

Module AD

- ✓ Introduction à R
- ✓ Introduction aux méthodes de classification (supervisée)
- → Introduction aux méthodes de Fouille de Textes

AIDE A LA DECISION

Fouille de Textes

Plan du cours FDT

- Introduction aux problématiques de la fouille de textes (pourquoi, quoi, comment)
- Les différentes étapes d'un processus de fouille de textes
- Représentation vectorielle des textes pour la classification
- Introduction au package R « tm » (text mining)

Introduction à la FDT

État des lieux

- Entre 3 et 5 exabytes (10⁹ Go) de données originales produites chaque année,
- Du texte, de l'audio, de l'image, de la video, ...
- Les 17 millions de livres de la bibliothèque du Congrès américain représenteraient 136 terabytes (10³ Go) soit 37000 fois moins.

Accès et exploitation

- L'accès à l'information, à des données pertinentes, à la connaissance, devient un véritable enjeu.
- Rendre les masses de données utilisables.

FDT vs. Interrogation de BDD

Données non ou peu structurées

- Par opposition aux bases de données où les données sont structurées et stockées dans des tables avec des champs particuliers
- A priori, pas de travail préalable de réflexion, de structuration et de représentation des données (indexation)

Recherche d'informations implicites

• La connaissance/information est souvent déduite d'autres données (type de média, contexte historique, etc.)

Exemple Qui a été reçu par N. Sarkozy le 10 décembre 2007?

...le dirigeant Lybien a été accueilli à l'Elysée avec tous les honneurs ...

Définitions

Fouille de textes

• Acquérir des connaissances, des informations (plus généralement des données) enfouies dans des corpus de textes

<u>Corpus</u>

- Recueil de documents concernant une même discipline (dictionnaire, encyclopédie, archives journalistiques, etc.)
- Ensemble « cohérent » de textes, d'objets
- Exemple de corpus de textes géant : le Web.

Mesure des audiences Web

Enregistrer les sites visités par un panel d'internautes et mettre en relation les parcours des internautes avec leur description sociologique.

- Corpus : pages Web visitées
- Objectif : cibler la clientèle, chercher des traits caractéristiques

Systèmes de question/réponse

Répondre à une question précise à partir de textes électroniques ou du Web.

- Corpus : textes électroniques ou Web
- Exemple d'objectif : dans quelle ville se situe la Tour Eiffel?

<u>Réseaux sociaux</u>

Étudier les co-occurrences (personnes, entreprises) afin d'en extraire des relations

Corpus : sites Web ciblés d'actualité

• Objectif : qui connaît qui?

Extraction d'information

- Classification thématique de documents (mails, dépêches d'actualité)
- Détection d'évènements et de nouveauté (forums de discussion)
- Extraction de faits : changement de dirigeant, fusion d'entreprises, opérations boursières, etc.

Fouille d'opinions

Repérer/distinguer les avis positifs et négatifs sur un fait

- Corpus : corpus d'avis (réactions d'articles, enquêtes de satisfaction)
- Objectif: recommandation, sondages

Recherche d'information

- Classification thématique de documents (pages web de réponse)
- Enrichissement de requêtes
- Résumé automatique de textes

Top 249 results of at least 139,000,000 retrieved for the query apple (definition) (details)

Site Apple ® Officiel - Découvrez les nouveautés Apple et le MacBook Air. Livraison gra

advanced

preferences

Search

1. Apple 🖹 🔍 🛞

Apple designs and creates iPod and iTunes, Mac laptop and desktop computers, the OS X www.apple.com - [cache] - Ask, Open Directory, Yahoo!

2. The Apple Store 🖻 🔍 🛞

Buy direct from the Apple Store. Online ordering with custom configurations and special de store.apple.com - [cache] - Yahoo!, Ask, Open Directory

3. Apple - Wikipedia, the free encyclopedia 🖻 🔍 🛞

The apple is the pomaceous fruit of the apple tree, species Malus domestica in the rose fa en.wikipedia.org/wiki/Apple - [cache] - Bing, Ask, Yahoo!

