Ergänzung zur Übung 3 - Gesteinsbildende Silikatmineralien

Bemerkungen zu den einzelnen Aufgaben:

Aufgabe 1:

a) Wie sind die beiden wichtigsten Elemente Silizium und Sauerstoff miteinander verknüpft? Was lässt sich anhand der Ionenradien der einzelnen Elemente aussagen?

Silizium wird von 4 Sauerstoff-Ionen in Form eines Tetraeders umgeben. Dabei nehmen die 4 O-Atome die 4 Ecken eines fast regelmässigen Tetraeders ein und in der tetraedrischen Lücke befindet sich das Si-Atom. Tetraedrische Koordination ist für das Ionenradienverhältnis r_X / r_A = Si⁴⁺ / O²⁻ = 0.41Å / 1.4 Å = 0.295 die stabile Konfiguration. Die Bindungen sind zu gleichen Teilen ionisch und kovalent. Das Bauelement aller Silikatstrukturen ist somit der SiO₄-Tetraeder. Ladung des Tetraeders: -4.

b) Wie wird die fehlende Ladung ausgeglichen?

Ladungsausgleich durch Einlagerung von Kationen. Einlagerung von $1 \cdot 4^+$, $2 \cdot 2^+$ oder $1 \cdot 1^+$ und $1 \cdot 3^+$ Kationen.

Besonderheit: das 3-wertige Al³+ kann aufgrund seines etwas grösseren Ionenradius (0.51 Å) als derjenige des Si⁴+ (0.42 Å) eine Doppelrolle einnehmen. Es kann gegenüber O in 6-Koordination Al[6] sowie in 4-Koordination Al[4] auftreten. Damit kann es zum diadochen Ersatz von Si⁴+ [KZ 4] gegen Al³+ [KZ 4] oder zum Ersatz von Metallionen gegen Al³+ [KZ 6] kommen, vorausgesetzt Ladungsausgleich erfolgt.

Aufgabe 2: Hauptstrukturtypen und Verknüpfungsmöglichkeiten von SiO_₄-Bausteinen

- Das Bauelement aller Silikatstrukturen ist der SiO₄-Tetraeder.
- Die SiO₄-Tetraeder können isoliert auftreten oder zu Gruppen, Ringen, Ketten, Schichten oder dreidimensionalen Gerüsten verbunden sein.
- Der Aufbau dieser speziellen Strukturen erfolgt durch Eckenverknüpfung von Tetraedern entweder über gemeinsame O-Ionen (Brückensauerstoff) oder über zwischengeschaltete Metallionen.
- Die daraus resultierenden verschiedenen Anordnungen der SiO₄-Tetraeder (siehe unten) werden durch Kationen untereinander verbunden. Lediglich bei den Gerüstsilikaten sitzen die Kationen in den Lücken des SiO₄-Gerüstes.

Inselsilikate (Nesosilikate) Beispiele: Olivin, Zirkon, Isolierte SiO₄-Tetrader oder isolierte SiO₄-Granat Tetrader-Gruppen: Si:O Verhältnis: 2:7 $[SiO_4]^{4-}$ **Gruppensilikate** (Sorosilikate) Beispiele: Epidote, Vesuvian Gruppen von SiO₄-Tetrader: Tetraeder über einen Brückensauerstoff eckenverknüpft Si:O Verhältnis: 2:7 $[Si_2O_7]^{6-}$ Ringsilikate (Cyclosilikate) Beispiele: Beryll, Turmalin Geschlossenen Ketten: Tetraeder über 2 Brückensauerstoffe mit Nachbartetraedern verknüpft $[Si_nO_{3n}]^{2n}$, n = 3, 4, 6 $[Si_3O_9]^{6-}$ $[Si_4O_{12}]^{8-}$ $[Si_6O_{18}]^{12}$ Beispiele: Ketten- und Bändersilikate (Inosilikate) Pyroxene Amphibole Offene Ketten, gestreckt: Tetraeder über 2 Brückensauerstoffe mit Nachbartetraedern verknüpft Einfachketten (Kettensilikate) Si:O Verhältnis: 1:3 $[Si_nO_{3n}]^{2n}$, n = 2, 3, 4, 5, 6, 7, 9, 12, 24 Doppelketten (Bändersilikate) Verknüpfung von Einfachketten, z.B.

