TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN KHOA KHOA HỌC VÀ KỸ THUẬT THÔNG TIN

BÁO CÁO ĐỔ ÁN MÔN HỌC:

PHÂN TÍCH & TRỰC QUAN DỮ LIỆU

- 1. 19522065 Nguyễn Thị Minh Phương
- 2. 19521882 Chu Hà Thảo Ngân
- 3. 19522397 Thái Minh Triết

XÂY DỰNG MÔ HÌNH DỰ ĐOÁN QUY MÔ SẠT LỞ ĐẤT

Table of Contents

- **Introduction**
- 2. Dataset
- 3. Data Preprocessing
- **4.** EDA
- 5. Feature Selection
- 6. Feature Engineering
- 7. Model Development
- 8. Result & conclusion

1. Introduction

WORKFLOW

Input: natural environment features.

Output: landslide size.

2. Dataset

Original Dataset: Global Landslide Catalog (GLC)

Size: 11033 x 31

Source: NASA Goddard Space Flight Center (GSFC)

source_name	location_ description	landslide_ setting	event_import_ source	gazeteer_ closest_point
source_link	Location_ accuracy	fatality_count	event_import_ id	gazeteer_ distance
event_id	event_ description	injury_count	country_name	submitted_date
event_date	landslide_ category	storm_name	country_code	created_date
event_time	landslide_ trigger	photo_link	admin_ division_name	Last_edited_ date
event_title	landslide_size	notes	admin_division_ population	latitude, longitude

Collected Dataset

Size: 11033 x 36

Source:

Weather: Visual Crossing APIElevation: Airmap Elevation API

• Continent: PyPi pycountry-convert

• **Season**: referenced from National Geographic

 Population Density: Gridded Population of the World Version 4.11 Dataset

 Tree Cover: Hansen Global Forest Change v1.8 (2000-2020) Dataset

 Soil Texture: OpenLandMap Soil Texture Class (USDA System) Dataset

32 categorical features 35 numerical features

11033 x 67

3. Preprocessing

54 features having missing values Missing value ratio: **12.18%**

Preprocessing datetime: 'event_date', 'created_date', 'last_edited_date', 'submitted_date', 'event_time'

Dropping unnecessary features: 'source_link', 'photo_link', 'event_id', 'event_import_id', 'submitted_date', 'created_date', 'last_edited_date', 'storm_name' 'notes', 'event_time', 'event_import_source', 'source_name'

Dealing with missing values:

Missing values	Preprocessing method	Missing values	Preprocessing method
'country_name'	sử dụng module Nominatim của thư viện geopy để định dạng toàn bộ tên quốc gia theo tiếng Anh	'fatality_count', 'injury_count'	median
'admin_division_name', 'location_description', 'gazeteer_closest_point'	tên quốc gia, tên đơn vị hành chính tương ứng	Other numerical features	mean nếu tuân theo phân phối chuẩn median nếu xuất hiện outliers
'admin_division_population'	KNN Imputation theo 'population_density'	Rows with almost values are missing	Drop that rows

Độ che phủ rừng càng giảm thì sạt lở càng nghiêm trọng.

Độ cao tăng dần thì quy mô sạt lở càng nghiêm trọng

Số lượng sự kiện sạt lở tăng dần từ năm 2007.

Tháng 7/2013 xảy ra hơn 200 vụ sạt lở.

Năm 2010 xảy ra nhiều sự kiện sạt lở nhất.

Năm 2010 và năm 2013 cho thấy số thương vong và tử vong cao.

Top 10 quốc gia diễn ra sạt lở và có tỉ lệ người tử vong/bị thương cao nhất

Hoa kỳ là quốc gia xảy ra nhiều sự kiện sạt lở nhất nhưng không nằm trong top quốc gia thương vong nhiều nhất.

Ở Bắc Mĩ sạt lở đa số xảy ra ở địa hình thấp, quy vừa, nhỏ hoặc không xác định.

Mật độ dân số

Trực quan landslide_size và population_density_avg tại điểm sạt lở

Khu vực phía tây Hoa Kỳ, Đông Úc và New Zealand: Mật độ dân số thấp, quy mô sạt lở ít nghiêm trọng.

Độ cao

Địa hình đồi núi phía Tây Hoa Kỳ, phía Tây Nam Mỹ và xung quanh dãy Himalaya cho thấy quy mô sạt lở tương đối lớn.

