МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

Кафедра автоматизированных систем управления (АСУ)

ОПЕРАЦИОННЫЕ СИСТЕМЫ

Тема 5. Управление пользователями ОС

Учебно-методическое пособие

для студентов уровня основной образовательной программы: **бакалавриат** направление подготовки: **09.03.01 - Информатика и вычислительная техника** направление подготовки: **09.03.03 - Прикладная информатика**

Разработчик доцент кафедры АСУ

В.Г. Резник

Резник В.Г.

Операционные системы. Тема 5. Управление пользователями ОС. Учебнометодическое пособие. – Томск, ТУСУР, 2021. – 19 с.

Учебно-методическое пособие предназначено для изучения теоретической части и выполнения лабораторной работы №5 по теме «Управление пользователями ОС» учебной дисциплины «Операционные системы» для студентов кафедры АСУ ТУСУР уровня основной образовательной программы бакалавриат направлений подготовки: «09.03.01 - Информатика и вычислительная техника» и «09.03.03 - Прикладная информатика».

Оглавление

Введение	4
1 Тема 5. Управление пользователями ОС	
1.1 Однопользовательский и многопользовательский режимы работы ОС	
1.2 Разграничение прав пользователей	8
1.3 Login и система доступа Linux-PAM	10
1.4 Команды управления пользователями	
2 Лабораторная работа №5	16
2.1 Инфраструктура управления пользователями	
2.2 Реальные и эффективные права пользователя	16
2.3 Инфраструктура РАМ	17
2.4 Команды управления пользователями	
Список использованных источников	19

Введение

Данная тема нашей дисциплины посвящена управлению пользователями ОС. Важность этой темы может показаться не столь очевидной, например, по сравнению с темами управления файловыми системами и процессами, но такое впечатление является обманчивым:

- атрибуты пользователя, связывая файлы и процессы, существенно влияют как на возможность самих вычислений, так и часто на на сам результат;
- пользователь как участник процесса функционирования ПО ОС требует выделения изолированной рабочей области, гарантирующей ему сохранность его личных ресурсов, но одновременную возможность использования общих ресурсов;
- пользователь, как участник совместных действий с другими пользователями, становится ответственным за результаты своего функционирования, во всех многообразиях его проявления.

Перечень изучаемых в данной теме вопросов и их место в учебном материале дисциплины «Операционные системы» изложен в источнике [1], основным учебником является [2], а дополнительным [3]. В качестве источника практических задач мы используем учебный материал, изложенный в [4]. При необходимости, используются ссылки на материал предыдущих тем, изложенный в [5-8].

Первый раздел, озаглавленный «Тема 5. Теоретическая часть», собственно и содержит описание всех заявленных вопросов. Здесь с разных сторон рассмотрено понятие пользователя ОС, его место в операционной среде исполнения и связи с концепцией файловой системой хранения информации. Даётся краткая классификация пользователей и рассматриваются вопросы безопасности их совместной работы. Демонстрационные примеры теоретической части ложатся в основу лабораторной работы по данной теме.

Второй раздел, озаглавленный «Лабораторная работа №5», содержит методический материал по практическому закреплению полученных знаний. Средой исполнения этих работ является ОС УПК АСУ, установленная в учебных классах кафедры АСУ или на личных компьютерах студентов. Успешно выполненной считается работа описанная в личном отчёте студента и проверенная преподавателем.

1 Тема 5. Управление пользователями ОС

Рассматривая базовые концепции OC [5, подраздел 1.7], было отмечено, что концепция пользователя является второй по значимости после концепции файла.

С другой стороны, концепция пользователя интенсивно используется и в концепции процесса, что связывает их воедино, образуя три базовых концепции ОС.

В зависимости от контекста, термин пользователь понимается как:

- человек, работающий за терминалом компьютера;
- концептуальная основа выделения владельцев, группы и других, связанные с концепциями файла и процесса;
- *система обозначений*, использующая *имена* и *числовые идентификаторы*, распространяемая на все ПО ЭВМ;
- *система разграничений*, *ограничивающая* и *специализирующая права* использования ПО ЭВМ.

Кроме перечисленных выше, имеются специальные режимы использования ОС и ЭВМ, которые связаны с *настройкой*, *инсталляцией* и *промежуточными этапами загрузки ОС*.

Подобное многообразие взглядов порождает ещё большее многообразие зависимостей, что влияет не только на работу отдельной ОС, но и распространяется на социум и порождает новые подходы в архитектуре современных ОС.

