Datenbanken und SQL

Kapitel 3

Datenbankdesign – Teil 1: Normalformen

Datenbankdesign

Normalformen

- ▶ 1. Normalform
- Funktionale Abhängigkeit
- 2. Normalform
- 3. Normalform nach Boyce und Codd
- 3. Normalform nach Codd
- Mehrwertige Abhängigkeit und 4. Normalform
- Verbundabhängigkeit und 5. Normalform

Die Normalformen im Überblick

- Es gibt 6 Definitionen von Normalformen
 - Die I. Normalform (NF) schränkt am wenigsten ein
 - Es gibt 2 Definitionen für die 3. NF
 - Die 5. NF schränkt am stärkst

Menge aller Relationen in 3. NF nach Boyce u. Codd $\subset \{\Re | \Re \text{in 3. NF nach Codd} \}$

Es gilt:

-..vf ⊂{ℜ| ℜin I.NF}

Menge aller Relationen in 5. NF $\subset \{\Re | \Re \text{in 4. NF}\}$

Menge aller Relationen in 3. NF nach Codd $\subset \{\Re | \Re \text{in 2. NF}\}$

Menge aller Relationen in I. NF ⊂ ℜ

Menge aller Relationen in 4. NF $\subset \{\mathfrak{R} | \mathfrak{Rin 3}$. NF nach Boyce u. Codd

Für die Normalformen gilt:

3. NF = 3. NF nach Codd3. NF BC = 3. NF nach Boyce und Codd

Definition (1. Normalform)

▶ Eine Relation ist in erster Normalform (I. NF), wenn alle zugrundeliegende Gebiete nur atomare Werte enthalten.

Folgerung:

- Jede (normalisierte) Relation ist in 1. NF
- Die I. NF ist historisch bedingt:
 - In der Originaldefinition von Relationen war die Atomarität nicht gefordert
- ▶ NF² = NFNF = NonFirstNormalForm
 - Relationen, die nicht in 1. NF sind
 - NF² ist Basis für objektrelationale Datenbanken

Beispiel: Relation VerkaeuferProdukt

VerkNr	V erk N ame	PLZ	VerkAdresse	Produktname	Umsatz
VI	Meier	80075	München	Waschmaschine	11000
VI	Meier	80075	München	Herd	5000
VI	Meier	80075	München	Kühlschrank	1000
V2	Schneider	70038	Stuttgart	Herd	4000
V2	Schneider	70038	Stuttgart	Kühlschrank	3000
V3	Müller	50083	Köln	Staubsauger	1000

- VerkaeuferProdukt enthält nur atomare Werte
- VerkaeuferProdukt ist eine Relation
- ☐ VerkaeuferProdukt ist in I. NF

VerkaeuferProdukt (Wiederholung)

Redundanz

- Je mehr ein Verkäufer verkauft, um so häufiger in Tabelle!
- Andert sich die Adresse eines Verkäufers, muss dies in allen entsprechenden Einträgen erfolgen. Sonst: Inkonsistenz!

Handhabung

- Soll Produkt Staubsauger aus dem Sortiment genommen werden, so ist auch Verkäufer Müller zu löschen!?
- Verkäufer Schmidt kann erst eingetragen werden, wenn er etwas verkauft hat!?

Warum verwenden wir Tabellen?

Beispiel: Tabelle der Länder (Stand 2012)

Land	Einwohner	Fläche	Kennzeichen	Hauptstadt
Deutschland	81.800.000	357.121	D	Berlin
Frankreich.	63.600.000	551.500	/ F	Paris
Großbritannien	63.200.000	243.610	UK	London
Italien	60.900.000	301.340	I	Rom
Niederlande	16.700.000	61.543	NL	Amsterdam
Polen	38.200.000	312.685	PL	Warschau
Spanien	46.200.000	505.370	E	Madrid

- ▶ Alle Einträge hängen eindeutig von der Spalte Land ab:
 - Aus dem Land folgen eindeutig alle anderen Spalten!

Definition (Funktionale Abhängigkeit)

▶ Ein Attribut Y einer Relation R heißt funktional abhängig vom Attribut X derselben Relation, wenn zu jedem X-Wert höchstens ein Y-Wert möglich ist.

