Математический анализ 1. Направление 38.03.01 Экономика Тема 2. Функции нескольких переменных

Семинар 2.11. Задачи на условный экстремум с одним условием связи

1. Найдите все точки экстремума заданной функции f(x,y) при указанном условии связи F(x,y)=0 методом Лагранжа, включая проверку выполнения достаточных условий экстремума.

Постройте также графические иллюстрации к решениям, позволяющие их проверить:

(1)
$$f(x,y) = x^2 + y^2$$
, $F(x,y) \equiv x + y - 2 = 0$; (2) $f(x,y) = xy$, $F(x,y) \equiv x + y - 2 = 0$;

(3)
$$f(x,y) = x+y$$
, $F(x,y) \equiv x^2+y^2-2=0$; (4) $f(x,y) = x+y$, $F(x,y) \equiv xy-1=0$;

(5)
$$f(x,y) = x+y$$
, $F(x,y) \equiv x^2+y^2-2x = 0$; (6) $f(x,y) = x+y$, $F(x,y) \equiv x^2-2y = 0$;

(7)
$$f(x,y) = y - x^2$$
, $F(x,y) \equiv x^2 + y^2 - 4 = 0$;

(8)
$$f(x,y) = xy, F(x,y) \equiv x^3 + y^3 - 2xy = 0;$$
 (9) $f(x,y) = xy^2, F(x,y) \equiv x + 2y - 3 = 0;$

(10)
$$f(x,y) = xy^2$$
, $F(x,y) \equiv x + y - 3 = 0$;

(11)
$$f(x,y) = x^2y^3$$
, $F(x,y) \equiv 2x + 3y - 5 = 0$;

(12)
$$f(x,y) = x^2y^3$$
, $F(x,y) \equiv x + y - 900 = 0$.

2. Найдите все точки экстремума заданной функции f(x,y,z) при указанном условии связи F(x,y,z)=0 методом Лагранжа, включая проверку выполнения достаточных условий экстремума:

(1)
$$f(x, y, z) = x^2 y^3 z^4$$
, $F(x, y, z) \equiv 2x + 3y + 4z - 9 = 0$;

(2)
$$f(x, y, z) = xyz, F(x, y, z) \equiv x + y + z - 3 = 0;$$

(3)
$$f(x, y, z) = x + y + z$$
, $F(x, y, z) \equiv xyz - 1 = 0$;

(4)
$$f(x,y,z) = x^2 + y^2 + z^2 - 3$$
, $F(x,y,z) \equiv x + y + z = 0$;

(5)
$$f(x, y, z) = x^2 + y^2 + z^2$$
, $F(x, y, z) \equiv x + y + z - 3 = 0$;

(6)
$$f(x,y,z) = x^2 + y^2 + z^2$$
, $F(x,y,z) \equiv xyz - 1 = 0$;

(7)
$$f(x, y, z) = xyz$$
, $F(x, y, z) \equiv x^2 + y^2 + z^2 - 3 = 0$;

(8)
$$f(x,y) = x + y + z$$
, $F(x,y,z) \equiv x^2 + y^2 + z^2 - 3 = 0$;

(9)
$$f(x, y, z) = 2x + 3y + 4z$$
, $F(x, y, z) \equiv x^2y^3z^4 - 1 = 0$;

(10)
$$f(x,y,z) = x^2y^3z^4$$
, $F(x,y,z) \equiv x + y + z - 18 = 0$, $x > 0$, $y > 0$, $z > 0$.

3. Найдите все точки экстремума заданной функции f(x,y) при указанном условии связи F(x,y)=0 с помощью метода Лагранжа, включая проверку выполнения достаточных условий экстремума:

(1)
$$f(x,y) = \frac{1}{x} + \frac{1}{y}$$
, $F(x,y) \equiv \frac{1}{x^2} + \frac{1}{y^2} - 1 = 0$;

(2)
$$f(x,y) = \cos^2 x + \cos^2 y$$
, $F(x,y) \equiv x - y - \frac{\pi}{4} = 0$.

- 4. Найдите все точки экстремума заданной функции f(x,y,z) при указанном условии связи F(x,y,z)=0 с помощью метода Лагранжа, включая проверку выполнения достаточных условий экстремума:
 - (1) $f(x, y, z) = (\sin x)(\sin y)\sin z$, $F(x, y, z) \equiv x + y + z \frac{\pi}{2}$, x > 0, y > 0, z > 0;
 - (2) $f(x, y, z) = x\sqrt{yz}$, $F(x, y, z) \equiv x + y + z 1 = 0$;
 - (3) $f(x,y,z) = \frac{xy}{z}$, $F(x,y,z) \equiv x + y + z z^4 = 0$.

Экономические приложения

- 5. При затратах на оплату труда в x тыс. у.е. и на приобретение оборудования в y тыс. у.е. производство определенного предприятия составляет $Q(x,y) = 60x^{\frac{1}{3}}y^{\frac{2}{3}}$ единиц. Бюджет предпринимателя составляет 120 000 у.е. Как необходимо распределить средства между трудом и оборудованием так, чтобы максимизировать производство?
- 6. У потребителя имеется 280 у.е., которые он хочет потратить на два товара, первый из которых стоит 2 у.е. за единицу, а второй 5 у.е. за единицу. Пусть полезность, получаемая потребителем от x единиц первого товара и y единиц второго товара, задается функцией Кобба-Дугласа $U(x,y)=100x^{0.25}y^{0.75}$. Сколько единиц каждого товара должен приобрести потребитель, чтобы максимизировать полезность?
- 7. У потребителя имеется k у.е., которые он хочет потратить на два товара, первый из которых стоит a у.е. за единицу, а второй b у.е. за единицу. Пусть полезность, получаемая потребителем от x единиц первого товара и y единиц второго товара, задается функцией Кобба-Дугласа $U(x,y)=x^{\alpha}y^{\beta}$, где $0\leqslant\alpha\leqslant1$ и $\alpha+\beta=1$. Покажите, что полезность максимальна при $x=\frac{k\alpha}{a}$ и $y=\frac{k\alpha}{b}$.
- 8. Пусть Q(x,y) производственная функция, где x и y представляют собой соответственно единицы труда и капитала. При себестоимости единиц труда и капитала соответственно в p и q у.е. общая себестоимость производства равна px+qy, где $p\neq 0$ и $q\neq 0$.
 - (1) Покажите, что при фиксированном уровне производства c общие издержки минимальны при $\frac{Q'_x}{p} = \frac{Q'_y}{q}$ и Q(x,y) = c при условии, что Q'_x и Q'_y не обращаются одновременно в нуль. Эту задачу часто называют задачей на минимальные издержки, а ее решение комбинацией факторов с минимальными издержками.
 - (2) Покажите, что факторы производства x и y, которые максимизируют уровень производства Q(x,y) при фиксированной себестоимости k, удовлетворяют системе уравнений $\frac{Q_x'}{p} = \frac{Q_y'}{q}$, px+qy=k. Эту задачу называют **задачей с фиксированным бюлжетом**.
 - (3) Покажите, что при фиксированном уровне производства $Ax^{\alpha}y^{\beta} = k$, где k постоянная, а $\alpha >$ и $\beta >$ 0 с $\alpha + \beta =$ 1, общая себестоимость C(x,y) = px + qy минимальна при $x = \frac{k}{A} \left(\frac{\alpha q}{\beta p}\right)^{\beta}$, $y = \frac{k}{A} \left(\frac{\beta p}{\alpha q}\right)^{\alpha}$.