

International School

Capstone Project 1

CMU-SE 450

PROJECT PLAN DOCUMENT

Version: 2.1
Date: 20/09/2021

School Connect Application

Submitted by:

Nguyen Thanh Phu Nguyen Trung Hieu Dang Nguyen Bao Hoai

Approved by

Nguyen Minh Nhat

Name	Signature	Date
Capstone Project 1- Mentor:		
Name	Signature	Date

Project plan Review Panel Representative:

Project Information

Project acronym	SConA		
Project Title	School Connect Applicatio	n	
Start Date	22-Aug-2021	End Date	18-Dec-2021
Lead Institution	International School, Duy	Tan University	
Project Mentor & contact details	Name: Nguyen Minh Nhat Email: nhatnm2010@gmail Tel: +84 905 125 143	<u>.com</u>	
Scrum Master & contact details	Name: Nguyen Thanh Phu Email: thangphu104@gmai.com Tel: +84 772 492 301		
	Name	Email	Tel
Team members	Nguyen Trung Hieu	hnguyentrung20@gmail.com	+84 975 299 149
	Dang Nguyen Bao Hoai	dangbhoai@gmail.com	+84 773 305 395

DOCUMENT INFORMATION				
Document Title	Project plan			
Author(s)	Team C1SE.44			
Role	C1SE.44-Project Plan-SConA-v2.1			
Date	12-Sep-2021	12-Sep-2021 Filename C1SE.44-Project Plan-		
			SConA-v2.1.docx	
URL	https://github.com/PhuNguyenThang/Capstone1			
Access	Project and CMU Program			

DOCUMENT APPROVALS

The following signatures are required for the approval of this document.

Nguyen Minh Nhat Mentor	Signature	Date
THE MOT		
Nguyen Thanh Phu	Signature	Date
Scrum Master		
Nguyen Trung Hieu	Signature	Date
Product owner		
Dang Nguyen Bao Hoai	Signature	Date
Product owner		

REVISION HISTORY

Version	Date	Comments	Author	Approval
1.0	31-Aug-2021	Create project plan	Nguyen Thanh	
1.0	31-Aug-2021	document	Phu	
2.0	12-Sep-2021	Remove member Thang	Nguyen Thanh	
2.0	12-Sep-2021	and update estimation	Phu	
2.1	20-Sep-2021	Update Schedule	Nguyen Thanh	
2.1	20-sep-2021	Opuate Schedule	Phu	

Table of Contents

Ü	ject Overview	
	Project Description	
	Scope and Purpose	
	1.2.1 Scope	6
	1.2.2. Purpose	6
1.3.	. Assumptions and Constraints	7
1.4.	Project Objectives	
	1.4.1. Standard Objectives	
	1.4.2. Specific Objectives	
	1.4.3. Quality Attributes	
	1.4.4. Business goals	
	Dependencies	
1.6.	Project Risk	10
2. Proj	ject Development Approach	10
	Project Process	
	2.1.1. Reasons for selecting	
	2.1.2. Agile Methodology	10
	2.1.3. Scrum Process	12
2.2.	. Requirement Change Management	13
2.3.	. Product Integration Strategy	14
2.4.	Quality Management	
	2.4.2. Strategy for Meeting Quality Objectives	
	2.4.3. Quality Control	16
	2.4.4. Measurements Program	17
2.5.	. Unit Testing Strategy	
	. Integration Testing Strategy	
2.7.	. System Testing Strategy	
3. Estir	mation	18
	Size	
	Effort	
	. Schedule	
	3.3.1. Project Milestone & Deliverables	
	3.3.2. Work Breakdown Structure	20
3.4.	. Resource	
	3.4.1. Human Resources	
	3.4.2. Equipment	
	. Infrastructure	
3.6.	. Training Plan	26

3.7. Finance	
4. Project Organization	27
4.1. Organization Structure	27
4.2. Project Team	28
5. Communication & Reporting	28
5.1. Reporting Methodology	28
5.2. Communication Methodology	28
6. Configuration Management	29
7. Security Aspects	29
8. References	30

<SConA>-Project Plan

1. Project Overview

1.1. Project Description

Table 1: Project Description

Project code	C1SE.44	Contract type	External Project
Customer	Nguyen Hien high school	/End-User	Student, Teacher
Project Type	External	Project Manager/ Scrum master	Nguyen Thanh Phu
Project Category	Development & Maintenance	Business domain	social network
Application type	Web Application		

1.2. Scope and Purpose

1.2.1 Scope

The backbone of the project:

- Manage all account in the system
- Create, modify, delete the post
- Comment in the post
- Sent message in the system
- Censorship the post
- Notification of the new message or new post
- Delete comment or block box chat have message toxic
- Report the message or comment toxic
- See calendar event
- Manage members in the forum

Language:

• English

1.2.2. Purpose

School Connect Application is mean website application that helps the connection between school and student in the context of epidemic COVIC-19. Students do not need to come to school to hear announcements about upcoming events or new policies, the school can use this application notify to students about the policies of the school. Teachers can keep contract with the students without using another app and don't worry about personal information network social networks exposed, the student can create posts in the forum their join and see the calendar of the vents that will take

With intuitive visual interface will help the teacher and student easy to use a system

This is only for student and teacher in that school, so the school can manage all account used in the system and censor is a teacher can manage all post and member in the forum they manage

<SConA>-Project Plan

1.3. Assumptions and Constraints

Table 2: Assumptions and Constraints

Table 2: Assumptions and Constraints			
No	Description	Note	
Assumptions			
1	Auto import data account and download report may not be able to finish on time	Scope	
2	Customer reviewers will get seven days to approve a milestone document. If no comments are received within this period, it will be considered as approved.	External Interfaces	
3	The system will be tested with pre-prepared standard data sources	Data Sources	
Constraints			
1	SConA must be done and delivered by December 15th according to the customer demonstration deadline	Schedule	
2	The project must comply with information security rules	Security	
3	The project must conform to the system architecture specification and end-user requirements	Consistency	
Constraint	Constraints Description	Guidelines for Acceptance	
Ethical	This is a system for people of school so outsiders can't go into system destructive forum Information of students or teachers can't expose.	Ethical considerations can be broad. Areas that are typically addressed include intellectual property, reverse- engineering, privacy, security, and the conflict between cost and safety	
Public health, safety, and welfare	In the context of the epidemic student and teachers don't need to meet face to face to limit the spread of disease	Includes safety standards as well as the impact of the design on users (for example, electrical or physical hazards)	
Cultural	This application can change communication students can contact with school or teacher event they don't at school or use many third apps to hold contact	Which cultural characteristics could influence the approach? How does the design from different cultures differ?	

