La Décomposition en Valeurs Singulières

Analyse numérique et Application à la Vision

Valérie Perrier, Roger Mohr Ensimag et Laboratoire Jean Kuntzmann

Décomposition en valeurs singulières (SVD)

Deux parties:

(1) Résolution théorique et pratique des systèmes linéaires sur/indéterminés

(2) Application à un problème de géométrie pour la vision par ordinateur

(1) Résolution théorique et pratique des systèmes linéaires sur/indéterminés

- 1. La décomposition en valeurs singulières
- 2. Résolution théorique d'un système rectangulaire
- 3. Résolution pratique du système, stabilité numérique

1- La décomposition en valeurs singulières

Th SVD: soit $A \in \mathbb{R}^{m \times n}$. Il existe deux matrices orthogonales $U \in \mathbb{R}^{m \times m}$ et $V \in \mathbb{R}^{n \times n}$ telles que :

$$A = U \sum V^T$$
 avec $\sum = diag(\sigma_1, ..., \iota \in \mathbb{R}^{m \times n})$ avec $p = min(m,n)$ et $\sigma_1 \geq ... \geq \sigma_p \geq 0$.
Les σ_i sont les valeurs singulières de A. \square

Les matrices sont obtenues comme suit :

- (i) les valeurs singulières sont les racines carrées des valeurs propres à la fois de A^TA et AA^T .
 - (ii) U est la matrice des vecteurs propres de A^TA .
 - (iii) V est la matrice des vecteurs propres de AA^T .

1- La décomposition en valeurs singulières

Preuve de la SVD:

 A^TA est une matrice nxn symétrique positive, donc elle admet des valeurs propres réelles positives ($\lambda_1, ..., \lambda_n$) et une base orthonormée de vecteurs propres associés ($V_1, ..., V_n$) : A^TA $V_i = \lambda_i V_i$ De plus :

$$V_i^T A^T A \ V_j = \lambda_j \ V_i^T V_j = \lambda_j \ \delta_{ij}$$

On pose $\sigma_j = \sqrt{\lambda_j}$ et pour les $\sigma_j > 0$ (par ex $j = 0, ..., r$): $U_j = A \ V_j / \sigma_j$.
Les $(U_1, ..., U_r)$ forment une famille orthonormée de R^n , que l'on prolonge en une base orthonormée de R^m . Alors on a : $(U^T A V)_{i,j} = U_i^T A \ V_i = V_i^T A^T A \ V_i / \sigma_j = \sigma_i \ \delta_{ij} \ \text{si} \ j \leq r \ \text{et} \ \text{vaut} \ 0 \ \text{si} \ j > r$

Donc
$$U^TAV = \Sigma$$
 soit $A = U \Sigma V^T \blacksquare$

1- SVD : pseudo-inverse

Déf pseudo-inverse : soit $A \in \mathbb{R}^{m \times n}$ une matrice de rang r, ainsi que sa décomposition en valeurs singulières $A = U \sum V^T$.

La matrice $A^{t} = V \Sigma^{t} U^{T}$ est appelée matrice pseudoinverse ou inverse généralisée de A, avec :

$$\Sigma^{t} = diag(1/\sigma_{1}, ..., 1/\sigma_{r}, 0, ..., 0)$$

Remarques:

- A [†]A = I_r (matrice identité de rang r)
- Si rg(A)=n < m, alors $A^{\dagger} = (A^TA)^{-1}A^T$
- Si rg(A)=n=m, $A^{t}=A^{-1}$

2- Résolution théorique des systèmes linéaires

Système linéaire :

$$\begin{cases} a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,n} x_n = b_1 \\ a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,n} x_n = b_2 \\ \dots \\ a_{m,1} x_1 + a_{m,2} x_2 + \dots + a_{m,n} x_n = b_m \end{cases}$$

Sous forme matricielle:

$$AX = B \ avec \ A = [a_{i,j}] \in \mathbb{R}^{m \times n}, \ X = (x_i) \in \mathbb{R}^n, \ B = (b_i) \in \mathbb{R}^m$$

- Si A est carrée inversible (système de Cramer), unique solution X=A-1B
- Si A est rectangulaire avec m>n (syst. surdéterminé), pas de solution en général, sauf si B appartient à Im(A).
- Si A est rectangulaire avec m<n (syst. indéterminé), infinité de solutions.

Systèmes linéaires dans les applications

Dans de nombreuses applications : imagerie médicale, sismique, métérologie, problèmes inverses en général, on le nombre d'observations (b_j) est rarement égal au nombre d'inconnues (x_i) .

Exemple ici+ hrase en dessous a changer

Comment trouver X en pratique?

Dans le cas d'une infinité de solutions, laquelle choisir? Pas de solutions, comment faire?

Solution au sens des moindres carrés (systèmes surdéterminés, m>n)

 On dit que X* est une solution de AX=B au sens des moindres carrés si :

(1)
$$X^* = \arg\min_{X \in \mathbb{R}^n} ||AX - B||^2$$

 Si X* est solution au sens des moindres carrés, alors X* est solution du système linéaire carré, appelé système d'équations normales :

$$(2) A^T A X^* = A^T B$$

Le système (2) est inversible si et ssi *A* est de rang maximal *n* et dans ce cas, la solution X* du problème (1) existe et est unique.

