Erythropoietin and Anemia

By Eric M. Tong and Allen R. Nissenson

Recombinant human erythropoletin (rHuEPO) has revolutionized the treatment of anemia of chronic renal fallure. RHuEPO has been shown to increase survival, decrease hospitalizations, improve brain and cognitive function, and improve quality of life for renal patients. Much has been learned about the normal and pathologic physiology of anemia because rHuEPO has become available to investigators, and this has been widely applied. Additional work is needed in better defining the sites of production of endogenous EPO as well as the nature and control of the oxygen sensor(s) in the kidney. Remaining clinical issues related to this remarkeble compound include predicting and overcoming resistance; avoiding iron deficiency; determining the appropriate target hemoglobin; increasing the use strategies such as subcutaneous administration to increase efficiency; and devising a more rational payment scheme.

Copyright © 2001 by W.B. Saunders Company

NEMIA IS ONE of the most common complications of chronic renal disease, described by Richard Bright nearly 2 centuries ago. Anemia first appears when the glomerular filtration rate falls below 40 mL/min, and is present in the majority of patients who have end-stage renal disease (ESRD) and require renal replacement therapy. When untreated, anemia causes or contributes to weakness, fatigue, insomnia, depression, cognitive dysfunction, decreased libido, and left ventricular hypertrophy. Although there may be contributing factors to the anemia, or mitigators of the severity of anemia in some patients, the primary cause of the anemia is the lack of sufficient quantities of endogenous erythropoietin (EPO).

Before 1989, the year recombinant human erythropoietin (rHuEPO) was approved for use in the United States by the Food and Drug Administration (FDA), anemia in ESRD patients was often severe, and treatment with regular blood transfusions and administration of androgenic steroids was required, often with significant resultant side effects and complications. Even with these therapies most patients remained severely anemic, with hemoglobin values generally 10 g/dL or less.

The term "erythropoietin" was not used until nearly 100 years after Bright's recognition of renal anemia, and in 1953 Erslev and colleagues confirmed the presence of this substance in the blood of anemic animals.² Subsequent studies by Goldwasser and colleagues showed that the kidneys were the source of this hormone, which was produced in response to a fall in oxygen delivery to the renal parenchyma. The isolation and cloning of the *EPO* gene by Lin and colleagues was the breakthrough that led to the current rHuEPO, as well as provided large quantities of this remarkable substance for use by investigators.³

The availability of rHuEPO is certainly one of the milestones in nephrology in the past 20 years. In addition to dramatically improving the clinical outcomes and quality of life for ESRD patients, it has provided a key tool for investigation better understand the normal and abnormal physiology associated with anemia in a variety of disease states. It is through such basic and translational research that scientific knowledge in general and in biomedicine advances, and can be applied to the care of patients. This review will touch on the highlights of our current knowledge in this field.

PHYSIOLOGY OF EPO

Structure of Endogenous EPO

The gene for EPO was isolated in 1985.3 It is located on chromosome 7 and consists of 5 exons and 4 introns. EPO is a 166 amino acid peptide that has 2 sulfide bridges, 4 sites of carbohydrate attachment, and a molecular weight of 30,000 daltons.4 To be secreted, and to have significant biological activity, the protein molecule must be glycosylated. This is accomplished with 4 complex carbohydrate chains containing sialic acids.5 It is the sialic acid moieties that allow EPO to circulate in the blood for a sufficient time to reach the bone marrow and attach to EPO receptors.6 Modification of the N-linked sugar chains increases the uptake

190

Seminars In Nephrology, Vol 21, No 2 (March), 2001: pp 190-203

benjakat nateriji pi te te ininista, III it edilika

From the Division of Nephrology, Department of Medicine, UCLA School of Medicine, Los Angeles, CA.

Supported in part by the Richard Rosenthal Dialysis Fund (A.R.N.).

Address reprint requests to Allen R. Nissenson, MD, UCLA Medical Center; 200 Medical Plaza, Sulte 565. Los Angeles, CA 90095. E-mail: anissenson@mednet.ucla.edu.

Copyright © 2001 by W.B. Saunders Company 0270-9295/01/2102-0010\$35.00/0 doi:10.1053/snep.2001.20939

by the kidney, thus decreasing the plasma level of the hormone, and increasing its plasma clearance.?

Physiology of Erythropoiesis

Synthesis and Stimulus

EPO is synthesized by fibroblast-derived interstitial cells found near the base of the proximal tubular cells in the cortex and outer medulla of the kidney.8.9 Because expression of EPO in vitro in isolated renal cell lines has not yet been accomplished, it is difficult to study the cellular mechanisms that control its production in the kidney. Normal plasma levels of EPO are 8 to 24 mU/mL which requires daily continuous synthesis of 2 to 3 U/kg body weight.10 The production of EPO is regulated by oxygen availability and increases when decreased arterial pO2, anemia or increased hemoglobin affinity is detected.11 It is known that activation of EPO gene expression requires specific transcription factors including hypoxia-inducible factor-1, a DNA binding transcriptional complex that is essential for enhancer function of this gene.12 The adult liver also synthesizes EPO, although to a lesser degree than the kidney,13 with production taking place in the hepatocyte 14.15 and the Ito cell.16

In addition to the kidney and liver, EPO gene expression has been found in the lung, spleen,17,18 brain, testes, and ovaries.19 Although it is known that EPO regulates the growth and development of erythroid progenitor cells, other functions may exist given the fact that functional EPO receptors have been found on human, rat, and mouse kidney cells.20

Life Cycle of Erythropoiesis

The development of an erythrocyte begins with the differentiation of a pool of pluripotent stem cells from a stochastic differentiation of bipotential or multipotential progenitors.21 These committed progenitor cells are stimulated from the G0 to G1 cell cycle stage by interleukin (IL) IL-1 and 6, and granulocyte colony-stimulating factor (G-CSF).22 From G1, the progenitor cells differentiate into the burst forming unit-erythroid (BFU-E), stimulated by IL-3 and GM-CSF. The BFU-E is different from the previous cell because it has EPO receptors but loses the ability of self-renewal. The BFU-E and the Colony Forming Unit-Erythroid (CFU-E) cannot be identified by specific morpho-

logic features. The CFU-E is more sensitive and dependent on EPO for survival and differentiation into a erythroblast. The number of CFU-E is proportional to the EPO level.23.24 With continued maturation, the CFU-E will become activated and develop into an erythroblast25 which is unaffected by EPO, and then continues to develop into a pronormoblast and then an erythrocyte.

Erythropoiesis is influenced by cytokines and growth factors other than EPO. IL-9 and granulocyte-macrophage CSF (GM-CSF) have been shown to have burst promoting effects whereas IL-3 causes BFU-E to propagate.26.27 In addition, a subset of BFU-E, thought to be less mature, is able to survive without EPO if IL-3 or GM-CSF is present.28 Insulin or insulin-like growth factor-1 (IGF-1) is also needed for optimal transformation of a CFU-E to an erythroblast.29 Steel factor (SF, also called c-kit ligand) has marked synergistic activity on BFU-E cultured in the presence of EPO30-32 and is necessary for the normal development of CFU-E.33 EPO, along with either Steel factor, IL-3, or GM-CSF are required by the BFU-E to increase the number of cells and mature to form CFU-E.34 Other factors such as androgens, thyroxine, somatomedin, and catecholamines seem to increase the growth of CFU-E but are not essential.35 Vitamin A has been shown to increase the concentration of EPO when added to hepatoma cell lines in medium.36 Cytokines that have a negative effect on erythropoiesis include Π -1 α , and β , IL-2, tumor necrosis factor α (TNF- α), and transforming growth factor-β (TGF-β).37-39

EPO has been found to have effects after a CFU-E becomes an erythroblast. EPO appears to be involved in preventing neocytolysis, which is a process of selective hemolysis of the youngest circulating erythrocytes when there is an overabundance of red blood cells.40 Neocytolysis has been documented to occur in astronauts and individuals who live at high altitude and descend to sea level.41-43 The neocytolysis has been prevented with low doses of subcutaneous EPO.43 Neocytolysis has been shown to contribute to the anemia of renal disease, when studied in hemodialysis patients.44

The EPO receptor is a 55,000 Dalton transmembrane protein.45 This protein is a 507 amino acid polypeptide having a single membrane-spanning domain, with the extracellular N-terminal region containing the EPO-binding domain and the C-

terminal intracellular region participating in signal transduction.⁴⁶ The signal transduction acts by activating tyrosine kinase that phosphorylates a set of intracellular proteins resulting in the release of second messengers.⁴⁷ It is unclear how these second messengers act but it is thought that the signals prevent apoptosis of the progenitor cells.⁴⁸

RHUEPO

Available Forms

Currently there are 2 forms of rHuEPO in wide clinical use worldwide and an additional form, epoetin omega currently under evaluation (Bren AF, personal communication, September 2000). In addition, gene-activated EPO has been undergoing clinical evaluation as well. At the present time, however, Epoetin alfa is the only form available in the United States, whereas Epoetin beta with a similar efficacy and safety profile, is available in other countries. Because of the need for glycosylation, Epoetin alfa is manufactured in mammalian (Chinese hamster ovary) cells.

