

Medical Imaging

Image Reconstruction from Projections

Prof Ed X, Wu

Transmission Measurement

X-Ray Tomography

Uses X-rays to generate several shadowgrams $I(\phi,\xi)$.

X-Ray Tomography

X-Ray Tomography

X-Ray Tomography

unknown absorption cross-section $\mu(x,y)$

To obtain image from projection data use inverse radon transform.

Overview

Image Reconstruction from Projections:

- Radon Transform
- Projection Slice Theorem
- Image Reconstruction from Projection Data
 - Method I: Fourier Reconstruction
 - Method II: Backprojection Filtering
 - Method III: Fourier Filtered Backprojection
 - Method IV: Convolution Filtered Backprojection

Radon Transform

$$\mu(\mathbf{x},\mathbf{y}) \longrightarrow \mathbf{g}(\mathbf{s},\theta)$$

$$I = I_0 \exp \left(-\int_{L} \mu(x, y) dl\right)$$
$$g = \ln \left(\frac{I_0}{I}\right) \qquad (Signal)$$

$$g(s,\theta) = \int_{L} \mu(x,y) dl$$

The Radon transform $g(s,\theta)$ of a function $\mu(x,y)$ is defined as its line integral along a line inclined at an angle θ from the y-axis and at a distance s from the origin.

Radon Transform

The Radon transform $g(s,\theta)$ of a function $\mu(x,y)$ is the one-dimensional projection of $\mu(x,y)$ at an angle θ .

$$g(s,\theta) = \int_{L} \mu(x,y) dl$$

The Radon transform maps the spatial domain (x,y) to the domain (s,θ) .

$$\mu(x,y) \longrightarrow g(s,\theta)$$

Each point in the (s,θ) space corresponds to a line in the spatial domain (x,y).

Radon Transform

$$g(s,\theta) = \int_{L} \mu(x,y)dl = \int_{x\cos\theta+y\sin\theta-s=0} \mu(x,y)dl$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mu(x,y)\delta(x\cos\theta+y\sin\theta-s)dxdy$$

More Radon Transform

$$g(s,\theta) = \iint \mu(x,y)\delta(x\cos\theta + y\sin\theta - s)dxdy$$

$$= \iint \mu(x = x'\cos\theta - y'\sin\theta, y = x'\sin\theta + y'\cos\theta)\delta(x' - s)dx'dy'$$

$$= \int \mu(x = x'\cos\theta - y'\sin\theta, y = x'\sin\theta + y'\cos\theta) \Big|_{x' = s} dy'$$

$$= \int \mu(s\cos\theta - y'\sin\theta, s\sin\theta + y'\cos\theta)dy'$$

Achieved by rotating coordinate system so that the integration line is along y'-axes:

$$x = x'\cos\theta - y'\sin\theta$$
$$y = x'\sin\theta + y'\cos\theta$$

$$x' = x\cos\theta + y\sin\theta$$
$$y' = -x\sin\theta + y\cos\theta$$

Radon Transform: Example 1

$$A(x,y) = \delta(x, y)$$
 (point at center)

$$g(s,\theta) = \iint \delta(x,y)\delta(x\cos\theta + y\sin\theta - s)dxdy$$

$$g(s,\theta) = \left[\delta(x\cos\theta + y\sin\theta - s)\right]_{x=0,y=0} = \delta(-s) = \delta(s)$$

Sinogram

Line in Radon space (s,θ) S=0

Radon Transform: Example 2

$$A(x,y) = \delta(x-1,y)$$
 (point on x-axis)

$$g(s,\theta) = \iint \delta(x-1, y) \delta(x \cos \theta + y \sin \theta - s) dx dy$$

$$g(s,\theta) = \left[\delta(x\cos\theta + y\sin\theta - s)\right]_{x=1,y=0} = \delta(\cos\theta - s)$$

