Corso di Laurea in Ingegneria Informatica

SUPSI

Data Science

Metodi di classificazione: Il classificatore Nearest Neighbor

Alessandro Giusti

IDSIA - SUPSI, Galleria 1, Manno

alessandro.giusti@supsi.ch

Parte del materiale tratto da:

F. Stella, "Business Intelligence", corso di Laurea in Informatica, Università degli studi di Milano - Bicocca

L. Azzimonti. Slide per il corso di "Business Intelligence". Corso di Laurea in Ing. Gestionale. SUPSI

E. Keogh. Introduction to Machine Learning.

G. Corani

11

5.1

7.0

???????

- Possiamo "proiettare"
 l'osservazione che non abbiamo ancora visto nello stesso spazio del dataset
- Ora possiamo dimenticare i dettagli specifici del problema, e ragionare solo con i punti nello spazio!

■ Katydids

Grasshoppers

Classificatore lineare semplice

R.A. Fisher 1890-1962

If nuova osservazione sopra la linea then

class is **Katydid**

else

class is **Grasshopper**

⊠ Katydids

Grasshoppers

Nearest Neighbor Classifier

Evelyn Fix 1904-1965

Joe Hodges 1922-2000

Se l'osservazione piu' vicina a quella di test e' un Katydid

classifico come Katydid

altrimenti

classifico come Grasshopper

⊠ Katydids

Grasshoppers

Esempio

Istanze di training					
ATTRIBI ATTRIB 2 ATTRIB 3 ATTRIB 4 CLASS					
0.4	0.5	0.6	0.3	C,	
0.1	0.6	0.9	0.3	C_0	
0.1	0.1	1.0	0.8	C,	

Istanza di test (Query)					
ATTRIBI ATTRIB 2 ATTRIB 3 ATTRIB 4 CLASS					
0.6	0.4	0.0	0.3	?	

- Calcola la distanza euclidea tra ciascuna osservazione di training e l'osservazione di test. La distanza e' calcolata solo nello spazio degli attributi esplicativi (features), non dipende dalla classe!
- Ad esempio, la distanza euclidea tra l'osservazione di test e la prima istanza di training e':

$$\sqrt{(0.6-0.4)^2+(0.5-0.4)^2+(0.6)^2+0^2}$$

Esempio

Istanze di training				
ATTRIB I	ATTRIB 2	ATTRIB 3	ATTRIB 4	CLASS
0.4	0.5	0.6	0.3	C,
0.1	0.6	0.9	0.3	C_0
0.1	0.1	1.0	0.8	C,

Istanza di test (Query)						
ATTRIBI ATTRIB 2 ATTRIB 3 ATTRIB 4 CLASS						
0.6 0.4 0.0 0.3 ?						

- Le tre istanze di training hanno queste distanze da quella di test, rispettivamente: 0.64, 1.04, 1.26.
- Scegli la piu' vicina (la prima), e classifica con la classe corrispondente (C_1) .

He forma ha il decision boundary?

Nota che non dobbiamo esplicitamente costruire questo bordo! Emerge dalla regola di cui abbiamo parlato prima

Questa partizione dello spazio si chiama diagramma di voronoi

Ma occhio: questo algoritmo non e' robusto agli outlier!

La soluzione e'...

Generalizziamo l'algoritmo Nearest Neighbor: K-nearest neighbor (KNN) algorithm.

Misuriamo la distanza alle K osservazioni piu' vicine, e le lasciamo votare. K di solito e' dispari

Ma come scegliamo k?

- Un k piccolo basa la scelta su poche istanze. Ciononostante, I-NN e' usato molto spesso.
- Per k troppo grande c'e' il rischio di considerare neighbor molto lontani che non dovremmo tenere in considerazione
- Scelte tipiche: k=1, 5, 10.

L'algoritmo nearest neighbor non e' robusto alle feature irrilevanti

Ipotizziamo che valga la regola: se la lunghezza delle antenne e' piu' di 5.5 abbiamo sempre **Katydid**, altrimenti **Grasshopper**.

Possiamo ottenere un classificatore perfetto usando solo questa feature!

Pero' aggiungiamo una feature **irrilevante**, come ad esempio il peso dell'insetto

Ma adesso usando entrambe le feature otteniamo un classificatore imperfetto!

Come risolvere questo problema?

- Usiamo piu' osservazioni per addestrare il classificatore
- Chiediamo a un esperto di dirci quali feature sono potenzialmente importanti
- Troviamo automaticamente le feature importanti nei dataset (*feature selection*)
- Proviamo a caso alcuni sottoinsiemi tra le feature disponibili (ma nella prossima slide scopriamo che non e' facile)

Perche' e' difficile cercare i sottoinsiemi di feature?

Abbiamo un problema con 100 features, dove le features 1 e 2 (X e Y qui sotto) permettono una classificazione perfetta, ma tutte le altre 98 sono irrilevanti.

Usare tutte e 100 le features funziona male, cosi' come usare solo la feature 1 o la feature 2 o qualsiasi delle altre singolarmente. Solo uno dei 2¹⁰⁰ –1 possibili sottoinsiemi funziona bene!

