1 Organization and Introduction

- The Art of managing complexity
 - Abstraction: Hiding details when they are not important
 - Discipline: Intentionally restricting your design choices to that you can work more productively at higher abstraction levels
 - The three -Y's
 - * Hierarchy: A system is divided into modules of smaller complexity
 - * Modularity: Having well defined functions and interfaces
 - * Regularity: Encouraging uniformity, so modules can be easily re-used
- Bit: Binary digit

2 Binary Numbers

 $\begin{array}{c|c|c|c} \bullet & \text{Powers of two:} \\ 2^0 = 1 & 2^5 = 32 & 2^{10} = 1024 \\ 2^1 = 2 & 2^6 = 64 & 2^{11} = 2048 \\ 2^2 = 4 & 2^7 = 128 & 2^{12} = 4096 \\ 2^3 = 8 & 2^8 = 256 & 2^{13} = 8192 \\ 2^4 = 16 & 2^9 = 512 & 2^{14} = 16384 \\ \end{array}$

• Binary to decimal conversion

$$\begin{aligned} 10011_2 &= 2^4 \times 1 + 2^3 \times 0 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1 \\ &= 16 \times 1 + 8 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 \\ &= 16 + 0 + 0 + 2 + 1 = 19_{10} \end{aligned}$$

• Convert decimal to binary (roughly). Example with 47₁₀ to binary

- Binary values and range
 - -N-digit decimal number
 - * How many values: 10^N
 - * Range: $[0, 10^N 1]$
 - * Example (3-digit number): $10^3 = 1000$ possible values, range: [0, 999]
 - -N-bit binary number
 - * How many values: 2^N

- * Range: $[0, 2^N 1]$
- * Example (3-digit number): $2^3 = 8$ possible values, range: $[0,7] = [000_2 \text{ to } 111_2]$
- Hexadecimal (Base-16) Numbers

Decimal	Hexadecimal	Binary	Decimal	Hexadecimal	Binary
0	0	0000	8	8	1000
1	1	0001	9	9	1001
2	2	0010	10	A	1010
3	3	0011	11	В	1011
4	4	0100	12	C	1100
5	5	0101	13	D	1101
6	6	0110	14	E	1110
7	7	0111	15	F	1111

• Bits, Bytes, Nibbles...

$$\underbrace{ \begin{array}{ccc} 1 & 001011 & 0 & \overline{10010110} & \text{CE BF9A D7} \\ \text{MSB} & \text{LSB} & \text{nibble} & \text{MSB} & \text{LSB} \end{array} }_{\text{Byte}}$$

Where MSB=Most significant Bit and LSB=Least significant Bit

- Addition in base two works exactly the same as in base 10, using carries
- Overflow
 - Digital systems operate on a fixed number of bits
 - Addition overflows when the result is too big to fit in the available number of bits
- Signed Binary Numbers
 - Sign/Magnitude Numbers
 - * 1 sign bit, N-1 magnitude bits
 - * Sign bit is the most significant (left-most) bit
 - * Example: 4-bit sign/mag repr. of ± 6 :
 - +6 = 0110
 - -6 = 1110
 - * Range of an N-bit sign/magnitude number: $[-(2^{N-1}-1), 2^{N-1}-1]$
 - * Problems:
 - · Addition doesn't work
 - · Two representations of 0 (± 0): 1000 and 0000
 - · Introduces complexity in the processor design
 - One's Complement Numbers

* A negative number is formed by reversing the bits of the positive number (MSB still indicates the sign of the integer)

number (MSD sum maroutes the sign of the integer)										
2^7	2^{6}	2^5	2^4	2^3	2^2	2^1	2^{0}		One's Compl.	Unsigned
0	0	0	0	0	0	0	0	=	0	0
0	0	0	0	0	0	0	1	=	1	1
0	0	0	0	0	0	1	0	=	2	2
0	1	1	1	1	1	1	1	=	127	127
1	0	0	0	0	0	0	0	=	-127	128
1	0	0	0	0	0	0	1	=	-126	129
1	1	1	1	1	1	0	1	=	-2	253
1	1	1	1	1	1	1	0	=	-1	254
1	1	1	1	1	1	1	1	=	-0	255

