

- 1) Given the following 16 bit control words for the data-path above determine the microoperation that is executed.
- a) 101 100 101 0 1000 0 1
- b) 000 101 111 1 1101 0 1
- 2) Given the sequence of 16 bit control words below for the data-path above, and initial ASCII character codes in 8bit registers, simulate the data-path to determine the alphanumeric characters in the registers after the execution of the sequence.

011 011 001 0 0010 0 1	R0	01100101
100 100 001 0 1001 0 1	R1	01110010
101 101 001 0 1010 0 1	R2	01110010
001 001 000 0 1011 0 1	R3	01101111
001 001 000 0 0001 0 1	R4	01110010
110 110 001 0 0101 0 1	R5	01101001
111 111 001 0 0101 0 1	R6	01101110
001 111 000 0 0000 0 1	R7	01100111

DA, AA, BA		MB		FS		MD		RW	
Function	Code	Function	Code	Function	Code	Function	Code	Function	Code
R0	000	Register	0	F = A	0000	Function	0	No Write	0
R1	001	Constant	1	F = A + 1	0001	Data in	1	Write	1
R2	010			F = A + B	0010				
R3	011			F = A + B + 1	0011				
R4	100			$F = A + \overline{B}$	0100				
R5	101			$F = A + \overline{B} + 1$	0101				
R6	110			F = A - 1	0110				
R7	111			F = A	0111				
				$F = A \wedge B$	1000				
				$F = A \vee B$	1001				
				$F = A \oplus B$	1010				
				$F = \overline{A}$	1011				
				F = B	1100				
				$F = \operatorname{sr} B$	1101				
				$F = \operatorname{sl} B$	1110				

- 3) Specify the control word that must be applied to the data-path above to implement the following micro-operations. NOTE: some operations may take more than one cycle to complete.
 - a) R1 SL R1
 - b) R3 MOVB R1
 - c) R1 MOVA R2
 - d) R1 ← INC R1 1
 - E) R3 ← R1 XOR Constant
- 4) Add the following two instructions to the design done in class. Specify the control words required that must be added to the control unit / data-path showcased in class. The opcode field of the instruction format must increase by 1, which is ok since the register fields decreased by 1.

jmp label:

AddMul R1 R2 const, which performs R1+R2 * const