Условное математическое ожидание. Семинар 7. 16 октября 2018 г.

Подготовил: Горбунов Э.

Источники: [Ширяев, Гл. 1 §8, Гл. 2 §7], [НатанТВ, Гл. 5], [Боровков, Гл. 4 §2], [Гнеденко, Гл. 5 §23]

Ключевые слова: условное математическое ожидание относительно события ненулевой меры, условная вероятность относительно разбиения, условная вероятность относительно случайной величины, принимающей конечный набор значений, условное математическое ожидание относительно разбиения

Первая половина семинара — контрольная работа на 40 минут.

Условное математическое ожидание относительно события ненулевой меры

На втором семинаре мы обнаружили, что условная вероятность относительно события ненулевой меры является вероятностной мерой на исходном измеримом пространстве (Ω, \mathcal{F}) . Следовательно, относительно неё можно ввести интеграл Лебега и определенть математическое ожидание. Однако мы начнём с эквивалентного определения, записанного в другой форме.

Определение 1. Пусть $(\Omega, \mathcal{F}, \mathbb{P})$ — вероятностное пространство, $B \in \mathcal{F}$ — событие ненулевой вероятностной меры, ξ — случайная величина на $(\Omega, \mathcal{F}, \mathbb{P})$. Условным математическим ожиданием случайной величины ξ относительно события B называется величина

$$\mathbb{E}[\xi|B] \stackrel{\text{def}}{=} \frac{\mathbb{E}\left[\xi \cdot \mathbb{I}_{B}\right]}{\mathbb{P}\{B\}}.$$

Замечание 1. Введённое определение обобщает понятие условной вероятности. Действительно, если рассмотреть произвольное измеримое множество $A \in \mathcal{F}$ и его индикаторную случайную величину $\xi = \mathbb{I}_A$, то её условное математическое ожидание относительно множества B совпадает с условной вероятностью A при условии B:

$$\mathbb{E}[\xi|B] = \frac{\mathbb{E}\left[\mathbb{I}_A \cdot \mathbb{I}_B\right]}{\mathbb{P}\{B\}} = \frac{\mathbb{E}\left[\mathbb{I}_{A \cap B}\right]}{\mathbb{P}\{B\}} = \frac{\mathbb{P}\left\{A \cap B\right\}}{\mathbb{P}\{B\}} = \mathbb{P}\{A|B\}.$$

Из определения следует, что

$$\mathbb{E}[\xi|B] = \frac{1}{\mathbb{P}\{B\}} \int\limits_{\Omega} \xi \cdot \mathbb{I}_B d\mathbb{P}(\omega) = \int\limits_{B} \xi \frac{d\mathbb{P}(\omega)}{\mathbb{P}\{B\}} = \int\limits_{B} \xi d\mathbb{P}(\omega|B) = \int\limits_{\Omega} \xi d\mathbb{P}(\omega|B),$$

где последнее равенство следует, из того, что $\mathbb{P}\{\overline{B}|B\}=0$. Итак, условное математическое ожидание относительно события ненулевой вероятностной меры есть интеграл Лебега относительно вероятностной меры $\mathbb{P}\{\cdot\mid B\}$. Если переписать это утверждение через интеграл Стильтьеса, то получим

$$\mathbb{E}[\xi|B] = \int_{\mathbb{D}^n} x dF_{\xi}(x|B),$$

где $F_{\varepsilon}(x|B) = \mathbb{P}\{\xi < x|B\}.$

Пусть теперь B_1, B_2, \ldots — конечное или счётное объединение попарно непересекающихся множеств ненулевой меры. Тогда из формулы полной вероятности

$$F(x) = \sum_{i} \mathbb{P}\{B_i\} F(x|B_i)$$

и представления условного математического ожидания относительно события через интеграл Стильтьеса получаем формулу полного математического ожидания:

$$\mathbb{E}\xi = \sum_{i} \mathbb{P}\{B_i\} \mathbb{E}[\xi|B_i].$$

Данная формула оказывается очень удобной для вычисления математических ожиданий.

