2. Prehľad reprezentácií geometrických objektov.

- <u>dátová štruktúra</u> reprezentuje fyzikálne teleso, ak sa jej v E^3 dá priradiť objekt, ktorého <u>tvar</u> sa dá v E^3 vyrobiť z reálneho materiálu. Takéto podmnožiny E^3 sa nazývajú modely fyzikálnych telies
- <u>abstraktné teleso</u> podmnožina E^3 modelujúca fyzikálne teleso, model fyzikálneho telesa
- <u>axiomatická definícia</u> abstraktných telies: Systém S podmnožín T vyhovujúci nasledovným podmienkam:
 - 1° <u>homogénnosť</u> telesa vzhľadom na 3D (musí mať vnútro kladného objemu a žiadna jeho oddelená časť nesmie mať dimenziu menšiu ako $3 \Leftrightarrow T$ je regulárna množina : T = c[iT]).
 - 2° <u>konečnosť</u> (= ohraničenosť v $E^3 = \exists$ konečnej gule $G: T \subset G$.
 - 3° <u>uzavretosť</u> systému S všetkých abstraktných telies vzhľadom na tzv. <u>regularizované</u> boolovské operácie: $Ao^*B = ci(AoB)$ a $k^*A = ci(kA)$, kde $A, B \in S$ a $o \in \{ \cup, \cap, \setminus \}$, k je doplnok množiny a o^* , k^* sú ich regularizácie, pričom i je symbol pre vnútro, c pre uzáver a k pre doplnok množiny M definovanej takto: $kM = \{ p \mid p \notin M \}$; $iM = \{ p \mid \exists O(p) : O(p) \subset M \}$; $cM = \{ p \mid \forall O(p) : \exists q \in O(p) : q \in M \}$, kde O je okolie bodu p. Pojem hranice množiny M je definovaný:
 - $\partial M = \{ p \mid p \in cM \land p \in [kM] \} = cM \cap c[kM]$
 - 4° <u>konečnosť</u> opisu (dátové štruktúry, ktoré ich opisujú sa musia " zmestiť" do počítača). Konkrétnejšie: Tvar telesa T sa musí dať definovať <u>formulou</u>, alebo systémom formúl F tak, že bod $X \in T \iff X$ spl´ňa F.
 - 5° determinizmus hranice ∂T týka sa korektnosti (validity) tzv. hraničných (sieťových) reprezentácií, ktoré musia spĺňať: topologicko-kombinatorické podmienky : (a) každá hrana musí mať práve dva vrcholy; (b) každá vnútorná hrana musí patriť (byť incidentná) párnemu počtu stien geometricko-metrické podmienky : (a) vrcholy sú rôzne body priestoru E³; (b) dve hrany sú buď disjunktné, alebo majú spoločný jediný vrchol; (c) dve steny sú buď disjunktné, alebo sa pretínajú v jednej hrane, alebo majú spoločný jediný vrchol.
 - 6° realizovateľnosť (tvar telesa T má byť vhodný na skonštruovanie z reálneho materiálu). Z matematického hľadiska sa tu v podstate požaduje, aby abstraktné teleso bolo tzv. semianalytickou množinou, čiže množinou, ktorá sa dá vyjadriť ako konečná boolovská (regulárna) kombinácia množín tvaru: $S_i := \{(x,y,z); f_i(x,y,z) \le 0\}$, kde f_i sú tzv. analytické funkcie t.j. funkcie $f_i: E^3 \to R$, ktoré sa v každom bode oblasti na ktorej sú definované dajú rozvinúť do konvergentného mocninného radu (špeciálne, ak tieto funkcie sú konečné polynómy hovoríme o algebraických funkciách, ktoré v mnohých aplikáciach hrajú úlohu analytických funkcií, pretože poskytujú dostatok stupňov voľnosti pre modelovanie).

