Name: Robert Rash	ı
-------------------	---

Student ID: 40604750

Homework #2

CSE 7339. Computer System Security

Mark D. Hoffman

Please submit under the Homework #2 link on the Assignments page of BlackBoard. Unless otherwise stated, **PLEASE SHOW ALL WORK.**

Please turn these in using a word processor (such as Word or Excel), instead of hand-written form. If programming is used to generate a solution, the source code must be included and an output value must be given for EACH sub-question.

i.e.- 1. a) should have an answer. 1. b) should have a separate answer.

This example problem provides a numerical example of encryption using a **one-round** version of DES.

We will use the following 64-bit pattern for the initial input Key (K_0) : Hex 0123456789ABCDEF

Hexadecimal notation: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Binary notation: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

We will use a single 64-bit block containing the ASCII text "MESSAGES" as the plaintext.

- 1. Derive the **round 1 key K_1**. This involves the following steps:
 - a) Reduce the initial 64-bit key input to the requisite 56-bit key by mapping the bits of the initial key through the Permuted Choice 1 (PC-1) box. (64 bits excluding every 8th bit = 56 bits. These removed 8-bits are sometimes used as parity bits).

```
(1100\ 1100\ 1010\ 1010\ 0000\ 0000\ 1111
1111\ 1111\ 1010\ 1010\ 1100\ 1100\ 0000)_2
= (CCAA00F FFAACC0)<sub>16</sub>
```

b) Perform the specified left shift on the 28-bit left and right halves.

```
C_0 = (1100 \ 1100 \ 1010 \ 1010 \ 0000 \ 0000 \ 1111)_2
D_0 = (1111 \ 1111 \ 1010 \ 1010 \ 1100 \ 1100 \ 0000)_2
C_1 = (1001 \ 1001 \ 0101 \ 0100 \ 0000 \ 0001 \ 1111)_2
D_1 = (1111 \ 1111 \ 0101 \ 0101 \ 1001 \ 1000 \ 0001)_2
```

c) Use the permutation (PC-2) to derive the 48-bit round 1 key K_1 .

```
K_1 = (0000\ 1011\ 0000\ 0010\ 0110\ 0111\ 1001\ 1011\ 0100\ 1001\ 1010\ 0101)_2
= (0B02679B49A5)_{16}
```

- 2. Use this key to perform the **round 1 encryption** of the plaintext. This involves the following steps:
 - a) Convert the Plaintext into binary (i.e.- ASCII "M" = Decimal 77 = Hex 4D = 0100 1101) http://www.asciitable.com/ may help:

Original plaintext: MESSAGES

Plaintext (hex): (4D45535341474553)₁₆

Plaintext (bin): (0100 1101 0100 0101 0101 0011 0101 0011 0100 0001 0100 0111

 $0100\ 0101\ 0101\ 0011)_2$

b) Apply the initial permutation and break the plaintext into left and right halves L_0 and R_0 .

Plaintext (bin): (0100 1101 0100 0101 0101 0011 0101 0011 0100 0001 0100 0111 0100 0101 0101 0011)₂

 $IP = (1111\ 1111\ 1000\ 1100\ 0110\ 0011\ 1111\ 1111\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001\ 1010\ 1100)_2$

 $L_0 = (1111 \ 1111 \ 1000 \ 1100 \ 0110 \ 0011 \ 1111 \ 1111)_2$

 $R_0 = (0000\ 0000\ 0000\ 0000\ 0001\ 1010\ 1100)_2$

c) Expand $\mathbf{R_0}$ to get $\mathbf{E}(\mathbf{R_0})$.

