Use of enamine derivatives as ultraviolet-A filters - are more stable than current UV-A filters

Patent Number: EP-852137

· Abstract :

1

EP-852137 A Use of enamine derivatives of formula (R3)(R4NH)C=C(R1)(R2) (I) as UV filters in cosmetic and pharmaceutical preparations for protection of hair or skin against sun-radiation, alone or in combination with UV absorbers is new: R1 = COOR5, COR5, CONR5R6, CN, SO2R5, SO2OR5 or P(=0)OR7OR8; R2 = COOR6, COR6, CONR5R6, CN, SO2R6, SO2OR6 or P(=0)OR7OR8; R3 = H, or optionally substituted aliphatic, cycloaliphatic, arylaliphatic or aromatic residue with up to 18C; R4 = optionally substituted 5-12C aromatic or heteroaromatic residue; and R5, R6 = H or aliphatic, arylaliphatic, cycloaliphatic, or optionally substituted aromatic with up to 18C; or R3-R8 together with their bonded carbon atoms may form a 5-6 membered ring which may be further annelated.

USE - (I) are useful as UV-A filters (claimed).

ADVANTAGE - (I) show greater photostability than usual UV-A filters. (Dwg.0/0)

• Publication data:

Patent Family: EP-852137 A2 19980708 DW1998-31 A61K-007/42 Ger 53p * AP: 1997EP-0119397 19971106 DSR: AL AT BE CH DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT RO SE SI

JP10158140 A 19980616 DW1998-34 A61K-007/42 58p AP: 1997JP-0328052 19971128

AU9745406 A 19980604 DW1998-39 C07C-057/00 AP:

1997AU-0045406 19971127

DE19712033 A1 19980924 DW1998-44 A61K-007/42 AP:

1997DE-1012033 19970321

BR9706035 A 19990518 DW1999-25 C07C-409/22 AP:

1997BR-0006035 19971127

US5945091 A 19990831 DW1999-42 A61K-007/42

AP: 1997US-0972391 19971118

MX9709075 A1 19980501 DW2000-07 A61K-007/42 AP:

1997MX-0009075 19971125

US6037487 A 20000314 DW2000-20 C07C-255/04 FD: Div ex US5945091 AP: 1997US-0972391 19971118; 1999US-0266968

19990312

AU-745291 B 20020321 DW2002-33 A61K-007/42 FD: Previous Publ. AU9745406 AP: 1997AU-0045406 19971127 Priority n°: 1997DE-1012033 19970321; 1996DE-1049381

19961129

Covered countries: 29
Publications count: 9

Accession codes :

Accession N°: 1998-350154 [31] Related Acc. N°.: 1998-313409 Sec. Acc. n° CPI: C1998-108199

• Derwent codes :

Manual code: CPI: A08-A03 A12-V04C B05-B01E B05-B01F B07-H B10-A08 B10-A09B B10-A15 B10-B02 B14-R05 D08-B09A D09-E E05-G01 E05-G02 E05-G03 E07-H03 E10-A09B E10-A10C E10-A10D E10-A15A E10-A15C E10-B02 E10-B04A2 E10-B04B

<u>Derwent Classes</u>: A96 B07 D21 E19 <u>Compound Numbers</u>: 9831-M0301-U 9831-M0301-U 9831-M0302-U 9831-M0302-U 9831-M0303-U 9831-M0303-U 9831-M0304-N 9831-M0304-N 9831-

M0305-N 9831-M0305-N

• Patentee & Inventor(s):

Patent assignee: (BADI) BASF AG

Inventor(s): AUMULLER A; HABECK T; SCHEHLMANN V;
WESTENFELDER H; WUNSCH T; AUMUELLER A; HAREMZA
S; WUENSCH T

• <u>Update codes</u>: Basic update code:1998-31

Equiv. update code: 1998-34; 1998-39; 1998-44; 1999-25; 1999-42; 2000-07; 2000-20; 2002-33

Others :

2002-05

•	,

BUNDESREPUBLIK (19) **DEUTSCHLAND**

® Offenlegungsschrift ® DE 197 12 033 A 1

(§) Int. Cl.⁶: A 61 K 7/42

A 61 K 31/235 A 61 K 31/425 A 61 K 31/275

DEUTSCHES PATENTAMT ② Aktenz ichen:

197 12 033.4 21. 3.97

② Anmeldetag: (3) Offenlegungstag: 24. 9.98

(7) Anmelder:

BASF AG, 67063 Ludwigshafen, DE

@ Erfinder:

Habeck, Thorsten, Dr., 67149 Meckenheim, DE; Aumüller, Alexander, Dr., 67435 Neustadt, DE; Schehlmann, Volker, Dr., 67354 Römerberg, DE; Westenfelder, Horst, 67435 Neustadt, DE; Wünsch, Thomas, Dr., 67346 Speyer, DE; Haremza, Sylke, Dr., 69151 Neckargemund, DE

- Photostabile UV-Filter enthaltende kosmetische und pharmazeutische Zubereitungen
- Verwendung von Verbindungen der Formel I 1

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und die Variablen folgende Bedeutung ha-

R1 COOR5, COR5, CONR5R6, CN, O=S(-R5)=O, O=S(-OR5)=

0, R⁷0-P(-OR⁶)=O; R² COOR⁶, COR⁶, CONR⁵R⁶, CN, O=S(-R⁶)=O, O=S(-OR⁶)=

O, R⁷O-P(-OR⁸)=O; R³ Wasserstoff, einen gegebenenfalls substituierten aliphatischen, cycloaliphatischen, araliphatischen oder aromatischen Rest mit jeweils bis zu 18 C-Atomen;

R4 einen gegebenenfalls substituierten aromatischen oder heteroaromatischen Rest mit 5 bis 12 Ringatomen;

R⁸ unabhängig voneinander Wasserstoff, einen offenkettigen oder verzweigten aliphatischen, araliphatischen, cycloaliphatischen oder gegebenenfalls substituierten aromatischen Rest mit jeweils bis zu 18 C-Atomen, wobei die Variablen R³ bis R⁸ untereinander, jeweils zu-

sammen mit den Kohlenstoffatomen, an die sie geburden sind, gemeinsam einen 5- bis 6-Ring bilden können, der gegebenenfalls weiter anelliert sein kann, als UV-Filter in kosmetischen und pharmazeutischen Zubereitungen zum Schutz der menschlichen Haut oder menschlicher Haare gegen Sonnenstrahlen, allein oder zusammen mit an sich für kosmetische und pharmazeutische Zubereitungen bekannten, im UV-Bereich absorbierenden Verbindungen.

Beschreibung

Die Erfindung betrifft die Verwendung von Enaminderivaten als photostabile UV-Filter in kosmetischen und pharmazeutischen Zubereitungen zum Schutz der menschlichen Epidermis oder menschliche Haare gegen UV-Strahlung, speziell im Bereich von 320 bis 400 nm.

Die in kosmetischen und pharmazeutischen Zubereitungen eingesetzten Lichtschutzmittel haben die Aufgabe, schädigende Einflüsse des Sonnenlichts auf die menschliche Haut zu verhindern oder zumindest in ihren Auswirkungen zu reduzieren. Daneben dienen diese Lichtschutzmittel aber auch dem Schutz weiterer Inhaltsstoffe vor Zerstörung oder Abbau durch UV-Strahlung. In haarkosmetischen Formulierungen soll eine Schädigung der Keratinfaser durch UV-Strahlen vermindert werden.

Das an die Erdoberfläche gelangende Sonnenlicht hat einen Anteil an UV-B- (280 bis 320 nm) und an UV-A-Strahlung (> 320 nm), welche sich direkt an den Bereich des sichtbaren Lichtes anschließen. Der Einfluß auf die menschliche Haut macht sich besonders bei der UV-B-Strahlung durch Sonnenbrand bemerkbar. Dementsprechend bietet die Industrie eine größere Zahl von Substanzen an, welche die UV-B-Strahlung absorbieren und damit den Sonnenbrand verhindern.

Nun haben dermatologische Untersuchungen gezeigt, daß auch die UV-A-Strahlung durchaus Hautschädigungen und Allergien hervorrufen kann, indem beispielsweise das Keratin oder Elastin geschädigt wird. Hierdurch werden Elastizität und Wasserspeichervermögen der Haut reduziert, d. h. die Haut wird weniger geschmeidig und neigt zur Faltenbildung. Die auffallend hohe Hautkrebshäufigkeit in Gegenden starker Sonneneinstrahlung zeigt, daß offenbar auch Schädigungen der Erbinformationen in den Zellen durch Sonnenlicht, spezielt durch UV-A-Strahlung, hervorgerufen werden. All diese Erkenntnisse lassen daher die Entwicklung effizienter Filtersubstanzen für den UV-Λ-Bereich notwendig erscheinen.

Es besteht ein wachsender Bedarf an Lichtschutzmitteln für kosmetische und pharmazeutische Zubereitungen, die vor allem als UV-A-Filter dienen können und deren Absorptionsmaxima deshalb im Bereich von ca. 320 bis 380 nm liegen sollten. Um mit einer möglichst geringen Einsatzmenge die gewünschte Wirkung zu erzielen, sollten derartige Lichtschutzmittel zusätzlich eine hoch spezifische Extinktion aufweisen. Außerdem müssen Lichtschutzmittel für kosmetische Präparate noch eine Vielzahl weiterer Anforderungen erfüllen, beispielsweise gute Löslichkeit in kosmetischen Ölen, hohe Stabilität der mit ihnen hergestellten Emulsionen, toxikologische Unbedenklichkeit sowie geringen Eigengeruch und geringe Eigenfärbung.

Eine weitere Anforderung, der Lichtschutzmittel genügen müssen, ist eine ausreichende Photostabilität. Dies ist aher mit den bisher verfügbaren UV-A absorbierenden Lichtschutzmitteln nicht oder nur unzureichend gewährleistet.

In der französischen Patentschrift Nr. 2 440 933 wird das 4-(1,1-Dimethylethyl)-4'-methoxydibenzoylmethan als UV-A-Filter beschrieben. Es wird vorgeschlagen, diesen speziellen UV-A-Filter, der von der Firma GIVAUDAN unter der Bezeichnung "PAR-SOL 1789" verkauft wird, mit verschiedenen UV-B-Filtern zu kombinieren, um die gesamten UV-Strahlen mit einer Wellenlänge von 280 bis 380 nm zu absorbieren.

Dieser UV-A-Filter ist jedoch, wenn er allein oder in Kombination mit UV-B-Filtern verwendet wird, photochemisch nicht beständig genug, um einen anhaltenden Schutz der Haut während eines längeren Sonnenbades zu gewährleisten, was wiederholte Anwendungen in regelmäßigen und kurzen Abständen erfordert, wenn man einen wirksamen Schutz der Haut gegen die gesamten UV-Strahlen erzielen möchte.

Deshalb sollen gemäß EP 0514491 die nicht ausreichend photostabilen UV-A-Filter durch den Zusatz von 2-Cyan-3,3-diphenylacrylsäureestern stabilisiert werden, die selbst im UV-B-Bereich als Filter dienen.

Weiterhin wurde gemäß EP 251 398 schon vorgeschlagen, UV-A- und UV-B-Strahlung absorbierende Chromophore durch ein Bindeglied in einem Molekül zu vereinen. Dies hat den Nachteil, daß einerseits keine freie Kombination von UV-A- und UV-B-Filtern in der kosmetischen Zubereitung mehr möglich ist und daß Schwierigkeiten bei der chemischen Verknüpfung der Chromophore nur bestimmte Kombinationen zulassen.

Es bestand daher die Aufgabe, Lichtschutzmittel für kosmetische und pharmazeutische Zwecke vorzuschlagen, die im UV-A-Bereich mit hoher Extinktion absorbieren, die photostabil sind, eine geringe Eigenfarbe d. h. eine scharfe Bandenstrukur aufweise und je nach Substituent in Öl oder Wasser löslich sind.

Diese Aufgabe wurde erfindungsgemäß gelöst durch Verwendung von Verbindungen der Formel I

$$C = C$$
 R^1
 $R^4 = NH$

50

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt die Variablen folgende Bedeutung haben:

 $R^{1} COOR^{5}, COR^{5}, CONR^{5}R^{6}, CN, O=S(-R^{5})=O, O=S(-OR^{5})=O, R^{7}O-P(-OR^{8})=O;$

R² COOR⁶, COR⁶, CONR⁵R⁶, CN, O=S(-R⁶)=O, O=S(-OR⁶)=O, R⁷O-P (-OR⁸)=O;

R³ Wasserstoff, einen gegebenenfalls substituierten aliphatischen, cycloaliphatischen, araliphatischen oder aromatischen Rest mit jeweils his zu 18 C-Atomen;

R⁴ einen gegebenenfalls substituierten aromatischen oder heteroaromatischen Rest mit 5 bis 12 Ringatomen;

R⁵ bis R⁸ unabhängig voneinander Wasserstoff, einen offenkettigen oder verzweigten aliphatischen, araliphatischen, cycloaliphatischen oder gegebenenfalls substituierten aromatischen Rest mit jeweils bis zu 18 C-Atomen, wobei die Variablen R³ bis R⁸ untereinander, jeweils zusammen mit den Kohlenstoffatomen, an die sie gebunden sind,

gemeinsam einen 5- oder 6-Ring bilden können, der gegebenenfalls weiter anelliert sein kann,

als UV-Filter, insbesondere UV-A-Filter, in kosmetischen und pharmazeutischen Zubereitungen zum Schutz der menschlichen Haut oder menschlicher Haare gegen Sonnenstrahlen, allein oder zusammen mit an sich für kosmetische und pharmazeutische Zubereitungen bekannten, im UV-Bereich absorbierenden Verbindungen.

Dabei sind solche Verbindungen der Formel I bevorzugt, in der R³ für Wasserstoff, R¹ für CN, COOR⁵ und COR⁵ und R² für CN, COOR⁶ und COR⁶ stehen, wobei R⁵ und R⁶ voneinander unabhängig offenkettige oder verzweigte aliphati-

sche oder gegebenenfalls substituierte, aromatische Reste mit bis zu 8 C-Atomen bedeuten.

Besonders bevorzugt ist die Verwendung von Verbindungen der Formel I, in der R³ für Wasserstoff, R¹ für CN, COOR5 und COR5 und R2 für CN, COOR6 und COR6 stehen, wobei R5 und R6 voneinander unabhängig offenkettige oder verzweigte aliphatische oder gegebenenfalls substituierte, aromatische Reste mit bis zu 8 C-Atomen bedeuten und R⁴ für einen gegebenenfalls substituierten aromatischen oder heteroaromatischen Rest mit bis zu 10 C-Atomen im Ring, insbesondere einen substituierten Phenyl-, Thienyl-, Furyl-, Pyridyl-, Indolyl- oder Naphthylenrest und besonders bevorzugt für einen gegebenenfalls substituierten Phenyl- oder Thienylrest steht.

Als Substituenten kommen sowohl lipophile als auch hydrophile Substituenten mit z. B. bis zu 20 C-Atomen in Betracht, Lipophile d. h. die Öllöslichkeit der Verbindungen der Formel I verstärkende Reste sind z. B. aliphatische oder cycloaliphatische Reste insbesondere Alkylreste mit 1 bis 18 C-Atomen, Alkoxy-, Mono- und Dialkylamino-, Alkoxycarbonyl-, Mono- und Dialkylaminocarbonyl-, Mono- und Dialkylaminosulfonylreste, ferner Cyan-, Nitro-, Brom-, Chlor-, Iod- oder Fluorsubstituenten.

Hydrophile d. h. die Wasserlöslichkeit der Verbindungen der Formel I ermöglichende Reste sind z. B. Carboxy- und Sulfoxyreste und insbesondere deren Salze mit beliebigen physiologisch verträglichen Kationen, wie die Alkalisalze oder wie die Trialkylammoniumsalze, wie Tri-(hydroxyalkyl)-ammoniumsalze oder die 2-Methylpropan-1-ol-2-ammoniumsalze. Ferner kommen Alkylammoniumreste mit beliebigen physiologisch verträglichen Anionen in Betracht.

Als Alkoxyreste kommen solche mit 1 bis 12 C-Atomen, vorzugsweise mit 1 bis 8 C-Atomen in Betracht.

Beispielsweise sind zu nennen:

methoxy n-propoxyn-butoxy-2-methylpropoxy-1,1-dimethylpropoxyhexoxyheptoxy-2-ethylhexoxyisopropoxy-1-methylpropoxyn-pentoxy-3-methylbutoxy-2,2-dimethylpropoxy-1-methyl-1-ethylpropoxy-

Als Mono- oder Dialkylaminoreste kommen z. B. solche in Betracht, die Alkylreste mit 1 bis 8 C-Atomen enthalten, wie Methyl-, n-Propyl-, n-Butyl-, 2-Methylpropyl-, 1,1-Dimethylpropyl-, Hexyl-, Heptyl-, 2-Ethylhexyl-, Isopropyl-, 1-Methylpropyl-, n-Pentyl-, 3-Methylbutyl-, 2,2-Dimethylpropyl-, 1-Methyl-1-ethylpropyl- und Octyl in Betracht. Diese Reste sind gleichermaßen in den Mono- und Dialkylaminocarbonyl- und Sulfonylresten enthalten.

Alkoxycarbonylreste sind z. B. Ester, die die oben genannten Alkoxyreste oder Reste von höheren Alkoholen z. B. mit bis zu 20 C-Atomen, wie iso-C15-Alkohol, enthalten.

Die Erfindung betrifft auch die neuen Verbindungen der Formel II

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und in der R4 einen Phenylrest bedeutet, der gegebenenfalls durch einen oder mehrere Alkyl-, Alkoxy-, Alkylaminocarbonyl-, Alkoxycarbonyl-, mit jeweils bis zu 20 C-Atomen oder Cyan- oder Carhoxyreste oder durch wasserlöslich machende Reste ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Alkylammoniumresten substituiert ist. Solche Reste sind z.B. Alkalicarboxylat oder Carbonyloxy-tri-(hydroxyethyl)ammonium- oder Sulfonyloxy-tri-(hydroxyethyl)ammoniumreste. Weiterhin betrifft die Erfindung die neuen Verbindungen der Formel III,

$$\begin{array}{c|c}
H & C = C & COCH_3 \\
\hline
COR^5 & III
\end{array}$$

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und in der R4 einen Phenylrest bedeutet, der gegebenenfalls durch einen oder mehrere Alkoxyreste mit bis zu 20 C-Atomen oder Alkoxycarbonylreste mit 4 bis zu 20 C-Atomen, sowie durch wasserlöslich machende Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Alkylammoniumresten, substituiert ist und R5 eine offenkettige, verzweigte oder cyclische Alkyl-, Alkoxy- oder Alkoxyalkylgruppe mit jeweils bis zu 18 C-Atomen oder eine Aryloxygruppe bedeutet.

Beispielhaft sind in der folgenden Tabelle 1 die bevorzugten erfindungsgemäßen Verbindungen der Formel III genannt

15

20

25

30

Tabelle 1

	Х	R ⁵	n	Position
15	C ₃ H ₇ OCO	CH ₃	1	para
	C ₃ H ₇ OCO	CH ₃	1	meta
	C ₃ H ₇ OCO	CH ₃	1	ortho
	C ₃ H ₇ OCO	CH ₃	2	ortho/para
20	C ₄ H ₉ OCO	CH ₃	1	para
	C ₄ H ₉ OCO	CH ₃	1	meta
	C ₄ H ₉ OCO	CH ₃	1	ortho
	C ₄ H ₉ OCO	CH ₃	2	ortho/para
25	C5H11OCO	CH ₃	1	para
	C5H11OCO	CH ₃	1	meta
	C ₅ H ₁₁ OCO	CH ₃	1	ortho
	C5H11OCO	CH ₃	2	ortho/para
30	C ₆ H ₁₃ OCO	CH ₃	1	para
	C ₆ H ₁₃ OCO	CH ₃	1	meta
	C ₆ H ₁₃ OCO	CH ₃	1	ortho
	C ₆ H ₁₃ OCO	CH ₃	2	ortho/para
35	C ₈ H ₁₇ OCO	CH ₃	1	para
	C ₈ H ₁₇ OCO	CH ₃	1	meta
	C ₈ H ₁₇ OCO	CH ₃	1	ortho
	C ₈ H ₁₇ OCO	CH ₃	2	ortho/para
40	C ₁₂ H ₂₅ OCO	CH ₃	1	para

x	R ⁵	n	Position	7	
C ₁₂ H ₂₅ OCO	CH ₃	1	meta	-	
C ₁₂ H ₂₅ OCO	CH ₃	1	ortho	-	5
C 11 -000	CH ₃	2	ortho/para	-	
C ₁₃ H ₂₇ OCO	CH ₃	1	para	+	
C ₁₃ H ₂₇ OCO	CH ₃	1	meta	-	
C ₁₃ H ₂₇ OCO	CH ₃	1	ortho	+	10
C ₁₃ H ₂₇ OCO	CH ₃	2	ortho/para	- ` `	
C ₁₄ H ₂₉ OCO	CH ₃	1	para para	╡ .	
C ₁₄ H ₂₉ OCO	CH ₃	1	meta		
C ₁₄ H ₂₉ OCO	CH ₃	1	ortho	4	15
		2		_	
C ₁₄ H ₂₉ OCO	CH ₃		ortho/para	4	
C ₁₅ H ₃₁ OCO	CH ₃	1	para	4	
C ₁₅ H ₃₁ OCO	CH ₃	1	meta	↓	20
C ₁₅ H ₃₁ OCO	CH ₃	1	ortho	」	
C ₁₅ H ₃₁ OCO	CH ₃	2	ortho/para	1	
C ₁₆ H ₃₃ OCO	CH ₃	1	para		
C ₁₆ H ₃₃ OCO	CH ₃	1	meta		25
C ₁₆ H ₃₃ OCO	CH ₃	1	ortho	<u> </u>	
C ₁₆ H ₃₃ OCO	CH ₃	2	ortho/para	_	
C ₁₇ H ₃₅ OCO	CH ₃	1	para		
C ₁₇ H ₃₅ OCO	CH ₃	1	meta		30
C ₁₇ H ₃₅ OCO	CH ₃	1	ortho		
C ₁₇ H ₃₅ OCO	CH ₃	2	ortho/para		
C ₁₈ H ₃₇ OCO	CH ₃	1	para]	
C ₁₈ H ₃₇ OCO	CH ₃	1	meta		35
C ₁₈ H ₃₇ OCO	CH ₃	1	ortho]	
C ₁₈ H ₃₇ OCO	CH ₃	2	ortho/para]	
C ₃ H ₇ OCO	C ₂ H ₅	1	para		
C ₃ H ₇ OCO	C ₂ H ₅	1	meta		40
C ₃ H ₇ OCO	C ₂ H ₅	1	ortho		
C ₃ H ₇ OCO	C ₂ H ₅	2	ortho/para]	
C ₄ H ₉ OCO	C ₂ H ₅	1	para		
C ₄ H ₉ OCO	C ₂ H ₅	1	meta		45
C ₄ H ₉ OCO ·	C2115	1	ortho		
C ₄ H ₉ OCO	C ₂ H ₅	2	ortho/para		
C5H11OCO ·	C ₂ H ₅	1	para		
C5H11OCO	C ₂ H ₅	1	meta		50
C ₅ H ₁₁ OCO	C ₂ H ₅	1	ortho		
C5H11OCO	C ₂ H ₅	2	ortho/para		
C ₆ H ₁₃ OCO	C ₂ H ₅	1	para	1	
C ₆ H ₁₃ OCO	C ₂ H ₅	1	meta	1	55
C ₆ H ₁₃ OCO	C ₂ H ₅	1	ortho	1	
C ₆ H ₁₃ OCO	C ₂ H ₅	2	ortho/para	1	
C ₈ H ₁₇ OCO	C ₂ H ₅	1	para	1	
C ₈ H ₁₇ OCO	C ₂ H ₅	1	meta	1	60
C ₈ H ₁₇ OCO	C ₂ H ₅	1	ortho	1	
C ₈ H ₁₇ OCO	C ₂ H ₅	2	ortho/para	1	
C ₁₂ H ₂₅ OCO	C ₂ H ₅	1	para		
C ₁₂ H ₂₅ OCO	C ₂ H ₅	1	meta	1	65
C ₁₂ H ₂₅ OCO	C ₂ H ₅	1	ortho	1	
-1223-00			102000	1	

