Exam A

QUESTION 1

以下工作于 OSI 参考模型数据链路层的设备是____。(选择一项或多项)

- A. 广域网交换机
- B. 路由器
- C. 中继器
- D. 集线器

Correct Answer: A Explanation

Explanation/Reference:

A.广域网交换机 数据链路 B. 路由器 网络层 C. 中继器 物理层 D. 集线器 物理层

QUESTION 2

下列有关光纤的说法中哪些是错误的?

- A. 多模光纤可传输不同波长不同入射角度的光
- B. 多模光纤的纤芯较细
- C. 采用多模光纤时, 信号的最大传输距离比单模光纤长
- D. 多模光纤的成本比单模光纤低

Correct Answer: BC

Explanation

Explanation/Reference:

QUESTION 3

IP 地址 202.135.111.77 对应的自然分类网段的广播地址为_____

Correct Answer: 202.135.11.255

Explanation

Explanation/Reference:

QUESTION 4

在如图所示的 TCP 连接的建立过程中, SYN 中的 Z 部分应该填入_____。

A. a B. b C. a+1 D. b+1			
Correct Answer: D Explanation			
Explanation/Reference: X= a+1 (确认收到 a,期 Y=a+1 Z=b+1(确认收到 b)	望下次发送 a+1)		
QUESTION 5 FTP 默认使用的控制协议站	岩口是。		
A. 20 B. 21 C. 23 D. 22			
Correct Answer: B Explanation			
Explanation/Reference: A. 20 ftp 数据连接	B. 21 ftp 控制连接	C. 23 telnet	D. 22 ssh
QUESTION 6 用命令可指定下次原	言动使用的操作系统软件。		
A. startupB. boot-loaderC. bootfileD. boot startup			
Correct Answer: B Explanation			
Explanation/Reference: boot-loader-加载应用程序:	文件 P192		
QUESTION 7 通常情况下,路由器会对长 目的地址。	长度大于接口 MTU 的报文分片	띾。为了检测线路 MTU,⋷	可以带参数 ping
Aa Bd Cf Dc			
Correct Answer: C Explanation			
Explanation/Reference: -a ——带源 -f ——不允许对 ICMP	PEcho Request 报文进行分户	<u>.</u> .	

-tos——— type of service tos 域的值 默认 0 (0-255)

- -t ——报文超时时间 , 默认 2000 毫秒
- -s ——报文大小,默认 56 字节 (20-8100)
- -c ——报文数目,默认5
- -h ——指定报文 ttl 值, 默认 255 (0-255)
- -m——指定发送报文时间间隔, 默认 200 毫秒 (1-65535)

QUESTION 8

- A. Blocking
- B. Listening
- C. Learning
- D. Forwarding
- E. Waiting
- F. Disable

Correct Answer: B Explanation

Explanation/Reference:

	接收配置 BPDU	发送配置 BPDU	MAC 地址学习	收发数据
Disable				
Blockina	$\sqrt{}$			
Listenina	$\sqrt{}$	$\sqrt{}$		
Learning				
Forwarding				

QUESTION 9

在如图所示的交换网络中,所有交换机都启用了 STP 协议。SWA 被选为了根桥。根据图中的信息来看, _____端口应该被置为 Blocking 状态。(选择一项或多项)

- A. SWC 的P1
- B. SWC 的 P2
- C. SWD 的P1

D. SWD 的 P2 E. 信息不足,无法判断
Correct Answer: B Explanation
Explanation/Reference: 桥 ID: 桥优先级.MAC 地址
4096 倍数 最大 65535 默认 32768 根桥选举:线比较桥优先级,在比较 MAC 地址,越小越优先
QUESTION 10 配置交换机 SWA 的桥优先级为 0 的命令为。
 A. [SWA] stp priority 0 B. [SWA-Ethernet1/0/1] stp priority 0 C. [SWA] stp root priority 0 D. [SWA-Ethernet1/0/1] stp root priority 0
Correct Answer: A Explanation
Explanation/Reference:
QUESTION 11 IP 地址 10.0.10.32 和掩码 255.255.255.224 代表的是一个。
A. 主机地址 B. 网络地址 C. 广播地址 D. 以上都不对
Correct Answer: B Explanation
Explanation/Reference: 10. 0. 10. 001
QUESTION 12 IP 地址 132.119.100.200 的子网掩码是 255.255.255.240,哪么它所在子网的广播地址是。
A. 132.119.100.207 B. 132.119.100.255 C. 132.119.100.193 D. 132.119.100.223
Correct Answer: A Explanation
Explanation/Reference: 132.119.100.1100 1000 132.119.100.1100 1111 广播地址
QUESTION 13 TFTP 采用的传输层知名端口号为。

```
A. 67
```

B. 68

C. 69

D. 53

Correct Answer: C

Explanation

Explanation/Reference:

TCP (6): ftp-20/21 ssh---22

telnet-23

smtp——25 接收邮件 pop3——110 发送邮件 DNS——53 接收邮件

http---- 80

https——443 http 安全版, 下加入 ssl 层

UDP(17) : DNS---53

Bootp——67 服务器/68 客户端(就是 dhcp , dhcp 基于 bootp 发展而来)

Tftp----69

Snmp——161/162 服务器监听的端口号 161,客户端监听端口号

QUESTION 14

在 Windows 操作系统中,哪一条命令能够显示 ARP 表项信息?

- A. display arp
- B. arp -a
- C. arp -d
- D. show arp

Correct Answer:

Explanation

Explanation/Reference:

arp - d 删除 arp 表项

arp -s IP MAC ----MAC 静态绑定 arp

QUESTION 15

客户的网络连接形如:

HostA----GE0/0--MSR-1--S1/0----WAN-----S1/0--MSR-2--GE0/0----HostB

两台 MSR 路由器通过广域网实现互连,目前物理连接已经正常。MSR-1 的接口 S1/0 地址为 3.3.3.1/30,

MSR-2 的接口 S1/0 地址为 3.3.3.2/30, 现在在 MSR-1 上配置了如下三条静态路由:

ip route-static 192.168.1.0 255.255.255.0 3.3.3.2 ip route-static 192.168.2.0 255.255.255.0 3.3.3.2

ip route-static 192.168.0.0 255.255.255.0 3.3.3.2

其中 192.168.0.0/22 子网是主机 HostB 所在的局域网段。那么如下描述哪些是正确的? (选择一项或多项)

- A. 这三条路由都会被写入 MSR-1 的路由表
- B. 只有第三条路由会被写入 MSR-1 的路由表
- C. 这三条路由可以被一条路由 ip route-static 192.168.0.0 255.255.252.0 3.3.3.2 代替
- D. 只有第一条路由会被写入 MSR-1 的路由表

Correct Answer: AC

Explanation

Explanation/Reference:

第三条注意掩码 24 位,不能代替前两条

QUESTION 16

如下哪种路由协议只关心到达目的网段的距离和方向? (选择一项或多项)

Correct Answer: CD Explanation

Explanation/Reference:

QUESTION 17

两台空配置的 MSR 路由器通过图示的方式连接,通过配置 IP 地址,两台路由器的 GE0/0 接口可以互通。

如今分别在两台路由器上增加如下配置:

RTA:

[RTA]ospf

[RTA-ospf-1]area 0

[RTA-ospf-1-area-0.0.0.0]network 192.168.1.1 0.0.0.3

[RTA-GigabitEthernet0/0]ospf dr-priority 2

RTB:

[RTB]ospf

[RTB-ospf-1]area 0

[RTB-ospf-1-area-0.0.0.0]network 192.168.1.1 0.0.0.3

[RTB-GigabitEthernet0/0]ospf dr-priority (错误配置命令)

那么在 OSPF 邻居状态稳定后, ____。(选择一项或多项)

- A. OSPF 接口优先级相同, 在 192.168.1.0/30 网段上不进行 OSPF DR 选举
- B. 两台路由器中,一台为 DR,一台为 BDR
- C. 两台路由器中,一台为 DR, 一台为 DRother
- D. 两台路由器的邻居状态分别为 FULL、2-Way

Correct Answer: B Explanation

Explanation/Reference:

[接口] ospf dr-priority (0-255) 修改接口优先级,默认为 1,优先级为 0的不参与选举只有广播网,NBMA 网络中才有 DB,BDR 选举,千兆以太口默认接口类型广播

修改 ospf 网络类型: [接口]ospf network-type ()

DR,BDR 的选举是针对接口、网段而言的的,并非该 RT 是 DR,BDR。通过比较接口优先级(越大越优),一样则比较 router id(越大越优)

DR other 之间另据状态停留在 2-way

QUESTION 18

在路由器的路由表中有一条默认路由,其目的网段和掩码都是 0.0.0.0, 而其下一跳是路由器的 S0/0 接口,那么下列关于此路由的描述正确的是_____。

- A. 当路由器收到去往目的地址 120.1.1.1 的数据包时,如果路由器表中没有其他确切匹配项,那么该数据包将匹配此默认路由
- B. 该路由的掩码最短,因此只有在没有其它路由匹配数据包的情况下,数据包才会按照默认路由转发
- C. 这条路由的度量值有可能是3
- D. 这条路由的优先级有可能是 100

Correct Answer: ABCD

Explanation

Explanation/Reference:

静态默认路由度量值为 0,不可能协议默认路由的度量值可能是 3, stub 区域:

设置为 stub 区域后,产生一条三类 lsa 默认路由,该默认路由度量值类似引入外部路由将 RTD 接口开销设置为 2,则可达到题中效果

0.0.0.0/0

OSPF Ro 10 Table 3 up l

192.168.2.1

50/2/

QUESTION 19

在运行了 RIP 的 MSR 路由器上看到如下路由信息:

<MSR>display ip routing-table 6.6.6.6

Routing Table : Public Summary Count : 2

Destination/Mask Proto Pre Cost NextHop Interface

6.6.0/24 RIP 100 1 100.1.1.1 GE0/0 6.0.0.0/8 Static 60 0 100.1.1.1 GE0/0

此时路由器收到一个目的地址为 6.6.6.6 的数据包,那么_____

- A. 该数据包将优先匹配路由表中的 RIP 路由, 因为其掩码最长
- B. 该数据包将优先匹配路由表中 RIP 路由, 因为其优先级高
- C. 该数据包将优先匹配路由表中的静态路由,因为其花费 Cost 小
- D. 该数据包将优先匹配路由表中的静态路由, 因为其掩码最短

Correct Answer: A Explanation

Explanation/Reference:

只有优先级最高的会被加入路由表,掩码不同都会被加入路由表路由表查找规则 1)最长匹配转发 2)非直连网段迭代查找 3)默认路由最后匹配

QUESTION 20

一台空配置 MSR 路由器 RTA 分别通过 GE0/0、GE1/0 连接两台运行在 OSPF Area 0 的路由器 RTB 和 RTC。RTA 的接口 GE0/0 和 GE1/0 的 IP 地址分别为 192.168.3.2/24 和 192.168.4.2/24。在 RTA 上添加如下配置:

[MSR-ospf-1] area 0.0.0.0

[MSR-ospf-1-area-0.0.0.0]network 192.168.0 0.0.3.255

[MSR-GigabitEthernet0/0]ospf cost 2

[MSR-GigabitEthernet1/0]ospf dr-priority 0

那么关于上述配置描述正确的是____。(选择一项或多项)

- A. 该配置在 MSR 路由器的 GE0/0、GE1/0 上都启动了 OSPF
- B. 该配置只在MSR 路由器的 GE0/0 接口上启动了 OSPF
- C. RTA 可能成为两个 GE 接口所在网段的 DR
- D. RTA 只可能成为其中一个 GE 接口所在网段的 DR
- E. 修改接口 GE0/0 的 Cost 不影响 OSPF 邻接关系的建立

Correct Answer: BDE

Explanation

Explanation/Reference:

MSR-ospf-1-area-0.0.0.0]network 192.168.0 0.0.3.255

掩码 22, 说明在接口网段为 0.0 、1.0、 2.0、 3.0 上启动 ospf G1/0 接口优先级改为 0, 优先级为 0 的接口不参与 DR,BDR 选举

QUESTION 21

客户路由器的接口 GigabitEthernet0/0 下连接了局域网主机 HostA, 其 IP 地址为 192.168.0.2/24;接口 Serial6/0 接口连接远端,目前运行正常。现增加 ACL 配置如下:

firewall enable

firewall default permit

acl number 3003

rule 0 permit tcp

rule 5 permit icmp

acl number 2003

rule 0 deny source 192.168.0.0 0.0.0.255

interface GigabitEthernet0/0

firewall packet-filter 3003 inbound

firewall packet-filter 2003 outbound

ip address 192.168.0.1 255.255.255.0

interface Serial6/0

link-protocol ppp

ip address 6.6.6.2 255.255.255.0

假设其他相关配置都正确,那么____。(选择一项或多项)

- A. HostA 不能 ping 通该路由器上的两个接口地址
- B. HostA 不能 ping 通 6.6.6.2, 但是可以 ping 通 192.168.0.1
- C. HostA 不能 ping 通 192.168.0.1, 但是可以 ping 通 6.6.6.2
- D. HostA 可以 Telnet 到该路由器上

Correct Answer: CD

Explanation

Explanation/Reference:

ACL 实际上起限制作用的只有 2003

3003, 允许 tcp icmp, 默认允许无意义

注意: 拒绝掉的是源地址 192.168.0.0/24 的所有报文,包括 icmp 的 echo, echo-reply 等用在的是 G0/0 接口的 outbound 方向,当 A ping 网关时,网关返回的 icmp echo reply 报文被 deny如果用在 G0/0 inbound 方向,A ping 网关时,发送的 icmp echo 报文被 deny

Ping 6.6.6.2 同理

QUESTION 22

如图所示网络环境中,在RTA 上执行如下 NAT 配置:

[RTA]acl number 2000

[RTA-acl-basic-2000]rule 0 permit source 100.0.0.0 0.0.0.255

[RTA-acl-basic-2000]nat address-group 1 200.76.28.11 200.76.28.11

[RTA]interface Ethernet0/1

[RTA-Ethernet0/1]nat outbound 2000 address-group 1

配置后, Client A 和 Client B 都在访问 Server, 则此时 RTA 的 NAT 表可能为

A. Protocol GlobalAddr Port InsideAddr Port DestAddr Port 1 200.76.28.11 12289 100.0.0.1 1024 200.76.29.4 1024 VPN: 0, status: NOPAT, TTL: 00:01:00, Left: 00:00:59 1 200.76.28.11 12288 100.0.0.2 512 200.76.29.4 512 TTL: 00:01:00, Left: 00:00:51 VPN: 0, status: 11, B. Protocol GlobalAddr Port InsideAddr Port DestAddr Port 1 200.76.28.11 12289 100.0.0.1 1024 200.76.29.4 1024 VPN: 0, status: 11, TTL: 00:01:00, Left: 00:00:59 1 200.76.28.12 12288 100.0.0.2 512 200.76.29.4 512 TTL: 00:01:00, VPN: 0, status: 11, Left: 00:00:51 C. Protocol GlobalAddr Port InsideAddr Port DestAddr Port 100.0.0.1 1 200.76.28.12 12289 1024 200.76.29.4 1024 VPN: 0, status: 11, TTL: 00:01:00, Left: 00:00:59 200.76.29.4 512 1 200.76.28.11 12288 100.0.0.2 512 VPN: 0, status: 11, TTL: 00:01:00, Left: 00:00:51 D. Protocol GlobalAddr Port InsideAddr Port DestAddr 1 200.76.28.11 12289 100.0.0.1 1024 200.76.29.4 1024 VPN: 0, status: 11, TTL: 00:01:00, Left: 00:00:59 1 200.76.28.11 12288 100.0.0.2 512 200.76.29.4 512 Left: 00:00:51 VPN: 0, status: 11, TTL: 00:01:00,

Correct Answer: D Explanation

Explanation/Reference:

Napt 且地址池只分配了一个地址

QUESTION 23

如图所示网络环境中,两台路由器以串口背靠背相连,要设置互连链路的速率为 2Mbps,下面说法正确的是

- A. 需要确定接口类型以及线缆满足 V.24 规程
- B. 在 RTA 的同步口上使用 baudrate 2048000 命令配置
- C. 在 RTB 的同步口上使用 baudrate 2048000 命令配置
- D. 在RTB 的同步口上使用 virtual-baudrate 2048000 命令配置
- E. 在 RTA 的同步口上使用 bandrate 2048000 命令配置,在 RTB 的同步口上使用 virtual-baudrate 2048000 命令配置

Correct Answer: B Explanation

Explanation/Reference:

V. 24 支持同、异步: 异步最高速率 115200bps 同步最高速率 64000bps

V. 35 只支持同步: 最高速率为 2048000bps= 2Mbps

在 DCE 端配置带宽

DCE(数据控制设备)运行商设备,提供 DCE、DTE 之间同步时钟信号

DTE(数据终端设备)用户设备,接受 DCE 提供的时钟信号

QUESTION 24

在配置 ISDN DCC 的时候,客户在自己的 MSR 路由器上配置了如下的 dialer-rule: [MSR] dialer-rule 1 acl 3000 那么关于此配置如下哪些说法正确? (选择一项或多项)

- A. 只有匹配 ACL 3000 的数据包能触发拨号
- B. 只有匹配 ACL 3000 的数据包会被路由器通过拨号链路发送
- C. 没有定义 permit 或者 deny, 配置错误
- D. 正确的配置应为: [MSR] dialer-rule 1 acl 3000 permit

Correct Answer: A Explanation

Explanation/Reference:

QUESTION 25

两台空配置的 MSR 路由器 RTA、RTB 通过各自的 Serial 1/0 接口背靠背互连。在两台路由器上做如下配置:

RTA: 跳过

[RouterA-Serial1/0] link-protocol fr ietf

[RouterA-Serial1/0] ip address 10.1.1.1 30

[RouterA-Seria11/0] fr map ip 10.1.1.2 30

RTB:

[RouterB-Serial1/0] link-protocol fr ietf

[RouterB-Serial1/0] interface serial0/0.1

[RouterB-Serial1/0.1] ip address 10.1.1.2 30

[RouterB-Serial1/0.1] fr map ip 10.1.1.1 30

路由器之间的物理链路良好,那么下面说法正确的是____。(选择一项或多项)

- A. 两台路由器上都没有配置 DLCI, 在 RTA 上不能 ping 通 RTB
- B. 在 RTA 上不能 ping 通 10.1.1.2
- C. 在 RTA 上可以 ping 通 10.1.1.2
- D. 在上述配置中,如果仅将 RTB 上子接口 serial 0/0.1 的类型改为 P2MP,那么在 RTA 上不能 ping 通 10.1.1.2
- E. 在上述配置中,如果仅将 RTB 上子接口 serial 0/0.1 的类型改为 P2MP,那么在 RTA 上可以 ping 通 10.1.1.2

Correct Answer: BD

Explanation

Explanation/Reference:

QUESTION 26

以下关于星型网络拓扑结构的描述正确的是____。(选择一项或多项)

- A. 星型拓扑易于维护
- B. 在星型拓扑中,某条线路的故障不影响其它线路下的计算机通信
- C. 星型拓扑具有很高的健壮性,不存在单点故障的问题 中心结点故障
- D. 由于星型拓扑结构的网络是共享总线带宽, 当网络负载过重时会导致性能下降

Correct Answer: AB

Explanation

Explanation/Reference:

Hub 连接总线型网络共享总线带宽

QUESTION 27

以下关于星型网络拓扑结构的描述错误的是____。(选择一项或多项)

- A. 星型拓扑易于维护
- B. 在星型拓扑中,某条线路的故障不影响其它线路下的计算机通信

- C. 星型拓扑具有很高的健壮性,不存在单点故障的问题
- D. 由于星型拓扑结构的网络是共享总线带宽, 当网络负载过重时会导致性能下降

Correct Answer: CD

Explanation

Explanation/Reference:

QUESTION 28

以下关于电路交换和分组交换的描述正确的是____。(选择一项或多项)

- A. 电路交换延迟小, 传输实时性强
- B. 电路交换网络资源利用率高
- C. 分组交换延迟大, 传输实时性差
- D. 分组交换网络资源利用率低

Correct Answer: AC

Explanation

Explanation/Reference:

电路交换: 优点 延迟小,透明传输 缺点 固定带宽,网络资源利用率低 分组交换: 优点 多路复用,网络资源利用率高 缺点: 延迟大,实时性差,设备功能复杂

QUESTION 29

以下关于电路交换和分组交换的描述正确的是____。(选择一项或多项)

- A. 分组交换网络资源利用率低
- B. 分组交换延迟大, 传输实时性差
- C. 电路交换网络资源利用率高
- D. 电路交换延迟小, 传输实时性强

Correct Answer: BD

Explanation

Explanation/Reference:

QUESTION 30

网络的延迟(delay)定义了网络把数据从一个网络节点传送到另一个网络节点所需要的时间。网络延迟包

- A. 传播延迟 (propagation delay)
- B. 交换延迟 (switching delay)
- C. 介质访问延迟 (access delay)
- D. 队列延迟 (queuing delay)

Correct Answer: AB

Explanation

Explanation/Reference:

网络的延迟包括:传播延迟 PD、交换延迟 SD、介质访问延迟 AD、队列延迟 QD

QUESTION 31

集线器(Hub)工作在 OSI 参考模型的_____

- A. 物理层 B. 数据链路层 C. 网络层 D. 传输层 Correct Answer: A
- Explanation

Explanation/Reference:

QUESTION 32

TCP/IP 协议栈包括以下哪些层次?

- A. 网络层
- B. 传输层
- C. 会话层
- D. 应用层
- E. 网络接口层
- F. 表示层

Correct Answer: ABDE

Explanation

Explanation/Reference:

QUESTION 33

在网络层上实现网络互连的设备是____。

- A. 路由器
- B. 交换机
- C. 集线器
- D. 中继器

Correct Answer: A Explanation

Explanation/Reference:

路由器和三层交换机

QUESTION 34

在开放系统互连参考模型(OSI)中,____以帧的形式传输数据流。

- A. 网路层
- B. 会话层
- C. 传输层
- D. 数据链路层

Correct Answer: D Explanation

Explanation/Reference:

应用层	APDU
表示层	PPDU
会话层	SPDU
传输层	段 seament

网络层	包 packet
数据链路层	龂 frame
物理层	比特流 bit

QUESTION 35

OSI 参考模型具有以下哪些优点?

- A. OSI 参考模型提供了设备间的兼容性和标准接口,促进了标准化工作。
- B. OSI 参考模型是对发生在网络设备间的信息传输过程的一种理论化描述,并且定义了如何通过硬件和软件实现每一层功能。
- C. OSI 参考模型的一个重要特性是其采用了分层体系结构。分层设计方法可以将庞大而复杂的问题转化为若干较小且易于处理的问题。
- D. 以上说法均不正确。

Correct Answer: AC Explanation

Explanation/Reference:

QUESTION 36

OSI 参考模型具有以下哪些优点?

- A. OSI 参考模型提供了设备间的兼容性和标准接口,促进了标准化工作。
- B. OSI 参考模型的一个重要特性是其采用了分层体系结构。分层设计方法可以将庞大而复杂的问题转化为若干较小且易于处理的问题。
- C. OSI 参考模型是对发生在网络设备间的信息传输过程的一种理论化描述,并且定义了如何通过硬件和软件实现每一层功能。
- D. 以上说法均不正确。

Correct Answer: AB

Explanation

Explanation/Reference:

QUESTION 37

下面关于 OSI 参考模型各层功能的说法正确的是____。(选择一项或多项)

- A. 物理层涉及在通信信道(Channel)上传输的原始比特流,它定义了传输数据所需要的机械、电气功能及规程等特性。
- B. 网络层决定传输报文的最佳路由, 其关键问题是确定数据包从源端到目的端如何选择路由。
- C. 传输层的基本功能是建立、维护虚电路,进行差错校验和流量控制。
- D. 会话层负责数据格式处理、数据加密等。
- E. 应用层负责为应用程序提供网络服务。

Correct Answer: ABCE

Explanation

Explanation/Reference:

QUESTION 38

下面关于 OSI 参考模型各层功能的说法错误的是____。(选择一项或多项)

- A. 物理层涉及在通信信道(Channel)上传输的原始比特流,它定义了传输数据所需要的机械、电气功能及规程等特性。
- B. 网络层决定传输报文的最佳路由, 其关键问题是确定数据包从源端到目的端如何选择路由。

- C. 传输层的基本功能是建立、维护虚电路,进行差错校验和流量控制。
- D. 会话层负责数据格式处理、数据加密等。
- E. 应用层负责为应用程序提供网络服务。

Correct Answer: D Explanation

Explanation/Reference:

应用层	为应用进程提供网络服务
表示层	定义数据格式与结构、协商上层数据格式、数据加密压缩
会话层	主机间通信,建立、维护、终结应用程序间会话,文字处理、邮件、表格
传输层	分段上层数据,端到端连接,透明可靠传输,差错校验、重传,流量控制
网络层	编址,路由,拥塞控制,异种网络互连
数据链路层	编帧、链路建立/维持/释放,流量控制,差错校验,寻址,标识上层数据
物理层	电压,接口,线缆,传输距离等物理参数。四大特性: 机械、电器、功能、规
	程

QUESTION 39

下面关于 OSI 参考模型各层功能的说法正确的是____。(选择一项或多项)

- A. 会话层负责数据格式处理、数据加密等。
- B. 传输层的基本功能是建立、维护虚电路,进行差错校验和流量控制。
- C. 网络层决定传输报文的最佳路由, 其关键问题是确定数据包从源端到目的端如何选择路由。
- D. 物理层涉及在通信信道(Channel)上传输的原始比特流,它定义了传输数据所需要的机械、电气功能及规程等特性。
- E. 应用层负责为应用程序提供网络服务。

Correct Answer: BCDE

Explanation

Explanation/Reference:

QUESTION 40

下面关于 OSI 参考模型的说法正确的是____。(选择一项或多项)

- A. 传输层的数据称为帧 (Frame)
- B. 网络层的数据称为段(Segment)
- C. 数据链路层的数据称为数据包(Packet)
- D. 物理层的数据称为比特(Bit)

Correct Answer: D Explanation

Explanation/Reference:

QUESTION 41

OSI 参考模型物理层的主要功能是____。(选择一项或多项)

- A. 物理地址定义
- B. 建立端到端连接
- C. 在终端设备间传送比特流, 定义了电压、接口、电缆标准和传输距离等
- D. 将数据从某一端主机传送到另一端主机

Correct Answer: C Explanation

Explanation/Reference:
QUESTION 42 IP 协议对应于 OSI 参考模型的第层。
A. 5 B. 3 C. 2 D. 1
Correct Answer: B Explanation
Explanation/Reference: 应用层协议:见 T13 传输层协议:TCP(6) UDP(17) 网络层协议:IP,ICMP(ICMP消息可分为ICMP差错消息和ICMP查询消息),IGMP(互联网组管理协议,负责管理组播组) 网络接口层协议:以太网、令牌环,HDLC,PPP,X.25,帧中继,PSTN,ISDN等
QUESTION 43 在 OSI 参考模型中,网络层的功能主要是。(选择一项或多项)
A. 在信道上传输原始的比特流 B. 确保到达对方的各段信息正确无误 C. 确定数据包从源端到目的端如何选择路由 D. 加强物理层数据传输原始比特流的功能,并且进行流量调控
Correct Answer: C Explanation
Explanation/Reference:
QUESTION 44 数据分段是在 OSI 参考模型中的完成的。(选择一项或多项)
A. 物理层B. 网络层C. 传输层D. 接入层

Correct Answer: C Explanation

Explanation/Reference:

QUESTION 45

提供端到端可靠数据传输和流量控制的是 OSI 参考模型的_____。

- A. 表示层
- B. 网络层
- C. 传输层
- D. 会话层

Correct Answer: C Explanation
Explanation/Reference:
QUESTION 46 在 OSI 参考模型中,加密是的功能。
A. 物理层B. 传输层C. 会话层D. 表示层
Correct Answer: D Explanation
Explanation/Reference:
QUESTION 47 TCP 属于 OSI 参考模型的。
A. 网络层B. 传输层C. 会话层D. 表示层
Correct Answer: B Explanation
Explanation/Reference:
QUESTION 48 UDP 属于 OSI 参考模型的。
A. 网络层B. 传输层C. 会话层D. 表示层
Correct Answer: B Explanation
Explanation/Reference:
QUESTION 49 SPX 属于 OSI 参考模型的。
A. 网络层B. 传输层C. 会话层D. 表示层
Correct Answer: B Explanation

Explanation/Reference: 传输层协议有 TCP/IP 协议族的 TCP/UDP ,以及 IPX/SPX 协议族的 SPX 等
QUESTION 50 DNS 工作于 OSI 参考模型的。
A. 网络层B. 传输层C. 会话层D. 应用层
Correct Answer: D Explanation
Explanation/Reference:
QUESTION 51 用以太网线连接两台交换机,互连端口的 MDI 类型都配置为 across,则此以太网线应该为。
A. 只能使用交叉网线 B. 只能使用直连网线 C. 平行网线和交叉网线都可以 D. 平行网线和交叉网线都不可以
Correct Answer: A Explanation
Explanation/Reference: 同层设备交叉线,不同层直连线 以太网交换机接口类型 MDI/MDIX 自适应
QUESTION 52 下列关于以太网的说法正确的是。(选择一项或多项)
A. 以太网是基于共享介质的网络B. 以太网采用 CSMA/CD 机制C. 以太网传输距离短,最长传输距离为 500mD. 以上说法均不正确
Correct Answer: AB Explanation

Explanation/Reference:

10BASE 以太网传输距离跟传输介质有关

10BASE5 粗同轴电缆 500m 10BASE2 细同轴电缆 200m (同轴电缆布设繁琐,不便 10BASE-T 双绞线 三类 UTP 100m (逐渐成为以太网标准) (同轴电缆布设繁琐,不便使用)

五类 150m

QUESTION 53

100BASE-TX 的标准物理介质是____。

- A. 粗同轴电缆
- B. 细同轴电缆

- C. 3 类双绞线
- D. 5 类双绞线
- E. 光纤

Correct Answer: D Explanation

Explanation/Reference:

100BASE-TX 2 对五类双绞线 100BASE-FX 多模光纤 100BASE-T4 4 对三类双绞线 1000BASE-SX 多模光纤 LX 单模

QUESTION 54

以下关于 CSMA/CD 的说法中正确的是____。(选择一项或多项)

- A. CSMA/CD 应用在总线型以太网中,主要解决在多个站点同时发送数据时如何检测冲突、确保数据有序传输的问题。
- B. 当连在以太网上的站点要传送一个帧时,它必须等到信道空闲,即载波消失。
- C. 信道空闲时站点才能开始传送它的帧。
- D. 如果两个站点同时开始传送,它们将侦听到信号的冲突,并暂停帧的发送。

Correct Answer: ABCD

Explanation

Explanation/Reference:

QUESTION 55

下列有关 MAC 地址的说法中哪些是正确的?

- A. 以太网用 MAC 地址标识主机
- B. MAC 地址是一种便于更改的逻辑地址
- C. MAC 地址固化在 ROM 中,通常情况下无法改动
- D. 通常只有终端主机才需要 MAC 地址,路由器等网络设备不需要

Correct Answer: AB

Explanation

Explanation/Reference:

FLASH 存储器:存储应用程序文件,配置文件

IP 地址在操作系统的 RAM (随机访问存储器,用于随机存储,如当前配置)中

MAC 地址固化在网卡 ROM(只读存储器,存储 BOOTROM 程序,,用于在应用程序 or 配置文件故障时的回 复手段)中,

理论不可改,全球唯一

MAC 48 位: 24 位 OUI (申请,标志厂商) + 24 位 EUI

IP 地址将物理地址对上层隐藏,使 internet 表现出统一地址格式,但实际通信 ip 地址不能被物理网络识别,物理网络使用依然物理地址,因此 arp 解析出 MAC 是必要的即设备之间数据通信既要知道 ip 地址也要解析 MAC 地址

QUESTION 56

下列有关 MAC 地址的说法中哪些是错误的?

- A. 以太网用 MAC 地址标识主机
- B. MAC 地址是一种便于更改的逻辑地址
- C. MAC 地址固化在 ROM 中,通常情况下无法改动
- D. 通常只有终端主机才需要 MAC 地址,路由器等网络设备不需要

Correct Answer: BD

Explanation

Explanation/Reference:

QUESTION 57

下列有关光纤的说法哪些是正确的?

