# Úvod Atomické formuly

1. prednáška · Matematika (4): Logika pre informatikov

Ján Kľuka, Jozef Šiška Letný semester 2019/2020

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Katedra aplikovanej informatiky

# Obsah 1. prednášky

Úvod

O logike

O tomto kurze

Atomické formuly

Syntax atomických formúl

Sémantika atomických formúl

# Úvod

# Úvod

O logike

## Čo je logika

Logika je vedná disciplína, ktorá študuje usudzovanie.

Správne, racionálne usudzovanie je základom vedy a inžinierstva.

Vyžaduje rozoznať správne úsudky z predpokladaných princípov a pozorovania od chybných úvah a špekulácií.

Správnosť úsudkov, zdá sa, nie je iba vec konvencie a dohody.

Logika skúma, aké sú zákonitosti správneho usudzovania a prečo sú zákonitosťami.

## Ako sa v logika študuje usudzovanie

Logika má dva hlavné predmety záujmu:

Jazyk zápis pozorovaní, definície pojmov, formulovanie teórií
Syntax pravidlá zápisu tvrdení
Sémantika význam tvrdení

## Usudzovanie (inferencia)

odvodzovanie nových <mark>logických dôsledkov</mark> z doterajších poznatkov Ako vyplýva z jazyka?

## Jazyk, poznatky a teórie

Jazyk slúži na vyjadrenie tvrdení, ktoré popisujú informácie – poznatky o svete.

Súbor poznatkov, ktoré považujeme za pravdivé, tvorí teóriu.

#### Príklad 0.1 (Party time!)

Máme troch nových známych — Kim, Jima a Sarah.

Organizujeme párty a chceme na ňu pozvať niektorých z nich.

Od spoločných kamarátov sme sa ale dozvedeli o ich požiadavkách:

- P1 Sarah nepôjde na párty, ak pôjde Kim.
- P2 Jim pôjde na párty, len ak pôjde Kim.
- P3 Sarah nepôjde bez Jima.

## Možné stavy sveta a modely

Teória rozdeľuje možné stavy sveta (interpretácie) na:

⊭ stavy, v ktorých je nepravdivá.

Tvrdenie aj teória môžu mať viacero modelov, ale aj žiaden.

#### Príklad 0.2

Vymenujme možné stavy prítomnosti Kim, Jima a Sarah na párty. Zistime, v ktorých sú pravdivé jednotlivé tvrdenia našej teórie a celá teória.



## Logické dôsledky

Logickými dôsledkami teórie sú tvrdenia, ktoré sú pravdivé vo všetkých modeloch teórie.

#### Príklad 0.3

Logickým dôsledkom teórie (P1), (P2), (P3) je napríklad: Sarah nepôjde na párty.



## Logické usudzovanie

Vymenovanie všetkých svetov je často nepraktické až nemožné.

Logické dôsledky ale môžeme odvodzovať usudzovaním (inferovať).

Pri odvodení vychádzame z premís (predpokladov) a postupnosťou správnych úsudkov dospievame k záverom.

#### Príklad 0.4

Vieme, že (P1) ak na párty pôjde Kim, tak nepôjde Sarah, a že (P2) ak pôjde Jim, tak pôjde Kim.

- 1. Predpokladajme, že na párty pôjde Jim.
- 2. Podľa 1. a (P2) pôjde aj Kim.
- 3. Podľa 2. a (P1) nepôjde Sarah.

Teda podľa uvedenej úvahy: Ak na párty pôjde Jim, tak nepôjde Sarah.

#### Dedukcia

Úsudok je správny (korektný) vtedy, keď vždy, keď sú pravdivé jeho premisy, je pravdivý aj jeho záver.

Ak sú všetky úsudky v odvodení správne, záver je logickým dôsledkom premís a odvodenie je jeho dôkazom z premís.

Dedukcia je usudzovanie, pri ktorom sa používajú iba správne úsudky.

Logika študuje dedukciu, ale aj niektoré nededuktívne úsudky, ktoré sú vo všeobecnosti nesprávne, ale sú správne v *špeciálnych* prípadoch alebo sú užitočné:

- indukcia zovšeobecnenie;
- abdukcia odvodzovanie možných príčin z následkov;
- usudzovanie na základe analógie (podobnosti).

## Kontrapríklad

Ak úsudok nie je správny, vieme nájsť kontrapríklad.

