CS310 Operating Systems

Lecture 40 : File System Design – 1

Storage Devices and FAT

Ravi Mittal IIT Goa

References

- CS162, Operating Systems and Systems Programming, University of California, Berkeley
- Various websites on the Internet

Reading

- CS162, Operating Systems and Systems Programming, University of California, Berkeley
- Book: Operating System Concepts, 10th Edition, by Silberschatz, Galvin, and Gagne

Lecture Contents

- Persistent Storage Technologies
- Hard Disk Drives
- Solid State Drive (SDD)

Where are we?

Persistent Storage Technologies

Persistent Storage for File System

Storage Technologies

Magnetic Disks

- Store on magnetic medium
- Electromechanical access

Nonvolatile (Flash) Memory

- Store as persistent charge
- Implemented with 3-D structure
 - 100+ levels of cells
 - 3 bits data per cell

RAM vs Hard Disk vs SSD - 2018

	RAM	HDD	SSD
Typical Size	8 GB	1 TB	256 GB
Cost	\$10 per GB	\$0.05 per GB	\$0.32 per GB
Power	3 W	2.5 W	1 <u>.</u> 5 W
Read Latency	15 ns	15 ms	30 µs
Read Speed (Seq.)	8000 MB/s	175 MB/s	550 MB/s
Read/Write Granularity	word	sector	page*
Power Reliance	volatile	non-volatile	non-volatile

In SSD Each cell has limited program/erase lifetime (thousands, for modern devices)

– Cells become slowly less reliable

Popular Storage Devices

Magnetic Disks

- Rarely becomes corrupted
- Traditionally: large capacity at low cost
- Block level random access
- Slow performance for random access
- Better performance for sequential access

Flash Memory

- Rarely becomes corrupted
- Increasingly larger and cheaper
- Block level random access
- Good performance for reads, worse for random writes
- Have to erase data in large blocks
- Challenge: Wear Levelling

Emergence of SSDs

Figure 9 - Exabyte Storage Shipments Split by SSD, Other Flash, HDDs, and Tape Source: © Wikibon, 2021.

The Emergence of SSDs

- Faster
- Lower power
- No moving parts
- But HDDs have their place
 - Cheapest online storage per byte
 - Application: Archival storage

Hard Disk Drives (HDD)

Hard Disk Drivers (HDDs)

Western Digital Drive http://www.storagereview.com/guide/

IBM/Hitachi Microdrive

Read/Write Head Side View

IBM Personal Computer/AT (1986) 30 MB hard disk - \$500 30-40ms seek time 0.7-1 MB/s (est.)

CS162 Univ of California Berkeley

The Amazing Magnetic Disk

- Unit of Transfer: Sector
 - Ring of sectors form a track
 - Stack of tracks form a cylinder
 - Heads position on cylinders
- Disk Tracks ~ 1μm (micron) wide
 - Wavelength of light is ~ 0.5μm
 - Resolution of human eye: 50μm
 - 100K tracks on a typical 2.5" disk
- Separated by unused guard regions
 - Reduces likelihood neighboring tracks are corrupted during writes (still a small non-zero chance)

CS162 Univ of California Berkeley

Disk platter – top view

- Typically sector = 512 bytes
- Minimum reading on disk: 1 sector
 - Can't read individual byte or word

The Amazing Magnetic Disk

- Track length varies across disk
 - Outside: More sectors per track, higher bandwidth
 - Disk is organized into regions of tracks with same # of sectors/track
 - Only outer half of radius is used
 - Most of the disk area in the outer regions of the disk

Shingled Magnetic Recording (SMR)

- Shingled magnetic recording is a magnetic storage data recording technology used in hard disk drives to increase storage density and overall per-drive storage capacity
- Overlapping tracks yields greater density, capacity
- Restrictions on writing, complex DSP for reading

Review: Magnetic Disks

- Cylinders: all the tracks under the head at a given point on all surfaces
- Read/write data is a three-stage process:
 - Seek time: position the head/arm over the proper track –Average of 5-10 ms
 - Rotational latency: wait for desired sector to rotate under r/w head
 - 4-8 ms (3600-7200 rpm), 2-4 ms (15000ms)
 - Transfer time: Time to actually read sectors
 - 50-100 MB/sec

20

Bigger Picture

Latency = Queue Time + Controller Time +
Seek Time + Rotational Latency +
Transfer Time

To Achieve Best Bandwidth: Large Transfers of Physically Adjacent Sectors from one track

