Regularity for the one-phase problem Master Project in mathematics

Florian Noah Grün École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Supervisor Dr. Xavier Fernández-Real (EPFL)

External expert Prof. Hui Yu (National University of Singapore)

01.02.2024

Outline

- Introduction
- Existence and (non-) uniqueness
- Interior regularity
- Boundary regularity
 - Continuous boundary datum
 - Hölder continuous boundary datum
- The free boundary
 - First results
 - Blow-ups: regular and singular points
 - Local $C^{1,\alpha}$ regularity by improvement of flatness
 - ullet From $C^{1,lpha}$ to C^{∞} regularity $\buildrel \buildrel \bui$
 - Singular set

- ullet Free boundary problem: solve PDE for couple (u,Ω)
- Stefan problem: melting of ice
- One-phase (Bernoulli free boundary) problem

 → flame propagation, jet flows, . . .

3/26

- Free boundary problem: solve PDE for couple (u,Ω)
- Stefan problem: melting of ice
- One-phase (Bernoulli free boundary) problem

3/26

- Free boundary problem: solve PDE for couple (u, Ω)
- Stefan problem: melting of ice
- One-phase (Bernoulli free boundary) problem

 → flame propagation, jet flows, . . .

- Free boundary problem: solve PDE for couple (u, Ω)
- Stefan problem: melting of ice
- One-phase (Bernoulli free boundary) problem

 → flame propagation, jet flows, . . .

• Bounded open domain $D \subset \mathbb{R}^d$, $\Lambda > 0$, $u \in H^1(D)$:

$$F_{\Lambda}(u,D) \coloneqq \underbrace{\int_{D} |\nabla u|^2 dx}_{\text{Dirichlet energy}} + \underbrace{\Lambda |\{u>0\} \cap D|}_{\text{measure term}}$$

$$\min\{F_{\Lambda}(u,D) : u \in H^{1}(D), u - g \in H^{1}_{0}(D)\}\$$

• Bounded open domain $D \subset \mathbb{R}^d$, $\Lambda > 0$, $u \in H^1(D)$:

$$\mathit{F}_{\Lambda}(u,D) \coloneqq \underbrace{\int_{D} |\nabla u|^2 dx}_{\text{Dirichlet energy}} + \underbrace{\Lambda |\{u>0\} \cap D|}_{\text{measure term}}$$

$$\min\{F_{\Lambda}(u,D) : u \in H^{1}(D), u - g \in H^{1}_{0}(D)\}.$$

• Bounded open domain $D \subset \mathbb{R}^d$, $\Lambda > 0$, $u \in H^1(D)$:

$$\mathit{F}_{\Lambda}(u,D) \coloneqq \underbrace{\int_{D} |\nabla u|^2 dx}_{\text{Dirichlet energy}} + \underbrace{\Lambda |\{u>0\} \cap D|}_{\text{measure term}}$$

$$\min\{F_{\Lambda}(u,D): u \in H^{1}(D), u - g \in H^{1}_{0}(D)\}.$$

• Bounded open domain $D \subset \mathbb{R}^d$, $\Lambda > 0$, $u \in H^1(D)$:

$$\mathit{F}_{\Lambda}(u,D) \coloneqq \underbrace{\int_{D} |\nabla u|^2 dx}_{\text{Dirichlet energy}} + \underbrace{\Lambda |\{u>0\} \cap D|}_{\text{measure term}}$$

$$\min\{F_{\Lambda}(u,D): u \in H^{1}(D), u - g \in H^{1}_{0}(D)\}.$$

Existence: Some terminology

- $F_{\Lambda}(u,D) = \int_{D} |\nabla u|^2 dx + \Lambda |\{u>0\} \cap D|$
- Positivity set $\Omega_u := \{x \in \mathbb{R}^d : u(x) > 0\}$, contact set $\{x : u(x) = 0\}$
- Free Boundary (FB) $\partial\Omega_u$
- $\begin{cases}
 \Delta u \ge 0 & \text{in } D, \\
 \Delta u = 0 & \text{in } \Omega_u
 \end{cases}$

Existence: Some terminology

- $F_{\Lambda}(u,D) = \int_{D} |\nabla u|^2 dx + \Lambda |\{u>0\} \cap D|$
- Positivity set $\Omega_u := \{x \in \mathbb{R}^d : u(x) > 0\}$, contact set $\{x : u(x) = 0\}$
- Free Boundary (FB) $\partial \Omega_u$
- $\begin{array}{l}
 \bullet \\
 \Delta u \ge 0 & \text{in } D, \\
 \Delta u = 0 & \text{in } \Omega_u
 \end{array}$

- Recall $F_{\Lambda}(u,D) = \int_{D} |\nabla u|^{2} dx + \Lambda |\{u > 0\} \cap D|$
- Global minimizer $H^1_{loc}
 ightarrow u : \mathbb{R}^d
 ightarrow \mathbb{R}$

$$\forall U \subset\subset \mathbb{R}^d \colon \forall v \in H^1(U) \text{ with } u - v \in H^1_0(U)$$

$$F_{\Lambda}(u, U) \leq F_{\Lambda}(v, U)$$

- Recall $F_{\Lambda}(u,D) = \int_{D} |\nabla u|^{2} dx + \Lambda |\{u>0\} \cap D|$
- Global minimizer $H^1_{loc} \ni u : \mathbb{R}^d \to \mathbb{R}$

$$\forall U \subset \subset \mathbb{R}^d \colon \forall v \in H^1(U) \text{ with } u - v \in H^1_0(U)$$

$$F_{\Lambda}(u, U) \leq F_{\Lambda}(v, U)$$

- Recall $F_{\Lambda}(u,D) = \int_{D} |\nabla u|^{2} dx + \Lambda |\{u>0\} \cap D|$
- Global minimizer $H^1_{loc} \ni u : \mathbb{R}^d \to \mathbb{R}$

$$\forall U\subset\subset\mathbb{R}^d$$
: $\forall v\in H^1(U)$ with $u-v\in H^1_0(U)$:
$$F_\Lambda(u,U)\leq F_\Lambda(v,U)$$

- Recall $F_{\Lambda}(u,D) = \int_{D} |\nabla u|^{2} dx + \Lambda |\{u > 0\} \cap D|$
- Global minimizer $H^1_{loc} \ni u : \mathbb{R}^d \to \mathbb{R}$

$$\forall U\subset\subset\mathbb{R}^d\colon\forall v\in H^1(U)\text{ with }u-v\in H^1_0(U)\text{:}$$

$$F_{\Lambda}(u,U) \leq F_{\Lambda}(v,U)$$

Uniqueness: Non-uniqueness

• NON uniqueness of minimizers: d=1, D=(-2,2), $\Lambda=1$

• If $g > \operatorname{diam}(D)$, then empty contact set \implies uniqueness.

Lemma 2.7: Minimizers are ordered wrt data, $g_1 > g_2 \implies u_{g_1} \ge u_{g_2}$.

• If $g > \operatorname{diam}(D)$, then empty contact set \implies uniqueness.

Lemma 2.7: Minimizers are ordered wrt data,
$$g_1 > g_2 \implies u_{g_1} \ge u_{g_2}$$
.

• If $g > \operatorname{diam}(D)$, then empty contact set \implies uniqueness.

Lemma 2.7: Minimizers are ordered wrt data,

$$\mathsf{g}_1 > g_2 \implies u_{g_1} \ge u_{g_2}.$$

• If $g > \operatorname{diam}(D)$, then empty contact set \implies uniqueness.

Lemma 2.7: Minimizers are ordered wrt data, $g_1 > g_2 \implies u_{q_1} \ge u_{q_2}$.

• Let u be a minimizer of $F_{\Lambda}(u,D)$ with $u|_{\partial D}=g$.

Prop 3.3: u locally Lipschitz cont. in $D_{\delta} = \{ \operatorname{dist}(x, \partial D) > \delta \}$

$$\|\nabla u\|_{L^{\infty}(D_{\delta})} \le C(\Lambda, d) \left(1 + \frac{\|u\|_{L^{\infty}(D_{\delta/2})}}{\delta}\right)$$

Prop 3.4:
$$x_0 \in \partial \Omega_u$$
, $B_r(x_0) \subseteq D$:

$$cr \le \sup_{B_r(x_0)} u \le Cr$$

• Let u be a minimizer of $F_{\Lambda}(u,D)$ with $u|_{\partial D}=g$.

Prop 3.3: u locally Lipschitz cont. in $D_{\delta} = \{ \operatorname{dist}(x, \partial D) > \delta \}$

$$\|\nabla u\|_{L^{\infty}(D_{\delta})} \le C(\Lambda, d) \left(1 + \frac{\|u\|_{L^{\infty}(D_{\delta/2})}}{\delta}\right)$$

Prop 3.4:
$$x_0 \in \partial \Omega_u$$
, $B_r(x_0) \in D$:

$$cr \le \sup_{B_r(x_0)} u \le Cr$$

• Let u be a minimizer of $F_{\Lambda}(u,D)$ with $u|_{\partial D}=g$.

Prop 3.3: u locally Lipschitz cont. in $D_{\delta} = \{ \operatorname{dist}(x, \partial D) > \delta \}$:

$$\|\nabla u\|_{L^{\infty}(D_{\delta})} \le C(\Lambda, d) \left(1 + \frac{\|u\|_{L^{\infty}(D_{\delta/2})}}{\delta}\right)$$

Prop 3.4:
$$x_0 \in \partial \Omega_u$$
, $B_r(x_0) \subseteq D$:

$$cr \le \sup_{B_r(x_0)} u \le Cr$$

• Let u be a minimizer of $F_{\Lambda}(u,D)$ with $u|_{\partial D}=g$.

Prop 3.3: u locally Lipschitz cont. in $D_{\delta} = \{ \operatorname{dist}(x, \partial D) > \delta \}$:

$$\|\nabla u\|_{L^{\infty}(D_{\delta})} \le C(\Lambda, d) \left(1 + \frac{\|u\|_{L^{\infty}(D_{\delta/2})}}{\delta} \right)$$

Prop 3.4:
$$x_0 \in \partial \Omega_u$$
, $B_r(x_0) \subseteq D$:

$$cr \le \sup_{B_r(x_0)} u \le Cr$$

• Let u be a minimizer of $F_{\Lambda}(u,D)$ with $u|_{\partial D}=g$.

Prop 3.3: u locally Lipschitz cont. in $D_{\delta} = \{ \operatorname{dist}(x, \partial D) > \delta \}$:

$$\|\nabla u\|_{L^{\infty}(D_{\delta})} \le C(\Lambda, d) \left(1 + \frac{\|u\|_{L^{\infty}(D_{\delta/2})}}{\delta} \right)$$

 \hookrightarrow Lipschitz constant depends on distance to $\partial D!$

Prop 3.4: $x_0 \in \partial \Omega_u$, $B_r(x_0) \subseteq D$:

$$cr \le \sup_{B_r(x_0)} u \le Cr$$

• Classical potential theory: $D \subset \mathbb{R}^d$ sufficiently "nice",

$$\begin{cases} \Delta u = 0 & \text{in } D, \\ u = g & \text{on } \partial D, \end{cases} \text{ then } \begin{cases} g \text{ cont. } \Longrightarrow u \text{ cont. in } D, \\ g \text{ } \alpha\text{-H\"older } \Longrightarrow u \text{ } \alpha\text{-H\"older in } \bar{D}, \\ g \text{ Lip. } \Longrightarrow u \text{ } \alpha\text{-H\"older } \forall \alpha < 1 \text{ in } \bar{D} \end{cases}$$

- Similar results for minimizers to F_{Λ} ?

 - \hookrightarrow Edelen, Spolaor, Velichkov [ESV22]: g is Lipschitz YES

ullet Classical potential theory: $D\subset \mathbb{R}^d$ sufficiently "nice",

$$\begin{cases} \Delta u = 0 & \text{ in } D, \\ u = g & \text{ on } \partial D, \end{cases} \text{ then } \begin{cases} g \text{ cont.} \implies u \text{ cont. in } \bar{D}, \\ g \text{ α-H\"{o}lder } \implies u \text{ α-H\"{o}lder in } \bar{D}, \\ g \text{ Lip. } \implies u \text{ α-H\"{o}lder } \forall \alpha < 1 \text{ in } \bar{D}. \end{cases}$$

- Similar results for minimizers to F_{Λ} ?

 - \hookrightarrow Edelen, Spolaor, Velichkov [ESV22]: g is Lipschitz YES

Florian Grün (EPFL)

ullet Classical potential theory: $D\subset \mathbb{R}^d$ sufficiently "nice",

$$\begin{cases} \Delta u = 0 & \text{in } D, \\ u = g & \text{on } \partial D, \end{cases} \text{ then } \begin{cases} g \text{ cont.} \implies u \text{ cont. in } D, \\ g \text{ } \alpha\text{-H\"older } \implies u \text{ } \alpha\text{-H\"older in } \bar{D}, \\ g \text{ Lip. } \implies u \text{ } \alpha\text{-H\"older } \forall \alpha < 1 \text{ in } \bar{D}. \end{cases}$$

- Similar results for minimizers to F_{Λ} ?
 - → Useful for generic uniqueness
 - \hookrightarrow Edelen, Spolaor, Velichkov [ESV22]: g is Lipschitz YES

ullet Classical potential theory: $D\subset \mathbb{R}^d$ sufficiently "nice",

$$\begin{cases} \Delta u = 0 & \text{in } D, \\ u = g & \text{on } \partial D, \end{cases} \text{ then } \begin{cases} g \text{ cont.} \implies u \text{ cont. in } \bar{D}, \\ g \text{ } \alpha\text{-H\"older } \implies u \text{ } \alpha\text{-H\"older in } \bar{D}, \\ g \text{ Lip. } \implies u \text{ } \alpha\text{-H\"older } \forall \alpha < 1 \text{ in } \bar{D}. \end{cases}$$

- Similar results for minimizers to F_{Λ} ?

 - \hookrightarrow Edelen, Spolaor, Velichkov [ESV22]: g is Lipschitz YES

Florian Grün (EPFL)

ullet Classical potential theory: $D\subset \mathbb{R}^d$ sufficiently "nice",

$$\begin{cases} \Delta u = 0 & \text{in } D, \\ u = g & \text{on } \partial D, \end{cases} \text{ then } \begin{cases} g \text{ cont.} \implies u \text{ cont. in } D, \\ g \text{ } \alpha\text{-H\"older} \implies u \text{ } \alpha\text{-H\"older in } \bar{D}, \\ g \text{ Lip.} \implies u \text{ } \alpha\text{-H\"older } \forall \alpha < 1 \text{ in } \bar{D}. \end{cases}$$

- Similar results for minimizers to F_{Λ} ?