 $Non - zero => \cos \theta = s$

Sinogram

Radon Transform: Example 3

Example II: $A(x,y) = \delta(r,\phi)$ (arbitrary point)

$$g(s,\theta) = \iint A(x,y)\delta(x\cos\theta + y\sin\theta - s)dxdy$$

$$g(s,\theta) = \left[\delta(x\cos\theta + y\sin\theta - s)\right]_{x=r\cos\phi, y=r\sin\phi} = \delta\left[r\cos(\theta - \phi) - s\right]$$

 $Non - zero \Rightarrow r\cos(\theta - \phi) = s$

Radon Transform: Example 4

Radon Transform

2D Real Space

2D Radon Space

 θ (0 to 180 degree)

Radon Transform

2D Real Space

2D Radon Space

Where these structures are in Radon space?

 $\theta \\ \text{(0 to 180 degree)}$

Properties of Radon Transform

	Function	Radon Transform
	$f(x,y) = f_p(r, \phi)$	$g(s, \theta)$
1	Linearity: $a_1 f_1(x, y) + a_2 f_2(x, y)$	$a_1 g_1(s, \theta) + a_2 g_2(s, \theta)$
2	Space limitedness:	
	$f(x, y) = 0, x > \frac{D}{2}, y > \frac{D}{2}$	$g(s, \theta) = 0, \qquad s > \frac{D\sqrt{2}}{2}$
3	Symmetry: $f(x, y)$	$g(s, \theta) = g(-s, \theta \pm \pi)^{2}$
4	Periodicity: $f(x, y)$	$g(s, \theta) = g(s, \theta + 2k\pi),$
		k = integer
5	Shift: $f(x - x_0, y - y_0)$	$g(s-x_0\cos\theta-y_0\sin\theta,\theta)$
6	Rotation by θ_0 : $f_p(r, \phi + \theta_0)$	$g(s, \theta + \theta_0)$
7	Scaling: $f(ax, ay)$	$\frac{1}{ a }g(as, \theta), \qquad a \neq 0$
8	Mass conservation:	W
	$M = \iint_{\infty}^{\infty} f(x, y) dx dy$	$M = \int_{-\infty}^{\infty} g(s, \theta) ds, \qquad \forall \theta$

Overview

Image Reconstruction from Projections:

- Radon Transform
- Projection Slice Theorem
- Image Reconstruction from Projection Data
 - Method I: Fourier Reconstruction
 - Method II: Backprojection Filtering
 - Method III: Fourier Filtered Backprojection
 - Method IV: Convolution Filtered Backprojection

Projection Theorem (also "Central Slice Theorem" or Projection Slice Theorem)

If $g(s,\theta)$ is the Radon transform of a function f(x,y), then the one-dimensional Fourier transform $G(\omega_s, \theta)$ with respect to s of the projection $g(s,\theta)$ is equal to the central slice, at angle θ , of the two dimensional Fourier transform $F(\omega_x, \omega_y)$ of the function f(x,y).

Projection Theorem (also "Central Slice Theorem" or Projection Slice Theorem)

2D-space domain of $\mu(x,y)$

2D-frequency domain of $\mu(x,y)$

If $g(s,\theta)$ is the Radon transform of a function f(x,y), then the one-dimensional Fourier transform $G(\omega_s, \theta)$ with respect to s of the projection $g(s, \theta)$ is equal to the central slice, at angle θ , of the two dimensional Fourier transform $F(\omega_x, \omega_y)$ of the function f(x,y).

Projection Theorem (also "Central Slice Theorem" or Projection Slice Theorem)

Proof: Assignment

Clues?

Projection Theorem (also "Central Slice Theorem" or Projection Slice Theorem)

2D-space domain of $\mu(x,y)$

2D-frequency domain of $\mu(x,y)$

2D-FT $F(\mu(x,y))$

under viewing angle $\theta = 0^{\circ}$

1D-FT F(g(s))

Projection Theorem (also "Central Slice Theorem" or Projection Slice Theorem)

2D-space domain of $\mu(x,y)$

2D-frequency domain of $\mu(x,y)$

2D-FT $F(\mu(x,y))$

under viewing angles $\theta = \mathbf{0}^{\scriptscriptstyle 0}$ & $\theta = 90^{\circ}$

1D-FT **F**(g(s))

Preparing for Class Project

- Computer skills (MatLab or C from ELEC2201) ?
- Skills in numerical computation ?

