

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD ACADÉMICA: UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA Y TECNOLOGÍAS

AVANZADAS

PROGRAMA <u>Ingeniería Mecatrónica</u>

ACADÉMICO:

UNIDAD DE APRENDIZAJE: Estructura y propiedades de los Materiales NIVEL: 1

OBJETIVO GENERAL:

Seleccionar adecuadamente materiales para el diseño de sistemas mecatrónicos, a través del conocimiento de la interrelación entre microestructura, procesamiento y propiedades de los materiales.

CONTENIDOS:

- I. Introducción. Estructura atómica, cristalina y defectos cristalinos.
- II. Difusión. Diagramas de fase, cinética y transformación térmica.
- III. Comportamiento mecánico, óptico, eléctrico y magnético de los materiales.
- IV. Materiales de ingeniería. Metales y aleaciones, cerámicas y vidrios, polímeros, materiales compuestos y especiales
- V. Corrosión y Técnicas de Selección de materiales

ORIENTACIÓN DIDÁCTICA:

El aprendizaje estará basado en la solución de problemas, la realización de prácticas y el aprendizaje cooperativo; mediante el uso de material didáctico, como presentaciones electrónicas, modelos físicos; así como investigación bibliográfica y búsquedas en la red. Después de cada clase, el alumno discutirá acerca de los temas y conceptos para llegar a conclusiones grupales e individuales, que se presentarán en forma de evidencias como trabajos escritos que contengan las conclusiones grupales e individuales. Se incluyen problemas, prácticas, y casos, las cuales el estudiante habrá de resolver y realizar, para desarrollar capacidad de análisis, aplicación de pensamiento abstracto, responsabilidad en el manejo de equipos, conocer las medidas de seguridad y trabajo colaborativo. De las problemáticas que se estudien, el alumno deberá presentar como evidencias, los reportes de prácticas y solución de problemas, grupales e individuales que sirvan para evaluar su desempeño.

EVALUACIÓN Y ACREDITACIÓN:

Para la evaluación de la unidad de aprendizaje:

Trabajos de investigación.

Solución de problemas.

Reporte de prácticas y casos.

Para acreditar la unidad de aprendizaje por "competencia demostrada":

Evaluación exploratoria.

Criterios para selección de materiales, en caso.

Interpretación de los resultados de las prácticas realizadas.

BIBLIOGRAFÍA:

Ashby M. F. Materials <u>Selection in Mechanical Design</u> 3er Edicición, Butterworth-Heineman, India, 2005, págs. 603, ISBN 81-312-0049-3.

Askeland Donald R. <u>Ciencia e ingeniería de los materiales</u>. Cuarte edición. Thomson editores. México, 2004. Págs-1004, ISBN 970-686-361-3.

Mangonon, <u>Ciencia de materiales selección y diseño</u>, primer edición, Prentice Hall, México, 1999, págs. 824, ISBN 970-26-0027-8

Shackelford James F. Introducción a la ciencia de los materiales para ingenieros. Pearson Educación, Sexta edición. España 2005. Págs. 839, ISBN 84-205-4451-5

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD ACADÉMICA:

UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA Y TECNOLOGÍAS AVANZADAS.

PROGRAMA ACADÉMICO: Ingeniería Mecatrónica.

PROFESIONAL ASOCIADO: Profesional Asociado

en Manufactura

ÁREA FORMATIVA: Científica Básica.

MODALIDAD: Presencial.

UNIDAD DE APRENDIZAJE: Estructura y propiedades de los Materiales.

TIPO DE UNIDAD DE APRENDIZAJE:

1. Teórico-Práctica.

2. Obligatoria.

VIGENCIA: Enero 2010

NIVEL: I

CRÉDITOS: 7.5 TEPIC 4.55 SATCA

PROPÓSITO GENERAL

Esta unidad de aprendizaje permite al alumno aplicar los conocimientos de la física y química para seleccionar el tipo de material más adecuado para el diseño y construcción de sistemas mecatrónicos. Clasifica los diversos tipos de materiales usados en la ingeniería, proporciona una clasificación de propiedades para su uso óptimo y con responsabilidad social. Sirve a apoyo a las unidades de aprendizaje de resistencia de materiales y diseño mecánico. Fortalece la disponibilidad para trabajo en equipo, responsabilidad social y con el entorno.

