Lógica Computacional

Tabela Verdade

Profa. Ms. Adriane Ap. Loper

- Unidade de Ensino: Tabela Verdade
- Competência da Unidade: desenvolver e praticar o raciocínio lógico utilizando a tabela verdade para que, ao final da unidade, você conheça e saiba aplicar os seus conceitos e fundamentos a partir de cases e aplicações computacionais.
- Resumo: Aplicação de tabelas verdade na solução computacional.
- Palavras-chave: tabela verdade, conectores, verdadeiro
- Título da Teleaula: Tabela Verdade
- Teleaula no: 04

Contextualizando

Como funcionário *trainee* na área de *analytics* de uma empresa de varejo, você deve ser capaz de resolver os problemas propostos pela equipe a fim de ajudá-la e, em breve, ser promovido a júnior.

Seu primeiro desafio consiste em construir uma tabela verdade com os resultados dos conectores de conjunção, disjunção e negação para *insights* de vendas.

Seu segundo desafio é completar a tabela verdade com novos *insights*, baseados no conector de implicação, a fim de direcionar uma campanha promocional.

Após completar as duas primeiras etapas, você deverá utilizar os novos dados recebidos para extrair *insights* para uma campanha promocional personalizada.

Fonte: Shutterstock

Contextualizando

Para solucionar os desafios propostos, você aprenderá a construir tabelas verdades com os conectores lógicos, analisar os resultados obtidos e solucionar fórmulas mais complexas.

Fonte: Shutterstock

Construção da Tabela Verdade

Lógica Computacional

- ✓ Assim como no hardware, o software também possui operações lógicas. Por exemplo, podemos escrever um programa que irá somar dois valores se, e somente se, ambos forem positivos. Nesse caso, teremos que construir o algoritmo utilizando o operador AND.
- ✓ Como você pode ver, tanto o hardware como o software computacional dependem da Lógica Formal.
- ✓ Sabemos que os fundamentos da lógica computacional estão baseados nas proposições e nos conectivos (ou operadores) lógicos, mas como podemos organizar os resultados das operações lógicas para facilitar nosso trabalho? Podemos seguir a sugestão de Silva, Finger e Melo (2017) e construir matrizes de conectivos.

Fonte: Shutterstock

Matrizes de Conectivos - AND

Como você pode ver, tanto o hardware como o software computacional dependem da Lógica Formal.

Sabemos que os fundamentos da lógica computacional estão baseados nas proposições e nos conectivos (ou operadores) lógicos, mas como podemos organizar os resultados das operações lógicas para facilitar nosso trabalho?

Podemos seguir a sugestão de Silva, Finger e Melo (2017) e construir matrizes de conectivos, conforme mostra o Quadro 4.1. No canto superior esquerdo, temos a operação lógica a ser feita, no caso AND (E).

Nas linhas abaixo da operação, temos a proposição "P" e os possíveis valores que ela pode assumir, ou seja, verdadeira / falsa.

onte: Shutterstock

Matrizes de Conectivos - AND

Nas colunas ao lado da operação, temos os valores da proposição "Q", ou seja, também verdadeira / falsa.

No centro da matriz estão os possíveis resultados lógicos para a operação AND.

Veja que, quando **P E Q** são verdadeiras, o resultado é V. Para todos os demais casos, o resultado é falso (F).

Quadro 4.1.

P AND Q	Q = V	Q = F
P = V	v	F
P = F	F	F

A representação dos resultados lógicos por meio de matrizes de conectores ajuda na organização, porém, limita uma operação por matriz. Como meio de organizar os resultados e facilitar a operação entre vários conectores em uma mesma estrutura, podemos utilizar a Tabela Verdade.

Fonte: Shutterstock

Construção da Tabela Verdade

Esquema geral de uma tabela verdade:

Tabela-verdade

Recurso empregado na avaliação do valor lógico de uma proposição a partir dos valores lógicos das proposições que a constituem

Construção de Tabela -verdade

Segundo Jacob Daghlian (2006), para se construir a tabela-verdade de uma proposição composta dada, procede-se da seguinte maneira:

- a) Determina-se o número de linhas da tabela-verdade que se quer construir; 2ⁿ
- b) Observa-se a precedência entres os conectivos, isto é, determina-se a forma das proposições que ocorrem no problema;
- c)Aplicam-se as definições das operações lógicas que o problema exigir.