- * Range of n-bit number: $[-2^{n-1}-1, 2^{n-1}-1]$, 8 bits: [-127, 127]
- * Addition: Done using binary addition with end-around carry. If there is a carry out of the MSB of the sum, this bit must be added to the LSB of the sum
- Two's Complement Numbers
 - * Don't have same problems as sign/magnitude numbers:
 - \cdot addition works
 - · Single representation for 0
 - * Has advantages over one's complement:
 - · Has a single 0 representation
 - · Eliminates the end-around carry operation required in one's complement addition.
 - * A negative number is formed by reversing the bits of the positive number (MSB still indicates the sign of the integer) and adding 1:

2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0		Two's Compl.	Unsigned
0	0	0	0	0	0	0	0	=	0	0
0	0	0	0	0	0	0	1	=	1	1
0	0	0	0	0	0	1	0	=	2	2
0	1	1	1	1	1	1	1	=	127	127
1	0	0	0	0	0	0	0	=	-128	128
1	0	0	0	0	0	0	1	=	-127	129
1	1	1	1	1	1	0	1	=	-3	253
1	1	1	1	1	1	1	0	=	-2	254
1	1	1	1	1	1	1	1	=	-1	255

- * Same as unsigned binary, but the most significant bit (MSB) has value of -2^{N-1}
 - · Most positive 4-bit number: 0111
 - \cdot Most negative 4-bit number: 1000
- * The most significant bit still indicates the sign (1=neg., 0=pos.)
- * Range of an $N-{\rm bit}$ two's comp. number: $[-2^{N-1},2^{N-1}-1],$ 8 bits:[-128,127]

- Increasing bit width (assume from N to M, with M > N):
 - Sign-extension
 - * Sign bit is copied into MSB
 - * Number value remains the same
 - * Give correct result for two's compl. numbers
 - * Example 1:
 - 4-bit representation of 3 = 0011
 - \cdot 8-bit sign-extended value: **00000**011
 - * Example 2:
 - · 4-bit representation of -5 = 1011
 - \cdot 8-bit sign-extended value: **11111**011
 - Zero-extension
 - * Zeros are copied into MSB
 - * Value will change for negative numbers
 - * Example 1:
 - 4-bit value: $0011_2 = 3_{10}$
 - 8-bit zero-extended value: $00000011_2 = 3_{10}$
 - * Example 2:
 - 4-bit value: $1011_2 = -5_{10}$
 - · 8-bit zero-extended value: $\mathbf{0000}1011_2 = 11_{\mathbf{10}}$

3 Short Introduction to Electrical Engineering (EE Perspective)

- The goal of circuit design is to optimize:
 - Area: Net circuit area is proportional to the cost of the device
 - Speed/Throughput: We want circuits that work faster, or do more
 - Power/Energy
 - * Mobile devices need to work with a limited power supply
 - * High performance devices dissipate more than $100W/cm^2$
 - Design time
 - * Designers are expensive
 - * The competition will not wait for you
- (Frank's) Principles for engineering
 - Good engineers are lazy: They do not want to work unnecessarily, be creative
 - They know how to ask the question "why"?: take nothing for granted
 - Engineering is not a religion: Use what works best for you
 - Keep it simple and stupid: Engineers' job is to manage complexity

- Building blocks for microchips
 - Conductors: Metals (Aluminium, Copper)
 - Insulators: Glass (SiO₂), Air
 - Semiconductors: Silicon (Si), Germanium (Ge)
- N-type Doping: Add extra electron (negatively charged), zone becomes negatively charged
- P-type Doping: Remove electron, zone becomes positively charged
- Semiconductors:
 - You can "Engineer" its properties, i.e.
 - * Make it P type by injecting type-III elements (b, Ga, In)
 - * Make it N type by injecting elements from type-V (P, As)
 - You can combine P and N regions to each other, from a pure semiconductor
 - Allows you to make interesting electrical devices (Diodes, Transistors, Thrystors)
- pMOS is a P type transistor, nMOS an N type transistors; combined they are a CMOS
- CMOS (Properties)
 - No input current: Capacitive input, no resistive path from the input
 - No current when output is at logic levels: Little static power, current is needed only when switching
 - Electrical properties determined directly by geometry: A transistor that is 2 times larger drives twice the current
 - Very simple to manufacture: pMOS and nMOS can be manufactures on the same substrate

