میانترم دوم جبر خطی ۲۵ آبانهاه ۹۸

1. فرض کنید ماتریس A به فرم تحویل یافته سطری باشد. آنگاه رتبه A برابر تعداد سطرهای ناصفر است. **راهنمایی:** ماتریس A را به فرم تحویل یافته سطری گوییم هرگاه در هر سطر یا همه درایهها صفر باشند یا اولین درایه غیر صفر در سطر یک باشد و در زیر این یک، همه درایهها صفر باشند.

است. L_{AT} نیز یک ماتریس مربعی و L_{A} یک به یک باشد، نشان دهید L_{AT} نیز یک به یک است.

 $T^{\circ}\subset S^{\circ}$ نشان دهند اگر $S\subset T$ آنگاه S

را به صورت زیر تعریف می کنیم. S - فضای برداری و $S \subseteq V$ باشد، مجموعه S را به صورت زیر تعریف می کنیم.

$$\{T \in \mathcal{L}(V, \mathbb{R}) \mid \forall v \in S \ T(v) = \circ \}$$

 $\mathcal{L}(V,\mathbb{R})$ به V یک فضای برداری متناهی البعد باشد، یک تبدیل یکبهیک و پوشا از V به معرفی کنید.

د فرض کنید $V \leq \mathbb{R}^4$ فضای جوابهای معادله $V \leq \mathbb{R}^4$ باشد. $V \leq \mathbb{R}^4$ باشد.

 $R(L_A) = V$ ماتریس A را چنان بیابید که $\mathbb{R}^{\mathsf{r}} \to \mathbb{R}^{\mathsf{r}} \to \mathbb{R}^{\mathsf{r}}$ طوری باشد که

 \mathbf{v} . پایهای برای V بیابید.

٠٠ تبديل خطى زير را در نظر بگيريد.

$$T: \quad \mathbb{R}^{\mathsf{r}} \to \mathbb{R}^{\mathsf{r}}$$
$$(x_1, x_{\mathsf{r}}, x_{\mathsf{r}}) \mapsto (\mathsf{r} x_1, x_1 - x_{\mathsf{r}}, \mathsf{r} x_1 + x_{\mathsf{r}} + x_{\mathsf{r}})$$

همچنین پایههای مرتب α و β را برای $\mathbb{R}^{\mathbb{T}}$ در نظر بگیرید.

$$\alpha = ((1, \circ, \circ), (\circ, 1, \circ), (\circ, \circ, 1))$$

$$\beta = ((\mathbf{1}, \mathbf{T}, \mathbf{T}), (\mathbf{T}, \mathbf{1}, \mathbf{T}), (\mathbf{T}, \mathbf{T}, \mathbf{1}))$$

آ. آیا T وارونپذیر است؟ در این صورت T^{-1} را بیابید.

$$\mathbf{v}$$
ب. نشان دهید. $\mathbf{v} = \mathbf{v} = \mathbf{v} - \mathbf{v}$ نشان دهید.

 $\boldsymbol{\varphi}$. ماتریس $T]^{\alpha}_{\alpha}$ را بیابید.

ت. رتبه ماتریس $[T]^{\beta}_{\alpha}$ را بیابید.

ون کنید V یک فضای برداری متناهیالبعد و $T:V \to V$ یک تبدیل خطی باشد. نشان دهید اگر $V:V \to V$ یک تبدیل خطی باشد. نشان دهید اگر $V:V \to V$ آنگاه $V:V \to V$ آنگاه $V:V \to V$

راهنمایی: گوییم $W_1 \oplus W_1 \oplus W_1 \oplus V = W_1 \oplus V = W_1 \oplus W_1$ و $\{\circ\}$ و $\{\circ\}$ و خصای برداری به صورت زیر تعریف می شود.

$$W_{\mathbf{1}} + W_{\mathbf{T}} = \{w_{\mathbf{1}} + w_{\mathbf{T}} \mid w_{\mathbf{1}} \in W_{\mathbf{1}} \wedge w_{\mathbf{T}} \in W_{\mathbf{T}}\}$$