See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/256757608

Effect of Al3+ and Ti4+ ions on the laser reduction of Sm3+ ion in glass

ARTICLE in JOURNAL OF LUMINESCENCE · SEPTEMBER 2005

Impact Factor: 2.72 · DOI: 10.1016/j.jlumin.2004.12.010

CITATIONS READS
12 42

5 AUTHORS, INCLUDING:

M. Nogami

Toyota Physical and Chemical Researc...

SEE PROFILE

Go Kawamura

Toyohashi University of Technology

79 PUBLICATIONS 595 CITATIONS

SEE PROFILE

Hongpeng You

Chinese Academy of Sciences

178 PUBLICATIONS 3,403 CITATIONS

SEE PROFILE

Tomokatsu Hayakawa

Nagoya Institute of Technology

152 PUBLICATIONS 2,187 CITATIONS

SEE PROFILE

Journal of Luminescence 114 (2005) 178-186

www.elsevier.com/locate/jlumin

Effect of Al³⁺ and Ti⁴⁺ ions on the laser reduction of Sm³⁺ ion in glass

Masayuki Nogami*, Go Kawamura, Gil Jae Park, Hongpeng You, Tomokatsu Hayakawa

Department of Material Science and Engineering, Nagoya Institute of Technology, Showa, Nagoya 466-8555, Japan

Received 13 October 2004 Available online 1 June 2005

Abstract

Femtosecond laser pulses were used to change the valence of Sm^{3+} ions doped in silicate glasses consisting of Al_2O_3 and TiO_2 . When doped in TiO_2 – SiO_2 glass, no change was observed in Sm^{3+} ions by laser irradiation. On the other hand, Sm^{3+} ions were reduced to Sm^{2+} in Al_2O_3 -containing glasses. Fluorescence line-narrowing spectra indicate that Ti^{4+} ions are dissolved in silica network and occupy the tetrahedral site forming Si–O–Ti bonds, while Al^{3+} ions occupy tetrahedral and octahedral sites. The laser irradiation carries to form the hole-defect centers in the oxygen ions in the Al–O octahedral. The released electrons from oxygen ions are captured in the nearest neighboring Sm^{3+} ions, resulting in the formation of Sm^{2+} . On the other hand, in the Ti^{4+} -containing glasses, the electrons are trapped in Ti^{4+} ions and no Sm^{2+} ions are formed. The fluorescence properties of the Sm^{2+} ions and defect centers were compared from the time-resolved fluorescence spectra.

PACS: 42.70.Ln; 71.20.Eh; 78.55.Qr

Keywords: Rare-earth; Laser; Valence change; Glass; Sol-gel

1. Introduction

Glasses doped with rare-earth ions have attracted significant attention because they can be used for the fabrication of photonic devices. In oxide glasses, the rare-earth elements usually take

on the trivalent state and the 4f electrons are shielded by the 5s outer shells. According to these electron configurations, sharp absorption and emission lines are observed, which are appropriate for optical devices such as lasers and amplifiers. Some rare-earth ions can be presented as a valence other than the trivalent state, e.g., Eu²⁺, Sm²⁺, Ce⁴⁺, and Tb⁴⁺. Among them, the Eu²⁺ and Sm²⁺ ions are particularly interesting because they

^{*}Corresponding author. Tel./fax: +81 527355285.

E-mail address: nogami@mse.nitech.ac.jp (M. Nogami).

exhibit a large Faraday rotation effect [1], a longlasting phosphorescence [2], and a photochemical persistent spectral hole burning [3,4]. One technique to reduce the rare-earth ions is the melting of glass at high temperature under a strong reducing atmosphere [3,5]. We used a sol-gel technique to prepare glasses doped with Eu²⁺ and Sm²⁺ ions [4]. The sol–gel process allows the rare-earth ions to be reduced at moderately low temperatures. The heating process is convenient for changing the valence of rare-earth ions throughout the sample, but is not appropriately used for the microscopic local modification of the glass. X-ray and laser beams have been used to change the properties of glasses at the focal points [6–13]. With respect to the microscopic modifications, X-ray and laser irradiations offer a greater advantage than the heating process.

