1 Closure of a binary relation relative to some property, uniqueness of a closure

Определение

Примерами свойств отношений являются: рефлексивность, симметричность, транзитивность.

Дано бинарное отношение $r \subseteq A^2$ и свойство \mathcal{P} , назовём бинарное отношение r^* замыканием r относительно \mathcal{P} , тогда и только тогда, когда выполнены следующие условия:

- \bullet $r \subset r^*$
- ullet r^* обладает свойством ${\cal P}$
- ullet для любого другого r' такого, что r' обладает $\mathcal P$ и $r\subseteq r',\, r^*\subseteq r'$

Предложение

Для любого бинарного отношения $r\subseteq A^2$ и свойства $\mathcal P$ верно следующее: если замыкание r относительно $\mathcal P$ существует, оно единственно и совпадает с множеством

$$cl_{\mathcal{P}}(r) = \bigcap \{r' | r \subseteq r' \text{ и } r' \text{ обладает } \mathcal{P}\}$$

Доказательство

Единственность. Предположим, что существует другое замыкание r^{**} r относительно \mathcal{P} . Тогда, поскольку $r\subseteq r^*$ и r^* обладает \mathcal{P} , по определению замыкания, $r^{**}\subseteq r^*$. С другой стороны, используя определение r^* , можно получить обратное включение: $r^*\subseteq r^{**}$. Тогда $r^{**}=r^*$. Теперь предположим, что r' существует. Чтобы доказать вторую часть, проверим два включения: $cl_{\mathcal{P}}(r)\subseteq r^*$ и $r^*\subseteq cl_{\mathcal{P}}(r)$. Первое верно, потому что r^* принадлежит пересечению, второе верно, потому что r^* минимальный элемент этого пересечения.

2 Y-combinator, it's properties

Y комбинатор

Рассмотрим комбинатор $Y = \lambda h.(\lambda x.h(xx))(\lambda x.h(xx))$: для любого x верно следующее:

$$Yx \equiv x(Yx)$$

Этот комбинатор называется комбинатором неподвижной точки.

Проверим, что a(Ya) действительно сводится к Ya:

(1)
$$a(Ya) = a((\lambda h.(\lambda x.h(xx))(\lambda x.h(xx)))a) \Rightarrow$$

 $a((\lambda x.a(xx))\lambda x.a(xx))$
(2) $Ya = (\lambda x.a(xx))\lambda x.a(xx) \Rightarrow$
 $a((\lambda x.a(xx))\lambda x.a(xx))$

Итак, оба Ya и a(Ya) сводятся к одному и тому же λ -терму, следовательно, они эквивалентны.

3 Substructures and superstructures

Определение

Пусть $\mathcal{M} = (M, \sigma), \mathcal{N} = (N, \sigma)$ - две структуры. Тогда \mathcal{M} является подструктурой \mathcal{N} , а \mathcal{N} - суперструктурой \mathcal{M} , тогда и только тогда, когда

- $M \subseteq N$
- для любого $f^n \in \sigma$: $f^{\mathcal{M}} = f^{\mathcal{N}}|_M = f^{\mathcal{N}} \cap M^{n+1}$
- для любого $p^n \in \sigma: \ p^{\mathcal{M}} = p^{\mathcal{N}}|_M = p^{\mathcal{N}} \cap M^n$

Обозначается как: $\mathcal{M} \subseteq \mathcal{N}$.

Примеры подструктур

пример 1

Пусть $0 < n \in \omega$. В группе целых чисел $\mathbb Z$ существует подгруппа $\{k \cdot n | k \in Z\}$ - множество целых чисел, кратных n. Действительно, множество $\{k \cdot n | k \in Z\}$ замкнуто относительно операций в группе $\mathbb Z$.

пример 2

Множество $\{k|k\geq 0\}$ неотрицательных целых чисел не порождает подгруппу в \mathbb{Z} , потому что оно не замкнуто относительно операции -.

пример 3

Пусть \mathcal{G} - абелева группа. Тогда множество $\{a|a\in G,\ a+a=0\}$ порождает подгруппу в \mathcal{G} .

пример 4

Пусть \mathcal{G} - группа, а a - некоторый элемент в \mathcal{G} . Тогда обозначим любой $k \in \mathbb{Z}$ следующим образом:

$$a^k = \begin{cases} \underbrace{a \cdot \ldots \cdot a}_{k}, & \text{если } k > 0, \\ \underbrace{a^{-1} \cdot \ldots \cdot a^{-1}}_{k} & \text{если } k < 0 \\ 1, & \text{если } k = 0 \end{cases}$$

Следовательно, множество $< a> = \{a^n|n\in Z\}$ порождает подгруппу $< a> \subseteq \mathcal{G}$, порождённую a.

Теорема (подструктуры)

Пусть $\mathcal{M} = (M, \nu_M)$ - структура сигнатуры σ . Тогда непустое подмножество $N \subseteq M$ определяет подструктуру $\mathcal{N} = (N, \nu_N) \subseteq \mathcal{M} \iff$ для любых $f^n \in \sigma$ - функциональные символы, если $\bar{a} \in N^n$, то $f^{\mathcal{M}}(\bar{a}) \in N$.

Доказательство

Отметим, что для любого предикатного символа $p^n \in \sigma$, множество $p^{\mathcal{M}}|_N = p^{\mathcal{M}} \cap N^n$ может использоваться в качестве интерпретации $\nu_N(p)$. Если $f^n \in \sigma$ - функциональный символ, то множество $f_0 = f^{\mathcal{M}}|_N = f^{\mathcal{M}} \cap N^{n+1}$ также определяет некоторое отображение на N. Необходимо проверить, что для любого кортежа $\bar{a} \in N^n$ существует единственный b, такой, что $(\bar{a},b) \in f_0$. $f^{\mathcal{M}}$ всюду определенная n-местная функция на M, следовательно существует единственный b, такой, что $(\bar{a},b) \in f^{\mathcal{M}}$. По условию $b \in N$, следовательно, $(\bar{a},b) \in f_0$. Таким образом $\nu_N(f)$ можно рассматривать в качестве интерпретации f_0 . \square