A geometric realisation of affine 0-Schur algebras.

Tom Crawley

February 25, 2020

Contents

1 Introduction						
2	Background: The double flag variety approach to q-Schur algebras 2.1 Flag varieties as projective algebraic varieties					
3	The cyclic flags approach to affine q-Schur algebras					
	3.1	Cyclic flags	6			
		3.1.1 A product on orbits	7			
		3.1.2 Triple products	8			
	3.2	Convolution algebras	8			
	3.3	Affine q-Schur algebras	9			
4	Qui	Quivers with relations for affine q-Schur algebras				
	4.1	Basic results and notation	10			
		4.1.1 Elementary matrices	10			
		4.1.2 Transpose involution	10			
		4.1.3 A multiplication rule	11			
	4.2	Relations	12			
	4.3	quivers with relations	13			
		4.3.1 Exceptional case n=2	13			
		4.3.2 Typical case	14			
5	A g	eneric affine algebra	15			
	5.1	Introducing the generic affine algebra	15			
	5.2	A partial order	16			
	5.3	Grassmannians and related varieties	17			
	5.4	Geometry of affine flag varieties	18			
		5.4.1 Action through an algebraic group	20			
		5.4.2 Incidence in affine flag varieties	21			
	5.5	Geometry of orbits	22			
		5.5.1 Geometry of orbit products	23			
	5.6	Existence of a maximum	26			
	5.7	Associativity	27			
	5.8	The generic algebra	29			

6	A r	ealisat	ion of affine zero Schur algebras	31		
	6.1	Prelim	inary results	31		
		6.1.1	Elementary basis elements	31		
		6.1.2	Transpose involution	32		
		6.1.3	Multiplication rules	32		
	6.2	Preser	esentation of the generic algebra			
		6.2.1	The typical case	33		
		6.2.2	Exceptional case	34		
7	Fur	$\mathbf{ther} \; \mathbf{d}$	irections	35		
7.1 Further results on affine zero Schur algebras						
	7.2	7.2 Deformed group algebras of symmetric groups				

Introduction

Background: The double flag variety approach to q-Schur algebras

2.1 Flag varieties as projective algebraic varieties

Include a discussion of flag varieties in a finite dimensional vector space. Explain: topology of projective space; Plücker embedding of Grassmannian in a projective space; flag varieties as a closed subset in a product of Grassmannians - show that the inclusion of one subspace into another is a closed condition - given by vanishing of some homogenous polynomials which should appear as minors of a matrix.

References for this material include [1][J. Harris: A First Course in Algebraic Geometry]; [2][D. Hudec: The Grassmannian as a Projective Variety]; [4][P. Morandi: Algebraic Groups, Grassmannians and Flag Varieties].

The cyclic flags approach to affine q-Schur algebras

Fix natural numbers n and r.

Definition 3.0.1 (compositions). A composition of r into n parts is an n-tuple $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{Z}^n$ of non-negative integers whose sum equals r. Denote the set of compositions of r into n parts by Λ_0 .

Definition 3.0.2 (infinite periodic matrices). Let Λ_1 be the set of matrices $A = (a_{i,j})_{i,j \in \mathbb{Z}}$ with integer entries $a_{i,j}$ satisfying the following conditions:

- $a_{i,j} \geq 0$ for each $i, j \in \mathbb{Z}$;
- each row or column has only finitely many non-zero entries;
- the sum of the entries in any n consecutive rows or columns equals r;
- $a_{i-n,j-n} = a_{i,j}$ for each $i, j \in \mathbb{Z}$.

These matrices are referred to as infinite periodic matrices.

Definition 3.0.3 (source and target). Given $A \in \Lambda_1$, let ro A and co A be the compositions of r into n parts given by

ro
$$A = \left(\sum_{j \in \mathbb{Z}} a_{1,j}, \dots, \sum_{j \in \mathbb{Z}} a_{n,j}\right)$$

and

$$\operatorname{co} A = \left(\sum_{i \in \mathbb{Z}} a_{i,1}, \dots, \sum_{i \in \mathbb{Z}} a_{i,n}\right).$$

 $A \in \Lambda_1$ is said to go from $\operatorname{co} A$ to $\operatorname{ro} A$.

Definition 3.0.4 (diagonal matrices). Given $\lambda \in \Lambda_0$, let $D_{\lambda} \in \Lambda_1$ be the matrix given by $(D_{\lambda})_{i,j} = 0$ for $i, j \in \mathbb{Z}$ with $i \neq j$ and $(D_{\lambda})_{i,i} = \lambda_i$ for $i \in \mathbb{Z}$; where the indices are taken modulo n.

3.1 Cyclic flags

Fix $n, r \in \mathbb{N}$ and let \mathbf{k} be a field. Let \mathcal{S} be the \mathbf{k} -algebra $\mathbf{k}[\varepsilon, \varepsilon^{-1}]$ and let \mathcal{R} be the subalgebra generated by ε , so $\mathcal{R} = \mathbf{k}[\varepsilon]$. Let V be a free \mathcal{S} -module of rank r. Let G be the automorphism group of the \mathcal{S} -module V, so G is isomorphic to $\mathrm{GL}_r(\mathcal{S})$. A lattice in V is a \mathcal{R} -submodule L of V with $\mathcal{S} \otimes_{\mathcal{R}} L = V$. In particular, a lattice is an \mathcal{R} -submodule of V which is a free \mathcal{R} -module of rank r.

Lemma 3.1.1. Let L be a lattice in V. $L/\varepsilon L$ is a torsion \mathcal{R} -module, where ε acts as zero. $L/\varepsilon L$ is a free $\mathcal{R}/\langle \varepsilon \rangle$ -module of rank r; that is, $L/\varepsilon L$ is an r-dimensional \mathbf{k} -vector space.

Proof. L is a free \mathcal{R} -module of rank r, with $L \subset V$. Given an \mathcal{R} -basis $\{x_1, \ldots, x_r\}$ of L, $\{\varepsilon x_1, \ldots, \varepsilon x_r\}$ is an \mathcal{R} -basis of εL . Finally, the cosets $\{x_1 + \varepsilon L, \ldots, x_r + \varepsilon L\}$ give a basis for $L/\varepsilon L$ over $\mathcal{R}/\langle \varepsilon \rangle \cong \mathbf{k}$.

Let $\mathcal{F} = \mathcal{F}_{\mathbf{k}}(n,r)$ be the set of collections $(L_i)_{i\in\mathbb{Z}}$ of lattices in V with $L_i \subset L_{i+1}$ and $\varepsilon L_i = L_{i-n}$ for each $i \in \mathbb{Z}$. These collections of lattices in V are referred to as cyclic flags in V.

G acts on \mathcal{F} by $(g \cdot L)_i = g(L_i)$ for each $i \in \mathbb{Z}$, given $g \in G$ and $L \in \mathcal{F}$. The G-orbits in \mathcal{F} are indexed by the set Λ_0 of compositions of r into n parts: the G-orbit in \mathcal{F} corresponding to $\lambda \in \Lambda_0$ is

$$\mathcal{F}_{\lambda} = \left\{ L \in \mathcal{F} : \dim \left(\frac{L_i}{L_{i-1}} \right) = \lambda_i \text{ for each } i \in \mathbb{Z} \right\}$$

Definition 3.1.1. The periodic characteristic matrix of a pair of cyclic flags $(L, L') \in \mathcal{F} \times \mathcal{F}$ is the matrix $A(L, L') = (a_{i,j})_{i,j \in \mathbb{Z}}$ with entries

$$a_{i,j} = \dim_{\mathbf{k}} \left(\frac{L_i \cap L'_j}{L_i \cap L'_{i-1} + L_{i-1} \cap L'_i} \right)$$

for each $i, j \in \mathbb{Z}$.

The diagonal action of G on $\mathcal{F} \times \mathcal{F}$ has orbits indexed by the set Λ_1 of infinite periodic matrices (see definition 3.0.2). The G-orbit corresponding to $A \in \Lambda_1$ is denoted \mathcal{O}_A and consists of those pairs $(L, L') \in \mathcal{F} \times \mathcal{F}$ with periodic characteristic matrix A(L, L') equal to A.

Lemma 3.1.2. (alternative expression for characteristic matrix) Alternatively,

$$a_{i,j} = \dim_{\mathbf{k}} \left(\frac{L_{i-1} + L_i \cap L'_j}{L_{i-1} + L_i \cap L'_{j-1}} \right)$$

for each $i, j \in \mathbb{Z}$.

Proof. Set $U = L_i \cap L'_j$ and $U' = L_{i-1} + L_i \cap L'_{j-1}$. Then $U + U' = L_{i-1} + L_i \cap L'_j$ and $U \cap U' = L_i \cap L'_j \cap L_{i-1} + L_i \cap L'_{j-1}$. Applying the isomorphism theorems, U + U'/U' is naturally isomorphic to $U/U \cap U'$ as a vector space. In particular,

$$\frac{L_{i-1} + L_i \cap L'_j}{L_{i-1} + L_i \cap L'_{j-1}} = \frac{L_i \cap L'_j}{L_{i-1} \cap L'_j + L_i \cap L'_{j-1}}$$

and thus the dimensions of these spaces are both equal to $a_{i,j}$.

Lemma 3.1.3 (transposing characteristic matrix). Given a pair of flags $(L, L') \in \mathcal{F}^2$, the matrices A(L, L') and A(L', L) are related by the transpose. In particular, $A(L, L')_{i,j} = A(L', L)_{j,i}$ for each $i, j \in \mathbb{Z}$.

Proof. By swapping the roles of i and j and swapping L and L' it is clear that $A(L, L')_{i,j}$ and $A(L', L)_{j,i}$ are both given by the dimension of the **k**-vector space

$$\frac{L_i \cap L_j'}{L_{i-1} \cap L_j' + L_i \cap L_{j-1}'},$$

for each $i, j \in \mathbb{Z}$.

Lemma 3.1.4 (a codimension formula). Given $(L, L') \in \mathcal{F}^2$ and $i, j \in \mathbb{Z}$,

$$\dim_{\mathbf{k}} \left(\frac{L_i}{L_i \cap L'_j} \right) = \sum_{s \le i, t > j} a_{s,t},$$

where $A(L, L') = (a_{i,j})_{i,j \in \mathbb{Z}}$.

Proof. COMPLETE THIS PROOF

Lemma 3.1.5 (nested flags). Given $(L, L') \in \mathcal{F}^2$, $L' \subset L$ if and only if $A(L, L')_{i,j} = 0$ for $i, j \in \mathbb{Z}$ with i > j.

Proof. Suppose $L, L' \in \mathcal{F}$ with $L' \subset L$, meaning $L'_j \subset L_j$ for each $j \in \mathbb{Z}$. Then for i > j, $L_i \cap L'_j = L'_j$, $L_{i-1} \cap L'_j = L'_j$ and $L_i \cap L'_{j-1}$, which shows

$$A(L, L')_{i,j} = \dim_{\mathbf{k}} \left(\frac{L'_j}{L'_{j-1} + L'_j} \right) = 0$$

as required. Conversely, suppose A(L, L') is upper triangular, meaning $A(L, L')_{i,j} = 0$ when i > j. Using Lemma 3.1.4,

$$\dim_{\mathbf{k}} \left(\frac{L_i'}{L_i' \cap L_i} \right) = \sum_{s>i,t \le i} a_{s,t} = 0,$$

so $L_i \cap L'_i = L'_i$ and thus $L'_i \subset L_i$ for each $i \in \mathbb{Z}$, as required.

Corollary 3.1.6 (diagonal orbits). Given $L, L' \in \mathcal{F}$, L = L' if and only if $A(L, L')_{i,j} = 0$ whenever $i \neq j$. In particular,

$$\mathcal{O}_{D_{\lambda}} = \{(L, L) \in \mathcal{F}^2 : L \in \mathcal{F}_{\lambda}\},\$$

for each $\lambda \in \Lambda_0$.

3.1.1 A product on orbits

Given $A, B \in \Lambda_1$ with $\operatorname{co} A = \operatorname{ro} B$, define

$$Y_{A,B} = \{(L, L', L'') \in \mathcal{F}^3 : (L, L') \in \mathcal{O}_A \text{ and } (L', L'') \in \mathcal{O}_B\},$$

$$X_{A,B} = \{(L,L'') \in \mathcal{F}^2 : \exists L' \in \mathcal{F} \text{ with } (L,L') \in \mathcal{O}_A \text{ and } (L',L'') \in \mathcal{O}_B\}.$$

If also $L \in \mathcal{F}_{\text{ro}\,A}$, define the L-slices of $Y_{A,B}$ and $X_{A,B}$ respectively as

$$Y_{A,B}^{L} = \{ (L', L'') \in \mathcal{F}^2 : (L, L', L'') \in Y_{A,B} \},$$
$$X_{A,B}^{L} = \{ L'' \in \mathcal{F} : (L, L'') \in X_{A,B} \}.$$

Observation 1. There are only finitely many G-orbits in $X_{A,B}$.

Lemma 3.1.7. Given
$$A \in \Lambda_1$$
, $X_{D_{\lambda},A} = \mathcal{O}_A$ if $\lambda = \operatorname{ro} A$ and $X_{A,D_{\lambda}} = \mathcal{O}_A$ if $\lambda = \operatorname{co} A$.

Proof. Let $A \in \Lambda_1$ and set $\lambda = \text{ro }A$. $Y_{D_{\lambda},A}$ is the set of triples $(L,L',L'') \in \mathcal{F}^3$ with $(L,L') \in \mathcal{O}_{D_{\lambda}}$, thus L = L' by Corollary 3.1.6, and $(L',L'') \in \mathcal{O}_A$. $X_{D_{\lambda},A}$ is the projection of $Y_{D_{\lambda},A}$, which equals \mathcal{O}_A .

Similarly, if $\lambda = \operatorname{co} A$, $Y_{A,D_{\lambda}}$ is the set of triples $(L,L',L'') \in \mathcal{F}^3$ with $(L,L') \in \mathcal{O}_A$ and L'' = L', so $X_{A,D_{\lambda}}$ is exactly the orbit \mathcal{O}_B .

