- 1. 一个工厂为一结点;若两个工厂之间有业务联系,则此两点之间用边相联;这样就得到一个无向图。若每点的度数为 3,则总度数为 27,与图的总度数总是偶数的性质矛盾。若仅有四个点的度数为偶数,则其余五个点度数均为奇数,从而总度数为奇数,仍与图的总度数总是偶数的性质矛盾。
 - 2. 若存在孤立点,则 m 不超过 K_{n-1} 的边数,故 m <= (n-1)(n-2)/2,与题设矛盾。

记a;为结点v,的正度数,a;为结点v,的负度数,则

4. 用向量(a_1,a_2,a_3)表示三个量杯中水的量,其中 a_i 为第 i 杯中水的量, i = 1,2,3.

以满足 $a_1+a_2+a_3=8$ (a_1,a_2,a_3 为非负整数)的所有向量作为各结点,如果(a_1,a_2,a_3)中某杯的水倒满另一杯得到 (a'_1 , a'_2 , a'_3),则由结点到结点画一条有向边。这样可得一个有向图。

本题即为在此图中找一条由(8,0,0)到(4,4,0)的一条有向

路,以下即是这样的一条:

$$(8,0,0) \longrightarrow (5,0,3) \longrightarrow (5,3,0) \longrightarrow (2,3,3) \longrightarrow (2,5,1)$$

$$\longrightarrow (7,0,1) \longrightarrow (7,1,0) \longrightarrow (4,1,3) \longrightarrow (4,4,0)$$

5. 可以。

7. 同构。同构的双射如下:

V	V ₁	V ₂	V ₃	V_4	V ₅	V ₆
f (v)	b	a	С	e	d	f

边列表为: A= (1,1,3,2,6,6,5,3,6), B= (2,4,1,5,3,4,3,4,1).

正向表为: A= (1,3,4,6,6,7,10), B= (2,4,5,1,4,3,3,4,1).

习题二

1. 用数学归纳法。k=1 时,由定理知结论成立。设对于 k 命题成立。

对于 k+1 情形,设前 k 个连通支的结点总个数为 n_1 ,则由归纳假设,前 k 个连通支的总边数 $m_1 <= (n_1 - k + 1)(n_1 - k)/2$ 。最后一个连通支的结点个数为 $n-n_1$,其边数

$$m_2 \le (n - n_1)(n - n_1 - 1)/2$$

所以, G 的总边数

$$m = m_1 + m_2 \le (n_1 - k + 1)(n_1 - k)/2 + (n - n_1)(n - n_1 - 1)/2$$

n₁=n-1 时,m<= ((n-1)-k+1)((n-1)-k)/2 +0= ((n-k)((n-k) -1)/2,命题成立。

n₁<= n-2 时,由于 n₁<=k, 故

 $m \le ((n-2)-k+1)(n_1-k)/2 + (n-n_1)(n-k-1)/2 =$ (n-k)(n-k-1)/2 ,

命题成立。

2. 若 G 连通, 则命题已成立, 否则, G 至少有两个连通支。

任取结点 $v_1, v_2 \in$,若边(v_1, v_2)不在 **宁**,则 v_1, v_2 在 **G** 的同一个连通支 (假设为 G_1) 中。设 G_2 是 **G** 的另一连通支,取 $v_3 \in G_2$,则 $v_1 \rightarrow v_3 \rightarrow v_2$ 是 中 v_1 到 v_2 的一条道路,即结点 v_1, v_2 在 中有路相通。

由 v₁, v₂ 的任意性,知 连通。

3. 设 L_1, L_2 是连通图 G 的两条最长路,且 L_1, L_2 无公共结点。设 L_1, L_2 的长度(边数)为 p.

由于 G 是连通的,故 L_1 上必有一结点 v_1 与 L_2 上一结点 v_2 有道路 L'相通。

结点 V_1 将 L_1 分为两部分,其中一部分的长度 $\geq p/2$,记此

部分道路为 L_3 。同样,结点 v_2 将 L_2 分为两部分,其中一部分 L_4 的长度 $\geq p/2$ 。

这样, $L_3+L'+L_4$ 就是 G 的一条新的道路,且其长度大于 p, 这 与 G 的最长路(L_1)的长度是 p 的假设矛盾。

4. 对结点数 n 作归纳法。

(1)n=4时 m≥5. 若有结点的度≤1, 则剩下的三结点的度数 2和≥4, 不可能。于是每个结点的度≥2, 从而存在一个回路。

若此回路为一个三角形,则还有此回路外的一结点,它与此回路中的结点至少有二条边,从而构成一个新的含全部四个结点的回路,原来三角形中的一边(不在新回路中)即是新回路的一条弦。

