Business Understanding

Because of their weak or non-existent credit history, lending providers find it difficult to provide loans to customers. As a result, some customers take advantage of the situation by becoming defaulters. Assume you work for a consumer finance firm that specialises in making different sorts of loans to urban residents. To analyse the patterns in the data, you must employ EDA. This ensures that only applicants who are capable of repaying the loan are refused.

The bank's decision is accompanied with two types of risks:

- 1. If the applicant is likely to repay the loan, not approving it may result in a business loss for the firm.
- 2. If the applicant is likely to fail on the loan, approving it may result in a financial loss for the firm.

Data

The information below belongs to the loan application at the time of application. It has two scenarios:

- 1. The client having payment difficulties: he/she was more than X days late on at least one of the first Y payments of the loan in our sample.
- 2. Other cases: When the payment is made on time.

When a customer requests for a loan, the client/company has four options:

- 1. Approved: The Company has approved loan Application.
- 2. Cancelled: The client cancelled the application sometime during approval.
- 3. Refused: The company had rejected the loan.
- 4. Unused offer: Loan has been cancelled by the client but on different stages of the process.

Business Objectives

By identifying trends, this case study may determine whether to refuse a loan, reduce the loan amount, or lend (to riskier applicants) at a higher interest rate. This will prevent customers who can repay the loan from being denied. This case study aims to identify such applications using EDA.

In other words, the corporation needs to know the characteristics that strongly indicate loan default. This information may be used for portfolio and risk evaluation.

Exploratory Data Analysis

In [1]:

```
from IPython.display import display
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

<IPython.core.display.Javascript object>

Attribute Information

In [2]:

with pd.option_context('display.max_rows', None, 'display.max_columns', None, 'display.max_ columns_description = pd.read_csv("columns_description.csv", encoding="iso-8859-1") display(columns_description)

Unr	named: 0	Table	Row	Description	Special
0	1	application_data	SK_ID_CURR	ID of loan in our sample	NaN
1	2	application_data	TARGET	Target variable (1 - client with payment difficulties: he/she had late payment more than X days on at least one of the first Y installments of the loan in our sample, 0 - all other cases)	NaN
2	5	application_data	NAME_CONTRACT_TYPE	Identification if loan is cash or revolving	NaN
3	6	application_data	CODE_GENDER	Gender of the client	NaN
4	7	application_data	FLAG_OWN_CAR	Flag if the client owns a car	NaN

Load Data

In [3]:

```
application_df = pd.read_csv("application_data.csv")
application_df
```

Out[3]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR F
0	100002	1	Cash loans	М	N
1	100003	0	Cash loans	F	N
2	100004	0	Revolving loans	М	Υ
3	100006	0	Cash loans	F	N
4	100007	0	Cash loans	М	N
307506	456251	0	Cash loans	М	N
307507	456252	0	Cash loans	F	N
307508	456253	0	Cash loans	F	N
307509	456254	1	Cash loans	F	N
307510	456255	0	Cash loans	F	N

307511 rows × 122 columns

```
In [4]:
```

```
application_df.shape
```

Out[4]:

(307511, 122)

In [5]:

```
application_df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 307511 entries, 0 to 307510

Columns: 122 entries, SK_ID_CURR to AMT_REQ_CREDIT_BUREAU_YEAR

dtypes: float64(65), int64(41), object(16)

memory usage: 286.2+ MB

In [6]:

application_df.dtypes.value_counts()

Out[6]:

float64 65 int64 41 object 16 dtype: int64

In [7]:

application_df.describe()

Out[7]:

	SK_ID_CURR	TARGET	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AM.
count	307511.000000	307511.000000	307511.000000	3.075110e+05	3.075110e+05	307
mean	278180.518577	0.080729	0.417052	1.687979e+05	5.990260e+05	27
std	102790.175348	0.272419	0.722121	2.371231e+05	4.024908e+05	14
min	100002.000000	0.000000	0.000000	2.565000e+04	4.500000e+04	1
25%	189145.500000	0.000000	0.000000	1.125000e+05	2.700000e+05	16
50%	278202.000000	0.000000	0.000000	1.471500e+05	5.135310e+05	24
75%	367142.500000	0.000000	1.000000	2.025000e+05	8.086500e+05	34
max	456255.000000	1.000000	19.000000	1.170000e+08	4.050000e+06	258

8 rows × 106 columns

In [8]:

application_df.SK_ID_CURR.nunique()

Out[8]:

307511

Check Data Quality and Missing Values

```
In [9]:
```

```
def missing_value_percentage(df, frm=0, to=100):
    missing_per = round(df.isnull().sum() * 100 / len(df), 1).sort_values(ascending=False)
    return missing_per[(missing_per > frm) & (missing_per <= to)]</pre>
```

In [10]:

```
missing_value_percentage(application_df)
```

Out[10]:

```
COMMONAREA_MEDI
                             69.9
COMMONAREA_AVG
                             69.9
                             69.9
COMMONAREA MODE
NONLIVINGAPARTMENTS MODE
                             69.4
NONLIVINGAPARTMENTS_MEDI
                             69.4
                             . . .
OBS_60_CNT_SOCIAL_CIRCLE
                              0.3
DEF_60_CNT_SOCIAL_CIRCLE
                              0.3
DEF_30_CNT_SOCIAL_CIRCLE
                              0.3
EXT_SOURCE_2
                              0.2
AMT_GOODS_PRICE
                              0.1
Length: 64, dtype: float64
```

Drop columns having more than 50% missing values

In [11]:

application_df.drop(columns=missing_value_percentage(application_df, 50).index, inplace=Tru

In [12]:

```
application_df.shape
```

Out[12]:

(307511, 81)

Check columns having more than 30% missing values

In [13]:

```
missing_value_percentage(application_df, 30)
```

Out[13]:

dtype: float64

```
FLOORSMAX AVG
                                 49.8
FLOORSMAX_MEDI
                                 49.8
FLOORSMAX MODE
                                 49.8
YEARS BEGINEXPLUATATION AVG
                                 48.8
YEARS BEGINEXPLUATATION MEDI
                                 48.8
YEARS_BEGINEXPLUATATION_MODE
                                 48.8
TOTALAREA MODE
                                 48.3
EMERGENCYSTATE_MODE
                                 47.4
OCCUPATION TYPE
                                 31.3
```

Drop columns having more than 40% missing values

In [14]:

application_df.drop(columns=missing_value_percentage(application_df, 40).index, inplace=Tru

In [15]:

```
application_df.shape
```

Out[15]:

(307511, 73)

Check OCCUPATION_TYPE column

In [16]:

```
application_df.OCCUPATION_TYPE.value_counts()
```

Out[16]:

Laborers	55186	5
Sales staff	32102	2
Core staff	27576	9
Managers	21373	l
Drivers	18603	3
High skill tech staff	11380	9
Accountants	9813	3
Medicine staff	8537	7
Security staff	6723	l
Cooking staff	5946	5
Cleaning staff	4653	3
Private service staff	2652	2
Low-skill Laborers	2093	3
Waiters/barmen staff	1348	3
Secretaries	130	5
Realty agents	753	l
HR staff	563	3
IT staff	526	5
Name: OCCUPATION_TYPE,	dtype:	int64

Occupation type may not have been captured, but it may be an important factor in loan applications; thus, fill in the blanks with "Unknown."

In [17]:

```
application_df.OCCUPATION_TYPE.fillna("Unknown", inplace=True)
```

Check columns having more than 13% missing values

In [18]:

```
missing_value_percentage(application_df, 13)
```

Out[18]:

EXT_SOURCE_3	19.8
AMT_REQ_CREDIT_BUREAU_YEAR	13.5
AMT_REQ_CREDIT_BUREAU_MON	13.5
AMT_REQ_CREDIT_BUREAU_WEEK	13.5
AMT_REQ_CREDIT_BUREAU_DAY	13.5
AMT_REQ_CREDIT_BUREAU_HOUR	13.5
AMT_REQ_CREDIT_BUREAU_QRT	13.5
dtype: float64	

In [19]:

cols13_corr = application_df[["TARGET"] + missing_value_percentage(application_df, 13).inde
sns.heatmap(cols13_corr, cmap="YlGnBu", annot=False)

Out[19]:

<AxesSubplot:>

Since the columns above have weak correlation with the **TARGET** column and are less significant for imputation, we may drop them.

In [20]:

application_df.drop(columns = missing_value_percentage(application_df, 13).index, inplace =

In [21]:

```
application_df.shape
Out[21]:
```

(307511, 66)

Check the remaining missing data columns and impute suitably

In [22]:

```
missing_value_percentage(application_df)
```

Out[22]:

```
NAME_TYPE_SUITE
                             0.4
DEF_60_CNT_SOCIAL_CIRCLE
                            0.3
OBS_60_CNT_SOCIAL_CIRCLE
                            0.3
DEF 30 CNT SOCIAL CIRCLE
                            0.3
OBS_30_CNT_SOCIAL_CIRCLE
                            0.3
EXT SOURCE 2
                            0.2
AMT_GOODS_PRICE
                            0.1
dtype: float64
```

AMT_GOODS_PRICE: For consumer loans it is the price of the goods for which the loan is given

In [23]:

```
application_df.AMT_GOODS_PRICE.describe()
```

Out[23]:

```
3.072330e+05
count
mean
         5.383962e+05
         3.694465e+05
std
         4.050000e+04
min
25%
         2.385000e+05
50%
         4.500000e+05
75%
         6.795000e+05
         4.050000e+06
max
```

Name: AMT_GOODS_PRICE, dtype: float64

In [24]:

```
application_df.AMT_GOODS_PRICE.plot.hist()
```

Out[24]:

<AxesSubplot:ylabel='Frequency'>

Check the contract type of the applications where the Goods Price is missing

In [25]:

```
application_df[application_df.AMT_GOODS_PRICE.isnull()].NAME_CONTRACT_TYPE.value_counts()
```

Out[25]:

Revolving loans 278

Name: NAME_CONTRACT_TYPE, dtype: int64

Revolving loans: A revolving loan facility is a kind of credit granted by a financial institution that allows the borrower to draw down or withdraw funds, repay, then withdraw funds again.

