

低电压输入/输出触摸屏控制器

概述

ADS7846 是一款 4 线式阻性触摸屏控制电路,支持在 1.5V 到 5.25V 间的低压 I/O 接口。ADS7846包含了一个 2.5V 的内部基准电路,该基准可以应用在备选输入测量,电池监测,和温度测量功能中。在掉电模式下,基准关闭以降低功耗。当在 0V 到 6V 的范围内监测电池电压时,电源供电低于 2.7V,内部基准仍可工作。

电源电压在 2.7V 时功耗的典型值为 0.75mW (关闭内部基准),转换速率为 125kHz,ADS7846芯片是电池供电系统的理想选择,譬如 PDAs 与属于触摸屏、传呼器、手机和其它便携式的设备。ADS7846有 TSSOP16、QFN16 和 VFBGA48 等封装形式,可在—40℃+85℃温度范围内工作。

特点

- 工作电压为2.2V~5.25V
- 数字输入/输出电压为1.5V~5.25V
- 内部2.5V基准电压
- 电源检测(0V~6V)
- 芯片温度检测
- 触摸压力检测
- 简单三线串行接口: QSPITM和SPITM兼容
- 自动省电模式

应用

- PDAs
- 便携式的设备
- POS 终端
- 寻呼机
- 触摸屏显示器
- 手机

框图

绝对最大额定值

+V _{CC} 和 loVDD 对 GND	0.3V to +6V
模拟输入对GND	0.3V to +VCC + 0.3V
数字输入对GND	
功率耗散	250mW
最高结温	+150°C
工作温度范围	–40°C to +85°C
存储温度范围	–65°C to +150°C
引脚温度(焊接时间10秒)	+300°C

电气参数

(除特别说明外,常温 **25**℃,**V**_{CC}**=2.7V**,内部基准 **V**_{REF}**=2.5V**,**DCLK=2MHz**,转换速率为 **125kHz**,**12** 位分辨率模式)

符号	参数说明	条件	最小	典型	最大	单位
	模拟输入		,	1		
FSIS	满幅度输入范围	正输入-负输入	0	-	V_{REF}	V
AIR	绝对输入	正输入	-0.2	-	V _{CC} +0.2	V
	范围	负输入	-0.2	-	+0.2	V
C _{in}	输入电容	-	-	25	-	pF
I _{leak}	漏电流	-	-	0.1	-	μA
	系统性能参	数				
Resolution	分辨率	-	-	12	-	位
NM codes	无 失 码 位 数	-	11	-	-	位
INL	积分非线性误差	-	-	-	±2	LSB ⁽¹⁾
Offset_error	失调误差	-	-	-	±6	LSB
Gain_error	增益误差	外部基准	-	-	±4	LSB
Noise	噪声	包括内部基准	-	70	-	μVrms
PSRR	电源抑制比	-	-	70	-	dB
	动态采样特位	<u> </u>			1	
Tconv	转换时间	-	-	-	12	时钟周 期
Tacq	获取时间	-	3	-	-	时钟周 期
Rate	转换速率	-	-	-	125	KHz
Tsettle	通道选择 稳定时间	-	-	500	-	Ns
AD	孔径延迟	-	_	30	-	Ns
AJ	孔径抖动	-	-	100	-	Ps
Isolation	通道隔离度	V _{IN} =2.5Vp-p, 50kHZ,	-	100	-	dB
	驱动开关		L	ı	1	1
Ron	导通电阻 Y+, X+	-	-	5	-	Ω
	导通电阻 Y-, X-	-	-	6	-	Ω
Idriver	驱动电流(2)	持续 100ms	-	-	50	mA