Stav sveta, v ktorom sú predpoklady pravdivé, ale záver je nepravdivý.

#### Príklad 0.5

Nesprávny úsudok:

Ak platia tvrdenia teórie o party, na party príde Jim.

Kontrapríklad:

Stav, kedy príde Kim, nepríde Jim, nepríde Sarah.

Teória je pravdivá, výrok na party príde Jim nie je pravdivý.

# Ťažkosti s prirodzeným jazykom

## Prirodzený jazyk je problematický:

- Viacznačné slová: Milo je v posluchárni A.
- Viacznačné tvrdenia: Videl som dievča v sále s ďalekohľadom.
- Tažko syntakticky analyzovateľné tvrdenia: Vlastníci bytov a nebytových priestorov v dome prijímajú rozhodnutia na schôdzi vlastníkov dvojtretinovou väčšinou hlasov všetkých vlastníkov bytov a nebytových priestorov v dome, ak hlasujú o zmluve o úvere a o každom dodatku k nej, o zmluve o zabezpečení úveru a o každom dodatku k nej, o zmluve o nájme a kúpe veci, ktorú vlastníci bytov a nebytových priestorov v dome užívajú s právom jej kúpy po uplynutí dojednaného času užívania a o každom dodatku k nej, o zmluve o vstavbe alebo nadstavbe a o každom dodatku k nim, o zmene účelu užívania spoločných častí domu a spoločných zariadení domu a o zmene formy výkonu správy; ...
  - Zákon č. 182/1993 Z. z. SR v znení neskorších predpisov
- Výnimky a obraty so špeciálnym ustáleným významom:
   Nikto nie je dokonalý.

## Formálne jazyky

Problémy prirodzených jazykov sa obchádzajú použitím umelých formálnych jazykov.

- Presne definovaná, zjednodušená syntax(pravidlá zápisu tvrdení) a sémantika (význam).
- Niekoľko formálnych jazykov už poznáte: aritmetika, jazyky fyzikálnych a chemických vzorcov, programovacie jazyky, ...
- Problémy z reálneho sveta opísané v prirodzenom jazyku musíme najprv formalizovať, a potom naň môžeme použiť logický aparát.
- Formalizácia vyžaduje cvik, trocha veda, trocha umenie.

# Formalizácia poznatkov

S formalizáciou ste sa už stretli — napríklad pri riešení slovných úloh:

Karol je trikrát starší ako Mária.  $k=3\cdot m$ Súčet Karolovho a Máriinho veku je 12 rokov.  $\Leftrightarrow$  k+m=12

Stretli ste sa už aj s formálnym jazykom výrokovej logiky.

#### Príklad 0.6

Sformalizujme náš párty príklad:

PO Niekto z trojice Kim, Jim, Sarah pôjde na párty.

P1 Sarah nepôjde na párty, ak pôjde Kim.

P2 Jim pôjde na párty, len ak pôjde Kim.

P3 Sarah nepôjde bez Jima.

## Logika prvého rádu

Jazyk logiky prvého rádu (FOL) je jeden zo základných formálnych jazykov, ktorým sa logika zaoberá.

Do dnešnej podoby sa vyvinul na koncom 19. a v prvej polovici 20. storočia — Gottlob Frege, Guiseppe Peano, Charles Sanders Peirce.

Výrokové spojky + kvantifikátory ∀ a ∃.

Dá sa v ňom vyjadriť veľa zaujímavých tvrdení, bežne sa používa v matematike.

$$\forall \varepsilon > 0 \; \exists \delta > 0 \dots$$

# Logika prvého rádu a informatika

Informatika sa vyvinula z logiky (John von Neumann, Alan Turing, Alonzo Church, ...)

Prvky logiky prvého rádu obsahuje väčšina programovacích jazykov:

- all(x > m for x in z),
- select T1.x, T2.y from T1 inner join T2 on T1.z = T2.z where T1.z > 25,

niektoré (Prolog) sú priamo podmnožinou FOL.

Vo FOL sa dá presne špecifikovať, čo má program robiť, popísať, čo robí, a dokázať, že robí to, čo bolo špecifikované.

Vo výpočtovej logike a umelej inteligencii sa FOL používa na riešenie rôznych ťažkých problémov (plánovanie, rozvrh, hľadanie a overovanie dôkazov matematických tvrdení,...) simulovaním usudzovania.

