HOMESNITCH

Behavior Transparency for Smart Home IoT Devices

TJ O'Connor, North Carolina State University
Reham Mohamed, Technische Universität Darmstadt
Markus Miettinen, Technische Universität Darmstadt
William Enck, North Carolina State University
Bradley Reaves, North Carolina State University
Ahmad-Reza Sadeghi, Technische Universität Darmstadt

Motivating Example

response.response.shouldEndSession = false response.response.reprompt = NULL;

IoT lacks transparency of behaviors and offers limited access control

Problem

How can we provide transparency and control of behaviors of otherwise resource constrained smart home IoT devices?

Challenges

- Behavior Classification
- Network Mediation

Related Work

IoT Behavior Detection/Classification

- Bezawada et. al. 2018. Behavioral Fingerprinting of IoT Devices. In Workshop on Attacks and Solutions in Hardware Security (ASHES). ACM, Toronto, Canada, 41–50. (IoTSense)
- Acar et al. Peek-a-Boo: I see your smart home activities, even encrypted! (Arxiv), 2018.
- Acar et al. "Web-based Attacks to Discover and Control Local IoT Devices." Proceedings of the 2018 Workshop on IoT Security and Privacy. ACM, 2018 (IoT-Inspector)

Classification

Reed and Kranch, "Identifying https-protected Netflix videos in real-time," in Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy, ser. CODASPY '17.

Training Data Sets

- M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A. R. Sadeghi, and S. Tarkoma, "lot sentinel: Automated device-type identification for security enforcement in iot," ICDCS 2017.
- Omar Alrawi, Chaz Lever, Manos Antonakakis, Fabian Monrose; SoK: Security Evaluation of Home-Based IoT Deployments, IEEE S&P, May 2019.

Challenges

Behavior Classification

- Encrypted communications
- Proprietary protocols
- Using only transport headers

Network Mediation

- Flat IP address space
- Cannot segment the network
- Perpetually connected devices

Threat Model

Assumptions: Devices with default credentials, lack security protocols, enable over-privilege.

Attacker Goal: Execute a behavior transparently to end user.

TCB: the SDN security application, the network data plane devices.

We do not address the case of a compromised device that can perform mimicry attacks.

Deployment Task: Extend beyond TCP/IP to ZigBee, Bluetooth, NFC protocols.

Here's How The CIA Allegedly Hacked Samsung Smart TVs --And How To Protect Yourself

Thomas Brewster Forbes Staff

Securit

I cover crime, privacy and security in digital and physical forms.

Your Ring doorbell was vulnerable to being spied on....again

Amazon has already patched this vulnerability, so make sure you update your app,

by Joe Rice-Jones

es 🂆 N

March 1, 2019

Amazon's kid-friendly Echo Dot is under scrutiny for alleged child privacy violations

Amazon says it upholds the privacy rules

By Makena Kelly | @kellymakena | May 9, 2019, 12:54pm EDT

Design

Behavior Classification

- Classifies flows into known behaviors.
- Identifies when new behaviors occur.

Policy Enforcer

- Translates policy into network rules.
- Uses OpenFlow modifications for traffic.

Behaviors

Our initial attempts tried to classify **just based on activity alone**; however we found devices implement activities differently.

Our behaviors are a triple of **<Vendor>,<Device>,<Activity>**; examples include

- <Ring>,<Doorbell>,<Heartbeat>
- <Ring>,<Doorbell>,<Video>
- <Canary>,<Security Camera>,<Video>

We use our behavior triples to find the next nearest behavior to the vendor, type of device and activity.