若此回路为含全部四个结点的初等回路,则至少还有一边不 在回路上,此边就是该回路的一条弦。

(2)设 n-1情形命题已成立。 对于 n 情形:

若有结点的度≤**1**,则去掉此结点及关联边后,依归纳假设命 题成立。

若有结点v的度=2,设v关联的两结点为s,t,则去掉结点v及关联边、将s,t合并为一个结点后,依归纳假设命题成立。

若每个结点的度≥3,由书上例 2.1.3 的结果知命题成立。

6. 问题可化为求下列红线表示的图是否存在一条欧拉道路的问题:存在欧拉道路!

8. 由推论 2.4.1, 只需验证 G 的任意一对结点的度数之和大于或等于 n 即可。

若存在结点 v_1 , v_2 满足 $deg(v_1)+deg(v_2)< n$, 则 $G-\{v_1,v_2\}$ 的边数<= K_{n-2} 的边数= (n-2)(n-3)/2 .

另一方面, 由题设知

 $G - \{ v_1, v_2 \} \text{ 的 边 数} = m - (deg(v_1) + deg(v_2)) > \\ [(n-1)(n-2)/2 + 2] - n = (n-2)(n-3)/2 \, ,$

与上式矛盾。

13. 1)将边按权值由小到大排序:

边: a₂₃ a₃₅ a₁₅ a₁₃ a₃₄ a₄₅ a₂₄ a₁₂ a₂₅ a₁₄

权: 26 27 29 33 34 35 38 42 49 52

2) 分支定界:

S1: a₂₃ a₃₅ a₁₅ a₁₃ a₃₄, 非 H 回路,d (S1)=149;

将 a₃₄ 置换为其后的 a₄₅, a₂₄, a₁₂, a₂₅, a₁₄, 也全都是非 H 回路;

S2: a₂₃ a₃₅ a₁₅ a₃₄ a₄₅, 非 H 回路,d(S2)=151; 将 a₄₅ 置换为其后的 a₂₄, a₁₂, a₂₅, a₁₄, 也全都是非 H 回路;

S3: a₂₃ a₃₅ a₁₅ a₄₅ a₂₄, 非 H 回路,d (S8)=155; 将 a₂₄ 置换为其后的 a₁₂, a₂₅, a₁₄, 也全都是非 H 回路;

S4: a₂₃ a₃₅ a₁₅ a₂₄ a₁₂, 非 H 回路,d (S4)=162;

S5: a₂₃ a₃₅ a₁₅ a₂₄ a₂₅, 非 H 回路,d (S5)=169;

S6: a_{23} a_{35} a_{15} a_{24} a_{14} , $H \square \mathfrak{B}, d_0:=172$;

S7: a₂₃ a₃₅ a₁₅ a₁₂ a₂₅, 非 H 回路,d (S7)=173;

S8: a₂₃ a₃₅ a₁₃ a₃₄ a₄₅, 非 H 回路,d (S8)=155;

将 a₃₄, a₄₅ 置换为其后的数,也全都是非 H 回路;

S9: a₂₃ a₃₅ a₃₄ a₄₅ a₂₄, 非 H 回路,d (S9)=160; 将 a₄₅, a₂₄ 置换为其后的数,也全都是非 H 回路;

S10: a₂₃ a₃₅ a₄₅ a₂₄ a₁₂, 非 H 回路,d (S10)=168; 将 a₁₂ 置换为其后的 a₂₅, a₁₄, 也全都是非 H 回路;

S11: a₂₃ a₃₅ a₄₅ a₁₂ a₂₅, 非 H 回路,d (S11)=179; 将 a₁₂,a₂₅ 置换为其后的数,其路长差于 d₀,故不必考虑;

S12: a₂₃ a₃₅ a₂₄ a₁₂ a₂₅, 非H回路,d (S12)=182;

将 a_{24} , a_{12} , a_{25} ,置换为其后的数,其总长差于 d_0 ,故不必考虑;

继续下去所得组长度会比 S6 差,故可终止计算。 所以,H回路为 S6,路长为 172。

14. 这是一个旅行商问题(具体计算略):

15. 这是一个最短路问题(具体计算略):

习题三

1. 因为 n 个结点的树的边有 n-1 条,故其总度数为 2 (n-1),故度为 1 的结点个数为

2
$$(n-1)-2n_2-3n_3-\cdots-kn_k$$
.

