INVESTIGATE HOTEL BUSINESS USING DATA VISUALIZATION

About Dataset

rows
11930 of
data

29 Columns

Column	Data Type	Column	Data Type
hotel	object	children	float64
is_canceled	int64	babies	int46
lead_time	int64	meal	object
arrival_date_year	int64	city	object
arrival_date_month	object	market_segment	object
arrival_date_week_ number	int64	distribution_ channel	object
arrival_date_day_of_ month	int64	is_repeated_ guest	int64
stays_in_weekend_ nights	int64	previous_cancellati ons	int64
stays_in_weekdays_ nights	int64	previous_bookings_ not_canceled	int64
adults	int64	booking_changes	int64

Column	Data Type		
deposit_type	object		
agent	float64		
company	float64		
days_in_ waiting_list	int64		
customer_type	object		
adr	float64		
required_car_ parking_spaces	int64		
total_of_special_ requests	int64		
reservation_status	object		

See more here

Pre Processing

Checks for null values

hotel	\cap
is_canceled	0
lead_time	0
arrival_date_year	0
arrival_date_year arrival_date_month	0
arrival_date_month arrival_date_week_number	0
	0
arrival_date_day_of_month	
stays_in_weekend_nights	0
stays_in_weekdays_nights	0
adults	0
children	4
babies	Ο
meal	0
city	488
market_segment	0
distribution_channel	0
is_repeated_guest	Ο
previous_cancellations	0
previous_bookings_not_canceled	0
booking_changes	0
deposit_type	0
agent	16340
company	112593
days_in_waiting_list	0
customer_type	0
adr	0
required_car_parking_spaces	0
total_of_special_requests	0
reservation_status	0
10301 Vacion_Statas	9

Fill in null values

- Replace the null value in the city column with the city that appears most often
- Fill in the null values children, agent and company with 0
- Replace 'undefined with 'no meal'

Comparison of the Number of Hotel Bookings

```
# Membuat tabel agregat yang menunjukan perbandingan jumlah
pemesanan hotel setiap bulannya berdasarkan jenis hotel
df_tabel = df_prep.groupby(['hotel','arrival_date_month'])
['arrival_date_year'].agg(['nunique','count']).reset_index()
df_tabel.columns = ['hotel_type', 'arrival_month',
'unique year', 'count guest']
# Mengurutkan data berdasarkan bulan
df_tabel["arrival_month"] =
pd.Categorical(df_tabel["arrival_month"],
               categories=["January", "February", "March",
"April", "May", "June", "July",
                     "August", "September", "October",
"November", "December"],
               ordered=True)
df tabel = df tabel.sort values(["arrival month"],
ignore_index=True)
df_tabel['average_booking'] =
round(df_tabel['count_guest']/df_tabel['unique_year'])
df tabel.head()
```

hotel_type	arrival_month	unique_year	count_guest	average_booking
City Hotel	January	2	4336	2168.0
Resort Hotel	January	2	2435	1218.0
City Hotel	February	2	4114	2057.0
Resort Hotel	February	2	2645	1322.0
City Hotel	March	2	3730	1865.0

Insights

- City Hotel bookings are always higher than Resort Hotelsl
- The highest increase in hotel bookings occurred in June-July and November-December, this was because those months were school holidays.
- The lowest bookings occurred in March, both for City Hotels and Resort Hotels

Duration of Customer Stay

Group by is carried out based on hotel type and duration of stay by aggregating the total count of customers who stay overnight and grouping the duration of stay into 3 categories

Total Customers by Stay Durations

Ratio of Hotel Cancellations

hotel	duration	not canceled	canceled	ratio
City Hotel	A few days	44405	31618	41.590045
City Hotel	A few weeks	1818	1482	44.909091
City Hotel	Several months	5	2	28.571429
Resort Hotel	A few days	21697	7758	26.338482
Resort Hotel	A few weeks	7227	3361	31.743483
Resort Hotel	Several months	14	3	17.647059