## Kalkuly — formalizácia usudzovania

Pre mnohé logické jazyky sú známe kalkuly – množiny usudzovacích pravidiel, ktoré sú

korektné – odvodzujú iba logické dôsledkyúplné – umožňujú odvodiť všetky logické dôsledky

Kalkuly sú bežné v matematike

- na počítanie s číslami, zlomkami (násobilka, aritmetika),
- riešenie lineárnych rovníc (kalkul lineárnej algebry),
- derivovanie, integrovanie, riešenie diferenciálnych rovníc (kalkul matematickej analýzy)

...

Sú korektné, ale nie vždy úplné.

Poznáte už aj jeden logický kalkul – ekvivalentné úpravy.

# Úvod

O kurze

## Čím sa budeme zaoberať v tomto kurze

# Teoreticky Jazykmi logiky prvého rádu (FOL), jeho syntaxou a sémantikou Správnymi úsudkami v ňom a dôvodmi, prečo sú správne Korektnosťou a úplnosťou logických kalkulov Automatizáciou usudzovania Vyjadrovaním problémov vo FOL Prakticky Automatizovaním riešenia problémov Manipuláciou symbolických stromových štruktúr (výrazov – formúl a termov) Programovaním vlastných jednoduchých automatických dokazovačov Filozoficky Zamýšľanými a nezamýšľanými významami tvrdení Obmedzeniami vyjadrovania a usudzovania

# Prístup k logike na tomto predmete

Stredoškolský prístup príliš **neoddeľuje** *jazyk* výrokov od jeho *významu* a vlastne ani jednu stránku **nedefinuje jasne**.

V tomto kurze sa budeme snažiť byť presní.

► Zdanlivo budeme o jednoduchých veciach hovoriť zložito

Pojmy z logiky budeme definovať matematicky

▶ ako množiny, postupnosti, funkcie, atď., ← Matematika (1), (3)

na praktických cvičeniach aj programami

▶ ako reťazce, slovníky, triedy a metódy. ← Programovanie (1), (2)

Budeme sa pokúšať dokazovať ich vlastnosti.

Budeme teda hovoriť o formálnej logike pomocou matematiky, ktorá je ale sama postavená na logike v prirodzenom jazyku meta matematika logiky, matematika o logike.



 $https:/\!/dai.fmph.uniba.sk/w/Course:Mathematics\_4$ 

#### Aktívne učenie

### Na cvičeniach budeme používať techniku nazývanú aktívne učenie:

- Riešenie zadaných problémov v skupinkách.
- Cvičiaci budú s vami konzultovať postup a riešenia.
- Na tabuľu sa budú úlohy riešiť len výnimočne.
- Budete mať k dispozícii materiály z prednášok a zbierku s ukážkovými riešeniami a ďalšími úlohami.

#### Prečo?

- Samostatnou snahou o riešenie sa naučíte viac a hlbšie než pozorovaním, ako riešia iní.
- V praxi vám nik neukáže vzorové riešenie problémov.

#### Aktívne učenie

#### Problémy:

- Bude to mierne frustrujúce, budete neistí.
- Preto budete mať pocit, že ste sa nenaučili veľa.
- Je to normálne, ale nebude to pravda!

## Čo s tým?

- Pýtajte sa!
- Prídite na konzultácie (termín oznámime na prvých cvičeniach).

# Atomické formuly

## Jazyky logiky prvého rádu

Logika prvého rádu je trieda (rodina) formálnych jazykov.

### Zdieľajú:

- časti abecedy logické symboly (spojky, kvantifikátory)
- pravidlá tvorby formúl (slov)

Líšia sa v mimologických symboloch — časť abecedy, pomocou ktorej sa tvoria najjednoduchšie — atomické formuly (atómy).

## Atomické formuly a výroky v prirodzenom jazyku

Atomické formuly logiky prvého rádu zodpovedajú jednoduchým vetám o vlastnostiach, stavoch, vzťahoch a rovnosti pomenovaných objektov.

#### Príklady 1.1

- Milo beží.
- Jarka vidí Mila.
- Milo beží, ale Jarka ho nevidí.
- Jarka vidí všetkých.
- Jarka dala Milovi Bobíka v sobotu.
- 3 Jarka nie je doma.
- Niekto je doma.
- Súčet 2 a 2 je 3.
- Prezidentkou SR je Zuzana Čaputová.

## Indivíduové konštanty

*Indivíduové konštanty* sú symboly jazyka logiky prvého rádu, ktoré pomenúvajú jednotlivé, pevne zvolené objekty.

