Topološke lastnosti grup

Gašper Rotar

Fakulteta za matematiko in fiziko

15. april 2020

Definicija

Naj bo N podgrupa grupe G. N je podgrupa edinka grupe G, označimo $N \triangleleft G$, če za vse $a \in G$ in $n \in N$ velja ana $^{-1} \in N$.

Definicija

Naj bo N podgrupa grupe G. N je podgrupa edinka grupe G, označimo $N \triangleleft G$, če za vse $a \in G$ in $n \in N$ velja ana $^{-1} \in N$.

Trditev

Naj bo G grupa in $\Delta(G) = \{(g,g) \mid g \in G\} \subseteq G \times G$ njena diagonala. Grupa G je komutativna natanko takrat, ko je $\Delta(G)$ podgrupa edinka grupe $G \times G$, $\Delta(G) \triangleleft G \times G$.

Dokaz

 (\Rightarrow) Ker je G komutativna je seveda tudi $G \times G$ komutativna.

Dokaz

(\Rightarrow) Ker je G komutativna je seveda tudi G \times G komutativna. $a \cdot b = (\alpha, \alpha) \cdot (\beta, \beta) = (\alpha \cdot \beta, \alpha \cdot \beta) \in \Delta(G)$

Dokaz

(\Rightarrow) Ker je G komutativna je seveda tudi G \times G komutativna. $a \cdot b = (\alpha, \alpha) \cdot (\beta, \beta) = (\alpha \cdot \beta, \alpha \cdot \beta) \in \Delta(G)$ $(\alpha, \alpha) \cdot (\alpha^{-1}, \alpha^{-1}) = (\alpha \cdot \alpha^{-1}, \alpha \cdot \alpha^{-1}) = (1, 1)$

- (\Rightarrow) Ker je G komutativna je seveda tudi G \times G komutativna. $a \cdot b = (\alpha, \alpha) \cdot (\beta, \beta) = (\alpha \cdot \beta, \alpha \cdot \beta) \in \Delta(G)$ $(\alpha, \alpha) \cdot (\alpha^{-1}, \alpha^{-1}) = (\alpha \cdot \alpha^{-1}, \alpha \cdot \alpha^{-1}) = (1, 1)$
- (\Leftarrow) Naj bodo $(\alpha,1),(\alpha^{-1},1),(\beta,\beta)\in G\times G$

- (\Rightarrow) Ker je G komutativna je seveda tudi G \times G komutativna. $a \cdot b = (\alpha, \alpha) \cdot (\beta, \beta) = (\alpha \cdot \beta, \alpha \cdot \beta) \in \Delta(G)$ $(\alpha, \alpha) \cdot (\alpha^{-1}, \alpha^{-1}) = (\alpha \cdot \alpha^{-1}, \alpha \cdot \alpha^{-1}) = (1, 1)$
- (\Leftarrow) Naj bodo $(\alpha, 1), (\alpha^{-1}, 1), (\beta, \beta) \in G \times G$ Potem: $(\alpha, 1) \cdot (\beta, \beta) \cdot (\alpha^{-1}, 1) = (\alpha \beta \alpha^{-1}, \beta)$.

- (\Rightarrow) Ker je G komutativna je seveda tudi G \times G komutativna. $a \cdot b = (\alpha, \alpha) \cdot (\beta, \beta) = (\alpha \cdot \beta, \alpha \cdot \beta) \in \Delta(G)$ $(\alpha, \alpha) \cdot (\alpha^{-1}, \alpha^{-1}) = (\alpha \cdot \alpha^{-1}, \alpha \cdot \alpha^{-1}) = (1, 1)$
- (\Leftarrow) Naj bodo $(\alpha, 1), (\alpha^{-1}, 1), (\beta, \beta) \in G \times G$ Potem: $(\alpha, 1) \cdot (\beta, \beta) \cdot (\alpha^{-1}, 1) = (\alpha \beta \alpha^{-1}, \beta)$. Velja: $(\alpha \beta \alpha^{-1}, \beta) \in \Delta$

