

Статистика DS-поток

Лекция 12

7.3 Обобщенная модель линейной регрессии

Сдвиг и масштаб

$$\mathscr{P}=\{\mathsf{P}_{\theta}\mid \theta\in\Theta\}$$
 — семейство непрер. распр. с плотностью $p_{\theta}(x)$.

$$heta$$
 — параметр сдвига, если $p_{ heta}(x) = p_0(x- heta)$.

$$heta$$
 — параметр масштаба, если $p_{ heta}(x)=rac{1}{ heta}p_{1}(x/ heta)$ и $\Theta\subset(0,+\infty).$

Примеры:

$$\mathscr{P} = \{ \mathcal{N}(a, \sigma^2) \mid a \in \mathbb{R}, \sigma > 0 \}:$$

 a — параметр сдвига σ — параметр масштаба.

$$\mathscr{P} = \{ \mathit{U}[0, \theta] \mid \theta > 0 \}$$
: θ — параметр масштаба.

Ô

Вспомним гауссовскую линейную модель

Данные
$$Y = X\theta + \varepsilon \sim \mathcal{N}(X\theta, \sigma^2 I_n)$$

Строим модель вида $y(x) = x^T \theta$.

Что мы предсказываем?

Пусть x_0 новый объект.

Тогда
$$Y_0 = x_0^T \theta + \varepsilon_0 \sim \mathcal{N}(x_0^T \theta, \sigma^2).$$

T.e. в качестве предсказания оцениваем $\mathsf{E} Y_0 - \mathit{ожидаемый}$ отклик.

Итог

 $y \in \mathbb{R}$ — значения наблюдаемого отклика

 $\mathsf{E}_{\mathsf{x}} \mathsf{Y} - \mathsf{ожидаемый}$ отклик

 $Y_i \sim \mathcal{N}(x_i^T heta, \sigma^2)$ — наблюдаемый отклик

ê

Пуассоновское распределение

$$Pois(\lambda): p(x) = \frac{\lambda^{x}}{x!}e^{-\lambda}, x \in \mathbb{Z}_{+}$$

Смысл: число событий,

произошедших за единицу времени

Условия:

- 1. события происходят с фиксированной интенсивностью λ .
- 2. независимо друг от друга.

Утверждение: время между двумя событиями имеет распр. $Exp(\lambda)$ (см. пуассоновские случайные процессы)

Примеры:

- 1. число клиентов в час
- 2. число запросов на сервер за минуту

Ô

События разной интенсивности

Интенсивность может зависеть от каких-то факторов.

 $X_1,...,X_n$ — факторы интервала времени

 $Y_1,...,Y_n$ — число событий, произошедших за интервал времени

Тем самым имеется $\lambda(x)$ — интенсивность событий для факторов x.

Получаем $Y_i \sim Pois(\lambda(x_i))$

Что предсказывать?

Heт смысла предсказывать сам Y_i ,

т.к. помимо $\lambda(x_i)$ он содержит непрогнозируемый шум.

Тогда оценим Е $Y_i = \lambda(x_i)$ — ожидаемый отклик.

Как параметризовать $\lambda(x)$ для линейной модели?

Определимся с требованиями

Ô

Пусть значению $x_0^T\theta=0$ соответствует интенсивность $\lambda_0=1$. Значению $x_1^T\theta$ сопоставим интенсивность $\lambda_1=5$ событий в час. Хотим чтобы значению $-x_1^T\theta$ соответствовала интенсивность $1/\lambda_1=0.2$ событий в час.

Линеаризация

Соответственно, нужно взять $\lambda_{\theta}(x) = \exp(x^T \theta)$.

Тогда $\ln \lambda_{\theta}(x) = x^T \theta$.

 $g(z) = \ln z$ — **линеаризация** ожидаемого отклика.

Итог

 $y \in \mathbb{Z}_+$ — значения наблюдаемого отклика

$$\lambda_{\theta}(x) = \mathsf{E}_x Y$$
 — ожидаемый отклик

$$Y_i \sim Pois(\lambda_{\theta}(x_i))$$
 — наблюдаемый отклик

Это пуассоновская регрессия.

Ô

Случай бинарной классификации

 $X_1,...,X_n$ — признаки объекта

 $Y_1, ..., Y_n$ — бинарный класс

Тем самым имеется $\rho(x)$ — вероятность класса 1 для объекта x.

