

\* So, Rectifier is used to get the angual, or Current from a zero ang vol. er current signal (Symmetric ac) \* (Or) vactifier increases the are volors
current in a signal. \* Aug vol can also be alled 'dc' vol. (FWR)  $\frac{V_{avg}}{t} = \frac{2V_{m}}{t} = DC \text{ Vol.}$ (HUR) + O T \* Avg vol is that Dc vol which if applied to a resistance will cause same original non constant signal Vitality So totel =0 + Change in app dir-





1. O.c., 
$$J=0$$
, Using KVL,

$$+V_{i}^{2}-V_{AC}-V_{0}=0 \quad \Rightarrow V_{i}^{2}=V_{AC}=V_{AB}$$

$$also, \quad V_{0}=-J.R_{L}=0 \quad (r:J=0)$$

$$V_{i}=V_{AB}$$

$$=V_{A}-V_{B}$$

$$+V_{0}-V_{0}-V_{0}=0$$

$$V_{RL}=J.R_{L}=0 \quad (r:J=0)$$

$$-V_{i}-V_{D}=0 \quad \Rightarrow V_{p}=-V_{i}$$
(Where  $V_{0}=V_{0}-V_{0}=V_{0}$ )
$$V_{CA}=-V_{i} \quad (r:V_{BC}=V_{C}=0)$$

So, 
$$V_D = V_{CR} = \overline{D}$$

Let  $V_{AC} = V_i = -V_e$  (So, dock is

PN (-Ve half) actually R'B)

Very cle

Very cle

Vary =  $V_{CR} = \overline{D}$ 

Vary =  $V$ 

大

→ Definitions - let's have a vol. signal v(t) 1. Vens - (root mean square) avg)  $V_{YMS} = \frac{1}{1} \int v^2(t) dt$ Lt  $V_i(t) = V_m \sin(\omega t + \phi)$ \$ can be anything, w can be anything, RMS value is independent of freq & phase of a signal. It only depends on the shape.

$$V_{3}(t) \qquad V_{3}(t) \qquad V_{3}(t) \qquad V_{3}(t) \qquad V_{3}(t) \qquad V_{4}(t) \qquad V_{5}(t) \qquad V_{5}(t)$$



\* Ripple vol, Is amplitude of the osci part,  $y(t) = 5 + 2 \sin \omega t$ V<sub>rms</sub>?  $\vee = \vee_1 + \vee_2$ VRms = V12 + V2 ms (comes from power) Power =  $I^2R = I_{ym}^2R = \frac{v_{yms}^2}{R}$ ( · Vons = ÎmsR) Power due to V = Power vs + Power vs Vyns = Vryms + Vryms Vomo = V2 ms

V(+)= 5+ 2 sin w/ for Vdc, RMS Value 1s same as - - RM3 = 5  $V_{\text{Yms}} = \frac{1}{\sqrt{2}} + \frac{2}{\sqrt{2}}$   $V_{\text{ac Yms}}$ Vrms - Vac + (Vac ms)2 Vacoms - Voms - Voc Vac 8 ms - Vac Vac Vac Vac 4) Ripple factor - V= Vacrms = Vacrms = Vacrms = Vde



(1) Vary or 
$$V_{ac}$$
 =  $V_{ac}$  =  $V_{ac}$ 

 $\frac{1}{V_{i}}$ 

















with KVL (
$$V_{y}=0$$
 assumption),

 $V_{i} = I_{i} (R_{x} + R_{x} + R_{L})$ 
 $V_{m} = I_{i} (R_{x} + R_{x} + R_{L})$ 
 $V_{m} = I_{m} (R_{x} + R_{x} + R_{L})$ 
 $V_{i} = I_{i} (R_{x} + R_{x} + R_{L})$ 
 $V_{m} = I_{m} (R_{x} + R_{x} + R_{x}$ 

for HUR, 
$$\gamma = \frac{T_{de}^2 R_L}{I_{mu}} \times \frac{100 \text{ /s}}{R_s + R_s + R_L} = \frac{100 \text{ /s}}{R_s + R_L} = \frac{100 \text{ /s}}{R_s + R_L} = \frac{100 \text{ /s}}{R_s + R_L} = \frac{100 \text{ /$$

$$\frac{\gamma}{mas} = \frac{4}{\Pi^2} \times 100\%, \quad 2 + 0.6\%$$
(Halk)
$$(3hen) \left(R_f + R_f\right) << 12_L$$



$$* V_{dc} = \frac{2}{\pi} V_{m}$$

$$\begin{array}{ccc}
\times & V_{\text{flat}} & = & \frac{V_{\text{m}}}{\sqrt{2}} \\
(\sigma/p) & & \frac{1}{\sqrt{2}}
\end{array}$$

$$\frac{\langle \mathfrak{d} | \mathfrak{p} \rangle}{\langle \mathfrak{d} | \mathfrak{p} \rangle} = \frac{\sqrt{m}}{\sqrt{2}} = \frac{\sqrt{2}}{2\sqrt{m}} = \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2$$

\* 
$$Y = \int_{1}^{2} \int_{1}^{2$$

$$\Rightarrow$$
 (rest factor,  $C = \frac{peak}{rms} = \frac{V_m}{V_m/S_2} = \sqrt{2}$ 







\* +ve = cycle- Vi = VAB = +ve

A > highest vol Vc <VA

R- lowed vol VD > VB

So,  $D_1 \supset F_1 R$  (on)  $: V_A > V_D$  $D_2 \Rightarrow F_1 R$  (on)  $: V_c > V_R$ 

D3 & D4 -> R.B. (4) -. VC < VA

+ VB < VD







Inductor - $V_L = L \frac{d1}{at}$ Ohmis law for inductor \* Inductor opposes change in current flowing
through 17. \* V<sub>1</sub> = L<u>et</u> of <u>I</u> is constant with time (steady state, dc source), then  $\frac{d\hat{I}}{dt} = 0$ So,  $V_1 = 0$  Si.e., inductor behaves as a short elet for de sources under steady state Inductor does not allow sudden change in current.

