DM 25

Problème 1

Partie I

Soit f une application de \mathbb{R} dans \mathbb{R} .

Pour tout $i \in \mathbb{N}$, lorsque f est i fois dérivable sur \mathbb{R} , on note $f^{(i)}$ la dérivée i-ème de f. Pour tout $i \in \mathbb{N}$, lorsque $f^{(i)}$ est définie et bornée sur \mathbb{R} , on note $M_i = \sup_{x \in \mathbb{R}} |f^{(i)}(x)|$.

- 1°) Pour cette seule question, on suppose que, pour tout $x \in \mathbb{R}$, $f(x) = \cos(2x)$. Pour tout $i \in \mathbb{N}$, calculer M_i .
- 2°) On suppose que f est de classe C^2 sur \mathbb{R} . On suppose également que f et f'' sont bornées sur \mathbb{R} . Montrer que, pour tout $x \in \mathbb{R}$ et $h \in \mathbb{R}_+^*$, $|f(x+h) - f(x-h) - 2hf'(x)| \le h^2 M_2$. En déduire que f' est bornée et que $M_1 \le \frac{M_0}{h} + \frac{M_2 h}{2}$.
- 3°) Lorsque f est de classe C^2 et que f et f'' sont bornées sur \mathbb{R} , montrer que $M_1 \leq \sqrt{2M_0M_2}$.
- **4°)** Montrer de même que, si f est de classe C^3 sur \mathbb{R} et que f et $f^{(3)}$ sont bornées sur \mathbb{R} , alors $M_1 \leq \frac{1}{2} \left(9M_0^2M_3\right)^{1/3}$. f'' est-elle également bornée sur \mathbb{R} ?

Partie II

Dans toute cette partie, n est un entier naturel supérieur ou égal à 2 et f est une application de \mathbb{R} dans \mathbb{R} , de classe C^n , telle que f et $f^{(n)}$ sont bornées sur \mathbb{R} .

5°) Soit $m \in \mathbb{N}^*$. Montrer que, lorsque x tend vers 0,

$$(e^{x}-1)^{m} = \sum_{j=0}^{m} \left(\sum_{k=0}^{m} {m \choose k} (-1)^{m-k} k^{j} \frac{x^{j}}{j!} + o(x^{m}).\right)$$

En déduire que $\sum_{k=1}^m \binom{m}{k} (-1)^{m-k} k^j = \begin{cases} 0 \text{ si } j \in \{1, \dots, m-1\} \\ m! \text{ lorsque } j = m \end{cases}.$

6°) Montrer que, pour tout
$$x \in \mathbb{R}$$
 et $h \in \mathbb{R}^*_+$, $\left| \sum_{j=1}^{n-1} \frac{f^{(j)}(x)}{j!} h^j \right| \leq \frac{M_n h^n}{n!} + 2M_0$.

À l'aide de la question 5, montrer que $f^{(n-1)}$ est bornée sur \mathbb{R} . Montrer que pour tout $k \in \{0, \dots, n\}$, M_k est bien défini.

- **7°)** Lorsque f n'est pas constante, montrer que, pour tout $k \in \{0, \ldots, n\}, M_k > 0$.
- 8°) Soit $n \in \mathbb{N}^*$ et soit $(s_k)_{1 \leq k \leq n}$ une suite croissante de réels strictement positifs. Montrer que, pour tout $k \in \{1, \ldots, n\}, (s_1 s_2 \ldots s_k)^n \leq (s_1 s_2 \ldots s_n)^k$.
- **9°)** En déduire que, pour tout $k \in \{0,\ldots,n\}$, $M_k \le 2^{\frac{k(n-k)}{2}} M_0^{1-\frac{k}{n}} M_n^{\frac{k}{n}}$. Indication : on pourra poser $s_k = 2^{k-1} \frac{M_k}{M_{k-1}}$,

Problème 2

Dans tout ce problème, $(a_n)_{n\in\mathbb{N}}$ désigne une suite de réels.

Lorsque $(s_0, s_1) \in \mathbb{R}^2$, on définit la suite réelle $(s_n)_{n \in \mathbb{N}}$ dont les premiers termes sont s_0 et s_1 et dont les autres termes sont donnés par la relation de récurrence suivante : pour tout $n \geq 1$, $s_{n+1} = s_n + a_{n-1}s_{n-1}$.

