Обнаружение разладки в частоте колебания методом анализа сингулярного спектра

Шаповал Егор Анатольевич, группа 21.М03-мм

Санкт-Петербургский государственный университет Кафедра статистического моделирования Научный руководитель: к. ф.-м. н., доцент Голяндина Н. Э. Рецензент: к. ф.-м. н., лектор Пепелышев А. Н.

9 июня 2023

Введение: определение задачи

Дано: Временной ряд $\mathsf{X}_N = \mathsf{S}_N + \mathsf{R}_N$, S_N — сигнал с

$$s_n = \begin{cases} A\cos 2\pi\omega_1 n, & n = 1, \dots, Q - 1, \\ A\cos(2\pi\omega_2 n + \varphi), & n = Q, \dots, N, \end{cases}$$

 R_N — гауссовский шум, $\omega_1
eq \omega_2$.

Мотивация: Пусть некое устройство должно работать с одинаковой частотой. Тогда, если устройство ломается, частота изменяется. В этом случае поломку нужно обнаружить не позднее, чем через некоторое время k_0 .

 ${\sf 3}$ адача: Оценить точку разладки Q.

Метод: Метод обнаружения разладки основан на методе анализа сингулярного спектра SSA [Analysis of Time Series Structure - SSA and Related Techniques, Golyandina, Zhigljavsky, Nekrutkin, 2001] (subspace based).

Введение: общие понятия метода SSA

Определение

Рассмотрим временной ряд $\mathsf{X}_N=(x_1,\dots,x_N)$, зафиксируем L, 1 < L < N, — длина окна, $X_i:=(x_i,\dots,x_{i+L-1})^\mathrm{T}$ — вектор вложения, $i=1,2,\dots,N-L+1$. Матрица $\mathbf{X}:=[X_1:\dots:X_{N-L+1}]$, состоящая из векторов вложения как столбцов, называется *траекторной матрицей ряда* X_N .

Определение

Если для любого достаточно большого L верно ${\rm rank}\, {\bf X} = d$ и 2d < N, ряд ${\sf X}_N$ будем называть *рядом конечного ранга*. Такое число d называется *рангом ряда* ${\sf X}_N$ $(d={\rm rank}\, {\sf X}_N)$.

Определение

Рассмотрим временной ряд $\mathsf{X}_N=\mathsf{S}_N+\mathsf{R}_N$, где S_N — сигнал, R_N — шум. Пусть $r=\mathrm{rank}\,\mathsf{S}_N$, подпространством сигнала назовём $\mathfrak{L}_r=\mathrm{span}(S_1,\ldots,S_{N-L+1})$.

Введение: алгоритм оценки базиса \mathfrak{L}_r

Этап «Разложение» метода SSA.

Входные параметры

- ullet X $_N$ временной ряд
- \bullet L длина окна
- r оценка размерности подпространства сигнала

Шаги алгоритма

- $oldsymbol{0}$ X траекторная матрица X_N .
- ② $\{U_i^*\}_{i=1}^d$ левые сингулярные векторы матрицы ${\bf X}$, соответствующие сингулярным числам $\{\sqrt{\lambda_i}\}_{i=1}^d$, $\lambda_i \geqslant \lambda_j \quad \forall i > j, \; d = {\rm rank} \, {\bf X}.$

Результат

 $\{U_i^*\}_{i=1}^r$ — ортонормированная система векторов как оценка базиса подпространства сигнала.

Введение: функция разладки, определение

- X_N временной ряд
- L длина окна
- $r < \min(L, N L + 1)$ число левых сингулярных векторов, используемых для оценки подпространства сигнала
- $T \geqslant L$ длина тестовых отрезков

 $X_i := (x_i, \dots, x_{i+L-1})^{\mathrm{T}}$ — вектор вложения, $\{U_m^*\}_{m=1}^r$ оценка базиса \mathfrak{L}_r до точки разладки,

$$\mathrm{hx}^*_{i+T-1} = \frac{\sum\limits_{j=i}^{i+T-L} \mathrm{dist}^2(X_j, \mathfrak{L}_r)}{\sum\limits_{j=i}^{i+T-L} \|X_j\|^2} = 1 - \frac{\sum\limits_{j=i}^{i+T-L} \sum\limits_{m=1}^{r} (X_j, U_m^*)^2}{\sum\limits_{j=i}^{i+T-L} \|X_j\|^2},$$

$$i=1,\ldots,N-T+1.$$
 $\mathrm{hx}^*\colon \{T,\ldots,N\} o [0,1]$ — функция разладки.

