Таблица значений тригонометрических функций

		Аргумент x (угол φ)															
Функция	0	$\frac{\pi}{6}$ 30°	$\frac{\pi}{4}$ 45°	$\frac{\pi}{3}$ 60°	$\frac{\pi}{2}$ 90°	$\begin{array}{c c} 2\pi \\ \hline 3 \\ 120^{\circ} \end{array}$	$\frac{3\pi}{4}$ 135°	$\frac{5\pi}{6}$ 150°	π 180°	$\frac{7\pi}{6}$ 210°	$\frac{5\pi}{4}$ 225°	$\frac{4\pi}{3}$ 240°	$\frac{3\pi}{2}$ 270°	$\frac{5\pi}{3}$ 300°	$\frac{7\pi}{4}$ 315°	$\frac{11\pi}{6}$ 330°	2π 360°
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
tgx	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	l	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0
ctgx	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	$-\sqrt{3}$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	$-\sqrt{3}$	_

Примечание: прочерк «–» означает, что этого значения функции / отношения не существует.

Примеры использования таблицы: $\sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}, \quad \cos\frac{2\pi}{3} = -\frac{1}{2}, \quad tg\pi = 0, \quad ctg\frac{\pi}{6} = \sqrt{3}$. Запоминать эти значения без необходимости не нужно, **но полезно знать, что**: $\sin 0 = 0$, $\sin\frac{\pi}{2} = 1$, $\cos 0 = 1$, $\cos\frac{\pi}{2} = 0$. Это ускорит решение заданий.

Если вам попался «плохой» угол (которого нет в таблице), то значение функции следует вычислить приближенно, например, с помощью приложенного к книге *Калькулятора*: $\sin\frac{\pi}{13}\approx 0.24$, $tg\frac{7\pi}{5}\approx 3.08$ и так далее (в Экселе число «пи» записывается так: $\Pi U()$).

Важно! Синус и косинус могут принимать значения лишь от –1 до +1 включительно, и если у вас получилось другое число, ищите ошибку. Тангенс и котангенс могут быть любыми – от «минус» до «плюс» бесконечности.

Таблица значений обратных тригонометрических функций:

Угол <i>x</i> =	Аргумент у (значение синуса, косинуса, тангенса или арктангенса)												
	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{3}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{3}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\sqrt{3}$
arcsin y	_	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	###	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	###	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	I
arccos y	_	π	$\frac{5\pi}{6}$	$\frac{3\pi}{4}$	###	$\frac{2\pi}{3}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	###	$\frac{\pi}{4}$	$\frac{\pi}{6}$	0	I
arctgy	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	###	###	$-\frac{\pi}{6}$	###	0	###	$\frac{\pi}{6}$	###	###	$\frac{\pi}{4}$	$\frac{\pi}{3}$
arcctgy	$\frac{5\pi}{6}$	$\frac{3\pi}{4}$	###	###	$\frac{2\pi}{3}$	###	$\frac{\pi}{2}$	###	$\frac{\pi}{3}$	###	###	$\frac{\pi}{4}$	$\frac{\pi}{6}$

Внимание! Углы выражены в радианах и только в них!

Примеры использования таблицы:
$$\arcsin 1 = \frac{\pi}{2}$$
, $\arccos \left(-\frac{\sqrt{2}}{2} \right) = \frac{3\pi}{4}$, $\arctan (-1) = -\frac{\pi}{4}$, $\arctan \left(\frac{\sqrt{3}}{3} \right) = \frac{\pi}{3}$

Значком «###» обозначены «плохие» углы, которые можно вычислить приближённо с помощью калькулятора, например:

$$\arctan\left(-\frac{\sqrt{3}}{2}\right) \approx -0.71$$
 радиан (!)

То же самое касается значений «игрек», которых нет в таблице, например:

$$\arcsin \frac{1}{3} \approx 0,34$$
 радиан

Аргумент арксинуса и арккосинуса может быть лишь из промежутка $-1 \le y \le 1$!

Аргументы арктангенса и арккотангенса могут быть любыми.

Формулы приведения:

Функция	Аргумент $eta=$												
	$\frac{\pi}{2}$ - α	$\frac{\pi}{2} + \alpha$	π – α	$\pi + \alpha$	$\frac{3\pi}{2}-\alpha$	$\frac{3\pi}{2} + \alpha$	$2\pi - \alpha$	$2\pi + \alpha$					
$\sin \beta =$	$\cos \alpha$	$\cos \alpha$	$\sin lpha$	$-\sin \alpha$	$-\cos \alpha$	$-\cos \alpha$	$-\sin \alpha$	$\sin \alpha$					
$\cos \beta =$	$\sin \alpha$	$-\sin \alpha$	$-\cos \alpha$	$-\cos \alpha$	$-\sin \alpha$	$\sin \alpha$	$\cos \alpha$	$\cos \alpha$					
$tg\beta =$	ctg $lpha$	$-ctg\alpha$	$-tg\alpha$	tgα	ctg α	$-ctg\alpha$	$-tg\alpha$	tgα					
$ctg\beta =$	tgα	$-tg\alpha$	$-ctg\alpha$	ctg α	tgα	$-tg\alpha$	−ctg α	ctg α					

Примеры использования таблицы:

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$

$$\cos(\pi + \alpha) = -\cos\alpha$$

$$tg\left(\frac{3\pi}{2} - \alpha\right) = ctg\alpha$$

$$\operatorname{ctg}(2\pi + \alpha) = \operatorname{ctg}\alpha$$

Разумеется, формулы работают и справа налево.