2) MODELAGEM MATEMÁTICA PARTE II

Controle Automático I Prof. Fernando Passold 2022

REVISÕES

FUNÇÃO TRANSFERÊNCIA DE MALHA-FECHADA

Deseja-se obter o sistema equivalente em MF, ou seja:

Dedução:

$$(1) Y = E \cdot G$$

$$(2) E = R - Y_r$$

$$(3) Y_r = Y \cdot H$$

Substituindo-se (3) em (2):

$$(4) E = R - Y \cdot H$$

Substituindo-se (4) em (1):

$$Y = [R - Y \cdot H]G$$

$$Y = R \cdot G - Y \cdot H \cdot G$$

Isolando Y:

$$Y \left[1 + H \cdot G \right] = R \cdot G$$

Como queremos $\frac{Y}{R}$:

$$FTMF = \frac{Y}{R} = \frac{G}{1 + H \cdot G}$$

SISTEMA INTERNACIONAL DE UNIDADES (SI)

	Unidade	Símbolo	Variável
Comprimento	Metro	m	$\boldsymbol{\mathcal{X}}$
Massa	Quilograma	Kg	m
Tempo	Segundo	S	t
Temperatura	Kelvin	K	
Corrente elétrica	Ampère	A	i
Velocidade	Metros por segundo	m/s	$v = \dot{x}$
Área	Metro quadrado	m^2	
Força	Newton	$N=kg.m/s^2$	F
Torque	Quilogrâmetro	kg.m	T
Pressão	Pascal	Pa	
Energia	Joule	J=Nm	\boldsymbol{E}
Potência	Watt	W=J/s	\boldsymbol{P}

RESUMO EQUAÇÕES BLOCOS MECÂNICOS

Bloco	Equação	Energia		
Mola translacional	F = k x	$E = \frac{1}{2} \frac{F^2}{k}$		
Mola torcional	$T = k \theta$	$E = \frac{1}{2} \frac{T^2}{k}$	Armazenamento	
Massa	$F = m \frac{d^2x}{dt^2} = m \ddot{x}$	$E = \frac{1}{2} m v^2 = \frac{m \ddot{x}}{2}$	de energia	
Momento de Inércia	$T = I \frac{d^2\theta}{dt^2} = I\ddot{\theta}$	$E = \frac{1}{2}I\omega^2 = \frac{1}{2}I\ddot{\theta}^2$		
Amortecimento translacional	$F = c \frac{dx}{dt} = c \dot{x}$	$P = c v^2 = c \ddot{x}$	Dissipação	
Amortecimento rotacional	$T = c \frac{d\theta}{dt} = c \dot{\theta}$	$P = c \omega^2 = c \ddot{\theta}^2$	de energia	

MODELANDO SISTEMAS MECÂNICOS

➤ Ex_1: Determine a eq. Diferencial que descreva as relações entre a entrada de força e as saída de deslocamento x para o sistema mostrado ao lado.

Solução:

O conjunto de forças aplicadas à massa é F menos as forças resistentes exercidas por cada uma das moas, então:

Somatório de forças
$$= F - k_1 x - k_2 x$$

Se o somatório de forças causa alguma aceleração da massa, então:

Somatório de forças
$$= m \frac{d^2x}{dt^2} = m\ddot{x}$$

Portanto:
$$m\ddot{x} = F - k_1 x - k_2 x$$

$$m\ddot{x} + (k_1 + k_2)x = F$$

MODELANDO SISTEMAS MECÂNICOS

ightharpoonup Ex_2: Determine a eq. Diferencial que descreva o movimento da massa m_1 a figura ao lado quando a forças F é aplicada.

Solução:

O primeiro passo é considerar a massa m_1 e as forças que agem sobre ela. Estas forças são exercidas pelas 2 molas. A força exercida pela mola inferior é resultado da tração na mesma. A quantidade tracionada é: $x_1 - x_2$. Assim, a força associada é dada por: $k_1(x_1 - x_2)$. A força exercida pela mola superior é resultado da tração sofrida por: $x_2 - x_3$ e então é: $k_2(x_3 - x_2)$. Assim, o somatório de forças que agem sobre a massa é dado por:

Somatório de forças

$$= k_1(x_2 - x_1) - k_2(x_3 - x_2).$$

Este somatório de forças provocará uma aceleração na massa, Assim:

$$m\frac{d^2x}{dt^2} = k_1(x_2 - x_1) - k_2(x_3 - x_2).$$

Mas a força que causa a distância na mola inferior é F. Assim:

$$F = k_1(x_2 - x_1).$$

A equação final pode ser escrita então como:

$$m\frac{d^2x}{dt^2} + k_2(x_3 - x_2) = F$$

MODELANDO SISTEMAS MECÂNICOS

➤ Ex_3: Um motor é usado para acionar uma carga. Imaginar um modelo e obter a equação diferencial para ele.