第 3 页 共 25 页 www.web-ic.com.cn

ADS7846

					ADSI	040
	内部基准输	出				
Vref	内部基准	-	2.45	2.5	2.55	V
	电压		2.43	2.5	2.33	V
TC	内部基准	-	_	30	_	ppm/℃
	温漂					
Iq	静态电流	-	-	500	-	μΑ
	外部基准输	λ	T	T	T	Г
Range	输入电压 范围	-	1.0	-	+V _{CC}	V
Rin	输入阻抗	内部基准电路停止	-	1	-	GΩ
		内部基准电路启用	-	250	-	Ω
	电池电压监	测		l.	•	
V Range	电压输入	-	0.5		6.0	V
	范围		0.5	-	6.0	V
Rin	输入阻抗	采样电池电压	-	10	-	kΩ
		关闭电池电压监测	-	1	-	GΩ
V accuracy	准确率	外部基准 2.5V	-2	-	+2	%
		内部基准	-3	-	+3	%
	温度检测					
TR	温度测量范围	-	-40	-	85	$^{\circ}$ C
Resolution	分辨率	差动模式 ⁽³⁾	-	1.6	-	$^{\circ}$
		TEMP0 ⁽⁴⁾	-	0.3	-	$^{\circ}$
Aaccuracy	准确率	差动模式 ⁽³⁾	-	±2	-	$^{\circ}$
-		TEMP0 ⁽⁴⁾	-	±3	-	$^{\circ}\!\mathbb{C}$
	数字输入/输	· r出		I		
VIH	VIH	除 PENIRQ 外的逻辑电压,	+V _{CC} *0.7	_	+V _{CC} +0.3	V
VIL	VIL	I _{IH} ≤5μΑ, I _{IL} ≤5μΑ, I _{OH} =250μΑ,	-0.3	-	+0.8	V
V _{OH}	V _{OH}	I _{OL} =250μA	+V _{CC} *0.8	-	-	V
V _{OL}	V _{OL}		-	-	0.4	V
DF	数据格式	-	-	二进制	-	-
	电源电压			1174		
VR	+V _{CC} ⁽⁵⁾	特定性能电压范围	2.7	_	3.6	V
•••	- 66	工作电压范围	2.2	_	5.25	V
I _q	静态电流	内部基准停止	-	280	650	μA
ч	144 131 3110	内部基准启用	-	780	-	μA
		fsample=125kHz	-	220	-	μA
		掉电模式, CS = DCLK=	-	_	3	μA
		DIN=V _{CC}				
Power	功耗	V _{CC} =2.7V	-	-	1.8	mW

ADS7846

	工作温度				
TR	工作温度	-	40	0.5	°C
	范围		-40	85	C

注释: (1) LSB 是最低有效位,当 V_{REF} =+2.5V 时 1LSB=610 μ V; (2) 超过 50mA 的源电流将导致器件性能降低; (3) 差动模式下,测量 TEMP0 和 TEMP1 间的电压差; (4) TEMP0 模式下温漂为-2.1mV/℃; (5) ADS7846 在 2.2V 的电源电压下,数字部分将停止工作。

引脚配置

ADS7846

TSSOP PIN	VFBGA PIN	QFN PIN	管脚名	功能描述
1	B1 and C1	5	V _{cc}	电源引脚
2	D1	6	X+	X+位置输入端
3	E1	7	Y+	Y+位置输入端
4	G2	8	X-	X-位置输入端
5	G3	9	Y-	Y-位置输入端
6	G4 and G5	10	GND	地引脚
7	G6	11	V_{BAT}	电源检测输入端
8	E7	12	AUX	备选输入端
9	D7	13	V_{REF}	基准电压输入/输出
10	C7	14	IOVDD	数字 I/O 端口供电电源
11	В7	15	PENIRQ	笔中断
12	AB	16	DOUT	串行数据输出端,当 CS 为高时为高阻状态
13	A5	1	BUSY	忙时信号输出,当 CS 为高时为高阻状态
14	A4	2	DIN	串行数据输入端,当CS为低时,数据在
				DCLK 上升沿锁存
15	A3	3	CS	片选信号输入
16	A2	4	DCLk	时钟输入端口

总体功能描述: (含信息流描述)

ADS7846 是一个典型的逐次逼近型 AD 转换器,其结构是基于电荷再分配的比例电容阵列结构,这种结构本身具有采样保持功能,其转换器是采用 0.5μm CMOS 工艺制造的。

图 1 显示了ADS7846 的基本工作结构。ADS7846 工作电压可以从 2.7V 到 5.25V,需要外部时钟来提供转换时钟和串口时钟,同时还包含了一个内部 2.5V 的基准电压电路,内部基准可以被外部的,低阻抗电压源驱动,基准电压范围为 1V 到+V_{CC},基准电压值决定了 AD 转换器的输入范围。

模拟输入(X坐标,Y坐标,Z坐标,备选输入,电池电压和芯片温度)通过一个通道选择作为输入信号提供给转换器。内部的低阻驱动开关使得ADS7846可以为如电阻式触摸屏的外部器件提供驱动电压,通过采用差动输入和差动基准电压的模式,ADS7846可以消除由于触摸屏驱动开关的导通电阻带来的误差。

