Probabilité & Statistique Chapitre 3: Lois usuelles

Mohamed Essaied Hamrita

- 1 Lois discrètes
- 2 Lois continues

1 Lois discrètes

1 Lois discrètes Loi de Dirac

Loi de Bernoulli Loi Binômiale Loi hypergéométrique Loi géométrique Loi de Poisson Loi binômiale négative

Soit $a \in \mathbb{R}$ un point fixé. On appelle **loi de Dirac**, notée δ_a , la loi de la v.a. certaine X qui est constante, prenant la même valeur a quel que soit le résultat de l'épreuve:

$$X(\omega) = a, \ \forall \omega \in \omega$$

Ainsi:

$$X(\Omega) = \{a\}, \quad \mathbb{P}(X = a) = P(\Omega) = 1$$
$$F(x) = \begin{cases} 0 \text{ si } x \le a \\ 1 \text{ si } x > a \end{cases}$$

On obtient comme moments: $\mathbb{E}(X) = a$ et $\mathbb{V}(X) = 0$.

Loi de Bernoull

1 Lois discrètes

Loi de Dirac

Loi de Bernoulli

Loi Binômiale

Loi hypergéométrique

Loi géométrique

Loi de Poissor

Loi binômiale négative

Soit $A \in \mathcal{A}$ un événement quelconque ; on appelle v.a. indicatrice de l'événement A, la v.a. définie par $X = \mathbf{1}_A$, c'est-à-dire :

$$X(\omega) = \mathbf{1}_{A}(\omega) = \begin{cases} 1 \text{ si } \omega \in A \\ 0 \text{ sinon} \end{cases}$$

Ainsi
$$X(\Omega) = \{0,1\}$$
 avec: $\mathbb{P}(X = 1) = \mathbb{P}(A)$ et $\mathbb{P}(X = 0) = 1 - \mathbb{P}(A)$.

On dit que X suit une **loi de Bernoulli** de paramètre $p = \mathbb{P}(A)$ et on note $X \sim B(1, p)$.

Les moments de cette loi sont: $\mathbb{E}(X) = \mathbb{P}(A) = p$ et $\mathbb{V}(X) = p(1-p)$.

La fonction de répartition est définie par

$$F(x) = \begin{cases} 0 & \text{si } x \le 0 \\ 1 - p & \text{si } 0 < x \le 1 \\ 1 & \text{si } x > 1 \end{cases}$$

1 Lois discrètes

Loi de Dirac Loi de Bernoulli

Loi Binômiale

Loi hypergéométrique Loi géométrique Loi de Poisson Loi binômiale négative

Loi Binômiale

Définition

Supposons qu'on exécute n épreuves indépendantes, chacune ayant p pour probabilité de succès et 1-p pour probabilité d'échec. La variable aléatoire X qui compte le nombre de succès sur l'ensemble des n épreuves est dite variable aléatoire **binômiale** de paramètres (n,p). On note $X \sim B(n,p)$.

La loi de probabilité d'une variable aléatoire binômiale de paramètres (n,p) est donnée par

$$\mathbb{P}(X = x) = C_n^x p^x (1 - p)^{n-x}, \ x = 0, 1, 2, \dots$$

La moyenne et la variance sont données par:

$$\mathbb{E}(X) = np \quad \mathbb{V}(X) = np(1-p)$$

Loi hypergéométrique

1 Lois discrètes

Loi de Dirac Loi de Bernoulli Loi Binômiale

Loi hypergéométrique

Loi géométrique Loi de Poisson Loi binômiale négative

Loi hypergéométrique: On tire sans remise un échantillon de n boules d'une urne en contenant N, desquelles A_p sont blanches et $N - N_p$ noires. Désignons par X le nombre de boules blanches tirées. On aura

$$\mathbb{P}(X = x) = \frac{C_{N_p}^{x} C_{N-N_p}^{n-x}}{C_{N}^{n}}; \quad \max 0, n - (N - N_p) \le x \le \min\{n, N_p\}.$$

Cette variable est dite variable aléatoire hypergéométrique et notée $X \sim \mathcal{H}(N, n, N_p)$.