Informell: "Aus X folgt eindeutig Y"

Wir schreiben: X → Y

▶ Land □ Einwohner Land □ Fläche

▶ Land □ Kennzeichen Land □ Hauptstadt

Folgerungen zur funktionalen Abh.

- \blacktriangleright Primärschlüssel \rightarrow alle anderen Attribute
 - (da Primärschlüssel eindeutig jedes Tupel identifizieren)
- ▶ Schlüsselkandidat →alle anderen Attribute
 - (da Schlüsselkandidaten eindeutig jedes Tupel identifizieren)
- ▶ Superschlüssel →alle anderen Attribute
 - (da Superschlüssel eindeutig jedes Tupel identifizieren)

VerkaeuferProdukt: Funktionale Abh.

VerkNr	V erk N ame	PLZ	VerkAdresse	Produktname	Umsatz
VI	Meier	80075	München	Waschmaschine	11000
VI	Meier	80075	München	Herd	5000
VI	Meier	80075	München	Kühlschrank	1000
V2	Schneider	70038	Stuttgart	Herd	4000
V2	Schneider	70038	Stuttgart	Kühlschrank	3000
V3	Müller	50083	Köln	Staubsauger	1000

- □ VerkNr □VerkName
- □ VerkNr □PLZ
- □ VerkNr □VerkAdresse

- ☐ (VerkNr, Produktname)
 - □ Umsatz
- □ PLZ □VerkAdresse ?

Problem: Abhängigkeit PLZ und Adresse

- Folgt aus PLZ der Ort?
 - Definition Ort: Alle selbstständigen Gemeinden Deutschlands
 - Antwort: NEIN, da einige kleine Gemeinden gleiche PLZ
 - Definition Ort: Alle Gemeinden mit mehr als 20000 Einwohner
 - Antwort: JA, da alle großen Gemeinden unterschiedliche PLZ
- ▶ Folgt aus Adresse (Ort+Straße+Nr) die PLZ?
 - Antwort: NEIN
 - Beispiel: Es gibt mehrere Neustadt mit Bahnhofstraße I
 - ▶ Dies war mit ein Grund zur Einführung der PLZ!
- ▶ Folgt aus der PLZ das Bundesland?
 - Antwort: JA, da bei der Einführung der PLZ darauf Rücksicht genommen wurde

Problem: Fehlende Minimalität

- ▶ Schlüsselkandidat □alle anderen Attribute
 - Schlüsselkandidaten sind minimal
 - Jeder Wert kommt nur einmal vor
- ▶ Superschlüssel □alle anderen Attribute
 - Superschlüssel sind nicht notwendigerweise minimal! Problem!
- Beispiel:
 - Verknr, Produktname) □ Umsatz
 - Verknr, VerkName, Produktname) □ Umsatz
 - Verknr, PLZ, Produktname) ☐ Umsatz

- Primärschlüssel!
- Superschlüssel
- Superschlüssel, usw.

- Folgerung:
 - Invasion weiterer wertloser funktionaler Abhängigkeiten

Definition (Volle funktionale Abh.)

- Ein Attribut Y einer Relation R heißt voll funktional abhängig vom Attribut X derselben Relation, wenn
 - es funktional abhängig ist von X
 - es nicht funktional abhängig ist von beliebigen Teilattributen von X
- ▶ Wir schreiben: X ⇒ Y
- Folgerung:
 - ▶ Es gilt immer: Primärschlüssel →alle anderen Attribute
 - \blacktriangleright Es gilt <u>nicht</u> immer: Primärschlüssel \Rightarrow alle anderen Attribute

VerkaeuferProdukt: Volle funkt. Abh.

VerkNr	V erk N ame	PLZ	VerkAdresse	Produktname	Umsatz
VI	Meier	80075	München	Waschmaschine	11000
VI	Meier	80075	München	Herd	5000
VI	Meier	80075	München	Kühlschrank	1000
V2	Schneider	70038	Stuttgart	Herd	4000
V2	Schneider	70038	Stuttgart	Kühlschrank	3000
V3	Müller	50083	Köln	Staubsauger	1000

- □ VerkNr ⇒VerkName
- □ VerkNr ⇒PLZ
- □ VerkNr ⇒VerkAdresse
- □ (VerkNr, Produktname) ⇒Umsatz

Es gibt keine weiteren vollen funktionalen Abhängigkeiten!

