

DCS-M04-GDDR SUPPORTED SCENARIO'S

GDDR SUPPORTED SCENARIO'S

Abstract GDDR Supported Scenario's

Document Reference

Document Type GDDR Documentation

Project/Application DCS-GDDR

Version 01.01
Status DRAFT

Date of Issue 18th April 2005

File Location DCS:\M00-Mainframe\DCS M04 GDDR Supported

Scenarios.doc

Pages 32

Produced by	Phil Davies
Reviewed by	Didier Lemaitre, Renaud Colin, Michael Quigley
Authorised by	Didier Lemaitre

© euroclear 2005 1 29 June 2016

TABLE OF CONTENTS

1. INTRODUCTION3
1.1 Scope
1.2 Objectives3
1.3 Intended audience
2. GDDR SUPPORTED PLANNED SCENARIO'S5
2.1 GDDRPA05: PLANNED_ACTION_ALLSITE3_DC3_ONLY5
2.2 GDDRPA06: PLANNED_ACTION_ALLSITE3_DC3_2_DC1or27
2.3 GDDRPA07: PLANNED_ACTION_ALLSITE3_TEST_DC38
2.4 GDDRPA08: PLANNED_ACTION_RESUME_AFTER_DC3_TEST10
2.5 GDDRPA09: PLANNED_ACTION_RESUME_SNOW12
2.6 GDDRPA29: PLANNED_ACTION_RESUME_SNOW (GNS)14
2.7 GDDRPA39: PLANNED_ACTION_RESUME_SNOW_NO_STAR (GNS)16
2.8 GDDRPAOA PLANNED ACTION_RESUME JO_AFTER CAX_EVENT
2.9 GDDRPA22: PLANNED ACTION_ALLSITEN STARE 20 2.10 GDDRPA32: PLANNED ACTION_ALLSITEN STAREIRE 23
2.10 GDDRPA321 PLANNED_ACTION_ALLSHEN (STARFIRE)23 \\
U
3. GDDR SUPPORTED UNPLANNED SCENARIO'S28
3.1 GDDRUP03: UNPLANNED_TAKEOVER_SYSTEM28
3.2 GDDRUP31: UNPLANNED_TAKEOVER_ALLSITEN (STARFIRE)29

1. INTRODUCTION

1.1 Scope

This document details the Planned and Unplanned Scenario's supported by GDDR.

1.2 Objectives

It is the intention of this document to describe in detail the steps of each Planned and Unplanned Scenario supported by GDDR.

This document is intended for the Administrators of GDDR, specifically: z/OS Systems Programming Staff

For Eyes Only

2. GDDR SUPPORTED PLANNED SCENARIO'S

2.1 GDDRPA05: Planned_Action_ALLSITE3_DC3_Only

This scenario is run only after Euroclear Management has taken the decision to run the Business Workload from Site DC3.

Typically this decision would only be taken in the event of a Regional Disaster that has compromised the ability of both DC1 and DC2 to continue running the business workload.

2.1.1.1 Parms: none

2.1.1.2 GDDRGF0I: Determine_Valid_State_4_Planned_DC3

2.1.1.3 GDDRGFOL: Prompt_Operators 4_Confirmation

2.1.1.4 Attempt Reset_Clear of all LPAR's at DC1 and DC2

2.1.1.5 GDDRKF0Z: ESS_Interface

DC3, STOP, RDR

2.1.1.6 GDDRKF21: Manage_BCVs

DC3, SPLIT

2.1.1.7 GDDRKF0G: Toggle_ConGroup_Groups

DISABLE

2.1.1.8 GDDRGF0Q: Run_ME_MSC_Cleanup

DC3, Current_primary_DASD_site

2.1.1.9 GDDRGF0J: Issue_Commands_2_JA_RDFGRP

DC3, HSWAP

2.1.1.10GDDRGF0J: Issue_Commands_2_JA_RDFGRP

DC3, HDELETEPAIR

2.1.1.11 For each System required at DC3...

2.1.1.11.1 GDDRKF0J: Discover_HMC_Objects

2.1.1.11.2 GDDRHMC2:Issue_HWMCA_Commands

ACTIVATE_LPAR, lpar_name

2.1.1.11.3 GDDRHMC2:Issue_HWMCA_Commands

SINGLE_LOAD_DC3_TEST, system_name

2.1.1.12GDDRGF0B: Check_Production_Systems_Available

2.1.1.13 GDDRKF0I: Trigger_Non_K_System_Startup

2.1.1.14GDDRKF0Z: ESS_Interface

DC3, START, RDR

What the script currently does MOT do but could is...

