HO04: Álgebra relacional

Aluno: Bernardo Ladeira Borges Kartabil

Matrícula: 838966

Turno: Manhã

QUESTÃO 1:

π first_name, last_name(σgender = 'F' (actors))

```
Álgebra Relacional SQL Editor de Grupo

π σ ρ ← → τ γ ∧ ∨ ¬ = ≠ ≥ ≤ ∩ ∪ + - × ⋈ ⋈ ⋈ ⋉ ⋈ ▷ = -- /*

{} 田 歯 ※

1 π first_name, last_name(σgender = 'F' (actors))
```


 π first_name, last_name (σ gender = 'F' (actors))

actors.first_name	actors.last_name
'Paula'	'Cross'
'Wendy'	'Gordon'
'Mary Elizabeth'	'Mastrantonio'
'Kimberly (I)'	'Scott'
'Emily'	'Yancy'
'Barbara'	'Coles'
'Valerie'	'Colgan'
'Holly'	'De Jong'

QUESTÃO 2:

 π name(σ year > 1999(movies))

```
1 \pi name(\sigma year > 1999(movies))
► Executar consulta
                                                                                \pi_{\,\text{name}}
                                              σ <sub>year > 1999</sub>
                                                movies
                                                  40 rows
```


QUESTÃO 3:

- -- Junção entre movies e movies_directors
 juncao_movies_directors = movies ⋈ movies.id =
 movies_directors.movie_id movies_directors
- -- Junção do resultado anterior com a tabela directors juncao_completa = juncao_movies_directors ⋈ movies_directors.director_id = directors.id directors
- -- Projeção para selecionar apenas as colunas desejadas
 resultado = π name, first_name, last_name (juncao_completa)
- -- Exibição do resultado final resultado

QUESTÃO 4:

- -- Filtra os filmes com ranking acima de 6 filmes_ranking_alto = σ rank > 6 (movies)
- -- Junção dos filmes filtrados com a tabela de papéis (roles) filmes_papeis = filmes_ranking_alto ⋈ movies.id = roles.movie_id roles
- -- Junção com a tabela de atores para obter os nomes dos atores juncao_completa = filmes_papeis ⋈ roles.actor_id = actors.id actors

- -- Projeção das colunas desejadas
 resultado = π movies.name, actors.first_name, actors.last_name,
 roles.role (juncao_completa)
- -- Exibição do resultado final resultado

π movies.name, actors.first_name, actors.last_name, roles.role ((σ rank > 6 (movies) ⋈ movies.id = roles.movie_id roles) ⋈ roles.actor_id = actors actors)

Execution time: 1 ms

movies.name	actors.first_name	actors.last_name	roles.role
'Abyss, The'	'Chris'	'Anastasio'	'Truck Driver'
'Abyss, The'	'Michael'	'Beach'	'Barnes'
'Abyss, The'	'John'	'Bedford Lloyd'	'Jammer Willis'
'Abyss, The'	'Michael'	'Biehn'	'Lt. Hiram Coffey'
'Abyss, The'	'Captain Kidd'	'Brewer Jr.'	'Lew Finler'
'Abyss, The'	'Leo'	'Burmester'	'Catfish De Vries'
'Abyss, The'	'Mike (I)'	'Cameron'	'Sailor with the fire extingui'
'Abyss, The'	'J. Kenneth'	'Campbell'	'DeMarco'
'Abyss, The'	'Michael (I)'	'Chapman'	'Dr. Berg'
'Abyss, The'	'Phillip'	'Darlington'	'USS Montana Crewman'
		1 2 3 >	

QUESTÃO 5:

- -- Junção entre diretores e a tabela de relação movies_directors
 diretores_filmes = directors ⋈ directors.id =
 movies_directors.director_id movies_directors
- -- Agrupamento por diretor e contagem de filmes
 resultado = γ directors.first_name, directors.last_name;
 count(movies_directors.movie_id) → num_filmes (diretores_filmes)
- -- Exibição do resultado final resultado

Y directors.first_name, directors.last_name; COUNT(movies_directors.movie_id)→num_filmes (directors ⋈ directors.id = movies_director_id movies_directors)

Execution time: 1 ms

'James (I)' 'Cameron' 14 'Stanley' 'Kubrick' 16 'Quentin' 'Tarantino' 10	directors.first_name	directors.last_name	num_filmes
	'James (I)'	'Cameron'	14
'Quentin' 'Tarantino' 10	'Stanley'	'Kubrick'	16
	'Quentin'	'Tarantino'	10

