Sistema inteligente de clasificación por voz

Autor: Antoni Cano Aladid

Curso de especialización en big data e inteligencia artificial

IES Pere Maria Orts

Índice

Contenido

Índice	2
Introducción	3
Objetivo	3
Metodología	4
Preprocesamiento	4
Análisis previo características generales	5
Características voz seleccionadas	7
Análisis características específicas	9
Modelos	12
Resultados	14
Decision Tree	14
Género	14
Nativo/No nativo	15
Máquina de Soporte Vectorial	16
Acento	16
Origen	17
KNN	19
Edad	19
Redes neuronales	20
Acento	20
Origen	21

Introducción

Tenemos el dataset **Audio MNIST**, un conjunto de datos que contiene 30.000 muestras de audio de dígitos hablados (0-9) por 60 hablantes diferentes.

Objetivo

Construir un sistema que pueda extraer información del audio y realizar varios sistemas de clasificación.

- 1. **Clasificación por género**: Determinar si la voz pertenece a un hombre o a una mujer.
- 2. Clasificación del acento: Identificar el acento del hablante.
- 3. **Clasificación del origen**: Determinar el país o región de origen del hablante.
- 4. Clasificación de hablante nativo o no nativo: Estimar si el hablante es nativo del idioma.
- 5. Clasificación de la edad: Predecir el rango de edad del hablante.

Metodología

Preprocesamiento

Tenemos un archivo .txt que contiene la información de los 60 participantes del dataset. Contiene información relevante tal como:

- Acento
- Edad
- Género
- Hablante nativo
- Origen

Con este archivo y los audios procedemos a realizar un script de Python para automatizar la tarea de procesar estos audios y obtener de estos las características que nos interesen.

Para obtener estos datos vamos a hacer uso de la librería de Python Librosa

Con esta librería obtenemos características básicas de los audios, como centroides espectrales, MFCC (coeficientes cepstrales de frecuencia mel), tasa de cruces por cero, etc.

Estos datos los vamos a guardar en un .csv para tenerlos guardados y no tener que procesar los audios cada vez que queramos entrenar un modelo de inteligencia artificial.

El csv final con los datos es:

audio_features.csv

Análisis previo características generales

Acento

Edad

Genero

Nativos

Origen

Características voz seleccionadas

Chroma Features

Representan las energías en las 12 notas musicales de una octava. Útil para analizar tonalidad y armonía.

RMS

Energía de la señal, útil para medir intensidad.

Spectral Centroid

Representa el "centro de gravedad" del espectro. Indica qué tan brillante es un sonido.

Spectral Bandwidth

Mide la dispersión del espectro alrededor del centroid. Ayuda a distinguir entre sonidos suaves y agresivos.

Spectral Rolloff

Frecuencia por debajo de la cual se encuentra un porcentaje acumulado (generalmente 85%) de la energía espectral. Relacionado con la cantidad de energía en las frecuencias altas.

Zero-Crossing Rate

Número de veces que la señal cruza por el eje cero.

Útil para clasificar sonidos con patrones de vibración (como consonantes frente a vocales).

MFCC(Mean y Var)

Captura la envolvente del espectro en la escala mel. Es crucial para tareas como reconocimiento de voz o análisis del timbre.

Se han tomado estas características porque la clasificación por género, acento, origen y edad requieren características que capturen propiedades del timbre, intensidad, y estructura espectral de la voz. MFCC y Spectral Centroid son ideales para capturar el timbre y las diferencias en el habla. RMS, Spectral Bandwidth, y Spectral Rolloff ayudan a diferenciar entre voces graves y agudas (útil para distinguir géneros y edades).

Análisis características específicas

Correlación

Media MFCC - Acento

Media MFCC - Edad

Media MFCC - Nativo

Media MFCC - Origen

Análisis resultados

Acento

Se observa que ciertos acentos tienen un rango más amplio de valores para características como rmse, spectral_centroid y mfcc_mean.

Por ejemplo, acentos como el alemán (german) muestran una mayor variabilidad en spectral_centroid en comparación con otros acentos. Esto podría deberse a las características fonéticas del idioma o la forma de pronunciación.

Acentos con menor variabilidad podrían reflejar consistencia en la pronunciación entre hablantes de esa región.