- (\Rightarrow) Ker je G komutativna je seveda tudi G \times G komutativna. $a \cdot b = (\alpha, \alpha) \cdot (\beta, \beta) = (\alpha \cdot \beta, \alpha \cdot \beta) \in \Delta(G)$ $(\alpha, \alpha) \cdot (\alpha^{-1}, \alpha^{-1}) = (\alpha \cdot \alpha^{-1}, \alpha \cdot \alpha^{-1}) = (1, 1)$
- (\Leftarrow) Naj bodo $(\alpha, 1), (\alpha^{-1}, 1), (\beta, \beta) \in G \times G$ Potem: $(\alpha, 1) \cdot (\beta, \beta) \cdot (\alpha^{-1}, 1) = (\alpha \beta \alpha^{-1}, \beta)$. Velja: $(\alpha \beta \alpha^{-1}, \beta) \in \Delta$ Torej: $\alpha \beta \alpha^{-1} = \beta \Rightarrow \alpha \beta = \beta \alpha$

- (\Rightarrow) Ker je G komutativna je seveda tudi G \times G komutativna. $a \cdot b = (\alpha, \alpha) \cdot (\beta, \beta) = (\alpha \cdot \beta, \alpha \cdot \beta) \in \Delta(G)$ $(\alpha, \alpha) \cdot (\alpha^{-1}, \alpha^{-1}) = (\alpha \cdot \alpha^{-1}, \alpha \cdot \alpha^{-1}) = (1, 1)$
- (\Leftarrow) Naj bodo $(\alpha, 1), (\alpha^{-1}, 1), (\beta, \beta) \in G \times G$ Potem: $(\alpha, 1) \cdot (\beta, \beta) \cdot (\alpha^{-1}, 1) = (\alpha \beta \alpha^{-1}, \beta)$. Velja: $(\alpha \beta \alpha^{-1}, \beta) \in \Delta$ Torej: $\alpha \beta \alpha^{-1} = \beta \Rightarrow \alpha \beta = \beta \alpha$

Definicija

Topološki prostor X je Hausdorffov, če za vsaki različni točki $x_1, x_2 \in X$ obstajata odprti okolici U_1 in U_2 za točki x_1 in x_2 , da $U_1 \cap U_2 = \emptyset$.

Definicija

Topološki prostor X je Hausdorffov, če za vsaki različni točki $x_1, x_2 \in X$ obstajata odprti okolici U_1 in U_2 za točki x_1 in x_2 , da $U_1 \cap U_2 = \emptyset$.

Trditev

Naslednje izjave so ekvivalentne:

Definicija

Topološki prostor X je Hausdorffov, če za vsaki različni točki $x_1, x_2 \in X$ obstajata odprti okolici U_1 in U_2 za točki x_1 in x_2 , da $U_1 \cap U_2 = \emptyset$.

Trditev

Naslednje izjave so ekvivalentne:

(i) Prostor X je Hausdorffov.

Definicija

Topološki prostor X je Hausdorffov, če za vsaki različni točki $x_1, x_2 \in X$ obstajata odprti okolici U_1 in U_2 za točki x_1 in x_2 , da $U_1 \cap U_2 = \emptyset$.

Trditev

Naslednje izjave so ekvivalentne:

- (i) Prostor X je Hausdorffov.
- (ii) Za poljuben $x \in X$ je $\bigcap_{U \in \mathcal{U}} \overline{U} = \{x\}$, kjer je \mathcal{U} družina vseh okolic x.

Definicija

Topološki prostor X je Hausdorffov, če za vsaki različni točki $x_1, x_2 \in X$ obstajata odprti okolici U_1 in U_2 za točki x_1 in x_2 , da $U_1 \cap U_2 = \emptyset$.

Trditev

Naslednje izjave so ekvivalentne:

- (i) Prostor X je Hausdorffov.
- (ii) Za poljuben $x \in X$ je $\bigcap_{U \in \mathcal{U}} \overline{U} = \{x\}$, kjer je \mathcal{U} družina vseh okolic x.
- (iii) Diagonala $\Delta(X) = \{(x,x) \mid x \in X\}$ je zaprt podprostor produkta $X \times X$.

