Ref: bazi.pe.kr

Computer System Architecture

(THIRD EDITION)

M. Morris Mano

PRENTICE HALL

Data Types

- Binary information is stored in memory or processor registers
- Registers contain either data or control information
 Data are numbers and other binary-coded information

Control information is a bit or a group of bits used to specify the sequence of command signals

Data types found in the registers of digital computers

Numbers used in arithmetic computations

Letters of the alphabet used in data processing

Other discrete symbols used for specific purpose

- » 위의 Number 와 Letter 이외 모두, 예) gray code, error detection code, ...
- The binary number system is the most natural system to use in a digital computer
- Number Systems

Base or Radix r system: uses distinct symbols for r digits

Most common number system :Decimal, Binary, Octal, Hexadecimal

Positional-value(weight) System: r² r ¹r⁰.r⁻¹ r⁻² r⁻³

» Multiply each digit by an integer power of r and then form he sum of all weighted digits

- Decimal System/Base-10 System
 - Composed of 10 symbols or numerals(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
- Binary System/Base-2 System
 Composed of 10 symbols or numerals(0, 1)
 - Bit = Binary digit
- Hexadecimal System/Base-16 System : Tab. 3-2
 Composed of 16 symbols or numerals(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)
- Binary-to-Decimal Conversions

$$1011.101_2 = (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) + (1 \times 2^{-1}) + (0 \times 2^{-2}) + (1 \times 2^{-3})$$

$$= 8_{10} + 0 + 2_{10} + 1_{10} + 0.5_{10} + 0 + 0.125_{10}$$

$$= 11.625_{10}$$

Octal-to-Decimal Conversions

$$(736.4)_8 = 7 \times 8^2 + 3 \times 8^1 + 6 \times 8^0 + 4 \times 8^{-1}$$

= $7 \times 64 + 3 \times 8 + 6 \times 1 + 4/8 = (478.5)_{10}$

Hexadecimal-to-Decimal Conversions

$$(F3)_{16} = F \times 16 + 3 = 15 \times 16 + 3 = (243)_{10}$$

```
Conversion of decimal 41.6875 into binary
     Repeated division(See p. 69, Fig. 3-1)
                   remainder 1 (binary number will end with 1): LSB remainder 0
       Integer = 41
       41/2 = 20
       20/2 = 10
       10/2 = 5
                    remainder 0
                                                                11500
        5/2 = 2 remainder 1
        2/2 = 1
                    remainder 0
        1/2 = 0
                    remainder 1 (binary number will start with 1): MSB
       Read the result upward to give an answer of (41)_{10} = (101001)_2
        Fraction = 0.6875
      0.6875 \times 2 = 1.3750 integer 1: MSB
      1.3750 \times 2 = 0.7500 integer 0
      0.7500 \times 2 = 1.5000 integer 1
      1.5000 \times 2 = 1.0000 integer 1: LSB
      Read the result downward (0.6875)_{10} = (0.1011)_{2}
        (41.6875)_{10} = (101001.1011)_{2}
                                                        곱한 결과 소수점 윗자리가
                                                        2로 나오면 0으로 고치고,
                                                       3이 나오면 1로 고치어 계산
```

하다

♦ Hex-to-Decimal Conversion

$$2AF_{16} = (2 \times 16^{2}) + (10 \times 16^{1}) + (15 \times 16^{0})$$

= $512_{10} + 160_{10} + 15_{10}$
= 687_{10}

Decimal-to-Hex Conversion

$$423_{10}$$
 / $16 = 26$ remainder 7 (Hex number will end with 7) : **LSB** 26_{10} / $16 = 1$ remainder 10 1_{10} / $16 = 0$ remainder 1 (Hex number will start with 1) : **MSB** Read the result upward to give an answer of $423_{10} = 1A7_{16}$

Table	<i>2</i> 3-2			
Hex		Binary	/	Decimal
0		0000		0
1		0001		1
2		0010		2
3		0011		3
4		0100		4
5		0101		5
6		0110		6
7		0111		7
8		1000		8
9		1001		9
Α		1010		10
В		1011		11
С		1100		12
D		1101		13
Е		1110		14
F		1111		15
14	0001	0100		20
F8	1111	1000		248
nva	rcini	n		

