長春×煮火^麥 2021/2022 学年第二学期高数第十一章单元自测题

名

一. 填空题

- 2. 第二类曲面积分 $\iint_{\Sigma} P dy dz + Q dz dx + R dx dy$ 化成第一类曲面积分是_______,其中 α , β 与 γ 为有 向曲面 Σ 在点 (x,y,z) 处的_______的方向角;
- 3. 设 L 是取正向的圆周 $x^2 + y^2 = 9$,则曲线积分 $\int_L (2xy 2y) dx + (x^2 4x) dy = ______;$
- 4. 设曲线积分 $\int_{L} \left[f(x) e^{x} \right] \sin y dx f(x) \cos y dy$ 与积分路径无关,其中 f(x) 一阶连续可导,且 f(0) = 0,则 $f(x) = _______$;
- 5. $\oint_{\Sigma} xyzdS = ______,$ 其中 Σ 是由平面x = 0, y = 0, z = 0, x + y + z = 2所围成的四面体的整个边界曲面:

二. 计算题

- 1. $\int_{L} \sqrt{2y} ds$, 其中 L 为旋轮线: $\begin{cases} x = a(t \sin t) \\ y = a(1 \cos t) \end{cases}$ $(0 \le t \le 2\pi)$;
- 2. $\int_L y \sqrt{x} dx + xe^{y^2} dy$, 其中 L 是曲线 $y = \sqrt[3]{x}$ 从点 (0,0) 到点 (1,1) 的一段弧;
- 3. $\int_L (x^2 + 2xy y^2) dx + (x^2 2xy + y^2) dy$, 其中 L 是从点 A(0,-1) 沿直线 y = x 1 到点 M(1,0), 再从 点 M 沿圆周 $x^2 + y^2 = 1$ 的逆时针方向到点 B(0,1);
- 4. $\iint_{\Sigma} xyzdS$, 其中 Σ 是平面x+y+z=1在第一卦限中的部分;
- 5. $\iint_{\Sigma} (x+1) dy dz + y dz dx + dx dy$, 其中 $\Sigma : x + y + z = 1$ 的上侧, 在第一卦限的部分;
- 6. $\iint\limits_{\Sigma} y dy dz x dz dx + z^2 dx dy , 其中 \sum 是锥面 z = \sqrt{x^2 + y^2} 被 z = 1, z = 2 所 截得部分的外侧;$
- 7. $\bigoplus_{\Sigma} 2xzdydz + yzdzdx z^2dxdy$,其中 Σ 为曲面 $z = \sqrt{x^2 + y^2}$ 与 $z = \sqrt{2 x^2 y^2}$ 所围立体表面的外

侧.

長春×煮火^麦 2021/2022 学年第二学期高数第十一章单元自测题

姓名

三、设 f(x) 具有连续的导数, f(0)=0,且使表达式 $\left[xe^x+f(x)\right]ydx+f(x)dy$ 是某函数 $\mu(x,y)$ 的全 微分, 求 f(x), 并求一个 $\mu(x,y)$.