Týmito podmienkami sa však nevylučuje reprezentácia tzv. nevarietových objektov (nonmanifolds). Teleso T sa totiž nazýva <u>varietou</u> (manifold) $\Leftrightarrow \forall p \in \partial T$ existuje 3D-okolie $O(p): O(p) \cap \partial T$ je homeomorfné kruhu (existuje medzi nimi obojstranne spojitá bijekcia).

<u>Nevarietovým</u> telesom (nonmanifold) je napr. zjednotenie dvoch kociek majúcich spoločnú hranu. V podmienke T-K (b) sa obyčajne požaduje, aby <u>každá hrana bola obsiahnutá v najviac dvoch stenách</u>. Takúto varietu potom nazývame <u>2-varietou</u> (2-manifold). Pod pojmom varieta sa často rozumie práve 2-varieta.

Prehľad reprezentačných schém

Reprezentačnou schémou rozumieme korešpondenciu (priradenie) medzi dátovou štruktúrou a abstraktným telesom, ktorú reprezentuje. Zadanie reprezentačnej schémy je aj zadaním metódy pre určenie tejto súvislosti. Hoci existuje mnoho metód, ktoré sa používajú v geometrickom modelovaní, na tomto mieste sa zmienime iba o niektorých najčastejšie používaných.

Hranicové reprezentácie (B-rep)

Najprirodzenejším spôsobom ako reprezentovať teleso je opísať jeho hranicu. Teleso je svojou hranicou skutočne veľmi dobre reprezentované.

1.<u>Bodová reprezentácia</u> – množinou bodov na povrchu telesa – pole bodiek. <u>Prednosť</u> – rýchlosť vykresľovania; <u>Použitie</u> – náčrt, predbežná predstava o menej zložitých objektoch (obr.1)

2.<u>Hranová reprezentácia</u> – drôtový model – po BR výpočtovo najlacnejšia reprezentácia. Použitie: náhľad na 3D objekty a scény; Nevýhody: bez znázornenia viditeľnosti ťažko určiť ktoré hrany a steny sú vpredu a ktoré vzadu; bez možnosti prezerania si telesa sa dajú ťažko zistiť diery a pod.(obr.2, obr.3)

Obr. 3: Príklad objektu (plochy) v hranovej reprezentácii.

3.Mnohouholníková reprezentácia (po častiach lineárna, mnohostenná).

Hranica telesa býva obyčajne rozdelená (segmentovaná) na konečný počet ohraničených podmnožín nazývaných stenami, alebo záplatami, pričom každá stena býva reprezentovaná samostatne. Napr. u mnohostena sú steny rovinné mnohouholníky a teda môžu byť reprezentované svojimi ohraničujúcimi hranami a vrcholmi. Keďže hrany sú úsečky, sú reprezentované svojimi krajnými, a teda ohraničujúcimi vrcholmi.

Na obr.A je zobrazený štvorsten a jedna možná reprezentačná schéma. Jeho reprezentáciou je orientovaný graf obsahujúci objektový, stenové, hranové a vrcholové uzly (vrcholy). Všimnime si, že hoci len uzly na najnižšej úrovni (prislúchajúce vrcholom štvorstena) obsahujú geometrickú informáciu, a zvyšné obsahujú v tomto prípade len "čisto topologické" informácie, nie je tomu tak vždy, pretože vo všeobecnom prípade, keď tvar telesa môže byť ľubovoľne zakrivený musia aj hranové a stenové uzly obsahovať tvarové informácie.

Vlastnosti

- dnešný štandard pre reprezentáciu a zobrazovanie scén
- základné stavebné prvky : vrcholy, hrany a steny (najčastejšie trojuholníky, štvor a viacuholníky zriedkavejšie, lebo nemusia byť konvexné ani rovinné).
- výhody : hardverová podpora; podpora v rôznych štandartoch (OpenGL,...)
- väčšina operácií s objektami vedie k lineárnej interpolácii, ktorá je ľahko realizovateľná (\$\Rightarrow\$ vysoká rýchlosť zobrazovania scén; hry, VR,...)
- jednoduchý výpočet priesečníkov lúčov a rovinných stien (ray- tracing)
- nevýhody: modelovanie objektov, u ktorých záleží na presnosti (v NURBs sa vymodelujú a potom sa teseláciou prevedú na meshovú reprezentáciu pre rendering);

