

ME 5374-ST

Machine Learning for Materials Science and Discovery

Fall 2025

Asst. Prof. Peter Schindler

Lecture 6 – Machine Learning Basics 2

- Feature Filtering and Regularization Methods
- Distance in High-dimensional Space
- Logistic Regression, Classification, and its Performance Metrics
- Clustering: K-means
- Dimensionality Reduction, Principal Component Analysis
- Decision Tree, Random Forest, Ensemble and Bagging Methods
- k-fold Cross-validation

Supervised vs. Unsupervised Learning

Supervised: Regression

Unsupervised: Clustering

Supervised: Classification

Unsupervised: Dim. Reduction

Overfitting and Underfitting

Approaches to Avoid Overfitting

- 0. Remove low variance features and highly correlated features
- 1. Filtering methods (pre-ML model) Correlation matrix (e.g. Pearson)
- 2. Iterative methods (using ML model performance)
- 3. Regularization methods (directly enforced during ML training)

Approach 1: Filtering Methods (Pre-ML)

Pearson Coefficient:

$$r_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{\sum_{i=1}^n (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^n (y_i - \bar{y})^2}}$$
$$r_{X,Y} \in [-1,1]$$

 $r_{X,Y}$ positive: $X \uparrow \rightarrow Y \uparrow$, $X \downarrow \rightarrow Y \downarrow$

 $r_{X,Y}$ negative: $X \uparrow \rightarrow Y \downarrow$, $X \downarrow \rightarrow Y \uparrow$

 r_{XY} zero: X and Y not correlated

Correlation Matrix

Approach 2: Iterative Methods (Utilizes ML Model)

Uses ML model to assess performance and then iteratively remove/add features

- Backward Elimination (p-value)
- Recursive Feature Elimination (accuracy/feature importance)
- Forward Selection, Bidirectional Elimination

Distances in High-Dimensional Space

$$\left\| \ell_{\rho} \text{ norm: } \left\| \theta \right\|_{\rho} = \sqrt[p]{\sum_{i} \left| \theta_{i} \right|^{\rho}} \right\|$$

$$\ell_0$$
 norm

$$\left\|\theta\right\|_{0} = \#\left(i\middle|\theta_{i} \neq 0\right)$$

Number of non-zero entries "norm"

ℓ₁ norm

$$\|\theta\|_1 = \sum_i |\theta_i|$$

Manhattan norm

 ℓ_2 norm

$$\left\|\theta\right\|_{2} = \sqrt[2]{\sum_{i} \left|\theta_{i}\right|^{2}}$$

Euclidean norm

 ℓ_{∞} norm

$$\|\theta\|_{\infty} = \max |\theta_i|$$

Chebyshev norm

 ℓ_0 : Use for sparsity and feature selection.

 ℓ_1 : Use when data has different scales or follows a grid-like structure.

 ℓ_2 : Use when data is dense and continuous, and features have similar scales.

l∞: Use to emphasize the largest single difference; highlights outliers.

Approach 3: Regularization

Linear regression (least squares) $\{x^1, y^1\}, \dots, \{x^m, y^m\}; \quad x^i \in \mathbb{R}^{n+1}, y \in \mathbb{R}$ $X \in \mathbb{R}^{m \times (n+1)}$

$$y = X\theta$$

$$\underset{\theta \in \mathbb{R}^{n+1}}{\operatorname{argmin}} \| y - X\theta \|_{2}$$

Exact solution: $\theta = (X^T X)^{-1} X^T y$

Finding sparse solution: Regularization/compressed sensing

 $\underset{\theta \in \mathbb{R}^{n+1}}{\operatorname{argmin}} \left(\left\| y - X\theta \right\|_{2} + \lambda \left\| \theta \right\|_{0} \right)$

Exact solution but NP hard (not convex)

$$\underset{\theta \in \mathbb{R}^{n+1}}{\operatorname{argmin}} \left(\left\| y - X\theta \right\|_{2} + \lambda \left\| \theta \right\|_{1} \right)$$

LASSO regression

$$\underset{\theta \in \mathbb{R}^{n+1}}{\operatorname{argmin}} \left(\left\| y - X\theta \right\|_{2} + \lambda \left\| \theta \right\|_{2} \right)$$

Ridge regression

Elastic Net

NP = nondeterministic polynomial time,

LASSO = Least Absolute Shrinkage and Selection Operator

Asst. Prof. Peter Schindler

$$\theta = \begin{pmatrix} X^T X + \lambda \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{-1} X^T Y$$

Logistic Regression and Classification

Data in classification task: (x^i, y^i) , where $x^i \in \mathbb{R}^{n+1}$, $y^i \in \{0, 1\}$ for $i \in [1, m]$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (\delta(\theta^{T} X^{i}) - Y^{i})^{2}$$

Gradient Descent doesn't work on step function!

