蜂考速成课

《高数/微积分下》

版权声明:

内容来自蜂考原创,讲义笔记和相关图文均有著作权,视频课程已申请版权,登记号: 陕作登字-2018-I-00001958,根据《中华人民共和国著作权法》、《中华人民共和国著作权法实施条例》、《信息网络传播权保护条例》等有关规定,如有侵权,将根据法律法规提及诉讼。

课时一 多元函数(一)

考点	重要程度	分值	常见题型
1. 重极限	**	0~3	选择、填空
2. 偏导数,全微分,隐函数求偏导	必考	6~10	大题

一、重极限

题型 1. 有理化

$$\lim_{(x,y)\to(0,0)} \frac{2-\sqrt{xy+4}}{xy} = \lim_{(x,y)\to(0,0)} \frac{(2-\sqrt{xy+4})(2+\sqrt{xy+4})}{xy(2+\sqrt{xy+4})}$$

$$= \lim_{(x,y)\to(0,0)} \frac{-xy}{xy(2+\sqrt{xy+4})} = \lim_{(x,y)\to(0,0)} \frac{-1}{2+\sqrt{xy+4}} = -\frac{1}{4}$$

$$(a+b)(a-b) = a^2 - b^2$$

题型 2. 重要极限公式

$$\lim_{(x,y)\to(2,0)} \frac{\sin xy}{y} = \lim_{(x,y)\to(2,0)} \frac{\sin xy}{xy} \underline{x} = \lim_{(x,y)\to(2,0)} x = 2$$

$$\lim_{xy\to 0} \frac{\sin xy}{xy} = 1$$

题型 3. 无穷小替换

$$\lim_{(x,y)\to(2,0)} \frac{\sqrt{1+x^2y}-1}{e^{xy}-1} = \lim_{(x,y)\to(2,0)} \frac{\frac{1}{2}x^2y}{xy} = \lim_{(x,y)\to(2,0)} \frac{1}{2}x = 1$$

$$\left[\sqrt{1 + x^2 y} - 1 \sim \frac{1}{2} x^2 y \right]$$

$$\left[e^{xy} - 1 \sim xy \right]$$

☆重要极限公式

1)
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

1)
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
 2) $\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{x \to \infty} (1+\frac{1}{x})^{x} = e$

这里的x要当做是一 个整体, 比如若 $xv \rightarrow 0$, xv 作为一个 整体也满足这些公式。

☆无穷小替换公式: 当 $x \to 0$ 时

1)
$$x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim \ln(1+x) \sim e^x - 1$$

2)
$$\sqrt{1+x}-1 \sim \frac{1}{2}x$$
 $1-\cos x \sim \frac{1}{2}x^2$

$$1-\cos x \sim \frac{1}{2}x^2$$

二、偏导数、全微分、隐函数求导(对某个变量求导的时候,其余变量均看作常数)

$$(x^{\mu})' = \mu x^{u-1}$$

$$(\sin x)' = \cos x$$

$$(\sec x)' = \sec x \tan x$$

$$(\sec x)' = \sec x \tan x \qquad (\operatorname{arccot} x)' = -\frac{1}{1+x^2}$$

$$(e^x)'=e^x$$

$$(\cos x)' = -\sin x$$

$$(\arctan x)' = \frac{1}{1+x^2}$$

$$(\arctan x)' = \frac{1}{1+x^2}$$
 $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$

$$(\ln x)' = \frac{1}{x}$$

 $(a^x)' = a^x \ln a$

$$(\tan x)' = \sec^2 x$$
$$(\cot x)' = -\csc^2 x$$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$
 $(\log_a x)' = \frac{1}{x \ln a}$

$$(\log_a x)' = \frac{1}{1}$$

题型 1. $z = 3x^2y^3 + 4x^2 - 2y + 6$, 求: ① $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ ②在(1,1)点偏导

解: ①
$$\frac{\partial z}{\partial x} = 6xy^3 + 8x$$

$$\frac{\partial z}{\partial y} = 9x^2y^2 - 2$$

M: 1
$$\frac{\partial z}{\partial x} = 6xy^3 + 8x$$
 $\frac{\partial z}{\partial y} = 9x^2y^2 - 2$ 2 $\frac{\partial z}{\partial x} = 6xy^3 + 8x\Big|_{(1,1)} = 14$ $\frac{\partial z}{\partial y} = 9x^2y^2 - 2\Big|_{(1,1)} = 7$

$$\frac{\partial z}{\partial y} = 9x^2y^2 - 2\Big|_{(1,1)} = 7$$

題型 2: $z = x^4 + y^4 - 4x^2y^2$, 求 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$, $\frac{\partial^2 z}{\partial y^2}$, $\frac{\partial^2 z}{\partial y \partial x}$

解:
$$\frac{\partial z}{\partial x} = 4x^3 - 8xy^2$$
, $\frac{\partial z}{\partial y} = 4y^3 - 8yx^2$ 则

$$\frac{\partial^2 z}{\partial x^2} = 12x^2 - 8y^2 \quad , \quad \frac{\partial^2 z}{\partial x \partial y} = -16xy$$

$$\frac{\partial^2 z}{\partial y^2} = 12y^2 - 8x^2 \quad , \quad \boxed{\frac{\partial^2 z}{\partial y \partial x}} = -16xy$$

注意:

$$\frac{\partial^2 z}{\partial x \partial y}$$
, $\frac{\partial^2 z}{\partial y \partial x}$ 在区域 D 内连续,则 $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$

题型 3. 设 $z = \arcsin \frac{x}{v}$, (y > 0), 求 dz

$$\mathbf{H}: \quad \frac{\partial z}{\partial x} = \frac{1}{\sqrt{1 - \left(\frac{x}{y}\right)^2}} \cdot \frac{1}{y} = \frac{1}{\sqrt{y^2 - x^2}}$$

$$\mathbf{M}: \quad \frac{\partial z}{\partial x} = \frac{1}{\sqrt{1 - (\frac{x}{y})^2}} \cdot \frac{1}{y} = \frac{1}{\sqrt{y^2 - x^2}} \qquad \quad \frac{\partial z}{\partial y} = \frac{1}{\sqrt{1 - (\frac{x}{y})^2}} \cdot (-\frac{x}{y^2}) = -\frac{x}{y\sqrt{y^2 - x^2}}$$

$$dz = \frac{1}{\sqrt{y^2 - x^2}} \, dx - \frac{x}{y\sqrt{y^2 - x^2}} \, dy$$

注意: 千万不要忘了写成全微分形式

题型 4. $z = \arctan \frac{y}{r}$,求 $dz|_{(1,1)}$

$$\mathbf{\mathscr{H}:} \quad \frac{\partial z}{\partial x} = \frac{1}{1 + (\frac{y}{x})^2} \cdot (-\frac{y}{x^2}) = -\frac{y}{x^2 + y^2} \, \bigg|_{(1,1)} = -\frac{1}{2} \qquad \qquad \frac{\partial z}{\partial y} = \frac{1}{1 + (\frac{y}{x})^2} \cdot \frac{1}{x} = \frac{x}{x^2 + y^2} \, \bigg|_{(1,1)} = \frac{1}{2}$$

$$\frac{\partial z}{\partial y} = \frac{1}{1 + \left(\frac{y}{x}\right)^2} \cdot \frac{1}{x} = \frac{x}{x^2 + y^2} \bigg|_{(1,1)} = \frac{1}{2}$$

$$dz = -\frac{1}{2}dx + \frac{1}{2}dy$$

题型 5: $\sin x + 3y - z^3 - e^z = 6$, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

M: $\oint F = \sin x + 3y - z^3 - e^z - 6$

$$F_x = \cos x$$
, $F_y = 3$, $F_z = -3z^2 - e^z$

由公式法得

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{\cos x}{3z^2 + e^z} \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = \frac{3}{3z^2 + e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = \frac{3}{3z^2 + e^z}$$

隐函数解题方法:

- 1) 构造函数 F(x, y, z);
- 2)求 F_x F_y F_z

3)
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
 $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$

别忘了负号

题型 6: 设 $\frac{x}{z} = \ln \frac{z}{v}$, 求 $dz|_{(0,1)}$

解:将(0,1)点带入方程得z=1,得这个点(0,1,1)

$$\Rightarrow F = \frac{x}{z} - \ln \frac{z}{y} = \frac{x}{z} - \ln z + \ln y$$

$$F_x = \frac{1}{z}\Big|_{(0,1,1)} = 1$$
, $F_y = \frac{1}{y}\Big|_{(0,1,1)} = 1$, $F_z = -\frac{x}{z^2} - \frac{1}{z} = -\frac{x+z}{z^2}\Big|_{(0,1,1)} = -1$

由公式法得

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = 1 \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = 1 \qquad dz = dx + dy$$

练习 1.1:
$$z = 2x \sin 2y - e^{xy}$$
, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

练习 1.2: 求
$$u = \sqrt{x^2 + y^2 + z^2}$$
, 求 $du|_{(1-1)}$

练习 1.3: 设
$$\frac{x}{z} = \ln \frac{z}{y}$$
, 求 $\frac{\partial^2 z}{\partial x^2}$

练习 1.4: 设
$$z(x,y)$$
 由方程 $\sin(xyz) - \frac{1}{z - xy} = 1$ 所确定,求 $dz|_{(0,1)}$ 。

课时二 多元函数(二)

考点	重要程度	分值	常见题型
1. 复合函数求偏导	必考	6~10	大题
2. 偏导, 连续, 可微关系	**	0~3	选择、填空

一、复合函数求偏导(先画出关系链,同路相乘,不同相加)

题型 1.
$$z = e^{u-2v}$$
, $u = x + y$, $v = xy$, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

解:
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} = e^{u-2v} - 2e^{u-2v} \cdot y$$
$$= e^{x+y-2xy} (1-2y)$$
$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} = e^{u-2v} - 2e^{u-2v} \cdot x$$
$$= e^{x+y-2xy} (1-2x)$$

题型 2. $z = f(x^2 - y^2, e^{xy})$, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

解:
$$u = x^2 - y^2, v = e^{xy}$$

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} = f_1' \cdot 2x + f_2' \cdot y e^{xy} = 2x f_1' + y e^{xy} f_2'$$

$$\frac{\partial z}{\partial y} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y} = f_1' \cdot (-2y) + f_2' \cdot x e^{xy} = -2y f_1' + x e^{xy} f_2'$$

题型 3: 设 $z = f(x, \frac{x}{y})$, 其中 f 具有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial x \partial y}$

$$\mathbf{\widetilde{R}:} \quad u = x, v = \frac{x}{y} \qquad \frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} = f_1' + \frac{1}{y} f_2'$$

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial (\frac{\partial z}{\partial x})}{\partial y} = \frac{\partial f_1'}{\partial v} \cdot \frac{\partial v}{\partial y} + (-\frac{1}{y^2}) f_2' + \frac{1}{y} \cdot \frac{\partial f_2'}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= f_{12}'' \cdot (-\frac{x}{y^2}) + (-\frac{1}{y^2}) \cdot f_2' + \frac{1}{y} f_{22}'' \cdot (-\frac{x}{y^2})$$

$$= -\frac{x}{y^2} f_{12}'' - \frac{1}{y^2} f_2' - \frac{x}{y^3} f_{22}''$$

二、偏导,连续,可微的关系(背诵)

练习 2.1:
$$z = u^2 + v^2$$
, $u = 2x + y^2$, $v = x^2$, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

练习 2.2: 设 $z = xf(2x, \frac{y^2}{x})$, 其中 f 具有二阶连续的偏导数, 求 $\frac{\partial^2 z}{\partial x \partial y}$

练习 2.3: 考虑二元函数的下面四条性质:

- (3) f(x,y) 在点 (x_0,y_0) 可微分; (4) $f_x(x_0,y_0)$ 、 $f_y(x_0,y_0)$ 存在.

