PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-057226

(43)Date of publication of application: 27.02.2001

(51)Int.CI.

H01M 8/24

(21)Application number: 11-232506

(71)Applicant: MITSUBISHI ELECTRIC CORP

(22)Date of filing:

19.08.1999

(72)Inventor: MAEDA HIDEO

FUKUMOTO HISATOSHI

HAMANO KOJI MITSUTA KENRO

(54) MANUFACTURE OF FUEL CELL AND FUEL CELL

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a manufacturing method for a fuel cell capable of produc ing a fuel cell layered body having high assembling accuracy at a low cost with high accuracy.

SOLUTION: This manufacturing method as shown below. Through-holes 45 of cells 6 and separator plates 39, 40 are sequentially fitted on a cylindrical intermediate adapter 60 (a) to form a unit block 70 (b). Next, by inserting a shaft 72 through through-holes 62 of the intermediate adapter 60, plural unit blocks 70 are stacked to form a layered body (c), then the layered body is fastened with the shaft 72 as an axis to manufacture a fuel cell.

LEGAL STATUS

[Date of request for examination]

20.10.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-57226

(P2001-57226A)

(43)公開日 平成13年2月27日(2001.2.27)

(51) Int.Cl.7 H01M 8/24

職別配号

FΙ H01M 8/24

テーマコート*(参考) Z 5H026

審査請求 未請求 請求項の数4 OL (全 6 頁)

(21)出願番号

特願平11-232506

(22)出顧日

平成11年8月19日(1999.8.19)

(71)出願人 000006013

三菱電機株式会社

東京都千代田区丸の内二丁目2番3号

(72)発明者 前田 秀雄

東京都千代田区丸の内二丁目2番3号 三

菱電機株式会社内

(72)発明者 福本 久敏

東京都千代田区丸の内二丁目2番3号 三

菱電機株式会社内

(74)代理人 100102439

弁理士 宮田 金雄 (外2名)

最終頁に続く

(54) 【発明の名称】 燃料電池の製造方法および燃料電池

(57)【要約】

【課題】 組立精度の高い燃料電池積層体が低コスト、 高効率で生産できる燃料電池の製造方法を得る。

【解決手段】 単セル6およびセパレータ板39、40 の貫通孔45に円筒状の中間アダプター60に順次はめ あわせ【図1(a)】、単位プロック70を形成する 「図1 (b) }。次に、シャフトフ2に、中間アダプタ 一の貫通孔62により複数個の単位ブロック70を積層 して積層体を形成し{図1(c)}、シャフト72を軸 として積層体を締め付け、燃料電池を製造する。

39, 40: 九 1一/板 45: セパレーウ板、単钬の貫通孔

60:中間アダプター 62:中間アダプターの貫通孔

【特許請求の範囲】

【請求項1】 電解質膜を燃料電極および酸化剤電極で · 狭持し上記電極面に第1の貫通孔を有する単セルを得る 工程、この単セルと、上記燃料電極に燃料流体を供給す る燃料流路と上記酸化剤電極に酸化剤流体を供給する酸 化剤流路を備え主表面に第2の貫通孔を有するセパレー タ板を、上記第1および第2の貫通孔に、シャフトを挿 入する第3の貫通孔を有する中間アダプターを挿嵌し て、順次積層し単位ブロックを得る工程、並びに上記複 数個の単位ブロックの上記中間アダプターの第3の貫通 **孔にシャフトを挿嵌し、上記単位ブロックを積層して積** 層体を得、上記シャフトを軸として上記積層体を締め付 ける工程を施す燃料電池の製造方法。

【請求項2】 中間アダプターは円筒であって、第3の 貫通孔はシャフトを挿嵌できる寸法で、外径は第-1の貫 通孔および第2の貫通孔に挿嵌できる寸法であることを 特徴とする請求項 1 に記載の燃料電池の製造方法。