Partie I

- 1°) On suppose pour cette question que pour tout $n \in \mathbb{N}$, $a_n \geq 0$. On suppose de plus que $s_0 \geq 0$ et $s_1 > 0$.
- a) Préciser le sens de variation de la suite $(s_n)_{n\geq 1}$.
- **b)** Pour tout $n \ge 2$, montrer que $s_{n+1} \le s_n e^{a_{n-1}}$.
- c) Montrer que la suite (s_n) et la série $\sum a_n$ ont la même nature.
- 2°) On suppose pour cette question que la série $\sum a_n$ est absolument convergente et on considère la suite (v_n) définie par

$$v_0 = |s_0|, v_1 = |s_1|$$
 et, pour $n \ge 1, v_{n+1} = v_n + |a_{n-1}|v_{n-1}$.
Comparer $|s_n|$ et v_n .

Montrer que la série $\sum |s_{n+1} - s_n|$ converge puis que la suite (s_n) est convergente.

3°) On suppose dans cette question que $a_n = a^n$, où a est un réel de l'intervalle]0,1[, et que la limite L de la suite (s_n) est non nulle.

En fonction de L et de a, déterminer un équivalent de $s_{k+1} - s_k$ puis un équivalent de $L - s_n$.

- **4°)** On suppose dans cette question que $a_n = \frac{1}{(n+1)(n+2)}$ et que la limite L de la suite (s_n) est non nulle.
- a) Montrer que $L s_n \sim \frac{L}{n}$.
- **b)** Déterminer un équivalent de $s_n L + \frac{L}{n}$ en fonction de L.

Partie II

Dans toute cette partie, on suppose que a_n est strictement positif pour tout entier naturel n et que la série $\sum a_n$ est convergente. On note $L(s_0, s_1)$ la limite de la suite (s_n) .

 5°) Montrer que L est une application linéaire de \mathbb{R}^2 dans \mathbb{R} .

Dans toute la suite de cette partie, on suppose que $(s_0, s_1) \neq (0, 0)$.

- **6°)** Montrer que s'il existe un indice $m \in \mathbb{N}$ tel que $s_m = 0$, alors $L(s_0, s_1) \neq 0$.
- **7°)** Montrer que $Ker(L) \neq \mathbb{R}^2$ et que $Ker(L) \neq \{0\}$.

Ainsi $\operatorname{Ker}(L)$ est une droite vectorielle de \mathbb{R}^2 (on ne demande pas de le démontrer). On dira que la suite (s_n) est alternée si $s_n s_{n+1} < 0$ pour tout $n \in \mathbb{N}$.

- 8°) Montrer que le couple de réels (s_0, s_1) est dans Ker(L) si et seulement si la suite (s_n) est alternée.
- 9°) Lorsqu'on impose la condition $(s_0, s_1) \in \text{Ker}(L)$, montrer que le rapport $r_0 = -\frac{s_1}{s_0}$ ne dépend pas de (s_0, s_1) .
- 10°) On suppose dans cette question que le couple (s_0, s_1) appartient à $\operatorname{Ker}(L)$ et on pose $r_n = -\frac{s_{n+1}}{s_n}$ pour tout $n \in \mathbb{N}$.

Prouver que, pour tout entier $n \ge 1$, $r_n = -1 + \frac{a_{n-1}}{r_{n-1}}$ et $0 < r_n < a_n$.

Déterminer la nature des séries $\sum r_n$, $\sum s_n$ et $\sum |s_n|$.

Pour tout entier naturel n, on considère la fonction

$$f_n: [0, +\infty[\longrightarrow [0, +\infty[\text{ définie par } f_n(x) = \frac{a_n}{1+x}.$$

Pour tout $n \in \mathbb{N}$, on pose $g_n = f_0 \circ f_1 \circ \cdots \circ f_n$ et $p_n = g_n(0)$.

11°) Etablir que f_n et g_n sont monotones et dérivables.

Montrer que, pour tout $x \ge 0$, $|g'_n(x)| \le a_0 a_1 \cdots a_n$.

En déduire que, pour tout $n \ge 1$, $|p_n - p_{n-1}| \le a_0 a_1 \cdots a_n$.

12°) Montrer que $p_n \xrightarrow[n \to +\infty]{} r_0$.