miteinander verknüpft sind

Si:O Verhältnis: 4:11

 $[Si_4O_{11}]^{6-}$

2-dimensionale Schichten durch Verknüpfung der Tetraeder über 3 Brückensauerstoffe

Zweierbänder, bei denen 2 Einfachketten

Si:O Verhältnis: 2:5 $[Si_2O_5]^{2-}$ bzw. $[Si_4O_{10}]^{4-}$

Beispiele: Glimmer, Chloritgruppe, Talk, Serpentin, Tonminerale

Gerüstsilikate (Tektosilikate)

Jedes Sauerstoffion gehört gleichzeitig zwei benachbarten Tetraedern an. Dadurch entstehen dreidimensionale geschlossene räumliche Gerüste durch Verknüpfung der Tetraeder über alle 4 Brückensauerstoffe mit den Nachbartetraedern: $[Si_nO_{2n}]^0$

Ausgangsbaueinheit ist elektrisch neutral, Kationen können nur eingefügt werden, wenn Si durch Al ersetzt wird:

 $[SiO_4]^{4-}$ zu $[AIO_4]^{5-}$, z.B. Feldspat-Gruppe $[AISi_3O_8]^{1-}$

Beispiele: Quarz, Feldspäte, Zeolite, Feldspatvertreter (Foid)

Besteht ein Zusammenhang zwischen Struktur und äusserer Form / Eigenschaften der Mineralien?

Äussere Form, Härte und Spaltbarkeit sind Eigenschaften, die bei den Silikaten sehr stark von der jeweiligen Tetraederkonfiguration abhängen.

Auffallende Eigenschaften, die auf der Tetraederkonfiguration beruhen sind z.B. eine schichtförmige Ausbildung, sehr gute Spaltbarkeit parallel zu den Schichten und eine eher geringere Härte bei Schichtsilikaten oder stengelige Ausbildung von Kristallen bei Kettensilikaten. Inselsilikaten zeigen tendenziell höhere Härten. Die Farbe wird fast ausschliesslich durch die Kationen bestimmt, wobei Spurenelemente eine wichtige Rolle spielen.

Aufgabe 3:

Mineralien: dunkle Mineralien: Olivin, Amphibol, Pyroxen, Biotit, Turmalin helle Mineralien: Quarz, Feldspat, Zirkon, Foide (in Gestein)

- Benütze dazu das Buch "Grundzüge der Erdwissenschaften" von V. Trommsdorff und V. Dietrich (Seiten 23-44 oder evtl. die "Tabellen zur Mineral- und Gesteinsbestimmung" von W. F. Oberholzer und V. Dietrich).
- Wieder auf hinweisen: "Mineral-/Gesteinsbestimmen.pdf" (2015), Prof. Stosch, Uni Karlsruhe zum Herunterladen.

Zusammenfassung: Erkennungsmerkmale der wichtigsten gesteinsbildenden Silikate

Mineral	Eigenfarbe	н	Kristall- system	Sonstige Eigenschaften
Olivin (Mg,Fe)₂SiO₄ (Forsterit-Fayalit) Inselsilikat	gelblich-flaschengrün	6,5	rh.	Glasglanz, Kristall selten, meist körnig UM und mafische Gesteine Zusammen mit andere Mg-Fe reiche Mineralien
Granat (Fe,Mg,Ca)₃Al₂Si₃O₁₂ Inselsilikat	Pyrop: meist tiefrot Almandin: bräunlich- rot Grossular: hell- gelblichgrün, braun- rotgelb	7	kub.	Glasglanz, muscheliger Bruch, Rhombendodekaeder, Ikositetraeder, Agg. derb, körnig-dicht UM und mafische Gesteine Zusammen mit andere Mg-Fe- Ca reiche Mineralien
Aluminiumsilikate Andalusit Al ₂ SiO ₅ Inselsilikat	rötlichgrau, graublau, rosa	7,5	rh.	Glasglanz, muscheliger Bruch, Kristall dicksäulig mit quadratischem Querschnitt Metapelite Zusammen mit andere Al reiche Mineralien
Disthen Al₂SiO₅ Inselsilikat	blau, selten weiss, oft fleckig	4,5 // [001], 6,5 // [010]	trkl.	Glasglanz, teils Perlmuttglanz, Kristall breitstengelig Metapelite Zusammen mit andere Al reiche Mineralien
Sillimanit Al₂SiO₅ Inselsilikat	weiss-grau, gelbgrau	6,5	rh.	Glasglanz, faserige Aggregate mit Seidenglanz, Kristall kleinnadelig, Agg. faserig, filzig, dicht, stengelig Metapelite Zusammen mit andere Al reiche Mineralien
Turmalin [Si ₆ O ₂₇]B ₃ (OH,F) ₄ Ringsilikat	je nach chemischer Zusammensetzung: z.B. schwarz (Fe- reich), braun (Mg- reich), rosarot (Mn-, Li, -Cs-haltig), starker Pleochroismus	7	trig.	Glasglanz, muscheliger Bruch, Kristall prismatisch, Querschnitt Dreieck mit gerundeten Seiten, oft vertikal Streifung, Kristall auch nadelförmig und oft zu büschelförmigen Gruppen angeordnet (Turmalinsonnen

Mineral	Eigenfarbe	н	Kristall- system	Sonstige Eigenschaften
Pyroxene: Bronzit (Opx: Enstatit- Ferrosilit-Reihe) (Mg,Fe) ₂ [Si ₂ O ₆]	braun, bronzebraun, graugrün	~ 6	rh.	Glasglanz, perlmutartig, Kristall prismatisch UM und mafische Gesteine Zusammen mit andere Mg-Fe
Kettensilikat Diopsid (Kpx: Diopsid- Hedenbergit-Reihe) Ca(Mg,Fe)[Si ₂ O ₆] Kettensilikat	grau bis graugrün	6	mkl.	reiche Mineralien matter Glanz, # (110) deutlich, Spaltwinkel 93°, muscheliger Bruch, Kristall prismatisch mit fast rechtwinkligem Querschnitt Mafische Gesteine Zusammen mit andere Mg-Fe- Ca reiche Mineralien
Augit (Kpx: Diopsid- Hedenbergit-Reihe) (Ca,Na)(Mg,Fe,Al) [(Si,Al) ₂ O ₆] Kettensilikat	dunkelgrün, schwarz	6	mkl.	Glasglanz, # (110) gut, Spaltwinkel 93°, muscheliger Bruch, Kristall kurzsäulig, nadelig, dicktafelig oder körnig, häufig Zwillinge nach (100) Mafische Gesteine
Amphibole: Hornblende Ca ₂ Mg ₅ [Si ₈ O ₂₂](OH) ₂ Bändersilikat	Gemeine Amph: grün, dunkelgrün, basaltische Hbl.: schwarz mit gelblich- braunem Strich, sonst farbloser Strich	5-6	mkl.	Glasglanz bis blendeartiger, halbmetallischer Glanz, Spaltwinkel 124°, Kristall prismatisch, oft mit 6-eckigem Querschnitt, schwarze basaltische Hbl. hat höheren Fe³+ und Ti Gehalt Mafische Gesteine
Glimmergruppe: Biotit KMg ₃ Al(OH,F) ₂ Schichtsilikat	dunkelbraun, dunkelgrün, schwarz (Hellglimmer)	2,5-3	mkl.	Perlmuttglanz, Kristall tafelig, Aggregat schuppig, blättrig Granitisch und Pelitische Gesteine – K Träger!
Muskovit KAI ₂ Al(OH,F) ₂ Schichtsilikat	farblos, grau, gelblich	2-2,5	mkl.	Perlmuttglanz, # (001) vv, XX tafelig, kurzsäulig, Aggregat schuppig, blättrig Granitisch und Pelitische Gesteine – K Träger!
Plagioklase: Mischkristalle aus <i>Albit</i>	klar, weiss, gelblich durch Verglimmerung,	6	trik.	Polysynthetische Zwillinge (feines Liniensystem auf Spaltflächen)

