Zusammenfassung: Logik für die Informatik

Rico Klimpel

February 7, 2020

Contents				
Ι	Αι	ussagenlogik	2	
II Prädikatenlogik 3				
1	Syntax & Semantik			
	1.1	Signatur	3	
	1.2	Struktur	3	
	1.3	Terme	3	
	1.4	Formeln	3	
	1.5	Interpretation von Termen	4	
	1.6	Interpretation von Formlen	4	
	1.7	Freie Variablen	4	
	1.8	Koinzidenzlemma	4	
2	Mo	lodelierung		
	2.1	Relationen in Strukturen defnieren?	4	
	2.2	Erfüllbarkeit einer Formel	4	
3	Äquivalenz		4	
	3.1	Äquivalenz von Formeln	4	
	3.2	Regeln der Prädikatenlogik	4	
	3.3	Quantorenregeln	4	
	3.4			
	3.5	Scope von Quantoren		
	3.6	Normalformen	5	
		3.6.1 Boolsche Normalform	5	
		3.6.2 Plenex Normalform	5	
		3.6.3 Konjunktive Normalform	5	
4	Folgerungsbeziehungen (Entailment)		5	
	4.1		5	
	4.2	Beziehung zwischen Erfüllbarkeit und Fol-		
		gerungsbeziehung	5	
5	Bev	weissysteme	5	
	5.1	Natürliches Beweissystem	5	
		5.1.1 Beweisregeln	5	
		5.1.2 Korrektheit & Vollständigkeit	5	
	5.2	Resolutions beweise	5	
		5.2.1 Korrektheit & Vollständigkeit	5	
		5.2.2 Verbindung zwischen Resolution und		
		Logik-Programmierung	5	

6 Kompaktheit

	Informationen
	Zusammenfassung der Vorlesung Logik für die Informatik an der CAU Kiel aus dem Wintersemester $2019/2020$, gehalten von Prof. Dr. Thomas Wilke. Ein Versuch die wichtigsten
	Aussagen ohne enorm lange Formalitäten drum herum knapp zu Papier zu bringen. Kein Anspruch auf Vollständigkeit.
	Geschrieben in $L^{A}T_{E}X$.
:	
:	
:	
:	

5

Part I Aussagenlogik

Part II

Prädikatenlogik

1 Syntax & Semantik

1.1 Signatur

https://lili.informatik.uni-kiel.de/llocs/ Signatures

Eine Signatur S besteht aus eine Menge S von Symbolen und einer Funktion $\Sigma \colon S \to \mathbb{N} \cup \mathbb{N} \times \{1\}$.

The Elemente von S werden Symbole genannt und wie folgt eingeteilt:

• Ein Symbol f mit $\Sigma(f) = \langle n, 1 \rangle$ für n > 0 ist eine Funktionssymbol.

Menge dieser Symbole: \mathcal{F}_{Σ} oder einfach \mathcal{F} .

• Ein Symbol R mit $\Sigma(R) = n$ für n > 0 ist ein Relationssymbol.

Menge dieser Symbole: \mathcal{R}_{Σ} oder \mathcal{R} .

• Ein Symbol c mit $\Sigma(c) = \langle 0, 1 \rangle$ ist ein Symbol für eine Konstante.

Menge dieser Symbole: \mathcal{C}_{Σ} oder \mathcal{C} .

• Symbol b mit $\Sigma(b)=0$ ist ein Symbol für einen boolschen Wert.

Menge dieser Symbole: \mathcal{B}_{Σ} oder \mathcal{B} .

Im allgemeinen werden Signaturen mit $\mathcal{B} \neq \emptyset$ ignoriert (Signaturen ohne boolsche Werte). Keine Ahnung warum er das sagt.

Beispiele:

$$S = \{\text{zero, one, add, mult}\}\$$

$$\Sigma = \{\text{zero} \mapsto \langle 0, 1 \rangle, \text{one} \mapsto \langle 0, 1 \rangle, \text{add} \mapsto \langle 2, 1 \rangle, \text{mult} \mapsto \langle 2, 1 \rangle\}\$$

Vereinfacht aufgeschrieben sieht das ganze so aus:

$$S = \{\text{zero, one, add}//2, \text{mult}//2\}$$

1.2 Struktur

https://lili.informatik.uni-kiel.de/llocs/Structures

Sei $\mathcal S$ eine Signatur. Eine $\mathcal S$ -Struktur $\mathcal A$ besteht aus:

- Univserum A mit $A \neq \emptyset$
- Für jedes Symbol eine Konstanten $c \in \mathcal{S}$ eine Interpretation $c^{\mathcal{A}} \in A$ von c.
- Für jedes Funktionssymbol $f/\!/n \in \mathcal{S}$ eine Interpretation $f^{\mathcal{A}} \colon A^n \to A$
- Für jedes Relationssymbol $R/n \in \mathcal{S}$ eine Interpretation $R^{\mathcal{A}} \subseteq A^n$