•
$$\mathbb{E}(X) = n \frac{N_p}{N}$$

Loi hypergéométrique: On tire sans remise un échantillon de n boules d'une urne en contenant N, desquelles A_p sont blanches et $N - N_p$ noires. Désignons par X le nombre de boules blanches tirées. On aura

$$\mathbb{P}(X = x) = \frac{C_{N_p}^{x} C_{N-N_p}^{n-x}}{C_{N}^{n}}; \quad \max 0, n - (N - N_p) \le x \le \min\{n, N_p\}.$$

Cette variable est dite variable aléatoire hypergéométrique et notée $X \sim \mathcal{H}(N, n, N_p)$.

•
$$\mathbb{E}(X) = n \frac{N_p}{N}$$

•
$$\mathbb{V}(X) = n \frac{N_p}{N} \frac{N-n}{N-1} \left(1 - \frac{N_p}{N}\right)$$

1 Lois discrètes

Loi de Brac Loi de Bernoulli Loi Binômiale Loi hypergéométrique

Loi géométrique

Loi de Poisson Loi binômiale négative

Loi géométrique: On exécute une série d'épreuves indépendantes ayant chacune la probabilité p d'être un succès, 0 , jusqu'à obtenir le premier succès. Si <math>X le nombre d'épreuves nécessaires jusqu'à obtenir le premier succès, alors

$$\mathbb{P}(X = x) = (1 - p)^{x-1}p, \ x = 1, 2, 3, \dots$$

Cette variable est dite variable aléatoire **géométrique** (ou de Pascal) de paramètre p et dénoté X G(p).

14 / 59

$$\mathbb{P}(X = x) = (1 - p)^{x-1}p, \ x = 1, 2, 3, \dots$$

Cette variable est dite variable aléatoire **géométrique** (ou de Pascal) de paramètre p et dénoté X G(p).

La fonction de répartition d'une variable aléatoire $X \sim \mathcal{G}(p)$ est

$$F(x) = \begin{cases} 1 - (1 - p)^a & \text{si } x \in [a, a + 1] \text{ avec } a \in \mathbb{N}^* \\ 0 & \text{sinon} \end{cases}$$

•
$$\mathbb{E}(X) = \frac{1}{p}$$

Loi géométrique: On exécute une série d'épreuves indépendantes ayant chacune la probabilité p d'être un succès, 0 , jusqu'à obtenir lepremier succès. Si X le nombre d'épreuves nécessaires jusqu'à obtenir le premier succès, alors

$$\mathbb{P}(X = x) = (1 - p)^{x-1}p, \ x = 1, 2, 3, \dots$$

Cette variable est dite variable aléatoire géométrique (ou de Pascal) de paramètre p et dénoté X G(p).

La fonction de répartition d'une variable aléatoire $X \sim G(p)$ est

$$F(x) = \begin{cases} 1 - (1 - p)^a & \text{si } x \in [a, a + 1] \text{ avec } a \in \mathbb{N}^* \\ 0 & \text{sinon} \end{cases}$$

- $\mathbb{E}(X) = \frac{1}{p}$ $\mathbb{V}(X) = \frac{1-p}{p^2}$

Loi géométrique

Loi de Poisson

1 Lois discrètes

Loi de Dirac Loi de Bernoulli Loi Binômiale Loi hypergéométrique Loi géométrique

Loi de Poisson

<u>Définition</u>

Une variable aléatoire X suit une loi de **Poisson** de paramètre $\lambda > 0$ si

$$\mathbb{P}(X=x) = \frac{e^{-\lambda}\lambda^{x}}{x!}, \quad x = 0, 1, 2, \dots$$

Ceci est dénoté $X \sim \mathcal{P}(\lambda)$ et on a $\mathbb{E}(X) = \mathbb{V}(X) = \lambda$.

