Math 143 Set 3

1. Let
$$f(x) = \frac{1}{1-x}$$
.

- a. Find the degree 3 Taylor polynomial y(x) for f(x) at x = 0.
- b. Use Taylor's inequality to find a bound on the error when approximating f(1/2) with y(1/2).
- **2.** Let $f(x) = \ln x$.
 - a. Find the degree *n* Taylor polynomial y(x) for f(x) at x = 1.
 - **b.** Use Taylor's inequality to find a bound on the error when approximating f(1/2) with y(1/2). The answer should involve n.
- **3.** Let $f(x) = \cos 3x$.
 - a. Find the degree 2n Taylor polynomial y(x) for f(x) at x = 0.
 - b. Use Taylor's inequality to find a bound on the error when approximating f(1) with y(1). The answer should involve n.
 - c. Use your answer in part b. to explain why the error in this approximation has limit 0 as $n \to \infty$.
- **4.** The approximation

$$\sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$$

is the best degree 8 polynomial approximation (degree 8 because the coefficient of x^8 is 0) for $\sin x$ at x=0. Show that the error in using this approximation is less than 0.1 when $-\pi \le x \le \pi$.