Hier ein Beispiel das ungefähr zu der Signatur oben passt:

$$A = \{0, 1, 2, 3\}$$

$$zero^{\mathcal{A}} = 3$$

$$one^{\mathcal{A}} = 2$$

$$add^{\mathcal{A}}(a, b) = 0 \qquad \text{for } a, b \in A$$

$$mult^{\mathcal{A}}(a, b) = a + b \text{ rest } 4 \qquad \text{for } a, b \in A$$

$$Lt^{\mathcal{N}} = \{\langle a, a \rangle \colon a \in A\}$$

1.3 Terme

https://lili.informatik.uni-kiel.de/llocs/Syntax_of_first-order_logic#Formal_definition_of_terms

Induktive Defintion für alle Terme über eine Signatur S, die auch S-terms genannt wird: Basiselemente:

- Ein Baum mit nur einem Element das eine Variable der Prädikatenlogik enthält ist ein S-term.
- Ein Baum mit nur einem Element das eine Konstante $c \in \mathcal{S}$ enthält ist ein \mathcal{S} -term.

Diese werden die atomaren S-terme genannt. Induktionsregeln:

• Wenn $f//n \in \mathcal{S}$ eine Funktion und t_0, \ldots, t_{n-1} \mathcal{S} -terms sind, dann ist der Baum mit der Wurzel f und den n Teilbäumen t_0, \ldots, t_{n-1} ein \mathcal{S} -term.

1.4 Formeln

https://lili.informatik.uni-kiel.de/llocs/Syntax_of_first-order_logic#Formal_definition_of_formulas

Induktive Defintion für alle Formeln über eine Signatur \mathcal{S} , die auch \mathcal{S} -formulas genannt wird: Basiselemente:

- Der einelementige Baum in dem das einzige Element eines der konstanten Symbole ⊤ oder ⊥ ist, ist eine (prädikatenlogische) Formel.
- Wenn t_0, t_1 Terme sind, dann ist der Baum mit der Wurzel \doteq und den Teilbäumen t_0 und t_1 eine Formel.
- Wenn $R/n \in \mathcal{S}$ eine Relation ist und t_0, \ldots, t_{n-1} Terme sind dann ist der Baum mit der Wurzel R und den n Teilbäumenm t_0, \ldots, t_{n-1} eine Formel.

Diese werden die atomaren Formeln genannt. Induktionsregeln:

- Wenn C ein n-stelliger Junktor ist und $\varphi_0, \ldots, \varphi_{n-1}$ Formeln sind, dann ist der Baum mit der Wurzel C und den n Teilbäumen $\varphi_0, \ldots, \varphi_{n-1}$ eine Formel.
- Wenn x_i eine Variable ist und φ eine Formel, dann ist der Baum mit der Wurzel $\exists x_i$ oder der Wurzel $\forall x_i$ und dem Teilbaum φ eine Formel.

1.5 Interpretation von Termen

https://lili.informatik.uni-kiel.de/llocs/ Semantics_of_first-order_logic#Interpretation_ of_terms

Sei \mathcal{S} eine Signatur und \mathcal{A} eine \mathcal{S} -Struktur. Für eine Belegung (A-Belegung) β , ist der Wert von jedem \mathcal{S} -term t in \mathcal{A} unter β : $[\![t]\!]_{\beta}^{\mathcal{A}}$ defniert durch folgender Induktion. Basiselemente:

- Für alle $i \in \mathbb{N}$ gilt: $[x_i]_{\beta}^{\mathcal{A}} = \beta(x_i)$. Variablen bekommen den ihnen unter β zugewiesenen Wert bei der alleinigen Auswertung.
- Für jedes $c \in C$ gilt: $[\![c]\!]_{\beta}^{\mathcal{A}} = c^{\mathcal{A}}$ Konstante Symbole werden wie in der Struktur beschriegben ausgwertet wenn sie alleine stehen.