Une variable aléatoire X suit une loi de **Poisson** de paramètre $\lambda > 0$ si

$$\mathbb{P}(X=x) = \frac{e^{-\lambda}\lambda^{x}}{x!}, \quad x = 0, 1, 2, \dots$$

Ceci est dénoté $X \sim \mathcal{P}(\lambda)$ et on a $\mathbb{E}(X) = \mathbb{V}(X) = \lambda$.

Si deux variables suivent des lois de Poisson et sont **indépendantes**, $X \sim \mathcal{P}(\lambda)$ et $Y \sim \mathcal{P}(\mu)$, alors leur somme suit aussi une loi de Poisson:

$$X + Y \sim \mathcal{P}(\lambda + \mu)$$

1 Lois discrètes

Loi de Dirac Loi de Bernoulli Loi Binômiale Loi hypergéométrique Loi de Poisson

Loi binômiale négative

Loi binômiale négative

Définition

On exécute une série d'épreuves indépendantes ayant chacune une probabilité p de donner un succès, 0 , jusqu'à obtenir un total de <math>r succès. La variable aléatoire X désignant le nombre d'épreuves nécessaires pour atteindre ce résultat suit une loi appelée colorblue**loi binômiale négative** de paramètres r et p, notée $X \sim \mathcal{BN}(r,p)$ et de densité de probabilité:

$$\mathbb{P}(X = x) = C_{x-1}^{r-1} p^r (1-p)^{x-r}, \ x = r, r+1, \dots$$

Loi binômiale négative

Définition

On exécute une série d'épreuves indépendantes ayant chacune une probabilité p de donner un succès, 0 , jusqu'à obtenir un total de <math>r succès. La variable aléatoire X désignant le nombre d'épreuves nécessaires pour atteindre ce résultat suit une loi appelée colorblue**loi binômiale négative** de paramètres r et p, notée $X \sim \mathcal{BN}(r,p)$ et de densité de probabilité:

$$\mathbb{P}(X = x) = C_{x-1}^{r-1} p^r (1-p)^{x-r}, \ x = r, r+1, \dots$$

L'espérance et la variance d'une loi binômiale négative sont:

$$\mathbb{E}(X) = \frac{r}{p}$$
; $\mathbb{V}(X) = \frac{r(1-p)}{p^2}$

- 1 Lois discrètes
- 2 Lois continues
 - Loi uniforme
 - Loi exponentielle
 - Loi normale
 - Loi Gamma
 - Loi de khi-deux v^2
 - Loi Bêta
 - Loi de Studen
 - Loi de Fisher

- 1 Lois discrètes
- 2 Lois continues Loi uniforme
 - Loi exponentielle
 - Loi normale
 - Loi Gamma
 - Loi de khi-deux χ^2
 - Loi Bêta
 - Loi de Studen
 - Loi de Fisher

Une v.a. X suit une loi uniforme continue si sa densité est constante sur un intervalle fini [a, b], étant donc de la forme:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in [a,b] \\ 0 & \text{sinon} \end{cases}$$

On écrit $X \sim \mathcal{U}[a, b]$.

Une v.a. X suit une loi **uniforme** continue si sa densité est constante sur un intervalle fini [a, b], étant donc de la forme:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in [a,b] \\ 0 & \text{sinon} \end{cases}$$

On écrit $X \sim \mathcal{U}[a, b]$.

•
$$\mathbb{E}(X) = \frac{a+b}{2}$$

Une v.a. X suit une loi uniforme continue si sa densité est constante sur un intervalle fini [a, b], étant donc de la forme:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in [a, b] \\ 0 & \text{sinon} \end{cases}$$

On écrit $X \sim \mathcal{U}[a, b]$.