【請求項3】 第1貫通孔、第2の貫通孔および中間ア ダプターの横断面形状が楕円形であることを特徴とする 請求項2に記載の燃料電池の製造方法。

【請求項4】 電解質膜を燃料電極および酸化剤電極で 狭持した単セルと、上記燃料電極に燃料流体を供給する 燃料流路と上記酸化剤電極に酸化剤流体を供給する酸化

陰極反応:H2→2 H++2 e-

陽極反応:2H++2e-+ (1/2) 02→H20 【0003】この反応が生じるとき、燃料電極上で水素 はプロトンとなり、水を伴って電解質体中を酸化剤電極 上まで移動し、酸化剤電極上で酸素と反応して水を生ず る。従って、上記のような燃料電池の運転には、反応ガ スの供給と排出、電流の取り出しが必要となる。

【0004】燃料電池から電流を取り出すとともに、ガ スと水を効率よく流通させるセパレータ板が、例えば特 開昭58-161270号公報、特開昭58-1612 69号公報および特開平3一206763号公報に示さ れている。図6は、特開平3―206763号公報に示 されている燃料電池における単位電池の概念的な構成を 説明するための断面図であり、図において、1、2は導 電性のセパレータ板、3は酸化剤電極、4は燃料電極、 5は例えばプロトン導電性の固体高分子を用いた電解質 体であり、電解質体5、酸化剤電極3および燃料電極4 により単セル6を構成する。

【0005】図7は、上記図6に示した燃料電池におけ るセパレータ板の上面を示す説明図であり、以下図6を 併用して説明する。即ち、20はセパレータ板 1 の主表 面、21はセパレータ板1における電極3を支持する電 極支持部分、22はセパレータ板1に形成され酸化剤と して空気を供給する酸化剤供給口、23は空気を排出す るための酸化剤排出口、24は燃料を供給する燃料供給 口、25は燃料を排出するための燃料排出口である。な お、上記セパレータ板 1、 2においては、主表面20を

剤流路を備えたセパレータ板を、貫通孔を有する中間ア ダプターを上記単セルとセパレータ板に挿嵌して、順次 積層してなる単位ブロックを複数個積層した燃料電池。 [0001]

【発明の属する技術分野】本発明は、電気化学的な反応 を利用して発電する例えば電気自動車等で使用される燃 料電池に関するものである。以下、本明細書では、特に 固体高分子型燃料電地について記述しているが、リン酸 型燃料電池にも適用することができる。

【従来の技術】燃料電池は周知のように、電解質を介し て一対の電極を有し、この電極の一方に燃料を、他方の 電極に酸化剤を供給し、燃料と酸化剤とを電池内で電気 化学的に反応させることにより化学エネルギーを直接電 気エネルギーに変換する装置である。燃料電池には電解 質によりいくつかの型があるが、近年高出力の得られる 燃料電池として、電解質に固体高分子電解質膜を用いた 固体高分子型燃料電池が注目されている。例えば燃料電 極に水素ガスを、酸化剤電極に酸素ガスを供給し、外部 回路より電流を取り出すときに下記化学反応式 (1) お よび(2)で示されるような反応が生じる。

.. (1) •• (2)

削って形成された溝と電極3、4に囲まれた空間によっ てそれぞれ酸化剤流路10および燃料流路11が構成さ れる。

【0006】以下、上記燃料電池の動作を上記図6およ び図7を用いて説明する。セパレータ板1の酸化剤供給 口22より供給された酸素ガスは、並行して走る複数の 酸化剤流路10を通って酸化剤電極3に供給され、一 方、水素ガスは、上記酸化剤と同様に、燃料ガス流路 1 1より燃料電極4に供給される。このとき、酸化剤電極 3と燃料電極4は電気的に外部で接続されているので、 酸化剤電極3側では上記化学反応式(2)の反応が生 じ、酸化剤ガス流路10を通って未反応ガスと水が酸化 剤排出口23に排出される。また、このとき燃料電極4 側では上記化学反応式(1)の反応が生じ、未反応ガス は同様に燃料ガス流路11を通じて燃料排出口25より 排出されることとなる。この反応によって得られた電子 は電極3、4から電極支持部分21を経由してセパレー 夕板1、2を通って流れる。

【0007】上記従来の燃料電池において、単セルあた りの電圧が₁V以下であり、実用上の有用な100V以 上の電圧を得るためには、特開平4―121914号公 報に記載のように、百枚以上の単セルとセパレータ板を 積層する必要がある。 [0008]