Induktionsregel:

• Für alle $f//n \in \mathcal{F}$ und die \mathcal{S} -terms t_0, \ldots, t_{n-1} gilt: $[\![f(t_0, \ldots, t_{n-1})\!]\!]_{\beta}^{\mathcal{A}} = f^{\mathcal{A}}([\![t_0]\!]_{\beta}^{\mathcal{A}}, \ldots, [\![t_{n-1}]\!]\!]_{\beta}^{\mathcal{A}})$

1.6 Interpretation von Formlen

https://lili.informatik.uni-kiel.de/llocs/ Semantics_of_first-order_logic#Interpretation_ of_formulas

So dieses mal einfach direkt die Induktive Definition: Basiselemente:

• Für die boolschen konstannten Symbole gilt:

$$[\![\bot]\!]_{\beta}^{\mathcal{A}} = 0 \tag{1}$$

$$\llbracket \top \rrbracket_{\beta}^{\mathcal{A}} = 1 \tag{2}$$

• Für alle Terme t_0, t_1 gilt:

$$\begin{bmatrix} t_0 \doteq t_1 \end{bmatrix}_{\beta}^{\mathcal{A}} = \begin{cases} 1 & \text{if } \llbracket t_0 \rrbracket_{\beta}^{\mathcal{A}} = \llbracket t_1 \rrbracket_{\beta}^{\mathcal{A}} \\ 0 & \text{sonst} \end{cases}$$
(3)

• Für alle Relationen $R/n \in \mathcal{R}$ und Terme t_0, \ldots, t_{n-1} gilt:

$$[\![R(t_0,\ldots,t_n)]\!] = \begin{cases} 1 & \text{if } \langle [\![t_0]\!]_{\beta}^{\mathcal{A}},\ldots,[\![t_{n-1}]\!]_{\beta}^{\mathcal{A}} \rangle \in R^{\mathcal{A}} \\ 0 & \text{sonst} \end{cases}$$
(4)

Induktionsregeln:

• Für jeden n-stelligen Junktor C und die Formlen $\varpi_0,...,\varphi_{n-1}$ gilt:

$$[\![C(\varphi_0,\ldots,\varphi_{n-1})]\!]_{\beta}^{\mathcal{A}} = f_C([\![\varphi_0]\!]_{\beta}^{\mathcal{A}},\ldots,[\![\varphi_{n-1}]\!]_{\beta}^{\mathcal{A}})$$

• Für jede Formel φ und $i \in \mathbb{N}$ gilt:

$$\llbracket \exists x_i \varphi \rrbracket_{\beta}^{\mathcal{A}} = \begin{cases} 1 & \text{wenn ein } a \in A \text{ existiert,} \\ & \text{für das gilt } \llbracket \varphi \rrbracket_{\beta \left[\frac{x_i}{a}\right]}^{\mathcal{A}} = 1 \\ 0 & \text{sonst} \end{cases}$$

$$\llbracket \forall x_i \varphi \rrbracket_{\beta}^{\mathcal{A}} = \begin{cases} 1 & \text{wenn für alle } a \in A \text{ gilt:} \\ & \llbracket \varphi \rrbracket_{\beta \left[\frac{x_i}{a}\right]}^{\mathcal{A}} = 1 \\ 0 & \text{sonst} \end{cases}$$

 $\llbracket \varphi \rrbracket_{\beta}^{\mathcal{A}} = 1$ wird auch als $\mathcal{A}, \beta \models \varphi$

1.7 Freie Variablen

https://lili.informatik.uni-kiel.de/llocs/Free_variables

1.8 Koinzidenzlemma

https://lili.informatik.uni-kiel.de/llocs/Coincidence_lemma_(first-order_logic)

2 Modelierung

2.1 Relationen in Strukturen defnieren?

https://lili.informatik.uni-kiel.de/llocs/Definable_relations

2.2 Erfüllbarkeit einer Formel

3 Äquivalenz

3.1 Äquivalenz von Formeln

https://lili.informatik.uni-kiel.de/llocs/Formula_
equivalence_(first-order_logic)

3.2 Regeln der Prädikatenlogik

3.3 Quantorenregeln

3.4 Umbenennen von gebundenen Variablen

3.5 Scope von Quantoren

https://lili.informatik.uni-kiel.de/llocs/Scope_of_quantifiers_in_first-order_logic

3.6 Normalformen	5.2.1 Korrektheit & Vollständigkeit
3.6.1 Boolsche Normalform	
https://lili.informatik.uni-kiel.de/llocs/Boolean_ normal_form_(first-order_logic)	5.2.2 Verbindung zwischen Resolution und Logik Programmierung
3.6.2 Plenex Normalform	
https://lili.informatik.uni-kiel.de/llocs/Prenex_normal_form	6 Kompaktheit
3.6.3 Konjunktive Normalform	
https://lili.informatik.uni-kiel.de/llocs/Conjunctive_normal_form_(first-order_logic)	
4 Folgerungsbeziehungen (Entailment)	
4.1 Folgerungsbeziehung	
4.2 Beziehung zwischen Erfüllbarkeit und Folgerungsbeziehung	
5 Beweissysteme	
5.1 Natürliches Beweissystem	
5.1.1 Beweisregeln	
5.1.2 Korrektheit & Vollständigkeit	
5.2 Resolutions beweise	