Lesson 17. Branch-and-bound

1 Today...

- "Combinatorial Explosion" of IPs
- Branch-and-bound for solving IPs

2 "Combinatorial Explosion" of IPs

Consider the knapsack problem (with all nonegative parameters) in which we choose the most valuable collection of items to fit into a limited size "knapsack":

maximize
$$\sum_{i=1}^{n} c_i x_i$$
 subject to
$$\sum_{i=1}^{n} a_i x_i \leq b$$

$$x_i \in \{0,1\}, \text{ for } i=1,2,\ldots,n,$$

- decision variable $x_i = \boxed{}$ if we choose to pack item $i, x_i = \boxed{}$ otherwise;
- c_i represents the of item i;
- a_i represents the of item i;
- ullet b represents the of the knapsack.

Problem 1. Suppose n = 5.

- (a) Write one possible solution to the knapsack problem. $(x_1, x_2, x_3, x_4, x_5) =$
- (b) Which items does your solution recommend that you pack?

(c) If the constraint eliminates half of the possible solutions, how many feasible solutions are there?

Complete enumeration is a solution strategy for the knapsack problem (or any bounded IP) in which

- the objective value is computed for every feasible solution;
- the solution with the maximum objective function value is chosen as the optimal solution.

Now suppose n = 100 (a moderately-sized problem) and that the knapsack constraint eliminates half of the possible solutions. In a **complete enumeration** strategy in which we can check *one billion solutions per second*,

• there are

$$pprox 6.3 imes 10^{29}$$

feasible solutions to check,

• requiring about

$$6.3 \times 10^{20} \text{ seconds} \approx$$
 years

for complete enumeration.

In general, for even moderately-sized problems, **complete enumeration** is a totally (AWE-SOME or HOPELESS) solution strategy.

And this is why we have branch-and-bound...

3 Branch-and-bound for solving IPs

Branch-and-bound is an algorithm for solving mixed-integer programs:

- the feasible region is iteratively subdivided to create smaller subproblems ("branching" phase);
- the subproblems are bounded by solving relaxations ("bound" phase).

Typically, modern IP (or MIP) solvers use some variation of branch-and-bound.

3.1 Branching a subproblem on a variable

To branch means to split a problem into two smaller subproblems.

- For example, to find the tallest midshipman in the brigade:
 - o solve subproblem 1:
 - o solve subproblem 2:
 - o compare these two solutions.
- The union of the feasible regions (FRs) of the subproblems should be the FR of the original problem.
- For example, consider the IP below:

$$(P1) \quad z_{IP}^* = \max 8x + 7y$$
 s.t. $-18x + 38y \le 133$
$$13x + 11y \le 125$$

$$10x - 8y \le 55$$

$$x, y \in \mathbb{Z}^{\ge 0}$$

Find an upper bound for z_{IP}^* by solving the LP relaxation of (P1). Suppose the LP relaxation has optimal solution (x, y) = (4.75, 5.75) with optimal objective value $z_{LP}^* = 78.25$. This provides the following bound on z_{IP}^* :

$$z_{IP}^* \leq$$

- Since the optimal LP solution, ______, is not integer-valued, we must **branch on one of the fractional-valued variables**. Let's choose to **branch on** *x*.
- \circ We know that x must be integer-valued, so we can eliminate all the fractional values between 4 and 5. Our two subproblems leverage this fact:

x must no more than 4 or...

$$(P2) \quad z_{IP}^* = \max 8x + 7y$$
s.t. $-18x + 38y \le 133$

$$13x + 11y \le 125$$

$$10x - 8y \le 55$$

$$x, y \in \mathbb{Z}^{\ge 0}$$

at least 5.

$$(P3) \quad z_{IP}^* = \max 8x + 7y$$
 s.t. $-18x + 38y \le 133$ $13x + 11y \le 125$ $10x - 8y \le 55$
$$x, y \in \mathbb{Z}^{\ge 0}$$

