Qualitative Risk Analysis

Risk Management – Functional Reliability

Prepared by Ferenc Birloni, PhD 2017

Warm Up

- CAN YOU RECALL THAT YOU AVOIDED RISK?
- DID YOU CONFIDENTIALLY ACCEPT RISK?
- DID YOU REDUCE RISK IN YOUR LIFE?

Monitoring and Review

- Planned, regular monitoring of the risks and risk management framework is critical
- Monitoring and review is undertaken by risk owners and management
- Independent review of the risk management framework

SUMMARY FOR TODAY

- ✓ Risk Assessment Methods Logic trees
- ✓ Risk Analysis on Safety Instrumented Systems
- ✓ Risk Analysis with Risk Graphs

Fishbone Explained

Ishikawa Diagram - Oil Split

Fishbone – Simple Analysis

Fishbone Diagram - Causes of Low-Quality Output

Root Cause Analysis Tree

Undesirable Outcome in Mechanical Engineering

Further Risk Assessment Methods

- FMEA Fault Mode Effect Analysis
- FMECA Fault Mode & Critical Analysis
- ETA Event Tree Analysis
- FTA Fault Tree Analysis
- AEMA Action Error Mode Analysis
- HAZOP Hazard and Operability study

FMEA Model

FMEA – Warehouse example

Source & Type	Failure Mode	Effect on Total Perf	Causes	Controls	SEV	OCC	DET	RPN

SEV – severity of the effects of the failure (1-low, 10- high)

OCC – probability of failure occurring (1-low, 10- high)

DET – likelihood failure is detected (10-low, 1- high)

RPN – Risk Priority Number = SEV x OCC x DET

FMEA – Warehouse example 1

Source & Type	Failure Mode	Effect on Total Perf	Causes	Controls	SEV	осс	DET	RPN
PM Risks (Internal)	Budget overrun	Failure to finish project within budget	Financial control is lost	Increase tech & financial monitoring, and auditing of project activities	9	6	5	270
	Time overrun	Failure to start operation on time	Technical monitoring by PM is reduced due to design/construction or contractor problem	Increase periodical tech control & progress track	9	5	8	360
	Party disputes	Delay in finishing, & loss to client	Various reasons among parties	Resolve problems as they appear	7	4	5	140
	Personnel problems on-site	Pers. problems that can lead to chaos	Bad planning – lack of on-site organization	Periodic meetings to solve problems	5	4	4	80
Technological, quality, performance risk	Changes in project technology	Failure to cope with changes	PM staff is not prepared to accept changes	Meetings to make PM staff aware of changes	6	6	6	216
	Quality problems	Failure to meet project requirements	Good quality standards not set properly	Quality manual to prepare and train	8	5	6	240

CVEN30008 Risk Analysis

FMEA – Warehouse example 2

Source & Type	Failure Mode	Effect on Total Perf	Causes	Controls	SEV	OCC	DET	RPN
Contractors risk (External)	Contractor failure to finish on time	Failure to deliver to the client's expectation	PM lacks control over contractor	PM engagement in the selection of the contractor	7	4	6	168
	Incompetent contractor	Failure to meet project requirements	PM lacks control over the chosen contractor	Enforce adherence to PM procedures	6	3	8	144
	Inefficient subcontractors	Problems in delivery & subcontract work	Improper contractor or subcontractor issue	Check, control or mediate	5	6	4	120
Contractual & legal risks	Contractual problem with client	Disputes with the client	PM misunderstood the requirements	Explain to client the scope of services	4	4	5	80
		Failure to complete PM services	PM failed to fulfil his responsibilities	Negotiate new terms or provisional precautions	3	4	5	60

Success / Fault Tree Model

FT model of PM failure – example 1.

FT model of PM failure – example2.

