SI120 Discussion 3

TA team

function (map)

 $f: A \to B$ assigns a unique element $b \in B$ for all $a \in A$.

- injective: $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$
- surjective: f(A) = B
- bijective: injective and surjective

- We say that A, B have the same cardinality (|A| = |B|) if there is a bijection $f: A \to B$
 - We say that $|A| \le |B|$ if there exists an injection $f: A \to B$.
 - If $|A| \leq |B|$ and $|A| \neq |B|$, we say that |A| < |B|

THEOREM: (Cantor) Let A be any set. Then |A| < |P(A)|.

1. (15 points) Let $a, b \in \mathbb{Z}$ with $a \ge b > 0$, and let $q = \lfloor a/b \rfloor$. Show that $\ell(a) - \ell(b) - 1 \le \ell(q) \le \ell(a) - \ell(b) + 1$, where $\ell(x)$ is the length of the binary representation of an integer x.

$$\forall x \in \mathbb{N}^*, 2^{l(x)-1} \le x < 2^{l(x)}, l(x) = \lfloor \log_2 x \rfloor + 1$$

1.
$$2^{l(a)-1} \leq a < 2^{l(a)}, 2^{l(b)-1} \leq b < 2^{l(b)}$$

$$2^{l(a)-l(b)-1} < \frac{a}{b} < 2^{l(a)-l(b)+1}$$
 讨论 l(a)-l(b)是否为 0, 因为左边可能不是整数
$$2^{l(a)-l(b)-1} \leq \lfloor \frac{a}{b} \rfloor \leq 2^{l(a)-l(b)+1} - 1$$
 l(a) $-l(b)-1 < l(q) < l(a)-l(b)+1$

2.

$$\begin{aligned} \lfloor A + B \rfloor &\geq \lfloor A \rfloor + \lfloor B \rfloor \\ \lfloor A \rfloor - \lfloor B \rfloor - 1 \leq \lfloor A - B \rfloor \leq \lfloor A \rfloor - \lfloor B \rfloor \\ \lfloor \log_2(\frac{b}{a}) \rfloor &= \lfloor \log_2(\lfloor \frac{b}{a} \rfloor) \rfloor \end{aligned}$$

2. (25 points) Implement EEA (Extended Euclidean Algorithm).

ALGORITHM: compute $d = \gcd(a, b)$, s, t such that as +bt = d

- **Input**: $a, b (a \ge b > 0)$
- Output: $d = \gcd(a, b)$, integers s, t such that d = as + bt

•
$$r_0 = a; r_1 = b; \binom{s_0}{t_0} = \binom{1}{0}; \binom{s_1}{t_1} = \binom{0}{1};$$

- $r_0 = r_1 q_1 + r_2 \ (0 < r_2 < r_1); \ {s_2 \choose t_2} = {s_0 \choose t_0} q_1 {s_1 \choose t_1}$
- •
- $r_{i-1} = r_i q_i + r_{i+1}$ $(0 < r_{i+1} < r_i); \binom{s_{i+1}}{t_{i+1}} = \binom{s_{i-1}}{t_{i-1}} q_i \binom{s_i}{t_i}$
- •
- $r_{k-2} = r_{k-1}q_{k-1} + r_k (0 < r_k < r_{k-1}); {s_k \choose t_k} = {s_{k-2} \choose t_{k-2}} q_{k-1} {s_{k-1} \choose t_{k-1}}$
- $r_{k-1} = r_k q_k$
- output r_k , s_k , t_k

```
def EEA(a,b):
    s0 = 1; t0 = 0; s1 = 0; t1 = 1
    while a%b != 0:
       q = a//b
        s2 = s0-q*s1; t2 = t0-q*t1
       s0,t0 = s1,t1; s1,t1 = s2,t2
       a,b = b,a\%b
    return s1,t1
```

s=5269346517404759757917406408306120657576139865693511443081 124356069506630695623770063846774138034451326098362590654519 415480012670786924252819925030347117153620759789600840565013 488945815632549029603633634264479695847742528839838751817826 589070065630571483736852349659732197321219714424423764729127 0529201589

t=-

 3. (25 points) Implement the Square-and-Multiply algorithm.