Example: credit include credit cards, and personal and business lines of credit.

These forms of loans inquiry for 0 or less in *goods price*, hence the missing values are imputed with 0.

In [26]:

```
application_df.AMT_GOODS_PRICE.fillna(0, inplace=True)
```

NAME_TYPE_SUITE: Who was accompanying client when he was applying for the loan

In [27]:

```
application_df.NAME_TYPE_SUITE.value_counts().plot.bar()
```

Out[27]:

<AxesSubplot:>

It is preferable to treat missing values as unaccompanied since this is the most common circumstance based on the data. Furthermore, if any relevant or notable related to the customer came, it would have been recorded.

```
In [28]:
```

```
application_df.NAME_TYPE_SUITE.mode()
```

Out[28]:

0 Unaccompanied
dtype: object

In [29]:

```
application_df.NAME_TYPE_SUITE.fillna("Unaccompanied", inplace=True)
```

In [30]:

```
application_df.NAME_TYPE_SUITE.isnull().sum()
```

Out[30]:

0

EXT_SOURCE_2: Normalized score from external data source

In [31]:

```
application_df.EXT_SOURCE_2.describe()
```

Out[31]:

3.068510e+05 count 5.143927e-01 mean 1.910602e-01 std 8.173617e-08 min 25% 3.924574e-01 50% 5.659614e-01 75% 6.636171e-01 8.549997e-01 max

Name: EXT_SOURCE_2, dtype: float64

In [32]:

```
application_df.EXT_SOURCE_2.plot.hist()
```

Out[32]:

<AxesSubplot:ylabel='Frequency'>

In [33]:

application_df[application_df.EXT_SOURCE_2.isnull()]

Out[33]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FI
329	100377	0	Cash loans	М	N	
349	100402	0	Cash loans	F	N	
617	100706	0	Cash loans	F	N	
1028	101189	0	Cash loans	F	Υ	
1520	101787	0	Cash loans	M	Υ	
305775	454274	0	Cash loans	F	N	
306208	454779	0	Cash loans	M	N	
306235	454811	0	Cash loans	F	N	
307029	455713	0	Cash loans	F	Υ	
307387	456113	0	Cash loans	M	N	

660 rows × 66 columns

Looking at the missing External Score observations, it seems that they are missing at random. As a result, we could use the average score to fill in the missing values.

In [34]:

application_df.EXT_SOURCE_2.fillna(application_df.EXT_SOURCE_2.mean(), inplace=True)

Social Surroundings defaulted information column

- DEF 30 CNT SOCIAL CIRCLE How many observation of client's social surroundings defaulted on 30 DPD (days past due)
- OBS_30_CNT_SOCIAL_CIRCLE How many observation of client's social surroundings with observable 30 DPD (days past due) default
- DEF 60 CNT SOCIAL CIRCLE How many observation of client's social surroundings defaulted on 60 DPD (days past due)
- OBS 60 CNT SOCIAL CIRCLE How many observation of client's social surroundings with observable 60 DPD (days past due) default

There may be a lack of knowledge regarding the customers' social surroundings, which may be the cause for the missing values of the above variables. We can impute them with either median or mode value.

In [35]:

```
plt.figure(figsize = (13, 8))
plt.subplot(2, 2, 1)
plt.xlabel("DEF_30_CNT_SOCIAL_CIRCLE")
application_df.DEF_30_CNT_SOCIAL_CIRCLE.plot.hist()
plt.subplot(2, 2, 2)
plt.xlabel("OBS_30_CNT_SOCIAL_CIRCLE")
application_df.OBS_30_CNT_SOCIAL_CIRCLE.plot.hist()
plt.subplot(2, 2, 3)
plt.xlabel("DEF_60_CNT_SOCIAL_CIRCLE")
application_df.DEF_60_CNT_SOCIAL_CIRCLE.plot.hist()
plt.subplot(2, 2, 4)
plt.xlabel("OBS_60_CNT_SOCIAL_CIRCLE")
application_df.OBS_60_CNT_SOCIAL_CIRCLE.plot.hist()
plt.show()
```


In [36]:

```
print("DEF_30_CNT_SOCIAL_CIRCLE Median:", application_df.DEF_30_CNT_SOCIAL_CIRCLE.median())
print("OBS_30_CNT_SOCIAL_CIRCLE Median:", application_df.OBS_30_CNT_SOCIAL_CIRCLE.median())
print("DEF_60_CNT_SOCIAL_CIRCLE Median:", application_df.DEF_60_CNT_SOCIAL_CIRCLE.median())
print("OBS_60_CNT_SOCIAL_CIRCLE Median:", application_df.OBS_60_CNT_SOCIAL_CIRCLE.median())
```

DEF_30_CNT_SOCIAL_CIRCLE Median: 0.0 OBS_30_CNT_SOCIAL_CIRCLE Median: 0.0 DEF_60_CNT_SOCIAL_CIRCLE Median: 0.0 OBS 60 CNT SOCIAL CIRCLE Median: 0.0

```
In [37]:
```

```
application_df.DEF_30_CNT_SOCIAL_CIRCLE.fillna(application_df.DEF_30_CNT_SOCIAL_CIRCLE.medi
application_df.OBS_30_CNT_SOCIAL_CIRCLE.fillna(application_df.OBS_30_CNT_SOCIAL_CIRCLE.medi
application_df.DEF_60_CNT_SOCIAL_CIRCLE.fillna(application_df.DEF_60_CNT_SOCIAL_CIRCLE.medi
application df.OBS 60 CNT SOCIAL CIRCLE.fillna(application df.OBS 60 CNT SOCIAL CIRCLE.medi
```

In [38]:

```
missing_value_percentage(application_df)
```

Out[38]:

Series([], dtype: float64)

Look for any other columns that seem to be unimportant

In [39]:

```
application df.columns
```

Out[39]:

```
Index(['SK_ID_CURR', 'TARGET', 'NAME_CONTRACT_TYPE', 'CODE_GENDER',
       'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'CNT_CHILDREN', 'AMT_INCOME_TOTA
L',
       'AMT_CREDIT', 'AMT_ANNUITY', 'AMT_GOODS_PRICE', 'NAME_TYPE_SUITE',
       'NAME_INCOME_TYPE', 'NAME_EDUCATION_TYPE', 'NAME_FAMILY_STATUS',
       'NAME_HOUSING_TYPE', 'REGION_POPULATION_RELATIVE', 'DAYS_BIRTH',
       'DAYS EMPLOYED', 'DAYS REGISTRATION', 'DAYS ID PUBLISH', 'FLAG MOBI
L',
       'FLAG_EMP_PHONE', 'FLAG_WORK_PHONE', 'FLAG_CONT_MOBILE', 'FLAG_PHON
Ε',
       'FLAG_EMAIL', 'OCCUPATION_TYPE', 'CNT_FAM_MEMBERS',
       'REGION_RATING_CLIENT', 'REGION_RATING_CLIENT_W_CITY'
       'WEEKDAY_APPR_PROCESS_START', 'HOUR_APPR_PROCESS_START',
       'REG_REGION_NOT_LIVE_REGION', 'REG_REGION_NOT_WORK_REGION',
       'LIVE_REGION_NOT_WORK_REGION', 'REG_CITY_NOT_LIVE_CITY',
       'REG_CITY_NOT_WORK_CITY', 'LIVE_CITY_NOT_WORK_CITY',
       'ORGANIZATION_TYPE', 'EXT_SOURCE_2', 'OBS_30_CNT_SOCIAL_CIRCLE',
       'DEF_30_CNT_SOCIAL_CIRCLE', 'OBS_60_CNT_SOCIAL_CIRCLE',
       'DEF_60_CNT_SOCIAL_CIRCLE', 'DAYS_LAST_PHONE_CHANGE', 'FLAG DOCUMENT
2',
       'FLAG_DOCUMENT_3', 'FLAG_DOCUMENT_4', 'FLAG_DOCUMENT_5',
       'FLAG_DOCUMENT_6', 'FLAG_DOCUMENT_7', 'FLAG_DOCUMENT_8',
       'FLAG_DOCUMENT_9', 'FLAG_DOCUMENT_10', 'FLAG_DOCUMENT_11',
'FLAG_DOCUMENT_12', 'FLAG_DOCUMENT_13', 'FLAG_DOCUMENT_14',
       'FLAG_DOCUMENT_15', 'FLAG_DOCUMENT_16', 'FLAG_DOCUMENT_17',
       'FLAG_DOCUMENT_18', 'FLAG_DOCUMENT_19', 'FLAG_DOCUMENT_20',
       'FLAG DOCUMENT 21'],
      dtype='object')
```

In [40]:

```
flag_document_cols = [c for c in application_df.columns if "FLAG_DOCUMENT_" in c]
flag_document_cols
```

Out[40]:

```
['FLAG_DOCUMENT_2',
 'FLAG_DOCUMENT_3',
 'FLAG_DOCUMENT_4',
 'FLAG_DOCUMENT_5',
 'FLAG_DOCUMENT_6',
 'FLAG_DOCUMENT_7',
 'FLAG_DOCUMENT_8',
 'FLAG_DOCUMENT_9',
 'FLAG_DOCUMENT_10',
 'FLAG_DOCUMENT_11',
 'FLAG_DOCUMENT_12',
 'FLAG_DOCUMENT_13',
 'FLAG_DOCUMENT_14',
 'FLAG_DOCUMENT_15',
 'FLAG DOCUMENT 16',
 'FLAG_DOCUMENT_17',
 'FLAG DOCUMENT 18',
 'FLAG_DOCUMENT_19',
 'FLAG_DOCUMENT_20',
 'FLAG_DOCUMENT_21']
```

In [41]:

```
flag_doc_corr = round(application_df[["TARGET"] + flag_document_cols].corr(), 2)
plt.figure(figsize = (13, 8))
sns.heatmap(flag_doc_corr, cmap="YlGnBu", annot=False)
```

Out[41]:

<AxesSubplot:>

These *flag document* columns less correlation with the *TARGET* variable as well as dosn't have enough information to explore more. Hence we can drop these columns.

