

4-Mbit (512K x 8) Static RAM

Features

• Very high speed: 45 ns

Wide voltage range: 2.20V – 3.60V
 Pin-compatible with CY62148DV30

· Ultra-low standby power

Typical standby current: 1μA
 Maximum standby current: 7μA

• Ultra low active power

- Typical active current: 2 mA @ f = 1 MHz

• Easy memory expansion with CE, and OE features

· Automatic power-down when deselected

· CMOS for optimum speed/power

 Offered in Pb-free 36-ball VFBGA, 32-pin TSOP II and 32-pin SOIC packages

Functional Description^[1]

The CY62148EV30 is a high-performance CMOS static RAMs organized as 512K words by 8 bits. This device features

advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption. The device can be put into standby mode reducing power consumption when deselected ($\overline{\text{CE}}$ HIGH).

<u>Writing</u> to the device is <u>accomplished</u> by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₈).

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW and WE LOW).

The CY62148EV30 is available in 36-ball VFBGA, 32-pin TSOP II and 32-pin SOIC Packages.

Note

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Pin Configuration^[2]

36-ball VFBGA Pinout Top View

A₃ A_0 NC A_6 A_1 A_8 Α A_4 A₇ I/Q₀ I/O₄ WE В A_2 NC С I/Q₅ I/O_1 A_5 V_{cc} V_{SS} D Vcc Е 1/02 F 1/Q₆ CE 1/07 A₁₆ I/O₃ OE G A₁₂ A₁₃ A₉ A₁₀ A_{11} A_{14} Н

32-pin TSOP II Pinout Top View

32-pin SOIC Pinout Top View

Product Portfolio

							Power D	Dissipatio	n	
				Speed	(Operating	J I _{CC} (mA)		
Product	V	_{CC} Range (V)	(ns)	f = 1	MHz	f = f	max	Standby	I _{SB2} (uA)
	Min.	Typ. ^[3]	Max.		Typ. ^[3]	Max.	Typ. ^[3]	Max.	Typ. ^[3]	Max.
CY62148EV30-45LL	2.2	3.0	3.6	45	2	2.5	15	20	1	7

Notes:

- 2. NC pins are not connected on the die.
- 3. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied55°C to +125°C Supply Voltage to Ground Potential -0.3V to V_{CC(MAX)} + 0.3V DC Input Voltage^[4,5] –0.3V to V_{CC(MAX)} + 0.3V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	. > 200 mA

Operating Range

Product	Range	Ambient Temperature	V _{CC} ^[6]
CY62148EV30	Industrial	–40°C to +85°C	2.2V to 3.6V

Electrical Characteristics (Over the Operating Range)

				CY	62148EV3	0-45	
Parameter	Description	Test Conditions			Typ. ^[3]	Max.	Unit
V _{OH}	Output HIGH	$I_{OH} = -0.1 \text{ mA}$	V _{CC} = 2.20V	2.0			V
	Voltage	$I_{OH} = -1.0 \text{ mA}$	V _{CC} = 2.70V	2.4			V
V_{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	V _{CC} = 2.20V			0.4	V
		I _{OL} = 2.1 mA	V _{CC} = 2.70V			0.4	V
V _{IH}	Input HIGH Voltage	$V_{CC} = 2.2V \text{ to } 2.7V$		1.8		V _{CC} + 0.3V	V
		V _{CC} = 2.7V to 3.6V		2.2		V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage	V _{CC} = 2.2V to 2.7V		-0.3		0.6	V
		V _{CC} = 2.7V to 3.6V		-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_CC$				+1	μА
I _{OZ}	Output Leakage Current	GND $\leq V_O \leq V_{CC}$, Output	ut Disabled	–1		+1	μА
I _{CC}	V _{CC} Operating	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = V_{CCmax}$, $I_{OUT} = 0$ mA,		15	20	mΑ
	Supply Current	f = 1 MHz	CMOS levels		2	2.5	mΑ
I _{SB1}	Automatic CE Power-down Current — CMOS Inputs	$\overline{\text{CE}} \ge V_{\text{CC}} - 0.2 \text{V}, V_{\text{IN}} \ge V_{\text{f}} = f_{\text{MAX}} \text{ (Address and I } V_{\text{CC}} = 3.60 \text{V}$		1	7	μА	
I _{SB2}	Automatic CE Power-down Current — CMOS Inputs	$\overline{\text{CE}} \ge V_{\text{CC}} - 0.2V,$ $V_{\text{IN}} \ge V_{\text{CC}} - 0.2V \text{ or } V_{\text{II}}$ $f = 0, V_{\text{CC}} = 3.60V$		1	7	μА	