Чтобы успешно разобраться в указанных проблемах и освоить данную тему, учебный материал разбит на четыре части:

- 1) *многопользовательский режим* работы ОС, как альтернатива однопользовательскому, порождающий многообразие взглядов, уже указанных выше;
- 2) *разграничение прав пользователей*, как техническая основа функционирования ОС;
- 3) *login и система РАМ*, как реализация эффективного использования ПО ОС;
- 4) команды управления пользователями, как управляющая часть организации многопользовательского режима работы ОС.

1.1 Однопользовательский и многопользовательский режимы работы ОС

Первоначально, когда ОС ещё не было, а использовалась пакетная обработка программ или программы супервизоры, понятие пользователя использовалось в чисто внешнем организационном плане: *как лицо*, передающее программу в службу ВЦ (вычислительного центра) на исполнение.

В 1974 году, Гари Килделл преподаватель информатики в аспирантуре военноморского колледжа в Монтерее (Калифорния) закончил писать свою ОС для микрокомпьютера Intel 8080, названную **СР/М** (*Control Program for Microcomputers*).

В 1980 году, фирма Microsoft приобрела у Seattle Computer лицензию на до-

вольно сырую и недоработанную операционную систему 86-DOS, которую Билл Гейтс предложил фирме IBM использовать в качестве MS-DOS в ее первом персональном компьютере IBM PC.

MS-DOS — доработанная 86-DOS фирмы Seattle Computer, способная запускать все программы ОС СР/М.

Характерная черта MS-DOS и CP/M — однозадачный режим работы на изолированном компьютере. Эти черты MS-DOS отразилась и на первых ОС MS Windows:

- автоматическое монтирование всех файловых систем при старте ОС;
- отсутствие концепции пользователя в низкоуровневых структурах ФС.

История ОС UNIX начинается с середины 60-х годов, на фоне проекта операционной системы *MULTICS*, который разрабатывался в *Bell Labs.*, подразделении гиганта *AT&T*.

Одно из первых изданий ОС UNIX, появившееся в ноябре 1971 года, работало на PDP-11/20 без *ММU* и аппаратной защиты памяти. Стабильность ее работы и устойчивость к сбоям была не на высоте. *Мультипрограммности тоже не было*, но пути к файлам уже появились. Была документация к таким системным вызовам:

break, chdir, chmod, chown, close, creat, exec, exit, fork, cemt, fstat, getuid, gtty, ilgins, intr, link, mkdir, mount, open, quit, read, rele, seek, setuid, smdate, stat, stime, stty, tell, time, umount, unlink,wait, write.

Из языков программирования поддерживались: ассемблер, FORTRAN, Ві и BASIC. Языка С ещё не было. Хотя явное упоминание о поддержке многопользовательского режима отсутствует, наличие команд *chown*, *getuid* и *setuid* говорит о том, что в файловой системе концепция пользователя уже была заложена.

Современное понятие однопользовательского режима означает не тот факт, что ОС не может поддерживать многопользовательский режим, а то что:

- *или отключён контроль* разграничения прав пользователей, при одновременной изоляции ЭВМ от внешних воздействий, например, отключение от сети;
- *или остановлена работа* программ всех пользователей, кроме администратора, например, суперпользователя *root*.

Современные ОС загружаются в два этапа:

- *на первом этапе*, после загрузки и запуска ядра ОС специальным загрузчиком, например GRUB, ядро распаковывает в оперативную память *временную файловую систему* и запускает первый процесс *init*;
- сам процесс *init обычно скрипт*, выполняемый интерпретатором shell, устанавливает необходимые *модули* ОС, ищет и монтирует *корневую* файловую систему, создаёт *терминальные устройства* и запускает на них программы *login*, удаляет временную файловую систему и *завершает работу*; все это делается в *однопользовательском режиме ОС*;
- *на втором этапе*, пользователи, которые начинают проходить процедуру *login*, работают уже *в многопользовательском режиме ОС*.

Практически всегда, под *именем пользователя* понимается *контекст*, соответствующий понятию *владелец*, который относятся применительно к файлам и процессам.

Информационное обеспечение многопользовательского режима ОС, прежде всего, поддерживается группой системных файлов.

