Chapitre 10: Ensembles usuels de nombres

1 Nombres entiers, décimaux et rationnels

Définition

- On appelle ensemble des entiers naturels, l'ensemble $\mathbb{N} = \{0; 1; 2; ...\}$
- On appelle ensemble des entiers relatifs l'ensemble ℤ constitué des entiers naturels et de leurs opposés.
- On appelle nombre décimal tout nombre de la forme $\frac{p}{10^n}$, avec $p \in \mathbb{Z}$ et $n \in \mathbb{N}$. On note \mathbb{D} l'ensemble des nombres décimaux.
- On appelle nombre rationnel tout quotient d'entiers relatifs, c'est-à-dire tout nombre de la forme $\frac{p}{q}$, avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$. On note \mathbb{Q} l'ensemble des nombres rationnels. Un réel qui n'est pas rationnel est dit irrationnel.

Remarque:

- On a $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q}$. Chacune des inclusions étant strictes.
- Les inclusions sont strictes. Un nombre rationnel n'est pas forcément décimal : $\frac{1}{3}$ par exemple ne peut s'écrire sous la forme $\frac{p}{10^n}$. Si c'était le cas, on aurait $3p = 10^n$, donc 3 divise 10^n ... absurde!

2 Nombres réels

Habituellement, l'ensemble des nombres réels, noté $\mathbb R$ se représente géométriquement à l'aide d'un axe $\mathscr D$, appelé droite numérique, muni d'une origine 0 et dirigé par un vecteur unitaire \overrightarrow{i} . Ainsi, pour tout réel x, il existe un unique point M de $\mathscr D$ tel que $\overrightarrow{OM} = x \ \overrightarrow{i}$.

Rappel: \mathbb{R} est muni d'une relation de comparaison \leq qui est dite relation d'ordre total.

Définition

Soit A une partie de \mathbb{R} . On dit que :

- $M \in \mathbb{R}$ est un majorant de A si : $\forall a \in A$, $a \leq M$.
- $m \in \mathbb{R}$ un minorant de A si : $\forall a \in A, m \le a$.
- $M \in \mathbb{R}$ est le plus grand élément de A (ou maximum) si : $M \in A$ et M est un majorant de A. Un tel élément est unique, noté $M = \max(A)$.
- $m \in \mathbb{R}$ est le plus petit élément de A (ou minimum) si : $m \in A$ et m est un minorant de A. Un tel élément est unique, noté $m = \min(A)$.

2.1 Borne supérieure, borne inférieure

Définition

Soit A une partie de \mathbb{R} .

- On appelle **borne supérieure de** *A* le plus petit, s'il existe, des majorants de *A*. Elle est alors unique et on le note sup(*A*).
- On appelle **borne inférieure de** *A* le plus grand, s'il existe, des minorants de *A*. Elle est alors unique et on le note inf(*A*) .

Remarque:

- L'unicité de la borne supérieure (resp. inférieure), lorsqu'elle existe, est une conséquence de l'unicité du plus petit (resp. plus grand) élément d'un ensemble.
- <u>M</u> Contrairement au plus petit élément ou au plus grand élément, la borne inférieure ou supérieure d'un ensemble n'appartient pas nécessairement à l'ensemble!

• Une partie peut admettre une borne supérieure sans avoir de plus grand élément.

Inversement, si A possède un plus grand élément, alors A admet une borne supérieure et on a : max(A) = sup(A). En effet :

Supposons que A admette un maximum M.

- *M* est un majorant de *A*;
- si M' est un majorant de A, alors pour tout $b \in A$, $b \le M'$. Comme $M \in A$, on a $M \le M'$.

Donc A admet une borne supérieure et $\sup(A) = a$.

De même, si A possède un plus petit élément (i.e un minimum), on a : min A = inf A.

Exemple:

Compléter:

	min(A)	inf(A)	max(A)	sup(A)
$A = \{1\}$	1	1	1	1
$A = \{2, 4\}$	2	2	4	4
A =]1,5[×	1	×	5
A = [-5,0[-5	-5	×	0
$A = \{1/n n \in \mathbb{N}^*\}$	×	0	1	1

- ▶ Direct
- ▶ Direct
- ▶ L'ensemble des majorants de] 1,5[est [5, $+\infty$ [. Cet ensemble admet un plus petit élément 5 donc] 1,5[admet une borne supérieure 5.

