M378K Introduction to Mathematical Statistics Problem Set #14 Statistics.

Definition 14.1. A random sample of size n from distribution D is a random vector

$$(Y_1, Y_2, \ldots, Y_n)$$

such that

- 1. Y_1, Y_2, \ldots, Y_n are independent, and
- 2. each Y_i has the distribution D.

Example 14.2. Quality control. Times until a breaker trips under a particular load are modeled as exponential. The intended procedure is to choose n breakers at random from the assembly line, subject them to the load, and measure the time it takes for them to trip. The lifetime of a specific breaker indexed by i is a random variable Y_i with an exponential distribution with an unknown parameter $\theta = \tau$. Independence of Y_i , $i = 1, \ldots, n$ is assured by the random choice of breakers to test.

Definition 14.3. A statistic is a function of the (observable) random sample and known constants.

Problem 14.1. Give at least three examples of statistics of a certain random sample Y_1, Y_2, \dots, Y_n .

Solution:

Remark 14.4. Statistics are random variables in their own right. We call their probability distributions sampling distributions.

Example 14.5. Quality control, cont'd. Let the random variable Y be the minimum of random variables Y_1, \ldots, Y_n , i.e., the shortest time until the breaker is tripped in the sample. We can write

$$Y = \min(Y_1, \dots, Y_n).$$

What is another name for this random variable?

Solution: *The first order statistic* $Y_{(1)}$.

Then, the sampling distribution of Y can be figured out by looking at its cumulative distribution function. We have ...

Solution: For all $y \in \mathbb{R}$,

$$F_{(1)}(y) = 1 - (1 - F_Y(y))^n = 1 - (1 - (1 - e^{-\frac{y}{\tau}}))^n = 1 - (e^{-\frac{y}{\tau}})^n = 1 - e^{-\frac{y}{\tau/n}}.$$

We can conclude that $Y \sim E(\tau/n)$.

Problem 14.2. Let Y_1, \ldots, Y_n be a random sample of size n from a normal distribution with mean μ and variance σ^2 . What is the sampling distribution of

$$\bar{Y}_n = \frac{1}{n} \sum_{k=1}^n Y_k \quad ?$$

Solution:

$$\bar{Y}_n \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right).$$