Métodos matemáticos para físicos I

Métrica, datos y calibración inteligente

Autores:

- Nicolás Toledo Parra, 2200017
- Gabriela Sánchez Ariza, 2200816

Introducción: Estamos viviendo una época de desarrollo explosivo de sensores que pueblan y generan datos en todas las facetas de nuestra cotidianidad. Estos sensores de bajo costo forman parte de dispositivos de la llamada revolución de la Internet de las cosas, IoT. Muchas veces estos sensores no son lo suficientemente precisos y deben ser calibrados con un patron de referencia. En este ejercicio se hará uso de las medidas de referencia de concentración de material particulado PM2,5 del archivo Datos estaciones AMB, y del archivo mediciones que contiene los registros de las estaciones de bajo costo. El problema de este trabajo está en cuantificar cuál es el error de medición del sensor de bajo costo y, como calibrarlo para que podamos establecer nuevas lecturas que sean mas precisas.

Para la presentación de este trabajo se realizó la división del código en tres secciones que corresponden a:

- 1. Reorganización de los datos
- 2. Promedio móvil
- 3. Regresión lineal de los datos

```
In [1]: #Importanción de Librerias importantes
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   from datetime import date, time, datetime
   from numpy.linalg import inv
```

1. Reorganización de los datos

Lectura de datos individuales

Se leen los datos de estaciones AMB y los del sensor de bajo costo.

```
In [2]: #A continuación, se leen los datos en DataFrames.
data=pd.read_excel('Datosasig2/ju/Datos_Estaciones_AMB_limpios.xlsx')
```

```
In [3]: medición1=pd.read_csv('Datosasig2/ju/med_1.txt')
    medición2=pd.read_csv('Datosasig2/ju/med_2.txt')
    medición6=pd.read_csv('Datosasig2/ju/med_6.txt')
    medición7=pd.read_csv('Datosasig2/ju/med_7.txt')
    medición8=pd.read_csv('Datosasig2/ju/med_8.txt')
    medición9=pd.read_csv('Datosasig2/ju/med_9.txt')
    medición10=pd.read_csv('Datosasig2/ju/med_10.txt')
```

```
In [4]: data = data.rename(columns={'fecha_hora_med' : 'Tiempo'})
   data = data.rename(columns={'PM2.5' : 'PM2.5_AMB'})
```

Se unen los datos de mediciones leídos anteriormente en un solo dataframe.

```
In [5]: all_mediciones=[medición1,medición2,medición6,medición7,medición8,medición9,medición9,mediciones= pd.concat(all_mediciones)
    all_mediciones = all_mediciones.rename(columns={'fecha_hora_med' : 'Tiempo'})
    all_mediciones = all_mediciones.rename(columns={'valor' : 'PM2.5_MED'})
    all_mediciones
```

Out[5]:

	Tiempo	id_parametro	PM2.5_MED
0	2018-12-01T04:01:10.470Z	pm25_a	11.714286
1	2018-12-01T03:01:21.774Z	pm25_a	13.999999
2	2018-12-01T02:01:11.940Z	pm25_a	17.000000
3	2018-12-01T01:01:11.357Z	pm25_a	17.571430
4	2018-12-01T00:01:11.955Z	pm25_a	15.285713
740	2019-08-01T09:02:50.208Z	pm25_a	32.416668
741	2019-08-01T08:02:50.208Z	pm25_a	42.749996
742	2019-08-01T07:02:51.208Z	pm25_a	28.416664
743	2019-08-01T06:03:00.526Z	pm25_a	30.250000
744	2019-08-01T05:02:50.206Z	pm25_a	24.749998

5009 rows × 3 columns

```
In [6]: data=data.dropna() #Se eliminan filas vacías
```

In [7]: data

Out[7]:

Tiempo	PM2.5_AMB
2018-10-01 00:00:00	6.4
2018-10-01 01:00:00	6.4
2018-10-01 02:00:00	6.7
2018-10-01 03:00:00	6.0
2018-10-01 04:00:00	7.3
2019-08-31 19:00:00	20.4
2019-08-31 20:00:00	18.7
2019-08-31 21:00:00	22.8
2019-08-31 22:00:00	25.2
2019-08-31 23:00:00	18.0
	2018-10-01 00:00:00 2018-10-01 01:00:00 2018-10-01 02:00:00 2018-10-01 03:00:00 2018-10-01 04:00:00 2019-08-31 19:00:00 2019-08-31 21:00:00 2019-08-31 22:00:00

