

AD-A124 997

ADA\* SOFTWARE DESIGN METHODS FORMULATION APPENDICES TO  
FINAL REPORT(U) SOFTECH INC WALTHAM MA OCT 82  
DAAK80-80-C-0187

1/2

UNCLASSIFIED

F/G 9/2

NL





MICROCOPY RESOLUTION TEST CHART  
NATIONAL BUREAU OF STANDARDS-1963-A

(11)

ADA\* SOFTWARE DESIGN METHODS FORMULATION

AD A 1 245 97

## APPENDICES TO FINAL REPORT

OCTOBER 1982

CENTER FOR TACTICAL COMPUTER SYSTEMS  
(CENTACS)

U. S. ARMY COMMUNICATIONS - ELECTRONICS COMMAND  
(CECOM)

CONTRACT DAAK80-80-C-0187



DTIC FILE COPY

PREPARED BY  
SOFTECH, INC.  
460 TOTTEN POND ROAD  
WALTHAM, MA 02154  
83 02 028 050



ADA\* IS A TRADEMARK OF THE DEPARTMENT OF DEFENSE (ADA JOINT PROGRAM OFFICE)

TABLE OF CONTENTS

| <u>Appendix</u> |                                                                                  | <u>Page</u> |
|-----------------|----------------------------------------------------------------------------------|-------------|
| A               | Participating Companies and Government Facilities;                               | A-1         |
| B               | Ada Software Design Methods Formulation (Industry/Government Work Force Survey); | B-1         |
| C               | Ada Software Design Methods Formulation (Industrial Training Survey); and        | C-1         |
| D               | Ada Software Design Methods Formulation (Survey Statistical Consultant).         | D-1         |

|                      |         |
|----------------------|---------|
| Accession Per        |         |
| NTIS GRA&I           |         |
| DTIC ZAB             |         |
| Unannounced          |         |
| Classification _____ |         |
| By _____             |         |
| Distribution/        |         |
| Availability Codes   |         |
| 'Avail and/or        |         |
| DTIC                 | Special |
| A                    |         |



**APPENDIX A**  
**PARTICIPATING COMPANIES AND GOVERNMENT FACILITIES**

- 1) The following companies and government agencies participated in the Industry/Government Work Force Survey:

ARRADCOM  
PDSS Center  
Dover, NJ

CECOM  
Software Development and Support Center  
Ft. Leavenworth, Kansas

CECOM/CENTACS  
Software Technology Division  
Ft. Monmouth, NJ

Control Data Corp.  
40 Avenue at the Common  
Shrewsbury, NJ

FATDS  
Software Support Group  
Ft. Sill, Oklahoma

General Dynamics  
Data Systems Division  
P. O. Box 748  
Fort Worth, Texas

GTE Systems  
77 A Street  
Needham, MA

IBM  
Federal Systems Division  
Oswego, New York

MICOM  
Software Support Center  
Redstone Arsenal, Alabama

SofTech  
460 Totten Pond Road  
Waltham, MA

Sperry Univac  
766 Shrewsbury Ave.  
Tinton Falls, NJ

TRW  
One Space Park  
Redondo Beach, CA

- 2) The following companies participated in the Industrial Training Survey:

Control Data Corp.  
40 Avenue at the Common  
Shrewsbury, NJ

General Dynamics  
Data Systems Division  
P.O. Box 748  
Fort Worth, Texas

GTE Systems  
77 A Street  
Needham, MA

IBM  
Federal Systems Division  
Oswego, New York

Singer Kearfott  
1150 McBride Avenue  
West Paterson, NJ

Sperry Univac  
766 Shrewsbury Ave.  
Tinton Falls, NJ

TRW  
One Space Park  
Redondo Beach, CA

**APPENDIX B**  
**ADA SOFTWARE DESIGN METHODS FORMULATION**

**INDUSTRY/GOVERNMENT WORK FORCE SURVEY**

- **Letter to Survey Administrator**
- **Guidelines for survey distribution**
- **Survey**

**ADA\* SOFTWARE DESIGN METHOD FORMULATION  
INDUSTRY/GOVERNMENT WORK FORCE SURVEY**



\*Ada is a trademark of the Department of Defense (Ada Joint Program Office)

March 1, 1982

Dear Survey Administrator:

The Center for Tactical Computer Systems, U.S. Army Communication-Electronics Command (CECOM), Fort Monmouth, NJ, is sponsoring a study to identify effective approaches for the use of Ada in designing and developing embedded systems software. This effort is part of the Army Ada Language Program, the first phase of a major software technology R&D initiative intended to introduce a new and more effective method for software development and maintenance.

As part of this study, SofTech, Inc., has been awarded a contract to conduct a survey of the industrial and government work force to determine generic job categories among embedded systems personnel. The survey results will be used to assist in the formulation of Ada training requirements. Your agreement to participate in this survey is vital to CECOM in establishing Ada training criteria which will accurately reflect the needs of industry and government.

This packet contains a set of questionnaires for distribution to your staff. These are designed to gather information about job categories for embedded systems personnel. We have included some guidelines for survey distribution which we hope will be helpful. The surveys have been structured to require approximately thirty minutes of any respondent's time. Please return the completed surveys to SofTech by March 26, 1982.

Your participation is a key element in assuring the success of this survey and we are most appreciative of your efforts on our behalf. CECOM is committed to transferring the Ada technology in the most efficient and timely way to the Ada user community. The published results of this survey will be sent to you as soon as they come available.

Thank you for your time and effort.

Very truly yours,

Joseph Kernan  
Chief, Software Technology  
Development Division  
CENTACS  
CECOM

INDUSTRY/GOVERNMENT WORK FORCE SURVEY

GUIDELINES FOR SURVEY DISTRIBUTION

- This survey is intended for personnel involved with embedded computer system software. The survey should be distributed to as broad a sample of job titles and responsibilities as possible within your organization. It is the intent that the results of this survey are representative of individuals involved with each phase of the software life cycle (i.e., design, coding, maintenance, management).
- Briefly explain to each manager or to the individual respondent:
  - The general purpose of the survey.
  - The expected completion time of thirty minutes.
  - The selected procedure for questionnaire return.
- Questionnaire return alternatives:
  - Individual respondents can mail their completed questionnaires directly to SofTech, Inc. Postpaid Return envelopes suitable for this alternative will be provided by SofTech, Inc.
  - Survey Administrators can collect respondents' completed questionnaires and mail to SofTech, Inc., 460 Totten Pond Road, Waltham, MA 02154.
- If you have any questions regarding this survey effort, please contact:

Karen Sather  
Survey Coordinator  
SofTech, Inc.  
617/890-6900, Ext. 187

**Near Survey Participants:**

Ada is a new language for developing and supporting software for large embedded computer systems. The Department of Defense has chosen Ada as the common programming language to be used on future DOD embedded systems projects. As a result of this decision, the Department of Defense is committed to establishing a knowledgeable and well-trained Ada user community to ensure proper application of Ada concepts.

Effective Ada training will be a vital factor in the widespread acceptance and use of the language. The U.S. Army Communications-Electronics Command (CECOM) in conjunction with Softech, Inc., is conducting a survey to identify the functions which are performed by personnel working on the development of large-scale embedded systems. Once functional job categories are established, Ada training can be developed which will address directly the needs of each level. Your input is important in identifying these needs.

Please complete this questionnaire using the following guidelines:

- Answer all questions to the best of your knowledge. If some questions are outside of your specialty area, feel free to skip those questions.
- It should take no more than thirty minutes to complete this questionnaire.
- After you have completed the questionnaire, follow the questionnaire return procedure established in your company.

Thank you for your time and effort on our behalf.

Sincerely,

Joseph Kernan  
Chief, Software Technology Development Division  
CENTACS  
CECOM

Job Title or Specialty \_\_\_\_\_  
GS or Rank (if appropriate) \_\_\_\_\_  
Date \_\_\_\_\_

## ADA SOFTWARE DESIGN METHOD FORMULATION INDUSTRIAL/GOVERNMENT WORK FORCE SURVEY

1. How many years have you been involved with software development and/or support?  
a. 0-2 years \_\_\_\_ b. 2-5 years \_\_\_\_ c. 5-10 years \_\_\_\_ d. Over 10 years \_\_\_\_
  
2. Which of the following areas describe your experience with software development and/or support?  
a. Commercial \_\_\_\_ d. Educational \_\_\_\_  
b. Military \_\_\_\_ e. Statistical \_\_\_\_  
c. Embedded Computer Systems \_\_\_\_ f. Other \_\_\_\_
  
3. To date, what has been your level of involvement with Ada?  
a. Do not know what Ada is. \_\_\_\_  
b. Have heard of Ada but am not familiar with Ada concepts. \_\_\_\_  
c. Participated in orientation sessions about Ada. \_\_\_\_  
d. Have had Ada training. \_\_\_\_  
e. Other (explain) \_\_\_\_\_
  
4. If you have had Ada training, what type of training was it?  
a. Video tape \_\_\_\_ e. Seminar \_\_\_\_  
b. College course \_\_\_\_ f. Informal, on the job training \_\_\_\_  
c. In-house course \_\_\_\_ g. Other (explain) \_\_\_\_\_  
d. Programmed learning \_\_\_\_

## DEVELOPMENT

5. How many years have you worked on the development of large-scale, embedded computer systems?  
a. 0-1 year \_\_\_\_ b. 1-3 years \_\_\_\_ c. 3-5 years \_\_\_\_ d. Over 5 years \_\_\_\_

IF YOUR DUTIES ARE PRINCIPALLY IN THE DEVELOPMENT AREA, PLEASE ANSWER THE FOLLOWING QUESTIONS:

6. What outputs do you produce? (Check as many as appropriate.)  
 a. Hardware/software tradeoff evaluation  
 b. Data flow diagrams  
 c. Test drivers  
 d. Code  
 e. Program design language or flow charts  
 f. Requirements specifications  
 g. Design specifications  
 h. Test plans  
 i. Integration plans  
 j. Management plans  
 k. Cost data  
 l. Analysis reports/summaries  
 m. Milestone charts/schedules  
 n. Status reports  
 o. Interview sheets/Hiring recommendations  
 p. Correspondence  
 q. Other - (explain) \_\_\_\_\_
7. Which of the following describe your principal duties?  
 a. Requirements/Analysis Review (Conduct, Attend)  
 b. System Analysis  
 c. Design  
 d. Design Review (Conduct, Attend)  
 e. Code  
 f. Structured Walkthroughs (Conduct, Attend)  
 g. Formulation of Policy  
 h. Formulation of Strategy  
 i. Technical Management  
 j. Program Management  
 k. Configuration Management  
 l. Quality Assurance  
 m. Monitoring contracts  
 n. Other (explain) \_\_\_\_\_

## SUPPORT

- 1094-2
8. How many years have you worked on the support of large-scale, embedded computer systems?  
a. 0-1 year \_\_\_\_\_ b. 1-3 years \_\_\_\_\_ c. 3-5 years \_\_\_\_\_ d. Over 5 years \_\_\_\_\_

IF YOUR DUTIES ARE PRINCIPALLY IN THE SUPPORT AREA, PLEASE ANSWER THE FOLLOWING QUESTIONS:

9. What outputs do you produce? (Check as many as appropriate.)  
 a. Software trouble report analyses  
 b. Temporary (proposed) Engineering Change Proposals  
 c. Red lined documentation  
 d. Test plans  
 e. Test drivers  
 f. Technical advice to Configuration Control Board  
 g. Updated MIL-STO specification  
 h. Library Control  
 i. Maintain configuration procedures  
 j. Updated training manuals  
 k. Updated user manuals  
 l. Software Trouble Reports (STRs)  
 m. Automated build systems  
 n. Management information reports  
 o. Version description documents  
 p. Version audits  
 q. Field engineering reports  
 r. Other (explain) \_\_\_\_\_
10. Which of the following describe your principal duties? (Check as many as appropriate.)  
 a. Analysis  
 b. Design  
 c. Design Review (Conduct, Attend)  
 d. Code/Patch  
 e. Structured Walkthroughs (Conduct, Attend)  
 f. Technical Management  
 g. Formulation of policy  
 h. Program Management  
 i. Software Configuration Control Board participation  
 j. Configuration management  
 k. Quality Assurance  
 l. Monitoring contracts  
 m. Other (explain) \_\_\_\_\_

## **GENERAL**

11. RATE THE IMPORTANCE OF THE FOLLOWING ACTIVITIES AS THEY APPLY TO YOUR PRESENT JOB. REVIEW ALL CATEGORIES BUT CONSIDER ONLY THOSE ACTIVITIES WHICH YOU PERFORM AS PART OF YOUR RESPONSIBILITIES.

|                                                                       | PRIMARY | SECONDARY | MARGINAL | N/A |
|-----------------------------------------------------------------------|---------|-----------|----------|-----|
| A. MANAGEMENT/ADMINISTRATIVE                                          |         |           |          |     |
| 1. Program management                                                 |         |           |          |     |
| 2. Sales/marketing                                                    |         |           |          |     |
| 3. Contract negotiation                                               |         |           |          |     |
| 4. Formulating policy                                                 |         |           |          |     |
| 5. Formulating strategy                                               |         |           |          |     |
| 6. Preparing budgets/cost estimates                                   |         |           |          |     |
| 7. Technical management                                               |         |           |          |     |
| 8. Interviewing personnel                                             |         |           |          |     |
| 9. Preparing and revising schedules                                   |         |           |          |     |
| 10. Preparing management information reports                          |         |           |          |     |
| 11. Preparing field engineering reports                               |         |           |          |     |
| 12. Other administrative tasks                                        |         |           |          |     |
| B. CONFIGURATION/QUALITY CONTROL                                      |         |           |          |     |
| 1. Giving technical advice to configuration control board             |         |           |          |     |
| 2. Maintaining configuration procedures                               |         |           |          |     |
| 3. Library control                                                    |         |           |          |     |
| 4. Preparing version audits                                           |         |           |          |     |
| 5. Quality Assurance                                                  |         |           |          |     |
| 6. Preparing temporary (proposed) engineering change reports/requests |         |           |          |     |

N/A

MARGINAL

PRIMARY

C. EDUCATION/SELF-DEVELOPMENT

1. Preparing technical reports or papers
2. Reading technical magazines, papers, etc.
3. Reviewing technical work of others
4. Teaching others (including preparation)
5. Updating training manuals
6. Being trained (including preparation)

D. PROGRAM DESIGN/IMPLEMENTATION

1. Functional system design (or architecture)
2. Functional module or subsystem design
3. Defining global data structures
4. Defining subsystem (module) interfaces
5. Defining data structures and algorithms for your own use
6. Coding
7. Debugging or modifying code

E. DOCUMENTATION

1. Originating system requirements documents
2. Updating MIL-STD specifications
3. Preparing red lined documentation
4. Preparing version description documents
5. Originating/updating user manuals
6. Documenting code

N/A

MARGINAL

SECONDARY

PRIMARY

f. TESTING

1. Defining system test cases
2. Preparing test drivers
3. Preparing test plans
4. Hardware testing
5. System software testing
6. Defining module test cases
7. Software module testing
8. Documenting test results
9. Preparing software trouble/discrepancy reports
10. Analyzing software trouble reports

12. Do you belong to any technical societies or working groups outside of your company? Yes \_\_\_\_\_ No \_\_\_\_\_

13. During the past year, have you attended any job related conferences? Yes \_\_\_\_\_ No \_\_\_\_\_  
If so, what was your role at the conference?

- a. Organizer \_\_\_\_\_
- b. Speaker \_\_\_\_\_
- c. Attendee \_\_\_\_\_
- d. Other (explain) \_\_\_\_\_

14. Have you ever published or presented a paper? Yes \_\_\_\_\_ No \_\_\_\_\_

15. Do you read job-related magazines or newsletters?  
a. Regularly \_\_\_\_\_ c. Only as my job demands \_\_\_\_\_  
b. Occasionally \_\_\_\_\_ d. Never \_\_\_\_\_ e. Other (explain) \_\_\_\_\_

16. Which of the following programming languages have you studied or used? Please check all that apply.

- |              |                           |                          |
|--------------|---------------------------|--------------------------|
| a. JOVIAL    | j. ALGOL                  | s. SNORQL                |
| b. CMS-2     | k. RATFOR, WATFOR, WATFIV | t. ECL                   |
| c. C         | l. MODULA                 | u. GPSS                  |
| d. FORTRAN   | m. SIMULA                 | v. SAS                   |
| e. COBOL     | n. XPL                    | w. PROTEGE               |
| f. ASSEMBLER | o. MPP                    | x. PPL                   |
| g. PL-1      | p. FORTH                  | y. APL                   |
| h. PASCAL    | q. Ada                    | z. Other (specify) _____ |
| i. BASIC     | r. LISP                   |                          |

17. Considering your response to Question 16 list the two languages with which you are most proficient.

- a. \_\_\_\_\_  
b. \_\_\_\_\_

18. INDICATE THE LEVEL OF KNOWLEDGE YOU HAVE WITH THE FOLLOWING METHODOLOGIES.

| A. Methodology              | Unfamiliar | Have Heard of But Do Not Understand | Know What Concept Is | Have Used to A Moderate Extent | Have Used Frequently |
|-----------------------------|------------|-------------------------------------|----------------------|--------------------------------|----------------------|
| 1. PSL/PLA                  | _____      | _____                               | _____                | _____                          | _____                |
| 2. SADT                     | _____      | _____                               | _____                | _____                          | _____                |
| 3. SREM                     | _____      | _____                               | _____                | _____                          | _____                |
| 4. HIPO                     | _____      | _____                               | _____                | _____                          | _____                |
| 5. Jackson Design           | _____      | _____                               | _____                | _____                          | _____                |
| 6. Structured Design        | _____      | _____                               | _____                | _____                          | _____                |
| 7. Harnier/Orr Design       | _____      | _____                               | _____                | _____                          | _____                |
| 8. N-S/Chapin Chart         | _____      | _____                               | _____                | _____                          | _____                |
| 9. Beamsom Tables           | _____      | _____                               | _____                | _____                          | _____                |
| 10. Program Design Language | _____      | _____                               | _____                | _____                          | _____                |

|                                     | <u>Have Heard<br/>Off But Do<br/>Not Understand</u> | <u>Unfamiliar</u> | <u>Know What<br/>Concept Is</u> | <u>Have Used to<br/>A Moderate<br/>Extent</u> | <u>Have Used<br/>Frequently</u> |
|-------------------------------------|-----------------------------------------------------|-------------------|---------------------------------|-----------------------------------------------|---------------------------------|
| <b>A. Methodology (Cont.)</b>       |                                                     |                   |                                 |                                               |                                 |
| 11. Structured Programming          |                                                     |                   |                                 |                                               |                                 |
| 12. Structured Walkthroughs         |                                                     |                   |                                 |                                               |                                 |
| 13. Top-Down Design                 |                                                     |                   |                                 |                                               |                                 |
| 14. Top-Down Testing                |                                                     |                   |                                 |                                               |                                 |
| 15. Bottom-up Design                |                                                     |                   |                                 |                                               |                                 |
| 16. Bachman Diagramming             |                                                     |                   |                                 |                                               |                                 |
| 17. Entity Diagrams                 |                                                     |                   |                                 |                                               |                                 |
| 18. Data Abstraction                |                                                     |                   |                                 |                                               |                                 |
| 19. Other (specify)                 |                                                     |                   |                                 |                                               |                                 |
| <b>B. Programming Constructs</b>    |                                                     |                   |                                 |                                               |                                 |
| 1. Enumeration types                |                                                     |                   |                                 |                                               |                                 |
| 2. Floating point types             |                                                     |                   |                                 |                                               |                                 |
| 3. Fixed point types                |                                                     |                   |                                 |                                               |                                 |
| 4. User defined types               |                                                     |                   |                                 |                                               |                                 |
| 5. Pointers                         |                                                     |                   |                                 |                                               |                                 |
| 6. Typed pointers                   |                                                     |                   |                                 |                                               |                                 |
| 7. Ranges                           |                                                     |                   |                                 |                                               |                                 |
| 8. Records                          |                                                     |                   |                                 |                                               |                                 |
| 9. Variant records                  |                                                     |                   |                                 |                                               |                                 |
| 10. Object/type declarations        |                                                     |                   |                                 |                                               |                                 |
| 11. Global variables                |                                                     |                   |                                 |                                               |                                 |
| 12. Local variables                 |                                                     |                   |                                 |                                               |                                 |
| 13. Formal and actual parameters    |                                                     |                   |                                 |                                               |                                 |
| 14. Reserved words                  |                                                     |                   |                                 |                                               |                                 |
| 15. Blocks                          |                                                     |                   |                                 |                                               |                                 |
| 16. Case statements                 |                                                     |                   |                                 |                                               |                                 |
| 17. If/then/else statements         |                                                     |                   |                                 |                                               |                                 |
| 18. Loop/for/while/until statements |                                                     |                   |                                 |                                               |                                 |
| 19. Exit Statements (for loops)     |                                                     |                   |                                 |                                               |                                 |

| B. Programming Constructs (Cont.) | Unfamiliar | Not Understand | Have Heard Of But Do Not Understand | Know What Concept Is | Have Used to A Moderate Extent | Have Used Frequently |
|-----------------------------------|------------|----------------|-------------------------------------|----------------------|--------------------------------|----------------------|
|                                   |            |                |                                     |                      |                                |                      |
| 20. Procedures                    |            |                |                                     |                      |                                |                      |
| 21. Functions                     |            |                |                                     |                      |                                |                      |
| 22. Return statements             |            |                |                                     |                      |                                |                      |
| 23. Clusters/modules/packages     |            |                |                                     |                      |                                |                      |
| 24. Stubs                         |            |                |                                     |                      |                                |                      |
| 25. Goto statements               |            |                |                                     |                      |                                |                      |
| 26. Comments                      |            |                |                                     |                      |                                |                      |
| 27. Exception handlers            |            |                |                                     |                      |                                |                      |
| 28. Task/coroutines               |            |                |                                     |                      |                                |                      |
| 29. Other (specify)               |            |                |                                     |                      |                                |                      |

C. Programming Concepts

1. Importing/exporting names
2. Data encapsulation (composition)
3. Name scoping
4. Name visibility
5. Static and dynamic nesting
6. Iteration
7. Conditional statements
8. Recursion
9. Concurrency
10. Strong typing
11. Type conversion
12. Data abstraction
13. Generics
14. Loop invariants
15. Parameter binding
16. Version number
17. Other (specify)

| D. Ada Programming Concepts        | Unfamiliar | Have Heard of But Do Not Understand |                          |                                | Know What Concept Is | Have Used to A Moderate Extent | Have Used Frequently |
|------------------------------------|------------|-------------------------------------|--------------------------|--------------------------------|----------------------|--------------------------------|----------------------|
|                                    |            | Have Heard                          | of But Do Not Understand | Have Used to A Moderate Extent |                      |                                |                      |
| 1. Enumeration types               |            |                                     |                          |                                |                      |                                |                      |
| 2. User-defined types              |            |                                     |                          |                                |                      |                                |                      |
| 3. Subtypes                        |            |                                     |                          |                                |                      |                                |                      |
| 4. Derived types                   |            |                                     |                          |                                |                      |                                |                      |
| 5. Real types                      |            |                                     |                          |                                |                      |                                |                      |
| 6. Floating point types            |            |                                     |                          |                                |                      |                                |                      |
| 7. Fixed point types               |            |                                     |                          |                                |                      |                                |                      |
| 8. Record types                    |            |                                     |                          |                                |                      |                                |                      |
| 9. Record types with discriminants |            |                                     |                          |                                |                      |                                |                      |
| 10. Slices                         |            |                                     |                          |                                |                      |                                |                      |
| 11. Aggregates                     |            |                                     |                          |                                |                      |                                |                      |
| 12. Allocators                     |            |                                     |                          |                                |                      |                                |                      |
| 13. Access types                   |            |                                     |                          |                                |                      |                                |                      |
| 14. Overloading                    |            |                                     |                          |                                |                      |                                |                      |
| 15. Packages                       |            |                                     |                          |                                |                      |                                |                      |
| 16. Private types                  |            |                                     |                          |                                |                      |                                |                      |
| 17. Scope                          |            |                                     |                          |                                |                      |                                |                      |
| 18. Short circuiting               |            |                                     |                          |                                |                      |                                |                      |
| 19. Visibility                     |            |                                     |                          |                                |                      |                                |                      |
| 20. Tasking                        |            |                                     |                          |                                |                      |                                |                      |
| 21. Task types                     |            |                                     |                          |                                |                      |                                |                      |
| 22. Rendezvous                     |            |                                     |                          |                                |                      |                                |                      |
| 23. Entries                        |            |                                     |                          |                                |                      |                                |                      |
| 24. Entry Families                 |            |                                     |                          |                                |                      |                                |                      |
| 25. Separate compilation           |            |                                     |                          |                                |                      |                                |                      |
| 26. Exceptions                     |            |                                     |                          |                                |                      |                                |                      |
| 27. Generic program units          |            |                                     |                          |                                |                      |                                |                      |
| 28. Instantiation                  |            |                                     |                          |                                |                      |                                |                      |

| <u>D. Ada Programming Concepts (Cont.)</u>                                                                                        | <u>Unfamiliar</u> | <u>Have Heard of But Do Not Understand</u> | <u>Know What Concept Is</u> | <u>Have Used to A Moderate Extent</u> | <u>Have Used Frequently</u> |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------|-----------------------------|---------------------------------------|-----------------------------|
| 29. Elaboration                                                                                                                   |                   |                                            |                             |                                       |                             |
| 30. Context specification                                                                                                         |                   |                                            |                             |                                       |                             |
| 31. Information hiding                                                                                                            |                   |                                            |                             |                                       |                             |
| 32. Mutual recursion                                                                                                              |                   |                                            |                             |                                       |                             |
| 33. Other (specify)                                                                                                               |                   |                                            |                             |                                       |                             |
| 19. What do you like most about Ada?                                                                                              |                   |                                            |                             |                                       |                             |
| 20. What do you like least about Ada?                                                                                             |                   |                                            |                             |                                       |                             |
| 21. Thank you for completing this survey. If there are additional comments you wish to make, please feel free to make them below. |                   |                                            |                             |                                       |                             |

**APPENDIX C**

**ADA SOFTWARE DESIGN METHODS FORMULATION**

**INDUSTRIAL TRAINING SURVEY**

- Letter to Training Survey Respondent
- Survey

**ADA\* SOFTWARE DESIGN METHOD FORMULATION  
INDUSTRIAL TRAINING SURVEY**



1094-2

C-1

\*Ada is a trademark of the Department of Defense (Ada Joint Program Office)

March 5, 1982

Dear Training Survey Respondent:

The Center for Tactical Computer Systems, U.S. Army Communication-Electronics Command (CECOM), Fort Monmouth, NJ, is sponsoring a study to identify effective approaches for the use of Ada in designing and developing embedded systems software. This effort is part of the Army Ada Language Program, the first phase of a major software technology R&D initiative intended to introduce a new and more effective method for software development and maintenance.

As part of this study, SofTech, Inc., has been awarded a contract to conduct a survey which will reflect training methods, training programs and software development policies of company divisions involved with embedded computer system software. The person(s) completing this survey should have management level training responsibilities. Your agreement to participate in this survey is important to CECOM in establishing Ada training criteria which will accurately reflect the needs of industry and government.

Completed surveys should be returned by March 26, 1982 to

SofTech, Inc.  
460 Totten Pond Road  
Waltham, MA 02154

If there are any questions regarding this effort please contact Karen Sather at SofTech (617-890-6900, Ext. 137).

Your participation is a key element in assuring the success of this survey and we are most appreciative of your efforts on our behalf. CECOM is committed to transferring the Ada technology in the most efficient and timely way to the Ada user community. The published results of this survey will be sent to you as soon as they are available.

Thank you for your time and effort.

Very truly yours,

Joseph Kieran  
Chief, Software Technology  
Development Division  
CENTACS  
CECOM

Name \_\_\_\_\_  
Title \_\_\_\_\_  
Company \_\_\_\_\_  
Division \_\_\_\_\_ Department \_\_\_\_\_

## ADA SOFTWARE DESIGN METHOD FORMULATION INDUSTRIAL TRAINING SURVEY

### **PART I: TRAINING**

#### **A. GENERAL**

1. Does your company have a training department? Yes \_\_\_\_ No \_\_\_\_
  
2. What is the size of your training department?  
\_\_\_\_ 1-5      \_\_\_\_ 6-10      \_\_\_\_ 11-15      \_\_\_\_ More than 15
  
3. What are the responsibilities of the training department? (Check as many as appropriate.)  
\_\_\_\_ To procure training from outside sources  
\_\_\_\_ To coordinate the internal development of training materials  
\_\_\_\_ Other (explain) \_\_\_\_\_
  
4. Is your training department composed of:  
a. Full time staff only  
\_\_\_\_ b. Part time and full time staff  
\_\_\_\_ c. Part time only  
\_\_\_\_ d. Other (explain) \_\_\_\_\_

5. In terms of training functions does your training department have individuals who
- a. Design training courses only
  - b. Develop training materials only
  - c. Provide instruction only
  - d. Design and develop training courses and support course materials
  - e. Perform all functions
  - f. Other (explain) \_\_\_\_\_

IN GENERAL, WHAT ARE THE MINIMUM QUALIFICATIONS OF YOUR COURSE DEVELOPERS?

6. Educational Background: \_\_\_\_\_ a. BS \_\_\_\_\_ b. MS \_\_\_\_\_ c. PhD \_\_\_\_\_ d. Other \_\_\_\_\_
7. Technical Experience: \_\_\_\_\_ a. 0-3 yrs. \_\_\_\_\_ b. 3-5 yrs. \_\_\_\_\_ c. Over 5 yrs. \_\_\_\_\_ d. Other \_\_\_\_\_
8. Teaching Experience: \_\_\_\_\_ a. 0-3 yrs. \_\_\_\_\_ b. 3-5 yrs. \_\_\_\_\_ c. Over 5 yrs. \_\_\_\_\_ d. Other \_\_\_\_\_
9. Do you consider any other qualifications when selecting course developers? Yes \_\_\_\_\_ No \_\_\_\_\_  
Explain \_\_\_\_\_
- IN GENERAL, WHAT ARE THE MINIMUM QUALIFICATIONS OF YOUR INSTRUCTORS?
10. Educational Background: \_\_\_\_\_ a. BS \_\_\_\_\_ b. MS \_\_\_\_\_ c. PhD \_\_\_\_\_ d. Other \_\_\_\_\_
11. Technical Experience: \_\_\_\_\_ a. 0-3 yrs. \_\_\_\_\_ b. 3-5 yrs. \_\_\_\_\_ c. Over 5 yrs. \_\_\_\_\_ d. Other \_\_\_\_\_

12. Teaching Experience:    a. 0-3 yrs.    b. 3-5 yrs.    c. Over 5    d. Other \_\_\_\_\_
13. Do you consider any other qualifications when selecting course instructors? Yes \_\_\_\_\_ No \_\_\_\_\_  
Explain \_\_\_\_\_
14. How do you train your educational staff?  
\_\_\_\_\_  
a. Internally through educational department  
\_\_\_\_\_  
b. Internally through technical staff  
\_\_\_\_\_  
c. Contracted training  
\_\_\_\_\_  
d. Other (explain) \_\_\_\_\_
15. Does your company offer in-house courses on a regular basis? Yes \_\_\_\_\_ No \_\_\_\_\_
16. Approximately, how many courses do you offer per year? \_\_\_\_\_
17. In general, are the instructors for these courses  
\_\_\_\_\_  
a. Full-time training staff  
\_\_\_\_\_  
b. Technical Staff  
\_\_\_\_\_  
c. Marketing support technical staff  
\_\_\_\_\_  
d. Other (explain) \_\_\_\_\_
18. What is the normal duration of your in-house courses?  
\_\_\_\_\_  
a. 1-2 days    b. 3-5 days    c. 6-10 days    d. over 10 days

19. What is the average class size for an in-house course?  
a. Less than 10 \_\_\_\_ b. 10-15 \_\_\_\_ c. 16-30 \_\_\_\_ d. More than 30 \_\_\_\_
20. When are your in-house courses offered?  
a. During working hours \_\_\_\_ b. After working hours \_\_\_\_ c. Both \_\_\_\_
21. What internal facilities are available for company sponsored training?  
a. Classrooms (0-15 people) How many? \_\_\_\_  
b. Classrooms (16-30 people) How many? \_\_\_\_  
c. Classrooms (over 30 people) How many? \_\_\_\_  
d. Auditoriums (over 75 people) \_\_\_\_  
e. Laboratories (online access to system) \_\_\_\_  
f. Video cassette recorders and monitors \_\_\_\_  
g. 16mm or 35mm projection facilities \_\_\_\_  
h. Overhead Projectors \_\_\_\_  
i. Other (please specify) \_\_\_\_\_
22. Do you contract with outside sources for facilities when necessary? Yes \_\_\_\_ No \_\_\_\_
23. What instructional formats has your company used? (Check as many as appropriate.)  
a. Lecture \_\_\_\_ f. Self-paced instruction \_\_\_\_  
b. Workshop \_\_\_\_ g. Videotapes \_\_\_\_  
c. Lecture/workshop \_\_\_\_ h. film \_\_\_\_  
d. Computer aided instruction \_\_\_\_ i. Other (Explain) \_\_\_\_\_  
e. On-line exposure \_\_\_\_\_

24. Which of these formats have you found most effective?  
a. \_\_\_\_\_ b. \_\_\_\_\_
25. Which of these formats have you found least effective?  
a. \_\_\_\_\_ b. \_\_\_\_\_
26. How are your in-house courses evaluated? (Check all appropriate responses.)  
 a. Informal feedback  
 b. Written evaluation from students  
 c. Professional review  
 d. Not evaluated  
 e. Other (explain) \_\_\_\_\_
27. Does your company ever contract with outside vendors for technical training? Yes \_\_\_\_\_ No \_\_\_\_\_
28. What form(s) of training do you purchase?  
a. Courses  
 0-3 days  
 3-5 days  
 5-10 days  
 Over 10 days  
b. Seminars/symposia  
 Videotapes  
c. Workshops  
d. Tutorial texts  
e. Other \_\_\_\_\_

**B. EMBEDDED SYSTEMS TRAINING**

29. Does your company provide formal in-house training to personnel involved with embedded computer system software? Yes        No       

30. Who is responsible for providing in-house training to embedded computer systems personnel?
- a. The department requiring training
  - b. An educational organization within your division
  - c. A corporate educational organization
  - d. Other (explain) \_\_\_\_\_

31. What percent of the training of embedded computer systems personnel is provided by each of the following:
- |                                   | 0-20%                    | 21-40%                   | 41-60%                   | 61-80%                   | 81-100%                  |
|-----------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| a. In-house courses               | <input type="checkbox"/> |
| b. College courses                | <input type="checkbox"/> |
| c. On the job training            | <input type="checkbox"/> |
| d. Contracted with outside vendor | <input type="checkbox"/> |
| e. Other (explain)                | <input type="checkbox"/> |
32. What instructional formats has your company used with embedded systems personnel? (Check as many as appropriate.)
- a. Lecture
  - b. Workshop
  - c. Lecture/workshop
  - d. Computer aided instruction
  - e. Online exposure
  - f. Self-paced instruction
  - g. Videotape
  - h. Film
  - i. Other (explain) \_\_\_\_\_

33. Which formats have you found most effective in the training of programmers in new languages?

- a. \_\_\_\_\_
- b. \_\_\_\_\_

34. Which formats have you found least effective in the training of programmers in new languages?

- a. \_\_\_\_\_
- b. \_\_\_\_\_

35. Which formats have you found most effective in the training of embedded systems personnel in program management, system analysis and design, and system architecture?

- a. \_\_\_\_\_
- b. \_\_\_\_\_

36. Which formats have you found least effective in the training of embedded systems personnel in program management, system analysis and design, and system architecture?

- a. \_\_\_\_\_
- b. \_\_\_\_\_

#### PART II: SOFTWARE DEVELOPMENT POLICIES

IF YOUR COMPANY HAS DOCUMENTED POLICIES AND PROCEDURES FOR SOFTWARE DEVELOPMENT, ANSWER THE FOLLOWING QUESTIONS:

37. How were these policies and procedures established?

- a. Internal committee or study group \_\_\_\_\_
- b. Internal consultant(s) \_\_\_\_\_
- c. Outside consultant(s) \_\_\_\_\_
- d. Other \_\_\_\_\_

38. How were these policies and procedures implemented? (Check as many as appropriate.)

- a. Pilot project \_\_\_\_\_
- b. Internally developed courses \_\_\_\_\_
- c. Contracted training \_\_\_\_\_
- d. Project leader/supervisor \_\_\_\_\_
- e. Printed materials \_\_\_\_\_
- f. Other (explain) \_\_\_\_\_

19. How are new staff introduced to your software development policies and procedures?

- a. Internally developed courses
- b. Contracted training
- c. Project leader/supervisor
- d. Printed materials
- e. Other (explain) \_\_\_\_\_

40. Rank the following methods of introducing software development policies as to effectiveness.  
(1 = most effective)

- a. Internally developed courses
- b. Contracted training
- c. Project leader/supervisor
- d. Printed materials
- e. Other (explain) \_\_\_\_\_

41. How do you audit your software development policies and procedures?

- a. Internal Quality Assurance
- b. Project leader/supervisor evaluation
- c. Design reviews
- d. Walkthroughs
- e. Not audited
- f. Other (explain) \_\_\_\_\_

42. If policies and procedures are updated, how are these changes communicated to the staff?

- a. Internally developed courses
- b. Contracted training
- c. Project leader/supervisor
- d. Printed materials
- e. Other (explain) \_\_\_\_\_

**PART W: Ada TRAINING**

IF ANY OF YOUR STAFF HAVE PARTICIPATED IN Ada TRAINING, ANSWER THE FOLLOWING QUESTIONS:

43. Approximately, what percentage of your staff has participated in Ada training?  
\_\_\_\_ a. 0-25%      \_\_\_\_ b. 26-50%      \_\_\_\_ c. 51-75%      \_\_\_\_ d. 76-100%

44. What form(s) of Ada training has your staff received?

- \_\_\_\_ a. Self taught
- \_\_\_\_ b. Ada seminars
- \_\_\_\_ c. University sponsored course
- \_\_\_\_ d. Government sponsored course
- \_\_\_\_ e. Videotapes
- \_\_\_\_ f. Film
- \_\_\_\_ g. In-house course
  - \_\_\_\_ 1-3 days
  - \_\_\_\_ 3-5 days
  - \_\_\_\_ More than 5 days
- \_\_\_\_ h. Other \_\_\_\_\_

45. In contrast to other courses, do you believe Ada courses will require:

- \_\_\_\_ a. Less time to develop
- \_\_\_\_ b. Approximately the same time to develop
- \_\_\_\_ c. More time to develop
- \_\_\_\_ d. Less actual class time
- \_\_\_\_ e. Approximately the same class time
- \_\_\_\_ f. More actual class time

46. What do you like most about Ada?

---

---

---

---

---

---

47. What do you like least about Ada?

---

---

---

---

---

---

48. Thank you for completing this Survey. If there are additional comments you wish to make, please feel free to make them below.

---

---

---

---

---

**APPENDIX D**  
**ADA SOFTWARE DESIGN METHODS FORMULATION**

**Report of the Survey**

**Statistical Consultant**

**Report on the Ada Software Design Methods Formulation  
Industry/Government Work Force Survey**

**Robert J. Muller  
M.I.T.  
June 2, 1982**

## Table of Contents

|                                                |           |
|------------------------------------------------|-----------|
| <b>Executive Summary</b>                       | <b>1</b>  |
| <b>The Survey and the Population</b>           | <b>2</b>  |
| The sample                                     | 2         |
| The database                                   | 3         |
| <b>Single-Variable Descriptions</b>            | <b>4</b>  |
| Experience                                     | 4         |
| Ada involvement                                | 6         |
| Professionalism                                | 6         |
| Job outputs                                    | 7         |
| Principal duties                               | 10        |
| Areas of experience                            | 12        |
| Ada training                                   | 13        |
| <b>Two-Variable Comparisons</b>                | <b>14</b> |
| General activities                             | 14        |
| Methodologies                                  | 17        |
| Programming languages                          | 22        |
| Relationships                                  | 25        |
| <b>Classification of the Workforce</b>         | <b>30</b> |
| Methods                                        | 30        |
| The results                                    | 36        |
| Characterization of clusters                   | 49        |
| Current titles                                 | 64        |
| Further classification of nonmanagement        | 72        |
| <b>Conclusions</b>                             | <b>90</b> |
| <b>Appendix 1--The Database</b>                | <b>92</b> |
| <b>Appendix 2--Bibliography</b>                | <b>96</b> |
| <b>Appendix 3--Workforce Cluster Hierarchy</b> | <b>97</b> |

Executive Summary

The Ada Workforce Survey was administered as a nonrandom sample to nine institutions. Because of the method of administration, no statistical generalizations may be made to a general population; the results expressed herein apply only to the sample.

Various single variable descriptions indicate that the sample is largely composed of individuals who have been in the workforce for more than ten years, who generally haven't been trained in Ada, who have worked more on development than on support, who are more-or-less professional (as defined by belonging to technical societies, attending conferences and so on), who in general spend their time programming or designing programs, who have worked on military or embedded systems (90 percent of the workforce), and who generally program in FORTRAN or Assembler (or both).

There are few significant relationships between variables in the survey. Involvement with Ada to a small extent determines knowledge of Ada.

Classification of the workforce based on clustering and smoothing techniques produces five fundamental categories of worker: administrative manager, technical manager, support manager, development nonmanager, and support nonmanager. Comparison of the various variables with these categories supports the interpretation of the categories.

The Survey and the Population

This report is a descriptive analysis of the Ada Software Design Method Formulation Industry/Government Work Force Survey, done by Softech Inc. under the auspices of the U. S. Army Communications-Electronics Command. In order to place this report in its proper perspective, the survey procedures are briefly outlined below.

The sample.--Softech administered the survey as a mailed, key-person survey. That is, Softech mailed copies of the survey to certain administrators in each organization and asked that person to distribute the survey within the organization to people broadly representative of the company. Softech exercised no control over the internal distribution of questionnaires, relying totally on the administrator. There was no reliable attempt at random distribution. There was no attempt to weight the individual questionnaires received with respect to any sampled population.

The implications of this procedure for the following analysis relate mainly to the applicability of the analysis to a general population. A sample is a subset of some population, that population being defined without reference to the sampling method. In the case of a random sample, the members of the population to be sampled are selected by first knowing some characteristic by which all of the population might be indexed (address, phone, name, whatever). The sample is then selected by some criterion designed to eliminate all possible influences induced by considering a limited number of the population.

Softech has apparently defined the population as the subset of the organization that some administrator in the organization feels can complete the survey reasonably and have some "characteristic" qualities making them broadly representative of the subset. Thus the actual population being sampled is de-

fined differently between organizations and possibly within organizations. There is no possibility of modeling the sampling process, since no records were kept of the individual assignment decisions.

The result of these procedures is to have an unspecified population. The consequence is that, although this report states certain results, there is little statistical assurance that the results may be reliably extended to any particular population. The statistics are valid for the sample only.

The database.--The sample consists of 428 surveys of 9 organizations, five in the private sector and four in the public sector. The data is organized into a relational database consisting of nine types of information (or datasets) ; the number in parentheses after the dataset name is the number of entities in that dataset.

- (1) job history (426)  
title  
rank  
date  
years of involvement in software  
level of involvement with Ada  
years worked on development  
years worked on support  
membership in technical societies  
conference attendance  
published or presented papers  
technical reading
- (2) job output (3,541)
- (3) principal duties (2,542)
- (4) general activities (9,841)  
activity  
importance
- (5) conference role (106)
- (6) programming languages (2,705)  
language  
proficiency
- (7) methodologies (24,302)  
methodology

**extent of knowledge**

(8) areas of experience (772)

(9) Ada training (189)

This structure reflects the fact that all of the attributes except for the job history attributes were multiple response questions and hence were at a different level from the survey respondents--that is, a given respondent may have more than one response to a particular question. Appendix 1 contains a complete listing of the datasets, attributes, and possible values for the attributes.

The structural complexity of the database introduces some problems with the descriptive statistics in the following sections. Because of the multiple-response structure of many of the questions, the counts of responses have two interpretations, one relative to the total number of responses ("response level") and the other relative to the total number of respondents ("respondent level"). Percentages in the following tables labeled "Percent of Responses" are calculated as Count divided by the sum of Count over all responses. Percentages labeled "Percent of Respondents" are Count divided by 428 (the number of respondents in the survey). The first percentage is not very interpretable; the second describes the status of a response relative to the respondents, but will not add up to 100, since a given individual may respond with more than one response.

**Single-Variable Descriptions**

Experience.--The first question to be considered is how many years the respondent has spent in software development and/or support. The following table gives the breakdown of the four possible responses:

|                     | Counts | Percent |
|---------------------|--------|---------|
| less than two years | 41     | 9.7     |
| two to five years   | 101    | 23.9    |
| five to ten years   | 85     | 20.1    |
| over ten years      | 196    | 46.3    |

This table indicates that almost half of the people who filled out questionnaires had been in the area for over ten years; this will probably have some effect on knowledge and job patterns.

Considered together are the two questions on the length of time worked on development and support. The following two tables break down the questions:

#### Years Worked on Development

|                     | Counts | Percent |
|---------------------|--------|---------|
| less than a year    | 78     | 20.0    |
| one to three years  | 78     | 20.0    |
| three to five years | 65     | 16.7    |
| over five years     | 169    | 43.3    |

#### Years Worked on Support

|                     | Counts | Percent |
|---------------------|--------|---------|
| less than a year    | 95     | 33.1    |
| one to three years  | 73     | 25.4    |
| three to five years | 42     | 14.6    |
| over five years     | 77     | 26.8    |

The import of these frequencies is not terribly clear without taking into account the relationships between these two variables. There are four possibilities--the respondent worked in both support and development, the respondent worked only in support, the respondent worked only in development, or the respondent worked in neither (or didn't answer the question). Applying these logical combinations, 274 people worked in both, 116 worked in development but not support, 13 people worked in support but not development, and 23 people apparently worked in neither. This result tends to swing the bias to-

ward the development people.

The assumption is made that a nonanswer implies not working in that area, an assumption that might not be justified. It is possible for people who have done no work in the area to respond in the first category, 0-1 year.

Getting back to the original issue, the separate tables indicate that the people who worked on development tend to have done so over three years (the median is three to five). But people who work on support have done so for more than one year (median one to three years). Putting this together with the distribution of workers, it would seem that the industry stresses development and has begun employing support personnel later than development personnel. Another interpretation might be that support personnel have a higher turnover rate than technical personnel. Without company employment studies, neither interpretation can be falsified.

Ada involvement.--The next question is about the level of involvement of the person with Ada. The following table breaks down the five responses:

|                        | Counts | Percent |
|------------------------|--------|---------|
| Ada not known          | 16     | 3.8     |
| heard of Ada           | 225    | 52.9    |
| had orientation to Ada | 101    | 23.8    |
| Ada training           | 48     | 11.3    |
| other                  | 35     | 8.2     |

This table indicates that only a third or so of the workforce has any real knowledge of Ada aside from having heard about it. Only 11 percent of the workforce has had Ada training. An implication of this is that Ada training will have to affect a large portion of the industry; another implication is that, if Ada training significantly changes the way people do their jobs, the industry will have to change a great deal as use of Ada becomes widespread.

Professionalism.--With respect to technical societies, a third of the

respondents (142) belong to technical societies and two-thirds of them (276) do not. With respect to conference attendance, 173 (41 percent) have attended a conference and 248 (59 percent) have not. Of those who had, 4 had organized a conference, 10 had been speakers, 91 had been attendees, and 1 had taken some other role. With respect to publishing or presenting papers, 95 (23 percent) have done so, 327 (78 percent) have not. With respect to technical reading, the following table breaks down the possible responses:

|                        | Counts | Percent |
|------------------------|--------|---------|
| regularly              | 185    | 44.0    |
| occasionally           | 187    | 44.5    |
| only as my job demands | 32     | 7.6     |
| never                  | 14     | 3.3     |
| other                  | 2      | 0.5     |

This table indicates that more than three quarters of all respondents do some reading of job-related magazines or newsletters. What this means is unclear; such newsletters might consist of company rags or might be ACM transactions. There is no information about what type of technical reading is involved.

These last questions seem to be aimed at identifying certain "professional" aspects of the respondent's job. Given the relative vagueness of the issues addressed, the questions don't usefully perform this task. Professionalism has deeper roots than belonging to societies or going to conferences, or even presenting papers. It matters very much which societies, which conferences, and where the papers are presented or published, among other things.