 - \hookrightarrow Edelen, Spolaor, Velichkov [ESV22]: g is Lipschitz YES

Florian Grün (EPFL)

- Idea 1: Show u > 0 in $B_r(x_0) \cap D \implies \Delta u = 0$, then use harmonic regularity.
- Idea 2: solution on annulus and ordering lemma
 - \hookrightarrow works for convex domain D
 - \hookrightarrow works for C^1 domain D
 - \hookrightarrow works for c-Lipschitz domain D ($c \to 0$ when $d \to \infty$)

- Idea 1: Show u > 0 in $B_r(x_0) \cap D \implies \Delta u = 0$, then use harmonic regularity.
- Idea 2: solution on annulus and ordering lemma
 - \hookrightarrow works for convex domain D
 - \hookrightarrow works for C^1 domain D
 - \hookrightarrow works for c-Lipschitz domain D ($c \to 0$ when $d \to \infty$)

- Idea 1: Show u > 0 in $B_r(x_0) \cap D \implies \Delta u = 0$, then use harmonic regularity.
- Idea 2: solution on annulus and ordering lemma
 - \rightarrow works for convex domain D
 - \mapsto works for C^1 domain D
 - \hookrightarrow works for c-Lipschitz domain D ($c \to 0$ when $d \to \infty$

- Idea 1: Show u > 0 in $B_r(x_0) \cap D \implies \Delta u = 0$, then use harmonic regularity.
- Idea 2: solution on annulus and ordering lemma
 - \hookrightarrow works for convex domain D
 - \hookrightarrow works for C^1 domain D
 - \hookrightarrow works for c-Lipschitz domain D ($c \to 0$ when $d \to \infty$)

Boundary regularity: Hölder continuous datum

Theorem 3.7:
$$g \in C^{\gamma_0}(\partial D), \quad \gamma_0 \in \left(\frac{1}{2}, 1\right) \implies u \in C^{\gamma_0}(\bar{D}).$$

- Similar iteration argument from [ESV22]
- Morrey Lemma: show $\int_{B_r(x_0)} |\nabla u|^2 \leq C r^{d+2(\gamma_0-1)}, \quad x_0 \in \partial D$
- Change of variables Φ : straighten $B_r(x_0) \cap D$ to $B_r \cap H^+$
- Harmonic extension h_g of $g \circ \Phi$ \hookrightarrow by harmonic estimates $|\nabla h_q| \leq C_{d,q} \operatorname{dist}(x, \partial H^+)^{\gamma_0 - 1}$

$$\mbox{ Theorem 3.7: } g \in C^{\gamma_0}(\partial D), \quad \gamma_0 \in \left(\frac{1}{2},1\right) \implies u \in C^{\gamma_0}(\bar{D}).$$

- Similar iteration argument from [ESV22]
- Morrey Lemma: show $\int_{B_r(x_0)} |\nabla u|^2 \leq C r^{d+2(\gamma_0-1)}, \quad x_0 \in \partial D$
- Change of variables Φ : straighten $B_r(x_0) \cap D$ to $B_r \cap H^+$
- Harmonic extension h_g of $g \circ \Phi$ \hookrightarrow by harmonic estimates $|\nabla h_g| \leq C_{d,g} \operatorname{dist}(x, \partial H^+)^{\gamma_0 - 1}$

$$\mbox{ Theorem 3.7: } g \in C^{\gamma_0}(\partial D), \quad \gamma_0 \in \left(\frac{1}{2},1\right) \implies u \in C^{\gamma_0}(\bar{D}).$$

- Similar iteration argument from [ESV22]
- \bullet Morrey Lemma: show $\int_{B_r(x_0)} |\nabla u|^2 \leq C r^{d+2(\gamma_0-1)}$, $\quad x_0 \in \partial D$
- Change of variables Φ : straighten $B_r(x_0) \cap D$ to $B_r \cap H^+$
- Harmonic extension h_g of $g \circ \Phi$ \hookrightarrow by harmonic estimates $|\nabla h_g| \leq C_{d,g} \operatorname{dist}(x, \partial H^+)^{\gamma_0 - 1}$

$$\mbox{ Theorem 3.7: } g \in C^{\gamma_0}(\partial D), \quad \gamma_0 \in \left(\frac{1}{2},1\right) \implies u \in C^{\gamma_0}(\bar{D}).$$

- Similar iteration argument from [ESV22]
- \bullet Morrey Lemma: show $\int_{B_r(x_0)} |\nabla u|^2 \leq C r^{d+2(\gamma_0-1)}$, $\quad x_0 \in \partial D$
- Change of variables Φ : straighten $B_r(x_0) \cap D$ to $B_r \cap H^+$
- Harmonic extension h_g of $g \circ \Phi$ \hookrightarrow by harmonic estimates $|\nabla h_g| \leq C_{d,g} \operatorname{dist}(x, \partial H^+)^{\gamma_0 - 1}$

Theorem 3.7:
$$g \in C^{\gamma_0}(\partial D), \quad \gamma_0 \in \left(\frac{1}{2}, 1\right) \implies u \in C^{\gamma_0}(\bar{D}).$$

- Similar iteration argument from [ESV22]
- \bullet Morrey Lemma: show $\int_{B_r(x_0)} |\nabla u|^2 \leq C r^{d+2(\gamma_0-1)}$, $\quad x_0 \in \partial D$
- Change of variables Φ : straighten $B_r(x_0) \cap D$ to $B_r \cap H^+$
- Harmonic extension h_g of $g \circ \Phi$ \hookrightarrow by harmonic estimates $|\nabla h_g| \leq C_{d,g} \operatorname{dist}(x, \partial H^+)^{\gamma_0 - 1}$

- Density estimate: $0 < \delta_D < \frac{|B_r \cap \{u>0\}|}{|B_r|} < 1 \delta_D < 1$
- If $\partial\Omega_u$ smooth: $|\nabla u|=\sqrt{\Lambda}$ a.e. on $\partial\Omega_u$
- u is viscosity solution to $\begin{cases} \Delta u = 0 & \text{in } \Omega_u, \\ |\nabla u| = \sqrt{\Lambda} & \text{on } \partial \Omega_u \cap D \end{cases}$

- \bullet Density estimate: $0<\delta_D<\frac{|B_r\cap\{u>0\}|}{|B_r|}<1-\delta_D<1$
- $\partial\Omega_u$ x_0

- If $\partial\Omega_u$ smooth: $|\nabla u|=\sqrt{\Lambda}$ a.e. on $\partial\Omega_u$
- u is viscosity solution to $\begin{cases} \Delta u = 0 & \text{in } \Omega_u, \\ |\nabla u| = \sqrt{\Lambda} & \text{on } \partial \Omega_u \cap D \end{cases}$

- \bullet Density estimate: $0<\delta_D<\frac{|B_r\cap\{u>0\}|}{|B_r|}<1-\delta_D<1$
- $\partial\Omega_u$ x_0

- \bullet If $\partial\Omega_u$ smooth: $|\nabla u|=\sqrt{\Lambda}$ a.e. on $\partial\Omega_u$
- u is viscosity solution to $\begin{cases} \Delta u = 0 & \text{in } \Omega_u, \\ |\nabla u| = \sqrt{\Lambda} & \text{on } \partial \Omega_u \cap D \end{cases}$

- \bullet Density estimate: $0<\delta_D<\frac{|B_r\cap\{u>0\}|}{|B_r|}<1-\delta_D<1$
- $\partial\Omega_u$ x_0

- If $\partial\Omega_u$ smooth: $|\nabla u|=\sqrt{\Lambda}$ a.e. on $\partial\Omega_u$
- u is viscosity solution to $\begin{cases} \Delta u = 0 & \text{in } \Omega_u, \\ |\nabla u| = \sqrt{\Lambda} & \text{on } \partial \Omega_u \cap D \end{cases}$

- ullet "zoom-in infinitely" on FBP x_0
- $r_n \to 0$: $u_{x_0,r_n}(x) \coloneqq \frac{1}{r_n} u(x_0 + r_n x) \xrightarrow{unif.} u_0 \in Lip_{loc}(\mathbb{R}^d)$ \hookrightarrow by Arzelà-Ascoli \hookrightarrow dependent on r_n
- x_0 is regular point $(Reg(\partial\Omega_u))$: $u_0(x) = \sqrt{\Lambda}(x \cdot v)_+ \text{ for } v \in \mathbb{S}^{d-1}$
- If not: x_0 is singular point $(Sing(\partial \Omega_u))$

