Amendment to the Claims

The claimed invention is:

1. (Currently Amended) A compound of formula (A):

$$\mathbb{R}^{1}$$
 \mathbb{R}^{4}
 \mathbb{R}^{3}
 \mathbb{R}^{3}
 \mathbb{R}^{3}
 \mathbb{R}^{4}
 \mathbb{R}^{4}
 \mathbb{R}^{4}
 \mathbb{R}^{4}
 \mathbb{R}^{4}

or a pharmaceutically acceptable salt, prodrug, tautomer, <u>or</u> hydrate or solvate thereof, wherein:

X is O;

R¹ is a group of the formula

wherein R^1 can optionally be further independently substituted with at least one moiety independently selected from the group consisting of: carbonyl, halo, halo(C_1 - C_6)alkyl, perhalo(C_1 - C_6)alkyl, perhalo(C_1 - C_6)alkoxy,

 $(C_1-C_6)alkyl, (C_2-C_6)alkenyl, (C_2-C_6)alkynyl, hydroxy, oxo, mercapto, (C_1-C_6)alkylthio, (C_1-C_6)alkoxy, (C_5-C_{10})aryl \\ \frac{1}{2} \frac{1}{2}$

 (C_5-C_{10}) heteroaryloxy, (C_5-C_{10}) ar (C_1-C_6) alkyl or (C_5-C_{10}) heteroar (C_1-C_6) alkyl, (C_5-C_{10}) ar (C_1-C_6) alkoxy or (C_5-C_{10}) heteroar (C_1-C_6) alkoxy, HO-(C=O)-, ester, amido, ether, amino, amino (C_1-C_6) alkyl, (C_1-C_6) alkylamino (C_1-C_6) alkyl,

 $\begin{aligned} &\text{di}(C_1\text{-}C_6)\text{alkylamino}(C_1\text{-}C_6)\text{alkyl}, &\text{(C_5-C_{10})}\text{heterocyclyl}(C_4-$C_6)\text{alkyl}, &\text{(C_1-C_6)}\text{alkyl-} \text{ and } \text{di}(C_1-C_6)\text{alkylamino}, &\text{cyano}, &\text{nitro}, &\text{carbamoyl}, &\text{(C_1-C_6)}\text{alkylaminocarbonyl}, \\ &\text{(C_1-C_6)}\text{alkoxycarbonyl}, &\text{(C_1-C_6)}\text{alkylaminocarbonyl}, &\text{(C_5-C_{10})}\text{arylcarbonyl}, &\text{(C_5-C_{10})}\text{aryloxycarbonyl}, \\ &\text{(C_1-C_6)}\text{alkylaminocarbonyl}, &\text{and } &\text{(C_5-C_{10})}\text{arylsulfonyl}; \end{aligned}$

each R^3 is independently selected from the group consisting of: hydrogen, halo, halo(C_1 - C_6)alkyl, (C_1 - C_6)alkyl, (C_2 - C_6)alkenyl, (C_2 - C_6)alkynyl, perhalo(C_1 - C_6)alkyl, phenyl, (C_3 - C_{10})cycloalkyl, hydroxy, (C_1 - C_6)alkoxy, perhalo(C_1 - C_6)alkoxy, phenoxy, (C_3 - C_{10})cycloalkyl-O-, (C_1 - C_6)alkyl-S-, (C_1 - C_6)alkyl-SO₂-, (C_1 - C_6)alkyl-NH-SO₂-, O₂N-, NC-, amino, Ph(CH₂)₁₋₆HN-, (C_1 - C_6)alkyl HN-, (C_1 - C_6)alkylamino, [(C_1 - C_6)alkyl]₂-amino, (C_1 - C_6)alkyl-SO₂-NH-, amino(C=O)-, aminoO₂S-, (C_1 - C_6)alkyl-(C=O)-NH-, (C_1 - C_6)alkyl-(C=O)-[(((C_1 - C_6)alkyl)-N]-, phenyl-(C=O)-NH-, phenyl-(C=O)-[(((C_1 - C_6)alkyl)-N]-, (C_1 - C_6)alkyl-(C=O)-, phenyl-(C=O)-, (C_1 - C_6)alkyl-NH-(C=O)-, phenyl-[((C_1 - C_6)alkyl)-N]-(C=O)-, [(C_1 - C_6)alkyl]₂-N-(C=O)-, phenyl-NH-(C=O)-, phenyl-[((C_1 - C_6)alkyl)-N]-(C=O)-, (C_3 - C_{10})cycloalkyl-NH-(C=O)- and (C_1 - C_6)alkyl-(C=O)--;

