Data Engineer INTERN at HACKVEDA LIMITED

AUTHOR: BANDANA PRAKASH

TASK 5: CREDIT CARD FRAUD DETECTION

PURPOSE: Build a machine learning model to identify fraudulent credit card transactions.

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score

file=pd.read_csv("creditcard.csv")

file.head(10)

₹	Ti	me	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V21	V22	V.
•	0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	 -0.018307	0.277838	-0.1104
	1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	 -0.225775	-0.638672	0.1012
	2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	 0.247998	0.771679	0.9094
	3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	 -0.108300	0.005274	-0.1903
	4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	 -0.009431	0.798278	-0.1374
	5	2.0	-0.425966	0.960523	1.141109	-0.168252	0.420987	-0.029728	0.476201	0.260314	-0.568671	 -0.208254	-0.559825	-0.0263
	6	4.0	1.229658	0.141004	0.045371	1.202613	0.191881	0.272708	-0.005159	0.081213	0.464960	 -0.167716	-0.270710	-0.1541
	7	7.0	-0.644269	1.417964	1.074380	-0.492199	0.948934	0.428118	1.120631	-3.807864	0.615375	 1.943465	-1.015455	0.0575
	8	7.0	-0.894286	0.286157	-0.113192	-0.271526	2.669599	3.721818	0.370145	0.851084	-0.392048	 -0.073425	-0.268092	-0.2042
	9	9.0	-0.338262	1.119593	1.044367	-0.222187	0.499361	-0.246761	0.651583	0.069539	-0.736727	 -0.246914	-0.633753	-0.1207

file.describe()

10 rows × 31 columns

3		Time	V1	V2	V3	V4	V5	V6	V7	1
_	count	284807.000000	2.848070e+05	2.848070e+						
	mean	94813.859575	1.168375e-15	3.416908e-16	-1.379537e-15	2.074095e-15	9.604066e-16	1.487313e-15	-5.556467e-16	1.213481e-
	std	47488.145955	1.958696e+00	1.651309e+00	1.516255e+00	1.415869e+00	1.380247e+00	1.332271e+00	1.237094e+00	1.194353e+
	min	0.000000	-5.640751e+01	-7.271573e+01	-4.832559e+01	-5.683171e+00	-1.137433e+02	-2.616051e+01	-4.355724e+01	-7.321672e+
	25%	54201.500000	-9.203734e-01	-5.985499e-01	-8.903648e-01	-8.486401e-01	-6.915971e-01	-7.682956e-01	-5.540759e-01	-2.086297e-
	50%	84692.000000	1.810880e-02	6.548556e-02	1.798463e-01	-1.984653e-02	-5.433583e-02	-2.741871e-01	4.010308e-02	2.235804e-
	75%	139320.500000	1.315642e+00	8.037239e-01	1.027196e+00	7.433413e-01	6.119264e-01	3.985649e-01	5.704361e-01	3.273459e-
	max	172792.000000	2.454930e+00	2.205773e+01	9.382558e+00	1.687534e+01	3.480167e+01	7.330163e+01	1.205895e+02	2.000721e+

8 rows × 31 columns

file.isnull().sum()

$\overline{\Rightarrow}$	Time	0
	V1	0
	V2	0
	V3	0
	V4	0
	V5	0
	V6	0
	V7	0
	V8	0
	V9	0
	V10	0
	V11	0
	V12	0
	V13	0
	V14	0

```
V16
                                                     0
                V17
                                                     0
                V18
                                                     0
                V19
                                                     0
                V20
                                                     0
                V21
                                                     0
                V22
                 V23
                V24
                 V25
                                                     0
                V26
                                                     0
                V27
                                                     0
                V28
                                                     0
                Amount
                                                     0
                Class
                                                    0
                dtype: int64
file['Class'].value_counts()
             Class
                                  284315
                                           492
                Name: count, dtype: int64
normal=file[file.Class==0]
fraud=file[file.Class==1]
print(normal.shape)
 print(fraud.shape)
 normal.Amount.describe()
                                                 284315.000000
 → count
                                                              88.291022
                mean
                                                            250.105092
                std
                                                                  0.000000
                min
                25%
                                                                  5.650000
                                                               22.000000
                 50%
                 75%
                                                               77.050000
                                                    25691.160000
                Name: Amount, dtype: float64
fraud.Amount.describe()
             count
                                                     492.000000
                mean
                                                     122.211321
                                                     256,683288
                std
                min
                                                            0.000000
                 25%
                                                            1.000000
                 50%
                                                            9.250000
                 75%
                                                     105.890000
                                                 2125.870000
                 max
                Name: Amount, dtype: float64
file.groupby('Class').mean()
 \overline{z}
                                                                   Time
                                                                                                           V1
                                                                                                                                            V2
                                                                                                                                                                              V3
                                                                                                                                                                                                               V4
                                                                                                                                                                                                                                                 V5
                                                                                                                                                                                                                                                                                  V6
                                                                                                                                                                                                                                                                                                                   ٧7
                                                                                                                                                                                                                                                                                                                                                    V8
                                                                                                                                                                                                                                                                                                                                                                                    V9 ...
                                                                                                                                                                                                                                                                                                                                                                                                                                    V20
                   Class
                                                                                                                                                                                                                                                                                                                                                                                                       ... -0.000644 -0.00
                                           94838.202258 \quad 0.008258 \quad -0.006271 \quad 0.012171 \quad -0.007860 \quad 0.005453 \quad 0.002419 \quad 0.009637 \quad -0.000987 \quad -0.000
                                                                                                                                                                                                                                                                                                                                                                 0.004467
                           1
                                           80746.806911 -4.771948 3.623778 -7.033281 4.542029 -3.151225 -1.397737 -5.568731 0.570636 -2.581123
                                                                                                                                                                                                                                                                                                                                                                                                                     0.372319 0.713
                2 rows × 30 columns
normal_sample=normal.sample(n=492)
new_file=pd.concat([normal_sample,fraud],axis=0)
```

