Se A è una matrice quadrata n imes n mal condizionata, allora:

- $\ \ \,$ a. $\ \ \, K(A)$ è molto grande.
- \odot b. $||A^{-1}||$ è molto grande.
- \bigcirc c. $||A||_2$ è molto grande.

La risposta corretta è: K(A) è molto grande.

Se

$$A = egin{bmatrix} 2 & 0 & 0 & 0 \ 0 & 3 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 4 \end{bmatrix}$$

Allora:

- $ext{ @ a. } K_2(A)=2.$
- igcup b. $K_2(A)=4$.
- \circ c. $K_2(A)=rac{4}{3}$.

 a. Nessuna delle precedenti. \odot b. $rac{||x||}{||\Delta x||} \geq ||A||||A^{-1}||rac{||b||}{||\Delta b||}$ $0 ext{ C. } rac{||\Delta x||}{||x||} \geq ||A|| ||A^{-1}|| rac{||\Delta b||}{||b||}$

La risposta corretta è: Nessuna delle precedenti.

($\Delta x = \text{errore su } x$, $\Delta b = \text{errore su } b$)

Sia Ax = b un sistema lineare. Quale delle seguenti affermazioni è corretta:

Se il vettore $v=(10^6,1)^T$ è approssimato dal vettore $\tilde{v}=(999996,1)^T$, allora in $||\cdot||_{\infty}$ l'errore relativo tra v e \tilde{v} è:

a. Nessuna delle precedenti.

 \bullet b. $4 \cdot 10^{-6}$.

La risposta corretta è: $4 \cdot 10^{-6}$.

La risposta corretta è: Nessuna delle precedenti.

Dati n+1 punti $\{x_i,y_i\}$, $i=0,\ldots,n$, il polinomio di interpolazione nella forma di Lagrange ha coefficienti:

a. Nessuna delle precedenti.

 \odot b. Uguali ai valori y_i .

c. Che si calcolano risolvendo un sistema lineare.

La risposta corretta è: Uguali ai valori y_i .

Sia $f:\mathbb{R}^n o\mathbb{R}$ funzione convessa . Vale:

- $ext{ }$ a. Se $abla f(x^*) = 0$ allora x^* è un punto di minimo globale.
- b. Nessuna delle precedenti.

Sia $f: \mathbb{R}^n \to \mathbb{R}$ derivabile:

 \odot c. Se $abla f(x^*) = 0$ allora x^* è un punto di minimo locale.

La risposta corretta è: Se $abla f(x^*) = 0 \,$ allora x^* è un punto di minimo globale.

- a. $\nabla f(x^*) = 0$ è condizione necessaria e sufficiente affinche x^* sia un punto di minimo.
- lacksquare b. $abla f(x^*) = 0$ è condizione necessaria e sufficiente affinche x^* sia un punto stazionario.
- \circ c. $abla f(x^*) = 0$ è condizione necessaria e sufficiente affinche x^* sia un punto di massimo.

La risposta corretta è: $abla f(x^*)=0$ è condizione necessaria e sufficiente affinche x^* sia un punto stazionario.

Sia A una matrice $n \times n$ simmetrica, allora: $^{\circ}$ a. $A=A^{-1}$

 \odot b. $A=A^T$

 \odot c. $I=AA^{-1}$

La risposta corretta è: $A=A^T$

Se U è una matrice $n \times n$ ortogonale allora:

- igcup a. U è non singolare.
- b. Nessuna delle precedenti.
- \odot c. U è simmetrica.

La risposta corretta è: $\emph{\textbf{U}}$ è non singolare.

$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

Allora:

- $ext{ } ext{ } ext$
- \bigcirc b. La norma-2 di A è $||A||_2=2$.
- \bigcirc c. La norma-2 di A è $||A||_2=2$.

La risposta corretta è: La norma-2 di A è $\left|\left|A\right|\right|_2=4$.