【発明が解決しようとする課題】しかし、数百枚の単セ

ルおよびセパレータ板を一度に積層するのは作業効率が 悪く、積層した際の位置合わせ精度の確保が困難である だけでなく、運転時の振動等によりずれが生じ、最悪ガ ス供給口や排出口のずれによるガス漏れ等の恐れがある という課題があった。

【0009】本発明はかかる課題を解消するためになされたもので、組立精度の高い燃料電池積層体が低コスト、高効率で生産できる燃料電池の製造方法および運転中の機械的形状の安定性が向上した燃料電池を得ることを目的とするものである。

[0010]

【課題を解決するための手段】本発明に係る第1の燃料電池の製造方法は、電解質膜を燃料電極および酸化剤電極で狭持し上記電極面に第1の貫通孔を有する単セルを得る工程、この単セルと、上記燃料電極に燃料流体を供給する燃料流路と上記酸化剤電極に酸化剤流体を供給する酸化剤流路を備え主表面に第2の貫通孔を有するセパレータ板を、上記第1および第2の貫通孔に、シャフトを挿入する第3の貫通孔を有する中間アダプターを挿嵌して、順次積層し単位ブロックを得る工程、並びに上記複数個の単位ブロックの上記中間アダプターの第3の貫通孔にシャフトを挿嵌し、上記単位ブロックを積層して積層体を得、上記シャフトを軸として上記積層体を締め付ける工程を施す方法である。

【0011】本発明に係る第2の燃料電池の製造方法は、上記第1の燃料電池の製造方法において、中間アダプターは円筒であって、第3の貫通孔はシャフトを挿嵌できる寸法で、外径は第1の貫通孔および第2の貫通孔に挿嵌できる寸法の方法である。

【0012】本発明に係る第3の燃料電池の製造方法は、上記第2の燃料電池の製造方法において、第1貫通孔、第2の貫通孔および中間アダプターの横断面形状が 楕円形のものである。

【0013】本発明に係る第1の燃料電池は、電解質膜を燃料電極および酸化剤電極で狭持した単セルと、上記燃料電極に燃料流体を供給する燃料流路と上記酸化剤電極に酸化剤流体を供給する酸化剤流路を備えたセパレータ板を、貫通孔を有する中間アダプターを上記単セルとセパレータ板に挿嵌して、順次積層してなる単位ブロックを複数個積層したものである。

[0014]

【発明の実施の形態】実施の形態1. 図1(a)~ (c)は本発明の燃料電池の製造方法を工程順に示す工程図で、図中、6は単セル、39は燃料流路と冷却水流路を設けたセパレータ板、40は酸化剤流路を設けたセパレータ板、45は単セル6およびセパレータ板39、40に設けた貫通孔(第1、第2の貫通孔)で、単セル6およびセパレータ板39、40が単セルの各電極に各流体が効率よく供給できるように対応して設けられている。72は積層体を締め付けるためのシャフト、60は 中間アダプターで、内部にシャフト72を挿嵌可能な貫通孔(第3の貫通孔)62を設けている。70は単セルとセパレータ板の貫通孔45に、中間アダプター60を挿嵌して、単セルとセパレータ板を、順次複数枚積層して得られた単位ブロックである。

【0015】即ち、有効面積200cm²の単セル6およびセパレータ板39、40には同じ位置に直径13mmの貫通孔45を設けている。これらを、外径13mm、内径10mm、長さ40mmの円筒状の中間アダプター60に順次はめあわせていき {図1(a)}、単位ブロック70を形成する {図1(b)}。次に、直径10mmのシャフト72を、複数個の単位ブロック70の貫通孔62に挿嵌して、複数個の単位ブロック70の貫通孔62に挿嵌して、複数個の単位ブロック70を積層して積層体を形成し {図1(c)}、シャフト72を軸として積層体を締め付け、燃料電池を製造する。図中、完全な積層体の締付け具、集電板等は図示していない。

