HP-12C

Fernando Anselmo

Versão 1.0

Resumo

A calculadora da *Hewlett Packard* modelo HP-12C foi lançada em 1981 e se trata de um dos maiores sucessos da empresa, a mais vendida e mais utilizada calculadora do mundo inteiro principalmente na execução de cálculos financeiros e estatísticos. Conheceremos o básico sobre o uso da calculadora que possui mais de 120 funções específicas para uso em negócios e permite trabalhar com 20 diferentes tipos de fluxos de caixa, operações com taxas internas de retorno e valores presentes líquidos.

Keywords

HP12C — Matemática — Estatística

Conceitos Básicos

A forma de cálculos da HP-12C é pelo sistema RPN (*Reverse Polish Notation*), no qual primeiro se digita o valor, informa sua entrada com a tecla (*ENTER*), digita o segundo valor e a tecla da função desejada. Segue-se esse raciocínio para todas as funções da calculadora, seja com a realização de operações básicas, financeiras ou de estatística; ou seja, primeiro digita-se os valores e por fim a função desejada.

Primeiro detalhe e antes de começarmos algumas teclas valem por 3 funções distintas, o valor escrito em branco (padrão), em amarelo (acionado pela tecla f) e em azul (acionado pela tecla f). Nesta apostila iremos referenciar a todas essas teclas, sendo assim a primeira no canto superior esquerdo pode ser descrita como f0, f12x ou f2m dependendo se ativamos ou não as teclas f3 ou f3 . Esta é a disposição das teclas:

Instalar a Calculadora

Recomendo fortemente ter a máquina física, porém muitas pessoas possuem receio de comprarem e não se adaptarem, sendo assim podemos baixar uma versão [1] criada com a linguagem Java, testarmos todas as suas potencialidades e decidir.

Basta baixar o arquivo compactado, descompactar que na pasta gerada estão as instruções para seu uso, lembro que e assim como avisa o autor: "Este software foi desenvolvido para fins educacionais. NÃO É RECOMENDADO o uso deste para cálculos profissionais".

Teste Inicial

A calculadora possui alguns parâmetros que devemos conhecer, por exemplo, se ao ligar **ON** aparecer no canto inferior esquerdo da tela um * isso indica que a bateria está fraca. O seguinte teste nos permite reconhecer se tudo está OK com seu funcionamento:

- 1. Desligar a calculadora
- 2. Pressionar e segurar a tecla (x)
- 3. Pressionar e soltar a tecla ON
- 4. Soltar a tecla 🔀

Aparecerá a palavra **RUNNING** piscando, em seguida todas as letras aparecerão (é ideal inclusive para saber se existe algum pixel queimado). Caso contrário será mostrado **ERRO**.

Códigos de Erro da HP-12C

Estes são os códigos de erro que podem ser apresentados na calculadora devido a ações indevidas:

- **Error 0** erro em operações matemáticas. Exemplos: divisão por zero, raiz quadrada com negativo, logaritmo com número menor ou igual a zero, fatorial com um não inteiro.
- **Error 1** ultrapassou a capacidade de armazenamento e processamento da máquina, isso é, a magnitude do resultado é igual ou superior a 10100. Por exemplo, fatorial de 73. Note que a mensagem de erro não aparece resulta apenas em uma série de noves no visor.
- Error 2 operações estatísticas com erro. Por exemplo, média com n igual a 0.
- **Error 3** erro no cálculo da taxa interna de retorno (IRR). Neste caso, a mensagem informa que o cálculo é complexo, podendo envolver múltiplas respostas e não poderá prosseguir, a menos que você forneça uma estimativa para a taxa interna de retorno (IRR)
- Error 4 erro em operações com a memória da calculadora. Por exemplo: tentativa na introdução com mais de 99 linhas para programação; ocorreu uma tentativa de desvio (GTO) para uma linha inexistente em um programa; tentativa de operação com os registradores de armazenamento (R5 a R9 ou R.0 a R.9); tentativa na utilização de um registrador ocupado com linha de programação.
- **Error 5** erro em operações com juros compostos. Provavelmente, algum valor foi colocado com o sinal errado (todos os valores têm o mesmo sinal), ou os valores para i, PV e PF são tais, que não existe uma solução para n.
- **Error 6** problemas no uso dos registradores de armazenamento. O registrador especificado não existe, ou foi convertido em linha de programação. Número para o fluxo de caixa foi superior a 20.
- Error 7 problemas no cálculo da taxa interna de retorno (IRR). Não houve troca de sinal no fluxo de caixa.
- **Error 8** problemas com o calendário. Pode ser decorrente do emprego de data inapropriada ou em formato impróprio; tentativa na adição de dias além da capacidade.

Error 9 problemas no auto-teste. Ou o circuito da calculadora não está funcionando corretamente, ou algum procedimento no auto-teste apresentou falhas.

PR Error perda irreparável da memória contínua.

ATENÇÃO: Quanto a Problemas

Em caso de erros provavelmente a calculadora precisa de reparos ou não é original. O mais importante ressaltarmos que trata-se de uma máquina blindada, deste modo alguns problemas só seriam resolvidos com a troca desta.

