## Методические указания к выполнению расчётно-графической работы по теме

# «Дифференциальные уравнения. Ряды»

Расчетно-графические работы выполняются командами студентов (по 2-3 человека) и заключаются в выполнении заданий, оформлении отчета и его защите в форме доклада. Сформированные команды сами выбирают себе номер от 1 до 10 так, чтобы у каждой команды он был уникальный. Защита работ проходит в конце семестра.

К расчетно-графической работе предъявляются следующие требования:

- 1) к выполнению заданий-в работе должны быть:
  - а. представлены в логической последовательности основные этапы исследования или решения;
  - b. указаны используемые теоретические положения и методы;
  - с. получены точные численные результаты и построены требуемые графические изображения;
- 2) к оформлению отчета—отчет должен быть выполнен в электронном виде в одном из следующих форматов: doc, docx и ppt, pptx(для ppt, pptx используется шаблон Университета ИТМО (ИСУ —> Полезные ссылки —> Корпоративная стилистика —> Презентации (в самом низу)), а затем, если нет анимаций, переведён в **pdf**, и содержать:
  - а. титульный лист/слайд (название дисциплины, номер модуля, учебный год, название РГР, ФИ исполнителей, номера групп, дата, место (Университет ИТМО));
  - b. условия всех заданий;
  - с. основные этапы решения(исследования) каждой задачи, его теоретическое обоснование, численные результаты;
  - d. графики или рисунки, иллюстрирующие решение каждой задачи (выполненные в математическом редакторе Desmos: <a href="https://www.geogebra.org/">https://www.geogebra.org/</a>). В случае интерактивных графиков и рисунков допускается вставить в отчёт вместо них ссылки на рабочие листы математического редактора и при защите демонстрировать их дополнительно;
  - е. выводы;
  - f. оценочный лист (для работы, выполненной командой; при этом вклад каждого исполнителя оценивается всей командой по шкале от 0 до 5 баллов).
- 3) к докладу для доклада отводится от 7 до 10 минут. Доклад подкрепляется демонстрацией отчёта, который выводится на экран ноутбука или проецируется на экран в мультимедийной аудитории. Во время доклада оценивается качество устного изложения материала и ответы на вопросы по теме работы. Доклад должен содержать:
  - а. постановку задачи;
  - b. изложение основных этапов исследования или решения;
  - с. ссылки на теоретический материал, используемый при исследовании и решении;
  - d. результаты исследования или решения и их оценку;
  - е. выводы.

## Задание 1. Линейные дифференциальные уравнения 2-го порядка

### № команды и задача:

1. Определите закон движения материальной частицы с единичной массой под влиянием силы, направленной к центру O и равной удалению x частицы от центра притяжения (Рисунок 1), если в начальный момент времени t=0 частица покоилась на расстоянии 1 м от центра O.

Решите эту же задачу при наличии внешней побуждающей силы, действующей на частицу по закону: a)  $f(t) = \sin 2t$ ; б)  $f(t) = \sin t$ . Как качественно будут отличаться между собой решения во всех трёх случаях? Какой в этом физический смысл? Изобразите решения на графиках. Проведите анализ интегральных траекторий.



Рисунок 1— Иллюстрация к задаче 1 при m=1 кг и a=1 м

2. Материальная точка M массы m=2 кг притягивается двумя равномощными центрами притяжения A и B, расположенными один от другого на расстоянии 2a ( a>1 м). Сила притяжения к каждому из них численно равна расстоянию от соответствующего центра до точки M. В начальный момент времени t=0 точка покоится на линии центров на расстоянии 1 м от её середины (Рисунок 2). Найдите закон движения точки. Решите эту же задачу при наличии внешней побуждающей силы, действующей на частицу

по закону: a)  $f(t) = \cos 2t$ ; б)  $f(t) = \cos t$ . Как качественно будут отличаться между собой решения во всех трёх случаях? Какой в этом физический смысл? Изобразите решения на графиках. Проведите анализ интегральных траекторий.



Рисунок 2 – Иллюстрация к задаче 2 при m=2 кги b=1 м

3. Допустим, что через земной шар радиуса  $R=6377\cdot 10^3$  м проложен узкий прямой трубопровод, проходящий через центр Земли (Рисунок 3). Покоящийся на поверхности Земли камень массы m=1 кг падает в него и притягивается центром Земли с силой, прямо пропорциональной расстоянию между центром Земли и камнем (коэффициент пропорциональности  $k^2$ , k>0). Найдите закон движения камня. Через какое время камень пролетит через всю Землю, если в начальный момент времени t=0 на камень действует сила F=mg?

Найдите закон движения камня, если на него действует внешняя вынуждающая сила по закону  $f(t) = qR \sin pt$ , где q и p- параметры( p > 0 ). Исследуйте закон движения при различных значениях параметров. Как изменится закон движения, если p = k? Подберите этому физическое толкование. Изобразите решения на графиках. Проведите анализ интегральных траекторий.



