Relations

Discrete Structures

Relations and Their Properties

A binary relation from set A to B is a subset of Cartesian product $A \times B$

Example:
$$A = \{0,1,2\}$$
 $B = \{a,b\}$

A relation: $R = \{(0,a),(0,b),(1,a),(2,b)\}$

A relation on set A is a subset of $A \times A$

Example:

A relation on set $A = \{1, 2, 3, 4\}$:

$$R = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}$$

Reflexive relation R on set A:

$$\forall a \in A, (a,a) \in R$$

Example:
$$A = \{1, 2, 3, 4\}$$

$$R = \{(1,1), (1,2), (2,1), (2,2), (3,4), (3,3), (4,3), (4,4)\}$$

Symmetric relation R:

$$(a,b) \in R \longrightarrow (b,a) \in R$$

Example:
$$A = \{1, 2, 3, 4\}$$

$$R = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,3), (4,4)\}$$

Antisymmetric relation R:

$$(a,b) \in R \land (b,a) \in R \rightarrow a = b$$

Example:
$$A = \{1, 2, 3, 4\}$$

$$R = \{(1,1), (1,2), (2,2), (3,4), (4,4)\}$$

Transitive relation R:

$$(a,b) \in R \land (b,c) \in R \rightarrow (a,c) \in R$$

Example:
$$A = \{1, 2, 3, 4\}$$

$$R = \{(1,1), (1,2), (2,3), (3,4)(1,3), (1,4), (2,4)\}$$

Combining Relations

$$R_1 = \{(1,1), (2,2), (3,3)\}$$

 $R_2 = \{(1,1), (1,2), (1,3), (1,4)\}$

$$R_1 \cup R_2 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)\}$$

 $R_1 \cap R_2 = \{(1,1)\}$
 $R_1 - R_2 = \{(2,2), (3,3)\}$

Composite relation: $S \circ R$

$$(a,b) \in S \circ R \longleftrightarrow \exists x : (a,x) \in R \land (x,b) \in S$$

Note:
$$(a,b) \in R \land (b,c) \in S \rightarrow (a,c) \in S \circ R$$

Example:

$$R = \{(1,1), (1,4), (2,3), (3,1), (3,4)\}$$

$$S = \{(1,0), (2,0), (3,1), (3,2), (4,1)\}$$

$$S \circ R = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}$$

Power of relation: R^n

$$R^1 = R \qquad \qquad R^{n+1} = R^n \circ R$$

Example:
$$R = \{(1,1), (2,1), (3,2), (4,3)\}$$

$$R^2 = R \circ R = \{(1,1), (2,1), (3,1)(4,2)\}$$

 $R^3 = R^2 \circ R = \{(1,1), (2,1), (3,1)(4,1)\}$
 $R^4 = R^3 \circ R = R^3$

n-ary relations

An n-ary relation on sets $A_1, A_2, ..., A_n$ is a subset of Cartesian product $A_1 \times A_2 \times \cdots \times A_n$

Example: A relation on $N \times N \times N$

All triples of numbers (a,b,c) with a < b < c

$$R = \{(1,2,3), (1,2,4), (1,2,5), \ldots\}$$

Relational data model n-ary relation R is represented with table

fields

R: Teaching assignments

records→

Professor	Department	Course-number
Cruz	Zoology	335
Cruz	Zoology	412
Farber	Psychology	501
Farber	Psychology	617
Rosen	Comp. Science	518
Rosen	Mathematics	575

primary key
(all entries are different)

Representing Relations with Matrices

$$A = \{a_1, a_2, a_3\}$$
 $B = \{b_1, b_2, b_3, b_4, b_5\}$

$$R = \{(a_1, a_2), (a_2, b_1), (a_2, b_3), (a_2, b_4), (a_3, b_1), (a_3, b_3), (a_3, b_5)\}$$

Relation Matrix			B		
M_{R}	b_1	b_2	b_3	b_4	$b_{\scriptscriptstyle 5}$
a_1	$\lceil 0 \rceil$	1	0	0	0
$egin{aligned} a_1 \ A \ a_2 \end{aligned}$	1	0	1	1	0
		0			