1.4. Project Objectives

1.4.1. Standard Objectives

Table 3: Standard Objectives

		Tubie 5. Sianaa	di Objectives
Metrics	Unit	Committed	Note
Start Date	dd-mmm-yy	18-Aug-2021	
End Date	dd-mmm-yy	15-Dec-2021	
Duration	days	119	

Team Size	Person	3	
Billable Effort /	Person-day	3/day	
Number of work hours per day for one engineer	Person-hour		Can overtime if the project progresses late

1.4.2. Specific Objectives

- Build a website where students and teachers can send messages together
- Build a website where students, teachers, censors, admin can create a post
- Build website where censor can manage posts and members in the forum
- Admin can manage all account in the system
- Student, teacher, censor see the post in the forum they join or manage
- Build a website with a user-friendly interface.

1.4.3. Quality Attributes

Table 4.1: Quality Attributes: Performance

ID	QA01	
Quality Attributes	Performance	
Stimulus	Sent message in the system	
Source(s) of stimulus	Student or teacher, censor	
Artifacts	System	
Environment	Normal operating system	
System response	The person receiving the message will receive the	
	message	
Response measure(s)	In 10 seconds	

Table 4.2: Quality Attributes: Performance

ID	QA02
Quality Attributes	Performance
Stimulus	Create a post in the forum they join or manage
Source(s) of stimulus	Student or teacher, censor
Artifacts	System
Environment	Normal operating system
System response	Another user receives notify from a new post
Response measure(s)	In less than 15 second

Table 4.3: Quality Attributes: Security

	~ '	
ID	QA03	
Quality Attributes	Security	
Stimulus	Using website application	
Source(s) of stimulus	Student or teacher, censor	
Artifacts	Information in system	
Environment	Normal operating system	
System response	Require user to login	
Response measure(s)	Prevent access to the website without a login	

Table 4.4: Quality Attributes: Security

ID	QA04
Quality Attributes	Security

Stimulus	Using function delete posts that aren't theirs, remove members from the forum	
Source(s) of stimulus	Student or teacher	
Artifacts	System	
Environment	Normal operating system	
System response	Do not expose those functions to the user	
Response measure(s)	Requires censor users to be able to use that	
	function	

Table 4.5: Quality Attributes: Security

ID	QA05
Quality Attributes	Security
Stimulus	Create new account
Source(s) of stimulus	Admin
Artifacts	System
Environment	In runtime
System response	Encrypt password
Response measure(s)	Encrypted security before being saved to the
	database

Table 4.6: Quality Attributes: Modifiability

= <u>z</u> ,,,,			
ID	QA06		
Quality Attributes	Modifiability		
Stimulus	Develop additional features for a small social		
	network		
Source(s) of stimulus	A product manager		
Artifacts	The next version		
Environment	The system		
System response	Allows for an expansion		
Response measure(s)	4-person months of effort without affecting		
	existing functions		

Table 4.7: Quality Attributes: Correctness

	~ .	
ID	QA07	
Quality Attributes	Correctness	
Stimulus	Performs operations with a post	
Source(s) of stimulus	Student, teacher, admin	
Artifacts	Runtime	
Environment	The System	
System response	Change the information post	
Response measure(s)	The corresponding tour information will be	
	updated correctly on the application.	

1.4.4. Business goals

Table 5: Business goals

Business	Goals	
	Design cost: Must be around \$500.	
Cost	Production cost: Should be under \$1700.	
	Maintenance cost: Should be around \$500.	
	Operation cost: Should be under \$200	

1.5. Dependencies

Table 6: Dependencies

No	Dependency	Expected delivery date	Note
1	Cloud Server		Put all the necessary modules on the server cloud to ensure the continuity of the system

1.6. Project Risk

Table 7: Risk

Risk	Description	Pro	bability	Se	everity	Mitigation Strategy
Lack of codin experiences	No one on the team member work with VueJS, Spring Boot, Restful API.	3		2		Each team member has to learn and help the other to learn quickly.
Source Code conflict	Problems while merging code between members to master branch	3		3		Each team member must resolve conflicts by using git merge CLI before merging to the master branch.
Member conflict	Team member maybe conflict with each other while discussing	3		2		Team building, playing board games to get everyone together.
Less equipment	No machine or hosting for deploying the server.	1		2		Try free hosting for deployment.
Time management	Every member has to go to work or school.	3		3		Overtime
Language barrier	Most of the documents the are in English, sometimes it hard to understand the articles and the information	3		3		Improve the individual English skills while doing the project. Asking the mentor technology for specific
Probability			Severity			
1 Rarely happened.			0 Low damaged		maged	
2 Sometime happened			1 Medium damaged			
3 Usually happened			2 Serious dama		Serious	damaged

2. Project Development Approach

2.1. Project Process

2.1.1. Reasons for selecting

- Our team has 4 people
- The project will be continuously horizontally scaled up.
- There is only a short amount of time to finish the project.

