Detailed Design Review Notes: P22257

Date 12/5/2024

Attendees

- Team Ian, Tanner, Luke, Drew, Eva, Nsadhu
- Guide Dr. McCauley
- Client Philip Linden, Ashley Kosak
- Guests Carlos Barrios, Rachel Williams, Mark Indovina, Stephen

Goals

Present current progress of project

Agenda and discussion notes

Time	Item	Who	Notes
60 min	Design Review Presentation	Team	See below
15 min	Questions/Comments	All	See below

Issues Raised

See Action Items section

Decisions Made

- Requirements are during steady state operations. Ok if takes a day to stabilize
- Power budget is 5 watts

Action items/Meeting Notes

- Join OCP TA Discord to ask everyone directly about calculations for feasibility analysis done by lan
 - o Join time card server
- Want to see more detail on what is plugging into Fref, are clock and GNSS going to same rail?
 - Make a diagram to understand mapping of everything
- Get external TCXO controlled by DAQ, need reference to compare to Atomic Clock
 - o Adjust TCXO with DAQ to get much more stable block
 - o If keep digital it will drift over long periods of time, analog will keep it stable
 - reference block is driving TCXO
 - use DPLL to drive a DAQ
 - o reference side where you're adjusting is slightly different
 - Meet with Mark, he will help
- Create design limit for % utilization for SOC 80% is a good limit

- Email support about getting footprint and pin out for CSAC
- Need to complete feasibility for power budget why is it 5 watts
- Ask Carlos about connectors, solder mask, need to make sure board house can put solder mask between pads
 - Consider doing signal planes in the middle
 - Carlos worried about noise in both directions can talk about it later
 - Might be worthwhile to consider 6 layer board Mark
- Do we want to make enclosure? ESD is concern, especially for transport
- Specify what you are measuring for test histogram and graph
 - Measure temperature during test
- What is our plan for getting temperature and what other metrics are we getting during test?
 - Adding temperature
 - Current
 - voltage
 - humidity
 - o pressure
 - Can get a single chip to measure environment temperature, pressure, humidity
 - How different is our test environment from its operating environment in atmosphere versus space
 - Is there a way the measure voltage and current for select components? I^2C part where you can measure voltage form current
 - Understanding what were doing will allow us to understand why we got the outputs we did
- Want to hook it to a frequency counter and capture data for a high period of time
 - o might need to rent one
 - want a high precision one
- Banana plugs versus screwing wires in want to eliminiate any drop since it'll be sitting there for a long time
- Show startup process compare steady state to what it was looking like when it started
- Deliver allen deviation plot as well for time card
- RJ minimum (statistical), timeframe (window) for measuring RJ
 - o there will be requirement for jitter and scew that they will see on their end
- When building loop filter how will test what it is actually doing? How do we prove that it is doing what it is intended to do?
 - should be built into the design to some capacity
 - need to be able to hijack oscillator
 - what if oscipator in oppration condition far form normal, what do you do from that?
 - usually intermediate processing withinoclock itself on board
 - o can change the way the reference clock appear by hijacking it
 - inject noise on output of the DAQ
 - want ocntorl system to be able to compensate for those

- if dont test can;t tell if loop filter has bandwidth for that
- o if can do fft on board
- o should be able to collect measurements nad send back for analysis
- \circ all operating conditions need to be monitored