# ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression

Jian-Hao Luo, Jianxin Wu, Weiyao Lin

Presented by Zhuangwei Zhuang

Southern Artificial Intelligence Laboratory

Aug 28, 2017

#### Content

- Background
- 2 Motivation
- Proposed Method
  - Filter Selection
  - Greedy Method
  - Minimize Reconstruction Error
- 4 Experimental Results
- 5 Conclusion

## Background

## Background

Deep Neural Network(DNN) is hard to deployed on hardware with the limitation of computation resources, storage, battery power.



Figure. Performance and model size of different models on ImageNet

## **Model Compression**

#### **Existing Compression Methods:**

- Quantization: convert full-precision weights to low-precision version, e.g. INQ, BWN, TWN.
- Pruning: remove less important weights/filters from the model,
   e.g. Deep Compression, DNS, ThiNet
- Design new structure: SqueezeNet, Distilling, ShuffleNet

## **Pruning Methods**

Non-structured Pruning: remove less important weights



Structured Pruning: remove less important filters from model



#### Motivation

#### **Problems of Non-structured Pruning**

- Need specialized hardware and software for inference
- Ignore cache and memory issues, which leads to limited practical acceleration

#### Benefits of Structured Pruning

- No change of network structure and can supported by existing deep learning libraries
- Reduce the memory and accelerate inference

## Proposed Method

## **Proposed Method**

**ThiNet(Thin Net):** a filter level pruning compression framework for model compression



Figure. Illustration of ThiNet

## **Proposed Method**

#### Framework of ThiNet

- Filter selection: use layer i+1to guide the pruning in layer i
- **Pruning:** prune weak channels in layer i+1 and the related filters in layer i
- Fine-tuning: reduce loss of accuracy



#### Filter Selection

Convolution operation can be computed as follows:

$$y = \sum_{c=1}^{C} \sum_{k_1=1}^{K} \sum_{k_2=1}^{K} \widehat{\mathcal{W}}_{c,k_1,k_2} \times x_{c,k_1,k_2} + b$$
 (1)

y is the element sampled from input of layer i+2

 $\widehat{\mathcal{W}} \in \mathbb{R}^{C \times K \times K}$  is the corresponding filter

 $x \in \mathbb{R}^{C \times K \times K}$  is the sliding window



#### Filter Selection

Define:

$$\hat{x} = \sum_{k_1}^{K} \sum_{k=2}^{K} \widehat{\mathcal{W}}_{c,k_1,k_2} \times x_{c,k_1,k_2}$$
 (2)

■ Then:

$$\hat{y} = \sum_{c=1}^{C} \hat{x}_c \quad \text{where } \hat{y} = y - b \tag{3}$$

If we can find a subset  $S \subset \{1,2,\ldots,C\}$  and  $\hat{y} = \sum_{c \in S} \hat{x}_c$ , then  $\hat{x}_{c \notin S}$  can be removed without changing the result

## **Greedy Method**

Given a set of m training examples  $\{(\hat{x}_i, \hat{y}_i)\}$ , the channel selection problem can be solved as optimization problem:

$$\arg\min_{S} \sum_{i=1}^{m} \left( \hat{y}_i - \sum_{j \in S} \hat{x}_{i,j} \right)^2$$

$$s. t. |S| = C \times r, S \subset \{1, 2, ..., C\}$$

$$(4)$$

Let T be the subset of removed channels, then:

$$\arg\min_{T} \sum_{i=1}^{m} \left(\sum_{j \in T} \hat{x}_{i,j}\right)^{2}$$

$$s. t. |T| = C \times (1-r), T \subset \{1,2,\dots,C\}$$

$$(5)$$

## **Greedy Method**

Use greedy method to solve the optimization problem

A greedy algorithm for minimizing Eq. (5)

```
Input: Training set \{(\hat{x}_i, \hat{y}_i)\} and compression rate r
Output: The subset of removed channels T
T \leftarrow \emptyset; I \leftarrow \{1,2,\ldots,C\};
while |T| < C (1-r) do
 min\_value \leftarrow +\infty;
 for each item i \in I do
     tmpT \leftarrow T \cup \{i\};
     compute value from Eq. (5) using tmpT;
     if value < min value then
        min\_value \leftarrow value; min\_i \leftarrow I;
     end if
  end for
  move min_i from I to T
end while
```

#### Minimize the Reconstruction Error

Minimize the reconstruction error by weighting the channels:

$$\widehat{w} = \underset{w}{\operatorname{arg\,min}} \sum_{i=1}^{m} (\widehat{y}_i - w^T \widehat{x}_i^*)^2 \tag{6}$$

where  $\hat{x}_i^*$  indicates the training samples after channel selection

Eq. (6) can be solved by the ordinary least squares approach:

$$\widehat{w} = (X^T X)^{-1} X^T y \tag{7}$$

## **Experimental Results**

## **Pruning Strategy**

- **VGG-16:** prune the **first 10** convolutional layers and replace the FC layers with a global average pooling layer
- ResNet-50: prune the first two convolutional layers



## Comparison of Existing Methods



Figure. Comparison of different channel selection methods, using VGG-16-GAP on CUB-200

