ELE510 Image Processing with robot vision: LAB - Test the environment

Purpose: This jupyter notebook is just for you to test that the environment is set and ready for the various assignments.

The following package are necessary for the assignments:

- opency "OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library" -
- numpy "The fundamental package for scientific computing with Python" Documentation
- matplotlib "A comprehensive library for creating static, animated, and interactive visualizations in Python" Documentation

Numpy

NumPy is the fundamental package for scientific computing in Python. It provides routines for fast operations on arrays.

If the following cell returns you an error: ModuleNotFoundError: No module named 'np' Open the Anaconda Prompt and run the following: pip install numpy

```
In [ ]: import numpy as np # It is common to import **numpy** under the briefer name **np**
In [ ]: m = np.matrix('3 2; 3 4') # create a matrix
In [ ]: # print the matrix
print(m)

[[3 2]
[ 3 4]]
In [ ]: # print the shape of the matrix
print(m.shape)
```

(2, 2)

```
The shape of the matrix should be: (2,2)
```

```
In [ ]: # print the following values: m(0,0), m(0,1), m(1,0)
    print(m[0,0])
    print(m[0,1])
    print(m[1,0])

3
    2
    3

The answer should be: 3, 2, 3
```

OpenCV

OpenCV-Python is a library of Python bindings designed to solve computer vision problems.

If the following cell returns you an error: ModuleNotFoundError: No module named 'cv2' Open the Anaconda Prompt and run the following: pip install opency-python

```
In [ ]: # import the opency-python module
import cv2
```

Import an image

```
In []: flag = cv2.CoLoR_BGR2RGB

# Read the image 'preikestolen.jpg' located in the 'images/' folder with cv2.
# Example:
# img = cv2.imread(image_path, flag)

img = cv2.imread('../Images/preikestolen.jpeg', flag)
```

```
# OpenCV uses BGR as its default colour order for images, matplotlib uses RGB.
# When you display an image loaded with OpenCV in matplotlib the channels will be back to front.

img = cv2.cvtColor(img, flag)
```

Print the dimension and other information of the image

```
In [ ]: # Display the height, width, number of channels of the image
        height = img.shape[0]
        width = img.shape[1]
        channels = img.shape[2]
        print('Image Dimension : ', img.shape)
        print('Image Height : ', height)
        print('Image Width : ', width)
        print('Number of Channels : ', channels)
        # The answer shoud be like this:
        # Image Dimension
                         : (1064, 1600, 3)
        # Image Height
                         : 1064
        # Image Width : 1600
        # Number of Channels : 3
       Image Dimension
                         : (1064, 1600, 3)
       Image Height
                         : 1064
       Image Width
                         : 1600
```

Matplotlib

Number of Channels: 3

Matplotlib is a Python 2D plotting library.

If the following cell returns you an error: ModuleNotFoundError: No module named 'plt' Open the Anaconda Prompt and run the following: pip install matplotlib

```
In [ ]: # We use the matplotlib submodule **pyplot**. Following a widely used convention, we use the `plt` alias
import matplotlib.pyplot as plt
```

Fontconfig warning: ignoring UTF-8: not a valid region tag

Dislay the imported image

```
In []: plt.imshow(img)
    plt.xticks([]), plt.yticks([]) # Hides the graph ticks and x / y axis
    plt.show()
```


Display the image in greyscale

```
In []: flag = cv2.IMREAD_GRAYSCALE
    grey_img = cv2.imread('../Images/preikestolen.jpeg', flag)
    plt.imshow(grey_img, cmap='gray', vmin=0, vmax=255)
    plt.xticks([]), plt.yticks([]) # Hides the graph ticks and x / y axis
    plt.show()
```



```
In [ ]: xs = np.array([0, 1, 2]) # Set x-axis values
    f = xs**2 # Set the corresponding y values

plt.plot(xs, f) # Create a plot
    plt.show() # Display the plot
```


Display the array and the images together

```
In [ ]: # Display the previous plot and the preikestolen images (color and grayscale) together in the same row.
# Hint: use plt.subplot function to show them together
```

```
plt.figure(figsize=(40, 10))
plt.subplot(1, 3, 1)
plt.imshow(img)
plt.xticks([]), plt.yticks([]) # Hides the graph ticks and x / y axis

plt.subplot(1, 3, 2)
plt.imshow(grey_img, cmap='gray', vmin=0, vmax=255)
plt.xticks([]), plt.yticks([]) # Hides the graph ticks and x / y axis

plt.subplot(1, 3, 3)
plt.plot(xs, f) # Create a plot
plt.show() # Display the plot
```