where alkyl, alkenyl, alkynyl, phenyl, cycloalkyl, alkoxy, phenoxy, amino of R^3 is optionally substituted by at least one substituent independently selected from (C_1-C_6) alkyl, (C_1-C_6) alkoxy, halo (C_1-C_6) alkyl, halo, H_2N_- , $Ph(CH_2)_{1-6}HN_-$, and (C_1-C_6) alkyl HN_- ;

s is an integer from one to five; and

 R^4 is selected from the group consisting of: hydrogen, halo, halo(C_1 - C_6)alkyl, (C_1 - C_6)alkyl, (C_2 - C_6)alkynyl, perhalo(C_1 - C_6)alkyl, phenyl, (C_3 - C_{10})cycloalkyl, hydroxy, (C_1 - C_6)alkoxy, perhalo(C_1 - C_6)alkoxy, phenoxy, (C_3 - C_{10})cycloalkyl-O-, (C_1 - C_6)alkyl-S-, (C_1 - C_6)alkyl-SO₂-, (C_1 - C_6)alkyl-NH-SO₂-, O₂N-, NC-, amino, Ph(CH₂)₁₋₆NH-, alkylNH-, (C_1 - C_6)alkylamino, [(C_1 - C_6)alkyl]₂-amino, (C_1 - C_6)alkyl-SO₂-NH-, amino(C=O)-, aminoSO₂-, (C_1 - C_6)alkyl-(C=O)-NH-, (C_1 - C_6)alkyl-(C=O)-((C_1 - C_6)alkyl-N]-, phenyl-(C=O)-NH-, phenyl-(C=O)-((C_1 - C_6)alkyl-N]-, (C_1 - C_6)alkyl-N]-, (C_1 - C_6)alkyl-NH-(C=O)-, (C_1 - C_6)alkyl-NH-(C=O)-, (C_1 - C_6)alkyl-NH-(C=O)-, phenyl-((C_1 - C_6)alkyl-NH-(C=O)-, (C_1 - C_6)alkyl-NH-(C_1 - C_6)alkyl-NH-(C_1 - C_6)alkyl-(C_1 - C_6)alkyl-(C_1 - C_6)alkyl-NH-(C_1 - C_6)alkyl-(C_1

where alkyl, alkenyl, alkynyl, phenyl, cycloalkyl, alkoxy, phenoxy, and amino of R^4 is optionally substituted by at least one substituent independently selected from the group consisting of (C_1-C_6) alkyl, (C_1-C_6) alkoxy, halo (C_1-C_6) alkyl, halo, H_2N -, $Ph(CH_2)_{1-6}$ -NH-, and (C_1-C_6) alkylNH-.

- 2. (Cancelled)
- 3. (Cancelled)
- 4. (Cancelled)
- 5. (Cancelled)
- 6. (Cancelled)
- 7. (Cancelled)
- 8. (Cancelled)
- 9. (Previously Presented) A compound of claim 1, wherein s is one to two; R^3 is hydrogen or (C_1-C_6) alkyl; and R^4 is H, (C_1-C_6) alkyl, or (C_3-C_{10}) cycloalkyl.
- 10. (Cancelled)
- 11. (Previously Presented) A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.
- 12. (Cancelled)
- 13. (Cancelled)
- 14. (Previously Presented) A compound; 6-[3-(6-Methyl-pyridin-2-yl)-isoxazol-4-yl]-quinoxaline or a pharmaceutically acceptable salt thereof.
- 15. (Previously Presented) A pharmaceutical composition comprising 6-[3-(6-Methyl-pyridin-2-yl)-isoxazol-4-yl]-quinoxaline or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.