图 ADS7846 的基本工作结构

模拟输入

图 2 为模拟输入通道选择、差分输入的 ADC, 差分输入基准的示意图。表 1 和表 2 显示在 A2, A1, A0 与 SER/ DFR 控制位对 ADS7846的配置关系。通过数字串行接口输入引脚 Din (详见数字接口部分) 当比较器进入采样和保持模式时,+IN 与-IN 间的电压差值将被存储在内部的电容阵列上,模拟输入电流取决于转换器的转换率,当内部电容阵列(25pF)被完全充电后,将不再有模拟输入电流。

图 2 模拟输入简化图

表 1 单端模式,模拟输入配置

A2	A1	A0	电池检测	备选输入	温度测量	Y-	X+	Y+	坐标测量	驱动电压
0	0	0			+IN(TEMP0)					不加
0	0	1					+IN		Y坐标	Y+, Y-
0	1	0	+IN							不加
0	1	1					+IN		Z1 坐标	Y+, X-
1	0	0				+IN			Z2 坐标	Y+, X-
1	0	1						+IN	X坐标	X+, X-
1	1	0		+IN						不加
1	1	1			+IN(TEMP1)					不加

A2	A1	A0	Y-	X+	Y+	坐标测量	驱动电压(+REF,-REF)
0	0	1		+IN		Y坐标	Y+, Y-
0	1	1		+IN		Z1 坐标	Y+, X-
1	0	0	+IN			Z2 坐标	Y+, X-
1	0	1			+IN	X 坐标	X+, X-

表 2 差动模式,模拟输入配置

内部基准

ADS7846具有内部的 2.5V 基准电压电路,此电路可以被配置位 PD1 启用和关闭(参见表 5 和图 3)。 内部基准电压一般用于单端模式下的电池电压测量,温度测量和备选输入测量的时候。差动模式下基准电压为触摸屏提供驱动电压。差动模式可以消除由开关的导通电阻带来的转换器线性度的降低,因此可以取得更加优异的性能。

图 3 简化的内部基准图

基准输入

+REF 与-REF 间不同的电压值决定了模拟输入电压范围(参见图 2),ADS7846的基准电压范围为 1V 到 +V_{CC}。如果基准电压降低,每个数字字对应的模拟电压的比重(以 LSB 表示,12 位模式下 1LSB=V_{REF}/4096)将被降低,SAR ADC 本身具有的失调和增益误差(以 LSB 表示)也随之增加。比如,如果 AD 转换器的实际失调电压为 1.22mV,在 2.5V 的参考电压时为 2LSB,在 1V 的参考电压时将为 5LSB。因此在采用低的参考电压时,必须考虑采用低噪声、低纹波的电源,低噪声的基准电压、低噪声的输入信号以及包括足够

多的旁路电容的洁净的版图。

ADS7846通过 V_{REF} 输入的基准电压直接驱动 ADC 的电容阵列,因此输入电流很低,一般小于 13μA。此外关于基准电压还有一个必须考虑的问题,当驱动开关导通时,开关的导通电阻会给坐标的测量带来误差。特别是当设备用于测量电阻式触摸屏的触摸点坐标时(参见图 1),如果测量 Y 坐标,X+将作为 ADC 的输入端,Y+和 Y-的驱动开关将导通,X+端的模拟电压将被转换为数字电压(见于图 4)。在这种测试模式下,X+引脚的电阻很小,不会影响 AD 转换器的性能(引脚的电阻会影响到触摸屏的稳定时间,但阻值太小一般不予考虑)。由于电阻触摸屏的 Y 平面阻值较低,因此 Y+和 Y-两个驱动开关的导通电阻会使 Y 坐标的测量产生误差。由于驱动开关上存在电压损耗,因此无论触摸点在触摸屏的任何地方都不可能取得 0V或者满幅度的接触电压。

按照图 5 就可以解决上述问题。令 SER/DFR 为低,+REF 和-REF 分别连接到 Y+和 Y-,在这种情况,转换结果是和供电电压成比例的。无论内部开关的电阻如何影响外部触摸屏的电阻,转换结果总是外部触摸屏的电阻的成比例。在差动模式下,整个转换周期内外部触摸屏都要被驱动电压所驱动,因此功耗会增加。最后还要注意到,差动模式下,必须使用+V_{CC} 作为基准电压,而不能采用内部基准电压。当单端模式下,可以在 V_{REF} 引脚使用的精确的基准电压来测量坐标位置。在多数情况下,可以直接使用外部基准电压为 ADS7846提供供电,大多数基准可以为ADS7846提供足够用的功耗,但是可能不能够为外部的触摸屏提供足够的驱动电流。