Zodpovedajú vlastným menám, jednoznačným pomenovaniam, niekedy zámenám.

### Príklady 1.2

Jarka, 2, Zuzana\_Čaputová, sobota,  $\pi$ , ...

## Indivíduové konštanty a objekty

#### Indivíduová konštanta

- vždy pomenúva skutočný, existujúci objekt (na rozdiel od vlastného mena Zeus);
- nikdy nepomenúva viac objektov (na rozdiel od vlastného mena Jarka).

### Objekt

- môže byť pomenovaný aj viacerými indivíduovými konštantami (napr. Prezidentka\_SR a Zuzana\_Čaputová);
- nemusí mať žiadne meno.

## Predikátové symboly

Predikátové symboly sú symboly jazyka logiky prvého rádu, ktoré vyjadrujú vlastnosti alebo vzťahy.

Jednoduché vety v slovenčine majú podmetovú (subjekt) a prísudkovú časť (predikát):

Jarka vidí Mila. podmet prísudok predmet podmetová časť prísudková časť

Do logike prvého rádu prekladáme takéto tvrdenie pomocou predikátového symbolu vidí, ktorý má dva *argumenty* ("podmety"): indivíduové konštanty Jarka a Milo.

Úloha argumentu v predikáte je daná jeho poradím (podobne ako pozičné argumenty funkcií/metód v prog. jazykoch).

## Arita predikátového symbolu

Predikátový symbol má pevne určený počet argumentov - aritu.

Vždy musí mať práve toľko argumentov, aká je jeho arita.

#### Dohoda 1.3

Aritu budeme niekedy písať ako horný index symbolu.

Napríklad beží<sup>1</sup>, vidí<sup>2</sup>, dal<sup>4</sup>, <<sup>2</sup>.

# Zamýšľaný význam predikátových symbolov

*Unárny* predikátový symbol (teda s aritou 1) zvyčajne označuje vlastnosť, druh, rolu, stav.

```
Príklady 1.4 \operatorname{pes}^1(x) \quad x \text{ je mačka} \operatorname{\check{c}ierne}^1(x) \quad x \text{ je \check{c}ierne} \operatorname{be\check{z}i}^1(x) \quad x \text{ be\check{z}i}
```

Binárny, ternárny, ... predikátový symbol (s aritou 2, 3, ...) zvyčajne označuje vzťah svojich argumentov.

## Kategorickosť významu predikátových symbolov

V bežnom jazyku často nie je celkom jasné, či objekt má alebo nemá nejakú vlastnosť — kedy je niekto mladý?

Predikátové symboly predstavujú *kategorické* vlastnosti/vzťahy — pre každý objekt sa dá jednoznačne rozhodnúť, či má alebo nemá túto vlastnosť/vzťah s iným objektom či inými objektmi.

Význam predikátového symbolu preto často zodpovedá rovnakému slovenskému predikátu iba približne:

predikát mladší $^2$  môže označovať vzťah "x je mladší ako y" presne; predikát mladý $^1$  zodpovedá vlastnosti "x je mladý" iba približne.

Nekategorickými vlastnosťami sa zaoberajú fuzzy logiky.

Predikáty v nich zachytávajú význam týchto vlastností presnejšie.

## Atomické formuly

### Atomické formuly majú tvar

$$predikát^{k}(argument_{1}, argument_{2}, ..., argument_{k}),$$

alebo

$$argument_1 \doteq argument_2$$
,

pričom k je arita  $predik \acute{a}t$ u,

a  $argument_1, ..., argument_k$  sú (nateraz) indivíduové konštanty.

Atomická formula zodpovedá (jednoduchému) výroku v slovenčine, t.j. tvrdeniu, ktorého pravdivostná hodnota (pravda alebo nepravda) sa dá jednoznačne určiť,

lebo predikát označuje kategorickú vlastnosť/vzťah

a indivíduové konštanty jednoznačne označujú objekty.

# Formalizácia jednoduchých výrokov

Formalizácia je preklad výrokov z prirodzeného jazyka do formálneho logického jazyka.

## Nie je to jednoznačný proces.

Predpísaný prvorádový jazyk (konštanty a predikáty) sa snažíme využiť čo najlepšie.

