

MGC3030/3130 GestIC® Library Interface Description User's Guide

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION. INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELoQ, KEELoQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the LLS A

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-594-8

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

MGC3030/3130 GestIC® LIBRARY INTERFACE DESCRIPTION

Table of Contents

Chapter 1. Introduction 1.1 Purpose of this Document 10 1.2 MGC3X30 Software Architecture 10 1.3 GestIC® Library 11 1.4 Bridge 11 1.5 GestIC API 12 1.6 Application Software 12 Chapter 2. MGC3030/3130 Host Interface 12 2.1 MGC3X30 Hardware Interface 13 2.2 Use of the TS Line 14 2.3 Coding Example 16 Chapter 3. GestIC® Library Message Interface 17 3.1 Messages Overview 17 3.2 Message Format 17 3.3 Message Header 18 3.4 Message Payload 18 3.5 Message Coding and Decoding 19 3.5.1 Header Extraction 19 3.5.2 Payload Extraction 19 3.5.1 Payload Extraction 20 3.6 Message Control Flow and Coding Examples 21 3.6.1 Resage Control Flow and Coding Examples 21 3.6.2 Read GestIC Library Version 22 3.6.3 Run-Time Control 23 3.6.3.1 Example: Request FW_Version Info 23 3.6.3.2 Example: Enable Approach Detection 23 </th <th>Preface</th> <th>5</th>	Preface	5
1.1 Purpose of this Document 10 1.2 MGC3X30 Software Architecture 10 1.3 GestIC® Library 11 1.4 Bridge 11 1.5 GestIC API 12 1.6 Application Software 12 Chapter 2. MGC3030/3130 Host Interface 12 2.1 MGC3X30 Hardware Interface 13 2.2 Use of the TS Line 14 2.3 Coding Example 16 Chapter 3. GestIC® Library Message Interface 17 3.1 Messages Overview 17 3.2 Message Format 17 3.3 Message Header 18 3.4 Message Payload 18 3.5 Message Coding and Decoding 18 3.5 Message Coding and Decoding 19 3.5.1 Header Extraction 20 3.6 Message Control Flow and Coding Examples 21 3.6.1 Message Control Flow 21 3.6.2 Read GestIC Library Version 22 3.6.3 Run-Time Control 23 3.6.3.1 Example: Enable Approach Detection 23 3.6.3.2 Example: Enable Approach Detection 23 3.6.3.3 Example: Enable Approach Detection 23 <t< th=""><th>Chapter 1. Introduction</th><th></th></t<>	Chapter 1. Introduction	
1.2 MGC3X30 Software Architecture 10 1.3 GestIC® Library 11 1.4 Bridge 11 1.5 GestIC API 12 1.6 Application Software 12 Chapter 2. MGC3030/3130 Host Interface 2.1 MGC3X30 Hardware Interface 13 2.2 Use of the TS Line 14 2.3 Coding Example 16 Chapter 3. GestIC® Library Message Interface 3.1 Message Overview 17 3.2 Message Format 17 3.3 Message Header 18 3.4 Message Payload 18 3.5 Header Extraction 19 3.5.1 Header Extraction 19 3.5.2 Payload Extraction 20 3.6 Message Control Flow and Coding Examples 21 3.6.1 Message Control Flow and Coding Examples 21 3.6.2 Read GestIC Library Version 22 3.6.3 Example: Request FW_Version Info 22 3.6.3.1 Example: Enable Approach Detection 23 3.6.3.2 Example: Enable Data Output 24 3.6.3.1 Example: Lock Data Output 24 3.6.4.1 Example: Read Sensor Data Output 25	•	10
1.3 GestIC® Library 11 1.4 Bridge 11 1.5 GestIC API 12 1.6 Application Software 12 Chapter 2. MGC3030/3130 Host Interface 12 2.1 MGC3X30 Hardware Interface 13 2.2 Use of the TS Line 14 2.3 Coding Example 16 Chapter 3. GestIC® Library Message Interface 17 3.1 Messages Overview 17 3.2 Message Format 17 3.3 Message Header 18 3.4 Message Payload 18 3.5 Message Coding and Decoding 19 3.5.1 Header Extraction 20 3.6 Message Control Flow and Coding Examples 21 3.6.1 Message Control Flow and Coding Examples 21 3.6.2 Read GestIC Library Version 22 3.6.2 Read GestIC Library Version 22 3.6.3 Run-Time Control 23 3.6.3 Example: Enable Approach Detection 23 3.6.3.1 Example: Enable Data Output 24 3.6.3.2 Example: Enable Data Output 24 3.6.3.4 Example: Read Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25	·	
1.4 Bridge 11 1.5 GestIC API 12 1.6 Application Software 12 Chapter 2. MGC3030/3130 Host Interface 12 2.1 MGC3X30 Hardware Interface 13 2.2 Use of the TS Line 14 2.3 Coding Example 16 Chapter 3. GestIC® Library Message Interface 17 3.1 Message Soverview 17 3.2 Message Format 17 3.3 Message Header 18 3.4 Message Payload 18 3.5 Message Coding and Decoding 19 3.5.1 Header Extraction 20 3.6 Message Control Flow and Coding Examples 21 3.6.1 Message Control Flow and Coding Examples 21 3.6.2 Read GestIC Library Version 22 3.6.3 Run-Time Control 22 3.6.3 Run-Time Control 23 3.6.3.1 Example: Enable Approach Detection 23 3.6.3.2 Example: Enable Data Output 24 3.6.3.3 Example: Enable Data Output 24 3.6.4 Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 3.6.4.2 Request Message 29		
1.5 GestIC API 12 1.6 Application Software 12 Chapter 2. MGC3030/3130 Host Interface 13 2.1 MGC3X30 Hardware Interface 13 2.2 Use of the TS Line 14 2.3 Coding Example 16 Chapter 3. GestIC® Library Message Interface 17 3.1 Messages Overview 17 3.2 Message Format 17 3.3 Message Header 18 3.4 Message Payload 18 3.5 Message Coding and Decoding 19 3.5.1 Header Extraction 19 3.5.2 Payload Extraction 20 3.6 Message Control Flow and Coding Examples 21 3.6.1 Message Control Flow and Coding Examples 21 3.6.2 Read GestIC Library Version 22 3.6.2 Read GestIC Library Version 22 3.6.3 Run-Time Control 23 3.6.3.1 Example: Enable Approach Detection 23 3.6.3.2 Example: Enable Data Output 24 3.6.3 Example: Enable Data Output 24 3.6.4 Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 3.6.4.2 Request Message 29	•	
1.6 Application Software	· · · · · · · · · · · · · · · · · · ·	
Chapter 2. MGC3030/3130 Host Interface 13 2.1 MGC3X30 Hardware Interface 13 2.2 Use of the TS Line 14 2.3 Coding Example 16 Chapter 3. GestIC® Library Message Interface 17 3.1 Messages Overview 17 3.2 Message Format 17 3.3 Message Header 18 3.4 Message Payload 18 3.5 Message Coding and Decoding 19 3.5.1 Header Extraction 19 3.5.2 Payload Extraction 20 3.6 Message Control Flow and Coding Examples 21 3.6.1 Message Control Flow and Coding Examples 21 3.6.2 Read GestIC Library Version 22 3.6.2 Read GestIC Library Version 22 3.6.3.1 Example: Request_FW_Version Info 22 3.6.3.2 Example: Enable Approach Detection 23 3.6.3.3 Example: Enable Data Output 24 3.6.4 Sensor Data Output 24 3.6.4 Sensor Data Output 24 3.6.4 Sensor Data Output 25 3.6.4 Sensor Data Output 25 3.6.4 Sensor Data Output 25 3.6.4 Sensor Data Output 25 </td <td></td> <td></td>		
2.1 MGC3X30 Hardware Interface 13 2.2 Use of the TS Line 14 2.3 Coding Example 16 Chapter 3. GestIC® Library Message Interface 17 3.1 Messages Overview 17 3.2 Message Format 17 3.3 Message Header 18 3.4 Message Payload 18 3.5 Message Coding and Decoding 19 3.5.1 Header Extraction 19 3.5.2 Payload Extraction 20 3.6 Message Control Flow and Coding Examples 21 3.6.1 Message Control Flow and Coding Examples 21 3.6.2 Read GestIC Library Version 22 3.6.2 Read GestIC Library Version 22 3.6.3.1 Example: Request_FW_Version Info 22 3.6.3.2 Example: Enable Approach Detection 23 3.6.3.3 Example: Enable Data Output 24 3.6.3.4 Example: Enable Data Output 24 3.6.4 Sensor Data Output 24 3.6.4 Sensor Data Output 25 3.6.4 Sensor Data Output 26	• •	
2.2 Use of the TS Line 14 2.3 Coding Example 16 Chapter 3. GestIC® Library Message Interface 17 3.1 Messages Overview 17 3.2 Message Format 17 3.3 Message Header 18 3.4 Message Payload 18 3.5 Message Coding and Decoding 19 3.5.1 Header Extraction 19 3.5.2 Payload Extraction 20 3.6 Message Control Flow and Coding Examples 21 3.6.1 Message Control Flow 21 3.6.2 Read GestIC Library Version 22 3.6.3 Run-Time Control 23 3.6.3 Run-Time Control 23 3.6.3.1 Example: Enable Approach Detection 23 3.6.3.2 Example: Enable Approach Detection 23 3.6.3.3 Example: Enable Data Output 24 3.6.4 Semsor Data Output 24 3.6.4 Semsor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 4.2 Request Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33	•	13
2.3 Coding Example 16 Chapter 3. GestIC® Library Message Interface 3.1 Messages Overview 17 3.2 Message Format 17 3.3 Message Header 18 3.4 Message Payload 18 3.5 Message Coding and Decoding 19 3.5.1 Header Extraction 19 3.5.2 Payload Extraction 20 3.6 Message Control Flow and Coding Examples 21 3.6.1 Message Control Flow 21 3.6.2 Read GestIC Library Version 22 3.6.3 Run-Time Control 23 3.6.3.1 Example: Enable Approach Detection 23 3.6.3.2 Example: Enable All Gestures 23 3.6.3.3 Example: Enable Data Output 24 3.6.4 Sensor Data Output 24 3.6.4 Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 3.6.4 Sequest_Message 29 4.1 System_Status 27 4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33		
Chapter 3. GestIC® Library Message Interface 3.1 Messages Overview 17 3.2 Message Format 17 3.3 Message Header 18 3.4 Message Payload 18 3.5 Message Coding and Decoding 19 3.5.1 Header Extraction 19 3.5.2 Payload Extraction 20 3.6 Message Control Flow and Coding Examples 21 3.6.1 Message Control Flow and Coding Examples 21 3.6.2 Read GestIC Library Version 22 3.6.2 Read GestIC Library Version 22 3.6.3 Run-Time Control 23 3.6.3 Run-Time Control 23 3.6.3.1 Example: Enable Approach Detection 23 3.6.3.2 Example: Enable All Gestures 23 3.6.3.3 Example: Enable Data Output 24 3.6.4 Sensor Data Output 24 3.6.4 Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 3.6.4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33		
3.1 Messages Overview 17 3.2 Message Format 17 3.3 Message Header 18 3.4 Message Payload 18 3.5 Message Coding and Decoding 19 3.5.1 Header Extraction 19 3.5.2 Payload Extraction 20 3.6 Message Control Flow and Coding Examples 21 3.6.1 Message Control Flow and Coding Examples 21 3.6.2 Read GestIC Library Version 22 3.6.2 Read GestIC Library Version 22 3.6.3 Run-Time Control 23 3.6.3.1 Example: Request_FW_Version Info 23 3.6.3.2 Example: Enable Approach Detection 23 3.6.3.2 Example: Enable All Gestures 23 3.6.3.3 Example: Enable Data Output 24 3.6.4 Sensor Data Output 24 3.6.4 Sensor Data Output 25 Chapter 4. GestIC® Library Message Reference 4.1 System_Status 27 4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33	·	
3.2 Message Format 17 3.3 Message Header 18 3.4 Message Payload 18 3.5 Message Coding and Decoding 19 3.5.1 Header Extraction 19 3.5.2 Payload Extraction 20 3.6 Message Control Flow and Coding Examples 21 3.6.1 Message Control Flow 21 3.6.2 Read GestIC Library Version 22 3.6.2.1 Example: Request_FW_Version Info 22 3.6.3 Run-Time Control 23 3.6.3.1 Example: Enable Approach Detection 23 3.6.3.2 Example: Enable All Gestures 23 3.6.3.3 Example: Enable Data Output 24 3.6.4 Sensor Data Output 24 3.6.4 Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 3.6.4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33		17
3.3 Message Header 18 3.4 Message Payload 18 3.5 Message Coding and Decoding 19 3.5.1 Header Extraction 19 3.5.2 Payload Extraction 20 3.6 Message Control Flow and Coding Examples 21 3.6.1 Message Control Flow 21 3.6.2 Read GestIC Library Version 22 3.6.2.1 Example: Request_FW_Version Info 22 3.6.3 Run-Time Control 23 3.6.3.1 Example: Enable Approach Detection 23 3.6.3.2 Example: Enable All Gestures 23 3.6.3.3 Example: Enable Data Output 24 3.6.4 Sensor Data Output 24 3.6.4 Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 3.6.4.2 Request_Message Reference 4.1 System_Status 27 4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33	· · · · · · · · · · · · · · · · · · ·	
3.4 Message Payload 18 3.5 Message Coding and Decoding 19 3.5.1 Header Extraction 19 3.5.2 Payload Extraction 20 3.6 Message Control Flow and Coding Examples 21 3.6.1 Message Control Flow 21 3.6.2 Read GestIC Library Version 22 3.6.2.1 Example: Request_FW_Version Info 22 3.6.3 Run-Time Control 23 3.6.3.1 Example: Enable Approach Detection 23 3.6.3.2 Example: Enable All Gestures 23 3.6.3.3 Example: Enable Data Output 24 3.6.3.4 Example: Lock Data Output 24 3.6.4 Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 Chapter 4. GestIC® Library Message Reference 4.1 System_Status 27 4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33	·	
3.5 Message Coding and Decoding 19 3.5.1 Header Extraction 19 3.5.2 Payload Extraction 20 3.6 Message Control Flow and Coding Examples 21 3.6.1 Message Control Flow 21 3.6.2 Read GestlC Library Version 22 3.6.2.1 Example: Request_FW_Version Info 22 3.6.3 Run-Time Control 23 3.6.3.1 Example: Enable Approach Detection 23 3.6.3.2 Example: Enable All Gestures 23 3.6.3.3 Example: Enable Data Output 24 3.6.4 Sensor Data Output 24 3.6.4 Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33	· · · · · · · · · · · · · · · · · · ·	
3.5.1 Header Extraction 19 3.5.2 Payload Extraction 20 3.6 Message Control Flow and Coding Examples 21 3.6.1 Message Control Flow 21 3.6.2 Read GestIC Library Version 22 3.6.2.1 Example: Request_FW_Version Info 22 3.6.3 Run-Time Control 23 3.6.3.1 Example: Enable Approach Detection 23 3.6.3.2 Example: Enable All Gestures 23 3.6.3.3 Example: Enable Data Output 24 3.6.4 Sensor Data Output 24 3.6.4 Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 Chapter 4. GestIC® Library Message Reference 4.1 System_Status 27 4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33	• •	
3.6 Message Control Flow and Coding Examples 21 3.6.1 Message Control Flow 21 3.6.2 Read GestIC Library Version 22 3.6.2.1 Example: Request_FW_Version Info 22 3.6.3 Run-Time Control 23 3.6.3.1 Example: Enable Approach Detection 23 3.6.3.2 Example: Enable All Gestures 23 3.6.3.3 Example: Enable Data Output 24 3.6.3.4 Example: Lock Data Output 24 3.6.4 Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 Chapter 4. GestIC® Library Message Reference 4.1 System_Status 27 4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33	3.5.1 Header Extraction	19
3.6.1 Message Control Flow 21 3.6.2 Read GestIC Library Version 22 3.6.2.1 Example: Request_FW_Version Info 22 3.6.3 Run-Time Control 23 3.6.3.1 Example: Enable Approach Detection 23 3.6.3.2 Example: Enable All Gestures 23 3.6.3.3 Example: Enable Data Output 24 3.6.3.4 Example: Lock Data Output 24 3.6.4 Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 Chapter 4. GestIC® Library Message Reference 4.1 System_Status 27 4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33	·	
3.6.2 Read GestIC Library Version 22 3.6.2.1 Example: Request_FW_Version Info 22 3.6.3 Run-Time Control 23 3.6.3.1 Example: Enable Approach Detection 23 3.6.3.2 Example: Enable All Gestures 23 3.6.3.3 Example: Enable Data Output 24 3.6.4 Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 4.1 System_Status 27 4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33	3.6 Message Control Flow and Coding Examples	21
3.6.2.1 Example: Request_FW_Version Info 22 3.6.3 Run-Time Control 23 3.6.3.1 Example: Enable Approach Detection 23 3.6.3.2 Example: Enable All Gestures 23 3.6.3.3 Example: Enable Data Output 24 3.6.4 Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 4.1 System_Status 27 4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33		
3.6.3 Run-Time Control 23 3.6.3.1 Example: Enable Approach Detection 23 3.6.3.2 Example: Enable All Gestures 23 3.6.3.3 Example: Enable Data Output 24 3.6.3.4 Example: Lock Data Output 24 3.6.4 Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 Chapter 4. GestIC® Library Message Reference 4.1 System_Status 27 4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33		
3.6.3.1 Example: Enable Approach Detection 23 3.6.3.2 Example: Enable All Gestures 23 3.6.3.3 Example: Enable Data Output 24 3.6.3.4 Example: Lock Data Output 24 3.6.4 Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 Chapter 4. GestIC® Library Message Reference 4.1 System_Status 27 4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33		
3.6.3.3 Example: Enable Data Output 24 3.6.3.4 Example: Lock Data Output 24 3.6.4 Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 Chapter 4. GestIC® Library Message Reference 4.1 System_Status 27 4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33		
3.6.3.4 Example: Lock Data Output 24 3.6.4 Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 Chapter 4. GestIC® Library Message Reference 4.1 System_Status 27 4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33	3.6.3.2 Example: Enable All Gestures	23
3.6.4 Sensor Data Output 25 3.6.4.1 Example: Read Sensor Data Output 25 Chapter 4. GestIC® Library Message Reference 4.1 System_Status 27 4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33	· · · · · · · · · · · · · · · · · · ·	
3.6.4.1 Example: Read Sensor Data Output 25 Chapter 4. GestIC® Library Message Reference 27 4.1 System_Status 27 4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33	·	
Chapter 4. GestIC® Library Message Reference 4.1 System_Status 27 4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33		
4.1 System_Status 27 4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33	<u>-</u>	25
4.2 Request_Message 29 4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33		07
4.3 Fw_Version_Info 30 4.4 Set_Runtime_Parameter 32 4.4.1 Trigger 33	· —	
4.4 Set_Runtime_Parameter	• = •	
4.4.1 Trigger		
	4.4.2 Make Persistent	
4.4.3 Analog Front End (AFE) Category		

