Lecture 5

Law of Total Probability, Bayes' Rule, and Random Variables

Text: Chapter 4

STAT 8010 Statistical Methods I January 23, 2020

> Whitney Huang Clemson University

Agenda

- Law of Total Probability
- 2 Bayes' Rule
- Random Variables

Notes			

Law of Partitions & Multiplication Rule

Law of partitions

Let A_1,A_2,\cdots,A_k form a partition of $\Omega.$ Then, for all events B,

$$\mathbb{P}(B) = \sum_{i=1}^{k} \mathbb{P}(A_i \cap B)$$

Multiplication rule

2 events:

$$\mathbb{P}(B \cap A) = \mathbb{P}(A) \times \mathbb{P}(B|A) = \mathbb{P}(B) \times \mathbb{P}(A|B)$$

• More than 2 events:

$$\mathbb{P}(\cap_{i=1}^{n} A_i) = \mathbb{P}(A_1) \times \mathbb{P}(A_2 | A_1) \times \mathbb{P}(A_3 | A_1 \cap A_2) \times \cdots \times \mathbb{P}(A_n | A_{n-1} \cap \cdots \cap A_1)$$

Probability, Bayes' Rule, and Random Variables
CLEMS N
Law of Total Probability

Law of Total

Notes			

Law of Total Probability

Let A_1, A_2, \cdots, A_k form a partition of Ω . Then, for all events B,

$$\mathbb{P}(B) = \underbrace{\sum_{i=1}^k \mathbb{P}(A_i \cap B)}_{\text{Law of partitions}}$$

$$= \underbrace{\sum_{i=1}^k \mathbb{P}(B|A_i) \times \mathbb{P}(A_i)}_{\text{Multiplication rule}}$$

Notes

Example

Suppose that two factories supply light bulbs to the market. Factory X's bulbs work for over 5000 hours in 99% of cases, whereas factory Y's bulbs work for over 5000 hours in 95% of cases. It is known that factory X supplies 60% of the total bulbs available and Y supplies 40% of the total bulbs available. What is the chance that a purchased bulb will work for longer than 5000 hours?

Notes	

Bayes' Rule: Motivating example

The Monty Hall Problem

There was an old television show called Let's Make a Deal, whose original host was named Monty Hall. The set—up is as follows. You are on a game show and you are given the choice of three doors. Behind one door is a car, behind the others are goats. You pick a door, and the host, who knows what is behind the doors, opens another door (not your pick) which has a goat behind it. Then he asks you if you want to change your original pick. The question we ask you is, "Is it to your advantage to switch your choice?"

Law of Total Probability, Bayes' Rule, and Random Variables
Law of Total Probability Bayes' Rule Random Variables

Notes			

The Monty Hall Problem

Law of Total Probability, Bayes' Rule, and Random Variables	
CLEMS N	
Bayes' Rule	

Notes			

The Monty Hall Problem Solution

Law of Total Probability, Bayes' Rule, and Random Variables
Bayes' Rule

No	otes			
_				
_				
_				
_				

Bayes' Rule

General form

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

Let A_1,A_2,\cdots,A_k form a partition of the sample space. Then for every event B in the sample space,

$$\mathbb{P}(A_j|B) = \frac{\mathbb{P}(B|A_j) \times \mathbb{P}(A_j)}{\sum_{i=1}^k \mathbb{P}(B|A_i) \times \mathbb{P}(A_i)}, j = 1, 2, \cdots, k$$

	Law of Total Probability, Bayes' Rule, and Random Variables
	CLEMS#N
	Law of Total Probability Bayes' Rule Random Variables
-	

Notes			

Example

Let us assume that a specific disease is only present in 5 out of every 1,000 people. Suppose that the test for the disease is accurate 99% of the time a person has the disease and 95% of the time that a person lacks the disease. What is the probability that the person has the disease given that they tested positive?

Solution.

$$\mathbb{P}(D|+) = \frac{\mathbb{P}(D\cap+)}{\mathbb{P}(+)} = \frac{.005 \times .99}{.005 \times .99 + .995 \times .05} = \frac{.00495}{.0547} = .0905$$

The reason we get such a surprising result is because the disease is so rare that the number of false positives greatly outnumbers the people who truly have the disease.

Notes			

Review of Probability (we learned so far)

Basic Concepts:

- Random Experiment, Sample Space, Outcome, Event
- Frequentist Interpretation of Probability and Equally Likely Framework
- Union and Intersection, Mutually Exclusive, Exhaustive, Partition
- Venn Diagram
- Independence and Conditional Probability

Notes

Review: Probability Rules

- $0 \le \mathbb{P}(A) \le 1$ for any event A, $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- Complement rule: $\mathbb{P}(A) = 1 \mathbb{P}(A^c)$
- General addition rule: $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
- Multiplication rule: $\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \times \mathbb{P}(B) = \mathbb{P}(B|A) \times \mathbb{P}(A)$
- ullet Conditional probability: $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
- Law of total probability: $\mathbb{P}(B) = \textstyle \sum_{i=1}^k \mathbb{P}(B \cap A_i) = \textstyle \sum_{i=1}^k \mathbb{P}(B|A_i) \times \mathbb{P}(A_i)$
- Independence: if A and B are independent, then $\mathbb{P}(A|B)=\mathbb{P}(A),\,\mathbb{P}(B|A)=\mathbb{P}(B),$ and $\mathbb{P}(A\cap B)=\mathbb{P}(A)\mathbb{P}(B)$

Law of Total Probability, Bayes' Rule, and Random Variables
CLEMS#N
Bayes' Rule

Notes			

Random Variables Random Variables

Notes

Random Variables

A random variable is a real–valued function whose domain is the sample space of a random experiment. In other words, a random variable is a function

$$X:\Omega\mapsto\mathbb{R}$$

where Ω is the sample space of the random experiment under consideration and $\mathbb R$ represents the set of all real numbers.