So, based on those constraints, we decided to choose SCRUM as the project lifecycle

2.1.2. Agile Methodology

PRINCIPLE AND DIFFERENT STAGES

The SCRUM methodology relies on the incremental development of a software application while maintaining a completely transparent list of upgrade or correction demands to be implemented (backlog). It involves frequent deliveries, usually every four weeks, and the client receives a perfectly operational application that includes more and more features every time. This is why the method relies on iterative developments at a constant rhythm of 2-4 weeks. Upgrades can therefore be more easily integrated than when using a V-cycle.

This method requires four types of meetings:

- ➤ Daily meetings: the entire team meets for approximately 15 minutes every day to answer the following three questions, usually while standing: what did I do yesterday? What am I going to do today? Is there a cumbersome impediment today?
- ➤ Planning meetings: the entire team gathers to decide on the features that will make up the following sprint
- ➤ Work review meetings: during this meeting, every member presents what he has done during the sprint. They organize a demonstration of the new features or a presentation of the architecture. This is an informal meeting lasting for approximately 2 hours which is attended by the entire team.
- ➤ Retrospective meetings: at the end of each sprint, the team analyzes both successful and unsuccessful elements of their activity. During this meeting lasting between 15 and 30 minutes where everyone is invited and speaks on their behalf, a vote of confidence is organized to decide on the improvements to be made.

The advantage of this method consists in reducing the documentation to the minimum to gain productivity. The idea is to write only the minimum documentation which allows to save the history of the decisions taken on the project and to easily perform interventions on the software when it goes into the maintenance phase.

AGILE - SCRUM ORGANISATION

The SCRUM methodology involves the following three main players:

- ➤ Product owner: In most projects, the product owner is the leader of the client's project team. He is the one who will define and prioritize the product features and choose the date and content of each sprint based on values (workloads) that the team communicates to him.
- > Scrum Master: He is a genuine facilitator on the project as he makes sure that everyone works at their full potential by eliminating impediments and protecting the team from external interference. Moreover, he pays particular attention to the respect of the different SCRUM phases.
- > Team: A team is typically made up of 4-10 people and groups together all the IT specialists who are necessary on a project, i.e. an architect, a designer, a developer, a tester, etc. The team is self-organizing and remains unchanged during an entire sprint

Figure 1: Scrum team members

AGILE - SCRUM ADVANTAGE

Scrum differs from other development methods through its advantages which turn it into a pragmatic response to product owners' current needs:

Iterative and incremental method: this allows to avoid the "tunnel effect", i.e. the fact of seeing the result only at the final delivery, and nothing or almost nothing during the entire development phase, which is so frequent with V-cycle developments.

Maximum adaptability for product and application development: the sequential composition of the sprint content allows the addition of a modification or a feature that was not initially planned. This is precisely what renders this method "agile".

- Participatory method: every team member is asked to express his opinions and can contribute to all the decisions taken on the project. He is, therefore, more involved and motivated.
- Enhancing communication: by working in the same development room or being connected through
 different communication means, the team can easily communicate and exchange opinions on the
 impediments to eliminate them as early as possible.
- Maximizing cooperation: daily communication between the client and the team enables them to collaborate more closely.
- Increasing productivity: as it removes certain "constraints" of the classical methods, such as
 documentation or exaggerated formalization, SCRUM allows for increased team productivity. By
 adding to this the qualification of each module which allows determining an estimation, everyone can
 compare their performance to the average team productivity.

2.1.3. Scrum Process

Scrum is an agile method, so it follows the principles of the Agile Manifesto (see also Agile Manifesto). In addition, Scrum operates on three core values, also known as Scrip Scripps, including Scrutiny, Inspection, and Adaptation.

Figure 2: Scrum team members

Based on the empirical process control theory, Scrum uses iterative and incremental algorithms to optimize efficiency and control risk. Scrum is simple, easy to learn, and has wide applicability. To be able to use Scrum, we need to understand and apply the elements that make up Scrum include the core values (also known as the "three legs", or the three pillars of Scrum), roles, Events, and Scrum-specific artifacts.

2.2. Requirement Change Management

We use Ince's Change Process Model to handle the required changes. Ince's model focuses on how software configuration management relates to software change management. This model has two main sources of change requests, i.e. customer and development team as shown in Figure 1. For the change process to be initiated, a change request must be initiated in a software project. All such change requests are recorded in a change request note. The change control board then considers the suggested change. The change control board can reject the change (the change will not take place), batch the change (the change will take place but not immediately), or accept the change (the change is to be implemented at the earliest possible time). If the request for the change is successful, a change authorization note must be filled. After this, the change can be implemented and a system's documentation is modified. After implementation, the change is validated. Validation and test records are then produced to document the changes that have taken place.

Finally, the configuration records are updated and the staff is informed about the new changes.

Figure 3: Ince's change process model

2.3. Product Integration Strategy

The project is integrated with Continuous Integration (CI) methods.

- Develop describes the practices necessary to implement stories and commit the code and components to version control.
- Build describes the practices needed to create deployable binaries and merge development branches into the trunk.
- Test end-to-end describes the practices necessary to validate the solution.
- Stage describes the practices necessary to host and validate the solution in a staging environment before production.

