

Tema 8. Circuitos Combinacionales Aritméticos

Objetivos.

- Comprender el funcionamiento y el diseño de los circuitos aritméticos básicos.
- Comprender el funcionamiento y el diseño de los circuitos sumadores/restadores.
- Asimilar el funcionamienro y la metodología de diseño de los comparadores de magnitud.

Pág. 1

Tema 8. Circuitos Combinacionales Aritméticos

Contenido

- 1. Sumadores binarios: sumador completo y sumador paralelo.
- 2. Circuitos sumadores/restadores. Implementación mediante el complemento a 2.
- 3. Unidad Aritmético Lógica: ALU.

Pág. 2

Sumador completo

- Suma dos números binarios de 1 bit y un acarreo, es decir suma tres bits.
 - Tiene tres entradas que corresponden a los bits de los números a sumar (a, b) y el acarreo de entrada (C_n).
 - Genera dos salidas (S, C_{n+1}) , que corresponden a la suma y el acareo generado, respectivamente.

Representación a nivel de bloque

Tabla de verdad

a	b	C_n	C_{n+1}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Pág. 3

Sumador completo

$$S = a \overline{b} \overline{C}_n + a b C_n + \overline{a} \overline{b} C_n + \overline{a} b \overline{C}_n$$

$$C_{n+1} = ab + aC_n + bC_n$$

 $= a \oplus b \oplus C_n$

■Diagrama lógico.

Sumador binario paralelo de n bits

Diagrama lógico.

- Usa la técnica de generación de acarreo en serie.
 - Ventaja.
 - Sencillez y bajo coste.
 - Inconveniente.
 - Aunque los 4 bits de los dos números se apliquen al mismo tiempo en las entradas, la suma no es correcta hasta que no se hayan propagado todos los acarreos.
 - El sumador con generación de acarreo en serie es lento.

Representación a nivel de bloque

Sumador binario paralelo de n bits

- Suma dos números binarios de n bits y un acarreo de entrada y genera los n bits de la suma y un acarreo de salida.
- Entradas.
 - n entradas para el operando A: $(a_{n-1}, ..., a_0)$.
 - n entradas para el operando B: $(b_{n-1}, ..., b_0)$.
 - Acarreo de entrada C_0 .
- Salidas.
 - n salidas para el resultado de la suma S: $(S_{n-1}, ..., S_0)$.
 - Acarreo de salida C_n .
- Implementación. Se puede implementar de varias maneras:
 - Se conectan **n sumadores completos** de forma que se implemente el algoritmo de la suma de dos números binarios de n bits. Ventaja: poca circuiteria. Inconveniente: Lentos si el número de bits es elevado.
 - Generando la función lógica de cada salida (planoAND- planoOR). Ventajas:rápidez. inconvenientes: demasiada circuiteria, debido al número tan elevado de entradas para las puertas, imposible de sintetizar si el número de entradas es elevado.
 - Mediante técnicas que permiten generar los acarreos 'rápidamente, que es la solución intermedia entre las dos anteriores (No se estudiarán en esta asignatura).

Sumador/restador binario paralelo de n bits mediante el C2

Representación a nivel de bloque

Circuito sumador/restador mediante el C2 para números binarios sin signo.

- $\mathbf{x}_{n-1}...\mathbf{x}_{0}$ son las entradas del operando X de n bits.
- $y_{n-1}.y_0$ son las entradas del operando Y de n bits.
- ${}^{\blacksquare}R_{n-1}..R_0$ son las salidas del resultado de la operación R de n bits.
- ${}^{ullet}C_n$ es la salida de acarreo (suma) o de préstamo (resta).
- ■S/R es una entrada de control que determina la operación:

$$S/R = 0$$
 Suma $R = X + Y$
 $S/R = 1$ Resta $R = X - Y$

■Como ya se vio en el restador, la operación de resta se convierte en una suma, por lo que se construye a partir de un circuito sumador binario.

$$\mathbf{R} = \mathbf{X} - \mathbf{Y} = \mathbf{X} + \mathbf{Y}_{\mathbf{C2}} = \mathbf{X} + \overline{\mathbf{Y}} + \mathbf{1}$$

- Su estructura será semejante a la del circuito restador.
 - El circuito generador de C1 realizará el C1 de Y solamente en la resta.
 - La entrada de control S/R se conecta al generador de C1.

Sumador/restador binario paralelo de n bits mediante el C2

- Diseño de un sumador/restador binario de 4 bits.
 - ■Diagrama de bloques.
 - ■Comparando las operaciones que realiza el sumador con las que debe realizar para implementar las operaciones de suma y resta en función de la entrada S/R, se deduce:

$$S = A + B + C_0$$

$$S/R = 0 \Rightarrow R = X + Y = X + Y + 0 = X + Y + S/R$$

$$S/R = 1 \Rightarrow R = X - Y = X + \overline{Y} + 1 = X + \overline{Y} + S/R$$

$$R = S \Rightarrow A = X \quad B = Y/\overline{Y} \quad C_0 = S/R$$

- Diseño del generador de C1.
 - El procesamiento es igual para todos los bits del operando Y.

