Chapter 12 Multiple Access 多路访问

IEEE 802参考模型

OSI参考模型

Figure 12.1 逻辑链路控制子层LLC和介质访问控制子层MAC

LLC: Logical link control MAC: Media access control

	Upper layers		Upper layers					
	Data link layer		LLC					
			Ethernet MAC	Token Ring MAC	Token Bus MAC	•••		
	Physical layer		Ethernet physical layers (several)	Token Ring physical layer	Token Bus physical layer	•••		
Transmission medium			Transmission medium					
OSI or Internet model			IEEE Standard					

Figure 12.2 多路访问控制协议的分类

12-1 RANDOM ACCESS 随机访问协议

在随机访问或竞争访问方式中,没有一个站点是优于其它站点的,也不能控制其它站点。没有站点有权力允许或不允许其它站点发送或不发送数据。有数据要发送的站通过自身的协议决定发送还是不发送数据。

Topics discussed in this section:

ALOHAALOHA协议Carrier Sense Multiple Access载波侦听多路访问协议 CSMACarrier Sense Multiple Access with Collision Detection 带冲突检测的CSMA

Carrier Sense Multiple Access with Collision Avoidance 带冲突避免的CSMA

Figure 12.3 纯ALOHA

Figure 12.4 纯ALOHA协议的流程图

传播 (propagation time) & 传输 (transmission time)

Example 12.1

一个纯ALOHA协议的站点之间最大距离为600公里,信号的传播速度为3×108 m/s,那么

$$T_p = (600 \times 10^3) / (3 \times 10^8) = 2 \text{ ms}$$

对于不同的K值,得到不同的TB值。

- a. 若K=1,则取值范围 $\{0,1\}$ 。即站内的随机数位0或1。这意味着 T_B 是 0 ms (0×2) 或是2 ms (1×2) 。
- b. 若K=2,则取值范围{0,1,2,3}。这意味着T_B是 0ms, 2ms, 4ms, 6ms。
- c. 若K=3,则取值范围{0,1,2,3,4,5,6,7}。这意味着TB 是 0ms, 2ms, 4ms, 6ms,....., 14ms。
- d. 但是, 若K值大于10时, 随机数取值范围通常设定为10。

Figure 12.5 纯ALOHA可能的冲突时间是帧传输时间的两倍

Example 12.2

一个纯ALOHA帧长200比特,带宽200kbps,这个帧在传输过程中 无冲突的条件是什么?

Solution

帧的传输时间为 $T_{fr}=200\ bits/200\ kbps=1\ ms$,则可能的冲突时间为2ms。意味着前1ms和后1ms都没有其它站发送数据帧。

Note

纯ALOHA的吞吐量是 $S = G \times e^{-2G}$, 当G = (1/2)时,最大吞吐量为 $S_{max} = 0.184$ 。 G是帧传输时间内系统产生帧的平均数量。

Figure 12.6 时隙ALOHA

Figure 12.7 时隙ALOHA可能的冲突时间等于帧传输时间

Note

时隙ALOHA的吞吐量是 $S = G \times e^{-G}$,当G = 1时,最大吞吐量为 $S_{max} = 0.368$ 。

载波侦听多路访问CSMA

载波侦听多路访问CSMA(Carrier Sense Multiple Access)要求每一个站点在发送前先要监听介质,以减少冲突发生的概率。但是它不能消除冲突,冲突的概率依然存在的原因是传播的延迟。

Figure 12.8 CSMA中冲突的时空模型

Figure 12.9 CSMA碰撞冲突时间

Figure 12.10 三种坚持型方法

a. 1-persistent

b. Nonpersistent

c. p-persistent

1-坚持

a. 1-persistent

"坚持": 监听信道后,信道处于忙状态,之后"坚持"监听操作。

1-坚持 CSMA 运行机制:

- **◆信道监听:**如果主机想要发送消息,先监听信道;
- ◆信道空闲:直接传输;
- **◆信道忙:**一直监听,空闲后马上传输。

1-坚持 CSMA 特点:

- ◆优点:信道利用率高,只要信道空闲,站点就可以发送数据;
- ◆缺点:如果有多个站点要发送数据,就会发生冲突。

非坚持

b. Nonpersistent

"非坚持": 监听信道后,信道处于忙状态,之后"不再坚持"监听操作。

非坚持 CSMA运行机制:

- **◆信道监听:**如果主机想要发送消息,先监听信道;
- ◆信道空闲:直接传输;
- **◆信道忙:**等待随机时长后,继续监听,重复上述过程。

非坚持 CSMA 特点:

- ◆优点:随机时间后,监听重发机制,减少发生冲突的可能性;
- ◆ **缺点:**可能存在所有站点都在等待的场景,此时信道处于空闲状态,信道利用 率降低。

p-坚持

"p-坚持": 监听信道后,信道处于空闲状态的处理方式。

p-坚持 CSMA 运行机制:

- **◆信道监听:**如果主机想要发送消息,先监听信道;
- ◆信道空闲:p 概率传输,1-p 概率等到下一个时隙再传输;
- ◆**信道忙:**持续监听,重复上述过程。

p-坚持 CSMA 特点:

- ◆ 优点: 既能像 "非坚持 CSMA" 那样减少冲突,又能像"1-坚持 CSMA"那样减少媒体空闲时间。
- ◆缺点:如果发生冲突后,会坚持将数据帧发送完毕,造成了浪费。

Figure 12.11 三种坚持型方法的流程框图

a. 1-persistent

b. Nonpersistent

c. p-persistent

带冲突检测的载波监听多路访问CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

- ◆ CSMA/CD 规定了冲突处理的算法。
- ◆ 任意站点都可以发送帧,之后监控介质查看传送是否 成功。如果成功,站点完成发送;如果不成功,说明 存在冲突,需要重新发送此帧。

Figure 12.15 信道在传输、空闲、冲突状态下电磁波能量级别大小 (依此可以判别 CD)

Figure 12.12 在CSMA/CD中第一位冲突的情况

Figure 12.13 CSMA/CD中的冲突和放弃传输

CSMA/CD操作

TIME t_0 A's transmission	位过			
C's transmission	ı			
Signal on bus	ZZ			
TIME t_1				
A's transmission				
C's transmission	i		室室	
Signal on bus			$\mathbb{Z}\mathbb{Z}$	
TIME t ₂				
A's transmission		////////		
C's transmission	i			
Signal on bus		/////////	XXX 7/1/1/7	
TIME t_3				
A's transmission	777777	///////////////////////////////////////	///////////////////////////////////////	
C's transmission	THE	Z		
Signal on bus	// XXXX	X//////////	///////////////////////////////////////	777

冲突检测时间

- ◆ 冲突检测时间是最大往返时间的两倍;
- ◆ 数据帧必须足够长, 使得在传输结束前能够检测到冲突;
- ◆ 否则性能就像CSMA一样低。

Example 12.5

CSMA/CD网络中,带宽10Mbps,最大传播时间为25.6us,那么最小帧长度是多少?

Solution

帧传输时间必须最少为最大传播时间的两倍以上,即

$$T_{fr} = 2 \times T_p = 51.2 \ \mu s$$

或者说,一个站点需要51.2us后才能检测到冲突。帧的最小长度是:

10 Mbps × 51.2 μs = 512 bits = 64 bytes 这也是10兆以太网的最小帧长度。

Figure 12.14 CSMA/CD流程框图

带冲突避免的载波侦听多路访问CSMA/CA

(Carrier Sense Multiple Access with Collision Avoidance)

- ◆ "冲突检测"要求一个站点在发送本站数据的同时,还必须不间断地检测信道,但接收到的信号强度往往会远远小于发送信号的强度,在无线局域网的设备中要实现这种功能就花费过大。
- ◆ 即使能够实现冲突检测的功能,并且在发送数据时检测 到信道是空闲的时候,在接收端仍然有可能发生冲突。

