

AGENDA:

Sesión 1 (3h):

- Introducción a la asignatura
- Teoría: Bagging
- Working Lab: EDA & Bagging

Sesión 2 (1.5h):

- Teoría: One-hot encoding & Random Forest
- Working Lab: Random Forest

Sesión 3 (3h):

- <u>Teoría</u>: Boosting y Ensemble methods
- Working Lab: Boosting y optimización de los modelos mediante stacking

Sesión 4 (1.5h):

- <u>Teoría:</u> SHAP values
- Working Lab: SHAP Analisis sobre los modelos creados

BAGGING Bootstrap aggregating

Elisabet Golobardes y Angel Berian La Salle – Universitat Ramon Llull v2021.02.22

BAGGING. Concept (1/2)

- Proposed by Leo Breiman (1994)
- Bagging = Bootstrap aggregating
- A machine learning ensemble meta-algorithm
- Designed to improve the stability and accuracy of machine learning algorithms used in statistical classification and regression
- It also reduces variance and helps to avoid overfitting
- Supervised learning

BAGGING. Idea (1/2)

Learning Set

L

Predictor $\varphi(x,L) \rightarrow y$

 $x_i --> y_i$ (data); where

- x_i is the input;
- y_i is the class label or a numerical response

Predictor φ (x,L) \rightarrow "average"

 L_i : the multiple versions are formed by making bootstrap replicates of the learning set L and using these $\{L_i\}$ as new learning sets.

BAGGING. Idea (2/2)

 Are given a sequence of learning sets {L_K} each consisting of N independents observations from the underlying distribution as L.

If y is numerical,

An obvious procedure is to replace $\varphi(x,L)$ by the average of $\varphi(x,L_{\kappa})$ over K.

• If $\varphi(x,L)$ predicts a class j in $\{1, ..., J\}$,

Then one method of aggregating the $\varphi(x,L_K)$ is by voting. Let $N_j = \#\{k; \varphi(x,L_K) = j\}$ and take $\varphi_A(x) = argmax_jN_j$

Bagging **Classification** Trees. Computations (1/2)

In all runs [Breiman, 1994]:

- 1. The data set D is randomly divided into a test set T and learning set L.
- 1. A classification tree is constructed from L, with selection done by 10-fold cross-validation. Running the test set T down this tree gives the missclassification rate $e_s(L,T)$.
- 1. A bootstrap sample L_B is selected from L, and a tree grown using L_B and 10-fold cross-validation. This is repeated Z times giving tree classifiers $\varphi_1(x)$, ..., $\varphi_2(x)$.

Bagging **Classification** Trees. Computations (2/2)

In all runs [Breiman, 1994] (continuation):

- 4. If (j_n,x_n) in T, then the estimated class of x_n is that class having the plurality in $\varphi_1(x_n)$, ..., $\varphi_2(x_n)$. The proportion of times the estimated class differs from the true class is the bagging missclassification rate $e_B(L,T)$.
- 5. The random division of the data is repeated M times and the reported \bar{e}_S , \bar{e}_B are the average over the M iterations.

Note: for instance, Z=50 and M=100.

Bagging **Regression** Trees. Computations

In all runs [Breiman, 1994]:

- The data set D is randomly divided into a test set T and learning set L.
- A regression tree is constructed from L, with selection done by 10-fold cross-validation. Running the test set T down this tree gives mean-squared-error e_s(L,T).
- 1. A bootstrap sample L_B is selected from L, and a tree grown using L_B and 10-fold cross-validation. This is repeated Z times giving predictors (regression trees) $\varphi_1(x)$, ..., $\varphi_2(x)$.

Bagging **Regression** Trees. Computations (2/2)

In all runs [Breiman, 1994] (continuation):

- 4. For each (y_n, x_n) in T, the predicted \hat{y}_B value is taken as $av_k \varphi_k(x_n)$. Then $e_B(L,T)$ is the mean-squared-error between \hat{y}_B and the true y-values in T $(=av_k(y_B \hat{y}_B)^2)$.
- 5. This procedure is repeated M times and the errors averaged to give the single tree error \bar{e}_s and the bagged error \bar{e}_s .

Note: for instance, Z=25 and M=100.

Flow Chart of the Bagging Algorithm

BAGGING. Example with Ozone data

Measuring the relationship between Ozone concentration and Temperature using 100 iterations bagging approach

When does Bagging work?

- Learning algorithm is unstable: if small changes to the training set cause large changes in the learned classifier.
- If the learning algorithm is unstable, then Bagging almost always improves performance
- Datasets with high variance of the instances

BAGGING. Summarising (1/2)

- In statistics, bootstrapping is any test or metric that relies on random sampling with replacement.
- In Bagging, the multiple versions are formed by making bootstrap replicates of the learning set and using these as new learning sets.

BAGGING. Summarising (2/2)

- Bagging predictor is a method for generating multiple versions of a predictor and using these to get an aggregated predictor.
- The aggregation average over the versions when predicting a numerical outcome and does a plurality vote when predicting a class.
- Bagging is a special case of the model averaging approach.

References

- [Breiman, 1994] Breiman, Leo (1994). "Bagging Predictors". Technical Report No. 421. University of California.
- [Breiman, 1996] Breiman, Leo (1996). "Bagging predictors". Machine Learning. 24 (2): 123–140.
- [Efron and Tibshirani, 1994] Efron, B.; Tibshirani, R. (1994). "An introduction to the bootstrap". New York: Chapman & Hall.

Random Forest Algorithm

Angel Berian

La Salle – Universitat Ramon Llull

2021.02.22

The Random Forests Algorithm

- Developed by Leo Breiman (2001)

- Description:

- Given a training set S
- For i = 1 to k do:
 - Build subset Si by sampling with replacement from S
 - Learn tree Ti from Si
 - At each node:
 - Choose best split from random subset of F features
 - Each tree grows to the largest extend, and no pruning
- Make predictions according to majority vote of the set of k trees.

Features of Random Forests

- It runs efficiently on large data bases.
- It can handle thousands of input variables without variable deletion.
- It gives estimates of what variables are important in the classification.
- It generates an internal unbiased estimate of the generalization error as the forest building progresses.
- It has an effective method for estimating missing data and maintains accuracy when a large proportion of the data are missing.
- It has methods for balancing error in class population unbalanced data sets.

Features of Random Forests

- Generated forests can be saved for future use on other data.
- Prototypes are computed that give information about the relation between the variables and the classification.
- It offers an experimental method for detecting variable interactions.
- Highly susceptible to correlation between features