Dokaz

(i) \Rightarrow (ii) Naj X Hausdorffov in $y \neq x$.

Dokaz

(i) \Rightarrow (ii) Naj X Hausdorffov in $y \neq x$. $x \in U, y \in V, U \cap V = \emptyset$

Dokaz

(i) \Rightarrow (ii) Naj X Hausdorffov in $y \neq x$. $x \in U, y \in V, U \cap V = \emptyset$ Torej $y \notin \overline{U}$

- (i) \Rightarrow (ii) Naj X Hausdorffov in $y \neq x$. $x \in U, y \in V, U \cap V = \emptyset$ Torej $y \notin \overline{U}$
- $(ii)\Rightarrow (iii)$ Pokažimo, da Δ^{C} odprta v $X\times X$

- (i) \Rightarrow (ii) Naj X Hausdorffov in $y \neq x$. $x \in U, y \in V, U \cap V = \emptyset$ Torej $y \notin \overline{U}$
- (ii) \Rightarrow (iii) Pokažimo, da Δ^C odprta v $X \times X$ $(x,y) \in \Delta^C$ obstaja U, da $x \in U$ in $y \notin \overline{U}$

- (i) \Rightarrow (ii) Naj X Hausdorffov in $y \neq x$. $x \in U, y \in V, U \cap V = \emptyset$ Torej $y \notin \overline{U}$
- (ii) \Rightarrow (iii) Pokažimo, da Δ^{C} odprta v $X \times X$ $(x,y) \in \Delta^{C}$ obstaja U, da $x \in U$ in $y \notin \overline{U}$ $(x,y) \in U \times \overline{U}^{C}$, ta ne seka Δ

- (i) \Rightarrow (ii) Naj X Hausdorffov in $y \neq x$. $x \in U, y \in V, U \cap V = \emptyset$ Torej $y \notin \overline{U}$
- (ii) \Rightarrow (iii) Pokažimo, da Δ^{C} odprta v $X \times X$ $(x,y) \in \Delta^{C}$ obstaja U, da $x \in U$ in $y \notin \overline{U}$ $(x,y) \in U \times \overline{U}^{C}$, ta ne seka Δ
- (iii) \Rightarrow (i) Naj bo Δ^{C} odprta

- (i) \Rightarrow (ii) Naj X Hausdorffov in $y \neq x$. $x \in U, y \in V, U \cap V = \emptyset$ Torej $y \notin \overline{U}$
- (ii) \Rightarrow (iii) Pokažimo, da Δ^{C} odprta v $X \times X$ $(x,y) \in \Delta^{C}$ obstaja U, da $x \in U$ in $y \notin \overline{U}$ $(x,y) \in U \times \overline{U}^{C}$, ta ne seka Δ
- (iii) \Rightarrow (i) Naj bo Δ^{C} odprta Za $x \neq y$ je $(x, y) \in \Delta^{C}$

- (i) \Rightarrow (ii) Naj X Hausdorffov in $y \neq x$. $x \in U, y \in V, U \cap V = \emptyset$ Torej $y \notin \overline{U}$
- (ii) \Rightarrow (iii) Pokažimo, da Δ^C odprta v $X \times X$ $(x,y) \in \Delta^C$ obstaja U, da $x \in U$ in $y \notin \overline{U}$ $(x,y) \in U \times \overline{U}^C$, ta ne seka Δ
- (iii) \Rightarrow (i) Naj bo Δ^{C} odprta Za $x \neq y$ je $(x, y) \in \Delta^{C}$ $(x, y) \in U \times V$

(i)
$$\Rightarrow$$
 (ii) Naj X Hausdorffov in $y \neq x$.
 $x \in U, y \in V, U \cap V = \emptyset$
 Torej $y \notin \overline{U}$

(ii)
$$\Rightarrow$$
 (iii) Pokažimo, da Δ^C odprta v $X \times X$ $(x,y) \in \Delta^C$ obstaja U , da $x \in U$ in $y \notin \overline{U}$ $(x,y) \in U \times \overline{U}^C$, ta ne seka Δ

$$(iii) \Rightarrow (i)$$
 Naj bo Δ^{C} odprta
Za $x \neq y$ je $(x, y) \in \Delta^{C}$
 $(x, y) \in U \times V$

Definicija

Element y grupe G je konjugiran elementu x iz G, če obstaja tak $g \in G$, da je $y = gxg^{-1}$.