Na ja: Eventuell PLZ = VerkAdresse

Definition (Zweite Normalform)

Eine Relation ist in der zweiten Normalform (2. NF), wenn sie in der ersten Normalform ist, und jedes Nichtschlüsselattribut voll funktional vom Primärschlüssel abhängt.

Bemerkungen:

- Die 2. NF bezieht sich nur auf Primärschlüssel, nicht auf alternative Schlüssel
- Die Relation VerkaeuferProdukt ist nicht in der 2. NF

Wichtige Folgerungen zur 2. NF

- ▶ 1. NF:
 - ▶ Primärschlüssel □ alle Nichtschlüsselattribute
- ▶ 2. NF:
 - ▶ Primärschlüssel ⇒alle Nichtschlüsselattribute
- Primärschlüssel ist ein einzelnes Attribut:
 - Dann folgt: Relation ist in mindestens 2. NF
- ▶ Jede Relation in 1. NF lässt sich in die 2. NF überführen:
 - Hinzufügen eines Zählers als Primärschlüssel (einzelnes Attr.)

VerkaeuferProdukt2NF

	Nr	VerkNr	V erk N ame	PLZ	V erk A dresse	Produktname	Umsatz
	1	VI	Meier	80075	München	Waschmaschine	11000
Neue Attrib		VI	Meier	80075	München	Herd	5000
Attrib	out	VI	Meier	80075	München	Kühlschrank	1000
	4	V2	Schneider	70038	Stuttgart	Herd	4000
	5	V2	Schneider	70038	Stuttgart	Kühlschrank	3000
	6	V3	Müller	50083	Köln	NULL	1000

Primärschlüssel: Nr also: 2. NF

jetzt erlaubt

- Noch mehr Redundanzen (Attribut Nr)
- Aber: Weniger Anomalien (Entfernen von Staubsauger!)

VerkaeuferProdukt2NF

Volle funktionale Abhängigkeiten:

Definition (Determinante)

Eine Determinante ist ein (eventuell zusammengesetztes) Attribut, von dem ein anderes voll funktional abhängt.

Bemerkungen:

- Ein wertvolles Hilfsmittel
- Alle Attribute, von denen Doppelpfeile ausgehen, sind Determinanten
- Determinanten in VerkaeuferProdukt2NF:
 - Nr, Verknr, (Verknr, Produktname)

Dritte Normalform nach Boyce u. Codd

Eine normalisierte Relation ist in der dritten Normalform, wenn jede Determinante dieser Relation ein Schlüsselkandidat ist.

Bemerkungen:

- Alle Abhängigkeiten von nicht eindeutigen Werten (Schlüsselkandidaten) werden verboten!
- Damit ist eine Relation in 3. NF redundanzfrei (außerhalb der Schlüsselkandidaten)
- VerkaeuferProdukt2NF ist nicht in 3. NF
 - ▶ denn: VerkNr ist kein Schlüsselkandidat
- ▶ Jede Relation in 2. NF lässt sich in Relationen der 3. NF überführen

Überführung in die 3. NF

Verkaeufer und Produkte (Schritt 1)

Restrelation Verknuepfung:

VerkNr	Produktname	Umsatz
VI	Waschmaschine	11000
VI	Herd	5000
VI	Kühlschrank	1000
V2	Herd	4000
V2	Kühlschrank	3000
V3	Staubsauger	1000

Neue Relation Verkaeufer:

VerkNr	V erk N ame	PLZ	VerkAdresse
VI	Meier	80075	München
V2	Schneider	70038	Stuttgart
V3	Müller	50083	Köln

Alles ist in Ordnung, da 3. NF; aber:

Wir haben den Verkäufer herausgenommen, warum nicht auch das Produkt?

Verkaeufer und Produkte (Schritt 2)

Relation Verkaeufer:

VerkNr	V erk N ame	PLZ	VerkAdresse
VI	Meier	80075	München
V2	Schneider	70038	Stuttgart
V3	Müller	50083	Köln

Relation
Produkt:

ProdNr	Produktname
PI	Waschmaschine
P2	Herd
P3	Kühlschrank
P4	Staubsauger

Relation Verknuepfung:

VerkNr	ProdNr	Umsatz
VI	PI	11000
VI	P2	5000
VI	P3	1000
V2	P2	4000
V2	P3	3000
V3	P4	1000

Weitere Produkteigenschaften jetzt möglich!

VerkaeuferLand

VerkNr	V erk N ame	PLZ	V erk A dresse	Bundesland
VI	Meier	80075	München	Bayern
V2	Schneider	70038	Stuttgart	Baden-Württemberg
V3	Müller	50083	Köln	Nordrhein-Westfalen

Transitive Abhängigkeit

- ▶ Ein Attribut Y einer Relation R heißt transitiv abhängig vom Attribut X derselben Relation, wenn ein Nichtschlüssel-Attribut Z existiert, so dass gilt:
 - Das Attribut Z hängt voll funktional vom Attribut X und das Attribut Y voll funktional vom Attribut Z ab.
- \square wenn also ein Z existiert mit: $X \Rightarrow Z \Rightarrow Y$
- VerkaeuferLand: VerkNr ⇒PLZ ⇒Bundesland
- Transitive Abhängigkeit des Bundeslands von der Verkäufernummer!

Dritte Normalform nach Codd

- ▶ Eine Relation ist in der <u>dritten Normalform</u> (nach Codd), wenn sie sich in der zweiten Normalform befindet und jedes Nichtschlüsselattribut nicht transitiv vom Primärschlüssel abhängt.
- Relation VerkaeuferLand ist nicht in der 3. NF nach Codd
- VerkaeuferLand ist nicht in der 3. NF nach Boyce u. Codd
 - ▶ denn: PLZ ist Determinante, aber kein Schlüsselkandidat
- Gibt es einen Unterschied zwischen den beiden 3. NFs?

Vergleich der dritten Normalformen

- ▶ 3. NF nach Boyce und Codd □ 3. NF nach Codd
 - Beweis:
 - Transitive Abhängigkeiten bedingen eine Determinante, die nicht Schlüsselkandidat ist.
 - ▶ 3. NF nach Boyce u. Codd □ keine solchen Determinanten □ keine transitiven Abhängigkeiten □ 3. NF nach Codd
- Das Umgekehrte gilt nicht!
 - Es gibt Relationen in 3. NF nach Codd, die nicht in 3. NF nach Boyce u. Codd sind.
 - Übung! Bitte die nächste Folie beachten!

Hinweise zur dritten Normalform

- Für Relationen R mit einfachen (nicht zusammengesetzten) Schlüsselkandidaten gilt:
 - Beide Definitionen der 3. NF sind gleichwertig
- ▶ Es gilt (ohne Beweis):
 - Unterschiede kann es nur dann geben, wenn zwei zusammengesetzte Schlüsselkandidaten existieren, die ein gemeinsames Attribut besitzen
- Die dritten Normalformen beseitigen alle Redundanzen und Anomalien außerhalb der Schlüsselkandidaten
- Also: Wir definieren nur sinnvolle Schlüsselkandidaten!

VerkaeuferProdukt3NF

V erk N ame	PLZ	VerkAdresse	Produktname	Umsatz
Meier	80075	München	Waschmaschine	11000
Meier	80075	München	Herd	5000
Meier	80075	München	Kühlschrank	1000
Schneider	70038	Stuttgart	Herd	4000
Schneider	70038	Stuttgart	Kühlschrank	3000
Müller	50083	Köln	Staubsauger	1000

Voraussetzung:

- (VerkName, PLZ, VerkAdresse) identifiziert Verkäufer eindeutig
- ▶ Gegebenenfalls Zusätze: komplette Adresse, Vorname, junior usw.
- Nur ein Schlüsselkandidat und eine Determinante:
 - (VerkName, PLZ, VerkAdresse, Produktname)

Problem der dritten Normalform

- 3. NF beseitigt keine Redundanzen innerhalb der Schlüsselkandidaten
- Lösung
 - Wir erstellen Relationen mit vernünftigen Schlüsselkandidaten
- Was ist vernünftig?
 - ▶ Gesunden Menschenverstand anwenden, oder:
 - Weitere Normalformen studieren
- Achtung:
 - Relation VerkaeuferProdukt3NF ist in 4. NF (siehe später)!