Hex-to-Binary Conversion

$$9F2_{16} = 9$$
 F 2
 \downarrow \downarrow \downarrow \downarrow
= 1001 1111 0010
= 100111110010₂

Binary-to-Hex Conversion

$$1110100110_{2} = \underbrace{0011}_{3} \underbrace{1010}_{0110} \underbrace{0110}_{6}$$

$$= 3A6_{16}$$

Binary, octal, and hexadecimal Conversion

Binary-Coded-Decimal Code

Each digit of a decimal number is represented by its binary equivalent

Only the four bit binary numbers from 0000 through 1001 are used Comparison of BCD and Binary

Alphanumeric Representation

Alphanumeric character set(*Tab. 3-4*)

- » 10 decimal digits, 26 letters, special character(\$, +, =,....)
- » A complete list of ASCII: p. 384, Tab. 11-1

ASCII (American Standard Code for Information Interchange)

- » Standard alphanumeric binary code uses seven bits to code 128 characters
- Unicode

• 16bits code $(2^{16} = 65536)$

[] 코드는 다양한 정신을 2진수일 팔된하기 위한 여긴 그의 걸음 다ー

Character	Binary code	Character	Binary code	Character	Binary code	Character Binary code
A	100 0001	U	101 0101	0	011 0000	/ 010 1111
В	100 0010	V	101 0110	1	011 0001	, 010 1100
C	100 0011	W	101 0111	2	011 0010	= 011 1101
D	100 0100	X	101 1000	3	011 0011	
E	100 0101	Z	101 1010	4	011 0100	
F	100 0110			5	011 0101	
G	100 0111			6	011 0110	
Н	100 1000			7	011 0111	
I	100 1001			8	011 1000	
J	100 1010			9	011 1001	
K	100 1011					
L	100 1100					
M	100 1101			space	010 0000	
N	100 1110			•	010 1110	
O	100 1111			(010 1000	
P	101 0000			+	010 1011	
Q	101 0001			\$	010 0100	
R	101 0010			*	010 1010	
S	101 0011)	010 1001	
T	101 0100			-	010 1101	

Table 3-4. ASCII

3-2. Complements

boll CHEL 99 1972 3, (3+6=9)

Complements are used in digital computers for simplifying the **subtraction operation** and for logical manipulation

```
There are two types of complements for base r system
                                                                                   でとかり タンなし月
                   1) r's complement
                                           2) (r-1)'s complement
                        Binary number: 2's or 1's complement
                        Decimal number: 10's or 9's complement
                                                                N: given number
             (r-1)'s Complement
                                                                r: base
                                                                                    45U9 97/8
                                                                n : digit number
                   (r-1)'s Complement of N = (r^n-1)-N
                                                                     9의生气,
                      » 9's complement of N=546700
                        (10^6-1)-546700 = (1000000-1)-546700 = 999999-546700
                         = 453299
                                                                       546700(N) + 453299(9's com)
                      » 1's complement of N=101101
                                                                       =999999
                      (2^{6}-1)-101101=(1000000-1)-101101=111111-101101
                                    四生年記 于的对比
                         =_010010
                                                                    101101(N) + 010010(1's com)
                                                                    =111111
           r's Complement
                                                                 * r's Complement
                   r_i's Complement of N = r^n - N
10의 보수 = 9의보수+ » 10's complement of 2389= 7610+1= 7611
                                                                 (r-1)'s Complement +1 = (r^n-1)-N+1 = r^n-N
                        2's complement of 1101100= 0010011+1= 0010100
2912年= 四十十
```

Subtraction of Unsigned Numbers

 $(M-N), N\neq 0$

- 1) $M + (r^n N)$
- 2) M ≥ N : Discard end carry, Result = M-N
- 3) M < N : No end carry, Result = r's complement of (N-M)

```
» Decimal Example)
              72532(M) - 13250(N) = 59282
                                                             13250(M) - 72532(N) = -59282
       M \ge N
                                                     M < N
                72532
                                                              13250
              + 86750 (10's complement of 13250)
                                                            + 27468 (10's complement of 72532)
Discard
End Carry
           0.1059282
                                                           40718
                                           No End Carry
              Result = 59282
                                                            Result = -(10's complement of 40718)
                                                                   = -(59281+1) = -59282
              » Binary Example)
       X \ge Y
                                                     X < Y
                                                             1000011(X) - 1010100(Y) = -0010001
              1010100(X) - 1000011(Y) = 0010001
                                                              1000011
```