1	Х	R ⁵	n	Position
	C ₁₂ H ₂₅ OCO	C ₂ H ₅	2	ortho/para
5	C ₁₃ H ₂₇ OCO	C ₂ H ₅	1	para
	C ₁₃ H ₂₇ OCO	C ₂ H ₅	1	meta
i	C ₁₃ H ₂₇ OCO	C ₂ H ₅	1	ortho
	C ₁₃ H ₂₇ OCO	C ₂ H ₅	2	ortho/para
10	C ₁₄ H ₂₉ OCO	C ₂ H ₅	1	para
	C ₁₄ H ₂₉ OCO	C ₂ H ₅	1	meta
	C ₁₄ H ₂₉ OCO	C ₂ H ₅	1	ortho
1	C ₁₄ H ₂₉ OCO	C ₂ H ₅	2	ortho/para
15	C ₁₅ H ₃₁ OCO	C ₂ H ₅	1	para
	C ₁₅ H ₃₁ OCO	C ₂ H ₅	1	meta
	C ₁₅ H ₃₁ OCO	C ₂ H ₅	1	ortho
	C ₁₅ H ₃₁ OCO	C ₂ H ₅	2	ortho/para
20	C ₁₆ H ₃₃ OCO	C ₂ H ₅	1	para
	C ₁₆ H ₃₃ OCO	C ₂ H ₅	1	meta
	C ₁₆ H ₃₃ OCO	C ₂ H ₅	1	ortho
	C ₁₆ H ₃₃ OCO	C ₂ H ₅	2	ortho/para
25	C ₁₇ H ₃₅ OCO	C ₂ H ₅	1	para
	C ₁₇ H ₃₅ OCO	C ₂ H ₅	1	meta
	C ₁₇ H ₃₅ OCO	C ₂ H ₅	1	ortho
	C ₁₇ H ₃₅ OCO	C ₂ H ₅	2	ortho/para
30	C ₁₈ H ₃₇ OCO	C ₂ H ₅	1	para
	C ₁₈ H ₃₇ OCO	C ₂ H ₅	1	meta
	C ₁₈ H ₃₇ OCO	C ₂ H ₅	1	ortho
35	C ₁₈ H ₃₇ OCO	C ₂ H ₅	2	ortho/para
33	C ₃ H ₇ OCO	C ₃ H ₇	1	para
	C ₃ H ₇ OCO	C ₃ H ₇	1	meta
	C ₃ H ₇ OCO	C ₃ H ₇	1	ortho
40	C ₃ H ₇ OCO	C ₃ H ₇	2	ortho/para
	C ₄ H ₉ OCO	C ₃ H ₇	1	para
	C ₄ H ₉ OCO	C ₃ H ₇	1	meta
	C ₄ H ₉ OCO	C ₃ H ₇	1	ortho
45	C ₄ H ₉ OCO	C ₃ H ₇	2	ortho/para
	C5H11OCO	C ₃ H ₇	1	para
	C ₅ H ₁₁ OCO	C ₃ H ₇	1	meta
	C ₅ H ₁₁ OCO	C ₃ H ₇	1	ortho
50	C ₅ H ₁₁ OCO	C ₃ H ₇	2	ortho/para
	C ₆ H ₁₃ OCO	C ₃ H ₇	1 .	para
	C ₆ H ₁₃ OCO	C ₃ H ₇	1	meta
	C ₆ H ₁₃ OCO	C ₃ H ₇	1	ortho
55	C ₆ H ₁₃ OCO	C ₃ H ₇	2	ortho/para
	C ₈ H ₁₇ OCO	C ₃ H ₇	1	para
	C ₈ H ₁₇ OCO	C ₃ H ₇	1	meta
	C ₈ H ₁₇ OCO	C ₃ H ₇	1	ortho
60	C ₈ H ₁₇ OCO	C ₃ H ₇	2	ortho/para
	C ₁₂ H ₂₅ OCO	C ₃ H ₇	1	para
	C ₁₂ H ₂₅ OCO	C ₃ H ₇	1	meta
	C ₁₂ H ₂₅ OCO	C ₃ H ₇	1	ortho
65	C ₁₂ H ₂₅ OCO	C ₃ H ₇	2	ortho/para
	C ₁₃ H ₂₇ OCO	C ₃ H ₇	1	para

			Dordadon
Х	R ⁵	n	Position
GVOCO	C ₃ H ₇	1	meta
C ₁₃ H ₂₇ OCO	C ₃ H ₇	1	ortho
C ₁₃ H ₂₇ OCO	C ₃ H ₇	2	ortho/para
C ₁₃ H ₂₇ OCO		1	para
C ₁₄ H ₂₉ OCO	C ₃ H ₇	1	meta
C ₁₄ H ₂₉ OCO	C ₃ H ₇	1	ortho
C ₁₄ H ₂₉ OCO	C ₃ H ₇	2	ortho/para
C ₁₄ H ₂₉ OCO	C ₃ H ₇		
C ₁₅ H ₃₁ OCO	C ₃ H ₇	1	para
C ₁₅ H ₃₁ OCO	C ₃ H ₇	1	meta
C ₁₅ H ₃₁ OCO	C ₃ H ₇	1	ortho
C ₁₅ H ₃₁ OCO	C ₃ H ₇	2	ortho/para
C ₁₆ H ₃₃ OCO	C ₃ H ₇	1	para
C ₁₆ H ₃₃ OCO	C ₃ H ₇	1	meta
C ₁₆ H ₃₃ OCO	C₃H ₇	1	ortho
C ₁₆ H ₃₃ OCO	C ₃ H ₇	2	ortho/para
C ₁₇ H ₃₅ OCO	C ₃ H ₇	1	para
C ₁₇ H ₃₅ OCO	C ₃ H ₇	1	meta
C ₁₇ H ₃₅ OCO	C ₃ H ₇	1	ortho
C ₁₇ H ₃₅ OCO	C ₃ H ₇	2	ortho/para
C ₁₈ H ₃₇ OCO	C ₃ H ₇	1	para
C ₁₈ H ₃₇ OCO	C ₃ H ₇	1	meta
C ₁₈ H ₃₇ OCO	C ₃ H ₇	1	ortho
C ₁₈ H ₃₇ OCO	C ₃ H ₇	2	ortho/para
C ₃ H ₇ OCO	C ₄ H ₉	1	para
C ₃ H ₇ OCO	C ₄ H ₉	1	meta
C ₃ H ₇ OCO	C ₄ H ₉	1	ortho
C ₃ H ₇ OCO	C ₄ H ₉	2	ortho/para
C ₄ H ₉ OCO	C ₄ H ₉	1	para
C ₄ H ₉ OCO	C ₄ H ₉	1	meta
C ₄ H ₉ OCO	C ₄ H ₉	1	ortho
C ₄ H ₉ OCO	C ₄ H ₉	2	ortho/para
C ₅ H ₁₁ OCO .	C ₄ H ₉	1	para
C5H110CO	C ₄ H ₉	1	meta
C ₅ H ₁₁ OCO	C ₄ H ₉	1	ortho
C ₅ H ₁₁ OCO	C ₄ H ₉	2	ortho/para
C ₆ H ₁₃ OCO	C ₄ H ₉	1	para
C ₆ H ₁₃ OCO	C ₄ H ₉	1	meta
C ₆ H ₁₃ OCO	C ₄ H ₉	1	ortho
C ₆ H ₁₃ OCO	C ₄ H ₉	2	ortho/para
C ₈ H ₁₇ OCO	C ₄ H ₉	1	para
C ₈ H ₁₇ OCO	C ₄ H ₉	1	meta
C ₈ H ₁₇ OCO	C ₄ H ₉	1	ortho
C ₈ H ₁₇ OCO	C ₄ H ₉	2	ortho/para
C ₁₂ H ₂₅ OCO	C ₄ H ₉	1	para
C ₁₂ H ₂₅ OCO	C ₄ H ₉	1	meta
C ₁₂ H ₂₅ OCO	C ₄ H ₉	1	ortho
C ₁₂ H ₂₅ OCO	C ₄ H ₉	2	ortho/para
C ₁₃ H ₂₇ OCO	C ₄ H ₉	1	para
C ₁₃ H ₂₇ OCO	C ₄ H ₉	1	meta
C ₁₃ H ₂₇ OCO	C ₄ H ₉	1	ortho

	x	R ⁵	n	Position
į	^			
	C ₁₃ H ₂₇ OCO	C ₄ H ₉	2	ortho/para
5	C ₁₄ H ₂₉ OCO	C ₄ H ₉	1	para
	C ₁₄ H ₂₉ OCO	C ₄ H ₉	1	meta
	C ₁₄ H ₂₉ OCO	C ₄ H ₉	1	ortho
	C ₁₄ H ₂₉ OCO	C ₄ H ₉	2	ortho/para
10	C ₁₅ H ₃₁ OCO	C ₄ H ₉	1	para
	C ₁₅ H ₃₁ OCO	C ₄ H ₉	1	meta
	C ₁₅ H ₃₁ OCO	C ₄ H ₉	1	ortho
	C ₁₅ H ₃₁ OCO	C ₄ H ₉	2	ortho/para
15	C ₁₆ H ₃₃ OCO	C ₄ H ₉	1	para
	C ₁₆ H ₃₃ OCO	C ₄ H ₉	1	meta
	C ₁₆ H ₃₃ OCO	C ₄ H ₉	1	ortho
20	C ₁₆ H ₃₃ OCO	C ₄ H ₉	2	ortho/para
20	C ₁₇ H ₃₅ OCO	C ₄ H ₉	1	para
	C ₁₇ H ₃₅ OCO	C ₄ H ₉	1	meta
	C ₁₇ H ₃₅ OCO	C ₄ H ₉	1	ortho
25	C ₁₇ H ₃₅ OCO	C ₄ H ₉	2	ortho/para
23	C ₁₈ H ₃₇ OCO	C ₄ H ₉	1	para
	C ₁₈ H ₃₇ OCO	C ₄ H ₉	1	meta
	C ₁₈ H ₃₇ OCO	C ₄ H ₉	1	ortho
30	C ₁₈ H ₃₇ OCO	C ₄ H ₉	2	ortho/para
	C ₃ H ₇ OCO	C ₅ H ₁₁	1	para
	C ₃ H ₇ OCO	C5H11	1	meta
	C ₃ H ₇ OCO	C ₅ H ₁₁	1	ortho
35	C ₃ H ₇ OCO	C5H11	2	ortho/para
	C ₄ H ₉ OCO	C5H11	1	para
	C ₄ H ₉ OCO	C5H11	1	meta
	C ₄ H ₉ OCO	C5H11	.1	ortho
40 .	C ₄ H ₉ OCO	C5H11	2	ortho/para
	C5H11OCO	C5H11	1	para
	C5H11OCO	C ₅ H ₁₁	1	meta
	C ₅ H ₁₁ OCO	C ₅ H ₁₁	1	ortho
45	C5H11OCO	C ₅ H ₁₁	2	ortho/para
	C ₆ H ₁₃ OCO	C ₅ H ₁₁	1	para
	C ₆ H ₁₃ OCO	C ₅ H ₁₁	1 1	meta ortho
50	C ₆ H ₁₃ OCO	C ₅ H ₁₁	1 2	ortho/para
30	C ₆ H ₁₃ OCO	C ₅ H ₁₁	1	para
	C ₈ H ₁₇ OCO	C ₅ H ₁₁	1	meta
	C ₈ H ₁₇ OCO	C ₅ H ₁₁	1 1	ortho
55	C ₈ H ₁₇ OCO	C ₅ H ₁₁	2	ortho/para
33	C ₈ H ₁₇ OCO	C ₅ H ₁₁	1	para
	C ₁₂ H ₂₅ OCO	C ₅ H ₁₁	1 1	meta
	C ₁₂ H ₂₅ OCO	C ₅ H ₁₁	1	ortho
60	C ₁₂ H ₂₅ OCO	C5H11	2	ortho/para
	C ₁₂ H ₂₅ OCO	C5H11 C5H11	1	para
	C ₁₃ H ₂₇ OCO		1 1	meta
	C ₁₃ H ₂₇ OCO	C5H11	1 1	ortho
65	C ₁₃ H ₂₇ OCO	C5H11	2	ortho/para
	C ₁₃ H ₂₇ OCO	C ₅ H ₁₁ C ₅ H ₁₁	1	para
	C ₁₄ H ₂₉ OCO	C5n11		15

X	R ⁵	n	Position]	
	_		·		
C ₁₄ H ₂₉ OCO	C5H11	1	meta	1	
C ₁₄ H ₂₉ OCO	C5H11	1	ortho	1	. 5
C14H29OCO	C ₅ H ₁₁	2	ortho/para	1	
C ₁₅ H ₃₁ OCO	C5H11	1	para	1	
C ₁₅ H ₃₁ OCO	C ₅ H ₁₁	1	meta	1	
C ₁₅ H ₃₁ OCO	C5H11	1	ortho	1	10
C ₁₅ H ₃₁ OCO	C5H11	2	ortho/para	1	
C ₁₆ H ₃₃ OCO	C5H11	1	para	Ţ.	
C ₁₆ H ₃₃ OCO	C5H11	1	meta	1	
C ₁₆ H ₃₃ OCO	C5H11	1	ortho	1	15
C ₁₆ H ₃₃ OCO	C5H11	2	ortho/para	j	
C ₁₇ H ₃₅ OCO	C5H11	1	para	1	
C ₁₇ H ₃₅ OCO	C5H11	1	meta	†	•••
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁	1	ortho	1	20
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁	2	ortho/para	1	
C ₁₈ H ₃₇ OCO	C5H11	1	para		
C18H37OCO	C ₅ H ₁₁	1	meta		25
C ₁₈ H ₃₇ OCO	C5H11	1	ortho	1	25
C ₁₈ H ₃₇ OCO	C5H11	2	ortho/para	1	
C ₃ H ₇ OCO	C ₆ H ₁₃	1	para	İ	
C3H7OCO	C6H13	1	meta		30
C ₃ H ₇ OCO	C ₆ H ₁₃	1	ortho		-50
C ₃ H ₇ OCO	C ₆ H ₁₃	2	ortho/para		
C4H9OCO	C ₆ H ₁₃	1	para		
C4H9OCO	C ₆ H ₁₃	1	meta		35
C ₄ H ₉ OCO	C ₆ H ₁₃	1	ortho		•••
C4H9OCO	C ₆ H ₁₃	2	ortho/para	ļ	
C5H11OCO	C6H13	1	para		
C5H11OCO	C ₆ H ₁₃	1	meta	ł	40
C5H11OCO	C6H13	1	ortho		
C5H11OCO	C ₆ H ₁₃	2	ortho/para		
C ₆ H ₁₃ OCO	C ₆ H ₁₃	1	para		_
C ₆ H ₁₃ OCO	C ₆ H ₁₃	1	meta	,	45
C ₆ H ₁₃ OCO	C ₆ H ₁₃	1	ortho		
C ₆ H ₁₃ OCO	C6H13	2	ortho/para		
C ₈ H ₁₇ OCO	C ₆ H ₁₃	1	para		
C ₈ H ₁₇ OCO	C ₆ H ₁₃	1	meta		50
C ₈ H ₁₇ OCO	C ₆ H ₁₃	1.	ortho	}	
C ₈ H ₁₇ OCO	C ₆ H ₁₃	_2	ortho/para		
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃	1	para	[
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃	1	meta		55
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃	1	ortho	·	
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃	2	ortho/para		
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃	1	para		
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃	1	meta		60
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃	1	ortho]	
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃	2	ortho/para		
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃	1	para	į	
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃	1	meta		65
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃	1	ortho	j	

	X	R ⁵	n	Position
5	C ₁₄ H ₂₉ OCO	C ₆ H ₁₃	2	ortho/para
-	C ₁₅ H ₃₁ OCO	C ₆ H ₁₃	1	para
	C ₁₅ H ₃₁ OCO	C ₆ H ₁₃	1	meta
	C ₁₅ H ₃₁ OCO	C ₆ H ₁₃	1	ortho
10	C ₁₅ H ₃₁ OCO	C ₆ H ₁₃	2	ortho/para
	C ₁₆ H ₃₃ OCO	C ₆ H ₁₃	1	para
	C ₁₆ H ₃₃ OCO	C ₆ H ₁₃	1	meta
	C ₁₆ H ₃₃ OCO	C ₆ H ₁₃	1	ortho
15	C ₁₆ H ₃₃ OCO	C ₆ H ₁₃	2	ortho/para
	C ₁₇ H ₃₅ OCO	C ₆ H ₁₃	1	para
	C ₁₇ H ₃₅ OCO	C ₆ H ₁₃	1	meta
	C ₁₇ H ₃₅ OCO	C ₆ H ₁₃	1	ortho
20	C ₁₇ H ₃₅ OCO	C ₆ H ₁₃	2	ortho/para
2.,	C ₁₈ H ₃₇ OCO	C ₆ H ₁₃	1	para
	C ₁₈ H ₃₇ OCO	C ₆ H ₁₃	1	meta
	C ₁₈ H ₃₇ OCO	C ₆ H ₁₃	1	ortho
25	C ₁₈ H ₃₇ OCO	C ₆ H ₁₃	2	ortho/para
	C ₃ H ₇ OCO	CH ₃ O	1	para
	C ₃ H ₇ OCO	CH ₃ O	1	meta
	C ₃ H ₇ OCO	CH ₃ O	1	ortho
30	C ₃ H ₇ OCO	CH ₃ O	2	ortho/para
	C ₄ H ₉ OCO	CH ₃ O	1	para
	C ₄ H ₉ OCO	CH ₃ O	1	meta
	C ₄ H ₉ OCO	CH ₃ O	1	ortho
35	C ₄ H ₉ OCO	CH ₃ O	2	ortho/para
	C ₅ H ₁₁ OCO	CH ₃ O	1	para
	C ₅ H ₁₁ OCO	CH ₃ O	1	meta
	C ₅ H ₁₁ OCO	CH ₃ O	1	ortho
40	C ₅ H ₁₁ OCO	CH₃O	2	ortho/para
	C ₆ H ₁₃ OCO	CH ₃ O	1	para
	C ₆ H ₁₃ OCO	CH ₃ O	1	meta
	C ₆ H ₁₃ OCO	CH ₃ O	1	ortho
45	C ₆ H ₁₃ OCO	CH ₃ O	2	ortho/para
	C ₈ H ₁₇ OCO	CH ₃ O	1	para
	C ₈ H ₁₇ OCO	CH ₃ O	1	meta
	C ₈ H ₁₇ OCO	CH ₃ O	1	ortho
50	C ₈ H ₁₇ OCO .	CH3O	2	ortho/para
	C ₁₂ H ₂₅ OCO	CH ₃ O	1	para
•	C ₁₂ H ₂₅ OCO	CH ₃ O	1	meta
	C ₁₂ H ₂₅ OCO	CH ₃ O	1	ortho
55	C ₁₂ H ₂₅ OCO	CH ₃ O	2	ortho/para
	C ₁₃ H ₂₇ OCO	CH ₃ O	1	para
	C ₁₃ H ₂₇ OCO	CH ₃ O	1	meta
	C ₁₃ H ₂₇ OCO	CH ₃ O	1	ortho
60	C ₁₃ H ₂₇ OCO	CH ₃ O	2	ortho/para
	C ₁₄ H ₂₉ OCO	CH ₃ O	1	para
	C ₁₄ H ₂₉ OCO	CH ₃ O	1	meta
	C ₁₄ H ₂₉ OCO	CH ₃ O	1	ortho
65	C ₁₄ H ₂₉ OCO	CH ₃ O	2	ortho/para
	C ₁₅ H ₃₁ OCO	CH ₃ O	1	para

			Position		
X	R ⁵	n	Posicion		
C ₁₅ H ₃₁ OCO	CH ₃ O	1	meta		5
C ₁₅ H ₃₁ OCO	CH ₃ O	1	ortho		,
C ₁₅ H ₃ 10CO	CH ₃ O	2	ortho/para		
C ₁₆ H ₃₃ OCO	CH ₃ O	1	para		
C ₁₆ H ₃ 3OCO	CH ₃ O	1	meta		10
C ₁₆ H ₃₃ OCO	CH ₃ O	1	ortho		
C ₁₆ H ₃₃ OCO	CH ₃ O	2	ortho/para	ı.	
C ₁₇ H ₃₅ OCO	CH ₃ O	1	para		
C ₁₇ H ₃₅ OCO	CH ₃ O	1	meta	•	15
C ₁₇ H ₃₅ OCO	CH ₃ O	1	ortho		
C ₁₇ H ₃₅ OCO	CH ₃ O	2	ortho/para		
C ₁₈ H ₃₇ OCO	CH ₃ O	1	para		
C ₁₈ H ₃₇ OCO	CH ₃ O	1	meta		20
C ₁₈ H ₃₇ OCO	CH ₃ O	1	ortho	}	
C ₁₈ H ₃₇ OCO	CH ₃ O	2	ortho/para		
C ₁₈ H ₃ 7OCO	C ₂ H ₅ O	1	para		
C ₃ H ₇ OCO	C ₂ H ₅ O	1	meta		25
	C ₂ H ₅ O	1	ortho		
C ₃ H ₇ OCO	C ₂ H ₅ O	2	ortho/para]	
C ₃ H ₇ OCO C ₄ H ₉ OCO	C ₂ H ₅ O	1	para]	
C ₄ H ₉ OCO	C ₂ H ₅ O	1	meta		30
C ₄ H ₉ OCO	C ₂ H ₅ O	1	ortho		
C ₄ H ₉ OCO	C ₂ H ₅ O	2	ortho/para]	
C ₅ H ₁₁ OCO	C ₂ H ₅ O	1	para]	
C5H110CO	C ₂ H ₅ O	1	meta]	35
C5H110CO	C ₂ H ₅ O	1	ortho		
C5H110C0	C ₂ H ₅ O	2	ortho/para	1	
C ₆ H ₁₃ OCO	C ₂ H ₅ O	1	para	_	
C ₆ H ₁₃ OCO	C ₂ H ₅ O	1	meta	_	40
C ₆ H ₁₃ OCO	C ₂ H ₅ O	1	ortho	_	
C ₆ H ₁₃ OCO	C ₂ H ₅ O	2	ortho/para	4	
C ₈ H ₁₇ OCO	C ₂ H ₅ O	1	para		
C _B H ₁₇ OCO	C ₂ H ₅ O	1	meta	-	45
C ₈ H ₁₇ OCO	C ₂ H ₅ O	1	ortho	-	
C ₈ H ₁₇ OCO	C ₂ H ₅ O	2	ortho/para		
C ₁₂ H ₂₅ OCO	C ₂ H ₅ O	1	para		. 50
C ₁₂ H ₂₅ OCO	C ₂ H ₅ O	1	meta	-	30
C ₁₂ H ₂₅ OCO	C ₂ H ₅ O	1	ortho	4	
C ₁₂ H ₂₅ OCO	C ₂ H ₅ O	2	ortho/para		
C ₁₃ H ₂₇ OCO	C ₂ H ₅ O	1	para	-	55
C ₁₃ H ₂₇ OCO	C ₂ H ₅ O	1	meta	-	-
C ₁₃ H ₂₇ OCO	C ₂ H ₅ O	1	ortho		
C ₁₃ H ₂₇ OCO	C ₂ H ₅ O	2	ortho/para	{	
C ₁₄ H ₂₉ OCO	C ₂ H ₅ O	1	para		60
C14H29OCO	C ₂ H ₅ O	1	meta		
C ₁₄ H ₂₉ OCO	C ₂ H ₅ O	1_1_	ortho	-	
C ₁₄ H ₂₉ OCO	C ₂ H ₅ O	2	ortho/para	_	
C ₁₅ H ₃₁ OCO	C ₂ H ₅ O	1	para	-	65
C ₁₅ H ₃₁ OCO	C ₂ H ₅ O	1	meta		32
C ₁₅ H ₃₁ OCO	C ₂ H ₅ O	1	ortho		

