ACCRUE: Accurate and Reliable Uncertainty Estimate in Deterministic Models

Enrico Camporeale (enrico.camporeale@noaa.gov)

CIRES / CU Boulder & NOAA Space Weather Prediction Center

This project is supported by NASA under grant 80NSSC20K1580

Problem statement

Problem statement

Uncertainties:

- Epistemic (do not know the parameters exactly)
- Aleatoric (physics that is not in the model)
- Algorithmic (numerical errors)

Problem statement

Model output Real data Confidence interval Set of Inputs, f(x) Parameters, etc. Deterministic model + Real Data **Uncertainties:** • Epistemic (do not know the Generate parameters exactly) heteroskedastic • Aleatoric (physics that is not in the uncertainty model) • Algorithmic (numerical errors)

Uncertainty Quantification in Machine Learning

- A relatively new research topic
- Parametric models:
 - Bayesian Neural Networks
 - MC Dropout
 - Ensemble techniques
- Non-parametric models:
 - Gaussian Process

The model output is typically not well-calibrated / reliable

Algorithm does not scale well with large datasets

UQ in Physics-Based models

 The golden standard approach to estimate uncertainties based on a deterministic model is by running a

Monte Carlo ensemble (e.g. by small perturbations of initial conditions)

- This has two problems:
 - It requires many runs (expensive)

UQ in Physics-Based models

 The golden standard approach to estimate uncertainties based on a deterministic model is by running a

Monte Carlo ensemble (e.g. by small perturbations of initial conditions)

- This has two problems:
 - It requires many runs (expensive)
 - It requires to know what is the probability distribution of inputs and how to draw samples from it

Take home message

We have devised a method that:

- Estimates the uncertainties associated with single-point outputs generated by a deterministic model, in terms of Gaussian distributions;
- Ensures the optimal trade-off between accuracy and reliability;
- Does not need to run ensembles. It costs as much as training a neural network
- Code available: zenodo.1485608

International Journal for Uncertainty Quantification, 11(4):81–94 (2021)

ACCRUE: ACCURATE AND RELIABLE UNCERTAINTY ESTIMATE IN DETERMINISTIC MODELS

Enrico Camporeale^{1,*} & Algo Carè²

¹University of Colorado, Boulder, Colorado, USA

²University of Brescia, Brescia, Italy

Utilitarian Approach

Let us assume that for a single (multidimensional) input \mathbf{x} , our model predicts an output $\mathbf{y} = \mathbf{f}(\mathbf{x})$.

Blue line → Model output

Red line → Real (observed value)

Working hypothesis:

We want to use the model output ("oracle") as the mean of a Gaussian distribution that is interpreted as a probabilistic forecast.

Utilitarian Approach

Let us assume that for a single (multidimensional) input \mathbf{x} , our model predicts an output $\mathbf{y} = \mathbf{f}(\mathbf{x})$.

Blue line → Model output Red line → Real (observe<u>d value)</u>

Working hypothesis:

We want to use the model output ("oracle") as the mean of a Gaussian distribution that is interpreted as a probabilistic forecast.

What is the optimal width of a Gaussian forecast?
The one that optimizes BOTH accuracy and reliability

Accuracy: Continuous Rank Probability Score

- CRPS is a generalization of Brier score
- It has a simple graphical interpretation
- CRPS = 0 for perfect forecast

CRPS
proportiona

Reliability diagram

Reliability is the property of a probabilistic model that measures its statistical consistency with observations.

For example, for forecasts of discrete events, the reliability measures if an event occurs on average with frequency p, when it has been predicted to occur with probability p.

Reliability diagram

The values of σ that minimize CRPS can be derived analytically:

$$\sigma^2_{\rm opt} \sim \epsilon^2$$

The more we minimize CRPS, the worse reliability we get.

Mathematical proof is straightforward.