• Re-establish DC3 BCV's

2.2 GDDRPA06: Planned_Action_ALLSITE3_DC3_2_DC1or2

This scenario is run only after Euroclear Management has taken the decision to run the Business Workload from Site DC3.

Typically this decision would only be taken in the event of a Regional Disaster that has compromised the ability of either DC1 and DC2 to continue running the business workload.

It would still be possible to JA to either DC1 or DC2.

For Eyes Only

2.3 GDDRPA07: Planned_Action_ALLSITE3_Test_DC3

This scenario is used to test the ability of DC3 to run the Production workload, ie. Verify that the remote asynchronous copy of either DC1 or DC2 is consistent and that the DC3 infrastructure is capable of supporting the business workload and users.

The scenario is run once for each Production system that is required to be tested at DC3.

The normal Business workload will continue to run in DC1 or DC2 and J0 to DC2 or DC1.

2.3.1.1 Parms: systemid

2.3.1.2 GDDRGF0I: Determine_Valid State 4_Planned_DC3

2.3.1.3 GDDRGF0L: Prompt_Operators_4_Confirmation

2.3.1.4 Isolate Production Network from DC3 Network

2.3.1.5 GDDRKF0Z: ESS_Interface

Current_primary_DASD_site, STOP, TDC3

2.3.1.6 GDDRGF0G: Wait_For_JA_Session_Consistency

2.3.1.7 GDDRKF0P: Planned_Kill_SNOW

2.3.1.8 GDDRKF21: Manage_BCVs

DC3, SPLIT

2.3.1.9 GDDRGF0J: Issue_Commands_2_JA_RDFGRP

Current primary DASD site, READWRITE

2.3.1.10GDDRKF0J: Discover_HMC_Objects

2.3.1.11GDDRHMC2: Issue_HWMCA_Commands

ACTIVATE_LPAR, lpar_name

2.3.1.12GDDRKF0J: Discover_HMC_Objects

2.3.1.13GDDRHMC2: Issue_HWMCA_Commands

Single_load_dc3_test, systemid

For Eyes Only

2.4 GDDRPA08: Planned_Action_RESUME_After_DC3_Test

This scenario is run upon the completion of a Test of DC3.

It will terminate all Production Systems running at DC3 and re-establish JA to DC3 from the current Primary Site, either DC1 or DC2. It will also trigger the restoration of the Network to its normal state.

Business Applications running at either DC1 or DC2 will not be affected.

2.4.1.1 Parms: none

2.4.1.2 GDDRGF0I: Determine_Valid_State_4_Planned_DC3

2.4.1.4 GDDRKF0Z: ESS_Interface

Current_primary_DASD_site, START, TDC3

2.4.1.5 GDDRKF0J: Discover_HMC_Objects

2.4.1.6 GDDRHMC2: Issue_HWMCA_Commands

Kill_site_dc3, DC3

2.4.1.7 GDDRGF0J: Issue_Commands_2_JA_RDFGRP

Current_primary_DASD_site, READONLY

2.4.1.8 Restore Network

2.4.1.9 GDDRKF0G: Toggle_ConGroup_Groups

DISABLE

2.4.1.10 GDDRGF0J: Issue_Commands_2_JA_RDFGRP

Current_primary_DASD_site, ADCOPY

2.4.1.11GDDRGF0J: Issue_Commands_2_JA_RDFGRP

Current_primary_DASD_site, RDFRESUME

2.4.1.12GDDRKF0B: Re_Establish_SNOW

2.4.1.13GDDRKF0G: Toggle_ConGroup_Groups

ENABLE

2.4.1.14GDDRGF0M: Wait_4_SNOW_Synch_Up

2.4.1.15GDDRGF0H: Run_M6_MSC_Cleanup

2.4.1.16GDDRKF0D: Delta_Resume_SRDFA_DCn_2_DC3

2.4.1.17GDDRKF0S: Start MSC_STAR

2.4.1.18GDDRGF0G: Wait_For_JA_Session_Consistency

2.4.1.19GDDRKF21: Manage_BCVs

DC3, RE-ESTABLISH

2.5 GDDRPA09: Planned_Action_RESUME_SNOW

This scenario is run whenever it is required to restart JA to DC3.

