Lab3 - Filip Jedrzejewski

Opis problemu

Populacja Stanów Zjednoczonych na przestrzeni lat przedstawiała sie nastepujaco:

Rok	Populacja		
1900	76 212 168		
1910	92 228 496		
1920	106 021 537		
1930	123 202 624		
1940	132 164 569		
1950	151 325 798		
1960	179 323 175		
1970	203 302 031		
1980	226 542 199		
	ı		

W celu wyznaczenia wielomianu, który interpoluje powyższe dziewieć punktów rozważono nastepujące zbiory funkcji bazowych $\phi(t), j = 1, 2, ..., 9$:

$$\phi_j(t) = t^{j-1} \tag{1}$$

$$\phi_j(t) = (t - 1900)^{j-1} \tag{2}$$

$$\phi_j(t) = (t - 1940)^{j-1} \tag{3}$$

$$\phi_j(t) = \left(\frac{t - 1940}{40}\right)^{j-1} \tag{4}$$

Wyznaczanie wielomianu za pomoca macierzy

Dla każdego z czterech zbiorów funkcji bazowych utworzono macierz Vandermonde'a, a następnie korzystajac z funkcji numpy.linalg.cond obliczono współczynniki uwarunkowania każdej z nich. Wyniki przedstawiono w tabeli:

Numer funkcji bazowej	Współczynnik uwarunkowania macierzy	
1	$5.031 \cdot 10^{26}$	
2	$6.307 \cdot 10^{15}$	
3	$9.316 \cdot 10^{12}$	
4	$1.605\cdot 10^3$	

Najmniejszy współczynnik uwarunkowania miała baza określona wzorem (4), zatem została ona wybrana do wynaczenia wielomianu interpolacyjnego. W tym celu rozwiazano nastepujące równanie macierzowe:

$$M \cdot C = Y \tag{5}$$

przy czym: M - macierz Vandermonde'a utworzona na najlepiej uwarunkowanej bazie, C - szukana macierz współczynników, Y - macierz wartości wielomianu dla danych punktów (pierwsza tabela).

Do rozwiazania tego równania użyto funkcji numpy.linalg.solve, która zwraca rozwiazanie równania macierzowego typu $AX=B,\,$ gdzie A i B sa dane, a X szukana.

W kolejnym kroku utworzono wykres otrzymanego wielomianu na przedziale $year \in [1900, 1990]$, na który naniesiono wezły interpolacji.

Wykres wielomianu interpolacyjnego przechodzi przez wszystkie dziewieć wezłow interpolacji, co potwierdza poprawność wykonanej interpolacji. Kolejna czynnościa było dokonanie ekstrapolacji wielomianu do 1990 roku. Otrzymano wartość 82749141, która w porównaniu prawdziwej wartości populacji dla Stanów Zjednoczonych w 1990 roku, równej 248709873, miała bład wzgledny ekstrapolacji równy:

$$relativeExtrapolationError = 0.6672864651416437 \approx 66.73\%$$
 (6)

Wyznaczanie wielomianu Lagrange'a

W celu wyznaczenia wielomianu interpolacyjnego Lagrange'a użyto nastepujacych wzorów:

$$l_{j}(t) = \prod_{k=1, k \neq j}^{n} \frac{t - t_{k}}{t_{j} - t_{k}}$$
(7)

$$p(t) = \sum_{i=1}^{n} y_i l_i(t)$$
(8)

Na ich podstawie, korzystajac z funkcji lambda, wyznaczono wielomian interpolacyjny Lagrange'a. Nastepnie obliczono wartości tego wielomianu dla takiego samego przedziału jak w poprzednim podpunkcie z krokiem co jeden rok. Na podstawie uzyskanych wartości stworzono wykres:

Powyższy wykres jest identyczny jak ten stworzony na podstawie macierzy, co potwierdza poprawność wyznaczenia wielomianu metoda Lagrange'a.

Wyznaczanie wielomianu Newtona

W celu wyznaczenia wielomianu interpolacyjnego Newtona użyto nastepujacych wzorów:

$$\pi(t) = \prod_{k=1}^{j-1} (t - t_k) \tag{9}$$

$$p(t) = \sum_{i=1}^{n} f[t_1, ..., t_i] \cdot \pi_i(t)$$
(10)

$$f[x_i] = f(x_i) \tag{11}$$

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}$$
(12)

$$f[x_0, ..., x_i] = \frac{f[x_1, ..., x_i] - f[x_0, ..., x_{i-1}]}{x_i - x_0}$$
(13)

Na ich podstawie, korzystajac z funkcji lambda oraz rekurencyjnie obliczajac wartości ilorazów różnicowych, wyznaczono wielomian interpolacyjny Newtona. Nastepnie obliczono wartości tego wielomianu dla takiego samego przedziału jak w pierwszym podpunkcie z krokiem co jeden rok. Na podstawie uzyskanych wartości stworzono wykres:

Powyższy wykres jest identyczny jak ten stworzony na podstawie macierzy oraz metoda Lagrange'a, co potwierdza poprawność wyznaczonego wielomianu metoda Newtona.

Zaokraglone wartości populacji, a wynik interpolacji

Dane z pierwszej tabeli zaokraglono do jednego miliona:

Rok	Zaokraglona populacja
1900	76 000 000
1910	92 000 000
1920	106 000 000
1930	123 000 000
1940	132 000 000
1950	151 000 000
1960	179 000 000
1970	203 000 000
1980	$227\ 000\ 000$
	1

Nastepnie rozwiazano rownanie (5), przy czym macierza Y w tym przypadku były dane z powyższej tabeli. Otrzymane wartości współczynnikow (Wsp-Z) porównano w tabeli z wartościami współczynników obliczonych dla niezaokraglonych danych (Wsp-NZ).

Numer wspolczynnika	Wsp-NZ	Wsp-Z
1	$1.32164569 \cdot 10^8$	$1.32000000 \cdot 10^8$
2	$4.61307656 \cdot 10^7$	$4.59571429 \cdot 10^7$
3	$1.02716315 \cdot 10^8$	$1.00141270 \cdot 10^8$
4	$1.82527130 \cdot 10^{8}$	$1.811111111 \cdot 10^8$
5	$-3.74614715 \cdot 10^8$	$-3.56755556 \cdot 10^{8}$
6	$-3.42668456 \cdot 10^{8}$	$-3.38488889 \cdot 10^{8}$
7	$6.06291250 \cdot 10^{8}$	$5.70311111 \cdot 10^8$
8	$1.89175576 \cdot 10^{8}$	$1.86920635 \cdot 10^{8}$
9	$-3.15180235 \cdot 10^{8}$	$-2.94196825 \cdot 10^{8}$

Na podstawie tych współczynników wyznaczono wielomian interpolujacy zaokraglone punkty i wykonano jego wykres:

Jak można zauważyć, wykres ten jest bardzo podobny do wykresów powstałych na podstawie niezaokraglonych danych. Ponadto tabela znajdujaca sie powyżej pokazuje, że wartości otrzymanych współczynników sa bardzo zbliżone do wartości odpowiadajacych im współczynników obliczonych z niezaokraglonych danych.