3 Principes fondamentaux de la relativité générale

3.1 Théorie newtonienne de la gravitation

Newton ne cherche pas à expliquer le mécanisme de la gravité : il donne simplement une formule.

Le concept de champ gravitationnel nait naturellement de le relativité restraint car la force ne peut pas être instantanée. On a besoin d'un champ pour *contenir* la quantité de mouvement et l'énergie pendant un certain temps.

$$\mathbf{F}(\mathbf{r}) = m \underbrace{\mathbf{g}(\mathbf{r})}_{\text{champ gravitationnel}}$$

$$\mathbf{g}(\mathbf{r}) = -G \sum_{i} \frac{m_{i}}{|\mathbf{r} - \mathbf{r}_{i}|^{3}} (\mathbf{r} - \mathbf{r}_{i})$$

$$\nabla \cdot \mathbf{g} = -4\pi G$$
 $\rho(\mathbf{r})$ densité de masse

$$\mathbf{g}(\mathbf{r}) = -\nabla \Phi$$

$$\Phi = 4\pi G\rho$$

$$\Phi(\mathbf{r}) = -G \int d^3 r' \frac{\rho(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

Unitées

$$E = [G] \frac{M^2}{L}$$

$$E = \frac{L^2}{T^2} M \xrightarrow{c=1} M$$

$$c = 1 \to L = T$$

On distingue les masses inertiel et gravitationnel

$$\mathbf{F}(\mathbf{r}) = m_{\text{grav}}\mathbf{g}(\mathbf{r}) = m_{\text{inert}}\mathbf{a}$$

Si $m_{\text{grav}} = m_{\text{inert}}$: $\mathbf{a} = \mathbf{g}$

Ce qui nous interesse est réellement le rapport $m_{\text{inert}}/m_{\text{grav}}$

L'expérience de Potvis vise a vérifier si cette masse est identique pour toutes substance.

Il utilise la force centrifuge, qui est une force inertiel pour comparer les rapport de masse. Il a été démontré que les deux sont pareils jusqu'à 10^{-9}

Récemment, un sonde français a démontré que c'est la même chose jusqu'à 10^{-15} .

Cette égalité est le principe d'équivalence faible

Il suggère qu'un force inertiel est in différentiable d'une force gravitationnelle qui est le principe d'équivalence faible

coordonnées de Rindler

$$x = \xi \cosh \theta$$
 $t = \xi \sinh \theta$

FIGURE 1 – Coordonnées de Rindler

Observateur à $\xi={\rm cst}$

$$u^i = \xi \dot{\theta} \left(\cosh \theta, \sinh \theta \right)$$

$$u^{i}u_{i} = 1 = \xi^{2}\dot{\theta}^{2}\underbrace{\left(\cosh^{2}\theta - \sinh^{2}\theta\right)}_{1}$$

$$\implies 1 = \xi \dot{\theta} \implies \dot{\theta} = \text{cst}$$
$$\theta = \xi \tau$$

$$a^i = \dot{\theta} \left(\sinh \theta, \cosh \theta \right)$$

$$a^i a_i = \frac{1}{\xi^2} \left(\sinh^2 - \cosh^2 \right) = -\frac{1}{\xi^2}$$

accélération propre $\frac{1}{\xi}$

Les coordonnées ne sont pas nécessaire en relativité générales et les problèmes peuvent être formulées comme des observateurs s'échangeant des signaux lumineux.

Tétrade

On peut toujours définir un base locale respectant le produit scalaire de Minkowski. qui différent de celle imposé par le système de coordonnées.

Coordonnées localement cartésiennes

On définit

$$x'^{p} = (x^{i} - x_{p}^{i}) + \frac{1}{2}\Gamma_{jk}^{i}(p)(x^{i} - x_{p}^{j})(x^{k} - x_{p}^{k})$$

$$\frac{\partial x'^{i}}{\partial x^{j}} = \delta_{i}^{j} + \Gamma_{jk}^{i}(p)(x^{k} - k_{p}^{k})$$

$$\frac{\partial^{2} x'^{i}}{\partial x^{i} \partial x^{k}} = \Gamma_{jk}^{i}(P)$$

$$\Gamma_{jk}^{\prime}{}^{i}(p) = \frac{\partial x'^{k}}{\partial x^{l}} o \frac{\mathrm{d}x'^{m}}{\mathrm{d}x^{i}} \frac{\partial x'^{n}}{\partial x^{j}} \Gamma_{mn}^{l}(P) - \frac{\partial x'^{k}}{\partial x^{i}} \frac{\partial x'^{n}}{\partial x^{j}} \frac{\partial^{2} x'^{k}}{\partial x^{m} \partial x^{n}}$$

$$= \dots = 0$$

L'équation de la géodésique au point P est donc simplement donnée par $\ddot{x}^i=0$