

دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران) دانشکده مهندسی کامپیوتر و فناوری اطلاعات

> پروژه کارشناسی معماری سیستمهای کامپیوتری

طراحی و پیادهسازی سامانه ردیابی مبتنی بر اینترنت اشیا

نگارش ساره سلطانی نژاد

استاد راهنما دکتر بهادر بخشی

استاد داور دکتر مهدی راستی

بهار ۹۸

صفحه فرم ارزیابی و تصویب پایان نامه - فرم تأیید اعضاء کمیته دفاع

در این صفحه فرم دفاع یا تایید و تصویب پایان نامه موسوم به فرم کمیته دفاع- موجود در پرونده آموزشی- را قرار دهید.

نكات مهم:

- نگارش پایان نامه/رساله باید به زبان فارسی و بر اساس آخرین نسخه دستورالعمل و راهنمای تدوین پایان نامه های دانشگاه صنعتی امیرکبیر باشد.(دستورالعمل و راهنمای حاضر)
- رنگ جلد پایان نامه/رساله چاپی کارشناسی، کارشناسی ارشد و دکترا باید به ترتیب مشکی، طوسی و سفید رنگ باشد.
- چاپ و صحافی پایان نامه/رساله بصورت پشت و رو(دورو) بلامانع است و انجام آن توصیه می شود.

به نام خدا

تعهدنامه اصالت اثر

اینجانب ساره سلطانی نژاد متعهد میشوم که مطالب مندرج در این پایاننامه حاصل کار پژوهشی اینجانب تحت نظارت و راهنمایی اساتید دانشگاه صنعتی امیر کبیر بوده و به دستاوردهای دیگران که در این پژوهش از آنها استفاده شده است مطابق مقررات و روال متعارف ارجاع و در فهرست منابع و مآخذ ذکر گردیده است. این پایاننامه قبلاً برای احراز هیچ مدرک همسطح یا بالاتر ارائه نگردیده است.

در صورت اثبات تخلف در هر زمان، مدرک تحصیلی صادر شده توسط دانشگاه از درجه اعتبار ساقط بوده و دانشگاه حق پیگیری قانونی خواهد داشت.

کلیه نتایج و حقوق حاصل از این پایاننامه متعلق به دانشگاه صنعتی امیرکبیر میباشد. هرگونه استفاده از نتایج علمی و عملی، واگذاری اطلاعات به دیگران یا چاپ و تکثیر، نسخهبرداری، ترجمه و اقتباس از این پایان نامه بدون موافقت کتبی دانشگاه صنعتی امیرکبیر ممنوع است. نقل مطالب با ذکر ماخذ بلامانع است.

ساره سلطانی نژاد

امضا

نویسنده پایان نامه، درصورت تمایل میتواند برای سیاسکزاری پایان نامه خود را به شخص یا انتخاص و یا ار گان خاصی تقدیم نماید.

سپاس گزاری

نویسنده پایاننامه می تواند مراتب امتنان خود را نسبت به استاد راهنما و استاد مشاور و یا دیگر افرادی که طی انجام پایاننامه به نحوی او را یاری و یا با او همکاری نمودهاند ابراز دارد.

ساره سلطانی نژاد بهار ۹۸

چکیده

در علم فناوری اطلاعات، مفهوم اینترنت اشیا به اشیایی با هویت خاص اطلاق می شود که دارای شناسه منحصر به فرد بوده و توانایی انتقال داده روی شبکه، بدون نیاز به تعامل و دخالت انسان را دارند. در واقع هدف اصلی آن هوشمند سازی اشیا و فراهم آوردن بستری است که از طریق آن، اشیا قادر به ارسال و دریافت اطلاعات با یکدیگر می باشند. در سالهای اخیر فناوری اینترنت اشیا رشد چشمگیری داشته و در زمینههای مختلف توانسته نیازهای متعدد و پیچیدهای را برطرف کند. یکی از این زمینهها ردیابی اشخاص و وسایل نقلیه است.

سیستم موقعیتیابی و ردیابی امکان ارائه راهحلهایی مطمئن برای تامین امنیت افراد و وسایل نقلیه را فراهم آورده است و همچنین تاثیر بسزایی در بهینه شدن کیفیت نظارت و مدیریت ناوگانهای حمل و نقل، حرکت خودروها، افراد (کودکان و سالمندان) و یا هر شی متحرک دیگر دارد. در واقع سامانه ردیابی تکنولوژی است که امکان تعیین موقعیت دقیق و ردیابی افراد، وسایل نقلیه و یا هر جسم متحرک دیگر را با استفاده از متدهای مختلفی مانند سامانه موقعیتایاب جهانی فراهم آورده است. همان طور که گفتیم اینترنت اشیا یک بستر ارتباطی جدید در جهت برقراری ارتباط بین اشیا هوشمند میباشد. معرفی این بستر موجب شده است تا امکانات جدیدی برای حل مسائلی همچون تعیین مکان، ردیابی اشخاص و وسایل نقلیه فراهم گردد. پس یکی از کاربردهایی که می توان برای اینترنت اشیا متصور شد، پیاده سازی سامانه ای است که بتوان توسط آن موقعیت دقیق و مسیر حرکت هر جسم متحرک را در هر زمان تعیین کرد. در این پروژه قصد داریم چنین سامانه ای را پیاده سازی کنیم.

