

Lecture 4. Motion I: Optical flow

703142. Computer Vision

Assoz. Prof. Antonio Rodríguez-Sánchez, PhD.

Most slides thanks to Richard Wildes

Outline

- Introduction
- Motion field vs. optical flow
- Brightness constancy
- Gradient-based optical flow estimation
- Finite displacement and feature-based methods
- Object and scene deformations

Introduction

- Time-varying imagery
 - A great deal of useful information can be extracted from time-varying imagery (e.g., video).
 - Temporal image sequences of a dynamic world acquired from a stationary camera.
 - Temporal images sequences of a stationary world acquired from a moving camera.
 - Temporal image sequences of a dynamic world acquired from a moving camera.

Introduction

- Time-varying imagery
 - It might seem foolhardy to consider processing multiple images for extracting information when even one is so challenging.
 - However, multiple images imply additional data on which to base our inferences.
 - Typically, the results are well worth the effort.

Outline

- Introduction
- Motion field vs. optical flow
- Brightness constancy
- Gradient-based optical flow estimation
- Finite displacement and feature-based methods
- Object and scene deformations

- When objects move in the environment or a camera moves through the environment there are corresponding changes in the images.
- These changes can be used to capture the relative motions as well as the shape of the objects.

Motion field

- The motion field assigns a velocity vector to each point in the image according to how the corresponding point in 3D moves.
- At a particular instance in time a p point p in the image corresponds to some point P in the world according to some operative model of image projection,
 - We have

$$p = \Pi(P)$$

Motion field

- At a particular instance in time a point p in the image corresponds to some point P in the world according to some operative model of image projection,
 - We have $p = \Pi(P)$
- Let the point in the world have velocity relative to the camera, then the image point will have a corresponding velocity, v.
 - We have $v = \frac{d\mathbf{p}}{dt}$ and $V = \frac{d\mathbf{P}}{dt}$

Motion field

- At a particular instance in time a point p in the image corresponds to some point P in the world according to some operative model of image projection,
 - We have

$$p = \Pi(P)$$

- Let the point in the world have velocity relative to the camera, then the image point will have a corresponding velocity, v.
 - We have

$$\mathbf{v} = \frac{d\mathbf{p}}{dt}$$
 and $\mathbf{V} = \frac{d\mathbf{P}}{dt}$

Optical flow

- Brightness patterns in the image move as the objects in the scene that give rise to them move.
- Optical flow is the apparent motion of the brightness pattern.
 - The motion that is present in the image.
- Ideally, the optical flow will correspond to the motion field.
 - But this is not always the case.

Rotating sphere

- Consider perfect sphere in front of a fixed imaging system (camera and illumination).
- There will be a smooth spatial variation in image brightness
 (shading) since the surface is curved.

Rotating sphere

- Consider perfect sphere in front of a fixed imaging system (camera and illumination).
- There will be a smooth spatial variation in image brightness (shading) since the surface is curved.
- Let the sphere rotate.

Rotating sphere

- Consider perfect sphere in front of a fixed imaging system (camera and illumination).
- There will be a smooth spatial variation in image brightness (shading) since the surface is curved.
- Let the sphere rotate.
- There is no change in the shading pattern.
 - The relationship between the local surface orientation and the imaging system does not vary.
- The optical flow is zero every where...
- ...despite a nonzero motion field.

- Moving light source
 - Consider a perfect sphere in front of a stationary camera, but moving light source.

- Moving light source
 - Consider a perfect sphere in front of a stationary camera, but moving light source.

- Moving light source
 - Consider a perfect sphere in front of a stationary camera, but moving light source.

Moving light source

- Consider a perfect sphere in front of a stationary camera, but moving light source.
- Now the shading pattern changes with the variation in source position.
- The optical flow is nonzero everywhere...
- ...although the motion field is zero.

- Moving light source
 - Consider a perfect sphere in front of a stationary camera, but moving light source.
 - Now the shading pattern changes with the variation in source position.
 - The optical flow is nonzero everywhere...
 - ...although the motion field is zero.
- Other sources of discrepancy
 - Shadows
 - Specular reflection
 - Virtual images
 - Etc.

- Life is tough, but not too...
 - We are interested in the motion field
 - A purely geometric concept
 - That relates to the structure and dynamics of the scene
 - What we have access to is the optical flow
 - A photometric concept
 - The thing that we can measure in an image.
 - Typically, the motion field and optical flow are in close correspondence
 - But not always
 - As our examples have shown

Outline

- Introduction
- Motion field vs. optical flow
- Brightness constancy
- Gradient-based optical flow estimation
- Finite displacement and feature-based methods
- Object and scene deformations

- Relating temporal brightness change to optical flow
 - Let
 - E(x,y,t) be image irradiance at time t and image location (x,y)
 - u(x,y) and v(x,y) be the x and y components of the optical flow, respectively