Tabela verdade

Estamos criando uma aplicação que precisa informar se uma determinada pessoa irá pagar imposto ou não, a depender da sua renda, de acordo com a seguinte regra: Se o salário for superior a 5 mil e a idade menor que 40 anos, a pessoa pagará de imposto 10% do seu salário.

Considere as seguintes proposições:

A: o salário é maior que R\$ 5 mil.

B: a idade é menor que 40 anos.

Com base na tabela verdade da conjunção (E), vamos analisar qual seria o resultado da fórmula A ^B para uma pessoa que recebe um salário de R\$ 4 mil e possui 32 anos.

Figura 4.3 | Tabela Verdade da conjunção

	C1	C2	С3
	А	В	$A \wedge B$
L1	V	V	V
L2	V	F	F
L3	F	V	F
L4	F	F	F

Avaliando a proposição A para o caso, temos um resultado F (pois não ganha salário de 5 mil).

A proposição B possui resultado V (a idade é menor que 40 anos). Ao consultarmos a terceira linha da Figura 4.3, vemos que o resultado de A^B para tais entradas é falso. Portanto, para o caso analisado, o resultado da fórmula é F.

Tabela Verdade

Sua missão

Você foi recentemente contratado como um funcionário trainee na área de analytics e almeja se tornar júnior em breve, mas para isso deve cumprir seus desafios e ajudar a equipe.

Você recebeu uma planilha com os dados de compras de clientes, conforme ilustrado na Tabela 4.1.

Dadas as seguintes proposições:

p: o cliente é do sexo feminino,

q: o cliente tem idade entre 20 e 30 anos, o seu desafio é construir uma Tabela Verdade que generalize a solução fazendo a conjunção e a disjunção para as proposições p e q, além de criar os resultados para a negação de ambas as fórmulas.

Fonte: Shutterstock

Sua missão

Após criar a tabela verdade, você poderá analisar cada registro informando se o resultado é verdadeiro ou falso para cada um dos conectores lógicos propostos na Tabela 4.1. Tal resultado ajudará a equipe de vendas a criar rotinas para tomada decisões.

codigo_cli	nome_cli	genero_cli	idade_cli	valor_compra	E	OU
53682	Karly Dillon	F	40	74,84	?	?
58246	Channing Vaz- quez	М	49	98,04	?	?
27022	Adria Key	F	47	65,93	?	?
82075	Ella Nelson	F	34	94,01	?	?
90657	Arden Battle	M	48	21,73	?	?
80330	Brittany Ramirez	F	38	42,23	?	?
53989	Moses Graham	M	42	37,20	?	?
61370	Jin Fuller	M	49	65,60	?	?
41807	Phelan Blair	M	46	77,40	?	?
94269	Porter West	M	22	67,19	?	?

Tabela 4.1 | Dados de compra dos clientes

Fonte: Shutterstock

Tabelas-verdade

Tabela-verdade da negação:

p	~p
V	F
F	V

p: Montevidéu é a capital da Espanha. (F)

~p

q: As baleias são peixes. (F)

~q

r: A metade de 12 é 6. (V)

r

Conjunção (e)

O conector lógico de conjunção (AND - E) é utilizado para realizar uma operação binária entre duas proposições, quando se deseja obter um resultado verdadeiro se, e somente se, as duas proposições forem verdadeiras.

Conjunção (e)

Disjunção (ou)

O conector lógico de disjunção (OR - OU) é utilizado para realizar uma operação binária entre duas proposições quando se deseja obter um resultado falso se, e somente se, as duas proposições forem falsas.

Disjunção (ou)

	C1	C2	С3
	Α	В	$A \lor B$
L1	V	V	V
L2	V	F	V
L3	F	V	V
L4	F	F	F

Tabela verdade de clientes

Como membro da equipe de *analytics* de uma empresa de varejo, dadas as seguintes proposições:

p: o cliente é do sexo feminino e

q: o cliente tem idade entre 20 e 30 anos,

você foi encarregado de construir uma Tabela Verdade para as operações de conjunção e disjunção, além de criar a negação para as fórmulas. Com a Tabela Verdade criada, você deve avaliar os registros de clientes que foi lhe passado na Tabela 4.1, completando as colunas E/OU com V ou F.

