Анализ и проектирование на UML

Новиков Федор Александрович

fedornovikov@rambler.ru

Курс подготовлен по заказу ООО Сан Майкросистемс СПб

Часть 6

Курс подготовлен при поддержке Sun Microsystems Правила использования материалов опубликованы на www.sun.ru

План лекций

- Введение в UML
- Обзор языка
- Моделирование использования
- Моделирование структуры
- Моделирование поведения
- ✓ Управление моделями
- Тенденции развития языка
- UML и процесс разработки

6. Управление моделями

- 6.1. Пакеты
- 6.2. Трассировка и гиперссылки
- 6.3. Образцы и каркасы

6.1. Пакеты

- Пакет группирующая сущность
- Иерархия пакетов
- Анонимный корневой пакет по умолчанию
- Пакет *владеет* объявленными в нем элементами
- Владение отношение композиции
- Пакет может владеть не только простыми элементами, но и пакетами, диаграммами и подсистемами

Свойства пакета

- Пакет задает пространство имен:
 - Имена однородных элементов в пакете уникальны
 - Составные имена через ::
- Видимость элементов пакета
 - Для каждого элемента + #
- Зависимости со стереотипом «import» и «access»
 - Доступ по именам к открытым элементам,
 т.е. расширение пространства имен
- Обобщение для пакетов
 - Абстрактный пакет

Принципы структурирования

- Форма структуры
 - Количество сущностей на диаграмме 7±3
 - Ширина ветвления дерева пакетов 7±3
 - Число вхождений элемента в диаграммы 7±3

- Содержание структуры
 - По структуре приложения
 - По фазам процесса разработки
 - По представлениям модели

Отношения между пакетами

- Отношения владения (вложенности)
 - Дерево пакетов в инструменте
- Индуцированные отношения
 - Достаточно одной пары
- Стереотипные зависимости
 - «import» и «access»
- Слияние пакетов (package merge)
 2.0
- Обобщение
 - Абстрактные пакеты

Отношение вложенности

Класс, принадлежащий объемлющему пакету

Пакет, владеющий двумя классами

Пакет, владеющий одним классом

- класс А видит классы В и С, но не видит класс D
- класс В видит классы А и С, но не видит класс D
- класс С не видит классы А, В и D
- класс D видит класс C, но не видит классы A и В

Расширение пространства имен

- класс А видит классы В и С, но не видит класс D
- класс В видит классы А и С, но не видит класс D
- класс С видит класс А, но не видит классы В и D
- 📱 класс D видит классы A и C, но не видит класс 😼

Нотация импорта

Индуцированные зависимости

Зависимые пакеты

Обобщение для пакетов

Модели, системы и подсистемы

- Физическая система
 - моделируемая часть реального мира
- Модель
 - Описание физической системы
 - Для одной физической системы м.б.
 несколько моделей
- Подсистема
 - Часть физической системы

Метамодель управления моделями

Стандартные стереотипы пакетов (1.х)

«facade»	Пакет, который содержит только <i>ссылки</i> на элементы, определенные в других пакетах
«framework»	Пакет, содержащий образцы и шаблоны
«metamodel»	Модель, которая описывает другую модель
«modelLibrary»	Пакет, содержащий определения элементов моделирования, предназначенных для использования в других пакетах
«profile»	Пакет, содержащий определения элементов моделирования, предназначенных для моделирования в определенной предметной
«stub»	Ракет, представляющий только открытые части другого пакета
«systemModel»	Модель, содержащая несколько моделей одной физической системы
<pre>«topLevel»</pre>	Пакет, который является конем иерархии вложенности пакетов

Слияние пакетов в UML 2.0

- Очень мощный механизм повторного использования
- Нотация: зависимость со стереотипом «merge» от базы к приращению
- Элементы базы сопоставляются с элементами приращения по именам и метаклассам
- Приращение расширяет базовый пакет непротиворечивым образом
- Правила расширения свои для каждого метакласса

Пример слияния

6.2. Трассировка и гиперссылки

- Сосуществование диаграмм, представлений и моделей разного уровня абстракции
- Внесистемное отношение, т.е.
 отношение между элементами модели,
 а не модель отношения между
 моделируемыми сущностями
- Отслеживание версий, уровней детализации и т.д.
- Зависимость со стереотипом «trace»

Пример трассировки

Гиперссылки

- Во многих инструментах можно установить *гиперссылку* на любой элемент или диаграмму
- Гиперссылку можно установить для любого элемента, в том числе вложенного элемента
- Гиперссылок может быть сколько угодно
- Гиперссылки удобное средство навигации, поддержанное инструментом

6.3. Образцы и каркасы

- Образец проектирования типичное решение типичной проблемы в данном контексте
 - Синтаксически образец UML (pattern) параметрическая кооперация классов (шаблон кооперации)
- Каркас совокупность логически связанных образцов
 - Синтаксически каркас UML (framework) пакет со стереотипом «framework»

Пример применения образца Observer = Subscribe Publish

Рекомендации по использованию образцов

- Образец = публикация обобщенного опыта профессионалов
 - Образец полезен и разумен
- Образец решает типичную, но узкую распространенную подзадачу
 - Образец лаконичен и тривиален
- Инструменты содержат библиотеки образцов (от 10 до 100)
 - Названия нужно знать наизусть
- Корпоративные образцы
 - Основа реального репозитория

Выводы

- 7 ± 3 сущности на одной диаграмме
- Диаграмма должна охватываться «одним взглядом»
- Управление моделями для того, кто моделирует, а не для компьютера
- В проекте сосуществуют разные модели в разных представлениях на разных уровнях абстракции
- Образцы проектирования полезно знать и применять