COLETÂNEA DE QUESTÕES POSCOMP DOS DIVERSOS ANOS

- 1) Qual das seguintes afirmações sobre crescimento assintótico de funções não é verdadeira:
 - (a) $2n^2 + 3n + 1 = O(n^2)$
 - (b) Se f(n) = O(g(n)) então g(n) = O(f(n))
 - (c) $log n^2 = O(log n)$
 - (d) Se f(n) = O(g(n)) e g(n) = O(h(n)) então f(n) = O(h(n))
 - (e) $2^{n+1} = O(2^n)$
- 2) Considere o algoritmo da busca sequencial de um elemento em um conjunto com *n* elementos. A expressão que representa o tempo médio de execução desse algoritmo para uma busca bem sucedida é:
 - $(a) n^2$

(d) (n+1)/2

(b) n(n+1)/2

(e) n log n

- (c) log₂ n
- 3) Qual dos algoritmos de ordenação abaixo possuem tempo no pior caso e tempo médio de execução proporcional a *O*(*n log n*).
 - (a) Bubble sort e Quick sort
 - (b) Quick sort e merge sort
 - (c) Merge sort e bubble sort
 - (d) Heap sort e selection sort
 - (e) Merge sort e heap sort
- 4) Considere *n* chaves armazenadas
 - (I) de maneira arbitrária numa lista encadeada simples
 - (II) de maneira arbitrária numa lista encadeada dupla

Considere também as mesmas chaves

- (III) armazenadas de maneira ordenada numa lista escadeada simples
- (IV) armazenadas de maneira ordenada numa lista escadeada dupla

Ligação	Chaves		
	arbitrária	ordenada	
Simples			
Dupla			

Qual das alternativas preenche a seguinte tabela com a complexidade de busca no pior caso, em cada uma das situações I, II, III e IV descritas acima?

- (a) $O(n) \mid O(n)$
 - $O(n) \mid O(n)$
- (b) $O(n) \mid O(n)$
 - $O(2) \mid O(2)$
- (c) $O(n \log n) \mid O(n)$
 - $O(n \log n) \mid O(n)$

- (d) $O(n) \mid O(\log n)$
 - $O(n) \mid O(\log n)$
- (e) $O(n) \mid O(1)$
 - $O(n) \mid O(1)$
- 5) Qual é o número mínimo de comparações necessário para encontrar o menor elemento de um conjunto qualquer não ordenado de *n* elementos?
 - (a) 1

(d) n + 1

(b) n - 1

(e) n log n

(c) n

6)	Dentre os algoritmos de ordenação citados abaixo, qual é o que executa mais rápido para uma grande variedade de entrada de dados?		
	(a) Bolha		d) Quicksort
	(b) Shellsort	· · · · · · · · · · · · · · · · · · ·	e) Heapsort
	(c) Mergesort		
7)	Qual das seguintes igualdades são verdadeiras?		
	1. $n^2 = O(n^3)$		
	II. $2 * n + 1 = O(n^2)$		
	III. $n^3 = O(n^2)$ IV. $3 * n + 5 * n log n = O(n)$		
	V. $\log n + \sqrt{n} = O(n)$		
	v. log ii + vii = <i>O(ii)</i>		
	(a) somente I e II		(d) somente I, II e V
	(b) somente II, III e IV		(e) somente I, III e IV
	(c) somente III, IV e V		
8)	Considere as seguintes afirmativas sobre o algoritmo de pesquisa binária :		
O)	I. a entrada deve estar ordenada		
	II. uma pesquisa com sucesso é feita em tempo logarítmico na média		
	III. uma pesquisa sem sucesso é feita em tempo logarítmico na média		
	IV. o pior caso de qualquer busca é logarítmico		
	As afirmativas corretas são:		
	(a) Somente I e II.	(d) Som	ente III e IV.
	(b) Somente I, II e III.	(e) Toda	as as afirmativas estão corretas.
	(c) Somente II e III.		
9)	Um algoritmo é executad	o em 10 segundos pai	ra uma entrada de tamanho 50. Se o
	algoritmo é quadrático, quanto tempo em segundos ele gastará, aproximadamente, no mesmo		
	computador, se a entrada tiver tama	nho 100?	
	(a) 10	(c) 40	(e) 500
	(b) 20	(d) 100	
10\	Dada waa lista linaan da n	. 1	
10)			dos e alocados sequencialmente, qual devem ser movidos para que se faça
	uma inserção na lista, considerando-		, , ,
	(a) n/2	•	d) n(n + 3 + 2/n)/2
	(b) (n + 2)/2	-	e) (n + 1)/2
	(c) (n - 1)/2		
11)	•		
	contendo n elementos. A busca considerada pode ser a linear ou binária. No primeiro caso		
	pode-se considerar que a tabela esteja ordenada ou não. No segundo caso a tabela está, de forma óbvia, ordenada. Assinale a alternativa CORRETA:		
	(a) A busca binária sempre localiza x, efetuando menos comparações que a busca linear.		
	•		do menos comparações que a não
	ordenada.	,,,	

