编译原理 第七周作业 9月24日 周四

PB18151866 龚小航

3.37 下面是一个二义文法:

$$S \to AS \mid b$$
$$A \to SA \mid a$$

如果为该文法构造 LR 分析表,则一定存在某些有分析动作冲突的项目,它们是哪些?假定分析表这样来使用: 出现冲突时,不确定的选择一个可能的动作。给出对于输入 abab 所有可能的动作系列。

解: 先做出其拓广文法:

$$S' \to S$$

$$S \to AS \mid b$$

$$A \to SA \mid a$$

再构造 LR(1) 项目集,根据构造算法: $FIRST(S) = FIRST(A) = \{a, b\}$

$$I_{0} = \begin{cases} S' \rightarrow \bullet S, & \$ \\ S \rightarrow \bullet AS, & \$ \\ S \rightarrow \bullet b, & \$ \\ A \rightarrow \bullet SA, & a/b = \begin{cases} S' \rightarrow \bullet S, & \$ \\ S \rightarrow \bullet AS, & \$/a/b \\ S \rightarrow \bullet b, & a/b \end{cases}$$

$$\begin{cases} S' \rightarrow \bullet S, & \$ \\ S \rightarrow \bullet AS, & \$/a/b \\ A \rightarrow \bullet SA, & a/b \\ A \rightarrow \bullet SA, & a/b \end{cases}$$

$$\begin{cases} S' \rightarrow \bullet S, & \$ \\ S \rightarrow \bullet AS, & \$/a/b \\ A \rightarrow \bullet SA, & a/b \\ A \rightarrow \bullet AS, & a/b \end{cases}$$

$$\begin{cases} S' \rightarrow \bullet S, & \$ \\ S \rightarrow \bullet AS, & \$/a/b \\ A \rightarrow \bullet SA, & a/b \\ A \rightarrow \bullet AS, & a/b \end{cases}$$

对 I_0 进行分析:

$$I_{1} = \gcd(I_{0}, S) = \begin{cases} S' \to S \bullet, & \$ \\ A \to S \bullet A, & a/b \\ A \to \bullet SA, & a/b \\ A \to \bullet A, & a/b \\ S \to \bullet AS, & a/b \\ S \to \bullet b, & a/b \end{cases}$$

$$I_{2} = \gcd(I_{0}, A) = \begin{cases} S \to A \bullet S, & \$/a/b \\ S \to \bullet AS, & \$/a/b \\ S \to \bullet b, & \$/a/b \\ A \to \bullet SA, & a/b \\ A \to \bullet SA, & a/b \\ A \to \bullet AS, & \$/a/b \\ A \to \bullet AS, & A/b \\ A \to$$

至此, I_0 , I_3 , I_4 已分析完毕,接下来分析 I_1 :

$$I_{5} = \operatorname{goto}(I_{1}, A) = \begin{cases} A \to SA \bullet, & a/b \\ S \to A \bullet S, & a/b \\ S \to \bullet AS, & a/b \\ S \to \bullet b, & a/b \\ A \to \bullet SA, & a/b \\ A \to \bullet SA, & a/b \\ A \to \bullet A, & a/b \end{cases}$$

$$I_{6} = \operatorname{goto}(I_{1}, S) = \begin{cases} A \to S \bullet A, & a/b \\ A \to \bullet SA, & a/b \\ A \to \bullet A, & a/b \\ S \to \bullet AS, & a/b \\ S \to \bullet b, & a/b \end{cases}$$

$$goto(I_{1}, a) = I_{4}$$

 $I_7 = \text{goto}(I_1, b) = S \rightarrow b \bullet, a/b$

分析 I₂:

$$I_{8} = \operatorname{goto}(I_{2}, S) = \begin{cases} S \to AS \bullet, & \$/a/b \\ A \to S \bullet A, & a/b \\ A \to \bullet SA, & a/b \\ A \to \bullet a, & a/b \\ S \to \bullet AS, & a/b \\ S \to \bullet b, & a/b \end{cases}$$