 $X \ge Y$ 1010100(X) - 1000011(Y) = 0010001 1010100 + 0111101 (2's complement of 1000011) 0010001

Result = 0010001

① 1101111

Result = -(2's complement of 1101111)

= -(0010000+1) = -0010001

+ *0101100* (2's complement of 1010100)

2진수의 뺄셈

[1's Complement]

2진수의 뺄셈

[2's Complement]

4-bit Binary Adder-Subtractor

4-bit Binary Adder-Subtractor: Fig. 4-7

One common circuit by including an exclusive-OR gate with each full-adder

♦ M = 0: Adder $B \oplus M + C = B \oplus 0 + 0 = B$, .: A + B

♦ M =1 : Subtractor B \oplus M + C = B \oplus 1 + 1 = B' + 1= -B(2's comp), .: A - B

3-3. Fixed-Point Representation

*Numeric Data

- 1) Fixed Point
- 2) Floating Point

1) 0.25, 2) 32.0, 3) <u>3</u>2.25

Fixed-Point Representation

- Computers must represent everything with 1's and 0's, including the sign of a number and fixed/floating point number
- Binary/Decimal Point

The position of the binary/decimal point is needed to represent **fractions**, **integers**, or **mixed integer-fraction** number

- Two ways of specifying the position of the binary point in a register
 - 1) Fixed Point: the binary point is always fixed in one position
 - » A binary point in the extreme left of the register(Fraction: 0.xxxxx)
 - » A binary point in the extreme right of the register(Integer: xxxxxx.0)
 The binary point is not actually present, but the number stored in the register is treated as a fraction or as an integer
 - 2) Floating Point: the second register is used to designate the position of the

binary point in the first register(refer to 3-4)

Integer Representation
Signed-magnitude representation

Signed-1's complement representation→

Signed-2's complement representation →

+14	-14
0 0001110	1 0001110
0 0001110	1 1110001
0 0001110	1 1110010

* MSB for Sign
"0" is plus +
"1" is minus -

0001110

Arithmetic Addition

Addition Rules of Ordinary Arithmetic

- » The signs are same: sign= common sign, result= add
- » The signs are different: sign= larger sign, result= larger-smaller.

$$(+12) + (+13) = +25$$
 $(+25) + (-37)$

= 37 - 25 = -12

+ 13 00001101

+7 00000111

- 13 11110011

- 19 11101101

11111010

11111010

(-12) + (-13) = -25

*Addition Exam) + 6 00000110

+ 13 00001101

+ 19 00010011

6 00000110

<u>- 13 11110011</u>

- 7 11111001

Addition Rules of the signed 2's complement

- » Add the two numbers including their sign bits
- » Discard any carry out of the sign bit position

Arithmetic Subtraction

Subtraction is changed to an Addition

»
$$(\pm A) - (+ B) = (\pm A) + (- B)$$

$$(\pm A) - (-B) = (\pm A) + (+B)$$

* **Subtraction Exam**) (-6) - (-13) = +7

11111010 - 11110011 = 11111010 + 2's comp of 11110011

$$= 111111010 + 00001101$$

End Carry

Discard

Overflow

Two numbers of n digits each are added and the sum occupies n+1 digits n + 1 bit cannot be accommodated in a register with a standard length of n bits(many computer detect the occurrence of an overflow, and a corresponding F/F is set)

3-3. Fixed-Point Representation

◆ Overflow 문제검

An overflow may occur if the two numbers added are both positive or both negative

BCD코드를 연산 하려면 특별한 연산기가 필요하다

- When two unsigned numbers are added
 - an overflow is detected from the end carry out of the MSB position

 * Overflow Exam)
- When two signed numbers are added the MSB always represents the sign
 - the sign bit is treated as part of the number
 - the end carry does not indicate an overflow

Overflow Detection

Detected by observing the *carry into* the sign bit position and the *carry out* of the sign bit position

If these two carries are not equal, an overflow condition is produced(*Exclusive-OR gate* = 1)

Decimal Fixed-Point Representation

A 4 bit decimal code requires four F/Fs for each decimal digit

The representation of 4385 in BCD requires 16 F/Fs (0100 0011 1000 0101)

The representation in decimal is *wasting a considerable amount of storage* space and the circuits required to perform decimal arithmetic are *more complex*