Relation VerkaeuferProduktKFZ

VerkNr	Produktname	KFZNr
1	Waschmaschine	M-E 515
I	Waschmaschine	M-X 333
1	Herd	M-E 515
I	Herd	M-X 333
1	Kühlschrank	M-E 515
1	Kühlschrank	M-X 333
2	Herd	S-H 654
2	Herd	K-J 123
2	Kühlschrank	S-H 654
2	Kühlschrank	K-J 123
3	Staubsauger	K-J 123

Es gelte:

- Meier (Verknr I) benutztM-E 515 und M-X 333
- Schneider (Nr 2) benutztS-H 654 und K-J 123
- Müller (Verknr 3) benutztK-J 123
- Keine funktionalen Abh.
- Primärschlüssel:
 - (VerkNr, Produktname, KFZNr)

Probleme von VerkaeuferProduktKFZ

- Relation ist in 3. NF
- Primärschlüssel enthält aber Redundanzen
- Anomalien treten auf:
 - Die erste Zeile kann nicht gelöscht werden, ohne dass auch andere Zeile gelöscht werden müssen
 - Verkauft Verkäufer Schneider (Verknr 2) Staubsauger, so müssen 2 Zeilen eingefügt werden

Problem:

- Es wurden 2 funktionale Abhängigkeiten ineinander gemengt, die voneinander aber völlig unabhängig sind:
- Verkäufer verkauft Produkte und Verkäufer fährt mit KFZ

Mehrwertige Abhängigkeit

- ▶ Ein Attribut Y einer Relation ist von einem Attribut X dieser Relation mehrwertig abhängig (X→Y), wenn ein weiteres Attribut Z dieser Relation existiert mit den Eigenschaften:
 - Ein Y-Attributwert hängt vom dazugehörigen (X,Z)-Paar bereits allein eindeutig vom X-Wert ab und ist unabhängig vom Z-Attribut.
 - Das Attribut X ist minimal.
- Es gilt in VerkaeuferProduktKFZ
 - X=Verknr,Y=Produktname, Z=KFZNr,
 - ▶ also: Verknr → Produktname

Infos zur mehrwertigen Abhängigkeit

- ▶ Aus $X \rightarrow Y$ (über Z) folgt $X \rightarrow Z$ (über Y)
 - Begründung: Symmetrie zwischen den beiden Abhängigkeiten
- Also:
 - Verknr → Produktname
 - Verknr → KFZNr
- Aus $X \Rightarrow Y = Y \text{ folgt } X \Rightarrow Y$
- Die mehrwertige Abhängigkeit ist eine Verallgemeinerung der (vollen) funktionalen Abhängigkeit
 - ▶ Beweis: Setzen wir in der Definition der mehrwertigen Abh.
 Z=Øso ist die funktionale Abh. gegeben

Überführung in NF²

Verletzen wir die Atomarität, so lässt sich Relation VerkaeuferProduktKFZ einfach abbilden:

VerkNr	Produktname	KFZNr
I	Waschmaschine Herd Kühlschrank	M-E 515 M-X 333
2	Herd Kühlschrank	S-H 654 K-J 123
3	Staubsauger	K-J 123

Hinweis:

- Wir verbieten solche Relationen in der 4. NF
- Die nicht atomare Relation zeigt, wie wir zerlegen können!

Vierte Normalform

▶ Eine normalisierte Relation ist in der vierten Normalform, wenn aus jeder mehrwertigen Abhängigkeit X→Y folgt, dass X ein Schlüsselkandidat ist.

- VerkaeuferProduktKFZ besitzt zwei mehrwertige Abhängigkeiten und VerkNr ist kein Schlüsselkandidat.
 - Also: Keine 4. NF
- Jede Relation mit mehrwertigen Abhängigkeiten lässt sich in seine Abhängigkeiten zerlegen, bei zwei mehrwertigen Abhängigkeiten also in zwei Relationen!

