(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-86663 (P2000-86663A)

(43)公開日 平成12年3月28日(2000.3.28)

(51) Int.Cl. ⁷	識別記号	FΙ	テーマコート ゙ (参考)
C 0 7 D 487/04	146	C 0 7 D 487/04	146 4C050
	140		140 4C063
	147		147 4C065
A 6 1 K 31/435	AAE	A 6 1 K 31/435	AAE 4C071
31/505	AAB	31/505	AAB 4C086
		審査請求 未請求 請求項の数1 〇	L (全 11 頁) 最終頁に続く

(21)出願番号 特願平10-255778

(22)出願日 平成10年9月9日(1998.9.9) (71)出願人 000002819

大正製薬株式会社

東京都豊島区高田3丁目24番1号

(72)発明者 中里 篤郎

東京都豊島区高田3-24-1 大正製薬株

式会社内

(72)発明者 熊谷 利仁

東京都豊島区高田3-24-1 大正製薬株

式会社内

(74)代理人 100064908

弁理士 志賀 正武 (外9名)

最終頁に続く

(54) 【発明の名称】 アリールテトラヒドロピリジン誘導体

(57)【要約】

【課題】 CRFが関与すると考えられる疾患に有効な 化合物を提供すること。

【解決手段】式

【化1】

[式中、Arはフェニル基、置換フェニル基、チエニル 基又はフリル基を示し、Zは式

【化2】

(式中、 R^1 、 R^2 及び R^3 は同一又は異なって水素原子 又は低級アルキル基を示し、 X^1 、 X^2 及び X^3 は同一又 は異なって水素原子、ハロゲン原子、低級アルキル基、 低級アルコキシ基、低級アルキルチオ基、低級アルキル アミノ基を示す。) 等を示す。] で表されるアリールテ

トラヒドロピリジン誘導体又はその医薬上許容される 塩。

[式中、Arはフェニル基、置換フェニル基、チエニル 基又はフリル基を示し、Zは式 【化 2 】

(式中、 R^1 、 R^2 及び R^3 は同一又は異なって水素原子又は低級アルキル基を示し、 X^1 、 X^2 及び X^3 は同一又は異なって水素原子、ハロゲン原子、低級アルキル基、低級アルコキシ基、低級アルキルチオ基、低級アルキルアミノ基を示す。)のいずれかを示す。]で表されるアリールテトラヒドロピリジン誘導体又はその医薬上許容される塩。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、うつ症、不安症、アルツハイマー病、パーキンソン病、ハンチントン舞踏病、摂食障害、高血圧、消化器疾患、薬物依存症、脳梗塞、脳虚血、脳浮腫、頭部外傷、炎症、免疫関連疾患などCorticotropin Releasing Factor(CRF)が関与しているとされる疾患の治療剤に関する。

[0002]

【従来の技術】CRFは41個のアミノ酸から成るホルモンであり (Science, 213, 1394-1397, 1981; J. Neurosci., 7, 88-100, 1987)、ストレスに対する生体反応の中核的役割を果たしていることが示唆されている (Cell. Mol. Neurobiol., 14, 579-588, 1994; Endocrinol., 132, 723-728, 1994; Neuroendocrinol. 61, 445-45

2,1995)。CRFは視床下部一下垂体一副腎系を介して 末梢の免疫系、交感神経系に作用し、また、中枢神経系 において神経伝達物質として機能すると考えられており (in CorticotropinReleasing Factor: Basic and Clin ical Studies of aNeuropeptide, pp 29-52, 1990)、 例えば、下垂体除去ラット及び正常ラットにCRFを脳 室内投与すると両ラットで不安様症状(Pharmacol. Re v., 43, 425-473, 1991; Brain Res. Rev., 15,71-100, 1990) が惹起される。

【0003】CRFが関与した疾患は1991年 Owens 及び Nemeroff の総説 (Pharmacol. Rev., 43, 425-474, 1991)にまとめられている。すなわち、うつ症、不安症、アルツハイマー病、パーキンソン病、ハンチントン舞踏病、摂食障害、高血圧、消化器疾患、薬物依存症、炎症、免疫関連疾患などにCRFが関与している。最近はてんかん、脳梗塞、脳虚血、脳浮腫、頭部外傷にもCRFが関与していることが報告されている (Brain Res. 545, 339-342, 1991; Ann. Neurol. 31, 48-498, 1992; Dev. Brain Res. 91, 245-251, 1996; Brain Res. 744, 166-170, 1997)。したがって、CRF受容体拮抗薬はこれら疾患の治療又は予防剤として有用である。

[0004]

【発明が解決しようとする課題】本発明の目的は、うつ症、不安症、アルツハイマー病、パーキンソン病、ハンチントン舞踏病、摂食障害、高血圧、消化器疾患、薬物依存症、てんかん、脳梗塞、脳虚血、脳浮腫、頭部外傷、炎症、免疫関連疾患など、CRFが関与しているとされる疾患の治療剤又は予防剤に有効なCRF拮抗薬を提供することにある。

[0005]

