MAT157 Problem Set 8

Nicolas Coballe

November 27, 2021

1.

Proof.

Because g is continuous and unbounded above and below, f-g is continuous and unbounded above and below. Thus, we can choose x_0 such that $(f-g)(x_0)=0$ (if we could not do this than there would have to be a infimum or supremum to $(f-g)(\mathbb{R})$ which is a contradiction). Thus, if $(f-g)(x_0)=0$ that means that $f(x_0)-g(x_0)=0$, meaning $f(x_0)=g(x_0)$ as desired.

2. a)

Proof.

Because the equation of the tangent line for f at a is g(a) = f(a) + f'(a)(x - a). f(2) = 8 and $f'(x) = 3x^2$; thus, f'(2) = 12. Thus g(2) = f(2) + f'(2)(x - 2) = 8 + 12(x - 2) is the equation of the tangent line.

b)

Proof.

If
$$f(x-3) = (x-2)^2$$
 then $f(x) = ((x+3)-2)^2 = (x+1)^2 = x^2 + 2x + 1$. Then $f'(x) = 2x + 2$, making $f'(x^2 + 5) = 2(x^2 + 5) + 2 = 2x^2 + 12$.

3.

Proof.

Let $g_{a_0}(x) = \frac{1}{x-a_0}, \forall a_0, ..., a_n$. Because these functions are all continuous (without their trivial holes), then the function $f: \mathbb{R} - \{a_0, ..., a_n\}, \ f(x) = g_{a_0}(x) + \cdots + g_{a_n}(x)$ is continuous. Thus, if we take $f|_{(-\infty,a_0)}. \ f|_{(-\infty,a_0)}(x) \neq 0, \ \forall x \in (-\infty,a_0)$. This is because $\frac{1}{x-y} < 0, \forall x < y$ and in each function g_{a_0} , and a_0 is greater than x. Similarly we see that for $f|_{(a_n,\infty)}, \ f|_{(a_n,\infty)}(x) > 0, \ \forall x \in (a_n,\infty)$. Now consider any interval (c,d) where $c = a_i$ and $d = a_{i+1}, \ \forall i \in \{0,...,n-1\}$. Now we will claim that $f|_{(c,d)}$ is not bounded above or below.

Consider $f|_{(c,d)}$. Every $g_{a_i}|_{(c,d)}(x)$ is bounded above and below for all $a_i \geq d$ or $a_i < c$ because $g_{a_i}|_{(c,d)}((c,d))$ is bounded above by $g_{a_i}(c)$ and below by $g_{a_i}(d)$. Thus, we know that $f|_{(c,d)} = \sum_{i < c \text{ or } i \geq d} g_i|_{(c,d)} + g_c|_{(c,d)}$. However, we know that $\sum_{i < c \text{ or } i \geq d} g_i|_{(c,d)}$ is strictly decreasing and bounded on (c,d) and $g_i|_{(c,d)}$ is strictly decreasing and not bounded above or below. Thus, $f|_{(c,d)}$ is strictly decreasing and not bounded above or below. This means that $f|_{(c,d)}$ is a bijection to \mathbb{R} , meaning that it has exactly one zero.

Thus we have shown that $f|_{(c,d)}$ has exactly one zero. And there are n intervals of the form (c,d) for our set $\{a_0,...,a_n\}$, and we know that $f|_{(-\infty,a_0)}$ and $f|_{(a_n,\infty)}$ have no zeroes. Thus f has exactly n zeroes as desired.

Lemma 4.1: If $f: A \to \mathbb{R}$ is continuous and A has the Heine-Borel property, then f is uniformly continuous. (Heine-Cantor Theorem in the 1-dimensional Euclidean Metric).

Proof.

Let $\epsilon > 0$, let δ_{α} be the δ such that if $0 < |x - \alpha| < \delta \implies |f(x) - f(\alpha)| < \frac{\epsilon}{2}$. Because f is continuous, there exists a $\delta_{\alpha} > 0$, $\forall \alpha \in A$. Consider the sets $U_{\alpha} = (\alpha - \delta_{\alpha}, \alpha + \delta_{\alpha})$, $\forall \alpha \in A$. Notice that $\bigcup_{\alpha \in A} U_{\alpha}$ covers A. Because A has the Heine-Borel property, then $\bigcup_{\alpha \in A} U_{\alpha}$ has finite subcover, $\bigcup_{i=1}^{n} U_{i}$ with a corresponding finite set of δ s, Δ . Consider the set $\Delta' = \{\frac{\delta}{2} : \delta \in \Delta\}$

Let $\epsilon > 0$, choose $\delta = \min(\Delta')$. If $0 < |x - y| < \delta$ then there exists $1 \le i \le n$ such that $x \in U_i$. Let x_i be the center of U_i , then $|x - x_i| < \frac{\delta_i}{2}$. Thus, $|x_i - y| = |x_i + x - x - y| \le |x_i - x| + |x - y| \le \frac{\delta_i}{2} + \delta \le \delta_i$. This implies that $|y - x_i| \le \delta_i$. Which means that $|f(x_i) - f(x)| < \frac{\epsilon}{2}$ and $|f(x_i) - f(y)| < \frac{\epsilon}{2}$. Thus,

 $|f(x) - f(y)| \le |\tilde{f}(x) - f(x_i)| + |f(x_i) - f(y)| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ as desired.

