げ性と延性を両立した素地耐食性に優れた高強度熱延鋼板を提供しようとするものである。

[0004]

【課題を解決するための手段】本発明の課題解決のため種々実験、検討を重ねた結果、穴拡げ性の改善には打抜き穴のクラックの状態が重要であることはよく知られるところであるが、本発明者らが鋭意検討した結果、Mgを添加することで打抜き穴の断面に発生するクラックを微細均一化することが可能であることを見出した。そして、鋼板中に存在する酸化物とこれらを核にした(Nb、Ti)Nの複合析出物を均一微細に分散析出させることにより、打抜き時に微細ボイドを発生させることでの応力の集中を緩和しうることが考えられ、粗大クラックの発生を抑制し穴拡げ性を向上させていると考えられる。これより、この発明をなすに至ったのである。これまで、Mg添加による酸化物を利用した提案には、例えば特開平11-323488号公報による面内異方性改

善に関する提案ではMg酸化物による再結晶時の面方位の優先的な核生成・成長を抑制する事を目的にしており、特開平11-236645号公報の溶接部の靭性に関する提案ではMg複合酸化物により超大入熱溶接時のHAZ部のγ粒の成長を抑制することを目的としている。これらはいずれも微細酸化物によるピンニングによる効果を利用したものであり、本発明の打抜き時、介在物により発生する微細ボイドを利用するものとは異なり、これらを目的とする鋼板において穴拡げ性が向上しているかはさだかではない。本発明の要旨は、下記の通りである。

【0005】1)重量%にてC:0.01%以上、 0.20%以下、Si:0.05%以上、1.5%以 下、Mn:0.5%以上、2.5%以下、P:0.0 3%以上、0.2%以下、S:0.009%以下、C u:0.1%以上、1.0%以下、Ni:0.1%以 上、1.0%以下、N : 0.010%以下、Mg: _. 0.0005%以上、0.01%以下、A1:0.00 2%以上、0.07%以下、およびTi:0.003% 以上、0.25%以下、Nb:0.003%以上、0. 04%以下の1種または2種含有し、残部が鉄および不 可避的不純物からなり、粒子径が0.005μm~5. Oμmの範囲にあるMgOまたは、MgOを含みAl2 O₃、SiO₂、MnO、Ti₂O₃の1種もしくは2 種以上の複合酸化物が1平方mmあたり1.0×103 個以上、1.0×107個以下含む、鋼組織をフェライ ト組織を主とし残ベイナイト組織とすることを特徴とす る穴拡げ性と延性に優れた低腐食速度高強度熱延鋼板。 【0006】2) 重量%にてC ·: 0.01%以上、 0.20%以下、Si:0.05%以上、1.5%以 下、Mn:0.5%以上、2.5%以下、P:0.0 3%以上、0.2%以下、S:0.009%以下、C u:0.1%以上、1.0%以下、Ni:0.1%以 上、1.0%以下、N : 0.010%以下、Mg: 0.0005%以上、0.01%以下、A1:0.00 2%以上、0.07%以下、およびTi:0.003% 以上、0.25%以下、Nb:0.003%以上、0. 04%以下の1種または2種含有し、残部が鉄および不 可避的不純物からなり、さらに、粒子径が0.005μ m~5.0µm以下のMgOまたは、MgOを含みA1 2 O3 、SiO2 、MnO、Ti2 O3 の1 種もしくは 2種以上の複合酸化物とこれを核にして、その周辺に (Nb、Ti) Nを有する複合析出物のうち、そのサイ ズが0.05µm~5.0µm以下の範囲の析出物が1 平方mmあたり1. 0×103 個以上、1. 0×107 個以下含む、鋼組織をフェライト組織を主とし残ベイナ イト組織とすることを特徴とする穴拡げ性と延性に優れ た低腐食速度高強度熱延鋼板。

【0007】3) 重量%にてC : 0.01%以上、 0.20%以下、Si:0.05%以上、1.5%以

下、Mn:0.5%以上、2.5%以下、P:0.0 3%以上、0.2%以下、S:0.009%以下、C u:0.1%以上、1.0%以下、Ni:0.1%以 上、1.0%以下、N:0.010%以下、Mg: 0.0005%以上、0.01%以下、A1:0.00 2%以上、0.07%以下、およびTi:0.003% 以上、0.25%以下、Nb:0.003%以上、0. 04%以下の1種または2種含有し、残部が鉄および不 可避的不純物からなり、さらに、Ca: 0.0005% 以上、0.0100%以下REM元素の合計:0.00 05%以上、0.0100%以下の1種または2種含有 し、残部が鉄および不可避的不純物からなり、粒子径が 0.005μm~5.0μmの範囲にあるMgOまた は、MgOを含みAl2 O3、SiO2、MnO、Ti 2 O3 の1種もしくは2種以上の複合酸化物が1平方m mあたり1.0×10³ 個以上、1.0×10⁷ 個以下 含む、鋼組織をフェライト組織を主とし残ベイナイト組 織とすることを特徴とする穴拡げ性と延性に優れた低腐 食速度高強度熱延鋼板。

【0008】4)重量%にてC : 0.01%以上、0.20%以下、Si: 0.05%以上、1.5%以下、Mn: 0.5%以上、2.5%以下、P: 0.03%以上、0.2%以下、S: 0.009%以下、Cu: 0.1%以上、1.0%以下、Ni: 0.1%以上、1.0%以下、N: 0.010%以下、Mg: 0.005%以上、0.01%以下、Al: 0.002%以上、0.07%以下、およびTi: 0.003%以上、0.25%以下、Nb: 0.003%以上、0.04%以下の1種または2種含有し、残部が鉄および不可避的不純物からなり、さらに、Ca: 0.0005%以上、0.0100%以下

REM元素の合計: 0.0005%以上、<math>0.0100%以下の1種または2種含有し、残部が鉄および不可避的不純物からなり、粒子径が 0.005μ m \sim 5. 0μ mのMgOまたは、MgOを含みA 1_2 O $_3$ 、SiO $_2$ 、MnO、Ti $_2$ O $_3$ の1種もしくは2種以上の複合酸化物とこれを核にして、その周辺に(Nb、Ti)Nを有する複合析出物のうち、そのサイズが 0.05μ m \sim 5. 0μ mの範囲の析出物が 1μ 7mmあたり 1.0×10^3 個以上、 1.0×10^7 個以下含む、鋼組織をフェライト組織を主とし残ベイナイト組織とすることを特徴とする穴拡げ性と延性に優れた低腐食速度高強度熱延鋼板。

