Economics 103 – Statistics for Economists

Minsu Chang

University of Pennsylvania

Lecture # 14

Sampling Distributions and Estimation – Part I

Weighing a Random Sample

Bag Contains 100 Candies

Estimate total weight of candies by weighing a random sample of size 5 and multiplying the result by 20.

Your Chance to Win

The bag of candies and a digital scale will make their way around the room during the lecture. Each student gets a chance to draw 5 candies and weigh them.

Student with closest estimate wins the bag of candy!

Weighing a Random Sample

Procedure

When the bag and scale reach your team, do the following:

- 1. Fold the top of the bag over and shake to randomize.
- 2. Randomly draw 5 candies without replacement.
- 3. Weigh your sample and record the result in grams.
- 4. Rodrigo will enter your result into his spreadsheet and multiply it by 20 to estimate the weight of the bag.
- 5. Replace your sample and shake again to re-randomize.
- 6. Pass bag and scale to next team.

Sampling and Estimation

Questions to Answer

- 1. How accurately do sample statistics estimate population parameters?
- 2. How can we quantify the uncertainty in our estimates?
- 3. What's so good about random sampling?

Random Sample

In Words

Select sample of *n* objects from population so that:

- Each member of the population has the same probability of being selected
- The fact that one individual is selected does not affect the chance that any other individual is selected
- 3. Each sample of size n is equally likely to be selected

In Math

$$X_1, X_2, \dots, X_n \sim \text{iid } f(x) \text{ if continuous}$$

 $X_1, X_2, \dots, X_n \sim \text{iid } p(x) \text{ if discrete}$

Random Sample Means Sample With Replacement

- ▶ Without replacement ⇒ dependence between samples
- ► Sample small relative to popn. ⇒ dependence negligible.

Example: Sampling from Econ 103 Class List

Popn. Mean = 67.5, Popn. Var. = 19.7

Use R to illustrate the sampling in an example where we *know* the population. Can't do this in the real applications, but simulate it on the computer. . .

Repeat M times \rightarrow get M different sample means

Repeat M times \rightarrow get M different sample means

Sampling Dist: relative frequencies of the \bar{x}_i when $M=\infty$

Height of Econ 103 Students

Figure: Left: Population, Right: Sampling distribution of \bar{X}_5

Histograms of sampling distribution of sample mean \bar{X}_n

Random Sampling With Replacement, 10000 Reps. Each

Mean = 67.5, Var = 1.8

Mean = 67.5, Var = 0.8

Mean = 67.5, Var = 0.2

Population Distribution vs. Sampling Distribution of \bar{X}_n

Sampling Dist. of \bar{X}_n		
n	Mean	Variance
5	67.6	3.6
10	67.5	1.8
20	67.5	0.8
50	67.5	0.2

Things to Notice:

- 1. Sampling dist. "correct on average"
- 2. Sampling variability decreases with n
- 3. Sampling dist. bell-shaped even though population isn't!

Step 1: Population as RV rather than List of Objects

Old Way

New Way

In the 2016 election, 65,853,625 out of 137,100,229 voters voted for Hillary Clinton

Bernoulli(p = 0.48) RV

Old Way

New Way

List of heights for 97 million US adult males with mean 69 in and std. dev. 6 in

 $N(\mu=69,\sigma^2=36)~\mathrm{RV}$

Second example assumes distribution of height is bell-shaped.

Step 2: iid RVs Represent Random Sampling from Popn.

Hillary Voters Example

Poll random sample of 1000 people who voted in 2016:

$$X_1, \ldots, X_{1000} \sim \text{ iid Bernoulli}(p = 0.48)$$

Height Example

Measure the heights of random sample of 50 US males:

$$Y_1, \ldots, Y_{50} \sim \text{ iid } N(\mu = 69, \sigma^2 = 36)$$

Key Question

What do the properties of the population imply about the properties of the sample?

What does the population imply about the sample?

Suppose that exactly half of US voters chose Hillary Clinton in the 2016 election. If you poll a random sample of 4 voters, what is the probability that *exactly half* were Hillary supporters?

What does the population imply about the sample?

Suppose that exactly half of US voters chose Hillary Clinton in the 2016 election. If you poll a random sample of 4 voters, what is the probability that *exactly half* were Hillary supporters?

$$\binom{4}{2} \left(1/2\right)^2 \left(1/2\right)^2 = 3/8 = 0.375$$

The rest of the probabilities...

Suppose that exactly half of US voters plan to vote for Hillary Clinton and we poll a random sample of 4 voters.

```
P (Exactly 0 Hillary Voters in the Sample) = 0.0625 P (Exactly 1 Hillary Voters in the Sample) = 0.25 P (Exactly 2 Hillary Voters in the Sample) = 0.375 P (Exactly 3 Hillary Voters in the Sample) = 0.25 P (Exactly 4 Hillary Voters in the Sample) = 0.0625
```

You should be able to work these out yourself. If not, review the lecture slides on the Binomial RV.

Population Size is Irrelevant Under Random Sampling

Crucial Point

None of the preceding calculations involved the population size: I didn't even tell you what it was! We'll never talk about population size again in this course.

Why?

Draw with replacement \implies only the sample size and the *proportion* of Hillary supporters in the population matter.