- "zoom-in infinitely" on FBP x_0
- $r_n \to 0$: $u_{x_0,r_n}(x) \coloneqq \frac{1}{r_n} u(x_0 + r_n x) \xrightarrow{unif.} u_0 \in Lip_{loc}(\mathbb{R}^d)$ \hookrightarrow by Arzelà-Ascoli \hookrightarrow dependent on r_n
- x_0 is regular point $(Reg(\partial \Omega_u))$: $u_0(x) = \sqrt{\Lambda}(x \cdot v)_+ \text{ for } v \in \mathbb{S}^{d-1}$
- If not: x_0 is singular point $(Sing(\partial \Omega_u))$

- "zoom-in infinitely" on FBP x_0
- $r_n \to 0$: $u_{x_0,r_n}(x) := \frac{1}{r_n} u(x_0 + r_n x) \xrightarrow{unif.} u_0 \in Lip_{loc}(\mathbb{R}^d)$ \hookrightarrow by Arzelà-Ascoli \hookrightarrow dependent on r_n
- x_0 is regular point $(Reg(\partial \Omega_u))$: $u_0(x) = \sqrt{\Lambda}(x \cdot v)_+ \text{ for } v \in \mathbb{S}^{d-1}$
- If not: x_0 is singular point $(Sing(\partial \Omega_u))$

- "zoom-in infinitely" on FBP x_0
- $r_n \to 0$: $u_{x_0,r_n}(x) \coloneqq \frac{1}{r_n} u(x_0 + r_n x) \xrightarrow{unif.} u_0 \in Lip_{loc}(\mathbb{R}^d)$ \hookrightarrow by Arzelà-Ascoli \hookrightarrow dependent on r_n
- x_0 is regular point $(Reg(\partial \Omega_u))$: $u_0(x) = \sqrt{\Lambda}(x \cdot v)_+ \text{ for } v \in \mathbb{S}^{d-1}$
- If not: x_0 is singular point $(Sing(\partial \Omega_u))$

- "zoom-in infinitely" on FBP x_0
- $r_n \to 0$: $u_{x_0,r_n}(x) \coloneqq \frac{1}{r_n} u(x_0 + r_n x) \xrightarrow{unif.} u_0 \in Lip_{loc}(\mathbb{R}^d)$ \hookrightarrow by Arzelà-Ascoli \hookrightarrow dependent on r_n
- x_0 is regular point $(Reg(\partial \Omega_u))$: $u_0(x) = \sqrt{\Lambda}(x \cdot v)_+$ for $v \in \mathbb{S}^{d-1}$
- If not: x_0 is singular point $(Sing(\partial \Omega_u))$

- ullet "zoom-in infinitely" on FBP x_0
- $r_n \to 0$: $u_{x_0,r_n}(x) \coloneqq \frac{1}{r_n} u(x_0 + r_n x) \xrightarrow{unif.} u_0 \in Lip_{loc}(\mathbb{R}^d)$ \hookrightarrow by Arzelà-Ascoli \hookrightarrow dependent on r_n
- x_0 is regular point $(Reg(\partial \Omega_u))$: $u_0(x) = \sqrt{\Lambda}(x \cdot v)_+ \text{ for } v \in \mathbb{S}^{d-1}$
- If not: x_0 is singular point $(Sing(\partial\Omega_u))$

- "zoom-in infinitely" on FBP x_0
- $r_n \to 0$: $u_{x_0,r_n}(x) \coloneqq \frac{1}{r_n} u(x_0 + r_n x) \xrightarrow{unif.} u_0 \in Lip_{loc}(\mathbb{R}^d)$ \hookrightarrow by Arzelà-Ascoli \hookrightarrow dependent on r_n
- x_0 is regular point $(Reg(\partial \Omega_u))$: $u_0(x) = \sqrt{\Lambda}(x \cdot v)_+ \text{ for } v \in \mathbb{S}^{d-1}$
- If not: x_0 is singular point $(Sing(\partial \Omega_u))$

- Wts: x_0 is regular FBP, then $\partial \Omega_u$ locally $C^{1,\alpha}$
- ε -flat for $v \in \mathbb{S}^{d-1}$: $|u x \cdot v| \leq \varepsilon$ in $\Omega_u \cap B_1$ $\hookrightarrow x_0$ regular $\implies u_{x_0,r_n}$ ε -flat for large n \hookrightarrow WLOG $v = e_d$, $x_0 = 0$, $\Lambda = 1$

Prop 5.14: improvement à la De Silva & Kriventsov For $\tau>0$, $\varepsilon\leq \bar{\varepsilon}(d,\tau)$, there is $e\in\mathbb{S}^{d-1}$ with $|e-e_d|\leq C'\varepsilon$ s.t.

$$\sup_{B_{\tau} \cap \Omega_u} |u(x) - x \cdot e| \le C_d \tau^2 \varepsilon$$

- Wts: x_0 is regular FBP, then $\partial \Omega_u$ locally $C^{1,\alpha}$
- ε -flat for $v \in \mathbb{S}^{d-1}$: $|u x \cdot v| \leq \varepsilon$ in $\Omega_u \cap B_1$ $\hookrightarrow x_0$ regular $\implies u_{x_0,r_n}$ ε -flat for large n \hookrightarrow WLOG $v = e_d$, $x_0 = 0$, $\Lambda = 1$

Prop 5.14: improvement à la De Silva & Kriventsov For $\tau>0$, $\varepsilon\leq \bar{\varepsilon}(d,\tau)$, there is $e\in\mathbb{S}^{d-1}$ with $|e-e_d|\leq C'\varepsilon$ s.t.

$$\sup_{B_{\tau} \cap \Omega_u} |u(x) - x \cdot e| \le C_d \tau^2 \varepsilon$$

- Wts: x_0 is regular FBP, then $\partial \Omega_u$ locally $C^{1,\alpha}$
- ε -flat for $v \in \mathbb{S}^{d-1}$: $|u x \cdot v| \le \varepsilon$ in $\Omega_u \cap B_1$ $\hookrightarrow x_0$ regular $\implies u_{x_0,r_n}$ ε -flat for large n $\hookrightarrow \text{WLOG } v = e_d, \ x_0 = 0, \ \Lambda = 1$

Prop 5.14: improvement à la De Silva & Kriventsov For $\tau>0$, $\varepsilon\leq\bar{\varepsilon}(d,\tau)$, there is $e\in\mathbb{S}^{d-1}$ with $|e-e_d|\leq C'\varepsilon$ s.t.

$$\sup_{B_{\tau} \cap \Omega_u} |u(x) - x \cdot e| \le C_d \tau^2 \varepsilon$$

- ullet Wts: x_0 is regular FBP, then $\partial\Omega_u$ locally $C^{1,lpha}$
- ε -flat for $v \in \mathbb{S}^{d-1}$: $|u x \cdot v| \le \varepsilon$ in $\Omega_u \cap B_1$ $\hookrightarrow x_0$ regular $\implies u_{x_0,r_n}$ ε -flat for large n $\hookrightarrow \text{WLOG } v = e_d, \ x_0 = 0, \ \Lambda = 1$

Prop 5.14: improvement à la De Silva & Kriventsov For $\tau>0$, $\varepsilon\leq \bar{\varepsilon}(d,\tau)$, there is $e\in\mathbb{S}^{d-1}$ with $|e-e_d|\leq C'\varepsilon$ s.t.

$$\sup_{B_{\tau} \cap \Omega_n} |u(x) - x \cdot e| \le C_d \tau^2 \varepsilon$$

- ullet Wts: x_0 is regular FBP, then $\partial\Omega_u$ locally $C^{1,lpha}$
- ε -flat for $v \in \mathbb{S}^{d-1}$: $|u x \cdot v| \leq \varepsilon$ in $\Omega_u \cap B_1$ $\hookrightarrow x_0$ regular $\implies u_{x_0,r_n}$ ε -flat for large n $\hookrightarrow \mathsf{WLOG}\ v = e_d,\ x_0 = 0,\ \Lambda = 1$