- $\mathbb{E}(X) = \frac{a+b}{2}$ $\mathbb{V}(X) = \frac{(b-a)^2}{12}$

La fonction de répartition est:

$$F(x) = \begin{cases} 0 & \text{si } x < a \\ \frac{x - a}{b - a} & \text{si } x \in [a, b[\\ 1 & \text{si } x \ge b \end{cases}$$

La fonction de répartition est:

$$F(x) = \begin{cases} 0 & \text{si } x < a \\ \frac{x - a}{b - a} & \text{si } x \in [a, b[\\ 1 & \text{si } x \ge b \end{cases}$$

- 1 Lois discrètes
- 2 Lois continues

Loi exponentielle

Loi normale

Loi Gamma

Loi de khi-deux χ^2

Loi Bêta

Loi de Student

Loi de Fisher

La **loi exponentielle** de paramètre $\lambda > 0$ est celle d'une variable positive de densité:

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \ge 0\\ 0 & \text{sinon} \end{cases}$$

On écrit
$$X \sim \mathcal{E}(\lambda)$$
 et on a $\mathbb{E}(X) = \frac{1}{\lambda}$ et $\mathbb{V}(X) = \frac{1}{\lambda^2}$.

Loi exponentielle

La fonction de répartition est: $F(x) = 1 - e^{-\lambda x}$

- 1 Lois discrètes
- 2 Lois continues
 - Loi uniforme Loi exponentielle
 - Loi normale
 - Loi Gamma
 - Loi de khi-deux χ^2
 - Loi Bêta
 - Loi de Student
 - Loi de Fisher

La loi normale de paramètres m et $\sigma > 0$, notée $X \sim N(m, \sigma)$, est la loi définie par la densité :

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right), \ \forall x \in \mathbb{R}$$

L'espérance mathématique et la variance de la loi normale sont:

$$\mathbb{E}(X) = m \text{ et } \mathbb{V}(X) = \sigma^2$$

Loi norma

Loi normale

• On peut constater que f(2m-x) = f(x), ce qui indique que le graphe de f est symétrique par rapport à la droite verticale x = m.

- On peut constater que f(2m-x) = f(x), ce qui indique que le graphe de f est symétrique par rapport à la droite verticale x = m.
- L'expression $(x-m)^2$ est minimum pour x=m, ce qui va correspondre à un maximum pour f de valeur : $f(m)=\frac{1}{\sigma\sqrt{2\pi}}$.

- On peut constater que f(2m-x) = f(x), ce qui indique que le graphe de f est symétrique par rapport à la droite verticale x = m.
- L'expression $(x-m)^2$ est minimum pour x=m, ce qui va correspondre à un maximum pour f de valeur : $f(m) = \frac{1}{\sigma \sqrt{2\pi}}$.
- Quand x devient infini, alors $f(x) \longrightarrow 0$ donc l'axe des abscisses est asymptote au graphe.

Loi normale

Loi normale centrée réduite (loi normale standard):

En faisant le changement de variable $Z=(X-m)/\sigma$, c'est-à-dire en centrant et en réduisant, on obtient une v.a. de loi standard, de moyenne nulle $\mathbb{E}(Z)=0$ et de variance unité

 $\mathbb{V}(Z) = \mathbb{E}(Z^2) = \mathbb{E}(X-m)^2/\sigma^2 = \mathbb{V}(X)/\sigma^2 = 1$, donc de densité:

$$f(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right)$$

La fonction de répartition est définie par:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{z^{2}}{2}\right) dz$$

et n'est pas exprimable au moyen d'une fonction usuelle. Les valeurs de $\Phi()$ sont fournies dans les tables statistiques pour x>0.

Pour x<0, on utilise le fait que Φ est une fonction paire, $\Phi(z)=\Phi(-z)$, c'est-à-dire que la loi est symétrique par rapport au centre de distribution 0, soit : $\mathbb{P}(Z\leq -x)=\mathbb{P}(Z>x)=1-\Phi(x)$. De cette symétrie découle également la probabilité d'un intervalle centré à l'origine:

$$\mathbb{P}(|Z| \leq \mathbf{a}) = \mathbb{P}(-\mathbf{a} \leq Z \leq \mathbf{a}) = \Phi(\mathbf{a}) - \Phi(-\mathbf{a}) = 2\Phi(\mathbf{a}) - 1, \quad \mathbf{a} > 0$$

Loi normai

Loi normale

6

Convolution de lois normales:

La convolution (somme) de deux lois normales **indépendantes** est encore une loi normale: si $X \sim N(m_X, \sigma_X)$ et $Y \sim N(m_y, \sigma_y)$ sont des v.a. indépendantes, alors $(X + Y) \sim N\left(m_X + m_y, \sqrt{\sigma_X^2 + \sigma_y^2}\right)$.

