

Física Geral I

Movimento retilíneo com aceleração constante

Docente:

Miguel Araújo

Discentes:

Luís Carvalho, nº 51817

Matilde Campelo, nº 51702

Pedro Emílio, nº 52649

Rui Silva, nº 51262

2021/2022

Índice

Resumo	.3
Material	.3
Introdução:	.3
Procedimento:	. 4
Cálculos e Resultados	.5
Discussão dos resultados e conclusões:	.6

Resumo

Mediu-se o valor da aceleração da gravidade. Para isso observou-se uma esfera em queda livre.

O valor obtido foi 9.3 m/s², o que não corresponde ao valor esperado de 9.8 m/s².

Material

- Craveira
- Suporte
- Íman
- Photogates
- Fita métrica
- Cronómetro
- Esfera

Introdução:

Verificou-se experimentalmente a validade das equações do movimento uniformemente acelerado através do estudo de uma esfera em queda livre. Para tal, utilizou-se a equação das posições do movimento uniformemente acelerado, de modo a determinar o valor da aceleração da gravidade.

Em seguida, encontra-se a equação das posições:

$$y(t) = y_0 + v_0 t + \frac{1}{2}gt^2$$

Sendo o $\bf y$ a posição da partícula no instante $\bf t$ relativamente a um dado referencial, v_0 a velocidade inicial e g é aceleração da gravidade.

Como na seguinte experiência só existe aceleração gravítica (g), então com base na equação anterior é possível reescrevê-la da seguinte forma:

$$\frac{y}{t} = v_0 + \frac{1}{2}gt$$

Dividindo a equação acima referida por \mathbf{t} obtemos esta equação (e assumindo que y_0 é o início do referencial, ou seja, $y_0 = 0$):

Procedimento:

Primeiramente, mediu-se o diâmetro da esfera (1.9 cm) com o auxílio de uma craveira.

De seguida, utilizou-se um suporte que continha um eletroíman na parte superior, bem como um cronometro associado a dois photogates (A e B) (ver figura 1).

Em seguida, deixou-se cair a esfera oito vezes registando-se o tempo t da posição inicial y(t)=0 (photogate A) e alterando-se a posição do photogate B.

Entre cada medição registou-se as diferentes distâncias entre os dois photogates com uma fita métrica.

Figura 1: Esquema explicativo

2021/2022

Cálculos e Resultados:

Foram obtidos estes resultados:

Y(m)	t/(s)	$\frac{Y}{t}$ (m/s)
0.19	0.1366	1.3909
0.27	0.1739	1.5526
0.325	0.1963	1.6556
0.403	0.2231	1.8064
0.467	0.2450	1.9061
0.534	0.2683	1.9903
0.575	0.2790	2.0609
0.612	0.2906	2.1060

Figura 2: Regressão linear de $\frac{Y}{t}$ em função de t(s)

• Aceleração Gravítica= 2* declive: 4.69689= $\frac{g}{2}$ => g = 9.39378 m/s^2

Discussão dos resultados e conclusões:

Após analisar os resultados obtidos concluiu-se que o desalinhamento dos feixes de luz provocou um erro de cerca de 1 cm na medição das posições entre os photogates.