图 5 单差动模式测量示意图

触摸屏的稳定时间

在某些应用中,触摸屏需要外接电容来滤除噪声(比如 LCD 面板和背光电路产生的噪声),外界电容作为低通滤波器来滤除这些噪声,但是当触摸屏被触摸时,外接电容会影响触摸屏的稳定时间,从而引起增益误差。造成这种问题是由于在 ADC 采样输入信号时,输入信号和基准电压还没有达到最终的稳定状态,另外基准电压在转换期间也可能会改变。有几种办法可以降低和消除这种问题,方法 1:在给定的触摸屏的稳定时间内,停止或放慢 DCLK 时钟,这可以使的输入信号在获取阶段 (ADS7846为3个时钟周期)达到稳定值。这种方法对单端和差动模式都适用。方法 2:在测量 X,Y 和 Z 坐标的情况下,让ADS7846工作在差动模式,一直保持在上电状态,在给定的稳定时间内和要求的转换率下,完成几次转换。一旦完成可要求的转换次数,处理器就发出命令让ADS7846完成最后一次转换后进入掉电状态。方法 3:采用 15个周期的转换模式,在这种模式下,外部触摸屏的驱动和转换周期交叠在一起,让外部触摸屏一直保持在上电的驱动状态,直至处理器发出停止的命令(参见图 13)。

温度测量

在某些应用中,比如电池充电的情况下,需要测量芯片的温度。ADS7846 的温度测量原理是基于固定工作电流的 PN 结的电压特性,二极管的正向工作电压 V_{BE} 具有特定的温度特性,通过计算环境温度下的 V_{BE} 和已知 25 ℃时的 V_{BE} 电压差值,就可以得知环境温度。ADS7846有两种温度测量模式,第一种采用已确定的结电压作校正,只需要一个转换周期就可以知道环境温度。在这个测试周期期间二极管正向导通,正向结电压被 AD 转换器采样和地址 A2=0, A1=0, 和 A0=0 转换(参见表 1 和图 6)。这个电压在 25 ℃时, 20μ A 的工作电流下为 600mV,结电压的绝对值可能有几个毫伏的偏差,但是其温度系数保持一致为

2.1mV/℃。在样品完成测试后,已知室温的结电压可以被存储在存储器中,可以被用户用于校正。此种测试模式的分辨率为 0.3℃/LSB(在 12 位方式下)。第二种模式不需要已知的结电压作校正,但这种模式需要两次转换,其精度为 2℃。这种模式的测量由于不需要准确的电压来校正,因此分辨率较低,为 1.6℃/LSB。根据温度计算公式如下:

$$^{\circ}K = q \cdot \Delta V/(k \cdot ln (N)) \tag{1}$$

其中 $\Delta V = V (l_{91}) - V (l_{1}) (in mV)$
$$^{\circ}K = 2.573 \, ^{\circ}K/mV \cdot \Delta V$$

$$^{\circ}C = 2.573 \cdot \Delta V(mV) - 273 \, ^{\circ}K$$

注:由于二极管的偏置电流仅持续三个时钟周期(获取阶段),因此不会引起功耗的显著增加,尤其在温度测量只是偶尔使用的情况下。

图 6 温度测量原理图

电池测量

ADS7846能够检测使用电池供电系统的电池电压,经过 DC/DC 转换后为ADS7846提供电源电压,测量原理如图 7 所示。电池电压的范围为 0V 到 6V,当ADS7846的工作电压在 2.7V 、3.3V,等,输入电压 5.5V 经过四分之一的分压后将 1.375V 电压送入到 AD 转换器中。为了降低功耗,当 A2 = 0, A1 = 1,和 A0 = 0 时分压电路只在采样周期启用(参见表 ADS7846 在控制位和配置之间的关系)。