1	X	R ⁵	n	Position
	•			
5	C ₁₅ H ₃₁ OCO	C ₂ H ₅ O	2	ortho/para
,	C ₁₆ H ₃₃ OCO	C ₂ H ₅ O	1	para
	C ₁₆ H ₃₃ OCO	C ₂ H ₅ O	1	meta
	C ₁₆ H ₃₃ OCO	C ₂ H ₅ O	1	ortho
10	C ₁₆ H ₃₃ OCO	C ₂ H ₅ O	2	ortho/para
10	C ₁₇ H ₃₅ OCO	C ₂ H ₅ O	1	para
	C ₁₇ H ₃₅ OCO	C ₂ H ₅ O	1	meta
	C ₁₇ H ₃₅ OCO	C ₂ H ₅ O	1	ortho
15	C ₁₇ H ₃₅ OCO	C ₂ H ₅ O	2	ortho/para
15	C ₁₈ H ₃₇ OCO	C ₂ H ₅ O	1	para
	C ₁₈ H ₃₇ OCO	C ₂ H ₅ O	1	meta
	C ₁₈ H ₃₇ OCO	C ₂ H ₅ O	1	ortho
20	C ₁₈ H ₃₇ OCO	C ₂ H ₅ O	2	ortho/para
247	C ₃ H ₇ OCO	C ₃ H ₇ O	1	para
	C ₃ H ₇ OCO	C ₃ H ₇ O	1	meta
	C ₃ H ₇ OCO	C ₃ H ₇ O	1	ortho
25	C ₃ H ₇ OCO	C ₃ H ₇ O	2	ortho/para
	C ₄ H ₉ OCO	C ₃ H ₇ O	1	para
	C ₄ H ₉ OCO	C ₃ H ₇ O	1	meta
	C ₄ H ₉ OCO	C ₃ H ₇ O	1	ortho
30	C ₄ H ₉ OCO	C ₃ H ₇ O	2	ortho/para
	C ₅ H ₁₁ OCO	C ₃ H ₇ O	1	para
	C5H110C0	C ₃ H ₇ O	1	meta
	C ₅ H ₁₁ OCO	C ₃ H ₇ O	1	ortho
35	C ₅ H ₁₁ OCO	C ₃ H ₇ O	2	ortho/para
	C ₆ H ₁₃ OCO	C ₃ H ₇ O	1	para
	C ₆ H ₁₃ OCO	C ₃ H ₇ O	1	meta
	C ₆ H ₁₃ OCO	C ₃ H ₇ O	1	ortho
40	C ₆ H ₁₃ OCO	C ₃ H ₇ O	2	ortho/para
	C ₈ H ₁₇ OCO	C ₃ H ₇ O	1	para
	C ₈ H ₁₇ OCO	C ₃ H ₇ O	1	meta
	C ₈ H ₁₇ OCO	C ₃ H ₇ O	1	ortho
45	C ₈ H ₁₇ OCO	C ₃ H ₇ O	2	ortho/para
	C ₁₂ H ₂₅ OCO	C3H7O	1	para
	C ₁₂ H ₂₅ OCO	C ₃ H ₇ O	1	meta
	C ₁₂ H ₂₅ OCO	C ₃ H ₇ O	1	ortho
50	C ₁₂ H ₂₅ OCO	C ₃ H ₇ O	2	ortho/para
	C ₁₃ H ₂₇ OCO	C ₃ H ₇ O	1	para
	C ₁₃ H ₂₇ OCO_	C ₃ H ₇ O	1	meta
	C ₁₃ H ₂₇ OCO	C ₃ H ₇ O	1	ortho
55	C ₁₃ H ₂₇ OCO	C ₃ H ₇ O	2	ortho/para
	C ₁₄ H ₂₉ OCO	C ₃ H ₇ O	1	para
	C ₁₄ H ₂₉ OCO	C ₃ H ₇ O	1	meta
	C ₁₄ H ₂₉ OCO	C ₃ H ₇ O	1	ortho
60	C ₁₄ H ₂₉ OCO	C ₃ H ₇ O	2	ortho/para
	C ₁₅ H ₃₁ OCO	C ₃ H ₇ O	1	para
	C ₁₅ H ₃₁ OCO	C ₃ H ₇ O	1	meta
	C ₁₅ H ₃₁ OCO	C ₃ H ₇ O	1	ortho
65	C ₁₅ H ₃₁ OCO	C ₃ H ₇ O	2	ortho/para
	C ₁₆ H ₃₃ OCO	C ₃ H ₇ O	1	para

	1		The eleter		
X	R ⁵	n	Position		
C ₁₆ H ₃₃ OCO	C ₃ H ₇ O	1	meta		
C ₁₆ H ₃₃ OCO	C ₃ H ₇ O	1	ortho		5
C ₁₆ H ₃₃ OCO	C ₃ H ₇ O	2	ortho/para		
C ₁₇ H ₃₅ OCO	C ₃ H ₇ O	1	para		
C ₁₇ H ₃₅ OCO	C ₃ H ₇ O	1	meta		
C ₁₇ H ₃₅ OCO	C ₃ H ₇ O	1	ortho		10
C ₁₇ H ₃₅ OCO	C ₃ H ₇ O	2	ortho/para		
C ₁₈ H ₃₇ OCO	C ₃ H ₇ O	1	para		
C ₁₈ H ₃₇ OCO	C ₃ H ₇ O	1	meta		
C ₁₈ H ₃₇ OCO	C ₃ H ₇ O	1	ortho		15
C ₁₈ H ₃₇ OCO	C ₃ H ₇ O	2	ortho/para		
C ₃ H ₇ OCO	C ₄ H ₉ O	1	para		
C ₃ H ₇ OCO	C ₄ H ₉ O	1	meta		-
C ₃ H ₇ OCO	C ₄ H ₉ O	1	ortho		20
	C ₄ H ₉ O	2	ortho/para		
C ₃ H ₇ OCO	C ₄ H ₉ O	1	para		
C ₄ H ₉ OCO	C ₄ H ₉ O	1	meta		45
C ₄ H ₉ OCO	C ₄ H ₉ O	1	ortho		25
C ₄ H ₉ OCO	C ₄ H ₉ O	2	ortho/para		
C ₄ H ₉ OCO		1	para		
C ₅ H ₁₁ OCO	C ₄ H ₉ O	1	meta		20
C ₅ H ₁₁ OCO	C ₄ H ₉ O .	1	ortho		30
C5H110C0		2	ortho/para		
C ₅ H ₁₁ OCO	C ₄ H ₉ O	1	para		
C ₆ H ₁₃ OCO	C ₄ H ₉ O C ₄ H ₉ O	1	meta		35
C ₆ H ₁₃ OCO	C ₄ H ₉ O	1	ortho	ł	33
C ₆ H ₁₃ OCO	C ₄ H ₉ O	2	ortho/para		
C ₆ H ₁₃ OCO	C ₄ H ₉ O	1	para		
C ₈ H ₁₇ OCO C ₈ H ₁₇ OCO	C4H9O	1	meta		40
C ₈ H ₁₇ OCO	C ₄ H ₉ O	1	ortho		
C ₈ H ₁₇ OCO	C ₄ H ₉ O	2	ortho/para		
C ₁₂ H ₂₅ OCO	C ₄ H ₉ O	1	para		
C ₁₂ H ₂₅ OCO	C ₄ H ₉ O	1	meta	1	45
C ₁₂ H ₂₅ OCO	C ₄ H ₉ O	1	ortho		
C ₁₂ H ₂₅ OCO	C ₄ H ₉ O	2	ortho/para		
C ₁₃ H ₂₇ OCO	C ₄ H ₉ O	1	para		
C ₁₃ H ₂₇ OCO	C ₄ H ₉ O	1	meta		50
C ₁₃ H ₂₇ OCO	C ₄ H ₉ O	1	ortho		
-C ₁₃ H ₂₇ OCO	C ₄ H ₉ O	2	ortho/para		
C ₁₄ H ₂₉ OCO	C ₄ H ₉ O	1	para	1	
C ₁₄ H ₂₉ OCO	C ₄ H ₉ O	1	meta	1	55
C ₁₄ H ₂₉ OCO	C ₄ H ₉ O	1	ortho		
C ₁₄ H ₂₉ OCO	C ₄ H ₉ O	2	ortho/para	1	
C ₁₅ H ₃₁ OCO	C ₄ H ₉ O	1	para	1	
C ₁₅ H ₃₁ OCO	C ₄ H ₉ O	1	meta	1	60
C ₁₅ H ₃₁ OCO	C ₄ H ₉ O	1	ortho	†	
	C ₄ H ₉ O	2	ortho/para	1	
C ₁₅ H ₃₁ OCO	C ₄ H ₉ O	1	para	1	
C ₁₆ H ₃₃ OCO	C ₄ H ₉ O	1	meta	1	65
C ₁₆ H ₃₃ OCO		1	ortho	†	
C ₁₆ H ₃₃ OCO	C ₄ H ₉ O		101010		

1	X	R ⁵	n	Position
	^			
_	C ₁₆ H ₃₃ OCO	C ₄ H ₉ O	2	ortho/para
5	C ₁₇ H ₃₅ OCO	C ₄ H ₉ O	1	para
	C ₁₇ H ₃₅ OCO	C ₄ H ₉ O	1	meta
	C ₁₇ H ₃₅ OCO	C ₄ H ₉ O	1	ortho
	C ₁₇ H ₃₅ OCO	C ₄ H ₉ O	2	ortho/para
10	C ₁₈ H ₃₇ OCO	C ₄ H ₉ O	1	para
	C ₁₈ H ₃₇ OCO	C ₄ H ₉ O	1	meta
	C ₁₈ H ₃₇ OCO	C ₄ H ₉ O	1	ortho
15	C ₁₈ H ₃₇ OCO	C ₄ H ₉ O	2	ortho/para
13	C ₃ H ₇ OCO	C5H11O	1	para
	C ₃ H ₇ OCO	C5H11O	1	meta
	C ₃ H ₇ OCO	C5H11O	1	ortho
20	C ₃ H ₇ OCO	C5H11O	2	ortho/para
247	C ₄ H ₉ OCO	C ₅ H ₁₁ O	1	para
	G ₄ H ₉ OCO	_ C5H11O	11.	meta
	C ₄ H ₉ OCO	C5H11O	1	ortho
25	C ₄ H ₉ OCO	C5H11O	2	ortho/para
	C ₅ H ₁₁ OCO	C5H11O	1	para
	C ₅ H ₁₁ OCO	C5H11O	1	meta
	C ₅ H ₁₁ OCO	C5H11O	1	ortho
30	C ₅ H ₁₁ OCO	C5H11O	2	ortho/para
	C ₆ H ₁₃ OCO	C ₅ H ₁₁ O	1	para
	C ₆ H ₁₃ OCO	C ₅ H ₁₁ O	1	meta
	C ₆ H ₁₃ OCO	C ₅ H ₁₁ O	1	ortho
35	C ₆ H ₁₃ OCO	C ₅ H ₁₁ O	2	ortho/para
	C ₈ H ₁₇ OCO	C ₅ H ₁₁ O	1	para
	C ₈ H ₁₇ OCO	C ₅ H ₁₁ O	1	meta
	C ₈ H ₁₇ OCO	C5H11O	1	ortho ortho/para
40	C ₈ H ₁₇ OCO	C ₅ H ₁₁ O	2	
	C ₁₂ H ₂₅ OCO	C ₅ H ₁₁ O	1	para meta
	C ₁₂ H ₂₅ OCO	C ₅ H ₁₁ O	1 1	ortho
	C ₁₂ H ₂₅ OCO	C ₅ H ₁₁ O	2	ortho/para
45	C ₁₂ H ₂₅ OCO	C ₅ H ₁₁ O	1	para
	C ₁₃ H ₂₇ OCO	C ₅ H ₁₁ O C ₅ H ₁₁ O	+ 1	meta
	C ₁₃ H ₂₇ OCO	C ₅ H ₁₁ O	+ 1	ortho
50	C ₁₃ H ₂₇ OCO	C5H11O	1 2	ortho/para
-	C13H27OCO	C ₅ H ₁₁ O	1 1	para
	C ₁₄ H ₂₉ OCO	C ₅ H ₁₁ O		meta
	C ₁₄ H ₂₉ OCO	C ₅ H ₁₁ O		ortho
55	C ₁₄ H ₂₉ OCO	C ₅ H ₁₁ O		ortho/para
	C ₁₄ H ₂₉ OCO C ₁₅ H ₃₁ OCO	C ₅ H ₁₁ O		para
	C ₁₅ H ₃₁ OCO	C ₅ H ₁₁ O		meta
	C ₁₅ H ₃₁ OCO	C ₅ H ₁₁ O		ortho
60	C ₁₅ H ₃₁ OCO	C ₅ H ₁₁ O		ortho/para
	C ₁₆ H ₃₃ OCO	C ₅ H ₁₁ O		para
	C ₁₆ H ₃₃ OCO	C ₅ H ₁₁ O		meta
	C ₁₆ H ₃₃ OCO	C5H11C		ortho
65	C ₁₆ H ₃₃ OCO	C ₅ H ₁₁ C		ortho/para
	C ₁₇ H ₃₅ OCO	C ₅ H ₁₁ C		para
	C17h35000			

15 -

			To add to a
X	R ⁵	n	Position
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁ O	1	meta
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁ O		ortho
C ₁₇ H ₃₅ OCO	C ₅ H ₁₁ O	2	ortho/para
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁ O	1	para
C ₁₈ H ₃₇ OCO	C5H11O	1	meta
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁ O	1	ortho
C ₁₈ H ₃₇ OCO	C ₅ H ₁₁ O	2	ortho/para
C ₃ H ₇ OCO	C ₆ H ₁₃ O	1	para
C ₃ H ₇ OCO	C ₆ H ₁₃ O	1	meta
C ₃ H ₇ OCO	C ₆ H ₁₃ O	1	ortho
C ₃ H ₇ OCO	C ₆ H ₁₃ O	2	ortho/para
C ₄ H ₉ OCO	C ₆ H ₁₃ O	1	para
C ₄ H ₉ OCO	C ₆ H ₁₃ O	1	meta
C ₄ H ₉ OCO	C ₆ H ₁₃ O	1	ortho
C ₄ H ₉ OCO	C ₆ H ₁₃ O	2	ortho/para
C ₅ H ₁ 10C0	C ₆ H ₁₃ O	1	para
C ₅ H ₁₁ OCO	C ₆ H ₁₃ O	1	meta
C ₅ H ₁ 10C0	C ₆ H ₁₃ O	1	ortho
C ₅ H ₁ 10C0	C ₆ H ₁₃ O	2	ortho/para
	C ₆ H ₁₃ O	1	para
C ₆ H ₁₃ OCO	C ₆ H ₁₃ O	1	meta
C ₆ H ₁₃ OCO	C ₆ H ₁₃ O	1	ortho
C ₆ H ₁₃ OCO	C ₆ H ₁₃ O	2	ortho/para
C ₆ H ₁₃ OCO	C ₆ H ₁₃ O	1	para
C ₈ H ₁₇ OCO	C ₆ H ₁₃ O	1	meta
C ₈ H ₁₇ OCO	C ₆ H ₁₃ O	1	ortho
C ₈ H ₁₇ OCO	C ₆ H ₁₃ O	2	ortho/para
C ₈ H ₁₇ OCO	C ₆ H ₁₃ O	1	para
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃ O	1	meta
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃ O	1	ortho
C ₁₂ H ₂ 5OCO	C ₆ H ₁₃ O	2	ortho/para
C ₁₂ H ₂₅ OCO	C ₆ H ₁₃ O	1	para
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃ O	1	meta
C13H27OCO	C ₆ H ₁₃ O	1	ortho
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃ O	2	ortho/para
C ₁₃ H ₂₇ OCO	C ₆ H ₁₃ O	1	para
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃ O	1	meta
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃ O	1	ortho
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃ O	2	ortho/para
C ₁₄ H ₂₉ OCO	C ₆ H ₁₃ O	1	para
C ₁₅ H ₃₁ OCO	C ₆ H ₁₃ O	1.	meta
C ₁₅ H ₃₁ OCO	C ₆ H ₁₃ O	1	ortho
C ₁₅ H ₃₁ OCO	C ₆ H ₁₃ O	1 2	ortho/para
C ₁₅ H ₃₁ OCO	C ₆ H ₁₃ O	1 1	para
C ₁₆ H ₃₃ OCO		1 1	meta
C ₁₆ H ₃₃ OCO	C ₆ H ₁₃ O	1	ortho
C ₁₆ H ₃₃ OCO	C ₆ H ₁₃ O	1 2	ortho/para
C ₁₆ H ₃₃ OCO	C ₆ H ₁₃ O		para
C ₁₇ H ₃₅ OCO	C ₆ H ₁₃ O	1	
C ₁₇ H ₃₅ OCO	C ₆ H ₁₃ O	1 1	meta
C ₁₇ H ₃₅ OCO	C ₆ H ₁₃ O	1	ortho

1	Х	R ⁵	n	Position
	Λ			
_	C ₁₇ H ₃₅ OCO	C ₆ H ₁₃ O	2	ortho/para
5	C ₁₈ H ₃₇ OCO	C ₆ H ₁₃ O	1	para
	C ₁₈ H ₃₇ OCO	C ₆ H ₁₃ O	1	meta
	C ₁₈ H ₃₇ OCO	C ₆ H ₁₃ O	1	ortho
••	C ₁₈ H ₃₇ OCO	C ₆ H ₁₃ O	2	ortho/para
10	C ₃ H ₇ OCO	C7H15O	1	para
	C ₃ H ₇ OCO	C7H15O	1	meta
	C ₃ H ₇ OCO	C ₇ H ₁₅ O	1	ortho
15	C ₃ H ₇ OCO	C7H15O	2	ortho/para
13	C ₄ H ₉ OCO	C7H15O	1	para
	C ₄ H ₉ OCO	C7H15O	1	meta
	C ₄ H ₉ OCO	C ₇ H ₁₅ O	1	ortho
21)	C ₄ H ₉ OCO	C7H15O	2	ortho/para
ω,	C ₅ H ₁₁ OCO	C7H15O	1	para
	C ₅ H ₁₁ OCO	C7H15O	1	meta
	C ₅ H ₁₁ OCO	C ₇ H ₁₅ O	1	ortho
25	C ₅ H ₁₁ OCO	C7H15O	2	ortho/para
	C ₆ H ₁₃ OCO	C7H15O	1	para
	C ₆ H ₁₃ OCO	C7H15O	1	meta
	C ₆ H ₁₃ OCO	C7H15O	1	ortho
30	C6H13OCO	C7H15O	2	ortho/para
	C ₈ H ₁₇ OCO	C7H15O	1	para
	C ₈ H ₁₇ OCO	C7H15O	1	meta
	C _B H ₁₇ OCO	C ₇ H ₁₅ O	1	ortho
35	C ₈ H ₁₇ OCO	C ₇ H ₁₅ O	2	ortho/para
	C ₁₂ H ₂₅ OCO	C7H15O	1	para
	C ₁₂ H ₂₅ OCO	C ₇ H ₁₅ O	1	meta
	C ₁₂ H ₂₅ OCO	C7H15O	1	ortho
40	C ₁₂ H ₂₅ OCO	C7H15O	2	ortho/para
	C ₁₃ H ₂₇ OCO	C7H15O	1	para
	C ₁₃ H ₂₇ OCO	C ₇ H ₁₅ O	1	meta
	C ₁₃ H ₂₇ OCO	C ₇ H ₁₅ O	2	ortho ortho/para
45	C ₁₃ H ₂₇ OCO	C7H15O	1	para
	C ₁₄ H ₂₉ OCO	C ₇ H ₁₅ O	1	meta
	C ₁₄ H ₂₉ OCO	C ₇ H ₁₅ O C ₇ H ₁₅ O	1	ortho
50	C ₁₄ H ₂₉ OCO	C7H15O	2	ortho/para
50	C ₁₄ H ₂₉ OCO	C7H15O	1	para
	C ₁₅ H ₃₁ OCO	C7H15O	1	meta
	C ₁₅ H ₃₁ OCO	C7H15O	1	ortho
55	C ₁₅ H ₃₁ OCO	C7H15O	2	ortho/para
	C ₁₅ H ₃₁ OCO	C7H15O	1.	para
	C ₁₆ H ₃₃ OCO	C7H15O	1	meta
	C ₁₆ H ₃₃ OCO C ₁₆ H ₃₃ OCO	C7H15O	1	ortho
60	C ₁₆ H ₃₃ OCO	C ₇ H ₁₅ O	2	ortho/para
	C ₁₇ H ₃₅ OCO	C7H15O	1	para
	C ₁₇ H ₃₅ OCO	C7H15O	1 -	meta
	C ₁₇ H ₃₅ OCO	C7H15O	1 1	ortho
65	C ₁₇ H ₃₅ OCO	C7H15O	2	ortho/para
	C ₁₈ H ₃₇ OCO	C ₇ H ₁₅ O	1	para
	C18H37UCU	1 0/11/20		

X	R ⁵	n	Position	1
Δ.	1			
C ₁₈ H ₃₇ OCO	C7H15O	1	meta	5
C ₁₈ H ₃₇ OCO	C7H15O	1	ortho	1
C ₁₈ H ₃₇ OCO	C7H15O	2	ortho/para	
C ₃ H ₇ OCO	C ₈ H ₁₇ O	1	para	4
C ₃ H ₇ OCO	C ₈ H ₁₇ O	1	meta	10
C ₃ H ₇ OCO	C ₈ H ₁₇ O	1	ortho	_
C ₃ H ₇ OCO	C ₈ H ₁₇ O	2	ortho/para	
C ₄ H ₉ OCO	C ₈ H ₁₇ O	1	para	
C ₄ H ₉ OCO	C ₈ H ₁₇ O	1	meta	
C ₄ H ₉ OCO	C ₈ H ₁₇ O	1	ortho	_1
C ₄ H ₉ OCO	C ₈ H ₁₇ O	2	ortho/para	3
C ₅ H ₁₁ OCO	C ₈ H ₁₇ O	1	para	<u>]</u> .
C5H11OCO	C ₈ H ₁₇ O	1	meta	2
C5H11OCO	C ₈ H ₁₇ O	1	ortho]
C5H110C0	C ₈ H ₁₇ O	2	ortho/para	3
C ₆ H ₁₃ OCO	C ₈ H ₁₇ O	1	para	
C ₆ H ₁₃ OCO	C ₈ H ₁₇ O	1	meta] 2
C ₆ H ₁₃ OCO	C ₈ H ₁₇ O	1	ortho	<u>]</u>
C ₆ H ₁₃ OCO	C ₈ H ₁₇ O	2	ortho/para	
C ₈ H ₁₇ OCO	C ₈ H ₁₇ O	1	para] .
C ₈ H ₁₇ OCO	C ₈ H ₁₇ O	1	meta] 3
C ₈ H ₁₇ OCO	C ₈ H ₁₇ O	1	ortho	
C ₈ H ₁₇ OCO	C ₈ H ₁₇ O	2	ortho/para.]
C ₁₂ H ₂₅ OCO	C ₈ H ₁₇ O	1	para	<u> </u>
C ₁₂ H ₂₅ OCO	C ₈ H ₁₇ O	1	meta	.] 3
C ₁₂ H ₂₅ OCO	C ₈ H ₁₇ O	1	ortho	
C ₁₂ H ₂₅ OCO	C ₈ H ₁₇ O	2	ortho/para	<u> </u>
C ₁₃ H ₂₇ OCO	C ₈ H ₁₇ O	1	para]
C ₁₃ H ₂₇ OCO	C ₈ H ₁₇ O	1	meta	
C ₁₃ H ₂₇ OCO	C ₈ H ₁₇ O	1	ortho	
C ₁₃ H ₂₇ OCO	C ₈ H ₁₇ O	2	ortho/para	_
C ₁₄ H ₂₉ OCO	C ₈ H ₁₇ O	1	para	_
C ₁₄ H ₂₉ OCO	C ₈ H ₁₇ O	1	meta	⊣
C ₁₄ H ₂₉ OCO	C ₈ H ₁₇ O	1	ortho	⊒ .
C ₁₄ H ₂₉ OCO	C ₈ H ₁₇ O	2	ortho/para	
C ₁₅ H ₃₁ OCO	C ₈ H ₁₇ O	1	para	
C ₁₅ H ₃₁ OCO	C ₈ H ₁₇ O	1	meta :	
C ₁₅ H ₃₁ OCO	C ₈ H ₁₇ O	1	ortho	_
C ₁₅ H ₃₁ OCO	C ₈ H ₁₇ O	2	ortho/para	_
C ₁₆ H ₃₃ OCO	C ₈ H ₁₇ O	1	para	⊣
C ₁₆ H ₃₃ OCO	C ₈ H ₁₇ O	1	meta	_
C ₁₆ H ₃₃ OCO	C ₈ H ₁₇ O	1	ortho	⊣
C ₁₆ H ₃₃ OCO	C ₈ H ₁₇ O	2	ortho/para	_
C ₁₇ H ₃₅ OCO	C ₈ H ₁₇ O	1	para	4
C ₁₇ H ₃₅ OCO	C ₈ H ₁₇ O	1	meta	_
C ₁₇ H ₃₅ OCO	C ₈ H ₁₇ O	1	ortho	_
C ₁₇ H ₃₅ OCO	C ₈ H ₁₇ O	2	ortho/para	_
C ₁₈ H ₃₇ OCO	C ₈ H ₁₇ O	1	para	_
C ₁₈ H ₃₇ OCO	C ₈ H ₁₇ O	1	meta	
C ₁₈ H ₃₇ OCO	C ₈ H ₁₇ O	1	ortho	