- A. 多模光纤可传输不同波长不同入射角度的光
- B. 多模光纤的成本比单模光纤低
- C. 采用多模光纤时, 信号的最大传输距离比单模光纤长
- D. 多模光纤的纤芯较细

Correct Answer: AB

Explanation

Explanation/Reference:

QUESTION 58

WLAN(Wireless LAN)是计算机网络与无线通信技术相结合的产物。下列哪些属于 WLAN 技术标准?(选择一项或多项)

- A. 802.11a
- B. 802.11b
- C. 802.11c
- D. 802.11g

Correct Answer: AB

Explanation

Explanation/Reference:

最高传输速率 802.11 2Mbps

802.11 a 54

802.11 g 54

802.11 b 11

802.11 n 300

b/g 相互兼容,与a不兼容

QUESTION 59

802.11b 协议在 2.4GHz 频段定义了 14 个信道,相邻的信道之间在频谱上存在交叠。为了最大程度地利用频段资源,可以使用如下哪组信道来进行无线覆盖? (选择一项或多项)

A. 1、5、9

B. 1、6、11

C. 2, 6, 10

D. 3, 6, 9

Correct Answer: B

Explanation

Explanation/Reference:

两两之间相差要≥5

QUESTION 60

802.11b 协议在 2.4GHz 频段定义了 14 个信道,相邻的信道之间在频谱上存在交叠。为了最大程度地利用频段资源,可以使用如下哪组信道来进行无线覆盖? (选择一项或多项)

- A. 1、5、9
- B. 1、6、10
- C. 2, 7, 12
- D. 3, 6, 9

Correct Answer: C Explanation

Explanation/Reference:

两两之间相差要≥5

QUESTION 61

广域网接口多种多样,下列对于广域网接口的描述错误的是____。(选择一项或多项)

- A. V.24 规程接口可以工作在同异步两种方式下,在异步方式下,链路层使用 PPP 封装。
- B. V.35 规程接口可以工作在同异步两种方式下,在异步方式下,链路层使用 PPP 封装。
- C. BRI/PRI 接口用于 ISDN 接入,默认的链路封装是 PPP
- D. G.703 接口提供高速数据同步通信服务。

Correct Answer: B Explanation

Explanation/Reference:

V. 24 支持同、异步: 异步最高速率 115kps 同步最高速率 64kbps

V. 35 只支持同步: 最高速率为 2048000bps= 2Mbps

ISDN 两种接入方式: BRI 接口 →2B+D B 信道 64kbps D 信道 16kbps

PRI 接口 →E1 30B+D T1 23B+D

默认 PPP 封装

QUESTION 62

广域网接口多种多样,下列对于广域网接口的描述正确的是____。(选择一项或多项)

- A. V.24 规程接口可以工作在同异步两种方式下,在异步方式下,链路层使用 PPP 封装。
- B. V.35 规程接口可以工作在同异步两种方式下,在异步方式下,链路层使用 PPP 封装。
- C. BRI/PRI 接口用于 ISDN 接入,默认的链路封装是 PPP
- D. G.703 接口提供高速数据同步通信服务。

Correct Answer: ACD

Explanation

Explanation/Reference:

QUESTION 63

对于分组交换方式的理解,下列说法中正确的是____。(选择一项或多项)

- A. 分组交换是一种基于存储转发(Store-and-Forward switching)的交换方式
- B. 传输的信息被划分为一定长度的分组,以分组为单位进行转发
- C. 每个分组都载有接收方和发送方的地址标识,分组可以不需要任何操作而直接转发,从而提高了效率
- D. 分组交换包括基于帧的分组交换和基于信元的分组交换

Correct Answer: ABD

Explanation

Explanation/Reference:

对每个分组都要去查看源和目的,重新操作,逐一对分组进行转发,增加了延迟

但资源利用率高,虽然某一时刻线路是被某一分组独占,但是线路带宽在多路复用后,总的利用率高

QUESTION 64

对于分组交换方式的理解,下列说法中正确的是____。(选择一项或多项)

- A. 分组交换是一种基于直通转发(cut-through switching)的交换方式
- B. 传输的信息被划分为一定长度的分组,以分组为单位进行转发
- C. 分组交换包括基于帧的分组交换和基于信元的分组交换
- D. 每个分组都载有接收方和发送方的地址标识,分组可以不需要任何操作而直接转发,从而提高了效率

Correct Answer: BC Explanation

Explanation/Reference:

QUESTION 65

某公司组建公司网络需要进行广域网连接,要求该连接的带宽大于 1Mbps,则下面哪些接口和协议可用?

- A. V.35 规程接口及线缆,使用 PPP 作为链路层协议
- B. V.35 规程接口及线缆,使用 Frame Relay 作为链路层协议
- C. PRI 接口及线缆, 捆绑多个时隙, 使用 PPP 作为链路层协议
- D. BRI 接口及线缆,捆绑多个时隙,使用 PPP 作为链路层协议。

Correct Answer: ABC

Explanation

Explanation/Reference:

V. 24 支持同、异步: 异步最高速率 115kbps 同步最高速率 64kbps

V. 35 只支持同步: 最高速率为 2048000bps= 2Mbps

ISDN 两种接入方式: BRI 接口 →2B+D B 信道 64kbps D 信道 16kbps 最大速率 144kbps

PRI 接□ →E1 30B+D 最大速率 2Mbps T1 23B+D 最大速率 1.544Mbps

QUESTION 66

客户的两台路由器通过 V.35 电缆背靠背连接在一起,其中一台路由器上有如下接口信息:

[MSR-Serial0/0]display interface Serial 0/0

Serial0/0 current state: UP Line protocol current state: UP Description: Serial6/0 Interface

The Maximum Transmit Unit is 1500, Hold timer is 10(sec)

Internet Address is 6.6.6.1/30 Primary

Link layer protocol is PPP LCP opened, IPCP opened 从上述信息可以得知______。

- A. 这台路由器已经和远端设备完成了 PPP 协商,并成功建立了 PPP 链路
- B. 这台路由器和远端设备之间成功完成了 PPP PAP 或者 CHAP 的验证 验证可选项,题中无法看出是否设有验证、是否通过
- C. 在这台路由器上已经可以 ping 通对端的地址 6.6.6.2 了 无法判断是否通过了验证,所以对端地址也不一定可以 ping 通
- D. 该接口信息提示,在该接口下还可以配置第二个 IP 地址 subordinate

Correct Answer: AD

Explanation

Explanation/Reference:

QUESTION 67

客户的两台路由器通过 V.35 电缆背靠背连接在一起,并在 V.35 接口上运行了 PPP 协议,在其中一台路由器上有如下接口信息:

[MSR-Serial0/0]display interface Serial 0/0

Serial6/0 current state: UP

Line protocol current state: DOWN

从如上信息可以推测。

- A. 两路由器之间的物理连接正常,但PPP协议协商没有成功
- B. PPP 的 LCP 协商有可能未通过
- C. PPP 验证可能失败了
- D. 两路由器 V.35 接口的 IP 地址有可能不在同一网段

Correct Answer: ABC

Explanation

Explanation/Reference:

即使不在同一网段,只要两端配了地址,链路层协议就起来了

QUESTION 68

某公司的 MSR 路由器的广域网主链路为同异步串口,通过一根 V.35 电缆接入运营商网络;该路由器同时以一个 ISDN BRI 接口做备份链路。那么关于线路带宽,如下哪些说法是正确的?

- A. 备份线路的带宽可能是 64Kbps
- B. 备份线路的带宽可能是 128Kbps
- C. 备份线路的带宽可能是 144Kbps
- D. 主链路的带宽可能是 1Mbps

Correct Answer: ABD

Explanation

Explanation/Reference:

ISDN 两种接入方式: BRI 接口 →2B+D B 信道 64kbps D 信道 16kbps 最大速率 144kbps

PRI 接□ →E1 30B+D 最大速率 2Mbps T1 23B+D 最大速率 1.544Mbps

B 信道用来传输数据,D 信道用来传输控制信令,因此 BRI 最高提供 128kbps 带宽(单位时间可传输的数据量)

- V. 24 支持同、异步: 异步最高速率 115kbps 同步最高速率 64kbps
- V. 35 只支持同步: 最高速率为 2048000bps= 2Mbps

QUESTION 69

ping 实际上是基于 协议开发的应用程序。

- A. ICMP
- B. IP
- C. TCP
- D. UDP

Correct Answer: A

Explanation

Explanation/Reference:

Ping 功能是基于 ICMP 协议来实现的:源端向目的端发送 ICMP 回显请求(ECHO-REQUEST)报文后,根据是否收到目的端的 ICMP 回显应答(ECHO-REPLY)报文来判断目的端是否可达,对于可达的目的端,再根据发送报文个数、接收到响应报文个数来判断链路的质量,根据 ping 报文的往返时间来判断源端与目的端之间的"距离"。

QUESTION 70

IP 地址 203.108.2.110 是地址。
A. A 类 B. B 类 C. C 类 D. D 类
Correct Answer: C Explanation
Explanation/Reference:
QUESTION 71 IP 地址 133.18.2.110 是地址。
A. A 类 B. B 类 C. C 类 D. D 类
Correct Answer: B Explanation
Explanation/Reference:
QUESTION 72 源主机 ping 目的设备时,如果网络工作正常,则目的设备在接收到该报文后,将会向源主机回应 ICMP报文。
A. Echo Request B. Echo Reply C. TTL-Exceeded D. Port-Unreachable
Correct Answer: B Explanation
Explanation/Reference: Echo Request
Echo Reply (正常)
TTL-Exceeded/ Port-Unreachable (超时/目的地址不可达)
QUESTION 73 IP 地址 125.1.1.1 对应的自然分类网段的广播地址为。
Correct Answer: 125.255.255.255 Explanation
Explanation/Reference:
QUESTION 74 IP 地址 172.15.1.1 对应的自然分类网段包含的可用主机地址数为。(请填写阿拉伯数字)

Correct Answer: 65534

Explanation
Explanation/Reference:
QUESTION 75 IP 地址 165.110.20.67 对应的自然分类网段包含的可用主机地址数为。(请填写阿拉伯数号
Correct Answer: 65534 Explanation
Explanation/Reference:
QUESTION 76 根据来源的不同,路由表中的路由通常可分为以下哪几类?
A. 接口路由 B. 直连路由 C. 静态路由 D. 动态路由
Correct Answer: BCD Explanation
Explanation/Reference:
QUESTION 77 以下关于 IP 地址的说法正确的是。(选择一项或多项)
 A. IP 地址可以固化在硬件中,是独一无二的 MAC B. IP 地址分为 A、B、C、D、E 五类 C. IP 地址通常用点分十六进制来表示,例如: 10.110.192.111 D. IP 地址是由 32 个二进制位组成的
Correct Answer: BD Explanation
Explanation/Reference: IP 地址点分十进制: A 1.0.0.0~126.255.255.255 127 用作环路测试 127.0.0.1 表示本机 B 128.0.0.0~191.255.255.255 C 192.0.0.0~223.255.255.255 D 224.0.0.0~239.255.255.255 组播地址 E 240~ 保留用于研究
QUESTION 78 IP 地址 112.1.1.1 对应的自然分类网段的网络地址为。
Correct Answer: 112.0.0.0 Explanation
Explanation/Reference:
QUESTION 79 IP 地址 192.48.117.22 对应的自然分类网段的网络地址为。
Correct Answer: 192.48.117.0 Explanation

Explanation/Reference:

QUESTION 80

下面关于 IP 地址的说法正确的是____。(选择一项或多项)

- A. IP 地址由两部分组成: 网络号和主机号。
- B. A 类 IP 地址的网络号有 8 位,实际的可变位数为 7 位。
- C. D 类 IP 地址通常作为组播地址。
- D. 地址转换(NAT)技术通常用于解决 A 类地址到 C 类地址的转换。

Correct Answer: ABC

Explanation

Explanation/Reference:

C 类地址第一个 8 位 110 起始

NAT 用于私网地址到公网地址转换,和地址类型无关

QUESTION 81

下面关于 IP 地址的说法错误的是____。(选择一项或多项)

- A. IP 地址由两部分组成:网络号和主机号。
- B. A 类 IP 地址的网络号有 8 位,实际的可变位数为 7 位。
- C. C 类 IP 地址的第一个八位段以 100 起始。
- D. 地址转换(NAT)技术通常用于解决 A 类地址到 C 类地址的转换。

Correct Answer: CD

Explanation

Explanation/Reference:

C 类地址第一个 8 位 110 起始

NAT 用于私网地址到公网地址转换, 和地址类型无关

QUESTION 82

以下关于 IP 地址的说法正确的是____。(选择一项或多项)

- A. IP 地址由两部分构成: 网络号和主机号
- B. A 类地址的第一个字节为 0~126 (127 留作他用)
- C. IP 地址通常表示为点分十进制形式,例如: 10.110.168.121
- D. 主机号部分二进制全为 1 的 IP 地址称为网络地址,用来标识一个网络的所有主机

Correct Answer: AC

Explanation

Explanation/Reference:

A 类地址的第一个字节为 1~126

QUESTION 83

以下关于 IP 地址的说法正确的是____。(选择一项或多项)

- A. A 类地址的第一个字节为 0~126 (127 留作他用)
- B. 主机号部分二进制全为 0 的 IP 地址称为网络地址,用来标识一个网络的所有主机。
- C. IP 地址通常表示为点分十进制形式,例如: 10.110.168.121
- D. IP 地址由两部分构成: 网络号和主机号

Correct Answer: BCD

Explanation

Explanation/Reference:

QUESTION 84

以下哪个选项描述的参数可以唯一确定一条 TCP 连接?

- A. 源端口号,源IP 地址
- B. 目的端口号,目的 IP 地址
- C. 源端口号, 目的端口号
- D. 源 MAC 地址, 目的 MAC 地址
- E. 以上都不对

Correct Answer: E Explanation

Explanation/Reference:

源 IP 地址、源端口、目的 IP 地址、目的端口 组成套接字 socket 唯一确定一条 TCP 连接

QUESTION 85

TCP 协议通过_____来区分不同的连接。

- A. 端口号
- B. 端口号和 IP 地址
- C. 端口号和 MAC 地址
- D. IP 地址和 MAC 地址

Correct Answer: B Explanation

Explanation/Reference:

QUESTION 86

UDP 协议和 TCP 协议头部的共同字段有____。

- A. 源 IP 地址
- B. 流量控制
- C. 校验和
- D. 序列号
- E. 目的端口
- F. 源端口

Correct Answer: CEF

Explanation

Explanation/Reference:

UDP 头部:由源端口,目的端口,长度,校验和组成 TCP 头部:源端口,目的端口,校验和,序列号,确认号,窗口,数据便宜等等许多,确保了可靠性

UDP 协议和 TCP 协议头部的共同字段:源端口、目的端口、校验和

QUESTION 87

UDP 协议和 TCP 协议头部的共同字段有____。

- A. 源端口
- B. 目的端口
- C. 流量控制

- D. 源 IP 地址
- E. 校验和
- F. 序列号

Correct Answer: ABE

Explanation

Explanation/Reference:

QUESTION 88

在如图所示的 TCP 连接的建立过程中, SYN 中的 X 部分应该填入_____

- A. a
- B. b
- C. a+1
- D. b+1

Correct Answer: C Explanation

Explanation/Reference:

X= a+1 (确认收到 a, 期望下次发送 a+1)

Y=a+1

Z=b+1 (确认收到 b)

QUESTION 89

在如图所示的 TCP 连接的建立过程中, SYN 中的 Y 部分应该填入_____

- A. a
- B. b
- C. a+1
- D. b+1

Correct Answer: C Explanation

Explanation/Reference:

QUESTION 90

在如图所示的 TCP 连接的拆除过程中, ACK 中的 X 部分应该填入__

- A. p
- B. q
- C. p+1
- D. q+1

Correct Answer: C Explanation

Explanation/Reference:

X=p+1,B 收到 A 发送的终止连接请求段,确认,同时关闭连接

QUESTION 91

在如图所示的 TCP 连接的拆除过程中, FIN 中的 Y 部分应该填入_____。

- A. p
- B. q
- C. p+1
- D. q+1

Correct Answer: B Explanation

Explanation/Reference:

QUESTION 92

下列关于路由器特点的描述,正确的是____。

- A. 是网络层设备
- B. 根据链路层信息进行路由转发
- C. 提供丰富的接口类型
- D. 可以支持多种路由协议

Correct Answer: ACD Explanation

Explanation/Reference:

工作在底三层

根据网络层信息进行路由转发

接口类型丰富,可用来连接不同介质的网络

QUESTION 93

下列关于 Comware 特点的描述,正确的是____。

- A. 支持 IPv4 和 IPv6 双协议
- B. 支持多 CPU
- C. 路由和交换功能融合
- D. 高可靠性和弹性拓展
- E. 灵活的裁减和定制功能

Correct Answer: ABCDE Explanation
Explanation/Reference:
QUESTION 94 通过控制台(Console)端口配置刚出厂未经配置的 MSR 路由器,终端的串口波特率应设置为。
A. 9600 B. 2400 C. 115200 D. 38400
Correct Answer: A Explanation
Explanation/Reference:
QUESTION 95 下面关于 H3C 设备中 VTY 特点的描述,正确的是。(选择一项或多项)
A. 只用于对设备进行 Telnet B. 每台设备可以支持多个 VTY 用户同时访问 C. 每个 VTY 用户对应一个物理接口 D. 不支持无密码验证
Correct Answer: B Explanation
Explanation/Reference: Vty 即虚拟登陆接口,支持多用户、支持认证 Vty 0-4 5 个接口,可以有 5 个人同时访问 逻辑线路 0-4 随机分配的,如果关闭 1-4,只剩下 0,但却未必随机到 0,还是无法访问
QUESTION 96 SSH 默认使用 TCP 端口号。(选择一项或多项)
A. 20 B. 21 C. 22 D. 23
Correct Answer: C Explanation
Explanation/Reference:
QUESTION 97 如果需要在 MSR 上配置以太口的 IP 地址,应该在下配置。
A. 系统视图B. 用户视图C. 接口视图

D. 路由协议视图

Correct Answer: C Explanation

Explanation/Reference:

QUESTION 98

下面关于 H3C 网络设备升级的说法,正确的是____。(选择一项或多项)

- A. 使用 Xmodem 升级可以达到与 FTP 一样的速度
- B. 当使用 FTP 升级时,设备只能做 FTP 客户端
- C. 在设备无法引导到命令行模式而需要对操作系统软件进行升级时,只能使用 Xmodem 方式
- D. 在客户端和服务器之间不便于复杂交互的环境下,可以使用 TFTP 进行升级

Correct Answer: D Explanation

Explanation/Reference:

设备可做客户端或服务器

TFTP 69 简单文件传输协议

无法进入设备时,可以通过 bootrom 菜单通过 ftp/tftp/Xmodem 升级:

在设备无法引导到命令行模式而需要对操作系统软件进行升级时,在 BOOTROM 模式中利用 BOOTROM 菜单提供的操作功能,采用 ftp/tftp 使设备正常启动并引导到命令行模式。

单提供的操作功能,采用 ftp/tftp 使设备正常启动并引导到命令行模式。如果无法实现 FTP、TFTP 服务器与设备的网络连接,则只有在 BOOTROM 模式中通过 console 口采用 Xmodem 完成升级,使设备正常引导到命令行模式

QUESTION 99

下面关于 H3C 网络设备升级的说法,正确的是____。(选择一项或多项)

- A. 使用 Xmodem 升级可以达到与 FTP 一样的速度
- B. 当使用 FTP 升级时,设备可以作为 FTP 服务器端或客户端
- C. 在设备无法引导到命令行模式而需要对操作系统软件进行升级时,可以使用 Xmodem 和 TFTP 方式
- D. 在客户端和服务器之间不便于复杂交互的环境下,可以使用 TFTP 进行升级

Correct Answer: BCD Explanation

Explanation/Reference:

Xmodem 升级速度蜗牛

QUESTION 100

下列选项中对路由器系统的启动过程描述正确的是_____

- A. 内存检测------启动 bootrom-----应用程序解压------应用程序加载
- B. 启动 bootrom-----内存检测-----应用程序加载
- C. 应用程序解压------ 应用程序加载------ 启动 bootrom------ 内存检测
- D. 内存检测-----应用程序解压-----应用程序加载

Correct Answer: A Explanation

Explanation/Reference:

路由器系统的启动:内存检测>启动 bootrom>应用程序解压>应用程序加载

QUESTION 101

A. 应用程序解压 B. 应用程序加载 C. 启动 bootrom D. 内存检测 路由器系统的启动过程中各步的正确顺序是_____。(依次填入各步的代号,中间不能有空格,如:

Correct Answer: DCAB Explanation
Explanation/Reference:
QUESTION 102 如果想对路由器升级却没有网线,可以用配置线缆,通过超级终端使用协议进行升级。
A. TFTP B. Xmodem C. Ymodem D. Zmodem
Correct Answer: B Explanation
Explanation/Reference: TFTP 需要网线
QUESTION 103 在 MSR 路由器上,配置文件是以格式保存的文件。
A. 批处理文件B. 文本文件C. 可执行文件D. 数据库文件
Correct Answer: B Explanation
Explanation/Reference:
QUESTION 104 如果用户指定的配置文件不存在,则路由器用进行初始化。
A. 默认配置B. 最后保存的配置C. 使用最多的配置D. 使用最少的配置
Correct Answer: A Explanation
Explanation/Reference:
QUESTION 105 FTP 默认使用的数据传输端口是。
A. 20 B. 21 C. 23

ABCD)

D. 22

Explanation
Explanation/Reference:
QUESTION 106 FTP 协议是基于的协议。
A. UDP B. TCP C. PX D. SSH
Correct Answer: B Explanation
Explanation/Reference:
QUESTION 107 TFTP 协议是基于的协议。
A. UDP B. TCP C. IPX D. SSH
Correct Answer: A Explanation
Explanation/Reference:
QUESTION 108 在 MSR 路由器上使用命令可以关闭信息中心功能。
A. info-center disableB. undo info-center enableC. disable info-centerD. undo info-center
Correct Answer: B Explanation
Explanation/Reference:
QUESTION 109 在 MSR 路由器上可以为 Telnet 用户配置不同的优先级,关于此优先级的说法错误的是。(选择一项或多项)
 A. 0 为访问级 B. 1 为监控级 C. 2 为设备级 D. 3 为管理级 E. 数值越小,用户的优先级越高

F. 数值越小,用户的优先级越低

Explanation
Explanation/Reference: 0 访问级 1 监控级 2 系统级 3 管理级 访问权限依次递增 telnet console
QUESTION 110 在 MSR 路由器上,如果以访问级登录设备后想要修改一些配置,可以使用命令切换到 level 3。(选择一项或多项)
A. super B. level 3 C. password D. login
Correct Answer: A Explanation
Explanation/Reference: TE 中可能碰到 super 3
QUESTION 111 在查看配置的时候,如果配置命令较多,一屏显示不完,则在显示完一屏后,可以按下显示下一页。
A. <ctrl+c>键 B. <enter>键 C. <ctrl+p>键 D. <space>键</space></ctrl+p></enter></ctrl+c>
Correct Answer: D Explanation
Explanation/Reference:
QUESTION 112 想要修改设备名称,应该使用命令(请写全命令)。
Correct Answer: sysname Explanation
Explanation/Reference:
QUESTION 113 在 MSR 路由器上,默认情况下,配置文件是以后缀的。
Abin Bsys Ctxt Dcfg
Correct Answer: D Explanation
Explanation/Reference:

Correct Answer: CE

QUESTION 114

在 MSR 系列路由器上使用_____命令显示文件系统的当前路径。

- A. dir
- B. pwd
- C. path
- D. current-path

Correct Answer: B

Explanation

Explanation/Reference:

显示目录或文件信息 显示当前工作路径 P180 路由器的 IOS 其实也是一个操作系统,大部分基于 unix 或 linux,所以有些命令通用

QUESTION 115

在命令行里,用户想要从当前视图返回上一层视图,应该使用____。

- A. return 命令
- B. quit 命令
- C. <Ctrl+z>键
- D. <Ctrl+c>键

Correct Answer: B

Explanation

Explanation/Reference:

QUESTION 116

用户可以使用命令查看历史命令。

- A. display history-cli
- B. display history-area
- C. display history-command
- D. display history-cache

Correct Answer: C

Explanation

Explanation/Reference:

QUESTION 117

在路由器上配置好 Telnet 服务的相关配置后,从 PC 能够 ping 通路由器,但是 Telnet 路由器失败,PC 一直显示正在连接到 x.x.x.x,可能的原因是_____。(选择一项或多项)

- A. 中间网络路由配置不对
- B. Telnet 密码设置不正确
- C. 路由器 Telnet 服务没有启动
- D. 中间网络阻止了 PC 对路由器的 TCP 端口 23 发起连接

Correct Answer: CD

Explanation

Explanation/Reference:

中间网络路由配置不对 能连接说明路由配置正确

Telnet 密码设置不止确 会直接提示密码错误 中间网络阻止了 PC 对路由器的 TCP 端口 23 发起连接 配置 acl, 拒绝 telnet, 或是 tcp
QUESTION 118 如果要使当前配置在系统重启后继续生效,在重启设备前应使用命令将当前配置保存到配置文件中。(请写全命令)
Correct Answer: save Explanation
Explanation/Reference:
QUESTION 119 在 MSR 路由器上,键入命令的某个关键字的前几个字母,按下,可以补全命令。
A. <esc>键 B. <space>键 C. <enter>键 D. <tab>键</tab></enter></space></esc>
Correct Answer: D Explanation
Explanation/Reference:
QUESTION 120 在 MSR 路由器上,如果已经设置某一个文件为启动文件,可使用命令检查设置是否正确。
A. display bootB. display beginC. display startupD. display start-configuration
Correct Answer: C Explanation
Explanation/Reference: display startup:显示系统当前和下次启动时使用的配置文件 display boot-loader:显示系统当前和下次启动使用的启动文件 系统升级
QUESTION 121 在 MSR 路由器上,如果想从 FTP Server 下载文件,应使用 FTP 命令中的命令。
A. getB. putC. downloadD. load
Correct Answer: A Explanation
Explanation/Reference:
QUESTION 122 在 MSR 路由器上,一旦系统时间不准确了,可使用 命令调整系统时间。

A. time B. clock C. clock datetime D. set datetime
Correct Answer: Explanation
Explanation/Reference: clock datetime-自己手动设置时间
QUESTION 123 在 MSR 路由器上,使用命令查看设备当前运行版本。
A. display runningB. display softwareC. display versionD. display current-version
Correct Answer: C Explanation
Explanation/Reference:
QUESTION 124 在 MSR 路由器上,各个功能模块都有其对应的信息显示命令,一般情况下,要查看各个功能模块的运行信息,需要逐条运行相应的 display 命令。为便于一次性收集更多信息,方便日常维护或问题定位,可以在任意视图下执行命令,显示系统当前各个主要功能模块运行的统计信息。
A. display allB. display ip interfaceC. display system-informationD. display diagnostic-information
Correct Answer: D Explanation
Explanation/Reference: A C 错误命令 B 查看所有接口信息 D 该命令危险,尽量在业务量小的时候用,会打印大量信息
QUESTION 125 在系统启动过程中,根据提示键入,系统将中断引导,进入 BootROM 模式。
A. <ctrl+a> B. <ctrl+b> C. <ctrl+z> D. <ctrl+c></ctrl+c></ctrl+z></ctrl+b></ctrl+a>
Correct Answer: B Explanation
Explanation/Reference:
QUESTION 126 在 MSR 路由器上,使用不带参数的 delete 命令删除文件时,被删除的文件将被保存在中。

A. RAM B. ROM C. Memory D. Recycle-bin	
Correct Answer: D Explanation	
Explanation/Reference: 彻底删除 reset Recycle-bin P181	
QUESTION 127 在 MSR 路由器上,如果要彻底删除回收站中的某个废弃文件,可以执行命令。	
A. clear trashB. reset recycle-binC. clear allD. reset trash-bin	
Correct Answer: B Explanation	
Explanation/Reference:	
QUESTION 128 在 MSR 路由器上,如果想查看回收站里的文件,可以使用命令。	
A. dir recycle-bin B. dir trash C. dir /all D. dir all-file	
Correct Answer: C Explanation	
Explanation/Reference: <r1>dir ? /all List all files STRING [drive][path][file name] flash: Device name <cr></cr></r1>	
QUESTION 129 在 MSR 路由器上, ping 命令的-t 参数指定 ICMP Echo Reply 报文的超时时间,取值范围为 1~65535, 身 为毫秒,它的默认值为毫秒。	单位
A. 200 B. 100 C. 2000 D. 1000	
Correct Answer: C Explanation	
Explanation/Reference: -a ——带源	

QUESTION 130

在 MSR 路由器上, ping 命令的-m 参数指定发送 ICMP Echo Request 报文的时间间隔,取值范围为 1~65535,单位为毫秒,它的默认值为______毫秒。

- A. 1000
- B. 100
- C. 200
- D. 2000

Correct Answer: C Explanation

Explanation/Reference:

QUESTION 131

从源设备到目的设备之间有两跳,使用 tracert 命令检测路径。检测第一跳时,源设备对目的设备的某个较大的端口发送一个 TTL 为 1 的 UDP 报文,当该报文到达中间一跳时,TTL 将变为 0,于是该设备对源设备回应一个 ICMP_____消息。

- A. Time Exceeded
- B. Echo Request
- C. Echo Reply
- D. Port Unreachable

Correct Answer: A Explanation

Explanation/Reference:

没到达目的地,中间一跳回应 Time Exceeded

到达目的地,回应端口不可达 Port Unreachable

QUESTION 132

从源设备到目的设备之间有两跳,使用 tracert 命令检测路径。检测第一跳时,源设备发送一个 TTL 为 1 的 UDP 报文到中间一跳;检测第二跳时,源设备发送一个 TTL 为 2 的 UDP 报文,报文首先到达中间一跳,TTL 递减为 1,当该报文到达目的后,TTL 将递减为 0,这时目的设备将发送一个 ICMP______消息给源,告知源设备其已经跟踪到目的地址。

- A. Time Exceeded
- B. Echo Request
- C. Echo Reply
- D. Port Unreachable

Correct Answer: D Explanation

Explanation/Reference:

QUESTION 133 在 MSR 路由器上, ping 命令的-tos 参数指定 ICMP Echo Request 报文中的 ToS(Type of Service,服务类型)字段值,取值范围为 0~255,默认值为。
A. 46 B. 0 C. 63 D. 2
Correct Answer: B Explanation
Explanation/Reference:
QUESTION 134 在打开 debugging 调试以后,可以使用命令关掉 debugging。
A. no debugging allB. undo debugging allC. undo terminal monitorD. undo terminal debugging
Correct Answer: B Explanation
Explanation/Reference:
QUESTION 135 在 MSR 路由器上使用 ping 命令时,可以用参数来设定所发送的 ICMP 报文长度。大小
An Bc Cb Ds
Correct Answer: D Explanation
Explanation/Reference:
QUESTION 136 在 MSR 路由器上,如果想指定 ping 操作时发送的报文的源地址,应使用参数。
As BI Ca Dd
Correct Answer: C Explanation
Explanation/Reference:

QUESTION 137

MSR 路由器上一次 ping 默认发 5 个包,如果想指定发送报文的数目,可使用_____参数。

- A. -n
- B. -d
- C. -s
- D. -c

Correct Answer: D Explanation

Explanation/Reference:

QUESTION 138

在打开控制台对系统信息的监控功能后,使用_____命令打开调试信息的屏幕输出。

- A. terminal monitor
- B. terminal debugging
- C. terminal screen
- D. terminal information

Correct Answer: B Explanation

Explanation/Reference:

开启控制台对信息监视功能 开启调试信息屏幕输出开关

QUESTION 139

XYZ 公司网络如图所示。其中 Router 上没有配置任何逻辑接口; 所有的主机之间均可以正常通信。则

此网络中有___个广播域。(请填写阿拉伯数字)

Correct Answer: 2 Explanation

Explanation/Reference:

QUESTION 140

XYZ 公司网络如图所示。其中 Router 上没有配置任何逻辑接口; 所有的主机之间均可以正常通信。则

此网络中有___个冲突域。(请填写阿拉伯数字)

Correct Answer: 6 Explanation

Explanation/Reference:

QUESTION 141

二层以太网交换机在 MAC 地址表中查找与帧目的 MAC 地址匹配的表项,从而将帧从相应接口转发出去,如果查找失败,交换机将_____。

- A. 把帧丢弃
- B. 把帧由除入端口以外的所有其他端口发送出去
- C. 查找快速转发表
- D. 查找路由表

Correct Answer: B Explanation

Explanation/Reference:

交换机会把广播帧、组播和未知单播帧从所有其他端口发送出去 泛洪 P220

QUESTION 142

交换机上的以太帧交换依靠 MAC 地址映射表,这个表可以通过 来建立。(选择一项或多项)

- A. 交换机自行学习
- B. 手工添加映射表项
- C. 交换机之间相互交换目的地的位置信息
- D. 生成树协议交互学习

Correct Answer: AB Explanation

Explanation/Reference:

QUESTION 143

某二层交换机上的 MAC 地址表如图所示。当交换机从 E1/0/1 接口收到一个广播帧时,会将该帧______(选择一项或多项)

- A. 从 E1/0/1 接口发送出去
- B. 从 E1/0/2 接口发送出去
- C. 从 E1/0/3 接口发送出去
- D. 从 E1/0/4 接口发送出去
- E. 从交换机上的所有接口发送出去
- F. 直接丢弃

Correct Answer: BCD

Explanation

Explanation/Reference:

QUESTION 144

某二层交换机上的 MAC 地址表如图所示。当交换机从 E1/0/2 接口收到一个目的 MAC 地址为 00-13-72-8E-4E-C4 的帧时,交换机会将该帧_____。(选择一项或多项) 未知单播帧

- A. 从 E1/0/1 接口发送出去
- B. 从 E1/0/2 接口发送出去
- C. 从 E1/0/3 接口发送出去
- D. 从 E1/0/4 接口发送出去
- E. 从交换机上的所有接口发送出去
- F. 直接丢弃

Correct Answer: ACD

Explanation

Explanation/Reference:

QUESTION 145

某二层交换机上的 MAC 地址表如图所示。当交换机从 E1/0/2 接口收到一个目的 MAC 地址为 00-13-72-8E-4B-C1 的帧时,交换机会将该帧_____。(选择一项或多项)

- A. 从 E1/0/1 接口发送出去
- B. 从 E1/0/2 接口发送出去
- C. 从 E1/0/3 接口发送出去
- D. 从 E1/0/4 接口发送出去
- E. 从交换机上的所有接口发送出去
- F. 直接丢弃

Correct Answer: F Explanation

Explanation/Reference:

收到目的地址为自身的单播帧, 丢弃

QUESTION 146

与传统的 LAN 相比, VLAN 具有以下哪些优势?

