《算法设计与分析》

第四章 贪心方法

马丙鹏 2024年10月27日

第四章 贪心方法

- 4.1 一般方法
- 4.2 背包问题
- 4.3 带有限期的作业排序
- 4.4 最优归并模式
- 4.5 最小生成树
- 4.6 单源点最短路径

- ■1.问题的描述
 - □两个文件的归并问题
 - ▶两个已知文件的一次归并所需的计算时间=O(两 个文件的元素总数)
 - ≻例:

- ■1. 问题的描述
 - □多个文件的归并
 - ▶已知n个文件,将之归并成一个单一的文件
 - ▶例:假定文件 X_1, X_2, X_3, X_4 ,采用两两归并的方式,可能的归并模式有:

- 1. 问题的描述
 - □二路归并模式:
 - >每次作两个文件的归并, 当有多个文件时, 采用 两两归并的模式,最终得到一个完整的记录文件。
 - □二元归并树:
 - >二路归并模式的归并过程可以用一个二元树的形 式描述,称之为二元归并树。

- 1. 问题的描述
 - □归并树的构造
 - ▶ 外结点: n个原始文件,
 - ▶内结点:一次归并后得到的文件,
 - ▶在两路归并模式下,每个内结点刚好有两个儿子, 代表把它的两个儿子表示的文件归并成其本身所 代表的文件,
 - >不同的归并顺序带来的计算时间是不同的。

例4.5 已知X₁, X₂, X₃是分别为30、20、10个记录长度的已分类文件。将这3个文件归并成长度为60的文件。可能的归并过程和相应的记录移动次数如下:

记录移动的总次数:

问题:采用怎样的归并顺序才能使归并过程中元素的移动次数最小(或执行的速度最快)?

记录移动的总次数:

中国科学院大学

- 2. 贪心求解
 - □目标函数
 - ▶目标:元素移动的次数最少
 - >实例:为得到归并树根结点表示的归并文件,外 部结点中每个文件记录需要移动的次数 = 该外部 结点到根的距离,即根到该外部结点路径的长度。 如,

$$\mathbf{F_4}: \boxed{\mathbf{F_4}} - \boxed{\mathbf{Z_1}} - \boxed{\mathbf{Z_2}} - \boxed{\mathbf{Z_4}}$$

则F₄中所有记录在整个归并过程中移动的总量 = $|\mathbf{F}_{\Delta}|*3$

- 2. 贪心求解
 - □目标函数
 - ▶ 带权外部路径长度:
 - √记d,是由根到代表文件F,的外部结点的距离,
 - $\checkmark q_i$ 是 F_i 的长度,
 - ✓则这棵树代表的归并过程的元素移动总量是:

$$\sum_{1 \le i \le n} q_i d_i$$

▶最优的二路归并模式:

✓与一棵具有最小外部带权路径长度的二元树相对应。

- 2. 贪心求解
 - □度量标准的选择
 - ➤任意两个文件的归并所需的元素移动次数与这两 个文件的长度之和成正比;
 - ▶度量标准:
 - ✓每次选择需要移动次数最少的两个集合进行归 并;
 - ▶处理规则:
 - ✓每次选择长度最小的两个文件进行归并。

- 2. 贪心求解
 - □度量标准的选择

>例, $(F_1, F_2, F_3, F_4, F_5) = (20, 30, 10, 5, 30)$

■ 3.生成二元归并树的算法

算法4.6 生成二元归并树的算法

procedure TREE(L, n)

//L是n个单结点的二元树表//

```
for i←1 to n-1 do
call GETNODE(T) //构造一颗新树T//
LCHILD(T) ← LEAST(L) //从表L中选当前根WEIGHT最小的树,
并从中删除//
RCHILD(T) ← LEAST(L)
WEIGHT(T) ← WEIGHT(LCHILD(T)) + WEIGHT(RCHILD(T))
call INSERT(L, T) //将归并的树T加入到表L中//
repeat
```

return (LEAST(L)) //此时,L中的树即为归并的结果//
end TREE

中国科学院大学
University of Chinese Academy of Sciences 2

- 3.生成二元归并树的算法
 - □例已知六个初始文件,长度分别为: 2,3,5,7,9,13。 采用算法TREE,各阶段的工作状态如图所示:

- 3.生成二元归并树的算法
 - □例已知六个初始文件,长度分别为: 2,3,5,7,9,13。 采用算法TREE,各阶段的工作状态如图所示:

迭代2

迭代3

- 3.生成二元归并树的算法
 - □例已知六个初始文件,长度分别为: 2,3,5,7,9,13。 采用算法TREE,各阶段的工作状态如图所示:

- 3.生成二元归并树的算法
 - □时间分析
 - ① 循环体: n-1次
 - ② L以有序序列表示
 - **≻LEAST(L): O(1)**
 - \triangleright INSERT(L, T): O(n)
 - **▶总时间: O(n²)**
 - ③ L以min-堆表示
 - **≻LEAST(L): O(logn)**
 - **►INSERT(L, T): O(logn)**
 - ▶总时间: O(nlogn)

■ 4. 最优解的证明

□定理4.4 若L最初包含 $n\geq 1$ 个单结点的树,这些树有WEIGHT值为($q_1,q_2,...,q_n$),则算法TREE对于具有这些长度的n个文件生成一棵最优的二元归并树。

证明: 归纳法证明

- ① 当n=1时,返回一棵没有内部结点的树。定理得证。
- ② 假定算法对所有的 $(q_1, q_2, ..., q_m)$, $1 \le m < n$, 生成一棵最优二元归并树。
- ③ 对于n,假定 $q_1 \le q_2 \le ... \le q_n$,则 q_1 和 q_2 将是在for循环的第一次迭代中首先选出的具有最小WEIGHT值的两棵树(的WEIGHT值);如图所示,T是由这样的两棵树构成的子树:

q_1 q_2 q_1

- 4. 最优解的证明
- \triangleright 设T'是一棵对于 $(q_1, q_2, ..., q_n)$ 的最优二元归并树。
- ➤ 设P是T'中距离根最远的一个内部结点。

若P的两棵子树不是 q_1 和 q_2 ,则用 q_1 和 q_2 代换P当前的子树而不会增加T'的带权外部路径长度。(?)

故,T应是最优归并树中的子树。

则在T'中用一个权值为 q_1+q_2 的外部结点代换T,得到的是一棵关于 $(q_1+q_2,...,q_n)$ 最优归并树T"。

而由归纳假设,在用权值为 q_1+q_2 的外部结点代换了T之后,过程TREE将针对 $(q_1+q_2,...,q_n)$ 得到一棵最优归并树。将T带入该树,根据以上讨论,将得到关于 $(q_1,q_2,...,q_n)$ 的最优归并树。

故,TREE生成一棵关于(q₁, q₂, ..., 可能是成为学院大学的,TREE生成一棵关于(q₁, q₂, ..., 可能是可以使用的 of Sciences 8

q_1 q_2 q_1

■ 4. 最优解的证明

- ightharpoonup 若P的两棵子树不是 q_1 和 q_2 ,则不妨假设为 q_i 和 q_j ,则 q_i 和 q_j 大于等于 q_1 和 q_2
- ➤ 设q_i和q_i到根结点的距离为d_i
- ightharpoonup 设 q_1 和 q_2 在树中某个的位置,其到根结点的距离为 d_1 和 d_2 ,则 $d_i \geq d_1$, $d_i \geq d_2$
- ightharpoonup 将 q_1 和 q_i 互换, q_2 和 q_j 互换,互换后带权路径长度变化为:

$$\underline{q_id_i} + \underline{q_jd_i} + \underline{q_1d_1} + \underline{q_2d_2} - \underline{q_1d_i} - \underline{q_2d_i} - \underline{q_id_1} - \underline{q_jd_2}$$