V15

0

new_	new_file.head(10)													
$\overline{\exists r}$		Time	V1	V2	V3	V4	V5	V6	V7	V8	V9		V21	V22
	32993	37045.0	1.273090	-0.744403	1.083617	-0.682701	-1.537089	-0.502750	-1.064374	0.039786	-0.738666		0.465367	1.229640
	176252	122689.0	-0.619340	0.650909	0.853761	-0.441992	1.189456	0.079074	1.075137	-0.224906	-0.173498		-0.337960	-0.882839
	71866	54473.0	-1.459553	0.016956	1.063610	-1.484100	-0.244744	-1.080333	-0.089253	0.466594	1.243897		0.144194	0.459994
	189917	128610.0	1.778519	-0.112447	-1.234223	0.996746	0.961386	1.807237	-0.624287	0.614767	0.549400		-0.183639	-0.421276
	153148	98024.0	-0.557542	1.064676	0.524862	-1.771705	1.141241	-0.310842	0.624603	0.006453	1.478922		-0.514084	-1.286546
	91669	63576.0	0.910530	-1.359016	0.862437	-0.590947	-1.567072	0.005582	-0.959290	0.164846	-0.678745		0.586836	1.213314
	248153	153810.0	2.102483	-1.302057	0.379806	-0.486967	-1.830271	-0.165263	-1.633904	0.141010	1.060734		0.134621	0.697336
	175828	122505.0	-2.783805	-2.928222	-1.500618	-1.979360	1.645353	0.802380	1.036764	-0.020237	-1.068077		0.242157	1.411244
	201518	133915.0	2.006453	-1.760294	-0.688837	-1.337221	-1.645638	-0.848000	-0.970753	-0.328486	-1.233229		-0.044086	0.149755
	57869	48115.0	1.314915	-0.980378	-0.032665	-2.770975	-1.047365	-0.705180	-0.491240	-0.076395	0.571959		-0.416346	-0.481886
	10 rows ×	31 columns	3											
new_	file['Cl	ass'].va	lue_counts	5()										
₹	Class 0 49	2												

492

Name: count, dtype: int64

new_file.groupby('Class').mean()

3		Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V20	
	Class												
	0	96327.323171	0.077345	-0.022423	0.081215	-0.129899	0.029804	-0.009543	0.086710	-0.040480	-0.027447	 -0.071245	0.017
	1	80746.806911	-4.771948	3.623778	-7.033281	4.542029	-3.151225	-1.397737	-5.568731	0.570636	-2.581123	 0.372319	0.713
2 rows × 30 columns													

X=new_file.drop(columns='Class',axis=1)

Y=new_file['Class']

 $X_train, X_test, Y_train, Y_test=train_test_split(X, Y, test_size=0.2, stratify=Y, random_state=2)$

model=LogisticRegression()

model.fit(X_train,Y_train)

 ▼ LogisticRegression LogisticRegression()

 ${\tt X_train_prediction=model.predict(X_train)}$

 $training_data_acuracy=accuracy_score(X_train_prediction,Y_train)*100$

 $\verb"print(f"Training Data Accuracy: \{training_data_acuracy\}\%")$

 \rightarrow Training Data Accuracy: 93.90088945362135%

X_test_prediction=model.predict(X_test)

 $\texttt{test_data_accuracy} = \texttt{accuracy_score}(\texttt{X_test_prediction}, \texttt{Y_test}) * 100$

print(f"Test Data Accuracy: {test_data_accuracy}%")

→ Test Data Accuracy: 91.87817258883248%