【0009】5)請求項1又は請求項2又は請求項3又は請求項4に記した鋼を、圧延終了温度をAr₃変態点以上とする圧延をし、引き続き20℃/sec以上の冷却速度で冷却し、350℃~600℃で捲取ることを特徴とする、鋼組織をフェライト組織を主とし残ベイナイト組織とすることを特徴とする穴拡げ性と延性に優れた低腐食速度高強度熱延鋼板の製造方法。

【0010】6)請求項1又は請求項2又は請求項3又は請求項4に記した鋼を、圧延終了温度をAr₃変態点以上とする圧延をした後、20℃/sec以上の冷却速度で650℃~700℃まで冷却し、該温度で15秒以下空冷した後、再度冷却して、350℃~6.00℃で搭取ることを特徴とする、鋼組織をフェライト組織を主とし残ベイナイト組織とすることを特徴とする穴拡げ性と延性に優れた低腐食速度高強度熱延鋼板の製造方法。

【0011】7)請求項1又は請求項2又は請求項3又は請求項4に記した鋼、および、請求項5又は請求項6に記した鋼の製造方法における溶製工程の成分調整段階において、SiとMnを添加した後、Tiを添加、その後にMgとAlを添加することを特徴とする穴拡げ性と延性に優れた低腐食速度高強度熱延鋼板の製造方法。

【0012】8)請求項5又請求項6又は請求項7において、Mgの希釈溶媒金属としてSi、Ni、Cu、Al、REM(希土類元素)の1種あるいは2種以上から成るMg合金を用いることを特徴とする穴拡げ性と延性に優れた低腐食速度高強度熱延鋼板の製造方法。

【00.13】9)請求項8において、Mg合金中のMg 濃度が1%以上10%未満であることを特徴とする穴拡 げ性と延性に優れた低腐食速度高強度熱延鋼板の製造方 法。

【0014】10)請求項7から9において、Mg合金中のFe、Mn、Crの濃度の和が10%未満であることを特徴とする穴拡げ性と延性に優れた低腐食速度高強度熱延鋼板及びその製造方法。

【0015】 "藏》 255 医原形 红 沙螺纹 5

【発明の実施の形態】本発明は穴拡げ性の改善のために 打抜き穴の粗大クラックを抑制するため。Mgを添加 し、酸化物を均一微細析出させ、これにより、打抜き時 の粗大クラックの発生を抑制させ穴拡げ性を改善させる ものである。以下に本発明の個々の構成要件について詳 細に説明する。

【0016】まず、本発明の成分の限定理由について述べる。Cは、鋼の加工性に影響を及ぼす元素であり、含有量が多くなると、加工性は劣化する。特に0.20%を超えると穴拡げ性に有害な炭化物(パーライト、セメンタイト)が生成するので、0.20%以下、ただし、好ましくは0.15%以下が望ましい。また、強度確保の面で0.01%以上は必要である。

【0017】Siは、腐食速度低減のためには低い方が 望ましいが、有害な炭化物の生成を抑えフェライト組織 主体+残ベイナイトの複合組織を得るために重要な元素 である。この効果を最低限確保するためには、0.05 以上の添加が必要である。一方で、添加量が増加すると 化成処理性が低下するほか、点溶接性も劣化するため 1.5%を上限とする。

【0018】Mnは、強度確保に必要な元素であり、最低0.50%の添加が必要である。しかし、多量に添加

するとミクロ偏析、マクロ偏析が起こりやすくなり、これらは穴拡げ性を劣化させる。これより2.50%を上限とする。

【00.19】Pは耐食性に最も効果を及ぼす元素であり、特に耐穴開き腐食に有効であり、0.03%以上の含有が必要である。Pは溶接性に悪いとされてきたが、低C、低Nの条件ではPの溶接性に対する悪影響を除去できる。ただし、添加量が多いと2次加工性加工性が劣化し、プレス時に割れたり、プレス成形後わずかな力で割れたりする元素である。これより、0.20%以下とする

【0020】SはMnS等の非金属介在物を生成し、延性穴拡げ性を劣化させるので鋼中に存在しない方が好ましい元素であり、添加量は少ない程望ましく。0.009%以下でこの効果は顕著に現れるため0.005%以下が望ましい。

【0.0.2.1】 Cuは安定錆をち密化させる上でPとともに必要な元素であり、0.10%以上で効果が現れる。また、1.0%を超えると添加の効果は飽和し、ヘゲなどの欠陥を発生させやすくするので、1.0%を上限とする。

【00022】NiはCuへゲの発生の防止に有効であり、Gu等量分添加することが望ましい。また、耐食性の向上にも効果がある。このため0、1%以上添加する。ただし、多量に添加しても効果は飽和するばかりでなく、コストの上昇を招くため上限を1.0%とする。、【0023】Nは、加工性を確保するためには少ない方が良い。0.010%を越えると加工性が劣化してくるので、0.010%以下とし、0.005%以下が望ましい。

【0024】 Mgは、本発明における最も重要な添加元素の一つである。 Mgはこの添加により、酸素と結合して酸化物を形成するが、このとき生成される MgOまたはMgOを含む $A1_2$ 、 O_3 、 SiO_2 、MnO、 Ti_2 , O_3 の複合酸化物微細化は Mgを添加しない従来の鋼に比べ、個々の酸化物のサイズが小さく、均一に分散した分布状態となることを見出した。鋼中に微細に分散したこれらの酸化物は、明確ではないが打抜き時に微細ボイドを形成し、応力集中を抑制することで粗大クラックの発生を抑制する効果があると考えられ、穴広げ性の向上に効果があると考えられる。ただし、0.0005%未満ではその効果が不十分である。一方で0.01%超の添加は添加量に対する改善代が飽和するばかりでなく、逆に鋼の清浄度を劣化させ、穴拡げ性、延性を劣化させるため上限を0.01%とする。

【0025】A1は本発明における最も重要な添加元素の一つである。A1はMgが添加されている時、スピネル構造をもつMg $A1_2$ O₄複合酸化物を生成しやすい、Mg $A1_2$ O₄複合酸化物はMgOを含む $A1_2$ O
3、 SiO_2 、MnO、 Ti_2O_3 の複合酸化物のうち