#### Príklad 1.6

Sformalizujme v jazyku s konštantami Evka, Jarka a Milo a predikátom vyšší² výroky:

 $A_1$ : Jarka je vyššia ako Milo.  $\rightsquigarrow$  vyšši<sup>2</sup>(Jarka, Milo)

 $A_2$ : Evka je nižšia ako Milo.  $\rightsquigarrow$  vyšší<sup>2</sup>(Milo, Evka)

Zanedbávame nepodstatné detaily — pomocné slovesá, predložky, skloňovanie, rod,  $\dots$ :  $\mathbf{vy}$ šší $^2(x,y)-x$  je vyšší/vyššia/vyššie ako y.

# Návrh jazyka pri formalizácii

Formalizácia spojená s návrhom vlastného jazyka je iteratívna: Postupne zisťujeme, aké predikáty a konštanty potrebujeme, upravujeme predchádzajúce formalizácie.

#### Príklady 1.7

```
A_1: Jarka dala Milovi Bobíka.
```

```
→ dalaMiloviBobíka¹(Jarka) dalBobíka²(Jarka, Milo)
dal³(Jarka, Milo, Bobík)
```

```
A_2: Evka dostala Bobíka od Mila.
```

```
→ dalBobíka<sup>2</sup>(Milo, Evka) dal<sup>3</sup>(Milo, Evka, Bobík)
```

A<sub>3</sub>: Evka dala Jarke Cilku.

```
→ dalCilku²(Evka, Jarka) dal³(Evka, Jarka, Cilka)
```

 $A_4$ : Bobík je pes.

```
→ pes¹(Bobík)
```

# Návrh jazyka pri formalizácii

Minimalizujeme počet predikátov, uprednostňujeme flexibilnejšie, viacúčelovejšie (dal<sup>3</sup> pred dalBobíka<sup>2</sup> a dalCilku<sup>2</sup>).

- Expresívnejší jazyk (vyjadrí viac).
- Zrejmejšie logické vzťahy výrokov.

Podobné normalizácii databázových schém.

# Atomické formuly

Syntax atomických formúl

#### Presné definície

Cieľom logiky je uvažovať o jazyku, výrokoch, vyplývaní, dôkazoch.

Výpočtová logika sa snaží automaticky riešiť konkrétne problémy vyjadrené v logických jazykoch.

Spoľahlivé a overiteľné úvahy a výpočty vyžadujú presnú dohodu na tom, o čom hovoríme — definíciu logických pojmov (jazyk, výrok, pravdivosť, ...).

Pojmy (napr. atomická formula) môžeme zadefinovať napríklad

- matematicky ako množiny, n-tice, relácie, funkcie, postupnosti,...;
- informaticky tým, že ich naprogramujeme,
   napr. zadefinujeme triedu AtomickaFormula v Pythone.

Matematický jazyk je univerzálnejší ako programovací – abstraktnejší, menej nie až tak podstatných detailov.

# Syntax atomických formúl logiky prvého rádu

Najprv sa musíme dohodnúť na tom, aká je syntax atomických formúl logiky prvého rádu:

- z čoho sa skladajú,
- čím vlastne sú,
- akú majú štruktúru.

# Symboly jazyka atomických formúl logiky prvého rádu

Z čoho sa skladajú atomické formuly?

#### Definícia 1.8

Symbolmi jazyka  $\mathcal{L}$  atomických formúl logiky prvého rádu sú mimologické, logické a pomocné symboly, pričom:

### Mimologickými symbolmi sú

- $\mathit{indiv}$ íduové  $\mathit{kon}$ štanty z nejakej spočítateľnej množiny  $\mathcal{C}_{\mathcal{L}}$
- a predikátové symboly z nejakej spočítateľnej množiny  $\mathcal{P}_{\mathcal{L}}.$

Jediným logickým symbolom je  $\doteq$  (symbol rovnosti).

Pomocnými symbolmi sú (, ) a , (ľavá, pravá zátvorka a čiarka).

Množiny  $\mathcal{C}_{\mathcal{L}}$  a  $\mathcal{P}_{\mathcal{L}}$  sú disjunktné.

Pomocné symboly sa nevyskytujú v symboloch z  $\mathcal{C}_{\mathcal{L}}$  ani  $\mathcal{P}_{\mathcal{L}}.$ 

Každému symbolu  $P \in \mathcal{P}_{\mathcal{L}}$  je priradená arita  $\operatorname{ar}_{\mathcal{L}}(P) \in \mathbb{N}^+$ .