若用" $P \Rightarrow Q$ "表示可由性质 P 推出性质 Q ,则下列四个选项中正确的是 ()

(A) $(2) \Rightarrow (3) \Rightarrow (1)$

(B) $(3) \Rightarrow (2) \Rightarrow (1)$

(C) $(3) \Rightarrow (4) \Rightarrow (1)$

(D) $(3) \Rightarrow (1) \Rightarrow (4)$

课时三 多元函数(三)

考点	重要程度	分值	常见题型
1. 梯度,方向导数	***	0~3	选择、填空、大题
2. 多元函数极值	必考	6~10	大题

一、梯度记作: $gradf(x_0, y_0)$ 或 $\nabla f(x_0, y_0)$ 。

一 方向导数记作: $\frac{\partial f}{\partial l}\Big|_{(x_0,y_0)}$

题 1: $u = xv^2 + vz^3 + 3$ 在点(2,-1,1)处的梯度。

$$\mathbf{H}: \frac{\partial u}{\partial x} = y^2 \Big|_{(2,-1,1)} = 1 \qquad \frac{\partial u}{\partial y} = (2xy + z^3) \Big|_{(2,-1,1)} = -3$$

$$\frac{\partial u}{\partial z} = 3yz^2 \Big|_{(2,-1,1)} = -3$$

$$\operatorname{gradf}(2,-1,1) = (1,-3,-3)$$

梯度解题方法:

梯度
$$gradf = (\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z})$$

(注:梯度为各偏导组成的向量)

题 2: $z = xe^{2y}$ 在 p(1,0) 到 k(2,1) 的方向导数

解:
$$\frac{\partial z}{\partial x} = e^{2y} \mid_{(1,0)} = 1$$
 $\frac{\partial z}{\partial y} = 2xe^{2y} \mid_{(1,0)} = 2$ $gradf = (1,2)$

$$\overrightarrow{Pk} = (1,1)$$
 $\overrightarrow{e_l} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

$$\frac{\partial f}{\partial l} \mid_{(1,0)} = gradf \cdot \overrightarrow{e_l} = (1,2) \cdot \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = \frac{3\sqrt{2}}{2}$$

方向导数解题方法:

- 1. 求在P点梯度
- \overrightarrow{pk} 的单位向量 $\overrightarrow{e_l}$

3.
$$\frac{\partial f}{\partial l} = gradf \cdot \vec{e_l}$$

(梯度点乘] 的单位向量)

二、多元函数的极值

一般极值求解方法:

① 求驻点: $\begin{cases} f_x'(x,y) = 0 \\ f_y'(x,y) = 0 \end{cases} \Rightarrow (x_0, y_0)$

驻点:

满足 一阶偏导 同时 为 0 的点

- ③ 对每一个驻点 (x_0, y_0) 判定 $AC-B^2$

 $AC-B^2>0$,有极值,且 A $\left\{>0,$ 有极小值 <0,有极大值

 $AC-B^2<0$, 无极值

 $AC-B^2=0$, 不确定

题 1: $f(x,y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 的极值 (一般极值)

解: $\begin{cases} f'_x = 3x^2 + 6x - 9 = 0 \\ f'_y = -3y^2 + 6y = 0 \end{cases}$ 得驻点: (1,0), (1,2), (-3,0), (-3,2)

 $A = f_{xx}'' = 6x + 6$ $B = f_{xy}'' = 0$ $C = f_{yy}'' = -6y + 6$

在(1,0)点, $AC-B^2=12\times 6=72>0$, 有极值, 且A=12>0, 有极小值 f(1,0)=-5

在 (1.2) 点, $AC-B^2<0$, 无极值

在 (-3,0) 点, $AC-B^2<0$, 无极值

在 (-3,2) 点, $AC-B^2=72>0$, 有极值, 且 A=-12<0, 有极大值 f(-3,2)=31

选择题中常考知识点:

1. 驻点一定是极值点(X)

(若 $AC-B^2<0$,则无极值)

2. 极值点一定是驻点(X) (极值点存在: 1. 驻点 2. 一阶导数不存在的点)

3. 可导函数的极值点一定是驻点(√) (去掉了一阶导数不存在的情况)

题 2.: 将正数 a 分为三个非负数之和, 使它们乘积最大。(条件极值)

解:设三个数分别为x,y,z

目标函数: f = xvz

条件函数: x+y+z=a

构造拉格朗日函数:

$$L = xyz + \lambda \left(x + y + z - a \right)$$

$$\begin{cases} L_x = yz + \lambda = 0 \\ L_y = xz + \lambda = 0 \end{cases}$$

$$\begin{cases} L_z = xy + \lambda = 0 \\ L_z = xy + \lambda = 0 \end{cases}$$

$$\begin{cases} L_z = xy + \lambda = 0 \end{cases}$$

$$+\lambda = 0$$

$$+\lambda = 0$$

$$\Rightarrow x = y = z = \frac{a}{3}$$

$$L_z = xy + \lambda = 0$$

$$L_{\lambda} = x + y + z - a = 0$$

为唯一极值点

故所求乘积最大: $f(x,y,z) = \frac{a}{3} \cdot \frac{a}{3} \cdot \frac{a}{3} = \frac{a^3}{27}$

条件极值求法:

- ① 确定目标函数 f(x,y,z)
- ② 确定条件函数 g(x, y, z)
- ③ 构造拉格朗日函数

$$L = f(x, y, z) + \lambda g(x, y, z)$$

$$\begin{cases} L_x = 0 \\ L_y = 0 \\ L_z = 0 \end{cases} \Rightarrow (x_0, y_0, z_0)$$

$$L_\lambda = 0$$

即为所求极值点。

练习 3.1: $f(x,y,z) = x^2yz^3$, 求在(1,1,1,) 的梯度

练习 3.2: $u = z^4 - 3xz + x^2 + y^2$ 在 M(1,1,1)沿(1,2,2)的方向导数

练习 3.3: 求函数 $z = x^2 + xy + y^2 + x - y + 1$ 的极值

练习 3.4: 求函数 z = xy, 在附加条件 x + y = 1 下的最大值。

练习 3.5: 周长为 2P 矩形,绕一边旋转一周得到圆柱,求圆柱体积最大。

练习 3.6: $z = x^3 - 3x^2 - 3y^2$ 在 $D: x^2 + y^2 \le 16$ 上的最大值和最小值(提升)

课时四 空间几何向量

考点	重要程度	分值	常见题型
1. 向量(点乘、叉乘)	***	0~3	选择、填空
2. 空间平面与直线	****	0 ~ 7	大题
3. 空间曲线的切线与法平面	***	0~6	选择、填空或大题
4. 空间曲面的切平面与法线	***	0~6	

一、向量(点乘、叉乘)

题型 1: $\vec{a} = 3\vec{i} - \vec{j} - 2\vec{k}$ $\vec{b} = \vec{i} + 2\vec{j} - \vec{k}$

求① $|\vec{a}|$ $|\vec{b}|$ ②单位向量 \vec{e}_a ③ $\vec{a} \cdot \vec{b}$ 及 $\cos \theta$

$$\mathbf{\vec{R}:} \quad |\vec{a}| = \sqrt{3^2 + (-1)^2 + (-2)^2} = \sqrt{9 + 1 + 4} = \sqrt{14}$$

$$|\vec{b}| = \sqrt{1^2 + 2^2 + (-1)^2} = \sqrt{1 + 4 + 1} = \sqrt{6}$$

$$\vec{e}_a = \frac{\vec{a}}{|\vec{a}|} = \left(\frac{3}{\sqrt{14}}, \frac{-1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}\right)$$

$$\vec{a} \cdot \vec{b} = (3, -1, -2) \cdot (1, 2, -1) = 3 - 2 + 2 = 3$$

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{3}{\sqrt{14} \cdot \sqrt{6}} = \frac{3}{2\sqrt{21}}$$

向量点乘公式:

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \theta$$

$$\vec{a} = (x_1, y_1, z_1)$$
 $\vec{b} = (x_2, y_2, z_2)$

$$\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2 + z_1 z_2$$

$$|\vec{a}| = \sqrt{x_1^2 + y_1^2 + z_1^2}$$

$$\vec{e}_a = (\frac{x_1}{|\vec{a}|}, \frac{y_1}{|\vec{a}|}, \frac{z_1}{|\vec{a}|})$$

向量叉乘(向量积)(必考点)★

$$\vec{a} \times \vec{b}$$

$$\vec{c} \perp \vec{a}$$
 且 $\vec{c} \perp \vec{b}$

(即垂直于 \vec{a} 和 \vec{b} 所在的平面)

注: 经常用于求平面的法向量

题型 2: 计算 $\vec{a} = 3\vec{i} - \vec{j} - 2\vec{k}$ $\vec{b} = \vec{i} + 2\vec{j} - \vec{k}$, 求 $\vec{a} \times \vec{b}$

 $\vec{a} \times \vec{b} = (5,1,7)$ 全 注: 叉乘是个向量

熟练以后可省略

二、空间平面与直线

1)空间平面及其方程

点法式方程

$$\vec{n} = (A, B, C)$$

化简得
$$Ax + By + Cz - Ax_0 - By_0 - Cz_0 = 0$$

$$Ax + By + Cz + D = 0$$
 (一般式)

2) 空间直线及其方程

1) 对称式方程

$$P(x_0, y_0, z_0)$$

$$\vec{s} = (A, B, C)$$

$$\Rightarrow \frac{x - x_0}{A} = \frac{y - y_0}{B} = \frac{z - z_0}{C}$$

2) 一般式:
$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases}$$

3) 参数方程
$$\begin{cases} x = At + x_0 \\ y = Bt + y_0 \\ z = Ct + z_0 \end{cases}$$

两个平面的交线

题型 1: 求过 3 个点 A(1,1,1) B(-2,-2,2) 和 C(1,-1,2) 的平面方程

解: $\overrightarrow{AB} = (-3, -3, 1)$ $\overrightarrow{AC} = (0, -2, 1)$ 故 $\overrightarrow{AB} \times \overrightarrow{AC}$ 就是该平面的一个法向量。

$$\vec{n} = \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -3 & -3 & 1 \\ 0 & -2 & 1 \end{vmatrix} = (-1, 3, 6)$$

所求平面方程为
$$-(x-1)+3(y-1)+6(z-1)=0$$
 $x-3y-6z+8=0$

$$x - 3y - 6z + 8 = 0$$

题型 2: 已知平面x-v+z+5=0和5x-8v+4z+36=0求其交线对称式方程和参数方程

解
$$\begin{cases} x - y + z + 5 = 0 \\ 5x - 8y + 4z + 36 = 0 \end{cases}$$
 则
$$\begin{cases} \vec{n} = (1, -1, 1) \\ \vec{n} = (5, -8, 4) \end{cases}$$
 $\vec{s} = \vec{n}_1 \times \vec{n}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 1 \\ 5 & -8 & 4 \end{vmatrix} = 4\vec{i} + \vec{j} - 3\vec{k}$ 求出方向向量