3.1.2 Triple products

Given $A, B, C \in \Lambda_1$ with $\operatorname{co} A = \operatorname{ro} B$ and $\operatorname{co} B = \operatorname{ro} C$ and $L \in \mathcal{F}_{\operatorname{ro} A}$, there are spaces $X_{A,B,C}$, $Y_{A,B,C}$ and their respective L-slices, defined as follows:

$$Y_{A,B,C} = \{(L,L',L'',L''') \in \mathcal{F}^4 : (L,L') \in \mathcal{O}_A, (L',L'') \in \mathcal{O}_B \text{ and } (L'',L''') \in \mathcal{O}_C\},$$

$$X_{A,B,C} = \{(L,L''') \in \mathcal{F}^2 : \exists (L',L'') \in \mathcal{O}_B \text{ with } (L,L') \in \mathcal{O}_A \text{ and } (L'',L''') \in \mathcal{O}_C\},$$

$$Y_{A,B,C}^L = \{(L',L'',L''') \in \mathcal{F}^3 : (L,L',L'',L''') \in Y_{A,B,C}\},$$

$$X_{A,B,C}^L = \{L''' \in \mathcal{F} : (L,L''') \in X_{A,B,C}\}.$$

3.2 Convolution algebras

Suppose **k** is a finite field and let q denote the number of elements of **k**. Consider the set S of G-invariant functions $\mathcal{F} \times \mathcal{F} \to \mathbb{Z}$ with constructible support. S is a free \mathbb{Z} -module with a basis consisting of the indicator functions of the G-orbits in $\mathcal{F} \times \mathcal{F}$. Define an operation \star on S as follows: for each $f, g \in S$, $f \star g \in S$ is given by

$$(f \star g)(L, L'') = \sum_{L' \in \mathcal{F}} f(L, L')g(L', L''),$$

for $(L, L'') \in \mathcal{F} \times \mathcal{F}$.

 $f \star g$ is well defined since the supports of f and g consist of finitely many G-orbits, so there are only finitely many $L' \in \mathcal{F}$ such that $f(L, L')g(L', L'') \neq 0$, given $(L, L'') \in \mathcal{F} \times \mathcal{F}$. $f \star g$ is constant on G-orbits and is supported on finitely many G-orbits, so $f \star g \in S$.

Lemma 3.2.1. The set S together with the operation \star is an associative \mathbb{Z} -algebra with identity element ι given by $\iota(L,L)=1$ and $\iota(L,L')=0$ for $L'\neq L$.

Proof. Given $f, g, h \in S$ and $(L, L''') \in \mathcal{F} \times \mathcal{F}$,

$$\begin{split} ((f\star g)\star h)(L,L''') &= \sum_{L''} (f\star g)(L,L'') h(L'',L''') \\ &= \sum_{L''} \sum_{L'} f(L,L') g(L',L'') h(L'',L''') \\ &= (f\star (g\star h))(L,L'''), \end{split}$$

thus \star is associative. ι is the multiplicative identity since

$$(\iota \star f)(L, L'') = \sum_{L'} \iota(L, L') f(L', L'') = f(L, L'')$$

and

$$(f \star \iota)(L, L'') = \sum_{L'} f(L, L')\iota(L', L'') = f(L, L''),$$

for each $f \in S$ and $(L, L'') \in \mathcal{F} \times \mathcal{F}$.

Given $A \in \Lambda_1$, let $e_A \in S$ denote the indicator function of the orbit \mathcal{O}_A . S is a free \mathbb{Z} -module with basis $\{e_A : A \in \Lambda_1\}$. There exist $\gamma_{A,B,C;q} \in \mathbb{Z}$ for $A,B,C \in \Lambda_1$ such that

$$e_A \star e_B = \sum_{C \in \Lambda_1} \gamma_{A,B,C;q} e_C$$

for each $A, B \in \Lambda_1$. Then

$$\begin{split} \gamma_{A,B,C;q} &= (e_A \star e_B)(L,L'') \\ &= \sum_{L'} e_A(L,L') e_B(L',L'') \\ &= \# \{ L' : (L,L') \in \mathcal{O}_A \text{ and } (L',L'') \in \mathcal{O}_B \}, \end{split}$$

for any $(L, L'') \in \mathcal{O}_C$.

3.3 Affine q-Schur algebras

There exist polynomials $\gamma_{A,B,C} \in \mathbb{Z}[q]$ for $A,B,C \in \Lambda_1$ such that $\gamma_{A,B,C}(q) = \gamma_{A,B,C;q}$ for any prime power q, following [3, section 4]. The affine q-Schur algebra $\hat{S}_q(n,r)$ is a $\mathbb{Z}[q]$ -algebra which is a free $\mathbb{Z}[q]$ -module with basis $\{e_A : A \in \Lambda_1\}$ and with multiplication given by

$$e_A e_B = \sum_C \gamma_{A,B,C} e_C.$$

Given the existence of these 'universal polynomials' $\gamma_{A,B,C} \in \mathbb{Z}[q]$, it follows from Lemma 3.2.1 that $\hat{S}_q(n,r)$ is an associative $\mathbb{Z}[q]$ -algebra with multiplicative identity given by

$$1 = \sum_{\lambda \in \Lambda_0} e_{D_{\lambda}}.$$

Quivers with relations for affine q-Schur algebras

4.1 Basic results and notation

4.1.1 Elementary matrices

For each $i, j \in \mathbb{Z}$, let $\mathcal{E}_{i,j}$ be the $\mathbb{Z} \times \mathbb{Z}$ 'elementary periodic matrix' with entries given by $(\mathcal{E}_{i,j})_{s,t} = 1$ if (s,t) = (i+cn, j+cn) for some $c \in \mathbb{Z}$ and $(\mathcal{E}_{i,j})_{s,t} = 0$ otherwise. Clearly $\mathcal{E}_{i,j} = \mathcal{E}_{i+n,j+n}$ for each $i,j \in \mathbb{Z}$. Recall from Definition 3.0.4 that the diagonal matrix associated to a composition $\lambda \in \Lambda_0$ is

$$D_{\lambda} = \lambda_1 \mathcal{E}_{1,1} + \dots + \lambda_n \mathcal{E}_{n,n}.$$

 $\{e_{D_{\lambda}}: \lambda \in \Lambda_0\}$ is a set of pairwise orthogonal idempotents in $\hat{S}_q(n,r)$ with $\sum_{\lambda \in \Lambda_0} e_{D_{\lambda}} = 1$, as a result of Lemma 3.1.7.

Given $i \in [1, n]$ and $\lambda \in \Lambda_0$ with $\lambda_{i+1} > 0$, define

$$E_{i,\lambda} = e_{D_{\lambda} + \mathcal{E}_{i,i+1} - \mathcal{E}_{i+1,i+1}}$$

and define

$$E_i = \sum_{\lambda \in \Lambda_0: \lambda_{i+1} > 0} E_{i,\lambda}.$$

Given $i \in [1, n]$ and $\lambda \in \Lambda_0$ with $\lambda_i > 0$, define

$$F_{i,\lambda} = e_{D_{\lambda} + \mathcal{E}_{i+1,i} - \mathcal{E}_{i,i}}$$

and define

$$F_i = \sum_{\lambda \in \Lambda_0: \lambda_i > 0} F_{i,\lambda}$$

4.1.2 Transpose involution

Lemma 4.1.1. Transposition gives a homomorphism of $\mathbb{Z}[q]$ -modules $\top : \hat{S}_q(n,r) \to \hat{S}_q(n,r)$ with $\top(e_A) = e_{A^\top}, \ \top \circ \top = 1$ and $\top(e_A e_B) = \top(e_B) \top(e_A)$.

Proof. Let $A, B, C \in \Lambda_1$ and let \mathbf{k} be a finite field with $\mathbf{q} = \# \mathbf{k}$ elements. If $(L, L'') \in \mathcal{O}_C$ then $(L'', L) \in \mathcal{O}_{C^{\top}}$ and

$$\begin{split} \gamma_{A,B,C;\mathbf{q}} &= \# \{ L' : (L,L') \in \mathcal{O}_A \text{ and } (L',L'') \in \mathcal{O}_B \} \\ &= \# \{ L' : (L'',L') \in \mathcal{O}_{B^\top} \text{ and } (L',L) \in \mathcal{O}_{A^\top} \} \\ &= \gamma_{B^\top,A^\top,C^\top;\mathbf{q}} \end{split}$$

It then follows that $\top(e_A e_B) = \top(e_B) \top(e_A)$.

The transpose relates the E_i , F_i and 1_{λ} in the following way: $\top(E_{i,\lambda}) = F_{i,\lambda}$, $\top(F_{i,\lambda}) = E_{i,\lambda-\varepsilon_i+\varepsilon_{i+1}}$ and $\top(1_{\lambda}) = 1_{\lambda}$. In particular, $\top(E_i) = F_i$ and $\top(F_i) = E_i$.

4.1.3 A multiplication rule

Lemma 4.1.2. Given $A \in \Lambda_1$ and $i \in [1, n]$ with ro $A_{i+1} > 0$,

$$E_i e_A = \sum_{p \in \mathbb{Z}: a_{i+1,p} > 0} q^{\sum_{j > p} a_{i,j}} [[a_{i,p} + 1]] e_{A + \mathcal{E}_{i,p} - \mathcal{E}_{i+1,p}}.$$

Given $A \in \Lambda_1$ and $i \in [1, n]$ with ro $A_i > 0$,

$$F_i e_A = \sum_{p \in \mathbb{Z}: a_{i,p} > 0} q^{\sum_{j < p} a_{i+1,j}} [[a_{i+1,p} + 1]] e_{A + \mathcal{E}_{i+1,p} - \mathcal{E}_{i,p}}.$$

Note that these formulas are still valid in the cases $E_i e_A = 0$ and $F_i e_A = 0$, provided it is understood that $e_B = 0$ whenever $B \notin \Lambda_1$. There are similar formulas for right multiplication by E_i and F_i , obtained by applying the transpose involution to the above.

Corollary 4.1.3. Given $A \in \Lambda_1$ and $j \in [1, n]$ with $\operatorname{co} A_{j+1} > 0$,

$$e_A F_j = \sum_{p \in \mathbb{Z}: a_{p,j+1} > 0} q^{\sum_{i > p} a_{i,j}} [[a_{p,j} + 1]] e_{A + \mathcal{E}_{p,j} - \mathcal{E}_{p,j+1}}.$$

Given $A \in \Lambda_1$ and $j \in [1, n]$ with $\operatorname{co} A_j > 0$,

$$e_A E_j = \sum_{p \in \mathbb{Z}: a_{p,j} > 0} q^{\sum_{i < p} a_{i,j+1}} [[a_{p,j+1} + 1]] e_{A + \mathcal{E}_{p,j+1} - \mathcal{E}_{p,j}}.$$

Proof.

$$\begin{split} e_{A}F_{j} &= \top \left(E_{j}e_{A^{\top}} \right) \\ &= \top \left(\sum_{p \in \mathbb{Z}: a_{p,j+1} > 0} q^{\sum_{i > p} a_{i,j}} [[a_{p,j} + 1]] e_{A^{\top} + \mathcal{E}_{j,p} - \mathcal{E}_{j+1,p}} \right) \\ &= \sum_{p \in \mathbb{Z}: a_{p,j+1} > 0} q^{\sum_{i > p} a_{i,j}} [[a_{p,j} + 1]] e_{A + \mathcal{E}_{p,j} - \mathcal{E}_{p,j+1}}, \end{split}$$

where the second equality comes from Lemma 4.1.2. Similarly,

$$e_{A}E_{j} = \top \left(F_{j}e_{A^{\top}}\right)$$

$$= \top \left(\sum_{p \in \mathbb{Z}: a_{p,j} > 0} q^{\sum_{i < p} a_{i,j+1}} [[a_{p,j+1} + 1]] e_{A^{\top} + \mathcal{E}_{j+1,p} - \mathcal{E}_{j,p}}\right)$$

$$= \sum_{p \in \mathbb{Z}: a_{p,j} > 0} q^{\sum_{i < p} a_{i,j+1}} [[a_{p,j+1} + 1]] e_{A + \mathcal{E}_{p,j+1} - \mathcal{E}_{p,j}}.$$

4.2 Relations

Note that $E_i^{r+1} = F_i^{r+1} = 0$ while

$$E_i^r = [r]_! e_{r\mathcal{E}_{i,i+1}}$$

and

$$F_i^r = [r]_! e_{r\mathcal{E}_{i+1}}.$$

Lemma 4.2.1 (quantum Serre relations: $n \geq 3$). Suppose $n \geq 3$. The following relations hold in $\hat{S}_{q}(n,r)$:

$$E_i E_i - E_i E_i = 0$$

$$F_i F_i - F_i F_i = 0$$

unless $j = i \pm 1$;

$$E_i E_{i+1}^2 - (1+q)E_{i+1}E_i E_{i+1} + q E_{i+1}^2 E_i = 0$$

$$E_i^2 E_{i+1} - (1+q)E_i E_{i+1}E_i + q E_{i+1}E_i^2 = 0$$

and

$$F_{i+1}F_i^2 - (1+q)F_iF_{i+1}F_i + qF_i^2F_{i+1} = 0$$

$$F_{i+1}^2F_i - (1+q)F_{i+1}F_iF_{i+1} + qF_iF_{i+1}^2 = 0.$$

Proof. Here we introduce temporary notation for the basis elements: Write $[A] = e_A$. Take $\lambda \in \Lambda_0$.

$$E_i E_{i+1}^2 1_{\lambda} = [2][D_{\lambda} + 2X_{i+1,i+2} + X_{i,i+2}] + [2][D_{\lambda} + 2X_{i+1,i+2} + X_{i,i+1}]$$

$$E_{i+1}E_iE_{i+1}1_{\lambda} = [D_{\lambda} + 2X_{i+1,i+2} + X_{i,i+1}] + [2][D_{\lambda} + 2X_{i+1,i+1} + X_{i,i+1}]$$

$$E_{i+1}^2 E_i 1_{\lambda} = [2][D_{\lambda} + 2X_{i+1,i+2} + X_{i,i+1}]$$

Then

$$(E_i E_{i+1}^2 - (1+q)E_{i+1}E_i E_{i+1} + q E_{i+1}^2 E_i)1_{\lambda} = 0,$$

for each $\lambda \in \Lambda_0$. The relation $E_i E_{i+1}^2 - (1+q) E_{i+1} E_i E_{i+1} + q E_{i+1}^2 E_i = 0$ then follows.

The relations between F_i and F_{i+1} may be obtained directly, as above, or by applying the transpose operator to the relations already derived: note that the two sets of relations are related by swapping E_i and F_i and reversing the order of multiplication.

Lemma 4.2.2 (quantum Serre relations: n = 2). In the case n = 2, the quantum Serre relations will be of total degree 4. Look at the presentation of quantum groups for candidate relations. If that fails, brute force won't be too hard.

Lemma 4.2.3. $[E_i, F_j] = 0$ unless j = i.

$$E_i F_i - F_i E_i = \sum_{\lambda \in \Lambda_0} ([\lambda_i] - [\lambda_{i+1}]) 1_{\lambda}.$$

For $\lambda \in \Lambda_0$, let $R_{\lambda} = e_{\lambda_1} \mathcal{E}_{0,1} + \cdots + \lambda_n} \mathcal{E}_{n-1,n}$. Write $R = \sum_{\lambda \in \Lambda_0} R_{\lambda}$. Note $R_{\lambda} = R1_{\lambda}$. Given $A \in \Lambda_1$ and $m \in \mathbb{Z}$, let $A[m] \in \Lambda_1$ be given by $A[m]_{i,j} = a_{i,j+m}$ and let $A^{[m]}$ be given by $A^{[m]}_{i,j} = a_{i+m,j}$ for each $i \in \mathbb{Z}$.