•
$$S/R = 0 \Rightarrow y_{C_i} = y_i$$
. $S/R = 1 \Rightarrow y_{C_i} = \overline{y}_i$.

S/R	y _i	y_{Ci}
0	0	0
0	1	1
1	0	1
1	1	0

$$y_{ci} = S/R \oplus y_i$$

 El generador de C1 está formado por 4 puertas XOR.

Sumador/Restador binario paralelo mediante el complemento a 2

■ Diagrama lógico del sumador/restador binario de 4 bits. El circuito 74XX83 es un sumador binario de 4 bits ⊔1

- Análisis del funcionamiento.
 - Si S/R = 0

$$B = Y$$
; $C_0 = 0 \Rightarrow R = X + Y$

• Si S/R = 1

$$B = \overline{Y}; \quad C_0 = 1 \implies R = X + \overline{Y} + 1 = X + Y_{C2} = X - Y$$

- Desbordamiento.
 - Se produce desbordamiento solamente en la suma si se genera acarreo de salida, es decir C4 = 1.

Representación a nivel de

Comparador de magnitud.

• Definición.

- Circuito combinacional que a partir de 2 números A y B indica si uno es mayor, igual o menor que el otro.
- Genera 3 salidas: A>B, A=B y A<B.

• Diseño.

- No se diseña aplicando la metodología general de diseño de sistemas combinacionales, ya que es complicado y la implementación tiene un coste elevado.
 - La tabla de verdad tendrá 2n variables de entrada, y por tanto, 2²ⁿ filas de valores de entrada.
- Se diseña aplicando el algoritmo de comparación de las magnitudes relativas de dos números:

• Algoritmo de comparación.

- Dados dos números de 4 bits:
 - \blacksquare A = $a_3 a_2 a_1 a_0$
 - \blacksquare B = $b_3 b_2 b_1 b_0$
- Dos números son iguales si todos los bits de mismo peso son iguales:

•
$$(A = B) = (a_3 = b_3) (a_2 = b_2) (a_1 = b_1) (a_0 = b_0)$$

6. Comparador de magnitud.

$$A = a_3 a_2 a_1 a_0$$

 $B = b_3 b_2 b_1 b_0$

• Salidas A > B y A < B

- Se comparan los bits de mismo peso empezando por los de mayor peso hasta encontrar dos bits distintos.
- El número que tenga el bit mayor, es decir a 1, será mayor.
- $(A > B) = (a_3 > b_3) + (a_3 = b_3) (a_2 > b_2) + ... + (a_3 = b_3) (a_2 = b_2) (a_1 = b_1) (a_0 > b_0)$
- $(A < B) = (a_3 < b_3) + (a_3 = b_3) (a_2 < b_2) + ... + (a_3 = b_3) (a_2 = b_2) (a_1 = b_1) (a_0 < b_0)$
- Conclusión.
 - El componente básico es un comparador de magnitud de un bit.
 - Se usan n comparadores de magnitud y se le añade un bloque combinacional para implementar el algoritmo de comparación.

Comparador de magnitud.

• Diseño de un comparador de magnitud de 1 bit.

Representación a nivel de bloque

Tabla de verdad

a	b	a>b	a=b	a <t< th=""></t<>
0	0	0	1	0
0		0	0	1
1	0	1	0	0
1	1	0	1	0

Funciones lógicas

$$(a > b) = a \overline{b}$$

$$(a = b) = \overline{a} \overline{b} + a b = a \circ b$$

$$(a < b) = \overline{a} b$$

Diagrama lógico

Comparador de magnitud.

• Comparador de magnitud de 1 bit con entradas de la etapa anterior de los bits de mayor peso. No se indica las funciones de salida por ser complejas

Representación a nivel de bloque

Comparador de magnitud.

• Comparador de magnitud de n bits con entradas de la etapa anterior de los bits de mayor peso a partir de un comparador de 1 bit.

$$X = x_{n-1} x_{n-2} ... x_0$$

 $Y = y_{n-1} y_{n-2} ... y_0$

Bibliografía detallada Circuitos Combinacionales Aritméticos

Las diapositivas se han confeccionado utilizando como fuente:

Circuitos Combinacionales Aritméticos
 "Diseño Lógico". A. Lloris, A. Prieto. Mc-Graw Hill. 1996.
 Capítulos: 6.2(párrafo primero), 6.2.1, 6.2.2, 6.2.3, 6.2.4, 6.2.5