2. 设L是树T的一条最长路,L中的结点依次为 v1, v2, …,

 v_k 。因为 L 中各结点都有边相连,所以它们的度数均大于或等于 1 。

若 deg $(v_1)>1$,则除了边 (v_1, v_2) 外,还存在边 (v_1, v') 。因为树中不存在回路,故 $v' \notin \{v_1, v_2, \dots, v_k\}$,于是, $(v', v_1, v_2, \dots, v_k)$ 是 T 的一条新的路,其长度比 L 更长。这与 L 是 T 的最长路矛盾。

所以 deg $(v_1)=1$,类似可证 deg $(v_k)=1$ 。

4. (a) 直接根据图确定 B₅B₅^T可得树的棵数:

$$\det(\boldsymbol{B}_{5}\boldsymbol{B}_{5}^{T}) = \begin{vmatrix} 3 & -1 & 0 & -1 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 4 & -2 \\ -1 & 0 & -2 & 4 \end{vmatrix} = 101.$$

(b) 去掉边(v₁, v₅),则直接根据图确定 B₅B₅¹可得不含边(v₁, v₅)的树的棵数:

$$\det(\mathbf{B}_{5}\mathbf{B}_{5}^{T}) = \begin{vmatrix} 2 & -1 & 0 & -1 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 4 & -2 \\ -1 & 0 & -2 & 4 \end{vmatrix} = 75,$$

于是,含边 (v_1, v_5) 的树的棵数为: 101-75=26。

(c) 去掉边(v_4 , v_5),则直接根据图确定 $B_5B_5^{\mathsf{T}}$ 可得不含边(v_1 , v_5)的树的棵数:

$$\det(\boldsymbol{B}_{5}\boldsymbol{B}_{5}^{T}) = \begin{vmatrix} 3 & -1 & 0 & -1 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 4 & -2 \\ -1 & 0 & -2 & 3 \end{vmatrix} = 60$$

.

5. (a) 因为

因此以水为根的根树的个数为

$$\mathbf{det}(\mathbf{B}_{1}^{*}\mathbf{B}_{1}^{\mathrm{T}}) = \begin{vmatrix} 2 & 0 & 0 & -1 \\ -1 & 3 & -1 & -1 \\ 0 & -1 & 3 & -1 \\ -1 & 0 & 0 & 2 \end{vmatrix} = 24.$$

.

(b) 去掉边(v₁, v₅)后,有

$$\boldsymbol{B}_{1} = \begin{bmatrix} -1 & 0 & 1 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 & -1 & -1 & 0 \\ 0 & -1 & 0 & 0 & 0 & -1 & 1 & 0 & -1 \\ 0 & 0 & 0 & -1 & 1 & 0 & 0 & 1 & 1 \end{bmatrix},$$

$$\boldsymbol{B}_{1}^{*} = \begin{bmatrix} -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & -1 & -1 & 0 \\ 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

因此以 v_1 为根且不含边 (v_1, v_5) 的根树的个数为

$$\det(\mathbf{B}_{1}^{*}\mathbf{B}_{1}^{T}) = \begin{vmatrix} 2 & 0 & 0 & -1 \\ -1 & 3 & -1 & -1 \\ 0 & -1 & 3 & -1 \\ -1 & 0 & 0 & 1 \end{vmatrix} = 8.$$

(c) 去掉到 v₃的其它全部边(v₄, v₃)、(v₅, v₃)后,有

$$\boldsymbol{B}_1 = \begin{bmatrix} -1 & 0 & 0 & 1 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & -1 & -1 \\ 0 & -1 & 0 & 0 & -1 & 1 & 0 & 1 \end{bmatrix},$$

$$\boldsymbol{B}_1^* = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & -1 & -1 \\ 0 & -1 & 0 & 0 & -1 & 0 & 0 & 0 \end{bmatrix},$$

因此以水为根且含边(水2,水3)的根树的个数为

$$\det(\mathbf{B}_{1}^{*}\mathbf{B}_{1}^{T}) = \begin{vmatrix} 2 & 0 & 0 & -1 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 3 & -1 \\ -1 & 0 & 0 & 2 \end{vmatrix} = 9.$$

10. (1) 余树为 {e₁, e₂, e₅, e₈}, 重排 B₅的各列得

由定理3.4.4,

$$\mathbf{C}_{\mathbf{f}\mathbf{12}} = -\mathbf{B}_{11}^{T} \mathbf{B}_{12}^{-1 T} = -\begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 1 & 1 \\ 0 & 0 & -1 & -1 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix},$$