Pharmacology of rHuEPO

The metabolism of EPO does not appear to depend on the kidney or liver. The half-life of intravenous rHuEPO is 4 to 9 hours and greater than 24 hours when given subcutaneously.49 Animal studies have shown that removal of the kidneys or liver does not affect the volume of distribution, mean residence time, or half-life of 125-labeled rHuEPO.50 EPO is thought to be metabolized by a compartment known as the "erythron" which is the total mass of cells in the erythropoietic pathway that is EPO dependent.51 The distribution volume is similar in uremic and normal individuals after intravenous dosing.52 The termination elimination half-life, however, is longer, and the whole body clearance is reduced, in uremic patients. The bioavailability of rHuEPO after subcutaneous dosing is lower in uremic patients when compared with normal individuals, with lower and delayed peak concentration. The pharmacokinetics of thuEPO are nonlinear.53.54

Route of Administration

RHuEPO can be given intravenously, subcutaneously, and intraperitoneally. The intraperitoneal administration of rHuEPO is generally not recom-

mended because of low bioavailability (2% to 12%) when compared with intravenous and subcutaneous dosing.55.56 If intraperitoneal rHuEPO must be used, it should be administered when there is no dialysate in the peritoneal cavity.57 Subcutaneous injection frequently gives a plasma level that is 10% of what is seen with intravenous dosing. The time to peak concentration after subcutaneous administration is usually greater than 10 hours, whereas the bioavailability has a large range from 16% to 50%.58-63 Bioavailability has also been shown to be different depending on where the subcutaneous injection is given, with greater bioavailability when rHuEPO is given in the thigh compared with the abdomen or arm.64 The amount of skin fold thickness of the patient has been shown to inversely influence the effectiveness of a given dose of subcutaneous rHuEPO.65

Subcutaneous administration of rHuEPO has many advantages compared with intravenous administration.66 Pharmacodynamics are more physiologic with subcutaneous dosing versus intravenous dosing.53.67-70 The dose of rHuEPO can be lowered by 25% to 50% when using subcutaneous dosing as compared with intravenous dosing,53.64.68-71 resulting in a substantial cost saving. Subcutaneous dosing will allow for rHuEPO levels to be sustained above basal levels throughout the week in hemodialysis patients,53 minimizing wide fluctuations in EPO-dependent apoptosis and resulting in more efficient erythropoiesis.51 If the frequency of dosing with subcutaneous rHuEPO is decreased from thrice weekly, some of these advantages may be lost.53 Smaller, daily doses of rHuEPO, on the other hand, have been shown to be effective in significantly reducing the total weekly rHuEPO dose.72,73

Although subcutaneous rHuEPO has been shown to be more effective that intravenous rHuEPO, this is not the method of dosing most frequently used in the United States and many other parts of the world. Subcutaneous rHuEPO from single-dose vials causes more patient discomfort than intravenous rHuEPO. In addition, the need to perform needle sticks repetitively can also be of concern to the health care providers who actually administer the drug. There are a number of strategies that can be used to encourage the use of subcutaneous dosing. These include using the multidose vial of Epoetin alfa which contains the preservative benzyl alcohol that acts as a local

anesthetic; using a smaller gauge needle for injection (eg, 29 gauge); encouraging the patient to do their own injections; using a small injection volume; rotating the injection site; and providing education on the value of the subcutaneous route to patients and care-givers.

Dosing of rHuEPO

RHuEPO, when given subcutaneously to adult ESRD patients, is generally initiated at 80 to 120 units/kg/week, given in 2 to 3 doses. Pediatric patients <5 years of age commonly require higher doses (300 units/kg/week) than older pediatric patients^{74,75} or adults. The initial intravenous dose of rHuEPO should be 120 to 180 units/kg/week given in 3 divided doses.66

The dose that is initially selected should achieve the target hemoglobin/hematocrit (Hgb/Hct) within a 2- to 4-month period through a slow increase of the Hgb/Hct. During the initial dosing of rHuEPO and with dose increases or decreases, a Hgb/Hct should be measured every 1 to 2 weeks until a stable target Hgb/Hct is achieved. Frequent monitoring initially is needed to detect a poor or overly rapid response to rHuEPO that would require a dose adjustment. After a stable rHuEPO dose and target Hgb/Hct are achieved, Hgb/Hct should be monitored every 2 to 4 weeks.66 The maintenance dose varies tremendously among patients from 1,000 units to over 10,000 units per treatment to maintain a Hgb between 11 and 12 g/dL,53-55 although the average dose in the United States currently is around 17,000 units/week (Collins A, personal communication, September, 2000). In general, doses of rHuEPO should be changed, when necessary, by no more than 25%, and withdrawing rHuEPO to permit a fall in Hgb that is higher than the upper target limit is rarely necessary and should be discouraged. Such dosage modifications are generally not necessary or effective more frequently than every 2 to 4 weeks.66

REFRACTORINESS TO THUEPO

A dose of 450 units/kg/week intravenously or 300 units/kg/week subcutaneously will achieve target Hgb/Hct in 96% of patients within 4 to 6 months as long as there are adequate iron stores. The However, rHuEPO resistance should be considered to be present when there is an unsuccessful attempt to achieve a target Hgb/Hct, in a patient with sufficient iron stores, within 4 to 6

months or failure to maintain the Hgb/Hct at the previously effective dose. Iron deficiency is the most common cause of initial or acquired resistance to rHuEPO, and is still highly prevalent, despite the availability of parenteral iron compounds.78,79 Absolute iron deficiency is present in patients with chronic renal failure when the ferritin <100 ng/mL and/or the transferrin saturation <20%. Functional iron deficiency is present when the demands for iron exceed its availability. In this situation, the serum ferritin >100 ng/mL and the transferrin saturation is usually >20%, indicating the absence of absolute iron deficiency. 50 Iron deficiency is common in hemodialysis patients because of the chronic blood loss that occurs from laboratory tests and blood remaining in the dialyzer and tubing, as much as 4,500 mL on an annual basis. In addition, rHuEPO, by accelerating erythropoiesis, further increases the demand for iron. In hemodialysis patients, oral iron is infrequently sufficient to meet iron needs, and the best way to replete iron stores in these patients is with intravenous iron. Patients on peritoneal dialysis and predialysis patients may be able to maintain iron stores with oral iron, although GI side effects may limit the effectiveness of this therapy.81 In addition, as transferrin saturation rises above 15%, intestinal iron absorption becomes impaired, thus decreasing the bioavailability of oral iron. \$2

Inflammatory states are also frequently the cause of poor response to rHuEPO. These may result from chronic infections, postsurgery, rheumatologic diseases, or the dialysis process itself, particularly if bioincompatible dialysis membranes or pyrogen-containing water are used. The inflammatory state is usually associated with inflammatory cytokines such as Π_{-1} - β , and TNF- α that decrease bone marrow responsiveness to rHuEPO.53.84 In addition, in the presence of inflammation there is an impairment of iron release from the reticuloendothelial system ("reticuloendothelial blockade").85 An elevated C-reactive protein may be a useful diagnostic test when chronic inflammation is suspected. It has been shown to be a strong predictor of rHuEPO resistance in hemodialysis and peritoneal dialysis patients.86-87

The ability of angiotensin-converting enzyme inhibitors (ACEI) to decrease rHuEPO responsiveness has been debated. EPO production has been shown to decrease in chronic renal failure patients treated with ACEI.⁸⁸ In addition, postrenal trans-

PAGE.20

TONG AND NISSENSON

CLINICAL EFFECTS OF PARTIAL ANEMIA CORRECTION

Quality of Life

The anemia of renal disease may be manifested by a variety of symptoms, differing from patient to patient. Symptoms related to quality of life include alterations in psychosocial function, poor physical and mental function scores on quality of life instruments, sexual dysfunction, and a high incidence of depression. Improvements in a variety of these symptoms after partial correction of anemia with rHuEPO has been shown using the KDQOL-SF 36, the Karnofsky index, the Sickness Impact Profile, and many other indexes. 117-121 More complete correction of anemia, to a Hgb of greater than 12 g/dL, in a cross sectional study. showed an even greater improvement in quality of life on the Sickness Impact Profile. 122 In addition, an improvement in sexual function occurred. which may be secondary to an increased serum testosterone or decreased lutenizing hormone.123 Exercise capacity improves significantly in patients treated with rHuEPO, including those patients with coronary artery disease and rest angina. 124-125 Another indirect way that rHuEPO can lead to improved quality of life is by making renal transplantation more likely by avoiding the sensitization associated with multiple blood transfusions. 126 Quality of life has been shown to improve significantly after transplantation.127

