Assignment - 3

Assignment Date	03.10.2022
Student Name	K.S.Varshaa
Student Roll Number	2019115116
Maximum Marks	2 Marks

Question-1

Download the Dataset

```
#Importing Packages

In [50]: from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Convolution2D,MaxPooling2D,Flatten,Dense
from tensorflow.keras.preprocessing.image import ImageDataGenerator as idm
import numpy as np
import varnings
#Supressing warnings
warnings.filterwarnings('ignore')
```

Question-2

Image Augmentation

Solution:

Creating augmentation on training variable train_flowers=idm(rescale=1./255,zoom_range=0.2,hor izontal_flip=True)

Passing training data to train variable

Xtrain =

 $train_flowers.flow_from_directory('/content/drive/MyDrive/IBM/Flowers-$

Dataset',target_size=(76,76),class_mode='categorical',batch_size=100)

Creating augmentation on testing variable test_flowers=idm(rescale=1./255)

Passing testing data to test variable

Xtest =

test_flowers.flow_from_directory('/content/drive/MyDrive/IBM/Flower_Training',target_size=(76,76),class_mode='catego rical',batch_size=100)

Screenshot:

Question-3

Create Model

Solution:

Passing training data to train variable

Xtrain =

train_flowers.flow_from_directory('/content/drive/MyDrive/IBM/Flowers-

Dataset',target_size=(76,76),class_mode='categorical',batch_size=100)

Creating augmentation on testing variable test_flowers=idm(rescale=1./255)

Passing testing data to test variable

Xtest =

test_flowers.flow_from_directory('/content/drive/MyDrive/IBM/Flower_Training',target_size=(76,76),class_mode='catego rical',batch_size=100)

Screenshot:

Question-4

Compile The Model

Solution:

Flower_model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])

Screenshot:

Question-5

Fit The Model

Solution:

Flower_model.fit_generator(Xtrain,steps_per_epoch= len (Xtrain),epochs= 10,validation_data=Xtest,validation_steps= len (Xtest))

Screenshot:

```
In [55]: Flower_model.fit_generator(Xtrain,steps_per_epoch= len (Xtrain),epochs= 10,validation_data=Xtest,validation_steps= len (Xtest))
              ===] - 26s 618ms/step - loss: 1.1221 - accuracy: 0.5412 - val_loss: 1.1446 - val_accuracy: 0.
                       ====] - 26s 612ms/step - loss: 1.0173 - accuracy: 0.6042 - val_loss: 1.1835 - val_accuracy: 0.
                Epoch 6/10
42/42 [====
7206
                  -----] - 26s 615ms/step - loss: 0.8125 - accuracy: 0.6923 - val_loss: 0.8731 - val_accuracy: 0.
                        ==] - 26s 608ms/step - loss: 0.7663 - accuracy: 0.7073 - val_loss: 1.0149 - val_accuracy: 0.
                      =====] - 26s 616ms/step - loss: 0.7333 - accuracy: 0.7242 - val_loss: 0.9583 - val_accuracy: 0.
```

Question-6

Save The Model

Solution:

Flower_model.save('Flower.h5')

Screenshot:

```
In [56]: Flower_model.save('Flower.h5')
```

Question-7

Test The Model

Solution:

```
test_img=image.load_img('/content/drive/MyDrive/IBM/Flow
  Dataset/sunflower/200557977_bf24d9550b.jpg',target_size=(
  76,76))
test_img
  x=image.img_to_array(test_img)
  x=np.expand_dims(x,axis=0)
  predicted=np.argmax(Flower_model.predict(x))
  Prediction_category=['daisy','dandelion','rose','sunflower','tul
  ip']
Prediction_category[predicted]
  test_img1=image.load_img('/content/drive/MyDrive/IBM/Flo
  Dataset/daisy/1140299375_3aa7024466.jpg',target_size=(76,
  76))
test img1
  x=image.img_to_array(test_img1)
  x=np.expand_dims(x,axis=0)
  predicted=np.argmax(Flower_model.predict(x))
```

Prediction_category[predicted]

```
test_img2=image.load_img('/content/drive/MyDrive/IBM/Flo
wers-
Dataset/rose/7251352826_69b62cba2c_m.jpg',target_size=(7
6,76))
test_img2
x=image.img_to_array(test_img2)
x=np.expand_dims(x,axis=0)
predicted=np.argmax(Flower_model.predict(x))
Prediction_category[predicted]
```

Screenshot:

