

CS230: Digital Logic Design and Computer Architecture

Lecture 11: Intro. to Single cycle CPU

https://www.cse.iitb.ac.in/~biswa/courses/CS230/autumn23/main.html

Phones (smart/non-smart) on silence plz, Thanks

Computer Architecture 2

Single Cycle Processor

- All operations single cycle ☺
- Clock cycle (unit of time) will be defined based on the longest instruction.
- Two paths of interest: datapath and control. Control tells datapath what to do.
- Do not forget the stored program concept.

Clock Cycle

Tick, clock tick, clock period, clock, clock cycle, or cycle

Discrete time intervals

Based on processor frequency (clock rate)

1GHz processor, clock cycle = 1ns

4GHz processor, clock cycle = 0.25ns

Let's start with the datapath

Anything that stores data or operates on data, within a processor

Instruction Memory

Remember: No writes to instruction memory ©

Not concerned about how programs are loaded into this memory.

Program Counter

Remember: No writes to instruction memory ©

Register File

The ALU

Data Memory

Memory Read/Write

Data

Mem

32

data

Addr. 32

Why data and instruction memory and not one memory? Later in the course ©

PC == Program Counter, points to next instruction.

Decode and Execute

All in one go

What about I format?

Loads from Memory

Syntax: LW \$1, 32(\$2)

Action: \$1 = M[\$2 + 32]

Branch Instructions

```
Syntax: BEQ $1, $2, 12
Action: If (\$1 != \$2), PC = PC + 4
Action: If (\$1 == \$2), PC = PC + 4 + 48
                                                           Instr
    32
                                           PC
                                                            Mem
                                                                       32
                     32
                                                        Addr
                                                               Data
    32
0x\overline{4}
                           32
                                PCSrc
                                          Clk
     te
           32
     nd
                                                         immediate
                                            rt
                           \mathbf{o}\mathbf{p}
                                    \Gamma S
                                         Computer Architecture
```

Control Signals So far

- MemRead
- MemWrite
- RegWrite
- MemtoReg
- RegDst
- ALUop, ALUSrc
- PCSrc (we have not discussed about the branch)

In detail

- MemRead: Read from memory when assert
- MemWrite: Write into the memory when assert
- RegWrite: Reg. on Write register updated with the input, on assert
- MemtoReg: On assert, memory to register, on deassert, ALU to register
- RegDst: On assert, use rd field, on deassert use rt field
- ALUSrc: On assert, lower 16 bits of an inst., on deassert from the second register
- PCSrc: On assert, branch target, deassert, PC+4

Control Signal Table

Operation	RegDst	RegWrite	ALUSrc	ALUOp	MemWrite	MemRead	MemToReg
add	1	1	0	010	0	0	0
sub	1	1	0	110	0	0	0
and	1	1	0	000	0	0	0
or	1	1	0	001	0	0	0
slt	1	1	0	111	0	0	0
lw	0	1	1	010	0	1	1
SW	X	0	1	010	1	0	Х
beq	X	0	0	110	0	0	Х

The Complete Picture

Why not single cycle?

• The longest possible datapath is the clock cycle time.

What does it mean?

Why not single cycle?

■ For example, lw \$t0, -4(\$sp) needs 8ns, assuming the delays shown here.

reading the instruction memory reading the base register \$sp computing memory address \$sp-4 reading the data memory storing data back to \$t0

2ns 1ns 2ns 2ns 1ns

one clock cycle: 8ns

Processor frequency: 125MHz

Cycle per Instruction (CPI): 1

An add instruction: no need of 8ns

Why not single cycle?

• The longest possible datapath is the clock cycle time.

Violating common case fast (Confucius says)

Oh No! Such a bad design

Single to Multi Cycle

