PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-005855

(43)Date of publication of application: 12.01.2001

(51)Int.Cl.

G06F 17/50

G06F 17/00

(21)Application number: 11-178918

(22)Date of filing:

24.06,1999

(71)Applicant : MITSUBISHI ELECTRIC CORP

(72)Inventor: NAITO TOMOKO

(54) PRODUCT EVALUATING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a device for supporting the design of a product with a low environmental load suitable for recycling by automatically calculating the recycle suitability of an entire product and the environmental load in the aspect of materials while using the data of materials or shape of respective slave parts in a component prepared on a design stage.

SOLUTION: Concerning this product evaluating device, the materials of respective slave parts are extracted from a material system DB 120, to which the information of the component and the slave parts on the product design stage is inputted, and the volume of respective slave parts is extracted from a three-dimensional CAD system DB 130. While using a material attribute DB 140 and a product disassembly DB 150 registering the specific gravity of respective materials, disassembled parts or bonding method of slave parts, a product evaluation index calculating part 170 calculates the

evaluation index of the environmental load for recycle suitability or materials and the simulation of the evaluation index at the time of design change is performed.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

BEST AVAILABLE COPY

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-5855 (P2001 - 5855A)

(43)公開日 平成13年1月12日(2001.1.12)

(51) Int.Cl.7

識別配号

FI.

テーマコート*(参考)

G06F 17/50 17/00 G06F 15/60

5B046 612A

15/20

D 5B049

審査請求 未請求 請求項の数13 OL (全 11 頁)

(21)出願番号

特願平11-178918

(22)出顧日

平成11年6月24日(1999.6.24)

(71)出願人 000006013

三菱電機株式会社

東京都千代田区丸の内二丁目2番3号

(72) 発明者 内藤 知子

東京都千代田区丸の内二丁目2番3号 三

菱電機株式会社内

(74)代理人 100066474

护理士 田澤 博昭 (外1名)

Fターム(参考) 5B046 AA07 JA04 KA05

5B049 AA01 AA02 BB07 CC11 DD01

DD05 EE01 EE05 EE41

(54) 【発明の名称】 製品評価装置

(57)【要約】

【課題】 設計段階で作成された構成部品中の各子部品 の材料や形状のデータを用い、製品全体のリサイクル適 合性、材料面での環境負荷を自動計算し、リサイクルに 適した、環境負荷の低い製品の設計を支援する装置を得 る.

【解決手段】 製品設計段階の構成部品と子部品の情報 が入力された資材システムDB120より各子部品の材 料を、3次元CADシステムDB130より各子部品の 体積を抽出し、各材料の比重、解体部品や子部品の締結 方法を登録しておいた材料属性DB140と製品解体D B150を用いて、リサイクル適合性や材質面での環境 負荷の評価指標を製品評価指標計算部170で計算し、 設計変更時の評価指標のシミュレーションを行う。

130:8 表元CADシステム・データベース (8 表元CADシステムのデータベース、デ

140: 材料属性デ

150: 毎品解体データベース (データベース部)

10

【特許請求の範囲】

【請求項1】 製品のモデル名を入力する入力部と、 前記入力部より入力されたモデル名に応じて、既存の資 材システムおよび3次元CADシステムから抽出され た、当該製品を構成する全ての部品、および前配各部品 を構成する全ての子部品のデータに基づいて、製品全体 のリサイクル適合性および環境負荷の評価指標を計算す る製品評価指標計算部とを備えた製品評価装置。

【請求項2】 製品評価指標計算部は、製品の評価指標 *

資材システムのデータベースから抽出された前記製品を 構成する全部品の中の各子部品の材料と、

3次元CADシステムのデータベースから抽出された前 配各部品の中の各子部品の体積、および当該子部品の材 料と比重から求めた前記各子部品の質量と、

製品解体データベースから抽出された、解体される前記 部品または子部品の締結方法とに基づいて計算するもの であることを特徴とする請求項1記載の製品評価装置。

【請求項3】 各材料毎に、当該材料の比重があらかじ め記録されている材料属性データベースを有し、

製品評価指標計算部は、製品の評価指標の算出に際し

製品を構成する各部品の部品名、および前記各部品を構 成する子部品の子部品名として、資材システムのデータ ベースにおいて入力部より入力された製品のモデル名か ら識別したものを用い、

前記各子部品の材料として、前記資材システムのデータ ベースにおいて前記部品名と子部品名から識別したもの を用い、

ータベースにおいて前記製品のモデル名と前記部品名と 子部品名から識別したものを用い、

前記各子部品の比重として、前記材料属性データベース において前記各子部品の材料から識別されたものを用 LA.