Получаем $Y_i \sim Bern(\rho(x_i))$

Что предсказывать?

Оцениваем $\mathsf{E} Y = \rho(x) - \mathsf{o} x$ идаемый отклик.

Как параметризовать $\rho(x)$ для линейной модели?

Определимся с требованиями

Пусть значению $x_0^T \theta = 0$ соответствует вероятность 0.5.

Значению $\mathbf{x}_1^T \boldsymbol{\theta}$ сопоставим вероятность $\rho_0 = 0.9$.

Хотим чтобы значению $-x_1^T \theta$ соответствовала вероятность 0.1.

Что такое в 2 раза более/менее вероятно?

Возможно, 0.95 и 0.05, но это не точно.

Сведение к параметру масштаба

Заметим, что $\frac{\rho}{1-\rho}$ — насколько чаще выпадает класс 1 по сравнению с классом 0. Тем самым это параметр масштаба.

Линеаризация

Логит $g(z) = \ln \frac{z}{1-z}$ — линеаризация ожидаемого отклика.

Т.е. параметризация $\rho_{\theta}(x)$ должна быть такой, что $\ln \frac{\rho_{\theta}(x)}{1-\rho_{\theta}(x)} = x^T \theta$.

Тогда нужно взять $\rho_{\theta}(x) = \frac{1}{1 + \exp(x^T \theta)}$.

Бинарный отклик

 $y \in \{0,1\}$ — значения наблюдаемого отклика $ho_{ heta}(x) = \mathsf{P}_x(Y=1)$ — ожидаемый отклик $Y_i \sim \mathit{Bern}(
ho_{ heta}(x_i))$ — наблюдаемый отклик Это логистическая регрессия.

Обобщенная модель линейной регрессии

Гауссовская линейная модель

Ожидаемый отклик:

$$y = \mu_{\theta}(x) = x^{T}\theta.$$

Наблюдаемый отклик:

$$Y_i = x_i^\mathsf{T} \theta + arepsilon_i, \ \ arepsilon_i \sim \mathcal{N}(0, \sigma^2).$$
или $Y_i \sim \mathcal{N}(\mu_{ heta}(x_i), \sigma^2)$

Оценка отклика:

$$\widehat{y} = x^T \widehat{\theta}.$$

Generalized Linear Models (GLM)

Ожидаемый отклик:

$$y = \mu_{\theta}(x)$$
, причем $g(\mu_{\theta}(x)) = x^T \theta$,
т.е. g — линеаризация ожид. отклика

Наблюдаемый отклик:

$$Y_i \sim \mathsf{P}_{\mu_{\theta}(\mathsf{x}_i)},$$

где
$$\{\mathsf{P}_{\psi}\mid \psi\in \Psi\}$$
 — семейство распр.

Оценка отклика:

$$\widehat{y} = g^{-1} \left(x^T \widehat{\theta} \right).$$

Обобщенная модель линейной регрессии

Пуассоновская регрессия

Ожидаемый отклик:

$$y = \mu_{\theta}(x) = \exp(x^T \theta).$$

$$g(z) = \ln z -$$
линеаризация

Наблюдаемый отклик:

$$Y_i \sim Pois(\mu_{\theta}(x_i)).$$

Оценка отклика:

$$\widehat{y} = \exp(x^T \widehat{\theta}).$$

Generalized Linear Models (GLM)

Ожидаемый отклик:

$$y = \mu_{\theta}(x)$$
, причем $g(\mu_{\theta}(x)) = x^{T}\theta$,

т.е. g — линеаризация ожид. отклика

Наблюдаемый отклик:

$$Y_i \sim \mathsf{P}_{\mu_{\theta}(x_i)}$$
,

где
$$\{\mathsf{P}_{\psi}\mid \psi\in \mathsf{\Psi}\}$$
 — семейство распр.

Оценка отклика:

$$\widehat{y} = g^{-1} \left(x^T \widehat{\theta} \right).$$

Обобщенная модель линейной регрессии

Логистическая регрессия

Ожидаемый отклик:

$$y = \mu_{\theta}(x) = (1 + \exp(x^T \theta))^{-1}.$$

 $g(z) = \ln \frac{z}{1-z}$ — линеаризация

Наблюдаемый отклик:

$$Y_i \sim Bern(\mu_{\theta}(x_i)).$$

Оценка отклика:

$$\widehat{y} = (1 + \exp(x^T \widehat{\theta}))^{-1}.$$

Generalized Linear Models (GLM)

Ожидаемый отклик:

$$y = \mu_{\theta}(x)$$
, причем $g(\mu_{\theta}(x)) = x^{T}\theta$,

т.е. g — линеаризация ожид. отклика

Наблюдаемый отклик:

$$Y_i \sim \mathsf{P}_{\mu_{\theta}(\mathsf{x}_i)}$$
,

где
$$\{\mathsf{P}_{\psi}\mid \psi\in \mathsf{\Psi}\}$$
 — семейство распр.