Job outputs.--The following table gives the breakdown of the various job output products, giving the percent of the responses made and the percent of people giving the response relative to the total sample (428).

| Output                   | Count | Percent of Responses | Percent of Respondents |
|--------------------------|-------|----------------------|------------------------|
| hard soft tradeoff eval  | 125   | 3.530                | 29.206                 |
| data flow diagrams       | 197   | 5.563                | 46.028                 |
| test drivers             | 150   | 4.236                | 35.047                 |
| code                     | 287   | 8.105                | 67.056                 |
| prog design language     | 262   | 7.399                | 61.215                 |
| requirements specs       | 223   | 6.298                | 52.103                 |
| design specs             | 255   | 7.201                | 59.579                 |
| test plans               | 236   | 6.665                | 55.140                 |
| integration plans        | 165   | 4.660                | 38.551                 |
| management plans         | 99    | 2.796                | 23.131                 |
| cost data                | 104   | 2.937                | 24.299                 |
| analysis reports         | 111   | 3.135                | 25.935                 |
| milestone charts         | 173   | 4.886                | 40.421                 |
| status reports           | 223   | 6.298                | 52.103                 |
| interview sheets         | 116   | 3.276                | 27.103                 |
| correspondence           | 92    | 2.598                | 21.495                 |
| development other        | 14    | 0.395                | 3.271                  |
| STR analyses             | 97    | 2.739                | 22.664                 |
| temp ECPs                | 46    | 1.299                | 10.748                 |
| redlined documentation   | 52    | 1.469                | 12.150                 |
| support test plans       | 70    | 1.977                | 16.355                 |
| support test drivers     | 40    | 1.130                | 9.346                  |
| tech advice to CCB       | 40    | 1.130                | 9.346                  |
| updated MIL STD spec     | 20    | 0.565                | 4.673                  |
| library control          | 25    | 0.706                | 5.841                  |
| maintain config procs    | 32    | 0.904                | 7.477                  |
| updated training manuals | 24    | 0.678                | 5.607                  |
| updated user manuals     | 71    | 2.005                | 16.589                 |
| STRs                     | 85    | 2.400                | 19.860                 |
| automated build systems  | 20    | 0.565                | 4.673                  |
| management info reports  | 32    | 0.904                | 7.477                  |
| version descrip docs     | 20    | 0.565                | 4.673                  |
| version audits           | 11    | 0.311                | 2.570                  |
| field engineering report | 8     | 0.226                | 1.869                  |
| support other            | 16    | 0.452                | 3.738                  |

The following list of the values presents the values in rank order.

| Output               | Percent of Respondents |
|----------------------|------------------------|
| code                 | 67.056                 |
| prog_design_language | 61.215                 |
| design_specs         | 59.579                 |
| test_plans           | 55.140                 |
| status_reports       | 52.103                 |
| requirements_specs   | 52.103                 |
| data_flow_diagrams   | 46.028                 |
| milestone_charts     | 40.421                 |
| integration_plans    | 38.551                 |

|                          |        |
|--------------------------|--------|
| test_drivers             | 35.047 |
| hard_soft_tradeoff_eval  | 29.206 |
| interview_sheets         | 27.103 |
| analysis_reports         | 25.935 |
| cost_data                | 24.299 |
| management_plans         | 23.131 |
| STR_analyses             | 22.664 |
| correspondence           | 21.495 |
| STRs                     | 19.860 |
| updated_user_manuals     | 16.589 |
| support_test_plans       | 16.355 |
| redlined_documentation   | 12.150 |
| temp_ECPs                | 10.748 |
| support_test_drivers     | 9.346  |
| tech_advice_to_CCB       | 9.346  |
| management_info_reports  | 7.477  |
| maintain_config_procs    | 7.477  |
| library_control          | 5.841  |
| updated_training_manuals | 5.607  |
| automated_build_systems  | 4.673  |
| updated_MIL_STD_spec     | 4.673  |
| version_descrip_docs     | 4.673  |
| support_other            | 3.738  |
| development_other        | 3.271  |
| version_audits           | 2.570  |
| field_engineering_report | 1.869  |

This table describes the number of people who do a certain thing, without taking into consideration what else they do. Thus, 67 percent of the respondents produce code, 61 percent produce program design language, 60 percent produce design specifications, and so on. There does seem to be a general tendency toward those categories directly related to programming in a technical sense; as well, people tend to produce development outputs more often than support outputs. This paints the picture of an industry more oriented toward producing software than toward supporting software.

The section on classification below will discuss the relationships between respondents based on combinations of responses--patterns of job responsibilities and behaviors. These patterns will be the basis for the job classification scheme.

As a comment, this question (and the next question on principal duties)

might have been structured as the later questions were, including some weighting variable such as how much time is spent on a product or on a duty. This might give a clearer picture of job structure. On the other hand, exploration of the variation indicates that most of the reasonable conclusions are robust--not subject to relative extremes in the data. Having information weighting the responses would probably not affect the results very much.

Principal duties.--The following table tabulates the responses to the question about what the respondent's principal duties were:

| Duty                     | Count | Percent of Responses | Percent of Respondents |
|--------------------------|-------|----------------------|------------------------|
| conduct req review       | 94    | 3.698                | 21.963                 |
| attend req review        | 147   | 5.783                | 34.346                 |
| system analysis          | 193   | 7.592                | 45.093                 |
| design                   | 271   | 10.661               | 63.318                 |
| conduct design review    | 151   | 5.940                | 35.280                 |
| attend design review     | 196   | 7.710                | 45.794                 |
| code                     | 235   | 9.245                | 54.907                 |
| conduct walkthroughs     | 108   | 4.249                | 25.234                 |
| attend walkthroughs      | 128   | 5.035                | 29.907                 |
| formulation of policy    | 46    | 1.810                | 10.748                 |
| formulation of strategy  | 60    | 2.360                | 14.019                 |
| technical management     | 118   | 4.642                | 27.570                 |
| program management       | 31    | 1.220                | 7.243                  |
| configuration management | 31    | 1.220                | 7.243                  |
| quality assurance        | 31    | 1.220                | 7.243                  |
| monitoring contracts     | 23    | 0.905                | 5.374                  |
| other development        | 10    | 0.393                | 2.336                  |
| support analysis         | 101   | 3.973                | 23.598                 |
| support design           | 86    | 3.383                | 20.093                 |
| conduct support dr       | 46    | 1.810                | 10.748                 |
| attend support dr        | 74    | 2.911                | 17.290                 |
| code patch               | 88    | 3.462                | 20.561                 |
| conduct sup walkthrough  | 35    | 1.377                | 8.178                  |
| attend sup walkthrough   | 52    | 2.046                | 12.150                 |
| sup technical management | 44    | 1.731                | 10.280                 |
| sup policy formulation   | 17    | 0.669                | 3.972                  |
| sup program management   | 13    | 0.511                | 3.037                  |
| SCCB participation       | 36    | 1.416                | 8.411                  |
| sup config management    | 20    | 0.787                | 4.673                  |
| sup quality assurance    | 25    | 0.983                | 5.841                  |
| sup monitoring contracts | 19    | 0.747                | 4.439                  |
| other support            | 13    | 0.511                | 3.037                  |

The following list presents the above values in rank order.

| Duty                     | Percent of Respondents |
|--------------------------|------------------------|
| design                   | 63.318                 |
| code                     | 54.907                 |
| attend_design_review     | 45.794                 |
| system_analysis          | 45.093                 |
| conduct_design_review    | 35.280                 |
| attend_req_review        | 34.346                 |
| attend_walkthroughs      | 29.907                 |
| technical_management     | 27.570                 |
| conduct_walkthroughs     | 25.234                 |
| support_analysis         | 23.598                 |
| conduct_req_review       | 21.963                 |
| code_patch               | 20.561                 |
| support_design           | 20.093                 |
| attend_support_dr        | 17.290                 |
| formulation_of_strategy  | 14.019                 |
| attend_sup_walkthrough   | 12.150                 |
| formulation_of_policy    | 10.748                 |
| conduct_support_dr       | 10.748                 |
| sup_technical_management | 10.280                 |
| SCCB_participation       | 8.411                  |
| conduct_sup_walkthrough  | 8.178                  |
| program_management       | 7.243                  |
| configuration_management | 7.243                  |
| quality_assurance        | 7.243                  |
| sup_quality_assurance    | 5.841                  |
| monitoring_contracts     | 5.374                  |
| sup_config_management    | 4.673                  |
| sup_monitoring_contracts | 4.439                  |
| sup_policy_formulation   | 3.972                  |
| sup_program_management   | 3.037                  |
| other_support            | 3.037                  |
| other_development        | 2.336                  |

This table demonstrates the same general tendencies as the table of job outputs--the largest percentages are the technical programming duties, and there is a general tendency toward development and away from support. As well, both tables show a relatively low set of percentages for various administrative tasks such as correspondence or formulation of policy. This may indicate that these things aren't important; more likely, it indicates that the people who do them are a small administrative cadre, probably higher up in the

organization than the bulk of the respondents. There is no way to verify this conclusion from the data. Some support for this interpretation comes from the clustering scheme presented in the classification section below.

Areas of experience.--The question on areas of experience breaks down according to the following table:

| Area                  | Count | Percent of Responses | Percent of Respondents |
|-----------------------|-------|----------------------|------------------------|
| commercial            | 148   | 19.171               | 34.579                 |
| military              | 343   | 44.430               | 80.140                 |
| embedded computer sys | 173   | 22.409               | 40.421                 |
| educational           | 51    | 6.606                | 11.916                 |
| statistical           | 25    | 3.238                | 5.841                  |
| other                 | 32    | 4.145                | 7.477                  |

Not surprisingly for firms doing defense work, most people have done work in the military arena. Given that Ada applies to embedded computer systems, the relatively low percentage of people (173, or 40 percent of the total) that have worked on embedded systems might mean that any classification scheme developed from this sample will not necessarily be appropriate for organizations doing embedded system work.

However, there is some question of spurious semantic distinction. It would appear that the term "embedded computer system" is relatively new and not well known in the industry as yet. 133 respondents (31 percent) responded with both military and embedded. 40 (.3 percent) responded embedded alone; 210 (43.5 percent) responded military alone. There is some indication that those responding embedded also specify military more often than those who responding military also specify embedded (77 versus 39 percent, respectively). This might indicate hierarchical knowledge or hierarchical work. Hierarchical knowledge means that knowledge of what an embedded system is implies knowing that it is mainly military, hence explaining the large overlap in

responses; and not knowing implies thinking that the job one does is military, not embedded, even though it might be so considered by somebody who knew what an embedded system is, thus explaining the large number of military-only responses. Hierarchical work, on the other hand, means that people who work on embedded systems generally are in the military field as well, but those in the military field are not necessarily or frequently employed in embedded system work. The survey data has no information sufficient to distinguish these explanations.

Ada training.--Looking at the last question to be considered in this section, those people who have had some training in Ada have trained in the following ways:

| Training Method     | Count | Percent of<br>Respondents |                             |
|---------------------|-------|---------------------------|-----------------------------|
|                     |       | Percent of<br>Responses   | Percent of<br>Those Trained |
| videotape           | 16    | 8.466                     | 3.738 12.030                |
| college_course      | 7     | 3.704                     | 1.636 5.263                 |
| in_house_course     | 46    | 24.339                    | 10.748 34.586               |
| programmed_learning | 5     | 2.646                     | 1.168 3.759                 |
| seminar             | 43    | 22.751                    | 10.047 32.331               |
| informal_training   | 51    | 26.984                    | 11.916 38.346               |
| other               | 21    | 11.111                    | 4.907 15.789                |

Three quarters of the methods people used are in-house courses, seminars, or informal training. This breakdown might be explained by the other methods not being widely available yet. As well, 40 percent of the respondents have had training of any sort; compare this with the frequencies reported above for level of involvement with Ada: 48 people (11 percent) report training there. The following table breaks down the type of training by Ada involvement in an attempt to resolve this inconsistency:

|                     | had orientation to Ada | heard of Ada | other |              |
|---------------------|------------------------|--------------|-------|--------------|
| Ada not known       |                        |              |       | Ada training |
| Ada training        |                        |              |       |              |
| videotape           | 0                      | 0            | 3     | 9            |
| college course      | 0                      | 0            | 0     | 6            |
| in house course     | 0                      | 1            | 15    | 26           |
| programmed learning | 0                      | 0            | 2     | 3            |
| seminar             | 0                      | 0            | 28    | 12           |
| informal training   | 0                      | 3            | 19    | 15           |
| other               | 0                      | 3            | 7     | 14           |
|                     |                        |              |       | 5            |

Apparently, what happened is that people who participated in orientation sessions on Ada proceeded to answer the Ada training question as well; the responses indicate seminars and informal training are the most important in this group. As well, 14 people with "other" involvement said they had informal training. In the next section, the relationship between years in the industry and Ada training will be considered. The level of involvement question is not very specific; the training question is probably a more specific version of the same thing.

#### Two-Variable Comparisons

The first part of this section is devoted to presentation of the parts of the survey data that associate some measure of knowledge or importance with various categories. The first is general activities, rated by importance; the second is methodologies and concepts rated by knowledge; the third is programming languages, rated by proficiency. The second part of this section is concerned with relating some of the various questions to each other. The following contingency tables have chi square statistics significant at the 99 percent level unless stated otherwise.

General activities.--The following table contains counts and percents for the three importance categories (primary, secondary, marginal). Percents are

relative to the respondents (count divided by 428). The last column is the total number of responses for the activity.

#### General Activities by Importance

| Activity                 | Secondary Count |                   | Marginal Percent |                  | Total Count    |
|--------------------------|-----------------|-------------------|------------------|------------------|----------------|
|                          | Primary Count   | Primary Percent   | Marginal Count   | Marginal Percent |                |
|                          |                 | Secondary Percent |                  |                  |                |
| program management       | 30              | 7.009             | 38               | 8.879            | 41 9.579 109   |
| sales marketing          | 8               | 1.869             | 24               | 5.607            | 40 9.346 72    |
| contract negotiation     | 5               | 1.168             | 19               | 4.439            | 46 10.748 70   |
| formulating policy       | 27              | 6.308             | 32               | 7.477            | 48 11.215 107  |
| formulating strategy     | 43              | 10.047            | 45               | 10.514           | 56 13.084 144  |
| preparing budgets        | 59              | 13.785            | 74               | 17.290           | 61 14.252 194  |
| technical management     | 121             | 28.271            | 47               | 10.981           | 37 8.645 205   |
| interviewing personnel   | 34              | 7.944             | 49               | 11.449           | 90 21.028 173  |
| preparing schedules      | 68              | 15.888            | 98               | 22.897           | 75 17.523 241  |
| preparing mgmt info rpts | 47              | 10.981            | 78               | 18.224           | 55 12.850 180  |
| preparing fld eng rpts   | 1               | 0.234             | 15               | 3.505            | 26 6.075 42    |
| other admin tasks        | 20              | 4.673             | 53               | 12.383           | 67 15.654 140  |
| tech advice to CCB       | 33              | 7.710             | 50               | 11.682           | 58 13.551 141  |
| maint config procs       | 20              | 4.673             | 44               | 10.280           | 67 15.654 131  |
| library control          | 12              | 2.804             | 32               | 7.477            | 57 13.318 101  |
| prep version audits      | 12              | 2.801             | 15               | 3.505            | 33 7.710 60    |
| quality assurance        | 25              | 5.841             | 36               | 8.411            | 62 14.486 123  |
| prep temp eng change rpt | 20              | 4.673             | 54               | 12.617           | 56 13.084 130  |
| prep technical rpts      | 45              | 10.514            | 93               | 21.729           | 96 22.430 234  |
| reading tech pubs        | 55              | 12.850            | 146              | 34.112           | 124 28.972 325 |
| reviewing tech work      | 102             | 23.832            | 143              | 33.411           | 66 15.421 311  |
| teaching                 | 44              | 10.280            | 105              | 24.533           | 124 28.972 273 |
| updating training manual | 11              | 2.570             | 34               | 7.944            | 80 18.692 125  |
| being trained            | 42              | 9.813             | 83               | 19.393           | 136 31.776 261 |
| func system design       | 193             | 45.093            | 67               | 15.654           | 62 14.486 322  |
| func module design       | 215             | 50.234            | 72               | 16.822           | 44 10.280 331  |
| def global data strucs   | 137             | 32.009            | 100              | 23.364           | 59 13.785 296  |
| def subsystem interface  | 157             | 36.682            | 103              | 24.065           | 58 13.551 318  |
| def stuff for own use    | 174             | 40.654            | 78               | 18.224           | 54 12.617 306  |
| coding                   | 195             | 45.561            | 65               | 15.187           | 58 13.551 318  |
| debugging or modifying   | 204             | 47.664            | 61               | 14.252           | 56 13.084 321  |
| prep sys rqst docs       | 96              | 22.430            | 86               | 20.093           | 69 16.121 251  |
| updating MIL STD specs   | 26              | 6.075             | 47               | 10.981           | 46 10.748 119  |
| prep redlined docs       | 41              | 9.579             | 56               | 13.084           | 63 14.720 160  |
| prep version descr mnls  | 29              | 6.776             | 50               | 11.682           | 85 19.860 164  |
| prep user manuals        | 44              | 10.280            | 108              | 25.234           | 91 21.262 243  |
| documenting code         | 141             | 32.944            | 108              | 25.234           | 42 9.813 291   |
| defining test cases      | 87              | 20.327            | 101              | 23.598           | 65 15.187 253  |
| prep test drivers        | 58              | 13.551            | 94               | 21.963           | 73 17.056 225  |
| prep test plans          | 99              | 23.131            | 99               | 23.131           | 72 16.822 270  |
| hardware testing         | 23              | 5.374             | 41               | 9.579            | 79 18.458 143  |
| system software test     | 162             | 37.850            | 98               | 22.897           | 53 12.383 313  |
| defining mod test cases  | 115             | 26.869            | 85               | 19.860           | 74 17.290 274  |

|                          |     |        |     |        |    |        |     |
|--------------------------|-----|--------|-----|--------|----|--------|-----|
| software module testing  | 152 | 35.514 | 81  | 18.925 | 55 | 12.850 | 288 |
| documenting test results | 75  | 17.523 | 112 | 26.168 | 78 | 18.224 | 265 |
| prep trouble reports     | 66  | 15.421 | 85  | 19.860 | 86 | 20.093 | 237 |
| analyzing trouble rpts   | 85  | 19.860 | 89  | 20.794 | 67 | 15.654 | 241 |

The above values, ranked by the count of primary importance, are:

| Activity                 | Primary<br>Percent<br>of Respondents |
|--------------------------|--------------------------------------|
| func_module_design       | 50.234                               |
| debugging_or_modifying   | 47.664                               |
| coding                   | 45.561                               |
| func_system_design       | 45.093                               |
| def_stuff_for_own_use    | 40.654                               |
| system_software_test     | 37.850                               |
| def_subsystem_interface  | 36.682                               |
| software_module_testing  | 35.514                               |
| documenting_code         | 32.944                               |
| def_global_data_structs  | 32.009                               |
| technical_management     | 28.271                               |
| defining_mod_test_cases  | 26.869                               |
| reviewing_tech_work      | 23.832                               |
| prep_test_plans          | 23.131                               |
| prep_sys_rqt_docs        | 22.430                               |
| defining_test_cases      | 20.327                               |
| analyzing_trouble_rpts   | 19.860                               |
| documenting_test_results | 17.523                               |
| preparing_schedules      | 15.888                               |
| prep_trouble_reports     | 15.421                               |
| preparing_budgets        | 13.785                               |
| prep_test_drivers        | 13.551                               |
| reading_tech_pubs        | 12.850                               |
| preparing_mgmt_info_rpts | 10.981                               |
| prep_technical_rpts      | 10.514                               |
| teaching                 | 10.280                               |
| prep_user_manuals        | 10.280                               |
| formulating_strategy     | 10.047                               |
| being_trained            | 9.813                                |
| prep_redlined_docs       | 9.579                                |
| interviewing_personnel   | 7.944                                |
| tech_advice_to_CCB       | 7.710                                |
| program_management       | 7.009                                |
| prep_version_descr_mnis  | 6.776                                |
| formulating_policy       | 6.308                                |
| updating_MIL_STD_specs   | 6.075                                |
| quality_assurance        | 5.841                                |
| hardware_testing         | 5.374                                |
| prep_temp_eng_change_rpt | 4.673                                |
| other_admin_tasks        | 4.673                                |
| maint_config_procs       | 4.673                                |
| prep_version_audits      | 2.304                                |

|                          |       |
|--------------------------|-------|
| library_control          | 2.804 |
| updating_training_manual | 2.570 |
| sales_marketing          | 1.869 |
| contract_negotiation     | 1.168 |
| preparing_fld_eng_rpts   | 0.234 |

This ranking indicates the importance of the activities to the industry as a whole, not to the respondents. The scheme presented below in the classification section shows that various subgroups who engage in very different activities exist; a particular activity may be much more important to one group than to another. As well, the ranking does not address the conceptual importance of the activities; contract negotiation isn't done by very many people, but it is clearly a vital industry activity.

Methodologies.--The following table presents the methodologies crosstabulated with the knowledge of the methodology. The percents are calculated as percent of the respondents (count divided by 428).

#### Knowledge of Methodologies

| Methodology             | Used Moderately     |                         | Used Frequently |         | Percent | Percent |
|-------------------------|---------------------|-------------------------|-----------------|---------|---------|---------|
|                         | Percent<br>Heard of | Percent<br>Know Concept | Percent         | Percent |         |         |
| PSL PLA                 | 48                  | 11.215                  | 88              | 20.561  | 15      | 3.505   |
| SADT                    | 23                  | 5.374                   | 36              | 8.411   | 18      | 4.206   |
| SREM                    | 22                  | 5.140                   | 34              | 7.944   | 4       | 0.935   |
| HIPO                    | 49                  | 11.449                  | 128             | 29.907  | 91      | 21.262  |
| Jackson Design          | 34                  | 7.944                   | 36              | 8.411   | 13      | 3.037   |
| Structured Design       | 14                  | 3.271                   | 75              | 17.523  | 118     | 27.570  |
| Warnier Orr Design      | 39                  | 9.112                   | 51              | 11.916  | 18      | 4.206   |
| N S Chapin Chart        | 38                  | 8.879                   | 40              | 9.346   | 17      | 3.972   |
| Beamson Tables          | 9                   | 2.103                   | 6               | 1.402   | 1       | 0.234   |
| Program Design language | 35                  | 8.178                   | 104             | 24.299  | 98      | 22.897  |
| Structured Programming  | 7                   | 1.636                   | 53              | 12.383  | 103     | 24.065  |
| Structured Walkthroughs | 20                  | 4.673                   | 121             | 28.271  | 124     | 28.972  |
| Top Down Design         | 6                   | 1.402                   | 54              | 12.617  | 121     | 28.271  |
| Top Down Testing        | 15                  | 3.505                   | 112             | 26.168  | 118     | 27.570  |
| Bottom Up Design        | 18                  | 4.206                   | 170             | 39.720  | 109     | 25.467  |
| Bachman Diagramming     | 15                  | 3.505                   | 23              | 5.374   | 2       | 0.467   |
| Entity Diagrams         | 12                  | 2.804                   | 22              | 5.140   | 7       | 1.636   |
| Data Abstraction        | 40                  | 9.346                   | 77              | 17.991  | 45      | 10.514  |
| other methodology       | 0                   | 0.000                   | 2               | 0.467   | 5       | 1.168   |
|                         |                     |                         |                 |         | 8       | 1.869   |

|                          |    |        |     |        |     |        |     |        |
|--------------------------|----|--------|-----|--------|-----|--------|-----|--------|
| enumeration types        | 28 | 6.542  | 72  | 16.822 | 68  | 15.888 | 59  | 13.785 |
| floating point types     | 7  | 1.636  | 73  | 17.056 | 128 | 29.907 | 205 | 47.897 |
| fixed point types        | 5  | 1.168  | 46  | 10.748 | 106 | 24.766 | 246 | 57.477 |
| user defined types       | 20 | 4.673  | 88  | 20.561 | 111 | 25.935 | 139 | 32.477 |
| pointers                 | 6  | 1.402  | 64  | 14.953 | 106 | 24.766 | 220 | 51.402 |
| typed pointers           | 38 | 8.879  | 96  | 22.430 | 65  | 15.187 | 104 | 24.299 |
| ranges                   | 15 | 3.505  | 97  | 22.664 | 104 | 24.299 | 143 | 33.411 |
| records                  | 10 | 2.336  | 72  | 16.822 | 108 | 25.234 | 206 | 48.131 |
| variant records          | 35 | 8.178  | 89  | 20.794 | 68  | 15.888 | 93  | 21.729 |
| object type dcls         | 18 | 4.206  | 75  | 17.523 | 105 | 24.533 | 148 | 34.579 |
| global variables         | 6  | 1.402  | 34  | 7.944  | 94  | 21.963 | 282 | 65.888 |
| local variables          | 5  | 1.168  | 31  | 7.243  | 88  | 20.561 | 289 | 67.523 |
| formal actual params     | 19 | 4.439  | 42  | 9.813  | 79  | 18.458 | 217 | 50.701 |
| reserved words           | 9  | 2.103  | 58  | 13.551 | 85  | 19.860 | 243 | 56.776 |
| blocks                   | 7  | 1.636  | 65  | 15.187 | 98  | 22.897 | 209 | 48.832 |
| case statements          | 11 | 2.570  | 52  | 12.150 | 101 | 23.598 | 227 | 53.037 |
| if then else statements  | 2  | 0.467  | 33  | 7.710  | 93  | 21.729 | 290 | 67.757 |
| loop for while until     | 2  | 0.467  | 42  | 9.813  | 98  | 22.897 | 274 | 64.019 |
| exit statements          | 3  | 0.701  | 76  | 17.757 | 123 | 28.738 | 206 | 48.131 |
| procedures               | 9  | 2.103  | 35  | 8.178  | 95  | 22.196 | 273 | 63.785 |
| functions                | 5  | 1.168  | 32  | 7.477  | 108 | 25.234 | 270 | 63.084 |
| return statements        | 3  | 0.701  | 32  | 7.477  | 80  | 18.692 | 303 | 70.794 |
| clusters modules package | 28 | 6.542  | 75  | 17.523 | 105 | 24.533 | 155 | 36.215 |
| stubs                    | 17 | 3.972  | 81  | 18.925 | 103 | 24.065 | 145 | 33.879 |
| goto statements          | 1  | 0.234  | 67  | 15.654 | 135 | 31.542 | 211 | 49.299 |
| comments                 | 1  | 0.234  | 15  | 3.037  | 73  | 18.224 | 323 | 75.467 |
| exception handlers       | 24 | 5.607  | 98  | 22.897 | 95  | 22.196 | 133 | 31.075 |
| task coroutines          | 26 | 6.075  | 113 | 26.402 | 78  | 18.224 | 115 | 26.869 |
| other prog constructs    | 0  | 0.000  | 2   | 0.467  | 2   | 0.467  | 3   | 0.701  |
| importing exporting name | 39 | 9.112  | 45  | 10.514 | 21  | 4.907  | 33  | 7.710  |
| data encapsulation       | 48 | 11.215 | 93  | 21.729 | 61  | 14.252 | 60  | 14.019 |
| name scoping             | 33 | 7.710  | 65  | 15.187 | 34  | 7.944  | 60  | 14.019 |
| name visibility          | 40 | 9.346  | 62  | 14.486 | 32  | 7.477  | 47  | 10.981 |
| static dynamic nesting   | 57 | 13.318 | 86  | 20.093 | 60  | 14.019 | 75  | 17.523 |
| iteration                | 13 | 3.037  | 48  | 11.215 | 109 | 25.467 | 222 | 51.869 |
| conditional statements   | 7  | 1.636  | 22  | 5.140  | 88  | 20.561 | 286 | 66.822 |
| recursion                | 14 | 3.271  | 102 | 23.832 | 138 | 32.243 | 122 | 28.505 |
| concurrency              | 29 | 6.776  | 120 | 28.037 | 80  | 18.692 | 82  | 19.159 |
| strong typing            | 31 | 7.243  | 90  | 21.028 | 57  | 13.318 | 65  | 15.187 |
| type conversion          | 29 | 6.776  | 81  | 18.925 | 96  | 22.430 | 110 | 25.701 |
| data abstraction         | 56 | 13.084 | 110 | 25.701 | 45  | 10.514 | 59  | 13.785 |
| generics                 | 45 | 10.514 | 97  | 22.664 | 40  | 9.346  | 32  | 7.477  |
| loop invariants          | 51 | 11.916 | 76  | 17.757 | 48  | 11.215 | 50  | 11.682 |
| parameter binding        | 53 | 12.383 | 84  | 19.626 | 38  | 8.879  | 45  | 10.514 |
| version number           | 20 | 4.673  | 73  | 17.056 | 77  | 17.991 | 136 | 31.776 |
| other prog concepts      | 1  | 0.234  | 0   | 0.000  | 1   | 0.234  | 5   | 1.168  |
| Ada enumeration types    | 44 | 10.280 | 103 | 24.065 | 28  | 6.542  | 16  | 3.738  |
| Ada user defined types   | 40 | 9.346  | 149 | 34.813 | 30  | 7.009  | 30  | 7.009  |
| Ada subtypes             | 56 | 13.084 | 105 | 24.533 | 18  | 4.206  | 19  | 4.439  |
| Ada derived types        | 63 | 14.720 | 83  | 19.393 | 17  | 3.972  | 9   | 2.103  |
| Ada real types           | 31 | 7.243  | 149 | 34.813 | 32  | 7.477  | 51  | 11.916 |
| Ada float point types    | 26 | 6.075  | 162 | 37.850 | 36  | 8.411  | 59  | 13.785 |
| Ada fixed pt types       | 24 | 5.607  | 156 | 36.449 | 34  | 7.944  | 61  | 14.252 |

|                          |    |        |     |        |    |       |    |        |
|--------------------------|----|--------|-----|--------|----|-------|----|--------|
| Ada record types         | 35 | 8.178  | 138 | 32.243 | 31 | 7.243 | 45 | 10.514 |
| Ada rec types discrim    | 57 | 13.318 | 75  | 17.523 | 14 | 3.271 | 9  | 2.103  |
| Ada slices               | 42 | 9.813  | 51  | 11.916 | 10 | 2.336 | 8  | 1.869  |
| Ada aggregates           | 45 | 10.514 | 59  | 13.785 | 9  | 2.103 | 8  | 1.869  |
| Ada allocators           | 38 | 8.879  | 64  | 14.953 | 11 | 2.570 | 6  | 1.402  |
| Ada access types         | 39 | 9.112  | 85  | 19.860 | 14 | 3.271 | 14 | 3.271  |
| Ada overloading          | 40 | 9.346  | 83  | 19.393 | 9  | 2.103 | 8  | 1.869  |
| Ada packages             | 43 | 10.047 | 109 | 25.467 | 18 | 4.206 | 12 | 2.804  |
| Ada private types        | 35 | 8.178  | 105 | 24.533 | 13 | 3.037 | 6  | 1.402  |
| Ada scope                | 32 | 7.477  | 113 | 26.402 | 12 | 2.804 | 22 | 5.140  |
| Ada short circuiting     | 35 | 8.178  | 49  | 11.449 | 7  | 1.636 | 5  | 1.168  |
| Ada visibility           | 40 | 9.346  | 93  | 21.729 | 13 | 3.037 | 13 | 3.037  |
| Ada tasking              | 55 | 12.850 | 133 | 31.075 | 14 | 3.271 | 27 | 6.308  |
| Ada task types           | 58 | 13.551 | 101 | 23.598 | 10 | 2.336 | 10 | 2.336  |
| Ada rendezvous           | 30 | 7.009  | 92  | 21.495 | 10 | 2.336 | 7  | 1.636  |
| Ada entries              | 34 | 7.944  | 106 | 24.766 | 13 | 3.037 | 19 | 4.439  |
| Ada entry families       | 47 | 10.981 | 47  | 10.981 | 7  | 1.636 | 6  | 1.402  |
| Ada separate compilation | 26 | 6.075  | 147 | 34.346 | 24 | 5.607 | 41 | 9.579  |
| Ada exceptions           | 33 | 7.710  | 116 | 27.103 | 22 | 5.140 | 21 | 4.907  |
| Ada generic prog units   | 46 | 10.748 | 81  | 18.925 | 12 | 2.804 | 5  | 1.168  |
| Ada instantiation        | 39 | 9.112  | 66  | 15.421 | 7  | 1.636 | 6  | 1.402  |
| Ada elaboration          | 37 | 8.645  | 47  | 10.981 | 6  | 1.402 | 6  | 1.402  |
| Ada context spec         | 47 | 10.981 | 59  | 13.785 | 6  | 1.402 | 4  | 0.935  |
| Ada information hiding   | 38 | 8.879  | 108 | 25.234 | 9  | 2.103 | 14 | 3.271  |
| Ada mutual recursion     | 50 | 11.682 | 59  | 13.785 | 7  | 1.636 | 5  | 1.168  |
| other Ada concepts       | 1  | 0.234  | 0   | 0.000  | 0  | 0.000 | 0  | 0.000  |

The above table has no valid chi square statistic due to low cell expectancies for some cells (that is, an unequal distribution of responses makes the chi square statistic unreliable). The list below contains the methodologies ranked by the summed percentages of those methodologies used frequently or moderately. Each group of methodologies (methodologies, programming constructs, programming concepts, and Ada concepts) is separately ranked.

| Methodology             | Percent of Respondents |
|-------------------------|------------------------|
| <b>methodologies</b>    |                        |
| Structured Programming  | 85.047                 |
| Top Down Design         | 83.879                 |
| Structured Design       | 70.794                 |
| Top Down Testing        | 63.318                 |
| Structured Walkthroughs | 55.841                 |
| Program Design language | 51.869                 |
| Bottom Up Design        | 41.589                 |
| HIPPO                   | 28.271                 |

|                     |        |
|---------------------|--------|
| Data Abstraction    | 16.822 |
| Jackson Design      | 5.374  |
| Warnier Orr Design  | 5.374  |
| N S Chapin Chart    | 5.374  |
| SAOT                | 4.673  |
| PSL PLA             | 3.505  |
| other methodology   | 3.037  |
| Entity Diagrams     | 2.336  |
| Bachman Diagramming | 1.168  |
| SREM                | 1.168  |
| Beamson Tables      | 0.234  |

**programming constructs**

|                          |        |
|--------------------------|--------|
| comments                 | 93.692 |
| return statements        | 89.486 |
| if then else statements  | 89.486 |
| functions                | 88.318 |
| local variables          | 88.084 |
| global variables         | 87.850 |
| loop for while until     | 86.916 |
| procedures               | 85.981 |
| fixed point types        | 82.243 |
| goto statements          | 80.841 |
| floating point types     | 77.804 |
| exit statements          | 76.869 |
| case statements          | 76.636 |
| reserved words           | 76.636 |
| pointers                 | 76.168 |
| records                  | 73.364 |
| blocks                   | 71.729 |
| formal actual params     | 69.159 |
| clusters modules package | 60.748 |
| object type dcis         | 59.112 |
| user defined types       | 58.411 |
| stubs                    | 57.944 |
| ranges                   | 57.710 |
| exception handlers       | 53.271 |
| task coroutines          | 45.093 |
| typed pointers           | 39.486 |
| variant records          | 37.617 |
| enumeration types        | 29.673 |

**programming concepts**

|                        |        |
|------------------------|--------|
| conditional statements | 87.383 |
| iteration              | 77.336 |
| recursion              | 60.748 |
| version number         | 49.766 |
| type conversion        | 48.131 |
| concurrency            | 37.850 |
| static dynamic nesting | 31.542 |
| strong typing          | 28.505 |

|                          |        |
|--------------------------|--------|
| data encapsulation       | 28.271 |
| data abstraction         | 24.299 |
| loop invariants          | 22.897 |
| name scoping             | 21.963 |
| parameter binding        | 19.393 |
| name visibility          | 18.458 |
| generics                 | 16.822 |
| importing exporting name | 12.617 |
| other prog concepts      | 1.402  |
| other prog constructs    | 1.168  |

**Ada concepts**

|                          |        |
|--------------------------|--------|
| Ada float point types    | 22.196 |
| Ada fixed pt types       | 22.196 |
| Ada real types           | 19.393 |
| Ada record types         | 17.757 |
| Ada separate compilation | 15.187 |
| Ada user defined types   | 14.019 |
| Ada enumeration types    | 10.280 |
| Ada exceptions           | 10.047 |
| Ada tasking              | 9.579  |
| Ada subtypes             | 8.645  |
| Ada scope                | 7.944  |
| Ada entries              | 7.477  |
| Ada packages             | 7.009  |
| Ada access types         | 6.542  |
| Ada visibility           | 6.075  |
| Ada derived types        | 6.075  |
| Ada information hiding   | 5.374  |
| Ada rec types discrim    | 5.374  |
| Ada task types           | 4.673  |
| Ada private types        | 4.439  |
| Ada slices               | 4.206  |
| Ada overloading          | 3.972  |
| Ada allocators           | 3.972  |
| Ada rendezvous           | 3.972  |
| Ada aggregates           | 3.972  |
| Ada generic prog units   | 3.972  |
| Ada entry families       | 3.037  |
| Ada instantiation        | 3.037  |
| Ada short circuiting     | 2.804  |
| Ada elaboration          | 2.804  |
| Ada mutual recursion     | 2.804  |
| Ada context spec         | 2.336  |
| other Ada concepts       | 0.000  |

The above list describes the order of frequency of use of the methodologies.

Two facts stand out immediately. The first is that programming constructs are most used. The second is that Ada concepts are least used (preceded by pro-

gramming concepts). This list presents a picture of a technically knowledgeable but theoretically unsophisticated industry. To the extent that Ada is based on theoretical concepts rather than "standard" programming constructs, Ada training will have to involve theoretical training in computer science as well as just instruction in the language.

Programming languages.--The following table contains programming languages crosstabulated with proficiency at the language. The first count and percent are all proficiencies; the second count and percent are people who said they were most proficient at the language; the third count and percent are people who said they were most proficient or second-most proficient at the language. The percents are relative to respondents (count divided by 428).

#### Proficiencies at Programming Languages

| Language             | Count<br>All | Percent                   |            |
|----------------------|--------------|---------------------------|------------|
|                      |              | Count<br>First and Second | Percent    |
| JOVIAL               | 89           | 20.794                    | 15 3.505   |
| CMS 2                | 135          | 31.542                    | 44 10.280  |
| C                    | 36           | 8.411                     | 1 0.234    |
| FORTRAN              | 399          | 93.224                    | 210 49.065 |
| COBOL                | 206          | 48.131                    | 36 8.411   |
| ASSEMBLER            | 378          | 88.318                    | 214 50.000 |
| PLI                  | 199          | 46.495                    | 42 9.813   |
| PASCAL               | 209          | 48.832                    | 77 17.991  |
| BASIC                | 277          | 64.720                    | 42 9.813   |
| ALGOL                | 92           | 21.495                    | 5 1.168    |
| RATFOR WATFOR WATFIV | 95           | 22.196                    | 0 0.000    |
| MODULA               | 8            | 1.869                     | 0 0.000    |
| SIMULA               | 12           | 2.804                     | 0 0.000    |
| XPL                  | 11           | 2.570                     | 0 0.000    |
| FORTH                | 31           | 7.243                     | 1 0.234    |
| Ada                  | 107          | 25.000                    | 4 0.935    |
| LISP                 | 66           | 15.421                    | 2 0.467    |
| SNOBOL               | 75           | 17.523                    | 0 0.000    |
| ECL                  | 3            | 0.701                     | 0 0.000    |
| GPSS                 | 62           | 14.486                    | 3 0.701    |
| SAS                  | 7            | 1.636                     | 0 0.000    |
| PROTEGE              | 1            | 0.234                     | 1 0.234    |
| APL                  | 112          | 26.168                    | 13 3.037   |
| Other                | 95           | 22.196                    | 31 7.243   |

The following list presents the languages in order of percentage of respondents who said it was their first or second language (the sixth column in the above table).

| Language             | Percent of Respondents |
|----------------------|------------------------|
| ASSEMBLER            | 50.000                 |
| FORTRAN              | 49.065                 |
| PASCAL               | 17.991                 |
| CMS_2                | 10.280                 |
| BASIC                | 9.813                  |
| PLI                  | 9.813                  |
| COBOL                | 8.411                  |
| Other                | 7.710                  |
| JOVIAL               | 3.505                  |
| APL                  | 3.037                  |
| ALGOL                | 1.168                  |
| Ada                  | 0.935                  |
| GPSS                 | 0.701                  |
| LISP                 | 0.467                  |
| PROTEGE              | 0.234                  |
| C                    | 0.234                  |
| FORTH                | 0.234                  |
| XPL                  | 0.000                  |
| SNOBOL               | 0.000                  |
| ECL                  | 0.000                  |
| SIMULA               | 0.000                  |
| SAS                  | 0.000                  |
| MODULA               | 0.000                  |
| RATFOR WATFOR WATFIV | 0.000                  |

The above list makes clear the structure of the programming knowledge of the greatest part of the sample: they are Assembler or FORTRAN programmers. Respectively, 50 and 49 percent of the respondents rank Assembler and FORTRAN as their first or second language. The next highest language, Pascal, comes in at 18 percent, not even close. Surprisingly, languages such as PL/I are rather far down in the list.

Again, this structure is not indicative of strong theoretical knowledge of computer science but rather of strong practical knowledge. This supports the comments above on methodologies. It would be unwise to design an Ada

training program that doesn't take the current, practical structure of the industry into account.

Also of interest are the relationships between FORTRAN and ASSEMBLER and FORTRAN and BASIC. The above table noted that FORTRAN and ASSEMBLER are the two best known languages; the following table displays the counts of people who were proficient in ASSEMBLER for each other language at which they were proficient.

| Other Language | Count | Percent |
|----------------|-------|---------|
| FORTRAN        | 101   | 49.510  |
| PASCAL         | 27    | 13.235  |
| CMS_2          | 17    | 8.333   |
| COBOL          | 15    | 7.353   |
| PLI            | 12    | 5.882   |
| BASIC          | 10    | 4.902   |
| Other          | 10    | 4.902   |
| APL            | 5     | 2.451   |
| JOVIAL         | 4     | 1.961   |
| GPSS           | 1     | 0.490   |
| FORTH          | 1     | 0.490   |
| ALGOL          | 1     | 0.490   |

This table indicates that people who use ASSEMBLER usually use FORTRAN--50 percent of the people who picked one picked the other as languages in which they were proficient. Pascal came in next, but wasn't close.

The following table gives the counts and percentages of people who ranked only FORTRAN (without BASIC), only BASIC (without FORTRAN), both together, or neither, in their choices for first or second proficiency.

|              | Count | Percent |
|--------------|-------|---------|
| FORTRAN only | 189   | 44.3    |
| BASIC only   | 21    | 4.9     |
| both         | 21    | 4.9     |
| neither      | 196   | 45.9    |

From this frequency table, it would appear that BASIC and FORTRAN knowledge are quite independent; those who use FORTRAN generally don't use BASIC as their other language, and those who use BASIC half the time don't use FORTRAN. This applies only to languages ranked with first and second proficiency ratings.

Relationships.--The following paragraphs address some topics of interest relating to relationships between some of the information presented above. I will consider six such relationships: (1) Ada involvement and knowledge of Ada concepts; (2) Ada training and knowledge of Ada concepts; (3) various interrelationships between belonging to technical societies, publishing or presenting papers, technical reading, and going to conferences; (4) areas of experience and knowledge of concepts; (5) years of experience and programming languages; and (6) Ada training and years of experience for those who know Ada.

To study the relationship between involvement with the Ada language and knowledge of Ada concepts, a measure of knowledge was constructed by summing the knowledge scores over the Ada concepts and dividing by the number of elements; this produces an average score of knowledge of Ada concepts for each respondent. A measure of Ada involvement was constructed by equating "other" involvement to "training" so as to make a continuous scale. Knowledge was regressed on involvement, obtaining the following regression equation:

$$\text{knowledge} = -0.075 + 0.575 * \text{involvement} + e$$

(0.059)

That is, the value of the knowledge measure for a given individual is equal to the involvement measured multiplied by .575 plus a constant (-.075) plus a random error. .575 is known as the "coefficient" for involvement. The coef-

ficient for involvement was significant at the 99.9 percent level. The regression equation was also significant, since there was only one coefficient. The coefficient of determination ( $R^2$ ) was 0.185, indicating that only 19 percent of the variance in knowledge is explained by involvement. This result indicates that although involvement has some effect on knowledge, that effect isn't very large.

A similar approach was taken to the comparison of Ada training techniques to knowledge of Ada concepts. The same measure of knowledge was used, but instead of regression, analysis of variance was used, since the Ada training attribute is nominal in scale, not interval. The analysis of variance was not significant; that is, the variation was too unreliable to enable any conclusions. This is probably due to the relatively small number of respondents who have been trained in Ada or who have knowledge of Ada.

Since all of the attributes involving professional activities were nominal, all of these comparisons were made as contingency tables. None of the tables had valid chi square statistics due to either zero marginals or small cell expectations. Therefore, no conclusions have been drawn as to relationships between these variables. However, the four-way table below presents the frequencies of these attributes for what they are worth. Each of the tables represents a "slice" of the four-way table for one combination of the conference attendance and publishing attributes.

conference attendance, published or presented:  
yes, yes

technical societies

|                          | yes | no |
|--------------------------|-----|----|
| technical reading extent |     |    |
| regularly                | 33  | 8  |
| occasionally             | 8   | 7  |
| only as my job demands   | 0   | 0  |
| never                    | 0   | 0  |
| other                    | 0   | 0  |

yes, no

technical societies

|                          | yes | no |
|--------------------------|-----|----|
| technical reading extent |     |    |
| regularly                | 31  | 33 |
| occasionally             | 10  | 32 |
| only as my job demands   | 2   | 6  |
| never                    | 0   | 1  |
| other                    | 0   | 0  |

no, yes

technical societies

|                          | yes | no |
|--------------------------|-----|----|
| technical reading extent |     |    |
| regularly                | 16  | 7  |
| occasionally             | 3   | 10 |
| only as my job demands   | 0   | 3  |
| never                    | 0   | 0  |
| other                    | 0   | 0  |

no, no

technical societies

|                          | yes | no |
|--------------------------|-----|----|
| technical reading extent |     |    |
| regularly                | 20  | 35 |
| occasionally             | 16  | 99 |
| only as my job demands   | 2   | 19 |
| never                    | 0   | 12 |
| other                    | 0   | 2  |

There was no significant relationship between areas of experience and knowledge of concepts, meaning that no conclusions may be drawn statistically

about this relationship.

Because years of involvement can be considered scaled, an analysis of variance was performed with that attribute as the response variable and programming language as the factor. The model was not significant, and no conclusions may be drawn as to the relationship. The following table presents the counts for the crosstabulation; it has no valid chi square statistic due to zero marginals.

| language             | years of involvement |                |     |      |      |
|----------------------|----------------------|----------------|-----|------|------|
|                      | five to ten years    |                |     |      |      |
|                      | two to five years    |                |     |      |      |
|                      | less than two years  | over ten years |     |      |      |
| JOVIAL               | 5                    | 12             | 12  | 58   | 87   |
| CMS 2                | 7                    | 22             | 26  | 78   | 133  |
| C                    | 5                    | 11             | 5   | 15   | 36   |
| FORTRAN              | 36                   | 91             | 81  | 187  | 395  |
| COBOL                | 12                   | 46             | 39  | 105  | 202  |
| ASSEMBLER            | 31                   | 83             | 76  | 184  | 374  |
| PLI                  | 11                   | 53             | 43  | 88   | 195  |
| PASCAL               | 28                   | 64             | 37  | 78   | 207  |
| BASIC                | 25                   | 71             | 50  | 128  | 274  |
| ALGOL                | 8                    | 20             | 16  | 48   | 92   |
| RATFOR WATFOR WATFIV | 14                   | 27             | 21  | 33   | 95   |
| MODULA               | 0                    | 3              | 4   | 1    | 8    |
| SIMULA               | 0                    | 1              | 6   | 5    | 12   |
| XPL                  | 1                    | 4              | 2   | 4    | 11   |
| MMP                  | 0                    | 0              | 0   | 0    | 0    |
| FORTH                | 1                    | 8              | 6   | 16   | 31   |
| Ada                  | 7                    | 26             | 11  | 62   | 106  |
| LISP                 | 9                    | 21             | 16  | 20   | 66   |
| SNOBOL               | 8                    | 24             | 19  | 24   | 75   |
| ECL                  | 0                    | 0              | 1   | 2    | 3    |
| GPSS                 | 2                    | 12             | 14  | 33   | 61   |
| SAS                  | 0                    | 2              | 3   | 2    | 7    |
| PROTEGE              | 0                    | 1              | 0   | 0    | 1    |
| PPL                  | 0                    | 0              | 0   | 0    | 0    |
| APL                  | 13                   | 28             | 26  | 45   | 112  |
| Other                | 5                    | 19             | 23  | 47   | 94   |
|                      | 228                  | 649            | 537 | 1263 | 2677 |

The following table combines the lesser-known programming languages into a residual category and has a significant chi square statistic.

| language  | years of involvement |     |                   |      |      |
|-----------|----------------------|-----|-------------------|------|------|
|           | less than two years  |     | five to ten years |      |      |
|           | two to five years    |     |                   |      |      |
|           |                      |     | over ten years    |      |      |
| JOVIAL    | 5                    | 12  | 12                | 58   | 87   |
| CMS 2     | 7                    | 22  | 26                | 78   | 133  |
| FORTRAN   | 36                   | 91  | 81                | 187  | 395  |
| COBOL     | 12                   | 46  | 39                | 105  | 202  |
| ASSEMBLER | 31                   | 83  | 76                | 184  | 374  |
| PL/I      | 11                   | 53  | 43                | 88   | 195  |
| PASCAL    | 28                   | 64  | 37                | 78   | 207  |
| BASIC     | 25                   | 71  | 50                | 128  | 274  |
| Other     | 73                   | 207 | 173               | 357  | 810  |
|           | 228                  | 649 | 537               | 1263 | 2677 |

Finally, the relationship between Ada training and years of involvement is presented in the following table. This table has no valid chi square value due to low cell expectations. It does show, however, that a large portion of the people who know Ada are people in the industry for over ten years. These are the people who tend to know more programming languages as well. The training doesn't seem to show any pattern different from the usual pattern for any group--seminars, in-house courses, and informal training account for most of the training in all categories.

| Ada training        | years of involvement |    |                   |     |     |
|---------------------|----------------------|----|-------------------|-----|-----|
|                     | less than two years  |    | five to ten years |     |     |
|                     | two to five years    |    |                   |     |     |
|                     |                      |    | over ten years    |     |     |
| videotape           | 2                    | 5  | 0                 | 9   | 16  |
| college course      | 0                    | 3  | 0                 | 4   | 7   |
| in house course     | 6                    | 14 | 3                 | 23  | 46  |
| programmed learning | 0                    | 3  | 0                 | 2   | 5   |
| seminar             | 2                    | 9  | 5                 | 27  | 43  |
| informal training   | 5                    | 11 | 7                 | 28  | 51  |
| other               | 2                    | 4  | 5                 | 10  | 21  |
|                     | 17                   | 49 | 20                | 103 | 189 |

Classification of the Workforce

Methods.--Before giving the results, the report will summarize briefly the problems faced in classifying the respondents. The goal was to induce some classification scheme based on job outputs, principal duties, and general activities that reflects a meaningful categorization of the workforce.