基本回路矩阵为

$$\mathbf{C_f} = (\ \mathbf{I} \ \ \mathbf{C_{f12}}\) = \begin{bmatrix} \ \mathbf{e_1} & \ \mathbf{e_2} & \ \mathbf{e_5} & \ \mathbf{e_8} & \ \mathbf{e_3} & \ \mathbf{e_4} & \ \mathbf{e_6} & \ \mathbf{e_7} \\ \ \ \mathbf{0} & \ \mathbf{0} & \ \mathbf{0} & \ -1 & -1 & 1 & 1 \\ \ \ \mathbf{0} & \ \mathbf{1} & \ \mathbf{0} & \ \mathbf{0} & \ 0 & -1 & -1 & 1 \\ \ \ \mathbf{0} & \ \mathbf{0} & \ \mathbf{1} & \ \mathbf{0} & \ \mathbf{0} & \ -1 & \ \mathbf{0} & \ \mathbf{0} \\ \ \ \mathbf{0} & \ \mathbf{0} & \ \mathbf{0} & \ \mathbf{1} & \ \mathbf{0} & \ \mathbf{0} & \ -1 \end{bmatrix}.$$

(2) 由定理 3.4.8, 基本割集矩阵为

14. (a) 这是一个求最优二叉树的问题。

各字符出现次数为: s t a e c 空格

3 4 5 1 1 4

所以最优二进制编码为:

e: 1100 c: 1101 s: 111 t: 00 **空格:** 01 a: 10 此时字符串的二进制编码总长度为 43 .

(b) 去掉空格,类似(a)计算。

15. 将图中各边进行编号得右图。

取参考支撑树 $t_0=\{e_1, e_2, e_3, e_5\}$. e_4

(1) 因为
$$S_{e1}(t_0) = \{ e_1, e_4, e_6 \}, S_{e2}(t_0) = \{ e_2, t_0 \} = \{ e_2, t_0 \}, e_6 \},$$

$$S_{e3}(t_0) = \{ e_3, e_6 \}, S_{e5}(t_0) = \{ e_5, e_6 \}, 所以$$

$$T^{e_1} = \{ \{ e_4, e_2, e_3, e_5 \}, \{ e_6, e_2, e_3, e_5 \} \} = \{ t_1, t_2 \},$$

$$T^{e^2} = \{ \{ e_1, e_4, e_3, e_5 \}, \{ e_1, e_6, e_3, e_5 \} \} = \{ t_3, t_4 \},$$

$$T^{e3} = \{ \{ e_1, e_2, e_6, e_5 \} \} = \{ t_5 \},$$

$$T^{e5} = \{ \{ e_1, e_2, e_3, e_6 \} \} = \{ t_6 \},$$

从而 $T^1 = \{ t_1, t_2, t_3, t_4, t_5, t_6 \}$.

(2) 因为 $S_{e2}(t_1)=\{e_2,e_1\}$, $S_{e3}(t_1)=\{e_3,e_6\}$, $S_{e5}(t_1)=\{e_5,e_6\}$,

 $S_{e2}(t_2) = \{ e_2, e_1 \}, S_{e3}(t_2) = \{ e_3, e_1, e_4 \}, S_{e5}(t_2) = \{ e_1, e_4, e_5 \},$

$$S_{e3}(t_3) = \{ e_3, e_6 \}, S_{e5}(t_3) = \{ e_6, e_5 \},$$

$$S_{e3}(t_4) = \{ e_3, e_2, e_4 \}, S_{e5}(t_4) = \{ e_2, e_4, e_5 \},$$

$$S_{e5}(t_5) = \{ e_5, e_3 \},$$

所以

$$S_{e2}(t_0) \cap S_{e2}(t_1) = \{e_2\}, S_{e2}(t_0) \cap S_{e2}(t_2) = \{e_2\},$$

从而 T^{e1 e2}=Ø;

$$S_{e3}(t_0) \cap S_{e3}(t_1) = \{ e_3, e_6 \}$$
 , $S_{e3}(t_0) \cap S_{e3}(t_2) = \{ e_3 \}$,

从而
$$T^{e1 e3} = \{\{e_4, e_2, e_6, e_5\}\} = \{t_7\};$$

S
$$_{e5}(t_0)$$
 $\bigcap S$ $_{e5}(t_1)=\{$ $e_5,$ e_6 $\}$, S $_{e5}(t_0)$ $\bigcap S$ $_{e5}(t_2)=\{$ e_5 $\}$,