Edad

La variable rmse (Root Mean Square Energy) muestra valores ligeramente más altos en el grupo de edad 21-40. Esto podría estar relacionado con una mayor energía vocal en adultos jóvenes en comparación con otros grupos.

spectral_centroid tiende a ser más consistente en los grupos mayores (como 41-60 y 61-80), lo que podría reflejar una menor variabilidad en las frecuencias vocales con la edad.

mfcc_mean no muestra diferencias significativas entre los grupos de edad, aunque podría haber ligeras variaciones en los extremos de edad.

Nativo

Los hablantes nativos presentan una mayor consistencia en las características como rmse y mfcc_mean. Esto es esperable, ya que los hablantes nativos suelen tener un mayor control y fluidez en su idioma.

En contraste, los hablantes no nativos presentan una mayor dispersión en spectral_centroid, posiblemente debido a variaciones en el aprendizaje y la pronunciación del idioma.

Origen(Top 5)

Hay diferencias notables en características como rmse y spectral_centroid entre los orígenes analizados. Esto podría reflejar las influencias culturales y lingüísticas de cada región.

Algunos orígenes tienen una mayor dispersión (e.g., Europe, Germany), lo que podría deberse a la diversidad interna en términos de dialectos y acentos.

Orígenes más homogéneos muestran menor dispersión, lo que podría indicar una pronunciación más uniforme entre los hablantes.

Generales

Las características acústicas (rmse, spectral_centroid, mfcc_mean) son sensibles a factores como el acento, la edad y si el hablante es nativo o no. Esto sugiere que estas variables podrían ser útiles para clasificar o identificar hablantes según su perfil demográfico.

La correlación observada entre ciertas características acústicas indica que podrían estar relacionadas entre sí, lo que refuerza la idea de que las características acústicas no son independientes, sino que forman un conjunto interconectado.

Modelos

Se han elegido los siguientes modelos:

Decision Tree

Para los clasificadores de género y nativo/no nativo

Los árboles de decisión son intuitivos, fáciles de interpretar y efectivos para manejar datos categóricos y numéricos, como los que tienes (género, acento, origen, etc.). Además:

- Pueden capturar relaciones no lineales en los datos.
- No requieren mucho preprocesamiento.
- Funcionan bien para problemas con características claramente diferenciadas.

Máquina de Soporte Vectorial

Para los clasificadores de acento y origen

Las SVM son muy potentes para encontrar límites claros entre clases, especialmente cuando los datos no son linealmente separables. Además:

- Funcionan bien con datos de alta dimensionalidad (como características extraídas de audios).
- El kernel trick permite manejar relaciones no lineales entre las características.

K-Nearest Neighbors (KNN)

Para la clasificación por edad

KNN clasifica basándose en la similitud entre las observaciones. Es una técnica sencilla y efectiva, especialmente si tienes un conjunto de datos relativamente equilibrado.

- No asume ninguna distribución de los datos, lo que es útil en problemas donde las características tienen patrones complejos.
- Los datos de audio, al tener múltiples dimensiones, pueden beneficiarse de este enfoque basado en distancias.

DNN

Finalmente, como las redes neuronales sirven para cualquier clasificación se han utilizado para el acento y el origen.

Resultados

Decision Tree

Género


```
PS C:\Users\UMPO\Documents\Workspace\clasificacion_por_voz> python .\decision_tree_genero.py
Cargando datos...
Realizando validación cruzada...
Resultados de validación cruzada:
Accuracy promedio (validación): 0.99
F1-score promedio (validación): 0.99
Entrenando el modelo final...
Accuracy (prueba): 0.99
Reporte de clasificación:
                     precision
                                          recall f1-score
                                                                       support
                                             0.99
1.00
                             0.98
                                                            0.99
          female
                                                                            1187
                             1.00
                                                                            4813
            male
                                                            1.00
                                                            0.99
0.99
0.99
                                                                            6000
6000
      accuracy
                             0.99
0.99
                                             0.99
0.99
     macro avg
 weighted avg
                                                                            6000
```