Solução:

A eq. Diferencial é igual à:

$$I\frac{d^2\theta}{dt^2} + c\frac{d\theta}{dt} + k\theta = T$$

Ou:

$$I\ddot{\theta} + c\dot{\theta} + k\theta = T$$

- ➤ Os blocos básicos de sistemas elétricos passivos são: indutores, capacitares e resistires.
- ➤ A diferença de potencial (d.d.p.) *v* em um **indutor** depende da variação de corrente (di/dt) através dele, ou seja:

$$v = L \frac{di}{dt}$$

onde L = indutância. O sentido da diferença de potencial é contrário ao da fonte de excitação usada para gerar a corrente através do induto e é portanto, chamada força contra-elettomotriz (f.c.e.m.). A equação anterior pode ser rearranjada para:

$$i = \frac{1}{L} \int v \, dt.$$

➤ Para um **capacitor**, a diferença de potencial depende da carga *q* armazenada nas suas placas em determinado instante, ou seja:

$$v = \frac{q}{C} \tag{1}$$

onde C = Capacitância.

➤ A corrente *i* que flui através do capacitor é dada pela razão da carga em movimento nas placas do mesmo, ou seja:

$$i = \frac{dq}{t};$$

➤ A carga total *q* nas placas, é dada por:

$$q = \int i \, dt$$
.

➤ A eq. (1) pode ser re-escrita como:

$$v = \frac{1}{C} \int i \, dt \qquad (2)$$

➤ Como: v = q/C, temos então:

$$\frac{dv}{dt} = \frac{1}{C} \frac{dq}{dt}$$

➤ Mas como: i = dq/dt:

$$i = C \frac{dv}{dt}.$$

➤ Já a d.d.p. *v* sobre um resistor em qualquer instante de tempo depende da corrente *i* através dele:

$$v = R i$$
;
onde $R = \text{resistência}$.

- Quanto a energia envolvida em sistemas elétricos...
- ➤ O capacitor e o indutor armazenam energia que pode ser liberada posteriormente.
- O resistor não armazena energia; ao contrário, a dissipa.
- ➤ A energia armazenada num indutor percorrido pela corrente *i* é dada por:

$$E = \frac{1}{2}Li^2.$$

➤ Já a energia armazenada por um capacitor sujeito a d.d.p. *v*, é dada por:

$$E = \frac{1}{2}Cv^2.$$

➤ Por fim, a energia dissipada por um resistor quando existe uma d.d.p. *v* sobre ele, é dado por:

$$P = \frac{1}{R}v^2$$

RESUMO EQUAÇÕES PARA SISTEMAS ELÉTRICOS

Bloco	Equações Energia				
Indutor	$v = L \frac{di}{dt}$	$i = \frac{1}{L} \int v dt$	$E = \frac{1}{2}Li^2$	Energia	
	$v = \frac{1}{C} \int idt$	$i = C \frac{dv}{dt}$	$E = \frac{1}{2}Cv^2$	armazenada	
Resistor	v = Ri	$i = \frac{v}{R}$	$P = \frac{1}{R}v^2$	Energia dissipada	

CONSTRUINDO MODELOS PARA SISTEMAS ELÉTRICOS

- ➤ As equações que descrevem circuitos elétricos podem ser combinadas usando *Leis de Kirchoff*:
- ➤ 1ª-lei (análise nodal): a corrente total que flui em direção a um nó é igual à corrente total que deixa este nó, isto é, a soma algébrica das correntes nos nós é nula (zero).

No exemplo: $i_1 = i_2 + i_3$.

➤ 2ª-lei (análise de malha): Em um circuito fechado, a soma algébrica das d.d.p.'s em cada elemento é igual à força eletromotriz aplicada.

