訊號與系統 期末專題報告

生理訊號分析 ~ECG/ICG

蘇煒閎 0816048 蕭岑晏 0816184

目錄

1.	ECG	乱犹分仇	2
1	-1.	系統架構	2
	(1)	讀取實驗數據	
	(2)	基本雜訊處理	2
	(3)	ECG R-R interval 計算	3
	(4)	FFT (傅立葉轉換)	3
	(5)	計算 Power Spectrum	4
	(6)	計算 Total Power (心臟總功率)	4
	(7)	計算 LF/HF	5
1	2.	使用流程	5
1	-3.	進階雜訊處理方法	5
1	-4.	訊號分析方法	6
1	-5.	計算出的參數代表之生理意義	7
1	-6.	分析結果推論	8
2.	ICG i	訊號分析	9
2	·1.	系統架構與訊號分析方法	9
	(1)	讀取實驗數據 :	
	(2)	SV (stroke volume)的產生 :	
2	2-2.	使用流程	
2	:-3.	計算出的參數代表之生理意義	
2	:-4.	分析結果推論	12

1. ECG 訊號分析

1-1. 系統架構

本專題的 ECG 系統結構如下圖:

(1) 讀取實驗數據

使用 Read Delimited Spread Sheet 讀取 csv 檔裡面的數據,先把第一行的時間戳記利用 Delete From Array 刪除,再利用 Reshape Array (參數 dimension size 設成 180s * 2000 Hz = 360000 個資料點) 把二維資料轉成連續一維資料,並透過 Build WaveForm 連接震幅、取樣時間等資訊,輸出成 WaveForm Signal 並繪製在 WaveForm Graph 上。

(圖一) Data from "WD_Baseline.csv"

(2) 基本雜訊處理

使用 Band Pass Filter 帶通濾波,分別處理 AC 雜訊以及造成 baseline wandering 的極低頻干擾,以取得較乾淨的波形。圖二為濾波前的波形,圖三為濾波後的波形,可明顯看出訊號的 AC 雜訊抖動變清晰,但是 baseline wandering 的改善狀況不明顯。

(3) ECG R-R interval 計算

使用 Waveform Monitor 中的 Peak Detection 來偵測每個 ECG 訊號中的相鄰的波鋒R 點是位於在 array 中第幾個 element,再把這些相鄰 index 相減計算出中間間隔幾個取樣點,最後把這些數值乘以取樣的週期,也就是 1/2000 = 0.0005 sec , 得到RRI Series,並畫在 Waveform Graph 上。

(4) FFT (傅立葉轉換)

將前一步驟中所得到的 RRI Series,輸入 Signal Processing 中的 FFT,經由 DTFT 轉換後會產生一連續且具週期性的頻譜訊號,而在圖上則呈現一週期的訊號。

(5) 計算 Power Spectrum

利用 Spectral Measurement 中的 Power Spectrum · 將 RRI Series 轉換成 Power Spectrum ·

(6) 計算 Total Power (心臟總功率)

透過積分運算,先使用 **Get Waveform Subset** 把 power spectrum 分解並得到小於 0.4 Hz 的波形,再算出 power spectrum 曲線下的總面積,即可得到所需的 total power 值。

(7) 計算 LF/HF

同樣先用 **Get Waveform Subset** 把 power spectrum 分解,可以分別得到 0.04Hz ~ 0.15Hz 及 0.15Hz ~ 0.4Hz 的波形圖,再透過積分分別求得結果最後相除,即可得到所需 LF/ HF。

1-2. 使用流程

步驟(1): 在以下欄位分別輸入 Lower Cut-off frequency 以及 High Cut-off frequency 以指定帶通濾波器的通過頻率。另外,給定 peak detection threshold,並選擇 Peak 或 Valley 以決定要用 peak detection 判斷波峰或波谷。其中,在輸入 peak detection threshold 後,labview 會自動變更顯示單位(如: 0.75 -> 750m),但並不影響實際值。

Upper Cut-Off freq.	Lower Cut-Off freq.	Peak detection threshold	Peaks/Valleys
940	0.3	∂750.00m	Peaks

步驟(2):點選 " 執行 " , 並選擇想要讀取的 csv 檔的路徑位置

步驟(3): 讀取 ECG 相關的各項計算結果值

1-3. 進階雜訊處理方法

分析題目所提供的訊號後,發現主要的雜訊來源有兩者,而不同的 csv 檔皆需要調整各個適合的濾波參數:

- (1) 40Hz 以上的 AC 雜訊。這種訊號可以由低通濾波器來濾掉,濾過後即可得到較乾淨清晰的訊號。
- (2) baseline wandering。在網路搜尋後,了解到 baseline wandering 一般來說有兩種處理 方式,一種是採用 high pass filter 降低 baseline wandering 的影響 (baseline wandering 本身是一種非常低頻的訊號),另一種方式則是採用 wavelet denoise,來降低 baseline wandering 的影響。