- A. 减少移动和改变的代价
- B. 建立虚拟工作组
- C. 用户不受物理设备的限制, VLAN 用户可以处于网络中的任何地方
- D. 限制广播包,提高带宽的利用率
- E. 增强通讯的安全性
- F. 增强网络的健壮性

Correct Answer: ABCDEF

Explanation

Explanation/Reference:

QUESTION 147

VLAN 划分的方法包括____。

- A. 基于端口的划分
- B. 基于 MAC 地址的划分
- C. 基于端口属性的划分
- D. 基于协议的划分
- E. 基于子网的划分

Correct Answer: ABDE

Explanation

_			
C	1 :	/Reference	
— x r ı	ianaiion	/Rejerenc	_

优先性:基于MAC地址>基于IP子网>基于协议>基于端口

QUESTION 148

根据交换机处理 VLAN 数据帧的方式不同, H3C 以太网交换机的端口类型分为_____。

- A. access 端口
- B. trunk 端口
- C. 镜像端口
- D. hybrid 端口
- E. monitor 端口

Correct Answer: ABD

Explanation

Explanation/Reference:

QUESTION 149

以下关于 Trunk 端口、链路的描述正确的是____。(选择一项或多项)

- A. Trunk 端口的 PVID 值不可以修改
- B. Trunk 端口接收到数据帧时,当检查到数据帧不带有 VLAN ID 时,数据帧在端口加上相应的 PVID 值作为 VLAN ID
- C. Trunk 链路可以承载带有不同 VLAN ID 的数据帧
- D. 在 Trunk 链路上传送的数据帧都是带 VLAN ID 的

Correct Answer: BC

Explanation

Explanation/Reference:

QUESTION 150

以下关于 Trunk 端口、链路的描述错误的是____。(选择一项或多项)

- A. Trunk 端口的 PVID 值不可以修改
- B. Trunk 端口发送数据帧时, 若数据帧不带有 VLAN ID, 则对数据帧加上相应的 PVID 值作为 VLAN ID
- C. Trunk 链路可以承载带有不同 VLAN ID 的数据帧
- D. 在 Trunk 链路上传送的数据帧都是带 VLAN ID 的

Correct Answer: ABD

Explanation

Explanation/Reference:

B情况不可能发生,从 trunk 端口发出数据帧,数据帧不可能不带有 vlan id,数据帧的 vlan id 与 trunk 口相同则去标签(D 错),不同则带标签通过

QUESTION 151

以下关于 S 系列以太网交换机 access 端口和链路的描述正确的是____。(选择一项或多项)

- A. access 端口可以同时属于多个 VLAN
- B. access 链路只能承载不带 VLAN ID 的数据帧
- C. access 链路只能承载带 VLAN ID 的数据帧
- D. 当 access 端口接收到一个不带 VLAN ID 的数据帧时,加上端口的 PVID 值作为数据帧的 VLAN ID

Correct Answer: BD Explanation
Explanation/Reference:
QUESTION 152 要在以太网交换机之间的链路上配置 Trunk,并允许传输 VLAN 10 和 VLAN 20 的信息,则必须在交换机上置。
A. [Switch-Ethernet0/1] port link-type trunkB. [Switch] port link-type trunkC. [Switch] port link-type accessD. [Switch-Ethernet0/1] port trunk pvid 10
Correct Answer: A Explanation
Explanation/Reference:
QUESTION 153 如果以太网交换机中某个运行 STP 的端口不接收或转发数据,接收但不发送 BPDU,不进行地址学习,那么该端口应该处于
A. BlockingB. ListeningC. LearningD. ForwardingE. WaitingF. Disable
Correct Answer: A Explanation
Explanation/Reference:
QUESTION 154 如果以太网交换机中某个运行 STP 的端口不接收或转发数据,接收、处理并发送 BPDU,进行地址学习,那么该端口应该处于
A. BlockingB. ListeningC. LearningD. ForwardingE. WaitingF. Disable
Correct Answer: C Explanation
Explanation/Reference:
QUESTION 155 如果以太网交换机中某个运行 STP 的端口接收并转发数据,接收、处理并发送 BPDU,进行地址学习,那么该端口应该处于

- A. Blocking
- B. Listening
- C. Learning
- D. Forwarding
- E. Waiting
- F. Disable

Correct Answer: D Explanation

Explanation/Reference:

QUESTION 156

在下面列出的 STP 端口状态中,哪些属于不稳定的中间状态? (选择一项或多项)

- A. Blocking
- B. Listening
- C. Learning
- D. Forwarding
- E. Disabled

Correct Answer: BC

Explanation

Explanation/Reference:

QUESTION 157

关于 STP 协议说法正确的是____。(选择一项或多项)

- A. BridgelD 值由网桥的优先级和网桥的 MAC 地址组合而成。前面是优先级,后面是 MAC 地址。
- B. H3C 以太网交换机的默认优先级值是 32768
- C. 优先级值越小优先级越低
- D. 优先级相同时, MAC 地址越小优先级越高
- E. BridgelD 值大的将被选为根桥

Correct Answer: ABD

Explanation

Explanation/Reference:

桥 ID (越小越优先): 桥优先级+ MAC 地址

桥优先级: 默认 32768 , 只能为 4096 倍数 , 0——4096*15

优先级相同则比较 MAC

QUESTION 158

关于 STP 协议说法正确的是____。(选择一项或多项)

- A. BridgeID 值由网桥的优先级和网桥的 MAC 地址组合而成。前面是 MAC 地址,后面是优先级。
- B. H3C 以太网交换机的默认优先级值是 32768
- C. 优先级值越大优先级越低
- D. 优先级相同时, MAC 地址越大优先级越高
- E. BridgeID 值小的将被选为根桥

Correct Answer: BCE

Explanation

Explanation/Reference:

	\bigcirc			c-	TI	\sim	N	1	_	n
ı		IJ	_			()	ı١	Т	~	ч

下列关于 STP 的说法正确的是____。(选择一项或多项)

- A. 在结构复杂的网络中, STP 会消耗大量的处理资源, 从而导致网络无法正常工作。
- B. STP 通过阻断网络中存在的冗余链路来消除网络可能存在的路径环路
- C. 运行 STP 的网桥间通过传递 BPDU 来实现 STP 的信息传递
- D. STP 可以在当前活动路径发生故障时激活被阻断的冗余备份链路来恢复网络的连通性

Correct Answer: BCD

Explanation

Explanation/Reference: Stp 只会消耗大量资源

QUESTION 160

关于 STP、RSTP 和 MSTP 说法正确的是_____。(选择一项或多项)

- A. MSTP 兼容 STP 和 RSTP。
- B. STP 不能快速收敛,当网络拓扑结构发生变化时,原来阻塞的端口需要等待一段时间才能变为转发状态。
- C. RSTP 是 STP 协议的优化版。端口进入转发状态的延迟在某些条件下大大缩短,从而缩短了网络最终达到 拓扑稳定所需要的时间。
- D. MSTP 可以弥补 STP 和 RSTP 的缺陷,它既能快速收敛,也能使不同 VLAN 的流量沿各自的路径转发,从而为冗余链路提供了更好的负载分担机制。

Correct Answer: ABCD

Explanation

Explanation/Reference:

QUESTION 161

关于 STP、RSTP 和 MSTP 说法正确的是_____。(选择一项或多项)

- A. RSTP 是 STP 协议的优化版。端口进入转发状态的延迟在某些条件下大大缩短,从而缩短了网络最终达到拓扑稳定所需要的时间。
- B. MSTP 不能快速收敛,当网络拓扑结构发生变化时,原来阻塞的端口需要等待一段时间才能变为转发状态。
- C. MSTP 兼容 RSTP, 但不兼容 STP。
- D. MSTP 可以弥补 STP 和 RSTP 的缺陷,它既能快速收敛,也能使不同 VLAN 的流量沿各自的路径转发,从而为冗余链路提供了更好的负载分担机制。

Correct Answer: AD

Explanation

Explanation/Reference:

QUESTION 162

MSTP 的特点有 。(选择一项或多项)

- A. MSTP 兼容 STP 和 RSTP。
- B. MSTP 把一个交换网络划分成多个域,每个域内形成多棵生成树,生成树间彼此独立。

- C. MSTP 将环路网络修剪成为一个无环的树型网络,避免报文在环路网络中的增生和无限循环,同时还可以提供数据转发的冗余路径,在数据转发过程中实现 VLAN 数据的负载均衡。
- D. 以上说法均不正确

Correct Answer: ABC

Explanation

Explanation/Reference:

QUESTION 163

下面说法正确的是____。(选择一项或多项)

- A. MSTP 和 RSTP 能够互相识别对方的协议报文,可以互相兼容
- B. 在STP 兼容模式下,设备的各个端口将向外发送STP BPDU 报文
- C. 在 RSTP 模式下,设备的各个端口将向外发送 RSTP BPDU 报文,当发现与 STP 设备相连时,该端口会自动迁移到 STP 兼容模式下工作
- D. 在 MSTP 模式下,设备的各个端口将向外发送 MSTP BPDU 报文,当发现某端口与 STP 设备相连时,该端口会自动迁移到 STP 兼容模式下工作

Correct Answer: ABCD

Explanation

Explanation/Reference:

QUESTION 164

在如图所示的交换网络中,所有交换机都启用了 STP 协议。根据图中的信息来看,哪台交换机会被选为根桥?

- A. SWA
- B. SWB
- C. SWC
- D. 信息不足, 无法判断

Correct Answer: A Explanation

Explanation/Reference:

QUESTION 165

在如图所示的交换网络中,所有交换机都启用了 STP 协议。根据图中的信息来看,哪台交换机会被选为根桥?

- A. SWA
- B. SWB
- C. SWC
- D. 信息不足, 无法判断

Correct Answer: B

Explanation

Explanation/Reference:

QUESTION 166

在如图所示的交换网络中,所有交换机都启用了 STP 协议。根据图中的信息来看,哪台交换机会被选为根标?

A. SWA 法判断 B. SWB

C. SWC

D. SWD

E. 信息不足, 无

Correct Answer: Explanation

Explanation/Reference:

QUESTION 167

在如图所示的交换网络中,所有交换机都启用了 STP 协议。根据图中的信息来看,哪台交换机会被选为根桥?

- A. SWA
- B. SWB
- C. SWC
- D. SWD
- E. 信息不足, 无法判断

Correct Answer: B

Explanation

Explanation/Reference:

QUESTION 168

在如图所示的交换网络中,所有交换机都启用了 STP 协议。SWA 被选为了根桥。根据图中的信息来看, _____端口应该被置为 Blocking 状态。(选择一项或多项)

- A. SWB 的P1
- B. SWB 的 P2
- C. SWC 的P1
- D. SWC 的 P2
- E. 信息不足, 无法判断

Correct Answer: D Explanation

Explanation/Reference:

QUESTION 169

在如图所示的交换网络中,所有交换机都启用了 STP 协议。SWA 被选为了根桥。根据图中的信息来看, _____端口应该被置为 Forwarding 状态。(选择一项或多项)

- A. SWA 的P1
- B. SWA 的 P2
- C. SWC 的P1
- D. SWC 的 P2
- E. 信息不足, 无法判断

Correct Answer: ABC

Explanation

Explanation/Reference:

QUESTION 170

802.1x 定义了基于端口的网络接入控制协议,并且仅定义了接入设备与接入端口间点到点的连接方式。其中接入端口只能是物理端口。

A. True

B. False

Correct Answer: B Explanation

Explanation/Reference:

针对 wlan 提出的,逻辑端口可以

端口接入方式包括:

基于端口: 端口下第一个用户认证成功,其他无需认证饥渴访问网络,,第一个下线,其他用户拒绝访问

基于 MAC 地址:端口下所有用户单独认证,该用户下线不影响其他用户访问网络

QUESTION 171

VLAN 技术和端口隔离技术均可以实现数据的二层隔离。

A. True

B. False

Correct Answer: A

Explanation

Explanation/Reference:

QUESTION 172

下列选项中,哪些是基于 MAC 地址的 802.1x 验证的特点?

- A. 端口下的所有接入用户需要单独验证
- B. 当端口下的第一个用户下线后, 其他用户也会被拒绝使用网络

- C. 当某个用户下线时,只有该用户无法使用网络
- D. 只要端口下的第一个用户验证成功后,其他接入用户无须验证就可使用网络资源

Correct Answer: AC

Explanation

Explanation/Reference:

QUESTION 173

下列选项中,哪些是基于端口的802.1x验证的特点?

- A. 端口下的所有接入用户需要单独验证
- B. 当端口下的第一个用户下线后,其他用户也会被拒绝使用网络
- C. 当某个用户下线时,只有该用户无法使用网络
- D. 只要端口下的第一个用户验证成功后,其他接入用户无须验证就可使用网络资源

Correct Answer: BD

Explanation

Explanation/Reference:

QUESTION 174

链路聚合的作用是____。

- A. 增加链路带宽。
- B. 可以实现数据的负载均衡。
- C. 增加了交换机间的链路可靠性。
- D. 可以避免交换网环路。

Correct Answer: ABC

Explanation

Explanation/Reference:

QUESTION 175

某公司采购了 A、B 两个厂商的交换机进行网络工程实施。需要在两个厂商的交换机之间使用链路聚合技术。经查阅相关文档,得知 A 厂商交换机不支持 LACP 协议。在这种情况下,下列哪些配置方法是合理的?(选择一项或多项)

- A. 一方配置静态聚合, 一方配置动态聚合
- B. 一方配置静态聚合, 一方配置动态聚合
- C. 双方都配置动态聚合
- D. 双方都配置静态聚合
- E. 无法使用链路聚合

Correct Answer: D Explanation

Explanation/Reference:

链路聚合

静态聚合:不需要启动聚合协议,如果一方不支持聚合协议 or 双方设备支持的聚合协议不兼容时使用 (H3C-Cisco) 用的较多

动态聚合:双方系统使用 LACP 协议协商链路信息,交互聚合组中成员端口状态。易出错

QUESTION 176

根据用户的需求,管理员需要在交换机 SWA 上新建一个 VLAN,并且该 VLAN 需要包括端口 Ethernet1/0/2。根据以上要求,需要在交换机上配置下列哪些命令?

- A. [SWA]vlan 1
- B. [SWA-vlan1]port Ethernet1/0/2
- C. [SWA]vlan 2
- D. [SWA-vlan2]port Ethernet1/0/2

Correct Answer: CD

Explanation

Explanation/Reference:

Vlan1 默认,一般用作管理 vlan

QUESTION 177

根据用户需求,管理员需要将交换机 SWA 的端口 Ethernet1/0/1 配置为 Trunk 端口。下列哪个命令是正确的配置命令?

- A. [SWA]port link-type trunk
- B. [SWA-Ethernet1/0/1]port link-type trunk
- C. [SWA]undo port link-type access
- D. [SWA-Ethernet1/0/1]undo port link-type access

Correct Answer: B

Explanation

Explanation/Reference:

QUESTION 178

交換机 SWA 的端口 Ethernet1/0/1 原来是 Access 端口类型,现在需要将其配置为 Hybrid 端口类型。下列哪个命令是正确的配置命令?

A. [SWA]port link-type hybrid

В.

- B. [SWA-Ethernet1/0/1]port link-type hybrid
- C. [SWA]undo port link-type trunk
- D. [SWA-Ethernet1/0/1]undo port link-type trunk

Correct Answer: B

Explanation

Explanation/Reference:

trunk 和 hybrid 端口类型都只能从 access 类型转换,不能从 trunk 之间转换成 hybrid

QUESTION 179

交换机 SWA 的端口 Ethernet1/0/24 已经配置成为 Trunk 端口类型。如果要使此端口允许 VLAN2 和 VLAN3 通过,则需要使用下列哪个命令?

- A. [SWA]port trunk permit vlan 2 3
- B. [SWA-Ethernet1/0/24]port trunk permit vlan 2 3
- C. [SWA]undo port trunk permit vlan 1
- D. [SWA-Ethernet1/0/24]undo port trunk permit vlan 2

Correct Answer: B

Explanation

Explanation/Reference:

QUESTION 180

如果想在交换机上查看目前存在哪些 VLAN,则需要用到如下哪一个命令?

- A. [SWA]display vlan all
- B. [SWA]display vlan
- C. [SWA]display vlan 1
- D. [SWA]display vlan 2

Correct Answer: B Explanation

Explanation/Reference:

[SWA]display vlan all 查看所有 vlan 具体信息

[SWA]display vlan 查看存在那些 vlan

QUESTION 181

在交换机 SWA 上执行 display vlan 2 命令后,交换机输出如下:

<SWA> display vlan 2

VLAN ID: 2 VLAN Type: static

Route interface: not configured

Description: VLAN 0002 Tagged Ports: none Untagged Ports:

Ethernet1/0/1 Ethernet1/0/3 Ethernet1/0/4

从以上输出可以判断____。

- A. 端口 Ethernet1/0/1 是一个 Trunk 端口 hybrid
- B. VLAN2 中包含了端口 Ethernet1/0/1、Ethernet1/0/3 和 Ethernet1/0/4
- C. 带有 VLAN2 标签的数据帧离开端口 Ethernet1/0/3 时需要剥离标签
- D. 当前交换机存在的 VLAN 只有 VLAN2 Vlan1 肯定存在

Correct Answer: BC

Explanation

Explanation/Reference:

QUESTION 182

在交换机上启动生成树协议的命令是。

Correct Answer: stp enable

Explanation

Explanation/Reference:

QUESTION 183

交换机 SWA 的端口 Ethernet1/0/4 连接有一台路由器。管理员想在此端口上关闭生成树功能,则需要用到如下哪个命令?

- A. [SWA]stp disable
- B. [SWA-Ethernet1/0/4] stp disable
- C. [SWA] undo stp enable
- D. [SWA-Ethernet1/0/4] undo stp enable

Correct Answer: B

Explanation

Explanation/Reference:

QUESTION 184

配置交换机 SWA 工作在 RSTP 工作模式下的命令为____。

- A. [SWA]stp mode rstp
- B. [SWA-Ethernet1/0/4] stp mode rstp
- C. [SWA] undo stp mode stp
- D. [SWA-Ethernet1/0/4] undo stp mode stp

Correct Answer: A

Explanation

Explanation/Reference:

QUESTION 185

配置交换机 SWA 上的接口 Ethernet1/0/1 为边缘端口的命令为____。

- A. [SWA] stp enable edged-port
- B. [SWA-Ethernet1/0/1] stp enable edged-port
- C. [SWA] stp edged-port enable
- D. [SWA-Ethernet1/0/1] stp edged-port enable

Correct Answer: D

Explanation

Explanation/Reference:

QUESTION 186

在交换机 SWA 上执行 display stp 命令后,交换机输出如下:

[SWA]display stp

-----[CIST Global Info][Mode MSTP]------

CIST Bridge :32768.000f-e23e-f9b0

Bridge Times :Hello 2s MaxAge 20s FwDly 15s MaxHop 20

从以上输出可以判断____。(选择一项或多项)

- A. 当前交换机工作在 RSTP 模式下
- B. 当前交换机工作在 MSTP 模式下
- C. 当前交换机的桥优先级是 32768
- D. 当前交换机是根桥

Correct Answer: B

Explanation

Explanation/Reference:

QUESTION 187

交换机 SWA 的端口 E1/0/1 连接有 PC。如果想要使交换机通过 802.1X 协议对 PC 进行本地验证,则需要在交换机上配置哪些命令?

- A. [SWA]dot1x
- B. [SWA]dot1x interface ethernet1/0/1
- C. [SWA]local-user localuser

- D. [SWA-luser-localuser]password simple hello
- E. [SWA-luser-localuser]service-type lan-access

Correct Answer: ABCDE

Explanation

Explanation/Reference:

QUESTION 188

PCA、PCB 分别与 S3610 交换机 SWA 的端口 Ethernet1/0/2、Ethernet1/0/3 相连,服务器与端口 Ethernet1/0/1 相连。如果使用端口隔离技术使 PC 间互相隔离,但 PC 都能够访问服务器,则需要在交换机 上配置哪些命令?

- A. [SWA] port-isolate enable
- B. [SWA-Ethernet1/0/2] port-isolate enable
- C. [SWA-Ethernet1/0/3] port-isolate enable
- D. [SWA-Ethernet1/0/1] port-isolate uplink-port

Correct Answer: BCD

Explanation

Explanation/Reference:

QUESTION 189

PC 连接在交换机 SWA 的端口 E1/0/2, IP 地址为 10.1.1.1, MAC 地址为 00-01-02-01-21-23。为了保证网络安全,需要在端口 E1/0/2 上配置 MAC+IP+端口绑定。则下列哪个命令是正确的?

- A. [SWA] user-bind ip-address 10.1.1.1
- B. [SWA-Ethernet1/0/2]user-bind ip-address 10.1.1.1
- C. [SWA] user-bind ip-address 10.1.1.1 mac-address 0001-0201-2123
- D. [SWA-Ethernet1/0/2]user-bind ip-address 10.1.1.1 mac-address 0001-0201-2123

Correct Answer: D Explanation

Explanation/Reference:

QUESTION 190

在 S3610 交换机上创建包含有端口 Ethernet1/0/1, ID 为 2 的聚合端口, 其正确命令是。

- A. [SWA] interface bridge-aggregation 2
- B. [SWA] interface bridge-aggregation 2 port Ethernet1/0/1
- C. [SWA-Ethernet1/0/1] interface bridge-aggregation 2
- D. [SWA-Ethernet1/0/1] interface bridge-aggregation 2 mode static

Correct Answer: B Explanation

Explanation/Reference:

[SWA] interface bridge-aggregation 2

[SWA-Ethernet1/0/1]port link-aggregation group 2

QUESTION 191

如图所示, S3610 交换机 SWA 使用端口 E1/0/1 和 E1/0/2 连接到另外一台交换机 SWB。为了增加带宽,需要在交换机上配置静态链路聚合。下列哪个配置是正确的?

- A. [SWA] interface bridge-aggregation 1
- B. [SWA-Ethernet1/0/1] port link-aggregation group 1
- C. [SWA-Ethernet1/0/2] interface bridge-aggregation 1
- D. [SWA]interface bridge-aggregation 1 port Ethernet1/0/1 Ethernet1/0/2

Correct Answer: AB

Explanation

Explanation/Reference:

QUESTION 192

在交换机 SWA 上执行 display 命令后,交换机输出如下:

<Switch>display link-aggregation summary

Aggregation Interface Type:

BAGG -- Bridge-Aggregation, RAGG -- Route-Aggregation

Aggregation Mode: S -- Static, D -- Dynamic

Loadsharing Type: Shar -- Loadsharing, NonS -- Non-Loadsharing

Actor System ID: 0x8000, 000f-e267-6c6a

AGG AGG Partner ID Select Unselect Share Interface Mode Ports Ports Type
------BAGG1 S none 3 0 Shar 从以上输出可以判断_____。(选择一项或多项)

- A. 聚合组的类型是静态聚合
- B. 聚合组的类型是动态聚合
- C. 聚合组中包含了3个处于激活状态的端口
- D. 聚合组中没有处于激活状态的端口

Correct Answer: AC

Explanation

Explanation/Reference:

QUESTION 193

要设置一个子网掩码使 192.168.0.94 和 192.168.0.116 不在同一网段,使用的子网掩码可能是____。(选择一项或多项)

- A. 255.255.255.192
- B. 255.255.254
- C. 255.255.250.240
- D. 255.255.255.248

Correct Answer: BCD

Explanation

D. 以上都不正确 Correct Answer: B Explanation Explanation/Reference: **QUESTION 198** 对一个 B 类网段进行子网划分,如果子网掩码是 19 位,那么每个子网能够容纳的最大主机数为____。 (请填写阿拉伯数字) Correct Answer: 8190 **Explanation** Explanation/Reference: **QUESTION 199** 对一个 B 类网段进行子网划分,如果子网掩码是 19 位,那么最多能够划分的子网数为___。(请填写阿拉伯 Correct Answer: 8 Explanation Explanation/Reference: **QUESTION 200** 对一个 B 类网段进行子网划分,如果子网掩码是 22 位,那么每个子网能够容纳的最大主机数为__。(请填 写阿拉伯数字) Correct Answer: 1022 Explanation Explanation/Reference: **QUESTION 201** 对一个 C 类网段进行子网划分,如果子网掩码是 28 位,那么每个子网能够容纳的最大主机数为____。(请 填写阿拉伯数字) Correct Answer: 14 Explanation Explanation/Reference:

QUESTION 202

IP 地址 10.0.10.63 和掩码 255.255.255.224 代表的是一个____。

- A. 主机地址
- B. 网络地址
- C. 广播地址
- D. 以上都不对

Correct Answer: C Explanation

Explanation/Reference: 10.0.10.0011 1111

1110 0000

QUESTION 203

IP 地址 10.0.10.65 和掩码 255.255.255.224 代表的是一个_____。

- A. 主机地址
- B. 网络地址
- C. 广播地址
- D. 以上都不对

Correct Answer: A

Explanation

Explanation/Reference: 10.0.10.0100 0001

1110 0000

QUESTION 204

某企业网络管理员需要设置一个子网掩码将其负责的 C 类网络 211.110.10.0 划分为最少 8 个子网,请问可以采用多少位的子网掩码进行划分?

- A. 28
- B. 27
- C. 26
- D. 29
- E. 25

Correct Answer: ABD

Explanation

Explanation/Reference:

2^3=8 24+3=27 掩码≥27

QUESTION 205

某企业网络管理员需要设置一个子网掩码将其负责的 C 类网络 211.110.10.0 划分为最少 10 个子网,请问可以采用多少位的子网掩码进行划分? (选择一项或多项)

- A. 28
- B. 27
- C. 26
- D. 29
- E. 25

Correct Answer: AD

Explanation

Explanation/Reference: 2^4=16 24+4=28 掩码≥28

QUESTION 206

某企业网络管理员需要设置一个子网掩码将其负责的 C 类网络 211.110.10.0 划分为子网,要求每个子网的主机数不少于 20,请问可以采用多少位的子网掩码进行划分? (选择一项或多项)

- A. 28
- B. 27
- C. 26
- D. 29
- E. 25

Correct Answer: BCE

Explanation

Explanation/Reference: 2^5=32 32-5=27 掩码≤27

QUESTION 207

某公司网络管理员需要设置一个子网掩码将其负责的 C 类网络 211.110.10.0 划分为 14 个子网,要求每个子网包含尽可能多的主机,则他应采用 位的子网掩码。(请填写阿拉伯数字)

Correct Answer: 28

Explanation

Explanation/Reference:

QUESTION 208

XYZ 公司管理员正在为办公网划分子网。要求将一个 C 类网段划分成若干大小相等的子网供各部门办公用户使用,但不限制子网的大小,可以有_____种划分方法。(请填写阿拉伯数字)

Correct Answer: 6 Explanation

Explanation/Reference:

192.168.1.0000 0000 从左数第 1 位划分全 0 全 1×

第8位则等于没有划分子网 因此减2

QUESTION 209

XYZ 公司管理员正在为办公网划分子网。要求将一个 B 类网段划分成若干大小相等的子网供各部门办公用户使用,但不限制子网的大小,可以有____种划分方法。(请填写阿拉伯数字)

Correct Answer: 14

Explanation

Explanation/Reference:

172.16.0000 0000.0000 0000

QUESTION 210

子网划分技术是在自然分类 IP 地址划分的基础上增加了哪个部分实现的?

- A. 网络号部分
- B. 主机号部分
- C. 子网号部分
- D. 以上答案都不正确

Correct Answer: C

Explanation

Explanation/Reference:

QUESTION 211

要求设置一个子网掩码将 B 类网络 172.16.0.0 划分成尽可能多的子网,每个子网要求容纳 15 台主机,则子 网掩码应为____。(点分十进制形式)略

Correct Answer: 255.255.255.224

Explanation

Explanation/Reference:

QUESTION 212 要求设置一个子网掩码将一个 B 类网络 172.16.0.0 划分成尽可能多的子网,每个子网要求容纳 500 台主机,则子网掩码应为。(点分十进制形式)略
Correct Answer: 255.255.254.0 Explanation
Explanation/Reference:
QUESTION 213 要求设置一个子网掩码将一个 B 类网络 172.16.0.0 划分成七个子网,每个子网要容纳的主机数尽可能多,则子网掩码应为。(点分十进制形式)略
Correct Answer: 255.255.224.0 Explanation
Explanation/Reference:
QUESTION 214 要求设置一个子网掩码将一个 B 类网络 172.16.0.0 划分成 30 个子网,每个子网要容纳的主机数尽可能多,则子网掩码应为。(点分十进制形式)略
Correct Answer: 255.255.248.0 Explanation
Explanation/Reference:
QUESTION 215 IP 地址 132.119.100.200 的子网掩码是 255.255.255.224,哪么它所在的 IP 子网地址是。
A. 132.119.100.0 B. 132.119.100.192 C. 132.119.100.193 D. 132.119.100.128
Correct Answer: B Explanation
Explanation/Reference:
QUESTION 216 IP 地址 132.119.100.200 的子网掩码是 255.255.255.224,哪么它所在子网的广播地址是。
A. 132.119.100.255 B. 132.119.100.225 C. 132.119.100.193 D. 132.119.100.223
Correct Answer: D Explanation
Explanation/Reference:

QUESTION 217 IP 地址 132.119.100.200 的子网掩码是 255.255.255.240,哪么它所在的 IP 子网地址是____。

A. 132.119.100.0 B. 132.119.100.193 C. 132.119.100.192 D. 132.119.100.128
Correct Answer: C Explanation
Explanation/Reference:
QUESTION 218 某主机的 IP 地址为 130.25.3.135,子网掩码为 255.255.255.192,那么该主机所在的子网的网络地址为 ———。
A. 130.25.0.0 B. 130.25.3.0 C. 130.25.3.128 D. 130.25.3.255
Correct Answer: C Explanation
Explanation/Reference:
QUESTION 219 如果全 0 和全 1 子网可以作为有效子网, C 类地址 192.168.1.0 用 26 位的子网掩码进行子网划分,可以划分的有效子网个数为。
A. 2 B. 4 C. 6 D. 8
Correct Answer: B Explanation
Explanation/Reference:
QUESTION 220 如果全 0 和全 1 子网可以作为有效子网,C 类地址 192.168.1.0 用 27 位的子网掩码进行子网划分,可以划分的有效子网个数为。
A. 2 B. 4 C. 6 D. 8
Correct Answer: D Explanation
Explanation/Reference:

QUESTION 221

将一个 C 类网进行子网划分,如果全 D 和全 D 子网不是有效子网,那么用 D 位的掩码对该网络进行子网划分,可以划分的有效子网数为。(请填写阿拉伯数字)
Correct Answer: 2 Explanation
Explanation/Reference:
QUESTION 222 相对于标准的子网划分,变长子网掩码划分(VLSM)与之最大的区别是。
A. 对于一个自然分类 IP 网络,可以采用某一任意长度的子网掩码进行子网划分B. 一个自然分类 IP 网络进行子网划分后,各子网的子网掩码长度可以不同C. 可以形成超网D. 使用无类地址进行网络划分
Correct Answer: B Explanation
Explanation/Reference: VLSM 特点:允许实用多个子网掩码划分子网
QUESTION 223 子网划分中,子网号部分占用了自然分类 IP 地址中的哪部分的空间?
A. 网络号部分B. 主机号部分C. 子网号部分D. 以上都不正确
Correct Answer: B Explanation
Explanation/Reference:
QUESTION 224 下列域名中属于 FQDN 的是。
Awww.abc.com B. www.abc.com.cn C. www.abc.com D. www.abc.com.
Correct Answer: D Explanation
Explanation/Reference: 完全合格域名: 域名的域名以点(域根)结尾
QUESTION 225 DNS 可以采用的传输层协议是。
A. TCP B. UDP C. TCP 或UDP

Correct Answer: C Explanation Explanation/Reference: **QUESTION 226** DNS 采用的传输层协议知名端口号是____。 A. 50 B. 55

C. 53

D. NCP

D. 51

Correct Answer: C Explanation

Explanation/Reference:

QUESTION 227

DNS 域名服务器能够完成域名到 IP 地址的解析工作,能够提供具体域名映射权威信息的服务器肯定是

A. 本地域名服务器

B. 主域名服务器

C. 根域名服务器

D. 授权域名服务器

Correct Answer: D Explanation

Explanation/Reference:

QUESTION 228

某 DNS 客户端向本地域名服务器查询 www.sina.com.cn 的 IP 地址,本地域名服务器通常采用那种 DNS 查询 方式进行应答?

A. 递归查询

B. 迭代查询

C. 反向查询

D. 模糊查询

Correct Answer: A Explanation

Explanation/Reference:

一般客户机与本地 DNS 域名服务器之间查询方式

递归查询:本地域名与服务器如果不知道,则继续以客户端的方式向其他 DND 服务器请求本地域名服务器发送至根域名服务器查询方式

迭代查询: 本地域名与服务器如果不知道,则想客户端会送一个可能知道的域名服务器,有客户端继续向新 的服务器查询

反向查询: DNS 客户端根据已知的 IP 地址查找主机对应的域名

QUESTION 229

下列域名表示方式正确的是____。

- A. www.95588.com
- B. 111.222.333.cn
- C. www.China Finance.com
- D. KK114.com.cn

Correct Answer: AB

Explanation

Explanation/Reference:

域名含有的符号只有""和"-"而"_"不在其内

QUESTION 230

以下说法正确的是。

- A. FTP 的数据连接在整个 FTP 会话过程中一直保持打开
- B. FTP 的控制连接在整个 FTP 会话过程中一直保持打开
- C. FTP 的数据连接在数据传输结束后关闭
- D. FTP 的控制连接在数据传输结束后关闭

Correct Answer: BC Explanation

Explanation/Reference:

控制链接在整个FTP会话期间一直打开 数据连接,数据传输结束即终止

QUESTION 231

FTP 数据连接的作用包括__

- A. 客户机向服务器发送文件
- B. 服务器向客户机发送文件
- C. 服务器向客户机发送文件列表
- D. 服务器向客户机传送告警信息

Correct Answer: ABC

Explanation

Explanation/Reference:

FTP 数据连接三大用途: 客户机向服务器发送文件 (上传) 服务器向客户机发送文件 (下载)

服务器向客户机发送文件列表 (查看那些东西可以下载)

QUESTION 232

以下说法正确的是____。

- A. FTP 的主动传输模式由 FTP 客户端主动向服务器建立数据连接
- B. FTP 的主动传输模式由 FTP 服务器主动向客户端建立数据连接
- C. FTP 的被动传输模式的服务器及客户端均采用临时端口建立数据连接
- D. FTP 的被动传输模式使用 PORT 命令
- E. FTP 的被动传输模式使用 PASV 命令

Correct Answer: BCE

Explanation

Explanation/Reference:

主动模式 PORT:服务器主动向客户端发起数据连接 被动模式 PASV:服务器被动接收客户端发起连接

客户端主动与服务器临时端口号建立数据传输通道

Standard 模式 FTP: 客户端首先和 FTP Server 的 TCP 21 端口建立连接,通过这个通道发送命令,客户端需要接收数据的时候在这个通道上发送 PORT 命令。 PORT 命令包含了客户端用什么端口接收数据。在传送数据的时候,服务器端通过自己的 TCP 20 端口发送数据。 FTP server 必须和客户端建立一个新的连接用来传送数据。

Passive 模式: 在建立控制通道的时候和 Standard 模式类似,当客户端通过这个通道发送 PASV 命令的时候,FTP server 打开一个位于 1024 和 5000 之间的随机端口并且通知客户端在这个端口上传送数据的请求,然后 FTP server 将通过这个端口进行数据的传送,这个时候 FTP server 不再需要建立一个新的和客户端之间的连接。

QUESTION 233

FTP 常用文件传输类型包括。

- A. ASCII 码类型
- B. 二进制类型
- C. EBCDIC 类型
- D. 本地类型

Correct Answer: AB

Explanation

Explanation/Reference:

QUESTION 234

DHCP 客户端收到 DHCP ACK 报文后如果发现自己即将使用的 IP 地址已经存在于网络中,那么它将向 DHCP 服务器发送什么报文?

