Simulated Annealing Aplicado ao problema de Roteamento e Alocação de Comprimentos de Onda em Redes Ópticas

A.F. Santos¹, K.D.R Assis² e W. F. Giozza³

¹Departamento de Engenharia Elétrica – Universidade São Paulo (USP) CEP 13566-590 São Carlos - SP, Brasil.

> ²Universidade Federal do Recôncavo da Bahia (UFRB) CEP 44380-000 Cruz das Almas – BA, Brasil.

³Grupo de Pesquisas em Redes Ópticas – Universidade Salvador (UNIFACS) CEP 41950-275 Salvador - BA, Brasil.

afsantos@sel.eesc.usp.br, karcius@ufrb.edu.br, giozza@unifacs.br

Resumo. Este artigo apresenta uma estratégia para a solução do projeto de redes ópticas WDM, especificamente o problema de Roteamento e Alocação de Comprimento de Onda (RWA) com o objetivo de minimizar a quantidade de comprimentos de onda usados (neste caso o RWA é chamado Min-RWA). Aplicamos a meta-heurística Simulated Annealing visando à obtenção de soluções de boa qualidade e com elevado desempenho computacional. Os resultados obtidos mostraram-se promissores quando comparados aos existentes na literatura.

Palavras-Chave: Redes Ópticas, Meta-Heurística, Topologia Virtual.

1. Introdução

Atualmente, o número de usuários da Internet vem crescendo exponencialmente devido ao surgimento de novas aplicações envolvendo voz e vídeo como vídeo sob demanda, teleconferência, imagens médicas de alta resolução, dentre outras. Desta forma, tem-se preocupado em pesquisar e desenvolver novas gerações de redes de transporte capazes de suportar o fluxo de informação. Neste contexto surge um modelo baseado em uma infra-estrutura óptica inteligente que utiliza a multiplexação WDM (*Wavelength Division Multiplexing*) [H. Zang, J.P. Jue e B. Mukherjee, 2000]. Essa nova tecnologia de redes é chamada de redes óptica de 3ª geração.

A tecnologia WDM proporciona um melhor aproveitamento da capacidade de transmissão das fibras ópticas, possibilitando o estabelecimento de mais de uma conexão óptica de forma paralela em uma mesma fibra óptica. Dessa forma, com o uso da tecnologia WDM é possível atender uma maior demanda de tráfego [Murthy e Gurusamy, 2002].

Para o estabelecimento de uma conexão entre dois nós de uma rede óptica WDM, é necessário definirmos os caminhos ópticos por onde o tráfego será encaminhado e posteriormente alocar os recursos necessários para o estabelecimento desta conexão.

Ao se projetar uma rede WDM, deve-se pensar em soluções (caminhos ópticos) que atenda toda a demanda de tráfego da rede minimizando a utilização de seus recursos (número de comprimentos de onda, portas etc). Para isto, utilizamos diversos métodos computacionais cujo objetivo é encontrar a melhor solução para o problema de roteamento e alocação de comprimentos de onda (RWA – *Routing and Wavelength Assignment*) [Ramaswami e Sirvajan, 1996].

O objetivo deste trabalho é aplicar a meta-heurística *Simulated Annealing* [Kirkpatrick, Gellat, e Vecchi, 1983], ao problema de criação dos caminhos ópticos em uma rede óptica WDM. Contrariando a estratégia tradicional de projeto da topologia virtual (que é uma abordagem *top-down*: a partir da demanda de tráfego, definir caminhos e comprimentos de onda), o intuito deste trabalho é primeiro disponibilizar recursos (caminhos físicos, comprimentos de onda) para posteriormente rotear a demanda de tráfego.

A motivação para aplicar tal estratégia é a limitação de recursos que o projetista de rede pode ter que obedecer. Por exemplo, supor um número ilimitado ou muito grande de comprimentos de ondas disponíveis pode inviabilizar o roteamento do tráfego pela topologia virtual, se tal suposição não for verdadeira, ou seja, os recursos não serem suficientes.