واژههای کلیدی:

موقعیتیاب جهانی، اینترنت اشیا، ردیابی

فهرست مطالب

سفحه	ن جهر سک محمد	عنوا
١	مقدمه	١
۶	مفاهیم	۲
٧	۲–۱ اینترنت اشیا	
	اجزای مورد استفاده در سیستم ردیابی	٣
٩	۱-۳ مقدمه	
٩	۲-۳ طراحی و معماری سیستم	
11	۳-۳ اجزاء سیستم	
11	۳-۳-۱ اجزاء سختافزاری	
17	۳–۳–۲ ماژول آردوینو	
۱۳	۳-۳-۳ ماژول SIM 808	
14	۴-۳-۳ آنتن GPS	
۱۵	۵–۳–۳ آنتن GSM	
18	۳-۳-۶ اجزاء نرمافزاری	
18	۳-۳-۳ نرمافزار Arduino IDE ۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	
١٧	google map \(\Lambda - \mathbf{T} - \mathbf{T} \)	
۱۸	پیادهسازی	۴
19	جمعبندی و نتیجهگیری	۵
۲۰	۱–۵ پیشنهادات	
71	ع و مراجع	مناب
77	ست	پيوا
74	، نامهی فارسی به انگلیسی	واژد

** *		
مطالب	ست	وں

صفحا	فهرست اشكال	شكل
١٠ .	بلاک دیاگرام سیستم ردیابی	۱-۳
	معماری سیستم ردیابی پیشنهادی	
	برد آردوینو UNO R3 برد آردوینو	
14.	نمایی از قسمت روبرو تراشه SIM 808	4-4
	نمایی از قسمت پشت تراشه SIM 808	
	آنتن GPS	
	مشخصات آنتن GSM	
	آنتن GSM	
	نمایی از نرمافزار آردوینو	

فهرست جداول

صفحه

جدول

فهرست نمادها

مفهوم نماد n فضای اقلیدسی با بعد \mathbb{R}^n n بعدی \mathbb{S}^n M بعدی-m M^m M وی هموار روی برداری هموار روی $\mathfrak{X}(M)$ (M,g) مجموعه میدانهای برداری هموار یکه روی $\mathfrak{X}^{\prime}(M)$ M مجموعه p-فرمیهای روی خمینه $\Omega^p(M)$ اپراتور ریچی Qتانسور انحنای ریمان \mathcal{R} تانسور ریچی ricمشتق لي L۲-فرم اساسی خمینه تماسی Φ التصاق لوى-چويتاي ∇ لاپلاسين ناهموار Δ عملگر خودالحاق صوری القا شده از التصاق لوی-چویتای ∇^* متر ساساكى g_s التصاق لوی-چویتای وابسته به متر ساساکی ∇ عملگر لاپلاس-بلترامی روی p-فرمها Δ

فصل اول مقدمه

مفهوم اینترنت اشیا ۱ به اشیایی با هویت خاص اطلاق می شود که دارای شناسه منحصر به فرد بوده و توانایی انتقال داده روی شبکه، بدون نیاز به تعامل و دخالت انسان را دارند. هدف اصلی آن هوشمند سازی اشیا و فراهم آوردن بستری است که از طریق آن اشیا قادر به ارسال و دریافت اطلاعات با یکدیگر می باشند. اینترنت اشیا به طور گسترده به توسعه قابلیت محاسبه و ارتباطات شبکهای اشیا، دستگاهها، سنسورها یا هر مورد دیگری که به طور معمول به عنوان کامپیوتر در نظر گرفته نمی شود، اشاره دارد. این اشیای هوشمند دارای قابلیت جمع آوری داده از راه دور، تحلیل و مدیریت آنها هستند. [۲]

اینترنت اشیا مجموعه وسیعی از سنسورها و عملگرهایی است که شرایط مختلف محیط را اندازه گیری و پردازش می کنند. در سالهای اخیر فناوری اینترنت اشیا رشد چشمگیری داشته و توانسته در زمینههای مختلف، نیازهای متعدد و پیچیدهای را برطرف کند. به علت گسترش فناوریهای جدید، تولید سنسورهای هوشمند، رشد تکنولوژیهای ارتباطی و پیچیده شدن نیازها، اینترنت اشیا قدرت زیادی پیدا کرده و در زمینههای مختلف از آن استفاده می شود و باعث گسترش سیستمهای هوشمند در محیط شده است. [۴] این سیستمها برای اینکه بتوانند اثر مثبتی بر محیط بگذارند باید با یکدیگر در تعامل باشند. فناوریهای مبتنی بر اینترنت اشیا نیازمندیهای متفاوتی در مقایسه با سایر فناوریها دارند. به طور معمول این سیستمها حافظه، توان مصرفی و پهنای باند کمتری نسبت به سایر سیستمها دارند. اکثر سیستمهای هوشمند مبتنی بر باتری هستند و در مکانی دوردست قرار دارند به گونهای که نمیتوان به صورت مداوم هوشمند مبتنی بر باتری هستند و در مکانی دوردست قرار دارند به هوشمند و مسائل ردیابی، مسئله آنها را شارژ کرد. در نتیجه توان مصرفی و محدوده قابل پوشش برای این سیستمها به ویژه آنهایی که در سطح کلان اجرا می شوند مانند کشاورزی هوشمند، شهر و خانه هوشمند و مسائل ردیابی، مسئله بسیار مهمی است. پروتکلهای ارتباطی بی سیم متعددی وجود دارد که هر کدام ویژگی منحصر به فرد خود را دارند.