A Tabela Verdade pode ser usada como um gabarito para as operações lógicas, pois contempla todas as entradas possíveis e suas combinações para as fórmulas em estudo. Com esse gabarito em mãos, podemos passar para a segunda etapa do desafio, que é fazer a valoração das fórmulas p^q e pVq para cada registro da base de clientes. Pois bem, vejamos na Tabela 4.2, como ficaram os resultados.

p	q	$p \wedge q$	$p \lor q$	$\neg(p \land q)$	$\neg (p \lor q)$
V	V	V	V	F	F
v	F	F	V	V	F
F	V	F	V	V	F
F	F	F	F	V	V

Quadro 4.2 | Tabela Verdade para time de *analytics*

Na linha 1, o cliente Karly é do sexo feminino, portanto, p é verdadeiro, e tem 40 anos, logo, a proposição q é falsa para esse cliente. Nesse caso, ao consultar a Tabela Verdade, a conjunção com entradas *VF* tem como resultado F, mas a disjunção tem resultado V, pois basta que uma proposição seja V.

Na linha 2, o cliente é do sexo masculino e possui 49 anos; nesse caso, tanto p quanto q são falsas, logo, ambas fórmulas são valoradas como F.

Termine de analisar suas respostas comparando os resultados com a Tabela Verdade.

Tabela 4.2 | Valoração das fórmulas p^q e pVq

p: o cliente é do sexo feminino e

q: o cliente tem idade entre 20 e 30 anos,

linha	codi- go_cli	nome_cli	gene- ro_cli	idade_cli	valor_compra	Е	ou
1	53682	Karly Dillon	F	40	74,84	7 2	
2	58246	Channing Vazquez	М	49	98,04		
3	27022	Adria Key	F	47	65,93	_	
4	82075	Ella Nelson	F	34	94,01	-	Ÿ.
5	90657	Arden Battle	M	48	21,73		
6	80330	Brittany Ramirez	F	38	42,23	11 .	
7	53989	Moses Graham	M	42	37,20		
8	61370	Jin Fuller	M	49	65,60		9
9	41807	Phelan Blair	M	46	77,40	,	i
10	94269	Porter West	M	22	67,19		1

linha	codi- go_cli	nome_cli	gene- ro_cli	idade_cli	valor_compra	Е	ou
1	53682	Karly Dillon	F	40	74,84	F	V
2	58246	Channing Vazquez	М	49	98,04	F	F
3	27022	Adria Key	F	47	65,93	F	V
4	82075	Ella Nelson	F	34	94,01	F	V
5	90657	Arden Battle	M	48	21,73	F	F
6	80330	Brittany Ramirez	F	38	42,23	F	V
7	53989	Moses Graham	M	42	37,20	F	F
8	61370	Jin Fuller	M	49	65,60	F	F
9	41807	Phelan Blair	M	46	77,40	F	F
10	94269	Porter West	M	22	67,19	F	V

Resultados na Tabela Verdade

Sua missão

Como funcionário *trainee* na área de *analytics* de uma empresa de varejo, você deve ajudar a equipe de marketing em uma campanha para o dia internacional da mulher.

Dadas as proposições:

A: o cliente é do sexo feminino.

B: o cliente fez um compra com valor superior a R\$ 50,00.

C: ganhar cupom com 10% de desconto.

Seu desafio consiste primeiro em avaliar a fórmula A^B para cada um dos registros da Tabela 4.3.

Essa avaliação lhe permitirá classificar a proposição C para cada um dos clientes, ou seja, se o cliente ganhará ou não o cupom de 10% de desconto.

Fonte: Shutterstock

Sua missão

Após a classificação, você deverá generalizar, por meio de uma Tabela Verdade, as possíveis respostas para a fórmula $P \rightarrow Q$, sendo P e Q duas proposições genéricas. Para cumprir seu desafio, nesta seção veremos a Tabela Verdade do conector de implicação, bem como outros importantes resultados da Tabela Verdade.

codigo_cli	nome_cli	genero_cli	idade_cli	valor_compra	cupom_10
53682	Karly Dillon	F	40	74,84	?
58246	Channing Vazquez	М	49	98,04	?
27022	Adria Key	F	47	65,93	?
80330	Brittany Ramirez	F	38	42,23	?
53989	Moses Graham	М	42	37,20	?
61370	Jin Fuller	М	49	65,60	?
41807	Phelan Blair	М	46	77,40	?
94269	Porter West	М	22	67,19	?
56516	Zena Skinner	F	54	73,98	?
38904	Teagan Rios	М	34	61,57	?