In [42]:

```
application_df.drop(columns = flag_document_cols, inplace=True)
```

In [43]:

```
application_df.shape
```

Out[43]:

(307511, 46)

Data Type Check and Transformation

In [44]:

```
application_df.dtypes.value_counts().plot.bar()
```

Out[44]:

<AxesSubplot:>

Check object type columns

In [45]:

application_df.dtypes[application_df.dtypes == object]

Out[45]:

NAME_CONTRACT_TYPE	object
CODE_GENDER	object
FLAG_OWN_CAR	object
FLAG_OWN_REALTY	object
NAME_TYPE_SUITE	object
NAME_INCOME_TYPE	object
NAME_EDUCATION_TYPE	object
NAME_FAMILY_STATUS	object
NAME_HOUSING_TYPE	object
OCCUPATION_TYPE	object
WEEKDAY_APPR_PROCESS_START	object
ORGANIZATION_TYPE	object
dtype: object	

NAME_CONTRACT_TYPE: Identification if loan is cash or revolving

```
In [46]:
```

```
application_df.NAME_CONTRACT_TYPE.value_counts()
```

Out[46]:

Cash loans 278232 Revolving loans 29279

Name: NAME_CONTRACT_TYPE, dtype: int64

CODE GENDER: Gender of the client

In [47]:

```
application_df.CODE_GENDER.value_counts()
```

Out[47]:

F 202448 105059 Μ XNA

Name: CODE_GENDER, dtype: int64

A small number of values are missing that may be eliminated to make the analysis more effective.

In [48]:

```
application_df = application_df[application_df.CODE_GENDER != "XNA"]
```

In [49]:

```
application_df.CODE_GENDER = application_df.CODE_GENDER.replace({"F": "Female", "M": "Male"
application_df.CODE_GENDER.value_counts()
```

C:\Users\santh\anaconda3\lib\site-packages\pandas\core\generic.py:5168: Sett ingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/ stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pand as.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-v ersus-a-copy)

self[name] = value

Out[49]:

Female 202448 Male 105059

Name: CODE_GENDER, dtype: int64

FLAG_OWN_CAR: Flag if the client owns a car

Map the column values with appropriate label

In [50]:

```
application_df.FLAG_OWN_CAR.value_counts()
```

Out[50]:

N 202922Y 104585

Name: FLAG_OWN_CAR, dtype: int64

In [51]:

```
application_df.FLAG_OWN_CAR = application_df.FLAG_OWN_CAR.map({"N": "No", "Y": "Yes"})
application_df.FLAG_OWN_CAR.value_counts().plot.bar()
```

Out[51]:

<AxesSubplot:>

FLAG_OWN_REALTY: Flag if client owns a house or flat

Map the column values with appropriate label

In [52]:

```
application_df.FLAG_OWN_REALTY.value_counts()
```

Out[52]:

Y 213308 N 94199

Name: FLAG_OWN_REALTY, dtype: int64

In [53]:

```
application_df.FLAG_OWN_REALTY = application_df.FLAG_OWN_REALTY.map({"N": "No", "Y": "Yes"}
application_df.FLAG_OWN_REALTY.value_counts().plot.bar()
```

Out[53]:

<AxesSubplot:>

In [54]:

application_df.NAME_FAMILY_STATUS.value_counts()

Out[54]:

Married	196429
Single / not married	45444
Civil marriage	29774
Separated	19770
Widow	16088
Unknown	2

Name: NAME_FAMILY_STATUS, dtype: int64

A small number of values are unknown that may be eliminated to make the analysis more effective.

In [55]:

application_df = application_df[application_df.NAME_FAMILY_STATUS != "Unknown"]

In [56]:

```
application_df.shape
```

Out[56]:

(307505, 46)

Check Numeric Columns

In [57]:

```
application_df.dtypes[application_df.dtypes == "float64"]
```

Out[57]:

AMT_INCOME_TOTAL AMT_CREDIT AMT_ANNUITY AMT GOODS PRICE	float64 float64 float64 float64
REGION POPULATION RELATIVE	float64
DAYS_REGISTRATION	float64
CNT_FAM_MEMBERS	float64
EXT_SOURCE_2	float64
OBS_30_CNT_SOCIAL_CIRCLE	float64
DEF_30_CNT_SOCIAL_CIRCLE	float64
OBS_60_CNT_SOCIAL_CIRCLE	float64
DEF_60_CNT_SOCIAL_CIRCLE	float64
DAYS_LAST_PHONE_CHANGE	float64
dtype: object	

Amount columns sanity check

- AMT_INCOME_TOTAL: Income of the client
- AMT_CREDIT: Credit amount of the loan
- AMT_ANNUITY: Loan annuity
- AMT_GOODS_PRICE: For consumer loans it is the price of the goods for which the loan is given

In [58]:

```
amount_cols = ["AMT_INCOME_TOTAL", "AMT_CREDIT", "AMT_ANNUITY", "AMT_GOODS_PRICE"]
```

In [59]:

```
application_df[amount_cols].head()
```

Out[59]:

	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	AMT_GOODS_PRICE
0	202500.0	406597.5	24700.5	351000.0
1	270000.0	1293502.5	35698.5	1129500.0
2	67500.0	135000.0	6750.0	135000.0
3	135000.0	312682.5	29686.5	297000.0
4	121500.0	513000.0	21865.5	513000.0

In [60]:

application_df[amount_cols].describe()

Out[60]:

	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	AMT_GOODS_PRICE
count	3.075050e+05	3.075050e+05	307493.000000	3.075050e+05
mean	1.687967e+05	5.990284e+05	27108.638224	5.379145e+05
std	2.371248e+05	4.024939e+05	14493.840051	3.696332e+05
min	2.565000e+04	4.500000e+04	1615.500000	0.000000e+00
25%	1.125000e+05	2.700000e+05	16524.000000	2.385000e+05
50%	1.471500e+05	5.135310e+05	24903.000000	4.500000e+05
75%	2.025000e+05	8.086500e+05	34596.000000	6.795000e+05
max	1.170000e+08	4.050000e+06	258025.500000	4.050000e+06

In [61]:

application_df[amount_cols].hist(figsize=(11,7))
plt.show()

Observation - The columns shown above have the right datatype.

Convert DAYS_REGISTRATION and DAYS_LAST_PHONE_CHANGE to integer

```
In [62]:
```

```
try:
    application_df.DAYS_LAST_PHONE_CHANGE.astype("int64")
except Exception as e:
    print(e)
```

Cannot convert non-finite values (NA or inf) to integer

In [63]:

```
application_df[np.isnan(application_df.DAYS_LAST_PHONE_CHANGE)]
```

Out[63]:

SK_ID_CURR TARGET NAME_CONTRACT_TYPE CODE_GENDER FLAG_OWN_CAR FLAG 15709 118330 0 Cash loans Male Yes 1 rows × 46 columns

In [64]:

```
application_df.DAYS_LAST_PHONE_CHANGE = application_df.DAYS_LAST_PHONE_CHANGE.apply(lambda
```

In [65]:

```
application_df.DAYS_REGISTRATION = application_df.DAYS_REGISTRATION.astype("int64")
```

Check Count Columns

- CNT_FAM_MEMBERS: How many family members does client have
- OBS 30 CNT SOCIAL CIRCLE: How many observation of client's social surroundings with observable 30 DPD (days past due) default
- DEF 30 CNT SOCIAL CIRCLE: How many observation of client's social surroundings defaulted on 30 DPD (days past due)
- OBS_60_CNT_SOCIAL_CIRCLE: How many observation of client's social surroundings with observable 60 DPD (days past due) default
- DEF 60 CNT SOCIAL CIRCLE: How many observation of client's social surroundings defaulted on 60 (days past due) DPD

In [66]:

```
count_cols = ["CNT_FAM_MEMBERS", "OBS_30_CNT_SOCIAL_CIRCLE", "DEF_30_CNT_SOCIAL_CIRCLE",
```

 \blacktriangleright

In [67]:

```
application_df[count_cols].head()
```

Out[67]:

	CNT_FAM_MEMBERS	OBS_30_CNT_SOCIAL_CIRCLE	DEF_30_CNT_SOCIAL_CIRCLE	OBS_60_
0	1.0	2.0	2.0	
1	2.0	1.0	0.0	
2	1.0	0.0	0.0	
3	2.0	2.0	0.0	
4	1.0	0.0	0.0	
4				•

In [68]:

```
application_df[count_cols].describe()
```

Out[68]:

CNT_FAM_MEMBERS OBS_30_CNT_SOCIAL_CIRCLE DEF_30_CNT_SOCIAL_CIRCLE OBS

count	307505.000000	307505.000000	307505.000000	
mean	2.152658	1.417483	0.142931	
std	0.910680	2.398343	0.445980	
min	1.000000	0.000000	0.000000	
25%	2.000000	0.000000	0.000000	
50%	2.000000	0.000000	0.000000	
75%	3.000000	2.000000	0.000000	
max	20.000000	348.000000	34.000000	
4				•

In [69]:

```
for c in count_cols:
        application_df[c].astype(int)
    except Exception as e:
        print(c, ':', e)
```

In [70]:

```
application_df[np.isnan(application_df.CNT_FAM_MEMBERS)].CNT_FAM_MEMBERS
```

Out[70]:

```
Series([], Name: CNT FAM MEMBERS, dtype: float64)
```

It will be more reasonable to fill the CNT FAM MEMBERS column with the median number of family numbers rather than 0

```
In [71]:
```

```
application_df.CNT_FAM_MEMBERS.median()
Out[71]:
2.0
```

In [72]:

```
application_df.CNT_FAM_MEMBERS = application_df.CNT_FAM_MEMBERS.apply(lambda x: 2 if np.isn
```

In [73]:

```
application_df[count_cols] = application_df[count_cols].astype(int)
```

