Numerieke Benadering

Pieter Vanderschueren

Academiejaar 2024-2025

Inhoudsopgave

Lineai	re Benaderingsproblemen	2
1	Benadering van vectoren	9
	1.1 QR-factorisatie	(
2	Benadering van functies	8
3	Benadering door middel van veeltermen	Ć
4	Discrete benadering op basis van meetdata	10
5	Regularisatietechnieken	11
Data,	Grafen en Eigenwaarden	12
Data,	Grafen en Eigenwaarden Grafen en eigenwaarden in datawetenschappen	
		13
6 7	Grafen en eigenwaarden in datawetenschappen	13
6 7	Grafen en eigenwaarden in datawetenschappen	13 14 15
6 7 Niet-l i	Grafen en eigenwaarden in datawetenschappen	15 14 15 15

Lineaire Benaderingsproblemen

1 Benadering van vectoren

Definitie 1.1: Orthogonale en orthonormale basissen

We spreken van een orthogonale, respectievelijk orthonormale basis als de basisvectoren $\{a_1, \ldots, a_n\}$ orthogonaal, respectievelijk orthonormaal zijn. Als een basis niet orthogonaal is, spreken we van een scheve basis.

Definitie 1.2: Grammatrix

Voor een basis $\{a_1, \ldots, a_n\}$ van deelruimte \mathcal{D} en twee vectoren $v, w \in \mathcal{D}$ ontbonden als

$$v = \sum_{i=1}^{n} \alpha_i a_i, \ w = \sum_{i=1}^{n} \beta_i a_i$$

geldt dat het inwendig product $(\langle v, w \rangle = v^*w)$ van v en w gelijk is aan

$$\langle v, w \rangle = \left(\sum_{i=1}^{n} \alpha_{i} a_{i}^{*}\right) \left(\sum_{i=1}^{n} \beta_{i} a_{i}\right) = \begin{bmatrix} \alpha_{1} & \cdots & \alpha_{n} \end{bmatrix} \underbrace{\begin{bmatrix} \langle a_{1}, a_{1} \rangle & \cdots & \langle a_{1}, a_{n} \rangle \\ \vdots & \ddots & \vdots \\ \langle a_{n}, a_{1} \rangle & \cdots & \langle a_{n}, a_{n} \rangle \end{bmatrix}}_{G} \begin{bmatrix} \beta_{1} \\ \vdots \\ \beta_{n} \end{bmatrix}$$

waarbij deze G de zogenaamde grammatrix is horende bij de basis $\{a_1, \ldots, a_n\}$.

Eigenschap 1.1: Grammatrix

- Is de basis orthogonaal, dan is de grammatrix diagonaal.
- Is de basis orthonormaal, dan is de grammatrix de eenheidsmatrix.

Definitie 1.3: Projector

Een projector is een matrix $P \in \mathbb{C}^{m \times m}$ die idempotent is, dit is $P^2 = P$. De meetkundige betekenis is als volgt. Matrix P projecteert een vector op de ruimte $\mathcal{R}(P)$, waarbij de richting bepaald wordt door de nullspace $\mathcal{N}(P)$.

Toepassing 1.1: Projector

Stel $v \in \mathbb{C}^m$ een willekeurige vector en $P \in \mathbb{C}^{m \times m}$ een projector, dan is $Pv \in \mathcal{R}(P)$ olgens de definitie van het bereik, en is $(I - P)v \in \mathcal{N}(P)$, omdat

$$P(I-P)v = (P-P^2)v \stackrel{\text{idempotent}}{=} (P-P)v = 0$$

We kunnen dus v ontbinden in componenten volgens $\mathcal{R}(P)$ en $\mathcal{N}(P)$ als

$$v = Pv + (I - P)v$$

Deze ontbinding is uniek.

Eigenschap 1.2: Projector

- Als $v \in \mathcal{R}(P)$, dan is Pv = v.
- Er geldt dat $\mathcal{R}(P) \cap \mathcal{N}(P) = \{0\}.$
- Er geldt dat $\dim(\mathcal{R}(P)) + \dim(\mathcal{N}(P)) = m$.
- De ontbinding in componenten volgens $\mathcal{R}(P)$ en $\mathcal{N}(P)$ is uniek.