4. Найдите закон движения и определите период T математического маятника длиной lпри малых отклонениях.

Найдите закон движения математического маятника, если на него действует внешняя вынуждающая сила по закону  $f(t) = \sin t$ . Как изменится закон движения, если длина маятника l такова, что без вынуждающей силы период колебаний равен  $2\pi$ ? Объясните это с физической точки зрения. Изобразите решения на графиках. Проведите анализ интегральных траекторий.



Рисунок 4

5. К вертикальной пружине, силой тяжести которой пренебрегаем, подвешен груз P, удлиняющий её на величину l (Рисунок 5). Оттянув груз на длину a вниз, его отпускают и оставляют свободно колебаться. Найдите закон этого движения, пренебрегая побочными сопротивлениями.

Найдите закон движения математического маятника, если на него действует внешняя вынуждающая сила по закону  $f(t) = \cos t$ . Как изменится закон движения, если изначально подвешенный груз P удлинил пружину на такую величину l, чтобез вынуждающей силы период колебаний был равен  $2\pi$ ? Объясните это с физической точки зрения. Изобразите решения на графиках. Проведите анализ интегральных траекторий.



Рисунок 5

6. Цепь длиной l=10 м соскальзывает с гладкого горизонтального стола. В начальный момент движения со стола свисал конец цепи длиной a=1 м (Рисунок 6). Пренебрегая трением и принимая  $e^{-1}$  , найдите время соскальзывания всей цепи. Определите закон соскальзывания цепи, если на её свисающий конец действует внешняя вынуждающая сила по закону  $f(t) = A\cos Bt$ , где A и B- параметры. Исследуйте движение цепи в зависимости от параметров A и B. Проиллюстрируйте исследование графически. Проведите анализ интегральных траекторий.



Рисунок 6

7. Цепь длиною  $l=20\,$  м переброшена через блок. С одной стороны свисает  $a=12\,$  м цепи, а с другой  $b=8\,$  м (Рисунок 7). Через какое время цепь сойдёт с блока? Принять  $g^{a}\approx 10^{-2}\,$ . Определите закон движения цепи, если на её более длинный конец действует внешняя вынуждающая сила по закону  $f(t)=A\cos Bt$ , где A и B- параметры. Исследуйте движение цепи в зависимости от параметров Aи B. Проиллюстрируйте исследование графически. Проведите анализ интегральных траекторий.



Рисунок 7

8. Трубка наклонена к вертикальной оси под углом  $\alpha$  и вращается вокруг неё с постоянной угловой скоростью  $\omega$  . В трубке катится без трения шарик (Рисунок 8). Найдите закон движения шарика вдоль оси трубки, если в начальный момент он находился на оси вращения и имел скорость  $v_0$ , направленную в положительном направлении оси трубки. Зафиксируйте угол  $\alpha$  и угловую скорость  $\omega$  , поместите шарик на некоторое расстояние от оси вращения трубки и исследуйте его движение в зависимости от скорости  $^{\mathcal{V}_0}$  . Проведите анализ интегральных траекторий.



### Рисунок 8

- 9. Для остановки речных судов у пристани с них сбрасывают канат, который наматывают на столб стоящий у пристани. Какая сила будет тормозить судно, если канат делае 3 витка вокруг столба, коэффициент трения каната о столб равен ⅓ и рабочий на пристани тянет за свободный конец каната с силой 10 кгс? Проведите анализ интегральных траекторий.
- 10. На первоначально покоящийся математический маятник длины 1 м и весом 1 кгс в течение 1 с действовала горизонтальная сила 100 г. Найти амплитуду колебаний, которые установятся после прекращения действия силы (в см). Проведите анализ интегральных траекторий.

# Задание 2. Системы линейных дифференциальных уравнений

Найдите решение задачи Коши для системы линейных дифференциальных уравнений:

- а) методом исключения;
- б) матричным методом (метод Эйлера).

### № команды и условие:

| til Rowalligat it yettebliet                                                      |                                                                                  |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| $\begin{cases} x' = 8x - 3y \\ y' = y + 2x \end{cases}  x(0) = 4,  y(0) = 3$      | $\begin{cases} x' = 3x - 2y \\ y' = 8y + 2x \end{cases}  x(0) = 3,  y(0) = 0$    |
| 1. $y' = y + 2x$ $x(0) = 4$ , $y(0) = 3$                                          | 2. $y' = 8y + 2x$ $x(0) = 3$ , $y(0) = 0$                                        |
| $\int x' = y + 3x$                                                                | $\int x' = 4y + x$                                                               |
| $\begin{cases} x' = y + 3x \\ y' = x + 3y \end{cases}  x(0) = 2,  y(0) = 0$       | $\begin{cases} x' = 4y + x \\ y' = 2x + 3y  x(0) = 0 \\ ,  y(0) = 3 \end{cases}$ |
| $\int x' = 3y + 2x$                                                               | $\int x' = 3y + 7x$                                                              |
| $\begin{cases} x' = 3y + 2x \\ y' = 4y + 5x  x(0) = 2,  y(0) = 6 \end{cases}$     | $\begin{cases} x' = 3y + 7x \\ y' = 5y + x \end{cases}  x(0) = -4, \ y(0) = 3$   |
| $\int x' = 2y + x$                                                                | $\int x' = 4x - y$                                                               |
| $\begin{cases} x' = 2y + x \\ y' = 3x + 6y  x(0) = -1 \\ ,  y(0) = 4 \end{cases}$ | $\begin{cases} x' = 4x - y \\ y' = 4y - x \end{cases}  x(0) = 0, \ y(0) = 2$     |