As próximas seções estão organizadas da seguinte maneira: na seção 2 são abordados o conceito de topologia física e topologia virtual em uma rede óptica WDM. A seção 3 apresenta os problemas relacionados a definição caminhos ópticos para uma rede óptica. A seção 4 apresenta a estratégia utilizada pela meta-heurística *Simulated Annealing* para resolver o problema de definição dos caminhos ópticos (caminhos virtuais) de uma rede óptica WDM. A seção 5 apresenta os resultados dos experimentos obtidos. Por fim, na seção 6, estão as considerações finais.

2. Topologia Física e Topologia Virtual

Ao projetar uma rede óptica WDM é necessário definirmos os caminhos ópticos por onde o tráfego será encaminhado, o que é definido através da topologia virtual. Posteriormente, devem ser alocados um conjunto de fibras ópticas e comutadores para atender os caminhos ópticos estabelecidos no passo anterior. Isto é feito através da topologia física.

O projeto da topologia física de uma rede óptica envolve as interconexões dos equipamentos utilizados na construção da rede (comutador, acoplador, fibras, etc.). A Figura 1 mostra uma arquitetura de uma rede óptica simples, formando uma topologia física, com os nós (comutadores) numerados de 1 a 6 e interconectados através de enlaces (fibras ópticas) bidirecionais.

O projeto de topologia virtual envolve a definição dos caminhos virtuais estabelecidos para o encaminhamento dos dados entre um par de conexões (fonte e destino). Todos os nós da rede se comunicam através dos caminhos virtuais. Se um comutador não estiver conectado diretamente (conectado virtualmente) com o nó destino, então os dados serão conduzidos por várias rotas virtuais até chegarem ao seu destino. Podemos visualizar isto na Figura 2, onde, se o nó 6 tiver uma conexão para o nó 1, mesmo estando conectados fisicamente (Figura 1), ele terá que passar por dois caminhos virtuais: de 6 para 3 e de 3 para 1. A quantidade de caminhos ópticos

utilizados, também é chamada de saltos (*hops*) virtuais. No exemplo anterior, houve a utilização de dois caminhos 6-3 e 3-1, então dizemos que houve dois saltos virtuais.

Figura 1. Topologia Física.

Figura 2. Topologia Virtual.

3. Descrição do Problema

Existem dois problemas principais no projeto em uma rede óptica WDM. O primeiro é a criação dos enlaces virtuais, por onde os dados serão encaminhados, obedecendo às restrições impostas pelos equipamentos da rede (transmissor/receptor, conversores de comprimento de onda, capacidade de transmissão do enlace, etc.). O segundo é o estabelecimento das conexões, definidas no problema anterior, sobre a topologia física da rede.

Os problemas de topologia virtual e topologia física também podem ser representados através de funções, variáveis e um conjunto de restrições a serem obedecidas. Desta forma podemos resolver esses problemas utilizando o método de programação linear (PL), desde que as variáveis tenham valores fracionários (contínuas). Caso as variáveis sejam inteiras, resolvemos utilizando a programação linear inteira mista (MILP). No entanto, ambos os problemas são NP (*Non-deterministic Polynomial time*), ou seja, à medida que o número de nós da rede cresce, o processamento computacional aumenta exponencialmente e, devido a isto, estes problemas tornam-se intratáveis.

Os problemas NP e NP – Completos [Cormen et al., 2001] podem ser solucionados por métodos exatos ou algoritmos cuja complexidade tem tempo polinomial ou exponencial, no entanto o tempo de processamento computacional para encontrar uma solução para estes problemas é dispendioso. Devido a isto, utilizam-se meta-heurísticas para encontrar um bom resultado para o problema em tempo computacional acessível.

3.1. O Problema de Topologia Virtual

Para definir uma topologia virtual, devemos criar enlaces entre pares fontes-destinos através dos nós da rede. No entanto, a escolha de uma topologia virtual depende da forma de como os caminhos são criados, e de quais estratégias podemos utilizar para alcançar o objetivo proposto.

Neste trabalho utilizamos meta-heurísticas, que são métodos de otimização genéricos e servem para resolver diversos problemas computacionais. O intuito é adaptá-las ao nosso problema e posteriormente, sem muito esforço computacional,

resolver o problema de maneira a encontrar uma topologia virtual que atenda ao nosso objetivo de minimizar o número de comprimentos de onda utilizados em uma rede óptica.