De plus, si A admet un plus grand élément M. Alors, $M \in]-1,5[$ et : $\forall a \in A, \ a < M.$ Or, $-1 < M < \frac{M+5}{2} < 5$ donc $\frac{M+5}{2} \in A$ et $M < \frac{M+5}{2}$. Absurde.

Ainsi, A n'admet pas de plus grand élément.

On procède de même pour la borne inférieure.

Théorème Propriété de la borne supérieure

Toute partie non vide et majorée de ℝ admet une borne supérieure.

Toute partie non vide et minorée de \mathbb{R} admet une borne inférieure.

Théorème Caractérisation de la borne supérieure

Soient A une partie non vide et majorée de \mathbb{R} et $s \in \mathbb{R}$.

$$s = \sup(A) \Leftrightarrow \left\{ \begin{array}{l} s \text{ est un majorant de } A : \forall x \in A, \ x \leq s \\ \text{pour tout } M \text{ majorant de } A, s \leq M \end{array} \right.$$

$$\Leftrightarrow \left\{ \begin{array}{l} s \text{ est un majorant de } A : \forall x \in A, \ x \leq s \\ \text{pour tout } b < s, b \text{ n'est pas un majorant de } A \right.$$

$$\Leftrightarrow \left\{ \begin{array}{l} s \text{ est un majorant de } A : \forall x \in A, \ x \leq s \\ \forall \epsilon > 0, \ \exists x \in A \text{ tel que } s - \epsilon < x \end{array} \right.$$

Démonstration. • Supposons que $s = \sup(A)$.

Alors *s* est un majorant de *A*.

Soit $\epsilon > 0$, comme $s - \epsilon < s$, $s - \epsilon$ ne majore pas A (sinon on aurait $s - \epsilon \ge s$ car s est le plus petit des majorants de A). Ainsi, il existe $x \in A$ tel que $s - \epsilon < x$.

• Réciproquement, supposons que s majore A et que : $\forall \epsilon > 0$, $\exists x \in A$ tel que $s - \epsilon < x$.

Soit M un majorant de A.

Par l'absurde, supposons s > M. Posons $\epsilon = s - M$. On a $\epsilon > 0$. Ainsi, par hypothèse, il existe $x \in A$ tel que $s - \epsilon < x$ donc M < x. Absurde car M majore A! Ainsi $s \le M$.

s est donc le plus petit des majorants de A, donc $s = \sup(A)$.

Théorème Caractérisation de la borne inférieure

Soit *B* une partie minorée non vide et $i \in \mathbb{R}$.

```
i = \inf(B) \Leftrightarrow \left\{ \begin{array}{l} i \text{ est un minorant de } B : \forall x \in B, \ x \geq i \\ \text{ pour tout } m \text{ minorant de } B, m \leq i \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} i \text{ est un minorant de } B : \forall x \in B, \ x \geq i \\ \text{ pour tout } a > i, a \text{ n'est pas un minorant de } B \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} i \text{ est un minorant de } B : \forall x \in B, \ x \geq i \\ \forall \epsilon > 0, \ \exists x \in B \text{ tel que } x < i + \epsilon \end{array} \right.
```

Démonstration. Preuve similaire à celle précédente.

Méthode:

 \blacktriangleright Pour montrer qu'une partie de $\mathbb R$ admet une borne sup (resp. inf), on montrera qu'elle est non vide et majorée (resp. minorée).

- ▶ Pour montrer qu'un réel $s = \sup(A)$ (resp. $i = \inf(A)$), il faut montrer que :
 - s est un majorant de A (resp. i est un minorant de A).
 - *s* est le plus petit des majorants de *A* (resp. *i* est le plus grand des minorants).

Exemple : Soient A et B deux parties majorées non vides de \mathbb{R} . On note $A+B=\{a+b; (a,b)\in A\times B\}$.

A et *B* sont des parties non vides de \mathbb{R} donc admettent des bornes supérieures.

▶ Montrons que A + B admet une borne sup.