Bloquear e Desbloquear

A calculadora pode ser bloqueada para impedir que outra pessoa sem conhecimento a utilize. Para bloquear pressionar as teclas A 5 Enter, pressionar conjuntamente as teclas ON PMT e novamente em conjunto as teclas ON PMT, no visor aparece: **0.000000 45** e pressionar a tecla 1/x

Se tudo está correto agora a calculadora não liga mais, para desbloquear pressionar conjuntamente as teclas *ON*

Limpeza

Para deixar a calculadora da mesma forma como saiu de fábrica, siga os seguintes passos:

- 1. Desligar a calculadora
- 2. Pressionar e segurar a tecla
- 3. Pressionar e soltar a tecla (ON)
- 4. Soltar a tecla

Ao término deve aparecer a mensagem: *Pr Error*, caso contrário repita os passos até que a mensagem apareça. Para apagar os valores armazenados na calculadora utilizamos as seguintes teclas:

- \overline{CLX} visor e registro de X (**CLear X**).
- **f D** registradores estatísticos, pilhas e visor.
- f PRGM memória de programação.
- *f FIN* registros financeiros.
- *f* (*REG*) registros (armazenamento de dados, financeiros, de pilha (LAST X) e visor).

Trabalhar com a Pilha

A pilha operacional é um arquivo com 4 variáveis onde é possível armazenar dados para efetuar operações conjuntas, tais como fórmulas complexas, vejamos um exemplo:

Resolver a expressão: $(4,5-3,2) \div (8,4-(1,3\times6))$

4 . 5 Enter 3 . 2 – 8 . 4 Enter 1 . 3 Enter 6 \times – \div

Resultado 2,17

Armazenar e Recuperar da Memória

A calculadora possui 20 posições de memória definidas das teclas numéricas de 0 a 9 e .0 a .9, para armazenar em qualquer posição digitamos o número, pressionar a tecla *STO* e indicar qual posição de memória. Para recuperar o valor pressionar a tecla *RCL* e indicar qual posição de memória.

Mudanças

Para realizar modificações na calculadora utilizamos as seguintes teclas:

- ON . -Alternar "." ou "," como separador decimal
- (CHS) Trocar o sinal de um número (CHange Sign)
- [núm] Modificar a quantidade de casas decimais.
- *f RND* Arredondar o número.
- $x \le y$ Voltar para o último número digitado e incluído na máquina (corrigir valores).
- (R) Troca os valores das Pilhas X, Y, Z e T (Roll down)

Lidar com Datas

A calculadora permite trabalhar com datas entre 15/10/1582 a 25/11/4046. Para acertarmos a notação:

- (g) (D.MY) Notação em D.MY (Europeia)
- g M.DY Notação em M.DY (Americana)

Coloquemos em notação europeia (no visor aparece a informação na parte debaixo) e para introduzirmos a data 17/08/1966: 1 7 . 0 8 1 9 6 6

Temos na calculadora algumas funções que nos permite trabalhar com datas:

- data *Enter* nDias *g DATE* mostrar a próxima data
- data1 (Enter) data2 (g) $(\triangle DYS)$ calcular a diferença entre duas datas

Problema 1: Qual dia da semana cairá o Natal do ano 2021?

2 5 . 1 2 2 0 2 1 Enter 0 g DATE

Temos no visor o valor **25,12,2021 6**, que indica: 25/12/2021 Sexta¹

Problema 2: Em 09/05/2020 foi realizada uma aplicação em um banco para 90 dias. Qual a data de resgate e o dia da semana?

(0) (9) (.) (0) (5) (2) (0) (2) (0) (Enter) (9) (0) (g) (DATE)

Temos no visor o valor **8,08,2020 6**, que indica: 07/08/2020 Sexta

Problema 3: Uma aplicação por 90 dias foi resgatada no dia 07/08/2020. Qual foi o dia da aplicação?

0 7 . 0 8 2 0 2 0 Enter 9 0 CHS g DATE

Temos no visor o valor 9,05,2020 6, que indica: 09/05/2020 Sábado

¹Valores para os dias da semana: 1-Seg 2-Ter 3-Qua 4-Qui 5-Sex 6-Sáb 7-Dom

Problema 4 : Em 05/04/2020 foi aplicado dinheiro em um fundo de ações e o resgate do investimento em 15/08/2020. Qual o prazo real da aplicação e qual o número de dias entre as duas datas?
0 5 . 0 4 2 0 2 0 Enter 1 5 . 0 8 2 0 2 0 g \(\triangle DYS \)
A diferença é de 132 dias.
Operações Matemáticas
Essas são as Funções Aritméticas :
Somar: Para resolver a expressão 4 + 3, seguir a seguinte sequencia: (4) (ENTER) (3) (+), e como resultado teremos no visor o valor 7.
Subtrair: Para resolver a expressão $5-3$, seguir a seguinte sequencia: (5) (ENTER) (3) (-), e como resultado teremos no visor o valor 2.
Multiplicar: Para resolver a expressão 7×3 , seguir a seguinte sequencia: $\boxed{7}$ $\boxed{\textit{ENTER}}$ $\boxed{3}$ $\boxed{\times}$, e como resultado teremos no visor o valor 21.
Dividir: Para resolver a expressão $10 \div 2$, seguir a seguinte sequencia: 10 (ENTER) 2 \div , e como resultado teremos no visor o valor 5.
Essas são as Funções Algébricas :
• número g FRAC - isolar a parte fracionária
• número g (INTG) - isolar a parte inteira
• número $1/x$ - inverso
• número g n! - fatorial
• número g \sqrt{x} - raiz quadrada
• número Enter expoente y - potenciação
• número \underbrace{Enter} base $\underbrace{1/x}$ $\underbrace{y^x}$ - raiz qualquer
Essas são as Funções Logarítmicas :
• número g LN - logaritmo natural
• número g e - antilogaritmo (É a função inversa do logaritmo)
• número g LN base g LN ÷ - logaritmo em qualquer base
• resultado \underbrace{Enter} base $\underbrace{x \leq y}$ $\underbrace{y^x}$ - antilogaritmo em qualquer base
Percentual
Essas são as operações básicas para se trabalhar com percentual:
• número Enter número % - Calculo Básico = [baseP]
• valP 🗀 - Subtrai o percentual do total
• valP 🗐 - Aumenta o percentual do total

