Corrigé de la feuille 4 : suites récurrentes

Exercice 1.

- (a) Si (u_n) tend vers ℓ , (u_{n+1}) aussi et donc en passant à la limite dans la relation de récurrence, on trouve $\ell = a\ell + b$, soit $\ell = \frac{b}{1-a}$.
- (b) Avec $\ell = a\ell + b$, on trouve, pour $n \in \mathbb{N}$: $v_{n+1} = u_{n+1} \ell = (au_n + b) (a\ell + b) = av_n$. Donc (v_n) est une suite géométrique de raison a.
- (c) Si $u_0 = \ell$, $v_0 = 0$, donc la suite géométrique (v_n) est nulle et (u_n) est constante à la valeur ℓ , quel que soit le paramètre a. Supposons $u_0 \neq \ell$. Si |a| < 1, (v_n) converge vers 0, donc (u_n) converge vers ℓ . Réciproquement, si (u_n) converge, c'est vers ℓ d'après (a), donc la suite géométrique (v_n) tend vers 0 et cela correspond à une raison $a \in]-1,1[$. Dans le cas $u_0 \neq 0$, la suite (u_n) converge donc si et seulement si |a| < 1.
- (d) La suite (u_n) en question vérifie la relation de récurrence

$$\forall n \in \mathbb{N}, \quad u_{n+1} = u_n + \frac{1}{9}(1 - u_n).$$

(à chaque étape, on colorie 1/9 de chaque carré blanc, donc 1/9 de l'aire non coloriée). On est donc dans la situation ci-dessus avec a=8/9 et b=1/9. Puisque |a|<1, (u_n) converge vers $\frac{b}{1-a}=1$.

Exercice 2. On introduit les suites $(x_n = Re(u_n))$ et $(y_n = Im(u_n))$. Elles vérifient :

$$\forall n \in \mathbb{N}, \quad x_{n+1} = \frac{1}{5}x_n \quad \text{et} \quad y_{n+1} = y_n.$$

Donc (y_n) est constante, à la valeurs $y_0 = \text{Im}(u_0)$. Et (x_n) est géométrique de raison 1/5 donc converge vers 0. On en déduit que (u_n) converge vers $i\text{Im}(u_0)$.

Exercice 3.

(a) La fonction $f: x \mapsto x^2 + 2$ est bien définie de \mathbb{R} dans \mathbb{R} , donc la suite récurrente est bien définie.

1

(b)

- (c) Pour $x \in \mathbb{R}$, $f(x) x = x^2 x + 2$. On reconnaît un trinôme du second degré de discriminant $\Delta = -7 < 0$. Comme son coefficient dominant est 1 > 0, il reste strictement positif sur \mathbb{R} . Cela prouve que $u_{n+1} > u_n$ pour tout $n : (u_n)$ est strictement croissante.
- (d) La suite étant croissante, elle admet une limite ℓ , réelle ou $+\infty$. Si ℓ est finie, par passage à la limite dans la relation de récurrence, $f(\ell) \ell = 0$. Or on vient de voir, au (c), que cette équation n'admet aucune solution réelle. Donc (u_n) tend vers $+\infty$.

Exercice 4.

(a) La fonction sinus est bien définie de $\mathbb R$ dans $\mathbb R$, donc la suite récurrente est bien définie.

- (c) Pour $x \in [0, 1] \subset [0, \pi/2]$, $\sin x \in [0, 1]$.
- (d) La fonction $g: x \mapsto \sin x x$ est dérivable sur \mathbb{R} , avec $g' = \cos -1 \le 0$. Donc g est décroissante. Et g(0) = 0. Donc $g \le 0$ sur [0,1]. Par (c), la suite (u_n) reste dans [0,1], donc ce calcul donne $u_{n+1} u_n = g(u_n) \le 0$ pour tout indice $n: (u_n)$ est décroissante.

(On peut aussi utiliser la concavité de sinus sur [0,1] pour voir que g y est négative, cf. feuille 3.)

(e) Puisque (u_n) est décroissante minorée (par 0), (u_n) converge. Sa limite ℓ appartient à l'intervalle fermé stable [0,1] et elle vérifie $g(\ell) = 0$ par continuité de g. Sur]0,1[, $g' = 1 - \cos < 0$ donc g est strictement décroissante sur [0,1]. Et g(0) = 0, donc g ne s'annule qu'en 0. Cela prouve (u_n) converge vers 0.

Exercice 5.

- (a) Si a < -1, $\sqrt{a-1}$ n'est pas défini donc la suite n'est pas définie. Si $a \ge -1$, u_1 est bien défini et c'est un nombre positif. Or l'intervalle \mathbb{R}_+ est stabilisé par la fonction $f: x \mapsto \sqrt{x+1}$. Donc la suite (u_n) est bien définie si $a \ge -1$.
- (b) Par continuité de f sur l'intervalle fermé \mathbb{R}_+ , si (u_n) converge vers ℓ , $f(\ell) = \ell$. Le nombre positif ℓ est alors une solution de $\ell^2 \ell 1 = 0$. Ce trinôme admet comme racines $\frac{1 \pm \sqrt{5}}{2}$. La seule racine positive est $\ell = \frac{1 + \sqrt{5}}{2}$.
- (c) On peut observer que la fonction f est croissante. D'après le cours, la suite (u_n) est donc toujours monotone et son sens de variation dépend de la position de $u_1 = \sqrt{a+1}$ par rapport à $u_0 = a$.