其中,較難處理的訊號是 WD 的 ECG,此訊號的 RR 峰值間會有滿明顯的兩個波峰,這兩個波峰常常會干擾 peak detection ,造成多讀取到峰值,這時我們試著調低 high cut off

的頻率以及調高 low cut off 的頻率,使 bandwidth 變小,更能區分出 RR 峰值。但有某些還是無法避免誤判,這時我們會改讓 peak detection 去判斷波谷,就能準確判斷。

針對每一筆 ECG 訊號,我們得出最有效的雜訊處理參數如下:

Lo freq / Hi freq / peak or valley / peak(valley) detection threshold	WD	YY
baseline	0.3 / 40 / peak / 0.75	0.3 / 40 / peak / 0.75
stimuli1	8 / 35 / valley / -0.6	0.3 / 40 / peak / 0.75
stimuli2	8 / 35 / valley / -0.6	0.3 / 40 / peak / 0.75
stimuli3	6 / 35 / valley / -0.35	0.5 / 40 / peak / 1
stimuli4	5 / 35 / valley / -0.6	2 / 40 / peak / 0.75

1-4. 訊號分析方法

(1) Time Domain: 透過 RR series 觀察受試者的心跳速度 (與 RR mean, 單位時間內的 RR series size 相關)。

(2) Frequency Domain: 將 RR series 透過 FFT 轉成頻率訊號,得到 a. HRV 。可利用 spectral analysis 的 power spectrum 算出 b. power spectrum、c. total power、d. LF、e. HF、f. LF/HF 等等,用來分析受試者的心臟狀況。

1-5. 計算出的參數代表之生理意義

參數指標	定義	單位	生理意義
Total Power	心臟總功率,全部正常心跳間期 之變異 數高頻、低頻、極低頻的 總和	ms ²	整體心律變異度評估
LF	低頻範圍功率 (0.04~0.15Hz)	ms ²	代表交感與副交感神經活性
HF	高頻範圍功率 (0.15~0.4Hz)	ms ²	代表副交感神經活性
LF/HF	低頻對高頻功率的比值	無	代表自律神經的活性平衡

1-6. 分析結果推論

下表為我們所得到的分析數據結果:

Total Power	WD	YY
baseline	0.0016533	0.0033481
stimuli1	0.0020043	0.0022357
stimuli2	0.0014089	0.0014591
stimuli3	0.0007107	0.0008807
stimuli4	0.0004976	0.0005381

LF/HF	WD	YY
baseline	65.1237	9.58448
stimuli1	1.18971	19.6306
stimuli2	1.07448	7.84419
stimuli3	1.33122	14.2101
stimuli4	1.34249	18.285

RR mean(s)	WD	YY
baseline	0.60	0.75
stimuli1	0.64	0.66
stimuli2	0.57	0.58
stimuli3	0.46	0.49
stimuli4	0.41	0.42

根據以上的分析數據結果,我們的推斷是:

- YY 可能較常運動,或是有接受過運動方面的訓練
- WD 可能較少運動,或是沒有接受過運動方面的訓練

推斷的原因基礎如下:

- 1) 一般來說有受過運動訓練的人,其 RR Mean 會比較長,也就是心臟跳動得比較慢。由上表可知, YY 的 RR Mean 在各個階段都比 WD 來的長。
- 2) YY 的 Total Power 大致上比 WD 來得大,因此 YY 的心臟輸出功率能比 WD 高。
- 3) LF/HF 代表自律神經的活性平衡,而 YY 的 LF/HF 大致比 WD 高。

2. ICG 訊號分析

2-1. 系統架構與訊號分析方法

本專題的 ICG 系統結構如下圖:

(1) 讀取實驗數據

使用 Read Delimited Spread Sheet 讀取 csv 檔裡面的數據,經過觀察後發現 ICG signal 的最一開始會出現極端值,因此先利用 Delete From Array 將前 3401 筆訊號尚未穩定的資料刪除。再利用 Build waveform 將 array 轉為 waveform,並指定 dt = 0.0005 將 X 軸單位轉換為秒。

(2) SV (stroke volume)的產生

SV 的計算公式如下:

$$SV = \frac{L^3}{4.25} \frac{\delta}{Z_0} T_{LVE} \left(\frac{\Delta Z_c(t)}{\Delta t} \right)_{max}$$

Where $\delta = \sqrt{\frac{BMI}{24}}$, where BMI = body mass index (kg m⁻²), 24 kg m⁻² = ideal BMI; L = length between voltage sensing electrodes (approximated as 17% of measured subject height); $Z_0(t)$ = base impedance

