

Hajee Mohammad Danesh Science and Technology University, Dinajpur Department of Computer Science & Engineering B.Sc in CSE

Semester Final Examination 2016(July-Dec)
Level 4 Semester II, Course Code: CSE 453, Credit: 3
Course Title: Computer Graphics (Theoretical)

Time: 3 hours Total Marks: 90

[N.B. The figures in the right margin indicates the marks for respective question]

Section-A Answer any THREE

1.	. a)	Define computer graphics. Write some application of computer graphics.	1+
	b)	What is the resolution of an image? The resolution of a 15 monitor is 640 × 480 with the	3
		aspect ratio w: h= 4: 3. Find its dpi (dot per inch).	
	c)	Derive the recursive formula for Bresenham's Line algorithm.	8
2.	a)	Define digital image processing and explain its advantages.	1+3
	b)	Explain the components of digital image processing.	6
	c)	What is an image's aspect ratio? If an image has a height of 4 inches and an aspect ratio	3
		of 2.5, what is its width?	
	d)	Define the following terms:	2
		(i) Pixel (ii) GUI	
3.	a)	Define brightness, hue and saturation of color images.	3
	b)	What is color mode? Describe the RGB color model.	1+5
	c)	How can we covert colors from HSI to RGB?	4
	d)	Find the RGB coordinates of a color at (0.15, 0.75, 0) in the CMY space.	2
4.	a)	Define Transformation. Explain 2D basic Transformation.	1+6
	b)	Show that the composition of two rotations is additive by concatenating the matrix	4
		representations for $R(\theta_1)$ and $R(\theta_2)$ to obtain	
		$R(\theta_1). R(\theta_2) = R(\theta_1 + \theta_2)$	
	c)	What is pivot point? Explain general pivot point rotation.	4

Section-B Answer any <u>THREE</u>

1.	a)	How can you detect a point inside a window?	2
	b)	Describe the process of window to viewport coordinate transformations.	5
	c)	What do you mean about polygons? How many kinds they are?	3
	d)	Discuss briefly the Sutherland-Hodgeman polygon clipping algorithm.	5
2.	a)	What is projection? Show the taxonomy of projection.	10
	b)	Derive the transformation matrix 6	1+3
		Derive the transformation matrix for oblique parallel projection. Can you tell when this projection is cabinet or cavalier?	4+1
	c)	Distinguish between perspective and parallel projections.	,
	d)	Write the matrix for orthographic projection on the XY plane for a point when $p = \{10, 15\}$. Find its project A	3
		12, 15}, Find its projected value.	3
3	. a)	Define the following terms:	
		(i) Polylines (i) Polyhedron (iii) Wireframe models	3
	b)	Write the two important properties of Bezier curve.	
	c)	Determine the blending function of	2
•	,	Determine the blending functions for cubic Bezier curves and matrix for the blending functions.	7
	d)	What is meant by Interpolation and Approximation?	3
4	•	Write short notes on any two of the followings:	
		i) DDA algorithm 7.5 ×2	2 = 15
		ii) Cohen-Sutherland Line clipping algorithm	
		satisfied Effective algorithm	
		iii) Z-Buffer Algorithm	