Figure 4: Continuous Integration

We decided to implement the CI method for SConA with Bitbucket Pipeline. Bitbucket Pipelines is an integrated CI/CD service, built into Bitbucket. It allows users to automatically build, test, and even deploy code based on a configuration file in the repository

2.4. Quality Management

2.4.1. Estimates of Defects to be detected

Pre-release review defects

Table 8: Pre-release review defects

Process	Planned found by review	Found by review
		- Change business requirement
	- Change business requirement	- Change project architectural design
	- Change project architectural	requirements
Requirement	design requirements	- Shortcomings in defining use cases
	- Shortcomings in defining use	and user stories
	cases and user stories	- Change requirements on data
		processing and storage methods
- A lot of work causes		- A lot of work causes overload for
Amount of work	overload for programmers who	programmers who have a job
	have a job	programmers who have a job
D 1	- Inappropriate use of	
Programming tools	programming tools	
Technologies stack	- Inappropriate use of	- Inappropriate use of technologies

	technologies stack	stack		
- Some technologies are no long supported				
		supported		
	- Lack of new technology	- Lack of new technology		
Zuch of non techniciogy		- Difficulty in accessing paid		
		technologies		
		- Shortage of research articles related to		
	- Shortage of research articles	the system		
	related to the system	- Articles often have a large academic		
Reference studies	- Articles often have a large	volume and are difficult to apply in		
received studies	academic volume and are difficult			
	to apply in practice	- Difficult to access internal research		
		works		
		- Old version UI is hard to reuse to		
	- Old version UI is hard to reuse	extend the functionality		
Design	to extend the functionality	- Completely change the UI of the		
		system		
		- Lack of supporting technologies and		
Automatic processing	- Lack of supporting technologies	tools		
method	and tools	- Data processing results are not quite		
		as expected		
	Difficult to implement	- Difficult to implement		
	- Difficult to implement	- Use different languages for each		
Coding	- Use different languages for each module	module		
	module	- Dirty code		
	- The difficulty of creating a fully	- The difficulty of creating a fully		
	automated pipeline to run	automated pipeline to run different		
	different modules	modules		
System integration	- It is very difficult to integrate	- It is very difficult to integrate quickly		
System integration	quickly because the system is	because the system is built on many		
	built on many different	different programming		
	programming languages and	languages and technologies		
	technologies			
	- Large workload leads to late	- Large workload leads to late deadline		
Deliver on time	deadline	- Difficulty in implementation causing		
	- Difficulty in implementation	slow progress		
	causing slow progress			
	- Lack of money to maintain the	- Lack of money to maintain the cloud		
Other	cloud server and organize	server and organize weekly meetings		
	weekly meetings			
Total	18	24		

2.4.2. Strategy for Meeting Quality Objectives

Table 9: Strategy for Meeting Quality Objectives

Strategy	Expected Benefits
Use standards and design patterns to implement, prevent unnecessary defects during system installation	+ 5-10% reduction in defect injection rate and about t

Public project to perform public user acceptance test, ensure test samples are verified with a large number of users to evaluate system performance and find potential defects	Find out most defects in UI/UX and data processing, take corrective measures as soon as possible, through which can improve the system quality in the best way				
Write as many test cases as possible, make sure to cover all test cases	Ensure that the testing process is continuous without being forced at the end of the project, increasing the quality of each module of the system.				
Use rolling wave planning to execute test cases continuously during development	Approximately 5% reduction in defect injection rate and 1% improvement in overall productivity				
Use proven technologies, absolutely do not use tools that are no longer supported	Ensure the continuity and scalability of the system, avoiding the case of sudden system death when technologies stop supporting				

2.4.3. Quality Control

Table 10: Quality Control

Review Item	Type of Review	Reviewer	When
System Requirement Specification	One-person review	Scrum Master	Before the project kick-off meeting
Scope, Objective, and Goal	One-person review	Scrum Master	End of requirements 90%
System architecture specification	Group review	Scrum Master, Developer	After finishing System Requirement Specification
UI/UX Design	Group review	Scrum Master, Developer	After finishing the System architecture specification
Project Plan, Scrum Schedule	Group review	Scrum Master, Developer, Tester	After finishing the System architecture specification
Resource allocation	One-person review	Scrum Master	After finishing Project Plan
Design document, object model	Group review	Scrum Master, Developer, Tester	End of 90% design
Database design	Group review	Scrum Master, Developer	After finishing the object model design
Testing plan	Group review	Scrum Master, Tester	End of Sprint 1
Code	Group review	Scrum Master, Developer	After each module built

2.4.4. Measurements Program

Table 11: Measurements

Data to be collected	Purpose	Responsible	When
Size: No. of VI OC// ED	Group review or One-person review	Project Manager / Scrum Master	At the end of stages
Effort: No. person-day		Team members	Daily
Quality: No. defects detected		Reviewer, Tester	Right after the review/test
Schedule		Project Manager / Scrum Master	Weekly and at the end of stages

2.5. Unit Testing Strategy

In this project, most of the functionality is highly specific, so we focus on using manual testing.

Tool: Manual Test: Google Sheet

There are principles while doing unit tests:

- For each class, there should be a test class that tests all the public methods.
- Tests cover at least positive tests and negative tests.
- Dependencies to other classes should be substituted by mock objects.
- Each test case covers exactly one functionality to achieve a quick bug fixing.
- For each abstract class, an abstract test class will be implemented. This abstract test class tests the implementation parts of the abstract class and outlines the correct use of the abstract class and the test classes to implement for the concrete classes.

Requirements:

- At least 70% of lines of code get coverage.
- Unit tests must be done once before the tester executes test cases in each sprint.
- Unit tests must be performed consistently, ensuring that there is no fluctuation in the number of unit tests per module.

2.6. Integration Testing Strategy

Testers must design a test plan for integration testing with both Sub-component integration testing and Component integration testing because a component is typically composed of a set of sub-components and these sub-components consist of classes and packages.

- Sub-component integration testing: The integration tests between sub-components ensure the compatibility of these software units across development cycles. An example of a sub-component integration test in the Design Environment is the validation of outputs from the Modelling Library against the expected inputs of the Modelling Tool.
- Component integration testing: These tests will examine the compatibility of components' APIs
 according to a predefined set of rules. Furthermore, they examine the basic functionalities of a
 group of components as a sub-system. An example of such tests is between Design and Algorithm
 Optimization environments, where the outputs of the Modelling Tool will be tested against
 expected inputs of the Optimization Tool

2.7. System Testing Strategy

For system testing, we use the following technique:

- Usability Testing: Test focus on user-friendly, easy-to-interact interface, flexibility in handling controls, and ability of the system to meet project objectives.
- Load Testing: Check whether the performance of the system is balanced and stable, whether the criterion is met in quality attribute or not.
- Functional Testing: provide missing functionality, functions list that testers think are likely to affect the product.

