Topology

Definition: Topology

A topology $\mathcal T$ on a set X is a subset of $\mathcal P(X)$ such that:

- 1). $\emptyset, X \in \mathcal{T}$
- 2). \mathcal{T} is closed under the operation of *arbitrary* union.
- 3). \mathcal{T} is closed under the operation of *finite* intersection.

The ordered pair (X, \mathcal{T}) is called a *topological space*.

Definition: Open

Let (X, \mathcal{T}) be a topological space:

- To say that $U\subset X$ is an open set means $U\in\mathcal{T}.$
- To say that $U \subset X$ is a $\emph{closed set}$ means $X U \in \mathcal{T}.$

Example

Let $X = \{1, 2, 3\}$:

This is a topology on X.

This is a topology on X.

This is a topology on X.

This is *not* a topology on X because $\{1\}, \{3\} \in \mathcal{T}$; however $\{1\} \cup \{3\} = \{1,3\} \notin \mathcal{T}$.

Definition: Discrete

Let (x, \mathcal{T}) be a topological space:

- $\mathcal{T} = \{\emptyset, x\}$ is called the *trivial* or *indiscrete* topology.
- $\mathcal{T} = \mathcal{P}(X)$ is called the *discrete* topology.

Theorem

Let X be a set. The discrete topology \mathcal{T} on X is a topology.

Proof

1).
$$\emptyset, X \subset X$$

 $\therefore \emptyset, X \in \mathcal{P}(X) = \mathcal{T}$

2). Assume
$$\mathcal{A} \subset \mathcal{P}(X)$$
. Let $S = \bigcup_{A \in \mathcal{A}} A$.
$$S \subset X$$
$$\therefore S \in \mathcal{P}(X) = \mathcal{T}$$

3). Assume
$$\mathcal{A} = \{A_i \mid i \in \{1, \dots, n\}\} \subset \mathcal{P}(X)$$
. Let $T = \bigcap_{i=1}^n A_i$.
$$T \subset X$$
$$\therefore T \in \mathcal{P}(X) = \mathcal{T}$$

 $\therefore \mathcal{T}$ is a topology on X.