CSC258 - Lab 1

Building Circuits using Logisim Evolution

Morgan Chang

1005127113

Part I

1. Gate diagram of f = xs' + ys

2. Truth table

s	input x	input y	output f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Part II

1. Gate diagram of f = (a + b)' + cb'

2. Truth table

а	b	С	output f
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

3. Yes, there is a cheaper implementation for the design, and we can achieve it by simplifying the boolean function.

$$f = (a + b)' + cb'$$

$$= a'b' + cb' \text{ #de Morgan's law}$$

$$= b'(a' + c)$$

Then, the gate diagram will look like:

which it has 1 fewer gate than the gate diagram from Q1.