【課題を解決するための手段】本発明者らはアリールテトラヒドロピリジン誘導体について鋭意検討した結果、

CRF受容体に高い親和性を示すアリールテトラヒドロ ピリジン誘導体を見出し、本発明を完成した。

【0006】本発明は、下記式 [1] 【化3】

[式中、Arはフェニル基、置換フェニル基、チエニル 基又はフリル基を示し、Zは下記式[2] - [11] 【化4】

(式中、 R^1 、 R^2 及び R^3 は同一又は異なって水素原子又は低級アルキル基を示し、 X^1 、 X^2 及び X^3 は同一又は異なって水素原子、ハロゲン原子、低級アルキル基、低級アルキシ基、低級アルキルチオ基、低級アルキルアミノ基を示す。)のいずれかを示す。]で表されるアリールテトラヒドロピリジン誘導体又はその医薬上許容される塩である。

【0007】本発明において、Arの置換位置は4位又は5位である。置換フェニル基とはハロゲン原子、炭素数1~5のアルコキシ基、およびトリフルオロメチル基から選択された1~3個の置換基を有するフェニル基を示し、例えば2ーフルオロフェニル基、3ーフルオロフェニル基、4ーフルオロフェニル基、2ークロロフェニル基、3ークロロフェニル基、4ークロロフェニル基、2ーブロモフェニル基、

3-ブロモフェニル基、4-ブロモフェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2-メトキシフェニル基、3-メトキシフェニル基、3-メトキシフェニル基、3, 4-ジフルオロフェニル基、2, 4-ジフルオロフェニル基、3, 4-ジクロロフェニル基、3, 4-ジクロロフェニル基、3, 4-ジクロロフェニル基、3, 5-ジクロロフェニル基、3-トリフルオロメチルフェニル基などである。低級アルキル基とは直鎖状又は分岐鎖状の炭素数1~5のアルキル基を示し、例えばメチル基、イソブチル基、1-ブチル基、1-ブチル基、1-ブチル基、1-ブチル基、1-ブチル基、1-ブチル基、1-ブチル基とは直鎖状又は分岐鎖状の炭素数1~5のアルキルアミノ基とは直鎖状又は分岐鎖状の炭素数1~5のアルキルアミノ基とは直鎖状又は分岐鎖状の炭素数1~5のアルキルアミノ基とは直鎖状又は分岐鎖状の炭素数1~5のアルキルアミノ基とは直鎖状又は分岐鎖状の炭素数1~5のアルキル基の1個又は2個で置換されたアルキルアミノ基、1-ブチルアミノ基、1-ブチルアミノ基、1-ブチルアミノ基、1-ブチルアミノ基、1-ブチルアミノ基、1-ブチルアミノ基、1-ブチルアミノ基、1-ブチルアミノ基、1-ブチルアミノ基、1-ブチルアミノ基、1-ブチルアミノ基、1-ブチルアミノ基、1-ブチルアミノ基、1-ブチルアミノ基、1-ブチルアミノ基、1-ブェー

ルアミノ基、プロピルアミノ基、ジプロピルアミノ基、 イソプロピルアミノ基などである。ハロゲン原子とは、 フッ素原子、塩素原子、臭素原子又はヨウ素原子を示 す。低級アルコキシ基とは直鎖状又は分岐鎖状の炭素数 1~5のアルコキシ基を示し、例えばメトキシ基、エト キシ基、プロポキシ基、イソプロポキシ基、ブトキシ 基、イソブトキシ基、ペンチルオキシ基、イソペンチル オキシ基などである。低級アルキルチオ基とは直鎖状又 は分岐鎖状の炭素数1~5のアルキルチオ基を示し、例 えばメチルチオ基、エチルチオ基、プロピルチオ基、イ ソプロピルチオ基、ブチルチオ基、イソブチルチオ基、 ペンチルチオ基、イソペンチルチオ基などである。ま た、本発明における医薬上許容される塩とは、例えば硫 酸、塩酸、燐酸などの生理学的に使用可能な鉱酸との 塩、酢酸、シュウ酸、乳酸、酒石酸、フマール酸、マレ イン酸、クエン酸、ベンゼンスルホン酸、メタンスルホ ン酸などの有機酸との塩などである。

[0008]

反応式1

Ar (1) 工程 A Ar (3) N-Z

【化5】

成することができる。

【0010】ここで塩基とは、例えばトリエチルアミン、ジイソプロピルエチルアミン、ピリジン等のアミン類、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水素化ナトリウム等の無機塩基、ナトリウムメトキサイド、ナトリウムエトキサイド、カリウム tert - ブトキサイド等のアルコラート類、ナトリウムアミド、リチウムジイソプロピルアミド等の金属アミド類、メチルマグネシウムブロマイド等のグリニヤール試薬類である。不活性溶媒とは、例えばメタノール、エタノール、イソプロピルアル

コール、エチレングリコール等のアルコール類、ジエチルエーテル、テトラヒドロフラン、ジオキサン、1,2ージメトキシエタン等のエーテル類、ベンゼン、トルエン等の炭化水素類、N,Nージメチルホルムアミド等のアミド類、アセトニトリル、水又はこれらの溶媒から選択された混合溶媒等である。