Instead: Sigmoid Function

$$h_{\theta}(X) = \sigma(\theta^T X) = \frac{1}{1 + e^{-\theta^T X}}$$

predict
$$y = 1$$
 if $h_{\theta}(x) \ge 0.5 \rightarrow \theta^T x \ge 0$

predict
$$y = 0$$
 if $h_{\theta}(x) < 0.5 \rightarrow \theta^{T} x < 0$

Logistic Cost Function (Cross Entropy)

Regular MSE cost function would work but is generally non-convex Convex alternative that works only for $y \in \{0, 1\}$:

$$J(\theta) = \frac{1}{m} \left[\sum_{i=1}^{m} \underbrace{y^{i} \log h_{\theta}(x^{i})}_{\text{for } y=1} + \underbrace{(1-y^{i}) \log (1-h_{\theta}(x^{i}))}_{\text{for } y=0} \right]$$

One can analytically derive its gradient:

$$\nabla J(\theta) = \frac{1}{m} x^{T} (h_{\theta}(x) - y)$$

Softmax and Perceptron Cost Functions

For class labels $y \in \{0, 1\}$ one can instead use the following cost functions:

Softmax Cost

$$J(\theta) = \frac{1}{m} \left[\sum_{i=1}^{m} \log(1 + e^{-y^{i}\theta^{T}x^{i}}) \right]$$

Perceptron Cost

$$J(\theta) = \frac{1}{m} \left[\sum_{i=1}^{m} \max(0, -y^{i} \theta^{T} x^{i}) \right]$$

All perform similarly for datasets with noise (i.e., not linearly separable). Also very similar to Support Vector Machines (SVMs)

Classification Metrics

Classification Metrics Example

Multi-Class Classification

Multiple One-versus-Rest or One-versus-All classifiers

Alternative:

Simultaneous minimization of multi-perceptron or multi-softmax cost

K-Means Clustering

- 1. Pick number K of clustering centroids
- 2. Cluster Assignment: Group points by closest centroid (2-norm)
- 3. Move centroid to average position of grouped points
- 4. Check if centroid position converged, if not, go to step 2

How to pick K: Plot performance vs. K and identify "elbow" in the curve

Warning: Perform multiple times with different initialization

Dimensionality Reduction: Principal Component Analysis (PCA)

- 1. Feature scaling/mean normalization
- 2. Compute covariance matrix C
- 3. Eigen-decomposition of *C*
- 4. Pick the first k eigenvectors $V_1, V_2, ..., V_k$ for $\lambda_1 > \lambda_2 > ... > \lambda_k$
- 5. Project data onto these principal axes (Eigenvalue corresponds to capture variance)

$$z' = V_{\text{red}}^T x'$$
 \rightarrow $X_{\text{approx}}^i = V_{\text{red}} \cdot z'$

- Can choose *k* based on capture variance target
- For compression to speed up ML algorithms
- Visualization (k=2, 3)
- Don't use for reduction of features (regularization).
 PCA doesn't know anything about target label!

$$C = \frac{1}{m} \sum_{i=1}^{m} (x^i)(x^i)^T$$

$$C \cdot V = \lambda \cdot V$$

Decision Tree

Tree-like model splits data multiple times according to feature values (decision rules)

Tree to assign class N

Split according to feature values

- Hyperparameters: no. of trees, max depth, min. samples...
- Powerful, but prone to overfitting
- Greedy search (local; not gradient descent).

 Tries all features/thresholds at head node, then continue with each child node,...

Ensemble Methods: Random Forest

- Combine predictions from multiple models: Majority voting or Averaging
- Generally leads to higher accuracy (at loss of interpretability)

Model 1			60% Accurate
Model 2			40% Accurate
Model 3			60% Accurate
Ensemble			80% Accurate

- Random Forests: Ensemble of independent decision trees
- Gradient Boosted Regression: Ensemble of coupled decision trees

$$y^j = \sum_{i=1}^m \gamma_i \text{tree}_i(x^j)$$

Bagging Method

Each tree is generated from a random subset of training data and a random subset of features (bootstrap aggregation)

Hyperparameter Tuning: k-fold Cross-Validation

Things we Didn't Cover

There are a few more classic model architectures that we left out, including

- Support Vector Machine (SVM) maybe on homework
- Gaussian Processes maybe a guest lecture
- The Kernel approach
- Neural Networks (the Perceptron) later lecture on deep learning

Lecture Feedback

Please, scan the QR code and take a minute to let me know how the lecture was and mention any **feedback/questions**

This form is anonymous!