- Relating temporal brightness change to optical flow
 - Let
 - E(x,y,t) be image irradiance at time t and image location (x,y)
 - u(x,y) and v(x,y) be the x and y components of the optical flow, respectively

$$u = \frac{dx}{dt}, v = \frac{dy}{dt}$$

<u>V</u>

- Relating temporal brightness change to optical flow
 - Let
 - E(x,y,t) be image irradiance at time t and image location (x,y)
 - u(x,y) and v(x,y) be the x and y components of the optical flow, respectively

$$u = \frac{dx}{dt}, v = \frac{dy}{dt}$$

- The brightness constancy assumption is that the irradiance will be the same at time $t+\delta t$ at the point $(x+\delta x, y+\delta y)$
 - $\delta x = u \delta t$, $\delta y = v \delta t$ for small δt

- Relating temporal brightness change to optical flow
 - The brightness constancy assumption is that the irradiance will be the same at time $t+\delta t$ at the point $(x+\delta x, y+\delta y)$
 - $\delta x = u \delta t$, $\delta y = v \delta t$ for small δt $E(x + u \delta t, y + v \delta t, t + \delta t) = E(x, y, t)$

- Relating temporal brightness change to optical flow
 - The brightness constancy assumption is that the irradiance will be the same at time $t+\delta t$ at the point $(x+\delta x, y+\delta y)$
 - $\delta x = u \delta t$, $\delta y = v \delta t$ for small δt $E(x + u \delta t, y + v \delta t, t + \delta t) = E(x, y, t)$
 - After some mathematical machinery, we write this as:

$$\frac{\partial E}{\partial x}\frac{dx}{dt} + \frac{\partial E}{\partial y}\frac{dy}{dt} + \frac{\partial E}{\partial t} = 0$$

- Relating temporal brightness change to optical flow
 - After some mathematical machinery, we write this as:

$$\frac{\partial E}{\partial x} \frac{dx}{dt} + \frac{\partial E}{\partial y} \frac{dy}{dt} + \frac{\partial E}{\partial t} = 0$$

$$= 0$$

$$u = \frac{dx}{dt}, v = \frac{dy}{dt}$$

- Define
$$E_x = \frac{\partial E}{\partial x}$$
 $E_y = \frac{\partial E}{\partial y}$ $E_t = \frac{\partial E}{\partial t}$

- Relating temporal brightness change to optical flow
 - After some mathematical machinery, we write this as:

$$\frac{\partial E}{\partial x} \frac{dx}{dt} + \frac{\partial E}{\partial y} \frac{dy}{dt} + \frac{\partial E}{\partial t} = 0$$

$$= 0$$

$$= 0$$

$$u = \frac{dx}{dt}, v = \frac{dy}{dt}$$

- Define
$$E_x = \frac{\partial E}{\partial x}$$
 $E_y = \frac{\partial E}{\partial v}$ $E_t = \frac{\partial E}{\partial t}$

— We have the standard form of the **optical flow constraint** equation $E_x u + E_y v + E_t = 0$

- Relating temporal brightness change to optical flow
 - We have the standard form of the optical flow constraint equation

$$E_{x}u + E_{y}v + E_{t} = 0$$

- Relates spatial and temporal derivatives of irradiance to optical flow
- Subject to brightness constancy assumption

- Aperture problem
 - We have the standard form of the optical flow constraint equation

$$E_{x}u + E_{y}v + E_{t} = 0$$

Two unknowns of interest

- Aperture problem
 - We have the standard form of the optical flow constraint equation

$$E_{x}u + E_{y}v + E_{t} = 0$$

Two unknowns of interest

- Aperture problem
 - We have the standard form of the optical flow constraint equation

$$E_{x}u + E_{y}v + E_{t} = 0$$

Two unknowns of interest

- Aperture problem
 - We have the standard form of the optical flow constraint equation

$$E_{x}u + E_{y}v + E_{t} = 0$$

- Two unknowns of interest
- The solution is under constrained

- Aperture problem
 - We have the standard form of the optical flow constraint equation

$$E_{x}u + E_{y}v + E_{t} = 0$$

- Two unknowns of interest
- The solution is under constrained
- Consider a translating shape

- Aperture problem
 - We have the standard form of the optical flow constraint equation

$$E_{x}u + E_{y}v + E_{t} = 0$$

- Two unknowns of interest
- The solution is under constrained
- Consider a translating shape

- Aperture problem
 - We have the standard form of the optical flow constraint equation

$$E_{x}u + E_{y}v + E_{t} = 0$$

- Two unknowns of interest
- The solution is under constrained
- Consider a translating shape

- Aperture problem
 - We have the standard form of the optical flow constraint equation

$$E_{x}u + E_{y}v + E_{t} = 0$$

- Two unknowns of interest
- The solution is under constrained
- Consider a translating shape

- Aperture problem
 - We have the standard form of the optical flow constraint equation

$$E_{x}u + E_{y}v + E_{t} = 0$$

- Two unknowns of interest
- The solution is under constrained
- Consider a translating shape

- Aperture problem
 - We have the standard form of the optical flow constraint equation

$$E_{x}u + E_{y}v + E_{t} = 0$$

- Two unknowns of interest
- The solution is under constrained
- Consider a translating shape

