Лабораторная работа ИССЛЕДОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ЭЛЕКТРОМЕХАНИЧЕСКОГО ОБЪЕКТА УПРАВЛЕНИЯ

Преподаватель: Чепинский С.А.

Студенты: Французов Р.А.

Донцова М.А. Группа: R3325

Вариант: 18

1 Цель работы

Изучение математических моделей и исследование характеристик электромеханического объекта управления (ЭМО), построенного на основе электродвигателя постоянного тока независимого возбуждения.

2 Ход работы

В программном пакете $SciLab\ XCos$ были созданны полная (рис. 1) и упрощенная (рис. 22) структурные модели ЭМО, промоделированы переходные процессы при различных значениях параметров

2.1 Расчет параметров

В таблице ниже представлены начальные и расчитанные параметры модели

U_n		27 V
n_0		6500 rpm
I_n		0.92 A
M_n		0.12 Nm
R		16.6 Ω
T_a		7 ms
J_m		$0.00007~kgm^2$
T_y		4 ms
i		50
J_l		$0.01~kgm^2$
ω_0	$n_o/10$	650rad/s
K_m	1/R	0.060241
K_y	$U_n/10$	2.7
K_m	M_n/I_n	0.060241
J_r	$0.2J_m$	$0.000014 \mathrm{kgm^2}$
$k_1 = k_e$	U_n/ω_0	0.0415385
$k_2 = k_m$	M_n/I_n	0.1304348
J_{Σ}	$J_m + J_r + \frac{J_l}{i^2}$	0.000088
K	$\frac{K_y}{iK_e}$	1.3
K_f	$\frac{R}{K_m K_e i^2}$ RJ_{Σ}	1.2255309
T_m	$\frac{RJ_{\Sigma}}{K_mK_e}$	0.2696168 ms

Рисунок 1 – Полная структурная модель ЭМО

2.2 Первичное моделирование

Ниже представлены переходные процессы $\alpha~U_y$ (рис 2) и $\omega~I$ (рис 3) при $U=5~M_{sm}=0.$

Рисунок 2 – Переходные процессы α U_y

Рисунок 3 — Переходные процессы ω I

2.3 Моделирование с различным моментом сопротивления

Ниже представлены переходные процессы:

а)
$$~\alpha~U_y$$
 (рис 4) и $\omega~I$ (рис 5) при $U=5~M_{sm}=\frac{iM_n}{2}=300Nm$

б)
$$~\alpha~U_y$$
 (рис 6) и $\omega~I$ (рис 7) при $U=5~M_{sm}=iM_n=600Nm$

Рисунок 4 — Переходные процессы α U_y

0.8 - 0.8 - 0.4 - 0.2 - 0.2 - 0.4 - 0.2 -

Рисунок 5 — Переходные процессы ω I

Рисунок 6 — Переходные процессы $\alpha \; U_y$

0 10 20 30 40 50 60 70 80 90 100 t

Рисунок 7 — Переходные процессы ω I

2.4 Моделирование с различным моментом инерции нагрузки

Ниже представлены переходные процессы:

а)
$$~\alpha~U_y$$
 (рис 8) и $\omega~I$ (рис 9) при $U=5~J_l=0.5J_l=0.005kgm^2$

б)
$$~\alpha~U_y$$
 (рис 10) и $\omega~I$ (рис 11) при $U=5~J_l=1.5J_l=0.015kgm^2$

Рисунок 8 — Переходные процессы α U_y

Рисунок 9 — Переходные процессы ω I

Рисунок 10 – Переходные процессы α U_y

Рисунок 11 — Переходные процессы ω I

2.5 Моделирование с различным передаточным отношением

Ниже представлены переходные процессы:

а)
$$~\alpha~U_y$$
 (рис 12) и $\omega~I$ (рис 13) при $U=5~M_{sm}=0Nm~i=1.75i=87.5$

б)
$$~\alpha~U_y$$
 (рис 14) и $\omega~I$ (рис 15) при $U=5~M_{sm}=0Nm~i=0.75i=37.5$

в)
$$~\alpha~U_y$$
 (рис 16) и $\omega~I$ (рис 17) при $U=5~M_{sm}=300Nm~i=1.75i=87.5$

г)
$$~\alpha~U_y$$
 (рис 18) и $\omega~I$ (рис 19) при $U=5~M_{sm}=300Nm~i=1.75i=37.5$

Рисунок 12 — Переходные процессы
 α U_y

Рисунок 14 — Переходные процессы
 α U_y

Рисунок 16 — Переходные процессы
 α U_y

Рисунок 13 — Переходные процессы
 ω I

Рисунок 15 — Переходные процессы ω I

Рисунок 17 — Переходные процессы
 ω I

Рисунок 18 — Переходные процессы $\alpha \; U_y$

Рисунок 19 — Переходные процессы ω I

2.6 Моделирование при меньших значениях постоянных времени

Ниже представлены переходные процессы $\alpha\,U_y$ (рис 20) и $\omega\,I$ (рис 21) при $T_y=0.4ms\,T_a=0.7ms$.

Рисунок 20 — Переходные процессы α U_y

Рисунок 21 — Переходные процессы ω I

2.7 Моделирование приближенной модели ЭМО

Ниже представлены приближенная модель ЭМО (рис 22) и переходные процессы $\alpha_m~\omega_m$ (рис 23) $M_{sm}=0~U=5$.

Рисунок 23 — Переходные процессы
 ω_m α_m

3 Вывод

- а) В ходе данной работы были успешно созданы полная и приближенная модели ЭМО.
- б) Появление момента сопротивления увеличило t_c ω с 74с до 90с, при этом ω_c (установившееся) уменьшилось с 325 рад/с до 239 рад/с, I_c увеличилось с 0 до 0.5А. Коэффициенты затухания увеличились значительно, что заметно по графикам. Последующее увеличение момента сопротивления в два раза повлекло за собой уменьшение $omega_c$ и увеличение I_c в 1.6 и 2 раза соотвественно.
 - в) изменение момента инерции не повлекло за собой изменений переходных процессов.
- г) Изменение передаточного отношения при отсутствии момента сопротивления повлекло за собой рост t_c угловой скорости и тока примерно на 0,8с. При наличии момента t_c угловой скорости увеличился на 2.3c, а тока на 8c, при этом $omega_c$ уменьшилось на 20 рад/c, а I_c увеличилось на 0.11A
 - д) Уменьшение временных констант на порядок привело к уменьшению t_c на порядок
- е) Из-за принятого упрощения в модели ЭМО переходный процесс ω_m практически теряет колебательный характер.