• CMOS Gate Structure

- The general form used to construct any inverting logic, such as: NOT, NAND, NOR
 - * The networks may consist of transistors in series or parallel
 - \ast When transistors are in parallel, the network is ON if either transistor is ON
 - \ast When transistors are in series, the network is ON only if all transistors are ON
- In a proper logic gate: One of the networks should be ON and the other OFF at any given time
- Use the rule of conduction complements:
 - * When nMOS transistors are in series, the pMOS transistor must be in parallel

Maybe add a definition or a better explanation * When nMOS transistors are in parallel, the pMOS transistors must be in series

Add picture on slide 34, 03 - EEPerspective

- Logic Gates
 - Perform logic functions: Inversion (NOT), AND, OR, NAND, NOR, etc.
 - Single input: NOT gate, buffer
 - Two-input: AND, OR, XOR, NAND, NOR, XNOR

Buffer	AND	OR	XOR
A — Z	A B z	$\frac{A}{B}$ \longrightarrow z	A - Z
A Z 0 0 1 1	A B Z 0 0 0 0 1 0 1 0 0 1 1 1	A B Z 0 0 0 0 1 1 1 0 1 1 1 1	A B Z 0 0 0 0 1 1 1 0 1 1 1 0
Inverter	NAND	NOR	XNOR
A — Z	A Do- z	A Do- z	A - D - z
A Z 0 1 1 0	A B Z 0 0 1 0 1 1 1 0 1	A B Z 0 0 1 0 1 0 1 0 0	A B Z 0 0 1 0 1 0 1 0 0

- Multiple-Input:
 - * 3, 4, or even more input AND, OR, XOR gates
 - * Compound gates
 - · AND-OR
 - · OR-AND
 - · AND-OR-INVERT
 - · OR-AND-INVERT
 - * Other cells: Multiplexers and Adders
- Logic Levels
 - Define ranges of discrete voltages to represent 1 and 0 (i.e. 0 for ground and 1 for 5V (V_{DD})) and allow for noise.
- Noise: Is anything that degrades the signal (i.e. resistance, power supply noise, etc.)
- Moore's Law
 - "Number of transistors that can be manufactured doubles roughly every 18 months." Gordon Moore, 1965
- How do we keep Moore's Law:

- Manufacturing smaller structures: some structures are already a few atoms in size
- Developing materials with better properties
- Optimizing the manufacturing steps
- New technologies
- Power consumption
 - Power = Energy consumed per unit time
 - Two types of power consumption:
 - 1. Dynamic power consumption: Power to charge transistor gate capacitances

$$P_{\rm dynamic} = \frac{1}{2}CV_{DD}^2 f$$

2. Static power consumption: Power consumed when no gates are switching, caused by the leakage current

$$P_{\text{static}} = I_{DD}V_{DD}$$

4 Combinational Circuits: Theory

- Circuit elements. A circuit consists of:
 - Inputs
 - Outputs
 - Nodes (wires): Connections between I/O and circuit elements. To count them, look at
 - * Outputs of every circuit elements
 - * Inputs to the entire circuit
 - Circuit elements
- Types of Logic Circuits
 - Combinational Logic
 - * Memoryless
 - * Outputs determined by current values of inputs
 - * In some books called Combinatorial Logic
 - Sequential Logic
 - * Has Memory
 - * Outputs determined by previous and current values of inputs
- Rules of Combinational Composition
 - Every circuit element is itself combinational
 - Every node of the circuit is either
 - * Designated as an input to the circuit
 - * Connects to exactly one output terminal of a circuit element

- The circuit contains no cyclic paths: Every path through the circuit visits each node at most once
- Boolean Equations¹
 - Functional specifications of outputs in terms of inputs.
- Boolean Algebra
 - Set of axioms and theorems to simplify Boolean equations
 - $-\,$ Like regular algebra, but in some cases simpler because variables only have 1 or 0 as a value
 - Axioms and theorems obey the principles of duality:
 - * Stay corrected if: ANDs and ORs interchanged and 0's and 1's interchanged
 - * Example:

• Boolean Axioms

	Boolegii Illioilis						
	Axiom		Dual	Name			
A1	$B = 0 \text{ if } B \neq 1$	A1'	$B=1 \text{ if } B \neq 0$	Binary Field			
A2	$\overline{0} = 1$	A2'	$\overline{1} = 0$	NOT			
A3	$0 \cdot 0 = 0$	A3'	1 + 1 = 1	AND/OR			
A4	$1 \cdot 1 = 1$	A4'	0 + 0 = 0	AND/OR			
A5	$0 \cdot 1 = 1 \cdot 0 = 0$	A5'	1+0=0+1=1	AND/OR			

