Nome:			Número:
*********	<********	*******	**********
materiais de apoio. Nos exercíc e cada resposta errada desconta restantes exercícios a cotação d	ios de escolh 0,3 valores. Le cada alíne	ha múltipla, . A cotação ca é 0,6 valo	Não é permitido o uso de quaisquer cada resposta certa conta 0,6 valores do último exercício é 2 valores. Nos res. ************
I. Indique quais das seguintes a	firmações sã	ão verdadeira	as (V) e quais são falsas (F):
V - F	,		
$\hfill\Box$ A correspondência	$x \longmapsto \left\{ \begin{array}{c} 2\\3 \end{array} \right.$	se x = 1 se x = -1	define uma função $f: \mathbb{R} \to \mathbb{N}$.
□ □ A correspondência	$x \longmapsto \left\{ \begin{array}{c} 2\\ 3 \end{array} \right.$	$se x \ge 1$ $se x \le 1$	define uma função $f: \mathbb{R} \to \mathbb{N}$.
□ □ A correspondência	$x \longmapsto \left\{ \begin{array}{c} 2\\ 3 \end{array} \right.$	$ se x \ge 0 \\ se x < 0 $	define uma função $f: \mathbb{R} \to \mathbb{N}$.
II. Considere as funções $f: \mathbb{Z}$ –	$\rightarrow \mathbb{N} \in g : \mathbb{N}$	$ ightarrow \mathbb{Q}$ definid	las por $f(m) = m^2 e g(n) = \frac{1}{n+1}$.
(a) Tem-se $f^{-1}(\{0,1\}) =$			
(b) Tem-se $g({1,2,3}) =$			
(c) A função $g\circ f$ é dada p	or: 		
(Na alínea (c) indique em pa	articular o d	lomínio e o o	conjunto de chegada.)
III. Considere as funções $f: \mathbb{Z}$ $g(n) = (n, 1)$. Indique quais das (F):	$\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ es seguintes a	e $g: \mathbb{Z} \to \mathbb{Z}$ afirmações sã	$\mathbb{Z} \times \mathbb{Z}$ definidas por $f(m,n) = mn$ e ão verdadeiras (V) e quais são falsas
V F \Box A função f é inject \Box A função f é sobre \Box A função g é inject	ejectiva.		

V . (Consider	e a rela	ação $R = \{(1,2), (2,1)\}$ em $\{1,2,3\}$.	
	(a) A m	nenor re	elação reflexiva que contém R é	
	(b) A m	ienor re	elação simétrica que contém R é	
	(c) A m	nenor re	elação transitiva que contém R é	
VI.	Conside	ere a re	lação R em $\mathcal{P}(\mathbb{R})$ definida por	
			$XRY \Leftrightarrow X \cap Y \neq \emptyset.$	
Indi	V F	$R \in \mathbb{R}$ $E \in \mathbb{R}$ $E \in \mathbb{R}$	eguintes afirmações são verdadeiras (V) e quais são falsas (F): flexiva. métrica. ansitiva.	
VII	. Seja ~	a relac	ção de equivalência em $\mathbb Z$ definida por	
			$x \sim y \Leftrightarrow 2x^2 = 2y^2.$	
Indi	que as s	eguinte	s classes de equivalência em extensão:	
	(a) [0]	=		
	(b) [2]	=		
	(c) [-2]	=		

IV. Indique a função inversa da função $f:[0,1] \rightarrow [1,2], \, f(x)=x^2+1.$

verdadeiras (V) e quais são falsas (F):					
V F \square Existe uma relação de equivalência \sim em A tal que $A/\sim=\{\{1,3\},\{2,4,5\}\}.$ \square Existe uma relação de equivalência \sim em A tal que $A/\sim=\{\{1,3\},\{2,3,4,5\}\}.$ \square Existe uma relação de equivalência em A tal que $[3]=\{1,2\}.$ \square Existe uma relação de equivalência em A tal que $[3]=\{1,3\}.$ \square Existe uma relação de equivalência em A tal que $[3]=\{3,4,5\}$ e $[5]=\{4,5\}.$					
IX. Considere o conjunto parcialmente ordenado $(\{1,2,3,4,5\},\preceq)$ em que					
$\preceq = \{(1,1), (2,2), (3,3), (4,4), (5,5), (3,1), (1,2), (3,2), (3,4), (4,2)\}.$					
(a) Indique o diagrama de Hasse de ($\{1,2,3,4,5\}, \preceq$):					
(b) Indique os majorantes de $\{1,3\}$:					
(c) Indique os elementos minimais de $\{2,4,5\}$:					
\mathbf{X} . Indique quais das seguintes afirmações são verdadeiras (V) e quais são falsas (F):					
V F □ □ Existe um grafo cujos vértices têm graus 1, 2, 3, 4 e 5. □ □ Existe um grafo conexo com pelo menos dois vértices e um número finito de caminhos fechados.					
XI. Mostre por indução que, para todo o número natural $n \geq 1$,					
$1+2+\cdots+n=\frac{n(n+1)}{2}.$					

 $\mathbf{VIII.}$ Considere o conjunto $A=\{1,2,3,4,5\}.$ Indique quais das seguintes afirmações são