

Outline

- Background Introduction
 - IREE
 - Andes Vector Processor Families
- Implementation and Innovation
- Experiment Results
- Future Works

IREE, MLIR-based Compiler + Runtime

Andes Vector Processor Families

AX25-V100 is adopted in Meta's training and Inference Accelerator (MTIA) v1.

AX47MPV*

more features

AX45MPV

Integrated Matrix Ext. (IME)

8-core cluster

16-core cluster with private L1/L2

HVM (High-speed Vector Memory) Interface

AX25-V100

NX27V

ACE for RVV

ACE (Andes Automated Custom Extension[™])

int4~64, fp16~64; bf16 (conv.)

+bf16 (full arithmetic)

+fp8

VLEN: 128, 256, 512

VLEN: 128, 256, 512,1024

+2048

RVV 0.8

RVV 1.0

5-stage single-issue

8-stage dual-issue with shared cache for multicore

Subject to change without notice copyright © 2021-2024 Andes Technology

AX45MPV VPU Features

- Dual Issue/Dispatch, Out-of-order execution
- Multiple Vector Functional Units (VFUs) operating independently and simultaneously
- Up to 5 DLEN results are generated per cycle
- Support precise exception
- (optional) ACE-RVV

VLEN/DLEN/BIU Combinations			
VLEN	SIMD (DLEN)	BIU(AXI)	
1024	1024	512/256/128	
1024	512	512/256/128	
512	512	512/256/128	
512	256	256/128	
256	256	256/128	
256	128	128	
128	128	128	

Implementation

Andes Vector Processors Computation Information IRs

MLIR
Transformation
Libraries

Transform library controls:

- Size of tiling level
- Size of Cache and Register Tiling

Innovation: Subgraph Similarity Analysis

■ Problem

- The number of tuning iterations usually must increase with the number of subgraphs.
- However, increasing the number of tuning iteration is time-consuming.

model		Number of subgraphs	Speedup with 20000 iterations
Mobilenet fp32		Around 30	2.1~2.24
Mobilebert	W/O similarity analysis	Around 600	1.2
	W/ similarity analysis	Around 60 categories	2.1~2.7

■ Observation:

Similar subgraphs can share the same transformation library.

■ Solution:

• Using runtime profiling and static computation information to group 600 subgraphs into around 60 categories so that subgraphs in the same category can be tuned together.

Experiment Environment

- IREE commit: 'afd7cab' with Andes patches.
 - With upstream LLVM package.

■ Models

- Mobilenet v1 int8 and fp32 (Image classification for mobile device)
- Mobilebert int8 (Language model for mobile device)

■ Search algorithm

Genetic evolution, 20000 iterations.

■ RISC-V Vector Processors on FPGA

- Andes AX45MPV (one core, DLEN/SIMD width = VLEN, BIU = 512 bits)
 - -VLEN: 512 and 1024
 - -L2\$: 512KB and 8MB

Mobilenet v1 INT8, Speedup of RVV over Pure Scalar

Mobilenet v1 FP32, Speedup of RVV over Pure Scalar

Speedup of AutoIREE W/ RVV over IREE W/ RVV

Future Works

- **■** Complex targets
 - Multicore (AX45MPV)
 - Heterogeneous computing (Andes QiLai SoC, AX45MP + NX27V)
- **■** Reduce Compilation/Tuning Time
 - Heuristic early stop
 - Al-based cost model to predict cycle