- A. DHCP Request
- B. DHCP Release
- C. DHCP Inform
- D. DHCP Decline

Correct Answer: D Explanation

Explanation/Reference:

DHCP 四个阶段:广播发送报文

发现阶段: 客户端 DHCP-DISCOVER 服务器 提供阶段: 客户端 DHCP-OFFER 服务器

选择阶段:客户端 DHCP-REQUEST 服务器 (当客户端收到多个服务器发来的 offer 报文,只接受第一个)

确认阶段 客户端 DHCP-ACK 服务器

IP 地址拒绝:客户端探测到服务器分配的地址已经被分配使用,5)发送 DHCP Decline 报文

IP 地址释放:客户端放弃 IP 地址或租期,5)发送 DHCP Release 报文

QUESTION 235

DHCP 客户端向 DHCP 服务器发送_____报文进行 IP 租约的更新?

- A. DHCP Request
- B. DHCP Release
- C. DHCP Inform
- D. DHCP Decline
- E. DHCP ACK
- F. DHCP OFFER

Correct Answer: A Explanation

Explanation/Reference: 租约更新 客户端 DHCP-REQUES 客户端 DHCP-ACK						
QUESTION 236 如果 DHCP 客户端发送 DHCP 客户端的 DHCP			Discovery	报文中的广播标志位置(),那么 DHCP	中继回应
A. unicast B. broadcast C. multicast D. anycast						
Correct Answer: A Explanation		单播报文 单播报文	服务器 服务器			
Explanation/Reference: 客户端 广播报文 客户端 广播报文	中继器 中继器					
QUESTION 237 DHCP 中继和 DHCP 服	务器之间交	互的报文采用				
A. unicastB. broadcastC. multicastD. anycast						
Correct Answer: A Explanation						
Explanation/Reference:						
QUESTION 238 IPv6 采用表示法	来表示地址。	0				
A. 冒号十六进制B. 点分十进制C. 冒号十进制D. 点分十六进制						
Correct Answer: A Explanation						
Explanation/Reference:						
QUESTION 239 IPv4 地址包含网络部分、	. 主机部分、	子网掩码等。	。与之相对	·应, IPv6 地址包含了	0	
A. D. B. C.						

网 机部分、网络长度络 前缀、接口标识符、前缀长度部 前缀、接口标识符、前缀长度分、前缀、接口标识符、网络长度主 网络部分、主机部分、前缀长度

Correct Answer: B

Explanation
Explanation/Reference:
QUESTION 240 IPv6 链路本地地址属于地址类型。
A. 单播 B. 组播 C. 广播 D. 任播
Correct Answer: A Explanation
Explanation/Reference:
QUESTION 241 IPv6 站点本地地址属于地址类型。
A. 单播 B. 组播 C. 广播 D. 任播
Correct Answer: A Explanation
Explanation/Reference: IPV6 单播地址根据其作用范围不同可分为链路本地地址、站点本地地址、全球单播地址 +多播地址= 四种 IPV6 地址
QUESTION 242 IPv6 邻居发现协议中的路由器发现功能是指。
A. 主机发现网络中的路由器的 IPv6 地址 B. 主机发现路由器及所在网络的前缀及其他配置参数 C. 路由器发现网络中主机的 IPv6 地址 D. 路由器发现网络中主机的前缀及其他配置参数
Correct Answer: B Explanation
Explanation/Reference: IPV6 邻居发现协议: 地址解析: 与 V4 ARP 类似 路由器发现/前缀发现: 发现路由器及前缀,有利于自动配置 地址自动配置: 自动生成地址

QUESTION 243

其他: 地址重复检测

IPv6 主机 A 要与 IPv6 主机 B 通信,但不知道主机 B 的链路层地址,遂发送邻居请求消息。邻居请求消息的目的地址是____。

A. 广播地址

B. 全部主机组播地址

- C. 主机 A 的被请求节点组播地址
- D. 主机 B 的被请求节点组播地址

Correct Answer: D

Explanation

Explanation/Reference:

一个节点想要和另一个节点通信需要知道对方的链路层地址

QUESTION 244

关于 IPv6 地址 2001:0410:0000:0001:0000:0000:45FF 的压缩表达方式,下列哪些是正确的? (选择一项或多项)

A. 2001:410:0:1:0:0:0:45FF

B. 2001:41:0:1:0:0:0:45FF

C. 2001:410:0:1::45FF

D. 2001:410::1::45FF

Correct Answer: AB

Explanation

Explanation/Reference:

QUESTION 245

关于 IPv6 地址 2001:0410:0000:0001:0000:0001:0000:45FF 的压缩表达方式,下列哪些是正确的? (选择一项或多项)

A. 2001:410:0:1:0:1:0:45FF

B. 2001:41:0:1:0:1:0:45FF

C. 2001:410:0:1::45FF

D. 2001:410::1::45FF

Correct Answer: A

Explanation

Explanation/Reference:

QUESTION 246

下列哪些是正确的 IPv6 地址? (选择一项或多项)

A. 2001:410:0:1:45FF

B. 2001:410:0:1:0:0:0:0:45FF

C. 2001:410:0:1:0:0:0:45FF

D. 2001:410:0:1::45FF

Correct Answer: CD

Explanation

Explanation/Reference:

QUESTION 247

下列哪些是正确的 IPv6 地址? (选择一项或多项)

A. 2001:410:0:1::45FF

B. 2001:410:0:1:0:0:0:0:45FF

C. 2001:410:0:1:0:0:0:45FF

D. 2001:410:0:1:45FF

E. 2001:410::1:0:0:0:45FF

Correct Answer: ACE

Explanation

Explanation/Reference:

QUESTION 248

IPv6 邻居发现协议实现的功能包括____。(选择一项或多项)

- A. 地址解析
- B. 路由器发现
- C. 地址自动配置
- D. 建立 Master/Slave 关系
- E. 地址重复检测

Correct Answer: ABCE

Explanation

Explanation/Reference:

IPV6 邻居发现协议:

地址解析:与V4 ARP类似

路由器发现/前缀发现:发现路由器及前缀,有利于自动配置地址自动配置:自动生成地址

其他: 地址重复检测

QUESTION 249

下列哪些消息是在 IPv6 地址解析中被使用的? (选择一项或多项)

- A. 邻居请求消息
- B. 邻居通告消息
- C. 路由器请求消息
- D. 路由器通告消息

Correct Answer: AB

Explanation

Explanation/Reference:

IPV6 地址解析:

组播发送邻居请求消息 单播回应邻居通告消息

IPV6 地址制动配置: 主机发送路由器请求消息 (请求前缀和其他配置信息)

路由器回应路由器通告消息 (告知前缀和其他) (利用返回的路由器通告消息,自动配置接口IPV6地址,生成全球单播 主机生成全球单播地址

地址)

QUESTION 250

在交换机 SWA 上执行 display 命令后,交换机输出如下:

<Switch> display arp all

Type: S-Static D-Dynamic A-Authorized

IP Address MAC Address VLAN ID Interface Aging Type

172.16.0.1 001c-233d-5695 N/A GE0/0 17 D 172.16.1.1 0013-728e-4751 N/A GE0/1 19 D

从以上输出可以判断。

- A. 具有 IP 地址 172.16.0.1 的主机连接在端口 GE0/0 上
- B. 具有 MAC 地址 001c-233d-5695 的主机连接在端口 GE0/1 上
- C. 以上表项是由管理员静态配置的
- D. 以上表项是由交换机动态生成的

Correct Answer: AD

Explanation

Explanation/Reference:

QUESTION 251

如图所示,路由器 RTA 连接有 PCA 和 PCB。如果需要在 RTA 上启用 ARP 代理以使 RTA 能够在 PC 之间转发 ARP 报文,则下列哪项配置是正确的? (选择一项或多项)

- A. [RTA] proxy-arp enable
- B. [RTA-GigabitEthernet0/0] proxy-arp enable
- C. [RTA-GigabitEthernet0/1] proxy-arp enable
- D. [RTA] proxy-arp enable port G1/0/1

Correct Answer: BC

Explanation

Explanation/Reference:

类似端口隔离,端口隔离加配上行端口 port-isolate enable Port-isolate uplink-port

QUESTION 252

在路由器上开启 DHCP 服务的正确配置命令是____。

- A. [Router] dhcp
- B. [Router-dhcp-pool-0] dhcp
- C. [Router] dhcp enable
- D. [Router-dhcp-pool-0] dhcp enable

Correct Answer: C

Explanation

Explanation/Reference:

QUESTION 253

在路由器 RTA 上启用 DHCP 后,需要设定地址池的地址范围为 192.168.1.0/24,给主机分配的默认网 关地址是 192.168.1.254。下列哪些配置能够满足这些要求?

- A. [Router] dhcp server ip-pool 0
- B. [Router-dhcp-pool-0] network 192.168.1.0 mask 255.255.255.0
- C. [Router-dhcp-pool-0] gateway-list 192.168.1.254
- D. [Router-dhcp-pool-0] dns-list 192.168.1.10

Correct Answer: ABC

Explanation

Explanation/Reference:

QUESTION 254

在路由器上执行如下配置命令:

[Router] dhcp enable

[Router] server forbidden-ip 192.168.1.10

[Router] server forbidden-ip 192.168.1.254

[Router] dhcp server ip-pool 0

[Router-dhcp-pool-0] network 192.168.1.0 mask 255.255.255.0

[Router-dhcp-pool-0] gateway-list 192.168.1.254

[Router-dhcp-pool-0] dns-list 192.168.1.10

[Router-dhcp-pool-0] expired day 5

完成以上配置后,如下哪些说法是正确的?

- A. 路由器具有 DHCP 中继功能
- B. 路由器可以分配给主机的地址有 252 个
- C. 路由器具有 DHCP 服务器功能
- D. 主机通过 DHCP 服务能够从路由器获得 DNS 服务器地址 192.168.1.10

Correct Answer: BCD

Explanation

Explanation/Reference:

路由器可以分配给主机的地址: 0-255 256 -2 -2=252 全 0 全 1 DNS 网关

QUESTION 255

如下关于 MSR 路由表的描述,哪些是正确的?

- A. 如果到同一目的网段的路由有多个来源,那么只把 Preference (优先级) 值最小的路由写入路由表
- B. 如果到同一目的网段的路由有多个来源,那么只把 Metric (度量) 值最小的路由写入路由表
- C. 如果到同一目的网段的路由有多个来源,那么只把 Preference (优先级) 值最大的路由写入路由表
- D. 如果到同一目的网段的路由有多个来源,那么只把 Metric (度量) 值最大的路由写入路由表
- E. 如果同一路由协议发现到达同一目的网段的多条路径,那么这些路由有可能都会被写入路由表
- F. 如果同一路由协议发现到达同一目的网段的多条路径,那么这些路由不可能全部被写入路由表

Correct Answer: AE

Explanation

Explanation/Reference:

如果到同一目的网段有多条路由,优先选择 Preference 最小的路由,并且写入路由表对于同一路由协议的多条路由,开销相同时,都会加入路由表开销不同怎会优选开销小的加入路由表

QUESTION 256

如下关于 MSR 路由表的描述,哪些是正确的?

- A. 如果到同一目的网段的路由有多个来源,那么只把 Preference (优先级) 值最大的路由写入路由表
- B. 如果到同一目的网段的路由有多个来源,那么只把 Metric (度量) 值最大的路由写入路由表
- C. 如果到同一目的网段的路由有多个来源,那么只把 Preference (优先级) 值最小的路由写入路由表
- D. 如果到同一目的网段的路由有多个来源,那么只把 Metric (度量) 值最小的路由写入路由表
- E. 如果同一路由协议发现到达同一目的网段的多条路径,那么这些路由不可能全部被写入路由表
- F. 如果同一路由协议发现到达同一目的网段的多条路径,那么这些路由有可能都会被写入路由表

Correct Answer: CF

Explanation

Explanation/Reference:

QUESTION 257

如果数据包在 MSR 路由器的路由表中匹配多条路由项,那么关于路由优选的顺序描述正确的是

- A. Preference 值越小的路由越优选
- B. Cost 值越小的路由越优选
- C. 掩码越短的路由越优先
- D. 掩码越长的路由越优先

Correct Answer: D Explanation

Explanation/Reference:

QUESTION 258

在一台运行 RIP 的 MSR 路由器上配置了一条默认路由 A, 其下一跳地址为 100.1.1.1;同时该路由器通过 RIP 从邻居路由器学习到一条下一跳地址也是 100.1.1.1 的默认路由 B。该路由器对路由协议都使用默认优先级和 Cost 值,那么____。

- A. 在该路由器的路由表中将只有路由 B, 因为动态路由优先
- B. 在该路由器的路由表中只有路由 A, 因为路由 A 的优先级高
- C. 在该路由器的路由表中只有路由A, 因为路由A的Cost为0
- D. 路由 A 和路由 B 都会被写入路由表,因为它们来源不同,互不产生冲突

Correct Answer: D Explanation

Explanation/Reference:

QUESTION 259

在一台 MSR 路由器的路由表中,可能有如下哪几种来源的路由?

- A. 直连网段的路由
- B. 由网络管理员手工配置的静态路由
- C. 动态路由协议发现的路由
- D. 网络层协议发现的路由

Correct Answer: ABC

Explanation

Explanation/Reference:

QUESTION 260

在一台 MSR 路由器上看到路由表如下:

Destination/Mask Proto Pre Cost NextHop Interface

6.6.6.0/24 Static 60 0 100.1.1.1 GE0/0

8.8.8/32 Direct 0 0 127.0.0.1 InLoop0

20.1.1.0/24 Static 60 0 100.1.1.1 GE0/0

30.0.0.0/8 RIP 100 1 100.1.1.1 GE0/0

那么对此路由表的分析正确的是____。

- A. 该路由器上接口 GE0/0 的 IP 地址为 100.1.1.1
- B. 目的网段为 8.8.8.8/32 的路由下一跳接口为 InLoop0,说明该路由下一跳是类似于 Null0 的虚接口,该路

由属于黑洞路由

- C. 该路由器运行的是 RIPv1, 因为目的网段 30.0.0.0 的掩码是自然掩码
- D. 该路由表不是该路由器的完整路由表,完整的路由表至少应该有接口 GE0/0 的直连网段路由

Correct Answer: D Explanation

Explanation/Reference:

InLoop0 是路由器的环回口地址,跟 Null0 接口没关系 未必 RIPv1,可能 V2 本身使能的接口网段就是 30.0.0.0/8,或者 V2 未开启自动聚合

QUESTION 261

XYZ 公司深圳分公司的路由器的 Serial 0/0 和 Serial 0/1 接口通过两条广域网线路分别连接两个不同的 ISP,通过这两个 ISP 都可以访问北京总公司的网站 202.102.100.2。在深圳分公司的路由器上配置了如下的静态路由:

ip route-static 202.102.100.2 24 Serial 0/0 ip route-static 202.102.100.2 24 Serial 0/1 那么关于这两条路由的描述哪些是正确的?

- A. 去往北京的流量通过这两条路由可以实现负载分担
- B. 去往北京的这两条路由可以互为备份
- C. 在该路由器的路由表中只会写入第二条路由
- D. 在该路由器的路由表中只会写入第一条路由

Correct Answer: AB Explanation

Explanation/Reference:

对于静态路由:

当到同一目的地址下一跳和优先级都不同时,优选优先级高的加入路由表,低的作为备份的,这是路由备份;当到同一目的地址下一跳不同而优先级相同时,都会加入路由表,到目的地的流量将会均匀分担。这是负载分担。

(因为度量值都为0)

QUESTION 262

XYZ 公司深圳分公司的路由器的 Serial 0/0 和 Serial 0/1 接口通过两条广域网线路分别连接两个不同的 ISP,通过这两个 ISP 都可以访问北京总公司的网站 202.102.100.2,在深圳分公司的路由器上配置了如下的 静态路由:

ip route-static 202.102.100.2 24 Serial 0/0 preference 10 ip route-static 202.102.100.2 24 Serial 0/1 preference 100 那么关于这两条路由的描述哪些是正确的?

- A. 两条路由的优先级不一样,路由器会把优先级高的第一条路由写入路由表
- B. 两条路由的优先级不一样,路由器会把优先级高的第二条路由写入路由表
- C. 两条路由的 Cost 值是一样的
- D. 两条路由目的地址一样,可以实现主备,其中第一条路由为主

Correct Answer: ACD Explanation

Explanation/Reference:

QUESTION 263

XYZ 公司深圳分公司的路由器 MSR1 的 SerialO/O 接口通过广域网线路直接连接到 ISP 路由器 MSR2 的 SerialO/O 接口,MSR2 的 SerialO/O 接口地址为 100.126.12.1。XYZ 公司通过这个 ISP 可以访问北京总公司的网站 202.102.100.2。在 MSR1 上没有运行路由协议,仅配置了如下一条静态路由: ip route-static 202.102.100.2 24 100.126.12.1

那么关于这条路由以及 MSR1 路由表的描述哪些是正确的?

- A. 如果 100.126.12.1 所在网段地址不可达,那么该路由不会被写入路由表
- B. 只要该路由对应的出接口物理状态 up,该路由就会被写入路由表
- C. 如果该路由所对应的出接口断掉,那么该路由一定会被从路由表中删除
- D. 这是一条优先级为 60、Cost 为 0 的静态路由

Correct Answer: ACD

Explanation

Explanation/Reference:

1) 出接口 UP 2) 目的可达。该路由才会被写入路由表

QUESTION 264

客户的网络连接形如:

HostA----GE0/0--MSR-1--S1/0----WAN-----S1/0--MSR-2--GE0/0----HostB

两台路由器都是出厂默认配置。分别给路由器的四个接口配置了正确的 IP 地址,两台主机 HostA、HostB 都 正确配置了 IP 地址以及网关,假设所有物理连接都正常,那么____。(选择一项或多项)

- A. 每台路由器上各自至少需要配置 1 条静态路由才可以实现 HostA、HostB 的互通
- B. 每台路由器上各自至少需要配置 2 条静态路由才可以实现 HostA、HostB 的互通
- C. 路由器上不配置任何路由, HostA 可以 ping 通 MSR-2 的接口 S1/0 的 IP 地址
- D. 路由器上不配置任何路由, HostA 可以ping 通 MSR-1 的接口 S1/0 的 IP 地址

Correct Answer: AD

Explanation

Explanation/Reference:

QUESTION 265

客户的网络连接形如:

HostA----GE0/0--MSR-1--S1/0------S1/0--MSR-2--GE0/0----HostB

其中路由器 MSR-1 与路由器 MSR-2 通过专线实现互连,在 MSR-1 上配置了如下三条静态路由:

ip route-static 10.1.1.0 255.255.255.0 3.3.3.1

ip route-static 10.1.1.0 255.255.255.0 3.3.3.2

ip route-static 10.1.1.0 255.255.255.0 3.3.3.3

其中 10.1.1.0/24 是主机 HostB 所在的局域网段,那么如下描述哪些是正确的?

- A. 只有第三条路由会被写入 MSR-1 的路由表
- B. 这三条路由都会被写入 MSR-1 的路由表, 形成等值路由
- C. 只有第一条路由会被写入 MSR-1 的路由表
- D. 以上都不对

Correct Answer: D

Explanation

Explanation/Reference:

无法判断下一跳是谁,如果都不是,则下一跳不可达,都不会写入路由表

QUESTION 266

客户的网络连接形如:

HostA----GE0/0--MSR-1--S1/0-----WAN----S1/0--MSR-2--GE0/0----HostB

两台 MSR 路由器通过广域网实现互连,目前物理连接已经正常。MSR-1 的接口 S1/0 地址为 3.3.3.1/30, MSR-2 的接口 S1/0 地址为 3.3.3.2/30, 现在在 MSR-1 上配置了如下 4 条静态路由:

ip route-static 192.168.1.0 255.255.255.0 3.3.3.2

ip route-static 192.168.2.0 255.255.255.0 3.3.3.2

ip route-static 192.168.3.0 255.255.255.0 3.3.3.2

ip route-static 192.168.4.0 255.255.255.0 3.3.3.2

其中 192.168.0.0/22 子网是 MSR-2 的局域网用户网段。那么如下描述哪些是错误的? (选择一项或多项)

- A. 这四条路由都会被写入 MSR-1 的路由表
- B. 只有第四条路由会被写入 MSR-1 的路由表
- C. 汶四条路由可以被一条路由 ip route-static 192.168.1.0 255.255.252.0 3.3.3.2 代替
- D. 只有第一条路由会被写入 MSR-1 的路由表

Correct Answer: BCD

Explanation

Explanation/Reference:

目的地址下一跳可达, 因此都会被写入路由表

汇总路由 192.168.000000 01 .0000 0000 4.0 网段无法代替

QUESTION 267

客户的网络连接形如: N1-----MSR-1-----MSR-2----MSR-3-----N2

在 MSR-1 上配置了如下的静态路由:

ip route-static 192.168.100.0 255.255.0.0 null0

那么关于此路由的解释正确的是____。

- A. 在该路由器上,所有目的地址属于 192.168.100.0/16 的数据包都会被丢弃 匹配了这条路由才会丢弃
- B. 在某些情况下, 该路由可以避免环路
- C. 该静态路由永远存在于路由表中
- D. 如果匹配了这条静态路由,那么数据包会被丢弃而且不向源地址返回任何信息

Correct Answer: BCD

Explanation

Explanation/Reference:

A) 匹配了目的地址属于 192.168.100.0/16 的数据包才会被丢弃,并且只要路由表中存在明细路由,就会被优先匹配,该网段的路由就不会被丢弃

C) Null 0 口永远 UP, 下一跳永远可达, 因此路由不会消失。

QUESTION 268

客户的网络连接形如: HostA------MSR-1-----MSR-2------MSR-3------HostB

已经在所有设备上完成了 IP 地址的配置。要实现 HostA 可以访问 HostB, 那么关于路由的配置,如下哪些说法是正确的?

- A. 在 MSR-1 上至少需要配置一条静态路由
- B. 在 MSR-2 上至少需要配置一条静态路由
- C. 在 MSR-2 上至少需要配置两条静态路由
- D. 在 MSR-3 上至少需要配置一条静态路由

Correct Answer: ACD

Explanation

Explanation/Reference:

QUESTION 269

要在路由器上配置一条静态路由。已知目的地址为 192.168.1.0, 掩码是 20 位, 出接口为 GigabitEthernet0/0,出接口 IP 地址为 10.10.202.1,那么下列配置中哪些是正确的?

- A. ip route-static 192.168.1.0 255.255.240.0 GigabitEthernet0/0
- B. ip route-static 192.168.1.0 255.255.248.0 10.10.202.1
- C. ip route-static 192.168.1.0 255.255.240.0 10.10.202.1
- D. ip route-static 192.168.1.0 255.255.248.0 GigabitEthernet0/0

Correct Answer: C

Explanation

Explanation/Reference:

只有在下一跳所属接口是 P2P 接口时(PPP/HDLC),才可以使用本地出接口下一跳所属接口是 broadcast 接口时(Ethernet/vlan 接口),必须制定下一跳答案似乎都不对, C)的下一条地址是本地出接口地址,A)的出接口千兆以太口,链路层协议 Ethernet,默认广播型接口

QUESTION 270

在路由器上依次配置了如下两条静态路由: ip route-static 192.168.0.0 255.255.240.0 10.10.202.1 preference 100 ip route-static 192.168.0.0 255.255.240.0 10.10.202.1 那么关于这两条路由,如下哪些说法正确?

- A. 路由表会生成两条去往 192.168.0.0 的路由, 两条路由互为备份
- B. 路由表会生成两条去往 192.168.0.0 的路由, 两条路由负载分担
- C. 路由器只会生成第2条配置的路由,其优先级为0
- D. 路由器只会生成第2条配置的路由,其优先级为60

Correct Answer: D Explanation

Explanation/Reference:

审清题意,由于这**2**条路由下一跳和目的地址都一样,因此后配置的那条会覆盖原来配置要想实现静态路由的备份,需要下一跳不同

QUESTION 271

某路由器通过 Serial 1/0 接口连接运营商网络,要在此路由器上配置默认路由从而实现访问 Internet 的目的,如下哪些配置一定是正确而且有效的? (选择一项或多项)

- A. ip route-static 0.0.0.0 0 Serial1/0
- B. ip route-static 0.0.0.0 0.0.0.0 Serial1/0
- C. ip route-static 255.255.255.255 0.0.0.0 Serial1/0
- D. 以上配置都不正确

Correct Answer: D Explanation

Explanation/Reference:

QUESTION 272

客户路由器通过 S1/0 接口连接运营商网络。S1/0 接口使用默认配置。在路由器上配置了如下路由: [MSR]ip route-static 0.0.0.0 0.0.0.0 Serial1/0

但通过 display ip routing-table 查看路由表却发现该路由在路由表里没有显示,据此推测可能的原因是

- A. 配置错误,应该退出到系统视图下配置路由才能生效
- B. 配置错误,路由的下一跳应该输入对端的 IP 地址,而不是接口名 S1/0
- C. S1/0 接口被 shutdown
- D. S1/0 接口没有 IP 地址

Correct Answer: CD Explanation

Explanation/Reference:

1) 出接口 UP 2) 目的可达。该路由才会被写入路由表 C 出接口 down D 下一条不可达

QUESTION 273

客户在路由器上要配置两条去往同一目的地址的静态路由,实现互为备份的目的。那么关于这两条路由的配置的说法正确的是____。

- A. 需要为两条路由配置不同的 Preference
- B. 需要为两条路由配置不同的 Priority
- C. 需要为两条路由配置不同的 Cost
- D. 需要为两条路由配置不同的 MED

Correct Answer: A Explanation

Explanation/Reference:

Priority 用于 ospf 配置优先级用于选举 DR BDR 越大越优先,相同则比较 router id, 默认 1 静态路由度量值都为 0 MED 用于 BGP 选路

QUESTION 274

一台空配置的 MSR 路由器通过 GE0/0 接口连接本端局域网用户,通过 S1/0 接口直接连接远端路由器。 GE0/0 接口和 S1/0 接口的 IP 地址分别为 10.1.1.1/24 和 172.16.1.1/30。为了确保与远端局域网用户的互通,在 MSR 上配置了如下路由:

[MSR] ip route 10.20.0.0 255.255.255.0 s1/0

配置后, MSR 收到发往目的地址 10.20.0.254/24 的数据包,在路由表中查找到该静态路由之后, MSR 接下来将如何处理该数据包? (选择一项或多项)

- A. 丢弃该数据包,因为路由表中未列出目的主机
- B. 丢弃该数据包,因为路由表中未列出下一跳地址
- C. 将该 IP 报文封装成符合 S1/0 接口链路的帧, 然后从 S1/0 接口转发出去
- D. 解析 S1/0 接口的 MAC 地址, 更新目的 MAC 地址, 然后将该 IP 报文重新封装
- E. 查找接口 S1/0 对应的 IP 地址, 然后将该 IP 报文从 S1/0 接口转发

Correct Answer: C Explanation

Explanation/Reference:

题中声明空配置的 MSR,说明串口使用的默认的链路层协议 PPP,因此是 P2P 链路,静态下一跳可以写出接口

数据链路层传递二层数据帧,而非三层 IP 包

QUESTION 275

客户的网络连接形如:

HostA----GE0/0--MSR-1--S1/0-----WAN-----S1/0--MSR-2--GE0/0----HostB

已知 MSR-2 的接口 GE0/0 的 IP 地址为 2.2.2.1/24,目前网络运行正常,两边的主机 HostA 和 HostB 可以互通。如今在 MSR-2 上配置如下的路由:

ip route-static 2.2.2.1 24 NULL 0

那么____。(选择一项或多项)

- A. HostA 依然可以 ping 通 2.2.2.1
- B. HostA 不能 ping 通 2.2.2.1
- C. 在 MSR-1 上依然可以 ping 通 2.2.2.1
- D. 在 MSR-1 上不能 ping 通 2.2.2.1

Correct Answer: AC

Explanation

Explanation/Reference:

GE0/0 口是直连路由,最先被匹配,所以静态路由其实没起到作用

QUESTION 276

小 L 是一名资深网络技术工程师,想要自己独立设计一个比较完美的 IGP 路由协议,希望该路由协议在 Cost

上有较大改进,那么设计该路由协议的 Cost 的时候要考虑如下哪些因素? (选择一项或多项)

- A. 链路带宽
- B. 链路 MTU
- C. 链路可信度
- D. 链路延迟

Correct Answer: ABCD

Explanation

Explanation/Reference:

通常影响路由度量值的因素:线路延迟、带宽、线路使用率、线路可信度、跳数、最大传输单元

QUESTION 277

小 L 是一名资深 IP 网络专家,立志要开发一种新的动态路由协议。而一个路由协议的工作过程应该包括如下哪些? (选择一项或多项)

- A. 查找路由表并转发数据包
- B. 交换路由信息
- C. 计算路由
- D. 维护、更新路由

Correct Answer: BCD

Explanation

Explanation/Reference:

动态路由协议基本原理:

邻居网络中所有路由器必须实现相同路由协议并已启动

邻居发现

路由交换

路由计算

路由维护

路由器是分层设计的,数据转发平面、路由控制平面。

动态路由协议完成控制平面任务:路由的发现、更新和维护。

硬件完成数据转发平面任务

QUESTION 278

如下关于路由的描述正确的是____。(选择一项或多项)

- A. 路由收敛指全网中路由器的路由表达到一致
- B. 一条完整的路由至少要包括掩码、目的地址、下一跳
- C. 直连路由的优先级不可手动修改
- D. IGP 是一种基于 D-V 算法的路由协议

Correct Answer: ABC

Explanation

Explanation/Reference:

直连路由优先级 0 不可改

IGP: 内部网关协议,包括 rip, ospf

rip 距离矢量 D-V 算法

Ospf 链路状态 SPF 算法

QUESTION 279

某路由协议是链路状态路由协议,那么此路由协议应该具有下列哪些特性? (选择一项或多项)

- A. 该路由协议关心网络中链路或接口的状态
- B. 运行该路由协议的路由器会根据收集到的链路状态信息形成一个包含各个目的网段的加权有向图
- C. 该路由协议算法可以有效防止环路

D. 该路由协议周期性发送更新消息交换路由表

Correct Answer: ABC

Explanation

Explanation/Reference:

该路由协议关心网络中链路或接口的状态,将已知的链路状态向该区域的其他路由器通告(lsa),达到网络所有路由器对网络结构相同认识

OSPF 通过传递链路状态来得到网络信息,维护一张网络有向拓扑图,利用最小生成树算法 SPF 得到路由表 OSPF 路由表更新采用触发更新,增量更新发布 LSA,网络变更时向另据发送 LSA 摘要,不变 30min 更新一次

QUESTION 280

假设一台 MSR 路由器获得两条去往目的网段 100.120.10.0/24 的路由,这两条路由的 Cost 分别是 120 和 10,优先级分别是 10 和 150。那么去往此目的地址的数据包将 。(选择一项或多项)

- A. 优先匹配 Cost 为 120 的路由
- B. 优先匹配 Cost 为 10 的路由
- C. 优先匹配优先级为 10 的路由
- D. 优先匹配优先级为 150 的路由

Correct Answer: C Explanation

Explanation/Reference:

当到同一目的地址:

下一跳和优先级都不同时,优选优先级高的加入路由表,低的作为备份的,这是路由备份;

下一跳不同而优先级相同时,**cost** 值相同则都会加入路由表,到目的地的流量将会均匀分担。这是负载分担。

Cost 值不同则优选 cost 值小的加入路由表, 作为备份

查找路由表中的路由:

掩码最长匹配

QUESTION 281

在一台 MSR 路由器的路由表中发现如下路由信息:

Destination/Mask Proto Pre Cost NextHop Interface

2.0.0.0/8 XXX 100 48 10.10.10.2 S6/1

那么关于此条路由信息的描述正确的是____。(选择一项或多项)

- A. 这条路由项中的 Proto 可能是 static
- B. 这条路有一定是通过动态路由学习到的
- C. 这条路由项中的 Proto 可能是 rip
- D. 这条路由一定不可能是一条直连路由

Correct Answer: BD

Explanation

Explanation/Reference:

静态路由不存在度量值

Rip 最大 15 跳

直连路由优先级 0 不可修改

QUESTION 282

下列关于网络中 OSPF 的区域(Area)说法正确的是? (选择一项或多项)

- A. 网络中的一台路由器可能属于多个不同的区域, 但是必须有其中一个区域是骨干区域
- B. 网络中的一台路由器可能属于多个不同的区域, 但是这些区域可能都不是骨干区域
- C. 只有在同一个区域的 OSPF 路由器才能建立邻居和邻接关系

D. 在同一个 AS 内多个 OSPF 区域的路由器共享相同的 LSDB

Correct Answer: BC

Explanation

Explanation/Reference:

QUESTION 283

对于 RIPv1 和 RIPv2 在 MSR 路由器上运行,如下哪些说法是正确的? (选择一项或多项)

- A. RIPv1 路由器上学习到的路由目的网段一定是自然分类网段
- B. RIPv2 路由器上学习到的路由目的网段一定是变长掩码的子网地址
- C. RIPv1 和 RIPv2 都可以学习到自然分类网段的路由
- D. RIPv1 和 RIPv2 都可以学习到非自然分类网段的路由,比如目的网段为 10.10.200.0/22 的路由

Correct Answer: AC

Explanation

Explanation/Reference:

QUESTION 284

对于 RIPv1 和 RIPv2 在 MSR 路由器上运行,如下哪些说法是正确的? (选择一项或多项)

- A. RIPv1 路由器发送的路由目的网段一定是自然分类网段
- B. RIPv2 路由器发送的路由目的网段一定是变长掩码的子网地址
- C. RIPv1 和 RIPv2 都可以学习到自然分类网段的路由
- D. RIPv1 和 RIPv2 都可以学习到非自然分类网段的路由,比如目的网段为 10.10.200.0/22 的路由

Correct Answer: AC

Explanation

Explanation/Reference:

QUESTION 285

路由器 MSR-1 的两个广域网接口 S1/0、S1/1 分别连接路由器 MSR-2、MSR-3。同时 MSR-1 的以太网口连接 MSR-4,所有四台路由器都运行了 RIP 协议。在 MSR-1 上的网络 192.168.0.0 发生故障后,MSR-1 立刻将此路由不可达的更新消息发送给其他三台路由器,假如不考虑抑制时间,那么____。

- A. 在MSR-1 上使用了RIP 的快速收敛机制
- B. 在 MSR-1 上使用了 RIP 的触发更新机制
- C. 如果 MSR-1 关于此路由的更新信息还没有来得及发送,就接收到相邻路由器的周期性路由更新信息,那么 MSR-1 上就会更新错误的路由信息
- D. 这种立即发送更新报文的方式单独使用并不能完全避免路由环路

Correct Answer: BCD

Explanation

Explanation/Reference:

出发更新极大加快了网络收敛速度,一定程度上避免环路,但仍有问题:

- 1) 出发更新信息在传输过程中丢失或损坏
- 2)出发更新信息还没有来得及发送,就接收到相邻路由器的周期性路由更新信息,是路由器更新了错误的路由信息

抑制时间和出发更新结合可解决该问题

QUESTION 286

路由器 MSR-1 的两个广域网接口 S1/0、S1/1 分别连接路由器 MSR-2、MSR-3。同时 MSR-1 的以太网口连

接 MSR-4, 所有四台路由器都运行了 RIP 协议并正确的完成了路由学习, 在所有路由器上都启动了 RIP 所有防止环路的特性, 此时发现在 MSR-2 上的网络 192.168.0.0 发生故障, 那么 。

- A. 在 MSR-2 上 192.168.0.0 路由项的 Cost 被设置为最大值
- B. 在四台路由器上的路由表中, 192.168.0.0 路由项的 Cost 都被设置为最大值
- C. MSR-2 上会对 192.168.0.0 路由项启动抑制时间
- D. 在 MSR-4 上也会对 192.168.0.0 路由项启动抑制时间

Correct Answer: ABCD

Explanation

Explanation/Reference:

QUESTION 287

路由器 MSR-1 的两个广域网接口 S1/0、S1/1 分别连接路由器 MSR-2、MSR-3。同时 MSR-1 的以太网口连接 MSR-4,所有四台路由器都运行了 RIP 协议并正确的完成了路由学习,在所有路由器上都启动了 RIP 所有防止环路的特性,此时发现在 MSR-2 上的网络 192.168.0.0 发生故障,那么一定时间后_____。

- A. 所有路由器上的 192.168.0.0 路由项会进入抑制状态
- B. 所有路由器上的 192.168.0.0 路由项的 Cost 都被设置为最大值
- C. 如果网络 192.168.0.0 恢复正常,那么 MSR-2 就会立即发送路由更新信息
- D. 如果网络 192.168.0.0 恢复正常,那么 MSR-2 会等到更新周期时间点向其他路由器发送更新信息

Correct Answer: ABC

Explanation

Explanation/Reference:

QUESTION 288

客户的网络由两台 MSR 路由器互连构成,两台 MSR 之间运行 RIPv1 协议,目前已经完成了动态路由学习而且学到远端的路由,如今客户将把 RIPv1 修改为 RIPv2,那么将会发生如下哪些可能的变化?