Zerlegung von VerkaeuferProduktKFZ

Relation VerkaeuferProduktname:

VerkNr	Produktname
1	Waschmaschine
I	Herd
I	Kühlschrank
2	Herd
2	Kühlschrank
3	Staubsauger

Relation VerkaeuferKFZ:

VerkNr	KFZNr
	M-E 515
	M-X 333
2	S-H 654
2	K-J 123
3	K-J 123

- ▶ Beide Relationen sind in 4. NF und optimal
- Bei vielen Verkäufen und Verwendung vieler KFZ haben beide Relationen wesentlich weniger Redundanz als die Originalrelation

Weitere Probleme mit 4. Normalform

Gewünscht: Angabe der Kilometer, die Verkäufer mit KFZ gefahren ist, abhängig vom verkauften Produkt und Jahr:

VerkNr	Produktname	KFZNr	Jahr	KM
1	Waschmaschine	M-E 515	2011	622
I	Waschmaschine	M-E 515	2012	1105
1	Waschmaschine	M-X 333	2011	305
I	Waschmaschine	M-X 333	2012	0
1	Herd	M-E 515	2011	912
1	Herd	M-E 515	2012	1111
1	Herd	M-X 333	2011	0
1	Herd	M-X 333	2012	222
1	Kühlschrank	M-E 515	2011	333

Fragen zu dieser Relation

- Schlüsselkandidaten, Primärschlüssel?
- Volle funktionale Abhängigkeiten?
- Mehrwertige Abhängigkeiten?
- Normalform?
- Wenn nicht 4. NF, wie zerlegen wir diese Relation?

- Antwort:
 - Übung

VerkaeuferProdukt4NF

Tupel nicht einzeln löschbar

VerkNr	Produktname	KFZNr
1	Waschmaschine	M-E 515
İ	Herd	M-E 515
1	Herd	M-X 333
I	Kühlschrank	M-E 515
2	Herd	S-H 654
2	Herd	K-J 123
2	Kühlschrank	S-H 654
3	Staubsauger	K-J 123

Annahme:

Spezialhalterung für Waschmaschinen und Kühlschränke gibt es nicht in:

M-X 333 und K-J 123

- ▶ Produktname und KFZNr hängen jetzt voneinander ab
- Es gibt keine mehrwertigen Abhängigkeiten, also: 4. NF
- Aber: Es treten immer noch Anomalien auf:
 - Beispiel: Nicht jeder Herd lässt sich einzeln löschen!!

VerkaeuferProdukt4NF

- Es gibt auch Einfügeanomalien!
- ▶ Ein Zerlegen in 2 Relationen ist nicht möglich ohne Verlust an Information!
 - ➤ Zerlegen in VerkaeuferProduktname und VerkaeuferKFZ bringt nichts, da VerkaeuferProduktname ⋈ VerkaeuferKFZ = VerkaeuferProduktKFZ !!!
 - Die Info über die fehlenden Halterungen in einigen KFZ geht verloren!
- Aber: Zerlegen mit anschließendem Verbund ist ein guter Ansatz

Definition (Verbundabhängigkeit)

- ▶ Eine Relation R besitzt eine Verbundabhängigkeit, wenn sie mittels Projektion nicht trivial in Teilrelationen zerlegt werden kann, so dass der Verbund dieser Teilrelationen wieder die Relation R ergibt.
- Nicht trivial heißt, dass die Teilrelationen jeweils unterschiedliche Primärschlüssel besitzen.
- Beispiel. Mit
 - $R = \pi_{\text{Projektion I}}(R) \bowtie \pi_{\text{Projektion 2}}(R) \bowtie \pi_{\text{Projektion 3}}(R)$
 - Projektion I bis 3 sind nicht trivial
 - Dann besitzt R eine Verbundabhängigkeit