4.4.3.1 Signal Matching	33
4.4.3.2 Electrode Mapping	
4.4.4 Digital Signal Processing (DSP) Category	
4.4.4.1 Transmit Frequency Selection	35
4.4.4.2 Touch Detection	
4.4.4.3 Approach Detection	36
4.4.5 System Category	
4.4.5.1 AirWheel	
4.4.5.2 Gesture Processing (HMM)	
4.4.5.3 Calibration Operation Mode	
4.4.5.4 Data Output Enable Mask	
4.4.5.5 Data Output Lock Mask	
4.4.5.6 Data Output Request Mask	
4.5 Sensor_Data_Output	42
Chapter 5. Messages for GestIC [®] Library Update	
5.1 Library Loader Update Procedure	47
5.2 Fw_Update_Start	48
5.3 Fw_Update_Block	
5.4 Fw_Update_Completed	52
Appendix A. I ² C [™] Command Examples	
Appendix B. Glossary	
Worldwide Sales and Service	62

MGC3030/3130 GestIC® LIBRARY INTERFACE DESCRIPTION

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a "DS" number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is "DSXXXXXA", where "XXXXXX" is the document number and "A" is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB[®] IDE online help. Select the Help menu, and then Topics to open a list of available online help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the MGC3030/3130 GestIC[®] Library Interface. Items discussed in this chapter include:

- Document Layout
- · Conventions Used in this Guide
- · Warranty Registration
- · Recommended Reading
- · The Microchip Web Site
- Development Systems Customer Change Notification Service
- Customer Support
- · Document Revision History

DOCUMENT LAYOUT

This document describes the MGC3030/3130 GestIC Library and is organized as follows:

- · Chapter 1. Introduction
- Chapter 2. MGC3030/3130 Host Interface
- Chapter 3. GestIC® Library Message Interface
- Chapter 4. GestIC[®] Library Message Reference
- Chapter 5. Messages for GestIC® Library Update
- Appendix A. I^{2C™} Command Examples
- Appendix B. Glossary

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENT CONVENTIONS

Description	Represents	Examples					
Arial font:							
Italic characters	Referenced books	MPLAB [®] IDE User's Guide					
	Emphasized text	is the only compiler					
Initial caps	A window	the Output window					
	A dialog	the Settings dialog					
	A menu selection	select Enable Programmer					
Quotes	A field name in a window or dialog	"Save project before build"					
Underlined, italic text with right angle bracket	A menu path	File>Save					
Bold characters	A dialog button	Click OK					
	A tab	Click the Power tab					
N'Rnnnn	A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.	4'b0010, 2'hF1					
Text in angle brackets < >	A key on the keyboard	Press <enter>, <f1></f1></enter>					
Courier New font:	•						
Plain Courier New	Sample source code	#define START					
	Filenames	autoexec.bat					
	File paths	c:\mcc18\h					
	Keywords	_asm, _endasm, static					
	Command-line options	-Opa+, -Opa-					
	Bit values	0, 1					
	Constants	0xFF, 'A'					
Italic Courier New	A variable argument	file.o, where file can be any valid filename					
Square brackets []	Optional arguments	mcc18 [options] file [options]					
Curly brackets and pipe character: { }	Choice of mutually exclusive arguments; an OR selection	errorlevel {0 1}					
Ellipses	Replaces repeated text	<pre>var_name [, var_name]</pre>					
	Represents code supplied by user	<pre>void main (void) { }</pre>					

WARRANTY REGISTRATION

Please complete the enclosed Warranty Registration Card and mail it promptly. Sending in the Warranty Registration Card entitles users to receive new product updates. Interim software releases are available at the Microchip web site.

RECOMMENDED READING

This user's guide describes how to use MGC3030/3130 GestIC Library Interface. Other useful documents are listed below. The following Microchip documents are available and recommended as supplemental reference resources.

MGC3030/3130 3D Tracking and Gesture Controller Data Sheet (DS40001667)

Consult this document for information regarding the MGC3030/3130 3D Tracking and Gesture Controller.

Aurea Graphical User Interface User's Guide (DS40001681)

Describes how to use the MGC3X30 Aurea Graphical User Interface.

GestIC® Design Guide (DS40001716)

This document describes the GestIC system characteristic parameters and the design process. It enables the user to generate a good electrode design and to parameterize the full GestIC system.

Aurea Software Package - Aurea GUI and GestIC Library

The Aurea GUI contains detailed information on GestIC library features and their parameterization. This information can be accessed via the help pages inside the Aurea parameterization wizard and can also be found as html documents in the Aurea installation folder '01 Documentation'.

Note: The "MGC3030/3130 GestIC® Library Interface Description User's Guide" applies to the MGC3030 and MGC3130 parts. Throughout this document, the term MGC3X30 will be representative for these two parts.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Information about GestIC technology and MGC3X30 can be directly accessed via http://www.microchip.com/gestic.

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

The Development Systems product group categories are:

- Compilers The latest information on Microchip C compilers, assemblers, linkers and other language tools. These include all MPLAB® C compilers; all MPLAB assemblers (including MPASM™ assembler); all MPLAB linkers (including MPLINK™ object linker); and all MPLAB librarians (including MPLIB™ object librarian).
- **Emulators** The latest information on Microchip in-circuit emulators. This includes the MPLAB[®] REAL ICE™ and MPLAB ICE 2000 in-circuit emulators.
- In-Circuit Debuggers The latest information on the Microchip in-circuit debuggers. This includes MPLAB ICD 3 in-circuit debuggers and PICkit™ 3 debug express.
- MPLAB® IDE The latest information on Microchip MPLAB IDE, the Windows Integrated Development Environment for development systems tools. This list is focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and MPLAB SIM simulator, as well as general editing and debugging features.
- Programmers The latest information on Microchip programmers. These include production programmers such as MPLAB REAL ICE in-circuit emulator, MPLAB ICD 3 in-circuit debugger and MPLAB PM3 device programmers. Also included are nonproduction development programmers such as PICSTART[®] Plus and PICkit 2 and 3.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers.

Technical support is available through the web site at:

http://www.microchip.com/support.

DOCUMENT REVISION HISTORY

Revision A (August, 2013)

Initial release of the document.

Revision B (November, 2013)

Updated Chapters 1, 2, 3 and 4; Added Chapter 5; Updated content for GestIC Library V1.0 and later.

Revision C (May, 2014)

Updated Section 3.5.2 (Payload Extraction), Section 4.2 (Request_Message), Section 4.4 (Set_Runtime_Parameter) and Section 4.5 (Sensor_Data_Output); Updated Tables 3-7, 3-12, 3-13, 3-14, 5.2, 5-4 and 5-6; Added Appendix A (I²C™ Command Examples).

Revision D (January, 2015)

Changed document title; Added note and updated titles in the Recommended Reading section; Updated Appendix B; Other minor corrections.

Revision E (July, 2015)

Updated paragraphs in 3.5.2, 4.4.5.2, 4.4.5.4 and 4.4.5.6 Sections; Updated 3-5, 4-5, 4-6, 4-10, 5-2 tables and tables in Appendix A; Updated content for GestIC Library V1.3 and later; Other minor corrections.

MGC3030/3130 GestIC® LIBRARY INTERFACE DESCRIPTION

Chapter 1. Introduction

1.1 PURPOSE OF THIS DOCUMENT

This document is the interface description of the MGC3X30's GestIC[®] Library. It outlines the function of the Library's I²C[™] message interface, and contains the complete message reference to control and operate the MGC3X30 system.

The main sections covered are:

- · Description of the message interface and data protocol
- · Message reference of the GestIC Library

The parameterization of the Colibri Suite is not covered in this document. That is only possible via Aurea PC software. Please refer to the help pages inside the Aurea parameterization wizard and to the "Aurea Graphical User Interface User's Guide" (DS40001681).

1.2 MGC3X30 SOFTWARE ARCHITECTURE

A MGC3X30 system can be accessed at two software levels:

- by direct I²C access via message interface of GestIC Library (direct interface)
- by GestIC API as an abstraction layer of the messages (administered interface) Examples for the two principal options are shown in Figure 1-1.

FIGURE 1-1: EXAMPLES FOR MGC3X30 SOFTWARE ACCESS

The direct interface is the simplest way to access MGC3X30, but it requires the user to receive and decode all I²C messages and validate received data. Direct access is recommended if a reduced set of sensor data is used by the application (e.g., gestures only, position only). The administered interface via GestIC API provides decoded and validated sensor data, which can be immediately used in the application. Typically, GestIC API runs in PC applications or OS drivers, which provide data to the application software. The following sections give a brief description of the building blocks of the two Interface modes.

1.3 GestIC® LIBRARY

The GestIC Library is embedded firmware stored on the MGC3X30's internal Flash memory. It contains:

- the Colibri Suite with the digital signal processing algorithms for GestIC features (i.e., GestIC core features Approach Detection, Position Tracking and Gesture Recognition)
- the System Control block providing full control of host interfaces, parameter storage and AFE access
- the Library Loader for updates of the GestIC Library

The main building blocks are shown in Figure 1-2.

The GestIC Library incorporates a message-based interface that allows the Configuration of the chip and the streaming of the sensor data to the host application.

FIGURE 1-2: BUILDING BLOCKS OF GestIC[®] LIBRARY

1.4 BRIDGE

An additional hardware bridge is needed if the application host does not support a native I²C interface. The bridge converts the I²C hardware protocol to USB/UART.

If a hardware bridge is incorporated, the application host may need an additional device driver to register the interface and provide MGC3X30 data within the operating system.

Examples are:

- A Windows[®] CDC driver to send MGC3X30 data to a virtual COM port. In this
 case, the driver is not aware of the MGC3X30 data format.
- An HID driver to use the MGC3X30 data directly as USB HID classes within the operating system. Because this driver must decode MGC3X30 messages, it is recommended that the GestIC API reference code is included in it.

1.5 GestIC API

Microchip developed the GestIC API as an abstraction layer for MGC3X30 messages to provide a simplified user interface that can be integrated into the customer's application easily.

GestIC API introduces a C reference code which includes the message buffer, the decoder, and the event handler, to make the interface independent from the low-level protocol and its timing constraints.

1.6 APPLICATION SOFTWARE

The sensor output is used in a user's application which integrates context-driven actions based on the user's hand movements.

Typically, the application software provides a Graphical User Interface (GUI) to visualize the MGC3X30 control options, like Aurea, which is delivered within the MGC3X30 evaluation and development kits.