یکی از کاربردهای مهم اینترنت اشیا، سامانههای ردیابی است که در فناوریهای مختلف مورد استفاده قرار می گیرد. سیستمهای ردیابی برای اولین بار برای صنعت حمل و نقل به وجود آمدند. از نیازهای اساسی صاحبان این صنعت، بررسی موقعیت وسایل نقلیه است. ابتدایی ترین سیسبتمهای ساخته شده برای یافتن موقعیت، سیسبتمهای غیر فعال بودند که اطلاعات را در حافظهای ذخیره می کردند و دسترسی به آنها تنها زمانی ممکن بود که وسیله نقلیه در دسترس باشد. این نوع سیستمها برای کاربردهای بلادرنگ مناسب نیستند چون در این کاربردها نیاز است اطلاعات بلافاصله در اختیار کاربر قرار بگیرد. برای برطرف کردن این نیاز، سیستمهای فعال به وجود آمدند که با استفاده از یک سختافزار تعبیه شده در وسیله نقلیه و سرور ردیابی از راه دور این امکان را فراهم می کنند.

Internet of Things (IOT)

امروزه امنیت افراد و وسایل نقلیه تبدیل به یک نگرانی همگانی شده است. سیستم موقعیتیابی و ردیابی امکان ارائه راهحلهایی مطمئن برای تامین امنیت افراد و وسایل نقلیه را فراهم آورده است و همچنین تاثیر بسزایی در بهینه شدن کیفیت نظارت و مدیریت ناوگانهای حمل و نقل، حرکت خودروها، افراد (کودکان و سالمندان) و یا هر شی متحرک دیگر دارد. در واقع سامانه ردیابی تکنولوژی است که امکان تعیین موقعیت دقیق و ردیابی افراد، وسایل نقلیه و یا هر جسم متحرک دیگر را با استفاده از متدهای مختلفی مانند سامانه موقعیتیاب جهانی ۲ میسر میسازد، البته شایان ذکر است که گاهی همین مشخص بودن موقعیت افراد و وسایل نقلیه در کنار تمام مزیتهایی که دارد، خطرات امنیتی را برای آنها ایجاد می کند. [۳]

امنیت در سیستم حمل و نقل تنها به حمل و نقل عمومی منتهی نمی شود. بلکه از مهم ترین نگرانی های صاحبان وسایل نقلیه شخصی، اطمینان از امنیت وسیله نقلیه آن ها است. سیستم های ردیابی در پیشگیری از سرقت یا یافتن وسیله سرقت شده می توانند کمک کنند. پلیس نیز با استفاده از اطلاعاتی که سیستم ردیابی تعبیه شده در وسیله نقلیه ارسال می کنبد می توانبد موقعیت را تشخیص بدهد.

علاوه بر وسایل نقلیه، سیستمهای ردیابی در کاربردهای نظارت از راه دور و نظارت بر محیط زیست نیز نقش مهمی دارند. به عنوان مثال ردیابی حیوانات، انسانها و موقعیتیابی اشیا از کاربردهای این سیستم میباشد. در مثال نظارت بر انسانها، این سیستم برای افراد سالمند که دارای بیماریهای خاص چون آلزایمر هستند و احتمال گم کردن مسیر برای آنها بالا است، یا برای امنیت کودکان میتواند بسیار مفید باشد. خانوادهها میتوانند از این سیستم برای یافتن موقعیت سالمند یا کودک خود استفاده کنند. سیستمی که در این پروژه پیادهسازی کردهایم میتواند در موارد مختلف مورد استفاده قرار بگیرد.

اینترنت اشیاء یک بستر ارتباطی جدید در جهت برقراری ارتباط بین اشیا هوشمند میباشد. معرفی این بستر موجب شده است تا امکانات جدیدی برای حل مسائلی همچون تعیین مکان و ردیابی اشیا متحرک از حمله وسایل نقلیه در سطح یک شهر، منطقه یا کشور فراهم گردد. اینترنت اشیا یک بستر ارتباطی جدید است که به سرعت در حال بدست آوردن راهکارهایی در رابطه با سناریوی ارتباط از راه دور میباشد و انتظار میرود که مبادله اطلاعات در رابطه با هر شی در شبکههای زنجیرهای منابع جهانی را آسان کند، شفافیت را افزایش دهد و کاراییشان را بالا ببرد. به طور گسترده اینترنت اشیا میتواند به عنوان ستون اصلی سیستمهای فراگیر و فعالسازی محیطهای هوشمند برای سادگی در تشخیص و شناسایی اشیا و بازیابی اطلاعات از اینترنت در هر زمان و در هر مکان به کار برده شود.