Tabela 4.1 | Dados de compra dos clientes

Fonte: Shutterstoo

Condicional (se....então)

- ✓ As proposições podem ser combinadas na forma "se proposição 1, então proposição 2".
- ✓ O conectivo lógico dessa combinação é o condicional, representado por ->, e significa que se a proposição 1 é verdadeira, implicará na verdade da proposição 2 (GERSTING, 2017).
- ✓ Em outras palavras, podemos dizer que dada uma sequência de proposições, a partir da operação condicional é possível chegar a uma conclusão (um resultado), que é uma nova proposição.
- ✓ A primeira parte, antes do conector, é chamada de antecedente, e a segunda de consequente.

Condicional

Tabela de desconto

Você foi encarregado da missão de direcionar a equipe de marketing em uma campanha para o dia internacional da mulher. Dadas as proposições:

A: o cliente é do sexo feminino.

B: o cliente fez um compra com valor superior a R\$ 50,00.

C: ganhar cupom com 10% de desconto.

linha	codigo_cli	nome_cli	genero_cli	idade_cli	valor_ compra	cupom_10
1	53682	Karly Dillon	F	40	74,84	,
2	58246	Channing Vazquez	М	49	98,04	
3	27022	Adria Key	F	47	65,93	
4	82075	Ella Nelson	F	34	94,01	-
5	90657	Arden Battle	M	48	21,73	
6	80330	Brittany Ra- mirez	F	38	42,23	
7	53989	Moses Graham	M	42	37,20	
8	61370	Jin Fuller	M	49	65,60	_
9	41807	Phelan Blair	M	46	77,40	-
10	94269	Porter West	M	22	67,19	
11	56516	Zena Skinner	F	54	73,98	
12	38904	Teagan Rios	M	34	61,57	

Você foi encarregado da missão de direcionar a equipe de marketing em uma campanha para o dia internacional da mulher.

Dada as proposições:

A: o cliente é do sexo feminino.

B: o cliente fez um compra com valor superior a R\$ 50,00.

C: ganhar cupom com 10% de desconto.

Você deve primeiro avaliar a fórmula A^AB para cada um dos registros da Tabela 4.3 classificando a proposição C, como V ou F, para cada um dos clientes, ou seja, se o cliente ganhará ou não o cupom de 10% de desconto.

Pois bem, vamos analisar o primeiro registro:

A: O cliente é do sexo feminino. (SIM – V)

B: O cliente fez um compra com valor superior a R\$ 50,00. (SIM – V)

Portanto, para o primeiro registro a fórmula A^B resulta em V,

V^V= V, então a proposição C é V.

Já para o segundo registro, temos *F V F*=, pois o cliente é do sexo masculino. Então a proposição C é falsa para esse caso. Ao analisar todos os registros, você deve chegar ao resultado

da Tabela 4.4.

linha	codigo_cli	nome_cli	genero_cli	idade_cli	valor_ compra	cupom_10
1	53682	Karly Dillon	F	40	74,84	V
2	58246	Channing Vazquez	М	49	98,04	F
3	27022	Adria Key	F	47	65,93	V
4	82075	Ella Nelson	F	34	94,01	V
5	90657	Arden Battle	M	48	21,73	F
6	80330	Brittany Ra- mirez	F	38	42,23	F
7	53989	Moses Graham	M	42	37,20	F
8	61370	Jin Fuller	M	49	65,60	F
9	41807	Phelan Blair	M	46	77,40	F
10	94269	Porter West	M	22	67,19	F
11	56516	Zena Skinner	F	54	73,98	V
12	38904	Teagan Rios	M	34	61,57	F

Tabela 4.4 | Resultado para equipe de marketing

Aplicações Tabela Verdade

Sua missão

Como funcionário trainee na área de *analytics* de uma empresa de varejo, você deve dar continuidade em seu trabalho, fornecendo novos insights para a equipe de marketing realizar sua campanha promocional. Para esse novo desafio foi enviada a você uma base com novas informações, conforme ilustra a Tabela 4.5. Nessa base é possível encontrar o valor gasto na última compra do cliente, o total de compras já feito por ele e o ticket médio (valor médio gasto em cada compra). A partir desses dados você deve usar as regras da lógica para classificar se o cliente tem potencial para comprar na nova campanha e, se tiver, então ele ganhará um cupom com desconto de 10%. Caso não seja um cliente com potencial então ele ganhará

Fonte: Shutterstock

Sua missão

somente um cupom com 5%.

Vamos às regras: para ser classificado como um cliente com potencial de compra, não importa o gênero (pode ser feminino ou masculino), o cliente deve ter idade entre 30 e 45 anos, ter feito acima de 10 compras e ter um ticket médio acima de R\$ 50,00. Seu desafio é montar uma fórmula que traduza essa regra e, então preencher a coluna "cliente_potencial" com o resultado da fórmula para cada registro.