- A. 路由器上学习到的远端路由的掩码长度可能会变化
- B. 路由器发送 RIP 报文的方式可能发生变化
- C. 路由器上发送 RIP 更新报文的时间间隔会发生变化
- D. 路由器上路由表的路由项可能会发生变化

Correct Answer: ABD

Explanation

Explanation/Reference:

RIPV2 改进:

- 1) 无类别路由协议
- 2)协议报文中携带掩码信息,支持 VLSM 和 CIDR
- 3) 支持组播方式发送更新报文
- 4) 提供明文和 MD5 两种验证方式

QUESTION 289

路由器 MSR-1 分别与 MSR-2、MSR-3 互连,其中在 MSR-1 的路由表中有一条从 MSR-2 学到的去往目的网段 120.10.12.0/24 的 RIP 路由,其 Cost 为 3;此时 MSR-1 从 MSR-3 上也接受到一条依然是去往目的网段 120.10.12.0/24 的 RIP 路由,其 Cost 为 15,那么。

- A. MSR-1 的路由表不做更新,依然保留从 MSR-2 学习到的该网段路由
- B. MSR-1 的路由表会更新为从 MSR-3 上学到 Cost 为 15 的路由
- C. MSR-1 的路由表会更新,因为 Cost 为 15 的 RIP 路由意味着网络可能有环路
- D. MSR-1 的路由表不会更新,因为 Cost 为 15 的 RIP 路由意味着不可靠路由,RIP 不会将其写入自己的路

由表

Correct Answer: A Explanation

Explanation/Reference:

路由表中已有路由表项,当收到不同邻居发来的路由更新,只当度量值减少才更新

QUESTION 290

RIP 是如何通过抑制时间和路由毒化结合起来来避免路由环路的?

- A. 从某个接口学到路由后,将该路由的度量值设置为无穷大,并从原接口发回邻居路由器
- B. 从某个接口学到路由后,将该路由的设置抑制时间,并从原接口发回邻居路由器
- C. 主动对故障网段的路由设置抑制时间,将其度量值设置为无穷大,并发送给其他邻居
- D. 从某个接口学到路由后,将该路由的度量值设置为无穷大,并设置抑制时间,然后从原接口发回给邻居路由器

Correct Answer: C Explanation

Explanation/Reference:

单路径网路:

路由毒化: 主动把路由表中发生故障路由项度量值置 16 通告给邻居

水平分割: RIP 路由器从某个接口学习到的路由不会再从该接口发回给邻居

毒性逆转: RIP 路由器从某个接口学习导的路由会将度量值置 16 再从原接口发回给邻居(水平分割升级版,

但浪费带宽和开销)

多路径网络:

定义最大值:并不是解决环路,而是尽量减少环路存在时间的补救措施,最大 16 跳则不再转发

抑制时间: 当一条路由度量值变为 16 则启动抑制时间,抑制时间内只接收告知 inf 的邻居,其他不接收,时

间过后都接收

触发更新: 不必等待更新周期, 直接发送不可达消息

QUESTION 291

RIP 从某个接口学到路由后,将该路由的度量值设置为无穷大(16),并从原接口发回邻居路由器,这种避免环路的方法为_____。 路由毒化

- A. Split Horizon
- B. Poison Reverse
- C. Route Poisoning
- D. Triggered Update

Correct Answer: B Explanation

Explanation/Reference:
Split Horizon 水平分割
Poison Reverse 毒性逆转
Route Poisoning 路由毒化
Triggered Update 触发更新

QUESTION 292

客户路由器 MSR-1 通过接口 S0/0、S0/1 配置 MP 连接 MSR-2,目前 MP 已经正常运行。同时两台路由器之间通过运行 RIP 来完成两台路由器局域网段的路由学习,那么在 MSR-1 上学习到的 RIP 路由的 Metric (度量)值可能是_____。

- A. 2M
- B. 4M
- C. 2
- D. 1

Correct Answer: CD

Explanation

Explanation/Reference:

水平分割+路由毒化 默认开启。关闭水平分割,则可能是2

QUESTION 293

RIP 路由协议有一个定时器,该定时器定义了一条路由从度量值变为 16 开始,直到它从路由表里被删除所 经过的时间,那么

- A. 该定时器为 Timeout 定时器
- B. 该定时器为 Garbage-Collect 定时器
- C. 该定时器在 MSR 路由器上默认为 120s
- D. 该定时器在 MSR 路由器上默认为 180s

Correct Answer: B Explanation

Explanation/Reference:

Update 定时器:发送路由更新时间 30S

Timeout 定时器: (路由表中学到路由则开始计时)

路由老化时间 180S, 老化时间内没有收到路由更新报文, 度量值置无穷大, 从 IP 路由表撤销 (rip 路由表中 存在)

Garbage-collect 定时器:

度量值置 16 直到彻底删除路由时间 120S, Garbage-collect 超时仍未更新则彻底删除

QUESTION 294

两台 MSR 路由器通过广域网连接并通过 RIPv2 动态完成了远端路由学习,此时路由表已经达到稳定状态, 那么此刻起在45秒之内,两台路由器广域网之间一定会有如下哪些报文传递?

- A. RIP Request message
- B. RIP Response message
- C. RIP Hello time message
- D. RIP Update message

Correct Answer: B Explanation

Explanation/Reference:

路由器周期性广播发送 Response 报文来维护 Rip 路由表路由更新,周期 30S,即为 update 定时器时间

QUESTION 295

两台 MSR 路由器 MSR-1、MSR-2 通过广域网连接并通过 RIPv2 动态完成了远端路由学习。稳定了 2 分钟 后,在 MSR-1 上接收到来自 MSR-2 的 RIP 更新报文,其中含有 Cost 为 14 的路由,那么_

- A. 如果 MSR-1 的路由表原本没有该路由,那么该路由一定会被加入 MSR-1 路由表
- B. 如果 MSR-1 的路由表原本有该路由,而且其 Cost 小于 14,那么在 MSR-1 上该路由项不会更新
- C. 如果 MSR-1 的路由表原本有该路由,仅当其 Cost 大于 14 时,该路由项才会被更新
- D. 如果 MSR-1 的路由表中原本有从该邻居收到的相同路由,且其 Cost 小于 14,该路由也会被更新

Correct Answer: AD

Explanation

Explanation/Reference:

Rip 路由表更新:

不存在的路由项,度量值<16,则路由表中添加该项已有路由项,从同一邻居学到,则必然更新

已有路由项,从不同邻居学到,则度量值减少才更新

B、C 未声明, 由 D 的表述可知 MSR-1 路由表中原本有的路由不是从 MSR-2 学到的

QUESTION 296

将一台空配置的 MSR 路由器分别通过 GigabitEthernet0/0、GigabitEthernet0/1、Serial1/0 接入网络,分别配置这三个接口的 IP 地址为 10.1.1.1/30、12.12.12.224/30、192.168.10.1/24。配置后,这三个接口可以与其直连的对端设备接口互通,然后在该路由器上又增加如下配置:

[MSR]rip

[MSR-rip-1]network 10.0.0.0 [MSR-rip-1]network 192.168.10.0

那么关于此命令的作用以及意图描述正确的是_____

- A. 该路由器上的 Serial1/0 和 GigabitEthernet0/0 接口能收发 RIP 报文
- B. 该路由器上的 GigabitEthernet0/1 接口不发送 RIP 报文
- C. 如果该路由器的 Serial1/0 接口在 90 秒内没有收到 RIP 的 Hello 报文,那么就将该 RIP 邻居状态设置为初始化状态
- D. RIP 也会将直连网段 192.168.10.0/24 的路由信息通过该路由器的 GigabitEthernet0/0 接口发布

Correct Answer: ABD

Explanation

Explanation/Reference:

只使能了接口 G0/0 和接口 S1/0

QUESTION 297

路由器 MSR-1 的两个广域网接口 S1/0、S1/1 分别连接路由器 MSR-2、MSR-3。同时 MSR-1 的以太网口连接 MSR-4,所有四台路由器都运行了 RIP 协议。在 MSR-1 的路由表中有一条来自 MSR-2 的被启动了抑制时间的路由 R,那么_____。

- A. 在 MSR-1、MSR-2 的路由表中路由 R 的 Cost 值被设置为 16
- B. 在抑制时间结束前,如果 MSR-1 接收到来自 MSR-3 的路由 R 的更新,而且其 Cost 小于 16,那么 MSR-1 上就会解除对路由 R 的抑制并更新路由表
- C. 在抑制时间结束前,如果 MSR-1 接收到来自 MSR-2 的路由 R 的更新,而且其 Cost 小于 16,那么 MSR-1 上就会解除对路由 R 的抑制并更新路由表
- D. 在抑制时间结束后,如果 MSR-1 接收到来自 MSR-4 的路由 R 的更新,那么 MSR-1 上就会更新路由表中路由 R 的信息

Correct Answer: ACD

Explanation

Explanation/Reference:

QUESTION 298

三台 MSR 路由器通过图示的方式连接, 192.168.1.0/30 为 RTA 和 RTB 之间的互连网段, 10.10.10.0/30 是 RTB 和 RTC 之间的互连网段。在三台路由器的互连接口上都运行了 OSPF 而且都属于 Area 0, 同时在 Area 0 里都只发布了三台路由器互连接口网段。假设 OSPF 运行正常, OSPF 邻居建立成功, 那么_____。

- A. 如果三台路由器之间的链路都是以太网,那么网络中至少有两个 DR
- B. 如果三台路由器之间的链路都是以太网,那么网络中可能只有一个 DR
- C. 三台路由器的 OSPF 邻居状态稳定后,三台路由器有同样的 LSDB
- D. RTB 的路由表中没有 OSPF 路由

Correct Answer: ACD

Explanation

Explanation/Reference:

QUESTION 299

三台 MSR 路由器通过图示的方式连接。三台路由器都属于 OSPF Area 0,同时在 Area 0 里通过 network 命令发布了三台路由器的互连网段。在 RTC 上,网段 NET-1 也通过 network 命令在 OSPF Area 0 中发布了。三台路由器之间的 OSPF Cost 如图所示。目前三台路由器的邻居状态稳定,那么_____。

- A. 在RTA 的路由表只有一条到达 NET-1 网段的 OSPF 路由
- B. 在RTB 的路由表有两条去往目的网段 NET-1 的 OSPF 路由
- C. 对 RTB 而言, 到达目的网段 NET-1 会优先选择 RTB--->RTC 路径
- D. 网络状态稳定后,在接下来的 45 分钟之内,网络上 OSPF 邻居之间只有 Hello 报文传递

Correct Answer: AB Explanation

Explanation/Reference:

Ospf 采用增量更新机制。网络变更时立即向另据发送 LSA 摘要信息 网络未变化,每隔 30min 向邻居发送 LSA 摘要 邻居收到摘要,对比自身链路状态信息,发现对方具备自己没有的链路信息 则发出请求,否则不做动作

QUESTION 300

三台 MSR 路由器通过图示的方式连接。三台路由器都属于 OSPF Area 0,同时在 Area 0 里通过 network 命令 发布了三台路由器的互连网段。在 RTC 上,网段 NET-1 也通过 network 命令在 OSPF Area 0 中发布了。三台路由器之间的 OSPF Cost 如图所示。目前三台路由器的邻居状态稳定,那么_____。

A. 在RTA 的路由表只有一条到达 NET-1 网段的 OSPF 路由

- B. 在RTB 的路由表有两条去往目的网段 NET-1 的 OSPF 路由
- C. 对 RTB 而言, 到达目的网段 NET-1 会优先选择 RTB--->RTA--->RTC 路径
- D. 网络状态稳定后,在接下来的 45 分钟之内,网络上 OSPF 邻居之间只有 Hello 报文传递

Correct Answer: AC

Explanation

Explanation/Reference:

QUESTION 301

一台空配置的 MSR 路由器通过多个接口接入同一个 OSPF 网络,所有这些接口都启动了 OSPF,配置完成后,该路由器已经成功学习到了网络中的 OSPF 路由。如今在该路由器的一个 OSPF 接口上运行如下命令: [MSR-GigabitEthernet0/0]ospf cost 256

在保持其他配置不变的情况下,关于该配置的理解正确的是____。(选择一项或多项)

- A. 该配置可能影响数据包的转发路径
- B. 该配置不会影响数据包的转发路径
- C. 该配置命令无效, 因为命令输入错误
- D. 该配置命令无效,因为 Cost 的最大值为 255

Correct Answer: A Explanation

Explanation/Reference:

QUESTION 302

图示 4 种划分 OSPF 区域的方式,哪种是正确的? (选择一项或多项)

- A. 图 1
- B. 图 2
- C. 图 3
- D. 图 4

Correct Answer: ABCD

Explanation

Explanation/Reference:

不一定非要有骨干区域,但是多区域之间互通必须通过骨干区域

QUESTION 303

如果要达到全网互通,图示 4 种划分 OSPF 区域的方式,哪种是合理的? (选择一项或多项)

- A. 图 1
- B. 图 2
- C. 图 3
- D. 图 4

Correct Answer: ABCD

Explanation

Explanation/Reference:

只划分为非 0 区域也可以使用,但是非 0 区域之间需要使用 area0 来连接(虚连接的话也得有 area0)。

QUESTION 304

两台 MSR 路由器分别通过以太网、串行接口相连,如图所示。串行链路上运行 PPP 链路层协议,两台路由器上运行了 OSPF,而且都属于 Area 0,同时在 Area 0 中通过 network 命令发布了每台路由器上的三个网段(GE 接口网段、串行接口网段、LAN 网段);目前两端 OSPF 邻居状态稳定,那么_____。

- A. 如果没有修改 OSPF Cost 值,那么 RTA 到达 RTB 的 LAN 网段将优选 GE 链路
- B. 只要正确修改两台路由器 GE 接口和串行接口的 OSPF Cost 值,那么在 RTA、RTB 上将能形成到达对方 LAN 的两条等值路由
- C. 在GE 链路上, RTA、RTB 依然会进行 DR、BDR 的选举
- D. 以上说法均正确

Correct Answer: ABCD

Explanation

Explanation/Reference:

G0/1 开销 1 , S1/0 开销 1562 , 优选开销小的

QUESTION 305

如图所示,四台 MSR 路由器分别通过以太网、串行接口相连,同时网络中运行 OSPF,区域划分如图。已知所有互连链路的 OSPF Cost 值都是一样的,除了 RTB 与 RTC 之间的连接链路是 PPP 之外,其他互连链路都是以太网。那么_____。

- A. 网络中至少有三个 DR
- B. 网络中至少有三个 BDR
- C. 如果 RTD 与 RTC 之间的链路出现故障,那么 RTD、RTC 会立即向 RTA、RTB 发送 LSA 摘要信息,而不会等待固定的 LSA 更新周期
- D. 状态稳定后,四台路由器有同样的LSDB

Correct Answer: ABC

Explanation

Explanation/Reference:

相同区域内维护同一LSDB

Ospf 采用增量更新机制。网络变更时立即向另据发送 LSA 摘要信息 网络未变化,每隔 30min 向邻居发送 LSA 摘要

邻居收到摘要,对比自身链路状态信息,发现对方具备自己没有的链路信息 则发出请求,否则不做动作

QUESTION 306

如图所示,四台 MSR 路由器分别通过以太网、串行接口相连,同时网络中运行 OSPF,区域划分如图。已知所有互连链路的 OSPF Cost 值都是一样的,除了 RTB 与 RTC 之间的连接链路是 PPP 之外,其他互连链路都是以太网。那么_____。

- A. 如果 RTD 与 RTC 之间的链路出现故障,那么 RTD、RTC 会立即向 RTA、RTB 发送 LSA 摘要信息,而不会等待固定的 LSA 更新周期
- B. 状态稳定后,四台路由器有同样的 LSDB
- C. 网络中至少有三个 DR
- D. 网络中至少有三个 BDR

Correct Answer: ACD

Explanation

Explanation/Reference:

QUESTION 307

如图,三台 MSR 路由器之间分别运行 OSPF 以及 RIP。如今 RTA 与 RTB 之间的 OSPF 邻居状态稳定,RTB 与 RTC 之间的 RIPv2 也工作正常,那么此刻起 40 分钟之内,____。

- A. 网络中一定有组播地址为 224.0.0.13 的报文
- B. 网络中一定有组播地址为 224.0.0.5 的报文
- C. RTB 向 RTC 发送了至少 10 次自己的全部路由表信息
- D. RTB 向 RTA 发送了至少 1 次自己的 LSA 摘要信息

Correct Answer: BD

Explanation

Explanation/Reference:

网络中一定有组播地址为 224.0.0.13 的报文 224.0.0.13 vrrp 组播地址 224.0.09 rip 组播地址 RTB 向 RTA 发送了至少 1 次自己的 LSA 摘要信息网络未变化,每隔 30min 向邻居发送 LSA 摘要 Rip 30S 更新 ,既然 C 答案是错的,只能理解为错在发送"全部路由表信息表",RTB 上含有 3 个路由表:全局路由表,OSPF 路由表,RIP 路由表,RTB 只会向 RTC 发送自己的 RIP 路由表,其他的不会发送,应表述为,发送了至少 10 次自己整张 rip 路由表,个人认为没必要咬文嚼字

QUESTION 308

在 MSR 路由器上要查看路由表的综合信息,如总路由数量、RIP 路由数量、OSPF 路由数量、激活路由数量等,那么可以使用如下哪些命令?

- A. <MSR>display ip routing-table statistics
- B. [MSR-GigabitEthernet0/0]display ip routing-table statistics
- C. [MSR] display ip routing-table
- D. [MSR] display ip routing-table accounting

Correct Answer: AB Explanation

Explanation/Reference:

QUESTION 309

在路由器的路由表中有一条目的网段为 10.168.100.0/24 的路由,其 Cost 为 15, Preference 为 100,那么下列关于该路由的说法哪些是正确的?

- A. 这条路由有可能是一条手工配置的静态路由
- B. 这条路由有可能是通过 RIP 动态发现的路由
- C. 如果这是一条 RIP 路由,那么该路由是一条无效路由
- D. 这条路由一定是通过动态路由学习到的

Correct Answer: BD Explanation

Explanation/Reference:

QUESTION 310

在路由器的路由表中有一条目的网段为 10.168.100.0/24 的路由,其 Cost 为 20, Preference 为 255,那么关于该路由的说法,如下哪些是正确的?

- A. 这条路由一定是通过动态路由学习到的
- B. 这条路由的优先级是最高值,表示任何来自不可信源端的路由
- C. Cost 20 表示该路由的跳数是 20
- D. 这是一条有效的动态路由

Correct Answer: AD Explanation

Explanation/Reference:

- A. 这条路由一定是通过动态路由学习到的 静态路由不存在 cost
- B. 这条路由的优先级是最高值,表示任何来自不可信源端的路由 bgp 优先级,最低优先级
- C. Cost 20 表示该路由的跳数是 20 只在 rip 中表示条数,因为 rip 路由中链路开销都为 1

QUESTION 311

在路由器上执行 display ip routing-table,那么路由表中显示的下一跳接口有可能是 。。。

A. InLoop0

- B. Null0
- C. Serial 6/0/1
- D. Vlan500

Correct Answer: ABC

Explanation

Explanation/Reference:

QUESTION 312

在 MSR 路由器上看到路由表里有如下显示:

Destination/Mask Proto Pre Cost NextHop Interface Direct 0 127.0.0.0/8 0 127.0.0.1 InLoop0 Direct 0 127.0.0.1/32 0 127.0.0.1 InLoop0 192.168.96.0/19 Direct 0 0 192.168.120.153 S6/0 那么关于目的地址为 192.168.96.0/19 的路由的正确描述是

- A. 这是一条直连路由, 度量值为 0
- B. 这是一条手工配置的静态路由, 度量值为 0
- C. 该路由器的下一跳也即对端设备的 IP 地址为 192.168.120.153
- D. 在该路由器上 S6/0 的接口 IP 地址为 192.168.120.153

Correct Answer: AD Explanation

Explanation/Reference:

目的地址: 出接口 下一跳

直连网段 物理接口 本地设备接口地址 直连地址 物理接口 对端设备接口地址 直连地址 Inloop 口 本地还回测试地址

QUESTION 313

在 MSR 路由器上看到路由表里有如下显示:

Destination/Mask Proto Pre Cost Interface NextHop 127.0.0.0/8 Direct 0 0 127.0.0.1 InLoop0 127.0.0.1/32 Direct 0 0 127.0.0.1 InLoop0 192.168.96.0/24 Static 60 0 192.168.120.153 S6/0 那么关于目的地址为 192.168.96.0/24 的路由的正确描述是

- A. 这是一条直连路由, 度量值为 0
- B. 这是一条手工配置的静态路由, 度量值为 0
- C. 该路由器的下一跳也即对端设备的 IP 地址为 192.168.120.153
- D. 在该路由器上 S6/0 的接口 IP 地址为 192.168.120.153

Correct Answer: BC

Explanation

Explanation/Reference:

静态路由学到的网段只可能是下一台路由器对外的直连网段,故下一跳是对端设备入接口地址

QUESTION 314

在 MSR 路由器上使用_____命令配置静态路由。

- A. ip route-static
- B. route-static
- C. ip static-route
- D. static-route

Correct Answer: A Explanation

Explanation/Reference:

QUESTION 315

在一台 MSR 路由器上执行了如下命令: [MSR]display ip routing-table 100.1.1.1 那么对此命令的描述正确的是____。

- A. 可以查看匹配目标地址为 100.1.1.1 的路由项
- B. 可以查看匹配下一跳地址为 100.1.1.1 的路由项
- C. 有可能此命令的输出结果是两条默认路由
- D. 此命令不正确, 因为没有包含掩码信息

Correct Answer: AC

Explanation

Explanation/Reference:

查找匹配 100.1.1.1 路由的路由表项,只要目标地址是这个就可以,所以默认路由是可能的

至于有两条,可以使去往 100.1.1.1 的两条等价路由,不同下一跳

不能解释为:静态默认路由,协议默认路由。两种路由还是会根据优先级优选一条

QUESTION 316

在一台运行 RIP 的 MSR 路由器上看到如下信息:

<MSR>display rip

Public VPN-instance name:

RIP process: 1
RIP version: 2
Preference: 100
Checkzero: Enabled
Default-cost: 0
Summary: Enabled
Hostroutes: Enabled

Maximum number of balanced paths: 8

那么从显示信息可以分析出____。

- A. 该路由器运行的是 RIPv2
- B. RIP 的自动聚合功能是开启的
- C. 本路由器发送或者接收的 RIP 路由的 Cost 都是 0
- D. 支持8条路由实现负载分担

Correct Answer: ABD

Explanation

Explanation/Reference:

接收到的 rip 路由 cost 都是 0,发送的 rip 路由 cost 要看下一跳接口

QUESTION 317

两台空配置的 MSR 路由器 MSR-1、MSR-2 通过各自的 S1/0 接口背靠背互连,各自的 GE0/0 接口分别连接客户端主机 HostA 和 HostB:

HostA----GE0/0--MSR-1--S1/0------S1/0--MSR-2--GE0/0----HostB

两台 MSR 路由器的版本统一为 Version 5.20, Release 1618P11, 在两台路由器上做了如下的配置: MSR-1 上的配置:

[MSR-1]interface GigabitEthernet 0/0

[MSR-1-GigabitEthernet0/0] ip address 192.168.1.1 255.255.255.0

[MSR-1]interface Serial 1/0

[MSR-1-Serial1/0] link-protocol ppp

[MSR-1-Serial1/0]ip address 3.3.3.1 255.255.255.252

[MSR-1]rip

[MSR-1-rip-1]network 192.168.1.0

[MSR-1-rip-1]network 3.3.3.1

MSR-2 上的配置:

[MSR-2]interface GigabitEthernet 0/0

[MSR-2-GigabitEthernet0/0] ip address 10.10.10.1 255.255.255.0

[MSR-2]interface Serial 1/0

[MSR-2-Serial1/0] link-protocol ppp

[MSR-2-Serial1/0]ip address 3.3.3.2 255.255.255.252

[MSR-2]rip

[MSR-2-rip-1]network 10.10.10.0

[MSR-2-rip-1] network 3.3.3.1

根据以上配置后,两台路由器之间的广域网接口可以互通,两台主机 HostA、HostB 都可以 ping 通各自的网关 GE0/0 的地址,那么下列哪些说法是正确的?

- A. 两台路由器之间可以通过 RIP 学习到彼此的 GE0/0 网段的路由
- B. 两台路由器之间不能通过 RIP 学习到彼此的 GE0/0 网段的路由
- C. 两台路由器之间运行的是 RIPv1
- D. 两台路由器之间运行的是 RIPv2

Correct Answer: AC

Explanation

Explanation/Reference:

QUESTION 318

两台空配置的 MSR 路由器 MSR-1、MSR-2 通过各自的 S1/0 接口背靠背互连,各自的 GigabitEthernet0/0 接口分别连接客户端主机 HostA 和 HostB:

HostA----GE0/0--MSR-1--S1/0------S1/0--MSR-2--GE0/0----HostB

然后在两台路由器上分别做了如下的配置:

MSR-1 上的配置:

[MSR-1]interface GigabitEthernet 0/0

[MSR-1-GigabitEthernet0/0]ip add 192.168.1.1 24

[MSR-1]interface Serial 1/0

[MSR-1-Serial1/0]ip address 30.3.3.1 30

[MSR-1]rip

[MSR-1-rip-1]network 0.0.0.0

MSR-2 上的配置:

[MSR-2]interface GigabitEthernet 0/0

[MSR-2-GigabitEthernet0/0] ip address 10.10.10.1 24

[MSR-2]interface Serial 1/0

[MSR-2-Serial1/0]ip address 30.3.3.2 30

[MSR-2]rip

[MSR-2-rip-1]network 10.10.10.0

[MSR-2-rip-1]network 30.3.3.1

根据以上配置后,两台路由器之间的广域网接口可以互通,网络中其他物理链路良好,两台主机 HostA、HostB 都可以 ping 通各自的网关 GigabitEthernet0/0 的地址,那么下列说法正确的是_____。

- A. MSR-1 上的命令 network 0.0.0.0 配置错误,应该配置具体网段
- B. MSR-2 的路由表中没有 RIP 路由
- C. MSR-2 上的命令 network 30.3.3.1 配置错误,应该为 network 30.3.3.2
- D. 以上三项都错,两路由器可以学习到 RIP 路由

Correct Answer: D

Explanation

Explanation/Reference:

QUESTION 319

在一台 MSR 30 路由器的路由表中发现其中去往目的网段 61.232.200.253/22 的路由的 Cost 值为 16,那么关

于此路由条目的描述正确的是____。(选择一项或多项)

- A. 如果该路由是通过 RIP 协议学习到的,那么该路由可能处于抑制状态
- B. 该路由可能是一条静态路由
- C. 如果该路由是通过 RIP 协议学习到的,那么有可能网络 61.232.200.253/22 发生了故障
- D. 该路由只能是一条动态路由

Correct Answer: ACD

Explanation

Explanation/Reference:

QUESTION 320

MSR 路由器通过 RIPv2 和外界交换路由信息,在路由表里有 10.1.1.0/24、10.1.2.0/24、10.1.3.0/24 三条路由,那么该路由器上增加如下 RIP 的配置:

[MSR-rip-1] summary

那么该路由器将会对外发送如下哪个网段的路由?