Recently, Hirao's group successfully used near-IR femtosecond (fs) laser pulses to reduce the Eu3+ and Sm3+ ions in fluoride, silicate, and borate glasses, and reported the possibility of the three-dimensional site selective modification inside a transparent glass [7–10]. Of particular interest in this technique is the internal microstructuring of a glass without inducing a crack in the vicinity of the focal point of the laser beam. Thus, the fs-laser pulses have been recognized as an outstanding tool for the fabrication of three-dimensional integrated circuits. We also demonstrated the reduction of Sm³⁺ ions into Sm²⁺ doped in the sol-gel Al₂O₃-SiO₂ glasses by irradiation with fs-laser beams and X-rays, and found that the holeburning efficiency of Sm²⁺ ions is superior to that in hydrogen-treated glasses [14,15]. Through our experimental experience, we noticed that the nature of the host glass composition plays an important role in reducing Sm³⁺ ions [16]. When doped in SiO₂ glass, the Sm³⁺ ions cluster and are hardly reduced to Sm²⁺, even when irradiating with a high power of laser. The Ti⁴⁺ ion has the same effect of not reducing the rare-earth ions. The Al³⁺ ion is the only promising one for the reduction of Sm³⁺ ions. However, it is not very clear how these co-doped cations contribute to the reduction of the rare-earth ions in host glasses.

In this paper, we discuss the effect of Al³⁺ and Ti⁴⁺ ions on the reduction of Sm³⁺ ions during

the fs-laser irradiation. The ${\rm Sm}^{3+}$ ions were doped in ${\rm Al_2O_3-TiO_2-SiO_2}$ glasses using the sol-gel method and the laser reduction of ${\rm Sm}^{3+}$ was measured as a function of the ${\rm Al_2O_3}$ content in the glasses. The reduction of ${\rm Sm}^{3+}$ to ${\rm Sm}^{2+}$ was related to the chemical bonding of the oxygen–polyhedra surrounding the ${\rm Sm}^{3+}$ ions.

2. Experimental

Al₂O₃-TiO₂-SiO₂ glasses doped with 10 wt% Sm₂O₃ were prepared by the sol-gel method using $Si(OC_2H_5)_4$, $Al(OC_4H_9^{sec})_3$, $Ti(OC_4H_9)_4$, SmCl₃6H₂O, deionized water, and ethanol as the starting materials. Si(OC₂H₅)₄ was first hydrolyzed with a mixed solution of ethanol and deionized water. A small amount of HCl solution was added as a catalyst. Al(OC₄H₉^{sec})₃ was then added to the partially hydrolyzed Si(OC₂H₅)₄, followed by stirring for 1 h at about 70 °C. After cooling to room temperature, Ti(OC₄H₉)₄ was added and stirred for 1 h, and then SmCl₃6H₂O dissolved in ethanol was added to this solution and stirred for another 30 min. The mixed solution of H₂O and C₂H₅OH was added for the final hydrolysis of the alkoxides, followed by stirring for 1h. The obtained homogeneous solutions were cast into plastic containers, where they were allowed to gel at room temperature. The obtained gels were heated at 500 °C in air for 2 h, polished and further heated at 800 and 1000 °C in air for 2h. The 10Al₂O₃-90SiO₂ and 10TiO₂-90SiO₂ glasses doped with Eu₂O₃ were also prepared using EuCl₃6H₂O to measure the fluorescence properties.

The fs pulse laser irradiation of the glasses was performed by a Ti:sapphire regenerative amplifier laser system (Spectra Physics, Hurricane) operating at a wavelength of 800 nm with a 1 kHz repetition rate and 130 fs pulse duration. A laser beam with an average power of 780 mW irradiated the sample for 3 min through an objective lens with a 30 cm focusing length. Optical focusing was moved 3–5 mm from the sample in order not to damage the sample.

The optical absorption spectra were measured using a spectrometer (Jasco, V-570) in the wave-

length range from 200 to 900 nm. The fluorescence (FL) spectra were recorded using a N_2 laser (Laser Photonics, Inc., LN203C: pulse width ~ 1 ns) with a 337 nm wavelength for excitation. The N_2 laser was overlapped with the fs laser-irradiated area using the objective lens. The fluorescence was led to a monochromator (Jobin Yvon, HR 320) through an optical fiber and detected by the ICCD camera (Oriel Instruments, InstaSpec V System). The delay time for the ICCD gate pulse was changed depending on the fluorescence lifetime. The fluorescence line narrowing (FLN) spectra were obtained by exciting the $^7F_0 \rightarrow ^5D_0$ transition of both the Sm²⁺ and Eu³⁺ ions.