解体される前記部品として、製品解体データベースにお いて製品カテゴリー名、解体部品名、または子部品名か ら識別されたものを用いるものであることを特徴とする 請求項2記載の製品評価装置。

【請求項4】 製品を構成する各部品の中の各子部品の 40 材料、質量のデータ、および解体される部品または子部 品とその順番、締結方法をインタラクティブに編集する ための編集部を設け、

製品評価指標計算部は、前配編集部において編集された データを用いて、当該製品の評価指標を再計算するもの であることを特徴とする請求項1記載の製品評価装置。

【請求項5】 製品のモデル名が入力される入力部と、 前記入力部より入力されたモデル名に基づいて、当該製 品を構成する部品に関するデータが抽出されるデータベ ース部と、

前記データベース部より抽出されたデータに基づいて、 前記製品に関する所定の評価を計算する製品評価指標計 算部とを備えた製品評価装置。

【請求項6】 製品評価指標計算部が計算する所定の評 価が、リサイクル可能率に関するものであり、

データベース部より抽出されるデータが、製品の質量、 部品の質量、および前記部品に関するリサイクル可能率 であることを特徴とする請求項5記載の製品評価装置。

【請求項7】 製品評価指標計算部が計算する所定の評 価が、回収可能価値に関するものであり、

データベース部より抽出されるデータが、部品の質量、 前記部品に関するリサイクル可能率、および当該部品材 料の売却価値であることを特徴とする請求項5記載の製 品評価装置。

【請求項8】 製品評価指標計算部が計算する所定の評 価が、回収可能コスト比率に関するものであり、

データベース部より抽出されるデータが、部品の質量、 前記部品に関するリサイクル可能率、当該部品材料の売 却価値、および前記部品の購入コストであることを特徴 20 とする請求項5記載の製品評価装置。

【請求項9】 製品評価指標計算部が計算する所定の評 価が、リサイクルコストに関するものであり、

データベース部より抽出されるデータが、部品の質量、 前記部品に関するリサイクル可能率、当該部品材料の売 却価値、前記部品の解体時間、および人件費であること を特徴とする請求項5記載の製品評価装置。

【請求項10】 製品評価指標計算部が計算する所定の 評価が、環境負荷に関するものであり、

データベース部より抽出されるデータが、製品の質量、

前記各子部品の体積として、3次元CADシステムのデ 30 部品の質量、および当該製品の製造と輸送と使用と廃棄 とにおける環境負荷であることを特徴とする請求項5記 載の製品評価装置。

> 『【請求項11】 製品から解体される部品および子部品 の中の少なくとも一方が、順序づけられて表示される表 示部を有することを特徴とする請求項5記載の製品評価 装置。

> 【請求項12】 表示部に表示された、製品から解体さ れる部品または子部品についての所定の事項に関して、 その変更を行うための編集部を設けたことを特徴とする 請求項11記載の製品評価装置。

> 【請求項13】 表示部に表示された所定の事項が、 表示部に表示された子部品の材料および質量の中の少な くとも一方、あるいは表示部に表示された部品および子 部品の中の少なくとも一方の構造、または表示部に表示 された部品および子部品の中の少なくとも一方の構造、 または表示部に表示された部品および子部品の中の少な くとも一方の解体順であることを特徴とする請求項12 記載の製品評価装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、家電製品等の設計時に、製品のリサイクルの適合性、材料面での環境への負荷についての評価指標を自動的に計算し、シミュレーションする製品評価装置に関するものである。

[0002]

【従来の技術】現行の廃棄物処理能力の限界と環境保全のため、製品のリサイクルと環境への負荷の低減が強く求められており、設計段階で製品のリサイクル適合性、環境負荷を考慮する必要がある。リサイクルを考慮した従来の設計手法としては、例えば、特開平10-222 10554号公報に記載の製品設計方法があった。この設計手法では、設計段階において、製品を構成する各部品の主な材料や質量を、キーボード、マウス、タブレット等の一般的な入力機器を用いて、オペレータが手入力していた。なお、この手入力によるデータ入力では、部品レベルが限界であり、当該部品を構成している子部品についての詳細はわからないのが一般的であった。

【0003】また、製品の製造から処分にいたる総合的な環境負荷を計算して評価する従来の装置としては、例えば、特開平10-57936号公報に記載の評価装置 20があった。この装置においても、製品を構成する各部品の主な材料や質量のデータは、オペレータが入力装置から手入力するものであった。

【0004】なお、設計段階での製品のリサイクル適合性、環境負荷の軽減に関する記載のある文献としては、 この他にも、特開平9-190152号公報、特開平7-16837号公報、特開平7-24831号公報などがある。

[0005]