- A. 10.1.0.0/16
- B. 10.1.2.0/22
- C. 10.0.0.0/8
- D. 10.1.0.0/22

Correct Answer: C Explanation

Explanation/Reference:

QUESTION 321

两台路由器 MSR-1、MSR-2 通过 RIP 完成路由的动态学习,在 MSR-1 上看到如下 debug 信息:

*Nov 26 02:20:25:353 2008 H3C RM/6/RMDEBUG: RIP 1 : Sending v2 request on Serial 0/0 from 3.3.3.3 *Nov 26 02:20:25:353 2008 H3C RM/6/RMDEBUG: RIP 1 :Sending request on interface Serial0/0 from 3.3.3.3 to 224.0.0.9

*Nov 26 02:20:25:400 2008 H3C RM/6/RMDEBUG: RIP 1 : Receiving v2 request on Serial0/0 from 3.3.3. 1

根据 debug 信息可以推测____。(选择一项或多项)

- A. 此时在 MSR-1 路由表中还没有来自 MSR-2 的 RIP 路由信息
- B. 有可能此时两台路由器的 RIP 刚刚启动
- C. 此时在 MSR-1 路由表中已经有来自 MSR-2 的 RIP 路由信息
- D. 两台路由器之间的 RIP 版本不一致

Correct Answer: AB

Explanation

Explanation/Reference:

QUESTION 322

一台 MSR 路由器要通过 RIP 来学习路由信息,在路由器上做了如下的配置: rip 1

network 0.0.0.0

那么关于此配置的正确解释是____。

- A. RIP 将发布 0.0.0.0 的默认路由
- B. 本路由器上所有接口使能 RIP
- C. 当于没有在本路由器上使能 RIP

D. 此配置是错误配置

Correct Answer: B Explanation

Explanation/Reference:

QUESTION 323

两台空配置的路由器 MSR-1、MSR-2 通过如下方式连接:

HostA----GE0/0--MSR-1--S1/0-----S1/0--MSR-2--GE0/0----HostB

两台路由器的广域网互连网段为 192.168.10.0/30, MSR-1 的 GE0/0 地址为 172.16.1.1/24。

配置后 HostA 可以 ping 通 172.16.1.1,两台路由器之间广域网也是互通的。如今在 MSR-1 上增加如下配置:

[MSR-1]rip

[MSR-1-rip-1]network 192.168.10.1

[MSR-1-rip-1]network 172.16.1.1

并且在 MSR-2 上启动了 RIP 进程。如今要在 MSR-2 上做如下哪一项配置,才能确保 MSR-2 学习到 RIP 路由? (选择一项或多项)

- A. [MSR-2-rip-1]network 192.168.10.1
- B. [MSR-2-rip-1]network 0.0.0.0
- C. [MSR-2-rip-1]network *.*.*, 其中*.*.*为任意一个 IP 地址
- D. [MSR-2-rip-1]network *.*.*, 其中*.*.*为 MSR-2 上任意一个 IP 地址

Correct Answer: AB

Explanation

Explanation/Reference:

D) 必须是 MSR-2 上 S1/0 接口 或是包括该接口的地址

QUESTION 324

两台路由器 MSR-1、MSR-2 之间的广域网链路采用 PPP 协议,两端通过配置 RIP 互相学习到彼此的路由,目前路由学习正常,现在在 MSR-1 的 RIP 配置中增加如下命令:

[MSR-1-rip-1] silent-interface all 那么_____。(选择一项或多项)

- A. 此命令使 MSR-1 的所有接口只接收路由更新而不发送路由更新
- B. 此命令使 MSR-1 的所有接口只发送路由更新而不接受路由更新
- C. 配置此命令后, MSR-2 路由表中的 RIP 路由立即消失
- D. 配置此命令后, MSR-1 路由表中的 RIP 路由立即消失

Correct Answer: A

Explanation

Explanation/Reference:

MSR-2 路由表中的 RIP 路由不会立即消失, MSR-2 30S 收不到更新报文, 180S 撤销, 再 120S 彻底删除

QUESTION 325

客户网络中仅有的两台路由器 MSR-1、MSR-2 之间的广域网链路采用 PPP 协议,两端通过配置 RIP 互相学习到彼此的路由,目前路由学习正常,现在在 MSR-1 的 RIP 配置中增加如下命令:

[MSR-1-rip-1] silent-interface all

那么____。(选择一项或多项)

- A. 此命令使 MSR-1 的所有接口只接收路由更新而不发送路由更新
- B. 此命令使 MSR-1 的所有接口只发送路由更新而不接受路由更新
- C. 配置此命令 10 分钟后, MSR-2 路由表中的 RIP 路由消失
- D. 配置此命令 10 分钟后, MSR-1 路由表中的 RIP 路由消失

Correct Answer: AC

Explanation

Explanation/Reference:

QUESTION 326

两台路由器 MSR-1、MSR-2 之间的广域网链路采用 PPP 协议,两路由器上配置了 RIP 以互相发布路由信息。目前在 MSR-1 上能看到 MSR-2 发布的 RIP 路由,但是在 MSR-2 的路由表里看不到任何 RIP 路由,则可能的原因是_____。(选择一项或多项)

- A. MSR-1 只在广域网接口启动了 RIP,没有在其他接口启动 RIP
- B. 两路由器的 RIP 版本不一致
- C. MSR-1 的 RIP 配置了 silent-interface all
- D. MSR-2 的 RIP 配置了 silent-interface all

Correct Answer: ABC

Explanation

Explanation/Reference:

V1 可以收到 V2 路由, V2 收不到 V1 的, 低版本可以收到高版本的

QUESTION 327

两台路由器 MSR-1、MSR-2 通过 S0/0 接口实现互连,两台路由器之间通过运行 RIP 协议来相互学习局域网段的路由。在 MSR-1 上看到如下配置命令:

[MSR-1-Serial0/0] rip authentication-mode md5 rfc2453 H3C

那么关于这条命令的正确解释为____。(选择一项或多项)

- A. 配置 RIP 使用 MD5 明文验证
- B. 配置 RIP 使用 MD5 密文验证
- C. 指定 MD5 验证使用 RFC2453 规定的报文格式
- D. 指定 MD5 验证使用 H3C 私有扩展协议报文格式

Correct Answer: BC

Explanation

Explanation/Reference:

指定 MD5 验证使用 RFC2453 规定的报文格式 RFC 还有 2028 指定 MD5 验证使用 H3C 私有扩展协议报文格式 H3C 是密码

H3C-Serial0/2/0]rip authentication-mode ?

md5 MD5 authentication

simple Simple text authentication

QUESTION 328

某大型金融网络中需要使用多种广域网协议和路由协议。为增强网络安全性,希望选择的协议具备验证、加密、接入控制等安全措施。那么在选择广域网协议和路由协议时,下列哪些协议可能满足要求? (选择一项或多项)

- A. PPP
- B. HDLC
- C. RIPv2
- D. RIPv1

Correct Answer: AC

Explanation

Explanation/Reference:

PPP 支持同、异步工作方式 , 支持验证, 地址协商 优于 HDLC 只支持同步, 不支持验证, 不支持地址协商

QUESTION 329

在运行了 RIP 的 MSR 路由器上看到如下路由信息:

<MSR>display ip routing-table 6.6.6.6

Routing Table : Public Summary Count : 2

Destination/Mask Proto Pre Cost NextHop Interface 6.0.0.0/8 RIP 100 1 100.1.1.1 GE0/0 6.6.6.0/24 Static 60 0 100.1.1.1 GE0/0 此时路由器收到一个目的地址为 6.6.6.6 的数据包,那么

- A. 该数据包将优先匹配路由表中的 RIP 路由, 因为其掩码最短
- B. 该数据包将优先匹配路由表中静态路由,因为其优先级高
- C. 该数据包将优先匹配路由表中的静态路由,因为其度量值最小
- D. 该数据包将优先匹配路由表中的静态路由,因为其掩码最长

Correct Answer: D Explanation

Explanation/Reference:

QUESTION 330

某网络管理员在一台路由器上配置了 RIP:

rip 1

version 2

network 100.0.0.0

network 8.0.0.0

但是发现无法学习到对端的 RIP 路由,该管理员需要在路由器打开 RIP 调试信息,如下哪些配置可以在该路由器上查看 RIP 调试信息?

- A. <MSR>debugging rip packet
- B. [MSR] debugging rip packet
- C. <MSR>debugging rip 1 packet
- D. <MSR>debugging rip 2

Correct Answer: C Explanation

Explanation/Reference:

QUESTION 331

两台 MSR 路由器之间通过各自的广域网接口 S1/0 互连,同时在两台路由器上运行 RIPv2 来动态完成彼此远端的路由,如今出于安全考虑,要在 RIP 上加入验证,那么如下哪些是正确的 RIP 配置?

- A. [MSR-serial1/0]rip authentication-mode simple 123
- B. [MSR]rip authentication-mode simple 123
- C. [MSR-rip-1] rip authentication-mode simple 123
- D. [MSR-rip-2]rip authentication-mode simple 123

Correct Answer: A Explanation

Explanation/Reference:

QUESTION 332

两台 MSR 路由器通过 Serial1/0 背靠背直连,其中在一台 MSR 路由器上看到如下配置:★

interface Serial1/0 ip address 8.8.8.2 255.255.255.0 interface GigabitEthernet0/0 port link-mode route ip address 100.1.1.2 255.255.255.0 # rip 1 version 2 network 0.0.0.0 ip route-static 0.0.0.0 0.0.0.0 8.8.8.1

假设两台路由器都正确配置了 RIP, 且所有接口都 UP, 那么关于此配置如下哪些分析是正确的?

- A. 将从出接口 Serial1/0 发送一条 RIP 默认路由到对端邻居
- B. 对端邻居路由器只能收到一条 RIP 路由
- C. 对端邻居路由器并不能从此路由器学习到 RIP 产生的默认路由
- D. RIP 路由的更新报文只能从该路由器的 Serial1/0 接口发送或者接收

Correct Answer: BC Explanation

Explanation/Reference:

network 0.0.0.0 就是"所谓的 rip 默认路由"不会产生默认路由,只是使能所有接口收发 rip 更新 Network 0.0.0.0 使能所有接口, 所有接口都可以收发 rip 更新报文包括 GE0/0

QUESTION 333

两台 MSR 路由器通过各自的 GigabitEthernet 0/0 接口直连,其中在一台 MSR 路由器上看到如下配置: interface LoopBack2 ip address 8.8.8.8 255.255.255.255 interface GigabitEthernet0/0 port link-mode route ip address 100.1.1.2 255.255.255.0

rip 1 undo summary version 2 network 100.0.0.0 network 8.0.0.0

假设两端路由器都正确配置了 RIP, 那么根据此配置, 如下哪些分析是正确的?

- A. 对端路由器将学习到 8.8.8.8/32 的 RIP 路由
- B. 对端路由器将学习到 8.0.0.0/8 的 RIP 路由
- C. 关闭聚合意味着将自然网段内的不同子网以自然掩码的路由发送
- D. 关闭聚合意味着自然网络的子网掩码信息能够通过 RIP 传递

Correct Answer: AD Explanation

Explanation/Reference:

QUESTION 334

两台空配置的 MSR 路由器通过各自的广域网 Serial1/0 接口背靠背直连, 其互连网段为 192.0.0.0/24。同时 两台路由器的通过各自的 GigabitEthernet0/0 连接各自的局域网段用户:

HostA----GE0/0--MSR-1--S1/0------S1/0--MSR-2--GE0/0----HostB 在两台路由器上配置 RIPv1。现在两台 路由器上都学习到了对端局域网段的 RIP 路由。那么如下哪些说法是正确的?

A. 如果其中一台路由器的局域网段为 10.0.0.0/24, 那么在另外一台路由器的路由表将学习到 10.0.0.0/8 的

路由

- B. 两台路由器之间交互 RIP 报文的方式是广播方式
- C. 两台路由器之间的 RIP 报文依然是基于 UDP 传输
- D. 可以在两台路由器的广域网接口上配置 RIP RADIUS 验证增强网络安全性

Correct Answer: ABC

Explanation

Explanation/Reference:

Rip 基于 UDP 是应用层协议 端口号 520 BGP 基于 TCP 是应用层协议 179 OSPF 基于 IP 是传输层协议 89

QUESTION 335

两台空配置的 MSR 路由器通过各自的广域网 Serial 1/0 接口背靠背直连,其互连网段为 192.0.0.0/24。同时两台路由器的通过各自的 Gigabit Ethernet 0/0 连接各自的局域网段用户:

HostA----GE0/0--MSR-1--S1/0------S1/0--MSR-2--GE0/0----HostB 在两台路由器上配置 RIPv1,现在两台路由器上都学习到了对端局域网段的 RIP 路由。那么如下哪些说法是正确的?

- A. 如果其中一台路由器的局域网段为 10.0.0.0/24, 那么在另外一台路由器的路由表将学习到 10.0.0.0/8 的路由
- B. 两台路由器之间交互 RIP 报文的方式是组播方式
- C. 两台路由器之间的 RIP 报文基于 TCP 传输
- D. 可以在两台路由器的广域网接口上配置 CHAP 验证增强网络安全性

Correct Answer: AD

Explanation

Explanation/Reference:

QUESTION 336

两台路由器 MSR-1、MSR-2 通过 GigabitEthernet0/0 互连,同时两台路由器之间运行了 RIPv2,现在在其中一台路由器 MSR-1 的 GigabitEthernet0/0 接口想要只发送 RIP 报文而不接受 RIP 协议报文,那么如下哪些实现方式是可行的?

- A. 在 MSR-1 的 GigabitEthernet0/0 接口配置 silent-interface GigabitEthernet 0/0
- B. 在MSR-2 的 GigabitEthernet0/0 接口配置 silent-interface GigabitEthernet 0/0
- C. 在 MSR-1 上配置 ACL 并应用在其 GigabitEthernet0/0 接口 inbound 方向
- D. 在 MSR-2 上配置 ACL 并应用在其 GigabitEthernet0/0 接口 inbound 方向

Correct Answer: BC

Explanation

Explanation/Reference:

QUESTION 337

两台路由器 MSR-1、MSR-2 通过 GigabitEthernet0/0 互连,同时两台路由器之间运行了 RIPv2,现在在其中一台路由器 MSR-1 的 GigabitEthernet0/0 接口想要只发送 RIP 报文而不接受 RIP 协议报文,那么如下哪些实现方式是可行的?

A. 在 MSR-2 的 GigabitEthernet0/0 接口配置 silent-interface GigabitEthernet 0/0

- B. 在 MSR-1 的 GigabitEthernet0/0 接口配置 silent-interface GigabitEthernet 0/0
- C. 在 MSR-2 上配置 ACL 并应用在其 GigabitEthernet0/0 接口 inbound 方向
- D. 在MSR-1 上配置 ACL 并应用在其 GigabitEthernet0/0 接口 inbound 方向

Correct Answer: AD

Explanation

Explanation/Reference:

QUESTION 338

路由器 MSR-1、MSR-2 通过各自的 GigabitEthernet0/0 互连,同时两台路由器之间运行了 RIP,目前 RIP 已 经正确完成了远端路由学习,现在在 MSR-1 的路由表中看到如下的路由信息:

Destination/Mask Proto Pre Cost NextHop Interface 2.0.0.0/24 RIP 100 15 100.1.1.1 GE0/0 6.0.0.0/8 RIP 100 1 100.1.1.1 GE0/0 那么据此信息可以推测_____。

- A. 可以确认两台路由器之间运行的是 RIPv2
- B. 可以确认两台路由器之间运行是 RIPv1
- C. 第一条目的网段为 2.0.0.0/24 的路由依然是一条有效路由
- D. 第一条目的网段为 2.0.0.0/24 的路由 Cost 已经达到最大值,是一条无效路由

Correct Answer: AC Explanation

Explanation/Reference:

QUESTION 339

两台 MSR 路由器通过图示方式连接。目前在两台路由器之间运行了 OSPF。如今要在 RTA 上配置 ACL 来阻止 RTA 与 RTB 之间建立 OSPF 邻居关系,那么在 RTA 的 GE0/0 接口 outbound 方向应用如下哪些 ACL 是可行的?

A. acl number 3000

rule 0 deny ip destination 224.0.0.5 0

rule 5 permit ip

B. acl number 3000

rule 0 deny ip destination 224.0.0.5 0 eq 89

rule 5 permit ip

C. acl number 3000

rule 0 deny udp destination-port eq 89

rule 5 permit ip

D. acl number 3000

rule 0 deny ospf

rule 5 permit ip

Correct Answer: AD

Explanation

Explanation/Reference:

[H3C-acl-adv-3000]ru 0 permit ?

<0-255> Protocol number gre GRE tunneling(47)

icmp Internet Control Message Protocol(1)

igmp Internet Group Management Protocol(2)

ip Any IP protocol ipinip IP in IP tunneling(4)

ospf OSPF routing protocol(89)

tcp Transmission Control Protocol (6)

udp User Datagram Protocol (17)

DR ,BD 向 Drother 发送 DD,LSR,LSU 时目的地址 224.0.0.5, 即 Drother 侦听 224.0.0.5 Drther 向 DR,BDR 发送 DD,LSR,LSU 时目的地址 224.0.0.6 , 即 DR 侦听 224.0.0.6

串口默认链路层协议 PPP

以太口默认链路层协议 Ethernet

链路层协议 PPP、HDLC 时 OSPF 默认网络类型: P2P

Ethernet Broadcast 帧中继, ATM NBMA

QUESTION 340

两台空配置的 MSR 路由器通过各自的 GE0/0 接口背靠背互连,其互连网段为 192.168.1.0/30,正确配置 IP 地址后,两台路由器的 GE0/0 接口可以互通。如今分别在两台路由器上增加如下 OSPF 配置:

ospr 1

area 0.0.0.1

network 192.168.1.0 0.0.0.3

那么下列哪些说法是正确的? (选择一项或多项)

- A. 没有配置 Router ID,两台路由器之间不能建立稳定的 OSPF 邻接关系
- B. 没有配置 Area 0, 两台路由器之间不能建立稳定的 OSPF 邻接关系
- C. RTA 的路由表中会出现一条 OSPF 路由
- D. 两台路由器之间可以建立稳定的 OSPF 邻接关系,但是 RTA 和 RTB 的路由表中都没有 OSPF 路由

Correct Answer: D Explanation

Explanation/Reference:

QUESTION 341

两台空配置的 MSR 路由器 MSR-1 和 MSR-2 通过各自的 GE0/0 接口直连, MSR-1 和 MSR-2 的接口 GE0/0 上 IP 地址分别为 10.1.1.1/24 和 10.1.1.2/24, 两个 GE0/0 接口之间具有 IP 可达性。然后在两台路由器上分别添加了如下 OSPF 配置:

MSR-1:

[MSR-1-ospf-1] area 0.0.0.255

[MSR-1-ospf-1-area-0.0.0.255] network 10.1.1.0 0.0.0.255

MSR-2:

[MSR-2-ospf-1] area 255

[MSR-2-ospf-1-area-0.0.0.255] network 10.1.1.0 0.255.255.255

那么关于上述配置描述正确的是____。(选择一项或多项)

- A. MSR-1 上的命令 network 10.1.1.0 0.0.0.255 表示在该路由器的 GE0/0 接口启动 OSPF 并加入相应区域
- B. MSR-2 上的命令 network 10.1.1.0 0.255.255.255 不能在该路由器的 GE0/0 接口启动 OSPF
- C. 两台路由器的 OSPF 接口都属于 OSPF 区域 255
- D. 两台路由器的 OSPF 接口不属于同一个 OSPF 区域, 其中一台路由器的 OSPF Area 配置错误

Correct Answer: AC

Explanation

Explanation/Reference:

QUESTION 342

三台 MSR 路由器连接在同一个 LAN 网络中,如图所示。在三台路由器的 LAN 互连网段运行 OSPF,RTA、RTB、RTC 的 DR 优先级分别为 2、2、3。由于 RTC 的 LAN 链路故障,目前只有 RTA 和 RTB 在正常工作,且 RTA 与 RTB 之间的 OSPF 邻居状态稳定。那么_____。

A. RTC 的链路恢复后,网络中将重新选择 DR,RTC 将会成为新的 DR

B. RTC 的链路恢复后,网络中将建立3个OSPF 邻接关系

C. RTC 的链路恢复后, 网络中将建立 2 个 OSPF 邻接关系

D. RTC 的链路恢复后, RTC 和 RTB 的 OSPF 邻接状态是 FULL

Correct Answer: BD Explanation

Explanation/Reference:

重新选举 A B 一个 DR 一个 BDR, RTC 为 DR other DR ohers 稳定后停留在 2-way 其他都 full

QUESTION 343

两台 MSR 路由器通过 OSPF 实现动态路由学习,在其中一台路由器 MSR-1 上有三个接口 IP 地址分别为 192.168.8.1/24、192.168.13.254/24 和 192.168.29.128/24,那么要通过一条 network 命令在这三个接口上启动 OSPF,下列哪项配置是可行的? (选择一项或多项)

A. [MSR-1] ospf

[MSR-1-ospf-1] area 0

[MSR-1-ospf-1-area-0.0.0.0] network 192.168.1.0 0.0.255.255

B. [MSR-1] ospf

[MSR-1-ospf-1] area 0

[MSR-1-ospf-1-area-0.0.0.0] network 192.168.1.0 0.0.32.255

C. [MSR-1] ospf

[MSR-1-ospf-1] area 0

[MSR-1-ospf-1-area-0.0.0.0] network 192.168.1.0 0.0.63.255

Correct Answer: AC

Explanation

Explanation/Reference:

8 0000 1000

13 0000 1101

29 0001 1101

255-224=31 255-192=63 255-128=127 255-0=255

QUESTION 344

在一台运行 OSPF 的 MSR 路由器的 GE0/0 接口上做了如下配置: [MSR-GigabitEthernet0/0]ospf cost 2

那么关于此配置命令描述正确的是____。(选择一项或多项)

- A. 该命令将接口 GE0/0 的 OSPF Cost 值修改为 2
- B. 该命令只对从此接口接收的数据的路径有影响
- C. 该命令只对从此接口发出的数据的路径有影响
- D. 默认情况下, MSR 路由器的接口 Cost 与接口带宽成正比关系

Correct Answer: AC

Explanation

Explanation/Reference:

Cost=参考带宽 100/ 接口带宽 故反比 (0-65535)

QUESTION 345

两台空配置的 MSR 路由器 MSR-1、MSR-2 通过各自的 GE0/0 互连,其 IP 地址分别为 192.168.1.2/30 和 192.168.1.1/30。然后在两台路由器上都增加如下配置:

[MSR-ospf-1]area 0

[MSR-ospf-1-area-0.0.0.0]network 192.168.1.1 0.0.0.3

两台路由器的 OSPF Router ID 分别为其各自的 GE0/0 接口地址,两台路由器上没有其他任何配置。那么要确保 MSR-1 在下次选举中成为 OSPF DR,还需要添加如下哪项配置? (选择一项或多项)

A. 在MSR-1 上配置: [MSR-1-GigabitEthernet0/0]ospf dr-priority 255 B. 在MSR-2 上配置: [MSR-2-GigabitEthernet0/0]ospf dr-priority 0

C. 在MSR-1 上配置: [MSR-1-ospf-1]ospf dr-priority 255 D. 在MSR-2 上配置: [MSR-1-ospf-1]ospf dr-priority 0

Correct Answer: AB

Explanation

Explanation/Reference:

1)DR BDR 针对接口而非路由器,换言之,一个路由的多个接口肯能既有 DR 也有 BDR

2)优先级越大越优先(1-255)默认 1,优先级相同比较 router id

3)优先级为0的不参与选举

对比 ISIS 选举 DIS

1)优先级越大越优先(0-127) 默认 64, 优先级相同则比较 MAC 地址

2)优先级为0参与选举,不过优先级最低

QUESTION 346

某网络连接如图所示。其中四台路由器的所有接口都配置了 OSPF,并且都运行在 OSPF 区域 23 中。所有网段都可以互相连通。各路由器之间互连链路的 OSPF Cost 如图所示。那么下列描述正确的是____。(选择一项或多项)

- A. RTD 具有与RTA 同样的 LSDB
- B. RTC 根据 SPF 算法算出到达 192.168.2.0/24 网段的最佳路径为 C->A->B
- C. 经过 SPF 计算, RTC 到达 192.168.4.0/24 与到达 192.168.2.0/24 的路径 Cost 值相同, 因此在 RTC 上将 形成等价路由
- D. RTC 将有两个 OSPF 邻居

Correct Answer: AB Explanation

Explanation/Reference:

QUESTION 347

如下关于 OSPF 信息显示与调试命令的说法正确的是____。(选择一项或多项)

- A. 通过 display ospf peer 命令可以查看路由器的 OSPF 邻居关系
- B. 通过 display ospf lsdb 命令可以查看路由器的链路状态数据库,网络中所有 OSPF 路由器的链路状态数据库应该都是一样的
- C. 通过 display ospf routing 命令可以查看路由器的 OSPF 路由情况,并不是所有的 OSPF 路由都会被加入全局路由表
- D. 通过 display ospf fault 来查看 OSPF 出错的信息

Correct Answer: AC Explanation

Explanation/Reference:

QUESTION 348

NAPT 主要对数据包的______信息进行转换? (选择一项或多项)

- A. 数据链路层
- B. 网络层
- C. 传输层
- D. 应用层

Correct Answer: BC

Explanation

Explanation/Reference:

NAPT:多个私网地址对应一个公网地址的多个端口号

QUESTION 349

在配置完 NAPT 后,发现有些内网地址始终可以 ping 通外网,有些则始终不能,可能的原因有_____。

- A. ACL 设置不正确
- B. NAT 的地址池只有一个地址
- C. NAT 设备性能不足
- D. NAT 配置没有生效

Correct Answer: A Explanation

Explanation/Reference:

QUESTION 350

下面关于 Easy IP 的说法中,错误的是____。(选择一项或多项)

- A. Easy IP 是 NAPT 的一种特例
- B. 配置 Easy IP 时不需要配置 ACL 来匹配需要被 NAT 转换的报文
- C. 配置 Easy IP 时不需要配置 NAT 地址池
- D. Easy IP 适合用于 NAT 设备拨号或动态获得公网 IP 地址的场合

Correct Answer: B Explanation

Explanation/Reference:

QUESTION 351

下面关于 Easy IP 的说法中,正确的是____。(选择一项或多项)

- A. Easy IP 是 NAPT 的一种特例
- B. 配置 Easy IP 时不需要配置 ACL 来匹配需要被 NAT 转换的报文
- C. 配置 Easy IP 时不需要配置 NAT 地址池
- D. Easy IP 适合用于 NAT 设备拨号或动态获得公网 IP 地址的场合

Correct Answer: ACD

Explanation

Explanation/Reference:

QUESTION 352

若 NAT 设备的公网地址是通过 ADSL 由运营商动态分配的,在这种情况下,可以使用____。

- A. 静态 NAT
- B. 使用地址池的 NAPT
- C. Basic NAT
- D. Easy IP

Correct Answer: D

Explanation

Explanation/Reference:

QUESTION 353

一台 MSR 路由器通过 S1/0 接口连接 Internet, GE0/0 接口连接局域网主机,局域网主机所在网段为10.0.0.0/8,在 Internet 上有一台 IP 地址为 202.102.2.1 的 FTP 服务器。通过在路由器上配置 IP 地址和路由,目前局域网内的主机可以正常访问 Internet(包括公网 FTP 服务器),如今在路由器上增加如下配置:firewall enable

acl number 3000

rule 0 deny tcp source 10.1.1.1 0 source-port eq ftp destination 202.102.2.1 0 然后将此 ACL 应用在 GE0/0 接口的 inbound 和 outbound 方向,那么这条 ACL 能实现下列哪些意图?

- A. 禁止源地址为 10.1.1.1 的主机向目的主机 202.102.2.1 发起 FTP 连接
- B. 只禁止源地址为 10.1.1.1 的主机到目的主机 202.102.2.1 的端口为 TCP 21 的 FTP 控制连接
- C. 只禁止源地址为 10.1.1.1 的主机到目的主机 202.102.2.1 的端口为 TCP 20 的 FTP 数据连接
- D. 对从 10.1.1.1 向 202.102.2.1 发起的 FTP 连接没有任何限制作用

Correct Answer: D Explanation

Explanation/Reference:

ftp 是 source(客户端)的随机端口访问 dest(服务器)的 TCP 21 和 TCP 20, 故限制 FTP 应该是在 dest 而非 source

rule 0 deny tcp source 10.1.1.1 0 destination 202.102.2.1 0 destination -port eq ftp

QUESTION 354

在路由器 MSR-1 上看到如下信息:

[MSR-1]display acl 3000

Advanced ACL 3000, named -none-, 2 rules,

ACL's step is 5

rule 0 permit ip source 192.168.1.0 0.0.0.255

rule 10 deny ip (19 times matched)

该 ACL 3000 已被应用在正确的接口以及方向上。据此可知____。(选择一项或多项)

- A. 这是一个基本 ACL
- B. 有数据包流匹配了规则 rule 10
- C. 至查看该信息时,还没有来自 192.168.1.0/24 网段的数据包匹配该 ACL
- D. 匹配规则 rule 10 的数据包可能是去往目的网段 192.168.1.0/24 的

Correct Answer: BCD

Explanation

Explanation/Reference:

rule 10 deny ip source any destination any

QUESTION 355

某网络连接形如:

HostA----GE0/0--MSR-1--S1/0------S1/0--MSR-2--GE0/0----HostB

两台 MSR 路由器 MSR-1、MSR-2 通过各自的 S1/0 接口背靠背互连,各自的 GE0/0 接口分别连接客户端主机 HostA 和 HostB。其中 HostA 的 IP 地址为 192.168.0.2/24, MSR-2 的 S0/0 接口地址为 1.1.1.2/30,通过配置其他相关的 IP 地址和路由目前网络中 HostA 可以和 HostB 实现互通。如今客户要求不允许 HostA 通过地址1.1.1.2 Telnet 登录到 MSR-2。那么如下哪些配置可以满足此需求?

A. 在 MSR-1 上配置如下 ACL 并将其应用在 MSR-1 的 GE0/0 的 inbound 方向:

[MSR-1]firewall enable

MSR-1 acl number 3000

[MSR-1-acl-adv-3000]rule 0 deny tcp source 192.168.0.1 0.0.0.255 destination 1.1.1.2 0.0.0.3 destination-port eq telnet

B. 在 MSR-1 上配置如下 ACL 并将其应用在 MSR-1 的 GE0/0 的 outbound 方向:

[MSR-1]firewall enable

[MSR-1]acl number 3000

[MSR-1-acl-adv-3000]rule 0 deny tcp source 192.168.0.2 0 destination 1.1.1.2 0 destination-port eq telnet

C. 在 MSR-1 上配置如下 ACL 并将其应用在 MSR-1 的 S1/0 的 inbound 方向:

[MSR-1]firewall enable

MSR-1 acl number 3000

[MSR-1-acl-adv-3000]rule 0 deny tcp source 192.168.0.1 0.0.0.255 destination 1.1.1.2 0 destination-port eq

telnet

D. 在 MSR-1 上配置如下 ACL 并将其应用在 MSR-1 的 S1/0 的 outbound 方向:

[MSR-1]firewall enable

[MSR-1]acl number 3000

[MSR-1-acl-adv-3000]rule 0 deny tcp source 192.168.0.2 0 destination 1.1.1.2 0.0.0.3 destination-port eq telnet

Correct Answer: AD

Explanation

Explanation/Reference:

匹配目的地址范围可大不可小

QUESTION 356

某网络连接形如:

HostA----GE0/0--MSR-1--S1/0-----S1/0--MSR-2--GE0/0----HostB

两台 MSR 路由器 MSR1、MSR2 通过各自的 S1/0 接口背靠背互连,各自的 GigabitEthernet0/0 接口分别连接客户端主机 HostA 和 HostB。通过配置 IP 地址和路由目前网络中 HostA 可以和 HostB 实现互通。如今在 MSR-2 上增加了如下配置:

firewall enable

acl number 3000

rule 0 deny tcp destination-port eq telnet

interface Serial1/0

link-protocol ppp

ip address 1.1.1.2 255.255.255.252

firewall packet-filter 3000 inbound

firewall packet-filter 3000 outbound

interface GigabitEthernet0/0

ip address 10.1.1.1 255.255.255.0

那么如下哪些说法是正确的?