CS162 Univ of California Berkeley

Disk Performance Example – Self reading

- Assumptions:
 - Ignoring queuing and controller times for now
 - Avg seek time of 5ms,
 - 7200RPM ⇒ Time for rotation: 60000 (ms/min) / 7200(rev/min) ~= 8ms
 - Transfer rate of 50MByte/s, block size of 4Kbyte \Rightarrow 4096 bytes/50×10⁶ (bytes/s) = 81.92 × 10⁻⁶ sec \cong 0.082 ms per block
- Read block from random place on disk:
 - Seek (5ms) + Rot. Delay (4ms) + Transfer (0.082ms) = 9.082ms
 - Approx 9ms to fetch/put data: 4096 bytes/9.082×10⁻³ s \cong 451KB/s
- Read block from random place in same cylinder:
 - Rot. Delay (4ms) + Transfer (0.082ms) = 4.082ms
 - Approx 4ms to fetch/put data: 4096 bytes/ 4.082×10^{-3} s $\cong 1.03$ MB/s
- Read next block on same track:
 - Transfer (0.082ms): 4096 bytes/0.082×10⁻³ s \cong 50MB/sec
- Key to using disk effectively (especially for file systems) is to minimize seek and rotational delays

HDD Controller

HDD Controllers

- Old Days: Device driver would address block of data by cylinder number, head (platter) number, and sector number
- Now: Hard drive is just an array of sectors
 - Sector number mapped internally to physical location
 - Numerically close sectors are probably physically close
- Lots of other intelligent features
 - Error Correcting Codes
 - Sector Sparing
 - Slip Sparing
 - Track Skewing

CS162 Univ of California Berkeley

Intelligence in the Controller

- Error Correcting Codes
 - Disk encodes each sector with additional error correcting code data
 allowing it to fix imperfectly read or written data
- Sector sparing
 - Disks are made with tracks and sectors as thin and small as possible
 - If there are imperfections in a sector, then the sector can not be used for reliably store data
 - Manufacturers include spare sectors distributed across each surface
 - Disk firmware or formatting can remap bad sectors transparently to spare sectors on the same surface
- Slip sparing
 - Remap all sectors (when there is a bad sector) to preserve sequential behavior
 - Helps in retaining good sequential performance by remapping all sectors from the bad sector to the next spare

Intelligence in the Controller

- Track Skewing
 - Sector numbers offset from one track to the next, to allow for disk head movement for sequential operations
 - Logical sector zero on each track is staggered from sector zero on the previous track
 - By an amount corresponding to time it takes the disk to move the head from one track to another

Typical Numbers for Magnetic Disk (self reading)

Parameter	Info/Range	
Space/Density	Space: 14TB (Seagate), 8 platters, in 3½ inch form factor! Areal Density: ≥ 1 Terabit/square inch! (PMR, Helium,)	
Average Seek Time	Typically 4-6 milliseconds	
Average Rotational Latency	Most laptop/desktop disks rotate at 3600-7200 RPM (16-8 ms/rotation). Server disks up to 15,000 RPM. Average latency is halfway around disk so 4-8 milliseconds	
Controller Time	Depends on controller hardware	
Transfer Time	 Typically 50 to 250 MB/s. Depends on: Transfer size (usually a sector): 512B – 1KB per sector Rotation speed: 3600 RPM to 15000 RPM Recording density: bits per inch on a track Diameter: ranges from 1 in to 5.25 in 	
Cost	Used to drop by a factor of two every 1.5 years (or faster), now slowing down	

Example of Current HDDs (Self reading)

- Seagate Exos X14 (2018)
 - 14 TB hard disk
 - 8 platters, 16 heads
 - Helium filled: reduce friction and power
 - 4.16ms average seek time
 - 4096 byte physical sectors
 - 7200 RPMs
 - 6 Gbps SATA /12Gbps SAS interface
 - 261MB/s MAX transfer rate
 - Cache size: 256MB
 - Price: \$615 (< \$0.05/GB)
- IBM Personal Computer/AT (1986)
 - 30 MB hard disk
 - 30-40ms seek time
 - 0.7-1 MB/s (est.)
 - Price: \$500 (\$17K/GB, 340,000x more expensive !!)

CS162 Univ of California Berkeley

Lecture Summary

- Hard Disk Drives had magical run
- Tremendous improvement in HDD technology
 - Smaller sizes
 - More information
 - Less power
 - Low cost
 - Improved Performance
 - Higher reliability
 - A lot of intelligence
- SSD are now becoming main stream