 Φ айл /etc/passwd, каждая строка которого имеет формат:

username:password:UID:GID:GEOS:homedir:shell

где

username Имя пользователя, используемое для входа в систему. Содержит слово

(ранее - до 8 букв). Заглавные буквы не допускаются.

password Hash-код пароля. Сейчас ставится символ x, a hash-код пароля пере-

несён в файл /etc/shadow.

UID Число-идентификатор пользователя.

GID Число-идентификатор основной группы, в которую входит пользова-

тель.

GEOS Любая информация.

homedir Домашняя директория пользователя.

shell Командный интерпретатор пользователя, который запускается при его

входе в систему. Список возможных интерпретаторов находится в файле /etc/shells. Если имя пользователя не предназначено для интерак-

тивной работы с ОС, то указывается /sbin/false или /sbin/nologin

Учитывая большую важность этой информации, содержимое файла /etc/ passwd дублируется в файл /etc/passwd-.

Информация о группах пользователей и дубль этой информации хранятся в файлах /etc/group и /etc/group-, в формате:

groupname:password:GID:userlist

где

groupname Имя группы с теми же ограничениями, что и имена пользователей.

password Hash-код пароля (если пароль имеется). Сейчас ставится символ x,

а hash-код пароля перенесён в файл /etc/gshadow.

GID Число-идентификатор группы.

userlist Список пользователей, входящих в группу, разделённых запятыми.

Первый пользователь в списке — администратор группы.

1.2 Разграничение прав пользователей

Общая парадигма концепции пользователя подразумевает, что все пользователи ОС работают автономно и не мешают друг другу, кроме системного администратора.

Это достигается двумя основными мерами:

- *каждый пользователь* имеет право работать только с теми файлами, директориями и файловыми системами, к которым он имеет доступ;
- *пользователь* **root**, с идентификатором UID=0, может делать абсолютно все.

 $Ha\ camon\ dene$, имя пользователя имеет вспомогательное второстепенное значение. Γ лавным показателем пользователя является его идентификатор UID: с увеличением номера UID права пользователя уменьшаются.

Aналогичный критерий справедлив для групп пользователей, права которых определяются идентификатором \emph{GID} .

Условно, все пользователи разделяются на две категории:

- *системные пользователи root*, *sysadm* и другие администраторы;
- обычные пользователи те, которые используют прикладное программное обеспечение ОС и не занимаются администрированием.

Условность такого разделения подтверждается тем фактом, что в первых ОС идентификаторы обычных пользователей начинались с номера *100*.

Со временем, разработчики прикладного ПО стали столь интенсивно использовать идентификаторы, что было принято решение:

- *системные* пользователи *UID* < 999;
- *пользователь live*-дистрибутива *UID*=999 и *GID*=999;
- *обычные* пользователи *UID* > 999.

Замечание

Хотя часто, *при создании нового пользователя*, обычно создаётся и группа с таким же именем и *GID=UID*, - это не является обязательным требованием:

- при создании, новый пользователь может быть сразу включён в любую, уже существующую группу;
- любой пользователь, без ограничений, может быть включён в произвольное число групп.

Как правило, обычному пользователю доступны:

- *все файлы и каталоги его домашней директории*, положение которой задано системной переменной *HOME*;
- права записи в каталоги /tmp и /var/tmp;
- *права монтирования и демонтирования* внешних устройств, которые прописаны в файле /*etc/fstab* с опцией *user*.

Временная смена прав доступа на права другого пользователя достигается командой:

su [-] [username]

при этом, ему придётся *набрать пароль* того пользователя, под чьим именем он собирается работать:

- *Если присутствует первый аргумент* команды **su**, то *произойдёт смена домашней директории* и выполнятся скрипты входа типа **~/.profile**.
- Если второй аргумент не указан, то подразумевается пользователь *root*.

Выполнение команд от имени пользователя *root*, для обычного пользователя, выполняется командой:

sudo список_команд;

при этом, ему придётся набрать свой собственный пароль.

Замечание

Если пользователю необходимо уточнить под чьими именами и идентификаторами он работает, можно воспользоваться командами *whoami* и *id*.

Смена прав пользователя ОС связана с его действиями в системе.

Действия пользователя в системе определяется работой программ (процессов), которые пользователь запускает. Чтобы определить, с какими правами работает процесс, вводятся дополнительные понятия, связанные с реальными и эффективными идентификаторами пользователя.

Действительные *(реальные) ID пользователя и ID группы* — это числовые (двухбайтовые) значения *UID* и *GID*, записанные в файлах /*etc/passwd* и /*etc/group* во время создания пользователя в системе.