- A. 后配置的 firewall packet-filter 3000 outbound 会取代 firewall packet-filter 3000 inbound 命令
- B. 在 HostB 上无法成功 Telnet 到 MSR-1 上
- C. 在 HostB 上可以成功 Telnet 到 MSR-1 上
- D. 最后配置的 firewall packet-filter 3000 outbound 不会取代 firewall packet-filter 3000 inbound 命令

Correct Answer: BD

Explanation

Explanation/Reference:

B. 在 HostB 上无法成功 Telnet 到 MSR-1 上 outbound 生效, telnet 不同于 21 题 icmp 报文的有去有回

QUESTION 357

某网络连接形如:

HostA----GE0/0--MSR-1--S1/0-----S1/0--MSR-2--GE0/0----HostB

其中两台 MSR 路由器 MSR-1、MSR-2 通过各自的 S1/0 接口背靠背互连,各自的 GE0/0 接口分别连接客户端主机 HostA 和 HostB。通过配置 IP 地址和路由,目前网络中 HostA 可以和 HostB 实现互通。HostA 的 IP 地址为 192.168.0.2/24,默认网关为 192.168.0.1。MSR-1 的 GE0/0 接口地址为 192.168.0.1/24。在 MSR-1 上增加了如下配置:

firewall enable

firewall default permit

acl number 3003

rule 0 deny icmp source 192.168.0.2 0 icmp-type echo-reply

interface GigabitEthernet0/0

firewall packet-filter 3003 inbound

那么____。

- A. 在 HostA 上无法 ping 通 MSR-1 的接口 GE0/0 的 IP 地址
- B. 在 HostA 上可以 ping 通 MSR-1 的接口 GE0/0 的 IP 地址
- C. 在 MSR-1 上无法 ping 通 HostA
- D. 在MSR-1 上可以ping 通 HostA

Correct Answer: BC

Explanation

Explanation/Reference:

QUESTION 358

在一台路由器上配置了如下的 ACL:

acl number 2000 match-order auto

rule 0 deny

rule 5 permit source 192.168.9.0 0.0.7.255

假设该 ACL 应用在正确的接口以及正确的方向上,那么____。(选择一项或多项)

- A. 源网段为 192.168.15.0/24 发出的数据流被允许通过
- B. 源网段为 192.168.9.0/21 发出的数据流被允许通过
- C. 源网段为 192.168.9.0/21 发出的数据流被禁止通过
- D. 源网段为 192.168.9.0/22 发出的数据流被禁止通过
- E. 任何源网段发出的数据流都被禁止通过

Correct Answer: AB

Explanation

Explanation/Reference:

acl number 2000 match-order auto 深度优先匹配:: 地址范围小的被优先匹配 故先匹配 rule 5

192.168.9.0 0.0.7.255 掩码 21 位

192.168.0000 1001.0000 0000 故可以匹配 8.1.—15.254

QUESTION 359

客户的一台 MSR 路由通过广域网接口 S1/0 连接 Internet,通过局域网接口 GE0/0 连接办公网络,目前办公网络用户可以正常访问 Internet。在路由器上增加如下的 ACL 配置:

firewall enable

firewall default deny

#

acl number 3003

rule 0 deny icmp

rule 5 permit tcp destination-port eq 20

#

interface GigabitEthernet0/0

firewall packet-filter 3000 inbound

firewall packet-filter 3000 outbound

那么____。(选择一项或多项)

- A. 办公网用户发起的到 Internet 的 ICMP 报文被该路由器禁止通过
- B. 办公网用户发起的到达该路由器的 FTP 流量可以正常通过
- C. 办公网用户发起的到达该路由器 GE0/0 的 Telnet 报文可以正常通过
- D. 办公网用户发起的到 Internet 的 FTP 流量被允许通过该路由器,其他所有报文都被禁止通过该路由器

Correct Answer: A

Explanation

Explanation/Reference:

ACL 策略默认为 deny, 只允许访问端口 20 的 FTP 数据流量端口通过。但访问端口 21 的 FTP 控制连接建立被拒

QUESTION 360

客户的路由器 MSR-1 的 GE0/0 接口下连接了一台三层交换机,而此三层交换机是其所连接的客户办公网络的多个网段的默认网关所在。MSR-1 通过串口 S1/0 连接到 Internet。全网已经正常互通,办公网用户可以访问 Internet。在该路由器上添加如下 ACL 配置:

firewall enable

acl number 3004

rule 0 deny ip source 192.168.1.0 0.0.0.255

rule 5 permit tcp source 192.168.0.0 0.0.255.255

rule 10 permit icmp

同时将 ACL 3004 应用在 GE0/0 的 inbound 方向,那么。(选择一项或多项)

- A. 该路由器允许 192.168.2.0/24 网段的用户对 Internet 发出的 FTP 数据流通过
- B. 该路由器允许所有用户的 ICMP 报文通过
- C. 该路由器禁止 192.168.1.0/24 网段用户对 Internet 的所有 IP 流量通过
- D. 该路由器允许 192.168.1.0/24 网段用户对 Internet 的 WWW 业务流量通过

Correct Answer: AC

Explanation

Explanation/Reference:

rule 0 deny ip source 192.168.1.0 0.0.0.255 拒绝 192.168.1.0 用户对外 IP 流量

rule 5 permit tcp source 192.168.0.0 0.0.255.255 允许 192.168.0.0 用户对外 TCP 流量(除去 rule 0 拒绝的)

rule 10 permit icmp

允许所有 icmp 流量通过(出去 rule 0 拒绝的)

deny 掉的为 IP 报文,包括 ICMP 以及封装上层的 TCP/UDP

QUESTION 361

客户的路由器 MSR-1 的 GigabitEthernet0/0 接口下连接了一台三层交换机,而此三层交换机为客户办公网络的多个网段的默认网关所在。同时该路由器的广域网接口连接到 Internet,而 Internet 上有 DNS 服务器为客户局域网内的主机提供服务, 客户的办公网络可以正常访问 Internet , 如今在 MSR-1 的 GigabitEthernet0/0 的 inbound 方向应用了如下 ACL:

firewall enable

acl number 3006

rule 0 deny tcp source 192.168.1.0 0.0.0.255

rule 5 permit ip

那么____。(选择一项或多项)

- A. 192.168.1.0/24 网段的客户可以通过 Outlook 等邮件客户端正常收发外部邮件
- B. 192.168.1.0/24 网段的客户不能通过 WWW 方式打开外部网页
- C. 192.168.0.0/24 网段的客户可以通过 FTP 方式从 Internet 上下载数据
- D. 192.168.1.0/24 网段的客户不能够通过 Outlook 等邮件客户端收发外部邮件

Correct Answer: BCD

Explanation

Explanation/Reference:

A. 192.168.1.0/24 网段的客户可以通过 Outlook 等邮件客户端正常收发外部邮件 SMTP POP3 基于 TCP 连接

B. 192.168.1.0/24 网段的客户不能通过 WWW 方式打开外部网页 http 基于 TCP

C. 192.168.0.0/24 网段的客户可以通过 FTP 方式从 Internet 上下载数据 正确,注意匹配网段 0.0/24

D. 192.168.1.0/24 网段的客户不能够通过 Outlook 等邮件客户端收发外部邮件

TCP (6): ftp-20/21

Ssh——23 telnet——23

smtp-25

UDP(17): DNS——53

Bootp----67/68

Tftp----69

QUESTION 362

客户的网络结构如图所示。要实现如下需求:

- 1. Host C 与 Host B 互访
- 2. Host B 和 Host A 不能互访
- 3. Host A 和 Host C 不能互访

那么

- A. 只在 MSR-1 的接口 GE0/0 上应用高级 ACL 可以实现该需求
- B. 只在 MSR-1 的接口 GE0/0 上应用 ACL 无法实现该需求
- C. 分别在两台路由器的接口 GE0/0 上应用高级 ACL 可以实现该需求
- D. 分别在 MSR-1 的接口 S1/0、GE0/0 上应用高级 ACL 可以实现该需求

Correct Answer: ACD

Explanation

Explanation/Reference:

A 不能与 B、C 通信, 只需在 MSR-1 G0/0 接口 inbound 上拒绝 HostA 访问外部流量 A、C、D 选项都包含该功能,而在 S1/0 outbound 方向拒绝 则达不到 A、C 不能互访的要求

QUESTION 363

在路由器 MSR-1 上看到如下提示信息:

[MSR-1]display firewall-statistics all

Firewall is enable, default filtering method is 'permit'.

Interface: GigabitEthernet0/0 In-bound Policy: acl 3000 Fragments matched normally

From 2008-11-08 2:25:13 to 2008-11-08 2:25:46

0 packets, 0 bytes, 0% permitted,

4 packets, 240 bytes, 37% denied,

7 packets, 847 bytes, 63% permitted default,

0 packets, 0 bytes, 0% denied default,

Totally 7 packets, 847 bytes, 63% permitted,

Totally 4 packets, 240 bytes, 37% denied.

据此可以推测

- A. 由上述信息中的 37% denied 可以看出已经有数据匹配 ACL 3000 中的规则
- B. 有一部分数据包没有匹配 ACL 3000 中的规则,而是匹配了默认的 permit 规则
- C. ACL 3000 被应用在 GigabitEthernet0/0 的 inbound 方向
- D. 上述信息中的 0% denied default 意味着该 ACL 的默认匹配规则是 deny

Correct Answer: ABC

Explanation

Explanation/Reference:

QUESTION 364

客户路由器 MSR-1 的以太网口 Ethernet1/0 配置如下:

interface Ethernet0/0

ip address 192.168.0.1 255.255.255.0

· 该接口连接了一台三层交换机,而此三层交换机为客户办公网络的网段 192.168.7.0/24~192.168.83.0/24 的 默认网关所在。现在客户要求在 MSR-1 上配置 ACL 来禁止办公网络所有用户向 MSR-1 的地址 192.168.0.1 发起 Telnet,那么下面哪项配置是正确的?

A. acl number 3000

rule 0 deny 0.0.0.0 255.255.255.255 destination 192.168.0.1 0 destination-port eq telnet interface Ethernet0/0

ip address 192.168.0.1 255.255.255.0

firewall packet-filter 3000 inbound

B. acl number 3000

rule 0 deny 0.0.0.0 255.255.255.255 destination 192.168.0.1 0 destination-port eq telnet interface Ethernet0/0

ip address 192.168.0.1 255.255.255.0

firewall packet-filter 3000 outbound

C. acl number 3000

rule 0 deny 255.255.255.255 0 destination 192.168.0.1 0 destination-port eq telnet interface Ethernet0/0

ip address 192.168.0.1 255.255.255.0

firewall packet-filter 3000 inbound

D. acl number 3000

rule 0 deny 255.255.255.255 0 destination 192.168.0.1 0 destination-port eq telnet interface Ethernet0/0

ip address 192.168.0.1 255.255.255.0 firewall packet-filter 3000 outbound

Correct Answer: A Explanation

Explanation/Reference:

QUESTION 365

路由器 MSR-1 的以太网口 Ethernet0/0 配置如下:

interface Ethernet0/0

ip address 192.168.0.1 255.255.255.0

在该接口下连接了一台三层交换机,而此三层交换机为客户办公网络的多个网段的默认网关所在,出于安全考虑,现在客户要求在 MSR-1 的接口 Ethernet0/0 上配置 ACL(不限制应用的方向)来禁止办公网络所有用户 ping 通 192.168.0.1,可以用如下哪种配置?

A. acl number 3000

rule 0 deny icmp destination 192.168.0.1 0 icmp-type echo-reply

B. acl number 3000

rule 0 deny icmp destination

192.168.0.1 0 icmp-type echo

C. acl number 3000

rule 0 deny icmp destination 192.168.0.1 0

D. acl number 3000

rule 0 deny ip destination 192.168.0.1 0 eq icmp

Correct Answer: BC

Explanation

Explanation/Reference:

acl number 3000

rule 0 deny icmp source 192.168.0.2 0 icmp-type echo-reply

拒绝 192.168.0.2 返回的 icmp echo-reply 报文,说明主机 ping 不通网关 192.168.0.2

acl number 3000

rule 0 deny icmp destination 192.168.0.1 0 icmp-type echo-reply

拒绝返回给 192.168.0.1 的 icmp echo-reply 报文,说明网关 192.168.0.1 ping 不通主机

QUESTION 366

某网络连接如下所示:

HostA----GE0/0--MSR-1--S1/0-----S1/0--MSR-2--GE0/0----HostB

客户要求仅仅限制 HostA 与 HostB 之间的 ICMP 报文,如下哪些做法是可行的?

- A. 在 MSR-1 上配置 ACL 禁止源主机 HostA 到目的主机 HostB 的 ICMP 报文,并将此 ACL 应用在 MSR-1 的 GE0/0 的 outbound 方向
- B. 在 MSR-1 上配置 ACL 禁止源主机 HostA 到目的主机 HostB 的 ICMP 报文,并将此 ACL 应用在 MSR-1 的 S1/0 的 outbound 方向
- C. 在 MSR-1 上配置 ACL 禁止源主机 HostB 到目的主机 HostA 的 ICMP 报文,并将此 ACL 应用在 MSR-1 的 S1/0 的 outbound 方向
- D. 在 MSR-1 上配置 ACL 禁止源主机 HostB 到目的主机 HostA 的 ICMP 报文,并将此 ACL 应用在 MSR-1 的 GE0/0 的 outbound 方向

Correct Answer: BD Explanation

Explanation/Reference:

无论哪个方向的都可以,只需注意应用接口方向即可

QUESTION 367

两台 MSR 路由器 MSR-1、MSR-2 通过各自的 S1/0 接口背靠背互连,各自的 GigabitEthernet0/0 接口分别连接客户端主机 HostA 和 HostB:

HostA----GE0/0--MSR-1--S1/0------S1/0--MSR-2--GE0/0----HostB

通过配置 IP 地址和路由目前网络中 HostA 可以和 HostB 实现互通,如今在路由器 MSR-1 上增加如下 ACL 配置:

firewall enable

acl number 3000

rule 0 deny icmp icmp-type echo

interface GigabitEthernet0/0

ip address 192.168.0.1 255.255.255.0

firewall packet-filter 3000 inbound

那么如下说法哪些是正确的?

- A. 在 HostA 上将 ping 不通自己的网关地址,即 MSR-1 上的 GE0/0 的接口地址
- B. 在 HostA 上 ping 不通 HostB
- C. 在 HostB 上能 ping 通 HostA
- D. 在 MSR-1 上能 ping 通 HostB

Correct Answer: ABCD

Explanation

Explanation/Reference:

deny 掉的时来自主机 A 的 ping 请求报文。其他不受影响。

- A) 如果是 acl 用在 S 1/0 的出方向上。,则 HostA 就能 ping 通自己的网关地址
- C) 拒绝的是所有 icmp 请求报文,而回复报文 echo-reply 使可以通过的,即 HostB ping HostA 是有 echo-reply 报文返回的
- D) MSR-1 出接口的 ping 请求报文是可以正常通过的

如果 G0/0 inbound 方向 acl 匹配的是 echo-reply 则无效

outbound echo

QUESTION 368

路由器 MSR-1 的 GE0/0 接口地址为 192.168.100.1/24,该接口连接了一台三层交换机,而此三层交换机为客户办公网络的多个网段的默认网关所在。MSR-1 通过串口 S1/0 连接到 Internet。全网已经正常互通,办公网用户可以访问 Internet。出于安全性考虑,需要禁止客户主机 ping MSR-1 的 GE0/0 接口,于是在该路由器上配置了如下 ACL:

acl number 3008

rule 0 deny icmp source 192.168.1.0 0.0.0.255

同时该 ACL 被应用在 GE0/0 的 inbound 方向。发现局域网内 192.168.0.0/24 网段的用户依然可以 ping 通 GE0/0 接口地址。根据如上信息可以推测 。(选择一项或多项)

- A. 该 ACL 没有生效
- B. 该 ACL 应用的方向错误
- C. 防火墙默认规则是允许
- D. 对接口 GE0/0 执行 shutdown 和 undo shutdown 命令后,才会实现 192.168.0.0/24 网段 ping 不通 MSR-1 以太网接口地址

Correct Answer: C Explanation

Explanation/Reference:

此题命题有问题,局域网内网段 192.168.0.0/24 与网关 192.168.100.1/24 根本不在同一网段。忽略这点,陷阱在于 acl 策略匹配的网段与 ping 的网段不一致,注意 24 位掩码,故只能选 C

QUESTION 369

客户的网络连接形如:

HostA----GE0/0--MSR-1--S1/0-----S1/0--MSR-2--GE0/0----HostB

该网络已经正确配置了 IP 地址和路由,目前网络中 HostA 可以和 HostB 实现互通。出于某种安全考虑,客户要求 HostB 不能 ping 通 HostA,但同时 HostA 可以 ping 通 HostB,且 HostA 与 HostB 之间的其他报文传递不受限制,那么如下哪些说法是正确的? (选择一项或多项)

- A. 仅在 MSR-1 上配置 ACL 无法实现此需求
- B. 仅在 MSR-2 上配置 ACL 无法实现此需求
- C. 仅在 MSR-1 上配置 ACL 就可以实现此需求
- D. 仅在 MSR-2 上配置 ACL 就可以实现此需求
- E. 使用 ping 命令时两主机之间的 ICMP 报文是双向的,这个单项互通的需求无法实现

Correct Answer: CD Explanation

Explanation/Reference:

MSR-1 上拒绝 B 返回给 A 的 echo reply MSR-2 上拒绝 B 发送给 A 的 echo

QUESTION 370

在一台路由器 MSR-1 上看到如下信息:

[MSR-1]display arp all Type: S-Static D-Dynamic

IP Address MAC Address VLAN ID Interface Aging Type 168.0.2 0123-4321-1234 N/A GE0/0 20 D

经查该主机有大量病毒,现在客户要禁止该主机发出的报文通过 MSR-1,那么____。(选择一项或多面)

- A. 可以在路由器上配置基本 ACL 并应用在 GE0/0 的入方向来实现
- B. 可以在路由器上配置基本 ACL 并应用在 GE0/0 的出方向来实现
- C. 可以在路由器上配置高级 ACL 并应用在 GE0/0 的入方向来实现
- D. 可以在路由器上配置高级 ACL 并应用在 GE0/0 的出方向来实现

Correct Answer: AC

Explanation

Explanation/Reference:

QUESTION 371

客户的网络如下所示:

HostA----GE0/0--MSR-1--S1/0------S1/0--MSR-2--GE0/0----HostB 在两台路由器上的广域网接口分别作了如下配置:

MSR-1:

firewall enable

acl number 3000 rule 0 deny ip source 192.168.0.0 0.0.0.255 rule 5 permit ip interface Serial1/0 link-protocol ppp firewall packet-filter 3000 outbound ip address 6.6.6.2 255.255.255.0 MSR-2:

interface Serial1/0 link-protocol ppp

ip address 6.6.6.1 255.255.255.0

假设 HostA 的 IP 地址为 192.168.0.2/24,路由以及其他相关接口配置都正确,那么____。(选择一项或多项)

- A. HostA 可以 ping 通 6.6.6.2, 但是不能 ping 通 6.6.6.1
- B. HostA 不能 ping 通 6.6.6.2, 同时也不能 ping 通 6.6.6.1
- C. HostA 能 ping 通 6.6.6.2, 同时也能 ping 通 6.6.6.1
- D. 在 MSR-2 上能 ping 通 HostA

Correct Answer: A Explanation

Explanation/Reference:

A. HostA 可以 ping 通 6.6.6.2, 但是不能 ping 通 6.6.6.1

在出方向上过滤,能 ping 通网关,在 GE0/0 入方向则 ping 不通网关

MSR-2 上能 ping 通 HostA MSR-2ping HostA icmp 的 echo reply 报文回不去, 因为 A→B 主机 A 的 IP 流量被滤, ip 数据流

包括 icmp、tcp、udp, 故 icmp 的 echo 和 echo reply 都被拒绝了

QUESTION 372

在 MSR 路由器上配置了如下 ACL:

acl number 3999

rule permit tcp source 10.10.10.1 255.255.255.255 destination 20.20.20.1 0.0.0.0 time-range lucky 那么对于该 ACL 的理解正确的是_____。(选择一项或多项)

- A. 该 rule 只在 lucky 时间段内生效
- B. 该 rule 只匹配来源于 10.10.10.1 的数据包
- C. 该 rule 只匹配去往 20.20.20.1 的数据包
- D. 该 rule 可以匹配来自于任意源网段的 TCP 数据包
- E. 该 rule 可以匹配去往任意目的网段的 TCP 数据包

Correct Answer: ACD

Explanation

Explanation/Reference:

B. 该 rule 只匹配来源于 10.10.10.1 的数据包 反掩码 255.255.255, 即掩码 0.0.0.0, 匹配任意源

C. 该 rule 只匹配去往 20.20.20.1 的数据包 反掩码 0.0.0.0 即掩码 255.255.255.255 只匹配指定目的

QUESTION 373

在 MSR 路由器上,可以使用_____命令清除 NAT 会话表项。

- A. clear nat
- B. clear nat session
- C. reset nat session
- D. reset nat table

Correct Answer: C

Explanation

Explanation/Reference:

QUESTION 374

要查看 NAT 数据包的 debug 信息,应使用_____命令打开 debug 信息并输出到显示器上。

- A. terminal monitor debugging nat
- B. terminal debugging debugging nat
- C. terminal monitor terminal debugging debugging nat packet
- D. terminal monitor terminal debugging debug nat

Correct Answer: C Explanation

Explanation/Reference:

QUESTION 375

私网设备 A 的 IP 地址是 192.168.1.1/24,其对应的公网 IP 是 2.2.2.1;公网设备 B 的 IP 地址是 2.2.2.5。现需 要设备 A 对公网提供 Telnet 服务,可以在 NAT 设备上使用下列哪项配置?

A. acl number 2000

rule 0 permit source 192.168.1.1 0.0.0.255 nat address-group 1 2.2.2.1 interface Ethernet 0/1 nat outbound 2000 address-group 1

B. acl number 2000

rule 0 permit source 192.168.1.1 0.0.0.255 nat address-group 1 2.2.2.1 interface Ethernet 0/1 nat outbound 2000 address-group 1 no-pat

- C. nat server protocol telnet global 2.2.2.1 inside 192.168.1.1
- D. nat server protocol tcp global 2.2.2.1 telnet inside 192.168.1.1
- E. nat server protocol tcp global 2.2.2.1 23 inside 192.168.1.1 23

Correct Answer: E Explanation

Explanation/Reference:

设备 A 对公网提供 Telnet 服务,即公网访问私网,配置 nat sever

[H3C-Serial0/2/0]nat server protocol ?
<1-255> Protocol number of the server
icmp Internet Control Message Protocol (1)
tcp Transmission Control Protocol (6)
udp User Datagram Protocol (17)

[H3C-Serial0/2/0]nat server protocol tcp global 2.2.2.1 ?

<0-65535> Port number of the server CHARgen Character generator (19)

any Any protocol (0)

bgp Border Gateway Protocol (179) cmd Remote commands (rcmd, 514)....

QUESTION 376

使用_____命令查看 NAT 表项。

- A. display nat table
- B. display nat entry
- C. display nat
- D. display nat session

Correct Answer: D

Explanation

Explanation/Reference:

QUESTION 377

网络环境如图所示。在路由器 RTA 上做如下 NAT 配置:

[RTA]acl number 2000

[RTA-acl-basic-2000]rule 0 permit source 100.0.0.0 0.0.0.255 [RTA]nat address-group 1 200.76.28.11 200.76.28.20

[RTA]interface Ethernet0/1

[RTA-Ethernet0/1]nat outbound 2000 address-group 1 no-pat

配置后, Client_A 和 Client_B 同时访问 Server,则此时 RTA 的 NAT 表内容可能为_____。

A. Protocol	GlobalAddr Port Ir	nsideAddr Port	DestAddr Port
-	200.76.28.11	100.0.0.2	
VPN: 0,	status: NOPAT,	TTL: 00:04:00,	Left: 00:04:00
-	200.76.28.12	100.0.0.1	
VPN: 0,	status: NOPAT,	TTL: 00:04:00,	Left: 00:03:59
1	200.76.28.12 1024	100.0.0.1 1024	200.76.29.4 1024
VPN: 0,	status: NOPAT,	TTL: 00:01:00,	Left: 00:00:59
1	200.76.28.11 512	100.0.0.2 512	200.76.29.4 512
VPN: 0,	status:NOPAT,	TTL: 00:01:00,	Left: 00:01:00

B. Protocol GlobalAddr Port InsideAddr Port DestAddr Port

- 200.76.28.11 --- 100.0.0.2 --- ---

VPN: 0, status: NOPAT, TTL: 00:04:00, Left: 00:04:00

- 200.76.28.12 --- 100.0.0.1 --- ---

VPN: 0, status: NOPAT, TTL: 00:04:00, Left: 00:03:59 1 200.76.28.12 1024 100.0.0.1 1024 200.76.29.4 1024 VPN: 0, status: NOPAT, TTL: 00:01:00, Left: 00:00:59 1 200.76.28.11 511 100.0.0.2 512 200.76.29.4 512

VPN: 0, status: NOPAT, TTL: 00:01:00, Left: 00:01:00

C. Protocol GlobalAddr Port InsideAddr Port DestAddr Port - 200.76.28.11 --- 100.0.0.2 --- --- --

VPN: 0, status: NOPAT, TTL: 00:04:00, Left: 00:04:00

- 200.76.28.12 --- 100.0.0.1 --- ---

VPN: 0, status: NOPAT, TTL: 00:04:00, Left: 00:03:59 1 200.76.28.21 1024 100.0.0.1 1024 200.76.29.4 1024 VPN: 0, status: NOPAT, TTL: 00:01:00, Left: 00:00:59 1 200.76.28.11 512 100.0.0.2 512 200.76.29.4 512 VPN: 0, status: NOPAT, TTL: 00:01:00, Left: 00:01:00

D. Protocol GlobalAddr Port InsideAddr Port DestAddr Port

- 200.76.28.11 --- 100.0.0.2 --- ---

VPN: 0, status: NOPAT, TTL: 00:04:00, Left: 00:04:00

- 200.76.28.12 --- 100.0.0.1 --- ---

VPN: 0, status: NOPAT, TTL: 00:04:00, Left: 00:03:59 1 200.76.28.12 1023 100.0.0.1 1024 200.76.29.4 1024 VPN: 0, status: NOPAT, TTL: 00:01:00, Left: 00:00:59 1 200.76.28.11 511 100.0.0.2 511 200.76.29.4 512 VPN: 0, status: NOPAT, TTL: 00:01:00, Left: 00:01:00

Correct Answer: A Explanation

Explanation/Reference:

no-pat IP 地址一对一转换,端口号保持一致

QUESTION 378

在 MSR 路由器上,使用_____命令查看路由器的 NAT 老化时间。

- A. display nat time
- B. display nat expire
- C. display nat aging-time
- D. display nat time-out

Correct Answer: C Explanation

Explanation/Reference:

QUESTION 379

在 MSR 路由器上,使用_____命令配置 NAT 地址池。

- A. nat address-group
- B. nat ip pool
- C. nat net pool
- D. nat pool

Correct Answer: A

Explanation

Explanation/Reference:

QUESTION 380

使用 display nat session 命令查看 NAT 信息,显示如下:

There are currently 4 NAT sessions

Protocol	GlobalAddr Port	InsideAddr Port	DestAddr Port
-	198.80.28.11	10.0.0.2	
VPN: 0,	status: NOPAT,	TTL: 00:04:00,	Left: 00:04:00
-	198.80.28.12	10.0.0.1	
VPN: 0,	status: NOPAT,	TTL: 00:04:00,	Left: 00:03:59
1	198.80.28.12 1024	10.0.0.1 1024	198.80.29.4 1024
VPN: 0,	status: NOPAT,	TTL: 00:01:00,	Left: 00:00:59

1 198.80.28.11 512 10.0.0.2 512 198.80.29.4 512 VPN: 0, status: NOPAT, TTL: 00:01:00, Left: 00:01:00 由此信息可知私网地址是。
A. 192.80.28.12 B. 10.0.0.1 C. 192.80.29.4 D. 10.0.0.2 E. 192.80.28.11
Correct Answer: BD Explanation
Explanation/Reference:
QUESTION 381 在 MSR 路由器上,如果想查看 NAT 转换的报文数量,应该使用命令。
A. display nat counterB. display natC. display aclD. display nat session
Correct Answer: C Explanation
Explanation/Reference:
QUESTION 382 某私网设备 A 的 IP 地址是 192.168.1.1/24, 其对应的公网 IP 地址是 2.2.2.1; 公网设备 B 的 IP 地址是 2.2.2.5。若希望 B 能 ping 通 A, 可以在 NAT 设备上使用下列哪项配置?
A. acl number 2000 rule 0 permit source 192.168.1.1 0.0.0.255 nat address-group 1 2.2.2.1 interface Ethernet 0/1 nat outbound 2000 address-group 1
B. acl number 2000 rule 0 permit source 192.168.1.1 0.0.0.255 nat address-group 1 2.2.2.1 interface Ethernet 0/1 nat outbound 2000 address-group 1 no-pat
C. nat server protocol icmp global 2.2.2.1 inside 192.168.1.1 D. nat server protocol icmp global 192.168.1.1 inside 2.2.2.1
Correct Answer: C Explanation
Explanation/Reference:
QUESTION 383 网络环境如图所示,是正确的 NAPT 配置。

A. acl number 2000 rule 0 permit source 192.168.0.2 0.0.0.255 nat address-group 1 1.1.1.1 interface Ethernet 0/1

nat outbound 2000 address-group 1

- B. acl number 2000 rule 0 permit source 192.168.0.2 0.0.0.255 nat address-group 1 1.1.1.1 interface Ethernet 0/1 nat outbound 2000 address-group 1 no-pat
- C. acl number 2000 rule 0 permit source 192.168.0.2 0.0.0.255 interface Ethernet 0/1 nat outbound 2000 address-group 1 no-pat
- D. acl number 2000 rule 0 permit source 192.168.0.2 0.0.0.255 interface Ethernet 0/1 nat outbound 2000

Correct Answer: AD Explanation

Explanation/Reference:

QUESTION 384

XYZ 公司的两个分支之间用同步专线互连,使用 HDLC 作为封装协议。下面关于 HDLC 安全性的说法正确的是____。

- A. HDLC 的安全性不如 PPP 那样丰富,HDLC 只能使用 PAP 方式的验证。
- B. HDLC 的安全性不如 PPP, 它不支持 PAP 和 CHAP 验证,而仅能提供明文方式的验证。
- C. HDLC 的安全性不强,提供两种验证方式,但验证中的用户名密码都以明文的方式传送。
- D. HDLC 不支持验证。

Correct Answer: D Explanation

Explanation/Reference:

QUESTION 385

下列关于 HDLC 的说法,正确的是_____

A. HDLC 协议是面向比特的传输层协议。

- B. 任何比特流在 HDLC 链路上都可以实现透明传输。
- C. HDLC 协议采用统一的帧格式,所以不论是数据报文还是协议报文在 HDLC 链路上都是用标准格式的帧 传送的。
- D. HDLC 可以运行于同/异步链路之上,所以有着较为广泛的应用。 只用于同步,PPP 同异步

Correct Answer: BC Explanation

Explanation/Reference:

QUESTION 386

下列关于 HDLC 的说法,错误的是____。

- A. HDLC 可以运行于同/异步链路之上,所以有着较为广泛的应用。
- B. HDLC 协议是面向比特的传输层协议。
- C. 任何比特流在 HDLC 链路上都可以实现透明传输。
- D. HDLC 协议采用统一的帧格式,所以不论是数据报文还是协议报文在 HDLC 链路上都是用标准格式的帧传送的。

Correct Answer: AB

Explanation

Explanation/Reference:

QUESTION 387

下列关于 HDLC 的说法,正确的是____。

- A. HDLC 协议是面向比特的数据链路层协议。
- B. HDLC 可以支持 IP 地址协商。
- C. HDLC 协议采用统一的帧格式,所以不论是数据报文还是协议报文在 HDLC 链路上都是用标准格式的帧 传送的。
- D. HDLC 只能运行于异步链路之上。

Correct Answer: AC

Explanation

Explanation/Reference:

QUESTION 388

下面对 PPP PAP 验证的描述,正确的是。

- A. PAP 验证是一个二次握手协议
- B. PAP 的用户名是明文的,但是密码是机密的
- C. PAP 的用户名是密文的,密码是明文的
- D. PAP 的用户名和密码都是明文的

Correct Answer: AD

Explanation

Explanation/Reference:

QUESTION 389

在 LCP 协商阶段, PPP 会协商哪些内容?

A. 链路层封装协议类型B. 验证方式C. 最大传输单元D. 网络层协议类型
Correct Answer: BC Explanation
Explanation/Reference: LCP:建立、拆除、监控数据链路 NCP:协商网络层协议,协商数据链路上传输数据包的格式与类型
QUESTION 390 PPP 在建立链路之前要经历一系列的协商过程,正确的协商次序是。
A. LCP>PAP/Chap>NCP B. PAP/CHAP>LCP>NCP C. LCP> NCP>PAP/CHAP D. NCP>LCP>PAP/CHAP
Correct Answer: A Explanation
Explanation/Reference:
QUESTION 391 PPP 在建立链路之前要经历一系列的协商过程,正确的协商次序是。(依次填入各步的代号,中间不能有空格,如: ABC) A. PAP/CHAP B. NCP C. LCP
Correct Answer: CAB Explanation
Explanation/Reference:
QUESTION 392 两台 MSR 路由器通过各自的 Serial1/0 接口背靠背互连,在广域网接口上封装 PPP 链路层协议,对于此网络中 PPP 链路的说法正确的是。
A. PPP 链路上承载的网络层协议类型需要在 NCP 协商中确定B. PPP 链路开始建立时,LCP 和 NCP 协商就同时开始了C. 在此 PPP 链路上可以承载 IPX 协议D. 如果两端都不配置 PPP 验证,该 PPP 链路不能正常建立
Correct Answer: AC Explanation
Explanation/Reference:
QUESTION 393 下列关于 PPP 特点的说法正确的是。
A. PPP 支持在同异步链路 B. PPP 支持身份验证,包括 PAP 验证和 CHAP 验证 C. PPP 可以对网络地址进行协商

D. PPP 可以对 IP 地址进行动态分配

Correct Answer: ABCD

Explanation

Explanation/Reference:

QUESTION 394

在 PPP 会话建立的过程中,当物理层不可用时,PPP 链路处于_____阶段。

- A. Establish
- B. Network
- C. Authentication
- D. Dead
- E. Terminate

Correct Answer: D Explanation

Explanation/Reference:

QUESTION 395

在 PPP 会话建立的过程中,当物理层可用时,PPP 链路进入_____阶段。

- A. Establish
- B. Network
- C. Authentication
- D. Dead
- E. Terminate

Correct Answer: A Explanation

Explanation/Reference:

QUESTION 396

在 PPP 会话建立的过程中,当设置了验证且验证通过时,PPP 链路进入______阶段。

- A. Establish
- B. Network
- C. Authentication
- D. Dead
- E. Terminate

Correct Answer: B

Explanation

Explanation/Reference:

QUESTION 397

在 PPP 会话建立的过程中,当设置了验证但验证失败时,PPP 链路进入_____阶段。

- A. Establish
- B. Network
- C. Authentication
- D. Dead
- E. Terminate

Correct Answer: E Explanation

Explanation/Reference:

QUESTION 398

下面关于帧中继地址映射的说法,正确的是____。

- A. 帧中继地址映射是把本端设备的 DLCI 与对端设备的 DLCI 关联起来。
- B. 在承载 IP 协议时, 帧中继地址映射用来把下一跳 IP 地址和本地 DLCI 联系起来。
- C. 帧中继地址映射可以手工配置。
- D. 帧中继地址映射可以使用 Inverse ARP 动态维护。

Correct Answer: BCD

Explanation

Explanation/Reference:

FR 地址映射指的是对端 IP 地址和本地 DLCI 的映射 (对端设备协议地址和对端帧中继地址的映射)

QUESTION 399

在一台帧中继 DTE 设备与帧中继交换机之间可能运行如下哪种协议?

- A. PVC
- B. SVC
- C. DLCI
- D. LMI

Correct Answer: A

Explanation

Explanation/Reference:

QUESTION 400

以下关于帧中继 DLCI 的描述哪些是错误的?

- A. DLCI 用于标识路由器上的一个物理接口或逻辑接口
- B. 用户可以用的 DLCI 的范围是 15~1007
- C. 在帧中继交换网络中, 帧中继帧只改变目的 DLCI, 也即下一跳 DLCI 的值, 而不改变发送端源 DLCI 的值
- D. 在同一条链路上,每条虚电路都用唯一的 DLCI 标识

Correct Answer: ABC

Explanation

Explanation/Reference:

DLCI 只用于标识路由器上的一个物理接口

DLCI 的范围是 2^10=1024 个

0——1023 (包括 0 和 1024)

前 16 和 末 16 个保留, 故范围 16~1007

源 DLCI 和目的 DLCI 都会发生变化:发送端将 DLCI 字段视作目标地址,接收端将 DLCI 字段视作源地址

QUESTION 401

以下关于帧中继 DLCI 的描述哪些是正确的?