Пример 1. Пусть ξ_1, ξ_2, \ldots — независимые одинаково распределённые случайные величины с конечными математическими ожиданиями, N — случайная величина, независящая от них, принимающая натуральные значения и имеющая конечное математическое ожидание. Определим случайную величину $\eta = \sum_{i=1}^{N} \xi_i$. Докажите monedecmbo вальда:

$$\mathbb{E}\eta = \mathbb{E}\xi_1 \cdot \mathbb{E}N.$$

Доказательство. Рассмотрим события $B_n = \{N = n\}$. Тогда

$$\mathbb{E}\eta = \sum_{n=1}^{\infty} \mathbb{P}\{N=n\}\mathbb{E}[\eta|B_n] = \sum_{n=1}^{\infty} \mathbb{P}\{N=n\}\mathbb{E}\left[\sum_{i=1}^{n} \xi_i\right] = \sum_{n=1}^{\infty} \mathbb{P}\{N=n\} \cdot n\mathbb{E}\xi_1 = \mathbb{E}\xi_1 \sum_{n=1}^{\infty} n\mathbb{P}\{N=n\} = \mathbb{E}\xi_1 \cdot \mathbb{E}N.$$

Условное математическое ожидание относительно разбиения

Двигаясь от частного к общему, мы сначала определим условное математическое ожидание относительно разбиения для дискретных случайных величин, а затем дадим определение в общем случае.

Итак, пусть $(\Omega, \mathcal{F}, \mathbb{P})$ — дискретное вероятностное пространство и $D = \{B_1, \dots, B_n\}$ — разбиение Ω , т. е. $B_i \in \mathcal{F}, \mathbb{P}\{B_i\} > 0$ и $\bigcup_{i=1}^{\infty} B_i = \Omega$.

Определение 2. Условной вероятностью события $A \in \mathcal{F}$ относительно разбиения D называется случайная величина

$$\mathbb{P}\{A|D\}(\omega) \stackrel{\text{def}}{=} \sum_{i=1}^{n} \mathbb{P}\{A|B_i\}\mathbb{I}_{B_i}(\omega).$$

Отметим, что данная случайная величина является простой и принимает на множествах B_i значения $\mathbb{P}\{A|B_i\}$. Перечислим простейшие свойства условной вероятности относительно разбиения.

- 1. Для любых $A, B \in \mathcal{F}$ таких, что $A \cap B = \emptyset$, выполнено: $\mathbb{P}\{A \cup B | D\}(\omega) = \mathbb{P}\{A | D\}(\omega) + \mathbb{P}\{B | D\}(\omega)$.
- 2. Если $D = \{\Omega\}$ (тривиальное разбиение), то $\mathbb{P}\{A|D\}(\omega) = \mathbb{P}\{A\}$.
- 3. $\mathbb{E}[\mathbb{P}\{A|D\}(\omega)] = \mathbb{P}\{A\}$ (формула полной вероятности).

Рассмотрим теперь некоторую случайную величину η , принимающую конечное число значений:

$$\eta(\omega) = \sum_{i=1}^{n} y_i \mathbb{I}_{B_i}(\omega),$$

где $B_i = \{\omega \mid \eta(\omega) = y_i\}$. Разбиение $D_\eta = \{B_1, \dots, B_n\}$ называется **разбиением, порождаемым случайной величиной** η .

Определение 3. Условной вероятностью события $A \in \mathcal{F}$ относительно случайной величины η , принимающей конечный набор значений будем называть следующую случайную величину:

$$\mathbb{P}\{A|\eta\} \stackrel{\mathrm{def}}{=} \mathbb{P}\{A|D_{\eta}\}.$$

Данное определение легко обобщается на случай конечного числа случайных величин η_1, \ldots, η_m , имеющих конечное множество значений. Рассмотрим разбиение D_{η_1,\ldots,η_m} , состоящее из событий

$$D_{y_1,\ldots,y_m} = \{\omega \mid \eta_1(\omega) = y_1,\ldots,\eta_m(\omega) = y_m\}$$

для всех возможных наборов (y_1, \ldots, y_m) .