10

4 小时速成课程

令
$$y = 0 \Rightarrow$$

$$\begin{cases} x + z + 5 = 0 \\ 5x + 4z + 36 = 0 \end{cases}$$
 解方程得
$$\begin{cases} x = -16 \\ z = 11 \end{cases} \Rightarrow (-16, 0, 11)$$
 求出一点

则直线方程: $\frac{x+16}{4} = \frac{y}{1} = \frac{z-11}{-3}$

$$4 : \frac{x+16}{4} = \frac{y}{1} = \frac{z-11}{-3} = t$$

得参数方程为
$$\begin{cases} x = 4t - 16 \\ y = t \\ z = -3t + 11 \end{cases}$$

题型 3: 求直线 $\frac{x-2}{1} = \frac{y}{3} = \frac{z+1}{-1}$ 与平面 x + y + 3z = 0 的交点坐标。

M:
$$\frac{x-2}{1} = \frac{y}{3} = \frac{z+1}{-1} = t$$

得
$$\begin{cases} x - t + 2 \\ y = 3t \end{cases}$$
 带入平面方程

故交点为(3,3,-2)

题型 4: 求点(1,2,1)到平面x+2y+2z-10=0的距离

解: 由距离公式知

$$d = \frac{\left|1 \times 1 + 2 \times 2 + 2 \times 1 - 10\right|}{\sqrt{1^2 + 2^2 + 2^2}} = 1$$

点到平面的距离公式:

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

题型 5: 求曲线 $x = t, y = 2t^2, z = 3t^2 + t$ 在 t = 1 处的切线和法平面

解: 当t=1时, 得点P(1,2,4)

$$\begin{cases} x' = 1 \\ y' = 4t = 4 \\ z' = 6t + 1 = 7 \end{cases} \quad \text{Mf} \vec{s} = \vec{n} = (1,4,7)$$

故切线为
$$\frac{x-1}{1} = \frac{y-2}{4} = \frac{z-4}{7}$$

法平面为
$$(x-1)+4(y-2)+7(z-4)=0$$

5. 空间曲面的切平面与法线

M 点求出的切平面的法向量 \vec{n} 即是法线的方向向量 \vec{s}

题型 6: 求 2e²-z+xy=4 在点(2,1,0)处的切平面与法线

解 设 $F = 2e^z - z + xy - 4$

$$\iint \begin{cases}
F_x = y = 1 \\
F_y = x = 2 \\
F_z = 2e^z - 1 = 1
\end{cases} \Rightarrow \vec{s} = \vec{n} = (1,2,1)$$

法向量和方向向量求法:

- 构造F
- ② R_x , F_y , F_z
- $\vec{3} \quad \vec{s} = \vec{n} = (F_x, F_y, F_z)$

即切平面为(x-2)+2(y-1)+z=0 法线为 $\frac{x-2}{1}=\frac{y-1}{2}=z$

练习 4.1: 已知 $\vec{a} = (2,1,-1)$, $\vec{b} = (1,-1,2)$, 求 $\vec{a} \times \vec{b}$

练习 4.2: 已知平面 $6x - \frac{1}{2}y - z - 6 = 0$

- ① 平面的法向量
- ② 在平面上找一点
- ③ 求过点(3,0,-1)且与已知平面平行的平面

练习 4.3: 过点 (1,-1,2) 且平行于直线 $\begin{cases} x+y-2z-1=0 \\ x+2y-z+1=0 \end{cases}$ 的直线

练习 4.4: 求通过两平行直线 $\frac{x+3}{3} = \frac{y+2}{-2} = z$ 和 $\frac{x+3}{3} = \frac{y+4}{-2} = z+1$ 的平面方程

练习 4.5: 求出曲线 $x=t, y=t^2, z=t^3$ 上的点, 使在该点的切线平行于平面 x+2y+z=4

练习 4.6: 求曲面 $z = 2x^2 + 4y^2$ 在点 (1,1,6) 处的切平面及法线方程

课时五 二重积分

考点	重要程度	分值	常见题型
1. 直角坐标下计算	必考	10~15	 大
2. 极坐标下计算	7.4	10 13	/ <i>K</i>

一、直角坐标系下的计算

记作: $\iint f(x,y)d\sigma$ f(x,y) 被积函数 $d\sigma = dxdy$ 面积元系 D 为积分区域

直角坐标下计算二重积分步骤:

- 1) 画出区域 D 的图形
- 2) 写出x, y的范围(重点)
- 3) 代入计算(注意:被积函数保留至第三步计算)

注:二重积分中,

被积函数必须保

型

x: 常数 \rightarrow 常数 ($x_{\pm} \rightarrow x_{\pm}$)

y: 函数 \rightarrow 函数 ($y_{\top} \rightarrow y_{\bot}$)

 $\iint_{\mathbb{R}} f(x, y) dx dy = \int_{x_{\pm}}^{x_{\pm}} dx \int_{y_{\mp} = f(x)}^{y_{\pm} = f(x)} f(x, y) dy$

型

 $y: 常数 \rightarrow 常数 (y_{\pi} \rightarrow y_{+})$

x: 函数 \rightarrow 函数 ($x_{\pm} \rightarrow x_{\pm}$)

 $\iint f(x,y)dxdy = \int_{y_{\mathbb{F}}}^{y_{\pm}} dy \int_{x_{\pm}=f(y)}^{x_{\pm}=f(y)} f(x,y)dx$

题 1: 计算 $\iint xydxdy$,其中 D 的 y=1, x=2, y=x 围成

1. 画出区域 D 图形

3. 代入计算

题 2. 写区域范围专项练习:计算 $\iint f(x,y)d\sigma$

(1) $D \ni y^2 = x$, y = x - 2 围成

$$D_1: \begin{cases} x: 0 \to 1 \\ y: -\sqrt{x} \to \sqrt{x} \end{cases}$$

$$D_2: \begin{cases} x: 1 \to 4 \\ y: x-2 \to \sqrt{x} \end{cases}$$

$$\begin{array}{ll}
x 型: \\
D_1: \begin{cases} x: 0 \to 1 \\ y: -\sqrt{x} \to \sqrt{x} \end{cases} & \iint\limits_{D} f(x, y) dx dy \\
&= \iint\limits_{D_1} f(x, y) dx dy + \iint\limits_{D_2} f(x, y) dx dy \\
D_2: \begin{cases} x: 1 \to 4 \\ y: x-2 \to \sqrt{x} \end{cases} & = \int_0^1 dx \int_{-\sqrt{x}}^{\sqrt{x}} f(x, y) dy + \int_1^4 dx \int_{x-2}^{\sqrt{x}} f(x, y) dy
\end{array}$$

$$y:-1\to 2$$

$$x: y^2 \to y + 2$$

$$\iint_{\Omega} f(x, y) dx dy = \int_{-1}^{2} dy \int_{y^{2}}^{y+2} f(x, y) dx$$

(2) $D 为 x^2 + y^2 = R^2$ 围成

$$x:-R\to R$$

$$y: -\sqrt{R^2 - x^2} \to \sqrt{R^2 - x^2}$$

$$\iint_{D} f(x,y) dx dy = \int_{-R}^{R} dx \int_{-\sqrt{R^{2}-x^{2}}}^{\sqrt{R^{2}-x^{2}}} f(x,y) dy$$

y 型:

$$y:-R\to R$$

$$y: -R \to R$$
$$x: -\sqrt{R^2 - y^2} \to \sqrt{R^2 - y^2}$$

 $\iint_{D} f(x,y) dx dy = \int_{-R}^{R} dy \int_{-\sqrt{R^{2}-y^{2}}}^{\sqrt{R^{2}-y^{2}}} f(x,y) dx$

4 小时速成课程

题 3: 计算 $\iint_D (\frac{xy^2 \cos x}{\sqrt{x^2 + y^2}} + 2) dx dy$, 其中 D 的 $x^2 + y^2 = 1$ 围成.

解:
$$\iint_{D} (\frac{xy^{2} \cos x}{\sqrt{x^{2} + y^{2}}} + 2) dx dy$$

$$= \iint_{D} \frac{xy^{2} \cos x}{\sqrt{x^{2} + y^{2}}} dx dy + \iint_{D} 2 dx dy$$

$$= \iint_{D} 2 dx dy = 2 \iint_{D} dx dy$$

$$= 2 \cdot \pi \cdot 1^{2} = 2\pi$$

此处的
$$\frac{xy^2 \cos x}{\sqrt{x^2 + y^2}}$$
 关于 x 为奇函数

积分区域 D 为圆,关于 y 轴对称

故
$$\iint_{D} \frac{xy^2 \cos x}{\sqrt{x^2 + y^2}} dx dy = 0$$

- 1) 若被积函数<u>关于x为奇函数</u>,且积分区域D<u>关于y轴对称</u>,则积分为0
- 2) 若被积函数关于v为奇函数,且积分区域 D 关于x 轴对称,则积分为 0
- 3) 若被积函数 f(x,y)=1,则 $\iint_D dxdy = A$ (区域 D 的面积)

题 4: $\int_1^3 dx \int_0^{x-1} f(x,y) dy$ 交换积分次序

1: 根据范围, 画出区域

$$\begin{array}{c}
x:1 \to 3 \\
y:0 \to x-1
\end{array} \Rightarrow \begin{array}{c}
x=1, x=3 \\
y=0, y=x-1$$

2: 把范围写成 y 型

$$y: 0 \to 2$$
$$x: y+1 \to 3$$

3: 代入原式

$$\int_{1}^{3} dx \int_{0}^{x-1} f(x, y) dy = \int_{0}^{2} dy \int_{y+1}^{3} f(x, y) dx$$

即把原来 x 型转化成 y 型,

或者把原来y型转化成x型。

二. 极坐标下的二重积分(大题中必考)

补充知识点: 极坐标

- 2. 什么是极坐标
- $①用 \theta$ 和 ρ 表示的函

数

② p 是原点到函数上 点的长度

③ θ 是和x轴夹角

1. 直角坐标转化极坐标

方法: 令 $\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$

例 $x^2 + y^2 = 4 \rightarrow \rho^2 \cos^2 \theta + \rho^2 \sin^2 \theta = 4$

得 $\rho=2$ (极坐标)

极坐标求二重积分方法:

- ①画出区域 D
- ②写出θ和ρ范围:

 $\theta:\theta_1\to\theta_2$ (常数)

$$\rho: \rho_1(\theta) \rightarrow \rho_2(\theta)$$
 (函数)

3代入公式

$$\iint\limits_{D} f(x,y) dx dy$$

$$= \int_{\theta_1}^{\theta_2} d\theta \int_{\rho_1(\theta)}^{\rho_2(\theta)} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$$

题 1: 求 $\iint \sqrt{x^2 + y^2} dx dy$ 其中 $D 为 x^2 + y^2 \le 4$

解: ①画出区域 D

②写出θ和ρ范围

(覆盖整个圆区域) $\rho: 0 \to 2$

(任意角度 θ , 画出 ρ)

③利用公式带入计算

$$\iint_{D} \sqrt{x^2 + y^2} dx dy$$

$$= \int_{0}^{2\pi} d\theta \int_{0}^{2} \sqrt{\rho^2 \cos^2 \theta + \rho^2 \sin^2 \theta} \rho d\rho$$

$$= \int_{0}^{2\pi} d\theta \int_{0}^{2} \rho^2 d\rho = \int_{0}^{2\pi} \left[\frac{1}{3} \rho^3 \right]_{0}^{2} d\theta$$

$$= 2\pi \times \frac{1}{3} \times 8 = \frac{16\pi}{3}$$

题 2. 求 $\iint \sqrt{x^2 + y^2} dx dy$ $D \ni x^2 + y^2 = 1$ 和 $x^2 + y^2 = 4$ 围成的第一象限的部分.