Comme A et B sont non vides, A + B est non vide.

Soit $x \in A + B$, il existe $(a, b) \in A \times B$ tels que x = a + b. De plus, $a \le \sup(A)$ et $b \le \sup(B)$ donc $x \le \sup(A) + \sup(B)$. Ainsi : $\forall x \in A + B$, $x \le \sup(A) + \sup(B)$.

Donc A + B est majorée par $\sup(A) + \sup(B)$, donc admet une borne supérieure.

- ► Montrons que $\sup(A + B) = \sup A + \sup B$.
 - On a vu que $\sup(A) + \sup(B)$ est un majorant de A + B.
 - Montrons que c'est le plus petit des majorants de A+B: Soit $\epsilon > 0$. Par caractérisation de la borne supérieure, il existe $x \in A$ tel que $\sup(A) - \frac{\epsilon}{2} < x$ et il existe $y \in B$ tel que $\sup(B) - \frac{\epsilon}{2} < y$. Alors $\left(\sup(A) + \sup(B)\right) - \epsilon < x + y$, avec $x + y \in A + B$. Par caractérisation de la borne supérieure, on obtient $\sup(A+B) = \sup(A) + \sup(B)$ (on a déjà montré que $\sup(A) + \sup(B)$ majore A+B.)

Méthode:

Soit *A* une partie non vide et majorée de \mathbb{R} . Soit $x \in \mathbb{R}$.

Pour montrer que:

- $x \le \sup(A)$, on essaie généralement de prouver que $x \in A$.
- Pour prouver que sup(*A*) ≤ *x*. On essaie généralement de prouver que *x* majore *A* donc est supérieur au plus petit des majorants.

(Voir exercice 8 du TD)

2.2 Caractérisation des intervalles de \mathbb{R}

Définition : Intervalles de \mathbb{R}

On appelle intervalle de \mathbb{R} toute partie de \mathbb{R} ayant l'une des formes suivantes :

- $[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}$ avec $(a, b) \in \mathbb{R}^2$ et $a \le b$ (intervalle fermé et borné ou segment);
- $[a, +\infty[= \{x \in \mathbb{R} \mid a \le x\} \text{ avec } a \in \mathbb{R}]$ (intervalle fermé non-majoré);
- $]-\infty, b] = \{x \in \mathbb{R} \mid x \le b\} \text{ avec } b \in \mathbb{R}$ (intervalle fermé non-minoré);
-] $a, b = \{x \in \mathbb{R} \mid a < x < b\}$ avec $(a, b) \in \mathbb{R}^2$ et a < b (intervalle borné ouvert);
-] $-\infty$, $b = \{x \in \mathbb{R} \mid x < b\}$ avec $b \in \mathbb{R}$ (intervalle ouvert non-minoré);
-] a, $+\infty$ [= { $x \in \mathbb{R} \mid a < x$ } avec $a \in \mathbb{R}$ (intervalle ouvert non-majoré);
- $[a, b] = \{x \in \mathbb{R} \mid a \le x < b\}$ avec $(a, b) \in \mathbb{R}^2$ et a < b (intervalle borné semi-ouvert à droite);
- $]a, b] = \{x \in \mathbb{R} \mid a < x \le b\}$ avec $(a, b) \in \mathbb{R}^2$ et a < b (intervalle borné semi-ouvert à gauche);
- l'ensemble vide Ø
- $\mathbb{R} =]-\infty, +\infty[$ (intervalle non-majoré et non-minoré)

Proposition Caractérisation des intervalles

Soit I une partie de \mathbb{R} . Alors :

I est un intervalle si et seulement si pour tout $(a, b) \in I^2$, $[a, b] \subset I$

Démonstration. \triangleright Soit $c, d \in \mathbb{R}$ avec $c \le d$. Posons I = [c, d].

Soit $a, b \in [c, d]$ tels que $a \le b$. Soit $x \in [a, b]$, on a : $c \le a \le x \le b \le d$ donc $x \in [c, d]$. D'où $[a, b] \subset [c, d]$. On procède de même pour les types d'intervalles.

