

Universidad Austral de Chile

Conocimiento y Naturaleza

Herramientas estadísticas aplicada a la genómica

BIMI431 - Estadística y Genómica

Diego Halabi, DDS, PhD - Laboratorio de Cronobiología del Desarrollo - 24/09/2020

Manejo de Datos (Data Science)

Estadística

Describir

Resumir

Organizar

Inferir

Estadística en investigación

Variables

Cualquier elemento susceptible de ser medido. También los denominaremos vectores.

Exhaustivas; ningún valor puede quedar fuera

Excluyentes; ningún valor puede ser incluido en 2 o más categorías

Categóricas

Variable	Ejemplo	
Dicotómica (logical)	"True", "False"	
Nominal (character)	"amarillo"	
Factor	"Control", "Tratamiento 1", "Tratamiento 2"	
Ordinal	Escala likert	

Numéricas

Variable	Ejemplo	
Discretas (integer)	100, 200, 300	
Continuas (numeric)	1.5, 35.2, 4.03	

Manejo de datos

Recolección de datos

Importación y ordenamiento de los datos (tabulación)

Estructura de los datos

Vector

1 columna de datos

1 tipo de variable

Matriz

múltiples columnas de datos

1 tipo de variable

Data frame

múltiples columnas de datos

múltiples tipos de variable

Tabulación

Variable 1	Variable 2	Variable 3	Variable 4	Variable 5
А	6.67	32	1	0
А	8.43	40	2	0
В	6.01	31	0	0
Α	7.78	35	0	0
Α	7.89	36	1	1
В	6.41	31	2	0
В	8.90	41	0	0
В	5.56	30	-	О
А	7.33	33	1	1
А	8.21	39	0	0
В	7.09	34	0	0
В	6.34	31	1	1
А	8.17	42	2	1

Visualización de los datos

Estadística descriptiva

Resumir Medidas de tendencia central

Describir Medidas de dispersión

Presentar Tablas y gráficos

Estadística descriptiva

Se presenta la información como números o gráficos

Números: tablas

Figuras: Gráficos

Números

Medidas de tendencia central; media, mediana, moda

Medidas de **dispersión**; desviación estándar, varianza, rango, recorrido intercuartil

Inferencia estadística

Hipótesis nula

Sentencia afirmativa, **cuantificable**; diferencia de medias, tasas, etc.

Es aceptable que no esté implícita en el texto; puede deducirse del objetivo.

Ejemplo:

"No hay diferencias estadísticamente significativas en el valor medio de HbA1c entre tratamiento A v/s tratamiento B".

Metodología

Resultados

Realidad

Verdad

Error aleatorio

Error sistemático

Metodología

Resultados

Realidad

Verdad

Resultados

	No diferencias (acepto H ₀)	Diferencias (rechazo H ₀)
No diferencias	No error	Error tipo I
Diferencias	Error tipo II	No error

Verdad

Test estadístico

Prueba de significación

Análisis estadístico

¿p > 0.05?

Elección del test estadístico


```
• • •
```

> str(df)

'data.frame': 30 obs. of 2 variables:

\$ Group : Factor w/ 2 levels "Control", "Melatonin": 1 1 1 1 1 1 1 1 1 1 ...

\$ Proliferation: num 2.3 3.35 4.16 2.81 3.09 ...

> shapiro.test(df\$Proliferation)

Shapiro-Wilk normality test

data: df\$Proliferation
W = 0.9838, p-value = 0.915


```
• • •
```


'data.frame': 60 obs. of 2 variables:

\$ Group : Factor w/ 4 levels "Control", "Mel 0.1nM",..: 1 1 1 1 1 1 1 1 1 1 ...

\$ Proliferation: num 3.21 3.09 2.45 4.19 3.6 ...


```
> shapiro.test(df$Proliferation)
   Shapiro-Wilk normality test
data: df$Proliferation
W = 0.98079, p-value = 0.4631
> leveneTest(df$Proliferation~df$Group, center = mean)
Levenes Test Homogeneity of Variance (center = mean)
     Df F value Pr(>F)
group 3 0.2246 0.8789
     56
```



```
> fit1 <- aov(df$Proliferation~df$Group)</pre>
> summary(fit1)
           Df Sum Sq Mean Sq F value Pr(>F)
df$Group 3 7.42 2.473 2.304 0.0867.
Residuals 56 60.11 1.073
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> TukeyHSD(fit1)
 Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = df$Proliferation ~ df$Group)
$`df$Group`
                        diff
                                     lwr
                                              upr
                                                      p adj
Mel 0.1nM-Control 0.22916536 -0.77252460 1.230855 0.9298237
Mel 1nM-Control 0.28250133 -0.71918862 1.284191 0.8776541
Mel 10nM-Control 0.94481093 -0.05687902 1.946501 0.0712444
Mel 1nM-Mel 0.1nM 0.05333597 -0.94835398 1.055026 0.9989879
Mel 10nM-Mel 0.1nM 0.71564558 -0.28604438 1.717336 0.2432335
Mel 10nM-Mel 1nM 0.66230960 -0.33938035 1.664000 0.3077987
```


Regresión lineal simple

$$Y = b + mX$$

$$Y \approx \beta O + \beta 1X$$

Regresión lineal simple

Sales $\approx 7.0325 + 0.0475X$

	Coefficient	Std. error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

¿Cómo evaluamos la exactitud (accuracy) del modelo?

R² Statistic: Qué porcentaje de la varianza es explicada con los datos del modelo.

Regresión múltiple

$$Y \approx \beta O + \beta 1 X + \beta 2 X + ...$$

Regresión logística

Respuesta binaria

$$OR = \frac{0.7 / 0.3}{0.3 / 0.7} = 8$$

Hay diferencias, pero no son significativas ¿existe algún error?

Potencia: 45% ¿Qué error podría estar cometiendo?