5 C ₁₈ H ₃ 70 C ₃ H ₇ OC C ₃ H ₇ OC C ₃ H ₇ OC C ₄ H ₉ OC C ₄ H ₉ OC C ₄ H ₉ OC C ₅ H ₁ O C ₅ H ₁ O C ₅ H ₁ O C ₆ H ₁ 3O C ₈ H ₁ 7O C ₈ H ₁ 7O C ₈ H ₁ 7O C ₈ H ₁ 7O	0	C ₈ H ₁₇ O C ₁₂ H ₂₅ O	2 1 1 2 1 1 1 2	ortho/para para meta ortho ortho/para para meta ortho
C ₃ H ₇ OC C ₃ H ₇ OC C ₃ H ₇ OC C ₃ H ₇ OC C ₄ H ₉ OC C ₄ H ₉ OC C ₅ H ₁ O C ₅ H ₁ O C ₅ H ₁ O C ₆ H ₁ O	0	C ₁₂ H ₂₅ O C ₁₂ H ₂₅ O	1 1 1 2 1 1 1 2	para meta ortho ortho/para para meta ortho
C ₃ H ₇ OC C ₃ H ₇ OC C ₄ H ₉ OC C ₄ H ₉ OC C ₄ H ₉ OC C ₅ H ₁ O C ₅ H ₁ O C ₅ H ₁ O C ₆ H ₁ O	0	C ₁₂ H ₂₅ O C ₁₂ H ₂₅ O	1 2 1 1 1 2	meta ortho ortho/para para meta ortho
C ₃ H ₇ OC C ₄ H ₉ OC C ₄ H ₉ OC C ₄ H ₉ OC C ₅ H ₁ O C ₅ H ₁ O C ₅ H ₁ O C ₆ H ₁ O	CO C	C ₁₂ H ₂₅ O C ₁₂ H ₂₅ O	1 2 1 1 1 2	ortho ortho/para para meta ortho
C3H7OC C4H9OC C4H9OC C5H11C C5H11C C6H13C C6H13C C6H13C C6H13C C6H13C C8H17C C8H17C	50 50 50 50 50 60 60 60	C ₁₂ H ₂₅ O C ₁₂ H ₂₅ O	2 1 1 2	ortho/para para meta ortho
C ₄ H ₉ OC C ₄ H ₉ OC C ₄ H ₉ OC C ₅ H ₁ OC C ₅ H ₁ OC C ₅ H ₁ OC C ₆ H ₁ OC	CO C	C ₁₂ H ₂₅ O C ₁₂ H ₂₅ O	1 1 1 2	para meta ortho
C ₄ H ₉ OC C ₄ H ₉ OC C ₅ H ₁ O C ₅ H ₁ O C ₅ H ₁ O C ₅ H ₁ O C ₆ H ₁ O C ₈ H ₁ O C ₈ H ₁ O	00 00 00 00 00 00 00 00	C ₁₂ H ₂₅ O C ₁₂ H ₂₅ O C ₁₂ H ₂₅ O C ₁₂ H ₂₅ O C ₁₂ H ₂₅ O	1 1 2	meta ortho
C ₄ H ₉ OC C ₅ H ₁ OC C ₅ H ₁ OC C ₅ H ₁ OC C ₅ H ₁ OC C ₆ H ₁ OC C ₆ H ₁ OC C ₆ H ₁ OC C ₆ H ₁ OC C ₈ H ₁ OC C ₈ H ₁ OC C ₈ H ₁ OC C ₈ H ₁ OC	:0 :0 :CO :CO :CO	C ₁₂ H ₂₅ O C ₁₂ H ₂₅ O C ₁₂ H ₂₅ O C ₁₂ H ₂₅ O	2	ortho
C ₄ H ₉ OC C ₅ H ₁₁ O C ₅ H ₁₁ O C ₅ H ₁₁ O C ₅ H ₁₁ O C ₆ H ₁₃ O C ₈ H ₁₇ O C ₈ H ₁₇ O	:0 :CO :CO :CO	C ₁₂ H ₂₅ O C ₁₂ H ₂₅ O C ₁₂ H ₂₅ O	2	
C ₅ H ₁ 10 C ₅ H ₁ 10 C ₅ H ₁ 10 C ₅ H ₁ 10 C ₆ H ₁ 30 C ₆ H ₁ 30 C ₆ H ₁ 30 C ₆ H ₁ 30 C ₈ H ₁ 70 C ₈ H ₁ 70	CO CO CO CO	C ₁₂ H ₂₅ O C ₁₂ H ₂₅ O		
C ₅ H ₁ 10 C ₅ H ₁ 10 C ₅ H ₁ 10 C ₅ H ₁ 10 C ₆ H ₁ 30 C ₆ H ₁ 30 C ₆ H ₁ 30 C ₆ H ₁ 30 C ₈ H ₁ 70 C ₈ H ₁ 70	CO CO CO CO	C ₁₂ H ₂₅ O		ortho/para
C ₅ H ₁₁ C C ₅ H ₁₁ C C ₅ H ₁₁ C C ₆ H ₁₃ C C ₆ H ₁₃ C C ₆ H ₁₃ C C ₆ H ₁₃ C C ₈ H ₁₇ C	CO CO CO		1	para
C ₅ H ₁ 10 C ₆ H ₁ 30 C ₈ H ₁ 70 C ₈ H ₁ 70	CO CO	C12H250	1	meta
20 C ₅ H ₁ 1C C ₆ H ₁ 3C C ₆ H ₁ 3C C ₆ H ₁ 3C C ₆ H ₁ 3C C ₈ H ₁ 7C C ₈ H ₁ 7C	CO	1	1	ortho
C ₆ H ₁₃ C C ₆ H ₁₃ C C ₆ H ₁₃ C C ₆ H ₁₃ C C ₈ H ₁₇ C	CO	C ₁₂ H ₂₅ O	2	ortho/para
C ₆ H ₁₃ C C ₆ H ₁₃ C C ₆ H ₁₇ C C ₈ H ₁₇ C		C ₁₂ H ₂₅ O	1	para
C ₆ H ₁₃ C C ₆ H ₁₃ C C ₈ H ₁₇ C C ₈ H ₁₇ C	CO	C ₁₂ H ₂₅ O	1	meta
C ₆ H ₁₃ C C ₈ H ₁₇ C C ₈ H ₁₇ C		C ₁₂ H ₂₅ O	1	ortho
C ₈ H ₁₇ C		C ₁₂ H ₂₅ O	2	ortho/para
C ₈ H ₁₇ C		C ₁₂ H ₂₅ O	1	para
		C ₁₂ H ₂₅ O	1	meta
-01/		C ₁₂ H ₂₅ O	1	ortho
30 C ₈ H ₁₇ C		C ₁₂ H ₂₅ O	2	ortho/para
C ₁₂ H ₂		C ₁₂ H ₂₅ O	1	para
C ₁₂ H ₂ 5	OCO	C ₁₂ H ₂₅ O	1	meta
C ₁₂ H ₂		C ₁₂ H ₂₅ O	1	ortho
35 C ₁₂ H ₂		C ₁₂ H ₂₅ O	2	ortho/para
C ₁₃ H ₂₇		C ₁₂ H ₂₅ O	1	para
C ₁₃ H ₂		C ₁₂ H ₂₅ O	1	meta
C ₁₃ H ₂		C ₁₂ H ₂₅ O	1	ortho
40 C ₁₃ H ₂ ·		C ₁₂ H ₂₅ O	2	ortho/para
C14H29		C ₁₂ H ₂₅ O	1	para
C14H2		C ₁₂ H ₂₅ O	1	meta
C14H2		C ₁₂ H ₂₅ O	1	ortho
45 C ₁₄ H ₂		C ₁₂ H ₂₅ O	2	ortho/para
C ₁₅ H ₃		C ₁₂ H ₂₅ O	1	para
C15H3	1000	C ₁₂ H ₂₅ O	1	meta
C ₁₅ H ₃	1000	C ₁₂ H ₂₅ O	1	ortho
50 C ₁₅ H ₃	1000	C ₁₂ H ₂₅ O	2	ortho/para
C16H3		C ₁₂ H ₂₅ O	1	para
C ₁₆ H ₃	3OCO	C ₁₂ H ₂₅ O	1	meta
C16H3	3OCO	C ₁₂ H ₂₅ O	1	
55 C ₁₆ H ₃	30C0	C ₁₂ H ₂₅ O	2	ortho/para
C17H3	50C0	C ₁₂ H ₂₅ O	1	para
	50C0	C ₁₂ H ₂₅ O	1	meta
C17H3	50C0	C ₁₂ H ₂₅ O	1	ortho
	50C0	C ₁₂ H ₂₅ O	2	ortho/para
C18H		C ₁₂ H ₂₅ O		para
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C ₁₂ H ₂₅ O	1	Imota
C18H	370C0		1	meta
	37OCO	C ₁₂ H ₂₅ O	1	ortho
C ₃ H ₇			1	
65 C ₁₈ H	37OCO			

x	R ⁵	n	Position		
<u> </u>	C ₁₄ H ₂₉ O	1	meta		5
C ₃ H ₇ OCO	C ₁₄ H ₂₉ O	1	ortho	·	,
C ₃ H ₇ OCO	C ₁₄ H ₂₉ O	2	ortho/para		
C ₃ H ₇ OCO	C ₁₄ H ₂₉ O	- 1	para		
C4H9OCO	C ₁₄ H ₂₉ O	1	meta		10
C ₄ H ₉ OCO	C ₁₄ H ₂₉ O	- 1	ortho		10
C ₄ H ₉ OCO	C ₁₄ H ₂₉ O	2	ortho/para		
C ₄ H ₉ OCO		1	para		
C ₅ H ₁₁ OCO	C ₁₄ H ₂₉ O	1	meta		15
C ₅ H ₁₁ OCO	C ₁₄ H ₂₉ O	1	ortho		
C ₅ H ₁₁ OCO	C ₁₄ H ₂₉ O	2	ortho/para		
C ₅ H ₁₁ OCO	C ₁₄ H ₂₉ O	1	para		
C ₆ H ₁₃ OCO	C ₁₄ H ₂₉ O	1	meta		20
C ₆ H ₁₃ OCO	C ₁₄ H ₂₉ O	$\frac{1}{1}$	ortho		
C ₆ H ₁₃ OCO	C ₁₄ H ₂₉ O		ortho/para		
C ₆ H ₁₃ OCO	C ₁₄ H ₂₉ O	1	para		
C ₈ H ₁₇ OCO	C ₁₄ H ₂₉ O	1	meta		25
C ₈ H ₁₇ OCO	C ₁₄ H ₂₉ O	1	ortho		
C _B H ₁₇ OCO	C ₁₄ H ₂₉ O	2	ortho/para	1	
C ₈ H ₁₇ OCO	C ₁₄ H ₂₉ O	1	para		
C ₁₂ H ₂₅ OCO	C ₁₄ H ₂₉ O	1	meta		30
C ₁₂ H ₂₅ OCO	C ₁₄ H ₂₉ O	1	ortho	†	
C ₁₂ H ₂₅ OCO	C ₁₄ H ₂₉ O	2	ortho/para	1	
C ₁₂ H ₂₅ OCO	C ₁₄ H ₂₉ O	1	para	1	
C ₁₃ H ₂₇ OCO	C ₁₄ H ₂₉ O	1	meta	1	35
C ₁₃ H ₂₇ OCO	C ₁₄ H ₂₉ O	1	ortho		
C ₁₃ H ₂₇ OCO	C ₁₄ H ₂₉ O C ₁₄ H ₂₉ O	2	ortho/para		
C ₁₃ H ₂₇ OCO	C ₁₄ H ₂ 90	1	para	1	
C ₁₄ H ₂₉ OCO	C ₁₄ H ₂₉ O	1	meta	1	40
C ₁₄ H ₂₉ OCO	C ₁₄ H ₂₉ O	- 1	ortho	1	
C ₁₄ H ₂₉ OCO	C ₁₄ H ₂₉ O	$\frac{\overline{2}}{2}$	ortho/para	1	
C ₁₄ H ₂₉ OCO	C ₁₄ H ₂₉ O	1	para	7	
C ₁₅ H ₃₁ OCO	C ₁₄ H ₂₉ O	1	meta	7	45
C ₁₅ H ₃₁ OCO	C ₁₄ H ₂₉ O	1	ortho	7	
C ₁₅ H ₃₁ OCO	C ₁₄ H ₂₉ O	2	ortho/para	7	
C ₁₅ H ₃₁ OCO	C ₁₄ H ₂₉ O	1	para		
C ₁₆ H ₃₃ OCO	C ₁₄ H ₂₉ O	1	· meta		50
C ₁₆ H ₃₃ OCO	C ₁₄ H ₂₉ O	1	ortho		
C ₁₆ H ₃₃ OCO	- C ₁₄ H ₂₉ O	2	ortho/para]	
C ₁₆ H ₃₃ OCO	C ₁₄ H ₂₉ O	1	para		
C ₁₇ H ₃₅ OCO	C ₁₄ H ₂₉ O	1	meta		5
C ₁₇ H ₃₅ OCO	C ₁₄ H ₂₉ O	1	ortho		
C ₁₇ H ₃₅ OCO	C ₁₄ H ₂₉ O	2	ortho/para]	
C ₁₇ H ₃₅ OCO	C ₁₄ H ₂₉ O	1	para		
C ₁₈ H ₃₇ OCO	C ₁₄ H ₂₉ O	1	meta		•
C ₁₈ H ₃₇ OCO	C ₁₄ H ₂₉ O	1	ortho		
C18H37OCO	C ₁₄ H ₂₉ O	2	ortho/para		
C ₁₈ H ₃₇ OCO	C ₁₆ H ₃₃ O		para		
C ₃ H ₇ OCO	C ₁₆ H ₃₃ O		meta		•
C ₃ H ₇ OCO	C ₁₆ H ₃₃ O	1 1	ortho		
C ₃ H ₇ OCO	C1611330				

	X	R ⁵	n	Position
	C ₃ H ₇ OCO	C ₁₆ H ₃₃ O	2	ortho/para
5	C ₄ H ₉ OCO	C ₁₆ H ₃₃ O	1	para
	C ₄ H ₉ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₄ H ₉ OCO	C ₁₆ H ₃₃ O	1	ortho
10	C ₄ H ₉ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₅ H ₁₁ OCO	C ₁₆ H ₃₃ O	1	para
	C ₅ H ₁₁ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₅ H ₁₁ OCO	C ₁₆ H ₃₃ O	1	ortho
15	C ₅ H ₁₁ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₆ H ₁₃ OCO	· C ₁₆ H ₃₃ O	1	para
	C ₆ H ₁₃ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₆ H ₁₃ OCO	C ₁₆ H ₃₃ O	1	ortho
20	C ₆ H ₁₃ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₈ H ₁₇ OCO	C ₁₆ H ₃₃ O	1	para
	C ₈ H ₁₇ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₈ H ₁₇ OCO	C ₁₆ H ₃₃ O	1	ortho
25	C ₈ H ₁₇ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₁₂ H ₂₅ OCO	C ₁₆ H ₃₃ O	1	para
	C ₁₂ H ₂₅ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₁₂ H ₂₅ OCO	C ₁₆ H ₃₃ O	1	ortho
30	C ₁₂ H ₂₅ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₁₃ H ₂₇ OCO	C ₁₆ H ₃₃ O	1	para
	C ₁₃ H ₂₇ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₁₃ H ₂₇ OCO	C ₁₆ H ₃₃ O	1	ortho
35	C ₁₃ H ₂₇ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₁₄ H ₂₉ OCO	C ₁₆ H ₃₃ O	1	para
	C ₁₄ H ₂₉ OCO	C ₁₆ H ₃₃ O	1	meta ortho
40	C ₁₄ H ₂₉ OCO	C ₁₆ H ₃₃ O C ₁₆ H ₃₃ O	2	ortho/para
•••	C ₁₄ H ₂₉ OCO	C ₁₆ H ₃₃ O	1	para
	C ₁₅ H ₃₁ OCO C ₁₅ H ₃₁ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₁₅ H ₃₁ OCO	C ₁₆ H ₃₃ O	1	ortho
45	C ₁₅ H ₃₁ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₁₆ H ₃₃ OCO	C ₁₆ H ₃₃ O	1	para
	C ₁₆ H ₃₃ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₁₆ H ₃₃ OCO	C ₁₆ H ₃₃ O	1	ortho
50	C ₁₆ H ₃₃ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₁₇ H ₃₅ OCO	C ₁₆ H ₃₃ O	1	para
	C ₁₇ H ₃₅ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₁₇ H ₃₅ OCO	C ₁₆ H ₃₃ O	1	ortho
55	C ₁₇ H ₃₅ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₁₈ H ₃₇ OCO	C ₁₆ H ₃₃ O	1	para
	C ₁₈ H ₃₇ OCO	C ₁₆ H ₃₃ O	1	meta
	C ₁₈ H ₃₇ OCO	C ₁₆ H ₃₃ O	1	ortho
60	C ₁₈ H ₃₇ OCO	C ₁₆ H ₃₃ O	2	ortho/para
	C ₃ H ₇ OCO	C ₁₈ H ₃₇ O	1	para
	C ₃ H ₇ OCO	C ₁₈ H ₃₇ O	1	meta
,-	C ₃ H ₇ OCO	C ₁₈ H ₃₇ O	1	ortho
65	C ₃ H ₇ OCO	C ₁₈ H ₃₇ O	2	ortho/para
	C ₄ H ₉ OCO	C ₁₈ H ₃₇ O	1	para

	x	R ⁵	n	Position		
	C ₄ H ₉ OCO	C ₁₈ H ₃₇ O	1	meta		5
	C ₄ H ₉ OCO	C ₁₈ H ₃₇ O	1	ortho	•	•
	C ₄ H ₉ OCO	C ₁₈ H ₃₇ O	2	ortho/para		
	C ₅ H ₁₁ OCO	C ₁₈ H ₃₇ O	1	para		
	C ₅ H ₁₁ OCO	C ₁₈ H ₃₇ O	1	meta		10
	C5H110CO	C ₁₈ H ₃₇ O	1	ortho		
		C ₁₈ H ₃₇ O	2	ortho/para		
	C ₅ H ₁₁ OCO	C ₁₈ H ₃₇ O	1	para		
	C ₆ H ₁₃ OCO	C ₁₈ H ₃₇ O	1	meta		15
•	C ₆ H ₁₃ OCO	C ₁₈ H ₃ 70	1	ortho		1.5
	C ₆ H ₁₃ OCO	C ₁₈ H ₃ 70	2	ortho/para		
	C ₆ H ₁₃ OCO		<u> </u>	para		
	C ₈ H ₁₇ OCO	C ₁₈ H ₃₇ O	1	meta		20
	C ₈ H ₁₇ OCO	C ₁₈ H ₃₇ O	1	ortho		20
	C ₈ H ₁₇ OCO	C ₁₈ H ₃₇ O	2	ortho/para		
	C ₈ H ₁₇ OCO	C ₁₈ H ₃₇ O				
	C ₁₂ H ₂₅ OCO	C ₁₈ H ₃₇ O	1	para		25
	C ₁₂ H ₂₅ OCO	C ₁₈ H ₃₇ O	1	meta		25
	C ₁₂ H ₂₅ OCO	C ₁₈ H ₃₇ O	1	ortho		
	C ₁₂ H ₂₅ OCO	C ₁₈ H ₃₇ O	2	ortho/para	•	
	C ₁₃ H ₂₇ OCO	C ₁₈ H ₃₇ O	1	para		30
	C ₁₃ H ₂₇ OCO	C ₁₈ H ₃₇ O	1	meta		30
	C ₁₃ H ₂₇ OCO	C ₁₈ H ₃₇ O	1	ortho		
	C ₁₃ H ₂₇ OCO	C ₁₈ H ₃₇ O	2	ortho/para		
	C ₁₄ H ₂₉ OCO	C ₁₈ H ₃₇ O	1	para		35
	C ₁₄ H ₂₉ OCO	C ₁₈ H ₃₇ O	_1	meta		33
	C ₁₄ H ₂₉ OCO	C ₁₈ H ₃₇ O	1	ortho		
	C ₁₄ H ₂₉ OCO	C ₁₈ H ₃₇ O	2	ortho/para		
	C ₁₅ H ₃₁ OCO	C ₁₈ H ₃₇ O	1	para		40
	C ₁₅ H ₃₁ OCO	C ₁₈ H ₃₇ O	1	meta	·	40
	C ₁₅ H ₃₁ OCO	C ₁₈ H ₃₇ O	1	ortho		
	C ₁₅ H ₃₁ OCO	C ₁₈ H ₃₇ O	2	ortho/para		
	C ₁₆ H ₃₃ OCO	C ₁₈ H ₃₇ O	1	para		45
	C ₁₆ H ₃₃ OCO	C ₁₈ H ₃₇ O	1	meta	1	4,5
	C ₁₆ H ₃₃ OCO	C ₁₈ H ₃₇ O	1	ortho	,	
	C ₁₆ H ₃₃ OCO	C ₁₈ H ₃₇ O	2	ortho/para	1	
	C ₁₇ H ₃₅ OCO	C ₁₈ H ₃₇ O	1	para	4	50
	C ₁₇ H ₃₅ OCO	C ₁₈ H ₃₇ O	1	meta	4	
	C ₁₇ H ₃₅ OCO	C ₁₈ H ₃₇ O	1	ortho	4	
	€17H35OCO	C ₁₈ H ₃₇ O	2	ortho/para	4	
	C ₁₈ H ₃₇ OCO	C ₁₈ H ₃₇ O	1	para		5.
	C ₁₈ H ₃₇ OCO	C ₁₈ H ₃₇ O	1	meta	4	3.
	C ₁₈ H ₃₇ OCO	C ₁₈ H ₃₇ O	1	ortho	1	
	C ₁₈ H ₃₇ OCO	C ₁₈ H ₃₇ O	2	ortho/para	1	
	CH ₃ O	CH ₃	1	para	4	
	CH ₃ O	CH ₃	1	meta	4	6
	CH ₃ O	CH ₃	1	ortho	_	
	CH ₃ O	CH ₃	2	ortho/para	_	
	C ₂ H ₅ O	CH ₃	1	para		
	C ₂ H ₅ O	CH ₃	1	meta		(
	C ₂ H ₅ O	CH ₃	1	ortho]	
	1 - 2					