【発明が解決しようとする課題】従来のリサイクル適合 30 性の評価方法や環境負荷の評価装置は、以上のように構 成されているので、評価のためにオペレータが、製品を 構成する全部品の主な材料と質量を手入力しているた め、オペレータは膨大なデータを手入力せざるを得ず、 また、製品のリサイクル適合性評価に関して、製品を手 解体してからリサイクルする場合は、製品の解体時間も 重要な要因となり、この解体時間は通常、取りはずされ る(解体される)部品の締結方法毎に、締結を解除した 時の実験データをもとに推定されるものであるが、オペ レータがそのためのデータも逐一、手入力して、解体時 40 間を推定しているため、これらのデータ入力の煩雑さが これまで、上記従来のリサイクル適合性の評価方法や環 境負荷の評価装置が実際の設計現場に適用されず、評価 結果が製品設計に反映されない最大の原因であった。さ らに、これら全部品の情報をオペレータが手入力したと しても、その部品を構成する子部品の詳細な情報までは わからず、製品の具体的な改善が行えないといった課題 もあった。

【0006】との発明は上記のような課題を解決するためになされたもので、実際の製品設計中に、オペレータ 50

が膨大なデータを手入力することなく、リサイクル適合 性や材質面での環境負荷を自動的に計算して結果を表示 し、さらに具体的な設計情報を画面上で変更して、結果 がどうなるかをシミュレーションできる製品評価装置を 得ることを目的とする。

[0007]

【課題を解決するための手段】との発明に係る製品評価 装置は、既存の資材システムと3次元CADシステムより、そのモデル名の製品を構成する全部品、および各部 品を構成する全子部品のデータを、入力部から入力され たモデル名に応じて抽出し、それを用いて当該製品にお けるリサイクル適合性および環境負荷の評価指標を計算 するようにしたものである。

【0008】との発明に係る製品評価装置は、製品評価指標計算部が製品の評価指標を計算するために用いる当該製品を構成する部品の中の子部品の材料、質量および体積について、各子部品の材料は資材システムのデータベース(以下資材システム・データベースという)から、各子部品の体積は3次元CADシステムのデータベース(以下3次元CADシステム・データベースという)から、解体される部品、または子部品の締結方法は製品解体データベースからそれぞれ抽出し、各子部品の質量は抽出された上記各子部品の体積および材料とその比重から求めるようにしたものである。

【0009】との発明に係る製品評価装置は、各材料の比重を材料属性データベースにあらかじめ記録しておき、製品を構成する各部品の部品名、および部品を構成する各子部品の子部品名を資材システム・データベースにおいて製品のモデル名から識別し、各子部品の材料を資材システム・データベースにおいて製品のモデル名と部品名と子部品名から識別し、各子部品の比重を材料属性データベースにおいて子部品の材料から識別し、解体される部品または子部品を製品解体データベースにおいて、製品モデル名から一意的に決まる製品カテゴリー名と、解体部品名または解体子部品名とから識別するようにしたものである。

【0010】 この発明に係る製品評価装置は、製品を構成する各部品の中の子部品の材料、質量のデータ、および解体される部品または子部品とその順番、締結方法をインタラクティブに編集し、その編集されたデータを用いて製品の評価指標を再計算するようにしたものである

[0011] との発明に係る製品評価装置は、データベース部より製品を構成する部品に関するデータを、入力部より入力された製品のモデル名に基づいて抽出し、それを用いて当該製品に関する所定の評価の計算を行うようにしたものである。

【0012】との発明に係る製品評価装置は、データベ

ース部より抽出した製品の質量、部品の質量、および部 品に関するリサイクル可能率を用いて、リサイクル可能 率に関する評価の計算を行うようにしたものである。

【0013】 この発明に係る製品評価装置は、データベース部より抽出した部品の質量、部品に関するリサイクル可能率、および当該部品材料の売却価値を用いて、回収可能価値に関する評価の計算を行うようにしたものである。

【0014】との発明に係る製品評価装置は、データベース部より抽出した部品の質量、部品に関するリサイク 10ル可能率、当該部品材料の売却価値、および部品の購入コストを用いて、回収可能コスト比率に関する評価の計算を行うようにしたものである。

[0015] この発明に係る製品評価装置は、データベース部より抽出した部品の質量、部品に関するリサイクル可能率、当該部品材料の売却価値、部品の解体時間、および人件費を用いて、リサイクルコストに関する評価の計算を行うようにしたものである。

【C016】との発明に係る製品評価装置は、データベース部より抽出した製品の質量、部品の質量、および当該製品の製造と輸送と使用と廃棄とにおける環境負荷を用いて、環境負荷に関する評価の計算を行うようにしたものである。

【0017】 この発明に係る製品評価装置は、表示部 に、製品から解体される部品および子部品の中の少なく とも一方を順序づけて表示するようにしたものである。 【0018】 この発明に係る製品評価装置は、編集部に よって、表示部に表示された所定の事項の変更を行うよ うにしたものである。

【0019】との発明に係る製品評価装置は、所定の事 30 項として、子部品の材料および質量の中の少なくとも一方、部品または子部品の構造、締結方法、あるいは解体順のいずれかを表示部に表示するようにしたものである。

[0020]

【発明の実施の形態】以下、この発明の実施の一形態を 説明する。

実施の形態1.図1はこの発明の実施の形態1による製品評価装置の構成を示すブロック図であり、この製品評価装置は、例えば計算機装置によって実現される。図において、100はキーボード等の操作装置とディスプレイ等の表示装置からなり、製品のモデル名を入力するための入力部である。110はこの入力部100より入力された製品のモデル名が記憶され、そのモデル名に対応して、当該製品を構成する各部品の締結方法や、それを構成する各子部品毎に、その材料、体積、質量、締結方法などのデータが記憶されるメモリ部である。

【0021】120はデータベース部としての資材システム・データベースであり、製品のモデル名に対応して、当該製品を構成する全部品の部品名、および部品を

構成する各子部品の子部品名とその材料があらかじめ登 録されている、既存の資材システムで用いられているデ ータベースである。130はデータベース部としての3 次元CADシステム・データベースであり、製品のモデ ル名に対応して、当該製品を構成する全部品の部品名、 および部品を構成する各子部品の子部品名とその体積が あらかじめ登録されている、既存の3次元CADシステ ムで用いられているデータベースである。140はデー タベース部としての材料属性データベースであり、製品 を構成している各部品の中の各子部品の材料毎に、その 比重、リサイクル可能率、売却価格、購入コスト、環境 負荷係数などがあらかじめ登録されている。 150はデ ータベース部としての製品解体データベースであり、製 品の製品カテゴリー名毎に、解体される部品または子部 品を示す解体部品名あるいは解体子部品名と、その締結 方法があらかじめ登録されている。160は部品または 子部品の締結方法毎に、その解体時間があらかじめ登録 されている解体時間データベースである。

【0022】170はメモリ部110に記憶された全部 品、および子部品のデータと、材料属性データベース1 40の材料のデータと、解体時間データベース160の 解体時間のデータから、所定の評価、すなわちリサイク ル可能率、回収可能価値、回収可能コスト比率、リサイ クルコスト、製品の材料面での環境負荷等の製品全体の 評価指標を計算する製品評価指標計算部である。との製 品評価指標計算部170内において、171はメモリ部 110に記憶された各子部品の材料および質量のデータ と、材料属性データベース140の内容から、上記評価 指標としての製品全体のリサイクル可能率を計算するリ サイクル可能率計算部である。172はメモリ部110 に記憶された各子部品の材料および質量のデータと、材 料属性データベース140の内容から、上記評価指標と しての製品全体の回収可能価値を計算する回収可能価値 計算部である。173はメモリ部110に記憶された各 子部品の材料および質量のデータと、材料属性データベ ース140の内容から、上記評価指標としての製品全体 の回収可能コスト比率を計算する回収可能コスト比率計 算部である。174は人件費および回収可能価値計算部 172で求めた回収可能価値と、解体時間データベース 160の内容から、上記評価指標としての製品全体のリ サイクルコストを計算するリサイクルコスト計算部であ る。175はメモリ部110に記憶された各子部品の材 料および質量のデータと、材料属性データベース140 の内容から、上記評価指標としての製品全体の材料面で の環境負荷を計算する材料面での環境負荷計算部であ

【0023】また、180は製品評価指標計算部170 で計算された製品全体の評価指標を表示する表示部である。190はメモリ部110に記憶された全子部品データを解体順に表示し、このメモリ部110に記憶されて いるデータをオペレータが必要に応じて変更する際に用いる編集部である。

【0024】次に動作について説明する。とこで、図2は上記実施の形態1による製品評価装置における評価処理の流れを示すフローチャートである。設計段階において、オペレータによって入力部100のキーボード等の操作装置より製品のモデル名の入力が行われる(ステップST101)。この製品のモデル名の入力は入力部100のディスプレイ等の表示装置に表示して確認しながら行われ、入力された製品のモデル名はメモリ部110に記憶される(ステップST102)。

【0025】次に、とのメモリ部110に記憶された製 品のモデル名によって資材システム・データベース12 0が参照され、この資材システム・データベース120 にあらかじめ登録されている、当該製品を構成する部品 の部品名が抽出され(ステップST103)、それがメ モリ部110に記憶される(ステップST104)。次 に、その部品を構成する子部品の子部品名とその材料と が抽出される(ステップST105)。 ことで、この資 材システム・データベース120のフォーマットの一例 20 を図3に示す。この資材システム・データベース120 は図示のように、各製品のモデル名301に対応して、 それを構成する部品名302、それを構成する子部品 1、子部品2、・・・等の子部品名303毎に、材料 1. 材料2. ・・・等にそれぞれ対応するの材料304 を記憶している。との資材システム・データベース12 0より抽出された部品名302、子部品名303、およ び材料304のデータは、メモリ部110に送られてそ れに記憶される(ステップST106)。

