Zadanie 1

Rozważamy model: $Y=eta_0+eta_1X_1+eta_2X_2+\epsilon$

Estymatory eta_0,eta_1,eta_2,σ wynoszą $b_0=1,b_1=4,b_2=3,s=3$

Dokonamy predykcji dla wartości $X_1=2, X_2=6$:

$$\hat{Y} = 1 + 4 \cdot 2 + 3 \cdot 6 = 27$$

W drugim kroku będziemy estymować wartość wariancji błędu predykcji Y_h , przy założeniu, że standardowe odchylenie estymatora wartości oczekiwanej Y_h wynosi 2, tj. $\hat{\mu_h}=2$, dla X_1,X_2 takich jak w poprzednim punkcie. Otrzymujemy:

$$s^2(pred) = s^2 + s^2(\hat{\mu_h}) = 9 + 4 = 13.$$

Załóżmy, że nasz model został wytrenowany na 20 obserwacjach, a standardowe odchylenie b_1 , $s(b_1)$, wynosi 1. Skonstruuję 95% przedział ufności dla β_1 .

Jest on dany wzorem: $b_1 \pm t_c s(b_1)$, gdzie t_c jest kwantylem rzędu 0.95 z rozkładu studenta z 17 stopniami swobody. Korzystając z funkcji qt w R, otrzymujemy, że jest on w przybliżeniu równy 2.1 . Otrzymujemy przedział ufności postaci (1.9,6.1).

Zadanie 2

Analizujemy dane korzystając z modelu $Y=\beta_0+\beta_1X_1+\beta_2X_2+\beta_3X_3+\epsilon$. Mamy dane sumy typu I i II:

	Тур І	Тур ІІ
X_1	300	30
X_2	40	25
X_3	20	?

Oraz zakładamy, że SST = 760, n = 24.

W pierwszym kroku wyznaczymy sumę typu II dla X_3 . Z definicji, jest ona równa $SSM(X_3|X_1,X_2)$, co jest równe sumie typu I dla X_3 , a więc wynosi ona 20.

W drugim kroku zbadamy istotność regresora X_1 . Porównamy modele:

 H_0 : dane pochodzą z modelu $Y=eta_0+eta_2X_2+eta_3X_3+\epsilon$.

$$H_1:$$
 dane pochodzą z modelu $Y=eta_0+eta_1X_1+eta_2X_2+eta_3X_3+\epsilon.$

Statystyka testowa
$$F$$
 wynosi $\frac{(SSE(R)-SSE(F))/(dfE(R)-dfE(F))}{MSE(F)} = \frac{SSM(X_1|X_2,X_3)}{MSE(F)}$

Z tabeli odczytujemy, że $SSM(X_1|X_2,X_3)=30$.

Wiemy, że MSE(F) = SSE(F)/dfE(F). dfE(F) wynosi 24 - 4 = 20, natomiast

$$SSE(F) = SST - SSM = 760 - 300 - 40 - 20 = 400.$$

Otrzymujemy
$$F=rac{30}{400/20}=1.5$$

Przy użyciu R, obliczę F^* , czyli kwantyl rzędu 0.95 z rozkładu Fischera-Snedecora o 1, 20 stopniach swobody. Wynosi on 4.35, a więc jest znacznie większy od statystyki testowej F, co oznacza, że nie możemy odrzucić hipotezy $H_0: \beta_1 = 0$.

W trzecim podpunkcie, przetestuję hipotezę $\beta_2=0, \beta_3=0$. Analogicznie jak w poprzednim kroku, porównam modele:

 H_0 : dane pochodzą z modelu $Y = \beta_0 + \beta_1 X_1 + \epsilon$.

 H_1 : dane pochodzą z modelu $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$.

$$SSE(R) - SSE(F) = SSM(F) - SSM(R) = SSM(X_1, X_2, X_3) - SSM(X_1) = 60.$$

Otrzymujemy $F=\frac{60/2}{20}=1.5$. Wartość F^* (z rozkładu Flschera-Snedecora o 2, 20 stopniach swobody), wynosi 3.49, więc ponownie jest ona wyższa of F, przez co nie możemy odrzucić hipotezy $\beta_2=\beta_3=0$

W kolejnym kroku przetestuję hipotezę $\beta_1=\beta_2=\beta_3=0$, czyli porównam modele:

 $H_0:$ dane pochodzą z modelu $Y=eta_0+\epsilon.$

 $H_1:$ dane pochodzą z modelu $Y=eta_0+eta_1X_1+eta_2X_2+eta_3X_3+\epsilon.$

Statystyka testowa F wynosi $\dfrac{360/3}{20}=6$

Kwantyl rzędu 0.95 z rozkładu Fishera-Snedecora o 3, 20 stopniach swobody wyniósł $F^*=3.09$, co jest mniejsze od F. Możemy więc odrzucić hipotezę, że $\beta_1=\beta_2=\beta_3=0$.

W przedostatnim kroku, odrzucę zmienne X_2, X_3 i zbadam hipotezę:

$$H_0:eta_1=0$$
 vs $H_1:eta_1
eq 0.$

Statystyka testowa wynosi
$$F=rac{MSM}{MSE}=rac{dfE\cdot SSM}{dfM\cdot SSE}=rac{22\cdot SSM}{1\cdot SSE}=rac{22\cdot 30}{760-30}=0.9$$

Kwantyl rzędu 0.95 z rozkładu Fishera-Snedecora o 1, 22 stopniach swobody wynosi 4.3, co jest większe od F, więc nie możemy odrzucić hipotezy $H_0:\beta_1=0$

W ostatnim podpunkcie, policzymy korelację próbkową pomiędzy Y a X_1 . Skorzystam z faktu, że współczynnik determinacji \mathbb{R}^2 jest kwadratem korelacji próbkowej.

$$R^2 = rac{SSM(X_1|X_2,X_3)}{SSM(X_1|X_2,X_3) + SSE(F)} = rac{30}{430} pprox 0.069$$

Otrzymujemy, że korelacja próbkowa jest w przybliżeniu równa ± 0.26