INVESTIGACIONES GEOGRÁFICAS

GEOGRAFICAS

Investigaciones Geográficas (Esp)

ISSN: 0213-4691

investigacionesgeograficas@ua.es

Instituto Interuniversitario de Geografía

España

Espín Sánchez, David; Romero Díaz, Asunción Génesis de tormentas severas y su incidencia en la región de Murcia Investigaciones Geográficas (Esp), núm. 62, julio-diciembre, 2014, pp. 67-81 Instituto Interuniversitario de Geografía Alicante, España

Disponible en: http://www.redalyc.org/articulo.oa?id=17632456005

Número completo

Más información del artículo

Página de la revista en redalyc.org

Nº 62, julio - diciembre de 2014, pp. 67-81. ISSN: 0213-4691. eISSN: 1989-9890. DOI: 10.14198/INGEO2014.62.05

GÉNESIS DE TORMENTAS SEVERAS Y SU INCIDENCIA EN LA REGIÓN DE MURCIA

David Espín Sánchez y Asunción Romero Díaz

Departamento de Geografía Universidad de Murcia

RESUMEN

En el Sureste peninsular son constantes las situaciones de inestabilidad convectiva alimentadas en niveles altos atmosféricos por irrupciones de masas de aire ártica/polar. Bajo estas condiciones, debido al desplazamiento de los núcleos convectivos, las cuencas y valles fluviales intrabéticos son bastante proclives a los meteoros severos, tales como lluvias torrenciales, granizo o descargas eléctricas. Uno de los sistemas más perjudiciales, las supercélulas, suelen gestarse en los meses estivales o tardo-estivales, especialmente con la superficie terrestre muy calentada, acompañado además de altos índices de cizalla y helicidad. En este trabajo se analizan estos factores y las situaciones de inestabilidad convectiva más importantes registradas en la Región de Murcia (Sureste de España) en época reciente. La zona más afectada por las tormentas severas corresponde al norte de la Región, principalmente debido a vaguadas y vórtices fríos de origen ártico/polar marítimo de onda corta. Para ello se han utilizado: (i) los datos de estaciones meteorológicas en superficie y (ii) los sondeos aerológicos disponibles en el área, en particular los relativos a régimen de temperaturas, estratificación térmica vertical e indicadores de inestabilidad atmosférica. Se han obtenido correlaciones entre diferentes variables tormentosas, mostrando, por ejemplo, una buena relación la altitud con el número de días de tormenta, pero no así con las tormentas severas.

Palabras clave: supercélula, convección, cizalladura, vorticidad, Sureste de España.

ABSTRACT

Genesis of severe storms and their incidence in south-eastern Spain

Situations of convective instability fed by irruptions of arctic / polar air at high altitudes are common in the south-east of the Iberian Peninsula. In such conditions, due to the displacement of convective nuclei, the river basins and flood valleys are prone to severe weather activity, such as torrential rainfall, hail or electrical discharges. One of the most threatening systems, the supercell, usually occurs during summer or late summer, when the land is very warm, accompanied by high indices of wind shear and helicity. In this contribution, we analyse these factors and the most recent situations of convective instability recorded in the province of Murcia (SE Spain) in recent years. The part of the province most affected by severe storms was the northern zone, mainly due to shortwave troughs and cold vortices from arctic / polar maritime sources. We use data from surface weather stations and the atmospheric soundings available in the region, particularly those that measure temperature, vertical thermal stratification and indicators of atmospheric instability. The correlations obtained between the different storm variables revealed, for example, a good relation between altitude and the number of stormy days but not severe storms.

Keywords: supercell, convection, wind shear, vorticity, south-eastern Spain.

1. INTRODUCCIÓN

Las tormentas severas se definen como aquellas que generan en superficie vientos muy fuertes o huracanados, granizo inusualmente grande, precipitaciones de carácter torrencial, que provocan inundaciones relámpago, o intenso aparato eléctrico. Dependiendo de las características internas de las diferentes Supercélulas (SP) predominará o será caracterizada por un determinado meteoro.

Contacto: David Espín Sánchez: david.espin1@um.es; Asunción Romero Díaz: arodi@um.es

Las habituales precipitaciones intensas y episodios de fuertes inundaciones en el Mediterráneo español, ha motivado el análisis y estudio de estas situaciones. Los Sistemas Convectivos de Mesoescala (SCM), han sido estudiados tanto en la vertiente septentrional (López et al., 1964; García Miralles & Carrasco, 1958; Font Tullot, 1983; Novoa, 1981; Puigdefábregas & Martí, 1983; Llasat, 1987) como en la meridional (Capel, 1990, Olcina, 1994;). Por el contrario, las fuertes células convectivas con génesis de inundaciones relámpago, han sido menos analizadas en España.

En EE.UU. se estudiaron las complejas estructuras convectivas, mediante el estudio de corrientes de aire ascendentes y descendentes (Byers & Braham., 1949), identificadas en los radares meteorológicos con reflectividades de 45 dBZ durante, al menos, cinco minutos (Rogers 1976; Browning, 1977; Foote & Mohr, 1979). Se acuñaron definiciones de tormentas severas, teniendo en cuenta esencialmente la velocidad ascensional (>25 m/s-1), y reflectividades (>45 dBZ) durante al menos 50 minutos (Marwitz, 1972a; Browning, 1977; Jameson & Hymsfield, 1980; Kraus & Marwitz, 1984; Farley *et al.*, 1986). Se llega a dividir a las supercélulas en carácter unicelular o multicelular, siendo las más intensas y de mayor desarrollo vertical las primeras (Carte & Held., 1978; Knight *et al.*, 1982).

En España ha sido menor la aportación al contexto científico internacional y el estudio de supercélulas no se desarrolló hasta la década de los años noventa del siglo XX. Destaca el trabajo de Castro *et al.* (1989) donde concluye que el porcentaje total de supercélulas convectivas con respecto al total peninsular, alcanza un 7%. Mas recientemente destacan los trabajos descriptivos de situaciones concretas de áreas del interior peninsular de Martín & Riosalido (1995), Elizaga *et al.* (2001) o Quirantes (2004, 2007, 2008)

Este artículo, tiene como objetivo principal el estudio de las características de las tormentas "severas", que afectan a una amplia área del Sureste de España. Por estar este espacio inmensamente ocupado y ser de gran tradición hortofrutícola, el análisis de condiciones severas adquiere aquí especial relevancia. La vulnerabilidad de este tipo de cultivos (e.g. cítricos, hortalizas, etc.) ante el rigor de granizadas y lluvias torrenciales, en ciertos momentos del ciclo vegetativo, hace necesario conocer la magnitud y frecuencia de aparición de fenómenos convectivos severos en el área analizada.

Dentro de este contexto resultan claves ciertas configuraciones sinópticas que favorecen procesos de acusada inestabilidad cuando, por lo general, las precipitaciones son escasas durante todo el año. Aquí se analizan dos ejemplos de estas situaciones, junto con diversos factores locales, para completar la información existente y mejorar el conocimiento sobre el desarrollo de importantes tormentas en la Región de Murcia.