No exemplo: $v = i_1 R_1 + (i_1 - i_2) R_2$.

(1) Análise nodal.

(2) Análise de malha.

CONSTRUINDO MODELOS PARA SISTEMAS ELÉTRICOS

➤ 1ª-lei (análise nodal): a corrente total que flui em direção a um nó é igual à corrente total que deixa este nó, isto é, a soma algébrica das correntes nos nós é nula (zero).

No exemplo: $i_1 = i_2 + i_3$.

A corrente que passa por R_1 é i_1 ; a tensão neste resistor é: $(v-v_A)$, assim:

$$i_1 R_1 = v - v_A.$$

A corrente em R_2 é i_2 ; e a d.d.p. em R_2 é v_4 , então:

$$i_2 R_2 = v_A.$$

A corrente i_3 passa por R_3 que está em série com R_4 ; entre R_3 e R_4 existe a d.d.p.

 v_A :

$$v_A = i_3(R_3 + R_4)$$

Equacionando as correntes teremos:

$$\frac{v - v_A}{R_1} = \frac{v_A}{R_2} + \frac{v_A}{(R_3 + R_4)}$$

(1) Análise nodal.

CONSTRUINDO MODELOS PARA SISTEMAS ELÉTRICOS

➤ 2ª-lei (análise de malha): Em um circuito fechado, a soma algébrica das d.d.p.'s em cada elemento é igual à força eletromotriz aplicada.

No exemplo: $v = i_1 R_1 + (i_1 - i_2) R_2$.

➤ Continuando as deduções:

$$v = i_1(R_1 + R_2) - i_2R_2.$$

Pelo desenho ao lado, para a malha de corrente i_2 , não existe nenhuma fem:

$$0 = i_2 R_3 + i_2 R_4 + (i_2 - i_1) R_2,$$

que rearranjada, resulta em:

$$i_2(R_3 + R_4 + R_2) = i_1R_2.$$

Substituindo por i_2 na eq. Para primeira malha, temos:

$$v = i_{1}(R_{1} + R_{2}) - \frac{i_{1}R_{2}^{2}}{(R_{3} + R_{4} + R_{2})};$$

$$v = \frac{i_{1}(R_{1}R_{3} + R_{1}R_{4} + R_{1}R_{2} + R_{2}R_{3} + R_{2}R_{4})}{R_{3} + R_{4} + R_{2}}.$$

➤ Obs.: em geral, quando o número de nós é menor que o número de malhas, é mais fácil empregar análise nodal.

(2) Análise de malha.

MODELO DE SISTEMA ELÉTRICO RC SÉRIE

➤ Um sistema elétrico simples consiste em um resistor em série com um capacitor (figura ao lado). Busque uma relação entre v e v_C .

➤ Solução:

Aplicando a análise de malhas ao percurso fechado, temos:

$$v = v_R + v_C$$

onde $v_R = d.d.p.$ no resistor e $v_C = d.d.p.$ no capacitor.

Como se trata de uma única malha, a corrente em todos os elementos será a mesma, i.

Sabemos ainda que $v_R = Ri$, então:

$$v = Ri + v_C$$

Sabemos também que i sobre o capacitor é dada por: $i = C(\partial v_c/\partial t)$, então:

$$v = RC \frac{\partial v_C}{\partial t} + v_C, ou.$$

$$\partial t$$

$$v = RC\dot{v_C} + v_c.$$

MODELO DE SISTEMA ELÉTRICO RL SÉRIE

> Um sistema elétrico simples consiste em um resistor em série com um indutor

(figura ao lado). Busque uma relação entre v e v_I .

➤ Solução:

Aplicando análise nodal, teremos:

$$v = v_R + v_L$$

Como: $v_R = Ri$, teremos:

$$v = Ri + v_L$$

 $v = Ri + v_L.$ $E \ de \ acordo \ com: \ i = \frac{1}{L} \int v_L \ \partial t, \ ficamos \ com:$

$$v = \frac{R}{L} \int v_L \, \partial t + v_L.$$

MODELO DE SISTEMA ELÉTRICO RLC SÉRIE

- \succ A figura ao lado mostra um circuito série RLC. Busque uma relação entre v e v_C .
- > Solução: aplicando análise de malha obtemos:

$$v = v_R + v_L + v_C.$$

Como existe somente uma malha, a corrente i será a mesma em todos os elementos do circuito.