Prop 5.14: improvement à la De Silva & Kriventsov For $\tau>0$, $\varepsilon\leq\bar{\varepsilon}(d,\tau)$, there is $e\in\mathbb{S}^{d-1}$ with $|e-e_d|\leq C'\varepsilon$ s.t.

$$\sup_{B_{\tau} \cap \Omega_u} |u(x) - x \cdot e| \le C_d \tau^2 \varepsilon$$

- Wts: x_0 is regular FBP, then $\partial \Omega_n$ locally $C^{1,\alpha}$
- ε -flat for $v \in \mathbb{S}^{d-1}$: $|u x \cdot v| < \varepsilon$ in $\Omega_u \cap B_1$ $\hookrightarrow x_0$ regular $\implies u_{x_0,r_n} \varepsilon$ -flat for large n \hookrightarrow WLOG $v=e_d$, $x_0=0$, $\Lambda=1$

Prop 5.14: improvement à la De Silva & Kriventsov For $\tau > 0$, $\varepsilon \leq \bar{\varepsilon}(d,\tau)$, there is $e \in \mathbb{S}^{d-1}$ with $|e - e_d| \leq C' \varepsilon$ s.t.

$$\sup_{B_{\tau} \cap \Omega_u} |u(x) - x \cdot e| \le C_d \tau^2 \varepsilon$$

- Wts: x_0 is regular FBP, then $\partial \Omega_u$ locally $C^{1,\alpha}$
- ε -flat for $v \in \mathbb{S}^{d-1}$: $|u x \cdot v| \leq \varepsilon$ in $\Omega_u \cap B_1$ $\hookrightarrow x_0$ regular $\implies u_{x_0,r_n}$ ε -flat for large n $\hookrightarrow \mathsf{WLOG}\ v = e_d,\ x_0 = 0,\ \Lambda = 1$

Prop 5.14: improvement à la De Silva & Kriventsov For $\tau > 0$, $\varepsilon \leq \bar{\varepsilon}(d,\tau)$, there is $e \in \mathbb{S}^{d-1}$ with $|e-e_d| \leq C'\varepsilon$ s.t.

$$\sup_{B_{\tau} \cap \Omega_u} |u(x) - x \cdot e| \le C_d \tau^2 \varepsilon$$

 \hookrightarrow proof by contradiction

Florian Grün (EPFL)

Master Project

- $\alpha \in (0,1)$ fixed, pick $\tau > 0$ with $C_d \tau \le \tau^{\alpha}$
- ullet Iterate IoF to get a Cauchy seq. $\mathbb{S}^{d-1}
 i e_k o e_{x_0}$ with

$$\sup_{B_{\tau^k} \cap \{u > 0\}} |u(x) - x \cdot e_{x_0}| \le C\tau^{k(1+\alpha)}\varepsilon.$$

$$\hookrightarrow |u(z) - e_{x_0} \cdot (z - x_0)| \le C|z - x_0|^{(1+\alpha)} \qquad \forall z \in \{u > 0\} \cap B_1$$

- $\alpha \in (0,1)$ fixed, pick $\tau > 0$ with $C_d \tau \le \tau^{\alpha}$
- ullet Iterate IoF to get a Cauchy seq. $\mathbb{S}^{d-1}
 i e_k o e_{x_0}$ with

$$\sup_{B_{\tau^k} \cap \{u > 0\}} |u(x) - x \cdot e_{x_0}| \le C\tau^{k(1+\alpha)}\varepsilon.$$

$$\hookrightarrow |u(z) - e_{x_0} \cdot (z - x_0)| \le C|z - x_0|^{(1+\alpha)} \qquad \forall z \in \{u > 0\} \cap B_1$$

- $\alpha \in (0,1)$ fixed, pick $\tau > 0$ with $C_d \tau \le \tau^{\alpha}$
- ullet Iterate IoF to get a Cauchy seq. $\mathbb{S}^{d-1}
 i e_k
 ightarrow e_{x_0}$ with

$$\sup_{B_{\tau^k} \cap \{u > 0\}} |u(x) - x \cdot e_{x_0}| \le C\tau^{k(1+\alpha)} \varepsilon.$$

$$\hookrightarrow |u(z) - e_{x_0} \cdot (z - x_0)| \le C|z - x_0|^{(1+\alpha)} \qquad \forall z \in \{u > 0\} \cap B_1$$

- $\alpha \in (0,1)$ fixed, pick $\tau > 0$ with $C_d \tau \le \tau^{\alpha}$
- ullet Iterate IoF to get a Cauchy seq. $\mathbb{S}^{d-1}
 i e_k o e_{x_0}$ with

$$\sup_{B_{\tau^k} \cap \{u > 0\}} |u(x) - x \cdot e_{x_0}| \le C\tau^{k(1+\alpha)} \varepsilon.$$

$$\Rightarrow |u(z) - e_{x_0} \cdot (z - x_0)| \le C|z - x_0|^{(1+\alpha)} \quad \forall z \in \{u > 0\} \cap B_1$$

- $\alpha \in (0,1)$ fixed, pick $\tau > 0$ with $C_d \tau \le \tau^{\alpha}$
- ullet Iterate IoF to get a Cauchy seq. $\mathbb{S}^{d-1}
 i e_k
 ightarrow e_{x_0}$ with

$$\sup_{B_{\tau^k} \cap \{u > 0\}} |u(x) - x \cdot e_{x_0}| \le C\tau^{k(1+\alpha)} \varepsilon.$$

$$\Rightarrow |u(z) - e_{x_0} \cdot (z - x_0)| \le C|z - x_0|^{(1+\alpha)} \quad \forall z \in \{u > 0\} \cap B_1$$

- x_0 regular FBP, work locally \hookrightarrow Kinderlehrer, Nirenberg [KN77]: C^{ω} by hodograph transform
 - **Prop 5.16:** $u \in C^{1,\alpha}(B_r(x_0) \cap \bar{\Omega}_u) \ \forall \alpha < 1$ $\implies u \in W^{2,p}(B_r(x_0) \cap \Omega_u) \ \text{for} \ 1 \leq p < \infty$
- Idea: harmonic estimates: $\sup_{\Omega} |D^{\beta}u| \leq \left(\frac{C_d|\beta|}{\operatorname{dist}(\Omega,\partial\Omega_u)}\right)^{|\beta|} \sup_{\Omega_u} |u|$

$$\implies |D^2 u(x)| \le C_d ||u||_{C^{1,\alpha}} \operatorname{dist}(x, \partial \Omega_u)^{\alpha - 1}$$

- ullet x_0 regular FBP, work locally
 - \hookrightarrow Kinderlehrer, Nirenberg [KN77]: C^{ω} by hodograph transform

Prop 5.16:
$$u \in C^{1,\alpha}(B_r(x_0) \cap \bar{\Omega}_u) \ \forall \alpha < 1$$
 $\implies u \in W^{2,p}(B_r(x_0) \cap \Omega_u) \ \text{for} \ 1 \leq p < \infty$

• Idea: harmonic estimates: $\sup_{\Omega} |D^{\beta}u| \leq \left(\frac{C_d|\beta|}{\operatorname{dist}(\Omega,\partial\Omega_u)}\right)^{|\beta|} \sup_{\Omega_u} |u|$

$$\implies |D^2 u(x)| \le C_d ||u||_{C^{1,\alpha}} \operatorname{dist}(x, \partial \Omega_u)^{\alpha - 1}$$