1.1. Área de estudio

La Región de Murcia, en donde se ha realizado este estudio, puede servir de referencia de un ámbito mayor, como es el Sureste de la Península Ibérica (Figura 1). Tiene una superficie de 11.313 km² y está situada en el sector suroriental del dominio morfoestructural de las Cordilleras Béticas. Al norte limita con la zona de transición entre la llanura manchega y las estribaciones prebéticas, lindando con la Comunidad Valenciana (Alicante) y Castilla-La Mancha (Albacete), hacia el oeste con el sector montañoso Bético correspondientes a las provincias andaluzas de Jaén, Granada y Almería. Hacia levante limita con la provincia de Alicante, pero principalmente con el Mar Mediterráneo, y en la frontera meridional con la provincia de Almería. Por tanto, participa de las características levantinas, meseteñas y andaluzas, y posee una variada diversidad paisajística (Romero & Belmonte, 2002). Presenta un gran contraste orográfico con sierras más o menos aisladas que adquieren mayor altitud hacia el noroeste y alternan con valles, depresiones y llanuras (Romero, 2007). Las sierras meridionales están construidas sobre materiales del Bético (s.s), de gran complejidad tectónica, formando la alineación litoral y prelitoral, entre las que destaca la abertura que supone el Campo de Cartagena, que desciende gradualmente desde la sierra de Carrascoy hasta el Mar Menor. Destaca así mismo la gran depresión o corredor del Guadalentín. En el sector centroseptentrional se extiende otra serie de sierras formadas sobre materiales Prebéticos y Subbéticos, mientras que al noroeste se hallan las unidades montañosas más elevadas (>1500 m) formando sierras y, entre ellas, corredores intromontañosos, constituyendo, en muchos casos, cuencas surcadas por los afluentes del río Segura (Moratalla, Argos, Quipar, Mula...).

Figura 1. Localización del área de estudio.

Elaboración propia

La Región cuenta con un gran número de días despejados y de horas de sol al año, lo que unido a periódicas invasiones de aire frío en capas altas de la atmosfera (principalmente en meses estivales o tardo-estivales), propicia la aparición de lluvias de alta intensidad horaria. La temperatura media anual se sitúa en torno a 18°C, las medias de las máximas en los meses de verano superan los 32°C, y las medias de mínimas en los meses de invierno apenas alcanzan los 5°C. La precipitación anual es escasa (300 a 350 mm) y de extrema irregularidad (Geiger, 1973). Con 1.470.069 habitantes (INE, 2012), la mayoría de residentes en la Región de Murcia habita en núcleos urbanos, principalmente en la capital, que constituye el área más poblada.

Las buenas condiciones agronómicas de sus suelos y la bonanza climática, durante gran parte del año, han llevado a la población a basar su economía tradicional en la actividad agrícola. Las cosechas de plantaciones hortícolas y frutales de cítricos han sido exportadas a numerosos países de toda Europa, generando un sector económico de gran importancia. En los últimos años, dicha actividad agrícola ha decrecido de forma significativa, aunque todavía existen muchas explotaciones de regadío, que suelen verse afectadas por heladas ocasionales (García Martín, 2012).

2. METODOLOGÍA

Para el análisis de las características tormentosas en superficie se ha tomado como referencia el número de tormentas anuales, rayos/año y meses de mayor actividad convectiva. Para ello, se han utilizado los datos meteorológicos diarios correspondientes a un total de 25 observatorios, distribuidos por toda la Región, pertenecientes a la red de la Agencia Estatal de Meteorología (AEMET). En el estudio de situaciones concretas se han empleado datos de la red SIAM-IMIDA (Sistema de Información Agro-meteorológica del Instituto Murciano de Investigación y Desarrollo Alimentario), y de la red SAIH (Sistema Automático de Información Hidrológica) perteneciente a la Confederación Hidrográfica del Segura (CHS). Además se han utilizado también los datos de los Sondeos Atmosféricos que realiza el Centro Meteorológico Territorial (CMT) de Guadalupe-Murcia. La caracterización de este fenómeno se ha completado mediante la relación de diferentes variables convectivas.

Los parámetros físicos del aire medidos por estos sondeos han permitido también analizar diversos índices de estabilidad atmosférica, especialmente útiles para definir las características de la convección: CAPE (*Convective Avaible Potencial Energy*), CINS (*Convective Inhibition*), L.I (Lifted Index), SHOW (Showalter Index) y TT (*Total of Totals Index*). El CAPE nos dará información acerca de la energía disponible en una parcela de aire para la convección o para el ascenso, y CINS es el índice de inhibición convectiva. El L.I representa la diferencia de temperatura entre el ambiente y una parcela de aire a 500 hPa, mientras que el índice SHOW hace referencia a la probabilidad de precipitación. Por último el índice TT es comúnmente aplicado en la predicción de climas severos. Su cálculo depende de dos medidas de estabilidad vertical, una que incluye como parámetro la humedad (Cross Total-CT) y otra que no lo hace (Vertical Total – VT) (Doswell & Schultz, 2006). Se considera, por tanto, situación o día inestable cuando se alcanzan valores de CAPE > 0, LI < 0, SHOW > 3 y TT > 45

