Equations différentielles linéaires d'ordre 1

Exercice 1 ★

Résoudre sur ℝ l'équation

$$y' + \operatorname{th}(t)y = \operatorname{sh}(t)$$
.

Exercice 2 ★

Résoudre sur I =] – $\pi/2$, $\pi/2$ [l'équation

$$y' - \tan(t)y = \frac{1}{1 + \cos(t)}.$$

Exercice 3 ★

Petites Mines 2004

Résoudre sur] $-\infty$, 1[l'équation :

$$(1-x)^2y' = (2-x)y.$$

Exercice 4 ★

Petites Mines 2004

Résoudre sur \mathbb{R} l'équation :

$$z' + \operatorname{th}(t)z = t \operatorname{th}(t)$$
.

Trouver l'unique solution z_1 vérifiant la condition initiale $z_1(0) = 1$.

Exercice 5 ★

Petites Mines 2006

Soit (E) l'équation :

$$y' + \frac{\sin(x)}{2 - \cos(x)}y = 2\sin(x).$$

- 1. Résoudre (E_H).
- 2. Chercher une solution particulière de (E) sous la forme

$$x \mapsto a\cos(x) + b$$

avec a et b réel.

3. Résoudre (E) sur \mathbb{R} et déterminer l'unique solution de (E), notée h, vérifiant la condition initiale h(0) = 1.

Exercice 6 ★

Résoudre sur I = $]0, \pi[$ l'équation différentielle

(E) :
$$y' + \cot(t)y = \cos^2(t)$$
.

Exercice 7 ★

Résoudre sur $\mathbb R$ les équations différentielles suivantes :

1.
$$y' - y = \arctan(e^x)$$

2.
$$y' + y = \arctan(e^x)$$

Exercice 8 ★

Résoudre sur \mathbb{R} les équations

1.
$$y' + 2y = te^{-t}$$

2.
$$y' + 2y = e^{-2t}$$

Exercice 9 ★

Résoudre sur \mathbb{R} l'équation

$$y' + y = t\cos(t).$$

Exercice 10 ★

Résoudre sur ℝ l'équation

$$y' - y = e^t + e^{2t}.$$

Exercice 11 ★

On considère l'équation (E) : $y' - \ln(x)y = x^x$.

- 1. Calculer en intégrant par parties les primitives de $x \mapsto \ln(x)$ sur \mathbb{R}_+^* .
- **2.** Résoudre (**E**) sur ℝ^{*}₊.

Exercice 12 **

Résoudre sur $\mathbb R$ les équations suivantes :

- 1. $(\mathbf{E_1})$: $y' + 3y = \sin(x)$;
- **2.** (**E**₂) : $y' 3y = e^{-x}(1 x^3)$;
- 3. (E_3) : y''' y'' = x.

Exercice 13 ★

Résoudre sur \mathbb{R} l'équation (E) : $y' + xy = x^2 + 1$ sachant qu'elle admet une solution particulière polynomiale.

Exercice 14 ★

Résoudre les équations suivantes

1. y' + y = x;

5. $y' + y = e^{2x}$;

2. $y' + y = e^{-x}$;

6. $y' + y = e^{-x} + e^{2x}$;

3. $y' + y = xe^{-x}$;

7. $y' + y = \sin(x)$;

4. $y' + y = x^2 e^{-x}$;

8. $y' + y = \cos(x)e^x$.

Exercice 15 ★

Résoudre les problèmes de Cauchy suivants

- 1. $y' + 2xy = e^{x-x^2}$, y(0) = 0;
- 3. $x^3y' 2y = 0$, y(1) = 1.
- **2.** $x^2y' + y = 0$, y(0) = 1;

Exercice 16 ★

Résoudre sur \mathbb{R}_+^* et \mathbb{R}_-^* l'équation

$$|x|y' + (x-1)y = x^2.$$

Exercice 17 ★

Résoudre l'équation

$$|x(x-1)|y'-y=x^2$$

sur $]-\infty,0[,]0,1[$ et $]1,+\infty[.$

Exercice 18 ★

Résoudre l'équation différentielle :

$$(1+t^2)x'-x=1$$

Exercice 19 ★★

Soit a et b deux fonction impaires continues sur \mathbb{R} . Soit f une solution de l'équation différentielle y' + ay = b. Montrer que f est paire.

Exercice 20 ★★

Périodicité

Soient $T \in \mathbb{R}_+^*$, a et b deux fonctions continues et T-périodiques sur \mathbb{R} et f une solution de l'équation différentielle (E) : y' + ay = b. Montrer que f est T-périodique si et seulement si f(0) = f(T).