Nativo/No nativo

PS C:\Users\UMPO\Documents\Workspace\clasificacion_por_voz> python .\decision_tree_nativo.py Cargando datos Entrenando modelo para clasificación de natividad Accuracy: 1.00					
Reporte de cla	asificación: precision	recall	f1-score	support	
	precession	10000	. 1 50010	Suppor c	
no	1.00	1.00	1.00	5670	
yes	1.00	1.00	1.00	330	
accuracy			1.00	6000	
macro avg	1.00	1.00		6000	
weighted avg	1.00	1.00	1.00	6000	
weighted avg	1.00	1.00	1.00	0000	
PS C:\Users\UMPO\Documents\Workspace\clasificacion_por_voz>					

Máquina de Soporte Vectorial

Acento


```
PS C:\Users\UMPO\Documents\Workspace\clasificacion_por_voz> python .\svm_accent.py
Cargando datos...
Mejores hiperparámetros: {'C': 10, 'gamma': 'scale', 'kernel': 'rbf'}
Accuracy promedio (validación cruzada): 0.79
F1-score promedio (validación cruzada): 0.75
Evaluación en conjunto de prueba:
Accuracy: 0.80
Reporte de clasificación:
                       precision
                                      recall f1-score
                                                             support
                             0.73
                                         0.08
                                                     0.15
              Arabic
          Brasilian
                             0.74
                                         0.64
                                                     0.69
                                                                   98
                                         0.34
0.51
             Chinese
                             0.87
                                                     0.49
                                                                   320
                                                     0.57
              Danish
                             0.65
                                                                   97
                                                                  100
Egyptian_American?
                            0.78
                                         0.38
                                                     0.51
                                         0.72
             English
                           0.89
                                                     0.80
                                                                  105
                                         0.68
0.97
              French
German
                           0.88
0.80
                                                     0.77
                                                                  102
                                                     0.88
                                                                 3979
     German/Spanish
                            0.66
                                         0.48
                                                     0.55
                                                                  103
                                         0.30
                                                     0.43
            Italian
                           0.74
                                                                  186
             Levant
Madras
                           0.84
0.77
                                         0.71
0.18
                                                     0.77
0.30
                                                                   99
                                                                   92
                           0.86
      South African
                                                                  120
                                         0.68
                                                     0.76
       South Korean
                                                     0.97
                                         0.98
                                                                  110
                           0.96
                            0.90
0.82
                                         0.32
0.65
             Spanish
                                                     0.47
                                                                  192
                                                     0.72
                                                                  105
               Tamil
              german
                             0.87
                                         0.28
                                                     0.43
                                                                   95
                                                     0.80
                                                                 6000
           accuracy
                                         0.52
                             0.81
                                                     0.60
                                                                 6000
          macro avg
                             0.81
                                         0.80
                                                     0.77
                                                                 6000
       weighted avg
```

Origen


```
PS C:\Users\UMPO\Documents\Workspace\clasificacion_por_voz> python .\svm_origin.py Cargando datos...

Mejores hiperparámetros: {'C': 0.1, 'gamma': 'scale', 'kernel': 'rbf'}

Accuracy promedio (validación cruzada): 1.00

F1-score promedio (validación cruzada): 1.00

Evaluación en conjunto de prueba:

Accuracy: 1.00
```