# Abeceda jazyka atomických formúl logiky prvého rádu

Na Úvode do teoretickej informatiky by ste povedali, že *abecedou* jazyka  $\mathcal L$  atomických formúl logiky prvého rádu je  $\Sigma_{\mathcal L} = \mathcal C_{\mathcal L} \cup \mathcal P_{\mathcal L} \cup \{\doteq, (,),,\}$ .

V logike sa väčšinou pojem *abeceda* nepoužíva, pretože potrebujeme rozlišovať rôzne druhy symbolov.

Namiesto abeceda jazyka  $\mathcal L$  hovoríme množina všetkých symbolov jazyka  $\mathcal L$  alebo len symboly jazyka  $\mathcal L$ .

Na zápise množiny  $\Sigma_{\mathcal{L}}$  však ľahko vidíme, čím sa rôzne jazyky atomických formúl logiky prvého rádu od seba líšia a čo majú spoločné.

# Príklady symbolov jazykov atomických formúl logiky prvého rádu

#### Príklad 1.9

Príklad o deťoch a zvieratkách sme sformalizovali v jazyku  $\mathcal{L}_{\rm dz},$  v ktorom:

- $C_{\mathcal{L}_{dz}} = \{Bobík, Cilka, Evka, Jarka, Milo\},\$
- $\mathcal{P}_{\mathcal{L}_{dz}} = \{\text{dal}, \text{pes}\},\$
- $\operatorname{ar}_{\mathcal{L}_{dz}}(\operatorname{dal}) = 3$ ,  $\operatorname{ar}_{\mathcal{L}_{dz}}(\operatorname{pes}) = 1$ .

#### Príklad 1.10

Príklad o návštevníkoch party by sme mohli sformalizovať v jazyku  $\mathcal{L}_{\mathsf{party}}$ , kde  $\mathcal{C}_{\mathcal{L}_{\mathsf{party}}} = \{\mathsf{Kim},\mathsf{Jim},\mathsf{Sarah}\}, \mathcal{P}_{\mathcal{L}_{\mathsf{party}}} = \{\mathsf{príde}\}$  a  $\mathsf{ar}_{\mathcal{L}_{\mathsf{party}}}(\mathsf{príde}) = 1.$ 

#### Označenia symbolov

Keď budeme hovoriť o ľubovoľnom jazyku  $\mathcal{L}$ , často budeme potrebovať nejak označiť niektoré jeho konštanty alebo predikáty, aj keď nebudeme vedieť, aké konkrétne symboly to sú.

Na označenie symbolov použijeme *meta premenné*: premenné v (matematickej) slovenčine, pomocou ktorých budeme hovoriť o (po grécky *meta*) týchto symboloch.

#### Dohoda 1.11

Indivíduové konštanty budeme spravidla označovať meta premennými a,b,c,d s prípadnými dolnými indexmi.

Predikátové symboly budeme spravidla označovať meta premennými P, Q, R s prípadnými dolnými indexmi.

## Atomické formuly jazyka

#### Čo sú atomické formuly?

#### Definícia 1.12

Nech  $\mathcal L$  je jazyk atomických formúl logiky prvého rádu.

Rovnostný atóm jazyka  $\mathcal L$  je každá postupnosť symbolov  $c_1 \doteq c_2$ , kde  $c_1$  a  $c_2$  sú indivíduové konštanty z  $\mathcal C_{\mathcal L}$ .

Predikátový atóm jazyka  $\mathcal{L}$  je každá postupnosť symbolov  $P(c_1, \ldots, c_n)$ , kde P je predikátový symbol s aritou n a  $c_1, \ldots, c_n$  sú indivíduové konštanty z  $\mathcal{C}_{\mathcal{L}}$ .

Atomickými formulami (skrátene atómami) jazyka  $\mathcal L$  súhrnne nazývame všetky rovnostné a predikátové atómy jazyka  $\mathcal L$ .