Si $a \ge \ell$, a se situe à droite de la second racine du trinôme étudié au (b), donc $a^2 - a - 1 \ge 0$ et $u_1 \le u_0 : (u_n)$ est décroissante et minorée (par 0) donc converge et ce ne peut être que vers ℓ .

Si $-1 \le a < \ell$, on a $u_1 \ge u_0$ (comme $u_1 \ge 0$, c'est clair si $a = u_0 \le 0$; et si $a \in [0, \ell[$, a est situé entre les racines du trinôme du (b), donc $a^2 - a - 1 \le 0$, ce qui implique l'inégalité voulue). Dans ce cas, (u_n) est croissante. On peut remarquer que si $-1 \le x \le \ell$, $0 \le f(x) = \sqrt{x+1} \le \sqrt{\ell+1} = \ell$, ce qui prouve que $[-1, \ell]$ est stable, de sorte qu'ici, (u_n) restera majorée par ℓ . Donc (u_n) , croissante et majorée, converge, vers ℓ par nécessité.

Exercice 6.

(a)

(b) Soit $x \in [1/2, 2]$. En particulier, $x \neq -1$, donc f(x) est bien défini. Par décroissance de f sur $]-1, +\infty[$, on a

$$\frac{2}{3} = f(2) \le f(x) \le f(1/2) = \frac{4}{3}.$$

Donc f(x) est dans l'intervalle [1/2, 2]. Cet intervalle est donc stable.

- (c) Puisque 2 est dans cet intervalle, on en déduit que (u_n) est une suite bien définie et restant dans cet intervalle. Par continuité de f sur cet intervalle fermé, si (u_n) converge vers ℓ , ℓ est un élément de [1/2,2] vérifiant $f(\ell) = \ell$. C'est donc une solution de $\ell^2 + \ell 2 = 0$. Ce trinôme a pour racines 1 et -2. La seule possibilité de limite dans l'intervalle voulu est $\ell = 1$.
- (d) La fonction f est dérivable sur [1/2,2], avec $|f'(x)| = 2/(1+x)^2$ pour x dans cet intervalle. Par décroissance de |f'|, $|f'| \le |f'(1/2)| = 8/9$ sur cet intervalle. La fonction f y est donc contractante. Cela assure donc la convergence de (u_n) vers la seule limite possible, 1, avec de plus l'estimée

$$\forall n \in \mathbb{N}, \quad |u_n - 1| \le \left(\frac{8}{9}\right)^n |u_0 - 1| = \left(\frac{8}{9}\right)^n.$$

(e) Par décroissance de f, les suites (u_{2n}) et (u_{2n+1}) sont monotones de sens opposé. On calcule : $u_0 = 2$, $u_1 = 2/3$ et $u_2 = 6/5 < u_0$. Ainsi, (u_{2n}) est décroissante et donc (u_{2n+1}) est croissante.

Exercice 7.

(a) Soit x>0. On utilise l'identité remarquable $A^2+B^2-2AB=(A-B)^2\geq 0$ avec $A=\sqrt{\frac{x}{2}}$ et $B=\sqrt{\frac{a}{2x}}$: $\frac{x}{2}+\frac{a}{2x}-\sqrt{a}\geq 0.$

Par récurrence immédiate, puisque $u_0 > 0$, la suite (u_n) reste strictement positive. Pour $n \in \mathbb{N}$, on peut donc poser $x = u_n$ et en déduire

$$u_{n+1} - \sqrt{a} \ge 0.$$

Cela prouve que pour $n \ge 1$, $u_n \ge \sqrt{a}$.

(b) Pour $n \ge 1$,

$$u_{n+1} - u_n = \frac{a}{2u_n} - \frac{u_n}{2} = \frac{a - u_n^2}{2u_n} \le 0$$

par (a). Donc $(u_n)_{n\geq 1}$ est décroissante.

(c) Par (a) et (b), $(u_n)_{n\geq 1}$ est minorée et décroissante, donc convergente, vers une limite ℓ , qui est dans l'intervalle fermé et stable $[\sqrt{a}, +\infty[$. Par continuité de $x\mapsto \frac{x}{2}+\frac{a}{2x}$ sur cet intervalle,

$$\frac{\ell}{2} + \frac{a}{2\ell} = \ell,$$

soit $\ell^2 = a$, puis $\ell = \sqrt{a}$, puisque ℓ est positive.

(d) Pour $n \in \mathbb{N}^*$, on pose $\epsilon_n = \frac{u_n - \sqrt{a}}{2\sqrt{a}}$, de sorte que

$$\epsilon_{n+1} = \frac{\frac{u_n}{2} + \frac{a}{2u_n} - \sqrt{a}}{2\sqrt{a}} = \frac{u_n^2 + a - 2u_n\sqrt{a}}{4u_n\sqrt{a}} = \frac{(u_n - \sqrt{a})^2}{4u_n\sqrt{a}}.$$

On minore ensuite u_n par \sqrt{a} dans le dénominateur pour trouver

$$\epsilon_{n+1} \le \epsilon_n^2$$
.

Etant donné $N \in \mathbb{N}^*$, par récurrence, on en tire :

$$\forall n \ge N, \quad \epsilon_n \le (\epsilon_N)^{2^{n-N}}.$$

Puisque (ϵ_n) tend vers 0, on peut fixer N pour que $\epsilon_N \leq 1/10$. Alors :

$$\forall n \ge N, \quad \epsilon_n \le C \ 10^{-2^n},$$

avec $C = 10^{2^N}$. Cela prouve $u_n - \sqrt{a} = O(10^{-2^n})$ quand $n \to +\infty$.