

Ch 3.2.2 Revision of linear combination (K)

Let v_1, v_2, \ldots and v_n be vectors in a vector space. If a vector x can be expressed as $x = k_1v_1 + k_2v_2 + \cdots + k_nv_n$ (where k's are scalars), then we say x is a **linear combination** of the vectors $v_1, v_2, v_3 \ldots$ and v_n .

▼ Example 3.8

Let
$$v_1 = t^2 - 1$$
, $v_2 = t^2 + 3t - 5$, $v_3 = t$ be vectors in P_2 .

Show that the quadratic polynomial $\mathbf{x}=7t^2-15$ is a linear combination of $\{v_1,v_2,v_3\}$.

Solution:

$$egin{aligned} k_1v_1+k_2v_2+\cdots+k_nv_n&=k_1(t^2-1)+k_2(t^2+3t-5)+k_3t\ &=(k_1+k_2)t^2+(3k_2+k_3)t-(k_1+5k_2)\ &=7t^2-15 \end{aligned}$$

$$k_1+k_2=7 \ 3k_2+k_3=0 \ 5v_1+2v_2-6v_3={f x} \ 5(t^2-1)+2(t^2+3t-5)-6t=7t^2-15 \ k_1+5k_2=15$$

This conclude that x is a linear combination of $\{v_1, v_2, v_3\}$.

A non-empty subset S containing vectors u and v is a subspace of a vector space $V \Leftrightarrow (iff)$ any linear combination $k\mathbf{u} + c\mathbf{v}$ is also in S (k and c are scalars).

▼ Example 3.9

Let *S* be the subset of vectors of the form $(x \ y \ 0)^T$ in the vector space \mathbb{R}^3 . Show that *S* is a subspace of \mathbb{R}^3 .

Using the above proposition, we need to show that any linear combination $k\mathbf{u} + c\mathbf{v}$ is in S for any vectors \mathbf{u} and \mathbf{v} in S.

It is clear that S is non-empty because the zero vector is in S. Let $u = (a \ b \ 0)^T$ and $v = (c \ d \ p)^T$ be in S. Then for real scalars k_1 and k_2 we have

$$egin{aligned} k_1\mathbf{u}+k_2\mathbf{v}&=k_1egin{pmatrix} a\b b\0 \end{pmatrix}+k_2egin{pmatrix} c\d d\0 \end{pmatrix}\ &=egin{pmatrix} k_1a\k_1b\0 \end{pmatrix}+egin{pmatrix} k_2c\k_2d\0 \end{pmatrix}=egin{pmatrix} k_1a+k_2c\k_1b+k_2d\0 \end{pmatrix} \end{aligned}$$

Hence $k_1\mathbf{u} + k_2\mathbf{v}$ is also in S.