از یک دیدگاه مفهومی، اینترنت اشیا متکی بر سه اصل مرتبط با توانایی اشیا هوشمند است: ۱-

Global Positioning System (GPS)⁷

قابلیت شناسایی (هر چیزی خود را شناسایی کند) ۲- قابلیت انتقال (هر چیزی دست به انتقال میزند) ۳- قابلیت تعامل (هر چیزی دست به تعامل میزند) یا در میان خودشان و یا با کاربران نهایی یا سایر نهادهای فعال در شبکه. اشیا معمولا یا به صورت منحصر به فردو یا به عنوان عضوی از یک رده شناسایی میشوند.

یکی از مسائل مطرح امروزی، ردیابی بیدرنگ اشیا متحرک میباشد که به ردیابی بیدرنگ موقعیت فعلی یک شی متحرک معین اشاره دارد. سیستم ردیابی اشیا متحرک یک راه حل برای بسیاری از مشکلات از جمله مساپل امنیتی است. تکنولوژی است که برای مشخص کردن موقعیت شی مورد استفاده قرار میگیرد.

همانطور که گفتیم اینترنت اشیا یک بستر ارتباطی جدید در جهت برقراری ارتباط بین اشیا هوشمند می باشد. معرفی این بستر موجب شده است تا امکانات جدیدی برای حل مسائلی همچون تعیین مکان، ردیابی اشخاص و وسایل نقلیه فراهم گردد. پس یکی از کاربردهایی که می توان برای اینترنت اشیا متصور شد، پیاده سازی سامانه ای است که بتوان توسط آن موقعیت دقیق و مسیر حرکت هر جسم متحرک را در هر زمان تعیین کرد. در این پروژه قصد داریم چنین سامانه ای را پیاده سازی کنیم.

در این پروژه قصد داریم به ساخت یک سیستم ردیابی بپردازیم که قادر است موقعیت دقیق و مسیر حرکت یک شی متحرک را مشخص کند. در انجام این پروژه ارتباط ما به صورت یک طرفه خواهد بود به این صورت که به طور پیوسته مختصات مکانی شی متحرک توسط ماژول جی پی اس آاندازه گرفته و به یک سرور فرستاده می شود. این ماژول به طور پیوسته با ماهواره برای گرفتن مختصات مکانی در ارتباط است. دادههای GPS به آردوینو فرستاده می شود. در نهایت مودم جی اس ام آاین اطلاعات را برای سرورهای نرمافزاری پس از دریافت اطلاعات، آنها را تحلیل می کنند و درخواستی از سمت سرور نخواهیم داشت و ارتباط ما به صورت یک طرفه خواهد بود. در این قسمت پروژه یک نرمافزار تحت وب توسعه داده خواهد شد تا بتواند اطلاعات ارسالی را پردازش و ذخیره کند و در انتها اطلاعات ذخیره شده را به صورت قابل نمایش برای کاربران تبدیل کند. در واقع برنامه کاربردی نوشته شده با استفاده از دادههای ذخیره شده، موقعیت را در نقشه نمایش می دهد. از این طریق میتوان موقعی کنونی شی یا شخص مورد نظر را پیدا کرد. برای نمایش موقعیت نیز از نقشه ...

در ادامهی این پایاننامه، در فصل دوم درباره مفاهیم مورد استفاده در این پروژه صحبت می کنیم

GPS[₹]

Global system for mobile communication^{*}

و در فصل سوم معماری کلی سیستم ردیابی و اجزا تشکیل دهنده آن و سپس در فصل چهارم شیوه پیادهسازی این سیستم با استفاده از اجزا معرفی شده در فصل سوم را بیان می کنیم. در پایان نیز درباره نتایج پیادهسازی سیستم و کارهایی که در آینده مبتنی بر این پروژه میتوان انجام داد صحبت می کنیم.

فصل دوم مفاهیم

۱-۲ اینترنت اشیا

اینترنت اشیا که از آن به عنوان "انقلاب صنعتی جدید" یاد می شود، به دلیل تغییری که در شیوه زندگی، کار، سرگرمی و مسافرت مردم و ... ایجاد کرده، تعاملات بین دولتها و دنیای پیرامون شان را با دنیای مجازی و تکنولوژی نیز دگرگون ساخته است. ورود دستگاه اتومبیل با مجموعه ای از نرمافزارهای کاربردی جهت ایجاد تعامل بین کاربر، خانه ها و ساختمان های هوشمند، امکان پخش موسیقی تنها با ادای چند کلمه و هزاران کاربرد دیگر در مدیریت هوشمند شهر، حمل و نقل، کشاورزی، صنایع دفاعی، صنعت بیمه، صنایع مربوط به نفت، گاز و معدن، مدیریت انرژی، پایش و امنیت اماکن عمومی و خصوصی، خرده فروشی، بانکها، بهداشت و درمان، هتل داری، مهر تاییدی بر اهمیت اینترنت اشیا است.

اینترنت اشیا، برای نخستین بار در سال ۱۹۹۹ توسط کوین اشتون مورد استفاده قرار گرفت و جهانی را توصیف کرد که در آن هر چیزی، از جمله اشیا بیجان، برای خود هویت دیجیتال داشته باشند و به کامپیوترها اجازه دهند تا آن ها را سازماندهی و مدیریت کنند.