- x_0 regular FBP, work locally \hookrightarrow Kinderlehrer, Nirenberg [KN77]: C^{ω} by hodograph transform
 - **Prop 5.16:** $u \in C^{1,\alpha}(B_r(x_0) \cap \bar{\Omega}_u) \ \forall \alpha < 1$ $\implies u \in W^{2,p}(B_r(x_0) \cap \Omega_u) \ \text{for} \ 1 \leq p < \infty.$
- Idea: harmonic estimates: $\sup_{\Omega} |D^{\beta}u| \leq \left(\frac{C_d|\beta|}{\operatorname{dist}(\Omega,\partial\Omega_u)}\right)^{|\beta|} \sup_{\Omega_u} |u|$

$$\implies |D^2 u(x)| \le C_d ||u||_{C^{1,\alpha}} \operatorname{dist}(x, \partial \Omega_u)^{\alpha - 1}$$

- x_0 regular FBP, work locally \hookrightarrow Kinderlehrer, Nirenberg [KN77]: C^{ω} by hodograph transform
 - **Prop 5.16:** $u \in C^{1,\alpha}(B_r(x_0) \cap \bar{\Omega}_u) \ \forall \alpha < 1$ $\implies u \in W^{2,p}(B_r(x_0) \cap \Omega_u) \ \text{for} \ 1 \leq p < \infty$
- Idea: harmonic estimates: $\sup_{\Omega} |D^{\beta}u| \leq \left(\frac{C_d|\beta|}{\operatorname{dist}(\Omega,\partial\Omega_u)}\right)^{|\beta|} \sup_{\Omega_u} |u|$

$$\implies |D^2 u(x)| \le C_d ||u||_{C^{1,\alpha}} \operatorname{dist}(x, \partial \Omega_u)^{\alpha - 1}$$

- x_0 regular FBP, work locally \hookrightarrow Kinderlehrer, Nirenberg [KN77]: C^{ω} by hodograph transform
 - $\begin{array}{ll} \textbf{Prop 5.16:} \ u \in C^{1,\alpha}(B_r(x_0) \cap \bar{\Omega}_u) \ \forall \alpha < 1 \\ \Longrightarrow \ u \in W^{2,p}(B_r(x_0) \cap \Omega_u) \ \text{for} \ 1 \leq p < \infty. \end{array}$
- Idea: harmonic estimates: $\sup_{\Omega} |D^{\beta}u| \leq \left(\frac{C_d|\beta|}{\operatorname{dist}(\Omega,\partial\Omega_u)}\right)^{|\beta|} \sup_{\Omega_u} |u|$

$$\implies |D^2 u(x)| \le C_d ||u||_{C^{1,\alpha}} \operatorname{dist}(x, \partial \Omega_u)^{\alpha - 1}$$

- x_0 regular FBP, work locally \hookrightarrow Kinderlehrer, Nirenberg [KN77]: C^{ω} by hodograph transform
 - **Prop 5.16:** $u \in C^{1,\alpha}(B_r(x_0) \cap \bar{\Omega}_u) \ \forall \alpha < 1$ $\implies u \in W^{2,p}(B_r(x_0) \cap \Omega_u) \ \text{for} \ 1 \leq p < \infty.$
- $\bullet \ \ \text{Idea: harmonic estimates:} \ \sup_{\Omega} |D^{\beta}u| \leq \left(\frac{C_d|\beta|}{\operatorname{dist}(\Omega,\partial\Omega_u)}\right)^{|\beta|} \sup_{\Omega_u} |u|$

$$\implies |D^2 u(x)| \le C_d ||u||_{C^{1,\alpha}} \operatorname{dist}(x, \partial \Omega_u)^{\alpha - 1}$$

- x_0 regular FBP, work locally \hookrightarrow Kinderlehrer, Nirenberg [KN77]: C^{ω} by hodograph transform
 - **Prop 5.16:** $u \in C^{1,\alpha}(B_r(x_0) \cap \bar{\Omega}_u) \ \forall \alpha < 1$ $\implies u \in W^{2,p}(B_r(x_0) \cap \Omega_u) \ \text{for} \ 1 \leq p < \infty.$
- Idea: harmonic estimates: $\sup_{\Omega} |D^{\beta}u| \leq \left(\frac{C_d|\beta|}{\operatorname{dist}(\Omega,\partial\Omega_u)}\right)^{|\beta|} \sup_{\Omega_u} |u|$

$$\implies |D^2 u(x)| \le C_d ||u||_{C^{1,\alpha}} \operatorname{dist}(x, \partial \Omega_u)^{\alpha - 1}$$

- x_0 regular FBP, work locally \hookrightarrow Kinderlehrer, Nirenberg [KN77]: C^{ω} by hodograph transform
 - **Prop 5.16:** $u \in C^{1,\alpha}(B_r(x_0) \cap \bar{\Omega}_u) \ \forall \alpha < 1$ $\implies u \in W^{2,p}(B_r(x_0) \cap \Omega_u) \ \text{for} \ 1 \leq p < \infty.$
- Idea: harmonic estimates: $\sup_{\Omega} |D^{\beta}u| \leq \left(\frac{C_d|\beta|}{\operatorname{dist}(\Omega,\partial\Omega_u)}\right)^{|\beta|} \sup_{\Omega_u} |u|$

$$\implies |D^2 u(x)| \le C_d ||u||_{C^{1,\alpha}} \operatorname{dist}(x, \partial \Omega_u)^{\alpha - 1}$$

$$\begin{array}{lll} \text{Prop 5.20: } u \text{ minimizer, } 0 \text{ regular FBP, } \nabla u(0) = e_d, \ w \coloneqq \frac{u_i}{u_d} \\ \text{Then } \begin{cases} \operatorname{div}(u_d^2 \nabla w) &= 0 & \text{ in } \Omega, \\ \partial_\nu w &= 0 & \text{ on } \partial \Omega_u \cap B_r, \end{cases} \text{ weakly} \tag{1}$$

- Terracini, Tortone, Vita [TTV22]: $w \in C^{k,\alpha}$ and (1) $\Longrightarrow w \in C^{k+1,\alpha}$
- $\forall \varphi \in C_c^\infty: \int_{B_r \cap \{u > t\}} u_d^2 \nabla w \cdot \nabla \varphi \to 0$ and $u \in W^{2,2}(B_r \cap \Omega_u)$
- Lem 5.19: $H^1(\Omega)\ni g_t\xrightarrow{C^\alpha(\Omega)}0$ and $v\in C^\alpha_c(\Omega,\mathbb{R}^d)$, $\alpha\in [\frac34,1).$ Then $\int_\Omega \nabla g_t\cdot v\to 0.$

Prop 5.20:
$$u$$
 minimizer, 0 regular FBP, $\nabla u(0) = e_d$, $w \coloneqq \frac{u_i}{u_d}$
Then
$$\begin{cases} \operatorname{div}(u_d^2 \nabla w) &= 0 & \text{in } \Omega, \\ \partial_{\nu} w &= 0 & \text{on } \partial \Omega_u \cap B_r, \end{cases}$$
 weakly (1)

- Terracini, Tortone, Vita [TTV22]: $w \in C^{k,\alpha}$ and (1) $\Longrightarrow w \in C^{k+1,\alpha}$
- $\forall \varphi \in C_c^\infty: \int_{B_r \cap \{u > t\}} u_d^2 \nabla w \cdot \nabla \varphi \to 0$ and $u \in W^{2,2}(B_r \cap \Omega_u)$
- Lem 5.19: $H^1(\Omega)\ni g_t\xrightarrow{C^\alpha(\Omega)}0$ and $v\in C^\alpha_c(\Omega,\mathbb{R}^d)$, $\alpha\in [\frac34,1).$ Then $\int_\Omega \nabla g_t\cdot v\to 0.$
 - \hookrightarrow "fractional integration by parts'