			<u></u>	
Reporte de clasificación:				
Reporte de établificacióni	precision	recall	f1-score	support
	p=			24PP
Africa, Egypt, Alexandria	1.00	1.00	1.00	100
Africa, South Africa, Vryburg	1.00	1.00	1.00	120
Asia, China, Beijing	1.00	1.00	1.00	118
Asia, China, Nanning	1.00	1.00	1.00	109
Asia, China, Shanghai	1.00	1.00	1.00	93
Asia, India, Chennai	1.00	1.00	1.00	105
Asia, South Korea, Seoul	1.00	1.00	1.00	110
Europe, Denmark, Copenhagen	1.00	1.00	1.00	97
Europe, France, Montpellier	1.00	1.00	1.00	102
Europe, Germany, Alsbach-Haehnlein	1.00	1.00	1.00	106
Europe, Germany, Berlin	1.00	1.00	1.00	1477
Europe, Germany, Braunschweig	1.00	1.00	1.00	97
Europe, Germany, Bremen	1.00	1.00	1.00	206
Europe, Germany, Dortmund	1.00	1.00	1.00	107
_ Europe, Germany, Dresden	1.00	1.00	1.00	103
Europe, Germany, Flensburg	1.00	1.00	1.00	114
Europe, Germany, Freiberg	1.00	1.00	1.00	100
Europe, Germany, Freiburg	1.00	1.00	1.00	109
Europe, Germany, Hamburg	1.00	1.00	1.00	176
Europe, Germany, Hameln	1.00	1.00	1.00	98
Europe, Germany, Helmstedt	1.00	1.00	1.00	85
Europe, Germany, Hof	1.00	1.00	1.00	93
Europe, Germany, Lemgo	1.00	1.00	1.00	98
Europe, Germany, Ludwigsfelde	1.00	1.00	1.00	100
Europe, Germany, Muenchen	1.00	1.00	1.00	112
Europe, Germany, Muenster	1.00	1.00	1.00	197 95
Europe, Germany, Munich	1.00 1.00	1.00 1.00	1.00 1.00	106
Europe, Germany, Regensburg Europe, Germany, Reutlingen	1.00	1.00	1.00	106 84
Europe, Germany, Stuttgart	1.00	1.00	1.00	101
Europe, Germany, Stuttgart Europe, Germany, Vechta	1.00	1.00	1.00	107
Europe, Germany, Wuerzburg	1.00	1.00	1.00	95
Europe, Germany, wderzburg Europe, India, Chennai	1.00	1.00	1.00	92
Europe, India, Chemiai Europe, India, Delhi	1.00	1.00	1.00	105
Europe, Italy, Casarsa	1.00	1.00	1.00	87
Europe, Italy, Morbegno	1.00	1.00	1.00	99
Europe, Poland, Slubice	1.00	1.00	1.00	108
Europe, Spain, Oviedo	1.00	1.00	1.00	94
Europe, Spain, Toledo	1.00	1.00	1.00	98
Europe, Spanien, Mallorca	1.00	1.00	1.00	103
Europe, Syria, Damascus	1.00	1.00	1.00	196
South-America, Brazil, Porto Alegre	1.00	1.00	1.00	98
accuracy			1.00	6000
macro avg	1.00	1.00	1.00	6000
weighted avg	1.00	1.00	1.00	6000

KNN

Edad


```
PS C:\Users\UMPO\Documents\Workspace\clasificacion_por_voz> python .\knn_edad.py
Cargando datos...
Mejores hiperparámetros: {'metric': 'manhattan', 'n_neighbors': 9, 'weights': 'distance'}
Accuracy promedio (validación cruzada): 0.58

Evaluación en conjunto de prueba:
Accuracy: 0.60
```

Reporte de cl	asificacion: precision	recall	f1-score	support			
	precision	recatt	11 30016	Suppor c			
22	0.71	0.67	0.69	320			
23	0.57	0.51	0.54	599			
24	0.55	0.54	0.55	379			
25	0.60	0.71	0.65	589			
26	0.56	0.67	0.61	1023			
27	0.63	0.59	0.61	600			
28	0.57	0.55	0.56	399			
29	0.65	0.55	0.59	273			
30	0.56	0.48	0.52	434			
31	0.60	0.56	0.58	491			
32	0.77	0.62	0.69	98			
33	0.58	0.61	0.60	200			
34	0.73	0.63	0.67	102			
35	0.96	0.96	0.96	110			
36	0.74	0.77	0.75	98			
41	0.64	0.77	0.70	100			
61	0.20	0.20	0.20	84			
1234	0.38	0.28	0.32	101			
accuracy			0.60	6000			
macro avg	0.61	0.59	0.60	6000			
weighted avg	0.60	0.60	0.60	6000			
_							