Оценка отклика:

$$\widehat{y} = g^{-1} \left(x^T \widehat{\theta} \right).$$

Свойства GLM

В качестве $\widehat{\theta}$ берется ОМП (ищется численно)

$$L_X(\theta) = \prod_{i=1}^n p_{\mu_{\theta}(x_i)}(Y_i) = \prod_{i=1}^n p_{g^{-1}(x_i^T\theta)}(Y_i) \longrightarrow \max_{\theta} X_i$$

Если $\{\mathsf{P}_{\psi}\mid \psi\in \Psi\}$ лежит в экспоненциальном классе, то $\widehat{ heta}$:

- 1. существует и единственна;
- 2. состоятельна;
- 3. асимптотически нормальна: $\sqrt{I(\theta)}\left(\widehat{\theta}-\theta\right)\stackrel{d}{\longrightarrow}\mathcal{N}(0,I_d),$ где $I(\theta)=\left(-\mathsf{E}\frac{\partial^2\log L_X(\theta)}{\partial \theta_j\partial \theta_k}\right)_{ik}$ информационная матрица Фишера.

Частные случаи:

- 1. Линейная (гауссовская): $I(\theta) = \sigma^{-2} X^T X$.
- 2. Логистическая: $I(\theta) = X^T \cdot \operatorname{diag} \left[\sigma \left(x_i^T \theta \right) \left(1 \sigma \left(x_i^T \theta \right) \right) \right] \cdot X$.
- 3. Пуассоновская: $I(\theta) = X^T \cdot \text{diag} \left[\exp \left(x_i^T \theta \right) \right] \cdot X$.

Примечание. Свойства работают если верны предположения модели.

Асимпт. доверительные интервалы в GLM

Для параметров (\Longrightarrow критерий для гипотезы H_0 : $\theta_i=0$)

$$\theta_j \in \left(\widehat{\theta}_j \pm z_{1-\alpha/2} \sqrt{\left(I^{-1}(\widehat{\theta})\right)_{jj}}\right)$$

Для преобразованного ожидаемого отклика

$$x_0^T \theta \in \left(x_0^T \widehat{\theta} - \delta, x_0^T \widehat{\theta} + \delta\right)$$

Для ожидаемого отклика

$$\mu(x_0) = g^{-1}(x_0^T \theta) \in \left[g^{-1} \left(x_0^T \widehat{\theta} - \delta \right), g^{-1} \left(x_0^T \widehat{\theta} + \delta \right) \right],$$
$$\delta = z_{1-\alpha/2} \sqrt{x_0^T I^{-1}(\widehat{\theta}) x_0}$$

Примечание. Для линейной регрессии вместо σ^2 нужно взять ее несмещ. оценку.

Проверка линейности логита в логистической регрессии

Сглаженные диаграммы рассеяния

Пусть $(x_1, Y_1), ..., (x_n, Y_n)$ — обучающая выборка, где $Y_i \in \{0, 1\}$.

Выберем признак j и построим ядерную регрессию $y \sim x_j$:

$$\widehat{y}(x_j) = \sum_{i=1}^n q\left(\frac{x_j - x_{ij}}{h}\right) Y_i / \sum_{i=1}^n q\left(\frac{x_j - x_{ij}}{h}\right),$$

где x_{ij} — признак j объекта i, x_j — признак j нового объекта (по сетке), q — ядро, h > 0 — ширина ядра.

Эта регрессия — приближение вер-ти класса 1 в зависимости от x_j .

Отсюда делаем приближение логита:

$$logit(x_j) = log \frac{\widehat{y}(x_j)}{1 - \widehat{v}(x_i)}.$$

Проверка: график $logit(x_i)$ похож на прямую.

Логит линеен, все хорошо

Классы линейно разделимы, но зависимость нелинейна

Классы не являются линейно разделимыми