MGC3030/3130 GestIC® LIBRARY INTERFACE DESCRIPTION

Chapter 2. MGC3030/3130 Host Interface

2.1 MGC3X30 HARDWARE INTERFACE

Communication with the MGC3X30 is accomplished via a two-wire I²C-compatible serial port, so the user can read the sensor data and send control messages to the chip. The MGC3X30 communicates via the serial interface with a master controller, which operates at speeds up to 400 kHz. One pin (IS2) is available for address selection and enables the user to connect up to two MGC3X30 devices on the same bus without address conflict.

Note: The MGC3X30 I²C[™] addresses are 0x42 and 0x43. They are given as device addresses without the R/W bit. Please compare to the "MGC3030/3130 3D Tracking and Gesture Controller Data Sheet" (DS40001667).

In addition, MGC3X30 requires a dedicated transfer status line (TS), which features a data transfer status function. The TS is used by both I²C Master and Slave to control the data flow. I²C SCL, I²C SDA and TS lines require an open-drain connection on MGC3X30 and the connected host controller. To function properly, I²C SCL and I²C SDA need to be pulled up to Vcc with 1.8 k Ω resistors and the TS line needs to be pulled up to Vcc with a 10 k Ω resistor.

FIGURE 2-1: HARDWARE INTERFACE TO HOST CONTROLLER

To complete the control options for MGC3X30, it is recommended that the host controller controls the MGC3X30 MCLR line. In particular, the hardware Reset is necessary for the update procedure of the GestIC Library.

2.2 USE OF THE TS LINE

The TS line is used to check whether the I²C data is valid and can be sent from MGC3X30 to the host controller.

The MGC3X30 (I²C Slave) uses this line to inform the host controller (I²C Master) that there is data available to be transferred. The host controller uses the TS line to indicate that data is being transferred and prevents MGC3X30 from updating its data buffer.

MGC3X30 can update the I^2 C buffer only when TS is released by both chips, and a data transfer can only be started when MGC3X30 pulls TS low.

This procedure secures that:

- the host is always informed when new sensor data is available
- buffer updates in MGC3X30 are always completed before data is sent to the I²C bus

Table 2-1 shows how the TS line is used in the different states of communication.

TABLE 2-1: USE OF TRANSFER STATUS LINE

MBELL II GOL OF HIGHWAY LINE LINE											
MGC3X30	Host Controller	TS Line	Status								
Released (H)	Released (H)	High	Host finished reading data (Transfer end). No more data to be transferred to the host. MGC3X30 is allowed to update the data buffer.								
Asserted (L)	Released (H)	Low	Data from MGC3X30 is available to be sent, but the host has not yet started reading. If the host is busy and did not start reading before the next data update (5 ms), the MGC3X30 will assert the TS line high while updating the data buffer.								
Asserted (L)	Asserted (L)	Low	Host starts reading. MGC3X30 data buffer will not be updated until the end of transfer (host releases TS high).								
Released (H)	Asserted (L)	Low	MGC3X30 is ready to update the data buffer, but the host is still reading the previous data. MGC3X30 is allowed to update the data only when the host releases the TS high.								

Figure 2-2 shows the complete communication protocol

FIGURE 2-2: MGC3X30 COMMUNICATION PROTOCOL

- Note 1: The Stop condition after an I²C[™] data transmission is generated by the host controller (I²C[™] Master) after the data transfer is completed. Thus, it is recommended to verify the amount of bytes to be read in the message header (Size field).
 - 2: Transfer Status is only needed for data transfer from MGC3X30 to the host controller. Writing to MGC3X30 does not require the additional TS signal.

2.3 CODING EXAMPLE

In addition to the standard I²C interface, the communication between MGC3X30 and the host controller requires a proper handling of the Transfer Status. For an easier integration, the requirements are put into the code examples below.

EXAMPLE 2-1: CODE IMPLEMENTATION IN HOST CONTROLLER

```
I<sup>2</sup>C Read Function - requires TS:
I<sup>2</sup>C Master read loop:
   Read TS
   If TS == 0:
      Assert TS
       Send I<sup>2</sup>C start condition
       Send I^2C device address + read indication
       Receive I<sup>2</sup>C payload (the GestIC Library message)
       Send I^2C stop condition
       Release TS
   Wait 200 µs (to assure that MGC3X30 released TS line, too)
I^2C Write Function - does not require TS:
I<sup>2</sup>C Master write loop:
       Send I^2C start condition
       Send I^2C device address + write indication
       Send I<sup>2</sup>C payload (the GestIC Library message)
       Send I^2C stop condition
```

MGC3030/3130 GestIC® LIBRARY INTERFACE DESCRIPTION

Chapter 3. GestIC® Library Message Interface

3.1 MESSAGES OVERVIEW

GestIC[®] Library messages are defined for providing sensor data to the host application and for controlling MGC3X30 and its embedded features. They are sent as the payload of the I²CTM packets.

TABLE 3-1: MESSAGES FOR SYSTEM CONTROL

ID	Name	Page
0x15	System_Status	27
0x06	Request_Message	29
0x83	Fw_Version_Info	30
0xA2	Set_Runtime_Parameter	32

TABLE 3-2: MESSAGE FOR SENSOR DATA OUTPUT

ID	Name	Page				
0x91	Sensor_Data_Output	42				

TABLE 3-3: MESSAGES FOR GestIC® LIBRARY UPDATE

ID	Name	Page
0x80	Fw_Update_Start	48
0x81	Fw_Update_Block	50
0x82	Fw_Update_Completed	52

3.2 MESSAGE FORMAT

A message is the container to exchange data between GestIC Library and the application host. Each message has a minimum length of 4 bytes and a maximum of 255 bytes, and fits into the data packets of the communication interface (e.g., I²C). Each frame transports a single message (see Figure 3-1).

FIGURE 3-1: MGC3X30 MESSAGE EMBEDDED IN THE I²C[™] FRAME

START	Device Address	R/W	MGC3X30 Message	STOP
1 Bit	7 Bit	1 Bit	4255 Bytes	1 Bit

A message consists always of a 4-byte header and a variable payload. The format is shown in Figure 3-2.

FIGURE 3-2: MGC3X30 MESSAGE FORMAT

Header	Payload	4255 Bytes
4 Bytes	dependent on Message ID	. 2y.00

3.3 MESSAGE HEADER

The GestIC Library message header is fixed and has a length of 4 bytes. It contains four data fields, as shown in Figure 3-3 and explained in Table 3-4.

FIGURE 3-3: MGC3X30 MESSAGE HEADER

TABLE 3-4: DATA FIELDS OF MGC3X30 MESSAGE HEADER

Field	Size (in bytes)	Description
Msg. Size	1	Complete size of the message in bytes including the header.
Flags	1	Reserved for future use.
Seq.	1	Sequence number which is increased for each message sent out by MGC3X30. Range is 0255. The host controller can use that information to verify if the messages got lost during I ² C™ transmission. MGC3X30 ignores the sequence number in the received messages.
ID	1	ID of the message. For each ID, the GestIC [®] Library holds a dedicated structure containing the message direction, its payload elements and possible reply actions.

3.4 MESSAGE PAYLOAD

The message payload has a variable length and consists of one or more payload elements that contain the information to be exchanged. Depending on the content, these elements can be numerical values or dedicated numbers.

FIGURE 3-4: MGC3X30 MESSAGE PAYLOAD

Note: Payload elements are exchanged in little endian format. This means that the Lowest Significant Byte is written first.

Example: Element of 4 bytes: [Byte0]:[Byte1]:[Byte2]:[Byte3]

The structure and content of the payload elements is given in Chapter 4. "GestIC® Library Message Reference"

3.5 MESSAGE CODING AND DECODING

GestIC Library messages can be read as a row of hexadecimal values. In order to decode them, the header and payload elements need to be extracted and mapped to the definition in the message reference (see **Chapter 4**. "**GestIC**® Library Message Reference").

As an example message, ID 0x83, FW_Version_Info is decoded in the following section.

EXAMPLE 3-1: HEXADECIMAL REPRESENTATION OF MESSAGE 0x83

```
84 00 00 83 AA 63 80 E6 0C 64 15 20 31 2E 30 2E 30 3B 70 3A 48 69 6C 6C 73 74 61 72 56 30 31 3B 44 53 50 3A 49 44 39 30 30 30 72 31 38 34 39 3B 69 3A 42 3B 66 3A 32 32 35 30 30 3B 6E 4D 73 67 3B 73 3A 42 65 74 61 32 72 31 30 34 30 3A 31 30 34 39 3A 4D 4F 3B 63 3A 4D 4B 49 3B 74 3A 32 30 31 33 2F 31 31 2F 30 38 20 31 33 3A 30 33 3A 30 00 10 00 00 55 AA 90 65 20 20 80 0F FF 00 FF 00 E1 EA 00 00
```

3.5.1 Header Extraction

EXAMPLE 3-2: MESSAGE HEADER

84	00	00	83	AA	63	80	E6	0C	64	15	20	31	2E	30	2E	30	3В	70	ЗА	48	69	6C	6C	73	74	61	72
56	30	31	3В	44	53	50	ЗА	49	44	39	30	30	30	72	31	38	34	39	3В	69	ЗА	42	3В	66	ЗА	32	32
35	30	30	3В	6E	4 D	73	67	3В	73	ЗА	42	65	74	61	32	72	31	30	34	30	ЗА	31	30	34	39	ЗА	4 D
4F	3В	63	ЗА	4 D	4B	49	3В	74	ЗА	32	30	31	33	2F	31	31	2F	30	38	20	31	33	ЗА	30	33	ЗА	30
00	1 0	$\cap \cap$	$\cap \cap$	55	Δ Δ	٩n	65	20	20	80	OΕ	ਸਸ	0.0	ਸਸ	0.0	F.1	FΑ	0.0	0.0								

The message header contains the following information:

• Size: 0x84 Message including header has a length of 132 bytes

• Flags: 0x00 Flags are not set

• Seq.: 0x00 The message has been sent out with a sequence number of 0

• ID: 0x83 The message ID is 0x83, Fw Version Info

3.5.2 Payload Extraction

EXAMPLE 3-3: MESSAGE PAYLOAD

84 00 00 83 AA 63 80 E6 0C 64 15 20 31 2E 30 2E 30 3B 70 3A 48 69 6C 6C 73 74 61 72 56 30 3B 3B 44 53 50 3A 49 44 39 30 30 30 72 31 38 34 39 3B 69 3A 42 3B 66 3A 32 32 35 30 3B 6E 4D 73 67 3B 73 3A 42 65 74 61 32 72 31 30 34 30 3A 31 30 34 39 3A 4D 4F 3B 63 3A 4D 4B 49 3B 74 3A 32 30 31 33 2F 31 31 2F 30 38 20 31 33 3A 30 33 3A 30 00 10 00 00 55 AA 90 65 20 20 80 0F FF 00 FF 00 E1 EA 00 00

According to Section 4.3 "Fw_Version_Info", Fw_Version_Info holds seven payload elements:

• FwValid Status of GestIC Library (1 byte)
• HwRev HW revision information (2 bytes)
• ParameterStartAddr Start address of parameter (1 byte)
• LibraryLoaderVersion GestIC Library loader version (2 bytes)
• LibraryLoaderPlatform GestIC Library loader platform (1 byte)
• FwStartAddr Start address of GestIC Library(1 byte)

• FwVersion Version information of GestIC Library if valid (120

bytes)

The values can now be converted and mapped to the description of the payload elements:

FwValid = AA (170): A valid GestIC Library is available

HwRev = 63 80 (read as $0 \times 80 \times 63$): HW revision is 128.99

ParameterStartAddr = 0xE6 (230x128=29440): Start address of parameter

is 29440

LibraryLoaderVersion = 0C 64 (read as $0 \times 64 0 \times 0C$): Library Loader version

is 100.12

LibraryLoaderPlatform = 15 (read as 0x15): Library Loader Platform is 21

FwStartAddr = 0x20 (32x128=4096): Start address of GestIC

Library is 4096

FwVersion = 31 2E 30 2E 30 3B 70 3A 48 69 6C 6C 73 74 61 72 56 30 31 3B 44 53 50 3A 49 44 39 30 30 30 72 31 38 34 39 3B 69 3A 42 3B 66 3A 32 32 35 30 30 3B 6E 4D 73 67 3B 73 3A 42 65 74 61 32 72 31 30 34 30 3A 31 30 34 39 3A 4D 4F 3B 63 3A 4D 4B 49 3B 74 3A 32 30 31 33 2F 31 31 2F 30 38 20 31 33 3A 30 33 3A 30 00 10 00 00 55 AA 90 65 20 20 80 0F FF 00 FF 00 E1 EA 00 00

The version string is interpreted as ASCII characters. It is a semicolon-separated string, always starting with the version number itself, and followed by different tags:

1.0.0;p:HillstarV01;DSP:ID9000r1849;i:B;f:22500;nMsg;s:Beta2r1040:1049
:MO;c:MKI;t:2013/11/08 13:03:0;...

3.6 MESSAGE CONTROL FLOW AND CODING EXAMPLES

3.6.1 Message Control Flow

The control of MGC3X30 GestIC Library is done through the following messages:

- Set Runtime Parameter (ID 0xA2)
- Request Message (ID 0x06)

MGC3X30 acknowledges each control message by a $System_Status$ (ID 0x15), which contains the original message ID and a 2-byte error code. If the error code is '0', the message is applied correctly to MGC3X30.

The message control flow from the point of view of the application host is shown in Figure 3-5.

FIGURE 3-5: APPLICATION HOST MESSAGE CONTROL

Note: The Hillstar and Sabrewing I²C[™] to USB bridge prefixes every I²C[™] packet with 0xFEFF before it is sent out via UART emulation on USB. That is done to allow a frame separation inside the data stream of the PC. For messages sent to MGC3X30 from a terminal program (e.g., Hterm), the prefix has to be added, as well.

3.6.2 Read GestIC Library Version

After Power-on or Reset, MGC3X30 runs the Library Loader and sends out the message $Fw_Version_Info_{0x83}$. The application host can receive this message as a first communication check. After a time out of 200 ms, the GestIC Library Processing mode is started automatically.

The application host can request the $FW_Version_Info$ during runtime by using Request_Message (0x06).

3.6.2.1 EXAMPLE: Request_Fw_Version INFO

The following example shows how the Request_Message (0x06) is used to request a FW_Version_Info (0x83) message.

TABLE 3-5: MESSAGE FROM HOST TO MGC3X30: REQUEST MESSAGE (0X06)

Raw Message	OC 00 00 06 83 00 00 00 00 00 00								
Payload Element	MessageID	Reserved	Parameter						
Hex in little endian	83	00 00 00	00 00 00 00						
Hex decoded	0x83	n/a	n/a						
Description	FW_Version_Info	n/a	n/a						

MGC3X30 replies with message $FW_Version_Info$ (0x83) followed by $System_Status$ (0x15), containing the error code.