Độ che phủ rừng

Trực quan landslide_size và treecover2000 tại điểm sạt lở

Khu vực có độ che phủ rừng cao cho thấy quy mô sạt lở ít nghiêm trọng

Kết luận ban đầu về các thuộc tính ảnh hưởng đến quy mô sạt lở:

- Địa hình tại khu vực sạt lở càng cao, quy mô sạt lở càng nghiêm trọng. Do sự khác biệt
 về độ cao địa hình, nên mức độ sạt lở ở các quốc gia cũng có sự khác nhau.
- Có sự khác nhau về quy mô sạt lở giữa các châu lục.
- Những khu vực có chỉ số nhiệt độ như 'temp', 'feelikes' cao thì mức độ sạt lở càng lớn.

 Các khu vực độ che phủ thảm thực vật thưa thớt có nguy cơ xảy ra sạt lở với quy mô lớn hơn so với những khu vực có thảm thực vật dày.

5. Feature selection

Target feature

'landslide_size': categorical

Numerical features

One Way ANOVA

Categorical features

Chi-Square

Threshold?

Important features after EDA

	Column name	F-Scores	P-values		Column name	Chi-square	P-values
0	longitude	517.812633	0.000000e+00	0	description	2.613296e+06	0.000000e+00
1	dew_temp_weather	331.813683	1.900757e-267	1	gazeteer_closest_point	3.660994e+04	0.000000e+00
2	latitude	259.448519	9.540822e-212	2	country_name	2.420028e+04	0.000000e+00
3	fatality_count	247.823598	1.173878e-202	3	admin_division_name	2.167065e+04	0.000000e+00
4	precipcover	153.893517	1.028695e-127	4	landslide_setting	5.060482e+03	0.000000e+00
5	event_date	139.713610	3.638529e-116	5	landslide_trigger	4.531832e+03	0.000000e+00
6	elevation	98.518047	2.905317e-82	6	location_accuracy	1.055746e+03	2.958066e-227
7	gazeteer_distance	96.384683	1.709599e-80	7	continent	4.692023e+02	3.063286e-100
8	windspeed	71.052698	2.225879e-59	8	soil_texture	1.651424e+02	1.153039e-34
9	pressure	43.675437	2.252576e-36	9	landslide_category	9.754010e+01	3.284016e-20
10	cloudcover	41.649538	1.150167e-34	10	conditions	6.629212e+01	1.374639e-13
11	precip	35.607611	1.436220e-29	11	season	5.013935e+01	3.376873e-10
12	treecover2000	28.918354	6.316838e-24				
13	humidity	24.424115	3.880514e-20				
14	injury_count	23.895710	1.081302e-19				
15	population_density_avg	20.415154	9.172612e-17				
16	admin_division_population	16.827538	9.395941e- 1 4				
17	windgust	13.713358	3.757013e-11				
18	visibility	13.593347	4.729512e-11				
19	moonphase	2.063054	8.285606e-02				
20	gain	1.115266	3.472597e-01				
21	loss	0.982054	4.158636e-01				
22	winddir	0.705781	5.878693e-01				

Numerical features with high correlation -> mean()

'soil_texture_0', 'soil_texture_10',
'soil_texture_30', 'soil_texture_60',
'soil_texture_100', 'soil_texture_200'

'soil_texture_' -> mode()

Categorical features: pandas.get_dummies()

MaxAbsScaler()

7. Model development

Imbalanced classes

Combine 'catastrophic' with 'very_large'
Oversampling minority classes: ADASYN()

Models

Logistic Regression Support Vector Machine Random Forest Passive Aggressive Classifier

		Metric	
Method	Model	Macro F1	Accuracy
	Random Forest	0.481892	0.713623
Before handling	Passive Aggressive Classifier	0.519439	0.715407
imbalanced classes	Logistic Regression	0.511298	0.718973
	Support Vector Machine	0.472977	0.717190
	Random Forest	0.498321	0.716476
After oversampling	Passive Aggressive Classifier	0.520779	0.711484
imbalanced classes	Logistic Regression	0.521931	0.715050
	Support Vector Machine	0.477818	0.706847
Grid Search	Logistic Regression	0.522588	0.717189

8. Result & conclusion

Best model with performance:

Logistic Regression with macro F1 = 0.522588, Accuracy = 0.717189

Oversampling for handling imbalanced classes: better performance.

Hyperparameter tuning: slightly better performance.

Collected features: important and dependent on target feature.

Exploratory Data Analysis: useful insights about landslide events, affection of features on landslide size.

THANKS FOR

LISTENING