Redes neuronales

Acento

Pérdida en prueba: 0.3252 Precisión en prueba: 0.8868 188/188 — Os 2ms/step							
Reporte de Clasificación:							
precision recall f1-score support							
Arabic	0.71	0.55	0.62	97			
Brasilian	0.94	0.91	0.92	98			
Chinese	0.82	0.49	0.61	320			
Danish	0.60	0.64	0.62	97			
Egyptian_American?	0.87	0.52	0.65	100			
English	0.96	0.87	0.91	105			
French	0.97	0.89	0.93	102			
German	0.90	0.97	0.93	3979			
German/Spanish	0.94	0.77	0.84	103			
Italian	0.77	0.70	0.73	186			
Levant	0.85	0.79	0.82	99			
Madras	0.88	0.65	0.75	92			
South African	0.94	0.84	0.89	120			
South Korean	0.96	0.97	0.96	110			
Spanish	0.87	0.68	0.76	192			
Tamil	1.00	0.83	0.91	105			
german	0.90	0.83	0.86	95			
accuracy			0.89	6000			
macro avg	0.87	0.76	0.81	6000			
weighted avg	0.88	0.89	0.88	6000			
PS C:\Users\UMPO\Documents\Workspace\clasificacion_por_voz>							

Origen

Pérdida en prueba: 0.5795 Precisión en prueba: 0.8130 188/188

0s 2ms/step

Reporte de Clasificación:				
Reporte de Ctasilicación.	precision	recall	f1-score	support
	precision	recutt	II Score	Suppor C
Africa, Egypt, Alexandria	0.68	0.78	0.73	100
Africa, South Africa, Vryburg	0.94	0.87	0.90	120
Asia, China, Beijing	0.87	0.77	0.82	118
Asia, China, Nanning	0.74	0.74	0.74	109
Asia, China, Shanghai	0.66	0.62	0.64	93
Asia, India, Chennai	0.97	0.95	0.96	105
Asia, South Korea, Seoul	0.96	1.00	0.98	110
Europe, Denmark, Copenhagen	0.55	0.74	0.63	97
Europe, France, Montpellier	0.90	0.94	0.92	102
Europe, Germany, Alsbach-Haehnlein	0.89	0.88	0.89	106
Europe, Germany, Berlin	0.78	0.92	0.84	1477
Europe, Germany, Braunschweig	0.87	0.93	0.90	97
Europe, Germany, Bremen	0.85	0.51	0.64	206
Europe, Germany, Dortmund	0.84	0.81	0.82	107
Europe, Germany, Dresden	0.82	0.82	0.82	103
Europe, Germany, Flensburg	0.67	0.86	0.75	114
Europe, Germany, Freiberg	0.92	0.71	0.80	100
Europe, Germany, Freiburg	0.64	0.39	0.48	109
Europe, Germany, Hamburg	0.70	0.46	0.55	176
Europe, Germany, Hameln	0.88	0.81	0.84	98
Europe, Germany, Helmstedt	0.85	0.92	0.88	85
_ Europe, Germany, Hof	0.98	0.98	0.98	93
Europe, Germany, Lemgo	0.77	0.96	0.85	98
Europe, Germany, Ludwigsfelde	0.98	0.99	0.99	100
Europe, Germany, Muenchen	0.77	0.79	0.78	112
Europe, Germany, Muenster	0.77	0.49	0.60	197
Europe, Germany, Munich	0.82	0.91	0.86	95 106
Europe, Germany, Regensburg	0.92	0.81	0.86	106 84
Europe, Germany, Reutlingen	0.70	0.75	0.72	
Europe, Germany, Stuttgart	1.00 0.87	1.00 0.86	1.00 0.86	101 107
Europe, Germany, Vechta Europe, Germany, Wuerzburg	0.92	0.81	0.86	95
Europe, Germany, wderzourg Europe, India, Chennai	0.89	0.78	0.83	92
Europe, India, Chemiai Europe, India, Delhi	0.95	0.93	0.94	105
Europe, Italy, Casarsa	0.94	0.52	0.67	87
Europe, Italy, Morbegno	0.81	0.80	0.80	99
Europe, Poland, Slubice	0.88	0.85	0.87	108
Europe, Spain, Oviedo	0.64	0.65	0.64	94
Europe, Spain, Toledo	0.88	0.90	0.89	98
Europe, Spanien, Mallorca	0.83	0.80	0.81	103
Europe, Syria, Damascus	0.74	0.70	0.72	196
South-America, Brazil, Porto Alegre	0.92	0.92	0.92	98
accuracy			0.81	6000
macro avg	0.83	0.80	0.81	6000
weighted avg	0.82	0.81	0.81	6000