Понятие информация

• Информация – одно из самых фундаментальных понятий современной науке, наряду веществом, энергией, пространством, временем. А фундаментальное, т.е. первичное, понятие невозможно строго определить через вторичные, или производные понятия.

Информация в быту

• Под информацией в быту понимают любые сведения об окружающем мире и протекающих в нем процессах, воспринимаемые человеком (с помощью органов слуха, зрения, осязания, обоняния, вкуса) или специальными устройствами.

Информация в технике

• Под информацией в технике понимают любые сообщения, которые зафиксированы в виде знаков и могут передаваться в виде сигналов.

Информация в теории управления

Под информацией в теории управления (менеджменте) понимают сообщения, уменьшающие существующую до этого неопределенность в той предметной области, к которой они относятся, и использующиеся для совершения активного действия, например, управленческого решения.

ключевые атрибуты информации.

- 1. Достоверность. информация свободна от ошибок, чьей-либо пристрастности и отражает истинное положение дел. Часто организации применяют независимые источники информации, чтобы анализируя их, уменьшать фактор пристрастности в принимаемом решении или в распространяемой производной информации.
- 2. Оперативность. Доставка информации получателям в рамках необходимых временных границ. Например, вчерашняя газета сегодня, запоздавшая котировка акций. Своевременность просто означает, что адресат должен получить информацию, когда ему нужно.
- 3. **Актуальность**, т.е. важность, существенность для настоящего времени. Точная и своевременная информация может в то же время быть неактуальной, более того информация, актуальная для одного получателя, не обязательно актуальна для другого.
- 4. Полнота. Информация должна содержать все важные данные, которые ожидают от нее пользователи, и ее должно быть достаточно для понимания и принятия решения.
- 5. Полезность. Полезность (ценность) информации определяется по тем задачам, которые можно решить с ее помощью.
- 6. **Понятность** означает, что информация может быть представлена в ясном и понятном для потребителя формате. Потребитель информации лицо, принимающее решение, должен как можно меньше времени тратить на дополнительные уточнения поступившей информации.

Информация в узком и широком смыслах

- в узком смысле информацией можно назвать сведения о предметах, фактах, понятиях некоторой предметной области.
- С середины XX века информация рассматривается в широком смысле как общенаучное понятие, включающее в себя как совокупность сведений об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, так и обмен сведениями между людьми, человеком и автоматом, автоматом и автоматом, обмен сигналами между живой и неживой природой, в животном и растительном мире, а также генетическую информацию.

информацию можно подразделить на:

- 1) структурную (или связанную) присущую объектам неживой и живой природы естественного или искусственного происхождения. Эти объекты (орудия труда, предметы быта, произведения искусства, научные теории и т.п.) возникают путем опредмечивания циркулирующей информации, то есть благодаря и в результате целенаправленных управленческих процессов;
- 2) оперативную (или рабочую), циркулирующую между объектами материального мира и используемую в процессах управления в живой природе, в человеческом обществе

Данные, знания

- Сведения, полученные путем измерения, наблюдения, логических или арифметических операций, и представленные в форме, пригодной для постоянного хранения, передачи и обработки получили название данные.
- Совокупность полезной информации, правил и процедур ее обработки, необходимая для получения новой информации о какой-либо предметной области называют знанием.

Свойства знаний

- 1. Внутренняя интерпретируемость знаний (понятность знания его носителю).
- 2. Структурированность знаний. Информационные единицы должны обладать гибкой структурой. Принцип «матрешки» рекурсивная вложимость знаний. Возможность произвольного установления и перенастройки отношений (включения) между информационными единицами.
- 3. Связность. Отношения между элементами: структурные, функциональные, казуальные и семантические. Структурные задают иерархию, функциональные задают процедурную информацию, позволяющие находить одни элементы через другие, каузальные задают причинно-следственные связи, семантические охватывают все остальные виды отношений.
- 4. Ассоциативность знаний наличие семантической метрики в сфере знаний. Отношение релевантности на множестве информационных единиц характеризует ситуационную близость элементов (силу ассоциативной связи). Позволяет находить знания, близкие к уже
- найденным.
- 5. Активность знаний наличие у знаний побуждающей и направляющей функции, что фактически превращает знания в квазипотребности. Актуализации тех или иных действий способствуют имеющиеся в системе знания.