Brain and Cognitive Function

Despite adequate dialysis, ESRD patients still have mild neurobehavioral impairments, with abnormalities persisting on cognitive function and electrophysiologic testing. 128-130 Although there are many contributing factors to these abnormalities, it is clear that anemia is one of the important factors affecting brain function in these patients, 131 perhaps because of alterations in cerebral oxygen delivery in the presence of anemia. 132 Cognitive function in these patients improves when the Hct is increased to 36%. 133-136 Normalizing the Hct to 40% to 45% may lead to even further improvement in neurocognitive function, shown using quantitative electroencephalograpic techniques. 137

Cardiovascular Disease

Cardiovascular disease still accounts for over 50% of total deaths in patients on dialysis. 138 with

plant erythrocytosis has been effectively treated with ACEI.⁸⁹ Activation of the renin-angiotensin system is thought to increase endogenous EPO production in peritubular fibroblasts.90 The exact mechanism of how ACEI may decrease erythropoiesis in patients receiving exogenous EPO is unknown. Some hypotheses include a reduction in production of IL-12, which is known to stimulate erythropoiesis,91 and a decrease in angiotensin IIstimulated erythroid progenitor cell maturation, an effect that has been shown in vitro.92 The data are conflicting as to whether ACEI inhibit erythropoiesis in dialysis patients receiving rHuEPO because many of the studies were uncontrolled or had small numbers of patients.93-96 Thus, it may be reasonable to decrease the dose of ACEI or stop the drug if the patient is showing resistance to rHuEPO, and no other causes can be found.

Blood loss through the GI tract, repeated episodes of dialyzer clotting, or hemolysis should also be considered in the evaluation of rHuEPO resistance. Recently, hemolysis of crythrocytes has been shown in hemodialysis patients because of high levels of chloramine present in the water used to prepare dialysate. 97-99

L-carnitine deficiency has been suggested by some to contribute to refractoriness to rHuEPO. Dialysis patients may have decreased predialytic serum concentrations of free L-carnitine, and low muscle carnitine content. 100-102 The benefits of L-carnitine supplementation in patients refractory to rHuEPO are still unclear. Some studies have shown that L-carnitine may increase reticulocyte count 103 or improve mechanical stability of erythrocytes. 104 Unfortunately, however, the majority of studies that have evaluated the benefit of L-carnitine in this setting have yielded conflicting results. 105-108

Hyperparathyroidism, if severe and causing osteitis fibrosa cystica with bone marrow fibrosis, has also been shown to cause rHuEPO resistance. Other explanations for the relationship between parathyroid hormone (PTH) and rHuEPO resistance include a direct toxic effect of PTH on erythroid precursors, PTH-induced hemolysis, or PTH inhibition of endogenous EPO production. 110-111 Although there is little in vivo evidence that any of these mechanisms is active, other than bone marrow fibrosis, it has been shown that medical or surgical treatment parathyroidectomy is effective in reducing rHuEPO resistance. 112-116

195

significant cardiac disease often present in ESRD patients before starting on dialysis.139 The anemia of renal failure causes hypoxic vasodilatation, increased sympathetic stimulation, and decreased blood viscosity.140 The latter exacerbates peripheral vasodilatation and contributes to decreased total systemic vascular resistance. [4] Cardiac output increases in a compensatory fashion to maintain adequate perfusion to tissues. 142 Serial echocardiographic studies in ESRD patients after the initiation of chronic dialysis have shown that left ventricular dilatation with compensatory hypertrophy is the major pattern of disease progression. 143 Patients with left ventricular dilatation and normal systolic function have a poor prognosis, with a high mortality rate at 2 years. The prognosis in patients with left ventricular hypertrophy with normal systolic function, on the other hand, is better.144 Anemia is an important risk factor for these cardiac abnormalities, and partial correction of anemia with rHuEPO leads to regression of left ventricular hypertrophy in most patients. Patients with anemia of renal failure have a higher risk of development of cardiomyopathy that increases the risk of developing congestive heart failure, thus being a predictor of mortality in ESRD patients. 145

In numerous studies, partial correction of anemia with rHuEPO was shown to decrease hypoxic vasodilatation, increase systemic vascular resistance, and reduce cardiac output. 146-153 In addition, partial correction of anemia with rHuEPO may result in decreased left ventricular mass and volume.146-148.154-156 It is less clear, however, whether these changes will result in improved mortality or regression of cardiomyopathy. The Canadian randemized controlled trial of Hgb normalization with rHuEPO showed that there was no significant regression of left ventricular mass index in patients with left ventricular hypertrophy, but patients with left ventricular dilatation had slowed progression.197 The Amgen Normal Hematocrit Cardiac Trial studied hemodialysis patients with coronary artery disease and/or symptomatic heart failure and found that the group of patients who were randomized to the normal Hct had a 30% increased risk of death or myocardial infarction when compared with the control group, 155 although the study was stopped before these group differences reached statistical significance. The effect of normalizing Hgb with rHuEPO on cardiomyopathy progression was recently examined in hemodialysis patients

with concentric left ventricular hypertrophy or left ventricular dilatation. 139 Study results showed that normalizing the Hgb did not cause regression of the concentric left ventricular hypertrophy or left ventricular dilatation.

Mortality

Several epidemiologic studies have shown the survival benefits of partial correction of anemia with rHuEPO. Madore et al retrospectively studied 21,899 patients who were on hemodialysis throughout the United States from October 1 through December 31, 1992.160 Compared with patients with a Hgb concentration of 10.0 to 11.0 g/dL, those with a Hgb concentration ≤8.0 g/dL had a 2-fold increase in the odds ratio of death. There was no decrease in the odds ratio of death with Hgb >11.0 g/dL. However, other patient characteristics and laboratory data were not adjusted for in this analysis. Ma et al retrospectively studied Medicare patients on hemodialysis and included in the analysis comorbidity ("severity of disease") adjustment, and data on hospitalizations. 161 The group of patients with Het levels less than 30% had an overall relative risk of death that was 12% to 33% higher than patients with Hct levels in the range of 30% to less than 33%, even after adjusting for severity of disease. In an additional report using USRDS data, Collins et al evaluated whether changes in Het level, rather than just a single or average value, over a 6-month period, would affect mortality rates. 162-164 As had been shown in the previous studies, patients with the lowest Hcts had the highest risk of death. Lower Het levels were more likely for those patients who were younger, female, and African American, as well as those with more comorbidities, hospital days, blood transfusions, and vascular access procedures. Patients that started with a low Hct that then rose had a risk of death that was equivalent to the group whose Hct had been stable at the higher level for the full year. This study showed that a patient with a low Hct that can be improved with rHuEPO has a good prognosis, whereas refractoriness to rHuEPO in a patient with a low Hct is a poor prognostic sign.

Hospitalizations

There are only a small number of studies, which have assessed the relationship between the level of anemia and hospitalizations in rHuEPO-treated pa-

ENT ACTION

196

TONG AND NISSENSON

tients. In a case-controlled study by Churchill et al, patients treated with rHuEPO had fewer hospitalizations and decreased length of stay compared with a matched group of patients who did not receive rHuEPO, but the differences were not statistically significant. 165 Xia et al analyzed the data from the mortality analysis of Ma et al and found that patients with Hct levels <30% had a 14% to 30% increased risk of hospitalization without disease severity adjustment which fell somewhat to 7% to 18% with disease severity adjustment. 166 Patients with Hct levels in the 33% to 36% range had the lowest risk for hospitalization.

SIDE EFFECTS OF THUEPO

Hypertension

JUN 26 2001 10:26

RHuEPO is well known to be associated with the development of or worsening of preexisting hypertension within weeks to months of initiation in approximately 25% of treated patients. 167-170 Of interest, however, is a recent study of the effects of normalizing the Hgb on ambulatory blood pressure in patients with cardiac disease, which did not confirm this.171 The specific mechanism of rHuEPO-related hypertension is unknown, but there are many theories based on animal and human studies, most focused on the possible role of stimulation of endothelin by rHuEPO. 172-175 In fact, one study showed that endothelin antagonists were able to inhibit rHuEPO-induced hypertension.176 It has also been shown that EPO induces nitric oxide synthase activity without affecting endothelin-1 release, suggesting that the mechanism of rHuEPO-related hypertension is not a direct effect on endothelial cells.177 In contrast, animal studies have suggested that rHuEPO-related hypertension may be caused by resistance to the vasodilatory action of nitric oxide. 178-179 An increase in calcium uptake has also been shown in vitro with endothelial cells treated with rHuEPO.180-181 What is clear is that that the increase in Hgb and Hct are not themselves responsible for the rise in blood pressure.175-179,132-183 RHuEPO-induced hypertension can easily be treated by initiating or increasing antihypertensive medications or increasing the amount of ultrafiltration during dialysis. Holding or decreasing the dose of rHuEPO has not been shown to be effective or necessary, although this may be tried if the hypertension is refractory to treatment.