Traffic Classification

																	10.10.4.				L
							,LO	toco	ι, :	Src	Po	rt:	443	3, [Ost	Port:	50015,	Seq:	1,	Ack:	
▼ Sec																					
⊳ T	LSv	1.2	Re	cor	d L	aye	r:	Appl	ica	tio	n D	ata	Pn	oto	col	: http	o-over-t	ls			
0000	fc	69	98	ch	24	da	aa	50	43	92	8d	aa	08	aa	45	88	P	۲.	F		
0010	01	d6	67	48	00	00	34	96	5c								qH4.				
0020						5f					Ød						95		٠		
0030						00					4c					aa					
0040	34	3f	17	03	03	01	9d	00	00	00	00	00	00	60	04	f3	4?				
0050						5b					fc						B:[
0060						11					e1						.Emmc7				
0070						b1					29						`В				
0080						bb					22						S."%				
0090						ff			74								u.0				
00a0						07					20						s0[
00b0						f7 13					d0						b				
00c0 00d0						15 1f					56 32						M				
00e0						fd					31						en 2.R~:				
00f0						8f					44						.~k				
0100						46					a7						.lF.:				
0110						11					e9						Lh{1"				
0120						5c					93						;\				
0130						0e					89						c				
0140						ff					ad						.Om	iv.			
0150	70	a8	f0	98	4f	12	4a	3d	af	Øb.	9d	0e	dd	bd	99	7a	p0.J=			z	
0160						99					f6						k.M				
0170						f8					b4						c{.				
0180						c8					c9						6[
0190						8с					52						@<.				
01a0						49			75	5d	48	48	b5	57	1d	9d	jIxo	u]HI	1.W.		
01b0						44					05						.+5Df.				
01c0						53					c6						fs				
01d0					29	40	ьe	50	TŤ	aØ	04	90	e4	et	р3		S)@n\	• • • •	• • • •	/	
01e0	90	u5	29	DC).				

Behavior: Nest, Protect, Alarm Test

Protocol: HTTP-over-TLS

DPORT: 443

DST: 216.58.217.213 (Google Cloud)

Behavior: Canary, Camera, Video

Protocol: HTTP-over-TLS

DPORT: 443

DST: 52.0.14.180 (Amazon AWS)

Behavior Classification Insight

Adudump constructs a structural model that ignores transport layer effects.

Provides an abstract representation model for the exchange between a client and a server.

Bridges gap between transport layer packet headers and client/server application dialogues.

```
SYN,1498821090.224348,10.10.4.197.60829,>1,130.211.93.93.80
RTT,1498821090.351369,10.10.4.197.60829,<1,130.211.93.93.80,0.126964
SEQ,1498821090.352212,10.10.4.197.60829,>1,130.211.93.93.80
ADU,1498821090.617700,10.10.4.197.60829,>1,130.211.93.93.80,726,SEQ,0.128930
ADU,1498821090.618610,10.10.4.197.60829,<1,130.211.93.93.80,457,SEQ
END,1498821090.633606,10.10.4.197.60829,x0,130.211.93.93.80
```


NC STATE UNIVERSITY

Behavior Classification: Feature Selection

Features derived from ADU.

Features describe ADU:

- Throughput
 - Burstiness
 - Synchronicity
 - Duration

Throughput Throughput Throughput Throughput Burstiness	0.213104 0.072519 0.105775 0.117552		
Throughput Throughput	0.105775		
Throughput			
	0.117552		
Ruretinges			
Duistiliess	0.038917		
Burstiness	0.038344		
Burstiness	0.079063		
Burstiness	0.135909		
Burstiness	0.054491		
Burstiness	0.050798		
Synchronicity	0.013566		
Synchronicity	0.016211		
Duration	0.063750		
	Burstiness Burstiness Burstiness Burstiness Synchronicity Synchronicity		

SYN,1498821090.224348,10.10.4.197.60829,>1,130.211.93.93.80 RTT,1498821090.351369,10.10.4.197.60829,<1,130.211.93.93.80,0.126964 SEQ,1498821090.352212,10.10.4.197.60829,>1,130.211.93.93.80 ADU,1498821090.617700,10.10.4.197.60829,>1,130.211.93.93.80,726,SEQ,0.128930 ADU,1498821090.618610,10.10.4.197.60829,<1,130.211.93.93.80,457,SEQ END,1498821090.633606,10.10.4.197.60829,x0,130.211.93.93.80

Random Forest Classifier

Unknown Behaviors Are Important

UBMR :	percentage of data-points in a given
dataset	belonging to previously unseen
classes	that fail to be identified as a new class.

	Acc.	Recall	F1
KNN	99.32+/12	87.97+/-2,16	86.35+/-2.65
Gradient Boost	64.70+/-42.10	53.55+/-33.51	51.72+/-32.72
Random Forrest	99.69+/06	94.66+/-1.21	93.93+/-1.40

Random Forest: perform well for numerical features without scaling and perform implicit feature selection.