=
$$(q_i-q_1)d_i + (q_j-q_2)d_i + (q_1-q_i)d_1 + (q_2-q_j)d_2$$

=
$$(q_i-q_1)(d_i-d_1) + (q_i-q_2)(d_i-d_2)$$

$$\geq 0$$

■ 4. 最优解的证明

$$F(T') = F(T'') + q_1 + q_2$$

则,
 $F_{min}(T') = min(F(T'))$
 $= min(F(T'') + q_1 + q_2)$
 $= min(F(T'')) + q_1 + q_2$
 $= F_{min}(T'') + q_1 + q_2$

- 5. k路归并模式
 - □每次同时归并k个文件。
 - □k元归并树:可能需要增加"虚"结点,以补充不足的外部结点。
 - \triangleright 如果一棵树的所有内部结点的度都为k,则外部结点数n满足 n mod (k-1) = 1。
 - ightarrow对于满足 $n \mod (k-1) = 1$ 的整数n,存在一棵具有n个外部结点的k元树T,且T中所有结点的度为k。
 - ▶至多需要增加k-2个外部结点。
 - □k路最优归并模式得贪心规则:
 - 〉每一步选取k棵具有最小长度的子树归并。

■ 6. Huffman编码

□编码:将原码转成ASCII码,然后按其二进制编码。

字符	ASCII码	正被考虑作业		
'A'	65	01000001		
'B'	66	01000010		
'C'	67	01000011		
••••	••••	••••		
'Z'	90	01011010		

■ 6. Huffman编码

□编码:将原码转成ASCII码,然后按其二进制编码。

一种 中国科学院大学

■ 6. Huffman编码

□据统计:英文字母出现概率如下:

E出现的概率远大于 Z,把他们定成相同 长度就成了浪费。

空格	E	T	O	A	N	I	R	S	
0.196	0.105	0.072	0.065	0.063	0.059	0.055	0.054	0.052	
Н	D	L	C	${f F}$	U	M	P	Y	
0.047	0.035	0.029	0.023	0.0225	0.0225	0.021	0.0175	0.012	
W	G	В	V	K	X	J	O	/ Z \	
0.012	0.011	0.0105	0.008	0.003	0.002	0.001		0.001	
								於大学 demy of Sciences	

- 6. Huffman编码
 - □Huffman编码是可变字长编码(VLC)的一种。 Huffman
 - □1952年,David A. Huffman在麻省理工攻读博士时所提出一种编码方法,并发表于《一种构建极小多余编码的方法》(A Method for the Construction of Minimum-Redundancy Codes)一文。
 - □该方法完全依据字符出现概率来构造异字头的平均长度最短的码字,有时称之为最佳编码,一般就叫作 Huffman编码。

■ 6. Huffman编码

- □编码步骤
 - ① 将信源符号的概率按减小的顺序排队。
 - ② 把两个最小的概率相加,并继续这一步骤,始终 将较高的概率分支放在上部,直到最后变成概率 1。
 - ③ 将每对组合的上边一个指定为1,下边一个指定为0(或相反)。
 - ④ 画出由概率1处到每个信源符号的路径,顺序记下沿路径的0和1,所得就是该符号的霍夫曼码字。

■ 6. Huffman编码

□例:长为100000的文件出现六种字符。频率分布如下表。求这六种字符的霍夫曼码和平均码长。

不同的字符	a	b	c	d	e	f
频率(千次)	45	13	12	16	9	5
定长码	000	001	010	011	100	101
变长码	0	101	100	111	1101	1100

■ 6. Huffman编码

□例:长为100000的文件出现六种字符。频率分布如下表。求这六种字符的霍夫曼码和平均码长。

> 平均码长

$$=(45*1+13*3+12*3+16*3+9*4+5*4)/100$$

$$= 2.24$$

作业-课后练习13

- ■问题描述
 - □字符a~h的出现频率恰好是前8个斐波那契数。
 - □求他们的Huffman编码。
 - □将结果推广到n个字符的频率恰好是前n个斐波那契数的情况。

End