- ▶ Soit *I* une partie de \mathbb{R} telle que : $\forall (\alpha, \beta) \in I^2$, $[\alpha, \beta] \subset I$.
 - Si $I = \emptyset$, I est un intervalle.
 - Supposons désormais $I \neq \emptyset$. Soit $a \in I$.
 - Si *I* est majorée alors *I* ∩ [*a*, +∞[est majorée car *I* ∩ [*a*, +∞[⊂ *I* donc *I* ∩ [*a*, +∞[est une partie non vide (*a* ∈ *I* ∩ [*a*, +∞[) et majorée donc admet une borne supérieure que l'on note *b*.
 - Montrons que $[a, b] \subset I \cap [a, +\infty]$ si a < b.

Soit $x \in [a, b[$ alors x n'est pas un majorant car b est le plus petit des majorants. Ainsi, il existe $z \in I \cap [a, +\infty[$ tel que x < z.

On a alors $(a, z) \in I^2$ donc $[a, z] \subset I$.

Or, $x \in [a, z]$ donc $x \in I$. De plus, $x \in [a, +\infty[$ donc $x \in I \cap [a, +\infty[$.

Ainsi, $x \in I \cap [a, +\infty[$.

• Montrons que $I \cap [a, +\infty[\subset [a, b]]$.

Comme $b = \sup (I \cap [a, +\infty[), \text{ on a : } \forall x \in I \cap [a, +\infty[, x \le b.$

De plus : $\forall x \in I \cap [a, +\infty[, x \in [a, +\infty[. Donc : \forall x \in I \cap [a, +\infty[, x \in [a, b].$

Ainsi $I \cap [a, +\infty[= [a, b[$ ou $I \cap [a, +\infty[= [a, b[$.

- Si I est non majorée alors $I \cap [a, +\infty[$ est non-majorée.
 - On sait déjà que $I \cap [a, +\infty[\subset [a, +\infty[$.
 - Soit $x \in [a, +\infty[$. x n'est pas un majorant de $I \cap [a, +\infty[$ donc il existe $y \in I \cap [a, +\infty[$ tel que x < y. Or, $(a, y) \in I^2$ donc $[a, y] \subset I$. Or, $x \in [a, y]$ donc $x \in I$. D'où $x \in I \cap [a, +\infty[$.

Ainsi, $I \cap [a, +\infty[= [a, +\infty[$.

- De la même manière, si *I* est minorée alors *I*∩] −∞, *a*] est non vide (*a* ∈ *I*∩] −∞, *a*]) et minorée donc admet une borne inférieure que l'on note *c*. On a :
 - $]c,a] \subset I \cap]-\infty,a]$ (si c < a).
 - $I \cap]-\infty, a] \subset [c, a]$

donc $I \cap]-\infty$, a] = [c, a] ou $I \cap]-\infty$, a] = [c, a]

- si *I* est non-minorée alors $I \cap]-\infty, a] =]-\infty, a]$.
- Au final, comme $I = (I \cap] \infty, a]) \cup (I \cap [a, +\infty[))$. On a:
 - Si I est borné (majoré et minoré) alors (en gardant les notations précédentes), on a :

$$I = [c, a] \cup [a, b] = [c, b]$$

ou $I = [c, a] \cup [a, b] = [c, b]$
ou $I = [c, a] \cup [a, b] = [c, b]$
ou $I = [c, a] \cup [a, b] = [c, b]$

• Si I est majorée non-minorée, on a :

$$I =]-\infty, a] \cup [a, b] =]-\infty, b]$$

ou $I =]-\infty, a] \cup [a, b[=]-\infty, b[$

• Si I est minorée non-majorée, on a :

$$I = [c, a] \cup [a, +\infty[= [c, +\infty[$$
 ou $I =]c, a] \cup [a, +\infty[= []c, +\infty[$

• Si I est non-minorée et non-majorée , on a :

$$I =]-\infty, a] \cup [a, +\infty[=]-\infty, +\infty[=\mathbb{R}$$

2.3 Partie entière

Définition

Soit $x \in \mathbb{R}$ On appelle partie entière de x le plus grand entier relatif inférieur ou égal à x. On le note $\lfloor x \rfloor$.