Minimal Training

We used a <u>test training approach</u> that incrementally added back individual ADUs of each behavior class.

Results indicated behaviors can be trained with relatively few samples.

58.82 samples for 90% confidence. 62.28 samples for 95% confidence.

How do we use HomeSnitch

NC STATE UNIVERSITY

Policy Enforcement

Policy Language: Device, Behavior, Context → Action

```
\langle \text{rule} \rangle ::= \langle \text{action} \rangle \langle \text{device} \rangle \langle \text{behavior} \rangle \langle \text{context} \rangle
                                                                                                                                         (1)
    \langle action \rangle ::= \langle alert \rangle \mid \langle log \rangle \mid \langle pass \rangle \mid \langle drop \rangle \mid \langle reject \rangle \mid \langle redirect \rangle
                                                                                                                                         (2)
    \langle device \rangle ::= \langle vendor \rangle "-" \langle model \rangle
                                                                                                                                         (3)
   \langle \text{vendor} \rangle ::= \langle \text{const} \rangle
                                                                                                                                         (4)
   \langle model \rangle ::= \langle const \rangle
                                                                                                                                         (5)
⟨behavior⟩ ::= ⟨vendor⟩ ⟨model⟩ ⟨activity⟩
                                                                                                                                         (6)
 \langle activity \rangle ::= \langle const \rangle
                                                                                                                                         (7)
  \langle context \rangle ::= \langle time\_ctx \rangle \mid \langle enc\_ctx \rangle \mid \langle mgt\_ctx \rangle
                                                                                                                                         (8)
\langle \text{time\_ctx} \rangle ::= \text{``(T:"} \langle \text{time} \rangle \text{``-"} \langle \text{time} \rangle \text{``)"}
                                                                                                                                         (9)
 ⟨enc_ctx⟩ ::= "(C:" ⟨encrypted⟩ | ⟨unencrypted⟩ ")"
                                                                                                                                       (10)
\langle mgt\_ctx \rangle ::= "(M:" \langle present \rangle | \langle notpresent \rangle ")"
                                                                                                                                       (11)
       \langle \text{time} \rangle ::= [0-9] [0-9] ":" [0-9] [0-9]
                                                                                                                                       (12)
      \langle const \rangle ::= "',"[A-Za-z0-9.]+"',"
                                                                                                                                       (13)
```

Policy language develops rules to control application behaviors.

Develops OpenFlow FlowMods that enforce policy by:

- matching from historical knowledge of behaviors.
- providing instructions for future matches of behaviors.

Enforcing Policies With HomeSnitch

OFPST_FLOW reply (OF1.3) (xid=0x2):

n_bytes=5488, actions=drop

n_bytes=25974, actions=drop

OFPST_FLOW reply (OF1.3) (xid=0x2):

n bytes=1936, actions=drop

Amazon, EchoDot, Analytics	2018-10-08 04:56:21	233	Permitted	Ш
Amazon,EchoDot,FirmwareCheck	2018-05-04 18:13:00	1	Paused	Þ
Amazon,EchoDot,TimeCheck	2018-10-08 07:51:07	16782	Permitted	Ш
Amazon,EchoDot,VoiceCommands	2018-10-05 16:48:30	12	Paused	•
Amazon,EchoDot,WiFiCheck	2018-10-06 21:33:11	610	Paused	•
Aria,Scale,WeightResults	2018-05-04 08:36:18	1	Permitted	Ш
Canary,Camera,HeartBeat	2018-10-08 04:58:23	4870	Paused	·
Canary,Camera,Video	2018-10-05 16:05:35	38	Permitted	П

Limitations

- Communications Protocols
- Online Classification
- Mimicry Attacks

Thank you

- Our work provides a building block for transparency and control of smart-home devices.
- Leverages software defined networking and machine learning to classify behaviors.
- Offers insight into device semantic behaviors and fine-grained control over behaviors.

TJ O'Connor

Wolfpack Security and Privacy Research (WSPR) Lab

NC State University

tjoconno@ncsu.edu

https://www.tjoconnor.org

