Show:
$$||\mathcal{D}(V_1) - \mathcal{D}(V_2)||_{\mathcal{D}} \in \mathcal{J} ||V_1 - V_2||_{\mathcal{D}}$$

$$||V||_{\mathcal{D}} = \max_{s} |V(s)| = \text{biggest vector value}$$

Assume V, and Vz are two fixed points

=> IID(V_1)-B(V_2)||_{D} = \frac{1}{2} ||V_1 - V_2||_{D}

=> II V_1 - V_2||_{D} = \frac{1}{2} ||V_1 - V_2||_{D}

Left side can never be smaller than right side became \frac{1}{2} (|

Can only be equal when ||V_1 - V_2||_{p} = 0

But IIV_1 - V_2||_{p} is only 0 when V_1 = V_2 = one fixed points