Assignment Date	24/09/2022
Student Name	MALINI S
Student Roll Number	61771921027
Maximum Marks	2 Marks

Task-1

Download the Dataset:

Churn_Modelling.csv

Task-2:

Load the Dataset:

Solution:

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import matplotlib as rcParams

df=pd.read_csv('Churn_Modelling.csv')
df.head()


```
↑ ♥ ♥ ♥ ♥ ♥ ♥ :
df.info()
C. <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 10000 entries, 0 to 9999
     Data columns (total 14 columns):
                             Non-Null Count Dtype
     # Column
      0
          RowNumber
                            10000 non-null int64
      1 CustomerId
                            10000 non-null int64
                             10000 non-null object
      2 Surname
          CreditScore 10000 non-null int64
          Geography
                          10000 non-null object
10000 non-null object
      5 Gender
                             10000 non-null int64
      6 Age
          Tenure
                             10000 non-null int64
          Balance
                             10000 non-null float64
          NumOfProducts 10000 non-null int64
      10 HasCrCard 10000 non-null int64
11 IsActiveMember 10000 non-null int64
      12 EstimatedSalary 10000 non-null float64
13 Exited 10000 non-null int64
     dtypes: float64(2), int64(9), object(3)
     memory usage: 1.1+ MB
[7] df.isnull().any()
        RowNumber
        CustomerId
                             False
        Surname
                             False
        CreditScore
                             False
        Geography
                             False
        Gender
                             False
        Age
                             False
        Tenure
                             False
        Balance
                             False
        NumOfProducts
                             False
        HasCrCard
        IsActiveMember
                             False
        EstimatedSalary
                             False
        Exited
                             False
        dtype: bool
df.Geography.unique()
   _, array(['France', 'Spain', 'Germany'], dtype=object)
                                                                                                                                                                   ↑ ↓ ፡○ ■ ‡ ₽ :
   df.Age.unique()
        array([42, 41, 39, 43, 44, 50, 29, 27, 31, 24, 34, 25, 35, 45, 58, 32, 38, 46, 36, 33, 40, 51, 61, 49, 37, 19, 66, 56, 26, 21, 55, 75, 22, 30, 28, 65, 48, 52, 57, 73, 47, 54, 72, 20, 67, 79, 62, 53, 80, 59, 68, 23, 60, 70, 63, 64, 18, 82, 69, 74, 71, 76, 77, 88, 85, 84, 78, 81,
                92, 831)
  [10] df.Tenure.value_counts()
                 1048
                 1035
                 1028
                 1025
                 1012
                 1009
                  989
                  984
                  967
490
           10
                  413
          Name: Tenure, dtype: int64
                                                                                                                                                                  ↑ ↓ ፡ ■ 🕻 🖟 🖹
      df.Gender.value_counts()
                   5457
           Male
                     4543
           Female
           Name: Gender, dtype: int64
```

Task-3:

3. Perform Below Visualizations.

- Univariate Analysis
- Bi Variate Analysis
- Multi Variate Analysis

Univariate Analysis:

SOLUTION:

sns.displot(df.CreditScore)

sns.stripplot(df.Age,color='Green')

sns.ecdfplot(df.Balance)

Bi-variate Analysis:

SOLUTION:

plt.bar(df.Age,df.EstimatedSalary,color='Red')

Multi-Variate Analysis:

Task-4: Descriptive Statistic

																		. E		-
0	df.desc	ribe()														个 、	₽ G	> E	4	•
		RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited	·							
	count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000		10000.000000		10000.000000								
	mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700								
	std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769								
	min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000								
	25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000								
	50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000								
	75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000								
	max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000								

Task-5: Handle the Missing Data:

[27]		=pd.read_cs\ .head()	/('mtc	ars_r	nissi	ng_dat	a.csv	')						
		m	odel	mpg	cyl	disp	hp	drat	wt	qsec	vs	am g	gear	carb
	0	Mazda	RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
	1	Mazda RX4	Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
	2	Datsur	710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
	3	Hornet 4 I	Drive	21.4	6	258.0	110	3.08	NaN	19.44	1	0	3	1
	4	Hornet Sporta	bout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
[]	df1	shape												
	(32,	12)												
[]	df1	info()												
	Rang	model 32 mpg 36 cyl 32 disp 36 hp 32 drat 36	entri	es, 6 12 cou 1 Cou null null null null null	to :	31 s): Dtype	4 4 4							

Task-6:

Outliers Replacement:

upper limit=q3 + 1.5 * IQR

Task-7: Check for Categorical column and perform encoding:

Task-7:

Correlation:

Task-8

Split the data into dependent and independent variables:

Task-9:

Scale the independent variables:

□ - Scale the independent variables

Task-10:

Split the data into training and testing:

