Оглавление

Глава 1

Линейные пространства и линейные операторы

1.1 Линейные пространства

1.1.1 Определение линейного пространства

Поле

Определение 1.1.1. Полем называется множество F, в котором определены две алгебраические бинарные операции + (сложение) и \cdot (умножение) и выполнены аксиомы:

- 1. (a+b)+c=a+(b+c) ассоциативность сложения;
- 2. $\exists (0 \in F) \forall (a \in F)[a+0=a]$ наличие нулевого элемента, т. е. нейтрального по сложению;
- 3. $\forall (a \in F) \exists ((-a) \in F)[a + (-a) = 0]$ обратимость любого элемента по сложению;
- 4. a + b = b + a коммутативность сложения;
- 5. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ ассоциативность умножения;
- 6. $\exists (1 \in F) \forall (a \in F) [1 \cdot a = a]$ наличие единичного элемента, т. е. нейтрального по умножению;
- 7. $\forall (a \in F, a \neq 0) \exists (a^{-1} \in F)[a \cdot a^{-1} = 1]$ обратимость по умножению всех элементов, кроме нулевого;
- 8. $a \cdot b = b \cdot a$ коомутативность умножения;
- 9. $(a+b) \cdot c = a \cdot c + b \cdot c$

Замечание 1.1.1. Из аксиомы 6 определения поля следует, что поле содержит не менее двух элементов.

Замечание 1.1.2. Фактически аксимоы 1-4 утверждают, что (F,+) - абелева группа, аксиомы 5-8 - что $(F\setminus 0,\cdot)$ - абелева группа, а аксиома 9 связывает операции + u \cdot .

Пример 1.1.1. *Каждое из множеств* \mathbb{Q} , \mathbb{R} u \mathbb{C} c обычными операциями сложения и умножения является полем.

Пример 1.1.2. Множесство $\mathbb{Q}(\sqrt) = \{x | x = p + q\sqrt{2}, p \in \mathbb{Q}, q \in \mathbb{Q}\}$ с обычными операциями сложения и умножения является полем. Операцию образования такого поля называют расширением поля.

Пример 1.1.3. Пусть p - простое число. На множестве $\mathbb{Z}_p = \{0, 1, ..., p-1\}$ определим операции сложения \oplus и умножения \odot следующим образом: $m \oplus n$ и $m \odot n$ равны остаткам от деления обычной суммы и обычного произведения m и n соответственно. $(\mathbb{Z}_p, \oplus, \odot)$ - поле.

Пример 1.1.4. Множесства целых чисел \mathbb{Z} и натуральных чисел \mathbb{N} с обычными операциями сложения и умножения полями не является, m. κ . не содержат обратного элемента по умножению, например, для a=2.

Пример 1.1.5. Множество всевозможных рациональных дробей вида $\frac{P(x)}{Q(x)}$, где P(x) и Q(x) - многочлены с вещественными коэффициентами, притом Q(x) - ненулевой многочлен, с обычными операциями сложения и умножения дробей является полем.

Элементы полей мы будем называть скалярами.

Линейные пространства

Определение 1.1.2. Множество R называется линейным (векторным) пространством над полем F и обозначается R((F)), если для $\forall (x,y,z \in R) \forall (\alpha,\beta \in F)$ определены сумма x+y=inR и внешнее умножение $\alpha x \in R$ и выполнены аксиомы:

- 1. (x + y) + z = x + (y + z) ассоциативность сложения;
- 2. $\exists (\theta \in R) \forall (x \in R)[x + \theta = x]$ существованание нулевого, т. е. нейтрального по сложению, элемента;
- 3. $\forall (x \in R) \exists ((-x) \in R)[x + (-x) = \theta]$ обратимость любого элемента по сложению;

- 4. x + y = y + x коммутативность сложения;
- 5. $\alpha \cdot (\beta \cdot x) = (\alpha \cdot \beta) \cdot x$ ассоциативность внешнего умножения;
- 6. $1 \cdot x = x$
- 7. $\alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y$
- 8. $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$ так как операнды внешнего умножения неравноправны, аксиом дистрибутивности две, а не одна, как в определении поля.

Элементы линейного пространства называют векторами, элемент θ - нулевым вектором, а вектор (-x) - вектором, проивоположным вектору x. Пространства над полем вещественных чисел $\mathbb R$ называют вещественными, над полем комплексных чисел $\mathbb C$ - комплексными.

Для удобства восприятия векторы мы будем обозначать малыми латинскими буквами, скаляры - малыми греческими.

Пример 1.1.6.

- 1.1.2 Базис, координаты, размерность пространства
- 1.1.3 Изоморфизм линейных пространств
- 1.1.4 Матрица перехода от одного базиса к другому. Преобразование координат при изменении базиса
- 1.1.5 Подпространства линейного пространства
- 1.1.6 Сумма и пересечение подпространств
- 1.1.7 Прямая сумма подпространств

. . .