Эффективные *ID пользователя и ID группы* — это числовые (двухбайтовые) значения, которые учитываются в системе при выполнении конкретного процесса:

- *дочерний процесс*, создаваемый системным вызовом fork(...), получает эффективные **ID** от своего родителя;
- *процесс*, модифицируемый одним из системных вызовов *exec(...)*, устанавливает эффективные *ID* в зависимости от значений битов *SUID* и *SGID*, присутствующих в поле *i_mode* индексного десткриптора файла (см. [8, подраздел 1.5, таблицы 1.9 и 1.10]): если биты *SUID* и *SGID* установлены, то эффективные *ID* берутся из дескриптора файла, а если нет, то устанавливаются в значения действительных (реальных) *ID* пользователя, запустившего процесс.

Сохранённые *ID* пользователя и *ID* группы — это числовые (двухбайтовые) значения первоначальных эффективных *ID*, которые сохранены в памяти процесса с помощью системных вызовов getuid(...) и getgid(...), сразу же после завершения системного вызова exec(...).

Установка новых значений эффектиных ID выполняется с помощью системных вызовов setuid(...) и setgid(...).

На рисунке 1.1, представлен вывод эффективных идентификаторов процесса shell, запущенного пользователем upk в окне терминала.

```
Терминал-ирк@vgr-рс:~

Файл Правка Вид Терминал Вкладки Справка

upk@vgr-рс:~$ whoami

upk

upk@vgr-рс:~$ id

uid=1000(upk) gid=1000(upk) группы=1000(upk),4(adm),20(dialout),21(fax

),24(cdrom),25(floppy),26(tape),27(sudo),29(audio),30(dip),44(video),4

6(plugdev),108(netdev),111(fuse),115(lpadmin),117(scanner),131(sambash

are),999(vgr),1001(asu)

upk@vgr-pc:~$

□ ×
```

Рисунок 1.1 — Вывод эффективных ID пользователя upk

1.3 Login и система доступа Linux-PAM

Любому пользователю, для нормальной работы с ОС, необходимо пройти *процедуру регистрации в системе*: получить имена, идентификаторы, пароли и место для работы. Указанную процедуру выполняет администратор ОС.

В результате регистрации:

- *имена, идентификаторы и пароли* будут записаны в соответствующие файлы: /etc/passwd, /etc/group, /etc/shadow и /etc/gshadow;
- в директории /home будет создана директория с именем пользователя;
- *в директорию /home* будут перенесены директории и файлы, находящиеся в *директории /etc/skel*, которые составляют начальный скелет рабочей области любого пользователя.

После загрузки ОС и перехода ее в многопользовательский режим, запускается процесс «*Менеджер сеанса*», который контролирует и обеспечивает процедуры входа пользователя в систему:

- *в случае положительного завершения* процедуры входа в систему, дополнительно контролируется содержимое директории /home/\$USER и, случае необходимости, в нее добавляются нужные файлы или модифицируются старые, а также *устанавливаются эффективные идентификаторы* для процессов сеанса пользователя;
- *в случае негативного завершения* процедуры входа в систему или *негативно-го контроля* содержимого директории /home/\$USER, выполняются дополнительные процедуры, которые заканчиваются перезапуском «*Менеджера сеансов*».

Среда исполнения, о которой говорилось ранее, представляет собой *одну системную среду исполнения* и *пользовательские среды исполнения*, по одной на каждый вход в систему.

Процедура входа в ОС может быть: *текстовой*, когда на консоль терминала выводится приглашение login:, или *графической*, когда выводится некоторое стилизованное окно приглашения.

В любом случае, требуется набрать имя и пароль, а возможно и другие сведения, например, домен или язык работы с системой. Это зависит от настроек «*Мене-джера сеансов*».

После ввода необходимой информации начинается с процедура **login**, которая подразделяется на:

- идентификацию (аутентификацию), подразумевающую совпадение имени и пароля, зарегистрированных в системе;
- *авторизацию*, подразумевающую создание среды для работы программ пользователя и фиксирование прав, которыми пользователь обладает.

Фактически, авторизация не заканчивается завершением работы утилиты *login*. Она проводится постоянно, когда пользователь обращается к файлам или вза-имодействует с процессами.

Поскольку методы авторизации могут быть различны, а пользователю даже приходится обращаться к программам, требующим смены пользователя, то *смена парадигмы обеспечения безопасности работы ОС*, приводит к перезаписи большого количества системного ПО.