3.2. O Problema de Topologia Física

O problema da topologia física, também conhecido como problema RWA, é dividido em dois subproblemas, o roteamento do caminho óptico e a alocação dos comprimentos de onda. O primeiro é solucionado, em nossa implementação, utilizando um algoritmo chamado de Dijkstra [Ziviani, 2004], que fornece o caminho de menor distância entre um par fonte-destino qualquer da rede. O segundo é resolvido utilizando um algoritmo "guloso" [Cormen et al., 2001] que aloca os comprimentos de onda, com ou sem a utilização de conversores de comprimentos de onda.

4. Estratégia Meta-Heurística

Para resolvermos os problemas de topologia virtual e topologia física de redes ópticas utilizamos um fluxograma (Figura 3) que descreve os passos a serem seguidos no intuito de encontrar uma boa solução para ambos os problemas. Cada passo gera uma entrada para o subproblema posterior. Ao final, teremos uma solução cuja topologia virtual conterá o conjunto de melhores caminhos que serão roteados e alocados na topologia física.

O primeiro passo é encontrar uma topologia virtual independente da topologia física, obedecendo às restrições de números de transmissores/receptores (grau virtual) que limitam o número de conexões virtuais da rede. Nesse passo, aplicamos metaheurísticas para definir os enlaces virtuais, por onde os dados serão encaminhados na rede. O objetivo é definir uma topologia que, no segundo passo, consiga obter o menor número de comprimentos de onda.

No segundo e terceiro passo, serão roteados e alocados, respectivamente, os caminhos virtuais definidos no passo anterior, entre um par de conexões. Posteriormente, será atribuído um comprimento de onda para cada par da topologia virtual (considerando a rede sem conversores de comprimento de onda).

Ao final, é analisado o número de comprimentos de onda alocados para estabelecer os caminhos virtuais da rede. Se o número de *lambdas* encontrado é menor, utilizamos esta solução (topologia virtual) para continuar o processamento, até que o número de iterações definido pela meta-heurística, seja alcançado. Caso a solução encontrada não seja a melhor, geraremos uma outra solução a partir da melhor solução obtida até o momento. A simulação termina quando o número de iterações proposto pela meta-heurística é alcançado. Caso o número de iterações não seja alcançado, retornamos ao primeiro passo. Os resultados encontrados serão o mais próximo da solução ótima, ou casualmente será a solução ótima.

Figura 3 – Fluxograma da solução do problema de projeto de rede óptica.

Espera-se que ao final do processamento da estratégia proposta (Figura 3), tenha-se uma solução (topologia virtual) satisfatória, que atenda todo o tráfego da rede, alocando o mínimo de comprimentos de ondas possíveis. Para que este objetivo seja alcançado, utilizamos a meta-heurística *Simulated Annealing*, e comparamos os resultados obtidos com algumas heurísticas tradicionais [Ramaswami e Sirvajan, 1996], [Assis, Maranhão, Santos, Giozza, 2007].

Para adaptar a meta-heurística *Simulated Annealing* ao problema de topologia virtual e RWA, foram utilizadas matrizes bi-direcionais, cujas linhas e colunas são representadas pelo número de nós da rede. Todas as soluções iniciais (s_o) , atuais (s), vizinhas (v) e finais (s^*) , utilizadas na implementação, são representadas em forma de matriz contendo uma topologia virtual (caminhos virtuais). As soluções vizinhas são geradas a partir da substituição de um caminho virtual da solução atual. A definição dos caminhos virtuais na matriz é feita colocando o valor 1 onde existe caminho estabelecido e 0 na ausência do mesmo. Na próxima sub-seção descrevemos detalhes da meta-heurística.

4.1. Simulated Annealing

A meta-heurística *Simulated Annealing* (SA) também chamada de "recozimento" simulado foi proposta por Kirkpatrick [Kirkpatrick, Gellat, e Vecchi, 1983], [Noronha, Aloise,M. M.,2001]. Inspirado no processo de resfriamento de um conjunto de átomos aquecidos, sua análise é baseada na fundamentação da termodinâmica e utiliza técnicas de busca local probabilística.

