Graphs and Networks

IE 509 Computer Programming
Jayendran V
IEOR @ IIT Bombay

Introduction

Graph G consists of a set of vertices V connected by a set of edges E

andes

Unweighted

Directed

Undirected, Weighted

Directed, Weighted

arcs

- Others:
 - Infinite graphs, Complete graphs,

Representing Graphs in Python.

- The vertices and edges can be represented as a dictionary
 - The vertices are the 'key' and the 'value' is a list of connected edges
 - This is known as Adjacency List representation The VALUES AS LIST
- Example

- | (c) | ['a', 'a'], | (c) | (c) | (c) | (d) | (d) | (e' : ['a'], 'a'], |
- Disadvantage
 - No quick way to find if edge(u, v) is present in graph.
- Alternate: Adjacency Matrix representation

Basic Graph functions

- Encode a graphs as a dictionary
- Display list of vertices
- Display list of edges
- Find a given edge
- Add new vertex and edges

•

Ue have a graph Gr U(G): represents a list of vetices of graph Gr

Graph Searching

- Given: undirected or directed Graph G = (V, E) unweighted
- Need to explore G to understand its structure, by systematically following the edges of the graph
- Breadth First Search (BFS)
- Depth First Search (DFS)
- Graph searching is fundamental to many graph algorithms

Breadth First Search (BFS)

- Given a graph G = (V, E) and a source vertex s, BFS systematically explores edges of G to discover every vertex reachable from s
 - BFS computes the distance (smallest number of edges) from s to every reachable vertex. shortest p.dh...
 - It also produces a "breadth-first" tree with root s
- BFS discovers all vertices a distance k from s before discovering any vertices at distance k + 1.
 - Hence the name!

Let's understand the BFS algorithm

- In BFS, we will pick a vertex (root), then discover its 'children', then their children and so on.
- For use in algo, let's color the vertices Color Lul
 - White vertices: Vertex not yet discovered. Initially all vertices are white
 - Grey vertices: Vertex discovered but not fully explored
 - Black vertices: Vertex discovered and fully explored
- Algorithm should also output the
 - distance of all reachable vertex from the root.
 - Path to reach a vertex from the root (Breadth first tree)
 - We can simply record the Immediate <u>predecessor</u> of a vertex

BFS algorithm

BFS takes as input Graph G, and starting vertex s) set de verties de Cr BFSAlgo(G, s) For each $v \in V[G]$ $color[v] \leftarrow$ 'white' $distance[v] \leftarrow \infty$ $pre[v] \leftarrow NULL$ Next Queue: Q $distance[s] \leftarrow 0$ Enqueue(Q, s) join at end of

```
9. while (Q not empty) > remove from front of
10.
          u \leftarrow \text{Dequeue}(Q)
         For each v \in Adj[\underline{u}]
              If (color[v] == 'white')
13.
                  color[v] \leftarrow 'grey'
                  distance[v] \leftarrow distance[u] + 1
14.
15.
                  pre[v] \leftarrow u
16.
                  Enqueue(Q, v)
              endif
18.
        Next
         color[\underline{u}] \leftarrow 'black'
20. End while
```


Consider Graph, G, given

- How is the graphs stored?
- Suppose we call BFS(G, b)

Initialization

Iteration (i)

Iteration (ii)

Iteration (iii)

$$Q$$
: f e

Iteration (iv)

Iteration (vii)

Iteration (viii)

BFS - Properties

- Calculates the shortest path distance to source node
 - Shortest path is the minimum number of edges from s to reachable node v and ∞ if v is unreachable
 - Breadth-first tree represents the shortest path

 Note: Slightly different variants of BFS are possible. For e.g., instead of assigning colors, we can simply maintain a list of explored vertices.

Depth First Search (DFS)

- Depth First Search (DFS) is another strategy for exploring a graph
 - Explore "deeper" in graph whenever possible
 - Edges are explored out of the most recently discovered vertex *v* that still has unexplored edges
 - When all of v's edges have been explored, backtrack to the vertex from which v was discovered
 - Continue process until all reachable vertices from current source vertex are discovered
 - Repeat the search procedure for other undiscovered vertices, if any.

