Due: 2/24/24 at 11:59pm

This problem set covers material from Week 2, dates 2/17 - 2/20.

Instructions: Write or type complete solutions to the following problems and submit answers to the corresponding Gradescope assignment. Your solutions should be neatly-written, show all work and computations, include figures or graphs where appropriate, and include some written explanation of your method or process (enough that I can understand your reasoning without having to guess or make assumptions). A general rubric for homework problems appears on the final page of this assignment.

Monday 2/17

- 1. Answer the following. Show your work by setting up the calculations of the mean and standard deviations. You should use R or a calculator to actually evaluate them!
 - (a) A school has two classes, one with 10 students and one with 100 students. What is the average class size? What is the standard deviation of the class sizes?
 - (b) A school has two classes, one with 10 students and one with 100 students. What is the average size of the class that a student is enrolled in, along with the corresponding standard deviation?
 - (c) Provide an intuitive explanation for why the smaller standard deviation occurs in the part that it does.
- 2. The average score on a history exam (scored out of 100 points) was 85, with a standard deviation of 15. Is the distribution of the scores on this exam symmetric? If not, what shape would you expect this distribution to have? Explain your reasoning.
- 3. Consider the following three sets of sampled data:

$$\mathbf{x} = (-2, 0, 1, 2, 4)$$
 $\mathbf{y} = (23, 25, 26, 27, 29)$ $\mathbf{z} = (-6, 0, 3, 6, 12)$

- (a) For each set of data **x**, **y**, and **z**, find the mean and the variance. Please use the proper symbols/notation! Show your work by setting up the calculations. You can use R or a calculator to actually evaluate them!
- (b) Come up with an equation that relates x_i to y_i for each index i = 1, ..., 5. Do the same for relating x_i to z_i . How does this relationship carry over/affect the mean and the standard deviation of \mathbf{y} in comparison to those of \mathbf{x} , if at all? What about the mean and standard deviation of \mathbf{z} in comparison to those of \mathbf{x} ? Be as specific as possible!
- (c) Using what you learned in parts (a) and (b), how does adding the same value c to each element of a dataset affect the mean and variance? How does multiplying each element of the dataset by the same factor d affect the mean and variance? (Note this isn't a rigorous "proof"; come take MATH/STAT 310 to prove this!).

Wednesday 2/19

TBD

Due: 2/24/24 at 11:59pm

Thursday 2/20

TBD

Due: 2/24/24 at 11:59pm

General rubric

Points	Criteria
5	The solution is correct and well-written. The author leaves no
	doubt as to why the solution is valid.
4.5	The solution is well-written, and is correct except for some minor
	arithmetic or calculation mistake.
4	The solution is technically correct, but author has omitted some key
	justification for why the solution is valid. Alternatively, the solution
	is well-written, but is missing a small, but essential component.
3	The solution is well-written, but either overlooks a significant com-
	ponent of the problem or makes a significant mistake. Alternatively,
	in a multi-part problem, a majority of the solutions are correct and
	well-written, but one part is missing or is significantly incorrect.
2	The solution is either correct but not adequately written, or it is
	adequately written but overlooks a significant component of the
	problem or makes a significant mistake.
1	The solution is rudimentary, but contains some relevant ideas. Al-
	ternatively, the solution briefly indicates the correct answer, but
	provides no further justification.
0	Either the solution is missing entirely, or the author makes no non-
	trivial progress toward a solution (i.e. just writes the statement of
	the problem and/or restates given information).
Notas	For problems with multiple parts, the seem represents - belietie
Notes:	For problems with multiple parts, the score represents a holistic review of the entire problem. Additionally, half-points may be used
	if the solution falls between two point values above.
Notes:	For problems with code, well-written means only having lines of
Notes.	code that are necessary to solving the problem, as well as presenting
	the solution for the reader to easily see. It might also be worth
	adding comments to your code.
	adding comments to your code.