- 9. Нарисовать образ квадрата  $|x_i|<1$  при преобразовании фазового потока системы  $diff(x_1)=2x_2$ ,  $diff(x_2)=x_1+x_2$  за время t=1.
- 10. Нарисовать фазовую кривую системы diff(x)=x-y-z, diff(y)=x+z, diff(z)=3x+z

#### План:

- 1) Решите систему указанными методами.
- 2) Проверьте, что ответы совпадают.
- 3) Изобразите решение на графике при t > 0 .
- 4) Изобразите решение (траекторию) в фазовой плоскости при t > 0 и продемонстрируйте, как с изменением t точка движется по траектории.

# Задание 3. Ряд Тейлора

Исследуйте ряд Тейлора функции f(x) в точке  $x_0$  .

### № команды и условие:

1. 
$$f(x) = (x-1)e^{x-1} + e^{1-x}$$
,  $x_0 = 1$ 

2. 
$$f(x) = \ln(-x^2 + 4x - 3)$$
,  $x_0 = 2$ 

3. 
$$f(x) = (x^2 - 6x + 10)\sin(x - 3)$$
,  $x_0 = 3$ 

$$f(x) = \frac{9}{-x^2 + 10x - 16}, \quad x_0 = 5$$

$$f(x) = \frac{\arctan(x-5)}{x-5}, \quad x_0 = 5$$

$$f(x) = \ln\left(\frac{x-2}{7-2x}\right), \ x_0 = 3$$

7. 
$$f(x) = (2 - e^{x-2})^2$$
,  $x_0 = 2$ 

8. 
$$2(x^2-2x+2)\cos^2((x-1)/2)$$
,  $x_0=1$ 

#### План:

- 1) Разложите функцию в ряд Тейлора в заданной точке аналитически.
- 2) Найдите область сходимости полученного ряда к функции.
- 3) В графическом редакторе постройте графики частичных сумм ряда Тейлора (полиномов Тейлора) и график функции.
- 4) По графикам исследуйте поведение полиномов Тейлора при увеличении *п*.

Пример графического исследования, выполненного в редакторе Desmos: https://www.desmos.com/calculator/uximpjelgn

# Задание 4. Приложение рядов (индивидуальные задания)

- 1) Вычислить приближенно значение функции с заданной точностью
- 2) Разлагая подынтегральную функцию в степенной ряд вычислить приближенно интеграл с заданной точностью
- 3) Найти в виде степенного ряда решение дифференциального уравнения, удовлетворяющего заданным начальным условиям. Ограничиться четырьмя членами ряда. Изобразите на графике.

# Задание 5. Ряд Фурье

С помощью разложения в ряд Фурье данной функции в интервале  $(-\pi;\pi)$  найдите сумму указанного числового ряда.

### № команды и условие:

1. 
$$f(x) = \pi^2 - x^2$$
, 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$

2. 
$$f(x) = 1 + |x|$$
, 
$$\sum_{n=0}^{\infty} \frac{1}{(2n+3)^2}$$

3. 
$$f(x) = x^2$$
, 
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2}$$

4. 
$$f(x) = |x|$$
, 
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$

5. 
$$f(x) = 1 + x^2$$
, 
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+1)^2}$$

6. 
$$f(x) = 1 - |x|$$
, 
$$\sum_{n=3}^{\infty} \frac{1}{(2n-3)^2}$$

7. 
$$f(x) = 1 - x^2$$
, 
$$\sum_{n=4}^{\infty} (-1)^{n+1} \frac{1}{(n-2)^2}$$

8. 
$$f(x) = |x|$$
, 
$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$$

9. 
$$f((x)=x\sin(x), Sum[(-1)^n]/(n^2-1)$$

10. 
$$f(x)=x\cos(x)$$
,  $Sum[n(-1)^n]/(n^2-1)$ 

### План:

- 1) Представьте функцию её рядом Фурье.
- 2) Изобразите функцию и её ряд Фурье на графике.
- 3) Зафиксируйте x так, чтобы ряд Фурье содержал искомую сумму ряда. Выразите её из равенства функции и ряда.