$(c) E = aT + bT^2$
At temperature of

At temperature of inversion, E = 0,

$$aT_i + bT_i^2 = 0$$

1.
$$\begin{vmatrix} \mathbf{c} & \mathbf{c} \end{vmatrix} \Rightarrow T_i = -$$

$$\Rightarrow T_i = -\frac{10 \times 10^{-6}}{(0.02 \times 10^{-6})} = 500^{\circ}\text{C}$$

(a) For the path AC,

 $W_{AC} = Fs \cos(90 - \theta) = mgs \sin \theta = mgh \ (\because F = mg)$

For path, AB, $W_{AB} = Fa \cos 90^\circ = 0$

For path BC, $W_{BC} = Fh \cos 0^{\circ} = mgh$

3. a So that $W_{AB} + W_{BC} = mgh = W_{AC}$

i.e., $W_{ABC} = W_{BC}$

Note: This shows that in a conservation field, work is path independent. Moreover, work is also independent of the slope of inclined plane and depends on height h only

(d) In linear S.H.M., the restoring force acting on particle should always be proportional to the display position.
i.e., F \(\pi \) x

or $\mathbf{F} = -\mathbf{b}\mathbf{x}$ where \mathbf{b} is a positive constant.

5. a (a) Let the force F is applied at an angle θ with the horizontal.

For horizontal equilibrium, $F\cos\theta = \mu R$. (i) For vertical equilibrium, $R + F\sin\theta = \text{mg}$

or, $R = mg - F\sin\theta$...(ii)

Substituting this value of \mathbf{R} in eq. (i), we get

 $F\cos\theta = \mu(mg - F\sin\theta)$

 $= \mu \text{mg} - \mu F \sin \theta \text{ or, } F(\cos \theta + \mu \sin \theta) = \mu mg$

or, $\mathbf{F} = \frac{\mu \text{mg}}{\cos \theta + \mu \sin \theta}$... (iii)

For F to be minimum, the denominator $(\cos \theta + \mu \sin \theta)$ should be maximum. $\frac{d}{d\theta}(\cos\theta + \mu\sin\theta) = 0 \text{ or, } -\sin\theta + \mu\cos\theta = 0$ or, $\tan \theta = u$ or, $\theta = \tan^{-1}(\mu)$ Then, $\sin \theta = \frac{\mu}{\sqrt{1+\mu^2}}$ and $\cos \theta = \frac{1}{\sqrt{1 + \mu^2}} \text{Hence, } F_{\min}$ $= \frac{1}{\frac{1}{\sqrt{1 + \mu^2}} + \frac{\mu^2}{\sqrt{1 + \mu^2}}} = \frac{\mu w}{\sqrt{1 + \mu^2}}$ Initial stretch in both springs = $\frac{d}{d} - \frac{3d}{d} = \frac{d}{d}$ $F_{\text{restering}} = k\left(\frac{d}{4} + x\right) - k\left(\frac{d}{4} - x\right) = 2kx$ $\Rightarrow T_a = 2\pi \sqrt{\frac{m}{2\nu}}$ иринин — — нинини $d' = d \sec \theta$ $x' = d \sec \theta - \frac{3d}{4} = d \left(\frac{1}{\cos \theta} - \frac{3}{4} \right)$ Force towards equilibrium position $(kx' \sin \theta)$ 6. $=dk\left(\tan\theta-\frac{3\sin\theta}{4}\right)$ due to one spring and Net = $\frac{2dk}{\tan \theta} \left(\tan \theta - \frac{3\sin \theta}{4} \right)$ for small θ , force $= 2 dk \left[\theta - \frac{3\theta}{4}\right] = k \left(\frac{d\theta}{2}\right)$ $d\theta = \text{displacement from mean position}$ $\Rightarrow F - \frac{kx}{2} \Rightarrow T_B = 2\pi \sqrt{\frac{2m}{k}}$ $\Rightarrow \frac{T_B}{T_A} = 2\pi \sqrt{\frac{m}{2k}} / 2\pi \sqrt{\frac{2m}{k}}$ $\Rightarrow \frac{T_B}{T_r} = 2$ $\frac{h_A}{h_A} = \frac{1}{2}$ Probabilities of getting a and b particles are equal. Thus rate of disintegration are equal 7. $l_A N_A = l_B N_B$ 8. lb (c) Silver metal is obtained by Mac -Arthur Forrest process which is called cyanide process. The conand a current of O_2 is continuously passed. Silver sulphide goes into solution in the form of soluble c $2Ag_2S + 8NaCN + O_2 + 2H_2O \rightarrow$ 9. c $4Na[Ag(CN)_2] + 4NaOH + 2S$ The soluble complex is treated with zinc dust, when silver gets precipitated. $2Na[Ag(CN)_2] + Zn \rightarrow Na_2[Zn(CN)_4 + 2Ag \downarrow$ 10. c (a) $2Ag_2O(s) \rightleftharpoons 4Ag(s) + O_2(g)$ 11. a $K_p = p_{0_2}$ (: Ag and Ag_2O are solids)