Prop 5.20:
$$u$$
 minimizer, 0 regular FBP, $\nabla u(0) = e_d$, $w \coloneqq \frac{u_i}{u_d}$
Then
$$\begin{cases} \operatorname{div}(u_d^2 \nabla w) &= 0 & \text{in } \Omega, \\ \partial_{\nu} w &= 0 & \text{on } \partial \Omega_u \cap B_r, \end{cases}$$
 weakly (1)

- Terracini, Tortone, Vita [TTV22]: $w \in C^{k,\alpha}$ and (1) $\Longrightarrow w \in C^{k+1,\alpha}$
- $\bullet \ \forall \varphi \in C_c^\infty: \textstyle \int_{B_r \cap \{u > t\}} u_d^2 \nabla w \cdot \nabla \varphi \to 0 \ \ \text{and} \ \ u \in W^{2,2}(B_r \cap \Omega_u)$
- Lem 5.19: $H^1(\Omega)\ni g_t\xrightarrow{C^\alpha(\Omega)}0$ and $v\in C^\alpha_c(\Omega,\mathbb{R}^d)$, $\alpha\in [\frac34,1).$ Then $\int_\Omega \nabla g_t\cdot v\to 0.$

Prop 5.20:
$$u$$
 minimizer, 0 regular FBP, $\nabla u(0) = e_d$, $w \coloneqq \frac{u_i}{u_d}$
Then
$$\begin{cases} \operatorname{div}(u_d^2 \nabla w) &= 0 & \text{in } \Omega, \\ \partial_{\nu} w &= 0 & \text{on } \partial \Omega_u \cap B_r, \end{cases}$$
 weakly (1)

- Terracini, Tortone, Vita [TTV22]: $w \in C^{k,\alpha}$ and (1) $\implies w \in C^{k+1,\alpha}$
- $\forall \varphi \in C_c^{\infty} : \int_{B_r \cap \{u > t\}} u_d^2 \nabla w \cdot \nabla \varphi \to 0$ and $u \in W^{2,2}(B_r \cap \Omega_u)$
- Lem 5.19: $H^1(\Omega)\ni g_t\xrightarrow{C^\alpha(\Omega)}0$ and $v\in C^\alpha_c(\Omega,\mathbb{R}^d)$, $\alpha\in \left[\frac{3}{4},1\right). \text{ Then } \int_\Omega \nabla g_t\cdot v\to 0.$

Prop 5.20:
$$u$$
 minimizer, 0 regular FBP, $\nabla u(0) = e_d$, $w \coloneqq \frac{u_i}{u_d}$
Then
$$\begin{cases} \operatorname{div}(u_d^2 \nabla w) &= 0 & \text{in } \Omega, \\ \partial_{\nu} w &= 0 & \text{on } \partial \Omega_u \cap B_r, \end{cases}$$
 weakly (1)

- Terracini, Tortone, Vita [TTV22]: $w \in C^{k,\alpha}$ and (1) $\implies w \in C^{k+1,\alpha}$
- $\forall \varphi \in C_c^{\infty} : \int_{B_r \cap \{u > t\}} u_d^2 \nabla w \cdot \nabla \varphi \to 0$ and $u \in W^{2,2}(B_r \cap \Omega_u)$
- Lem 5.19: $H^1(\Omega)\ni g_t\xrightarrow{C^\alpha(\Omega)}0$ and $v\in C^\alpha_c(\Omega,\mathbb{R}^d)$, $\alpha\in [\frac34,1). \text{ Then } \int_\Omega \nabla g_t\cdot v\to 0.$

Prop 5.20: u minimizer, 0 regular FBP, $\nabla u(0) = e_d$, $w := \frac{u_i}{u_d}$ Then $\begin{cases} \operatorname{div}(u_d^2 \nabla w) &= 0 & \text{in } \Omega, \\ \partial_{\nu} w &= 0 & \text{on } \partial \Omega_u \cap B_r, \end{cases}$ weakly (1)

- Terracini, Tortone, Vita [TTV22]: $w \in C^{k,\alpha}$ and (1) $\implies w \in C^{k+1,\alpha}$
- $\forall \varphi \in C_c^{\infty} : \int_{B_r \cap \{u > t\}} u_d^2 \nabla w \cdot \nabla \varphi \to 0$ and $u \in W^{2,2}(B_r \cap \Omega_u)$
- Lem 5.19: $H^1(\Omega)\ni g_t\xrightarrow{C^\alpha(\Omega)}0$ and $v\in C^\alpha_c(\Omega,\mathbb{R}^d)$, $\alpha\in [\frac34,1). \text{ Then } \int_\Omega \nabla g_t\cdot v\to 0.$

• $u: \mathbb{R}^d \to \mathbb{R}$ is 1-homogeneous if $u(tx) = tu(x) \ \forall x, \forall t > 0$

Prop 6.7: Every blow-up is a 1-homogeneous global minimizer.

$$\hookrightarrow W_{\Lambda}(u) := \int_{B_1} |\nabla u|^2 dx - \int_{\partial B_1} u^2 d\mathcal{H}^{d-1} + \Lambda |\Omega_u \cap B_1|$$

 \hookrightarrow nondecreasing: $W_{\Lambda}(u_{x_0,s}) \leq W_{\Lambda}(u_{x_0,r})$ for $0 \leq s < r$

19/26

• $u: \mathbb{R}^d \to \mathbb{R}$ is 1-homogeneous if $u(tx) = tu(x) \ \forall x, \forall t > 0$

Prop 6.7: Every blow-up is a 1-homogeneous global minimizer.

$$\hookrightarrow W_{\Lambda}(u) := \int_{B_1} |\nabla u|^2 dx - \int_{\partial B_1} u^2 d\mathcal{H}^{d-1} + \Lambda |\Omega_u \cap B_1|$$

 \hookrightarrow nondecreasing: $W_{\Lambda}(u_{x_0,s}) \leq W_{\Lambda}(u_{x_0,r})$ for $0 \leq s < r$

• $u: \mathbb{R}^d \to \mathbb{R}$ is 1-homogeneous if $u(tx) = tu(x) \ \forall x, \forall t > 0$

Prop 6.7: Every blow-up is a 1-homogeneous global minimizer.

$$\hookrightarrow W_{\Lambda}(u) := \int_{B_1} |\nabla u|^2 dx - \int_{\partial B_1} u^2 d\mathcal{H}^{d-1} + \Lambda |\Omega_u \cap B_1|$$

 \hookrightarrow nondecreasing: $W_{\Lambda}(u_{x_0,s}) \leq W_{\Lambda}(u_{x_0,r})$ for $0 \leq s < r$

• $u: \mathbb{R}^d \to \mathbb{R}$ is 1-homogeneous if $u(tx) = tu(x) \ \forall x, \forall t > 0$

Prop 6.7: Every blow-up is a 1-homogeneous global minimizer.

$$\hookrightarrow W_{\Lambda}(u) := \int_{B_1} |\nabla u|^2 dx - \int_{\partial B_1} u^2 d\mathcal{H}^{d-1} + \Lambda |\Omega_u \cap B_1|$$

 \hookrightarrow nondecreasing: $W_{\Lambda}(u_{x_0,s}) \leq W_{\Lambda}(u_{x_0,r})$ for $0 \leq s < r$

- Critical dim. d^* : \exists 1-hom. global min. u with $\partial \Omega_u \notin C^{1,\alpha}$
- **Prop 6.4:** In \mathbb{R}^2 , homogeneous minimizer of form $\sqrt{\Lambda}(x \cdot v)_+ \hookrightarrow d^* \geq 3$
- De Silva, Jerison [DJ09]: singular global minimizer in \mathbb{R}^7 $\hookrightarrow d^* < 7$
- What to do with d^* ?