【発明の実施の形態】式「1]の化合物は、例えば、以

下の反応式 1-3 に示す方法によって製造することができる(以下の反応式中、Ar、Z、 R^1 、 R^2 、 R^3 、

X¹、X²、X³は前記と同じであり、R⁴及びR⁵は同一

又は異なって炭素数1~5のアルキル基を示すか、又は

隣接する酸素原子と共に1,2-エチレンジオキシ基又

は1,3ープロピレンジオキシ基を示し、 $R^4O \geq R^5O$

の結合位置は共に4位又は5位の同一炭素であり、X⁴

は塩素原子、臭素原子又はヨウ素原子を示し、X⁵は水

素原子、塩素原子、臭素原子又はヨウ素原子を示す。)

【0009】すなわち、下記反応式1に示すように、本

発明化合物である誘導体(3)は4-又は5-アリール-1, 2, 3, 6-アトラヒドロピリジン誘導体(1)を

ハロゲン化ヘテロ環誘導体(2)と塩基の存在下又は非

存在化、不活性溶媒中にて反応させる工程Aによって合

【0011】また、本発明の誘導体(3)は以下に示す 反応式2によっても合成することができる。

【化6】

反応式2

【0012】すなわち、まずハロゲン化へテロ環誘導体(2)とピペリジン誘導体(4)を原料として、ケタール誘導体(5)を前記の工程Aと同様に合成する。次に、ケタール誘導体(5)を不活性溶媒中、酸と処理する工程Bによってケトン誘導体(6)を得る。ここで不活性溶媒とは、例えばメタノール、エタノール、イソプロピルアルコール、エチレングリコール等のアルコール類、例えばジエチルエーテル、テトラヒドロフラン、ジオキサン、1,2ージメトキシエタン等のエーテル類、例えばベンゼン、トルエン、キシレン等の炭化水素類、例えばベンゼン、トルエン、キシレン等の炭化水素類、

アセトン、メチルエチルケトン等のケトン類、例えば N, Nージメチルホルムアミド等のアミド類、水又はこれらの溶媒から選択された混合溶媒等である。酸とは、例えば塩酸、臭化水素酸、硫酸等の無機酸、例えば pートルエンスルホン酸、メタンスルホン酸、トリフルオロ 酢酸等の有機酸類、例えば pートルエンスルホン酸ピリジニウム等の酸類とアミン類の塩等である。

【0013】次に、工程Cにおいて、ケトン誘導体 (6)をアリール誘導体(7)と金属試薬から得られる アリール金属試薬と不活性溶媒中で反応させてアルコー ル化合物(8)を得る。ここで金属試薬とは、例えばマグネシウム、リチウム等の金属、例えばnーブチルリチウム、tertーブチルリチウム、フェニルリチウム、リチウムジイソプロピルアミド等の有機リチウム化合物等である。不活性溶媒とは、例えばジエチルエーテル、テトラヒドロフラン、ジオキサン、1,2ージメトキシエタン等のエーテル類、例えばヘキサン、ベンゼン、トルエン、キシレン等の炭化水素類等である。

【0014】最後に、工程Dにおいて、アルコール誘導体(8)を酸性条件下脱水するか、又はアルコールを活性体に変換後、塩基性条件下反応することによって本発明化合物(3)を得ることができる。ここで酸性条件下の脱水とは、不活性溶媒として、例えばメタノール、エタノール、イソプロピルアルコール、エチレングリコール等のアルコール類、例えばジエチルエーテル、テトラヒドロフラン、ジオキサン、1,2ージメトキシエタン等のエーテル類、例えばアセトン、メチルエチルケトン等のケトン類、水、又はこれら混合溶媒を用い、酸として、例えば塩酸、臭化水素酸、硫酸等の無機酸、例えば塩化水素、臭化水素等のハロゲン化水素類、例えばpートルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、蟻酸等の有機酸類を用いる。

【0015】また、活性体とは、アルコール誘導体

(8)の水酸基のスルホニル化誘導体又はアシル化誘導体、又はアルコール誘導体(8)の水酸基をハロゲン原子で置換したハロゲン置換誘導体をさす。そして、これらの活性体は、不活性溶媒として、例えばジエチルエーテル、テトラヒドロフラン、ジオキサン、1,2ージメトキシエタン等のエーテル類、例えばベンゼン、トルエン、キシレン等の炭化水素類、例えばグロロホルム、ジクロロメタン等のハロゲン化物、例えばN,Nージメチルホルムアミド等のアミド類等を用い、塩基として、例えばトリエチルアミン、ジイソプロピルエチルアミン、ピリジン、4ージメチルアミノピリジン等のアミン類、例えば炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリ

ウム、炭酸水素カリウム、水酸化ナトリウム、水素化ナトリウム等の無機塩基、例えばナトリウムアミド、リチウムジイソプロピルアミド等の金属アミド類等を用い、例えばメタンスルホニルクロライド、pートルエンスルホニルクロライド等のスルホニルクロライド類、例えばアセチルクロライド等の有機カルボニルクロライド、例えば無水酢酸、無水トリフルオロ酢酸等の有機カルボン酸無水物、例えば塩化スルホニル,塩化ホスホリル等のハロゲン化剤等を反応し得られる。