7086 rows × 2 columns

```
In [8]: data['Tiempo'] = pd.to_datetime(data['Tiempo']) # Se convierten Las fechas a form
    data = data.set_index('Tiempo')

In [9]: all_mediciones['Tiempo'] = pd.to_datetime(all_mediciones['Tiempo'], unit='ns').dt
    all_mediciones= all_mediciones.set_index('Tiempo')

In [10]: data_hora = data.resample('H').mean() # Se realiza un remuestreo para organizar l
    data_dia = data.resample('D').mean() # intervalos de tiempo más cómodos y conver
    data_mes = data.resample('M').mean()

In [11]: all_mediciones_hora = all_mediciones.resample('H').mean()
    all_mediciones_dia= all_mediciones.resample('D').mean()
    all_mediciones_mes= all_mediciones.resample('M').mean()
```

In [12]: data_hora

Out[12]:

PM2.5_AMB

Tiempo	
2018-10-01 00:00:00	6.4
2018-10-01 01:00:00	6.4
2018-10-01 02:00:00	6.7
2018-10-01 03:00:00	6.0
2018-10-01 04:00:00	7.3
2019-08-31 19:00:00	20.4
2019-08-31 20:00:00	18.7
2019-08-31 21:00:00	22.8
2019-08-31 22:00:00	25.2
2019-08-31 23:00:00	18.0

8040 rows × 1 columns

In [13]: data_mes

Out[13]:

PM2.5_AMB

Tiempo	
2018-10-31	8.049394
2018-11-30	10.120972
2018-12-31	17.983423
2019-01-31	20.299730
2019-02-28	30.945763
2019-03-31	31.229310
2019-04-30	17.820781
2019-05-31	10.801478
2019-06-30	11.613769
2019-07-31	12.713710
2019-08-31	15.839382

In [14]: data_dia

Out[14]:

PM2.5_AMB

Tiempo	
2018-10-01	8.333333
2018-10-02	6.854167
2018-10-03	9.212500
2018-10-04	8.683333
2018-10-05	8.070833
	•••
2019-08-27	16.879167
2019-08-27 2019-08-28	16.879167 11.879167
2019-08-28	11.879167
2019-08-28	11.879167 15.029167

335 rows × 1 columns

In [15]: all_mediciones_hora

Out[15]:

PM2.5_MED

8.680555
8.472222
6.909722
6.347222
7.833333
6.166667
7.833333
5.416667
5.750000
19.166668

7230 rows × 1 columns

A continuación se fusionan las tablas de las estaciones AMB y de las medidas del sensor de bajo

costo en orden de horas.

Out[16]:

PM2.5_MED PM2.5_AMB

Tiempo		
2018-11-03 23:00:00	8.680555	11.5
2018-11-04 00:00:00	8.472222	12.2
2018-11-04 01:00:00	6.909722	12.6
2018-11-04 02:00:00	6.347222	12.1
2018-11-04 03:00:00	7.833333	8.8
2019-08-31 19:00:00	26.833332	20.4
2019-08-31 20:00:00	32.333336	18.7
2019-08-31 21:00:00	32.416668	22.8
2019-08-31 22:00:00	33.250000	25.2
2019-08-31 23:00:00	6.916667	18.0

3796 rows × 2 columns

In [17]: data_comparison_hora_cortada = data_comparison_hora.iloc[470::] #Se cortan una podata_comparison_hora_cortada #visualización de

Out[17]:

PM2.5_MED PM2.5_AMB

Tiempo		
2019-04-11 17:00:00	23.500000	18.5
2019-04-11 18:00:00	22.083334	18.9
2019-04-11 19:00:00	25.250000	18.0
2019-04-11 20:00:00	28.749998	18.4
2019-04-11 21:00:00	29.000000	19.3
2019-08-31 19:00:00	26.833332	20.4
2019-08-31 20:00:00	32.333336	18.7
2019-08-31 21:00:00	32.416668	22.8
2019-08-31 22:00:00	33.250000	25.2
2019-08-31 23:00:00	6.916667	18.0