Bewijs 1.1: Projector

- Als $v \in \mathcal{R}(P)$, dan $\exists u : v = Pu$, en dus is $Pv = P^2u = Pu = v$.
- Stel $x \in \mathcal{R}(P)$ en $x \in \mathcal{N}(P)$. Er volgt dat x = Px = 0.
- Dit volgt uit de eerste dimensiestelling en vorige eigenschap.
- Stel $v = x_1 + y_1 = x_2 + y_2$, met $x_1, x_2 \in \mathcal{R}(P)$ en $y_1, y_2 \in \mathcal{N}(P)$. Er geldt voor $i \in 1, 2$ dat $Pv = Px_i + Py_i = x_i$. Hieruit volgt dat $x_1 = x_2$.

Definitie 1.4: Complementaire projector

Stel P een projector, dan is $\tilde{P} = I - P$ ook een projector. Hierbij geldt:

$$\mathcal{R}(P) = \mathcal{N}(I - P) = \mathcal{N}(\tilde{P})$$
 en $\mathcal{N}(P) = \mathcal{R}(I - P) = \mathcal{R}(\tilde{P})$.

De ontbinding kan geschreven worden als

$$v = \underbrace{(I - \tilde{P})v}_{\in \mathcal{R}(P)} + \underbrace{\tilde{P}v}_{\in \mathcal{N}(P)}$$

Matrix \tilde{P} projecteert dus op $\mathcal{N}(P)$ waarbij de richting bepaald wordt door $\mathcal{R}(P)$. Dit is de **complementaire projector** van P.

Definitie 1.5: Orthogonale projector

Een projector P is orthogonaal indien $\mathcal{R}(P)$ en $\mathcal{N}(P)$ onderling orthogonale ruimte zijn. Een prokector die niet orthogonaal is, noemen we een scheve projector.

Eigenschap 1.3: Orthogonale projector

Een projector P is orthogonaal als en alleen als $P = P^*$.

Bewijs 1.2: Orthogonale projector

"\Rightarrow": Beschouw een orthonormale basis $\{q_1, \ldots, q_n\}$ van $\mathcal{R}(P)$ en een orthonormale basis $\{q_{n+1}, \ldots, q_m\}$ van $\mathcal{N}(P)$. Omdat volgens de definitie beide ruimten orthogonaal zijn, volgt dat

$$Q = \begin{bmatrix} q_1 & \cdots & q_n & q_{n+1} & \cdots & q_m \end{bmatrix}$$

een unitaire matrix is. We verkrijgen:

$$PQ = \begin{bmatrix} q_1 & \cdots & q_n & 0 & \cdots & 0 \end{bmatrix} \Rightarrow Q^*PQ = \begin{bmatrix} I_n & 0 \\ 0 & 0 \end{bmatrix}.$$

Vermits Q^*PQ dus reëel is, geldt:

$$Q^*PQ = (Q^*PQ)^* = Q^*P^*Q$$

waaruit het gestelde volgt.

"\(= \)": Neem willekeurige $x = Pu \in \mathcal{R}(P)$ en $y \in \mathcal{N}(P)$. Dan is:

$$\langle x, y \rangle = x^* y = (Pu)^* y = u^* P^* v y = u^* P y = 0.$$

De ruimten $\mathcal{R}(P)$ en $\mathcal{N}(P)$ zijn dus orthogonaal.

1.1 QR-factorisatie

Algoritme 1.1: Gram-Schmidt orthogonalisatie

```
1: for j = 1 to n do

2: v_j = a_j

3: for i = 1 to j - 1 do

4: r_{ij} = q_i^* a_j

5: v_j = v_j - r_{ij} q_i \ (= a_j - P_{<q_1,...,q_{j-1}} > a_j)

6: end for

7: r_{jj} = ||v_j||_2

8: q_j = v_j/r_{jj}

9: end for
```

Algoritme 1.2: Gewijzigde Gram-Schmidt orthogonalisatie

```
1: for j = 1 to n do
2: v_j = a_j
3: for i = 1 to j - 1 do
4: r_{ij} = q_i^* v_j \quad (a_j \to v_j)
5: v_j = v_j - r_{ij}q_i \quad (= (\mathbb{I} - P_{< q_{j-1}>}) \dots (\mathbb{I} - P_{< q_2>})(\mathbb{I} - P_{< q_1>})a_j)
6: end for
7: r_{jj} = ||v_j||_2
8: q_j = v_j/r_{jj}
9: end for
```

Toepassing 1.2: Herorthogonalisatie van Gram-Schmidt

De Gram-Schmidt orthogonalisatie is numeriek instabiel. Dit kan verholpen worden door herorthogonalisatie, hieronder twee varianten waarvan de eerste de meest gebruikte is.