 Введение информации в научнотехнический и хозяйственный оборот привело к необходимости ее количественной оценки, т.е. к введению меры сравнения. В простейшей комбинаторной форме эта мера была предложена Р. Хартли в 1928 году. • Пример 1. Как определить, какая из двух монет фальшивая, если на вид они одинаковы, но известно, что фальшивая легче. Нет ничего проще, скажете вы. Проводим одно взвешивание на чашечных весах, и все становится ясно. Таким образом, взвешивания у вас ДО неопределенность по поводу того, какая из монет фальшивая, а после взвешивания вы сняли эту неопределенность, получив информацию. Иными словами, вы получили сообщение в элементарном альтернативном между двумя событиями выборе («фальшивая – не фальшивая», «да - нет», «истина – ложь», «0–1»).

Понятие бита

• бит — это и двоичный знак, и единица измерения количества информации, определяемая как количество информации в выборе с двумя взаимоисключающими равновероятными исходами.

- Пример 2. А если монет 8? Тогда делим их на две равные части и взвешиваем их. Ту часть, которая легче, снова делим на две части и снова взвешиваем и т.д. За три взвешивания мы определим фальшивую монету.
- За три выбора мы уменьшили существующую неопределенность в 2, 4, 8 раз, получив таким образом 3 бита информации.

Пример 3. Перейдем от монет к картам. Пусть в колоде из 32 карт необходимо угадать определенную карту, например, туза пик. Для этого необходимо и достаточно получить ответы «да» и «нет» на пять вопросов. Вопросы, ответы на которые позволяют выбрать одну из альтернатив, называют двоичными, или бинарными. Ответами на эти вопросы мы уменьшаем неопределенность в 2, 4, 8, 16, 32 раз. В конце неопределенности не остается. Количество полученной информации равно 5 бит

Вопрос	Ответ	Бинарный			
		ответ			
1.Карта красной масти?	Нет	0			
2.Трефы?	Нет	0			
3.Одна из четырех старших?	Да	1			
4.Одна из двух старших?	Да	1			
5.Король?	Нет	0			
Значит, задуманная карта была туз пик.					

• В этих примерах процесс получения информации рассматривается как выбор одного сообщения из конечного наперёд заданного множества из *п* равновероятных сообщений. Легко подметить следующую закономерность: количество информации I, содержащееся в выбранном сообщении, определяется как двоичный логарифм *n*:

$$I = \mathrm{ld}(n)$$

- Справедливо утверждение Хартли: если во множестве X={x1,x2,...,xn} выделить произвольный элемент xi ∈ X, то, чтобы его найти, необходимо получить не менее ld(n) единиц информации.
- Недостаток формулы Хартли заключается в том, что она не учитывает неравновероятность различных рассматриваемых состояний.

Вероятности отдельных букв в русском языке (с учетом пробела)

Буква	_	О	E,Ë	A	И	T	Н	С
P_i	0,175	0,090	0,072	0,062	0,062	0,053	0,053	0,045
Буква	Р	В	Л	К	M	Д	П	У
P_{i}	0,040	0,038	0,035	0,028	0,026	0,025	0,023	0,021
Буква	Я	Ы	3	Ь,Ъ	Б	Γ	Ч	Й
P_i	0,018	0,016	0,016	0,014	0.014	0,013	0,012	0,010
Буква	X	Ж	Ю	Ш	Ц	Щ	Э	Φ
P_{i}	0,009	0,007	0,006	0,006	0,004	0,003	0,003	0,002

Частоты букв (в процентах) ряда европейских языков

Буква алфавита	Французск ий язык	Немецкий язык	Английский язык	Итальянский язык
A	7,68	5,52	7,96	11,12
В	0,80	1,56	1,60	1,07
С	3,32	2,94	2,84	4,11
D	3,60	4,91	4,01	3,54
Е	17,76	19,18	12,86	11,63
F	1,06	1,96	2,62	1,15
G	1,10	3,60	1,99	1,73
Н	0,64	5,02	5,39	0,83
I	7,23	8,21	7,77	12,04
J	0,19	0,16	0,16	-
K	-	1,33	0,41	-
L	5,89	3,48	3,51	5,95
M	2,72	1,69	2,43	2,65
N	7,61	10,20	7,51	7,68
O	5,34	2,14	6,62	8,92 18
P	3,24	0,54	1,81	2,66

- Для неравновероятных процессов американский учёный Клод Шеннон предложил (1948 г.) другую формулу определения количества информации, которая учитывает возможную неодинаковую вероятность сообщений во множестве сообщений.
- Вероятность это численная мера достоверности случайного события, которая при большом числе испытаний близка к отношению числа случаев *m*, когда событие осуществилось (положительных исходов), к общему числу случаев *n*:

$$P_i = \lim_{n \to \infty} (m/n)$$

Например, если много раз подбрасывать монетку, то она упадёт орлом вверх примерно в половине случаев. Это значит, что вероятность выпадения орла равна 0,5, или 50%.