В 1995 году, **OSF** (*Open Software Foundation*) — фонд открытого программного обеспечения — приступил к разработке *системы PAM* (*Pluggable Authentication Modules*) — *заменяемые модули идентификации*.

Замечание

К середине 90-х годов, проблема безопасности ОС стала столь критичной, что поставила под сомнение архитектурные принципы различных систем.

Система РАМ разрабатывалась для UNIX-подобных систем.

MS Windows имеет свою оригинальную систему защиты.

Система РАМ введена *для создания дополнительного уровня защиты* между приложениями и различными протоколами и способами идентификации и авторизации.

Модули РАМ — это динамически загружаемые библиотеки, которые находятся в директориях /lib/security или /usr/lib/security.

Все приложения используют универсальный интерфейс, *PAM API*, а уже модули PAM выбирают стратегию поведения и протоколы согласно файлам конфигурации: /etc/pam.conf либо /etc/pam.d/....

Модульная система РАМ не столько обеспечивает новый уровень защиты, сколько разделяет прикладную часть процессов от части, обеспечивающей защиту их функционирования, одновременно централизуя ПО защиты, обеспечивая мобильность его модификации и ускоряя внедрение новых технологий.

Технологическая концепция модулей РАМ предполагает разделение их на четыре типа:

auth Выполняют аутентификацию, то есть подтверждают, что пользователь является именно тем, кем он представился в системе.

account Разрешают или запрещают конкретному пользователю вход в систему. Это решение может зависеть от даты, времени суток, системных ресурсов и т.д.

session Осуществляют действия, которые должны быть выполнены до или после входа пользователя: занесение информации в журнальные файлы, монтирование устройств и другое.

passwd Изменяют пароль пользователя.

Практическая реализация этой концепции предполагает централизованное использование файлов конфигурации.

Сейчас, файлы конфигурации Linux-PAM находятся в директории /etc/pam.d, в которой находятся файлы, как правило совпадающие с именами файлов приложений. Например, для программы **sudo** имеется файл конфигурации: /etc/pam.d/sudo.

Каждый файл конфигурации состоит из отдельных строк, содержащих поля:

тип_модуля управляющий_флаг имя_модуля аргументы

тип_модуля управляющий флаг Один из четырёх типов: auth, account, session, passwd.

Флаг, контролирующий поведение РАМ в случае успешного или безуспешного результата работы модуля:

- required успешное завершение работы модуля необходимо для успеха всего запроса. Об ошибочном завершении не будет сообщено до окончания работы всех модулей.
- *requisite* успешное завершение работы модуля необходимо для успеха всего запроса. Ошибочное завершение приводит к немедленному возврату управления приложению.
- *sufficient* в случае успешного завершения, управление немедленно передаётся приложению. Ошибочное завершение модуля не учитывается.
- *optional* результат работы этого модуля не учитывается.

имя_модуля	Имя файла, которое должно быть указано с полным путём к
	нему.
апгументы	Команлная строка передаваемая молулю

Таким образом, система РАМ позволяет разрабатывать систему безопасности без переделки самих приложений.

Замечание

Чтобы узнать, *какие библиотеки* РАМ использует приложение, *лучше* воспользоваться командой (утилитой) **Idd**. Например, для приложения **su**, имеем:

1.4 Команды управления пользователями

Теоретическая концепция пользователя поддерживается соответствующей информационной и управляющей инфраструктурой ОС.

Хотя работа с пользователями предполагает всего три действия: создание, удаление и модификацию, - наличие множества конфигурационных файлов, привязанных к древовидной структуре ФС, превращает сам процесс управления в непростую задачу.

Чтобы упростить этот процесс, используются три команды (утилиты): **useradd**, **userdel** и **usermod**, расположенные обычно в директории /usr/sbin.

Замечание

Прежде чем выполнять любую из этих команд, следует воспользоваться руководством *тап*, а после — предварительно запустить команды с ключем --*help*.

Обший синтаксис команды создания нового пользователя имеет вид:

```
useradd [ -A { DEFAULT | method [ ,... ] } ]
  [ -c comment ]
  [ -d home_dir ]
  [ -e expire_date ]
  [ -f inactive_time ]
  [ -g initial_group ]
  [ -G group [ ,... ] ]
```

```
[ -m [ -k skeleton_dir ] | -M ]
[ -s shell ]
[ -u uid [ -o ]] имя_пользователя
[ -r ]
[ -n ]
```

Команда требует одного обязательного аргумента — *имя_пользователя*. Многие другие аргументы команды интуитивно понятны и не требуют пояснения.