Lemma 4.2.4 (Shifting). If $A \in \Lambda_1$ then

$$Re_A = e_{A^{[\pm 1]}}$$

and

$$e_A R = e_{A_{[+1]}}$$
.

Conjugation by R gives an automorphism ρ of $\hat{S}_q(n,r)$ satisfying $\rho^n = 1$.

4.3 quivers with relations

Denote by Λ_0 the set of compositions of r into n parts. That is, Λ_0 is the set of $\alpha \in \mathbb{Z}^n$ with non-negative entries which sum to r. Let $\varepsilon_i \in \mathbb{Z}^n$ be the ith elementary vector and write $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$ for each $i \in [1, n]$. Then $\lambda + \alpha_i \in \Lambda_0$ if $\lambda_{i+1} > 0$ and $\lambda - \alpha_i \in \Lambda_0$ if $\lambda_i > 0$.

Let $\Gamma = \Gamma(n,r)$ be the quiver with set of vertices Λ_0 , with the following arrows:

For $\lambda \in \Lambda_0$ and $i \in [1, n]$, there is an arrow $e_{i,\lambda} : \lambda \to \lambda + \alpha_i$ if $\lambda_{i+1} > 0$ and there is an arrow $f_{i,\lambda} : \lambda \to \lambda - \alpha_i$ if $\lambda_i > 0$.

Denote by $\mathbb{Z}[q]\Gamma$ the path $\mathbb{Z}[q]$ -algebra of Γ . Thus $\mathbb{Z}[q]\Gamma$ is a free $\mathbb{Z}[q]$ -module with a basis given by the set of paths in Γ , with multiplication given by the concatenation of paths. If p starts where q ends, the product pq is the path q followed by p. Write $e_{i,\lambda} = 0$ unless $\lambda, \lambda + \alpha_i \in \Lambda_0$ and write $f_{i,\lambda} = 0$ unless $\lambda, \lambda - \alpha_i \in \Lambda_0$.

By construction, there is a homomorphism of $\mathbb{Z}[q]$ -algebras

$$\phi \colon \mathbb{Z}[q]\Gamma \to \hat{S}_q(n,r)$$

given by

$$\phi(e_{i,\lambda}) = E_{i,\lambda}$$

$$\phi(f_{i,\lambda}) = F_{i,\lambda}$$

$$\phi(k_{\lambda}) = 1_{\lambda},$$

for $i \in [1, n]$ and $\lambda \in \Lambda_0$.

The image of ϕ is the subalgebra of $\hat{S}_q(n,r)$ generated by E_i , F_i for $i \in [1,n]$ and 1_{λ} for $\lambda \in \Lambda_0$, since $E_{i,\lambda} = E_i 1_{\lambda}$ and $F_{i,\lambda} = F_i 1_{\lambda}$, while $E_i = \sum_{\lambda} E_{i,\lambda}$ and $F_i = \sum_{\lambda} F_{i,\lambda}$. In general ϕ is not surjective, so this does not always lead to a presentation of $\hat{S}_q(n,r)$.

4.3.1 Exceptional case n=2.

Describe the quiver.

Define an ideal of relations in the path algebra.

Write down the homomorphism from the bound quiver algebra to the q-Schur algebra.

4.3.2 Typical case.

Suppose $n \geq 3$. Then $\Gamma = \Gamma(n, r)$ has vertex set Λ_0 . Define $e_i, f_i \in \mathbb{Z}[q]\Gamma(n, r)$ by

$$e_i = \sum_{\lambda \in \Lambda_0} e_{i,\lambda}$$

and

$$f_i = \sum_{\lambda \in \Lambda_0} f_{i,\lambda},$$

with the convention $e_{i,\lambda} = 0$ unless $\lambda_{i+1} > 0$ and $f_{i,\lambda} = 0$ unless $\lambda_i > 0$. Let k_{λ} denote the constant path at vertex λ . $\{k_{\lambda} : \lambda \in \Lambda_0\}$ is a set of pairwise orthogonal idempotents in $\mathbb{Z}[q]\Gamma(n,r)$.

Let $I(n,r) \subset \mathbb{Z}[q]\Gamma(n,r)$ be the ideal generated by the expressions

$$e_{i}e_{i+1}^{2} - (1+q)e_{i+1}e_{i}e_{i+1} + qe_{i+1}^{2}e_{i}$$

$$e_{i}^{2}e_{i+1} - (1+q)e_{i}e_{i+1}e_{i} + qe_{i+1}e_{i}^{2}$$

$$f_{i+1}f_{i}^{2} - (1+q)f_{i}f_{i+1}f_{i} + qf_{i}^{2}f_{i+1}$$

$$f_{i+1}^{2}f_{i} - (1+q)f_{i+1}f_{i}f_{i+1} + qf_{i}f_{i+1}^{2}$$

$$e_{i}f_{j} - f_{j}e_{i} - \delta_{i,j} \sum_{\lambda \in \Lambda_{0}} ([\lambda_{i}] - [\lambda_{i+1}])k_{\lambda}$$

Recall that a relation is a $\mathbb{Z}[q]$ -linear combination of paths with common start and end vertices. The relations involving paths $\lambda \to \mu$ are given by $1_{\mu} \exp 1_{\lambda}$, for each of the above expressions.

Lemma 4.3.1. There is a homomorphism of $\mathbb{Z}[q]$ -algebras

$$\phi \colon \mathbb{Z}[q]\Gamma(n,r)/I(n,r) \to \hat{S}_q(n,r)$$

given by

$$\phi(e_{i,\lambda}) = E_{i,\lambda}$$

$$\phi(f_{i,\lambda}) = F_{i,\lambda}$$

$$\phi(k_{\lambda}) = 1_{\lambda}.$$

A generic affine algebra

5.1 Introducing the generic affine algebra

Assume $\mathbf{k} = \mathbb{C}$ and fix $n, r \geq 1$. Let \mathcal{S} be the \mathbf{k} -algebra $\mathbf{k}[\varepsilon, \varepsilon^{-1}]$ and let \mathcal{R} be the subalgebra generated by ε , namely $\mathcal{R} = \mathbf{k}[\varepsilon]$. Let V be a free \mathcal{S} -module of rank r and let $\mathcal{F} = \mathcal{F}_{\mathbf{k}}(n, r)$ be the set of n-periodic cyclic flags in V; so \mathcal{F} consists of collections $L = (L_i)_{i \in \mathbb{Z}}$ of \mathcal{R} -lattices in V with $L_i \subset L_{i+1}$ for $i \in \mathbb{Z}$ and $\varepsilon L_i = L_{i-n}$ for $i \in \mathbb{Z}$.

Let G be the group of S-module automorphisms of V. Thus G is isomorphic to $GL_r(S)$. G acts on F with orbits $\{F_{\lambda} : \lambda \in \Lambda_0\}$, where Λ_0 is the set of compositions of r into n parts, as in Definition 3.0.1.

The diagonal action of G on $\mathcal{F} \times \mathcal{F}$ has orbits $\{\mathcal{O}_A : A \in \Lambda_1\}$, where \mathcal{O}_A consists of those pairs of flags with periodic characteristic matrix equal to A. Definitions of the periodic characteristic matrix and the set Λ_1 are given in Definition 3.1.1 and Definition 3.0.2 respectively. In particular, the periodic characteristic matrix of a pair $(L, L') \in \mathcal{F} \times \mathcal{F}$ is the $\mathbb{Z} \times \mathbb{Z}$ matrix $A = (a_{i,j})_{i,j \in \mathbb{Z}}$, with

$$a_{i,j} = \dim \left(\frac{L_i \cap L'_j}{L_{i-1} \cap L'_j + L_i \cap L'_{j-1}} \right)$$

for each $i, j \in \mathbb{Z}$.

Recall that ro, co: $\Lambda_1 \to \Lambda_0$ are the maps given by

$$\operatorname{ro} A = \left(\sum_{j \in \mathbb{Z}} a_{1,j}, \dots, \sum_{j \in \mathbb{Z}} a_{n,j}\right)$$

and

$$\operatorname{co} A = \left(\sum_{i \in \mathbb{Z}} a_{i,1}, \dots, \sum_{i \in \mathbb{Z}} a_{i,n}\right)$$

for each $A \in \Lambda_1$. Given $A \in \Lambda_1$, write $A : \operatorname{co} A \to \operatorname{ro} A$.

The purpose of this chapter is to define a category with objects Λ_0 and morphisms Λ_1 ; where $\operatorname{Hom}(\lambda,\mu)=\{A\in\Lambda_1:\operatorname{ro} A=\mu,\operatorname{co} A=\lambda\}$. Given $A,B\in\Lambda_1$ let $\Lambda_{1A,B}$ be the set of $C\in\Lambda_1$ such that there exist $L,L',L''\in\mathcal{F}$ with $(L,L')\in\mathcal{O}_A,(L',L'')\in\mathcal{O}_B$ and $(L,L'')\in\mathcal{O}_C$. It will be shown that Λ_1 admits a partial order \leq such that, given $A,B\in\Lambda_1$ with $\operatorname{ro} B=\operatorname{co} A,\Lambda_{1A,B}$ has a maximum element A*B. It will be shown that * is associative, leading to the construction of a category with the described properties.

The generic affine algebra $\hat{G}(n,r)$ is then defined to be the \mathbb{Z} -algebra of this category. It will be shown that $\hat{G}(n,r)$ gives a realisation of the affine 0-Schur algebra $\hat{S}_0(n,r)$ when r < n. It is expected that a more refined presentation of the generic algebra and the 0-Schur algebra will allow the conditions on the parameters to be relaxed slightly: the r = n case is approachable, which may extend to the case r < 2n.

5.2 A partial order

Given $i, j \in \mathbb{Z}$, define maps $d_{i,j}$ and $\bar{d}_{i,j}$ on Λ_1 by setting

$$d_{i,j}A = \sum_{s \le i, t > j} a_{s,t}$$

and

$$\bar{d}_{i,j}A = \sum_{s>i,t\leq j} a_{s,t}$$

for each $A \in \Lambda_1$.

Lemma 5.2.1. Let $A \in \Lambda_1$, with $A = (a_{i,j})_{i,j \in \mathbb{Z}}$ and write $d_{i,j} = d_{i,j}A$ for $i, j \in \mathbb{Z}$. Then

$$d_{i,j} - d_{i-1,j} = \sum_{t>j} a_{i,t}$$

and

$$d_{i,j} - d_{i,j-1} = -\sum_{s < i} a_{s,j}.$$

Proof. Let $i, j \in \mathbb{Z}$. Then

$$d_{i,j} - d_{i-1,j} = \sum_{s \le i, t > j} a_{s,t} - \sum_{s \le i-1, t > j} a_{s,t} = \sum_{t > j} a_{i,t}.$$

Similarly,

$$d_{i,j} - d_{i,j-1} = \sum_{s \le i, t > j} a_{s,t} - \sum_{s \le i, t > j-1} a_{s,t} = -\sum_{s \le i} a_{s,j}.$$

Lemma 5.2.2. Let $A \in \Lambda_1$, with $A = (a_{i,j})_{i,j \in \mathbb{Z}}$ and write $d_{i,j} = d_{i,j}A$ for each $i, j \in \mathbb{Z}$. Then

$$a_{i,j} = d_{i,j-1} - d_{i-1,j-1} + d_{i-1,j} - d_{i,j}$$

for each $i, j \in \mathbb{Z}$.

Proof. Using Lemma 5.2.1,

$$a_{i,j} = \sum_{t>j-1} a_{i,t} - \sum_{t>j} a_{i,t}$$

= $(d_{i,j-1} - d_{i-1,j-1}) - (d_{i,j} - d_{i-1,j}).$

Alternatively,

$$a_{i,j} = \sum_{s \le i} a_{s,j} - \sum_{s \le i-1} a_{s,j}$$

= $-(d_{i,j} - d_{i,j-1}) + (d_{i-1,j} - d_{i-1,j-1}).$

Lemma 5.2.3. The relation \leq on Λ_1 , defined by $A \leq B$ if and only if $d_{i,j}A \leq d_{i,j}B$ for all $i, j \in \mathbb{Z}$, is a partial order.

Proof. It is clear that \leq is reflexive and transitive, so it remains to see \leq is antisymmetric. Suppose $A, B \in \Lambda_1$ with $A \leq B$ and $B \leq A$. Then $d_{i,j}A = d_{i,j}B$ for each $i, j \in \mathbb{Z}$, which shows A = B as a result of Lemma 5.2.2.

The partial order on Λ_1 induces a partial order on the set of G-orbits in $\mathcal{F} \times \mathcal{F}$, such that $\mathcal{O}_A \leq \mathcal{O}_B$ if and only if $A \leq B$. The following lemma is rephrased from Lemma 3.1.4 and gives some geometric significance to the partial order on Λ_1 .

Lemma 5.2.4. Let $A \in \Lambda_1$ and take $(L, L') \in \mathcal{O}_A$. Then

$$\dim\left(\frac{L_i}{L_i \cap L_j'}\right) = d_{i,j}A$$

and

$$\dim\left(\frac{L_j'}{L_i\cap L_j'}\right) = \bar{d}_{i,j}A,$$

for each $i, j \in \mathbb{Z}$.

Proof. This is a rephrasing of Lemma 3.1.4.

5.3 Grassmannians and related varieties

Here we collect a few elementary results on Grassmannians and some related varieties. In this section, let V be an n-dimensional \mathbf{k} -vector space and let $0 \le d \le n$ be an integer. There is a linear map $\phi^{(d)} \colon \Lambda^d(V) \to \operatorname{Hom}(V, \Lambda^{d+1}(V))$ given by $\phi^{(d)}(\alpha)(v) = \alpha \wedge v$ for $\alpha \in \Lambda^d(V)$ and $v \in V$. The kernel of $\phi^{(d)}(\alpha)$ is the space of divisors of α , $D_{\alpha} = \{v \in V : \alpha \wedge v = 0\}$. An element $\alpha \in \Lambda^d(V)$ is said to be totally decomposable if $\alpha = \alpha_1 \wedge \cdots \wedge \alpha_d$, where $\alpha_1, \ldots, \alpha_d \in V$ are linearly independent. The dimension of D_{α} is at most d and $\dim(D_{\alpha}) = d$ precisely when α is totally decomposable. Consequently, the rank of $\phi^{(d)}(\alpha)$ is at least n - d and α is totally decomposable if and only if rank $\phi^{(d)}(\alpha) \le n - d$, which hold if and only if the $(n - d + 1) \times (n - d + 1)$ -minors of a matrix of $\phi^{(d)}(\alpha)$ are all zero.