Вероятность любого события — это число, принадлежащее отрезку [0;1]. Событие с вероятностью 0 называют невозможным, а с вероятностью 1 — достоверным.

Свойство вероятностей:

$$\sum_{i=1}^{n} P_i = 1$$

 Можно представить что для того, чтобы получить какой то символ от источника сообщения нужно перебрать по крайней мере (с вероятностью близкой к 1) п символов, где n=1/p. p –вероятность появления символа. Чтобы получить из этих символов необходимый нам, нужно сделать двоичный логарифм переборов ld(n).

$$K_i = \operatorname{Id}(1/P_i)$$
 бит

мера Шеннона количества информации (формула Шеннона).

•Если найти среднее значение количества таких переборов для всех символов получим формулу Шеннона:

$$H = \sum_{i=1}^{n} P_{i}I_{i} = \sum_{i=1}^{n} P_{i} \operatorname{ld}\left(\frac{1}{P_{i}}\right) = -\sum_{i=1}^{n} P_{i} \operatorname{ld}(P_{i})$$

Эта величина получила название *информационная энтропия*, или энтропия источника сообщений.

Энтропия характеризует информационную мощность данного множества (ансамбля) сообщений и является мерой неопределенности, которая имеется в этом множестве.

$$H = \sum_{i=1}^{n} P_{i}I_{i} = \sum_{i=1}^{n} P_{i} \operatorname{1d}\left(\frac{1}{P_{i}}\right) = -\sum_{i=1}^{n} P_{i} \operatorname{1d}(P_{i})$$

- Из формулы непосредственно вытекают свойства энтропии:
- энтропия заранее известного сообщения равна 0;
- во всех других случаях H > 0.

Чем больше энтропия системы, тем больше степень ее неопределенности. Поступающее сообщение полностью или частично снимает эту неопределенность. Поэтому количество информации можно измерять тем, насколько понизилась энтропия системы после поступления сообщения:

Уменьшая энтропию, мы получаем информацию – в этом и заключается смысл научного познания! ₂₁

Кодирование источника сообщений

• Как уже отмечалось, результат одного отдельного альтернативного выбора может быть представлен как 0 или 1. Тогда выбору всякого сообщения (события, символа т.п.) в массиве сообщений соответствует некоторая последовательность двоичных знаков 0 или 1, то есть двоичное слово. Это двоичное слово называют кодировкой, а множество кодировок источника сообщений – кодом источника сообщений.

Кодирование – замена информационного слова на кодовое

Пример.

Информационное слово	Кодовое слово
000	0000
001	0011
010	0101
011	0110
100	1001
101	1010
110	1100
111	1111

- Если количество символов представляет собой степень двойки $(n = 2^N)$ и все знаки равновероятны $P_i = (1/2)^N$, то все двоичные слова имеют длину $L=N=\operatorname{Id}(n)$. Такие коды называют равномерными кодами.
- Более оптимальным с точки зрения объема передаваемой информации является неравномерное кодирование, когда разным сообщениям в массиве сообщений назначают кодировку разной длины. Причем, часто происходящим событиям желательно назначать кодировку меньшей длины и наоборот, т.е. учитывать их вероятность.

Кодирование словами постоянной длины

Буква	a	b	\mathcal{C}	d	e	f	g
Кодирование	000	001	010	011	100	101	110

ld(7)≈2,807 и *L*=3.

. Проведем кодирование, *разбивая исходное множество знаков на равновероятные подмножества*, то есть так, чтобы при каждом разбиении суммы вероятностей для знаков одного подмножества и для другого подмножества были одинаковы. Для этого сначала расположим знаки в порядке уменьшения их вероятностей

Символ	Вероятность, P_i	Кодировка	Длина, L_i	Вероятность $ imes$ Длина, $P_i \!$
а	0,25	00	2	0,5
е	0,25	01	2	0,5
f	0,125	100	3	0,375
С	0,125	101	3	0,375
b	0,125	110	3	0,375
d	0,0625	1110	4	0,25
g	0,0625	1111	4	0,25

В общем случае *алгоритм построения оптимального кода Шеннона-Фано* выглядит следующим образом:

- 1. сообщения, входящие в ансамбль, располагаются в столбец по мере убывания вероятностей;
 - 2. выбирается основание кода K (в нашем случае K=2);
- 3. все сообщения ансамбля разбиваются на *К* групп с суммарными вероятностями внутри каждой группы как можно близкими друг к другу.
- 4. всем сообщениям первой группы в качестве первого символа присваивается 0, сообщениям второй группы символ 1, а сообщениям *К*-й группы символ (*К*–1); тем самым обеспечивается равная вероятность появления всех символов 0, 1,..., *К* на первой позиции в кодовых словах;
- 5. каждая из групп делится на *К* подгрупп с примерно равной суммарной вероятностью в каждой подгруппе. Всем сообщениям первых подгрупп в качестве второго символа присваивается 0, всем сообщениям вторых подгрупп 1, а сообщениям *К*-ых подгрупп символ (*K*–1).
- 6. процесс продолжается до тех пор, пока в каждой подгруппе не окажется по одному сообщению.

Символ	Вероятность, P_i
A	0,2
E	0,4
F	0,125
C	0,125
В	0,15

Символ	Вероятность, P_i
E	0,4
Α	0,2
В	0,15
F	0,125
C	0,125

А (частота встречаемости 50)

В (частота встречаемости 39)

С (частота встречаемости 18)

D (частота встречаемости 49)

Е (частота встречаемости 35)

F (частота встречаемости 24)

Полученный код: А — 11, В — 101, С — 100, D — 00, Е — 011, F — 010.

Метод Хаффмана

Классический алгоритм Хаффмана на входе получает таблицу частот встречаемости символов в сообщении. Далее на основании этой таблицы строится дерево кодирования Хаффмана (H-дерево).

- 1. Символы входного алфавита образуют список свободных узлов. Каждый лист имеет вес, который может быть равен либо вероятности, либо количеству вхождений символа в сжимаемое сообщение.
 - 2. Выбираются два свободных узла дерева с наименьшими весами. Создается их родитель с весом, равным их суммарному весу.
- 4. Родитель добавляется в список свободных узлов, а два его потомка удаляются из этого списка.
- 5. Одной дуге, выходящей из родителя, ставится в соответствие бит 1, другой бит 0. Битовые значения ветвей, исходящих от корня, не зависят от весов потомков.

Шаги, начиная со второго, повторяются до тех пор, пока в списке свободных узлов не останется только один свободный узел. Он и будет считаться корнем дерева.

Итого:

Α	Б	В	Г	Д
0	100	101	110	111

При неравномерном кодировании вводят среднюю длину кодировки, которая определяется по формуле

$$L = \sum_{i=1}^{n} P_i L_i$$

В общем же случае связь между средней длиной кодового слова *L* и энтропией *H* источника сообщений дает следующая *теорема* **кодирования** Шеннона:

имеет место неравенство $L \ge H$, причем L = H тогда, когда набор знаков можно разбить на точно равновероятные подмножества;

всякий источник сообщений можно закодировать так, что разность L-H будет как угодно мала.

Разность *L–H* называют *избыточностью кода* (мера бесполезно совершаемых альтернативных выборов).

следует *не просто кодировать каждый знак в отдельности*, а рассматривать вместо этого двоичные кодирования для *nk* групп по *k* знаков.

Тогда средняя длина кода *i-*го знака *хi* вычисляется так:

L = (средняя длина всех кодовых групп, содержащих xi)/k.

Символ	Вероятность	Кодировка	Длина	В×Д
A	0,7	0	1	0,7
В	0,2	10	2	0,4
C	0,1	11	2	0,2
	,			,

Средняя длина слова: L=0,7+0,4+0,2=1,3. Среднее количество информации, содержащееся в знаке (энтропия): $H=0,7\times \mathrm{Id}(1/0,7)+0,2\times \mathrm{Id}(1/0,2)+0,1\times \mathrm{Id}(1/0,1)=0,7\times 0,515+0,2\times 2,322+0,1\times 3,322=1,1571$. Избыточность L-H=1,3-1,1571=0,1429.

Кодирование пар

Пары	Вероятность	Кодировка	Длина	В×Д
AA	0,49	0	1	0,49
AB	0,14	100	3	0,42
BA	0,14	101	3	0,42
AC	0,07	1100	4	0,28
CA	0,07	1101	4	0,28
BB	0,04	1110	4	0,16
BC	0,02	11110	5	0,10
СВ	0,02	111110	6	0,12
CC	0,01	111111	6	0,06
Средн	2,33			

Средняя длина кода одного знака равна 2,33/2=1,165 — уже ближе к энтропии. Избыточность равна $L-H=1,165-1,1571\approx0,008$.