*Decimal Exam) (+375) + (-240) 375 + (10's comp of 240)= 375 + 760

out in

1 0111010

0.1101010

- 80 1 0110000

carries 1 0

- 70

out in

0 1000110

0 1010000

1 0010110 - 150

carries 0 1

+80

+70

+ 150

0 375 (0000 0011 0111 0101) +9 760 (1001 0111 0110 0000) 0 135 (0000 0001 0011 0101)

* Advantage *
Computer I/O
data are generated
by people who use
the decimal
system

Decimal + 6132.789

Exponent

000100

Q.6132789 x 10

Exponent

Fraction

+0.6132789

Fraction

01001110

3-4 Floating-Point Representation

- The floating-point representation of a number has two parts
- <u> 가수 -></u> 1) Mantissa: signed, fixed-point number
- 2) Exponent : position of binary(decimal) point
 - Scientific notation: m x re (+0.6132789 x 10+4)
 - **m**: mantissa, **r**: radix, **e**: exponent

7 8

Virtual point

- \bullet Example : m x 2^{e} = +(.1001110)₂ x 2^{+4}
- Normalization 가장 높은 정밀도 제공

Most significant digit of mantissa is nonzero

유효자리를 최대로 하기 위해 가수부분의 값이 0.1 ~ 1사이에 있도록 조작 하는 것

(0.0000145786)₁₀를 정규화 하면 0.145786*10⁴ 1473 ONEH 18/2421

31 ケットラン Sign' Exponent Mantissa

 $\mathbf{0}$

Gray Code ちょうしょう はん はっている Gray Code Changes by only one bit (Tab. 3-5 4-bit Gray Code) 용도:

- »The data must be converted into digital form before they can be used by a digital computer(*Analog to Digital Converter*)
- »The analog data are represented by the continuous change of a shaft position(*Rotary Encoder of Motor*)

3-5. Other Binary Codes

BCD code	Binary code	Decimal equivalent	Binary code	Decimal equivalent
0 0000	0000	0	1100	8
1 0001	000	1	1101	9
2 0010	$00\sqrt{2}1$	2	1111	10
→ 3 0011	0010	3	1110	11
4 0100	0010	4	1010	12
5 0101	011	5	1011	13
6 0110	01 0 1	6	1001	14
7 0111	0100	7	1000	15

Table 3-5. 4-Bit Gray Code

3-5. Other Binary Codes

◆ Other Decimal Codes Catay Code 2/0/2 [-1 927+

Binary codes for decimal digits require four bits. A few possibilities are shown in *Tab. 3-6*

Excess-3 Gray Code

» Gray code로 BCD 표현 시, 9 에서 0 으로 변하면 1101에서 0000으로 되어 3 비트가 동시에 변경되어 Tab. 3-5 에서 3 부터 12까지 사용하면 0010 에서 1010되어 1비트가 바뀜.

Self-Complementing: excess-3 code

» 9's complement of a decimal number is easily obtained by 1's complement(=changing 1's to 0's and 0's to 1's)
* Sel

Weighted Code: 2421 code サイラ アウレン イレー

» The bits are multiplied by the weights, and the sum of the weighted bits gives the decimal digit * Self-Complement Exam)

 $4_{10} = 0111 \text{ (3-excess)}$ = 1000 (1's comp)

 $=5_{10}$ (3-excess in Tab. 3-6)

 $=5_{10}(9$'s comp of 4)

Other Alphanumeric Codes

7bit ASCII Code에서 Tab. 3-4 이외: p. 384, Tab. 11-1

- » Format effector: Functional characters for controlling the layout of printing or display devices(carriage return-CR, line feed-LF, horizontal tab-HT,...)
- » Data communication flow control(acknowledge-ACK, escape-ESC, synchronous-SYN,...)