Введение: функция разладки, пример

Рис.: Ряд X $_N$, $\omega_1=0.1$, $\omega_2=0.15$, Q=401, N=800, $\sigma=0.4$

Рис.: Функция разладки ряда X_N , T=L=100, r=2

Введение: постановка задачи

 $k_0>\widehat{Q}$ — допустимое время запаздывания. \widehat{Q} — оценка Q.

- ullet $\widehat{Q}\in [Q,Q+k_0]$ оценка \widehat{Q} правильная, правильное срабатывание
- ullet Q < Q ложное срабатывание (false alarm)
- ullet $\widehat{Q}>Q+k_0$ срабатывание с запаздыванием (delay)

 $heta \in [0,1]$ — порог, hx^* — функция разладки ряда X_N .

Оценка $\widehat{Q}(\mathrm{hx}^*, \theta) := \min\{i \in \{T, T+1, \ldots, N\} : \mathrm{hx}_i^* > \theta\}.$

Рис.: Функция разладки ряда ${\sf X}_N$, T=L=100, r=2

Введение: постановка задачи

Параметры задачи:

- ullet $k_0\in\mathbb{N}$ допустимое время запаздывания
- $\Delta \in \left(0, \frac{1}{2}\right)$ минимальная абсолютная разность частот
- ullet $\gamma \in (0,1]$ уровень доверия

Множество рядов

$$\mathcal{X}_N(\Delta,\sigma) := \{ \mathsf{X}_N : \mathsf{X}_N = \mathsf{S}_N(\omega_1,\omega_2,\varphi) + \mathsf{R}_N : |\omega_1 - \omega_2| \geqslant \Delta \},$$

 $\mathsf{S}_N(\omega_1,\omega_2,arphi)$ — сигнал с

$$s_n = \begin{cases} A\cos 2\pi\omega_1 n, & n = 1, \dots, Q - 1, \\ A\cos(2\pi\omega_2 n + \varphi), & n = Q, \dots, N, \end{cases}$$

 R_N — гауссовский шум, $\mathsf{E}\,r_i=0$, $\mathsf{D}\,r_i=\sigma^2$.

Минимизируем $\mathsf{P}(\widehat{Q} < Q)$ при условии $\min_{\mathsf{X}_N \in \mathcal{X}_N(\Delta,\sigma)} \mathsf{P}(\widehat{Q} \in [Q,Q+k_0] \mid \widehat{Q} \geqslant Q) \geqslant \gamma.$ Оптимизационная задача по порогу θ :

$$\mathsf{P}(\widehat{Q}(\mathsf{hx}^*, \theta) < Q) \to \min_{\theta \in [0,1]}$$

Введение: постановка задачи на языке порогов

Множество порогов

$$\Theta(k; \mathbf{h} \mathbf{x}^*) = \{ \theta : \min_{\mathsf{X}_N \in \mathcal{X}_N(\Delta, \sigma)} \mathsf{P}(\widehat{Q} \in [Q, Q + k] \mid \widehat{Q} \geqslant Q) \geqslant \gamma \},$$

$$\widehat{Q} = \widehat{Q}(\mathrm{hx}^*, \theta).$$

Решение оптимизационной задачи: $\theta_0(k) = \max \Theta(k; hx^*)$.

Предположение: распределение $\mathbf{h}\mathbf{x}_i^*$ в каждой точке нормальное.