【0016】そして、塩基性条件下での反応とは、不活性溶媒として、例えばジエチルエーテル、テトラヒドロフラン、ジオキサン、1,2ージメトキシエタン等のエーテル類、例えばベンゼン、トルエン、キシレン等の炭化水素類、例えばクロロホルム、ジクロロメタン等のハロゲン化物、例えばN,Nージメチルホルムアミド等のアミド類等を用い、塩基として、例えばトリエチルアミン、ジイソプロピルエチルアミン、ピリジン、1,8ージアザビシクロ[5.4.0]-7ーウンデセン等のアミン類、例えば炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水素化ナトリウム等の無機塩基、例えばナトリウムアミド、リチウムジイソプロピルアミド等の金属アミド類等を作用させることを示す。

【0017】なお、ピペリジン誘導体(4)にハロゲン化ヘテロ環誘導体(2)を反応させる工程Aの代わりに、ピペリジン誘導体(4)の窒素原子上の水素原子を適当な保護基で置換するようにしてもよい。この場合は、工程B、C及びDを経た後に、前記保護基を水素原子に置換してハロゲン化ヘテロ環誘導体(2)と反応させることにより、本発明の化合物を合成することができる。

【0018】本発明の化合物(13)は以下に示す反応式3によって合成することができる。

【化7】

る。ここで塩基とは、例えばトリエチルアミン、ジイソ プロピルエチルアミン、ピリジン等のアミン類、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水素化ナトリウム等の 無機塩基、ナトリウムメトキサイド、ナトリウムエトキサイド、カリウムtertーブトキサイド等のアルコラート類、ナトリウムアミド、リチウムジイソプロピルアミド等の金属アミド類等である。不活性溶媒とは、例えばメタノール、エタノール、イソプロピルアルコール、エチレングリコール等のアルコール類、ジエチルエーテル、テトラヒドロフラン、ジオキサン、1,2ージメトキシエタン等のエーテル類、ベンゼン、トルエン等の炭化水素類、N,Nージメチルホルムアミド等のアミド類等である。

【0020】次に、工程Fにおいて、化合物(10)と アニリン誘導体(11)を塩基の存在下又は非存在下、 不活性溶媒中にて反応させて化合物(12)を得る。こ こで塩基とは、例えばトリエチルアミン、ジイソプロピ ルエチルアミン、ピリジン等のアミン類、炭酸ナトリウ ム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリ ウム、水酸化ナトリウム、水素化ナトリウム等の無機塩 基、ナトリウムメトキサイド、ナトリウムエトキサイ ド、カリウムtert-ブトキサイド等のアルコラート 類、ナトリウムアミド、リチウムジイソプロピルアミド 等の金属アミド類等である。不活性溶媒とは、例えばメ タノール、エタノール、イソプロピルアルコール、エチ レングリコール等のアルコール類、ジエチルエーテル、 テトラヒドロフラン、ジオキサン、1、2-ジメトキシ エタン等のエーテル類、ベンゼン、トルエン、キシレン 等の炭化水素類、例えばN, N-ジメチルホルムアミド 等のアミド類等である。

【0021】最後に、工程Gにおいて、化合物(12) をホスゲン又はホスゲントリマー等のホスゲン同族体と 反応後HNR²R³で示されるアミン類と反応するか、ホ スゲン又はホスゲントリマー等のホスゲン同族体とHN R²R³で示されるアミン類から得られるC1CONR² R³を化合物(12)に反応するか、或いはシアン酸カ リウムを酢酸と水の混合溶媒中反応させることによっ て、式(13)で示される本発明化合物を得ることが出 来る。ここでホスゲン同族体を用いた反応は、例えばジ エチルエーテル、テトラヒドロフラン、ジオキサン、 1, 2-ジメトキシエタン等のエーテル類、ベンゼン、 トルエン、キシレン等の炭化水素類、例えばN, N-ジ メチルホルムアミド等のアミド類、例えばジクロロメタ ン、クロロホルム等のハロゲン系溶媒等の不活性溶媒 中、必要に応じ例えばトリエチルアミン、ジイソプロピ ルエチルアミン、ピリジン等のアミン類、炭酸ナトリウ ム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリ ウム等の無機塩基、ナトリウムアミド、リチウムジイソ プロピルアミド等の金属アミド類等の塩基の存在下実施 される。

[0022]

【実施例】以下に実施例及び試験例を示し本発明を具体的に説明する。

6-クロロ-2-メチル-9-(2-メチルチオー4-イソプロピルフェニル)プリン204mgと4-(4-クロロフェニル)ー1,2,3,6-テトラヒドロピリジン塩酸塩212mgにジイソプロピルエチルアミン4.2m 1を加え、加熱還流下1時間攪拌した。反応溶液を飽和炭酸水素ナトリウム水溶液に注ぎ、クロロホルム抽出し、抽出液を無水硫酸ナトリウムにて乾燥した。乾燥剤を濾別後、濾液を減圧下濃縮し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン一酢酸エチル=8:1~6:1)にて精製し、酢酸エチルにて再結晶し、、<math>6-[4-(4-クロロフェニル)-1,2,3,6-テトラヒドロピリジン-1-イル]-2-メチル-9-(2-メチルチオー4-イソプロピルフェニル)プリン235mgを得た。

