Training and Evaluating the Model

Amber Israelsen
AUTHOR | DEVELOPER | TRAINER
www.amberisraelsen.com

Course Overview

Course Introduction

Identifying Opportunities for Machine Learning

Defining Machine Learning Problems

Fetching and Preparing Data

Training and Evaluating the Model

Deploying and Monitoring the Model

Defining Machine Learning Machine Learning Problems

Fetching and Preparing Data

Fetching and Preparing Data

Module Overview

The machine learning process

- Training the model
 - Machine learning algorithms
- Evaluating the model
 - Hyperparameter tuning

Demo in SageMaker Studio

Training the Model

Algorithm vs. Model

Code that identifies patterns in the data

The output from running the algorithm on data

Rules, numbers, data structures required to make predictions

Image classification

K-means

Linear learner

Gradient boost

XGBoost

BlazingText

ALGORITHMS

Decision trees

Object2Vec

Sequence2sequence

K-nearest neighbors

Random forest

The Algorithm Depends on the Type of Problem

SUPERVISED

Learn from labeled data

Classification

BINARY

[yes/no]
[true/false]
[fraud, not
fraud]

MULTICLASS

[cat, dog, horse]

[house, condo, townhome, apartment]

Regression

Uses continuous values
[predicting a stock price]
[predicting sales of a product]

UNSUPERVISED

Learn from finding hidden patterns in unlabeled data

Clustering

Groups data into clusters based on similar features

[after analyzing patient data, you find that certain groups respond better to treatment]

Anomaly Detection

Finds outliers in data
[suspicious network traffic]
[abnormal heart beat]

Built-in SageMaker Algorithms

Supervised Learning

Linear learner

XGBoost

K-nearest neighbors

Unsupervised Learning

K-means

Principal component analysis (PCA)

Linear Learner Algorithm

$$y = 3x + 7$$

X	У
0	7
1	10
2	13
3	?

Used for classification and regression problems

Classification

- For a given value x, what is y?
- Based on past shopping habits, will this customer buy this product? (yes/no)

Linear Learner Algorithm

Used for classification and regression problems

Regression

- For a given value x, predict y
- Based on the number of rooms in this house, predict the rental rate for this house (a continuous value)

An implementation of stochastic gradient descent (SGD)

Intuition for Gradient Descent

Loss (cost) function tells us how good our predictions are

- How far away are predicted values from actual values?
- What to minimize the cost/errors

Training dataset XGBoost Algorithm Incorrect Given more weight Incorrect Given Incorrect O more weight +0 Incorrect Classifier 2 Classifier 1 Classifier 3 Green background means + Blue background means -

Classifier 4
Correct!

Used for classification and regression problems

An implementation of gradient boosted trees (eXtreme Gradient Boosting)

Designed for speed and performance, and very popular today

Predicts a target variable by attempting to correct the mistakes of models before it

K-nearest Neighbors Algorithm

Used for classification and regression problems, also called k-NN

Makes predictions based on the k points closest to the sample point

Used for concept search, image classification and recommendation systems

Built-in SageMaker Algorithms

Supervised Learning

Linear learner

XGBoost

K-nearest neighbors

Unsupervised Learning

K-means

Principal component analysis (PCA)

TASK

- Organize a pile of books
- We have three bookshelves (groups); k = 3
- They should be grouped by genre (similarity attribute)

Used for clustering (unsupervised) problems

Groups data based on similarity

The number of groups is "k"

You must supply attribute that indicates similarity

TASK

- Organize a pile of books
- We have three bookshelves (groups); k = 3
- They should be grouped by genre (similarity attribute)

Used for clustering (unsupervised) problems

Groups data based on similarity

The number of groups is "k"

You must supply attribute that indicates similarity

TASK

- Organize a pile of books
- We have three bookshelves (groups); k = 3
- They should be grouped by genre (similarity attribute)

Used for clustering (unsupervised) problems

Groups data based on similarity

The number of groups is "k"

You must supply attribute that indicates similarity

Non-fiction

Fiction

TASK

- Organize a pile of books
- We have three bookshelves (groups); k = 3
- They should be grouped by genre (similarity attribute)

Non-fiction Fiction Biography

Used for clustering (unsupervised) problems

Groups data based on similarity

The number of groups is "k"

You must supply attribute that indicates similarity

TASK

- Organize a pile of books
- We have three bookshelves (groups); k = 3
- They should be grouped by genre (similarity attribute)

Used for clustering (unsupervised) problems

Groups data based on similarity

The number of groups is "k"

You must supply attribute that indicates similarity

Non-fiction Fiction Biography

What Are My Customer Segments?

