PATENT ABSTRACTS OF JAPAN

(11)Publication number:

02-169569

(43) Date of publication of application: 29.06.1990

(5	1)Int.	CI.
v	•	,	~

C07D207/09
A61K 31/40
A61K 31/445
A61K 31/445
A61K 31/47
A61K 31/495
A61K 31/55
C07D211/08
C07D211/40
C07D295/10
C07D401/00
C07D405/12
C07D413/06
C07D471/04

(21)Application number: 63-324620

(22)Date of filing:

22.12.1988

(71)Applicant : EISAI CO LTD

(72)Inventor: SUGIMOTO HACHIRO

TSUCHIYA YUTAKA HIGURE KUNIZO KARIBE NORIO IIMURA YOICHI SASAKI ATSUSHI

YAMANISHI YOSHIHARU

OGURA HIROO ARAKI SHIN OZASA TAKASHI KUBOTA ATSUHIKO OZASA MICHIKO YAMATSU KIYOMI

(54) DRUG CONTAINING CYCLIC AMINE DERIVATIVE

(57) Abstract:

NEW MATERIAL: The compound of formula I [J is phenyl, pyridyl, indanyl, indanonyl, alkyl, etc.; B is group of formula II-formula V (R2 is H or methyl; R3 is H, alkyl, acyl, phenyl, etc.; R4 is H, alkyl or phenyl; n is 0-10), etc.; T is N or C; Q is N, C or N-O; K is H, phenyl, arylalkyl, cinnamyl, alkyl, pyridylmethyl, acyl, etc.; q is 1-3] and its salt.

EXAMPLE: 1-Benzyl-4-[2-[(1-indanon)-2-yl]]

ethylpiperidine hydrochloride.

USE: It has strong acetylcholine esterase inhibiting action and choline acetyltransferase activating action and is useful for the remedy and prevention of central nervous diseases. PREPARATION: A compound of formula I wherein B is group of formula V can be produced e.g. by reacting an

Ш

acid halide of formula VI with a cyclic amine derivative of formula VII in an organic solvent in the presence of a desalting agent.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

⑩日本国特許庁(JP)

(1) 特許出願公開

◎ 公 開 特 許 公 報 (A) 平2-169569

❷発明の名称 環状アミン誘導体を含有する医薬

②特 颐 昭63-324620

②出 願 昭63(1988)12月22日

個発	明	者	杉本	八	æ	茨城県牛久市柏田町3073-13
⑦発	明	者	土 国	2	裕	茨城県牛久市栄町2-35-16
伊発	珋	者	日夢	邦	造	茨城県つくば市春日4-19-13 エーザイ紫山寮
伊発	明	耆	遊 英	ĮĘ	夫	茨城県つくば市春日 4 —19—13 エーザイ索山寮
母発	明	者	魬 村	洋	_	茨城県つくば市天久保2-23-5 メゾン学園103
⑦発	明	者	佐々	木	淳	茨城県つくば市春日 4 - 19-13 エーザイ柴山寮
②発	明	者	山西	靐	暔	茨城県竜ケ崎市松葉3-2-4
個発	朔	奢	小倉	博	雄	茨城県土浦市永閏1115-6
砂出	顧	人	エーザ	イ株式会	社	東京都文京区小石川 4 丁目 6 番10号
B ft	理	人	弁理士	古谷	錖	

ne # ±

1. 発明の名称

最終頁に続く

1 71

環状アミン誘導体を含有する医薬

- 2. 特許請求の範囲
- 1 次の一般式

(女中、

」は個理検书しくは無理検の次に示す墓:①フェニル蚤、②ピリジル基、③ピラジル 基、④キノリル基、⑤キノキサリル基、⑥キノキサリル基スは⑦フリル義、

四フェニル基が置換されていてもよい水の袋から速収された一位又は二倍の器:①インダニル、②インダニル、③インデニル、④インデノニル、⑤インダンジオニル、⑤テトラロニル、①ベンズスペロニル、⑪インダノリル、⑨式

伯政状アミド化合物から請導される一個の基、 伽低級アルキル基、又は 個式 fl'-CH=CH- (式中、R'は水果原子又は低

例式 N'-LN=LN- (数中、N'は水黒原子又は低 様アルコキシカルボニル器を意味する) で示される基を意味する。

原子、低級アルキル居、アシル居、低級アルキルスルホニル底、電検されてもよいフェニル及 又はペンジル基を意味する)で示される岳、式 0 € € -C-4-(CII) --(式中、1*は水袋原子、低級アルキ

g, d,

ル岳又はフェニル為を意味する)で示される岳、 o

式-CN=CN-(CH),-で示される器、式-O-C-O-(CH),g² g²

特閒平2-169569 (2)

0 || | 式-HB-C-(CH)。-で示される甚、丈-CK+-CO-HB-(CH)。-| i | i | i

で示される甚、式-(CH₂)₉-CD-NH-(CH)₈-で示さ | | 8²

中、 nは (1 又は (~10 の整数を意味する。 R*は 式 - (CH)。- で示されるアルキレン基が置換基を 。

持たないか、又は1つ又は1つ以上のメチル底を有しているような形で水素原子又はノチル及を放映する。)、式 =(CH-CH=CH)。-(式中、 bは)~3の整数を歴味する)で示される基、式 =CII-((II。)。-(式中、 cは 0 又は 1~9 の整数を意味する)で示される話、式 =(CII-CH)。=(式中、 dは 4 又は 1~5 の数数を意味する)で示され

0 る底、式 -C-CH-CR-CH₂-で示される展、式 Q OH CH₂-CH₂-CH₃-で示される区、式-CH-C-BH-CH₂-CH₃-CH

で示される基、式 -Chi-CH-C-Hi-(CH₂):-で示される基、式 -B+-で示される基、式 -B-で示される基、式 -B-で示される基、 ジアルキルアミノアルキルカルボニル基又は低級アルコラシカルボエル器を象徴する。

「は宣素原子又は炭素原子を意味する。 8は窒素原子、炭素原子又は玄 → H→B で 示される基を意味する。

はは水素原子、値換着しくは無関換のフェニル器、フェニル器が固換されてもよいアリールアルキル器、フェニル器が固換されてもよいシンナミル器、低級アルキル器、ピリジルメチル器、シクロアルキルアルキル器、アダマンタンメテル器、フリルメチル器、ンクロアルキル器、低級アルコキシカルボニル器又はアシル器を意

味する。

qは1~3の競技を康味する。

で担される退状アミン誘導体及びその薬理学的 に許容で含る塩を有効成分とするコリンプセチルトランスフェラーゼ賦活作用に基づく疾患の 治療・予防剤。

2 一般式

(式中、

けはフェニル基が置換されていてもよい次の なから遺損された一無又は二個の話: ①インダ ニル、②インダノニル、③インデニル、④イン デノニル、⑤インダンジオニル、⑤テトラロニ ル、①ペンズスペロニル、⑥インダノリル、⑤

史 ◇-CO-CH- で示される基、 | | CH,

ルスルホニル基、関後されてもよいフェニル基 又はベンジル基を意味する)で示される基、式 0 || | ||

ル基又はフュニル甚を意味する)で示される雄、

Q 式-CH=CH-(CH),-で示される様、文-O-C-D-(CH),-は R²

0 | | で示される基、式-0-C-NU-(CH):-で示される基、 | :

y 式-RH-C-(CH),-で示される茲、式-CH3-CG-#H-(CH),-R² R²

特閒平2-169569(3)

で示される巫、式・(CH+) p-CG-NH-(CN) x-で示さ | R*

DH | れる話、式-CH-(CN)。-で示される話(以上の式 | | H[‡]

中、 aは 0 又は | ~10 の整数を意味する。 Pr は 式 - (EB)。- で示されるアルキレン基が図換器を !

特たないか、又は(つ又は1つ以上のメチル基を有しているような形で水楽原子又はメチル基を意味する。)、式 = (CH-CH=CH)、- (式中、 bは1~3の整数を意味する)で示される基、式 = CH-(CH,)。- (式中、 cは0又は1~9の整数を意味する)で示される基、式 = (CH-CH)。 = (式中、 dは0又は1~5の整数を意味する)で示され

で示される基、式 -Cli=CH-C-NII-(CB;),-で示さ

れる甚、式 -M- で示される益、式 -G-で示される益、式 -G-で示される益、ジアルキルアミ ノアルキルカルポニル茲又は低級アルコキシガルボニル益を意味する。

はは水素原子、便換若しくは無理検のフェニルが、フェニル基が阻換されてもよいアリールアルキルは、フェニル基が阻換されてもよいシンナミル基、低級アルキル基、ピリジルメチル基、シクロアルキルドルキル基、アグマンタンメチル基、フリルノチル基、シクロアルキル器、低級アルコキシカルボニル及又はアシル基を怠せする。

qは1~3の姓数を意味する。

示される基を意味する。

式中、 ------- は単結合打しくは二重結合を稼 味する。〕

で表される遺状アミン勝端体及びその薬理学的 に許容できる塩を有効成分とする第ネ項1記載 の治療・予防料。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は、新規環状アミン誘導体を有効成分 とする医薬に関する。

(発明に盃る背景及び従来技術)

老年人口が急感に増大する中で、アルツハイマー型老年痴呆などの老年痴呆の治療法を確立することが掲載されている。

しかしながら、現在のところ、老年痴呆を実物で治療する試みは個々なされているが、これらの戻患に根本的に有効とされる薬剤は今のところ存在しない。

これらの疾患の治療薬の期発は種々の方向から研究されているが、有力な方向としてアルツハイマー型地平が戻は、脳のコリン作動性機能低下を伴うことから、アセチルコリン郎部物質、アセチルコリンエステラーゼ阻害剤の方向から開発することが進安され、実際にも試みられている。代表的なものとして、抗コリンエステラーゼ阻害剤として、フィゾスチグミン、チトラ

ヒドロアミノアクリジンなどがあるが、これら の薬剤は効果が十分でない、好ましくない創作 用があるほどの欠点を有しており、決定的な符 便至はないのが現状である。

更に、最近コリンアセチルトランスフェラーゼ (ChAT) 賦活作用もこれらの疾患の治療に有効であることが注目されている。

そこで本発明者らは、この作用を有する化合物について長年にわたって観意研究を重ねてきた。

その結果、後で述べる一般式 (i) で示される環状アミン誘導体が、所期の目的を達することが可能であることを見出した。

具体的には下記の構造式(()で表される本発明化合物は、優れたコリンアセチルトランスフェラーゼ(ChAT) 試活作用を育し、更に強力かつ選択性の高い抗アセチルコリンエステラーゼ活性を育するため、脳内のアセチルコリンを増量すること、記憶降客モデルで有効であること、及び促来この分野で汎用されているフェゾスチ

特朗平2-169569(4)

グミンと比較し、作用特殊時間が長く、安全性 が高いという大きな特徴を有しており、本類明 の価値は極めて高い。

本発明化合物は、コリンアセチルトランスフェラーゼの賦信作用に基づいて見出されたもので、従って中枢性コリン設能、即ち神経伝達物質としてのアセチルコリンの生体内の欠乏が原因とされる種々の疾患の治疾・予防に有効である。

代表的なものとしては、アルツハイマー型を 年成果に代表される各種仮泉があるが、そのは かハンチントン舞踏病、ピック病、晩発性運動 異常症などを挙げることができる。

徒って、本発明の目的は、医薬としてとりわけ中枢神経系の採虫の治療・予防に有効な新規 環状アミン誘導体を提供すること、この新規環 状アミン誘導体の製造方法を提供すること、及 びそれを有効成分とする医薬を提供することで ある。

〔発明の構成及び効果〕

(e)式 R'-CH=CH-(式中、R'は水器原子又は低 极アルコキシカルポニル基を意味する) で示される最を意味する。

で示される基、式 -li-(CII) n- (式中、R^oは水魚

原子、低級アルキル区、アシル菌、低級アルキ ルスルホニル菌、置換されてもよいフェニル基 文はペンジル基を意味する)で示される基、式

ル基又はフェニル基を意味する)で示される墓、

で示される基、式-O-C-HB-(CB)。- で示される基、 ! 本発明の目的化合物は、次の一般式 (j) で 表される過伏で i ン諸塚体及びその義理学的に 許容できる塩である。

〔式中、

Jは回面換着しくは無菌換の次に示す基:①フェニル基、②ピリジル基、③ピラジル基、④キノリル基、⑤シクロヘキシル基、⑥キノキサリル基又は⑦フリル基、

他フェニル基が置換されていてもよい次の群から選択された一個又は二個の基;①インダニル、②インダニル、③インデニル、③インデ ノニル、⑤インダンジオニル、④テトラロニル、 ①ペンズスペロニル、個インダノリル、匈式

(C) 環状で i Y化合物から誘導される一価の基、 砂低級アルキル器、又は

C || | 丈-NH-C-(CH)。-で示される甚、式-CH₂-CG-NH-(CH)。-| R² R²

で示される基、式-{CH_{*}}_{||}-CO-NH-(CH)_{||}-で示さ

中、 nは 0 又は 1 ~10 の整数を意味する。 8 7 は 式 - (CH)。- で示されるアルキレン基が直換基を

特たないか、又は1つ又は1つ以上のメチル基を育しているような形で水都原子又はメチル語を意味する。)、式 = (C8-CH)。 (式中、 bは1~3の強数を意味する)で示される基、式=CH-(CH₂)。-(式中、 cは①又は1~9の整数を意味する)で示される基、式=(CH-CH)。=(式中、 dは①又は1~5の整数を意味する)で示され

V N る基、式 -C-CH=CH-CH₁-で示される塞、式

特開平2-169569(5)

i

で示される基、式 -CH-CH-C-NH-(CH₂)₂-で示される基、式 -NH- で示される基、式 -B-で示される基、式 -B-で示される基、ジアルキルアミノアルキルカルボニル基文は低級アルコキシカルボニル基を意味する。

『は窒素原子叉は炭素原子を怠嗾する。

Qは窒素原子、炭素原子又は式 → H→O で 示される基を意味する。

Kは水素原子、置換岩しくは無器換のフェニル基、フェニル基が置換されてもよいアリールアルキル基、フェニル基が置換されてもよいシンナミル基、低級アルキル基、ビリジルメテル基、シクロアルキルアルキル基、アダマンタンメテル基、フリルメテル基、シクロアルキル基、低級アルコキシカルボニル基又はアシル基を意味する。

qは1~3の整数を意味する。

エチルー2ーメチルプロビル基などを意味する。 これらのうち好ましい感としては、メチル基、 エチル基、プロビル基、イソプロビル基などを 挙げることができ、最も好ましいものはメチル 基である。

式中、 ・・・・・・ は単結合 若しくは二重結合を意味する。)

本発明化合物 (I) における上記の定義にな いて、J. K. B*, B* にみられる低級アルキル番と は、炭素数1~6の直鎖もしくは分枝状のアル キル苗、併えばメチル岳、エチル苺、プロピル 甚、イソプロピル器、ブチル苺、イソブテル基: sec ープチル基、tertープチル基、ペンチル基 (アミル器) 、イソペンチル基、ネオペンチル 基、tertーベンチル基、1-メチルブチル基、 2ーメチルブチル基、1.2 ージメチルプロピル 盆、ヘキミル茲、イソヘキシル基、1ーメチル ペンチル基、2ーメチルペンチル基、3ーメチ ルペンチル益、[、[ージメテルプチル茲、1.2 ージメチルプチル基、2.2 ージメチルブチル基、 1.3 ージメチルプテル益、2.3 ージメテルプチ ル益、3.3 ージメチルブチル益、【一エテルブ チル基、2-エチルプチル基、1.1.2 ートリメ チルプロピル基、1.2.2 ートリメチルプロピル 基、1ーエチルー』-メチルプロピル基、1-

シカルポニル基;アミノ基;モノ低級アルギル アミノ基:ジ低級アルキルアミノ基;カルバモ イル益;アセチルアミノ岳、プロピオニルアミ ノ邑、ブテリルアミノ基、イソブチリルザミノ 益、パレリルアもノ基、ピパロイルアミノ磊な と、炭素数1~6の脂肪族飽和モノカルギン酸 から誘導されるアシルアミノ基;シクロヘキシ ルオキシカルポニル基などのシクロアルキルオ キシカルポニル基;メチルアミノカルポニル猛、 エチルアミノカルポニル盎などの低級アルギル アミノカルポニル基:メチルカルポニルオキシ 苺、エチルカルポニルオキシ基、nープロピル カルポニルオキン基など前記に定義した低級で ルケル茲に対応する低級アルキルカルポニルオ キシ基:トリフルオロメテル基などに代表され るハロゲン化征級アルキル基:水酸基:ホルミ ル基:エトキシメチル菌、メトキシメチル基、 メトキシエテル基などの低級アルコキシ低級ア ルキル延などを挙げることができる。上記の理 損基の説明において、「低級アルヤル苺」、

持關平2-169569(6)

「低級アルコキシ基」とは、前記の定機から減 生する基をすべて合むものとする。 置換蓋は関 ー又は異なる 1 ~ 3 個で置換されていてもよい。 更にフェニル基の場合は、次の如き場合も関 換されたフェニル基に含まれるものとする。即

ち、 (g) - G - で示される基を示す場合

0 || |(**党中、G は式・C- で示される為、式・O-C- で**

♥ 又は式-CII--S- で示される基を意味する。 Bは 炭素原子又は窒素原子を意味する。 **

これらのうち、フェニル基に好ましい置換基 としては、低級アルキル基、低級アルコキシ基、 ニトロ基、ハロゲン化低級アルキル基、低級ア ルコキシカルボニル器、ホルミル器、水散器、低級アルコキシ低級アルキル器、ハロゲン、ペンソイル器、ペンジルスルホニル器などを挙げることができ、関換器は同一又は相異なって 2 つ以上でもよい。

ピリジル基に好すしい基としては、低級アル キル基、アミノ基、ハロゲン原子などを挙げる ことができる。

ピラジル基に好ましい話としては、低級アルコキシカルボニル基、カルボキシル基、アシルアミノ基、カルパモイル基、シクロアルキルオキシカルボニル基などを挙げることができる。

また、 Jとしてのビリジル基は、2ービリジル基、3ービリジル基又は4ービリジル基が望ましく、ピラジル基は2ーピラジル基又は3ーキノリル基が望ましく、キノリル基が望ましく、キノキサリル基は2ーキノキサリル基又は3ーキノキサリル基とは3ーキノキサリル基が望ましく、フリル基は2ーフリル基が望ましい。

Jの定義において、GDグループに記載されて

いる①~②について、その代表例を示せば以下 のとおりである。

上記一選の式において、 tは 0 又は 1 ~ 4 の 整数を意味し、 Sは同一又は相異なる前記した J (4)の定義における置換基のうち 1 つ又は水素 原子を意味するが、好ましくは水素原子(無虚 良) 、 延級アルキル 五又は低級アルコキシ 品を おけることができる。 更に、フェニル 最の誇り あう炭素間でメテレンジオキシ 磊、エチレンジ

特別平2-169569 (7)

オキッ様などのアルキレンジオキシ基で置換されていてもよい。

これらのうち最も好ましい場合は、無置換若 しくはメトキシ基が 1~3個置換されている場 合である。

なお、上記のインダノリデュルは JOIの定数 におけるフェニル基が置換されていてもよい二 値の基の例である。すなわち JOIの②のインダ ノニルから誘導される代表的な二個の基である。