$$v = iR + L\frac{\partial i}{\partial t} + v_C$$

Como ainda: $i = C \frac{\partial v_c}{\partial t}$,

então:
$$\frac{\partial i}{\partial t} = C \frac{\partial \left(\frac{\partial v_C}{\partial t}\right)}{\partial t}$$

Assim:

$$v = RC\frac{\partial v_c}{\partial t} + LC\frac{\partial^2 v_C}{\partial t^2} + v_C \qquad ou: \quad v = RC\dot{v_C} + LC\dot{v_C} + v_C.$$

MODELO DE SISTEMA ELÉTRICO

- \blacktriangleright Determinar a relação entre v e v_C no circuito da figura ao lado.
- > Solução por análise nodal:

$$i_1 = i_2 + i_3$$
.

Como:
 $v - v_A$

$$i_1 - \overline{R}$$

$$i_2 = \frac{1}{I} \left[v_A \partial t \right]$$

$$i_3 = C \frac{\partial v_A}{\partial t},$$

pode-se escrever:

$$\frac{v - v_A}{R} = \frac{1}{L} \int v_A \, \partial t + C \frac{\partial v_A}{\partial t}.$$

Como $v_C = v_A$, rearranjando a expressão anterior, chegamos à;

$$\frac{v - v_C}{R} = \frac{1}{L} \int v_C \, \partial t + C \frac{\partial v_C}{\partial t};$$

$$v - v_C = \frac{R}{L} \int v_C \, \partial t + RC \frac{\partial v_C}{\partial t};$$

$$v = \frac{R}{L} \int v_C \, \partial t + RC \frac{\partial v_C}{\partial t} - v_C;$$

ANALOGIAS SISTEMAS MECÂNICOS COM ELÉTRICOS

> Num sistema elétrico:

Resistor:

$$i = \frac{v}{R}$$

e

$$P = \frac{v^2}{R}$$

onde:

$$R = cte$$
 (resistência);

➤ Num sistema mecânico:

Amortecedor:

$$F = cv$$

e:

$$E = cv^2$$

onde:

$$c = cte$$
 (de

amortecimento)

- ➤ Comparando:
- \rightarrow *i* (corrente) \rightleftharpoons *v* (velocidade)

$$\rightarrow \frac{1}{R} \iff c$$

ANALOGIAS SISTEMAS MECÂNICOS COM ELÉTRICOS

Bloco	Equações	Energia	Análogos	
Indutor:	$i = \frac{1}{L} \int v \partial t$	$E = \frac{1}{2}Li^2$	$\frac{1}{L}$	Armazenamento de energia
Mola translacional:	$F = kx = k \int v \partial t$	$E = \frac{1}{2} \frac{F^2}{k}$	\boldsymbol{k}	
Mola torcional:	$T = k\theta = k \int \omega \partial t$	$E = \frac{1}{2} \frac{T^2}{k}$	\boldsymbol{k}	
Capacitor:	$i = C \frac{\partial v}{\partial t}$	$E = \frac{1}{2} C v^2$	C	
Massa:	$F = m \frac{\partial^2 x}{\partial t^2} = m \frac{\partial v}{\partial t}$	$E = \frac{1}{2}mv^2$	m	
Momento de inércia:	$T = I \frac{\partial^2 \theta}{\partial t^2} = I \frac{\partial \omega}{\partial t}$	$E = \frac{1}{2}I\omega^2$	I	
Resistor:	$i = \frac{v}{R}$	$P = \frac{1}{R}v^2$	$\frac{1}{R}$	Dissipação
Amortecimento translacional:	F = cv	$P = cv^2$	$\boldsymbol{\mathcal{C}}$	de energia
Amortecedor rotacional:	$T = c\omega$	$P = c\omega^2$	С	

Ex_1: Sistema para 2 molas em série:

- ➤ Quando a força *F* é aplicada ao conjunto, a força que atua em cada mola é a mesma, isto é, *F*.
- ➤ O equivalente elétrico de força é a corrente *i*, e os equivalentes das molas são os indutores.
- ➤ Como a mesma força é aplicada a cada uma das molas, então a mesma corrente circula em cada um dos indutores.
- ➤ Para a mola 1, o equivalente de k_1 é uma indutância $1/L_1$; para a mola 2, o equivalente de k_2 é uma indutância $1/L_2$.