Lemma 5.3.1. $\{(U_1, U_2) \in \operatorname{Gr}_{d_1}(V) \times \operatorname{Gr}_{d_2}(V) : \dim(U_1 \cap U_2) \geq a\}$ is a projective variety, for each $d_1, d_2, a \in \mathbb{N}$ with $d_1, d_2, a \leq n$.

Proof. As above, there is a linear map $\Psi \colon \Lambda^{d_1}V \oplus \Lambda^{d_2}V \to \operatorname{Hom}(V, \Lambda^{d_1+1}(V) \oplus \Lambda^{d_2+1}(V))$ given by $\Psi(\alpha, \beta)(v) = (\alpha \wedge v, \beta \wedge v)$. Given $\alpha \in \Lambda^{d_1}(V)$ and $\beta \in \Lambda^{d_2}(V)$, the kernel of $\Psi(\alpha, \beta)$ is $D_{\alpha} \cap D_{\beta}$ and so the rank of $\Psi(\alpha, \beta)$ is $n - \dim(D_{\alpha} \cap D_{\beta})$.

Let $U_i \in \operatorname{Gr}_{d_i}(V)$ and suppose $p_i(U_i) = [\alpha_i]$, where p_i is the Plücker embedding of $\operatorname{Gr}_{d_i}(V)$ in $\mathbb{P}(\Lambda^{d_i}(V))$, so $U_i = D_{\alpha_i} = \ker \phi^{(d_i)}(\alpha)$. Therefore the kernel of $\Psi(\alpha_1, \alpha_2)$ is $U_1 \cap U_2$, so the condition that $\dim(U_1 \cap U_2) \geq a$ is equivalent to the condition that $\Psi(\alpha_1, \alpha_2)$ has rank at most n-a. After fixing a basis of V, this condition is given by the vanishing of the $(n-a+1) \times (n-a+1)$ minors of the matrix of $\Psi(\alpha_1, \alpha_2)$ with respect to this basis. Therefore $\{(U_1, U_2) \in \operatorname{Gr}_{d_1}(V) \times \operatorname{Gr}_{d_2}(V) : \dim(U_1 \cap U_2) \geq a\}$ is a closed subset of the product of Grassmannians $\operatorname{Gr}_{d_1}(V) \times \operatorname{Gr}_{d_2}(V)$, so is a projective variety.

[CONFIRM THE VALIDITY OF THIS.] More precisely, the entries of a matrix of $\Psi(\alpha_1, \alpha_2)$ are homogeneous polynomials of degree 1 in the Plücker coordinates on $\operatorname{Gr}_{d_1}(V) \times \operatorname{Gr}_{d_2}(V)$ since

 Ψ is linear and so the minors of $\Psi(\alpha_1, \alpha_2)$ are also homogeneous polynomials in the Plücker coordinates.

Lemma 5.3.2. Let V be an n-dimensional vector space over \mathbf{k} and let $d_1, d_2, a \in \mathbb{N}$ with $d_1, d_2, a \leq n$. The following hold:

- 1. $\{(U_1, U_2) \in \operatorname{Gr}_{d_1}(V) \times \operatorname{Gr}_{d_2}(V) : \dim(U_1 \cap U_2) = a\}$ is a quasiprojective variety;
- 2. $\{(U_1, U_2) \in \operatorname{Gr}_{d_1}(V) \times \operatorname{Gr}_{d_2}(V) : U_1 \subset U_2\}$ is a projective variety;
- 3. Given $U_2 \in \operatorname{Gr}_{d_2}(V)$, $\{U_1 \in \operatorname{Gr}_{d_1}(V) : \dim(U_1 \cap U_2) \geq a\}$ is a projective variety;
- 4. Given $U_2 \in Gr_{d_2}(V)$, $\{U_1 \in Gr_{d_1}(V) : \dim(U_1 \cap U_2) = a\}$ is a quasiprojective variety;
- 5. Given $U_2 \in Gr_{d_2}(V)$, $\{U_1 \in Gr_{d_1}(V) : U_1 \subset U_2\}$ is a projective variety;
- 6. Given $U_2 \in Gr_{d_2}(V)$, $\{U_1 \in Gr_{d_1}(V) : U_2 \subset U_1\}$ is a projective variety.

Proof. Let X_i denote the space in statement i of the lemma. To emphasise the dependence of X_i on a, write $X_{i,a}$.

 X_1 is a quasiprojective variety since it is equal to the intersection of the projective variety $\{(U_1,U_2)\in\operatorname{Gr}_{d_1}(V)\times\operatorname{Gr}_{d_2}(V):\dim(U_1\cap U_2)\geq a\}$ with the open set $\{(U_1,U_2)\in\operatorname{Gr}_{d_1}(V)\times\operatorname{Gr}_{d_2}(V):\dim(U_1\cap U_2)\leq a\}$.

Given $(U_1, U_2) \in \operatorname{Gr}_{d_1}(V) \times \operatorname{Gr}_{d_2}(V)$, $U_1 \subset U_2$ if and only if $\dim(U_1 \cap U_2) \geq d_1$, so Lemma 5.3.1 shows X_2 is a projective variety.

Let π_i : $\operatorname{Gr}_{d_1}(V) \times \operatorname{Gr}_{d_2}(V) \to \operatorname{Gr}_{d_i}(V)$ be the projection map onto the *i*-th factor, for i = 1, 2. The completeness property of projective varieties ensures that π_i is a closed morphism. Observe that

$$X_3 = \{ U_1 \in \operatorname{Gr}_{d_1}(V) : \dim(U_1 \cap U_2) \ge a \}$$

= $\pi_1(\{(U_1, W) \in \operatorname{Gr}_{d_1}(V) \times \operatorname{Gr}_{d_2}(V) : \dim(U_1 \cap W) \ge a \} \cap \pi_2^{-1}\{U_2\}).$

The fibre of π_2 over U_2 is closed, so the intersection of the fibre with the variety from Lemma 5.3.1 is closed and then the image of this intersection under π_1 is closed. This shows X_3 is a projective variety.

 X_4 is a quasiprojective variety since it is the complement of the subvariety $X_{3,a+1}$ in $X_{3,a}$. Finally, 5-6 follow as special cases of 3 since $X_5 = X_{3,d_1}$ and $X_6 = X_{3,d_2}$.

5.4 Geometry of affine flag varieties

Given $L \in \mathcal{F}$, $N, a \in \mathbb{N}$ and $\lambda \in \Lambda_0$ define

$$\Pi_{N,\lambda}(L) = \{ L' \in \mathcal{F}_{\lambda} : \varepsilon^{N} L_{0} \subset L'_{0} \subset \varepsilon^{-N} L_{0} \}.$$

and

$$\Pi_{N,\lambda}^a(L) = \left\{ L' \in \mathcal{F}_{\lambda} : \varepsilon^N L_0 \subset L'_0 \subset \varepsilon^{-N} L_0, \dim \left(\frac{\varepsilon^{-N} L_0}{L'_0} \right) = a \right\}.$$

Lemma 5.4.1. Given $L \in \mathcal{F}$, $N \in \mathbb{N}$ and $\lambda \in \Lambda_0$,

$$\Pi_{N,\lambda}(L) = \bigcup_{a:0 \le a \le 2Nr} \Pi_{N,\lambda}^a(L).$$

Proof. If $L' \in \Pi_{N,\lambda}(L)$ then $\varepsilon^N L_0 \subset L'_0 \subset \varepsilon^{-N} L_0$ and the $\mathbf{k}[\varepsilon]$ -module $\varepsilon^{-N} L_0/L'_0$ is naturally isomorphic to $(\varepsilon^{-N} L_0/\varepsilon^N L_0)/(L'_0/\varepsilon^N L_0)$, so

$$\dim_{\mathbf{k}} \left(\frac{\varepsilon^{-N} L_0}{L'_0} \right) \le \dim_{\mathbf{k}} \left(\frac{\varepsilon^{-N} L_0}{\varepsilon^N L_0} \right) = 2Nr.$$

Lemma 5.4.2. Given $L \in \mathcal{F}$, $N \in \mathbb{N}$, $\lambda \in \Lambda_0$ and $a \in \mathbb{N}$ with $0 \le a \le 2Nr$, $\Pi_{N,\lambda}^a(L)$ is a projective algebraic variety.

Proof. Let W be the $\mathbf{k}[\varepsilon]$ -module $\varepsilon^{-1-N}L_0/\varepsilon^N L_0$, which has dimension (2N+1)r over \mathbf{k} . Let $d_i = 2Nr - a + \lambda_1 + \cdots + \lambda_i$ for each $i = 1, \ldots, n$. The correspondence between submodules of $\varepsilon^{-1-N}L_0$ which contain $\varepsilon^N L_0$ and submodules of $\varepsilon^{-1-N}L_0/\varepsilon^N L_0$ determines a map

$$\rho \colon \Pi_{N \lambda}^a(L) \to \operatorname{Gr}_{d_1}(W) \times \cdots \times \operatorname{Gr}_{d_n}(W),$$

with $\rho(L') = (L_1/\varepsilon^N L_0, \dots, L_n/\varepsilon^N L_0).$

Let \mathcal{X} be the space of $(U_1, \ldots, U_n) \in \operatorname{Gr}_{d_1}(W) \times \cdots \times \operatorname{Gr}_{d_n}(W)$ with $U_i \subset U_{i+1}$ for $i = 1, \ldots, n-1$ and $\varepsilon U_n \subset U_1$. Lemma 5.3.2 shows that each of these conditions is closed, so \mathcal{X} is a closed subset of $\operatorname{Gr}_{d_1}(W) \times \cdots \times \operatorname{Gr}_{d_n}(W)$, therefore \mathcal{X} is a projective algebraic variety.

The image of ρ is contained in \mathcal{X} since

$$\varepsilon L'_n/\varepsilon^N L_0 = L'_0/\varepsilon^N L_0 \subset L'_1/\varepsilon^N L_0 \subset \cdots \subset L'_n/\varepsilon^N L_0.$$

Suppose $(U_1, \ldots, U_n) \in \mathcal{X}$. Then U_i is a $\mathbf{k}[\varepsilon]$ -module, since $\varepsilon U_i \subset \varepsilon U_n \subset U_1 \subset U_i$, for each $i = 1, \ldots, n$, so U_i lifts uniquely to a $\mathbf{k}[\varepsilon]$ -module L'_i with $\varepsilon^N L_0 \subset L'_i \subset \varepsilon^{-1-N} L_0$. Therefore L'_1, \ldots, L'_n are $\mathbf{k}[\varepsilon]$ -lattices with $L_i \subset L_{i+1}$ for $i = 1, \ldots, n-1$ and $\varepsilon L'_n \subset L'_1$, with

$$\dim (\varepsilon^{-1-N} L_0/L'_n) = \dim (W/W_n) = (2N+1)r - d_n = a$$

and

$$\dim (L'_i/L'_{i-1}) = \dim (W_i/W_{i-1}) = d_i - d_{i-1} = \lambda_i,$$

for each $i=2,\ldots,n$. Therefore there is a unique $L'\in\Pi^a_{N,\lambda}(L)$ such that $\rho(L')=(W_1,\ldots,W_n)$, where L' is given by $L'_{i+cn}=\varepsilon^{-c}L'_i$ for $i=1,\ldots,n$ and $c\in\mathbb{Z}$. It follows ρ is injective and $\mathrm{im}\,\rho=\mathcal{X}$, which is a projective variety, so $\Pi^a_{N,\lambda}(L)$ is a projective variety.

Lemma 5.4.3. Given $L \in \mathcal{F}$, $N \in \mathbb{N}$, $\lambda \in \Lambda_0$ and $a \in \mathbb{N}$ with $0 \le a \le 2Nr$, $\Pi_{N,\lambda}^a(L)$ is a subvariety of $\Pi_{N+1,\lambda}^{a+r}(L)$.

Proof. If $L' \in \Pi_{N,\lambda}^a(L)$, then $\varepsilon^{N+1}L_0 \subset \varepsilon^N L_0 \subset L'_0 \subset \varepsilon^{-N}L_0 \subset \varepsilon^{-(N+1)}L_0$ and

$$\dim\left(\frac{\varepsilon^{-(1+n)}L_0}{L_0'}\right) = \dim\left(\frac{L_0}{\varepsilon L_0}\right) + \dim\left(\frac{\varepsilon^{-N}L_0}{L_0'}\right) = r + a,$$

which shows that $\Pi_{N,\lambda}^a(L) \subset \Pi_{N+1,\lambda}^{a+r}(L)$. For $L' \in \Pi_{N+1,\lambda}^{a+r}(L)$, if additionally $\varepsilon^N L_0 \subset L'_0 \subset \varepsilon^{-N} L_0$, then

$$\dim\left(\frac{\varepsilon^{-(N+1)}L_0}{L_0'}\right) = r + \dim\left(\frac{\varepsilon^{-N}L_0}{L_0'}\right),\,$$

which shows $L' \in \Pi_{N,\lambda}^a(L)$. Thus $\Pi_{N,\lambda}^a(L)$ is the subspace of $\Pi_{N+1,\lambda}^{a+r}(L)$ defined by the closed conditions $\varepsilon^N L_0 \subset L'_0$ and $L'_0 \subset \varepsilon^{-N} L_0$.

Lemma 5.4.4. Let $\lambda \in \Lambda_0$, $M, N \in \mathbb{N}$, $L, \tilde{L} \in \mathcal{F}$, $0 \le a \le 2Nr$, $0 \le b \le 2Mr$. $\Pi_{N,\lambda}^a(L) \cap \Pi_{M,\lambda}^b(\tilde{L})$ is a closed set in $\Pi_{N,\lambda}^a(L)$. In particular, if the intersection is nonempty it is a projective algebraic variety.

Proof. Observe $\Pi^a_{N,\lambda}(L) \cap \Pi^b_{M,\lambda}(\tilde{L})$ is the subset of $\Pi^a_{N,\lambda}(L)$ defined by the additional closed conditions that $\varepsilon^M \tilde{L}_0 \subset L'_0$ and $L'_0 \subset \varepsilon^{-M} \tilde{L}_0$, so is closed.

Lemma 5.4.5. Suppose $L \in \mathcal{F}$, $N, a \in \mathbb{N}$ and $\lambda \in \Lambda_0$ with $a \leq 2Nr$. For each $g \in G$, the natural map (restriction of the action map) $\Pi^a_{N,\lambda}(L) \to \Pi^a_{N,\lambda}(gL)$ is an isomorphism of projective varieties.

Proof. If $L' \in \Pi_{N,\lambda}^a(L)$, then $\varepsilon^N L_0 \subset L'_0 \subset \varepsilon^{-N} L_0$ and so $\varepsilon^N g(L_0) \subset g(L'_0) \subset \varepsilon^{-N} g(L_0)$, so $gL' \in \Pi_{N,\lambda}^a(L)$. Thus g and g^{-1} induce mutually inverse morphisms of varieties $g: \Pi_{N,\lambda}^a(L) \to \Pi_{N,\lambda}^a(gL)$ and $g^{-1}: \Pi_{N,\lambda}^a(gL) \to \Pi_{N,\lambda}^a(L)$.