Jの定義において、環状アミド化合物から誘導される一個の甚とは、例えばキナゾロン、テトラハイドロイソキノリンーオン、テトラハイドロインプジアゼピンーオン、ペキサハイロペンプジアゼピンーオンなどを挙げることができるが、構造式中に環状アミドが存在すれば協うのののに限定されない。単年もしくはは、フェニル環としては、フェニル環としては、フェニル環としては、フェニル環としては、フェニル環としては、フェニル環としては、フェニル環としては、フェニル環としては、フェニル環としては、フェニルには、フェニルには

上記の式中で、式(i)、(i) における Yは水森原子又は低級アルキル苺を意味し、式(k) における Vは水素原子又は低級アルコキシ基、式(n)。(n) における Yi. Y* は水素原子、低級アルキル 基、低級アルコキシ基、 Yi は水素原子又は低級アルキル 温を意味する。

なお、式(j),(1) において、右側の頃は1員

メチル苺、炭条数1~6の低級アルコキシ苺、 好ましくはメトキシ基あるいはハロゲン原子に よって遺換されていてもよい。

紆ましい例を挙げれば次の通りである。

線であり、式(k) において右側の場は8長環である。

Jの上記の定義のうち及も好さしいものは、 フェニル場が置換されてもよいインダノンから 誘導される一価の基、母状アミド化合物から弱 遅される一価の基である。

Bの定義において、式 - (CH) ** で示される話

は、R*が水素原子である場合は式-(CB,)。で表され、更にアルキレン鎖のいずれかの炭素原子にしつ又はそれ以上のメチル基が結合していてもよいことを意味する。この場合、舒ましくはnは1~3である。

また、 Bの一連の基において、基内にアミド 基を有する場合も好ましい基の一つである。

更に好ましい基としては、式=(CH-CH)。-(式中、 bは 1 ~ 3 の整数を意味する) で示される基、式=CH-(CH_{*})。-(式中、 cは 0 又は 1 ~ 9 の整数を意味する)で示される基、式=(CH-CH)。= (式中、 dは 0 又は 1 ~ 5 の整数を意味する)

で示される基文は式 -S-で示される基、式 -O-で示される基文は式 -S-で示される基をあげる ことができる。

をとりうる。具体的には - ||- 、 -x|||-||-

げることができるが、特に好ましい路は式

-- N- (T=C 、 Q=N) で扱されるピペリグン の場合である。

Kの定義における「圏換又は無菌換のフェニル基」、「圏換もしくは無路換のアリールアルキル基」において、関換基は前記のJの定義において(例の→・①において定録されたものと同一のものである。

アリールアルキル甚とは、フェニル辺が上記

本発明において、 該理学的に許容できる塩とは、例えば塩酸塩、硫酸塩、臭化水素酸塩、 維酸塩などの無機酸塩、 蛇酸塩、 酢酸塩、 トリフルオロ酢酸塩、 マレイン酸塩、 酒石酸塩、 メタンスルホン酸塩、 ペンゼンスルホン酸塩、 トルエンスルホン酸塩などの有機酸塩を挙げることができる。

また橙牧基の選択によっては、例えばナトリウム塩、カリウム塩などのアルカリ金属塩、カルシウム塩のようなアルカリ 土類金属塩、トリメチルアミン塩、トリニチルアミン塩、ピリジン塩、ピコリン塩、ジシクロヘキシルアミン塩、B.H. ージベンジルエチレンジアミン塩などの有機アミン塩、アンモニウム塩などを形成する場合もある。

なお、本発明化合物は、壁換基の磁類によっては不斉炭素を有し、光学異性体が存在しうるが、これらは本発明の徳囲に思することはいうまでもない。

具体的な例を一つ述べれば、 Jがインダノン

の置後基で、置換されるか、 無置換のペンジル基、 フェネチル基などを意味する。

ピリジルメチル基とは具体的には、2ーピリジルメチル基、3ーピリジルメチル基、4ーピリジルメチル基、4ーピリジルメテル基はどを挙げることができる。

Bについては、フェニル基が収換されてもよいアリールアルキル技、収換着しくは照置換のフェニル基、フェニル基が改換されてもよいシンナミル番が最も好ましい。

好ましいアリールアルキル基は、具体的には 例えばペンジル基、フェネチル基などをいい、 これらはフェニル基が炭素数1~6の低級アル コキシ基、炭素数1~6の低級アルキル基、水 数盤などで置換されていてもよい。

一一は母話合もしくは二重結合を怠棄する。 二型結合である場合の例をあげれば、上記で述べたフェニル頃が配換されてもよいインダノンから誘切される二価の甚の場合、すなわちインダノリデニル基である場合をあげることができま

母格を有する場合、不斉炭素を有するので幾何 異性体、光学異性体、ジアステレオマーなどが 存在しうるが、何れも本発明の処面に含まれる。 これらの実際を終合して数に好すしい化合物

これらの定義を総合して特に好ましい化合物 群をおければ次のとおりである。

【式中、小はフェニル基が置換されていてもよい次の即から退収された一冊又は二冊の基:①
 インダニル、②インダノニル、③インデニル、
 ④インデノニル、③イングンジオニル、⑤テトラロニル、⑦ベンズスペロニル、⑥インダノリ

異.

B, T, Q, Q, K は前紀と侗族の風味を有する。) で表される原状アミン又は双理学的に許容できる地。

上記の!の定義中、最も好ましい甚としては、

持開平2-169569(9)

フェニル基が置換されていてもよいインダノニ ル基、インダンジオニル基、インダノリデユル 基をあげることができる。また、この場合、フ ェニル器は置換されていないか、同一又は相異 なる水酸器、ハロゲン、低級アルコキシ基で置 換されている場合が最も好ましい。低級アルコ キシ基とは、炭素数1~6の例えばメトキシ基、 エトキシ茲、イソプロポキシ基、nープロポキ シ基、nープトキシ基などをいい、1~4世換 をとりうるが、2環境の場合が好ましい。最も 好ましい場合はメトキシ基が2服後となってい る場合である。

(A) 式に含まれる化合物の中で更に好ましい 化合物群としては、次の一般式で表される化合 物(8) をあげることができる。

(式中、) はフェニル基が歴換されていてもよ い次の群から選択された一価又は二価の基:①

(8) 式に含まれる化合物の中で更に好ましい 化合物群としては、次の一般式で表される化合 物(C) をあげることができる。

🛶 🍞 で示される基、即ちピペリジンの場

合である。

_(C) 式に含まれる化合物の中で更に好ましい 化合物群としては、次の一般式で安される化合 物(D) をあげることができる。

(武中、13はフェニル基が置換されてもよいイ ンダノニル、インダンジオニル、インダノリデ ニル基から選択された基を意味する。

インダニル、②インダノニル、③インデニル、 ④インデノニル、⑤インダンジオニル、⑤テト ラロニル、⑦ベンズスベロニル、®インダノ 9

ルキレン痣が置後基を持たないか、又は「つ又 はしつ以上のメチル甚を有しているような形で 永鼎原子又はメチル甚を意味する。)で示され る益、式=(CH-CH=CH)。- (玄中、bは1~3の塾 数を意味する) で示される基、式=CH-(CH₂)e-(式中、 cは () 又は () ~9 の整数を意味する) で示される基又は式=(CH-CH)a=(式中、 dは D 又は1~5の推致を意味する)で示される基を 意味する。

t.Q.q.K は前記と同様の意味を有する。〕

K!は置換岩.しくは無置換のフェニル表、置換 されてもよいアリールアルキル基、置換されて もよいシンナミル基を意味する。

8'は前記と同様の意味を有する。)

本発明化合物の製造方法は理々考えられるが、 (式中、J', B', K は前記と同様の意味を有する。) 代数的な方法について述べれば以下の通りであ

(式中、6,82.84 は前記の意味を有する) で示 される甚を意味する場合〕。

特開平2-169569 (10)

ら選択された選択でミド化合物から誘導される (IV) 一個の基である場合は次のような方法でも要遇することができる。

(式中、J, R*, R*, a, T, Q, q, K は前記の窓味を育し、 Hallはハロゲン原子を意味する。)

製造方法 B

」がキナゾロン、テトラハイドロイソキノリ ンーオン、テトラハイドロベンブジアゼピンー オン、ヘキサハイドロベンツアゾンンーオンか

【式中、R*,R® は水素原子、低粒アルキル基、 低級アルコキシ基、ハロゲン原子であり、 pは 1~3の整数であり、 Zは式-Cli,- で示される

ボ、又は式 -K- (式中、B^{*}は水素原子又は低級 アルキル基を示す) で示される甚を意味する。 Hal, R^{*}, n, T, Q, q, Kは前記の意味を有する。〕

即ち、一般式 (V) で衰される変換-1.2.3.4 ーテトラハイドロー5Hー | ーベンツアゼピンー2ーオンを、例えばジメチルホルムアミド溶 は中で、一般式 (V) で表される化合物と、例えばナトリウムハイドライドの存在下に確合して、目的物質の一つである (VI) を得ることができる。

型 选 方 法 C

かつ Bが -(CH).-で余される益である場合は次

の製造方法によっても製造できる。

即ち、2 - ハイドロキシメチルニコテン酸ラクトン(YI)と、一般式(IX)で表される化合物とを、常法により反応せしめて、目的物質の一つである一般式(X)で表される化合物を得ることができる。反応温度は 200 で前後が好ま

特開平と-169569(11)

製 造 方 法 [

であり、 Bが式 -(CA)。-で表される基である場 | R²

合 (R*, R* は的記のR*, R* の定義と同様の意味を有する。n, R*は的記と同様の意味を有する。) は次の製造方法によっても製造できる。

即ち、2.3 ーピラジルカルボン酸線水物(M)を、例えばイソプロピルアルコール中に加える 放する。アルコールを留去したのち、一般式 (以) で表される化合物と、例えばテトラヒド ロフランなどの熔煤中反応させることにより、 目的物質の一つである化合物(M)を得ること

$$\frac{\theta_n}{\theta_n} = \frac{\theta_n}{(CH)^n} - \frac{(CH^n)^n}{\theta_n} = K$$
 (XII)

即ち、一般式 (XI) で去される値線2.3 - ジヒドロオキシピロロ(3.4-b) ベンゼンと、一般式 (VI) で表される化合物とを、例えば水素化ナトリウム存在下に、例えばジノテルホルムアミドなどの溶媒中、加熱下に反応せしめて、目的物質の一つである化合物 (XII) を得ることができる。

製造方法E

であり、 8が主 -COMH-(CH)。- で表されるほで | | 8°

ある場合は次の製造方法でも製造することがで なる。

ができる.

<u>製 造 方 法 F</u>

ある場合は、次の方法によっても製造することができる。下記の式中、R¹⁰ は前記の J(a)の定数における置換基を意味する。

即ち、例えばテトラヒドロフランなどの溶液中で、ジイソプロピルアミン、 n ー ブチルリチウム/ヘキナン溶液を加え、約 - 80 での温度にて、一般式 (XI) で表される化合物と縮合し、化合物 (環) を得る。これを、例えば p ー トルエンスルホン酸の存在下、例えば トルエンなどの溶媒中で脱水した後、常法により接触蒸元すると、目的物質の一つである化合物 (潤) が得られる。製造 方 法 G

本発明において、 Jが向で定義されるものの中で、フェニル基が関換されてもよい①インダニル、②インダノニル、③インダンジオニル、

$$1, -CH^{\circ} - H, -1$$
 $0 - K$ (XII)

(式中、小は Jが上記の定義である場合を示し、 B'は上記の Bの定義において最左端の炭素原子 に結合している基を除いた銭基を意味する。)

即ち、一般式(双)で表されるホスホナートに一般式(双)で表されるアルデヒド化合物を反応せしめて(vittig反応)、目的物質の一つである一般式(双)で表される化合物を得、次いでこれを接触還元して目的物質の一つである化合物(双列を得ることができる。

Bittig反応を行う版の触媒としては、例えば ナトリウムメチラート(MeOBs) 、ナトリウムエ

特開平2-169569 (12)

®テトラロニル、①ベンズスペロニル又は⑨式

*(CH-CH=CH)。-(式中、 bは 1 ~ 3 の整数を意味する)で示される基、式=CH-(CH,)。-(式中、 c は 0 又は 1 ~ 3 の整数を意味する)で示される基、又は式=(CH-CH)。=(式中、 dは 0 又は 1 ~ 5 の整数を意味する)で示される基である場合は、例えば次の二つの方法によって製造できる。

<u>製造方法 1</u>

(XIX)

チラート(EtQNa)、t-BuOK、NaR などを挙げることができる。この際溶線としては、例えばチトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、エーテル、ニトロメタン、ジメチルスルホキシド(DMSO)などを挙げることができる。また、反応温度は窒温から100
で程度が好ましい結果を与える。

接触及元を行う際は、例えばパラジウム炭素、 ラニーニッケル、ロジウム炭素などを触媒とし て用いることが好ましい結果を与える。

届である場合を具体的に示せば、以下のとおり である。

特開平2-169569(13)

る話(式中、R'', R'" は Sの定義のうち、同一 又は相異なる水果原子、低級アルキル基、低級 アルコキシ基、ハロゲンである場合をいう)で あり、 Bが式-(CH₂)。-で示される基(式中、 n は1~6で示される基を意味する)であり、式

(式中、R'?.R''は、R''.R''と同様の定義とする)で示される基である場合を具体的に示せ

$$1. - CH^2 - B$$
, $-\frac{1}{4}$ $0 - K$ (XXB)

即ち、一般式(XXII)で表される置換着しくは 無歴後のインダノンなどの化合物と一般式(XX) で表されるアルデヒド体と、常法によりアルド ール弱合を行い、目的物質の一つである一般式 (XII) でまされる化合物を得る。

本反応は、例えばテトラヒドロフランなどの 常盤中でジイソプロピルアミンとホーブテルへ キサン溶液によりリチウムジイソプロピルアミ

$$0 \text{ NC} - \theta, -1 \qquad 0 - \chi \qquad (XI)$$

ドを生成させ、好ましくは約-80℃の温度でこれに上記の一般式 (以間)で表される化合物を加える。次いで一般式 (以) で表されるアルデヒ

ド体を加えて常法により反応せしめ、窓温まで 昇温させることによって脱水させ、エノン体で ある一般式(知)で表される化合物を得る。

本反応の別方法として、両者 ((双面)と(双)) をテトラヒドロフランなどの溶媒に溶解し、約 り せにて、例えばナトリウムメチラートなどの 塩基を加えて、室温にて反応させることによる 万法によっても製造することができる。

上記の製造方法によって得られたエノン体 (1位)を前記に示したと同様の方法により最元 することにより、一般式(2013)で扱される化合 物を得ることができる。

あり、 8か式-(Cii.)。で示される基であり、式

特別平2-169569 (14)

る場合を具体的に示せば以下のとおりである。

製造方法1に記載したと同様に、一具体例を 示せば次の通りである。

製 造 方 法 H

「がフェニル基の部分が置換されてもよいイング!リル基である場合は、以下の方法によって製造することができる。

$$8 - 1 \qquad 0 = 1$$

即ち、化合物 (以間) を11 七一室温にて、例えば水器化ホウ素ナトリウムなどで見元することにより、目的物質の一つである化合物 (以所) をあることができる。この場合の応媒は、例えばメタノールなどが好ましい。

製造方法(

- 640-

特閒平 2-169569 (15)

Jがフェニル基の部分が置換されていてもよいインデニル基を示す場合は、以下の方法によっても到過することができる。

即ち、化合物(双N)を常法により短股などの存在下限水させて、目的物質の一つである化合物(双N)を得ることができる。

製 造 方 法 」

Jがフェニル基の部分が置換されていてもよいインヂノニル基を示す場合は、以下の方法によっても製造することができる。

ランなどの溶媒中、 1.8ージアデビシクロ (5.4.0] ウンデクー 7ーエン (DBU) とともに 加热遺流することによりβー職離を行い、イン アノン化合物 (以面を得る。なお、上記のブロム体は、他のハロゲンでも反応は可能である。

なお、製造方法G〜」において、出発物質と して用いるインダノン類は市販品を用いるか又 は以下の方法により製造される。

・即ち、一般式(以口)で表されるインダノン化合物を、例えば四塩化炭素などの溶媒中、 ドーブロムコハク酸イミド (NBS) と過酸化ペンソイルとともに加熱型流してプロム化し、次にこのプロム体 (以切)を、例えばチトラヒドロフ

一方、アルデヒド体は例えば以下の方法によ り製造することができる。

又は

即ち上記の如く、式(i)又は式(ii)で示される化合物を出発物質とし、これを上記の方法によりアルデヒド体とし、これを下記に示すウィテッヒ反応などを繰り返したり、組み合わせたりすることにより増炭反応を行い、目的とする出発物質を得ることができる。

ウィテッヒ試薬としては、例えば1炭素増長のときはメトキシメチレントリフェニルホスホランを用い、2炭素増長のときはホルミルメチレントリフェニルホスホランを用いる。

メトキシメチレントリフェニルホスホランは、 メトキシメチレントリフェニルホスホニウムク ロライドとローブチルリチウムとから、例えば エーテル又はテトラヒドロフラン中で生成させ る。この中にケトン体又はアルデヒド体を加え てメトキシビニル体とした後、酸処理によって アルデヒドを合成することができる。

特定の場合の具体例を以下に示す。

素などが好ましい。

具 体 例 2

以上のようにして得られる一般式(I)の化合物及びその酸付加塩は各種老人性痴呆症、特にアルツハイマー型老年痴呆の治療に有用である。

一般式 (I) で示される化合物及びその酸付加塩の有用性を示すために、薬理試験結果を以下に説明する。

実験例1

In vitroアセチルコリンエステラーゼ阻害作用

一方、ホルミルメチレントリフェニルホスホ ランを用いる場合は、原料となるケトン体又は アルデヒド体のエーテル、テトラヒドロフラン 又はペンゼン溶液中にウィテッヒ試薬を加え、 室温から加熱量流することによって合成するこ とができる。

このようにして合成した不飽和アルデヒド体は、必要により接触還元して飽和アルデヒド体とすることができる。この際の触媒としては、 パラジウム炭素、ラネーニッケル、ロジウム炭

アセチルコリンエステラーゼ源として、マウス脳ホモジネートを用いて、Ellmanらの方法りに増拠してエステラーゼ活性を測定した。マウス脳ホモジネートに、基質としてアセチルチオコリン、被検体及びDTNBを添加し、インキュペーション後、産生したチオコリンがDTNBと反応し、生じる黄色産物を412nm における吸光度変化として測定し、アセチルコリンエステラーゼ活性を求めた。

検体のアセチルコリンエステラーゼ阻害活性は50%阻害濃度(ICso)で表した。

結果を表しに示す。

1) Ellman, G. L., Courtney, K. D., Andres, V. and Featherstone, R. M. (1961) Biochem. Pharmacol., $7.88 \sim 95$

特開平2-169569 (17)

) (統 會)

瑟

化合物	ACDE概率活情	化会物	ACNE阻容居性 ICto (ph)
i	0. 23	32	0. 8
1	0. 0053	35	0.00082
5	0.10	36	0.0015
6	0, 017	39	0. 15
	0, 013	41	O. D25
g.	0, 051	· 43	0 030
10	a. 009	\$5	0.36
D	0, 068	\$B	0, 019
12	0, 040	ô 2	0.80
13	0, 026	64	1.0
14	0, 038	56	e,017
15	0.094	72	0, C075
17	0.052	?5	0. 0016
18	0.68	17	Q 10
19	0, 064	BO	0.29
20	0.54	82	0.020
21	50	99	0.018
23	0.072	100	0,035
24	1.1	105	0, 085
28	24	10	0.31
27	0, 43	130	0, 13
30	0.001	134	2.8
1 11	D, 094	186	0, 094

I	化合物	AChE国宝器诗 ICso(山町	化合物	ACDE組在活件 ICso(pu)	
ı	188	0.081	215	0.0042	
į	189	0.012	216	0.017	
I	190	0. 02	217	G. 14	
I	191	0. 085	221	0.033	
I	192	D. 013	722	0.011	
I	193	0, 2	223	0.0054	
	194	6, 069	224	0.003	
	195	Q_ 6071	225	0. 48	
	198	0,0013	226	0,0049	
	197	0, 38	227	0,01	
	198	0.0054	228	0.002	
	199	0, 023	229	0.04	
	203	0,009	230	0.18	
	204	0. 035	231	0.004	
	205	0.014	232	0, 1	
	206	D, 41	233	0.046	l
	207	0.049	234	0.0018	
	208	8. 062	235	0,22	
	209	0. 43	238	0. 072	
	210	0.08	239	0.18	l
	212	0. 5	240	n, co89	I
	213	0. 05	241	0.32	
		1	1		í

実験例2

Ex vive アセチルコリンエステラーゼ風客作用 ラットに被検体を軽口投写し、その1時間後 に大脳半球を摂取し、ホモジナイズ後、アセチ ルコリンエステラーゼ活性を測定した。なお、 生理食塩水投与器を対照とした。

結果を表2に示す。

表 2

化合物版	用 最 (mg/kg)	AChE阻害作用 (X)
Saline		0
	ı	5 •
4	3	17 **
	10	35 **
	30	47 **
	10	5
1,5	30	14 **
	100	18

実験例3

スコポラミンの受動回置学習問事に対する作用。

Histar 系統性ラットを用い、 波覆としては stap through 型の明暗箱を使用した。 試行の ! 時間前に 検体を経口投与し、30分前にスコポラミン0. Sag/kg(ip) を処置した。 訓練試行では明金に動物を入れ、暗宮に入った直後にギロテンドアを閉め電気ショックを球のグリットから与えた。 6 時間後に保持試行として再び動物を明室に入れ、暗室に入るまでの時間を確定し辞価した。

効果は生食投与群とスコポラミン投与群の反 応時間の登を 100%とし検体により何%店抗し たか(Reverse%)で登した。

al 2. Bokolanecky & Jarvik:] nt. J. Heuropharmacol 6. 217 ~222 (1967)

結果を扱るに示す。

特別平2-169569 (16)

叏 Reverse% 化合物版 用 量 (mg/kg) 8. 125 0.25 0.25 39 13 27 0, 5 1,0 51 15 2. 0 30 19 1.0 39 0.5 22 79 1, 0 38

実験例も コリンナセチルトランスフェラーゼ(ChAT 活性の測定

ラット胎児の脳神経細胞の培養並びに神経細胞中コリンアセチルトランスフェラーゼ(ChAT) 活性の調定

2) F. Fonnum : J. Heurochem., 24, 407-409

Heftiii らの方法に挙じてラット胎児の脳神経細胞の培養を行った。ウィスター系健性ラット17日齢の胎児大脳半球をトリブン処理した。細胞飲を2×10個/0.5 miに 調整し、間時に被致化合物を添加してマイクロプレートに移し、37で、5kCO₂-95%O₂で1日間地にが移し、37で、5kCO₂-95%O₂で1日間地にが移した。マイクロプレート中の培養神経細胞した。神経はfoenue²³の方法に増じて副定 を加えて1時間反応させ、生成した¹⁴C-Acetyl-choline をデトラフェニルボロン存在下ルエンにで強出した。ChAT活性を求めた。技術のChAT酸活作用はコントロール%で表した。結果を数4に示す。

 F. Hefts, J. Baytikka, F. Eekenestein, H. Gnahn, B. Heuman and M. Schwab, Heuroscience, <u>14</u>, 55-68(1985)

₹ L & 1 9	コリンアモデ. フェラーゼ	ルトランス (CMT) 旅走伝達
,	Conc.	\$ of Cont.
9	10-7 M	96
(11,0) - (14, -	10-* M	114*
cn,o	10-5 M	118**
6	10-, 71	107*
(H:0 / TI - (H-CH) - (M-CH)	£0~4 N	. 109*
CH ₂ 0	€0-, N	101
0	10° ×	[2 3
CH ₂ - CH ₂ - CH ₃ -	10-e M	87**
	10-6 15	58**
0	JQ-1 ₽	174 .
' '^ \	10-4 X	719**
	10-> 4	104
9	10-7 H	112*5
CH, CH, OH-CH, OH-CH,	10-1 1	121-
CH2CU30	jg-1 ¥	138
G 0 0 - F	10-1 H	93
C(1,0,-C)-c(1,-C)	19** !!	95
co.a	10-4 N	73**

特簡平 2-169569 (19)

2

化 台 坊	コリンアセデ! フェラーゼ(レトランス ChAT) 以信活性
	Conc.	\$ of Coat,
0ОСН,	10-18	108
CH ₄ 0 Y Y CH, CH, CH,	10 n	105
CH.0 /	10-r R	116**
GN 0 0	10-т и	101
CH	10-* N	103"
CH10	10-1 #	85
	[0-, 1	168**
CH-O-CH-), -	10-• 8	103
CH,0	10- E U	84*
9	10-1 B	EDL
CH ₁ ,0 ,-(CH ₁),-(CH ₁),-(CH ₁ ,-(CH ₁)	10-4 M	FOC
CH-50 CH-50	10- a R	84**
	k *-01	105**
(H)	10- * H	99
CHO	[6 A	10
CIIS	fa - n	//

上記の変型実験例から致力なアセチルコリン エスナラーゼ風景作用及びコリンアセチルトラ ンスフェラーゼ監督作用を有していることが明 らかとされた。

従って、本発明の目的は、コリンアセテルト タンスフェターゼ放電作用に基づいて低々の角

及症、脳血管放害後退症に有効な化合物を有効 成分とする新規な医薬を提供するにある。

本発明化合物のコリンアセチルトタンスフェ ラーゼ政活作用がこれらの優単に有効なのは、 上記の作用により脳内のアセチルコリンが増盟 されることに基づくものと考えられる。

更に、本発明化合物は強力がつ選択性の高い

抗コリンエステラーゼ作用を有するので、これ らの作用に基づく医薬としても有用である。

即ち、ナルツハイマー 包老年 段泉のはか、別えばハンチントン最難病、ピック病、協強性具常症などにも有用である。

本発明化合物をこれらの医義として使用する場合は、経口投与おしくは非経口投与により投与されるが、通常は砂駅内、皮下、筋肉内以ど注射が、強変岩しくは舌下はなどが配口投与により投与される。投与領域、症状の程度によって投与の時間、関係とどによって異なり、特に関定されないが、通常成人 | 日あたり約0.1~300mg、行きしくは約1~100mg であり、これを通常1日1~4回にわけて投与する。

本類明化合物を製剤化するためには、製剤の 技術分野における通常の方法で注射剤、坐真、 舌下鏡、錠剤、カブセル剤などの耐質とする。 注射剤を興致する場合には、主義に必要によ

りpH超数剂、级份素、坚而化剂、容保证动剂、

狩引平2-169569 (20)

安定化剤、容優化剤、保存剤などを過加し、含 法により部脈、皮下、筋肉内性別剤とする。 そ の際必要により常法により改結免債物とするこ とも可能である。

総告剤としての例を挙げれば、例えばメチルセルロース、ポリソルベート80、ヒドロキシェチルセルロース、アラビアゴム、トラガント京、カルボキシメチルセルロースナトリウム、ポリオキシエチレンソルピタンモノヨウレートはどを挙げることができる。

溶解相助剤としては、例えばポリオキシェチレン硬化ヒマシ溢、ポリソルペート80、ユコチン酸アミド、ポリオキシェチレンソルビタンモノラウレート、マグロゴール、ヒマシ油脂肪酸エチルエステルなどを挙げることができる。

さた安足化剤としては、例えば弱硫酸ナトリウム、メタ亜硫酸ナトリウム、エーテル等が、保存剤としては、例えばパラオキン安息等酸メチル、パラオキン安息等酸エチル、ソルビン酸、フェノール、クレゾール、クロロクレゾールなどを挙げることができる。

溶出版を滅圧過縮した後、競技を塩化メテレンに溶解し、10%塩酸一磷酸エチル溶液を加え、さらに減圧激縮して結晶を得た。これをメタノールー・IPE から再結晶化し、次の物性を有する 植簡化合物0.33g(収率60%)を得た。

・ 敗点 (七) ; 224 ~225

・元素分析値; C; ; H*+NO・HC1 として

C H N

理給值(%6) 74.68 7.63 3.79 実調館(%6) 74.66 7.65 3.71

1 - ベンジル-4 - [2 - [(1 - インダノン) - 2 - イリデニル)]エチルピペリジン・塩酸

塩

80%水系化ナトリウム0.32gをヘキサンにて 洗浄後、TBF 19mlを加えた。この中へりでにて ジェチルリーインダノンー2ーイルホスホナー (寓 晚 例)

以下に実施例に従って本発明をさらに具体的 に説明するが、本発明の技術的範囲がこれらの 実施例の意図に限定されるものでないことはい うまでもない。

なお、下記の異語例において、HUR の値はす ペてフリー体での劇定値を示す。

実 箱 例 1

1-ペンジルー4- [2~((1~インダノン) -2-イル]] エチルピペリジン・塩酸塩

1ーペンジルー4ー(2-((1ーインダノン)-2-イリデエル)]エチルピペリジン 0.37gをメタノール10m1に溶解し、5%ロジウムー炭器 0.1gを加えた。窒温常圧にで24時間水素添加した後、触線を認測し、迅液を減圧溶 時した。この残液をシリカゲルカラム(塩化メチレン:メタノール= 200:1)にて精製し、

ト2.12gのTBF 30ml溶液を腐下した。 密温にて 30分撹拌した後、再びり℃に冷却し、1ーペン ジルー 4 ーピペリジンアセトアルデヒド3.43g のOMF (On) 溶液を加えた。 国温で 2 時間、50 ℃ で2時間さらに2時間加熱園識した後、0℃に てメタノールと20%硫酸を加えた。10分後触和 水酸化ナトリウム水溶液にて進基性とし、酢酸 エチルにて抽出した。有機圏を逆和会塩水にて 洗浄した後、硫酸マグネシウムで乾燥し、波圧 **叡確して得られた残避をシリカゲルカラム(塩** 化メチレン:メタノール=560 : 1) にて解製 した。榕出被を設圧超路した後、袋底を塩化メ チレンに容認し、10%塩酸-酢酸エテル熔液を 加え、城圧辺治して極照化合物0.78g(収率27 %)を得た。なお、ジェチル1-インダノンー 2-イルネスホナートを1.378回収した。

- ·分子式:CzsH+sRO·BCI
- · 'H MMR (CDC1₃) Ø : 1, 10 ~ 2, 13 (7H, m) < 2, 28 (2H, t) < 2, 88 (2H, bd) < 3, 48 (2H, s) < 6, 72 ~ 1, 07 (2H, o) < 7, 30 (5H, s) < 7, 10 ~ 8, 00

特閒平2-169569 (21)

(5H, m)

実 嫡 例 3

<u>| ーペンジルー4 - { (5.6 -ジメトキシー1 - インダノン) - 2 - イリデニル} メチルピベリジン・塩酸塩</u>

(a) <u>トーペンジルー4ーピペリジンカルボアル</u> デヒドの合成

メトキシメチレントリフェニルホスホニウムクロライド26.0gを紙水エーテル 200mlに懸滴させ、1.6M nープチルリチウムへキサン熔液を宝濃にて満下した。室温にて30分間遅伴した後、0でに冷却し、1-ペンジルー4ーピペリドン 14.35gの脈水エーテル30ml溶液を加えた。室温にて3時間逆搾した後不容物を認別し、過波を減圧適縮した。これをエーテルに溶解し、

この反応はアルゴン雰囲気下行った。

紙水THP 10ml中にジイソプロピルアミン2.05 mlを加え、さらに O むにて1,63 nープチルリテ ウムヘキサン溶液9.12mlを加えた。 0 ℃にて10 分撹拌した後、一78でまで冷却し、5.6 ージメ トキシー 1 ーインダノン2.55 g の無水THF 30ml 溶液とヘキサメチルホスホルアミ Y2.31mlを加 えた。-18℃にて15分投掉した後、40で得た1 ーペンジルー 4 - ピペリジンカルボアルデヒド 2.70 g の無水TBF 30mi 富液を加えた。 雪温まで 徐々に昇温し、さらに宝温にて2時間批拌した 後、1%塩化アンモニウム水溶液を加え、有機 間を分離した。水層を酢酸エチルにて抽出し、 さらに合わせた有識脳を飽和食塩水にて洗浄し た、磁酸マグネシウムで乾燥後、減圧激縮し、 得られた残渣をシリカゲルカラム(塩化メテレ ン:メタノール=500 : 1~100 : 1) にて精 型した。路出液を流圧濃縮した後、残液を塩化 メチレンに溶解し、10%塩酸一酢酸エチル溶液 を加え、さらに減圧波縮して結晶を得た。これ 日垣殿にて油出した。さらに水酸化ナトリウム水溶液にてpH 12 とした後、塩化メチレンにて油出した。最酸マグネシウムにて乾燥後、緑圧液治し、得られた残渣をシリカゲルカラムにて精製し、油状物質5.50g(収率33%)を得た。

これをメタノール40mlに溶解し、18塩酸40elを加えた。3時間が熱湿流した後、減圧濃縮し、 銭造を水に溶解後水酸化ナトリウム水溶液にて pH 12 とし、塩化メチレンにで抽出した。飽和 食塩水にて洗浄後、酸酸マグネシウムにて乾燥 し、減圧温縮して得られた残造をシリカゲルタ ラムにて精製し、環配化合物2.77g(収率54%) を始状物質とした得た。

·分子式:C,,E,,NO

. 'H - HMP (COCI_a) & : 1, 40 ~ 2, 40 (7H, m) \ 2, 78 (2H, dt) \ 3, 45 (2H, s) \ T. 20 (5H, s) \ 9, 51 (1H, d)

B) <u>1 - ベンジルー 4 - 【(5.6 - ジメトキシー</u> <u>1 - インダノン) - 2 - イリデニル】メチル</u> ピペリジン・塩酸塩の合成

を塩化メチレンー(PB から再結晶化し、次の物性を有する福超化合物3.40g(収率62%)を得た。

・融点 (で) :237 ~238 (分解)

・元素分析留;Caaliaa MOa・HClとして

C II

理验证(%) 69.64 6.82 3.38

実測強 (%) 69.51 6.78 3.30

災 施 例 4

1 -ペンジル-4-{(5.6 - ジメトキシ-1 -インダノン) -2-イル]メチルピペリジン・塩酸塩

1-ベンジルー4-((5,6-ジチトキシー1-インダノン)-2-イリデエル]メチルビベリジン6,40gをTHF [6miに溶解し、10%パラジウム-炭素0,04gを加えた。窒息常圧にて6助肌水器添加した後、触媒を認到し、溶液を検

特別平2+169569 (22)

圧波縮した。この競技をシリカゲルカラム(塩 化メチレン:メタノール=50:1) にて積載し、 協出放を施圧講論した後、銭禕を腐化メチレン に溶解し、10%塩酸-酢酸エチル溶液を加え、 さらに縁圧連縮して結晶を得た。これをエタノ ールーIPE から再結晶化し、次の物性を有する 種類化合物0.36 g (収率82%)を得た。

・融点 (で) ; 211 ~212 (分解)

・ 充**去分析館;C, , N, , , NO , ・ NC**) として

C

理論位(%) 69.30 7.27 3. 37 実剤値 (%) 89.33 7.15 3.22

寒 柏 例 5

 $2 - (4 - (1 - 4 \times 9 \times 4 \times 9 \times 2 \times 2 \times 2 \times 1) \times 10^{-3}$

冷却下、低掛しながら水累化ナトリウム (60%) を0.21g加える。その後、2.3 ージヒドロー5, 6 ージメトキシオキシピロロ (3.4 - b) ペン ゼンしgを加え、80℃で4時間撹拌する。終了 後、H₂Q を加え、クロロホルム抽出し、クロロ ホルム層を水洗、乾燥(NgSOz)、溶媒を留去し てシリカゲル揺戯すると目的物の油状物を得る。 これを常法により塩酸道にすることによりクリ ーム色の結晶を約0.28得た。

- ·分子式:CraHsaNsOs·2HCL
- · 'H-NRR (CDCla) &;

1. 12-3. 4(98. m), 2. 72 -3.00(28, m).