无线局域网的特殊问题 —— 隐蔽站问题

当A和C检测不到无线信号时,都以为B是空闲的,因而都向B发送数据,结果发生碰撞。

无线局域网的特殊问题 —— 暴露站问题

B向A发送数据,而C又想和D通信。C检测到媒体上有信号,于是就不敢向D发送数据。

Figure 12.16 带冲突避免的载波侦听多路访问CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)

- ◆ 帧间间隔(Interframe Space, IFS)
- ◆ 竞争窗口(Contention Window)
- ◆ 肯定的确认和定时器超时

- ◆CSMA/CA中,IFS也用来定义一个站或一个帧的优先权。
- ◆CSMA/CA中,若站发现信道忙,并不重启竞争窗口的定时器;而是停止定时器, 直到信道空闲时再重启定时器。

Figure 12.17 CSMA/CA流程框图

12-2 CONTROLLED ACCESS 受控访问协议

在受控访问协议中,站点之间相互协商以确定哪一个站有权 发送。没有得到授权的站点无权发送数据。主要有以下三类 受控访问协议。

Topics discussed in this section:

Reservation预约协议Polling轮询协议Token Passing令牌协议

12.38

Figure 12.18 预约访问协议

Figure 12.19 轮询访问协议(选择和轮询)

Figure 12.20 令牌传递

a. Physical ring

b. Dual ring

c. Bus ring

d. Star ring

12-3 CHANNELIZATION 通道化

通道化也是一种多路访问方法。不同站点之间在时间域上、 频率域上或码域上正交化来共享信道。主要包括下面三种方 式:

Topics discussed in this section:

Frequency-Division Multiple Access (FDMA) 频分多址 Time-Division Multiple Access (TDMA) 时分多址 Code-Division Multiple Access (CDMA) 码分多址

Figure 12.21 频分多址(Frequency-division multiple access, FDMA)

Note

FDMA中,信道带宽在频率域上被正交化, 分割成若干子频带外加保护频带。

Figure 12.22 时分多址(Time-division multiple access, TDMA)

Note

TDMA中,信道带宽在时间域上被正交化, 分割成若干时隙。

Note

CDMA中,信道带宽在码域上被正交化,各站采用正交化的扩频码在共享信道中同时传输。

Figure 12.23 用编码通信的简单思想示意图

Figure 12.24 正交化的码片序列

- ◆ 两个不同编码相乘得0;
- ◆ 编码自身相乘得4;
- ◆ 通道上的数据是所有站点数据与编码乘积之和;
- ◆ 接收的数据是发送方编码和数据的乘积;
- ◆ 编码选择正交序列。

多址技术和复用技术

多址技术:

- ◆ 用来区分不同用户的一种技术,属于数据链路层的一种访问方法;
- ◆ 为了使用户地址之间互不干扰,地址之间必须满足相互正交;
- ◆分类: 频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)、空分多址(SDMA)、正交频分多址(OFDMA)。

复用技术:

- ◆ 多个信息源共同使用同一个物理资源(如一条物理通道),并且互不干扰,属于物理层的一种技术;
- ◆ 复用是指"多个共同使用"的意思,存在多路复用器;
- ◆ 分类: 频分复用(FDM)、时分复用(TDM)、码分复用(CDM)、空分复用(SDM)。

多址与复用的关系

- ◆通信的目的是让多个信息源发出的信号在同一物理或逻辑 信道上不要发生冲突,和平共处,共同分享信道资源,并 安全到达目的地;
- ◆多址的"址"在移动通信中是指用户临时占用的信道,多址就是要给用户动态分配一种地址资源——信道,当然这种分配只是临时的;
- ◆多址技术是要根据不同的"址"来区分用户;复用是要给用户一个很好的利用资源的方式。"复用针对资源,多址针对用户"。
- ◆多址需要用复用来实现。

作业

P262

11, 14, 15, 17