【0016】なお、上記製造方法により燃料電池を製造することにより、10セルを積層した単位ブロック70は、縦120mm、横250mm、厚さ30mm(中間アダプターの出っ張り含まず)、重さ700gのブロックとなり、少しの力で移動できるので、力の弱い人でも扱える上、ロボットに扱わせてもブロックを傷めることなく扱える。さらに、この単位ブロックを10個積層するだけで、余分な位置合わせ用の治具等を用いなくても100セルの燃料電池積層体(10kW相当)を形成させることができた。

【0017】本実施の形態において、発電規模に合わせた積層体の生産を一枚一枚の積層からではなく、保管や輸送が容易な10セル単位の単位ブロックを重ねるだけで形成できるので作業効率やコストが大幅に削減できた。また、中間アダプターを位置合わせの指標として、積層体中の各構成材の位置が確定した数セル毎の単位ブロックを形成することができ、また、中間アダプターにより積層体が結束しているので積層体の位置のずれが生じなくなり、従来積層体を横方向に設置すると重力により生じていたたわみがでなくなった。さらに、本実施の形態においては、中間アダプターにはポリプロピレンを用いたので、中間アダプターが絶縁材となり、締付け用のシャフトを通じた電流の短絡等が生じることもなくなった。

【0018】実施の形態2. 実施の形態1において、中間アダプター60として、図2に示すものを用いる他は実施の形態1と同様にして燃料電池を製造した。図2は本発明の第2の実施の形態で用いたセパレータ板の貫通孔45に中間アダプター60を挿入した状態を示すために、例えばセパレータ板39の上面の一部を切り欠いて示す模式図で、63は中間アダプター60の外周部に設けた突起である。貫通孔45に対し、中間アダプターの外径は12.5mmで0.25mm隙間をもたせた。し

かし、4方向に突起63を有し、突起部を含めた外接円は13.2mmと貫通孔45より若干大きくした。実施の形態1では、単位ブロックを形成する際、寸法精度にばらつきがあると、セパレータ板や単セルをはめ込むことが困難な場合があったが、本実施の形態では、中間があるので、等に挿入することが可能となった。さらに、隙間が大きすぎて単位ブロックから端部の構成材料が脱落することがあったが、本実施の形態では、突起63が必ず貫通孔45に圧接しているので、しっかりと固定することができた。つまり組立が容易になるとともに形成したブロックの機械的安定性も向上させることができた。なお、上記突起を中間アダプターの貫通孔62の内壁に設けてもよい。

【0019】実施の形態3. 実施の形態1において、中間アダプター60を図3に示すものを用いる他は実施の形態1と同様にして燃料電池を製造した。図3は本実施の形態で用いた中間アダプター60の側面の断面図であり、65、66は、隣接する単位ブロックの中間アダプターと重ねるための重ねしろ部で、重ねしろ部65は直径11.8mm、重ねしろ部66は直径12mmであり、単位ブロックを積層した場合に飛び出した中間アダプターを重ねることで、厚みの調節や運転中の伸縮を行うことが可能となった。

【0020】実施の形態4、実施の形態1において、中間アダプター60を図4に示すものを用いる他は実施の形態1と同様にして燃料電池を製造した。図4は本実施の形態で用いた中間アダプター60の側面の説明図であり、凸部68および凹部67を端部の重ねしろ部に設けた。凸部68の外周は、本体と同径であり、積層体の厚みが変化して中間アダプター間の重なり具合が変化しても中間アダプターの外接円は常に一定となり、積層体の伸縮時にセパレータ板または単セルが中間マニホールドの重なり(接合)部分で位置が狂うことがなくなった。

【0021】実施の形態5. 図5は本発明の第5の実施の形態における、中間アダプター60をセパレータ板39に挿入した状態を示す断面図で、実施の形態1において、図5に示す断面形状の中間アダプター60と図5に示す断面形状の貫通孔45を有するセパレータ板を用いる他は実施の形態1と同様にして燃料電池を製造した。図5は、本発明の中間アダプター60およびセパレータ板39の貫通孔45が長径15mm、短径12mmの楕円で、真円でない場合の単位ブロックの上から見た平面模式図である。