3. 48 (2H, s). 3. 62 (2H, t). 3. 95 (6R, s),

4.26(28, s), 6.90(18, s), 7,28(68, s)

寒 崎 例 7

 $4 - \{N - \{o - T \} / \langle v \rangle \rangle \rangle \rangle | エテル \} - 1$ ーペングルピペリジン

g、4- (2-アミノエチル)ペンジルピペラ ジン40gをシールドチューブ中で200 ℃、 7 時 聞撹拌する。その後、シリカゲルカラムで翻製 し、常法により追蹤塩にすることにより目的物 の二塩酸塩6.31gを得た。

・敵点(セ):143.5 ~145

・元素分析値:CailBasNaO・2HCIとして

£

61.77 6.68 10.29 理論值(%)

実単値(%) 61.49 6.68 9.98

実 施 例 8

 $2 - \{i' - (i' - \pi y y n \forall \pi y y y) + x + n\}$ -2.3 -ジヒドロー5,6 -ジェトキシオキシビ ロロ (3, (- b) ペンゼン·塩酸塩

2.3 ージヒドロー5.6 ージメトキシオキシビ ロロ (3.4 - b) ペンゼン 0.5gを触媒型の目 り化カリウムとともにDMF に溶解する。これを

窯差気流下2-ニトロペンスアルデヒド30g、 1-ペンジルー4ーアミノエチルピペリジン21.4 g、メタノールlOOml を窓遇で3時間見浄する。 反応波を氷冷し、水森化ホウ素ナトリウム16g のNoOH 30el 溶液を循加する。さらに室温にて |時間反応させた後、水にあけ、メテルクロラ イドで抽出し、10%塩酸150ml で3回抽出し、 メチレンクロライドで洗浄する。この水暦を改 酸ナトリウムでpBl0にし、メチレンクロライド で抽出し、無水硫酸マグネシウムで乾燥後、熔 媒を旋圧留去し、1-ペンジルー4- [N- (o -エトロペンジル) エチル) ピペリジン28.4g を得る。

これをメタノール100ml に熔解し、[0%パラ ジウムー炭素(含水)3gを用い4kg/cm² 圧 力で水素添加を行い、福超化合物25.5gを得る。

·分子盘:C,,8,,8,

· 'H - HXR (COCI₃) 8 ; 1, 0 ~2, 1 (9H, m) . 2, 64 (2H, t) , 2. 90 (2H, m) , 3. 47 (2H, s) , 6. 65 (2H. m) , 7, 02 (2H. m) , 7, 30 (5H. s)

実 施 例 8

 $3 - (2 - (1 - \langle 2 \rangle) - 4 - 2 \langle 1 \rangle)$ $x + y - 2 - (1H, 3H) - 2 + 2 \langle 1 \rangle$

4- (N- (o-アミノベンジル) エチル)
-1-ベンジルピペリジン25.6g、1.1'-カルポニルジイミダゾール15g、メタノール100mlを12時間加熱環流を行う。反応後、水をあけ、メチレンクロライドで抽出し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去する。

この残渣をシリカゲルカラムクロマトグラフィーにより精製 (5%MeOH-CH₂Cl₂) し、酢酸エチルより、2回再結晶を行い標題化合物3.0 gを得る。

·分子式;C22H27N3O

• 'H – NMR (CDC1₂) σ ; 1. 0 ~ 2. 1(9H, m) , 2. 7 ~ 3. 0(2H, m) , 3. 2 ~ 3. 6(4H, m) , 4. 4 (2H, s) , 6. 5 ~ 7. 4(8H, m) , 7. 75(1H, s)

せる。減圧下溶媒を留去し、シリカゲルクロマトグラフィーで精製後、常法で塩酸塩とする。 淡黄色非晶質0.17gを得る(収率13.5%)。

·分子式;CaaHaiNaO·2HCl

· 'H — NMR (CDCl₃) δ ; 1. 25 ~ 2. 02 (9H, m) , 2. 52 (3H, s) , 2. 79 ~ 2. 95 (2H, bd) , 3. 10 (2H, s) , 3. 48 (2H, s) , 3. 54 (2H, s) , 3. 91 (2H, bt) , 7. 14 ~ 7. 45 (9H, m)

寒 施 例 10

1 - [4' - (1' - ベンジルピペリジン) エチル]
-1, 2, 3, 4 - テトラハイドロー5H - 1 - ベンツ
アゼピン-2 - オン・塩酸塩

ナトリウムハイドライド0.27gをジメチルホルムアミド (DMF)0.5ml に懸濁させ、氷冷下撹拌する。これに1.2.3.4 ーテトラハイドロー5H ー1ーペンツアゼピンー2ーオン0.60gをDMF

実 施 例 9

1- [4'- (l'-ベンジルピベリジン) エチル -1,2,3,4 -テトラハイドロー4-メチルー5 H- [1,4] -ベンゾジアゼピン-2-オン・二 塩酸塩

ナトリウムハイドライド0.35gをジメチルホルムアミド (DMF)0.5ml に懸濁させ、氷冷下撹拌、これに1.2.3.4 ーテトラハイドロー4ーメチルー5H-1.4 ーベンツジアゼピンー2ーオン0.52gをDMF 3mlに溶かして滴下し、窒温で30分間撹拌する。ここへ Nーベンジルー4ー (2ークロロエチル) ピペリジン塩酸塩0.81gをDMF3mlに溶かして滴下し、60~70℃で7時間撹拌する。氷水にあけ、塩化メチレンで抽出する。飽和食塩水で洗い、硫酸マグネシウムで乾燥さ

4 ml に溶かして滴下する。60 ℃で15 分間加熱後、 氷冷し、 Nーペンジルー 4 ー (2 ークロロエチ ル) ピベリジン塩酸塩1.02gを加え、その後、 60 ℃で3時間30分撹拌する。放冷後、氷水にあ け、塩化メチレンで抽出する。水洗後、硫酸マ グネシウムで乾燥させ、減圧下溶媒を留去する。 シリカゲルクロマト精製後、常法で塩酸塩とし、 標題化合物1.40gを得る(収率94.8%)。

·分子式;C2.H2oN2D·HC1

• 'H — NMR (CDC1₃) δ ; 1. 20 ~ 1. 92 (11H, m) , 2. 20 ~ 2. 24 (4H, bs) , 2. 60 ~ 2. 88 (4H, m) , 3. 44 (2H, s) , 7. 12 ~ 7. 24 (9H, m)

実 施 例 11

N - (4 - (1'-ベンジルピペリジル) エチル)
-5.6.11.12 - テトラヒドロジベンゾ (b,f) ア
ゾミン-6-オン・塩酸塩

5.6.11.12ーテトラヒドロベング (b.f.) アゾミンー 6 ー オン2.24gと60%水素化ナトリウムをジメチルフォルムアミド20mlに入れ、60℃で1時間加熱撹拌後、1ーベンジルー4ークロロエチルピペリジン 0.7gを加え、さらに3.5~時間反応する。

反応液を水20mlにあけ、酢酸エチルで抽出し、 飽和食塩水で洗浄し、硫酸マグネシウムで乾燥 し、滅圧留去する。

残渣をシリカゲルカラムクロマトグラフィーにより (5 % MeOH in CH_2Cl_2) 精製分離し、標題化合物0.6 gを得る。

·分子式;C29H32N2O·HC1

· 'H - NMR (CDC!₃) δ : 1.1 ~ 2.2(9H, m) , 3.7 ~ 4.1(4H, m) , 4.15~4.5(2H, m) , 4.46 (2H, s) , 6.8 ~ 7.4(13H, m)

実 施 例 12

10- [4'- (1'-ベンジルピペリジン) ェチル]
-10,11 -ジハイドロ-5-メチル-5H-ジベ
ンゾ [b,e] [1,4] ジアゼピン-11-オン・塩

·分子式;CaaHaiNaO·HCI

· 'H - NMR (COC1,) δ ; 1.20 ~ 1.91(11H, m) , 2.60 ~ 3.00(2H, bs) , 3.22(3H, s) , 3.41 (2H, s) , 6.87 ~ 7.08(3H, m) , 7.08(9H, m) , 7.64(1H, dd)

<u> 実 施 例 1 3</u>

3 - [[4' - (1' - ペンジルピペリジン) プロ ピオイル] アミノ] - 2 - ピラジンカルポン酸 イソプロピルエステル・塩酸塩

2.3 ーピラジンカルボン酸無水物18gをイソプロピルアルコール 200mlに加え1時間還流する。その後アルコールを留去し、得られる固体をTHF に溶解して4ー(2ーアミノエチル)ペンジルピペリジン30.6g、1ーハイドロキシペンゾトリアゾル21gを加える。これを冷却下、撹拌し、DCC 29.7gを加え、室温で1晩反応させる。濾過後、THF を留去し、塩化メチレンを

酸塩

ナトリウムハイドライド0.25 gをジメチルホルムアミド (DMP) に懸濁させて氷冷下撹拌する。ここへ、10.11 ージハイドロー5 ーメチルー5Hージペング [b,e] [1,4]ージアゼピンー11ーオン0.58 gをDMF 5mlに溶かして滴下する。40~50 ℃で20 分間撹拌し、次いで氷冷して、4ー(アミノエチル)ー1ーベンジルピペリジン0.71 gを加え、45~55 ℃で6時間撹拌する。氷水にあけて塩化メチレンで抽出する。飽和食塩水で有機層を洗い、硫酸マグネシウムで乾燥させた後、減圧下溶媒を留去する。残渣をシリカゲルカラムで精製し、常法により塩酸塩として標題化合物0.78 gを淡黄色非晶質として得る(収率65.4%)

加える。これを飽和炭酸カリウム水溶液、食塩水で洗浄し、乾燥後、溶媒留去する。さらにシリカゲルカラムで精製し、得られた結晶をエーテルーへキサンで再結晶すると目的物の白い結晶8.81gを得た。これを常法により塩酸塩とした。

・元素分析値;C₂₃H₃₀N₄O₃・HCl・¹/₂H₂Oとして

C H N

理論値(%) 60.58 7.07 12.29 実測値(%) 60.54 7.00 12.29

実 施 例 1 4

N - [4' - (1' - (p-ハイドロキシベンジル) ピペリジン) エチル] - 2 - キノキサリンカル ポン酸アミド・塩酸塩

2 ーキノキサリンカルポン酸クロライド2g を1 ー(pーメトキシペンジル) ー 4 ーピペリジ ンエチルアミン2.52gをトリエチルアミン2g 存在下、室温でTHF 中で反応させた。これを常法により後処理してカラム精製することにより $N-(4'-(1'-(p-x)++ v \sim v))$ ピペリジン) ェチル] -2-+/+y リンカルボン酸 アミド 2.5g を得た。

これを1g塩化メチレンに溶解しBBr。により 脱メチル化反応を行い、カラム精製することに より生成物0.3gを得た。これを塩酸塩とする ことによりクリーム色の結晶を0.2g得た。

- ·分子式;C23H24N4O2·HC1
- · 'H NMR (CDC1₃) δ : 1.08 ~ 1.92 (9H, m) 、 2.84 ~ 3.18 (2H, m) 、 3.24 ~ 3.64 (2H, m) 、 3.52 (2H, s) 、 6.60 (2H, d) 、 7.05 (2H, d) 、 7.17 (2H, s) 、 7.64 ~ 8.14 (4H, m) 、 9.53 (1H, m)

実 施 例 15

N- (4'-(1'-ベンジルピペリジル) エチル] -2-キノキサリンカルポン酸アミド

4 - (N-ペンゾイルピペリジル) 酢酸47gと 塩化チオニル 8 ml とペンゼン20ml 中 2 時間加熱 遠流後、滅圧留去する。

これをTHF 20mlに溶解し、水冷撹拌下アニリン1.86g、トリエチルアミン10g、THF 30ml内に滴加する。室温で約11時間反応した後、水にあけメチレンクロライドで抽出する。飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧留去する。残渣をシリカゲルカラムクロマトグラフィーで精製(5%NeOH in CH₂Cl₂)し4ー(Nーペンゾイルピペリジル)酢酸アニリド0.9gを得る。

この4-(N-ベンゾイルピペリジル)酢酸アニリド 0.9gをTHF 10mlに溶解し、水冷撹拌下、THF 30ml中リチウムアルミニウムハイドライド 0.38gを滴下し、さらに1時間加熱凝流する。反応後、水を加え、沈殿雄去後、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去し、1-ベンジル-4-(N'-フェニルアミノエチル)ピペ

1ーベンジルー4ーアミノエチルピペリジン4.6 g、ピリジン50ml、4ージメチルアミノピリジンを室温、撹拌下、2ーキノキサロイルクロライド40g加える。3時間反応後、水にあけメチレンクロライドで抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を滅圧留去する。

この残渣をシリカゲルカラムクロマトグラフィーで精製 (5 %UeOH-CH₂Cl₂) し、酢酸エチルより再結晶し、標題化合物3.0 gを得る。

- ·分子式;C23H26N4O2·HC1
- · 'H NMR (CDCI₃) δ : 1. 16 ~ 2. 20 (9 H. m) 、 2. 76 ~ 3. 04 (2 H. m) 、 3. 49 (2 H. s) 、 3. 48 ~ 3. 68 (2 H. t) 、 7. 13 ~ 7. 40 (5 H. m) 、 7. 70 ~ 8. 26 (4 H. m) 、 9. 64 (1 H. s)

実 施 例 16

1-ベンジル-4- (N'-フェニルアミノエチル) ピペリジン

リジン0.7 gを得る。

- ·分子式;C20H2eN2
- · 'H NWR (CDC1₃) & ; 1.0 ~2.2(9H, m) , 2.85 (2H, m) , 3.10(2H, t) , 3.44(2H, s) , 3.7 (1H, bs) , 6.4 ~6.8(3H, m) , 7.0 ~7.4 (7H, m)

実施例17

N- [4'-(1'-ベンジルピベリジル) エチル]

1 - ベンジルー 4 - (N' - フェニルアミノエチル) ピペリジン0.7 g、トリエチルアミン2.0g、THF 20mlを氷冷下撹拌下、アセチルクロライド0.4 gを滴下する。

室温で3時間反応後、水20mlを加え、メチレンクロライドで抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧留

去する。残渣をカラムクロマトグラフィーで精製 (5.96MeOH in CH₂Cl₂) し、標題化合物を得る。

·分子式;C23H2eN2O

· 'H — NMR (CDC1₉) δ; 1.0 ~2.1(12H.m), 2.6 ~3.0(2H,m), 3.39(2H.s), 3.67(2H,t), 6.9 ~7.5(10H.m)

実 施 例 18

N-(3',5'-ジメトキシフェニル) -N- [4'-(1'-ベンジルピペリジル) エチル] - 4-フ ロロけい皮酸アミド・塩酸塩

1 ーベンジルー 4 ー (N' ー(3'.5' ージメトキシフェニル) アミノエチル] ピペリジン 1.0g、トリエチルアミン2.0g、THF 20mlを氷冷撹拌下、 pーフロロけい皮酸クロライド0.51g加える。室温で2時間反応後水にあけ、酢酸エチル

·分子式;C2eH2aN2O·2HC1

· 'H — NMR (CDC1₃) δ ; 1. 13 ~ 2. 01 (9H, m) , 2. 81 (2H, bd) , 3. 44 (2H, s) , 3. 88 (2H, bt) , 6. 84 ~ 7. 26 (12H, m) , 8. 31 (2H, d)

<u>寒 施 例</u> 20

4- (1-ベンジルピペリジン) プロパンアニ リド・塩酸塩

アニリン 0.5 g、トリエチルアミン1 gをTHF中に溶解する。この中に撹拌下、4 ー (1 ーペンジルピペリジン) プロピオン酸クロライドを1 g 満下し、室温で5時間反応させる。その後、溶煤を留去し、塩化メチレンを加え、水洗、

で抽出し、飽和食塩水で洗浄し、無水硫酸マグ ネシウムで乾燥し、溶媒を減圧留去する。

この残渣をシリカゲルカラムクロマトグラフィーにより精製 (5 % MeOH in CH2Cl2) する。常法により塩酸塩として標題化合物0.9 gを得る。

·分子式;Ca:HasN2Oaf·HCl

- 'H - NMR (CDC1₃) 8; 1.1 ~2.1(9H.m) , 2.7 ~3.0(2H.bd) , 3.51(2H.s) , 3.83(8H.m) , 6.1 ~6.4(4H.m) , 6.9 ~7.8(10H.m)

実 施 例 19

N- [4'-(1'-ベンジルピペリジン) エチル] -N -フェニルニコチン酸アミド・二塩酸塩

N- (4' (1'ーベンジルピベリジン) エチル] アニリン0.70g、4- (N,N'ージメチルアミノ) ピリジン触媒盤をピリジン30mlに溶かし、水冷

MgSO。で乾燥する。これを再び溶媒を留去して シリカゲルカラム精製することにより目的物の 油状物を得た。さらにこのものを常法に従い、 塩酸塩にすることにより白い結晶0.14gを得た。

・融点(セ);197.5 ~198

・元素分析値;C21H26N2C・HC1として

C H N

理論値 (%) 70.28 7.58 7.81

実測館(%) 70.50 7.58 7.83

実 施 例 21

N- (3'-(1'-ベンジルピロリジン) メチル)

ベンジルクロライド0.74g、3-(2'-アミ ノメチル) -ベンジルピロリジン1gをトリエ チルアミン1.5g存在下 THF中、室温で撹拌し 反応させた。これを常法により後処理しカラム 精製することにより、目的物を0.32g 得た。これを一般的方法により塩酸塩にした。

- ·分子式;C19H22N2O·HC1
- · 'H NMR (CDCIs) 8;

1. 48 ~ 3. 08 (7 H. m) \ 3. 44 (2 H. d) \ 3. 62 (2 H. d) \ 7. 04 ~ 7. 88 (10 H. m)

実 施 例 22

 $4 - (4' - (N - \angle y)) + (2 + y) + (3 - y) + ($

窒素気流下、THF 7ml中にジイソプロピルアミン2mlを加え、0 ℃にて、1.6M nープチルリチウムへキサン溶液7.6ml を加え、10分間撹拌後、一78℃まで冷却してワーメトキシアセトフェノン1.65gのTHF 10ml溶液を加え20分間撹拌する。さらに1ーペンジルー4ーピペリジンカルポアルデヒド2.4gのTHF 10ml溶液を加え、

シpーメトキシブチロフェノン0.54g、pートルエンスルホン酸0.1 g、トルエン30mlで加熱 遠流を5時間行う。反応後、炭酸カリウム水溶 被にあけ、メチレンクロライドで抽出し、無水 硫酸マグネシウムで乾燥し、減圧留去する。残 値をカラムクロマトグラフィーで精製 (3 % MeOHーCH2Cl2) し、1ーペンジルー4ー〔4ー(pーメトキシフェニル)ー4ーオキソブチル〕ピペリジン0.45gを得る。これをMeOH20mlに溶解し、10%パラジウムー炭素(含水)40mgを加える。室温常圧で1.5 時間水素添加する。不容物を滤去し、減圧留去する。常法により塩酸塩とし、MeOHーIPB より結晶化し、模類化合物0.2gを得る。

- ·分子式;C22H29NO2·HC1
- · 'H NMR (CDC1₅) δ ; 1.4 ~2.3 (11H.m) , 2.4 ~2.7 (2H,m) , 2.95 (2H.t) , 3.55 (2H.s) , 3.87 (3H.s) , 6.93 (2H.d) , 7.1 ~7.5 (5H.m) , 7.94 (2H,d)

実 施 例 24

10分間撹拌する。 1 %塩化アンモニウム水溶液を加え、メチレンクロライドで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、滅圧留去する。残渣をシリカゲルカラムクロマトグラフィーにより精製 (5 %MeOH — CH₂Cl₂)により精製し、標題化合物2.0 gを得る。

- ·分子式;C22H2sNOs
- 'H NMR (CDCl₃) 8; 1.0 ~2.2 (9H, m) , 2.6 ~3.4 (5H, m) , 3.43 (2H, s) , 3.81 (3H, s) , 4.1 (1H) , 6.83 (2H, d) , 7.17 (5H, s) , 7.82 (2H, d)

寒 施 例 23

4 - [4'-N -ペンジル) ピペリジル] - p -メトキシブチロフェノン・塩酸塩

ディーン・スターク装置を用い、 4 - 〔4' - (N-ベンジル)ピペリジル〕 - 3 - ハイドロキ

N- [4'-(1'-ベンジルピペリジン) エチル] - 3 - フランカルポン酸アミド・塩酸塩

4 - (2 - アミノエチル) - 1 - ベンジルピペリジン1.64g、炭酸カリウム2.67gをクロロホルム40ml、水40mlの混液に加え、氷冷下1時間撹拌する。有機層を分離し、飽和食塩水で洗い、硫酸マグネシウムで乾燥させる。減圧下溶媒を留去し、シリカゲルカラムで精製、常法で塩酸塩とし、淡黄色非晶質として標題化合物1.60gを得る(収率61.1%)

- ·分子式;C19H24N2D2·HC1
- · 'H NMR (CDCl₃) & ; 1. 47 ~ 2. 10 (9H, m) , 2. 81 (2H, bd) , 3. 25 ~ 3. 47 (4H, m) , 5. 80 (1H, bs) , 6. 51 (1H, dd) , 7. 15 ~ 7. 19 (6H, m) , 7. 82 (1H, dd)

爽 施 例 25

N- [4'-(1'-ベンジルピベリジン) エチル] ベンツアミド

N-(1-ラダマンタンメチル)-4-(2-アミノエチル)ピペリジン1.47g、炭酸カリウム0.73gをクロロホルム15mlと水15mlの混液に加え、氷冷下激しく撹拌する。ここにペンゾイルクロライド0.90gを満下し、室温で一夜撹拌する。有機層を分離し、水と飽和食塩水で洗い、硫酸マグネシウムで乾燥させ、溶媒を減圧下留去する。シリカゲルカラムで精製し、ペンゼンーローへキサンから再結晶し、淡黄色板状晶として標題化合物1.47gを得る(収率72.6%)。