3. Estimation

3.1. Size

Total number of FP: 45

Software Scale Drivers					
Precedentedness	Nominal				
Development Flexibility	Nominal				
Architecture / Risk	Nominal				
Resolution					
Team Cohesion	Nominal				
Process Maturity	Nominal				

Software Cost Drivers					
Product		Personnel			
Required Software Reliability	Nominal	Analyst Capability	Nominal		
DataBase Size	Nominal	Programmer Capability	Nominal		
Product Complexity	Nominal	Personnel Continuity	Low		
Developed for Reusability	High	Application Experience	Nominal		
Documentation Match to Lifecycle Needs	Nominal	Platform Experience	Low		
		Language and Toolset Experience	Low		
Project		Platform			
Use of Software Tools	High	Time Constraint	Nominal		
Development	Nominal	Storage Constraint	Nominal		
Required Development Schedule	Nominal	Platform Volatility	Nominal		

Software Labor Rates

Cost per Person-Month (Dollars): 113

Software Development (Elaboration and Construction)

Effort = 9.8 Person-months Schedule = 7.6 Months

Cost = \$734

Total Equivalent Size = 2385 SLOC

Effort Adjustment Factor (EAF) = 1.28

Acquisition Phase Distribution

Phase	Effort (Person-months)	Schedule (Months)	Average Staff	Cost (Dollars)
Inception	0.6	0.9	0.6	\$44
Elaboration	2.4	2.8	0.8	\$176
Construction	7.4	4.7	1.6	\$559
Transition	1.2	0.9	1.2	\$88

Software Effort Distribution for RUP/MBASE (Person-Months)

Phase/Activity	Inception	Elaboration	Construction	Transition
Management	0.1	0.3	0.7	0.2
Environment/CM	0.1	0.2	0.4	0.1
Requirements	0.2	0.4	0.6	0.0
Design	0.1	0.8	1.2	0.0
Implementation	0.0	0.3	2.5	0.2
Assessment	0.0	0.2	1.8	0.3
Deployment	0.0	0.1	0.2	0.4

3.2. Effort

Table 13: Estimation Effort Project

Activity/ Process	Total Total % budgeted budgeted Effort Effort		Sprint 1 Sprint 2		2 Sprint 3		Sprint 4			
	Usage (PD)	Usage (%)	No.	%	No.	%	No.	%	No.	%
Requirement	250	11.03	70	28	60	24	60	24	60	24
Design	300	13.24	90	30	70	23.3	70	23.3	70	23.3
Coding	725	31.99	185	25.5	185	25.5	177.5	24.48	177.5	24.48
Unit Testing	150	6.62	40	26.7	40	26.7	35	23.3	35	23.3
Testing	100	4.41	25	25	25	25	25	25	25	25
Deployment	100	4.41	0	0	0	0	25	25	75	75
Support for Acceptance Test	110	4.85	21	19.09	21	19.09	34	30.91	34	30.91
Project Planning	200	8.83	70	35	70	35	30	15	30	15
Project monitoring	175	7.72	43.75	25	43.75	25	43.75	25	43.75	25

Quality Assurance	100	4.41	25	25	25	25	25	25	25	25
Training	30	1.32	30	100	0	0	0	0	0	0
Total	2266	100	599.75	26.47	539.75	23.82	525.25	23.18	575.25	25.39

3.3. Schedule

3.3.1. Project Milestone & Deliverables

Figure 5: Project Timeline

DELIVERABLES

Table 14: Deliverables Project

No	Activities	Deliverables
0	Requirements Description	Requirements Description 1.0
1	Project Proposal	Project Proposal Document 1.0
2	Project Plan	Project Plan Document 1.0
3	Product Backlog	Product Backlog and User story Document 1.0
4	Architecture Document	Architecture Document 1.0
5	Database Design	Database Design Document 1.0
6	Interface Design	Interface Design Document 1.0
7	Test Plan	Test Plan Document 1.0
8	Test Case	Test Case Document 1.0
9	Sprint Backlog & Burndown Chart	Sprint Backlog & Burndown Chart Document 1.0

3.3.2. Work Breakdown Structure

Figure 6: Work Breakdown Structure

3.3.3. Detailed Schedule

Table 15: Schedule Project

No.	Task Name	Duration (hours)	Start	Finish	Assign to
1.	Initial	152.5	18/8/2021	05/9/2021	
1.1	Project's Kick-off Meeting	37.5	18/8/2021	22/8/2021	Team
1.2	Proposal	10	19/08/2021	20/08/2021	Phu
1.3	Research technical	75	20/08/2021	30/08/2021	Team
1.4	Project plan	10	31/08/2021	01/09/2021	Phu
1.5	Product backlog	10	02/09/2021	03/09/2021	Hieu
1.6	User story	10	04/09/2021	05/09/2021	Hoai
2	Development	735	06/9/2021	12/12/2021	
2.1	Sprint 1	210	06/09/2021	03/10/2021	
2.1.1	Sprint 1 plan meeting	7.5	06/09/2021	06/09/2021	Team
2.1.2	Architecture design meeting	7.5	07/09/2021	07/09/2021	Team
2.1.3	Test plan meeting	7.5	08/09/2021	08/09/2021	Team