Se ha realizado un análisis sinóptico de las dos situaciones de convección severa más importantes de la última década y su evolución atmosférica. Dicho análisis se basa en la interpretación de mapas sinópticos proporcionados por el NCEP (NOAA) (National Centre Environmental Prediction-National Oceanic and Atmospheric Administration), disponibles en el archivo de la web Wetterzentrale, con análisis de isobaras en superficie y topografía geopotencial a 850 y 500 hPa. Así mismo, relevantes han sido las imágenes capturadas por el satélite METEOSAT de la web NOAA.

Por último, se han analizado los caudales circulantes durante los episodios concretos, obtenidos de la base de datos del SAIH de la Cuenca Hidrográfica del Segura.

3. RESULTADOS Y DISCUSIÓN

3.1. Factores, génesis y desarrollo de células convectivas

La mayor frecuencia de episodios convectivos severos, suele producirse en los meses estivales y tardoestivales, cuando tiene lugar un equilibrio entre valores térmicos elevados en superficie e invasiones de masas de aire más frías en capas medias y altas atmosféricas. Estas circunstancias desencadenan procesos atmosféricos termoconvectivos que generan nubosidad cumuliforme de gran desarrollo vertical (Olcina et al, 1996). Así mismo, de gran importancia para la generación de la columna nubígena, es la presencia de importantes valores higrométricos en dicha columna, pero es especialmente relevante en niveles bajos o superficie, donde se requiere un flujo marítimo procedente del Mediterráneo, la gran mayoría de las veces como consecuencia del mecanismo de circulación estival asociado a la fachada mediterránea peninsular. La presencia de isotermas más bajas y a menor altitud equipotencial (500 hPa) favorece el descenso altitudinalmente del nivel de condensación atmosférico-altitud a la cual, con grandes porcentajes higrométricos, empiezan a condensar las burbujas cálidas ascendentes de la superficie. Si la columna atmosférica presenta unas condiciones baroclinas de humedad e inestabilidad, los torreones nubosos llegarán hasta la Tropopausa (11-13 km) en nuestras latitudes, formando grandes formaciones nubosas de Cumulonimbus. Así pues, resulta fundamental que el gradiente térmico entre la superficie y niveles medios-altos atmosféricos (500 hPa) sea elevado, creando pues, unas condiciones de mucha inestabilidad, lo que unido a condiciones de convergencia horizontal en superficie (choque de masas de aire) y divergencia en altura, creadas por la zona de máxima advección de vorticidad relativa ciclónica asociada a las vaguadas árticas y polares, genera importantes movimientos ascensionales y de descenso de aire en el interior del Cumulonimbus con génesis de lluvias intensas.

Tras el análisis realizado se puede considerar que la Región de Murcia tiene una actividad tormentosa medio-baja, aunque con un alto grado de heterogeneidad (Tabla 1), fruto principalmente de su compleja orografía. Presenta además características de los rasgos tormentosos de Andalucía, Albacete y proximidad al mar Mediterráneo.

El área de mayor actividad convectiva es la conformada por la línea de enclaves montañosos del Noroeste de la Región de Murcia (Taibilla, Cerezo, Buitre, Gavilán y Burete), con valores cercanos a 20 días de tormenta anuales. Esto no solamente responde a factores orográficos (altitud y fuertes pendientes), sino también a la línea de convergencia de vientos en superficie (ponientes y levantes), que en época estival y tardo-estival suele configurarse en el sector occidental de la Región. Por el contrario, la menor actividad se centra en las inmediaciones del prelitoral y litoral sur, (Mazarrón-Águilas-Lorca), con valores que se quedan por debajo de 10 días anuales. En definitiva, el número máximo de días de tormentas severas se da al norte de la provincia, en el Altiplano Jumilla-Yecla, siendo en el resto de menor importancia (González Márquez, 2006).