Замечание

Наличие множества параметров команды создания пользователя требует хорошего навыка и знания как пользователь работает.

Каждый администратор вырабатывает свои правила работы с пользователями. После ввода, команда может задать вопросы в интерактивном режиме.

Удаление *пользователя* выполняется командой:

userdell имя_пользователя;

Если пользователь с таким именем существует и, при этом, не находится в системе, то *userdell*:

- удаляет его домашний каталог со всеми подкаталогами;
- ydannem все записи об этом пользователе из файлов /etc/passwd, /etc/shadow, /etc/group;
- возможно, оставляет временные забытые файлы в директории /tmp.

Изменение *параметров пользователя* выполняется командой *usermod*, в которой большинство аргументов совпадают с аргументами команды *useradd*, но ориентированы на изменение соответствующих параметров.

Особое место в управлении пользователями занимает утилита *passwd*, которая управляет паролями пользователя и ограничивает его работу на уровне сеанса.

Общие правила применения утилиты passwd:

- администратор ОС может изменить пароль любого пользователя;
- *работа утилиты*, практически всегда происходит в интерактивном режиме; например, новый пароль вводится дважды;
- *обычный пользователь* может сменить только свой пароль, предварительно набрав старый.

Общий синтаксис команды:

passwd [параметры] [LOGIN]

Замечание

Обязательно следует изучить параметры команды с помощью руководства *man passwd* и запуска её с ключём *—help*.

Утилита passwd имеет множество опций, поэтому рассмотрим наиболее типичные варианты ее применения.

passwd [-f | -s] [имя]

- -f Позволяет изменить поле GEOS в файле /etc/passwd.
- -s Позволяет изменить интерпретатор *shell*, вызываемый при входе пользователя в систему.

passwd [-g] [-r | -R] группа

- -g Переключает *passwd* в режим работы с паролями групп.
- -r Удаляет групповой пароль.
- -R Закрывает доступ к группе для всех пользователей.

passwd [-x max] [-n min] [-w warn] [-i inact] имя

- -х max Максимальное число дней, в течение которых пароль действителен. 9999 пароль действителен всегда.
- -w warn За сколько дней до истечения срока *max* пользователю начнут выдаваться предупреждения о необходимости смены пароля.
- -i inact Число дней, свыше *max*, когда пользователь может сменить пароль, иначе он будет заблокирован до вмешательства администратора.

passwd { -l | -u | -d | -S } имя

- -1 Временно запретить доступ пользователя в систему.
- -и Восстановить доступ пользователя в систему.
- -d Удаление пароля пользователя с разрешением входа в систему (без пароля).
- -S Получить информацию о пароле пользователя. Например,

```
$ passwd -S
vgr P 12/21/2012 0 99999 7 -1
$
```

2 Лабораторная работа №5

Цель лабораторной работы №5 — практическое закрепление учебного материала по теме «Управление пользователями ОС».

Метод достижения указанной цели — закрепление учебного материала, изложенного в первом разделе пособия посредством утилит ОС, а также выполнение заданий, приведённых в данном разделе.

Чтобы успешно выполнить данную работу, студенту следует:

- *запустить с flashUSB* ОС УПК АСУ, подключить личный архив и переключиться в сеанс пользователя upk;
- запустить на чтение данное пособие и на редактирование личный отчёт;
- *открыть одно или несколько окон терминалов*, причём хотя бы в одном окне терминала открыть Midnight Commander, для удобства работы с файловой системой ОС;
- *приступить к выполнению работы*, последовательно пользуясь рекомендациями представленных ниже подразделов.

Замечание

Многие команды ОС студенту ещё не известны, поэтому следует:

- для вывода на консоль руководства по интересуемой команде, использовать: *тап имя команды*;
- для выяснения существования команды, ее доступности и местоположения, использовать: *command -v имя_команды*;
- для уточнения правил запуска конкретной команды, можно попробовать один из вариантов: *команда --help* или *команда --h* или *команда --?*.

В процессе выполнения лабораторной работы студент заполняет личный отчёт по каждому изученному вопросу!

2.1 Инфраструктура управления пользователями

Прочитайте и усвойте учебный материал подраздела 1.1.