图 7 电池电压测量原理图

压力测量

ADS7846还可以测量接触压力(测量原理见于触摸屏工作原理部分),为了确定是笔接触还是手指接触,需要测量接触压力。压力测量不需要特别高的性能,推荐使用 8 位分辨率转换模式。测量压力有几种不同的方法,就以下面两种测量方式为例说明测量过程: 其一,通过已知的 X 平面的电阻,测量触摸屏的 X 坐标,Z1 坐标和 Z2 坐标,按照图 8 所示 。使用公式(3)计算:

$$R_{\text{TOUCH}} = R_{\text{X}} - \text{plate} \cdot \frac{X - Position}{4096} \left(\frac{Z_2}{Z_1} - 1 \right)$$
 (2)

其二,通过一直得X平面和Y平面的电阻,测量X坐标,Y坐标和Z1坐标,采用公式(3)计算:

$$R_{\text{TOUCH}} = \frac{R_{X-plate} \bullet X - Position}{4096} \left(\frac{4096}{Z_1} - 1 \right)$$
$$-R_{Y-plate} \left(1 - \frac{Y - Position}{4096} \right) \tag{3}$$

图 8 压力测量原理图

数字接口

图 9 为ADS7846 的串口典型时序图,假定串口信号来自于带简单串口的微控制器或者 DSP。处理器与 AD 转换器间的每次通信包括 8 个时钟周期,如 SPI/SSI 或者 Microwire TM 同步串口。一次完整地转换包括 3 次通信, 24 个时钟周期。

最先的 8 个时钟周期通过 D_{IN} 引脚为ADS7846 提供控制字,来设定下次转换的测量模式,转换精度和基准电压模式,转换器进入采样模式,如果需要的话,触摸屏的驱动开关将导通。获取阶段完成后,转换器进入保持模式,输入信号保持一定,打开驱动开关(单端模式下),转换器进入转换模式,接下来的 12 个时钟周期将完成数模转换。在差动模式下,转换阶段时驱动开关是一直导通的,需要第 13 个时钟周期来完成最低位的转换。

控制字

D_{IN} 引脚的控制字的各位的作用见于表 3 和表 4, 用来设定 ADS7846的转换开始位,模拟输入选择, ADC 分辨率,参考电压模式和省电模式。

表 3 控制字的各个控制位的顺序

Bit 7(MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 3	Bit 1	Bit 0(LSB)
S	A2	A1	A0	MODE	SER/DFR	PD1	PD0

表 4	控制字功能
1C T	17 163 1 2/1 107

控制位	作用描述
S	起始位,必须为高,表明控制字的开始,
A2-A0	模拟输入通道选择位,同 SER/ DFR 一起,设定 ADS7846
	的测量模式,驱动开关和基准输入(见于表 1 和表 2)
MODE	转换精度选择位,低时为 12 位,高时为 8 位
SER/DFR	参考电压模式选择位,同 A2-A0 一起,设定ADS7846的测
	量模式,驱动开关和基准输入(见于表 1 和表 2)
PD1-PD0	省电模式选择

- (1) 起始位: 控制字的第一位,必须为高,表明控制字的开始。ADS7846如果没有检测到起始位,将忽略 D_{IN}上的信号;
- (2)通道选择:接下来的三位,A2,A1和A0用来设定ADS7846的测量模式(参见表 1,表 2,和图 2),驱动开关和基准输入;
- (3) 转换模式:模式位用来设定 AD 转换器的分辨率,此位为低,下面的数模转换将有 12 位的分辨率, 反之,则有 8 位的分辨率。
- (4) SER/DFR: 用来设定参考电压模式为单端模式或者差动模式。差动模式也称为比例转换模式,用于 X 坐标、Y 坐标和触摸压力的测量,可以达到最佳的性能。在差动模式下,参考电压来 自于驱动开关,其大小与触摸屏上的驱动电压相差无几。在单端模式下,参考电压为 V_{REF} 与地之间的电压。

如果 X 坐标、Y 坐标和触摸压力的测量采用单端模式,则必须使用外部基准电压,同时 ADS7846 的电源电压也由外部基准电压提供。在单端模式下,必须保证 AD 转换器的输入信号的电压不能查过内部基准电压 2.5V,特别是电源电压高于 2.7V 时。

(5) PD1 和 PD0: AD 转换器和内部基准电路可以通过这两位来设定为工作或者停止,因此可以降低 ADS7846的功耗,还可以让内部基准电压在转换前稳定到最终的电压值。如果内部基准 电路被关闭,要保证有足够的启动时间来启动内部基准电路。AD 转换器不需要启动时间,可以瞬间启动。此外,随着 BUSY 置为高,内部基准电路的工作模式将被锁存,需要对ADS7846写额外的控制位来关闭内部基准电路

