«Мобильные системы компьютерного зрения»

Лабораторная №1

«Основы создания системы компьютерного зрения на базе платформы Jetson Nano»

Цель работы.

Ознакомиться с основами создания приложения системы компьютерного зрения на платформе Jetson Nano.

Задание.

- 1. Ознакомиться с основами архитектуры аппаратного и программного обеспечения Jetson Nano.
- 2. Выполнить подключение модулей и сенсоров, необходимых для выполнения задания в соответствии с вариантом.
- 3. Разработать программное обеспечение в соответствии с вариантом задания.
- 4. Описанная в задании функциональность должна выполняться в реальном времени, скорость обработки должна выводиться на монитор.
- 5. Протестировать разработанное ПО следующим образом:
 - 5.1. Оценить функциональность полученной системы.
 - 5.2. Оценить максимальную скорость видеопотока, при которой видео будет обрабатываться корректно.
 - 5.3. Изменить указанные в задании параметры, объяснить их влияние на работу программы.

Инструментальные средства.

Лабораторная работа выполняется на языке Python 3, в качестве платформы используется одноплатный компьютер Jetson Nano.

Материалы и пособия.

- 1. Гайд по настройке Jetson Nano https://www.pyimagesearch.com/2019/05/06/getting-started-with-the-nvidia-jetson-nano/
- 2. ПО для работы с Jetson от NVIDIA https://developer.nvidia.com/embedded/develop/software
- 3. Richard Szeliski «Computer Vision: Algorithms and Applications» http://szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf

Критерии оценивания выполнения работы.

По результатам работы должен быть подготовлен отчет в электронном виде. Максимальный балл — 10. Работа считается сданной при оценке минимум в 5 баллов. Оценка складывается из следующих составляющих:

- Соответствие заданной функциональности 0-4 баллов;
- Выполнены п. 5.2 и 5.3 задания 0-2 балла;
- Защита работы 0-3 балла;
- Составление отчета 0-1 балл.

Варианты лабораторной работы №1

Вариант 1

Заданная функциональность	Программа принимает на вход изображение с камеры и выводит его на монитор. В определенной области изображения отображается рамка области интереса. Если изображение в этой области имеет один из трех цветов (R, G, B), то загорается светодиод соответствующего цвета, иначе ни один светодиод не горит.
Используемые модули	Цифровая камера, блок светодиодов.
Изменяемые параметры	Пороговые значения параметров H, S, V детектирования цветов.

Вариант 2

Заданная	Программа принимает на вход изображение с камеры и
функциональность	выводит его на монитор (в формате grayscale). Одновременно
	с этим производится расчет гистограммы изображения и его
	вывод. По сигналу нажатия кнопки программа переходит в
	режим выравнивания гистограммы, на монитор выводится
	обработанное изображение и гистограмма.
Используемые модули	Цифровая камера, кнопка.
Изменяемые параметры	Значение параметра количества корзин гистограммы histSize.

Вариант 3

<u>Bupilumi U</u>	
Заданная функциональность	Программа принимает на вход изображение с камеры и выводит его на монитор. Производится обработка изображения сглаживающим фильтром Гаусса и фильтром для выделения границ (в данном случае, фильтром Собеля). При нажатии кнопки отфильтрованное изображение на мониторе переключается между производными по осям х и у и суммой производных.
Используемые модули	Цифровая камера, кнопка.
попользуемые модули	цифровал камера, кнопка.
Изменяемые параметры	Значение размера ядра фильтра.

Заданная	Программа принимает на вход изображение с камеры и
функциональность	выводит его на монитор. Далее производится поиск
	ключевых точек на изображении с помощью алгоритма ORB.

	При нажатии кнопки включается или выключается отображение на изображении полученных ключевых точек.
Используемые модули	Цифровая камера, кнопка.
Изменяемые параметры	Значение количества признаков nfeatures.

Вариант 5

Заданная функциональность Используемые модули	Программа принимает на вход изображение с камеры и выводит его на монитор. Далее производится бинаризация изображения с помощью алгоритма с адаптивным порогом. При нажатии кнопки происходит отображение бинарного изображения. Цифровая камера, кнопка.
Изменяемые параметры	Значение размера окружающей области blockSize.

Приложение

Далее приведены примеры работы алгоритмов по вариантам.

Вариант 2