Aperture problem

We have the standard form of the optical flow constraint equation

$$E_{x}u + E_{y}v + E_{t} = 0$$

- Two unknowns of interest
- The solution is under constrained
- Consider a translating shape
- Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"

Aperture problem

We have the standard form of the optical flow constraint equation

$$E_{x}u + E_{y}v + E_{t} = 0$$

- Two unknowns of interest
- The solution is under constrained
- Consider a translating shape
- Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"

Aperture problem

We have the standard form of the optical flow constraint equation

$$E_{x}u + E_{y}v + E_{t} = 0$$

- Two unknowns of interest
- The solution is under constrained
- Consider a translating shape
- Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"

Aperture problem

We have the standard form of the optical flow constraint equation

$$E_{x}u + E_{y}v + E_{t} = 0$$

- Two unknowns of interest
- The solution is under constrained
- Consider a translating shape
- Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"

Aperture problem

We have the standard form of the optical flow constraint equation

$$E_{x}u + E_{y}v + E_{t} = 0$$

- Two unknowns of interest
- The solution is under constrained
- Consider a translating shape
- Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"

Aperture problem

We have the standard form of the optical flow constraint equation

$$E_{x}u + E_{y}v + E_{t} = 0$$

- Two unknowns of interest
- The solution is under constrained
- Consider a translating shape
- Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"

Aperture problem

We have the standard form of the optical flow constraint equation

$$E_{x}u + E_{y}v + E_{t} = 0$$

- Two unknowns of interest
- The solution is under constrained
- We only have information about the optical flow across the edge, not along the edge.
- We refer to this limitation as the aperture problem.

$$E_{x}u + E_{y}v + E_{t} = 0$$

$$E_{x}u + E_{y}v + E_{t} = 0$$

$$E_{x}u + E_{y}v + E_{t} = 0$$

$$E_{x}u + E_{y}v + E_{t} = 0$$

$$E_{x}u + E_{y}v + E_{t} = 0$$

$$E_{x}u + E_{y}v + E_{t} = 0$$

$$E_{x}u + E_{y}v + E_{t} = 0$$

In summary

- We are trying to develop constraints that allow us to recover optical flow from measurements of image irradiance.
- We have introduced the assumption that a local pattern of image intensity remains constant across an instance of time (brightness constancy).

In summary

- We are trying to develop constraints that allow us to recover optical flow from measurements of image irradiance.
- We have introduced the assumption that a local pattern of image intensity remains constant across an instance of time (brightness constancy).
- This allowed us to derive a fundamental equation that relates derivatives of irradiance to optical flow (the optical flow constraint equation)

$$E_{\lambda}u + E_{\lambda}v + E_{t} = 0$$

 However, there is not enough constraint to unambiguously determine the flow (aperture problem).

In summary

- We are trying to develop constraints that allow us to recover optical flow from measurements of image irradiance.
- We have introduced the assumption that a local pattern of image intensity remains constant across an instance of time (brightness constancy).
- This allowed us to derive a fundamental equation that relates derivatives of irradiance to optical flow (the optical flow constraint equation)

$$E_{\lambda}u + E_{\lambda}v + E_{t} = 0$$

- However, there is not enough constraint to unambiguously determine the flow (aperture problem).
 - We seek additional constraint to uniquely define the optical flow.
 - To allow for algorithmic recovery.

Outline

- Introduction
- Motion field vs. optical flow
- Brightness constancy
- Gradient-based optical flow estimation
- Finite displacement and feature-based methods
- Object and scene deformations

Gradient optical flow estimation

We have

We have derived the optical flow constraint equation

$$E_x u + E_v v + E_t = 0$$

This is not enough to uniquely define the optical flow solution.

Gradient optical flow estimation

We have

We have derived the optical flow constraint equation

$$E_x u + E_v v + E_t = 0$$

This is not enough to uniquely define the optical flow solution.

We need

 Additional constraint so that at (every image location) we have two equations in two unknowns to define a solution.

Gradient optical flow estimation

We have

We have derived the optical flow constraint equation

$$E_{x}u + E_{y}v + E_{t} = 0$$

This is not enough to uniquely define the optical flow solution.

We need

- Additional constraint so that at (every image location) we have two equations in two unknowns to define a solution.
- Several approaches have been developed
- Differentiate the present constraint equation to generate additional constraint equations
 - Variational smoothness with boundary conditions
 - Assume flow constancy over some finite window

Additional constraints

 Differentiate the present constraint equation to generate additional constraint equations

Variational smoothness with boundary conditions

Assume flow constancy over some finite window

- Horn and Schunck (1980)
- The apparent velocity of the brightness pattern varies smoothly almost everywhere in the image.
 - Opaque objects undergo rigid motion or deformation
 - Neighboring points on the objects have similar velocities and the velocity field of the brightness pattern in the image varies smoothly almost everywhere.

- Horn and Schunck (1980)
- The apparent velocity of the brightness pattern varies smoothly almost everywhere in the image.
 - Opaque objects undergo rigid motion or deformation
 - Neighboring points on the objects have similar velocities and the velocity field of the brightness pattern in the image varies smoothly almost everywhere.
- Additional constraint
 - Minimize the square of the magnitude of the gradient of the optical flow velocity

- Additional constraint
 - Minimize the square of the magnitude of the gradient of the optical flow velocity

$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2$$
 and $\left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2$.

