MATHEMATICAL FOUNDATIONS OF DATA SCIENCE

(CS6660)

M. TECH. IN DATA SCIENCES

IIT HYDERABAD

Assignment-1 (Linear Algebra)

Generate a Random Graph.

□ How to generate?

- For each possible edge, generate a random number p. If $p \le \tau$, add the edge to the graph. Else, do not add the edge to the graph.
- Note: τ is a parameter of the graph generation algorithm. Its value remains unchanged throughout the graph generation process.
- □ In the adjacency matrix, set diagonal entries to zeros.

Task-1

- □ Fix a value of $\tau \le 0.2$. Let G_n be a random directed graph of n nodes, generated using the procedure discussed in the previous slide, with this value of τ . Let A_n be the adjacency matrix. Use n=50,100,200.
- □ Find A_n^2 , A_n^3 , A_n^4 , A_n^5 .
- \square What do the values in A_n^k indicate?
- □ For each A_n^k , plot the histogram of values. There should be one plot for each A_n^k . What do the histograms tell you?

Task-2

- □ Set $\tau' = 2\tau$. Generate 3 more graphs with n = 50, 100 and 200 nodes. Let these adjacency matrices be B_n .
- \square Find B_n^2 , B_n^3 .
- \square Plot the histograms for B_n^2 , B_n^3 for each n.
- □ How do A_n^2 , A_n^3 compare with B_n^2 , B_n^3 ? What does it tell you?
- Do you have any other observations from the plots?

Task-3

- \square Consider again the Adjacency Matrix A_n .
- \square For each A_n^k computed earlier, change the non-zero values in it to 1.
- \square Set $X_n = A_n$
- Compute the matrix $X_n^2 = X_n \oplus A_n^2$. Here, \oplus is an elementwise LOGICAL-OR operator. I.e., If $C = A \oplus B$ for Boolean matrices A and B, then $C_{ij} = A_{ij}$ LOGICAL-OR B_{ij} .
- \square Compute the matrix $X_n^3 = X_n^2 \oplus A_n^3$
- \square Compute the matrix $X_n^4 = X_n^3 \oplus A_n^4$
- \square Compute the matrix $X_n^5 = X_n^4 \oplus A_n^5$
- □ Plot a graph showing (number of 1s in X_n^k)-vs-k.
- What observations can you make from the graph?
- \square Suppose for a particular integer y, all entries in $X_n^{\mathcal{Y}}$ are 1. What does it indicate?

Submission

- Submit your code. One function/module for each of the following functionalities have to be submitted:
 - Graph generator
 - Function that accepts the adjacency matrix A, an integer k (and any other parameters if needed) as input and writes to file the matrices A^2 , ..., A^k (one matrix to one file) [as given in task-1]
 - Function that accepts the adjacency matrix A, an integer k (and any other parameters if needed) as input and writes to file the matrices $X^2, ..., X^k$ (one matrix to one file). Refer to Task-3 [Slide-5] for details of this computation.
- You may code in any language of your choice.
- You may use any plotting tool of your choice.

Submission

- Adjacency matrices A_{50} , A_{100} , A_{200} , B_{50} , B_{100} , B_{200} each in a separate text file. Values in the row can be space-separated/comma-separated. Keep the filename extension as .txt.
- A report. The report should contain your graphs and answers to the questions asked in different tasks. If you want to include any other point/observation that you may have made by looking at the results, feel free to include that. Make sure to mark your name and roll number in the report.
- □ Zip together the code files, adjacency matrix files and the report. Name the zip file as <your-roll-no>.zip.
- □ Department plagiarism policy: https://cse.iith.ac.in/?q=node/254