Preuve de (1) => (2)

On suppose (1): si X^* réalise le minimum de la fonction : $\phi(X) = (AX-B)^T (AX-B) = X^T A^T A X - 2 X^T A^T B + B^T B$

Alors le gradient de ϕ s'annule en X^* : grad $\phi = 2 A^T A X^* - 2 A^T B = 0 d'où <math>X^*$ est solution de (2)

Si A n'est pas de rang max n: alors si X^* est solution de (2),

 X^*+Z avec $Z \in Ker(A)$ est encore solution. Pour forcer l'unicité, on rajoute une condition supplémentaire :

- •Si B \neq 0, on cherche par exemple la solution X* de norme euclidienne minimale.
- •Si B=0, pour obtenir la solution non triviale ($X^*=0$), on cherche X^* de norme 1 par exemple (toutes les solutions sont colinéaires).

Solution du problème moindres carrés

Formulation générale (incluant A de rang max) :

(1') Trouver X* de norme euclidienne minimale telle que :

$$X^* = \arg\min_{X \in \mathbb{R}^n} ||AX - B||^2$$

Théorème : soit $A \in \mathbb{R}^{m \times n}$ dont la décomposition en valeur singulière est $A = U \Sigma V^T$.

Alors l'unique solution de (1') est $X^* = A^{\dagger}B$ où $A^{\dagger} = V \Sigma^{\dagger} U^{T}$ est l'inverse généralisé de A.

Preuve:

En utilisant la SVD de A et le changement d'inconnu $W=V^TX$. On cherche alors W de norme minimale et qui réalise le minimum de

Suite p107

A MODIFER

On suppose (1): si X^* réalise le minimum de la fonction : $\phi(X) = (AX-B)^T (AX-B) = X^T A^T A X - 2 X^T A^T B + B^T B$

Alors le gradient de ϕ s'annule en X^* : grad $\phi = 2 A^T A X^* - 2 A^T B = 0 d'où <math>X^*$ est solution de (2)

Systemes indetermines : idem avec la SVD

3- Résolution **pratique** des systèmes linéaires, stabilité

A de rang max : Résolution du système des équations normales (cholesky) pas stable+exemple

Donc Utilisation de la SVD dans tous les cas (QR aussi peut servir) Si A n'est pas de rang max, pas de continuite dcpb de stabilite peuvent exister

Parler du calcul pratique de la SVD? (idee du cout ; plus long que Cholesky)

(2) Application à un problème de géométrie pour la Vision par ordinateur

Le calcul de la géométrie épipolaire

- Le modèle géométrique
- Les équations projectives
- Calcul en supposant les données bruitées
- Correction du calcul
- Un mot sur l'estimation en présence d'erreurs grossières

Deux vues d'une même scène prises de 2 points de vue

Donc une contrainte sur les positions mutuelles

La formation perspective de 2 images

Préliminaires projectifs

- On passe en géométrie projective :
 - Coordonnées homogènes,
 - Équations linéaires, valeurs définies à un coefficient de proportionnalité près;

Droite /point :
$$(a,b,c) \approx \lambda(a,b,c)$$

Point sur droite :
$$(a,b,c)\begin{pmatrix} x \\ y \\ t \end{pmatrix} = 0$$

Intersection de 2 droites: $(a,b,c)\otimes(a',b',c')$

Les équations:

- Les droites passent par les points: $l = m \otimes e$
- L'application $m\rightarrow l$ est linéaire de rang 2: l=C.m
- l_1 et l_2 se correspondent par une application affine de rang 3 : $l_2 = A.l_1 = A.C.m_1$
- m_2 est sur l_2 : $0 = {}^t m_2 l_2 = {}^t m_2 A.C.m_1$
- Obtenir F=AC permet de calculer la droite où rechercher le point correspondant à un point d'une image!

Résoudre

• Chaque correspondance observée (m_1, m_2) donne une équation linéaire dans les coefficients de F: $x_1x_2f_{11} + \cdots + t_1t_2f_{33} = 0$

• A partir de n mesures, on obtient le système linéaire (f_n)

 $M. \begin{pmatrix} f_{11} \\ \vdots \\ f_{33} \end{pmatrix} = 0$

dont la solution (0, ...,0) n'est pas la solution!

L'approche « calcul numérique »

- Les mesures étant approximatives on ne peut avoir MF=0
- Solution : F de norme 1 et qui minimise

$$||M.F||^2 = {}^tF.{}^tM.M.F$$

- Choix pour F: le vecteur propre de ^tM.M qui a la plus petite valeur propre associé : λ
- Donc on obtient F mais ...

Le pb du rang de F

- F doit être de rang 2 (et son noyau est l'épipole correspondant).
- De l'estimation F' on dérive la matrice F la plus proche.
 - La plus proche ? Minimiser ||(F-F').X|| pour tout X
 - Comment? Décomposition de F' selon SVD,
 et annulation de la valeur propre la plus faible!

Exemple de résultat

Quelques appariements automatiques (m, m') qui ont permis ce résultat

Autres exemples

50 ans de l'Ensimag Mai 2011

Et si des erreurs grossières dans le choix des couples (m, m') ?

- Minimisation au sens des moindres carrés mauvaise
- → k tirages aléatoires, et on retient la meilleurs approximation
 - Typiquement k=1000; attention à la complexité du calcul!

Heureusement: SVD est rapide et robuste ©