Пример 13. Решить уравнение $x^{\lg x - 1} = 100$.

Решение. Логарифмируя обе части уравнения по основанию 10, получим равносильное уравнение $(\lg x - 1)\lg x = 2$. Полагая $\lg x = t$, запишем это уравнение в виде $t^2 - t - 2 = 0$, откуда $t_1 = -1$, $t_2 = 2$. Решив уравнения $\lg x = -1$, $\lg x = 2$, найдем $x_1 = 0, 1$; $x_2 = 100$.

Omsem. $x_1 = 0, 1$; $x_2 = 100$.

Пример 14. Решить уравнение

$$15^{\log_5 3} x^{\log_5(45x)} = 1. {(34)}$$

Решение. Уравнение (34) равносильно каждому из следующих уравнений:

$$5^{\log_5 3} \cdot 3^{\log_5 3} \cdot x^{\log_5 3 + 1 + \log_5(3x)} = 1,$$

$$(3x)^{\log_5 3 + 1} x^{\log_5(3x)} = 1.$$
(35)

Логарифмируя уравнение (35) по основанию 5, получаем

$$(1 + \log_5 3) \log_5(3x) + \log_5(3x) \log_5 x = 0,$$

или

$$\log_5(3x)(1 + \log_5(3x)) = 0.$$

Если $\log_5(3x) = 0$, то $x = \frac{1}{3}$, а если $\log_5(3x) = -1$, то $x = \frac{1}{15}$.

Omsem. $x_1 = \frac{1}{3}, \ x_2 = \frac{1}{15}.$

Задачи

Решить уравнение (1-28):

1.
$$\log_3(x^2 - 6) = \log_3 x$$
.

2.
$$\log_2(98 - x^3) = 3\log_2(2 - x)$$
.

3.
$$\lg \sqrt{x-5} + \lg \sqrt{2x-3} + 1 = \lg 30$$
.

4.
$$2\log_2 x + \log_2(x+1) = 2 + \log_2(1-x^2)$$
.

5.
$$\log_5(x^2+x+1) + \log_5(x^2-x-1) = \log_5(1-2x)$$
.

6.
$$2\log_3\frac{x-3}{x-7} + \log_3\frac{x-1}{x-3} = -1$$
.

7.
$$x(1 - \lg 5) = \lg(4^x - 12)$$
.

8.
$$\log_2(2^x - 5) - \log_2(2^x - 2) = 2 - x$$
.

9.
$$\log_2(x-5) = \log_4(x+1)$$
.

10.
$$\log_2 x + \log_x 2 = \frac{5}{2}$$
.

11.
$$\log_2 \frac{x-2}{x+2} + \log_{\frac{1}{2}} \frac{2x-1}{6x+7} = 0$$
.

12.
$$\log_4 [\log_3 (\log_2 x)] = \frac{1}{2}$$
.

13.
$$\sqrt{5\log_2(-x)} = \log_2 \sqrt{x^2}$$
.

14.
$$\log_2(2^x + 1) \cdot \log_2(2^{x+1} + 2) = 2$$
.

15.
$$\lg \lg x + \lg (\lg x^2 - 1) = 1$$
.

16.
$$\log_3(\log_2 x - 9) = 2 + \log_3(1 - 4\log_x 4)$$
.

17.
$$\log_2(\log_2 x) = \log_2(1 + \log_x 16) + 1$$
.

18.
$$\sqrt{3 + \log_x 5\sqrt{5}} \cdot \log_{\sqrt{5}} x = -\sqrt{6}$$
.

19.
$$\log_{16x} x^3 + \log_{\frac{x}{2}} \sqrt{x} = 2$$
.

20.
$$\log_x 2 \cdot \log_{\frac{x}{46}} 2 = \log_{\frac{x}{64}} 2$$
.

21.
$$\log_{3x} \left(\frac{3}{x} \right) + \log_3^2 x = 1.$$

22.
$$x^{\lg 9} + 9^{\lg x} = 6$$
. **23.** $\lg^2 \left(1 + \frac{4}{x}\right) + \lg^2 \left(1 - \frac{4}{x+4}\right) = 2\lg^2 \left(\frac{2}{x-1} - 1\right)$.

24.
$$\log_2 x \cdot \log_2(x-3) + 1 = \log_2(x^2-3x)$$
.

25.
$$1 + \log_6 \frac{x+3}{x+7} = \frac{1}{4} \log_{\sqrt{6}} (x-1)^2$$
. **26.** $3 \log_{3x} x = 2 \log_{9x} x^2$.

27.
$$\log_{2x-1}(2x-3) = \log_{2x-3}(2x-1)$$
. **28.** $x^{\log_2 \frac{x}{98}} \cdot 14^{\log_2 7} = 1$.

- **29.** Найти все значения a, при которых уравнение $\frac{\lg(ax)}{\lg(x+1)} = 2$ имеет ровно один корень.
- **30.** При каких значениях a уравнение $\frac{\lg x}{\lg (x-a-a^2)}=2$ имеет хотя бы один корень? Найти все корни этого уравнения.

Ответы

1. 3. 2. -3. 3. 6. 4.
$$2(\sqrt{2}-1)$$
. 5. $-\sqrt{2}$. 6. -5. 7. 2. 8. 3. 9. 8.

10.
$$x_1 = 4$$
, $x_2 = \sqrt{2}$. **11.** 3. **12.** 512. **13.** $x_1 = -1$, $x_2 = -32$. **14.** 0. **15.** $10^{\frac{5}{2}}$.

16.
$$2^{12}$$
. **17.** 16. **18.** $\frac{1}{5}$. **19.** $x_1 = 4$, $x_2 = 4^{\frac{4}{3}}$. **20.** $x_1 = 4$, $x_2 = 8$.

21.
$$x_1 = 3$$
, $x_2 = 1$, $x_3 = \frac{1}{9}$. **22.** $\sqrt{10}$. **23.** $x_1 = \sqrt{2}$, $x_2 = \sqrt{6}$. **24.** 5.

25.
$$x_1 = -11$$
, $x_2 = -1$, $x_3 = 5$. **26.** $x_1 = 1$, $x_2 = 9$. **27.** $1 + \frac{1}{\sqrt{2}}$.

28.
$$x_1 = 7$$
, $x_2 = 14$. **29.** $a = 4$, $a < 0$.

30. При a=0 и a=-1 уравнение не имеет корней; при a<-1 — один корень $x=a^2$; при a>0 — один корень $x=(a+1)^2$; при $a=-\frac{1}{2}$ — один корень $x=\frac{1}{4}$; при -1< a<0, $a\neq -\frac{1}{2}$ — два корня $x_1=a^2$, $x_2=(a+1)^2$.