

Pruebas de Acceso a las Universidades de Castilla y León

MATEMÁTICAS II

Texto para los Alumnos

Nº páginas 2

CRITERIOS GENERALES DE EVALUACIÓN DE LA PRUEBA: Se observarán fundamentalmente los siguientes aspectos: Correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones.

DATOS O TABLAS (SI HA LUGAR): Podrá utilizarse una calculadora "de una línea". No se admitirá el uso de memoria para texto, ni de las prestaciones gráficas.

OPTATIVIDAD: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos problemas, PR-1 y PR-2, y cuatro cuestiones, C-1, C-2, C-3 y C-4. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. **EL ALUMNO DEBERÁ ESCOGER UNA DE LAS PRUEBAS, A ó B, Y DESARROLLAR LAS PREGUNTAS DE LA MISMA EN EL ORDEN QUE DESEE**.

PRUEBA A

PROBLEMAS

PR-1.- Sea el plano $\pi \equiv x + y - 2z - 5 = 0$ y la recta $r \equiv x = y = z$. Se pide:

a) Calcular la distancia de la recta al plano.

(1 punto)

b) Hallar un plano que contenga a r y sea perpendicular a π .

(1 punto)

c) Hallar el punto simétrico de P(-1,3,3) respecto a π .

(1 punto)

PR-2.- Sea la función
$$f(x) = \frac{x}{x^2 - 1}$$
.

- a) Hallar los intervalos de crecimiento y decrecimiento, los de concavidad y convexidad, los puntos de inflexión y las asíntotas. Esbozar su gráfica. (2 puntos)
- b) Calcular el área de la región limitada por dicha gráfica y las rectas x = -4, x = -2.

(1 punto)

CUESTIONES

C-1.- Hallar para qué valores de a es inversible la matriz $A = \begin{pmatrix} a & 4+3a \\ 1 & a \end{pmatrix}$ y calcular la

inversa para a = 0.

(1 punto)

C-2.- Calcular
$$\lim_{x\to 0} \left(\frac{1}{\ln(1+x)} - \frac{1}{x}\right)$$
. (1 punto)

C-3.- Hallar el área del triángulo cuyos vértices son A(1,1,0), B(2,-1,0) y C(2,4,0).

(1 punto)

C-4.- Demostrar que las curvas $f(x) = \operatorname{sen} x$ y $g(x) = \frac{1}{x}$ se cortan en algún punto del

intervalo
$$(2\pi, \frac{5\pi}{2})$$
. (1 punto)

PRUEBA B

PROBLEMAS

PR-1.- Sean las matrices
$$A = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 7 \\ 2 \\ -2 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $D = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$ y $E = \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix}$.

a) Hallar la matriz AB^T donde B^T indica la matriz traspuesta de B. ¿Es inversible?

(1 punto)

b) Hallar el rango de la matriz $A^T D$.

(0,5 puntos)

c) Calcular $M = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ que verifique la ecuación $(AB^T + C)M = E$. (1,5 puntos)

PR-2.- Sea la función $f(x) = x + e^{-x}$.

- a) Hallar los intervalos de crecimiento y decrecimiento, los extremos relativos, los intervalos de concavidad y convexidad y las asíntotas. Esbozar su gráfica. (2 puntos)
- b) Demostrar que existe algún número real c tal que $c + e^{-c} = 4$. (1 punto)

CUESTIONES

C-1.- Hallar *a* y *b* para que la función

$$f(x) = \begin{cases} a + x \ln x & \text{si} \quad x > 0 \\ b & \text{si} \quad x = 0 \\ \frac{\text{sen}(\pi x)}{x} & \text{si} \quad x < 0 \end{cases}$$

sea continua en todo *R*.

(1 punto)

- C-2.- Dadas las rectas $r = \begin{cases} x + y z = 0 \\ x + 2y = 7 \end{cases}$ y $s = \begin{cases} x = 2 \\ y = -5 \end{cases}$, hallar un punto de cada una de ellas, de tal forma, que el vector que los una sea perpendicular a ambas. (1 punto)
- **C-3.-** Discutir en función de a el sistema $\begin{cases} ax + ay = a \\ x ay = 1 \end{cases}$ (1 punto)
- C-4.- Hallar el área del recinto limitado por las curvas de ecuaciones:

$$y = x^2 - 4$$
, $y = 3x - 6$. (1 punto)