Помехоустойчивое кодирование Введение избыточности

Ошибка в одном разряде

Пакет ошибок длины 8

34

Модель ошибки

• Ошибка – замена в двоичном сообщении 0 на 1 и\или наоборот, замена 1 на 0

 Пример: ИСХОДНОЕ СЛОВО: 00010100

• ОШИБОЧНЫЕ СЛОВА: 00110100, 00000100, 00101100

Стирающий канал 1111101 ->111101 Канал со вставками 1111101->01111101

Расстояние Хэмминга между двумя словами есть число разрядов, в которых эти слова различаются

- 1. *Расстояние Хэмминга d(000, 011) есть 2*
- 2. Расстояние Хэмминга d(10101, 11110) равно 3

Декодирование – исправление ошибки, если она произошла

- Множество кодовых слов {00000,01101,10110,11011}
- Если полученное слово 10000, то декодируем в «ближайшее» слово 00000
- Если полученное слово 11000 то только обнаружение ошибки, так как два варианта: 11000 в 00000 или 11000 в 11011

Самокорректирующиеся коды

• Коды, в которых возможно автоматическое исправление ошибок, называются самокорректирующимися. Для построения самокорректирующегося кода, рассчитанного на исправление одиночных ошибок, одного контрольного разряда недостаточно.

количество контрольных разрядов k должно быть выбрано так, чтобы удовлетворялось неравенство:

$$2^k \ge k + m + 1$$
$$k \ge \log_2(k + m + 1)$$

где m — количество основных двоичных разрядов кодового слова

Минимальные значения k при заданных значениях m

Диапазон m	k _{min}
1	2
2-4	3
5-11	4
12-26	5
27-57	6

Код Хэмминга, восстановление одного искажения или обнаружение двойного, неклассический подход

Для Примера рассмотрим классический код Хемминга Сгруппируем проверочные символы следующим образом:

$$egin{aligned} r_1 &= i_1 \oplus i_2 \oplus i_3 \ r_2 &= i_2 \oplus i_3 \oplus i_4 \ r_3 &= i_1 \oplus i_2 \oplus i_4 \end{aligned}$$

Получение кодового слова выглядит следующим образом:

$$\begin{pmatrix} i_1 & i_2 & i_3 & i_4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} i_1 & i_2 & i_3 & i_4 & r_1 & r_2 & r_3 \end{pmatrix}$$

Декодирование

На вход декодера поступает кодовое слово

$$V = (i'_1, i'_2, i'_3, i'_4, r'_1, r'_2, r'_3)$$

В декодере в режиме исправления ошибок строится последовательность синдромов:

$$S_1=r_1\oplus i_1\oplus i_2\oplus i_3$$

$$S_2 = r_2 \oplus i_2 \oplus i_3 \oplus i_4$$

$$S_3 = r_3 \oplus i_1 \oplus i_2 \oplus i_4$$

Получение синдрома выглядит следующим образом:

$$\sim i_2 + i_2 = 1$$

$$egin{pmatrix} (i_1 & i_2 & i_3 & i_4 & r_1 & r_2 & r_3) & egin{pmatrix} 1 & 0 & 1 \ 1 & 1 & 1 \ 1 & 1 & 0 \ 0 & 1 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} = egin{pmatrix} S_1 & S_2 & S_3 \ \end{array}$$

Нули в синдроме показывают отсутствие ошибок, отличный от нуля код соответствует какой-либо единичной ошибке, например для 111, это ошибка в $\frac{42}{12}$

Получение кода хэмминга для кодов большей длины

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	1	1	1	0	1	
1	Χ		Χ		Χ		Χ		Х		Χ		Χ		Х		Χ		Χ		Χ	1
0		Χ	Χ			Х	Χ			Χ	Х			Χ	Х			Χ	Χ			2
1				Χ	Χ	Х	Χ					Х	Χ	Х	Χ					Χ	Χ	4
0								Χ	Χ	Χ	Χ	Χ	Χ	Х	Х							8
0																Х	Х	Х	Χ	Х	Х	16