最も微細な酸化物の存在状態のひとつであり、酸化物の分散状態を均一微細化するのに効果的であると考えられる。このため、打抜き時に微細ボイドを形成し、これが応力集中を抑制することで粗大クラックの発生を抑制する効果があると考えられ、穴広げ性の向上に効果があると考えられる。これより0.002%以上添加する。ただし添加量が増加するとMg添加の効果を阻害するため、0.07%以下とする。特に複合酸化物のうちMgA1複合酸化物の酸化物に占める割合を向上し酸化物の微細化を効率よく達成させるためには添加量は0.02%~0.07%が望ましい。

【0026】 Ti、Nbは本発明における最も重要な添加元素の一つである。Ti、Nbは微細均一に析出している酸化物のうち特に小さいMgOまたはMgA1 $_2$ O $_4$ を主とする複合酸化物を核に析出し、これら酸化物上に析出することで析出物サイズを大きくし、MgOまたはMgA1 $_2$ O $_4$ の微細ボイド形成を助成する働きがあると考えられる。また、強度の増加にも有効である。これらの結果を有効に発揮させるためにはNb、Tiともに少なくとも0.003%の添加が必要であり。0.01%以上の添加が望ましい。しかし、これらの添加が過度になると析出強化により延性が劣化するため、上限としてTiは0.25%以下、Nbは0.04%以下とする。これらの元素は単独で添加しても効果がある。

【0027】Caは硫化物系の介在物の形状制御し、穴拡げ性の向上に有効である。これを有効に発揮させるためには0.0005%以上の添加が必要である。一方、多量の添加は逆に鋼の清浄度を悪化させるため穴拡げ性、延性を損なう。これより上限を0.0100%とする。REM元素はCaと同様の効果を有する。すなわち、REMは硫化物系の介在物の形状制御し、穴拡げ性の向上に有効である。これを有効に発揮させるためにはREM元素の合計で0.0005%以上の添加が必要である。一方、多量の添加は逆に鋼の清浄度を悪化させるため穴拡げ性、延性を損なう。また、製造コストも高いため上限を0.0100%とする。

【0028】酸化物としてはMgOまたは、MgOを含み $A1_2O_3$ 、 SiO_2 、MnO、 Ti_2O_3 の1種もしくは2種以上の複合酸化物がよい。本発明者らが鋭意検討した結果、複合酸化物のうちMgO、 $MgA1_2O_4$ とこれ以外の複合酸化物とで異なった存在状態にて微細クラックの形成に効果を発揮しており、これらはともにMg添加によって得られる効果であり、相乗効果によって穴拡げ性を向上させていることがわかった。

【0029】MgO、 $MgAl_2O_4$ は主に (Nb、Ti) Nを周辺に析出させることで微細ボイド形成の効果を得ており、MgO、 $MgAl_2O_4$ は均一な分散析出の核として寄与していると考えられる。一方で、MgO の、 $MgAl_2O_4$ 以外の微細な複合酸化物はMgOと

の複合酸化物化により微細分散析出し、(Nb、Ti) Nを周辺に析出させることなく酸化物単独にて微細ボイド形成の効果がある。特に、MgO、 $MgAl_2O_4$ 以外の微細な複合酸化物としてはMgO、 Al_2O_3 、 SiO_2 主体の複合酸化物がほとんどであり、この時、全体に占めるMgO、 Al_2O_3 、 SiO_2 酸化物の割合は90%以上である。

【0030】酸化物の粒子径は0.005μm未満ではこれを核にした(Nb、Ti)Nの析出も少ないこと、一方で、このサイズの酸化物は(Nb、Ti)Nの複合析出なしでは微細クラックを発生させる核とはなり難く、微細ボイド生成の効果が得られ難くなるため0.005μm以上とする。逆に5.0μm超では粒子数の確保が困難であり、また、粗大析出物は延性の劣化を招くため5.0μm以下とする。

【0031】酸化物と複合析出物のサイズはこれが小さい時、微細ボイドの起点とならないため効果を発揮できない。従って、 0.05μ m以上とする。一方、 5.0μ m超では粒子数の確保が困難であり、これが粗大クラックの生成を助長し穴拡げ性を低減させるため 5.0μ m以下とする。

【0032】析出物密度は個数が少ないと、打抜き時に発生する微細ボイドが不足し、粗大なクラックの発生を抑制する効果が得られないと考えられる。この効果を得るには1平方mmあたり1. 0×10^3 以上必要である。一方で個数が多くなると効果は飽和し、逆に延性を劣化させるため、1. 0×10^7 個以下とする。ただし、この効果の飽和と延性のバランスから1. 0×10^6 個以下が望ましい。

【0033】また、穴拡げ性を高める手段として打抜き 穴の性状の他、母材の局部延性能を高めることが効果的 である。母材の局部延性能を高めるためには組織の均一 化が有効であるが、単相鋼では本発明の目的とする強度 において延性の劣化が大きく、目的とする特性が得られ ない。このため、鋼の組織としてはフェライト組織主体 の複合組織とする。但し、フェライト組織の占有率が高 く単相鋼となると延性または強度の低下を引き起こし、 また、この占有率が低い時、伸びの低い第2相の影響を 受け、延性が低下する。このため、フェライト組織の占 有率は50%以上、95%以下が望ましい。また、残り の組織はこれが、マルテンサイト、粗大セメンタイト、 パーライト組織であるとき、フェライト組織とこれらの 組織の界面でクラックが発生し局部変形能が低下する。 一方で、ベイナイト組織はフェライト組織中に微細なセ メンタイトの分散した組織であり、母材の局部延性能を 低下させないため、鋼の組織としてフェライト組織を主 体とし、残ベイナイト組織とする。

【0034】本発明で規定した介在物の分散状態は例えば以下の方法により定量的に測定される。母材鋼板の任意の場所から抽出レプリカ試料を作成し、これを前記の

透過電子顕微鏡(TEM)を用いて倍率は5000~2 0000倍で少なくとも5000μm²以上の面積にわ たって観察し、対象となる複合介在物の個数を測定し、 単位面積当たりの個数に換算する。この時、酸化物と (Nb、Ti) Nの同定にはTEMに付属のエネルギー 分散型 X線分光法 (EDS) による組成分析とTEMに よる電子線回折像の結晶構造解析によって行われる。こ のような同定を測定する全ての複合介在物に対して行う ことが煩雑な場合、簡易的に次に手順による。まず、対 象となるサイズの個数を形状、サイズ別に上記の要領に て測定し、これらのうち、形状、サイズの異なる全てに 対し、各々10個以上に対し上記の要領にて同定を行・ い、酸化物と(Nb、Ti) Nの割合を算出する。そし て、はじめに測定された介在物の個数にこの割合を掛け 合わせる。鋼中の炭化物が以上のTEM観察を邪魔する 場合、熱処理によって炭化物を凝集粗大化、または溶解 させ対象とする複合介在物の観察を容易にすることがで きる。シャンと、されが行っておれたのであった

