Asymptotic Notations

Introduction

- The order of growth of the running time of an algorithm gives a simple characterization of the algorithm's efficiency.
- Also allows us to compare the relative performance of alternative algorithms.
- Mostly, we are concerned with how the running time of an algorithm increases with the size of the input in the limit.
- Usually, an algorithm that is asymptotically more efficient will be the best choice for all but very small inputs.

Asymptotic Notation

- Asymptotic notation describes the running times of algorithms.
- When we use asymptotic notation to apply to the running time of an algorithm, we need to understand *which* running time we mean.
 - Worst-case running time
 - Average-case running time
 - Best-case running time
- Often one wish to make a blanket statement that covers all inputs, not just the worst case.

Big-Oh Notation

• When we have only an **asymptotic upper bound**, we use O-notation.

• For a given function g(n), we denote by O(g(n)) (pronounced "big-oh of g of n" or sometimes just "oh of g of n") the set of functions

$$O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$$
.

Big-Omega Notation

• Just as O-notation provides an asymptotic upper bound on a function, Ω -notation provides an **asymptotic lower bound**.

• For a given function g(n), we denote by $\Omega(g(n))$ (pronounced "big-omega of g of n" or sometimes just "omega of g of n") the set of functions

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

Theta Notation

• For a given function g(n), we denote by $\theta(g(n))$ the set of functions:

$$\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$$
.

• A function f(n) belongs to the set, (g(n)) if there exist positive constants c_1 and c_2 such that it can be "sandwiched" between $c_1g(n)$ and $c_2g(n)$, for sufficiently large n.

Example: Big-Oh

Show that
$$n^2/2 - 3n = O(n^2)$$

• First determine positive constants c_1 , and n_0 such that

$$n^2/2 - 3n <= c_1 n^2 \text{ for all } n >= n_0$$

- Diving by n^2 , we have: $1/2 3/n \le c_1$
- For: n=0, $\frac{1}{2} \frac{3}{0} \le c_1$ (Not Holds)

n=1,
$$\frac{1}{2}$$
 - $\frac{3}{1}$ <= c_1 (Holds for $c_1 >= \frac{1}{2}$)

n=2,
$$\frac{1}{2}$$
 - $\frac{3}{2}$ <= c_1 (Holds and so on...)

- Considering Right Hand Side Inequality, it holds for any value n >= 1 and constant $c_1 >= \frac{1}{2}$.
- Thus by choosing the constant $c_1 >= \frac{1}{2}$ and $n_0 >= 1$, one can verify that $n^2/2 3n = O(n^2)$ holds.

Example: Big-Omega

Show that
$$n^2/2 - 3n = \Omega(n^2)$$

• First determine positive constants c_1 , and n_0 such that

$$c_1 n^2 \le n^2/2 - 3n$$
 for all $n >= n_0$

- Diving by n^2 , we have: $c_1 <= 1/2 3/n$
- For: n=0, $c_1 <= \frac{1}{2} \frac{3}{0}$ (Not Holds) n=1, $c_1 <= \frac{1}{2} \frac{3}{1}$ (Not Holds)

$$n=2$$
, $c_1 <= \frac{1}{2} - \frac{3}{2}$ (Not Holds) $n=3$, $c_1 <= \frac{1}{2} - \frac{3}{3}$ (Not Holds)

$$n=4$$
, $c_1 <= \frac{1}{2} - \frac{3}{4}$ (Not Holds) $n=5$, $c_1 <= \frac{1}{2} - \frac{3}{5}$ (Not Holds)

n=6, $c_1 \le 1/2 - 3/6$ (Not Holds and Equals ZERO)

n=7,
$$c_1 \le \frac{1}{2} - \frac{3}{7}$$
 or $c_1 \le \frac{(7-6)}{14}$ or $c_1 \le \frac{1}{14}$ (Holds for $c_1 \le \frac{1}{14}$)

- Considering Left Hand Side Inequality, it holds for any value n >= 7 and constant $c_1 <= 1/14$.
- Thus by choosing the constant $c_1 <= 1/14$ and $n_0 >= 7$, one can verify that $n^2/2 3n = \Omega(n^2)$ holds.

Example: Theta

Show that
$$n^2/2 - 3n = \theta(n^2)$$

• First determine positive constants c_1 , c_2 , and n_0 such that

$$c_1 n^2 \le n^2/2 - 3n \le c_2 n^2 \text{ for all } n >= n_0$$

• Diving by n², we have:

$$c_1 <= 1/2 - 3/n <= c_2$$

- Considering Right Hand Side Inequality, it holds for any value n >= 1 and constant $c_2 >= \frac{1}{2}$.
- Considering Left Hand Side Inequality, it holds for any value $n \ge 7$ and constant $c_1 \le 1/14$.
- Thus by choosing the constants $c_1 <= 1/14$ and $c_2 >= 1/2$ and $n_0 >= 7$, one can verify that $n^2/2 3n = \theta(n^2)$ holds.

o-Notation

- o-notation denotes an upper bound that is not asymptotically tight.
- Formally o(g(n)) ("little-oh of g of n") is defined as the set
- $o(g(n)) = \{f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}$.
- For example, $2n = o(n^2)$, but $2n^2 != o(n^2)$.
- Intuitively, in o-notation, the function f(n) becomes insignificant relative to g(n) as n approaches infinity; that is, $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$

ω-Notation

- ω -notation denotes a lower bound that is not asymptotically tight.
- One way to define it is by:

$$f(n) \in \omega(g(n))$$
 if and only if $g(n) \in o(f(n))$

• Formally, $\omega(g(n))$ ("little-omega of g of n") is defined as the set

```
\omega(g(n)) = \{f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}.
```

- For example, $n^2/2 = \omega(n)$, but $n^2/2 != \omega(n^2)$.
- The relation $f(n) \in \omega(g(n))$ implies that $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$, if limit exists.

Reference

• Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms. MIT press.

Thank You