4. a)

Proof.

Because f is bounded than there exists $M_f \in \mathbb{R} : |M_f| > |f(x)|, \ \forall x \in A$. Similarly, there exists $M_g \in \mathbb{R} : |M_g| > g(x), \ \forall x \in A$. We can simply choose M_f and M_g such that they are non-zero. Let δ_f be the δ such that $|f(x) - f(y)| < \frac{\epsilon}{2|M_g|}$ and let δ_g be the δ such that $|g(x) - g(y)| < \frac{\epsilon}{2|M_f|}$.

Let $\epsilon > 0$. Choose $\delta = \min\{\delta_f, \delta_q\}$. If $0 < |x - y| < \delta$, then:

$$\begin{split} |f(x)g(x) - f(y)g(y)| &= |f(x)g(x) - f(x)g(y) + f(x)g(y) - f(y)g(y)| \\ &\leq |f(x)g(x) - f(x)g(y)| + |f(x)g(y) - f(y)g(y)| \\ &= |f(x)||g(x) - g(y)| + |g(x)||f(x) - f(y)| \\ &< |M_f||g(x) - g(y)| + |M_g||f(x) - f(y)| \\ &< |M_f| \frac{\epsilon}{2|M_f|} + |M_g| \frac{\epsilon}{2|M_g|} \\ &= \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon \end{split}$$

As desired.

b)

Proof.

fLet $\epsilon > 0$. Choose $\delta = \epsilon$. If $0 < |x - y| < \delta$ then $|f(x) - f(y)| = |x - y| < \delta = \epsilon$ as desired.

Because g(x) = -g(x+1), $\forall x \in \mathbb{R}$, then g(x) = g(x+2), $\forall x \in \mathbb{R}$. Thus g is 2-periodic and we can describe every aspect of g by taking on $g|_{[x,x+2]}$, $x \in \mathbb{R}$. However, $g|_{[x,x+2]}$ is continuous and its domain has the Heine-Borel property because it is closed and bounded, thus it must be uniformly continuous by Lemma~4.1. Note for the next section because g is continuous and g(x) = -g(x+1), then there is some point in $a \in (x,x+1)$ where there exists a δ -interval around a such that $f(a) - f(x) \neq 0$, $\forall x \in (x,x+1) - \{a\}$

```
\begin{array}{l} fg \\ \text{Consider for the sake of contradiction that } fg \text{ is uniformly continuous. Thus,} \\ \forall \epsilon > 0, \; \exists \delta > 0, \; \forall x,y \in \mathbb{R} : 0 < |x-y| < \delta \implies |xg(x) - yg(y)| < \epsilon. \\ \text{However, if fix } x \text{ and } y \text{ such that } x \neq y \text{ and } g(x) \neq g(y) \text{ we choose} \\ M \text{ sufficiently large such that } M = 2N, \; N \in \mathbb{N} \text{ with} \\ M > \frac{\epsilon}{|g(y) - g(x)|} + \frac{|xg(y) - x(gx)|}{|g(y) - g(x)|} + \frac{|g(y)||x-y|}{|g(y) - g(x)|}. \\ |(x-M) - (y-M)| = |x-y+M-M| < \delta, \text{ but:} \\ |(x-M)g(x-M) - (y-M)g(y-M)| \\ = |(x-M)g(x-M) - (x-M)g(y-M)| - |(y-M)g(y-M) - (y-M)g(y-M)| \\ \geq |(x-M)g(x-M) - (x-M)g(y-M)| - |(y-M)g(y-M) - (x-M)g(y-M)| \\ = |x-M||g(x-M) - g(y-M)| - |g(y-M)||(y-M) - (x-M)| \\ = |x-M||g(x) - g(y)| - |g(y)||x-y| \\ = |xg(x) - xg(y) - Mg(x) + Mg(y)| - |g(y)||x-y| \\ \geq |Mg(y) - Mg(x)| - |xg(y) - xg(x)| - |g(y)||x-y| \\ = |M||g(y) - g(x)| - |xg(y) - xg(x)| - |g(y)||x-y| \\ > \epsilon \end{array}
```

This is a contradiction, thus fg is not uniformly continuous.

5. a)

Proof.

If we define $g:[a,b]\to\mathbb{R},\ g(x)=\begin{cases} f(x)\ \text{if}\ x\in(a,b]\\ \limsup_{x\to a^+}f(x)\ \text{otherwise} \end{cases}$ Then because g is continuous on a closed interval, g is bounded. Because $f=g|_{(a,b]},$ that means that f is also bounded.

b)

Proof.

Let $\ell = \limsup_{x \to a^+} f(x)$. Let $\epsilon > 0$. If $0 < |x - a| < \delta$, then