【0035】次に製造方法について説明する。仕上圧延終了温度はフェライトの生成を妨げ、穴拡げ性を良好にするためAr。変態点以上とする必要がある。しかしあまり高温にすると組織の粗大化による強度低減、延性の低下を招くため950℃以下とすることが望ましい。冷却速度は穴拡げ性に有害な炭化物形成を抑制し、高い穴拡げ比を得るためには20℃/s以上が必要である。捲取温度350℃未満では穴拡げ性に有害な硬質のマルテンサイトが発生するため350℃以上とする。一方、上限は600℃超になると穴拡げ性に有害な、パーライト、セメンタイトが生成するため600℃以下とする。

【0036】連続冷却中空冷はフェライト相の占有率を増加させ、延性を向上させるために有効である。しかし、空冷温度、空冷時間により、パーライトが生成されると逆に延性が低下するばかりでなく、穴拡げ性が著しく低下する。空冷温度が650℃未満では穴拡げ性に有害なパーライトが早期より発生するため、650℃以上とする。一方で700℃超ではフェライト生成が遅く空冷の効果を得にくいばかりでなく、その後の冷却中におけるパーライト生成が発生しやすくため700℃以下とする。15秒間超の空冷はフェライト相の増加が飽和するばかりでなく、その後の冷却速度、捲取温度の制御に負荷をかける。このため、空冷時間は15秒以下とする。

【〇〇37】次に溶製工程における成分調整段階の添加順序は本発明者らが鋭意検討した結果、SiとMnを添加した後、Tiを添加、その後にMgとA1を添加することを行うとき、溶鋼中へのMg歩留が増加することと、さらに酸化物のサイズがより微細化して、本発明で請求している酸化物のサイズの分散状態が安定に得られ易くなることから、より好ましい。Mgは溶鋼中での揮発性が高く、Mg純金属で溶鋼中へ投入するとMg歩留

が非常に低い。このため、Mgは希釈溶媒金属との合金の形で溶鋼中へ投入する。このとき、本発明者らが鋭意検討した結果、Mgの希釈溶媒金属としてSi、Ni、Cu、Al、REM(希土類元素)の1種あるいは2種以上から成るMg合金を用いたとき、鋼中へ残存するMg量は向上し、これら以外の金属を主体とする合金では、効果が得られなかった。Mgの希釈溶媒金属としてMgと原子間引力の相互作用を有するSi、Ni、Cu、Al、REM(希土類元素)を選び、これらのうち、1種あるいは2種以上から成るMg合金を用いて溶鋼中へのMgの投入を行うことが好ましい。ここで希土類元素の範囲は、例えば理化学辞典第5版、309頁、岩波書店、1998年発行の記載通り、周期律表3族に属するSc、Yおよびランタノイド(原子番号57のしaから71のLu)の総称である。

【0038】また、本発明者らが鋭意検討した結果、M g合金中のMg濃度としては10%未満ではMg歩留が 顕著に増加することと、さらに適正な酸化物サイズと個 数が安定に得やすくなり好ましいことを見出した。一 方、1%未満であるとMg合金添加時に希釈溶媒金属が 鋼中へ過剰に溶解するため、成分調整が困難となる、従 って、合金中のMg濃度は1%以上10%未満とするこ とが好ましい。Mg合金中のFelMn、Crの濃度の 和として10%未満の時、Mg歩留が顕著に増加するこ とと、さらに適正な酸化物サイズと個数が安定に得やす くなり好ましいことを見出した。これはMg合金が溶鋼。 に溶解中に生じるMgとこれらの元素との間の原子間反 発作用によると解釈される。従って、Mg合金中のF e、Mn、Crの濃度の和は10%未満とすることが好。 ましい。本発明の鋼板は上記のように熱延の後、溶融亜 鉛めっきのように焼鈍によりめっきを施しても本発明の 効果は損なわれない。また、熱延後、電気めっき、有機 複合皮膜を施した場合も効果は損なわれない。

[0039]

【実施例】次に本発明を実施例に基づいて説明する。表 1に示す鋼成分の鋼を溶製するために、溶銑270 tを 転炉で目標() 濃度に脱炭したのち取鍋に溶鋼を移し、脱 酸と合金調整をCAS法(日本鉄鋼協会編、梶岡博幸 著、取鍋精錬法、104頁、地人書館、1997年発行 に記載)により実施した。溶鋼の脱酸をSiとMnを添 加した後、Tiを添加、その後にMgとAlを添加する 順序で行った例とそれ以外の例を表1に示す。ここでは Si、Mn、Ti原料としてFeSi、FeMn、Fe Tiを用いた。また、Mg、Alは希釈溶媒金属として Si、Ni、Cu、Al、REM (希土類元素)の1種 あるいは2種以上を用い、Mg合金中のMg濃度が1% 以上10%未満であり、Mg合金中のFe、Mn、Cr の濃度の和が10%未満のMg合金を用いた例とこれら 以外の合金を用いた例も表1に示した。脱酸後、必要元 素を目標成分濃度範囲に調整した後、ただちに連続鋳造 機により厚さ250mm、幅1300mmのスラブを製造した。これらの鋼を1200℃以上にて加熱炉中で加熱し、表2に示す熱延条件にて圧延・冷却し、板厚2.6~3.2mmの熱延鋼板を得た。

【0040】一方、表3にMgの添加は希釈溶媒金属と してSi、Ni、Cu、Al、REM(希土類元素)の 1種あるいは2種以上を用い、Mg合金中のMg濃度が 1%以上10%未満であり、Mg合金中のFe、Mn、 Crの濃度の和が10%未満のMg合金を用い、溶製工 程の成分調整段階において、SiとMnを添加した後、 Tiを添加、その後にMgとAlを添加する脱酸を行っ たもので、成分を変化させたものを示す。符号D~Yが 本発明に従った鋼でこれ以外はC、Si、Mn、S、A 1、Mg、Nb、Tiの添加量が本発明の範囲外であ る。これらの鋼を1200℃以上にて加熱炉中で加熱 し、表4に示す熱延条件にて圧延・冷却し、板厚2.6 ~3.2mmの熱延鋼板を得た。また、鋼板母材より抽 出レプリカ試料を作成し、前述の方法にて酸化物とこれ を核に存在する(Ti、Nb)N複合酸化物の粒径、個 数を測定し、単位面積当たりの個数に換算した。これを 表1、3に表記する。

