

Course > Week 2 > Proble... > Linear ...

Linear Optimal Control

Linear Optimal Control

0.0/25.0 points (graded)

Consider the scalar equation

$$\dot{x} = -4x + 2u,$$

and the infinite horizon cost function

$$J=\int_0^\infty \left[32x^2+u^2
ight]dt.$$

(a) Assume that the optimal cost-to-go function is of the form $J^\star=px^2$. What value of p satisfies the Hamilton-Jacobi-Bellman conditions for optimality?

(b) Given that the optimal feedback controller associated with J^\star is $u^\star = -Kx$, what is the value of K?

(c) Suppose we change our cost to the following:

$$J = \int_0^\infty \left[96x^2 + 3u^2 \right] dt.$$

Which of the following statements is true? (Select all that apply)

■ The optimal controller (K) gets multiplied by 3

☐ The optimal controller (K) gets divided by 3	
☐ The optimal cost-to-go gets multiplied by 3	
☐ The op	otimal cost-to-go gets divided by 3
□ None o	of the above
Submit	You have used 0 of 2 attempts

© All Rights Reserved