TABLE 3-6: MESSAGE FROM MGC3X30 TO HOST: FW VERSION INFO (0X83)

INDLL	· · · · · · · · · · · · · · · · · · ·		CIVI IN COOKOO 1	<u> </u>	DIGION_INTO	(01103)	
Raw Message	3B 44 53 73 67 3B 3A 32 30	73 3A 42 6	4 39 30 30 30 72 3 5 74 61 32 72 31 3 1 31 2F 30 38 20 3	31 2E 30 2E 30 3 31 38 34 39 3B 6 30 34 30 3A 31 3 31 33 3A 30 33 3	9 3A 42 3B 66 3 0 34 39 3A 4D 4	A 32 32 35 30 3 F 3B 63 3A 4D 4	
Payload Element	FWValid	HWRev	ParameterStar- tAddr	LibraryLoad- erVersion	LibraryLoad- erPlatform	FWStartAddr	FWVersion
Hex in little endian	AA	00 00	FF	00 00	00	20	
Hex decoded	0xAA	n/a	n/a	n/a	n/a	0x20	
Description	170 ValidFW	Only valid after MGC3X30 start-up	Only valid after MGC3X30 start-up	Only valid after MGC3X30 start-up	Only valid after MGC3X30 start-up	Start address of GestIC [®] Library	Please see below

FW Version interpreted as ASCII characters:

1.0.0;p:HillstarV01;DSP:ID9000r1849;i:B;f:22500;nMsg;s:Beta2r1040:1049:MO;c:MKI;t:2013/11/08 13:03:08;...

GestIC Library Version: 1.0.0
 Platform: HillstarV01
 Colibri Suite Version: ID9000r1849

• Build Time: 2013/11/08 13:03:08

GestIC[®] Library Message Interface

3.6.3 Run-Time Control

A dedicated set of run-time control options is provided within the message $Set_Runtime_Parameter~(0xA2)$. It can be used to control the active feature set and sensor data output and, thus, it allows the build-up of a context-sensitive operation of MGC3X30. For a detailed message description, please refer to Section 4.4 "Set_Runtime_Parameter".

The following examples show how to set relevant runtime parameters.

3.6.3.1 EXAMPLE: ENABLE APPROACH DETECTION

This example shows how to enable the Approach Detection mode by using the message Set Runtime Parameter (0xA2).

TABLE 3-7: MESSAGE FROM HOST TO MGC3X30: SET RUNTIME PARAMETER (0XA2)

Raw Message	10 00 00 A2 97 00 00 00 01 00 00 01 00 00 00						
Payload Element	RuntimeParameterID	Reserved	Argument0	Argument1			
Hex in little endian	97 00	00 00	01 00 00 00	01 00 00 00			
Hex decoded	0x0097	n/a	0x0000001	0x0000001			
Description	ApproachDetection	n/a	Enable Approach Detection mode	Mask for Approach Detection bit			

MGC3X30 replies with message System Status (0x15), containing the error code.

TABLE 3-8: MESSAGE FROM MGC3X30 TO HOST: SYSTEM STATUS (0X15)

Raw Message	10 00 08 15 A2 34 00 00 00 00 00 00 00 00 00 00					
Payload Element	MsgID	MaxCmdSize	ErrorCode	Reserved	Reserved	
Hex in little endian	A2	34	00 00	00 00 00 00	00 00 00 00	
Hex decoded	0xA2	0x34	0x0000	n/a	n/a	
Description	Acknowledge to ID 0xA2	n/a	No error	n/a	n/a	

3.6.3.2 EXAMPLE: ENABLE ALL GESTURES

This example shows how to enable all gestures (Flicks and Circles) by using the message Set Runtime Parameter (0xA2).

TABLE 3-9: MESSAGE FROM HOST TO MGC3X30: SET RUNTIME PARAMETER (0XA2)

17 (BLL 0 0. 101)		10 MOOOKOO. 521_		JIC (021112)			
Raw Message	10 00 00 A2 85 00 00 00 7F 00 00 00 7F 00 00 00						
Payload Element	RuntimeParameterID	Reserved	Argument0	Argument1			
Hex in little endian	85 00	00 00	7F 00 00 00	7F 00 00 00			
Hex decoded	0x0085	n/a	0x000007F	0x000007F			
Description	despGestureMask	n/a	Enable gestures 06	Mask for Enable gestures 06 bits			

MGC3X30 replies with message System Status (0x15). Refer to Table 3-8.

3.6.3.3 EXAMPLE: ENABLE DATA OUTPUT

This example shows how to enable the sensor data output of Gesture Data, Touch Data, AirWheel Data and Position Data. Please refer to **Section 4.4.5.4** "**Data Output Enable Mask**".

TABLE 3-10: MESSAGE FROM HOST TO MGC3X30: SET RUNTIME PARAMETER (0XA2)

Raw Message	10 00 00 A2 A0 00 00 00	1E 00 00 00	FF FF FF FF	
Payload Element	RuntimeParameterID	Reserved	Argument0	Argument1
Hex in little endian	A0 00	00 00	1E 00 00 00	FF FF FF FF
Hex decoded	0xA0	0x0000	0x0000001E	0xFFFFFFFF
Description	DataOutputEnableMask	n/a	Enable bit 1bit 4; disable all other bits	Overwrite existing Configuration

MGC3X30 replies with message System Status (0x15). Refer to Table 3-8.

3.6.3.4 EXAMPLE: LOCK DATA OUTPUT

This example shows how to lock the sensor data output of Gesture Data, Touch Data, AirWheel Data and Position Data. Please refer to **Section 4.4.5.5 "Data Output Lock Mask"**.

TABLE 3-11: MESSAGE FROM HOST TO MGC3X30: SET_RUNTIME_PARAMETER (0XA2)

Raw Message	10 00 00 A2 A1 00 0	0 00 1E 00 00 00	FF FF FF FF	
Payload Element	RuntimeParameterID	Reserved	Argument0	Argument1
Hex in little endian	A1 00	00 00	1E 00 00 00	FF FF FF FF
Hex decoded	0x00A1	0x0000	0x000001E	0xFFFFFFFF
Description	DataOutputLockMask	n/a	Enable bit 1bit 4; disable all other bits	Overwrite existing Configuration

MGC3X30 replies with message System Status (0x15). Refer to Table 3-8.

GestIC[®] Library Message Interface

3.6.4 Sensor Data Output

The GestIC Library processes sensor data with a default update rate of 5 ms. That means the I²C message buffer is regularly updated in that time interval. Whenever new data is available, MGC3X30 pulls the TS line to request the I²C master to transfer this data. Sensor data sent from MGC3X30 to the host are included in the message Sensor Data Output (0x91).

The content of the sensor data output can be configured via the message $Set_Runtime_Parameter (0xA2)$.

3.6.4.1 EXAMPLE: READ SENSOR DATA OUTPUT

In the following examples the sensor data output is configured according to Section 3.6.3.3 "Example: Enable Data Output" and Section 3.6.3.4 "Example: Lock Data Output".

TABLE 3-12: MESSAGE FROM MGC3X30 TO HOST: FLICK EAST TO WEST

Raw Message	18 08 FF 91 1E 01 57	8C 03 10 04 00	00 00 00 00	00 00 00 00	00 00 00 00
Payload Element	SystemInfo	GestureInfo	TouchInfo	Air- WheelInfo	xyzPosition
Hex in little endian	8C	03 10 04 00	00 00 00 00	00 00	00 00 00 00 00 00
Hex decoded	0x8C	0x00041003	0x00000000	0x0000	0x00000000000
Description	Bit 2: RawDataValid Bit 3: NoisePowerValid Bit 7: DSPRunning	Flick East to West	No touch	No AirWheel	No Position Data available

TABLE 3-13: MESSAGE FROM MGC3X30 TO HOST: TOUCH OF CENTER ELECTRODE

Raw Message	18 08 3B 91 1E 01 38 8D 00 00 00 00 10 00 00 00 00 5A A6 12 53 6B 0A						
Payload Element	SystemInfo	GestureInfo	TouchInfo	Air- WheelInfo	xyzPosition		
Hex in little endian	8D	00 00 00 00	10 00 00 00	00 00	5A A6 12 53 6B 0A		
Hex decoded	0x8D	0x0000000	0x0000010	0x0000	Byte 1 and 2: 0xA65A Byte 3 and 4: 0x5312 Byte 5 and 6: 0x0A6B		
Description	Bit 0: PositionValid Bit 2: RawDataValid Bit 3: NoisePowerValid Bit 7: DSPRunning	No Gesture Detected	Touch on Center Electrode	No AirWheel Data	x : 42586 y : 21266 z : 2667		

TABLE 3-14: MESSAGE FROM MGC3X30 TO HOST: POSITION

Raw Message	18 08 44 91 1E 01 41 8D 00 00 00 00 00 00 00 00 2F B2 E7 87 6A 35						
Payload Element	SystemInfo	GestureInfo	TouchInfo	Air- WheelInfo	xyzPosition		
Hex in little endian	8D	00 00 00 00	00 00 00 00	00 00	2F B2 E7 87 6A 35		
Hex decoded	0x8D	0x0000000	0x00000000	0x0000	Byte 1 and 2: 0xB22F Byte 3 and 4: 0x87E7 Byte 5 and 6: 0x356a		
Description	Bit 0: PositionValid Bit 2: RawDataValid Bit 3: NoisePowerValid Bit 7: DSPRunning	No Gesture Detected	Touch on Center Electrode	No AirWheel Data	x: 45615 y: 34791 z: 13674		

MGC3030/3130 GestIC® LIBRARY INTERFACE DESCRIPTION

Chapter 4. GestIC® Library Message Reference

4.1 SYSTEM STATUS

 $system_status$ is used to acknowledge the reception of messages from the host. This message holds the error code and is used to confirm the transmission of the following messages:

- Request Message
- Set Runtime Parameter
- Fw Update Start (0x80)
- Fw Update Block (0x81)
- Fw_Update_Completed (0x82)

Direction: MGC3X30 to Host

TABLE 4-1: MESSAGE OVERVIEW

	Hea	ıder				Payload		
Msg. Size	Flags	Seq.	Q	MsgID	MaxCmdSize	ErrorCode	Reserved	Reserved
1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	2 Bytes	4 Bytes	4 Bytes
0x10	n/a	n/a	0x15		see d	escription	below	

TABLE 4-2: PAYLOAD ELEMENTS

Element	Element Size (bytes)	Description
MsgID	1	Holds the Message ID which System_Status corresponds to Structure: 1 byte Range: (0x000xFF)
MaxCmdSize	1	Holds the maximum I ² C [™] packet size GestIC [®] Library accepts (including header) Structure: 1 byte Range: (00xFF)

TABLE 4-2: PAYLOAD ELEMENTS (CONTINUED)

IABLE 4-2:	Element	OAD ELEMENTS (CONTINUED)				
Element	Size (bytes)			Description		
ErrorCode	2	Error cod	le, returned for the previous me	ssage.		
		Structure Possible	e: 16-bit Word containing dedicated values:	ated values (see list below)		
			-	ry Loader, Library Loader Updater and Library:		
			NoError UnknownCommand	OK Message ID is unknown		
		These en	ror codes are sent by the Librar	ry Loader:		
		0x0002	InvalidSessionId	Session ID is invalid or does not match (0x0 is not allowed) (message Fw_Update_Start, Fw_Update_Completed)		
		0x003	InvalidCrc	CRC is invalid thrown by messages: Fw_Update_Block, Fw_Update_Start, Fw_Update_Completed		
		0x0004	InvalidLength	Length is invalid (message Fw_Update_Block)		
		0x0005	InvalidAddress	Address is invalid (message Fw_Update_Block)		
		0x0006	InvalidFunction	<pre>Function-Id is invalid (message Fw_Update_Start, Fw_Update_Block, Fw_Update_Completed)</pre>		
		0x0008	ContentMismatch	The VerifyOnly function found a mismatch between content and Flash memory (message: Fw_Update_Block)		
		0x000B	WrongParameterAddr	Parameter Start address, contained in the new Library FW to be loaded, does not match Library Loader assumption. The Library Update is therefore aborted. (message: Fw_Update_Start)		
		These er	ror codes are sent by the Librar	y:		
		0x0014	WrongParameterValue	The value of the Argument/Parameter of a RuntimeParameter command is out of the valid range (message: Request_Message and Set_Runtime_Parameter)		
		0x0015	UnknownParameterID	The MessageID or RuntimeParameterID is unknown or out of the valid range (message: Request_Message and Set_Runtime_Parameter)		
		0x001A	WakeupHappend	A wake-up by Host was detected		
		These er	ror codes are sent by the Librar	y Loader Updater:		
		0x0080 0x0081	LoaderUpdateStarted LoaderUpdateFinished	The Library Loader update started The Library Loader update finished		
Reserved	4	Reserved	d			
Reserved	4	Reserved	d			

GestIC® Library Message Reference

4.2 REQUEST MESSAGE

Request_Message forces GestIC Library to reply to the message with the requested ID.

Direction: Host to MGC3X30

TABLE 4-3: MESSAGE OVERVIEW

	Hea	ader	Payload			
Msg. Size	Flags	Seq.	QI	MessageID	Reserved	Param.
1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	3 Bytes	4 Bytes
0x0C	n/a	n/a	0x06	see	description be	elow

TABLE 4-4: PAYLOAD ELEMENTS

Element	Size (bytes)	Description
MessageID	1	Request the Message with ID, MessageID, from GestIC Library. GestIC Library will answer with the requested message or stay silent. Structure : Single-byte read as a hexadecimal value Range : $(0 \times 00 0 \times FF)$
Reserved	3	Reserved, write as '0'.
Param.	4	Optional, parameter can be used to specify the kind of return. Example: Requesting message SetRuntimeParameter, Param. specifies the RuntimeParameterId to read back the parameter. Structure: 32-bit Word, containing dedicated values or bit fields. Range: (0x000000000xFFFFFFFF)

- **Note 1:** The Request_Message command can only be used with MessageID 0x83 and 0xA2.
 - 2: The TransFreqSelect run-time parameter is a write-only parameter and could not be requested with message Request Message.
 - 3: For examples of the Request Message command, refer to Table A-1.

4.3 FW_VERSION_INFO

At start-up, MGC3X30 sends the $Fw_Version_Info$ message to the host interface to show that the chip is live and ready for operation. $Fw_Version_Info$ can also be requested using Request Message (0x06).

Note: The payload elements HWRev, ParameterStartAddr and

LibraryLoaderVersion are only valid after MGC3X30 start-up.

Direction: MGC3X30 to Host.