【0023】上記化合物並びにテトラヒドロピリジン塩酸塩及びプリンの置換基を様々に変化させて得られた化合物の構造と物性データを表1に示す。また、プリンに代えて、式 $[2] \sim [10]$ に対応する構造を有する化合物を上記と同様に4 一置換テトラヒドロピリジン塩酸塩に反応させて得られた本発明化合物の構造と物性データを表2 - 表9 に示す。

【0024】実施例2:2ーメチルー6ー[5ー(2ーメチルフェニル)-1, 2, 3, 6ーテトラヒドロピリジンー1ーイル]-9ー(2ーメチルチオー4ーイソプロピルフェニル)プリンの合成

(1) N-t-ブトキシカルボニル-3-オキソピペリジン17.50gのテトラヒドロフラン90mlの溶液を、o-ブロモトルエン18.03gとマグネシウム2.35gからテトラヒドロフラン90ml中で調製したグリニヤール試薬の溶液に氷冷下滴下した。室温で1時間撹拌後、氷冷した反応混合物に飽和塩化アンモニウム水溶液100mlを滴下した。この反応混合物を減圧下濃縮した後、酢酸エチルにて抽出し、抽出液を飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥した。乾燥剤を濾別後、濾液を減圧下濃縮し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサンー酢酸エチル=5:1)にて精製し、N-t-ブトキシカルボニルー3-ヒドロキシー3-(2-メチルフェニル)ピペリジン9.68gを得た。

(2) N-t-ブトキシカルボニル-3-ヒドロキシー3-(2-メチルフェニル)ピペリジン590mgを1,4-ジオキサン0.84m1に溶解し、濃塩酸8.4m1を滴下し、室温で1夜撹拌後更に3時間加熱還流した後、反応液を減圧下濃縮した。

(3) この残渣に6-クロロ-2-メチル-9-(2-メチルチオ-4-イソプロピルフェニル)プリン200

mgとジイソプロピルエチルアミン $5.0 \, \mathrm{m} \, 1 \, \mathrm{s}$ 加熱還流下 $1 \, \mathrm{th}$ 間攪拌した。反応溶液を飽和炭酸水素ナトリウム水溶液に注ぎ、クロロホルム抽出し、抽出液を無水硫酸ナトリウムにて乾燥した。乾燥剤を濾別後、濾液を減圧下濃縮し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサンー酢酸エチル= 8:1)にて精製し、酢酸エチルーヘキサンにて再結晶化し、 2 ーメチルー $6-[5-(2-メチルフェニル)-1,2,3,6-テトラヒドロピリジン-1-イル]-9-(2-メチルチオー4-イソプロピルフェニル)プリン <math>243\,\mathrm{m}\,\mathrm{g}$ を得た。

【0025】上記化合物並びにグリニャール試薬及びプリンの置換基を様々に変化させて得られた化合物の構造と物性データを表1に示す。また、プリンに代えて、式 $[2] \sim [5]$ 及び $[7] \sim [10]$ に対応する構造を有する化合物を上記と同様に反応させて得られた本発明化合物の構造と物性データを表2-表9に示す。

【0026】実施例3:1-(4-(4-(3-7)) ロフェニル)-1,2,3,6- テトラヒドロピリジン-1- イル)-6- メチルピリミジン-2- イル)-1- (4- イソプロピル-2- メチルチオ)フェニル-3- メチルウレアの合成

トリホスゲン114mgの塩化メチレン溶液3mlに4 -(4-(3-フルオロフェニル)-1, 2, 3, 6-テトラヒドロピリジン-1-イル)-2-(4-イソプ ロピルー2-メチルチオ)フェニルアミノー6-メチル ピリミジン432mgとジイソプロピルアミン0.20 mlの塩化メチレン溶液5mlを滴下し、10分間撹拌 後、40%メチルアミン水溶液1.0mlを滴下し、さ らに1時間撹拌した。減圧下反応溶液を濃縮後、酢酸エ チルと飽和炭酸水素ナトリウム水溶液を注ぎ、分液後、 有機層を硫酸ナトリウムで乾燥し、減圧下濃縮した。残 渣をシリカゲルカラムクロマトグラフィー(展開溶媒: ヘキサン-酢酸エチル=4:1)にて精製し、ジイソプ ロピルエーテルで結晶化を行い、1-(4-(4-(3) ーフルオロフェニル) -1, 2, 3, 6-テトラヒドロ ピリジン-1-イル) -6-メチルピリミジン-2-イ ル) -1-(4-イソプロピル-2-メチルチオ)フェ ニルー3ーメチルウレア240mgを得た。本化合物及 び反応するアミンの種類を変えた以外は上記と同様にし て得られた化合物の構造と物性データを表10に示す。

[0027]