- Additional constraint
 - Minimize the square of the magnitude of the gradient of the optical flow velocity

$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2$$
 and $\left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2$.

– And then, minimize

$$\mathscr{E}_c^2 = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2.$$

Which they define as the departure of smoothness

Additional constraints

 Differentiate the present constraint equation to generate additional constraint equations

Variational smoothness with boundary conditions

Assume flow constancy over some finite window

- Lucas and Kanade (1981)
- Flow constancy assumes that over some window, W, the values of (u,v) are constant.

- Lucas and Kanade (1981)
- Flow constancy assumes that over some window, W, the values of (u,v) are constant.
- We seek to minimize

$$\min_{(u,v)} \sum_{w} (E_{x}u + E_{y}v + E_{t})^{2}$$

- Lucas and Kanade (1981)
- Flow constancy assumes that over some window, W, the values of (u,v) are constant.
- We seek to minimize

$$\min_{(u,v)} \sum_{w} (E_{x}u + E_{y}v + E_{t})^{2}$$

We solve this by differentiation and equalizing to 0

$$\sum \sum (E_x u + E_y v + E_t) E_x = 0$$

$$\sum \sum (E_x u + E_y v + E_t) E_y = 0$$

- Lucas and Kanade (1981)
- Flow constancy assumes that over some window, W, the values of (u,v) are constant.
- We seek to minimize

$$\min_{(u,v)} \sum_{w} (E_{x}u + E_{y}v + E_{t})^{2}$$

We solve this by differentiation and equalizing to 0

$$\sum \sum (E_x u + E_y v + E_t) E_x = 0$$

$$\sum \sum (E_x u + E_y v + E_t) E_y = 0$$
Two equations with two unknowns!

$$\sum \sum (E_x u + E_y v + E_t) E_x = 0$$

$$\sum \sum (E_x u + E_y v + E_t) E_y = 0$$
Two equations with two unknowns!

Whose solution is

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \sum \sum E_x^2 \\ \sum \sum E_x E_y \end{pmatrix}^{-1} \begin{pmatrix} -\sum \sum E_x E_t \\ -\sum \sum E_y E_t \end{pmatrix}$$

Whose solution is

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \sum \sum E_x^2 & \sum \sum E_x E_y \\ \sum \sum E_x E_y & \sum \sum E_y^2 \end{pmatrix}^{-1} \begin{pmatrix} -\sum \sum E_x E_t \\ -\sum \sum E_y E_t \end{pmatrix}$$

- Input: A temporal sequence of two images
- Output: A pair of optical flow images, a U an V image
- We compute the equation above and store the recovered (u,v) in the positions (i,j) in the U and V images

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \sum \sum E_x^2 & \sum \sum E_x E_y \\ \sum \sum E_x E_y & \sum \sum E_y^2 \end{pmatrix}^{-1} \begin{pmatrix} -\sum \sum E_x E_t \\ -\sum \sum E_y E_t \end{pmatrix}$$

- Window size
 - Smaller windows give better precision
 - Larger windows provide better performance in presence of noise

Whose solution is

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \sum \sum E_x^2 & \sum \sum E_x E_y \\ \sum \sum E_x E_y & \sum \sum E_y^2 \end{pmatrix}^{-1} \begin{pmatrix} -\sum \sum E_x E_t \\ -\sum \sum E_y E_t \end{pmatrix}$$

Window size

- Smaller windows give better precision
- Larger windows provide better performance in presence of noise
- What about a Pyramid?

Example

Example

Example

Examples

• Lukas and Kanade

Horn and Schunk

Outline

- Introduction
- Motion field vs. optical flow
- Brightness constancy
- Gradient-based optical flow estimation
- Finite displacement and feature-based methods
- Object and scene deformations

- Gradient-based techniques work best when the displacements between the image are relatively small
 - This is implicit in the derivation of the optical flow constraint equation via differentials
 - Although course-to-fine processing can help with this limitation
- Well detected and localized features have the potential to be reasonably matched between images.

 Therefore, such approaches have received attention in conjunction with larger motion displacements.

- Two broad classes of approach
- Methods for matching between binocular stereo pairs can be adapted to finite displacement image motion.
 - For example, the feature-based methods are particularly applicable
- Also of interest is the iteration of gradient-based optical flow
 - But restricted to interesting feature points

- We begin by extracting feature points of interest in image 1 of the input pair.
- For example, the corner/line detector shown in previous lectures is well suited for this purpose
- We then center windows about a feature of interest and about the same location in the other image.

- We begin by extracting feature points of interest in image 1 of the input pair.
- For example, the corner/line detector shown in previous lectures is well suited for this purpose
- We then center windows about a feature of interest and about the same location in the other image.
- We execute the gradient-based calculation, i.e.

