In the Abstract:

Please make the following changes in the abstract, page 21:

ABSTRACT-

The invention relates to a borosilicate-glass of high chemicals resistance, having a composition (in % by weight, based on oxide) of SiQ_e 70-77; B₂Q₃-6 - < 11.5; Al₂Q₃-4-8.5; Li₂Q-0-2; Na₂Q-4-9.5; K₂Q-0-5; with Li₂Q + Na₂Q + K₃Q-5-11; MgQ 0 - 2; CaQ-0-2; with MgQ + CaQ-0-3; ZrQ₃-0-<0.5; CaQ₃-0-1.

The glass is particularly suitable for use as primary packaging material for sharmaceuticals.

ABSTRACT OF THE DISCLOSURE

The borosilicate glass has a hydrolytic stability class of 1, an acid resistance class of 1 and a lye resistance class of at least 2 and a composition (in % by weight, based on oxide) of SiO₂ 70.5 – 76.5; B₂O₃ 6.5 - < 11.5; Al₂O₄ 4-8; Li₂O 0.5 - 2; Na₂O 4.5 - 9; K₂O 0 - 5; with Li₂O + Na₂O + K₂O 5.5 – 10.5; MgO 0 – 1; CaO 0 - 2; and CeO₃ 0 – 1, and optionally refining agents. This borosilicate glass is preferably free of As₂O₃, Sb₂O₃ and BaO and is then especially advantageous as a pharmaceutical packaging material. It also may contain up to 3 % by weight TiO₂ to block UV radiation. The borosilicate glass may include up to 0.5 % by weight ZrO₂ to reach a lye resistance class of 1.