فصل سوم اجزای مورد استفاده در سیستم ردیابی

۱-۳ مقدمه

هدف اصلی پروژه ما طراحی و پیادهسازی سامانهای است که بتوان توسط آن موقعیت دقیق و مسیر حرکت هر جسم متحرک را در هر زمان تعیین کرد. سامانه ذکر شده باید علاوه بر عملکرد مناسب، از لحاظ هزینه هم به صرفه باشد.

برای این که بتوانیم چنین سامانه ای را طراحی کنیم اول باید نیازمندیهای سامانه را تشخیص دهیم، معماری کلی سامانه موردنظر خود را به دست آوریم و سپس با استفاده از این معماری و نیازسنجی انجام شده برای پیاده سازی از ماژولهای مناسب استفاده کنیم. در این فصل در قسمت ۳-۲ ابتدا طرح کلی سامانه ردیابی را توضیح می دهیم و سپس در بخش ۳-۳ اجزاء مورد استفاده در این طرح را معرفی می کنیم.

Υ – Υ طراحی و معماری سیستم

در این قسمت به طراحی سیستم خود می پردازیم. با توجه به نیازمندیهای پروژه باید ماژولهای فرستنده و گیرنده، پروتکل ارتباطی و برنامه کاربردی برای نمایش اطلاعات را مشخص کنیم. هدف اصلی یک سیستم ردیابی این است یک شی خاص را ردیابی کرده و مسیر حرکت آن را در هر زمانی بدست آوریم. در واقع سیستم ردیابی اطلاعاتی درباره مکان فعلی و سرعت شی مورد نظر را در اختیار ما می گذارد. در انجام انی پروژه ارتباط ما به صورت یک طرفه بوده است، به این صورت که به طور پیوسته مختصات مکانی شی متحرک اندازه گرفته می شود و به یک سرور فرستاده می شود و سپس پردازشهای لازم در سمت سرور بر روی این اطلاعات صورت می گیرد. با توجه به توضیحات گفته شده می توان به سه قسمت اصلی در این سیستم اشاره کنیم:(GPS/GSM/GPRS Technology and Smartphone Application)

- بدست آوردن موقعیت مکانی شی متحرک با استفاده از ماژول جی پی اس
 - ارسال اطلاعات مکانی به سرورهای نرمافزاری توسط مودم جی اس ام
- ذخیره اطلاعات مکانی در سمت سرور و پیادهسازی برنامه کاربردی برای نمایش مسیر حرکت شی بر روی نقشه

همانطور که دیدیم معماری سیستم ما دارای چهار بخش اصلی است. بخش اول مربوط به گرفتن موقعیت

مکانی شی از ماهواره با استنفاده از ماژول جی پی اس است. بخش دوم مربوط به ارسال اطلاعات دریافتی به سرور با استفاده از مودم جی اسم ام است و بخش سوم هم توسعه برنامه کاربردی است که با استفاده از اطلاعات دریافت شده موقعیت شی مورد نظر نمایش داده می شود. [۱]

Design and Implementation of Vehicle Tracking System Using GPS/GSM/GPRS Tech-)

(nology and Smartphone Application

شکل ۳-۱: بلاک دیاگرام سیستم ردیابی

شکل ۳-۱ نمای کلی از معماری سیستم طراحی شده و ارتباط بین بخشهای آن را نشان میدهد. برای انتخاب ماژولها لازم است وظیفه هر بخش را دقیق بدانیم و ماژول مورد نظر برای آن را انتخاب کنیم.

- در بخش اول لازم است ما موقعیت مکانی شی مورد نظر را به طور پیوسته اندازه بگیریم. در واقع به محض حرکت کردن شی، ماژول جی پی اس به طور پیوسته اطلاعات مکانی و زمانی شی مورد نظر را از ماهواره دریافت می کند. سیگنال دریافتی از ماهواره ضعیف می باشد و لذا باید از یک آنتن برای تقویت سیگنال مورد نظر استقاده کنیم و در انتها سیگنال تقویت شده که حاوی اطلاعات مکانی و زمانی شی متحرک می باشد را به برد آردوینو می فرستد.
- در بخش دوم اطلاعات ارسالی توسط جی پی اس توسط مودم جی اس ام به سمت سرور فرستاده می شود.
- سرورهای نرمافزاری پس از دریافت اطلاعات آنها را تحلیل میکنند. ارتباط ما در این پروژه به صورت یکطرفه میباشد و درخواستی از سمت سرورهای نرمافزاری نخواهیم داشت. در این

قسمت پروژه یک نرمافزار تحت وب توسعه داده خواهد شد تا بتواند اطلاعات ارسالی را پردازش و ذخیره کند. در قسمت آخر هم این اطلاعات ذخیره شده در صفحه وب طراحی شده نمایش داده می شود.

شکل ۳-۲: معماری سیستم ردیابی پیشنهادی

۳-۳ اجزاء سیستم

در قسمت قبل معماری سیستم را مشخص کردیم. حال اجزاء این معماری را به طور دقیق بیان و معرفی می کنیم.