Notes:

- A. V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 5. V_{IH(max)} = V_{CC}+0.75V for pulse durations less than 20 ns.
 6. Full device AC operation assumes a minimum of 100 μs ramp time from 0 to V_{cc}(min) and 200 μs wait time after V_{cc} stabilization.

Capacitance (for all packages)^[7]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	10	pF

Thermal Resistance

Parameter	Description	Test Conditions	VFBGA Package	TSOP II Package	SOIC Package	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient) ^[7]	Still Air, soldered on a 3 x 4.5 inch, four-layer printed circuit board	72	75.13	55	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case) ^[7]		8.86	8.95	22	°C/W

AC Test Loads and Waveforms

Parameters	2.50V	3.0V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[3]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		1.5			V
I _{CCDR}	Data Retention Current	$V_{CC} = 1.5V, \overline{CE} \ge V_{CC} - 0.2V,$ $V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$		0.8	7	μА
t _{CDR} ^[7]	Chip Deselect to Data Retention Time		0			ns
t _R ^[8]	Operation Recovery Time		t _{RC}			ns

Data Retention Waveform

Notes:

- Tested initially and after any design or process changes that may affect these parameters.
 Full Device AC operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} ≥ 100 μs or stable at V_{CC(min.)} ≥ 100 μs.

Switching Characteristics (Over the Operating Range)[9]

		45	ns	
Parameter	Parameter Description		Max.	Unit
Read Cycle		•	1	,
t _{RC}	Read Cycle Time	45		ns
t _{AA}	Address to Data Valid		45	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE LOW to Data Valid		45	ns
t _{DOE}	OE LOW to Data Valid		22	ns
t _{LZOE}	OE LOW to Low Z ^[10]	5		ns
t _{HZOE}	OE HIGH to High Z ^[10,11]		18	ns
t _{LZCE}	CE LOW to Low Z ^[10]	10		
t _{HZCE}	CE HIGH to High Z ^[10, 11]		18	ns
t _{PU}	CE LOW to Power-up	<u>;</u>		ns
t _{PD}	CE HIGH to Power-up		45	ns
Write Cycle ^[12]		·		
t _{WC}	Write Cycle Time	45		ns
t _{SCE}	CE LOW to Write End	35		ns
t _{AW}	Address Set-up to Write End	35		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-up to Write Start	0		ns
t _{PWE}	WE Pulse Width	35		ns
t _{SD}	Data Set-up to Write End	rite End 25		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High Z ^[10, 11]		18	
t _{LZWE}	WE HIGH to Low Z ^[10]	10		ns

Switching Waveforms

Notes:

9. Test Conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns or less (1 V/ns), timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.

10. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.

11. t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the output enter a high impedance state.

12. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.

13. Device is continuously selected. OE, CE = V_{IL}.

14. WE is HIGH for read cycle.

Switching Waveforms (continued)

Read Cycle No. 2 (OE Controlled) [14, 15]

Write Cycle No. 1 (WE Controlled) [16, 18]

- 15. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.

 16. Data I/O is high impedance if $\overline{\text{OE}} = V_{\text{IH}}$.

 17. During this period, the I/Os are in output state and input signals should not be applied.

 18. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in high-impedance state.