Dada a classificação, você deve escrever uma nova fórmula que traduza "Se o cliente tem potencial de compra, então ele deve ganhar um cupom com 10% de desconto", e outra fórmula que traduza "Se é falso que o cliente tem potencial de compra, então

Fonte: Shutterstock

Sua missão

ele deve ganhar um cupom com 5% de desconto". Por fim, use a lógica de programação para preencher as colunas "cupom_10" e "cupom_5" valorando as condicionais.

Tabela 4.5 | Dados de compra dos clientes

codi- go_cli	nome_cli	gene- ro_cli	ida- de_cli	valor_ ultima_ compra	total_ com- pras	ticket_ medio	clien- te_po- tencial	cupom _10	cupom _5
53682	Karly Dillon	F	40	74,84	5	45,00	?	?	?
58246	Chan- ning Vazquez	м	49	98,04	20	200,00	3.	?	3.
27022	Adria Key	F	47	65,93	12	34,00	3.	?	?
82075	Ella Nelson	F	34	94,01	16	150,00	?	?	?
90657	Arden Battle	м	48	21,73	-4	23,00	3-	?	?
80330	Brittany Ramirez	F	38	42,23	1	42,23	?	?	?
53989	Moses Graham	м	42	37,20	29	45,00	?	?	?
61370	Jin Fuller	м	31	86,00	35	123,00	3.	?	3
41807	Phelan Blair	м	45	77,40	23	95,00	?	?	?
94269	Porter West	м	22	67,19	6	35,00	?	?	?
56516	Zena Skinner	F	54	73,98	15	60,00	?	?	?
38904	Teagan Rios	м	34	61,57	17	71,00	?	?	?

Fonte: Shutterstock

Exemplificando

Exemplo: $(p \rightarrow q) \rightarrow (\sim q \rightarrow \sim p)$

p	q	~p	~q	$p \rightarrow q$	$\sim p \rightarrow \sim q$	$(p \to q)$ $\to (\sim q \to \sim p)$
V	V	F	F	V	V	V
V	F	F	V	F	F	V
\overline{F}	V	V	F	V	V	V
F	F	V	V	_l V	V	V

SNLTREUSE STATES SELECTION AND STATES SHUTTERS SHUTTERS SALES SELECTION AND STATES SHUTTERS SHUTTERS SALES S

Fonte: Shutterstock

Proposições simples

Proposições compostas

Construção com duas proposições simples

T(p,q): $(p \land \sim q)V(q \land \sim p)$

É necessário determinar o numero de linhas da tabelaverdade, sabendo que para duas proposições são $2^2 = 4$ linhas, pois temos a proposição p e q. Montando a tabela com 4 linhas:

р	q
V	V
V	F
F	V
F	F

Resultados das validações

Quando trabalhamos com proposições compostas, é comum realizarmos a validação entre as suas proposições, mesmo que cada proposição seja composta por outras proposições combinadas por conectivos.

Os resultados das validações recebem nomes especiais; tautologia, contradição e contingência.

Tautologia

Proposições compostas que sempre assumem valor lógico verdadeiro.

Proposição composta cuja última coluna de sua tabela-verdade assume o valor lógico verdadeiro, independentemente dos valores lógicos das proposições simples que a constituam.

Exemplo:

$$(p \to q) \to (\sim q \to \sim p)$$

Contradição

Proposições compostas que sempre assumem valor lógico falso.

Proposição composta cuja última coluna de sua tabela-verdade assume o valor lógico falso, independentemente dos valores lógicos das proposições simples que a constituam.

Exemplo:

$$p \leftrightarrow \sim p$$

Contingência

Proposição que não é tautologia e nem uma contradição.

Proposição composta que pode assumir tanto valores lógicos verdadeiros quanto falsos, em função dos valores das proposições simples que a constituam.

Exemplo:

$$\sim p \rightarrow q$$

Descontos

Caro estudante, chegou o momento de resolvermos mais um desafio. Como funcionário na área de *analytics* de uma empresa de varejo, você recebeu uma nova base de dados e precisa identificar os clientes que têm potencial de comprar na nova campanha. A regra para dizer se o cliente tem ou não potencial para comprar é dada pelas seguintes condições.

Não importa o gênero (pode ser feminino ou masculino).

Ele ou ela deve ter idade entre 30 e 45 anos.

