

Session 2.8

Module 2

Mouli Sankaran

Multiplexers

Session 2.8: Focus

- Multiplexers (MUX)
 - 2-to-1 line MUX Implementation
 - 4-to-1 line MUX Implementation
 - MUX Symbols/Representation
- Multiplexers (MUX)
- Real-life Applications of MUX

Multiplexer (MUX)

Multiplexer (MUX)

- A multiplexer (MUX) is a device that allows digital information from several sources to be routed onto a single line for transmission
- A basic MUX has several data-input lines and a single output line
- It has data-select inputs, which permit digital data on any one of the inputs to be switched to the output line
- Multiplexers are also known as data selectors

2-to-1 line Multiplexer

• When S = 0, I_0 will be available at Y

S is a Select Signal

• When S = 1, I_1 will be available at Y

4-to-1 line Multiplexer

ATA-SELE	CT INPUTS	
5 ₁	50	INPUT SELECTED
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

Implementation: 4-to-1 line Multiplexer

S_1	S_0	Y
0 0 1 1	0 1 0 1	$\begin{array}{c} D_0 \\ D_1 \\ D_2 \\ D_3 \end{array}$
1	1	_

(b) Function table

$$Y = D_0 \overline{S}_1 \overline{S}_0 + D_1 \overline{S}_1 S_0 + D_2 S_1 \overline{S}_0 + D_3 S_1 S_0$$

Quiz 1: Draw the Output Waveform

Given the data-input and the data-select waveforms, draw the output waveform

S_1	S_0	Y
0 0 1 1	0 1 0 1	$\begin{array}{c} D_0 \\ D_1 \\ D_2 \\ D_3 \end{array}$

(b) Function table

Mux Symbols in Use

4-to-1 Line Mux

8-to-1 Line Mux

Quiz 2: What are the values at the output (Q)?

Selectors S ₂ S ₁ S ₀			Output (Q)
0	0	0	$\mathbf{D_0}$
1	1	1	\mathbf{D}_3
1	0	1	$\mathbf{D_2}$
0	0	1	\mathbf{D}_1

Real-life Applications of MUX

Multiplexer: Real-life Applications - 1

• Time Division Multiplexer (TDM) is one of the types of multiplexers which join data streams by allotting every stream a different time slot, in a sequence.

Multiplexer: Real-life Applications - 2

• Choosing one input from multiple input lines, to be given to Arithmetic Logic Unit (**ALU**)

Session 2.8: Summary

- Multiplexers (MUX)
 - 2-to-1 line MUX Implementation
 - 4-to-1 line MUX Implementation
 - MUX Symbols/Representation
- Multiplexers (MUX)
- Real-life Applications of MUX