۳-۳-۱ اجزاء سختافزاری

اجزای سختافزاری که برای پیادهسازی این سامانه استفاده شده است عبارتند از:

- ماژول آردوینو
- ماژول سیم ۸۰۸ ۱
- آنتن جي پي اس ۲
- آنتن جي اس ام "

SIM 808

GPS Antenna⁷

GSM Antenna^r

7-7-7 ماژول آردوینو

آردوینو یک ریزپردازنده متنباز اس که برای نوشتن برنامههایی که با محیط و اشیا بیرون در تعامل هستند مناسب است. این برد مناسب نمونهسازی میباشد و نرم افزار و طرح سختافزار آن به صورت آزاد در اختیار تمام افراد قرار گرفته است و هر فرد علاقهمند حتی با دانش و تجربه اندک در حوزه الکترونیک میتواند از آردوینو برای انجام پروژههای خود استفاده نماید.

C++ و C آردوینو محیط ساده ای برای برنامه نویسی دارد که هر شخصی با اندکی آشنایی با زبان C و C++ می تواند در این محیط برنامه نویسی کند و برنامه نوشته شده را در آردوینو اجرا نماید. به میکروکنترلر آردوینو میتوان حسگرهای مختلف متصل و آنها را کنترل کرد. ریزپردازنده به کار رفته بر روی برد آردوینو بر اساس زبان برنامه نویسی آردوینو بر پایه Wiring و محیط ویژه کدنویسی آن بر پایه برنامه ریزی شده است و برای کدنویسی به نرم افزار یا کامپایلر جانبی نیازی ندارد.

آردوینو انواع مختلفی دارد که ما از آردوینو R3 Uno R3 در این پروژه استفاده کردهایم. R3 سومین و آردوینو انواع مختلفی دارد که ما از آردوینو Uno یک میکروکنترلر بر پایه ATmega328 میباشد. ولتاژ کاری آن $^{\circ}$ ولت میباشد. ولتاژ ورودی این برد میتواند در بازه $^{\circ}$ ولت باشد. این برد دارای ولتاژ کاری آن $^{\circ}$ ولت میباشد. ولتاژ ورودی این برد میتواند در بازه $^{\circ}$ ولت باشد. این برد دارای ویین ورودی آنالوگ، $^{\circ}$ این ورودی و خروجی دیجیتال، یک پورت یو اس $^{\circ}$ ، یک ورودی منبع تغذیه و یک دکمه بازنشانی $^{\circ}$ است که اجازه اتصال بردهای توسعه مختلفی را فراهم میآورد. در شکل $^{\circ}$ اردوینو Uno را مشاهده می کنید.

شكل ۳-۳: برد آردوينو UNO R3

USB Port^{*} Reset^a

۳-۳-۳ ماژول 808 SIM

ماژول SIM 808 یک ماژول ترکیبی از GSM/GPRS و ماژول GPS با قابلیت پشتیبانی از چهار باند فرکانسی $^{\circ}$ SIM 808 یک ماژول ترکیبی ارسال داده، پیام کوتاه و برقراری تماس صوتی میباشد. فرکانسی $^{\circ}$ (۱۹۰۰/۱۸۰۰/۹۰۰/۹۰۰/۱۸۰۰/۹۰۰/۹۰۰/۱۸۰۰/۹۰۰/۱۸۰۰ میباشد که سیم کارت در داخل آن قرار می گیرد.این ماژول بر پایه این ماژول دارای یک سوکت سیم کارت میباشد که سیم کارت در داخل آن قرار می گیرد.این ماژول بر پایه آخرین ماژول GSM/GPR از شرکت SIMCOM میباشد که از شبکه چهار باند GSM/GPRS پشتیبانی و برای ردیابی ماهواره ای از فناوری GPS استفاده می کند. در واقع با استفاده از مودم GSM/GPRRS و ماژول سیم ۸۰۸ می توان به تبادل داده روی شبکه GSM از طریق واسط USB پرداخت و از طریق به اطلاعات دستگاههای مستقر در مکانهای دور دسترسی یافت.

طراحی فشرده این تراشه که دو سیستم مخابراتی و موقعیتیاب را در یک بسته ادغام می کند موجب کاهش هزینه و زمان برای انجام پروژههای مبتنی بر GPS شده است. این ماژول با تکنولوژی ذخیره انرژی Power Saving طراحی شده است و مصرف انرژی آن در حالت خواب بسیار کم در حدود یک میلی آمپر می باشد.

این ماژول دارای ۶۸ پین SMT، سوکت یو اس بی، سیم کارت، بلوتوث میباشد. دارای حساسیت بالای دریافت موقعیت جهانی با ۲۲ کانال ردیابی و ۶۶ کانال گیرنده میباشد. علاوه بر این از A-GPS پشتیبانی می کند که برای موقعیت یابی داخل ساختمان استفاده می شود. این ماژول از طریق واسط پشتیبانی می کند که برای می شود و از سطح منطقی ۳.۳ تا ۵ ولت پشتیبانی می کند. از جمله ویژگیهای این تراشه می توان موارد زیر را نام برد:

- یشتیبانی از سیم کارت تمامی آیراتورها
- دارای رابط SPI/USBSerial و صدای آنالوگ
 - دارای مدار کنترل شارژ
 - پشتیبانی از فرکانس ساعت
 - کممصرف (۱ میلی آمپر در حالت خواب)
 - ولتاژ ورودی ۴.۳ تا ۴.۴ ولت

MHZ⁹

• قابلیت نصب ۳ آنتن GPS, GSM, Bluetooth

در شکل ۳-۳ و ۳-۳ این تراشه را مشاهده می کنید.