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \sum \sum E_x^2 \\ \sum \sum E_x E_y \end{pmatrix}^{-1} \begin{pmatrix} -\sum \sum E_x E_t \\ -\sum \sum E_y E_t \end{pmatrix}$$

- Iterated gradient
 - We execute the gradient-based calculation, i.e.

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \sum \sum E_x^2 \\ \sum \sum E_x E_y \end{pmatrix}^{-1} \begin{pmatrix} -\sum \sum E_x E_t \\ -\sum \sum E_y E_t \end{pmatrix}$$

 Following completion, we shift the entire window about the feature in image 1 according to the recovered flow vector.

- Iterated gradient
 - We execute the gradient-based calculation, i.e.

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \sum \sum E_x^2 \\ \sum \sum E_x E_y \end{pmatrix}^{-1} \begin{pmatrix} -\sum \sum E_x E_t \\ -\sum \sum E_y E_t \end{pmatrix}$$

- Following completion, we shift the entire window about the feature in image 1 according to the recovered flow vector.
- We then calculate a similarity measure between the shifted window in image 1 and the window in image 2.

- Following completion, we shift the entire window about the feature in image 1 according to the recovered flow vector.
- We then calculate a similarity measure between the shifted window in image 1 and the window in image 2.
- If the similarity is above some threshold, then we say that the match has been found and we exit.
- If the similarity measure is below some threshold, then we iterate the gradient-based calculation, but now making use of the shifted window in image 1.

Algorithm

- Input: Two images I1 and I2 and a set of features for I1
- Output: A set of displacements, one for each feature of I1.
- Notation: Let
 - Q1, Q2 and be two image windows
 - t be a threshold, a fixed positive real number
 - p be a feature point in I1
 - d be the unknown displacement for p
- For each feature point p
- 1. Set d = 0 and centre Q1 on p
- 2. Estimate the displacement $d\theta$ of p center of QI according to the gradient-based algorithm
- 3. Set *d*=*d*+*d0*
- 4. Let Q2 be the image patch obtained by shifting Q1 according to d0.
 - Calculate the similarity, S, of Q2 and the corresponding patch in I2
- 5. If S < t then set Q1 = Q2 and goto 2; else exit.

Representative similarity measure

 1/(Sum of Squared Differences) within the windows of interest is a reasonable choice for this algorithm.

Outline

- Introduction
- Motion field vs. optical flow
- Brightness constancy
- Gradient-based optical flow estimation
- Finite displacement and feature-based methods
- Object and scene deformations

Object and scene deformations

Figure 10.10: Elementary geometric transformations of a planar surface element undergoing affine transformation: **a** rotation; **b** dilation; **c** shear; **d** stretching.

Object and scene deformations

Figure 4.1: Spiral space is a coordinate system that interprets expansion (0°), contraction (180°) and rotations (clockwise: 90°, counterclockwise: 270°) as cardinal directions with in- and outward spiraling movement patterns placed in between. Gray arrows show local motion direction.

Summary

- Introduction
- Motion field vs. optical flow
- Brightness constancy
- Gradient-based optical flow estimation
- Finite displacement and feature-based methods
- Object and scene deformations

Optical flow with OpenCV

Optical Flow

- Lukas and Kanade
- Dense Optical flow

- Lucas and Kanade (1981)
- Flow constancy assumes that over some window, W, the values of (u,v) are constant.

- Lucas and Kanade (1981)
- Flow constancy assumes that over some window, W, the values of (u,v) are constant.
- We seek to minimize

$$\min_{(u,v)} \sum_{w} (E_{x}u + E_{y}v + E_{t})^{2}$$

- Lucas and Kanade (1981)
- Flow constancy assumes that over some window, W, the values of (u,v) are constant.
- We seek to minimize

$$\min_{(u,v)} \sum_{w} (E_{x}u + E_{y}v + E_{t})^{2}$$

We solve this by differentiation and equalizing to 0

$$\sum \sum (E_x u + E_y v + E_t) E_x = 0$$

$$\sum \sum (E_x u + E_y v + E_t) E_y = 0$$

- Lucas and Kanade (1981)
- Flow constancy assumes that over some window, W, the values of (u,v) are constant.
- We seek to minimize

$$\min_{(u,v)} \sum_{w} (E_{x}u + E_{y}v + E_{t})^{2}$$

We solve this by differentiation and equalizing to 0

$$\sum \sum (E_x u + E_y v + E_t) E_x = 0$$

$$\sum \sum (E_x u + E_y v + E_t) E_y = 0$$
Two equations with two unknowns!

$$\sum \sum (E_x u + E_y v + E_t) E_x = 0$$

$$\sum \sum (E_x u + E_y v + E_t) E_y = 0$$
Two equations with two unknowns!