【0026】次に、このメモリ部110に記憶された製 30 品のモデル名と当該製品を構成する全部品の部品名、お よびその部品を構成する子部品の子部品名によって3次 元CADシステム・データベース130が参照され、と の3次元CADシステム・データベース130にあらか じめ登録されている、当該製品を構成する部品の各子部 品の体積が抽出される(ステップST107)。こと で、この3次元CADシステム・データベース130の フォーマットの一例を図4に示す。この3次元CADシ ステム・データベース130は図示のように、各製品の モデル名401に対応して、それを構成する部品名40 2、その部品を構成する子部品1、子部品2、・・・等 の子部品名403毎に、体積1、体積2.・・・等にそ れぞれ対応する体積404を記憶している。この3次元 CADシステム・データベース130より抽出された各 子部品の体積404のデータは、メモリ部110に送ら れてそれに記憶される (ステップST108)。

【0027】次に、とのメモリ部110に記憶された子部品の材料と体積のデータとによって材料属性データベース140が参照され、との材料属性データベース14 0にあらかじめ登録されている各子部品の比重が抽出さ れる(ステップST109)。 CCで、Cの材料属性データベース140のフォーマットの一例を図5に示す。 Cの材料属性データベース140は図示のように、製品 に使用される多数の材料に対して、材料1、材料2、・・等の材料501毎に、比重1、比重2、・・等に それぞれ対応する比重502、リサイクル可能率1、リサイクル可能率2、・・等にそれぞれ対応するリサイクル可能率503、売却価値1、売却価値2、・・等にそれぞれ対応する売却価値504、購入コスト1、購入コスト2、・・等にそれぞれ対応する購入コスト505、および環境負荷係数1、環境負荷係数2、・・・等にそれぞれ対応する環境負荷係数506を記憶している

【0028】さらに、この材料属性データベース140 より抽出された子部品の比重502のデータに基づい て、各子部品の質量の計算が行われる(ステップST1 10)、このようにして算出された各子部品の質量のデ ータはメモリ部110に送られてそれに記憶される(ス テップST111)。ととで、とのメモリ部110のフ ォーマットの一例を図6に示す。このメモリ部110に は図示のように、各製品のモデル名601に対応して、 それを構成するそれぞれの部品名602について、それ を構成する子部品1、子部品2、・・・等の子部品名6 03年に、材料1、材料2、・・・等のそれぞれの材料 604、体積1、体積2、・・・等のそれぞれの体積6 05、質量1, 質量2, ・・・等のそれぞれの質量60 6が記憶され、さらに、解体される部品または子部品に ついては、締結方法1、締結方法2、・・・等のそれぞ れに対応する締結方法607も記憶される。なお、との 締結方法607の記憶については後に説明する。

【0029】 このような、ステップST103からステップST111までの処理は、ステップST101においてモデル名が入力された製品の全部品に対して繰り返して実行され、ステップST105からステップST11までの処理は、その部品の全子部品に対して繰り返して実行される。

【0030】 このようにして、製品を構成する全部品と全子部品に対する処理が終了すると、次に、メモリ部110 に記憶された製品のモデル名によって製品解体データベース150 が参照され、この製品解体データベース150 に当該製品の製品カテゴリー名に対応してあらかじめ登録されている解体部品名、または解体子部品名より、全部品と全子部品の中から、最初に解体する部品または子部品が抽出される(ステップST112)。ここで、この製品解体データベース150のフォーマットの一例を図7に示す。この製品解体データベース150 は図示のように、ある製品カテゴリー名701に対応して、解体される部品が解体される順番に、その解体部品1、解体部品2、・・等にそれぞれ対応する解体部品名702と解体子部品名703、締結方法1、締結方法

2.・・・等にそれぞれ対応する締結方法704とを記憶している。

【0031】なお、子部品まで解体されない場合には、解体子部品名703は空白となる。また、子部品まで解体される場合(解体子部品名703が記載されている場合)には、解体部品名702に記載された部品は実際に解体されるものではなく、解体される子部品を一意的に決めるための親となる部品名を示している。この製品解体データベース150より最初に解体される部品または子部品が抽出されると、それに基づいてメモリ部110の部品、子部品の情報の並べ換えが行われ(ステップST113)、解体される部品または子部品については、その締結方法のデータがメモリ部110に記憶される(ステップST114)。

【0032】とのような、ステップST112からステップST114までの処理は、ステップST101においてモデル名が入力された製品の製品カテゴリーにおける全ての解体部品または解体子部品に対して繰り返して実行される。

【0033】とのようにして、全ての解体部品に対する 抽出、並べ換え、記憶の処理が終了した後、製品評価指 標計算部170は内蔵するリサイクル可能率計算部17 1、回収可能価値計算部172、回収可能コスト比率計 算部173、リサイクルコスト計算部174、材料面で の環境負荷計算部175などを用いて、このメモリ部1 10 に記憶された全部品と全子部品名の材料および質量 のデータと、材料属性データベース140および解体時 間データベース160の内容から、製品全体についての リサイクル可能率、回収可能価値、回収可能コスト比 率、リサイクルコスト、製品の材料面での環境負荷等の 30 評価指標を計算する(ステップST115)。 ととで、 上記リサイクルコストの計算に用いられる解体時間デー タベース160のフォーマットの一例を図8に示す。こ の解体時間データベース160は図示のように、その部 品または子部品を取りはずす(解体する)ときに解除し なければならないそれぞれの締結方法801と、その解 除に必要な解体時間802とを記憶している。なお、と の締結方法と解体時間には、通常、実験値が用いられ

