

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 24 Jun 2020 1 of 8

Sample Information

Patient Name: 紀淵泉

Gender: Male **ID No.:** M101077686 **History No.:** 42322098

Age: 70

Ordering Doctor: DOC6259E 湯宇碩

Ordering REQ.: 0ASXMXF Signing in Date: 2020/06/23

Path No.: S109-99623 **MP No.:** F20037

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: \$108-24076H Percentage of tumor cells: 30%

Note:

Sample Cancer Type: Non-Small Cell Lung Cancer

Table of Contents	Page
Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)	2
Biomarker Descriptions	2
Relevant Therapy Summary	3
Relevant Therapy Details	5

Report Highlights

2 Relevant Biomarkers1 Therapies Available21 Clinical Trials

Relevant Non-Small Cell Lung Cancer Findings

Gene	Finding	Gene	Finding
ALK	Not detected	NTRK1	Not detected
BRAF	Not detected	NTRK2	Not detected
EGFR	Not detected	NTRK3	Not detected
ERBB2	Not detected	RET	Not detected
KRAS	Not detected	ROS1	Not detected
MET	Not detected		

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 24 Jun 2020 2 of 8

Relevant Biomarkers

Relevant Biomarkers	Indicated Contraindicated			
Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials	
PIK3CA p.(E542K) c.1624G>A phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha	None	alpelisib + fulvestrant ¹	11	
Tier: IIC				
Allele Frequency: 4.76%				
FGFR1 amplification fibroblast growth factor receptor 1	None	None	11	
Tier: IIC				

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

DNA Sequence Variants

			Allele					
Gene	Amino Acid Change	Coding	Variant ID	Locus	Frequency	Transcript	Variant Effect	Coverage
PIK3CA	p.(E542K)	c.1624G>A	COSM760	chr3:178936082	4.76%	NM_006218.3	missense	1994
ALK	p.(=)	c.3600G>C		chr2:29443617	52.52%	NM_004304.4	synonymous	1967

	Variations

Gene	Locus	Copy Number
FGFR1	chr8:38271445	12.93

Biomarker Descriptions

FGFR1 (fibroblast growth factor receptor 1)

Background: The FGFR1 gene encodes fibroblast growth receptor 1, a member of the fibroblast growth factor receptor (FGFR) family that also includes FGFR2, 3, and 4. These proteins are single transmembrane receptors composed of three extracellular immunoglobulin (Ig)-type domains and an intracellular kinase domain. Upon FGF-mediated stimulation, FGFRs activate several oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/STAT pathways influencing cell proliferation, migration, and survival^{1,2,3}.

Alterations and prevalence: Recurrent somatic alterations common to the FGFR family include gene amplification, mutation, and chromosomal translocations leading to FGFR fusions4. Amplification of FGFR1 is observed in 15-20% of squamous lung cancer, 10-15% of breast cancer, 8% of bladder cancer, and 2-5% of uterine cancer cases^{5,6,7,8,9,9}. The most common recurrent mutations, N546K and K656E, are relatively infrequent (<1%); they activate mutations in the kinase domain and are distributed in diverse cancer types¹⁰. FGFR1 translocations giving rise to expressed fusions are common in certain hematological cancers, but less common in solid tumors^{11,12,13}.

Potential relevance: The FDA has granted fast track designation to Debio 134714 (2018) for solid tumors harboring aberrations in FGFR1, FGFR2, or FGFR3. FDA has approved multi-kinase inhibitors, including regorafenib, ponatinib, lenvatinib, nintedanib, and pazopanib, that are known to inhibit FGFR family members. These inhibitors have demonstrated anti-tumor activity in select cancer

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 24 Jun 2020 3 of 8

Biomarker Descriptions (continued)

types with FGFR alterations^{15,16,17,18,19,20,21}. In a phase II clinical trial, dovitinib, a multi-tyrosine kinase inhibitor (TKI), exhibited an overall response rate (ORR) of 11.5% and a disease control rate (DCR) of 50% in patients with advanced squamous cell lung cancer possessing FGFR1 amplification. The patients had a median overall survival (OS) of 5 months and progression-free survival (PFS) of 2.9 months²². Likewise, in a phase Ib study testing the FGFR inhibitor AZD4547, median OS was 4.9 months in patients with FGFR1-amplified advanced squamous cell lung cancer. One of 13 (8%) patients achieved a partial response, 4 (31%) exhibited stable disease, and 2 (13.3%) demonstrated PFS at 12 weeks²³.

PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha)

Background: The PIK3CA gene encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha of the class I phosphatidylinositol 3-kinase (PI3K) enzyme²⁴. PI3K is a heterodimer that contains a p85 regulatory subunit, which couples the p110 α subunit (PI3K) to activated tyrosine protein kinases. PI3K catalyzes the conversion of phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) into phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) while the phosphatase and tensin homolog (PTEN) catalyzes the reverse reaction^{25,26}. The reversible phosphorylation of inositol lipids regulates diverse aspects of cell growth and metabolism^{25,26,27,28}. Recurrent somatic alterations in PIK3CA are frequent in cancer and result in activation of the PI3K/AKT/MTOR pathway, which can influence several hallmarks of cancer including cell proliferation, apoptosis, cancer cell metabolism and invasion, and genetic instability^{29,30,31}.

Alterations and prevalence: Recurrent somatic activating mutations in PIK3CA are common in diverse cancers and are observed in 20-30% of breast, cervical, and uterine cancers and 10-20% of bladder, gastric, head and neck, and colorectal cancers^{8,9}. Activating mutations in PIK3CA commonly cluster in two regions corresponding to the exon 9 helical (codons E542/E545) and exon 20 kinase (codon H1047) domains, each having distinct mechanisms of activation^{32,33,34}. PIK3CA resides in the 3q26 cytoband, a region frequently amplified (10-30%) in diverse cancers including squamous carcinomas of the lung, cervix, head and neck, and esophagus, and in serous ovarian and uterine cancers^{8,9}.

Potential relevance: The PI3K inhibitor, alpelisib 35 , is FDA approved (2019) in combination with fulvestrant for the treatment of patients with PIK3CA-mutated, hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, advanced or metastatic breast cancer. Additionally, a phase lb study of alpelisib with letrozole in patients with metastatic estrogen receptor (ER)-positive breast cancer, the clinical benefit rate, defined as lack of disease progression \geq 6 months, was 44% (7/16) in PIK3CA-mutated tumors and 20% (2/20) in PIK3CA wild-type tumors 36 . Specifically, exon 20 H1047R mutations were associated with more durable clinical responses in comparison to exon 9 E545K mutations 36 . However, alpelisib did not improve response when administered with letrozole in patients with ER+ early breast cancer with PIK3CA mutations 37 . Case studies with MTOR inhibitors sirolimus and temsirolimus report isolated cases of clinical response in PIK3CA mutated refractory cancers 38,39 .

Relevant Therapy Summary

In this cancer type O In other cancer

type

31	31				
PIK3CA p.(E542K) c.1624G>A					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
alpelisib + fulvestrant	0	0	×	×	×
capivasertib	×	×	×	×	(II)
paxalisib	×	×	×	×	(II)
samotolisib	×	×	×	×	(II)

Contraindicated

A Both for use and

contraindicated

X No evidence

In this cancer type and

other cancer types

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 24 Jun 2020 4 of 8

Relevant Therapy Summary (continued)

In this cancer type In other cancer type

In this cancer type and other cancer types

Contraindicated

A Both for use and contraindicated

× No evidence

PIK3CA p. (E542K) c.1624G>A (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
sirolimus	×	×	×	×	(II)
temsirolimus	×	×	×	×	(II)
atezolizumab + ipatasertib	×	×	×	×	(/)
ARQ-751, fulvestrant, chemotherapy	×	×	×	×	(I)
copanlisib, olaparib, durvalumab	×	×	×	×	(I)
GDC-0077	×	×	×	×	(I)
gedatolisib + palbociclib	×	×	×	×	(I)

FGFR1 amplification

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
erdafitinib	×	×	×	×	(II)
futibatinib	×	×	×	×	(II)
nintedanib	×	×	×	×	(II)
ponatinib	×	×	×	×	(II)
sunitinib	×	×	×	×	(II)
pemigatinib, pembrolizumab, trastuzumab, chemotherapy, INCMGA00012	×	×	×	×	(1/11)
CPL-304-110	×	×	×	×	(I)
Debio 1347	×	×	×	×	(1)
pemigatinib	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 24 Jun 2020 5 of 8

Relevant Therapy Details

Current FDA Information

In this cancer type O In other cancer type

In this cancer type and other cancer types

Contraindicated

Not recommended Resistance

FDA information is current as of 2020-02-28. For the most up-to-date information, search www.fda.gov.