Каждую последовательность суммируем по модулю 2 (операция хог), получая код: $0+0+1+0+0+0+1+1+1+1=1\\0+0+0+0+0+1+0+0+1+1=0\\0+1+0+0+0+0+1+0+1=1\\0+0+1+0+0+0+0+1=0\\0+1+1+1+0+1=0$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
1	0	0	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1	1	0	1	

10 11 12 13 14 15 16 17 18 19 3 5 20 1 9 0 1 Х Х X Х X Х X X Х 4 16

$$1+0+1+0+0+1+0+1+1+1+1 = 11$$

$$0+0+0+0+1+1+0+1+1+1 = 12$$

$$1+1+0+0+0+0+0+1+1+1 = 04$$

$$0+0+1+1+0+0+0+1 = 18$$

$$0+1+1+1+0+1 = 016$$

$$11$$

Понятие системы счисления

Система счисления — это способ записи чисел с помощью заданного набора специальных знаков.

Два вида систем счисления

позиционные

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число

Пример: В десятичном числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, третья – 7 десятых долей единицы.

непозиционные

В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа.

Пример: В римской системе счисления в числе XXXII (тридцать два) вес цифры X в любой позиции равен просто десяти.

Степень двойки	Десятичное	Восьмеричное
20	1	1
2^{1}	2	2
2^2	4	4
2 ³	8	10
2^4	16	20
2 ⁵	32	40
2 ⁶ 2 ⁷	64	100
	128	200
28	256	400
29	512	1000
2 ¹⁰	1024	2000
2 ¹¹	2048	4000
212	4096	10000

при работе с двоичными кодами удобны недесятичные системы счисления, а основания кратные степеням двойки.

Любая позиционная система счисления характеризуется своим основанием Любое двоичное число, состоящее из 1 с несколькими нулями, является степенью двойки. Показатель степени равен числу нулей.

Таблица степеней двойки демонстрирует это правило наглядно.

Степень	Десятичное	Восьме-	Четве-	Двоичное
двойки		ричное	ричное	
2 ⁰	1	1	1	1
2^1	2	2	2	10
2^2	4	4	10	100
$\frac{3}{2}$	8	10	20	1000
2^4	16	20	100	10000
				(npooonmer
2 ⁵	32	40	200	100000
2^{6}	64	100	1000	1000000
2^7	128	200	2000	10000000
28	256	400	10000	100000000
29	512	1000	20000	10040700000
2^{10}	1024	2000	100000	10000000000

Переводимое число необходимо записать в виде суммы произведений цифр числа на основание системы счисления в степени, соответствующей позиции цифры в числе.

5 4 3 2 1 0 -1 -2 $111000.11_{2} = 1 \cdot 2^{5} + 1 \cdot 2^{4} + 1 \cdot 2^{3} + 1 \cdot 2^{-1} + 1 \cdot 2^{-2}$ = $= 32 + 16 + 8 + \frac{1}{2} + \frac{1}{4} =$ $= 56,75_{10}$

1001100₂

Дробная часть получается из целых частей (0 или 1) при ее последовательном умножении на 2 до тех пор, пока дробная часть не обратится в 0 или получится требуемое количество знаков после разделительной точки.

Пример перевода из восьмиричной системы счисления

$$210^{-1}$$
 $421.5_8 = 4.8^2 + 2.8^1 + 1.8^0 + 5.8^{-1} =$
 $= 256 + 16 + 1 + 5/8 =$
 $= 273,625_{10}$

Пример перевода из шестнадцатиричной системы счисления

```
A7.C<sub>16</sub> = 10 \cdot 16^{1} + 7 \cdot 16^{0} + 12 \cdot 16^{-1} =
= 160 + 7 + 12/16 =
= 167,75_{10}
```

Запись в десятичной, двоичной, восьмеричной и шестнадцатеричной системах счисления первых двух десятков целых чисел

10 - я 2 - я 8 - я 16 - я 0 0 0 0 1 1 1 1 2 10 2 2 3 11 3 3 4 100 4 4 5 101 5 5 6 110 6 6 7 111 7 7 8 1000 10 8 9 1001 11 9	HIKOL	<u>з це</u>	ЛЫХ	<u>чис</u>
1 1 1 1 2 10 2 2 3 11 3 3 4 100 4 4 5 101 5 5 6 110 6 6 7 111 7 7 8 1000 10 8	10 - я	2 - я	8 - я	16 - я
2 10 2 2 3 11 3 3 4 100 4 4 5 101 5 5 6 110 6 6 7 111 7 7 8 1000 10 8	0	0	0	0
3 11 3 3 4 100 4 4 5 101 5 5 6 110 6 6 7 111 7 7 8 1000 10 8	1	1	1	1
4 100 4 4 5 101 5 5 6 110 6 6 7 111 7 7 8 1000 10 8	2	10	2	2
5 101 5 5 6 110 6 6 7 111 7 7 8 1000 10 8	3	11	3	3
6 110 6 6 7 111 7 7 8 1000 10 8	4	100	4	4
7 111 7 7 8 1000 10 8	5	101	5	5
8 1000 10 8	6	110	6	6
	7	111	7	7
9 1001 11 9	8	1000	10	8
	9	1001	11	9