• número $\boxed{\it Enter}$ número $\boxed{\it \triangle\%}$ - Diferença Percentual (somar com 100 para obter o valor percentual)

• número \boxed{Enter} valP $\boxed{\%T}$ - Percentagem do Total (númT = Número Total valP = Valor Parcial)
Problema 1 : Um imóvel foi comprado por R\$ 110.000,00 e vendido por R\$ 138.400,00. Qual foi o percentual de lucro? (para agilizar a entrada de valores podemos dividi-los por 1.000)
1 1 0 Enter 1 3 8 . 4 \triangle %
O ganho foi de 25,82%
Problema 2 : Um título de capitalização possui seu valor aumentado em 0,5% após 1 ano, considerando que foram comprados 10 títulos no valor de R\$ 50,00 cada. Qual será o valor resgatado após o período estabelecido?
$5 0 Enter 0 . 5 \% + 1 0 \times$
Multiplicamos por 10 ao final pois foram comprados 10 títulos, o valor resgatado será de R\$ 502,50, ou seja, R\$ 2,50 a mais.

Problema 3: Dois amigos montaram uma Empresa, o primeiro entrou com R\$ 500,00 e o segundo com R\$ 300,00. Qual o percentual de participação dos sócios no lucro da Empresa?

- 1. Capital Total: 5 0 0 *Enter* 3 0 0 +
- 2. Participação sócio 1: (5) (0) (%T)
- 3. Participação sócio 2: CLX 3 0 0 %T

Sócio 1 com 62,50% e Sócio 2 com 37,50%.

Problema 4: Um eletrodoméstico que estava sendo vendido por R\$ 340,00 foi majorado² em 8%. Qual o novo preço de venda?

3 4 0 *Enter* 8 % +

O novo preço de venda é R\$ 367,20.

Problema 5: Foi recebido um salário de R\$ 935,00 após um reajuste de 5%. Qual era o valor do salário anterior?

9 3 5 Enter 1 Enter 5 % + ÷

O salário anterior era de R\$ 890,48.

Problema 6: O faturamento mensal de uma empresa é de R\$ 800,00, o valor das vendas a vista, R\$ 481,00. Qual a porcentagem de participação das vendas a vista em relação ao total?

8 0 0 Enter 4 8 1 %T

A porcentagem de participação é 60,13%.

Problema 7: Calcular a evolução o percentual de faturamento para uma empresa conforme a seguinte tabela:

Mês	Valor (Em mil R\$)
Janeiro	58
Fevereiro	66
Março	72
Abril	67

•	-	T .		•
	1 10	laneiro	2 HAY	oreiro.
ι.	$\mathbf{p}_{\mathbf{c}}$	Janeiro	arcv	CICHO.

²Acréscimo no preço do bem

5 8 Enter 6 6 <u>6</u> <u>6</u> %
 2. De Fevereiro a Março: 6 6 <i>Emer</i> 7 2 △%
3. De Março a Abril: (7 ② <i>Enter</i>) 6 (7 △%)
E teremos os seguinte percentuais: 13,79% , 9,09% e -6,94% .
Números com mais de 10 dígitos
O visor da HP-12C comporta até 10 dígitos. Para introduzir um número com mais de dez dígitos (por exemplo 500.000.000), procedemos da seguinte maneira:
1. Anote esse número em notação científica (5e11)
2. Teclar a mantissa: 5
3. Pressionar a tecla (RND)
4. Teclar o expoente: 11
Outra forma é utilizar as teclas f . para expressar as potencias de 10. Por exemplo o numero 4.069.948.757. Pressionar na sequencia: 4 0 6 9 9 4 8 7 5 7 f . e no visor aparece: 4,069948 09
Estatística
Quando falamos de média, sempre pensamos na aritmética, ou seja o somatório dos elementos dividida pela sua quantidade, que seria simplesmente o seguinte, dado o conjunto de elementos {3, 3, 4, 6, 7} calcular a média aritmética:
3 Enter 3 + 4 + 6 + 7 + 5 ÷
Que resulta em 4,60. Porém a calculadora permite realizarmos muitas outras operações estatísticas, começamos pela média geométrica:
3 Enter 3 \times 4 \times 6 \times 7 \times 5 $1/x$ y^2
Que resulta em 4,32 ou então a média harmônica:
$3 \ \frac{1}{x} + 3 \ \frac{1}{x} + 4 \ \frac{1}{x} + 6 \ \frac{1}{x} + 7 \ \frac{1}{x} + 5 \div \frac{1}{x}$
Que resulta em 4,08. Porém na calculadora, normalmente os dados estatísticos são armazenados como um conjunto de somas resultantes dos dados originalmente coletados. Por exemplo, para calcular a média armazenamos os dados e pressionamos a função correspondente:
Média Aritmética: 4,60 f Σ 3 Σ + 4 Σ + 6 Σ + 7 Σ + g \bar{x}
Média Geométrica: 4,32
Média Harmônica: 4,08
Vejamos algumas funções básicas:
• ① Limpar os valores armazenados nos registradores

• $(\underline{\Sigma}+)$ - Adicionar valores ao Somatorio
• g \(\substack \substack \) - Subtrair valores do Somatório
• (RCL) 1 - Número de Elementos Inseridos
• (RCL) 2 - Somatório dos Elementos
RCL 3 - Somatório dos Elementos ao Quadrado
Problema 1 : O preço de venda das últimas 10 casas vendidas em um bairro distinto foi de: R\$ 198,000.00; R\$ 185.000,00; R\$ 205.200,00; R\$ 225.300,00; R\$ 206.700,00; R\$ 201.850,00; R\$ 200.000,00; R\$ 189.000,00; R\$ 192.100,00; R\$ 200.400,00. Qual é a média dos preços de venda e qual é o desvio padrão da amostra? O preço de R\$ 240.000,00 seria considerado incomum na mesma comunidade?
1. Limpar a memória: ① ① ①
2. Inserir os valores (no visor cada vez que pressionamos $\Sigma+$ será mostrada a posição que o valor foi armazenado): 1 9 8 0 0 0 $\Sigma+$ 1 8 5 0 0 0 $\Sigma+$ 2 0 5 3 0 0 $\Sigma+$ 2 0 0 5 2 0 0 $\Sigma+$ 2 0 1 8 5 0 $\Sigma+$ 2 0 $\Sigma+$ 2 0 1 8 5 0 $\Sigma+$ 2 0 0 0 $\Sigma+$ 2 0 0 0 0 0 $\Sigma+$
3. Calcular a média: R\$ 200.355,00 g \bar{x}
4. Calcular o desvio padrão: R\$ 11.189,04
5. Calcular os limites.
a. Limite mínimo: R\$ 177.976,91 g \bar{x} Enter g S 2 \times $x \leq y$ R \downarrow -
b. Limite máximo: R\$ 222.733,09 $x \le y$ g $LSTx$ $+$
No intervalo dos limites o valor de R\$ 240.000,00 é considerado um <i>outlier</i> (incomum) para esse bairro.
Problema 2 : Um agrimensor quer saber a relação entre área construída e superfície de 8 casas localizadas em sua vizinhança. Para isso precisa conhecer a média e o desvio padrão de ambos os parâmetros. Suas medições permitiram criar a seguinte tabela:

Superfície (em m^2)	Área (em m^2)	Superfície (em m^2)	Área (em m^2)
12.000	3.120	9.000	2.080
10.000	2.560	10.000	2.700
11.000	2.920	13.000	3.280
14.000	3.300	12.000	3.080

1. Limpar a memória:

f Σ

2. Inserir os valores (área e superfície):

(3) (1) (2) (0) (Enter) (1) (2) (0) (0)

(3)	(1)	(2)	[0]	[Enter]	(1)	(2)	[0]	[0]	[0]	$(\Sigma +)$
2	0	8	0	Enter	9	0	0	0	0	Σ +
2	5	6	0	Enter	1	0	0	0	0	Σ +

2	7	0	0	Enter	1	0	0	0	0	Σ +
2	9	2	0	Enter	1	1	0	0	0	$\Sigma +$
3	2	8	0	Enter	1	3	0	0	0	Σ +
3	3	0	0	Enter	1	4	0	0	0	Σ +
(3)	0	8	0	Enter	1	2	0	0	0	$(\Sigma +)$

3. Média da Superfície: $11.375 m^2$ (g) (\bar{x})

4. Média da Área construída: 2.880 m^2

 $x \leq y$

5. Desvio Padrão da Superfície: 1.685,02 m^2

g s

6. Desvio Padrão da Área construída: 415,83 m²

 $x \leq y$

O desvio padrão é normalmente usado pelos investidores para medir o risco de uma ação. O desvio padrão é uma medida de volatilidade, ou seja, quanto mais os retornos da ação variarem do valor de retorno médio daquela ação, mais volátil é a ação. E conhecendo a média e o desvio padrão podemos ainda obter o **Coeficiente de Variação** que é dado pelo desvio padrão ÷ média.

Problema 3: Qual empresa apresenta uma menor volatilidade pois o valor final foi exatamente o mesmo conforme os seguintes valores de abertura, variação percentual e fechamento durante a última semana:

Movimento de Ação da Empresa A

Movimento de Ação da Empresa B

Abert.	Var.%	Fech.	Abert.	Var.%	Fech.
1.000,00	1,80	1.018,00	1.000,00	6,60	1.066,00
1.018,00	7,96	1.099,00	1.066,00	12,00	1.194,00
1.099,00	7,01	1.176,00	1.194,00	-9,00	1.086,00
1.176,00	-11,73	1.038,00	1.086,00	-4,00	1.043,00
1.038,00	2,00	1.058,00	1.043,00	1,50	1.058,00

1. Calcular o desvio padrão para **Empresa A**:

2. Calcular o desvio padrão para Empresa B:

A ação da Empresa A apresenta um desvio padrão de **R\$ 64,33** enquanto que a ação da Empresa B é de **R\$ 65,27** sendo esta a mais volátil.

