Control System II

熟悉馬達驅動板及STM32 microcontroller

助教:殷昭駿、林子傑、陳藝夫、謝昇翰

授課教師:葉廷仁 教授

日期:2020/03/04

Contents

- 馬達驅動板
 - 材料清單
 - 電路圖
 - 焊接注意事項
 - 驅動板驗收
- STM32
 - 開發板介紹
 - 開發環境介紹
- UART驗收
- · LED燈亮控制驗收

馬達驅動板

• 材料清單

- 1. 電路板
- 2. L6205N
- 3. L7805穩壓IC
- 4. L7808穩壓IC
- 5. 保險絲座(4pin)
- 6. 保險絲
- 7. 二極體 1N4148*2
- 8. 排針(等長*32、不等長*22)

- 9. SMD 0603電容 (10nF、 5.6nF*2、100nF*4、 220nF、 1μF)
- 10. SMD 0603電阻 (100 Ω 、1k Ω *9、100k Ω *2)
- 11.SMD 1210 LED*5
- 12. 開關
- 13.電源pin (90度)
- 14.USB to type mini B (自行購買)

馬達驅動板

• 電路圖 查看IC元件 datasheet

馬達驅動板

- 焊接注意事項
 - 正方形焊盤為該元件第一腳位
 - 由較低矮的元件(SMD)開始焊
 - 利用三用電表檢查是否假焊或短路
 - 可參考網路教學

驅動板驗收

- •接上電池後確認D5、D6、D7發亮
- 切勿直接接上開發板

- 開發板介紹
 - 在實作中使用的是STM32 Nucleo-F446RE
 - Board Page(開發板資訊)
 - ✓ USB driver update(<u>STSW-LINK009</u>) (如果燒錄有問題可以使用)

- 開發環境介紹
 - Mbed是由ARM公司官方開發的線上開發環境
 - 主要用於 ARM Cortex-Mx 系列的開發
 - 可用C/C++編寫程式
 - 支援git版本管理
 - · 結合類似github的程式分享社群
 - ✓Mbed帳號註冊

- 開發環境介紹
 - 介面

- 開發環境介紹
 - 工具列

- 開發環境介紹
 - 檔案總覽

- 開發環境介紹
 - 編輯器

```
main.cpp X
                      1 #include "mbed.h"
                       3 Ticker timer1;
                       4 DigitalOut led1(PA_5);
                       6 //函式宣告
                       7 void init_IO();
                       8 void init_TIMER();
                       9 void timer1_ITR();
                      11 int ledcounter = 0;
                      14 int main()
                            init_IO();
                            init_TIMER();
                            while(1) {
                      20
                     21 }
Œ
                     23 void init_IO()
```

- 開發環境介紹
 - 輸出面板

- 開發環境介紹
 - 燒錄程式
 - 1. 利用USB連接開發板和電腦即會 產生開發板磁碟
 - 2. 將從編譯器下載的bin檔移入開發 板磁碟即完成燒錄

- 開發環境介紹
 - Libraries
 - Analog I/O
 - a. AnalogIn

- Digital I/O
 - a. DigitalIn
 - b. PwmOut
 - c. InterrupIn

- Timer
 - a. Ticker

- Digital Interfaces
 - a. Serial

✓ Mbed OS API References

驅動板+開發板

請在針腳下墊絕緣物

- Download Serial Oscilloscope https://x-io.co.uk/serial-oscilloscope/?fbclid=IwAR13yfXLrlEqIN43_gwaLuXaDHyjBJ4A-tjQ7xC2OXT-ltaDHCbIN7h_T-Y
- ·接上STM32開發板,再至裝置管理員確認連接埠編號
- · 開啟Serial Oscilloscope, 選取適當的serial port及baud rate

• Create a new program

• Copy the following code, and paste to main.cpp

```
#include "mbed.h"
Serial bt(USBTX, USBRX);
int main() {
  int i = 1;
  bt.baud(115200); //defalt:9600
  while(1) {
    wait(1);
    bt.printf("This program runs since %d seconds.\r\n", i++);
```


UART驗收

輸出按下指令的時間 serial.readable() serial.getc()

✓期限:2020/04/15

```
Serial Oscilloscope (COM33, 115200) — 

Serial Port Baud Rate Terminal Osciloscope

UART OK#
.UART OK#
.This program runs since 5 seconds.#
.This program runs since 9 seconds.#
.This program runs since 12 seconds.#
.This program runs since 16 seconds.#
.This program runs since 16 seconds.#
```

```
19
20 int main() {
       init UART();
       while(1) {
28
29
30 void init UART() {
       bt.baud(115200);
32
       bt.attach(&uart rx itr read, Serial::RxIrq);
33
       printf("UART OK\r\n");
34 }
35
36
37 void uart rx itr read()
      while(bt.readable()) {
39
40
41
42
```

LED燈亮控制驗收

輸入兩種指令以使驅動板上 D3、D4 能交互閃爍0.5秒及2秒

```
39 void init_UART() {
      bt.baud(115200);
      bt.attach(&uart rx itr read, Serial::RxIrq);
42
      printf("UART OK\r\n");
43
44
45
46
47 void uart rx itr read() {
49
      while(bt.readable()) {
50
51
52
53
54
55
```

✓期限:2020/04/15