10 - я	2 - я	8 - я	16 - я
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13

Примеры перевода из двоичной системы счисления в восьмеричную

```
100110111.001_2 = 100 | 110 | 111. | 001_2 |
100110111.001_2 = 4 | 6 | 7. | 1_8 |
```

Перевод из восьмеричной системы счисления в двоичную

Такой перевод осуществляется путем подстановки: каждая 8-ричная цифра заменяется на соответствующие ей три двоичных.

```
74.6_8 = 111 \ 100. \ 110_2
310.5_8 = 011 \ 001 \ 000. \ 101_2
```

Примеры перевода из двоичной системы счисления в шестнадцатеричную

```
100110111.001_2 = 0001 0011 0111. 0010_2

100110111.001_2 = 1 3 7. 2_{16}
```

```
10100101110.11_2 = 0101 0010 1110. 1100_2
10100101110.11_2 = 5 2 E. C_{16}
```

Перевод из шестнадцатеричной системы в двоичную

Такой перевод осуществляется путем обратной подстановки: каждая 16-ричная цифра заменяется на соответствующие ей четыре двоичных.

Кодировки символов

Двоичный код	Десятичный код	коив	CP1251	CP866	Mac	ISO			
00000000	0	<u> </u>			, 				
]							
00001000	8	Удаление последнего символа (клавища Backspace)							
,		 							
00001101	13	<u> </u>	Перевод	строки (клаві	иша Enter)				
,	<u> </u>	<u> </u>							
00100000	32			Пробел					
00100001	33	!							
01011010	90	Z							
01111111	127			0					
10000000	128	-	Ъ	A	A	к			
									
11000010	194	б	В	-	-	1			
*******					1				
11001100	204	Л	М			ь			
	1		1		<u> </u>				
11011101	221	щ	Э		É	н			
	1				<u> </u>				
11111111	255	ь	Я	Нераздел. пробел	Нераздел. пробел	П			

Двоичное кодирование графической информации

В простейшем случае (черно-белое изображение без градаций серого цвета). Каждая точка экрана может иметь лишь два состояния — «черная» или «белая», т.е. для хранения ее состояния необходим 1 бит.

R	G	В	Цвет	
0	0	0	черный	
0	0	1	синий	
0	1	0	зеленый	Монохром
0	1	1	голубой	(черно-
1	0	0	красный	
1	0	1	розовый	
1	1	0	коричневый	
1	1	1	белый	

R	G	В	Цвет
255	0	0	Красный
0	0	255	Синий
0	255	0	Зеленый
0	0	0	Черный
255	255	255	Белый

Мультимедийная информация

• Звук

- Запись и оцифровка
- Частота и разрядность дискретизации
- Артефакты оцифровки

Выборка

Квантование

<u>Определение:</u> Преобразование чисел высокой точности в числа низкой точности

- Зачем?
 - Экономия памяти
 - Вывод на двоичные устройства
- Как?
 - Минимизация ошибки (скорее, ошибки восприятия)

Дискретизация и квантование звуковой волны

Скорость передачи

- Пример
- 256 уровней квантования
- Значит для кодирования надо 8 бит
- Частота дискретизации 8000 Гц, значит 8000 раз в секунду делаются отчеты
- Скорость передачи 8000*8 = 64 кбит/с

Количество бит * Частоту дискретизации [бит/с]

Для хранения **целых чисел со знаком** отводится две ячейки памяти (16 битов).

Старший разряд числа определяет его знак. Если он равен 0, число положительное, если 1, то отрицательное.

$$-51_{10} = -110011_2$$

Такое представление чисел в компьютере называется прямым кодом.

