5. Exercices de TD

Exercice 1

Construisez un automate à pile pour les langages suivants. Donnez à chaque fois un mot accepté et un autre qui ne l'est pas en montrant les étapes d'analyse :

- 1. $\{a^{2n}b^n|n>0\}$
- 2. $\{a^pb^q|p, q \ge 0, p \ne q\}$
- 3. $\{a^p b^q | p + q = 2k, k \ge 0\}$
- 4. $\{a^pb^qa^qb^p|p,q\geqslant 0\}$
- 5. $\{wc^n|w \in (a|b)^*, |w| = n, n \ge 0\}$
- 6. Les mots sur {a, b} tels que tout préfixe contient plus de a que de b.

Exercice 2

Construisez un automate à pile des langages suivants. Dites à chaque fois s'il s'agit d'un langage déterministe ou non, puis donnez une grammaire hors-contexte qui génère le langage :

- 1. $\{a^pb^qa^p|p,q\geqslant 0\}$
- 2. $\{a^nb^n|n>0\}+\{a^{2n}b^n|n>0\}$
- 3. Tous les mots sur $\{a, b\}$ ayant autant de a que de b
- 4. $\{a^nb^n|n>0\}+\{a^mb^n|m,n>0\}$

Exercice 3

- 1. Soit la grammaire $G = (\{\neg, f, t, \land, (,)\}, \{S\}, S, \{S \to S \land S | \neg S | (S) | t | f\}).$
 - (a) Montrez que les mots $f \land t$, $\neg t \land t$ et $t \land t \land \neg f$ sont générés par G. Montrez que G est ambiguë.
 - (b) Quel est le type du langage généré par G? pourquoi?
 - (c) Si on attache G au contexte des expressions booléennes, dites en quoi l'ambiguïté de G dérange.
 - (d) Donnez une forme propre de G, ainsi que sa forme normale de Chomsky.
- 2. Soit la grammaire $G' = (\{\neg, f, t, \land, (,)\}, \{S, T\}, S, \{S \rightarrow T \land S | \neg S | T, T \rightarrow (S) | t | f\}).$
 - (a) Montrez que les mots $f \wedge t$, $\neg t \wedge t$ et $t \wedge t \wedge \neg f$ sont générés par G'. G' est-elle ambiguë?
 - (b) Qu'a-t-on fait à G pour obtenir G'? Est-ce que cette transformation est unique?