Exercice 21 ★

Résoudre sur] $-\infty$, -1[,] -1, 1[puis]1, $+\infty$ [l'équation différentielle

$$(1-x^2)y'-xy=1$$

Exercice 22 ★★

Soit $\alpha \in \mathbb{R}$.

- **1.** Résoudre sur \mathbb{R}_+^* l'équation différentielle $xy' \alpha y = 0$. Déterminer l'unique solution f vérifiant f(1) = 1.
- **2.** Résoudre sur \mathbb{R}_+^* l'équation différentielle $xy' \alpha y = f$. Déterminer l'unique solution g vérifiant g(1) = 0.
- **3.** On définit par récurrence une suite de fonctions (u_n) sur \mathbb{R}_+^* de la manière suivante :
 - $u_0 = f$;
 - pour tout $n \in \mathbb{N}$, u_{n+1} est l'unique solution de l'équation différentielle $xy' \alpha y = u_n$ sur \mathbb{R}_+^* valant 0 en 1.

Remarque. On a donc $u_1 = g$.

Déterminer par récurrence u_n pour tout $n \in \mathbb{N}$.

Exercice 23 ★★★★

Soit f une fonction de classe \mathcal{C}^1 sur \mathbb{R} telle que $\lim_{x\to +\infty} f(x) + f'(x) = 0$. Montrer que $\lim_{x\to +\infty} f(x) = 0$.

Exercice 24 ★

On considère l'équation différentielle suivante :

$$(x+1)y' + xy = x^2 - x + 1$$

- 1. Trouver une solution polynomiale.
- **2.** En déduire l'ensemble des solutions sur \mathbb{R} .
- **3.** Déterminer la solution vérifiant la condition initiale y(1) = 1.

Equations différentielles linéaires d'ordre 2

Exercice 25 ★

Calculer les solutions (réelles) des équations différentielles suivantes :

1.
$$y'' - 2y' - 3y = t^2 e^t$$

6.
$$y'' - 2y' + y = \cos(2t)$$

2.
$$y'' + 4y' + 3y = te^{-2t}$$

7.
$$y'' + 5y' + 4y = te^{-t}$$

3.
$$y'' + 4y' + 3y = \cos(3t)$$

8.
$$y'' + y = \cos(t)$$

4.
$$y'' + 3y' + 2y = \sin(t)$$

9.
$$y'' - 6y' + 9y = (t+1)e^{-3t}$$

5.
$$y'' - 4y' + 4y = e^{-t}$$

10.
$$y'' - 2y' + 2y = e^{-t}\cos(t)$$

Exercice 26 ★

Deux problèmes de Cauchy.

1. Déterminer l'unique fonction f, deux fois dérivable sur \mathbb{R} , solution de

$$y'' + 4y' + 4y = e^{-3t}$$

pour la condition initiale f(0) = 0, f'(0) = 1.

2. Déterminer l'unique fonction g, deux fois dérivable sur \mathbb{R} , solution de

$$y'' + 5y' + 4y = e^{-t}$$

pour la condition initiale g(0) = 0, g'(0) = 1.

Exercice 27 ★

Résoudre sur ℝ l'équation

$$y'' + 4y' + 5y = e^{-2x}\sin(x).$$

Exercice 28 ★★

Résoudre sur $\mathbb R$ l'équation différentielle

(E):
$$y'' + 4y = \sin^2(t)$$
.

Exercice 29 ★

Déterminer les solutions à valeurs complexes des équations suivantes :

1.
$$y'' + y' + y = 0$$

3.
$$y'' - iy' + 2y = 0$$

2.
$$y'' - 2iy' - y = 0$$

4.
$$y'' + 4y' + 4y = 0$$

Exercice 30 ★

Résoudre sur $\mathbb R$ les problèmes de Cauchy suivants :

1.
$$y'' - 4y' + 4y = 0$$
, $y(0) = y'(0) = 0$

2.
$$y'' - 6y' + 9y = 0$$
, $y(0) = 0$, $y'(0) = 1$

3.
$$y'' - 3y' + 2y = x$$
, $y(0) = y'(0) = 1$

4.
$$y'' + y' + y = 0$$
, $y(0) = 0$, $y'(0) = 1$

Exercice 31 ★

Résoudre l'équations suivante

$$y'' - 2y' + 2y = e^x \sin(x).$$

Exercice 32 ★

Résoudre les équations suivantes

1.
$$y'' - 3y' + 2y = x$$
;

2.
$$y'' - 3y' + 2y = e^{2x}$$
;

3.
$$y'' - 3y' + 2y = e^{2x}$$
;

4.
$$y'' - 3y' + 2y = xe^x$$
;

5.
$$y'' - 3y' + 2y = ch(x)$$
.