Septiembre, aparece como el mes más tormentoso, aunque no siempre es así, en zonas del interior y Altiplano es agosto el de mayor actividad. En el sur de la provincia, la máxima actividad convectiva se da en los meses otoñales de octubre y noviembre. La mínima actividad tiene lugar en enero, excepto en el sur y en el mar, en donde el mínimo es en julio

Atendiendo a la relación existente entre diferentes variables (Figura 2), se observa, que existe una cierta correlación entre el número de días de tormentas usuales y altitud (r^2 = 0,62). Es decir, a mayor altitud se da un mayor número de tormentas al año, explicado en parte porque generalmente los lugares más altos suelen corresponderse con áreas montañosas con mayores pendientes, en donde los rayos solares inciden de forma más perpendicular y actúan como puntos de disparo más eficaces de masas de aire. Por el contrario, la relación directa entre el número de días de tormentas severas y la altitud, es nula (r^2 = 0,07). Existe una vinculación directa, entre el número de tormentas anuales y el número de rayos por año (r^2 = 0,70), explicado en parte debido a que a mayor número de tormentas las descargas eléctricas serán más frecuentes. También se puede atribuir una relación directa entre el número de descargas de rayos y la altitud (r^2 = 0,58) teniendo en cuenta que en puntos más altos se registran más descargas eléctricas, en parte motivadas por el mayor número de tormentas al año. Por último, es preciso señalar que en el territorio murciano no existe concordancia entre los meses de mayor actividad tormentosa con el resto de factores, a pesar de que predomina el mes de septiembre, pero lo cierto es que no existe una estratificación mensual dependiendo de la cantidad tormentosa al año.

Tabla 1. Caracterización de las tormentas en la Región de Murcia.

Observatorio	Días tormenta/año	Días tormenta severa/año	Rayo/Año	Mes máxima actividad	Mes mínima actividad	Altitud (m)
Casas de Alfaro	18,0	0,3	111	Junio	Enero	1280
Cañada de la C.	15,3	0,2	98	Junio	Enero	1271
Barranda	15,6	0,0	87	Agosto	Enero	838
Moratalla	19,2	0,3	128	Septiembre	Enero	680
Bullas	14,7	0,1	83	Septiembre	Diciembre	645
Zarcilla de R.	12,7	0,0	69	Mayo	Enero	640
Cehegín	16,3	0,1	91	Septiembre	Enero	572
Yecla	15,0	0,9	168	Agosto	Diciembre	570
Jumilla	14.6	0,3	93	Agosto	Enero	502
P. Lumbreras	9,9	0,1	45	Septiembre	Diciembre	465
Calasparra	16,4	0,1	94	Septiembre	Diciembre	390
Mula	12,4	0,2	68	Septiembre	Diciembre	320
Lorca	9,4	0,0	35	Octubre	Noviembre	320
Totana	8,9	0,0	35	Octubre	Marzo	225
Abanilla	10,7	0,0	60	Septiembre	Marzo	222
Alhama de M.	10,4	0,0	35	Septiembre	Diciembre	210
Cieza	12,2	0,1	55	Septiembre	Enero	188
Fuente Álamo	8,2	0,1	34	Octubre	Julio	140
Archena	12,1	0,3	73	Agosto	Diciembre	100
Alcantarilla	8,4	0,0	43	Septiembre	Enero	89
Murcia	9,6	0,0	47	Septiembre	Enero	66
Mazarrón	6,8	0,2	49	Octubre	Marzo	58
Águilas	7,4	0,2	52	Febrero	Marzo	20
Cartagena	7,7	0,2	51	Noviembre	Febrero	15
San Javier	9,9	0,2	77	Septiembre	Julio	2

Fuente: AEMET. Elaboración propia.