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \sum \sum E_x^2 \\ \sum \sum E_x E_y \end{pmatrix}^{-1} \begin{pmatrix} -\sum \sum E_x E_t \\ -\sum \sum E_y E_t \end{pmatrix}$$

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \sum \sum E_x^2 & \sum \sum E_x E_y \\ \sum \sum E_x E_y & \sum \sum E_y^2 \end{pmatrix}^{-1} \begin{pmatrix} -\sum \sum E_x E_t \\ -\sum \sum E_y E_t \end{pmatrix}$$

- Input: A temporal sequence of two images
- Output: A pair of optical flow images, a U an V image
- We compute the equation above and store the recovered (u,v) in the positions (i,j) in the U and V images

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \sum \sum E_x^2 & \sum \sum E_x E_y \\ \sum \sum E_x E_y & \sum \sum E_y^2 \end{pmatrix}^{-1} \begin{pmatrix} -\sum \sum E_x E_t \\ -\sum \sum E_y E_t \end{pmatrix}$$

- Window size
 - Smaller windows give better precision
 - Larger windows provide better performance in presence of noise

```
#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/highqui.hpp>
                              Lukas and Kanade
#include <opencv2/imgproc.hpp>
#include <opency2/videoio.hpp>
#include <opencv2/video.hpp>
using namespace cv;
using namespace std;
int main(int argc, char **argv)
{
    const string about =
       "This sample demonstrates Lucas-Kanade Optical Flow calculation.\n"
       "The example file can be downloaded from:\n"
       " https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4";
    const string keys =
                        | print this help message }"
       "{ h help |
       "{ @image | vtest.avi | path to image file }";
    CommandLineParser parser(argc, argv, keys);
    parser.about(about);
    if (parser.has("help"))
       parser.printMessage();
       return 0:
    string filename = samples::findFile(parser.get<string>("@image"));
   if (!parser.check())
       parser.printErrors();
        return 0:
    }
   VideoCapture capture(filename);
   if (!capture.isOpened()){
       //error in opening the video input
       cerr << "Unable to open file!" << endl:
       return 0;
                                                                                                    107
    }
```

```
#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/highqui.hpp>
                              Lukas and Kanade
#include <opencv2/imgproc.hpp>
#include <opency2/videoio.hpp>
#include <opencv2/video.hpp>
using namespace cv;
using namespace std;
int main(int argc, char **argv)
{
    const string about =
       "This sample demonstrates Lucas-Kanade Optical Flow calculation.\n"
       "The example file can be downloaded from:\n"
       " https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4";
    const string keys =
                        | print this help message }"
       "{ h help |
       "{ @image | vtest.avi | path to image file }";
    CommandLineParser parser(argc, argv, keys);
    parser.about(about);
    if (parser.has("help"))
       parser.printMessage();
       return 0:
    string filename = samples::findFile(parser.get<string>("@image"));
   1† (!parser.check())
       parser.printErrors();
       return 0:
    }
   VideoCapture capture(filename);
    if (!capture.isOpened()){
       //error in opening the video input
       cerr << "Unable to open file!" << endl:
        return 0;
                                                                                                    108
    }
```

```
// Create some random colors
vector<Scalar> colors:
RNG rng:
for(int i = 0; i < 100; i++)
    int r = rnq.uniform(0, 256);
    int q = rnq.uniform(0, 256);
    int b = rnq.uniform(0, 256);
    colors.push_back(Scalar(r,q,b));
Mat old frame, old gray;
vector<Point2f> p0, p1;
// Take first frame and find corners in it
capture >> old frame;
cvtColor(old_frame, old_gray, COLOR_BGR2GRAY);
goodFeaturesToTrack(old gray, p0, 100, 0.3, 7, Mat(), 7, false, 0.04);
// Create a mask image for drawing purposes
Mat mask = Mat::zeros(old_frame.size(), old_frame.type());
while(true){
   Mat frame, frame_gray;
    capture >> frame;
    if (frame.empty())
        break:
    cvtColor(frame, frame gray, COLOR BGR2GRAY);
```

```
// Create some random colors
vector<Scalar> colors:
RNG rng:
for(int i = 0; i < 100; i++)
    int r = rng.uniform(0, 256);
    int q = rnq.uniform(0, 256);
    int b = rnq.uniform(0, 256);
    colors.push_back(Scalar(r,q,b));
Mat old frame, old gray;
vector<Point2f> p0, p1;
// Take first frame and find corners in it
capture >> old frame;
cvtColor(old_frame, old_gray, COLOR_BGR2GRAY);
goodFeaturesToTrack(old gray, p0, 100, 0.3, 7, Mat(), 7, false, 0.04);
// Create a mask image for drawing purposes