<u>špeciálne</u> prípady:

- obtiažne mapovanie textúr a geom. alias (obmedzená. presnosť pri práci s reálnymi číslami v počítači)
- <u>hranica siete</u> = U hrán patriacich len jej stene; uzavretá-nemá hranicu
- orientácia mnohouholníka (očíslovanie hraničných vrcholov)
- dva konzistentne orientované mnohouholníky-majúce spoločnú hranu, ktorá je v každom mnohouholníku orientovaná inak
- <u>orientovateľná sieť</u>- ak každý mnohouholník možno zorientovať tak, že každé dva susedné mnohouholníky sú orientované konzistentne
- veľká nevýhoda- nepohodlný prístup k okoliam, treba prehľadávať dlhé zoznamy.

Mnohouholníkové reprezentácie sa zvyknú deliť do dvoch skupín.

Jednoduché mnohouholníkové reprezentácie

Teraz nás budú podrobnejšie zaujímať také reprezentácie, ktorých steny sú rovinné mnohouholníky. Majú tri typy konštrukčných prvkov: vrcholy, hrany a steny, ktoré budú zadané tabuľkou (zoznamom) pre každý typ. Hovorí sa im geometrické tabuľky, lebo sú v nich uložené geometrické dáta, ktoré sa využívajú pri výpočtoch, vykresľovaní objektu a rôznych manipuláciach s objektom v scéne. Teda:

Geometrické tabuľky <u>obsahujú</u> súradnice vrcholov a parametre na identifikáciu orientácie mnohouholníkových stien (<u>obr.5</u>).

VERTEX	EDGE TABLE	POLYGON-
TABLE		SURFACE
		TABLE
$V_1: x_1, y_1, z_1$	$E_1:V_1,V_2$	$S_1: E_1, E_2, E_3$
$V_2: x_2, y_2, z_2$	$E_2:V_2,V_3$	$S_2: E_3, E_4, E_5, E_6$
$V_3: x_3, y_3, z_3$	$E_3: V_3, V_1$	
$V_4: x_4, y_4, z_4$	$E_4: V_3, V_4$	$S_1: V_1, V_2, V_3$
$V_5: x_5, y_5, z_5$	$E_5: V_4, V_5$	$S_2: V_1, V_3, V_4, V_5$
	$E_6: V_5, V_1$	

- Tabuľky možno aj <u>rozšíriť</u> o ďalšie informácie na rýchlejšiu identifikáciu hrán a stien; doplniť o údaje potrebné pre riešenie konkrétnych úloh (smernice hrán, normálové vektory stien...)
- Počty tabuliek možno aj <u>redukovať</u>, čo však má obyčajne za následok viacnásobné načítavanie prípadne aj vykresľovanie hrán a pod.
- Okrem geometrických tabuliek sa používajú aj tzv. <u>atribútové</u> tabuľky, ktoré obsahujú isté fyzikálne vlastnosti objektu (priesvitnosť, odrazivosť povrchu, charakteristiky textúr,...)
- Oproti hranovej reprezentácii je táto reprezentácia jednoznačná a vhodná na vykreslenie objektu.
- Chýbajú jej však informácie o type hrán, susednosti a orientácii hrán a stien.

<u>Štrukturované mnohouholníkové reprezentácie</u>

Spomenieme si len takpovediac <u>ekvivalentných</u> reprezentantov tejto skupiny: <u>okrídlenú hranu</u> (winged edge) a <u>DCEL</u> (doubly connected edge list). Prvú z nich navrhol a publikoval v roku 1975 Baumgart a druhá je známa z výpočtovej geometrie.