The first problem was that the basic variables were nominal or categorized variables, variables with no inherent ordering between values. This meant that none of the classification techniques such as discriminant analysis or metric distance clustering would be appropriate, since they are all based on metric data.

Second, the data was multiple response. Each of the three questions had a different number of responses. This meant that the judgment of similarity would have to take into account the range of possible values, making the judgment relative to all the possibilities.

Third, the general activities were all rated as to importance. It would have been useful to incorporate this information into the judgment of similarity in some way in that it probably would have eliminated some of the noise in the classification. These measures were not used in the following analysis, however; there is reason to believe that including them would not have made much difference. The methods used below are not particularly sensitive to even moderate changes in the measurement of similarity.

Fourth, there are a very large number of response values, 114, to be considered. The size of the conceptual area to be integrated is well beyond the capability of the human mind to comprehend. Nobody can look at 114 different response values and judge differences. There needs to be some method of

summarizing the information into a smaller conceptual area.

The method chosen involves five steps: (1) expand the data to take into account all possible responses, not just those actually responded; (2) calculate a similarity coefficient based on pattern matching; (3) cluster the respondents based on the similarity measure; (4) determine the optimal number of clusters by taking various cross-sections of the tree and analyzing them; and (5) use median polishing to produce an interpretation of the optimal cluster pattern.

The original data is in the form of a table where rows are individuals and columns are responses. The values of the table cells are zeros and ones, a zero indicating the response was not given, a one indicating that it was. The string of zeros and ones represents the pattern of the individual's responses.

For a given pair of individuals, the patterns are compared, one column at a time. If each has a one, or if each has a zero, the individuals are more similar. If the two values are different, the individuals are less similar. Mathematically, the measure of similarity is calculated using the following table:

|   |     |
|---|-----|
| 1 | 0   |
| 1 | a b |
| 0 | c d |

"a" represents the count of positive matches--where both individuals have ones. "d" represents the count of negative matches--where both individuals have zeros. "b" and "c" are the counts of nonmatches. Similarity is  $a + d / (a + b + c + d)$ . That is, similarity is the number of matches divided by the number of possible matches. Similarity varies between zero and one, where zero means completely dissimilar, and one means completely similar.

The similarity program produces a square matrix of similarity coefficients--each individual compared to each other individual. The matrix is  $n$  by  $n$ , where  $n$  is the number of individuals. This is similar to a correlation matrix.

The similarity matrix is input to the clustering program. Hierarchical clustering is a process that starts with all individuals separated and proceeds to group the individuals into larger and larger clusters, finally resulting in one large cluster. The diagram produced by the program resembles a tree. At each level of the tree, another individual is clustered; thus if there are  $n$  individuals, there will be  $n - 1$  levels in the tree.

When a given individual is clustered with another, that cluster becomes an individual for the purposes of the next clustering. Therefore, the similarity matrix needs to be adjusted; one individual is removed, and the similarities between the new individual (the last cluster produced) and all the other individuals (or clusters) has to be recalculated. The difference between different methods of clustering is based on how to recalculate these similarities. The technique used below calculates the similarity as the minimum of the similarities between the individuals in the new cluster and the individuals in the cluster to which the new cluster is being compared.

For example, say you have five individuals. At the third level, 1 and 5 are together in a cluster, 3 and 4 are together in another cluster, and 2 is still an individual. The new similarity matrix would be a 3 by 3 matrix, since there are now only three individuals. The similarity of 1 and 5 to 3 and 4 would be the smallest of the four similarities, 1 to 3, 1 to 4, 5 to 3, or 5 to 4. This clustering method is not sensitive to the measurement level of the original data; since the data is composed of zeros and ones in an unordered sequence, such an insensitive method is more appropriate than other

methods involving averages or weighted averages of similarities.

Once the cluster tree has been produced, it must be interpreted. The first problem is to figure out where to cut the tree; that is, to determine how many disjoint clusters are most appropriate or most meaningful. There is no generally agreed-upon method for doing this. The next problem is to produce a meaningful interpretation of the disjoint clusters selected.

Using the interpretive method discussed below, five clusters were selected. The following table lists the number of respondents in each cluster; the list does not sum to 428, since several individuals were removed from the analysis due to excessive missing values (no job outputs or principal duties and so forth).

| Cluster    | Counts | Percents |
|------------|--------|----------|
| cluster 2  | 46     | 11.7     |
| cluster 3  | 169    | 42.9     |
| cluster 5  | 135    | 34.2     |
| cluster 38 | 14     | 3.6      |
| cluster 57 | 30     | 7.6      |

Since the response structure is so large, it is necessary to summarize the information in some way. The approach used below is called median polishing.

Median polishing begins with a table of values. In this case, the table is a crosstabulation of cluster versus the several responses; that is, it is a 5 by 114 table, 5 clusters, 114 possible responses. The cells of the table are counts--how many individuals in the cluster responded with the particular response.

Median polishing is the process of repeatedly subtracting the median values of the rows and columns of the table from the cells of the table. For example, say there was a 3 by 3 table such as the following:

|   | a | b | c |
|---|---|---|---|
| x | 3 | 6 | 2 |
| y | 5 | 2 | 1 |
| z | 1 | 9 | 2 |

The first step is to take the medians of the rows: 3, 2, 2. These numbers are subtracted from the values in the rows, giving the following table:

|   | a  | b | c  | row<br>med |
|---|----|---|----|------------|
| x | 0  | 3 | -1 | 3          |
| y | 3  | 0 | -1 | 2          |
| z | -1 | 7 | 0  | 2          |

The next step is to repeat this process for the columns; in addition, the median of the row medians (2 in this case) is subtracted from the row medians and is placed in the lower right-hand corner of the table.

|            | a  | b | c  | row<br>med |
|------------|----|---|----|------------|
| x          | 0  | 3 | -1 | 1          |
| y          | 3  | 0 | -1 | 0          |
| z          | -1 | 7 | 0  | 0          |
| col<br>med | 0  | 0 | -1 | 2          |

The process is repeated once more for the rows, this time subtracting the median of the column medians from the column medians as well as adding the new row medians to the old medians.

|            | a  | b | c  | row<br>med |
|------------|----|---|----|------------|
| x          | 0  | 3 | -1 | 1          |
| y          | 3  | 0 | -1 | 0          |
| z          | -1 | 7 | 0  | 0          |
| col<br>med | 0  | 0 | -1 | 2          |

At this point, all the new row medians are zero, so nothing changes. The final pass repeats the column median polish.

|     | a  | b | c  | row<br>med |
|-----|----|---|----|------------|
| x   | 0  | 3 | -1 | 1          |
| y   | 3  | 0 | -1 | 0          |
| z   | -1 | 7 | -2 | 0          |
| col |    |   |    |            |
| med | 0  | 0 | -2 | 2          |

At this point, little change will happen with additional passes, although the process may be continued until no change occurs. There are now four components to the polished table, the row and column medians, the median of the medians, and the table of left-over values. These are termed, respectively, row and column effects, common effect, and residuals. In the case of the table used in the classification interpretation, the effects represent expected sizes of cells in the table of counts given a simple additive model,

$$\text{cell count} = \text{common} + \text{row} + \text{column} + \text{residual}.$$

That is, the count in a particular cell (the conjunction of a cluster and a particular response) is the sum of the common effect, the cluster effect, the response effect, plus the residual. For a more detailed explanation of median polishing, consult the references given in Appendix 3.

The larger the particular effect, the larger the influence of that cluster or value on the cell value. Thus the row effects indicate the influence of cluster membership on the expected frequency of picking a particular response, and the column effects indicate the influence of a particular response on the expected frequency of a cluster's members picking the response. But the residuals, the table of values left over, provide a much more interesting thing--a measure of unusualness. A cell residual, compared to other cell

|                          |         |
|--------------------------|---------|
| cluster2                 | 11.500  |
| cluster3                 | 46.500  |
| cluster5                 | 0.000   |
| cluster38                | -13.500 |
| cluster57                | -7.500  |
| hard soft tradeoff eval  | 0.000   |
| data flow diagrams       | 13.000  |
| test drivers             | 8.500   |
| jo code                  | 15.000  |
| prog design language     | 14.000  |
| requirements specs       | 19.500  |
| design specs             | 21.000  |
| test plans               | 15.000  |
| integration plans        | 7.500   |
| management plans         | 7.000   |
| cost data                | 6.000   |
| analysis reports         | 3.000   |
| milestone charts         | 9.000   |
| status reports           | 14.000  |
| interview sheets         | 6.000   |
| correspondence           | -1.000  |
| development other        | -11.500 |
| STR analyses             | -2.000  |
| temp ECPs                | -13.500 |
| refined documentation    | -8.000  |
| support test plans       | -5.000  |
| support test drivers     | -10.500 |
| jo tech advice to CCB    | -13.500 |
| updated MIL STD spec     | -14.500 |
| jo library control       | -11.500 |
| Maintain config procs    | -10.500 |
| updated training manuals | -10.500 |
| updated user manuals     | -3.000  |
| STRs                     | -4.000  |
| automated build systems  | -11.500 |
| management info reports  | -10.500 |
| version descrip docs     | -13.500 |
| version audits           | -16.500 |
| field engineering report | -16.500 |
| support other            | -8.500  |
| conduct req review       | -3.500  |
| attend req review        | 8.000   |
| system analysis          | 16.000  |
| design                   | 17.000  |
| conduct design review    | 8.500   |
| attend design review     | 8.000   |
| pd code                  | 6.000   |
| conduct walkthroughs     | -1.500  |
| attend walkthroughs      | 1.000   |
| formulation of policy    | -8.000  |
| formulation of strategy  | -4.000  |
| pd technical management  | 6.000   |

residuals in a column, indicates the relative unusualness of the cluster with respect to the other clusters on the particular response. Thus if one cluster has a much higher residual for one response than the other clusters, that cluster has given that response relatively more often; conversely, a high negative residual means the cluster gave that response less often.

Given this interpretation of the residuals, it is straightforward to rank the residuals in each column in ascending and descending order. These ranks represent the relative unusualness of the cluster with respect to that response. The next step is to collect the instances where the cluster was ranked 1 or 2 (and possibly 3); this indicates on which responses the cluster was unusual. There are two groups of ranks for each cluster, positive high ranks and negative high ranks. These show, respectively, what the clusters do do unusually and what they don't do unusually. Thus, the comparison of the ranks gives a direct interpretation of the patterns of the clusters' responses.

Applied to the decision about how many clusters to pick, this approach is tried for several different numbers of clusters, and the best or most interpretable number is chosen. Applied to this final choice, the method gives a summary interpretation of the patterns of the clusters.

The results.--Given all that, the following is the final interpretive median polish for the optimal cluster pattern, which involves five clusters. The rankings are from 1 to 2; values of 1.5 indicate ties at the first rank--the highest or lowest residuals in a given column were the same.

**Cluster Structure using All Job Outputs, General Activities, and Principle Duties**

**Effects and Typicals after Polishing**

**effects**

|        |        |
|--------|--------|
| common | 16.500 |
|--------|--------|

Ada Workforce Survey

Page 38.

|                          |         |
|--------------------------|---------|
| pd program management    | -15.500 |
| configuration management | -12.500 |
| pd quality assurance     | -10.500 |
| monitoring contracts     | -12.500 |
| other development        | -10.500 |
| support analysis         | 0.000   |
| support design           | -2.000  |
| conduct support dr       | -9.500  |
| attend support dr        | -3.000  |
| code patch               | -2.000  |
| conduct sup walkthrough  | -12.500 |
| attend sup walkthrough   | -7.000  |
| sup technical management | -11.500 |
| sup policy formulation   | -16.500 |
| sup program management   | -15.500 |
| SCCS participation       | -13.500 |
| sup config management    | -10.500 |
| sup quality assurance    | -13.500 |
| sup monitoring contracts | -10.500 |
| other support            | -9.500  |
| ga program management    | -4.000  |
| sales marketing          | -2.000  |
| contract negotiation     | -4.000  |
| formulating policy       | -2.000  |
| formulating strategy     | 5.000   |
| preparing budgets        | 9.000   |
| ga technical management  | 15.000  |
| interviewing personnel   | 9.000   |
| preparing schedules      | 15.000  |
| preparing mgmt info rpts | 10.000  |
| preparing fld eng rpts   | -14.500 |
| other admin tasks        | 6.000   |
| ga tech advice to CCB    | 3.000   |
| maint config procs       | 2.000   |
| ga library control       | -5.500  |
| prep version audits      | -8.000  |
| ga quality assurance     | 0.000   |
| prep temp eng change rpt | -2.000  |
| prep technical rpts      | 16.000  |
| reading tech pubs        | 18.000  |
| reviewing tech work      | 18.000  |
| teaching                 | 14.000  |
| updating training manual | 0.000   |
| being trained            | 12.000  |
| func system design       | 17.000  |
| func module design       | 15.000  |
| def global data strucs   | 13.000  |
| def subsystem interface  | 16.000  |
| def stuff for own use    | 11.000  |
| coding                   | 6.000   |
| debugging or modifying   | 7.000   |
| prep sys rqst docs       | 17.000  |
| updating MIL STD specs   | -3.000  |

|                          |        |
|--------------------------|--------|
| prep redlined docs       | 5.000  |
| prep version descr mnls  | 3.000  |
| prep user manuals        | 6.000  |
| documenting code         | 2.000  |
| defining test cases      | 10.000 |
| prep test drivers        | 3.000  |
| prep test plans          | 10.000 |
| hardware testing         | 0.000  |
| system software test     | 9.000  |
| defining mod test cases  | 3.000  |
| software module testing  | 0.000  |
| documenting test results | 2.000  |
| prep trouble reports     | 4.000  |
| analyzing trouble rpts   | 4.000  |

## Residuals after Polishing

|                         | test drivers           |             |                    |         | design specs          |         |            |         |
|-------------------------|------------------------|-------------|--------------------|---------|-----------------------|---------|------------|---------|
|                         | data flow diagrams     | prog design | language           | jo code | requirements          | specs   | test plans |         |
| hard soft tradeoff eval |                        |             |                    |         |                       |         |            |         |
| cluster2                | 7.000                  | -10.000     | -16.500            | -12.000 | -14.000               | -8.500  | -7.000     | -9.000  |
| cluster3                | -14.000                | 18.000      | 10.500             | 63.000  | 55.000                | 26.500  | 48.000     | 37.000  |
| cluster5                | -2.500                 | 14.500      | 0.000              | 54.500  | 41.500                | ..000   | 5.500      | 25.500  |
| cluster38               | 0.000                  | -15.000     | -10.500            | -18.000 | -17.000               | -18.500 | -24.000    | -17.000 |
| cluster57               | 9.000                  | 0.000       | 1.500              | 0.000   | 0.000                 | 0.500   | 0.000      | 0.000   |
|                         | analysis reports       |             |                    |         | interview sheets      |         |            |         |
|                         | management plans       |             |                    |         | status reports        |         |            |         |
|                         | integration plans      | cost data   | milestone charts   |         | correspondence        |         |            |         |
| cluster2                | -5.500                 | 2.000       | 0.000              | 0.000   | 3.000                 | 0.000   | 0.000      | 0.000   |
| cluster3                | 10.500                 | -48.000     | -44.000            | -29.000 | 0.000                 | 23.000  | -25.000    | -30.000 |
| cluster5                | 0.000                  | -13.500     | -10.500            | -8.500  | -4.500                | 12.500  | -10.500    | -7.500  |
| cluster38               | -9.500                 | 2.000       | 1.000              | 1.000   | -1.000                | -6.000  | 0.000      | 10.000  |
| cluster57               | 6.500                  | 0.000       | 7.000              | 10.000  | 8.000                 | 0.000   | 0.000      | 4.000   |
|                         | redlined documentation |             |                    |         | jo tech advice to CCB |         |            |         |
|                         | STR analyses           |             |                    |         | support test drivers  |         |            |         |
|                         | development other      | temp ECPs   | support test plans |         | updated MIL STD spec  |         |            |         |
| cluster2                | -14.500                | -21.000     | -13.500            | -19.000 | -21.000               | -15.500 | -12.500    | -13.500 |
| cluster3                | -46.500                | 0.000       | -13.500            | -19.000 | -12.000               | -29.500 | -22.500    | -35.500 |
| cluster5                | 0.000                  | 4.500       | 0.000              | 1.500   | 3.500                 | 0.000   | 0.000      | 0.000   |
| cluster38               | 9.500                  | 4.000       | 13.500             | 7.000   | 4.000                 | 9.500   | 14.500     | 12.500  |
| cluster57               | 3.500                  | -3.000      | 6.500              | 0.000   | 0.000                 | 6.500   | 7.500      | 8.500   |

|           | updated training manuals |                          | automated build systems |         |                         |                        |                       |         |  |  |  |
|-----------|--------------------------|--------------------------|-------------------------|---------|-------------------------|------------------------|-----------------------|---------|--|--|--|
|           | maintain config procs    |                          | STRs                    |         | version descrip         |                        | docs                  |         |  |  |  |
|           | jo library control       | updated user manuals     | management info         | reports |                         |                        |                       |         |  |  |  |
| cluster2  | -15.500                  | -14.500                  | -15.500                 | -20.000 | -20.000                 | -14.500                | -16.500               | -11.500 |  |  |  |
| cluster3  | -35.500                  | -34.500                  | -38.500                 | -20.000 | -5.000                  | -40.500                | -36.500               | -39.500 |  |  |  |
| cluster5  | 0.000                    | 0.000                    | 0.000                   | 4.500   | 3.500                   | 0.000                  | 0.000                 | 0.000   |  |  |  |
| cluster38 | 9.500                    | 10.500                   | 7.500                   | 0.000   | 5.000                   | 8.500                  | 12.500                | 12.500  |  |  |  |
| cluster57 | 4.500                    | 2.500                    | 3.500                   | 1.000   | 0.000                   | 3.500                  | 4.500                 | 6.500   |  |  |  |
|           | conduct req review       |                          |                         |         | conduct design review   |                        |                       |         |  |  |  |
|           | field engineering report |                          | system analysis         |         |                         |                        |                       |         |  |  |  |
|           | version audits           | support other            | attend req review       | design  |                         |                        |                       |         |  |  |  |
| cluster2  | -11.500                  | -11.500                  | -19.500                 | -1.500  | -15.000                 | -17.000                | -20.000               | -13.500 |  |  |  |
| cluster3  | -39.500                  | -40.500                  | -49.500                 | -19.500 | 3.000                   | 19.000                 | 56.000                | 7.500   |  |  |  |
| cluster5  | 0.000                    | 0.000                    | 0.000                   | 0.000   | 2.500                   | 3.500                  | 43.500                | 0.000   |  |  |  |
| cluster38 | 15.500                   | 13.500                   | 7.500                   | 1.500   | -5.000                  | -18.000                | -20.000               | -10.500 |  |  |  |
| cluster57 | 9.500                    | 8.500                    | 0.500                   | 10.500  | 0.000                   | 0.000                  | 0.000                 | 0.500   |  |  |  |
|           | conduct walkthroughs     |                          |                         |         | formulation of strategy |                        |                       |         |  |  |  |
|           | pd code                  | formulation of policy    |                         |         |                         | pd program management  |                       |         |  |  |  |
|           | attend design review     | attend walkthroughs      | pd technical management |         |                         |                        |                       |         |  |  |  |
| cluster2  | -17.000                  | -18.000                  | -12.500                 | -17.000 | 0.000                   | 1.000                  | 4.000                 | -0.500  |  |  |  |
| cluster3  | 24.000                   | 53.000                   | 6.500                   | 9.000   | -44.000                 | -40.000                | -31.000               | -39.500 |  |  |  |
| cluster5  | 30.500                   | 56.500                   | 0.000                   | 10.500  | -4.500                  | -10.500                | -13.500               | 0.000   |  |  |  |
| cluster38 | -5.000                   | -9.000                   | -1.500                  | 0.000   | 11.000                  | 7.000                  | 0.000                 | 19.500  |  |  |  |
| cluster57 | 0.000                    | 0.000                    | 1.500                   | -3.000  | 3.000                   | 0.000                  | 4.000                 | 9.500   |  |  |  |
|           | monitoring contracts     |                          |                         |         | support design          |                        |                       |         |  |  |  |
|           | pd quality assurance     | support analysis         |                         |         |                         | attend support dr      |                       |         |  |  |  |
|           | configuration management | other development        | conduct support dr      |         |                         |                        |                       |         |  |  |  |
| cluster2  | -8.500                   | -11.500                  | -11.500                 | -15.500 | -26.000                 | -24.000                | -16.500               | -25.000 |  |  |  |
| cluster3  | -37.500                  | -37.500                  | -39.500                 | -51.500 | -4.000                  | -14.000                | -23.500               | -19.000 |  |  |  |
| cluster5  | 0.000                    | 0.000                    | 0.000                   | 0.000   | 5.500                   | 9.500                  | 0.000                 | 6.500   |  |  |  |
| cluster38 | 11.500                   | 9.500                    | 12.500                  | 7.500   | 0.000                   | 0.000                  | 7.500                 | 5.000   |  |  |  |
| cluster57 | 7.500                    | 3.500                    | 4.500                   | 2.500   | 2.000                   | 2.000                  | 4.500                 | 0.000   |  |  |  |
|           | attend sup walkthrough   |                          |                         |         | sup program management  |                        |                       |         |  |  |  |
|           | conduct sup walkthrough  |                          |                         |         |                         | sup policy formulation | sup config management |         |  |  |  |
|           | code patch               | sup technical management | SCCB participation      |         |                         |                        |                       |         |  |  |  |
| cluster2  | -25.000                  | -14.500                  | -21.000                 | -12.500 | -10.500                 | -8.500                 | -13.500               | -16.500 |  |  |  |
| cluster3  | -17.000                  | -24.500                  | -22.000                 | -30.500 | -37.500                 | -44.500                | -27.500               | -43.500 |  |  |  |
| cluster5  | 16.500                   | 0.000                    | 1.500                   | 0.000   | 0.000                   | 0.000                  | 0.000                 | 0.000   |  |  |  |
| cluster38 | 0.000                    | 9.500                    | 8.000                   | 14.500  | 19.500                  | 16.500                 | 16.500                | 10.500  |  |  |  |
| cluster57 | 0.000                    | 6.500                    | 0.000                   | 7.500   | 8.500                   | 6.500                  | 8.500                 | 2.500   |  |  |  |

|           | other support            |                       | contract negotiation     |                      |                         |         |                   |         |  |
|-----------|--------------------------|-----------------------|--------------------------|----------------------|-------------------------|---------|-------------------|---------|--|
|           | sup monitoring           | contracts             | sales marketing          | formulating strategy |                         |         |                   |         |  |
|           | sup quality assurance    | ga program management |                          | formulating policy   |                         |         |                   |         |  |
| cluster2  | -14.500                  | -17.500               | -17.500                  | 10.000               | 0.000                   | 3.000   | 14.000            | 10.000  |  |
| cluster3  | -33.500                  | -43.500               | -48.500                  | -16.000              | -44.000                 | -39.000 | -24.000           | -12.000 |  |
| cluster5  | 0.000                    | 0.000                 | 0.000                    | -2.500               | -7.500                  | -8.500  | -7.500            | -11.500 |  |
| cluster38 | 13.500                   | 10.500                | 6.500                    | 11.000               | 6.000                   | 7.000   | 8.000             | 4.000   |  |
| cluster57 | 6.500                    | 1.500                 | 0.500                    | 0.000                | 1.000                   | 0.000   | 0.000             | 0.000   |  |
|           | preparing mgmt info rpts |                       | interviewing personnel   |                      | ga tech advice to CCB   |         |                   |         |  |
|           | ga technical management  |                       | preparing fld eng rpts   |                      |                         |         |                   |         |  |
|           | preparing budgets        |                       | preparing schedules      |                      | other admin tasks       |         |                   |         |  |
| cluster2  | 8.000                    | 2.000                 | 6.000                    | 2.000                | 2.000                   | -0.500  | 0.000             | 5.000   |  |
| cluster3  | 14.000                   | 14.000                | 0.000                    | 47.000               | 8.000                   | -24.500 | 1.000             | 5.000   |  |
| cluster5  | -1.500                   | -12.500               | -6.500                   | -7.500               | -7.500                  | 0.000   | -11.500           | -7.500  |  |
| cluster38 | 0.000                    | -6.000                | 1.000                    | -5.000               | 0.000                   | 13.500  | 4.000             | 0.000   |  |
| cluster57 | -3.000                   | 0.000                 | -3.000                   | 0.000                | -2.000                  | 6.500   | -9.000            | -4.000  |  |
|           | prep version audits      |                       | prep technical rpts      |                      | reviewing tech work     |         |                   |         |  |
|           | ga library control       |                       | prep temp eng change rpt |                      | ga quality assurance    |         | reading tech pubs |         |  |
|           | maint config procs       |                       |                          |                      |                         |         |                   |         |  |
| cluster2  | 2.000                    | 6.500                 | 0.000                    | 3.000                | 0.000                   | 0.000   | 0.000             | 0.000   |  |
| cluster3  | 7.000                    | -6.500                | -26.000                  | 0.000                | 16.000                  | 30.000  | 71.000            | 68.000  |  |
| cluster5  | -5.500                   | 0.000                 | -6.500                   | -4.500               | -0.500                  | 5.500   | 37.500            | 27.500  |  |
| cluster38 | 0.000                    | 7.500                 | 7.000                    | 2.000                | 1.000                   | -8.000  | -8.000            | -7.000  |  |
| cluster57 | -8.000                   | -2.500                | 2.000                    | -6.000               | -3.000                  | -8.000  | -5.000            | -5.000  |  |
|           | func system design       |                       | def subsystem interface  |                      | def stuff for own use   |         |                   |         |  |
|           | updating training manual |                       | func module design       |                      | def global data strucs  |         |                   |         |  |
|           | teaching                 |                       | being trained            |                      |                         |         |                   |         |  |
| cluster2  | 0.000                    | 4.000                 | 0.000                    | 0.000                | 0.000                   | 0.000   | 0.000             | 0.000   |  |
| cluster3  | 56.000                   | 0.000                 | 50.000                   | 79.000               | 85.000                  | 77.000  | 84.000            | 83.000  |  |
| cluster5  | 19.500                   | 1.500                 | 27.500                   | 42.500               | 54.500                  | 40.500  | 47.500            | 54.500  |  |
| cluster38 | -8.000                   | -1.000                | -5.000                   | -14.000              | -15.000                 | -15.000 | -18.000           | -13.000 |  |
| cluster57 | -3.000                   | -5.000                | -10.000                  | -5.000               | -4.000                  | -4.000  | -7.000            | -6.000  |  |
|           | updating MIL STD specs   |                       | prep user manuals        |                      | documenting code        |         |                   |         |  |
|           | debugging or modifying   |                       | prep redlined docs       |                      | prep version descr mnls |         |                   |         |  |
|           | coding                   |                       | prep sys rqst docs       |                      |                         |         |                   |         |  |
| cluster2  | 0.000                    | 0.000                 | 0.000                    | -1.000               | 0.000                   | 0.000   | 0.000             | 0.000   |  |
| cluster3  | 88.000                   | 89.000                | 57.000                   | 12.000               | 25.000                  | 23.000  | 60.000            | 88.000  |  |
| cluster5  | 77.500                   | 78.500                | 3.500                    | -1.500               | 3.500                   | 14.500  | 40.500            | 70.500  |  |
| cluster38 | -9.000                   | -10.000               | -17.000                  | 0.000                | -8.000                  | -4.000  | -8.000            | -5.000  |  |
| cluster57 | 0.000                    | -3.000                | -6.000                   | 0.000                | -8.000                  | -8.000  | -8.000            | -2.000  |  |

## documenting test results

|                     | prep test plans   | defining mod test cases |         |
|---------------------|-------------------|-------------------------|---------|
|                     | prep test drivers | system software test    |         |
| defining test cases | hardware testing  | software module testing |         |
| cluster2            | 0.000             | 0.000                   | 0.000   |
| cluster3            | 72.000            | 72.000                  | 79.000  |
| cluster5            | 19.500            | 17.500                  | 30.500  |
| cluster38           | -11.000           | -6.000                  | -12.000 |
| cluster57           | -6.000            | 0.000                   | -8.000  |
|                     | 0.000             | 0.000                   | 0.000   |
|                     | -2.000            | -1.000                  | 0.000   |
|                     | 0.000             | 0.000                   | -1.000  |

## analyzing trouble rpts

## prep trouble reports

|           |        |        |
|-----------|--------|--------|
| cluster2  | 0.000  | 0.000  |
| cluster3  | 73.000 | 71.000 |
| cluster5  | 31.500 | 31.500 |
| cluster38 | -5.000 | -6.000 |
| cluster57 | -7.000 | -3.000 |

Categories with High Positive  
Residuals in Rank OrderCategories with High Negative  
Residuals in Rank Order

## Cluster 2

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| updating training manual | 1.000 | hardware testing         | 1.000 |
| ga quality assurance     | 1.000 | test drivers             | 1.000 |
| formulating policy       | 1.000 | attend design review     | 1.000 |
| interviewing personnel   | 1.000 | conduct design review    | 1.000 |
| formulating strategy     | 1.000 | attend walkthroughs      | 1.000 |
| ga tech advice to CCB    | 1.500 | attend req review        | 1.000 |
| management plans         | 1.500 | support analysis         | 1.000 |
| pd technical management  | 1.500 | support design           | 1.000 |
| contract negotiation     | 2.000 | STRs                     | 1.000 |
| formulation of strategy  | 2.000 | support test plans       | 1.000 |
| preparing budgets        | 2.000 | code patch               | 1.000 |
| ga technical management  | 2.000 | STR analyses             | 1.000 |
| interview sheets         | 2.000 | attend support dr        | 1.000 |
| preparing schedules      | 2.000 | conduct walkthroughs     | 1.000 |
| preparing mgmt info rpts | 2.000 | pd code                  | 1.000 |
| milestone charts         | 2.000 | temp ECPS                | 1.500 |
| maint config procs       | 2.000 | redlined documentation   | 1.500 |
| ga library control       | 2.000 | updated user manuals     | 1.500 |
| ga program management    | 2.000 | design                   | 1.500 |
| hard soft tradeoff eval  | 2.000 | updated MIL STD spec     | 2.000 |
|                          |       | jo library control       | 2.000 |
|                          |       | automated build systems  | 2.000 |
|                          |       | integration plans        | 2.000 |
|                          |       | test plans               | 2.000 |
|                          |       | version audits           | 2.000 |
|                          |       | field engineering report | 2.000 |
|                          |       | support other            | 2.000 |
|                          |       | conduct req review       | 2.000 |

|                          |       |
|--------------------------|-------|
| design specs             | 2.000 |
| requirements specs       | 2.000 |
| development other        | 2.000 |
| prog design language     | 2.000 |
| jo code                  | 2.000 |
| jo tech advice to CCB    | 2.000 |
| support test drivers     | 2.000 |
| system analysis          | 2.000 |
| pd program management    | 2.000 |
| configuration management | 2.000 |
| pd quality assurance     | 2.000 |
| monitoring contracts     | 2.000 |
| other development        | 2.000 |
| version descrip docs     | 2.000 |
| management info reports  | 2.000 |
| conduct support dr       | 2.000 |
| updated training manuals | 2.000 |
| maintain config procs    | 2.000 |
| conduct sup walkthrough  | 2.000 |
| attend sup walkthrough   | 2.000 |
| sup technical management | 2.000 |
| sup policy formulation   | 2.000 |
| sup program management   | 2.000 |
| SCCB participation       | 2.000 |
| sup config management    | 2.000 |
| sup quality assurance    | 2.000 |
| sup monitoring contracts | 2.000 |
| other support            | 2.000 |
| preparing fld eng rpts   | 2.000 |
| updating MIL STD specs   | 2.000 |
| data flow diagrams       | 2.000 |

## Cluster 3

|                         |       |                          |       |
|-------------------------|-------|--------------------------|-------|
| data flow diagrams      | 1.000 | hard soft tradeoff eval  | 1.000 |
| test drivers            | 1.000 | management plans         | 1.000 |
| jo code                 | 1.000 | cost data                | 1.000 |
| prog design language    | 1.000 | analysis reports         | 1.000 |
| requirements specs      | 1.000 | interview sheets         | 1.000 |
| design specs            | 1.000 | correspondence           | 1.000 |
| test plans              | 1.000 | development other        | 1.000 |
| integration plans       | 1.000 | ga program management    | 1.000 |
| status reports          | 1.000 | other support            | 1.000 |
| attend req review       | 1.000 | sup monitoring contracts | 1.000 |
| system analysis         | 1.000 | support test drivers     | 1.000 |
| design                  | 1.000 | jo tech advice to CCB    | 1.000 |
| conduct design review   | 1.000 | updated MIL STD spec     | 1.000 |
| prep redlined docs      | 1.000 | jo library control       | 1.000 |
| updating MIL STD specs  | 1.000 | maintain config procs    | 1.000 |
| conduct walkthroughs    | 1.000 | updated training manuals | 1.000 |
| debugging or modifying  | 1.000 | attend sup walkthrough   | 1.000 |
| preparing budgets       | 1.000 | conduct sup walkthrough  | 1.000 |
| ga technical management | 1.000 | automated build systems  | 1.000 |

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| preparing schedules      | 1.000 | management info reports  | 1.000 |
| preparing mgmt info rpts | 1.000 | version descrip docs     | 1.000 |
| func module design       | 1.000 | version audits           | 1.000 |
| func system design       | 1.000 | field engineering report | 1.000 |
| maint config procs       | 1.000 | support other            | 1.000 |
| prep temp eng change rpt | 1.000 | conduct req review       | 1.000 |
| prep technical rpts      | 1.000 | formulation of policy    | 1.000 |
| reading tech pubs        | 1.000 | formulation of strategy  | 1.000 |
| reviewing tech work      | 1.000 | bd technical management  | 1.000 |
| teaching                 | 1.000 | pd program management    | 1.000 |
| being trained            | 1.000 | configuration management | 1.000 |
| documenting test results | 1.000 | pd quality assurance     | 1.000 |
| software module testing  | 1.000 | monitoring contracts     | 1.000 |
| def global data strucs   | 1.000 | other development        | 1.000 |
| def subsystem interface  | 1.000 | sales marketing          | 1.000 |
| def stuff for own use    | 1.000 | sub quality assurance    | 1.000 |
| coding                   | 1.000 | sup technical management | 1.000 |
| prep test drivers        | 1.000 | SCCB participation       | 1.000 |
| prep user manuals        | 1.000 | sup program management   | 1.000 |
| documenting code         | 1.000 | sup policy formulation   | 1.000 |
| prep sys rqst docs       | 1.000 | conduct support dr       | 1.000 |
| prep version descr mnls  | 1.000 | sup config management    | 1.000 |
| defining test cases      | 1.000 | prep version audits      | 1.000 |
| prep test plans          | 1.000 | ga library control       | 1.000 |
| hardware testing         | 1.000 | preparing fid eng rpts   | 1.000 |
| system software test     | 1.000 | formulating strategy     | 1.000 |
| defining mod test cases  | 1.000 | formulating policy       | 1.000 |
| prep trouble reports     | 1.000 | contract negotiation     | 1.000 |
| analyzing trouble rpts   | 1.000 | redefined documentation  | 1.000 |
| ga tech advice to CCB    | 1.500 | temp ECPs                | 1.500 |
| pd code                  | 2.000 | updated user manuals     | 1.500 |
| attend design review     | 2.000 | support analysis         | 2.000 |
| attend walkthroughs      | 2.000 | support test plans       | 2.000 |
| other admin tasks        | 2.000 | support design           | 2.000 |
|                          |       | attend support dr        | 2.000 |
|                          |       | code patch               | 2.000 |
|                          |       | STRs                     | 2.000 |

## Cluster 5

|                      |       |                          |       |
|----------------------|-------|--------------------------|-------|
| attend design review | 1.000 | updating MIL STD specs   | 1.000 |
| attend walkthroughs  | 1.000 | ga technical management  | 1.000 |
| support analysis     | 1.000 | interviewing personnel   | 1.000 |
| support design       | 1.000 | preparing schedules      | 1.000 |
| attend support dr    | 1.000 | other admin tasks        | 1.000 |
| updated user manuals | 1.000 | milestone charts         | 1.000 |
| STR analyses         | 1.000 | ga tech advice to CCB    | 1.000 |
| pd code              | 1.000 | preparing mgmt info rpts | 1.000 |
| code patch           | 1.000 | interview sheets         | 2.000 |
| status reports       | 2.000 | analysis reports         | 2.000 |
| test plans           | 2.000 | cost data                | 2.000 |
| design specs         | 2.000 | management plans         | 2.000 |
| prog design language | 2.000 | contract negotiation     | 2.000 |

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| jo code                  | 2.000 | formulating policy       | 2.000 |
| data flow diagrams       | 2.000 | formulating strategy     | 2.000 |
| redlined documentation   | 2.000 | preparing budgets        | 2.000 |
| attend sup walkthrough   | 2.000 | sales marketing          | 2.000 |
| system analysis          | 2.000 | ga program management    | 2.000 |
| attend req review        | 2.000 | pd technical management  | 2.000 |
| STRs                     | 2.000 | formulation of strategy  | 2.000 |
| support test plans       | 2.000 | formulation of policy    | 2.000 |
| design                   | 2.000 | correspondence           | 2.000 |
| prep technical rpts      | 2.000 | maint config procs       | 2.000 |
| reading tech pubs        | 2.000 | prep version audits      | 2.000 |
| reviewing tech work      | 2.000 | ga quality assurance     | 2.000 |
| teaching                 | 2.000 | prep temp eng change rpt | 2.000 |
| updating training manual | 2.000 | hard soft tradeoff eval  | 2.000 |
| being trained            | 2.000 |                          |       |
| func system design       | 2.000 |                          |       |
| func module design       | 2.000 |                          |       |
| def global data strucs   | 2.000 |                          |       |
| def subsystem interface  | 2.000 |                          |       |
| def stuff for own use    | 2.000 |                          |       |
| coding                   | 2.000 |                          |       |
| debugging or modifying   | 2.000 |                          |       |
| prep sys rqt docs        | 2.000 |                          |       |
| prep redlined docs       | 2.000 |                          |       |
| prep version descr mnls  | 2.000 |                          |       |
| prep user manuals        | 2.000 |                          |       |
| documenting code         | 2.000 |                          |       |
| defining test cases      | 2.000 |                          |       |
| prep test drivers        | 2.000 |                          |       |
| prep test plans          | 2.000 |                          |       |
| hardware testing         | 2.000 |                          |       |
| system software test     | 2.000 |                          |       |
| defining mod test cases  | 2.000 |                          |       |
| software module testing  | 2.000 |                          |       |
| documenting test results | 2.000 |                          |       |
| prep trouble reports     | 2.000 |                          |       |
| analyzing trouble rpts   | 2.000 |                          |       |

## Cluster 38

|                        |       |                          |       |
|------------------------|-------|--------------------------|-------|
| contract negotiation   | 1.000 | data flow diagrams       | 1.000 |
| sales marketing        | 1.000 | documenting test results | 1.000 |
| prep version audits    | 1.000 | jo code                  | 1.000 |
| ga library control     | 1.000 | prog design language     | 1.000 |
| correspondence         | 1.000 | requirements specs       | 1.000 |
| development other      | 1.000 | design specs             | 1.000 |
| other admin tasks      | 1.000 | test plans               | 1.000 |
| temp ECPs              | 1.000 | integration plans        | 1.000 |
| redlined documentation | 1.000 | documenting code         | 1.000 |
| support test plans     | 1.000 | status reports           | 1.000 |
| support test drivers   | 1.000 | debugging or modifying   | 1.000 |
| jo tech advice to CCB  | 1.000 | reading tech pubs        | 1.000 |
| updated MIL STD spec   | 1.000 | def stuff for own use    | 1.000 |

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| jo library control       | 1.000 | def subsystem interface  | 1.000 |
| maintain config procs    | 1.000 | def global data strucs   | 1.000 |
| updated training manuals | 1.000 | func module design       | 1.000 |
| STRs                     | 1.000 | func system design       | 1.000 |
| automated build systems  | 1.000 | teaching                 | 1.000 |
| management info reports  | 1.000 | reviewing tecr work      | 1.000 |
| version descrip docs     | 1.000 | system analysis          | 1.000 |
| version audits           | 1.000 | coding                   | 1.000 |
| field engineering report | 1.000 | analyzing trouble rpts   | 1.000 |
| support other            | 1.000 | prep sys rat docs        | 1.000 |
| preparing fld eng rpts   | 1.000 | prep test drivers        | 1.000 |
| formulation of policy    | 1.000 | software module testing  | 1.000 |
| formulation of strategy  | 1.000 | defining mod test cases  | 1.000 |
| pd program management    | 1.000 | system software test     | 1.000 |
| configuration management | 1.000 | prep test plans          | 1.000 |
| pd quality assurance     | 1.000 | defining test cases      | 1.000 |
| monitoring contracts     | 1.000 | prep user manuals        | 1.500 |
| other development        | 1.000 | design                   | 1.500 |
| conduct support dr       | 1.000 | prep technical rpts      | 1.500 |
| sup policy formulation   | 1.000 | prep redlined docs       | 1.500 |
| conduct sup walkthrough  | 1.000 | updating training manual | 2.000 |
| attend sup walkthrough   | 1.000 | ga technical management  | 2.000 |
| sup technical management | 1.000 | attend design review     | 2.000 |
| sup program management   | 1.000 | milestone charts         | 2.000 |
| SCCB participation       | 1.000 | hardware testing         | 2.000 |
| sup config management    | 1.000 | attend req review        | 2.000 |
| sup quality assurance    | 1.000 | conduct design review    | 2.000 |
| sup monitoring contracts | 1.000 | prep version descr mnls  | 2.000 |
| other support            | 1.000 | pd code                  | 2.000 |
| ga program management    | 1.000 | conduct walkthroughs     | 2.000 |
| management plans         | 1.500 | being trained            | 2.000 |
| attend support dr        | 2.000 | test drivers             | 2.000 |
| cost data                | 2.000 | prep trouble reports     | 2.000 |
| formulating policy       | 2.000 | preparing schedules      | 2.000 |
| formulating strategy     | 2.000 |                          |       |
| interviewing personnel   | 2.000 |                          |       |
| conduct req review       | 2.000 |                          |       |
| STR analyses             | 2.000 |                          |       |
| interview sheets         | 2.000 |                          |       |
| analysis reports         | 2.000 |                          |       |
| ga quality assurance     | 2.000 |                          |       |
| prep temp eng change rpt | 2.000 |                          |       |

## Cluster 57

|                         |       |                          |       |
|-------------------------|-------|--------------------------|-------|
| cost data               | 1.000 | prep version descr mnls  | 1.000 |
| milestone charts        | 1.000 | prep trouble reports     | 1.000 |
| analysis reports        | 1.000 | preparing budgets        | 1.000 |
| hard soft tradeoff eval | 1.000 | prep temp eng change rpt | 1.000 |
| conduct req review      | 1.000 | ga quality assurance     | 1.000 |
| pd technical management | 1.500 | being trained            | 1.000 |
| requirements specs      | 2.000 | updating training manual | 1.000 |
| interview sheets        | 2.000 | maint config procs       | 1.000 |

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| correspondence           | 2.000 | prep technical rpts      | 1.500 |
| development other        | 2.000 | prep user manuals        | 1.500 |
| temp ECPs                | 2.000 | prep redlined docs       | 1.500 |
| support test drivers     | 2.000 | STR analyses             | 2.000 |
| jo tech advice to CCB    | 2.000 | interviewing personnel   | 2.000 |
| updated MIL STD spec     | 2.000 | func module design       | 2.000 |
| jo library control       | 2.000 | ga library control       | 2.000 |
| maintain config procs    | 2.000 | ga tech advice to CCB    | 2.000 |
| updated training manuals | 2.000 | other admin tasks        | 2.000 |
| updated user manuals     | 2.000 | preparing mgmt info rpts | 2.000 |
| automated build systems  | 2.000 | reading tech pubs        | 2.000 |
| management info reports  | 2.000 | def global data strucs   | 2.000 |
| version descrip docs     | 2.000 | def subsystem interface  | 2.000 |
| version audits           | 2.000 | def stuff for own use    | 2.000 |
| field engineering report | 2.000 | debugging or modifying   | 2.000 |
| test drivers             | 2.000 | prep sys rqst docs       | 2.000 |
| integration plans        | 2.000 | func system design       | 2.000 |
| conduct design review    | 2.000 | teaching                 | 2.000 |
| conduct walkthroughs     | 2.000 | reviewing tech work      | 2.000 |
| formulation of policy    | 2.000 | documenting code         | 2.000 |
| support other            | 2.000 | defining test cases      | 2.000 |
| pd program management    | 2.000 | prep test plans          | 2.000 |
| configuration management | 2.000 | system software test     | 2.000 |
| pd quality assurance     | 2.000 | defining mod test cases  | 2.000 |
| monitoring contracts     | 2.000 | documenting test results | 2.000 |
| other development        | 2.000 | attend walkthroughs      | 2.000 |
| support analysis         | 2.000 | analyzing trouble rpts   | 2.000 |
| support design           | 2.000 |                          |       |
| conduct support dr       | 2.000 |                          |       |
| conduct sup walkthrough  | 2.000 |                          |       |
| sup technical management | 2.000 |                          |       |
| sup policy formulation   | 2.000 |                          |       |
| sup program management   | 2.000 |                          |       |
| SCCB participation       | 2.000 |                          |       |
| sup config management    | 2.000 |                          |       |
| sup quality assurance    | 2.000 |                          |       |
| sup monitoring contracts | 2.000 |                          |       |
| other support            | 2.000 |                          |       |
| sales marketing          | 2.000 |                          |       |
| preparing fld eng rpts   | 2.000 |                          |       |
| prep version audits      | 2.000 |                          |       |

These results suggest at least two fundamental distinctions--

management/nonmanagement and development/support/administration. The interpretation of these results indicates that cluster 2 is administrative managers, cluster 3 is developmentally oriented nonmanagement, cluster 5 is support-oriented nonmanagement, cluster 38 is support-oriented management, and

cluster 57 is technical management. There is some overlap between clusters in terms of management or administrative functions; in particular, developmental nonmanagers seem to rate moderately highly on certain management functions. Part of that sort of job probably involves project management activities. The number of individuals assigned to each of the clusters supports this characterization; clusters 3 and 5 contain a little over three-quarters of the sample.

The particular criteria for assigning individuals to jobs may be derived by applying the first ranked values, positive and negative, to a given individual's job description. It is not clear that such job descriptions should be rigorously limited to the disjoint categories defined by the ranked values. It would be more appropriate to develop a match point score based on the job description that would score the pattern of the job against the categories. Thus a given job description might share attributes of several categories (for example, a technical manager who formulates policy and interviews personnel. But it would be classified as technical manager.

One of the implications of the optimality judgment on the number of clusters is that there are no viable subclusters distinguishable in the data. That is, the five categories developed here cannot be subdivided further due to the level of variation among the respondents. This might have to do with the nature of the sampling technique--respondents may not successfully represent the real distribution of job outputs, principal duties, and general activities. A better explanation is that the categories, particularly those of job output and principal duties, represent rather noisy duplication; that is, the large number of different responses contain redundancies that serve to obscure the more important responses. Removing certain of the responses might produce better clusters, but the process would be very involved. Two

clusters--support and development nonmanagement--will be analyzed further below.

Characterization of clusters.--In the rest of this section, some characterizations of the sample in its clusters will be presented. In particular, characterizations of involvement with Ada, professional characteristics, years of involvement, years worked in support and development, language knowledge, and methodology knowledge will be presented.

With respect to involvement with Ada, the following table crosstabulates the clusters with the various types of involvement. This table has no valid chi square statistic due to low cell expectations.

Ada involvement

|               |   | had orientation to Ada |       |    |
|---------------|---|------------------------|-------|----|
|               |   | heard of Ada           | other |    |
| Ada not known |   | Ada training           |       |    |
| cluster2      | 0 | 23                     | 15    | 5  |
| cluster3      | 4 | 91                     | 34    | 24 |
| cluster5      | 8 | 79                     | 28    | 12 |
| cluster38     | 0 | 3                      | 9     | 1  |
| cluster57     | 0 | 12                     | 8     | 3  |
|               |   |                        |       | 7  |

Although no confidence may be put in the result, there is some indication that most of the people who know Ada are technical managers or workers or support workers. The distribution among these clusters is relatively even, with some trend toward the technical people.

The following table presents the clusters versus conference attendance.

conference attendance

|           | yes | no  |
|-----------|-----|-----|
| cluster2  | 29  | 16  |
| cluster3  | 61  | 105 |
| cluster5  | 40  | 94  |
| cluster38 | 11  | 3   |
| cluster57 | 14  | 16  |

This table indicates that managers tend to go to conferences more often than nonmanagers, but that nonmanagers go to as many conferences.

The following table presents a crosstabulation of publishing or presentation of papers versus the clusters.

published or presented

yes no

|           |    |     |     |
|-----------|----|-----|-----|
| cluster2  | 18 | 27  | 45  |
| cluster3  | 32 | 134 | 166 |
| cluster5  | 22 | 113 | 135 |
| cluster38 | 6  | 8   | 14  |
| cluster57 | 9  | 21  | 30  |
|           | 87 | 303 | 390 |

This table indicates that managers tend to publish more often.

The following table presents a crosstabulation of technical reading versus the clusters; the table has no valid chi square statistic due to low cell expectations.

technical reading extent

only as my job demands  
occasionally  
regularly                  never other

|           |     |     |    |    |   |     |
|-----------|-----|-----|----|----|---|-----|
| cluster2  | 28  | 16  | 1  | 0  | 0 | 45  |
| cluster3  | 68  | 78  | 13 | 5  | 1 | 165 |
| cluster5  | 51  | 60  | 16 | 7  | 1 | 135 |
| cluster38 | 7   | 6   | 1  | 0  | 0 | 14  |
| cluster57 | 17  | 12  | 0  | 0  | 0 | 29  |
|           | 171 | 172 | 31 | 12 | 2 | 388 |

This table indicates that no manager will admit to not doing any technical reading but that some workers do. Management tends to read more regularly as well.

The following table presents a crosstabulation of technical society membership versus cluster; the chi square statistic is significant at the 95 percent level.