Convolution de lois normales:

La convolution (somme) de deux lois normales **indépendantes** est encore une loi normale: si $X \sim N(m_x, \sigma_x)$ et $Y \sim N(m_y, \sigma_y)$ sont des v.a. indépendantes, alors $(X + Y) \sim N\left(m_x + m_y, \sqrt{\sigma_x^2 + \sigma_y^2}\right)$.

Exercice

Soit X_1, X_2, \dots, X_n une suite de v.a indépendantes de même loi $N(m, \sigma)$.

On note
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
.

Calculer $\mathbb{E}(\overline{X})$ et $\mathbb{V}(\overline{X})$. En déduire la loi de \overline{X} .

- Loi Gammi
- 1 Lois discrètes
- 2 Lois continues
 - Loi uniforme Loi exponentielle
 - Loi normale
 - Loi Gamma
 - Loi de khi-deux χ^2
 - Loi Bêta
 - Loi de Student
 - Loi de Fisher

Pour tout nombre réel x tel que x > 0, on définit la fonction suivante, appelée **fonction gamma**, et notée par la lettre grecque Γ :

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

Pour tout nombre réel x tel que x > 0, on définit la fonction suivante, appelée **fonction gamma**, et notée par la lettre grecque Γ :

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

Proposition

La fonction Γ possède les propriétés suivantes:

•
$$\Gamma(1)=1$$
 et $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.

Pour tout nombre réel x tel que x > 0, on définit la fonction suivante, appelée **fonction gamma**, et notée par la lettre grecque Γ :

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

Proposition

La fonction Γ possède les propriétés suivantes:

- $\Gamma(1) = 1$ et $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.
- $\forall x > 0$. $\Gamma(x+1) = x\Gamma(x)$

Pour tout nombre réel x tel que x > 0, on définit la fonction suivante, appelée **fonction gamma**, et notée par la lettre grecque Γ :

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

Proposition

La fonction Γ possède les propriétés suivantes:

- $\Gamma(1)=1$ et $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
- $\forall x > 0, \ \Gamma(x+1) = x\Gamma(x)$
- $\forall n \in \mathbb{N}, \ \Gamma(n+1) = n!$

Loi Ga

Fonction Gamma

Calculer
$$\Gamma(4)$$
, $\Gamma\left(\frac{5}{2}\right)$.

Fonction Gamma

Calculer
$$\Gamma(4)$$
, $\Gamma\left(\frac{5}{2}\right)$.

•
$$\Gamma(4) = \Gamma(3+1) = 3! = 6.$$

Fonction Gamma

Calculer $\Gamma(4)$, $\Gamma\left(\frac{5}{2}\right)$.

•
$$\Gamma(4) = \Gamma(3+1) = 3! = 6.$$

$$\begin{split} \bullet & \ \Gamma\left(\frac{5}{2}\right) = \Gamma\left(\frac{3}{2}+1\right) = \frac{3}{2}\Gamma\left(\frac{3}{2}\right). \\ \text{Or, } & \Gamma\left(\frac{3}{2}\right) = \Gamma\left(\frac{1}{2}+1\right) = \frac{1}{2}\Gamma\left(\frac{1}{2}\right) = \frac{\sqrt{\pi}}{2}. \\ \text{D'où } & \Gamma\left(\frac{5}{2}\right) = \frac{3\sqrt{\pi}}{4}. \end{split}$$

Définition (Loi Gamma)

Une variable aléatoire X suit une **loi Gamma** de paramètres α et $\lambda > 0$, notée $X \sim \gamma(\alpha, \lambda)$ si sa fonction de densité de probabilité est:

$$f(x) = \frac{\lambda}{\Gamma(\alpha)} (\lambda x)^{\alpha - 1} e^{-\lambda x}; \quad pour \ x > 0$$

$$\mathbb{E}(X) = \alpha/\lambda$$
 et $\mathbb{V}(X) = \alpha/\lambda^2$.