Apple Developer Connection □ Q ⊗

Provides news and technical information for Apple Developers. developer.apple.com - [cache] - Open Directory, Ask

Plan du cours FDT

- Introduction aux problématiques de la fouille de textes (pourquoi, quoi, comment)
- Les différentes étapes d'un processus de fouille de textes
- Représentation vectorielle des textes pour la classification
- Introduction au package R « tm » (text mining)

Processus de FDT

Processus de FDT

Traitement de type TAL

Objectif

Extraire des caractéristiques sous une forme manipulable pour représenter l'information

Par quoi est portée l'information?

- Le mot, la ponctuation, la phrase, le paragraphe, ...
- Les balises.

<u>Les étapes de TAL</u>

- Nettoyage et normalisation
- Étiquetages classifications
- Extraction terminologique

Création d'une forme intermédiaire des textes respectant l'information utile, proche de l'originale, prête pour l'extraction des caractéristiques.

<u>Nettoyage</u>

- Extraire les parties utiles (balises HTML ou XML)
- Structurer le document si nécessaire
- Traiter l'encodage

Normalisation

- Définir et segmenter les éléments d'information (e.g. mots)
- Limiter les variantes tout en respecter les nuances (e.g. l'Histoire)

Nettoyage et normalisation

Qu'est-ce qu'un mot?

Un token = des caractères entre deux espaces?

• C'était ou était mots. ou mots

Un token = des caractères entre deux signes de ponctuation?

• Le ou le Livre ou livre vice-président ou vice et président

Un token = des caractères minuscules entre deux signes de ponctuation dans {,;.!? « » ' ...}?

mots ou mot histoire ou Histoire dix milles ou 10,000

Un token $= \dots$?

16

Nettoyage et normalisation

Racinisation (steming)

Consiste à réduire chaque mot à sa racine (traitement brutal).

 $\{station, stationnement, stationnaire, stationner\} \rightarrow station$

Lemmatisation (lemme)

Consiste à réduire chaque mot à sa forme canonique : retrait des marques de genre et de nombre (traitement plus léger).

...

Que peut-on utiliser d'autre que les mots?

- Les caractères ou suites de caractères (n-grammes de caractères)
- Les multi-mots :
 - entités nommées : "Barack Obama" "vivendi universal"
 - Collocations : "pomme de terre" "faim de loup"
 - N-grammes de mots : séquence de mots consécutifs
- Les balises (XML, HTML, liens hypertextes, etc.) et séquences de balises
- Des critères statistiques de plus bas niveau :
 - Longueur des mots
 - Longueur des phrases
 - Densité des documents (vocabulaire différentiel)

• ...

Processus de FDT

Enrichir le texte par un étiquetage approprié

• Étiquetage grammatical

```
<u>Exemple</u> Luc mange du pain 
<NP> <V> <ART> <NC>
```

Étiquetage morphologique

• Étiquetage syntaxique

```
<u>Exemple</u> Luc mange du pain 
<Suj> <V> <Complément>
```

• Étiquetage sémantique

```
<u>Exemple</u> Luc mange du pain 
<Personne> <Action> <nourriture>
```

20

Problème de classification

Attribuer une étiquette à un mot ou groupe de mots
 Exemple individu = « pain » → étiquettes = {NC, NP, V, Adj, etc...}

Pas toujours facile (ambiguïté)

• Étiquetage grammatical

Exemple avions \rightarrow V ou NC?

Problème de classification

• Attribuer une étiquette à un mot ou groupe de mots Exemple individu = « pain » \rightarrow étiquettes = {NC, NP, V, Adj, etc...}

Pas toujours facile (ambiguïté)

 Étiquetage grammatical Exemple avions \rightarrow V ou NC?

Étiquetage syntaxique

<u>Exemple</u> *la bonne soupe* → Groupe nominal ou Sujet+Verbe ?