- ·分子式;CasHasNaO
- 'H-NMR (CDC1₃) 8; 1.29~2.28(27H,m) .
 2.72(2H,bs) . 3.43(2H,q) . 6.01(1H,bs) .
 7.31~7.43(3H,m) . 7.67(1H,dd)

法で塩酸塩として標題化合物0.52gを黄色非晶質として得る(収率37.6%)。

- ·分子式;CzeHzeNzO·HCl
- 'H NMR (CDC1₃) δ ; 0. 92 ~ 3. 60 (63 H, m) , 7. 29 (5H, s)

実施例27

N- [4'-(1'-シクロヘキシルメチルピペリジル) エチル] N -メチルペンズアミド・塩酸塩

NーメチルーNー (4'ーピペリジルエチル) ベンズアミドO.6 g、シクロヘキシルブロマイド1.2 g、炭酸水素ナトリウム2.0 g、メチルエチルケトン30mlを7時間加熱環流する。反応後、水に加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去する。この残渣をシリカゲルカラムクロマトグラフィーにより精製(5 %MeOHー

寒 施 例 26

N-メチルーN- (4' - (1' - ベンジルピペリジン) エチル] ベンツアミド・塩酸塩

ナトリウムハイドライド0.18gをテトラハイドロフラン (THF) 2 ml に懸濁させ、水冷下撹拌する。ここに Nー〔4'ー(1'ーベンジルピペリジン)エチル〕ベンツアミド1.45gをTHF 5 ml に溶かしたものを滴下する。室温で1時間撹拌した後、再び氷冷し、ヨウ化メチル0.36mlを加え、一夜室温で撹拌する。氷水にあけ、塩析下クロホルム抽出し、飽和食塩水で洗い、硫酸マグネシウムで乾燥させる。減圧下溶媒を留去し、シリカゲルクロマトで精製する。0.60gの黄色油状物が得られる(収率47.0%)。

また、メチル化されていない原料0.22gを回収した(回収率15.2%)。得られた油状物を常

CH₂Cl₂). し、標題化合物0.3 gを得る。

- ·分子式;C22H34N2D·HC1
- · 'H NMR (CDCl₃) δ : 0.8 ~1.1(20H, m) , 1.1 ~1.6(4H, m) , 1.8 ~2.6(5H, m) , 7.4 (5H, s)

実 施 例 28

 $\frac{1 - \langle x \rangle \sqrt{1} \ln 4 - ((5, 6 - 3) + 5) + 1}{-1 \sqrt{2} \sqrt{2} \sqrt{2}} - 2 - 1 \sqrt{2} - 2 \sqrt{2} \sqrt{2}$

5.6ージメトキシー1ーインダノン0.85gと 1ーベンゾイルー4ーピペリジンーカルボアルデヒド1.38gを無水THF 20ml に溶解し、0 でにて28%ナトリウムメチラート1.02gを加えた。室温にて2時間撹拌した後、酢酸エチルにて希釈し、飽和食塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧濃縮し、得られた残渣をシリカゲルカラムにて精製し、1ーベング イルー4- ((5.6-ジメトキシー1-インダノン) -2-イリデニル] メチルピペリジン1.23 g (収率71%) を得た。

この化合物1.23gをTHF 20ml に溶解し、10%パラジウムー炭素 0.3gを加えた。室温常圧にて1日水素添加した後、触媒を違別し、違液を減圧濃縮した。これを塩化メチレンーへキサンから再結晶化し、次の物性を有する標題化合物1.10g(収率89%)を得た。

・融点(で):151~152

・元素分析値; C24H27NO4 として

C H N

理論館(%) 73.26 6.92 3.56

実測值(%) 73.30 6.85 3.32

実 施 例 29

<u>4- [(5,6-ジメトキシー1-インダノン) -</u> 2-イル] メチルピペリジン・塩酸塩

チルピペリジン・塩酸塩

4-〔(5,6-ジメトキシー1-インダノン)
-2-イル〕メチルピペリジン0,25gをTHF6m1に溶解し、トリエチルアミン0,29m1と3-フルオロペンジルブロミド0,13m1を加えた。2時間加熱還流した後、減圧濃縮し、酢酸エチルにて希釈し、10%炭酸ナトリウム水溶液、飽和食塩水にて洗浄した。硫酸マグネシウムにで乾燥後、減圧濃縮し、得られた残渣をシリカゲルカラムにて精製した。さらに常法により塩酸塩とし、塩化メチレンーIPEから再結晶化し、次の物性を有する標題化合物0.27g(収率72%)を得た。

・融点(で);230~232 (分解)

・元素分析値;C24H24NO3・HC1として

C H N

理論値 (%) 66.43 6.74 3.23 実測値 (%) 66.18 6.79 3.11 1ーベンゾイルー 4 ー 〔(5.6ージメトキシー1ーインダノン) ー 2 ーイル〕メチルピペリジン9.00gをジオキサン90mlに溶解し、6N塩酸90mlを加えた。10時間加熱還流した後、滅圧濃縮し、水で希釈した後、酢酸エチルにて抽出した。水層を50%水酸化ナトリウム水溶液にてpH12とした後、塩化メチレンにで抽出し、さらに飽和食塩水にて洗浄した。硫酸マグネシウムにて乾燥後、滅圧濃縮し、得られた残渣を常法により塩酸塩とし、メタノールーエーテルから再結晶化し、次の物性を有する標題化合物6.30g(収率85%)を得た。

・融点(で);249~250 (分解)

・元素分析値;CiaHaaNGa・HCIとして

C H

理論値(%) 62.67 7.42 4.30

実測値(%) 62.75 7.31 4.52

実 施 例 30

 $1 - (3 - 7 \mu + \mu \wedge \nu) - 4 - (5.6 - \nu)$ ジメトキシー $1 - 4 \nu$ (ファ) $-2 - 4 \mu$ メ

実 施 例 31

1-ベンジルー4- [(5,6-ジメトキシー1-インダノン) -2-イル] メチルピペラジン・ 2 塩酸塩

5.6ージメトキシー1ーインダノン1.00g、パラホルムアルデヒド0.31g、1ーベンジルピペラジン0.90mlをエタノール30ml、水2mlに懸濁し、漁塩酸を加えてpH3とした。3時間加熱遺流した後、放冷し、白色固体を違別した。これを塩化メチレンにて懸濁させ、10%炭酸ナトリウム水溶液と飽和食塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧濃縮し、得られた残渣をシリカゲルカラムにて精製した。6時法により塩酸塩とし、メタノールから再結晶化し、次の物性を有する標題化合物0.55g(収率23%)を得た。

・融点 (で) ; 227 ~228 (分解)

・元素分析値:C23H28N2O3・2HC1として

C H

理論値(%) 60.79 6.88 6.16

実測値 (%) 60.31 6.95 6.06

実 施 例 32

4- ((5,6-ジメトキシー1-インダノン) -2-イル) メチルー1-エトキシカルポニルピ

ペリジン

1ーベンジルー4ー 〔(5.6ージメトキシー1ーインダノン)ー2ーイル〕メチルピペリジン0.50gをベンゼン8mlに溶解し、クロルギ酸エチル0.15mlを加えた。3時間加熱還流した後、酢酸エチルにて希釈し、飽和重曹水、飽和食塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧濃縮し、得られた残渣を酢酸エチルーへキサンから再結晶化し、次の物性を有する標題化合物0.45g(収率94%)を得た。

この残渣をTHF 20ml に溶解し、1.8 ージアザビシクロ〔5.4.0〕 ウンデクー 7 ーェン1.66mlを加えた。30分間加熱還流した後、滅圧濃縮し、酢酸エチルにて希釈し、飽和食塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧濃縮し、得られた残渣をシリカゲルカラムにて精製し、標題化合物1.12g(収率56%)を油状物質として得た。

- ·分子式;CzoHzsNOs
- · 'H-NMR(CDCl₃) 8;

1. 23 (3H, t). 1. 41 ~ 2. 90 (11H, m). 3. 84 (3H, s). 3. 88 (3H, s). 4. 10 (2H, q). 6. 60 (1H, s). 6. 97 (1H, s). 7. 03 (1H, s)

寒 施 例 3 4

-2-イリアニル] メチルピベリジン

無水THF 3ml中にジイソプロピルアミン

・融点(で);132~133

・元素分析値;CaoHanNOs として

C H N

理論値 (%) 66.46 7.53 3.88

実測値 (%) 66.79 7.53 4.00

寒 施 例 33

4 - [(5,6-ジメトキシー1-インデノン) --イル] メチルー1-エトキシカルボニルピ ペリジン

4- 【(5,6-ジメトキシー1-インダノン)
-2-イル】メチルー1-エトキシカルボニルピペリジン2.00gを四塩化炭素30mlに溶解し、
N-ブロムコハク酸イミド0.98gと過酸化ペン
ゾイル0.02gを加えた。5時間加熱還流した後、
四塩化炭素で希釈し、飽和重曹水、飽和食塩水
にて洗浄した。硫酸マグネシウムにて乾燥後、
減圧濃縮した。

0.17mlを加え、さらに0℃にて 1.6M n - ブチルリチウムへキサン溶液0.75mlを加えた。0℃にて10分間撹拌した後、-78℃まで冷却し、1.3 - インダンジオン0.18gの無水THF 8ml溶液とヘキサメチルホスホルアミド0.21mlを加えた。-78℃にて15分間撹拌した後、1 - ベンジルー4 - ピペリジンカルボアルデヒド0.35gの無水THF 3ml溶液を加えた。室温まで徐々に昇温し、さらに室温にて一晩撹拌した後、塩の水THF 3ml溶液を加えた。室温まで徐塩によりに変温にて一晩撹拌した後、塩の水下、20分割を増加し、次の物性を有する標題化合物0.12g(収率29%)を得た。

・融点(で):173~174 (分解)

・元素分析値:C22H21NO2 として

C H N

理論值(%) 79.73 6.39 4.23

実測値 (%) 79.43 6.20 4.31

寒 施 例 35

1-ベンジル-4- [(5.6-ジメトキシインデン) -2-イル] メチルピペリジン・塩酸塩

1ーペンジルー4ー ((5.6ージメトキシー1ーインダノール) ー2ーイル) メチルピペリジン0.24gを塩化メチレン5mlに溶解し、10%塩酸ー酢酸エチル溶液を加え、減圧濃縮した。得られた残渣を塩化メチレンー1PEから再結晶化し、次の物性を有する標題化合物0.24g(収率95%)を得た。

・融点 (で) ; 216 ~217 (分解)

・元素分析値:CauHanNOa・HCIとして

C - H N

理論値(%) 72.07 7.56 3.50

実測値 (%) 71.82 7.63 3.33

寒 施 例 36

 $\frac{1 - \langle 2 \rangle \sqrt{1 - 4} - [3 - [(5, 6 - \sqrt{2}) + 2)]}{-1 - 4 \sqrt{2} \sqrt{2}} - 2 - 4 \sqrt{1 + 2} \sqrt{1 - 2}$

- ·分子式:CaeHaiNOa·HCl
- · 'H-NMR(CDCl₃) &;

1. 10~3.00(13H. m), 3. 45(2H. s), 3. 50(2H. s), 3. 90(3H. s), 3. 95(3H. s), 6. 58~7. 20
(3H. m), 7. 27(5H. s)

実 施 例 37

1-ベンジル-4-[3-[(5,6-ジメトキシ -1-インダノン) -2-イル]] プロピルピ ペリジン・塩酸塩

1 ーベンジルー4 ー 〔3 ー 〔(5.6 ー ジメトキシー1 ーインダノン) ー 2 ーイリデニル〕〕プロピルピペリジン0.40gをTHF 15ml に溶解し、10%パラジウムー炭素 0.1gを加えた。室温常圧にて2時間水素添加した後、触媒を減別し、遠液を滅圧濃縮した。得られた残渣をシリカゲルカラムにて精製し、常法により塩酸塩とし、標題化合物0.37g (収率84%)を油状物質

ロビルビベリジン・塩酸塩

無水THF 5ml中にジイソプロピルアミン 0.31mlを加え、さらに 0 ℃にて 1.6M nーブチ ルリチウムヘキサン溶板1.39mlを加えた。 0℃ にて10分間撹拌した後、-78℃まで冷却し、5. 6 - ジメトキシー 1 - インダノン0.39 g の無水 THF 5ml 溶液とヘキサメチルホスホルアミド 0.35mlを加えた。-78℃にて15分間撹拌した後、 3-(1-ベンジル-4-ピペリジン)プロピ オンアルデヒド0.50gの無水THF 5ml溶液を 加えた。室温まで徐々に昇温し、さらに室温に て3時間撹拌した後、酢酸エチルで希釈し、飽 和食塩水にて洗浄した。硫酸マグネシウムにて 乾燥後、減圧濃縮し、得られた残渣をシリカゲ ルカラムにて精製し、常法により塩酸塩とし、 標題化合物0.55g (収率61%) を油状物質とし て得た。

として得た。

- ·分子式;C26H3;NO3·HC1
- · 'H-NMR (CDCl3) &;

1.00~3.30(18H, m). 3.38.3.43(total 2H. each s). 3.85(3H, s). 3.90(3H, s). 6.77. 6.83(total 1H, each s). 7.05.7.10(total 1H, each s), 7.18.7.20(total 5H, each s)

寒 施 例 38~249

実施例 1 ~ 3 7 と同様にして合成した化合物 を表 5 ~ 1 0 に示す。

GD 145 /241	ね 造 式	物理化学恒数
実施例		(融点、元粲分析値、NUR など)
	_	触点 (で) ;247~248 (分解)
	CH ₂ O ₂	元梁分析値(CzaHzzNOs・HCl として)
38	HC1	C H N
	CH*0	理論値(X) 68.73 7.02 3.48 実別値(X) 68.70 6.99 3.35
		触点 (で) :196~197
_	СН: - Он-СН: - О . НС1	元案分析館(CzzHzsNO・HCI として)
39	CH's - Vi-CH's - HCI	TT45 24 70 74 71 72 72 72 72 72 72 72 72 72 72 72 72 72
	~	理論链(%) 74.24 7.36 3.94 実測链(%) 74.25 7.56 3.80
	_	触点 (で) ;203~204 (分解)
		元素分析位(C₂₂H₂₂NO₂・HC1 として)
40	CH=0 - CH= - N-CH= - HCI	T
		理論館(X) 71.58 7.31 3.63 実測館(X) 71.58 7.25 3.65
		'H-NUR (CDC13) 8;
	CH ₃ O D	1.10~3.40(14H, m). 3.48(2H, s). 3.81(3H, s). 3.85(3H, s). 3.85(3H, s). 6.25(1H, bs). 6.42 (1H, bs). 7.25(5H, s)
41	сн, -⟨Л-сн, -⟨⟩ · нсі	(1H, OS), 1, 25 (5H, S)
	CH30	分子式;CzaHzaNOa・HCI
		'H-NWR (CDC1-) 8 :
	CH., C ()	1.05~3.40(14H, m), 3.45(2H, s), 3.80(3H, s), 3.85(3H, s), 6.75(2H, ABq), 7.22(5H, s)
42	CH, -⟨N-CH, -⟨N-CH	
ł	CH ₂ O	分子式;CzaHzoNOz·HCI

表 5 (統 き)

実施例	相 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
	<u>g</u>	融点 (で) : 201~202 (分解)
43	CH*0 CH*CH* - N-CH* - N-CH*	元素分析値(C ₂ , H ₃ , NO ₃ ・HC1 として) 理論値(X) 69, 83 7, 50 3, 26 実施値(X) 69, 13 7, 42 3, 31 以H ₂ O(X) 69, 25 7, 53 3, 23
44	CH*0 HO H-CH*	H-NMR (CDC1 ₃) 8; 1.10-3.40(11H.m), 3.50(2H.s), 3.85(3H.s), 3.93(3H.s), 4.25(1H.bs), 6.81(1H.s), 7.07 (1H.s), 7.22(5H.s)
	CityO	分子式;C22H21HO4
	0	政点 (で) : 225~226 (分解)
45	CH ₃ O N-CH ₃ · HC1	元素分析値(CaaHaaNOa・HC1 として)
	CH*0	空論位(%) 69.08 6.55 3.50 実調位(%) 68.78 6.43 3.50
	0	敗点 (で) ;169~170 (分解)
,,		元衆分析値(C₂₂H₂₂NO・HCI として)
46	N-CH, - HC1	C H N 理論值(X) 74.67 6.84 3.96 実別值(X) 74.42 6.61 3.76
	0	破点 (で) :120~122
,,	N-CH, - N · HC1	元素分析値(CasHasNOs・HCI として)
47 .	CH ₂ O · nc.1	型給飲(%) 71.96 6.83 3.65 実調(数(%) 71.84 6.85 3.46

実施例	. 柳 造 式	物 理 化 学 恒 数 (融点、元素分析値、NAR など)
48	CH*0 0 · HCI	'H-NMR(CDC1 ₃) ð; 1.40~2.40(7H, m), 2.90(2H, bd), 3.48(2H, s), 3.51(2H, bd), 3.82(3H, s), 3.86(3H, s), 6.30 (1H, bd), 6.43(1H, bd), 6.50(1H, bt), 7.23(5H, s) 分子式; C ₃₄ H ₂₃ NO ₃ ·HC1
49	CH = 0 0 · HC1	'H-NMR (COCI.) ま; 1.40~2.50 (7H. m). 2.86 (2H. bd). 3.50 (4H. s). 3.90 (3H. s). 3.94 (3H. s). 6.59 (1H. dt). 6.78 (2H. ABq). 7.22 (5H. s) 分子式; C _{3.4} H _{2.7} NO ₃ ・HC1
50	CH3O OH CH3-CH2-CHCO3H	'H-NMR(CDC1;) お; 1.14~2.04(14H, m), 3.49(2H, s), 3.81(6H, s), 4.77(3H, dd), 6.65(1H, d), 6.82(1H, d), 7.23 (5H, s) 分子式; C:4H:1NO: · C:4H:04
51	CH30 CH3 - N-CH3 - NCI	'H-NMR(CDC1 ₃)
52	O-C-CH*CH*CH*	融点(で);149~150 元素分析値(C::H::NO HCI として) C H N 理論値(%) 73.83 7.88 3.91 英調虹(%) 71.29 8.00 3.80 火。H:0(%) 71.31 8.00 3.78

表 5 (統 き)

実施例	梅 造 式	物理 化学 恒数 (融点、元素分析値、NMRなど)
53	OH	'H-NMR (CDC1;) 8; 1.80~2.03(13H,m), 2.80(3H,bd), 3,43(2H,s), 4.60(1H,t), 7.28(5H,s), 7.30(5H,s)
-		分子式;C ₂₂ H ₂₃ NO・HCl
54	O . HCI	H-NMR (CDC1 ₃)
		分子式;CaaHaaNO·HCI
55	0 	融点 (て) :176~178 元素分析値(C ₂₊ H ₂₊ N ₂ O·2HC1として) C H N 理論値(X) 63.80 7.14 7.09 実調値(X) 63.13 7.43 6.88 グ-6H ₂ O(X) 62.94 7.19 6.99
56	N CCH*CHCH* - N-CH* - N	"H-NWR(CDC1g) る: 1.05~2.15(9H,m), 2.85(2H,bd), 3.02(2H,d), 3.25(1H,bs), 3.47(2H,s), 4.10 ~4.45(1H,m), 7.21(5H,s), 7.62(2H,dd), 8.70(2H,dd)
57	N CCH=CHCH= - N-CH= - 2HC1	'H-NHR (CDC1,) δ; 1.10—2.10 (7H, ω), 2.25 (2H, bd), 2.85 (2H, bd), 3.45 (2H, bs), 6.59 —7.10 (2H, ω), 7.20 (5H, s), 7.56 (2H, dd), 8.67 (2H, dd)
Ll		分子式;C₂₁H₂₄N₂O・2HCl

