LOGIQUE

Corrigé du contrôle continu du 30 Novembre 2009

Exercice 1(sur 4 points)

1- Voici des preuves dans LK:

$$\begin{array}{c|c} \overline{A,B \vdash A}^{\operatorname{ax}'} \overline{A,B \vdash B}^{\operatorname{ax}'} \\ \hline A,B \vdash A \land B \\ \hline A,B,\neg(A \land B) \vdash \neg g \\ \hline \neg(A \land B) \vdash \neg A,\neg B \\ \hline \neg(A \land B) \vdash \neg A \lor \neg B \\ \end{array} \begin{array}{c} \overline{A,B \vdash A,B}^{\operatorname{ax}'} \\ \hline A \land B \vdash A,B \\ \hline \neg(A \land B),A,B \\ \hline \neg A,\neg B \vdash \neg(A \land B) \\ \hline \neg A \lor \neg B \vdash \neg(A \land B) \\ \hline \neg A \lor \neg B \vdash \neg(A \land B) \\ \end{array} \begin{array}{c} \neg g \\ \neg A,\neg B \vdash \neg(A \land B) \\ \hline \neg A \lor \neg B \vdash \neg(A \land B) \\ \hline \end{array}$$

$$\frac{P(x) \vdash P(x)}{\vdash P(x), \neg P(x)} \neg_d \\ \vdash P(x), \neg P(x) \lor_d \\ \vdash P(x) \lor \neg P(x) \lor_d \\ \vdash \forall x (P(x) \lor \neg P(x)) \lor_d \\ \vdash \neg (\forall x (P(x) \lor \neg P(x))) \vdash \neg_g \\ \vdash \neg \neg (\forall x (P(x) \lor \neg P(x))) \neg_d \\ \vdash (\neg \exists x P(x)) \rightarrow (\forall x \neg P(x)) \rightarrow_d \\ \hline$$

2- La quatrième preuve est aussi une preuve dans LJ.

Exercice 2(sur 3 points)

- 1- La propriété $\models \neg(A \lor \neg A)$ n'est pas vraie : dans la structure booléenne définie par $\nu(A) = 1$ la valeur de $\neg(A \lor \neg A)$ est 0. Donc, par la propriété d'adéquation du système LK, le séquent $\vdash \neg(A \lor \neg A)$ n'est pas prouvable.
- 2- Cosinus a commis deux erreurs:
- 2.1 : on ne peut passer du séquent $\bot \vdash$ au séquent $A \vdash$ par aucune suite finie de règles de LK, en particulier pas au moyen d'une suite finie d'affaiblissements;
- 2.2 on ne peut passer du séquent $A \vdash A$ au séquent $\vdash A$ par aucune règle de LK, en particulier pas au moyen d'une contraction gauche;

Exercice 3(sur 3 points)

1-2 Supposons que π est une preuve dans LK de $\Gamma \vdash A \lor B$. On obtient alors la preuve π' suivante de $\Gamma \vdash \neg A \to B$.

$$\begin{array}{c} \overline{A \vdash A} \\ \overline{A \vdash A} \\ \neg_g \\ \overline{A, \neg A \vdash} \\ \text{aff}_d \\ \overline{A, \neg A \vdash B} \\ \overline{A, \neg A \vdash B} \\ \overline{A \lor B, \neg A \vdash B} \\ \overline{A \lor B \vdash \neg A \to B} \\ \overline{C \vdash A \lor B} \\ \hline \Gamma \vdash \neg A \to B \end{array}$$

3- La preuve π' ci-dessus contient une coupure. D'après le théorème d'élimination des coupures, on peut construire, à partir de π' , une preuve π'' , dans LK, du même séquent $\Gamma \vdash \neg A \to B$, qui ne comporte aucune coupure.

Exercice 4(sur 10 points)

1- L'image de A par l'application S_A est $\{1,2\}$. Donc A1 est vérifié par A.

Par la même remarque, chaque élément de A différent de 0 est bien dans $\text{Im}(S_{\mathcal{A}})$, donc A2 est vérifiée par \mathcal{A} .

La première ligne (resp. colonne) du tableau définissant $+_{\mathcal{A}}$ correspond à l'identité, donc A4 est vérifiée par \mathcal{A} . On peut vérifier A5 pour chaque couple (x,y) (9 vérifications). On peut aussi remarquer que la table de $+_{\mathcal{A}}$ est celle du monoide quotient de $(\mathbb{N},+)$ par la congruence (de monoides) définie par : $u \equiv v$ si et seulement si $[(u=v=0) \text{ ou } (u \geq 1, v \geq 1 \text{ et } 2|(u-v))]$. La loi $+_{\mathcal{A}}$ est donc associative. L'application $S_{\mathcal{A}}$ coincide avec $x \mapsto x+1$ dans ce monoide. L'axiome A5 affirme que : x+(y+1)=(x+y)+1, ce qui découle de l'associativité de $+_{\mathcal{A}}$. 2- La seule interprétation possible est

$ imes_{\mathcal{A}}$	0	1	2
0	0	0	0
1	0	1	2
2	0	2	2

- 3- Comme $S_{\mathcal{A}}(0) = S_{\mathcal{A}}(2)$ alors que $0 \neq 2$, A3 n'est pas vrai dans cette structure.
- 4- D'après le théorème d'adéquation, tout séquent prouvable est vrai dans toute structure. Or $\mathcal{A} \models EG \land A1 \land A2 \land A4 \land A5 \land A6 \land A7$, mais $\mathcal{A} \not\models A3$. Donc EG, A1, A2, A4, A5, A6, A7 \models A3 n'est pas vrai dans \mathcal{A} et, a fortiori, n'est pas prouvable dans LK.
- 5- Dans la structure usuelle $\mathcal{N} := \langle \mathbb{N}, +, S \rangle$, tous les axiomes de **P0** sont vrais. Donc $\mathcal{N} \models \text{EG} \land \text{A1} \land \text{A2} \land \text{A4} \land \text{A5} \land \text{A6} \land \text{A7}$, mais $\mathcal{N} \not\models \neg \text{A3}$. Donc EG, A1, A2, A4, A5, A6, A7 $\models \neg \text{A3}$ n'est pas prouvable dans LK.