WHAT IS CLAIMED IS:

1. A macromolecule of the structure:

PNA-DNA-PNA

wherein:

said DNA comprises at least one 2'-deoxynucleotide; and

each of said PNAs comprise at least one peptide nucleic acid subunit.

- 2. A macromolecule of claim 1 wherein said PNA-DNA-PNA macromolecule is capable of specifically hybridizing to a strand of nucleic acid.
- 3. A macromolecule of claim 2 wherein said stand of nucleic acid is a RNA strand.
- 4. A macromolecule of claim 1 wherein:
 said DNA includes at least three 2'deoxynucleotides linked together in a sequence: and
 each PNA includes at least two peptide nucleic
 acid subunits.
- 5. A macromolecule of claim 1 wherein said 2'-deoxynucleotide is a phosphodiester, a phosphorothioate or a phosphorodithioate nucleotide.
- 6. A macromolecule of claim 1 wherein said DNA includes at least three 2'-deoxynucleotides linked together in a sequence by phosphodiester, phosphorothioate or phosphorodithioate linkages.
- 7. A macromolecule of claim 1 wherein each of said PNAs comprises a compound of the formula (I):

ISIS-1236 - 52 - PATENT

n is at least 2,

each of L^1-L^n is independently selected from the group consisting of hydrogen, hydroxy, (C_1-C_4) alkanoyl, naturally occurring nucleobases non-naturally occurring nucleobases, aromatic moieties, DNA intercalators, nucleobase-binding groups, heterocyclic moieties, and reporter ligands, at least one of L^1-L^n being a naturally occurring nucleobase, a non-naturally occurring nucleobase, a DNA intercalator, or a nucleobase-binding group;

each of C^1 - C^n is $(CR^6R^7)_y$ where R^6 is hydrogen and R^7 is selected from the group consisting of the side chains of naturally occurring alpha amino acids, or R^6 and R^7 are independently selected from the group consisting of hydrogen, $(C_2$ - C_6) alkyl, aryl, aralkyl, heteroaryl, hydroxy, $(C_1$ - C_6) alkoxy, $(C_1$ - C_6) alkylthio, NR^3R^4 and SR^5 , where R^3 and R^4 are as defined above, and R^5 is hydrogen, $(C_1$ - C_6) alkyl, hydroxy-, alkoxy-, or alkylthio- substituted $(C_1$ - C_6) alkyl, or R^6 and R^7 taken together complete an alicyclic or heterocyclic system;

each of $/D^1-D^n$ is $(CR^6R^7)_z$ where R^6 and R^7 are as defined above;

each of y and z is zero or an integer from 1 to 10, the sum y + z being greater than 2 but not more than 10;

each of G^1 - G^{n-1} is -NR³CO-, -NR³CS-, -NR³SO- or -NR³SO₂-, in either orientation, where R³ is as defined above;

each pair of A^1-A^n and B^1-B^n are selected such

that:

٠٠ حت

(a) A is a group of formula /(IIa), (IIb) or (IIc) and B is N or R^3N^+ ; or

(b) A is a group of formula (Id) and B is CH;

 $\begin{bmatrix}
R^{1} \\
C \\
C \\
R^{2}
\end{bmatrix}_{r}
\begin{bmatrix}
R^{1} \\
C \\
C \\
R^{2}
\end{bmatrix}_{s}
\begin{bmatrix}
R^{3} \\
C \\
N
\end{bmatrix}$

(IIc)

(IIa)

(IId)

ÍIb)

where:

X is O, S, Se, NR^3 , CH_2 or $C(CH_3)_2$; Y is a single bond, O, S or NR^4 ;

each of pand a is zero or an integer from

1 to 5, the symp+q being not more than 10;

each of /r and s is zero or an integer from

1 to 5, the sum r+s being not more than 10;

each R^1 and R^2 is independently selected from the group consisting of hydrogen, (C_1 - C_4) alkyl which may be hydroxy- or alkoxy- or alkylthio-substituted, hydroxy, alkoxy, alkylthio, amino and halogen;

each of G^1 - G^{n-1} is -NR³CO-, -NR³CS-, -NR³SO- or -NR³SO₂-, in either orientation, where R³ is as defined above;

Q i/s $-CO_2H$, -CONR'R'', $-SO_3H$ or $-SO_2NR'R''$ or an activated derivative of $-CO_2H$ or $-SO_3H$; and

I is -NHR'''R'''' or -NR'''C(0)R'''', where R', R", R''' and R'''' are independently selected from the group consisting of hydrogen, alkyl, amino protecting

()

•=..

groups, reporter ligands, intercalators, chelators, peptides, proteins, carbohydrates, lipids, steroids, nucleosides, nucleotide diphosphates, nucleotide triphosphates, oligonucleotides, oligonucleosides and soluble and non-soluble polymers.

