Solutions to EECS 451 Exam 2, 2004-3-26

Regrade requests must be submitted to Prof. Fessler in writing, within 1 week of when the exam is returned in class. All problems will be re-examined, and scores may increase or decrease.

Discussing the exam with a professor or GSI nullifies the opportunity to submit a regrade request. For elaboration on these solutions, please come to office hours.

p/transient1

1

1.

• [15]
$$H_I(z) = 1/H(z) = \frac{(z+1/2)(z-2/3)}{z} = z - \frac{1}{6} - \frac{1}{3}z^{-1} \Longrightarrow h_I[n] = \delta[n+1] - \frac{1}{6}\delta[n] - \frac{1}{3}\delta[n-1]$$
.

5 for $H(z)$, 5 for $H_I(z)$, 5 for $h_I[n]$.

(HW 6-4)

- [10] For large n, the output signal is just the transient response which has the form $rac{r_1(2/3)^n + r_2(-1/2)^n}$, where the residue values depend on the input signal. (HW 4-9, 7-8) [5 correct.] where the residue values depend on the input signal.
- [15] The system function is $H(z) = \frac{z}{(z+1/2)(z-2/3)} \Longrightarrow H(\omega) = \frac{e^{j\omega}}{(e^{j\omega}+1/2)(e^{j\omega}-2/3)}$. So the frequency responses at $\omega = 0$ and $\omega = \pi$ are H(0) = 2 and $H(\pi) = -\frac{6}{5}$. By DTFS, $x[n] = 5 u[n] + 3 \cos(\pi n) u[n]$. The steady-state response to a right-sided sinusoid equals the response

to an eternal sinusoid, so $y_{ss}[n] = 5 H(0) + 3 |H(\pi)| \cos(\pi n + \angle H(\pi)) = 10 - \frac{18}{5} \cos(\pi n)$. p/design1

p/sample,down1

3. (20)

An ideal anti-alias has frequency response $H_a(F) = \text{rect}(F/F_s)$, so $X_2(F) = X_a(F) H_a(F) = |F| \text{rect}(F/F_s)$, which has peak value $F_{\rm s}/2$.

After sampling, $X_3(\omega) = \frac{1}{T_{\rm s}} X_2 \left(\frac{\omega}{2\pi T_{\rm s}}\right) = \frac{1}{T_{\rm s}} \left|\frac{\omega}{2\pi T_{\rm s}}\right|$ for $|\omega| \le \pi$, which has peak value $F_{\rm s}^2/2$.

 $X_4(\omega)$ is the same except $|\omega| \leq \pi/2$, and the peak value is $F_{\rm s}^2/4$.

In general, $X_5(\omega) = \frac{1}{2} X_4(\omega/2) + \frac{1}{2} X_4(\omega/2 \pm \pi)$. Since in this case $X_4(\omega)$ is bandlimited to $|\omega| \le \pi/2$, so only the first term matters for $|\omega| \le \pi$, for which $X_5(\omega) = \frac{1}{2} X_4(\omega/2) = \frac{1}{8\pi T_{\rm s}^2} |\omega|$, which has peak value $F_{\rm s}^2/8$.

 $X_6(\omega)$ is the same except $|\omega| \leq \pi/2$, with peak value $F_{\rm s}^2/16$. For $|\omega| \leq \pi$, $Y(\omega) = \frac{1}{2} X_6(\omega/2) = \frac{1}{32\pi T_{\rm s}^2} |\omega|$.

For
$$|\omega| \le \pi$$
, $Y(\omega) = \frac{1}{2} X_6(\omega/2) = \frac{1}{32\pi T_c^2} |\omega|$.

(HW 6-7, 6-8, 8-6)

_____ p/updown2

4.

• [15]
$$V(\omega) = X(2\omega)$$
 (4 pts). $W(\omega) = H_1(\omega) V(\omega) = H_1(\omega) X(2\omega)$ (3 pts).
$$Y(\omega) = \frac{1}{2} W(\omega/2) + \frac{1}{2} W(\omega/2 + \pi)$$
 (6 pts) $= \frac{1}{2} H_1(\omega/2) X(\omega) + \frac{1}{2} H_1(\omega/2 + \pi) X(\omega)$ (2 pts).
$$Y(\omega) = \frac{1}{2} \left[H_1\left(\frac{\omega}{2}\right) + H_1\left(\frac{\omega}{2} + \pi\right) \right] X(\omega)$$
. (Similar problem in z-domain on Exam1.) (HW 6-7, 8-6)

• [10] From the above relation between $Y(\omega)$ and $X(\omega)$, we have $H(\omega) = \frac{1}{2} \left[H_1\left(\frac{\omega}{2}\right) + H_1\left(\frac{\omega}{2} - \pi\right) \right]$. In this case we have $H_1(\omega) = \mathrm{rect}\left(\frac{\omega}{\pi}\right)$ for $|\omega| \leq \pi$ (and otherwise periodic).

So
$$H(\omega) = \frac{1}{2} \left[\operatorname{rect}\left(\frac{\omega}{2\pi}\right) + \operatorname{rect}\left(\frac{\frac{\omega}{2} - \pi}{\pi}\right) \right] = \frac{1}{2} \left[\operatorname{rect}\left(\frac{\omega}{2\pi}\right) + \operatorname{rect}\left(\frac{\omega - 2\pi}{\pi}\right) \right] = \frac{1}{2}, \ \forall \omega.$$

Hence by inverse DTFT $h[n] = \frac{1}{2} \delta[n]$. (HW 5-9, 6-1)

Exam scores with APPROXIMATE grades.

52 undergraduate students: mean=53.7, median=54.5, std=16.66

a+ 93 a 81 79 78 77 73 73 72 a- 70 69 67 66 65 65

? 63 62 62 62 61 60 59 59 59 59

b+ 57 55 54 54 53 52 b 50 50 47 47 47 45 45 45 44 b- 42

c 40 37 37 36 35 ? 33 32 32 29 26 20 15

19 graduate students: mean=65.2, median=68, std=17.6;

a 95 88 88 82 80 80 76 a- 72 70 68

b+ 59 56 55 49 49 b 46 46 ? 40 40

When computing final grades, most likely I will add 20 points to undergrad scores and 10 points to grad student scores for this exam, to equalize the means of Exam1 and Exam2.