【0041】このようにして得られた熱延鋼板について JIS5号片による引張試験、穴拡げ試験、組織観察を 行った。穴拡げ性(入)は径12mmの打抜き穴を60 *円錐ポンチにて押し拡げ、クラックが板厚を貫通した 時点での穴径(d)と初期穴径(d0:12mm)から λ=(d-d0)/d0×100 で評価した。各試験片のTS、E1、λを表2、4に示す、図1に強度と伸びの関係を図2に強度と穴拡げ比の関係を示す。本発明鋼は比較鋼1と比べて穴拡げ比が、比較鋼2と比べると穴拡げ比と伸びの両特性が高くなっていることがわかる。このように、本発明の鋼板は穴拡げ比、延性をともに優れていることがわかる。

【0042】また、耐食性は、鋼板に燐酸塩処理(日本パーカー製BTL3080)を施した後、カチオン電着塗装(日本ペイント製パワートップD-30、20μm塗布)後、素地に達するクロスカットを施し、塩水噴霧5℃/6時間-乾燥70℃/RH60%/4時間-湿潤49℃/RH95%/4時間-冷却20℃/4時間を1サイクルとする促進テストを80サイクル実施した際のクロスカット部の侵食深さで評価した。この結果を表2、4に示す。これより、Cu、P添加量が本発明の範囲外にあるV、Wは耐食性が本発明鋼に比べ劣化しており、本発明鋼は耐食性にも優れていることがわかる。なお、ここでは合金投入をCAS 法で行ったがこれは特に限定するものではなく、RH脱ガス装置の真空槽内合金添加法、溶鋼取鍋内ワイヤー添加法、粉体インジェクション法等の公知の方法も問題なく使用できることを付記する。

【0043】 【表1】

	東記録	表記算	常品館	九农雄	比较到	比较级	比较级	常型量	被配益	金品	表配益	発品数	表記録	大野猫	比较如	比较值	比较值	无数数	発配量	宗配益	化配键	を見録	大田田	会社会	比數值	比较值
در ج	786	195	797	196	795	196	795	783	182	782	783	783	782	782	783	783	702	782		111	1777	170	. 221	118	. [1]	179
erch Tales of	- 3.5E+03	3.2E+03	3.5E+03	7.8E+02	.8.BE+02	4.5E+02	5.5E+02	2.4E+04	2.3E+04	2.2E+04	2.3E+04	2.1E+04	2.0E+04	7.8E+02	1.8E+02	4.2E+02	8.0E+02	8.5E+02	2.0E+04	1.9E+04	2.0E+04	2.1E+04	. 1.9E+04	1.9E+04	7.5E+02	3.86+02
Fe,Mn,Crimix	80	4	. 1		LO	9	œ	∞	~	&	۲ :		.	<u>.</u> ن	8	20	•	•	œ	•	on.	•	۲	•	15	.
MESMICE	1	8	ιĊ	60	5	SO.	7	. 1	ဆ	_	s,	9	.	. 13	80	7	7	60	_	80	5 0	1	به	•	60	<u>, </u>
非 來海珠安斯		Z	CrNi	2		2	₹	:.	2	N'IS	Z'nO.	₹	REMISS	Ö	Fe,Mn	P.	Ø	₹	15	E Z	REM,SI	N'iS	CuN	REMING	Z	₩
STATE OF THE STATE	SI-MIT-TI-ME-A	Si-Nn-Tr-Mg-A	Si-Nr-Ti-Mr-A	Si-MITTI-ME-A	SI-NIT-TI-ME-A	Si-Mn-TI-Mg-A	Ng-ALSI-Mn-Ti	Si-Nm-TI-ME-AI	SI-NIT-TI-ME-A	SI-NIT-TI-ME-A	SI-NIT-TI-META	Si-Nn-TI-Mg-Ai	Si-Nn-Ti-Mg-A	Si-Nn-TI-Mg-A	SI-NIT-II-META	SI-NIT-II-IN-IS	Si-Ng-Mn-Ti-A	Ng-Al-Si-Mn-Til	SHN-TI-MI-A	Si-Nn-TI-Mr-Al	STANTITURE	SI-NIT-TI-NIS-A	Si-Nn-Ti-Mg-A	SHUTTING	SHATTING	Ng-Al-SI-Mn-Til
5			ı	ŧ		,	,	0.003	0.003	0.003	0.002	0.002	0.003	0.003	0.002	0.003	0.003	- 0.002	· 1	ï	ı		ι	· .	ı	
=	0.070	0.071	. 0.070	0.071	0.071	0.071	0.073	0.000	0.000	0.000	0.000	0,00	0.00	0.000	0.000	0.00	0.000	0.000	0.080	0.082	0.080	0.080	0.081	0800	0.079	0.079
ź	0.030	0,031	0.030	0.031	0.031	0.028	0.029	0,020	0.022	0000	120:0	0.020	0.021	0.021	0.021	020'0	0,020	0.020	0.020	0000	120'0	0.020	0.022	0.021	0.020	0.020
₹	0.005	0.005	0,005	0.005	0.004	0.005	0.005	0.034	0.033	0.035	0.034	0.034	0,035	0,038	0.038	0.035	0.033	0.033	0.034	6,003	0.033 🚊	0.034	0.034	0.035	0.035	0.035
MK	0.005	0.005	0.004	0.000	0.000	0.000	0.003	0.004	0.003	0.002	0.003	0.003	0.003	0,000	0.000	0,000	2000	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
Ž	0.219	0.200	0.210	0.210	0.210	0.220	0.200	0.182	0.200	0.210	0.180	0.190	0.190	0.180	0.200	0.220	0.210	0.210	0.204	0.210	0.200	0.200	0.190	0.200	0.180	0.180
3	0.182	0.170	0.160	0.200	0.180	0.190	0.180	0,203	0.200	0.210	0.180	0.200	0.190	0.190	0.180	0,180	0.200	0.200	0.182	0.200	0.220	0.210	0.210	0.200	0.190	0.180
2 第 章	0.002	0.002	0.003	0.002	0.002	0.003	0,002	0.003	0.002	0.003	0.002	0.002	0.003	0.002	0.002.	0.002	0.002 :	0.002	0,003	0.003	0.003.	0.002	0.000	0.002	0.003	0.003
S	١.													0.002												0.002
۵	_	_	_		_		0.060	_						0.060											0.060	0.060
£		1.210		1.190	1,200	_	_	_		•	•			1.820								1.510	1.50	1.500	1.500	1.510
5	0.600	0.500	0.480	0.480	0.480	0.510	0.500	0.300						0.300								0.700	0.700	0.710	0.700	0.700
٥	0.040	0.039	0.039	_	_	0,040		_						0.029										_	0.050	0.050
E .	Ę	۲ ک	83 C	A4 C	A S	7 9Y	A7 C	91	.B2 C	B3 C				87 0											_	90