El cambio de intensidad y dirección del viento en niveles altos atmosféricos, la cizalladura, tiene gran importancia en el inicio de la convección. Con fuertes índices suelen producirse importantes tormentas unicelulares acompañadas de granizo con grandes desarrollos, surgidos especialmente en el flanco derecho (Grandia & Marwitz., 1975; Browning, 1977). Dicha cizalladura, cuando es unidireccional, produce rotación con eje horizontal. Si en su recorrido se alimenta en niveles bajos troposféricos de vorticidad (streamwise), el movimiento de la tormenta comenzará a desviarse o a propagarse de forma anómala según el vector medio de la cizalladura vertical del viento (Quirantes, 2008), factor clave para la determinación o no de una Supercélula.

La helicidad relativa a la tormenta (SHR) juega un papel principal. Sauvageot (1982), propone que la mayoría de desarrollos nubosos súbitos o asociados a Supercélulas se localizan a la derecha de la estructura. Otros autores mantienen versiones diferentes, como los localizados a la izquierda (Browning, 1977), los que surgen de forma aleatoria (Carte & Held, 1978) o los desarrollados al sureste de la célula más madura (Musil *et al.*, 1976).

Según Browning (1977) la determinación de la dirección de una tormenta convencional debe basarse en la propia dinámica circulatoria general atmosférica, predominando en nuestra zona la dirección SW-NE (Font Tullot, 1983; Gedzelman, 1985).

En la génesis de tormentas severas o SP los movimientos ascensionales pueden superar los 25 m/s (Figura 3), debido a las enérgicas ráfagas de viento verticales. Son alimentadas por el continuo aporte de calor latente de condensación (Cuadrat y Pita, 1997).

En la fase de madurez aparece una intensa corriente ascendente y en continua rotación, llamada mesociclón (Doswell & Burgués, 1993). Se halla localizado frecuentemente en niveles medios y tiene un diámetro medio de 5 a 8 km. Dicha corriente rotatorial o "Updraft" puede girar en dos direcciones (ciclónica o mesociclón; o anticiclónica o mesoanticiclón).

Figura 2. Correlación entre diferentes variables tormentosas.

Fuente: AEMET. Elaboración propia.

Figura 3. Corte vertical de una supercélula convectiva.

Fuente: Marwitz (1972b)

3.2. Efectos generados en superficie: meteoros severos

Debido a la complejidad y virulencia en la formación y organización de dichas estructuras convectivas, sin duda, se trata de las perturbaciones atmosféricas con la mayor capacidad de generar meteoros severos.

3.2.1. Precipitaciones intensas

Las precipitaciones intensas, quizás el meteoro severo más frecuente de cuántos aparecen, se caracteriza esencialmente por la aparición de lluvia de alta intensidad horaria en muy corto espacio de tiempo, generando "inundaciones relámpago". A diferencia de los CSM (Complejos Sistemas de Mesoescala) que actúan descargando precipitación incluso durante varios días, las supercélulas convectivas lo hacen en apenas unas horas, es decir, generan importantísimas cantidades de precipitación en un cortísimo intervalo horario, lo cual, debido a la excepcional intensidad, genera "inundaciones relámpago" (*flash flood*). Según la WMO (1986) los récords mundiales de precipitación en corto espacio de tiempo se registraron durante sendas SP en el interior de EE.UU, acumulando en el primer caso –Texas, 31 mayo 1935- hasta 559 mm en 3 h 15 min, con picos de hasta 231 mm/h durante 5 minutos consecutivos (recordar que para catalogar de lluvia torrencial la intensidad ha de superar los 60 mm/h). A nivel nacional, los efectos (igualmente desastrosos) aunque sin la virulencia ejercida en el cinturón de tornados de EE.UU, también han sido relevantes en los últimos años desde el punto de vista de la intensidad de las precipitaciones, como los registros espectaculares en sólo unas horas de 240 mm el 23 de mayo de 2007 en Alcázar de San Juan (C. Real); 110 mm en Alcañiz (Teruel) el 16 de agosto de 2003 o el mismo registro de Pedro Muñoz (C. Real) el 22 de abril de 2006.