 $\theta_0(k)$ — пороговая фунция, нижняя граница одностороннего доверительного интервала,

$$\theta_0(k) = \min_{\mathsf{X}_N \in \mathcal{X}_N(\Delta, \sigma)} \left(\mathsf{E} \operatorname{gx}^*(k) - c_\gamma \sqrt{\mathsf{D} \operatorname{gx}^*(k)} \right),$$

$$\operatorname{gx}^* = \operatorname{hx}^* |_{[Q,Q+T]} \colon \{0,1,\dots,T\} \to \mathbb{R}, \ c_{\gamma} = \Phi^{-1}(\gamma).$$

Задача, решаемая в работе: найти пороговую функцию

$$\theta(k) = \min_{\mathsf{X}_N \in \mathcal{X}_N(\Delta, \sigma)} \mathsf{E} \operatorname{gx}^*(k) - c_\gamma \sqrt{\max_{\mathsf{X}_N \in \mathcal{X}_N(\Delta, \sigma)} \mathsf{D} \operatorname{gx}^*(k)} \leqslant \theta_0(k).$$

Частный случай и аппроксимация

Частный случай: T = L.

Аппроксимация: для функции разладки ряда X_N

$$hx_{i+T-1}^* = 1 - \frac{(X_i, U_1^*)^2 + (X_i, U_2^*)^2}{\|X_i\|^2},$$

где U_1^* , U_2^* — ортонормированный базис, рассмотрена аппроксимация h, равная

$$hx_{i+T-1} = 1 - \frac{(X_i, U_1)^2 + (X_i, U_2)^2}{\|X_i\|^2},$$

$$U_1 = \sqrt{\frac{2}{L}} (\cos 2\pi\omega_1, \dots, \cos 2\pi\omega_1 L),$$

$$U_2 = \sqrt{\frac{2}{L}} (\sin 2\pi\omega_1, \dots, \sin 2\pi\omega_1 L).$$

Базис U_1 , U_2 ортонормированный асимптотически $(L \to +\infty)$.

 hs^* и hs — функция разладки сигнала S_N и ее аппроксимация.

Нахождение $\min_{\mathsf{X}_N \in \mathcal{X}_N(\Delta, \sigma)} \mathsf{E} \operatorname{gx}^*(k)$

Утверждение

Пусть S — бесконечный сигнал с общим членом вида

$$s_n = \begin{cases} A\cos 2\pi\omega_1 n, & n < Q, \\ A\cos(2\pi\omega_2 n + \varphi), & n \geqslant Q, \end{cases}$$

Зафиксируем $M\geqslant 0$ и пусть T=T(L)=L+M. Рассмотрим $\mathrm{hs}^*_{(L)}$ — функция разладки сигнала S. Пусть $\mathrm{hx}^*_{(L)}$ — функция разладки временного ряда $\mathrm{X}=\mathrm{S}+\sigma\mathrm{R}$, R — шум с $\mathrm{E}\,r_i=0$, $\mathrm{D}\,r_i=1$ и $\mathrm{D}\,r_i^2<\infty$, $\sigma>0$.

Тогда
$$\left|\operatorname{E}\operatorname{hx}_{i,(L)}^* - \frac{A^2\operatorname{hs}_{i,(L)}^* + 2\sigma^2}{A^2 + 2\sigma^2}\right| \stackrel{\textit{a.s.}}{ o} 0$$
 при $L o \infty$.

Так как при конечном L среднее $\operatorname{E} \operatorname{gx}^*(k) \approx \frac{A^2 \operatorname{gs}^*(k) + 2\sigma^2}{A^2 + 2\sigma^2}$, для того чтобы оценить $\min_{\mathsf{X}_N \in \mathcal{X}_N(\Delta,\sigma)} \operatorname{E} \operatorname{gx}^*(k)$, достаточно найти $\min_{\mathsf{S}_N \in \mathcal{X}_N(\Delta,0)} \operatorname{gs}^*(k) = \min_{\varphi,|\omega_1-\omega_2|\geqslant \Delta} \operatorname{gs}^*(k)$.