Access Clotting/Other Side Effects

Although initial concern existed about the possibility of a variety of other side effects when rHuEPO is given, none of these has proven to be clinically manifested at the currently achieved target Hgb levels. Seizures were initially thought to occur with a higher frequency in patients receiving rHuEPO,76 but a controlled study did not show this correlation.164 In addition, an increase in vascular access thrombosis has not been convincingly shown.185 On the other hand, the Amgen Normal Hematocrit Cardiac Trial did show an increased risk of vascular access thrombosis in the high Hct group (39% v 29%),158 in native fistulas as well as grafts, suggesting that this issue bears further scrutiny. Hyperkalemia was also initially observed with early use of rHuEPO, 186 but more recent data suggest that significant hyperkalemia is not a serious rHuEPO-related problem. 187-190 Of more concern is a recent report that EPO stimulates proliferation of human renal cell carcinoma cells in vitro.191 However, to date there is no indication that renal cell carcinoma has been occurring more frequently since the widespread use of rHuEPO developed.

TARGET HEMOGLOBIN

There is continued debate about the appropriate target Hgb in renal patients treated with rHuEPO. When the planning for the phase III trial for rHuEPO was undertaken, hematologists proposed a normal Hgb target whereas nephrologists recommended a lower level because of concern about possible vascular complications of higher Hgbs.76 A compromise was reached and a target Hct of 32% to 38% was used. Subsequently, the National Kidney Foundation Dialysis Quality Initiative (NKF-DOQI) guidelines recommended a target Hgb of 11 g/dL to Hgb 12 g/dL, and this is supported by a large body of evidence.66 In fact, a number of nephrologists consider that an even lower Hgb may be adequate to achieve maximum clinical benefits.192

In contrast, however, is a growing body of evidence that suggests that normalization of Hgb may be beneficial in some patients. The greatest amount of data in this regard relate to brain function, with clear evidence that brain electrophysiology improves when Hgb is normalized compared with when Hgb levels are lower. 137 Recent studies have confirmed that brain circulation, metabolism, and

01937546208

PAGE.23

197

oxygen delivery in dialysis patients occurs at a normal Hgb level. 193.194 In addition, Benz et al have recently shown that sleep disorders, common in dialysis patients, improve significantly when Hgb is normalized. 193 Finally, McMahon et al have shown that physical performance of dialysis patients improves significantly when the Hgb is normalized, compared with lower Hgb levels. 196 Although the safety of keeping the Hgb at normal levels needs to be confirmed, particularly in light of the Amgen Normal Hematocrit Cardiac Trial, 158 clinicians must exercise clinical judgment and try to aim for the target Hgb for each patient that will be most beneficial while awaiting the results of additional studies in this area. 197-199

PUBLIC POLICY ISSUES

There is little debate about the clinical value of treating anemic renal patients with rHuEPO and correcting anemia to the currently recommended target levels. It is clear, however, that this treatment is costly, and the Health Care Financing Administration (HCFA) in the US, the regulatory agency that oversees the Medicare Program, is concerned about the benefits of further expenditures in this area. If one looks only at the change in Hct, and the cost of the rHuEPO used to achieve this change over the past 5 years, it would appear that considerably more rHuEPO is being used, at substantial cost, with only a small improvement in Hct.200 This should not be surprising, however, because there is not a linear dose-response relationship between dose of rHuEPO and resultant Hct. Two recently published studies on normalizing Hct in hemodialysis patients both showed that a 3- to 4-fold increase in rHuEPO dose is necessary to raise the Hct from the low 30s to the low 40s, 137.159

A recent study by Collins et al looked not only at the direct cost of rHuEPO, but all Medicare expenditures in a cohort of patients receiving rHuEPO.²⁰¹ This comprehensive analysis showed that although the direct costs for rHuEPO rose between 1991 and 1995, total Medicare expenditures were significantly lower for patients with a Hct 33% to 36%. Although part of the explanation for this is likely that patients with higher Hcts are more likely to be healthier and to require less rHuEPO, thus consume fewer health resources overall and cost less, this hypothesis remains to be validated.

At the present time clinicians must provide medical justification if they feel that a patient would benefit from a Hct level maintained above 36.5%. Although the benefits of normal Hcts have not been conclusively proven (see earlier), it is clear that they are real in some patients. HCFA needs to develop a more rational policy for payments for rHuEPO for this group of patients.

The most vexing policy issue involving rHuEPO relates to the current pricing, cost, and reimbursement system. Dialysis facilities negotiate the per unit cost of rHuEPO with the only available supplier in the US, Amgen. Large dialysis chains are able to negotiate substantial discounts, and additional discounts are provided based on hitting certain anemia management targets. Medicare reimburses dialysis facilities \$10 for every 1,000 units of rHuEPO administered, whereas the negotiated price is 10% to 30% lower. The result is the increasing reliance of the dialysis facilities on profits from rHuEPO to support the overall operation of the facility. This payment fills in the gap between the cost of providing dialysis services, and the payment per treatment (the composite rate) that has remained static (falling significantly in real dollars) for many years, and no longer is adequate to cover the costs of services. The reliance on profits from rHuEPO (and other pharmaceuticals) in the dialysis setting distorts the marketplace and makes facilities vulnerable to uncontrollable events, like drug price increases, as recently took place with rHuEPO. Independent facilities, those in underserved and rural areas, are the most affected, because they have the least ability to negotiate low prices, and operate close to, if not over the margins. Por dialysis to continue to be available as needed, policy makers must reexamine the structure of the entire payment system for outpatient dialysis, including the method of payment of pharmaceuticals such as rHuEPO.

CONCLUSIONS

RHuEPO has improved and prolonged the lives of hundreds of thousands of patients with the anemia of renal failure since its approval in 1989. Since then much has been learned of the physiology and pathophysiology of endogenous EPO as well as the recombinant protein. In the near future Novel Erythropoiesis Stimulating Protein (NESP) will be available to treat renal anemia. ²⁰² NESP is a hyperglycosylated analogue of rHuEPO with a

significantly prolonged half-life in the circulation. Less frequent administration may improve compliance, decrease administration costs, and lead to more stable Hgb levels over time. Clinical trials are currently underway to document its efficacy and safety. Although many advances in the treatment of renal patients are likely in the next decade, it is hard to imagine many that will compare with the impact the rHuEPO has had in just over 10 years.

REFERENCES

- 1. Bright R: Cases and observations, illustrative of renal disease accompanied with the secretion of albuminous urine. Guys Hosp Rep 1:338-379, 1836
- Erslev AJ: Humoral regulation of red cell production. Blood 8:349-357, 1953
- 3. Lin F-K, Suggs S, Lin C-H, et al: Cloning and expression of the human EPO gene. Proc Natl Acad Sci 82:7580-7584.
- Recny MA, Scobie HA, Kim Y: Structural characterization of natural human urinary and recombinant DNA-derived EPO. J Biol Chem 62:17156-17165, 1987
- Wang FF, Kung CKF, Goldwasser E: Some chemical properties of human EPO. Endocrinology 116:2286-2292, 1985
- Dube S, Fisher JW, Powell JS: Glycosylation at specific sites of EPO is essential for biosynthesis, secretion and biological function. J Bio Chem 263:17516-17521, 1988
- Misaizu T, Atsuki S, Strickland TW, et al: Role of antennary structure of N-linked sugar chains in renal handling of recombinant human EPO. Blood 86:4097-4104, 1995
- 8. Bachmann S, LeHir M, Eckard K-U: Co-localization of EPO mRNA and ecto-5'-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce EPO. J Histochem Cytochem 41:335-345, 1993
- Maxwell PH. Osmond MK, Pugh CW, et al: Identification of the renal EPO-producing cells using transgenic mice. Kidney Int 44:1149-1162, 1993
- Erslev AJ: Erythropoetin. N Eng J Med 324:1339-1344, 1991
- 11. Jelkmann W: EPO: Structure, control of production, and function. Physiol Rev 72:449-489, 1992
- 12. Semenza GL. Wang GL: A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human EPO gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447-5454, 1992
- 13. Fried W: The liver as a source of extrarenal EPO production. Blood 40:671-677, 1993
- 14. Koury ST, Bondurant MC, Koury MJ, et al: Localization of cells producing EPO in murine liver by in situ hybridization. Blood 77:2497-2503, 1991
- 15. Schuster SJ, Koury ST, Bohrer M, et al: Cellular sites of extrarenal and renal EPO production in anaemic rats. Brit J Haemat 81:153-159, 1992
- Maxwell PH, Ferguson DJP, Osmond MK, et al: Expression of a homologously recombined EPO-SV40 T antigen fusion gene in mouse liver: Evidence for EPO production by ITO cells. Blood 84:1823-1830, 1994
 - 17. Tan CC, Eckardt-K-U, Ratcliff PJ: Organ distribution of