Množinu všetkých atómov jazyka  $\mathcal L$  označujeme  $\mathcal A_{\mathcal L}.$ 

# Slová jazyka atomických formúl logiky prvého rádu

Na Úvode do teoretickej informatiky by ste povedali, že jazyk  $\mathcal L$  atomických formúl logiky prvého rádu nad abecedou  $\Sigma_{\mathcal L}=\mathcal C_{\mathcal L}\cup\mathcal P_{\mathcal L}\cup\{\doteq,(,),,\}$  je množina slov

$$\begin{aligned} \{ \, c_1 &\doteq c_2 \mid c_1 \in \mathcal{C}_{\mathcal{L}}, c_2 \in \mathcal{C}_{\mathcal{L}} \, \} \\ & \cup \{ \, P(c_1, \dots, c_n) \mid P \in \mathcal{P}_{\mathcal{L}}, \operatorname{ar}_{\mathcal{L}}(P) = n, c_1 \in \mathcal{C}_{\mathcal{L}}, \dots, c_n \in \mathcal{C}_{\mathcal{L}} \, \}. \end{aligned}$$

V logike sa jazyk takto nedefinuje, pretože potrebujeme rozlišovať rôzne druhy slov. Navyše tieto slová zodpovedajú slovenským vetám.

# Príklady atómov jazyka

#### Príklad 1.13

V jazyku  $\mathcal{L}_{dz}$ , kde  $\mathcal{C}_{\mathcal{L}_{dz}} = \{ Bobík, Cilka, Evka, Jarka, Milo \}$ ,  $\mathcal{P}_{\mathcal{L}_{dz}} = \{ dal, pes \}$ ,  $ar_{\mathcal{L}_{dz}}(dal) = 3$ ,  $ar_{\mathcal{L}_{dz}}(pes) = 1$ , sú okrem iných rovnostné atómy:

 $Bobík \doteq Bobík$ 

Cilka = Bobík

Evka = Jarka

Bobík ≐ Cilka

a predikátové atómy:

 $pes(Cilka) \quad dal(Cilka, Milo, Bobík) \quad dal(Jarka, Evka, Milo).$ 

# Atómy ako triedy



Sémantika atomických formúl

Atomické formuly

# Vyhodnotenie atomickej formuly

Ako zistíme, či je atomická formula pes(Bobík) pravdivá v nejakej situácii (napríklad u babky Evky, Jarky a Mila na dedine)?

Pozrieme sa na túto situáciu a zistíme:

- 1. aký objekt *b* pomenované konštanta Bobík;
- 2. akú vlastnosť p označuje predikát pes;
- 3. či objekt b má vlastnosť p.



# Vyhodnotenie atomickej formuly

Ako môžeme tento postup matematicky alebo informaticky modelovať?

#### Potrebujeme:

- matematický/informatický model situácie (stavu vybranej časti sveta),
- postup na jeho použitie pri vyhodnocovaní pravdivosti formúl.

### Matematický model stavu sveta

Ako môžeme matematicky popísať nejakú situáciu tak, aby sme pomocou tohto popisu mohli vyhodnocovať atomické formuly v nejakom jazyku logiky prvého rádu  $\mathcal{L}$ ?

## Matematický model stavu sveta

#### Potrebujeme vedieť:

- ktoré objekty sú v popisovanej situácii prítomné,
- množina všetkých objektov doména;
- pre každú konštantu c z jazyka £, ktorý objekt z domény c pomenúva,
- pre každý unárny predikát P z jazyka £,
   ktoré objekty z domény majú vlastnosť označenú predikátom P,
- tvoria podmnožinu domény;
- pre každý n-árny predikát R z jazyka £, n > 1,
   ktoré n-tice objektov z domény sú vo vzťahu ozn. pred. R,
- tvoria n-árnu reláciu na doméne;
- priradenie objektov ku konštantám a množín/relácií k predikátom musí byť jednoznačné
- interpretačná funkcia.

# Štruktúra pre jazyk

#### Definícia 1.14

Nech  $\mathcal L$  je jazyk atomických formúl logiky prvého rádu. **Štruktúrou** pre jazyk  $\mathcal L$  nazývame dvojicu  $\mathcal M=(D,i)$ , kde D je ľubovoľná neprázdna množina nazývaná doména štruktúry  $\mathcal M$ ; i je zobrazenie, nazývané interpretačná funkcia štruktúry  $\mathcal M$ , ktoré

- každému symbolu konštanty c jazyka  $\mathcal{L}$  priraďuje prvok  $i(c) \in D;$
- každému predikátovému symbolu P jazyka  $\mathcal L$  s aritou n priraďuje množinu  $i(P)\subseteq D^n$ .

#### Dohoda 1.15

Štruktúry označujeme veľkými písanými písmenami  $\mathcal{M}, \mathcal{N}, \dots$ 

# Príklad štruktúry



# $\mathcal{M} = (D, i), \quad D = \left\{ \begin{array}{cccc} & & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$

# Štruktúra ako informatický objekt

Štruktúru sme definovali pomocou matematických objektov.

