Department of molecurar science and nanosystems Prof. A. Alla

Exercise Sheet 9

Prepare a script that computes the numerical approximation of the Cauchy problem

$$\dot{y}(t) = f(t, y(t)), \quad t \in I$$
$$y(t_0) = y_0$$

using explicit Runge Kutta method of order 2 and 4. (optional) Implement the stepsize adaptivity.

INPUT:

- f, the function which describes the vectorial field
- t_0, y_0 initial conditions;
- \bullet T final time
- Δt temporal step size (if not adaptive);

OUTPUT:

- Absolute error when the solution is known.
- the plot of the numerical approximation and the exact solution (when known) with different colors,
- Order of convergence of the scheme.
- a report with the results

You might test your code on the following ODEs

- a) $\dot{y} = -y \log y, \ y(0) = 0.5,$ exact solution $y(t) = e^{-e^{\log \log(2) t}}$
- b) $\dot{y} = -e^{-(t+y)}$, y(0) = 1, exact solution $y(t) = \log(e + e^{-t} 1)$
- c) $\dot{y} = y(1-y), y(0) = 0.5,$ exact solution $y(t) = e^t/(1+e^t)$
- d) $\dot{y} = 16y(1-y)\,y(0) = 1/1024$, exact solution $y(t) = e^{16t \log 1023}/\left(1 + e^{16t \log 1023}\right)$
- e) Harmonic oscillator

$$y'' = -\omega^2 y, y(0) = x_0, y'(0) = y_0 \omega,$$

exact solution: $y(t) = x_0 \cos(\omega t) + y_0 \sin(\omega t)$

f) Lotka-Volterra

$$y_1' = \alpha y_1 - \beta y_1 y_2$$

$$y_2' = -\gamma y_2 + \delta y_1 y_2$$

For example: $\alpha = 0.25, \beta = 0.01, \gamma = 1, \delta = 0.01, y_1(0) = 80, y_2(0) = 30, t_0 = 0, T = 30.$

g) Van der Pol

$$y'_1 = y_2 - f(y_1)$$

 $y'_2 = -y_1$

with
$$f(x) = x^3 - x$$
, $y_1(0) = x_1$, $y_2(0) = x_2$.