Overview

Image Reconstruction from Projections:

- Radon Transform
- Projection Slice Theorem
- Image Reconstruction from Projection Data
 - Method I: Fourier Reconstruction
 - Method II: Backprojection Filtering
 - Method III: Fourier Filtered Backprojection
 - Method IV: Convolution Filtered Backprojection

Projection Theorem

How can we use Projection slice theorem to reconstruction spatial distribution of absorption profile μ(x,y)?

Fourier Image Reconstruction with Projection Theorem

Fourier Image Reconstruction with Projection Theorem

Problem:

Points in 2D Fourier Space are not on rectangular grid. => Inverse Fourier transform not trivial.

Fourier Image Reconstruction with Projection Theorem

A practical algorithm:

Fourier Image Reconstruction with Projection Theorem

How is the Fourier reconstruction method connected with the backprojection method?

II. Backprojection Filtering

Backprojection operator

$$b(x, y) \equiv \hat{f}(x, y) \equiv Bg = \int_{0}^{\pi} g(s = x \cos \theta + y \sin \theta, \theta) d\theta$$

The value of the backprojection Bg is evaluated by integrating $g(s,\theta)$ over θ for all lines that pass through that point.

Example:

Backproject 2 projections (g_1 and g_2) only

2 projections represented in Randon space

$$g(s,\theta) = g_1(s)\delta(\theta - \phi_1) + g_2(s)\delta(\theta - \phi_2)$$

Backproject 2 Projections

$$b(x,y) = g_1(s_1) + g_2(s_2) = b(r,\phi)$$

$$s_1 = r\cos(\phi_1 - \phi), \ s_2 = r\cos(\phi_2 - \phi)$$

Backprojection & Radon Transform

Real Space Radon Space, $g(s,\theta)$

The backprojection at (r, ϕ) is the integration of $g(s,\theta)$ along the sinusoid $s = r \cos(\theta - \phi)$

WHY? (Optional)

This is why we saw...

Backprojection & Radon Transform

Object

Simple
Backprojection (BP)

Sinogram
Backprojection
Measurement

Difference between Object & BP image

Backprojection Operator: Mathematics

It can be shown from

$$\hat{f}(x, y) \equiv Bg = \int_{0}^{\pi} g(s = x \cos \theta + y \sin \theta, \theta) d\theta$$

$$g(s,\theta) = \int_{L} f(x,y)dl$$
$$= \iint_{L} f(x,y)\delta(x\cos\theta + y\sin\theta - s)dxdy$$

that the backprojected Radon transform data g or Rf (i.e., the simple backprojection image)

$$\hat{f}(x, y) \equiv Bg = BRf$$

$$= f(x, y) \otimes \left(\frac{1}{\sqrt{x^2 + y^2}}\right)$$

Proof?
Assignment

Therefore backprojection of radon transform gives the original image convolved with $1/sqrt(x^2+y^2)$. This results in blurred image. What could you do to get back f(x,y)?

Image Reconstruction by Backprojection Filtering

Use a filter! - But what filter?

$$\hat{f}(x,y) \equiv Bg = BRf$$
$$= f(x,y) \otimes (x^2 + y^2)^{-1/2}$$

Use convolution theorem:

$$F(\hat{f}(x,y)) = F(f(x,y) \otimes (x^2 + y^2)^{-1/2}) = F(f(x,y)) F((x^2 + y^2)^{-1/2})$$
$$= F(f(x,y)) (\omega_x^2 + \omega_y^2)^{-1/2}$$

$$F(\hat{f}(x,y))(\omega_x^2 + \omega_y^2)^{1/2} = F(f(x,y))(\omega_x^2 + \omega_y^2)^{-1/2}(\omega_x^2 + \omega_y^2)^{1/2}$$