Loi de Gamma

Définition (Loi Gamma)

Une variable aléatoire X suit une **loi Gamma** de paramètres α et $\lambda > 0$, notée $X \sim \gamma(\alpha, \lambda)$ si sa fonction de densité de probabilité est:

$$f(x) = \frac{\lambda}{\Gamma(\alpha)} (\lambda x)^{\alpha - 1} e^{-\lambda x}; \quad pour \ x > 0$$

$$\mathbb{E}(X) = \alpha/\lambda \text{ et } \mathbb{V}(X) = \alpha/\lambda^2.$$

• Si $\alpha = 1$, alors $\gamma(1, \lambda) \sim \mathcal{E}(\lambda)$.

Loi de Gamma

Définition (Loi Gamma)

Une variable aléatoire X suit une **loi Gamma** de paramètres α et $\lambda > 0$, notée $X \sim \gamma(\alpha, \lambda)$ si sa fonction de densité de probabilité est:

$$f(x) = \frac{\lambda}{\Gamma(\alpha)} (\lambda x)^{\alpha - 1} e^{-\lambda x}; \quad pour \ x > 0$$

$$\mathbb{E}(X) = \alpha/\lambda$$
 et $\mathbb{V}(X) = \alpha/\lambda^2$.

- Si $\alpha = 1$, alors $\gamma(1, \lambda) \sim \mathcal{E}(\lambda)$.
- Si $X_i \stackrel{\text{iid}}{\sim} \mathcal{E}(\lambda)$, alors $Y = \sum_{i=1}^n X_i \sim \gamma(\alpha = n, \lambda)$ (Loi d'Erlang).

- Loi de khi-deux χ
- 1 Lois discrètes
- 2 Lois continues
 - Loi uniforme
 - Loi exponentielle
 - Loi normale
 - Loi Gamma
 - Loi de khi-deux χ^2
 - Loi Bêta
 - Loi de Studen
 - Loi de Fisher

Définition

La **loi du khi-deux** à n degrés de liberté, notée $\sim \chi^2(n)$, est la loi $\gamma(n/2,1/2)$ où n est un entier positif, donc de densité pour x>0:

$$f(x) = \frac{1}{2^{n/2}\Gamma(n/2)} e^{-x/2} x^{n/2 - 1}$$

$$\mathbb{E}(X) = n \text{ et } \mathbb{V}(X) = 2n.$$

• Si
$$X_i \stackrel{iid}{\sim} \chi^2(p_i)$$
, alors $\sum_{i=1}^n X_i \sim \chi^2(N)$ avec $N = \sum p_i$.

- Si $X_i \stackrel{iid}{\sim} \chi^2(p_i)$, alors $\sum_{i=1}^n X_i \sim \chi^2(N)$ avec $N = \sum p_i$.
- Si $X_i \stackrel{iid}{\sim} \mathcal{E}(\lambda)$, alors $2\lambda S_n \sim \chi^2(2n)$ avec $S_n = \sum_{i=1}^n X_i$.

- Si $X_i \stackrel{iid}{\sim} \chi^2(p_i)$, alors $\sum_{i=1}^n X_i \sim \chi^2(N)$ avec $N = \sum p_i$.
- Si $X_i \stackrel{iid}{\sim} \mathcal{E}(\lambda)$, alors $2\lambda S_n \sim \chi^2(2n)$ avec $S_n = \sum_{i=1}^n X_i$.
- Il existe également un lien entre la loi normale et la loi khi-deux;

Si
$$X_i \stackrel{iid}{\sim} N(m, \sigma)$$
, alors $Q_i = \left(\frac{X_i - m}{\sigma}\right)^2 \sim \chi^2(1)$

$$\text{et } Q = \sum_{i=1}^n X_i^2 \sim \chi^2(n).$$

- 1 Lois discrètes
- 2 Lois continues
 - Loi uniforme
 - Loi exponentielle
 - Loi normale
 - Loi Gamma
 - Loi de khi-deux χ^2
 - Loi Bêta
 - Loi de Student
 - Loi de Fisher

Il existe deux familles de lois bêtas qui se déduisent de la famille des lois gammas.