Se A è una matrice quadrata n imes n, allora:

- igcirc a. $||A||_2=\max_i\sum_{j=1}^n|a_{ij}|.$
- b. Sono entrambe esatte.
- $ext{ } ext{ } ext$

Nel sistema Floating Point $\mathcal{F}(10,2,-2,2)$, se $x=\pi$, w=e, e z=fl(x)*fl(w), allora:

o a. $fl(z)=0.0837\times 10^2$.

b. $fl(z)=0.837\times 10^1$.

c. $fl(z) = 0.84 \times 10^{1}$.

La risposta corretta è: $fl(z) = 0.84 imes 10^1$.

Usando la notazione scientifica normalizzata con base $\beta=10$, se x=282.94, allora:

- a La mantissa di m à 0.202
- $_{\odot}$ a. La mantissa di x è 0.28294 e la parte esponenziale è 10^3 .
- O b. Nessuna delle precedenti.

 \circ c. La mantissa di x è 2.8294 e la parte esponenziale è 10^2 .

Sia $f:\mathbb{R}^2 o\mathbb{R}$ definita come $f(x_1,x_2)=x_1e^{x_2}$, scelta come iterata iniziale del metodo del gradiente $x^{(0)}=(0,0)^T$ e $\alpha=1$, allora:

Il metodo di discesa del gradiente trova la soluzione del seguente problema di ottimizzazione

 $x^{(1)} = (1,0)^T$

$$\min_x f(x)$$

 \odot a. Generando una sequenza $\{x_k\}_k$ tale che, dato x_0 , l'iterata x_{k+1} è calcolata come $x_{k+1} = x_k + \alpha \nabla f(x_k)$ per $\alpha > 0$ lunghezza del passo.

- b. Generando una sequenza $\{x_k\}_k$ tale che, dato x_0 , l'iterata x_{k+1} è calcolata come $x_{k+1} = x_k \alpha \nabla f(x_k)$ per $\alpha > 0$ lunghezza del passo.
 c. Generando una sequenza $\{x_k\}_k$ tale che, dato x_0 , l'iterata x_{k+1} è calcolata come $x_{k+1} = x_k \alpha \nabla f(x_k)$ per $\alpha \neq 0$ lunghezza del passo.

La risposta corretta è: Generando una sequenza $\{x_k\}_k$ tale che, dato x_0 , l'iterata x_{k+1} è calcolata come $x_{k+1} = x_k - \alpha \nabla f(x_k)$ per $\alpha > 0$ lunghezza del passo.

La risposta corretta è: è soluzione del sistema $A^TAx=A^Tb$.

 \bigcirc b. è soluzione del sistema $AA^Tx = A^Tb$. \bigcirc c. è soluzione del sistema $A^TAx = Ab$.

$$A = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{3} \\ \frac{1}{2} & 2 & \frac{1}{3} \\ 0 & 1 & 3 \end{bmatrix} b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

- O a. Il metodo di Jacobi è convergente quello di Gauss-Seidel no.
- b. Il metodo di Gauss-Seidel e il metodi di Jacobi non convergono.
- oc. Il metodo di Gauss-Seidel e il metodi di Jacobi convergono.

La risposta corretta è: Il metodo di Gauss-Seidel e il metodi di Jacobi convergono.

I valori singolari sono tutti:

- a. Strettamente positivi (> 0).
- b. Positivi o negativi, mai nulli (≠0).
- \bigcirc c. Non negativi (≥ 0).

La risposta corretta è: Non negativi (≥ 0).

Se
$$A=U\Sigma V^T$$
 è la decomposizione SVD $A\in\mathbb{R}^{m\times n}$, allora l'approssimazione di rango k , definita come $\hat{A}(k)$, soddisfa:

a. $||A-\hat{A}(k)||_2=\sigma_k$.
b. $||A-\hat{A}(k)||_F=\sigma_{k+1}$.
c. $||A-\hat{A}(k)||_2=\sigma_{k+1}$.

La risposta corretta è: $||A - \hat{A}(k)||_2 = \sigma_{k+1}$.