第 16 页 共 25 页 www.web-ic.com.cn

图 9 AD 转换时序(每次转换需 24 个时钟周期)

PD1 PD0 接触中断功能 功能描述 转换完成后进入省电模式,下一次转换的开始 0 0 启用 后,所有的器件将被上电,不需要额外的延迟来 保证操作的正确性,第一次转换结果也是有效 的。省电模式时, Y-驱动开关将导通。 禁用 启用 ADC, 关闭基准电路 0 1 1 0 启用 关闭 ADC, 启用基准电路

ADC 和基准电路都启用

表 5 省电模式和内部基准选择

笔中断接触输出

1

1

禁用

笔中断输出功能框图见于图 10,在 PD0=0 的掉电模式下,Y-驱动开关导通,触摸屏的 Y 平面将被接地,笔中断输出引脚 PENIRQ 通过两个开关接到 X+输入,如果触摸屏被触摸,X+将通过触摸屏被下拉到地,因此电流通过触摸屏到地, PENIRQ 将变为低电平,这对处理器来说将意味着一个中断。在 X 坐标,Y 坐标和 Z 坐标的测量过程中,X+与上拉电阻间的连接将被断开,防止了从上拉电阻流到触摸屏的漏电流,从而防止了误差的产生。

此外,在X坐标,Y坐标和Z坐标的测量过程中,PENIRQ输出将被禁止,一直为低;在电池电压测量,温度测量和备选输入测量的过程中,PENIRQ输出将被禁止,一直为高。如果ADS7846的控制位中

PD0=1, PENIRQ 输出功能将被禁止,触摸屏的接触将不会被探测到。为了重新启用接触探测功能,需要重新写控制位 PD0=0。

在处理器给ADS7846发送控制位时,建议处理器屏蔽掉PENIRQ的中断功能,这是为了防止在PENIRQ输出被禁止时候所引起的误操作。

图 10 PENIRQ 功能结构图

图 11 转换时序, 16 个时钟周期的转换模式, 8 位总线端口。

第 18 页 共 25 页 www.web-ic.com.cn

16 时钟周期

在 n 次读数与 n+1 次控制字之间可以重叠,所以转换速率可以提高到每次 16 个时钟周期,如图 11 所示。

图12. 详细的时序图

		+V	+V _{CC} • 2.7V,		
		+V _{CC} •	OVDD •	1.5V,	
		CLC	_{DAD} = 50	ρF	
符号	描述	最小	典型	最大	单位
t _{ACQ}	获得时间	1.5			μs
t _{DS}	DIN 在DCLK上升前有效	100			ns
t _{DH}	DIN 在高DCLK后保持	50			ns
t _{DO}	DCLK下降DOUT有效			200	ns
t _{DV}				200	ns
t _{TR}	<u>CS</u> 上升DOUT无效			200	ns
t _{CSS}	CS 下降开始DCLK上升	100			ns
t _{сsн}	<u>CS</u> 上升DCLK忽略	10			ns
t _{CH}	DCLK 高	200			ns

第 19 页 共 25 页 www.web-ic.com.cn

t _{CL}	DCLK 低	200		ns
t _{BD}	DCLK下降to BUSY上升/下降		200	ns
t _{BDV}			200	ns
t _{BTR}			200	ns

表6. 时序说明, TA = -40°C to +85°C.

图13.最大转换速率, 15 个时钟周期

数字时序

图 9, 图 12 和表 6 详细显示了ADS7846数字端口的时序。

15 个时钟周期

如图 13 所示 ADS7846提供了最快捷的计时方法。这个方法不以多数的串行接口微型控制器和数字信号处理器运作,通常每串口一般不能提供 15 个时钟周期转换。但是,这个方法在现场可编程门阵列 (FPGAs) 或应用集成电路(ASICs)中可以。

FS = Full-Scale Voltage =
$$V_{REF}^{(1)}$$

1LSB = $V_{REF}^{(1)}/4096$

图 14. 理想输入电压和输出编码.