## technical societies

yes      no

|           |     |     |     |
|-----------|-----|-----|-----|
| cluster2  | 19  | 25  | 44  |
| cluster3  | 55  | 110 | 165 |
| cluster5  | 35  | 99  | 134 |
| cluster38 | 6   | 8   | 14  |
| cluster57 | 15  | 14  | 29  |
|           | 130 | 256 | 386 |

According to this table, there isn't much difference between clusters in membership in technical societies. Support oriented workers might tend to belong a bit less than other employees.

The following table presents a crosstabulation of years of involvement versus cluster. This table has no valid chi square statistic due to small cell expectations.

## years of involvement

five to ten years

two to five years

less than two years over ten years

|           |    |    |    |     |     |
|-----------|----|----|----|-----|-----|
| cluster2  | 0  | 2  | 6  | 38  | 46  |
| cluster3  | 13 | 47 | 34 | 73  | 167 |
| cluster5  | 24 | 46 | 24 | 39  | 133 |
| cluster38 | 2  | 0  | 2  | 10  | 14  |
| cluster57 | 0  | 1  | 3  | 26  | 30  |
|           | 39 | 96 | 69 | 186 | 390 |

Although not conclusive, this table indicates that managers tend to be experienced people while nonmanagers are less so; still, most people tend to be very experienced.

The following tables crosstabulate years worked in development and support; the support table has no valid chi square statistic due to small cell expectations.

## years worked development

|           | three to five years | one to three years | less than a year | over five years |     |
|-----------|---------------------|--------------------|------------------|-----------------|-----|
| cluster2  | 2                   | 3                  | 5                | 35              | 45  |
| cluster3  | 26                  | 35                 | 37               | 62              | 160 |
| cluster5  | 36                  | 35                 | 17               | 33              | 121 |
| cluster38 | 4                   | 0                  | 0                | 10              | 14  |
| cluster57 | 3                   | 1                  | 3                | 21              | 28  |
|           | 71                  | 74                 | 62               | 161             | 368 |

## years worked support

|           | three to five years | one to three years | less than a year | over five years |     |
|-----------|---------------------|--------------------|------------------|-----------------|-----|
| cluster2  | 7                   | 3                  | 2                | 14              | 26  |
| cluster3  | 31                  | 32                 | 26               | 35              | 124 |
| cluster5  | 44                  | 26                 | 8                | 12              | 90  |
| cluster38 | 2                   | 2                  | 0                | 6               | 10  |
| cluster57 | 4                   | 4                  | 5                | 6               | 19  |
|           | 88                  | 67                 | 41               | 73              | 269 |

Respondents seem fairly well distributed aside from a large lump from cluster 5 being inexperienced in support. The interrelationships between these attributes mentioned in the section on single variables (that is, the various combinations of support and development experience) probably obscure any interesting trends here. Again, the largest fact is that most people, whether in support or development, have more or less extensive development experience and relatively little support experience. This fact is due mainly to an apparent industry concentration on development at the expense of support.

The following table lists the programming languages known versus the clusters; it has no significant chi square statistic due to zero marginals. The table following integrates the lesser-known languages; that table has a chi square value significant only at the 20 percent level.

|                        | language |         |         |                      |               |           |        |
|------------------------|----------|---------|---------|----------------------|---------------|-----------|--------|
|                        | JOVIAL   | CMS_2   | C       | FORTRAN              | COBOL         | ASSEMBLER | PLI    |
| administrative_manager | 17       | 17      | 5       | 46                   | 21            | 44        | 23     |
| development_nonmanager | 30       | 53      | 16      | 155                  | 89            | 154       | 77     |
| support_nonmanager     | 21       | 38      | 8       | 124                  | 59            | 112       | 67     |
| support_manager        | 5        | 8       | 0       | 13                   | 5             | 12        | 6      |
| technical_manager      | 8        | 13      | 4       | 28                   | 15            | 28        | 14     |
|                        | 81       | 129     | 33      | 366                  | 189           | 350       | 187    |
|                        | PASCAL   | BASIC   | ALGOL   | RATFOR_WATFOR_WATFIV | MODULA SIMULA | XPL       |        |
| administrative_manager | 22       | 31      | 15      | 9                    | 0             | 1         | 2      |
| development_nonmanager | 85       | 105     | 36      | 43                   | 3             | 4         | 5      |
| support_nonmanager     | 62       | 83      | 23      | 31                   | 2             | 2         | 2      |
| support_manager        | 3        | 9       | 3       | 2                    | 0             | 0         | 0      |
| technical_manager      | 19       | 24      | 9       | 5                    | 1             | 2         | 1      |
|                        | 191      | 252     | 66      | 90                   | 6             | 9         | 10     |
|                        | MMP      | FORTH   | Ada     | LISP                 | SNOBOL        | ECL       | GPSS   |
| administrative_manager | 0        | 2       | 14      | 7                    | 7             | 1         | 12     |
| development_nonmanager | 0        | 9       | 41      | 32                   | 31            | 1         | 19     |
| support_nonmanager     | 0        | 11      | 29      | 18                   | 23            | 1         | 18     |
| support_manager        | 0        | 0       | 4       | 1                    | 2             | 0         | 1      |
| technical_manager      | 0        | 6       | 13      | 5                    | 8             | 0         | 5      |
|                        | 0        | 28      | 101     | 63                   | 71            | 3         | 55     |
|                        | SAS      | PROTEGE | PPL     | APL                  | Other         |           |        |
| administrative_manager | 2        | 0       | 0       | 12                   | 4             | 314       |        |
| development_nonmanager | 1        | 0       | 0       | 42                   | 43            | 1074      |        |
| support_nonmanager     | 4        | 1       | 0       | 38                   | 26            | 803       |        |
| support_manager        | 0        | 0       | 0       | 1                    | 5             | 80        |        |
| technical_manager      | 0        | 0       | 0       | 9                    | 12            | 229       |        |
|                        | 7        | 1       | 0       | 102                  | 90            | 2500      |        |
|                        | language |         |         |                      |               |           |        |
|                        | JOVIAL   | CMS_2   | FORTRAN | COBOL                | ASSEMBLER     | PLI       | PASCAL |
| administrative_manager | 17       | 17      | 46      | 21                   | 44            | 23        | 22     |
| development_nonmanager | 30       | 53      | 155     | 89                   | 154           | 77        | 85     |
| support_nonmanager     | 21       | 38      | 124     | 59                   | 112           | 67        | 62     |
| support_manager        | 5        | 8       | 13      | 5                    | 12            | 6         | 3      |
| technical_manager      | 8        | 13      | 28      | 15                   | 28            | 14        | 19     |
|                        | 81       | 129     | 366     | 189                  | 350           | 187       | 191    |

## BASIC Other

|                        |     |     |      |
|------------------------|-----|-----|------|
| administrative_manager | 31  | 93  | 314  |
| development_nonmanager | 105 | 326 | 1074 |
| support_nonmanager     | 83  | 237 | 803  |
| support_manager        | 9   | 19  | 80   |
| technical_manager      | 24  | 80  | 229  |
|                        | 252 | 755 | 2500 |

This table indicates, perhaps, a tendency for management to know more about programming languages than workers, but the rankings are about the same for all clusters. The tendency of managers to be more experienced than workers may explain this greater knowledge.

Since there are a large number of methodologies, a straightforward presentation of counts would not be very informative. Instead, the median polish and ranking of residuals is repeated for methodologies to see how the various clusters are unusual both positively and negatively.

## Median Polish of Methodologies against Five Clusters

## Effects and Typicals after Polishing

## effects

|                         |         |
|-------------------------|---------|
| common                  | 33.250  |
| cluster2                | 0.000   |
| cluster3                | 71.500  |
| cluster5                | 31.000  |
| cluster38               | -24.500 |
| cluster57               | -14.500 |
| PSL PLA                 | -10.250 |
| SADT                    | -15.250 |
| SREM                    | -21.250 |
| HIPPO                   | 9.750   |
| Jackson Design          | -15.250 |
| Structured Design       | 11.750  |
| Warnier Orr Design      | -14.250 |
| N S Chabin Chart        | -12.250 |
| Beamson Tables          | -29.250 |
| Program Design language | 8.250   |
| Structured Programming  | 12.750  |
| Structured Walkthroughs | 10.750  |
| Tco Cown Design         | 12.750  |

|                          |         |
|--------------------------|---------|
| Top Down Testing         | 11.750  |
| Bottom Up Design         | 11.750  |
| Bachman Diagramming      | -29.250 |
| Entity Diagrams          | -30.250 |
| Data Abstraction         | -11.250 |
| other methodology        | -30.250 |
| enumeration types        | -3.250  |
| floating point types     | 12.750  |
| fixed point types        | 11.750  |
| user defined types       | 8.250   |
| pointers                 | 11.750  |
| typed pointers           | 5.750   |
| records                  | 10.750  |
| ranges                   | 11.750  |
| variant records          | 3.250   |
| object type dcls         | 6.250   |
| global variables         | 11.750  |
| local variables          | 11.750  |
| formal actual params     | 10.750  |
| reserved words           | 11.750  |
| blocks                   | 10.750  |
| case statements          | 10.250  |
| if then else statements  | 12.750  |
| loop for while until     | 12.750  |
| exit statements          | 12.750  |
| procedures               | 12.750  |
| functions                | 12.750  |
| return statements        | 12.750  |
| clusters modules package | 9.750   |
| stubs                    | 8.750   |
| goto statements          | 11.250  |
| comments                 | 12.750  |
| exception handlers       | 7.750   |
| task coroutines          | 8.250   |
| other prog constructs    | -33.250 |
| importing exporting name | -15.250 |
| data encapsulation       | 3.250   |
| name scoping             | -9.250  |
| name visibility          | -10.250 |
| static dynamic nesting   | 1.750   |
| iteration                | 10.250  |
| conditional statements   | 10.750  |
| recursion                | 10.750  |
| concurrency              | 4.250   |
| strong typing            | 0.250   |
| type conversion          | 8.750   |
| data abstraction         | 3.250   |
| generics                 | -7.250  |
| loop invariants          | -3.250  |
| parameter binding        | -1.750  |
| version number           | 4.750   |
| other prog concepts      | -33.250 |
| Ada enumeration types    | -8.250  |

|                          |         |
|--------------------------|---------|
| Ada user defined types   | -0.250  |
| Ada subtypes             | -7.250  |
| Ada derived types        | -10.250 |
| Ada real types           | 0.750   |
| Ada float point types    | 2.750   |
| Ada fixed pt types       | 1.750   |
| Ada record types         | 0.250   |
| Ada rec types discrim    | -15.250 |
| Ada slices               | -21.250 |
| Ada aggregates           | -20.250 |
| Ada allocators           | -20.250 |
| Ada access types         | -13.250 |
| Ada overloading          | -18.250 |
| Ada packages             | -11.250 |
| Ada private types        | -16.250 |
| Ada scope                | -10.250 |
| Ada short circuiting     | -19.250 |
| Ada visibility           | -17.250 |
| Ada tasking              | -4.750  |
| Ada task types           | -9.250  |
| Ada rendezvous           | -15.250 |
| Ada entries              | -7.250  |
| Ada entry families       | -16.250 |
| Ada separate compilation | -2.750  |
| Ada exceptions           | -9.250  |
| Ada generic prog units   | -19.250 |
| Ada instantiation        | -18.250 |
| Ada elaboration          | -18.250 |
| Ada context spec         | -14.250 |
| Ada information hiding   | -12.250 |
| Ada mutual recursion     | -18.250 |
| other Ada concepts       | -33.250 |

## Residuals after Polishing

|           | PSL     | PLA     | SADT    | SREM   | Warnier Orr Design |                   | Jackson Design |         | N S Chapin Chart |       |
|-----------|---------|---------|---------|--------|--------------------|-------------------|----------------|---------|------------------|-------|
|           |         |         |         |        | HIP0               | Structured Design |                |         |                  |       |
| cluster2  | 0.000   | 0.000   | 0.000   | 0.000  | 0.000              | 0.000             | 0.000          | 0.000   | 0.000            | 0.000 |
| cluster3  | -37.500 | -69.500 | -66.500 | 7.500  | -49.500            | 42.500            | -51.500        | -50.500 |                  |       |
| cluster5  | -8.000  | -29.000 | -28.000 | 2.000  | -33.000            | 43.000            | -24.000        | -33.000 |                  |       |
| cluster38 | 5.500   | 13.500  | 15.500  | -6.500 | 12.500             | -7.500            | 14.500         | 7.500   |                  |       |
| cluster57 | 3.500   | 4.500   | 9.500   | -0.500 | 5.500              | -2.500            | 6.500          | 3.500   |                  |       |

|                              | Structured Programming |                         |                | Top Down Testing     |                         |                     |                    |         |       |
|------------------------------|------------------------|-------------------------|----------------|----------------------|-------------------------|---------------------|--------------------|---------|-------|
|                              | Program Design         | language                | Beamson Tables | Top Down Design      | Structured Walkthroughs | Bachman Diagramming | Bottom Up Design   |         |       |
| cluster2                     | 0.000                  | -0.500                  | 0.000          | 0.000                | 0.000                   | 0.000               | 0.000              | 0.000   | 0.000 |
| cluster3                     | -69.500                | 35.000                  | 48.500         | 41.500               | 47.500                  | 44.500              | 33.500             | -54.500 |       |
| cluster5                     | -33.000                | 39.500                  | 56.000         | 36.000               | 53.000                  | 42.000              | 28.000             | -24.000 |       |
| cluster38                    | 21.500                 | -6.000                  | -7.500         | -7.500               | -7.500                  | -6.500              | -6.500             | 22.500  |       |
| cluster57                    | 12.500                 | 0.000                   | -1.500         | -0.500               | -1.500                  | -1.500              | -1.500             | 13.500  |       |
| <br>other methodology        |                        |                         |                |                      |                         |                     |                    |         |       |
|                              | Data Abstraction       |                         |                | floating point types |                         |                     | pointers           |         |       |
|                              | Entity Diagrams        |                         |                | enumeration types    |                         |                     | user defined types |         |       |
| cluster2                     | 0.000                  | 0.000                   | 0.000          | 0.000                | 0.000                   | 0.000               | -0.500             | 0.000   |       |
| cluster3                     | -54.500                | -4.500                  | -67.500        | -8.500               | 45.500                  | 42.500              | 32.000             | 40.500  |       |
| cluster5                     | -24.000                | -8.000                  | -32.000        | 9.000                | 49.000                  | 48.000              | 32.500             | 47.000  |       |
| cluster38                    | 24.500                 | 11.500                  | 21.500         | 1.500                | -7.500                  | -6.500              | -7.000             | -8.500  |       |
| cluster57                    | 18.500                 | 8.500                   | 13.500         | -1.500               | -1.500                  | -1.500              | 0.000              | -3.500  |       |
| <br>global variables         |                        |                         |                |                      |                         |                     |                    |         |       |
|                              | records                | object type             | dcls           |                      | formal actual           | params              |                    |         |       |
|                              | typed pointers         | variant records         |                |                      | local variables         | reserved words      |                    |         |       |
| cluster2                     | 0.000                  | 0.000                   | -1.500         | -0.500               | 0.000                   | 0.000               | 0.000              | 0.000   |       |
| cluster3                     | 11.500                 | 46.500                  | 10.000         | 30.000               | 49.500                  | 49.500              | 27.500             | 46.500  |       |
| cluster5                     | 19.000                 | 47.000                  | 15.500         | 37.500               | 55.000                  | 55.000              | 34.000             | 42.000  |       |
| cluster38                    | -6.500                 | -7.500                  | -5.000         | -6.000               | -7.500                  | -7.500              | -9.500             | -8.500  |       |
| cluster57                    | -0.500                 | -0.500                  | 0.000          | 0.000                | -1.500                  | -2.500              | -4.500             | -3.500  |       |
| <br>loop for while until     |                        |                         |                |                      |                         |                     |                    |         |       |
|                              | case statements        |                         |                | exit statements      |                         |                     | functions          |         |       |
|                              | blocks                 | if then else statements |                |                      | procedures              |                     | return statements  |         |       |
| cluster2                     | 0.000                  | -0.500                  | 0.000          | 0.000                | 0.000                   | 0.000               | 0.000              | 0.000   |       |
| cluster3                     | 37.500                 | 45.000                  | 48.500         | 47.500               | 44.500                  | 46.500              | 48.500             | 46.500  |       |
| cluster5                     | 41.000                 | 46.500                  | 54.000         | 53.000               | 49.000                  | 50.000              | 50.000             | 54.000  |       |
| cluster38                    | -10.500                | -7.000                  | -8.500         | -8.500               | -8.500                  | -8.500              | -7.500             | -7.500  |       |
| cluster57                    | -4.500                 | 0.000                   | -1.500         | -2.500               | -1.500                  | -2.500              | -2.500             | -1.500  |       |
| <br>importing exporting name |                        |                         |                |                      |                         |                     |                    |         |       |
|                              | goto statements        |                         |                |                      | other prog constructs   |                     |                    |         |       |
|                              | stubs                  |                         |                | exception handlers   |                         |                     |                    |         |       |
|                              | clusters               | modules                 | package        |                      | comments                |                     | task coroutines    |         |       |
| cluster2                     | 0.000                  | 0.000                   | -1.500         | 0.000                | 0.000                   | -1.500              | 0.000              | 0.000   |       |
| cluster3                     | 30.500                 | 31.500                  | 48.000         | 46.500               | 35.500                  | 35.000              | -69.500            | -35.500 |       |
| cluster5                     | 33.000                 | 22.000                  | 53.500         | 53.000               | 26.000                  | 14.500              | -29.000            | -10.000 |       |
| cluster38                    | -4.500                 | -5.500                  | -7.000         | -8.500               | -4.500                  | -7.000              | 24.500             | 11.500  |       |
| cluster57                    | -1.500                 | -0.500                  | 0.000          | -1.500               | -0.500                  | 0.000               | 16.500             | 8.500   |       |

|                     | name visibility        |                   |                 |                    | conditional statements |                   |         |         |             |
|---------------------|------------------------|-------------------|-----------------|--------------------|------------------------|-------------------|---------|---------|-------------|
|                     | name scoping           |                   |                 |                    | iteration              |                   |         |         | concurrency |
|                     | data encapsulation     | static            | dynamic         | nesting            |                        |                   |         |         | recursion   |
| cluster2            | -1.500                 | 0.000             | 0.000           | 0.000              | -0.500                 | 0.000             | 0.000   | 0.000   | -1.500      |
| cluster3            | 0.000                  | -7.500            | -10.500         | 6.500              | 43.000                 | 46.500            | 36.500  | 24.000  |             |
| cluster5            | 2.500                  | -4.000            | -10.000         | 12.000             | 38.500                 | 47.000            | 35.000  | 15.500  |             |
| cluster38           | -3.000                 | 8.500             | 7.500           | -1.500             | -5.000                 | -6.500            | -6.500  | 0.000   |             |
| cluster57           | 0.000                  | 5.500             | 7.500           | -0.500             | 0.000                  | -0.500            | -1.500  | 0.000   |             |
| other prog concepts |                        |                   |                 |                    |                        |                   |         |         |             |
|                     | type conversion        |                   | generics        |                    | parameter binding      |                   |         |         |             |
|                     | strong typing          | data abstraction  | loop invariants | version number     |                        |                   |         |         |             |
| cluster2            | 1.500                  | 0.000             | -2.500          | 0.000              | 0.000                  | 2.500             | 0.000   | 0.000   |             |
| cluster3            | -7.000                 | 15.500            | 10.000          | -8.500             | -6.500                 | -11.000           | 19.500  | -68.500 |             |
| cluster5            | -2.500                 | 13.000            | 0.500           | -4.000             | -3.000                 | -5.500            | 12.000  | -30.000 |             |
| cluster38           | 0.000                  | -7.500            | -2.000          | 8.500              | 3.500                  | 0.000             | -1.500  | 25.500  |             |
| cluster57           | 2.000                  | -3.500            | 0.000           | 7.500              | 1.500                  | 2.000             | -0.500  | 14.500  |             |
|                     | Ada subtypes           |                   |                 |                    | Ada float point types  |                   |         |         |             |
|                     | Ada user defined types |                   |                 | Ada real types     | Ada record types       |                   |         |         |             |
|                     | Ada enumeration types  | Ada derived types |                 | Ada fixed pt types |                        |                   |         |         |             |
| cluster2            | 0.000                  | 0.000             | 0.000           | 0.000              | 0.000                  | 0.000             | 0.000   | 0.000   | -4.500      |
| cluster3            | -14.500                | 0.500             | -10.500         | -18.500            | 7.500                  | 11.500            | 10.500  | 3.000   |             |
| cluster5            | -8.000                 | -1.000            | -12.000         | -14.000            | 3.000                  | 6.000             | 4.000   | 1.500   |             |
| cluster38           | 5.500                  | 2.500             | 6.500           | 7.500              | -1.500                 | -0.500            | -0.500  | 0.000   |             |
| cluster57           | 4.500                  | -0.500            | 5.500           | 3.500              | -0.500                 | -1.500            | -0.500  | 0.000   |             |
|                     | Ada aggregates         |                   |                 |                    |                        | Ada private types |         |         |             |
|                     | Ada slices             |                   |                 | Ada access types   |                        | Ada packages      |         |         |             |
|                     | Ada rec types          | discrim           |                 | Ada allocators     |                        | Ada overloading   |         |         |             |
| cluster2            | 0.000                  | 0.000             | 0.000           | 0.000              | 0.000                  | 0.000             | 0.000   | 0.000   | 0.000       |
| cluster3            | -19.500                | -28.500           | -31.500         | -30.500            | -23.500                | -22.500           | -14.500 | -17.500 |             |
| cluster5            | -11.000                | -20.000           | -10.000         | -12.000            | -16.000                | -12.000           | -10.000 | -10.000 |             |
| cluster38           | 11.500                 | 17.500            | 16.500          | 15.500             | 10.500                 | 15.500            | 11.500  | 13.500  |             |
| cluster57           | 9.500                  | 12.500            | 10.500          | 12.500             | 7.500                  | 10.500            | 7.500   | 13.500  |             |
|                     | Ada entry families     |                   |                 |                    |                        |                   |         |         |             |
|                     | Ada short circuiting   |                   |                 | Ada tasking        | Ada rendezvous         |                   |         |         |             |
|                     | Ada scope              | Ada visibility    |                 | Ada task types     | Ada entries            |                   |         |         |             |
| cluster2            | 0.000                  | 0.000             | 0.000           | -0.500             | 0.000                  | 0.000             | 0.000   | 0.000   | 0.000       |
| cluster3            | -18.500                | -41.500           | -13.500         | 0.000              | -17.500                | -31.500           | -24.500 | -47.500 |             |
| cluster5            | -10.000                | -25.000           | -7.000          | -2.500             | -10.000                | -16.000           | -18.000 | -24.000 |             |
| cluster38           | 8.500                  | 14.500            | 13.500          | 7.000              | 8.500                  | 14.500            | 7.500   | 13.500  |             |
| cluster57           | 7.500                  | 7.500             | 10.500          | 3.000              | 2.500                  | 9.500             | 2.500   | 8.500   |             |

|           | Ada generic prog units   | Ada context spec  |                        |         |         |         |         |         |       |
|-----------|--------------------------|-------------------|------------------------|---------|---------|---------|---------|---------|-------|
|           | Ada exceptions           | Ada elaboration   | Ada mutual recursion   |         |         |         |         |         |       |
|           | Ada separate compilation | Ada instantiation | Ada information hiding |         |         |         |         |         |       |
| cluster2  | -0.500                   | 0.000             | 0.000                  | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000 |
| cluster3  | 3.000                    | -12.500           | -20.500                | -38.500 | -43.500 | -36.500 | -18.500 | -32.500 |       |
| cluster5  | -2.500                   | -5.000            | -9.000                 | -15.000 | -27.000 | -27.000 | -11.000 | -20.000 |       |
| cluster38 | 5.000                    | 8.500             | 17.500                 | 16.500  | 13.500  | 9.500   | 12.500  | 14.500  |       |
| cluster57 | 0.000                    | 3.500             | 13.500                 | 9.500   | 7.500   | 3.500   | 6.500   | 10.500  |       |
|           | ranges                   |                   |                        |         |         |         |         |         |       |
|           | other Ada concepts       |                   |                        |         |         |         |         |         |       |
| cluster2  | 0.000                    | 0.000             |                        |         |         |         |         |         |       |
| cluster3  | -71.500                  | 25.500            |                        |         |         |         |         |         |       |
| cluster5  | -30.000                  | 35.000            |                        |         |         |         |         |         |       |
| cluster38 | 24.500                   | -10.500           |                        |         |         |         |         |         |       |
| cluster57 | 14.500                   | -5.500            |                        |         |         |         |         |         |       |

**Categories with High Positive  
Residuals in Rank Order**

**Categories with High Negative  
Residuals in Rank Order**

**Cluster 2**

|                   |       |                          |       |
|-------------------|-------|--------------------------|-------|
| parameter binding | 1.000 | data abstraction         | 1.000 |
| strong typing     | 2.000 | concurrency              | 1.000 |
|                   |       | Ada record types         | 1.000 |
|                   |       | Program Design language  | 2.000 |
|                   |       | goto statements          | 2.000 |
|                   |       | user defined types       | 2.000 |
|                   |       | task coroutines          | 2.000 |
|                   |       | data encapsulation       | 2.000 |
|                   |       | iteration                | 2.000 |
|                   |       | case statements          | 2.000 |
|                   |       | object type dcis         | 2.000 |
|                   |       | variant records          | 2.000 |
|                   |       | Ada tasking              | 2.000 |
|                   |       | Ada separate compilation | 2.000 |

**Cluster 3**

|                         |       |                     |       |
|-------------------------|-------|---------------------|-------|
| HIPQ                    | 1.000 | PSL PLA             | 1.000 |
| stubs                   | 1.000 | SADT                | 1.000 |
| Ada record types        | 1.000 | SREM                | 1.000 |
| Ada fixed pt types      | 1.000 | Jackson Design      | 1.000 |
| Structured Walkthroughs | 1.000 | Warnier Orr Design  | 1.000 |
| Ada float point types   | 1.000 | N S Chapin Chart    | 1.000 |
| Top Down Testing        | 1.000 | Beamson Tables      | 1.000 |
| Bottom Up Design        | 1.000 | Bachman Diagramming | 1.000 |
| Ada real types          | 1.000 | Entity Diagrams     | 1.000 |
| concurrency             | 1.000 | Ada entries         | 1.000 |
| version number          | 1.000 | other methodology   | 1.000 |
| data abstraction        | 1.000 | enumeration types   | 1.000 |

AD-A124 997 ADA\* SOFTWARE DESIGN METHODS FORMULATION APPENDICES TO  
FINAL REPORT(U) SOFTECH INC WALTHAM MA OCT 82  
DAAK80-80-C-0187

22

UNCLASSIFIED

F/G 9/2

NL

END  
DATE FILMED  
3-65  
DTIC



MICROCOPY RESOLUTION TEST CHART  
NATIONAL BUREAU OF STANDARDS-1963-A

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| type conversion          | 1.000 | other prog constructs    | 1.000 |
| recursion                | 1.000 | importing exporting name | 1.000 |
| iteration                | 1.000 | name scoping             | 1.000 |
| task coroutines          | 1.000 | name visibility          | 1.000 |
| reserved words           | 1.000 | strong typing            | 1.000 |
| exception handlers       | 1.000 | generics                 | 1.000 |
| fixed point types        | 2.000 | loop invariants          | 1.000 |
| object type dcls         | 2.000 | parameter binding        | 1.000 |
| local variables          | 2.000 | other prog concepts      | 1.000 |
| case statements          | 2.000 | Ada rec types discrim    | 1.000 |
| if then else statements  | 2.000 | Ada enumeration types    | 1.000 |
| Structured Design        | 2.000 | Ada derived types        | 1.000 |
| exit statements          | 2.000 | Ada slices               | 1.000 |
| procedures               | 2.000 | other Ada concepts       | 1.000 |
| functions                | 2.000 | Ada aggregates           | 1.000 |
| return statements        | 2.000 | Ada allocators           | 1.000 |
| clusters modules package | 2.000 | Ada access types         | 1.000 |
| loop for while until     | 2.000 | Ada overloading          | 1.000 |
| goto statements          | 2.000 | Ada packages             | 1.000 |
| comments                 | 2.000 | Ada private types        | 1.000 |
| blocks                   | 2.000 | Ada scope                | 1.000 |
| formal actual params     | 2.000 | Ada short circuiting     | 1.000 |
| static dynamic nesting   | 2.000 | Ada visibility           | 1.000 |
| global variables         | 2.000 | Ada task types           | 1.000 |
| conditional statements   | 2.000 | Ada rendezvous           | 1.000 |
| variant records          | 2.000 | Ada entry families       | 1.000 |
| records                  | 2.000 | Ada exceptions           | 1.000 |
| typed pointers           | 2.000 | Ada generic prog units   | 1.000 |
| pointers                 | 2.000 | Ada instantiation        | 1.000 |
| user defined types       | 2.000 | Ada elaboration          | 1.000 |
| Ada user defined types   | 2.000 | Ada context spec         | 1.000 |
| floating point types     | 2.000 | Ada information hiding   | 1.000 |
| Top Down Design          | 2.000 | Ada mutual recursion     | 1.000 |
| Structured Programming   | 2.000 | Data Abstraction         | 2.000 |
| Program Design language  | 2.000 | Ada subtypes             | 2.000 |
| Ada separate compilation | 2.000 |                          |       |
| ranges                   | 2.000 |                          |       |

## Cluster 5

|                         |       |                          |       |
|-------------------------|-------|--------------------------|-------|
| ranges                  | 1.000 | Ada tasking              | 1.000 |
| Structured Design       | 1.000 | Data Abstraction         | 1.000 |
| Program Design language | 1.000 | Ada subtypes             | 1.000 |
| Structured Programming  | 1.000 | Ada user defined types   | 1.000 |
| goto statements         | 1.000 | Ada separate compilation | 1.000 |
| Top Down Design         | 1.000 | SADT                     | 2.000 |
| return statements       | 1.000 | Beamson Tables           | 2.000 |
| functions               | 1.000 | Bachman Diagramming      | 2.000 |
| enumeration types       | 1.000 | N S Chapin Chart         | 2.000 |
| floating point types    | 1.000 | Warnier Orr Design       | 2.000 |
| fixed point types       | 1.000 | other methodology        | 2.000 |
| user defined types      | 1.000 | PSL PLA                  | 2.000 |
| pointers                | 1.000 | other prog constructs    | 2.000 |

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| typed pointers           | 1.000 | name scoping             | 2.000 |
| records                  | 1.000 | strong typing            | 2.000 |
| variant records          | 1.000 | importing exporting name | 2.000 |
| object type dcls         | 1.000 | generics                 | 2.000 |
| global variables         | 1.000 | loop invariants          | 2.000 |
| local variables          | 1.000 | parameter binding        | 2.000 |
| formal actual params     | 1.000 | other prog concepts      | 2.000 |
| static dynamic nesting   | 1.000 | Ada enumeration types    | 2.000 |
| blocks                   | 1.000 | Jackson Design           | 2.000 |
| case statements          | 1.000 | SREM                     | 2.000 |
| if then else statements  | 1.000 | Ada derived types        | 2.000 |
| loop for while until     | 1.000 | Ada rec types discrim    | 2.000 |
| exit statements          | 1.000 | Ada slices               | 2.000 |
| procedures               | 1.000 | Ada aggregates           | 2.000 |
| clusters modules package | 1.000 | Ada allocators           | 2.000 |
| comments                 | 1.000 | Ada access types         | 2.000 |
| conditional statements   | 1.000 | Ada overloading          | 2.000 |
| data encapsulation       | 1.000 | Ada packages             | 2.000 |
| Bottom Up Design         | 2.000 | Ada private types        | 2.000 |
| Top Down Testing         | 2.000 | Ada scope                | 2.000 |
| stubs                    | 2.000 | Ada short circuiting     | 2.000 |
| Structured Walkthroughs  | 2.000 | Ada visibility           | 2.000 |
| reserved words           | 2.000 | name visibility          | 2.000 |
| exception handlers       | 2.000 | Ada task types           | 2.000 |
| iteration                | 2.000 | Ada rendezvous           | 2.000 |
| recursion                | 2.000 | Ada entries              | 2.000 |
| task coroutines          | 2.000 | Ada entry families       | 2.000 |
| concurrency              | 2.000 | Entity Diagrams          | 2.000 |
| type conversion          | 2.000 | Ada exceptions           | 2.000 |
| data abstraction         | 2.000 | Ada generic prog units   | 2.000 |
| version number           | 2.000 | Ada instantiation        | 2.000 |
| Ada real types           | 2.000 | Ada elaboration          | 2.000 |
| Ada float point types    | 2.000 | Ada context spec         | 2.000 |
| Ada fixed pt types       | 2.000 | Ada information hiding   | 2.000 |
| Ada record types         | 2.000 | Ada mutual recursion     | 2.000 |
| HIP0                     | 2.000 | other Ada concepts       | 2.000 |

## Cluster 38

|                          |       |                         |       |
|--------------------------|-------|-------------------------|-------|
| PSL PLA                  | 1.000 | HIP0                    | 1.000 |
| SADT                     | 1.000 | Structured Design       | 1.000 |
| SREM                     | 1.000 | Program Design language | 1.000 |
| Jackson Design           | 1.000 | Structured Programming  | 1.000 |
| Warnier Orr Design       | 1.000 | Structured Walkthroughs | 1.000 |
| N S Chapin Chart         | 1.000 | Top Down Design         | 1.000 |
| Beamson Tables           | 1.000 | Top Down Testing        | 1.000 |
| Bachman Diagramming      | 1.000 | Bottom Up Design        | 1.000 |
| Entity Diagrams          | 1.000 | floating point types    | 1.000 |
| Data Abstraction         | 1.000 | fixed point types       | 1.000 |
| other methodology        | 1.000 | user defined types      | 1.000 |
| Ada rendezvous           | 1.000 | pointers                | 1.000 |
| other prog constructs    | 1.000 | typed pointers          | 1.000 |
| importing exporting name | 1.000 | records                 | 1.000 |

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| name scoping             | 1.000 | variant records          | 1.000 |
| Ada short circuiting     | 1.000 | object type dcis         | 1.000 |
| generics                 | 1.000 | global variables         | 1.000 |
| loop invariants          | 1.000 | local variables          | 1.000 |
| other prog concepts      | 1.000 | formal actual params     | 1.000 |
| Ada enumeration types    | 1.000 | reserved words           | 1.000 |
| Ada user defined types   | 1.000 | blocks                   | 1.000 |
| Ada subtypes             | 1.000 | case statements          | 1.000 |
| Ada derived types        | 1.000 | :if then else statements | 1.000 |
| Ada rec types discrim    | 1.000 | loop for while until     | 1.000 |
| Ada slices               | 1.000 | exit statements          | 1.000 |
| Ada aggregates           | 1.000 | procedures               | 1.000 |
| Ada allocators           | 1.000 | functions                | 1.000 |
| Ada access types         | 1.000 | return statements        | 1.000 |
| Ada overloading          | 1.000 | clusters modules package | 1.000 |
| Ada packages             | 1.000 | stubs                    | 1.000 |
| Ada instantiation        | 1.000 | goto statements          | 1.000 |
| Ada scope                | 1.000 | comments                 | 1.000 |
| Ada exceptions           | 1.000 | exception handlers       | 1.000 |
| Ada visibility           | 1.000 | task coroutines          | 1.000 |
| Ada tasking              | 1.000 | data encapsulation       | 1.000 |
| Ada task types           | 1.000 | static dynamic nesting   | 1.000 |
| Ada entries              | 1.000 | iteration                | 1.000 |
| Ada entry families       | 1.000 | conditional statements   | 1.000 |
| Ada separate compilation | 1.000 | recursion                | 1.000 |
| Ada generic prog units   | 1.000 | type conversion          | 1.000 |
| Ada elaboration          | 1.000 | version number           | 1.000 |
| Ada context spec         | 1.000 | Ada real types           | 1.000 |
| Ada information hiding   | 1.000 | ranges                   | 1.000 |
| Ada mutual recursion     | 1.000 | Ada fixed pt types       | 1.500 |
| other Ada concepts       | 1.000 | data abstraction         | 2.000 |
| name visibility          | 1.500 | Ada float point types    | 2.000 |
| Ada private types        | 1.500 |                          |       |
| enumeration types        | 2.000 |                          |       |

## Cluster 57

|                          |       |                         |       |
|--------------------------|-------|-------------------------|-------|
| strong typing            | 1.000 | Ada float point types   | 1.000 |
| Ada private types        | 1.500 | Ada fixed pt types      | 1.500 |
| name visibility          | 1.500 | HIPPO                   | 2.000 |
| PSL PLA                  | 2.000 | Structured Walkthroughs | 2.000 |
| Jackson Design           | 2.000 | Top Down Design         | 2.000 |
| N S Chapin Chart         | 2.000 | Top Down Testing        | 2.000 |
| Beamson Tables           | 2.000 | Bottom Up Design        | 2.000 |
| SREM                     | 2.000 | enumeration types       | 2.000 |
| SADT                     | 2.000 | floating point types    | 2.000 |
| Data Abstraction         | 2.000 | fixed point types       | 2.000 |
| other methodology        | 2.000 | pointers                | 2.000 |
| other prog constructs    | 2.000 | typed pointers          | 2.000 |
| importing exporting name | 2.000 | records                 | 2.000 |
| name scoping             | 2.000 | global variables        | 2.000 |
| Entity Diagrams          | 2.000 | local variables         | 2.000 |
| Bachman Diagramming      | 2.000 | formal actual params    | 2.000 |

|                        |       |                          |       |
|------------------------|-------|--------------------------|-------|
| generics               | 2.000 | reserved words           | 2.000 |
| loop invariants        | 2.000 | blocks                   | 2.000 |
| Warnier Orr Design     | 2.000 | if then else statements  | 2.000 |
| other prog concepts    | 2.000 | loop for while until     | 2.000 |
| Ada enumeration types  | 2.000 | exit statements          | 2.000 |
| Ada subtypes           | 2.000 | procedures               | 2.000 |
| Ada derived types      | 2.000 | functions                | 2.000 |
| Ada rec types discrim  | 2.000 | return statements        | 2.000 |
| Ada slices             | 2.000 | clusters modules package | 2.000 |
| Ada aggregates         | 2.000 | stubs                    | 2.000 |
| Ada allocators         | 2.000 | comments                 | 2.000 |
| Ada access types       | 2.000 | exception handlers       | 2.000 |
| Ada overloading        | 2.000 | static dynamic nesting   | 2.000 |
| Ada packages           | 2.000 | conditional statements   | 2.000 |
| parameter binding      | 2.000 | recursion                | 2.000 |
| Ada scope              | 2.000 | type conversion          | 2.000 |
| Ada short circuiting   | 2.000 | version number           | 2.000 |
| Ada visibility         | 2.000 | Ada user defined types   | 2.000 |
| Ada tasking            | 2.000 | Ada real types           | 2.000 |
| Ada task types         | 2.000 | Structured Programming   | 2.000 |
| Ada rendezvous         | 2.000 | Structured Design        | 2.000 |
| Ada entries            | 2.000 | ranges                   | 2.000 |
| Ada entry families     | 2.000 |                          |       |
| Ada exceptions         | 2.000 |                          |       |
| Ada generic prog units | 2.000 |                          |       |
| Ada instantiation      | 2.000 |                          |       |
| Ada elaboration        | 2.000 |                          |       |
| Ada context spec       | 2.000 |                          |       |
| Ada information hiding | 2.000 |                          |       |
| Ada mutual recursion   | 2.000 |                          |       |
| other Ada concepts     | 2.000 |                          |       |

The administrative managers (cluster 2) aren't very strong on anything except parameter binding, probably a random outlier. They aren't very weak on anything, either, but with some tendency against technical programming.

The developmentally oriented nonmangers (cluster 3) rate very strongly on design methodologies, some Ada concepts, and various programming constructs and concepts. They are weak on some of the design methodologies, certain programming concepts, and most Ada concepts.

The support-oriented nonmanagers (cluster 5) are strong on standard design methodologies and standard programming constructs and are somewhat less strong on various programming concepts. They are weak on Ada concepts and

certain programming methodologies and constructs. They seem to have the basics but are not theoretically sophisticated.

The support-oriented managers are strong on certain design methodologies, programming concepts, and Ada concepts. They are weak on other design methodologies and programming constructs. These people would seem to be somewhat eccentric. Perhaps these are the type of people who tend to gravitate to the "less practical"--that is, less technical/developmental--side of the industry.

The technical managers tend to be relatively strong on certain programming concepts, many design methodologies, and several Ada concepts, but weak on other methodologies and on programming constructs.

In summary, the characterizations of the clusters support the classifications in large part. There are few startling departures from common sense.

Current titles--a table showing current job titles and positions in the management hierarchy for the clusters indicates the relationship between the way the industry currently defines jobs and the classification scheme developed in this report.

| Respondent | Job Title | Position in Hierarchy |
|------------|-----------|-----------------------|
|------------|-----------|-----------------------|

administrative manager

|      |                                 |             |
|------|---------------------------------|-------------|
| 1003 | Chief, CAD/CAM Systems          | middle mgmt |
| 1005 | Staff Specialist                | technical   |
| 1011 | Project Engineer                | technical   |
| 1013 | Software Design Specialist      | technical   |
| 1018 | Engineering Software Supervisor | middle mgmt |
| 1020 | Software Design Specialist      | technical   |
| 1023 | Software Engineering Specialist | technical   |
| 1025 | Engineering Specialist          | technical   |
| 1039 | Engineering Specialist          | technical   |
| 1042 | Software Design Specialist      | technical   |
| 1054 | Software Engineering Specialist | technical   |
| 1059 | Supervisor                      | middle mgmt |
| 1062 | Supervisor                      | middle mgmt |
| 1063 | Chief, Product Software         | middle mgmt |
| 1066 | Software Design Specialist      | technical   |

|      |                                 |                 |
|------|---------------------------------|-----------------|
| 1085 | Software Engineering Specialist | technical       |
| 1086 | Senior Software Engineer        | technical       |
| 1093 | Engineering Chief               | middle mgmt     |
| 2005 | Supervisor                      | middle mgmt     |
| 2006 | Software Development Manager    | middle mgmt     |
| 2012 | Senior System Analyst           | technical       |
| 3002 | Software Management             | high level mgmt |
| 3009 | Software Manager                | middle mgmt     |
| 3013 | Engineering Specialist          | technical       |
| 3026 | R&D Engineer                    | technical       |
| 3029 | Digital Signal Processing       | *               |
| 3058 | Engineering Specialist          | technical       |
| 3060 | *                               | *               |
| 3061 | Senior Engineering Specialist   | technical       |
| 3070 | Engineering Specialist          | technical       |
| 3097 | Engineering Specialist          | technical       |
| 4003 | Consultant                      | technical       |
| 4026 | Consultant                      | technical       |
| 4029 | Consultant                      | technical       |
| 4038 | Software Group Manager          | middle mgmt     |
| 4044 | Programmer Analyst              | technical       |
| 4047 | Unit Manager                    | middle mgmt     |
| 4050 | Consultant                      | technical       |
| 4052 | CAD Development Manager         | middle mgmt     |
| 4072 | Consultant                      | technical       |
| 5012 | *                               | *               |
| 5029 | *                               | *               |
| 5030 | *                               | *               |
| 5034 | *                               | *               |
| 5076 | *                               | *               |
| 9001 | *                               | *               |

## development nonmanager

|      |                                 |             |
|------|---------------------------------|-------------|
| 1001 | Consultant                      | technical   |
| 1004 | Engineering Software Supervisor | middle mgmt |
| 1012 | Software Design Specialist      | technical   |
| 1014 | Senior Software Engineer        | technical   |
| 1016 | Software Engineer               | technical   |
| 1029 | Software Design Specialist      | technical   |
| 1031 | Software Design Specialist      | technical   |
| 1052 | Senior Engineering Specialist   | technical   |
| 1060 | Software Engineer               | technical   |
| 1064 | *                               | *           |
| 1072 | *                               | *           |
| 1074 | Software Design Specialist      | technical   |
| 1075 | Software Design Specialist      | technical   |
| 1078 | Senior Engineer                 | technical   |
| 1079 | Senior Software Engineer        | technical   |
| 1080 | Senior Software Engineer        | technical   |
| 1082 | Senior Software Engineer        | technical   |
| 1084 | Software Design Specialist      | technical   |
| 1090 | System Engineering Specialist   | technical   |

|      |                                 |             |
|------|---------------------------------|-------------|
| 1091 | System Design Specialist        | technical   |
| 1094 | Software Engineer               | technical   |
| 1100 | Engineer                        | technical   |
| 2001 | Senior Programmer               | technical   |
| 2002 | Programmer                      | technical   |
| 2007 | Senior Scientific Programmer    | technical   |
| 2009 | Project Supervisor              | middle mgmt |
| 2011 | Data Processing Consultant      | technical   |
| 2013 | Principle Scientific Programmer | technical   |
| 2014 | Supervising System Analyst      | middle mgmt |
| 2016 | Scientific Programmer           | technical   |
| 2018 | Principle Scientific Programmer | technical   |
| 2020 | Principle Scientific Programmer | technical   |
| 3001 | Junior Programmer               | entry level |
| 3004 | Research Engineer               | technical   |
| 3005 | Senior Software Engineer        | technical   |
| 3006 | Supervisor                      | middle mgmt |
| 3007 | Advanced R&D Engineer           | technical   |
| 3010 | Communications Software         | technical   |
| 3011 | Software R&D Engineer           | technical   |
| 3015 | Engineer                        | technical   |
| 3018 | Senior Engineer                 | technical   |
| 3023 | *                               | *           |
| 3024 | R&D Engineer                    | technical   |
| 3025 | Senior Engineer                 | technical   |
| 3028 | Digital Signal Processing       | technical   |
| 3030 | *                               | *           |
| 3031 | R&D Engineer                    | technical   |
| 3032 | Engineer                        | technical   |
| 3042 | R&D Engineer                    | technical   |
| 3049 | Junior Programmer               | entry level |
| 3051 | Advanced Development Engineer   | technical   |
| 3052 | Engineering Specialist          | technical   |
| 3054 | *                               | *           |
| 3062 | *                               | *           |
| 3063 | Programmer Analyst              | technical   |
| 3065 | Programmer                      | technical   |
| 3068 | R&D Engineer                    | technical   |
| 3069 | Senior Engineer                 | technical   |
| 3072 | Software Engineer               | technical   |
| 3074 | Engineer                        | technical   |
| 3077 | Senior Software Engineer        | technical   |
| 3078 | R&D Engineer                    | technical   |
| 3080 | Senior Engineer                 | technical   |
| 3085 | Junior Engineer                 | technical   |
| 3086 | *                               | *           |
| 3087 | R&D Engineer                    | technical   |
| 3089 | Research Engineer               | technical   |
| 3091 | Software Engineer               | technical   |
| 3093 | Engineering Specialist          | technical   |
| 3094 | Software Engineer               | technical   |
| 3109 | R&D Engineer                    | technical   |
| 3111 | Senior Engineer                 | technical   |

|      |                              |             |
|------|------------------------------|-------------|
| 3112 | Consultant                   | technical   |
| 3113 | Software Engineer            | technical   |
| 3114 | Software R&D Engineer        | technical   |
| 3117 | Engineering Specialist       | technical   |
| 3119 | R&D Engineer                 | technical   |
| 3120 | Programmer                   | technical   |
| 3122 | *                            | *           |
| 4002 | Programmer                   | technical   |
| 4004 | Programmer Analyst           | technical   |
| 4005 | Programmer Analyst           | technical   |
| 4006 | Senior Applications Analyst  | technical   |
| 4007 | Staff Consultant             | technical   |
| 4008 | *                            | *           |
| 4015 | Senior Programmer Analyst    | technical   |
| 4016 | Senior Programmer Analyst    | technical   |
| 4023 | Senior System Analyst        | technical   |
| 4024 | Programmer Analyst           | technical   |
| 4027 | Senior GS Analyst            | technical   |
| 4028 | Principle Programmer Analyst | technical   |
| 4032 | Analyst                      | technical   |
| 4034 | Government Program Analyst   | technical   |
| 4035 | Government Program Analyst   | technical   |
| 4036 | Principle Programmer Analyst | technical   |
| 4039 | Consultant                   | technical   |
| 4042 | Principle Systems Analyst    | technical   |
| 4043 | *                            | *           |
| 4045 | Senior Analyst               | technical   |
| 4048 | Principle Programmer Analyst | technical   |
| 4051 | Firmware Design Engineer     | technical   |
| 4056 | System Analyst               | technical   |
| 4058 | *                            | *           |
| 4060 | Principle Engineer           | technical   |
| 4062 | Senior Programmer Analyst    | technical   |
| 4063 | *                            | *           |
| 4065 | Programmer                   | technical   |
| 4067 | Programmer Analyst           | technical   |
| 4068 | Consultant                   | technical   |
| 4069 | Associate Programmer Analyst | entry level |
| 4070 | Programmer                   | technical   |
| 4073 | Programmer Analyst           | technical   |
| 4075 | Senior Engineer              | technical   |
| 4076 | Quality Assurance Engineer   | technical   |
| 5001 | *                            | *           |
| 5002 | *                            | *           |
| 5004 | *                            | *           |
| 5005 | *                            | *           |
| 5007 | *                            | *           |
| 5008 | Diagnostic Software          | technical   |
| 5011 | *                            | *           |
| 5013 | *                            | *           |
| 5016 | *                            | *           |
| 5021 | *                            | *           |
| 5024 | *                            | *           |

|                            |   |             |
|----------------------------|---|-------------|
| 5026                       | * | *           |
| 5031                       | * | *           |
| 5032                       | * | *           |
| 5036                       | * | *           |
| 5037                       | * | *           |
| 5038                       | * | *           |
| 5043                       | * | *           |
| 5045                       | * | *           |
| 5047                       | * | *           |
| 5048                       | * | *           |
| 5049                       | * | *           |
| 5052                       | * | *           |
| 5053                       | * | *           |
| 5057                       | * | *           |
| 5060                       | * | *           |
| 5063                       | * | *           |
| 5067                       | * | *           |
| 5068                       | * | *           |
| 5069                       | * | *           |
| 5070                       | * | *           |
| 5071                       | * | *           |
| 5072                       | * | *           |
| 5074 Programmer            |   | technical   |
| 5078                       | * | *           |
| 5080                       | * | *           |
| 6004 Project Leader        |   | middle mgmt |
| 6005                       | * | *           |
| 6007 Computer Scientist    |   | technical   |
| 6009 Electronic Technician |   | entry level |
| 6010 Electrical Engineer   |   | technical   |
| 6011 Electrical Engineer   |   | technical   |
| 7001 Computer Specialist   |   | technical   |
| 7004 Computer Specialist   |   | technical   |
| 7005 Computer Specialist   |   | technical   |
| 7006 Computer Specialist   |   | technical   |
| 7008 Computer Specialist   |   | technical   |
| 7010 Computer Specialist   |   | technical   |
| 7011 Computer Specialist   |   | technical   |
| 8004 Team Leader           |   | middle mgmt |
| 9004 Electrical Engineer   |   | technical   |
| 9005 Electrical Engineer   |   | technical   |
| 2006 Electrical Engineer   |   | technical   |