Okrídlená hrana

Tvoria ju tri zoznamy v hierarchickom usporiadaní. Na najnižšej úrovni je zoznam vrcholov, na strednej zoznam hrán a najvyššej úrovni je zoznam stien. Najviac informácií obsahujú prvky zoznamu hrán. Dátový zoznam pre hranu obsahuje ukazovatele na všetky geometrické elementy (steny, hrany, vrcholy) s ktorými susedí. Názov okrídlená hrana dostal preto, lebo jej grafické znázornenie, spolu so susednými hranami pripomína krídla (obr.6)

Záznam každej steny obsahuje ukazovateľ na ľubovoľnú z jej hrán prípadne na hranu patriacu k jej vnútornej hranici (otvoru). Môže obsahovať normálový vektor, farbu a pod. Zo záznamu pre okrídlenú hranu možno získať veľa údajov o susednosti hrán a stien, prípadne vrcholy a hrany danej steny.

DCEL (obr.7)

Obr.7

<u>Hranovo orientovaná</u> polygonálna reprezentácia, v ktorej je však obsiahnutá aj vrcholová a stenová informácia, včítane geometrických a topologických väzieb týkajúcich sa orientácie hrán a stien a incidencia medzi vrcholmi, stenami a hranami. Východzí element reprezentácie je orientovaná hrana. Orientácia stien vychádza z vonkajšieho pohľadu na stenu.

<u>Poznámka 1</u>. DCEL – reprezentáciu súvislého planárneho grafu vidno na obr 8.(vrcholy a hrany reprezentácie sú totožné s grafovými, steny sú reprezentované vonkajšími oblasťami grafu).

<u>Poznámka 2.</u> Na obrázkoch 10 a 11 je kompletná neštrukturovaná hraničná reprezentácia štvorstena.

Objemovo- orientované reprezentácie

A. Konštruktívna geometria telies- CSG

Zahŕňa v sebe sústavu schém, ktoré reprezentujú telesá (2-variety), ako boolovské konštrukcie alebo kombinácie telesových komponentov pomocou množiny regularizovaných boolovských operácií. Hlavnými CSG-reprezentáciami sú binárne stromy (obr.12), kde vnútorné (čiže nie koncové uzly) reprezentujú určité množinové operácie a listové (koncové) uzly reprezentujú podmnožiny E^3 (r-množiny, 2-variety).

Listové objekty (objekty reprezentované v listoch) sú známe ako základné objekty (primitíva). Sú to obyčajne jednoduché ohraničené geometrické útvary ako pravouhlé bloky, gule, valce, kužele alebo nekonečné – polpriestory (definované formulami typu $f(x,y,z) \le 0$). U všeobecnejších tvarov CSG stromov sa pripúšťa, aby nekoncové uzly reprezentovali buď množinu operácií, alebo pohyby (priama zhodnosť reprezentovaná ortogonálnou maticou) a koncové uzly reprezentovali buď primitívy alebo parametre pohybov. V praxi sa primitívy získavajú z CSG-balíčkov cez menu alebo sa konštruujú pomocou iných modelovacích procedúr alebo ako medziprodukty samotného CSG-modelovania.

Bunkový rozklad telesa

Na obrázku 14 je graficky demonštrovaný rozklad šálky na časti- bunky, tej vlastnosti, že každá je jednoduchšie opísateľná ako pôvodná šálka.

Obr.14

Na obr.12 je takýto rozklad urobený pre kľúč, ktorý predstavuje aj jeho reprezentáciu v tvare binárneho stromu. Takýto proces sa nazýva bunkový rozklad telesa.

Každé teleso sa dá reprezentovať ako súčet – zjednotenie množiny buniek, na ktoré je rozložené.

Dôvod rozkladu je ten, že celý objekt nemusí byť schopný jednoduchej reprezentácie, ale bunky – áno. Existuje mnoho spôsobov rozkladu, žiaden nie je výnimočný, ale všetky sú jednoznačné.