3326 rows × 2 columns

```
In [18]: data_comparison_dia=pd.merge(all_mediciones_dia, data_dia, on='Tiempo')
    data_comparison_dia=data_comparison_dia.dropna()
    data_comparison_dia
```

Out[18]:

	PM2.5_MED	PM2.5_AMB		
Tiempo				
2018-11-03	8.680555	10.412500		
2018-11-04	9.225405	9.695833		
2018-11-05	5.034965	6.233333		
2018-11-06	9.110119	7.537500		
2018-11-07	14.696632	9.250000		
2019-08-27	20.430556	16.879167		
2019-08-28	13.711806	11.879167		
2019-08-29	18.611111	15.029167		
2019-08-30	23.572917	19.283333		
2019-08-31	30.347222	22.887500		
169 rows × 2 columns				

```
In [19]: data_comparison_dia.iloc[26]
    data_comparison_dia_cortada = data_comparison_dia.iloc[26::]
```

Out[20]:

PM2.5_MED PM2.5_AMB

Tiempo		
2018-11-30	11.165306	10.120972
2018-12-31	20.629088	17.983423
2019-04-30	16.336947	17.820781
2019-05-31	9.821778	10.801478
2019-06-30	13.707743	11.613769
2019-07-31	14.123609	12.713710
2019-08-31	20.040492	15.839382

En seguida se grafican los datos de concentración del material particulado PM2.5 tanto para los datos medidos como para los datos de referencia.

```
In [21]: plt.figure(figsize=(15,5))
    plt.plot(data_comparison_hora_cortada["PM2.5_MED"], color='cadetblue', label='Med
    plt.plot(data_comparison_hora_cortada["PM2.5_AMB"], color='blueviolet', label='AM
    plt.title("Comparación datos medidos y de referencia en horas")
    plt.xlabel("Tiempo")
    plt.ylabel("PM2.5")
    plt.legend()
```

Out[21]: <matplotlib.legend.Legend at 0x225dcd58d08>


```
In [22]: plt.figure(figsize=(15,5))
    plt.plot(data_comparison_dia_cortada["PM2.5_MED"], color='cadetblue', label='Medi
    plt.plot(data_comparison_dia_cortada["PM2.5_AMB"], color='blueviolet', label='AME
    plt.title("Comparación datos medidos y de referencia en días")
    plt.xlabel("Tiempo")
    plt.ylabel("PM2.5")
    plt.legend()
```

Out[22]: <matplotlib.legend.Legend at 0x225dd4bc888>


```
In [23]: plt.figure(figsize=(15,5))
    plt.plot(data_comparison_mes["PM2.5_MED"], color='cadetblue', label='Medidos')
    plt.plot(data_comparison_mes["PM2.5_AMB"], color='blueviolet', label='AMB')
    plt.title("Comparación datos medidos y de referencia en meses")
    plt.xlabel("Tiempo")
    plt.ylabel("PM2.5")
    plt.legend()
```

Out[23]: <matplotlib.legend.Legend at 0x225dd536c48>

2. Promedio móvil

Las siguientes líneas calculan una media móvil para los datos en orden de horas y de días con sus respectivos errores. El tamaño de la ventana en 5 y se calculan los promedios con pasos de 1.

```
In [ ]: data_comparison_hora_cortada_med = data_comparison_hora_cortada['PM2.5_MED'].rol]
    data_comparison_hora_cortada['Prom_mov_MED'] = data_comparison_hora_cortada_med
    data_comparison_hora_cortada_amb = data_comparison_hora_cortada['PM2.5_AMB'].rol]
    data_comparison_hora_cortada['Prom_mov_AMB'] = data_comparison_hora_cortada_amb
    data_comparison_hora_cortada['Error_Prom_mov'] = abs(data_comparison_hora_cortada_amb
    data_comparison_dia_cortada_med = data_comparison_dia_cortada['PM2.5_MED'].rollir
    data_comparison_dia_cortada['Prom_mov_MED'] = data_comparison_dia_cortada_med
    data_comparison_dia_cortada_amb = data_comparison_dia_cortada['PM2.5_AMB'].rollir
    data_comparison_dia_cortada['Prom_mov_AMB'] = data_comparison_dia_cortada_amb
    data_comparison_dia_cortada['Error_Prom_mov'] = abs(data_comparison_dia_cortada['Drom_mov_AMB'])
```