## support nonmanager

|                                 |  |           |
|---------------------------------|--|-----------|
| 1007 Senior Software Engineer   |  | technical |
| 1009 Software Engineer          |  | technical |
| 1010 Software Engineer          |  | technical |
| 1015 Software Engineer          |  | technical |
| 1017 Software Engineer          |  | technical |
| 1026 Software Design Specialist |  | technical |
| 1038 *                          |  | *         |
| 1040 Software Design Specialist |  | technical |

|      |                                 |                 |
|------|---------------------------------|-----------------|
| 1041 | Software Design Specialist      | technical       |
| 1043 | Senior Dynamics Engineer        | technical       |
| 1044 | Software Engineer               | technical       |
| 1045 | Software Engineer               | technical       |
| 1046 | Software Engineer               | technical       |
| 1048 | Software Engineering Specialist | technical       |
| 1049 | Software Design Specialist      | technical       |
| 1050 | Software Design Specialist      | technical       |
| 1053 | Software System Engineer        | technical       |
| 1055 | *                               | *               |
| 1057 | Principle Engineer              | technical       |
| 1058 | Associate Engineer              | entry level     |
| 1065 | Engineering Manager             | high level mgmt |
| 1076 | Software Engineer               | technical       |
| 1077 | Electrical Engineer             | technical       |
| 1087 | Software Engineering Specialist | technical       |
| 1096 | Software Design Specialist      | technical       |
| 2003 | Scientific Programmer           | technical       |
| 2017 | Senior System Analyst           | technical       |
| 2023 | Associate Scientific Programmer | entry level     |
| 3003 | Software Engineer               | technical       |
| 3008 | Programming Aide                | entry level     |
| 3012 | Senior Engineer                 | technical       |
| 3014 | Software Engineer               | technical       |
| 3020 | R&D Engineer                    | technical       |
| 3027 | Engineering Specialist          | technical       |
| 3033 | Senior Engineer                 | technical       |
| 3035 | Senior Engineer                 | technical       |
| 3036 | *                               | *               |
| 3037 | Software Engineer               | technical       |
| 3038 | Software Engineer               | technical       |
| 3039 | *                               | *               |
| 3043 | Senior Engineer                 | technical       |
| 3044 | Software Engineer               | technical       |
| 3045 | *                               | *               |
| 3046 | Software Engineer               | technical       |
| 3047 | *                               | *               |
| 3048 | Software Engineer               | technical       |
| 3050 | R&D Engineer                    | technical       |
| 3053 | Senior Software Engineer        | technical       |
| 3059 | Senior Engineer                 | technical       |
| 3064 | Software Engineer               | technical       |
| 3066 | Senior Software Engineer        | technical       |
| 3067 | Software Engineer               | technical       |
| 3071 | Senior System Engineer          | technical       |
| 3073 | Software Engineer               | technical       |
| 3075 | Software Engineer               | technical       |
| 3076 | *                               | *               |
| 3081 | Software Engineer               | technical       |
| 3082 | Software Engineer               | technical       |
| 3084 | Software Engineer               | technical       |
| 3088 | Senior Engineering Specialist   | technical       |
| 3092 | Senior Engineer                 | technical       |

|      |                                |             |
|------|--------------------------------|-------------|
| 3099 | Advanced Research Engineer     | technical   |
| 3104 | Software Engineer              | technical   |
| 3106 | *                              | *           |
| 3107 | Engineer                       | technical   |
| 3110 | Senior Software Engineer       | technical   |
| 3115 | Software Engineer              | technical   |
| 3116 | Engineer                       | technical   |
| 3118 | Engineer                       | technical   |
| 3121 | Software Engineer              | technical   |
| 4001 | System Engineer                | technical   |
| 4009 | Consultant                     | technical   |
| 4012 | Principle Programmer Analyst   | technical   |
| 4013 | Software System Programmer     | technical   |
| 4018 | Electrical Engineer            | technical   |
| 4019 | Analyst                        | technical   |
| 4021 | Associate Applications Analyst | entry level |
| 4022 | Programmer                     | technical   |
| 4031 | Principle Programmer           | technical   |
| 4040 | System Programming Analyst     | technical   |
| 4053 | Programmer Analyst             | technical   |
| 4054 | Programmer Analyst             | technical   |
| 4057 | Programmer                     | technical   |
| 4059 | Programmer Analyst             | technical   |
| 4064 | Manager, Software Development  | middle mgmt |
| 4071 | Programmer                     | technical   |
| 407L | *                              | *           |
| 4077 | Engineer                       | technical   |
| 5003 | *                              | *           |
| 5006 | *                              | *           |
| 5009 | *                              | *           |
| 5010 | *                              | *           |
| 5014 | *                              | *           |
| 5015 | *                              | *           |
| 5019 | *                              | *           |
| 5020 | *                              | *           |
| 5022 | *                              | *           |
| 5025 | *                              | *           |
| 5027 | *                              | *           |
| 5028 | *                              | *           |
| 5033 | *                              | *           |
| 5039 | *                              | *           |
| 5040 | *                              | *           |
| 5041 | Programmer                     | technical   |
| 5042 | *                              | *           |
| 5044 | Programmer                     | technical   |
| 5046 | *                              | *           |
| 5050 | *                              | *           |
| 5054 | *                              | *           |
| 5055 | *                              | *           |
| 5056 | *                              | *           |
| 5059 | *                              | *           |
| 5062 | *                              | *           |
| 5064 | *                              | *           |

|      |                              |             |
|------|------------------------------|-------------|
| 5065 | *                            | *           |
| 5066 | *                            | *           |
| 5073 | *                            | *           |
| 5075 | *                            | *           |
| 5077 | *                            | *           |
| 5079 | *                            | *           |
| 6003 | General Engineer             | technical   |
| 6006 | Software Quality Assurance   | technical   |
| 6008 | Computer Scientist           | technical   |
| 7002 | Computer Specialist          | technical   |
| 7003 | Programmer                   | technical   |
| 7007 | Computer Specialist          | technical   |
| 7012 | Computer Specialist          | technical   |
| 7013 | Computer Specialist          | technical   |
| 7014 | Computer Specialist          | technical   |
| 7015 | Computer Specialist          | technical   |
| 8001 | Computer Systems Analyst     | technical   |
| 8002 | Software System Analyst      | technical   |
| 8003 | Associate Programmer Analyst | entry level |
| 8005 | Computer Specialist          | technical   |
| 9003 | Mathematician                | technical   |

## support manager

|      |                              |                 |
|------|------------------------------|-----------------|
| 1056 | Software Quality Assurance   | technical       |
| 1061 | Software Design Specialist   | technical       |
| 1083 | Software Design Specialist   | technical       |
| 1092 | Software Design Specialist   | technical       |
| 2019 | Project Engineer             | technical       |
| 3040 | *                            | *               |
| 3057 | Software Management          | high level mgmt |
| 4010 | Manager                      | middle mgmt     |
| 4017 | Line Manager                 | middle mgmt     |
| 4020 | Manager                      | middle mgmt     |
| 4046 | Software Development Manager | middle mgmt     |
| 4061 | Manager                      | middle mgmt     |
| 5035 | *                            | *               |
| 6002 | General Engineer             | technical       |

## technical manager

|      |                            |             |
|------|----------------------------|-------------|
| 1081 | *                          | *           |
| 1088 | Software Design Specialist | technical   |
| 1095 | Senior Programmer          | technical   |
| 1097 | Software Design Specialist | technical   |
| 1098 | Software Design Specialist | technical   |
| 1099 | Principle Engineer         | technical   |
| 2004 | Project Manager            | middle mgmt |
| 2010 | Data Processing Consultant | technical   |
| 2015 | Senior System Analyst      | technical   |
| 3034 | Advanced R&D Engineer      | technical   |
| 3055 | *                          | *           |
| 3056 | R&D Engineer               | technical   |

|      |                              |                 |
|------|------------------------------|-----------------|
| 3083 | Advanced R&D Engineer        | technical       |
| 3090 | Engineering Manager          | high level mgmt |
| 3095 | Engineering Specialist       | technical       |
| 3102 | Software Engineer            | technical       |
| 3103 | Engineering Specialist       | technical       |
| 4011 | System Analyst               | technical       |
| 4030 | Consultant                   | technical       |
| 4037 | Programmer                   | technical       |
| 4041 | Consultant                   | technical       |
| 4049 | Principle Programmer Analyst | technical       |
| 4055 | Senior Consultant            | technical       |
| 4066 | Programmer Analyst           | technical       |
| 5017 | *                            | *               |
| 5018 | *                            | *               |
| 5023 | *                            | *               |
| 5051 | *                            | *               |
| 5058 | *                            | *               |
| 7009 | Computer Specialist          | technical       |

Finally, the following table presents the clusters versus the nine companies, showing the internal distributions of job categories in those companies. The distribution seems consistent with the interpretation of the clusters aside from the total lack of managers in the public-sector companies.

|                        | company       |              |               |             |              |               |   |   |   |
|------------------------|---------------|--------------|---------------|-------------|--------------|---------------|---|---|---|
|                        | company three |              | company six   |             | company nine |               |   |   |   |
|                        | company two   | company five | company eight | company one | company four | company seven |   |   |   |
| administrative manager | 18            | 3            | 10            | 9           | 5            | 0             | 0 | 0 | 1 |
| development nonmanager | 22            | 10           | 47            | 35          | 36           | 6             | 7 | 1 | 3 |
| support nonmanager     | 25            | 3            | 42            | 18          | 32           | 3             | 7 | 4 | 1 |
| support manager        | 4             | 1            | 2             | 5           | 1            | 1             | 0 | 0 | 0 |
| technical manager      | 6             | 3            | 8             | 7           | 5            | 0             | 1 | 0 | 0 |

further classification of nonmanagement.--Although the above classification makes sense, it doesn't have very much to say about those people who will be most involved with Ada in the future, the programmer, the analyst, the support personnel, and so on. Given that these two clusters--support and development nonmanagement--are of such great interest, it may be advisable to cluster these individuals separately.

In order to get a clearer picture, but at the risk of losing information, the following clustering was done only on the principal duties and primary general activities of the two nonmanagement clusters. The results below show some distinct subcategories in these clusters. It should be borne in mind, however, that these clusters are probably less valid than the first set.

After clustering development employees (see Appendix 3 for the tree), five distinct clusters emerged based on median polish residual ranks. These clusters have the following populations:

|            | Count | Percent |
|------------|-------|---------|
| cluster1   | 9     | 5.4     |
| cluster3   | 17    | 10.1    |
| cluster4   | 131   | 78.0    |
| cluster7   | 6     | 3.6     |
| cluster153 | 5     | 3.0     |

The following median polish summarizes the properties of these clusters.

#### Analysis of Clustering Based on Primary General Activities and Principal Duties of Development Employees

##### Effects and Typicals after Polishing

|                         | effects |
|-------------------------|---------|
| common                  | 2.000   |
| cluster1                | 1.000   |
| cluster3                | 0.000   |
| cluster4                | 10.000  |
| cluster7                | 0.000   |
| cluster153              | -1.000  |
| ga program management   | -2.000  |
| ga sales marketing      | -2.000  |
| ga contract negotiation | -2.000  |
| ga formulating policy   | -1.000  |
| ga formulating strategy | -2.000  |
| ga preparing budgets    | 0.000   |
| ga technical management | 1.000   |
| ga interv personnel     | -1.000  |
| ga preparing schedules  | 1.000   |
| ga prep mgmt info rpts  | -2.000  |
| ga prep fid eng rpts    | -2.000  |

|                          |        |
|--------------------------|--------|
| ga other admin tasks     | -2.000 |
| ga tech advice to CCB    | -1.000 |
| ga maint config procs    | -2.000 |
| ga library control       | -2.000 |
| ga prep version audits   | -2.000 |
| ga quality assurance     | -2.000 |
| ga prep temp eng rpt     | -3.000 |
| ga prep technical rpts   | -1.000 |
| ga reading tech pubs     | 0.000  |
| ga reviewing tech work   | 3.000  |
| ga teaching              | 0.000  |
| ga updat training man    | -1.000 |
| ga being trained         | -1.000 |
| ga func system design    | 4.000  |
| ga func module design    | 5.000  |
| ga def glob data strucs  | 3.000  |
| ga def subsys interface  | 3.000  |
| ga def stuff for own use | 5.000  |
| ga coding                | 5.000  |
| ga debug or modifying    | 5.000  |
| ga prep sys req docs     | 1.000  |
| ga updat MIL STD specs   | -1.000 |
| ga prep redlined docs    | 1.000  |
| ga prep vers descr mnls  | -1.000 |
| ga prep user manuals     | 0.000  |
| ga documenting code      | 4.000  |
| ga defining test cases   | 1.000  |
| ga prep test drivers     | 0.000  |
| ga prep test plans       | 2.000  |
| ga hardware testing      | -2.000 |
| ga system software test  | 3.000  |
| ga def mod test cases    | 5.000  |
| ga software module test  | 5.000  |
| ga doc test results      | 0.000  |
| ga prep trouble reports  | 2.000  |
| ga anal trouble rpts     | 1.000  |
| pd conduct req review    | 1.000  |
| pd attend req review     | 4.000  |
| pd system analysis       | 4.000  |
| pd design                | 4.000  |
| pd conduct design review | 3.000  |
| pa attend design review  | 5.000  |
| pd code                  | 5.000  |
| pd conduct walkthroughs  | 4.000  |
| pd attend walkthroughs   | 4.000  |
| pd formulation of policy | 0.000  |
| pd formulating strategy  | 2.000  |
| pd technical management  | 2.000  |
| pd program management    | -2.000 |
| pd configuration mgmnt   | -2.000 |
| pd quality assurance     | -1.000 |
| pd monitoring contracts  | -2.000 |
| pd other development     | -2.000 |

|                          |        |
|--------------------------|--------|
| pd support analysis      | 5.000  |
| pd support design        | 3.000  |
| pd conduct support or    | 1.000  |
| pd attend support dr     | 2.000  |
| pd code patch            | 6.000  |
| pd conduct sup walkthru  | -1.000 |
| pd attend sup walkthru   | -1.000 |
| pd sup technical mgmt    | 1.000  |
| pd sup formulate policy  | -1.000 |
| pd sup program mgmt      | -2.000 |
| pd SCCB participation    | 1.000  |
| pd sup config management | -2.000 |
| pd sup quality assurance | -1.000 |
| pd sup monitor contracts | -2.000 |
| pd other support         | -2.000 |

## Residuals after Polishing

|            | ga contract negotiation | ga preparing budgets    |                         |         |        |        |        |        |                        |
|------------|-------------------------|-------------------------|-------------------------|---------|--------|--------|--------|--------|------------------------|
|            | ga sales marketing      | ga formulating strategy | ga interv personnel     |         |        |        |        |        |                        |
|            | ga program management   | ga formulating policy   | ga technical management |         |        |        |        |        |                        |
| cluster1   | 0.000                   | 1.000                   | 0.000                   | 1.000   | 0.000  | 0.000  | -3.000 | 0.000  |                        |
| cluster3   | 0.000                   | 0.000                   | 0.000                   | -1.000  | 0.000  | 0.000  | 0.000  | 0.000  |                        |
| cluster4   | -7.000                  | -10.000                 | -10.000                 | -8.000  | -1.000 | -4.000 | 16.000 | -8.000 |                        |
| cluster7   | 2.000                   | 0.000                   | 0.000                   | 0.000   | 2.000  | 1.000  | 2.000  | 0.000  |                        |
| cluster153 | 1.000                   | 1.000                   | 1.000                   | 1.000   | 2.000  | -1.000 | -1.000 | 2.000  |                        |
|            |                         |                         |                         |         |        |        |        |        | ga prep version audits |
|            |                         |                         |                         |         |        |        |        |        | ga prep fld eng rpts   |
|            |                         |                         |                         |         |        |        |        |        | ga maint config procs  |
|            |                         |                         |                         |         |        |        |        |        | ga prep mgmt info rpts |
|            |                         |                         |                         |         |        |        |        |        | ga tech advice to CCB  |
|            |                         |                         |                         |         |        |        |        |        | ga preparing schedules |
|            |                         |                         |                         |         |        |        |        |        | ga other admin tasks   |
|            |                         |                         |                         |         |        |        |        |        | ga library control     |
| cluster1   | -4.000                  | 0.000                   | -1.000                  | 0.000   | 0.000  | 0.000  | -1.000 | -1.000 |                        |
| cluster3   | 0.000                   | 0.000                   | 0.000                   | 1.000   | -1.000 | 0.000  | 0.000  | 0.000  |                        |
| cluster4   | 3.000                   | 0.000                   | -9.000                  | -10.000 | -2.000 | -7.000 | -7.000 | -8.000 |                        |
| cluster7   | 0.000                   | 3.000                   | 0.000                   | 0.000   | 1.000  | 0.000  | 0.000  | 0.000  |                        |
| cluster153 | -1.000                  | 1.000                   | 1.000                   | 3.000   | 2.000  | 3.000  | 3.000  | 2.000  |                        |
|            |                         |                         |                         |         |        |        |        |        | ga prep technical rpts |
|            |                         |                         |                         |         |        |        |        |        | ga updat training man  |
|            |                         |                         |                         |         |        |        |        |        | ga prep temp eng rpt   |
|            |                         |                         |                         |         |        |        |        |        | ga reviewing tech work |
|            |                         |                         |                         |         |        |        |        |        | ga quality assurance   |
|            |                         |                         |                         |         |        |        |        |        | ga reading tech pubs   |
|            |                         |                         |                         |         |        |        |        |        | ga teaching            |
|            |                         |                         |                         |         |        |        |        |        | ga being trained       |
| cluster1   | -1.000                  | 2.000                   | 0.000                   | 1.000   | -3.000 | -1.000 | 0.000  | 2.000  |                        |
| cluster3   | 0.000                   | 0.000                   | 0.000                   | 0.000   | -1.000 | 1.000  | 0.000  | 1.000  |                        |
| cluster4   | -4.000                  | -1.000                  | 0.000                   | 0.000   | 10.000 | -5.000 | -8.000 | -2.000 |                        |
| cluster7   | 2.000                   | 0.000                   | 2.000                   | 0.000   | 0.000  | 0.000  | -1.000 | 0.000  |                        |
| cluster153 | 4.000                   | 2.000                   | 0.000                   | 2.000   | 0.000  | 0.000  | 0.000  | 0.000  |                        |

|            |        |                          |                          |                         |                       |                         |                    |        |                                                |
|------------|--------|--------------------------|--------------------------|-------------------------|-----------------------|-------------------------|--------------------|--------|------------------------------------------------|
|            |        |                          |                          |                         |                       |                         |                    |        | ga prep sys rqt docs                           |
|            |        | ga def glob data strucs  |                          |                         |                       | ga coding               |                    |        |                                                |
|            |        | ga func module design    | ga def stuff for own use |                         |                       |                         |                    |        |                                                |
|            |        | ga func system design    | ga def subsys interface  | ga debug or modifying   |                       |                         |                    |        |                                                |
| cluster1   | -1.000 | 0.000                    | 0.000                    | 0.000                   | 0.000                 | 0.000                   | 0.000              | 0.000  |                                                |
| cluster3   | 4.000  | 6.000                    | 7.000                    | 8.000                   | 4.000                 | 6.000                   | 6.000              | -1.000 |                                                |
| cluster4   | 56.000 | 73.000                   | 43.000                   | 56.000                  | 58.000                | 61.000                  | 62.000             | 20.000 |                                                |
| cluster7   | 0.000  | -4.000                   | 0.000                    | -1.000                  | -1.000                | -5.000                  | -5.000             | 1.000  |                                                |
| cluster153 | -2.000 | -6.000                   | -4.000                   | -3.000                  | -6.000                | -6.000                  | -6.000             | -1.000 |                                                |
|            |        |                          |                          |                         |                       |                         |                    |        | ga prep vers descr mnls ga defining test cases |
|            |        | ga prep redired docs     |                          | ga documenting code     |                       |                         | ga prep test plans |        |                                                |
|            |        | ga updat MIL STD specs   | ga prep user manuals     |                         |                       | ga prep test drivers    |                    |        |                                                |
| cluster1   | 2.000  | -1.000                   | 2.000                    | 2.000                   | 2.000                 | 3.000                   | 3.000              | 1.000  |                                                |
| cluster3   | 0.000  | -1.000                   | -1.000                   | -2.000                  | 0.000                 | -1.000                  | -1.000             | 0.000  |                                                |
| cluster4   | -5.000 | 0.000                    | -4.000                   | 4.000                   | 49.000                | 25.000                  | 17.000             | 29.000 |                                                |
| cluster7   | 0.000  | 0.000                    | 0.000                    | 0.000                   | -5.000                | 0.000                   | 0.000              | -1.000 |                                                |
| cluster153 | 1.000  | 1.000                    | 2.000                    | 0.000                   | -3.000                | -2.000                  | -1.000             | -1.000 |                                                |
|            |        |                          |                          |                         |                       |                         |                    |        | ga def mod test cases ga prep trcuble reports  |
|            |        | ga system software test  |                          | ga doc test results     | pd conduct req review |                         |                    |        |                                                |
|            |        | ga hardware testing      | ga software module test  | ga anal trouble rpts    |                       |                         |                    |        |                                                |
| cluster1   | 2.000  | 0.000                    | 0.000                    | 0.000                   | 5.000                 | 1.000                   | 3.000              | -2.000 |                                                |
| cluster3   | 0.000  | 5.000                    | 3.000                    | 6.000                   | -1.000                | 0.000                   | 0.000              | 2.000  |                                                |
| cluster4   | 0.000  | 55.000                   | 32.000                   | 47.000                  | 15.000                | 13.000                  | 19.000             | 16.000 |                                                |
| cluster7   | 0.000  | -2.000                   | -7.000                   | -7.000                  | 0.000                 | -3.000                  | -2.000             | 0.000  |                                                |
| cluster153 | 2.000  | -3.000                   | -5.000                   | -5.000                  | 0.000                 | -1.000                  | 0.000              | -1.000 |                                                |
|            |        |                          |                          |                         |                       |                         |                    |        | pd attend walkthroughs                         |
|            |        | pd conduct design review |                          | pd conduct walkthroughs |                       |                         |                    |        |                                                |
|            |        | pd system analysis       |                          | pd attend design review |                       |                         |                    |        |                                                |
|            |        | pd attend req review     | pd design                |                         | pd code               |                         |                    |        |                                                |
| cluster1   | -3.000 | -2.000                   | 0.000                    | 0.000                   | 0.000                 | 0.000                   | 0.000              | 0.000  |                                                |
| cluster3   | 4.000  | 4.000                    | 11.000                   | 10.000                  | 9.000                 | 9.000                   | 9.000              | 10.000 |                                                |
| cluster4   | 35.000 | 56.000                   | 87.000                   | 39.000                  | 47.000                | 78.000                  | 28.000             | 31.000 |                                                |
| cluster7   | -2.000 | -1.000                   | -2.000                   | -3.000                  | -4.000                | -4.000                  | -5.000             | -4.000 |                                                |
| cluster153 | 0.000  | 0.000                    | 0.000                    | -2.000                  | -3.000                | -6.000                  | -4.000             | -4.000 |                                                |
|            |        |                          |                          |                         |                       |                         |                    |        | pd other development                           |
|            |        | pd technical management  |                          | pd quality assurance    |                       |                         |                    |        |                                                |
|            |        | pd formulating strategy  |                          | pd configuration mngmnt |                       |                         |                    |        |                                                |
|            |        | pd formulation of policy |                          | pd program management   |                       | pd monitoring contracts |                    |        |                                                |
| cluster1   | -2.000 | -3.000                   | -4.000                   | -1.000                  | 0.000                 | -2.000                  | -1.000             | -1.000 |                                                |
| cluster3   | 0.000  | 1.000                    | 0.000                    | 0.000                   | 1.000                 | 0.000                   | 0.000              | 0.000  |                                                |
| cluster4   | -8.000 | 0.000                    | 11.000                   | -5.000                  | -3.000                | -3.000                  | -4.000             | -9.000 |                                                |
| cluster7   | 0.000  | 0.000                    | 0.000                    | 0.000                   | 0.000                 | 0.000                   | 0.000              | 0.000  |                                                |
| cluster153 | 1.000  | 1.000                    | 1.000                    | 4.000                   | 4.000                 | 5.000                   | 6.000              | 1.000  |                                                |

|            | pd conduct support dr    | pd conduct sup walkthru |                        |        |                          |        |        |        |  |
|------------|--------------------------|-------------------------|------------------------|--------|--------------------------|--------|--------|--------|--|
|            | pd support design        | pd code patch           | pd sup technical mgmt  |        |                          |        |        |        |  |
|            | pd support analysis      | pd attend support dr    | pd attend sup walkthru |        |                          |        |        |        |  |
| cluster1   | 0.000                    | 0.000                   | 4.000                  | 4.000  | 0.000                    | 6.000  | 7.000  | -3.000 |  |
| cluster3   | 5.000                    | 11.000                  | 12.000                 | 10.000 | 6.000                    | 14.000 | 13.000 | 2.000  |  |
| cluster4   | 10.000                   | 2.000                   | -8.000                 | 0.000  | 0.000                    | -8.000 | -1.000 | -5.000 |  |
| cluster7   | -1.000                   | 0.000                   | -3.000                 | -4.000 | -6.000                   | -1.000 | 0.000  | 0.000  |  |
| cluster153 | -1.000                   | -1.000                  | 0.000                  | 0.000  | -6.000                   | 0.000  | 0.000  | 2.000  |  |
|            | pd sup config management |                         |                        |        |                          |        |        |        |  |
|            | pd SCCB participation    |                         |                        |        | pd other support         |        |        |        |  |
|            | pd sup program mgmt      |                         |                        |        | pd sup monitor contracts |        |        |        |  |
|            | pd sup formulate policy  |                         |                        |        | pd sup quality assurance |        |        |        |  |
| cluster1   | 0.000                    | -1.000                  | -2.000                 | 0.000  | -1.000                   | -1.000 | -1.000 | -1.000 |  |
| cluster3   | 0.000                    | 0.000                   | 0.000                  | 0.000  | 1.000                    | 0.000  | 0.000  | 0.000  |  |
| cluster4   | -8.000                   | -10.000                 | 0.000                  | -6.000 | -4.000                   | -5.000 | -5.000 | -5.000 |  |
| cluster7   | 0.000                    | 1.000                   | -3.000                 | 0.000  | 0.000                    | 0.000  | 0.000  | 0.000  |  |
| cluster153 | 2.000                    | 3.000                   | 2.000                  | 4.000  | 5.000                    | 5.000  | 5.000  | 1.000  |  |

**Categories with High Positive  
Residuals in Rank Order**

**Cluster 1**

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| ga being trained         | 1.000 | pd conduct req review    | 1.000 |
| ga updat MIL STD specs   | 1.000 | pd attend req review     | 1.000 |
| ga prep temp eng rpt     | 1.500 | pd system analysis       | 1.000 |
| ga sales marketing       | 1.500 | ga technical management  | 1.000 |
| ga hardware testing      | 1.500 | pd formulating strategy  | 1.000 |
| ga prep vers descr mnls  | 1.500 | ga preparing schedules   | 1.000 |
| ga formulating policy    | 1.500 | pd technical management  | 1.000 |
| ga prep test drivers     | 2.000 | ga reviewing tech work   | 1.000 |
| ga prep trouble reports  | 2.000 | ga prep redlined docs    | 1.500 |
| ga reading tech pubs     | 2.000 | ga prep fld eng rpts     | 2.000 |
| ga updat training man    | 2.000 | pd other development     | 2.000 |
| ga anal trouble rpts     | 2.000 | pd monitoring contracts  | 2.000 |
| pd conduct sup walkthru  | 2.000 | pd quality assurance     | 2.000 |
| pd attend support dr     | 2.000 | ga prep mgmt info rpts   | 2.000 |
| ga prep user manuals     | 2.000 | pd SCCB participation    | 2.000 |
| ga doc test results      | 2.000 | pd formulation of policy | 2.000 |
| pd conduct support dr    | 2.000 | pd sup quality assurance | 2.000 |
| pd attend sup walkthru   | 2.000 | pd sup monitor contracts | 2.000 |
| ga documenting code      | 2.000 | pd other support         | 2.000 |
| ga defining test cases   | 2.000 | ga library control       | 2.000 |
| ga prep test plans       | 2.000 | pd program management    | 2.000 |
| ga preparing budgets     | 2.500 | ga prep version audits   | 2.000 |
| pd code patch            | 2.500 | ga quality assurance     | 2.000 |
| ga prep sys rqt docs     | 3.000 | ga teaching              | 2.000 |
| ga coding                | 3.000 | pd sup program mgmt      | 2.000 |
| ga system software test  | 3.000 | pd sup technical mgmt    | 2.000 |
| ga def stuff for own use | 3.000 | ga func system design    | 2.000 |

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| ga contract negotiation  | 3.000 | ga formulating strategy  | 2.500 |
| ga debug or modifying    | 3.000 | pd configuration mngrnt  | 2.500 |
| ga def mod test cases    | 3.000 | pd support design        | 2.500 |
| pd conduct design review | 3.000 | pd design                | 2.500 |
| ga software module test  | 3.000 | ga def glob data strucs  | 2.500 |
| pd attend design review  | 3.000 | ga other admin tasks     | 2.500 |
| pd code                  | 3.000 | ga prep technical rpts   | 2.500 |
| pd conduct walkthroughs  | 3.000 | ga program management    | 2.500 |
| pd attend walkthroughs   | 3.000 | ga system software test  | 3.000 |
| pd support analysis      | 3.000 | pd attend design review  | 3.000 |
| ga def subsys interface  | 3.000 | ga software module test  | 3.000 |
| ga func module design    | 3.000 | pd conduct walkthroughs  | 3.000 |
| ga maint config procs    | 3.000 | ga prep sys rqt docs     | 3.000 |
| ga tech advice to CCB    | 3.000 | ga coding                | 3.000 |
| ga interv personnel      | 3.000 | pd attend walkthroughs   | 3.000 |
| pd sup formulate policy  | 3.000 | ga maint config procs    | 3.000 |
| pd sup config management | 3.000 | ga def subsys interface  | 3.000 |
|                          |       | ga tech advice to CCB    | 3.000 |
|                          |       | pd support analysis      | 3.000 |
|                          |       | pd code                  | 3.000 |
|                          |       | pd conduct design review | 3.000 |
|                          |       | ga func module design    | 3.000 |
|                          |       | pd sup formulate policy  | 3.000 |
|                          |       | ga def mod test cases    | 3.000 |
|                          |       | ga interv personnel      | 3.000 |
|                          |       | pd sup config management | 3.000 |
|                          |       | ga debug or modifying    | 3.000 |
|                          |       | ga contract negotiation  | 3.000 |
|                          |       | ga def stuff for own use | 3.000 |

## Cluster 3

|                          |       |                         |       |
|--------------------------|-------|-------------------------|-------|
| pd support design        | 1.000 | ga doc test results     | 1.000 |
| ga teaching              | 1.000 | ga prep user manuals    | 1.000 |
| pd conduct support dr    | 1.000 | ga prep test drivers    | 1.500 |
| pd attend support dr     | 1.000 | ga prep sys rqt docs    | 1.500 |
| pd code patch            | 1.000 | ga prep redlined docs   | 1.500 |
| pd attend sup walkthru   | 1.000 | ga formulating policy   | 2.000 |
| pd conduct sup walkthru  | 1.000 | ga reviewing tech work  | 2.000 |
| pd sup technical mgmt    | 1.500 | ga hardware testing     | 2.000 |
| pd formulating strategy  | 1.500 | ga defining test cases  | 2.000 |
| ga other admin tasks     | 2.000 | ga prep mgmt info rpts  | 2.000 |
| pd attend walkthroughs   | 2.000 | ga reading tech pubs    | 2.000 |
| pd sup quality assurance | 2.000 | ga tech advice to CCB   | 2.000 |
| ga updat training man    | 2.000 | ga prep vers descr mnls | 2.000 |
| ga being trained         | 2.000 | ga prep temp eng rpt    | 2.500 |
| ga func system desig     | 2.000 | ga prep technical rpts  | 2.500 |
| ga func module design    | 2.000 | ga anal trouble rpts    | 2.500 |
| ga def glob data strucs  | 2.000 | pd technical management | 2.500 |
| ga def subsys interface  | 2.000 | ga updat MIL STD specs  | 2.500 |
| ga def stuff for own use | 2.000 | ga formulating strategy | 2.500 |
| ga coding                | 2.000 | ga sales marketing      | 2.500 |
| ga debug or modifying    | 2.000 | ga program management   | 2.500 |

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| pd configuration mngmnt  | 2.000 | ga contract negotiation  | 3.000 |
| pd support analysis      | 2.000 | ga maint config procs    | 3.000 |
| ga system software test  | 2.000 | ga prep test plans       | 3.000 |
| ga def mod test cases    | 2.000 | ga prep trouble reports  | 3.000 |
| ga software module test  | 2.000 | ga quality assurance     | 3.000 |
| pd conduct walkthroughs  | 2.000 | ga documenting code      | 3.000 |
| pd conduct req review    | 2.000 | ga interv personnel      | 3.000 |
| pd attend req review     | 2.000 | ga technical management  | 3.000 |
| pd system analysis       | 2.000 | pd sup formulate policy  | 3.000 |
| pd design                | 2.000 | pd sup program mgmt      | 3.000 |
| pd conduct design review | 2.000 | pd sup config management | 3.000 |
| pd attend design review  | 2.000 |                          |       |
| pd code                  | 2.000 |                          |       |
| pd other development     | 2.500 |                          |       |
| pd SCCB participation    | 2.500 |                          |       |
| pd formulation of policy | 2.500 |                          |       |
| ga preparing budgets     | 2.500 |                          |       |
| pd other support         | 2.500 |                          |       |
| pd program management    | 2.500 |                          |       |
| pd quality assurance     | 2.500 |                          |       |
| pd monitoring contracts  | 2.500 |                          |       |
| pd sup monitor contracts | 2.500 |                          |       |
| ga prep version audits   | 2.500 |                          |       |
| ga library control       | 2.500 |                          |       |
| ga preparing schedules   | 2.500 |                          |       |
| ga prep fld eng rpts     | 2.500 |                          |       |
| ga prep test plans       | 3.000 |                          |       |
| ga documenting code      | 3.000 |                          |       |
| ga quality assurance     | 3.000 |                          |       |
| ga maint config procs    | 3.000 |                          |       |
| pd sup formulate policy  | 3.000 |                          |       |
| pd sup program mgmt      | 3.000 |                          |       |
| ga interv personnel      | 3.000 |                          |       |
| pd sup config management | 3.000 |                          |       |
| ga technical management  | 3.000 |                          |       |
| ga prep trouble reports  | 3.000 |                          |       |
| ga contract negotiation  | 3.000 |                          |       |

## Cluster 4

|                          |       |                         |       |
|--------------------------|-------|-------------------------|-------|
| ga technical management  | 1.000 | ga program management   | 1.000 |
| ga preparing schedules   | 1.000 | ga sales marketing      | 1.000 |
| ga reviewing tech work   | 1.000 | ga contract negotiation | 1.000 |
| ga func system design    | 1.000 | ga formulating policy   | 1.000 |
| ga func module design    | 1.000 | ga formulating strategy | 1.000 |
| ga def glob data strucs  | 1.000 | ga preparing budgets    | 1.000 |
| ga def subsys interface  | 1.000 | ga interv personnel     | 1.000 |
| ga def stuff for own use | 1.000 | pd attend sup walkthru  | 1.000 |
| ga coding                | 1.000 | ga prep fld eng rpts    | 1.000 |
| ga debug or modifying    | 1.000 | ga other admin tasks    | 1.000 |
| ga prep sys rqt docs     | 1.000 | ga tech advice to CCB   | 1.000 |
| pd system analysis       | 1.000 | ga maint config procs   | 1.000 |
| ga prep user manuals     | 1.000 | ga library control      | 1.000 |

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| ga documenting code      | 1.000 | ga prep version audits   | 1.000 |
| ga defining test cases   | 1.000 | ga quality assurance     | 1.000 |
| ga prep test drivers     | 1.000 | ga prep temp eng rpt     | 1.000 |
| ga prep test plans       | 1.000 | ga prep vers descr mnls  | 1.000 |
| ga system software test  | 1.000 | ga updat MIL STD specs   | 1.000 |
| ga def mod test cases    | 1.000 | ga teaching              | 1.000 |
| ga software module test  | 1.000 | ga updat training man    | 1.000 |
| ga doc test results      | 1.000 | ga being trained         | 1.000 |
| ga prep trouble reports  | 1.000 | pd other support         | 1.000 |
| ga anal trouble rpts     | 1.000 | pd sup monitor contracts | 1.000 |
| pd conduct req review    | 1.000 | pd sup quality assurance | 1.000 |
| pd attend req review     | 1.000 | pd formulation of policy | 1.000 |
| pd attend walkthroughs   | 1.000 | pd sup program mgmt      | 1.000 |
| pd design                | 1.000 | pd program management    | 1.000 |
| pd conduct design review | 1.000 | pd configuration mngmnt  | 1.000 |
| pd attend design review  | 1.000 | pd quality assurance     | 1.000 |
| pd code                  | 1.000 | pd monitoring contracts  | 1.000 |
| pd conduct walkthroughs  | 1.000 | pd other development     | 1.000 |
| pd technical management  | 1.000 | pd conduct support dr    | 1.000 |
| pd support analysis      | 1.000 | pd conduct sup walkthru  | 1.000 |
| pd support design        | 2.000 | pd sup technical mgmt    | 1.000 |
| ga prep redlined docs    | 2.500 | pd sup formulate policy  | 1.000 |
| pd code patch            | 2.500 | pd sup config management | 1.000 |
| pd SCCB participation    | 2.500 | ga prep mgmt info rpts   | 2.000 |
|                          |       | ga hardware testing      | 2.000 |
|                          |       | ga reading tech pubs     | 2.000 |
|                          |       | pd attend support dr     | 2.500 |
|                          |       | pd formulating strategy  | 2.500 |
|                          |       | ga prep technical rpts   | 2.500 |

## Cluster 7

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| ga preparing budgets     | 1.000 | ga anal trouble rpts     | 1.000 |
| ga prep mgmt info rpts   | 1.000 | ga prep trouble reports  | 1.000 |
| ga program management    | 1.000 | pd SCCB participation    | 1.000 |
| ga prep technical rpts   | 1.000 | ga def mod test cases    | 1.000 |
| ga formulating strategy  | 1.500 | pd attend support dr     | 1.000 |
| pd sup program mgmt      | 2.000 | ga documenting code      | 1.000 |
| ga technical management  | 2.000 | pd attend design review  | 1.000 |
| ga tech advice to CCB    | 2.000 | pd conduct design review | 1.000 |
| ga prep sys req docs     | 2.000 | pd conduct walkthroughs  | 1.000 |
| ga quality assurance     | 2.000 | pd design                | 1.000 |
| pd other development     | 2.500 | ga software module test  | 1.000 |
| ga preparing schedules   | 2.500 | pd support analysis      | 1.500 |
| pd sup mgt for contracts | 2.500 | ga prep test plans       | 1.500 |
| ga prep fld eng rpts     | 2.500 | pd attend walkthroughs   | 1.500 |
| pd program management    | 2.500 | pd code patch            | 1.500 |
| ga library control       | 2.500 | ga func module design    | 2.000 |
| ga prep version audits   | 2.500 | ga def subsys interface  | 2.000 |
| ga teaching              | 2.500 | ga def stuff for own use | 2.000 |
| ga prep redlined docs    | 2.500 | ga debug or modifying    | 2.000 |
| pd formulation of policy | 2.500 | pd system analysis       | 2.000 |
| pd monitoring contracts  | 2.500 | pd conduct support dr    | 2.000 |

Ada Workforce Survey

Page 81.

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| pd quality assurance     | 2.500 | pd code                  | 2.000 |
| ga reviewing tech work   | 2.500 | pd conduct sup walkthru  | 2.000 |
| pd other support         | 2.500 | ga coding                | 2.000 |
| pd conduct req review    | 3.000 | ga hardware testing      | 2.000 |
| ga defining test cases   | 3.000 | ga system software test  | 2.000 |
| ga maint config procs    | 3.000 | ga reading tech pubs     | 2.000 |
| ga prep vers descr mnls  | 3.000 | pd attend req review     | 2.000 |
| ga func system design    | 3.000 | ga updat training man    | 2.000 |
| ga interv personnel      | 3.000 | pd technical management  | 2.500 |
| pd sup technical mgmt    | 3.000 | pd configuration mgmnt   | 2.500 |
| pd sup formulate policy  | 3.000 | ga other admin tasks     | 2.500 |
| ga formulating policy    | 3.000 | pd formulating strategy  | 2.500 |
| pd sup config management | 3.000 | ga prep user manuals     | 2.500 |
| pd sup quality assurance | 3.000 | ga updat MIL STD specs   | 2.500 |
| ga contract negotiation  | 3.000 | ga def glob data strucs  | 2.500 |
| ga prep test drivers     | 3.000 | pd attend sup walkthru   | 2.500 |
|                          |       | ga being trained         | 2.500 |
|                          |       | ga prep temp eng rpt     | 2.500 |
|                          |       | pd support design        | 2.500 |
|                          |       | ga doc test results      | 2.500 |
|                          |       | ga sales marketing       | 2.500 |
|                          |       | ga interv personnel      | 3.000 |
|                          |       | ga contract negotiation  | 3.000 |
|                          |       | ga maint config procs    | 3.000 |
|                          |       | pd sup technical mgmt    | 3.000 |
|                          |       | ga prep test drivers     | 3.000 |
|                          |       | ga defining test cases   | 3.000 |
|                          |       | ga prep vers descr mnls  | 3.000 |
|                          |       | ga func system design    | 3.000 |
|                          |       | pd conduct req review    | 3.000 |
|                          |       | pd sup formulate policy  | 3.000 |
|                          |       | ga formulating policy    | 3.000 |
|                          |       | pd sup config management | 3.000 |
|                          |       | pd sup quality assurance | 3.000 |

Cluster 153

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| pd other support         | 1.000 | ga debug or modifying    | 1.000 |
| pd sup monitor contracts | 1.000 | ga system software test  | 1.000 |
| ga contract negotiation  | 1.000 | pd support design        | 1.000 |
| pd sup config management | 1.000 | ga defining test cases   | 1.000 |
| pd SCCB participation    | 1.000 | pd code                  | 1.000 |
| ga interv personnel      | 1.000 | ga func system design    | 1.000 |
| pd sup formulate policy  | 1.000 | ga func module design    | 1.000 |
| ga prep fld eng rpts     | 1.000 | ga def glob data strucs  | 1.000 |
| ga other admin tasks     | 1.000 | ga def subsys interface  | 1.000 |
| ga tech advice to CCB    | 1.000 | ga def stuff for own use | 1.000 |
| ga maint config procs    | 1.000 | ga coding                | 1.000 |
| ga library control       | 1.000 | ga prep test plans       | 1.500 |
| ga prep version audits   | 1.000 | pd code patch            | 1.500 |
| ga reading tech pubs     | 1.000 | ga prep test drivers     | 1.500 |
| ga quality assurance     | 1.000 | pd attend walkthroughs   | 1.500 |
| ga prep redlined docs    | 1.000 | pd support analysis      | 1.500 |

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| pd other development     | 1.000 | ga prep sys rot docs     | 1.500 |
| pd monitoring contracts  | 1.000 | ga preparing budgets     | 2.000 |
| pd sup program mgmt      | 1.000 | pd conduct walkthroughs  | 2.000 |
| pd configuration mngmnt  | 1.000 | ga def mod test cases    | 2.000 |
| pd program management    | 1.000 | pd conduct req review    | 2.000 |
| pd formulation of policy | 1.000 | ga software module test  | 2.000 |
| pd sup quality assurance | 1.000 | ga prep trouble reports  | 2.000 |
| pd quality assurance     | 1.000 | pd conduct design review | 2.000 |
| ga hardware testing      | 1.500 | ga technical management  | 2.000 |
| ga prep vers descr mnls  | 1.500 | ga preparing schedules   | 2.000 |
| pd formulating strategy  | 1.500 | pd attend design review  | 2.000 |
| pd sup technical mgmt    | 1.500 | ga documenting code      | 2.000 |
| ga prep temp eng rpt     | 1.500 | ga doc test results      | 2.500 |
| ga formulating policy    | 1.500 | pd attend support dr     | 2.500 |
| ga formulating strategy  | 1.500 | ga anal trouble rpts     | 2.500 |
| ga sales marketing       | 1.500 | ga prep user manuals     | 2.500 |
| ga program management    | 2.000 | ga being trained         | 2.500 |
| pd technical management  | 2.000 | ga prep technical rpts   | 2.500 |
| ga prep mgmt info rpts   | 2.000 | pd design                | 2.500 |
| ga updat MIL STD specs   | 2.000 | pd attend sup walkthru   | 2.500 |
| ga updat training man    | 2.000 | pd conduct support dr    | 3.000 |
| ga teaching              | 2.500 | pd system analysis       | 3.000 |
| ga reviewing tech work   | 2.500 | pd attend req review     | 3.000 |
| pd conduct support dr    | 3.000 | pd conduct sup walkthru  | 3.000 |
| pd conduct sup walkthru  | 3.000 |                          |       |
| pd system analysis       | 3.000 |                          |       |
| pd attend req review     | 3.000 |                          |       |

{insert analysis summary here}

The support employees were clustered (see Appendix 3) into three clusters, and these were distributed according to the following table:

|           | Count | Percent |
|-----------|-------|---------|
| cluster1  | 74    | 56.9    |
| cluster7  | 43    | 33.1    |
| cluster14 | 13    | 10.0    |

The following median polish summarizes the properties of these clusters.