TABLE 4-5: MESSAGE OVERVIEW

	Header			Payload						
Msg. Size	Flags	Seq.	QI	FwValid	HwRev	ParameterStartAddr	LibraryLoaderVersion	LibraryLoaderPlatform	FwStartAddr	FwVersion
1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	2 Bytes	1 Byte	2 Bytes	1 Byte	1 Byte	120 Bytes
0x84	n/a	n/a	0x83		•	see o	descriptio	n below		

TABLE 4-6: PAYLOAD ELEMENTS

Element	Size (bytes)	Description		
FwValid	1	Status of GestIC® Library. Structure: Single byte containing dedicated values (see list below)		
		Possible values:		
		0x00 Empty No valid GestIC® Library could be located		
		0x0A InvalidFW An invalid GestIC® Library was stored, or the last update failed		
		0xAA ValidFW A valid GestIC® Library is available		
HwRev	2	Hardware revision information		
		Structure : Vector of 2 bytes interpreted as decimal values in format $xx.xx$ Range : $(0x000xff, 0x000xff)$		
ParameterStartAddr	1	Parameter start address as supported by the Image address = 128 * value of ParameterStartAddr Structure: 1 byte interpreted as hex value Range: (0x000xFF)		
LibraryLoaderVersion	2	GestIC [®] Library loader version information Structure : Vector of 2 bytes interpreted as decimal values in format $xx.xx$ Range : $(0x000xff, 0x000xff)$		
LibraryLoaderPlatform	1	Identifier of GestIC [®] Libraryloader Platform 0x14 MGC3130 Sabrewing, 0x15 MGC3130 Hillstar, 0x32 MGC3030 Woodstar Structure : 1 byte interpreted as hex value Range : (0x000xFF)		
FwStartAddr	1	Start address of GestIC [®] Library as supported by the Bootloader, start address = 128 * value of FwStartAddr Structure: 1 byte interpreted as hex value Range: (0x000xFF)		

GestIC[®] Library Message Reference

TABLE 4-6: PAYLOAD ELEMENTS (CONTINUED)

Element	Size (bytes)	Description
FwVersion	120	Version information of GestIC® Library if valid (FwValid is not 0x00). The version string is interpreted as ASCII characters. It is a semicolon-separated string, always starting with the version number itself, followed by different tags. Supported Tags: p Platform (e.g., HillstarVxx) x Customized ID DSP Colibri Suite Version (e.g., ID45r -1167) s Reserved c Reserved t Build time (e.g., 2013/04/24 14:24:50) Structure: Vector of 120 bytes interpreted as string (ASCII characters) Range: (0x000xFF, 0x000xFF, 0x000xFF,)

4.4 SET RUNTIME PARAMETER

This message is used to set run-time parameters within the GestIC Library. It supports parameters for AFE parameterization, feature Configuration, and sensor data output. A special value is defined for a persistent saving of parameters to the Flash memory. Parameters which can be made persistent are grouped into three categories:

- Analog Front End (AFE) Category
- Digital Signal Processing (DSP) Category
- System Category

Direction: Host to MGC3X30

TABLE 4-7: MESSAGE OVERVIEW

Header				Payload			
Msg. Size	Flags	Seq.	QI	RuntimeParameterID	Reserved	Argument0	Argumentl
1 Byte	1 Byte	1 Byte	1 Byte	2 Bytes	2 Bytes	4 Bytes	4 Bytes
0x10	n/a	n/a	0xA2		see descri	otion below	

TABLE 4-8: PAYLOAD ELEMENTS

Element	Element Size (bytes)	Description
RuntimeParameterID	2	ID of runtime parameter. Please refer to Section 4.4.1 "Trigger" through Section 4.4.5.5 "Data Output Lock Mask". Structure: 16-bit Word interpreted as hex value Range: (0x00000xFFFF)
Reserved	2	Write as '0'
Argument0	4	Argument values, depending on runtime parameter ID. If not used, Argument0 should be provided as '0'. Structure: 32-bit Word: Argument0 Range: depends on run-time parameter
Argument1	4	Argument values, depending on run-time parameter ID. If not used, Argument1 should be provided as '0'. Structure: 32-bit Word: Argument1. Range: depends on runtime parameter.

4.4.1 Trigger

This parameter forces a trigger defined in Argument 0.

RuntimeParameterID 0x1000 Trigger: Parameter forces a trigger

Argument0 0x00000000: Force re-calibration

0x00000002: Enter Deep Sleep 1: The wake-up sources from

Deep Sleep 1 are I²C0 Start bit detection or

MCLR Reset.

The system will resume from Deep Sleep on any I²C messages sent on the bus, and the first I²C

message will be lost.

0x0000003: Enter Deep Sleep 2: The wake-up source from

Deep Sleep 2 is a falling edge on External Inter-

rupt (IRQ0) or MCLR Reset.

The IRQ0 (EIO2) should be tied to High when this command is sent unless the MGC3X30 resumes

directly after receiving it.

Range: (0x00000000, 0x00000002, 0x00000003)

Argument1 Not used

4.4.2 Make Persistent

Use this ID to make the parameter set defined in Argument0 persistent (store to Flash memory).

RuntimeParameterID 0xFF00 MakePersistent: Stores parameter in Flash

Argument0 0x00000000: Store RTPs for AFE Category

0x00000001: Store RTPs for DSP Category 0x00000002: Store RTPs for System Category

Range: (0x00000000, 0x00000001, 00000002)

Argument1 Not used

4.4.3 Analog Front End (AFE) Category

4.4.3.1 SIGNAL MATCHING

Signal matching parameters are used to adjust the Rx signal level at the sampling point.

RuntimeParameterID 0x50 afeRxAtt S Signal matching parameter for South

electrode

0x51 afeRxAtt W Signal matching parameter for West

electrode

0x52 afeRxAtt N Signal matching parameter for North

electrode

0x53 afeRxAtt E Signal matching parameter for East

electrode

0x54 afeRxAtt C Signal matching factor for Center

electrode

Argument 0 Contains the value

Range: (0x00000000..0x000000FF)

Argument1 Not used

4.4.3.2 ELECTRODE MAPPING

This electrode mapping represents the physical channel number assigned to the electrodes. These parameters represent the physical connection of the electrodes to MGC3X30 Rx channels. For the correct function, the mapping has to be looked up in the circuitry design.

RuntimeParameterID	0x65	Channelmapping_S	Physical channel assigned to the South Electrode
	0x66	Channelmapping_W	Physical channel assigned to the West Electrode
	0x67	Channelmapping_N	Physical channel assigned to the North Electrode
	0x68	Channelmapping_E	Physical channel assigned to the East Electrode
	0x69	Channelmapping_C	Physical channel assigned to the Center Electrode
Argument0	Contain Rx3, Rx	• •	al receive channels (Rx0, Rx1, Rx2,
	Range: 0x0000	'	00001,0x00000002,0x00000003,
Argument1	Not use	d	

4.4.4 Digital Signal Processing (DSP) Category

4.4.4.1 TRANSMIT FREQUENCY SELECTION

This sets the total number of transmitter frequencies used, and the order in which they are tested for the frequency hopping.

RuntimeParameterID 0x82 TransFreqSelect: Parameter to set the frequency IDs

used

Argument0 Total number of used Tx frequencies.

This parameter can be 1, 2, 3, 4 or 5.

Argument1 This determines in what order the transmitter frequencies

are tested.

The indexes numbered 0 to 4 represent respective

transmitter frequencies:

Frequency ID 0 corresponds to 115 kHz
 Frequency ID 1 corresponds to 103 kHz
 Frequency ID 2 corresponds to 88 kHz
 Frequency ID 3 corresponds to 67 kHz

Frequency ID 3 corresponds to 67 kHz
 Frequency ID 4 corresponds to 44 kHz
 These indexes have to be provided in nibbles.

Example: e.g., Argument0 = 0x04 in combination with

Argument1 = 0x3104 means that frequencies with the index 4, 0, 1 and 3 are used and tested in this specific order.

e.g., Index - Default Frequency Mapping

(Argument 0 = 0x5,Argument 1 = 0x43210)
Frequency ID 0 - Transmitter Frequency: 115 kHz
Frequency ID 1 - Transmitter Frequency: 103 kHz
Frequency ID 2 - Transmitter Frequency: 88 kHz
Frequency ID 3 - Transmitter Frequency: 67 kHz
Frequency ID 4 - Transmitter Frequency: 44 kHz

Note: The TransFreqSelect run-time parameter is a write-only parameter and could not be requested with REQUEST_MESSAGE (0x06) message.

4.4.4.2 TOUCH DETECTION

This parameter enables/disables Touch Detection.

RuntimeParameterID 0x97 dspTouchConfig: Parameter to enable/disable Touch

Detection

Argument0 Set Argument0 to '0x08' to enable Touch Detection

Set Argument0 to '0x00' to disable Touch Detection

Note: If Argument1 is not set correctly, the system will

show malfunctions.

Argument1 0x08

4.4.4.3 APPROACH DETECTION

This parameter enables/disables Approach Detection mode.

RuntimeParameterID 0x97 dspApproachDetectionMode: Parameter to enable/ disable

Approach Detection Mode

Argument0 Set Argument0 to 0x01 to enable Approach Detection

Set ${\tt Argument0}$ to ${\tt 0x00}$ to disable Approach Detection

Note: If Argument1 is not set correctly, the system will show

malfunctions.

Argument1 0x01

Note: On earlier versions than v1.0, the Approach Detection

RuntimeParameterID was 0x81 with the same definition of Argument0 and Argument1. This RTC is no longer supported on v1.1 and later. Aurea PC software still uses this RTC for legacy purposes.

4.4.5 System Category

4.4.5.1 AIRWHEEL

This parameter enables/disables AirWheel.

 ${\tt RuntimeParameterID~0x90~dspAirWheelConfig:} \begin{picture}(c) \textbf{Parameter to enable/disable} \\ \textbf{Parameter to enable/disable}$

AirWheel

Argument0 Set Argument0 to '0x20' to enable AirWheel

Set Argument 0 to '0x00' to disable AirWheel

Note: If Argument1 is not set correctly, the system will

show malfunctions.

Argument1 0x20

4.4.5.2 GESTURE PROCESSING (HMM)

This parameter enables the in-built gestures. Disabling one gesture will increase the recognition probability of the others.

If a bit in Argument0 is set to '1', the respective Gesture will be enabled. If a bit in Argument0 is set to '0', the respective Gesture will be disabled.

RuntimeParameterID 0x85 dspGestureMask: Parameter to enable/disable gestures

Argument0 Bit 0: Garbage model

Bit 1: Flick West to East Bit 2: Flick East to West Bit 3: Flick South to North Bit 4: Flick North to South Bit 5: Circle clockwise

Bit 6: Circle counterclockwise

Bit 7: Wave X
Bit 8: Wave Y

Bit 22: Hold gesture Bit 23: Presence gesture

Bit 24: Edge Flick West to East
Bit 25: Edge Flick East to West
Bit 26: Edge Flick South to North
Bit 27: Edge Flick North to South
Bit 28: Double Flick West to East
Bit 29: Double Flick East to West
Bit 30: Double Flick South to North
Bit 31: Double Flick North to South

Acts as a mask, set appropriate bits to '1' to change the flag.

All other flags remain unchanged.

Argument1

4.4.5.3 CALIBRATION OPERATION MODE

This parameter enables/disables the selected auto-calibration feature.

If a bit in Argument 0 is set to '0', the respective auto-calibration feature will be enabled. If a bit in Argument 0 is set to '1' the respective auto-calibration feature will be disabled.

 ${\tt RuntimeParameterID~0x80~dspCalOpMode:} \begin{tabular}{ll} \textbf{Parameter to enable/disable} \\ \end{tabular}$

auto-calibration

Argument 0 Bit 1: Enable/disable gesture-triggered calibration

Bit 2: Enable/disable negative calibration Bit 3: Enable/disable idle calibration

Bit 4: Enable/disable invalidity value calibration, if values are

completely out of range

Bit 5: Enable/disable calibration triggered by AFA

Argument1 Acts as a mask, set appropriate bits to '1' to change the flag.

All other flags remain unchanged.

4.4.5.4 DATA OUTPUT ENABLE MASK

This parameter determines the data output of the message <code>Sensor_Data_Output</code> (0x91). If a bit in <code>Argument0</code> is set to '1', the respective payload element will be part of the message <code>Sensor_Data_Output</code> (0x91). If a bit in <code>Argument0</code> is set to '0', the payload element will not be part of the message <code>Sensor_Data_Output</code> (0x91) when the data is updated (payload element is 'Off').

Use ${\tt DataOutputEnableMask}$ to optimize the sensor data output in terms of I^2C utilization and efficiency of the host code.

Note: enabling all payload elements might lead to malfunctions due to bandwidth limitations on the I²C bus.

RuntimeParameterID 0xA0 DataOutputEnableMask: Parameter determining the data output

Argument0 Bits 0...12: Payload elements: If set to '1', payload elements will be part of the message

Bit 0: DSP Status
Bit 1: Gesture Data
Bit 2: TouchInfo

Bit 3: AirWheelInfo Bit 4: xyzPosition Bit 5: Noise Power

Bit 6...10: These bits are reserved and must be set to '0'

Bit 11: CICData (Uncalibrated Signal) Bit 12: SDData (Signal Deviation)

Bits 13...15: These bits are reserved and must be set to '0'

Bits 16...17: SystemInfo status bits: If set to '1', the reporting of a state change in the payload element SystemInfo is enabled

Bit 16: EnvironmentalNoise indication

Bit 17: Clipping indication

Bit 18: DSP running

Bits 19: AirWheelCounterDecimation: If set to '1', the AirWheel counter is decimated by the factor of 4

Bit 20: TimeStampOverflow:

This applies when AirWheel or Touch Detection is ongoing. If activated, a message will be sent when the counter in the payload element TimeStamp is overflowing (TimeStamp=0)

Bits 21...26: These bits are reserved

Bits 27...31: GesturesInfo status bits: If set to '1', the reporting of a state change in the payload element GestureInfo is enabled.

Bit 27: HandPresence flag Bit 28: HandHold flag Bit 29: HandInside flag

Bit 30: This bit is reserved

Bit 31: GestureInProgress flag

Acts as a mask, set appropriate bits to '1' to change the flag. All other flags remain unchanged.

Argument1

4.4.5.5 DATA OUTPUT LOCK MASK

Argument1

This parameter determines the data output of the <code>Sensor_Data_Output</code> (0x91) message. If a bit in <code>Argument0</code> is set to '1', the respective payload element will be part of the <code>Sensor_Data_Output</code> (0x91) message, no matter whether there is new data or not (payload element is 'On').

If a bit in Argument0 is set to '0', the payload element will only be part of the message Sensor_Data_Output (0x91) when the data is updated (payload element is 'Dynamic').

 ${\tt RuntimeParameterID~0xA1~DataOutputLockMask:} \ \textbf{Parameter determining the data}$

output

Argument 0 Bits 0...12: Payload elements: If set to '1', payload elements will be

part of the message

Bit 0: DSP Status

Bit 1: Gesture Data

Bit 2: TouchInfo
Bit 3: AirWheelInfo

Bit 4: xyzPosition

Bit 5: Noise Power

Bit 6...10: These bits are reserved and must be set to '0'.