SRDF/A must be down before starting this scenario, either due to a planned outage or as the result of a failure.

Assumption: SRA Event is ON

2.5.1.1 Parms: none

2.5.1.2 GDDRGF0F: Determine_Valid_State_4_Planned

2.5.1.3 Verify SNOW Down

2.5.1.4 GDDRGF0L: Prompt_Operators_4_Confirmation

2.5.1.5 GDDRGF0Q: Run_ME_MSC_Cleanup

2.5.1.6 GDDRGF0J: Issue_Commands_2_JA_RDFGRP

Current_primary_DASD_site, READONLY Sc vol,rmt(gk, rdfgrp),r/o,all

2.5.1.7 GDDRKF0G: Toggle_ConGroup_Groups

DISABLE

2.5.1.8 GDDRGF0J: Issue_Commands_2_JA_RDFGRP

Current_primary_DASD_site, ADCOPY Sc vol,lcl(gk, rdfgrp),adcopy,all

2.5.1.9 GDDRGF0J: Issue_Commands_2_JA_RDFGRP

Current_primary_DASD_site, RDFRESUME Sc vol,lcl(gk, rdfgrp),rdf-rsum,all

2.5.1.10 GDDRKF0B: Perform_Special_Processing_For_JA

Sc vol,lcl(gk, rdfgrp),all

Refresh

Rfr-rsum

2.5.1.11GDDRKF0G: Toggle_ConGroup_Groups

ENABLE

2.5.1.12GDDRGF0M: Wait_4_SNOW_Synch_Up

Sc vol,lcl(gk, rdfgrp),all

2.5.1.13GDDRGF0H: Run_M6_MSC_Cleanup

2.5.1.14GDDRKF0D: Activate_JA_on_RDFGRPs

Sc vol,rmt(gk, rdfgrp),rdy,all

Sc srdfa,lcl(gk, rdfgrp),act

2.5.1.15 GDDRKF0S: Start_MSC_STAR

/es Only

2.5.1.16 GDDRGF0G: Wait_For_JA_Session_Consistency

2.6 GDDRPA29: Planned_Action_Resume_SNOW (GNS)

This scenario is run whenever it is required to restart JA to DC3.

SRDF/A must be down before starting this scenario, either due to a planned outage or as the result of a failure.

Assumption: SRA Event is ON

Note: This version of Planned_Action_Resume_SNOW uses GDDR functions that issue SRDF/HC commands using GNS groups rather than gatekeepers and RDF groups.

2.6.1.1 Parms: none

2.6.1.2 GDDRGF0F: Determine_Valid_State 4 Planned 2.6.1.3 Verify_SNOW_Down

2.6.1.4 GDDRGF0L: Prompt_Operators_4_Confirmation

2.6.1.5 GDDRGF0Q: Run_ME_MSC_Cleanup

2.6.1.6 GDDRGF2J: Issue_Commands_2_JA_RDFGRP_GNS

Current_primary_DASD_site, READONLY Sc vol,scfg(gns_group),r/o

2.6.1.7 GDDRKF0G: Toggle_ConGroup_Groups

DISABLE

2.6.1.8 GDDRGF2J: Issue_Commands_2_JA_RDFGRP_GNS

Current_primary_DASD_site, ADCOPY Sc vol,scfg(gns_group),adcopy

2.6.1.9 GDDRGF2J: Issue_Commands_2_JA_RDFGRP_GNS

Current_primary_DASD_site, RDFRESUME Sc vol,scfg(gns_group),rdf-rsum

2.6.1.10GDDRKF2B: Perform_Special_Processing_For_JA_GNS

Sc vol,scfg(gns_group)

Refresh

Rfr-rsum

2.6.1.11GDDRKF0G: Toggle_ConGroup_Groups

ENABLE

2.6.1.12GDDRGF2M: Wait_4_SNOW_Synch_Up_GNS

Sc vol,scfg(gns_group)

2.6.1.13 GDDRGF0H; Run M6_M\$C_Cleanup

2.6.1.14GDDRKF2D: Activate_JA_on_RDFGRPs_GNS

Sc vol,scfg(gns_group),rdy Sc srdfa,lcl(gk, rdfgrp),act

2.6.1.15GDDRKF0S: Start_MSC_STAR

2.6.1.16 GDDRGF0G: Wait_For_JA_Session_Consistency

2.7 GDDRPA39: Planned_Action_Resume_SNOW_No_STAR (GNS)

This scenario is run whenever it is required to restart JA to DC3 in non-STAR/STARFIRE mode. Typically this scenario will only ever be run after an unplanned swap to the R2 Site, and you wish to restart SNOW if it stops (after its initial start).

