LP 22 Rétroaction et oscillations

Matthieu

October 4, 2018

Contents

0.1	Introduction	2
0.2	Modélisation des systèmes bouclés - Asservissement	2
	0.2.1 Structure d'un système bouclé	2
	0.2.2 Modélisation d'un système bouclé	2
	0.2.3 Application au régulateur	2
0.3	Stabilité des systèmes bouclés, Oscillateurs	2
	0.3.1 Étude de la stabilité	2
	0.3.2 Oscillateurs quasi-sinusoïdaux	2
0.4	Questions	3

0.1 Introduction

Notion d'interaction, notion de système. Interaction entre ce système et son environnement. Notion de système bouclé : qui contiens une ou des boucles de rétroaction. Définition d'un système linéaire.

0.2 Modélisation des systèmes bouclés - Asservissement

0.2.1 Structure d'un système bouclé

Ex adaptation vitesse par un conducteur dans une voiture.

Def asservissement.

Schéma + explications d'un régulateur de vitesse.

Correspond à une chaîne directe + une chaîne de retour

0.2.2 Modélisation d'un système bouclé

Système linéaire :

$$a_k \frac{d^k S}{dt^k} + \dots + a_0 S = b_l \frac{d^l e}{dt^l} + \dots + b_0 e$$
 (1)

Resolution de ce type d'équations en utilisant la transformée de Laplace

$$E(p) = TL(e(t)) = \int_0^{+\infty} e^{pt} e(t) dt \ avec \ p \in \mathcal{C}$$
 (2)

$$TL\frac{d^kS}{dt^k} = p^kS(p) \tag{3}$$

Application à une eq linéaire.

$$H(p) = \frac{S(p)}{E(p)} \tag{4}$$

Fonction de transfert en Boucle ouverte ...

0.2.3 Application au régulateur

0.3 Stabilité des systèmes bouclés, Oscillateurs

0.3.1 Étude de la stabilité

Cas général ... stabilité dépend de la partie réelle des pôles de S(p) la TL de S.

Exemple du régulateur de vitesse

0.3.2 Oscillateurs quasi-sinusoïdaux

Cas de l'oscillateur à pont de Wien. Shéma + principe + caractérisation.

0.4 Questions

Qu'est ce qu'une contre réaction (différence avec la rétroaction)?

Peut on modéliser un AOP en montage amplificateur non-inverseur comme un système bouclé?

Avantages des systèmes bouclés ?

Pouvez vous modéliser analytiquement et proprement l'impact d'un bruit sur un système bouclé