Aký **informatický** objekt zodpovedá štruktúre?

#### Databáza:

Predikátové symboly jazyka  $\sim$  veľmi zjednodušená schéma DB (arita  $\sim$  počet stĺpcov)

Interpretácia predikátových symbolov ~ konkrétne tabuľky s dátami

| $i(pes^1)$ |  |
|------------|--|
| 1          |  |
| J. J.      |  |
|            |  |



# Štruktúry – upozornenia

Štruktúr pre daný jazyk je nekonečne veľa.

#### Doména štruktúry

- môže mať ľubovoľné prvky;
- nijak nesúvisí s intuitívnym významom interpretovaného jazyka;
   Jazyk o deťoch a zvieratkách číselná doména štruktúry
- môže byť nekonečná.

#### Interpretácia symbolov konštánt:

- každej konštante je priradený objekt domény;
- nie každý objekt domény musí byť priradený nejakej konštante;
- rôznym konštantám môže byť priradený rovnaký objekt.

Interpretácie predikátových symbolov môžu byť nekonečné.

# Pravdivosť atomickej formuly v štruktúre

Ako zistíme, či je atomická formula pravdivá v štruktúre?

#### Definícia 1.17

Nech  $\mathcal{M}=(D,i)$  je štruktúra pre jazyk  $\mathcal{L}$  atomických formúl jazyka logiky prvého rádu.

Rovnostný atóm  $c_1 \doteq c_2$  jazyka  $\mathcal L$  je **pravdivý v štruktúre**  $\mathcal M$  vtedy a len vtedy, keď  $i(c_1) = i(c_2)$ .

Predikátový atóm  $P(c_1, ..., c_n)$  jazyka  $\mathcal{L}$  je pravdivý v štruktúre  $\mathcal{M}$  vtedy a len vtedy, keď  $(i(c_1), ..., i(c_n)) \in i(P)$ .

Vzťah atóm A je pravdivý v štruktúre  $\mathcal M$  skrátene zapisujeme  $\mathcal M \models A$ . Hovoríme aj, že  $\mathcal M$  je modelom A.

Vzťah atóm A nie je pravdivý (tiež je nepravdivý) v štruktúre  $\mathcal{M}$  (tiež  $\mathcal{M}$  nie je modelom A) skrátene zapisujeme  $\mathcal{M} \not\models A$ .

# Príklad určenia pravdivosti atómu v štruktúre

#### Príklad 1.18

 $i(pes) = \{ \mathbf{m}^{\dagger}, \mathbf{m}^{\dagger} \}$ 

$$\mathcal{M} = (D, i), \quad D = \left\{ \begin{array}{cccc} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

$$i(\mathrm{dal}) = \left\{ \left( \mathbf{\mathring{T}}, \mathbf{\mathring{S}}, \mathbf{\mathring{H}} \right), \left( \mathbf{\mathring{A}}, \mathbf{\mathring{H}} \right), \left( \mathbf{\mathring{S}}, \mathbf{\mathring{A}}, \mathbf{\mathring{H}} \right) \right\}$$
Atóm pes(Bobík) je pravdivý v štruktúre  $\mathcal{M}$ , t.j.,  $\mathcal{M} \models \mathrm{pes}(\mathrm{Bobík})$ ,

lebo objekt  $i(\operatorname{Bobík}) = r$  je prvkom množiny  $\{r, r\} = i(\operatorname{pes})$ . Atóm dal(Evka, Jarka, Cilka) je pravdivý v  $\mathcal{M}$ ,

t.j.,  $\mathcal{M} \models \text{dal}(\text{Evka}, \text{Jarka}, \text{Cilka}),$ lebo  $(i(\text{Evka}), i(\text{Jarka}), i(\text{Cilka})) = \left( \stackrel{\bullet}{\bullet}, \stackrel{\bullet}{\bullet}, \stackrel{\longleftarrow}{\blacktriangleright} \right) \in i(\text{dal}).$ 

Atóm Cilka  $\doteq$  Bobík nie je pravdivý v  $\mathcal{M}$ , t.j.,  $\mathcal{M} \not\models$  Cilka  $\doteq$  Bobík, lebo  $i(\text{Cilka}) = \not\models \not\models = i(\text{Bobík})$ .