【0022】実施の形態3、4では、中間アダプターにより積層体が結束しているので積層体のXY方向の位置のずれはなかったが、中間アダプターを中心とした回転によるずれはまれにではあるが生じる可能性があった。しかし、本実施の形態のように断面形状を楕円にしたために回転を防止することができ、一本の貫通孔だけで完

全な位置合わせとずれ防止ができるようになった。な お、本実施の形態では断面形状を楕円としたが、方形や 三角形のような真円からずれた形状であれば同様の効果 を期待することが可能である。

[0023]

【発明の効果】本発明の第1の燃料電池の製造方法は、電解質膜を燃料電極および酸化剤電極で狭持し上記電極面に第1の貫通孔を有する単セルを得る工程、この単セルと、上記燃料電極に燃料流体を供給する燃料流路と曲記酸化剤電極に酸化剤流体を供給する酸化剤流路を備え主表面に第2の貫通孔を有するセパレータ板を、上記第1および第2の貫通孔に、シャフトを挿入する第3の貫通孔を有する中間アダプターを挿険して、順次積層して、順次積層してでである工程、並びに上記複数個の単位ブロックを得る工程、並びに上記複数個の単位ブロックを積層して積層体を得、上記シャフトを軸として上記積層体を締め付ける工程を施す方法で、組立精度の高い燃料電池が低コスト、高効率で生産できるとともに、運転中の機械的形状の安定性も向上するという効果がある。

【0024】本発明の第2の燃料電池の製造方法は、上記第1の燃料電池の製造方法において、中間アダプターは円筒であって、第3の貫通孔はシャフトを挿嵌できる寸法で、外径は第1の貫通孔および第2の貫通孔に挿嵌できる寸法の方法で、組立精度の高い燃料電池が低コスト、高効率で生産できるとともに、運転中の機械的形状の安定性も向上するという効果がある。

【0025】本発明に係る第3の燃料電池の製造方法は、上記第2の燃料電池の製造方法において、第1貫通孔、第2の貫通孔および中間アダプターの横断面形状が楕円形の方法で、さらに組立精度の高い燃料電池が低コスト、高効率で生産できるとともに、運転中の機械的形状の安定性も向上するという効果がある。

【0026】本発明の第1の燃料電池は、電解質膜を燃料電極および酸化剤電極で狭持した単セルと、上記燃料電極に燃料流体を供給する燃料流路と上記酸化剤電極に酸化剤流体を供給する酸化剤流路を備えたセパレータ板を、貫通孔を有する中間アダプターを上記単セルとセパレータ板に挿嵌して、順次積層してなる単位ブロックを複数個積層したもので、運転中の機械的形状の安定性が向上するという効果がある。

【図面の簡単な説明】

【図1】 本発明の第1の実施の形態の燃料電池の製造 方法の工程図である。

【図2】 本発明の第2の実施の形態で用いたセパレータ板の貫通孔に、中間アダプターを挿入した状態を示すために、セパレータ板の上面の一部を切り欠いて示す模式図である。

【図3】 本発明の第3の本実施の形態で用いた中間アダプターの側面の断面図である。

【図4】 本発明の第4の本実施の形態で用いた中間アダプターの側面の説明図である。

【図5】 本発明の第5の本実施の形態で用いた単位ブロックを上から見た平面模式図である。

【図6】 従来の燃料電池における単位電池の概念的な構成を説明するための断面図である。

【図7】 従来の燃料電池におけるセパレータ板の上面を示す説明図である。

【符号の説明】

6 単セル、39、40 セパレータ板、45、62 貫通孔、60 中間アダプター、70 単位ブロック、 71 積層体、72 シャフト。

【図1】

6:単**い** 39,40:セパレータ板

(c)

60:中間アダプター

62:中間79゚プターの賞通孔

45: セペレータ板、単セルの貫通孔

【図2】

63:突起

70:単位プロック

72 : シャフト

[図3] 66 62 65

【図7】

フロントページの続き

(72) 発明者 濱野 浩司

東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 光田 憲朗

東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内

Fターム(参考) 5H026 AA04 AA05 AA06 CC03 CC08 HH03