2.1.4	Design sprint 1 backlog	7.5	09/09/2021	11/09/2021	Hieu
	Design test plan				
2.1.5	document	7.5	09/09/2021	11/09/2021	Hoai
2.1.6	Design architecture	12.5	09/09/2021	13/09/2021	Phu
2.1.7	Design database sprint 1	7.5	14/09/2021	16/09/2021	Phu
2.1.8	Design UI page login admin	10	12/09/2021	15/09/2021	Hoai
2.1.9	Design UI page login user	10	12/09/2021	15/09/2021	Hieu
2.1.10	Code function login	12.5	17/09/2021	21/09/2021	Phu
2.1.11	Test case for login	5	16/09/2021	17/09/2021	Hoai
2.1.12	Design UI homepage admin	12.5	18/09/2021	22/09/2021	Hoai
2.1.13	Design UI homepage user	10	16/09/2021	19/09/2021	Hieu
2.1.14	Design UI page Create/edit post	10	20/09/2021	23/09/2021	Hieu
2.1.15	Test case for creating/editing post	10	23/09/2021	26/09/2021	Hoai
2.1.16	Code create/edit post	10	22/09/2021	25/09/2021	Phu
2.1.17	Design UI page to add/modify account user information	12.5	27/09/2021	01/10/2021	Hoai
2.1.18	Test case for add/modifying account user information	10	24/09/2021	27/09/2021	Hieu
2.1.19	Code add/modify account user information	15	26/09/2021	01/10/2021	Phu
2.1.20	Test report sprint 1	10	28/09/2021	28/09/2021	Hieu
2.1.21	Sprint 1 Review Meeting	7.5	02/10/2021	02/10/2021	Team
2.1.22	Sprint 1 Retrospective Meeting	7.5	03/10/2021	03/10/2021	Team
2.2	Sprint 2	210	04/10/2021	31/10/2021	
2.2.1	Sprint 2 plan meeting	7.5	04/10/2021	04/10/2021	Team
2.2.2	Sprint 2 backlog	5	05/10/2021	06/10/2021	Hieu
2.2.3	Design database sprint 2	5	05/10/2021	06/10/2021	Phu
2.2.4	Design UI page view post information	12.5	07/10/2021	11/10/2021	Hieu
2.2.5	Design UI page view account information	12.5	05/10/2021	09/10/2021	Hoai
2.2.6	Code view post information	7.5	07/10/2021	09/10/2021	Phu
2.2.7	Code view account information	7.5	10/10/2021	12/10/2021	Phu
2.2.8	Design UI page view and	15	10/10/2021	15/10/2021	Hoai

	create/modify forum				
	information				
2.2.9	Design UI page censorship post and member	20	12/10/2021	19/10/2021	Hieu
2.2.10	Test case censorship post and member	7.5	16/10/2021	18/10/2021	Hoai
2.2.11	Code view and create/modify forum information	12.5	13/10/2021	17/10/2021	Phu
2.2.12	Code censorship post and member	15	18/10/2021	23/10/2021	Phu
2.2.13	Design UI comment	17.5	20/10/2021	26/10/2021	Hieu
2.2.14	Design UI page see report post and member in the forum	12.5	19/10/2021	23/10/2021	Hoai
2.2.15	Test case see report post and member in forum	7.5	27/10/2021	29/10/2021	Hieu
2.2.16	Test case comment	5	24/10/2021	25/12/2021	Hoai
2.2.17	Code comment	7.5	24/10/2021	26/10/2021	Phu
2.2.18	Code see report post and member in the forum	7.5	27/10/2021	29/10/2021	Phu
2.2.19	Test report sprint 2	10	26/10/2021	29/10/2021	Hoai
2.2.20	Sprint 2 Review Meeting	7.5	30/10/2021	30/10/2021	Team
2.2.21	Sprint 2 Retrospective Meeting	7.5	31/10/2021	31/10/2021	Team
2.3	Sprint 3	157.5	01/11/2021	21/11/2021	
2.3.1	Sprint 3 plan meeting	7.5	01/11/2021	01/11/2021	Team
2.3.2	Sprint 3 backlog	5	02/11/2021	03/11/2021	Hieu
2.3.3	Design database sprint 3	5	02/11/2021	03/11/2021	Phu
2.3.4	Design UI sent message	15	02/11/2021	07/11/2021	Hoai
2.3.5	Design UI delete post, member, comment, chat box	15	04/11/2021	09/11/2021	Hieu
2.3.6	Test case sent a message	5	08/11/2021	09/11/2021	Hoai
2.3.7	Test case notify the new post	5	10/11/2021	11/11/2021	Hieu
2.3.8	Code sent message	12.5	04/11/2021	08/11/2021	Phu
2.3.9	Code notify the new post	10	09/11/2021	12/11/2021	Phu
2.3.10	Code delete post and member	7.5	13/11/2021	15/11/2021	Phu
2.3.11	Code delete comment	2.5	16/11/2021	16/11/2021	Phu
2.3.12	Code delete chat box	2.5	17/11/2021	17/11/2021	Phu
2.3.13	Design UI notifies new	12.5	10/11/2021	14/11/2021	Hoai