Definicija

Element y grupe G je konjugiran elementu x iz G, če obstaja tak $g \in G$, da je $y = gxg^{-1}$.

Trditev

Konjugiranost je ekvivalenčna relacija.

Dokaz

• Refleksivnost: x = exe

- Refleksivnost: x = exe
- Simetričnost: $y = gxg^{-1} \Rightarrow x = g^{-1}yg$

- Refleksivnost: x = exe
- Simetričnost: $y = gxg^{-1} \Rightarrow x = g^{-1}yg$
- Tranzitivnost: $y = gxg^{-1}, z = hyh^{-1} \Rightarrow z = hgxg^{-1}h^{-1}$

- Refleksivnost: x = exe
- Simetričnost: $y = gxg^{-1} \Rightarrow x = g^{-1}yg$
- Tranzitivnost: $y = gxg^{-1}, z = hyh^{-1} \Rightarrow z = hgxg^{-1}h^{-1}$

Zgled

Če je G komutativna potem je vsak element v svojem razredu.

Zgled

Če je G komutativna potem je vsak element v svojem razredu.

$$ghg^{-1} = hgg^{-1} = h$$

Zgled

Če je G komutativna potem je vsak element v svojem razredu.

$$ghg^{-1} = hgg^{-1} = h$$

$$ghg^{-1} = h \Rightarrow gh = hg$$

Zgled

Če je G komutativna potem je vsak element v svojem razredu.

$$ghg^{-1} = hgg^{-1} = h$$

$$ghg^{-1} = h \Rightarrow gh = hg$$

Zgled

Kvaternionska grupa $Q=\{\pm 1,\pm i,\pm j,\pm k\}$ ni komutativna

Zgled

Če je G komutativna potem je vsak element v svojem razredu.

$$ghg^{-1} = hgg^{-1} = h$$

$$ghg^{-1} = h \Rightarrow gh = hg$$

Zgled

Kvaternionska grupa $Q=\{\pm 1,\pm i,\pm j,\pm k\}$ ni komutativna Konjugiranostni razredi so $\{1\},\{-1\},\{\pm i\},\{\pm j\},\{\pm k\}$

Zgled

Če je G komutativna potem je vsak element v svojem razredu.

$$ghg^{-1} = hgg^{-1} = h$$

$$ghg^{-1} = h \Rightarrow gh = hg$$

Zgled

Kvaternionska grupa $Q=\{\pm 1,\pm i,\pm j,\pm k\}$ ni komutativna Konjugiranostni razredi so $\{1\},\{-1\},\{\pm i\},\{\pm j\},\{\pm k\}$

Zgled

Podobne matrike: $B = P^{-1}AP$

Izrek

Naj bo G grupa in označimo $U_h = \{ghg^{-1} \mid g \in G\}$, to je konjugiranostni razred elementa h.

Izrek

Naj bo G grupa in označimo $U_h = \{ghg^{-1} \mid g \in G\}$, to je konjugiranostni razred elementa h. Množica $\Theta = \bigcup_{h \in G} \{U_h\}$ je baza neke topologije na G.

Izrek

Naj bo G grupa in označimo $U_h = \{ghg^{-1} \mid g \in G\}$, to je konjugiranostni razred elementa h. Množica $\Theta = \bigcup_{h \in G} \{U_h\}$ je baza neke topologije na G.

Pripomba

Topologijo, ki jo kot baza podaja Θ , bomo imenovali konjugiranostna topologija in jo označili z $\mathcal{T}(G)$.