1. Stapsgewijze variant:

```
1: v_j = a_j

2: for j = 1 to j - 1 do

3: r_{ij} = q_i^* v_j

4: v_j = v_j - r_{ij}q_i

5: end for

6:

7: w_j = v_j

8: for i = 1 to j - 1 do

9: s_{ij} = q_i^* w_j

10: v_j = v_j - s_{ij}q_i

11: r_{ij} = r_{ij} + s_{ij}

12: end for
```

2. Simultane variant: Na het berekenen van de onvolledige QR-factorisatie, die resulteert in factoren \hat{Q}_1 en \hat{R}_1 wordt het algoritme opnieuw toegepast met als input de eerste factor, wat resulteert in $\hat{Q}_1 \approx \hat{Q}_2 \hat{R}_2$. We bepalen dan $\hat{Q} = \hat{Q}_2$ en $\hat{R} = \hat{R}_2 \hat{R}_1$. Bij het gewijzigde algoritme van Gram-Schmidt (Algoritme 1.2) is dit meestal voldoende om orthogonaliteit van de kolommen van \hat{Q} te garanderen, bij het standaard algoritme (Algoritme 1.1) is soms meermaals herhalen van deze procedure noodzakelijk.

Algoritme 1.3: QR-facrotisatie met Givens-rotaties

```
1: Q = I, R = A
   2: for j = 1 to n do
                     for i = m downto j + 1 do
c = \frac{r_{(i-1)j}}{\sqrt{r_{(i-1)j}^2 + r_{ij}^2}}, s = \frac{r_{ij}}{\sqrt{r_{(i-1)j}^2 + r_{ij}^2}}
r_{ij} = 0, \quad r_{(i-1)j} = \sqrt{r_{(i-1)j}^2 + r_{ij}^2}
for k = j + 1 to n do
   5:
                                            \begin{bmatrix} r_{(i-1)k} \\ r_{ik} \end{bmatrix} = \begin{bmatrix} \overline{c} & \overline{s} \\ -s & c \end{bmatrix} \begin{bmatrix} r_{(i-1)k} \\ r_{ik} \end{bmatrix}
   7:
   8:
                                 for k = 1 to m do
   9:
                                           \begin{bmatrix} q_{k(i-1)} & q_{ki} \end{bmatrix} = \begin{bmatrix} q_{k(i-1)} & q_{ki} \end{bmatrix} \begin{bmatrix} \overline{c} & \overline{s} \\ -s & c \end{bmatrix}
10:
                                 end for
11:
                      end for
12:
13: end for
```

Algoritme 1.4: QR-facrotisatie met Householder-rotaties

```
1: R = A
 2: for j = 1 to n do
       x = R(j:m,j)
        v_j = x + \operatorname{sign}(x_1) ||x||_2 e_1
        v_j = v_j / ||v_j||_2
        R_{jj} = -\operatorname{sign}(x_1) ||x||_2, \ R(j+1:m,j) = 0
 6:
        for k = j + 1 to n do
            R(j:m,k) = R(j:m,k) - 2(v_i^*R(j:m,k))v_j
 8:
        end for
 9:
10: end for
11: for j = 1 to m do
12:
        w = e_i
        for k = n downto 1 do
13:
            w_{k:m} = w_{k:m} - 2(v_k^* w_{k:m}) v_k
14:
        end for
15:
16:
        Q(:,i) = w
17: end for
```

2 Benadering van functies

Benadering door middel van veeltermen

Page 10

4 Discrete benadering op basis van meetdata

 ${\bf 5}\quad {\bf Regularisatietechnieken}$

Data, Grafen en Eigenwaarden

Page 13

6 Grafen en eigenwaarden in datawetenschappen

 ${\bf 7}\quad {\bf Eigenwaarden algoritmes}$

Niet-lineaire Benaderingsproblemen

8 Niet-lineaire benaderingsproblemen

 $9\quad {\bf Optimal is a tie-algoritmes}$

10 Ijle representatie en benaderingen