A continuación se pueden visualizar las tablas en escalas de horas y días, estas contienen las concentraciones de PM2.5 tanto de referencia como medidas, así como sus promedios móviles y

el respectivo error para el promedio móvil.

In [26]: data_comparison_hora_cortada

Out[26]:

	PM2.5_MED	PM2.5_AMB	Prom_mov_MED	Prom_mov_AMB	Error_Prom_mov
Tiempo					
2019-04-11 17:00:00	23.500000	18.5	NaN	NaN	NaN
2019-04-11 18:00:00	22.083334	18.9	NaN	NaN	NaN
2019-04-11 19:00:00	25.250000	18.0	NaN	NaN	NaN
2019-04-11 20:00:00	28.749998	18.4	NaN	NaN	NaN
2019-04-11 21:00:00	29.000000	19.3	25.716666	18.62	7.096666
2019-08-31 19:00:00	26.833332	20.4	27.100000	20.20	6.900000
2019-08-31 20:00:00	32.333336	18.7	29.366667	20.34	9.026667
2019-08-31 21:00:00	32.416668	22.8	30.083334	21.12	8.963334
2019-08-31 22:00:00	33.250000	25.2	30.316668	21.64	8.676668
2019-08-31 23:00:00	6.916667	18.0	26.350000	21.02	5.330000

3326 rows × 5 columns

In [27]: data_comparison_dia_cortada

Out[27]:

	PM2.5_MED	PM2.5_AMB	Prom_mov_MED	Prom_mov_AMB	Error_Prom_mov
Tiempo					
2019-04-11	26.226190	19.637500	NaN	NaN	NaN
2019-04-12	32.108696	23.154167	NaN	NaN	NaN
2019-04-13	33.920290	22.091667	NaN	NaN	NaN
2019-04-14	24.008772	20.162500	NaN	NaN	NaN
2019-04-15	25.250000	16.154167	28.302790	20.240000	8.062790
2019-08-27	20.430556	16.879167	18.256944	15.243333	3.013611
2019-08-28	13.711806	11.879167	16.652778	13.981667	2.671111
2019-08-29	18.611111	15.029167	15.959722	13.539167	2.420556
2019-08-30	23.572917	19.283333	18.666667	15.426667	3.240000
2019-08-31	30.347222	22.887500	21.334722	17.191667	4.143056

Se sobrepone la media móvil y los datos de PM2.5 y se grafica, esto se hace tanto para los datos medidos como para los datos de referencia. La escala usada es en días, ya que permite una visualización más clara.

Tiempo

Jun

Aug

Distancia Euclidiana promedios

```
In [30]: np.sqrt(np.sum((data_comparison_hora_cortada["Prom_mov_MED"]-data_comparison_hora
Out[30]: 301.8506978909095
In [31]: np.sqrt(np.sum((data_comparison_dia_cortada["Prom_mov_MED"]-data_comparison_dia_c
Out[31]: 36.17696775820832
```

3. Regresión lineal de los datos

Para realizar una regresión lineal por el método de mínimos cuadrados se partirá en dos mitades el conjunto de datos en para cada escala de tiempo:

Horas:

```
In [32]: data_comparison_hora1 = data_comparison_hora.iloc[0:1898:]
    data_comparison_hora2 = data_comparison_hora.iloc[1898:3797:]

In [33]: X1 = np.array([np.ones(len(data_comparison_hora1["PM2.5_MED"])), data_comparison_a1 = inv(X1.T @ X1) @ X1.T @ data_comparison_hora1["PM2.5_AMB"] ### Fórmula para
```

```
In [34]: ### Predicción
         x1 predict = np.linspace(data comparison hora1["PM2.5 MED"].min(), data comparison
         y1 predict = a1[0] + a1[1] * x1 predict ### Recta
In [35]: X2 = np.array([np.ones(len(data comparison hora2["PM2.5 MED"])), data comparison
         a2 = inv(X2.T @ X2) @ X2.T @ data comparison hora2["PM2.5 AMB"] ### Fórmula para
In [36]: ### Predicción
         x2_predict = np.linspace(data_comparison_hora2["PM2.5_MED"].min(), data_comparison
         y2 predict = a2[0] + a2[1] * x2 predict ### Recta
In [37]: plt.figure(figsize=(16,6))
         #Se grafican los puntos con las concetraciones PM2.5
         plt.scatter(data comparison hora1["PM2.5 MED"], data comparison hora1["PM2.5 AMB"
         plt.scatter(data_comparison_hora2["PM2.5_MED"], data_comparison_hora2["PM2.5_AMB'
         #Se grafican las rectas de ajuste.
         plt.plot(x1_predict, y1_predict, 'b', label="Modelo lineal primera mitad")
         plt.plot(x2_predict, y2_predict, 'r', label="Modelo lineal segunda mitad")
         plt.title("Comparación datos medidos y de referencia [horas]")
         plt.xlabel("Datos de concetraciones medidos")
         plt.ylabel("Datos de concetraciones de referencia")
         plt.legend()
         plt.show()
                                      Comparación datos medidos y de referencia [horas]
```


En la gráfica anterior se puede observar la línea azul correspondiente al modelo lineal para los datos azules, esta recta puede predecir cómo se comporta la concentración de PM2.5 a través del tiempo, para observar qué tan acertada es la predicción se muestra la segunda mitad de los datos (puntos verdes) y también se aplica un modelo lineal (recta roja). Como se puede evidenciar, las pendientes son muy parecidas, indicando así una buena predicción por parte del modelo lineal.

```
In [38]: slope, intercept = np.polyfit(x1_predict,y1_predict,1)
    print(slope)
```

0.4069466347108527

```
In [39]: slope, intercept = np.polyfit(x2_predict,y2_predict,1)
print(slope)
```

0.396257194789267

```
In [40]: ((0.4069466347108527-0.396257194789267)/0.4069466347108527)*100
```

Out[40]: 2.626742430043885

Al dividir los conjuntos en 2 partes iguales e implementar un modelo lineal para la primera parte del conjunto de datos, obtenemos una recta con pendiente 0.4069466347108527, que sería la recta que predice en dónde podrían ubicarse los valores de PM2.5 posteriores, si ubicamos el segundo conjunto de datos y volvemos a implementar modelo lineal, obtenemos una recta con pendiente 0.396257194789267, implicando que los datos se ubican prácticamente igual que en la primera mitad, adecuándose a la predicción, el error entre ambas rectas es de 2.62% (exactitud del 97.38%), por lo que este bajo error nos hace considerar que se hizo una buena predicción de cómo se comportarían los datos.

Días:

```
In [41]: data_comparison_dia1 = data_comparison_dia.iloc[0:84:]
    data_comparison_dia2 = data_comparison_dia.iloc[84:170]

In [42]: X1 = np.array([np.ones(len(data_comparison_dia1["PM2.5_MED"])), data_comparison_c
    a1 = inv(X1.T @ X1) @ X1.T @ data_comparison_dia1["PM2.5_AMB"] ### Fórmula para n

In [43]: ### Predicción
    x1_predict = np.linspace(data_comparison_dia1["PM2.5_MED"].min(), data_comparison
    y1_predict = a1[0] + a1[1] * x1_predict ### Recta

In [44]: X2 = np.array([np.ones(len(data_comparison_dia2["PM2.5_MED"])), data_comparison_c
    a2 = inv(X2.T @ X2) @ X2.T @ data_comparison_dia2["PM2.5_AMB"] ### Fórmula para n

In [45]: ### Predicción
    x2_predict = np.linspace(data_comparison_dia2["PM2.5_MED"].min(), data_comparison
    y2_predict = a2[0] + a2[1] * x2_predict ### Recta
```

```
In [46]: plt.figure(figsize=(16,6))
    #Se grafican los puntos con las concetraciones PM2.5
    plt.scatter(data_comparison_dia1["PM2.5_MED"], data_comparison_dia1["PM2.5_AMB"],
    plt.scatter(data_comparison_dia2["PM2.5_MED"], data_comparison_dia2["PM2.5_AMB"],
    #Se grafican las rectas de ajuste.
    plt.plot(x1_predict, y1_predict, 'b', label="Modelo lineal primera mitad")
    plt.plot(x2_predict, y2_predict, 'r', label="Modelo lineal segunda mitad")
    plt.title("Comparación datos medidos y de referencia [días]")
    plt.xlabel("Datos de concetraciones medidos")
    plt.ylabel("Datos de concetraciones de referencia")

plt.legend()
    plt.show()
```