•	Continuing the previous example, the <i>relaxed</i> feasible region of (P1) is shown below. Sketch the <i>relaxed</i> feasible regions of (P2) and (P3):
•	In order to make progress in branch-and-bound:
	The union of the <i>relaxed</i> FRs of the subproblems should be a subset of
	the relaxed FR of the original problem. (I.e., we tighten our formulation as we go.)
3.2	Branch-and-bound terminology
•	As we branch on integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound to the LP one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we keep track of progress in a branch-and-bound one integer variables, we
•	At some point during the algorithm, we will encounter an $integer\ feasible$ solution which becomes the $incumbent\ solution$.
	\circ The incumbent solution provides a (LOWER / UPPER) bound on the global maximum.
	• If later we find a (BETTER / WORSE) feasible solution, it becomes the new incumbent solution.
	The incumbent solution is the feasible solution found so far.
•	To fathom (or prune) a node means to eliminate its subproblem from consideration.
	\circ We know this part of the feasible region (CONTAINS $/$ DOES NOT CONTAIN) the optimal solution.)
•	Leaf nodes are (BRANCHED / UNBRANCHED) nodes.
	There are 3 types of leaf nodes .
	(1)
	(2) contains current solution (only one of these nodes!)
	(3) active – still requires branching

3.3 Algorithm

Branch-and-bound for solving IPs

(Initialize)

- The root node (original problem) is the only active node.
- Set global lower bound: $\underline{z} = -\infty$. There is no incumbent solution \underline{x} to start.

(Iterate)

- Select an active node. Branch on a fractional variable to create two subproblems.
- For each subproblem (SP):
 - Solve its relaxation (LP), if possible, for optimal solution x with objective value z:

```
(LP) infeasible \Rightarrow fathom (SP). z \leq \underline{z} \Rightarrow fathom (SP). z > \underline{z}:

x \text{ integer } \Rightarrow x \text{ becomes new incumbent solution: } \underline{x} = x, \, \underline{z} = z.

Fathom nodes whose upper bounds are less than the new \underline{z}. x \text{ fractional } \Rightarrow \text{ (SP) becomes active with local upperbound } |z|.
```

(Stopping condition)

• When there are no more active nodes, the incumbent solution is the optimal solution to the original problem.

MIP gap

Another common stopping criterion is a predetermined "MIP gap", which is a measure of how close the current global lower bound, LB, and global upper bound, UB, are, as a fraction of the LB:

$$MIP \ gap =$$

When the MIP gap is small, the current incumbent solution is guaranteed to be *close* to optimal. For hard problems, we can tell the solver to stop at a "good" solution by setting a MIP gap flag. In Pyomo, this looks like:

Branch-and-bound Example

To demonstrate the branch-and-bound algorithm, we will work through an example using the following documents:

- \bullet L17_Branch_And_Bound_Example.pdf
- $\bullet \ L17_Branch_And_Bound_Example.ipynb$

Branching Rules

The procedure in the box on the previous page is really an *algorithmic framework*, rather than an actual algorithm. To become a true algorithm, we would need to specify

actual algorithm. To become a true algorithm, we would need to specify		
• a branching rule (to decide which node to branch);		
• a variable selection rule (to decide which variable to branch on).		
Possible branching rules:		
• depth-first search: Quickly go deep in the tree by always branching on one of the most recently constructed active nodes, for example.		
o ADVANTAGE: We get an solution quickly, which we require		
in order to fathom feasible nodes.		
 DISADVANTAGE: Long computation times, if we keep diving down to feasible solutions in every successive subproblem. 		
• best-first search: Branch on the active node with the local upper		
bound.		
• ADVANTAGE: We explore promising regions early on.		
 DISADVANTAGE: It may take a long time to get a first incumbent solution. It also tends to produce a very wide tree, requiring a lot of memory to maintain many active nodes. 		
• a hybrid approach is most common. For example, use depth-first to get an incumbent solution. Switch to best-first to search promising nodes		

3.4 Branch-and-bound variations

In reality, modern MILP solvers build on the basic b-and-b framework presented here.

Most solvers attain a **lower-bounding feasible solution in every subproblem** by solving a *restriction* of the subproblem (rather than a relaxation). The best of these feasible solutions is maintained as the incumbent solution.

Most IP/†MIP solvers employ a variation of branch-and-bound called **branch-and-cut**. In some subproblems, new constraints are generated in a "cutting-plane" phase to tighten the formulation of the subproblem relaxation (LP). This results in

- a less fractional optimal solution x to the subproblem (LP);
- a tighter upperbound z on the subproblem;
- fewer branching nodes overall.