23

Ex_2: Sistema para 2 molas em paralelo:

 \blacktriangleright Para 2 molas em paralelo, as forças aplicadas a cada uma delas deve ser igual à força F, isto é:

$$F = F_1 + F_2$$
.

O equivalente elétrico é:

$$i=i_1+i_2.$$

- ➤ A corrente total deve ser igual à soma das correntes nos indutores equivalente.
- ▶ Para a mola 1, o equivalente k_1 é uma indutância de $1/L_1$; para a mola 2, k_2 é equivalente a $1/L_2$.

Ex_3: Sistema mecânico envolvendo uma mola e uma massa.

- ightharpoonup somatório de forças que agem na massa = F- somatório de forças exercidas pela mola.
- ➤ Assim:

F =somatório forças exercidas pela mola +somatório forças que agem na massa.

ightharpoonup O equivalente elétrico é: i = corrente no indutor + corrente no capacitor.

Ex_4: Sistema com uma mola, um amortecedor e uma massa.

Somatório forças que agem na massa = F- força exercida pela mola - força exercida pelo amortecedor. ou:

F = Somatório forças que agem na massa + força exercida pela mola + força exercida pelo amortecedor.

➤ Equivalente elétrico: (Indutor = mola; capacitor = massa; resistor = amortecedor), é:

i = corrente capacitor + corrente indutor + corrente resistor.

Ex_5: Desenhe um circuito elétrico análogo ao sistema mecânico mostrado na figura ao lado. *Solução*:

➤ A mesma força agirá sobre a mola k_1 e um amortecedor c_1 ; então no circuito equivalente elétrico, a mesma corrente deve circular pelos componentes indutor e resistência. O somatório de forças agindo na massa é: Somatório forças agindo sobre massa = F-força exercida ramo 1 - força exercida ramo 2. ou:

F = somatório forças agindo sobre massa + forca exercida ramo <math>1 + força exercida ramo 2.

> O equivalente elétrico da massa é o capacitor. O componente do ramo 2 é um amortecedor e terá um resistor como seu equivalente elétrico. Portanto:

 $i = corrente \ capacitor + corrente \ ramo \ 1 + corrente \ ramo \ 2.$

> O capacitor, ramo 1 e resistência 2 devem estar em paralelo.

O circuito equivalente elétrico fica

Ramo 1

Ramo 2

BLOCOS DE SISTEMAS TÉRMICOS (1)

- Existem apenas 2 blocos básicos: resistência e capacitância. E apenas uma malha de fluxo de calor entre 2 pontos se houver diferença de temperatura entre eles.
- ➤ O equivalente elétrico é um ramo com corrente *i*, quando houver diferença de potencial *v* nos seus terminais; a relação entre corrente e d.d.p. é: $i = \frac{v}{r}$.
- Relação semelhante pode ser usada para definir **resistência térmica** R. Se q= razão de fluxo de calor e (T_1-T_2) é a diferença de temperatura, então:

$$q = \frac{T_2 - T_1}{R}.$$

$$T_1 > T_2$$
fluxo de calor - q

➤ O valor da resistência depende do modo de transferência através de um sólido; para condução unidirecional:

$$q = Ak \frac{T_1 - T_2}{L};$$

onde: $A = \sec$ ão transversal do material através do qual o calor está sendo conduzido; $L = \operatorname{comprimento}$ do material; e $k = \operatorname{condutividade}$ térmica.

➤ Então:

$$q = Ah(T_2 - T_1).$$

e

$$R = \frac{1}{Ah}.$$

BLOCOS DE SISTEMAS TÉRMICOS (2)

- ➤ Já Capacitância térmica é uma medida do armazenamento de energia interna no sistema.
- Se a taxa de fluxo de calor para dentro do sistema é q_1 e a taxa de fluxo na saída é q_2 , teremos: Taxa variação energia interna = $q_1 q_2$
- ➤ Um aumento de energia interna significa um aumento de temperatura. Já que:

Variação energia interna = (mc)(variação temperatura)

onde m = massa, e c = calor específico. Então:

Taxa variação energia interna = (mc)(taxa variação temperatura)

➤ Assim:

$$q_1 - q_2 = mc \frac{\partial T}{\partial t}$$

onde: $(\partial T/\partial t)$ = taxa variação de temperatura. Ou:

$$q_1 - q_2 = C \frac{\partial T}{\partial t};$$

onde C = capacitância térmica:

$$C = mc$$
.