(c) A busca linear não ordenada sempre localiza x, com menos comparações que a

(e) A busca linear ordenada nunca requer mais do que n/2 comparações para localizar x.

(d) A busca binária requer O(log n) comparações, no máximo, para localizar x.

ordenada.

12) A função *PASCAL-like* abaixo deve implementar o algoritmo de busca binária num vetor de inteiros A, com N elementos, ordenado crescentemente, onde o argumento v é a chave de busca.

Para que isso ocorra, o trecho pontilhado no corpo da função deve ser substituído por:

```
(a) (v=A[x]) or (e>d);
(b) (v=A[x]) and (e>d);
(c) (v=A[x]);
(d) (e>d);
(e) not ((v=A[x]) or (e>d))
```

- 13) Dado um conjunto C contendo n inteiros distintos, qual das seguintes estruturas de dados em memória principal permite construir um algoritmo para encontrar o valor máximo de C em tempo constante?
 - (a) Um vetor não ordenado.
 - (b) Um vetor ordenado.
 - (c) Uma árvore binária de busca balanceada.
 - (d) Uma lista encadeada simples ordenada em ordem crescente.
 - (e) Uma árvore rubro-negra.
- 14) Em relação à pesquisa sequencial e binária, assinale a alternativa correta.
 - (a) A pesquisa binária em média percorre a metade dos elementos do vetor.
 - (b) A pesquisa binária percorre no pior caso log₂ n elementos.
 - (c) A pesquisa binária pode ser feita sobre qualquer distribuição dos elementos.
 - (d) A pesquisa sequencial exige que os elementos estejam completamente ordenados.
 - (e) A pesquisa sequencial percorre todos os elementos para encontrar a chave.
- Com relação a técnicas de pesquisa em arquivos, assinale a alternativa correta.
 - (a) Para a pesquisa binária funcionar, o arquivo precisa estar ordenado de acordo com algum campo aleatório.
 - (b) Para a pesquisa sequencial funcionar, o arquivo precisa estar ordenado.
 - (c) Para a pesquisa binária funcionar, o arquivo precisa estar ordenado de acordo com o campo de busca.
 - (d) Para as pesquisas sequencial e binária funcionarem, o arquivo precisa estar ordenado de acordo com o campo de busca.
 - (e) Para as pesquisas sequencial e binária funcionarem, o arquivo não precisa estar ordenado.

16) Considere o algoritmo a seguir.

Sobre o comportamento assintótico do algoritmo de ordenação *Merge Sort*, assinale a alternativa que apresenta, corretamente, sua complexidade.

- (a) $O(\log n)$ (d) $O(n^3)$ (e) $O(2^n)$ (c) $O(n^2)$
- 17) Sobre a escolha adequada para um algoritmo de ordenação, considere as afirmativas a seguir.
 - I. Quando os cenários de pior caso for a preocupação, o algoritmo ideal é o Heap Sort.
 - II. Quando o vetor apresenta a maioria dos elementos ordenados, o algoritmo ideal é o *Insertion Sort*.
 - III. Quando o interesse for um bom resultado para o médio caso, o algoritmo ideal é o *Quick Sort*.
 - IV. Quando o interesse é o melhor caso e o pior caso de mesma complexidade, o algoritmo ideal é o *Bubble Sort*.

Assinale a alternativa correta.