OBJETIVO GENERAL

Seleccionar adecuadamente materiales para el diseño sistemas mecatrónicos, a través del conocer la interrelación entre microestructura, procesamiento y propiedades de los materiales.

TIEMPOS ASIGNADOS

HORAS TEORÍA/SEMANA: 3

HORAS PRÁCTICA/SEMANA: 1.5

HORAS TEORÍA/SEMESTRE: 54

HORAS PRÁCTICA/SEMESTRE:

27

HORAS TOTALES/SEMESTRE:

81

UNIDAD DE APRENDIZAJE DISEÑADA POR: Academia de

Mecánica

REVISADA POR: Subdirección

Académica

APROBADA POR:

Consejo Técnico Consultivo Esco-

lar.

M. en C. Arodí Rafael Carvallo Domínguez Presidente del CTCE. **AUTORIZADO POR:** Comisión de Programas Académicos del Consejo General Consultivo del IPN.

Ing. Rodrigo De Jesús Serrano Domínguez Secretario Técnico de la Comisión de Programas Académicos

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Estructura y Propiedades de los Materiales. HOJA: 3 DE

N° UNIDAD TEMÁ	TICA: I NOMBRE: Introducci	ón. Estr	uctura a	tómica, cris	stalina v de	efectos cristalinos.
	COMPETENCIA E	SPECÍF	ICA		-	
Distingue los divers	sos tipos de materiales y aplica los conocimi					croestructura
		HORAS AD Actividades		HORA		
					ades de	01.47/5
No.	CONTENIDOS	de docencia		Aprendizaje Au-		CLAVE
				tono	omo	BIBLIOGRÁFICA
		Т	Р	Т	Р	
1.1	Introducción	1.0		0.5		1B. 2B, 4C
1.1.1	Influencia de los materiales en el desa-					
	rrollo de la humanidad.					
1.1.2	Ciencia, tecnología e ingeniería de ma-					
	teriales. Clasificación de materiales					
1.2	Estructura atómica. Enlaces atómicos.	1.0		2.0		
1.3	Cristalografía. Materiales amorfos	3.0		1.0		
	Sistemas cristalinos. Factor de empa-					
	quetamiento. Sitios intersticiales.					
1.5	Tipos de Estructuras: metálicas, cerá-	1.5				
4.0	micas, poliméricas.					
1.6	Semiconductores.					
1.7	Imperfecciones en la red cristalina.	1.0				
1.7.1	Defectos puntuales. Vacancias intersti-					
	cios. Defectos Lineales y superficiales					
	Cuasicristale					
	Dopado.					

ESTRATEGIAS DE APRENDIZAJE

7.5

3.5

Presentación por parte del docente de los conceptos, definiciones y leyes correspondientes, utilizando simulaciones o modelos físicos que soporten las teorías. Mediante exposiciones electrónicas, tales como diapositivas, videos, El alumno analizará y discutirá en grupo los conocimientos presentados y realizará un resumen de la influencia de las diversas microestructuras en las propiedades de los materiales. Discutirá en forma grupal de los resultados de problemas resueltos en clase y tarea. Realizará una tabla de comparación de la clasificación y aplicaciones de los distintos materiales usados en ingeniería para comparar ventajas y desventajas de cada clase de materiales.

EVALUACIÓN DE LOS APRENDIZAJES

Trabajo escrito conteniendo conclusiones grupales e individuales.	20%
Ejercicios de aplicación. Tabla	30%
Evaluación exploratoria	40%
Discusión de resultados de los problemas	<u>10%</u>
Total.	100%

Subtotales por Unidad temática:

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Estructura y propiedades de los Materiales.