Bit 11: CICData (Uncalibrated Signal)

Bit 12: SDData (Signal Deviation)

Bits 13...15: These bits are reserved and must be set to '0'

Acts as a mask, set appropriate bits to '1' to change the flag.

All other flags remain unchanged.

4.4.5.6 DATA OUTPUT REQUEST MASK

This parameter determines the data output only of the next message Sensor_Data_Output (0x91). If a bit in Argument0 is set to '1', the respective payload element will be part of the next message Sensor Data Output (0x91).

If a bit in ArgumentO is set to 'O', the payload element will not be part of the next message Sensor Data Output (0x91) when the data is updated.

This will force the MGC3X30 to send a new message <code>Sensor_Data_Output</code> (0x91) even if there were no valid events and data. This message will contain data according to the <code>ArgumentO</code> selection. Then the <code>Sensor_Data_Output</code> (0x91) will be sent according to the Data Output Enable and Lock masks only on valid events and data.

RuntimeParameterID 0xA2 DataOutputRequestMask: Parameter determining the next data output

Argument 0 Bits 0...12: Payload elements: If set to '1', payload elements will be

part of the message

Bit 0: DSP Status
Bit 1: Gesture Data
Bit 2: TouchInfo
Bit 3: AirWheelInfo
Bit 4: xyzPosition
Bit 5: Noise Power

Bit 6...10: These bits are reserved and must be set to '0'.

Bit 11: CICData (Uncalibrated Signal) Bit 12: SDData (Signal Deviation)

Bits 13...15: These bits are reserved and must be set to '0'

Argument1 Acts as a mask, set appropriate bits to '1' to change the flag.

All other flags remain unchanged.

Note: On earlier versions than V1.3.14, the GestureInProgress flag (bit31) could be activated/deactivated with a separate RuntimeParameterID 0xA3. This RTC is no longer supported in v1.3.14 and later. Aurea PC Software still uses this RTC for legacy purposes.

Note: For instances of the Set_Runtime_Parameter command examples, please

refer to Table A-2.

4.5 SENSOR DATA OUTPUT

This message contains the sensor data output of the MGC3X30. The content of the message can be configured via bit mask (refer to DataOutputEnableMask and DataOutputLockMask in Section 4.4 "Set_Runtime_Parameter").

The elements <code>DataOutputConfigMask</code>, <code>TimeStamp</code>, and <code>SystemInfo</code> are always part of the message. The inclusion of further payload elements depends on the Configuration, and the actual Configuration can be read from the payload element. <code>DataOutputConfigMask</code>.

Direction: MGC3X30 to Host

TABLE 4-9: MESSAGE OVERVIEW

	Head	der			Pay	load	
Size	Flags	Seq.	QI	DataOutputConfigMask	TimeStamp	SystemInfo	Variable depending on DataOutputConfigMask
1 Byte	1 Byte	1 Byte	1 Byte	2 Bytes	1 Byte	1 Byte	Variable depending on DataOutputConfigMask
variable	n/a	n/a	0x91		see descri	ption below	

TABLE 4-10: PAYLOAD ELEMENTS

Element	Element size (bytes)	Description					
DataOutputConfigMask	2	Bit mask indicating which data is part of the message.					
		The following bits are used:					
		Bit 0: DSPStatus field.					
		Bit 1: GestureInfo field.					
		Bit 2: TouchInfo field.					
		Bit 3: AirWheelInfo field.					
		Bit 4: xyzPosition field.					
		Bit 5: NoisePower field.					
		Bit 610: These bits are reserved.					
		Bit 11: CICData field.					
		Bit 12: SDData field.					
		Bit 1315: These bits are reserved.					
		Structure: 16-bit Word read as a bit mask					
		Range : (0x00000xffff)					
TimeStamp	1	8-Bit Counter of 200 Hz (Sample Interval) 200 Hz counter value wraps around after 256 ticks. This indicates when an event has taken place and allows measuring the elapsed time between two events, as long as it is below approximately 1.25 seconds. Structure: 8-bit Word read as decimal value. Range: (0x000xFF)					

GestIC® Library Message Reference

TABLE 4-10: PAYLOAD ELEMENTS (CONTINUED)

Element	Element size (bytes)	Description
SystemInfo	1	Bit mask indicating if the respective sensor data is valid. In an application, the sensor data output should only be further processed if the respective bits are set to '1'. The following bits are used: Bit 0: PositionValid, if set indicates that the position in the xyzPosition field is valid. Bit 1: AirWheelValid, if set indicates that the AirWheel is active and the data in the AirWheelInfo field is valid. Bit 2: RawDataValid, if set indicates that the data of the CICData and SDData fields are valid; otherwise those fields must be ignored. Bit 3: NoisePowerValid, if set indicates that the NoisePower field is valid. Bit 4: EnvironmentalNoise, if set indicates that environmental noise has been detected. Bit 5: Clipping, if set indicates that the ADCs are clipping. Bit 6: This bit is reserved. Bit 7: DSPRunning, if set indicates that the system is currently running. If not set, the system is about to go to Sleep. Structure: 8-bit Word read as a bit mask Range: (0x000xFF) Note:Position Data is disabled from the sensor data output and AirWheel is enabled: Position Valid will be set and sent with SystemInfo and a new message will be sent when AirWheel detection starts.
DSPStatus	2	This element consists of two bytes. The first byte contains information about Calibration events. The second byte indicates the Tx frequency currently used. Bit 0: This bit is reserved. Bit 1: CalibrationInfo: Forced Calibration (by Host) Bit 2: This bit is reserved. Bit 3: CalibrationInfo: Gesture triggered Bit 4: CalibrationInfo: Negative value Bit 5: CalibrationInfo: Idle Calibration Bit 6: CalibrationInfo: Invalid value Calibration Bit 7: CalibrationInfo: Calibration triggered by AFA Bits 815: Tx Frequency in kHz as decimal value (44115) Structure: 2 bytes; first byte is read as a bit mask while second as decimal Range: (0x000xFF; 44115)

TABLE 4-10: PAYLOAD ELEMENTS (CONTINUED)

	Element	ENTS (CONTINUED)
Element	size	Description
Liement	(bytes)	Description
	_	
GestureInfo	4	This field contains the 32-bit gesture information Word.
		Recognized Gestures:
		The recognized gestures are results of the HMM classification. Edge detection
		can be used to further classify where the gesture has been done (Edge
		Flicks). Furthermore, gesture attributes give information about the direction of
		the flick. The gesture information is given as a bit field and can be decoded as
		follows:
		Bits 07:Recognized gesture as decimal number
		0: No gesture
		1: Garbage model
		2: Flick West to East
		3: Flick East to West
		4: Flick South to North
		5: Flick North to South
		6: Circle clockwise (only active if AirWheel disabled)
		7: Circle counterclockwise (only active if AirWheel disabled) 8: Wave X
		9: Wave X
		9. Wave 1 64:Hold
		73: Presence
		65:Edge Flick West to East
		66: Edge Flick East to West
		67: Edge Flick South to North
		68: Edge Flick North to South
		69: Double Flick West to East
		70: Double Flick East to West
		71: Double Flick South to North
		72: Double Flick North to South
		Bits 811: These bits must not be interpreted.
		Bits 1215:Gesture Class read as a decimal number
		0: Garbage model
		1: Flick gesture
		2: Circular gesture
		Bit 16: Edge flick – is '1' if flick gesture is classified as edge flick
		Bits 1726:These bits are reserved.
		Bit 27: HandPresence flag: Is '1' while the user's hand is within the
		sensing space.
		Bit 28: HandHold flag: Is '1' while the hand is not moving. Further
		dependencies can be adjusted inside Aurea Parametrization.
		Bit 29: HandInside flag: Is '1' while the user's hand is approximately
		above the sensor.
		Bit 30: This bit is reserved.
		Bit 31: Gesture recognition in progress. This bit is set when the
		Gesture Recognizer is active and Reset when the gesture is
		recognized and the Recognizer is Off.
		Structure: 32-bit Word read as a bit mask
		Range : (0x000000000xffffffff)

GestIC[®] Library Message Reference

TABLE 4-10: PAYLOAD ELEMENTS (CONTINUED)

Element	Element size (bytes)	Description
TouchInfo	4	Contains touch information
TOUCHINIO		The following bits are used to indicate a touch event on the respective elec-
		trodes:
		Bit 0: Touch South electrode
		Bit 1: Touch West electrode
		Bit 2: Touch North electrode
		Bit 3: Touch East electrode
		Bit 4: Touch Center electrode
		Bit 5: Tap South electrode
		Bit 6: Tap West electrode
		Bit 7: Tap North electrode
		Bit 8: Tap East electrode
		Bit 9: Tap Center electrode Bit 10: Double Tap South electrode
		Bit 10: Double Tap South electrode Bit 11: Double Tap West electrode
		Bit 12: Double Tap West electrode Bit 12: Double Tap North electrode
		Bit 13: Double Tap Fast electrode
		Bit 14: Double Tap Center electrode
		Bit 15: This bit is reserved.
		Bits 1623:Touch Counter: 8-bit counter; this counter determines the
		period between the time when the hand starts moving to
		touch until it is detected. This period is equal to [Touch
		Counter Value] x 5 (ms). The counter starts counting when
		the minimum approach speed required to detect a touch
		event is exceeded, until the touch is detected. After each
		touch detection, the counter is reset.
		Bits 2431:These bits are reserved.
		Structure: 32-bit Word read as a bit mask
		Range : (0x000000000xfffffff)
AirWheelInfo	2	The first byte contains a counter which indicates how far the AirWheel
		rotation has progressed.
		Bits 04: Value represents the current angular position with a
		resolution of 32 counts for a full revolution.
		Bits 57: Counts of full rotations.
		Each time the angular position crosses '0', a full revolution is counted.
		If the users hand is moving in clockwise direction the counter is
		increased. For counterclockwise movements, the counter is decreased. AirWheelInfo is only valid if the AirWheelValid bit in the element
		SystemInfo is 0111y valid if the All wheelvalld bit in the element SystemInfo is '1'.
		The second byte is reserved.
		Structure: Vector of two 8-bit Words read as a decimal value
		Range: (0x00000x00FF)

TABLE 4-10: PAYLOAD ELEMENTS (CONTINUED)

Element	Element size (bytes)	Description
xyzPosition	6	This element contains x, y and z position data. Two bytes are used for each of the positions x, y and z. Bytes 1 and 2:x position Bytes 3 and 4:y position Bytes 5 and 6:z position The position information is only valid if the PositionValid bit in the element SystemInfo is '1'. The data give the position of the user's hand in the Cartesian coordinate system. Position data of [0,0,0] represent the origin of the coordinate system and data of [65535, 65535, 65535] are the maximum dimension of the sensing space. The origin is defined as the lower left corner of the sensitive space (South-West) at the surface of the system. Structure: Vector of three16-bit Words read as decimal value for each position x, y, z Range: (0x0000.0xFFFFF) for each position x, y, z
NoisePower	4	Noise Power of the GestIC system. NoisePower is only valid if the NoisePowerValid bit in the element SystemInfo is '1'. Structure: 32-bit Word read as a float value Range: (03.402823e+38)
CICData	20	Uncalibrated Sensor Data (CIC Data) Structure: Vector of five, 32-bit Words interpreted as float values in format. An offset of 32000 needs to be added to each channel. xxxx.xxxx.xxxx.xxxx (South.West.North.East.Center) Range: (-3.402823e+383.402823e+38) for each channel
SDData	20	Signal Deviation (SD) SDData are only valid if the RawDataValid bit in the element SystemInfo is '1'. Structure: Vector of five, 32-bit Words interpreted as float values in xxxx.xxxx.xxxx.xxxx.(South.West.North.East.Center) format Range: (-3.402823e+383.402823e+38) for each channel
Reserved	_	Reserved: Additional payload elements can be added in the future or for debug purposes.

Note: For the examples list of the Sensor_Data_Output command, please refer to Table A-3.

MGC3030/3130 GestIC® LIBRARY INTERFACE DESCRIPTION

Chapter 5. Messages for GestIC® Library Update

5.1 LIBRARY LOADER UPDATE PROCEDURE

The general library update process is shown in Figure 5-1. Please note that only libraries provided by Microchip Technology can be updated on the MGC3X30. Furthermore, an application note which describes the library update process in detail can be delivered by Microchip by request only.

For the library update process, three different messages are required:

- Fw_Update_Start (Message ID 0x80)
- Fw Update Block (Message ID 0x81)
- Fw Update Completed (Message ID 0x82)

FIGURE 5-1: LIBRARY UPDATE FLOWCHART

5.2 FW_UPDATE_START

This message starts the update session of the MGC3X30 device.

Direction: Host to MGC3X30

TABLE 5-1: MESSAGE OVERVIEW

Header						Paylo	ad	
Msg. Size	Flags	Seq.	QI	Crc	SessionID	IV	UpdateFunction	Reserved
1 Byte	1 Byte	1 Byte	1 Byte	4 Bytes	4 Bytes	14 Bytes	1 Byte	1 Byte
0x1C	n/a	n/a	0x80		s	see descript	ion below	

TABLE 5-2: PAYLOAD ELEMENTS

Field	Size (in bytes)	Description
Crc	4	A CRC32 (Ethernet, polynomial: 0x04C11DB7) calculated across the rest of the message (20 bytes) Structure: 32-bit Word Range: (0x000000000xfffffffff)
SessionId	4	The SessionID is a random number generated by the Host. It has to be resent in the Fw_Update_Completed message or else the session will be invalid. 0x000000000 is an invalid SessionID and is used to force the device in a wait loop. In this case, the remaining information in this message is discarded. Structure: 32-bit Word Range: (0x000000000xfffffffff)
IV	14	14-byte value which is used to encrypt the data. Structure: Vector of 14 bytes Range: (0x000xFF, 0x000xFF, 0x000xFF,)

Messages for GestIC[®] Library Update

TABLE 5-2: PAYLOAD ELEMENTS

Field	Size (in bytes)	Description
UpdateFunction	1	The UpdateFunction sets the mode of the whole update session: - If the Session mode is set ProgramFlash, the payloads of the following Fw_Update_Block messages are written to Flash. - If the Session mode is set VerifyOnly, the code is only verified (comparison between Flash content and decrypted payload of Fw_Update_Block messages), but not written to Flash. If a mismatch between decrypted payload and Flash is found, a System_Status message with an Error 8 (ContentMismatch) is returned
		Note: The following Fw_Update_Block messages also contain an UpdateFunction field. That field defines the mode for the single Update Blocks. However:
		 if the mode of the session is set to ProgramFlash via Fw_Update_Start, the UpdateFunction of the single Fw_Update_Blocks can be set to ProgramFlash or to VerifyOnly. if the mode of the session is set to VerifyOnly via Fw_Update_Start, the UpdateFunction of the single Fw_Update_Blocks can only be set to VerifyOnly.
		Structure: Single byte containing dedicated values (see list below) Possible values: 0 ProgramFlash 1 VerifyOnly
Reserved	1	Reserved

5.3 FW_UPDATE_BLOCK

This message updates one block of the Flash. The size of one block can be up to 128 bytes.