5.4.1 Action through an algebraic group

Given $N \in \mathbb{N}$, define

$$H_N = \left\{ h \in G_L : h = 1 \text{ on } \frac{\varepsilon^{-(1+N)} L_0}{\varepsilon^N L_0} \right\}.$$

Explicitly, the condition h=1 on $\varepsilon^{-(1+N)}L_0/\varepsilon^N L_0$ means: $h(x)+\varepsilon^N L_0=x+\varepsilon^N L_0$ for $x\in \varepsilon^{-(1+N)}L_0$. Observe that $H_{N+1}\subset H_N$ for $N\in\mathbb{N}$ since $h(x)+\varepsilon^N L_0=x+\varepsilon^N L_0$ whenever $x\in \varepsilon^{-(1+N)}L_0$.

EDITORIAL REMARK:

Maybe the cleanest way to write this is to describe the natural group homomorphism $G_L \to \operatorname{GL}(W)$ and state that $H_{N,L}$ is the kernel of this group homomorphism. The next lemma should describe the image and deduce $G_L/H_{N,L}$ is a connected algebraic group, possibly with the last result relegated to a corollary.

Lemma 5.4.6. Given $L \in \mathcal{F}$ and $N \in \mathbb{N}$, $G_L/H_{N,L}$ is a connected algebraic group.

Proof. Let W be the $\mathbb{C}[\varepsilon]$ -module $\varepsilon^{-(1+N)}L_0/\varepsilon^N L_0$. ε^{2N+1} acts as zero on W and $\mathbb{C}[\varepsilon]/\langle \varepsilon^{2N+1}\rangle \otimes_{\mathbb{C}[\varepsilon]} W$ is a free $\mathbb{C}[\varepsilon]/\langle \varepsilon^{2N+1}\rangle$ -module of rank r. Given $g \in G_{L_0}$, g is a $\mathbb{C}[\varepsilon]$ -module automorphism of $\varepsilon^{-(1+N)}L_0$ and $\varepsilon^N L_0$ is a g-invariant submodule, so there is an automorphism $\bar{g}: W \to W$ fitting into a commutative diagram

$$0 \longrightarrow \varepsilon^{N} L_{0} \longrightarrow \varepsilon^{-1-N} L_{0} \longrightarrow W \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \varepsilon^{N} L_{0} \longrightarrow \varepsilon^{-1-N} L_{0} \longrightarrow W \longrightarrow 0$$

The natural map $: G_{L_0} \to GL(W)$ is a group homomorphism with kernel consisting of those $g \in G_{L_0}$ such that $\bar{g} = 1$: that is, $g(x) \in x + \varepsilon^{2N+1}L_0$ for each $x \in L_0$.

The image of G_{L_0} in GL(W) may be described by equations in the coordinates on GL(W) with respect to a \mathbb{C} -basis of W. W has a basis $\{x_1, \ldots, x_r\}$ over $\mathbb{C}[\varepsilon]/\langle \varepsilon^{2N+1} \rangle$, therefore the complex vector space W has a basis $\{y_j : j \in \mathbb{Z}, 1-2Nr \leq j \leq r\}$ given by

$$y_{i-cr} = \varepsilon^c x_i$$

for $1 \leq i \leq r$ and $0 \leq c \leq 2N$. There are coordinate functions $\gamma_{i,j} \colon \mathrm{GL}(W) \to \mathbb{C}$ with respect to this basis, given by

$$g(y_j) = \sum_{i} \gamma_{ij}(g) y_i.$$

If $g \in GL(W)$ is ε -linear, then $g(y_{i-r}) = g(\varepsilon y_i) = \varepsilon g(y_i)$ and therefore $\gamma_{i-r,j-r}(g) = \gamma_{i,j}(g)$ for all i, j. This shows that the image of G_{L_0} in GL(W) is the parabolic subgroup consisting of elements of the form

$$A_0 A_1 A_2 \cdots A_{2N}$$

$$0 A_0 A_1 \cdots A_{2N-1}$$

$$\cdots \cdots \cdots$$

$$0 0 \cdots A_0 A_1$$

$$0 0 \cdots 0 A_0,$$

where $A_0 \in GL_r(\mathbb{C})$ and $A_1, \ldots, A_{2N} \in M_r(\mathbb{C})$, which is a closed subgroup of GL(W). The image of G_{L_0} in GL(W) is identified with the (nonempty) open set $GL_r(\mathbb{C}) \times M_r(\mathbb{C})^{2N}$ in the affine space $M_r(\mathbb{C})^{2N+1}$, so the image of G_{L_0} is irreducible. This shows that $G_{L_0}/H_{N,L_0}$ is a connected algebraic group.

Moreover, $G_L = G_{L_1} \cap \cdots \cap G_{L_n}$, so the image of G_L in GL(W) is a closed subgroup. $G_L/H_{N,L}$ is naturally isomorphic to the subgroup of GL(W) defined by the equations $\gamma_{i-r,j-r} = \gamma_{i,j}$ and for $j = 1, \ldots, r$ the equations $\gamma_{i,j} = 0$ for $i > \lambda_1 + \cdots + \lambda_s$, where s is given by $\lambda_1 + \cdots + \lambda_{s-1} < j \le \lambda_1 + \cdots + \lambda_s$. Therefore $G_L/H_{N,L}$ is isomorphic to the product $\mathcal{P}_{\lambda} \times M_r(\mathbb{C}) \times \cdots \times M_r(\mathbb{C})$, where \mathcal{P}_{λ} is a parabolic subgroup of GL(W), so is irreducible.

Given $g \in G$, the map $G_L \to G_{gL}$ sending h to ghg^{-1} is a group isomorphism which descends to an isomorphism of algebraic groups $G_L/H_{N,L} \to G_{gL}/H_{N,gL}$. Thus we have a commuting diagram of morphisms of varieties, where the vertical arrows are isomorphisms:

$$G_L/H_{N,L} \times \Pi_{N,\lambda}^a(L) \longrightarrow \Pi_{N,\lambda}^a(L)$$

$$\downarrow \qquad \qquad \downarrow$$

$$G_{gL}/H_{N,gL} \times \Pi_{N,\lambda}^a(gL) \longrightarrow \Pi_{N,\lambda}^a(gL)$$

5.4.2 Incidence in affine flag varieties

Lemma 5.4.7. Given $N, a, b, c \in \mathbb{N}$, $\lambda, \mu \in \Lambda_0$, $L \in \mathcal{F}$ and $i, j \in \mathbb{Z}$,

$$\left\{ (L',L'') \in \Pi_{N,\lambda}^a(L) \times \Pi_{N,\mu}^b(L) : \dim \left(\frac{L_i'}{L_i' \cap L_j''} \right) \le c \right\}$$

is a projective variety.

Proof. There is $M \geq N$ so that $\varepsilon^M L_0 \subset L_i' \subset \varepsilon^{-M} L_0$ and $\varepsilon^M L_0 \subset L_j'' \subset \varepsilon^{-M} L_0$. Let a' = a + (M - N)r and b' = b + (M - N)r. Lemma 5.4.3 shows that $\Pi_{N,\lambda}^a(L)$ is a subvariety of $\Pi_{M,\lambda}^{a'}(L)$, so $\Pi_{N,\lambda}^a(L) \times \Pi_{N,\mu}^b(L)$ is a subvariety of $\Pi_{M,\lambda}^{a'}(L) \times \Pi_{M,\mu}^{b'}(L)$.

The fact that

$$\dim\left(\frac{L_i'}{L_i'\cap L_j''}\right)=\dim\left(\frac{L_i'/\varepsilon^ML_0}{L_i'/\varepsilon^ML_0\cap L_j''/\varepsilon^ML_0}\right),$$

together with Lemma 5.4.2 and Lemma 5.3.1, shows that

$$\left\{ (L', L'') \in \Pi_{M, \lambda}^{a'}(L) \times \Pi_{M, \mu}^{b'}(L) : \dim \left(\frac{L'_i}{L'_i \cap L''_j} \right) \le c \right\}$$

is a projective variety, so the intersection with $\Pi^a_{N,\lambda}(L) \times \Pi^b_{N,\mu}(L)$ is also a projective variety. \square

Lemma 5.4.8. Given $N, a, c \in \mathbb{N}$, $\lambda \in \Lambda_0$, $L \in \mathcal{F}$ and $i, j \in \mathbb{Z}$,

$$\left\{ L' \in \Pi_{N,\lambda}^a(L) : \dim \left(\frac{L_i}{L_i \cap L'_j} \right) \le c \right\}$$

and

$$\left\{ L' \in \Pi_{N,\lambda}^a(L) : \dim \left(\frac{L'_j}{L_i \cap L'_j} \right) \le c \right\}$$

are projective varieties.

Proof. This is a result of Lemma 5.3.2, since

$$\dim\left(\frac{L_i'}{L_i'\cap L_j''}\right)=\dim\left(\frac{L_i'/\varepsilon^ML_0}{L_i'/\varepsilon^ML_0\cap L_j''/\varepsilon^ML_0}\right),$$

where $M \geq N$ is chosen so that $\varepsilon^M L_0 \subset L_i' \subset \varepsilon^{-M} L_0$ and $\varepsilon^M L_0 \subset L_j'' \subset \varepsilon^{-M} L_0$ for each $(L', L'') \in \Pi_{N,\lambda}^a(L) \times \Pi_{N,\mu}^b(L)$.

5.5 Geometry of orbits

Lemma 5.5.1. Given $A \in \Lambda_1$, there is $N \in \mathbb{N}$ such that $\varepsilon^N L_0 \subset L'_0 \subset \varepsilon^{-N} L_0$ for each $(L, L') \in \mathcal{O}_A$. In this case

$$\dim\left(\frac{\varepsilon^{-N}L_0}{L_0'}\right) = d_{nN,0}(A).$$

Proof. Given $A \in \Lambda_1$, there is $N \in \mathbb{N}$ so that $a_{i,j} = 0$ whenever |j - i| > nN. If $(L, L') \in \mathcal{O}_A$ then

$$\dim\left(\frac{L'_0}{L'_0\cap\varepsilon^{-N}L_0}\right) = \dim\left(\frac{L'_0}{L'_0\cap L_{nN}}\right) = \sum_{s>nN,t\leq 0} a_{s,t} = 0,$$

so it follows $L'_0 \subset \varepsilon^{-N} L_0$. Similarly,

$$\dim\left(\frac{\varepsilon^N L_0}{\varepsilon^N L_0 \cap L_0'}\right) = \dim\left(\frac{L_{-nN}}{L_{-nN} \cap L_0'}\right) = \sum_{s \le -nN, t > 0} a_{s,t} = 0,$$

which shows $\varepsilon^N L_0 \subset L_0'$. Moreover,

$$\dim\left(\frac{\varepsilon^{-N}L_0}{L_0'}\right) = \dim\left(\frac{\varepsilon^{-N}L_0}{\varepsilon^{-N}L_0 \cap L_0'}\right) = \sum_{s \le nN, t > 0} a_{s,t} = d_{nN,0}(A),$$

as a result of Lemma 5.2.4.

Lemma 5.5.2. Given $A \in \Lambda_1$ and $L \in \mathcal{F}_{ro A}$, X_A^L is a quasiprojective variety.

Proof. There is $N \in \mathbb{N}$ such that $X_A^L \subset \Pi_{N,\lambda}^a(L)$, where $a = d_{nN,0}A$ and $\lambda = \operatorname{co} A$. If $L' \in \Pi_{N,\lambda}^a(L)$ then

$$L_{-Nn} = \varepsilon^N L_0 \subset L_0' \subset L_1' \subset L_n' \subset \varepsilon^{-1-N} L_0 = L_{(N+1)n}.$$

Therefore X_A^L is the subset of $\Pi_{N,\lambda}^a(L)$ defined by the conditions $\dim(L_i/L_i \cap L_j') = d_{i,j}A$ for $i: -Nn \le i < j$ and $\dim(L_j'/L_i \cap L_j') = \bar{d}_{i,j}A$ for $i: j < i \le (N+1)n$, for $j=1,\ldots,n$.

The set of $L' \in \Pi_{N,\lambda}^a(L)$ with $\dim(L_i/L_i \cap L'_j) \leq d_{i,j}A$ for $j = 1, \ldots, n$ and $i : -Nn \leq i < j$ and $\dim(L'_j/L_i \cap L'_j) \leq \bar{d}_{i,j}A$ for $j = 1, \ldots, n$ and $i : j < i \leq (N+1)n$ is a projective algebraic variety, as a result of Lemma 5.4.7.

Similarly, the set of $L' \in \Pi_{N,\lambda}^a(L)$ satisfying the conditions $\dim(L_i/L_i \cap L'_j) \ge d_{i,j}A$ (for i < j) and $\dim(L'_i/L_i \cap L'_j) \ge \bar{d}_{i,j}A$ (for i > j) is open in $\Pi_{N,\lambda}^a(L)$.

Thus X_A^L is a nonempty open subset of a projective variety, so is a quasiprojective variety as claimed.

Lemma 5.5.3. Given $A \in \Lambda_1$ and $L \in \mathcal{F}_{roA}$, X_A^L is an irreducible quasi-projective variety.

Proof. Lemma 5.5.2 shows that X_A^L is a quasiprojective variety. In particular, X_A^L is a locally-closed subset of $\Pi_{N,\text{co }A}^a(L)$ for some $N \in \mathbb{N}$ and $a = d_{nN,0}(A)$. Lemma 5.4.6 shows $G_L/H_{N,L}$ is a connected algebraic group acting algebraically on $\Pi_{N,\text{co }A}^a(L)$, so each orbit is irreducible. In particular, if $L' \in X_A^L$, then $X_A^L = G_L \cdot L' = G_L/H_{N,L} \cdot L'$ is irreducible.

Consequently, the closure of X_A^L is an irreducible projective variety.

5.5.1 Geometry of orbit products

Suppose $A, B \in \Lambda_1$ with $\operatorname{co} A = \operatorname{ro} B$. Recall the notation

$$Y_{A,B} = \{(L, L', L'') \in \mathcal{F}^3 : (L, L') \in \mathcal{O}_A, (L', L'') \in \mathcal{O}_B\}$$

and

$$X_{A,B} = \{(L,L'') \in \mathcal{F}^2 : \exists L' \in \mathcal{F} \text{ with } (L,L',L'') \in Y_{A,B}\}.$$

 $X_{A,B}$ is the image of $Y_{A,B}$ under the forgetful map $(L,L',L'')\mapsto (L,L'').$

Lemma 5.5.4. There is $N \in \mathbb{N}$ such that

$$\varepsilon^N L_0 \subset L_0'' \subset \varepsilon^{-N} L_0$$

for each $(L, L'') \in X_{A,B}$.