	X	R ⁵	n	Position
5	C ₂ H ₅ O	CH ₃	2	ortho/para
•	C ₃ H ₇ O	CH ₃	1	para
:	C ₃ H ₇ O	CH ₃	1	meta
	C ₃ H ₇ O	CH ₃	1	ortho
10	C ₃ H ₇ O	CH ₃	2	ortho/para
	C ₄ H ₉ O	CH ₃	1	para
	C ₄ H ₉ O	CH ₃	1	meta
	C4H9O	CH ₃	1	ortho
15	C ₄ H ₉ O	CH ₃	2	ortho/para
	C ₅ H ₁₁ O	CH ₃	1	para
	C ₅ H ₁₁ O	CH ₃	1	meta
	C ₅ H ₁₁ O	CH ₃	1	ortho
20	C5H11O	CH ₃	2	ortho/para
	C ₆ H ₁₃ O	CH ₃	1	para
	C ₆ H ₁₃ O	CH3	1	meta
	C ₆ H ₁₃ O	CH ₃	1	ortho
25	C ₆ H ₁₃ O	CH3	2	ortho/para
	C ₈ H ₁₇ O	CH₃	1	para
	C ₈ H ₁₇ O	CH ₃	1	meta
	C ₈ H ₁₇ O	CH ₃	1	ortho
30	C ₈ H ₁₇ O	CH ₃	2	ortho/para
	C ₁₂ H ₂₅ O	CH ₃	1	para
	C ₁₂ H ₂₅ O	CH ₃	1	meta
	C ₁₂ H ₂₅ O	CH ₃	1	ortho
35	C ₁₂ H ₂₅ O	CH ₃	2	ortho/para
	C ₁₃ H ₂₇ O	CH ₃	1	para
	C ₁₃ H ₂₇ O	CH ₃	1	meta
	C ₁₃ H ₂₇ O	CH ₃	1	ortho
40	C ₁₃ H ₂₇ O	CH ₃	2	ortho/para
	C ₁₄ H ₂₉ O	CH ₃	1	para
	C ₁₄ H ₂₉ O	CH ₃	1	meta
	C ₁₄ H ₂₉ O	CH ₃	2	ortho
45	C ₁₄ H ₂₉ O	CH ₃	1	ortho/para
	C ₁₅ H ₃₁ O	CH ₃	1	meta
	C ₁₅ H ₃₁ O	CH ₃	1	ortho
50	C ₁₅ H ₃₁ O C ₁₅ H ₃₁ O	CH ₃	2	ortho/para
50	C ₁₆ H ₃₃ O	CH ₃	1	para
	C ₁₆ H ₃₃ O	CH ₃	1	meta
	C ₁₆ H ₃₃ O	CH ₃	1 -	ortho
55	C ₁₆ H ₃₃ O	CH ₃	2	ortho/para ·
	C ₁₇ H ₃₅ O	CH ₃	1	para
	C ₁₇ H ₃₅ O	CH ₃	1	meta
	C ₁₇ H ₃₅ O	CH ₃	1	ortho
60	C ₁₇ H ₃₅ O	CH ₃	2	ortho/para
	C ₁₈ H ₃₇ O	CH ₃	1	para
	C ₁₈ H ₃₇ O	CH ₃	1	meta
		CH ₃	1	ortho
65	C18H37O	CH ₃	2	ortho/para
_	C18H37O		1	para para
	CH ₃ O	C ₂ H ₅	<u> </u>	hara

	X	R ⁵	n	Position		
	CH ₃ O	C ₂ H ₅	1	meta		5
	CH ₃ O	C ₂ H ₅	1	ortho		,
	CH ₃ O	C ₂ H ₅	2	ortho/para		
,	C ₂ H ₅ O	C ₂ H ₅	1	para		
	C ₂ H ₅ O	C ₂ H ₅	1	meta		10
	C ₂ H ₅ O	C ₂ H ₅	1	ortho		10
	C ₂ H ₅ O	C ₂ H ₅	2	ortho/para		
	C ₃ H ₇ O	C ₂ H ₅	1	para		
1	C ₃ H ₇ O	C ₂ H ₅	1	meta		15
•		C ₂ H ₅	1	ortho		13
	C ₃ H ₇ O	C ₂ H ₅	2	ortho/para		
	C ₃ H ₇ O	C ₂ H ₅	1	para		•
	C ₄ H ₉ O		1	meta		21)
	C ₄ H ₉ O	C ₂ H ₅	1	ortho		211
;	C ₄ H ₉ O	C ₂ H ₅	2	ortho/para		
	C ₄ H ₉ O	C ₂ H ₅	1	para		
	C ₅ H ₁₁ O	C ₂ H ₅		meta		
	C ₅ H ₁₁ O	C ₂ H ₅	1	ortho		25
	C ₅ H ₁₁ O	C ₂ H ₅	2	ortho/para		
	C ₅ H ₁₁ O	C ₂ H ₅	1			
	C ₆ H ₁₃ O	C ₂ H ₅	1	para meta		30
	C ₆ H ₁₃ O	C ₂ H ₅		ortho		30
	C ₆ H ₁₃ O	C ₂ H ₅	1	ortho/para		
	C ₆ H ₁₃ O	C ₂ H ₅	2			
	C ₈ H ₁₇ O	C ₂ H ₅	1	para		35
	C ₈ H ₁₇ O	C ₂ H ₅	1	meta		33
	C ₈ H ₁₇ O	C ₂ H ₅	1	ortho		
	C ₈ H ₁₇ O	C ₂ H ₅	2	ortho/para		
	C ₁₂ H ₂₅ O	C ₂ H ₅	1	para		40
	C ₁₂ H ₂₅ O	C ₂ H ₅	1	meta		70
	C ₁₂ H ₂₅ O	C ₂ H ₅	1	ortho	.	
	C ₁₂ H ₂₅ O	C ₂ H ₅	2	ortho/para	ļ	
	C ₁₃ H ₂₇ O	C ₂ H ₅	1	para	ł	45
	C ₁₃ H ₂₇ O	C ₂ H ₅		meta		43
	C ₁₃ H ₂₇ O	C ₂ H ₅	1	ortho	}	
	C ₁₃ H ₂₇ O	C ₂ H ₅	2	ortho/para		
	C ₁₄ H ₂₉ O	C ₂ H ₅	1	para		50
	C ₁₄ H ₂₉ O	C ₂ H ₅	1	meta		50
	C ₁₄ H ₂₉ O	C ₂ H ₅	1	ortho		
_	C ₁₄ H ₂₉ O	C ₂ H ₅	- 2	ortho/para	-	
	C ₁₅ H ₃₁ O	C ₂ H ₅	1	para	1	55
	C ₁₅ H ₃₁ O	C ₂ H ₅	1	meta		,,,
	C ₁₅ H ₃₁ O	C ₂ H ₅	1	ortho	_	
	C ₁₅ H ₃₁ O	C ₂ H ₅	2	ortho/para	_	
	C ₁₆ H ₃₃ O	C ₂ H ₅	1	para	_	60
	C ₁₆ H ₃₃ O	C ₂ H ₅	1	meta	4	OL
	C ₁₆ H ₃₃ O	C ₂ H ₅	1	ortho	1	
	C ₁₆ H ₃₃ O	C ₂ H ₅	2	ortho/para	1	
	C ₁₇ H ₃₅ O	C ₂ H ₅	1	para	_	
	C ₁₇ H ₃₅ O	C ₂ H ₅	1	meta	_	65
	C ₁₇ H ₃₅ O	C ₂ H ₅	1	ortho]	
					_	

	Х	. R ⁵	n	Position
	C ₁₇ H ₃₅ O	C ₂ H ₅	2	ortho/para
5	C ₁₈ H ₃₇ O	C ₂ H ₅	1	para
	C ₁₈ H ₃₇ O	C ₂ H ₅	1	meta
	C ₁₈ H ₃₇ O	C ₂ H ₅	1	ortho
	C ₁₈ H ₃₇ O	C ₂ H ₅	2	ortho/para
10	CH ₃ O	C ₃ H ₇	1	para
	CH ₃ O	C ₃ H ₇	1	meta
	CH ₃ O	C ₃ H ₇	1	ortho
	CH ₃ O	C ₃ H ₇	2	ortho/para
15	C ₂ H ₅ O	C ₃ H ₇	1	para
	C ₂ H ₅ O	C ₃ H ₇	1	meta
	C ₂ H ₅ O	C ₃ H ₇	1	ortho
20	C ₂ H ₅ O	C ₃ H ₇	2	ortho/para
20	C ₃ H ₇ O	C ₃ H ₇	1	para
		C ₃ H ₇	1	meta
	C ₃ H ₇ O	C ₃ H ₇	1	ortho
05	C ₃ H ₇ O	C ₃ H ₇	2	ortho/para
25	C ₃ H ₇ O	C ₃ H ₇	1	para
	C ₄ H ₉ O	C ₃ H ₇	1	meta
	C ₄ H ₉ O C ₄ H ₉ O	C ₃ H ₇	1	ortho
30	C ₄ H ₉ O	C ₃ H ₇	2	ortho/para
30	C ₅ H ₁₁ O	C ₃ H ₇	1	para
	C ₅ H ₁ O	C ₃ H ₇	1	meta
	C ₅ H ₁₁ O	C ₃ H ₇	1	ortho
35	C ₅ H ₁₁ O	C ₃ H ₇	2	ortho/para
	C ₆ H ₁₃ O	C ₃ H ₇	1	para
	C ₆ H ₁₃ O	C ₃ H ₇	1	meta
	C ₆ H ₁₃ O	C ₃ H ₇	1	ortho
40	C ₆ H ₁₃ O	C ₃ H ₇	2	ortho/para
	C ₈ H ₁₇ O	C ₃ H ₇	1	para
	C ₈ H ₁₇ O	C ₃ H ₇	1	meta
	C ₈ H ₁₇ O	C ₃ H ₇	1	ortho
45	C ₈ H ₁₇ O	C ₃ H ₇	2	ortho/para
	C ₁₂ H ₂₅ O	C ₃ H ₇	1	para
	C ₁₂ H ₂₅ O	C ₃ H ₇	1	meta
	C ₁₂ H ₂₅ O	C ₃ H ₇	1	ortho
50	C ₁₂ H ₂₅ O	C ₃ H ₇	2	ortho/para
	C ₁₃ H ₂₇ O	C ₃ H ₇	1	para
	C ₁₃ H ₂₇ O	C ₃ H ₇	1	meta
	C ₁₃ H ₂₇ O	C ₃ H ₇	1	ortho
55	C ₁₃ H ₂₇ O	C ₃ H ₇	2	ortho/para
	C ₁₄ H ₂₉ O	C ₃ H ₇	1	para
	C ₁₄ H ₂₉ O	C ₃ H ₇	1	meta
	C ₁₄ H ₂₉ O	C ₃ H ₇	1	ortho
60	C ₁₄ H ₂₉ O	C ₃ H ₇	2	ortho/para
	C ₁₅ H ₃₁ O	C ₃ H ₇	1	para
	C ₁₅ H ₃₁ O	C ₃ H ₇	1	meta
	C ₁₅ H ₃₁ O	C ₃ H ₇	1	ortho
65	C ₁₅ H ₃₁ O	C ₃ H ₇	2	ortho/para
	C ₁₆ H ₃₃ O	C ₃ H ₇	1	para

X	R ⁵	n	Position		
C ₁₆ H ₃₃ O	C ₃ H ₇	1	meta		. 5
C ₁₆ H ₃₃ O	C ₃ H ₇	1	ortho		
C ₁₆ H ₃₃ O	C ₃ H ₇	2	ortho/para		
C ₁₇ H ₃₅ O	C ₃ H ₇	1	para		
C ₁₇ H ₃₅ O	C ₃ H ₇	1	meta		10
C ₁₇ H ₃₅ O	C ₃ H ₇	1	ortho		
C ₁₇ H ₃₅ O	C ₃ H ₇	2	ortho/para	·	
C ₁₈ H ₃₇ O	C ₃ H ₇	1	para		
C ₁₈ H ₃₇ O	C ₃ H ₇	1	meta		15
C ₁₈ H ₃₇ O	C ₃ H ₇	1	ortho		
C ₁₈ H ₃₇ O	C ₃ H ₇	2	ortho/para		
CH ₃ O	C ₄ H ₉	1	para	1	
CH ₃ O	C ₄ H ₉	1	meta		20
CH ₃ O	C ₄ H ₉	1	ortho		
CH ₃ O	C ₄ H ₉	2	ortho/para		
C ₂ H ₅ O	C ₄ H ₉	1	para	}	
C ₂ H ₅ O	C ₄ H ₉	1	meta		25
C ₂ H ₅ O	C ₄ H ₉	1	ortho	1	
C ₂ H ₅ O	C ₄ H ₉	2	ortho/para		
C ₃ H ₇ O	C ₄ H ₉	1	para		
C ₃ H ₇ O	C ₄ H ₉	1	meta	1	30
C ₃ H ₇ O	C ₄ H ₉	1	ortho	1	
C ₃ H ₇ O	C ₄ H ₉	2	ortho/para		
C ₄ H ₉ O	C ₄ H ₉	1	para	1	
C ₄ H ₉ O	C ₄ H ₉	1	meta		35
C ₄ H ₉ O	C ₄ H ₉	1	ortho		
C ₄ H ₉ O	C ₄ H ₉	2	ortho/para	1	
C5H11O	C ₄ H ₉	1	para	1	
C5H110	C ₄ H ₉	1	meta	1	40
C ₅ H ₁₁ O	C ₄ H ₉	1	ortho	1	
C ₅ H ₁₁ O	C ₄ H ₉	2	ortho/para	1	
C ₆ H ₁₃ O	C ₄ H ₉	1	para]	
C ₆ H ₁₃ O	C ₄ H ₉	1	meta]	45
C ₆ H ₁₃ O	C ₄ H ₉	1	ortho		
C ₆ H ₁₃ O	C ₄ H ₉	2	ortho/para]	
C ₈ H ₁₇ O	C ₄ H ₉	1	para]	*******
C ₈ H ₁₇ O	C ₄ H ₉	1	meta	•	50
C ₈ H ₁₇ O	C ₄ H ₉	1	ortho	3	
C ₈ H ₁₇ O	C ₄ H ₉	2	ortho/para]	
C ₁₂ H ₂₅ O	C ₄ H ₉	1	para	}	
C ₁₂ H ₂₅ O	C ₄ H ₉	1	meta]	55
C ₁₂ H ₂₅ O	C ₄ H ₉	1	ortho		
C ₁₂ H ₂₅ O	C ₄ H ₉	2	ortho/para]	
C ₁₃ H ₂₇ O	C ₄ H ₉	1	para	_	_
C ₁₃ H ₂₇ O	C ₄ H ₉	1	meta	_1	60
C ₁₃ H ₂₇ O	C ₄ H ₉	1	ortho		
C ₁₃ H ₂₇ O	C ₄ H ₉	2	ortho/para	_	
C ₁₄ H ₂₉ O	C ₄ H ₉	1	para		
C ₁₄ H ₂₉ O	C ₄ H ₉	1	meta		65
C ₁₄ H ₂₉ O	C ₄ H ₉	1	ortho		
1 -1423					

	Х	R ⁵	n	Position
i	C. R. O	C ₄ H ₉	2	ortho/para
5	C ₁₄ H ₂₉ O	C ₄ H ₉	1	para
	C ₁₅ H ₃₁ O	C ₄ H ₉	1	meta
	C ₁₅ H ₃₁ O	C ₄ H ₉	1	ortho
	C ₁₅ H ₃₁ O		2	ortho/para
10	C ₁₅ H ₃₁ O	C ₄ H ₉	1	
	C ₁₆ H ₃₃ O	C ₄ H ₉	1	para
	C ₁₆ H ₃₃ O	C ₄ H ₉	1	meta ortho
	C ₁₆ H ₃₃ O	C ₄ H ₉	2	
15	C ₁₆ H ₃₃ O	C ₄ H ₉		ortho/para
	C ₁₇ H ₃₅ O	C ₄ H ₉	1	para
	C ₁₇ H ₃₅ O	C ₄ H ₉	1	meta
	C ₁₇ H ₃₅ O	C ₄ H ₉	1	ortho
20	C ₁₇ H ₃₅ O	C ₄ H ₉	2	ortho/para
	C ₁₈ H ₃₇ O	C ₄ H ₉	1	para
	C ₁₈ H ₃₇ O	C ₄ H ₉	1	meta
	C ₁₈ H ₃₇ O	C ₄ H ₉	1	ortho
25	C ₁₈ H ₃₇ O	C ₄ H ₉	2	ortho/para
	CH ₃ O	C5H11	1	para .
	CH ₃ O	C ₅ H ₁₁	1	meta
	CH3O	C ₅ H ₁₁	1	ortho
30	CH ₃ O	C5H11	2	ortho/para
	C ₂ H ₅ O	C ₅ H ₁₁	1	para
	C ₂ H ₅ O	C ₅ H ₁₁	1	meta
	C ₂ H ₅ O	C ₅ H ₁₁	1	ortho
35	C ₂ H ₅ O	C ₅ H ₁₁	2	ortho/para
	C ₃ H ₇ O	C ₅ H ₁₁	1	para
	C ₃ H ₇ O	C ₅ H ₁₁	1	meta
	C ₃ H ₇ O	C5H11	1	ortho
40	C ₃ H ₇ O	C ₅ H ₁₁	2	ortho/para
	C4H9O	C ₅ H ₁₁	1	para
	C ₄ H ₉ O	C ₅ H ₁₁	1	meta
	C ₄ H ₉ O	C ₅ H ₁₁	2	ortho ortho/para
45	C ₄ H ₉ O	C ₅ H ₁₁	1	para para
	C ₅ H ₁₁ O	C ₅ H ₁₁ C ₅ H ₁₁	1	meta
	C ₅ H ₁₁ O	C5H11	1	ortho
60	C ₅ H ₁₁ O		2	ortho/para
50	C ₅ H ₁₁ O	C ₅ H ₁₁ C ₅ H ₁₁	1	para
	C ₆ H ₁₃ O	C5H11	1	meta
	C ₆ H ₁₃ O	C5H11	1	ortho
55	C ₆ H ₁₃ O	C ₅ H ₁₁	2	ortho/para
33	C ₆ H ₁₃ O	C5H11	1	para
	C ₈ H ₁₇ O	Colli	1	meta
	C ₈ H ₁₇ O	C ₅ H ₁₁	1	ortho
£D.	C ₈ H ₁₇ O	C ₅ H ₁₁	2	ortho/para
60	C ₈ H ₁₇ O	C ₅ H ₁₁	1	
	C ₁₂ H ₂₅ O	C ₅ H ₁₁		para
	C ₁₂ H ₂₅ O	C5H11	1	meta
	C ₁₂ H ₂₅ O	C5H11	1	ortho
65	C ₁₂ H ₂₅ O	C ₅ H ₁₁	2	ortho/para
	C ₁₃ H ₂₇ O	C ₅ H ₁₁	1	para

X	R ⁵	n	Position	7	
C ₁₃ H ₂₇ O	C ₅ H ₁₁	1	meta ·	1	5
C ₁₃ H ₂₇ O	C ₅ H ₁₁	1	ortho		
C ₁₃ H ₂₇ O	C ₅ H ₁₁	2	ortho/para	7	
C ₁₄ H ₂₉ O	C ₅ H ₁₁	1	para		
C ₁₄ H ₂₉ O	C ₅ H ₁₁	1	meta]	10
C ₁₄ H ₂₉ O	C ₅ H ₁₁	1	ortho	7	
C ₁₄ H ₂₉ O	C ₅ H ₁₁	2.	ortho/para	<u> </u>	
C ₁₅ H ₃₁ O	C ₅ H ₁₁	1	para		
C ₁₅ H ₃₁ O	C ₅ H ₁₁	1	meta		15
C ₁₅ H ₃₁ O	C ₅ H ₁₁	1	ortho		
	C ₅ H ₁₁	2	ortho/para		
C ₁₅ H ₃₁ O	C ₅ H ₁₁	1	para	7	
C ₁₆ H ₃₃ O	C ₅ H ₁₁	1	meta	7	20
C ₁₆ H ₃₃ O	C ₅ H ₁₁	1	ortho	7	
C ₁₆ H ₃₃ O	C ₅ H ₁₁	2	ortho/para	7	
C ₁₆ H ₃₃ O	C ₅ H ₁₁	1	para	7	
C ₁₇ H ₃₅ O	C5H11	1	meta	1	25
C ₁₇ H ₃₅ O	C5H11	1	ortho		
C ₁₇ H ₃₅ O	C5H11	2	ortho/para		
C ₁₇ H ₃₅ O		1	para	7	
C ₁₈ H ₃₇ O	C ₅ H ₁₁	1	meta	┪	30
C ₁₈ H ₃₇ O	C ₅ H ₁₁	1 1	ortho		
C ₁₈ H ₃₇ O		2	ortho/para	-	
C ₁₈ H ₃₇ O	C ₅ H ₁₁ C ₆ H ₁₃	1	para	-	
CH ₃ O	C ₆ H ₁₃	1	meta	_	35
CH ₃ O	C6H13	1	ortho		
CH ₃ O	C ₆ H ₁₃	2	ortho/para	7	
CH3O	C ₆ H ₁₃	1 1	para		
C ₂ H ₅ O	C ₆ H ₁₃	 1	meta		40
C ₂ H ₅ O	C ₆ H ₁₃	1	ortho		
C ₂ H ₅ O	C ₆ H ₁₃	2	ortho/para		
C ₂ H ₅ O	C ₆ H ₁₃	1	para		
C ₃ H ₇ O C ₃ H ₇ O	C ₆ H ₁₃	1	meta		45
C ₃ H ₇ O	C ₆ H ₁₃	1	ortho		
C ₃ H ₇ O	C ₆ H ₁₃	2	ortho/para	_	•
C ₄ H ₉ O	C ₆ H ₁₃	1	para		
C ₄ H ₉ O	C ₆ H ₁₃	1	meta		50
C ₄ H ₉ O	C ₆ H ₁₃	1	ortho		
C4H9O.		2	ortho/para		
C ₅ H ₁₁ O	C ₆ H ₁₃	1	para		
C ₅ H ₁₁ O	C ₆ H ₁₃	1	meta		55
C ₅ H ₁₁ O	C ₆ H ₁₃	1	ortho		
C ₅ H ₁₁ O	C ₆ H ₁₃	2	ortho/para		
C ₆ H ₁₃ O	C ₆ H ₁₃	1	para		
	C ₆ H ₁₃	1	meta		60
C ₆ H ₁₃ O	C ₆ H ₁₃	1	ortho		
C ₆ H ₁₃ O	C ₆ H ₁₃	$\frac{1}{2}$	ortho/para		
C ₆ H ₁₃ O	C ₆ H ₁₃	1	para	7	
C ₈ H ₁₇ O	C ₆ H ₁₃	1	meta	- 1	65
C ₈ H ₁₇ O		1	ortho		
C ₈ H ₁₇ O	C ₆ H ₁₃				