EPO messenger RNA in normal and uremic rats. Kidney Int 40:69-76, 1991

- 18. Fandrey J, Bunn HF: In vivo and in vitro regulation of the EPO mRNA: Measurement by competitive polymerase chain reaction. Blood 81:617-623, 1993
- 19. Maxwell PH, Osmond MK, Pugh CW, et al: Identification of the renal-erythropoietin cells using transgenic mice. Kidney Int 44:1149-1162, 1993
- 20. Westenfelder C, Biddle D, Baranowski R: Human, rat and mouse kidney cells express functional EPO receptors. Kidney Int 55:808-820, 1999
- 21. Suda T, Suda J, Ogawa M, et al: Disparate differentiation in mouse hematopoietic colonies derived from paired progenitors. Proc Natl Acad Sci USA 81:2520-2524, 1984
- 22. Spivak JL: The mechanism of action of EPO. Int J Cell Cloning 4:139-166, 1986
- 23. Hara H, Ogawa M: Erythropoietic procursors in mice under erythropoietic stimulation and suppression. Exp Hematol 5:141-148, 1977
- 24. Schuster SJ, Cao J: Erythopoietin: Physiologic basis for clinical applications. Vos Sang 65:169-170. 1993
- 25. Stephenson JR, Axelrod AA, McLeod DL, et al: Induction of hemoglobin-synthesizing cells by EPO in vitro. Proc Natl Acad USA 65:1542-1546, 1971
- 26. Sonada Y, Maekawa T, Kuzuyama Y, et al: Human interleukin-9 supports formation of a subpopulation of erythroid bursts that are responsive to interleukin-3. Am J Hematol 20: 418-424, 1992
- 27. Lu L, Leemhuis T, Srour EF, et al: Human interleukin-9 specifically stimulates proliferation of CD34++ DR++ CD33- erythroid progenitors in normal human bone marrow in the absence of serum. Exp Hematol 21:418-424, 1992
- 28. Sieff CA, Ekern SC, Nathan DG, et al: Combination of recombinant colony stimulating factors are required for optimal hematopoietic differentiation in serum-derived culture. Blood 73:683-693, 1989
- 29. Sawada K, Krantz SB, Dessypris EN, et al: Human colony-forming units-erythroid do not require accessory cells but do require direct interaction with insulin-like growth factors 1 and/or insulin for erythroid development. J Clin Invest 83: 1701-1709, 1989
- 30. Galli SJ, Zsebo KM, Geissler EN: The kit ligand, stem cell factor. Adv Immunol 55:1-96, 1994
- 31. Abkowitz IL, Sabo KM, Nakamoto B, et al: Diamand-Blackfan anemia: In vitro response of erythroid progenitors to the ligand for c-kir. Blood 78:2198-2202, 1991
- 32. Bagnara GP, Zauli G, Virale L, et al: In vitro growth and regulation of bone marrow enriched CD34+ hematopoietic progenitors in Diamond-Blackfan anemia. Blood 78:2203-2210, 1991
- 33. Oliveri NF, Grunberger T, Ben-David Y, et al: Diamond-Blackfan anemia: Heterogeneous response of hematopoietic progenitors cells in vitro to the protein product of the Steel locus. Blood 78:2211-2215, 1991
- 34. Axelrad AA, McLeod DL, et al: Properties of cells that produce erythrocytic colonies in vitro, in Robinson WA (ed): Hemstopoiesis in Culture. Washington, DC, National Institute of Health, 1974, p 226
 - 35. Krantz SB: EPO. Blood 77:41-433, 1991
- 36. Jelkmann W. Pagel H. Hellwig T, et al: Effects of

EPO AND ANEMIA

antioxidant vitamins on renal and hepatic EPO production. Kidney Int 51:497-501, 1997

- Means RT, Krantz SB: Inhibition of human erythroid colony-forming units by tumor necrosis factor requires beta interferon. J Clin Invest 91:416-419, 1992
- Faquin WC, Schneider TJ, Goldberg MA: Effect of inflammatory cytokines on hypoxis-induced EPO production. Blood 79:1984-1994, 1992
- 39. Roodman GD, Bird A, Hatzler D, et al: Tumor necrosis factor alpha and hematopoietic progenitors: Effect of tumor necrosis factor on the growth of erythroid progenitors CFU-E and BFU-E and the hematopoietic cell lines k62, HL60, and HEL cells. Exp Hematol 15:928-935, 1987
- 40. Alfrey CP, Rice L. Udden M, et al: Neocytolysis: A physiologic down-regulator of red blood cell mass. Lancet 349:1389-1390, 1997
- 41. Alfrey CP, Udden MM, Leach-Huntoon CS, et al: Control of red blood cell mass in spaceflight. J Appl Physiol 81:98-104, 1996
- 42. Rice L, Udden M, Driscoll T, et al. Neocytolysis in the adaptation of red cell mass on descent from altitude. Acta Andina 6:17-20, 1997
- 43. Rice L. Alfrey C. Ruiz W. et al: Neocytolysis on descent from altitude. Blood 90:8b, 1997 (suppl 1; abstr)
- 44. Rice L. Alfrey C. Driscoll T. et al: Neocytolysis contributes to the anemin of renal disease. Am J Kidney Dis 33:59-62, 1999
- 45. D'Andrea AD, Lodish HF, Wong GG: Expression cloning of the murine EPO receptor. Cell 57:277-285, 1989
- 46. Wong GG, Jones SS, D'Andrea AD: The molecular biology of EPO receptors, in Erslev AJ, Adamson JW, Eschbach JW, et al (eds): EPO: Molecular, Cellular, and Clinical Biology, Baltimore, MD, John Hopkins University Press, 1991, pp 133-161
- 47. Klingmuller U, Lorenz U, Cantley LC, et al: Specific recruitment of SH-PTP1 to the EPO receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80:729-738, 1995
- 48. Koury MJ. Bondurant MC: EPO retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248:347-381, 1990
- 49. Egric JC, Eschbach JW, McGuire T, et al: Pharmacokinetics of recombinant human EPO administered in hemodialysis patients. Kidney Int 33:262, 1988
- 50. Widness IA, Veng-Pedersen P, Schmidt RL, et al: In vivo 1251-EPO pharmacokinetics are unchanged after anesthesia, nephrectomy and hepatectomy in sheep. J Pharmacol Exp Ther 279:1205-1210, 1996
- Besarab A: Physiological and pharmacodynamic considerations for route of EPO administration. Semin Nephrology 20:364-374, 2000
- 52. Jensen JD, Madsen JK. Jensen LW, et al: Reduced production, absorption, and elimination of EPO in uremia compared with healthy volunteers. J Am Soc Nephrol 5:177-185, 1994
- 53. Besarab A, Flaharty KK, Erslev AJ, et al: Clinical pharmacology and economics of EPO is essential for biosynthesis, secretion, and biological function. J Am Soc Nephrol 2:1405-1416, 1992
 - 54. Halstenson CE, Macres M, Katz SA, et al: Comparative

pharmacokinetics of and pharmacodynamics of epoctin alfa and epoctin beta. Clin Pharmacol Ther 50:702-712, 1991

- 55. Kampf D. Kahl A. Passlick J. et al: Single dose kinetics or recombinant human EPO after intravenous subcutaneous and intraperitoneal administration. Contrib Nephrol 76:106-111, 1989
- 56. MacDougail IC, Roberts DE, Neubert P, et al: Pharmacokinetics of intravenous, intraperitoneal, and subcutaneous recombinant EPO in patients on CAPD. Contrib Nephrol 76: 1121-1126, 1989
- Bargman JM. Jones JE. Petro JM: The pharmacokineties of intraperitoneal EPO administered undiluted or diluted in dialysate. Perit Dial Int 12:369-372, 1992
- 58. Flaherty KK, Caro J, Ersley A, et al: Pharmacokineties and erythropoietic response to human recombinant EPO in healthy men. Clin Pharmacol Ther 50:702-712, 1991
- Kampf D, Kahl A. Passlick J, et al: Single dose kinetics or recombinant human EPO after intravenous, subcutaneous and intraperitonical administration. Contrib Nephrol 76:106-111, 1989
- Nielsen OJ: Pharmacokinetics of recombinant EPO in chronic haemodialysis patients. Pharmacol Toxicol 66:83-86.
 1990
- 61. Boelaen JR, Schurgers ML, Matthys EV, et al: Comparative pharmacokinetics of recombinant EPO administered by the intravenous, subcutaneous, and intraperitoneal routes in continuous ambulatory pentoneal dialysis (CAPD) patients. Perit Dial Int 9:95-98, 1989
- 62. Macdougall IC, Roberts De, Neubert P, et al: Pharmacokinetics of intravenous, intraperitoneal, and subcutaneous recombinant EPO in patients on CAPD. Contrib Nephrol 76: 1121-1126, 1989
- 63. Neumayer H-H, Brockmoller J, Fritschka E, et al: Pharmacokinetics of recombinant human EPO after subcutaneous administration and in long-term IV treatments in patients on maintenance hemodialysis. Contrib Nephrol 76:131-142, 1989
- 64. Hörl WH: Optimal route of administration of EPO in chronic renal failure patients: Intravenous versus subcutaneous. Acta Haemotologica 87:16-19, 1992 (suppl 1)
- 65. Brahm M: Subcutaneous treatment with recombinant EPO-The influence of injection frequency and skin-fold thickness. Scand J Utol Nephrol 33:192-166, 1999
- 66. Eschbach J. DeOreo P. Adamson J. et al: RHuEPO clinical practice guidelines for the treatment of anemia of chronic renal failure. Am J Kidney Dis 30:S192-S240, 1997 (suppl 3)
- 67. Brockmoller J, Kochling J, Weber W, et al: The pharmacokinetics and pharmacodynamics or recombinant human erythropictin in hemodialysis patients. Br J Clin Pharmacol 34:449-508, 1992
- 68. Albirar S, Meulders Q, Hammond H, et al: Subcutaneous versus intravenous administration of EPO improves its efficacy for the treatment of anaemia in hameodialysis patients. Nephrol Dial Transplant 10:40-43, 1995
- 69. Parker KP, Mitch WE, Stivelman JC, et al: Safety and efficacy of low dose subcutaneous EPO in hemodialysis patients. J Am Soc Nephrol 8:288-293, 1997
- Kaufman J, Reda D, Fye C, et al: Subcutaneous compared with intravenous epoeun in patients receiving hemodislysis. N Engl J Med 339:578-583, 1998