Нахождение $\min_{\mathsf{X}_N \in \mathcal{X}_N(\Delta, \sigma)} \mathsf{E} \operatorname{gx}^*(k)$

 $\widetilde{\mathrm{gs}}$ — аппроксимация функции $\mathrm{gs}=\mathrm{hs}ig|_{[Q,Q+T]}\colon\{0,\ldots,T\} o\mathbb{R}$,

$$\begin{split} \widetilde{\mathrm{gs}}(k) &= 1 - \left(\left(\frac{L-k}{2}\right)^2 + \left(\frac{\sin\pi k(\omega_1 - \omega_2)}{2\sin\pi(\omega_1 - \omega_2)}\right)^2 + 2\cdot\frac{L-k}{2} \cdot \right. \\ &\cdot \frac{\sin\pi k(\omega_1 - \omega_2)}{2\sin\pi(\omega_1 - \omega_2)}\cos(\pi(\omega_1 - \omega_2)(k + 2Q - 1) - \varphi) \right) \bigg/ \left(\frac{L}{2}\right)^2 \underset{\varphi}{\geqslant} \\ &\geqslant 1 - \left(L - k + \left|\frac{\sin\pi k(\omega_1 - \omega_2)}{\sin\pi(\omega_1 - \omega_2)}\right|\right)^2 \bigg/ L^2 \underset{|\omega_1 - \omega_2| \geqslant \Delta}{\geqslant} 1 - \frac{(L - k + d)^2}{L^2}, \end{split}$$
 где
$$d = \max_{x \in \left[|\omega_1 - \omega_2|, \frac{1}{2}\right)} \left|\frac{\sin\pi kx}{\sin\pi x}\right|.$$

Численная проверка $\min_{X_N \in \mathcal{X}_N(\Delta, \sigma)} \mathsf{E} \operatorname{gx}^*(k)$

Численный эксперимент: ω_1 , $\omega_2 \in \Omega = \{0.05, 0.1, \dots, 0.45\}$, $\omega_1 \neq \omega_2, L = 80, \dots, 400,$ $S_N(\omega_1,\omega_2)$ — сигнал с $s_n = \begin{cases} A\cos 2\pi\omega_1 n, & n = 1, \dots, Q - 1, \\ A\cos 2\pi\omega_2 n, & n = Q, \dots, N, \end{cases}$ $S_N = \{S_N \in \mathbb{R}^N : S_N = S_N(\omega_1, \omega_2), \omega_1, \omega_2 \in \Omega\}.$ max_abs_diff 0.03 0.01

Рис.: Зависимость $\max_{\mathsf{S}_N\in\mathcal{S}_N}\max_{i\in[Q,Q+T]}|\widetilde{\mathrm{gs}}_i(\mathsf{S}_N)-\mathrm{gs}_i(\mathsf{S}_N)|$ от L

250

200

150

100

300

350

400

Численная проверка $\min_{\mathsf{X}_N \in \mathcal{X}_N(\Delta,\sigma)} \mathsf{E} \operatorname{gx}^*(k)$

$$\underset{\varphi}{\operatorname{argmin}} \widetilde{\operatorname{gs}}(k) = \pi((\omega_1 - \omega_2)(k + 2Q - 1) - l), \ l \in \mathbb{Z}$$

Рис.: Функция $\widetilde{\mathrm{gs}}$ и оценка снизу по arphi

Численная проверка $\min_{\mathsf{X}_N \in \mathcal{X}_N(\Delta,\sigma)} \mathsf{E} \operatorname{gx}^*(k)$

$$\begin{split} \min_{\mathsf{S}_N \in \mathcal{X}_N(\Delta,0)} \widetilde{\mathsf{gs}}(k) &= 1 - \frac{(L-k+d)^2}{L^2}, \\ \mathsf{где} \ d &= \max_{x \in \left[|\omega_1 - \omega_2|, \frac{1}{2}\right)} \left| \frac{\sin \pi kx}{\sin \pi x} \right|. \end{split}$$