Reflexive relation
$$R$$
 on set A : $\forall a \in A, (a,a) \in R$

Diagonal elements must be 1

Example:
$$A = \{1,2,3,4\}$$

 $R = \{(1,1),(1,2),(2,1),(2,2),(3,4),(3,3),(4,3),(4,4)\}$

Symmetric relation
$$R: (a,b) \in R \rightarrow (b,a) \in R$$

Matrix is equal to its transpose: $M_R = M_R^T$

Example:
$$A = \{1, 2, 3, 4\}$$

$$R = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,3), (4,4)\}$$

Antisymmetric relation R:

$$(a,b) \in R \land (b,a) \in R \rightarrow a = b$$

Example:
$$A = \{1,2,3,4\}$$

 $R = \{(1,1),(2,2),(2,1),(3,4),(4,1),(4,4)\}$

For all
$$i \neq j$$

$$a_1 \begin{bmatrix} a_2 & a_3 & a_4 \\ a_1 \begin{bmatrix} 1 & & \\ & a_2 \end{bmatrix} \end{bmatrix}$$

$$a_2 \begin{bmatrix} 1 & 1 & \\ & a_3 \end{bmatrix} \begin{bmatrix} 1 & 1 & \\ & a_4 \end{bmatrix} \begin{bmatrix} 1 & \\ & 1 \end{bmatrix}$$

$$a_4 \begin{bmatrix} 1 & \\ & 1 \end{bmatrix} \begin{bmatrix} 1 & \\ & 1 \end{bmatrix}$$

$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$M_{S} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Union
$$R \cup S$$
: $M_{R \cup S} = M_R \vee M_S = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

Intersection
$$R \cap S$$
:

$$M_{R \cap S} = M_R \wedge M_S = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$M_{S} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Composition $S \circ R$: Boolean matrix product

$$M_{S \circ R} = M_R \circ M_S = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{vmatrix}$$

$$M_R = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Power $R^2 = R \circ R$: Boolean matrix product

$$M_{R^2} = M_R \circ M_R = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Digraphs (Directed Graphs)

$$R = \{(a,b), (a,d), (b,b), (b,d), (c,a), (c,b), (d,b)\}$$

Closures and Relations

Reflexive closure of R:

Smallest size relation that contains R and is reflexive

Easy to find

Symmetric closure of R:

Smallest size relation that contains R and is symmetric

Easy to find

Transitive closure of R:

Smallest size relation that contains R and is transitive

More difficult to find

Let M_R be the zero-one matrix of the relation R on a set with n elements. Then the zero-one matrix of the transitive closure R^* is

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]} \vee \cdots \vee \mathbf{M}_R^{[n]}.$$

Find the zero-one matrix of the transitive closure of the relation R where

$$\mathbf{M}_R = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

Solution: By Theorem 3, it follows that the zero—one matrix of R^* is

$$\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]}.$$

Because

$$\mathbf{M}_{R}^{[2]} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{M}_{R}^{[3]} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix},$$

it follows that

$$\mathbf{M}_{R^*} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \vee \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$

ALGORITHM 1 A Procedure for Computing the Transitive Closure.

```
procedure transitive closure (M_R: zero—one n \times n matrix)

A := M_R

B := A

for i := 2 to n

A := A \odot M_R

B := B \vee A

return B\{B \text{ is the zero—one matrix for } R^*\}
```

Find Transitive closure using Warshall's Algo

Example
$$R=\{(1,1),(1,2),(2,3),(3,1),(3,2)\}$$

Warshall's Algorithm

Input: An $(n\times n)$ 0-1 matrix M_R representing a relation R on A, |A|=n **Output**: An $(n\times n)$ 0-1 matrix W representing the transitive closure of R on A

```
1. W \leftarrow M_R

2. FOR k=1,...,n

3. FOR i=1,...,n

4. FOR j=1,...,n

5. w_{i,j} \leftarrow w_{i,j} \lor (w_{i,k} \land w_{k,j})

6. END

7. END

8. END

9. RETURN W
```