

# Continuous Empirical Validation of Network Security Controls

November 16, 2015

Jay Houghton CTO at Firebind jay@firebind.com www.firebind.com



# Keep Me Informed







### That Mole Army Is Here...



# **Security Controls**

#### Network-based Security Controls

- YES = switch/router, firewall, IDPS, FIPS199
- NO = endpoints, hosts, servers





# What?

#### Focus on data on the wire

- Continuous = constant observation
- Empirical = use real data on real network
- Validation = meets requirements

What does this mean?



# Today & Beyond



Control and Config Management = Flight Simulator

Network Pentest = Test Pilot





Continuous Empirical = Commercial Air Traffic



### Continuous

#### DHS CDM for FISMA

"Continuous Monitoring... Configuration & Vulnerability"

**PCI DSS 3.1 section 11.2.3** 

"Perform scan after any change"

#### HIPAA NIST 800-66, RMF

"assessment and evaluation of security controls on a continuous basis"



# **Empirical**

#### Use <u>real data</u> on <u>real networks</u>

#### **Real Data:**

- simulated normal traffic
- simulated attack traffic
- simulated PII traffic

#### **Real Networks:**

- Path to & from secure networks
- And all the devices along that path (controls)



## **Motivations**

- Network doesn't know  $\Delta$  between real and simulated traffic
  - Send over all protocols, all ports & all transports
- Send traffic to all paths between points
  - Send simulated threat traffic (malware signatures)
  - Requires knowledge of vulnerability
  - Hand crafted is state of the art
  - BUT there are sources of structured threat definitions



# Approach

# <u>Produce</u> and <u>consume</u> data between segments, via scripting, tools, other software



- Requires resources on both sides of controls = complexity
- Mitigated by recent adoption of VMs, cloud and inexpensive form factors (Raspberry Pi, Intel NUC, etc)



# Normal Traffic

#### All transports, ports & protocols

#### Complete baseline profile of path access control

• e.g. complete profile of all firewall rules in play

#### Sender— use looped netcat

```
for i in 1 .. 65535; do
    cat file.txt | netcat -v <target IP> $i
done
```

#### Receiver – use iptables and netcat

```
iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 1:65535 -j DNAT --to-destination 127.0.0.1:8010 netcat -kl 127.0.0.1 8010 > /dev/null
```



# Normal Traffic

#### **Considerations**

- Silent discard is a timeout = long testing cycle
- A form of port scanning = IDPS alerts
- Firewall state table = be sure not to crash (UDP)
- Results show as netcat output, how to report?
- Source file for data = layer 7 protocols
- Limits of these tools
  - What about response (two-way open?, catch mismatch)
  - iptables bind conflicts



### Goal: pass malware through network defense

- Simulated signature under controlled conditions!
- **Best Case**: Controls mitigate attack
- Worst Case: YOU KNOW BEFORE A REAL ATTACK

### Simulated malware requires expertise

#### Candidate sources

- IDPS rule sets (typically regex)
- CVE® and researcher analysis (typically posted online)
- Machine format from MAEC<sup>TM</sup>
  - Malware Attribute Enumeration and Characterization



## **Shellshock MAEC**

```
<maecBundle:MAEC_Bundle xmlns:maecBundle=http://maec.mitre.org/XMLSchema/maec-bundle-4 ...>
  <maecBundle:Malware_Instance_Object_Attributes>
    <cybox:Description>CVE-2014-6271 Shell Shock #1</cybox:Description>
  <maecBundle:Strategic Objective id="maec-shell-shock-obt-1">
    <maecBundle:Name xsi:type="maecVocabs:CommandandControlStrategicObjectivesVocab-</pre>
   1.0">innoculate controls against CVE-2014-6271</maecBundle:Name>
    </maecBundle:Strategic_Objective>
    <maecBundle:Tactical Objective id="maec-shell-shock-obt-2">
      <maecBundle:Name xsi:type="maecVocabs:CommandandControlTacticalObjectivesVocab-</pre>
   1.0">send shell shock payload</maecBundle:Name>
  <maecBundle:Description>An injection of CVE-2014-6271 (shellshock 1 of 6) across
   security controls. The expression \setminus (\setminus) { represents the first form of shellshock
   exploit " () { " </maecBundle:Description>
  <HTTPSessionObj:HTTP_Request_Line>
    <HTTPSessionObj:HTTP_Method datatype="string">POST</HTTPSessionObj:HTTP_Method>
    <HTTPSessionObj:Value>http://target/cgi-script.cgi</HTTPSessionObj:Value>
</HTTPSessionObj:HTTP Request Line>
  <HTTPSessionObj:HTTP_Message_Body>
    <HTTPSessionObj:Message_Body condition="FitsPattern" pattern_type="Regex">
        \(\) {
    </HTTPSessionObj:Message_Body>
</maecBundle:MAEC Bundle>
```



# Firebind Simulated Malware

- Shellshock through Snort CVE-2014-6271
- Payload () { = start of attack signature
  - Real world () { :; }; cat /etc/passwd



#### Rule:

alert tcp any any -> any any (msg: "OS-OTHER Bash CGI environment variable injection attempt"; flow:stateless; content:"() {"; classtype:attempted-admin;)

#### Log:

```
[Priority: 1] {TCP} 192.168.1.70:50995 -> 192.168.1.71:80
11/09-12:31:22.150984 [**] [1:9000992:1] OS-OTHER Bash CGI environment variable injection attempt
[**] [Classification: Attempted Administrator Privilege Gain
```



# Conclusions

- Continuous empirical testing of network security controls has historically been challenging
- Preponderance of endpoint focused security approaches ignore the behavior of network devices
- Continuous validation is more feasible than ever, given tools, virtual infrastructure and low barrier deployment vehicles
- Continuous monitoring *does* catch misconfigurations, new vulnerabilities and provides high confidence



# Firebind

Network Visibility Platform that continuously and empirically monitors the network security, availability, and performance posture across inhouse, cloud, and mobile infrastructure.

For more information or a demonstration please contact me!

Jay Houghton CTO at Firebind jay@firebind.com www.firebind.com