Duality: If the symbols 0 and 1 and the operators · (AND) and + (OR) are interchanged, the statement will still be correct

• Boolean Theorems

	Theorem		Dual	Name
T1	$B \cdot 1 = B$	T1'	B + 0 = B	Identity
T2	$B \cdot 0 = 0$	T2'	$\overline{1} = 0$	Null Element
T3	$B \cdot B = B$	T3'	1 + 1 = 1	Idempotency
T4		$\overline{\overline{B}} = B$		Involution
T5	$B \cdot \overline{B} = 0$	T5'	1+0=0+1=1	Complements
T6	$B \cdot C = C \cdot B$	T6'	B + C = C + B	Commutativity
T7	$(B \cdot C) \cdot D = B \cdot (C \cdot D)$	T7'	(B+C)+D=B+(C+D)	Associtivity
T8	$(B \cdot C) + (B \cdot D) = B \cdot (C + D)$	T8'	$(B+C)\cdot(B+D) = B + (C\cdot D)$	Distributivity
<i>T</i> 9	$B \cdot (B+C) = B$	T9'	$B + (B \cdot C) = B$	Covering
T10	$(B \cdot C) + (B \cdot \overline{C}) = B$	T10'	$(B+C)\cdot (B+\overline{C})=B$	Combining
T11	$(B \cdot C) + (\overline{B} \cdot D) + (C \cdot D)$ = $B \cdot C + \overline{B} \cdot D$	T11'	$(B+tC) \cdot (\overline{B}+D) \cdot (C+D)$ $= (B+C) \cdot (\overline{B}+D)$	Consensus
T12	$\overline{B_0 \cdot B_1 \cdot B_2 \cdot \dots} = (\overline{B_0} + \overline{B_1} + \overline{B_2} + \dots)$	T12'	$\overline{B_0 + B_1 + B_2 + \dots} = (\overline{B_0} \cdot \overline{B_1} \cdot \overline{B_2} \cdot \dots)$	De Morgan's Theorem

- Bubble Pushing
 - Pushing bubbles backward (from the output) or forward (from the inputs) changes the body of the gate from AND to OR or vice versa
 - * Pushing a bubble from the output back to the inputs puts bubbles on all gate inputs

 $^{^1\}mathrm{For}$ a more in depth look, use the material from Diskrete Mathematik

* Pushing bubbles on all gate inputs forward toward the output puts a bubble on the output and changes the gate body

- Rules:
 - * Begin at the output of the circuit and work toward the inputs
 - * Push any bubbles on the final output back toward the inputs
 - * Draw each gate in a form so that bubbles cancel

5 Combinational Circuits Design

- Some Definitions:
 - Complement: variable with a bar over it $(\overline{A}, \overline{B}, \overline{C})$
 - Literal: variable or its complement $(A, \overline{A}, B, \overline{B}, C, \overline{C})$
 - Implicant: product (AND) of literals $(A \cdot B \cdot \overline{C})$
 - Minterm: product (AND) that includes all input variables $(A \cdot B \cdot \overline{C})$
 - Maxterm: sum (OR) that includes all input variables $(A + \overline{B} + \overline{C})$
- Sum-of-Products (SOP) Form
 - All boolean equations can be written in SOP form
 - * Each row in a truth table has a minterm
 - * A minterm is a product (AND) of literals
 - * Each minterm is TRUE for that row (and only that row)
 - Formed by ORing the minterms for which the output is TRUE
- The Dual: Product-of-Sums (POS) Form
 - Al Boolean equations can be written in POS form
 - * Each row in a truth table has a maxterm
 - * A minterm is a sum (OR) of literals
 - * Each minterm is FALSE for that row (and only that row)
 - Formed by ANDing the maxterms for which the output is FALSE
- Karnaugh Maps (K-Maps)
 - Boolean expressions can be minimized by combining terms
 - K-maps minimize equations graphically
 - Rules:
 - * Special order for bit combinations: 00,01,11,10 (only one bit changes to the next)
 - * Every 1 in a K-map must be circled at least once
 - * Each circle must span a power of 2 (2^0 included) squares in each direction

- * Each circle must be as large as possible
- * A circle may wrap around the edges of the K-map
- * A "Don't care" (X) is circled only if it helps minimize the equation