[0044]

【表2】

	ျှီ	·元本法理 。C/s	知治開発過極。このこの	誕生 安 砂	基 で で で	引張強さ N/mm²	争るな	次称がより	配食存 mm	哥食住 地定	龍
¥	860	99	089	က	510	707	25	95	0.40	0	然明鐵
A 2	875	20	670	4	220	708	24	001	0.50	0	常明耀
Ą	860	9	ł	1	200	716	23	100	0.49	0	常用鐵
¥	870	99	670	က	510	707	54	75	0.45	0	九穀鑑
A5	870	9	670	က	490	90/	52	2	0.46	0	式 数 盤
æ	960	8	029	4	200	709	22	2	0.45	O,	比较館
A 7	860	8	.	ı	200	. 708	∞_	8	0.43	0	比較鑑
<u>8</u>	880	9	. 099	4	200	909	59	115	0.48	0	常明鑑
B 5	870	99	670	~	220	602	88	120	0.49	0	免明劉
83	880	8	670	က	450	6 01	28	115	0.44	0	兔兒童
8	870	09		1	550	603	26	125	0.42	Ó	架明鑑
B 5	870	2	1		490	601	27	125	0.47	0	架明鐘
96	860	22		ı	440	603	27	120	0.44	0	架明鐘
8	860	8	029	1.	920	. 602	28	8	0.41	0	比較鋼
88	870	09	. 029	∞	920	602	28	82	0.43	0	比較鋼
60	870	90	ļ	1	480	602	21	8	0.41	0	比較鋼
B 10	875	.50	1	1	200	602	23	82	0.41	0	比較鋼
B	. 098	20	1	1	480	604	22	06	0.40	0	比較鎦
5	860	.50	089	ဗ	220	377	23	06	0.42	0	免品體
8	860	20	670	8	200	780	22	8	0.45	0	免明鐘
\aleph	820	09	670	4	220	781	22	. 82	0.46	0	然思鍵
8	880	8	1	1	450	778	71	8	0.47	0	架明鑑
S	870	20	1	. 1	200	780	7	92	0.46	0	免日曜
80	870	. 20	089	4	540	977	23	8	0.42	0	架明鐘
C2	870	20	670	က	220	977	22	9	0.45	0	比較錯
ප	870	9	680	¥	220	ווג	9	52	0.47	0	万数型

费中*の条件は本発明の範囲外 侵食深さ判定は,侵食深さ0.55mm未満を○(良好), 0.55mm以上を×(不良)と判定

[0045]

審地	. 7	先明編	常四雄	多品類	発品数	免問題	多田盛	光四節	光明館	来明翰	発型観	発品額	多田田田	多田田	光田器	光田路	米田鐵	表記録	常田鐵	免明整	宋忠章	地田湖	先明劉	比較個	九数值:	九数額	九数鐘	比較響	九穀竈	打裝盤	1
Ar ₃	ပွ	. 852	847	훻	805	8	795	833	780	.778	930	827	779	829	837	82	857	742	772	792	33	819	772	\$	742	774	780	785	778	837	600
产出物函数	個/mm ²	1.4E+04	1.2E+04	1.1E+04	1.5E+04	1,1E+07	3.8E+03	8.2E+03	8.0E+03	9.0E+04	20E+04	2.2E+04	1.8E+03	6.5E+03	2.5E+04	3.55+04	3.0E+03	9.0E+03	3.0E+04	1.3E+05	1.3E+04	2.0E+04	3,0E+04	3.0E+04	2.9E+04	3.0E+03	1.1E+03	8.0E+03	3.0E+03	9.0년+03	מישורים מי
REM		ARDED.	ı	10	1	1	T.		•	 . l. 	1	1	, , 1		1	17, 24, 34,	: :1 :	1	ı	ŧ	i	1	0,0020		. 1	1		13.00	1	ı	
Ca		0.17	0.0025	0.0020		0.0030	0.0030	0.0030	0.0030	0.0030	0.0025	1	0.0020		1.	0.0020	0.0020	0.0020	0.0020	0.0020	ı	0.0020		0.0020	0.0020	0.0020	0,0020	1 1 1 1 1	0.0020	0.0020	
日 日 心		1117-1170	1	0.130	1	0.120	. 0.070	0.070	0.070	1	ı	0.020	. co.120	. 1	0.090	0.150	- - 1	0.080	0.010	0.210	0.155	0.250	0.010	1.,	0.080	0.010	0.120		0.080	. 1	
· ND		٠,		0.040			e 3			15			14			ů.	•										0.035	171		0.030	
AAI		<u>ن</u>	_	1,24	ec.		15 0.005 J			25			\$ <u>.</u> T			(g).								٠			9 0.005	13		1	2000
May 15 15		- 0.0022	0.0033	€ ± 0.0037	Ď	0.0100	000	0.0047		इ.स. इ.स.			art Sus			0.3	i P			-				:51			0.0016	ñ.			2000
NECESION.		$01.0 \sim 10$	0 0.20	0 ☆ ⊕ 0.18	. 0 .0 .0	0 0.18	t C Dig		0 0.18	0 0 18			ig:	:	0 0,40	1".	e e			r; -):itt			0.18			0.18	4
(0;5⊹≲ <u>;</u>	章量%	0,002 - 0,20	_	002 0 0020	0903 0000	Ū	02:0 0.20		05 0.2	0.20	٥		35°, 3 36°,		030 0.60	درون زورز	.a			٠.				ب 164			0.002 0.20		0.20	0.2	
lig & ⊗ S.	重	003 ~ 000		۲	 	_	 			रहा इंट				. – :	_	-1:	:			 /					_		0.003	7	0	.003	
b d		0.090.0		0.090.0	0.0900					•			مرجد			:								٠			0.060 0	:		0.080	*
. Mn+		8.1) : : :09:1-:	₹.	2.50		4 .	2.00) " / _	_		200			٠.											.50			_	
Si		0.80	0.10	09.0	0.05	0.30	90.0	1.20	0.70	. 0.15	1.50	0.70	0.30	0.15	06'0	0.10	0.80	0.10	. 0.08	1.30	00.	08.1	.008	0.00	0.90	0.40	090	09'0	1.20	0.80	
၁		0.03	0.01	0.0	0.04	0.03	00	90	0.04	0.0	0.04	0.03	900	0.08	0.05	0.05	0.07	0.07	0.10	0.05	0.13	90'0	0.10	0.03	0.04	0.05	0.10	0.04	90.0	90.0	
漢	1	_	ш	<u> </u>	g	Ξ	· : •••	ب	¥		· •	z	. 0	<u> </u>	. 0	Œ	S	-	_	>	. ₹	×	· >-	7	i na	م	. 0	•	0		