実施例	梅 造 式	物 理 化 学 恒 数 (触点、元素分析値、MUR など)
58	N NHCCH, CH, -CH, -CH, -CH, -CH, -CH, -CH,	融点 (で) : 240~240.7 元素分析値(C₂oH₂sN₃O・2HC1として) 円 N 理論値(%) 66.75 7,28 11.68 実明値(%) 66.26 7.42 11.37 パoH₂O(%) 66.25 7.31 11.59
59	N	'H-NMR(CDC1 ₂)
60	О . НС1 О . НС1	"H-HNR (COC1 ₄) & ; 1, 12~2, 20 (7H, m), 2, 34 (2H, d), 2, 74~3, 01 (2H, m), 3, 50 (2H, s), 7, 29 (2H, s), 7, 71 (2H, d), 8, 20 (2H, d)

表 6

	•	
実施例	. 橘 造 式	物 理 化 学 恒 数 (融点、元素分析値、NUR など)
		融点 (で) :135~140 (分解)
61	5HC1	元梁分析値(C++H++N+O・2HCIとして) C H N 理論値(X) 62.86 6.47 10.00 実調値(X) 59.22 6.63 9.14 5410 (X) 59.06 6.76 9.39
	п	%H,0 (%) 59. 06 6. 76 9. 39
	0	敵点 (で) :80~82 (分解)
62	N-CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -2HC1	元紫分析値(CュュHュ・NaO・2HC1として) C H N
		型論位(X) 62.56 6.92 9.95 更納佐(X) 60.14 7.313 9.21 1·H₂0(X) 60.00 7.09 9.54
63	N-CH°CH°-CH°-CH°-CH°-CH°-CH°-CH°-CH°-CH°-	'H-NMR(CDC1,) ð: 1.1 ~2.2(9H,m), 2.7~3.1(2H,m), 3.50(2H,s), 4.03(2H,t), 6.50(1H,m), 6.9 ~7.9(9H,m), 8.47(1H,d) 分子式: C23H36N3O・HC1
64	N-CHªCHª-CHª-CHª-CH	'H-NMR(CDC1 ₃) σ : 1.1 ~2.2 (9H, m). 2.7~3.1 (4H, m). 3.4~3.7 (6H, m). 7.0 ~7.6 (8H, m). 8.06 (1H, m).
 		分子式;CaaHaaNaO・HCI
65	N-CH. CH CH CH. HCI	'H-NMR(COC1,) ♂; 1.10~2.20(11H,m), 2.27(3H,m), 2.93(2H,bd), 3,48~3.70(4H,m), 7.27(5H,s), 7.28~8.12(4H,m)
	; C=0	
	CH,	分子式;CaaHaaNaOa·HCl

実施例	. 梅 造 式	物 理 化 学 恒 数 (酸点、元素分析值、HMR など)
66	N-CH°CH°- N-CH°- N-CH°	'H-KMR (COC1 ₃) σ; 1.10~2.20(9H, ω), 2.93(2H, bd), 3.40 ~3.65 (6H, ω), 4.43(2H, s), 7.00~7.50(4H, ω), 7.31 (5H, s)
		分子式;CzəHzaNəO·HC1
67	N-CH _a CH _a -CH _a -CH _a -C	H-HMR (CDC1 ₃) & ; 1, 10~2, 20 (9H, m), 2, 22~2, 97 (8H, m), 3, 45 (2H, s), 3, 55 (2H, s), 6, 90~7, 20 (4H, m), 7, 20 (5H, s)
		分子式:C==H=aN=·2HC1
68	N-CHaCHa-N-CHa-N-CHa-N-CH	'H-NWR (COC1 ₂)
		分子式;CieHaeNaB·HC1
69	N-CH _a CH _a -CH _a	1.10~2.10(9H, α). 1.46(3H, d). 2.87(2H, bd). 3.35~3.72(3H, π). 3.46(2H, s). 4.40(2H, dd). 7.00~7.38(4H, α). 7.28(5H, s)
		分子式:C24H20N2O·HCI
70	CH,CH,-CH,-CH,-CH,-CH,-CH,-CH,-CH,-CH,-C	'H-NNR (CDCl s) &; 1.20~2.84(21H, m). 3.44(2H, s). 7.14 ~7.25 (ЭН, m)
		分子式;CasHaaNaO・HCI

表 6 (統 き)

	•	
実施例	符 造 式	物 理 化 学 恒 数 (融点、元素分析値、NAR など)
71	CH*CH*	'H-NMR (CDC1,) &: 1.44~1.80 (15H, m). 2.96 (2H, bs). 2.56 (2H, s). 7.08~7.40 (9H, m)
	**	分子式;C++H++N+O・HC1
72	CHaCHa—N-CHa—N-CHa—HaCO	'H-NWR (CDC1,) ð; 1.24~2.50(5H.m), 2.18(2H.bs), 2.54~2.88 (4H.m), 3.44(2H.s), 3.76(3H.s), 6.64~6.76 (2H.m), 6.99(1H.d), 7.20(5H.s)
73	CH =	'H-NWR(CDC1;) る; 1.25~2.20(15H,m), 2.58(2H,bt), 2.86(2H,bs), 3.48(2H,s), 3.75(3H,s), 6.56~6.68(2H,m), 7.00(1H,d), 7.21(5H,s)
74	CH ₂ CH ₂	'H-MNR (CDC1 ₃)
75	CH ₃ CH ₃ -CH ₃ -C	'H-NHR (CDC1,)

実施例	操 造 式	物 理 化 学 恒 数 (酸点、元素分析値、NMR など)
76	CH30 CH3CH8-CH8-CH8-CH8-CH8-CH8-CH8-CH8-CH8-CH8-	1H-NNR (CDC1,) \(\delta : \) \(\
		分子式: C,sH,sN,0,・HC1 'H-NWR(CDC1,) を: 1,08~2.10(11H,m), 2,50,~2,95(4H,m), 3,01
77	CH ₃ O CH ₃	1.08~2.10(11H,m), 2.50~2.95(4H,m), 3.01 (3H, S), 3.45(2H, s), 3.45~3.60(1H, m), 3.85 (6H, s), 6.52(1H, s), 7.10(1H, s), 7.20(5H, s)
	au a	'H-NMR (CDC1 3) 7
78	CH*0 CH*-CH*-CH*- HCI	
		分子式:CaaHaoNaOa・HCl
	CH*CH*-	'H-NMR (CDC1;) &; 1, 17 (3H, t), 1, 10~2, 15 (9H, m), 2, 68 (2H, q), 2, 89 (2H, bd), 3, 14 (2H, s), 3, 51 (2H, s), 3, 55 (2H, s), 3, 87 (2H, bt), 7, 07 ~7, 35 (9H, m)
79	· 2HC1	(en. 5), J. 61 (en. 01), 1. 01 ~1. 33 (9n, m)
	ΩH²CH².	分子式;CaskasakaO·2HCl

表 7

実施例	. 褐 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
80	CH °	'H-NMR (CDC1 ₃) ま; (フリー体) 1,01~2,40(9H,m), 2,70~3,30(4H,m), 3,46(3H,s), 3,54(2H,s), 3,90~4,20(2H,m), 6,90~8,20(9H,m) 分子式:C ₂₄ H ₂₃ N ₃ O ₂ ・HC1
81	0 N-CH ₂ CH ₂ -_N-CH ₂ -_\ HC1	'H-HMR (CDC1,) &: 1, 12~2, 12 (9H, m), 2, 76~3, 00 (2H, m), 3, 50 (2H, s), 3, 56 (2H, t), 4, 36 (2H, s), 7, 08~7, 92 (9H, m)
82	COOC+H* CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	'H-NMR (CDC1-) &; 1, 42 (3H, t), 2, 76~3, 00 (2H, m), 3, 32~3, 62 (2H, m). 3, 50 (2H, m), 4, 53 (q, 2H), 7, 12 ~7, 40 (5H, m), 7, 48~7, 72 (1H, m), 8, 58 (1H, d), 8, 73 (1H, d)
83	COOCH*CH*CH*CH*CH* · HCI	'H-NMR(CDC1,) &; 0.95(3H, t), 1.04~2.10(13H, m), 3.68~4.00 (2H, m), 4.28~4.60(2H, m), 4.48(2H, s), 5.46 (3H, t), 7.74(5H, s), 7.48~7.72(1H, m), 8.57 (1H, d), 8.71(1H, d)

実施例	裸 造 式	物 理 化 学 恒 数 (触点、元素分析値、HMR など)
84	CH. CONCH. CH CH CH HCI	'H-NMR (CDC1;)
85	CH. COUCH. CH CH CH HCI	'H-NWR (CDC13) &: 0,92~2.06 (9H, m), 1.40 (3H, t), 2.64~2.91 (2H, m), 3.12 (3H, s), 3.36~3.72 (4H, m), 4.46 (2H, q), 7.28 (5H, s), 8.73 (2H, d)
86	COOCH, HCI	'H-NMR (CDC13) &; 1.10~2.16 (9H, m). 2.72~3.02 (2H, m). 3.10~ 3.62 (2H, m). 3.51 (2H, s). 4.04 (3H, s). 7.2~ 7.48 (5H, m). 7.48~7.80 (1H, m). 8.60 (1H, d). 8.69 (1H, d)
87	CN CONHCH.CH. CHCHCH HCI	'H-NMR(CDC1 ₄) &; 1.04~2.28(9H, m), 2.36(3H, s), 3.44(2H, s), 3.50~3.76(2H, m), 7.12~7.25(5H, m), 9.03 (2H, s)
88	CONHCH. CCH. — N-CH. — HCI	'H-HMR(COC1,) \$; 0.96~2.16(9H, m). 2.56~3.00(2H, m). 3.00~ 3,40(2H, t). 3.44(2H, s). 7.20(5H, s). 8.02(2H, s)

表 7 (統 各)

ſ	i	物理化学恒数
実施例	機 造 式	(融点、元素分析値、NAR など)
89	N CONHCH*CH*- N-CH*-	"H-NNR (CDCl.)
90	CONHCH, CH, -CH, -CH, -CH, -CH, -CHC1	H-MMR (COCI ;)
91	CH., CH., CH., CH., CH., CH., CH., CH.,	H-MMR(CDC1;) &; 0,98~2.16(9H,m). 2,60~3.00(2H,m). 3,14(3H,s). 3,32~3,72(4H,m). 7,04~7,32(5H,m). 7,60 ~7.82(1H,m). 7.84~8.15(2H,m). 9,05(1H,s)
92	CH ₃	'H-HMR (CDC1) 3; 1.00~2.05(9H.m), 2.56~3.00(2H.m), 3.08, 3.12(total 3H, each s), 3.30 ~3.70(4H, m), 7.18,7.21(total 5H, each s), 7.33~8.22(6H, m)
93	CNHCH 2 CH 2 - N-CH 2 - CH 2 - CHC1	"H-HMR(CDC1 ₂)

実施例	极 造 式	物 理 化 学 恒 数 (股点、元素分析値、NUR など)
94	CNHCH, CH, -CH, -CH, -CH, -CH, -CH, -CH, -	融点 (で) : 197.5 ~198.5 元素分析値(C _{3.4} H _{3.7} N ₃ O・2HC1として) C H N 理論値(X) 64.57 6.55 9.41 実調値(X) 64.26 6.58 9.35
95	O CUHCH 3 CH 3 - CH 6 - OCH 3 · HC1	融点 (で) ; 174~176.5 元素分析館(C, 4H, 6N, 0) - HC1として) C H N 理論館(%) 65.37 6.63 12.71 実調館(%) 64.96 6.63 12.60 ゾェルカ (※) 64.97 6.66 12.63

办 8

実施例	機 造式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
96	CONHECT N-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3	H-HMR (CDC1 ₃) δ ; 0.96~2.24(9H, m), 1.25(3H, t), 2.60~3.08(2H, m), 3.44(2H, s), 3.12~3.15(4H, m), 7.20(5H, s), 8.44(2H, s)
97	CNCH ₂ CH ₃ -CH ₃	「H-NMR (CDC1 ₃) る: 1.00~2.08(9H,m), 2.70(2H,bd), 3.04(3H,bd), 3.40(2H,bd), 7.17(5H,s), 7.40~7.61(2H,m), 7.66~7.82(2H,m), 7.99~8.11(2H,m), 7.83(1H,d) 分子式: C23H23N3O・2HC1
98	0 II - N-CH 2 - CH 2 -	'H-NMR(CDCl ₃) <i>る</i> ; 1.1 ~2.1(9H, m). 2.7~3.0(2H, m). 3.50(2H, s). 3.90(2H, t), 6.9 ~7.6(12H, m). 8.03(2H, d) 分子式:C ₃₇ H ₂₉ N ₃ O ₃ ・HC1
99	C-N-CH ₂ CH ₂ -CH	H-NMR(CDC1 3)
100	C-N-CH, CH, - N-CH, - N-CH, - HC1	'H-NHR(CDC1;) る; 1.1~2.2(9H, m). 2.7~3.0(2H, m). 3.48(2H, s), 3.89(2H, m). 6.8~7.4(15H, m) 分子式; C; H; N, O·HC1

実施例	梅 造 式	物 理 化 学 恒 数 (触点、元素分析値、NMR など)
101	CHaCHaNCHaCHa-Cha-Cha-Cha-Cha-Cha-Cha-Cha-Cha-Cha-Ch	「H-NMR (CDC1,) か; 1.16(3H, t). 1.1 ~2.2(9H, m). 2.7~3.0(2H, m). 3.1~3.4(4H, m). 3.52(2H, s). 6.5~7.4(10H, m)
102	CH ₉ O CH ₉ CH ₉ -CH ₉ -	'H-NMR(COCI ₂)
103	CH ₃ CNCH ₃ CH ₂ -\left M-CH ₃ -\left HC1	1H-NNR(COC1,) る; 1.78(3H, s), 1.0 ~2.1(9H, m), 2.6~3.0(2H, m), 3.43(2H, s), 3.75(2H, m), 3.73(3H, s), 6.64(4H, dd), 7.26(5H, s)
104	OCH,	「H-NMR (COC1 ₃) る; 1.1 ~2.1 (9H, m), 1,84 (3H, s), 2.7~3.0 (2H, m), 3.44 (2H, s), 3.5~3.8 (2H, m), 3.80 (3H, s), 6.5 ~6.9 (3H, m), 7.22 (6H, s) 分子式; C22H20N2O2
105	N C-N-CH2CH2-N-CH3-O	'H-NWR (CDC1;) Ø; 1, 16~2, 16 (9H, m), 2, 68~2, 98 (2H, m), 3, 49 (2H, s), 3, 84~4, 09 (2H, t), 6, 91~7, 40 (10H, m), 8, 22~8, 44 (2H, m), 8, 62 (1H, s)

表 8 (統 き)

実施例	神 造 式	物 理 化 学 恒 数 (強点、元素分析値、NUR など)
106	H C-H-CH°CH°	'H-NMR(CDC1,) が; 1.98~2.26(20H.m). 2.85(2H.bd). 3.48(2H.s). 3.62(2H.bt). 6.96 ~7.40(9H.m)
107	CH ₃ - S - NCH ₂ CH ₃ - N-CH ₃ - N-CH ₃ - NCI	'H-NNR(CDC11) 8: 0,90~2.10(9H,m), 2.65~2.98(2H,m), 2.83(3H,s), 3.47(2H,s), 3.52~3.92(2H,m), 7.26(5H,s) 7.26~7.43(5H,m)
108	CH3CH3CNCH3CH3	'H-NMR(COCI ₃) ð; 1.02(3H.t), 1.10~2.00(9H.m), 1.98(2H.q), 2.80(2H.bd), 3.43(2H.s), 3.55 ~3.80(2H.m), 6.97~7.40(5H.m), 7.20(5H.s)
109	CH ₃ NCH ₃ CNCH ₃ CH ₃ N-CH ₃ - 2HC1	'H-NMR(COC1 ₃) ð; 1.0~2.1(9H,m). 2.18(6H,s). 2.6~3.0(4H,m), 3.38(2H,s). 3.4~3.8(2H,m). 6.9~7.5(10H,m) 分子式; C14H33N3O・2HC1
110	CH3CH2OCNCH2CH3- N-CH3- N-CH3- NCI	'H-NMR(CDCl ₃) が; 1.17(3H,t). 1.1 ~2.1(9H,m). 2.6~2.9(2H,m). 3.40(2H,s). 3.4 ~3.8(2H,m). 4.08(2H,t). 7.19(10H,s) 分子式; C ₂₃ H ₂₆ N ₂ O ₃ ·HCl

実施例	棉 造 式	物 理 化 学 恒 数 (触点、元素分析値、NUR など)
111	CH3CNCH3CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-C	'H-NNR(COC1,) ð; 1,24~1.81(9H, m), 2.0(3H, s), 2.82~2.96(2H, d), 3.54(2H, s), 3.80(2H, m), 7.18(2H, dd), 7.36(5H, s), 8.70(2H, dd)
112	C1 C1 · HC1	'H-NHR (CDC1 ₃) ð: 1.83(3H, s). 1.0~2.2(9H, m). 2.6~3.0(2H, m). 3.43(2H, s). 3.66(3H, t), 6.8~7.4(9H, m) 分子式: C+2H+1N+OC1・HC1
113	CH, = CHCNCH2CH2 - N-CH3 - HC1	'H-NMR(CDC1 ₃) お; 1.16~2.06(9H.m), 2.83(2H.bd), 3.47(2H.s), 3.78(2H.bt), 5.42(1H.dd), 5.90(1H.dd), 6.20 (1H.dd), 6.99~7.40(10H.m)
114	CH3CNCH3CH3	'H-NMR(CDCl ₂)
115	CH -	'H-NMR(COC1 ₂)

表 8 (統 合)

実施例	構 造 式	物理 化学 恒数 (融点、元素分析館、MARなど)
116	N CH2CH2CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH	'H-NMR(CDC1 ₃) ð; 1.0~2.1(9H.m). 2.6~3.0(2H.m). 3.43(2H.s). 3.85(2H.m). 6.4~6.7(3H.m). 6.9~7.3(8H.m). 8.34(2H.d).
117	H — CNCH, CH, — H-CH, — 2HC1	サーNMR(COC1) ま; 1.0 ~2.1(9H.m). 2.6~3.0(2H.m). 3.41(2H.s). 3.84(2H.m). 6.6 ~7.2(5H.m). 7.22(5H.s). 8.37(2H.d)
118	CH30 OCH3 - N-CH3 - SHC1	1H-NMR (CDC1 ₃)
119	CH3 CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-	'H-NMR(COC1 ₃)
120	CH,CNCH,CH, HCI CH,O	'H-NMR(COC1 ₃) &; 1. 85(3H, s), 1. 1 ~2. 2(9H, m), 2. 6~3. 0(2H, m), 3. 42(2H, s), 3. 60(2H, m), 3. 75(6H, s), 6. 20(2H, d), 6. 35(1H, m), 7. 18(5H, s)

表 8 (統 き)