Notes			

Example

The following is a chart describing the number of siblings each student in a particular class has.

Siblings (X)	Frequency	Relative Frequency
0	8	.200
1	17	.425
2	11	.275
3	3	.075
4	1	.025
Total	40	1

Notes			

Example cont'd

Let's define the event A as the event that a randomly chosen student has 2 or more siblings. What is $\mathbb{P}(X \in A)$? Solution.

$$\mathbb{P}(X \in A) = \mathbb{P}(X \ge 2) = \mathbb{P}(X = 2) + \mathbb{P}(X = 3) + \mathbb{P}(X = 4)$$
$$= .275 + 0.75 + 0.25 = .375$$

Notes

Notes

5.16

Types of Random Variables

There are two main types of quantitative random variables: discrete and continuous. A discrete random variable often involves a count of something. Examples may include number of cars per household, etc.

Discrete random variable

A random variable X is called a discrete random variable if the outcome of the random variable is limited to a countable set of real numbers (usually integers).

Probability Mass Function

Let X be a discrete random variable. Then the probability mass function (pmf) of X is the real–valued function defined on $\mathbb R$ by

$$p_X(x) = \mathbb{P}(X = x)$$

The capital letter, X, is used to denote random variable. Lowercase letter, x, is used to denote possible values of the random variable.

Law of Total Probability, Bayes' Rule, and Random Variables
CLEMS N
Random Variables

AL.		
Notes		

Example

Flip a fair coin 3 times. Let X denote the number of heads tossed in the 3 flips. Create a pmf for X

Solution.

The random variable X maps any outcome to an integer (e.g. $X\left((\mathsf{T},\,\mathsf{T},\,\mathsf{T})\right)=0$)

X	0	1	2	3
$p_X(x)$	$\frac{1}{8}$	3 8	3 8	$\frac{1}{8}$

	Law of Total Probability, Bayes' Rule, and Random Variables
	CLEMS N
ļ	
	Random Variables

Properties of a PMF

- $0 \le p_X(x) \le 1, \ \forall x \in R$
- $\{x \in \mathbb{R} : p_X(x) \neq 0\}$ is countable

Law of Total Probability, Bayes' Rule, and Random Variables
CLEMS N
Random Variables

Notes

Notes

Notes

5.20

Example

Let X be a random variable with pmf defined as follows:

$$p_X(x) = \left\{ egin{array}{ll} k(5-x) & \quad \mbox{if} \quad x=0,1,2,3,4 \\ 0 & \quad \mbox{otherwise} \end{array} \right.$$

- Find the value of k that makes $p_X(x)$ a legitimate pmf.
- What is the probability that X is between 1 and 3 inclusive?
- $lack {f O}$ If X is not 0, what is the probability that X is less than ${f 3}$?

Probability, Bayes' Rule, and Random Variables			
CLEMS N			

Mean of Discrete Random Variables

The mean of a discrete r.v. X, denoted by $\mathbb{E}[X]$, is defined by

$$\mathbb{E}[X] = \sum_{x} x \times p_X(x)$$

Remark:

The mean of a discrete r.v. is a weighted average of its possible values, and the weight used is its probability. Sometimes we refer to the expected value as the expectation (expected value), or the first moment.

For any function, say g(X), we can also find an expectation of that function. It is

$$\mathbb{E}[g(X)] = \sum_{x} g(x) \times p_X(x)$$

Example

$$\mathbb{E}[X^2] = \sum_{x} x^2 \times p_X(x)$$

Notes

Notes

Properties of Mean

Let *X* and *Y* be discrete r.v.s defined on the same sample space and having finite expectation (i.e. $\mathbb{E}[X], \mathbb{E}[Y] < \infty$). Let a and b be constants. Then the following hold:

$$\bullet \ \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

$$\bullet \ \mathbb{E}[aX+b] = a \times \mathbb{E}[X] + b$$

Number of Siblings Example Revisited

Siblings (X)	Frequency	Relative Frequency	
0	8	.200	
1	17	.425	
2	11	.275	
3	3	.075	
4 1		.025	
Total	40	1	

Find the expected value of the number of siblings

Solution.

$$\mathbb{E}[X] = \sum_{x} x p_X(x) = 0 \times .200 + 1 \times .425 + 2 \times .275 + 3 \times .075 + 4 \times .025 = 1.3$$

Notes			

Variance/Standard Deviation of Discrete r.v.'s

The **variance** of a (discrete) r.v., denoted by Var(X), is a measure of the spread, or variability, in the r.v. Var(X) is defined by

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[x])^2]$$

or

$$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

The **standard deviation**, denoted by Sd(X), is the square root of its variance

Law of Total Probability, Bayes' Rule, and Random Variables
CLEMS#N
Law of Total Probability Bayes' Rule
Random Variables

Notes

Properties of Variance

Let *c* be a constant. Then the following hold:

- $Var(cX) = c^2 \times Var(X)$
- Var(X + c) = Var(X)

N	otes
1 4	0 1 0 0

Example

Suppose *X* and *Y* are random variables with $\mathbb{E}[X] = 3$, $\mathbb{E}[Y] = 4$ and Var(X) = 4. Find:

- \bigcirc $\mathbb{E}[X^2]$

- **(3)** Var(2X 4)

Law of Total Probability, Bayes' Rule, and Random Variables			
CLEMS N			
Random Variables			

Notes		