【表1】

						, · ·	
Com. No.	Bxp. No.	Аг	R ¹	X 1	X²	X ₃	m. p. (C) (Recry. Sol.)
1 - 0 1	1	4- (4-F-Ph)	Мe	2-MeS	4-i-Pr	Н	161.5-163.0 (AcOEt)
1 - 0.2	1	4- (3-F-Ph)	Мe	2-MeS	4-i-Pr	H	167.5-168.5 (AcOEt)
1 - 0.3	1	4-(4-C1-Ph)	Мe	2-M e S	4-i-Pr	Н	164.5-166.0 (AcOEt)
1 - 04	1	4- (3-C1-Ph)	Мe	2-M e S	4-i-Pr	H	154.5-156.0 (AcOEt)
1 - 0.5	1	4- (2-Me-Ph)	Мe	2-M e S	4-i-Pr	H	181.5-182.5 (AcOEt)
1 - 0.6	1	4-(4-F-Ph)	Мe	2-Br	4-i-Pr	Ħ	166.5-167.0 (CHCl3-Hex)
1 - 0.7	1	4-(4-Cl-Ph)	Мe	2-B r	4 - i -P r	Н	159.5-160.0 (CHC1 ₃ -Hex)
1 - 0.8	1	4 - Ph	Мe	2-B r	4-1-Pr	H	アモルファス**
1 - 0.9	2	5- (4-F-Ph)	Мe	2-M e S	4-i-Pr	H	135.0-135.5 (AcOEt-Hex)
1 - 10	2	5- (2-Me-Ph)	Мe	2-M e S	4-i-Pr	Н	150.0-150.5 (AcOEt-Hex)

- *1: (表1中の表記について) Com. No. =化合物番号。Exp. No. =合成に用いた実施例番号。Recry. Sol. =再結晶搭撲。Hex=ヘキサン。
- *2:NMR (CDCl₃) \$\delta\$ (ppm); 1.30 (6H, d, J=6.8Hz), 2.56 (3H, s), 2.70-2.83 (2H, m), 2.98 (1H, sept, J=6.8Hz), 4.50-4.68 (2H, m), 4.83-4.98 (2H, m), 6.19-6.28 (1H, m), 7.20-7.49 (7H, m), 7.61 (1H, d, J=2.0Hz), 7.83 (1H, s).

FABMS m/z; 488 (M++1)

[0028]

【表 2 】

$$Ar = \begin{cases} 3 & 2 \\ 1 & N = \\ N & N = \\$$

Com. No.	Bxp. Na.	Аг	R¹	R²	X 1	X ²	X ¹	m. p. (°C) (Recry. Sol.)
2 - 0.2 2 - 0.3	1 2	4-(3-F-Ph) 4-(4-Cl-Ph) 5-(4-F-Ph) 5-(2-Me-Ph)	Ме Ме	Ме Ме	2 - M e S 2 - M e S	4-1-Pr 4-1-Pr 4-1-Pr 4-1-Pr	H H	161.0-162.5 (AcOEt-Hex) 131.0-132.0 (AcOEt-Hex)

*1: (表2中の表配について) Com. No. =化合物番号。Exp. No. =合成に用いた実施例番号。Recry. Sol. = 再結晶溶媒。Hex=ヘキサン。

[0029]

【表3】

Com. No.	Bxp. Na.	Аг	R¹	Χ ^ι	X 2	Хз	m. p. (°C) (Recry. Sol.)
3-01 3-02 3-03	1	4- (3-F-Ph) 4- (4-Cl-Ph) 5- (2-Me-Ph)	Мe	2-Br	4-1-Pr 4-i-Pr 4-i-Pr	Н	114.5-116.0 (AcOEt-Hex) 162.5-163.0 (CHCl ₂ -Hex) 81.0-82.5 (AcOEt-Hex)

*1: (**夜**3中の**表記**について) Com. No. =化合物番号。Exp. No. ⇒合成に用いた実施例番号。Recry. Sol. =再結晶整蝶。Hex=ヘキサン。

[0030]

【表4】

Com. No.	Exp No.		R¹	R²	R¹	Х;	X²	X 3	m. p. (°C) (Recry. Sol.)
4-01	1	4- (3-F-Ph)	Ме	Н	Ме	2-M e S	4 - i -P r	Н	162.0-163.0 (AcCEt)
4 - 02	1	4- (4-C1-Ph)	Мe	H	Мe	2-M e	4-M e	6 -M e	172.0-173.0 (IPE)
4 - 03	1	4- (3-F-Ph)	Мe	Мe	Мe	2 - M e S	4 - i - P r	H	アモルファス**
4 - 04	1	4- (4-C1-Ph)	Мe	Мe	Мe	2 - M e S	4-i-Pr	H	173.0-174.0 (AcOEt)
2 - 0.5	2	5- (2-Me-Ph)	Мe	H	Μe	2 -M e S	4-i-Pr	H	119.5-120.5 (AcOEt-Hex)
4 - 06	2	5- (2-Me-Ph)	Мe	Ме	Мe	2 - M e S	4-1-Pr	Н	133.0-134.0 (AcOEt-Hex)

- *1: (表4中の表記について) Com. No. =化合物番号。Exp. No. =合成に用いた実施例番号。Recry. Sol. = 再結晶搭載。Hex=ヘキサン。1PE=ジイソプロピルエーテル
- *2: NMR (CDC1₁) \$ (ppm); 1. 32 (6H, d, J=6. 9Hz), 2. 05 (3H, s), 2. 32 (3H, s), 2. 42 (3H, s), 2. 53 (3H, s), 2. 70-2. 85 (2H, m), 2. 99 (1H, sept, J=6. 9Hz), 3. 63-3. 93 (2H, m), 4. 16-4. 28 (2H, m), 6. 24-6. 34 (1H, m), 6. 89-7. 40 (7H, m).

