CS528 Scheduling of Dependent Tasks

A Sahu

Dept of CSE, IIT Guwahati

Outline

- P_m | p_i pmtn | C_{max} : Linear time solution
- Q_m | p_j, pmtn | C_{max} : Poly time solution
- Q_m | ptmn | ΣC_i Optimal Solution
- $P_m | p_j | C_{max}$
 - ILP Solution : Exponential
 - 2 Approx, 2-1/m approx.
 - LPT: 3/2 and 4/3 Approx
- $P_m|p_i=1|\Sigma w_iU_i$ Optimal Solution
- $P_m|p_i|\Sigma U_i$ NPC, Heuristic and Counter example
- $P_m | pmtn, p_j | \Sigma U_j$ in NPC
- P_m | prec, p_j = 1 | C_{max} in NPC
 2 Approx

Scheduling of Dependent Tasks

Precedence constraints (prec)

Before certain jobs are allowed to start processing, one or more jobs first have to be completed.

Definition

- Successor
- Predecessor
- Immediate successor
- Immediate predecessor
- Transitive Reduction

Precedence constraints (prec)

One or more job have to be completed before another job is allowed to start processing.

Definition

- Successor
- Predecessor
- Immediate successor
- Immediate predecessor
- Transitive Reduction

Precedence constraints (prec)

One or more job have to be completed before another job is allowed to start processing. *Prec : Arbitrary acyclic graph*

Definition

- Successor
- Predecessor
- Immediate successor
- Immediate predecessor
- Transitive Reduction

Special precedence constraints

- In-tree (Out-tree)
- In-forest (Out-forest)
- Opposing forest
- Interval orders
- Series-parallel orders
- Level orders

Special precedence constraints

$P_{m} | prec, p_{j} = 1 | C_{max} (m \ge 1)$

- Processor Environment
 - m identical processors are in the system.
- Job characteristics
 - Precedence constraints are given by a precedence graph;
 - Preemption is not allowed;
 - The release time of all the jobs is 0.
- Objective function
 - $-C_{max}$: the time the last job finishes execution.
 - If c_j denotes the finishing time of J_j in a schedule S_j

$$C_{max} = max_{1 \le j \le n} c_j$$

Gantt Chart

A Gantt chart indicates the time each job spends in execution, as well as the processor on which it executes of some Schedule

$P_m | prec, p_j = 1 | C_{max}$

Theorem 1

Pm | prec, $p_j = 1 | C_{max}$ is NP-complete.

1. Ullman (1976)

$$3SAT \le Pm \mid prec, p_j = 1 \mid C_{max}$$

2. Lenstra and Rinooy Kan (1978)

k-clique
$$\leq$$
 Pm | prec, $p_j = 1 | C_{max}$

 P_m prec, pj = 1 | C_{max} is NP-complete.

Proof: out of Syllabus

$P_m | prec, p_j = 1 | C_{max}$

Mayr (1985)

Theorem 2

Pm |
$$p_j = 1$$
, SP | C_{max} is NP-complete.
SP: Series - parallel

Theorem 3

Pm |
$$p_i = 1$$
, OF | C_{max} is NP-complete.

OF: Opposing - forest

Proof: out of Syllabus

Hu's HLF/CP Algorithm

- T. C. Hu (1961), Critical Path/Highest Level First
- Assign a level h to each job.
 - If job has no successors, h(j) equals 1.
 - Otherwise, h(j) equals one plus the maximum level of its immediate successors.
- Set up a priority list L by nonincreasing order of the jobs' levels.
- Execute the list scheduling policy on this level based priority list L.

HLF/CP algorithm: Example

HLF/CP algorithm

Time complexity

O(|V|+|E|) (|V| is the number of jobs and |E| is the number of edges in the precedence graph)

- Theorem (Hu, 1961): HLF/CP for Tree
 - The HLF algorithm is optimal for $P_m \mid p_j = 1$, in-tree (out-tree) $\mid C_{max}$.
 - The HLF algorithm is optimal for $P_m \mid p_j = 1$, inforest (out-forest) $\mid C_{max}$.

HLF/CP algorithm

N.F. Chen & C.L. Liu (1975)

The approximation ratio of HLF algorithm for the problem with general precedence constraints:

If
$$m = 2$$
, $\delta_{HLF} \le 4/3$.
If $m \ge 3$, $\delta_{HLF} \le 2 - 1/(m-1)$.

PTAS Algorithms: Pm | prec, $p_j = 1 | C_{max}$

- PTAS : Polynomial Time Approximation Scheme
- Approximation List scheduling policies
 - Graham's list algorithm/Greedy List
 - Discussed in Cilk Lectures: T ≤ 2T*, Also proved
 - CLR Book Chapter 27, Multi-threaded Algorithm
 - HLF algorithm
 - MSF algorithm

$P_m | prec, p_j = 1 | C_{max}$

Theorem 1

Pm | prec, $p_j = 1 | C_{max}$ is NP-complete.

