b)
$$C_{k} = \frac{1}{T} \int_{T/h}^{T/2} \chi(t) e^{-j\frac{2T}{T}kt} dt = \frac{1}{T} \cdot 1(e^{-j\frac{2T}{T}k(0)}) = \frac{1}{T}$$

$$\chi(t) = \frac{1}{T} \sum_{k=-\infty}^{\infty} e^{-j\frac{2T}{T}kt}$$

c)
$$\chi(t) = \sum_{k=-\infty}^{\infty} C_k e^{j\frac{2\pi}{7}kt} = \sum_{k=-\infty}^{\infty} C_k e^{j\omega_0 kt}$$

 $\chi(\omega) = 2\pi C_k \delta(\omega - \omega_0 k)$

p(1)- Increasing I decreasing Tincreases / decreases the spacing. Setween the impulses

P(w) - Increasing T decreases the spacing between the impulses

These make sense, since if the period decrisses, the frequency increases, so higher frequency components are required to characterize the signal. The opposite is also true when the period increases.

$$2a)h(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(\omega) e^{j\omega t} d\omega$$

$$= \frac{1}{2\pi jt} \int_{-\omega_{c}}^{\omega} e^{j\omega t} d\omega$$

$$= \frac{1}{2\pi jt} \left[e^{j\omega t} \right]_{-\omega_{c}}^{\omega_{c}}$$

$$= \frac{1}{2\pi jt} \left(e^{j\omega ct} - e^{-j\omega ct} \right) = \frac{\sin(\omega ct)}{\pi t} = \frac{\omega c}{\pi} \sin(\frac{\omega ct}{\pi})$$

- This LTI system acts as a lowpass fifter because it preserves
 the amplitudes at tregrencies below the threshold value we
 and cuts out all higher tregrencies.
- d) (ODE + PLOTS ON PEXT PAGE

Cutoff Frequency = $0.75 \,\pi$

Cutoff Frequency = 1.75π

Code:

 $h(H) = \cos(\omega_{e}t) \rightarrow \pi \delta(\omega - \omega_{e}) + \pi \delta(\omega + \omega_{e})$ $3 y(t) = \chi(t) h(t) \rightarrow \chi(\omega) = \frac{1}{2\pi} \chi * H(\omega_{i})$ $\chi(\omega) = \chi(\omega) \qquad \chi(\omega)$ $\chi(\omega) = \chi(\omega) \qquad \chi(\omega)$