CS 186 Discussion #7

Query Optimization

Logistics

Midterm 1 Regrades due 10/23

Feedback Survey on Piazza

- Homework 4 coming soon
 - Covers Query Optimization

Query Optimization

- Represent relational algebra with trees
- Order of operators affects IOs and resource usage

Alternate Plans

- Push selects/projects down (Why?)
- Use temp files and indexes (INLJ)

IO Costs

Selection and projection are done "on the fly"

Quick Calculation Review

- From lecture:
 - B = 5
 - [R] = 1000, 100 boats
 - [S] = 500, 10 ratings

- Cost of a CNLJ?
 - Size of the temp file?

System R

- 1. Prune plan spaces
 - Only consider left-deep plans
 - But consider all join orders and methods
 - Ignore costly subtrees (avoid x products)
 - Push selections/projections
 - Handle interesting orders

M

System R

- 2. Make cost estimations for all operators
 - Use system catalog info and selectivity to estimate sizes
 - Cost = [# IOs] + CPU-factor * [# tuples]
- Selectivity = |output| / |input|
 - Also called Reduction Factor (RF)
- Result size = [# tuples] * [product of selectivities]
 - # tuples depends on join, cross product, etc.

RF Estimations

- Assuming uniform distribution and independence
- If column = value:

```
RF = 1/NKeys(R)
```

• If column1 = column2:

```
RF = 1/max(NKeys(R1), NKeys(R2))
```

• If *col* > *value*:

```
RF = (High(I) - value)/(High(I) - Low(I) + 1)
```

System R

- 3. Search for cheapest plan
 - Dynamic Programming

Things to remember

- Cost is exponential in the number of tables
- Only match plans for join conditions, and after predicates have been applied
 - Avoid cross products
- Handle "interesting orders" as a final step
 - ORDER BY, GROUP BY, aggregates, downstream join attributes

Passes

- Pass 1: Best single-relation plan for each relation
- Pass 2: Best join between two single-relation plans
- Pass 3: Best join between a two-relation plan and a single-relation plan
- . . .
- Pass N: Best join between an (N 1) relation plan with Nth relation

Single-Relation Estimates

- Equality selection on key of B+ tree T:
 - Cost = Height(T) + 1
- Multiple selects on clustered index:
 - Cost = (NPages(T) + NPages(R)) * [prod. of RFs]
- Multiple selects on unclustered index:
 - Cost = (NPages(T) + NTuples(R)) * [prod. of RFs]
- Sequential scan of file:
 - Cost = NPages(R)

Worksheet

- Kitties: (kid, cuteness [1-10], owner [10]); [K] = 100, |K| = 400
- Puppies: (pid, yappiness [1-10], owner [5]); [P] = 50, |P| = 200
- Humans: (hid, age [1-100]); [H] = 1000, |H| = 50000
- Unclustered tree on K.cuteness [5 pages]
- Unclustered tree on P.yappiness [5 pages]
- Clustered tree on (P.owner, P.yappiness) [15 pages]
- Unclustered tree on H.hid [20 pages]
- Join K, P, H
 - with predicates:
 - H.hid < 1200, P.yappiness = 7
 - K.owner = P.owner, P.owner = H.hid, P.yappiness = K.cuteness

- What info do we have for Humans H?
 - Humans: (hid, age [1-100]); [H] = 1000, |H| = 50000
 - Unclustered tree on H.hid [20 pages]
 - Predicates: H.hid < 1200

- What info do we have for Humans H?
 - Humans: (hid, age [1-100]); [H] = 1000, |H| = 50000
 - Unclustered tree on H.hid [20 pages]
 - Predicates: H.hid < 1200
- What plans can we use?

- What info do we have for Humans H?
 - Humans: (hid, age [1-100]); [H] = 1000, |H| = 50000
 - Unclustered tree on H.hid [20 pages]
 - Predicates: H.hid < 1200
- What plans can we use?
 - File Scan
 - Unclustered index + predicate!

- What info do we have for Humans H?
 - Humans: (hid, age [1-100]); [H] = 1000, |H| = 50000
 - Unclustered tree on H.hid [20 pages]
 - Predicates: H.hid < 1200
- What plans can we use?
 - File Scan = 1000 IOs
 - Unclustered index + predicate!
 - RF = |output| / |input| = 1200 / 50000
 - Cost = (NPages(T) + NTups(R)) * [prod. of RFs]
 = (20 + 50000) * 1200 / 50000 = 1200 lOs

- What do we have for Kitties K?
 - Kitties: (kid, cuteness [1-10], owner [10]);
 - [K] = 100, |K| = 400
 - Unclustered tree on K.cuteness [5 pages]
- Only one option... (why?)
 - File scan = 100 IOs

- What do we have for Puppies P?
 - Puppies: (pid, yappiness [1-10], owner [5]);
 - [P] = 50, |P| = 200
 - Unclustered tree on P.yappiness [5 pages]
 - Clustered tree on (P.owner, P.yappiness) [15 pages]
 - Predicates: P.yappiness = 7
- File scan
- Unclustered
- Clustered

- What do we have for Puppies P?
 - Puppies: (pid, yappiness [1-10], owner [5]);
 - [P] = 50, |P| = 200
 - Unclustered tree on P.yappiness [5 pages]
 - Clustered tree on (P.owner, P.yappiness) [15 pages]
 - Predicates: P.yappiness = 7
- File scan = 50 IOs
- Unclustered = 1/10 * (5 + 200) = 21 IOs
- Clustered = :(

• What pairs are considered?

- What pairings of relations are considered?
 - K_{filescan} ⋈ P
 - Punclustered ⋈ K
 - K_{filescan} ⋈ H
 - H_{filescan} ⋈ K
 - Punclustered ⋈ H
 - H_{filescan} ⋈ P

- What pairings of relations are <u>ignored</u>?
 - K_{filescan} ⋈ P
 - Punclustered ⋈ K
 - K_{filescan} ⋈ H
 - H_{filescan} ⋈ K
 - Punclustered ⋈ H
 - H_{filescan} ⋈ P

- What pairings of relations are <u>ignored</u>?
 - K_{filescan} ⋈ P
 - Punclustered ⋈ K
 - Kfilescan M H
 - H_{filescan} ⋈ K
 - Punclustered ⋈ H
 - H_{filescan} ⋈ P

What pairs of relations are <u>chosen</u>?

- Punclustered M Kitties
 - Single-table predicate: P.yappiness = 7
 - Join predicates:
 - K.owner = P.owner
 - P.yappiness = K.cuteness
 - Cost of an INLJ?
 - NPages(P) + NTuples(P) * (index lookup for K)

- Punclustered M Kitties
 - Single-table predicate: P.yappiness = 7
 - Join predicates:
 - K.owner = P.owner
 - P.yappiness = K.cuteness
 - Cost of an INLJ?
 - NPages(P) + NTuples(P) * (index lookup for K)
 - 21 + 200/10 * [(5 + 400) * 1/10] = 831 | Os

- Kitties_{filescan} M Puppies
 - Join predicates:
 - K.owner = P.owner
 - P.yappiness = K.cuteness
 - Cost of an INLJ?
 - NPages(K) + NTuples(K) * (index lookup for P)

- Kitties_{filescan} M Puppies
 - Join predicates:
 - K.owner = P.owner
 - P.yappiness = K.cuteness
 - Cost of an INLJ?
 - NPages(K) + NTuples(K) * (index lookup for P)
 - 100 + 400 * [(15 + 50) * 1/10 * 1/10] = 500 IOs