

Introduction to Neural Networks

Motivation

Limitations of linear models

- Logistic regression and other linear models cannot handle nonlinear decision boundaries
 - Must use non-linear feature transformations
 - Up to designer to specify which one
- Can we instead learn the transformation?
 - Yes, this is what neural networks do!
- A Neural network chains together many layers of "neurons" such as logistic units (logistic regression functions)

Neural Networks learn features

Neurons in the Brain

Inspired "Artificial Neural Networks"

Neurons are cells that process chemical and electrical signals and transmit these signals to neurons and other types of cells

Logistic Unit as Artificial Neuron

Logistic Unit as Artificial Neuron

Logistic Unit as Artificial Neuron

Artificial Neuron Learns Patterns

- Classify input into class 0 or 1
- Teach neuron to predict correct class label
- Detect presence of a simple "feature"

Example

Neural Networks: Learning

Intuition

Forward propagation of information through a neuron

Neural Networks: Learning

Multi-layer network

Artificial Neuron: simplify

Artificial Neuron: simplify

A single neuron is also called a perceptron

Artificial Neural Network

Deep Network: many hidden layers

Multi-layer perceptron (MLP)

- Just another name for a feed-forward neural network
- Logistic regression is a special case of the MLP with no hidden layer and sigmoid output.

Other Non-linearities

Also called activation functions

tanh

$$tanh(x) = \frac{2}{1+e^{-2x}} - 1$$

ReLU

$$\max(0, x)$$

$$RELU(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x > = 0 \end{cases}$$

Importance of Non-linearities

The purpose of activation functions is to **introduce non-linearities** into the network

Linear activation functions produce linear decisions no matter the network size

Non-linearities allow us to approximate arbitrarily complex functions

Loss Optimization

- A network learns the task defined in the Loss J(W).
- Neural network parameters are often referred to as weights \boldsymbol{W} .

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- Compute gradient, $\frac{\partial J(W)}{\partial W}$ Update weights, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 5. Return weights

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- Compute gradient, $\frac{\partial J(W)}{\partial W}$ Update weights, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 5. Return weights

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:

Not feasible to compute over all

- Compute gradient, $\frac{\partial J(W)}{\partial W}$ dataset

 Update weights, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 5. Return weights

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:

Compute over a mini-batch

- Compute gradient, $\frac{\partial J(W)}{\partial W}$ a mini-Update weights, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 5. Return weights

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:

Compute over

- Compute gradient, $\frac{\partial J(W)}{\partial W}$ a mini-batch Update weights, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- 5. Return weights

Parallelization: Batches can be split onto multiple GPUs

Loss/Cost Function

Landscape Visualization

Setting the Learning Rate

Small learning rate converges slowly and gets stuck in false local minima

Setting the Learning Rate

Small learning rate converges slowly and gets stuck in false local minima

Large learning rates overshoot, become unstable and diverge

Setting the Learning Rate

- How to select the learning Rate?
 - Try several, and see which works best
 - Start with a learning rate, and change it adaptively as the model trains
 - Many are implemented in Neural Network Tools

Cost function

Neural network: $h_{\Theta}(x) \in \mathbb{R}^K \ (h_{\Theta}(x))_i = i^{th} \ \text{output}$

training error

$$J(\Theta) = \frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log(h_{\Theta}(x^{(i)}))_k + (1 - y_k^{(i)}) \log(1 - (h_{\Theta}(x^{(i)}))_k) \right] + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_{ji}^{(l)})^2 \right]$$

regularization

Gradient computation

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log h_{\theta}(x^{(i)})_k + (1 - y_k^{(i)}) \log(1 - h_{\theta}(x^{(i)})_k) \right]$$
$$+ \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_j^{(l)})^2$$

$$\min_{\Theta} J(\Theta)$$

Need code to compute:

$$- J(\Theta)$$

$$- \frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta)$$

Gradient computation

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log h_{\theta}(x^{(i)})_k + (1 - y_k^{(i)}) \log(1 - h_{\theta}(x^{(i)})_k) \right]$$
$$+ \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_j^{(l)})^2$$

$$\min_{\Theta} J(\Theta)$$

Need code to compute:

$$-\frac{J(\Theta)}{\partial \Theta_{ij}^{(l)}} J(\Theta)$$

Deep Learning

Architectures

What is Deep Learning?

ARTIFICIAL INTELLIGENCE

Any technique that enables computers to mimic human behavior

MACHINE LEARNING

Ability to learn without explicitly being programmed

DEEP LEARNING

Extract patterns from data using neural networks

313472

Why Deep Learning?

Hand engineered features are time consuming, brittle, and not scalable in practice

Can we learn the **underlying features** directly from data?

Mid Level Features

Lines & Edges Eyes & Nose & Ears

High Level Features

Facial Structure

Why Deep Learning? The Unreasonable Effectiveness of Deep Features

Maximal activations of pool₅ units

[R-CNN]

Rich visual structure of features deep in hierarchy.

conv₅ DeConv visualization
[Zeiler-Fergus]

Why Now?

Stochastic Gradient
Descent

Perceptron
• Learnable Weights

Backpropagation
• Multi-Layer Perceptron

Deep Convolutional NN
• Digit Recognition

Neural Networks date back decades, so why the resurgence?

I. Big Data

- Larger Datasets
- Easier Collection
 & Storage

2. Hardware

- Graphics
 Processing Units
 (GPUs)
- Massively Parallelizable

3. Software

- Improved Techniques
- New Models
- Toolboxes

Network architectures

Feed-forward

Fully connected

Layer 1 Layer 2 Layer 3 Layer 4

Convolutional

Recurrent

Fully Connected

Not ideal for representing images

Convolutional Neural Network

A better architecture for 2d signals

LeNet

Convolution layer in 2D

Output map

Convolution layer in 2D

What weights correspond to these output maps?

These are output maps before thresholding

Hint: filters look like the input they fire on

Where is Waldo?

filter

Input

What will the output map look like?

filter

Input

What will the output map look like?

filter

Output

Here is Waldo

filter

Input

Stacking convolutional layers

- Each layer outputs multi-channel feature maps (like images)
- Next layer learns filters on previous layer's feature maps

Pooling layers

- Convolution with stride > 1 reduces the size of the input
- Another way to downsize the feature map is with pooling
- A pooling layer subsamples the input in each sub-window
 - max-pooling: chose the max in a window
 - mean-pooling: take the average

Pooling layer

- the pooling layers reduce the spatial resolution of each feature map
- Goal is to get a certain degree of shift and distortion invariance

Testing the network

Show top three most likely classes

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Recurrent Neural Networks

Recurrent Neural Networks

A young boy holding a baseball bat

A man riding a horse next to a building

Fei-Fei Li

- Ted Talk: <u>https://www.ted.com/talks/fei_fei_li_how_we_r</u> <u>e_teaching_computers_to_understand_pictures</u> ?language=en
- Professor, Computer Science, Stanford University
- Co-Director of Stanford's Human-Centered Al Institute
- Previously Vice President at Google and Chief Scientist of AI/ML at Google Cloud
- Co-founder and chairperson of the national nonprofit AI4ALL
- Online Deep Learning Course
- "First, we teach them see, then they help us to see better."