Рис.: Функция $\widetilde{\mathrm{gs}}$ и оценка снизу по $|\omega_1-\omega_2|\geqslant \Delta$

Нахождение $\max_{\mathsf{X}_N \in \mathcal{X}_N(\Delta, \sigma)} \mathsf{D} \operatorname{gx}^*(k)$

С точностью до первого порядка

$$\widetilde{\mathsf{D}} \, \mathsf{hx}_{i+T-1} = \frac{16\sigma^2}{L^2(2\sigma^2+1)^2} \left(\mathsf{P}_i^2 + 2\sigma^2 - \frac{2(1+3\sigma^2)(\mathsf{P}_i^2+2\sigma^2)^2}{L(2\sigma^2+1)^2} \right),$$

$$\mathsf{P}_i^2 = (S_i, U_1)^2 + (S_i, U_2)^2, \; x := P_i^2 + 2\sigma^2.$$

Рис.: $\widehat{\mathsf{D}\,\mathrm{hx}_i}$ и теоретическая оценка дисперсии, $\sigma=0.4$, n=1000

Нахождение $\max_{\mathsf{X}_N \in \mathcal{X}_N(\Delta, \sigma)} \mathsf{D} \operatorname{gx}^*(k)$

Для
$$x:=P_i^2+2\sigma^2$$
 имеем
$$p(x):=\widetilde{\mathsf{D}}\,\mathsf{hx}_{i+T-1}=\tfrac{16\sigma^2}{L^2(2\sigma^2+1)^2}\left(x-\tfrac{2(1+3\sigma^2)}{L(2\sigma^2+1)^2}\cdot x^2\right)-$$
 парабола, ветви вниз, вершина $x_0=\tfrac{L(2\sigma^2+1)^2}{4(1+3\sigma^2)}.$

Приближённая формула максимума дисперсии:

$$\max_{\mathsf{X}_N \in \mathcal{X}_N(\Delta,\sigma)} \mathsf{D} \operatorname{gx}^*(k) \approx \frac{16\sigma^2}{L^2(2\sigma^2+1)^2} \begin{cases} p(a), & x_0 < a, \\ p(x_0), & a \leqslant x_0 \leqslant b \\ p(b), & b < x_0, \end{cases}$$

$$a = \frac{2(L-k-d)^2}{L} + 2\sigma^2$$
, $b = \frac{2(L-k+d)^2}{L} + 2\sigma^2$.

Вид пороговой функции $\theta(k)$

$$\bullet \min_{\substack{\mathsf{X}_N \in \mathcal{X}_N(\Delta, \sigma) \\ \mathsf{S}_N \in \mathcal{X}_N(\Delta, 0)}} \mathsf{E} \, \mathsf{gx}^*(k) \approx \frac{A^2 \left(\min_{\substack{\mathsf{X}_N \in \mathcal{X}_N(\Delta, 0) \\ \mathsf{X}_N \in \mathcal{X}_N(\Delta, 0)}} \mathsf{gs}^*(k) \right) + 2\sigma^2}{A^2 + 2\sigma^2}, \, \mathsf{где}$$
 , $\mathsf{rge} \, \sum_{\substack{\mathsf{S}_N \in \mathcal{X}_N(\Delta, 0) \\ \mathsf{S}_N \in \mathcal{X}_N(\Delta, 0)}} \mathsf{gs}^*(k) \approx 1 - \frac{(L - k + d)^2}{L^2} = \underline{\mathsf{gs}}(k)$

ullet Приближение $\max_{{\sf X}_N\in\mathcal{X}_N(\Delta,\sigma)}{\sf D}\,{\sf gx}^*(k)$ также найдено явно.