- (a) Somente as afirmativas I e II são corretas.
- (b) Somente as afirmativas I e IV são corretas.
- (c) Somente as afirmativas III e IV são corretas.
- (d) Somente as afirmativas I, II e III são corretas.
- (e) Somente as afirmativas II, III e IV são corretas.
- 18) Em relação ao limite assintótico de notação O, atribua V (verdadeiro) ou F (falso) às afirmativas a seguir.
 - () Em uma estrutura de laço duplamente aninhado, tem-se imediatamente um limite superior $O(n^2)$.
 - () Em uma estrutura de laço duplamente aninhado, o custo de cada iteração do laço interno é de limite superior *O*(1).
 - () Em uma estrutura de laço triplamente aninhado, o custo de cada iteração do laço interno é de limite superior $O(n^3)$.
 - () O limite $O(n^2)$ para o tempo de execução do pior caso de execução aplica-se para qualquer entrada.
 - () f(n) = O(g(n)) é uma afirmação de que algum múltiplo constante de g(n) é de limite assintótico inferior.

Assinale a alternativa que contém, de cima para baixo, a sequência correta.

(a) V,V,F,V,F.

(d) F,F,V,V,F.

(b) V,F,V,F,V.

(e) F,F,F,V,V.

(c) F,V,V,F,F.

- 19) Quais destes algoritmos de ordenação têm a classe de complexidade assintótica, no pior caso, em *O*(*n*.log *n*)?
 - (a) QuickSort, MergeSort, e HeapSort
 - (b) QuickSort e SelectionSort
 - (c) MergeSort e HeapSort
 - (d) QuickSort e BubbleSort
 - (e) QuickSort, MergeSort e SelectionSort
- 20) Analise o seguinte programa descrito na forma de pseudocódigo:
 - algoritmo
 - declare X[10], n, i, aux, flag numérico
 - para i ← 1 até 10 faça
 - leia X[i]
 - n ← 1
 - flag ← 1
 - 7. enquanto $(n \le 10 \text{ E flag} = 1)$ faça
 - inicio
 - 9. $flag \leftarrow 0$
 - para i ← 1 até 9 faça
 - 11. inicio
 - 12. se (X[i] < X[i+1]) então
 - 13. inicio
 - 14. flag ← 1
 - 15. $aux \leftarrow X[i]$
 - 16. $X[i] \leftarrow X[i+1]$
 - 17. $X[i+1] \leftarrow aux$
 - 18. fim se
 - 19. fim_para
 - 20. $n \leftarrow n + 1$
 - 21. fim enquanto
 - 22. para i ← 1 até 10 faça
 - escreva X[i]
 - fim algoritmo

Esse programa realiza a ordenação decrescente de um vetor de números inteiros, que implementa o algoritmo de

(a) ordenação rápida

(d) ordenação por inserção

(b) ordenação por troca

(e) ordenação por intercalação

- (c) ordenação por seleção
- 21) Um algoritmo tem complexidade $O(3m^3 + 2mn^2 + n^2 + 10m + m^2)$. Uma maneira simplificada de representar a complexidade desse algoritmo é:
 - (a) $O(m^3 + mn^2)$.

(d) O(mn²).

(b) $O(m^3)$.

(e) $O(m^3 + n^2)$.

(c) $O(m^2)$.

- Considere o problema de somar os *n* elementos de um mesmo arranjo A de inteiros. O problema é resolvido da seguinte forma: (i) somam-se recursivamente os elementos da primeira metade de A; (ii) somam-se recursivamente os elementos da segunda metade de A; e (iii) soma-se esses dois valores juntos. Que tipo de recursão foi utilizada para a solução do problema?
 - (a) Linear.

(d) Final.

(b) Binária.

(e) Múltipla

- (c) Ternária.
- A análise de algoritmos que estabelece um limite superior para o tempo de execução de qualquer entrada é denominada análise
 - (a) do melhor caso.

(d) da ordem de crescimento.

(b) do caso médio.

(e) do tamanho da entrada.

- (c) do pior caso.
- 24) Dado o trecho de código

```
int i, j, c;
c = 1;
for (i=1; i < n; i = i *2) {
   for (j=1; j <= n; j++) {
      c = c + 1;
   }
}</pre>
```

Assumindo que a instrução c = c + 1 é O(1), a expressão que melhor define a ordem de complexidade desse trecho é:

(a) $O(n \log n)$

(d) $O(n^2)$

(b) $O(\log n)$

(e) $O(\sqrt{n})$

(c) O(n)

- Selecione o menor item do vetor e, a seguir, troque-o com o item que está na primeira posição do vetor. Repita essas duas operações com os n-1 itens restantes, depois com os n-2 itens, até que reste apenas um elemento. Qual é o método de ordenação descrito?
 - (a) Por seleção.

(d) Quicksort.

(b) Por inserção.

(e) Heapsort.

(c) Shellsort.