PIK3CA p.(E542K) c.1624G>A

alpelisib + fulvestrant

Cancer type: Breast Cancer Label as of: 2019-05-24 Variant class: PIK3CA E542K mutation

Other criteria: ERBB2 negative, Hormone receptor positive

Indications and usage:

PIQRAY® is a kinase inhibitor indicated in combination with fulvestrant for the treatment of postmenopausal women, and men, with hormone receptor (HR)- positive, human epidermal growth factor receptor 2 (HER2)-negative, PIK3CA-mutated, advanced or metastatic breast cancer as detected by an FDA-approved test following progression on or after an endocrine-based regimen.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212526s000lbl.pdf

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 24 Jun 2020 6 of 8 **Current NCCN Information** In this cancer type In other cancer type Contraindicated Not recommended Resistance In this cancer type and other cancer types NCCN information is current as of 2019-11-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx. PIK3CA p.(E542K) c.1624G>A O alpelisib + fulvestrant Cancer type: Breast Cancer Variant class: PIK3CA mutation Other criteria: ERBB2 negative, ER positive, PR positive NCCN Recommendation category: 1 Population segment (Line of therapy): Recurrent or Stage IV Invasive Breast Cancer; Postmenopausal or Premenopausal receiving ovarian ablation or suppression (Second-line or subsequent therapy) (Preferred) Reference: NCCN Guidelines® - NCCN-Breast Cancer [Version 1.2020] **Signatures Testing Personnel: Laboratory Supervisor:** Pathologist:

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 24 Jun 2020 7 of 8

References

- 1. Babina et al. Advances and challenges in targeting FGFR signalling in cancer. Nat. Rev. Cancer. 2017 May;17(5):318-332. PMID: 28303906
- 2. Ahmad et al. Mechanisms of FGFR-mediated carcinogenesis. Biochim. Biophys. Acta. 2012 Apr;1823(4):850-60. PMID: 22273505
- 3. Sarabipour et al. Mechanism of FGF receptor dimerization and activation. Nat Commun. 2016 Jan 4;7:10262. doi: 10.1038/ncomms10262. PMID: 26725515
- 4. Helsten et al. The FGFR Landscape in Cancer: Analysis of 4,853 Tumors by Next-Generation Sequencing. Clin. Cancer Res. 2016 Jan 1;22(1):259-67. PMID: 26373574
- 5. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012 Sep 27;489(7417):519-25. PMID: 22960745
- Ciriello et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell. 2015 Oct 8;163(2):506-19. PMID: 26451490
- 7. Cancer et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013 May 2;497(7447):67-73. PMID: 23636398
- 8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 9. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 10. Lew et al. The precise sequence of FGF receptor autophosphorylation is kinetically driven and is disrupted by oncogenic mutations. Sci Signal. 2009 Feb 17;2(58):ra6. PMID: 19224897
- 11. Jackson et al. 8p11 myeloproliferative syndrome: a review. Hum. Pathol. 2010 Apr;41(4):461-76. PMID: 20226962
- 12. Li et al. Identification of a novel partner gene, TPR, fused to FGFR1 in 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer. 2012 Sep;51(9):890-7. PMID: 22619110
- 13. Wasag et al. The kinase inhibitor TKI258 is active against the novel CUX1-FGFR1 fusion detected in a patient with T-lymphoblastic leukemia/lymphoma and t(7;8)(q22;p11). Haematologica. 2011 Jun;96(6):922-6. PMID: 21330321
- 14. https://www.debiopharm.com/drug-development/press-releases/fda-grants-fast-track-designation-to-debiopharm-internationals-debio-1347-for-the-treatment-of-patients-with-unresectable-or-metastatic-tumors-with-a-specific-fgfr-gene-alteration/
- 15. Cha et al. FGFR2 amplification is predictive of sensitivity to regorafenib in gastric and colorectal cancers in vitro. Mol Oncol. 2018 Jun;12(7):993-1003. PMID: 29573334
- 16. Chae et al. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget. 2017 Feb 28;8(9):16052-16074. PMID: 28030802
- 17. Porta et al. FGFR a promising druggable target in cancer: Molecular biology and new drugs. Crit. Rev. Oncol. Hematol. 2017 May;113:256-267. PMID: 28427515
- 18. Gozgit et al. Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol. Cancer Ther. 2012 Mar;11(3):690-9. PMID: 22238366
- 19. Yamamoto et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc Cell. 2014 Sep 6;6:18. doi: 10.1186/2045-824X-6-18. eCollection 2014. PMID: 25197551
- 20. Kim et al. Pazopanib, a novel multitargeted kinase inhibitor, shows potent in vitro antitumor activity in gastric cancer cell lines with FGFR2 amplification. Mol. Cancer Ther. 2014 Nov;13(11):2527-36. PMID: 25249557
- 21. Hibi et al. FGFR gene alterations in lung squamous cell carcinoma are potential targets for the multikinase inhibitor nintedanib. Cancer Sci. 2016 Nov;107(11):1667-1676. PMID: 27581340
- 22. Lim et al. Efficacy and safety of dovitinib in pretreated patients with advanced squamous non-small cell lung cancer with FGFR1 amplification: A single-arm, phase 2 study. Cancer. 2016 Oct;122(19):3024-31. PMID: 27315356
- 23. Paik et al. A Phase Ib Open-Label Multicenter Study of AZD4547 in Patients with Advanced Squamous Cell Lung Cancers. Clin. Cancer Res. 2017 Sep 15;23(18):5366-5373. PMID: 28615371
- 24. Volinia et al. Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110 alpha (PIK3CA) gene. Genomics. 1994 Dec;24(3):472-7. PMID: 7713498

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 24 Jun 2020 8 of 8

References (continued)

- 25. Cantley. The phosphoinositide 3-kinase pathway. Science. 2002 May 31;296(5573):1655-7. PMID: 12040186
- 26. Fruman et al. The PI3K Pathway in Human Disease. Cell. 2017 Aug 10;170(4):605-635. PMID: 28802037
- 27. Engelman et al. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006 Aug;7(8):606-19. PMID: 16847462
- 28. Vanhaesebroeck et al. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 2012 Feb 23;13(3):195-203. PMID: 22358332
- 29. Yuan et al. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008 Sep 18;27(41):5497-510. PMID: 18794884
- 30. Liu et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009 Aug;8(8):627-44. PMID: 19644473
- 31. Hanahan et al. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646-74. PMID: 21376230
- 32. Miled et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science. 2007 Jul 13;317(5835):239-42. PMID: 17626883
- 33. Burke et al. Synergy in activating class I PI3Ks. Trends Biochem. Sci. 2015 Feb;40(2):88-100. PMID: 25573003
- 34. Burke et al. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Proc. Natl. Acad. Sci. U.S.A. 2012 Sep 18;109(38):15259-64. PMID: 22949682
- 35. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212526s000lbl.pdf
- 36. Mayer et al. A Phase Ib Study of Alpelisib (BYL719), a PI3Kα-Specific Inhibitor, with Letrozole in ER+/HER2- Metastatic Breast Cancer. Clin. Cancer Res. 2017 Jan 1;23(1):26-34. PMID: 27126994
- 37. Mayer et al. A Phase II Randomized Study of Neoadjuvant Letrozole Plus Alpelisib for Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer (NEO-ORB). Clin. Cancer Res. 2019 Feb 5. PMID: 30723140
- 38. Jung et al. Pilot study of sirolimus in patients with PIK3CA mutant/amplified refractory solid cancer. Mol Clin Oncol. 2017 Jul;7(1):27-31. PMID: 28685070
- 39. Janku et al. PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol. Cancer Ther. 2011 Mar;10(3):558-65. PMID: 21216929