The electron spin resonance (ESR) spectra were obtained at 123 K by applying an X-band microwave frequency (Jasco, JES-RE1X). The quoted *g*-values were referenced to the value for diphenyl-picrylhydrazal (DPPH).

3. Results and discussion

3.1. Formation of Sm^{2+} ions in TiO_2 – Al_2O_3 – SiO_2 glasses

The glasses obtained by heating gels in air were transparent and showed optical absorption spectra characteristic of the f-f transition of Sm³⁺ ions. The Sm₂O₃ content remained constant at 10 wt% and the observed optical absorption intensities of the Sm³⁺ ions were almost the same and independent of the composition of the host glass. On the other hand, the fluorescence properties are strongly affected by the local structure surrounding the Sm³⁺ ions. The emission bands due to the f-f transitions within Sm3+ 4f5 configuration appear at about 550, 600, and 650 nm, the intensities of which were significantly dependent on the TiO₂ and Al₂O₃ contents. The emission intensity increased with the increasing Al₂O₃ content and the intensity in the 10Al₂O₃–90SiO₂ glass was ten times higher than that in the 10TiO₂-90SiO₂ glass.

Previously, we studied the fluorescence properties of Eu³⁺ ions in SiO₂, TiO₂–SiO₂ and Al₂O₃–SiO₂ glasses [17,18]. In SiO₂ glass, Eu³⁺ ions have a tendency to cluster, resulting in an

emission quenching. When TiO₂ is introduced into the silica glass, the emission intensity of Eu³⁺ ions was found to increase. The Ti⁴⁺ ions are dissolved in the silica network and occupy tetrahedral sites forming Si-O-Ti bonds. Considering the fact that the Ti⁴⁺ ion has a larger size and a smaller electronegativity compared with the Si⁴⁺ ion, the Eu³⁺ ions are preferentially bonded with the Ti⁴⁺ ions to form Eu³⁺-O-Ti⁴⁺ bonds, which leads to reducing the extent of Eu³⁺ clusters and enhancing the emission intensity. However, we found that the network structure consisting of TiO₂ is very similar to that of silica glass within a TiO₂ content of 15% [18]. Therefore, it is suggested that Eu³⁺ ions still have a tendency to form clusters, although Ti⁴⁺ ions can reduce the extent of Eu³⁺ clusters. On the other hand, we found that the emission intensity of Eu³⁺ ions is significantly enhanced by the incorporation of Al₂O₃ in silica glass [17]. The Al³⁺ ions can occupy tetrahedral and octahedral sites in the glass structure, where Al³⁺ ions in the octahedral site effectively act to reduce Eu³⁺ clusters, resulting in enhanced emission intensity.

Fig. 1 shows the FL spectra of $10Al_2O_3-90SiO_2$ and 5Al₂O₃-5TiO₂-90SiO₂ glasses before and after fs-laser irradiation. The FL spectra were taken in the visible wavelength region using a 337 nm excitation wavelength of a N2 laser at room temperature. Before the laser irradiation, both glasses exhibit sharp FL bands at 567, 604 and 654 nm, which are all assigned to the ${}^4G_{5/2} \rightarrow$ ⁶H_{5/2,7/2,9/2} transitions, respectively, of Sm³⁺ ions, while their intensities are weaker for 5Al₂O₃-5TiO₂-90SiO₂ glass. When irradiated with the fslaser in 5Al₂O₃-5TiO₂-90SiO₂ glass, no change was observed, even with a slight increase in the wavelength below about 550 nm. The origin of this 550 nm fluorescence will be discussed in Section 3.4. The same spectral features were observed for glasses containing less than 5% Al₂O₃ in the system $xAl_2O_3-(10-x)TiO_2-90SiO_2$.