	X	R ⁵	n	Position
	C ₈ H ₁₇ O	C ₆ H ₁₃	2	ortho/para
5	C ₁₂ H ₂₅ O	C ₆ H ₁₃	1	para
	C ₁₂ H ₂₅ O	C ₆ H ₁₃	1	meta
i	C ₁₂ H ₂₅ O	C ₆ H ₁₃	1	ortho
	C ₁₂ H ₂₅ O	C ₆ H ₁₃	2	ortho/para
10	C ₁₃ H ₂₇ O	C ₆ H ₁₃	1	para
	C ₁₃ H ₂₇ O	C ₆ H ₁₃	1	meta
	C ₁₃ H ₂₇ O	C ₆ H ₁₃	1	ortho
1	C ₁₃ H ₂₇ O	C ₆ H ₁₃	2	ortho/para
15	C ₁₄ H ₂₉ O	C ₆ H ₁₃	1	para
	C ₁₄ H ₂₉ O	C ₆ H ₁₃	1	meta
	C ₁₄ H ₂₉ O	C ₆ H ₁₃	1	ortho
20	C ₁₄ H ₂₉ O	C ₆ H ₁₃	2	ortho/para
20	C ₁₅ H ₃₁ O	C ₆ H ₁₃	1	para
	C ₁₅ H ₃₁ O	C ₆ H ₁₃	1	meta
	C ₁₅ H ₃₁ O	C ₆ H ₁₃	1	ortho
25	C ₁₅ H ₃₁ O	C ₆ H ₁₃	2	ortho/para
2.5	C ₁₆ H ₃₃ O	C ₆ H ₁₃	1	para
	C ₁₆ H ₃₃ O	C ₆ H ₁₃	1	meta
	C ₁₆ H ₃₃ O	C ₆ H ₁₃	1	ortho
30	C ₁₆ H ₃₃ O	C ₆ H ₁₃	2	ortho/para
	C ₁₇ H ₃₅ O	C ₆ H ₁₃	1	para
	C ₁₇ H ₃₅ O	C ₆ H ₁₃	1	meta
	C ₁₇ H ₃₅ O	C ₆ H ₁₃	1	ortho
35	C ₁₇ H ₃₅ O	C ₆ H ₁₃	2	ortho/para
	C ₁₈ H ₃₇ O	C ₆ H ₁₃	1	para
	C ₁₈ H ₃₇ O	C ₆ H ₁₃	1	meta
	C ₁₈ H ₃₇ O	C ₆ H ₁₃	1	ortho
40	C ₁₈ H ₃₇ O	C ₆ H ₁₃	2	ortho/para
	CH ₃ O	· CH ₃ O	1	para
	CH ₃ O	CH ₃ O	1	meta
	CH ₃ O	CH ₃ O	1	ortho
45	CH ₃ O	CH ₃ O	2	ortho/para
	C ₂ H ₅ O	CH ₃ O	1	para
	C ₂ H ₅ O	CH ₃ O	1	meta ortho
**	C ₂ H ₅ O	CH ₃ O	2	ortho/para
50	C ₂ H ₅ O	CH ₃ O	1	para
	C ₃ H ₇ O	CH ₃ O	1	meta
	C ₃ H ₇ O	CH ₃ O	1	ortho
55	C ₃ H ₇ O	CH ₃ O	2	ortho/para
33	C ₃ H ₇ O	CH ₃ O	1	para
	C ₄ H ₉ O	CH ₃ O	1	meta
	C ₄ H ₉ O	CH ₃ O	1.	ortho
60	C ₄ H ₉ O	CH ₃ O	2	ortho/para
30	C ₄ H ₉ O	CH ₃ O	1	para
	C ₅ H ₁₁ O	CH ₃ O	1	meta
	C ₅ H ₁₁ O	CH ₃ O	1	ortho
65	C ₅ H ₁₁ O	CH ₃ O	2	ortho/para
	03:110		1	para
	C ₆ H ₁₃ O	CH ₃ O		Ibara

х	R ⁵	n	Position		
C ₆ H ₁₃ O	CH ₃ O	1	meta	<u> </u>	. 5
C ₆ H ₁₃ O	CH ₃ O	1	ortho		
	CH ₃ O	2	ortho/para		
C ₆ H ₁₃ O C ₈ H ₁₇ O	CH ₃ O	1	para	7	
	CH ₃ O	1	meta		10
C ₈ H ₁₇ O	CH ₃ O	1	ortho	7	
C ₈ H ₁₇ O	CH ₃ O	2	ortho/para		
C ₈ H ₁₇ O	CH ₃ O	1	para	7	
C ₁₂ H ₂₅ O	CH ₃ O	1	meta	7	15
C ₁₂ H ₂₅ O	CH ₃ O	1	ortho	7	
C ₁₂ H ₂₅ O	CH ₃ O	2	ortho/para	7	
C ₁₂ H ₂₅ O	CH ₃ O	1	para	1	
C ₁₃ H ₂₇ O		1	meta	-	20
C ₁₃ H ₂₇ O	CH ₃ O	1	ortho	┪	
C ₁₃ H ₂₇ O	CH ₃ O	2	ortho/para		
C ₁₃ H ₂₇ O	CH ₃ O	1	para		
C ₁₄ H ₂₉ O	CH ₃ O	1	meta	=	25
C ₁₄ H ₂₉ O	CH ₃ O	1	ortho		
C ₁₄ H ₂₉ O	CH ₃ O	2	ortho/para	-	
C ₁₄ H ₂₉ O	CH ₃ O		para	- .	
C ₁₅ H ₃₁ O	CH ₃ O	1		┥	30
C ₁₅ H ₃₁ O	CH ₃ O	1 1	meta ortho		
C ₁₅ H ₃₁ O	CH ₃ O	2	ortho/para	-	
C ₁₅ H ₃₁ O	CH ₃ O	1	para	-	
C ₁₆ H ₃₃ O	CH ₃ O		meta	-	35
C ₁₆ H ₃₃ O	CH ₃ O	1	ortho	-	
C ₁₆ H ₃₃ O	CH ₃ O		ortho/para	-	
C ₁₆ H ₃₃ O	CH ₃ O	1	para		
C ₁₇ H ₃₅ O	CH ₃ O	1	meta		40
C ₁₇ H ₃₅ O	CH ₃ O	1	ortho	-	
C ₁₇ H ₃₅ O	CH ₃ O	1 2	ortho/para		
C ₁₇ H ₃₅ O	CH ₃ O	1	para		
C ₁₈ H ₃₇ O	CH ₃ O	1	meta		45
C ₁₈ H ₃₇ O	CH ₃ O	1	ortho		
C ₁₈ H ₃₇ O	CH ₃ O	2	ortho/para		
C ₁₈ H ₃₇ O	CH ₃ O	1	para		
CH ₃ O	C ₂ H ₅ O	1	meta	-	50
CH ₃ O	C ₂ H ₅ O	1 -	ortho		
CH ₃ O	C ₂ H ₅ O	2	ortho/para		
CH ₃ O	C ₂ H ₅ O	1	para		
C ₂ H ₅ O	C ₂ H ₅ O	1	meta		55
C ₂ H ₅ O	C ₂ H ₅ O	1	ortho	-	
C ₂ H ₅ O	C ₂ H ₅ O	2	ortho/para		
C ₂ H ₅ O	C ₂ H ₅ O	1	para		
C ₃ H ₇ O	C ₂ H ₅ O	+ 1	meta	 .	60
C ₃ H ₇ O	C ₂ H ₅ O		ortho		
C ₃ H ₇ O	C ₂ H ₅ O	1 2	ortho/para	-	
C ₃ H ₇ O	C ₂ H ₅ O	2			
C ₄ H ₉ O	C ₂ H ₅ O	1	para		65
C ₄ H ₉ O	C ₂ H ₅ O	1	meta	- -{	
C ₄ H ₉ O	C ₂ H ₅ O	1	ortho		

	X	R ⁵	n	Position
	C ₄ H ₉ O	C ₂ H ₅ O	2	ortho/para
5	C ₅ H ₁₁ O	C ₂ H ₅ O	1	para
	C5H11O	C ₂ H ₅ O	1	meta
'	C5H11O	C ₂ H ₅ O	1	ortho
	C ₅ H ₁₁ O	C ₂ H ₅ O	2	ortho/para
10	C ₆ H ₁₃ O	C ₂ H ₅ O	1	para
	C ₆ H ₁₃ O	C ₂ H ₅ O	1	meta
	C ₆ H ₁₃ O	C ₂ H ₅ O	1	ortho
15	C ₆ H ₁₃ O	C ₂ H ₅ O	2	ortho/para
15	C ₈ H ₁₇ O	C ₂ H ₅ O	1	para
	C ₈ H ₁₇ O	C ₂ H ₅ O	1	meta
	C ₈ H ₁₇ O	C ₂ H ₅ O	1	ortho
20	C8H17O	C ₂ H ₅ O	2	ortho/para
21	C ₁₂ H ₂₅ O	C ₂ H ₅ O	1	para
	C ₁₂ H ₂₅ O	- C ₂ H ₅ O	1	meta
	C ₁₂ H ₂₅ O	C ₂ H ₅ O	1	ortho
25	C ₁₂ H ₂₅ O	C ₂ H ₅ O	2	ortho/para
	C ₁₃ H ₂₇ O	C ₂ H ₅ O	1	para
	C ₁₃ H ₂₇ O	C ₂ H ₅ O	1	meta
	C ₁₃ H ₂₇ O	C ₂ H ₅ O	1	ortho
30	C ₁₃ H ₂₇ O	C ₂ H ₅ O	2	ortho/para
	C ₁₄ H ₂₉ O	C ₂ H ₅ O	1	para
	C ₁₄ H ₂₉ O	C ₂ H ₅ O	1	meta
	C ₁₄ H ₂₉ O	C ₂ H ₅ O	1	ortho
35	C ₁₄ H ₂₉ O	C ₂ H ₅ O	2	ortho/para
	C ₁₅ H ₃₁ O	C ₂ H ₅ O	1	para
	C ₁₅ H ₃₁ O	C ₂ H ₅ O	1	meta
	C ₁₅ H ₃₁ O	C ₂ H ₅ O	1	ortho
40	C ₁₅ H ₃₁ O	C ₂ H ₅ O	2	ortho/para
	C ₁₆ H ₃₃ O	C ₂ H ₅ O	1	para
	C ₁₆ H ₃₃ O	C ₂ H ₅ O	1	meta
	C ₁₆ H ₃₃ O	C ₂ H ₅ O	1	ortho
45	C ₁₆ H ₃₃ O	C ₂ H ₅ O	2	ortho/para
	C ₁₇ H ₃₅ O	C ₂ H ₅ O C ₂ H ₅ O	1	para
	C ₁₇ H ₃₅ O	C ₂ H ₅ O	1	meta ortho
50	C ₁₇ H ₃₅ O C ₁₇ H ₃₅ O	C ₂ H ₅ O	2	ortho/para
	C ₁₈ H ₃₇ O	C ₂ H ₅ O	1	para
•	C ₁₈ H ₃₇ O	C ₂ H ₅ O	1	meta
	C ₁₈ H ₃₇ O	C ₂ H ₅ O	1	ortho
55	C ₁₈ H ₃₇ O	C ₂ H ₅ O	2	ortho/para
	CH ₃ O	C ₃ H ₇ O	1	meta
	CH ₃ O	C ₃ H ₇ O	1	para
	CH ₃ O	C ₃ H ₇ O	1	ortho
60	CH ₃ O	C ₃ H ₇ O	2	ortho/para
	C ₂ H ₅ O	C ₃ H ₇ O	1	para
	C ₂ H ₅ O	C ₃ H ₇ O	1	meta
	C ₂ H ₅ O	C ₃ H ₇ O	1	ortho
65	C ₂ H ₅ O	C ₃ H ₇ O	2	ortho/para
	C ₃ H ₇ O	C ₃ H ₇ O	1	para
	-3-1-V	-3/-		15

	7 75		Position	
Х	R ⁵	n	POSICION	
C ₃ H ₇ O	C ₃ H ₇ O	1	meta	5
C ₃ H ₇ O	C ₃ H ₇ O	1	ortho	,
C ₃ H ₇ O	C ₃ H ₇ O	2	ortho/para	
C ₄ H ₉ O	C ₃ H ₇ O	1	para	
C ₄ H ₉ O	C ₃ H ₇ O	1	meta	10
C ₄ H ₉ O	C ₃ H ₇ O	1	ortho	10
C ₄ H ₉ O	C ₃ H ₇ O	2	ortho/para	
C ₅ H ₁₁ O	C ₃ H ₇ O	1	para	
C ₅ H ₁₁ O	C ₃ H ₇ O	1	meta	15
C ₅ H ₁₁ O	C ₃ H ₇ O	1	ortho	
C ₅ H ₁₁ O	C ₃ H ₇ O	2	ortho/para	
C ₆ H ₁₃ O	C ₃ H ₇ O	1	para	
C ₆ H ₁₃ O	C ₃ H ₇ O	1	meta	20
C ₆ H ₁₃ O	C ₃ H ₇ O	1	ortho	
C ₆ H ₁₃ O	C ₃ H ₇ O	2	ortho/para	
C ₈ H ₁₇ O	C ₃ H ₇ O	1	para	
C ₈ H ₁₇ O	C ₃ H ₇ O	1	meta	25
C ₈ H ₁₇ O	C ₃ H ₇ O	1	ortho	·
C ₈ H ₁₇ O	C ₃ H ₇ O	2	ortho/para	
C ₁₂ H ₂₅ O	C ₃ H ₇ O	1	para	
C ₁₂ H ₂₅ O	C ₃ H ₇ O	1	meta	30
C ₁₂ H ₂₅ O	C ₃ H ₇ O	1	ortho	
C ₁₂ H ₂₅ O	C ₃ H ₇ O	2	ortho/para	
C ₁₃ H ₂₇ O	C ₃ H ₇ O	1	para	
C ₁₃ H ₂₇ O	C ₃ H ₇ O	1	meta	35
C ₁₃ H ₂₇ O	C ₃ H ₇ O	1	ortho	
C ₁₃ H ₂₇ O	C ₃ H ₇ O	2	ortho/para	
C ₁₄ H ₂₉ O	C ₃ H ₇ O	1	para	·
C ₁₄ H ₂₉ O	C ₃ H ₇ O	1	meta	40
C ₁₄ H ₂₉ O	C ₃ H ₇ O	1	ortho	Į
C ₁₄ H ₂₉ O	C ₃ H ₇ O	2	ortho/para	
C ₁₅ H ₃₁ O	C ₃ H ₇ O	1	para	غ.
C ₁₅ H ₃₁ O	C ₃ H ₇ O	1	meta	45
C ₁₅ H ₃₁ O	C ₃ H ₇ O	1	ortho	·
C ₁₅ H ₃₁ O	C ₃ H ₇ O	2	ortho/para	
C ₁₆ H ₃₃ O	C ₃ H ₇ O	1	para	. so
C ₁₆ H ₃₃ O	C ₃ H ₇ O	1	meta	~
C ₁₆ H ₃₃ O	C ₃ H ₇ O	1	ortho	4
C ₁₆ H ₃₃ O	C ₃ H ₇ O	2	ortho/para	4
C ₁₇ H ₃₅ O	C ₃ H ₇ O	1	para	55
C ₁₇ H ₃₅ O	C ₃ H ₇ O	1	meta	4
C ₁₇ H ₃₅ O	C ₃ H ₇ O	1 2	ortho	
C ₁₇ H ₃₅ O	C ₃ H ₇ O	2	ortho/para	4
C ₁₈ H ₃₇ O	C ₃ H ₇ O	1	para	4 60
C ₁₈ H ₃₇ O	C ₃ H ₇ O	1	meta	-
C ₁₈ H ₃₇ O	C ₃ H ₇ O	1	ortho	-{
C ₁₈ H ₃₇ O	C ₃ H ₇ O	2	ortho/para .	-
CH ₃ O	C ₄ H ₉ O	1	meta	65
CH ₃ O	C ₄ H ₉ O	1	para	-{
CH ₃ O	C ₄ H ₉ O	1	ortho	_1

	Х	R ⁵	n	Position
	CH ₃ O	C ₄ H ₉ O	2	ortho/para
5	C ₂ H ₅ O	C ₄ H ₉ O	1	para
		C ₄ H ₉ O	1	meta
;	C ₂ H ₅ O	C ₄ H ₉ O	1	ortho
	C ₂ H ₅ O	C ₄ H ₉ O	2	ortho/para
10	C ₂ H ₅ O		1	
	C ₃ H ₇ O	C ₄ H ₉ O		para
	C ₃ H ₇ O	C ₄ H ₉ O	1	meta
	C ₃ H ₇ O	C ₄ H ₉ O	1	ortho
15	C ₃ H ₇ O	C ₄ H ₉ O	2	ortho/para
	C ₄ H ₉ O	C ₄ H ₉ O	1	para
	C ₄ H ₉ O	C ₄ H ₉ O	1	meta
	C ₄ H ₉ O	C ₄ H ₉ O	1	ortho
20	C ₄ H ₉ O	C ₄ H ₉ O	2	ortho/para
	C ₅ H ₁₁ O	C ₄ H ₉ O	1	para
	C ₅ H ₁₁ O	C ₄ H ₉ O	1	meta
	C ₅ H ₁₁ O	C ₄ H ₉ O	1	ortho
25	C ₅ H ₁₁ O	C ₄ H ₉ O	2	ortho/para
	C ₆ H ₁₃ O	C ₄ H ₉ O	1	para
	C ₆ H ₁₃ O	C ₄ H ₉ O	1	meta
	C ₆ H ₁₃ O	C ₄ H ₉ O	1	ortho
30	C ₆ H ₁₃ O	C ₄ H ₉ O	2	ortho/para
	C ₈ H ₁₇ O	C ₄ H ₉ O	1	para
	C ₈ H ₁₇ O	C ₄ H ₉ O	1	meta
	C ₈ H ₁₇ O	C ₄ H ₉ O	1	ortho
35	C ₈ H ₁₇ O	C ₄ H ₉ O	2	ortho/para
	C ₁₂ H ₂₅ O	C ₄ H ₉ O	1	para
	C ₁₂ H ₂₅ O	C ₄ H ₉ O	1	meta
	C ₁₂ H ₂₅ O	C ₄ H ₉ O	1	ortho
40	C ₁₂ H ₂₅ O	C ₄ H ₉ O	2	ortho/para
	C ₁₃ H ₂₇ O	C ₄ H ₉ O	1	para
	C ₁₃ H ₂₇ O	C ₄ H ₉ O	1	meta
	C ₁₃ H ₂₇ O .	C ₄ H ₉ O	1	ortho
45	C ₁₃ H ₂₇ O	C ₄ H ₉ O	2	ortho/para
	C ₁₄ H ₂₉ O	C ₄ H ₉ O	1	para
	C ₁₄ H ₂₉ O	C ₄ H ₉ O	1	meta
	C ₁₄ H ₂₉ O	C ₄ H ₉ O	1	ortho
50	C ₁₄ H ₂₉ O	C ₄ H ₉ O	2	ortho/para
	C ₁₅ H ₃₁ O	C ₄ H ₉ O	1	para
	C ₁₅ H ₃₁ O	C ₄ H ₉ O	1	meta
	C ₁₅ H ₃₁ O	C ₄ H ₉ O	1	ortho
55	C ₁₅ H ₃₁ O	C ₄ H ₉ O	2	ortho/para
	C ₁₆ H ₃₃ O	C ₄ H ₉ O	1	para
	C ₁₆ H ₃₃ O	C ₄ H ₉ O	1	meta
	C ₁₆ H ₃₃ O	C ₄ H ₉ O	1	ortho
60	C ₁₆ H ₃₃ O	C ₄ H ₉ O	2	ortho/para
	C ₁₇ H ₃₅ O	C ₄ H ₉ O	1	para
	C ₁₇ H ₃₅ O	C ₄ H ₉ O	1	meta
	C ₁₇ H ₃₅ O	C ₄ H ₉ O	1	ortho
65	C ₁₇ H ₃₅ O	C ₄ H ₉ O	2	ortho/para
	C ₁₈ H ₃₇ O	C ₄ H ₉ O	1	para

x	R ⁵	n	Position	
C ₁₈ H ₃₇ O	C ₄ H ₉ O	1	meta	5
C ₁₈ H ₃₇ O	C ₄ H ₉ O	1	ortho	•
C ₁₈ H ₃₇ O	C ₄ H ₉ O	2	ortho/para	
CH ₃ O	C ₅ H ₁₁ O	1	meta	
CH ₃ O	C ₅ H ₁₁ O	1	para	10
CH ₃ O	C ₅ H ₁₁ O	1	ortho	
CH3O	C ₅ H ₁₁ O	2 .	ortho/para	
C ₂ H ₅ O	C ₅ H ₁₁ O	1	para	
C ₂ H ₅ O	C ₅ H ₁₁ O	1	meta	15
C ₂ H ₅ O	C ₅ H ₁₁ O	1	ortho	
C ₂ H ₅ O	C ₅ H ₁₁ O	2	ortho/para	
	C ₅ H ₁₁ O	1	para	
C ₃ H ₇ O	C ₅ H ₁₁ O	1	meta	20
C ₃ H ₇ O	C ₅ H ₁₁ O	1	ortho	-
C ₃ H ₇ O	C ₅ H ₁₁ O	2	ortho/para	·
C ₃ H ₇ O	C ₅ H ₁₁ O	1	para	
C ₄ H ₉ O	C ₅ H ₁₁ O	1	meta	25
C ₄ H ₉ O	C ₅ H ₁₁ O	1	ortho	
C ₄ H ₉ O	C ₅ H ₁₁ O	2	ortho/para	
C4H9O	C ₅ H ₁₁ O	1	para	
C ₅ H ₁₁ O		1	meta	30
C5H11O	C ₅ H ₁₁ O	1	ortho	
C ₅ H ₁₁ O	C ₅ H ₁₁ O	2	ortho/para	
C5H11O	C ₅ H ₁₁ O	1	para	
C ₆ H ₁₃ O		1	meta	35
C ₆ H ₁₃ O	C5H11O	1	ortho	
C ₆ H ₁₃ O	C ₅ H ₁₁ O C ₅ H ₁₁ O	2	ortho/para	
C ₆ H ₁₃ O	C5H110	1	para	
C ₈ H ₁₇ O	C5H110	1	meta	40
C ₈ H ₁₇ O	C ₅ H ₁₁ O	1.	ortho	
C ₈ H ₁₇ O	C ₅ H ₁₁ O	2	ortho/para	
C ₈ H ₁₇ O	C ₅ H ₁₁ O	1	para	
C ₁₂ H ₂₅ O	C ₅ H ₁₁ O	1	meta	45
C ₁₂ H ₂₅ O	C ₅ H ₁₁ O	1	ortho	1
C ₁₂ H ₂₅ O	C ₅ H ₁₁ O	2	ortho/para	
C ₁₂ H ₂₅ O	C ₅ H ₁₁ O	1	para	i ·
C ₁₃ H ₂₇ O	C ₅ H ₁₁ O	1	meta	· · · · · · · · · · · · so
C ₁₃ H ₂₇ O	C ₅ H ₁₁ O	1	ortho	
C ₁₃ H ₂₇ O	C ₅ H ₁₁ O	2	ortho/para	1
C ₁₃ H ₂₇ O	C ₅ H ₁₁ O	1	para	1
C ₁₄ H ₂₉ O	C ₅ H ₁₁ O	1	meta	55
C ₁₄ H ₂₉ O	C ₅ H ₁₁ O	1	ortho	1
C ₁₄ H ₂₉ O	C ₅ H ₁₁ O	2	ortho/para	1
C ₁₄ H ₂₉ O	C ₅ H ₁₁ O	1	para	
C ₁₅ H ₃₁ O	C ₅ H ₁₁ O	1	meta	60
C ₁₅ H ₃₁ O	C ₅ H ₁₁ O	1	ortho	1
C ₁₅ H ₃₁ O		2	ortho/para	1
C ₁₅ H ₃₁ O	C ₅ H ₁₁ O	1	para	1
C ₁₆ H ₃₃ O	C ₅ H ₁₁ O	1 1	meta	65
C ₁₆ H ₃₃ O	C ₅ H ₁₁ O	1 1	ortho	1
C ₁₆ H ₃₃ O	C ₅ H ₁₁ O	1 +	OT CHO	

ſ	Х	R ⁵	n	Position
. }	C ₁₆ H ₃₃ O	C5H11O	2	ortho/para
5	C ₁₇ H ₃₅ O	C ₅ H ₁₁ O	1	para
1	C ₁₇ H ₃₅ O	C ₅ H ₁₁ O	1	meta
	C ₁₇ H ₃₅ O	C ₅ H ₁₁ O	1	ortho
	C ₁₇ H ₃₅ O	C5H11O	2	ortho/para
10	C ₁₈ H ₃₇ O	C ₅ H ₁₁ O	1	para
	C ₁₈ H ₃₇ O	C ₅ H ₁₁ O	1	meta
	C ₁₈ H ₃₇ O	C ₅ H ₁₁ O	1	ortho
	C ₁₈ H ₃₇ O	C ₅ H ₁₁ O	2	ortho/para
15	CH ₃ O	C ₆ H ₁₃ O	1	meta
	CH ₃ O	C ₆ H ₁₃ O	1	para
	CH ₃ O	C ₆ H ₁₃ O	1	ortho
	CH ₃ O	C ₆ H ₁₃ O	2	ortho/para
2()	C ₂ H ₅ O	C ₆ H ₁₃ O	1	para
		C ₆ H ₁₃ O	1	meta
	C ₂ H ₅ O	C ₆ H ₁₃ O	1	ortho
	C ₂ H ₅ O	C ₆ H ₁₃ O	2	ortho/para
25	C ₂ H ₅ O C ₃ H ₇ O	C ₆ H ₁₃ O	1	para
	C ₃ H ₇ O	C ₆ H ₁₃ O	1	meta
	C ₃ H ₇ O	C ₆ H ₁₃ O	1	ortho
30	C ₃ H ₇ O	C ₆ H ₁₃ O	2	ortho/para
30	C ₄ H ₉ O	C ₆ H ₁₃ O	1	para
	C ₄ H ₉ O	C ₆ H ₁₃ O	1	meta
	C ₄ H ₉ O	C ₆ H ₁₃ O	1	ortho
35	C ₄ H ₉ O	C ₆ H ₁₃ O	2	ortho/para
	C ₅ H ₁₁ O	C6H13O	1	para
	C ₅ H ₁₁ O	C ₆ H ₁₃ O	1	meta
	C ₅ H ₁₁ O	C ₆ H ₁₃ O	1	ortho
40	C ₅ H ₁₁ O	C6H13O	2	ortho/para
	C ₆ H ₁₃ O	C6H13O	1	para
	C ₆ H ₁₃ O	C ₆ H ₁₃ O	1	meta
	C ₆ H ₁₃ O	C ₆ H ₁₃ O	1	ortho
45	C ₆ H ₁₃ O	C ₆ H ₁₃ O	2	ortho/para
	C ₈ H ₁₇ O	C ₆ H ₁₃ O	1	para
	C ₈ H ₁₇ O	C ₆ H ₁₃ O	1	meta
	C ₈ H ₁₇ O	C ₆ H ₁₃ O	1	ortho
50	C ₈ H ₁₇ O	C ₆ H ₁₃ O	2	ortho/para
t	C ₁₂ H ₂₅ O	C ₆ H ₁₃ O	1	para
	C ₁₂ H ₂₅ O	C ₆ H ₁₃ O	1	meta
	C ₁₂ H ₂₅ O	C ₆ H ₁₃ O	1	ortho
55	C ₁₂ H ₂₅ O	C ₆ H ₁₃ O	2	ortho/para
	C ₁₃ H ₂₇ O	C ₆ H ₁₃ O	1	para
	C ₁₃ H ₂₇ O	C ₆ H ₁₃ O	1	meta
	C ₁₃ H ₂₇ O	C ₆ H ₁₃ O	1	ortho
60	C ₁₃ H ₂₇ O	C ₆ H ₁₃ O	2	ortho/para
	C ₁₄ H ₂₉ O	C ₆ H ₁₃ O	1	para
	C ₁₄ H ₂₉ O	C ₆ H ₁₃ O	1	meta
	C ₁₄ H ₂₉ O	C ₆ H ₁₃ O	1	ortho
65	C ₁₄ H ₂₉ O	C ₆ H ₁₃ O	2	ortho/para
	C ₁₅ H ₃₁ O	C ₆ H ₁₃ O	1	para

			Position	7	
X	R ⁵	n	POBICION		
C ₁₅ H ₃₁ O	C ₆ H ₁₃ O	1	meta		. 5
	C ₆ H ₁₃ O	1	ortho		
C ₁₅ H ₃₁ O	C ₆ H ₁₃ O	2	ortho/para		
C ₁₅ H ₃₁ O C ₁₆ H ₃₃ O	C ₆ H ₁₃ O	1	para	7	
	C ₆ H ₁₃ O	1	meta		10
C ₁₆ H ₃₃ O	C ₆ H ₁₃ O	1	ortho		
C ₁₆ H ₃₃ O	C ₆ H ₁₃ O	2	ortho/para		
C ₁₆ H ₃₃ O	C ₆ H ₁₃ O	1	para		
C ₁₇ H ₃₅ O	C ₆ H ₁₃ O	1	meta		15
C ₁₇ H ₃₅ O	C ₆ H ₁₃ O	1	ortho		
C ₁₇ H ₃₅ O	C ₆ H ₁₃ O	2	ortho/para		
C ₁₇ H ₃₅ O	C ₆ H ₁₃ O	1	para		
C ₁₈ H ₃₇ O	C ₆ H ₁₃ O	1	meta		20
C ₁₈ H ₃₇ O	C ₆ H ₁₃ O	1	ortho	7	
C ₁₈ H ₃₇ O	C ₆ H ₁₃ O	2	ortho/para	7	
C ₁₈ H ₃₇ O	C ₇ H ₁₅ O	1	meta	_	
CH ₃ O	C ₇ H ₁₅ O	1	para		25
CH ₃ O	C ₇ H ₁₅ O	1	ortho		
CH ₃ O	C ₇ H ₁₅ O	2	ortho/para		
CH ₃ O	C ₇ H ₁₅ O	1	para		
C ₂ H ₅ O	C7H15O	1	meta		30
C ₂ H ₅ O	C7H15O	1	ortho		
C ₂ H ₅ O	C ₇ H ₁₅ O	2	ortho/para		
C ₂ H ₅ O	C7H15O	1	para	–	
C ₃ H ₇ O	C ₇ H ₁₅ O	1	meta		35
C ₃ H ₇ O	C ₇ H ₁₅ O	1	ortho		
C ₃ H ₇ O	C7H15O	2	ortho/para		
C ₃ H ₇ O	C7H15O	1	para		
C ₄ H ₉ O	C7H15O	1	meta		40
C ₄ H ₉ O	C7H15O	1	ortho		
C ₄ H ₉ O	C7H15O	2	ortho/para		
C ₅ H ₁₁ O	. C7H15O	1	para		
C ₅ H ₁₁ O	C7H15O	1	meta		. 45
C ₅ H ₁₁ O	C7H15O	1	ortho		
C ₅ H ₁₁ O	C7H15O	2	ortho/para		
C ₆ H ₁₃ O	C7H15O	1	para		
C ₆ H ₁₃ O	C7H15O	1	meta		50
C ₆ H ₁₃ O	C7H15O	1	ortho		
C ₆ H ₁₃ O	C7H15O	2	ortho/para		
C ₈ H ₁₇ O	C7H15O	1	para		
C ₈ H ₁₇ O	C7H15O	1	meta		55
C ₈ H ₁₇ O	C7H15O	1	ortho		
C ₈ H ₁₇ O	C7H15O	2	ortho/para		
C ₁₂ H ₂₅ O	C7H15O	1	para		
C ₁₂ H ₂₅ O	C7H15O	1	meta		6
C ₁₂ H ₂₅ O	C7H15O	1	ortho		
C ₁₂ H ₂₅ O	C ₇ H ₁₅ O	2	ortho/para		
C ₁₃ H ₂₇ O	C7H15O	1	para		6
C ₁₃ H ₂₇ O	C7H15O	1	meta		6
C ₁₃ H ₂₇ O	C ₇ H ₁₅ O	1	ortho		
-1321-					

	X	R ⁵	n	Position
5	C ₁₃ H ₂₇ O	C7H15O	2	ortho/para
•	C ₁₄ H ₂₉ O	C7H15O	1	para
	C ₁₄ H ₂₉ O	C7H15O	1	meta
	C ₁₄ H ₂₉ O	C7H15O	1	ortho
10	C ₁₄ H ₂₉ O	C7H15O	2	ortho/para
10	C ₁₅ H ₃₁ O	C7H15O	1	para
•	C ₁₅ H ₃₁ O	C7H15O	1	meta
	C ₁₅ H ₃₁ O	C7H15O	1	ortho
15	C ₁₅ H ₃₁ O	C ₇ H ₁₅ O	2	ortho/para
.5	C ₁₆ H ₃₃ O	C7H15O	1	para
	C ₁₆ H ₃₃ O	C7H15O	1	meta
	C ₁₆ H ₃₃ O	C7H15O	1	ortho
20	C ₁₆ H ₃₃ O	C7H15O	2	ortho/para
	C ₁₇ H ₃₅ O	C7H15O	1	para
	C ₁₇ H ₃₅ O	C7H15O	1	meta
	C ₁₇ H ₃₅ O	C7H15O	1	ortho
25	C ₁₇ H ₃₅ O	C7H15O	2	ortho/para
	C ₁₈ H ₃₇ O	C7H15O	1	para
	C ₁₈ H ₃₇ O	C7H15O	1	meta
	C ₁₈ H ₃₇ O	C7H15O	1	ortho
30	C ₁₈ H ₃₇ O	C7H15O	2	ortho/para
	CH ₃ O	C ₈ H ₁₇ O	1	meta
	CH ₃ O	C ₈ H ₁₇ O	1	para
	CH ₃ O	C ₈ H ₁₇ O	1	ortho
35	CH ₃ O	C ₈ H ₁₇ O	2	ortho/para
	C ₂ H ₅ O	C ₈ H ₁₇ O	1	para
	C ₂ H ₅ O	C ₈ H ₁₇ O	1	meta
	C ₂ H ₅ O	C ₈ H ₁₇ O	1	ortho
40	C ₂ H ₅ O	C ₈ H ₁₇ O	2	ortho/para
	C ₃ H ₇ O	C ₈ H ₁₇ O	1	para
	C ₃ H ₇ O	C ₈ H ₁₇ O	1	meta
	C ₃ H ₇ O	C ₈ H ₁₇ O	1	ortho
45	C ₃ H ₇ O	C ₈ H ₁₇ O	2	ortho/para
	C ₄ H ₉ O	C ₈ H ₁₇ O	1	para
	C ₄ H ₉ O	C ₈ H ₁₇ O	1	meta Ortho
50	C ₄ H ₉ O	C _B H ₁₇ O	2	ortho/para
-	C ₄ H ₉ O	C ₈ H ₁₇ O		
	C ₅ H ₁₁ O	C ₈ H ₁₇ O C ₈ H ₁₇ O	1	meta
	C ₅ H ₁₁ O	G ₈ H ₁₇ O	1	ortho
55	C ₅ H ₁₁ O C ₅ H ₁₁ O	C ₈ H ₁₇ O	2	ortho/para
	C ₆ H ₁₃ O	C ₈ H ₁₇ O	1	para
		C ₈ H ₁₇ O	1	meta
	C ₆ H ₁₃ O C ₆ H ₁₃ O	C ₈ H ₁₇ O	1	ortho
60		C ₈ H ₁₇ O	2	ortho/para
	C ₆ H ₁₃ O	C ₈ H ₁₇ O	1	para
	C ₈ H ₁₇ O		1	meta
	C ₈ H ₁₇ O	C ₈ H ₁₇ O	1	ortho
65	C ₈ H ₁₇ O	C ₈ H ₁₇ O	2	ortho/para
	C ₈ H ₁₇ O	C ₈ H ₁₇ O		
	C ₁₂ H ₂₅ O	C ₈ H ₁₇ O	1	para

<u> </u>	R ⁵	n	Position
•	1 -		
12H25O	C ₈ H ₁₇ O	1	meta
12H25O	C ₈ H ₁₇ O	1	ortho
12H25O	C ₈ H ₁₇ O	2	ortho/para
13H ₂₇ O	C ₈ H ₁₇ O	1	para
13H27O	C ₈ H ₁₇ O	1	meta
13H27O	C ₈ H ₁₇ O	1	ortho
C ₁₃ H ₂₇ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₄ H ₂₉ O	C ₈ H ₁₇ O	1	para
C ₁₄ H ₂₉ O	C ₈ H ₁₇ O	1	meta
C ₁₄ H ₂₉ O	C ₈ H ₁₇ O	1	ortho
C ₁₄ H ₂₉ O	C ₈ H ₁₇ O	2	ortho/para
15H31O	C ₈ H ₁₇ O	1	para
C ₁₅ H ₃₁ O	C ₈ H ₁₇ O	1	meta
C ₁₅ H ₃₁ O	C ₈ H ₁₇ O	1	ortho
C ₁₅ H ₃ 1O	C ₈ H ₁₇ O	2	ortho/para
C ₁₆ H ₃₃ O	C ₈ H ₁₇ O	1	para
16H33O	C ₈ H ₁₇ O	1	meta
C ₁₆ H ₃₃ O	C ₈ H ₁₇ O	1	ortho
C ₁₆ H ₃₃ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₇ H ₃₅ O	C ₈ H ₁₇ O	1	para
C ₁₇ H ₃₅ O	C ₈ H ₁₇ O	1	meta
C ₁₇ H ₃₅ O	C ₈ H ₁₇ O	1	ortho
C ₁₇ H ₃₅ O	C ₈ H ₁₇ O	2	ortho/para
C ₁₈ H ₃₇ O	C ₈ H ₁₇ O	1	para
C ₁₈ H ₃₇ O	C ₈ H ₁₇ O	1	meta
C ₁₈ H ₃₇ O	C ₈ H ₁₇ O	1	ortho
C ₁₈ H ₃ 7O	C ₈ H ₁₇ O	2	ortho/para

Die erfindungsgemäß zu verwendenden Verbindungen der Formel I bis III können nach der Gleichung

$$R^{1}$$
 — CH_{2} — R^{2} + R^{4} — NH_{2} + $R^{3}C(OR)_{3}$ — I

 $R = CH_3, C_2H_5$

10

15

20

25

30

35

40

55

durch Kondensation hergestellt werden, wohei R1 his R4 die ohen genannte Bedeutung hahen.

Beispielsweise ergibt die Umsetzung von 2,4-Pentandion mit Anthranilsäure-2-ethylhexylester und Triethylorthofor-

miat die Verbindung 24 in Tabelle 2. Die Lichtschutzmittel enthaltenden kosmetischen und pharmazeutischen Zubereitungen sind in der Regel auf der Basis eines Trägers, der mindestens eine Olphase enthält. Es sind aber auch Zubereitungen allein auf wäßriger Basis bei Verwendung von Verbindungen mit hydrophilen Substituenten möglich. Demgemäß kommen Öle, Öl-in-Wasser- und Wasser-in-Öl-Emulsionen, Cremes und Pasten, Lippenschutzstisunassen oder settsfreie Gele in Betracht.

Solche Sonnenschutzpräparate können demgemäß in flüssiger, pastöser oder fester Form vorliegen, beispielsweise als Wasser-in-Öl-Cremes, Öl-in-Wasser-Cremes und -Lotionen, Aerosol-Schaumeremes, Gele, Öle, Fettstifte, Puder, Sprays oder alkoholisch-wäßrige Lotionen.

Übliche Ölkomponenten in der Kosmetik sind beispielsweise Paraffinöl, Glycerylstearat, Isopropylmyristat, Diisopropyladipat, 2-Ethylhexansäurecetylstearylester, hydriertes Polyisobuten, Vaseline, Caprylsäure/Caprinsäure-Triglyceride, mikrokristallines Wachs, Lanolin und Stearinsäure.

Übliche kosmetische Hilfsstoffe, die als Zusätze in Betracht kommen können, sind z. B. Co-Emulgatoren, Fette und Wachse, Stabilisatoren, Verdickungsmittel, biogene Wirkstoffe, Filmbildner, Duftstoffe, Farbstoffe, Perlglanzmittel, Konservierungsmittel, Pigmente, Elektrolyte (z. B. Magnesiumsulfat) und pH-Regulatoren. Als Co-Emulgatoren kommen vorzugsweise bekannte W/O- und daneben auch O/W-Emulgatoren wie etwa Polyglycerinester, Sorbitanester oder teilveresterte Glyceride in Betracht. Typische Beispiele für Fette sind Glyceride; als Wachse sind u. a. Bienenwachs, Paraffinwachs oder Mikrowachse gegebenenfalls in Kombination mit hydrophilen Wachsen zu nennen. Als Stabilisatoren können Metallsalze von Fettsäuren wie z. B. Magnesium-, Aluminium- und/oder Zinkstearat eingesetzt werden. Geeig-

nete Verdickungsmittel sind beispielsweise vernetzte Polyacrylsäuren und deren Derivate, Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethylcellulose, ferner Fettalkohole, Monoglyceride und Fettsäuren, Polycrylate, Polyvinylalkohol und Polyvinylpyrrolidon. Unter biogenen Wirkstoffen sind beispielsweise Pflanzenextrakte, Eiweißhydrolysate und Vitaminkomplexe zu verstehen. Gebräuchliche Filmbildner sind beispielsweise Hydrocolloide wie Chitosan, mikrokristallines Chitosan oder quaterniertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäurereihe, quaternäre Cellulose-Derivate und ähnliche Verbindungen. Als Konservierungsmittel eignen sich beispielsweise Formaldehydlösung, p-Hydroxybenzoat oder Sorbinsäure. Als Perlglanzmittel kommen beispielsweise Glycoldistearinsäureester wie Ethylenglycoldistearat, aber auch Fettsäuren und Fettsäuremonoglycolester in Betracht. Als Farhstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkoimmission der Deutschen Forschungsgemeinschaft, veröffentlicht im Verlag Chemie, Weinheim, 1984, zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentration von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.

Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 80, vorzugsweise 6 bis 40 Gew.-% und der nicht wäßrige Anteil ("Aktivsubstanz") 20 bis 80, vorzugsweise 30 bis 70 Gew.-% – bezogen auf die Mittel – betragen. Die Herstellung der Mittel kann in an sich bekannter Weise, d. h. beispielsweise durch Heiß-, Kalt-, Heiß-Heiß/Kalt- bzw. PIT-Emulgierung erfolgen. Hierbei handelt es sich um ein rein mechanisches Verfahren, eine chemische Reaktion findet nicht statt.

Schließlich können weitere an sich bekannte im UV-A-Bereich absorbierenden Substanzen mitverwendet werden, sofern sie im Gesamtsystem der erfindungsgemäß zu verwendenden Kombination aus UV-B und UV-A-Filter stabil sind. Gegenstand der vorliegenden Erfindung sind weiterhin kosmetische und pharmazeutische Zubereitungen, die 0,1 bis

Gegenstand der vorliegenden Erfindung sind weiterhin kosmetische und pharmazeutische Zubereitungen, die 0,1 bis 10 Gew.-%, vorzugsweise 1 bis 7 Gew.-%, bezogen auf die gesamte Menge der kosmetischen und pharmazeutischen Zubereitung, eine oder mehrere der Verbindungen der Formel I zusammen mit an sich für kosmetische und pharmazeutische Zubereitungen bekannten, im UV-B-Bereich absorbierenden Verbindungen als Lichtschutzmittel enthalten, wobei die Verbindungen der Formel I in der Regel in geringerer Menge als die UV-B-absorbierenden Verbindungen eingesetzt werden.

Der größte Teil der Lichtschutzmittel in den zum Schutz der menschlichen Epidermis dienenden kosmetischen und pharmazeutischen Zubereitungen besteht aus Verbindungen, die UV-Licht im UV-B-Bereich absorbieren d. h. im Bereich von 280 bis 320 nm. Beispielsweise beträgt der Anteil der erfindungsgemäß zu verwendenden UV-A-Absorber 10 bis 90 Gew.-%, bevorzugt 20 bis 50 Gew.-% hezogen auf die Gesamtmenge von UV-B und UV-A-absorbierenden Substanzen.

Als UV-B-Filtersubstanzen, die in Kombination mit den erfindungsgemäß zu verwendenden Verbindungen der Formel I angewandt werden, kommen beliebige UV-B-Filtersubstanzen in Betracht. Beispielsweise sind zu nennen:

65

60

25

		CAS-Nr.	
Nr.	Stoff	(=Sāure)	
		150-13-0	5
1	4-Aminobenzoesäure 3-(4'Trimethylammonium)-benzylidenbornan-2-on-	52793-97-2	
2	methylsulfat	118-56-9	•
3	3,3,5-Trimethyl-cyclohexyl-salicylat (Homosalatum)		10
4	2-Hydroxy-4-methoxy-benzophenon (Oxybenzonum)	131-57-7	
5	2-Phenylbenzimidazol-5-sulfonsäure und ihre Kalium-, Natrium- u. Triethanolaminsalze	27503-81-7	15
6	3,3'-(1,4-Phenylendi-	90457-82-2	
	tan-1-methansulfonsäure) und ihre Salze 4-Bis (polyethoxy) amino-benzoesäurepolyethoxy-	113010-52-9	20
7	othvlester		
8	4-Dimethylamino-benzoesäure-2-ethylhexylester	21245-02-3	25
9	Salicylsäure-2-ethylhexylester	118-60-5	
10	4-Methoxy-zimtsäure-2-isoamylester	7/6/7-10-2	
11	4-Methoxy-zimtsäure-2-ethylhexylester	5466-77-3	30
12	2-Hydroxy-4-methoxy-benzophenon-5-sulfon- (Sulisobenzonum) und das Natriumsalz	4065-45-6	
4.0	3-(4'-Sulfo)benzyliden-bornan-2-on und Salze	58030-58-6	
13	3-(4'-Methyl)benzyliden-bornan-2-on	36861-47-9	35
14	3-Benzylidenbornan-2-on	16087-24-8	
15	1-(4'-Isopropylphenyl)-3-phenylpropan-1,3-dion	63260-25-9	
16	4-Isopropylbenzylsalicylat	94134-93-7	40
17	2,4,6-Trianilin-(0-carbo-2'-ethylhexyl-1'-oxy)-1,3,5-triazin	88122-99-0	
	3-Imidazol-4-yl-acrylsåure und ihr Ethylester	104-98-3*	4
19	3-Imidazol-4-yl-acrylsaure und Imposition	5232-99-5	1
20	2 2 dimbonylacrylsäure-2'-ethylhexyl-	6197-30-4	
22	ester	134-09-8	5
23	Menthyl-0-aminopenzoate 5-Methyl-2-(1-methylethyl)-2-aminobenzoate Glyceryl p-aminobenzoat oder:	136-44-7]
24	4-Aminobenzoesäure-1-glyceryl-ester 2,2'-Dihydroxy-4-methoxybenzophenon (Dioxyben-	131-53-3	†
25	zone) 2-Hydroxy-4-methoxy-4-methylbenzophenon (Mexo-	1641-17-4	1
<u></u>	non) 5 Triethanolamin Salicylat '	2174-16-5	
2			
2	3 4-dimethoxy-phenyi-glyoxal-sadies nacricum	56039-58-8	-
2	8 3-(4'Sulfo)benzyliden-bornan-2-on und seine Salze		_

Schließlich sind auch mikronisierte Pigmente wie Titandioxid und Zinkoxid zu nennen.

Zum Schutz menschlicher Haare vor UV-Strahlen können die erfindungsgemäßen Lichtschutzmittel der Formel I in Shampoos, Lotionen, Gelen oder Emulsionen in Konzentrationen von 0,1 bis 10 Gew.-%, bevorzugt 1 bis 7 Gew.-% eingearbeitet werden. Die jeweiligen Formulierungen können dabei u. a. zum Waschen, Färben sowie zum Frisieren der Haare verwendet werden.

Die ersindungsgemäß zu verwendenden Verbindungen zeichnen sich in der Regel durch ein besonders hohes Absorptionsvermögen im Bereich der UV-A-Strahlung mit scharfer Bandenstruktur aus. Weiterhin sind sie gut in kosmetischen Ölen löslich und lassen sich leicht in kosmetische Formulierungen einarbeiten. Die mit den Verbindungen I hergestellten Emulsionen zeichnen sich besonders durch ihre hohe Stabilität, die Verbindungen I selber durch ihre hohe Photostabilität aus, und die mit I hergestellten Zubereitungen durch ihr angenehmes Hautgefühl aus.

