A simple life insurance

LIFE INSURANCE PRODUCTS VALUATION IN R

Roel Verbelen, Ph.D.
Statistician, Finity Consulting

The life insurance

A simple life insurance

• The product is sold to (x) at time 0.

A simple life insurance

Expected Present Value:

The EPV is

$$_{k|1}A_x=1\cdot \ v(k+1)\cdot \ _kp_x\cdot \ q_{x+k}=1\cdot \ v(k+1)\cdot \ _{k|}q_x$$
 .

A simple life insurance in R

Compute $_{5|1}A_{65}=1\cdot v(6)\cdot _{5|}q_{65}=1\cdot v(6)\cdot _{5}p_{65}\cdot q_{70}$ for constant i=3%.

```
# Mortality rates and one-year survival probabilities

qx <- life_table$qx

px <- 1 - qx

# 5-year deferred mortality probability of (65)

kpx <- prod(px[(65 + 1):(69 + 1)])

kqx <- kpx * qx[70 + 1]

kqx</pre>
```


A simple life insurance in R (cont.)

```
# Discount factor
discount_factor <- (1 + 0.03) ^ - 6
discount_factor</pre>
```

0.8374843

```
# EPV of the simple life insurance
1 * discount_factor * kqx
```


Let's practice!

LIFE INSURANCE PRODUCTS VALUATION IN R

The whole, temporary and deferred life insurance

LIFE INSURANCE PRODUCTS VALUATION IN R

Katrien Antonio, Ph.D.

Professor, KU Leuven and University of Amsterdam

A series of one-year contracts

- What if?
 - \circ The benefit is b_k EUR instead of 1 EUR?
 - A series of one-year contracts instead of just one?

General setting

• A life insurance on (x) with death benefit vector

$$(b_0,b_1,\ldots,b_k,\ldots)$$

- Series of **one-year** contracts:
 - \circ Each with $b_k \cdot v(k+1) \cdot {}_k p_x \cdot q_{x+k}$ as Expected Present Value (EPV)
 - Together:

$$\sum_{k=0}^{+\infty} b_k \cdot v(k+1) \cdot {}_k p_x \cdot q_{x+k} = \sum_{k=0}^{+\infty} b_k \cdot v(k+1) \cdot {}_{k|} q_x$$

the EPV.

Whole life insurance

Whole life insurance: lifelong.

$$A_x$$
 for constant benefit of 1 EUR and constant discount factor v

Temporary life insurance

Temporary (or: term) life insurance: maximum of n years.

$$v(1)$$
 $v(2)$ \cdots $v(n-1)$ $v(n)$

discount factors

$$q_x$$
 $1|q_x$ \dots $n-2|q_x$ $n-1|q_x$

deferred mortality probabilities

$$A_{\stackrel{1}{x}:\overline{n}|}$$

for constant benefit of 1 EUR and constant discount factor \boldsymbol{v}

Deferred whole life insurance

Deferred whole life insurance: no payments in first u years.

$$v(u+1) \ v(u+2) \cdots$$

discount factors

$$u \mid q_x \qquad u+1 \mid q_x \qquad \cdots$$

 $u \mid q_x \qquad u+1 \mid q_x \qquad \cdots \qquad \text{deferred mortality probabilities}$

$$u|A_x$$

for constant benefit of 1 EUR and constant discount factor v

Life insurances in R

Compute A_{35} for constant interest rate i=3%.

```
# Whole-life insurance of (35)
kpx <- c(1, cumprod(px[(35 + 1):(length(px) - 1)]))
kqx <- kpx * qx[(35 + 1):length(qx)]
discount_factors <- (1 + 0.03) ^ - (1:length(kqx))
benefits <- rep(1, length(kqx))
sum(benefits * discount_factors * kqx)</pre>
```

0.2880872

Now do $_{20|}A_{35}.$

```
# Deferred whole-life insurance of (35) 
 kpx <- c(1, cumprod(px[(35 + 1):(length(px) - 1)])) 
 kqx <- kpx * qx[(35 + 1):length(qx)] 
 discount_factors <- (1 + 0.03) ^ - (1:length(kqx)) 
 benefits <- c(rep(0, 20), rep(1, length(kqx) - 20)) 
 sum(benefits * discount_factors * kqx)
```

Let's practice!

LIFE INSURANCE PRODUCTS VALUATION IN R

Combined benefits

LIFE INSURANCE PRODUCTS VALUATION IN R

Roel Verbelen, Ph.D.
Statistician, Finity Consulting

Endowment insurance

$$A_{x:\overline{n}}$$
 for constant benefit of 1 EUR and constant discount factor v

Sending baby Incredible to college

Mrs. Incredible is 35 years old.

She wants to **save money** to send her baby to college. She needs 75,000 EUR when he gets 18.

Given her dangerous lifestyle as a superhero, at the same time she wants to cover her life.

The sum insured is 50,000 euro.

Can you design this type of life insurance policy?

Sending baby Incredible to college pictured

Sending baby Incredible to college in R

- She is 35-years-old, living in Belgium, year 2013.
- Interest rate is 3%.

```
i <- 0.03
```

ullet Death benefits (using the deferred mortality probabilities q_{35} , $_{1|}q_{35}$ to $_{17|}q_{35}$)

Sending baby Incredible to college in R

ullet Pure endowment (using the survival probability $_{18}p_{35}$)

42975.86

ullet Premium pattern rho (using the survival probabilities $_0p_{35}$ to $_{17}p_{35}$)

```
# Premium pattern rho
kpx <- c(1, cumprod(px[(35 + 1):(51 + 1)]))
discount_factors <- (1 + i) ^ - (0:(length(kpx) - 1))
rho <- rep(1, length(kpx))
EPV_rho <- sum(rho * discount_factors * kpx)
EPV_rho</pre>
```


Sending baby Incredible to college in R

Actuarial equivalence

$$P = \frac{\text{EPV(death benefits)} + \text{EPV(pure endowment)}}{\text{EPV(rho)}}$$

```
# Premium level
(EPV_death_benefits + EPV_pure_endowment) / EPV_rho
```

Let's practice!

LIFE INSURANCE PRODUCTS VALUATION IN R

Congratulations!

LIFE INSURANCE PRODUCTS VALUATION IN R

Katrien Antonio and Roel Verbelen Professor, KU Leuven and University of Amsterdam Postdoctoral researcher,

What you've learned

- Valuation of cash flows
- Life tables
- Life annuities
- Life insurances

Want to know more?

Gerber (1997, Springer)

Dickson, Hardy & Waters (2013, Cambridge University Press)

Promislow (2015, Wiley)

What else is there?

- More advanced life insurance products.
- Loss models for frequencies and severities.
- Data science in insurance.

Enjoy your journey as an actuary!

LIFE INSURANCE PRODUCTS VALUATION IN R