Proof. There exist $N_1, N_2 \in \mathbb{N}$ such that

$$\varepsilon^{N_1}L_0 \subset L_0' \subset \varepsilon^{-N_1}L_0$$

and

$$\varepsilon^{N_2}L_0'\subset L_0''\subset \varepsilon^{-N_2}L_0',$$

for each $(L,L',L'') \in Y_{A,B}$. Then, for $(L,L',L'') \in Y_{A,B}$,

$$L_0'' \subset \varepsilon^{-N_2} L_0' \subset \varepsilon^{-(N_1+N_2)} L_0$$

and

$$\varepsilon^{N_1+N_2}L_0\subset \varepsilon^{N_2}L_0'\subset L_0''$$
.

In particular, taking $N = N_1 + N_2$, we have

$$\varepsilon^N L_0 \subset L_0'' \subset \varepsilon^{-N} L_0$$

for each $(L, L'') \in X_{A,B}$.

Lemma 5.5.5. Suppose $N_1, N_2 \in \mathbb{N}$ with $\varepsilon^{N_1} L_0 \subset L_0 \subset \varepsilon^{-N_1} L_0$ and $\varepsilon^{N_2} L_0' \subset L_0'' \subset \varepsilon^{-N_2} L_0'$ for each $(L, L', L'') \in Y_{A,B}$ and let $N = N_1 + N_2$. Then

$$\dim\left(\frac{\varepsilon^{-N}L_0}{L_0''}\right) = d_{nN_1,0}(A) + d_{nN_2,0}(B)$$

and

$$\dim\left(\frac{L_0''}{\varepsilon^N L_0}\right) = 2Nr - d_{nN_1,0}(A) + d_{nN_2,0}(B),$$

for each $(L, L'') \in X_{A,B}$.

Proof. Suppose $(L, L'') \in X_{A,B}$ and $L' \in \mathcal{F}$ so that $(L, L', L'') \in Y_{A,B}$. As in lemma 5.5.4, $\varepsilon^N L_0 \subset L_0'' \subset \varepsilon^{-N} L_0$, so

$$\dim\left(\frac{\varepsilon^{-N}L_0}{L_0''}\right)+\dim\left(\frac{L_0''}{\varepsilon^NL_0}\right)=\dim\left(\frac{\varepsilon^{-N}L_0}{\varepsilon^NL_0}\right).$$

As a **k**-vector space, $\varepsilon^{-N}L_0/\varepsilon^N L_0$ is isomorphic to $(L_0/\varepsilon L_0)^{2N}$, which has dimension 2Nr, so

$$\dim\left(\frac{L_0''}{\varepsilon^N L_0}\right) = 2Nr - \dim\left(\frac{\varepsilon^{-N} L_0}{L_0''}\right).$$

It remains to compute the codimension of L_0'' in $\varepsilon^{-N}L_0$. Note $L_0'' \subset \varepsilon^{-N_2}L_0' \subset \varepsilon^{-N}L_0$, so

$$\dim\left(\frac{\varepsilon - NL_0}{L_0''}\right) = \dim\left(\frac{\varepsilon^{-N}L_0}{\varepsilon^{-N_2}L_0'}\right) + \dim\left(\frac{\varepsilon^{-N_2}L_0'}{L_0''}\right).$$

$$\dim\left(\frac{\varepsilon^{-N}L_0}{\varepsilon^{-N_2}L'_0}\right) = \dim\left(\frac{\varepsilon^{-N_1}L_0}{L'_0}\right)$$

$$= \dim\left(\frac{L_{nN_1}}{L_{nN_1} \cap L'_0}\right)$$

$$= \sum_{s \le nN_1, t > 0} A_{s,t}$$

$$= d_{nN_1,0}(A).$$

$$\dim\left(\frac{\varepsilon^{-N_2}L_0'}{L_0''}\right) = \dim\left(\frac{L_{nN_2}'}{L_{nN_2}' \cap L_0''}\right)$$
$$= \sum_{s \le nN_2, t > 0} B_{s,t}$$
$$= d_{nN_2,0}(B).$$

Refer to Section 3.1.1 for definitions of the spaces $X_{A,B}^L$ and $Y_{A,B}^L$.

Lemma 5.5.6. Given $A, B \in \Lambda_1$ with ro $B = \operatorname{co} A$ and $(L, L', L'') \in \mathcal{F}^3$ with $(L, L') \in \mathcal{O}_A$ and $(L', L'') \in \mathcal{O}_B$,

$$X_{A,B}^{L} = G_L G_{L'} L''$$
$$= G_L X_B^{L'}.$$

Proof. $X_{A,B}^L$ is the image of $Y_{A,B}^L$ under the forgetful map $(N', N'') \mapsto N''$. If $\alpha \in G_L$ and $\beta \in G_{L'}$ then $(L, \alpha L, \alpha \beta L'') \in Y_{A,B}$ since $(L, \alpha L') = \alpha (L, L') \in \mathcal{O}_A$ and $(\alpha L', \alpha \beta L'') = \alpha \beta (\beta^{-1} L', L'') = \alpha \beta (L', L'') \in \mathcal{O}_B$. Consequently, $G_L G_{L'} L'' \in X_{A,B}^L$.

For the reverse inclusion, if $(N', N'') \in Y_{A,B}^L$ then $(L, N') \in \mathcal{O}_A$ and $(N', N'') \in \mathcal{O}_B$, so there exist $\sigma_1, \sigma_2 \in G$ such that $(L, N') = \sigma_1(L, L')$ and $(N', N'') \in \sigma_2(N', N'')$. Then $(L, N', N'') = (L, \sigma_1 L', \sigma_1(\sigma_1^{-1}\sigma_2)L'')$ with $\sigma_1 \in G_L$ and $\sigma_1^{-1}\sigma_2 \in G_{L'}$. Thus $X_{A,B}^L = G_L G_{L'} L''$.

The second equality follows since $X_B^{L'} = G_{L'}L''$.

Lemma 5.5.7. There is $N \in \mathbb{N}$ such that $H_N \subset G_{L'}$. Consequently, $H_{N'} \subset G_{L'}$ whenever $N' \geq N$.

Proof. Choose $N \in \mathbb{N}$ such that $\varepsilon^N L_0 \subset L_0' \subset \varepsilon^{-N} L_0$. Then

$$\varepsilon^N L_0 \subset L_0' \subset L_1' \subset \cdots \subset L_n' \subset \varepsilon^{-(1+N)} L_0.$$

Let $h \in H_N$. $h(x) + \varepsilon^N L_0 = x + \varepsilon^N L_0$ for $x \in \varepsilon^{-(1+N)} L_0$, so $h(L_i') \subset L_i'$ for i = 0, 1, ..., n. Moreover, h^{-1} stabilises L_i' , so $h(L_i') = L_i'$ for i = 0, 1, ..., n and therefore for $i \in \mathbb{Z}$. This shows $h \in G_{L_i'}$ as required, so $H_N \subset G_{L_i'}$.

 H_N is generally not normal in $G_{L'}$, though the space of (right) cosets of H_N in $G_{L'}$ will still be irreducible.

Lemma 5.5.8. $G_{L'}/H_N$ is irreducible, provided $H_N \subset G_{L'}$.

Proof. Needs a proof. \Box

Lemma 5.5.9. Given $A, B \in \Lambda_1$ with $\operatorname{co} A = \operatorname{ro} B$ and $L \in \mathcal{F}_{\operatorname{ro} A}$, $Y_{A,B}^L$ is a quasiprojective variety.

Proof. There is $N \in \mathbb{N}$ such that $\varepsilon^N L_0 \subset L_0' \subset \varepsilon^{-N} L_0$ and $\varepsilon^N L_0' \subset L_0'' \subset \varepsilon^{-N} L_0'$ for each (L, L', L'') with $(L, L') \in \mathcal{O}_A$ and $(L', L'') \in \mathcal{O}_B$. Let $a = d_{nN,0}(A)$ and $b = d_{nN,0}(B)$. Then $Y_{A,B}^L$ is the subset of $\Pi_{N,co\,A}^a(L) \times \Pi_{2N,co\,B}^{a+b}(L)$ defined by the conditions

$$\dim\left(\frac{L_i}{L_i\cap L'_j}\right) = d_{i,j}(A)$$

and

$$\dim\left(\frac{L_i'}{L_i'\cap L_j''}\right) = d_{i,j}(B)$$

for each $i, j \in \mathbb{Z}$.

it remains to justify why these are locally closed conditions on the product and why there are effectively only finitely many conditions. Thus $Y_{A,B}^L$ is a locally closed subset of $\Pi_{N,\operatorname{co} A}^a(L) \times \Pi_{2N,\operatorname{co} B}^{a+b}(L)$ so is a quasiprojective variety.

Proposition 5.5.10. Given $A, B \in \Lambda_1$ with $\operatorname{co} A = \operatorname{ro} B$ and $L \in \mathcal{F}_{\operatorname{ro} A}$, $Y_{A,B}^L$ is an irreducible quasi-projective variety.

Proof. There is $N \in \mathbb{N}$ such that $\varepsilon^N L_0 \subset L_0' \subset \varepsilon^{-N} L_0$ and $\varepsilon^N L_0' \subset L_0'' \subset \varepsilon^{-N} L_0'$ for each $(L', L'') \in Y_{A,B}^L$. Write $a = d_{nN,0}(A)$ and $b = d_{nN,0}(B)$, so $Y_{A,B}^L \subset \Pi_{N,\operatorname{co} A}^a(L) \times \Pi_{2N,\operatorname{co} B}^{a+b}(L)$. Lemma 5.5.9 shows that $Y_{A,B}^L$ is a locally closed subset of $\Pi_{N,\operatorname{co} A}^a(L) \times \Pi_{2N,\operatorname{co} B}^{a+b}(L)$ and thus a quasiprojective variety, so it remains to show $Y_{A,B}^L$ is irreducible.

For any $L' \in X_A^L$, $Y_{A,B}^L = G_L \cdot (\{L'\} \times X_B^{L'}) = G_L/H_{2N,L} \cdot (\{L'\} \times X_B^{L'})$. $\overline{X_B^{L'}}$ is an irreducible subvariety of $\Pi_{N,\operatorname{co} B}^b(L')$, which is a subvariety of $\Pi_{2N,\operatorname{co} B}^{a+b}(L)$, so $\{L'\} \times \overline{X_B^{L'}}$ is an irreducible subvariety of $\Pi_{N,\operatorname{co} A}^a(L) \times \Pi_{2N,\operatorname{co} B}^{a+b}(L)$. In particular, $\{L'\} \times X_B^{L'}$ is an irreducible (locally closed) subspace of $\Pi_{N,\operatorname{co} A}^a(L) \times \Pi_{2N,\operatorname{co} B}^{a+b}(L)$. $G_L/H_{2N,L}$ is a connected algebraic group acting algebraically on $\Pi_{N,\operatorname{co} A}^a(L) \times \Pi_{2N,\operatorname{co} B}^{a+b}(L)$ and $Y_{A,B}^L$ is the image of $G_L/H_{2N,L} \times \{L'\} \times X_B^{L'}$ under the action map, so $Y_{A,B}^L$ is irreducible.

Lemma 5.5.11. Given $A, B \in \Lambda_1$ with $\operatorname{co} A = \operatorname{ro} B$ and $L \in \mathcal{F}_{\operatorname{ro} A}$, $X_{A,B}^L$ is an irreducible topological space.

Proof. $X_{A,B}^L$ is the image of $Y_{A,B}^L$ under the projection $\mathcal{F}_{co\,A} \times \mathcal{F}_{co\,B} \to \mathcal{F}_{co\,B}$ and $Y_{A,B}^L$ is irreducible, by Proposition 5.5.10, so $X_{A,B}^L$ is irreducible.

Proof. There is $N \in \mathbb{N}$ such that $\varepsilon^N \underline{L_0} \subset L'_0 \subset \varepsilon^{-N} L_0$ and $\varepsilon^N L'_0 \subset L''_0 \subset \varepsilon^{-N} L'_0$ for each $(L, L') \in \mathcal{O}_A$ and $(L', L'') \in \mathcal{O}_B$. Then $\overline{X_B^{L'}}$ is an irreducible subvariety of $\Pi^b_{N,\operatorname{co} B}(L')$, which is in turn a subvariety of $\Pi^{a+b}_{2N,\operatorname{co} B}(L)$. Thus $X_B^{L'}$ is an irreducible subspace of $\Pi^{a+b}_{2N,\operatorname{co} B}(L)$. $G_L/H_{2N,L}$ is a connected algebraic group acting morphically on $\Pi^{a+b}_{2N,\operatorname{co} B}(L)$, therefore $X_{A,B}^L = G_L/H_{2N,L} \cdot X_B^{L'}$ is irreducible.

Remark 1. $X_{A,B}^L$ is a union of finitely many G_L -orbits, each of which is locally closed, so $X_{A,B}^L$ is constructible. Lemma 5.5.11 shows that $X_{A,B}^L$ is irreducible. Investigate whether $X_{A,B}^L$ is actually locally closed and therefore an irreducible quasiprojective variety.

Proposition 5.5.12. Given $A, B \in \Lambda_1$ with $\operatorname{co} A = \operatorname{ro} B$ and $L \in \mathcal{F}_{\operatorname{ro} A}$, there is a unique open G_L -orbit in $X_{A,B}^L$.

Proof. $X_{A,B}^L$ consists of finitely many G_L -orbits and is an irreducible topological space, by Lemma 5.5.11. Consequently, X_C^L is dense in $X_{A,B}^L$ for some $C \in \Lambda_{1A,B}$. Lemma 5.5.2 shows that X_C^L is locally closed in $X_{A,B}^L$, so X_C^L is open in $\overline{X_C^L} = X_{A,B}^L$. Irreducibility of $X_{A,B}^L$ shows that there is a unique open G_L -orbit, since two non-empty open sets in $X_{A,B}^L$ intersect non-trivially, thus any two open G_L orbits in $X_{A,B}^L$ coincide.

5.6 Existence of a maximum

Lemma 5.6.1. Given $A, A' \in \Lambda_1$ with ro $A = \operatorname{ro} A'$ and $\operatorname{co} A = \operatorname{co} A'$, $A' \leq A$ if and only if $X_{A'}^L \subset \overline{X_A^L}$ for any $L \in \mathcal{F}_{\operatorname{ro} A}$.

Proof. Needs a proof. \Box

Proposition 5.6.2. Given $A, B \in \Lambda_1$ with $\operatorname{co} A = \operatorname{ro} B$, $\Lambda_{1A,B}$ has a maximum element.