Izrek

Naj bo G grupa in označimo $U_h = \{ghg^{-1} \mid g \in G\}$, to je konjugiranostni razred elementa h. Množica $\Theta = \bigcup_{h \in G} \{U_h\}$ je baza neke topologije na G.

Pripomba

Topologijo, ki jo kot baza podaja Θ , bomo imenovali konjugiranostna topologija in jo označili z $\mathcal{T}(G)$.

Dokaz

Θ je pokritje

Izrek

Naj bo G grupa in označimo $U_h = \{ghg^{-1} \mid g \in G\}$, to je konjugiranostni razred elementa h. Množica $\Theta = \bigcup_{h \in G} \{U_h\}$ je baza neke topologije na G.

Pripomba

Topologijo, ki jo kot baza podaja Θ , bomo imenovali konjugiranostna topologija in jo označili z $\mathcal{T}(G)$.

- Θ je pokritje
- U_h in U_k bazni množici

Izrek

Naj bo G grupa in označimo $U_h = \{ghg^{-1} \mid g \in G\}$, to je konjugiranostni razred elementa h. Množica $\Theta = \bigcup_{h \in G} \{U_h\}$ je baza neke topologije na G.

Pripomba

Topologijo, ki jo kot baza podaja Θ , bomo imenovali konjugiranostna topologija in jo označili z $\mathcal{T}(G)$.

- Θ je pokritje
- U_h in U_k bazni množici $x \in U_h \cap U_k \Rightarrow U_h = U_k$

Izrek

Naj bo G grupa in označimo $U_h = \{ghg^{-1} \mid g \in G\}$, to je konjugiranostni razred elementa h. Množica $\Theta = \bigcup_{h \in G} \{U_h\}$ je baza neke topologije na G.

Pripomba

Topologijo, ki jo kot baza podaja Θ , bomo imenovali konjugiranostna topologija in jo označili z $\mathcal{T}(G)$.

- Θ je pokritje
- U_h in U_k bazni množici $x \in U_h \cap U_k \Rightarrow U_h = U_k$

Izrek

G je komutativna natanko takrat, ko je $\mathcal{T}(G)$ Hausdorffova.

Izrek

G je komutativna natanko takrat, ko je $\mathcal{T}(G)$ Hausdorffova.

Dokaz

 (\Rightarrow) G komutativna \Rightarrow $U_x = \{x\}$

Izrek

G je komutativna natanko takrat, ko je $\mathcal{T}(G)$ Hausdorffova.

Dokaz

(⇒) G komutativna ⇒ $U_x = \{x\}$ $\mathcal{T}(G)$ diskretna

Izrek

G je komutativna natanko takrat, ko je $\mathcal{T}(G)$ Hausdorffova.

- (⇒) G komutativna ⇒ $U_x = \{x\}$ $\mathcal{T}(G)$ diskretna
- $(\Leftarrow) \mathcal{T}(G)$ Hausdorffova

Izrek

G je komutativna natanko takrat, ko je $\mathcal{T}(G)$ Hausdorffova.

- (⇒) G komutativna ⇒ $U_x = \{x\}$ $\mathcal{T}(G)$ diskretna
- (\Leftarrow) $\mathcal{T}(G)$ Hausdorffova Recimo da $y \neq x$ in $y \in U_x$

Izrek

G je komutativna natanko takrat, ko je $\mathcal{T}(G)$ Hausdorffova.

- (⇒) G komutativna ⇒ $U_x = \{x\}$ $\mathcal{T}(G)$ diskretna
- (\Leftarrow) $\mathcal{T}(G)$ Hausdorffova Recimo da $y \neq x$ in $y \in U_x$ $x \in U_h, y \in U_k$ in $U_h \cap U_k = \emptyset$

Izre<u>k</u>

G je komutativna natanko takrat, ko je $\mathcal{T}(G)$ Hausdorffova.