Итог: найдена пороговая функция

$$\theta(k) = \frac{A^2 \underline{\mathrm{gs}}(k) + 2\sigma^2}{A^2 + 2\sigma^2} - c_\gamma \sqrt{\max_{\mathsf{X}_N \in \mathcal{X}_N(\Delta, \sigma)} \mathsf{D} \, \mathrm{gx}^*(k)}.$$

Проверка работы алгоритма

Параметры задачи: $k_0=15$, $\Delta=0.05$, $\gamma=0.95$ ($c_\gamma\approx 1.64$). Параметры сигнала: ω_1 , $\omega_2\in\Omega=\{0.05,0.1,\dots,0.45\}$, Q=401, N=800, $\varphi(\omega_1,\omega_2)=\pi(\omega_1-\omega_2)(k+2Q-1)$.

Теоретическая оценка вероятности ложного срабатывания в одной точке:

$$P(\widehat{Q} = T) = P(hx_T^* > \theta(k_0)) \approx 1 - \Phi_{m,s^2}(\theta(k_0)),$$

$$m = \frac{2\sigma^2}{A^2 + 2\sigma^2}, \ s^2 = \widetilde{D} hx_T.$$

Таблица: $\widehat{\mathsf{P}}(\widehat{Q} < Q)$, $\widehat{\mathsf{P}}(\widehat{Q} = T)$, $\mathsf{P}(\widehat{Q} = T)$, $\sigma = 0.4$, L = 100, n = 1000

$\overline{\omega_1}$	$\widehat{P}(\widehat{Q} < Q), \ Q = 401$	$\widehat{P}(\widehat{Q} = T)$	$P(\widehat{Q} = T)$
0.1	0.165	0.006	0.012
0.2	0.192	0.012	0.012
0.3	0.175	0.007	0.012
0.4	0.205	0.016	0.012

Проверка работы алгоритма

Таблица:
$$\widehat{\mathsf{P}}(\widehat{Q} \in [Q,Q+k_0] \mid \widehat{Q} \geqslant Q)$$
, $\gamma=0.95$, $\sigma=0.4$, $L=100$, $n=1000$

ω_2 ω_1	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45
0.05		0.91	1.00	0.99	0.99	1.00	0.99	1.00	0.99
0.1	0.99		0.92	1.00	0.99	1.00	1.00	0.99	1.00
0.15	1.00	0.89		0.89	1.00	0.99	0.99	1.00	0.99
0.2	0.99	1.00	0.96		0.94	1.00	0.99	0.99	0.99
0.25	0.98	0.99	1.00	0.92		0.89	1.00	1.00	0.98
0.3	0.99	0.99	0.99	1.00	0.95		0.96	1.00	0.99
0.35	0.99	1.00	0.99	0.99	1.00	0.89		0.88	1.00
0.4	1.00	1.00	1.00	0.99	0.99	1.00	0.90		0.99
0.45	0.99	0.99	0.99	1.00	1.00	0.99	1.00	0.91	

Заключение

Что сделано:

- Построена формализация задачи обнаружения разладки при заданном максимальном запаздывании и заданном минимальном изменении частоты.
- Разработан и теоретически обоснован алгоритм обнаружения точки разладки в случае параметров T=L и при известном подпространстве сигнала до разладки \mathfrak{L}_r .
- Проверена работа алгоритма без предположения о известном сигнальном подпространстве, частота ω_1 оценивается с помощью метода ESPRIT [Roy, Kailath, 1989]. Вероятности правильного срабатывания почти не изменились в сравнении с работой алгоритма при известном \mathfrak{L}_r .

Что планируется сделать:

- Улучшить точность аппроксимаций;
- ullet Рассмотреть общий случай T>L;
- Сравнить алгоритм с другими методами.

Проверка работы алгоритма

Зависимости $\widehat{\mathsf{P}}(\widehat{Q} < Q)$, $\widehat{\mathsf{P}}(\widehat{Q} \in [Q,Q+k_0])$ и $\widehat{\mathsf{P}}(\widehat{Q} > Q+k_0)$ от порога θ , S_N с $\omega_1=0.1$, $\omega_2=0.15$, параметры $k_0=15$, $\Delta=0.05$, $\sigma=0.4$, L=100, n=1000.

omega_1=0.1 omega_2=0.15 sigma=0.4

