MASSACHUSETTS MATHEMATICS LEAGUE **CONTEST 1 - OCTOBER 2008 SOLUTION KEY**

Team Round - continued

F) There are 31 fractions in this list of reduced fractions with denominators < 10.

Denominator	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7	8	9	<u>10</u>
Count	1	2	2	4	2	6	4	6	4

It seems reasonable that there would always be just as many fractions less than ½ as there would be greater than $\frac{1}{2}$. Thus, $\frac{1}{2}$ is the 16th fraction in this increasing list, implying we want the next largest fraction. The possible suspects: 2/3, 3/4, 3/5, 4/7, 5/8, 5/9 and 7/10.

By comparing the decimal equivalents $(0.\overline{6}, 0.75, 0.6, 0.\overline{571428}, 0.625, 0.\overline{5}, 0.7)$ or invoking the fact

that $\frac{a}{b} > \frac{c}{d} \Leftrightarrow ad > bc$ for a, b, c, d > 0, we have the seventeenth fraction in the list, namely <u>5/9</u>.

<u>Alternate solution</u> (especially useful for longer lists)

For example, find the 495^{th} fraction in list of reduced fractions w/ denominators ≤ 50 .

There are 773 fractions in this list!

Start with the "seed" list: $\frac{0}{1}$, $\frac{1}{1}$ and apply this rule: Between successive elements $\frac{a}{b}$, $\frac{c}{d}$ insert $\frac{a+c}{b+d}$

as long as b + d does not exceed the denominator of the previous list PLUS 1.

In each list, the fractions will automatically be in increasing order!

A programmable solution is now easily within reach.

These sequences are referred to as sequences of **Farey Fractions**.

List 2:
$$\frac{0}{1}$$
, $\frac{1}{2}$, $\frac{1}{1}$ List 4: $\frac{0}{1}$, $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{1}{1}$ (2/5 and 3/5 were not added)

List 3:
$$\frac{0}{1}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{1}{1}$$
 List 5: $\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}$ (2/7 and 5/7 were not added)

List 6:
$$\frac{0}{1}$$
, $\frac{1}{6}$, $\frac{1}{5}$, $\frac{1}{4}$, $\frac{1}{3}$, $\frac{2}{5}$, $\frac{1}{2}$, $\frac{3}{5}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, $\frac{5}{6}$, $\frac{1}{1}$

Lis 7:
$$\frac{0}{1}, \frac{1}{7}, \frac{1}{6}, \frac{1}{5}, \frac{1}{4}, \frac{2}{7}, \frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{1}{2}, \frac{4}{7}, \frac{3}{5}, \frac{2}{3}, \frac{5}{7}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \frac{1}{1}$$

List 8:
$$\frac{0}{1}, \frac{1}{8}, \frac{1}{7}, \frac{1}{6}, \frac{1}{5}, \frac{1}{4}, \frac{2}{7}, \frac{1}{3}, \frac{3}{8}, \frac{2}{5}, \frac{3}{7}, \frac{1}{2}, \frac{4}{7}, \frac{3}{5}, \frac{5}{8}, \frac{2}{3}, \frac{5}{7}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \frac{7}{8}, \frac{1}{1}$$

List 9:
$$\frac{0}{1}$$
, $\frac{1}{9}$, $\frac{1}{8}$, $\frac{1}{7}$, $\frac{1}{6}$, $\frac{2}{5}$, $\frac{1}{9}$, $\frac{2}{4}$, $\frac{1}{7}$, $\frac{3}{8}$, $\frac{2}{5}$, $\frac{3}{7}$, $\frac{4}{9}$, $\frac{5}{2}$, $\frac{5}{8}$, $\frac{3}{3}$, $\frac{7}{7}$, $\frac{4}{9}$, $\frac{5}{5}$, $\frac{6}{6}$, $\frac{7}{7}$, $\frac{8}{9}$, $\frac{1}{1}$

List 10:
$$\frac{0}{1}, \frac{1}{10}, \frac{1}{9}, \frac{1}{8}, \frac{1}{7}, \frac{1}{6}, \frac{1}{5}, \frac{2}{9}, \frac{1}{4}, \frac{2}{7}, \frac{3}{10}, \frac{1}{3}, \frac{3}{8}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9}, \frac{1}{2}, \frac{5}{9}, \frac{4}{7}, \frac{3}{5}, \frac{5}{8}, \frac{2}{3}, \frac{7}{10}, \frac{4}{7}, \frac{5}{4}, \frac{6}{9}, \frac{6}{7}, \frac{7}{8}, \frac{9}{9}, \frac{10}{10}, \frac{1}{10}, \frac{1}{10},$$