1

Determinants

G V V Sharma*

1

1

2

2

3

4

CONTENTS

- 1 Minor and Cofactor
- 2 Adjoint
- 3 Properties
- 4 Cramer's Rule
- 5 Algebra
- 6 Arithmetic

1.5. If $\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ and A_{ij} is Cofactors of a_{ij} then value of Δ is given by

- a) $a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33}$
- b) $a_{11}A_{11} + a_{12}A_{21} + a_{13}A_{31}$
- c) $a_{21}A_{11} + a_{22}A_{12} + a_{23}A_{13}$
- d) $a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}$

Abstract—This manual provides a simple introduction to determinants, based on exercises from the NCERT textbooks from Class 6-12.

1 MINOR AND COFACTOR

1.1. Write Minors and Coafactors of the elements of following determinants:(i) $\begin{vmatrix} 2 & -4 \\ 0 & 3 \end{vmatrix}$

(ii)
$$\begin{vmatrix} a & c \\ b & d \end{vmatrix}$$

1.2. (i) $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$
(ii) $\begin{vmatrix} 1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2 \end{vmatrix}$

- 1.3. Using Cofactors of elements of second row, evaluate $\Delta = \begin{bmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}$.
- 1.4. Using Cofactors of elements of third column , evaluate $\Delta = \begin{vmatrix} 1 & x & yz \\ 1 & y & zx \\ 1 & z & xy \end{vmatrix}$.

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU $\,2.11$. GPL. Free and open source.

2.1. Find adjoint of each of the matrices $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

2 Adjoint

2.2.
$$\begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{bmatrix}$$
 Verify A(adjA)=(adjA)A=|A| I

- $\begin{bmatrix}
 -4 & -6 \\
 1 & -1 & 2 \\
 3 & 0 & -2
 \end{bmatrix}$
- $2.5. \begin{bmatrix} 2 & -2 \\ 4 & 3 \end{bmatrix}$
- $2.6. \begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}$
- $2.7. \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{bmatrix}$
- $\begin{array}{c|cccc}
 2.8. & \begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{bmatrix}
 \end{array}$
- - 1. $\begin{bmatrix} 3 & -2 & 4 \\ 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{bmatrix}$

3 Properties

3.1. If
$$\mathbf{A} = \begin{vmatrix} 1 & 2 \\ 4 & 2 \end{vmatrix}$$
, then show that $|2\mathbf{A}| = 4|\mathbf{A}|$

3.2. If
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}$$
, then show that $|3\mathbf{A}| = 27 |\mathbf{A}|$

Solution: Choose the correct answer in Exercises 23 and 24.

- 3.3. Let A be a square matrix of order 3X3, then |kA| is equal to
 - a) k|A|
 - b) $k^2 |A|$
 - c) $k^{3}|A|$
 - d) 3k|A|
- 3.4. Which of the following is correct
 - a) Determinant is a square matrix.
 - b) Determinant is a number associated to a matrix.
 - c) Determinant is a number associated to a square matrix.
 - d) None of these.

3.5. Let
$$A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$. Verify that $(AB)^{-1} = B^{-1}A^{-1}$

- 3.6. Let A be a nonsingular square matrix of order 3X3 .Then |adjA| is equal to
 - a) |A|
 - b) $|A|^2$
 - c) $|A|^{3}$
 - d) 3 |A|
- 3.7. If A is an invertible matrix of order 2, then $\det(A^{-1})$ is equal to
 - a) det(A)
 - b) $\frac{1}{det(A)}$
 - c) 1
 - d) 0

3.8. If

$$A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 2 & -2 \\ 1 & 3 & 0 \end{bmatrix} \quad \text{find } (AP)^{-1}$$

$$B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}, \text{ find } (AB)^{-1}$$
3.9. Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$. Verify that

(i) $[adjA]^{-1} = adj(A)^{-1}$

(ii) $(A^{-1})^{-1} = A$

4 Cramer's Rule

- 4.1. The cost of 4 kg onion, 3 kg wheat and 2 kg rice is ₹60. The cost of 2 kg onion,4 kg wheat and 6 kg rice is ₹90. The cost of 6kg onion 2kg wheat and 3kg rice is ₹70.Find the cost of each item per kg by matrix mathod. Solve the system linear equations, using matrix method.
- 4.2. 5x + 2y = 47x + 3y = 5

Solution:

4.3.
$$2x - y = -2$$

 $3x + 4y = 3$

Solution:

4.4.
$$4x - 3y = 3$$

 $3x - 5y = 7$
 Solution:

4.5. 5x + 2y = 33x + 2y = 5

Solution:

4.6.
$$2x+y+z = 1$$

 $x-2y-z = \frac{3}{2}$
 $3y-5z = 9$

$$4.7. x-y+z = 4$$

$$2x+y-3z = 0$$

$$x+y+z = 2$$

4.8.
$$2x+3y+3z = 5$$

 $x-2y+z = -4$
 $3x-y-2z = 3$

4.9.
$$x-y+2z = 7$$

 $3x+4y-5z = -5$
 $2x-y+3z = 12$

4.10. If
$$A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$$
, find A^{-1} . Using A^{-1} solve the system of equations $2x-3y+5z = 11$, $3x+2y-4z = -5$, $x+y-2z = -3$.

