Overview

- Instrumental Variable (IV) technique dates back to 1928
- · First used to identify demand and supply curve
- Then also used to address measurement error issues
- Again, talk about the restricted case first and then the general case

Demand and Supply Motivation

- The usual demand and supply diagram
- How do we estimate the demand and supply curve?

The Real Data

- Say you got data from a retail firm, the data looks like this
- Why? Because the demand and supply move around at the same time

Setup the Stage

Recall the control for observables that we talked about previously

$$Y_i = \alpha + \rho D_i + \eta_i$$

$$Y_i = \alpha + \rho D_i + \gamma A_i + \nu_i$$

- Recall that ρ is the (homogeneous) treatment effect of D_i
- e.g., D_i go to school, Y_i wage
- We change X_i to A_i since we assume it's unobserved, e.g., ability
- In general $E[D_i\eta_i] \neq 0$
- Remain the CIA, hence $E[D_i\nu_i] = 0$ (Why?)
- Suppose we observe A_i , then OLS can recover ρ
- But we don't! How to recover ρ ?

Instrumental Variable Idea (Mathematically)

- Suppose now we have a variable called Z_i that is
 - Correlated with the treatment assignment D_i , $Cov(D_i, Z_i) \neq 0$, (Relevance)
 - Uncorrelated with any other determinants of Y_i , $Cov(\eta_i, Z_i) = 0$, (Exclusion)
- Then we have

$$\frac{Cov(Y_i, Z_i)/Var(Z_i)}{Cov(D_i, Z_i)/Var(Z_i)} = \frac{Cov(Y_i, Z_i)}{Cov(D_i, Z_i)} = \frac{Cov(\alpha + \rho D_i + \eta_i, Z_i)}{Cov(D_i, Z_i)}$$
$$= \rho \frac{Cov(D_i, Z_i)}{Cov(D_i, Z_i)} + \frac{Cov(\eta_i, Z_i)}{Cov(D_i, Z_i)} = \rho$$

- Note that the LHS is actually the ratio of two regression coefficient
- Coefficient of regressing Y_i on Z_i divided by coefficient of regressing D_i on Z_i
- Meaning that OVB is not an issue if we have such a Z_i
- : $Cov(\eta_i, Z_i) = 0$, Z_i is sometimes called the exogeneous variation

First Stage and Reduced Form

• Let's write out these two regressions, D_i on Z_i and Y_i on Z_i :

$$D_i = \pi_{10} + \pi_{11}Z_i + \xi_{1i}$$
 (First Stage)
 $Y_i = \pi_{20} + \pi_{21}Z_i + \xi_{2i}$ (Reduced Form)

- The above results suggest that $\rho = \frac{\pi_{21}}{\pi_{11}}$
- We can also allow for covariates:

$$D_i = X_i' \pi_{10} + \pi_{11} Z_i + \xi_{1i}$$
 (First Stage)
 $Y_i = X_i' \pi_{20} + \pi_{21} Z_i + \xi_{2i}$ (Reduced Form)

What Magic Just Happened?

- Remember that CIA is a very strong assumption
- Potentially there are many variables that you should control for
- Many if not most of them could be unobservable (e.g., ability)
- Essentially you need an experiment to identify the causal effect
- The Z_i solves the problem regardless of the number of omitted variables

Why IV Works (Intuitively)

- We can think of the instrumental variable Z_i as a "clean" source of variation
- · Like, for example, a coin flip
- Something that affects whether you get $D_i = 1$ but not relate to the outcome
- The IV strategy uses only the "clean" part of the variation
- Look at the reduced form again

$$Y_i = \pi_{20} + \pi_{21}Z_i + \xi_{2i}$$

it tells us how much outcome is affected by the "clean variation"

• The first stage is telling us how much to "scale up" from the clean variation

$$D_i = \pi_{10} + \pi_{11}Z_i + \xi_{1i}$$

Example: Causal Effects of Schooling on Earning

- Talk about a famous paper Angrist and Krueger (2001)
- Say we are interested in how schooling affects earning
- Why the regression of schooling on earning won't work?
- What would be the ideal experiment to study this?
- The IV they use: Quarter of Birth (QOB)
- In U.S., students enter school in the calendar year in which they turn 6
- The rule requires students to stay in school until they are 16 years old
- ... those born in the 1st quarter can leave school earlier
 - (think about those born in Jan 1st v.s. Dec 31st)
- Assume that QOB not related to earning other than the amount of schooling

Mapping the Notations

$$D_i = \pi_{10} + \pi_{11}Z_i + \xi_{1i}$$
 (First Stage)
 $Y_i = \pi_{20} + \pi_{21}Z_i + \xi_{2i}$ (Reduced Form)

- D_i: years of education
 - or think of whether one goes to college as a binary case
- Y_i: log weekly earning
 - weekly so don't worry about some work more or less
 - why log? percent change interpretation, see HW
- Z_i: whether you are born in the first quarter

Does This Work? First Stage

Figure 1 Mean Years of Completed Education, by Quarter of Birth

Does This Work? Reduced Form

 $\label{eq:Figure 2} {\it Mean Log Weekly Earnings, by Quarter of Birth}$

Two Stage Least Squared (TSLS or 2SLS)

Another way to see what happened in math is to substitute the first stage:

$$Y_{i} = \alpha + \rho D_{i} + \eta_{i}$$

$$= \alpha + \rho (\pi_{10} + \pi_{11} Z_{i} + \xi_{1i}) + \eta_{i}$$

$$= \alpha + \rho (\underline{\pi_{10} + \pi_{11} Z_{i}}) + \underline{(\rho \xi_{1i} + \eta_{i})}$$

$$= 0$$

- Note that $E[Z_i\xi_{1i}] = 0$ (By construction, first stage regression)
- Also $E[Z_i\eta_i]=0$ (IV assumption), so $E[Z_i(\rho\xi_{1i}+\eta_i)]=0$
- Therefore, $E[\odot_i \odot_i] = 0$
- So if we regress Y_i on \odot_i we get ρ

Two Stage Least Squared (TSLS or 2SLS)

• In practice, we could first get $\hat{\odot}_i$ by regress D_i on Z_i , then regress Y_i on $\hat{\odot}_i$

$$\begin{split} D_i &= \pi_{10} + \pi_{11} Z_i + \xi_{1i} \text{ (First Stage)} \\ & © = \pi_{10} + \pi_{11} Z_i \\ & \hat{\odot}_i = \pi_{10}^2 + \pi_{11}^2 Z_i \\ & Y_i = \alpha + \rho \hat{\odot}_i + (\rho \odot_i + \odot_i - \rho \hat{\odot}_i) \text{ (Second Stage)} \end{split}$$

- Note that $\hat{\odot}_i$ is simply the fitted value of the first stage
- So the TSLS is simply get the fitted value first
- and then regress Y_i on the fitted value
- Showing the second stage works is more involved, but essentially ::
 - first stage is consistent
 - $E[Z_i(\odot_i \hat{\odot}_i)] = 0$ and $E[Z_i\odot_i] = 0$

Putting the Rabbit in the Hat

- 2SLS shows how the IV is using the "clean variation" again
- The first stage is a projection of D_i on Z_i
- Can think of taking out the variation in D_i that explains by Z_i
- The fitted value $\hat{\odot}_i$, is like when you only use the clean variation to back out D_i
- Since only clean variation is left in $\hat{\odot}_i$, regress Y_i on $\hat{\odot}_i$ gives the causal effect

In a Diagram

- One common diagram to think about this:
 - ullet Z affects Y only through D

Implementation

- We didn't talk about inference, but a bit similar to OLS
 - Key point: use good packages!
 - The manual 2SLS standard error would be wrong
- It's possible also to include multiple IVs and covariates
 - Make sure you include the same covariates in both stages
 - Or just use the package
- Best practice is to look at first stage and reduced form graphically
- If the relation doesn't show up in reduced form, probably not there
- And then run the regression with the right packages
- Again, don't do it manually

IV Implementations

Table 4.1.1: 2SLS estimates of the economic returns to schooling

	OLS		2SLS					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Years of education	0.075 (0.0004)	0.072 (0.0004)	0.103 (0.024)	0.112 (0.021)	0.106 (0.026)	0.108 (0.019)	0.089 (0.016)	0.061 (0.031)
Covariates: Age (in quarters) Age (in quarters) squared								√
9 year of birth dummies 50 state of birth dummies		√			√	√	✓	✓ ✓
Instruments:			dummy for QOB=1	dummy for QOB=1 or QOB=2	dummy for QOB=1	full set of QOB dummies	full set of QOB dummies int. with year of birth dummies	full set of QOB dummies int. with year of birth dummies

Notes: The table reports OLS and 2SLS estimates of the returns to schooling using the the Angrist and Krueger (1991) 1980 Census sample. This sample includes native-born men, born 1930-1939, with positive earnings and non-allocated values for key variables. The sample size is 329,509. Robust standard errors are reported in parentheses.

Some Reflections

- Let's get back to the relevance and exclusion assumption
- $Cov(D_i, Z_i) \neq 0$ saying you need to have "enough" clean variation
 - Can be checked, rule of thumb is F-stat on the IV > 10
 - otherwise we call it a "weak IV"
 - Another view: the first stage is on the denominator, gets trouble if close to 0
- $Cov(\eta_i, Z_i) = 0$ says that the IV cannot affect Y_i other than through D_i
 - Of course IV would affect Y_i, but only through D_i
 - There is no way to test this
 - Most of the time people discuss IV validity on this
 - Can you think of examples that this doesn't hold in the QOB IV?
- The philosophy of IV is not magical, in principle you're finding a quasi-experiment
- And then make the most out of that quasi-experiment part!

IV with Heterogeneous Effect

- So far we assume that the treatment effect is constant across individuals
- What are we estimating if in fact it is heterogeneous?
- Consider the following model

$$Y = \alpha + BD + U$$
$$D = \pi + CZ + V$$

- With proper assumptions, one can show $\beta_{\text{IV}} \equiv \frac{Cov(Y,Z)}{Cov(D,Z)} = E\left[\frac{C}{E[C]}B\right]$
- β_{IV} is the weighted average of the causal effect (B)
- But those more strongly impacted by Z (larger C) gets more weight
- Hard to interpret
- In fact, weights could be negative

Recall the Potential Outcome Framework

- Remember our potential outcome framework
- $Y_{i1} = Y_i(1) = Y_i(D_i = 1)$ meaning the potential outcome for i when $D_i = 1$
- Let's think about the binary treatment case and also abstract away from covariates
- We can introduce the IV and define a similar thing
- $D_{i1} = D_i(1) = D_i(Z_i = 1)$ meaning the potential treatment for i when $Z_i = 1$
- Let's the notation ignore i for now
- Y_1, Y_0, D_1, D_0 are the potential outcomes and treatments, respectively
- Note that we have:

$$Y = DY_1 + (1 - D)Y_0$$
$$D = ZD_1 + (1 - Z)D_0$$

Assumptions

- 1. Relevance: $Cov(D, Z) = E[D|Z = 1] E[D|Z = 0] \neq 0$
- 2. Exogeneity: $(Y_1, Y_0, D_1, D_0) \perp Z$
- 3. Monotonicity (No Defier): $D_1 \geqslant D_0$

Relevance

$$Cov(D, Z) = E[D|Z = 1] - E[D|Z = 0] \neq 0$$

- This is same as before, meaning that the instrument does affect treatment
- ullet The first equation is a result of binary Z and D

Exogeneity

$$(Y_1, Y_0, D_1, D_0) \perp Z$$

- Like the exclusion we talked about
- Z would of course affect D
 - : $D = ZD_1 + (1 Z)D_0$
- But the assignment of Z is independent of potential treatments
- A sufficient condition: Z is randomly assigned

Monotonicity

$$D_1 \geqslant D_0$$

- This is new
- Think about 4 cases
 - 1. $D_0 = 0$ and $D_1 = 0$ (Never Taker)
 - 2. $D_0 = 1$ and $D_1 = 1$ (Always Taker)
 - 3. $D_0 = 0$ and $D_1 = 1$ (Complier)
 - 4. $D_0 = 1$ and $D_1 = 0$ (Defier)
- Compliers are those who only take the treatment if given the instrument
- Monotonicity rules out defiers
- Note that these are potential assignments ⇒ not observable

Results

• Result 1:

$$\beta_{IV} \equiv \frac{Cov(Y, Z)}{Cov(D, Z)} = \frac{E[Y|Z=1] - E[Y|Z=0]}{E[D|Z=1] - E[D|Z=0]}$$

• Result 2:

$$\beta_{IV} = E[Y_1 - Y_0 | D_1 = 1, D_0 = 0] = LATE$$

- LATE means local average treatment effect
- The "local" refers to the effects for compliers

Proof: Result 1

Note that for any random variable W and binary Z

$$\begin{aligned} Cov(W,Z) &= E[W(Z-E(Z))] \\ &= E[W(Z-E(Z))|Z=1]Pr(Z=1) + E[W(Z-E(Z))|Z=0]Pr(Z=0) \\ &= E(W(1-E(Z))|Z=1)E(Z) - E(WE(Z)|Z=0)(1-E(Z)) \\ &= E(W|Z=1)(1-E(Z))E(Z) - E(W|Z=0)(1-E(Z))E(Z) \\ &= [E(W|Z=1) - E(W|Z=0)]E(Z)(1-E(Z)) \\ \frac{Cov(Y,Z)}{Cov(D,Z)} &= \frac{[E(Y|Z=1) - E(Y|Z=0)]E(Z)(1-E(Z))}{[E(D|Z=1) - E(D|Z=0)]E(Z)(1-E(Z))} \\ &= \frac{E[Y|Z=1] - E[Y|Z=0]}{E[D|Z=1] - E[D|Z=0]} \end{aligned}$$