Verbundabhängigkeit

 Relation VerkaeuferProduktKFZ besitzt nicht nur eine mehrwertige Abhängigkeit, sondern auch eine Verbundabhängigkeit wegen

```
VerkaeuferProduktname \bowtie VerkaeuferKFZ = VerkaeuferProduktKFZ
VerkaeuferProduktname = \pi_{\text{Verknr,Produktname}}(VerkaeuferProduktKFZ)
VerkaeuferKFZ = \pi_{\text{Verknr,KFZNr}}(VerkaeuferProduktKFZ)
```

- Dies gilt allgemein (ohne Beweis):
 - Aus funktionaler Abhängigkeit folgt mehrwertige Abhängigkeit
 - Aus mehrwertiger Abhängigkeit folgt Verbundabhängigkeit

Definition (Fünfte Normalform)

Eine Relation ist in der fünften Normalform, wenn sie in der vierten Normalform ist und keine Verbundabhängigkeiten besitzt.

▶ In der Praxis:

- Es ist extrem schwer, Verbundabhängigkeiten zu finden
- Diese Abhängigkeiten müssen noch nicht vorhanden sein und könnten erst in Zukunft auftreten!
- Die 5. NF spielt daher fast keine Rolle
- Ist Relation VerkaeuferProdukt4NF in der 5. NF?

Zerlegung von VerkaeuferProdukt4NF

VerkaeuferProduktname = $\pi_{VerkNr,Produktname}$ (VerkaeuferProdukt4NF)

 $VerkaeuferKFZ = \pi_{VerkNr,KFZNr}(VerkaeuferProdukt4NF)$

ProduktKFZ = $\pi_{Produktname,KFZNr}$ (VerkaeuferProdukt4NF)

VerkaeuferProduktname

V erk N r	Produktname
1	Waschmaschine
1	Herd
1	Kühlschrank
2	Herd
2	Kühlschrank
3	Staubsauger

VerkaeuferKFZ

VerkNr	KFZNr
1	M-E 515
I	M-X 333
2	S-H 654
2	K-J 123
3	K-J 123
	-

ProduktKFZ

Produktname	KFZNr
Waschmaschine	M-E 515
Herd	M-E 515
Herd	M-X 333
Herd	S-H 654
Herd	K-J 123
Kühlschrank	M-E 515
Kühlschrank	S-H 654
Staubsauger	K-J 123

✓ I VerkaeuferProduktKFZ

Verbund: VerkaeuferProdukt4NF

VerkaeuferProduktKFZ

VerkNr	Produktname	KFZNr
1	Waschmaschine	M-E 515
+	Waschmaschine	M-X 333
İ	Herd	M-E 515
1	Herd	M-X 333
1	Kühlschrank	M-E 515
_	Kühlschrank	M-X 333
2	Herd	S-H 654
2	Herd	K-J 123
2	Kühlschrank	S-H 654
2	Kunischi ank	K-J 123
3	Staubsauger	K-J 123

ProduktKFZ

Produktname	KFZNr
Waschmaschine	M-E 515
Herd	M-E 515
Herd	M-X 333
Herd	S-H 654
Herd	K-J 123
Kühlschrank	M-E 515
Kühlschrank	S-H 654
Staubsauger	K-J 123

Folgerung:

Wir erhalten VerkaeuferProdukt4NF! VerkaeuferProdukt4NF besitzt Verbundabhängigkeit und ist nicht in 5. NF

Zusatzinfos zur 4. und 5. Normalform

- Besitzt eine Relation nur nicht zusammengesetzte Schlüsselkandidaten, dann gilt:
 - ▶ 3. NF (beide Versionen) = 4. NF = 5. NF
- Eine Relation in 4. NF benötigt mindestens 3 Relationen zum Zerlegen in Relationen der 5. NF
- Relationen in mindestens der 3. NF, aber nicht in 4. oder 5. NF besitzen einen Schlüsselkandidaten mit mindestens drei Attributen!

Zusammenfassung

- Ziel ist die dritte Normalform!
- Wir benötigen Wissen zu funktionaler Abhängigkeit!

- Wir erzeugen Relationen mit möglichst einfachen Schlüsselkandidaten
 - Somit benötigen wir kein Wissen zur 4. und 5. NF
 - ▶ Alle Relationen in 3. NF sind dann auch in 4. und 5. NF!