- 71. Taylor JE, Belch JJF, Fleming LW, et al: EPO response and route of administration. Clin Nephrol 41:297-302, 1994
- 72. Grannolleras C. Branger B, Beau MC. et al: Experience with daily self-administered subcuraneous EPO. Contrib Nephrol 76:143-148, 1989
- 73. Grannolleras C, Branger B, Shaldon S, et al: Subcutaneous EPO: A comparison of daily and thrice weekly administration. Contrib Nephrol 88:144-151, 1991
- 74. Jabs K, Alexander S, McCabe D, et al: Primary results from the US multicenter pediatric recombinant erythropoietin study. J Am Soc Nephrol 5:456, 1994 (abstr)
- 75. Scigalla P. Effect of recombinant human crythropoietin treatment on renal anemia and body growth of children with end-stage renal disease. Contrib Nephrol 88:201-211, 1991
- 76. Eschbach JW, Abdulhadi MH. Browne JK, et al: Recombinant human EPO in anemic patients with end-stage renal disease: Results of a phase III multicenter clinical trial. Ann Intern Med 111:992-1000, 1989
- 77. Eschbach JW, Kelly MR, Haley NR, et al: Treatment of the anemia of progressive renal failure with recombinant human EPO. N Engl J Med 321:158-163, 1989
- 73. US Renal Data System: The USRDS Dialysis Morbidity and Mortality Study (Wave 1), in National Institutes of Health, National Institute Diabetes and Digestive and Kidney Diseases (eds): US Renal Data System 1996 Annual Data Report 4, Bethesda, MD, 1996, pp 45-67
- 79. Macdougall IC, Hutton RD, Cavill I, et al: Poor response to treatment in renal annemia with EPO corrected by iron given intravenously. Br Med J 299:157-158, 1989
- Eschbach J: Current concepts of anemia management in chronic renal failure: Impact of NKF-DOQI. Semin Nephrology 20:320-329, 2000
- Hörl WH: How to get the best out of r-HuEPO. Nephrol Dial Transplant 10:92-95, 1995
- 82. Van Wyck DB: Efficacy and adverse effects of oral iron supplements. Semin Dialysis 12:235-236, 1999
- 83. Clibon U, Bonewald L, Caro J, et al. EPO fails to reverse the anemia in mice continuously exposed to tumor necrosis factor-alpha in vivo. Exp Hernatol 18:438-441, 1990
- 84. Macdougall IC, Allen DA, Cavill I, et al: Poor response to EPO in inflammatory conditions may be mediated by interleukin-6. Nephrol Dial Transplant 9:1033, 1994
- 85. Douglas SW, Adamson JW: The anemia of chronic disorders: Studies of marrow regulation and iron metabolism. Blood 45:55-65, 1975
- 86. Barany P. Divino Filho JC, Bergstrom J: High C-reactive protein is a strong predictor of resistance to EPO in hemodisiysis patients. Am J Kidney Dis 29:565-568, 1997
- 87. Gunnell J, Yeun JY, Depner TA, et al: Acute-phase response predicts EPO resistance in hemodialysis and peritoneal dialysis patients. Am J Kidney Dis 33:63-72, 1999
- Kamper A, Nielsen O: Effect of enalapril on haemoglobin and serum EPO in patients with chronic nephropathy. Scand J Clin Lab Invest 50:611-618, 1990
- 89. Gaston R, Julian B, Curtis J: Posttransplant erythrocytosis: An enigma revisited. Am J Kidney Dis 24:1-11, 1994
- 90. Vlahakos DV, Balodimos C, Papachristopoulos V, et al: Renin-angiotensin system stimulates EPO secretion in chronic hemodialysis patients. Clin Nephrol 43:53-59, 1995
- 91. Constantinescu CS, Goodman DB, Ventura ES: Captopril and lisinopril suppresses production of interleukin-12 by

- human peripheral blood mononuclear cells. Immunol Leu 62: 25-31, 1998
- 92. Mrug M. Stopka T, Julian BA, et al: Angiotensin II stimulates proliferation of normal early progenitors. J Clin Invest 100:2310-2314, 1997
- 93. Dhondt AW, Vanholder RC, Ringoir SM: Angiotensinconverting enzyme inhibitors and higher EPO requirement in chronic haemodialysis patients. Nephrol Dial Transplant 10: 2107-2109, 1995
- 94. Abu-Alfa A, Cruz D, Perazella M, et al: ACE inhibitors do not induce recombinant human EPO resistance in hemodialysis patients. Am J Kidney Dis 35:1076-1082, 2000
- 95. Erturk S, Ates K. Durman N, et al: Unresponsiveness to recombinant human EPO in haemodialysis patients: Possible implications of angiotensin converting enzyme inhibitors. Nephrol Dial Transplant 11:393-397, 1996
- 96. Albitar S, Genin R, Fen-Chong M, et al: High dose enalapril impairs the response to EPO treatment in haemodialysis patients. Nephrol Dial Transplant 13:1206-1210, 1998
- 97. Fluck S, McKane W, Caims T, et al: Chloramine-induced haemolysis presenting as EPO resistance. Nephrol Dial Transplant 14:1687-1691, 1999
- 98. Richardson D, Bartlett C. Goutcher E, et al: EPO resistance due to dislysate chloramine: The two-way traffic of solutes in haemodialysis. Nephrol Dial Transplant 14:2625-2627, 1999
- 99. Beck JB: Chloramines in municipal water: Considerations for dialysis facilities. Nephrol News Issues 11:19-22, 1907
- 100. Wanner C, Hörl WH: Carnitine abnormalities in patients with renal insufficiency: Pathophysiological and therapeutic aspects. Nephron 50:89-102, 1988
- 101. Minigardi G, Bizzi A, Cini M, et al: Carnitine balance in hemodialyzed patients. Clin Nephrol 13:269-270, 1980
- 102. Bahmer T, Rydning A, Solberg HE: Carnitine levels in human scrum in health and disease. Clin Chim Acta 57:55-61, 1074
- 103. Trovato GM, Ginardi V, DiMarco V, et alnLong-term L-carnitine treatment of chronic anemia of patients with endstage renal failure. Curr Ther Res 31:1042-1049, 1982
- 104. Arduini A, Rossi M, Mancinelli G, et al: Effect of L-carnitine and acetyl-L-carnitine on the human erythrocyte membrane stability and deformability. Life Sci 47:2395-2400, 1990
- 105. Kooistra MP, Struyvenberg A, van Es A: The response to recombinant human EPO in patients with the anemia of end-stage renal disease is correlated with serum carnitine levels. Nephron 57:127-128, 1991
- 106. Berard E, Iordache A: Effects of low doses of Lcamitine on the response to recombinant human EPO in hemodialyzed children: About two cases. Nephron 62:368-369, 1992
- 107. Labonia WD: L-carnitine effects on anemia in hemodialyzed patients treated with EPO. Am J Kidney Dis 26:757-764, 1995
- 108. Kletzmayr J, Mayer G, Legenstein E, et al: Anemia and carnitine supplementation in hemodialyzed patients. Kidney Int 69:S93-S106, 1999 (suppl)
- 109. Rao DS, Shih MS, Mohini R: Effect of serum parathyroid hormone and bone marrow fibrosis on the response to EPO in uremia. N Engl J Med 328:171-175, 1993
 - 110. Ureñs P, Eckardt KU, Sarfati E, et al: Serum EPO and

EFO AND ANEMIA

crythropoiesis in primary and secondury hyperparathyroidism: effects of parathyroidectomy. Nephron 59:384-393, 1991