Mat mask = Mat::zeros(old_frame.size(), old_frame.type());
while(true){
   Mat frame, frame_gray;
    capture >> frame;
    if (frame.empty())
        break:
    cvtColor(frame, frame gray, COLOR BGR2GRAY);
```

```
// Create some random colors
vector<Scalar> colors:
RNG rng:
for(int i = 0; i < 100; i++)
    int r = rng.uniform(0, 256);
    int q = rnq.uniform(0, 256);
    int b = rnq.uniform(0, 256);
    colors.push_back(Scalar(r,g,b));
Mat old frame, old gray;
vector<Point2f> p0, p1;
// Take first frame and find corners in it
capture >> old frame;
cvtColor(old_frame, old_gray, COLOR_BGR2GRAY);
goodFeaturesToTrack(old gray, p0, 100, 0.3, 7, Mat(), 7, false, 0.04);
// Create a mask image for drawing purposes
Mat mask = Mat::zeros(old_frame.size(), old_frame.type());
while(true){
   Mat frame, frame_gray;
    capture >> frame;
    if (frame.empty())
        break:
    cvtColor(frame, frame gray, COLOR BGR2GRAY);
```

```
Shi-Tomasi
                                                       Harris
// Create some random colors
vector<Scalar> colors:
RNG rng:
                                               for(int i = 0; i < 100; i++)
    int r = rnq.uniform(0, 256);
    int q = rnq.uniform(0, 256);
    int b = rnq.uniform(0, 256);
    colors.push_back(Scalar(r,q,b));
Mat old frame, old gray;
vector<Point2f> p0, p1;
// Take first frame and find corners in it
capture >> old frame;
cvtColor(old frame, old gray, COLOR BGR2GRAY);
goodFeaturesToTrack(old gray, p0, 100, 0.3, 7, Mat(), 7, false, 0.04);
// Create a mask image for drawing purposes
Mat mask = Mat::zeros(old_frame.size(), old_frame.type());
while(true){
   Mat frame, frame_gray;
    capture >> frame;
    if (frame.empty())
        break:
    cvtColor(frame, frame gray, COLOR BGR2GRAY);
```

```
while(true){
   Mat frame, frame gray;
                         Lukas and Kanade
   capture >> frame;
    if (frame.emptv())
       break:
   cvtColor(frame, frame gray, COLOR BGR2GRAY);
   // calculate optical flow
   vector<uchar> status;
   vector<float> err:
   TermCriteria criteria = TermCriteria((TermCriteria::COUNT) + (TermCriteria::EPS), 10, 0.03);
    calcOpticalFlowPyrLK(old gray, frame gray, p0, p1, status, err, Size(15,15), 2, criteria);
   vector<Point2f> good new;
    for(uint i = 0; i < p0.size(); i++)</pre>
    {
       // Select good points
       if(status[i] == 1) {
            good_new.push_back(p1[i]);
           // draw the tracks
           line(mask,p1[i], p0[i], colors[i], 2);
           circle(frame, p1[i], 5, colors[i], -1);
    }
   Mat img;
    add(frame, mask, img);
    imshow("Frame", img);
   int keyboard = waitKey(30);
    if (keyboard == 'q' || keyboard == 27)
       break:
   // Now update the previous frame and previous points
   old_gray = frame_gray.clone();
   p0 = good_new;
```

```
// calculate optical flow
vector<uchar> status;
vector<float> err:
TermCriteria criteria = TermCriteria((TermCriteria::COUNT) + (TermCriteria::EPS), 10, 0.03);
calcOpticalFlowPyrLK(old gray, frame gray, p0, p1, status, err, Size(15,15), 2, criteria);
vector<Point2f> good new;
for(uint i = 0; i < p0.size(); i++)</pre>
   // Select good points
    if(status[i] == 1) {
        good_new.push_back(p1[i]);
        // draw the tracks
        line(mask,p1[i], p0[i], colors[i], 2);
        circle(frame, p1[i], 5, colors[i], -1);
Mat img;
add(frame, mask, img);
imshow("Frame", img);
int keyboard = waitKey(30);
if (keyboard == 'q' || keyboard == 27)
    break:
// Now update the previous frame and previous points
old_gray = frame_gray.clone();
p0 = good_new;
                                                                                                114
```

```
// calculate optical flow
vector<uchar> status;
vector<float> err:
TermCriteria criteria = TermCriteria((TermCriteria::COUNT) + (TermCriteria::EPS), 10, 0.03);
calcOpticalFlowPyrLK(old_gray, frame_gray, p0, p1, status, err, Size(15,15), 2, criteria);
vector<Point2f> good new;
for(uint i = 0; i < p0.size(); i++)</pre>
    // Select good points
    if(status[i] == 1) {
        good_new.push_back(p1[i]);
        // draw the tracks
        line(mask,p1[i], p0[i], colors[i], 2);
        circle(frame, p1[i], 5, colors[i], -1);
Mat img;
add(frame, mask, img);
imshow("Frame", img);
int keyboard = waitKey(30);
if (keyboard == 'q' || keyboard == 27)
    break:
// Now update the previous frame and previous points
old_gray = frame_gray.clone();
p0 = good_new;
                                                                                                115
```

```
// calculate optical flow
vector<uchar> status;
vector<float> err:
TermCriteria criteria = TermCriteria((TermCriteria::COUNT) + (TermCriteria::EPS), 10, 0.03);
