HÖLDER ESTIMATE OF SOLUTIONS TO AN ELLIPTIC SYSTEM OF TODA TYPE

1. Local Hölder estimate

Let n be a positive integer, $\gamma_i > -1$ for all $1 \le i \le n$ and $(a_{ij})_{1 \le i,j \le n}$ be a real matrix which may degenerate. Suppose that for all $1 \le i \le n$, u_i are real-valued functions defined on $D = \{z \in \mathbb{C} : |z| < 1\}$ such that they are locally integrable on D, smooth on $D^* = D \setminus \{0\}$ and satisfy for all $1 \le i \le n$

$$\Delta u_i + \sum_{j=1}^n a_{ij} e^{u_j} = 4\pi \gamma_i \delta_0 \quad \text{on} \quad D;$$

$$\frac{\sqrt{-1}}{2} \int_{D^*} e^{u_i} \, dz \wedge d\bar{z} < \infty.$$

Remember that $\Delta = 4 \frac{\partial^2}{\partial z \partial \bar{z}}$ is the Laplacian on the complex plane \mathbb{C} and the area element $\frac{\sqrt{-1}}{2} dz \wedge d\bar{z}$ coincides with the Lebesgue measure on \mathbb{C} .

Lemma 1.1. There exist $\alpha \in (0, 1)$ only depending on $\{\gamma_i\}_{1 \leq i \leq n}$ such that

$$(u_i - 2\gamma_i \log |z|) \in C_{loc}^{\alpha}(D)$$

for all $1 \leq i \leq n$.

Proof. Using the fact that Δ (log |z|) = $2\pi\delta_0$ on \mathbb{C} ([2, Section 2.4]), we observe that functions $V_i := u_i - 2\gamma_i \log |z|$, $1 \le i \le n$, satisfy

$$\Delta V_i = -\sum_{j=1}^n a_{ij} |z|^{2\gamma_j} e^{V_j} =: f_i \quad \text{on} \quad D;$$

$$\infty > \frac{\sqrt{-1}}{2} \int_{D^*} |z|^{2\gamma_i} e^{V_i} \, \mathrm{d}z \wedge \mathrm{d}\bar{z}.$$

It suffices to show that there exists $\alpha \in (0, 1)$ only depending on $\{\gamma_i\}_{1 \leq i \leq n}$ such that each V_i lies in $C^{\alpha}_{\text{loc}}(\{|z| < 1/4\})$. For each $1 \leq i \leq n$, we could write $V_i = V_{i,1} + V_{i,2}$ in $\{|z| \leq 1/2\}$, where $V_{i,1}$ and $V_{i,2}$ satisfy the following two boundary value problems

$$\begin{cases} \Delta \, V_{i,1} = f_i & \text{in } \{|z| < 1/2\} \\ V_{i,1} = 0 & \text{on } \{|z| = 1/2\} \end{cases} \quad \text{and} \quad \begin{cases} \Delta \, V_{i,2} = 0 & \text{in } \{|z| < 1/2\} \\ V_{i,2} = V_i & \text{on } \{|z| = 1/2\} \end{cases}, \text{ respectively.}$$

Since $V_{i,2}$ is harmonic and then smooth in $\{|z| < 1/2\}$, we're done if we could prove that each $V_{i,1}$ lies in $C_{\text{loc}}^{\alpha}(\{|z| < 1/4\})$. We divide the proof into the following three steps.

(1) Since $f_i \in L^1(D)$, by using [1, p.1227, Corollary 1.], we obtain that $e^{p|V_{i,1}|}$ lie in $L^1(\{|z| < 1/2\})$ for all p > 1 and all $1 \le i \le n$. Since $\gamma_i > -1$, by the Hölder inequality, there exists $1 < p_0 < 2$ depending on γ_i 's such that f_i lie in $L^{p_0}(\{|z| < 1/2\})$ for all $1 \le i \le n$.

- (2) Since all $V_{i,1}$ satisfy the very boundary value problem, by using [2, p.230, Theorem 9.9.], $V_{i,1} \in W_{\text{loc}}^{2,p_0}(\{|z| < 1/2\})$.
- (3) We're able to finish the proof by using some Sobolev embedding theorems, whose details go as follows. Since we only care about the restriction of $V_{i,1}$ to $\{|z| < 1/4\}$, by using a cut-off function, we may assume $V_{i,1}$ vanishes near the circle $\{|z| = 1/2\}$. Since $\nabla V_{i,1} \in W_0^{1,p_0}(\{|z| < 1/2\})$, by using [2, p.155, Theorem 7.10.], we obtain that $\nabla V_{i,1} \in L^{\frac{2p_0}{2-p_0}}(\{|z| < 1/2\})$ and $V_{i,1} \in W_0^{1,\frac{2p_0}{2-p_0}}(\{|z| < 1/2\})$. Since $\frac{2p_0}{2-p_0} > 2$, by using [2, p.163, Theorem 7.17], we have $V_{i,1} \in C^{\alpha}(\{|z| \le 1/4\})$ for $0 < \alpha := 2 \frac{2}{p_0} < 1$.

Let n be a positive integer, $\gamma_i > -1$ for all $1 \le i \le n$ and $(a_{ij})_{1 \le i,j \le n}$ be a real matrix. Suppose that for all $1 \le i \le n$, V_i are real-valued functions defined on $D = \{z \in \mathbb{C} : |z| < 1\}$ such that they are locally integrable on D, smooth on $D^* = D \setminus \{0\}$ and satisfy

$$-4\frac{\partial^2}{\partial z \partial \bar{z}} V_i = |z|^{2\gamma_i} \exp\left(\sum_{j=1}^n a_{ij} V_j\right) \text{ in the sense of distribution on } D;$$

$$\infty > \frac{\sqrt{-1}}{2} \int_{D^*} |z|^{2\gamma_i} \exp\left(\sum_{j=1}^n a_{ij} V_j\right) dz \wedge d\bar{z}.$$

Remember that $\Delta=4\frac{\partial^2}{\partial z\partial\bar{z}}$ is the Laplacian and the area element $\frac{\sqrt{-1}}{2}\,\mathrm{d}z\wedge\mathrm{d}\bar{z}$ coincides with the Lebesgue measure. Using the similar argument as in the proof of Lemma 1.1, we obtain that there exist $\alpha\in(0,1)$ such that all V_i lies in $C^\alpha_{\mathrm{loc}}(D)$. Hence we provide a minor part of the details for the Brezis-Merle analysis for the $\mathrm{SU}(n+1)$ Toda system in [3, p.188].

References

- [1] Haïm Brezis and Frank Merle. Uniform estimates and blow-up behavior for solutions of $-\Delta u = V(x)e^u$ in two dimensions. Comm. Partial Differential Equations, 16(8-9):1223–1253, 1991.
- [2] David Gilbarg and Neil S. Trudinger. *Elliptic partial differential equations of second order*. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.
- [3] Chang-Shou Lin, Juncheng Wei, and Dong Ye. Classification and nondegeneracy of SU(n+1) Toda system with singular sources. *Invent. Math.*, 190(1):169–207, 2012.