Switching Waveforms (continued)

Truth Table

CE	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	Data Out (I/O ₀ -I/O ₇)	Read	Active (I _{CC})
L	Н	Н	High Z	Output Disabled	Active (Icc)
L	L	Х	Data in (I/O ₀ -I/O ₇)	Write	Active (Icc)

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62148EV30LL-45BVXI	51-85149	36-ball Very Fine Pitch Ball Grid Array (Pb-free)	Industrial
	CY62148EV30LL-45ZSXI	51-85095	32-pin Thin Small Outline Package II (Pb-free)]
	CY62148EV30LL-45SXI	51-85081	32-pin Small Outline Integrated Circuit (Pb-free)	

Please contact your local Cypress sales representative for availability of other parts

Package Diagrams

36-ball VFBGA (6 x 8 x 1 mm) (51- 85149)

TOP VIEW

51-85149-*C

Package Diagrams (continued)

32-pin TSOP II (51-85095)

51-85095-**

DETAIL 'A'

0.40 0.60

Package Diagrams (continued)

32-pin (450 MIL) Molded SOIC (51- 85081) 1 0.546[13.868] 0.566[14.376] 0.440[11.176] 0.450[11.430]

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	223225	See ECN	AJU	New data sheet
*A	247373	See ECN	SYT	Changed from Advance Information to Preliminary Moved Product Portfolio to Page 2 Changed V_{CC} stabilization time in footnote #7 from 100 μ s to 200 μ s Changed I_{CCDR} from 2.0 μ A to 2.5 μ A Changed typo in Data Retention Characteristics(t_R) from 100 μ s to t_{RC} ns Changed t_{OHA} from 6 ns to 10 ns for both 35 ns and 45 ns Speed Bin Changed t_{HZOE} , t_{HZWE} from 12 to 15 ns for 35 ns Speed Bin and 15 to 18 for 45 ns Speed Bin Changed t_{SCE} from 25 to 30 ns for 35 ns Speed Bin and 40 to 35 ns for 45 Speed Bin Changed t_{HZCE} from 12 to 18 ns for 35 ns Speed Bin and 15 to 22 ns for ns Speed Bin Changed t_{SD} from 15 to 18 ns for 35 ns Speed Bin and 20 to 22 ns for 45 ns Speed Bin Changed t_{DCE} from 15 to 18 ns for 35 ns Speed Bin Changed t_{DCE} from 15 to 18 ns for 35 ns Speed Bin Changed Ordering Information to include Pb-Free Packages
*B	414807	See ECN	ZSD	Changed from Preliminary information to Final Changed the address of Cypress Semiconductor Corporation on Page # from "3901 North First Street" to "198 Champion Court" Removed 35ns Speed Bin Removed "L" version of CY62148EV30 Changed ball C3 from DNU to NC. Removed the redundant footnote on DNU. Changed I_{CC} (Max) value from 2 mA to 2.5 mA and I_{CC} (Typ) value from 1.5 mA to 2 mA at f=1 MHz Changed I_{CC} (Typ) value from 12 mA to 15 mA at f = f_{max} Changed I_{SB1} and I_{SB2} Typ. values from 0.7 μ A to 1 μ A and Max. values from 2.5 μ A to 7 μ A. Changed the AC test load capacitance value from 50pF to 30pF. Changed I_{CCDR} from 2.5 μ A to 7 μ A. Added I_{CCDR} typical value. Changed I_{LCDE} from 3 ns to 5 ns Changed I_{LCDE} from 22 ns to 18 ns Changed I_{LCE} from 22 ns to 18 ns Changed I_{CD} from 22 ns to 25 ns. Updated the package diagram 36-pin VFBGA from *B to *C Added 32-pin SOIC package diagram and pin diagram Updated the ordering information table and replaced the Package Name column with Package Diagram.