

CSE3103: Database

Nazmus Sakib
Assistant Professor
Department of Computer Science and Engineering
Ahsanullah University of Science and Technology

Insertions

- Assume a tree where each node can contain three pointers. Enter the values 1,2,3,4,5,6,7.
- Here branching factor M=3 , so that each node will contain M-1 = 2 keys maximum and minimum (M-1)/2=1 .

• Step 1: Inserting 1

1

• Step 2: Inserting 2

• Step 3: Inserting 3

1 3

• Split node in middle

Insertions

• Step 4: Inserting 4

- Step 5: Inserting 5
 - Split
 - Move up

Insertions

• Step 6: Inserting 6

• Step 7: Inserting 7

Two Basic Operations

- Split:
 - When trying to add to a full node
 - Split node at central value

- Promote:
 - Must insert root of split node higher up
 - May require a new split

Step 7 continued

Split and Promotion

Practice Problem

• Assume a tree where each node can contain three pointers . Enter the values

SWAECTMLPYXQB