= $F(f(x,y))$

$$IF\left(F\left(\hat{f}(x,y)\right)\left(\omega_{x}^{2}+\omega_{y}^{2}\right)^{1/2}\right)=IF\left(F\left(f(x,y)\right)\right)=f(x,y)$$

SQRT - Filters

$$|\omega|^{-1} = (\omega_x^2 + \omega_y^2)^{-1/2}$$
 Filter (LP)

$$|\omega| = (\omega_x^2 + \omega_y^2)^{1/2}$$
 Filter (HP)

Image Reconstruction by Backprojection Filtering

Backprojection Filtering Algorithm:

- (1) Get Radon transform $g(s,\theta)$ of f(x,y) by performing tomographic X-tray imaging.
- (2) Backproject the Radon transform data.
- (3) Take Fourier transform of backprojected data.
- (4) Multiply with filter sqrt($\omega_x^2 + \omega_v^2$)
- (5) Perform inverse Fourier Transform to obtain f(x,y)

$$f(x, y) = IF_2(|\omega| \cdot F_2(B(Rf)))$$

Backprojection Filtering Reconstruction& Fourier Reconstruction

Backprojection Filtering Method:

$$f(x, y) = IF_2(|\omega| \cdot F_2(B(Rf)))$$

Fourier Reconstruction Method:

$$f(x,y) = IF_2 \left(\left(PST(Rf) \right) \right)$$

$$= IF_2 \left(\sum_{n=1}^{N} F_{1,s} \left(g(s, \theta_n) \right) \right)$$
Note that re-griding is required.

There are also other techniques !!!!

PST := Projection Slice Theorem or Central Slice Theorem

Radon Transform

2D Real Space

2D Radon Space

Why such 2D Radon Transform is important?

- θ
- Formulation of x-ray attenuation measurement in CT
 - Mathematics for later use in image reconstruction
 Inverse Radon Transform possible?

$$f(x, y) = \int_{0}^{\pi} \hat{g}(s = x \cos \theta + y \sin \theta, \theta) d\theta$$

with
$$\hat{g}(s,\theta) = \int_{-\infty}^{\infty} |\omega_s| G(\omega_s,\theta) \exp(i\omega_s s) d\omega_s$$

with $G(\omega_s,\theta) = F_{1,s}(g(s,\theta))$

III. Fourier Filtered Backprojection

Inverse Radon Transform Theorem:

$$f(x, y) = \int_{0}^{\pi} \hat{g}(s = x \cos \theta + y \sin \theta, \theta) d\theta$$

with
$$\hat{g}(s,\theta) = \int_{-\infty}^{\infty} |\omega_s| F_1(\omega_s,\theta) \exp(i\omega_s s) d\omega_s$$

with $F_1(\omega_s,\theta) = F_{1,s}(g(s,\theta))$

The inverse Radon transform is obtained in two steps:

- (1) Each projection is filtered by a one dimensional filter whose frequency response is $|\omega_s|$.
- (2) The result of step (1) is backprojected to yield f(x,y).

Proof?

Proof

The inverse Fourier transform is given by:

$$f(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(\omega_x, \omega_y) \exp[i(\omega_x x + \omega_y y)] d\omega_x d\omega_y$$

Rewriting in polar coordinates results in:

$$f(x, y) = \int_{0}^{2\pi\infty} \int_{0}^{\infty} F_{p}(\omega_{s}, \theta) \exp[i\omega_{s}(x\cos\theta + y\sin\theta)]\omega_{s}d\omega_{s}d\theta$$

Changing the limits of integration we get:

$$f(x, y) = \int_{0}^{\pi} \int_{-\infty}^{\infty} |\omega_s| F_p(\omega_s, \theta) \exp[i\omega_s(x\cos\theta + y\sin\theta)] d\omega_s d\theta$$

Since **the** Projection Slice Theorem $F_p(\omega_s \theta) = G(\omega_s \theta)$