Erro Padrão é uma medida de quão confiável é a média de uma amostra como um estimador da média de uma

população na qual a amostra foi retirada.

Problema 4: Uma amostra com 6 aluguéis para apartamentos de um quarto demonstrou o seguinte resultado: R\$ 190,00; R\$ 200,00; dois aluguéis R\$ 205,00; R\$ 216,00; R\$ 220,00. Qual média, desvio e erro padrão?

1. Entrada dos dados:

$$190 \Sigma +$$

$$\bigcirc$$
 0 0 $\overline{\Sigma}$

$$2 \quad 0 \quad 5 \quad \Sigma^+$$

$$2$$
 1 6 Σ^+

$$2 \ 0 \ \Sigma +$$

2. Média: R\$ 206,00

$$g$$
 \bar{x}

3. Desvio padrão: R\$ 10,86

$$g$$
 S

4. Erro padrão: R\$ 4,43

RCL	\Box	\bigcirc	\sqrt{r}	
(KCL)		(s)	$(\sqrt{\lambda})$	\cdot

Problema 5: Uma pesquisa registrou o valor dos aluguéis para apartamentos de um quarto: 54 por R\$ 190,00; 32 por R\$ 195,00; 88 por R\$ 200,00; 92 por R\$ 206,00. Qual média, desvio e erro padrão?

1. Entrada dos dados:

2. Média mensal: R\$ 199,44

RCL 0 STO 1 RCL 6 STO 3 g
$$\bar{x}$$

3. Desvio padrão: R\$ 5,97

$$g$$
 S

4. Erro padrão: R\$ 0,37

$$RCL$$
 1 g \sqrt{x} \div

Covariância

É uma medida da interdependência entre variáveis emparelhadas (x e y). Como o desvio padrão, a covariância pode ser definida para uma amostra (S_{xy}) ou uma população (S'_{xy}) da seguinte forma:

•
$$S_{xy} = r \times sx \times sy$$

•
$$S'_{xy} = r \times s'x \times s'y$$

Problema 1: Encontrar a covariância da amostra e da população para as seguintes variáveis emparelhadas:

x_i	26	30	44	50	62	68	74
y_i	92	85	78	81	54	51	40

1. Entrada dos dados:

f REG 9 2 Enter 2 6 Σ+ 8 5 Enter 3 0 Σ+ 7 8 Enter 4 4 Σ+ 8 1 Enter 5 0 Σ+ 5 4 Enter 6 2 Σ+ 5 1 Enter 6 8 Σ+ 4 0 Enter 7 4 Σ+
2. Covariância da amostra: -354,14 g s × Enter g ŷ,r R↓ ×
3. Covariância da população: -303,55 RCL 1 1 - RCL 1 : X
Ajuste de curva exponencial
Para quadrados mínimos pode ser calculado de acordo com a equação $y = Ae^{Bx}$. A técnica para o ajuste de curva exponencial é utilizado para determinar a taxa de crescimento com uma variável como o valor de uma ação ao longo do tempo, quando há suspeita de que o desempenho é não linear. Onde o valor de $\bf B$ é o valor decimal da taxa de crescimento contínuo.
Por exemplo, após digitar várias cotações de preços para o fim de mês a uma determinada ação, o valor de B é 0,10. Isso significa que, durante este período medido o estoque experimentou uma taxa de crescimento contínuo de 10%. Se B for maior que 0, teremos uma curva de crescimento.
Problema 1 : O preço histórico de uma ação foi registrado conforme a seguinte disposição: 2001 - R\$ 45,00; 2002 - R\$ 51,00; 2002 - R\$ 53,00; 2003 - R\$ 72,00; 2004 - R\$ 85,00; 2005 - R\$ 97,00. Qual a Taxa efetiva de crescimento e se continuar qual será o preço projetado ao final de 2006 (ano 7)?
1. Entrada dos dados: f
 2. Coeficiente de correlação (entre y e x): 0,98 g ŷ,r x≤y
3. Valor de A: 36,57 ① ② ③,r ② ②
4. Valor de B : 0,16 1 g \widehat{y},r g e^x 0 g \widehat{y},r g e^x $x \leq y$ $R \downarrow$ \div g LN
5. Taxa efetiva de crescimento: 0,18 g e 1 —
6. Projeção do preço para 2006: R\$ 113,87 7

Problema 2: Um fabricante observou as vendas de um produto ao longo de vários meses, foi registrado os seguintes valores: 1431; 3506; 5177; 6658; 7810; 8592. Estes podem ser ajustados por uma curva logarítmica da forma $y = A + B(\ln x)$, onde y representa as vendas cumulativas em unidades e x o número de meses desde o início. Quantas unidades serão vendidas ao final do sétimo e oitavo mês?