FT Analysis – Functionnally Critical

CVEN30008 Risk Analysis

Logic Trees Compared

Logic Tree	Analysis Outcomes	Mathematical Foundation	Data Required	Advantages	Limitations
Fault Tree	Probability of failure Cut sets	Boolean logic Probability and reliability theory	System knowledge Failure modes & probabilities	Focusing on components and failure modes	Complex systems requiring use of specialised SW
Success Tree	Probability of success Cut sets	Boolean logic Probability and reliability theory	System knowledge Success modes & probabilities	Focusing on success modes	Complex systems requiring use of specialised SW
Event Tree	Probability of scenarios and consequences	Probability theory	Events, sequencing Outcome spaces	Multiple outcomes Conceptually simple to develop & solve	Binary outcomes
Probability Tree	Probability of any uncertain event in a joint probability distribution	Probability theory Bayes theorem	Events, sequencing Outcome spaces Probabilities Consequences	Multiple outcomes Conceptually simple to develop & solve	Difficult to display, understand, & solve for large tree
Decision Tree	Determine the best decision strategy under uncertainty	Bayes theorem Utility theory	Events, sequencing Outcome spaces Probabilities Consequences	Conceptually simple to develop & solve	Difficult to display, understand, & solve for large tree

CVEN30008 Risk Analysis

FUNCTIONAL SAFETY SYSTEMS

How much safety is necessary?

Risk Reduction Process

EN ISO 14121

Iterative
 Process to
 Achieve the
 Required
 Safety Level

Generic and Specific Standards

SIL – Target Failure Measures

1. target failure measures for a safety function operating in low demand mode of operation

Safety integrity level (SIL)	Low demand mode of operation (Average probability of failure to perform its design function on demand (PFD))
4	$\geq 10^{-5} \text{ to} < 10^{-4}$
3	$\geq 10^{-4} \text{ to} < 10^{-3}$
2	$\geq 10^{-3} \text{ to} < 10^{-2}$
1	$\geq 10^{-2} \text{ to} < 10^{-1}$

2. target failure measures for a safety function operating in high demand or continuous mode of operation

Safety integrity	High demand or continuous mode of operation
level (SIL)	(Probability of a dangerous failure per hour (PFH))
4	$\geq 10^{-9} \text{ to} < 10^{-8}$
3	$\geq 10^{-8} \text{ to} < 10^{-7}$
2	$\geq 10^{-7} \text{ to } < 10^{-6}$
1	≥ 10 ⁻⁶ to < 10 ⁻⁵

Risk Graph ISO 13849:1999 (superseded)

Category

Severity of injury

- S1 slight (usually reversible) injury
- **S2** serious (usually irreversible) injury, including death

Frequency and/or exposure time for hazard

- **F1** seldom to less often and/or short duration of exposure time
- F2 frequent to continuous and/or long duration of exposition

Possibilities of avoiding the hazard

- P1 possible under certain conditions
- P2 almost impossible

Choice of category

- **B, 1 to 4** categories for safety related parts of controls

Risk Graph – Analysis

Risk Analysis PLr (ISO 13849-1)

F: Frequency and exposure time of hazard

P: Possibility of avoiding the hazard

Severity of possible harm Se

Consequences	Se
irreversible: death, losing an eye or arm	4
irreversible: broken limb(s), loosing a finger(s)	3
reversible: requiring attention from a medical practitioner	2
reversible: requiring first aid	1

Frequency and duration of exposure Fr

Frequency of exposure	Fr (Duration > 10 min)
≤ 1 per h	5
< 1 per h to ≥ 1 per day	5
< 1 per day to ≥ 1 per 2 weeks	4
< 1 per 2 weeks to ≥ 1 per year	3
< 1 per year	2

Where the duration is shorter than 10 min, the value may be decreased to the next level.

Probability of occurrence of a hazardous event Pr

Probability of occurrence	Pr
very likely	5
likely	4
possible	3
rarely	2
negligible	1

Avoiding / limiting harm Av

Possibility of avoiding or limiting harm	Av
impossible	5
rarely	3
possible	1

Determination of Required SIL - EN 62061

1. Determining of the extent of harm Se

2. Determining of the class Cl

Parameter		
Frequency and duration of the exposure	Fr	5
Probability of the unwanted event	Pr	4
Possibility of avoiding and limiting of harm	Av	3
	Sum (class CI):	12

Determination of Required SIL - EN 62061

Severity	Class Cl						
Se	4	5 to 7	8 to 10	11 to 13	14 to 15		
4	SIL 2	SIL 2	SIL 2	SIL 3	SIL 3		
3		(OM)	SIL 1	SIL 2	SIL 3		
2			(OM)	SIL 1	SIL 2		
1				(OM)	SIL 1		