L'if there is any reststance in series] sudden change dt >0, dI >> finsite L de so finite so so, Vi - so (impossible) \* Inductor acts as short cht (v.v. low vol. drop (v))
for low frequency injut sources (e.g. dc)
in steady state





$$V_{i} = V_{i} = V_{i}$$

$$V_{i} = V_{i} = V_{0}$$

$$V_{i} = V_{0}$$

$$V_{i$$

$$v_{o} = v_{c}$$

$$\Delta I = -c \frac{Jv_{o}}{Jt}$$
also,  $Ik_{l} = v_{o}$ 





$$\frac{for + 70 - 1}{V - 1R - V_c = 0}$$

$$\frac{7}{7} = \frac{dV_c}{dt}$$

$$V - \frac{dV_c}{dt} - \frac{dV_c}{dt}$$

$$\frac{dV_c}{dt} + \frac{V_c}{RC} = V$$

637 +

$$\frac{\text{Solution}-}{\text{Ne}(t)} = \sqrt{(1-e^{-t/Rc})} \sqrt{1-e^{-t/Rc}}$$



\* if T is large, C takes a long time to change its vol. If I is small, ve change quirchly for HWR with C-filter—

Rf

(1) during + \frac{1}{2} cycle, How to find ? (i) Replace all ideal vol sources by S.C.
- Lall ideal current sources by O.C. (Replace any source by its internal resistance) (ii) Across the 2 nodes of concern, find Equirelest reststance Ree & Ceq (iII) T= Reg. Ceq  $\begin{array}{c|c} R_{f} & \\ \hline C & R_{L} & \\ \hline R_{f} & \\ \hline \end{array}$ Reg: Rf 11RL ~ Rf · · · Rt << K

compared to T.













for 
$$t > \frac{1}{4}$$
,  $v_{z} = v_{z} = v_{m}$ 

for  $t > \frac{1}{4}$ ,  $v_{z} = v_{z} = v_{m}$ 
 $v_{z} < v_{m}$ 
 $v_{z} < v_{m}$ 
 $v_{z} = v_{z} - v_{c}$ 

Let  $Rc > > T$ 

then  $c = v_{m}$ 
 $c =$ 







$$\frac{V_{3}}{V_{1}} = \frac{1}{V_{1}} \frac{1}{V_{1}} = -Ve \implies D = RB$$

$$\frac{V_{1}}{V_{1}} - V_{m}$$

$$\frac{V_{1}}{V_{1}} - V_{m}$$

$$\frac{V_{1}}{V_{2}} - V_{m}$$

$$\frac{V_{1}}{V_{2}} - V_{m}$$

$$\frac{V_{2}}{V_{2}} - V_{m}$$

$$\frac{V_{3}}{V_{4}} = \frac{V_{1}}{V_{2}} \frac{1}{V_{2}}$$

$$\frac{V_{1}}{V_{2}} - V_{2}$$

$$\frac{V_{2}}{V_{2}} - V_{2}$$

$$\frac{V_{2}}{V_{2}} - V_{2}$$

$$\frac{V_{3}}{V_{2}} = \frac{V_{1}^{2}}{V_{2}^{2}} - V_{2}$$

$$\frac{V_{3}}{V_{2}} = \frac{V_{1}^{2}}{V_{2}^{2}} - V_{2}$$

$$\frac{V_{3}}{V_{2}} = \frac{V_{1}^{2}}{V_{2}^{2}} + V_{3}$$

$$\frac{V_{3}}{V_{4}} = \frac{V_{1}^{2}}{V_{2}^{2}} + V_{3}$$

$$\frac{V_{3}}{V_{4}} = \frac{V_{1}^{2}}{V_{4}^{2}} + V_{4}$$

$$\frac{V_{3}}{V_{4}} = \frac{V_{1}^{2}}{V_{4}^{2}} + V_{4}$$

$$\frac{V_{3}}{V_{4}} = \frac{V_{1}^{2}}{V_{4}^{2}} + V_{4}$$

$$\frac{V_{4}}{V_{4}} = \frac{V_{1}^{2}}{V_{4}^{2}} + V_{4}$$

$$\frac{V_{4}}{V_{4}} = \frac{V_{1}^{2}}{V_{4}^{2}} + V_{4}$$

$$\frac{V_{5}}{V_{4}} = \frac{V_{1}^{2}}{V_{4}^{2}} + V_{4}$$

$$\frac{V_{5}}{V_{5}} = \frac{V_{1}^{2}}{V_{5}^{2}} + V_{4}$$

$$\frac{V_{5}}{V_{5}} = \frac{V_{1}^{2}}{V_{5}} + V_{5}$$

$$\frac{V_{5}}{V_{5}} = \frac{V_{5}}{V_{5}} + V_{5}$$

$$\frac{V_{5}}{V$$

Shiram 427





## Bipolar Junction transistor



MODES OF OPERATION

|    | Mode                                    | JE   | J     | APPLICATION               |
|----|-----------------------------------------|------|-------|---------------------------|
| D  | Fooward Active                          | F,B. | R.C.  | Amplification             |
| 2) | Saturation                              | F.B. | F.B-  | ) Switching               |
| 3) | Cut-off                                 | R.B. | R.B.  | Switching (Digital-ON/OFF |
| 4) | Reverse Active                          | R.R. | F,B.  | ,, 0                      |
|    | 100000000000000000000000000000000000000 |      | , , , | Rarely used for           |

## OPERATION (ACTIVE MODE)

