ECUACIONES

February 8, 2013

$$\mathcal{H}_l = -J \sum_{\langle i,,j \rangle} S_i \cdot S_j$$

Es la interacción entre los iones (lattice) donde S_i es el espín.

J>0 Ferro

J < 0 Antiferro

$$\mathcal{H}_m = -\sum_{\langle i,,j \rangle} K_{ij} s_i \cdot s_j$$

Es la interacción entre los electrones (itinerant). K_{ij} depende de la distancia entre los dos espines.

$$\mathcal{H}_r = -\sum_{\langle i,,j \rangle} I_{ij} s_i \cdot S_j$$

Es la interacción entre electrones e iones, donde s_i es electrón

 S_i es ión

 I_{ij} depende de la distancia entre los dos espines.

Es decir,

$$K_{ij} = K_0 \exp(-r_{ij}) = K_0 \exp(-|r_i - r_j|)$$

$$I_{ij} = I_0 \exp(-r_{ij}) = I_0 \exp(-|r_i - r_j|)$$

con K_0 e I_0 constantes.

La dinámica de los electrones está gobernada por:

• Un campo eléctrico E el cual es aplicado en la dirección x (1,0,0). Su energía está dad por:

$$\mathcal{H}_E = -eE \cdot r_i$$

donde r_i es la distancia viajada por un electrón en un MCS y e su carga.

• El efecto de gradiente de concentración:

$$\mathcal{H}_{c}=Dn\left(r\right)$$

donde $n\left(r\right)$ es la concentración de electrones en una esfera de radio D_{2} y centrada en r.

SE NECESITA D_1 Y D_2 , DONDE: D_1 ES EL RADIO PARA LAS INTERACCIÓNES ELECTRÓN-IÓN D_2 ES EL RADIO PARA LAS INTERACCIONES ELECTRÓN-ELECTRÓN