Una revisión de los metodólogos de integración

Modelos Bayesianos con aplicaciones ecológicas Dr. Cole Monnahan University of Concepción, Chile Enero, 2019

Por que integración?

 Recuerda que para calcular probabilidades tenemos que integrar una distribución continua

$$P(a < X < b) = \int_a^b f(x) dx$$

- Que es la altura de la curva en este caso?
- Que es P(X=a)=?
- La área bajo de la curva es la probabilidad

Método 1: Integración analítica

- Suponga que hay una v.a. uniforme:
 X~U(0,5)
- Entonces la pdf f(x)=1/5 por x en (0,5) y 0 de lo contrario
- $P(a < X < b) = \int_{a}^{b} 1/5 dx = (b a)/5$
- Si a=0, b=5; P=1
- Si a=2.5, b=5; P=0.5
- Este método es exacto y rápido
- ...pero es arduo para modelos reales (complejos)

Método 1: Integración analítica

La mediana m, y otros cuartiles:

$$P(X < m) = P(X > m) = \int_{-\infty}^{m} f(x)dx = 1/2$$

La media:

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

- P.ej., si $X \sim N(\mu, \sigma)$ entonces es (complejos)
- > qnorm(.5, mean=mu, sd=sigma)
- > qnorm(p=c(0.025, .975), mean=mu, sd=sigma)

Método 2: Integración por Monte Carlo

Idea = generar muestras aleatorias y calcular porcentajes para aproximar probabilidades

Strong Law of Large Numbers

Given a function h(x) and a distribution f(x), want to find expected value

$$\mathbb{E}_f[h(X)] = \int_{\mathcal{X}} h(x) f(x) dx,$$

which converges surely to

Una muestra

$$\overline{h}_n = \frac{1}{n} \sum_{j=1}^n h(x_j),$$

for large n.

Stanislaw Ulam

Las implicaciones de Monte Carlo

- Eso significa que se puede usar Monte Carlo muestras para aproximar varias integrales:
 - Varianza y desviación típica
 - Cuartiles, incluyendo la mediana
 - Funciones de X, como la media
- En lugar de usar integrales exactas, se usa estas aproximaciones para hacer inferencia.
- Una forma de integrar: integración numérica

Método 2: Integración por Monte Carlo

 Idea = generar muestras aleatorias y calcular porcentajes para aproximar probabilidades

```
> x < - rnorm(10, mean=mu1, sd=tau1)
> mean(x<0)
                          Porcentaje de x<0 (por que?)
> quantile(x, probs=c(0.025, 0.975))
      -1.14731923 -0.08842335
                   La cantidad de las muestras controla la precisión
> x <- rnorm(1e6, mean=mu1, sd=tau1)
> mean(x<0) [1] 0.940683
> quantile(x, probs=c(0.025, 0.975))
     -1.5768345 0.1790194
```

Método 2: Monte Carlo integración

- Para poder implementarlo necesitamos conocer la forma exacta de la distribución a posteriori como en el ejemplo anterior con rnorm
- En este método cuanto más muestras generamos mejor será la aproximación
- Sin embargo, esta situación es muy raro
- Que haríamos cuando no podamos usar los métodos anteriores?

Homework 1.1

- Let X~U(-π, 1). Integrate this analytically for P(a<X<b).
- 2. Now let X be a triangle:

$$f(x) = \begin{cases} cx \text{ if } 0 < x < 1/2 \\ c(1-x) \text{ if } 1/2 < x < 1 \\ 0 \text{ otherwise} \end{cases}$$

- Draw this or use R to plot it.
- Integrate it from 0 to 1. What does *c* need to be so this is a probability distribution? [La parte mas dificil] Calculate P(.35<X< .98)

Homework 1.2

- Assume X~N(0,1). Use rnorm (numerical) to estimate P(X< -5). Repeat but use pnorm (analytical). Why different?
- 2. Generate 500 samples and plot the cumulative mean of samples vs first m samples. How many samples are "good enough" to approximate the mean?
- Using samples from #2, approximate mean of the function $y=h(x)=x^2$. Is this equal to mean(x)^2?
- 4. [Extra: find the pdf for Y=h(x) and add to histogram]

Homework 1.3

- Install JAGS 4.3.0:
 https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/
- Download user manual:
- https://sourceforge.net/projects/mcmcjags/files/Manuals/4.x/jags_user_manual.pdf/ download
- Install R packages R2jags, coda
- Start R and ensure library(R2jags) works