Proof: Result 2

$$E[Y|Z = z] = E[DY_1 + (1 - D)Y_0|Z = z]$$

$$= E[D_zY_1 + (1 - D_z)Y_0|Z = z]$$

$$= E[D_zY_1 + (1 - D_z)Y_0], (Exogeneity)$$

Therefore for any two z and z', we have:

$$\begin{split} E[Y|Z=z] - E[Y|Z=z'] &= E[(D_z - D_{z'})Y_1 + (1 - D_z - 1 + D_{z'})Y_0] \\ &= E[(D_z - D_{z'})(Y_1 - Y_0)] \\ &= E[Y_1 - Y_0|D_z = 1, D_{z'} = 0]P(D_z = 1, D_{z'} = 0), \\ & \text{(Law of total probability)} \end{split}$$

Similar for D, using the same logic,

$$E[D|Z=z] - E[D|Z=z'] = E[D_z - D_{z'}] = P(D_z=1, D_{z'}=0)$$

Taken Together

Now take the ratio, we have:

$$\frac{E[Y|Z=1] - E[Y|Z=0]}{E[D|Z=1] - E[D|Z=0]} = E[Y_1 - Y_0|D_z = 1, D_{z'} = 0]$$

Taken together, we know

$$\beta_{IV} \equiv \frac{Cov(Y,Z)}{Cov(D,Z)} = \frac{E[Y|Z=1] - E[Y|Z=0]}{E[D|Z=1] - E[D|Z=0]} = E[Y_1 - Y_0|D_1 = 1, D_0 = 0] = \text{LATE}$$

Remarks

- What do we learn after all these derivations?
- $\beta_{IV} = LATE = E[Y_1 Y_0|D_1 = 1, D_0 = 0]$
- The IV gives some specific treatment effects
- The treatment effects for the compliers
- Importantly, these treatment effects depend on the IV (Z) you use
- Very often these compliers are not the policy-relevant ones (e.g., earthquake IV)

Covariates

- Things get messy when there are covariates
- For example, instead of assuming $(Y_1, Y_0, D_1, D_0) \perp Z$
- We might want to assume only $(Y_1, Y_0, D_1, D_0) \perp Z|X$
- But in practice you need to saturate the X then
- 2SLS provides an approximation that sometimes works

Who Are the Compliers?

- Compliers are defined with potential treatments, so cannot be identified
- But could still learn something with the LATE assumptions

Share of compliers =
$$P(D_{1i} > D_{0i})$$

= $E[D_{1i} - D_{0i}]$
= $E[D_{1i}] - E[D_{0i}]$
= $E[D_i|Z_i = 1] - E[D_i|Z_i = 0]$

Who Are the Compliers

- We can also find the characteristic distribution
- Abadie's κ

$$E[X_i|D_{1i} > D_{0i}] = \frac{E[\kappa_i X_i]}{E[\kappa_i]}$$

$$\kappa_i \equiv 1 - \frac{D_i(1 - Z_i)}{1 - P(Z_i = 1|X_i)} - \frac{(1 - D_i)Z_i}{P(Z_i = 1|X_i)}$$

• This can be used to "find the compliers"

Relation to Roy Model

- People find that the Roy model and LATE framework are equivalent
- Model 1: Imbens and Angrist (1994)
 - 1. $Y = DY_1 + (1 D)Y_0$
 - 2. $D = ZD_1 + (1 Z)D_0$
 - 3. (Y_1, Y_0, D_1, D_0)
- Model 2: Non-parametric Roy
 - 1. $Y = DY_1 + (1 D)Y_0$
 - 2. $D = \mathbf{1}\{U < \nu(Z)\}$ for ν an unknown function
 - 3. (Y_1, Y_0, U)

Vytlacil (2002)

- These two are equivalent.
- The key is that $U < \nu(Z)$, it's a separate index.
- For instance, $\nu(U, Z)$ doesn't work.
- This can be used to define MTE:

$$E[Y_1 - Y_0 | U = u]$$

• Those with small u (close to 0) often choose D=1.

Remarks

- We have shown the homogeneous IV and the general IV
- Also on how it relates to the Roy model
- IV is a very powerful tool
- When you have an IV, you have a paper
- But be careful of your IV, are they informative for the problem?
- The fable of finding the keys