Problème de classification

Attribuer une étiquette à un mot ou groupe de mots
 Exemple individu = « pain » → étiquettes = {NC, NP, V, Adj, etc...}

Pas toujours facile (ambiguïté)

Étiquetage grammatical
 Exemple avions → V ou NC ?

• Étiquetage syntaxique

<u>Exemple</u> *la bonne soupe* → Groupe nominal ou Sujet+Verbe ?

Étiquetage sémantique

Exemple l'avocat est pourri \rightarrow le fruit ou l'homme de loi ?

Processus de FDT

N.B. Les traitements qui suivent concernent des tâches particulières de Fouille de Textes, telles que la classification thématique de documents.

Hypothèse du sac de mots

<u>Une représentation simple</u>

- Un document est un sac
- Ce sac contient des «mots» (le plus souvent des lemmes ou tokens) qui apparaissent une ou plusieurs fois (fréquences d'apparition)

Hypothèse simplificatrice

- L'ordre des mots est ignoré
- La structure du texte est mise à plat.

Choix

• Les mots représentent-ils le texte? Doit-on préférer des lemmes ou des tokens? Comment choisir les mots pertinents pour la tâche visée?

Fréquence des mots dans « Le Cid »

_					
1	429	de	40	67	trop
2	264	ľ	41	67	Rodrigue
3	259	?	42	65	j'
4	258	et	43	65	du
5	245	un	44	65	Mais
6	230	en	45	64	au
7	229	le	46	63	honneur
8	220	que	47	63	ai
9	201	mon	48	62	bien
10	198	est	49	61	des
11	191	Et	50	59	fait
12	189	ď'	51	58	ta
13	187	je	52	57	Que
14	177	la	53	55	te
15	167	il			
16	155	vous	54	54	amour
17	151	qu'	55	54	Chimène
18	142	ma	56	53	ton

26

Solution (partielle) 1 : utiliser une Stop List

Utiliser une liste de mots dits « mots-outils » définie linguistiquement dans chaque langue (articles, coordinations, pronoms, etc.)

Solution (partielle) 2 : supprimer les mots fréquents

Ne pas considérer les mots les plus fréquents car peu informatifs. Traitement statistique permettant d'isoler des « mots-outils ».

• Quel seuil de fréquence utiliser?

Exemple (Le petit prince):

le, de, je, il, et, les, un, la, petit, pas, à, prince,...

Les mots-outils sont-ils vraiment inutiles?

- **Non** pour les tâches d'étiquetage, de reconnaissance de la langue ou de la parole
- Oui pour l'indexation de documents

Solution (partielle) 3 : supprimer les mots infréquents

Ne pas considérer les mots qui apparaissent moins de X fois ou dans moins de Y documents différent.

Solution (partielle) 4 : utiliser l'étiquetage grammatical

Ne considérer, à l'inverse, que certaines étiquettes grammaticales jugées informatives : NC, NP, V, Adj, etc.

NB. Les quatre solutions envisagées sont non-exclusives et leur utilisation dépend des informations disponibles (étiquetage).

Processus de FDT

Représentation vectorielle

Représentation exploitable par un système d'Aide à la décision

Chaque document sera représenté par un vecteur dont :

- Les attributs/descripteurs sont les mots du vocabulaire du corpus
- Les valeurs sont binaires (présence/absence) ou entières (occurrences)

Exemple construire la représentation vectorielle du corpus suivant (3 doc.)

Forme brute	Forme normalisée
Je suis passé à la radio. J'ai passé une radio. Les radios sont passées au numérique.	Je être passer à la radio Je avoir passer une radio Le radio être passer au numérique
<u>vocabulaire</u>	$d_1 = (1, 1, 1, 0)$
(être, passer, radio, ,numérique)	$d_2 = (0,1,1,0)$
(Circ, passer, radio, ,frumerique)	$d_3 = (1,1,1,1)$

Représentation vectorielle

Remarques sur la représentation vectorielle

- Représentation de type « sac de mots » : perte de la séquentialité
- Si un document contient *n* mots différents, il y a *n* composantes nonnulles et *V-n* composantes nulles!
- Vecteurs très « creux » (matrices documents x mots très éparses)
- Prévoir une structure de données adaptée

Représentation vectorielle

Calculer l'importance d'un mot dans un document

Une alternative aux représentations de type présence/absence ou nombre d'occurrences : associer un poids à un mot dans un document.