#### Analysis .<sup>c</sup> Clustering Based on Primary General Activities and Principal Duties of Support Employees

##### Effects and Typicals after Polishing

|        | effects |
|--------|---------|
| common | 2.000   |

|                          |        |
|--------------------------|--------|
| cluster1                 | 1.000  |
| cluster7                 | 0.000  |
| cluster14                | -1.000 |
| ga program management    | -1.000 |
| ga sales marketing       | -1.000 |
| ga contract negotiation  | -2.000 |
| ga formulating policy    | -1.000 |
| ga formulating strategy  | -1.000 |
| ga preparing budgets     | 1.000  |
| ga technical management  | 2.000  |
| ga interv personnel      | -2.000 |
| ga preparing schedules   | -1.000 |
| ga prep mgmt info rpts   | 0.000  |
| ga prep fld eng rpts     | -2.000 |
| ga other admin tasks     | -1.000 |
| ga tech advice to CCB    | -1.000 |
| ga maint config procs    | -1.000 |
| ga library control       | -1.000 |
| ga prep version audits   | -2.000 |
| ga quality assurance     | 0.000  |
| ga prep temp eng rpt     | -1.000 |
| ga prep technical rpts   | 0.000  |
| ga reading tech pubs     | 0.000  |
| ga reviewing tech work   | 1.000  |
| ga teaching              | 1.000  |
| ga updat training man    | -1.000 |
| ga being trained         | 3.000  |
| ga func system design    | 13.000 |
| ga func module design    | 13.000 |
| ga def glob data strucs  | 1.000  |
| ga def subsys interface  | 1.000  |
| ga def stuff for own use | 3.000  |
| ga coding                | 2.000  |
| ga debug or modifying    | 5.000  |
| ga prep sys rqt docs     | 2.000  |
| ga updat MIL STD specs   | -2.000 |
| ga prep redlined docs    | 0.000  |
| ga prep vers descr mnls  | -1.000 |
| ga prep user manuals     | -1.000 |
| ga documenting code      | 2.000  |
| ga defining test cases   | 4.000  |
| ga prep test drivers     | 0.000  |
| ga prep test plans       | 4.000  |
| ga hardware testing      | -1.000 |
| ga system software test  | 8.000  |
| ga def mod test cases    | 0.000  |
| ga software module test  | 2.000  |
| ga doc test results      | 5.000  |
| ga prep trouble reports  | 5.000  |
| ga anal trouble rpts     | 3.000  |
| pd conduct req review    | 1.000  |
| pd attend req review     | 7.000  |

## Ada Workforce Survey

Page 84.

|                          |        |
|--------------------------|--------|
| pd system analysis       | 9.000  |
| pd design                | 11.000 |
| pd conduct design review | 1.000  |
| pd attend design review  | 6.000  |
| pd code                  | 7.000  |
| pd conduct walkthroughs  | 0.000  |
| pd attend walkthroughs   | 3.000  |
| pd formulation of policy | -1.000 |
| pd formulating strategy  | -1.000 |
| pd technical management  | 0.000  |
| pd program management    | -1.000 |
| pd configuration mgmnt   | -1.000 |
| pd quality assurance     | 0.000  |
| pd monitoring contracts  | 3.000  |
| pd other development     | -1.000 |
| pd support analysis      | 5.000  |
| pd support design        | 2.000  |
| pd conduct support dr    | 0.000  |
| pd attend support dr     | 5.000  |
| pd code patch            | 3.000  |
| pd conduct sup walkthru  | -1.000 |
| pd attend sup walkthru   | 2.000  |
| pd sup technical mgmt    | 0.000  |
| pd sup formulate policy  | -2.000 |
| pd sup program mgmt      | -2.000 |
| pd supp participation    | -1.000 |
| pd sup config management | 0.000  |
| pd sup quality assurance | 0.000  |
| pd sup monitor contracts | 1.000  |
| pd other support         | -1.000 |

## Residuals after Polishing

|           | ga contract negotiation | ga preparing budgets    |                         |        |        |        |        |        |                        |
|-----------|-------------------------|-------------------------|-------------------------|--------|--------|--------|--------|--------|------------------------|
|           | ga sales marketing      | ga formulating strategy | ga interv personnel     |        |        |        |        |        |                        |
|           | ga program management   | ga formulating policy   | ga technical management |        |        |        |        |        |                        |
| cluster1  | -2.000                  | -2.000                  | -1.000                  | -2.000 | -1.000 | -4.000 | -3.000 | -1.000 |                        |
| cluster7  | 0.000                   | 0.000                   | 0.000                   | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |                        |
| cluster14 | 1.000                   | 0.000                   | 1.000                   | 0.000  | 0.000  | 0.000  | 3.000  | 3.000  |                        |
|           |                         |                         |                         |        |        |        |        |        | ga prep version audits |
|           |                         |                         |                         |        |        |        |        |        | ga prep fld eng rpts   |
|           |                         |                         |                         |        |        |        |        |        | ga maint config procs  |
|           |                         |                         |                         |        |        |        |        |        | ga prep mgmt info rpts |
|           |                         |                         |                         |        |        |        |        |        | ga tech advice to CCCB |
|           |                         |                         |                         |        |        |        |        |        | ga preparing schedules |
|           |                         |                         |                         |        |        |        |        |        | ga other admin tasks   |
|           |                         |                         |                         |        |        |        |        |        | ga library control     |
| cluster1  | -1.000                  | .000                    | -1.000                  | -2.000 | -2.000 | -1.000 | -2.000 | 0.000  |                        |
| cluster7  | 0.000                   | 0.000                   | 0.000                   | 1.000  | 1.000  | 0.000  | 0.000  | 0.000  |                        |
| cluster14 | 2.000                   | 0.000                   | 1.000                   | 0.000  | 0.000  | 0.000  | 1.000  | 1.000  |                        |

|           |                          |         |                          |        |                         |                         |                  |        |  |
|-----------|--------------------------|---------|--------------------------|--------|-------------------------|-------------------------|------------------|--------|--|
|           | ga prep technical rpts   |         |                          |        | ga updat training man   |                         |                  |        |  |
|           | ga prep temp eng rpt     |         | ga reviewing tech work   |        |                         |                         |                  |        |  |
|           | ga quality assurance     |         | ga reading tech pubs     |        |                         | ga teaching             | ga being trained |        |  |
| cluster1  | -3.000                   | -1.000  | -1.000                   | 0.000  | 0.000                   | 0.000                   | -2.000           | 0.000  |  |
| cluster7  | 0.000                    | 1.000   | 2.000                    | 0.000  | -1.000                  | 1.000                   | 1.000            | 0.000  |  |
| cluster14 | 0.000                    | 0.000   | 0.000                    | 4.000  | 6.000                   | -2.000                  | 0.000            | -2.000 |  |
|           | ga def glob data strucs  |         |                          |        | ga coding               |                         |                  |        |  |
|           | ga func module design    |         | ga def stuff for own use |        |                         | ga prep sys rqt docs    |                  |        |  |
|           | ga func system design    |         | ga def subsys interface  |        |                         | ga debug or modifying   |                  |        |  |
| cluster1  | 0.000                    | 24.000  | 20.000                   | 24.000 | 36.000                  | 63.000                  | 63.000           | 2.000  |  |
| cluster7  | 0.000                    | 0.000   | -1.000                   | 0.000  | 0.000                   | 0.000                   | 0.000            | -2.000 |  |
| cluster14 | -9.000                   | -11.000 | 0.000                    | -1.000 | -3.000                  | -3.000                  | -6.000           | 0.000  |  |
|           | ga prep vers descr mnls  |         |                          |        | ga defining test cases  |                         |                  |        |  |
|           | ga prep redlined docs    |         | ga documenting code      |        |                         | ga prep test plans      |                  |        |  |
|           | ga updat MIL STD specs   |         | ga prep user manuals     |        |                         | ga prep test drivers    |                  |        |  |
| cluster1  | 0.000                    | 0.000   | 3.000                    | 6.000  | 31.000                  | 3.000                   | 3.000            | 6.000  |  |
| cluster7  | 0.000                    | -1.000  | 0.000                    | 0.000  | 0.000                   | 0.000                   | 0.000            | 0.000  |  |
| cluster14 | 2.000                    | 0.000   | 0.000                    | 0.000  | -2.000                  | -3.000                  | 0.000            | -3.000 |  |
|           | ga def mod test cases    |         | ga prep trouble reports  |        |                         |                         |                  |        |  |
|           | ga system software test  |         | ga doc test results      |        |                         | pd conduct req review   |                  |        |  |
|           | ga hardware testing      |         | ga software module test  |        |                         | ga anal trouble rpts    |                  |        |  |
| cluster1  | 0.000                    | 19.000  | 24.000                   | 39.000 | 7.000                   | 1.000                   | 7.000            | 0.000  |  |
| cluster7  | 0.000                    | 0.000   | 0.000                    | 0.000  | 0.000                   | 0.000                   | 0.000            | 0.000  |  |
| cluster14 | 1.000                    | -6.000  | 0.000                    | -1.000 | -6.000                  | -4.000                  | 0.000            | 4.000  |  |
|           | pd attend walkthroughs   |         |                          |        |                         |                         |                  |        |  |
|           | pd conduct design review |         |                          |        | pd conduct walkthroughs |                         |                  |        |  |
|           | pd system analysis       |         | pd attend design review  |        |                         |                         |                  |        |  |
|           | pd attend req review     |         | pd design                |        |                         | pd code                 |                  |        |  |
| cluster1  | 0.000                    | 0.000   | 43.000                   | 19.000 | 30.000                  | 58.000                  | 9.000            | 15.000 |  |
| cluster7  | -5.000                   | 1.000   | 0.000                    | -3.000 | -1.000                  | 0.000                   | 0.000            | -3.000 |  |
| cluster14 | 3.000                    | 0.000   | -8.000                   | 0.000  | 0.000                   | -7.000                  | 0.000            | 0.000  |  |
|           | pd technical management  |         |                          |        | pd quality assurance    |                         |                  |        |  |
|           | pd formulating strategy  |         | pd configuration mngmnt  |        |                         | pd other development    |                  |        |  |
|           | pd formulation of policy |         | pd program management    |        |                         | pd monitoring contracts |                  |        |  |
| cluster1  | -2.000                   | 0.000   | -1.000                   | -2.000 | 0.000                   | -2.000                  | -3.000           | 0.000  |  |
| cluster7  | 0.000                    | -1.000  | 0.000                    | 0.000  | 1.000                   | 2.000                   | 0.000            | 3.000  |  |
| cluster14 | 2.000                    | 0.000   | 4.000                    | 0.000  | 0.000                   | 0.000                   | 1.000            | 0.000  |  |

pd conduct support dr   pd conduct sup walkthru  
 pd support design   pd code patch   pd sup technical mgmt  
 pd support analysis   pd attend support cr   pd attend sup walkthru

|           |        |        |        |        |        |       |        |        |
|-----------|--------|--------|--------|--------|--------|-------|--------|--------|
| cluster1  | 1.000  | 13.000 | 0.000  | 0.000  | 19.000 | 1.000 | 0.000  | 0.000  |
| cluster7  | 0.000  | 0.000  | 1.000  | 0.000  | 0.000  | 0.000 | 0.000  | -2.000 |
| cluster14 | -1.000 | -2.000 | -1.000 | -2.000 | -3.000 | 0.000 | -2.000 | 1.000  |

pd sup config management  
 pd SCCB participation   pd other support  
 pd sup program mgmt   pd sup monitor contracts  
 pd sup formulate policy   pd sup quality assurance

|           |        |        |        |       |        |        |        |
|-----------|--------|--------|--------|-------|--------|--------|--------|
| cluster1  | -1.000 | -1.000 | -1.000 | 0.000 | +3.000 | -4.000 | -1.000 |
| cluster7  | 0.000  | 0.000  | 0.000  | 0.000 | 0.000  | 5.000  |        |
| cluster14 | 1.000  | 2.000  | 0.000  | 0.000 | 0.000  | 0.000  |        |

**Categories with High Positive  
Residuals in Rank Order**

**Categories with High Negative  
Residuals in Rank Order**

**Cluster 1**

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| pd conduct walkthroughs  | 1.000 | ga program management    | 1.000 |
| pd code patch            | 1.000 | ga sales marketing       | 1.000 |
| pd conduct sup walkthru  | 1.000 | ga contract negotiation  | 1.000 |
| pd support design        | 1.000 | ga formulating policy    | 1.000 |
| ga func module design    | 1.000 | ga formulating strategy  | 1.000 |
| ga def glob data strucs  | 1.000 | ga preparing budgets     | 1.000 |
| ga def subsys interface  | 1.000 | ga technical management  | 1.000 |
| ga def stuff for own use | 1.000 | ga interv personnel      | 1.000 |
| ga coding                | 1.000 | ga preparing schedules   | 1.000 |
| ga debug or modifying    | 1.000 | ga prep mgmt info rpts   | 1.000 |
| ga prep sys rqst docs    | 1.000 | ga prep fid eng rpts     | 1.000 |
| pd support analysis      | 1.000 | ga other admin tasks     | 1.000 |
| ga prep vers descr mnis  | 1.000 | ga tech advice to CCB    | 1.000 |
| ga prep user man .ls     | 1.000 | ga maint config procs    | 1.000 |
| ga documenting code      | 1.000 | ga library control       | 1.000 |
| ga defining test cases   | 1.000 | ga quality assurance     | 1.000 |
| ga prep test drivers     | 1.000 | pd other support         | 1.000 |
| ga prep test plans       | 1.000 | ga prep temp eng rpt     | 1.000 |
| ga system software test  | 1.000 | ga prep technical rpts   | 1.000 |
| ga lcf mod test cases    | 1.000 | pd SCCB participation    | 1.000 |
| ga software module test  | 1.000 | pd sup program mgmt      | 1.000 |
| ga doc test results      | 1.000 | pd sup formulate policy  | 1.000 |
| ga prep . public reports | 1.000 | pd formulation of policy | 1.000 |
| ga anal trouble rpts     | 1.000 | pd quality assurance     | 1.000 |
| pd attend walkthroughs   | 1.000 | pd program management    | 1.000 |
| pd design                | 1.000 | pd technical management  | 1.000 |
| pd conduct design review | 1.000 | ga updat training man    | 1.000 |
| pd attend design review  | 1.000 | pd monitoring contracts  | 1.000 |
| pd code                  | 1.000 | pd sup monitor contracts | 1.000 |
| pd attend support cr     | 1.500 | pd sup quality assurance | 1.000 |
| pd attend sup walkthru   | 1.500 | ga area version audits   | 1.500 |

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| pd formulating strategy  | 1.500 | pd configuration mngmnt  | 1.500 |
| ga prep redlined docs    | 1.500 | ga updat MIL STD specs   | 1.500 |
| ga func system design    | 1.500 | pd system analysis       | 1.500 |
| ga being trained         | 1.500 | pd other development     | 1.500 |
| ga reviewing tech work   | 2.000 | ga reading tech pubs     | 1.500 |
| ga teaching              | 2.000 | ga hardware testing      | 1.500 |
| pd sup technical mgmt    | 2.000 | pd conduct req review    | 1.500 |
| pd attend req review     | 2.000 | pd conduct support dr    | 2.000 |
| pd conduct support dr    | 2.000 | pd sup technical mgmt    | 2.000 |
| pd sup config management | 2.000 | ga teaching              | 2.000 |
|                          |       | ga reviewing tech work   | 2.000 |
|                          |       | pd sup config management | 2.000 |
|                          |       | pd attend req review     | 2.000 |

## Cluster 7

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| pd other support         | 1.000 | ga prep sys rqt docs     | 1.000 |
| ga prep technical rpts   | 1.000 | pd attend req review     | 1.000 |
| ga prep temp eng rpt     | 1.000 | pd formulating strategy  | 1.000 |
| ga updat training man    | 1.000 | pd sup technical mgmt    | 1.000 |
| pd system analysis       | 1.000 | pd conduct design review | 1.000 |
| ga tech advice to CCB    | 1.000 | ga def glob data strucs  | 1.000 |
| pd conduct support dr    | 1.000 | ga prep redlined docs    | 1.000 |
| pd other development     | 1.000 | pd attend design review  | 1.000 |
| pd quality assurance     | 1.000 | ga reviewing tech work   | 1.000 |
| pd configuration mngmnt  | 1.000 | pd attend walkthroughs   | 1.000 |
| ga other admin tasks     | 1.000 | ga prep version audits   | 1.500 |
| ga teaching              | 1.000 | pd conduct walkthroughs  | 1.500 |
| pd program management    | 1.500 | ga def mod test cases    | 1.500 |
| ga preparing budgets     | 1.500 | ga prep user manuals     | 1.500 |
| ga formulating strategy  | 1.500 | pd conduct req review    | 1.500 |
| ga func system design    | 1.500 | ga prep vers descr mnls  | 1.500 |
| ga formulating policy    | 1.500 | ga anal trouble rpts     | 1.500 |
| pd sup quality assurance | 1.500 | ga reading tech pubs     | 1.500 |
| ga sales marketing       | 1.500 | ga prep test drivers     | 1.500 |
| ga quality assurance     | 1.500 | pd conduct sup walkthru  | 1.500 |
| ga being trained         | 1.500 | ga updat MIL STD specs   | 1.500 |
| ga prep mgmt info rpts   | 1.500 | ga hardware testing      | 1.500 |
| pd sup monitor contracts | 1.500 | ga debug or modifying    | 2.000 |
| ga maint config procs    | 1.500 | ga def stuff for own use | 2.000 |
| pd SCCB participation    | 1.500 | ga def subsys interface  | 2.000 |
| pd attend sup walkthru   | 1.500 | ga prep test plans       | 2.000 |
| pd attend support dr     | 1.500 | ga library control       | 2.000 |
| ga def subsys interface  | 2.000 | ga prep fld eng rpts     | 2.000 |
| ga debug or modifying    | 2.000 | ga func module design    | 2.000 |
| ga documenting code      | 2.000 | ga technical management  | 2.000 |
| ga prep test plans       | 2.000 | ga contract negotiation  | 2.000 |
| ga software module test  | 2.000 | ga program management    | 2.000 |
| ga doc test results      | 2.000 | ga doc test results      | 2.000 |
| ga prep trouble reports  | 2.000 | pd design                | 2.000 |
| ga def stuff for own use | 2.000 | ga prep trouble reports  | 2.000 |
| pd design                | 2.000 | ga software module test  | 2.000 |
| pd code                  | 2.000 | ga system software test  | 2.000 |

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| ga library control       | 2.000 | pd code                  | 2.000 |
| pd formulation of policy | 2.000 | ga defining test cases   | 2.000 |
| ga prep fld eng rpts     | 2.000 | ga documenting code      | 2.000 |
| ga preparing schedules   | 2.000 | pd formulation of policy | 2.000 |
| pd technical management  | 2.000 | ga coding                | 2.000 |
| pd monitoring contracts  | 2.000 | pd technical management  | 2.000 |
| ga interv personnel      | 2.000 | pd monitoring contracts  | 2.000 |
| pd support analysis      | 2.000 | pd support analysis      | 2.000 |
| pd support design        | 2.000 | pd support design        | 2.000 |
| ga technical management  | 2.000 | pd code patch            | 2.000 |
| ga system software test  | 2.000 | ga preparing schedules   | 2.000 |
| pd code patch            | 2.000 | ga interv personnel      | 2.000 |
| ga defining test cases   | 2.000 | pd sup formulate policy  | 2.000 |
| pd sup formulate policy  | 2.000 | pd sup program mgmt      | 2.000 |
| pd sup program mgmt      | 2.000 | pd sup config management | 2.000 |
| ga coding                | 2.000 |                          |       |
| pd sup config management | 2.000 |                          |       |
| ga contract negotiation  | 2.000 |                          |       |
| ga func module design    | 2.000 |                          |       |
| ga program management    | 2.000 |                          |       |

## Cluster 14

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| ga program management    | 1.000 | ga doc test results      | 1.000 |
| pd conduct req review    | 1.000 | ga software module test  | 1.000 |
| ga contract negotiation  | 1.000 | pd attend sup walkthru   | 1.000 |
| ga reviewing tech work   | 1.000 | pd code                  | 1.000 |
| ga reading tech pubs     | 1.000 | ga teaching              | 1.000 |
| pd sup program mgmt      | 1.000 | pd code patch            | 1.000 |
| ga technical management  | 1.000 | ga being trained         | 1.000 |
| ga interv personnel      | 1.000 | ga func system design    | 1.000 |
| ga preparing schedules   | 1.000 | ga func module design    | 1.000 |
| pd sup formulate policy  | 1.000 | pd attend support dr     | 1.000 |
| ga prep fld eng rpts     | 1.000 | ga def subsys interface  | 1.000 |
| pd sup technical mgmt    | 1.000 | ga def stuff for own use | 1.000 |
| pd monitoring contracts  | 1.000 | ga coding                | 1.000 |
| ga updat MIL STC specs   | 1.000 | ga debug or modifying    | 1.000 |
| ga library control       | 1.000 | pd conduct support dr    | 1.000 |
| ga prep version audits   | 1.000 | pd support analysis      | 1.000 |
| pd technical management  | 1.000 | pd support design        | 1.000 |
| pd formulation of policy | 1.000 | ga documenting code      | 1.000 |
| pd attend req review     | 1.000 | ga defining test cases   | 1.000 |
| ga hardware testing      | 1.000 | pd design                | 1.000 |
| pd formulating strategy  | 1.500 | ga prep test plans       | 1.000 |
| ga formulating strategy  | 1.500 | ga system software test  | 1.000 |
| ga formulating policy    | 1.500 | ga prep trouble reports  | 1.000 |
| ga sales marketing       | 1.500 | pd configuration mngmnt  | 1.500 |
| ga maint config procs    | 1.500 | pd other development     | 1.500 |
| ga prep redlined docs    | 1.500 | ga def mod test cases    | 1.500 |
| pd program management    | 1.500 | ga anal trouble rpts     | 1.500 |
| pd sup monitor contracts | 1.500 | pd system analysis       | 1.500 |
| pd sup quality assurance | 1.500 | ga prep test drivers     | 1.500 |
| pd SCCC participation    | 1.500 | ga prep user manuals     | 1.500 |

|                          |       |                          |       |
|--------------------------|-------|--------------------------|-------|
| ga preparing budgets     | 1.500 | ga prep vers descr mnls  | 1.500 |
| ga prep mgmt info rpts   | 1.500 | pd conduct sup walkthru  | 1.500 |
| ga quality assurance     | 1.500 | pd conduct walkthroughs  | 1.500 |
| ga def glob data strucs  | 2.000 | ga other admin tasks     | 2.000 |
| pd attend design review  | 2.000 | ga tech advice to CCB    | 2.000 |
| ga prep sys rqt docs     | 2.000 | pd quality assurance     | 2.000 |
| pd quality assurance     | 2.000 | pd sup config management | 2.000 |
| ga tech advice to CCB    | 2.000 | pd attend design review  | 2.000 |
| ga other admin tasks     | 2.000 | pd conduct design review | 2.000 |
| ga prep temp eng rpt     | 2.000 | ga prep sys rqt docs     | 2.000 |
| ga prep technical rpts   | 2.000 | ga def glob data strucs  | 2.000 |
| pd attend walkthroughs   | 2.000 | ga updat training man    | 2.000 |
| pd sup config management | 2.000 | ga prep technical rpts   | 2.000 |
| pd conduct design review | 2.000 | ga prep temp eng rpt     | 2.000 |
| ga updat training man    | 2.000 | pd attend walkthroughs   | 2.000 |
| pd other support         | 2.000 | pd other support         | 2.000 |

Cluster 1 of the development employees is not strong on much except training and is weak on technical management and administrative activities and duties. Cluster 3 is strong on support design and coding and weak on document and report preparation. These would be support designers. Cluster 4 is strong on design, coding, and software work, weak on administrative and management activities and sales. These would be programmer analysts. Cluster 7 is strong on budgets, reports, and various management activites. It is weak on design and coding. These would be lower-level administrators. Finally, cluster 153 is strong on technical management, contracts, administration, and sales and weak on software work. These would be lower-level technical managment.

Support cluster 1 is strong on walkthroughs, analysis, testing, and coding; it is weak on management, sales, and technical management. These would be the maintenance/testing people. Cluster 7 is strong on most support duties and quality assurance and weak on reviews, walkthroughs, and testing. These would be general support personnel. Finally, cluster 14 is strong on management and administrative activities but weak on software related duties and activities. These would be low-level support administrators.

Conclusions

Two general conclusions come out of the single variable descriptions and the two variable tables. First, there is a general tendency in the sample toward development as opposed to support. Secondly, people who have been in the field longer tend to know more and tend to be in higher positions. The first conclusion is moderately interesting, the second hardly surprising.

Experience with Ada seems so minimal at the current time that not much can be said about the influences of the various methods of training or exposure. Design of Ada training programs should be targeted at the appropriate lack of knowledge in the industry as currently structured.

The classification itself makes sense when compared to various parts of the data. But the classification does little more than restate the obvious in that it says people should be classified on the basis of whether they are in support or development or whether they are managers, administrators, or others. The methods used might allow a more complete specification based on particular job outputs, general activities, or principal duties. This specificity is somewhat counterintuitive given the clustering level; that is, it doesn't really make sense to talk about the cluster categories in anything but the most general terms (such as support management).

Lastly, it might well be that either the people responding to the survey or the survey analyst or both have used the inherent classifications (support, development, design methodologies, programming concepts, and so on) to interpret the survey. This might explain the tendency to see things tending to divide up that way. On the other hand, the categories between these concepts are numerous enough and the variation extensive enough to believe that specific conclusions are relatively free from interpretive bias. But at the vaguest levels of

generalization--particularly the interpretation of the cluster categories--the reduction in content might well be sufficient to allow the inherent categories to reemerge, rendering the end product circular. This circularity might have been avoided by a survey format that imposed fewer assumptions about the world; on the other hand, the assumptions that were present are not unreasonable. But the reader should bear in mind the underlying bias due to the survey format when interpreting the results.

## Appendix I

## Datasets, Attributes, and Possible Values

| Attribute                         | Codes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Dataset Ada training</b>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ada training                      | other<br>seminar<br>in house course<br>videotape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| id                                | informal training<br>programmed learning<br>college course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>Dataset conference role</b>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| conference role                   | other<br>speaker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| id                                | attendee<br>organizer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>Dataset experience area</b>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| experience area                   | other<br>educational<br>military                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| id                                | statistical<br>embedded computer sys<br>commercial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>Dataset general activities</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| activity                          | program management<br>prep test drivers<br>documenting code<br>prep version descr mnls<br>updating MIL STD specs<br>debugging or modifying<br>def stuff for own use<br>def global data strucs<br>func system design<br>updating training manual<br>reviewing tech work<br>prep technical rpts<br>quality assurance<br>library control<br>tech advice to CCB<br>preparing fld eng rpts<br>preparing schedules<br>technical management<br>formulating strategy<br><br>prep test plans<br>defining test cases<br>prep user manuals<br>prep redlined docs<br>prep sys rqst docs<br>coding<br>def subsystem interface<br>func module design<br>being trained<br>teaching<br>reading tech pubs<br>prep temp eng change rpt<br>prep version audits<br>maint config procs<br>other admin tasks<br>preparing mgmt info rpts<br>interviewing personnel<br>preparing budgets<br>formulating policy |

|            |                                                                                                                           |                                                                                            |
|------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|            | contract negotiation<br>hardware testing<br>defining mod test cases<br>documenting test results<br>analyzing trouble rpts | sales marketing<br>system software test<br>software module testing<br>prep trouble reports |
| id         |                                                                                                                           |                                                                                            |
| importance | primary<br>marginal                                                                                                       | secondary                                                                                  |

## Dataset job history

|                          |                                                                                   |                                                                                     |
|--------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Ada involvement          | Ada not known<br>had orientation to Ada<br>other                                  | heard of Ada<br>Ada training                                                        |
| company                  | company ten<br>company eight<br>company six<br>company four<br>company two<br>yes | company nine<br>company seven<br>company five<br>company three<br>company one<br>no |
| conference attendance    |                                                                                   |                                                                                     |
| date of survey           |                                                                                   |                                                                                     |
| id                       |                                                                                   |                                                                                     |
| job level                | high level mgmt<br>technical                                                      | middle mgmt<br>entry level                                                          |
| job title                |                                                                                   |                                                                                     |
| published or presented   | yes                                                                               | no                                                                                  |
| rank                     |                                                                                   |                                                                                     |
| sector                   |                                                                                   |                                                                                     |
| technical reading extent | public<br>regularly<br>only as my job demands<br>other                            | private<br>occasionally<br>never                                                    |
| technical societies      |                                                                                   |                                                                                     |
| years of involvement     | no<br>less than two years<br>five to ten years                                    | yes<br>two to five years<br>over ten years                                          |
| years worked development | less than a year<br>three to five years                                           | one to three years<br>over five years                                               |
| years worked support     | less than a year<br>three to five years                                           | one to three years<br>over five years                                               |

## Dataset job output

|            |                                                                                                                                                                                                                        |                                                                                                                                                                            |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| id         | STR analyses<br>redlined documentation<br>support test drivers<br>updated MIL STD spec<br>maintain config procs<br>updated user manuals<br>automated build systems<br>version descrip docs<br>field engineering report | temp ECPs<br>support test plans<br>tech advice to CCB<br>library control<br>updated training manuals<br>STRs<br>management info reports<br>version audits<br>support other |
| job output |                                                                                                                                                                                                                        |                                                                                                                                                                            |

|                         |                    |
|-------------------------|--------------------|
| development other       | correspondence     |
| interview sheets        | status reports     |
| milestone charts        | analysis reports   |
| cost data               | management plans   |
| integration plans       | test plans         |
| design specs            | requirements specs |
| prog design language    | code               |
| test drivers            | data flow diagrams |
| hard soft tradeoff eval |                    |

## Dataset methodologies

|             |                          |                          |
|-------------|--------------------------|--------------------------|
| id          |                          |                          |
| knowledge   | used frequently          | used moderately          |
|             | know concept             | heard of                 |
| methodology | other Ada concepts       | Ada mutual recursion     |
|             | Ada information hiding   | Ada context spec         |
|             | Ada elaboration          | Ada instantiation        |
|             | Ada generic prog units   | Ada exceptions           |
|             | Ada separate compilation | Ada entry families       |
|             | Ada entries              | Ada rendezvous           |
|             | Ada task types           | Ada tasking              |
|             | Ada visibility           | Ada short circuiting     |
|             | Ada scope                | Ada private types        |
|             | Ada packages             | Ada overloading          |
|             | Ada access types         | Ada allocators           |
|             | Ada aggregates           | Ada slices               |
|             | Ada rec types discrim    | Ada record types         |
|             | Ada fixed pt types       | Ada float point types    |
|             | Ada real types           | Ada derived types        |
|             | Ada subtypes             | Ada user defined types   |
|             | Ada enumeration types    | other prog concepts      |
|             | version number           | parameter binding        |
|             | loop invariants          | generics                 |
|             | data abstraction         | type conversion          |
|             | strong typing            | concurrency              |
|             | recursion                | conditional statements   |
|             | iteration                | static dynamic nesting   |
|             | name visibility          | name scoping             |
|             | data encapsulation       | importing exporting name |
|             | other prog constructs    | task routines            |
|             | exception handlers       | comments                 |
|             | goto statements          | stubs                    |
|             | clusters modules package | return statements        |
|             | functions                | procedures               |
|             | exit statements          | loop for while until     |
|             | if then else statements  | case statements          |
|             | blocks                   | reserved words           |
|             | formal actual params     | local variables          |
|             | global variables         | object type dcls         |
|             | variant records          | records                  |
|             | ranges                   | typed pointers           |

|                         |                        |
|-------------------------|------------------------|
| pointers                | user defined types     |
| fixed point types       | floating point types   |
| enumeration types       | PSL PLA                |
| SADT                    | SREM                   |
| HIP0                    | Jackson Design         |
| Structured Design       | Warnier Orr Design     |
| N S Chapin Chart        | Beamson Tables         |
| Program Design language | Structured Programming |
| Structured Walkthroughs | Top Down Design        |
| Top Down Testing        | Bottom Up Design       |
| Bachman Diagramming     | Entity Diagrams        |
| Data Abstraction        | other methodology      |

**Dataset principal duties**

| <b>id</b>               |                          |                          |
|-------------------------|--------------------------|--------------------------|
| <b>principal duties</b> |                          |                          |
|                         | other support            | sup monitoring contracts |
|                         | sup quality assurance    | sup config management    |
|                         | SCCB participation       | sup program management   |
|                         | sup policy formulation   | sup technical management |
|                         | attend sup walkthrough   | conduct sup walkthrough  |
|                         | code patch               | attend support dr        |
|                         | conduct support dr       | support design           |
|                         | support analysis         | other development        |
|                         | monitoring contracts     | quality assurance        |
|                         | configuration management | program management       |
|                         | technical management     | formulation of strategy  |
|                         | formulation of policy    | attend walkthroughs      |
|                         | conduct walkthroughs     | code                     |
|                         | attend design review     | conduct design review    |
|                         | design                   | system analysis          |
|                         | attend req review        | conduct req review       |

**Dataset programming languages**

| <b>id</b>          |           |                      |
|--------------------|-----------|----------------------|
| <b>language</b>    |           |                      |
|                    | Other     | APL                  |
|                    | PPL       | PROTEGE              |
|                    | SAS       | GPSS                 |
|                    | ECL       | SNOBOL               |
|                    | LISP      | Ada                  |
|                    | FORTH     | MMP                  |
|                    | XPL       | SIMULA               |
|                    | MODULA    | RATFOR WATFOR WATFIV |
|                    | ALGOL     | BASIC                |
|                    | PASCAL    | PLI                  |
|                    | ASSEMBLER | COBOL                |
|                    | FORTRAN   | C                    |
|                    | CMS 2     | JOVIAL               |
| <b>proficiency</b> | first     | second               |

Appendix 2

Bibliography

1. Donald R. McNeill. Interactive Data Analysis: A Practical Primer. John Wiley and Sons, 1978.
2. John W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.
3. Paul F. Velleman and David C. Hoaglin. Applications, Basics, and Computing of Exploratory Data Analysis. Duxbury Press, 1981.

Appendix 3  
Cluster Trees

Cluster Tree Based on General  
Activities, Principal Duties, and Job Outputs

266  
 0.807 47 4064-  
 0.711 329 5050-  
 0.886 71 1096-  
 0.772 35 1053-  
 0.649 338 5059-  
 0.798 285 5006-  
 0.719 344 5066-  
 0.772 33 1050-  
 0.553 381 7013  
 0.640 386 6003-  
 0.719 383 7015-  
 0.667 360 6003-  
 0.579 276 4074-  
 0.719 384 2001-  
 0.833 221 4018-  
 0.658 391 9003-  
 0.754 222 4019-  
 0.693 233 4031-  
 0.763 176 3088-  
 0.877 160 3071-  
 0.614 31 1048-  
 0.675 363 6006-  
 0.807 95 2023-  
 0.728 385 8002-  
 0.833 370 7002-  
 0.851 333 5054-  
 0.813 371 7003-  
 0.877 52 1076-  
 0.772 279 4077-  
 0.947 63 1087-  
 0.904 39 1057-  
 0.868 216 4012-  
 0.877 170 3082-  
 0.947 30 1046-  
 0.789 294 5015-  
 0.910 293 5014-  
 0.921 29 1045-  
 0.693 357 5079-  
 0.860 334 5055-  
 0.912 126 3036-  
 0.719 382 7014-  
 0.789 388 8005-  
 0.851 380 7012-  
 0.746 205 4001-  
 0.851 375 7007-  
 0.860 22 1038-  
 0.491 289 5010-  
 0.772 242 4040-  
 0.877 188 3104-  
 0.719 190 3107-  
 0.789 298 5019-  
 0.642 125 3035-  
 0.754 342 5064-  
 0.877 91 2017-  
 0.579 197 3115-  
 0.719 301 5022-  
 0.781 351 5073-  
 0.868 340 5062-  
 0.842 355 5077-

1094-2  
 4064-  
 1065-

D-100

|       |     |         |         |
|-------|-----|---------|---------|
| 0.904 | 320 |         | 5041-/- |
| 0.860 | 134 |         | 3045-/- |
| 0.825 | 319 |         | 5040-/- |
| 0.904 | 78  |         | 2003-/- |
| 0.640 | 224 |         | 4021-/- |
| 0.895 | 225 |         | 4022-/- |
| 0.939 | 217 |         | 4013-/- |
| 0.842 | 213 |         | 4009-/- |
| 0.789 | 299 |         | 5020-/- |
| 0.877 | 256 |         | 4054-/- |
| 0.921 | 169 |         | 3076-/- |
| 0.904 | 165 |         | 5033-/- |
| 0.842 | 312 |         | 3092-/- |
| 0.930 | 180 |         | 3044-/- |
| 0.877 | 306 |         | 5027-/- |
| 0.921 | 40  |         | 1058-/- |
| 0.877 | 32  |         | 1049-/- |
| 0.921 | 117 |         | 1043-/- |
| 0.781 | 172 |         | 5046-/- |
| 0.851 | 133 |         | 5003-/- |
| 0.921 | 40  |         | 4057-/- |
| 0.921 | 255 |         | 4053-/- |
| 0.842 | 261 |         | 4059-/- |
| 0.877 | 335 |         | 5056-/- |
| 0.912 | 198 |         | 3116-/- |
| 0.772 | 273 |         | 4071-/- |
| 0.895 | 53  |         | 1077-/- |
| 0.842 | 323 |         | 5044-/- |
| 0.895 | 28  |         | 1044-/- |
| 0.825 | 189 |         | 3106-/- |
| 0.860 | 148 |         | 3059-/- |
| 0.939 | 109 |         | 3014-/- |
| 0.904 | 98  |         | 3003-/- |
| 0.877 | 307 |         | 5028-/- |
| 0.930 | 288 |         | 5009-/- |
| 0.904 | 37  |         | 1055-/- |
| 0.939 | 19  |         | 1026-/- |
| 0.789 | 318 |         | 5039-/- |
| 0.851 | 155 |         | 3066-/- |
| 0.912 | 353 |         | 5075-/- |
| 0.921 | 139 |         | 3050-/- |
| 0.886 | 25  |         | 1041-/- |
| 0.825 | 304 | 5025-/- |         |
| 0.956 | 136 | 3047-/- |         |
| 0.868 | 192 | 3110-/- |         |
| 0.912 | 153 | 3064-/- |         |
| 0.921 | 14  | 1017-/- |         |
| 0.693 | 343 |         | 5065-/- |
| 0.825 | 185 |         | 3099-/- |
| 0.860 | 162 |         | 3073-/- |
| 0.904 | 321 |         | 5042-/- |
| 0.912 | 132 |         | 3043-/- |
| 0.789 | 200 |         | 3121-/- |
| 0.807 | 203 |         | 1010-/- |
| 0.868 | 7   |         | 3118-/- |
| 0.754 | 12  |         | 1015-/- |
| 0.842 | 142 |         | 3053-/- |

1094-2

D-101



0.684 86  
 0.728 313  
 0.877 68  
 0.798 119  
 0.842 61  
 0.763 228  
 0.895 26  
 0.833 231  
 0.860 116  
 0.877 18  
 0.930 16  
 0.781 149  
 0.842 59  
 0.877 41  
 0.921 160  
 0.939 1  
 0.649 274  
 0.772 207  
 0.825 252  
 0.895 48  
 0.737 309  
 0.877 108  
 0.904 184  
 0.930 104  
 0.816 389  
 0.842 17  
 0.719 147  
 0.737 8  
 0.763 23  
 0.561 81  
 0.675 354  
 0.737 308  
 0.807 246  
 0.754 254  
 0.816 249  
 0.842 15  
 0.825 97  
 0.895 4  
 0.896 62  
 0.693 240  
 0.754 45  
 0.816 44  
 0.667 41  
 0.851 36  
 0.781 2  
 0.298 373  
 0.500 387  
 0.816 378  
 0.789 374  
 0.723 364  
 0.868 362  
 0.763 90  
 0.632 361  
 0.860 85  
 0.684 236  
 0.711 331

1094-2

D-103



0.825 83  
 0.772 82  
 0.377 218  
 0.807 196  
 0.833 167  
 0.746 352  
 0.781 202  
**I-1094-2**  
 0.833 151  
 0.658 260  
 0.781 195  
 0.758 193  
 0.711 166  
 0.746 174  
 0.842 114  
 0.596 327  
 0.719 247  
 0.798 46  
 0.535 310  
 0.798 339  
 0.851 115  
 0.702 272  
 0.763 77  
 0.798 46  
 0.868 182  
 0.816 94  
 0.746 219  
 0.877 191  
 0.921 99  
 0.737 241  
 0.868 182  
 0.816 94  
 0.746 219  
 0.816 141  
 0.842 175  
 0.895 51  
 0.693 275  
 0.763 42  
 0.702 143  
 0.833 179  
 0.868 50  
 0.772 199  
 0.816 311  
 0.842 34  
 0.649 348  
 0.812 138  
 0.816 269  
 0.896 100  
 0.789 181  
 0.833 163  
 0.930 161  
 0.904 238  
 0.921 69  
 0.868 245  
 0.912 55  
 0.746 349  
 0.868 154  
 0.825 350  
 0.910 346  
 0.868 347  
 0.912 328  
 0.895 280  
 0.842 345  
 0.860 230

83  
 4015-  
 3114-  
 3078-  
 5074-  
 3120-  
 3062-  
 4058-  
 3113-  
 3111-  
 3077-  
 3086-  
 3024-  
 5048-  
 4045-  
 5060-  
 3025-  
 2002-  
 4070-  
 1064-  
 5031-  
 3015-  
 3109-  
 3004-  
 4039-  
 3094-  
 2020-  
 4016-  
 3052-  
 4073-  
 1060-  
 3054-  
 3091-  
 1074-  
 3117-  
 5032-  
 1052-  
 5070-  
 3049-  
 4067-  
 3093-  
 3074-  
 3072-  
 4036-  
 1094-  
 4043-  
 1079-  
 5071-  
 3065-  
 5072-  
 5068-  
 5069-  
 5049-  
 5001-  
 4028-  
 5067-

**D-104**

|       |     |
|-------|-----|
| 0.886 | 102 |
| 0.789 | 264 |
| 0.877 | 227 |
| 0.860 | 317 |
| 0.930 | 105 |
| 0.816 | 277 |
| 0.825 | 324 |
| 0.877 | 258 |
| 0.904 | 157 |
| 0.842 | 87  |
| 0.754 | 392 |
| 0.877 | 121 |
| 0.798 | 390 |
| 0.868 | 295 |
| 0.886 | 290 |
| 0.816 | 204 |
| 0.904 | 106 |
| 0.868 | 56  |
| 0.816 | 316 |
| 0.921 | 267 |
| 0.886 | 234 |
| 0.842 | 206 |
| 0.895 | 54  |
| 0.702 | 292 |
| 0.904 | 261 |
| 0.868 | 194 |
| 0.798 | 237 |
| 0.860 | 356 |
| 0.860 | 356 |
| 0.895 | 131 |
| 0.842 | 113 |
| 0.746 | 158 |
| 0.868 | 96  |
| 0.789 | 303 |
| 0.851 | 11  |
| 0.570 | 212 |
| 0.807 | 210 |
| 0.675 | 122 |
| 0.851 | 120 |
| 0.816 | 111 |
| 0.754 | 322 |
| 0.868 | 300 |
| 0.895 | 208 |
| 0.798 | 341 |
| 0.833 | 75  |
| 0.860 | 76  |
| 0.807 | 92  |
| 0.816 | 367 |
| 0.886 | 49  |
| 0.614 | 152 |
| 0.825 | 286 |
| 0.746 | 394 |
| 0.711 | 271 |
| 0.746 | 284 |
| 0.746 | 287 |
| 0.904 | 140 |
| 0.798 | 250 |
| 0.877 | 177 |
| 0.851 | 66  |
| 0.711 | 315 |

|       |       |
|-------|-------|
| 3007- | 4062- |
| 4024- | 4075- |
| 3010- | 5045- |
| 3068- | 4056- |
| 2013- | 3068- |
| 9004- | 9002- |
| 3031- | 5016- |
| 5011- | 5011- |
| 3122- | 3122- |
| 3011- | 3011- |
| 1080- | 1080- |
| 5037- | 5037- |
| 4065- | 4032- |
| 4002- | 4002- |
| 1078- | 1078- |
| 5013- | 5002- |
| 3112- | 3112- |
| 4035- | 4035- |
| 3042- | 3042- |
| 3023- | 3023- |
| 3069- | 3069- |
| 3001- | 3001- |
| 5024- | 5024- |
| 1014- | 1014- |
| 4008- | 4008- |
| 4006- | 4006- |
| 3032- | 3032- |
| 3030- | 3030- |
| 3018- | 3018- |
| 5043- | 5043- |
| 5021- | 5021- |
| 4004- | 4004- |
| 5063- | 5063- |
| 1100- | 1100- |
| 1084- | 1084- |
| 4069- | 4069- |
| 9006- | 9006- |
| 2018- | 2018- |
| 6010- | 6010- |
| 1072- | 1072- |
| 5007- | 5007- |
| 3063- | 3063- |
| 5005- | 5005- |
| 3051- | 3051- |
| 4048- | 4048- |
| 3089- | 3089- |
| 1091- | 1091- |
| 5036- | 5036- |

1094-2

D-105



D-106

**Cluster Tree Based on Principal Duties  
and Primary General Activities for Development Employees**



|       |     |           |        |
|-------|-----|-----------|--------|
| 0.899 | 69  | 3093-.    |        |
| 0.924 | 45  | 3028-'--' |        |
| 0.835 | 103 | 4056-.    |        |
| 0.911 | 71  | 3109-.    |        |
| 0.937 | 34  | 3004-'--' |        |
| 0.671 | 114 | 4075-.    |        |
| 0.873 | 67  | 3089-'--' |        |
| 0.848 | 147 | 5071-.    |        |
| 0.911 | 68  | 3091-.    |        |
| 0.949 | 66  | 3087-'--' |        |
| 0.722 | 146 |           | 5070-. |
| 0.747 | 121 | 5008-.    |        |
| 0.861 | 120 | 5007-'--' |        |
| 0.797 | 119 | 5005-.    |        |
| 0.886 | 51  | 3051-'--' |        |
| 0.823 | 79  | 3122-.    |        |
| 0.873 | 108 | 4065-.    |        |
| 0.937 | 16  | 1080-'--' |        |
| 0.620 | 87  | 4016-.    |        |
| 0.873 | 40  | 3015-'--' |        |
| 0.747 | 97  | 4039-.    |        |
| 0.797 | 19  | 1090-     |        |
| 0.797 | 132 | 5038-.    |        |
| 0.911 | 13  | 1075-'--' |        |
| 0.835 | 131 | 5037-.    |        |
| 0.873 | 8   | 1052-'--' |        |
| 0.684 | 129 | 5032-.    |        |
| 0.835 | 133 | 5043-.    |        |
| 0.861 | 53  | 3054-'--' |        |
| 0.759 | 130 | 5036-.    |        |
| 0.873 | 101 | 4048-.    |        |
| 0.937 | 35  | 3005-.    |        |
| 0.962 | 15  | 1079-'--' |        |
| 0.886 | 125 | 5021-.    |        |
| 0.949 | 47  | 3031-'--' |        |
| 0.924 | 21  | 4004-.    |        |
| 0.962 | 39  | 3011-'--' |        |
| 0.899 | 165 | 9002-.    |        |
| 0.924 | 14  | 1078-.    |        |
| 0.949 | 12  | 1074-'--' |        |
| 0.810 | 76  | 3117-.    |        |
| 0.848 | 9   | 1060-'--' |        |
| 0.709 | 112 | 4070-.    |        |
| 0.348 | 89  | 4024-.    |        |
| 0.557 | 38  | 3010-'--' |        |
| 0.873 | 52  | 3052-.    |        |
| 0.949 | 32  | 2020-     |        |
| 0.937 | 23  | 2001-     |        |
| 0.797 | 55  | 3063-.    |        |
| 0.861 | 105 | 4060-.    |        |
| 0.873 | 99  | 4043-.    |        |
| 0.949 | 102 | 4051-.    |        |
| 0.975 | 22  | 1100-'--' |        |

|       |     |              |
|-------|-----|--------------|
| 0.911 | 6   | 1029- - - -' |
| 0.772 | 57  | 3068- .      |
| 0.911 | 56  | 3065- - - -. |
| 0.873 | 113 | 4073- .      |
| 0.924 | 33  | 3001- - - -. |
| 0.797 | 134 | 5045- .      |
| 0.873 | 124 | 5016- - - -. |
| 0.835 | 150 | 5078- .      |
| 0.949 | 96  | 4036- .      |
| 0.975 | 80  | 4002- - - -. |
| 0.924 | 109 | 4067- .      |
| 0.949 | 18  | 1084- .      |
| 0.873 | 4   | 1014- - - -. |
| 0.481 | 163 |              |
| 0.709 | 164 | 8004- .      |
| 0.810 | 162 | 7010- .      |
| 0.646 | 152 | 6004- .      |
| 0.595 | 158 | 7001- .      |
| 0.759 | 115 | 4076- .      |
| 0.823 | 93  | 4033- .      |
| 0.696 | 30  | 2016- .      |
| 0.772 | 155 | 6009- .      |
| 0.886 | 41  | 3018- .      |
| 0.810 | 111 | 4069- .      |
| 0.835 | 24  | 2002- .      |
| 0.608 | 135 | 5047- .      |
| 0.835 | 151 | 5080- .      |
| 0.949 | 140 | 5057- .      |
| 0.861 | 118 | 5004- - - -. |
| 0.671 | 138 | 5052- .      |
| 0.848 | 36  | 3006- .      |
| 0.848 | 25  | 2007- .      |
| 0.722 | 168 | 9006- .      |
| 0.835 | 157 | 6011- .      |
| 0.785 | 27  | 2011- .      |
| 0.797 | 139 | 5053- .      |
| 0.873 | 127 | 5026- .      |
| 0.899 | 11  | 1072- - -.   |
| 0.873 | 167 | 9005- .      |
| 0.911 | 2   | 1004- - - -. |
| 0.342 | 136 | 5048- .      |
| 0.810 | 74  | 3113- - - -. |
| 0.734 | 104 | 4058- .      |
| 0.785 | 29  | 2014- - - -. |
| 0.646 | 128 | 5031- .      |
| 0.772 | 75  | 3114- - - -. |
| 0.722 | 63  | 3080- .      |
| 0.886 | 88  | 4023- .      |
| 0.899 | 61  | 3077- - - -. |
| 0.810 | 65  | 3086- .      |
| 0.962 | 62  | 3078- - - -. |
| 0.835 | 141 | 5060- .      |
| 0.848 | 149 | 5074- .      |

|       |     |              |     |              |
|-------|-----|--------------|-----|--------------|
| 0.886 | 86  | 4015-.       | --- | '            |
| 0.899 | 100 | 4045-.       | -   | '            |
| 0.924 | 17  | 1082-        | --- | '            |
| 0.734 | 3   |              |     | 1012-        |
| 0.544 | 107 |              |     | 4063-.       |
| 0.684 | 84  |              |     | 4007-.       |
| 0.785 | 43  |              |     | 3024- -----, |
| 0.557 | 82  |              |     | 4005-.       |
| 0.785 | 64  |              |     | 3085- -----. |
| 0.696 | 78  | 3120-.       |     |              |
| 0.911 | 54  | 3062- -----. |     |              |
| 0.835 | 44  | 3025- -----. |     |              |
| 0.633 | 1   |              |     | 1001- -----. |

**Cluster Tree Based on Principal Duties  
and Primary General Activities for Support Employees**



0.975 86 5003- |---.  
0.975 80 4057- '|  
0.949 71 4013-|---.  
0.899 55 3081-|  
0.949 40 3044-|-'  
0.975 11 1046-|---'  
0.937 7 1041-|---.  
0.532 77 4040-.  
0.848 64 3115-|---.  
0.722 110 5064-.  
0.899 92 5019-|---.  
0.785 62 3107-|---.  
0.620 41 3045-|  
0.785 56 3084-|---.  
0.861 52 3073-|---.  
0.911 114 5075-|---.  
0.949 45 3050-|---.  
0.810 59 3099-|  
0.873 83 4071-|---.  
0.899 63 3110-|---.  
0.924 47 3059-|---.  
0.835 60 3104-|---.  
0.861 97 5028-|---.  
0.937 39 3043-|---.  
0.709 115 5077-|  
0.924 113 5073-|---.  
0.873 94 5022-|---.  
0.911 102 5042-|---.  
0.975 65 3116-|---.  
0.949 95 5025-|---.  
0.975 48 3064-|---.  
0.835 75 4022-|  
0.937 24 2003-|---.  
0.886 32 3027-|---.  
0.924 54 3076-|---.  
0.949 16 1055-|---.  
0.797 100 5040-|---.  
0.899 9 1044-|---.  
0.848 103 5044-|---.  
0.886 2 1010-|---.  
0.734 89 5010-|  
0.899 76 4031-|---.  
0.924 18 1058-|---.  
0.335 67 3121-|---.  
0.557 31 3020-|---.  
0.899 33 3033-|---.  
0.924 29 3012-|---.  
0.873 66 3118-|---.  
0.962 50 3067-|---.  
0.937 49 3066-|---.  
0.899 44 3048-|---.  
0.937 53 3075-|---.  
0.962 36 3037-|---.