HOJA: 4

DE

11

N° UNIDAD TEMÁTICA: II

NOMBRE: Difusión. Diagramas de fase, cinética y transformación térmica.

COMPETENCIA ESPECÍFICA

Uso del conocimiento de la difusión de átomos en la solidificación, cambio de fases y tratamientos térmicos de los materiales en la mejora de propiedades de los materiales

No.	CONTENIDOS		AS AD dades cencia	HORAS TAA Actividades de Aprendizaje Autó- nomo		CLAVE BIBLIOGRÁFI CA
		Т	Р	T	Р	
2.1	Difusión. Leyes de Fick	2.0	۱ ۱	1.0	l i	1B, 3B, 5C
2.2	Carburización,	l 1	¹ 1	1	l i	
2.3	Solidificación. Principios	1.5	l i	1.0	l i	
2.3.1	Nucleación controlada,	l i	l j	1	l .	
2.3.2	Segregación dendrítica.	l i	l l	1		
2.4	Diagramas de fase, descripción	4.0	l l	3.5		
2.4.1	Regla de fases de Gibbs y Regla de la palanca. Sistemas binarios.					
2.4.2	Reacciones de tres Fases	l i	l j	1	l .	
2.4.3	Sistema metaestable Hierro-carbono.	l i	l j	1	l .	
2.4.4	Diagramas de transformación isotérmica (TTT).	ca				
2.4.5	Diagrama de enfriamiento continuo para un acero eutectoide.					
2.5	Tratamientos térmicos. Recocido (rangos de temperatura), Revenido, Templado	1.5		1.0		
		9.0	' <u></u>	6.5		
	Subtotales por Unidad temática:		<u> </u>		li	

ESTRATEGIAS DE APRENDIZAJE

Presentación, estudio y análisis de los conceptos, definiciones y leyes correspondientes, utilizando simulaciones o modelos físicos que soporten las teorías. Mediante exposiciones electrónicas, tales como diapositivas, videos, consultas en la web y discusiones grupales. Análisis de las definiciones y leyes correspondientes, utilizando simulaciones o modelos físicos que soporten las teorías. Discutir en forma grupal los resultados de los problemas resueltos en clase y tarea.

EVALUACIÓN DE LOS APRENDIZAJES

Trabajo escrito conteniendo conclusiones grupales e individuale	es. 20%
Solución de ejercicios de aplicación.	30%
Evaluación exploratoria	40%
Discusión de los resultados obtenidos en los problemas	10%
Total.	100%

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Estructura y propiedades de los Materiales. HOJA: 5 DE 11

N° UNIDAD TEM	N° UNIDAD TEMÁTICA: III NOMBRE: Comportamiento mecánico, óptico, eléctrico y magnético de los materiales.							
Medición de las p	COMPETENCIA E ropiedad de los materiales	SPECIF	ICA					
No.			HORAS AD Actividades de docencia		S TAA ades de zaje Au- omo	CLAVE BIBLIOGRÁFICA		
		ТР		Т Р				
3.1	Propiedades mecánicas. Concepto de esfuerzo y deformación.	1.0		1.5		1B, 2B, 3B		
3.1.1	Ensayo de tensión.		4.0		2.0			
3.1.2	Ensayo de durezas.		1.0		3.0			
3.2	Propiedades eléctricas.	1.5		0.5				
3.2.1	Conductividad eléctrica. Ley de Ohm.							
3.2.2	Microelectrónica. transistores							
3.2.3	Nanoelectrónica.							
3.3	Propiedades ópticas	1.5		0.5				
3.3.1	Espectro electromagnético, Refracción y							
3.3.2	reflexión, Absorción, transmisión dispersión.							
3.3.3	Fibras ópticas							
3.3.4	Materiales superconductores.							
3.4	Propiedades magnéticas	1.5		0.5				
3.4.1	Conceptos. Campo, inducción, permea-							
3.4.2	bilidad, dipolos.							
3.4.3	Diamagnetismo, paramagnetismo, fe-							
3.4.4	rromagnetismo.							
3.4.5	Imanes blandos e imanes duros.							
	Subtotales por Unidad temática:	5.5	5.0	3.0	5.0			