On the other hand, in glasses containing $Al_2O_3 > 5\%$, new FL lines appeared for the long wavelengths at 680–730 nm, and their intensities increased as the Al_2O_3 content increased. These new bands at 680, 710, and 730 nm are assigned to the ${}^5D_0 \rightarrow {}^7F_{0,1,2}$ transitions of Sm²⁺

Fig. 1. Fluorescence spectra of Sm^{3+} -doped $5\mathrm{Al}_2\mathrm{O}_3$ – $5\mathrm{TiO}_2$ - $90\mathrm{SiO}_2$ (a) and $10\mathrm{Al}_2\mathrm{O}_3$ - $90\mathrm{SiO}_2$ (b) glasses before (dotted line) and after (solid line) fs laser irradiation.

ions, respectively. Thus, it is concluded that Sm^{3+} ions are reduced by fs-laser irradiation and their reduction is strongly affected by the host glass. The FL intensities of Sm^{2+} and Sm^{3+} ions, denoted as I_2 and I_3 , respectively, are determined as the area of FL-bands of the ${}^5D_0 \rightarrow {}^7F_{0,1,2}$ (Sm^{2+}) and ${}^4G_{5/2} \rightarrow {}^6H_{5/2,7/2,9/2}$ (Sm^{2+}) transitions, which are plotted as a function of the Al_2O_3 content in Fig. 2. It is apparent that the reduction of Sm^{3+} ions is increased by the addition of Al^{3+} ions.

3.2. Formation process of Sm²⁺ ions by laser irradiation

We have studied the reduction of Sm³⁺ ions in the glasses prepared by heating under a hydrogen

Fig. 2. Fluorescence intensity ratio of Sm^{2+} and Sm^{3+} ions in $x\text{Al}_2\text{O}_3$ – $(10-x)\text{TiO}_2$ – 90SiO_2 glasses irradiated with laser.

atmosphere [4] or irradiating with X-ray [6] and laser pulses [14]. In the glass heated in H₂ gas, H₂ molecules deplete the oxygen ions surrounding Sm³⁺ ions, resulting in the formation of Sm²⁺ ions. In contrast, in the X-ray-irradiated glass, Sm³⁺ ions are not reduced by the removal of coordinatedoxygen ions, but by the electron transfer between oxygen and Sm³⁺ ions. Compared with these reduction processes, the fs-laser process seems to resemble that of the X-rays. In Fig. 3, the ESR spectra of the laser-irradiated glasses are shown. The laser-irradiated 10Al₂O₃–90SiO₂ glass shows ESR signals at around 3200–3300 G with q = 2.009 and fine hyperfine structures. We assigned these ESR signals to the hole centers trapped in oxygen ions bound with Al ions (so-called Al-OHC) [19]. On the other hand, the Al₂O₃ and TiO₂-codoped glasses exhibit a very broad signal at around 3400 G in addition to the Al-OHC signal. We found that the intensity of the 3400 G signal increases as does the TiO₂ content, reaching the maximum at a composition of 5Al₂O₃-5TiO₂-90SiO₂. No signal was observed in the 10TiO₂–90SiO₂ glass. Compared with that of the free electron (g = 2.00232), the 3400 G signal (q = 1.9483) can be assigned to the electron-trap centers. Based on these experimental results and analogy to that of the X-ray irradiated glass, we can consider the effect of Ti⁴⁺ and Al³⁺ ions on the reduction of Sm³⁺ ions.

Fig. 3. ESR spectra of laser-irradiated xAl_2O_3 – $(10-x)TiO_2$ – $90SiO_2$ glasses.

Sm3+ ions are preferentially bound with Al-O polyhedra, in which Al³⁺ ions occupy tetrahedral and octahedral sites in the glass structure, bonding with the 4 and 6 oxygens, respectively. Therefore, it is reasonable to conclude that Sm³⁺ ions are reduced to Sm²⁺ by the electron transfer between oxygen and samarium ions. The octahedrally bonded Al-O polyhedra are damaged during the laser irradiation, resulting in the formation of hole-defect centers in the oxygen ions bound to Al³⁺ ions(Al–OHC). The released electrons from the oxygen ions are captured by the nearest neighboring Sm³⁺ ions to reduce them to Sm²⁺. The Sm³⁺ ions act as an electron acceptor. However, when co-existing with Ti⁴⁺ ions, the electrons are preferably captured by Ti⁴⁺ ions. Thus, it is concluded that Al^{3+1} ions are appropriate for the reduction of Sm³⁺ ions in the glass matrix.

