under Graduate Homework In Mathematics

Functional Analysis 8

王胤雅

201911010205

201911010205@mail.bnu.edu.cn

2023年11月1日

ROBEM I Let $A = \{e_k\}$ are orthonormal basis in inner product space X. Prove: $\forall x, y \in X$, $\sum_{k=1}^{\infty} |(x, e_k)(y, e_k)| \leq ||x|| ||y||$.

SOLITION. Since $A = \{e_k\}$ are orthonormal basis in inner product space X, then $\forall x \in X$, $||x|| = \sum_{k=1}^{\infty} |(x,e_k)|^2$, so by Holder inequation, we get $\sum_{k=1}^{\infty} |(x,e_k)(y,e_k)| \leq (\sum_{k=1}^{\infty} |(x,e_k)|^2)^{\frac{1}{2}} (\sum_{k=1}^{\infty} |(y,e_k)|^2)^{\frac{1}{2}} = ||x|| ||y||$.

ROBEM II H is Hilbert space, $\{e_k\}, \{e'_k\}$ are two kinds of orthonormal set in inner product space H, $\sum_{k=1}^{\infty} \|e_k - e'_k\|^2 < 1$. Prove: if one of $\{e_k\}, \{e'_k\}$ is complete, then the other is complete.

SOLION. Let $\{e_n\}_{n=1}^{\infty}$ is complete. If $\{e'_n\}_{n=1}^{\infty}$ is not complete, then $\exists x_0: \theta \neq x_0 \notin Span\{\{e'_n\}_{n=1}^{\infty}\}$ s.t. $(x_0, e'_n) = 0 \forall n$. So $||x_0||^2 = \sum_{n=1}^{\infty} |(x_0, e_n)|^2 = \sum_{n=1}^{\infty} |(x_0, e_n - e'_n)|^2 \leq ||x_0||^2 \sum_{n=1}^{\infty} ||e_n - e'_n||^2 < ||x_0||$. Contradiction!

 \mathbb{R}^{OBEM} III H is an inner space, these propositions below are equal:

- 1. $x \perp y$;
- 2. $||x + \alpha y|| \ge ||x||$, $\alpha \in \mathbb{C}$;
- 3. $||x + \alpha y|| = ||x \alpha y||, \forall \alpha \in \mathbb{C}$.

SOUTHOW. 1. $x \perp y \Rightarrow \|x + \alpha y\| \ge \|x\|$, $\alpha \in \mathbb{C} : \|x + \alpha y\| = \|x\| + |\alpha| \|y\| \ge \|x\|$, $\forall \alpha \in \mathbb{C}$.

- 2. $x \perp y \Leftarrow \|x + \alpha y\| \ge \|x\|$, $\alpha \in \mathbb{C}$: If $(x,y) \neq 0$, let $\alpha = r(x,y)$, $r \in \mathbb{R}$, then by $\|x + \alpha y\| \ge \|x\|$, we get $|\alpha|^2 \|y\|^2 + 2\operatorname{Re}\overline{\alpha}(x,y) \ge 0$, that is $r^2|(x,y)|^2 \|y\|^2 + 2r|(x,y)|^2 \ge 0$, so $\Delta = 4 \le 0$. Contradiction!
- 3. $x \perp y \Rightarrow ||x + \alpha y|| = ||x \alpha y||, \forall \alpha \in \mathbb{C}: ||x + \alpha y|| = ||x|| + |\alpha| ||y|| = ||x \alpha y||.$
- 4. $x \perp y \Leftarrow ||x + \alpha y|| = ||x \alpha y||, \forall \alpha \in \mathbb{C}$: If $(x, y) \neq 0$, let $\alpha = r(x, y), r \in \mathbb{R}$, then by $||x + \alpha y|| = ||x \alpha y||$, we get $\text{Re}\overline{\alpha}(x, y) = 0$, that is $r^2|(x, y)|^2 = 0, \forall r \in \mathbb{R}$. Contradiction!