CAPACIDADE TÉRMICA

CAPACIDADE TÉRMICA

C=kJ/M². K

C BAIXA

CALTA

MAU RESERVATÓRIO DE CALOR

BOM RESERVATÓRIO DE CALOR

EXEMPLOS:

C= 125 kJ/m².K

C= 240 kJ/m².K

➤ Observações:

1 caloria = calor necessário para elevar de 1 oC a temperatura de 1 grama de água.

Calor = energia (uso de Joules no S.I.)

1 cal = 4,186 J

 $1 \text{ kcal} = 1.000,0 \text{ cal} = 10^3 \text{ cal}$

1 btu = 252,4 cal = 1.055,0 J

(Btu = British Thermal Unit).

Capacidade térmica: $C = \frac{q}{T_1 - T_2} = \frac{Joule}{Kelvin};$

Mas C também pode ser encontrado na forma de $C = \frac{cal}{{}^{o}C}$.

EXEMPLO MODELAGEM SISTEMA TÉRMICO

Ex_1: Considere que um termômetro na temperatura T, seja inserido num líquido com temperatura T_L (figura ao lado). Se a resistência térmica do fluxo do calor do líquido para o termômetro é R, então:

$$q = \frac{T_L - T}{R}$$

onde q = razão real de fluxo de calor do líquido para o termômetro.

A capacitância térmica C do termômetro é dada por:

EXEMPLO MODELAGEM SISTEMA TÉRMICO

Ex_2: Dada uma câmera isolada termicamente, conforme indicado na figura ao lado.

Note que: r = resistência elétrica usada para aquecer a câmera.

A variável de entrada é o fluxo de calor q_i , e a variável de saída é a temperatura dentro da câmera, T_o , obtida através da tensão V_O medida no sensor de temperatura.

Solução:

A resistência térmica é definida como: $R = \frac{T_1 - T_2}{q}$;

A diferença entre o calor fornecido e o calor perdido através das paredes é igual ao calor dentro da câmera: calor armazenado câmera $= q_i - q_o$.

O calor acumulado dentro da câmera é proporcional à taxa de variação da temperatura na câmera, onde a constante de proporcionalidade, c, é definida como a capacitância térmica do meio dentro da câmera.

Então:

$$q_i - q_o = C \frac{\partial T_o}{\partial t}; \quad (1)$$

onde: $q_i = calor$ fornecido pela resistência.

O fluxo de calor através das paredes da câmera é dado por:

$$q_o - \frac{T_o - T_a}{R_t}; \qquad (2)$$

onde: R_t = resistência térmica da parede.

Substituindo (2) em (1), obtemos:

$$q_{i} - \frac{T_{o} - T_{a}}{R_{t}} = C \frac{\partial T_{o}}{\partial t}$$

$$q_{i} - \frac{T_{o}}{R_{t}} + \frac{T_{a}}{R_{t}} = C \frac{\partial T_{o}}{\partial t}$$

$$R_{t}q_{i} - T_{o} + T_{a} = R_{t}C \frac{\partial T_{o}}{\partial t}$$

$$R_{t}q_{i} + T_{a} = R_{t}C \frac{\partial T_{o}}{\partial t} + T_{o};$$
(3)

Prof. Fernando Passold

A eq. anterior possui 2 variáveis de entrada: T_a e q_i , e uma saída T_o . A temperatura T_a tem o o efeito de uma carga no sistema. Note que a entrada desejada deveria ser q_i e a saída deveria ser T_o . Assim, ainda não é possível escrever uma função de transferência T_o/q_i , devido ao termo T_a .

Para resolver este problema, define-se a resistência térmica da câmera, R_{te} , como sendo:

$$R_{te} = \frac{R_t q_i + T_a}{q_i}; \quad (4)$$

Substituindo-se (4) em (3) obtemos:

$$R_{te}q_i = R_t C \frac{\partial T_o}{\partial t} + T_o$$

$$\frac{T_o}{q_i} = \frac{R_{te}}{1 + R_t C \frac{\partial To}{\partial t}}$$