(Sample) Statistic

Any function of the data *alone*, e.g. sample mean $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$. Typically used to estimate an unknown population parameter: e.g. \bar{x} is an estimate of μ .

Step 3: Random Sampling \Rightarrow Sample Statistics are RVs

This is the crucial point of the course: if we draw a random sample, the dataset we get is random. Since a statistic is a function of the data, it is a random variable!

A Sample Statistic in the Polling Example

Suppose that exactly half of voters in the population support Hillary Clinton and we poll a random sample of 4 voters. If we code Hillary supporters as "1" and everyone else as "0" then what are the possible values of the sample mean in our dataset?

- (a) (0,1)
- (b) {0, 0.25, 0.5, 0.75, 1}
- (c) $\{0, 1, 2, 3, 4\}$
- (d) $(-\infty, \infty)$
- (e) Not enough information to determine.

Sampling Distribution

Under random sampling, a statistic is a RV so it has a PDF if continuous or PMF if discrete: this is its sampling distribution.

Sampling Dist. of Sample Mean in Polling Example

$$p(0) = 0.0625$$

 $p(0.25) = 0.25$
 $p(0.5) = 0.375$
 $p(0.75) = 0.25$
 $p(1) = 0.0625$

Contradiction? No, but we need better terminology...

- Under random sampling, a statistic is a RV
- Given dataset is fixed so statistic is a constant number
- Distinguish between: Estimator vs. Estimate

Estimator

Description of a general procedure.

Estimate

Particular result obtained from applying the procedure.

\bar{X}_n is an Estimator = Procedure = Random Variable

- 1. Take a random sample: X_1, \ldots, X_n
- 2. Average what you get: $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$

\bar{X}_n is an Estimator = Procedure = Random Variable

- 1. Take a random sample: X_1, \ldots, X_n
- 2. Average what you get: $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$

\bar{x} is an Estimate = Result of Procedure = Constant

- ▶ Result of taking a random sample was the dataset: $x_1, ..., x_n$
- ▶ Result of averaging the observed data was $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

\bar{X}_n is an Estimator = Procedure = Random Variable

- 1. Take a random sample: X_1, \ldots, X_n
- 2. Average what you get: $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$

\bar{x} is an Estimate = Result of Procedure = Constant

- ▶ Result of taking a random sample was the dataset: $x_1, ..., x_n$
- ▶ Result of averaging the observed data was $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

Sampling Distribution of \bar{X}_n

Thought experiment: suppose I were to repeat the procedure of taking the mean of a random sample over and over forever. What relative frequencies would I get for the sample means?

$$X_1, \ldots, X_9 \sim \text{ iid with } \mu = 5, \sigma^2 = 36.$$

Calculate:

$$E(\bar{X}) = E\left[\frac{1}{9}(X_1 + X_2 + \ldots + X_9)\right]$$

$$X_1, \ldots, X_n \sim \text{iid}$$
 with mean μ

$$E[\bar{X}_n] = E\left[\frac{1}{n}\sum_{i=1}^n X_i\right]$$

 $X_1, \ldots, X_n \sim \text{iid with mean } \mu$

$$E[\bar{X}_n] = E\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n E[X_i] =$$

 $X_1, \ldots, X_n \sim \text{iid with mean } \mu$

$$E[\bar{X}_n] = E\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n E[X_i] = \frac{1}{n}\sum_{i=1}^n \mu = \frac{1}{n}\sum_{i=1}^n X_i$$

 $X_1,\ldots,X_n\sim \mathsf{iid}$ with mean μ

$$E[\bar{X}_n] = E\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n E[X_i] = \frac{1}{n}\sum_{i=1}^n \mu = \frac{n\mu}{n} = \mu$$

Hence, sample mean is "correct on average." The formal term for this is *unbiased*.

$$X_1, \ldots, X_9 \sim \text{ iid with } \mu = 5, \sigma^2 = 36.$$

Calculate:

$$Var(ar{X}) = Var\left[rac{1}{9}(X_1 + X_2 + \ldots + X_9)
ight]$$

 $X_1, \ldots, X_n \sim \text{iid}$ with mean μ and variance σ^2

$$Var[\bar{X}_n] = Var\left[\frac{1}{n}\sum_{i=1}^n X_i\right]$$

 $X_1, \ldots, X_n \sim \text{iid}$ with mean μ and variance σ^2

$$Var[\bar{X}_n] = Var\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n^2}\sum_{i=1}^n Var(X_i)$$

 $X_1, \ldots, X_n \sim \text{iid}$ with mean μ and variance σ^2

$$Var[\bar{X}_n] = Var\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n^2}\sum_{i=1}^n Var(X_i)$$
$$= \frac{1}{n^2}\sum_{i=1}^n \sigma^2 =$$

 $X_1, \ldots, X_n \sim \text{iid}$ with mean μ and variance σ^2

$$Var[\bar{X}_n] = Var\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n^2}\sum_{i=1}^n Var(X_i)$$
$$= \frac{1}{n^2}\sum_{i=1}^n \sigma^2 = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

Hence the variance of the sample mean decreases linearly with sample size.

Standard Error

Std. Dev. of estimator's sampling dist. is called standard error.

Standard Error of the Sample Mean

$$SE(\bar{X}_n) = \sqrt{Var(\bar{X}_n)} = \sqrt{\sigma^2/n} = \sigma/\sqrt{n}$$