Databases

Lecture 7

Relational Algebra

The Physical Structure of Databases

Relational Algebra

- cross product
 - binary operator
 - notation: $R_1 \times R_2$
 - resulting relation:
 - schema: the attributes of R₁ followed by the attributes of R₂
 - tuples: every tuple r₁ in R₁ is concatenated with every tuple r₂ in R₂
 - equivalent SELECT statement
 - SELECT * FROM R1 CROSS JOIN R2

- union, set-difference, intersection
 - binary operators
 - notation: $R_1 \cup R_2$, $R_1 R_2$, $R_1 \cap R_2$
 - R₁ and R₂ must have compatible schemas
 - equivalent SELECT statements
 - SELECT * FROM R1 UNION ALL SELECT * FROM R2
 - SELECT * FROM R1 EXCEPT SELECT * FROM R2
 - SELECT * FROM R1 INTERSECT SELECT * FROM R2

- join operators
 - condition join (or theta join)
 - notation: $R_1 \otimes_{\Theta} R_2$
 - result: the records in the cross product of R₁ and R₂ that meet a certain condition
 - definition $\Rightarrow R_1 \otimes_{\Theta} R_2 = \sigma_{\Theta}(R_1 \times R_2)$
 - equivalent SELECT statement
 - ullet SELECT * FROM R1 INNER JOIN R2 ON $oldsymbol{\Theta}$

- join operators
 - natural join
 - notation: $R_1 * R_2$
 - resulting relation:
 - schema: the union of the attributes of the two relations
 - tuples: obtained from tuples $< r_1, r_2 >$, where r_1 in R_1, r_2 in R_2 , and r_1 and r_2 agree on the common attributes of R_1 and R_2
 - let $R_1[\alpha]$, $R_2[\beta]$, $\alpha \cap \beta = \{A_1, A_2, ..., A_m\}$; then:

$$R_1 * R_2 = \Pi_{\alpha \cup \beta} (R_1 \bigotimes_{R_1. A_1 = R_2. A_1 \text{ AND } \dots \text{ AND } R_1. A_m = R_2. A_m} R_2)$$

- equivalent SELECT statement
 - SELECT * FROM R1 NATURAL JOIN R2

- join operators
 - left outer join
 - notation (in these notes): $R_1 \ltimes_C R_2$
 - resulting relation:
 - schema: the attributes of R₁ followed by the attributes of R₂
 - tuples: records from the condition join $R_1 \otimes_C R_2$ + the records in R_1 that were not used in $R_1 \otimes_C R_2$ combined with the *null* value for the attributes of R_2
 - equivalent SELECT statement
 - SELECT * FROM R1 LEFT OUTER JOIN R2 ON C

- join operators
 - right outer join
 - notation: $R_1 \rtimes_C R_2$
 - resulting relation:
 - schema: the attributes of R₁ followed by the attributes of R₂
 - tuples: records from the condition join $R_1 \otimes_C R_2$ + the records in R_2 that were not used in $R_1 \otimes_C R_2$ combined with the *null* value for the attributes of R_1
 - equivalent SELECT statement
 - SELECT * FROM R1 RIGHT OUTER JOIN R2 ON C

- join operators
 - full outer join
 - notation: $R_1 \bowtie_C R_2$
 - resulting relation:
 - schema: the attributes of R₁ followed by the attributes of R₂
 - tuples: the union of the left and right outer join results
 - equivalent SELECT statement
 - SELECT * FROM R1 FULL OUTER JOIN R2 ON C

- join operators
 - left semi join
 - notation: $R_1 \triangleright R_2$
 - resulting relation:
 - schema: R₁'s schema
 - tuples: the records in R_1 that are used in the natural join $R_1 \ast R_2$

- join operators
 - right semi join
 - notation: $R_1 \triangleleft R_2$
 - resulting relation:
 - schema: R₂'s schema
 - tuples: the records in R_2 used in the natural join $R_1 * R_2$

- division
 - notation: $R_1 \div R_2$
 - $R_1[\alpha]$, $R_2[\beta]$, $\beta \subset \alpha$
 - resulting relation:
 - schema: $\alpha \beta$
 - tuples: a record $r \in R_1 \div R_2$ if $\forall r_2 \in R_2$, $\exists r_1 \in R_1$ such that:
 - $\Pi_{\alpha-\beta}(r_1) = r$
 - $\Pi_{\beta}(r_1) = r_2$
 - i.e., a record r belongs to the result if in R₁ r is concatenated with every record in R₂

• the *renaming* operator

$$\rho(R'(A_1 \to A_1', A_2 \to A_2', A_3 \to A_3'), R)$$

- the result, relation R', has the same instance as R
- attributes A_1 , A_2 , and A_3 are renamed to A_1' , A_2' , and A_3' , respectively
- an algebra expression can be specified instead of R

An Independent Subset of Operators

- independent set of operators M
 - eliminating any operator *op* from M: there will be a relation that can be obtained using M's operators, but cannot be obtained with the operators in M-{*op*}
- for the previously described query language, with operators:

$$\{\sigma, \Pi, \times, \cup, \cap, -, *, \otimes, \ltimes, \rtimes, \bowtie, \triangleright, \triangleleft, \div\}$$

an independent set of operators is $\{\sigma, \Pi, \times, \cup, -\}$

- the other operators are obtained as follows (some expressions have already been introduced):
 - $R_1 \cap R_2 = R_1 (R_1 R_2)$
 - $R_1 \otimes_c R_2 = \sigma_c (R_1 \times R_2)$

- the other operators are obtained as follows (some expressions have already been introduced):
 - $R_1[\alpha]$, $R_2[\beta]$, $\alpha \cap \beta = \{A_1, A_2, ..., A_m\}$, then: $R_1 * R_2 = \Pi_{\alpha \cup \beta} (R_1 \bigotimes_{R_1, A_1 = R_2, A_1 \text{ AND } \dots \text{ AND } R_1, A_m = R_2, A_m} R_2)$
 - $R_1[\alpha]$, $R_2[\beta]$, $R_3[\beta] = \{(null, ..., null)\}$, $R_4[\alpha] = \{(null, ..., null)\}$ $R_1 \bowtie_C R_2 = (R_1 \bigotimes_C R_2) \cup [R_1 - \Pi_{\alpha}(R_1 \bigotimes_C R_2)] \times R_3$ $R_1 \bowtie_C R_2 = (R_1 \bigotimes_C R_2) \cup R_4 \times [R_2 - \Pi_{\beta}(R_1 \bigotimes_C R_2)]$ $R_1 \bowtie_C R_2 = (R_1 \bowtie_C R_2) \cup (R_1 \bowtie_C R_2)$
 - $R_1[\alpha]$, $R_2[\beta]$ $R_1 \triangleright R_2 = \Pi_{\alpha}(R_1 * R_2)$ $R_1 \triangleleft R_2 = \Pi_{\beta}(R_1 * R_2)$

- the other operators are obtained as follows (some expressions have already been introduced):
 - if $R_1[\alpha]$, $R_2[\beta]$, $\beta \subset \alpha$, then $r \in R_1 \div R_2$ if $\forall r_2 \in R_2$, $\exists r_1 \in R_1$ such that: $\Pi_{\alpha-\beta}(r_1) = r$ and $\Pi_{\beta}(r_1) = r_2$.
 - hence r is in $\Pi_{\alpha-\beta}(R_1)$, but not all the elements in $\Pi_{\alpha-\beta}(R_1)$ are in the result
 - $(\Pi_{\alpha-\beta}(R_1)) \times R_2$ contains all the elements with one part in $\Pi_{\alpha-\beta}(R_1)$ and the second part in R_2
 - to obtain values that are disqualified, R_1 is eliminated from $(\Pi_{\alpha-\beta}(R_1)) \times R_2$, and the result is projected on $\alpha-\beta$
 - the final expression:

$$R_1 \div R_2 = \Pi_{\alpha - \beta}(R_1) - \Pi_{\alpha - \beta}((\Pi_{\alpha - \beta}(R_1)) \times R_2 - R_1)$$

- see lecture examples (at the board) with algebra queries:
- selection
- projection
- division
- selection & projection
- natural join with multiple tables, selection, projection
- set-difference, natural join, selection, projection
- different algebra expressions producing the same result (optimization reducing the size of intermediate relations)

- the next examples use the statements below
- assignment:

```
R[list] := expression
```

- the expression's result, i.e., a relation, is assigned to a variable R[list], specifying the name of the relation [and the names of its columns]
- eliminating duplicates from a relation $\delta(R)$
- sorting records in a relationS_{list}(R)
- grouping an extension for projection $\gamma_{\{list1\}\;group\;by\;\{list2\}}(R)$
 - R's records are grouped by the columns in list2
 - for each group of records, *list1* (that can contain aggregate functions) is evaluated

students [id, name, sgroup, gpa, dob]
groups [id, year, program]
schedule [day, starthour, endhour, activtype, room, sgroup,
faculty_id]
faculty [id, name]

1. The names of students in a given group:

$$R \coloneqq \Pi_{\{name\}} \left(\sigma_{sgroup='222'}(students) \right)$$

SELECT name

FROM students

WHERE sgroup='222'

2. The students in a given program (alphabetical list, by groups):

$$G := \Pi_{\{id\}} \left(\sigma_{program = 'IG'}(groups) \right)$$

$$R := S_{\{sgroup,name\}} \left(\sigma_{sgroup \ is \ in \ G}(students) \right)$$

```
SELECT *
FROM students
WHERE sgroup IN
(SELECT id
FROM groups
WHERE program='IG')
ORDER BY sgroup, name
```