ESTRATEGIAS DE APRENDIZAJE

Presentación, estudio y análisis de las propiedades, las leyes que rigen dicho comportamiento, utilizando simulaciones o modelos físicos que soporten las teorías. Mediante exposiciones electrónicas, tales como diapositivas, videos, consultas en la web y discusiones grupales. Realización de prácticas en laboratorio y resolución de problemas

EVALUACIÓN DE LOS APRENDIZAJES

Trabajo escrito conteniendo conclusiones grupales e individuales.

Resolución de ejercicios de aplicación.

Reporte de práctica

Participación en las discusiones

Total.

20%

30%

40%

10%

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Estructura y propiedades de los Materiales. HOJA: 6 DE 11

N° UNIDAD TEMÁTICA: IV **NOMBRE:** Materiales de ingeniería. Metales y aleaciones, cerámicas y vidrios, polímeros, materiales compuestos y especiales.

COMPETENCIA ESPECÍFICA

Uso de los conocimientos de las diversas propiedades de los materiales metálicos, poliméricos, compuestos y semiconductores.

No.	CONTENIDOS	HORAS AD Actividades de docencia (a)		HORAS TAA Actividades de Aprendizaje Autó- nomo (b)		CLAVE BIBLIOGRÁFI CA
		Т	Р	Т	Р	
4.1	Aleaciones ferrosas. Obtención.	2.0		0.5	1.0	3B, 4C, 6C
4.1.1	Aceros. Clasificación.					
4.1.2	Fundiciones. Tipos					
4.1.3	Aleaciones no ferrosas. Aluminio, cobre					
	níquel, magnesio, titanio.					
4.2	Cerámicas introducción.	1.0		0.5	1.0	
4.2.1	Procesamiento o síntesis de cerámicas.					
4.2.2	Refractarios.					
4.3	Vidrios. Procesamiento de vidrios y pro- piedades. Temperatura de transición ví- trea. Deformación viscosa.	1.5		0.5	1.0	
4.3.1	Nanotecnología y cerámicas.					
4.4	Polímeros. Polimerización.	2.0		0.5	1.0	
4.4.1	Procesamiento de plásticos.					
4.4.2	Elastómeros. Propiedades					
4.5	Materiales compuestos. Clasificación.	2.0		0.5	1.0	
4.5.1	Función de la matriz en un material com-					
4.5.2	puesto.					
4.5.3	Compuestos laminares.					
	Estructura tipo sándwich con panal.					
	Estructuras metálicas recubiertas.					
		8.5		2.5	5.0	
	Subtotales por Unidad temática:					

ESTRATEGIAS DE APRENDIZAJE

A través de la presentación, estudio a análisis de los conceptos, definiciones y leyes correspondientes, utilizando simulaciones o modelos físicos que soporten las teorías, y evaluados con solución de problemas específicos, resueltos individual y grupalmente; así como en investigaciones en la red y bibliográfica.

EVALUACIÓN DE LOS APRENDIZAJES

l	Trabajo escrito conteniendo conclusiones de prácticas.	40%
1	Resolución de ejercicios de aplicación.	20%
ı	Evaluación exploratoria	30%
l	Participación en las discusiones grupales.	10%
l	Total.	100%

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Estructura y propiedades de los Materiales.

HOJA: 7

DE 11

N° UNIDAD TEMA	ÁTICA: ∀	NOMBRE: Corrosión	y Técnicas de	Selección de materiales.