Direction: Host to MGC3X30

TABLE 5-3: MESSAGE OVERVIEW

Header						Pay	load	
Msg. Size	Flags	Seq.	QI	Crc	Address	Length	UpdateFunction	Payload
1 Byte	1 Byte	1 Byte	1 Byte	4 Bytes	2 Bytes	1Byte	1 Byte	128 Bytes
0x8C	n/a	n/a	0x81			see descrip	otion below	

TABLE 5-4: PAYLOAD ELEMENTS

IABLE 5-4: PA	ATLUAD	ELEMENIS					
Field	Size (bytes)	Description					
Crc	4	CRC32 (Ethernet, polynomial: 0x04C11DB7) value, calculated across the rest of the message (132 bytes) Structure: 32-bit Word Range: (0x000000000xfffffffff)					
Address	2	The Flash address of the block which will be programmed/verified. If the block is smaller than 128 bytes, it has to be aligned at the end of each page. So, if the next update block is a full 128-byte block, it can be Flash-page aligned again. Note: The lower 4 KB are reserved for the Library Loader and cannot be updated. If a value lower than the 4 KB is used, a System_Status message with the Error 5 (InvalidAddress) is returned. Structure: 16-bit Word Range: (0x1000.0x7fff)					
Length	1	The length of the content of the block which will be updated: Structure : Single byte Range : $(0 \times 00 0 \times 80)$					
UpdateFunction	1	The UpdateFunction sets the mode for this single Update Block. - If the mode is set ProgramFlash, the decrypted payload is written to Flash. - If the Session mode is set VerifyOnly, the code is only verified (comparison between Flash content and decrypted payload, but not written to Flash. If a mismatch between decrypted payload and Flash is found, a System_Status message with Error 8 (ContentMismatch) is returned.					
		Note: If the mode of the whole session was set to VerifyOnly in the Fw_Update_Start message, only VerifyOnly can be set in the Fw_Update_Block; otherwise, a System_Status message with Error 6 (InvalidFunction) is returned. Structure: Single byte containing dedicated values (see list below) Possible values: 0 ProgramFlash 1 VerifyOnly					

Messages for GestIC[®] Library Update

TABLE 5-4: PAYLOAD ELEMENTS (CONTINUED)

Field	Size (bytes)	Description
Payload	128	The Payload contains the encrypted content of the block which will be updated.
		Note: Its length is always 128. If the length of the content is smaller than 128, it will be filled with zeros. The CRC is then calculated over the entire 128-byte Payload.
		Structure: Vector of 120 bytes interpreted as String (ASCII characters)
		Range: (0x000xff, 0x000xff, 0x000xff,)

5.4 FW_UPDATE_COMPLETED

This message finalizes the update session of the MGC3X30.

Direction: Host to MGC3X30

TABLE 5-5: MESSAGE OVERVIEW

	Head	der				Payload		
Msg. Size	Flags	Seq.	QI	Crc	SessionID	UpdateFunction	FwVersion	Reserved
1 Byte	1 Byte	1 Byte	1 Byte	4 Bytes	4 Bytes	1 Byte	120 Bytes	3 Bytes
0x88	n/a	n/a	0x82			see description be	elow	

TABLE 5-6: PAYLOAD ELEMENTS

Field	Size (in bytes)	Description
Field		-
Crc	4	CRC32 (Ethernet, polynomial: 0x04C11DB7) value, calculated across the rest of the message (128 bytes)
		Structure: 32-bit Word
		Range: (0x000000000xffffffff)
SessionID	4	The SessionID is the same random number as used for the
Sessionin	7	Fw Update Start. 0x00000000 is an invalid SessionID
		and forces the device into a Restart. In this case, the remaining
		information in this message is discarded.
		Structure: 32-bit Word
		Range: (0x000000000xffffffff)
UpdateFunction	1	The UpdateFunction defines how the update session is
		finalized.
		- If the session was started as ProgramFlash session,
		it has to be finalized with the ProgramFlash session.
		If not, the library version is not stored and the library is
		not valid. If ProgramFlash is used in a VerifyOnly session, a System Status message with Error 6
		(InvalidFunction) is returned.
		- If Restart is used, the device will restart. FwVersion
		and SessionID are included in CRC calculation, but
		content is ignored.
		Structure: Single byte containing dedicated values (see list
		below)
		Possible values:
		0 ProgramFlash
		1 VerifyOnly
		3 Restart
FwVersion	120	It contains the library version. Only libraries with IDs other than
		'0' are valid.
		Structure: Vector of 120 bytes interpreted as String (ASCII
		characters)
		Range: (0x000xFF, 0x000xFF, 0x000xFF,)
Reserved	3	Reserved

MGC3030/3130 GestIC® LIBRARY INTERFACE DESCRIPTION

Appendix A. I²CTM Command Examples

TABLE A-1: REQUEST MESSAGE COMMAND EXAMPLES

		-					Red	juest N	lessag	е					
	D			Hea	der					Payl	oad				
	Requested	l Function	Msg. Size	Flags	Seq.	ID	Msg. ID	R	eserve	ed		Parai	neter		Comment
_	FW version (0x83)		0x0C	0x00	0x00	0x06	0x83	0x00	0x00	0x00	0x00	0x00	0x00	0x00	Fixed command.
	Trigger (0x1000)		0x0C	0x00	0x00	0x06	0xA2	0x00	0x00	0x00	0x00	0x10	0x00	0x00	Fixed command.
		AFERXATT_S	0x0C	0x00	0x00	0x06	0xA2	0x00	0x00	0x00	0x50	0x00	0x00	0x00	
	Signal Matching	AFERXATT_W	0x0C	0x00	0x00	0x06	0xA2	0x00	0x00	0x00	0x51	0x00	0x00	0x00	Fixed
	(0x0050, 0x0051, 0x0052, 0x0053,	AFERXATT_N	0x0C	0x00	0x00	0x06	0xA2	0x00	0x00	0x00	0x52	0x00	0x00	0x00	Fixed command.
	0x0054)	AFERXATT_E	0x0C	0x00	0x00	0x06	0xA2	0x00	0x00	0x00	0x53	0x00	0x00	0x00	
		AFERXATT_C	0x0C	0x00	0x00	0x06	0xA2	0x00	0x00	0x00	0x54	0x00	0x00	0x00	
		Channelmapping_S	0x0C	0x00	0x00	0x06	0xA2	0x00	0x00	0x00	0x65	0x00	0x00	0x00	
	Electrode Mapping (0x0065, 0x0066,	Channelmapping_W	0x0C	0x00	0x00	0x06	0xA2	0x00	0x00	0x00	0x66	0x00	0x00	0x00	Fixed
	0x0067, 0x0068,	Channelmapping_N	0x0C	0x00	0x00	0x06	0xA2	0x00	0x00	0x00	0x67	0x00	0x00	0x00	command.
ers	0x0069)	Channelmapping_E	0x0C	0x00	0x00	0x06	0xA2	0x00	0x00	0x00	0x68	0x00	0x00	0x00	
me		Channelmapping_C	0x0C	0x00	0x00	0x06	0xA2	0x00	0x00	0x00	0x69	0x00	0x00	0x00	
Parameters	Touch Detection (0x Detection (0x0097)	0097) and Approach	0x0C	0x00	0x00	0x06	0xA2	0x00	0x00	0x00	0x97	0x00	0x00	0x00	Fixed command.
Get Runtime	Approach Detection	(0x0081)	0x0C	0x00	0x00	0x06	0xA2	0x00	0x00	0x00	0x81	0x00	0x00	0x00	Fixed command.
Get R	AirWheel (0x0090)		0x0C	0x00	0x00	0x06	0xA2	0x00	0x00	0x00	0x90	0x00	0x00	0x00	Fixed command.
	Gesture Processing	HMM (0x0085)	0x0C	0x00	0x00	0x06	0xA2	0x00	0x00	0x00	0x85	0x00	0x00	0x00	Fixed command.
	Calibration Operatio	n Mode (0x0080)	0x0C	0x00	0x00	0x06	0xA2	0x00	0x00	0x00	0x80	0x00	0x00	0x00	Fixed command.
	Data Output Enable	Mask (0x00A0)	0x0C	0x00	0x00	0x06	0xA2	0x00	0x00	0x00	0xA0	0x00	0x00	0x00	Fixed command.
	Data Output Lock M	lask (0x00A1)	0x0C	0x00	0x00	0x06	0xA2	0x00	0x00	0x00	0xA1	0x00	0x00	0x00	Fixed command.
	Data Output Reques	st Mask (0x00A2)	0x0C	0x00	0x00	0x06	0xA2	0x00	0x00	0x00	0xA2	0x00	0x00	0x00	Fixed command.
	Gesture in progress	flag control (0x00A3)	0x0C	0x00	0x00	0x06	0xA2	0x00	0x00	0x00	0xA3	0x00	0x00	0x00	Fixed command.

TABLE A-2: SET RUNTIME PARAMETER COMMAND EXAMPLES

									Set_F	Runtime	_Parar	meter							
	D	d Formation		Hea	ıder							Pay	load						0
	Requeste	d Function	Msg. Size	Flags	Seq.	ID		time meter D	Rese	erved		Argun	ment0			Argun	ment1		Comment
Z		Force Calibration	0x10	0x00	0x00	0xA2	0x00	0x10	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	Fixed command.
Category	Trigger (0x1000)	Enter Deep Sleep 1	0x10	0x00	0x00	0xA2	0x00	0x10	0x00	0x00	0x02	0x00	0x00	0x00	0x00	0x00	0x00	0x00	Fixed command.
	,	Enter Deep Sleep 2	0x10	0x00	0x00	0xA2	0x00	0x10	0x00	0x00	0x03	0x00	0x00	0x00	0x00	0x00	0x00	0x00	Fixed command.
Common		Store RTPs for AFE	0x10	0x00	0x00	0xA2	0x00	0xFF	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	Fixed command.
Į,	MakePersistent (0xFF00)	Store RTPs for DSP	0x10	0x00	0x00	0xA2	0x00	0xFF	0x00	0x00	0x01	0x00	0x00	0x00	0x00	0x00	0x00	0x00	Fixed command.
0	(67.1.1.00)	Store RTPs for System	0x10	0x00	0x00	0xA2	0x00	0xFF	0x00	0x00	0x02	0x00	0x00	0x00	0x00	0x00	0x00	0x00	Fixed command.
		AFERXATT_S	0x10	0x00	0x00	0xA2	0x50	0x00	0x00	0x00	0x98	0x00	0x00	0x00	0x00	0x00	0x00	0x00	
2	Signal Matching	AFERXATT_W	0x10	0x00	0x00	0xA2	0x51	0x00	0x00	0x00	0x96	0x00	0x00	0x00	0x00	0x00	0x00	0x00	Argument0 (8-bit) defines the
Category	(0x0050, 0x0051, 0x0052, 0x0053,	AFERXATT_N	0x10	0x00	0x00	0xA2	0x52	0x00	0x00	0x00	0x98	0x00	0x00	0x00	0x00	0x00	0x00	0x00	signal matching value for each electrode. These values are just
	0x0054)	AFERXATT_E	0x10	0x00	0x00	0xA2	0x53	0x00	0x00	0x00	0x91	0x00	0x00	0x00	0x00	0x00	0x00	0x00	examples.
Front-End		AFERXATT_C	0x10	0x00	0x00	0xA2	0x54	0x00	0x00	0x00	0xD9	0x00	0x00	0x00	0x00	0x00	0x00	0x00	
ont-		Channelmapping_S	0x10	0x00	0x00	0xA2	0x65	0x00	0x00	0x00	0x03	0x00	0x00	0x00	0x00	0x00	0x00	0x00	Argument 0 (8-bit) defines the
	Electrode Mapping	Channelmapping_W	0x10	0x00	0x00	0xA2	0x66	0x00	0x00	0x00	0x01	0x00	0x00	0x00	0x00	0x00	0x00	0x00	oo respective Rx Channel for each
Analog	(0x0065, 0x0066, 0x0067, 0x0068,	Channelmapping_N	0x10	0x00	0x00	0xA2	0x67	0x00	0x00	0x00	0x02	0x00	0x00	0x00	0x00	0x00	0x00	0x00	
¥	0x0069)	Channelmapping_E	0x10	0x00	0x00	0xA2	0x68	0x00	0x00	0x00	0x04	0x00	0x00	0x00	0x00	0x00	0x00	0x00	'3' for Rx3 or '4' for Rx4. These
		Channelmapping_C	0x10	0x00	0x00	0xA2	0x69	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	values are just examples

TABLE A-2: SET_RUNTIME_PARAMETER COMMAND EXAMPLES (CONTINUED)

									Set_F	Runtime	_Para	meter							
	Dominosta	ed Function		Hea	der							Pay	load						Comment
	Requeste	a runction	Msg. Size	Flags	Seq.	ID	Para	time meter D	Rese	erved		Argui	ment0			Argu	ment1		Comment
	TransFreqSelect	Five frequencies	0x10	0x00	0x00	0xA2	0x82	0x00	0x00	0x00	0x05	0x00	0x00	0x00	0x10	0x32	0x04	0x00	This is an example for five frequencies used in the following order (0x43210): 115 kHz, 103 kHz, 88 kHz, 67 kHz and then 44 kHz
Signal Processing	(0x0082)	Two frequencies	0x10	0x00	0x00	0xA2	0x82	0x00	0x00	0x00	0x02	0x00	0x00	0x00	0x42	0x00	0x00	0x00	This is an example for two frequencies used in the following order (0x42): 103 kHz and then 44 kHz
roce	Touch Detection	Enable	0x10	0x00	0x00	0xA2	0x97	0x00	0x00	0x00	0x08	0x00	0x00	0x00	0x08	0x00	0x00	0x00	Fixed command.
a P	(0x0097)	Disable	0x10	0x00	0x00	0xA2	0x97	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x08	0x00	0x00	0x00	Fixed command.
ign	Approach Detection	Enable	0x10	0x00	0x00	0xA2	0x97	0x00	0x00	0x00	0x01	0x00	0x00	0x00	0x01	0x00	0x00	0x00	Fixed command.
tal	(0x0097)	Disable	0x10	0x00	0x00	0xA2	0x97	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x01	0x00	0x00	0x00	Fixed command.
Digital	Approach Detection	Enable	0x10	0x00	0x00	0xA2	0x81	0x00	0x00	0x00	0x01	0x00	0x00	0x00	0x01	0x00	0x00	0x00	Fixed command; this command is not anymore supported starting from V1.0 release. Please use the 0x97 ID instead.
	(0x0081)	Disable	0x10	0x00	0x00	0xA2	0x81	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x01	0x00	0x00	0x00	Fixed command; this command is not anymore supported starting from V1.0 release. Please use the 0x97 ID instead.