SRDF/A must be down before starting this scenario, either due to a planned outage or as the result of a failure.

Assumption: SRA Event is ON

Note: This version of Planned_Action_Resume_SNOW_No_STAR uses GDDR functions that issue SRDF/HC commands using GNS groups rather than gatekeepers and RDF groups.

2.7.1.2 GDDRGF0F: Determine_Valid_State_4_Planned

2.7.1.3 Verify_SNOW_Down

2.7.1.4 GDDRGF0L: Prompt_Operators_4_Confirmation

2.7.1.5 GDDRGF0Q: Run_ME_MSC_Cleanup

2.7.1.6 GDDRGF2J: Issue_Commands_2_JA_RDFGRP_GNS

Current_primary_DASD_site, READONLY Sc vol,scfg(gns_group),r/o

2.7.1.7 GDDRGF2J: Issue_Commands_2_JA_RDFGRP_GNS

Current_primary_DASD_site, ADCOPY Sc vol,scfg(gns_group),adcopy

2.7.1.8 GDDRGF2J: Issue_Commands_2_JA_RDFGRP_GNS

Current_primary_DASD_site, RNGREFRESH Sc vol,scfg(gns_group),rng-refresh

2.7.1.9 GDDRGF2J: Issue_Commands_2_JA_RDFGRP_GNS

Current_primary_DASD_site, RNGRESUME Sc vol,scfg(gns_group),rng-resum

2.7.1.10 GDDRKF2B: Perform_Special_Processing_For_JA_GNS

Sc vol,scfg(gns_group)

Refresh

Rfr-rsum

2.7.1.11GDDRGF2M: Wait_4_SNOW_Synch_Up_GNS

Sc vol,scfg(gns_group)

2.7.1.12GDDRGF0H: Run_M6_MSC_Cleanup

2.7.1.13GDDRKF2D; Activate_JA on_RDFGRPs_GNS

Sc voluscfg(gns/group),rdy

Sc srdfa,lcl(gk, rdfgrp),act

2.7.1.14GDDRKF0S: Start_MSC_STAR

2.7.1.15 GDDRGF0G: Wait_For_JA_Session_Consistency

2.8 GDDRPA0A: Planned_Action_RESUME_J0_After_CAX_Event

This scenario is ONLY run after an LDR at either DC1 or DC2, and the failed site is now available and the R2's can be synched up with the current Primary DASD site.

Assumption: that the DASD at the previously failed or inaccessible site are still defined as R1's and are now accessible.

Assumption: If SRDF/A is Active it is NOT in STAR Mode.

Assumption: ConGroup may or may not be started (No point in running it).

Assumption: BCV's are still split at the secondary site (the previous R1 site prior to the unplanned swap.

Assumption: The ConGroup bit has been turned OFF in all the previous R1 DASD.

2.8.1.2 GDDRGF0F: Determine_Valid_State_4_Planned

2.8.1.3 GDDRGF0L: Prompt_Operators_4_Confirmation

2.8.1.4 GDDRGF08: Perform_EMCCGRP_Shutdown

2.8.1.5 GDDRGF0J: Issue_Commands_2_JA_RDFGRP

Current_Secondary_DASD_site, HDELETEPAIR

2.8.1.6 GDDRGF2P: Issue_Commands_2_J0_RDFGRP

Current_primary_DASD_site, HSWAP_FORCE

2.8.1.7 GDDRKN24: Re_Establish_J0

Current_primary_DASD_site, Current_secondary_DASD_site

2.8.1.8 Determine the state of SNOW

2.8.1.9 If NO SNOW: GDDRGF0Q: Run_ME_MSC_Cleanup

Current_primary_dasd_site

2.8.1.10If NO SNOW: GDDRGF2J:

Current_primary_dasd_site, READONLY

2.8.1.11If NO SNOW: GDDRGF2J:

Current_primary_dasd_site, ADCOPY

2.8.1.12If NO SNOW: GDDRGF2J:

Current_primary_dasd_site, RNGREFRESH

2.8.1.13 If NO SNOW: GDDRGF2J:

Current_primary_dasd_site, RNGRESUME

2.8.1.14If NO SNOW: GDDRKF0B:

2.8.1.15 If NO SNOW: GDDRGF2M: SOUTH STATE OF THE STATE O

2.8.1.16 If NO SNOW: GDDRGF0H: Run_M6_MSC_Cleanup

Current_primary_dasd_site

2.8.1.17 If NO SNOW: GDDRGF0H: Run_M6_MSC_Cleanup

Current_secondary_dasd_site

2.8.1.18If NO SNOW: GDDRKF0D:

Current_primary_dasd_site

2.8.1.19 GDDRGF09: Perform_EMCCGRP_Startup

2.8.1.20GDDRSDD1: Invoke_SDDF_Scrubber

2.8.1.21 GDDRKF0S: Start_MSC_STAR

2.8.1.22GDDRGF0G: Wait_For_JA_Session_Consistency

Wait for STAR Recovery available.

2.8.1.23GDDRKF21: Manage_BCVs

Current_secondary_dasd_site, RE-ESTABLISH

2.9 GDDRPA22: Planned_Action_ALLSITEn (STAR)

This scenario is used to SWAP the business applications and DASD from the current Primary location to the Secondary location. JO and JA will also be reestablished from the new Primary Location.

Environment: STAR Only

- 2.9.1.1 Parms: primary site, primary autoswap group, secondary autoswap group
- 2.9.1.2 GDDRGF0F: Determine_Valid_State_4_Planned
- 2.9.1.3 Verify Running off Primary DASD Site
- 2.9.1.4 Prompt Operators to Confirm Run
- 2.9.1.5 GDDRKF0C: Trigger_Non_K_System_Shutdown
- **2.9.1.6 GDDRKF0Z: ESS_Interface**current_secondary_dasd_site, STOP, SWAP
- 2.9.1.7 GDDRKF0J: Discover HMC Objects
- 2.9.1.8 GDDRHMC2: Issue_HWMCA_Commands

RESET_CLEAR, current_primary_dasd_site

2.9.1.9 GDDRHMC2: Issue_HWMCA_Commands

RESET_CLEAR, current_secondary_dasd_site

- 2.9.1.10 GDDRGF0G: Wait_For_JA_Session_Consistency
- 2.9.1.11GDDRKF0P: Planned_Kill_SNOW
- 2.9.1.12GDDRKF0Y: Check_4_Invalid_Tracks
- 2.9.1.13GDDRKF21: Manage_BCVs

DC3, SPLIT

2.9.1.14GDDRGF08: Perform_EMCCGRP_Shutdown 2.9.1.15GDDRKF2Q: Delete_JA_Device_Pairs 2.9.1.16 GDDRKF23: Perform_Personality_Swap 2.9.1.17GDDRKF24: Re_Establish_J0 2.9.1.18GDDRKF0X: Special_Processing_For_J0 2.9.1.19 GDDRGF09: Perform_EMCCGRP_Startup 2.9.1.20 Update Sites 2.9.1.21 Update Swap Groups 2.9.1.22GDDRKF21: Manage_BCVs New_R1_Site, SPLIT 2.9.1.23 GDDRKF0W: Create_Star_SNOW_Pairs 2.9.1.24GDDRGF0H: Run_M6_MSC_Cleanup 2.9.1.25 GDDRKF0D: Delta_Resume_SRDFA_DCn_2_DC3 2.9.1.26 GDDRKF0S: Start_MSC_STAR 2.9.1.27 GDDRGF0G: Wait_For_JA_Session_Consistency 2.9.1.28GDDRHMC2: Issue_HWMCA_Commands LOAD, New_R1_Site

