1. Write a pois.prob() function that computes P(X = x), $P(X \neq x)$, P(X < x), $P(X \leq x)$, P(X > x), and $P(X \geq x)$. Enable the user to specify the rate parameter λ .

```
pois.prob <- function(x, lambda, type="<=")\{
if(x<0){
 return("x must be a positive integer")
if(lambda<0){</pre>
 return("lambda must be positive")
if(type == "<="){#Less than or equal to
 return(ppois(x,lambda))
if(type == "="){#Equal to
 return(dpois(x,lambda))
if(type == "!="){ #Not equal to
 return(1-dpois(x,lambda))
if(type == ">="){# Greater than or equal to
 return(1-ppois(x-1,lambda))
if(type == ">"){# Greater than
 return(1-ppois(x,lambda))
if(type == "<"){#Less than
 return(ppois(x-1,lambda))
```

2. Write a beta.prob() function that computes P(X = x), $P(X \neq x)$, P(X < x), $P(X \leq x)$, P(X > x), and $P(X \geq x)$ for a beta distribution. Enable the user to specify the shape parameters α and β .

```
beta.prob <- function(x, alpha, beta, type="<=")\{
if(x<0){
 return("x must be positive")
if(alpha<0){
 return("alpha must be positive")
if(beta<0){
 return("beta must be postive")
if(type == "<="){#Less than or equal to
 return(pbeta(x,alpha,beta))
if(type == "="){#Equal to
 return(0)
if(type == "!="){ #Not equal to
 return(1)
if(type == ">="){# Greater than or equal to
  return(1-pbeta(x,alpha,beta))
if(type == ">"){# Greater than
 return(1-pbeta(x,alpha,beta))
if(type == "<"){#Less than
 return(pbeta(x,alpha,beta))
```