2) Hallar un polinomio desarrollado de 3° grado tal que.

Solución

El polinomio debe ser de la forma: $P(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0 = 0$

Condición P(1)=0; P(1)=
$$a_3 + a_2 + a_1 + a_0 = 0$$
 (1)

$$P(-2)=0$$
; $P(-2)=-8$ a_3+4 a_2-2 $a_1+a_0=0$ (2)

$$P(-1)=4$$
; $P(-1)=-a_3+a_2-a_1+a_0=4$ (3)

$$P(2)=28$$
; $P(2)=8$ a_3+4 a_2+2 $a_1+a_0=28$ (4)

Es un sistema de cuatro ecuaciones con cuatro incognitas, resolvemos aplicando operaciones entre ecuaciones:

s.m.a.m. (1) + (3);
$$2 a_2 + 2 a_0 = 4$$
 (5)

s.m.a.m. (2) + (4);
$$8 a_2 + 2 a_0 = 28$$
 (6)

r.m.a.m. (5) – (6); -6
$$a_2$$
 = -24; a_2 = 4

En (5) obtenemos el valor de: $a_0 = -2$

Reemplazamos en (1); $a_3 + a_1 = -2$ (7)

Reemplazamos en (2); $-8 a_3 - 2 a_1 = -14$ (8)

Resolvemos aplicando: 2 (7) + (8); $a_3 = 3$; $a_1 = -5$

La ecuación desarrollada nos queda:

$$P(x) = 3 x^3 + 4 x^2 - 5 x - 2 = 0$$

3) Calcular el MCD entre los siguientes pares de polinomios. Identificar aquellos pares de polinomios primos entre si:

d)
$$P(x) = x^3 - 2x^2 - x + 2$$

y
$$Q(x) = x^3 + 2x^2 - 9x - 18$$

P(x) y Q(x) son primos entre si

	1	x + 4	½ x – 5/4
$X^3 - 2 x^2 - x + 2$	$x^3 + 2x^2 - 9x - 18$	$x^2 - 2x - 5$	2 x + 1
$-x^3 - 2x^2 + 9x + 18$	$-x^3 + 2x^2 + 5x$	$-x^2 - \frac{1}{2}x$	
$-4 x^2 + 8 x + 20$	$4 x^2 - 4 x - 18$	- 5/2 x – 5	
$-4 (x^2 - 2x - 5)$	$-4 x^2 + 8 x + 20$	- 5/2 x + 5/4	
	4 x + 2	- 15/4	
	2 (2 x + 1)		

7) Escribir la ecuación P(x) = 0 desarrollada.

e) con coeficientes reales, Mónica, de 5° grado, con -2i una raíz doble, y P(0) = -32 Solución

La ecuación expresada en función de sus raíces: $P(x) = (x - x_1)^2 (x - x_2)^2 (x - x_5)$

 $X_1 = -2i$ raíz doble

 $X_2 = 2 i raíz doble$

$$P(x) = (x - (-2 i))^{2} (x - (2 i))^{2} (x - x_{5})$$

$$P(0) = -32$$
; $P(0) = (0 - (-2i))^{2} (0 - (2i))^{2} (0 - x_{5}) = -32$; $x_{5} = 2$

Entonces la ecuación pedida es:
$$P(x) = (x - (-2i))^2 (x - (2i))^2 (x - 2) = 0$$

Desarrollda es: $P(x) = x^5 - 2x^4 + 8x^3 + 16x - 32 = 0$