 $goto(I_2, A) = I_2; goto(I_2, a) = I_4; goto(I_2, b) = I_3$

分析 I₅:

$$I_{9} = \operatorname{goto}(I_{5}, S) = \begin{cases} S \to AS \bullet, & a/b \\ A \to S \bullet A, & a/b \\ A \to \bullet SA, & a/b \\ A \to \bullet a, & a/b \\ S \to \bullet AS, & a/b \\ S \to \bullet b, & a/b \end{cases}$$

$$I_{10} = \operatorname{goto}(I_{5}, A) = \begin{cases} S \to A \bullet S, & a/b \\ S \to \bullet AS, & a/b \\ S \to \bullet AS, & a/b \\ A \to \bullet SA, & a/b \\ A \to \bullet SA, & a/b \\ A \to \bullet AS, & a/b \end{cases}$$

分析 I₆:

$$goto(I_6, S) = I_6; goto(I_6, A) = I_5; goto(I_6, a) = I_4; goto(I_6, b) = I_7$$

 $goto(I_5, b) = I_7; goto(I_5, a) = I_4$

分析 I₈:

$$goto(I_8, A) = I_5; goto(I_8, S) = I_6; goto(I_8, a) = I_4; goto(I_8, b) = I_7;$$

分析 I₉:

$$goto(I_9, A) = I_5; goto(I_9, S) = I_6; goto(I_9, a) = I_4; goto(I_9, b) = I_7;$$

分析 I₁₀:

$$goto(I_{10}, S) = I_9; goto(I_{10}, A) = I_{10}; goto(I_{10}, b) = I_7; goto(I_6, a) = I_4$$

至此所有状态均分析完毕,做出其状态转换图:

由状态转换图,即可做出规范的 LR 分析表:

产生式标号:

$$(1) S \rightarrow AS \qquad (2) S \rightarrow b \qquad (3) A \rightarrow SA \qquad (4) A \rightarrow a$$

根据 LR 分析表构造方法, 得到分析表如下:

状态	动作		转移		
	а	b	\$	S	A
0	s4	<i>s</i> 3		1	2
1	<i>s</i> 4	<i>s</i> 7	асс	6	5
2	<i>s</i> 4	<i>s</i> 3		8	2
3	r2	r2	<i>r</i> 2		
4	r4	r4			
5	s4/r3	s7/r3		9	10
6	s4	s7		6	5
7	r2	r2			
8	s4/r1	s7/r1	<i>r</i> 1	6	5
9	s4/r1	s7/r1		6	5
10	s4	<i>s</i> 7		9	10

可知状态 5, 8, 9 都存在分析动作冲突。

由规范的 LR 分析表,可知输入串为 abab 时,可能出现的动作系列如下:

情况一

-:		
栈	输入	动作
0	a b a b \$	移进
0 a 4	b a b \$	接 $A \rightarrow a$ 归约
0 A 2	b a b \$	移进
0 A 2 b 3	a b \$	接 $S \rightarrow b$ 归约
0 A 2 S 8	a b \$	移进
0 A 2 S 8 a 4	b \$	接 $A \rightarrow a$ 归约
0 A 2 S 8 A 5	b \$	移进
0 A 2 S 8 A 5 b 7	\$	报错

情况二:

栈	输入	动作
0	a b a b \$	移进
0 a 4	b a b \$	接 $A \rightarrow a$ 归约
0 A 2	b a b \$	移进
0 A 2 b 3	a b \$	接 $S \rightarrow b$ 归约
0 A 2 S 8	a b \$	移进
0 A 2 S 8 a 4	b \$	接 $A \rightarrow a$ 归约
0 A 2 S 8 A 5	b \$	接 $A \rightarrow SA$ 归约
0 A 2 A 2	b \$	移进
0 A 2 A 2 b 3	\$	接 $S \rightarrow b$ 归约
0 A 2 A 2 S 8	\$	接 $S \rightarrow AS$ 归约
0 A 2 S 8	\$	接 $S \rightarrow AS$ 归约
0 S 1	\$	接受

情况三:

栈	输入	动作
0	a b a b \$	移进
0 a 4	b a b \$	接 $A \rightarrow a$ 归约
0 A 2	b a b \$	移进
0 A 2 b 3	a b \$	按 S → b 归约
0 A 2 S 8	a b \$	接 $S \rightarrow AS$ 归约
0 S 1	a b \$	移进
0 S 1 a 4	b \$	接 $A \rightarrow a$ 归约
0 S 1 A 5	b \$	移进
0 S 1 A 5 b 7	\$	报错