Mineral	Eigenfarbe	Н	Kristall- system	Sonstige Eigenschaften
Na[AlSi₃O ₈] und <i>Anorthit</i> Ca[Al₂Si₂O ₈] Gerüstsilikat	grünlich durch Epidotisierung			Mafisch und Granitische Gesteine
Labradorit (Plagioklas:50- 70% An) Gerüstsilikat	grau, oft blauer Schimmer durch Entmischungs- lamellen	6	trik.	Perlmuttglanz bis glasartig Mafisch und Granitisch Gesteine
Alkalifeldspäte: Mischkristalle aus Orthoklas und Albit			trik., mkl.	Zwillinge nach Karlsbader, Bavenoer, Manebacher Gesetz Granitische Gesteine
Orthoklas (Alkalifeldspat) K(AlSi₃O ₈) Gerüstsilikat	farblos, weiss, gelblich, rötlich	6	mkl.	Perlmuttglanz, Kristall dicktafelig nach (010), säulig nach [100], häufig Karlsbader Zwillinge // (001), Perthitentmischung <i>Granitisch Gesteine</i>
Quarz SiO ₂ Gerüstsilikat	meist farblos, Strich weiss	7	trig.	Glasglanz, muscheliger Bruch, Einzel Kristall oft gut ausgebildet Granitisch Gestein

Varietäten von Quarz	Eigenschaften
Bergkristall	farblos bis wasserklar, Kristall bis zu mehreren m
Amethyst	blau-violett, durch Spuren von Fe ³⁺ und radioaktiver Bestrahlung, Färbung verschwindet beim Erhitzen, tritt bei radioaktiver Bestrahlung wieder auf
Rauchquarz	braun, mit Spuren von Al, Farbe durch Gitterfehler infolge nat. radioaktiver Bestrahlung
Gangquarz (Milchquarz)	derber, xenomorpher Quarz aus hydrothermalen Gängen, klar bis milchig trüb durch Flüssigkeit-Gas-Einschlüsse
Chalcedon	mikrokristallin, freie Oberflächen glaskopfartig, besteht aus mikroskopisch kleinen, faserförmigen Quarzkristallen, oft bläulich
Opal SiO₂ · nH₂O	amorph, farblos, weiss, schwarz, grün, rot, bunte Innenreflexen, H: 5,5-6,5

Überblick

Mafische Minerale		
Inselsilikate	Olivin-Aggregat	
Pyroxene	hellgrüner Diopsid	
	Augit-Einzelkristall	
	Bronzit-Aggregat	
	Enstatit	
Amphibole	Hornblende-Einzelkristall	
Oxide	Magnetit	
Schichtsilikate	Biotit-Aggregat	

Felsische Minerale		
Alkalifeldspäte	Sanidin; Einzelkristall	
	Orthoklas, rötlich	
	Orthoklas, Karlsbader Zwilling	
Plagioklase	Labradorit	
Foide	Leucit-Kristalle in Gestein	
	Nephelin im Gestein	
SiO ₂ -Familie	Gangquarz, weiss, massiv	
Schichtsilikate	Muskovit-Blatt	

Aufgabe 4: Mischreihen

Einfache Substitution (Anorthit zu Albit)

Gekoppelte Substitution (Albit zu Orthoklas)

 $KAISi_3O_8 \longleftrightarrow NaAISi_3O_8$

 $K^{+} \longleftrightarrow Na^{+}$

 $\mathsf{NaAlSi}_3\mathsf{O}_8 \longleftrightarrow \mathsf{CaAl}_2\mathsf{Si}_2\mathsf{O}_8$

 $Na^+ + Si^{4+} \longleftrightarrow Ca^{2+} + Al^{3+}$

Aufgabe 5:

Almandin, Pyrop und Grossular gehören zur Mineralfamilie der Granate. Was ist der Unterschied im Chemismus? Unterscheiden sie sich bezüglich der Kristallstruktur?

<u>Isomorphie:</u> gleiche Gestalt (Kristallstruktur, Koordinationspolyeder) bei unterschiedlichem Chemismus

Polyeder von Ionenpaaren, die sich bezüglich Grösse und Ladung/Elektronenkonfiguration sehr ähnlich sind, unterscheiden sich kaum. Diese Ähnlichkeit hat zur Folge, dass sie untereinander austauschbar sind. Die gegenseitige Austauschbarkeit verschiedener Atombzw. Ionensorten in einer Kristallphase wird als Diadochie bezeichnet. Dies führt zur Bildung von Mischkristallen.