1. Ullman (1976)

$$3SAT \le Pm \mid prec, p_j = 1 \mid C_{max}$$

2. Lenstra and Rinooy Kan (1978)

k-clique
$$\leq$$
 Pm | prec, $p_j = 1 | C_{max}$

 P_m prec, pj = 1 | C_{max} is NP-complete.

Proof: out of Syllabus

List scheduling policies

- Set up a priority list L of jobs.
- When a processor is idle, assign the first ready job to the processor and remove it from the list L.

J_{11}	J_9	J_8	J_6	J_3
$oldsymbol{J}_{10}$	J_{13}	$m{J}_7$	J_{5}	J_2
$oldsymbol{J}_{12}$			$oldsymbol{J}_4$	J_1

First job of the list may not be ready

$$L=(J_9,J_8,J_7,J_6,J_5,J_{11},J_{10},J_{12},J_{13},J_4,J_3,J_2,J_1)$$

Graham's list algorithm

- Graham first analyzed the performance of the simplest list scheduling algorithm.
- List scheduling algorithm with an arbitrary job list is called Graham's list algorithm.
- Approximation ratio for Pm | prec, $p_j = 1 | C_{max}$ $\delta = 2-1/m$. (Tight bound!)
 - •Approximation ratio is δ if for each input instance, the makespan produced by the algorithm is at most δ times of the optimal makespan.

CP Algo: CLR Book Page 779-783

 T_P = execution time on P processors

CP Algorithms

 T_P = execution time on P processors

$$T_1 = work$$

$$T_{\infty} = span^*$$

LOWER BOUNDS

•
$$T_P \ge T_1/P$$

$$\bullet T_P \ge T_{\infty}$$

*Also called *critical-path length* or *computational depth*.

CP: Greedy-Scheduling Theorem

Theorem [Graham '68 & Brent '75].

Any greedy scheduler achieves

 $T_P \leq T_1/P + T_{\infty}$.

Proof.

complete steps ≤ T₁/P, since each complete step performs P work.

incomplete steps ≤ T_∞, since each incomplete step reduces the span of the unexecuted dag by 1.

CP: Optimality of Greedy

Corollary. Any greedy scheduler achieves within a factor of 2 of optimal.

Proof. Let T_P^* be the execution time produced by the optimal scheduler. Since $T_P^* \ge \max\{T_1/P, T_\infty\}$ (lower bounds), we have

$$T_P \le T_1/P + T_{\infty}$$

 $\le 2 \cdot \max\{T_1/P, T_{\infty}\}$
 $\le 2T_P^*$.

HLF/CP algorithm: Example

HLF/CP algorithm

Time complexity

O(|V|+|E|) (|V| is the number of jobs and |E| is the number of edges in the precedence graph)

- Theorem (Hu, 1961): HLF/CP for Tree
 - The HLF algorithm is optimal for $P_m \mid p_j = 1$, in-tree (out-tree) $\mid C_{max}$.
 - The HLF algorithm is optimal for $P_m \mid p_j = 1$, inforest (out-forest) $\mid C_{max}$.

HLF/CP algorithm

N.F. Chen & C.L. Liu (1975)

The approximation ratio of HLF algorithm for the problem with general precedence constraints:

If
$$m = 2$$
, $\delta_{HLF} \le 4/3$.
If $m \ge 3$, $\delta_{HLF} \le 2 - 1/(m-1)$.

Most Successors First (MSF)

Algorithm:

- Set up a priority list L by nonincreasing order of the jobs' successors numbers.
 - (i.e. the job having more successors should have a higher priority in L than the job having fewer successors)
- Execute the list scheduling policy based on this priority list L.

Most Successors First algorithm

$$L = (J_{13}, J_8, J_{12}, J_{11}, J_{10}, J_9, J_7, J_6, J_5, J_4, J_3, J_2, J_1)$$

Energy/Power/Temp AwareScheduling of Tasks

Outline

- Power Aware
- Task with Hard Deadlines
- Energy Efficiency
- Energy Efficient Scheduling
- Real Time Tasks

Power Aware Scheduling Vs Energy Aware Scheduling

- Power Budget should not exceed
 - Minimized
 - Monthly Expenses: CAP ===> Solution is EMI
 - Power CAP: If your system have 100W design, at any instance of time you should not run things above 100W
 - Suppose you have 3KW wiring in your home, you have 3 AC with each of 1.5KW rating, At a given time, you can run maximum of 2 AC.
- Total energy budget should not exceed
 - Battery capacity, mah (mobile), AH (UPS)
 - Minimized: EC
 - Power and Time