

 $\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}}$

 $\exists_{x \in \Re} \exists_{y \in \Re} (x = y)$

 $\forall_x (\Re/x)$

The Foundations: Logic and Proofs

RIZOAN TOUFIQ

ASSISTANT PROFESSOR

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

RAJSHAHI UNIVERSITY OF ENGINEERING & TECHNOLOGY

Propositional Equivalences

Section 1.3

Section Summary

- Tautologies, Contradictions, and Contingencies.
- Logical Equivalence
 - Important Logical Equivalences
 - Showing Logical Equivalence
- Propositional Satisfiability
 - Sudoku Example

Tautologies, Contradictions, and Contingencies

- A **tautology** is a proposition which is always **true**.
 - Example: $p \lor \neg p$
- A **contradiction** is a proposition which is always **false**.
 - Example: $p \land \neg p$
- A contingency is a proposition which is neither a tautology nor a contradiction, such as p

p	¬р	p V¬p	р∧¬р
T	F	T	F
F	T	T	F

Logically Equivalent

- Two **compound** propositions p and q are logically **equivalent** if p↔q is a tautology.
- We write this as $p \Leftrightarrow q$ or as $p \equiv q$ where p and q are compound propositions.
- This truth table shows that $\neg a \lor b$ is equivalent to $a \to b$.
 - p: ¬a∨b
 - q: $a \rightarrow b$

a	b	¬a	¬a∨b	$a \rightarrow b$	$p \leftrightarrow q$
T	T	F	T	T	T
T	F	F	F	F	Т
F	Т	T	Т	T	Т
F	F	T	T	T	Т

De Morgan's Laws

TABLE 2 De Morgan's Laws.

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Augustus De Morgan 1806-1871

This truth table shows that De Morgan's Second Law holds.

p	q	¬р	$\neg q$	(pVq)	¬(pVq)	¬р∧¬q
T	T	F	F	T	F	F
T	F	F	T	Т	F	F
F	T	T	F	Т	F	F
F	F	Т	T	F	Т	Т

Key Logical Equivalences

TABLE 6 Logical Equivalences.				
Equivalence	Name			
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws			
$p \vee \mathbf{T} \equiv \mathbf{T}$ $p \wedge \mathbf{F} \equiv \mathbf{F}$	Domination laws			
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws			
$\neg(\neg p) \equiv p$	Double negation law			
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws			

Key Logical Equivalences (cont)

TABLE 6 Logical Equivalences.					
Equivalence	Name				
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws				
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws				
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws				
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws				
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws				

More Logical Equivalences

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

TABLE 8 Logical Equivalences Involving Biconditional Statements.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Equivalence Proofs

Example: Show that $\vdash(p\lor(\vdash p\land q))$ is logically equivalent to $\vdash p\land \vdash q$

Solution:

Equivalence Proofs

Example: Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.

Solution:

Propositional Satisfiability

- A compound proposition is *satisfiable* if there is an assignment of truth values to its variables that make it true. When no such assignments exist, the compound proposition is *unsatisfiable*.
- A compound proposition is unsatisfiable if and only if its negation is a tautology.

Questions on Propositional Satisfiability

Example: Determine the satisfiability of the following compound propositions:

$$\begin{array}{l} (p \vee \neg q) \wedge (q \vee \neg r) \wedge (r \vee \neg p) \\ (p \vee q \vee r) \wedge (\neg p \vee \neg q \vee \neg r) \\ (p \vee \neg q) \wedge (q \vee \neg r) \wedge (r \vee \neg p) \wedge (p \vee q \vee r) \wedge (\neg p \vee \neg q \vee \neg r) \end{array}$$

Solution: Satisfiable. Assign T to p, q, and r.

Solution: Satisfiable. Assign \mathbf{T} to p and \mathbf{F} to q.

Solution: Not satisfiable. Check each possible assignment of truth values to the propositional variables and none will make the proposition true.

Notation

$$\bigvee_{j=1}^n p_j$$
 is used for $p_1 \vee p_2 \vee \ldots \vee p_n$

Needed for the next example.

Sudoku

- A **Sudoku puzzle** is represented by a 9×9 grid made up of nine 3×3 subgrids, known as **blocks**. Some of the 81 cells of the puzzle are assigned one of the numbers 1,2, ..., 9.
- The puzzle is solved by assigning numbers to each blank cell so that every row, column and block contains each of the nine possible numbers.
- Example

Encoding as a Satisfiability Problem

- Let p(i,j,n) denote the proposition that is true when the number n is in the cell in the ith row and the jth column.
- There are $9 \times 9 \times 9 = 729$ such propositions.
- In the sample puzzle p(5,1,6) is true, but p(5,j,6) is false for j = 2,3,...9

Encoding (cont)

- For each cell with a given value, assert p(i,j,n), when the cell in row i and column j has the given value.
- Assert that every row contains every number.

$$\bigwedge_{i=1}^{9} \bigwedge_{n=1}^{9} \bigvee_{j=1}^{9} p(i,j,n)$$

Assert that every column contains every number.

$$\bigwedge_{j=1}^{9} \bigwedge_{n=1}^{9} \bigvee_{i=1}^{9} p(i,j,n)$$

	2	9				4		
			5			1		
	4							
				4	2			
6							7	
6 5 7								
7			3					5
	1			9				
							6	

Query???

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}}$$

$$\exists_{x \in \Re} \exists_{y \in \Re} (x = y) = ?$$

$$\sum_{x=1}^{\infty} x = ?$$

$$\forall x (\Re /x) = ?$$

$$\sum_{x=1}^{\infty} \frac{1}{x} = ?$$

$$\exists_{x \in \Re} \exists_{y \in \Re} (x = y) = ?$$

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}} = ?$$

$$1 - 1 + 1 - 1 + 1 \dots = ?$$

$$\sum_{x=1}^{\infty} \frac{1}{x} = ?$$