• Circuit schematics

- Inputs: left (or top) side of a schematic
- Outputs: right (or bottom) side of a schematic
- Circuits should flow from left to right
- Straight wires are better than wires with multiple corners
- Wires always connect at a T junction
- A dot where wires cross indicated a connection between the wires
- Wires crossing without a dot make no connection

\bullet Additional Logic Levels: X and Z

- Contention: X
 - * When a signal is being driven to 1 and 0 simultaneously
 - * Not a real level, could be any value (1,0 or something in between)
 - * Usually a problem:
 - · Two outputs drive one node to opposite values
 - · Normally there should only be one driver for every connection
 - * WARNING: "Don't care" and "contention" are both called X
 - \cdot These are not the same
 - · Verilog uses X for both, VHDL uses "-" for don't care, and "X" for contention
 - · Don't care: degree of freedom that is fixed at implementation
 - · Contention: a bug really, undetermined behaviour
- High-impedance or tri-state (or Floating): Z
 - * When an output is not driving to any specific value
 - * Means the output is disconnected
 - * Not a real level, some other output is able to determine the level
 - * Output is called Floating, high impedance, tri-stated, or high-Z
 - * Floating output might be 0, 1 or somewhere in between
 - * Floating nodes are used in tri-state busses:
 - · Many different drivers share one common connection
 - · Exactly one driver is active at any time
 - · All the other drivers are "disconnected"
 - · The disconnected drivers are said to be floating, allowing exactly one node to drive
 - \cdot More than one input can listen to the shared bus without problems

• Combinational Building Blocks

- Combinational logic is often grouped into larger building blocks to build more complex systems
- Hide the unnecessary gate-level details to emphasize the function of the building block (full adders, priority circuits, etc.)

• Multiplexer (Mux)

- Selects between one of N inputs to connect to the output
- Needs $\log_2 N$ -bit control input
- A 4:1 Multiplexer can be implemented with:
 - * Two-level logic
 - * Tristate buffers
 - * Tree of 2:1 muxes
- In general, a 2^N -input multiplexer can be programmed to perform any N-input logic function by applying 0's and 1's to the appropriate data inputs

• Decoders

- -N inputs, 2^N outputs
- One-hot outputs: only one output HIGH at once

• Timing

- Propagation delay: $t_{pd} = \max \text{ delay from input to output}$
- Contamination delay: $t_{cd} = \min \text{ delay from input to output}$

- Delay is caused by

* capacitance and resistance in a circuit

- * Speed of light limitation (not as fast as you think)
- Reasons why t_{pd} and t_{cd} may be different:
 - * Different rising and falling delays
 - * Multiple inputs and outputs, some of which are faster than other
 - * Circuits slow down when hot and speed up when cold
- Critical (Long) and short paths

- * Critical (Long) path: $t_{pd} = 2t_{pd\text{-AND}} + t_{pd\text{-OR}}$
- * Short path: $t_{cd} = t_{cd_AND}$

Propagation Times

Gate	$t_{pd}(ps)$
NOT	30
2-input AND	60
3-input AND	80
4-input OR	90
tristate $(A \text{ to } Y)$	50
tristate (enable to Y)	35

• Glitches

- Glitch: when a single input change causes multiple output changes
- Glitches don't cause problems because of synchronous design conventions
- But it's important to recognize a glitch when you see one in timing diagrams
- In general a glitch can occur when a change in a single variable crosses the boundary between two prime implicants in a K-map.
- You can't get rid of all glitches simultaneous transitions on multiple inputs can also cause glitches

6 Field Programmable Gate Array (FPGA)

• Logic arrays

- Programmable logic arrays (PLAs)
 - * AND array followed by OR array
 - * Perform combinational logic only
 - * Fixed internal connections
 - * Composed of:
 - · LUTs (LookUp Tables): perform combinational logic
 - \cdot Flip-flops: perform sequential functions
 - · Multiplexers connect LUTs and flip-flops
- Field programmable gate arrays (FPGAs)
 - * Array of configurable logic blocks (CLBs)
 - * Perform combinational and sequential logic
 - * Programmable internal connections
 - * Composed of:
 - \cdot CLBs (Configurable Logic Blocks): Perform logic
 - · IOBs (Input/Output Buffers): Interface with outside world
 - · Programmable interconnection: connect CLBs and IOBs
 - * Some FPGAs include other building blocks such as multipliers and RAMs