Дополнительный код

- Число полученное путем вычитания из числа с числом разрядов больше на 1, и со значением 1 в старшем разряде и 0 младших. Пример 1000.
- Для числа 70, дополнительный код 100-70=30
- наиболее распространённый способ представления отрицательных целых чисел в компьютерах. Он позволяет заменить операцию вычитания на операцию сложения и сделать операции сложения и вычитания одинаковыми для знаковых и беззнаковых чисел, чем упрощает архитектуру ЭВМ.

- 59-41 = ? 18
- Доп код 41, 100-41 = 59
- Можно представить как:
- 59-(100-59) = 59+59 100 = 118-100 = 18
 - В двоичной системе
 - Доп кол получается как
 - 10000-1001...
 - Что такое 10000, это 1111+1
 - 1111-1001 получается путем инвертирования 0110
 - Остается добавить 1, чтобы получить доп код
 - 0111

Для представления отрицательных целых чисел используется **дополнительный код**.

Алгоритм получения дополнительного кода отрицательного числа:

- 1. Число записать прямым кодом в п двоичных разрядах.
 - 1. Получить обратный код числа, для этого значения всех битов инвертировать, кроме старшего разряда.
 - 2. К полученному обратному коду прибавить единицу.

Представить число -2014_{10} в двоичном виде в шестнадцатибитном представлении в формате целого со знаком.

Прямой код	-2014 ₁₀	10000111 110111102
Обратный код	Инвертирование	11111000 001000012
	Прибавление единицы	11111000 001000012
		00000000 000000012
Дополнительный код		11111000 001000102

Пример 1. Найти разность $13_{10} - 12_{10}$ в восьмибитном представлении.

	13 ₁₀	- 12 ₁₀
Прямой код	00001101	10001100
Обратный код	_	11110011
Дополнительный	_	11110100
код		

 $\begin{array}{c} + & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{array}$

Так как произошел перенос из знакового разряда, первую единицу отбрасываем, и в результате получаем 0000001.

Пример 2. Найти разность 8₁₀ – 13₁₀ в восьмибитном представлении.

	8 ₁₀	- 13 ₁₀
Прямой код	00001000	10001101
Обратный код	_	11110010
Дополнительный	_	11110011
код		

Представить число 21_{10} и - 21_{10} в однобайтовой разрядной сетке.

- **1.** Переведем число 21_{10} в двоичную систему счисления. 21_{10} = 10101_2 .
- 2. Нарисуем восьмиразрядную сетку (1 байт = 8 бит).

7	6	5	4	3	2	1	0

3. Впишем число, начиная с младшего разряда.

1 0 1 0 1

4. Заполним оставшиеся разряды нулями.

0 0 0 1 0 1 0 1

5. Инвертируем

6. Прибавляем 1

Проверка

• Расширение числа, например, от байта до слова (два байта) или до двойного слова (четыре байта) делается путем добавления единиц слева, если это число отрицательное в дополнительном коде и нулей если число в прямом коде

Вещественные числа

Вещественные числа хранятся и обрабатываются в компьютере в формате *с плавающей запятой*, использующем экспоненциальную форму записи чисел.

$$A = M \times q^n$$

М – мантисса числа (правильная отличная от нуля дробь),

q – основание системы счисления,

n – порядок числа.

Диапазон ограничен максимальными значениями М и n.

Вещественные числа

Например, $123,45 = 0,12345 \cdot 10^3$

Порядок указывает, на какое количество позиций и в каком направлении должна сместиться десятичная запятая в мантиссе.

Число в формате с плавающей запятой может занимать в памяти 4 байта (обычная точность) или 8 байтов (двойная точность).

При записи числа выделяются разряды для хранения знака мантиссы, знака порядка, порядка и мантиссы.

Мантисса **М** и порядок **n** определяют диапазон изменения чисел и их точность.

Кодирование вещественных чисел

Число в форме с плавающей точкой занимает в памяти компьютера четыре (число обычной точности) байта или восемь (число двойной точности) байта.

Для записи чисел в разрядной сетке выделяются разряды для знака порядка и мантиссы, для порядка и для мантиссы.

Представить число 250,187510 в формате с плавающей точкой в 4-байтовой разрядной сетке:

1. Переведем число в двоичную систему счисления с 23 значащими цифрами: $250,1875_{10} = 11111010,001100000000000_2;$

2. Нормализуем мантиссу:
11111010,001100000000000
0,111110100011 0000000000000.10¹⁰⁰⁰;

- 3. 0,11111010001100000000000 · 10¹⁰⁰⁰; (мантисса положительная) (порядок положительный)
- 4. Запишем число в 32-разрядной сетке:

