Lecture 4: Backpropagation and Neural Networks

(**Before**) Linear score function: f = Wx

Lecture 4 - 83

(**Before**) Linear score function:
$$f=Wx$$

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

1 ecture 4 - 84

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

(**Before**) Linear score function:
$$f=Wx$$
 (**Now**) 2-layer Neural Network $f=W_2\max(0,W_1x)$ or 3-layer Neural Network $f=W_3\max(0,W_2\max(0,W_1x))$

This image by Fotis Bobolas is licensed under CC-BY 2.0

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system
- Rate code may not be adequate

[Dendritic Computation. London and Hausser]

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

Neural networks: Architectures

Example feed-forward computation of a neural network

```
class Neuron:
    # ...

def neuron_tick(inputs):
    """ assume inputs and weights are 1-D numpy arrays and bias is a number """
    cell_body_sum = np.sum(inputs * self.weights) + self.bias
    firing_rate = 1.0 / (1.0 + math.exp(-cell_body_sum)) # sigmoid activation function
    return firing_rate
```

We can efficiently evaluate an entire layer of neurons.

Example feed-forward computation of a neural network

hidden layer 1 hidden layer 2

```
# forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
x = np.random.randn(3, 1) # random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)
```

Summary

- We arrange neurons into fully-connected layers
- The abstraction of a **layer** has the nice property that it allows us to use efficient vectorized code (e.g. matrix multiplies)
- Neural networks are not really neural
- Next time: Convolutional Neural Networks