TABLE A-2: SET RUNTIME PARAMETER COMMAND EXAMPLES (CONTINUED)

									Set_F	Runtime	_Parar	neter								
	Data	d Franchism		Hea	der							Pay	load						0	
	Requeste	d Function	Msg. Size	Flags	Seq.	ID	Para	time neter D	Rese	erved		Argun	ment0			Argument1			Comment	
	AirWheel	Enable	0x10	0x00	0x00	0xA2	0x90	0x00	0x00	0x00	0x20	0x00	0x00	0x00	0x20	0x00	0x00	0x00	Fixed command.	
	(0x0090)	Disable	0x10	0x00	0x00	0xA2	0x90	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x20	0x00	0x00	0x00	Fixed command.	
		Enable All Gestures	0x10	0x00	0x00	0xA2	0x85	0x00	0x00	0x00	0x7F	0x00	0x00	0x00	0x7F	0x00	0x00	0x00	The Argument 0 (8-bit) defines	
	Gesture Processing HMM	Enable Only Flick Gestures	0x10	0x00	0x00	0xA2	0x85	0x00	0x00	0x00	0x1F	0x00	0x00	0x00	0x7F	0x00	0x00	0x00	which Gestures need to be configured. The Argument1 defines the	
	(0x0085)	Enable in Addition Circles	0x10	0x00	0x00	0xA2	0x85	0x00	0x00	0x00	0x60	0x00	0x00	0x00	0x60	0x00	0x00	0x00	mask for the Gestures which need to be configured.These values are just examples.	
	Calibration	Enable	0x10	0x00	0x00	0xA2	0x80	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x3F	0x00	0x00	0x00	Fixed command.	
	Operation Mode (0x0080)	Disable	0x10	0x00	0x00	0xA2	0x80	0x00	0x00	0x00	0x3F	0x00	0x00	0x00	0x3F	0x00	0x00	0x00	Fixed command.	
		Enable All Data	0x10	0x00	0x00	0xA2	0xA0	0x00	0x00	0x00	0x3F	0x18	0x00	0x00	0x3F	0x18	0x00	0x00	The second second second second	
	Data Output Enable	Enable DSP, Gestures and Noise Power	0x10	0x00	0x00	0xA2	0xA0	0x00	0x00	0x00	0x23	0x00	0x00	0x00	0x3F	0x18	0x00	0x00	The Argument0 defines which Data need to be enabled or disabled.	
gory	Mask (0x00A0)	Enable Only Data: Noise (others not changed)	0x10	0x00	0x00	0xA2	0xA0	0x00	0x00	0x00	0x10	0x00	0x00	0x00	0x10	0x00	0x00	0x00	The Argument1 defines the mask for the Data which need to	
System Category		Disable Only Data: CIC (others not changed)	0x10	0x00	0x00	0xA2	0xA0	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	80x0	0x00	0x00	be configured. These values are just examples.	
/ster		Lock All Data	0x10	0x00	0x00	0xA2	0xA1	0x00	0x00	0x00	0x3F	0x18	0x00	0x00	0x3F	0x18	0x00	0x00	The 7	
Ś	Data Output Lock	Lock DSP, Gestures and Noise Power	0x10	0x00	0x00	0xA2	0xA1	0x00	0x00	0x00	0x23	0x00	0x00	0x00	0x3F	0x18	0x00	0x00	The ArgumentO defines which Data need to be locked or unlocked.	
	Mask (0x00A1)	Lock Only Data: Noise (others not changed)	0x10	0x00	0x00	0xA2	0xA1	0x00	0x00	0x00	0x10	0x00	0x00	0x00	0x10	0x00	0x00	0x00	The Argument1 defines the mask for the Data which need to	
		UnLock Only Data: CIC (others not changed)	0x10	0x00	0x00	0xA2	0xA1	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x08	0x00	0x00	be configured.These values are just examples.	
		Request All Data	0x10	0x00	0x00	0xA2	0xA2	0x00	0x00	0x00	0x3F	0x18	0x00	0x00	0x3F	0x18	0x00	0x00	Data need to be requested. This is only valid for the next message. The Argument1 defines the mask for the Data which need to be configured. These values are just examples.	
	Data Output	Request DSP, Gestures and Noise Power	0x10	0x00	0x00	0xA2	0xA2	0x00	0x00	0x00	0x23	0x00	0x00	0x00	0x3F	0x18	0x00	0x00		
	Request Mask (0x00A2)	Request Only Data: Noise	0x10	0x00	0x00	0xA2	0xA2	0x00	0x00	0x00	0x10	0x00	0x00	0x00	0x10	0x00	0x00	0x00		
	Gesture in Progress	Enable	0x10	0x00	0x00	0xA2	0xA3	0x00	0x00	0x00	0x01	0x00	0x00	0x00	0x01	0x00	0x00	0x00	Fixed command.	
	Flag Control (0x00A3)	Disable	0x10	0x00	0x00	0xA2	0xA3	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x01	0x00	0x00	0x00	Fixed command.	

TABLE A-3: SENSOR_DATA_OUTPUT COMMAND EXAMPLES

						Sens	sor_Dat	a_Outpu	it					
Requested Function	User Action		Head	er					Payloa	d				Comment
		Msg. Size	Flags	Seq.	ID		Output . Mask	Time Stamp	System Info		Paran	neter		
Data Output contains only DSPStatus field		0x0A	80x0	0x26	0x91	0x01	0x01	0x5D	0x80	0x10	0x73	_	_	Negative Calibration.
(configured using the Set_Runtime_Parameter command:	No action	0x0A	80x0	0x27	0x91	0x01	0x01	0x5E	0x80	0x00	0x73	-	-	Calibration finished.
10 00 00 A2 A0 00 00 00 01 00 00 00 FF	No action	0x0A	80x0	0x28	0x91	0x01	0x01	0x5D	0x80	0x20	0x73	_	_	Idle Calibration.
FF FF FF)		0x0A	80x0	0x29	0x91	0x01	0x01	0x5E	0x80	0x00	0x73	_	_	Calibration finished.
	Flick East to west	0x0C	80x0	0x31	0x91	0x02	0x01	0x82	0x80	0x03	0x10	0x00	0x00	0x03: Flick East to West
	Flick East to west	0x0C	80x0	0x32	0x91	0x02	0x01	0x83	0x80	0x00	0x00	0x00	0x00	0x10: Flick Gesture
Data Output contains only Gesture Data field	Flight North to Courth	0x0C	80x0	0x33	0x91	0x02	0x01	0x13	0x80	0x05	0x10	0x04	0x00	0x05: Flick North to South
(configured using the Set_Runtime_Parameter command:	Flick North to South	0x0C	80x0	0x34	0x91	0x02	0x01	0x14	0x80	0x00	0x00	0x00	0x00	0x10: Flick Gesture
10 00 00 A2 A0 00 00 00 02 00 00 00 FF	Flight County to North	0x0C	80x0	0x35	0x91	0x02	0x01	0x53	0x80	0x04	0x10	0x04	0x00	0x03: Flick South to North
FF FF FF)	Flick South to North	0x0C	0x08	0x36	0x91	0x02	0x01	0x54	0x80	0x00	0x00	0x00	0x00	0x10: Flick Gesture
Flick Wort t	Flick West to East	0x0C	80x0	0x37	0x91	0x02	0x01	0x5D	0x80	0x02	0x10	0x00	0x00	0x03: Flick West to East
	I lick west to East	0x0C	0x08	0x38	0x91	0x02	0x01	0x5E	0x80	0x00	0x00	0x00	0x00	0x10: Flick Gesture

TABLE A-3: SENSOR DATA OUTPUT COMMAND EXAMPLES (CONTINUED)

						Sens	sor_Dat	a_Outpu	it					
Requested Function	User Action		Head	er					Payloa	d				Comment
·		Msg. Size	Flags	Seq.	ID		Output J. Mask	Time Stamp	System Info		Parai	meter		
		0x0C	0x08	0x3A	0x91	0x02	0x01	0x19	0x81	0x00	0x00	0x00	0x80	Gesture Recognizer started
	Flick East to West	0x0C	0x08	0x3B	0x91	0x02	0x01	0x45	0x81	0x03	0x10	0x00	0x00	Gesture recognized (Flick
		0x0C	0x08	0x3C	0x91	0x02	0x01	0x46	0x81	0x00	0x00	0x00	0x00	East to West)
		0x0C	0x08	0x3D	0x91	0x02	0x01	0x47	0x81	0x00	0x00	0x00	0x80	Gesture Recognizer started
	Just move hand	0x0C	0x08	0x3E	0x91	0x02	0x01	0x6E	0x81	0x01	0x00	0x00	0x00	Garbage recognized
		0x0C	0x08	0x3F	0x91	0x02	0x01	0x6F	0x81	0x00	0x00	0x00	0x00	Curbage recognized
		0x0C	0x08	0x40	0x91	0x02	0x01	0x83	0x81	0x00	0x00	0x00	0x80	Gesture Recognizer started
	Flick East to West	0x0C	0x08	0x41	0x91	0x02	0x01	0xAC	0x80	0x03	0x10	0x04	0x00	Gesture recognized (Flick
		0x0C	0x08	0x42	0x91	0x02	0x01	0xAD	0x80	0x00	0x00	0x00	0x00	East to West)
Data Output contains only Gesture Data field (configured using the Set_Runtime_Parameter		0x0C	0x08	0x43	0x91	0x02	0x01	0x67	0x81	0x00	0x00	0x00	0x80	Gesture Recognizer started
command: 10 00 00 A2 A0 00 00 00 02 00 00 00 FF	Flick North to South	0x0C	0x08	0x44	0x91	0x02	0x01	A8x0	0x80	0x05	0x10	0x04	0x00	Gesture recognized (Flick
FF FF FF)		0x0C	0x08	0x45	0x91	0x02	0x01	0x8B	0x80	0x00	0x00	0x00	0x00	North to South)
Gesture in Progress is activated using the		0x0C	0x08	0x46	0x91	0x02	0x01	0x67	0x81	0x00	0x00	0x00	0x80	Gesture Recognizer started
Set_Runtime_Parameter command: 10 00 00 A2 A3 00 00 00 01 00 00 00 FF	Flick South to North	0x0C	0x08	0x47	0x91	0x02	0x01	0x8E	0x80	0x04	0x10	0x04	0x00	Gesture recognized (Flick
FF FF FF)		0x0C	0x08	0x48	0x91	0x02	0x01	0x8F	0x80	0x00	0x00	0x00	0x00	South to North)
		0x0C	0x08	0x49	0x91	0x02	0x01	0x6E	0x81	0x00	0x00	0x00	0x80	Gesture Recognizer started
	Flick West to East	0x0C	0x08	0x4A	0x91	0x02	0x01	0x9A	0x80	0x02	0x10	0x02	0x00	Gesture recognized (Flick
		0x0C	0x08	0x4B	0x91	0x02	0x01	0x9B	0x80	0x00	0x00	0x00	0x00	West to East)
		0x0C	0x08	0x4C	0x91	0x02	0x01	0x81	0x80	0x00	0x00	0x00	0x80	Gesture Recognizer started
	Clockwise Circle	0x0C	0x08	0x4D	0x91	0x02	0x01	0xD6	0x80	0x00	0x00	0x00	0x00	Circle Gesture not recognized because AirWheel is On
		0x0C	0x08	0x4E	0x91	0x02	0x01	0x05	0x80	0x00	0x00	0x00	0x80	Gesture Recognizer started
	Counter Clockwise Circle	0x0C	0x08	0x4F	0x91	0x02	0x01	0x56	0x80	0x00	0x00	0x00	0x00	Circle gesture not recognized because AirWheel is On

TABLE A-3: SENSOR_DATA_OUTPUT COMMAND EXAMPLES (CONTINUED)

						Sens	sor_Dat	a_Outpu	ıt					
Requested Function	User Action		Head	er					Payloa	d				Comment
		Msg. Size	Flags	Seq.	ID		Output . Mask	Time Stamp	System Info		Parar	neter		
Data Output contains only Touch Data field		0x0C	0x08	0x45	0x91	0x04	0x01	0x51	0x81	0x10	0x00	0x09	0x00	Center Touch detected and the touch counter = 0x09
(configured using the Set_Runtime_Parameter command:	Touch Center	0x0C	80x0	0x46	0x91	0x04	0x01	0x52	0x81	0x10	0x00	0x00	0x00	Touch Counter Reset
10 00 00 A2 A0 00 00 00 04 00 00 00 FF FF FF FF)	Electrode	0x0C	80x0	0x47	0x91	0x04	0x01	0x5D	0x81	0x00	0x02	0x00	0x00	Tap on Center electrode
EE EE EE)		0x0C	0x08	0x48	0x91	0x04	0x01	0x5E	0x81	0x00	0x00	0x00	0x00	detected

MGC3030/3130 GestIC® LIBRARY INTERFACE DESCRIPTION

Appendix B. Glossary

TABLE B-1: GLOSSARY

Term	Definition
AFE	Analog front end
Application Host	PC or embedded controller which controls the MGC3X30
Aurea	MGC3X30 PC control software with graphical user interface
Colibri Suite	Embedded DSP suite within the GestIC® Library
Deep Sleep	MGC3X30 Power-Saving mode
E-field	Electrical field
Frame Electrodes	Rectangular set of four electrodes for E-field sensing
GestIC [®] Technology	Microchip's patented technology providing 3D free-space gesture recognition utilizing the principles of electrical near-field sensing
GestIC [®] Library	Includes the implementation of MGC3X30 features and is delivered as a binary file pre-programmed on the MGC3X30
Gesture Recognition	Microchip's stochastic HMM classifier to automatically detect and classify hand movement patterns
Gesture Set	A set of provided hand movement patterns
Hand Brick	Copper-coated test block (40x40x70 mm)
Hillstar	MGC3130 Development Kit
НММ	Hidden Markov Model
MGC3130	Single-Zone 3D Gesture Sensing Controller
Position Tracking	GestIC® technology feature
Sabrewing	MGC3X30 evaluation board
Self Wake-up	MGC3X30 Power-Saving mode
Sensing Area	Area enclosed by the four-frame electrodes
Sensing Space	Space above sensing area
Signal Deviation	Term for the delta of the sensor signal on approach of the hand versus non-approach
Spacer Brick	Spacer between the sensor layer and hand brick (Styrofoam block 40x40xh mm) with h= 1/2/3/5/8/12 cm
SPU	Signal Processing Unit
Approach Detection	GestIC [®] technology feature: Power-Saving mode of the MGC3X30 with approach detection
Woodstar – MGC3030 Development Kit	MGC3030 – 3D Gesture Controller

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA

Tel: 408-735-9110 **Canada - Toronto** Tel: 905-673-0699

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor

Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100

Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000

Fax: 86-10-8528-2104 China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355

Fax: 86-532-8502-7205 China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138

Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15