- 111. Wahio M, Iseki K, Onayoma K, et al: Elevation of serum EPO after subtant parathyroidectomy in chronic hemodialysis patients. Nephrol Dial Transplant 7:121-124, 1992
- 112. Barbour GL: Effect of parathyroidectomy on anemia in chronic renal failure. Arch Intern Med 139:889-891, 1979
- 113. Zingraff J. Drueke T, Marie P, et al: Anomia and secondary hyperparathyroidism. Arch Intern Med 138:1650-1652, 1978
- 114. Goicoechea M. Oomez-Campdera F. Polo JR, et al: Secondary hyperparathyroidism as cause of resistance to treatment with EPO: Effect of parathyroidectomy. Clin Nephrol 45:420-421, 1996
- 115. Goicoechea M. Vazquez MI, Ruiz MA, et al: Intravenous calcitrol improves anaemia and reduces the need for EPO in haemodialysis patients. Nephron 78:23-27, 1998
- 116. Taccone-Gallucci M, Manca di Villuhermosa S. Colarieti G, et al: Control of secondary hyperparathyroidism with pulse oral calcimol improves anemia in haemodialysis patients under maintenance EPO therupy. J Am Soc Nephrol 9:571, 1998
- 117. Canadian EPO Study Group: Association between recombinant human EPO and quality of life and exercise capacity of patients receiving hemodialysis. Br Med J 300:573-578, 1990
- 118. McMahon LP, Dawborn JK: Changes in quality of life at comparative levels of hemoglobin after long-term treatment with EPO. Am J Nephrol 12:358-362, 1992
- 119. Evens RW, Rader B, Manninen DL: The quality of life of hemodialysis patients treated with recombinant human EPO. JAMA 262:825-830, 1990
- 120. Karnofsky DA, Burchenal JH: The clinical evaluation of chemotherapeutic agents in cancer, in Malcod CM (ed): Evaluation of Chemotherapeutic Agents. New York, Columbia University Press, 1949, pp 191-205
- 121. E. agner M. Bobbitt RA, Carter WB, et al: The Sickness Impact Profile: development and final revision of health-status measure. Mod Care 19:787-805, 1981
- 122. Moreno F, López-Gómez JM, Sanz-Guajardo D, et al: Quality of life in dialysis patients. A Spanish multicentre study. Nephrol Dial Transplant 11:125-129, 1996 (suppl 2)
- 123. Valderrabano F: Recombinant EPO: 10 years of clinical experience. Nephrol Dial Transplant 12:2-9 1997 (suppl 1)
- 124. Barany P, Freyschuss U, Pettersson E, et al: Treatment of anaemia in haemodialysis patients with EPO. Kidney Int 38:480-486, 1990
- 125. Nagao K, Tsuchihasi K, Ura N, et al: Appropriate hematocrit levels of EPO supplementary therapy in end-stage renal failure complicated by coronary artery disease. Can J Cardiol 13:747-753, 1997
- 126. Vella J, O'Neill D, Atkins N, et al: Sensitization to human leukocyte snugen before and after the introduction of EPO. Nephrol Dial Transplant 13:2027-2032, 1998
- 127. Russell JD. Beecroft ML, Ludwin D, et al: The quality of life in renal transplantation-a prospective study. Transplantation 54:654-660, 1992
- 128. Wolcott DL, Marsh JT, LaRue A, et al: Recombinant human EPO treatment may improve quality of life and cognitive function in chronic hemodialysis patients. Am J Kidney Dis 14:478-485, 1989

- 129. Nissenson AR: Recombinant human EPO: Impact on brain and cognitive function, exercise tolerance, sexual potency, and quality of life. Semin Nephrol 9:S25-S31, 1989 (suppl)
- 130. Nissenson AR, Marsh JT, Brown WS, et al: Central netvous system function in dialysis patients: A practical approach. Semin Dial 4:115-123, 1991
- 131. Nissenson AR: Epoetin and cognitive function. Am J Kidney Dis 20:21-24, 1992 (suppl 1)
- 132. Grona JC. Manner C. Pettigre LC, et al: Red blood cell disorders and stroke. Stroke 17:811-817, 1986
- 133. Grimm G. Stockenhuber F, Schneeweiss B, et al: Improvement of brain function in hemodialysis patients treated with EPO. Kidney Int 38:480-486, 1990
- 134. Marsh JT, Brown WS, Wolcott D, et al: rHuEPO treatment improves brain and cognitive function of anemic dialysis patients. Kidney Int 39:155-163, 1991
- 135. Sagales T. Gimeno V. Planella MI, et al: Effects of rHuEPO on Q-EEG and event-related potentials in chronic renal failure. Kidney Int 44:1109-1115, 1993
- 136. Brown WS, Marsh JT, Wolcott D, et al: Cognitive function, mood and P3 lamncy: Effects of the amelioration of anemia in dialysis patients. Neuropsychological 29:35-45, 1991
- 137. Pickett J. Theberge D. Brown W. et al: Normalizing hematocrit in dialysis patients improves brain function. Am J Kidney Dis 33:1122-1150, 1999
- 138. US Renal Data System: Annual Data Report. Bethesds, MD: The National Institute of Health, National Institute of Diabetes and Digestive and Kidney Disease, August 1990
- 139. Foley RN. Parfrey PS: Complications of long-term dialysis: Cardiovascular complications and cardiac risk factor interventions, in Brown E, and Parfrey P (eds): Complications of Long Term Dialysis, Oxford, NY, Oxford University Press, 1999, pp 29-52
- 140. London G. Parfey PS: Cardiae disease in chronic uremia: Pathogenesis. Adv Renal Replace Ther 4:194-211, 1997
- 141. Mann JF: What are the short and long-term consequences of anemia in CRF patients? Nephrol Dial Transplant 14:29-36, 1999 (suppl 2)
- 142. London GM, Zins B, Pannier B, et al: Vascular changes in hemodialysis patients in response to recombinant human EPO. Kidney Int 36:878-882, 1989
- 143. Foley RN, Parfrey PS, Kent GM, et al: Long-term evolution of cardiomyopathy in dialysis patients. Kidney Int 54:1720-1725, 1998
- 144. Foley RN, Parfrey PS, Harnett JD, et al: The prognostic importance of left ventricular geometry in uremic cardiomyopathy. J Am Soc Nephrol 5:2024-2031, 1995
- 145. Folcy RN, Parfrey PS, Hamett JD, et al: The impact of anemia on cardiomyopathy, morbidity and mortality in endstage renal disease. Am J Kidney Dis 28:53-61, 1996
- 146. London GM, Zins B, Pannier B, et al: Vascular changes in hemodialysis patients in response to recombinant human EPO. Kidney Int 36:878-882, 1989
- 147. Low-Fredrich I, Gruntzmacher P, Marz W, et al: Therapy with recombinant human EPO reduces cardiac size and improves cardiac function in chronic hemodialysis patients. Am J Nephrol 11:54-60, 1991
- 148. Martinez-Vea A. Bardaji A, Gurcia C, et al: Long term myocardial effects of correction of anemia with recombinant EPO in aged patients on hemodialysis. Am J Kidney Dis 14:353-357, 1992

- 149. Schwartz AB, Prior JE, Mintz GS, et al: Cardiovascular hemodynamic effects of correction of anemia of chronic renal failure with recombinant human EPO. Trans Proceedings 23: 1827-1830, 1991
- 150. Canells G. La Canna G. Sandrini M. et al: Renormalization of high cardiac output and left ventricular size following long term recombinant human EPO treatment of anemia dialyzed uremic patients. Clin Nephrol 34:272-278, 1990
- 151. Teruel IL, Pascual I. Jiminez M, et al: Hemodynamic changes in hemodialyzed patients during treatment with recombinant human EPO. Nephron 58:135-137, 1991
- 152. Low I, Gruntzmacher P, Bergmann M, et al: Echocardiographic findings in patients on maintenance hemodialysis substituted with recombinant human EPO. Clin Nephrol 31:26-30, 1989
- 153. Onoyama K, Hori K, Osato S, et al: Hemodynamic effect of recombinant human EPO on hypotensive hemodialysis patients. Nephrol Dial Transplant 6:562-565, 1991
- 154. Silberberg JS. Racine N, Barre P, et al: Regression of left venericular hypertrophy in dialysis patients following correction of anemia with recombinant human EPO. Can J Cardiol 6:1-4, 1990
- 155. Goldberg N. Lundin AP, Delano P. et al: Changes in left ventricular size, wall thickness, and function in anemic patients treated with recombinant human EPO. Am Heart J 124:4247-4427, 1992
- 156. Pascual J. Teruel JL. Moya JL, et al: Regression of left ventricular hypertrophy after partial correction of anemia with EPO in patients on hemodialysis: A prospective study. Clin Nephrol 35:280-287, 1991
- 157. Foley RN, Parfrey PS, Morgan J. et al: A randomized controlled trial of complete vs. partial correction of anemis in hemodialysis patients with asymptomatic LV hypertrophy or LV dilatation. J Am Soc Nephrol 9:208A, 1998 (abstr)
- 158. Besarab A, Bolton K, Browne JK, et al: The effects of normal as compared with low hematocrit in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med 339:584-590, 1998
- 159. Foley R, Parfrey P, Morgan J, et al: Effect of hemoglobin levels in hemodialysis patients with asymptomatic cardiomyopathy. Kidney Int 58:1325-1338, 2000
- 160. Madors F, Lowrie E, Brugnara C, et al: Anemia in hemodialysis patients: Variable affecting this outcome predictor. J Am Soc Nephrol 8:1921-1929, 1997
- 161. Ma J, Ebben J, Xia H, et al: Hemanocrit level and associated mortality in hemodialysis patients. J Ara Soc Nephrol 10:610-619, 1999
- 162. Collins AJ, Ebben J. Ma M: Clinical factors associated with changing Hct levels in hemodialysis patients. Semin Dialysis 12:S-92-S-96, 1999 (suppl 1)
- 163. Collins A, Xia H, Ebeen J. et al: Changes in Het and risk of mortality. J Am Soc Nephrol 9:204A. 1998 (abstr)
- 164. Collins A, Xia H. Ebben J. et al: Change in Het and risk of hospitalizations. J Am Soc Nephrol 9:204A, 1998 (abstr)
- 165. Churchill DN, Muirhead N, Goldstern M, et al: Effect of recombinant human EPO on hospitalization of hemodialysis patients. Clin Nephrol 43:184-188, 1995
- 166. Xia H. Ebben J. Ma J. et al: Hematocrit levels and hospitalization risks in hemodialysis patients. J Am Soc Nephrol 10:1309-1316, 1999
 - 167. Abraham PA. Macres MG: Blood pressure in hemodi-