Principal Component Analysis (PCA)

Used for unsupervised problems, to solve "the curse of dimensionality"

Identifies important relationships

Quantifies the importance of those relationships so we can keep the most important and drop others

Algorithm vs. Model

Code that identifies patterns in the data

The output from running the algorithm on data

Rules, numbers, data structures required to make predictions

Splitting Data

70% 20% 10% Train Validation Test

Algorithm vs. Model

Create the Training Job in SageMaker

Amazon SageMaker > Training jobs > Create training job

Create training job

When you create a training job, Amazon SageMaker sets up the distributed compute cluster, performs the training, and deletes the cluster when training has completed. The resulting model artifacts are stored in the location you specified when you created the training job. Learn more 🔼

Job settings	
Job name	
Maximum of 63 alphanumeric characters. Can include hyphens (-), but not spaces. Must be unique within your ac in an AWS Region.	count
IAM role Amazon SageMaker requires permissions to call other services on your behalf. Choose a role or let us create a role has the AmazonSageMakerFullAccess IAM policy attached.	e that
AmazonSageMaker-ExecutionRole-20200502T174777	•
Use an Amazon SageMaker built-in algorithm, your own algorithm, or a third-party algorithm from AWS Marketp ■ Algorithm source	lace.
Amazon SageMaker built-in algorithm Learn more	
O Your own algorithm resource	
○ Your own algorithm container in ECR Learn more ☑	
An algorithm subscription from AWS Marketplace	
▼ Choose an algorithm	
▼ Choose an algorithm K-Means	•
	•

Evaluating the Model

GOAL

A model that generalizes well

Overfitting

By Chabacano - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=3610704

The line in green shows overfitting

The model is too dependent on the training data; not likely to perform well on new data

We want the black line

To prevent:

- Use more data
- Add some "noise"
- Remove features
- Early stopping

Underfitting

CC BY-SA 4.0, https://en.wikipedia.org/w/index.php?curid=61247310

The line in blue shows underfitting

The model is too simple and doesn't accurately reflect the data

To prevent:

- Use more data
- Add more features
- Train longer

Tuning the Model

Hyperparameter Tuning

Hyperparameters

The "knobs" you can use to control the behavior of your algorithm

Use the Validation Dataset for Hyperparameter Tuning

70% 20% 10% Train Validation Test

Hyperparameter Tuning in SageMaker

Hyperparameter tuning is time consuming!

How Did the Model Do with Predictions?

True Values

Fraud

Not Fraud

Not Fraud

Fraud

Fraud

Not Fraud

Fraud

Not Fraud

Fraud

Predictions

Fraud

Not Fraud

Fraud

Not Fraud

Fraud

Not Fraud

Fraud

Fraud

Fraud

	Predicted Class	Predicted Class
	POSITIVE ("fraud")	NEGATIVE ("not fraud")
Actual Class	True Positive (TP)	False Negative (FN)
POSITIVE ("fraud")	"fraud" was <i>correctly</i> predicted as "fraud"	"fraud" was incorrectly predicted as "not fraud"
Actual Class	False Positive (FP)	True Negative (TN)
NEGATIVE ("not fraud")	"not fraud" was incorrectly predicted as "fraud"	"not fraud" was correctly predicted as "not fraud"

	Predicted Class	Predicted Class
	POSITIVE ("fraud")	NEGATIVE ("not fraud")
Actual Class	True <u>Positive</u> (TP)	False Negative (FN)
POSITIVE ("fraud")	"fraud" was <i>correctly</i> predicted as "fraud"	"fraud" was incorrectly predicted as "not fraud"
Actual Class	False <u>Positive</u> (FP)	True Negative (TN)
NEGATIVE ("not fraud")	"not fraud" was incorrectly predicted as "fraud"	"not fraud" was correctly predicted as "not fraud"

	Predicted Class	Predicted Class
	POSITIVE ("fraud")	NEGATIVE ("not fraud")
Actual Class	True Positive (TP)	False Negative (FN)
("fraud")	"fraud" was <i>correctly</i> predicted as "fraud"	"fraud" was incorrectly predicted as "not fraud"
Actual Class	False Positive (FP)	True Negative (TN)
NEGATIVE ("not fraud")	"not fraud" was incorrectly predicted as "fraud"	"not fraud" was correctly predicted as "not fraud"

	Predicted Class	Predicted Class
	POSITIVE ("fraud")	NEGATIVE ("not fraud")
Actual Class	True Positive (TP)	False Negative (FN)
("fraud")	"fraud" was <i>correctly</i> predicted as "fraud"	"fraud" was incorrectly predicted as "not fraud"
Actual Class	False Positive (FP)	True Negative (TN)
NEGATIVE ("not fraud")	"not fraud" was incorrectly predicted as "fraud"	"not fraud" was correctly predicted as "not fraud"

Metrics for Classification Problems

ACCURACY

TP+TN

TP+FP+TN+FN

Percentage of predictions that were correct

Less effective with lots of true negatives

Example: Predicting fraud with little to no fraud data

PRECISION

TP

TP+FP

Percentage of positive predictions that were correct

Use when the cost of false positives is high

Example: An email is flagged and deleted as spam when it really isn't

RECALL

TP

TP+FN

Percentage of actual positives that were correctly identified

Use when the cost of false negatives is high

Example: You have cancer, but screening does not find it

Demo

Training and evaluating the model in SageMaker Studio

Key Points to Remember

Algorithms

- Linear learner
- XGBoost
- K-nearest neighbors
- K-means
- Principal component analysis (PCA)

Split the data into training, validation, and test (70/20/10)

Evaluation

- Goal is to have the model generalize, not overfit or underfit
- Hyperparameter tuning
- Confusion matrix
- Accuracy, precision, recall

Up Next:

Deploying and Monitoring the Model