3.3. Effect of Al^{3+} and Ti^{4+} ions on local structure surrounding the rare-earth ions

It is evident that Al³⁺ and Ti⁴⁺ ions have different effects on the reduction of Sm³⁺ ions. In this section, we discuss the local structure of Sm³⁺

ions using the fluorescence line-narrowing technique. The technique of laser-induced fluorescence narrowing provides a microscopic probe of the local environment around the rare-earth ions. The Sm³⁺ ion has a ground state of the ⁶H_{5/2} level, in which the crystal field is splitting. On the other hand, the Sm²⁺ and Eu³⁺ ions have the same 4f⁶ electron configuration and can be considered to have a similar effect on the glass structure, although there is a slight difference in their sizes. The ground and lowest excited levels of these ions are ${}^{7}F_{0}$ and ${}^{5}D_{0}$, respectively, and the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition exhibits no crystal field splitting, thus making the assignment of the fluorescence spectra much simpler. Therefore, the crystal-field analysis of the FLN spectra as a function of the excitation wavelength within the ${}^5D_0 \rightarrow {}^7F_0$ transition can provide an insight into the local structure. To study the effect of Al³⁺ and Ti⁴⁺ ions on the chemical features of the trivalent rare-earth ions, the FLN spectra were measured using the Eu³⁺ ion as the prove ion, which are shown in Fig. 4 in the range from 570 to 620 nm wavelength. In TiO₂-SiO₂ glass (see Fig. 4(a)), three groups of lines, observed at \sim 17,250, 17,000–16,600, and $16,500-15,900 \,\mathrm{cm}^{-1}$, are assigned to the ${}^5\mathrm{D}_0 \to {}^7\mathrm{F}_0$, ${}^5D_0 \rightarrow {}^7F_1$, and ${}^5D_0 \rightarrow {}^7F_2$ transitions, respectively. Among these lines, three distinct peaks in the ${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{1}$ transition are due to the Stark splitting of the ⁷F₁ level, indicating that Eu³⁺ ions are located at one site with the symmetry of C_{2y} , or lower. It is apparent that no change is observed in the spectral shape and peak positions of the Eu³⁺doped TiO2-SiO2 glass. This behavior is similar to that observed in the silica glass doped with Eu³⁺ ions. The absence of the line-narrowing effect indicates the clustering of Eu3+ ions, where an efficient energy transfer has taken place within Eu³⁺ ions. This strongly suggests that although Ti⁴⁺ ions replace Si⁴⁺ to form Si-O-Ti bonds, the network structure is very similar to that of silica glass, which does not contribute to decreasing the clustering of Eu³⁺ ions.

In contrast to Eu^{3+} -doped TiO_2 - SiO_2 glass, Eu^{3+} -doped Al_2O_3 - SiO_2 glass shows a quite different behavior in the FLN spectra as shown in Fig. 4(b). In the FLN spectrum for the $17,250\,\mathrm{cm}^{-1}$ excitation, the $^5D_0 \rightarrow ^7F_1$ band is

Fig. 4. FLN spectra of Eu^{3+} and Sm^{2+} ions doped in glasses. The 10TiO_2 – 90SiO_2 (a) and $10\text{Al}_2\text{O}_3$ – 90SiO_2 (b) glasses doped with Eu^{3+} ions are heated in air atmosphere. The Sm^{2+} -doped $10\text{Al}_2\text{O}_3$ – 90SiO_2 glass was obtained by irradiating with fs laser (c). The numbers are the excitation wavenumber in cm⁻¹.

clearly split into three lines. The position of the three splitting lines separately shifts to the opposite side with increasing excitation energy and other new components begin to be observed at around 16,900 and $16,600\,\mathrm{cm^{-1}}$ during the $17,335\,\mathrm{cm^{-1}}$ excitation. Concomitantly, it is noticed that in the $^5\mathrm{D}_0\!\rightarrow^7\!\mathrm{F}_2$ transition region, a new broad band appears at around $16,200\,\mathrm{cm^{-1}}$ and the intensity of this line increases with increasing excitation energy. These phenomena suggest the existence of two chemical components surrounding the Eu^{3+} ions. On the basis of this consideration, the broad $^5\mathrm{D}_0\!\rightarrow^7\!\mathrm{F}_1$ transition bands were deconvoluted using a Gaussian distribution function and the peak positions of each band were

determined, which are plotted in Fig. 5(a) as a function of the excitation energy. Note that the 7F_1 components can be classified into two groups (open and closed marks in Fig. 5(a)), indicating that the Eu 3 ions are surrounded by two different Al–O polyhedra in the Al $_2O_3$ –SiO $_2$ glass structure. It is known that the Al 3 ion is 4- and/or 6-coordinated with oxygen ions in the alkali–aluminosilicate glasses [20]. The 4-coordinated Al 3 ion forms the Si–O–Al network structure, where the negative charge of the AlO $_4$ tetrahedra is compensated by the accompanying alkali ion. In contrast, our glasses contain no alkali oxides, and the Eu 3 ion is too large to enter the AlO $_4$ network structure. Consequently, the Eu 3 ion acts as a