【表4】

[0046]

		冷却速度	空冷開始温度	空冷時間	 	引張強さ	伸び	穴拡げ	耐食性	耐食性	備号
	ొం	°C/s	<u>°C</u>	S	<u>°c</u>	⁴ N/mm²	96	96	mm	判定	
21	840	60	670 🔻 🗥	4	450	807	28	120 .	0.48	0	発明
2	870	60	-	-	550	597	26	130	0.48	0	発明
E1	870	50	670	4	480	600	29	120	0.40	Ö	発明
2	870	60	-	_	550	605	27	125	0.39	.00	発明
1	860	80	670	3	500	781 700	22	85	0.45		発明
2	870	60	_	:	550	786	21	90	0.44	ò	発明
3	850	10	670	4	480	781 588	18	50	0.40	Ò	比較
16	880	. 60	610	3	450		29	120	0.41	Ò	発明
2	870	60	-	3	550	593	26	125	0.39	Ó	発明
11	890	60	680		450	811 .	21	85	0.42	00	発明
12	870	60	-	-	550	801	20	100	0.42	×	発明
1	860	60	. 680	3	510	692	25	100 105	0.41	0	発明
2	870	60			.550	897	23		0.40		発明
11	870	50	670	3	490	787	23	65 05	0.43	· 0	発明
2	870	60	- ,	_	550 · 500	795 799	21	95 · 80	0.43	8	発明
(1)	860	60 .	080	3	550	- 799 - 797	22 22	85	0.43		発明
2	870	30	680 680					7 -	0.45	0	発明
3	850	50		5 ·	300 640	797 794	23	50 . 45	0.42	ဝ္ဂ	比較
4	900	30	660 630	3.	490	794 79 9	17	45 60	0.41 0.47	0	比較比較
.5 :6	870 880	70 50	630 720	. 6	550	789	18	65	0.47	00	比較
.o :7	880	10 .	680	3	500	779	18	60	0.43	ŏ	比较
38	870	60 ·	680	- ·	550	801	20	90	0.42	ŏ	免明
(9 (9	880	10	_		480	786	18	60	0.42	ŏ	比較
.1	860	60	670	4	510	619	28	115	0.45	. ŏ	発明
2	B70	60			550	634	25	-120	0.44	Ö	発明
11	B70	60	670	. 4	490	781	23	90	0.39	ŏ	発明
12	B70	60	-		550	791	20	100	0.39	ă	先明
li	880	60	670	3	500	701	25	105	0.44	Ŏ,	発明
12	850	50	680	5	300	711	25	55	0.43	ŏ	比較
13	B80	50	720	6	550	899	19	65	0.44	ŏ	比較
14	B70	80		· <u>-</u>	550	714	23	110	0.47	ŏ	発明
15	880	10 ,	· _	-	480	692	18	70	0.46	ŏ	比較
)1	B60	60	670	3	500	825	22	75	0.46	ŏ	発明
)2	B70	60	_		550	805	20	90	0.45	ŏ.	発明
71	860	60	680	3	510	618	28	110	0.41	ŏ	発明
22	870	60	_	_	550	808	27	120	0.40	ŏ	発明
11	870.	50	670	∑ 3 ···	490	795	22	90	0.41	Ö	発明
22	870	60	_	·	550	BO5 .	20	95	0.42	ŏ	発明
₹1	860	60	680	3	500	799	22	90	0.40	Ō.	発明
₹2	870	60	-		550	811	20	95	0.41	Ŏ	発明
23	880	40	- ,	- ,,	700	796	20	55	0.42	. Ŏ	比較
51	860	60	670	4	510	606	28	110	0.48	O.	発明
2	870	60	-	-	550	598	27	125	0.45	ō	発明
1	860	60	680	3	490	810	22	80	0.42	0	発明
2	870	80	1 x = 5 %	. - ,-	550	815	19	90	D.41	Ö	発明
11	870	\$ 0 ·	. 670	. 3 .	500	615	28	120	0.45	0	免明
12	870	60		- '	550	605	27	125	0.47	O	発明
/1	870	60	670	4	500	1012	16	55	0.44	Q	発明
/2	870	60	, <u> </u>	. –	500	1002	15	· 60 ·	0.46	. 0	発明
11	870	50	675	4,500	500	988	17	65	0.46	.O	発明
12	870	50	- -	· ·- ·	500	980	17 '	60	0.45	. 0	. 発序
1	870	50	670	4	500	996	16	55	0.45	O .	発明
2	870	50	-	-	550 ·	993	15	60 .	0.47	0	発明
1	870	50	670	4	550	610	28	115	0.42	Ō	発明
2	870	60	-	· ·-	550	605	28	120	0.43	0	発明
Z	870	60	-	-	450	596	22	70	0.70	×	比較
•	860	70	660	. 5	510	. 830	. 15	50	0.68	×	比較
Ь	850	40	660	2., .	490	654	20	70	0.46	0	比較
C	880	70	-	-	500	810	10	50	0.43	0	比較
d	870	80	·	-	480	665	25	75	0.48	0	比較
e	880	40	680	4	480 .	847	19	. 40	. 0.48	Q	比較
f	850	50	67Q ·	3	490	647	24	50	0.47	0	比較
æ	880	50	· _ ·		490	668	25	60	0.44	0	比較

[0047]