 FABMS m/z; 501 (M*+1)

[0031]

【表 5 】

Com. No.	Exp. Na.	Αr	R¹	R²	R³	X i	Х²	Х 3	m. p	(°C)	(Recry. Sol.)

5-01 1 4-(4-C1-Ph) Me H H 2-Me 4-Me 6-Me アモルファス*2

- *1: (表5中の表配について) Com. No. =化合物番号。Exp. No. =合成に用いた実施例番号。Recry. Sol. = 再結晶搭集。
- *2: NMR (CDCl₃) & (ppm); 1. 93 (6H, s), 2. 33 (3H, s), 2. 47 (3H, s), 2. 70-2. 83 (2H, m), 3. 87 (2H, t, J=5. 6Hz), 4. 14-4. 24 (2H, m), 6. 19-6. 26 (1H, m), 6. 35 (1H, s), 6. 65 (1H, d, J=3. 7Hz), 6. 89 (1H, d, J=3. 7Hz), 6. 96 (1H, s), 6. 97 (1H, s), 7. 25-7. 44 (4H, m). EIMS m/z; 441 (M*)

[0032]

【表 6 】

$$Ar = \begin{cases} 3 & 2 \\ N & N \\ 5 & 6 \\ R^2 & N \end{cases}$$

$$N = \begin{cases} R^1 \\ N & X^1 \\ N & X^2 \\ X^3 \end{cases}$$

Com. No.	Exp. No.	Ar	R	R²	X 1	X 2	X 3	m. p. (°C) (Recry. Sol.)
6 - 0 1	1 2 5	4- (3-F-Ph)	Ме	H	2 - M e S	4-i-Pr	H	184. 0-185. 5 (Et ₂ O ⁺²)
6 - 0 2		5- (2-Me-Ph)	Ме	H	2 - M e S	4-i-Pr	H	189. 0-190. 5 (AcOEt-IPE ⁺²)

* 1: (表6中の表記について) Com. No. =化合物番号。Exp. No. =合成に用いた実施例番号。Recry. Scl. = 再結晶溶媒。IPE=ジイソプロビルエーテル
【 0 0 3 3 】 結晶化溶媒。

Com. No.	Exp. No.	. Ar	R¹	R²	X 1	X ²	X 3	m. p. (C) (Recry. Sol.)
7 – 0 1	2	5- (2-Me-Ph)	Ме	Н	2-MeS	4-i-Pr	Н	アモルファス*2

- *1: (表7中の表配について) Com. No. =化合物番号。Exp. No. =合成に用いた実施例番号。Recry. Sol. = 再結晶密維。
- *2:NMR (CDC1₂) δ (ppm): 1. 29 (6H, d, J=6.8Hz), 2. 23 (3H, s), 2. 30-2. 48 (2H, m), 2. 36 (3H, s), 2. 41 (3H, s), 2. 94 (1H, sept, J=6.8Hz), 3. 18-4. 13 (8H, m), 5. 63-5. 75 (1H, m), 7. 00-7. 27 (7H, m).

 I on Spray m/z; 486 (M*+1)

[0034]

【表8】

Com. No.	Exp. No.	Аг	R'	R ²	X 1	X ²	X 3	m. p. (C) (Recry. Sol.)
8 - 0 1	1	4-(3-F-Ph)	Ме	Мe	2-C 1	4-C I	Н	183. 5-184. 5 (AcOEt)
8 - 0.2	2	5- (2-Me-Ph)	Ме	H	2-C 1	4 ~ C 1	H	159. 0-160. 5 (IPE)
	_							153. 5-155. 0 (AcOEt)
8 - 0.4	2	5- (2-Me-Ph)	Мε	SMe	2-C 1	4-C1	H	152, 0-153. 5 (Hex-Et ₂ O ^{*2})

*1: (表8中の表記について) Com. No. =化合物番号。Exp. No. =合成に用いた実施例番号。Recry. Sol. =再結晶溶媒。Hex=ヘキサン、IPE=ジイソプロビルエーテル。

* 2:結晶化溶媒。

[0035]

【表9】

Com. No.	Exp.	Аг	R¹	R ^a	X 1	X 2	Х³	m. p.	(℃)	(Recry. Sol.)
		4-(3-F-Ph) 5-(2-Me-Ph)								B. 0 (Hex-AcOEt) D. 0 (Hex-AcOEt*2)

*1: (表9中の表記について) Com. No. =化合物番号。Exp. No. =合成に用いた実施例番号。Recry. Sol. =再結晶溶媒。Hex=ヘキサン。

【 () () (3*62]: 結晶化溶媒。

【表10】

Com. No.	Exp. No.	Ar	R¹	R²	R ª	X 1	X²	X ²	m.	p.	(℃)	(Re	сгу	r. Sol.)
		4-(3-F-Ph) 4-(3-F-Ph)													