実施例	祝 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
121	N CHCH, CH, -CH, -CH, -CH, -CH, -CH, -CH,	'H-NWR (CDC1,) ð; 1.1 ~2.1 (9H.m), 2.6~3.0 (2H.m), 3.50 (2H.s), 3.83 (2H.m), 6.58 (4H.dd), 7.04 (2H.d), 7.19 (5H.s), 8.28 (2H.d)
122	N CNCHacha Chacha Chacha Chacha Chachachachachachachachachachachachachach	'H-NMR(CDC1)
123	0 CH	'H-MMR (CDC1 ₃) ð: 1 1 ~2.1 (9H, m), 2.6~3.0 (2H, m), 3.44 (2H, s), 3.68 (3H, m), 3.85 (2H, m), 6.78 (4H, dd), 7.02 (2H, d), 7.23 (5H, s), 8.37 (2H, d) 分子式; C ₂₇ H ₂₁ N ₃ O ₂ ·2HC1
124	NCH ₂ CH ₂ N-CH ₂ 2HC1	'H-NMR (CDCI ₃) ð; 7. 20 (11H. m), 8. 05 (1H. m), 1. 2~1. 83 (9H. m), 2. 65~2. 81 (2H. d), 3. 4 (2H. s), 3. 90 (2H. m), 6. 20~6. 52 (2H. m) 分子式: Cashasha・2HCI

表 9

実施例	被治安	物理化学恒数
72571	119 44 14	(融点、元紫分析値、NMR など)
125	CH, CH, CH, CH,	'H-NWR(CDC1,) &; 0.80~2.12(12H.m), 2.52 ~3.64(8H,m), 7.06~ 7.52(10H,m)
126	H ₃ N - CH ₃ CH ₃ - N-CH ₃ CH ₃ - 2HC1	「H-NMR(CDC1 ₃) <i>も</i> ; 1,08~2.10(9H.m), 2,80~2.92(2H.d), 3.00(3H.s), 3.34~3.50(4H.m), 3.90(2H.s), 6.60(2H.d), 7.21~7.28(7H.m) 分子式: C ₂₃ H ₂₃ R ₃ O・2HC1
127	CH3 CH3 CH3 · HC1	'H-NMR(CDC1 ₂) ð; 1.0~2.1(9H.m). 2.31(3H.s). 2.5~3.1(5H.m). 3.1~3.6(4H.m). 7.0~7.4(9H.m) 分子式: C ₂₂ H ₂₀ N ₂ O・HC1
128	CH ₃ -C-NHCH ₃ CH ₃ -CN ₃ -CH	'H-NMR(CDCl ₃)
129	0 	'H-NMR(CDC1;) ま: (フリー体) 1,10~2,06(17H,m),2,10~2,32(36,m),2,96 (3H,s),3,20~3,52(4H,m),4,08~4,16(2H,d), 7,36~7,76(5H,m) 分子式: C2,H3,N,0・HC1
130	CH, CH, CH, -CH, -CH, -CH, -CH, -CH, -CH	'H-NMR (CDC13) &; 1, 20~2.08 (9H, m). 2, 80~2.92 (2H, d). 3, 12 (3H, s). 3, 46~3.64 (4H, m). 6, 42 (1H, dd). 7, 00 (1H, dd). 7, 26 ~7, 45 (6H, m)
L]	-	分子式;CaoHaeNaOa·HCl

麦 9 (統 き)

実施例	禄 造 式	物 理 化 学 恒 数 (<u>)</u> () () () () () () () () () () () () ()
131	0 ii -C-H-CH ₂ CH ₃ - N-CH ₂ CH= CH-	'H-NAR (CDC1.) & ; 1. 02~2. 06 (9H. m). 2. 71~3. 57 (9H. m). 6. 16~ 6. 54 (2H. m). 7. 10~7. 55 (10H. m)
	CH,	分子式; Ca. HaoNaO·HCI
132	O N-CH2-C + HC1	'H-NWR (CDC1;)
1		分子式;CzaHzeNzOz·HC1
133	('H-NWR (COC1,) 8; 1.00~3.08 (20H, m), 7.22 (5H, bs), 7.37 (5H, s)
	CH;	分子式;CzaHzoNaO·HCI
134	O-CNHCH*CH*	'H-NMR(CDC1 ₁)
		分子式;C;sH24N2O2·HCl
135	0 II —0COCH•——H-CH•—— · HC1	'H-NWR (CDC1.) δ ; 1. 1 \sim 2. 2 (9H, ϖ). 2. 8 \sim 3. 1 (2H, ϖ). 3. 50 (4H, s). 7. 30 (10H, s)
1		分子式;CzoHzaNOa・HCl
136	CH*O II CNHCH*CH* - W-CH* - W-CH* · HCI	'H-NWR (CDC1 ₃) & ; (7") -) 1, 20~2, 16 (9H. m), 2, 64~3, 0 (2H, bd), 3, 46 (2H, s), 3, 36~3, 60 (2H. m), 3, 80 (6H, s), 5, 50 (1H, bs), 6, 50 ~6, 60 (2H, d), 7, 16~7, 40 (6H, m)
1	OCH.	分子式;C₂₃H₃₀N₂O₃·HCI

安 9 (統 き)

実施例	神 造 式	物 理 化 学 恒 数 (触点、元素分析値、NUR など)
137	HO I CHHCH, CH, -CH, -CH, -CH, -CH	'H-NMR (CDC1,) <i>ð</i> ; (フリー体) 1,12~2,16(9H,m), 2,76~3,0(2H,bd), 3,48(2H,s), 3,32~3,60(2H,m), 3,92(3H,s), 6,32~7,40(8H,m), 8,26(1H,bs), 14,0(1H,s)
	OCH.	分子式;C22H2aN2O2·HCl
138	OCNHCH,CH,-CH,-CH,-C) · HCI	'H-NMR (CDC1 ₂) & ; 1.1 ~2.2 (9H, m), 2.7~3.0 (2H, m), 3.1~3.4 (2H, m), 3.46 (2H, s), 4.90 (1H), 6.9 ~7.4 (10H, m)
		分子式; Cz, HzeNzOz・HC1
139	CH3CNHCH3CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-	'H-NMR (CDC1.) 8; 1.1 ~2.2 (9H, m). 2.7~3.0 (4H. m). 3.1~3.6 (2H, m). 3.55 (2H, s). 5.5 (1H). 7.30 (10H. s)
		分子式;C₂₃H₂aN₂O·HCI
140	CH = CHCNHCH, CH, -CH, -CH, -CH, -CH	'H-NMR (CDC1,) Ø; 11 ~2.2 (9H, m); 2.7~3.0 (2H, m), 3.2~3.4 (2H, m), 3.40 (2H, s), 5.9 (1H), 6.39 (1H, d), 7.1 ~7.8 (11H, m)
		分子式;CzaHzaNaD·HCI
141	CNHCH,CH, -CH, -CH, -CH, -CH	'H-NNR (CDC1 ₃) お; (フリー体) 1,1 ~2,2 (SH, m), 2.6~3,0 (2H, bd), 3.44 (2H, s), 3.36~3.6 (2H, m), 3.90 (3H, s), 6.9~8.30 (10H, m)
	OCH,	分子式;CpaHpaNaOa·HCl

実施例	機 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
142	CH3CH3CNHCH3CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-	「H-NWR (CDC1 ₂)
143	CH-CH-CHHCH-CH	¹H-NMR (CDC1,) ♂; 1. 17 (3H, t), 1,2 ~2. 1 (9H, m), 2. 17 (2H, q), 2. 7 ~3. 0 (2H, m), 3. 1~3. 4 (2H, m), 3. 45 (2H, s), 5. 3 (1H), 7. 21 (5H, s)
		分子式;Cı¬HzaNzO・IICI
144	CHCNHCH,CH,-CH,-CH,-CH,-CH	'H-NNR (CDC1 2) \$; 1. 1 ~2. 0 (12H, m). 2. 6 ~3. 0 (2H, m). 3. 0~3. 3 (2H, m). 3. 41 (2H, s). 3. 3 ~3. 4 (1H, m). 7. 23 (10H, s)
	₩ Ch ₃	分子式;CaaHaoNaO·HC1
145	CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-	'H-NMR (COC1.) 8; 0.90~2.10 (9H.m), 2.78 (2H.bd), 3.00 ~3.70 (2H.m), 3.43 (2H.s), 4.40~4.85 (2H.m), 7.27 (10H.s), 7.38 (5H,s)
		分子式;CzaHszNzO·HCl
146	COCH,CH, CH, CH, CH,	'H-HMR (COCI ₃) & ; 1.0 ~2.1 (9H, m). 2.7~3.0 (2H, m). 3.48 (2H, s). 4.36 (2H, t). 7.0 ~7.7 (8H, m). 7.8~8.2 (2H, m)
1	~	分子式;CgiHzsNOa

表 9 (統 き)

実施例	梅 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
147	CH, - (-) N-CH, - (-) · HCI	'H-NMR(CDC1,) &; 0.86~1.90(9H,m), 2.56~3.05(4H,m), 3.38(2H,d), 4.56(1H,s), 4.68(1H,s), 7.00~7.56(12H,m), 8.10(2H,m)
	0,N, ~, —	分子式;C2aH2iN2O3·HCl
148	0 	'H-NMR (CDC1 ₃)
ii		分子式;C ₁₇ H ₂₄ N ₂ O·IICI
149	C-N-CH,CH, -C-N-C-C	'H-NWR (CDC1 ₃) ð; 1.00~4.08(16H, m). 7.38(10H, s)
	CII3	分子式;CzzHzaNzO;
150	0 	'H-NMR (CDC1,) Ø; 0,90~2,10(9H, m), 2,55~3,50(7H, m), 3,52(2H, s), 7,38(5H, s), 7,80(4H, ABq)
		分子式;CaaHanNaOa・HCl
151	CH ₃	'Н-НИК (CDC1,) 8; 0,96~2.08 (ЗН. m), 2.60~3.10 (БН. m), 3.48 (2Н, d), 7.16~7.92 (14Н, m)

実施例	禍 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
152	CHCH,-CH,-CH,-CH,-CH,-CH,-CH,-CH,-CH,-CH	'H-NUR (COC1 -) 8; 0.80~2.04 (9H, m), 2.48~2.88 (2H, m), 3.12~ 3.52 (4H, m), 7.03~7.72 (14H, m)
153	O II CHCHacha — H-CHa — CHa — HCI CHa	「H-MMR(COC1。) ð; 1.01~2.01(19H.m), 2.33(3H.s), 2.63~3.04 (5H.bd), 3.42(2H.bd), 7.15(4H.bs), 7.35(5H. s) 分子式; C.。H。No. HC1
154	CH, CH, CH, CH,	'H-NMR(CDC1 ₃)
155	CH, OaN	'H-NMR(COC1,) が; 0,90~2,18(9H,m), 2,52~3,70(7H,m), 3,72(2H,s), 7,10~7,88(4H,m), 7,38(5H,s) 分子式; C2+H2→N2O2
156	CH3	敗点(て):216~217 (分解) 元素分析値(CュョHュッNュOュ・HCI として) C H N 理論値(X) 63.23 6.75 10.05 実測値(X) 62.95 6.69 9.88

表 9 (続き)

実施例	・ 横 造 式	物理 化学 恒数 (触点、元素分析値、NMRなど)
157	0 	"H-NMR (CDC1,) δ: 0, 82 (9H, s). 1, 02~2, 28 (9H, m). 2, 60~3, 60 (9H, m). 7, 28 (5H, s)
	~	分子式; C2oH32N2O·HCI
158	ONHCH, CH, -CH, -C ← CH, · HCI	'H-NNR(CDC1,) 8; 0.85(9H, s). 1.12~2.28(9H, m). 2.76(2H, bd). 3.42(2H, q). 7.38(3H, m). 7.67(2H, dd)
		分子式;C,sHsoN2O·HC1
159	0 11 CHCH=CH=	'H-NNR (CDC1 ₃) &; 1.0 ~2.2 (9H, m); 1.6~2.1 (5H, m), 2.2~2.6 (4H, m); 6.8 ~7.7 (9H, m)
	Cn ₃	分子式;C+2H2+N2O・HC1
160	0 Ch Ch Ch Ch HC1 Ch Ch Ch Ch Ch HC1	'H-NMR(CDC1 ₃) が; 1,00~2,05(9H,m),2,08,2,12(total 3H, each s),2,82(2H,bd),3,03~3,43(2H,m),3,44(2H, s),4,47,4,56(total 3H, each s),7,35(10H,s)
 		<u> </u>
161	CH, CH, -CH, -CH, -CH, -CH, -CH, -CH, -C	'H-NMR (CDC1.) δ ; 1.00~2.08 (9H, ω), 2.78 (2H, bd). 2.88 (3H, s). 3.10~3.45 (2H, ω), 3.43 (2H, s), 3.57 (2H, s). 7.22 (10H, s)
		分子式;C,,H,,N,O·HC1

実施例	格 造 式	物理 化学恒数 (触点、元素分析値、NMRなど)
162	0 CH3CNCH3CH3	'H-NMR (CDC1;)
i	LR3	分子式;CiaHasNaO·HCl
163	CH = CHCNCH 3 CH 3 - CH	'H-NMR (CDC1 -) 0 : 1.1 ~2.2 (9H. m). 2.6~3.2 (5H. m). 3.2~3.6 (4H. m). 6.8 ~7.1 (1H. m). 7.3 (5H. s). 7.5 ~ 7.8 (3H. m). 8.24 (2H. d)
	CH,	分子式;CzeHzzNzOz・HCI
164	CNCH ₂ CH ₂	'H-NMR(COC1 ₂) &; 1.00~2.08(10H.m), 2.72 ~3.08(5H.m), 3.33 (2H, bd), 6.16(1H, bs), 7.07(7H, bs)
1	Cha U	分子式;CzaHzeNzOz・HCI
165	CNCH CH - CH - CH - HCI	*H-NMR(CDC1,)
-	•	分子式; C, sHzoNzO・HCI
166	O CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	'H-NMR(CDC1;) 5; 1,00~2,02(9H,m), 2,64~3,00(5H,m), 3,41(4H,m), 7,15(1H,m), 7,27(5H,s), 7,50(1H,d), 8,41 (2H,m)
		分子式;CaiHaaNaO·2HCI

表 9 (統 き)

		·
実施例	梅 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
167	0 	H-HUR (CDC1-) &; 1.04~1.04(11H, m), 2.64 ~3.00(5H, m), 3.58 (2H, s), 7.01(1H, m), 7.27(5H, s), 7.58(2H, m), 8.44(1H, d)
	City City	分子式;C₂,H₂,N₂O·2HCl
168	CH, CHHCH, CH, -CH, -CH, -CH, -CH	'H-HMR (CDC1)
	0 ₂ N	分子式;C22H27N2O3・HCl
169	CNCH, CH, -CH, -CH, -CH, -CH, -CH, -CH, -C	'H-NWR (CDC1.) 5; 1.0 -2.1 (9H. m). 2.6-3.2 (5H. m). 3.2-3.7 (4H. m). 7.25 (5H. s). 7.3 -8.1 (7H. m)
		分子式:CzeHzoHzO・IICI
170	CH3C00 CH3CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-C	H-NHR(COC1,)
171	CHCH, CH, -CH, -CH, - 2HC1	'H-HWR (CDC1.)
		分子式; C++H++N+O・2HCI

実施例	構. 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
172	C-NCH, CH, -CH, -CH, -CH, -CH, -CH, -CH, -C	'H-NHR (CDC1,) &; 0.90~1.05(9H, m), 2.70(3H, s), 3.00(2H, d), 3.22(2H, s), 3.37(1H, s), 3.46(1H, s), 7.18~ 7.60(9H, m), 7.78(3H, m)
	~~	分子式;CzeHzoNzO·HC1
173	CNHCH, CH, -CH, -CH, -(H)	(H-MMR (CDC1 ₃) & ; 0.7 ~2.2(20H, m), 2.8 ~3.2(4H,), 3.55(2H, m), 6.95(1H, s), 8.02(2H, d), 8.34(2H, d)
	0.14	分子式:CaiHaiNaOa
174	BFOOCCH—CHCH*CH*CH*-CH*-CH*-CH*-CH*-CH*-CH*-CH*-	'H-NMR (CDC1 ₉) δ; 1.1 ~2.1(12H, m), 2.7 ~3.1(5H, m), 3.2~3.6 (4H, m), 4.22(2H, q), 6.7(1H, m), 7.2~7.4(6H, m)
	•,,	分子式;C2:H2oN2O3·HC!
175	CH3 CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-	1H-NUR (CDC1 ₃) 3; 0.56~3,36(23H,m), 3.40 ~3.68(2H,m), 4.28 (2H,s), 7.18(5H,s), 8.34(2H,d), 8.58(2H,d)
176	N-CH,CH, N-CH, - HC)	H-NUR (CDCl ₃) 8; 1.16~2.12(9H, m), 2.89(2H, bd), 3.47(2H, s), 4.35(2H, bt), 7.08 ~7.74(11H, m), 8.08(1H, bd), 8.23(1H, dd)

表 , 9 (統 き)

実施例	梅 造 式	物理化学恒数
		(融点、元素分析値、NMR など)
177	CHCH3CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3	1 H-NWR (CDC1 ₃) & ; 1, 08—1, 94 (9H, m), 2, 68—3, 02 (7H, m), 3, 40 (2H, d), 7, 27 (5H, s), 7, 41 (2H, d), 7, 78 (2H, d), 10, 0 (1H, s)
	CHO CHO	分子式;C23H20H2O2・HCl
178	CH ₂ CH ₃	'H-NMR (CDC! 3) 8; 1.10~1.98(15H, m). 2.77 ~2.98(6H, m). 3.12~ 3.46(4H, m). 7.26(9H, m)
	CH 3 CH	分子式; CasHaaNaO·HC1
179	CHCH2CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2	'H-NMR(CDCl ₃) & : 1,00~2,00(9H,m), 2,60~3,00(7H,m), 3,45(2H,m), 6,95(2H,d), 7,26(5H,s), 7,90(2H,d)
	F,C	分子式;CaaHaaNaOFa·HC1
180	CH-CH-CHCHCHCHCHCHCHCHC	'H-NNR(CDCl ₃) &; 1.00~2.10(3H, m), 2.87(2H, bd), 2.99(3H, s), 3.10~3,50(2H, m), 3.48(3H, s), 6.35~7,35(5H, m), 7.83(5H, s)
	HO Chi	分子式;CeaHeaNeOa・HCl
181	CHCH, CH, -CH, -CH, -CH, -CH, -CH, -CH,	'H-HMR (CDC1.) &; 1.10~1.88 (12H, m), 2.80 (2H, d), 2.98 (3H, s), 3.23~3.44 (4H, m), 4.02 (2H, m), 6.84 (2H, d), 7.26 (7H, m)
	Bt0 Cirs	分子式;C24H32H2O3·HC1

表 9 (統 き)

実施例	胡 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
182	N	'H-HMR (CDC1,)
183	N	'H-NUR (COCL) <i>д</i> : 1. 04~1. 98 (7Н, ш), 2. 20~3. 80 (7Н, ш), 6. 60~ 7. 34 (7Н, ш), 8. 67 (2Н, д)
184	CH3OC - CHCH3CH3 M-CH3 HCI	'H-HMR(CDC1,)
185	CH3CH2OCH3 - CNCH2CH3 - N-CH3 - HC1	'H-NMR(COC1 ₂) <i>も</i> : 0.90~2.06(9H, s). 2.70~3.02(10H, m). 3.20~ 3.62(4H, m). 4.50(2H, s). 7.21~7.30(9H, d) 分子式; C2sH34N2O2・HC1

安 9 (統 き)

実施例	祸 造 式	物 理 化 学 恒 数 (融点、元素分析値、NAR など)
186	CH ₂ CH ₃ — N-CH ₃ — HC1	'H-NAR(CDC1 ₃) ð; 0.90~2.10(9H, m), 2.81(2H, bd), 3.45(2H, s), 4.11(2H, t), 6.98~7.82(8H, m), 7.21(5H, s)
187	CH ₃ CH-O - CHCH ₃ CH ₃ - N-CH ₃ - HCI	'H-NMR (CDC1-) 8: 1.40~2.20 (9H.m). 2.83 (2H.bd), 3.00 (3H.s), 3.20 ~3.50 (2H.m). 3.48 (2H.s), 4.56 (1H.quirtet), 7.08 (4H.ABq). 7.28 (5H.s) 4.56 (1H.quirtet), 7.08 (4H.ABq).