En la Región de Murcia no se han encontrado cantidades de precipitación en corto espacio de tiempo tan importantes como se registran a nivel nacional, pero sí que se han producido aguaceros repentinos como consecuencia principalmente de fenómenos de onda corta o retrogresión (Capel Molina & Olcina Cantos, 1993). Los valores más sobresalientes de lluvia en el menor espacio de tiempo, han tenido lugar en enclaves situados en el interior montañoso murciano, como Calasparra (72,5 mm) o Moratalla (69,5 mm) durante los días 25 y 26 de julio de 1986, o los 69,3 mm registrados el 9 de junio de 2008 en El Chaparral (Cehegín).

Intensidades de lluvias tan extremas (Figura 4) se producen por varias combinaciones: i) altos valores de flujo de entrada tormentosos, humedad y flujo de área de entrada; ii) extensión reducida del área afectada por la precipitación, iii) grandes tasas de disminución de agua almacenada en las nubes y iv) pequeñas pérdidas de agua en la tormenta mediante evaporación (Smith *et al.*, 2001).

Figura 4. Correlación entre intensidad máxima de precipitación y máxima divergencia en altura.

Fuente: Byers (1949).

3.2.2. Aparato eléctrico

Otro meteoro severo, frecuentemente caracterizado en los núcleos tormentosos, es el rayo, secundado por relámpagos (rayos nube-nube) y truenos. Las fortísimas corrientes de aire que tienen lugar en los cu-

mulonimbos separan de forma muy efectiva las cargas positivas de las negativas dentro de la nube, lo que provoca a su vez que se vaya estableciendo una enorme diferencia de potencial dentro de la propia nube y entre la base de la nube y el suelo. Así pues, la acumulación de cargas en la base es tal que convierte al aire en un extraordinario conductor de la electricidad y comienza a establecerse un canal de comunicación hacia abajo que es el que recorrerá el rayo en una fracción de segundo hasta impactar violentamente en la superficie (Viñas, 2008). Dichas descargan, reciben el nombre de impactos nube-tierra, mientras que las descargas que tienen lugar entre dos zonas de la misma nube, son los relámpagos. Es preciso señalar, los riesgos substanciales que generan en la población humana y vegetal, no solamente mediante alcance directo, sino también mediante los llamados "rayos dormidos", es decir, aquellos que tras impactar con un objeto (madera, suelo...) no liberan toda la energía acumulada, y queda almacenada en forma de energía latente, liberándose tiempo después y pudiendo ocasionar, en el peor de los casos, un incendio forestal.

A nivel de estudio, la mayor cantidad de descargas eléctricas coincide con las zonas más prolíficas en cuanto a generación de tormentas severas, este es el de caso del norte de la Región (Altiplano). Con diferencia, los valores más elevados se dan en Yecla, con casi 170 rayos al año en un radio de 10 km, seguido a cierta distancia por enclaves montañosos del noroeste murciano, con valores entre 80 y 120. En el resto de la Región de Murcia, los valores son mucho más modestos, y casi siempre por debajo de 60.

3.2.3. Granizo

Debido a su carácter localizado, el granizo, es uno de los meteoros que más daños económicos produce. La aparición del granizo o pedrisco, responde al crecimiento de dichas partículas de hielo del interior del Cumulonimbus, como resultado de los rápidos ascensos y descensos de las corrientes de aire, que le privan por efecto gravitacional de depositarse en superficie. Sólo cuando el tamaño es considerablemente grande (Figura 5), y por tanto el peso es superior a la fuerza de empuje de las corrientes ascensionales, termina por precipitar. Es preciso considerar, que el tamaño o diámetro de la piedra de granizo se basa en la potencia adquirida por el Cumulonimbus y por el número de cíclicos ascensos y descensos dentro de la nube, pudiéndose catalogar observando en el interior del pedrisco los diferentes anillos concéntricos.