Na termodinâmica, para se obter estados de baixa energia de um material é necessário fundi-lo e posteriormente levá-lo ao estado de solidificação. Com base neste princípio, o *Simulated Annealing* é composto por duas etapas: na primeira, o material é aquecido a altas temperaturas para alcançar o estado de fusão. Na segunda, a temperatura do material é reduzida lentamente, fazendo que o sistema encontre um ponto de equilíbrio caracterizado por uma estrutura ordenada e estável.

A meta-heurística Simulated Annealing é composta pelos seguintes passos:

- **Passo 1:** escolha de uma solução inicial (s_o) através de uma heurística que pode ser de caráter aleatório ou determinado. Esta solução passa ser a solução atual (s) e final (s^*) . Para esta implementação, a solução inicial foi gerada randomicamente.
- **Passo 2:** seleciona aleatoriamente uma solução v vizinha, de s, e analisa a variação do valor da função objetivo (Δ), quando s move-se para v. A função objetivo é o número de comprimentos de onda de cada solução.
- **Passo 3:** se a variação, da função objetivo de v comparando com s, for menor que zero ($\Delta < 0$), o método aceita o movimento e v passa ser a solução atual. Posteriormente é comparado o valor da função objetivo de v com a solução final (s*), caso v obtenha o valor menor, a mesma também passará a ser a solução final.
- **Passo 4:** se a variação, da função objetivo de v comparando com s, for maior ou igual a zero ($\Delta \ge 0$), v poderá ser aceita como solução atual, mas com a probabilidade $e^{(-1)}$, onde T é a temperatura (estabelecida pelo usuário) que regula a probabilidade de aceitar soluções ruins.
- **Passo 5:** verifica se a temperatura do sistema é maior que zero, caso seja, voltamos para o passo 2 e continuamos a busca até que a temperatura fique menor que zero.

Ao final, a melhor solução encontrada para o problema proposto esta contida na variável solução final (s*). Esta solução contém a matriz com a melhor topologia virtual encontrada para a rede.

5. Resultados

5.1. Determinação do número de comprimentos de ondas

Para as simulações, utiliza-se a meta-heurística *Simulated Annealing* comparando-a com os resultados as heurísticas MLDA (*Minimum-delay Logical Topology Design Algorithm*), RLDA (*Random Logical Topology Design Algorithm*) e HLDA (*Heuristic Logical Topology Design Algorithm*) para a rede óptica citada em [Ramaswami e Sirvajan, 1996]. Os dados de entrada são: 1) a matriz de tráfego, 2) o grau virtual (número de transmissores/ receptores) e 3) a topologia física da rede. A saída do algoritmo gera: 1) os caminhos ópticos (b_{ij}'s), 2) roteamento dos b_{ij}'s na topologia física e 3) o número de comprimentos de ondas necessários para a rede. As matrizes de tráfego, de ambas as redes, foram geradas aleatoriamente de uma distribuição uniforme entre 0 e 1 e os números contidos nos enlaces representam a distância entre os nós da rede.

Para a simulação, utilizamos a rede óptica NSFNET composta por 14 nós e 20 enlaces bidirecionais interligando os nós da rede (Figura 4). A matriz de tráfego

correspondente a esta rede é representada pela Tabela 1 e os resultados obtidos são apresentados na Figura 5.

Figura 4 – Rede Óptica NSFNET.

Tabela 1 – Matriz de Tráfego da Rede Óptica NSFNET.

