DATA STORAGE TECHNOLOGIES & NETWORKS (CS C446, CS F446 & IS C446)

LECTURE 24- STORAGE

Kernel I/O structure

I/O in Unix - Devices

- I/O system used for
 - Network communication and Virtual Memory (Swap space) as well.
- Block Devices and Character Devices
 - Character devices i.e. devices treated as byte streams
 - Include terminals, line printers
 - Unstructured or raw interface no buffering by kernel
 - □ Block Devices i.e. block-addressable devices
 - E.g. Disks and Tapes
 - Structured interface block-sized accesses buffering done by kernel.

I/O in Unix – Devices

Device Identification – major device #, minor device

- Major Device # refers to the type of device and hence is used to identify a device driver.
 - When a device file is opened, Linux examines its major number and forwards the call to the driver registered for that device.
- Minor Device # refers to a specific device and is interpreted by a device driver.
 - Minor number is used to identify the specific device instance if the driver controls more than one device of a type.
- Block Device table and Character Device Table

I/O in Unix – Device Drivers

- Device Driver Sections
 - Auto-configuration and Initialization Routines
 - Probe a device for presence
 - Initialize device and associated software
 - Routines for servicing I/O requests
 - Invoked because of system calls or VM requests
 - Synchronous execution; may block
 - Referred to as the "top-half" of the driver
 - Interrupt service routines
 - Invoked by interrupt from a device
 - Cannot depend on per-process state
 - Cannot block
 - Referred to as the "bottom-half" of the driver
 - (Optional) Crash-Dump routine

Open Files

- Several pieces of data are needed to manage open files:
 - File pointer: pointer to last read/write location, per process that has the file open
 - File-open count: counter of number of times a file is open – to allow removal of data from open-file table when last processes closes it
 - Disk location of the file: cache of data access information
 - Access rights: per-process access mode information

Descriptor management and services

- The file descriptor is used by kernel to index into descriptor table for the current process to locate file entry or file structure
- file entry provides a file type and a pointer to an underlying object for the descriptor

Open File Entries

- Contain information necessary to access the underlying objects and maintains common information
- Each entry contains a type and an array of function pointers
 - Function pointers translate generic operation of file descriptors into the specific action associated with their type
 - BSD 4.4 support 2 descriptor types (files, sockets)
 - Operations
 - Read from the descriptor
 - Write to the descriptor
 - Select on the descriptor
 - Do ioctl operations on the descriptor
 - Close and possibly deallocate the objects associated with the descriptor

Descriptor

- Changes to a descriptor (fcntl system call)
 - Duplicate a descriptor (dup)
 - Get or set the close-on-exec flag
 - Set descriptor into nonblocking mode
 - Force all write to append
 - Send a signal to process when it is possible to do I/O
 - Send a signal to process when exception condition arises
 - Set or get PID or process group ID
 - Test or change the status of a lock on a range of bytes within an underlying file