Exercice 33 ★

- 1. Résoudre l'équation différentielle y'' (1 i)y' 2(1 + i)y = 0.
- **2.** Donner l'unique solution f vérifiant f(0) = f'(0) = 1.

Exercice 34 ***

Soit f une application de classe \mathcal{C}^2 de \mathbb{R} dans \mathbb{R} telle que $f+f''\geq 0$. Montrer que

$$\forall x \in \mathbb{R}, f(x) + f(x + \pi) \ge 0$$

Exercice 35 ★

On considère l'équation différentielle dont on recherche les solutions à valeurs réelles

(E):
$$y'' - 4y' + 5y = e^{2x} \sin(x)$$

- 1. Résoudre l'équation différentielle homogène associée à (E).
- **2.** Déterminer une solution particulière de (**E**).
- 3. Résoudre l'équation (E).
- **4.** Déterminer l'unique solution f de (E) telle que f(0) = 1 et f'(0) = 2.

Exercice 36 ★★

Soit $g : \mathbb{R} \to \mathbb{R}$ continue. Pour $x \in \mathbb{R}$, on pose

$$f(x) = \int_0^x \sin(x - t)g(t) dt$$

1. Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} et que pour tout $x \in \mathbb{R}$,

$$f'(x) = \int_0^x \cos(t - x)g(t) dt$$

- **2.** Montrer que f est de classe \mathcal{C}^2 et que f est solution de l'équation différentielle y'' + y = g.
- 3. En déduire toutes les solutions de l'équation différentielle y'' + y = g.

Exercice 37 ★

Soient $\omega \in \mathbb{R}$, $x : \mathbb{R} \longrightarrow \mathbb{R}$ et $y : \mathbb{R} \longrightarrow \mathbb{R}$ dérivables telles que

$$\begin{cases} x' = -y + \sin(\omega t) \\ y' = x - \cos(\omega t) \end{cases}$$

1. Soit $z: \mathbb{R} \longrightarrow \mathbb{C}$ définie par

$$t \longmapsto x(t) + iy(t)$$
.

Justifier la dérivabilité de z et montrer que z vérifie une équation différentielle linéaire du premier ordre à coefficients constants avec second membre.

2. Déterminer x et y.

Changement de fonction ou de variable

Exercice 38 ★★

Une équation de Bernoulli

On souhaite résoudre l'équation

(E) :
$$x^2y'' + 3xy' + y = \frac{1}{x^2}$$

sur l'intervalle $I =]0, +\infty[$.

- **1.** Soient $y: I \to \mathbb{R}$ deux fois dérivable et $Y: \mathbb{R} \to \mathbb{R}$ définie par $Y(t) = y(e^t)$.
 - **a.** Calculer les dérivées y, y' et y" en fonction de Y, Y' et Y".
 - **b.** En déduire que y est solution de (E) si et seulement si Y est solution d'une équation différentielle linéaire du deuxième ordre à coefficients constants (E') que l'on précisera.
- **2.** Résoudre (\mathbf{E}') sur \mathbb{R} .
- 3. En déduire les solutions de (E) sur I.
- **4.** Déterminer l'unique solution y de (E) sur I telle que y(1) = y'(1) = 0.

Exercice 39 ★★

Résoudre l'équation

$$y^2 + x^2 - 2yy' = 0$$

en effectuant le changement de fonction $z = y^2$.

Exercice 40 **

Résoudre l'équation

$$y' = e^{x+y}$$

en posant $z = e^{-y}$.

Exercice 41 ★★

Un changement de fonction

Soit (**E**) l'équation $(x^2 + 1)y'' - 2y = 0$.

- **1.** Etablir qu'une *éventuelle* solution polynomiale et non nulle de (**E**) est nécessairement de degré deux.
- **2.** Trouver une solution polynomiale et non nulle p de (E).
- **3.** Justifier qu'une fonction y deux fois dérivable de \mathbb{R} dans \mathbb{R} peut s'écrire sous la forme $y = p \times z$ où z est une fonction deux fois dérivable de \mathbb{R} dans \mathbb{R} .
- **4.** Montrer qu'une fonction $y: \mathbb{R} \longrightarrow \mathbb{R}$ deux fois dérivable est solution de (\mathbf{E}) si et seulement si la fonction Z = z' (où z est définie comme à la question précédente) est solution d'une équation différentielle linéaire d'ordre un (\mathbf{E}') à préciser.
- **5.** Résoudre (**E**).

Exercice 42 ★★

Equation de Bernoulli

Soient $I =]1, +\infty[$ et (E) l'équation

(E) :
$$-t^2y' + ty = y^2$$
.

- 1. Soit y une fonction ne s'annulant pas sur I. Prouver que y est solution de (\mathbf{E}) si et seulement si $z=\frac{1}{y}$ est solution sur I d'une équation différentielle (\mathbf{E}') linéaire d'ordre un.
- 2. Résoudre (E') sur I.
- 3. En déduire les solutions de (E) ne s'annulant pas sur l'intervalle I.

Exercice 43 ★★

On s'intéresse à l'équation différentielle

(E):
$$x^2y'' - xy' - 3y = x^4$$

- **1. a.** Montrer que f est une solution de (E) sur \mathbb{R}_+^* si et seulement si $g: t \mapsto f(e^t)$ est solution sur \mathbb{R} d'une équation différentielle à coefficients constants à déterminer.
 - **b.** En déduire les solutions de (E) sur \mathbb{R}_+^* .
- **2. a.** Montrer que f est une solution de (E) sur \mathbb{R}_{-}^{*} si et seulement si $g: t \mapsto f(-e^{t})$ est solution sur \mathbb{R} d'une équation différentielle à coefficients constants à déterminer.
 - **b.** En déduire les solutions de (E) sur \mathbb{R}_{-}^{*} .
- **3.** Déterminer les solutions de (E) sur \mathbb{R} .

Equations fonctionnelles

Exercice 44 ★★

Soit $\alpha \in \mathbb{R}$. On cherche l'ensemble S_{α} des fonctions f de \mathbb{R} dans \mathbb{R} de classe \mathcal{C}^1 vérifiant $f'(x) = -f(\alpha - x)$ pour tout $x \in \mathbb{R}$.

- 1. Montrer qu'une telle fonction est de classe \mathcal{C}^2 .
- 2. Montrer que les éléments de S_{α} sont solutions d'une équation différentielle linéaire d'ordre 2.
- 3. Conclure.

Exercice 45 ★★

Déterminer les fonctions f dérivables sur \mathbb{R} vérifiant

$$\forall x \in \mathbb{R}, \ f'(x) = f(-x)$$

Exercice 46 ★★

Déterminer les fonctions f dérivables sur \mathbb{R} vérifiant

$$\forall x \in \mathbb{R}, \ f'(x) = -f(-x)$$

Exercice 47 ★★

Déterminer les applications f dérivables de $\mathbb R$ dans $\mathbb R$ telles que :

$$\forall x \in \mathbb{R}, \ f'(x) + f(-x) = xe^{-x}$$

Exercice 48 ★★

Déterminer les applications f de $\mathbb R$ dans $\mathbb R$ de classe $\mathcal C^2$ telles que

$$\forall x \in \mathbb{R}, \quad f(x) + \int_0^x (x - t)f(t)dt = 1.$$

Problèmes de raccord

Exercice 49 ★★

Problème de raccordement

Exercice 55 ★★★

Résoudre sur \mathbb{R} l'équation différentielle $x^2y' - y = 0$.

Résoudre sur $\mathbb R$ les équations

Exercice 50 **

Résoudre sur \mathbb{R} l'équation différentielle $y' \sin x - y \cos x + 1 = 0$.

1. $(\mathbf{E_1})$: y' = |y|;

2. $(\mathbf{E_2})$: y = |y'|.

Exercice 51 ★★

Raccordement

Résoudre sur \mathbb{R} l'équation différentielle xy' - y = x.

Exercice 52 ★★

Raccordement

On considère l'équation différentielle (E) : $xy'' - y' - x^3y = 0$.

- 1. Résoudre (E) sur \mathbb{R}_+^* en effectuant le changement de variable $t=x^2$.
- **2.** En déduire les solutions sur \mathbb{R}_{-}^* .
- **3.** Résoudre (E) sur \mathbb{R} .

Exercice 53 ★★

Problème de raccord

Résoudre sur \mathbb{R} de l'équation différentielle (E) : $ty' + (1-t)y = e^{2t}$.

Equations différentielles non linéaires

Exercice 54 ★★

Soit a>0. On considère l'équation différentielle (E) : y'=a|y| et f une éventuelle solution de (E).

- **1.** Quelles sont les variations de f?
- **2.** Montrer que f est de signe constant sur \mathbb{R} ou constamment nulle sur \mathbb{R} .
- 3. Résoudre (E).