从而 $T^{e1 e5} = \{\{e_4, e_2, e_3, e_6\}\} = \{t_8\};$

 $S_{e3}(t_0) \cap S_{e3}(t_3) = \{ e_3, e_6 \}$, $S_{e3}(t_0) \cap S_{e3}(t_4) = \{ e_3 \}$, 从而 $T^{e2\ e3} = \{ \{ e_1, e_4, e_6, e_5 \} \} = \{ t_9 \}$;

 $S_{e5}(t_0) \cap S_{e5}(t_3) = \{ e_5, e_6 \}$, $S_{e5}(t_0) \cap S_{e5}(t_4) = \{ e_5 \}$, 从而 $T^{e2} = \{ \{ e_1, e_4, e_3, e_6 \} \} = \{ t_{10} \}$;

 $S_{e5}(t_0)$ $\cap S_{e5}(t_5) = \{e_5\}$, 从而 $T^{e3\ e5} = \emptyset$;

于是 $T^2=\{t_7, t_8, t_9, t_{10}\}$.

(3) 可以验证 T^{e1 e2 e3}=T^{e1 e3 e5}=T^{e2 e3 e5}=Ø, 所以 T³= Ø. 最后,由以上计算可知,全部生成树为{t₀,t₁,t₂,t₃, t₄,t₅,t₆,t₇,t₈,t₉,t₁₀}.

16. 用 Kruskal 算法。先将权排序,而后按权由小到大选 边 8-1 条(构成回路时所选边不放入),可得一棵最小生成树(总 权为 22):

习题四

1. 因为 d=m-n+2<12, 所以 m-n<10.

如果命题不成立,则每个域的边界数≥5,于是有 5d≤2m。 利用 d= m-n+2, 得

3m+10≤5n .

结合 m-n<10, 可得 m<3n/2.

另一方面,由于 $3n \leq \Sigma d(v_i) \leq 2m$,知 $m \geq 3n/2$,矛盾。

2. 设 G 是一个结点个数 \geq 4 的极大平面图,但 G 中至少有一个结点 ν 的度 \leq 2.

由于 G 是一个平面图, 因此 G-v 仍为平面图, 从而结点 v 及其关联的全部边(至多两条)在 G-v 中某个区域 D 中。

因为 G-v 是一个简单图,故没有重边和环,因此区域 D 至少有三条边。

如果 D 是一个内部域,则 D 的边界上必有一个结点与 v 可用一条不与其它边相交的边相连,这与 VG 是极大平面图的题设相矛盾。

如果 D 是一个外部域,同样可以在 D 的边界上

找一结点与 v 用一条不与其它边相交的边相连,仍与 G 是极大平面图的题设相矛盾。

以上矛盾说明 G 的每个结点的度至少是 3。

 \overline{G}

3. 用反证法。若 G 和 均为可平面的,设它们的边数分别是 m_{1}, m_{2} 则有

 $m_1 \le 3n-6$, $m_2 \le 3n-6$,

于是 m₁+ m₂≤6n-12, 即 n(n-1)/2≤6n-12, 其中 n≥11.

考虑函数 f(x)=x(x-1)/2-6x+12, x≥11.

因为 f(11)=1>0, f'(x)>0(x>11), 故 f(x) 在[11,+∞] 范围内严格 递增,所以 f(n)>0, $n\ge11$. 这与刚得到的不等式 $n(n-1)/2\le6n-12$ 相矛盾。

13. 因为图中含有一个 K₃子图,故其色数至少为 3。又因为用 三种颜色可以为此图结点着色,故其色数等于 3。由于

所以色数多项式

$$f(G, t)=f(K_5,t)+3 \ f(K_4,t)+f(K_3,t)$$

$$=t(t-1) \ (t-2) \ (t-3) \ (t-4)+3 \ t(t-1) \ (t-2) \ (t-3)+t(t-1)$$

$$=t(t-1) \ (t-2) \ (t^2-4t+4).$$

14. 显然中心点的颜色与回路上各点的均不同,而回路上结点数为偶数时色数为 2,结点数为奇数时色数为 3,故整个图 W_n 当 n 为为偶数时色数为 1+3,结点数为奇数时色数为 1+2。