Ada Workforce Survey

Page 111.

|       |     |        |    |        |    |
|-------|-----|--------|----|--------|----|
| 0.911 | 34  | 3035-. | -' |        |    |
| 0.937 | 46  | 3053-. | -' |        |    |
| 0.987 | 21  | 1077-. | -' |        |    |
| 0.962 | 13  | 1049-. | -' |        |    |
| 0.810 | 119 |        |    | 6008-. | -' |
| 0.848 | 12  |        |    | 1048-. | -' |
| 0.873 | 3   |        |    | 1015-. | -' |
| 0.747 | 93  |        |    | 5020-. | -' |
| 0.848 | 88  |        |    | 5009-. | -' |
| 0.924 | 78  |        |    | 4053-. | -' |
| 0.848 | 107 |        |    | 5056-. | -' |
| 0.937 | 111 |        |    | 5065-. | -' |
| 0.975 | 81  |        |    | 4059-. | -' |
| 0.873 | 96  |        |    | 5027-. | -' |
| 0.924 | 69  |        |    | 4009-. | -' |
| 0.899 | 61  |        |    | 3106-. | -' |
| 0.937 | 27  |        |    | 3003-. | -' |
| 0.949 | 5   |        |    | 1026-. | -' |
| 0.785 | 98  |        |    | 5033-. | -' |
| 0.899 | 58  |        |    | 3092-. | -' |
| 0.937 | 42  |        |    | 3046-. | -' |
| 0.848 | 6   |        |    | 1040-. | -' |
| 0.886 | 109 |        |    | 5062-. | -' |
| 0.937 | 30  |        |    | 3014-. | -' |
| 0.911 | 101 |        |    | 5041-. | -' |
| 0.975 | 4   |        |    | 1017-. | -' |
| 0.797 | 43  |        |    | 3047-. | -' |
| 0.873 | 1   |        |    | 1007-. | -' |

Supplement to Work Force Survey Report:  
Subclusters of Development and System Integration Categories

1094-2

D-114

Job Titles for the Development Clusters

| Respondent | Job Title          | Position in Hierarchy |
|------------|--------------------|-----------------------|
| cluster1   |                    |                       |
| 1001       | Consultant         | technical             |
| 3062       | *                  | *                     |
| 3025       | Senior Engineer    | technical             |
| 4007       | Staff Consultant   | technical             |
| 3024       | R&D Engineer       | technical             |
| 4005       | Programmer Analyst | technical             |
| 4063       | *                  | *                     |
| 3120       | Programmer         | technical             |
| 3085       | Senior Engineer    | technical             |

cluster 153

|      |                     |           |
|------|---------------------|-----------|
| 7006 | Computer Specialist | technical |
| 7005 | Computer Specialist | technical |
| 7004 | Computer Specialist | technical |
| 6005 | *                   | *         |
| 6007 | Computer Scientist  | technical |

1094-2

D-116

cluster3

|      |                            |             |
|------|----------------------------|-------------|
| 3078 | R&D Engineer               | technical   |
| 1082 | Senior Software Engineer   | technical   |
| 4045 | Senior Analyst             | technical   |
| 5031 | *                          | *           |
| 5048 | *                          | *           |
| 5074 | Programmer                 | technical   |
| 5060 | *                          | *           |
| 3077 | Senior Software Engineer   | technical   |
| 3113 | Software Engineer          | technical   |
| 4058 | *                          | *           |
| 4023 | Senior System Analyst      | technical   |
| 3114 | Software R&D Engineer      | technical   |
| 3080 | Senior Engineer            | technical   |
| 2014 | Supervising System Analyst | middle_mgmt |
| 1012 | Software Design Specialist | technical   |
| 3086 | *                          | *           |
| 4015 | Senior Programmer Analyst  | technical   |

cluster4

|      |                                 |             |
|------|---------------------------------|-------------|
| 2007 | Senior Scientific Programmer    | technical   |
| 2016 | Scientific Programmer           | technical   |
| 1080 | Senior Software Engineer        | technical   |
| 2018 | Principle Scientific Programmer | technical   |
| 2020 | Principle Scientific Programmer | technical   |
| 1094 | Software Engineer               | technical   |
| 1074 | Software Design Specialist      | technical   |
| 7010 | Computer Specialist             | technical   |
| 3015 | Engineer                        | technical   |
| 3018 | Senior Engineer                 | technical   |
| 1016 | Software Engineer               | technical   |
| 1090 | System Engineering Specialist   | technical   |
| 3001 | Junior Programmer               | entry_level |
| 3028 | Digital Signal Processing       | technical   |
| 3030 | *                               | *           |
| 3031 | R&D Engineer                    | technical   |
| 3032 | Engineer                        | technical   |
| 5067 | *                               | *           |
| 3049 | Junior Programmer               | entry_level |
| 3051 | Advanced Development Engineer   | technical   |
| 3052 | Engineering Specialist          | technical   |
| 3054 | *                               | *           |
| 3042 | R&D Engineer                    | technical   |
| 3063 | Programmer Analyst              | technical   |
| 3065 | Programmer                      | technical   |
| 3068 | R&D Engineer                    | technical   |
| 3069 | Senior Engineer                 | technical   |
| 3072 | Software Engineer               | technical   |
| 3074 | Engineer                        | technical   |
| 3011 | Software R&D Engineer           | technical   |
| 3010 | Communications Software         | technical   |
| 3007 | Advanced R&D Engineer           | technical   |
| 3006 | Supervisor                      | middle_mgmt |
| 3005 | Senior Software Engineer        | technical   |
| 3087 | R&D Engineer                    | technical   |
| 3089 | Research Engineer               | technical   |
| 3091 | Software Engineer               | technical   |
| 3093 | Engineering Specialist          | technical   |
| 2011 | Data Processing Consultant      | technical   |
| 3109 | R&D Engineer                    | technical   |
| 3111 | Senior Engineer                 | technical   |
| 2002 | Programmer                      | technical   |
| 2001 | Senior Programmer               | technical   |
| 1100 | Engineer                        | technical   |
| 3117 | Engineering Specialist          | technical   |
| 3119 | R&D Engine.                     | technical   |
| 1084 | Software Design Specialist      | technical   |
| 3122 | *                               | *           |
| 1075 | Software Design Specialist      | technical   |
| 4004 | Programmer Analyst              | technical   |
| 1072 | *                               | *           |
| 4039 | Consultant                      | technical   |

|      |                                 |             |
|------|---------------------------------|-------------|
| 1029 | Software Design Specialist      | technical   |
| 4008 | *                               | *           |
| 1014 | Senior Software Engineer        | technical   |
| 4016 | Senior Programmer Analyst       | technical   |
| 1004 | Engineering Software Supervisor | middle_mgmt |
| 4024 | Programmer Analyst              | technical   |
| 4027 | Senior GS Analyst               | technical   |
| 4028 | Principle Programmer Analyst    | technical   |
| 4032 | Analyst                         | technical   |
| 4034 | Government Program Analyst      | technical   |
| 4035 | Government Program Analyst      | technical   |
| 4036 | Principle Programmer Analyst    | technical   |
| 8004 | Team Leader                     | middle_mgmt |
| 7011 | Computer Specialist             | technical   |
| 4043 | *                               | *           |
| 4002 | Programmer                      | technical   |
| 4048 | Principle Programmer Analyst    | technical   |
| 4051 | Firmware Design Engineer        | technical   |
| 4056 | System Analyst                  | technical   |
| 3112 | Consultant                      | technical   |
| 4060 | Principle Engineer              | technical   |
| 4062 | Senior Programmer Analyst       | technical   |
| 3094 | Software Engineer               | technical   |
| 4065 | Programmer                      | technical   |
| 4067 | Programmer Analyst              | technical   |
| 1091 | System Design Specialist        | technical   |
| 4069 | Associate Programmer Analyst    | entry_level |
| 4070 | Programmer                      | technical   |
| 4073 | Programmer Analyst              | technical   |
| 4075 | Senior Engineer                 | technical   |
| 4076 | Quality Assurance Engineer      | technical   |
| 5001 | *                               | *           |
| 5002 | *                               | *           |
| 5004 | *                               | *           |
| 5005 | *                               | *           |
| 5007 | *                               | *           |
| 5008 | Diagnostic Software             | technical   |
| 5011 | *                               | *           |
| 5013 | *                               | *           |
| 5016 | *                               | *           |
| 5021 | *                               | *           |
| 5024 | *                               | *           |
| 5026 | *                               | *           |
| 3023 | *                               | *           |
| 5032 | *                               | *           |
| 5036 | *                               | *           |
| 5037 | *                               | *           |
| 5038 | *                               | *           |
| 5043 | *                               | *           |
| 5045 | *                               | *           |
| 5047 | *                               | *           |
| 3004 | Research Engineer               | technical   |
| 5049 | *                               | *           |
| 5052 | *                               | *           |

|      |                                 |             |
|------|---------------------------------|-------------|
| 5053 | *                               | *           |
| 5057 | *                               | *           |
| 2013 | Principle Scientific Programmer | technical   |
| 5063 | *                               | *           |
| 5080 | *                               | *           |
| 5068 | *                               | *           |
| 5069 | *                               | *           |
| 5070 | *                               | *           |
| 5071 | *                               | *           |
| 5072 | *                               | *           |
| 9005 | Electrical Engineer             | technical   |
| 5078 | *                               | *           |
| 1052 | Senior Engineering Specialist   | technical   |
| 6004 | Project Leader                  | middle_mgmt |
| 1079 | Senior Software Engineer        | technical   |
| 1078 | Senior Engineer                 | technical   |
| 6009 | Electronic Technician           | entry_level |
| 6011 | Electrical Engineer             | technical   |
| 7001 | Computer Specialist             | technical   |
| 1064 | *                               | *           |
| 1060 | Software Engineer               | technical   |
| 9004 | Electrical Engineer             | technical   |
| 9006 | Electrical Engineer             | technical   |

cluster7

|      |                             |             |
|------|-----------------------------|-------------|
| 6010 | Electrical Engineer         | technical   |
| 2009 | Project Supervisor          | middle_mgmt |
| 1031 | Software Design Specialist  | technical   |
| 4042 | Principle Systems Analyst   | technical   |
| 4006 | Senior Applications Analyst | technical   |
| 4068 | Consultant                  | technical   |

Job Titles for the Support Clusters

| Respondent | Job Title                       | Position in Hierarchy |
|------------|---------------------------------|-----------------------|
| cluster1   |                                 |                       |
| 1007       | Senior Software Engineer        | technical             |
| 1010       | Software Engineer               | technical             |
| 1015       | Software Engineer               | technical             |
| 1017       | Software Engineer               | technical             |
| 1026       | Software Design Specialist      | technical             |
| 1040       | Software Design Specialist      | technical             |
| 5009       | *                               | *                     |
| 5010       | **                              | *                     |
| 1044       | Software Engineer               | technical             |
| 4009       | Consultant                      | technical             |
| 6008       | Computer Scientist              | technical             |
| 1048       | Software Engineering Specialist | technical             |
| 1049       | Software Design Specialist      | technical             |
| 5077       | *                               | *                     |
| 5075       | *                               | *                     |
| 1055       | *                               | *                     |
| 5073       | *                               | *                     |
| 1058       | Associate Engineer              | entry_level           |
| 3104       | Software Engineer               | technical             |
| 5065       | *                               | *                     |
| 1077       | Electrical Engineer             | technical             |
| 5064       | *                               | *                     |
| 5062       | *                               | *                     |
| 2003       | Scientific Programmer           | technical             |
| 5056       | *                               | *                     |
| 5044       | Programmer                      | technical             |
| 3003       | Software Engineer               | technical             |
| 5042       | *                               | *                     |
| 3012       | Senior Engineer                 | technical             |
| 3014       | Software Engineer               | technical             |
| 3020       | R&D Engineer                    | technical             |
| 3027       | Engineering Specialist          | technical             |
| 3033       | Senior Engineer                 | technical             |
| 3035       | Senior Engineer                 | technical             |
| 5041       | Programmer                      | technical             |
| 3037       | Software Engineer               | technical             |
| 5040       | *                               | *                     |
| 5033       | *                               | *                     |
| 3043       | Senior Engineer                 | technical             |
| 5028       | *                               | *                     |
| 3045       | *                               | *                     |
| 3046       | Software Engineer               | technical             |
| 3047       | *                               | *                     |
| 3048       | Software Engineer               | technical             |
| 3050       | R&D Engineer                    | technical             |
| 3053       | Senior Software Engineer        | technical             |
| 3059       | Senior Engineer                 | technical             |

|      |                            |           |
|------|----------------------------|-----------|
| 3064 | Software Engineer          | technical |
| 3066 | Senior Software Engineer   | technical |
| 3067 | Software Engineer          | technical |
| 5027 | *                          | *         |
| 3073 | Software Engineer          | technical |
| 3075 | Software Engineer          | technical |
| 3076 | *                          | *         |
| 5025 | *                          | *         |
| 3084 | Software Engineer          | technical |
| 5022 | *                          | *         |
| 3092 | Senior Engineer            | technical |
| 3099 | Advanced Research Engineer | technical |
| 4040 | System Programming Analyst | technical |
| 3106 | *                          | *         |
| 3107 | Engineer                   | technical |
| 3110 | Senior Software Engineer   | technical |
| 3115 | Software Engineer          | technical |
| 3116 | Engineer                   | technical |
| 3118 | Engineer                   | technical |
| 3121 | Software Engineer          | technical |
| 5020 | *                          | *         |
| 5019 | *                          | *         |
| 4071 | Programmer                 | technical |
| 4059 | Programmer Analyst         | technical |
| 4022 | Programmer                 | technical |
| 4031 | Principle Programmer       | technical |
| 4053 | Programmer Analyst         | technical |

cluster14

|      |                                |                 |
|------|--------------------------------|-----------------|
| 7003 | Programmer                     | technical       |
| 7007 | Computer Specialist            | technical       |
| 7013 | Computer Specialist            | technical       |
| 1065 | Engineering Manager            | high_level_mgmt |
| 4021 | Associate Applications Analyst | entry_level     |
| 4064 | Manager, Software Development  | middle_mgmt     |
| 4054 | Programmer Analyst             | technical       |
| 7015 | Computer Specialist            | technical       |
| 7014 | Computer Specialist            | technical       |
| 5066 | *                              | *               |
| 1053 | Software System Engineer       | technical       |
| 1050 | Software Design Specialist     | technical       |
| 3071 | Senior System Engineer         | technical       |

cluster7

|      |                                 |             |
|------|---------------------------------|-------------|
| 4057 | Programmer                      | technical   |
| 4019 | Analyst                         | technical   |
| 4074 | *                               | *           |
| 4018 | Electrical Engineer             | technical   |
| 4012 | Principle Programmer Analyst    | technical   |
| 4001 | System Engineer                 | technical   |
| 3088 | Senior Engineering Specialist   | technical   |
| 3081 | Software Engineer               | technical   |
| 5015 | *                               | *           |
| 5014 | *                               | *           |
| 4013 | Software System Programmer      | technical   |
| 5039 | *                               | *           |
| 5006 | *                               | *           |
| 3036 | *                               | *           |
| 3008 | Programming Aide                | entry_level |
| 2023 | Associate Scientific Programmer | entry_level |
| 5046 | *                               | *           |
| 5050 | *                               | *           |
| 5055 | *                               | *           |
| 2017 | Senior System Analyst           | technical   |
| 5059 | *                               | *           |
| 1096 | Software Design Specialist      | technical   |
| 1087 | Software Engineering Specialist | technical   |
| 1076 | Software Engineer               | technical   |
| 3038 | Software Engineer               | technical   |
| 1057 | Principle Engineer              | technical   |
| 3039 | *                               | *           |
| 3044 | Software Engineer               | technical   |
| 5079 | *                               | *           |
| 6003 | General Engineer                | technical   |
| 6006 | Software Quality Assurance      | technical   |
| 1046 | Software Engineer               | technical   |
| 7002 | Computer Specialist             | technical   |
| 1045 | Software Engineer               | technical   |
| 1043 | Senior Dynamics Engineer        | technical   |
| 7012 | Computer Specialist             | technical   |
| 1041 | Software Design Specialist      | technical   |
| 5003 | *                               | *           |
| 4077 | Engineer                        | technical   |
| 8001 | Computer Systems Analyst        | technical   |
| 8002 | Software System Analyst         | technical   |
| 8005 | Computer Specialist             | technical   |
| 9003 | Mathematician                   | technical   |

Support Clusters

counts

years of involvement

|           | less than two years | two to five years | five to ten years | over ten years |         |
|-----------|---------------------|-------------------|-------------------|----------------|---------|
| cluster1  | 13.000              | 32.000            | 14.000            | 14.000         | 73.000  |
| cluster7  | 7.000               | 10.000            | 8.000             | 18.000         | 43.000  |
| cluster14 | 2.000               | 2.000             | 2.000             | 7.000          | 13.000  |
|           | 22.000              | 44.000            | 24.000            | 39.000         | 129.000 |

counts row pct

years of involvement

|           | less than two years | two to five years | five to ten years | over ten years |         |
|-----------|---------------------|-------------------|-------------------|----------------|---------|
| cluster1  | 17.808              | 43.836            | 19.178            | 19.178         | 100.000 |
| cluster7  | 16.279              | 23.236            | 18.605            | 41.860         | 100.000 |
| cluster14 | 15.385              | 15.385            | 15.385            | 53.846         | 100.000 |
|           | 17.054              | 34.109            | 18.605            | 30.233         | 100.000 |

counts column pct

years of involvement

|           | less than two years | two to five years | five to ten years | over ten years |         |
|-----------|---------------------|-------------------|-------------------|----------------|---------|
| cluster1  | 59.091              | 72.727            | 58.333            | 35.897         | 56.589  |
| cluster7  | 31.818              | 22.727            | 33.333            | 46.154         | 33.333  |
| cluster14 | 9.091               | 4.545             | 8.333             | 17.949         | 10.078  |
|           | 100.000             | 100.000           | 100.000           | 100.000        | 100.000 |

counts table pct

years of involvement

|  | less than two years | two to five years | five to ten years | over ten years |
|--|---------------------|-------------------|-------------------|----------------|
|  |                     |                   |                   |                |

|           |        |        |        |        |         |
|-----------|--------|--------|--------|--------|---------|
| cluster1  | 10.078 | 24.806 | 10.853 | 10.853 | 56.589  |
| cluster7  | 5.426  | 7.752  | 6.202  | 13.953 | 33.333  |
| cluster14 | 1.550  | 1.550  | 1.550  | 5.426  | 10.078  |
|           | 17.054 | 34.109 | 18.605 | 30.233 | 100.000 |

Development Clusters

counts

years of involvement

five to ten years

two to five years

less than two years over ten years

|            |        |        |        |        |         |
|------------|--------|--------|--------|--------|---------|
| cluster1   | 1.000  | 4.000  | 0.000  | 4.000  | 9.000   |
| cluster3   | 2.000  | 7.000  | 3.000  | 5.000  | 17.000  |
| cluster4   | 10.000 | 36.000 | 29.000 | 54.000 | 129.000 |
| cluster7   | 0.000  | 0.000  | 1.000  | 5.000  | 6.000   |
| cluster153 | 0.000  | 0.000  | 1.000  | 4.000  | 5.000   |
|            | 13.000 | 47.000 | 34.000 | 72.000 | 166.000 |

counts row pct

years of involvement

five to ten years

two to five years

less than two years over ten years

|            |        |        |        |        |         |
|------------|--------|--------|--------|--------|---------|
| d cluster  |        |        |        |        |         |
| cluster1   | 11.111 | 44.444 | 0.000  | 44.444 | 100.000 |
| cluster3   | 11.765 | 41.176 | 17.647 | 29.412 | 100.000 |
| cluster4   | 7.752  | 27.907 | 22.481 | 41.860 | 100.000 |
| cluster7   | 0.000  | 0.000  | 16.667 | 83.333 | 100.000 |
| cluster153 | 0.000  | 0.000  | 20.000 | 80.000 | 100.000 |
|            | 7.831  | 28.313 | 20.482 | 43.373 | 100.000 |

counts column pct

years of involvement

five to ten years

two to five years

less than two years over ten years

|            |         |         |         |         |         |
|------------|---------|---------|---------|---------|---------|
| d cluster  |         |         |         |         |         |
| cluster1   | 7.692   | 8.511   | 0.000   | 5.556   | 5.422   |
| cluster3   | 15.385  | 14.894  | 8.824   | 6.944   | 10.241  |
| cluster4   | 76.923  | 76.596  | 85.294  | 75.000  | 77.711  |
| cluster7   | 0.000   | 0.000   | 2.941   | 6.944   | 3.614   |
| cluster153 | 0.000   | 0.000   | 2.941   | 5.556   | 3.012   |
|            | 100.000 | 100.000 | 100.000 | 100.000 | 100.000 |

counts table pct

GW

years of involvement

five to ten years

two to five years

less than two years over ten years

|            |       |        |        |        |         |
|------------|-------|--------|--------|--------|---------|
| cluster1   | 0.602 | 2.410  | 0.000  | 2.410  | 5.422   |
| cluster3   | 1.205 | 4.217  | 1.807  | 3.012  | 10.241  |
| cluster4   | 6.024 | 21.687 | 17.470 | 32.530 | 77.711  |
| cluster7   | 0.000 | 0.000  | 0.602  | 3.012  | 3.614   |
| cluster153 | 0.000 | 0.000  | 0.602  | 2.410  | 3.012   |
|            | 7.831 | 28.313 | 20.482 | 43.373 | 100.000 |

### Development Clusters

| language             | cluster1 |     | cluster3 | cluster4 | cluster7 | cluster153 |
|----------------------|----------|-----|----------|----------|----------|------------|
|                      |          |     |          |          |          |            |
| JOVIAL               | 2        | 3   | 25       | 0        | 1        | 31         |
| CMS_2                | 2        | 6   | 44       | 1        | 1        | 54         |
| C                    | 0        | 1   | 15       | 0        | 0        | 16         |
| FORTRAN              | 8        | 15  | 123      | 6        | 5        | 157        |
| COBOL                | 5        | 8   | 68       | 3        | 4        | 89         |
| ASSEMBLER            | 7        | 16  | 122      | 5        | 5        | 155        |
| PLI                  | 1        | 6   | 67       | 2        | 3        | 79         |
| PASCAL               | 5        | 13  | 64       | 3        | 1        | 86         |
| BASIC                | 7        | 10  | 82       | 4        | 3        | 106        |
| ALGOL                | 3        | 2   | 29       | 1        | 1        | 36         |
| RATFOR_WATFOR_WATFIV | 2        | 5   | 33       | 1        | 2        | 43         |
| MODULA               | 0        | 0   | 3        | 0        | 0        | 3          |
| SIMULA               | 0        | 1   | 3        | 0        | 0        | 4          |
| XPL                  | 0        | 0   | 4        | 1        | 0        | 5          |
| MMP                  | 0        | 0   | 0        | 0        | 0        | 0          |
| FORTH                | 1        | 0   | 8        | 0        | 0        | 9          |
| Ada                  | 1        | 10  | 28       | 2        | 1        | 42         |
| LISP                 | 2        | 4   | 26       | 0        | 0        | 32         |
| SNOBOL               | 2        | 4   | 25       | 0        | 0        | 31         |
| ECL                  | 0        | 0   | 0        | 1        | 0        | 1          |
| GPSS                 | 1        | 2   | 15       | 0        | 1        | 19         |
| SAS                  | 0        | 0   | 1        | 0        | 0        | 1          |
| PROTEGE              | 0        | 0   | 0        | 0        | 0        | 0          |
| PPL                  | 0        | 0   | 0        | 0        | 0        | 0          |
| APL                  | 4        | 4   | 32       | 1        | 1        | 42         |
| Other                | 2        | 3   | 36       | 1        | 1        | 43         |
|                      | 56       | 113 | 853      | 32       | 30       | 1084       |

### Support Clusters

| language             | cluster7 |           |     |
|----------------------|----------|-----------|-----|
|                      | cluster1 | cluster14 |     |
| JOVIAL               | 12       | 6         | 1   |
| CMS_2                | 21       | 14        | 2   |
| C                    | 4        | 2         | 2   |
| FORTRAN              | 68       | 40        | 11  |
| COBOL                | 31       | 20        | 6   |
| ASSEMBLER            | 63       | 38        | 7   |
| PLI                  | 44       | 17        | 4   |
| PASCAL               | 41       | 16        | 4   |
| BASIC                | 44       | 27        | 8   |
| ALGOL                | 17       | 4         | 23  |
| RATFOR_WATFOR_WATFIV | 21       | 8         | 2   |
| MODULA               | 1        | 1         | 0   |
| SIMULA               | 2        | 0         | 0   |
| XPL                  | 2        | 0         | 0   |
| MMP                  | 0        | 0         | 0   |
| FORTH                | 6        | 4         | 1   |
| Ada                  | 11       | 14        | 3   |
| LISP                 | 12       | 4         | 1   |
| SNOBOL               | 15       | 6         | 1   |
| ECL                  | 1        | 0         | 0   |
| GPSS                 | 9        | 7         | 2   |
| SAS                  | 2        | 2         | 0   |
| PROTEGE              | 1        | 0         | 0   |
| PPL                  | 0        | 0         | 0   |
| APL                  | 25       | 12        | 1   |
| Other                | 13       | 7         | 6   |
|                      | 466      | 249       | 64  |
|                      |          |           | 779 |

Table of Development Clusters versus Methodology versus Knowledge

Cluster:  
cluster1

| methodology             | knowledge    |                 |                 |   |
|-------------------------|--------------|-----------------|-----------------|---|
|                         | know concept |                 | used frequently |   |
|                         | heard of     | used moderately |                 |   |
| PSL PLA                 | 0            | 0               | 2               | 0 |
| SADT                    | 0            | 1               | 1               | 0 |
| SREM                    | 0            | 1               | 0               | 0 |
| HIPO                    | 0            | 1               | 4               | 0 |
| Jackson Design          | 0            | 1               | 1               | 0 |
| Structured Design       | 0            | 0               | 0               | 8 |
| Warnier Orr Design      | 0            | 1               | 1               | 0 |
| N S Chapin Chart        | 3            | 2               | 0               | 0 |
| Beamson Tables          | 0            | 1               | 0               | 0 |
| Program Design language | 0            | 1               | 2               | 6 |
| Structured Programming  | 0            | 0               | 0               | 9 |
| Structured Walkthroughs | 0            | 1               | 0               | 8 |
| Top Down Design         | 0            | 2               | 1               | 6 |
| Top Down Testing        | 0            | 1               | 3               | 4 |
| Bottom Up Design        | 0            | 4               | 1               | 3 |
| Bachman Diagramming     | 1            | 2               | 0               | 0 |
| Entity Diagrams         | 0            | 1               | 0               | 0 |
| Data Abstraction        | 0            | 1               | 0               | 1 |
| other methodology       | 0            | 0               | 0               | 1 |
| enumeration types       | 0            | 2               | 0               | 2 |
| floating point types    | 0            | 2               | 1               | 6 |
| fixed point types       | 0            | 1               | 2               | 6 |
| user defined types      | 0            | 1               | 1               | 6 |
| pointers                | 0            | 0               | 0               | 9 |
| typed pointers          | 0            | 1               | 2               | 4 |
| ranges                  | 0            | 1               | 1               | 5 |
| records                 | 0            | 1               | 0               | 8 |
| variant records         | 0            | 1               | 2               | 4 |
| object type dcls        | 0            | 1               | 3               | 3 |
| global variables        | 0            | 0               | 0               | 9 |
| local variables         | 0            | 0               | 0               | 9 |
| formal actual params    | 0            | 0               | 0               | 8 |
| reserved words          | 0            | 0               | 1               | 8 |
| blocks                  | 0            | 0               | 0               | 9 |
| case statements         | 0            | 0               | 1               | 8 |
| if then else statements | 0            | 0               | 1               | 8 |
| loop for while until    | 0            | 0               | 1               | 8 |
| exit statements         | 0            | 2               | 1               | 5 |
| procedures              | 0            | 0               | 1               | 7 |
| functions               | 0            | 0               | 1               | 8 |
| return statements       | 0            | 1               | 0               | 8 |

|                          |         |         |   |   |   |   |
|--------------------------|---------|---------|---|---|---|---|
| clusters                 | modules | package | 0 | 1 | 0 | 7 |
| stubs                    |         |         | 0 | 0 | 1 | 7 |
| goto statements          |         |         | 0 | 1 | 1 | 7 |
| comments                 |         |         | 0 | 0 | 0 | 9 |
| exception handlers       |         |         | 0 | 1 | 0 | 7 |
| task routines            |         |         | 0 | 2 | 2 | 5 |
| other prog constructs    |         |         | 0 | 0 | 0 | 0 |
| importing exporting name |         |         | 0 | 1 | 0 | 2 |
| data encapsulation       |         |         | 0 | 2 | 1 | 2 |
| name scoping             |         |         | 1 | 1 | 0 | 2 |
| name visibility          |         |         | 1 | 1 | 1 | 2 |
| static dynamic nesting   |         |         | 1 | 1 | 3 | 3 |
| iteration                |         |         | 0 | 0 | 2 | 6 |
| conditional statements   |         |         | 0 | 0 | 1 | 8 |
| recursion                |         |         | 0 | 0 | 5 | 3 |
| concurrency              |         |         | 0 | 2 | 3 | 2 |
| strong typing            |         |         | 0 | 1 | 1 | 3 |
| type conversion          |         |         | 0 | 2 | 1 | 3 |
| data abstraction         |         |         | 1 | 2 | 1 | 2 |
| generics                 |         |         | 0 | 2 | 0 | 2 |
| loop invariants          |         |         | 2 | 1 | 0 | 3 |
| parameter binding        |         |         | 0 | 1 | 2 | 1 |
| version number           |         |         | 0 | 0 | 0 | 5 |
| other prog concepts      |         |         | 0 | 0 | 0 | 0 |
| A enumeration types      |         |         | 0 | 2 | 0 | 1 |
| Ada user defined types   |         |         | 0 | 3 | 0 | 2 |
| Ada subtypes             |         |         | 0 | 3 | 0 | 2 |
| Ada derived types        |         |         | 0 | 3 | 0 | 1 |
| Ada real types           |         |         | 0 | 3 | 1 | 1 |
| Ada float point types    |         |         | 0 | 4 | 0 | 1 |
| Ada fixed pt types       |         |         | 0 | 4 | 1 | 1 |
| Ada record types         |         |         | 0 | 3 | 0 | 2 |
| Ada rec types discrim    |         |         | 0 | 2 | 0 | 1 |
| Ada slices               |         |         | 1 | 1 | 0 | 1 |
| Ada aggregates           |         |         | 1 | 1 | 0 | 2 |
| Ada allocators           |         |         | 0 | 0 | 1 | 1 |
| Ada access types         |         |         | 0 | 1 | 0 | 1 |
| Ada overloading          |         |         | 0 | 2 | 0 | 1 |
| Ada packages             |         |         | 1 | 2 | 0 | 1 |
| Ada private types        |         |         | 0 | 3 | 0 | 1 |
| Ada scope                |         |         | 0 | 2 | 0 | 2 |
| Ada short circuiting     |         |         | 1 | 1 | 0 | 1 |
| Ada visibility           |         |         | 1 | 1 | 0 | 1 |
| Ada tasking              |         |         | 0 | 3 | 1 | 1 |
| Ada task types           |         |         | 0 | 2 | 0 | 1 |
| Ada rendezvous           |         |         | 0 | 2 | 0 | 1 |
| Ada entries              |         |         | 0 | 2 | 1 | 2 |
| Ada entry families       |         |         | 0 | 1 | 0 | 1 |
| Ada separate compilation |         |         | 0 | 3 | 1 | 1 |
| Ada exceptions           |         |         | 0 | 3 | 0 | 1 |
| Ada generic prog units   |         |         | 2 | 2 | 0 | 1 |
| Ada instantiation        |         |         | 1 | 0 | 0 | 1 |
| Ada elaboration          |         |         | 1 | 0 | 0 | 1 |
| Ada context spec         |         |         | 0 | 1 | 0 | 1 |

|                        |   |   |   |   |
|------------------------|---|---|---|---|
| Ada information hiding | 1 | 1 | 0 | 1 |
| Ada mutual recursion   | 0 | 1 | 0 | 1 |
| other Ada concepts     | 0 | 0 | 0 | 0 |

cluster3

|                         | knowledge    |          |                 |                 |
|-------------------------|--------------|----------|-----------------|-----------------|
|                         | know concept | heard of | used moderately | used frequently |
| methodology             |              |          |                 |                 |
| PSL PLA                 | 1            | 5        | 2               | 0               |
| SADT                    | 0            | 3        | 0               | 0               |
| SREM                    | 0            | 2        | 0               | 0               |
| HIPPO                   | 3            | 8        | 1               | 1               |
| Jackson Design          | 1            | 3        | 0               | 0               |
| Structured Design       | 0            | 4        | 8               | 5               |
| Warnier Orr Design      | 0            | 1        | 2               | 0               |
| N S Chapin Chart        | 2            | 1        | 1               | 0               |
| Beamson Tables          | 0            | 0        | 0               | 0               |
| Program Design language | 1            | 3        | 8               | 5               |
| Structured Programming  | 0            | 1        | 8               | 8               |
| Structured Walkthroughs | 0            | 4        | 8               | 5               |
| Top Down Design         | 0            | 1        | 8               | 8               |
| Top Down Testing        | 0            | 4        | 8               | 5               |
| Bottom Up Design        | 0            | 8        | 7               | 0               |
| Bachman Diagramming     | 1            | 1        | 0               | 0               |
| Entity Diagrams         | 0            | 2        | 2               | 0               |
| Data Abstraction        | 3            | 2        | 5               | 0               |
| other methodology       | 0            | 0        | 2               | 0               |
| enumeration types       | 1            | 3        | 7               | 1               |
| floating point types    | 0            | 6        | 6               | 5               |
| fixed point types       | 0            | 4        | 5               | 8               |
| user defined types      | 1            | 3        | 9               | 3               |
| pointers                | 0            | 3        | 7               | 6               |
| typed pointers          | 3            | 2        | 5               | 5               |
| ranges                  | 0            | 4        | 9               | 3               |
| records                 | 0            | 4        | 7               | 6               |
| variant records         | 2            | 3        | 6               | 3               |
| object type dcls        | 0            | 0        | 10              | 4               |
| global variables        | 0            | 1        | 5               | 11              |
| local variables         | 0            | 1        | 5               | 11              |
| formal actual params    | 0            | 2        | 5               | 8               |
| reserved words          | 0            | 2        | 5               | 9               |
| blocks                  | 0            | 3        | 4               | 9               |
| case statements         | 0            | 1        | 6               | 9               |
| if then else statements | 0            | 0        | 7               | 9               |
| loop for while until    | 0            | 0        | 7               | 9               |
| exit statements         | 0            | 2        | 9               | 5               |
| procedures              | 0            | 0        | 5               | 11              |
| functions               | 0            | 0        | 7               | 9               |

|                          |   |    |   |    |
|--------------------------|---|----|---|----|
| return statements        | 0 | 0  | 5 | 11 |
| clusters modules package | 0 | 3  | 6 | 7  |
| stubs                    | 1 | 6  | 6 | 3  |
| goto statements          | 0 | 4  | 8 | 4  |
| comments                 | 0 | 0  | 6 | 10 |
| exception handlers       | 0 | 7  | 5 | 3  |
| task coroutines          | 0 | 8  | 4 | 3  |
| other prog constructs    | 0 | 1  | 1 | 0  |
| importing exporting name | 0 | 4  | 4 | 0  |
| data encapsulation       | 2 | 3  | 4 | 2  |
| name scoping             | 2 | 3  | 3 | 4  |
| name visibility          | 1 | 4  | 3 | 2  |
| static dynamic nesting   | 3 | 4  | 6 | 1  |
| iteration                | 0 | 4  | 7 | 6  |
| conditional statements   | 0 | 1  | 5 | 11 |
| recursion                | 0 | 7  | 7 | 3  |
| concurrency              | 1 | 10 | 4 | 0  |
| strong typing            | 3 | 6  | 3 | 2  |
| type conversion          | 1 | 4  | 6 | 2  |
| data abstraction         | 3 | 5  | 4 | 1  |
| generics                 | 0 | 7  | 3 | 0  |
| loop invariants          | 3 | 4  | 3 | 1  |
| parameter binding        | 3 | 3  | 4 | 3  |
| version number           | 1 | 4  | 7 | 3  |
| other prog concepts      | 0 | 0  | 0 | 0  |
| Ada enumeration types    | 2 | 8  | 1 | 1  |
| Ada user defined types   | 2 | 10 | 1 | 1  |
| Ada subtypes             | 3 | 9  | 1 | 0  |
| Ada derived types        | 4 | 8  | 0 | 0  |
| Ada real types           | 3 | 10 | 0 | 1  |
| Ada float point types    | 2 | 11 | 0 | 1  |
| Ada fixed pt types       | 2 | 11 | 0 | 1  |
| Ada record types         | 4 | 8  | 1 | 1  |
| Ada rec types discrim    | 3 | 8  | 0 | 0  |
| Ada slices               | 3 | 6  | 0 | 0  |
| Ada aggregates           | 3 | 6  | 0 | 0  |
| Ada allocators           | 4 | 5  | 0 | 0  |
| Ada access types         | 2 | 6  | 1 | 0  |
| Ada overloading          | 6 | 7  | 0 | 0  |
| Ada packages             | 3 | 8  | 1 | 0  |
| Ada private types        | 4 | 7  | 1 | 0  |
| Ada scope                | 2 | 8  | 0 | 1  |
| Ada short circuiting     | 2 | 5  | 0 | 0  |
| Ada visibility           | 3 | 6  | 0 | 1  |
| Ada tasking              | 5 | 8  | 1 | 0  |
| Ada task types           | 2 | 7  | 1 | 0  |
| Ada rendezvous           | 2 | 8  | 0 | 0  |
| Ada entries              | 2 | 7  | 0 | 0  |
| Ada entry families       | 2 | 3  | 0 | 0  |
| Ada separate compilation | 4 | 11 | 0 | 0  |
| Ada exceptions           | 4 | 8  | 1 | 0  |
| Ada generic prog units   | 4 | 5  | 1 | 0  |
| Ada instantiation        | 4 | 7  | 1 | 0  |
| Ada elaboration          | 3 | 3  | 0 | 0  |

|                        |   |    |   |   |
|------------------------|---|----|---|---|
| Ada context spec       | 3 | 4  | 0 | 0 |
| Ada information hiding | 2 | 10 | 0 | 0 |
| Ada mutual recursion   | 5 | 5  | 0 | 0 |
| other Ada concepts     | 0 | 0  | 0 | 0 |

cluster4

|                         | knowledge    |                 |                 |    |
|-------------------------|--------------|-----------------|-----------------|----|
|                         | know concept |                 | used frequently |    |
|                         | heard of     | used moderately |                 |    |
| <b>methodology</b>      |              |                 |                 |    |
| PSL PLA                 | 16           | 20              | 7               | 0  |
| SADT                    | 5            | 3               | 7               | 0  |
| SREM                    | 3            | 8               | 1               | 1  |
| HIPPO                   | 16           | 44              | 26              | 9  |
| Jackson Design          | 11           | 10              | 5               | 6  |
| Structured Design       | 5            | 13              | 34              | 71 |
| Warnier Orr Design      | 13           | 14              | 2               | 3  |
| N S Chapin Chart        | 13           | 12              | 6               | 1  |
| Beamson Tables          | 3            | 1               | 1               | 0  |
| Program Design language | 5            | 32              | 25              | 51 |
| Structured Programming  | 0            | 9               | 30              | 90 |
| Structured Walkthroughs | 4            | 35              | 42              | 37 |
| Top Down Design         | 1            | 8               | 32              | 86 |
| Top Down Testing        | 4            | 28              | 37              | 55 |
| Bottom Up Design        | 6            | 53              | 39              | 19 |
| Bachman Diagramming     | 6            | 7               | 1               | 1  |
| Entity Diagrams         | 7            | 6               | 0               | 1  |
| Data Abstraction        | 14           | 34              | 15              | 10 |
| Other methodology       | 0            | 0               | 0               | 3  |
| enumeration types       | 9            | 26              | 17              | 18 |
| floating point types    | 3            | 22              | 40              | 61 |
| fixed point types       | 2            | 11              | 27              | 83 |
| user defined types      | 6            | 28              | 34              | 43 |
| pointers                | 2            | 16              | 31              | 74 |
| typed pointers          | 10           | 26              | 20              | 34 |
| ranges                  | 5            | 27              | 28              | 49 |
| records                 | 2            | 19              | 34              | 70 |
| variant records         | 12           | 29              | 21              | 28 |
| object type dcls        | 5            | 27              | 29              | 47 |
| global variables        | 2            | 7               | 23              | 96 |
| local variables         | 2            | 9               | 20              | 97 |
| formal actual params    | 7            | 7               | 25              | 70 |
| reserved words          | 3            | 17              | 25              | 82 |
| blocks                  | 1            | 17              | 29              | 70 |
| case statements         | 4            | 12              | 30              | 77 |
| if then else statements | 1            | 7               | 23              | 98 |
| loop for while until    | 1            | 9               | 26              | 93 |
| exit statements         | 1            | 27              | 35              | 64 |
| procedures              | 2            | 8               | 25              | 94 |

|                          |    |    |    |     |
|--------------------------|----|----|----|-----|
| functions                | 1  | 10 | 31 | 87  |
| return statements        | 2  | 9  | 21 | 95  |
| clusters modules package | 6  | 25 | 32 | 48  |
| stubs                    | 3  | 19 | 33 | 57  |
| goto statements          | 0  | 22 | 36 | 70  |
| comments                 | 0  | 6  | 17 | 105 |
| exception handlers       | 6  | 33 | 29 | 47  |
| task routines            | 9  | 36 | 27 | 41  |
| other prog constructs    | 0  | 0  | 0  | 0   |
| importing exporting name | 12 | 11 | 5  | 9   |
| data encapsulation       | 17 | 26 | 21 | 20  |
| name scoping             | 14 | 19 | 9  | 25  |
| name visibility          | 14 | 23 | 6  | 21  |
| static dynamic nesting   | 22 | 24 | 15 | 23  |
| iteration                | 3  | 14 | 33 | 75  |
| conditional statements   | 3  | 5  | 25 | 95  |
| recursion                | 1  | 35 | 45 | 37  |
| concurrency              | 7  | 42 | 28 | 27  |
| strong typing            | 9  | 29 | 17 | 19  |
| type conversion          | 9  | 27 | 30 | 36  |
| data abstraction         | 20 | 36 | 15 | 21  |
| generics                 | 15 | 28 | 15 | 11  |
| loop invariants          | 19 | 23 | 16 | 13  |
| parameter binding        | 19 | 26 | 14 | 11  |
| version number           | 8  | 20 | 27 | 45  |
| other prog concepts      | 0  | 0  | 0  | 2   |
| A enumeration types      | 15 | 33 | 7  | 7   |
| Ada user defined types   | 14 | 45 | 8  | 12  |
| Ada subtypes             | 20 | 31 | 7  | 5   |
| Ada derived types        | 23 | 22 | 7  | 3   |
| Ada real types           | 9  | 47 | 13 | 17  |
| Ada float point types    | 7  | 51 | 13 | 20  |
| Ada fixed pt types       | 5  | 50 | 9  | 24  |
| Ada record types         | 12 | 41 | 11 | 17  |
| Ada rec types discrim    | 20 | 24 | 3  | 4   |
| Ada slices               | 13 | 15 | 6  | 4   |
| Ada aggregates           | 15 | 16 | 2  | 3   |
| Ada allocators           | 14 | 19 | 2  | 3   |
| Ada access types         | 15 | 27 | 3  | 6   |
| Ada overloading          | 12 | 24 | 3  | 3   |
| Ada packages             | 10 | 37 | 6  | 4   |
| Ada private types        | 10 | 33 | 5  | 2   |
| Ada scope                | 9  | 37 | 4  | 6   |
| Ada short circuiting     | 10 | 17 | 2  | 1   |
| Ada visibility           | 13 | 33 | 6  | 3   |
| Ada tasking              | 17 | 40 | 5  | 11  |
| Ada task types           | 18 | 31 | 3  | 5   |
| Ada rendezvous           | 5  | 31 | 2  | 2   |
| Ada entries              | 8  | 32 | 3  | 9   |
| Ada entry families       | 14 | 12 | 2  | 1   |
| Ada separate compilation | 7  | 49 | 6  | 16  |
| Ada exceptions           | 10 | 38 | 6  | 10  |
| Ada generic prog units   | 12 | 26 | 5  | 2   |
| Ada instantiation        | 8  | 19 | 1  | 3   |

|                        |    |    |   |   |
|------------------------|----|----|---|---|
| Ada elaboration        | 9  | 18 | 2 | 2 |
| Ada context spec       | 14 | 23 | 1 | 3 |
| Ada information hiding | 10 | 38 | 2 | 4 |
| Ada mutual recursion   | 13 | 12 | 2 | 2 |
| other Ada concepts     | 7  | 0  | 0 | 0 |

cluster7

| methodology             | knowledge    |                 |          |                 |
|-------------------------|--------------|-----------------|----------|-----------------|
|                         | know concept | used frequently | heard of | used moderately |
| PSL PLA                 | 1            | 2               | 0        | 0               |
| SADT                    | 0            | 0               | 0        | 0               |
| SREM                    | 0            | 0               | 0        | 0               |
| HIPPO                   | 0            | 0               | 0        | 0               |
| Jackson Design          | 0            | 0               | 0        | 0               |
| Structured Design       | 0            | 0               | 0        | 0               |
| Warnier Orr Design      | 0            | 0               | 0        | 0               |
| N S Chapin Chart        | 0            | 0               | 0        | 0               |
| Beamson Tables          | 0            | 0               | 0        | 0               |
| Program Design language | 0            | 0               | 0        | 0               |
| Structured Programming  | 0            | 0               | 0        | 0               |
| Structured Walkthroughs | 0            | 0               | 0        | 0               |
| Top Down Design         | 0            | 0               | 0        | 0               |
| Top Down Testing        | 0            | 0               | 0        | 0               |
| Bottom Up Design        | 0            | 0               | 0        | 0               |
| Bachman Diagramming     | 0            | 0               | 0        | 0               |
| Entity Diagrams         | 0            | 0               | 0        | 0               |
| Data Abstraction        | 0            | 0               | 0        | 0               |
| other methodology       | 0            | 0               | 0        | 0               |
| enumeration types       | 0            | 0               | 0        | 0               |
| floating point types    | 0            | 0               | 0        | 0               |
| fixed point types       | 0            | 0               | 0        | 0               |
| user defined types      | 0            | 0               | 0        | 0               |
| pointers                | 0            | 0               | 0        | 0               |
| typed pointers          | 0            | 0               | 0        | 0               |
| records                 | 0            | 0               | 0        | 0               |
| variants                | 0            | 0               | 0        | 0               |
| variant records         | 0            | 0               | 0        | 0               |
| object type dcls        | 0            | 0               | 0        | 0               |
| global variables        | 0            | 0               | 0        | 0               |
| local variables         | 0            | 0               | 0        | 0               |
| formal actual params    | 0            | 0               | 0        | 0               |
| reserved words          | 0            | 0               | 0        | 0               |
| blocks                  | 0            | 0               | 0        | 0               |
| case statements         | 0            | 0               | 1        | 1               |
| if then else statements | 0            | 0               | 1        | 1               |
| loop for while until    | 0            | 0               | 2        | 2               |
| exit statements         | 0            | 0               | 2        | 3               |

|                          |   |   |   |   |
|--------------------------|---|---|---|---|
| procedures               | 0 | 1 | 2 | 3 |
| functions                | 0 | 0 | 2 | 4 |
| return statements        | 0 | 0 | 1 | 5 |
| clusters modules package | 1 | 1 | 2 | 2 |
| stubs                    | 2 | 0 | 1 | 3 |
| goto statements          | 0 | 1 | 1 | 4 |
| comments                 | 0 | 0 | 0 | 5 |
| exception handlers       | 0 | 0 | 4 | 2 |
| task coroutines          | 1 | 0 | 3 | 2 |
| other prog constructs    | 0 | 0 | 0 | 0 |
| importing exporting name | 1 | 0 | 1 | 1 |
| data encapsulation       | 1 | 0 | 1 | 2 |
| name scoping             | 1 | 0 | 1 | 1 |
| name visibility          | 1 | 0 | 1 | 1 |
| static dynamic nesting   | 1 | 1 | 0 | 2 |
| iteration                | 0 | 1 | 0 | 5 |
| conditional statements   | 0 | 0 | 2 | 4 |
| recursion                | 0 | 2 | 3 | 1 |
| concurrency              | 1 | 1 | 2 | 0 |
| strong typing            | 0 | 2 | 0 | 1 |
| type conversion          | 0 | 3 | 1 | 1 |
| data abstraction         | 1 | 1 | 1 | 1 |
| generics                 | 1 | 1 | 1 | 0 |
| loop invariants          | 0 | 1 | 1 | 2 |
| parameter binding        | 1 | 0 | 0 | 1 |
| version number           | 0 | 1 | 3 | 2 |
| other prog concepts      | 0 | 0 | 0 | 1 |
| A enumeration types      | 0 | 1 | 1 | 0 |
| Ada user defined types   | 0 | 2 | 1 | 1 |
| Ada subtypes             | 0 | 1 | 1 | 1 |
| Ada derived types        | 0 | 2 | 1 | 0 |
| Ada real types           | 0 | 2 | 1 | 2 |
| Ada float point types    | 0 | 2 | 1 | 2 |
| Ada fixed pt types       | 0 | 3 | 1 | 1 |
| Ada record types         | 0 | 2 | 2 | 0 |
| Ada rec types discrim    | 1 | 1 | 0 | 0 |
| Ada slices               | 1 | 1 | 0 | 0 |
| Ada aggregates           | 1 | 0 | 1 | 0 |
| Ada allocators           | 1 | 0 | 1 | 1 |
| Ada access types         | 1 | 0 | 2 | 0 |
| Ada overloading          | 1 | 0 | 0 | 1 |
| Ada packages             | 1 | 0 | 0 | 1 |
| Ada private types        | 0 | 1 | 1 | 0 |
| Ada scope                | 1 | 0 | 0 | 1 |
| Ada short circuiting     | 1 | 1 | 0 | 0 |
| Ada visibility           | 1 | 1 | 0 | 1 |
| Ada tasking              | 1 | 2 | 0 | 1 |
| Ada task types           | 0 | 3 | 0 | 1 |
| Ada rendezvous           | 1 | 1 | 0 | 0 |
| Ada entries              | 1 | 2 | 0 | 0 |
| Ada entry families       | 1 | 1 | 0 | 0 |
| Ada separate compilation | 1 | 2 | 1 | 0 |
| Ada exceptions           | 0 | 2 | 0 | 0 |
| Ada generic prog units   | 1 | 2 | 0 | 0 |

