STD – 9 MATHS

CHAPTER - 2

polynomials

EXERCISE - 2.2 Q:3,4

3. Verify whether the following are zeroes of the polynomial, indicated against them.

(i)
$$p(x) = 3x + 1, x = \frac{-1}{3}$$

For,
$$x = \frac{-1}{3}$$
, $p(x) = 3x + 1$

$$p(\frac{-1}{3}) = 3(\frac{-1}{3}) + 1 = -1 + 1 = 0$$

$$\therefore \frac{-1}{3} \text{ is a zero of p(x).}$$

(ii)
$$p(x) = 5x - 1$$
, $x = \frac{4}{5}$

For,
$$x = \frac{4}{5}$$
, $p(x) = 5x - \pi$

$$p(\frac{4}{5}) = 5(\frac{4}{5}) - \pi$$

$$= 4 - \pi$$

$$\therefore \frac{4}{5} \text{ is not a zero of p(x)}$$

(iii)
$$p(x) = x^2 - 1$$
, $x = 1$, -1
For, $x = 1$, -1
 $p(x) = x^2 - 1$
 $p(1) = 1^2 - 1$
 $= 1 - 1 = 0$
 $p(-1) = (-1)^2 - 1$
 $= 1 - 1 = 0$
 $\therefore 1$, -1 are zeros of $p(x)$.

(iv)
$$p(x) = (x + 1) (x - 2), x = -1, 2$$

For, $x = -1, 2$;
 $p(x) = (x + 1) (x - 2)$
 $p(-1) = (-1 + 1) (-1 - 2)$
 $= (0) (-3)$
 $= 0$
 $p(2) = (2 + 1) (2 - 2)$
 $= (3) (0) = 0$
 $\therefore -1.2$ are zeros of $p(x)$.

 \therefore -1,2 are zeros of p(x).

(v)
$$p(x) = x^2$$
, $x = 0$
For, $x = 0$ $p(x) = x^2$
 $p(0) = 0^2$
 $= 0$

 \therefore 0 is a zero of p(x).

(vi) p(x) = lx + m, x =
$$\frac{-m}{l}$$

For,
$$x = \frac{-m}{1}$$
; $p(x) = lx + m$

$$\therefore p(\frac{-m}{l}) = l(\frac{-m}{l}) + m$$
$$= -m + m$$

$$\frac{-m}{l}$$
 is a zero of p(x).

= 0

(vii)
$$p(x) = 3x^2 - 1$$
, $x = \frac{-1}{\sqrt{3}}$, $\frac{2}{\sqrt{3}}$

For,
$$x = \frac{-1}{\sqrt{3}}$$
, $\frac{2}{\sqrt{3}}$; $p(x) = 3x^2 - 1$

$$\therefore p(\frac{-1}{\sqrt{3}}) = 3(\frac{-1}{\sqrt{3}})^2 - 1$$

$$=3(\frac{1}{3})-1$$

$$= -1 - 1 = 0$$

$$\therefore \frac{-1}{\sqrt{3}} \text{ is a zero of p(x) but } \frac{2}{\sqrt{3}} \text{ is not a zero of p(x).}$$

$$\therefore p(\frac{2}{\sqrt{3}}) = 3(\frac{2}{\sqrt{3}})^2 - 1$$

$$=3(\frac{4}{3})-1=4-1$$

$$=3\neq0$$

(viii)
$$p(x) = 2x + 1, x = \frac{1}{2}$$

For,
$$x = \frac{1}{2}p(x) = 2x + 1$$

$$p(\frac{1}{2}) = 2(\frac{1}{2}) + 1$$

$$= 1 + 1$$

$$= 2 \neq 0$$

$$\frac{1}{2}$$
 is not a zero of p(x).

4. Find the zero of the polynomials in each of the following cases:

(i)
$$p(x) = x + 5$$

 $p(x) = x + 5$
 $\Rightarrow x + 5 = 0$
 $\Rightarrow x = -5$

∴ 5 is a zero polynomial of the polynomial p(x).

(ii)
$$p(x) = x - 5$$

$$p(x) = x - 5$$

$$\Rightarrow x - 5 = 0$$

$$\Rightarrow$$
 x = 5

∴ 5 is a zero polynomial of the polynomial p(x).

(iii)
$$p(x) = 2x + 5$$

$$p(x) = 2x + 5$$

$$\Rightarrow$$
 2x + 5 = 0

$$\Rightarrow$$
 2x = -5

$$\Rightarrow x = \frac{-5}{2}$$

$$x = \frac{-5}{2}$$
 is a zero polynomial of the polynomial p(x).

(iv)
$$p(x) = 3x - 2$$

$$p(x) = 3x - 2$$

$$\Rightarrow$$
 3x - 2 = 0

$$\Rightarrow$$
 3x = 2

$$\Rightarrow x = \frac{2}{3}$$

$$x = \frac{2}{3}$$
 is a zero polynomial of the polynomial p(x).

$$(v) p(x) = 3x$$

$$p(x) = 3x$$

$$\Rightarrow$$
 3x = 0

$$\Rightarrow x = 0$$

∴ 0 is a zero polynomial of the polynomial p(x).

(vi)
$$p(x) = ax$$
, $a \neq 0$
 $p(x) = ax$

$$\Rightarrow$$
 3x = 0

$$\Rightarrow x = 0$$

x = 0 is a zero polynomial of the polynomial p(x).

(vii) p(x) = cx + d, $c \neq 0$, c, d are real numbers.

$$p(x) = cx + d$$

$$\Rightarrow$$
 cx + d = 0

$$\Rightarrow x = \frac{-d}{c}$$

$$x = \frac{-d}{c}$$
 is a zero polynomial of the polynomial p(x).

Thanks

For watching