OM: other measures

Comparison of the various Safety Classification Systems

EN 62061 Safety Integrity Level (SIL)		IEC 61508 Safety Integrity Level (SIL)		EN ISO 13849-1 Performance Level (PL)		EN 954-1 Category (Cat)
-		-		а		В
1	•••••	1		b		1
1				С	•	2
2		2	••••••	d		3
3		3	••••••	е		4
	•	4	••••••			

SIL – Train System Example

	PFH*	RRF**	
SIL-1	10-5 -10-6	$10^5 - 10^6$	
SIL-2	10-6 -10-7	$10^6 - 10^7$	
SIL-3	10-7 -10-8	$10^7 - 10^8$	
SIL-4	10 ⁻⁸ -10 ⁻⁹ *PFH: Probabil **RRF: Risk re	10 ⁸ -10 ⁹ lity of failure per houduction factor	Trainnet® Train Computer Trainnet® HMI

EXAMPLES OF TRAINNET® SIL FUNCTIONS:

- ASDO (Automatic Selective Door Operation) (SIL-2)
- Bearing temperature (SIL-1 or SIL-2)
- Speed measurement (SIL-1 or SIL-2)
- 2 Lateral vibration (SIL-2)

- 3 Safety Communication Management (SIL-2)
- Display of speed (SIL-2)
- 4 Display and control of ASDO (SIL-2)
- Fire detection system monitoring (SIL-2)

http://www.eke-electronics.com/safety-integrity-level-sil-railway-applications

MACHINE CONTROL SYSTEM — EXAMPLE

Risk Assessment

Deal with hazards from two point of view

- hazards to the machine operator
- hazards to people in the environment of machinery

Risk Graph – Qualitative method to determine SIL from the assessment of Risk Factors

Classification Example 1

Risk Parameter		Classifications	Comments	
	C_1	Minor injury		
Consequence (C)	C_2	Serious permanent injury to one or more persons	For the interpretation of C, the consequences of the accident and normal healing	
	C_3	Death of several people	should be taken into account	
	C_4	A large number of people killed		
Frequency and	F_1	Rare to more frequent exposure in the hazardous zone		
exposure time in hazardous zone (F)	F_2	Frequent to permanent exposure in the hazardous zone		

Classification Example 2

Risk Parameter		Classifications	Comments		
Possibility of avoiding hazardous event (P)	P_1	Possible under certain condition	 This parameter takes into account operation of a process (supervised or not) rate of development of the hazardous event ease of recognition of danger actual safety experience (similar MCS) 		
	P_2	Almost Impossible			
Probability of unwanted occurrence (W)	\mathbf{W}_1	Very slight probability that the unwanted occurrences will come to pass and only a few unwanted occurrences are likely	The purpose of the W factor is to estimate the frequency of the unwanted occurrence taking place without the addition of any MCS, but including any external risk reduction		
	W_2	Slight probability that occurrences will come to pass and few occurrences are likely			
	W_3	probability that occurrences will come to pass and frequent occurrences are likely	facilities		

Risk Analysis – Hazard Identification

Electronically controlled powershift transmission

Hazard to	Risk parameter					
operator	С	F	P	W		
Unexpected gearing down (eg 4th to 1st)	C ₂ Operator could be seriously injured	F ₂ Operator permanently exposed	P ₁ Operator able to use safety belt	W ₁ Experience shows – probability of such incidents can be estimated as W ₁		
Hazard to other people						
Unexpected gearing down (eg 4 th to 1 st) on public road	C ₂ Possibility of collision with sudden stopping of machine	F ₁ Travelling on public roads is limited	P ₁ Possible to use brakes, or other vehicles may be able to swerve	W ₁ Experience shows – probability of such incidents can be estimated as W ₁		

Risk Graph - Example

END SUMMARY — QUALITATIVE RISK

- ✓ Risk Assessment Methods Logic trees
- ✓ Risk Analysis on Safety Instrumented Systems
- ✓ Risk Analysis with Risk Graphs