【0034】次に、この製品評価指標計算部170において計算された製品の評価指標を表示部180に表示する(ステップST116)。その後、オペレータは必要に応じて、メモリ部110に記憶されている部品構成と、各部品を構成する全子部品の材料および質量、解体部品または子部品とその順番、締結方法などのデータの一部を、編集部190を用いてインタラクティブに変更する(ステップST117)。

【0035】とこで、図9は編集部190を用いた編集 処理の一例を示す説明図である。手解体の場合、取りは ずす部品(または子部品)は限定されており、例えば破 50

砕機で破砕できない難破砕物や、有害物質を含む有害物などである。なお、有価物を取りはずす場合もあるが、最終的には破砕後に磁気選別等でより分けられるのが一般的である。図9の例では、部品1の下の子部品1が難破砕物あるいは有害物であったために取りはずさなければならず、そのために、部品1の締結方法1を解除した後、子部品1の締結を解除する必要はないては、取りはずすべき子部品を部品2の下に移動したため、部品1の締結を解除する必要はなく、部品2の締結を解除した後、子部品1の締結を解除するととなる。この場合の締結方法は、変更前の締結方法とは異なる。また、取りはずすべき子部品の材質を変更すれば取りはずず必要はなくなり、締結の解除は不要(締結方法は未記入)となる。

10

【0036】このように、製品の全部品、子部品のデータを編集することで、製品設計の具体的な改善方法を検討することができる。データ変更後は、そのデータを用いて、製品評価指標計算部170において製品の評価指標を再計算して(ステップST115)、計算結果を表示部180に表示する(ステップST116)。

【0037】次に、製品の評価指標の一例としてのリサイクル可能率の計算について説明する。図10は製品評価指標計算部170内のリサイクル可能率計算部171によるリサイクル可能率計算の処理の流れを示すフローチャートである。

【0038】処理が開始されると、リサイクル可能率計算部171はまず、製品全体の質量とリサイクル可能質量をそれぞれ0に初期化する(ステップST201)。次に各子部品毎に子部品の質量(n)と子部品のリサイクル可能質量(n)を次式によって計算する(ステップST202)。

子部品の質量(n)=子部品の体積(n)×子部品の材料に対応した比重

子部品のリサイクル可能質量(n)=子部品の質量 (n)×リサイクル可能率

【0039】次に、次式に示すように、それまでの製品の質量(n-1)に上記ステップST202で算出された子部品の質量(n)を、またそれまでの製品のリサイクル可能質量(n-1)に上記ステップST202で算出された子部品のリサイクル可能質量(n)をそれぞれ加算して、新たな製品の質量(n)および新たな製品のリサイクル可能質量(n)を計算する(ステップST203)。

製品の質量 (n) = 製品の質量 (n-1) + 子部品の質 量 (n)

製品のリサイクル可能質量(n)=製品のリサイクル可能質量(n)に質量(n-1)+子部品のリサイクル可能質量(n) [0040] このステップST202 およびステップST203 における演算の処理は、全子部品について繰り返して実行される。全子部品に対する処理が終了すれ

は、次式に従って製品全体のリサイクル可能率を計算し (ステップST204)、とのリサイクル可能率計算部 171による一連の処理を終了する。

製品のリサイクル可能率=製品のリサイクル可能質量/ 製品の質量

[0041]次に、製品の評価指標の一例としての回収可能価値の計算について説明する。図11は製品評価指標計算部170内の回収可能価値計算部172による回収可能価値計算の処理の流れを示すフローチャートである。

[0042] 処理が開始されると、回収可能価値計算部172はまず、製品全体の回収可能価値を0 に初期化する(ステップST301)。次に各子部品毎に子部品の回収可能価値(n)を次式によって計算する(ステップST302)。

子部品の回収可能価値(n)=子部品の質量(n)×リサイクル可能率×売却価格

[0043]次に、次式に示すように、それまでの製品の回収可能価値 (n-1) に上記ステップST302で 算出された子部品の回収可能価値 (n) を加算して、新 20 たな製品の回収可能価値 (n) を計算する (ステップST303)。

製品の回収可能価値(n)=製品の回収可能価値(n -1)+子部品の回収可能価値(n)

【0044】とのステップST302およびステップST303における演算の処理は、全子部品について繰り返して実行される。全子部品に対する処理が終了すれば、この回収可能価値計算部172による一連の処理を終了する。