3. The number of students in every group of a given program:

```
ST \coloneqq \sigma_{sgroup \ is \ in \left(\Pi_{\{id\}}\left(\sigma_{program='IG'}(groups)\right)\right)}(students)
NR \coloneqq \gamma_{\{sgroup, count(*)\} \ group \ by \ \{sgroup\}}(ST)
SELECT sgroup, COUNT(*)
FROM (SELECT *
         FROM students
         WHERE sgroup IN
               (SELECT id
                FROM groups
                WHERE program='IG')
              t
GROUP BY sgroup
```

4. A student's schedule (the student is given by name):

$$T \coloneqq \sigma_{sgroup \ is \ in\left(\Pi_{\{sgroup\}}\left(\sigma_{name='Ionescu'}(students)\right)\right)}(schedule)$$

5. The number of hours per week for every group:

$$F(no, sgroup) \coloneqq \Pi_{\{endhour-starthour, sgroup\}}(schedule)$$

 $NoHours(sgroup, nohours) \coloneqq \gamma_{\{sgroup, sum(no)\}\ group\ by\ \{sgroup\}}(F)$

6. The faculty members (their names) who teach a given student:

$$A \coloneqq (\sigma_{name='Ionescu'}(students)) \otimes_{students.sgroup=schedule.sgroup}(schedule)$$

$$B \coloneqq \Pi_{\{faculty_id\}}(A)$$

$$C \coloneqq faculty \otimes_{faculty.id=B.faculty_id}(B)$$

$$D \coloneqq \Pi_{\{name\}}(C)$$

7. The faculty members with no teaching assignments (i.e., not on the schedule):

$$C \coloneqq \Pi_{\{name\}}(faculty) - \\ \Pi_{\{name\}}(schedule \otimes_{schedule.faculty_id=faculty.id} faculty)$$

* is there a problem if 2 different faculty members have the same name?

8. Students with school activities on every day of the week (all days with school activities considered):

$$A := \delta \left(\Pi_{\{day\}}(schedule) \right)$$

$$B := students \otimes_{students.sgroup = schedule.sgroup} schedule$$

$$C \coloneqq \Pi_{\{name, day\}}(B)$$

$$D := C \div A$$

* is there a problem if 2 different students have the same name?

The Physical Structure of Databases

DBMS Architecture

The Memory Hierarchy

- primary storage
 - cache, main memory
 - very fast access to data
 - volatile
 - currently used data
- secondary storage
 - slower devices, e.g., magnetic disks
 - nonvolatile
 - disks sequential, direct access
 - main database

The Memory Hierarchy

- tertiary storage
 - slowest storage devices, e.g., optical disks, tapes
 - nonvolatile
 - tapes
 - only sequential access
 - good for archives, backups
 - unsuitable for data that is frequently accessed

The Memory Hierarchy

- secondary / tertiary storage
 - significantly cheaper than main memory
- large amounts of data that shouldn't be discarded when the system is restarted
- => the need for DBMSs that bring data from disks into main memory for processing

Secondary Storage – Magnetic Disks

- direct access
- extremely used in database applications
- applications don't need to know whether the data is on disk or in main memory
- disk block
 - sequence of contiguous bytes
 - unit for data storage
 - unit for data transfer (reading / writing)
 - reading / writing a block an input / output (I/O) operation
- tracks
 - concentric rings containing blocks, recorded on one or more platters

Secondary Storage – Magnetic Disks

- sectors
 - arcs on tracks
- platters
 - single-sided, double-sided (data recorded on one / both surfaces)
- cylinder
 - all tracks with the same diameter
- disk heads
 - one per recorded surface
 - to read / write a block, a head must be on top of the block
 - smaller platter size => decreased seek time
 - all the heads are moved as a unit
 - systems with one active head

Secondary Storage – Magnetic Disks

- sector size
 - characteristic of the disk, cannot be modified
- block size
 - multiple of the sector size

[Si08]

References

- [Ta13] ȚÂMBULEA, L., Curs Baze de date, Facultatea de Matematică și Informatică, UBB, 2013-2014
- [Ra00] RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems (2nd Edition), McGraw-Hill, 2000
- [Da03] DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley, 2003
- [Ga08] GARCIA-MOLINA, H., ULLMAN, J., WIDOM, J., Database Systems: The Complete Book, Prentice Hall Press, 2008
- [Ra07] RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems, McGraw-Hill, 2007, http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.html
- [Si08] SILBERSCHATZ, A., GALVIN, P.B., GAGNE, G., Operating System Concepts (8th Edition), Wiley Publishing, 2008
- [UI11] ULLMAN, J., WIDOM, J., A First Course in Database Systems, http://infolab.stanford.edu/~ullman/fcdb.html