<u>Špeciálny prípad</u> bunkového rozkladu – výpočet priestorového obsadenia (zabratého priestoru)

Pod týmto názvom rozumieme špeciálny prípad bunkového rozkladu, keď bunky majú tvar kociek a sú rozmiestnené v pevnej priestorovej sieti. Zmenšovaním kociek sa táto metóda blíži reprezentácii pevného telesa ako súvislej množiny bodov v priestore. Takáto charakteristika telesa si vyžaduje vhodný spôsob reprezentácie buniek. Jeden možný spôsob je zoznam stredov všetkých buniek. Bunky v priestorovom poli sú buď obsadené časťami telesa alebo nie. Bunka môže byť binárne označená 1 alebo 0, prípadne ich grafickými ekvivalentmi. Ešte nedávno boli schémy tohto typu zbytočne príliš rozsiahle; všetky bunky sa označovali aj keď boli v rovnakom stave ako susedné a dlho nemali šancu svoj stav zmeniť (väčšinou totiž len hraničné mali takúto šancu).

Teraz prejdeme k opisu niektorých súčasných možností objemovej reprezentácie. Začneme voxlovou a budeme pokračovať oktalovými stromami, medzi ktoré pre zvýšenie názornosti vsunieme ich 2D analógiu – štvorstromy.

<u>Voxlová reprezentácia</u>:voxel – volume element – malé kocôčky vytvárajúce priestorový raster (zovšeobecnenie rovinného s pixlami na 3D). Každý voxel môže byť len v jednom zo stavov plný v prázdny. Zvyšovaním jemnosti priestorového rastra – 8-násobne narastá počet voxlov a teda enormne narastá pamäťová náročnosť. Uplatnenie – hlavne v medicínskych aplikáciach. <u>Oktálne stromy</u> (použitie ak teleso má väčšie homogénne časti a nie je príliš členité). Princíp je zrejmý z obr . 13.

Obr. 13: Schéma delenia priestoru, teleso a jemu prislúchajúci oktálny strom.

Delenie počiatočného priestoru obsahujúceho teleso na 8 častí (oktantov) končí keď dosiahneme, že všetky oktanty sú homogénne alebo sa ukončí po dosiahnutí určitého dopredu zvoleného kritéria. V počítačovej reprezentácii sa často využívajú lineárne záznamy. Napr. FFFFFV(FFFVFVVV)V, kde v zátvorkách je nehomogénny uzol.

<u>Štvorstromy</u> – založené na rekurzívnom prerozdeľovaní východzieho štvorcového poľa obsahujúceho rovinný útvar na 4 časti –kvadranty. V aplikáciách počítačovej grafiky rovinou útvaru môže byť obrazovka počítača. Princíp konštrukcie quadtree je na obr.15, kde došlo k trom úrovniam delenia štvorca (b) položeného na útvar (a).

Obr.15

Výška stromu na tomto obrázku je n=3 a počet uzlov, vďaka efektívnosti quadtree je len 33 namiesto max. možných $64 = 2^3 \times 2^3$. Proces redukcie modelu objektu na reprez. quadtree sa nazýva quadtree zakódovaním.

Oktálový strom – pokračovanie. Táto solid modelingová schéma na reprezentovanie priestorových geometrických objektov bola vytvorená D.J.Meagherom v roku 1982. Používa túto priestorovo roztriedenú 8-árnu hierarchickú stromovú štruktúru na reprezentáciu telies, vďaka čomu jeho algoritmy iba lineárne závisia na raste zložitosti objektov. Každý uzol stromu octree, ktorý nie je list má 8 potomkov. Ak výška stromu je n, potenciálne pole má veľkosť maximálne $2^n \times 2^n \times 2^n$. Na obr.16 je n=3.

Obr.16

Všetky výpočty na týchto modeloch sú založené na celočíselnej aritmetike, algoritmy sú stabilné a umožňujú paralelný procesing. Meagher demonštroval algoritmy, ktoré posúvajú, rotujú a škálujú octree modely, kombinujú ich pomocou boolovských operácií, ktoré vypočítavajú geometrické vlastnosti a vykonávajú vzťahovú analýzu.