情况四:

栈	输入	动作
0	a b a b \$	移进
0 a 4	b a b \$	接 $A \rightarrow a$ 归约
0 A 2	b a b \$	移进
0 A 2 b 3	a b \$	按 S → b 归约
0 A 2 S 8	a b \$	接 $S \rightarrow AS$ 归约
0 S 1	a b \$	移进
0 S 1 a 4	b \$	接 $A \rightarrow a$ 归约
0 S 1 A 5	b \$	按 $A \rightarrow SA$ 归约
0 A 2	b \$	移进
0 A 2 b 3	\$	接 $S \rightarrow b$ 归约
0 A 2 S 8	\$	接 $S \rightarrow AS$ 归约
0 S 1	\$	接受

4.5 为下面的文法写一个语法制导的定义,它完成一个句子的 while - do 最大嵌套层次的计算并输出结果。

 $S \rightarrow E$ $E \rightarrow$ while E do E | id := E | E + E | id | (E)

解:给出其语法制导定义:loop是表示循环嵌套最大层数的综合属性。

产生式	语义规则	
$S \to E$	print(S.loop)	
$E \rightarrow \mathbf{while} \ E_1 \ \mathbf{do} \ E_2$	$E.loop = \max\{E_1.loop, E_2.loop\} + 1$	
$E \rightarrow \mathbf{id} := E_1$	$E.loop = E_1.loop$	
$E \rightarrow E_1 + E_2$	$E.loop = \max\{E_1.loop, E_2.loop\}$	
$E \rightarrow id$	E.loop = 0	
$E \to (E_2)$	$E.loop = E_1.loop$	

4.9 用 S 的综合属性 val 给出下面文法中 S 产生的二进制数的值。如输入 101.101,输出 S.val = 5.625

$$S \rightarrow L.L \mid L$$

$$L \rightarrow LB \mid B$$

$$B \rightarrow 0 \mid 1$$

用 L 属性定义决定 S.val。在该定义中,B 的唯一综合属性是 c (还需要继承属性),它给出由 B 产生的位对最终值的贡献。例如 101.101 的最前一位和最后一位对值 5.625 的贡献分别是 4 和 0.125

解: 为解释的更清楚, 可以对这个文法略作改动, 将其改为:

$$S \rightarrow L.R \mid L$$

$$L \rightarrow BL \mid B$$

$$R \rightarrow RB \mid B$$

$$B \rightarrow 0 \mid 1$$

将其分为小数点左侧和小数点右侧两部分。inh 为其继承属性,分两部分定义即可。

给出其语法制导定义:

产生式	语义规则
$S \rightarrow L.R$	S. val = L. val + R. val
$S \rightarrow L$	S. val = L. val
$L \rightarrow BL_1$	B. inh = $L_1 \cdot c * 2$; $L \cdot c = L_1 \cdot c * 2$; $L \cdot val = L_1 \cdot val + B \cdot c$
$L \rightarrow B$	B. inh = 1; L. c = 1; L. val = B. c
$R \rightarrow R_1 B$	B. inh = R_1 . c/2; R. c = R_1 . c/2; R. val = R_1 . val + B. c
$R \rightarrow B$	B. inh = 0.5; L. c = 0.5; R. val = B. c
$B \rightarrow 0$	B. c = 0
$B \rightarrow 1$	B. c = B. inh

4.12 文法如下:

$$S \rightarrow (L) \mid a$$

$$L \rightarrow L, S \mid S$$

写一个翻译方案,它打印出每个 a 在句子中是第几个字符。例如对于句子 (a,(a,(a,a),(a))),输出的结果为 2581014

翻译方案如下所示。

$$S' \rightarrow \{S. inh = 0\} S$$

$$S \rightarrow \{L. inh = S. inh + 1\}$$
 (L) $\{S. val = L. val + 1\}$

$$S \rightarrow a \ \{S. \, val = S. \, inh + 1; \ printf(S. \, val)\}$$

$$L \to \{L_1.inh = L.inh\}\ L_1,\ \{S.inh = L_1.val + 1\}\ S\ \{L.val = S.val\}$$

$$L \rightarrow \{S.inh = L.inh\}$$
 S $\{L.val = S.val\}$