【発明の効果】本発明によれば強度レベルが590N/mm² クラス以上で、従来にない伸び一延性バランスを有した低腐食速度の熱延高強度鋼板を供給できるようになったもので、産業上極めて有用なものである。

【図面の簡単な説明】

【図1】本発明鋼と比較鋼の引張強度と伸びとの関係を示すグラフである。

【図2】本発明鋼と比較鋼の引張強度と穴拡げ比との関係を示すグラフである。

【図2】

【手続補正書】 【提出日】平成13年1月12日(2001

2)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】[0 0 4 5 意

【補正方法】変更

【補正内容】

[0045]

無		発音器	免明鑑	多品級	発明鑑	架田盤	常配金	常田道	発明館	免明鐘	先明鐘	常田瀬	常見遊	宪王至	先明鎖	宋田室	常田田	究明如	常田館	金田田	第四級	独型鐵	金田縣	比数鑑	九数级	九 数 整	九数盤	比较質	比較鐵	工数值	九数盤
Ą.	ပွ	852	847	804	802	760	795	833	780	778	930	827	:779	829	837	750	857	742	772	792	733	819	772	754	742	774	780	785	778	837	788
と田を匈奴	個/mm ²	1,4E+04	1.2E+04	1,16+04	1.5E+04	1.1E+07	3,8E+03	8.2E+03	8.0E+03	9.0E+04	2.0E+04	2.2E+04	1.8E+03	6.5E+03	25E+04	3.5E+04	3.0E+03	9.0E+03	3.0E+04	1.3E+05	1.35+04	20E+04	3.0E+04	3.0E+04	29E+04	3.0E+03	1.1E+03	8.0E+03	3.0E+03	9.0E+03	8.0E+03
KEM		•	١.	•	•	ı	ı	ı	ı	ı	ı	ı	•	•	ı	ı	1	ı	ı	•	ı	1	0.0020	ı	1	,	ı	ı	1	ı	ı
2		i,	0.0025	0.0020	ı I	0.0030	0.0030	0.0030	0.0030	0.0030	0.0025	ı	0.0020	ı	1	0.0020	0.0020	0.0020	0.0020	0.0020		0.0020	1	0.0020	0.0020	0.0020	0.0020	ı	0.0020	0.0020	ı
=		1	ı	0.130	ı	0.120	0.070	0.070	0.070	1	1	0.020	0.120	j	0.000	0.150	ı	0.080	0.010	0.210	0.165	0.250	0.010	i	0.080	0.010	0.120	ı	0.080	1	1
ND ND		0.015	0.035	0.040	0.030	ı	0.030	0.030	0.040	0.025	0.025	0.020	0,035	0.030	0.035	1	0.020	0.030	ı	0.035	0.036	0.035	ı	0.035	0.020	ı	0.035	0.015	0.030	0.030	•
₹		0.031	0.030	0.005	0.002	0.045	0.005	0.005	0.005	0.035	0.033	0.034	0.005	0.005	0.035	0.030	0.005	0.005	0.030	0.005	0.03	0.035	0.03	0.035	0.035	0.005	0.005	0.034	0.080	ı	0.033
Mg		0.0022	0.0033	0.0037	0.0034	0.0100	0.001	0.0047	0,0047	0.0025	0.0025	0.0035	0.0031	0.0030	0.0025	0.0016	0.0022	0.0033	0,0029	0.0032	0.0042	0.003	0.0029	0.0022	0,0033	0.0029	0.0016	0.0110	0.0020	0.0032	0.0030
Z		0.10	0.20	0.18	0.30	0.18	0.18	0.18	0.18	0.18	0.30	0.18	0.18	0.18	0.40	0.40	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.00	0.18	0.18	0.18	0.18	0.18	0.18
3	in the second	0.20	0.40	0.20	0.00	0.20	0.20	0.20	0.20	0.20	0.60	0.20	0.20	0.30	09'0	0.80	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0.20	0.20	0.20	0.20	0.20	0.20
z	重量%	0.002	0.002	0.002	0.003	0.002	0.002	0.002	0.005	0.003	0.002	0.003	0,003	0.002	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0,002	0.002	0.002	0.002	0.002	0.002	0.003	0003	0.002	0.002
S		0.003	0.003	0.003	0.002	0.003	0.003	0.003	0.002	0.002	0.00	0.003	0.002	0.00	0.002	0.003	0.003	0.007	0.004	0.003	0.003	0.003	0.004	0.003	0.003	0.012	0.003	0.003	0.003	0.003	0.003
a.		090'0	0.100	090.0	090.0	0.000	0.055	0.060	0.055	0.055	0.200	0.060	0.070	0.10 00.10	0.080	0.100	0.080	0.110	090.0	090'0	0.070	0.060	0.000	0.020	0.060	090.0	0.060	0.060	0.060	0.060	0.060
Mn		90.1	1.10	. 8.	1.40	2.50	1.50	1.40	2.00	8 .	0.50	1.35	2.00	8	1.20	2.30	0.60	2.30	1.40	2,00	2.20	6	6 .	1.90	2.70	. 0	.50 05.	6 .	2.10	8.	06:
Č,		0.80	0.10	0.60	0.05	0.90	0.0	1.20	0.70	0.15	1.50	0.70	0.00	0.15	0.90	0.10	0.80	0.10	80.0	1.30	8.	1.30	0.08	0.00	0.90	0.40	0.60	0,60	1.20	0.80	0.00
o		0.03	0.01	8 00	90.0	0.03	0.0	9	0.0 4 0	9	900	0.03	90.0	90:0	0.05	0.05	0.07	0.07	0.10	0.05	0.13	90.0	0.10	0.05	0.04	0.05	0.23	0.0	0.08	90.0	0.05
X.		۵	ш	L	G	I	_	7	×	_	S	z	0	۵.	O	œ	S	—	>	>	≩	×	> -	7	ત્ત	4	0	P	Φ	ب	ы

フロントページの続き

(72)発明者 谷口 裕一

愛知県東海市東海町5-3 新日本製鐵株

式会社名古屋製鐵所内

(72)発明者 友清 寿雅

愛知県東海市東海町5-3 新日本製鐵株

式会社名古屋製鐵所内

Fターム(参考) 4KO37 EA01 EA06 EA13 EA14 EA15

EA16 EA18 EA19 EA20 EA23

EA25 EA27 EA28 EA31 EA36

EB09 FC07 FD03 FD04 FD08

FE01 · FE02