実施例	存 选 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
188	CH ₂ O CH ₂ - CH ₃ - CH ₃ - HCI	"H-NMR(COCI.) &; 1.00~3.40(14H.m). 3.47(2H.s), 3.78(3H.s), 6.90~7.50(3H.m). 7.23(5H.s)
		分子式;CapHanNOa・HC1
189	CH, -CH, -C + HC1	'H-NNR (CDC1,) Ø; 1.05~2.12(9H, m), 2.50~3.40(5H, m), 3.48 (2H, s), 3.88(3H, s), 6.98(1H, q), 7.15~7.32 (2H, m), 7.23(5H, s)
	сн 3 Ф	分子式;CaaHanNOa・HCI
	CH30 CH3 CH3 - CH3 - CH3 - CH3 - HC1	融点 (℃) ;199~200 (分解)
190		元素分析値(C₂₄H₃¸NO₃・HC1 として)
		で H N 理論値(30) 69.30 7.27 3.37 実測値(3) 69.24 7.40 3.38
	CH=0 0	励点(で);198~199
191	CH ₂ O ————————————————————————————————————	元楽分析籤(CaeHaeNOa・HCI として)
		C H N 理論值(X) 69.30 7.27 3.37 実測值(X) 69.15 7.42 3.47
	CH ₃ O 0	融点(で);200~201
192	CH,0 - CH, -	元索分析値(C₂sH₂,NO₄・HCI として)
	CH-10	理論值(X) 67.33 7.23 3.14 実例值(X) 67.10 7.16 3.00

委 10 (統 會)

実施例	福 造 式	. 物理化学恒数
		(融点、元素分析値、NMR など)
193	Р СНСНСН НС1	'H-NMR (CDC1 1) &; 1.05~2.15(9H, m). 2.55~3.43(5H, m). 3.48 (2H, s). 7.23(5H, s). 7.23~7.43(3H, m)
		分子式; CaaHaaNOF·HCI
	n	触点(で):175~177
194	CH3 - N-CH2 - HC1	元衆分析値(CasHanNO・HCI として) C H N
.51	The Theory	理論值(X) 74.68 7.63 3.79 実现值(X) 72.77 7.64 3.62 以12.0 (X) 72.90 7.71 3.70
]	СН, -СН, -СН, -ССН, -СС	触点(で):211~213 (分解)
195		元赤分析館(CaaHaaNO・HC! として) C H N
155		理論館(X) 74.68 7.63 3.79 実調館(X) 72.68 7.49 3.70 2.0.0 (X) 72.90 7.71 3.70
	9	触点(で):153~154
196	сн,о Сн, —Сн, —Сн,	元素分析館(С₂ҙН₂ҳΝロҙとして)
150		で H N 要適値(X) 75.59 7.45 3.83 更適値(X) 75.77 7.28 3.64
197	CH ₉ O CH ₉ -CH	破点 (で) ;170~171 (分解)
		元粲分析館(CaaHanNOaとして)
		理論征(X) 75.59 7.45 3.83

実施例	機 造 式	物 理 化 学 恒 数 (融点、元素分析值、NMR など)
198	CH ₃ CH ₃ O	融点(で);175~176 元集分析値(C₂eH₂₂NO₂・HCI として) C H H 理論値(X) 70.33 7.72 3.15 実函値(X) 70.20 7.46 3.35
199	СН. Он-СН. Он НСІ	励点(〒): 236~237 (分解) 元季分析値(C₃₃H₂₅NO₃・HC1 として) C H N 理論値(X) 69.08 6.55 3.50 実測値(X) 68.97 6.82 3.29
200	CH. CH. CH. HCI	融点(で):195~196 元素分析値(CashlanNO・HC1 として) C H N 理論値(X) 74.68 7.63 3.79 実測値(X) 72.72 7.77 3.78
201	O CH ² - CH ³ - CH	'H-NMR(CDC1 ₃) る: 1.10~2.0(13H.m), 2.60~3.08(5H.m), 3.41 (2H.s), 7.00~7.85(4H.m), 7.19(5H.s) 分子式: C14H23NO・HC1
202	сн. — Сн. — Сн. — НС1	'H-NMR(CDC1 ₂) る; 1 17(3H, d), 1 12~2 10(9H, m), 2 60~2 93 (2H, m), 3 41(2H, s), 3 51(1H, q), 7 20(5H, s), 7 30~7, 92(5H, m) 分子式; C ₂₂ H ₂₂ NO・HC1

実施例	神 造 式	物 理 化 学 恒 数 (酸点、元素分析値、NUR など)
		融点(で);126~127
	CH.O CH N-CH NCI	元索分析値(CasHasNOs・HC1 として)
203	CH ₂ CH ₃	C H N
	CH	理論值(%) 70.33 7.72 3.15 実測值(%) 70.41 7.48 2.85
204	CH3O CH3CH3CH3CH3CH3-CH3-CH3-CH3-CH3-CH3-CH3-	'H-NWR (CDC1 ₃)
	CH30	分子式;CanHasNOa·HCI
205	CH ₃ O	H-NMR (CDC1-) # ; 1.05~3.36 (22H, m). 3.45 (2H, s). 3.85 (3H, s). 3.90 (3H, s). 6.78 (1H, s). 7.08 (1H, s). 7.21 (5H, s)
	CH*0,	分子式;C2aH27NO2·HC1
206	CH ₃ O CH ₃ -CH ₃ -CH ₃ -CH ₃ · HCI	'H-NWR (CDC1;)
	~	分子式;CzaHzaNOz·HCI
207	0 - Сн - Сн Сн НС1	H-NuR (CDC1;) 6; 1.50~3.57(17H,m), 3.48.3,50(total 2H, each s), 3.83, 3.85(total 3H, each s), 6.57 ~7.39(4H,m), 7.22(5H,m)
,	CH ² O	分子式;C,,H,,NO,·HC1

実施例	禄 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
208	CH*O - CH* - CH* - HCI	'II-NHR (CDC1 ;) ∂; 1.58~2.55 (7H, m), 2.79~3.02 (2H, m), 3.50 (2H, s), 3.63 (2H, d), 3.90 (6H, s), 6.63 (1H, dt), 6.93 (1H, d), 7.22 (5H, s), 7.57 (1H, d)
	CH ³ Q	分子式;CzeHzyNOs·HCI
209	CH = CH = CH - CH = - HC1	'H-NMR(CDC1,)
	•	分子式;CzeHznNOs·HCI
210	CH ₃ O	'H-NWR (CDC1,)
	Cn3U .	分子式;CasHasNO。·HCI
211	Р СН - СН СН НС1	1.52~2.55(7H,m). 2.78~3.02(2H,m). 3.50 (2H,s). 3.59(2H,s). 6.72(1H,dt). 7.05~7.55 (3H,m). 7.22(5H,s)
		分子式;CzzHzzNOP·HC!
212	CH, CH, CH, -CH, -CH, -CH, -CH, -CH, -CH	'H-NWR (CDC1 ₂) δ; 1,50~2.55(7H, m), 2.38(3H, s), 2.78~3.02 (2H, m), 3.48(2H, s), 3.57(2H, s), 6.66(1H, dt), 7.38~7.60(3H, m), 7.21(5H, s)
		分子式; CaaHaaNO·HCI

表 10 (統. 含)

実施例	桐 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
213	CH - ← HC1	H-NUR(CDC1;)
	ćн,	分子式;C₂₃H₂₅NO・HC1
	n	融点(で):174~175
214	HO N-CH-CH-	元楽分析位(C₂₃H₂₅NO₃として)
214	CH ₃ O	C H N 理論位(%) 69.08 6.55 3.50 実測位(%) 69.12 6.41 3.43
	0	般点 (で) ;175~176
215	CH ₃ O H-CH ₃ CH	元衆分析値(CaoHauNOaとして)
213		T H N T T T T T T T T T T T T T T T T T
	0	励点 (で) :180~181
216	CH -	元素分析館(CseHs:NOs・HC1 として)
210		C H N 理論館(%) 70.65 7.30 3.17 実測値(%) 70.34 7.05 3.07
	. нс1	融点 (で) ; 228~230 (分解)
217		元素分析値(CュョHュョNO₃・HC! として) C H N
		理論館(3) 69,43 6,08 3,52 東湖館(3) 67,89 5,97 3,45 火H ₂ D (3) 67,89 6,19 3,44

実施例	梅 造 式	物 理 化 学 恒 数 (酸点、元素分析値、NMR など)
218	0 =CH - ← CH ₂ - ← HC1	'H-HNR(CDC1,) 8; 2.48~3.02(13H, m), 3.48(2H, s), 6.73(1H, dt), 7.10~8.10(4H, m), 7.22(5H, s)
		分子式: CaaHaaNO・HCI 融点(で): 211~213 (分解)
	a′	成点 (C) ; 211~213 (万井) 元素分析値(C₂ + H₂ ¬ NO・HC1 として)
219	- HC1	型輪鎖(X) 75.47 7.39 3.67 実調値(X) 75.22 7.41 3.57
220	CH, V-CH, -CH, HC1	'H-NMR(CDC1,) ð; 1,20~2.60(7H, m), 1.96(3H, d), 2.70~2.97 (2H, m), 3.46(3H, s), 6.07(1H, dd), 7.21(5H, s), 7.21~7.61(5H, m)
		カイス、C32n23n0 * nC7 融点 (で):170~171
	CH ₂ O ₂ 1	元素分析値(CaaHaa, NOaとして)
221	CH3 CH3 CH3	理論值(%) 77.01 7.70 3.45 実測值(%) 77.10 7.67 3.43
222	CH ₃ O CH ₃	'H-NMR(CDC1,) &; 1,10-2.40(13H,m), 2.70-3.00(2H,m), 3.45 (2H,s), 3.48(2H,s), 3.86(3H,s), 3.91(3H,s), 6.68(1H,tt), 6.80(1H,s), 7.20(6H,s)
	CngU	分子式;CarHaaHOa·HCI

実施例	禄 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
223	CH=0 - CHCH=CH=CH=CH= - N-CH= - HC1	'H-NMR (CDCl ₃) &; 1, 10~2.40(15H,m), 2,68 ~3.00(2H,m), 3.46 (2H,s), 3.50(2H,s), 3.88(3H,s), 3.93(3H,s), 6.68(1H,tt), 6.83(1H,s), 7.19(1H,s), 7.21 (5H,s)
		分子式;C₂eH₃sNO₃·HCl
224	CH=0 CH-CH=CH-CH=CH-CH= CH-CH= CH-CH-CH= CH-CH= CH-CH-CH= CH-CH-CH-CH= CH-CH-CH-CH= CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	融点 (で) ; 130~135 元素分析値(C₂eH₂,NO₃・HC1 として) C H N 理論値(%) 70.98 6.87 3.18 実測値(%) 70.81 6.72 3.10
225	CH ₃ O CH ₃ -H CH ₃ -H CH ₃ - HCI	'H-NMR(CDC1 ₂)
226	CH ₃ O CH ₃ -CH	防点(で):186~188 (分解) 「H-NMR(CDC1) る: 1.65~2.10(7H, m), 2.65~2.75(2H, m), 3.25~ 3.83(5H, m), 3.92(3H, s), 3.98(3H, s), 4.60 (2H, s), 6.88(1H, s), 7.19(1H, s), 7.26~7.60 (5H, m) 分子式:C _* 4H _{**} NO _*
227	CH = 0 CH = -CH = -CH = -CH = - HCI	融点 (で): 220~221 元素分析値(CsaHs,NOs・HC1 として) C H N 理論値(な) 69.83 7.50 3.26 実研値(な) 70.03 7.51 3.26

実施例	構 造 式	物理化学值数
		(融点、元素分析値、NMR など) 融点 (で) : 212~213
228	CH ₃ O CH ₃ - CH ₃ - CH ₃ · HC1	元素分析位(C,,H,,NO,・HC1 として) C H N 理論位(X) 69.83 7.50 3.26 実測位(X) 69.62 7.38 3.15
229	CH ₃ O CH ₃ -CH ₃ -CH ₃ - HCI	融点(t);229~230 (分解) 元楽分析値(C ₁₅ H ₃₁ NO ₃ ・HC1 として) C H N 理論値(X) 69.83 7.50 3.26 実調値(X) 69.91 7.48 3.28
230	CH.O. CH. — CH. — HC;	'H-NMR(CDC1,)
231	CH ₂ O CH ₃ - CH ₃ - CH ₃ - CH ₃ - HCI	融点(℃);210~211 元素分析値(C₃,H₂,N₂O₃・HC1 として)
232	CH=0 CH= - N-CH= - NO, · HC1	助点 (で) ; 234~236 (分解) 元素分析値(C₂,H₂,N₂O₂・HC! として) C H N 実施値(X) 62.54 6.34 6.08 実調値(X) 62.56 6.25 5.83

実施例	福 造 式	物 理 化 学 恒 数 (融点、元素分析館、NMR など)
233	CH ₉ O CH ₃ - CH ₃ - CH ₃ - CH ₃ - HC1	'H-NMR(CDC1 ₂) <i>ð</i> ; 1.10-3.43(14H,m), 3.52(2H,s). 3.84(3H,s), 3.91(3H,s), 6.35~7.08(7H,m)
234	CH.O CH CH CH OH · HCI	競点 (で):146~148 元素分析値(C**H**,NO**+HC! として) で 理論値(X) 66.51 7.29 3.53 実調値(X) 66.73 7.00 3.24
235	CH=0 CH= CH= CH= CH= HC1	融点 (で):193~194. 元素分析値(C2sH2,NO4・HC1 として) C H N 理論値(30) 67,33 7,23 3,14 実調値(30) 67,43 7,22 3,13
236	CH = 0 CH = -CH =	融点(で):226~228 (分解) 元素分析値(CssHsiNOs・HC1 として) C H H 理論値(X) 67.33 7.23 3.14 実調値(X) 67.21 7.29 2.97
237	CH30 CH3 CH3 CH3 CH3 CH3 CH3	「H-NMR(CDC1。) み; 0.78~3.40(14H.m), 3.46(2H.s), 3.85(3H.s), 3.91(3H.s), 5.01(2H.s), 6.78(1H.s), 6.80~ 7.43(9H.m), 7.09(1H.s) 分子式; C3.1H3.NO4・HC1

実施例	構 造 式	物 理 化 学 恒 数 (<u>陸点、元</u> 衆分析値、NAR など)
	CH ₂ O CH ₂ - CH ₂ - CH ₂ - 2HC1	触点 (で) ;224~226 (分解)
238		元集分析館(C++H++N+O3 - 2HC1として) C H N
		理論值(X) 60.93 6.67 6.18 更調值(X) 58.72 6.98 5.56 H,0 (X) 58.60 6.84 5.94
	CH*0 CH*CH*CH* - HCI	融点 (で) ;253~256 (分解)
239		元素分析値(C:sH:,NO:・HCI として)
		C H N 理論位(X) 69.83 7.50 3.26 実現位(X) 69.60 7.49 3.27
240	CH*0 CH* CH* - HCI.	融点(で);225~226 (分解)
		元染分析値(C₂₄H₂₅NO₃・HC1 として)
		C H N 理論值(%) 68.31 8.60 3.32 実測值(%) 68.17 8.49 3.51
	CH=0 CH= CH= CH= · HCI	融点(で);226~227 (分解)
241		元集分析値(CaaHaiNOa・HC1 として)
		C H N 理論值(%) 72.17 6.92 3.01 実測位(%) 71.71 7.07 2.85
242	CH*0 CH* - CH* - CH* - HCI	融点 (で) ;243~245 (分解)
		元素分析値(C₂∎H₃,NO₃・HC1 として)
		で H N 理論値(X) 72.17 6.92 3.01 実施値(X) 71.75 6.92 2.01

実施例	梅 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
243	CH30 CH3 CH3 CH3 CH3 CH3	融点 (で) : 191~192 元素分析値(C _{se} H _{se} NO _s ・HCI として) C H N 理論値(%) 65.60 7.20 2.94 実調値(%) 65.34 7.27 2.79
244	CH ₉ O CH ₉ - OCH ₉ - OCH ₉ OCH ₉	融点 (で) ; 219〜221 元素分析位(C _{3+H3s} NO ₄ ・HC1 として) C H N 理論値(%) 64.09 7.17 2.77 実訓値(%) 63.27 7.19 2.51 公H ₂ D (%) 62.96 7.24 2.72
245	CH*O CH* - HC!	'H-NUR(D ₂ O) ð: 1.10~3.12(14H,m). 3.84(3H,s). 6.70(1H,s). 6.84(1H,s) 分子式:C,sHs,NOs・HC1
246	CH ₂ O CH ₂ -	融点 (で) ; 182~183 元素分析位(CaoHaaNaOa として) C H N 理論位(%) 64.39 5.94 12.51 実別位(%) 64.42 5.78 12.52
247	CH,0 CH, -CH, -CH, -CH, -CH, -CH, -CH, -CH,	融点 (て) : 240~241 (分解) 元森分析値(CseHssNDsSs・HC1 として) C H N 理論値(X) 63.46 6.96 2.85 実調値(X) 63.18 6.78 2.80

実施例	存 选 式	物 理 化 学 恒 数 (数点、元素分析値、NMR など)
248	CH ₂ O	融点(で):180~185 (分解) 元素分析値(C13H3N3O3・2HC1として) C H N 理論値(な) 60.73 6.45 6.25 実別値(な) 60.92 6.67 6.18
249	CH = 0 - CH - CH = - CH - CH = - CH - CH = - CH - CH	融点(で);230~232 (分解) 元素分析値(CseHseNose・HC! として) C H N 理論値(X) 69.35 6.65 2.31 実例値(X) 69.21 6.59 2.33

第1頁の続き								
Int. Cl. 5			į	識別記号			庁内整理番号	
Α	61	,	31/445 31/47 31/495 31/55					7375—4C
С	07	2 2 2! 4! 4!	11/08 11/40 95/10 01/00 05/12 13/06 71/04		1 0	4	н	7180-4C 7180-4C 6742-4C 6742-4C 6742-4C 6742-4C 8829-4C
個発	明	者	荒	木			伸	茨城県つくば市竹園 2-11-6 柏マンション401号
@発	明	者	小	笹		貴	史	茨城県つくば市吾妻 4 -14- 5 ヴイラ・エスポワール 206号
個発	明	者	窪	Ħ		篤	彦	茨城県つくば市並木 4-15-1 ニユーライフ並木406
@発	明	者	小	笹	美	智	子	茨城県つくば市吾婁 4 -14- 5 ヴイラ・エスポワール 206号
⑩発	明	者	山	津		凊	實	神奈川県鎌倉市今泉台7-23-7