شكل ۳-۴: نمايي از قسمت روبرو تراشه 808 SIM

شكل ۳-۵: نمايى از قسمت پشت تراشه 808 SIM

۳-۳-۳ آنتن GPS

بهتر است قبل از معرفی آنتن GPS، شیوه موقعیتیابی توسط سیستم موقعیتیاب جهانی [^] را به طور مختصر توضیح بدهیم. سیستم GPS در واقع شامل ۲۷ ماهواره است که در اطراف زمین در حال گردش مختصر توضیح بدهیم.

هستند که از این ۲۷ ماهواره ۳ تای آنها به صورت رزرو شده میباشند. هر ماهواره سیگنالهای منحصر به فرد و پارامترهای مداری را ارسال می کند و هر گیرنده ای که این سیگنال را دریاف کند، با رمزیشایی اطلاعات دریافتی می تواند موقعیت دقیق ماهواره را پیدا کند. با اتصال سیستم موقعیتیاب به سه ماهواره می توان موقعیت دوبعدی یعنی طول و عرض جغرافیایی و با اتصال به چهار ماهواره میتوان موقعیت سه بعدی را به دست آورد. جی پی اس با دریافت سیگنالهای ماهواره، موقعیت و مکان شی را مشخص می کند. برای دریافت درست سیگنال باید از آنتن استفاده شود. سیگنالهای ماهواره ای جی پی اس در خطوط 1 و 1 به ترتیب دارای فرکانسهای ۱۵۷۵.۴۲ و ۱۲۲۸ مگاهر تز میباشند اما قدرت سیگنال دریافتی معمولا ضعیف بوده و در حدود ۱۶۶ دسی بل آمیباشد که این موضوع لزوم وجود آنتن و تقویت کننده سیگنال جی پی اس را نشان می دهد. این آنتن سیگنال را به اندازه ۲۸ دسی بل تقویت می کند و جریان حدود ۱۰ میلی آمیر می کشد و دارای کابلی به طول 1 متر می باشد که این موجب می شود به و جریان حدود ۱۰ میلی آمیر می کشد و دارای کابلی به طول 1 متر می باشد که این موجب می شود به راحتی به هر جایی که لازم است دسترسی پیدا کند. این آنتن مغناطیسی است و می تواند به بالای ماشین یا هر ساختار فلزی دیگر بچسبد. دارای فرکانس کاری ۱۵۷۲.۴۲ مگاهر تز و محدوده ولتاژ 1 ۲۵ میباشد.

همانطور که گفتیم سیگنال GPS بسیار ضعیف هستند و برای تقویت آنها به آنتن نیاز داریم. از این رو انتخاب آنتن مناسب نقش مهمی در عملکرد GPS دارد. یک واحد GPS به یک دید واضح و بدون مانع با آسمان نیاز دارد تا بتواند بهترین سیگنالهایی که موجب می شود با ماهواره ارتباط برقرار کند را دریافت کند. GPS برای کابلهای طویل از مبدل بالا/پایین استفاده می کند. به این صورت که آنتن سیگنال GPS را دریافت می کند، آن را به یک فرکانس پایین تر تبدیل می کند و سپس از طریق کابل آن را می فرستد. در سمت گیرنده GPS هم یک مبدل بالا وجود دارد که فرکانس آن را به فرکانس سیگنال اصلی برمی گرداند و آن را به گیرنده GPS می فرستد. در شکل ۳-۴ این آنتن را مشاهده می کنید.

۳-۳-۵ آنتن GSM

ارتباطات سیستم موقعیتبای جهانی وابسته به آنتن میباشد. آنتن به سیگنالهای ارتباطی اجازه میدهد، ارسال و دریافت شوند. آنتن مورد استفاده در این پروژه در چهار باند فرکانسی با بهره ۲ دسیبل کار میکند. (۱۰) در واقع فرکانس کاری آن ۸۹۰، ۹۶۰، ۱۷۱۰، ۱۸۸۰ مگاهرتز میباشد. (۱۱)

شکل ۳-۶: آنتن GPS

شکل ۳–۵ برخی از مشخصات آنتن را نشان میدهد.(مقاله ۲۰۱۶) و در شکل ۳–۶ این آنتن را مشاهده میکنید.