Определение 4. Условной вероятностью события $A \in \mathcal{F}$ относительно случайных величин η_1, \ldots, η_m , принимающих конечный набор значений будем называть следующую случайную величину:

$$\mathbb{P}\{A|\eta_1,\ldots,\eta_m\} \stackrel{\text{def}}{=} \mathbb{P}\{A|D_{\eta_1,\ldots,\eta_m}\}.$$

Рассмотрим случайную величину ξ , принимающую конечное число значений,

$$\xi = \sum_{i=1}^{m} x_i \mathbb{I}_{A_i}, \quad A_i = \{\omega \mid \xi(\omega) = x_i\}$$

и некоторое разбиение $D = \{B_1, \dots, B_m\}$. Математическое ожидание ξ , как мы знаем, определяется через вероятности $\mathbb{P}\{A_i\}$ по формуле

$$\mathbb{E}\xi = \sum_{i=1}^{m} x_i \mathbb{P}\{A_i\}.$$

Если в данной формуле заменить $\mathbb{P}\{A_i\}$ на $\mathbb{P}\{A_i|D\}$, то получим определение **условного математического** ожидания ξ , принимающей конечный набор значений, относительно разбиения D:

$$\mathbb{E}[\xi|D](\omega) \stackrel{\text{def}}{=} \sum_{i=1}^{m} x_i \mathbb{P}\{A_i|D\}(\omega).$$

Отметим, что условное математическое ожидание относительно разбиения — это случайная величина. Кроме того, $\mathbb{E}[\xi|D](\omega)$ для всех ω из одного элемента разбиения B_i принимает одно и то же значение $\sum\limits_{j=1}^m x_j \mathbb{P}\{A_j|B_i\} \stackrel{\text{def}}{=} \mathbb{E}[\xi|B_i]$. Данное наблюдение приводит нас к общему определению математического ожидания относительно разбиения.

Определение 5. Условным математическим ожиданием случайной величины ξ относительно разбиения $D = \{B_1, \dots, B_n\}$ называется случайная величина

$$\mathbb{E}[\xi|D](\omega) \stackrel{\text{def}}{=} \sum_{i=1}^{n} \mathbb{E}[\xi|B_i] \mathbb{I}_{B_i}(\omega).$$

Перечислим некоторые важные свойства условного математического ожидания относительно разбиения $(\xi, \eta -$ случайные величины, имеющие конечные мат. ожидания).

- 1. $\mathbb{E}[a\xi + b\eta|D](\omega) = a\mathbb{E}[\xi|D](\omega) + b\mathbb{E}[\eta|D](\omega)$, где a, b константы.
- 2. $\mathbb{E}[\xi|\{\Omega\}](\omega) = \mathbb{E}\xi$.
- 3. $\mathbb{E}[C|D] = C$, где C константа.
- 4. $\mathbb{E}[\mathbb{I}_A|D] = \mathbb{P}\{A|D\}.$
- 5. $\mathbb{E}\left[\mathbb{E}[\xi|D]\right] = \mathbb{E}\xi$ (обобщение формулы полной вероятности). Действительно,

$$\mathbb{E}\left[\mathbb{E}[\xi|D]\right] = \mathbb{E}\left[\sum_{i=1}^{n} \mathbb{E}[\xi|B_{i}]\mathbb{I}_{B_{i}}\right] = \sum_{i=1}^{n} \mathbb{E}[\xi|B_{i}]\mathbb{E}[\mathbb{I}_{B_{i}}] = \sum_{i=1}^{n} \frac{\mathbb{E}[\xi\mathbb{I}_{B_{i}}]}{\mathbb{P}\{B_{i}\}} \cdot \mathbb{P}\{B_{i}\} = \sum_{i=1}^{n} \mathbb{E}[\xi\mathbb{I}_{B_{i}}] = \mathbb{E}\left[\xi\sum_{i=1}^{n} \mathbb{I}_{B_{i}}\right] = \mathbb{E}\xi$$

в силу того, что B_i образуют разбиение Ω .