Tive bastante dúvida nessa questão, mas encontrei essa explicação:

```
\gamma atributos_agrupamento; função_agregação(atributo) \rightarrow nome_resultado (relação)
```

Onde:

- atributos_agrupamento são os atributos pelos quais queremos agrupar (ex: genre)
- função_agregação(atributo) é a função que queremos aplicar (ex: count, avg, min, max)
- → nome_resultado especifica o nome da coluna de resultado
- (relação) é a relação sobre a qual aplicamos o agrupamento

QUESTÃO 6:

```
-- Junção entre filmes e gêneros
filmes_generos = movies ⋈ movies.id = movies_genres.movie_id
movies_genres
-- Agrupamento por gênero e contagem de filmes
resultado = γ movies_genres.genre; count(movies_genres.movie_id) →
num_filmes (filmes_generos)
-- Exibição do resultado final
resultado
```


movies_genres.genre	num_filmes	
'Action'	11	
'Adventure'	3	
'Drama'	19	
'Sci-Fi'	9	
'Thriller'	12	
'Horror'	3	
'Documentary'	6	
'Family'	1	
'Short'	6	
'Romance'		
< 1 2		

Então, tentando entender minha dificuldade em relação à operação de agregação "y", eu anotei o que fiz:

Linha:

```
resultado = \gamma movies_genres.genre; count(movies_genres.movie_id) \rightarrow num_filmes (filmes_generos);
```

- Agrupar os registros da relação filmes_generos pelo atributo movies_genres.genre
- 2. Para cada grupo, contar o número de movie_id distintos
- 3. Nomear a coluna resultante como num_filmes

QUESTÃO 7:

```
-- Junção entre filmes e gêneros
-- Esta linha conecta a tabela movies com a tabela movies_genres
-- usando o ID do filme como chave de conexão

filmes_generos = movies ⋈ movies.id = movies_genres.movie_id movies_genres
-- Agrupamento por gênero com cálculo de estatísticas do ranking
-- O operador y (gamma) é usado para operações de GROUP BY e agregação

resultado = γ movies_genres.genre; -- Agrupa todos os registros pelo gênero do filme

avg(movies.rank) → rank_medio, -- Calcula a média dos rankings para cada gênero
min(movies.rank) → rank_minimo, -- Encontra o menor ranking para cada gênero
max(movies.rank) → rank_maximo -- Encontra o maior ranking para cada gênero
(filmes_generos) -- A relação sobre a qual aplicamos o agrupamento

-- Exibição do resultado final
-- Esta linha solicita a exibição da relação resultado com todas as estatísticas
calculadas
resultado
```


Y movies_genres.genre; AVG(movies.rank)→rank_medio, MIN(movies.rank)→rank_minimo, MAX(movies.rank)→rank_maximo (movies ⋈ movies.id = movies_genres.movie_id movies_genres)

Execution time: 0 ms

movies_genres.genre	rank_medio	rank_minimo	rank_maximo
'Action'	7.927272727272728	7	8.4
'Adventure'	7.566666666666667	7	8.3
'Drama'	7.436842105263156	3.9	8.7
'Sci-Fi'	7.45555555555555	2.8	8.7
'Thriller'	7.8583333333333334	7	8.4
'Horror'	6.399999999999995	2.8	8.2
'Documentary'	6.533333333333333	5.9	7.5
'Family'	6.7	6.7	6.7
'Short'	6.0833333333333333	3.9	7.4
'Romance'	6.9142857142857155	2.8	8.2
	< 1 2 →		

Observação:

Professor, nessa atividade, utilizei uma inteligência artificial chamada "Claude.AI" para me auxiliar corrigindo e comentando meus códigos. Utilizei de forma consciente, pedindo para me explicar passo a passo, para eu entender melhor o conteúdo de álgebra linear! Apesar das dificuldades, sinto que aprendi!

Abraços, Bernardo.

FONTES EXTERNAS USADAS NA ATIVIDADE:

Álgebra Relacional em Bancos de Dados - Operações Unárias (Seleção, Projeção e Renomeação) - https://youtu.be/E-tlwv8jDhE

Junção de Dados - Álgebra Relacional - Junção Interna, Externa à Esquerda, à Direita e Completa - https://youtu.be/V-CvggzYuwk

Claude.AI - https://claude.ai/new