Granate haben die allgemeine Formel $A_3^{2+}B_2^{3+}[SiO_4]_3$. In den als Minerale vorkommenden Granaten tritt in der A^{2+} -Position Mg, Fe, Mn, Ca in 8-er Koordination auf und in der B^{3+} -Position Al, Fe, Cr in 6-er Koordination, wobei vollständige oder weitgehende Mischbarkeit innerhalb der zwei Gruppen besteht.

Der Chemismus der Al-Granate lässt sich als Dreieck mit Ca, Fe und Mg in den Ecken darstellen. Je nach Angebot der Elemente im Gestein dominiert die eine oder andere Granatchemie. Allerdings sind auch die Umgebungsbedingungen von Bedeutung: Im selben z.B. metamorphen Basalt kann ein Granat Fe-reich (bei Amphibolit-Fazies) oder Mg-reich sein (bei Eklogit-Fazies). Dies hat seinen Grund (und beantwortet den zweiten Teil der Aufgabe 4):

Für Mg²⁺/O²⁻ ist das Verhältnis ca. 0.5, bei Fe²⁺ ist es 0.56. Gerade bei hohen Drücken ist das Bestreben des Oktaederplatzes, dem idealen Radienverhältnis von 0.414 am nächsten zu sein, besonders gross. Deswegen wird Mg unter diesen Bedingungen gegenüber Fe bevorzugt. Ansonsten ist die Kristallstruktur aber identisch, d.h. Ca, Mn, Mg, Fe²⁺ sind untereinander austauschbar.

a) In welchen Gesteinen treten sie auf?

Granate kommen fast ausschliesslich in Metamorphiten vor.

Melanit (ein Teil des CaFe des Andradits durch NaTi ersetzt) in alkalibetonten Magmatiten. Der Chemismus der einzelnen Mineralphasen ist charakteristisch für das Herkunftsgestein.

b) Zusätzlich: Weitere Beispiele für einen Mischkristall (isomorphe Mischungsreihe)?

Olivin (Mg,Fe)₂SiO₄: lückenlose Reihe von Mischkristallen mit den Endgliedern Mg₂SiO₄ (Forsterit) und Fe₂SiO₄ (Fayalit).

Orthopyroxene: Isomorphe Mischungsreihe von Mg[SiO₃] und Fe[SiO₃]

Andalusit, Sillimanit und Disthen sind Aluminosilikate. Welche Gemeinsamkeit haben die drei Minerale?

<u>Polymorphie</u>: gleicher Chemismus (isochemisch) bei unterschiedlicher Kristallstruktur. Polymorphe Formen eines Minerals, die zu verschiedenen Strukturtypen gehören, treten in Abhängigkeit von den thermodynamischen Zustandsbedingungen (Temperatur, Druck) in Erscheinung.

Gemeinsamkeit der Alumosilikate ist somit ihr Chemismus.

a) Warum handelt es sich trotzdem um drei verschiedene Minerale?

Alle drei Alumosilikate haben aber unterschiedliche Kristallstrukturen und unterscheiden sich in ihrer Al-Al-Koordination.

Disthen Hockdruckmodifikation, [Al]⁶[Al]⁶[O/SiO₄], trkl.

Andalusit Niedrigdruckmodifikation, $[Al]^{6}[Al]^{5}[O/SiO_{4}]$, rh.

Sillimanit Hochtemperaturmodifikation, $[Al]^6[Al]^4[O/SiO_4]$, rh.

Bei Disthen (Hochdruck-Polymorph) ist kein Al auf dem Tetraederplatz zu finden, bei Sillimanit hingegen schon (Hochtemperatur-Polymorph.).

b) Welche geologische Bedeutung kommt diesen Alumosilikaten zu?

Die Alumosilikate haben ein Zustandsdiagramm mit Tripelpunkt (A). Je nach Temperatur und Druckbedingungen in der Erdkruste tritt ein bestimmtes Al-Silikat auf. Diese Minerale sind somit wichtige Indikatoren der Bedingungen die bei der Gesteinsbildung herrschen. Die Kenntnis ihrer Stabilitätsfelder wird oft bei der Einstufung des Metamorphosegrades eines metamorphen Gesteines herangezogen.

c) Zusätzlich erklären: Können alle 3 Minerale nebeneinander auftreten? Wenn ja, unter welchen Bedingungen?

Im Tripelpunkt (A) koexistieren alle 3 Minerale nebeneinander.