DFS – Setup

- Vertices are assigned colors: color[v]
 - White \rightarrow indicates undiscovered vertex. Initially all vertices are white
 - Gray → indicates that vertex has been discovered, but not fully explored
 - Black → indicates a fully explored vertex
- Predecessor sub-graph of DFS forms a forest multiple of the control of the cont Predecessor of vertex is stored: pre[v]

- Timestamps also maintained for each vertex
 - Each vertex *v* has two timestamps
 - d[v]: records timestamp when v is discovered, i.e. Vertex v made gray
 - f[v]: records timestamp when search has finished examining v's adjacency list , i.e. Vertex v made black

DFS algorithm

```
DFS takes as input Graph G
```

- For each $v \in V[G]$
- $color[v] \leftarrow 'white'$ $pre[v] \leftarrow NULL \quad mind \quad mind$
- Next
- time $\leftarrow 1$
- For each $u \in V[G]$
- if color[u] == 'white'
- DFSVisit(G, u)-
- endif
- 10. Next

DFSVisit(G, u):

- 1. $\operatorname{color}[\mathbf{u}] \leftarrow \operatorname{`grey'}$
- 2. time \leftarrow time + 1
- 3. $d[u] \leftarrow time$
- 4. For each $v \in Adj[u]$
- If (color[v] == 'white')
- $pre[v] \leftarrow u$ 6.
- DFSVisit(G, v)
- endif
- 9. Next
- 10. $\operatorname{color}[v] \leftarrow \text{'black'}$
- 11. time \leftarrow time + 1
- 12. $f[u] \leftarrow time$

Consider Graph, G, given

- How is the graphs stored?
- Suppose we call DFS(G)

Initialization

(ii)

(iii)

• (iv)

• (v)

• (vi)

• (vii)

• (viii)

• (ix)

• (x)

• (xi)

• (xii)

• (xiii)

• (xiv)

• (xv)

(xvi)

(xvii)

• (xviii)

• (xix)

• (xx, xxi)

(xxii)

DFS Property: Parenthesis Structure

- Discovery d[u] and finishing times f[u] have parenthesis structure.
- Let's represent
 - discovery of vertex u with left parenthesis: (u
 - Finishing of vertex *u* with right parenthesis: u)

Parenthesis structure of the example

DFS Property: Edges Classification

- Tree edges are edges encountered when vertex is first discovered (vertex is white).
- Back edges are edges connecting a vertex u to ancestor v in depth-first tree
 - encountering a gray vertex (from gray to gray)
- Forward edges are non-tree edges connecting a vertex *u* to descendent *v* in depth-first tree.
 - from gray to black
- Cross edge are other edges that go between
 - vertices of the same tree, as long as one vertex is not an ancestor of other, or
 - go between vertices of different trees.

Depth-First Search: Edges

Tree edges Back edges Forward edges Cross edge

How do we modify algorithm to identify edges? → HW

Onwards to Python

Graph1.ipynb

- Representing a graph using dictionary data structure
- Display the vertices and edges
- Add a new vertex, new edge

• TO DO:

 Write a program to find an edge. That is, the program should take a graph and an edge as input, and check if it is present or not.

Onwards to Python.. BFS

Compare pseudo code with Python code

GraphBFS.ipynb: Function to do BFS (as per algo discussed in slides)

• TO DO:

- 1. Write a code-snippet to display the shortest *path* from source vertex to all the other vertices
- 2. Enter the given directed graph, and call BFS with source node "a". Compute and display the shortest path from "a" to all the other nodes

Onwards to Python.. DFS

GraphDFS.ipynb: Function to do DFS (as per algo discussed in slides)

• TO DO:

- 1. Write a code snippet to classify the edges (tree edge/ back edge/ forward edge/ cross edge). You can modify the DFS to do the above.
- 2. Run DFS program for the undirected graph example used in the BFS.