【0045】次に、製品の評価指標の一例としての回収 30 可能コスト比率の計算について説明する。図12は製品評価指標計算部170内の回収可能コスト比率計算部173による回収可能コスト比率計算の処理の流れを示すフローチャートである。

【0046】処理が開始されると、回収可能コスト比率 計算部173はまず、製品全体の回収可能価値と材料調 連コストをそれぞれ0に初期化する(ステップST40 1)。次に各子部品毎に子部品の回収可能価値(n)と 子部品の材料調達コスト(n)を次式によって計算する (ステップST402)。

子部品の回収可能価値(n)=子部品の質量(n)×リサイクル可能率×売却価格

子部品の材料調達コスト(n)=子部品の質量(n)× 購入コスト

 $\{0047\}$ 次化、次式化示すよう化、それまでの製品の回収可能価値 (n-1) 化上記ステップST402で 算出された子部品の回収可能価値 (n) を、またそれまでの製品の材料調達コスト (n-1) 化上記ステップST402で算出された子部品の材料調達コスト (n) を それぞれ加算して、新たな製品の回収可能価値 (n) お 50

よび新たな製品の材料調達コスト(n)を計算する(ステップST403)。

12

製品の回収可能価値(n)=製品の回収可能価値(n-1)+子部品の回収可能価値(n)

製品の材料調達コスト (n) = 製品の材料調達コスト (n-1) +子部品の材料調達コスト (n)

[0048] とのステップST402 およびステップS T403 における演算の処理は、全子部品について繰り返して実行される。全子部品に対する処理が終了すれ は、次式に従って製品全体の回収可能コスト比率を計算し(ステップST404)、この回収可能コスト比率計

算部173による一連の処理を終了する。 製品の回収可能コスト比率=製品の回収可能価値/製品の材料調達コスト

【0049】次に、製品の評価指標の一例としてのリサイクルコストの計算について説明する。図13は製品評価指標計算部170内のリサイクルコスト計算部174によるリサイクルコスト計算の処理の流れを示すフローチャートである。

0 【0050】処理が開始されると、リサイクルコスト計算部174はまず、製品全体の解体時間を0に初期化する(ステップST501)。次に解体時間データベース160の内容を用いて、製品の解体時間(n)を次式によって計算する(ステップST502)。

製品の解体時間 (n) =製品の解体時間 (n-1)+部品または子部品の解体時間 (n)

[0051] このステップST502における演算の処理は、全解体部品と解体子部品について繰り返して実行される。全解体部品と解体子部品に対する処理が終了すれば、得られた解体時間のデータ、および回収可能価値計算部172の求めた回収可能価値より、次式に従って製品全体のリサイクルコストを計算し(ステップST503)、このリサイクルコスト計算部174による一連の処理を終了する。

リサイクルコスト=解体時間×人件費(一定)-製品の 回収可能価値

【0052】次に、材料面での環境負荷の計算について 説明する。図14は製品評価指標計算部170内の材料 面での環境負荷計算部175による製品全体の材料面で の環境負荷計算の処理の流れを示すフローチャートであ る

【0053】処理が開始されると、材料面での環境負荷計算部175はまず、製品全体の材料面での環境負荷の初期化を行う(ステップST601)。一般に、製品全体の環境負荷は、製品の製造プロセス、輸送プロセス、使用プロセス、廃棄プロセス、輸送プロセス、使用プロセス、開発プロセス、輸送プロセス、使用プロセス、廃棄プロセスの各環境負荷のデータを一定とし、製品の材料面での環境負荷のみを計算する。従って、初期

値である製品の材料面での環境負荷(1)は次式で与え られる。

製品の材料面での環境負荷(1)=製造プロセスのデー タ (一定) +輸送プロセスのデータ (一定) +使用プロ セスのデータ (一定) +廃棄プロセスのデータ (一定) 【0054】次に各子部品毎に子部品の材料面での環境 負荷(n)を次式によって計算する(ステップST60 2).

子部品の材料面での環境負荷(n)=子部品の質量 (n)×環境負荷係数

【0055】次に、次式に示すように、それまでの製品 の材料面での環境負荷(n-1)に上記ステップST6 02kで算出された子部品の材料面での環境負荷(n) を加算して、新たな製品の材料面での環境負荷(n)の 計算を行う(ステップST603)。

製品の材料面での環境負荷(n)=製品の材料面での環 境負荷(n-1)+子部品の材料面での環境負荷(n) 【0056】 このステップ ST602 およびステップ S T603における演算の処理は、全子部品について繰り 返して実行される。全子部品に対する処理が終了すれ は、この材料面での環境負荷計算部175による一連の 処理を終了する。

[0057]

【発明の効果】以上のように、この発明によれば、設計 の初期段階から、製品を構成する部品および子部品の情 報が入力されている資材システム・データベースから各 子部品の材料データを抽出し、3次元CADシステム・ データベースからは、資材システムの各子部品に対応し た体積データを抽出し、あらかじめデータベース化され た材料属性や、解体部品または子部品のデータを用い て、リサイクル適合性や材質面での環境負荷の評価指標 を自動計算するように構成したので、実製品の設計中に 自動的に評価を行い、その結果を設計に反映することが 可能となるため、リサイクルに適した製品、環境への負 荷を低減させた製品を意識して開発することができ、子 部品までを考慮した、より現実的な設計変更が可能にな るという効果がある。

【0058】この発明によれば、製品の部品構成と、各 部品の子部品構成、各子部品の材料、質量のデータや、 解体される部品または子部品とその順番、締結方法を表 40 製品評価指標計算部、180 表示部、190 編集 示部上に表示して編集部でインタラクティブに編集し、 **編集後のデータを用いて製品の評価指標を再計算するよ** うに構成したので、様々な設計変更時の評価を事前にシ ミュレーションすることができ、具体的な設計データの 一部を画面上で変更して評価結果のシミュレーションを 繰り返すことが可能となって、リサイクルしやすく環境

負荷の少ない製品の設計を加速することができるという 効果がある。

14

【図面の簡単な説明】

【図1】 との発明の実施の形態1による製品評価装置 の構成を示すブロック図である。

【図2】 実施の形態1における評価処理の手順を示す フローチャートである。

【図3】 実施の形態1における資材システム・データ ベースのフォーマットの一例を示す説明図である。

【図4】 実施の形態1における3次元CADシステム ・データベースのフォーマットの一例を示す説明図であ る。

【図5】 実施の形態1における材料属性データベース のフォーマットの一例を示す説明図である。

【図6】 実施の形態1におけるメモリ部のフォーマッ トの一例を示す説明図である。

【図7】 実施の形態1における製品解体データベース のフォーマットの一例を示す説明図である。

【図8】 実施の形態 1 における解体時間データベース のフォーマットの一例を示す説明図である。

[図9] 実施の形態1におけるデータ編集処理の一例 を示す説明図である。

【図10】 実施の形態1におけるリサイクル可能率計 算の処理の手順を示すフローチャートである。

【図11】 実施の形態1における回収可能価値計算の **処理の手順を示すフローチャートである。**

【図12】 実施の形態1における回収可能コスト比率 計算の処理の手順を示すフローチャートである。

【図13】 実施の形態1におけるリサイクルコスト計 算の処理の手順を示すフローチャートである。

【図14】 実施の形態1における材料面での環境負荷 計算の処理の手順を示すフローチャートである。

【符号の説明】

100 入力部、120 資材システム・データベース (資材システムのデータベース、データベース部)、1 30 3次元CADシステム・データベース(3次元C ADシステムのデータベース、データベース部)、14 0 材料属性データベース (データベース部)、150 製品解体データベース (データベース部)、170 部、301,401,601 モデル名、302,40 2.602 部品名、303、403、603 子部品 名、304、501、604 材料、404、605 体積、502 比重、701 製品カテゴリー名、70 2 解体部品名、703 解体子部品名、704 締結 方法。

[図1]

.【図2】

製品モデル名入力ステップ ~ST101

120: 査材システム・データペース

801

製品モデル1

(資材システムのデータベース、データベース部)

130: 3 次元CADシステム・データベース (3 次元CADシステム・データベース (3 次元CADシステムのデータベース、データベース部) 140: 材料属性データベース (データベース部) 150: 製品解体データベース (データベース部)

303

304

[図3]

部品名1 子部品1 子部品2 子部品3 材料 1

材料 2

材料3

	. :			[12	14]		
#3]	401	402 -	- 403	:		
301:モデル名		製品モデル1	部品名1	子部品 1	部品2	部品3	.,,
302:部品名				体键1	体徵 2	体盤3	
303:子部品名 304:材料				404	. ,	. 40 40	D1:モデル名 D2:部品名 D3:デ部品名 D4:体徴

[図5]

材料1) (材料 2	材料 3	
比重1	7.	比重 2	比重3	
リサイクル可能率1		リサイクル可能率2	リサイクル可能率3	7
売却価値 1		売却価値2	売却価値3	:
購入コスト1 ,		席入コスト2	購入コスト3	
現境負荷保数1 現		現境負荷係数2	現境負荷係数3	

【図7】

701	702 7	04 70	13	
製品カテゴリー名	解体部品 1	解体部品 2		
		解体子部品2		
	締結方法 1	締結方法2		

702:解体部品名 703:解体于部品名 704:締結方法

【図6】

【図8】

601	eós	603 607			
製品モデル名	部品1	子部品1	子部品2	子部品3	
	締結方法1	締結方法2			
		材料1、	材料2	材料8	
		体数1	: 体積2	体膜 S	
	5	質量1	質量2	質量3	
	605	608		01:モデル名	i

602: 孤岛名 603: 子部品名 604: 辞誌方法 605: 材料 606: 体積 607: 質量

'【図9】

【図11】

[図13]

[図10]

【図12】

【図14】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.