	magaaaa aad aasa				
	message and new post				
2.3.14	Design UI report message and comment	15	12/11/2021	17/11/2021	Hieu
2.3.15	Test case notify new message	5	15/11/2021	16/11/2021	Hoai
2.3.16	Test case report message and comment	5	18/11/2021	19/11/2021	Hieu
2.3.17	Code notify new message and new post	2.5	18/11/2021	18/11/2021	Phu
2.3.18	Code report message and comment	2.5	19/11/2021	19/11/2021	Phu
2.3.19	Test report sprint 3	7.5	17/11/2021	19/11/2021	Hoai
2.3.20	Sprint 3 Review Meeting	7.5	20/11/2021	20/11/2021	Team
2.3.21	Sprint 3 Retrospective Meeting	7.5	21/11/2021	21/11/2021	Team
2.4	Sprint 4	157.5	22/11/2021	12/12/2021	
2.4.1	Sprint 4 plan meeting	7.5	22/11/2021	22/11/2021	Team
2.4.2	Sprint 4 backlog	5	23/11/2021	24/11/2021	Hieu
2.4.3	Design database sprint 4	5	23/11/2021	24/11/2021	Phu
2.4.4	Design UI see report message, comment	10	23/11/2021	26/11/2021	Hoai
2.4.5	Design UI update personal	10	25/11/2021	28/11/2021	Hieu
2.4.6	Test case see report message and comment	5	29/11/2021	30/11/2021	Hieu
2.4.7	Test case update personal	5	27/11/2021	28/11/2021	Hoai
2.4.8	Code see report message and comment	7.5	25/11/2021	27/11/2021	Phu
2.4.9	Code update personal	7.5	28/11/2021	30/11/2021	Phu
2.4.10	Design UI see calendar	10	01/12/2021	04/12/2021	Hieu
2.4.11	Design UI notify message and comment report by user	12.5	29/11/2021	03/12/2021	Hoai
2.4.12	Test case see calendar	5	04/12/2021	05/12/2021	Hoai
2.4.13	Test case notify message and comment report by user	5	05/12/2021	06/12/2021	Hieu
2.4.14	Code see calendar	7.5	01/12/2021	03/12/2021	Phu
2.4.15	Code notify message and comment report by user	5	04/12/12021	05/12/12022	Phu
2.4.16	Design UI search for user	10	07/12/2021	10/12/2021	Hieu
2.4.17	Code view information search for user	7.5	06/12/2021	08/12/2021	Phu
2.4.18	Code get report user or	5	09/12/2021	10/12/2021	Phu
۷.٦.10	Code get report user or		07/12/2021	10/12/2021	1 114

	forum for the admin				
2.4.19	Test report sprint 4	12.5	06/12/2021	10/12/2021	Hoai
2.4.20	Sprint 4 Review Meeting	7.5	11/12/2021	11/12/2021	Team
2.4.21	Sprint 4 Retrospective Meeting	7.5	12/12/2021	12/12/2021	Team
3	Close project	15	13/12/2021	15/12/2021	Team
	Duration	902.5			

3.4. Resource

3.4.1. Human Resources

Table 16: Human Resources

Position Titles	Quantity	Member
Backend Developer	2	Thanh Phu
Frontend Developer	1	Hieu, Hoai
Data Engineer	2	Thanh Phu
Graphics Designer	1	Hieu, Hoai
Business Analyst	1	Hieu, Hoai, Phu
Tester	1	Hieu, Hoai
Project Manager	1	Thanh Phu
Total Human-Resources	9	

3.4.2. Equipment

Table 17: Equipment Resources

Name of equipment	Quantity
Laptop	3
Monitor	3
Tablet	1

3.5. Infrastructure

Table 18: Infrastructure

1 able 18: Infrastructure					
Work/Product	Purpose	Expected Availability by	Note		
Development Environ	nment				
Win 10	Operating Systems	Initiation stage			
MySQL, Firebase	DBMS	Initiation stage			
JavaScript	Development language for Web interface and API server	Initiation stage			
Java	Development language for data processing, handling data sources and handling WebSocket.	Initiation stage			
Hardware & Software					
Tomcat server	2vCPUs, 1GB memory, 5GB storage,				

	version 9.30	
Adobe Xd	UI Design & Architecture design	
Other Tools		
GitHub, Bitbucket	Source version control	Initiation stage
Excel Office	Effort logging	Initiation stage
Slack	Discussion	Initiation stage
Jira	Task tracking	Initiation stage
Word Office	Managing documents	Initiation stage
Google met	Meeting online	Initiation stage

3.6. Training Plan

Table 19: Training Plan

Tube 17. Truning I am			
Training Area	Participants	When Duration	Waiver Criteria
Technical			
VueJs framework	Hoai, Hieu	7 days	If already trained
Spring Boot	Phu	7 days	If already trained
WebSocket	Phu	7days	If already trained
Re API	Hoai, Hieu, Phu	5 days	If already trained
Business domain			
Environment		7 days	
Process			·
Quality system	All members	3 hrs.	If already trained
Configuration management	All members	2 hrs.	If already trained for CC. For others, on-thon-the-job training
Group review	All members	4 hrs.	If already trained
Defect prevention	All members	4.5 hrs.	Mandatory

Additional training program

The way of working on a Scrum project.

- Release Planning Meeting
- Sprint Planning Meeting
- Daily Scrum Meeting
- Sprint Review Meeting
- Retrospective
- Scrum of Scrums

3.7. Finance

Table 20: Finance

Cost Description	Detail		
Salary	Duration: 17 weeks (119 days)		

	Man-hour: 2.5 hours/1day
	Salary: \$2/1 hour
	Persons: 3 members
	Overtime cost per hour: 1.5\$/hour
	The salary of 1 person: \$756
	Total: \$2266
Lonton	Laptop for each member: \$800
Laptop	Total: \$2400
Monitor	LG Monitor for each member: \$100
Withittor	Total: \$300
Maintenance	Cost per month: \$400
Bugs fixing	Cost per bug: \$20
Total	Salary + Laptop + Monitor
Total	Total: \$4966

4. Project Organization

4.1. Organization Structure

. Table 21: Organization Structure

Role	Responsibility	Name
Product Owner	Understand the user and customers with their needs. Collaborate with the development team. Manage the stakeholders. Describe the user experience and product features. Provides detailed user stories.	Nguyen Trung Hieu, Dang Nguyen Bao Hoai
Scrum Master	Communicate the value of Scrum Teach the organization on Scrum to maximize business value Facilitate Sprint Planning, Daily Scrums, Sprint Reviews, and Retrospective Meetings Create the Task Board and Sprint Burndown Chart at the start of every Sprint Attend all Scrum meetings Preserve the integrity and spirit of the Scrum framework Maintain the focus of the Team Make the Team aware of impediments and facilitate efforts to resolve them Serve as a coach and mentor to members of the Team Respectfully hold the Team, Product Owner, and Stakeholders accountable for their commitments Continually work with the Team and business to find and implement improvements	Nguyen Thanh Phu
Secretary	Record the content of group meetings and activities of the member	Nguyen Trung Hieu
Reviewer	Analysis of the functions and requirements of the product. Review documents related to the project	Nguyen Thanh Phu
Team Leader	Back-end Dev: Server, WebSocket, Database, RESTful API	Nguyen Thanh Phu