- (⇒) G komutativna ⇒ $U_x = \{x\}$ $\mathcal{T}(G)$ diskretna
- (\Leftarrow) $\mathcal{T}(G)$ Hausdorffova Recimo da $y \neq x$ in $y \in U_x$ $x \in U_h, y \in U_k$ in $U_h \cap U_k = \emptyset$ $x \in U_x \cap U_h$ in $y \in U_x \cap U_k$ torej $U_h = U_x = U_k$

Izre<u>k</u>

G je komutativna natanko takrat, ko je $\mathcal{T}(G)$ Hausdorffova.

- (⇒) G komutativna ⇒ $U_x = \{x\}$ $\mathcal{T}(G)$ diskretna
- (\Leftarrow) $\mathcal{T}(G)$ Hausdorffova Recimo da $y \neq x$ in $y \in U_x$ $x \in U_h, y \in U_k$ in $U_h \cap U_k = \emptyset$ $x \in U_x \cap U_h$ in $y \in U_x \cap U_k$ torej $U_h = U_x = U_k \Rightarrow \Leftarrow$

Izrek

 $H \triangleleft G$, če in samo če je H zaprt v $\mathcal{T}(G)$.

Izrek

 $H \triangleleft G$, če in samo če je H zaprt v $\mathcal{T}(G)$.

Dokaz

 (\Rightarrow) H ⊲ G, pokažemo da G − H odprta.

Izrek

 $H \triangleleft G$, če in samo če je H zaprt v $\mathcal{T}(G)$.

Dokaz

(⇒) H ⊲ G, pokažemo da G − H odprta.

Naj bo $x \in G - H$ in U_x konjugiranostni razred x.

Izrek

 $H \triangleleft G$, če in samo če je H zaprt v $\mathcal{T}(G)$.

Dokaz

 (\Rightarrow) H ⊲ G, pokažemo da G − H odprta.

Naj bo $x \in G - H$ in U_x konjugiranostni razred x.

 $U_X \cap H \neq \emptyset \Rightarrow \exists g \in G, h \in H : h = gxg^{-1}.$

Izrek

 $H \triangleleft G$, če in samo če je H zaprt v $\mathcal{T}(G)$.

Dokaz

(⇒) $H \triangleleft G$, pokažemo da G - H odprta.

Naj bo $x \in G - H$ in U_x konjugiranostni razred x.

 $U_{\mathsf{x}} \cap \mathsf{H} \neq \emptyset \Rightarrow \exists \mathsf{g} \in \mathsf{G}, \mathsf{h} \in \mathsf{H} : \mathsf{h} = \mathsf{g} \mathsf{x} \mathsf{g}^{-1}.$

Sledi $x = g^{-1}hg$, ker H edinka potem $x \in H$.

Izrek

 $H \triangleleft G$, če in samo če je H zaprt v $\mathcal{T}(G)$.

Dokaz

(⇒) $H \triangleleft G$, pokažemo da G - H odprta.

Naj bo $x \in G - H$ in U_x konjugiranostni razred x.

 $U_{\mathsf{x}} \cap \mathsf{H} \neq \emptyset \Rightarrow \exists \mathsf{g} \in \mathsf{G}, \mathsf{h} \in \mathsf{H} : \mathsf{h} = \mathsf{g} \mathsf{x} \mathsf{g}^{-1}.$

Sledi $x = g^{-1}hg$, ker H edinka potem $x \in H$. $\Rightarrow \leftarrow$

Izrek

 $H \triangleleft G$, če in samo če je H zaprt v $\mathcal{T}(G)$.

Dokaz

 (\Leftarrow) Naj bo $H \subseteq G$ zaprta

Izrek

 $H \triangleleft G$, če in samo če je H zaprt v $\mathcal{T}(G)$.

Dokaz

 (\Leftarrow) Naj bo $H \subseteq G$ zaprta Pokažimo da za vsak $h \in H$ tudi $U_h \subseteq H$, torej za $g \in G$ velja $ghg^{-1} \in H$

Izrek

 $H \triangleleft G$, če in samo če je H zaprt v $\mathcal{T}(G)$.

Dokaz

(⇐) Naj bo H ⊆ G zaprta Pokažimo da za vsak h ∈ H tu

Pokažimo da za vsak $h \in H$ tudi $U_h \subseteq H$, torej za $g \in G$ velja $ghg^{-1} \in H$

Recimo, da $\exists h \in H : U_h \nsubseteq H$

Izrek

 $H \triangleleft G$, če in samo če je H zaprt v $\mathcal{T}(G)$.

Dokaz

 (\Leftarrow) Naj bo $H \subseteq G$ zaprta Pokažimo da za vsak $h \in H$ tudi $U_h \subseteq H$, torej za $g \in G$ velja $ghg^{-1} \in H$ Recimo, da $\exists h \in H : U_h \nsubseteq H$ $x \in U_h \Rightarrow U_x = U_h$, torej U_x seka H in G - H.

Izrek

 $H \triangleleft G$, če in samo če je H zaprt v $\mathcal{T}(G)$.

Dokaz

 (\Leftarrow) Naj bo $H \subseteq G$ zaprta Pokažimo da za vsak $h \in H$ tudi $U_h \subseteq H$, torej za $g \in G$ velja $ghg^{-1} \in H$ Recimo, da $\exists h \in H : U_h \nsubseteq H$ $x \in U_h \Rightarrow U_x = U_h$, torej U_x seka H in G - H. Torej x robna in ni y H

Izrek

 $H \triangleleft G$, če in samo če je H zaprt v $\mathcal{T}(G)$.

Dokaz

 (\Leftarrow) Naj bo $H \subseteq G$ zaprta Pokažimo da za vsak $h \in H$ tudi $U_h \subseteq H$, torej za $g \in G$ velja $ghg^{-1} \in H$ Recimo, da $\exists h \in H : U_h \nsubseteq H$ $x \in U_h \Rightarrow U_x = U_h$, torej U_x seka H in G - H. Torej x robna in ni $y \in H$

Izrek

Če je $\phi: G \to \Gamma$ homomorfizem grup, potem je praslika $\phi^{-1}(U_{\gamma})$ odprta v $\mathcal{T}(G)$ za vsak $\gamma \in \Gamma$.

Izrek

Če je $\phi: G \to \Gamma$ homomorfizem grup, potem je praslika $\phi^{-1}(U_{\gamma})$ odprta v $\mathcal{T}(G)$ za vsak $\gamma \in \Gamma$.

Dokaz

Zveznost preverimo na bazi: $\forall \gamma \in \Gamma : \phi^{-1}(U_{\gamma}) \in \mathcal{T}(G)$

Izrek

Če je $\phi: G \to \Gamma$ homomorfizem grup, potem je praslika $\phi^{-1}(U_{\gamma})$ odprta v $\mathcal{T}(G)$ za vsak $\gamma \in \Gamma$.

Dokaz

Zveznost preverimo na bazi: $\forall \gamma \in \Gamma : \phi^{-1}(U_{\gamma}) \in \mathcal{T}(G)$ Definiramo:

$$\mathcal{S}_{\gamma} = igcup_{\{g \mid \phi(g) \in U_{\gamma}\}} U_{g}$$

Izrek

Če je $\phi: G \to \Gamma$ homomorfizem grup, potem je praslika $\phi^{-1}(U_{\gamma})$ odprta v $\mathcal{T}(G)$ za vsak $\gamma \in \Gamma$.

Dokaz

Zveznost preverimo na bazi: $\forall \gamma \in \Gamma : \phi^{-1}(U_{\gamma}) \in \mathcal{T}(G)$ Definiramo:

$$\mathcal{S}_{\gamma} = igcup_{\{g \mid \phi(g) \in U_{\gamma}\}} U_{g}$$

$$t \in \phi^{-1}(U_{\gamma}) \Rightarrow \phi(t) \in U_{\gamma} \Rightarrow t \in U_t \subseteq S_{\gamma}$$

Izrek

Če je $\phi: G \to \Gamma$ homomorfizem grup, potem je praslika $\phi^{-1}(U_{\gamma})$ odprta v $\mathcal{T}(G)$ za vsak $\gamma \in \Gamma$.