Proof. Let $L \in \mathcal{F}_{ro\,A}$. $X_{A,B}^L$ is irreducible by Lemma 5.5.11 and is the union of finitely many G_L -orbits, namely

$$X_{A,B}^L = \bigcup_{C \in \Lambda_{1A,B}} X_C^L.$$

This shows that X_C^L is dense in $X_{A,B}^L$ for some $C \in \Lambda_{1A,B}$. Lemma 5.5.2 shows that the G_L -orbits in $X_{A,B}^L$ are locally closed, so a dense G_L -orbit is open in $X_{A,B}^L$. Lemma 5.6.1 shows that the characteristic matrix of the dense G_L -orbit is a maximum in $\Lambda_{1A,B}$.

5.7 Associativity

Refer to Section 3.1.2 for definitions of the spaces $X_{A,B,C}^L$ and $Y_{A,B,C}^L$. Recall that $X_{A,B,C}^L$ is the image of $Y_{A,B,C}^L$ under the forgetful map f, given by f(L',L'',L''')=L''' for each $(L',L'',L''')\in Y_{A,B,C}^L$.

Lemma 5.7.1. Given $A, B, C \in \Lambda_1$ with ro $C = \operatorname{co} B$, ro $B = \operatorname{co} A$ and a tuple of flags $(L, L', L'', L''') \in \mathcal{F}^4$ with $(L, L') \in \mathcal{O}_A$, $(L', L'') \in \mathcal{O}_B$ and $(L'', L''') \in \mathcal{O}_C$,

$$X_{A,B,C}^{L} = G_L G_{L'} G_{L''} L'''.$$

Proof. Given $\alpha \in G_L$, $\beta \in G_{L'}$ and $\gamma \in G_{L''}$, $(L, \alpha L', \alpha \beta L'', \alpha \beta \gamma L''') \in Y_{A,B,C}$ since $(L, \alpha L') = \alpha(L, L') \in \mathcal{O}_A$, $(\alpha L', \alpha \beta L'') = \alpha \beta(L', L'') \in \mathcal{O}_B$ and $(\alpha \beta L'', \alpha \beta \gamma L''') = \alpha \beta \gamma(L'', L''') \in \mathcal{O}_C$. This shows $G_L G_{L'} G_{L''} L''' \in X_{A,B,C}^L$.

Given $(N', N'', N''') \in Y_{A,B,C}^L$, there exist $\sigma_1, \sigma_2, \sigma_3 \in G$ such that $(L, N') = \sigma_1(L, L')$, $(N', N'') = \sigma_2(L', L'')$ and $(N'', N''') = \sigma_3(L'', L''')$; then $N' = \sigma_1 L' = \sigma_2 L'$, $N'' = \sigma_2 L'' = \sigma_3 L''$ and $N''' = \sigma_3 L'''$. Thus

$$(L,N',N'',N''')=(L,\sigma_1L',\sigma_1(\sigma_1^{-1}\sigma_2)L'',\sigma_1(\sigma_1^{-1}\sigma_2)(\sigma_2^{-1}\sigma_3)L''')$$

where $\sigma_1 \in G_L$, $\sigma_1^{-1}\sigma_2 \in G_{L'}$ and $\sigma_2^{-1}\sigma_3 \in G_{L''}$.

Lemma 5.7.2. Given $A, B, C \in \Lambda_1$ with $\operatorname{co} A = \operatorname{ro} B$ and $\operatorname{co} B = \operatorname{ro} C$ and $L \in \mathcal{F}_{\operatorname{ro} A}$, $Y_{A,B,C}^L$ is a quasiprojective variety.

Proof. There is $N \in \mathbb{N}$ such that $\varepsilon^N L_0 \subset L_0' \subset \varepsilon^{-N} L_0$, $\varepsilon^N L_0' \subset L_0'' \subset \varepsilon^{-N} L_0'$ and $\varepsilon^N L_0'' \subset L_0''' \subset \varepsilon^{-N} L_0''$ for each $(L', L'', L''') \in Y_{A,B,C}^L$. Let $a = d_{nN,0}(A)$, $b = d_{nN,0}(B)$ and $c = d_{nN,0}(C)$. Then $Y_{A,B,C}^L$ is the subset of $\Pi_{N,\text{co }A}^a(L) \times \Pi_{2N,\text{co }B}^{a+b}(L) \times \Pi_{3N,\text{co }C}^{a+b+c}(L)$ defined by the conditions

$$\dim\left(\frac{L_i}{L_i\cap L_j'}\right) = d_{i,j}(A),$$

$$\dim\left(\frac{L_i'}{L_i'\cap L_j''}\right) = d_{i,j}(B),$$

and

$$\dim\left(\frac{L_i''}{L_i''\cap L_j'''}\right)=d_{i,j}(C)$$

for each $i, j \in \mathbb{Z}$.

it remains to shows these conditions define locally closed subsets of the triple product and that there are effectively finitely many conditions.

Thus $Y_{A,B,C}^L$ is a locally closed subset of the projective variety $\Pi_{N,\operatorname{co} A}^a(L) \times \Pi_{2N,\operatorname{co} B}^{a+b}(L) \times \Pi_{3N,\operatorname{co} C}^{a+b+c}(L)$, so $Y_{A,B,C}^L$ is a quasiprojective variety.

Lemma 5.7.3. Given $A, B, C \in \Lambda_1$ with $\operatorname{co} A = \operatorname{ro} B$ and $\operatorname{co} B = \operatorname{ro} C$ and $L \in \mathcal{F}_{\operatorname{ro} A}$, $Y_{A,B,C}^L$ is an irreducible quasiprojective variety.

Proof. There is $N \in \mathbb{N}$ such that $\varepsilon^N L_0 \subset L_0' \subset \varepsilon^{-N} L_0$, $\varepsilon^N L_0' \subset L_0'' \subset \varepsilon^{-N} L_0'$ and $\varepsilon^N L_0'' \subset L_0''' \subset \varepsilon^{-N} L_0''$ for each $(L', L'', L''') \in Y_{A,B,C}^L$. Lemma 5.4.6 shows that $G_L/H_{3N,L}$ is a connected algebraic group acting algebraically on $\Pi = \Pi_{N,\text{co }A}^a(L) \times \Pi_{2N,\text{co }B}^{a+b}(L) \times \Pi_{3N,\text{co }C}^{a+b+c}(L)$.

Let $L' \in X_A^L$. $Y_{A,B,C}^L = G_L \cdot (\{L'\} \times Y_{B,C}^{L'}. Y_{B,C}^{L'}. Y_{B,C}^{L'}$ is an irreducible quasiprojective variety; $\overline{Y_{B,C}^{L'}}$ is an irreducible subvariety of $\Pi_{N,\operatorname{co}B}^b(L') \times \Pi_{2N,\operatorname{co}C}^{b+c}(L')$, which is a subvariety of $\Pi_{2N,\operatorname{co}B}^{a+b}(L) \times \Pi_{3N,\operatorname{co}C}^{a+b+c}(L)$. Thus $\{L'\} \times \overline{Y_{B,C}^{L'}}$ is an irreducible subvariety of Π . Therefore $Y_{A,B,C}^L$ is the image of the irreducible space $G_L/H_{3N,L} \times \{L'\} \times Y_{B,C}^{L'}$ under the action map, so $Y_{A,B,C}^L$ is irreducible. Lemma 5.7.2 shows that $Y_{A,B,C}^L$ is quasiprojective, so $Y_{A,B,C}^L$ is an irreducible quasiprojective variety.

Corollary 5.7.4. Given $A, B, C \in \Lambda_1$ with $\operatorname{co} A = \operatorname{ro} B$ and $\operatorname{co} B = \operatorname{ro} C$ and $L \in \mathcal{F}_{\operatorname{ro} A}$, $X_{A,B,C}^L$ is an irreducible topological space.

Proof. $X_{A,B,C}^L$ is the image of $Y_{A,B,C}^L$ under the forgetful map f and $Y_{A,B,C}^L$ is irreducible, by Lemma 5.7.3, so $X_{A,B,C}^L$ is irreducible.

Lemma 5.7.5. Given matrices $A, B, C \in \Lambda_1$ with $\operatorname{co} A = \operatorname{ro} B$ and $\operatorname{co} B = \operatorname{ro} C$ and $L \in \mathcal{F}_{\operatorname{ro} A}$, there is a unique open G_L -orbit in $X_{A,B,C}^L$.

Proof. $X_{A,B,C}^L$ is irreducible, by Corollary 5.7.4, and consists of finitely many G_L -orbits, so contains a dense G_L -orbit. In particular, there is $D \in \Lambda_1$ such that $\overline{X_D^L} = X_{A,B,C}^L$. Lemma 5.5.2 shows that the G_L -orbits are locally closed in $X_{A,B,C}^L$. In particular, X_D^L is open in $\overline{X_D^L} = X_{A,B,C}^L$. Therefore, there is an open G_L -orbit in $X_{A,B,C}^L$. There is a unique open G_L -orbit since $X_{A,B,C}^L$ is irreducible.

Lemma 5.7.6. Given $A, B, C \in \Lambda_1$ with $\operatorname{co} A = \operatorname{ro} B$ and $\operatorname{co} B = \operatorname{ro} C$ and $L \in \mathcal{F}_{\operatorname{ro} A}$, $f^{-1}(X_{A*B,C}^L)$ is open in $Y_{A,B,C}^L$.

Proof.

$$f^{-1}(X_{A*B,C}^L) = \left\{ (L', L'', L''') \in Y_{A,B,C}^L : \dim\left(\frac{L_i}{L_i \cap L_j''}\right) \text{ is maximal, for each } i, j \in \mathbb{Z} \right\}$$

is open in $Y_{A,B,C}^L$ since $f^{-1}(X_{A*B,C}^L)$ is defined by finitely many open conditions; the function on $X_{A,B}^L$ given by $L''\mapsto \dim\left(\frac{L_i}{L_i\cap L_j''}\right)$ is lower semicontinuous, so maximising such a function is an open condition in $X_{A,B}^L$.

Lemma 5.7.7. Given $A, B, C \in \Lambda_1$ with $\operatorname{co} A = \operatorname{ro} B$ and $\operatorname{co} B = \operatorname{ro} C$ and $L \in \mathcal{F}_{\operatorname{ro} A}$, $f^{-1}(X_{A,B*C}^L)$ is open in $Y_{A,B,C}^L$.

Proof.

$$f^{-1}(X_{A,B*C}^L) = \left\{ (L',L'',L''') \in Y_{A,B,C}^L : \dim\left(\frac{L_i'}{L_i' \cap L_j'''}\right) \text{ is maximal, for each } i,j \in \mathbb{Z} \right\}$$

is open in $Y_{A,B,C}^L$, as it is defined by finitely many open conditions; the function on $X_A^L \times X_{A,B*C}^L$ given by $(L',L''') \mapsto \dim \left(\frac{L_i'}{L_i' \cap L_j'''}\right)$ is lower semicontinuous, so maximising this function is an open condition on $X_A^L \times X_{A,B*C}^L$.

Conjecture 1. Given $A, B, C \in \Lambda_1$ with $\operatorname{co} A = \operatorname{ro} B$ and $\operatorname{co} B = \operatorname{ro} C$ and $L \in \mathcal{F}_{\operatorname{ro} A}$, $X_{A*B,C}^L$ and $X_{A,B*C}^L$ are open and dense in $X_{A,B,C}^L$.

Remark 2. If f is shown to be an open map then this result follows from Lemma 5.7.6 and Lemma 5.7.7.

Proposition 5.7.8. Given $A, B, C \in \Lambda_1$ with $\operatorname{co} A = \operatorname{ro} B$ and $\operatorname{co} B = \operatorname{ro} C$, (A * B) * C = A * (B * C).

Proof. Take $A, B, C \in \Lambda_1$ with $\operatorname{co} A = \operatorname{ro} B$ and $\operatorname{co} B = \operatorname{ro} C$ and fix $L \in \mathcal{F}_{\operatorname{ro} A}$.

 $X_{(A*B)*C}^L$ is open in $X_{A*B,C}^L$, so $f^{-1}X_{(A*B)*C}^L$ is open in $f^{-1}X_{A*B,C}^L$. Lemma 5.7.6 shows that $f^{-1}X_{A*B,C}^L$ is open in $Y_{A,B,C}^L$, so $f^{-1}X_{(A*B)*C}^L$ is open in $Y_{A,B,C}^L$. Similarly, $X_{A*(B*C)}^L$ is open in $X_{A,B*C}^L$ and $f^{-1}X_{A,B*C}^L$ is open in $Y_{A,B,C}^L$, by Lemma 5.7.7, so $f^{-1}X_{A*(B*C)}^L$ is open in $Y_{A,B,C}^L$.

Lemma 5.7.3 shows that $Y_{A,B,C}^L$ is irreducible, so $f^{-1}X_{(A*B)*C}^L$ and $f^{-1}X_{A*(B*C)}^L$ have nonempty intersection. Therefore the G_L -orbits $X_{(A*B)*C}^L$ and $X_{A*(B*C)}^L$ intersect nontrivially, so are the same G_L -orbit. In particular, (A*B)*C = A*(B*C).

5.8 The generic algebra

Lemma 5.8.1. Given $\lambda \in \Lambda_0$ and $A \in \Lambda_1$, $D_{\lambda} * A = A$ if $\operatorname{ro} A = \lambda$ and $A * D_{\lambda} = A$ if $\operatorname{co} A = \lambda$.

Proof. Lemma 3.1.7 shows that $\Lambda_{1D_{\lambda},A} = \{A\}$ if $\lambda = \text{ro } A$ and $\Lambda_{1A,D_{\lambda}} = \{A\}$ if $\lambda = \text{co } A$, which proves the result.

Theorem 5.8.2. The following constitutes a small category: the set of objects is Λ_0 and the set of morphisms is Λ_1 . Given compositions $\lambda, \mu \in \Lambda_0$, the morphisms with source λ and target μ are those matrices $A \in \Lambda_1$ with $\operatorname{co} A = \lambda$ and $\operatorname{ro} A = \mu$. Given $\lambda, \mu, \nu \in \Lambda_0$ and $A, B \in \Lambda_1$ with $B: \lambda \to \mu$ and $A: \mu \to \nu$ the composition is $A * B: \lambda \to \nu$.

Proof. Proposition 5.6.2 shows that the composition is well defined while Proposition 5.7.8 establishes associativity of the composition. Lemma 5.8.1 shows that $D_{\lambda} \colon \lambda \to \lambda$ is the identity morphism for each $\lambda \in \Lambda_0$. Thus $(\Lambda_0, \Lambda_1, \text{co}, \text{ro}, *)$ is a category.

Write $\mathcal{G}(n,r)$ to denote this so-called 'generic category'.

Example 1. The objects in $\mathcal{G}(2,2)$ are compositions of 2 into 2 parts, namely (0,2), (1,1) and (2,0). The set of morphisms from λ to μ is the set of infinite periodic matrices $A \in \Lambda_1[2,2]$ with $\operatorname{co} A = \lambda$ and $\operatorname{ro} A = \mu$, which is a countably infinite set for any pair of compositions $\lambda, \mu \in \Lambda_0[2,2]$.