L'algoritmo nearest neighbor e' sensibile alle unita' di misura!

Asse X in **centimetri**Asse Y in dollari
Il nearest neighbor
all'osservazione **rosa** e' quella **rossa**.

Asse X in **millimetri**Asse Y in dollari
Il nearest neighbor
all'osservazione **rosa** e' quella **blu**.

Il problema si risolve standardizzando i valori

Standardizzazione

- Standardizzare i valori ci permette di non essere dipendenti dalle unita' di misura e di confrontare attributi espressi con unita' di misura diverse
 - Esempio:
 - "altezza" di una persona puo' variare da 1.5m a 1.8m
 - "peso" da 90lb a 300lb
 - "reddito" da \$10K a \$1M
- Dopo la standardizzazione ogni attributo ha media 0 e deviazione standard I
- Gli attributi diventano numericamente omogenei e confrontabili

Standardizzazione

- Per standardizzare: sottraggo la media e divido per la dev. Std.
- Cosa succede alle unita' di misura? Ottengo un valore adimensionale!
- Dopo la standardizzazione ho media 0 e dev. Std 1

$$z_i = \frac{x_i - \overline{x}}{\sigma_x}$$
 where:

 z_i and x_i are the value of the attribute on the i-th instance, after and before standardizing

 \overline{x} is the mean of the attribute on the training set

 σ_x is the std dev of the attribute on the training set.

Standardizzazione: ricetta

- Standardizza ogni attributo del training set Training set standardizzato
- Memorizza media e deviazione standard che hai usato per standardizzare ogni feature
- 3. Prima di classificare un'istanza di test, standardizza ciascun attributo usando la media e deviazione standard calcolata precedentemente
- 4. A questo punto puoi calcolare la distanza tra la query standardizzata e ciascun istanza del training set standardizzato

Nota: la standardizzazione e' utile per molti altri algoritmi, non solo nearest neighbor!

Torniamo all'algoritmo Nearest Neighbor.

Possiamo accelerare l'algoritmo buttando via dei dati: talvolta puo' persino aumentare l'accuratezza

Un possibile approccio: Dimentica tutte le osservazioni circondate da osservazioni della stessa classe

Nota che nell'esempio, il decision boundary cambia (si semplifica)

Finora abbiamo usato la distanza euclidea, ma non e' l'unica scelta

... possiamo usare l'algoritmo nearest neighbor con qualsiasi misura di distanza!

"Faloutsos" e' greco or irlandese? Potremmo confrontare "Faloutsos" con un database di nomi utilizzando come misura la edit distance...

edit_distance(Faloutsos, Keogh) = 8
edit_distance(Faloutsos, Gunopulos) = 6

Possiamo ipotizzare che la somiglianza con altri nomi Greci indichi che *Faloutsos* e' a sua volta greco

ID	Name	Class
1	Gunopulos	Greek
2	Papadopoul os	Greek
3	Kollios	Greek
4	Dardanos	Greek
5	Keogh	Irish
6	Gough	Irish
7	Greenhaugh	Irish
8	Hadlei gh	Irish

Esistono misure di distanza specializzate per stringhe, serie temporali, immagini, grafici, video, insiemi, impronte digitali, sequenze DNA

Esempio: edit distance

Possiamo trasformare ogni stringa Q nella stringa C, usando solo Substitution, Insertion e Deletion.

Assegnamo un costo a ciascuna di queste operazioni

La somiglianza tra le due stringhe e' data dal costo della trasformazione piu' economica tra le due (nota: non trattiamo il modo di trovare questa trasformazione)

Quanto sono simili "Peter" e "Piotr"?

Ipotizza I seguenti costi

Substitution1 UnitInsertion1 UnitDeletion1 Unit

D(Peter, Piotr) e'3

Weighted k-nearest neighbors

- Per classificare un'istanza, assegno un peso diverso a ciascuno dei k nearest neighbor, proporzionalmente all'inverso della distanza
- Predico la classe per cui la somma dei pesi e' massima.

Neighbor	Class	Distance from query	Inverse of distance (weight)
I	Yes	0.1	10
2	No	0.2	5
3	Yes	0.5	2

Peso di Yes : 10 +2 =12

▶ Peso di No:5

Predizione: Yes.

Weighted k-nearest neighbors

In alternativa posso usare l'inverso della distanza al quadrato (non c'e' consenso su quale sia la soluzione migliore)

Neighbor	Class	Distance from query	Squared distance	Inverse of squared distance
I	Yes	0.1	0.01	100
2	No	0.2	0.04	25
3	Yes	0.5	0.25	4

Peso di Yes : 100 +4 = 104

Peso di No : 25

Predizione: Yes.

Note e considerazioni

▶ k-NN e' un *lazy learner*: non fa nulla finche' non e' richiesto di classificare un'osservazione di test

Requisiti di memoria; il training set va tenuto tutto in memoria (a meno di non scegliere di dimenticare delle osservazioni, come visto in precedenza), che puo' essere problematico