Explore Integer Columns

In [74]:

```
application_df.dtypes[application_df.dtypes == "int64"]
```

Out[74]:

```
SK_ID_CURR
                                int64
TARGET
                                int64
CNT CHILDREN
                                int64
DAYS_BIRTH
                                int64
DAYS EMPLOYED
                                int64
DAYS_REGISTRATION
                                int64
DAYS ID PUBLISH
                                int64
FLAG_MOBIL
                                int64
FLAG EMP PHONE
                                int64
                                int64
FLAG WORK PHONE
FLAG CONT MOBILE
                                int64
FLAG_PHONE
                                int64
FLAG_EMAIL
                                int64
REGION RATING CLIENT
                                int64
REGION RATING CLIENT W CITY
                                int64
HOUR APPR PROCESS START
                                int64
REG REGION NOT LIVE REGION
                                int64
REG REGION NOT WORK REGION
                                int64
LIVE_REGION_NOT_WORK_REGION
                                int64
REG_CITY_NOT_LIVE_CITY
                                int64
REG CITY NOT WORK CITY
                                int64
LIVE CITY NOT WORK CITY
                                int64
DAYS LAST PHONE CHANGE
                                int64
dtype: object
```

Days column sanity check

- DAYS BIRTH: Client's age in days at the time of application
- DAYS EMPLOYED: How many days before the application the person started current employment
- DAYS ID PUBLISH: How many days before the application did client change the identity document with which he applied for the loan
- DAYS REGISTRATION: How many days before the application did client change his registration
- DAYS_LAST_PHONE_CHANGE: How many days before application did client change phone

```
In [75]:
```

day_cols = ["DAYS_BIRTH", "DAYS_EMPLOYED", "DAYS_ID_PUBLISH", "DAYS_REGISTRATION", "DAYS_LA

In [76]:

application_df[day_cols].head()

Out[76]:

	DAYS_BIRTH	DAYS_EMPLOYED	DAYS_ID_PUBLISH	DAYS_REGISTRATION	DAYS_LAST_PHO
0	-9461	-637	-2120	-3648	_
1	-16765	-1188	-291	-1186	
2	-19046	-225	-2531	-4260	
3	-19005	-3039	-2437	-9833	
4	-19932	-3038	-3458	-4311	
4					>

In [77]:

application_df[day_cols].describe()

Out[77]:

	DAYS_BIRTH	DAYS_EMPLOYED	DAYS_ID_PUBLISH	DAYS_REGISTRATION	DAYS_LAS1
count	307505.000000	307505.000000	307505.000000	307505.000000	_
mean	-16037.049495	63816.348794	-2994.201437	-4986.147994	
std	4363.987877	141276.836143	1509.454886	3522.887818	
min	-25229.000000	-17912.000000	-7197.000000	-24672.000000	
25%	-19682.000000	-2760.000000	-4299.000000	-7480.000000	
50%	-15750.000000	-1213.000000	-3254.000000	-4504.000000	
75%	-12413.000000	-289.000000	-1720.000000	-2010.000000	
max	-7489.000000	365243.000000	0.000000	0.000000	
4					>

As day counts cannot be negative, they must be corrected to positive.

In [78]:

```
application_df[day_cols] = abs(application_df[day_cols])
application_df[day_cols].describe()
```

Out[78]:

	DAYS_BIRTH	DAYS_EMPLOYED	DAYS_ID_PUBLISH	DAYS_REGISTRATION	DAYS_LAS1
count	307505.000000	307505.000000	307505.000000	307505.000000	
mean	16037.049495	67726.005847	2994.201437	4986.147994	
std	4363.987877	139444.817987	1509.454886	3522.887818	
min	7489.000000	0.000000	0.000000	0.000000	
25%	12413.000000	933.000000	1720.000000	2010.000000	
50%	15750.000000	2219.000000	3254.000000	4504.000000	
75%	19682.000000	5707.000000	4299.000000	7480.000000	
max	25229.000000	365243.000000	7197.000000	24672.000000	

Check Flag Columns

If the above flag columns are mapped to a more descriptive value, they will be more descriptive.

- FLAG MOBIL: Did client provide mobile phone (1=YES, 0=NO)
- FLAG_EMP_PHONE: Did client provide work phone (1=YES, 0=NO)
- FLAG_WORK_PHONE: Did client provide home phone (1=YES, 0=NO)
- FLAG CONT MOBILE: Was mobile phone reachable (1=YES, 0=NO)
- FLAG_PHONE: Did client provide home phone (1=YES, 0=NO)
- FLAG_EMAIL: Did client provide email (1=YES, 0=NO)

Map the 1's and 0's to YES and NO respectively

In [79]:

```
flag_cols = ["FLAG_MOBIL", "FLAG_EMP_PHONE", "FLAG_WORK_PHONE", "FLAG_CONT_MOBILE", "FLAG_P
```

In [80]:

application_df[flag_cols].hist(figsize=(11, 7)) plt.show()

In [81]:

```
application\_df[flag\_cols] = application\_df[flag\_cols].replace(\{0: "NO", 1: "YES"\})
application_df[flag_cols].head()
```

Out[81]:

	FLAG_MOBIL	FLAG_EMP_PHONE	FLAG_WORK_PHONE	FLAG_CONT_MOBILE	FLAG_PHONI
0	YES	YES	NO	YES	YE
1	YES	YES	NO	YES	YE!
2	YES	YES	YES	YES	YE
3	YES	YES	NO	YES	NC
4	YES	YES	NO	YES	NC

In [82]:

```
plt.figure(figsize=(11, 11))
for i, c in enumerate(flag_cols):
    plt.subplot(3, 2, i+1)
    plt.title(c)
    application_df[c].value_counts().plot.bar()
plt.show()
```


Check Region Columns

REGION_RATING_CLIENT - Our rating of the region where client lives (1,2,3)

REGION_RATING_CLIENT_W_CITY - Our rating of the region where client lives with taking city into account (1,2,3)

REG_REGION_NOT_LIVE_REGION - Flag if client's permanent address does not match contact address (1=different, 0=same, at region level) REG_REGION_NOT_WORK_REGION - Flag if client's permanent address does not match work address (1=different, 0=same, at region level)

LIVE_REGION_NOT_WORK_REGION - Flag if client's contact address does not match work address (1=different, 0=same, at region level) REG_CITY_NOT_LIVE_CITY - Flag if client's permanent address does not match contact address (1=different, 0=same, at city level)

REG_CITY_NOT_WORK_CITY - Flag if client's permanent address does not match work address (1=different, 0=same, at city level)

LIVE_CITY_NOT_WORK_CITY - Flag if client's contact address does not match work address (1=different, 0=same, at city level)

Map above columns with appropriate values

```
In [83]:
```

In [84]:

```
application_df[region_cols].head()
```

Out[84]:

REG_REGION_NOT_LIVE_REGION	REG_REGION_NOT_WORK_REGION	LIVE_REGION_NOT_WC
----------------------------	----------------------------	--------------------

0	0	0
1	0	0
2	0	0
3	0	0
4	0	0
•)

In [85]:

application_df[region_cols] = application_df[region_cols].replace({0: "Different", 1: "Same
application_df[region_cols].head()

Out[85]:

REG_REGION_NOT_LIVE_REGION REG_REGION_NOT_WORK_REGION LIVE_REGION_NOT_WC

0	Different	Different
1	Different	Different
2	Different	Different
3	Different	Different
4	Different	Different
4)

In [86]:

```
application_df.shape
```

Out[86]:

(307505, 46)

In [87]:

```
application_df[application_df.dtypes[application_df.dtypes == "int64"].index] = application
```

In [88]:

application_df.dtypes.value_counts().plot.bar()

Out[88]:

<AxesSubplot:>

Examine Outliers

Identify outliers for the Amount variables

In [89]:

```
plt.figure(figsize=(13,20))
for i, col in enumerate(amount_cols):
   plt.subplot(4, 2 , i+1)
   sns.boxplot(y = application_df[col], color="pink")
   plt.title(col)
```


Among the amount-related variables, **AMT_INCOME_TOTAL** has a large number of outliers, indicating that only a small percentage of loan applicants have a high income when compared to the rest.

However one observation is more than hundred million which can better be removed for a better analysis.

In [90]:

```
application_df[application_df.AMT_INCOME_TOTAL > 1000000000]
```

Out[90]:

In [91]:

application_df = application_df[application_df.AMT_INCOME_TOTAL < 1000000000]</pre>

In [92]:

```
plt.figure(figsize=(10, 6))
plt.title("Goods price vs Amount credit")
sns.scatterplot(y="AMT_GOODS_PRICE", x="AMT_CREDIT", data=application_df, color="pink")
plt.show()
```


Amount credited vs goods price are very well correlated without much outliers

Find outliers for the Social Circle variables

In [93]:

```
plt.figure(figsize=(13,20))
for i, col in enumerate(count_cols):
    if i==0:
        continue
    plt.subplot(4, 2 , i)
    sns.boxplot(y = application_df[col], color="pink")
    plt.title(col)
```


Every Social Circle feature (OBS_30_CNT_SOCIAL_CIRCLE, OBS_30_CNT_SOCIAL_CIRCLE, OBS_60_CNT_SOCIAL_CIRCLE, DEF_60_CNT_SOCIAL_CIRCLE) includes at least one notable outlier that may be checked for sanity.

```
In [94]:
application_df[application_df.OBS_30_CNT_SOCIAL_CIRCLE > 300]
Out[94]:
        SK_ID_CURR TARGET NAME_CONTRACT_TYPE CODE_GENDER FLAG_OWN_CAR FI
148403
             272071
                          0
                                     Revolving loans
                                                           Male
                                                                             No
1 rows × 46 columns
In [95]:
application_df = application_df[application_df.OBS_30_CNT_SOCIAL_CIRCLE < 300]</pre>
```

Find outliers for the Days variables

In [96]:

```
plt.figure(figsize=(13,20))
for i, col in enumerate(day_cols):
   plt.subplot(4, 2 , i+1)
   sns.boxplot(y = application_df[col], color="pink")
   plt.title(col)
```


All days-related variables have a normal distribution with little or no outliers. However, **DAYS EMPLOYED** contains outlier values greater than 350000, which is about 958 years, which is inconceivable and hence must be an invalid entry.