EBCDIC (Extended BCD Interchange Code)

» Used in IBM equipment(제어 문자만 약간 다름)

3-5. Other Binary Codes

Decimal digit	BCD 8421	2421 E	excess-3 –	Excess-3 gray	1201 CHZL
0	0000	0000	00117	0010	
1	0001	0001	0100	0110	만들수 있다
2	0010	0010	0101	0111	
3	0011	0011	0110	0101	
4	0100	0100	0111	0100	
5	0101	1011	1000	1100	
6	0110	1100	1001	1101	
7	0111	1101	1010	1111	
8	1000	1110	1011	1110	
9	1001	1111	1100	1010	
	1010	0101	0000	0000	
Unused	1011	0110	0001	0001	
bit	1100	0111	0010	0011	
combi-	1101	1000	1101	1000	
nations	1110	1001	1110	1001	
	1111	1010	1111	1011	

Table 3-6. Four Different Binary Codes for the Decimal Digit

3-6. Error Detection Codes

3-6 Error Detection Codes

Binary information transmitted through some form of communication medium is subject to external noise

Parity Bit

An extra bit included with a binary message to make the total number of 1's either odd or even(*Tab. 3-7*) |의 개午 イル マナナノシナシスト

Eyen-parity method

The value of the parity bit is chosen so that the total number of 1s (including the parity bit) is an even number

11000011

Qdd-parity method

Added parity bit

15/12 24/30/ 4/20 25/

Exactly the same way except that the total number of 1s is an odd number

1) 1 0 0 0 0 0 1

Added parity bit

東台 といりる 時間といり 101 からで スト社会 のお

Parity Generator/Checker

At the sending end, the message is applied to a parity generator At the receiving end, all the incoming bits are applied to a parity checker

Can not tell which bit in error

Can detect only single bit error(odd number of errors)

3 bit data line example: Fig. 3-3

♦ 4 bit data line example :

Odd Parity Generator/Checker

◆ Truth Table

Α	В	С	D	Е	0
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	0	1	0
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	0	1
0	1	1	0	0	1
0	1	1	1	1	0
1	0	0	0	1	0
1	0	0	1	0	1
1	0	1	0	0	1
1	0	1	1	1	0
1	1	0	0	0	1
A 0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 1 1 1 0 0 0 1 1 1 1 1	C 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1	D 0 1 0 1 0 1 0 1 0 1 0 1 0 1	E 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0	1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1
1	1	1	0	1	0
1	1	1	1	0	1

♦ K-Map(Odd Parity)

Expression

$$\overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}CD + \overline{A}B\overline{C}D + \overline{A}BC\overline{D} + ABC\overline{D} + ABCD + A\overline{B}\overline{C}D + A\overline{B}C\overline{D}$$

$$= \overline{A}\overline{B}(\overline{C}\overline{D} + CD) + \overline{A}B(\overline{C}D + C\overline{D}) + AB(\overline{C}\overline{D} + CD) + A\overline{B}(\overline{C}D + C\overline{D})$$

$$= \overline{A}\overline{B}(C \otimes D) + \overline{A}B(C \oplus D) + AB(C \otimes D) + A\overline{B}(C \oplus D)$$

$$= (C \otimes D)(\overline{A}\overline{B} + AB) + (C \oplus D)(\overline{A}B + A\overline{B})$$

$$= (C \otimes D)(A \otimes B) + (C \oplus D)(A \oplus B)$$

$$= (\overline{C} \oplus D)(\overline{A} \oplus B) + (C \oplus D)(A \oplus B)$$

$$= \overline{x}\overline{y} + xy$$

$$= x \otimes y$$

$$= x \otimes y$$

$$= \overline{x} \oplus y$$

$$= (C \oplus D) \oplus (A \oplus B)$$

$$= \overline{C} \oplus D \oplus A \oplus B$$

Parity check

Error 검출용 비트를 하나 더 추가 시켜서 언제나 전체 부호 속에 포함 되어 있는 1의 수가 <u>홀수 또는 짝수개가 되도록</u> 하는 것

10진수	23	2^2	21	2^{0}	패리티비트	1의 합계
0	0	0	0	0	1	1
1	0	0	0	1	0	1
2	0	0	1	0	0	1
3	0	0	1	1	1	3
4	0	1	0	0	0	1
5	0	1	0	1	1	3
6	0	1	1	0	1	3
7	0	1	1	1	0	3
8	1	0	0	0	0	1
9	1	0	0	1	1	3

IH2|리비트는 いらかるに ルーク なみろ 2501V+ 아 비트 이러난건 아이낼 수 있지만 of 7/2/0/H の时始之此X, 对是喜欢的a收X, Word parity 四世間是 图型地上, 长期如子 器州西,

코드를 한 묶음 단위로 하는 Block단위, 에러 검출은 물론 정정 까지도 가능 하다