Figura 5: Granizada en Avilés (Lorca) el 29 de agosto de 2011.

Fuente: Ramón García Pérez (2011)

Los resultados negativos para personas y enseres pueden ser muy importantes, pero en el caso de la agricultura llegan a ser catastróficos (Figura 5). Aparecen valores especialmente considerables en zonas montañosas de la Región de Murcia (Moratalla) de hasta 5,5 jornadas de granizo al año en "Bebedor de Abajo" o 1,6 en "Cañada de la Cruz". Abril, Mayo y Junio son los meses con mayores posibilidades de sufrir granizadas (González Ortíz, 1984).

3.2.4. Fuerte vientos

Las supercélulas convectivas provocan, en innumerables ocasiones, rachas de viento muy fuertes o incluso huracanadas (>120 km/h.) y tornados.

Se estima, que en España, se producen más de un centenar de tornados al año, si bien la gran mayoría pasan desapercibidos. Según la escala de *Fujita y Pearson*, la entidad de los tornados registrados ha tenido una fuerza F0 a F3 durante los últimos años. Cabe destacar los registrados en la Cordillera Ibérica, como el de Sigüenza (Guadalajara) el 12 de septiembre de 1996, o el de Eschucha (Teruel) el 11 de agosto de 2001.

La actividad tordánica en la Región de Murcia es más bien escasa, no contabilizándose ningún fenómeno severo asociado a tornados durante las últimas décadas. No obstante, se han producido situaciones de fuertes vientos, aunque sin llegar a la entidad de los generados por estos sistemas. Uno de los episodios asociados a tormentas secas más relevantes de los últimos años en la Región de Murcia, tuvo lugar durante la tarde del 11 de agosto de 2012, donde se registró una racha máxima de viento de 127,1 km/h. en la estación meteorológica del Pico del Relojero (Murcia). Durante el episodio causado por un *heatburst* o "reventón cálido", se produjo una caída de presión atmosférica de 3 hPa y un ascenso térmico de 4,7°C en una hora y media.

3.3. Análisis del episodio de lluvia y granizo de 16-17 de octubre de 2003 con fenómeno de vórtice frío aislado en altura

Como uno de los ejemplos de tormenta severa se ha seleccionado el episodio que tuvo lugar a mediados de octubre de 2003. En esta ocasión, la gran mayoría de la Región de Murcia sufrió un fuerte episodio de lluvias torrenciales asociadas a potentes células convectivas y situaciones de granizo.

A partir del día 9, se instala sobre el Suroeste europeo una dorsal subtropical marítima (eje W-E). Debido al empuje ejercido por las perturbaciones polares, la dorsal anticiclónica se retira hacia el Mediterráneo central, afectando a la fachada mediterránea española y proporcionando días muy calurosos (>30°C) en relación a la época del año. En estas jornadas se produce una importante advección subtropical en niveles bajos troposféricos (850 hPa) sobre el Sureste Peninsular, con temperaturas para el dia 12 de 15,4°C a 1.569 m.

A partir del día 13, a 500 hPa, se aprecia nítidamente como las potentes perturbaciones de Terranova y Groenlandia se descuelgan introduciendo una masa de aire polar marítimo. Se conforma una vaguada (eje NNO-SSE) con la génesis de un vórtice frío aislado en altura, posteriormente secluido de ésta.

El día 16, jornada central del episodio de lluvias intensas y granizadas, se produce una acusada inestabilidad en la mitad meridional peninsular, como consecuencia de los efectos termodinámicos ejercidos por el vórtice frío, y a vientos marítimos muy débiles en superficie (Figura 6).

Figura 6. Advección de vorticidad absoluta a 300 hPa Geopotential para el 17 de octubre de 2003 00 UTC.

Fuente: www.wetter3.de