6. Если $\eta = \sum_{i=1}^n x_i \mathbb{I}_{B_i}$, то $\mathbb{E}[\xi \eta | D](\omega) = \eta(\omega) \mathbb{E}[\xi | D](\omega)$. Действительно, для всех $\omega \in B_i$ выполняется $\mathbb{E}[\xi \eta | D](\omega) = \mathbb{E}[\xi \eta | B_i] = x_i \mathbb{E}[\xi | B_i] = \eta(\omega) \mathbb{E}[\xi | D](\omega)$.

Упражнение 1. Показать, что если $\mathbb{D}\xi < \infty$, то $\mathbb{E}[\xi|D]$ минимизирует средний квадрат отклонения $\mathbb{E}\left[(\xi-\eta)^2\right]$ среди всех случайных величин η , измеримых относительно σ -алгебры, порождённой разбиением D.

Доказательство. Во-первых, заметим, что случайные величины, измеримые относительно σ -алгебры, порождённой разбиением D, являются те и только те случайные величины, которые принимают постоянные значения на элементах разбиения B_i . Во-вторых, используя формулу полного математического ожидания, получим

$$\mathbb{E}\left[(\xi - \eta)^2\right] = \sum_{i=1}^n \mathbb{E}\left[(\xi - \eta)^2 | B_i\right] \mathbb{P}\{B_i\} = \sum_{i=1}^n \mathbb{E}\left[(\xi - x_i)^2 | B_i\right] \mathbb{P}\{B_i\},$$

где x_i — значения, принимаемые случайной величиной η , на элементах разбиения B_i . На семинаре 4 было показано, что $a*=\mathbb{E}\xi$ минимизирует выражение $\mathbb{E}\left[(\xi-a)^2\right]$ по a. Аналогично и здесь можно показать, что оптимальные значения случайной величины на элементах разбиения будут равны $y_i^*=\mathbb{E}[\xi|B_i]$ (нужно лишь заметить, что $\mathbb{E}[\xi|B_i]$ обладает всеми необходимыми свойствами $\mathbb{E}\xi$, которые использовались для аналогичного результата для дисперсии).

Данное упражнение показывает, что условное математическое ожидание случайной величины ξ относительно разбиения D — это проекция в пространстве L_2 (было определено на четвёртом семинаре) случайной величины ξ на подпространство случайных величин, измеримых относительно $\sigma(D)$, то есть оператор условного математического ожидания относительно разбиения является проектором на указанное подпространство.

Рассмотрим конечное число случайных величин η_1, \dots, η_m , имеющих конечное множество значений. Рассмотрим разбиение $D_{\eta_1, \dots, \eta_m}$, состоящее из событий

$$D_{y_1,...,y_m} = \{ \omega \mid \eta_1(\omega) = y_1,...,\eta_m(\omega) = y_m \}$$

для всех возможных наборов (y_1, \ldots, y_m) .

Определение 6. Условным математическим ожиданием случайной величины ξ относительно случайных величин η_1, \ldots, η_m будем называть следующую случайную величину:

$$\mathbb{E}[\xi|\eta_1,\ldots,\eta_m] \stackrel{\text{def}}{=} \mathbb{E}[\xi|D_{\eta_1,\ldots,\eta_m}].$$

Некоторые свойства, следующие из определения:

- 1) если ξ и η независимы, то $\mathbb{E}[\xi|\eta] = \mathbb{E}\xi$;
- 2) $\mathbb{E}[\eta|\eta] = \eta$.