In [97]:

```
application_df[application_df.DAYS_EMPLOYED > 350000]
```

Out[97]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FI
8	100011	0	Cash loans	Female	No	
11	100015	0	Cash loans	Female	No	
23	100027	0	Cash loans	Female	No	
38	100045	0	Cash loans	Female	No	
43	100050	0	Cash loans	Female	No	
307469	456209	0	Cash loans	Female	No	
307483	456227	0	Cash loans	Female	No	
307487	456231	0	Cash loans	Male	No	
307505	456249	0	Cash loans	Female	No	
307507	456252	0	Cash loans	Female	No	

55374 rows × 46 columns

In [98]:

```
application_df = application_df[application_df.DAYS_EMPLOYED < 350000]</pre>
```

In [99]:

```
application_df.shape
```

Out[99]:

(252129, 46)

Derived columns and Binning

DAYS_BIRTH: Client's age in days at the time of application

Create age from DAYS_BIRTH

In [100]:

```
application_df["AGE"] = application_df.DAYS_BIRTH // 365
```

In [101]:

```
# Drop redundant
application_df.drop(columns="DAYS_BIRTH", inplace=True)
```

In [102]:

```
application_df.AGE.plot.hist()
```

Out[102]:

<AxesSubplot:ylabel='Frequency'>

Create AGE_GROUP variable form AGE

In [103]:

```
bins = [20, 30, 40, 50, 60, 100]
labels = ["20-30","30-40","40-50","50-60","60 Above"]
application_df["AGE_GROUP"] = pd.cut(application_df.AGE, bins=bins, labels=labels)
```

In [104]:

```
application_df.AGE_GROUP.value_counts().plot.bar()
```

Out[104]:

<AxesSubplot:>

DAYS_EMPLOYED: How many days before the application the person started current employment

Create YEARS_EMPLOYED from DAYS_EMPLOYED

In [105]:

```
application_df["YEARS_EMPLOYED"] = application_df.DAYS_EMPLOYED // 365
```

In [106]:

```
# Drop redundant
application_df.drop(columns="DAYS_EMPLOYED", inplace=True)
```

In [107]:

```
application_df.YEARS_EMPLOYED.plot.hist()
```

Out[107]:

<AxesSubplot:ylabel='Frequency'>

Create WORK_EXPERIENCE variable form YEARS_EMPLOYED

In [108]:

```
bins = [0, 3, 7, 10, 20, 30, 50]
labels = ["0-3","3-7","7-10","10-20", "20-30", "30 Above"]
application_df["WORK_EXPERIENCE"] = pd.cut(application_df.YEARS_EMPLOYED, bins=bins, labels
```

In [109]:

```
application_df.WORK_EXPERIENCE.value_counts().plot.bar()
```

Out[109]:

<AxesSubplot:>

Create INCOME_RANGE variable from AMT_INCOME_TOTAL in Lakhs

In [110]:

```
# convert to Lakhs
application_df.AMT_INCOME_TOTAL = application_df.AMT_INCOME_TOTAL / 100000
bins = [0, 1, 2, 3, 4, 6, 8, 10, 100]
labels = ["0-1L", "1L-2L", "2L-3L", "3L-4L", "4L-6L", "6L-8L", "8L-10L", "Above 8L"]
application_df["INCOME_RANGE"] = pd.cut(application_df.AMT_INCOME_TOTAL, bins=bins, labels=
```

In [111]:

```
application_df.INCOME_RANGE.value_counts().plot.bar()
```

Out[111]:

<AxesSubplot:>

Create CREDIT_RANGE variable from AMT_CREDIT in Lakhs

In [112]:

```
# convert to Lakhs
application_df.AMT_CREDIT = application_df.AMT_CREDIT / 100000
bins = [0, 1, 2, 3, 4, 6, 8, 10, 100]
labels = ["0-1L", "1L-2L", "2L-3L", "3L-4L", "4L-6L", "6L-8L", "8L-10L", "Above 8L"]
application_df["CREDIT_RANGE"] = pd.cut(application_df.AMT_CREDIT, bins=bins, labels=labels
```

In [113]:

```
application_df.CREDIT_RANGE.value_counts().plot.bar()
```

Out[113]:

<AxesSubplot:>

Create GOODS_PRICE_RANGE variable from AMT_GOODS_PRICE in Lakhs

In [114]:

```
# convert to Lakhs
application df.AMT GOODS PRICE = application df.AMT GOODS PRICE / 100000
bins = [0, 1, 2, 3, 4, 6, 8, 10, 100]
labels = ["0-1L", "1L-2L", "2L-3L", "3L-4L", "4L-6L", "6L-8L", "8L-10L", "Above 8L"]
application_df["GOODS_PRICE_RANGE"] = pd.cut(application_df.AMT_GOODS_PRICE, bins=bins, lab
```

In [115]:

application_df.GOODS_PRICE_RANGE.value_counts().plot.bar()

Out[115]:

<AxesSubplot:>

Create CHILDREN_COUNT group from CNT_CHILDREN

In [116]:

application_df.CNT_CHILDREN.hist()

Out[116]:

<AxesSubplot:>

In [117]:

```
bins = [0, 1, 2, 3, 4, 8, 20]
labels = ["0","1","2","3", "4-7", "Above 7"]
application_df["CHILDREN_COUNT"] = pd.cut(application_df.CNT_CHILDREN, bins=bins, labels=la
```

In [118]:

```
application_df.CHILDREN_COUNT.value_counts().plot.bar()
```

Out[118]:

<AxesSubplot:>

In [119]:

```
# Drop redundant
application_df.drop(columns="CNT_CHILDREN", inplace=True)
```

In [120]:

```
application_df.shape
```

Out[120]:

(252129, 51)

Analysis

Data Imbalance

In [121]:

```
target_counts = round(application_df.TARGET.value_counts(normalize=True)*100, 2)
print("Repayer is {}%".format(target_counts[0]))
print("Defaulter is {}%".format(target_counts[1]))
print("The Imbalance Ratio between Repayer and Defaulter is {0:.2f}/1 (approx)".format(target_counts[1])
```

Repayer is 91.34%

Defaulter is 8.66%

The Imbalance Ratio between Repayer and Defaulter is 10.55/1 (approx)

In [122]:

```
plt.figure(figsize= (15,5))
sns.barplot(y=["Repayer","Defaulter"], x=application_df["TARGET"].value_counts(), palette=[
plt.title("Imbalance Plot (Repayer Vs Defaulter)", fontdict={"fontsize":25}, pad = 20)
plt.ylabel("Loan Repayment Status", fontdict={"fontsize":15})
plt.xlabel("Count", fontdict={"fontsize":15})
plt.show()
```

Imbalance Plot (Repayer Vs Defaulter)

Univariate Analysis

Categorical variable analysis

In [123]:

```
title = lambda name: name.replace("_", " ").title()
def categorical_plot(data, col, target_col, y_log=False, x_angle=False, h_layout=True):
   target1_percentage = data[[col, target_col]].groupby([col], as_index=False).mean()
   target1_percentage[target_col] = target1_percentage[target_col]*100
   target1_percentage.sort_values(by=target_col,inplace = True)
   if h_layout:
            fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(15,7))
   else:
        fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=(24,30))
   # Subplot 1 - Count plot of the column
   s = sns.countplot(ax=ax1, x=col, data=data, hue=target_col, palette=["#459e97", "#e6819
   ax1.set_title(title(col), fontsize = 15, pad = 15)
   ax1.legend(["Repayer", "Defaulter"])
   ax1.set_xlabel(col,fontdict={"fontsize": 13, "fontweight": 3})
   s.set_xticklabels(s.get_xticklabels(), rotation= 50*x_angle)
   # Subplot 2 - Percentage of defaulters in the column
   s = sns.barplot(ax=ax2, x = col, y=target_col, data=target1_percentage, palette="flare"
   ax2.set_title("Defaulters % in " + title(col), fontsize = 15, pad = 15)
   ax2.set_xlabel(col,fontdict={"fontsize": 13, "fontweight": 3})
   ax2.set_ylabel(target_col,fontdict={"fontsize": 13, "fontweight": 3})
   s.set_xticklabels(s.get_xticklabels(), rotation= 50*x_angle)
   if y_log:
        ax1.set_yscale('log')
        ax1.set_ylabel("Count (log)",fontdict={'fontsize' : 13, 'fontweight' : 3})
   else:
        ax1.set_ylabel("Count",fontdict={'fontsize' : 13, 'fontweight' : 3})
    plt.show()
```

In [124]:

categorical_plot(application_df,"NAME_CONTRACT TYPE","TARGET")

Observation: Contract type

- Revolving loans account for just a modest percentage of overall loans.
- Approximately 8-9% of cash loan applicants and 6% of revolving loan applicants default.

In [125]:

Observation: Gender type

- Female customers outnumber male clients by almost two to one.
- According to the proportion of defaulted loans, males have a 10% chance of not returning their obligations, while women have just below 7% chance.

In [126]:

Observation: Age Groups

- The majority of loan applicants are between the ages of 30 50, with seniors above the age of 60 being less common.
- The defaulters percentage chart clearly illustrates a declining tendency in the proportion of defaulters with age, with the 20-30 age group having the highest percentage of defaulters.

In [127]:

Observation: Work experience

3-7

7-10

WORK_EXPERIENCE

10-20

20-30

• Clearly, the majority of loan applicants have little or no employment experience.

30 Above

• The defaulters percentage chart clearly shows a downward trend in the number of defaulters associated with increasing years of work experience, with the 0-3 year experience group having the highest defaulters.

0-3

3-7

7-10

WORK_EXPERIENCE

10-20

20-30

30 Above

In [128]:

10

0-3

Observation: Income range

- Evidently, the majority of loan applicants earn less than 2 lakh.
- Overall, the defaulters % chart indicates a declining trend in the number of defaulters as income increases, with applicants earning less than 3 lakhs defaulting more often.

In [129]:

1L-2L

2L-3L

3L-4L

4L-6L

CREDIT_RANGE

6L-8L

8L-10L Above 8L

0-1L

Observation: Credit range

1L-2L

2L-3L

4L-6L

CREDIT_RANGE

6L-8L

8L-10L Above 8L

 According to the percentage of defaulted loans, applicants with credit ranging from 3-6 lakhs have a somewhat higher than 10% likelihood of defaulting on their loans.