Исследуйте содержимое директорий: /etc/passwd, /etc/shadow, /etc/group, /etc/gshadow.

Усвойте структуру и назначение этих файлов.

2.2 Реальные и эффективные права пользователя

Прочитайте и усвойте учебный материал подраздела 1.2.

С помощью руководства *man* изучите утилиты *whoami, id, chown u chmod*.

С помощью пособия [8, подраздел 1.5, таблицы 1.9 и 1.10] изучите структуру поля дескриптора файлов i_mode .

Усвойте назначение битов *SUID* и *SGID*.

В директории ~/src создайте текстовый файл *test* и включите в него команды *id* и *whoami*.

Сделайте файл *~/src/test* исполняемым и, запуская его, исследуйте эффективные идентификаторы запускаемого процесса.

Находясь в директории ~/src, установите значения битов SUID и SGID командой:

sudo chmod 3777 ./test

Запустите команды:

./test sudo ./test

Сравните результаты.

2.3 Инфраструктура РАМ

Прочитайте и усвойте учебный материал подраздела 1.3.

Исследуйте содержимое директории /etc/skel и сравните с содержимым рабочей директории пользователя upk.

Изучите содержимое директории /lib/security.

Изучите содержимое директории /etc/pam.d и файла /etc/pam.conf.

Изучите утилиту *ldd* и исследуйте с помощью нее ряд утилит, которые вы считаете, участвуют в контроле прав доступа пользователей.

2.4 Команды управления пользователями

Прочитайте и усвойте учебный материал подраздела 1.4.

Изучите утилиты useradd, userdel u usermod.

Замечание

В данном варианте дистрибутива не установлено графическое приложение для работы с пользователями ОС, поэтому задание, изложенное ниже, следует выполнить пользуясь только утилитами *useradd*, *userdel u usermod*.

Из главного меню рабочего стола откройте окно «*Все настройки*», выберите и запустите ΠO , озаглавленное «*Пользователи и группы*», как показано на рисунке 2.1.

Добавьте нового пользователя, например с именем *mmm*.

Исследуйте содержимое директорий: /etc/passwd, /etc/shadow, /etc/group, /etc/gshadow.

Запустите *Midnight Commander* в окне терминала и перейдите в директорию /home/mmm.

Сравните содержимое директории /home/mmm с содержимым директории /etc/skel.

Закройте все окна пользователя *ирк* и выйдите из его сеанса.

Войдите в сеанс пользователя *mmm*, запустите *Midnight Commander* в окне терминала и исследуйте содержимое директории /home/upk.

Выйдите из сеанса пользователя *ттт* и зайдите в сеанс пользователя *ттт*.

Запустите главное окно работы с пользователями и удалите пользователя **ттт**.

Исследуйте изменения структуры файлов и директорий.

Рисунок 2.1 — Главное окно работы с пользователями ОС

Завершив выполнение всех заданий и оформление отчёта:

- провести архивирование и сохранение рабочей области **upk**;
- выключить компьютер и завершить выполнение лабораторной работы №5.

Список использованных источников

- 1 Резник В.Г. Операционные системы. Самостоятельная и индивидуальная работа студента по направлению подготовки бакалавра 09.03.03. Учебно-методическое пособие. Томск, ТУСУР, 2016. 13 с.
- 2 Гордеев А.В. Операционные системы: учебное пособие для вузов. СПб.: Питер, 2004. 415с.
- 3 Таненбаум Э. Современные операционные системы. 4-е изд. СПб.: Питер, 2015. 1120c.
- 4 Резник В.Г. Учебный программный комплекс кафедры АСУ на базе ОС ArchLinux. Учебно-методическое пособие. Томск, ТУСУР, 2017. 38 с.
- 5 Резник В.Г. Операционные системы. Тема 1. Назначение и функции ОС. Учебно-методическое пособие. Томск, ТУСУР, 2017. 33 с.
- 6 Резник В.Г. Операционные системы. Тема 2. BIOS, UEFI и загрузка ОС. Учебно-методическое пособие. Томск, ТУСУР, 2017. 30 с.
- 7 Резник В.Г. Операционные системы. Тема 3. Языки управления ОС. Учебнометодическое пособие. Томск, ТУСУР, 2017. 38 с.
- 8 Резник В.Г. Операционные системы. Тема 4. Управление файловыми системами ОС. Учебно-методическое пособие. Томск, ТУСУР, 2017. 48 с.