1. Entrada dos dados:
f REG 1 4 3 1 Enter 1 g LN Σ+ 3 5 0 6 Enter 2 g LN Σ+ 5 1 7 7 Enter 3 g LN Σ+ 6 6 5 8 Enter 4 g LN Σ+ 7 8 1 0 Enter 5 g LN Σ+ 8 5 9 2 Enter 6 g LN Σ+
2. Coeficiente de correlação (entre y e x): 0,99 (g) (ŷ,r) (x≤y)
3. Valor de A : 1.066,15 ① ② ③,r
4. Valor de B : $4.069,93$ 1 g \widehat{y},r Emer 0 g \widehat{y},r $x \leq y$ $R \downarrow$ —
5. Projeção de vendas para o sétimo mês: 8.985,87 unidades 7 g LN g ŷ,r
6. Projeção de vendas para o oitavo mês: 9.529,34 unidades 8 g LN g ŷ,r
Problema 3 : Ao investigar quantitativamente a relação entre o tempo (t) para um objeto em queda atingir o solo e a altura (h) em que caiu, foi lançado uma pedra de vários níveis e cronometrado sua descida resultando nas seguintes medidas: $t = 2$ e $h = 30$; $t = 2.5$ e $h = 50$; $t = 3.5$ e $h = 90$; $t = 4$ e $h = 130$; $t = 4.5$ e $h = 150$. Encontre a fórmula da curva de potência que melhor expressa h como uma função de h ($h = 10$).
1. Entrada dos dados:

2. Coeficiente de correlação (entre y e x): 1,0

9 0 g LN 3 . 5 g LN Σ^+ 1 3 0 g LN 4 g LN Σ+

(g) (\hat{y},r) $(x \leq y)$

3. Valor de A: 7,72 $0 g \hat{y}, r g e^x$

4. Valor de **B**: 1,99

1 g \hat{y}, r Enter 0 g \hat{y}, r $x \leq y$ $R \downarrow$ —

A fórmula que melhor expressa é: $h = 7,72 \times t^{1,99}$

Qui-quadrado

Esta é uma medida da qualidade do ajuste entre dois conjuntos de frequências. É usado para testar se um conjunto de observações difere de outro com frequências esperadas o suficiente para rejeitar a hipótese de quais frequências esperadas foram obtidas.

Problema 1: Um dado suspeito de um cassino em Las Vegas foi levado a uma empresa de testes para determinar sua honestidade. O dado é lançado 120 vezes e os seguintes resultados foram obtidos: 1 - 25; 2 - 17; 3 - 15; 4 - 23; 5 - 24; 6 - 16. A frequência esperada era 20 para cada número (120 lançamentos ÷ 6 lados).

1. Preparação para os dados:

 f REG

 2 0 STO 0

 2. Para face 1: 1,25

 2 5 Emer RCL 0 - Emer × RCL 0 ÷

 2. Para face 2: 0,45 - Acumulado 1,70

 1 7 Emer RCL 0 - Emer × RCL 0 ÷ +

 2. Para face 3: 1,25 - Acumulado 2,95

 1 5 Emer RCL 0 - Emer × RCL 0 ÷ +

 2. Para face 4: 0,45 - Acumulado 3,40

 2 3 Emer RCL 0 - Emer × RCL 0 ÷ +

 2. Para face 5: 0,80 - Acumulado 4,20

 2 4 Emer RCL 0 - Emer × RCL 0 ÷ +

1 6 Enter RCL 0 - Enter × RCL 0 ÷ +

O número com graus de liberdade é n-1, sendo 6 possibilidades, temos o valor **5** (5 graus de liberdade ou probabilidade = 0,95). Ao consultar a tabela Qui-quadrado ao final desta apostila, observamos x^2 e nível com significância de 0,05 e igual a **11,07**. Como o acumulado é um valor menor concluímos que o dado é justo.

Regressão

2. Para face 6: 0,80 - Acumulado 5,00

Na HP-12C, somatórios resultantes de dados estatísticos são apropriados cálculos de regressão linear. Os valores de um gráfico devem ser entrados para se calcular a equação da linha, obedecendo a sequencia: ordenada e abcissa.

Problema 1: Calcular a inclinação para caracterizar a linha reta e da abcissa (x) quando a ordenada (y) for igual a 8, com base na informação do seguinte gráfico:

Figura 1. Exemplo 01

- 1. Limpar a memória: f
- 2. Entrar com os valores: 0 Enter 0 Σ + 6 Enter 4 Σ +
- 3. Calcular a inclinação: 1 g \hat{y}, r
- 4. Calcular o valor da ordenada: 8 g (\hat{y}, r)

E assim temos uma inclinação de 1,50 e para abcissa com valor 8 a ordenada é igual a 12.

Problema 2: Calcular o ponto de interceptação-y, a inclinação para caracterizar a linha reta e o valor da abcissa quando

a ordenada for igual a 5 com base na informação do seguinte gráfico:

2. Entrar com os valores: (1) Enter (2) CHS Σ + (4) Enter (7) Σ +
3. Calcular a interceptação-y (A): 1,670 g ŷ,r

- 4. Calcular a inclinação (B): 0,33

 1 g \hat{y},r $x \leq y$ $R \downarrow$ $x \leq y$ —
- 5. Calcular o valor da abcissa: 10 5 g \hat{x}, r

Problema 3: Estimar as vendas previstas de uma fábrica para o ano de 2019 e em que ano as vendas chegam a 130.000 unidades conforme o seguinte detalhamento (as vendas estão em mil unidades): 2010 - 58; 2011 - 66; 2012 - 72; 2013 - 77; 2014 - 81; 2015 - 85.

Uma forma de estimar o comportamento das vendas futuras consiste em aplicar o Método dos Mínimos Quadrados, que permite encontrar a melhor reta que se ajusta aos pontos.

1. Limpar a memória: f Σ

1. Limpar a memória:

- 2. Entrar com os valores (para agilizar a digitação podemos usar o ano com 2 dígitos):
- 5 8 Enter 1 0 \(\subseteq +\)
 6 6 Enter 1 1 \(\subseteq \subsete +\)
 7 2 Enter 1 2 \(\subsete +\)
 7 7 Enter 1 3 \(\subsete +\)
 8 1 Enter 1 4 \(\subsete +\)
 8 5 Enter 1 5 \(\subsete +\)
- 3. Vendas previstas para o ano de 2019: 107,52 mil unidades
- 1 9 $g^{1}(\hat{y},r)$
- 4. Ano para 130.000 unidades: 2023
- 1 3 0 $g(\hat{x},r)$

Programação com Permutação e Combinação

Programar na HP-12C consiste em gravar uma sequência de teclas, este é um recurso muito útil para determinadas situações. É possível inserir no máximo 99 linhas na memória. As principais teclas a saber são:

- $\overline{R/S}$ RUN/STOP, iniciar ou interromper a execução de um programa
- f) PROGRAM/RUN, colocar a calculadora em modo de programação ou execução
- (g) (PSE) PAUSE, fornecer uma pausa com cerca de 1 seg. na execução do programa
- f PRGM CLEAR PROGRAMS, limpar os programas registrados na memória da calculadora
- (g) (GTO) GO TO, executar um desvio de rotina no programa
- (g) (BST) STEP, executar o programa passo a passo

Permutação (também chamada de Arranjo Simples) é um subconjunto ordenado em um conjunto de objetos distintos. O número de permutações possíveis, cada uma contendo n objetos, que podem ser formadas a partir de m objetos distintos é dado por: ${}_{m}P_{n} = m! \div (m-n)!$ Lembre-se que na permutação não existe repetição e o número de elementos a serem tomados para compor o resultado deve ser igual ao número de elementos no conjunto.

Por exemplo, seja T um conjunto com elementos: {A,B,C,D}, e queremos realizar agrupamentos com 2 elementos quantos arranjos podemos obter. Para resolvermos na calculadora criamos o seguinte programa:

```
f P/R

f PRGM - 00

STO 0 - 01

x≤y - 02

g n! - 03

g LSTx - 04

RCL 0 - 05

- 06

g n! - 07

÷ - 08

g GTO 0 0 - 09

f P/R
```

E para executar o programa: 4 Emer 2 R/S e temos como resposta 12. Ou seja: ${}_{4}P_{2} = \{AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC\}$

Problema 1: De quantas maneiras diferentes 10 pessoas podem sentar em um banco se só existem 4 lugares disponíveis? $\binom{10P_4}{}$

$$(1)$$
 (0) $(Enter)$ (4) (R/S)

E temos 5.040 maneiras diferentes.

Problema 2: Uma corrida com 20 atletas vai premiar os 5 primeiros, quantos arranjos são possíveis realizar? $(20P_5)$

E temos 1.860.480 maneiras diferentes.

Combinação é uma seleção com um ou mais conjuntos de objetos distintos, independentemente da ordem. O número de combinações possíveis, cada uma contendo n objetos, que podem ser formadas a partir de uma coleção de m objetos distintos é dado por: ${}_{m}C_{n} = m! \div (m-n)!n!$

Por exemplo, seja T um conjunto com elementos: {A,B,C,D}, e queremos realizar agrupamentos com 2 elementos quantos arranjos podemos obter sem a repetição desses. Para resolvermos na calculadora criamos o seguinte programa:

```
f P/R

f PRGM - 00

STO 0 - 01

x \le y - 02

g n! - 03

g LSTx - 04
```

E para executar o programa: 4 Enter 2 R/S e temos como resposta 6. Ou seja: ${}_{4}C_{2} = \{AB \text{ ou } BA, AC \text{ ou } CA, AD \text{ ou } DA, BC \text{ ou } CB, BD \text{ ou } DB, CD \text{ ou } DC\}$

Problema 1: Um coordenador precisa selecionar um comitê formado por três pessoas entre os sete engenheiros que trabalham para ele. De quantas maneiras diferentes o comitê pode ser selecionado? ${}_{7}C_{3}$

7 Enter 3 R/S

E temos 35 maneiras diferentes.

Problema 2: A megassena consiste em uma cartela de 60 números dentre os quais devemos acertar 6 para ganharmos o prêmio principal, quantas possibilidades existem? ${}_{6}OC_{6}$

6 0 Enter 6 R/S

E temos 50.063.860 maneiras diferentes.

Conclusão

O mais interessante que para praticar todos os conceitos que vimos nesta apostila não é necessário possuir uma HP12C e além do software indicado ainda é possível encontrá-la em vários sites [2] que apresentam versões online da mesma tornando possível testar todas as suas funcionalidades antes de adquiri-la.