- Critical dim. d^* : \exists 1-hom. global min. u with $\partial \Omega_u \notin C^{1,\alpha}$
- Prop 6.4: In \mathbb{R}^2 , homogeneous minimizer of form $\sqrt{\Lambda}(x\cdot v)_+$ $\hookrightarrow d^* \geq 3$
- De Silva, Jerison [DJ09]: singular global minimizer in \mathbb{R}^7 $\hookrightarrow d^* < 7$
- What to do with d^* ?

- Critical dim. d^* : \exists 1-hom. global min. u with $\partial \Omega_u \notin C^{1,\alpha}$
- Prop 6.4: In \mathbb{R}^2 , homogeneous minimizer of form $\sqrt{\Lambda}(x\cdot v)_+$ $\hookrightarrow d^*\geq 3$
- De Silva, Jerison [DJ09]: singular global minimizer in \mathbb{R}^7 $\hookrightarrow d^* < 7$
- What to do with d^* ?

- Critical dim. d^* : \exists 1-hom. global min. u with $\partial \Omega_u \notin C^{1,\alpha}$
- Prop 6.4: In \mathbb{R}^2 , homogeneous minimizer of form $\sqrt{\Lambda}(x\cdot v)_+$ $\hookrightarrow d^*>3$
- \bullet De Silva, Jerison [DJ09]: singular global minimizer in \mathbb{R}^7 $\hookrightarrow d^* \leq 7$
- What to do with d^* ?

- Critical dim. d^* : \exists 1-hom. global min. u with $\partial \Omega_u \notin C^{1,\alpha}$
- Prop 6.4: In \mathbb{R}^2 , homogeneous minimizer of form $\sqrt{\Lambda}(x\cdot v)_+$ $\hookrightarrow d^*\geq 3$
- \bullet De Silva, Jerison [DJ09]: singular global minimizer in \mathbb{R}^7 $\hookrightarrow d^* \leq 7$
- What to do with d^* ?

- $d < d^*$: $Sing(\partial \Omega_u) = \emptyset$
- $d = d^*$: $Sing(\partial \Omega_u)$ discrete, locally finite
- $\diamond d > d^*$: $\dim_{\mathcal{H}}(Sing(\partial \Omega_u)) = d d^*$

- singular points are rare
- in lower dimension FB always smooth

- $d < d^*$: $Sing(\partial \Omega_u) = \emptyset$
- $d = d^*$: $Sing(\partial \Omega_u)$ discrete, locally finite
- $d > d^*$: $\dim_{\mathcal{H}}(Sing(\partial \Omega_u)) = d d^*$

- singular points are rare
- in lower dimension FB always smooth

- $d < d^*$: $Sing(\partial \Omega_u) = \emptyset$
- $d = d^*$: $Sing(\partial \Omega_u)$ discrete, locally finite
- $d > d^*$: $\dim_{\mathcal{H}}(Sing(\partial \Omega_u)) = d d^*$

- singular points are rare
- in lower dimension FB always smooth

- $d < d^*$: $Sing(\partial \Omega_u) = \emptyset$
- $d = d^*$: $Sing(\partial \Omega_u)$ discrete, locally finite
- $d > d^*$: $\dim_{\mathcal{H}}(Sing(\partial \Omega_u)) = d d^*$

- singular points are rare
- in lower dimension FB always smooth

- But what exactly is $d^* \in [3, 7]$?
- Caffarelli, Jerison, Kenig [CJK04]: $d^* \geq 4$ \hookrightarrow mean curvature of $\partial \Omega_u \subset \mathbb{R}^3$
- Jerison, Savin [JS14]: $d^* \ge 5$ $\hookrightarrow d^* \in [5,7]$ \leadsto open problem \hookrightarrow for minimal surfaces " $d^* = 7$ "

- But what exactly is $d^* \in [3,7]$?
- Caffarelli, Jerison, Kenig [CJK04]: $d^* \geq 4$ \hookrightarrow mean curvature of $\partial \Omega_u \subset \mathbb{R}^3$
- Jerison, Savin [JS14]: $d^* \ge 5$ $\hookrightarrow d^* \in [5,7]$ \leadsto open problem \hookrightarrow for minimal surfaces " $d^* = 7$ "

- But what exactly is $d^* \in [3,7]$?
- Caffarelli, Jerison, Kenig [CJK04]: $d^* \geq 4$ \hookrightarrow mean curvature of $\partial \Omega_u \subset \mathbb{R}^3$
- Jerison, Savin [JS14]: $d^* \ge 5$ $\hookrightarrow d^* \in [5,7] \longrightarrow$ open problem \hookrightarrow for minimal surfaces " $d^* = 7$ "

- But what exactly is $d^* \in [3,7]$?
- Caffarelli, Jerison, Kenig [CJK04]: $d^* \geq 4$ \hookrightarrow mean curvature of $\partial \Omega_u \subset \mathbb{R}^3$
- Jerison, Savin [JS14]: $d^* \ge 5$ $\hookrightarrow d^* \in [5,7]$ \longrightarrow open problem \hookrightarrow for minimal surfaces " $d^* = 7$ "

- But what exactly is $d^* \in [3, 7]$?
- Caffarelli, Jerison, Kenig [CJK04]: $d^* \geq 4$ \hookrightarrow mean curvature of $\partial \Omega_u \subset \mathbb{R}^3$
- Jerison, Savin [JS14]: $d^* \ge 5$ $\hookrightarrow d^* \in [5,7] \longrightarrow$ open problem \hookrightarrow for minimal surfaces " $d^* = 7$ "

- But what exactly is $d^* \in [3, 7]$?
- Caffarelli, Jerison, Kenig [CJK04]: $d^* \geq 4$ \hookrightarrow mean curvature of $\partial \Omega_u \subset \mathbb{R}^3$
- Jerison, Savin [JS14]: $d^* \geq 5$ $\hookrightarrow d^* \in [5,7] \longrightarrow$ open problem \hookrightarrow for minimal surfaces " $d^* = 7$ "

Conclusion

- Exposition of basic regularity theory
- Simplification and modification of some proofs in the literature
- Boundary regularity for continuous datum
- Boundary regularity for Hölder continuous datum
- \bullet New approach to lift $C^{1,\alpha}$ to C^{∞} regularity around regular FBP without the hodograph transform

Thank you for listening!

24 / 26

Conclusion

- Exposition of basic regularity theory
- Simplification and modification of some proofs in the literature
- Boundary regularity for continuous datum
- Boundary regularity for Hölder continuous datum
- \bullet New approach to lift $C^{1,\alpha}$ to C^{∞} regularity around regular FBP without the hodograph transform

References

[CJK04]	Luis Caffarelli, David Jerison, and Carlos Kenig. "Global energy minimizers for free boundary problems and full
	regularity in three dimensions". Contemp. Math. 350 (2004), pp. 83–97.

- [DJ09] Daniela De Silva and David Jerison. "A singular energy minimizing free boundary". Journal für die reine und angewandte Mathematik 635 (2009), pp. 1–21.
- [ESV22] Nick Edelen, Luca Spolaor, and Bozhidar Velichkov. "A strong maximum principle for minimizers of the one-phase Bernoulli problem". arXiv:2205.00401 (2022).
- [JS14] David Jerison and Ovidiu Savin. "Some remarks on stability of cones for the one-phase free boundary problem". Geometric and Functional Analysis 25 (2014), pp. 1240–1257.
- [KN77] David Kinderlehrer and Louis Nirenberg. "Regularity in free boundary problems". Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze 4 (1977), pp. 373–391.
- [TTV22] Susanna Terracini, Giorgio Tortone, and Stefano Vita. "Higher order boundary Harnack principle via degenerate equations". arXiv:2301.00227 (2022).
- [Wei99] Georg Weiss. "Partial regularity for a minimum problem with free boundary". The Journal of Geometric Analysis 9 (1999), pp. 317–326.