Definition 5.8.1 (Generic algebra). The generic affine algebra $\hat{G}(n,r)$ is the category \mathbb{Z} -algebra of $\mathcal{G}(n,r)$. In particular, $\hat{G}(n,r)$ is a free \mathbb{Z} -module with basis $\{e_A : A \in \Lambda_1\}$ and with associative multiplication given by

$$e_A * e_B = \begin{cases} e_{A*B} & \text{if } \operatorname{co} A = \operatorname{ro} B \\ 0 & \text{if } \operatorname{co} A \neq \operatorname{ro} B. \end{cases}$$

The multiplicative identity in $\hat{G}(n,r)$ is

$$1 = \sum_{\lambda \in \Lambda_0} e_{D_\lambda}.$$

A realisation of affine zero Schur algebras

We aim to prove the isomorphism theorem in the cases r < n and $n \le r < 2n$ separately. Below are crude versions of the statements we want to prove.

Theorem 6.0.1. Assume r < n. The map $\psi : \hat{G}(n,r) \to \hat{S}_0(n,r)$, given by $\psi(E_i) = E_i$, $\psi(F_i) = F_i$ and $\psi(1_{\lambda}) = 1_{\lambda}$, is an isomorphism of \mathbb{Z} -algebras.

Theorem 6.0.2. Assume $n \leq r < 2n$. There is a unique homomorphism of \mathbb{Z} -algebras $\hat{\psi} \colon \hat{G}(n,r) \to \hat{S}_0(n,r)$ such that $\hat{\psi}(R) = R$ and $\hat{\psi} = \psi$ on the subalgebra of $\hat{G}(n,r)$ generated by the E_i , F_i and 1_{λ} . $\hat{\psi}$ is an isomorphism of \mathbb{Z} -algebras.

6.1 Preliminary results

Recall from Definition 5.8.1 that the generic algebra $\hat{G}(n,r)$ is an associative \mathbb{Z} -algebra which is a free \mathbb{Z} -module with an atomic basis $\{e_A:A\in\Lambda_1\}$: given $A,B\in\Lambda_1$ with $\operatorname{co} A=\operatorname{ro} B,$ $e_Ae_B=e_{A*B}$.

6.1.1 Elementary basis elements

Given $i \in [1, n]$ and $\lambda \in \Lambda_0$ such that $\lambda_{i+1} > 0$, define

$$E_{i,\lambda} = e_{D_{\lambda} + \mathcal{E}_{i,i+1} - \mathcal{E}_{i+1,i+1}}$$

and

$$E_i = \sum_{\lambda \in \Lambda_0: \lambda_{i+1} > 0} E_{i,\lambda}.$$

Given $i \in [1, n]$ and $\lambda \in \Lambda_0$ such that $\lambda_i > 0$, define

$$F_{i,\lambda} = e_{D_{\lambda} + \mathcal{E}_{i+1,i} - \mathcal{E}_{i,i}}$$

and

$$F_i = \sum_{\lambda \in \Lambda_0: \lambda_i > 0} F_{i,\lambda}.$$

6.1.2 Transpose involution

Lemma 6.1.1. The \mathbb{Z} -module automorphism \top of $\hat{G}(n,r)$ given by $e_A \mapsto e_{A^{\top}}$ is a \mathbb{Z} -algebra antihomomorphism: that is,

$$e_{A^{\top}} * e_{B^{\top}} = e_B * e_A$$

for each $A, B \in \Lambda_1$. Moreover, $\top(E_{i,\lambda}) = F_{i,\lambda+\alpha_i}$, $\top(F_{i,\lambda}) = E_{i,\lambda-\alpha_i}$ and $\top(1_{\lambda}) = 1_{\lambda}$, for permissible $(i,\lambda) \in \mathbb{Z} \times \Lambda_0$.

Proof. This is a consequence of Lemma 4.1.1. It must also be shown that the transpose operation on Λ_1 is order preserving.

6.1.3 Multiplication rules

Lemma 6.1.2. Given $A \in \Lambda_1$ and $i \in [1, n]$ such that ro $A_{i+1} > 0$,

$$E_i e_A = e_{A + \mathcal{E}_{i,p} - \mathcal{E}_{i+1,p}},$$

where $p = \max\{p' \in \mathbb{Z} : a_{i+1,p'} > 0\}$. Given $A \in \Lambda_1$ and $i \in [1, n]$ such that ro $A_i > 0$,

$$F_i e_A = e_{A + \mathcal{E}_{i+1,p} - \mathcal{E}_{i,p}},$$

where $p = \min\{p' \in \mathbb{Z} : a_{i,p'} > 0\}.$

Similar formulas for right multiplication by E_i and F_i are obtained by applying the transpose.

6.2 Presentation of the generic algebra.

Recall that Λ_0 denotes the set of compositions of r into n parts. That is, Λ_0 is the set of tuples $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$ with each λ_i non-negative and $\lambda_1 + \dots + \lambda_n = r$. Given $i \in [1, n]$, let $\varepsilon_i = (0, \dots, 1, \dots, 0) \in \mathbb{Z}^n$ be the i-th elementary vector and let $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$. Then given $\lambda \in \Lambda_0$, we have $\lambda + \alpha_i \in \Lambda_0$ provided $\lambda_{i+1} > 0$ and $\lambda - \alpha_i \in \Lambda_0$ provided $\lambda_i > 0$.

Let $\Gamma = \Gamma(n, r)$ be the quiver with set of vertices Λ_0 with arrows $e_{i,\lambda} : \lambda \to \lambda + \alpha_i$ (if $\lambda_{i+1} > 0$) and $f_{i,\lambda} : \lambda \to \lambda - \alpha_i$ (if $\lambda_i > 0$). Thus there are no arrows between λ and μ unless $\lambda = \mu \pm \alpha_i$ for some $i \in [1, n]$.

If $n \geq 3$ then neighbouring vertices are connected by two arrows, one of each direction. In the case n = 2, neighbouring vertices are joined by four arrows, two of each direction. The $\mathbb{Z}\Gamma$ denote the path \mathbb{Z} algebra of Γ . By construction of Γ , there is a \mathbb{Z} -algebra homomorphism $\mathbb{Z}\Gamma \to \hat{G}(n,r)$ with $e_{i,\lambda} \mapsto E_{i,\lambda}$, $f_{i,\lambda} \mapsto F_{i,\lambda}$ and $k_{\lambda} = 1_{\lambda}$. We aim to describe the image and kernel of the morphism to give a presentation of the generic algebra by a quiver with relations, when possible. In general, we should obtain a presentation of a subalgebra of the generic algebra consisting of the so-called aperiodic elements (c.f. [3]).

Definition 6.2.1. (aperiodicity) $A \in \Lambda_1$ is aperiodic if for each $l \in \mathbb{Z} \setminus \{0\}$ there exists $i \in \mathbb{Z}$ such that $a_{i,i+l} = 0$. Denote the set of aperiodic elements in Λ_1 by Λ_1^{ap} . Note that $\Lambda_1^{ap} = \Lambda_1$ if r < n. Linear combinations of the basis elements corresponding to aperiodic matrices are also said to be aperiodic - if A is aperiodic, we say e_A is aperiodic.

Lemma 6.2.1. Let $A \in \Lambda_1$ and write $\lambda = \text{ro } A$. If A is aperiodic and $\lambda_{i+1} > 0$, then $E_i * e_A$ is aperiodic. If A is aperiodic and $\lambda_i > 0$, then $F_i * e_A$ is aperiodic.

Proof. Suppose $A \in \Lambda_1$ is aperiodic and $\lambda_{i+1} > 0$, where $\lambda = \operatorname{ro} A$. There is $p \in \mathbb{Z}$ such that $a_{i+1,p} > 0$ and $a_{i+1,p'} = 0$ whenever p' > p. Lemma 6.1.2 shows that $E_i * e_A = e_B$, where $B = A + \mathcal{E}_{i,p} - \mathcal{E}_{i+1,p}$. Let $l \in \mathbb{Z} \setminus \{0\}$. If $l \notin \{p-i,p-i-1\}$, then $b_{s,s+l} = a_{s,s+l}$ for each $s \in \mathbb{Z}$, so there is $s \in \mathbb{Z}$ such that $b_{s,s+l} = a_{s,s+l} = 0$, since A is aperiodic. If l = p - i, then $b_{i+1,i+1+l} = b_{i+1,p+1} = a_{i+1,p+1} = 0$, by maximality of p. If l = p - i - 1, there is $s \neq i+1$ such that $a_{s,s+l} = 0$, since A is aperiodic and $a_{i+1,i+1+l} = a_{i+1,p} > 0$, so $b_{s,s+l} = a_{s,s+l} = 0$. Therefore, $B = A + \mathcal{E}_{i,p} - \mathcal{E}_{i+1,p}$ is aperiodic.

Suppose $A \in \Lambda_1$ is aperiodic and $\lambda_i > 0$, where $\lambda = \text{ro } A$. Lemma 6.1.2 shows that $F_i * e_A = e_C$ where $C = A + \mathcal{E}_{i+1,p} - \mathcal{E}_{i,p}$ and $p = \min\{p' \in \mathbb{Z} : a_{i,p'} > 0\}$. Let $l \in \mathbb{Z} \setminus \{0\}$. If $l \notin \{p-i, p-i-1\}$ then $c_{s,s+l} = a_{s,s+l}$ for each $s \in \mathbb{Z}$, so there is $s \in \mathbb{Z}$ such that $c_{s,s+p} = a_{s,s+p} = 0$, by aperiodicity of A. If l = p - i, then $a_{i,i+l} = a_{i,p} > 0$, so there is $s \neq i$ such that $a_{s,s+l} = 0$. Then $c_{s,s+l} = a_{s,s+l} = 0$. Finally, if l = p - i - 1, then $c_{i,i+l} = a_{i,p-1} = 0$ by minimality of p. Thus C is aperiodic as required.

Definition 6.2.2. (Weight function) Define the weight function $\operatorname{wt}: \Lambda_1 \to \mathbb{Z}$ by

$$\operatorname{wt} A = \sum_{i \in [1, n], j \in \mathbb{Z}} |j - i| a_{i, j}$$

for each $A \in \Lambda_1$. The sum is taken over a transversal of the set of congruence classes of (i, j) modulo (n, n) for $i, j \in \mathbb{Z}$.

Lemma 6.2.2. Let $A \in \Lambda_1$ and write $\lambda = \text{ro } A$. Suppose $\lambda_{i+1} > 0$ and set $p = \max\{p' \in \mathbb{Z} : a_{i+1,p'} > 0\}$. If p > i then $\text{wt } e_{i,\lambda} * A = 1 + \text{wt } A$. If $p \leq i$ then $\text{wt } e_{i,\lambda} * A = -1 + \text{wt } A$. Suppose $\lambda_i > 0$ and set $q = \min\{q' \in \mathbb{Z} : a_{i,q'} > 0\}$. If $q \leq i$ then $\text{wt } f_{i,\lambda} * A = 1 + \text{wt } A$. If q > i then $\text{wt } f_{i,\lambda} * A = -1 + \text{wt } A$.

Proof. Lemma 6.1.2 shows that $e_i A = A + \mathcal{E}_{i,p} - \mathcal{E}_{i+1,p}$, so wt $e_i A - \text{wt } A = |p-i| - |p-i-1|$, which equals 1 if p > i and equals -1 if $p \le i$. Similarly, $f_i A = A + \mathcal{E}_{i+1,q} - \mathcal{E}_{i,q}$ by Lemma 6.1.2, so wt $f_i A - \text{wt } A = |q-i-1| - |q-i|$, which equals -1 if q > i and equals 1 if $q \le i$.

Lemma 6.2.3. If $A \in \Lambda_1$ is aperiodic, then e_A may be obtained from $1_{co A}$ by finitely many applications of E_i and F_i for $i \in [1, n]$.

Proposition 6.2.4. The \mathbb{Z} -subalgebra of $\hat{G}(n,r)$ generated by $E_{i,\lambda}$, $F_{i,\lambda}$ and 1_{λ} has \mathbb{Z} -basis $\{e_A : A \in \Lambda_1^{ap}\}$, where $\Lambda_1^{ap} \subset \Lambda_1$ is the set of aperiodic elements.

Proof.

6.2.1 The typical case.

Lemma 6.2.5. The following relations hold in $\hat{G}(n,r)$ $(n \geq 3)$:

$$E_i E_j - E_j E_i = 0$$

$$F_i F_j - F_j F_i = 0$$

unless |j - i| = 1.

$$E_i E_{i+1}^2 - E_{i+1} E_i E_{i+1} = 0$$

$$E_i^2 E_{i+1} - E_i E_{i+1} E_i = 0$$

$$F_{i+1} F_i^2 - F_i F_{i+1} F_i = 0$$

$$F_{i+1}^2 F_i - F_{i+1} F_i F_{i+1} = 0$$

$$E_i F_j - F_j E_i = 0$$

unless j = i.

$$E_i Fi - F_i E_i + \sum_{\lambda: \lambda_i = 0, \lambda_{i+1} > 0} 1_{\lambda} - \sum_{\lambda: \lambda_i > 0, \lambda_{i+1} = 0} 1_{\lambda} = 0.$$

6.2.2 Exceptional case.

In this case, the quiver $\Gamma(2,r)$ has vertices $\Lambda_0[2,r] = \{(0,r),(1,r-1),\ldots,(r,0)\}$; adjacent vertices are connected by two pairs of arrows with opposite orientation: (e_1,f_1) and (e_2,f_2) . The relations arising from $\hat{G}(2,r)$ are of a more complicated form - in particular, the serre relations of total degree 3 will not hold in this case - so this case will be treated separately and at a later date.

Further directions

7.1 Further results on affine zero Schur algebras

[1] Investigate link between this generic product and the generic extension of representations. Shifting to the non-negative subalgebra to do computations purely in terms of generic extensions of quiver representations.

7.2 Deformed group algebras of symmetric groups

[2] Degenerate group algebras of symmetric groups: write down a presentation of the degenerate group algebras, with generators given by the transpositions, or 2-cycles. Type up the computations done for degenerate group algebras for S_3 and S_4 . Formulate propositions for the general case: the transpositions generate the degenerate group algebra; lemma: 'these' relations hold; these generators and relations give a presentation of the degenerate group algebras.

Terminology: deformed group algebra.

Bibliography

- [1] Joe Harris. Algebraic geometry: a first course. Vol. 133. Springer Science & Business Media, 2013.
- [2] D. A. Hudec. "The Grassmanian as a Projective Variety". In: (2007).
- [3] George Lusztig. "Aperiodicity in quantum affine gln". In: Asian Journal of Mathematics 3.1 (1999), pp. 147–178.
- [4] Patrick J Morandi. "Algebraic Groups, Grassmannians, and Flag Varieties". In: (1998).