5.1. (i)
$$\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix}$$
 (ii) $\begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix}$

5.2. Find the values of x,If

(i)
$$\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = \begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}$$
 (ii) $\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = \begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}$

Solution:

5.3. If
$$\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$$
, then x is equal to

- a) 6
- b) ± 6
- c) -6
- d) 0

5.4.
$$\begin{vmatrix} x & a & x+a \\ y & b & y+b \\ z & c & z+c \end{vmatrix} = 0$$

Solution:

5.5.
$$\begin{vmatrix} a - b & b - c & c - a \\ b - c & c - a & a - b \\ c - a & a - b & b - c \end{vmatrix} = 0$$

Solution:

5.6.
$$\begin{vmatrix} 2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86 \end{vmatrix} = 0$$

Solution:

5.7.
$$\begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{vmatrix} = 0$$

Solution:

5.8.
$$\begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{vmatrix} = 2 \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix}$$

Solution:

5.9.
$$\begin{vmatrix} -a^2 & ab & ab \\ ba & -b^2 & bc \\ ca & cb & -c^2 \end{vmatrix} = 4a^2b^2c^2$$

Solution: By Using properties of determinants,

show that;
5.10. (i)
$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$

(ii) $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)$

Solution:

5.11.
$$\begin{vmatrix} x & x^2 & yz \\ y & y^2 & zx \\ z & z^2 & xy \end{vmatrix} = (x-y)(y-z)(z-x)(xy+yz+zx)$$

5.12. (i)
$$\begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix} = (5x+4)(4-x)^2$$

Solution:

5.13.
$$\begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1 \end{vmatrix} = 1 + a^2 + b^2 + c^2$$

Solution:

5.14. Prove that the determinant

$$\begin{array}{cccc} x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x \end{array}$$
 is independent of θ

Solution:

5.15. Without expanding the determinant, prove that

$$\begin{vmatrix} a & a^2 & bc \\ b & b^2 & ca \\ c & c^2 & ab \end{vmatrix} = \begin{vmatrix} 1 & a^2 & a^3 \\ 1 & b^2 & b^3 \\ 1 & c^2 & c^3 \end{vmatrix}.$$

Solution:

5.16. Evaluate
$$\begin{vmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \end{vmatrix}$$

Solution:

5.17. If a,b and c are real numbers, and

$$\Delta = \begin{vmatrix} b+c & c=a & a=b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} = 0, \text{ Show that}$$
 either a+b+c=0 or a=b=c.

Solution:

5.18. Solve the equation

$$\begin{vmatrix} x+a & x & x \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0, a \neq 0$$

Solution:

5.19. Prove that

$$\begin{vmatrix} a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2 \end{vmatrix} = 4a^2b^2c^2$$

Solution:

5.20. Evaluate
$$\begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$$

Solution:

5.21. Evaluate
$$\begin{vmatrix} 1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y \end{vmatrix}$$
 Solution: Using

properties of determinants ,prove that:

5.22.
$$\begin{vmatrix} \alpha & \alpha^2 & \beta + \gamma \\ \beta & \beta^2 & \gamma + \alpha \\ \gamma & \gamma^2 & \alpha + \beta \end{vmatrix} = (\beta - \gamma)(\gamma - \alpha)(\alpha - \beta)(\alpha + \beta)(\alpha + \beta)$$

Solution:

$$\begin{bmatrix} x & x^2 & 1 + px^3 \\ y & y^2 & 1 + py^3 \\ z & z^2 & 1 + pz^3 \end{bmatrix} = (1 + pxyz)(x - y)(y - y)(y - y)(z - x),$$
 where p is any scalar.

Solution:

$$\begin{vmatrix} 3a & -a+b & -a+c \\ -b+a & 3b & -b+c \\ -c+a & -c+b & 3c \end{vmatrix} = 3(a+b+c)(ab+bc+ca)$$
Solution:

6 ARITHMETIC

6.1. Find
$$\begin{vmatrix} 2 & 4 \\ -5 & -1 \end{vmatrix}$$

Solution:

6.2. Evaluate the determinants

a)
$$\begin{vmatrix} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \\ 3 & -4 & 5 \end{vmatrix}$$
b)
$$\begin{vmatrix} 1 & 1 & -2 \\ 2 & 3 & 1 \end{vmatrix}$$
Solution:
$$\begin{vmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \\ 2 & -1 & -2 \\ d) \begin{vmatrix} 2 & -1 & -2 \\ 3 & -5 & 0 \end{vmatrix}$$
6.3. If $A = \begin{vmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{vmatrix}$, find $|A|$

Solution: Examine the consistency of the system of given Equations.

6.4.
$$x + 3y = 5$$

 $2x + 6y = 8$

Solution:

6.5.
$$x+y+z=1$$

 $2x+3y+2z=2$
 $ax+ay+2az=4$

Solution:

Solution:

6.7.
$$5x-y+4z=5$$

 $2x+3y+5z=2$
 $5x-2y+6z=-1$

Solution: