2018/06/25 実験書の書き方/データ処理 課 題

これまでに説明したレポートの書き方に基づいて、下記に示す実験書内容とか測定データを使ってレポートを作れ。

issue

- 全体・掲載した図表全てに説明文を図表番号を使って書く←解決 2018/07/16
- 参考文献にwebページを使うときは、Webページのタイトル、URL、閲覧日時(年月日)を開く← 解決 2018/07/16
- 図中の各軸の単位(軸タイトル ラベル)が書かれていない←解決 2018/07/16
- 実験結果>3.温度変化、縦軸...>金属A. 金属Bの表のラベルaaの説明が無い←解決 2018/07/16
- なんか表の空欄ある...←解決 2018/07/16
- 謎の[1],[2]とか←解決 2018/07/16
- 変数と変数の積に下付き文字を使っていない←解決 2018/07/16
 - 。 使わないのであれば"*"を間に挟むべき
- 表タイトルは表のすぐ上に書くべき←解決 2018/07/16
- 表タイトルの修正←解決 2018/07/24
- 抵抗温度係数のグラフ修正←解決 2018/07/24
 - 。 式が違う
- 図とグラフの単位が無いお←解決 2018/07/28
- 図とグラフを文章から示す←解決 2018/07/28

目的

実験を行いデータ収集し、整理する場合、守るべき原則や注意事項がある。

この実験では、温度変化に伴う金属の抵抗値の測定を通して、次のことを確認する。

- アナログ計器の読み方
- 表とグラフの書き方

原理・解説・実験方法

温度変化に伴う金属の抵抗値の変化

電気抵抗を示す場合には、温度何℃のときの抵抗であるかを明確にしなければならない。

これは電気抵抗が温度によって変化するためである。

金属は一般に温度が上昇すれば抵抗が増加する。

対して、電気溶解や半導体などは温度上昇とともに抵抗が減少する。

いま温度0°Cの抵抗をR0、上昇後の温度t1°Cのときの抵抗をR1とする。

温度が1℃上昇するごとにR0に対して抵抗の変わる割合をa0とおけば、t1℃の上昇によるR0に対する抵抗の変化はR0 a0 t1で表せるから.

```
R1 = R0 + R0 a0 * t1 = R0(1+a0 * t1)
(3.1)
```

となる。

上式のa0は0℃における抵抗温度係数と呼ぶ。

次に温度がt2°C上昇したときの抵抗をR2とすれば(3.1)式と同様にして、

```
R2 = R0(1+a0*t2) (3.2)
```

が得られる。

(3.1)式と(3.2)式よりROを消去して整理すると

```
R2 = R1 * (1 + a0 * t2) / (1 + a0 * t1)
= R1 * (1 + (a0 / (1 + a0 * t1)) * (t2 - t1))
= R1 * (1 + a1 * (t2 - t1))
```

となる。

ここで.

$$a1 = a0 / (1 + a0 * t1)$$

である。

実験方法

実験の手順は次の通りである。

- 1. 鉱物油を注いだオイルパンを用意する。
- 2. オーム計とリード線で接続した金属をオイルパンに沈める。
- 3. サーモスタットをオイルパンに入れる。
- 4. 温度計を水平に沈め、温度変化が止まるまで2分ほど待つ。
- 5. サーモスタットのスイッチをオンにして、温度計とオーム計を使い、それぞれを記録する。
- 6. 測定終了後、金属を取り出し、キッチンペーパーでよく拭いてから、別の金属に対して(1)~(6)を行う。

なお、測定にあたって以下の条件で測定を行う。

- 3種類の金属を使う。各金属の抵抗値はすべて100Ω (20°C) である。
- 20°Cから5°C刻みで100°Cまでの各温度で抵抗を計測する。

実験結果

実験結果として次の内容を報告する。

- 1. 金属抵抗の測定結果と各金属の抵抗温度係数(0°C)をまとめた表3.1。
- 2. 表3.1をもとにした、横軸を温度、縦軸を抵抗値として2種類の金属の温度変化をそれぞれプロットしたグラフ
 - 。 グラフの直線は最小二乗法をつかって描画する。
- 3. 表3.1をもとにした、横軸を温度、縦軸を抵抗温度係数としてまとめたグラフ
- 4. 求めたを抵抗温度係数から3種類の金属がそれぞれ何に分類されるか表3.2から選び説明せよ。

1. 金属抵抗の測定結果と各金属の抵抗温度係数(0°C)をまとめた表 3.1

私の担当は金属1.2だった。

各金属の温度に対する抵抗値をまとめた実験結果を表3.1に示す

表3.1 各金属の温度に対する抵抗値をまとめた実験結果

温度[°C]	金属A 測定抵抗[Ω]	金属B 測定抵抗[Ω]
20°C	97.01	104.29
25°C	103.58	103.85
30°C	106.39	104.20
35°C	103.92	106.06
40°C	107.11	110.21

温度[°C]	金属A 測定抵抗[Ω]	金属B 測定抵抗[Ω]
45°C	107.93	113.26
50°C	112.63	109.04
55°C	115.84	113.31
60°C	113.55	119.53
65°C	116.03	120.79
70°C	116.21	120.19
75°C	121.22	123.52
80°C	123.64	127.51
85°C	121.00	130.94
90°C	126.17	135.11
95°C	127.98	134.58
100°C	123.42	137.87
抵抗温度係数(0°C)	0.0042655	0.0050256

0°Cにおける抵抗温度係数a0は

a0=R1/R0t1 + 1/t1

2. 表3.1をもとにした、横軸を温度、縦軸を抵抗値として2種類の金属の温度変化をそれぞれプロットしたグラフ

金属Aの最小二乗法のための表

x軸の温度[°C]とy軸の測定抵抗[Ω]を表3.2.1に示す

表3.2.1 x軸の温度[°C]とy軸の測定抵抗[Ω]

x軸 温度 [°C]	y軸 測定抵抗 [Ω]
20	97.01
25	103.58
30	106.39
35	103.92

x軸 温度 [°C]	y軸 測定抵抗 [Ω]
40	107.11
45	107.93
50	112.63
55	115.84
60	113.55
65	116.03
70	116.21
75	121.22
80	123.64
85	121
90	126.17
95	127.98
100	123.42

それぞれの軸の平均と分散を表3.2.2に示す

表3.2.2 それぞれの軸の平均と分散

x軸平均	y軸平均	xの分散	xとyの共分散
60	114.3311765	1075.616866	205.7352941

表3.2.1と表3.2.2から最小二乗法によって求められたグラフをグラフ3.2.3に示す

グラフ3.2.3 表3.2.1と表3.2.2から最小二乗法によって求められたグラフ

グラフの直線の式

y=0.3429x+93.758

金属Bの最小二乗法のための表

x軸の温度[°C]とy軸の測定抵抗[Ω]を表3.2.4に示す

表3.2.4 x軸の温度[°C]とy軸の測定抵抗[Ω]

x軸 温度 [°C]	y軸 測定抵抗 [Ω]
20	104.29
25	103.85
30	104.2
35	106.06
40	110.21
45	113.26
50	109.04
55	113.31
60	119.53
65	120.79

x軸 温度 [°C]	y軸 測定抵抗 [Ω]
70	120.19
75	123.52
80	127.51
85	130.94
90	135.11
95	134.58
100	137.87

それぞれの軸の平均と分散を表3.2.5に示す

表3.2.5 それぞれの軸の平均と分散

x軸平均	y軸平均	xの分散	xとyの共分散
60	118.4858824	600	271.5794118

表3.2.3と表3.2.4から最小二乗法によって求められたグラフをグラフ3.3.6に示す

グラフ3.3.6 表3.2.3と表3.2.4から最小二乗法によって求められたグラフ

3. 横軸温度, 縦軸抵抗温度係数のグラフ

金属A

金属Aに関する温度、抵抗、抵抗温度係数をまとめた表を表3.3.1に示す

表3.3.1 金属Aに関する温度,抵抗,抵抗温度係数をまとめた表

t1 [°C]	r1 [Ω]	ai
20	97.01	0.003110766
25	103.58	0.005366153
30	106.39	0.005497401
35	103.92	0.003939333
40	107.11	0.004320143
45	107.93	0.004039652
50	112.63	0.004664944
55	115.84	0.004879913
60	113.55	0.004055346
65	116.03	0.004161164
70	116.21	0.003892094
75	121.22	0.00436405
80	123.64	0.004422521
85	121	0.003822293
90	126.17	0.004238934
95	127.98	0.00422445
100	123.42	0.003513928

r0 [Ω]	a average
93.758	0.00361693

金属B

金属Bに関する温度、抵抗、抵抗温度係数をまとめた表を表3.3.3に示す

表3.3.3 金属Bに関する温度,抵抗,抵抗温度係数をまとめた表

t1 [°C]	r1 [Ω]	ai
20	104.29	0.04997335
25	103.85	0.039982942
30	104.2	0.033321487
35	106.06	0.028562724
40	110.21	0.024993336
45	113.26	0.022216956
50	109.04	0.019995735
55	113.31	0.018178293
60	119.53	0.016663704
65	120.79	0.015382091

t1 [°C]	r1 [Ω]	ai
70	120.19	0.014283538
75	123.52	0.013331437
80	127.51	0.012498334
85	130.94	0.01176323
90	135.11	0.011109795
95	134.58	0.010525134
100	137.87	0.009998934

r0 [Ω]	a average
91.328	0.004357341

金属Bに関する横軸を温度、縦軸を抵抗温度係数としたグラフをグラフ3.3.4に示す

グラフ3.3.4 金属Bに関する横軸を温度、縦軸を抵抗温度係数としたグラフ

4. 求めたを抵抗温度係数から3種類の金属がそれぞれ何に分類されるか表3.2から選び説明せよ。

金属の抵抗温度係数の表を表3.2に示す

表3.2 金属の抵抗温度係数 (0°C)の表

金属	a0	金属	a0
白金	0.0032	タングステン	0.0049
金	0.0036	鉄	0.0056
銀	0.0041	ニッケル	0.0068
スズ	0.0046		

金属Aの0°Cにおける抵抗温度係数が0.0042655なので最も近い銀であると予想される。

また金属Bの0℃における抵抗温度係数が0.0050256なので最も近いタングステンだと予想される。

測定結果

実験結果として表3.3を報告する。

なお、測定したと仮定する3種類の金属A,B,Cは教員が割り当てる。

研究課題

次の研究課題を調べて報告せよ。

- 1. 抵抗温度係数の式(3.3)から導かれる応用例はなにか、調べて報告せよ。
- 2. 最小二乗法を使った際のメリット・デメリット、および別手法を調べて報告せよ。

抵抗温度係数の式から導かれる応用例はなにか、調べて報告せよ。

任意の温度における抵抗を計算で求めることができる。

最小二乗法を使った際のメリット・デメリット、および別手法を調べて報告せよ。

メリット

- データの正規性を仮定しない→使いやすい
- 最尤推定に比べて不適解を出さない

デメリット

- 最小二乗法で得られる因子負荷量は尺度不変ではない
 - 重み付けのある最小二乗法、一般化最小二乗法では因子負荷量は尺度不変になる

参考

タイトル	URL	閲覧日時
回帰分析・ 最小二乗法の公式の使い方。 公式から分かる回帰直線の性 質とは?	https://atarimae.biz/archives/12142	2018/07/16
第一回広島ベイズ塾・ 最小二乗法	https://www.slideshare.net/TakashiYamane1/ss-25742604	2018/07/16
最尤推定	https://ja.wikipedia.org/wiki/最尤推定	2018/07/16
抵抗温度係数とは	https://www.rohm.co.jp/electronics- basics/resistors/r_what9	2018/07/16