Proposition

Soit $x \in \mathbb{R}$, soit $n \in \mathbb{Z}$.

$$n = |x| \iff n \le x < n + 1.$$

Démonstration. • Si $\lfloor x \rfloor = n$ alors $n \le x$. De plus, n + 1 > n donc n + 1 > x.

Si n ≤ x < n + 1 alors n ≤ x.
De plus, soit p ∈ Z tel que p ≤ x alors p < n + 1 donc p ≤ n car p, n ∈ Z.
Ainsi, n est le plus grand entier inférieur ou égal à x donc n = [x].

Exemple: $[1.2] = 1, [5] = 5, [-2] = -2, [\pi] = 3$ $\land [-2.3] = -3, [-\pi] = -4$

Proposition

La fonction définie sur \mathbb{R} qui $x \mapsto \lfloor x \rfloor$ est croissante.

Démonstration. soient $x, y \in \mathbb{R}$. Supposons $x \le y$. D'après la caractérisation de la partie entière, on a : $[x] \le x < [x] + 1$ et $[y] \le y < [y] + 1$, donc $[x] \le x \le y < [y] + 1$. Ainsi, [x] < [y] + 1 et comme ce sont des entiers, $[x] \le [y]$. □

Remarque : Pour montrer une inégalité faisant intervenir des parties entières, on utilise les inégalités de définitions des parties entières, et, lorsqu'on est ramené à des inégalités strictes entre entiers, on peut enlever 1 au membre le plus grand en transformant le strict en large.

Proposition

$$\forall n \in \mathbb{Z}, \ \forall x \in \mathbb{R}, \ \lfloor x + n \rfloor = \lfloor x \rfloor + n$$

Démonstration. Soit $n \in \mathbb{Z}$, soit $x \in \mathbb{R}$.

Par caractérisation de la partie entière, on a : $\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$

Ainsi : $\lfloor x \rfloor + n \le x + n < \lfloor x \rfloor + n + 1$ avec $\lfloor x \rfloor + n \in \mathbb{Z}$. Ainsi, toujours par caractérisation de la partie entière, $\lfloor x + n \rfloor = \lfloor x \rfloor + n$. \square

Remarque: $\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor$ n'est pas vrai pour tout $x, y \in \mathbb{R}$.

Contre-exemple : x = 0.3, y = 0.8, on a $\lfloor 1.1 \rfloor = 1$ alors que $\lfloor 0.7 \rfloor + \lfloor 0.3 \rfloor = 0$.

De même, l'égalité suivante $\lfloor nx \rfloor = n \lfloor x \rfloor$ n'est pas vrai dans le cas général :

Contre-exemple : x = 0.7 et n = 2, on a $\lfloor 1.4 \rfloor = 1$ alors que $2 \lfloor 0.7 \rfloor = 0$.

2.4 Approximations décimales

Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$. On a :

$$\lfloor 10^n x \rfloor \le 10^n x \le \lfloor 10^n x \rfloor + 1$$

donc

$$\frac{\lfloor 10^n x \rfloor}{10^n} \le x \le \frac{\lfloor 10^n x \rfloor + 1}{10^n}.$$

Définition

Le nombre décimal $\frac{\lfloor 10^n x \rfloor}{10^n}$ est appelé approximation décimale par défaut de x à la précision 10^{-n} .

Le nombre $\frac{\lfloor 10^n x \rfloor + 1}{10^n}$ est appelé approximation décimale par excès de x à la précision 10^{-n} .

Exemple: $1,414 \le \sqrt{2} < 1,415 \text{ à } 10^{-3} \text{ près}, 3,1415 \le \pi < 3,1416 \text{ à } 10^{-4} \text{ près}.$

Remarque : Soit $x \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, notons $u_n = \frac{\lfloor 10^n x \rfloor}{10^n}$. On a alors $0 \le x - u_n \le 10^{-n}$ pour tout $n \in \mathbb{N}$. Par théorème de convergence par encadrement $\lim_{n \to +\infty} (x - u_n) = 0$ donc $\lim_{n \to +\infty} u_n = x$. On a ainsi obtenu une suite (u_n) de nombres décimaux (et donc de rationnels) qui tend vers $x \in \mathbb{R}$.