2.9.1.29GDDRKF21: Manage_BCVs

New_R2_Site, RE-ESTABLISH

2.9.1.30 GDDRHMC2: Issue_HWMCA_Commands

LOAD, New_R2_Site

2.9.1.31GDDRKF21: Manage_BCVs

DC3, RE-ESTABLISH

2.9.1.32GDDRGF0B: Check_Production_Systems_Up

New_R1_Site

2.9.1.33 GDDRKF0I: Trigger_Non_K_System_Startup

New_R1_Site

2.9.1.34GDDRKF0Z: ESS_Interface

New_R1_Site, START, SWAP

2.9.1.35 GDDRKF0E: Transfer_Autoswap_Ownership

2.9.1.36GDDRKF0H: Transfer_Master_Function_Ownership

2.10 GDDRPA32: Planned_Action_ALLSITEn (STARFIRE)

This scenario is used to SWAP the business applications and DASD from the current Primary location to the Secondary location. JO and JA will also be reestablished from the new Primary Location.

Environment: STARFIRE Only

2.10.1.1Parms: primary site, primary autoswap group, secondary autoswap group

2.10.1.2GDDRGF0F: Determine_Valid_State_4_Planned

2.10.1.3 Verify Running off Primary DASD Site

2.10.1.4 GDDRGF0L: Prompt Operators 4 Confirmation

2.10.1.5GDDRKF0C: Trigger_Non_K_System_Shutdown

2.10.1.6GDDRKF0Z: ESS_Interface

current_secondary_dasd_site, STOP, SWAP

2.10.1.7GDDRKF0J: Discover_HMC_Objects

2.10.1.8 GDDRGF0G: Wait_For_JA_Session_Consistency

2.10.1.9 GDDRKF0P: Planned_Kill_SNOW

This function obselete in a true STARFIRE environment

2.10.1.10 GDDRKF0Y: Check_4_Invalid_Tracks

Sq vol,lcl(gk, rdfgrp),all

2.10.1.11 GDDRKF21: Manage_BCVs

DC3, SPLIT

2.10.1.12 GDDRKF02: Autoswap_To_R2_DASD

2.10.1.13 GDDRGF08: Perform_EMCCGRP_Shutdown

This function obselete in a true STARFIRE environment

2.10.1.14 GDDRGF2P: Issue_Commands_2_J0_RDFGRP

Current_primary_DASD_site, RDFSUSP

Sc vol,lcl(gk, rdfgrp),rdf-susp,all

2.10.1.15 GDDRGF0J: Issue_Commands_2_JA_RDFGRP

Current_primary_DASD_site, RDFSUSP

Sc vol,lcl(gk, rdfgrp),rdf-susp,all

2.10.1.16

Sc vol,lcl(gk, rdfgrp),deletepair(star),all

2.10.1.17 GDDRKF23: Perform_Personality_Swap

Sc vol,gk,swap(itrk, star),range-range

2.10.1.18 GDDRKN24: Re_Establish_J0

Sc vol,lcl(gk, rdfgrp),rdf-rdy,all

Sc vol,lcl(gk, rdfgrp),rdf-rsum,all

2.10.1.19 GDDRKF0X: Special_Processing_For_J0

Sq vol,lcl(gk, rdfgrp),all

2.10.1.20 Update Zoning

2.10.1.21 GDDRGF09: Perform_EMCCGRP_Startup

New_R1_Site

2.10.1.22 Update Sites

2.10.1.23 Update Swap Groups

2.10.1.24 GDDRGF0B: Check_Production_Systems_Up

New_R1_Site

2.10.1.25 GDDRKF0I: Trigger_Non_K_System_Startup

New_R1_Site

2.10.1.26 GDDRKF0Z: ESS_Interface

New_R1_Site, START, SWAP

2.10.1.27 GDDRKF21: Manage_BCVs New_R1_Site_SPLIT

2.10.1.28 GDDRKF0W: Create_Star_SNOW_Pairs

Sc vol,lcl(gk, rdfgrp),createpair(star,differential,adcopy),range-range

2.10.1.29 GDDRGF0H: Run_M6_MSC_Cleanup

2.10.1.30 GDDRKF0B: Perform_Special_Processing_For_JA

2.10.1.31 GDDRKF0D: Delta_Resume_SRDFA_DCn_2_DC3

2.10.1.32 GDDRKF0S: Start_MSC_STAR

2.10.1.33 GDDRGF0G: Wait_For_JA_Session_Consistency

2.10.1.34 GDDRKF21: Manage_BCVs

New_R2_Site, RE-ESTABLISH

2.10.1.35 GDDRKF21: Manage_BCVs

DC3, RE-ESTABLISH

2.10.1.36 GDDRKF0E: Transfer_Autoswap_Ownership