COMPETENCIA ESPECÍFICA

Uso de la normalización, códigos de seguridad, restricciones y conocimientos de corrosión en la selección de materiales

No.	CONTENIDOS		HORAS AD Actividades de docencia (a)		S TAA ades de zaje Au- omo	CLAVE BIBLIOGRÁFICA
		T	Р	Т	Р	
5.1	Oxidación. Ataque atmosférico. Corro-	2.0		1.0		1B, 3B, 4C, 5C
5.2	sión.	1.0				
	Celdas galvánicas. Recubrimientos elec-					
5.3	trolíticos.	1.0		1.0		
5.4	Degradación de cerámicas y de polímeros.				5.0	
5.5	Factores y restricciones que intervienen					
5.6	en la selección de materiales.					
5.7	Procesamiento.					
5.8	Costos y disponibilidad comercial. Normalización. Códigos.	1.0				
5.9	Diseño. Fallas, deficiencias de materia-					
5.11	les, calidad. Condiciones ambientales.			1.0		
5.11	Corrosión.					
5.12	Seguridad.					
	Riegos y responsabilidades.					
	Rendimiento y costo.					
	Estudio de Casos.				5.0	
		5.0		3.0	10.0	
	Subtotales por Unidad temática:					

ESTRATEGIAS DE APRENDIZAJE

Presentación, estudio y análisis de los conceptos, definiciones y leyes correspondientes, utilizando simulaciones o modelos físicos que soporten las teorías. Mediante exposiciones electrónicas, tales como diapositivas, videos, consultas en la web y discusiones grupales para realizar un resumen de la degradación de materiales, así como de los factores a tomar en cuenta para una selección adecuada de materiales, presentación de casos, y realizar un proyecto de selección de materiales no olvidando la sustentabilidad ecológica.

EVALUACIÓN DE LOS APRENDIZAJES

Trabajo escrito conteniendo conclusiones grupales e individuale	es. 10%
Análisis y estudio de casos.	40%
Reporte de prácticas	40
Participación en las discusiones	<u>10%</u>
Total.	100%

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Estructura y propiedades de los Materiales. HOJA: 8 DE 11

CLAVE	В	С	BIBLIOGRAFÍA
1	Х		Askeland Donald R. <u>Ciencia e ingeniería de los materiales</u> . Cuarte edición. Thomson editores. México, 2004. Págs- 1004, ISBN 970-686-361-3.
2	Х		Shackelford James F. Introducción a la ciencia de los materiales para ingenieros. Pearson Educación, Sexta edición. España 2005. Págs. 839, ISBN 84-205-4451-5
3	Х		Mangonon, <u>Ciencia de materiales selección y diseño</u> , primer edición, Prentice Hall, México, 1999 págs. 824, ISBN 970-26-0027-8
4		Х	Smith W. F., Hashemi J. <u>Fundamentos de la ciencia e ingeniería de materiales</u> , McGraw-Hill Interamericana, 4ª edición, España, 2006, ISBN 970-10-5638-8
5		Х	Ashby M. F. Materials <u>Selection in Mechanical Design</u> 3er Edicición, Butterworth-Heineman, India, 2005, págs. 603, ISBN 81-312-0049-3
6		Х	http://www.matweb.com/

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Estructura y Propiedades de los Materiales

HOJA: 9

DE

11

RELACIÓN DE PRÁCTICAS

PRÁCTICA No.	NOMBRE DE LA PRÁCTICA	UNIDADES TEMÁTICAS	DURACIÓN	LUGAR DE REALIZACIÓN
1	Ensayo Jominy Determinar la templabilidad de los aceros aleados mediante tratamiento térmicos controlados.	II	1	Laboratorio de Materiales
2	Ensayo de Dureza en metales Establecer los métodos de medición de dure- za por penetración, Brinell y Rockwell, practi- cados en metales para establecer su resisten- cia aproximada y sus propiedades de abra- sión.	III	2	
3	Ensayo de tensión en metales Determinar la resistencia y varias propiedades elásticas y no elásticas de un metal dúctil, y frágil, observando el comportamiento mecáni- co del material bajo carga de tensión y estu- diar la fractura que se presenta.	III	4	
4	Ensayo de tensión en polímeros Determinar la resistencia y varias propiedades elásticas y no elásticas de un polímero, ob- servando el comportamiento mecánico del material bajo carga de tensión y estudiar la fractura que se presenta.	III	2	
5	Ensayo de compresión cerámicas Determinar la resistencia y varias propiedades elásticas y no elásticas de un material cerámi- co, observando el comportamiento mecánico del material bajo carga de compresión y estu- diar la fractura que se presenta.	III	2	
6	Ensayo de dureza en polímeros y cerámicos Medir la dureza de materiales frágiles como las cerámicas o muy elásticos como los polí- meros a través del Escleroscopio de Shore.	IV	5	
7	Ensayos no destructivos Describir los principales ensayos no destructi- vos utilizados en la industria en general, tales como ensayos magnéticos, ultrasónicos y partículas fluorescentes.	V	5	
		TOTAL DE HORAS	21	