- alysis patients during amelioration of anemia with EPO. J Am Soc Nephrol 2:927-936, 1991
- 168. Buckner FS, Eschbach JW, Haley NR, et al: Hypertension following EPO therapy in anemic hemodialysis patients. Am J Hypertens 3:947-955, 1990
- 169. Raine AE, Roger SD: Effects of EPO on blood pressure. Am J Kidney Dis 18:76-83, 1991
- 170. Vaziri ND: Mechanism of EPO-induced hypertension. Am J Kidney Dis 33:821-828, 1999
- 171. Berns JS. Rudnick MR, Cohen RM, et al; Effects of normal hematocrit on ambulatory blood pressure in Epocuntreated hemodialysis patients with cardiac disease. Kidney Int 56:253-260, 1999
- 172. Carlini R, Obislo CI, Rothstein M: Intravenous EPO (tHuEPO) administration increases plasma endothelin and blood pressure in hemodialysis patients. Am J Hypertens 6:103-107, 1993
- 173. Takahashi K, Totsune K, Imai Y, et al: Plasma concentrations of immunoreactive-endothelin in patients with chronic renal failure trested with recombinant human EPO. Clin Sci (Colch) 84:47-50, 1993
- 174. Zhou XI, Pandian D, Wang XQ, et al: EPO-induced hypertension in rat is not mediated by alterations of plasma endothelin, vasopressin, or atrial natriuretic peptide levels. J Am Soc Nephrol 8:901-905, 1997
- 175. Hon G, Vaziri ND, Kaupke CJ, et al: Lack of a fastacting effect of EPO on arterial blood pressure and endothelin levels. Artif Organs 19:188-191, 1995
- 176. Brochu E, Lacasse MS, Lariviere R, et al: Differential effects of endothelin-1 antagonists on EPO-induced hypertension in renal failure. J Am Soc Nephrol 10:1440-1446. 1999
- 177. Bancrice D. Rodriguez M. Nag M. et al: Exposure of endothelial cells to recombinant human EPO induces nitric oxide synthase activity. Kidney Int 57:1895-1904, 2000
- 178. Vaziri ND, Zhou M, Smith J, et al: In vivo and in vitro pressor effects of EPO in rats. Am J Physiol 269:P838-F845, 1995
- 179. Kaupke CJ, Kim S, Vaziri ND: Effect of erythrocyte mass on arterial blood pressure in dialysis patients receiving maintenance EPO therapy. J Am Soc Nephrol 4:1874-1878, 1994
- 180. Tepel M, Wischniowski H, Zidek W: EPO increases cytosolic free calcium concentration and thrombin induced changes in cytosolic free calcium in platelets from spontaneously hypertensive rats. Biochem Biophys Res Commun 177: 991-997, 1991
- 181. Miller BA, Bell LL, Lynch CJ, et al: EPO modulation of intracellular calcium: A role for tyrosine phosphorylation. Cell Calcium 16:481-490, 1994
- 182. Samtieben W, Baldamus CA, Bommer I, et al: Blood pressure changes during treatment with recombinant human EPO. Contrib Nephrol 66:114-122, 1988
- 183. Vazin ND, Zhou XJ, Naqvi F, et al: Role of nitric oxide resistance in EPO-induced hypertension in rats with chronic renal failure. Am J Physiol 271:E113-E122, 1996
- 184. Laupacis A: Changes in quality of life and functional capacity in hemodialysis patients treated with recombinant human EPO. Semin Nephrol 10:11-19, 1990
- 185. Bahlmann I, Schoter KH, Scigalla P, et al: Morbidity and mortality in hemodialysis patients with and without EPO treatment. A controlled study. Contrib Nephrol 88:90-106, 1991

186. Eschbach JW, Egrie JC, Downing MR, et al: Correction of the anemia of end-stage renal disease with recombinant human EPO: Results of a combined phase I and II clinical trial. N Engl J Med 316:73-78, 1987

187. Bahlmann J. Schoter KH, Scigalla P, et al: Morbidity and mortality in hemodialysis patients with and without EPO treatment. A controlled study. Contrib Nephrol 88:90-106, 1991

188. Buccianti G, Colombi L, Battistel V: Use of recombinant human EPO (rH-EPO) in the treatment of anemia in hemodialysis patients: A multicenter Italian experience. Haemotologica 78:111-117, 1993

189. Stevens ME, Summerfield GP, Hall AA, et al: Cost benefits of low dose subcumneous EPO in patients with annemia of ESRD. Br Med J 304:474-477, 1992

190. Klinkmann H. Wieczorek L, Scigalla P: Adverse events of subcutaneous recombinant human EFO therapy: Results of a controlled multicenter European study. Artif Organs 17:219-225, 1993

191. Westenfelder C, Baranowski R: EPO stimulates proliferation of human renal carcinoma cells. Kidney Int 58:647-657, 2000

192. Walls J: Haemoglobin-is more bener? Nephrot Dial Transplant 10:56-61, 1995 (suppl 2)

193. Merry G. Wikstrom B. Valind S. et al: Effect of normalization of hematocrit on brain circulation and metabolism in hemodialysis patients. J Am Soc Nephrol 10:854-863, 1999

194. Hirakata H. Kanai H. Fukuda K. et al: Optimal hematocrit for the maximum oxygen delivery to the brain with recombinant human erythropoletin in hemodialysis patients. Clin Nephrol 53:354-361, 2000

195. Benz RL, Pressman MR, Hovick ET, et al: A prelimipary study of the effects of correction of anemia with recombinant human erythropoietin therapy on sleep, sleep disorders,

and daytime sleepiness in hemodialysis patients. Am I Kid Dis 34:1089-1095, 1999

196. McMahon LP, McKenna MJ. Sangkabutra T, ct al: Physical performance and associated electrolyte changes after haemoglobin normalization: A comparative study in haemodialysis patients. Nephrol Dial Transplant 14:1182-1187, 1999

197. Puruland H, Linde T, Danielson BG: Cardiac function in patients with end-stage renal disease after normalization of hemoglobin with erythropoietin. American Society of Nephrology, 31" Annual Meeting & Scientific Exposition, Philadelphia, PA. October 25-28, 1998 (abstr A1714)

198. Furuland H, Linde T, Danielson BG: Physical exercise capacity in patients with end-stage renal disease after normalization of hemoglobin with erythropoletin. American Society of Nephrology, 31" Annual Meeting & Scientific Exposition, Philadelphia, PA, October 25-28, 1998 (abstr A1713)

199. Foley RN, Parfrey PS, Morgan J, et al: A randomized convolled trial of complete vs partial correction of anemia in hemodialysis patients with asymptomatic concentric LV hypertrophy or LV dilamtion, M1127, American Society of Nephrology, 31" Annual Meeting & Scientific Exposition, Philadelphia, PA, October 25-28, 1998

200. Cotter DJ, Thamer M, Kimmel PL, Sadler JH: Secular trends in recombinant erythropoietin therapy among the US hemodialysis population: 1990-1996. Kidney Int 54:2129-2139, 1998

201. Collins AJ, Li S, Ebben J, et al: Hernatocrit levels and associated Medicare expenditures. Amer J Kidney Dis 36:282-

202. Macdougall IC, Gray SJ, Elston O, et al: Pharmacokinetics of Novel Erythropoiesis Stimulating Protein compared with epoctin alfa in dialysis patients. J Am Soc Nephrol 10: 2392-2395, 1999