 $R_0 = (0000\ 0000\ 0000\ 0000\ 0001\ 1010\ 1100)_2$ $E(R_0) = (0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001\ 1101\ 1101\ 0101\ 1000)_2$

d) Calculate $A = E(R_0) \oplus K_1$.

$$\begin{split} E(R_0) &= (0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0011\ 1101\ 0101\ 1000)_2 \\ K_1 &= (0000\ 1011\ 0000\ 0010\ 0110\ 0111\ 1001\ 1011\ 0100\ 1001\ 1010\ 0101)_2 \\ A &= (0000\ 1011\ 0000\ 0010\ 0110\ 0111\ 1001\ 1011\ 0111\ 0100\ 1111\ 1101)_2 \end{split}$$

e) Group the 48-bit result **A** into sets of 6 bits and evaluate the corresponding S-box substitutions.

 $\begin{array}{l} A_0 = (0000\ 1011\ 0000\ 0010\ 0110\ 0111\ 1001\ 1011\ 0111\ 0100\ 1111\ 1101)_2 \\ A_1 = (000010\ 110000\ 001001\ 100111\ 100110\ 110111\ 010011\ 111101)_2 \end{array}$

```
S_1 = (0100)_2
```

 $S_2 = (0101)_2$

 $S_3 = (0011)_2$

 $S_4 = (0110)_2$

 $S_5 = (1011)_2$

$$S_6 = (0111)_2$$

 $S_7 = (0011)_2$
 $S_8 = (0110)_2$

f) Concatenate the results of e) to get a 32-bit result **B**.

 $B = (0100\ 0101\ 0011\ 0110\ 1011\ 0111\ 0011\ 0110)_2$

g) Apply the permutation to get **P(B)**.

 $P(B) = (0010\ 0111\ 0110\ 0010\ 1111\ 0100\ 1011\ 1100)_2$

h) Calculate $R_1 = P(B) \oplus L_0$.

```
\begin{split} P(B) &= (0010\ 0111\ 0110\ 0010\ 1111\ 0100\ 1011\ 1100)_2\\ L_0 &= (1111\ 1111\ 1000\ 1100\ 0110\ 0011\ 1111\ 1111)_2\\ R_1 &= (1101\ 1000\ 1110\ 1110\ 1001\ 0111\ 0100\ 0011)_2\\ &= (D8EE9743)_{16} \end{split}
```

Supplemental Data

			PC-1			
57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

(NOTE: there is no 8, 16, 24, 32, 40, 48, 56, or 64 in PC-1)

		PC	C-2		
14	17	11	24	1	5
3	28	15	6	21	10
23	19	12	4	26	8
16	7	27	20	13	2
41	52	31	37	47	55
30	40	51	45	33	48
44	49	39	56	34	53
46	42	50	36	29	32

Evnancian	Darmitation	- N	ı
1 XUALISIUII	Permutation (
		,	7

-/-					· \-/
32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

Ini	Initial Permutation (IP)													
58	50	42	34	26	18	10	2							
60	52	44	36	28	20	12	4							
62	54	46	38	30	22	14	6							
64	56	48	40	32	24	16	8							
57	49	41	33	25	17	9	1							
59	51	43	35	27	19	11	3							
61	53	45	37	29	21	13	5							
63	55	47	39	31	23	15	7							

Fin	al	Pe	rmı	utat	ion	(IF	P^{-1}
40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

	P	erm	nuta	itio	n (l	P)					
16	6 7 20 21 29 12 28 1 15 23 26 5 18 31										
1	15	23	26	5	18	31	10				
2	8	24	14	32	27	3	9				
19	13	30	6	22	11	4	25				

Ro	otations
Round number	Number of left rotations
1	1
2	1
3	2
4	2
5	2
6	2
7	2
8	2
9	1
10	2
11	2
12	2
13	2
14	2
15	2
16	1

	S1															
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

								S2								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
3	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9

								S3								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
1	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
2	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
3	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12

								S4								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
1	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
2	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
3	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

	S5															
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
1	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
2	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
3	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3

	\$6															
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
1	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
2	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
3	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13

	S7															
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
1	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
2	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
3	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12

	\$8															
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
1	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
2	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
3	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11