8. A macromolecule of claim 1 wherein each of said PNAs comprises a compound of the formula IIIa, IIIb or IIIc:

wherein:

each L is independently selected from the group consisting of hydrogen, phenyl, heterocyclic moieties, naturally occurring nucleobases, and non-naturally occurring nucleobases;

each R' is independently selected from the group consisting of hydrogen and the side chains of naturally occurring alpha amino acids;

n is an integer from 1 to $\frac{60}{60}$;

each of k, l, and m is independently zero or an integer from 1 to 5;

p is zero or 1;

Rh is OH, NH, or -NHLy\$NH; and

Ri is H or COCH3.

- 9. A macromolecule of claim 8 where each of said PNAs comprise a compound having formula (IIIa)-(IIIc) wherein each L is independently selected from the group consisting of the nucleobases thymine (T), adenine (A), cytosine (C), guanine (G) and uracil (U), k and m are zero or 1, and n is an integer from 1 to 30, in particular from 4 to 20.
 - 10. A compound of claim 9 wherein:

said DNA includes at least three of said 2'-deoxynucleotides linked together in a sequence:

each PNA includes at least two peptide nucleic acid subunits; and

said 2'-deoxynucleotides are joined via phosphodiester, phosphorothioate or phosphorodithioate linkages.

11. A macromolecule of claim 1 wherein each of said PNAs is covalently bound to said DNA with an amide, amine or ester linkage.

12. A macromolecule of the structure: PNA-(amide link)-DNA-(amide link)-PNA:

wherein:

compris/es said DNA at least one 2'deoxynucleotide;

each of said PNAs comprise at least one peptide nucleic acid subunit; and

each of said /amide links includes an amide linkage of the structure:

-NH-C(=0)-

A method of treating an organism having a 13. disease characterized by the undesired production of a protein, comprising contacting the organism with a macromolecule that has structure PNA-DNA-PNA and that includes a sequence of nucleobases capable of specifically hybridizing to a strand of nycleic acid coding for said protein, wherein:

said DNA includes at least one nucleotide having a 2'-deoxy-<u>erythro</u>-pentofuranosyl sugar moiety covalently bound to one of said nucleobases; and

each of said PNAs include at least one peptide nucleic acid subunit having a covalently bound nucleobase.

- A method of claim 13 wherein said nucleotide is a phosphorothicate nucleotide.
- A method of claim 13 wherein said nucleotide is a phosphorodithioate nucleotide.
- 16. A method of claim 13 wherein said nucleotide is a phosphodiester nucleotide.
- A pharmaceutical emposition comprisinga pharmaceutically effective amount of a macromolecule of claim 1 and a pharmaceutical acceptable diluent or carrier.

18. A method of in vitro modification of sequence-specific nucleic acid, comprising contacting a test solution containing RNase H and said nucleic acid with a macromolecule of claim 1.

19. A method of enhancing polynucleotide hybridization and RNase H activation in a organism, comprising contacting the organism with a macromolecule of elaim 1, wherein:

said macromolecule has a sequence of nucleobases capable of specifically hybridizing to a complementary strand of nucleic acid; and

some of said nucleobases are located on the PNA portions of said macromolecule and some of said nucleobases are located on the DNA portion of said macromolecule.

- 20. A method of treating an organism having a disease characterized by the undesired production of a protein, comprising contacting the organism with a compound of claim 1.
- 21. A method of in vitro modification of sequence-specific nucleic acid, comprising contacting a test solution containing RNase H and said nucleic acid with a compound of claim 10.
- 22. A method of treating an organism having a disease characterized by the undesired production of a protein, comprising contacting the organism with a compound of claim 10.
- 23. A pharmaceutical composition comprising a pharmaceutically effective amount of a compound of claim 10 and a pharmaceutically acceptable diluent or carrier.