|                        |   |   |   |   |
|------------------------|---|---|---|---|
| Ada instantiation      | 1 | 1 | 0 | 0 |
| Ada elaboration        | 1 | 1 | 0 | 0 |
| Ada context spec       | 1 | 0 | 1 | 0 |
| Ada information hiding | 1 | 0 | 1 | 0 |
| Ada mutual recursion   | 1 | 1 | 0 | 0 |
| other Ada concepts     | 0 | 0 | 0 | 0 |

cluster153

|                         | knowledge    |                 |                 |          |
|-------------------------|--------------|-----------------|-----------------|----------|
|                         | know concept | used frequently | used moderately | heard of |
| methodology             |              |                 |                 |          |
| PSL PLA                 | 0            | 1               | 0               | 0        |
| SADT                    | 0            | 0               | 0               | 0        |
| SREM                    | 0            | 1               | 0               | 0        |
| HIPO                    | 0            | 3               | 0               | 0        |
| Jackson Design          | 1            | 0               | 0               | 0        |
| Structured Design       | 0            | 1               | 3               | 1        |
| Warnier Orr Design      | 0            | 0               | 1               | 1        |
| N S Chapin Chart        | 0            | 0               | 1               | 0        |
| Beamson Tables          | 0            | 0               | 0               | 0        |
| Program Design language | 1            | 1               | 0               | 1        |
| Structured Programming  | 0            | 1               | 2               | 3        |
| Structured Walkthroughs | 0            | 1               | 4               | 1        |
| Top Down Design         | 0            | 1               | 3               | 2        |
| Top Down Testing        | 0            | 1               | 4               | 1        |
| Bottom Up Design        | 0            | 1               | 0               | 2        |
| Bachman Diagramming     | 0            | 0               | 0               | 0        |
| Entity Diagrams         | 0            | 0               | 0               | 0        |
| Data Abstraction        | 1            | 0               | 1               | 0        |
| other methodology       | 0            | 1               | 0               | 0        |
| enumeration types       | 0            | 1               | 2               | 0        |
| floating point types    | 0            | 0               | 2               | 2        |
| fixed point types       | 0            | 0               | 1               | 3        |
| user defined types      | 0            | 1               | 1               | 2        |
| pointers                | 0            | 0               | 0               | 2        |
| typed pointers          | 1            | 0               | 1               | 1        |
| ranges                  | 0            | 0               | 2               | 2        |
| records                 | 0            | 0               | 2               | 3        |
| variable records        | 0            | 0               | 2               | 2        |
| object type dcls        | 0            | 1               | 3               | 1        |
| global variables        | 0            | 1               | 2               | 2        |
| local variables         | 0            | 1               | 2               | 2        |
| formal actual params    | 0            | 1               | 1               | 2        |
| reserved words          | 0            | 0               | 3               | 2        |
| blocks                  | 0            | 0               | 3               | 1        |
| case statements         | 0            | 0               | 2               | 3        |
| if then else statements | 0            | 0               | 0               | 5        |
| loop for while until    | 0            | 1               | 1               | 3        |

|                          |   |   |   |   |
|--------------------------|---|---|---|---|
| exit statements          | 0 | 1 | 0 | 4 |
| procedures               | 0 | 0 | 0 | 5 |
| functions                | 0 | 0 | 0 | 5 |
| return statements        | 0 | 0 | 0 | 5 |
| clusters modules package | 1 | 0 | 0 | 2 |
| stubs                    | 0 | 0 | 2 | 1 |
| goto statements          | 0 | 0 | 0 | 5 |
| comments                 | 0 | 0 | 0 | 5 |
| exception handlers       | 0 | 0 | 3 | 0 |
| task coroutines          | 0 | 0 | 4 | 0 |
| other prog constructs    | 0 | 0 | 0 | 0 |
| importing exporting name | 1 | 0 | 0 | 1 |
| data encapsulation       | 0 | 0 | 3 | 0 |
| name scoping             | 0 | 2 | 0 | 0 |
| name visibility          | 0 | 1 | 1 | 0 |
| static dynamic nesting   | 0 | 0 | 2 | 1 |
| iteration                | 0 | 0 | 0 | 2 |
| conditional statements   | 0 | 0 | 0 | 3 |
| recursion                | 0 | 0 | 0 | 2 |
| concurrency              | 0 | 0 | 1 | 1 |
| strong typing            | 0 | 0 | 1 | 1 |
| type conversion          | 0 | 0 | 0 | 2 |
| data abstraction         | 1 | 0 | 1 | 0 |
| generics                 | 1 | 1 | 0 | 0 |
| loop invariants          | 0 | 0 | 0 | 2 |
| parameter binding        | 0 | 1 | 1 | 0 |
| version number           | 0 | 0 | 0 | 3 |
| other prog concepts      | 0 | 0 | 0 | 0 |
| A enumeration types      | 0 | 1 | 1 | 0 |
| Ada user defined types   | 0 | 1 | 1 | 0 |
| Ada subtypes             | 0 | 1 | 0 | 1 |
| Ada derived types        | 0 | 1 | 0 | 1 |
| Ada real types           | 0 | 1 | 0 | 1 |
| Ada float point types    | 0 | 2 | 0 | 1 |
| Ada fixed pt types       | 0 | 2 | 0 | 1 |
| Ada record types         | 0 | 2 | 0 | 1 |
| Ada rec types discrim    | 0 | 1 | 1 | 0 |
| Ada slices               | 0 | 1 | 0 | 1 |
| Ada aggregates           | 0 | 0 | 1 | 0 |
| Ada allocators           | 0 | 0 | 1 | 0 |
| Ada access types         | 1 | 0 | 1 | 0 |
| Ada overloading          | 0 | 2 | 0 | 1 |
| Ada packages             | 0 | 1 | 1 | 1 |
| Ada private types        | 1 | 0 | 1 | 0 |
| Ada scope                | 0 | 2 | 0 | 0 |
| Ada short circuiting     | 0 | 0 | 1 | 0 |
| Ada visibility           | 1 | 1 | 0 | 0 |
| Ada tasking              | 1 | 1 | 1 | 0 |
| Ada task types           | 1 | 1 | 1 | 0 |
| Ada rendezvous           | 0 | 1 | 1 | 0 |
| Ada entries              | 0 | 2 | 1 | 0 |
| Ada entry families       | 0 | 2 | 0 | 0 |
| Ada separate compilation | 0 | 2 | 0 | 1 |
| Ada exceptions           | 0 | 0 | 0 | 1 |

|                        |   |   |   |   |
|------------------------|---|---|---|---|
| Ada generic prog units | 1 | 1 | 0 | 0 |
| Ada instantiation      | 0 | 2 | 0 | 0 |
| Ada elaboration        | 0 | 1 | 1 | 0 |
| Ada context spec       | 1 | 0 | 1 | 0 |
| Ada information hiding | 1 | 0 | 1 | 0 |
| Ada mutual recursion   | 0 | 0 | 1 | 0 |
| other Ada concepts     | 0 | 0 | 0 | 0 |

Support

Cluster:  
cluster1

|                          | knowledge |              |                 |                 |
|--------------------------|-----------|--------------|-----------------|-----------------|
|                          | heard of  | know concept | used moderately | used frequently |
| methodology              |           |              |                 |                 |
| PSL PLA                  | 7         | 14           | 1               | 0               |
| SADT                     | 6         | 3            | 0               | 0               |
| SREM                     | 5         | 1            | 0               | 0               |
| HIPO                     | 6         | 19           | 12              | 3               |
| Jackson Design           | 4         | 3            | 2               | 1               |
| Structured Design        | 2         | 10           | 19              | 36              |
| Warnier Orr Design       | 6         | 6            | 3               | 0               |
| N S Chapin Chart         | 3         | 7            | 3               | 1               |
| Beamsom Tables           | 0         | 0            | 0               | 0               |
| Program Design language  | 7         | 15           | 12              | 29              |
| Structured Programming   | 2         | 5            | 10              | 56              |
| Structured Walkthroughs  | 8         | 15           | 26              | 11              |
| Top Down Design          | 1         | 9            | 18              | 43              |
| Top Down Testing         | 3         | 20           | 24              | 17              |
| Bottom Up Design         | 3         | 32           | 12              | 11              |
| Bachman Diagramming      | 1         | 2            | 0               | 1               |
| Entity Diagrams          | 0         | 2            | 0               | 1               |
| Data Abstraction         | 6         | 8            | 5               | 4               |
| other methodology        | 0         | 0            | 0               | 1               |
| enumeration types        | 5         | 11           | 9               | 11              |
| floating point types     | 1         | 10           | 19              | 40              |
| fixed point types        | 0         | 5            | 18              | 45              |
| user defined types       | 2         | 16           | 13              | 30              |
| pointers                 | 1         | 9            | 16              | 46              |
| typed pointers           | 5         | 16           | 10              | 16              |
| ranges                   | 4         | 17           | 15              | 26              |
| records                  | 2         | 13           | 19              | 35              |
| variant records          | 5         | 17           | 11              | 14              |
| object type dcls         | 2         | 13           | 18              | 26              |
| global variables         | 0         | 3            | 11              | 59              |
| local variables          | 0         | 2            | 10              | 61              |
| formal actual params     | 3         | 7            | 14              | 38              |
| reserved words           | 1         | 11           | 10              | 44              |
| blocks                   | 2         | 11           | 12              | 42              |
| case statements          | 2         | 9            | 11              | 48              |
| if then else statements  | 0         | 6            | 9               | 58              |
| loop for while until     | 0         | 6            | 10              | 57              |
| exit statements          | 0         | 16           | 17              | 39              |
| procedures               | 1         | 2            | 14              | 53              |
| functions                | 0         | 4            | 15              | 52              |
| return statements        | 0         | 3            | 12              | 57              |
| clusters modules package | 4         | 10           | 18              | 25              |
| stubs                    | 1         | 18           | 13              | 20              |

|                          |   |    |    |    |
|--------------------------|---|----|----|----|
| goto statements          | 0 | 18 | 23 | 32 |
| comments                 | 0 | 0  | 7  | 66 |
| exception handlers       | 3 | 18 | 12 | 21 |
| task coroutines          | 2 | 24 | 11 | 15 |
| other prog constructs    | 0 | 0  | 0  | 1  |
| importing exporting name | 3 | 12 | 2  | 6  |
| data encapsulation       | 9 | 16 | 8  | 7  |
| name scoping             | 1 | 10 | 8  | 8  |
| name visibility          | 1 | 9  | 6  | 8  |
| static dynamic nesting   | 2 | 17 | 7  | 11 |
| iteration                | 1 | 5  | 19 | 39 |
| conditional statements   | 1 | 1  | 12 | 53 |
| recursion                | 3 | 16 | 25 | 20 |
| concurrency              | 5 | 23 | 10 | 9  |
| strong typing            | 4 | 11 | 10 | 9  |
| type conversion          | 3 | 14 | 16 | 19 |
| data abstraction         | 9 | 18 | 3  | 9  |
| generics                 | 9 | 14 | 4  | 3  |
| loop invariants          | 9 | 14 | 6  | 5  |
| parameter binding        | 7 | 16 | 3  | 7  |
| version number           | 1 | 14 | 8  | 25 |
| other prog concepts      | 0 | 0  | 0  | 1  |
| Ada enumeration types    | 3 | 12 | 3  | 3  |
| Ada user defined types   | 4 | 16 | 6  | 6  |
| Ada subtypes             | 5 | 12 | 2  | 4  |
| Ada derived types        | 6 | 10 | 2  | 1  |
| Ada real types           | 1 | 20 | 4  | 11 |
| Ada float point types    | 1 | 21 | 6  | 9  |
| Ada fixed pt types       | 1 | 20 | 5  | 9  |
| Ada record types         | 3 | 19 | 5  | 9  |
| Ada rec types discrim    | 4 | 7  | 5  | 2  |
| Ada slices               | 3 | 2  | 2  | 1  |
| Ada aggregates           | 5 | 7  | 3  | 1  |
| Ada allocators           | 2 | 9  | 2  | 1  |
| Ada access types         | 2 | 7  | 4  | 2  |
| Ada overloading          | 0 | 10 | 3  | 0  |
| Ada packages             | 3 | 10 | 3  | 3  |
| Ada private types        | 3 | 11 | 3  | 1  |
| Ada scope                | 2 | 15 | 2  | 5  |
| Ada short circuiting     | 3 | 4  | 1  | 1  |
| Ada visibility           | 2 | 11 | 1  | 4  |
| Ada tasking              | 4 | 19 | 1  | 3  |
| Ada task types           | 6 | 13 | 2  | 0  |
| Ada rendezvous           | 4 | 7  | 1  | 1  |
| Ada entries              | 3 | 12 | 2  | 2  |
| Ada entry families       | 6 | 4  | 1  | 1  |
| Ada separate compilation | 1 | 20 | 4  | 4  |
| Ada exceptions           | 1 | 14 | 5  | 3  |
| Ada generic prog units   | 3 | 10 | 2  | 1  |
| Ada instantiation        | 3 | 6  | 2  | 1  |
| Ada elaboration          | 3 | 2  | 1  | 2  |
| Ada context spec         | 5 | 1  | 1  | 0  |
| Ada information hiding   | 2 | 13 | 2  | 3  |
| Ada mutual recursion     | 3 | 4  | 0  | 1  |

|                    |   |   |   |   |
|--------------------|---|---|---|---|
| other Ada concepts | 1 | 0 | 0 | 0 |
|--------------------|---|---|---|---|

cluster7

|                          | knowledge |              |                 |                 |
|--------------------------|-----------|--------------|-----------------|-----------------|
|                          | heard of  | know concept | used moderately | used frequently |
| methodology              |           |              |                 |                 |
| PSL PLA                  | 6         | 11           | 2               | 0               |
| SADT                     | 2         | 2            | 4               | 0               |
| SREM                     | 3         | 3            | 1               | 0               |
| HIPPO                    | 7         | 9            | 10              | 2               |
| Jackson Design           | 3         | 2            | 0               | 0               |
| Structured Design        | 1         | 8            | 14              | 13              |
| Warnier Orr Design       | 4         | 3            | 1               | 0               |
| N S Chapin Chart         | 2         | 2            | 0               | 0               |
| Beamson Tables           | 1         | 1            | 0               | 0               |
| Program Design language  | 7         | 11           | 12              | 5               |
| Structured Programming   | 0         | 9            | 16              | 18              |
| Structured Walkthroughs  | 2         | 14           | 10              | 11              |
| Top Down Design          | 0         | 6            | 20              | 16              |
| Top Down Testing         | 1         | 17           | 10              | 9               |
| Bottom Up Design         | 4         | 18           | 5               | 4               |
| Bachman Diagramming      | 1         | 3            | 0               | 0               |
| Entity Diagrams          | 0         | 2            | 1               | 0               |
| Data Abstraction         | 2         | 7            | 6               | 0               |
| other methodology        | 0         | 0            | 0               | 0               |
| enumeration types        | 5         | 4            | 9               | 5               |
| floating point types     | 1         | 9            | 21              | 11              |
| fixed point types        | 1         | 6            | 19              | 14              |
| user defined types       | 5         | 7            | 12              | 7               |
| pointers                 | 1         | 7            | 17              | 13              |
| typed pointers           | 7         | 11           | 6               | 6               |
| ranges                   | 5         | 8            | 14              | 7               |
| records                  | 2         | 8            | 15              | 15              |
| variant records          | 3         | 9            | 8               | 6               |
| object type dcls         | 5         | 10           | 13              | 10              |
| global variables         | 1         | 3            | 20              | 18              |
| local variables          | 1         | 3            | 19              | 20              |
| formal actual params     | 4         | 9            | 9               | 12              |
| reserved words           | 0         | 7            | 14              | 16              |
| blocks                   | 0         | 9            | 18              | 9               |
| case statements          | 2         | 4            | 17              | 15              |
| if then else statements  | 0         | 2            | 16              | 24              |
| loop for while until     | 0         | 5            | 16              | 20              |
| exit statements          | 0         | 5            | 19              | 15              |
| procedures               | 1         | 6            | 17              | 17              |
| functions                | 1         | 4            | 18              | 17              |
| return statements        | 0         | 2            | 17              | 24              |
| clusters modules package | 6         | 7            | 17              | 6               |

|                          |   |    |    |    |
|--------------------------|---|----|----|----|
| stubs                    | 2 | 7  | 13 | 8  |
| goto statements          | 0 | 7  | 19 | 16 |
| comments                 | 0 | 1  | 14 | 27 |
| exception handlers       | 4 | 10 | 11 | 8  |
| task routines            | 3 | 11 | 8  | 4  |
| other prog constructs    | 0 | 1  | 0  | 0  |
| importing exporting name | 6 | 4  | 2  | 1  |
| data encapsulation       | 2 | 10 | 5  | 2  |
| name scoping             | 6 | 8  | 3  | 0  |
| name visibility          | 4 | 7  | 3  | 0  |
| static dynamic nesting   | 9 | 12 | 8  | 1  |
| iteration                | 3 | 5  | 17 | 12 |
| conditional statements   | 0 | 4  | 14 | 23 |
| recursion                | 3 | 11 | 13 | 9  |
| concurrency              | 7 | 12 | 10 | 2  |
| strong typing            | 3 | 8  | 6  | 5  |
| type conversion          | 3 | 7  | 11 | 5  |
| data abstraction         | 5 | 9  | 6  | 1  |
| generics                 | 4 | 9  | 5  | 0  |
| loop invariants          | 4 | 9  | 4  | 1  |
| parameter binding        | 6 | 10 | 2  | 1  |
| version number           | 2 | 10 | 7  | 5  |
| other prog concepts      | 0 | 0  | 0  | 0  |
| A enumeration types      | 6 | 6  | 4  | 0  |
| Ada user defined types   | 4 | 11 | 6  | 0  |
| Ada subtypes             | 5 | 7  | 2  | 0  |
| Ada derived types        | 5 | 4  | 3  | 0  |
| Ada real types           | 4 | 14 | 3  | 3  |
| Ada float point types    | 3 | 16 | 3  | 3  |
| Ada fixed pt types       | 3 | 14 | 4  | 3  |
| Ada record types         | 3 | 12 | 3  | 3  |
| Ada rec types discrim    | 5 | 4  | 2  | 1  |
| Ada slices               | 3 | 6  | 1  | 0  |
| Ada aggregates           | 3 | 8  | 1  | 0  |
| Ada allocators           | 2 | 8  | 1  | 0  |
| Ada access types         | 4 | 7  | 1  | 0  |
| Ada overloading          | 4 | 9  | 1  | 0  |
| Ada packages             | 6 | 6  | 3  | 1  |
| Ada private types        | 5 | 8  | 1  | 0  |
| Ada scope                | 3 | 7  | 2  | 0  |
| Ada short circuiting     | 3 | 4  | 0  | 1  |
| Ada visibility           | 5 | 5  | 3  | 0  |
| Ada tasking              | 7 | 10 | 3  | 2  |
| Ada task types           | 7 | 9  | 1  | 0  |
| Ada rendezvous           | 3 | 8  | 2  | 0  |
| Ada entries              | 3 | 8  | 3  | 0  |
| Ada entry families       | 2 | 5  | 1  | 0  |
| Ada separate compilation | 1 | 13 | 5  | 2  |
| Ada exceptions           | 4 | 12 | 3  | 0  |
| Ada generic prog units   | 5 | 8  | 1  | 0  |
| Ada instantiation        | 5 | 6  | 1  | 0  |
| Ada elaboration          | 1 | 4  | 2  | 0  |
| Ada context spec         | 2 | 8  | 1  | 0  |
| Ada information hiding   | 3 | 10 | 1  | 1  |

|                      |   |   |   |   |
|----------------------|---|---|---|---|
| Ada mutual recursion | 6 | 5 | 1 | 0 |
| other Ada concepts   | 0 | 0 | 0 | 0 |

cluster14

|                         | knowledge    |                 |                 |   |
|-------------------------|--------------|-----------------|-----------------|---|
|                         | know concept | used moderately | used frequently |   |
| heard of                |              |                 |                 |   |
| methodology             |              |                 |                 |   |
| PSL PLA                 | 1            | 3               | 0               | 0 |
| SADT                    | 1            | 2               | 0               | 0 |
| SREM                    | 0            | 1               | 1               | 0 |
| HIPO                    | 1            | 2               | 2               | 0 |
| Jackson Design          | 0            | 1               | 0               | 0 |
| Structured Design       | 0            | 6               | 4               | 2 |
| Warnier Orr Design      | 0            | 1               | 0               | 0 |
| N S Chapin Chart        | 0            | 1               | 0               | 0 |
| Beamson Tables          | 0            | 0               | 0               | 0 |
| Program Design language | 2            | 5               | 2               | 1 |
| Structured Programming  | 1            | 5               | 3               | 3 |
| Structured Walkthroughs | 0            | 6               | 2               | 1 |
| Top Down Design         | 1            | 5               | 3               | 3 |
| Top Down Testing        | 1            | 6               | 2               | 3 |
| Bottom Up Design        | 1            | 8               | 1               | 1 |
| Bachman Diagramming     | 0            | 1               | 0               | 0 |
| Entity Diagrams         | 0            | 2               | 0               | 0 |
| Data Abstraction        | 0            | 2               | 2               | 0 |
| other methodology       | 0            | 1               | 0               | 0 |
| enumeration types       | 1            | 2               | 2               | 3 |
| floating point types    | 0            | 4               | 5               | 2 |
| fixed point types       | 0            | 3               | 5               | 3 |
| user defined types      | 1            | 3               | 4               | 2 |
| pointers                | 0            | 4               | 2               | 4 |
| typed pointers          | 1            | 5               | 2               | 1 |
| ranges                  | 0            | 7               | 2               | 1 |
| records                 | 1            | 5               | 2               | 2 |
| variant records         | 1            | 3               | 3               | 1 |
| object type dcls        | 1            | 1               | 4               | 1 |
| global variables        | 2            | 4               | 3               | 2 |
| local variables         | 1            | 3               | 4               | 3 |
| formal actual params    | 1            | 3               | 2               | 3 |
| reserved words          | 0            | 5               | 2               | 3 |
| blocks                  | 1            | 5               | 2               | 2 |
| case statements         | 1            | 4               | 2               | 2 |
| if then else statements | 1            | 4               | 3               | 3 |
| loop for while until    | 1            | 4               | 3               | 3 |
| exit statements         | 1            | 4               | 3               | 2 |
| procedures              | 2            | 2               | 4               | 3 |
| functions               | 2            | 2               | 4               | 3 |
| return statements       | 1            | 3               | 3               | 4 |

|                          |         |         |   |   |   |
|--------------------------|---------|---------|---|---|---|
| clusters                 | modules | package |   |   |   |
| stubs                    |         |         | 2 | 1 | 2 |
| goto statements          |         |         | 2 | 4 | 1 |
| comments                 |         |         | 1 | 1 | 5 |
| exception handlers       |         |         | 1 | 1 | 5 |
| task coroutines          |         |         | 2 | 4 | 0 |
| other prog constructs    |         |         | 1 | 2 | 2 |
| importing exporting name |         |         | 0 | 0 | 0 |
| data encapsulation       |         |         | 1 | 0 | 0 |
| name scoping             |         |         | 1 | 5 | 1 |
| name visibility          |         |         | 1 | 1 | 1 |
| static dynamic nesting   |         |         | 3 | 0 | 1 |
| iteration                |         |         | 1 | 3 | 3 |
| conditional statements   |         |         | 1 | 1 | 4 |
| recursion                |         |         | 1 | 1 | 4 |
| concurrency              |         |         | 0 | 3 | 1 |
| strong typing            |         |         | 0 | 2 | 3 |
| type conversion          |         |         | 1 | 3 | 0 |
| data abstraction         |         |         | 0 | 3 | 2 |
| generics                 |         |         | 0 | 4 | 1 |
| loop invariants          |         |         | 0 | 2 | 1 |
| parameter binding        |         |         | 1 | 0 | 2 |
| version number           |         |         | 1 | 3 | 1 |
| other prog concepts      |         |         | 1 | 0 | 0 |
| A enumeration types      |         |         | 0 | 0 | 0 |
| Ada user defined types   |         |         | 2 | 4 | 0 |
| Ada subtypes             |         |         | 2 | 4 | 0 |
| Ada derived types        |         |         | 2 | 3 | 0 |
| Ada real types           |         |         | 2 | 5 | 0 |
| Ada float point types    |         |         | 1 | 5 | 0 |
| Ada fixed pt types       |         |         | 1 | 5 | 0 |
| Ada record types         |         |         | 1 | 5 | 0 |
| Ada rec types discrim    |         |         | 2 | 4 | 0 |
| Ada slices               |         |         | 3 | 2 | 0 |
| Ada aggregates           |         |         | 4 | 0 | 0 |
| Ada allocators           |         |         | 3 | 2 | 0 |
| Ada access types         |         |         | 3 | 1 | 0 |
| Ada overloading          |         |         | 1 | 5 | 0 |
| Ada packages             |         |         | 2 | 3 | 0 |
| Ada private types        |         |         | 2 | 3 | 0 |
| Ada scope                |         |         | 0 | 5 | 0 |
| Ada short circuiting     |         |         | 2 | 3 | 0 |
| Ada visibility           |         |         | 2 | 0 | 0 |
| Ada tasking              |         |         | 2 | 3 | 0 |
| Ada task types           |         |         | 4 | 2 | 0 |
| Ada rendezvous           |         |         | 4 | 2 | 0 |
| Ada entries              |         |         | 2 | 4 | 0 |
| Ada entry families       |         |         | 2 | 3 | 0 |
| Ada separate compilation |         |         | 2 | 1 | 0 |
| Ada exceptions           |         |         | 3 | 3 | 0 |
| Ada generic prog units   |         |         | 3 | 3 | 0 |
| Ada instantiation        |         |         | 3 | 2 | 0 |
| Ada elaboration          |         |         | 2 | 1 | 0 |
| Ada context spec         |         |         | 3 | 1 | 0 |

|                        |   |   |   |   |
|------------------------|---|---|---|---|
| Ada information hiding | 3 | 2 | 0 | 0 |
| Ada mutual recursion   | 3 | 1 | 0 | 0 |
| other Ada concepts     | 0 | 0 | 0 | 0 |

Technical Managers (Cluster 57)  
Methodologies versus Knowledge

| methodology              | knowledge |              |                 |                 |    |
|--------------------------|-----------|--------------|-----------------|-----------------|----|
|                          | heard_of  | know_concept | used_frequently | used_moderately |    |
| PSL_PLA                  | 2         | 9            | 1               | 0               | 12 |
| SADT                     | 1         | 5            | 1               | 1               | 8  |
| SREM                     | 2         | 5            | 0               | 0               | 7  |
| HIPO                     | 5         | 10           | 9               | 4               | 28 |
| Jackson_Design           | 5         | 2            | 1               | 1               | 9  |
| Structured_Design        | 1         | 5            | 9               | 13              | 28 |
| Warnier_Orr_Design       | 3         | 6            | 1               | 1               | 11 |
| N_S_Chapin_Chart         | 5         | 3            | 1               | 1               | 10 |
| Beamson_Tables           | 1         | 1            | 0               | 0               | 2  |
| Program_Design_language  | 3         | 5            | 13              | 6               | 27 |
| Structured_Programming   | 1         | 3            | 10              | 16              | 30 |
| Structured_Walkthroughs  | 2         | 9            | 9               | 9               | 29 |
| Top_Down_Design          | 0         | 2            | 10              | 19              | 31 |
| Top_Down_Testing         | 0         | 6            | 8               | 15              | 29 |
| Bottom_Up_Design         | 0         | 9            | 12              | 8               | 29 |
| Bachman_Diagramming      | 0         | 2            | 1               | 0               | 3  |
| Entity_Diagrams          | 3         | 2            | 2               | 0               | 7  |
| Data_Abstraction         | 1         | 5            | 6               | 4               | 16 |
| other_methodology        | 0         | 0            | 2               | 0               | 2  |
| enumeration_types        | 0         | 5            | 5               | 4               | 14 |
| floating_point_types     | 1         | 5            | 6               | 18              | 30 |
| fixed_point_types        | 1         | 3            | 6               | 19              | 29 |
| user_defined_types       | 0         | 5            | 9               | 14              | 28 |
| pointers                 | 0         | 6            | 8               | 13              | 27 |
| typed_pointers           | 4         | 5            | 6               | 9               | 24 |
| ranges                   | 0         | 5            | 9               | 11              | 25 |
| records                  | 0         | 5            | 7               | 17              | 29 |
| variant_records          | 3         | 2            | 7               | 10              | 22 |
| object_type_ids          | 1         | 2            | 7               | 15              | 25 |
| global_variables         | 0         | 3            | 6               | 20              | 29 |
| local_variables          | 0         | 3            | 6               | 19              | 28 |
| formal_actual_params     | 1         | 2            | 5               | 17              | 25 |
| reserved_words           | 1         | 3            | 7               | 16              | 27 |
| blocks                   | 0         | 5            | 8               | 12              | 25 |
| case_statements          | 1         | 4            | 6               | 17              | 30 |
| if_then_else_statements  | 0         | 1            | 7               | 23              | 31 |
| loop_for_while_until     | 0         | 1            | 7               | 22              | 30 |
| exit_statements          | 0         | 3            | 8               | 19              | 30 |
| procedures               | 0         | 2            | 5               | 22              | 29 |
| functions                | 0         | 3            | 5               | 21              | 29 |
| return_statements        | 0         | 2            | 5               | 23              | 30 |
| clusters_modules_package | 2         | 7            | 6               | 12              | 27 |
| stubs                    | 0         | 9            | 11              | 7               | 27 |
| goto_statements          | 0         | 2            | 12              | 16              | 30 |
| comments                 | 0         | 1            | 10              | 19              | 30 |

|                          |     |     |     |     |      |
|--------------------------|-----|-----|-----|-----|------|
| exception_handlers       | 1   | 5   | 8   | 12  | 26   |
| task_coroutines          | 4   | 6   | 7   | 10  | 27   |
| other_prog_constructs    | 0   | 0   | 1   | 1   | 2    |
| importing_exporting_name | 6   | 2   | 2   | 2   | 12   |
| data_encapsulation       | 7   | 6   | 5   | 4   | 22   |
| name_scoping             | 2   | 4   | 6   | 3   | 15   |
| name_visibility          | 5   | 3   | 4   | 4   | 16   |
| static_dynamic_nesting   | 5   | 4   | 6   | 5   | 20   |
| iteration                | 1   | 3   | 7   | 18  | 29   |
| conditional_statements   | 1   | 0   | 6   | 22  | 29   |
| recursion                | 1   | 5   | 12  | 10  | 28   |
| concurrency              | 0   | 5   | 8   | 10  | 23   |
| strong_typing            | 3   | 6   | 6   | 6   | 21   |
| type_conversion          | 1   | 8   | 8   | 9   | 24   |
| data_abstraction         | 3   | 7   | 5   | 7   | 22   |
| generics                 | 5   | 6   | 3   | 5   | 19   |
| loop_invariants          | 2   | 4   | 6   | 5   | 17   |
| parameter_binding        | 2   | 9   | 2   | 6   | 19   |
| version_number           | 1   | 6   | 0   | 10  | 23   |
| other_prog_concepts      | 0   | 0   | 0   | 0   | 0    |
| Ada_enumeration_types    | 3   | 6   | 4   | 2   | 15   |
| Ada_user_defined_types   | 2   | 11  | 1   | 4   | 18   |
| Ada_subtypes             | 3   | 9   | 2   | 3   | 17   |
| Ada_derived_types        | 3   | 7   | 1   | 1   | 12   |
| Ada_real_types           | 1   | 8   | 5   | 5   | 19   |
| Ada_float_point_types    | 1   | 9   | 4   | 6   | 20   |
| Ada_fixed_pt_types       | 1   | 9   | 3   | 7   | 20   |
| Ada_record_types         | 0   | 11  | 3   | 5   | 19   |
| Ada_rec_types_discrim    | 4   | 9   | 0   | 0   | 13   |
| Ada_slices               | 4   | 6   | 0   | 0   | 10   |
| Ada_aggregates           | 3   | 5   | 0   | 1   | 9    |
| Ada_allocators           | 2   | 7   | 2   | 0   | 11   |
| Ada_access_types         | 3   | 7   | 1   | 2   | 13   |
| Ada_overloading          | 3   | 7   | 0   | 1   | 11   |
| Ada_packages             | 3   | 10  | 1   | 1   | 15   |
| Ada_private_types        | 4   | 10  | 1   | 1   | 16   |
| Ada_scope                | 2   | 12  | 2   | 0   | 16   |
| Ada_short_circuiting     | 2   | 4   | 1   | 0   | 7    |
| Ada_visibility           | 1   | 9   | 1   | 1   | 12   |
| Ada_tasking              | 3   | 10  | 0   | 4   | 17   |
| Ada_task_types           | 5   | 5   | 0   | 2   | 12   |
| Ada_rendezvous           | 5   | 6   | 1   | 1   | 13   |
| Ada_entries              | 4   | 7   | 2   | 1   | 14   |
| Ada_entry_families       | 6   | 3   | 1   | 1   | 11   |
| Ada_separate_compilation | 3   | 5   | 2   | 6   | 16   |
| Ada_exceptions           | 1   | 6   | 4   | 2   | 13   |
| Ada_generic_prog_units   | 8   | 3   | 1   | 1   | 13   |
| Ada_instantiation        | 4   | 5   | 1   | 0   | 10   |
| Ada_elaboration          | 4   | 3   | 0   | 1   | 8    |
| Ada_context_spec         | 4   | 4   | 0   | 0   | 8    |
| Ada_information_hiding   | 5   | 5   | 1   | 2   | 13   |
| Ada_mutual_recursion     | 5   | 4   | 1   | 1   | 11   |
| other_Ada_concepts       | 0   | 0   | 0   | 0   | 0    |
|                          | 202 | 492 | 436 | 724 | 1854 |

Support Managers (Cluster 38)  
Methodologies versus Knowledge

| methodology              | knowledge    |                 |                 |   |    |
|--------------------------|--------------|-----------------|-----------------|---|----|
|                          | know_concept |                 | used_frequently |   |    |
|                          | heard_of     | used_moderately |                 |   |    |
| PSL PLA                  | 3            | 1               | 0               | 0 | 4  |
| SADT                     | 0            | 4               | 2               | 1 | 7  |
| SREM                     | 2            | 1               | 0               | 0 | 3  |
| HIPO                     | 0            | 6               | 5               | 1 | 12 |
| Jackson_Design           | 3            | 2               | 0               | 1 | 6  |
| Structured_Design        | 0            | 4               | 5               | 4 | 13 |
| Warnier_Orr_Design       | 4            | 3               | 2               | 0 | 9  |
| N_S_Chapin_Chart         | 2            | 0               | 1               | 1 | 4  |
| Beamson_Tables           | 1            | 0               | 0               | 0 | 1  |
| Program_Design_language  | 3            | 3               | 3               | 2 | 11 |
| Structured_Programming   | 0            | 5               | 1               | 8 | 14 |
| Structured_Walkthroughs  | 0            | 4               | 3               | 5 | 12 |
| Top_Down_Design          | 0            | 5               | 1               | 8 | 14 |
| Top_Down_Testing         | 0            | 7               | 1               | 6 | 14 |
| Bottom_Up_Design         | 1            | 7               | 4               | 2 | 14 |
| Bachman_Diagramming      | 2            | 0               | 0               | 0 | 2  |
| Entity_Diagrams          | 1            | 2               | 0               | 0 | 3  |
| Data_Abstraction         | 3            | 5               | 0               | 1 | 9  |
| other_methodology        | 0            | 0               | 0               | 0 | 0  |
| enumeration_types        | 1            | 1               | 2               | 3 | 7  |
| floating_point_types     | 0            | 1               | 6               | 7 | 14 |
| fixed_point_types        | 0            | 2               | 6               | 6 | 14 |
| user_defined_types       | 0            | 3               | 4               | 3 | 10 |
| pointers                 | 0            | 3               | 2               | 7 | 12 |
| typed_pointers           | 1            | 3               | 1               | 3 | 8  |
| ranges                   | 0            | 3               | 4               | 3 | 10 |
| records                  | 0            | 3               | 4               | 5 | 12 |
| variant_records          | 2            | 2               | 0               | 3 | 7  |
| object_type_dcls         | 1            | 1               | 2               | 5 | 9  |
| global_variables         | 0            | 1               | 6               | 6 | 13 |
| local_variables          | 0            | 2               | 6               | 5 | 13 |
| formal_actual_params     | 0            | 2               | 4               | 4 | 10 |
| reserved_words           | 0            | 2               | 3               | 7 | 12 |
| blocks                   | 1            | 2               | 3               | 3 | 9  |
| case_statements          | 0            | 1               | 4               | 7 | 12 |
| if_then_else_statements  | 0            | 2               | 3               | 8 | 13 |
| loop_for_while_until     | 0            | 3               | 2               | 8 | 13 |
| exit_statements          | 1            | 2               | 3               | 7 | 13 |
| procedures               | 0            | 3               | 3               | 7 | 13 |
| functions                | 0            | 4               | 3               | 7 | 14 |
| return_statements        | 0            | 3               | 2               | 9 | 14 |
| clusters_modules_package | 0            | 4               | 2               | 8 | 14 |
| stubs                    | 1            | 3               | 3               | 5 | 12 |
| goto_statements          | 0            | 3               | 2               | 8 | 13 |

|                          |     |     |     |     |     |
|--------------------------|-----|-----|-----|-----|-----|
| comments                 | 0   | 1   | 3   | 9   | 13  |
| exception_handlers       | 1   | 1   | 5   | 5   | 12  |
| task_coroutines          | 0   | 3   | 1   | 6   | 10  |
| other_prog_constructs    | 0   | 0   | 0   | 0   | 0   |
| importing_exporting_name | 2   | 1   | 0   | 2   | 5   |
| data_encapsulation       | 0   | 4   | 1   | 4   | 9   |
| name_scoping             | 2   | 3   | 0   | 3   | 8   |
| name_visibility          | 2   | 2   | 0   | 2   | 6   |
| static_dynamic_nesting   | 1   | 2   | 2   | 4   | 9   |
| iteration                | 0   | 6   | 2   | 6   | 14  |
| conditional_statements   | 0   | 4   | 3   | 6   | 13  |
| recursion                | 2   | 4   | 2   | 5   | 13  |
| concurrency              | 2   | 5   | 1   | 5   | 13  |
| strong_typing            | 3   | 1   | 1   | 4   | 9   |
| type_conversion          | 5   | 1   | 0   | 4   | 10  |
| data_abstraction         | 1   | 6   | 1   | 2   | 10  |
| generics                 | 2   | 5   | 1   | 2   | 10  |
| loop_invariants          | 3   | 1   | 0   | 5   | 9   |
| parameter_binding        | 4   | 0   | 0   | 3   | 7   |
| version_number           | 1   | 3   | 3   | 5   | 12  |
| other_prog_concepts      | 0   | 0   | 1   | 0   | 1   |
| AdaEnumeration_types     | 1   | 4   | 1   | 0   | 6   |
| AdaUserDefined_types     | 2   | 8   | 0   | 1   | 11  |
| Ada_subtypes             | 3   | 4   | 0   | 1   | 8   |
| Ada_derived_types        | 2   | 4   | 0   | 0   | 6   |
| Ada_real_types           | 2   | 4   | 0   | 2   | 8   |
| Ada_float_point_types    | 3   | 6   | 0   | 2   | 11  |
| Ada_fixed_pt_types       | 3   | 5   | 0   | 2   | 10  |
| Ada_record_types         | 5   | 2   | 0   | 2   | 9   |
| Ada_rec_types_discrim    | 3   | 2   | 0   | 0   | 5   |
| Ada_slices               | 2   | 3   | 0   | 0   | 5   |
| Ada_aggregates           | 2   | 2   | 0   | 1   | 5   |
| Ada_allocators           | 1   | 3   | 0   | 0   | 4   |
| Ada_access_types         | 1   | 4   | 0   | 1   | 6   |
| Ada_overloading          | 1   | 4   | 1   | 0   | 6   |
| Ada_packages             | 4   | 5   | 0   | 0   | 9   |
| Ada_private_types        | 2   | 4   | 0   | 0   | 6   |
| Ada_scope                | 2   | 3   | 0   | 2   | 7   |
| Ada_short_circuiting     | 2   | 1   | 0   | 1   | 4   |
| Ada_visibility           | 1   | 3   | 0   | 1   | 5   |
| Ada_tasking              | 4   | 5   | 0   | 2   | 11  |
| Ada_task_types           | 3   | 5   | 0   | 0   | 8   |
| Ada_rendezvous           | 3   | 4   | 0   | 1   | 8   |
| Ada_entries              | 5   | 2   | 0   | 2   | 9   |
| Ada_entry_families       | 4   | 2   | 0   | 0   | 6   |
| Ada_separate_compilation | 2   | 7   | 0   | 2   | 11  |
| Ada_exceptions           | 2   | 4   | 0   | 2   | 8   |
| Ada_generic_prog_units   | 2   | 4   | 1   | 0   | 7   |
| Ada_instantiation        | 2   | 4   | 0   | 1   | 7   |
| Ada_elaboration          | 2   | 2   | 0   | 0   | 4   |
| Ada_context_spec         | 2   | 2   | 0   | 0   | 4   |
| Ada_information_hiding   | 4   | 4   | 0   | 1   | 9   |
| Ada_mutual_recursion     | 3   | 2   | 0   | 0   | 5   |
| other_Ada_concepts       | 0   | 0   | 0   | 0   | 0   |
|                          | 144 | 289 | 138 | 293 | 864 |

Administrative Managers (Cluster 2)  
Methodologies versus Knowledge

| methodology              | knowledge |              |                 |                 |    |
|--------------------------|-----------|--------------|-----------------|-----------------|----|
|                          | heard_of  | know_concept | used_frequently | used_moderately |    |
| PSL_PLA                  | 5         | 18           | 0               | 0               | 23 |
| SADT                     | 6         | 10           | 2               | 0               | 18 |
| SREM                     | 5         | 7            | 0               | 0               | 12 |
| HIPPO                    | 5         | 14           | 15              | 9               | 43 |
| Jackson_Design           | 5         | 9            | 3               | 1               | 18 |
| Structured_Design        | 1         | 12           | 9               | 23              | 45 |
| Warnier_Orr_Design       | 6         | 9            | 4               | 0               | 19 |
| N_S_Chapin_Chart         | 7         | 9            | 3               | 2               | 21 |
| Beamson_Tables           | 3         | 1            | 0               | 0               | 4  |
| Program_Design_language  | 3         | 12           | 11              | 15              | 41 |
| Structured_Programming   | 0         | 5            | 8               | 33              | 46 |
| Structured_Walkthroughs  | 0         | 11           | 10              | 23              | 44 |
| Top_Down_Design          | 0         | 4            | 9               | 33              | 46 |
| Top_Down_Testing         | 1         | 5            | 11              | 28              | 45 |
| Bottom_Up_Design         | 0         | 11           | 22              | 12              | 45 |
| Bachman_Diagramming      | 1         | 3            | 0               | 0               | 4  |
| Entity_Diagrams          | 0         | 1            | 2               | 0               | 3  |
| Data_Abstraction         | 5         | 9            | 4               | 3               | 22 |
| other_methodology        | 0         | 0            | 1               | 2               | 3  |
| enumeration_types        | 2         | 11           | 11              | 6               | 30 |
| floating_point_types     | 0         | 4            | 13              | 30              | 47 |
| fixed_point_types        | 0         | 2            | 9               | 34              | 45 |
| user_defined_types       | 2         | 8            | 13              | 18              | 41 |
| pointers                 | 0         | 5            | 13              | 28              | 46 |
| typed_pointers           | 1         | 15           | 8               | 15              | 39 |
| ranges                   | 0         | 13           | 10              | 22              | 45 |
| records                  | 1         | 8            | 10              | 25              | 44 |
| variant_records          | 3         | 13           | 5               | 14              | 35 |
| object_type_dcls         | 1         | 9            | 11              | 18              | 39 |
| global_variables         | 0         | 4            | 7               | 34              | 45 |
| local_variables          | 0         | 3            | 6               | 36              | 45 |
| formal_actual_params     | 0         | 1            | 12              | 31              | 44 |
| reserved_words           | 0         | 4            | 8               | 33              | 45 |
| blocks                   | 0         | 4            | 12              | 29              | 45 |
| case_statements          | 0         | 4            | 15              | 24              | 43 |
| if_then_else_statements  | 0         | 3            | 11              | 32              | 46 |
| loop_for_while_until     | 0         | 3            | 11              | 32              | 46 |
| exit_statements          | 0         | 6            | 14              | 26              | 46 |
| procedures               | 0         | 3            | 12              | 31              | 46 |
| functions                | 0         | 0            | 11              | 35              | 46 |
| return_statements        | 0         | 2            | 5               | 39              | 46 |
| clusters_modules_package | 2         | 7            | 12              | 22              | 43 |
| stubs                    | 1         | 3            | 13              | 25              | 42 |
| goto_statements          | 0         | 3            | 15              | 26              | 44 |
| comments                 | 0         | 0            | 7               | 39              | 46 |

|                          |     |     |     |      |      |
|--------------------------|-----|-----|-----|------|------|
| exception_handlers       | 1   | 11  | 9   | 20   | 41   |
| task_coroutines          | 2   | 11  | 8   | 19   | 40   |
| other_prog_constructs    | 0   | 0   | 0   | 0    | 0    |
| importing_exporting_name | 2   | 8   | 4   | 4    | 18   |
| data_encapsulation       | 4   | 15  | 7   | 10   | 36   |
| name_scoping             | 3   | 10  | 2   | 9    | 24   |
| name_visibility          | 7   | 7   | 5   | 4    | 23   |
| static_dynamic_nesting   | 5   | 11  | 6   | 13   | 35   |
| iteration                | 1   | 1   | 10  | 31   | 43   |
| conditional_statements   | 0   | 1   | 8   | 35   | 44   |
| recursion                | 0   | 8   | 15  | 21   | 44   |
| concurrency              | 1   | 8   | 11  | 16   | 36   |
| strong_typing            | 4   | 12  | 7   | 12   | 35   |
| type_conversion          | 3   | 6   | 16  | 17   | 42   |
| data_abstraction         | 4   | 14  | 6   | 10   | 34   |
| generics                 | 3   | 11  | 6   | 6    | 26   |
| loop_invariants          | 2   | 11  | 10  | 7    | 30   |
| parameter_binding        | 5   | 12  | 9   | 8    | 34   |
| version_number           | 1   | 5   | 11  | 21   | 38   |
| other_prog_concepts      | 0   | 0   | 0   | 0    | 0    |
| AdaEnumeration_types     | 2   | 20  | 2   | 1    | 25   |
| AdaUser_defined_types    | 3   | 27  | 1   | 2    | 33   |
| Ada_subtypes             | 6   | 19  | 0   | 1    | 26   |
| Ada_derived_types        | 8   | 12  | 1   | 2    | 23   |
| Ada_real_types           | 2   | 24  | 2   | 6    | 34   |
| Ada_float_point_types    | 0   | 23  | 4   | 9    | 36   |
| Ada_fixed_pt_types       | 0   | 22  | 6   | 7    | 35   |
| Ada_record_types         | 2   | 23  | 1   | 3    | 29   |
| Ada_rec_types_discrim    | 5   | 11  | 1   | 1    | 18   |
| Ada_slices               | 3   | 7   | 1   | 1    | 12   |
| Ada_aggregates           | 4   | 8   | 1   | 0    | 13   |
| Ada_allocators           | 5   | 8   | 0   | 0    | 13   |
| Ada_access_types         | 4   | 15  | 1   | 0    | 20   |
| Ada_overloading          | 4   | 10  | 0   | 1    | 15   |
| Ada_packages             | 4   | 17  | 1   | 0    | 22   |
| Ada_private_types        | 1   | 15  | 0   | 1    | 17   |
| Ada_scope                | 3   | 17  | 1   | 2    | 23   |
| Ada_short_circuiting     | 4   | 9   | 1   | 0    | 14   |
| Ada_visibility           | 4   | 11  | 1   | 0    | 16   |
| Ada_tasking              | 3   | 21  | 2   | 2    | 28   |
| Ada_task_types           | 4   | 17  | 2   | 1    | 24   |
| Ada_rendezvous           | 2   | 13  | 3   | 1    | 19   |
| Ada_entries              | 3   | 20  | 0   | 3    | 26   |
| Ada_entry_families       | 6   | 9   | 1   | 1    | 17   |
| Ada_separate_compilation | 0   | 23  | 1   | 6    | 30   |
| Ada_exceptions           | 3   | 18  | 2   | 1    | 24   |
| Ada_generic_prog_units   | 2   | 11  | 1   | 0    | 14   |
| Ada_instantiation        | 4   | 11  | 0   | 0    | 15   |
| Ada_elaboration          | 8   | 7   | 0   | 0    | 15   |
| Ada_context_spec         | 8   | 11  | 0   | 0    | 19   |
| Ada_information_hiding   | 1   | 18  | 0   | 2    | 21   |
| Ada_mutual_recursion     | 7   | 8   | 0   | 0    | 15   |
| other_Ada_concepts       | 0   | 0   | 0   | 0    | 0    |
|                          | 230 | 935 | 575 | 1205 | 2945 |

END  
DATE  
FILMED

3 - 83

DTIC