MATEMATICA DISCRETA II-2023 PRÁCTICO de Códigos cíclicos

- (1) Dados los siguientes polinomios g(x), junto con la longitud n, sea C el código de longitud n generado por g(x). Hacer en cada caso los siguientes items. Para el codigo iv), solo hacer los 2 primeros items, pero para el segundo, codificar 3 palabras no nulas en vez de 2. Para el codigo iii), no hace falta hacer el ultimo item.
 - (a) Dar la dimension de C.
 - (b) Elejir dos palabras no nulas de la dimension adecuada, y codificarlas, usando ambos metodos enseñados en clase.
 - (c) Dar la matriz generadora de C correspondiente a g(x) correspondiente al "metodo 1" de codificación dado en clase.
 - (d) Dar una matriz generadora de C con la identidad a derecha (correspondiente al "metodo 2" dado en clase).
 - (e) Dar una matriz de chequeo de C con la identidad a izquierda.
 - (f) Probar que g(x) divide a $x^n + 1$.
 - (g) Hallar el polinomio chequeador.
 - i) $g(x) = 1 + x + x^3$; n = 7. ii) $g(x) = 1 + x + x^4$; n = 15 (los anteriores generan códigos de Hamming)

iii) $g(x) = 1 + x^4 + x^6 + x^7 + x^8$; n = 15.

(este genera un código que corrige 2 errores)

iv) $g(x) = 1 + x + x^5 + x^6 + x^7 + x^9 + x^{11}$; n = 23.

(nota: este ultimo genera el código **Golay**. Corrige 3 errores, pues tiene $\delta = 7$. (no hace falta que pruebe esto)).

- (2) Probar que el código Golay dado en el ejercicio anterior es perfecto.
- (3) a) ¿Cuántos códigos binarios de longitud n hay? (con al menos 2 palabras)
 - b) ¿Cuántos códigos binarios de longitud 3 con exactamente 5 palabras hay?
 - c) ¿Cuántos de esos códigos son lineales?
 - d) ¿Cuántos códigos binarios de longitud 3 con exactamente 4 palabras hay?
 - e) ¿Cuántos de esos códigos son lineales?
 - f) ¿Cuántos de esos códigos son cíclicos?
- (4) $g(x) = 1 + x^4 + x^6 + x^7 + x^8$ con n = 15 genera un código de longitud 15 que corrije 2 errores. Use el algoritmo de "error trapping" para corregir los errores de las siguientes palabras:
 - a) 001000001110110
- b) 110010011110111
- c) 0011111101001001
- d) 001000000110000
- e) 110001101000101
- f) 001001000100110
- (5) Sean C_1, C_2 códigos cíclicos con generadores g_1, g_2 . Probar que $C_1 + C_2$ tambien es cíclico y tiene generador $mcd(g_1, g_2)$.