2.10.1.37 GDDRCPL1: Manage_Couple_Datasets

2.10.1.38 GDDRKF0H: Transfer_Master_Function_Ownership

For Eyes Only

For Eyes Only

3. GDDR Supported Unplanned Scenario's

3.1 GDDRUP03: Unplanned_Takeover_SYSTEM

This script is used to handle the scenario whereby GDDR has detected that either a Production or a Contingency system has failed.

The Operators are given a list of recovery choices for the failed system. The list of choices displayed depends upon whether the failing system was a Production system or a Contingency system.

Assumptions: none

Environment: STAR or STARFIRE

3.1.1.1 GDDRPA03: Planned_Action_SYSsysname

IPL failed system.

3.1.1.2 GDDRPA04: Planned_Action_SYSSITEn

Restart Business Applications on the Contingency System.

3.1.1.3 GDDRHMC2: Issue_HWMCA_Commands

RESET_CLEAR LPAR of failing system.

3.2 GDDRUP31: Unplanned_Takeover_ALLSITEn (STARFIRE)

This scenario is used to re-establish the business applications at the new Primary DASD Site after an Unplanned (CAX) SWAP. JA will also be re-established from the new Primary Location to DC3 (but not in STAR Mode).

Assumption: After the CAX SWAP, the previous Primary DASD is nolonger available, therefore J0 can not be re-established, nor can STAR be started, JA will run in MSC mode.

Environment: STARFIRE Only

Status: FINAL

Last Update: 18th July 2005

3.2.1.2 GDDRGF0L: Prompt_Operators_4_Confirmation

3.2.1.3 Update Sites

3.2.1.4 Update SWAP Groups

3.2.1.5 GDDRHMC2: Issue_HWMCA_Commands

RESET_CLEAR, Old_Primary_dasd_Site

This function is only called when handling a CAX swap as part on an LDR. All systems at the failed Primary DASD site are RESET cleared, including the K-System at that site.

3.2.1.6 GDDRKF0C: Trigger_Non_K_System_Shutdown

old_primary_dasd_site

This function is called only in the event of a loss of R1's, it is NOT called during an LDR.

3.2.1.7 GDDRKF0Z: ESS_Interface

old_secondary_dasd_site, STOP, LDR

3.2.1.8 GDDRKF21: Manage_BCVs

DC3, SPLIT

3.2.1.9 GDDRGF0Q: Run_ME_MSC_Cleanup

3.2.1.10GDDRGF08: Perform_EMCCGRP_Shutdown

3.2.1.11GDDRGF2P: Issue_Commands_2_J0_RDFGRP

Old_secondary_DASD_site, HSWAP

3.2.1.12GDDRKF0U: Half_DeletePair_DC3_and_Old_Primary

Old_secondary_DASD_Site, Old_primary_DASD_Site

3.2.1.14GDDRKF0W: Create_Star_SNOW_Pairs

Old_secondary_DASD_site, NOSTAR

3.2.1.15GDDRGF0H: Run_M6_MSC_Cleanup

Old_primary_DASD_site, old_secondary_DASD_site

3.2.1.16GDDRKF0D: Delta_Resume_SRDFA_DCn_2_DC3

New_R1_site

3.2.1.17GDDRSDD1: Invoke_SDDF_Scrubber

3.2.1.18GDDRKF0S: Start_MSC_STAR

NOSTAR

3.2.1.19 GDDRGF0G: Wait_For_JA_Session_Consistency

New R1 site, NOSTAR

3.2.1.20 GDDRGF0B: Check_Production_Systems_Available

New_R1_Site

3.2.1.21 GDDRKF0I: Trigger_Non_K_System_Startup

New_R1_Site

3.2.1.22GDDRKF0Z: ESS_Interface

New_R1_Site, START, LDR

3.2.1.23GDDRKF21: Manage_BCVs

DC3, RE-ESTABLISH

3.2.1.24GDDRKF0H: Transfer_Master_Function_Ownership

Old_Primary_DASD_site

For Eyes Only