因为对于回路 C_n, 已知其色数多项式 f(C_n, t)=(t-1)ⁿ+(-1)ⁿ(t-1), 所以

 $f(G, t)=t \cdot f(C_{n-1}, t-1)=t[(t-2)^{n-1}+(-1)^{n-1}(t-2)].$

16. G 当 m,n 均为偶数时色数为 2, 其它情形时色数为 3。

因为 f(C_{n+m}, t)= f(G, t)+ f(G', t), 其中 G'为下图:

根据色数多项式的定义, 直接可知

$$f(G', t)=max\{ f(C_m, t), f(C_n, t)\}= f(C_k, t),$$

其中 k=max{m,n}, 故

$$f(G, t) = f(C_{n+m}, t) - f(G', t)$$

$$= (t-1)^{n+m-1} + (-1)^{n+m-1} (t-1) - (t-1)^{k-1} - (-1)^{k-1} (t-1).$$

习题五

1. 一个最大匹配是:

 $(x_1,y_5), (x_2,y_1), (x_3,y_2), (x_4,y_3), (x_5,y_4).$

2. 这可以看成是以下二分图是否存在完美匹配的问题:

红线表示的是一个完美匹配。所以:

字符串 bc 可以用 b 表示,

字符串 ed 可以用 e 表示,

字符串 ac 可以用 c 表示,

字符串 bd 可以用 d表示,

字符串 abe 可以用 a 表示。

8. 每行中用此行的最大数减去此行的每一个数,得到一个等价的最小成本问题:

由于可选出每行每列恰有一个零元素的方案,故此方案即为最优方案.

9. 每行中减去此行的最小数:

由于可选出每行每列恰有一个零元素的方案,故此方案即为最优方案.

11. 增加一个虚拟总发点 s 和一个虚拟总收点和 t, 则问题变为

应用 Ford-Fulkerson 算法,可得一个最大流(如上图),最大流量为 21. 在最后图中,可得到标号的全部结点为 s, s_1 , s_2 , b, 其余结点均不能得到标号,故最小割集为(U,V),其中 U={s, s_1 , s_2 , b}, V={t, t_1 , t_2 , a},可以验证其割量等于此容许流流量.

14. 增加一个虚拟发点 s', 初始容许流为零流, 则有

这就是最小费用流.

习题六

1. n≥2 时, n 个结点的简单图 G 最多有 n-2 个割点, n-1 条割边。 证明如下:

先证 G 最多有 n-1 条割边。因为 G 中任何一个回路中的每一条边都不是割边,因此将 G 中所有回路上的一切边去除后,剩下的边才可能是割边。剩下的图不含回路,边最多时至多此图是一棵树,其边数为 n-1, 故割边最多有 n-1 条。

再证 G 最多有 n-2 个割点。考虑 G 的含结点个数在两个以上的连通分支 C (如果这样的连通分支不存在,则每个结点的度不超过 1 , 因而都不是割点,故此时命题成立)。

如果 C 是一棵树,则 C 至少有两个树叶结点,这两个结点都不可能是割点, C 的割边条数也比其结点数少 1, 此时命题成立。

如果 C 不是一棵树,则 C 有一棵支撑树 T。在 C-T 中取一边

e,则 T+e 含一个回路。此回路至少含三个结点,且这三个结点都不是割点,此时命题仍成立。

 $\overline{\mathbf{G}}$

2. 设 v 同时为 G 和 的割点,则存在结点 A,B,C,D, 使得边 (A,v)和边(v,B)均在 G 中,且 是 与 B 间在 G 中的道路必经过结点 v;边(C,v)和边(v,D)均在 中,且 C 与 D 间在 中的道路必经过结点 点 v。

显然 中存在边(A,B)。若 A,B 与 v 在 中不属于同一个连通分支,则边(\overline{A} , C)和边(D, B)属于 G。由于边(C, D)也在 G 中,则 A 到 B 有道路 A— C— D— B,它并不经过结点 v,矛盾。

若 A,B 与 v 在 中属于同一个连通分支,则边(A,B)与 C 或 D 属于 一v 的同一个连通分支,不妨设边(A,B)与 C 属于 一v 的同一个连通分支。由于 D 到 A,B 的道路必须经过结点 v,故 G 中必有边(A,D)和边(B,D)。于是在 G 中有一条 A 到 B 的道路 A — D — B,它并不经过结点 v,矛盾。

以上证明说明G的割点不可能同时是的割点。

3. 对于第一个图: κ(G)=4, λ(G)=4.

对于第二个图: κ (G)=3, λ (G)=3.