In [130]:

Observation: Children count

• The majority of loan applicants have no children.

- As per the proportion of defaulted loans, applicants with 1-3 children account for approximately 10% of defaulters.
- Applicants with no children are more likely to repay the loan, whereas those with more than seven children are more likely to default.

In [131]:

Observation: Housing Type

- The vast majority of individuals live in a house or apartment.
- Those who live in office apartments have the lowest default rate.
- Applicants who live with their parents and in leased flats have a greater chance of defaulting (roughly 12%).

In [132]:

Observation: Own real estate

- Customers who own real estate outnumber those who don't by more than a factor of two.
- The default rate for both groups is about the same (8%). As a result, we may conclude that there is no link between owning a reality and defaulting on a debt.

In [133]:

Observation: Family status

- The majority of those who have taken out loans are married.
- In terms of defaulters, single as well as civil marriage have the highest percentage (about 10%), while widows have the lowest (approximately 6%).

In [134]:

Observation: Education

- Clients with secondary education outnumber those with higher education, on the other hand, very few have an academic degree.
- Lower secondary education has the greatest probability of defaulting at roughly 11%, whilst those with an academic degree are the least likely to default.

In [135]:

Observation: Income Type

- The majority of loan applicants have a working income, followed by a commercial associate, and a state employee.
- Maternity leave applicants had the highest defaulting rate of 40%.
- Despite their smaller numbers, students and businessmen do not have a default record. The two most secure loan kinds.

In [136]:

Observation: Client Region Rating

- The majority of applicants live in a Region with a Rating 2 location.
- The region with the greatest default rate is Region Rating 3(11%).
- Clients residing in Region Rating 1 has the lowest likelihood of defaulting, making loan approval safer.

In [137]:

Observation: Family memembers count

• Family members follow the same pattern as children in that having more family members raises the probability of defaulting.

In [138]:

categorical_plot(application_df, "OCCUPATION_TYPE", "TARGET", True, True, False)

Observation: Occupation Type

- Laborers are the most likely to take out loans, followed by sales people.
- IT employees are less likely to seek for a loan.
- Low-skill labourers had the largest percentage of defaulters (almost 17%), followed by drivers and waiters/bartenders, security personnel, labourers, and cooks.

In [139]:

categorical_plot(application_df, "ORGANIZATION_TYPE","TARGET", True, True, False)

Observation: Occupation Type

- Transport: type 3 (16%), Industry: type 13 (13.5%), Industry: type 8 (12.5%), and Restaurant: type 3 (16%) are the organisations with the largest percentage of default (less than 12 percent).
- Self-employed persons have a relatively high default rate; to be on the safe side, loan disbursement should be avoided or a loan with a higher interest rate should be provided to offset the danger of failing.
- It can be demonstrated that the following types of organisations have fewer defaulters and hence are safer to lend to: Types 4 and 5 of trade, and Type 8 of industry

Numerical variable analysis

```
In [140]:
```

```
def numerical_plot(data, column):
     plt.figure(figsize=(10,5))
    sns.displot(data, x=column, hue="TARGET", kind="kde", legend=False)
   plt.legend(labels=['Repayer','Defaulter'])
   plt.show()
```

In [141]:

numerical_plot(application_df, "AMT_INCOME_TOTAL")

In [142]:

In [143]:

In [144]:

Observation: Since the repayers and defaulters distributions overlap in all of the plots, we cannot make a conclusion based just on any of the above four continuous variables.

Bivariate Analysis

In [145]:

```
application df.columns
```

```
Out[145]:
```

```
Index(['SK_ID_CURR', 'TARGET', 'NAME_CONTRACT_TYPE', 'CODE_GENDER',
       'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'AMT_INCOME_TOTAL', 'AMT_CREDIT',
       'AMT_ANNUITY', 'AMT_GOODS_PRICE', 'NAME_TYPE_SUITE', 'NAME_INCOME TYP
Ε',
       'NAME EDUCATION TYPE', 'NAME FAMILY STATUS', 'NAME HOUSING TYPE',
       'REGION_POPULATION_RELATIVE', 'DAYS_REGISTRATION', 'DAYS_ID_PUBLISH',
       'FLAG_MOBIL', 'FLAG_EMP_PHONE', 'FLAG_WORK_PHONE', 'FLAG_CONT_MOBIL
Ε',
       'FLAG_PHONE', 'FLAG_EMAIL', 'OCCUPATION_TYPE', 'CNT_FAM_MEMBERS',
       'REGION RATING CLIENT', 'REGION RATING CLIENT W CITY',
       'WEEKDAY_APPR_PROCESS_START', 'HOUR_APPR_PROCESS_START'
       'REG_REGION_NOT_LIVE_REGION', 'REG_REGION_NOT_WORK_REGION',
       'LIVE_REGION_NOT_WORK_REGION', 'REG_CITY_NOT_LIVE_CITY',
       'REG_CITY_NOT_WORK_CITY', 'LIVE_CITY_NOT_WORK_CITY',
       'ORGANIZATION_TYPE', 'EXT_SOURCE_2', 'OBS_30_CNT_SOCIAL_CIRCLE',
       'DEF_30_CNT_SOCIAL_CIRCLE', 'OBS_60_CNT_SOCIAL_CIRCLE',
       'DEF_60_CNT_SOCIAL_CIRCLE', 'DAYS_LAST_PHONE_CHANGE', 'AGE',
       'AGE_GROUP', 'YEARS_EMPLOYED', 'WORK_EXPERIENCE', 'INCOME_RANGE',
       'CREDIT_RANGE', 'GOODS_PRICE_RANGE', 'CHILDREN_COUNT'],
      dtype='object')
```

In [146]:

```
application_df["LOAN_STATUS"] = application_df.TARGET.map({0: "Repayer", 1: "Defaulter"})
```

In [147]:

```
def multi_plot(data, x_col, y_col, TARGET="LOAN_STATUS", y_log=True):
   fig, ax = plt.subplots(figsize=(20, 7))
    sns.boxplot(x=x_col, y=y_col, data=data, hue=TARGET, palette="Set2", hue_order=["Repaye"]
   ax.set title("Distribution of " + title(y col) + " for Repayed and Defaulter categorise
   ax.set xlabel(x col,fontdict={"fontsize": 13, "fontweight": 3})
        ax.set_ylabel(y_col + " (log)", fontdict={"fontsize": 13, "fontweight": 3})
        ax.set_yscale('log')
   else:
        ax.set ylabel(y col, fontdict={"fontsize": 13, "fontweight": 3})
   plt.show()
```

In [148]:

Observation: Income type and Total income

• Clients earning less and on maternity leave seem to be more likely to default on their loans, while business professionals and students had nearly no defaults regardless of income type.

In [149]:

Observation

• Clients with larger loan credit and on maternity leave seem to be more likely to default on their loans, while business professionals and students had nearly no defaults regardless of income type.

In [150]:

Observation

 Aside from non-earners, Customers with less loan creadit, regardless of income range, are more likely to default.

In [151]:

Observation:

• There is no substantial relationship between age group and credit amount to be a defaulter.

In [152]:

multi_plot(application_df, "NAME_TYPE_SUITE", "AMT_CREDIT")

Observation:

• There is no substantial relationship between housing type and credit amount to be a defaulter.

In [153]:

<Figure size 1080x1080 with 0 Axes>

Observation:

• When the loan amount exceeds 30 lakhs, the number of defaulters increases.

In [154]:

```
plt.show()
```


Observation:

- There is a lower possibility of defaulters when the Annuity Amount > 15K and the Good Price Amount > 20
 Lakhs
- According to the scatterplot, where the majority of the data is aggregated in the shape of a line shows that Loan Amount Credit and Goods Price are highly correlated.
- For Amount Credit >20 Lakhs, there are relatively few defaulters.

Previous Application Data

In [155]:

```
previous_df = pd.read_csv("previous_application.csv")
previous_df.head()
```

Out[155]:

	SK_ID_PREV	SK_ID_CURR	NAME_CONTRACT_TYPE	AMT_ANNUITY	AMT_APPLICATION	Αľ
0	2030495	271877	Consumer loans	1730.430	17145.0	
1	2802425	108129	Cash loans	25188.615	607500.0	
2	2523466	122040	Cash loans	15060.735	112500.0	
3	2819243	176158	Cash loans	47041.335	450000.0	
4	1784265	202054	Cash loans	31924.395	337500.0	

5 rows × 37 columns

In [156]:

previous_df.shape

Out[156]:

(1670214, 37)