解: ①画出区域 D

②写出θ和ρ范围

(3)代入公式计算

 $\iint \sqrt{x^2 + y^2} dx dy =$

$$\int_{0}^{\frac{\pi}{2}} d\theta \int_{1}^{2} \sqrt{\rho^{2} \cos^{2} \theta + \rho^{2} \sin^{2} \theta} \rho d\rho$$
4 小时速成课程_{/ π}

题 3. 求 $\iint_{\Omega} \sqrt{x^2 + y^2} dx dy$ $D 为 (x-1)^2 + y^2 = 1$ 围成的区域.

解: ①画出区域 D

②写出θ和ρ范围

(3)代入公式计算

$$\begin{cases} \theta: & -\frac{\pi}{2} \to \frac{\pi}{2} \\ \rho: & 0 \to 2\cos\theta \end{cases}$$

$$\begin{cases} \theta \colon & -\frac{\pi}{2} \to \frac{\pi}{2} \\ \rho \colon & 0 \to 2\cos\theta \end{cases}$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} \rho \cdot \rho d\rho$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{3} \rho^{3} \begin{vmatrix} 2\cos\theta \\ 0 \end{vmatrix} d\theta$$

$$= \frac{8}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{3}\theta d\theta$$

$$= \frac{32}{9}$$

练习 5.1: 计算二重积分
$$\iint_{\Omega} (x-1)d\sigma$$
 区域 D 由 $y=x^2$ 和 $y=x$ 所围成的第一象限部分.

练习 5.2: 交换积分次序
$$\int_0^2 dy \int_{y^2}^{2y} f(x,y) dx$$

练习 5.3: 计算二重积分
$$\int_0^1 dy \int_y^1 \frac{\sin x}{x} dx$$

练习 5.4: 求
$$\iint_D e^{x^2+y^2} dx dy$$
 D 为 $x^2+y^2 \le a^2$ 围成的区域。

练习 5.5: 求
$$\iint_D \sqrt{x^2 + y^2} dx dy$$
 D 为 $x^2 + (y-1)^2 = 1$ 围成的区域。

课时六 三重积分

考点	重要程度	分值	常见题型
1. 直角坐标下计算	必考	10~15	大 题
2. 柱坐标下计算	7.4	10 13	7. 76

★常用函数图形(很常用,必须记住,而且要会画)

 $x^2 + y^2 + z^2 = R^2$

$$z = \sqrt{x^2 + y^2}$$

一、直角坐标下计算方法

记作: $\iiint_{\Omega} f(x, y, z) dv$,

f(x,y,z)是被积函数, Ω 为积分区域,dv = dxdydz

题型 1: 计算 $\iint (x+y)dv$,其中 Ω 为平面,x=0,y=0,z=0 x+y+z=1在第一象限部分。

1) 画出立体图,确定z的范围

2) 投影到 xoy 面,确定 x 和 y 的范围

3) 代入计算

$$\iiint_{\Omega} (x+y)dv = \int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{1-x-y} (x+y)dz$$

$$= \int_0^1 dx \int_0^{1-x} \left[(x+y)z \right]_0^{1-x-y} dy$$

$$\text{IB} \int_0^1 dx \int_0^{1-x} \left(x - x^2 - 2xy + y - y^2 \right) dy = \frac{1}{1 + 2} \frac{1}$$

微信扫一扫

直角坐标下计算三重积分套路

口诀: 面→面, 点→点, 线→线

- 1) 画立体图 $\text{确定}^{\, Z} \, \text{的范围 ($z_{{\scriptscriptstyle {ar n}}}} \to z_{{\scriptscriptstyle {\scriptsize {\it Lin}}}}$)$
- 2) 投影图 确定区域 D 的范围 (同二重积分)
- 3) 代入计算

$$\iiint\limits_{\Omega} f(x,y,z)dv =$$

$$\int_{x_{l}}^{x_{2}} dx \int_{y_{l}=f(x)}^{y_{2}=f(x)} dy \int_{z_{l}=z(x,y)}^{z_{2}=z(x,y)} f(x,y,z) dz$$

被积函数保留至第三步计算

4 小时速成课程

、柱面坐标系下计算三重积分(很重要,一定要学会)

柱坐标下计算三重积分套路:

1) 画立体图

确定z的范围($z_{ra} \rightarrow z_{La}$)

2) 投影图确定区域 D

θ和ρ的范围

3) 代入计算

$$\iiint_{\Omega} f(x, y, z) dv =$$

所有的 x 和 y 替换 $\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$

 $\underbrace{\int_{\theta_{1}}^{\theta_{2}} d\theta \int_{\rho_{1}(\theta)}^{\rho_{2}(\theta)} \rho d\rho \int_{z_{\mathbb{F}}(\rho\cos\theta,\rho\sin\theta)}^{z_{\mathbb{L}}(\rho\cos\theta,\rho\sin\theta)} f(\rho\cos\theta,\rho\sin\theta,z) dz.}$

二重积分的极坐标

题型 1: 计算 $\iiint z dx dy dz$.其中 Ω 是由曲面 $z = x^2 + y^2$ 与曲面z = 4围成.

1) 画出立体图,确定z的范围

2) 投影到 xoy 面,确定 θ 和 ρ 的范围

$$z$$
范围:
$$x^2 + y^2 \rightarrow 4$$
$$\rho^2 \rightarrow 4$$

$$\theta: 0 \to 2\pi$$

$$\rho: 0 \to 2$$

3) 代入公式求解 $\iiint z dx dy dz$ $= \int_0^{2\pi} d\theta \int_0^2 \rho d\rho \int_{\rho^2}^4 z dz$ $= \int_0^{2\pi} d\theta \int_0^2 \rho \left[\frac{1}{2}z^2\right]_{\rho^2}^4 d\rho = \frac{64}{2}\pi$

19

题型 2. 计算 $\iiint z dx dy dz$. 其中 Ω 是由 $z = \sqrt{2 - x^2 - y^2}$ 及 $z = x^2 + y^2$ 围成

解:1) 画出立体图,确定z的范围

2) 投影到 xoy 面,确定 θ 和 ρ 的范围

$$\theta: 0 \to 2\pi$$

3) 代入公式

原式 =
$$\iint_{\Omega} z dx dy dz = \int_{0}^{2\pi} d\theta \int_{0}^{1} \rho d\rho \int_{\rho^{2}}^{\sqrt{2-\rho^{2}}} z dz$$
$$= 2\pi \int_{0}^{1} \frac{1}{2} \rho (2 - \rho^{2} - \rho^{4}) d\rho = \frac{7\pi}{12}$$

题型 3. 设 Ω 是由抛物面 $z=x^2+y^2$ 与平面 z=1 所围成的立体. 求 Ω 的体积

补充知识点: 若被积函数 f(x,y,z)=1,则 $\iiint dxdydz=V$ (Ω 的体积)

解:

$$V = \iiint_{\Omega} dv = \int_0^{2\pi} d\theta \int_0^1 \rho d\rho \int_{\rho^2}^1 dz$$

 $=2\pi \int_0^1 \rho (1-\rho^2) d\rho = 2\pi \left(\frac{1}{2}\rho^2 - \frac{1}{4}\rho^4\right) \Big|_0^1 = \frac{\pi}{2}$

孰练之后

解题步骤的文字可以不用写

练习 6.1: 计算三重积分 $\iint x dx dy dz$, 其中 Ω 为三个坐标面与 $x + y + \frac{z}{3} = 2$ 围成。

练习 6.2: 计算三重积分 $\iint z^2 dV$, 其中 Ω 是由 $z = \sqrt{x^2 + y^2}$ 及 z = 2 围成

练习 6.3: 计算 $\iiint_{\Omega} (x^2 + 2y) dV$, 其中 Ω 是由平面z = 4及曲面 $z = x^2 + y^2$ 所围成的区域

课时七 第一类曲线积分

考点	重要程度	分值	常见题型
1. 第一类曲线积分	***	3~8	选择填空或大题
2. 第二类曲线积分	****	6~10	大题
3. 格林公式	****	6~10	入殿

一、第一类曲线积记作 $\int_L f(x,y)ds$.

①画图. 确定 L 的函数 确定积分区间(a,b)	②计算 ds	③代入公式,计算 $\int_L f(x,y)ds$.
$\begin{cases} L: \ y = f(x) \\ x: x_1 \to x_2 \end{cases}$	$ds = \sqrt{1 + {y'}^2(x)} dx$	$= \int_{x_1}^{x_2} f[x, f(x)] \sqrt{1 + y'^2(x)} dx \qquad (x_1 < x_2)$
$\begin{cases} L: & x = f(y) \\ y: y_1 \to y_2 \end{cases}$	$ds = \sqrt{1 + {x'}^2(y)} dy$	$= \int_{y_1}^{y_2} f[f(y), y] \sqrt{1 + x'^2(y)} dy \qquad (y_1 < y_2)$
$L: \begin{cases} x = x(t) \\ y = y(t) \end{cases}$ $t: t_1 \to t_2$	$ds = \sqrt{x'^2(t) + y'^2(t)}dt$	$= \int_{t_1}^{t_2} f[x(t), y(t)] \sqrt{x'^2(t) + y'^2(t)} dt (t_1 < t_2)$

题型 1. $\int_{C} (x+y)ds$ 其中 L 为连接 A(1,0) 与 B(0,1) 两点的线段。

①画图,确定L和(a,b)

②计算 ds

注 2:

被积函数利用 L 的函数进行替换, 把所有变量变成统一

区分:

1. 二、三重积分的被积函数不能动 2. 曲线积分的被积函数一定化成统一 (因为曲线积分,所有点都在L的函数 上,但是二、三重积分的点是在区域内)

题型 2. $\int_{L} \sqrt{x} ds$ 其中 L 为抛物线 $x = y^2$ 所从 (0,0) 到 (1,1) 的一段弧

①画图,确定L和(a,b)

- **②**计算 ds
- ③代入公式计算

$$L: x = y^2 \qquad L: x' = 2y$$

$$L: x = y^{2} \qquad L: x' = 2y \qquad \int_{L} \sqrt{x} ds = \int_{0}^{1} \sqrt{y^{2}} \sqrt{1 + (2y)^{2}} dy$$
$$y: 0 \to 1 \qquad ds = \sqrt{1 + (2y)^{2}} dy \qquad = \int_{0}^{1} y \sqrt{1 + 4y^{2}} dy = \frac{1}{12} \left(5\sqrt{5} - 1 \right)$$

题型 3: 设 L 为椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 的周长,则求 $\int_L (3x^2 + 4y^2) ds$

若被积函数 f(x,y)=1, $\int_L ds = L$ (积分弧段的长度)

解:
$$12 \times (\frac{x^2}{4} + \frac{y^2}{3}) = 12 \times 1 \Rightarrow 3x^2 + 4y^2 = 12$$

$$\int_L (3x^2 + 4y^2) ds = 12 \int_L ds = 12L$$

题型 4: 设 $L 为 x^2 + y^2 = 1$ 的周长,则求 $\int_{t} (x+y)ds$

- 1. 若被积函数 f(x,y) 关于 x 为奇函数, 积分曲线 L 关于 y 轴对称, 则 $\int_L f(x,y) ds = 0$
- 2. 若被积函数 f(x,y) 关于 y 为奇函数,积分曲线 L 关于 x 轴对称,则 $\int_{Y} f(x,y) ds = 0$

M:
$$\int_{L} (x+y)ds = \int_{L} xds + \int_{L} yds = 0$$

练习 7.1: 计算 $\oint e^{\sqrt{x^2+y^2}} ds$. 其中 L 为 $x^2+y^2=a^2$. y=x 及 x 轴在第一象限内所围成边界 练习 7.2: 设 L 为 $x^2 + y^2 = 1$ 下半圆圆周, 求 $\int_{L} (x^2 + y^2) ds$

练习 7.3: 设平面曲线 $L: \frac{x^2}{9} + \frac{y^2}{16} = 1$,则 $\oint (4x + 3y)^2 ds =$ ______(设曲线长为 a)

课时八 第二类曲线积分

考点	重要程度	分值	常见题型
1. 第一类曲线积分	***	3~8	选择填空或大题
2. 第二类曲线积分	****	6~10	上區
3. 格林公式	****	6~10	大题

二、第二类曲线积分,记作 $\int_{L} P(x,y)dx + Q(x,y)dy$

①画图 确定 L 的函数 确定起点和终点	②将所有变量化为统一,计算 $\int_{L} P(x,y) dx + Q(x,y) dy$
$\begin{cases} L: y = f(x) \\ x: x_{\mathbb{H}} \to x_{\mathbb{A}} \end{cases}$	将所有 y 换成 x ($\underline{y = f(x), dy = f'(x) dx}$) $= \int_{x_{\mathbb{R}}}^{x_{\mathbb{R}}} \left\{ P[x, f(x)] + Q[x, f(x)] \cdot f'(x) \right\} dx$
$\begin{cases} L: x = f(y) \\ y: y_{\mathbb{H}} \to y_{\emptyset} \end{cases}$	将所有 x 换成 y ($\underline{x} = f(y), dx = f'(y) dy$) $= \int_{y_{\pm}}^{y_{\pm}} \{P[f(y), y] \cdot f'(y) + Q[f(y), y]\} dy$
$L: \begin{cases} x = x(t) \\ y = y(t) \\ t: t_{\mathbb{H}} \to t_{\emptyset} \end{cases}$	将所有 x, y 换成 t ($\underline{x} = x(t), dx = x'(t)dty = y(t), dy = y'(t)dt$) $= \int_{t_{kl}}^{t_{kk}} \left\{ P[x(t), y(t)] \cdot x'(t) + Q[x(t), y(t)]y'(t) \right\} dt$

题型 1: 计算 $\int_{L} (x-y)dx + (x+y)dy$ 其中 L 从 (0,0) 沿 $y=x^2$ 到 (1,1)

解: ①画图,确定L和(a,b)

注1: 只论起点和终点,不论大小

②统一变量,代入公式计算

$$\int_{L} (x - y) dx + (x + y) dy$$

$$= \int_{0}^{1} \left[(x - x^{2}) + (x + x^{2}) 2x \right] dx$$

$$= \int_{0}^{1} (x + x^{2} + 2x^{3}) dx = \frac{4}{3}$$

注 2: 变量代换 $y \leftrightarrow x^2$ dy = 2xdx

题型 2. 计算 $\int_L xydx$, 其中 L 是抛物线 $y^2 = x$ 上从 A(1,-1) 到 B(1,1) 上的一段弧

解: ①画图,确定L和(a,b)

$$\begin{cases} L : x = y^2 \\ y : -1 \to 1 \end{cases}$$

②统一变量,代入公式计算

$$\int_{L} xy \, dx = \int_{-1}^{1} y^{2} \cdot y \cdot 2y \, dy = 2 \int_{-1}^{1} y^{4} \, dy = \frac{4}{5}$$

注:没有Q(x,y)dy项,默认为0,不用管

练习 8.1: 计算 $\int_L (x^2 - \sqrt{y}) dy$, 其中 L 是抛物线 $y = x^2$ 上从点 (0,0) 到点 (2,4) 的一段弧;

练习 8.2: 计算 $\int_L (x+y)dx + (y-x)dy$, 其中 L 是抛物线 $y^2 = x$ 上从点(1,1)到点(4,2)的一段弧。

课时九 格林公式

◆ 格林公式 (可以看做第二类曲线积分的简便算法)

若积分弧段 L 为 封闭 的曲线

$$\Rightarrow \int_{L} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

- 1) D是L围成的区域
- 2) 格林公式是把第二类曲线积分 转化成了二重积分计算其结果
- 3) 注意 P和 Q对应的位置

注:如图,人沿L方向走,D左手边, 为正, 反之则为负

$$\int_{L} P dx + Q dy$$

$$= -\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

★为负的情况一般不考

题型1: 常规型

例: 计算曲线积分 $\oint_C (2xy-2y)dx + (x^2-4x)dy$, 其中 L 为 $x^2+y^2=R^2$. L 为逆时针

L为封闭圆周曲线,故运用格林公式

$$p = 2xy - 2y \qquad Q = x^2 - 4x$$

$$\frac{\partial P}{\partial y} = 2x - 2$$
 $\frac{\partial Q}{\partial x} = 2x - 4$

$$x^2 + y^2 = R^2$$

$$\oint_{L} (2xy - 2y) dx + (x^{2} - 4x) dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

$$= \iint_{D} [(2x-4)-(2x-2)] dxdy = -2\iint_{D} dxdy = -2A = -2\pi R^{2}$$

题型 2: 缺线补线型

例: 计算 $\int_{\mathcal{C}} (e^x \sin y - 2y) dx + (e^x \cos y - 2) dy$. 其中 L 为逆时针上半圆周 $(x-a)^2 + y^2 = a^2$. $y \ge 0$.

解: 半圆周不是封闭曲线,补齐有向线段 L_1 ,构成封闭曲线。

$$P = e^x \sin y - 2y \qquad Q = e^x \cos y - 2,$$

$$\frac{\partial P}{\partial y} = e^x \cos y - 2 \qquad \frac{\partial Q}{\partial x} = e^x \cos y$$

$$Q = e^x \cos y - 2,$$

$$\frac{\partial Q}{\partial x} = e^x \cos y$$

由格林公式得

$$\int_{L+L_1} (e^x \sin y - 2y) dx + (e^x \cos y - 2) dy = \iint_D (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy = \iint_D 2 dx dy = 2 \cdot \frac{1}{2} \pi a^2 = \pi a^2$$

然后计算在 L, 上的计算积分值

代入y=0,被积函数为0

$$\begin{cases} L_1: y = 0 \\ x: 0 \to 2a \end{cases} \not\Leftrightarrow \lambda \int_{L_1} \left(e^x \sin y - 2y \right) dx + \left(e^x \cos y - 2 \right) dy = 0$$

题型 3: 积分与路径无关型: (若 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$,则 $\int_{L} P dx + Q dy$ 与积分路径无关,只与起点和终点有关)

例:设L为圆周 $y = \sqrt{4x - x^2}$ 从(0,0)到(2,2)的一段弧,求 $\int_{\mathcal{L}} (x^2 - y) dx - (x + \sin y) dy$,

(解析:若按照第二类曲线积分公式计算,由于被积函数和积分弧段函数复杂,太麻烦)

解:

26

$$p = x^2 - y \qquad Q = -(x + \sin y)$$

$$\frac{\partial Q}{\partial x} = \frac{\partial p}{\partial y} = -1$$

故积分与路径无关

取 $O \rightarrow A \rightarrow B$ 路径

在
$$OA$$
 上积分 $OA: \begin{cases} y=0 \\ x:0 \to 2 \end{cases}$

在
$$OA$$
 上积分 OA :
$$\begin{cases} y = 0 \\ x: 0 \to 2 \end{cases} \Rightarrow \int_{OA} (x^2 - y) dx - (x + \sin y) dy = \int_0^2 x^2 dx = \frac{8}{3}$$

在
$$AB$$
 上积分 $AB: \begin{cases} x=2 \\ y:0 \to 2 \end{cases}$

在
$$AB$$
 上积分 AB :
$$\begin{cases} x=2 \\ y:0 \to 2 \end{cases} \Rightarrow \int_{AB} (x^2-y)dx - (x+\sin y) \, dy = \int_0^2 -(2+\sin y) \, dy = \cos 2 - 5$$

$$\text{III} \int_{AB} = \int_{OA} + \int_{AB} = \frac{8}{3} + \cos 2 - 5 = \cos 2 - \frac{7}{3}$$

练习 9.1: 计算 $\oint_{\mathcal{L}} (2xy-x^2)dx + (x+y^2)dy$, 其中 L 由 $y=x^2$ 和 $x=y^2$ 围成逆时针方向

练习 9.2: 计算 $\int_{L} (x^2 - y) dx + (x + \sin^2 y) dy$, 其中 L 沿 $y = \sqrt{2x - x^2}$ 由 (0,0) 到 (2,0) 的弧段

练习 9.3: 计算 $\int_{\Gamma} (6xy^2 - y^3) dx + (6x^2y - 3xy^2) dy$, 其中 L 为(1,2) 到(3,4) 的直线

课时十 第一类曲面积分

考点	重要程度	分值	常见题型
1. 第一类曲面积分	***	3~8	选择填空或大题
2. 第二类曲面积分	***	6~15	大题
3. 高斯公式	****		入咫

1. 第一类曲面积分,记作:
$$\iint_{\Sigma} f(x,y,z)ds$$

题型 $\mathbf{1.} \iint zds$. 其中 Σ 为 $z = \sqrt{x^2 + y^2}$ 上对应 $0 \le z \le 1$ 的部分

解:

1) 积分面函数

$$\Sigma: \quad z = \sqrt{x^2 + y^2}$$

2) 计算 *d S*

$$z_x = \frac{x}{\sqrt{x^2 + y^2}}$$
 $z_y = \frac{y}{\sqrt{x^2 + y^2}}$

$$ds = \sqrt{1 + z_x^2 + z_y^2} dx dy$$

$$= \sqrt{1 + \left(\frac{x}{\sqrt{x^2 + y^2}}\right)^2 + \left(\frac{y}{\sqrt{x^2 + y^2}}\right)^2} dx dy = \sqrt{2} dx dy$$

3) 画出投影图

投影区域
$$D_{xy}$$
:
$$\begin{cases} \theta: 0 \to 2\pi \\ \rho: 0 \to 1 \end{cases}$$

4) 将 $z = \sqrt{x^2 + y^2}$ 和 $ds = \sqrt{2} dx dy$ 代入公式计算

$$\iint_{\Sigma} z ds = \iint_{D_{xy}} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \sqrt{2} \int_0^{2\pi} d\theta \int_0^1 \rho \cdot \rho d\rho = \frac{2\sqrt{2}\pi}{3}$$

第一类曲面积分解题步骤:

- 1) 确定积分曲面 Σ : z = z(x,y)
- 2) \(\psi \sqrt{\sqrt{x}} \, ds = \sqrt{1 + z_x^2 + z_y^2} \, dx \, dy\)

4)
$$\Re \lambda \begin{cases} z = z(x,y) \\ ds = \sqrt{1 + z_x + z_y} dx dy \end{cases}$$

$$\iint\limits_{\Sigma} f(x,y,z)ds =$$

$$\iint_{\Sigma} f(x, y, z) ds =$$

$$\iint_{D_{xy}} f[x, y, z(x, y)] \sqrt{1 + z_x^2 + z_y^2} dx dy$$

题型 2.设 Σ : $x^2 + y^2 + z^2 = a^2(z \ge 0)$ 则求 $\iint_{\Sigma} (x^2 + y^2 + z^2) ds$

若被积函数 f(x,y,z)=1, 则 $\iint_{\Sigma} ds = A$ (积分曲面 Σ 的面积)

解:

$$x^2 + y^2 + z^2 = a^2(z \ge 0)$$

$$\therefore \iint_{\Sigma} (x^2 + y^2 + z^2) ds = \iint_{\Sigma} a^2 ds$$

$$= a^2 \cdot A = a^2 \cdot \frac{1}{2} \cdot 4\pi a^2 = 2\pi a^4$$

练习 10. 1. 计算 $\iint_{\Sigma} (x^2 + y^2) ds$ 其中 Σ 为锥面 $z = \sqrt{x^2 + y^2}$ 介于 z=0 和 z=1 的部分

练习 10. 2. 计算 $\iint_{\Sigma} x^2 ds$ 其中 Σ 为球面 $x^2 + y^2 + z^2 = a^2$

课时十一 第二类曲面积分

第二类曲面积分(一般不会单独考,在高斯公式中涉及)

记作:
$$\iint_{\Sigma} \underline{P(x,y,z)dydz} + \underline{Q(x,y,z)dzdx} + \underline{R(x,y,z)dxdy}$$

要在积分曲面上对以上三部分分别计算,三部分解题思路和步骤是一样的,因为过程太过麻烦,所以基本不考,即使考到,也考其中一部分,

题 1: 计算曲面积分 $\iint z dx dy$, 其中 Σ 是球面 $x^2 + y^2 + z^2 = 1$ 上侧在 $x \ge 0, y \ge 0, z \ge 0$ 部分

解:

1) 积分曲面

$$\Sigma: \quad z = \sqrt{1 - x^2 - y^2}$$

2) 投影,确定 D_x

$$\begin{cases} \theta: 0 \to \frac{\pi}{2} \\ \rho: 0 \to 1 \end{cases}$$

3) 代入计算

$$\iint_{\Sigma} z dx dy = \iint_{D_{xy}} \sqrt{1 - x^2 - y^2} dx dy$$
$$= \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{1} \sqrt{1 - \rho^2} \rho d\rho = \frac{\pi}{6}$$

解题思路

口诀: 计算哪部分, 投影到哪个面

例: $\iint_{\Sigma} R(x, y, z) dx dy$ (<u>最常考的一部分</u>)

- 1) 确认积分曲面 Σ : z = z(x, y)
- 2) 投影, 将 $\Sigma \rightarrow xoy$ 面, 确定 D_{xy}
- 3) 代入公式计算

$$\iint\limits_{\Sigma} R(x,y,z) dx dy$$

$$= \iint\limits_{D_{xy}} R\left[x, y, z(x, y)\right] dxdy$$

<u>(若沿Σ的上、前、右方积分,为正</u> 反之则要加一个负号)

题 2: 计算曲面积分 $\iint_{\Sigma} z dx dy$, 其中 Σ 是沿曲面 $\begin{cases} x^2 + y^2 = 1 \\ z = 4 \end{cases}$ 上侧

1) 积分曲面 Σ : z=4

2) 将曲面 Σ 投影到 xoy 面,确定 D_{xy}

3) 代入计算

$$\iint_{\Sigma} z dx dy = \iint_{D} 4 dx dy = 4 \cdot \pi \cdot 1^{2} = 4\pi$$

课时十二 高斯公式

◇ 高斯公式 (可以看做第二类曲面积分的简单算法,非常常考)

若积分曲面Σ为 封闭曲面 的 外侧

$$\iint_{\Sigma} P dy dz + Q dz dx + R dx dy$$
$$= \iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz$$

- Ω是封闭曲面∑围成的空间区域
- 高斯公式是把第二类曲面积分转化成了三 重积分计算其结果
- 3) 注意 $P \setminus Q \setminus R$ 对应的位置
- 4) 沿曲面外侧为正,内侧为负(一般都是外侧)

题型一:常规性

例: 计算 $\iint x dy dz + y dz dx + z dx dy$, 其中 $\sum 是 x^2 + y^2 + z^2 = a^2$ 的外侧

解:积分曲面 Σ 为封闭的,故可以使用用高斯公式

$$P = x$$

$$Q = y$$
 $R = z$

$$R = z$$

$$\frac{\partial P}{\partial x} = 1$$

$$\frac{\partial P}{\partial x} = 1$$
 $\frac{\partial Q}{\partial y} = 1$ $\frac{\partial R}{\partial z} = 1$

$$\frac{\partial R}{\partial x} = 1$$

一定注意P、O和R的位置, 以及分别对哪个变量求偏导

 $\iiint_{\Sigma} x dy dz + y dz dx + z dx dy = \iiint_{\Omega} (1 + 1 + 1) dx dy dz$

$$= 3 \iiint_{\Omega} dx dy dz = 3V = 3 \times \frac{4}{3} \pi a^{3} = 4 \pi a^{3}$$

球的体积公式: $V = \frac{4}{3}\pi R^3$

题型二:缺面补面型

例:设 \sum 是锥面 $z=\sqrt{x^2+y^2}$ 被平面z=0和z=1所截得部分的下侧,利用高斯公式计算曲 面积分 $\iint xdzdy + ydzdx + (z^2 - 2z)dxdy$

解: 补齐 Σ , 面,则对闭曲面利用高斯公式

$$P = x \qquad Q = y \qquad R = z^2 - 2z$$

$$\frac{\partial P}{\partial x} = 1$$
 $\frac{\partial Q}{\partial y} = 1$ $\frac{\partial R}{\partial z} = 2z - 2$

利用高斯公式, 先求在整个曲面 > + > 上积分结果

$$\bigoplus_{\Sigma + \Sigma_1} x dz dy + y dz dx + \left(z^2 - 2z\right) dx dy = \iiint_{\Omega} (1 + 1 + 2z - 2) dx dy dz = \iiint_{\Omega} 2z dx dy dz$$

$$= \int_0^{2\pi} d\theta \int_0^1 \rho d\rho \int_\rho^1 2z dz = \int_0^{2\pi} d\theta \int_0^1 \rho z^2 \left| \frac{1}{\rho} d\rho \right| = \frac{\pi}{2}$$

求在 📐 上的积分结果

对于 Σ_1 : z=1代入原式 (dz=0, 下式中带有 dz 的项全为 0)

$$\iint_{\Sigma_1} x dz dy + y dz dx + \left(z^2 - 2z\right) dx dy = \iint_{\Sigma_1} (1 - 2) dx dy = -\iint_{\Sigma_1} dx dy$$

将∑,投影到 xoy 面上

根据第二类曲面积分公式计算:

$$-\iint\limits_{\Sigma_1} dx dy = -\iint\limits_{D_{xy}} dx dy = -\pi$$

 $用 \left(\sum_{i=1}^{n} + \sum_{i=1}^{n} \right) - \sum_{i=1}^{n}$

$$\iint\limits_{\Sigma} = \iint\limits_{\Sigma + \Sigma_1} - \iint\limits_{\Sigma_1} = \frac{\pi}{2} + \pi = \frac{3\pi}{2}$$

练习 12. 1: 计算曲面积分 $\iint_{\Sigma} x^3 dy dz + 2xz^2 dz dx + 3y^2 z dx dy$. 其中 Σ 为 $z = x^2 + y^2$ ($0 \le z \le 1$) 取下侧.

练习 12. 2: 计算 $\iint_{\Sigma} (y^2 - x) dy dz + (z^2 - y) dz dx + (x^2 - z) dx dy$,其中 Σ 是抛物面 $z = 2 - x^2 - y^2$ 位于 $z \ge 0$ 部分的上侧。

课时十三 常数项级数

知识点	重要程度	分值	题型
1. 概念	*	略	不单独出题
2. 审敛法	****	基础 (必考)	基础知识
3. 交错级数	***	0~3	选择、填空、大题
4. 绝对条件收敛	***	0-6	

1.1 认识级数

记作:
$$\sum_{n=0}^{\infty} u_n$$

记作:
$$\sum_{n=1}^{\infty} u_n$$
 展开式 $\sum_{n=1}^{\infty} u_n = u_1 + u_2 + u_3 + \dots + u_n + \dots$

$$\Leftrightarrow s(n) = \sum_{n=1}^{\infty} u_n$$
. 若 $\lim_{n \to \infty} S_n$ 有极限,则级数收敛。反之,级数发散

例 1:
$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$$

$$S(n) = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^n$$

$$S(n) = \sum_{n=1}^{\infty} 1 = 1 + 1 + 1 + \dots + 1 = n$$

$$= \frac{\frac{1}{2} \left[1 - \left(\frac{1}{2} \right)^n \right]}{1 - \frac{1}{2}} = 1 - \left(\frac{1}{2} \right)^n$$

$$\lim_{n\to\infty} S(n) = \lim_{n\to\infty} 1 - \left(\frac{1}{2}\right)^n = 1$$

有极限, 故级数
$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$$
 收敛

例 2:
$$\sum_{n=1}^{\infty} 1$$

$$S(n) = \sum_{n=1}^{\infty} 1 = 1 + 1 + 1 + \dots + 1 = n$$

$$\lim_{n\to\infty} S(n) = \lim_{n\to\infty} n = +\infty$$

无极限,故级数 $\sum_{i=1}^{\infty}1$ 发散

1.2 无穷级数的性质

1) 若级数
$$\sum_{n=1}^{\infty} u_n$$
 收敛,则 $\lim_{n\to\infty} u_n = 0$

2)
$$\sum_{n=1}^{\infty} kU_n = k \sum_{n=1}^{\infty} U_n$$

3) 性质 (常在选择题中考)

$\sum_{n=1}^{\infty} U_n$	$\sum_{n=1}^{\infty} V_n$	$\sum_{n=1}^{\infty} \left(U_n + V_n \right)$
收	收	收
收	发	发
发	发	不确定

1.3. 两个常用的参照级数

2) 调和级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 是发散。扩展: $\sum_{n=1}^{\infty} \frac{1}{n^p} \begin{cases} p > 1, 则级数收敛 \\ p \leq 1, 则级数发散$

以上两种参照级数,经常用到,可以作为结论,直接使用

2. 审敛法(判别级数收敛与否的方法)

题型 1. 判断正项级数 $\sum_{n=1}^{\infty} \frac{2n^2}{n^2+n}$ 敛散性

M:
$$u_n = \frac{2n^2}{n^2 + n}$$

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{2n^2}{n^2 + n} = \lim_{n \to \infty} \frac{2}{1 + \frac{1}{n}} = 2 \neq 0 \qquad \text{ by 35 $\%$}$$

必要条件:

$$\sum_{n=1}^{\infty} u_n$$
 若收敛,则 $\lim_{n\to\infty} u_n = 0$;

若 $\lim_{n\to\infty} u_n \neq 0$ 则级数发散

题型 2. 判断正项级数 $\sum_{n=1}^{\infty} \frac{3^n}{n^2}$ 的敛散性

M:
$$u_n = \frac{3^n}{n^2}$$

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{3^{n+1}}{(n+1)^2} \cdot \frac{n^2}{3^n} = \lim_{n \to \infty} 3 \frac{n^2}{(n+1)^2} = 3 > 1$$

$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho \begin{cases} \rho < 1 & 收敛\\ \rho > 1 & 发散\\ \rho = 1 & 不确定 \end{cases}$$

所以级数发散

题型 3. 判断正项级数 $\sum_{n=1}^{\infty} \left(\frac{n}{2n+1}\right)^n$ 的敛散性

M:
$$u_n = (\frac{n}{2n+1})^n$$
 $\lim_{n \to \infty} \sqrt[n]{u_n} = \lim_{n \to \infty} \frac{n}{(2n+1)} = \frac{1}{2} < 1$

故级数收敛

 $\lim_{n\to\infty} \sqrt[n]{u_n} = \rho \begin{cases} \rho < 1 & 收敛\\ \rho > 1 & 发散\\ \rho = 1 & 不确定 \end{cases}$

题型 4.. 判断正项级数 $\sum_{n=1}^{\infty} \ln(1+\frac{1}{n})$ 的敛散性

如果可以用等价无穷小替换 则他们有相同的敛散性

解:
$$n \to \infty$$
 时, $\ln(1+\frac{1}{n}) \sim \frac{1}{n}$ (等价无穷小)

故
$$\sum_{n=1}^{\infty} \ln(1+\frac{1}{n})$$
 和 $\sum_{n=1}^{\infty} \frac{1}{n}$ 有相同的敛散性

$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 是调和级数,发散

$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 是调和级数,发散 故 $\sum_{n=1}^{\infty} \ln(1+\frac{1}{n})$ 也是发散的

3. 交错级数

记作:
$$\sum_{n=0}^{\infty} (-1)^n u_n = u_0 - u_1 + u_2 + \dots + (-1)^n u_n + \dots$$
 (正负项交错)

例: 判断 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$ 敛散性

解:
$$u_n = \frac{1}{n}$$

$$\lim_{n\to\infty} \frac{1}{n} = 0$$
 $\mathbb{H} u_{n+1} = \frac{1}{n+1} \le \frac{1}{n} = u_n$

故交错级数是收敛的

交错级数判定方法:

$$\begin{bmatrix}
\lim_{n \to \infty} u_n = 0 \\
u_{n+1} \le u_n
\end{bmatrix}
\Rightarrow$$
東京

注意:一般项 и, 不包括 (-1) 项

4. 绝对收敛和条件收敛

- 1) 若 $\sum_{n=1}^{\infty} |u_n|$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 也收敛 绝对收敛
- 2) 若 $\sum_{n=1}^{\infty} |u_n|$ 发散,而 $\sum_{n=1}^{\infty} u_n$ 收敛

例:
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$

解:
$$\sum_{n=1}^{\infty} \left| (-1)^{n-1} \frac{1}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$$
 发散

而
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$
 为交错级数。满足
$$\begin{cases} \lim_{n \to \infty} \frac{1}{n} = 0 \\ \frac{1}{n+1} < \frac{1}{n} \end{cases} \Rightarrow$$
收敛,故级数为条件收敛

35

4 小时速成课程

练习13.1: 判断下列正项级数敛散性

1)
$$\sum_{n=1}^{\infty} \frac{n+1}{2^n}$$

2)
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$

1)
$$\sum_{n=1}^{\infty} \frac{n+1}{2^n}$$
 2) $\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$ 3) $\sum_{n=1}^{\infty} 2^n \sin \frac{\pi}{3^n}$

练习 13.2: 判断级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n-\ln n}$ 敛散性

课时十四 幂级数

知识点	重要程度	分值	题型
1. 收敛半径、收敛域	****	6~10	基础知识
2. 和函数	****	0~10	选择
3. 幂级数展开	****	0~8	填空 大题

记作 $\sum_{n=1}^{\infty} a_n x^n$ 展开式 = $a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n + \cdots$ (含x 项. 且敛散性随x 的取值不同而不同)

题型 1: 求 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ 的收敛半径和收敛域

M:
$$a_n = \frac{(-1)^{n-1}}{n}$$
 \emptyset $\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n}{n+1} = 1$

则收敛半径为
$$R = \frac{1}{\rho} = 1$$
 收敛区间: $x \in (-1,1)$

当
$$x = 1$$
 时,级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$ 为交错级数,满足 $\begin{cases} \lim_{x \to \infty} \frac{1}{n} = 0 \\ \frac{1}{n+1} < \frac{1}{n} \end{cases}$,故收敛。

当
$$x = -1$$
 时,级数 $\sum_{n=1}^{\infty} (-1)^{2n-1} \frac{1}{n} = -\sum_{n=1}^{\infty} \frac{1}{n}$ 发散的,则收敛域 $x \in (-1,1]$

题型 2: 求 $\sum_{n=1}^{\infty} \frac{(x-2)^n}{2^n}$ 的收敛域

注意: 把(x-2)当作整体

M:
$$a_n = \frac{1}{2^n}$$
 $\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{2^n}{2^{n+1}} = \frac{1}{2}$

则收敛半径 $R = \frac{1}{\rho} = 2$,收敛区间 $x - 2 \in (-2, 2) \Rightarrow x \in (0, 4)$

当 x = 0 时,级数 $\sum_{n=1}^{\infty} (-1)^n$ 是发散的

当 x = 4 时,级数 $\sum_{n=1}^{\infty} 1$ 是发散的,则收敛域 为 $x \in (0,4)$

题型 3: 求 $\sum_{n=0}^{\infty} \frac{2n-1}{2^n} x^{2n}$ 的收敛半径 R

M:
$$a_n = \frac{2n-1}{2^n}$$
 $\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{2n+1}{2^{n+1}} \cdot \frac{2^n}{2n-1} = \frac{1}{2}$

则收敛半径 $R = \frac{1}{\sqrt{\rho}} = \sqrt{2}$,收敛区间 $x \in (-\sqrt{2}, \sqrt{2})$

 x^{kn+l} 型

这种类型下,忽略1,

收敛半径 $R = \frac{1}{\sqrt[k]{\rho}}$

当 $x = -\sqrt{2}$ 时,级数 $\sum_{n=1}^{\infty} 2n - 1$ 是发散的

当 $x = \sqrt{2}$ 时,级数 $\sum_{n=1}^{\infty} 2n - 1$ 是发散的,则收敛域 为 $x \in (-\sqrt{2}, \sqrt{2})$

练习 14.1: 求 $\sum_{n=1}^{\infty} (-1)^n \frac{2^n}{n} x^n$ 收敛域

练习 14.2: $\sum_{n=1}^{\infty} n2^{n+1}x^{2n-1}$

2. 和函数,记作: $S(x) = \sum_{n=0}^{\infty} a_n x^n$ (对幂级数求和)

性质 1: 可导并逐项可导 $S'(x) = \sum_{n=0}^{\infty} (a_n x^n)' = \sum_{n=0}^{\infty} a_n n x^{n-1}$

性质 2: 可积并逐项可积 $\int S(x) = \sum_{n=0}^{\infty} \int a_n x^n dx = \sum_{n=0}^{\infty} a_n \cdot \frac{1}{n+1} x^{n+1}$

◆ 麦克劳林公式, 最常考 $\frac{1}{1-x}$

$\frac{1}{1-x}$	$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n$	$\left(-1 < x < 1\right)$
$\frac{1}{1+x}$	$\sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + x^2 + \dots + (-1)^n x^n$	$\left(-1 < x < 1\right)$
ln(1+x)	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^{n+1}}{n+1}$	$\left(-1 < x \le 1\right)$
e^x	$\sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$	$\left(-\infty < x < +\infty\right)$
$\sin x$	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!}$	$(-\infty < x < +\infty)$
$\cos x$	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2} + \dots + (-1)^n \frac{x^{2n}}{(2n)!}$	$(-\infty < x < +\infty)$

题型 1: 求级数 $\sum_{n=1}^{\infty} nx^{n-1}$ 的和函数

1) 求收敛域:

$$a_n = n, \rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n+1}{n} = 1,$$

收敛半径 $R = \frac{1}{\rho} = 1$, 收敛区间为(-1,1)

当
$$x = -1$$
 时, $\sum_{n=1}^{\infty} (-1)^n n$ 发散,

x = 1 时, $\sum_{n=1}^{\infty} n$ 发散,故收敛域为(-1,1)。

2) 本题先积后导:

$$\mathcal{E}_{0} S(x) = \sum_{n=1}^{\infty} nx^{n-1} \qquad \int_{0}^{x} S(x) dx = \sum_{n=1}^{\infty} \int_{0}^{x} nx^{n-1} dx = \sum_{n=1}^{\infty} x^{n} = x + x^{2} + \dots + x^{n} = \frac{1}{1-x} - 1$$

$$S(x) = \left[\int_0^x S(x) dx\right]' = \left[\frac{1}{1-x} - 1\right]' = \frac{1}{(1-x)^2}$$

幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 和函数s(x) 求法

- 1) 求出收敛域
- 2) 先积后导或者先导后积
- 3) 利用麦克劳林公式

一定注意要先求出收敛域

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n$$

题型 2: 求 $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n}$ 的和函数

解: 1) 求收敛域

$$a_n = \frac{1}{2n}$$
 $\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{2n}{2n+2} = 1$

$$\therefore R = \frac{1}{\sqrt{\rho}} = 1, 收敛区间为(-1,1),$$

当
$$x = -1$$
 时, $\sum_{n=1}^{\infty} \frac{(-1)^{2n+1}}{2n}$ 发散,

当
$$x = 1$$
 时, $\sum_{n=1}^{\infty} \frac{1}{2n}$ 发散,则收敛域为 $(-1,1)$

2)
$$\phi s(x) = \sum_{n=1}^{\infty} \frac{x^{2n+1}}{2n} = x \sum_{n=1}^{\infty} \frac{x^{2n}}{2n}$$
, 两边同除以 x 注: 为方便求导或者积分, 进行相应调整

$$\left[\frac{s(x)}{x}\right]' = \sum_{n=1}^{\infty} x^{2n-1} = x \sum_{n=1}^{\infty} x^{2n-2} = x \sum_{n=1}^{\infty} (x^2)^{n-1}$$

$$= x(1+x^2+x^4+\cdots(x^2)^n+\cdots) = \frac{x}{1-x^2}(|x|<1)$$

积分得
$$\frac{s(x)}{x} = \int_0^x \frac{x}{1-x^2} dx = -\frac{1}{2} \ln(1-x^2)$$

可得
$$s(x) = -\frac{x}{2}\ln(1-x^2)$$
 , $(-1 < x < 1)$

练习 14.3: 求
$$\sum_{n=1}^{\infty} \frac{x^{n+1}}{n+1}$$
和函数

练习 14.4: 求
$$\sum_{n=1}^{\infty} n(x-1)^{n-1}$$
 和函数

练习 14.5: 求
$$\sum_{n=0}^{\infty} \frac{2n+1}{2^n}$$
 的和

(提示:
$$s(x) = \sum_{n=0}^{\infty} (2n+1)x^n \Rightarrow s(\frac{1}{2}) = \sum_{n=0}^{\infty} \frac{2n+1}{2^n}$$
)