ALGORITHM: compute $a^e \mod n$ in polynomial time

- **Input:** $a \in \{0, 1, ..., n-1\}; e = (e_{k-1} \cdots e_0)_2 //k = \ell(e)$
 - $e = e_{k-1} \cdot 2^{k-1} + \dots + e_1 \cdot 2^1 + e_0 \cdot 2^0$
- Output: a^e mod n
 - Square: this step requires O(k) multiplications modulo n
 - $x_0 = a$
 - $x_1 = (x_0^2 \mod n) = (a^2 \mod n)$
 - $x_2 = (x_1^2 \mod n) = (a^{2^2} \mod n)$
 - •
 - $x_{k-1} = (x_{k-2}^2 \mod n) = (a^{2^{k-1}} \mod n)$
 - **Multiply**: this step requires O(k) multiplications modulo n
 - $(a^e \mod n) = (x_0^{e_0} \cdot x_1^{e_1} \cdots x_{k-1}^{e_{k-1}} \mod n)$

```
def SAM(a,e,n):
    result = 1
    while e > 0:
        if e & 1:
            result = result * a % n
        a = (a * a) % n
        e = e >> 1
    return result
```

 $19489389945386041607071081817241920919542635233623116738469155055\\ 20625915922643693886546508713351109692750915684157878314121214348\\ 91999235290979965397926547335052787068125208309422099919003183364\\ 35802408907249020763770922682237250909513951994814724102553142432\\ 60591665020918693044381737199432444238061823906089977020969899711\\ 34105963997915957273941960090533678167318836865046871071816483210\\ 94994097671995305419040805120814031555590587098823477471474182303\\ 58814131381147208291328747857991048977465984265721979324595417184\\ 75031700171514407373804788401894603784580054764847429538488131703\\ 74548455806977675820760128018344$

4. (20 points) Solve the following linear congruence equations:

(1)
$$17x \equiv 11 \pmod{23}$$
;

(2)
$$55x \equiv 35 \pmod{75}$$
.

11)
$$17 \times = 1$$
 | $mod \times 23$
 $d = gcd(17, 23) = 1 - 2$
 $t = (\frac{a}{d})^{-1} mod (\frac{n}{d})$
 $= (17)^{-1} mod \times 23 - 4$
 $= 19 \mod 23 - 7$
 $\times = (\frac{b}{d}) t \mod (\frac{n}{d})$
 $= 11 \times 19 \mod 23 - 9$
 $= 2 \mod 23 - 10$

(2)
$$55 \times = 35 \mod 75$$

 $d = \gcd(55, 75) = 5 - 2$
 $t = (\frac{a}{a})^{-1} \mod (\frac{b}{a})$
 $= (11)^{-1} \mod 15 - 4$
 $= 11 \mod 15 - 7$
 $\times = (\frac{b}{a}) t \mod (\frac{b}{a})$
 $= 7 \times 11 \mod 15 - 9$
 $= 2 \mod 15 - 10$

5. (15 points) See the following figure. Alice and Bob trust each other very much. They set their RSA public keys as $pk_1 = (N, e_1)$ and $pk_2 = (N, e_2)$, respectively. Charlie wants to send a private message m to Alice and Bob, where $0 \le m < N$ is an integer and $\gcd(m, N) = 1$. To this end, Charlie encrypts m as $c_1 = m^{e_1} \mod N$ and $c_2 = m^{e_2} \mod N$; and then sends c_1 to Alice and sends c_2 to Bob.

Suppose that $gcd(e_1, e_2) = 1$ and Eve sees all public keys and ciphertexts. Determine if Eve can learn the value of m.

Yes, Eve can learn the value of m.

According to the process of RSA, we have:

$$c_1 = m^{e_1} \mod N$$

$$c_2 = m^{e_2} \mod N$$

We know that: $gcd(e_1, e_2) = 1$ By the Bezout's theorem:

$$\exists s, t \in \mathbb{Z}, s.t. \ e_1 * s + e_2 * t = 1$$

Where s,t can be found by EEA.

$$c_1^s * c_2^t \mod N = (m^{e^1} \mod N)^s * (m^{e^2} \mod N)^t$$

$$= (m^{e^1*s} * m^{e^2*t}) \mod N$$

$$= m^{e^1*s+e^2*t} \mod N$$

$$\therefore e_1 * s + e_2 * t = 1$$

$$\therefore c_1^s * c_2^t \mod N = m \mod N$$

$$\therefore c_1^s * c_2^t \equiv m \mod N$$

Proved.