- A. DLCI 用于标识路由器上的一个物理接口或逻辑接口
- B. 用户可以用的 DLCI 的范围是 16~1007
- C. 在同一条链路上,每条虚电路都用唯一的 DLCI 标识
- D. 帧中继交换网络在传输帧中继帧时,只改变其目 DLCI, 也即下一跳 DLCI 的值, 而不改变发送端源 DLCI 的值

Correct Answer: BC

Explanation

Explanation/Reference:

QUESTION 402

路由器 S0/0 接口通过帧中继接入网络,在此路由器上看到如下接口信息:

[MSR]display interface Serial 0/0 Serial 0/0 current state: LIP

Serial0/0 current state: UP Line protocol current state: UP

Internet Address is 3.3.3.1/24 Primary

Link layer protocol is FR IETF

LMI DLCI is 0, LMI type is Q.933a, frame relay DTE

LMI status enquiry sent 91, LMI status received 69

LMI status timeout 22, LMI message discarded 1

那么可知。

- A. 接口封装的 LMI 类型是 Q.933a
- B. 接口使用虚电路号是 DLCI 0
- C. 接口的 PVC 状态已经是 UP
- D. 本接口已经发送了 91 个状态查询报文来查询接口的 PVC 状态

Correct Answer: AD

Explanation

Explanation/Reference:

QUESTION 403

一台空配置的 MSR 路由器通过接口 S1/0 接入帧中继网络。要在该路由器上通过配置帧中继子接口来实现连通,则关于帧中继子接口描述正确的是____。

- A. 对于网络层而言,子接口和主接口没有区别
- B. 点到点类型的子接口上可以配置多条虚电路
- C. 点到点类型的子接口上只能配置一条虚电路
- D. 一个接口下的多个子接口可以配置为同一个 IP 子网

Correct Answer: AC

Explanation

Explanation/Reference:

对于网络层而言,子接口和主接口没有区别 一个物理接口多个子接口必须属于不同子网 点到点类型的子接口上只能配置一条虚电路

H3C FR

p2mp: 多个网段 **p2p**: 相连接的两个 **router** 的子

p2p: 相连接的两个 router 的子接口在同一个网段 NBMA 两两连接: 所有的 router 都在同一个子网段中

QUESTION 404

某网络环境形如:

HostA----GE0/0--MSR-1--S1/0----Frame Relay----S1/0--MSR-2--GE0/0----HostB

其中,两台路由器 MSR-1、MSR-2 分别通过 S1/0 接入帧中继网络。在 MSR-1 的 S1/0 接口上配置 IP 地址 3.3.3.1/24 和 DLCI 31, 而在 MSR-2 的 S1/0 接口上配置 IP 地址 3.3.3.2/24 和 DLCI 82。物理连接完全正常, 其他默认配置相同。那么如下哪些说法是错误的?

- A. 在帧中继网络上, DLCI 31 可以标识标识 MSR-1, DLCI 82 可以标识 MSR-2。
- B. 在帧中继网络上,必须正确配置 MSR-1 连接的 DLCI 31 与 MSR-2 连接的 DLCI 82 之间的对应关系,两台路由器的 S1/0 接口之间才能互通。
- C. 在帧中继网络交换过程中,源 DLCI 始终是 31,而目的 DLCI 会发生变化。直到最后一跳,目的 DLCI 才成为 82。
- D. 在 MSR-1 的 S1/0 接口上配置命令 ip address negotiate 后, 其可以从 MSR-2 动态获取地址。

Correct Answer: ACD

Explanation

Explanation/Reference:

- A) DLCI 只用于标识虚链路,而不是路由器
- C)源 DLCI 和目的 DLCI 都会发生变化:发送端将 DLCI 字段视作目标地址,接收端将 DLCI 字段视作源地址。
- D) FR 上配置 Inverse ARP 可以自动发现对端 IP 地址

QUESTION 405

三台 MSR 路由器 RTA、RTB、RTC 通过各自的 S1/0 接口接入同一帧中继网络。此帧中继网络可以提供足够的 PVC 资源。作为网络工程师,你需要为这些帧中继接口分配 IP 地址。如下哪些说法是正确的? (选择一项或多项)

- A. 在正确配置路由的前提下,可以只用一个 IP 子网就实现三台路由器通过此帧中继网络互通
- B. 如果不允许经过任何一台路由器中转,则至少需要两个 IP 子网才能实现三台路由器通过此帧中继网络两两互通
- C. 如果不允许经过任何一台路由器中转,则至少需要三个 IP 子网才能实现三台路由器通过此帧中继网络两两互通
- D. 在正确配置路由的前提下,不需要配置子接口也能实现三台路由器通过此帧中继网络互通

Correct Answer: ABD

Explanation

Explanation/Reference:

QUESTION 406

三台 MSR 路由器 RTA、RTB、RTC 通过各自的 S1/0 接口接入同一帧中继网络。此帧中继网络可以提供足够的 PVC 资源。作为网络工程师,你需要为这些帧中继接口分配 IP 地址。如下哪些说法是不正确的? (选择一项或多项)

- A. 如果不允许经过任何一台路由器中转,则至少需要两个 IP 子网才能实现三台路由器通过此帧中继网络两两互通
- B. 如果不允许经过任何一台路由器中转,则至少需要三个 IP 子网才能实现三台路由器通过此帧中继网络两两互通
- C. 在正确配置路由的前提下,不需要配置子接口也能实现三台路由器通过此帧中继网络互通
- D. 在正确配置路由的前提下,可以只用一个IP 子网就实现三台路由器通过此帧中继网络互通

Correct Answer: B Explanation

Explanation/Reference:

QUESTION 407

下列关于帧中继的说法哪些是正确的? (选择一项或多项)

- A. 配置 Inverse ARP 可以自动发现对端路由器的 DLCI 地址
- B. 帧中继 DTE 设备可以通过 LMI 查询接口上的永久虚电路状态
- C. 帧中继网络可以实现多个节点之间的互相连通,可以一次将某个帧广播到所有节点
- D. 永久虚电路是通过协议自动分配的虚电路, 其创建/删除无需人工操作

Correct Answer: B Explanation

Explanation/Reference:

- A) Inverse ARP 自动发现对端 router 的网络协议地址
- C) FR 是 NBMA(非广播)的 D)永久虚电路是通过人工预先设定产生的,如没有人去取消则一直存在 交换虚电路是通过协议自动分配的虚电路,其创建/删除无需人工操作

QUESTION 408

ISDN BRI 中 D 信道的速率是____。

- A. 54 Kbps
- B. 64 Kbps
- C. 36 Kbps
- D. 16 Kbps

Correct Answer: D Explanation

Explanation/Reference:

QUESTION 409

ISDN PRI 中 D 信道的速率是____。

- A. 54 Kbps
- B. 64 Kbps
- C. 36 Kbps
- D. 16 Kbps

Correct Answer: D

Explanation

Explanation/Reference:

QUESTION 410

在配置 ISDN DCC 的时候,客户在自己的 MSR 路由器上做了如下配置:

[MSR] dialer-rule 1 ip permit

[MSR] interface dialer 0

[MSR-Dialer0] dialer enable-circular

[MSR-Dialer0] ip address 100.1.1.1 255.255.255.0

[MSR-Dialer0] dialer-group 1

[MSR-Dialer0] dialer route ip 100.1.1.2 8810052

那么关于此配置如下哪些说法正确? (选择一项或多项)

- A. 使用的是轮询 DCC 方式
- B. 使用的是共享 DCC 方式
- C. 去往 100.1.1.2 地址的数据包拨叫 8810052 号码建立链路
- D. 如果没有配置 dialer-group 1,则 DCC 不会触发拨号

Correct Answer: ACD

Explanation

Explanation/Reference:

[MSR-Dialer0] dialer enable-circular 轮询 DCC: circular DCC 共享 DCC: recourse-shared

DCC

QUESTION 411

客户的路由器通过 DCC 的方式接入运营商网络,那么在路由器上如下哪些接口可以实现 DCC 拨号?

- A. Dialer interface
- B. Serial interface
- C. Async interface
- D. PRI interface

Correct Answer: ABCD

Explanation

Explanation/Reference:

DCC 用于拨号的接口分两类 1)物理口: Serial,BRI,Async 等 2) Dialer 接口(便于设置 DCC 参数设置的逻辑接口)

QUESTION 412

某公司的 MSR 路由器计划通过 ISDN DCC 拨号接入 Internet, 在路由器上有如下配置:

[H3C]dialer-rule 1 ip deny

[H3C]firewall default permit

在拨号接口下已经引用了此拨号访问控制列表 dialer-rule 1,那么如下关于拨号的说法哪些是错误的?

- A. 任何 IP 数据包都不能触发拨号
- B. 任何 IP 数据包都可以触发拨号
- C. TCP 类型的数据包可以触发拨号
- D. UDP 类型的数据包可以触发拨号

Correct Answer: BCD

Explanation

Explanation/Reference:

Ip 报文范围广: icmp , tcp, udp 全过滤了

Icmp 是在 IP 协议之上的,介于 ip 与 tcp 之间,但是它同样属于网络层

QUESTION 413

在 MSR 路由器上将链路封装从 PPP 改为 HDLC 的命令是_____

- A. line hdlc
- B. link-protocol hdlc
- C. encapsulation hdlc
- D. line-protocol hdlc

Correct Answer: B

Explanation

Explanation/Reference:

QUESTION 414

在 MSR 路由器上,希望把 HDLC 协议的 Keepalive 报文时间调整为 20 秒,正确的配置是____。

- A. 在系统视图下,使用命令 hdlc hold time 20
- B. 在系统视图下,使用命令 hdlc timer hold 20
- C. 在接口视图下,使用命令 timer hold 20
- D. 在接口视图下,使用命令 hold time 20

Correct Answer: C Explanation

Explanation/Reference:

QUESTION 415

在 display interface 命令的显示中,下列哪项的 LCP 和 NCP 的状态表示 PPP 链路已经建立完成?

- A. LCP Closed, IPCP Opened
- B. LCP Closed, IPCP Closed
- C. LCP Opened, IPCP Opened
- D. LCP Initial, IPCP Closed

Correct Answer: C Explanation

Explanation/Reference:

QUESTION 416

某网络连接形如:

HostA----GE0/0--MSR-1--S1/0-----S1/0--MSR-2--GE0/0----HostB

其中,两台空配置的 MSR 路由器 MSR-1 和 MSR-2 通过各自的 S1/0 接口背靠背互连,各自的 GE0/0 接口分别连接客户端主机 HostA 和 HostB。所有物理连接都正常。现在在 MSR-2 的 S1/0 接口下增加如下配置:

interface Serial1/0

link-protocol ppp

ppp pap local-user 123 password simple 456

ip address 6.6.6.1 255.255.255.0 那么____。(选择一项或多项)

- A. 在 MSR-1 的 S1/0 接口上只需配置 PPP 封装以及 IP 地址 6.6.6.2/24 即可互通
- B. 在 MSR-1 的 S1/0 接口上如果只配置 PPP 封装以及 IP 地址 6.6.6.2/24 则不可互通
- C. 在进行 PAP 验证时, MSR-2 会先把用户名 123 和密码 456 发给 MSR-1
- D. 在进行 PAP 验证时, MSR-2 会先把密码 456 以明文的方式发送给 MSR-1

Correct Answer: AC

Explanation

Explanation/Reference:

Pap 被验证方先发起验证请求,两次握手;明文发送用户名密码。

Chap 主验正方先发起验证请求,三次握手;不发送密码。

QUESTION 417

某网络连接形如:

HostA----GE0/0--MSR-1--S1/0-----S1/0--MSR-2--GE0/0----HostB

其中,两台空配置的 MSR 路由器 MSR-1 和 MSR-2 通过各自的 S1/0 接口背靠背互连,各自的 GE0/0 接口分别连接客户端主机 HostA 和 HostB。所有物理连接都正常。现在在 MSR-2 的 S1/0 接口下增加如下配置:

interface Serial1/0 link-protocol ppp ppp pap local-user 123 password simple 456 ip address 6.6.6.1 255.255.255.0 那么_____。(选择一项或多项)

A. 在 MSR-1 的 S1/0 接口上如果只配置 PPP 封装以及 IP 地址 6.6.6.2/24 则不可互通

- B. 在 MSR-1 的 S1/0 接口上只需配置 PPP 封装以及 IP 地址 6.6.6.2/24 即可互通
- C. 在进行 PAP 验证时, MSR-2 会先把 123 和 456 发给 MSR-1
- D. 在进行 PAP 验证时, MSR-2 会先把用户名 123 以明文的方式发送给 MSR-1

Correct Answer: BC

Explanation

Explanation/Reference:

QUESTION 418

一台 MSR 路由器通过广域网接口连接到 Internet,在该 MSR 路由器上看到如下接口显示信息:

Mp-group1 current state: UP Line protocol current state: UP Description: Mp-group1 Interface

The Maximum Transmit Unit is 1500, Hold timer is 10(sec)

Internet Address is 172.16.1.100/24 Primary

Link layer protocol is PPP

LCP opened, MP opened, IPCP opened Physical is MP, baudrate: 64000 bps

那么对如上显示信息分析正确的是____。(选择一项或多项)

- A. 该接口使用的物理电缆为 MP 电缆
- B. 该接口封装的链路层协议为 PPP
- C. 该接口 Mp-group1 至少包含了两个物理接口
- D. 该接口运行的网络层协议为 IP

Correct Answer: D Explanation

Explanation/Reference:

QUESTION 419

客户的网络连接形如:

HostA----GE0/0--MSR-1--S1/0-----WAN----S1/0--MSR-2--GE0/0----HostB

在两台路由器 MSR-1 和 MSR-2 的广域网接口 S1/0 上都只封装了 PPP 协议并配置 IP 地址。目前 HostA 与 HostB 可以互相 ping 通。在 MSR-1 接口 S1/0 下增加命令 ppp authentication-mode chap,然后对 MSR-1 的 S1/0 执行 shutdown 和 undo shutdown 操作。那么_____。(选择一项或多项)

- A. 此时 HostA 与 HostB 依然可以互相 ping 通
- B. 此时 HostA 与 HostB 之间无法互相 ping 通
- C. MSR-2 会发送 Challenge,同时附带本端的用户名一起发送给 MSR-1 开始 CHAP 验证
- D. MSR-1 会发送 Challenge,同时附带本端的用户名一起发送给 MSR-2 开始 CHAP 验证

Correct Answer: BD

Explanation

Explanation/Reference:

Pap被验证方先发起验证请求,两次握手。明文发送用户名密码。

Chap 主演正方先发起验证请求,三次握手。不发送密码。

主验证方配置 ppp authentication chap

QUESTION 420

客户的两台路由器 MSR-1、MSR-2 的广域网链路采用 PPP 协议,同时要求 MSR-1 作为主验证方,通过 CHAP 方式验证 MSR-2,那么如下哪些配置是 MSR-2 可能需要的? (选择一项或多项)

- A. [MSR-2]ppp chap user user
- B. [MSR-2]ppp chap password simple password
- C. [MSR-2-Serial1/0] ip address ppp-negotiate
- D. [MSR-2-Serial1/0] ip address 10.10.10.1 22

Correct Answer: CD

Explanation

Explanation/Reference:

QUESTION 421

客户的两台路由器 MSR-1、MSR-2 的广域网链路采用 PPP 协议,同时要求 MSR-1 作为主验证方通过 PAP 方式验证 MSR-2, 那么在 MSR-2 上需要哪些配置?

- A. [MSR-2-Serial0/0] ppp pap user user
- B. [MSR-2-Serial0/0] ppp pap password simple password
- C. [MSR-2] ppp pap local-user user password simple password
- D. [MSR-2-Serial0/0] ppp pap local-user user password simple password

Correct Answer: D Explanation

Explanation/Reference:

QUESTION 422

XYZ 公司的两个分公司处于不同地区,其间要搭建广域网连接。根据规划,广域网采用 PPP 协议,考虑到 网络安全,要求密码类的报文信息不允许在网络上明文传送,那么该采取如下哪种 PPP 验证协议?

- A. PAP
- B. CHAP
- C. MD5
- D. 3DES

Correct Answer: B

Explanation

Explanation/Reference:

Chap 网络上只传输用户名

QUESTION 423

在一个 PPP 连接中, 关于 NCP 的说法错误的是_____。

- A. NCP 用于协商验证方式
- B. NCP 用于协商数据链路上所传输的数据包的格式与类型
- C. NCP 用来建立、拆除和监控数据链路
- D. NCP 可以配置不同的网络层协议

Correct Answer: AC

Explanation

Explanation/Reference:

LCP:建立、拆除、监控数据链路

NCP: 协商网络层协议, 协商数据链路上传输数据包的格式与类型

PPP 建立链路之前首先进行 LCP 协商,协商内容包括工作方式是 SP 还是 MP、验证方式和最大传输单元

NCP 协商包括 IPCP 协商, IPCP 协商主要包括双方的 IP 地址

QUESTION 424

想要设置帧中继 LMI 类型为 ANSI,应该_____。

- A. 在系统模式下使用命令 fr lmi type ansi
- B. 在接口模式下使用命令 fr lmi type ansi
- C. 在系统模式下使用命令 fr lmi class ansi
- D. 在接口模式下使用命令 fr lmi class ansi

Correct Answer: B Explanation

Explanation/Reference:

QUESTION 425

通过 display fr map-info 命令显示信息如下: [RTA]display fr map-info Map Statistics for interface Serial1/0 (DTE) DLCI 30, Point-to-Point DLCI, Serial1/0.1 created at: 2008/09/17 17:46:59, status: ACTIVE DLCI 40, Point-to-Point DLCI, Serial1/0.2 created at: 2008/09/17 17:48:22, status: INACTIVE 下面说法正确的是_____。

- A. 接口 Serial1/0 下创建了两个点到点子接口。
- B. 显示信息中所示两条 PVC 都已建立。
- C. 该路由器作为用户侧设备使用。
- D. 以各项上都正确。

Correct Answer: AC Explanation

Explanation/Reference:

QUESTION 426

客户的网络连接如图所示。其中 RTA、RTB、RTC 的 IP 地址分别为 2.2.2.1/24、2.2.2.2/24、2.2.2.3/24, 要 实现 RTA 与 RTB、RTC 的互通,在 RTA 上配置如下哪些帧中继 MAP 是正确的?

- A. fr map ip 2.2.2.1 40
- B. fr map ip 2.2.2.2 40
- C. fr map ip 2.2.2.1 40 60

D. fr map ip 2.2.2.3 50

Correct Answer: BD

Explanation

Explanation/Reference:

QUESTION 427

客户的两台 MSR 路由器 MSR-1 和 MSR-2 通过各自的 S0/0 接口背靠背互连。在两台 MSR 路由器的 S0/0 接口之间启动并封装了的帧中继协议,其中 MSR-1 为帧中继 DCE 侧,MSR-2 为帧中继 DTE 侧。为了节约资源,在两台路由器上都配置了帧中继子接口,分别配置如下:

MSR-1:

interface Serial0/0.40 p2p

fr dlci 222

ip address 30.2.2.2 255.255.255.252

MSR-2:

interface Serial0/0.100 p2p

fr dlci 222

ip address 30.2.2.1 255.255.255.252

那么据此配置可以推测____。(选择一项或多项)

- A. 在 MSR-1 上不能 ping 通 30.2.2.1
- B. 在 MSR-1 上可以 ping 通 30.2.2.1
- C. 两台路由器帧中继子接口之间无法互通,因为没有配置 fr map
- D. 两台路由器帧中继子接口之间无法互通,因为他们的子接口号不一致

Correct Answer: B Explanation

Explanation/Reference:

FR 子接口配置:

创建帧中继子接口,进入子接口配置模式

interface type number.subinterface-number [multipoint | point-to-point]

配置帧中继子接口的虚电路号

fr dlci XXX

C)建立地址映射的命令和物理接口相同,可以使用静态或动态地址映射。地址映射只有在点到多点的情况下才需要配置。

QUESTION 428

在图中方框处应使用的设备是____。

- A. 路由器
- B. CSU/DSU
- C. 广域网交换机
- D. 调制解调器

Correct Answer: A Explanation

Explanation/Reference:

QUESTION 429

两台路由器 RTA 和 RTB 使用串口背靠背互连,其中 RTA 的串口配置了 HDLC 协议,而 RTB 的串口配置了 PPP 协议。两台设备上都配置了正确的 IP 地址,那么会发生的情况是_____。(选择一项或多项)

- A. RTB 串口物理层 up, 协议层 down
- B. RTB 串口物理层 down, 协议层 down。
- C. RTA 串口物理层 up,协议层保持 up 状态,但 RTA 不能 ping 通 RTB
- D. RTA 串口物理层 down, 协议层 down
- E. RTA 和 RTB 串口的物理层和协议层都为 down

Correct Answer: A Explanation

Explanation/Reference:

QUESTION 430

客户的网络连接形如:

HostA----GE0/0--MSR-1--S1/0-----WAN----S1/0--MSR-2--GE0/0----HostB

客户的 WAN 网络只支持同步方式,那么在两台路由器的 S1/0 接口可以运行____。(选择一项或多项)

- A. PPP+RIP
- B. HDLC+OSPF

C. PPP+OSPF

D. HDLC+RIP

Correct Answer: ABCD

Explanation

Explanation/Reference:

QUESTION 431

客户的网络连接形如:

HostA----GE0/0--MSR-1--S1/0----WAN----S1/0--MSR-2--GE0/0----HostB

客户的 WAN 网络只支持同步方式,同时 MSR-2 的 S1/0 需要从对端的 MSR-1 协商获得 IP 地址,而非手动配置静态 IP 地址。那么在两台路由器的 S1/0 接口可以运行_____。(选择一项或多项)

- A. PPP
- B. HDLC
- C. PPP+RIP
- D. HDLC+RIP

Correct Answer: AC

Explanation

Explanation/Reference: HDLC/FR 只支持同步 PPP 同异步都支持

QUESTION 432

一台路由器接口信息显示如下: Serial0/0 current state: UP

Line protocol current state: DOWN

Physical layer is synchronous, Baudrate is 64000 bps

Interface is DCE, Cable type is V35, Clock mode is DCECLK

那么该接口上可能封装或运行了哪种协议?

- A. PPP
- B. HDLC
- C. Frame Relay
- D. RIP
- E. 以上答案都不正确

Correct Answer: ABCD

Explanation

Explanation/Reference:

QUESTION 433

在一台 MSR 路由器上看到了如下调试信息:

- *Jan 23 09:17:36:720 2009 H3C RM/6/RMDEBUG:Source Address: 192.168.1.1
- *Jan 23 09:17:36:770 2009 H3C RM/6/RMDEBUG:Destination Address: 224.0.0.5
- *Jan 23 09:17:36:871 2009 H3C RM/6/RMDEBUG:Ver# 2, Type: 1, Length: 48.
- *Jan 23 09:17:36:972 2009 H3C RM/6/RMDEBUG:Router: 192.168.1.1, Area: 0.0.0.0, Checksum: 62961.
- *Jan 23 09:17:37:72 2009 H3C RM/6/RMDEBUG:AuType: 00, Key(ascii): 0 0 0 0 0 0 0 0
- *Jan 23 09:17:37:173 2009 H3C RM/6/RMDEBUG:Net Mask: 255.255.255.0, Hello Int: 10, Option: _E_. 那么根据如上的信息可知____。
- A. 该路由器上运行的不是 RIPv1
- B. 该路由器上运行的可能是 RIPv2

- C. 该路由器运行的路由协议支持 VLSM
- D. 该路由器上运行的可能是 OSPF

Correct Answer: D Explanation

Explanation/Reference:

QUESTION 434

在客户的路由器 MSR 30 上查看到如下 debug 信息:

*0.87831022 IP/8/debug_icmp:

ICMP Receive: ttl-exceeded(Type=11, Code=0), Src = 3.3.3.1, Dst = 3.3.3.2; Original IP header: Pro = 1, Src = 3.3.3.2, Dst = 20.1.1.1, First 8 bytes = 080081FF ABD40004

*0.87833017 IP/8/debug icmp:

ICMP Receive: ttl-exceeded(Type=11, Code=0), Src = 3.3.3.1, Dst = 3.3.3.2; Original IP header: Pro = 1, Src = 3.3.3.2, Dst = 20.1.1.1, First 8 bytes = 08007A2E ABD40005

据此可以推测____。

- A. 该 ICMP 报文的目的地址为 3.3.3.2
- B. 该 ICMP 报文的目的地址为 20.1.1.1
- C. 可能有路由环路,因为信息显示ttl-exceeded
- D. 在 IP 地址为 3.3.3.2 的路由器上执行了命令 ping 20.1.1.1

Correct Answer: BCD

Explanation

Explanation/Reference:

在 ping 报文中看到 ttl-exceeded 意味着有环路,而在 tracert 中则意味着到达某一跳

QUESTION 435

在四台 MSR 路由器之间运行 OSPF 并划分区域,其连接以及划分方式如图。已知网络中所有链路的 OSPF Cost 值都为 10,那么关于此图描述正确的是_____。(选择一项或多项)

A. 网络中四台路由器都是 ABR(Area Border Router)

- B. Area 0 之间的链路故障后, RTA 访问 RTB 的路径为 RTA->RTD->RTC->RTB
- C. RTA 访问 RTC 有两条等值路径,分别为 RTA->RTB->RTC 和 RTA->RTD-RTC
- D. RTD 访问 RTB 会优先选择 RTD->RTA->RTB 路径

Correct Answer: D Explanation

Explanation/Reference:

QUESTION 436

根据 OSI 七层参考模型的定义,_____负责提供流量控制,检验数据传输的正确性,并提供对多种上层协议的支持。(选择一项或多项)

- A. 应用层
- B. 数据链路层
- C. 表示层
- D. 传输层
- E. 网络接口层
- F. 物理层
- G. 会话层
- H. 网络层

Correct Answer: BD Explanation

Explanation/Reference:

应用层	为应用进程提供网络服务
表示层	定义数据格式与结构、协商上层数据格式、数据加密压缩
会话层	主机间通信,建立、维护、终结应用程序间会话,文字处理、邮件、表格
传输层	分段上层数据,端到端连接,透明可靠传输,差错校验、重传,流量控制
网络层	编址,路由,拥塞控制,异种网络互连
数据链路层	编帧、链路建立/维持/释放,流量控制,差错校验,寻址,标识上层数据
物理层	电压,接口,线缆,传输距离等物理参数。四大特性: 机械、电器、功能、规程

QUESTION 437

客户的两台路由器 MSR-1、MSR-2 的广域网接口 S0/0 采用 PPP 协议,路由器通过配置 RIP 来互相学习对端的路由,其中在 MSR-1 上有如下配置:

rip 1

network 0.0.0.0

import-route static

#

ip route-static 0.0.0.0 0.0.0.0 Serial0/0

那么关于这个配置的错误解释是____。

- A. RIP 引入静态配置的默认路由并发布给 MSR-2
- B. 配置中的 RIP 1 意味着配置的 RIP 版本是 V1 版本
- C. 通过如上配置 MSR-1 不会通过 RIP 动态发布默认路由给对端
- D. 通过如上配置 MSR-1 可以通过 RIP 动态发布默认路由给对端

Correct Answer: AC

Explanation

Explanation/Reference:

QUESTION 438 户路由器 S0/0 接入帧中继网络,在路由器的接口上有如下显示信息: Serial1/1 current state :UP Line protocol current state :DOWN Internet Address is 3.3.3.2/24 接口的协议状态为 DOWN,那么据此分析____。 A. 接口可能封装了 PPP 协议 B. 物理链路可能有故障 C. 封装的 LMI 类型可能与远端不一致 D. 如果接口封装了帧中继协议,此时 PVC 的状态应该是 DOWN Correct Answer: AC

Correct Answer: AC Explanation

Explanation/Reference:

QUESTION 439

以下说法正确的是____。(选择一项或多项)

- A. DCE(Data Circuit Terminating Equipment,数据通信设备或者数据电路终端设备)设备及其与通信网络的连接构成了网络终端的用户网络接口。它提供了到网络的一条物理连接用于转发业务量,并且提供了一个用于同步 DCE 设备和 DTE 设备之间数据传输的时钟信号。
- B. DTE(Data Terminal Equipment,数据终端设备)设备指位于用户网络接口用户端的设备,它能够作为信源、信宿或同时为二者。数据终端设备通过数据通信设备(例如,调制解调器)连接到一个数据网络上,并且通常使用数据通信设备产生的时钟信号。调制解调器和接口卡都是 DTE 设备的例子。是 DCE 设备的例子
- C. CSU (Channel Service Unit, 信道服务单元): 把终端用户和本地数字电话环路相连的数字接口设备。 通常它和 DSU 统称为 CSU/DSU。CSU 设备包括计算机、协议翻译器以及多路分解器等设备。 DTE 设备包括这些
- D. DSU (Data Service Unit,数据服务单元):指的是用于数字传输中的一种设备,它能够把 DTE 设备上的物理层接口适配到 T1 或者 E1 等通信设施上。数据业务单元也负责信号计时等功能,它通常与 CSU 一起提及,称作 CSU/DSU。

Correct Answer: AD Explanation

Explanation/Reference:

QUESTION 440

以下关于广域网的说法,错误的是。

- A. HDLC 协议只支持点到点链路,不支持点到多点链路。
- B. HDLC 协议可以封装在同步链路上,也可以封装在异步链路上。 只支持同步
- C. 当 CE1/PRI 接口使用 E1 工作方式时,它相当于一个不分时隙、数据带宽为 2Mbps 的接口,其特性与同步串口相同,支持 PPP、帧中继、LAPB 和 X.25 等数据链路层协议,支持 IP 和 IPX 等网络协议。
- D. 当 CE1/PRI 接口使用 CE1/PRI 工作方式时,它在物理上分为 32 个时隙,对应编号为 0~31,其中 0 时隙用于传输同步信息。

Correct Answer: CD Explanation

Explanation/Reference:

QUESTION 441

以太网交换机的二层转发基本流程包括____。

- A. 根据接收到的以太网帧的源 MAC 地址和 VLAN ID 信息添加或刷新 MAC 地址表项;
- B. 根据目的 MAC 地址查找 MAC 地址表,如果没有找到匹配项,那么在报文对应的 VLAN 内广播;
- C. 如果找到匹配项,但是表项对应的端口并不属于报文对应的 VLAN,那么丢弃该帧;
- D. 如果找到匹配项,且表项对应的端口属于报文对应的 VLAN,那么将报文转发到该端口,但是如果表项对应端口与收到以太网帧的端口相同,则丢弃该帧

Correct Answer: BCD

Explanation

Explanation/Reference:

交换机通过记录端口接收数据帧中源 MAC 地址和端口的对应关系来进行 MAC 地址表学习转发时根据目的 MAC 地址从相应端口发送出去

QUESTION 442

关于 ISDN 网络的组成,下面说法正确的是。

- A. ISDN 网络由 ISDN 终端、终端适配器、网络终端设备、ISDN 接入路由器、ISDN 交换机构成。
- B. ISDN 终端和终端适配器组成 ISDN 网络的用户侧。
- C. ISDN 交换机通常是 ISDN 用户侧的设备。
- D. ISDN 终端可以是一台 ISDN 电话机。

Correct Answer: ABD

Explanation

Explanation/Reference:

QUESTION 443

某用户想要使用广域网接入。由于平均业务量很小,平均仅为 50Kbps 带宽,但是实时性要求很高。该用户预算非常有限,因此必须考虑使用费用问题。最合适的接入方式为____。

- A. ISDN BRI
- B. ISDN PRI
- C. PSTN 拨号
- D. DDN 专线

Correct Answer: A

Explanation

Explanation/Reference:

ISDN BRI----64K-128K; ISDN PRI----30*64K; PSTN 拨号----56K; DDN 专线----N*64k,专线从带宽来看,全都满足要求

但 PSTN 实时性远不如 DDN/ISDN

而从费用来看 DDN 价格要比 ISDN BRI 略高,故最后只能选择 ISDN BRI

QUESTION 444

客户的两台 MSR30 路由之间通过广域网接口 S0/0 互连,同时运行了 PPP 以及 RIP 协议。出于安全性的考虑,要分别配置 PPP PAP 验证和 RIP 明文验证。那么这两种验证方式的相同点是____。

- A. 都是两次握手验证方式
- B. 都是在网络上传递明文关键字
- C. 用户名和密码都以明文的形式在网络上传播
- D. 都采用 128bit 密钥长度

Correct Answer: B

Explanation

Explanation/Reference:

PPP 两次握手,但 rip 不是

rip 明文验证只有密钥,没有用户名 rip 有明文验证和 MD5

[H3C-Serial0/2/0]rip authentication-mode simple 123

pap 明文传输用户名密码, chap 只在网络上传输用户名, 不传输密码

QUESTION 445

客户的路由器 MSR-1、MSR-2 通过各自的 GigabitEthernet0/0 互连,同时两台路由器之间运行了 RIP。RIP 已经正确完成了远端路由学习。在 MSR-1 上添加了如下配置:

firewall enable

acl number 3000

rule 0 deny udp destination-port eq 520

rule 5 permit ip

并将此 ACL 应用在 MSR-1 接口 GigabitEthernet0/0 的 inbound 方向上。那么_____。

- A. MSR-1 上仍然拥有到对端的 RIP 路由
- B. MSR-1 上不能学习到对端的 RIP 路由
- C. MSR-2 上仍然拥有到对端的 RIP 路由
- D. MSR-2 上不能学习到对端的 RIP 路由

Correct Answer: BC

Explanation

Explanation/Reference:

只有针对 icmp 过滤的同一接口 in/out 方向都有意义,因 icmp echo/echo-reply 有去有回。其他协议则不行,注 意方向

QUESTION 446

客户的 MSR 路由器通过 S0/0 接口连接运营商网络,通过 G1/0 接口连接内部网络。目前网络运行正常,客 户可以通过路由器正常访问 Internet 和 Intranet 所有业务。现在在 MSR 上添加了如下配置:★原答案 ABCD firewall enable firewall default deny

acl number 3002

rule 0 deny tcp

interface Serial0/0

link-protocol ppp firewall packet-filter 3002 inbound

firewall packet-filter 3002 outbound

那么如下哪些应用可能不受影响

- A. 和运营商之间通过 RIP 学习路由
- B. 和运营商之间通过 OSPF 学习路由
- C. 和运营商之间通过 BGP 学习路由
- D. 访问位于上海的信息技术网站

Correct Answer: ABCD

Explanation

Explanation/Reference:

BGP 应用层协议,基于 TCP,端口号 89 RIP 应用层协议,基于 UDP,端口号 520 OSPF 传输层协议,基于 IP,协议号 89 OSPF 将协议基于 IP,协议号 89

输的可靠性需要协议本身来保证