要把x²看做整体,对应麦克劳林公式

3. 幂级数的展开(将函数变成级数)

例:
$$f(x) = \frac{1}{x^2 + 3x + 2}$$
 展开成 $(x-1)$ 的幂级数

解:

$$f(x) = \frac{1}{x^2 + 3x + 2} = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2} = \frac{1}{2 + (x-1)} \cdot \frac{1}{3 + (x-1)}$$
$$= \frac{1}{2} \left[\frac{1}{1 + \frac{(x-1)}{2}} \right] - \frac{1}{3} \left[\frac{1}{1 + \frac{(x-1)}{3}} \right] \qquad \qquad \boxed{\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + \dots + (-1)^n x^n + \dots}$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \left(\frac{x-1}{2}\right)^n - \frac{1}{3} \sum_{n=0}^{\infty} (-1)^n \left(\frac{x-1}{3}\right)^n \qquad \frac{(x-1)}{2} \in (-1,1) \Rightarrow x \in (-1,3)$$

$$= \frac{1}{2^{n+1}} \sum_{n=0}^{\infty} (-1)^n (x-1)^n - \frac{1}{3^{n+1}} \sum_{n=0}^{\infty} (-1)^n (x-1)^n \qquad \frac{(x-1)}{3} \in (-1,1) \Rightarrow x \in (-2,4)$$

$$=\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{1}{2^{n+1}}-\frac{1}{3^{n+1}}\right)(x-1)^{n} \qquad x \in (-1,3)$$

练习 14.6: 将 $f(x) = \frac{3}{x^2 + x - 2}$, 展开成 x - 2 的幂级数

课时十五 微分方程(选学)

考点	重要程度	分值	常见题型
1. 可分离变量	***	0~3	
2. 齐次微分方程	***	0~3	选择、填空
3. 一阶线性微分方程			
4. 二阶常系数齐次		6~10	大 题
5. 二阶常系数非齐次			

1、可分离变量 形式: g(y)dy = f(x)dx 方法: 两边同时积分

题 1. $\frac{dy}{dx} = 2xy$

解: 分离变量 $\frac{dy}{y} = 2xdx$ 两边同时积分 $\int \frac{dy}{y} = \int 2xdx$

得: $\ln |y| = x^2 + C$ $\Rightarrow |y| = e^{x^2 + C} = e^{x^2} \cdot e^C$ $\Rightarrow y = \pm e^C \cdot e^x = C_1 e^x (C_1 = \pm e^C)$

题 2. $xy' - y \ln y = 0$

解: $x \frac{dy}{dx} - y \ln y = 0$ 分离变量 $\frac{dy}{v \ln v} = \frac{dx}{x}$ 两边积分 $\int \frac{dy}{v \ln v} = \int \frac{dx}{x}$

得 $\ln |\ln y| = \ln |x| + C_1 = \ln |x| + \ln e^{C_1} = \ln e^{C_1} |x|$ $|\ln y| = e^{C_1} |x|$ $\Rightarrow \ln y = \pm e^{C_1} x = Cx$ (C= $\pm e^{C_1}$)

2、齐次微分方程 形式: $\frac{dy}{dx} = \varphi\left(\frac{y}{x}\right)$

題 1. $(x^2 + 2xy)dx + xydy = 0$

 $\mathbf{M}: \quad \frac{dy}{dx} = -\frac{x^2 + 2xy}{xy} = -\frac{1 + 2\frac{y}{x}}{\frac{y}{x}} \qquad \qquad \diamondsuit \frac{y}{x} = u \quad y = xu \quad y' = u + x\frac{du}{dx}$

替换上式得: $u + x \frac{du}{dx} = -\frac{1+2u}{u}$ 整理得: $x \frac{du}{dx} = -\frac{1+2u}{u} - u = -\frac{(u+1)^2}{u}$

分离变量 $\frac{u}{\left(u+1\right)^{2}}du = -\frac{1}{x}dx$

两边积分得 $\int \frac{u}{(u+1)^2} du = -\int \frac{1}{x} dx$

$$\Rightarrow \ln|u+1| + \frac{1}{u+1} = -\ln|x| + C$$

$$\Rightarrow \ln|u+1| + \frac{1}{u+1} = -\ln|x| + C \qquad \qquad *\$ \ u = \frac{y}{x} \ \text{Re} \quad \ln\left|\frac{y}{x} + 1\right| + \frac{1}{\frac{y}{x} + 1} = -\ln|x| + C$$

化简整理:
$$\ln\left|\frac{y}{x}+1\right|+\ln\left|x\right|+\frac{x}{x+y}=C$$
 $\Rightarrow \ln\left|y+x\right|+\frac{x}{x+y}=C$

3、一阶线性微分方程 形式: $\frac{dy}{dx} + P(x)y = Q(x)$

$$\frac{dy}{dx} + P(x)y = Q(x)$$

题 1.
$$\frac{dy}{dx} + y = e^{-x}$$

解:
$$P(x)=1$$
, $Q(x)=e^{-x}$

$$\int P(x)dx = \int 1dx = x$$

$$\int Q(x)e^{\int P(x)dx} = \int e^{-x} \cdot e^{x}dx = x$$

所以方程通解: $y = e^{-x}(x+C)$

通解公式: $y = e^{-\int P(x)dx} \left(\int Q(x) \cdot e^{\int P(x)dx} dx + C \right)$

题 2. 已知 f(x) 为可导函数,且满足方程 $\int_0^x t f(t) dt = x^2 + f(x)$,求 f(x)

解: 两边求导 xf(x) = 2x + f'(x) 整理得 y' - xy = -2x

$$P(x) = -x$$
 $Q(x) = -2x$

$$\int P(x)dx = \int -xdx = -\frac{1}{2}x^2$$

$$\int Q(x)e^{\int P(x)dx}dx = \int -2xe^{-\frac{1}{2}x^2}dx = 2e^{-\frac{1}{2}x^2}$$

故方程通解:
$$f(x) = e^{\frac{1}{2}x^2} \left(2e^{-\frac{1}{2}x^2} + C \right) = 2 + Ce^{\frac{1}{2}x^2}$$

$$x = 0$$
 时 代入原方程 $\int_0^x tf(t)dt = x^2 + f(x)$

$$\Rightarrow 0 = 0 + f(0) \Rightarrow f(0) = 0$$

代入
$$(0,0)$$
点,即 $0=2+C \Rightarrow C=-2$

故
$$f(x) = 2 - 2e^{\frac{1}{2}x^2}$$

4、二阶常系数齐次线性微分方程

形式: v'' + Pv' + Ov = 0

题 1. 求微分方程 v'' - 2v' - 3v = 0 的通解.

解: 特征方程 $r^2 - 2r - 3 = 0$

特征根: $r_1 = -1$ $r_2 = 3$

 $V = C_1 e^{-x} + C_2 e^{3x}$

特征根 r ₁ , r ₂	通解
$r_1 \neq r_2$	$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
$r_1 = r_2$	$y = (C_1 + C_2 x)e^{r_1 x}$
$r_1 = r_2 = \alpha \pm \beta i$	$y = e^{\alpha x} \left(C_1 \cos \beta x + C_2 \sin \beta x \right)$

题 2. 求 $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$ 的解,满足初始条件满足初始条件 $y|_{x=0} = 4$ $y'|_{x=0} = -2$

原方程: y'' + 2y' + y = 0

特征方程: $r^2 + 2r + 1 = 0$

特征根: $r_1 = r_2 = -1$

通解为: $y = (C_1 + C_2 x)e^{-x}$ 代入 $y|_{x=0} = 4$ 得 $C_1 = 4$ 则 $y = (4 + C_2 x)e^{-x}$

 $y' = C_2 e^{-x} - (4 + C_2 x) e^{-x}$ $(4 + C_2 x) e^{-x}$ $(4 + C_2 x) e^{-x}$ $(4 + C_2 x) e^{-x}$

所以方程的解: $v = (4+2x)e^{-x}$

5、二阶常系数非齐次线性方程

形式: $y'' + py' + qy = e^{\lambda x} P_{\dots}(x)$

题 1. $y'' - 5y' + 6y = xe^{2x}$

特征方程: $r^2-5r+6=0$

特征根: $r_1 = 2, r_2 = 3$

通解: $Y = C_1 e^{2x} + C_2 e^{3x}$

从原方程可知: $\lambda = 2$, $P_m(x) = x$

设方程特解为: $y^* = xe^{2x}(ax+b)$

 $(y^*)' = e^{2x} (2ax^2 + 2bx + 2ax + b)$

 $(y^*)'' = e^{2x} (4ax^2 + 4bx + 8ax + 4b + 2a)$

解的结构: $y = Y + y^*$ (齐通+非特)

 $y^* = x^k e^{\lambda x} Q_m(x) \qquad k = \begin{cases} 0 & \lambda \neq \lambda_1, \lambda_2 \\ 1 & \lambda = \lambda_1 \vec{\mathbf{x}} \lambda = \lambda_2 \\ 2 & \lambda = \lambda_1 = \lambda_2 \end{cases}$

$P_m(x)$	$Q_m(x)$
x	ax + b
$x^2 + 1$	$ax^2 + bx + c$
$x^3 + x^2 + 1$	$ax^3 + bx^2 + cx + d$

将 y^* , $(y^*)'(y^*)''$ 代入原方程 化简后得: -2ax + 2a - b = x

44

对应系数相等 $\begin{cases} -2a=1 \\ 2a-b=0 \end{cases} \Rightarrow \begin{cases} a=-\frac{1}{2} \\ b=1 \end{cases} \Rightarrow y^* = x\left(-\frac{1}{2}x-1\right)e^{2x}$

$$\Rightarrow y^* = x \left(-\frac{1}{2}x - 1 \right) e^{2x}$$

则方程通解为 $y = C_1 e^{2x} + C_2 e^{3x} - x \left(\frac{1}{2}x + 1\right) e^{2x}$

练习题

1.
$$xy' - y \ln y = 0$$

2.
$$3x^2 + 5x - 5y' = 0$$

$$3. \ \left(x^3 + y^3\right) dx - 3xy^2 dy = 0$$

$$4. \quad y' + y \cos x = e^{-\sin x}$$

5.
$$(x-2)\frac{dy}{dx} = y + 2(x-2)^3$$

6.
$$y'' + y' - 2y = 0$$

7.
$$y'' - 4y' + 3y = 0$$
 $y|_{x=0} = 6$ $y'|_{x=0} = 10$

8.
$$y'' + 6y' + 9y = 0$$

9.
$$y'' - 4y' + 5y = 0$$

10.
$$2y'' + 5y' = 5x^2 - 2x - 1$$