数据格式

ADS7846是以二进制格式连续的输出数据,如图 14 所示。这个图显示了在理想输入电压下输出的理想编码,不包括垂距、获取,或噪声的作用。

8 位转换

ADS7846 当在需要较快的转换速率和转换结果不是那么重要时,可以采用ADS7846的 8 位的转换模式。 在 8 位的转换模式下,可以节省 4 个时钟周期。不仅仅是因为较少了 4 位的转换,同时还可以工作在较快的时钟周期。两者结合,串口时钟速率可以提高一倍。

功耗

ADS7846主要有两种工作模式:全上电模式(PD0=1)和自动掉电模式(PD0=0)。当工作 16个时钟周期的转换模式时(参见图 11),ADS7846大部分时间用在采样和转换上,如果自动掉电模式启用,则自动掉电的时间很短,与全部工作模式下的功耗相比相差不大。但是当 DCLK 的频率增加,转换次数相对较少的情况下,两者的功耗还是相差很大的。

另外一个影响功耗的因素是参考电压模式。单端模式下,只有在输入信号采集时,外部触摸屏驱动开 关才导通,而在差动模式下,采集模式和转换模式时外部触摸屏的驱动开关都导通,如果转换率很高的话, 功耗将会显著的增加。

CS 也可以控制ADS7846的掉电模式,如果CS 为高,ADS7846立刻进入掉电模式,并不完成目前的转换。然而内部的基准电路并不关闭,因此在 \overline{CS} 置高前,要通过串口写 PD1=0 来关闭内部的基准电路。

布局

以下建议可以为ADS7846提供比较优异的性能。大多数便携式应用对功耗、成本、大小和重量的要求 是很难兼顾的。总体来说,由于其功耗很低,因此其电源和地的纹波和噪声很低,这就要就在电源电压转 换时不需要很多的旁路电容,不需要考虑太多的接地的问题。然而每一种应用都有其独特之处,可以考虑 采用如下的建议。

为达到最好的性能,应该注意与 ADS7846电路的物理布局。SAR 转换器结构在比较器的输出锁存前,容易受到电源电压、参考电压、地和数字输入上的毛刺或者电压突变的影响。在 n 位 SAR 转换器的单次转换过程中,n 次电荷再分配过程容易受到外界大的瞬态电压的干扰,从而影响到转换结果。这些毛刺主要来自于高功耗器件、周围的数字逻辑和电源电压的突变。造成的转换结果的误差取决于参考电压、版图设计和相对于 DCLK 的时序关系。

鉴于此,必须注意的是ADS7846的电源电压必须非常干净,应用图中的 0.1μF 的旁路电容必须尽可能的靠近ADS7846 如果电源电压到 V_{CC} 的阻抗很高的话,可能还需要 1 到 10μF 的备选旁路电容。旁路电容要采用低泄露的电容以降低省电模式下的功耗。

由于内部基准电路包括一个缓冲器,因此 V_{REF} 引脚不要旁路电容。如果使用运放产生外部基准电压为 ADS7846供电,必须确保此电压能够驱动旁路电容而不引起振荡。

ADS7846电路内部没有抑制噪声和电压变化的结构,因此必须保证外部基准电压的稳定性和低噪声。电源电压的噪声和纹波可以直接影响到 ADC 的转换结果,但是高频噪声可以滤出,工频(50Hz 或者 60Hz)于扰时很难滤除的。

GND 引脚必须连接到良好的接地点,一般为模拟地,避免与微控制器或 DSP 的地距离太近。如果需要的话, GND 引脚可以直接连接到电池或者提供电源电压的 DC/DC 转换器上。理想的版图设计应该为 AD 转换器和相应的模拟电路提供模拟地。

在四线式电阻触摸屏应用中,必须注意转换器与触摸屏间的连接。由于电阻触摸屏的阻值很低,两者 之间的连线必须尽可能短,抗干扰强度要强。长的互连线如同内部驱动开关的导通电阻一样会产生测量误 差。此外还必须减少线的接触电阻。

在触摸屏应用中,噪声是最主要的误差源,EMI 噪声可以通过 LCD 面板耦合到触摸屏,从而引起转换结果的不稳定。可以采用如下的方法降低噪声干扰,触摸屏的底层的金属层接地,可以把大部分的噪声接到地。此外 X+, X-, Y+和 Y-引脚与地之间加滤波电容也十分有效。如果采用滤波电容必须考虑触摸屏的稳定问题,特别是当ADS7846工作在单端模式,高转换率的情况下。

封装信息:

第 25 页 共 25 页 www.web-ic.com.cn