Item	Value
Frequency	850 MHz-900 MHz-2.1 GHz-1800 MHz-1900 MHz
Impedance	50 Ohms
Mounting	on glass
Polarization	horizontal
Gain	2.14dBi
VSWR	< 2:1
Power handling	25W
Connector	RPSMA Male
Size	117mm x12,5mm x 4mm
Operating temperature	-40°C to +85°C

شکل ۳-۷: مشخصات آنتن GSM

۳-۳-۶ اجزاء نرمافزاری

۳-۳-۳ نرمافزار Arduino IDE

نمای V-V نمای برنامه برای برنامه برای برنامه ریزی آردوینو، نرمافزار Arduino IDE میباشد که در شکل V-V نمای کلی از ظاهر این برنامه را مشاهده می کنید. با استفاده از زبانی شبه C میتوان برنامه مورد نیاز را نوشت

شکل ۳–۸: آنتن GSM

و بعد از کامپایل، کد هگز تولید شده بر روی آردوینو باز می شود. کتابخانههای مختلف و متناسب با ماژولهای مختلف وجود دارد که کدنویسی را راحت تر می کند. برای دریافت داده از ماهواره و ارسال آن به تلفن همراه، برنامه با استفاده از ان نرمافزار نوشته می شود. (Based Vehicle Tracking System)

شکل ۳-۹: نمایی از نرمافزار آردوینو

google map $\lambda - \Upsilon - \Upsilon$

فصل چهارم پیادهسازی فصل پنجم جمع بندی و نتیجه گیری در پایان گزارشهای علمی و فنی لازم است که جمعبندی یا نتیجه گیری نهایی ارائه شود. در این موارد می توان آخرین فصل پایان نامه که پیش از مراجع قرار می گیرد را به این امر اختصاص داد.

۱–۵ پیشنهادات

در این بخش پیشنهاداتی که محقق جهت ادامه تحقیقات دارد ارایه می گردد. دقت شود که پیشنهادات باید از تحقیق انجام شده و نتایج ان حاصل شده باشد و از ذکر جملات کلی باید پرهیز کرد.

منابع و مراجع

- [1] Bidabad, Behroz and Tayebi, Akbar. Design and implementation of vehicle tracking system using gps/gsm/gprs technology and smartphone application. *arXiv* preprint arXiv:0710.2816, 2014.
- [2] Mukhtar, Mashood. GPS based advanced vehicle tracking and vehicle control system. *International Journal of Intelligent Systems and Applications*, 7(3):1–12, February 2015.
- [3] Rahman, Md. Marufi, Mou, Jannatul Robaiat, Tara, Kusum, and Sarkar, Md. Ismail. Real time google map and arduino based vehicle tracking system. in 2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE). IEEE, December 2016.
- [4] Shah, Sajjad Hussain and Yaqoob, Ilyas. A survey: Internet of things (IOT) technologies, applications and challenges. in 2016 IEEE Smart Energy Grid Engineering (SEGE). IEEE, August 2016.

پيوست

موضوعات مرتبط با متن گزارش پایان نامه که در یکی از گروههای زیر قرار می گیرد، در بخش پیوستها آورده شوند:

- ۱. اثبات های ریاضی یا عملیات ریاضی طولانی.
- ۲. داده و اطلاعات نمونه (های) مورد مطالعه (Case Study) چنانچه طولانی باشد.
 - ۳. نتایج کارهای دیگران چنانچه نیاز به تفصیل باشد.
- ۴. مجموعه تعاریف متغیرها و پارامترها، چنانچه طولانی بوده و در متن به انجام نرسیده باشد.

کد میپل

```
with(DifferentialGeometry):
with(Tensor):
DGsetup([x, y, z], M)
frame name: M
a := evalDG(D_x)
D_x
b := evalDG(-2 y z D_x+2 x D_y/z^3-D_z/z^2)
```

واژهنامهی فارسی به انگلیسی

	حاصل ضرب دکارتی Cartesian product
الر Scalar	خ
	خودریختی Automorphism
Lift	s
	Degree
Invariant	ζ
	ریز پردازنده microprocessor
لر	j
	Submodulo
اساز Stabilizer	زیرمدول
	س
گشت Permutation	سرشت
	ص
، جملهای Polynomial	صادقانه
	ض

انگلیسی	به	فارسی	مەي	اژەنا	ا
			$\overline{}$		-

همبند	ضرب داخلی Inner product
ی	ط
يال	طوقه
	ظ
	ظرفیت
	3
	عدم مجاورت Nonadjacency
	ف
	فضای برداری Vector space
	ک
	کاملاً تحویل پذیر Complete reducibility
	گ
	گرافگراف
	م
	ماتریس جایگشتی Permutation matrix
	ن
	ناهمبند Disconnected
	9
	وارون پذیر Invertible

واژهنامهی انگلیسی به فارسی

A	همریختی Homomorphism
خودریختی	I
В	ایا
دوسویی	L
C	بالابر
گروه دوری	M
D	مدول
Degree درجه	N N
E	
Edge	نگاشت طبیعی
F	0
تابع Function	یک به یک
G	P
گروه	گروه جایگشتی Permutation group
н	Q

Quotient graph
گراف خارجقسمتی

R
U

Reducible
تحویل پذیر

S
Unique

Sequence
V

Sequence
V

فضای برداری
Vector space

Vector space
V

Abstract

This page is accurate translation from Persian abstract into English.

Key Words:

Write a 3 to 5 KeyWords is essential. Example: AUT, M.Sc., Ph. D,..