(1D Fourier transform with respect to s of Radon transform equals slice through 2D Fourier transform at angle θ of the object function f)

$$f(x,y) = \int_{0}^{\pi} \left\{ \int_{-\infty}^{\infty} |\omega_{s}| G(\omega_{s},\theta) \exp[i\omega_{s}s] d\omega_{s} \right\} d\theta$$
$$f(x,y) = \int_{0}^{\pi} \hat{g}(x\cos\theta + y\sin\theta,\theta) d\theta = \int_{0}^{\pi} \hat{g}(s,\theta) d\theta$$

Projection Theorem (also "Central Slice Theorem" or Projection Slice Theorem)

$$G(\omega_s, \theta) = F_p(\omega_s, \theta)$$

Fourier Filtered Backprojection Reconstruction & Backprojection Filtering Reconstruction

$$f(x, y) = \int_{0}^{\pi} \hat{g}(s = x \cos \theta + y \sin \theta, \theta) d\theta$$

with
$$\hat{g}(s,\theta) = \int_{-\infty}^{\infty} |\omega_s| F_1(\omega_s,\theta) \exp(i\omega_s s) d\omega_s$$

with $F_1(\omega_s,\theta) = F_{1,s}(g(s,\theta))$

Fourier Filtered Backprojection Method

$$f(x,y) = B\left(IF_{1,s}\left(\left|\omega_{s}\right| \bullet F_{1,s}(Rf)\right)\right)$$

Backprojection Filtering Method

$$f(x,y) = IF_2 \left(|\omega| \cdot F_2 \left(B(Rf) \right) \right)$$

Fourier Filtered Backprojection Reconstruction

basic concept:

discrete implementation:

$|\omega|$ - Filters

RAM - LAK

Shepp-Logan

Hamming

Lowpass Cosine

IV. Convolution Filtered Backprojection

$$f(x,y) = \int_{0}^{\pi} \hat{g}(s = x\cos\theta + y\sin\theta, \theta)d\theta$$

with
$$\hat{g}(s,\theta) = \int_{-\infty}^{\infty} |\omega_s| G(\omega_s,\theta) \exp(i\omega_s s) d\omega_s$$
 with $G(\omega_s,\theta) = F_{1,s}(g(s,\theta))$

$$= \int_{-\infty}^{\infty} \omega_s G(\omega_s,\theta) \sup_{convolution theorem} \exp(i\omega_s s) d\omega_s$$

$$= \left[IF_1 \left\{ \omega_s G(\omega_s,\theta) \right\} \right] \otimes \left[IF_1 \left\{ \operatorname{sgn}(\omega_s) \right\} \right]$$

$$= \left[\left(\frac{1}{i2\pi} \right) \frac{\partial_s (s,\theta)}{\partial s} \right] \otimes \left[\frac{-1}{i\pi s} \right]$$

$$= \left(\frac{1}{2-2} \right) \int_{-\infty}^{-\infty} \left[\frac{\partial_s (t,\theta)}{\partial s} \right] \frac{1}{s-t} dt$$
Hilbert Transform