EVALUACIÓN Y ACREDITACIÓN:

Se realizarán prácticas de laboratorio, donde se evaluará el seguimiento de las reglas de seguiridad, aplicaciones técnicas durante el seguimiento de la práctica así como el reporte escrito en especial las conclusiones y las discusiones grupales. El reporte de prácticas aporta el 40% de la evaluación total.

SECRETARÍA ACADÉMICA

DE

HOJA: 9

UNIDAD DE APRENDIZAJE:

Estructura y Propiedades de los Materiales

PROCEDIMIENTO DE EVALUACIÓN

Para la evaluación de la unidad de aprendizaje: Porcentaje por unidad

Unidad temática I 20%

Unidad temática II 20%

Unidad temática III 20%

Unidad temática IV 30%

Unidad temática V 10%

Para acreditar la unidad de aprendizaje por "competencia demostrada":

- Realizar un trabajo de investigación en la unidad temática que corresponda.
- Modelar un sistema físico de algún elemento sometido a carga.
- Plantear problemas.
- Resolver problemas tipo, argumentando hipótesis, validando resultados y definiendo resultados.

A reserva que la academia acredite la equivalencia de la competencia con otras unidades de aprendizaje de unidades académicas del IPN y externas.

SECRETARÍA ACADÉMICA

Ingeniería Mecánica o afín, de preferencia con maestría

DIRECCIÓN DE EDUCACIÓN SUPERIOR

PERFIL DOCENTE POR UNIDAD DE APRENDIZAJE

1. DATOS GENERALE	2

ESPECIALIDAD Y NIVEL ACADÉMICO REQUERIDO:

samiento y propiedades de los materiales.

UNIDAD ACADEMICA:		AVANZADAS					
PROGRAMA ACADÉMICO:	Ingenier	ía Mecatrónica	NIVEL	I			
ÁREA DE FOR	MACIÓN:	Institucional	Científica Básica	Profesiona	Il Terminal y de In- tegración		
ACADEMIA:	Mecánica		UNIDAD DE A		Estructura y Propiedades de los Materiales		
_				-			

2. OBJETIVO DE LA UNIDAD DE APRENDIZAJE: Seleccionar adecuadamente materiales para el diseño de sistemas mecatrónicos, a través del conocimiento de la interrelación entre microestructura, proce-

o doctorado.

3. PERFIL DOCENTE:

CONOCIMIENTOS	EXPERIENCIA PROFESIONAL	HABILIDADES	ACTITUDES
En el área física y mate- mática. En mecánica básica y aplicada. Manufactura. Pedagogía. En el Modelo Educativo Institucional (MEI).	Docencia. Investigación. Desarrollo en la industria.	Relación interpersonal. Comunicación oral y escrita. Capacidad de Análisis y Síntesis. Manejo de grupos. Manejo de materiales didácticos. Aplicar el Modelo Educativo Institucional (MEI).	Vocación docente. Honestidad. Ejercicio de la crítica constructiva. Respeto. Tolerancia. Ética. Responsabilidad. Colaboración. Superación docente y profesional. Buena presencia. Compromiso social.

ELABORO	REVISO	AUTORIZO
lombre y firma del Presidente de Academia	Nombre y firma del Subdirector Académico	Nombre del Director de la Unidad Académica
Dr. José de Jesús Silva Lomelí		M. en C. Arodí Rafael Carvallo Do- mínguez