<SConA>-Project Plan

Team member	Frontend Developer, UI/UX Designer, Tester	Dang Nguyen Bao Hoai
Team member	Frontend Developer, UI/UX Designer, Tester	Nguyen Trung Hieu

4.2. Project Team

Table 22: Project Team

Full Name	Phone	Email	Position
Nguyen Minh Nhat	+84 905 125 143	nhatnm2010@gmail.com	Mentor
Nguyen Thanh Phu	+84 772 492 301	thangphu104@gmail.com	Scrum master, Dev Team
Nguyen Trung Hieu	+84 975 299 149	hnguyentrung20@gmail.com	Product Owner, Dev Team
Dang Nguyen Bao Hoai	+84 773 305 395	dangbhoai@gmail.com	Product Owner, Dev Team

5. Communication & Reporting

5.1. Reporting Methodology

Table 23: Reporting Methodology

Audience/ Attendees	Topic/ Deliverable	Frequency	Method	
- Product Owner	Project Progress	Weekly		
- Scrum Master	Review		Email, google met	
- Team Members	Keview			
- Product Owner				
- Scrum Master	Explicit Requirement	When needed	Email, google met	
- Team Members				
- Mentor		End of each		
- Scrum master	Milestone review	Milestone	google met	
- Team members		Milestone		
- Scrum master	Daily tasks	Each day	Slack, Discord, Jira	
- Team members	Dany tasks		Stack, Discold, Jila	

5.2. Communication Methodology

Table 24: Communication Methodology

Type of Communication	Communication Schedule	Communication way	Who Initiates	Recipient
Status Report (Daily meeting)	Daily at 10 AM	Slack	Scrum Master	Scrum Team
Schedule and Effort Tracking	Daily	Google sheet, Jira	Scrum Master	Scrum Team
Work Review	Daily at 10AM	Trello	Scrum Master	Scrum Team
Work Report	Every Friday	Slack	Scrum Master	Scrum Team
Project Review, ask problems	Every Friday (flexible)	Google met	Scrum Master	Mentor, Scrum Team

Ask & Review problems	Anytime	Slack, gg met	Scrum's Member	Scrum Team, Mentor,
-----------------------	---------	---------------	-------------------	---------------------------

6. Configuration Management

Table 25: Configuration Management

No	Tool	Content
1	Excel office	Track member activities. At the end of each day, team members
1		will post on time log and Scrum Master will check.
2	Word office	Track the changing of documents & manage versions of document
3	Bitbucket	Repositories for source code version management.
	Weekly Meeting	Hold a meeting every week to assign tasks to each member.
4		If there are some emergencies but we cannot sit together then
		we can use Discord to discuss online.
5	Document	All meetings must be documented and pictured.
7	Slack	Store document resources and designed components, Daily
/		Scrum
8	Discord	Discuss online, stream and share problems
9	GitHub bitbucket	Repositories for open-source code of the project

7. Security Aspects

To deal with security risks, SConA is precisely process-configured at every stage of the project.

• Concept and planning

The purpose of this stage is to define the application concept and evaluate its viability.

This includes developing a project plan, writing project requirements, and allocating human resources.

- o Prepare a list of security requirements for the project.
- Training sessions provide essential security knowledge ranging from basic threat awareness to in-depth information on secure development.
- Architecture and design

The purpose of this stage is to design a product that meets the requirements. This includes modeling the application structure and its usage scenarios, as well as choosing third-party components that can speed up development. The result of this stage is a design document.

Secure design: The design document and subsequent updates are validated in light of the security requirements. Early design reviews assist in identifying features exposed to security risks before they are implemented.

Implementation

- This is the stage at which an application is actually created. This includes writing the application code, debugging it, and producing stable builds suitable for testing.
- Guides and checklists remind programmers of typical mistakes to be avoided, such as storing unencrypted passwords. Enforcing secure coding principles eliminates many trivial vulnerabilities and frees up time for other important tasks.
- Manual code reviews are still a must for building secure applications. Timely reviews help developers to flag and fix potential issues before they shift attention to other tasks.
- Testing and bug fixing

The purpose of this stage is to discover and correct application errors. This includes running automatic and manual tests, identifying issues, and fixing them. We use the rolling wave testing method to perform continuous testing after each phase, which ensures that security issues will be detected and resolved as soon as possible.

Release and maintenance

At this stage SConA goes live, with many instances running in a variety of environments. Before going

<SConA>-Project Plan

live, we set up security for the cloud server, install SSL for hosting and related procedures to manage the cloud environment as closely as possible.

8. References

Table 26: References

No	Reference item	Issued Date	Source	Note
1	[SConA]Proposal:	01-Sep-2021	https://bitbucket.org/PhuN	
		01 Sep 2021	<pre>guyenThanh/capstone_1/sr</pre>	
			c/master/docs/1%20PROP	
			OSAL/C1SE.44-Proposal-	
			SConA.docx	
2	What is Scrum:	02-Sep-2021	https://www.scrum.org/res	
			ources/what-is-scrum	
3	Design:	02-Sep-2021	https://www.adobe.com/pr	
			oducts/xd.html	
4	Security Aspect:	02-Sep-2021	https://www.ptsecurity.co	
			m/ww-	
			en/analytics/knowledge-	
			base/how-to-approach-	
			securesoftware-	
			development/	
5	Integrating Quality	02-Sep-2021	https://assist-	
	Management System into		software.net/blog/integratin	
	Software Development		g-quality-management-	
	Processes:		system-software-devel	
			opment-processes	