See <u>arXiv:1811.12692</u>

Two-objective cost function

- This is a two-objective optimization problem, because <u>reliability</u> and <u>accuracy</u> are competing objectives.
- We define the Accuracy-Reliability (AR) cost function:

AR = CRPS +
$$\beta$$
 * RS

Accuracy Reliability

- Accuracy and Reliability cannot both be minimized simultaneously
- We have to find the best trade-off

The ACCRUE Method

- Take a sample of N errors ε (difference between model output and observed values) and the corresponding model inputs x
- We define as optimal standard deviation σ the one that optimizes the Accuracy-Reliability cost function (that has an analytical expression)
- We also want to have a way of generating a smooth function $\sigma(\mathbf{x})$ for any value of \mathbf{x}
- We use a neural network that takes \mathbf{x} as input and produces $\sigma(\mathbf{x})$ as output by minimizing AR cost function.

Machine Learning benchmark

TABLE 1: Comparison between different methods on several multidimensional datasets. Median values are reported, calculated over 50 runs. Confidence intervals represent one standard deviation. Best values are in bold

Method			CRPS	RECAL	KM	ACCRUE
Score			CRPS			
Dataset	Size	Dim.				
Boston Housing	506	13	0.25 ± 0.05	0.25 ± 0.04	0.25 ± 0.03	0.23 ± 0.04
Concrete	1030	8	0.22 ± 0.03	0.23 ± 0.13	0.26 ± 0.02	0.21 ± 0.03
Energy	768	8	0.059 ± 0.03	0.056 ± 0.03	0.087 ± 0.01	0.052 ± 0.01
Kin8nm	8192	8	0.17 ± 0.005	0.16 ± 0.01	0.24 ± 0.005	0.16 ± 0.005
Power plant	9568	4	0.13 ± 0.003	0.13 ± 0.05	0.15 ± 0.002	0.12 ± 0.01
Protein	45,730	9	0.38 ± 0.02	0.47 ± 0.13	0.40 ± 0.007	0.37 ± 0.02
Wine	1599	11	0.48 ± 0.03	0.50 ± 0.29	0.46 ± 0.02	0.48 ± 0.06
Yacht	308	6	0.06 ± 0.08	0.06 ± 0.02	0.19 ± 0.02	0.06 ± 0.02
Score			Cal. err. (%)			
Dataset	Size	Dim.				
Boston Housing	506	13	26.2 ± 7.9	20.6 ± 5.5	17.5 ± 3.7	16.7 ± 5.9
Concrete	1030	8	22.6 ± 5.8	14.4 ± 3.8	22.1 ± 3.0	11.5 ± 3.9
Energy	768	8	29.3 ± 8.9	29.2 ± 8.0	28.3 ± 2.8	13.0 ± 6.5
Kin8nm	8192	8	15.9 ± 1.28	8.3 ± 1.30	25.5 ± 0.5	5.8 ± 1.28
Power plant	9568	4	12.5 ± 1.4	3.4 ± 0.9	16.1 ± 0.8	2.6 ± 0.8
Protein	45,730	9	13.1 ± 0.8	5.0 ± 0.9	10.6 ± 0.9	5.4 ± 0.88
Wine	1599	11	16.0 ± 3.7	7.9 ± 2.0	8.0 ± 2.4	8.3 ± 2.4
Yacht	308	6	26.0 ± 9.4	24.3 ± 13.5	36.6 ± 3.0	19.5 ± 8.5

Take home message

We have devised a method that:

- Estimates the uncertainties associated with single-point outputs generated by a deterministic model, in terms of Gaussian distributions;
- Ensures the optimal trade-off between accuracy and reliability;
- Does not need to run ensembles. It costs as much as training a neural network
- Code available: zenodo.1485608

International Journal for Uncertainty Quantification, 11(4):81–94 (2021)

ACCRUE: ACCURATE AND RELIABLE UNCERTAINTY ESTIMATE IN DETERMINISTIC MODELS

Enrico Camporeale^{1,*} & Algo Carè²

¹University of Colorado, Boulder, Colorado, USA

²University of Brescia, Brescia, Italy