Insights

- The duration of a customer's stay is usually 2-3 days
- The highest cancellation ratio for City Hotels and Resort hotels is in the 'A few weeks' category (Less than 31 days)
- Even though the most cancellations were made in the 'A few days' category, this was offset by the number of customers who did not cancel orders
- It is necessary to analyze more deeply why the 'A few weeks' category has the highest ratio of cancels

'Lead Time' Column Categorization

Analysis of Hotel Booking Cancellation Rate to Lead Time


```
# Categorize the lead time column
df3['lead_times'] = np.where(df3['lead_time'] > 400, 401, df3['lead_time'])
bins = list(np.arange(0,max(df3['lead_times'])+30, 30))
labels = ["{0}-{1}".format(str(bins[x]), str(bins[x+1])) for x in range(len(bins[:-1]))]
df3['lead_time_group'] = pd.cut(df3['lead_times'],bins=bins, include_lowest=True, labels=labels)
# perform data aggregation to calculate the number of bookings
df3_book = df3.groupby(['hotel','lead_time_group', 'is_canceled'])['hotel'].count().reset_index(name='num_bookings')
df3_pivot = df3_book.pivot_table(index=['hotel','lead_time_group'], columns='is_canceled', values='num_bookings').reset_index()
df3_pivot.columns = ['hotel_type','lead_time_group', 'not_canceled', 'canceled']
df3_pivot['all_bookings'] = df3_pivot['not_canceled']+df3_pivot['canceled']
df3_pivot['pct_canceled'] = df3_pivot['canceled']*100.0/(df3_pivot['all_bookings'])
```

Insights

- Cancel for City Hotels is always bigger than for Resort Hotels
- Cancels above 50% for City Hotels occur when the lead time is above 210 days
- Cancel for Resort Hotels tends to be stable and does not show a significant graph
- The lowest cancellations for City Hotels and Resort hotels are in the lead time of 0-30, this could be because the time to book is close so there is no time to look for other accommodation

Business Recommendation

Berdasarkan durasi menginap, diketahui bahwa tamu resort hotel cenderung menginap lebih lama. Informasi ini dapat dimanfaatkan untuk strategi pemasaran, seperti program diskon untuk sewa kamar dalam beberapa hari dan penyelenggaraan acara jangka panjang seperti festival tahun baru atau program liburan lebaran. Hal ini bertujuan untuk menarik perhatian calon pelanggan yang berencana berlibur. Kerjasama dengan tempat wisata juga dapat menjadi strategi yang efektif. Dengan menawarkan paket penawaran menarik bagi tamu yang menginap. Dengan memanfaatkan tamu yang menginap dalam jangka waktu yang lebih lama, hotel dapat menawarkan fasilitas berbayar, seperti layanan sewa kendaraan.

Dengan karakteristik tamu city hotel yang cenderung menginap singkat karena keperluan pekerjaan atau perjalanan bisnis, disarankan untuk mengimplementasikan program fee tambahan yang memungkinkan fleksibilitas waktu check-in dan check-out. Program ini dapat menarik perhatian pelanggan yang memiliki keterbatasan waktu akibat pekerjaan namun menghargai fleksibilitas dalam jadwal menginap. Selain memberikan kenyamanan, program ini juga dapat menjadi sumber tambahan pemasukan bagi hotel.

Berdasarkan tingkat pembatalan reservasi yang signifikan dalam satu bulan menuju check-in, disarankan untuk melibatkan analisis lebih lanjut dengan menambahkan fitur pemilihan alasan pembatalan oleh pelanggan. Hal ini akan memungkinkan untuk memberikan rekomendasi yang lebih tepat guna mengurangi tingkat pembatalan.

Selain itu, direkomendasikan pula adanya pengingat kepada pelanggan, seperti seminggu sebelum dan sehari sebelum tanggal check-in. Tujuan dari pengingat ini adalah untuk meningkatkan keterlibatan pelanggan serta memastikan tidak adanya kendala yang mungkin dihadapi oleh pelanggan dalam proses check-in. Implementasi pengingat ini diharapkan dapat meningkatkan retensi pelanggan dan mengurangi tingkat pembatalan reservasi.