Dokaz

Zveznost preverimo na bazi: $\forall \gamma \in \Gamma : \phi^{-1}(U_{\gamma}) \in \mathcal{T}(G)$ Definiramo:

$$S_{\gamma} = igcup_{\{g \mid \phi(g) \in U_{\gamma}\}} U_{g}$$

 $t \in \phi^{-1}(U_{\gamma}) \Rightarrow \phi(t) \in U_{\gamma} \Rightarrow t \in U_{t} \subseteq S_{\gamma}$ Ker to velja za vsak t je $\phi^{-1}(U_{\gamma}) \subseteq S_{\gamma}$

$$S_{\gamma} = \bigcup_{\{g \mid \phi(g) \in U_{\gamma}\}} U_{g}$$

Dokaz

$$S_{\gamma} = \bigcup_{\{g \mid \phi(g) \in U_{\gamma}\}} U_{g}$$

Naj bo zdaj $t \in S_{\gamma}$

Dokaz

$$S_{\gamma} = \bigcup_{\{g \mid \phi(g) \in U_{\gamma}\}} U_{g}$$

Naj bo zdaj $t \in S_{\gamma}$ Obstajata $g, h \in G$, da $\phi(g) \in U_{\gamma}$ in $t = hgh^{-1}$

Dokaz

$$S_{\gamma} = \bigcup_{\{g \mid \phi(g) \in U_{\gamma}\}} U_{g}$$

Naj bo zdaj $t \in S_{\gamma}$ Obstajata $g,h \in G$, da $\phi(g) \in U_{\gamma}$ in $t = hgh^{-1}$

$$\phi(t) = \phi(h)\phi(g)\phi(h^{-1}) = \phi(h)\phi(g)\phi(h)^{-1}$$

Dokaz

$$S_{\gamma} = \bigcup_{\{g \mid \phi(g) \in U_{\gamma}\}} U_{g}$$

Naj bo zdaj $t \in S_{\gamma}$ Obstajata $g, h \in G$, da $\phi(g) \in U_{\gamma}$ in $t = hgh^{-1}$

$$\phi(t) = \phi(h)\phi(g)\phi(h^{-1}) = \phi(h)\phi(g)\phi(h)^{-1}$$

 $\phi(t)$ konjugiran $\phi(g)$, sta v enakem razredu

Dokaz

$$S_{\gamma} = \bigcup_{\{g \mid \phi(g) \in U_{\gamma}\}} U_{g}$$

Naj bo zdaj $t \in S_{\gamma}$ Obstajata $g, h \in G$, da $\phi(g) \in U_{\gamma}$ in $t = hgh^{-1}$

$$\phi(t) = \phi(h)\phi(g)\phi(h^{-1}) = \phi(h)\phi(g)\phi(h)^{-1}$$

 $\phi(t)$ konjugiran $\phi(g)$, sta v enakem razredu $\phi(g) \in U_{\gamma} \Rightarrow \phi(t) \in U_{\gamma} \Rightarrow \phi(t) \in U_{\gamma} \Rightarrow t \in \phi^{-1}(U_{\gamma})$

Dokaz

$$S_{\gamma} = \bigcup_{\{g \mid \phi(g) \in U_{\gamma}\}} U_{g}$$

Naj bo zdaj $t \in S_{\gamma}$ Obstajata $g, h \in G$, da $\phi(g) \in U_{\gamma}$ in $t = hgh^{-1}$

$$\phi(t) = \phi(h)\phi(g)\phi(h^{-1}) = \phi(h)\phi(g)\phi(h)^{-1}$$

 $\phi(t)$ konjugiran $\phi(g)$, sta v enakem razredu $\phi(g) \in U_{\gamma} \Rightarrow \phi(t) \in U_{\gamma} \Rightarrow \phi(t) \in U_{\gamma} \Rightarrow t \in \phi^{-1}(U_{\gamma})$ $S_{\gamma} \subseteq \phi^{-1}(U_{\gamma})$