Unsupervised Domain Adaptation Utilizing CycleGAN

Dipesh Tamboli

What is domain-shift and domain-adaptation?

Datasets with same labels but different distribution

Fig. 1. Example images from three domain generalization benchmarks manifesting different types of domain shift. In (a), the domain shift mainly corresponds to changes in font style, color and background. In (b), dataset-specific biases are clear, which are caused by changes in environment/scene and viewpoint. In (c), image style changes are the main reason for domain shift.

Ref: Zhou, K., Liu, Z., Qiao, Y., Xiang, T., & Loy, C. C. (2021). Domain generalization in vision: A survey. arXiv preprint arXiv:2103.02503.

Domain Shift

Distribution is different for the training and test set

Ref: Generalizing to Unseen Domains: A Survey on Domain Generalization - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Examples-from-the-dataset-PACS-1-for-domain-generalization-The-training-set-is_fig1_349787277 [accessed 22 Nov, 2021]

Motivation - Poor Accuracy on Target domain

 If we train our dataset on a source domain and test on the target domain, the results are not good

	Accuracy				
	Train	Test			
Source Domain	Source	Amazon	DSLR	Webcam	
Amazon	96.13	87.94	31	59.12	
DSLR	90.2	46.63	85	81.97	
Webcam	96.226	47.34	55	98.11	

Motivation - Poor feature alignment

Solution - Domain Adaptation

Different type of Domain Adaptation methods

- Pixel level
 - Changing image input to adapt for the source domain
- Feature level
 - Training the feature extractor to extract domain invariant features

We are focussing on a Pixel-level method in this project.

CycleGAN

Unpaired image-to-image translation

Ref: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/imgs/horse2zebra.gif

Cycle consistency and adversarial loss

Ref: Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),Oct 2017. URL:https://openaccess.thecvf.com/content_ICCV_2017/papers/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.pdf.

Unpaired image-to-image translation

Ref: https://junyanz.github.io/CycleGAN/

Implementation

- We have reproduced CycleGAN results mentioned in the paper
- Implemented CycleGAN on Office-31 dataset
- Trained Resnet-18 for the classification task on Office-31 dataset
- t-SNE plot for explaining poor accuracy on cross-domain testing
- We have used this CycleGAN in an Unsupervised manner to convert images from Target to Source domain for testing

Reproducing CycleGAN results

Figure 9. Horse to Zebra style

Figure 8. Photo to Van Gogh style

Office-31 dataset

Ref: CLDA: an adversarial unsupervised domain adaptation method with classifier-level adaptation - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Some-examples-on-office-31-dataset_fig4_340846957 [accessed 22 Nov, 2021]

Implementing CycleGAN on Office-31 dataset - results

Implementing CycleGAN on Office-31 dataset

Training Resnet-18 for the classification task on Office-31

	Accuracy				
	Train	Test			
Source Domain	Source	Amazon	DSLR	Webcam	
Amazon	96.13	87.94	31	59.12	
DSLR	90.2	46.63	85	81.97	
Webcam	96.226	47.34	55	98.11	

Training Resnet-18 for the classification task on Office-31

Convert images from Target to Source

DSLR - prediction: file cabinet Pler . Fake Amazon - prediction: Stapler

Convert images from Target to Source

. Amazon - prediction: paper . Fake Webcam - prediction: pen notebook

Conclusion and take-home message

- CycleGAN translates images from domain-1 to domain-2 in an Unsupervised way
- Generated images using CycleGAN are not that good and natural looking
- It can be useful in the scenarios where labelled data is not available and still we need to use the unlabelled data (Google images, etc.)

Future Work

- Trying Domain Adaptation with a method which can provide a good resolution generated images
- Adapting at feature level rather on pixel level

References:

- Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),Oct 2017. URL: https://openaccess.thecvf.com/content_ICCV_2017_paper.pdf.
- Zhou, K., Liu, Z., Qiao, Y., Xiang, T., & Loy, C. C. (2021). Domain generalization in vision: A survey. arXiv preprint arXiv:2103.02503.
- Generalizing to Unseen Domains: A Survey on Domain Generalization Scientific Figure on ResearchGate. Available from:
 https://www.researchgate.net/figure/Examples-from-the-dataset-PACS-1-for-d
 omain-generalization-The-training-set-is_fig1_349787277 [accessed 22 Nov,
 2021]