Ele ou ela deve ter feito acima de 10 compras.

Ele ou ela deve ter um ticket médio acima de R\$ 50,00.

A primeira parte do desafio consiste em escrever uma fórmula que traduza essas regras e, então classificar o resultado da fórmula para cada registro da base da dados.

Primeiro ponto importante para montar a fórmula é entender que

todas as condições precisam ser satisfeitas, ou seja, estamos diante de conjunções. Como não importa o gênero – pode ser F ou M –, usaremos a disjunção. Agora é montar essa disjunção com as várias conjunções, utilizando os parênteses para indicar a ordem da valoração. Vamos começar escrevendo os itens já em fórmulas:

(feminino OU masculino). (idade >=30 E idade <=45). (compra >=10). (ticket médio >=50).

Agora é só juntar os itens com a conjunção:

(feminino **OU** masculino) **E** (idade >=30 **E** idade <=45) **E** (compra >=10) **E** (ticket médio >=50).

Veja que temos conectores que não são tão evidentes, como no caso da idade, em que precisamos usar a conjunção para delimitar a idade procurada. Agora vamos avaliar a fórmula para os dados. Observe os resultados na coluna "cliente_potencial" na Tabela 4.7.

Vamos analisar juntos alguns registros. Na linha 1, o gênero, a idade e o valor da última compra são satisfeitos, porém, o total de compras e o ticket médio não são, o que resulta em falso para a coluna que indica se o cliente é ou não potencial. Já na linha 4, todos os itens são atendidos, logo o cliente é classificado como V, ou seja, é um cliente com potencial de compra na campanha.

(feminino **OU** masculino) **E** (idade >=30 **E** idade <=45) **E** (compra >=10) **E** (ticket médio >=50).

Tabela 4.7 | Resultado da valoração da fórmula

linha	codi- go_cli	nome_ cli	gene- ro_cli	ida- de_cli	valor_ ultima_ compra	total_ com- pras	ticket_ medio	clien- te_po- tencial	cupom _10	cupom _5
1	53682	Karly Dillon	F	40	74,84	5	45,00	F		
2	58246	Chan- ning Vazquez	М	49	98,04	20	200,00	F		
3	27022	Adria Key	F	47	65,93	12	34,00	F		
4	82075	Ella Nelson	F	34	94,01	16	150,00	v		
5	90657	Arden Battle	М	48	21,73	4	23,00	F		
6	80330	Brittany Rami- rez	F	38	42,23	1	42,23	F		
7	53989	Moses Graham	М	42	37,20	29	45,00	F		
8	61370	Jin Fuller	М	31	86,00	35	123,00	v		
9	41807	Phelan Blair	М	45	77,40	23	95,00	v		
10	94269	Porter West	М	22	67,19	6	35,00	F		
11	56516	Zena Skinner	F	54	73,98	15	60,00	F		
12	38904	Teagan Rios	М	34	61,57	17	71,00	v		

Tabela 4.8 | Relatório final

linha	codi- go_cli	nome_ cli	gene- ro_cli	ida- de_cli	valor_ ultima_ compra	total_ com- pras	ticket_ medio	clien- te_po- tencial	cupom _10	cupom _5
1	53682	Karly Dillon	F	40	74,84	5	45,00	F	F	v
2	58246	Chan- ning Vazquez	М	49	98,04	20	200,00	F	F	v
3	27022	Adria Key	F	47	65,93	12	34,00	F	F	v
4	82075	Ella Nelson	F	34	94,01	16	150,00	v	v	F
5	90657	Arden Battle	М	48	21,73	4	23,00	F	F	v
6	80330	Brittany Rami- rez	F	38	42,23	1	42,23	F	F	v
7	53989	Moses Graham	М	42	37,20	29	45,00	F	F	v
8	61370	Jin Fuller	М	31	86,00	35	123,00	v	v	F
9	41807	Phelan Blair	М	45	77,40	23	95,00	v	v	F
10	94269	Porter West	М	22	67,19	6	35,00	F	F	v
11	56516	Zena Skinner	F	54	73,98	15	60,00	F	F	v
12	38904	Teagan Rios	М	34	61,57	17	71,00	v	v	F

Compreenderam a importância das tabelas verdade?

Viram como a lógica é importante e as diversas situações surgem diferente do que imaginamos?

Fonte: https://gifer.com/en/XIOL9

Recapitulando

- ✓ Definição de tabela-verdade;
- ✓ Construção de tabela-verdade;
- ✓ Validação entre as suas proposições;