*1: (麦10中の表記について) Com. No. =化合物番号。Exp. No. =合成に用いた実施例番号。Recry. Sol. =再結晶溶媒、IPE=ジイソプロピルエーテル。

【003**47**: **満起に海**株 発明を含むいくつかの化合物について、CRF受容体への拮抗性試験を行った。

試験例 [CRF受容体結合実験] : 受容体標品としてラット前頭皮質膜を用い、 ^{125}I 標識リガンドとして ^{125}I ー CRFを用いた。 ^{125}I 標識リガンドを用いた結合反応は、The Journal of Neuroscience, 7,88(1987年)に記載された以下の方法で行った。

【0038】受容体膜標品の調製: ラット前頭皮質を10mMMgCl₂及び2mM EDTAを含む50mMトリス塩酸緩衝液(pH7.0)でホモジナイズし,48,000×gで遠心分離し、沈渣をトリス塩酸緩衝液で1度洗浄した。沈渣を10mMMgCl₂、2mM EDTA、0.1%ウシ血清アルブミン及び100カリクレイ

ンユニット/m1アプロチニンを含む $50\,\mathrm{mM}$ トリス塩酸緩衝液($\mathrm{pH7.0}$)に懸濁し、膜標品とした。 CRF受容体結合実験:膜標品($0.3\,\mathrm{mg}$ タンパク質/m1)、 $^{125}\,\mathrm{I}$ - CRF($0.2\,\mathrm{nM}$)及び被験薬を、 $25\,\mathrm{C}$ で2時間反応させた。反応終了後、 $0.3\,\mathrm{W}$ ポリエチレンイミンで処理したガラスフィルター(GF/C)に吸引濾過し、ガラスフィルターを $0.01\,\mathrm{W}$ TritonX-100を含むリン酸緩衝化生理食塩水で3度洗浄した。洗浄後、濾紙の放射能をガンマーカウンターにて測定した。 $1\,\mathrm{\mu}$ M CRF存在下で反応を行った時の結合量を、 $^{125}\,\mathrm{I}$ - CRFの非特異結合とした。一定濃度

(0.2 n M) の¹²⁵ I - C R F と濃度を変えた被験薬を

上記の条件で反応させることで抑制曲線を得、この抑制曲線から 125 I - C R F 結合を 5 0 %抑制する被験薬の濃度 (I C_{50}) を求めた。その結果、代表的化合物としては 1 - 1 0 を挙げることができ、その I C_{50} 値は 2 0.19 n M であった。

[0039]

【発明の効果】本発明により、CRF受容体に高い親和

性を示す化合物が提供された。これらの化合物はCRF が関与すると考えられる疾患、例えばうつ症、不安症、 アルツハイマー病、パーキンソン病、ハンチントン舞踏 病、摂食障害、高血圧、消化器疾患、薬物依存症、てん かん、脳梗塞、脳虚血、脳浮腫、頭部外傷、炎症、免疫 関連疾患等に有効である。

ZA66 ZA70 ZB09 ZB11 ZC08

フロントペー	ージの続き										
(51) Int. Cl.	7	識別記号		FΙ						テーマニ	└ード(参考)
A 6 1 K	31/505	AAK		A 6 1 K	31/50)5		AAI	K		
		AAM						AAN	Λ		
		ABA						АВА	A		
		ABE						AΒI	E		
		ABN						AΒI	N		
		ABU						ΑВ	J		
		AC J						AC.	J		
		ADR						ADI	R		
		AED						ΑEΙ)		
	31/52				31/52	2					
C 0 7 D	401/04	239		C 0 7 D	401/04	1		2 3 9	9		
	405/14	2 1 1			405/14	4		2 1	1		
	409/14	2 1 1			409/14	1		2 1	1		
	471/04	1 0 4			471/04	1		10	4 Z		
		1 1 1						1 1	1		
	473/00				473/00)					
	475/00				475/00)					
	495/04	1 0 5			495/04	1		10	5 Z		
(72)発明者	大久保 武利			Fターム(参考)	4C050	AA01	BB04	BB05	BB06	BB08
	東京都豊島区	高田 3 - 24 - 1	大正製薬株				CC07	CC08	EE02	EE03	EE04
	式会社内						EE05	FF01	FF02	FF05	GG04
(72)発明者	片岡 弘美						HH02	HH03	HH04		
	東京都豊島区	高田 3 -24- 1	大正製薬株			4C063	AA01	AA03	BB01	CC29	CC75
	式会社内						CC92	DD11	EE01		
(72)発明者	富沢 一雪					4C065	AA03	BB05	CC01	DD03	EE02
	東京都豊島区内	高田3-24-1	大正製薬株				HH01	HH02	JJ07	KK02	KK03
	式会社内						LL01	PP12			
						4C071	AA01	BB01	CC02	CC21	EE12
							FF05	FF10	GG01	GG02	GG04
							HH16	JJ08			
						4C086	CB05	CB07	CB08	CB09	GA03
							GA07	GA10	GA12	MA01	NA14
							ZA05	ZA12	ZA16	ZA36	ZA42