Sou um entusiasta do mundo **Open Source** e novas tecnologias. Qual a diferença entre Livre e Open Source? <u>Livre</u> significa que esta apostila é gratuita e pode ser compartilhada a vontade. <u>Open Source</u> além de livre todos os arquivos que permitem a geração desta (chamados de arquivos fontes) devem ser disponibilizados para que qualquer pessoa possa modificar ao seu prazer, gerar novas, complementar ou fazer o que quiser. Os fontes da apostila (que foi produzida com o LaTex) está disponibilizado no GitHub [5]. Veja ainda outros artigos que publico sobre tecnologia através do meu Blog Oficial [3].

Referências

[1] Versão HP12C Platinum

https://sourceforge.net/projects/finanx/

[2] Versão OnLine

https://www.fazerfacil.com.br/calculadoras/hp12c.html

[3] Fernando Anselmo - Blog Oficial de Tecnologia

http://www.fernandoanselmo.blogspot.com.br/

[4] Encontre essa e outras publicações em https://cetrex.academia.edu/FernandoAnselmo

[5] Repositório para os fontes da apostila

https://github.com/fernandoans/publicacoes

Chi-square Distribution Table

d.f.	.995	.99	.975	.95	.9	.1	.05	.025	.01
1	0.00	0.00	0.00	0.00	0.02	2.71	3.84	5.02	6.63
2	0.00	0.02	0.05	0.10	0.02	4.61	5.99	7.38	9.21
3	0.07	0.02	0.22	0.35	0.58	6.25	7.81	9.35	11.34
4	0.07	0.30	0.48	0.71	1.06	7.78	9.49	11.14	13.28
5	0.41	0.55	0.83	1.15	1.61	9.24	11.07	12.83	15.09
6	0.68	0.87	1.24	1.64	2.20	10.64	12.59	14.45	16.81
7	0.99	1.24	1.69	2.17	2.83	12.02	14.07	16.01	18.48
8	1.34	1.65	2.18	2.73	3.49	13.36	15.51	17.53	20.09
9	1.73	2.09	2.70	3.33	4.17	14.68	16.92	19.02	21.67
10	2.16	2.56	3.25	3.94	4.87	15.99	18.31	20.48	23.21
11	2.60	3.05	3.82	4.57	5.58	17.28	19.68	21.92	24.72
12	3.07	3.57	4.40	5.23	6.30	18.55	21.03	23.34	26.22
13	3.57	4.11	5.01	5.89	7.04	19.81	22.36	24.74	27.69
14	4.07	4.66	5.63	6.57	7.79	21.06	23.68	26.12	29.14
15	4.60	5.23	6.26	7.26	8.55	22.31	25.00	27.49	30.58
16	5.14	5.81	6.91	7.96	9.31	23.54	26.30	28.85	32.00
17	5.70	6.41	7.56	8.67	10.09	24.77	27.59	30.19	33.41
18	6.26	7.01	8.23	9.39	10.86	25.99	28.87	31.53	34.81
19	6.84	7.63	8.91	10.12	11.65	27.20	30.14	32.85	36.19
20	7.43	8.26	9.59	10.85	12.44	28.41	31.41	34.17	37.57
22	8.64	9.54	10.98	12.34	14.04	30.81	33.92	36.78	40.29
24	9.89	10.86	12.40	13.85	15.66	33.20	36.42	39.36	42.98
26	11.16	12.20	13.84	15.38	17.29	35.56	38.89	41.92	45.64
28	12.46	13.56	15.31	16.93	18.94	37.92	41.34	44.46	48.28
30	13.79	14.95	16.79	18.49	20.60	40.26	43.77	46.98	50.89
32	15.13	16.36	18.29	20.07	22.27	42.58	46.19	49.48	53.49
34	16.50	17.79	19.81	21.66	23.95	44.90	48.60	51.97	56.06
38	19.29	20.69	22.88	24.88	27.34	49.51	53.38	56.90	61.16
42	22.14	23.65	26.00	28.14	30.77	54.09	58.12	61.78	66.21
46	25.04	26.66	29.16	31.44	34.22	58.64	62.83	66.62	71.20
50	27.99	29.71	32.36	34.76	37.69	63.17	67.50	71.42	76.15
55	31.73	33.57	36.40	38.96	42.06	68.80	73.31	77.38	82.29
60	35.53	37.48	40.48	43.19	46.46	74.40	79.08	83.30	88.38
65	39.38	41.44	44.60	47.45	50.88	79.97	84.82	89.18	94.42
70	43.28	45.44	48.76	51.74	55.33	85.53	90.53	95.02	100.43
75	47.21	49.48	52.94	56.05	59.79	91.06	96.22	100.84	106.39
80	51.17	53.54	57.15	60.39	64.28	96.58	101.88	106.63	112.33
85	55.17	57.63	61.39	64.75	68.78	102.08	107.52	112.39	118.24
90	59.20	61.75	65.65	69.13	73.29	107.57	113.15	118.14	124.12
95	63.25	65.90	69.92	73.52	77.82	113.04	118.75	123.86	129.97
100	67.33	70.06	74.22	77.93	82.36	118.50	124.34	129.56	135.81

Figura 3. Tabela Qui-quadrado