	33.029	32.103	26.008	00.525	00.383	82.633	31.992	37.147	00.568	00.358	00.544	00.651	00.160
00.546		00.984	00.902	00.866	00.840	00.013	62.464	00.475	00.001	00.342	00.925	00.656	00.501
35.377	00.459		00.732	00.272	00.413	28.242	00.648	00.909	00.991	56.150	23.617	01.584	00.935
00.739	00.225	00.296		00.896	00.344	00.012	84.644	00.293	00.208	00.755	00.106	00.902	00.715
00.482	96.806	00.672	51.204		00.451	00.979	00.814	00.225	00.694	00.504	00.704	00.431	00.333
00.456	00.707	00.626	00.152	00.109		00.804	00.476	00.429	00.853	00.280	00.322	90.503	00.212
00.042	00.067	00.683	00.862	00.197	00.831		00.585	67.649	56.138	00.896	00.858	73.721	00.582
00.616	00.640	00.096	97.431	00.308	00.441	00.299		00.161	00.490	00.321	00.638	82.231	00.376
00.786	00.323	00.676	00.359	00.019	50.127	12.129	00.650		00.483	45.223	58.164	00.894	00.613
00.037	00.318	00.367	02.981	00.976	00.629	00.525	00.293	00.641		33.922	00.228	00.995	71.905
												00.592	
00.887	00.004	01.614	00.471	00.120	00.263	00.585	00.086	00.157	95.633	42.828		00.527	00.021
09.019	00.569	00.936	00.975	81.779	00.573	00.738	00.410	00.490	00.948	00.154	00.145		00.436
20 442	00 515	00 719	00 089	39 269	49 984	00 720	00 863	00 858	00 490	00 106	00 765	00 059	

Como podemos observar na Figura 5, para a rede óptica NSFNET os resultados apresentados pela meta-heurística *Simulated Annealing* foram bastante similares aos resultados das heurísticas. No entanto, a meta-heurística conseguiu obter resultados melhores que as heurísticas para os graus 2, 3 e 8. No grau 7, a *Simulated Annealing* chega a se igualar com o resultado obtido da heurística TILDA, que apresentou melhor resultado dentre todas as heurísticas para este cenário devido a sua estratégia de alocação dos comprimentos de onda. Para os graus 4, 5 e 6 a meta-heurística obtive resultados iguais, as heurísticas TILDA e MLDA.

Figura 5 – Resultado da Rede Óptica NSFNET.

6. Conclusão

Diante do exposto, conclui-se que a meta-heurística proposta faz um planejamento de rede óptica com mínima utilização de comprimentos de onda.

Essa estratégia pode ser indispensável devido aos seguintes fatos: 1) A disponibilidade de recursos é limitada, quanto mais comprimentos de onda usarmos mais custo teremos com *transponder* óptico. 2) Mesmo com uma disponibilidade muito grande de comprimentos de onda, minimizar a quantidade dos mesmos é essencial para deixar capacidade aberta para tráfegos futuros ou reconfigurações em decorrência de falhas. 3) O tempo de decisão pode ser um fator importante. Logo, fornece respostas rápidas, mesmo em função da degradação de outros objetivos pode ser importante na relação custo-benefício.

Referências

- Assis, K. D. R.; J.C. Maranhão; Santos, Alex Ferreira dos; Giozza, W. F. (2007) "Minimum Blocking Probability in OBS Networks Optimized for an Initial Static Load". In: 25° Simpósio Brasileiro de Redes de Computadores (SBRC), Belém. v. 1. p. 1-9.
- Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. e Stein, Clifford. (2001) "Introduction to Algorithms", Second Edition.
- H. Zang, J.P. Jue e B. Mukherjee. (2000) "A Review of Routing and Wavelength-Routed Optical WDM Networks", Optical Networks, Vol. 1, pp. 47-60, Janeiro.
- Kirkpatrick, S.; Gellat, D.C., e Vecchi, M.P. (1983) "Optimization by Simulated Annealing". Science, 220:671–680.
- Krishnaswamy, Rajesh M. e Sivaraja, Kumar N. (2001). "Design of Logical Topologies: A Linear Formulation for Wavelength-Routed Optical Networks with No Wavelength Changers"; IEEE/ACM Transactions On Networking, Vol. 9, No. 2, April.
- Murthy, C.S e Gurusamy, M. (2002) "WDM Optical Networks Concepts, Design and Algorithms", Prentece Hall PTR.
- Noronha, Thiago Ferreira; Aloise, Dario José e Silva, M. M. (2001) "Uma Abordagem sobre estratégias metaheurísticas". REIC. Revista eletrônica de iniciação científica, http://www.sbc.org.br/reic, v. 1.
- Ramaswami R. e Sivarajan, K. N. (1996) "Design of logical topologies for wavelength-routed optical networks", *IEEE Journal on Selected Areas in Communications*, 14(5), pp. 840–851.
- Ziviani, Nivio. (2004) "Projeto de Algoritmos". Segunda edição, revisada e ampliada. Editora Thomson.