In [157]:

```
previous_df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1670214 entries, 0 to 1670213

Data columns (total 37 columns):

#	Column (total 37 Columns):	Non-Null Count	Dtype
		4.570044	
0	SK_ID_PREV	1670214 non-null	int64
1	SK_ID_CURR	1670214 non-null	int64
2	NAME_CONTRACT_TYPE	1670214 non-null	object
3	AMT_ANNUITY	1297979 non-null	float64
4	AMT_APPLICATION	1670214 non-null	float64
5	AMT_CREDIT	1670213 non-null	float64
6	AMT_DOWN_PAYMENT	774370 non-null	float64
7	AMT_GOODS_PRICE	1284699 non-null	float64
8	WEEKDAY_APPR_PROCESS_START	1670214 non-null	object
9	HOUR_APPR_PROCESS_START	1670214 non-null	int64
10	FLAG_LAST_APPL_PER_CONTRACT	1670214 non-null	object
11	NFLAG_LAST_APPL_IN_DAY	1670214 non-null	int64
12	RATE_DOWN_PAYMENT	774370 non-null	float64
13	RATE_INTEREST_PRIMARY	5951 non-null	float64
14	RATE_INTEREST_PRIVILEGED	5951 non-null	float64
15	NAME_CASH_LOAN_PURPOSE	1670214 non-null	object
16	NAME_CONTRACT_STATUS	1670214 non-null	object
17	DAYS_DECISION	1670214 non-null	int64
18	NAME_PAYMENT_TYPE	1670214 non-null	object
19	CODE_REJECT_REASON	1670214 non-null	object
20	NAME_TYPE_SUITE	849809 non-null	object
21	NAME_CLIENT_TYPE	1670214 non-null	object
22	NAME_GOODS_CATEGORY	1670214 non-null	object
23	NAME PORTFOLIO	1670214 non-null	object
24	NAME_PRODUCT_TYPE	1670214 non-null	object
25	CHANNEL_TYPE	1670214 non-null	object
26	SELLERPLACE_AREA	1670214 non-null	int64
27	NAME_SELLER_INDUSTRY	1670214 non-null	object
28	CNT_PAYMENT	1297984 non-null	float64
29	NAME_YIELD_GROUP	1670214 non-null	object
30	PRODUCT_COMBINATION	1669868 non-null	object
31	DAYS_FIRST_DRAWING	997149 non-null	float64
32	DAYS_FIRST_DUE	997149 non-null	float64
33	DAYS_LAST_DUE_1ST_VERSION	997149 non-null	float64
34	DAYS_LAST_DUE	997149 non-null	float64
35	DAYS_TERMINATION	997149 non-null	float64
36	NFLAG_INSURED_ON_APPROVAL	997149 non-null	float64
		ject(16)	
<i>J</i> []	` // \-//	_ \ /	

dtypes: float64(15), int64(6), object(16)

memory usage: 471.5+ MB

In [158]:

previous_df.describe()

Out[158]:

	SK_ID_PREV	SK_ID_CURR	AMT_ANNUITY	AMT_APPLICATION	AMT_CREDIT	AMT_DO
count	1.670214e+06	1.670214e+06	1.297979e+06	1.670214e+06	1.670213e+06	
mean	1.923089e+06	2.783572e+05	1.595512e+04	1.752339e+05	1.961140e+05	
std	5.325980e+05	1.028148e+05	1.478214e+04	2.927798e+05	3.185746e+05	
min	1.000001e+06	1.000010e+05	0.000000e+00	0.000000e+00	0.000000e+00	
25%	1.461857e+06	1.893290e+05	6.321780e+03	1.872000e+04	2.416050e+04	
50%	1.923110e+06	2.787145e+05	1.125000e+04	7.104600e+04	8.054100e+04	
75%	2.384280e+06	3.675140e+05	2.065842e+04	1.803600e+05	2.164185e+05	
max	2.845382e+06	4.562550e+05	4.180581e+05	6.905160e+06	6.905160e+06	

8 rows × 21 columns

In [159]:

previous_df.nunique()

Out[159]:

SK_ID_PREV	1670214
SK_ID_CURR	338857
NAME_CONTRACT_TYPE	4
AMT_ANNUITY	357959
AMT_APPLICATION	93885
AMT_CREDIT	86803
AMT_DOWN_PAYMENT	29278
AMT_GOODS_PRICE	93885
WEEKDAY_APPR_PROCESS_START	7
HOUR_APPR_PROCESS_START	24
FLAG_LAST_APPL_PER_CONTRACT	2
NFLAG_LAST_APPL_IN_DAY	2
RATE_DOWN_PAYMENT	207033
RATE_INTEREST_PRIMARY	148
RATE_INTEREST_PRIVILEGED	25
NAME_CASH_LOAN_PURPOSE	25
NAME_CONTRACT_STATUS	4
DAYS_DECISION	2922
NAME_PAYMENT_TYPE	4
CODE_REJECT_REASON	9
NAME_TYPE_SUITE	7
NAME_CLIENT_TYPE	4
NAME_GOODS_CATEGORY	28
NAME_PORTFOLIO	5
NAME_PRODUCT_TYPE	3
CHANNEL_TYPE	8
SELLERPLACE_AREA	2097
NAME_SELLER_INDUSTRY	11
CNT_PAYMENT	49
NAME_YIELD_GROUP	5
PRODUCT_COMBINATION	17
DAYS_FIRST_DRAWING	2838
DAYS_FIRST_DUE	2892
DAYS_LAST_DUE_1ST_VERSION	4605
DAYS_LAST_DUE	2873
DAYS_TERMINATION	2830
NFLAG_INSURED_ON_APPROVAL	2
dtype: int64	

Check Missing Values

In [160]:

```
missing_value_percentage(previous_df)
```

Out[160]:

99.6
99.6
53.6
53.6
49.1
40.3
40.3
40.3
40.3
40.3
40.3
23.1
22.3
22.3

Drop missing values greater than 50%

In [161]:

```
missing_value_percentage(previous_df, 50)
```

Out[161]:

```
RATE_INTEREST_PRIMARY
                            99.6
RATE_INTEREST_PRIVILEGED
                            99.6
RATE_DOWN_PAYMENT
                            53.6
AMT_DOWN_PAYMENT
                            53.6
```

dtype: float64

In [162]:

previous_df.drop(columns=missing_value_percentage(previous_df, 50).index, inplace=True)

In [163]:

```
missing_value_percentage(previous_df)
```

Out[163]:

NAME_TYPE_SUITE	49.1
DAYS_FIRST_DUE	40.3
DAYS_TERMINATION	40.3
DAYS_FIRST_DRAWING	40.3
NFLAG_INSURED_ON_APPROVAL	40.3
DAYS_LAST_DUE_1ST_VERSION	40.3
DAYS_LAST_DUE	40.3
AMT_GOODS_PRICE	23.1
CNT_PAYMENT	22.3
AMT_ANNUITY	22.3

dtype: float64

Impute NAME_TYPE_SUITE missing values since it has significance in the loan repayment

In [164]:

```
previous_df.NAME_TYPE_SUITE = previous_df.NAME_TYPE_SUITE.fillna("Unknown")
```

Check data in the columns with null values

In [165]:

missing_value_percentage(previous_df)

Out[165]:

40.3
40.3
40.3
40.3
40.3
40.3
23.1
22.3
22.3

In [166]:

previous_df[missing_value_percentage(previous_df).index].describe()

Out[166]:

	NFLAG_INSURED_ON_APPROVAL	DAYS_LAST_DUE	DAYS_LAST_DUE_1ST_VERSION	DA
count	997149.000000	997149.000000	997149.000000	
mean	0.332570	76582.403064	33767.774054	
std	0.471134	149647.415123	106857.034789	
min	0.000000	-2889.000000	-2801.000000	
25%	0.000000	-1314.000000	-1242.000000	
50%	0.000000	-537.000000	-361.000000	
75%	1.000000	-74.000000	129.000000	
max	1.000000	365243.000000	365243.000000	
4				•

Day column values are in negetive which should be converted to positive

In [167]:

```
day_cols = ['DAYS_DECISION','DAYS_FIRST_DRAWING', 'DAYS_FIRST_DUE', 'DAYS_LAST_DUE_1ST_VERS
previous_df[day_cols] = abs(previous_df[day_cols])
```

Derived Variable for DAYS_DECISION

In [168]:

```
previous_df["YEARLY_DECISION"] = previous_df.DAYS_DECISION // 365
```

In [169]:

```
previous_df.YEARLY_DECISION.plot.hist()
```

Out[169]:

<AxesSubplot:ylabel='Frequency'>

In [170]:

```
bins = [0, 1, 2, 3, 4, 5, 6, 7, 10]
labels = ["1", "2", "3", "4", "5", "6", "7", "Above 7"]
previous_df.YEARLY_DECISION = pd.cut(previous_df.YEARLY_DECISION, bins, labels=labels)
```

In [171]:

```
previous_df.YEARLY_DECISION.value_counts().plot.bar()
```

Out[171]:

<AxesSubplot:>

Check and impute Amount variable missing values

In [172]:

```
plt.figure(figsize=(9,6))
sns.kdeplot(previous_df.AMT_ANNUITY)
plt.show()
```


There is a single peak on the left side of the distribution, indicating the existence of outliers, and so imputing with mean would be incorrect. Imputing with median would be correct.

In [173]:

```
previous_df.AMT_ANNUITY.fillna(previous_df.AMT_ANNUITY.median(), inplace = True)
```

In [174]:

```
plt.figure(figsize=(9,6))
sns.kdeplot(previous_df.AMT_GOODS_PRICE)
plt.show()
```


Despite the fact that there are many minor peaks, the peak on the left is the most prominent, thus we will impute it with a median similar to Annuity.

In [175]:

```
previous_df.AMT_GOODS_PRICE.fillna(previous_df.AMT_GOODS_PRICE.median(), inplace = True)
```

In [176]:

```
missing_value_percentage(previous_df)
```

Out[176]:

DAYS TERMINATION	40.3
DAYS_TERMINATION	40.3
DAYS_LAST_DUE	40.3
DAYS_LAST_DUE_1ST_VERSION	40.3
DAYS_FIRST_DUE	40.3
DAYS_FIRST_DRAWING	40.3
NFLAG_INSURED_ON_APPROVAL	40.3
YEARLY_DECISION	34.2
CNT_PAYMENT	22.3
dtype: float64	

The missing numbers in CNT PAYMENT could indicate that they have not yet begun paying.

In [177]:

```
previous_df["CNT_PAYMENT"].fillna(0, inplace=True)
```

Identify Outliers

Examine the outliers for the continuous variables.

In [178]:

```
plt.figure(figsize=(15,25))
for i, c in enumerate(["AMT_APPLICATION", "AMT_ANNUITY", "AMT_GOODS_PRICE", "AMT_CREDIT",
    plt.subplot(4, 2, i+1)
    sns.boxplot(y=previous_df[c], color="lightgreen")
    plt.title(i)
```


Outliers seem to exist in all of the observed variables plotted above.

Analysis

Merge and analyse data

```
In [179]:
```

```
merged_df = pd.merge(application_df, previous_df, on='SK_ID_CURR', how='inner')
merged_df.head()
```

Out[179]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE_x	CODE_GENDER	FLAG_OWN_CAR	FLAG
0	100002	1	Cash loans	Male	No	
1	100003	0	Cash loans	Female	No	
2	100003	0	Cash loans	Female	No	
3	100003	0	Cash loans	Female	No	
4	100004	0	Revolving loans	Male	Yes	

5 rows × 85 columns

In [180]:

```
merged_df.info()
```

<class 'pandas.core.frame.DataFrame'>

Int64Index: 1140057 entries, 0 to 1140056 Data columns (total 85 columns): Column Non-Null Count Dtype _____ -----SK ID CURR 1140057 non-null int32 0 1140057 non-null int32 1 TARGET 2 NAME_CONTRACT_TYPE_x 1140057 non-null object 3 CODE GENDER 1140057 non-null object 4 FLAG_OWN_CAR 1140057 non-null object 5 1140057 non-null object FLAG_OWN_REALTY 6 AMT_INCOME_TOTAL 1140057 non-null float64 7 AMT_CREDIT_x 1140057 non-null float64 8 1139964 non-null float64 AMT_ANNUITY_x 1140057 non-null float64 9 AMT GOODS PRICE x 10 NAME_TYPE_SUITE_x 1140057 non-null object NAME INCOME TYPE 1140057 non-null object NAME_EDUCATION_TYPE 1140057 non-null object 12 NAME_FAMILY_STATUS 13 1140057 non-null object 14 NAME_HOUSING_TYPE 1140057 non-null object REGION_POPULATION_RELATIVE 1140057 non-null float64 1140057 non-null int32 DAYS REGISTRATION 16 17 DAYS_ID_PUBLISH 1140057 non-null int32 18 FLAG_MOBIL 1140057 non-null object FLAG_EMP_PHONE 19 1140057 non-null object 1140057 non-null object FLAG_WORK_PHONE 1140057 non-null object 21 FLAG_CONT_MOBILE FLAG PHONE 1140057 non-null object FLAG_EMAIL 23 1140057 non-null object OCCUPATION TYPE 1140057 non-null object 25 CNT_FAM_MEMBERS 1140057 non-null int32 26 REGION_RATING_CLIENT 1140057 non-null int32 27 REGION_RATING_CLIENT_W_CITY 1140057 non-null int32 WEEKDAY_APPR_PROCESS_START_x 1140057 non-null object 28 29 HOUR_APPR_PROCESS_START_x 1140057 non-null int32 REG_REGION_NOT_LIVE_REGION 30 1140057 non-null object 1140057 non-null object REG_REGION_NOT_WORK_REGION 32 LIVE_REGION_NOT_WORK_REGION 1140057 non-null object REG CITY NOT LIVE CITY 1140057 non-null object REG_CITY_NOT_WORK_CITY 34 1140057 non-null object LIVE_CITY_NOT_WORK_CITY 35 1140057 non-null object 36 ORGANIZATION_TYPE 1140057 non-null object 37 EXT_SOURCE_2 1140057 non-null float64 OBS_30_CNT_SOCIAL_CIRCLE 1140057 non-null int32 38 39 DEF_30_CNT_SOCIAL_CIRCLE 1140057 non-null int32 40 OBS 60 CNT SOCIAL CIRCLE 1140057 non-null int32 DEF_60_CNT_SOCIAL_CIRCLE 1140057 non-null int32 41 42 DAYS LAST PHONE CHANGE 1140057 non-null int32 43 AGE 1140057 non-null int32 44 AGE GROUP 1140053 non-null category YEARS EMPLOYED 1140057 non-null int32 45 1032695 non-null category WORK EXPERIENCE 46 47 INCOME RANGE 1140047 non-null category 1140057 non-null category 48 CREDIT RANGE 49 GOODS_PRICE_RANGE 1138971 non-null category 50 CHILDREN_COUNT 1140057 non-null category LOAN STATUS 1140057 non-null object

```
52 SK ID PREV
                                                                                                                                                              1140057 non-null int64
    53 NAME_CONTRACT_TYPE_y
                                                                                                                                                              1140057 non-null object
                                                                                                                                                             1140057 non-null float64
1140057 non-null float64
    54 AMT_ANNUITY_y
                                                                                                                                                     1140057 non-null float64
1140057 non-null float64
    55 AMT APPLICATION
    56 AMT_CREDIT_y
    57 AMT_GOODS_PRICE_y
                                                                                                                                                         1140057 non-null float64
    58 WEEKDAY_APPR_PROCESS_START_y 1140057 non-null object
    59 HOUR_APPR_PROCESS_START_y 1140057 non-null int64
60 FLAG_LAST_APPL_PER_CONTRACT 1140057 non-null object
60 FLAG_LAST_APPL_PER_CONTRACT 1140057 non-null object 1140057 non-null int64 140057 non-null int64 140057 non-null object 1140057 non-null object 114
  80 DAYS_LAST_DUE_1ST_VERSION 688553 non-null float64
81 DAYS_LAST_DUE 688553 non-null float64
82 DAYS_TERMINATION 688553 non-null float64
83 NFLAG_INSURED_ON_APPROVAL 688553 non-null float64
84 VEARLY DECISION 745004 non-null category
                                                                                                                                                              745004 non-null category
    84 YEARLY DECISION
dtypes: category(7), float64(18), int32(15), int64(4), object(41)
memory usage: 629.5+ MB
```

Graphing the association between Total revenue and Social circle default count

In [181]:

```
plt.figure(figsize=(12,6))
sns.pointplot(data=merged_df, x="NAME_CONTRACT_STATUS", y="DEF_30_CNT_SOCIAL_CIRCLE", hue="
plt.title("CONTRACT STATUS VS SOCIAL CIRCLE DEFAULT COUNT", fontsize=17, pad=20)
plt.show()
```

CONTRACT STATUS VS SOCIAL CIRCLE DEFAULT COUNT

Observation:

Clients with a DEFAULT 30 COUNT SOCIAL CIRCLE score of 0.18 or above are more likely to default, hence analysing the client's social circle might aid in loan disbursement.

Categorical Analysis

In [182]:

```
def categorical_merged_plot(data, col, hue, ylog, figsize):
   plt.figure(figsize=figsize)
   ax=sns.countplot(data=data, x=col, hue=hue, palette="hus1")
   if ylog:
        plt.yscale('log')
        plt.ylabel("Count (log)", fontsize=17)
   else:
        plt.ylabel("Count", fontsize=17)
   plt.title(title(col), fontsize=20, pad=20)
   plt.xlabel(col, fontsize=17)
   plt.legend(loc = "upper right")
   plt.xticks(rotation=50)
   plt.show()
```

In [183]:

categorical_merged_plot(merged_df[merged_df.TARGET==0], "NAME_CASH_LOAN_PURPOSE", "NAME_CON

In [184]:

categorical_merged_plot(merged_df[merged_df.TARGET==1], "NAME_CASH_LOAN_PURPOSE", "NAME_CON

Observation:

- There are a larger number of unknown loan reasons, and loans obtained for the purpose of repairs seem to have the greatest default rate.
- A large percentage of applications for Repair or Other have been denied by banks or declined by clients.
 Furthermore, they are either refused or the bank gives a loan with a high interest rate that the consumers cannot afford, and they decline the loan.

Analyzing loan repayment status to determine whether there is a business or financial loss

In [185]:

```
categorical_merged_plot(merged_df, "NAME_CONTRACT_STATUS", "TARGET", False, (15,7))
contract_group = merged_df.groupby("NAME_CONTRACT_STATUS")["TARGET"]
pd.concat([contract_group.value_counts(), round(contract_group.value_counts(normalize=True)
          keys=('Counts','Percentage'), axis=1)
```


Out[185]:

		Counts	Percentage
NAME_CONTRACT_STATUS	TARGET		
Ammuniad	0	657609	91.86
Approved	1	58295	8.14
Canceled	0	181475	89.95
Canceleu	1	20282	10.05
Refused	0	175572	87.11
Keluseu	1	25979	12.89
Unused offer	0	19069	91.48
	1	1776	8.52

Obsrevation:

- 90% of the previously terminated clients have paid back their loans.
- 88% of consumers who were previously rejected a loan have paid it back.

Results

Below is the analysis with relevant elements and classification based on which the bank may determine

a client's repayment ability

Factors that influence whether or not an applicant is likely to repay

- 1. **REGION_RATING_CLIENT**: Rating 1 is the safest.
- 2. NAME_EDUCATION_TYPE: Academic degree has fewer defaults.
- 3. NAME INCOME TYPE: Businessmen and Students have little or no defaults.
- 4. **DAYS_EMPLOYED**: Applicants with more than 40 years of expertise have a default rate of less than 1%.
- 5. AMT INCOME TOTAL: Clients earning more over 7 lakhs have a lower risk of default.
- ORGANIZATION_TYPE: Applicants belonging to Industry Types 4 and 5 have defaulted at a rate of less than 3%.
- 7. AMT CREDIT: Applicants with loan amounts less than Rs. 30 lakhs have the lowest default rate.

Factors that influence whether or not an applicant is likely to default

- 1. DAYS EMPLOYED: Individuals with fewer than five years of job experience have a significant default rate.
- 2. **CODE_GENDER**: Men default at a larger rate than women.
- 3. NAME_EDUCATION_TYPE: Individuals with a secondary or lower secondary education are more likely to defaulter
- 4. NAME FAMILY STATUS: Individuals who are single or had civil marriages often default.
- 5. NAME_INCOME_TYPE: People who are unemployed or on maternity leave often default.
- 6. CNT CHILDREN: Clients with 7 or more children are substantially more likely to default.
- 7. **REGION_RATING_CLIENT**: Residents of Rating 3 locales have the greatest default rates.
- 8. AMT GOODS PRICE: When the loan amount exceeds 3 lakhs, the number of defaulters increases.
- 9. AMT INCOME TOTAL: Individuals earning less than two lakhs are more prone to default.
- 10. OCCUPATION_TYPE: The default rate for low-skilled labourers, drivers, and waiters/bartenders, as well as security personnel, labourers, and cooks, is quite high.

Suggestions

- 1. Ninety percent of the previously cancelled customers have actually paid back the loan in full and on schedule. Keep track of the reasons for the cancellation so that the bank may better identify and negotiate conditions with clients who want to pay back in the future.
- 2. Almost Ninety percent of the customers who were previously turned down for a loan by a bank have now become repaid customers. Documenting the reasons for denial might help to minimise company losses, and these customers may be approached again for more loans.
- 3. A large proportion of loan applications come from individuals who live in rented flats and live with their parents, therefore extending the loan would lessen the damage if any of them defaulted.