Gegenstand der Erfindung sind auch die Verbindungen der Formel I zur Verwendung als Medikament sowie pharmazeutische Mittel zur vorbeugenden Behandlung von Entzündungen und Allergien der Haut sowie zur Verhütung bestimmter Hautkrebsarten, welche eine wirksame Menge mindestens einer Verbindung der Formel I als Wirkstoff enthal-

Das erfindungsgemäße pharmazeutische Mittel kann oral oder topisch verabreicht werden. Für die orale Verabreichung liegt das pharmazeutische Mittel in Form von u. a. Pastillen, Gelatinekapseln, Dragees, als Sirup, Lösung, Emulsion oder Suspension vor. Die topische Anwendung der pharmazeutischen Mittel erfolgt beispielsweise als Salbe, Creme, Gel, Spray, Lösung oder Lotion.

20

Beispiele

I. Herstellung

Beispiel 1

25

Allgemeine Vorschrift (für die Verbindung der Nr. 1 der Tabelle 2)

0,1 mol p-Aminobenzoesäure-2-ethylhexylester, 0,1 mol Pivaloylacetonitril und 0,1 mol Triethylorthoformiat wurden in 100 ml Diethylenglykol 2 h auf 120°C erhitzt, wobei Ethanol abdestilliert wurde. Nach Ahktihlung auf 80°C wurde mit Wasser versetzt und vom ausgefallenen Niederschlag abfiltriert. Anschließend wurde aus Petrolether umkristallisiert. Man erhielt in 80%iger Ausbeute Verbindung 1 der Tabelle 2.

Beispiel 2

35 0,1 mol Anthranilsäure-2-ethylhexylester, 0,1 mol 2,4-Pentandion und 0,1 mol Triethylorthoformiat wurden in 100 ml Diethylenglykol 2 h auf 120°C erhitzt, wobei Ethanol abdestilliert wurde. Nach Abkühlung auf 80°C wurde mit Wasser versetzt und vom ausgefallenen Niederschlag abfültriert. Anschließend wurde aus Petrolether umkristallisiert. Man erhielt in 70%iger Ausbeute Verbindung 24 der Tabelle 2.

40

Beispiel 3

0,1 mol m-Toluidin, 0,1 mol Pivaloylacetonitril und 0,1 mol Triethylorthoformiat und 1 g Zinkchlorid wurden in 100 ml Diethylenglykol 2 h auf 120°C erhitzt, wobei Ethanol abdestilliert wurde. Nach Abkühlung auf 80°C wurde mit Wasser versetzt und vom ausgefallenen Niederschlag abfiltriert. Anschließend wurde aus Petrolether umkristallisiert. Man erhielt in 70%iger Ausbeute Verbindung 2 der Tabelle 2.

Weitere so hergestellte Verbindungen sind in Tabelle 2 angegeben.

50

55

60

Tabelle 2

	HN C= CCN	-C CH3 CH3	· ·	. 5
Nr.	R	ушах	E11	10
1)	4-COOC ₈ H ₁₇ 1)	346	860	
2)	3-CH ₃	338	978	
3)	4-OCH3	348	841	15
4)	4-tert.C ₄ H ₉	342	888	
5)	4-n-C ₄ H ₉	342	884	
6)	4-CONHC ₈ H ₁₇ 1)	346	773	20
7)	4-iso-C ₃ H ₇	342	903	2.7
8)	4-n-C ₃ H ₇	342	918	
9)	2-COOC ₈ H ₁₇ 1)	348	717	
10)	2-CN	338	995	25
11)	2-COOC ₁₅ H ₃₁ (iso) (61)	346	583	
12)	3-iso OC ₃ H ₇	340	829	
13)	2-COO × N [®] H (C ₂ H ₄ OH) ₃	346	667 (Wasser)	30
14)	2,5-Di-OCH ₃	362	491	
15)	2-COOH	346	965	
16)	4-503 × +HN (C2H4OH)3	340	666 (Wasser)	35
17)	4-SO ₃ ⊖Na⊕	340	1010 (Wasser)	•
18)	2-0C ₂ H ₅	352	876	
19)	2-C00CH3	348	995	40
20)	2-COOCH2CH (CH3) 2	348	864	
21)	2-C00C4H9	346	825	
Nr.	Verbindung	λmax	E11	45
22)	H CN	380	768	
	C = C $C = C$ C			50
23)	$C = C$ $COC (CH3)3$ $NC \downarrow S$	350	817	6 0
	√ = h			65

5		$\begin{array}{c} \text{H} \\ \text{C} \\ $	-C CH3	
10	Nr. 24)	R H COCH ₃	λmax 344	795
15		COOC ₈ H ₁₇ 1)		
20	25)	C=CCCH ₃	344	938
25		COOC4H9		
30	26)	CCCH3	336	1035
35		OCH ₃		
40	27)	COCH3	346	1049
45		COOC ₈ H ₁₇ 1)		2
50	28)	HN C = C COCH3	346	757
55		COOC ₈ H ₁₇ 1)		
60	29)	C=CCCH3	346	941
65		COOC ₈ H ₁₇ 1)		·

	HN C= CCN	-C CH ₃ CH ₃		5
Nr.	R	λmax	E ¹ 1	10
30)	COOCH3 COOCH3	344	1008	15
				20
31)	HN COOC (CH ₃) 3	344	717	25
	COOC ₈ H ₁₇ 1)			
22)	W 01	346	646	
32)	$C = C$ $C = C$ $COOC_8H_{17}$ COO			35
	OCH ₃			40
33)	$C = C$ $COOC_8H_{17} COOC_8H_{17} COOC_8H_{17$	350	612	45
	H ₃ CO			50
 34)	$c = c $ $c = c$ $cooc_8H_{17}^{11}$	322	761	55
	H ₃ CO OCH ₃			60

i				
5		$\begin{array}{c} H \\ C = C \\ CO - CO \end{array}$	-C CH ₃ CH ₃	
	Nr.	R	λmax	E11
10	35)	$C = C$ $COOC_8H_{17} $ $COOC_8H_{17} $	332	1105
15			·	
20	36)	COOC2H2 C—CCN	336	752
25		COOC ₈ H ₁₇ 1)		
30				
35	37)	COOC ₂ H ₅ COOC ₂ H ₅	336	890
				630
45	38)	$C = C$ $COOC_2H_5$ $COOC_2H_5$ $COOC_8H_{17}$	335	630
50			·	
55	39)	C=C COOC ₂ H ₅	320	700
60		COOC ₈ H ₁₇ 1)		

	H. CN			
		CH ₃		. 5
	HN CO-	—C ← CH3		
Nr.	R	λmax	E11	10
40)	0,	358	743	10
	H			
	HN			15
1 1	COOC8H17 1)			
				. 20
41)	H CN	330	1191	
	CM CM			25
				l I
	COOC ₆ H ₁₇ 1)			30
42)	H O	374	1175	
	c=c			35
	MaN 6'			
				40
	COOC ₈ H ₁₇ 1)	362	869	-\ ·
43)	C=C CN	302		45
	HN COPh			
				50
44)	COOC ₈ H ₁₇ 1)	336	896	1
447	C=C X			55
	HN			
				60
L_	COOC ₈ H ₁₇ 1)			

1) $C_8H_{17} = 2$ -Ethylhexyl

Allgemeine Herstellvorschrift zur Herstellung von Emulsionen für kosmetische Zwecke

Alle öllöslichen Bestandteile werden in einem Rührkessel auf 85°C erwärmt. Wenn alle Bestandteile geschmolzen sind, bzw. als Flüssigphase vorliegen, wird die Wasserphase unter Homogenisieren eingearbeitet. Unter Rühren wird die Emulsion auf ca. 40°C abgekühlt, parfürniert, homogenisiert und dann unter ständigem Rühren auf 25°C abgekühlt.

Zubereitungen

Beispiel 4

10

Zusammensetzung für die Lippenpflege

ad 100 Eucerinum anhydricum
10,00 Glycerin
10,00 Titanium Dioxid
0,5-10 Verbindung Nr. 1 der Tabelle 2
8,00 Octyl Methoxycinnamat
5,00 Zink Oxid
4,00 Castoröl
4,00 Pentaerythrithil Stearat/caprat/Caprylat ∧dipat
3,00 Glyceryl Stearat SE
2,00 Bienenwachs
2,00 Microkristallines Wachs
2,00 Ouaternium-18 Bentonit

1,50 PEG-45/Dodecyl Glycol Copolymer

Beispiel 5

Zusammensetzung für die Lippenpflege

ad 100 Eucerinum anhydricum
10,00 Glycerin
10,00 Titanium Dioxid
0,5-10 Verbindung Nr. 24 der Tabelle 2
8,00 Octyl Methoxycinnamat
5,00 Zink Oxid
4,00 Castoröl
4,00 Pentaerythrithil Stearat/caprat/Caprylat Adipat
3,00 Glyceryl Stearat SE
40 2,00 Bienenwachs
2,00 Microkristallines Wachs
2,00 Quaternium-18 Bentonit
1,50 PEG-45/Dodecyl Glycol Copolymer

Zusammensetzung für Sunblocker mit Mikropigmenten

Beispiel 6

ad 100 Wasser

10,00 Octyl Methoxcinnamat
6,00 PEG-7-Hydrogenated Castor Öl
6,00 Titanium Dioxid
0,5-10 Verbindung Nr. 1 der Tabelle 2
5,00 Mineral Öl
5,00 Isoannyl p-Methoxycinnamat
5,00 Propylen Glycol
3,00 Jojoba Öl
3,00 4-Methylbenzyliden Campher
2,00 PEG-45/Dodecyl Glycol Copolymer
1,00 Dimethicon
0,50 PEG-40-Hydrogenated Castor Öl
0,50 Tocopheryl Acetat

0,50 Phenoxyethanol 0,20 EDTA

65

Beispiel 7

Zusammensetzung	für	Sunblocker m	it Mikropigmenten
-----------------	-----	--------------	-------------------

ad 100 Wasser 10,00 Octyl Methoxcinnamat 6,00 PEG-7-Hydrogenated Castor Öl	5
6,00 Titanium Dioxid 0,5–10 Verbindung Nr. 24 der Tabelle 2 5,00 Mineral Öl 5,00 Isoamyl p-Methoxycinnamat	10
5,00 Propylen Glycol 3,00 Jojoba Öl 3,00 4-Methylbenzyliden Campher 2,00 PEG-45/Dodecyl Glycol Copolymer 1,00 Dimethicon	
0,50 PEG-40-Hydrogenated Castor Öl 0,50 Tocopheryl Acetat 0,50 Phenoxyethanol 0,20 EDTA	20
Beispiel 8	
Fellfreies Gel	25
ad 100 Wasser 8,00 Octyl Methoxycinnamat 7,00 Titanium Dioxid 0,5-10 Verbindung Nr. 1 der Tabelle 2 5,00 Glycerin	. 30
5,00 PEG-25 PABA 1,00 4-Methylbenzyliden Campher 0,40 Acrylate C10-C30 Alkyl Acrylat Crosspolymer 0,30 Imidazolidinyl Urea 0,25 Hydroxyethyl Cellulose 0,25 Sodium Methylparaben 0,20 Disodium EDIA	35
0,15 Fragrance 0,15 Sodium Propylparaben 0,10 Sodium Hydroxid	40
Beispiel 9	
Feufreies Gel	45
ad 100 Wasser 8,00 Octyl Methoxycinnamat 7,00 Titanium Dioxid 0,5–10 Verbindung Nr. 24 der Tabelle 2	
5,00 Glycerin 5,00 PEG-25 PABA 1.00 4-Methylbenzyliden Campher	
0,40 Acrylate C10-C30 Alkyl Acrylat Crosspolymer 0,30 Imidazolidinyl Urea 0,25 Hydroxyethyl Cellulose 0,25 Sodium Methylparaben 0,20 Disodium ED'IA	ss
0,15 Fragrance 0,15 Sodium Propylparaben 0,10 Sodium Hydroxid	60
Beispiel 10	
Sonnencreme (LSF 20)	6.
ad 100 Wasser 8,00 Octyl Methoxycinnamat 8,00 Titanium Dioxid	

6,00 PEG-7-Hydrogenated Castor Öl 0,5 10 Verbindung Nr. 1 der Tabelle 2 6,00 Mineral Öl 5.00 Zink Oxid 5,00 Isopropyl Palmitat 5,00 Imidazolidinyl Urea 3,00 Jojoba Öl 2,00 PEG-45/Dodecyl Glycol Copolymer 1,00 4-Methylbenzyliden Campher 0,60 Magnesium Stearat 0,50 Tocopheryl Acetat 0,25 Methylparaben 0,20 Disodium EDTA 0,15 Propylparaben 15 Beispiel 11 Sonnencreme (ISF 20) ad 100 Wasser 8,00 Octyl Methoxycinnamat 8,00 Titanium Dioxid 6,00 PEG-7-Hydrogenated Castor Öl 0,5-10 Verbindung Nr. 24 der Tabelle 2 6,00 Mineral Öl 5,00 Zink Oxid 5,00 Isopropyl Palmitat 5,00 Imidazolidinyl Urca 3,00 Jojoba Öl 2,00 PEG-45/Dodecyl Glycol Copolymer 1,00 4-Methylbenzyliden Campher 0,60 Magnesium Stearat 0,50 Tocopheryl Acetat 0,25 Methylparaben 0,20 Disodium EDTA 0,15 Propylparaben Beispiel 12 Sonnencreme wasserfest ad 100 Wasser 8,00 Octyl Methoxycinnamat 5,00 PEG-7-Hydrogenated Castor Öl 5,00 Propylene Glycol 4,00 Isopropyl Palmitat 4,00 Caprylic/Capric Triglycerid 0,5-10 Verbindung Nr. 1 der Tabelle 2 4,00 Glycerin 3,00 Jojoha Öl 2,00 4-Methylbenzyliden Campher 2,00 Titanium Dioxid 1,50 PEG-45/Dodecyl Glycol Copolymer 1,50 Dimethicon 0,70 Magnesium Sulfat 0,50 Magnesium Stearat 0,15 Fragrance Beispiel 13 60 Sonnencreme wasserfest ad 100 Wasser 8,00 Octyl Methoxycinnamat 5,00 PEG-7-Hydrogenated Castor Öl 5,00 Propylene Glycol 4,00 Isopropyl Palmitat 4,00 Caprylic/Capric Triglycerid

0,5-10 Verbindung Nr. 24 der Tabelle 2

4,00 Glycerin 3,00 Jojoba Öl 2,00 4-Methylbenzyliden Campher 2,00 Titanium Dioxid 1,50 PEG-45/Dodecyl Glycol Copolymer 1,50 Dimethicon 0,70 Magnesium Sulfat 0,50 Magnesium Stearat 0,15 Fragrance		5
	Beispiel 14	10
	• •	
	Sonnenmilch (LSF 6)	
ad 100 Wasser 10,00 Mincral Öl 6,00 PEG-7-Hydrogenated Castor Öl 5,00 Isopropyl Palmitat 3,50 Octyl Methoxycinnamat 0,5 10 Verbindung Nr. 1 der Tabelle 2		15
3,00 Caprylic/Capric Triglycerid 3,00 Jojoba Öl 2,00 PEG-45/Dodecyl Glycol Copolymer 0,70 Magnesium Sulfat 0,60 Magnesium Stearat 0,50 'locopheryl Acetat 0,30 Glyccrin		25
0,25 Methylparaben 0,15 Propylparaben 0,05 Tocopherol		30
	Beispiel 15	
	Sonnenmilch (LSF 6)	35
ad 100 Wasser 10,00 Mineral Öl 6,00 PEG-7-Hydrogenated Castor Öl 5,00 Isopropyl Palmitat 3,50 Octyl Methoxycinnamat 0,5-10 Verbindung Nr. 24 der Tabelle 2 3,00 Caprylic/Capric Triglycerid	•	40
3,00 Jojoba Öl 2,00 PEG-45/Dodecyl Glycol Copolymer 0,70 Magnesium Sulfat 0,60 Magnesium Stearat 0,50 Tocopheryl Acctat		45
0,30 Glycerin 0,25 Methylparahen 0,15 Propylparahen 0,05 Tocopherol	Beispiel 16	50
	Sonnencreine wasserfest	55
ad 100 Wasser 8,00 Octyl Methoxycinnamat 5,00 PEG-7-Hydrogenated Castor Öl 5,00 Propylene (flycol	Someticiene Massertest	60
4,00 Isopropyl Palmitat 4,00 Caprylic/Capric Triglycerid 0,5-10 Verbindung Nr. 17 der Tabelle 2 0,5-10 Verbindung Nr. 24 der Tabelle 2 4,00 Glyccrin 3,00 Jojoba Öl 2,00 4-Methylbenzyliden Campher 2,00 Titanium Dioxid		65

- 1,50 PEG-45/Dodecyl Glycol Copolymer
- 1,50 Dimethicon
- 0,70 Magnesium Sulfat
- 0,50 Magnesium Stearat
- 0,15 Fragrance

Beispiel 17

Sonnenmilch

10 ad 100 Wasser

10,00 Mineral Öl

6,00 PEG-7-Hydrogenated Castor Öl

5,00 Isopropyl Palmitat

3,50 Octyl Methoxycinnamat

0,5-10 Verbindung Nr. 17 der Tabelle 2

3,00 Caprylic/Capric Triglycerid

3,00 Jojoha Öl

2.00 PEG-45/Dodecyl Glycol Copolymer

0,70 Magnesium Sulfat

0,60 Magnesium Stearat

0,50 Tocopheryl Acetat

0,30 Glycerin

0,25 Methylparaben

0,15 Propylparaben

0,05 Tocopherol.

30

35

55

60

Patentansprüche

1. Verwendung von Verbindungen der Formel I

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und die Variablen folgende Bedeutung haben: R^1 COOR 5 , CONR 5 R 6 , CN, O=S(-R 5)=O, O=S(-OR 5)=O, R 7 O-P (-OR 8)=O; R^2 COOR 6 , CONR 5 R 6 , CN, O=S(-R 6)=O, O=S(-OR 6)=O, R 7 O-P (-OR 8)=O;

R³ Wasserstoff, einen gegebenenfalls substituierten aliphatischen, cycloaliphatischen, araliphatischen oder aroma-40 tischen Rest mit jeweils bis zu 18 C-Atomen;

R4 einen gegebenenfalls substituierten aromatischen oder heteroaromatischen Rest mit 5 bis 12 Ringatomen; R⁵ bis R⁸ unabhängig voneinander Wasserstoff, einen offenkettigen oder verzweigten aliphatischen, araliphatischen, cycloaliphatischen oder gegebenenfalls substituierten aromatischen Rest mit jeweils bis zu 18 C-Atomen,

wobei die Variablen R3 bis R8 untereinander, jeweils zusammen mit den Kohlenstoffatomen, an die sie gebunden 45 sind, gemeinsam einen 5- oder 6-Ring bilden können, der gegebenenfalls weiter anelliert sein kann, als UV-Filter in kosmetischen und pharmazeutischen Zubereitungen zum Schutz der menschlichen Haut oder menschlicher Haare gegen Sonnenstrahlen, allein oder zusammen mit an sich für kosmetische und pharmazeutische

Zuhereitungen hekannten, im UV-Bereich absorbierenden Verbindungen. 50 2. Verwendung von Verbindungen der Formel I gemäß Anspruch 1 als UV-A-Filter.

3. Verwendung von Verbindungen der Formel I gemäß Anspruch 1, wobei R³ für Wasserstoff, R¹ für CN, COOR5 und COR5 und R2 für CN, COOR6 und COR6 stehen, wobei R5 und R6 voneinander unabhängig offenkettige oder verzweigte aliphatische oder gegebenenfalls substituierte, aromatische Reste mit bis zu 8 C-Atomen bedeuten.

4. Verwendung von Verbindungen der Formel I gemäß Anspruch 1, wobei R4 für gegebenenfalls durch hydrophile oder lipophile Substituenten substituiertes Phenyl steht.

5. Verwendung von Verbindungen der Formel I gemäß Anspruch 1, wobei R⁴ für einen Alkoxyphenyl- oder Alkoxyearbonylphenylrest steht.

6. Verwendung von Verbindungen der Formel I gemäß Anspruch 1, wohei R4 für einen Phenylrest steht, der wasserlöslich machende Substituenten trägt, ausgewählt aus der Gruppe bestehend aus Carboxylat, Sulfonat- oder Ammoniumresten.

7. Lichtschutzmittel enthaltende kosmetische und pharmazeutische Zubereitungen zum Schutz der menschlichen Epidermis oder menschlichen Haare gegen UV-Licht im Bereich von 280 bis 400 nm, dadurch gekennzeichnet, daß sie in einem kosmetisch und pharmazeutisch geeigneten Träger, allein oder zusammen mit an sich für kosmetische und pharmazeutische Zubereitungen bekannten im UV-Bereich absorbierenden Verbindungen, als photostabile UV-

Filter wirksame Mengen von Verbindungen der Formel I 65

$$R^3$$
 $C=C$ R^1 R^4-NH $C=C$

enthalten, in der die Variablen die Bedeutung gemäß Anspruch 1 haben.

8. Lichtschutzmittel gemäß Anspruch 7, enthaltend als UV-A-Filter Verbindungen der Formel I, wobei R³ für Wasserstoff, R¹ für CN, COOR⁵ und COR⁵ und R² für CN, COOR⁶ und COR⁶ stehen, wobei R⁵ und R⁶ gegebenenfalls substituierte aliphatische oder aromatische Reste mit bis zu 8 C-Atomen bedeuten.

9. Lichtschutzmittel gemäß Anspruch 7, enthaltend als UV-A-Filter Verbindungen der Formel I, wobei R⁴ für gegebenenfalls durch hydrophile oder lipophile Substituenten substituiertes Phenyl steht.

10. Lichtschutzmittel gemäß Anspruch 7, enthaltend als UV-A-Filter Verbindungen der Formel I, wobei wobei R³ für Wasserstoff, R¹ für CN, COOR⁵ und COR⁵ und R² für CN, COOR6 und COR6 stehen und R⁴ für einen Phenylrest steht, der durch Alkyl-, Alkoxy-, Alkylaminocarbonyl-, Alkoxycarbonylreste, mit jeweils bis zu 20 C-Atomen, oder mit Cyan- oder Carboxyresten, sowie mit wasserlöslich machenden Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Alkylammoniumresten, substituiert sein kann.

11. Neue Verbindungen der Formel II,

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und in der R⁴ einen Phenylrest bedeutet, der durch einen oder mehrere Alkyl-, Alkoxy-, Alkylaminocarbonyl-, Alkoxycarbonylreste, mit jeweils bis zu 20 C-Atomen oder Cyan- oder Carboxyreste, sowie durch wasserlöslich machende Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Alkylammoniumresten, substituiert sein kann.

12. Neue Verbindungen der Formel III,

in der die C=C Doppelbindung in der E oder Z Konfiguration vorliegt und in der R⁴ einen Phenylrest bedeutet, der durch einen oder mehrere Alkoxyreste mit bis zu 20 C-Atomen oder Alkoxycarbonylreste mit 4 bis zu 20 C-Atomen, sowie durch wasserlöslich machende Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat, Sulfonat- oder Alkylammoniumresten, substituiert sein kann und R⁵ eine offenkettige, verzweigte oder cyclische Alkyl-, Alkoxy-, oder Alkoxyalkylgruppe mit jeweils bis zu 18 C-Atomen oder eine Aryloxygruppe bedeutet.

13. Verbindungen der Formel I zur Verwendung als Arzneimittel.

14. Pharmazeutische Zubereitung, dadurch gekennzeichnet, daß sie eine wirksame Menge mindestens einer der 40

Verbindung der Formel I nach Anspruch 1 enthält.

50

45

5

55

60

- Leerseite -