calcOpticalFlowPyrLK(old_gray, frame_gray, p0, p1, status, err, Size(15,15), 2, criteria);
vector<Point2f> good new;
for(uint i = 0; i < p0.size(); i++)</pre>
    // Select good points
    if(status[i] == 1) {
        good_new.push_back(p1[i]);
        // draw the tracks
        line(mask,p1[i], p0[i], colors[i], 2);
        circle(frame, p1[i], 5, colors[i], -1);
Mat img;
add(frame, mask, img);
imshow("Frame", img);
int keyboard = waitKey(30);
if (keyboard == 'q' || keyboard == 27)
    break:
// Now update the previous frame and previous points
old_gray = frame_gray.clone();
p0 = good_new;
                                                                                                116
```

```
while(true){
   Mat frame, frame_gray;
                          Lukas and Kanade
   capture >> frame;
    if (frame.emptv())
       break:
   cvtColor(frame, frame gray, COLOR BGR2GRAY);
   // calculate optical flow
   vector<uchar> status;
   vector<float> err:
   TermCriteria criteria = TermCriteria((TermCriteria::COUNT) + (TermCriteria::EPS), 10, 0.03);
    calcOpticalFlowPyrLK(old gray, frame gray, p0, p1, status, err, Size(15,15), 2, criteria);
   vector<Point2f> good new;
    for(uint i = 0; i < p0.size(); i++)</pre>
       // Select good points
       if(status[i] == 1) {
            good_new.push_back(p1[i]);
           // draw the tracks
           line(mask,p1[i], p0[i], colors[i], 2);
           circle(frame, p1[i], 5, colors[i], -1);
    }
   Mat img;
    add(frame, mask, img);
    imshow("Frame", img);
    int keyboard = waitKey(30);
    if (keyboard == 'q' || keyboard == 27)
       break:
   // Now update the previous frame and previous points
   old_gray = frame_gray.clone();
   p0 = good_new;
```



```
#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/video.hpp>
using namespace cv;
using namespace std;
int main()
    VideoCapture capture(samples::findFile("vtest.avi"));
    if (!capture.isOpened()){
        //error in opening the video input
        cerr << "Unable to open file!" << endl;</pre>
        return 0:
   Mat frame1, prvs;
    capture >> frame1;
    cvtColor(frame1, prvs, COLOR_BGR2GRAY);
```

```
#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/video.hpp>
using namespace cv;
using namespace std;
int main()
    VideoCapture capture(samples::findFile("vtest.avi"));
    if (!capture.isOpened()){
        //error in opening the video input
        cerr << "Unable to open file!" << endl;
        return 0:
    Mat frame1, prvs;
    capture >> frame1;
    cvtColor(frame1, prvs, COLOR_BGR2GRAY);
```

```
while(true){
    Mat frame2, next;
    capture >> frame2;
    if (frame2.empty())
        break;
    cvtColor(frame2, next, COLOR_BGR2GRAY);
```

```
while(true){
    Mat frame2, next;
    capture >> frame2;
    if (frame2.empty())
        break;
    cvtColor(frame2, next, COLOR_BGR2GRAY);

Mat flow(prvs.size(), CV_32FC2);
    calcOpticalFlowFarneback(prvs, next, flow, 0.5, 3, 15, 3, 5, 1.2, 0);
```

```
while(true){
    Mat frame2, next;
    capture >> frame2;
    if (frame2.empty())
        break;
    cvtColor(frame2, next, COLOR_BGR2GRAY);

Mat flow(prvs.size(), CV_32FC2);
    calcOpticalFlowFarneback(prvs, next, flow, 0.5, 3, 15, 3, 5, 1.2, 0);

// visualization

Mat flow_parts[2];
    split(flow, flow_parts);
    Mat magnitude, angle, magn_norm;
    cartToPolar(flow_parts[0], flow_parts[1], magnitude, angle, true);
    normalize(magnitude, magn_norm, 0.0f, 1.0f, NORM_MINMAX);
    angle *= ((1.f / 360.f) * (180.f / 255.f));
```

```
Mat frame2, next;
capture >> frame2;
if (frame2.empty())
    break:
cvtColor(frame2, next, COLOR BGR2GRAY);
Mat flow(prvs.size(), CV_32FC2);
calcOpticalFlowFarneback(prvs, next, flow, 0.5, 3, 15, 3, 5, 1.2, 0);
// visualization
Mat flow parts[2];
split(flow, flow_parts);
Mat magnitude, angle, magn norm;
cartToPolar(flow_parts[0], flow_parts[1], magnitude, angle, true);
normalize(magnitude, magn norm, 0.0f, 1.0f, NORM MINMAX);
angle *= ((1.f / 360.f) * (180.f / 255.f));
//build hsv image
Mat _hsv[3], hsv, hsv8, bgr;
hsv[0] = angle;
hsv[1] = Mat::ones(angle.size(), CV 32F);
_{hsv}[2] = magn_{norm};
merge( hsv, 3, hsv);
hsv.convertTo(hsv8, CV_8U, 255.0);
cvtColor(hsv8, bgr, COLOR HSV2BGR);
imshow("frame2", bgr);
int keyboard = waitKey(30);
if (keyboard == 'q' || keyboard == 27)
    break:
prvs = next;
```

while(true){

Optical flow

- Tutorial: https://nanonets.com/blog/optical-flow/
- Code: https://docs.opencv.org/3.4/dc/d6b/
 group video track.html#ga5d10ebbd59fe09c5f65
 0289ec0ece5af
- Faneback's paper:

http://www.diva-portal.org/smash/get/

diva2:273847/FULLTEXT01.pdf