9:40 AM	
b	(2) M. f. = $\frac{\text{moles of solute}}{\text{moles of solute + moles of water}}$
	$= \frac{1}{1 + \frac{1000}{12}} = 0.018$
3981	DW=-dVorDW=-RTln-aorDW=-0.082x300x2.303xlog- 5orDW=-0.082x300x2.303x0.7+orDW=-39.66+0.3969=-39.2631Latm.orDW=-39.2631xJ=-3980.89
37	$NO \rightarrow NO^{+} + e^{-} 25 + 12 \rightarrow 37$ $Fe^{2+} + e^{-} \rightarrow Fe^{+} (25e)$
c	(c) Given that, AM =8, GM =5, if α , β are the roots of quadratic equation, then the required quadratic $x^2 - x(\alpha + \beta) + \alpha\beta = 0$ (i) Here, AM = $\frac{\alpha + \beta}{2} = 8 \Rightarrow \alpha + \beta = 16$ And GM = $\sqrt{\alpha\beta} = 5 \Rightarrow \alpha\beta = 25$ From Eq. (I) $x^2 - 16x + 25 = 0$
d	(d) Given equation of parabola is $y^2 = 16x$ If $(1, 1)$ is the mid point of the chord, then its equation of chord is $T = S_1$ $\therefore y(1) - 8(x+1) = 1 - 16$ $\Rightarrow y - 8x - 8 = -15$ $\Rightarrow 8x - y = 7$
a	(a) The director circle of $16x^2 - 25y^2 = 400$ is $x^2 + y^2 = 9$ Clearly, $(2\sqrt{2}, 1)$ lies on it. So, angle between tangents drawn from $(2\sqrt{2}, 1)$ is a right angle
b	(b) General term $T_{r+1} = {}^{10}C_r(x^2)^{10-r} \left(-\frac{1}{x^3}\right)^r$ $= {}^{10}C_rx^{20-5r}(-1)^r$ Since, this term condition x^{-10} $\therefore 20 - 5r = -10 \Rightarrow r = 6$ $\therefore \text{ Coefficient of } x^{-10} = {}^{10}C_6(-1)^6 = 210$
d	(d) Given, $f(x) = [x], x \in (-3.5, 100)$ As we know greatest integer is discontinuous on integer values. In given interval, the integer values are $(-3, -2, -1, 0,, 99)$ \therefore Total numbers of integers are 103.
4	AV W. LtO 18 UI.CO $QR = \frac{a}{2 \sin A} = \frac{2 + \sqrt{5}}{2 \cdot \sin 30^{\circ}}$ $R = 2 + \sqrt{5}$ Now AH = 2R cosA $= 2 (2 + \sqrt{5}) \cos 30$ $= (2 + \sqrt{5}) \sqrt{3}$
	b 3981 37 c d

/22, 9:40 AM -			
ofi			
ne slope			
Giv Fre			
cot			
-			

GURU

www.1to1guru.com