Олимпиада школьников «Надежда энергетики». Отборочный этап. Очная форма.

ЗАДАНИЕ ПО КОМПЛЕКСУ ПРЕДМЕТОВ ФИЗИКА, ИНФОРМАТИКА, МАТЕМАТИКА ВАРИАНТ 41991 для 9 класса

Недавно суперавтомобиль «Мотаня» получил новый двигатель. Теперь при разгоне с места его скорость изменяется по закону

$$v(t) = 5t + 0.1t^3$$

Давайте попробуем подсчитать, какой путь пройдет «Мотаня» после старта за 1 минуту.

Для поиска ответа на поставленный вопрос перейдем к дискретному времени. Это означает, что вместо непрерывного времени нужно использовать время, изменяющееся скачкообразно с некоторым шагом Δt , т.е. рассматривать только моменты времени, отстоящие от начального момента на $k\cdot \Delta t$ (k - любое натуральное число). Далее следует допустить, что между указанными моментами скорость суперавтомобиля не изменяется, а все изменения происходят мгновенно в отмеченные моменты времени. Таким образом, весь процесс можно приближенно рассмотреть как последовательность равномерных движений. Понятно, что чем меньше будет значение шага дискретизации Δt , тем точнее будет расчет, т.е. тем меньше будет разница между «решением», полученным в ходе расчетов и точным решением исходной задачи. Для определения того, насколько подходящий шаг Δt выбран, можно поступить следующим образом. Проведем расчет с выбранным значением Δt , а затем с шагом $\frac{\Delta t}{2}$. Если результаты будут отличаться незначительно, то результат признаем удовлетворительным, в противном случае уменьшим величину Δt и повторим проверку. В нашей задаче будем считать подходящим различие не более, чем на 1%.

Итак, какой путь пройдет «Мотаня» на стартовой прямой за 1 минуту?

Схема решения

Рассмотрим некоторый момент времени t_k . В этот момент скорость автомобиля равна

$$v_k = 5t_k + 0.1 t_k^3.$$

Тогда за время Δt (в соответствии с принятым упрощением) будет пройден путь

$$S_k = v_k \cdot \Delta t.$$

Поскольку нас интересует первая минута движения, разобьем ее на N одинаковых частей. Таким образом, $\Delta t = 1/N$.

Чтобы найти путь, пройденный за 1 минуту, нужно сложить все S_k для k от 0 до N-1. Получаем, что весь путь

$$L = \sum_{k=0}^{N-1} S_k.$$

Остается оформить все сказанное в виде алгоритма (значок % в нем означает комментарий). Величина N считается известной константой. Она определяется при вычислении Δt .

Алгоритм Старт

Вход: Δt ; % шаг изменения времени

Выход: L; % пройденные путь

начало алгоритма

L := 0; t := 0; % текущее время ДЛЯ k от 1 до N $v = 5t + 0.1 \, t^3$ $S := v \cdot \Delta t;$ L := L + S; $t := t + \Delta t;$ конец ДЛЯ

конец алгоритма

Работу с алгоритмом следует организовать в соответствии с пояснениями в тексте задания.

Производится запуск алгоритма с некоторой величиной Δt на входе (например, $\Delta t = 1$ сутки). На выходе будет получено некоторое значение L_1 :

$$L_1 = \mathbf{Ctapt} (\Delta t).$$

Затем на вход подается величина $\Delta t/2$ и на выходе получается значение L_2 :

$$L_2 = \mathbf{C} \mathbf{T} \mathbf{a} \mathbf{p} \mathbf{T} \ (\Delta t/2).$$

Если $\frac{|L_1-L_2|}{L_2} \le 0.01$ (это означает, что величины отличаются не более, чем на 1%), то значение L_2 (поскольку оно более точное) будет ответом на вопрос о пройденном пути.

Если же $\frac{|L_1-L_2|}{L_2}>0.01$, то величина Δt уменьшается (например, делится пополам, и соответственно N увеличивается вдвое), и снова производится два запуска алгоритма, как описано выше.

При решении задания этот процесс можно было проводить вручную, а можно было написать еще один цикл двойных запусков.

Числовые данные, которые должны были бы быть получены в результате выполнения описанных алгоритмов не приводятся. Их отсутствие следует рассматривать как стимул для повторной самостоятельной проработки задачи.