Meses:

```
In [47]: data_comparison_mes1 = data_comparison_mes.iloc[0:4:]
    data_comparison_mes2 = data_comparison_mes.iloc[4:8:]

In [48]: X1 = np.array([np.ones(len(data_comparison_mes1["PM2.5_MED"])), data_comparison_n
    a1 = inv(X1.T @ X1) @ X1.T @ data_comparison_mes1["PM2.5_AMB"] ### Fórmula para n

In [49]: ### Predicción
    x1_predict = np.linspace(data_comparison_mes1["PM2.5_MED"].min(), data_comparison
    y1_predict = a1[0] + a1[1] * x1_predict ### Recta
```

```
In [50]: X2 = np.array([np.ones(len(data comparison mes2["PM2.5 MED"])), data comparison mes2["PM2.5 MED"])
         a2 = inv(X2.T @ X2) @ X2.T @ data comparison mes2["PM2.5 AMB"] ### Fórmula para n
In [51]:
         ### Predicción
         x2 predict = np.linspace(data comparison mes2["PM2.5 MED"].min(), data comparison
         y2 predict = a2[0] + a2[1] * x2 predict ### Recta
In [52]:
         plt.figure(figsize=(16,6))
         #Se grafican los puntos con las concetraciones PM2.5
         plt.scatter(data comparison mes1["PM2.5 MED"], data comparison mes1["PM2.5 AMB"],
         plt.scatter(data_comparison_mes2["PM2.5_MED"], data_comparison_mes2["PM2.5_AMB"],
         #Se grafican las rectas de ajuste.
         plt.plot(x1_predict, y1_predict, 'b', label="Modelo lineal primera mitad")
         plt.plot(x2_predict, y2_predict, 'r', label="Modelo lineal segunda mitad")
         plt.title("Comparación datos medidos y de referencia [meses]")
         plt.xlabel("Datos de concetraciones medidos")
         plt.ylabel("Datos de concetraciones de referencia")
         plt.legend()
         plt.show()
```


Como se puede notar, el mejor modelo lineal es en escala de horas, por eso las pendientes de ambas rectas y su porcentaje de error fueron calculados a partir de esta escala.

Histogramas

Algunos histogramas que muestran la distribución de los datos medidos y de referencia.

```
In [53]: datos = pd.Series(data_comparison_hora["PM2.5_AMB"].astype(int)) # cargamos los d
    intervalos = range(min(datos), max(datos) + 2) # calculamos los extremos de los

plt.figure(figsize=(16,6))
    datos.plot.hist(bins=8, color='#F2AB6D', rwidth=0.85) # generamos el histograma d
    plt.xticks(intervalos)
    plt.ylabel('Cantidad de datos')
    plt.xlabel('Concentración de PM 2.5')
    plt.title('Datos de referencia')

plt.show()
```



```
In [54]: datos1 = pd.Series(data_comparison_hora["PM2.5_MED"].astype(int)) # cargamos los
    intervalos1 = range(min(datos1), max(datos1) + 2) # calculamos los extremos de l

plt.figure(figsize=(16,6))
    datos.plot.hist(bins=8, color='#F2AB6D', rwidth=0.85) # generamos el histograma d
    plt.xticks(intervalos1)
    plt.ylabel('Cantidad de datos')
    plt.xlabel('Concentración de PM 2.5')
    plt.title('Datos medidos')

plt.show()
```