Fig. 5. Peak energies of three $^5D_0 \rightarrow ^7F_1$ fluorescence lines of Eu³⁺ ions (a) and Sm²⁺ ions (b) doped in $10Al_2O_3-90SiO_2$ glasses as a function of $^7F_0 \rightarrow ^5D_0$ excitation energy.

network modifier ion in the glass and its positive charge is compensated by the non-bridging oxygens bonded to the AlO₆ octahedra. A similar chemical bonding can take place in the Sm³⁺ ion-doped glasses.

Fig. 4(c) shows the FLN spectra of Sm^{2+} ions in Al_2O_3 – SiO_2 glass, in which Sm^{3+} ions are changed into Sm^{2+} by fs-laser irradiation. Note that only three lines are observed in the ${}^5D_0 \rightarrow {}^7F_1$ transition region. This result indicates that Sm^{3+} ions located in two different sites are not similarly reduced to Sm^{2+} . The peak shift of the three lines with increasing excitation energy resembles that for the second site observed in the Eu^{3+} -doped

 Al_2O_3 – SiO_2 glass, as shown in Fig. 5(b), suggesting that the Sm³⁺ ions bound with the octahedral AlO_6 groups are selectively reduced to Sm²⁺.

3.4. Fluorescence properties of Sm^{2+} ions in Al_2O_3 — SiO_2 glass

The fs-laser pulses with a high intensity are known to produce free electrons in a glass via multiphoton absorption and the avalanche ionization leads to plasma generation, resulting into the formation of defect centers in a glass [14]. Therefore, it is necessary to consider the optical absorption and fluorescence from the defect centers in addition to the rare-earth ions. Laser irradiation induces a broad optical absorption between 300 and 600 nm, which is ascribed to the $4f^6 \rightarrow 4f^55d$ transition of Sm²⁺ ions. The $4f^55d$ configuration has a wide distribution in energy and exhibits an absorption band overlapped with the 4f⁶ levels and the defect centers in the host structure. The Al₂O₃-SiO₂ host glass also has a strong absorption below ~270 nm due to the fundamental absorption of the glass structure. Therefore, the N₂ laser at 337-nm wavelength, used for the measurement of the emission spectra. excites electrons in the different components and produces complex fluorescence properties.

The fluorescence spectra were measured in detail by changing the gate time of the opening ICCD camera. Shown in Fig. 6 are the typical FL spectra in the visible wavelength region. A broad FL band peaking at ~460 nm exhibits the very short lifetime of 20 ns (see the decay curve shown in the inset of Fig. 6(a)). Some possible origins for this FL band can be considered: the radiative relaxation from the $4f^55d$ to $4f^6(^7F_0)$ level of Sm^{2+} ions, and the existence of defect centers. Generally it is known that the divalent rare-earth ions exhibit lifetimes on the ns order. Compared with this lifetime, the FL band at 460 nm might be assigned to the $4f^55d \rightarrow 4f^6$ transition of Sm²⁺. However, the emission from the defect centers is not rejected at present; therefore further study is needed.

Fig. 6(b) shows the FL spectrum measured with a 70 µs gate width. It is noticed that the sharp FL lines due to the ${}^5D_0 \rightarrow {}^7F_{0,1,2}$ transitions of the Sm²⁺ ions are superpositioned on a broad band

Fig. 6. Fluorescence spectra of Sm^{2+} ion-doped $10Al_2O_3-90SiO_2$ glasses, measured with $10\,ns$ (a) and $70\,\mu s$ (b) gate width.

peaking at \sim 700 nm. Since the lifetime of the f-f transition is usually of the order of milliseconds, a short gate width time was used to detect the broad fluorescence. In the inset of Fig. 6(b) is shown the decay curve of the FL intensity at 700 nm, the lifetime of which is estimated to be 1 µs. He et al. observed a similar broad fluorescence in the BaCl₂ crystal doped with Sm2+ ions and assigned to the two-step quenching model via the 5d level [21]. Based on these experimental results, the energylevel diagram of the Sm²⁺ ions and a possible pathway for the excited energy is schematically drawn in Fig. 7. The excited electrons in the level of the 4f5d configuration non-radiatively relax into the lowest energy 5D_0 level and radiatively transfer into the ground 7F_j level. A part of the excited electrons are relaxed within the 5d orbital, followed by the radiative 5d-4f transition.