此計算過程可分為以下 a, b, c 部分,在 block diagram 內的對應位置如下圖:

LabVIEW [™]Evaluation Software

- a: 計算身體數值 (BMI, L等) 與其他常數
- <mark>b:</mark> C點 (最大阻抗變化率)

使用 peak detection 將各波峰的 amplitudes 存到 array 中, 再利用 for loop 把得出的值依序依照下圖公式,乘上 0.002 以轉換至正確單位,即為 C 點值。

Impedance change =
$$\frac{\text{the value of Y-axis}}{2} \times 1000$$

c: 計算 TLVE (平均 B-X 時間差)

使用 peak detection 將各波峰的 location 存到 array 中, 再利用 for loop 循序走訪 array 中的值, 每次取出 B 的 location 及 X 的 location (分別是 peak location 前 400 點及後 400 點中 amplitude 最小的位置)並求出兩者的時間差,轉換單位為秒後即為 TLVE,最後再存入 array 中。

每次偵測到 peak 時都代表有一次 pulse,並且會產生一個 TLVE 及 SV 值,分別存入兩個 array 中。一筆 ICG 的平均 TLVE 即為 TLVE array 中的 TLVE 平均值,SV 即為 SV array 中的 SV 平均值。

2-2. 使用流程

步驟(1): 在以下欄位分別輸入受測者(1)身高、(2)體重、以及 (3)peak 的閾值

步驟(2): 點選執行並且選擇想要讀取的 csv 檔位置

步驟(3): 讀取 SV 結果值

2-3. 計算出的參數代表之生理意義

下圖為 Ben Zhou 等人發表的"Stroke volume does not plateau during graded exercise in elite male distance runners"一文中所做的研究分析結果,根據此圖,當心跳速度隨著運動而升高時,受過訓練的人,其 SV 也有能力隨之升高,反之,對於較缺乏運動訓練的人而言,其 SV 在心跳速度達到一定程度時便不會再增加,甚至有微幅下降的趨勢。

(資料來源: https://www.researchgate.net/figure/Stroke-volume-responses-from-rest-to-maximal-exercise-of-three-experimental-groups-see_fig2_11663145)

2-4. 分析結果推論

下表是我們對 ICG 訊號進行計算後,得到兩位受測者在不同運動強度下的 SV 值。各階段的 peak detection threshold 依序分別為: 0.0012, 0.0015, 0.002, 0.0024, 0.003,經反覆嘗試,使用以上參數會得到最合理的結果數值。

SV (mL)	WD	YY
baseline	48.6102	52.5549
stimuli1	65.9433	68.3837
stimuli2	77.6961	83.2856
stimuli3	77.611	113.249
stimuli4	73.0614	141.968

	WD	YY
Height (cm)	170	167
вмі	19.0311	24.3824

從兩人在各階段的 SV 值,可以觀察到如下圖的趨勢。YY 的 SV 自 baseline 到 stimuli 4 始終呈現上升的趨勢,而 WD 的 SV 自 stimuli 3 開始便停止上升。若依據 2-3 節的解釋分析

此圖·YY的 SV 趨勢更接近於受過運動訓練的人,而 WD的 SV 趨勢走向則是比較像未受過運動訓練的人。

在比較 YY 和 WD 在 stimuli 4 的 ICG 波形後發現·WD 的波峰大多分布在 0.003 ~ 0.0045 之間·大幅低於 YY 的 0.005 ~ 0.008。TLVE 的部分·WD 的 0.237364 則也小於 YY 的 0.296878。

根據 SV 的計算公式,SV 和 C 點,TLVE 以及 BMI 的根號值成正比。WD 的 BMI 值已經小於 YY,理論上若要和 YY 有接近的 SV 水準,則必須在 C 點及 TLVE 有更強的表現,但是 WD 的這兩項數據卻都明顯低於 YY,以致於兩人在 stimuli 4 的 SV 有極大的落差。

依此判斷,我們認為相對於 WD, YY 可能是較常運動或受過運動訓練的受測者。

另外值得一提的是·WD 和 2-4 範例中的未受訓練者最大差別·在於 SV 的上界。在 2-4 的 範例圖中·即使是未受訓練的受測者·其 SV 也達到了 120 左右才停止上升。但是 WD 的 SV 最高也僅上升至約 80 左右。

我們觀察實驗數據後,推測是因為 WD 的 ICG 波形中,C 點大小自 stimuli 2 後就沒有明顯成長約集中於 $0.003 \sim 0.0045$ 之間,而 TLVE 又微幅下降所致,stimuli 2 也是 WD 和 YY 的數據開始呈現明顯差異的分歧點。

stimuli 2 時,WD 的 ICG

stimuli 3 時,WD的ICG

stimuli 4 時,WD的ICG