## VGG-16 on ImageNet

- ThiNet-Conv: prune 50% of the first 10 convolutional layers
- **ThiNet-GAP:** replace the **FC layers** with a global average pooling (GAP) layer based on ThiNet-Conv

Table. Pruning results of VGG-16 on ImageNet

| Model                  | Top-1  | Top-5  | #Param. | #FLOPs | f./b. (ms)    |
|------------------------|--------|--------|---------|--------|---------------|
| Original               | 68.34% | 88.44% | 138.34M | 30.94B | 189.92/407.56 |
| ThiNet-Conv            | 69.80% | 89.53% | 131.44M | 9.58B  | 76.71/152.05  |
| Train from scratch     | 67.00% | 87.45% | 131.44M | 9.58B  | 76.71/152.05  |
| ThiNet-GAP             | 67.34% | 87.92% | 8.32M   | 9.34B  | 71.73/145.51  |
| ThiNet-Tiny            | 59.34% | 81.97% | 1.32M   | 2.01B  | 29.51/55.83   |
| SqueezeNet(Han et al.) | 57.67% | 80.39% | 1.24M   | 1.72B  | 37.30/68.62   |

## VGG-16 on ImageNet

■ ThiNet-WS: use the weight sum (WS) method for pruning

Table. Comparison of state-of-the-art methods on VGG-16

| Method                      | Top-1  | Top-5  | #Param. | #FLOPs |
|-----------------------------|--------|--------|---------|--------|
| APoZ-1 (Hu et al.)          | -2.16% | -0.84% | 2.04×   | ≈1×    |
| APoZ-2 (Hu et al.)          | +1.81% | +1.25% | 2.70×   | ≈1×    |
| Taylor-1 (Molchanov et al.) | -      | -1.44% | ≈1×     | 2.68×  |
| Taylor-2 (Molchanov et al.) | -      | -3.94% | ≈1×     | 3.86×  |
| ThiNet-WS (Li et al.)       | +1.01% | +0.69% | 1.05×   | 3.23×  |
| ThiNet-Conv                 | +1.46% | +1.09% | 1.05×   | 3.23×  |
| ThiNet-GAP                  | -1.00% | -0.52% | 16.63×  | 3.31×  |

### ResNet-50 on ImageNet

Table. Performance of pruning ResNet-50 on ImageNet

| Model     | Top-1  | Top-5  | #Param. | #FLOPs | f./b. (ms)    |
|-----------|--------|--------|---------|--------|---------------|
| Original  | 72.88% | 91.14% | 25.56M  | 7.72B  | 188.27/269.32 |
| ThiNet-70 | 72.04% | 90.67% | 16.94M  | 4.88B  | 169.38/243.37 |
| ThiNet-50 | 71.01% | 90.02% | 12.38M  | 3.41B  | 153.60/212.29 |
| ThiNet-30 | 68.42% | 88.30% | 8.66M   | 2.20B  | 144.45/200.67 |

## **Domain Adaptation Ability**

Table. Comparison of different methods on CUB-200 and Indoor-67. "FT" denotes "Fine Tune"

| Data set  | Stategy            | #Param. | #FLOPs | Top-1                |
|-----------|--------------------|---------|--------|----------------------|
| CUB-200   | VGG-16             | 135.07M | 30.93B | 72.30%               |
|           | FT & prune         | 7.91M   | 9.34B  | 66.90%               |
|           | Train from scratch | 7.91M   | 9.34B  | 44.27%               |
|           | ThiNet-Conv        | 128.16M | 9.58B  | 70.90%               |
|           | ThiNet-GAP         | 7.91M   | 9.34B  | 69.43%               |
|           | ThiNet-Tiny        | 1.12M   | 2.01B  | 65.45%               |
|           | AlexNet            | 57.68M  | 1.44B  | 57.28%               |
|           | VGG-16             | 134.52M | 30.93B | 72.46%               |
| Indoor-67 | FT & prune         | 7.84M   | 9.34B  | 64.70%               |
|           | Train from scratch | 7.84M   | 9.34B  | 38.81%               |
|           | ThiNet-Conv        | 127.62M | 9.58B  | 72.31%               |
|           | ThiNet-GAP         | 7.84M   | 9.34B  | 70.22%               |
|           | ThiNet-Tiny        | 1.08M   | 2.01B  | 62.84%               |
|           | AlexNet            | 57.68M  | 1.44B  | 59.55% <sub>22</sub> |

## Conclusion

#### Conclusion

#### Contributions

- Proposed ThiNet, a filter pruning framework, to accelerate and compress CNN models
- Formally establish filter pruning as an optimization problem
- VGG-16 model can be pruned into 5.05MB, and shows promising generalization ability on transfer learning

#### Future work

- Prune the projection short-cuts of ResNet
- Explore more on channel selection method

## Thank You

#### Reference

- Luo, J. H., Wu, J., & Lin, W. (2017). ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression. arXiv preprint arXiv:1707.06342.
- H. Hu, R. Peng, Y.W. Tai, and C. K. Tang. Network trimming: A data-driven neuron pruning approach towards efficient deep architectures. In arXiv preprint arXiv:1607.03250, pages 1–9, 2016.
- H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient ConvNets. In ICLR, pages 1–13, 2017.