Hilbert Transform

or OF EVO	Sin.
STATE OF THE PARTY	CEL
	6
	19
1 18	E ALLE

	Function	Fourier transform unitary, ordinary frequency	Fourier transform unitary, angular frequency	Fourier transform non-unitary, angular frequency
	f(x)	$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x)e^{-2\pi ix\xi} dx$	$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$	$\hat{f}(\nu) = \int_{-\infty}^{\infty} f(x)e^{-i\nu x} dx$
101	$a \cdot f(x) + b \cdot g(x)$	$a \cdot \hat{f}(\xi) + b \cdot \hat{g}(\xi)$	$a \cdot \hat{f}(\omega) + b \cdot \hat{g}(\omega)$	$a \cdot \hat{f}(\nu) + b \cdot \hat{g}(\nu)$
102	f(x-a)	$e^{-2\pi i a \xi} \hat{f}(\xi)$	$e^{-ia\omega}\hat{f}(\omega)$	$e^{-ia\nu}\hat{f}(\nu)$
103	$e^{2\pi iax}f(x)$	$\hat{f}(\xi - a)$	$\hat{f}(\omega - 2\pi a)$	$\hat{f}(\nu - 2\pi a)$
104	f(ax)	$\frac{1}{ a }\hat{f}\left(\frac{\xi}{a}\right)$	$\frac{1}{ a }\hat{f}\left(\frac{\omega}{a}\right)$	$\frac{1}{ a }\hat{f}\left(\frac{\nu}{a}\right)$
105	$\hat{f}(x)$	$f(-\xi)$	$f(-\omega)$	$2\pi f(-\nu)$
106	$\frac{d^n f(x)}{dx^n}$	$(2\pi i \xi)^n \hat{f}(\xi)$	$(i\omega)^n \hat{f}(\omega)$	$(i\nu)^n \hat{f}(\nu)$
107	$x^n f(x)$	$\left(\frac{i}{2\pi}\right)^n \frac{d^n \hat{f}(\xi)}{d\xi^n}$	$i^n \frac{d^n \hat{f}(\omega)}{d\omega^n}$	$i^n \frac{d^n \hat{f}(\nu)}{d\nu^n}$
108	(f*g)(x)	$\hat{f}(\xi)\hat{g}(\xi)$	$\sqrt{2\pi}\hat{f}(\omega)\hat{g}(\omega)$	$\hat{f}(\nu)\hat{g}(\nu)$
109	f(x)g(x)	$(\hat{f} * \hat{g})(\xi)$	$\frac{(\hat{f} * \hat{g})(\omega)}{\sqrt{2\pi}}$	$\frac{1}{2\pi}(\hat{f}*\hat{g})(\nu)$
110	For $f(x)$ a purely real even function	$\hat{f}(\omega)$, $\hat{f}(\xi)$ and $\hat{f}(u)$ are purely real even functions.		
111	For $f(x)$ a purely real odd function	$\hat{f}(\omega)$, $\hat{f}(\xi)$ and $\hat{f}(u)$ are purely imaginary odd functions.		

Convolution Filtered Backprojection

The inverse Radon transform is obtained in three steps:

- (1) Each projection is differentiated with respect to s.
- (2) A Hilbert transformation is performed with respect to s.
- (3) The result of step (2) is backprojected to yield f(x,y).

$$f(x,y) = (1/2\pi)B(H_s(D_s(Rf)))$$

Summary

Fourier Reconstruction - Method I:

$$f(x,y) = IF_2 \left(\sum_{n=1}^{N} F_{1,s} \left(g(s, \theta_n) \right) \right)$$

Backprojection Filtering - Method II:

$$f(x,y) = IF_2 \left(|\omega| \cdot F_2 \left(B(Rf) \right) \right)$$

Fourier Filtered Backprojection - Method III

$$f(x,y) = B\left(IF_{1,s}\left(\left|\omega_{s}\right| \bullet F_{1,s}\left(Rf\right)\right)\right)$$

Convolution Filtered Backprojection – Method IV:

$$f(x,y) = (1/2\pi)B(H_S(D_S(Rf)))$$

Projects

Groups of 3-4 work on the same problem but with different approaches. Consult each other and divide work whenever possible.

Presentation in class

Will be graded as ~6 homeworks (or ~10% Grade).

Group Projects

25 students => 5 groups of 5

Each group will write reconstruction program in Matlab:

A. Fourier Reconstruction - Method I:

$$f(x,y) = IF_2 \left(\sum_{n=1}^{N} F_{1,s} \left(g(s, \theta_n) \right) \right)$$

B. Backprojection Filtering - Method II

$$f(x,y) = IF_2 \left(|\omega| \cdot F_2 \left(B(Rf) \right) \right)$$

C. Fourier Filtered Backprojection - Method III:

$$f(x,y) = B(IF_{1,s}(\omega_s | \bullet F_{1,s}(Rf)))$$

D. Convolution Filtered Backprojection - Method IV:

$$f(x,y) = (1/2\pi)B(H_s(D_s(Rf)))$$

E. Iterative Reconstruction