Définition

Si X et Y sont deux v.a. indépendantes de lois respectives $\gamma(p,1)$ et $\gamma(q,1)$, alors la v.a. Z=X/Y suit une **loi bêta de seconde espèce** de paramètres p>0 et q>0, notée $\beta_2(p,q)$, et de densité pour z>0:

$$f(z) = rac{1}{B(p,q)} rac{z^{p-1}}{(1+z)^{p+q}}, \quad ext{avec} \ \ B(p,q) = rac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

avec
$$\mathbb{E}(Z) = \frac{p}{q-1}$$
, $q > 1$ et $\mathbb{V}(Z) = \frac{p(p+q-1)}{(q-1)^2(q-2)}$, $q > 2$.

Définition

Si X et Y sont deux v.a. indépendantes de lois respectives $\gamma(p,1)$ et $\gamma(q,1)$, alors la v.a. $T=\frac{X+Y}{Y}=\frac{Z}{1+Z}$ suit une **loi bêta de première espèce** de paramètres p>0 et q>0, notée $\beta_1(p,q)$, et de densité pour $t\in[0,1]$:

$$f(t) = \begin{cases} \frac{1}{B(p,q)} t^{p-1} (1-t)^{q-1}, & \textit{si } t \in [0,1] \\ 0 & \textit{sinon} \end{cases}$$

avec
$$\mathbb{E}(T) = \frac{p}{q+1}$$
 et $\mathbb{V}(T) = \frac{pq}{(p+q)^2(p+q+1)}$, $q > 2$.

- 1 Lois discrètes
- 2 Lois continues
 - Loi uniforme
 - Loi exponentielle
 - Loi normale
 - Loi Gamma
 - Loi de khi-deux v^2
 - Loi Bêta
 - Loi de Student
 - Loi de Fisher

Définition

Soit Z une variable aléatoire de loi normale centrée et réduite et soit U une variable indépendante de Z et distribuée suivant la loi du χ^2 à n degrés de liberté. On dit que, la variable

$$T = \frac{Z}{\sqrt{U/n}}$$

suit la loi de **Student** de degrés de liberté n, notée $T \sim T(n)$ et de densité définie par:

$$f(t) = \frac{1}{\sqrt{n\pi}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}, \quad n \in \mathbb{N}^*$$

La densité f associée à la variable T est **symétrique**, centrée en 0 et en forme de cloche.

Son espérance ne peut pas être définie pour n = 1, et est nulle pour n > 1.

Sa variance est infinie pour n = 2 et vaut $\frac{n}{n-2}$ pour n > 2.

Lorsque *n* est grand, la loi de Student peut être approchée par la loi normale centrée réduite.

- 1 Lois discrètes
- 2 Lois continues
 - Loi uniforme
 - Loi exponentielle
 - Loi normale
 - Loi Gamma
 - Loi de khi-deux v^2
 - Loi Bêta
 - Loi de Studen
 - Loi de Fisher

Définition

Une variable aléatoire réelle F est distribuée selon la loi de **Fisher** si elle est construite comme le quotient de deux variables aléatoires indépendantes, U_1 et U_2 , distribuées chacune selon une loi du χ^2 et ajustées pour leurs nombres de degrés de liberté, respectivement n_1 et n_2 :

$$F = \frac{U_1/n_1}{U_2/n_2} \sim F(n_1, n_2)$$

L'espérance, la variance valent respectivement

$$\mathbb{E}(F) = \frac{n_2}{n_2 - 2} \quad pour \ n_2 > 2; \quad \mathbb{V}(F) = \frac{2n_2^2(n_1 + n_2 - 2)}{n_1(n_2 - 2)^2(n_2 - 4)}$$

Loi de Fishe

Fin