lu-kong 1/4

Week 3 Object detection

Object localization

- Classification with localization
- Detection

Localization?

add bounding box of output layers:

$$b_x, b_y, b_h, b_w$$

we give a output form as:

$$y = [pc, b_x, b_y, b_h, b_w, c_1, c_2, c_3]^T$$

where pc stand for wether there is some object in the picture

loss function:

$$L(\hat{y}, y) = (\hat{y}_1 - y_1)^2 + (\hat{y}_2 - y_2)^2 + \dots + (\hat{y}_8 - y_8)^2, \quad \text{if} \quad y_1 = 1;$$
$$(\hat{y}_1 - y_1)^2, \quad \text{if} \quad y_1 = 0;$$

Landmark Detection

pick some points important, called landmark, of the object that we want to detect.

Object Detection

Sliding windows detection: small rectanguler region

- runnning slide windows throughout the picture
- using a larger window to do the same thing
- when there is once the proba of successful detection, we stop because we have already detected the location
- this is in fact very slow in this era

Convolutional Implementation of Slidding Windows

- Turning FC layer into convolutional layers for the last several FC layers in the end of CNN
 - o idea: use the number of filter to stand for different neurals of fully connected layers

lu-kong 2/4

Turning FC layer into convolutional layers

Convolution implemention of sliding windows

First introduced by Sermanet et al., 2014

- instead of forcing you to run four propagation on four subsets of the input image independently.
- Instead, it combines all four into one form of computation and shares a lot of the computation in the regions of image that are common. So all four of the 14 by 14 patches we saw here.
- That's also why we addapate it to Conv models

Bounding Box Prediction

Output accurate bounding boxs

YOLO algorithme

YOLO stands for You Only Look Once

First introduced by Redmon et al.,2015

Use grid cells

- For each grid cell, we use the Conv Sliding Windows
- asign every object into a grid (only one grid is asigned)
- target output: 3 × 3 × 8
- Specify the bounding box:
 - $b_h \& b_w$ could be bigger than 1.

Intersection Over Union

- What motivates the definition of IoU,
 as a way to evaluate whether or not your object localization algorithm is accurate or not.
- Evaluating object localization:

Intersection Over Union (IoU) =
$$\frac{\text{size of intersection}}{\text{size of union}}$$

• "Correct" if IoU larger than ~0.5

Non-max Suppression

One of the problems of Object Detection as you've learned about this so far, is that your algorithm may find **multiple detections** of the same objects.

- · differents grids will think that they have found the same object
- Those have smaller probability will be suppressed
- consider just the highlighted case of detection
- What we do exactly?
 - Each output prediction is

$$y = [p_c, b_x, b_y, b_h, b_w]^T$$
 where, c_1, c_2, c_3 are dismissed for instant

- Discard all boxes with $p_c \leq 0.6$
- While there are any remaining boxes:
 - Pick the box with the largest p_c Output that as a prediction.
 - \blacksquare Discard any remaining box with $IoU \geq 0.5$ with the box output in the previous step

Anchor Boxes

Overlapping objects of differents types problem

pre-define two anchor boxes with different shapes

Previously:	With two anchor boxes:
Each object in training image is	Each object in Training image is assigned to grid cell that
assigned to grid cell that contains	contains object's midpoint and anchor box for the grid
that object's midpoint.	cell withe highest IoU.

Putting it together: YOLO Algorithme

- 1. Training set
 - 1. pedestrain
 - 2. cars
 - 3. motocycles
 - y is of size $3 \times 3 \times 2 \times 8$
 - 1. 3×3 stands for size of grid cells
 - 2. 2 stands for number of anchors
 - 3. 8 stands for number of single output
- 2. Making predictions

use the out put of size $3 \times 3 \times 2 \times 8$ to detect where is the object and then use non-max suppression

- 3. Outputting the non-max supressed outputs
 - For each grid cell, get 2 predicted bounding boxes.
 - Get rid of low probability predictions.
 - For each class (pedastrain, car, motorcycle) independently use non-max suppression to generate final prediction.

Region Proposal: R-CNN

Segementation algorithme

find region that is high posible to have objects

Faster algorithms:

- R-CNN: Propose regions. Classify proposed regions one at a time. Output label + bounding box
- Fast R-CNN: Propose regions. Use convolutional implementation of sliding windows to classify all the proposed regions.
- Faster R-CNN: Use convolutional network to propose regions.

Citations:

- Girshik et. al,. 2013
- Girshik, 2015
- Ren et al., 2016