Fig. 7. Schematical energy diagram for Sm²⁺ ions doped in glass.

4. Conclusion

In this study, the laser reduction of Sm³⁺ ions in sol-gel glasses was investigated. We found that Sm³⁺ ions are reduced to Sm²⁺ in glasses containing Al₂O₃, whereas no Sm²⁺ is formed in TiO₂-containing glasses. The chemical structure of the glass surrounding rare-earth ions was studied using the FLN spectra of Eu³⁺ ions. The variation in the FLN spectra with the excitation energy reveals that Ti⁴⁺ ions occupy tetrahedral sites within the silica network and act to capture the electron released by the laser irradiation, indicating no capability to reduce Sm³⁺ ions. On the other hand, the FLN spectra of the Al3+ ioncontaining glasses show that Eu³⁺ ions have two sites, one of which exhibits a large line-narrowing effect, and acts to form non-bridging oxygen ions in the Al-O polyhedra. Hole centers are formed in these oxygens by laser irradiation, and the released electrons are captured by Sm3+ ions, thus resulting in the formation of Sm²⁺.

Acknowledgments

We thank the 21st century COE program of Nagoya Institute of Technology.

References

- T. Hayakawa, M. Nogami, Solid State Commun. 116 (2000) 77.
- [2] T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, J. Electrochem. Soc. 143 (1996) 2670.
- [3] K. Hirao, S. Todoroki, D.H. Cho, N. Soga, N. Opt. Lett. 18 (1993) 1586.
- [4] M. Nogami, Y. Abe, K. Hirao, D.H. Cho, Appl. Phys. Lett. 66 (1995) 2952.
- [5] T. Izumitani, S.A. Payne, J. Lumin. 54 (1993) 337.
- [6] M. Nogami, K. Suzuki, Adv. Mater. 14 (2002) 923.
- [7] K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21 (1996) 1729.
- [8] J. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, K. Hirao, Appl. Phys. Lett. 74 (1999) 10.
- [9] J. Qiu, K. Miura, K. Nouchi, T. Suzuki, K. Kondo, T. Mitsuyu, K. Hirao, Solid State Commun. 113 (2000) 341.
- [10] J. Qiu, K. Kojima, A. Kubo, M. Yamashita, K. Hirao, Phys. Chem. Glasses 41 (2000) 150.
- [11] M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, H. Misawa, Appl. Phys. Lett. 74 (1999) 3957.

- [12] E.N. Glezer, M. Milosavlijevic, L. Huang, R.J. Finley, T.-H. Her, J.P. Callan, E. Mauzer, Opt. Lett. 21 (1996) 2023.
- [13] C.B. Schaffer, A. Brodeur, J.F. Garcia, E. Mazur, Opt. Lett. 26 (2001) 93.
- [14] G.J. Park, T. Hayakawa, M. Nogami, J. Phys. Condens. Matter. 15 (2003) 1259.
- [15] G.J. Park, T. Hayakawa, M. Nogami, J. Lumin. 106 (2004) 103
- [16] M. Nogami, N. Hayakawa, N. Sugioka, Y. Abe, J. Am. Ceram. Soc. 79 (1996) 1257.
- [17] M. Nogami, T. Nagakura, T. Hayakawa, T. Sakai, Chem. Mater. 10 (1998) 3991.
- [18] H. You, M. Nogami, J. Phys. Chem. B 108 (2004) 12003.
- [19] E.J. Friebele, D.L. Grisco, in: M. Tomozawa, R.H. Doremus (Eds.), Treatise on Materilas Science and Technology, vol. 17, Academic Press, New York, 1979, p. 257.
- [20] W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, second ed., Wiley, New York, 1976, p. 91.
- [21] Zy. He, Ys. Wang, S. Li, Xr. Xu, J. Lumin. 97 (2002) 102.