Un mot sera jugé important pour un document parcqequ'il est fréquent dans ce document et rare dans les autres documents.

• La mesure du tf x idf (term frequency inverse document frequency)

Processus de FDT

Classification de documents

A partir d'une représentation vectorielle des documents on peut...

- Utiliser un classifieur de Bayes (représentations binaires)
- Calculer des distances entre documents (plus proches voisins)
- Construire un arbre de décision
- Calculer des séparateurs linéaires (réseaux de neurones, SVM)

• ...

Calcul de distances

Documents similaires

- Les documents qui se ressemblent contiennent les mêmes mots ou des mots similaires
- Hypothèse distributionnelle de Harris : les mots qui ont des contextes identiques sont similaires

Vecteurs similaires

Dans l'espace vectoriel ils correspondent à des vecteurs proches

Représentation dans l'espace

- Dans l'espace vectoriel de dimension V, les vecteurs représentant les textes forment un faisceau de même origine
- Les vecteurs proches ont des directions quasi-identiques ou des extrémités proches

35

Distance euclidienne

Distance géométrique entre les extrémités des vecteurs

- Utiliser les vecteurs d'occurrences ou de pondération de type tf.idf
- Normaliser les vecteurs par la norme L₂

$$\|d_i\|_{L_2} = \sqrt{d_{i,1}^2 + ... + d_{i,V}^2}$$

• Calculer la distance euclidienne entre deux vecteurs (après normalisation)

$$d(x_i, x_j) = \sqrt{(x_{i,1} - x_{j,1})^2 + \dots + (x_{i,V} - x_{j,V})^2}$$

Similarité du cosinus

Mesure de l'angle formé par deux vecteurs

- Utiliser les vecteurs d'occurrences ou de pondération de type tf.idf
- Calculer le cosinus de l'angle formé par les vecteurs d_i et d_j

$$\cos(d_i, d_j) = \frac{\langle d_i, d_j \rangle}{\|d_i\|_{L_2} . \|d_j\|_{L_2}}$$

- Valeurs dans [0,1] : 0 pour des vecteurs superposés, 1 pour des vecteurs orthogonaux
- On se ramène à une distance par l'opération : distance = 1 similarité (car similarité dans [0,1])

Divergence de Kullback-Leibler

Distance entre 2 distributions (probabilistes)

- Utiliser les vecteurs d'occurrences
- Normaliser les vecteurs par la norme L₁ afin d'obtenir des distributions

$$\|d_i\|_{L_1} = d_{i,1} + \dots + d_{i,V}$$

• Calculer la « divergence » entre deux distributions p_{i} et p_{j}

$$D_{KL}(p_i || p_j) = \sum_{k=1}^{V} p_{i,k} \log \frac{p_{i,k}}{p_{j,k}}$$

• ATTENTION !! cette divergence n'est pas symétrique

Indice de Jaccard

Similarité lexicale entre deux textes

- Utiliser les vecteurs binaires : présence/absence
- Calculer les quantités :

$$\begin{aligned} &a_{_{i,j}}\text{=nombre de composantes où }d_{_{i,k}}\text{=}d_{_{j,k}}\text{=}1\\ &b_{_{i,j}}\text{=nombre de composantes où }d_{_{i,k}}\text{=}1\text{ et }d_{_{j,k}}\text{=}0\\ &c_{_{i,j}}\text{=nombre de composantes où }d_{_{i,k}}\text{=}0\text{ et }d_{_{j,k}}\text{=}1\end{aligned}$$

• Calculer l'indice de similarité de Jaccard :

$$Jaccard(d_{i}, d_{j}) = \frac{a_{i,j}}{a_{i,j} + b_{i,j} + c_{i,j}}$$