SAT Solving und Anwendungen SAT Modulo Theories (SMT Solving)

Prof. Dr. Wolfgang Küchlin Rouven Walter, M.Sc. Informatik

Universität Tübingen

1. Februar 2018

Motivation

- Viele wissenschaftlich und industriell interessante Probleme können in SAT codiert und mit SAT Solvern gelöst werden
- Codierung nach SAT oft problemlos möglich (Hardware, Software, Konfigurationprobleme, Schedulingprobleme, ...)
- Problem: Codierungen nach SAT werden oft zu groß

Beispiel: Lineare Arithmetik

- Um einen arithmetischen Ausdruck zu codieren muss man zuerst ein Addierwerk, und darauf aufbauend einen Multiplizierer in Aussagenlogik modellieren
- Codierung eines *n*-Bit (Integer-)Multiplizierers ist hart:

n	Anzahl Variablen	Anzahl Klauseln
8	313	1001
16	1265	4177
24	2857	9529
32	5089	17057
64	20417	68929

Motivation

- Für viele Theorien sind bereits Entscheidungsverfahren bekannt, die mehr Domänenwissen einbeziehen als eine Codierung nach SAT
 - Gleichheitslogik: Kongruenzhülle, Graph-basierte Algorithmen
 - Uninterpretierte Funktionen: Ackermann oder Bryant Reduktion und dann Gleichungslogik
 - Lineare Arithmetik: Simplex, Fourier-Motzkin, Omega
 - Bit Vektoren: Bit-Flattening
 - Arrays: Übersetzung zu uninterpretierten Funktionen
 - Zeigerlogik: Modellierung des Speichers als Array
 - Quantifizierte Formeln: Quantorenelimination
- Warum also nicht einfach die jeweilige Logik benutzen und Solver für diese Tools verwenden?
- Problem: Kombination von Theorien

Beispiel

$$\underbrace{g(a) = \times \wedge (f(g(a)) \neq f(c) \vee g(a) = d)}_{\text{Uninterpretierte Funktionen und Gleichungslogik}} \wedge \underbrace{a < d \wedge f(a) \leq c}_{\text{Lineare Arithmetik}}$$

Grundidee für SMT — 1

- Betrachte das aussagenlogische Skelett einer Formel und benutze SAT Solver um dies zu lösen
- Wenn Skelett bereits UNSAT, dann ist die originale Formel UNSAT
- Ansonsten: Verwende erfüllende Belegung und schicke die Konjunktion der jeweiligen atomaren Formeln an die jeweiligen Theorie Solver
- Versuche, aus fehlgeschlagenen Versuchen zu lernen

Beispiel

$$g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$$

• Ersetze atomare Formeln durch neue aussagenlogische Formeln:

$$P_1 \wedge (\neg P_2 \vee P_3) \wedge \neg P_4$$

- SAT Solver liefert Modell $P_1, \neg P_2, \neg P_4$ zurück
- Konjunktion atomarer Formeln wird an Theory Solver geschickt:

$$g(a) = c \wedge f(g(a)) \neq f(c) \wedge c \neq d$$

Grundidee für SMT — 2

Beispiel (ctd.)

- Formel: $g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$
- Skelett: $P_1 \wedge (\neg P_2 \vee P_3) \wedge \neg P_4$
- 1. Modell: *P*₁, ¬*P*₂, ¬*P*₄
- Theory Solver bekommt: $g(a) = c \land f(g(a)) \neq f(c) \land c \neq d$
- Theory Solver liefert UNSAT
 - wenn g(a) = c dann gilt f(g(a)) = f(c) und damit $f(c) \neq f(c) \Rightarrow$ Widerspruch
- Dieses Modell wird in Zukunft geblockt (blocking clause)
- Schicke an SAT Solver: $\{(P_1), (\neg P_2, P_3), (\neg P_4), (\neg P_1, P_2, P_4)\}$
- SAT Solver liefert Modell P₁, P₂, P₃, ¬P₄
- Theory Solver liefert UNSAT
- Neue Formel: $\{(P_1), (\neg P_2, P_3), (\neg P_4), (\neg P_1, P_2, P_4), (\neg P_1, \neg P_2, \neg P_3, P_4)\}$
- SAT Solver liefert UNSAT ⇒ Formel ist UNSAT

Fahrplan für heute

Formales

Interessante Theorien

- Gleichheitslogik und uninterpretierte Funktionen
- Arithmetik
- Arrays
- Bit Vektoren

Ansätze zum Entscheiden von SMT Problemen

- Eager Approach
- Lazy Approach
- Das \mathcal{T} -DPLL Framework

Mombination von Theorien

- Nelson-Oppen Methode f
 ür konvexe Theorien
- Nelson-Oppen Methode für nicht-konvexe Theorien

Syntax

Syntax

Definition (Signatur)

Signatur Σ: Menge an *Prädikats*- und *Funktionssymbolen*

- Jedes Symbol hat eine Stelligkeit (Arität)
- Σ^P bzw. Σ^F Menge der Prädikats- bzw. Funktionssymbole
- 0-stellige Funktionssymbole: Konstanten
- 0-stellige Prädikatssymbole: Aussagenlogische Konstanten

Notation:

- a, b, c: Konstanten
- A, B: Aussagenlogische Symbole
- f, g: nicht-konstante Symbole aus Σ^F
- p, q: nicht-konstante Symbole aus Σ^P

Syntax

Variablenfreie Terme & Formeln

Quantoren- und variablenfreie Terme und Formeln

```
mit c \in \Sigma^F und Arität 0
        | f(t_1, \ldots, t_n) |
| ite(\varphi, t_1, t_2)
                                                                                      mit f \in \Sigma^F und n > 0

\begin{array}{ccc}
 & ::= & A \\
 & | & p(t_1, \dots, t_n) \\
 & | & t_1 = t_2 \mid \bot \mid \top \mid \neg \varphi_1 \\
 & | & \varphi_1 \to \varphi_2 \mid \varphi_1 \leftrightarrow \varphi_2
\end{array}

                                                                                       mit A \in \Sigma^P und Arität 0
                                                                                      mit p \in \Sigma^P und n > 0
                       \varphi_1 \vee \varphi_2 \mid \varphi_1 \wedge \varphi_2
```

- Atomare Formel / Atom: $A, p(t_1, \ldots, t_n), t_1 = t_2, \perp, \top$
- *Literal*: Atomare Formel oder deren Negation (Notation: ℓ)

Was ist mit Variablen?

Aus technischen Gründen werden Variablen wie Konstanten behandelt. Der Σ -Term x < y + 1 ist variablenfrei und x und y werden als Konstanten zu Σ hinzugefügt.

Semantik — 1

Evaluation von Formeln zu einem Wahrheitswert aus $\{ true, false \}$ bzgl. eines Modells $\mathcal A$

Modell ${\mathcal A}$ für eine Signatur Σ

Paar $(A, (_{-})^{A})$

- A: Universum
- $(_{-})^{\mathcal{A}}$ Abbildung der Symbole in Σ
 - $a^{\mathcal{A}} \in A$ (Konstanten)
 - $f^{\mathcal{A}}: A^n \to A$ für $f \in \Sigma^F$ mit Arität n (Funktionen)
 - $B^{\mathcal{A}} \in \{$ true, false $\}$ (Aussagenlogische Konstanten)
 - $p^{\mathcal{A}}: A^n \to \{\mathbf{true}, \mathbf{false}\}\$ für $p \in \Sigma^P$ mit Arität n (Prädikate)
- \Rightarrow Interpretation, die jeden Σ-Term t auf ein Element $t^{\mathcal{A}} \in A$ und jede Σ-Formel φ auf ein Element $\varphi^{\mathcal{A}} \in \{\mathbf{true}, \mathbf{false}\}$ abbildet
 - $f(t_1,\ldots,t_n)^{\mathcal{A}}=f^{\mathcal{A}}(t_1^{\mathcal{A}},\ldots,t_n^{\mathcal{A}})$
 - $ite(\varphi, t_1, t_2)^{\mathcal{A}} = if \varphi^{\mathcal{A}}$ then $t_1^{\mathcal{A}}$ else $t_2^{\mathcal{A}}$
 - $p(t_1,\ldots,t_n)^{\mathcal{A}}=p^{\mathcal{A}}(t_1^{\mathcal{A}},\ldots,t_n^{\mathcal{A}})$
 - $\perp^{\mathcal{A}}$ = false
 - $\top^{\mathcal{A}} = \mathsf{true}$
 - $(t_1 = t_2)^{A} =$ true gdw. $t_1^{A} = t_2^{A}$

- Ein Σ -Modell \mathcal{A} erfüllt (bzw. falsifiziert) eine Σ -Formel φ gdw. $\varphi^{\mathcal{A}} =$ true (bzw. = false)
- ullet In SMT: Kein beliebiges Modell, sondern Modell, das zu einer bestimmten Theorie ${\mathcal T}$ gehört

Σ -Theorie

Ein oder mehrere (möglicherweise unendlich viele) Σ -Modelle

- \Rightarrow Variablenfreie Σ-Formel φ ist in einer Σ-Theorie \mathcal{T} erfüllbar (\mathcal{T} -erfüllbar), gdw. es ein Modell \mathcal{T} in \mathcal{T} gibt, sodass $\varphi^{\mathcal{T}} = \mathbf{true}$
- \Rightarrow Eine Menge Γ von variablenfreien Σ-Formeln \mathcal{T} -folgert eine Formel φ , Γ $\models_{\mathcal{T}} \varphi$, gdw. jedes Modell von \mathcal{T} , das alle Formeln in Γ erfüllt auch φ erfüllt.
 - Γ ist \mathcal{T} -konsistent gdw. $\Gamma \not\models_{\mathcal{T}} \bot$
 - φ ist \mathcal{T} -valide gdw. $\emptyset \models_{\mathcal{T}} \varphi$
 - Eine Klausel c ist ein *Theorie Lemma*, wenn c \mathcal{T} -valide ist, d.h. $\emptyset \models_{\mathcal{T}} c$

- Üblicherweise will man in den Formeln auch uninterpretierte Symbole
 - uninterpretierte Konstanten: Ersetzen Variablen
 - uninterpretierte Aussagenlogische Konstanten: Ersetzen Teilformeln

Formal:

- Wir betrachten nicht \mathcal{T} , sondern eine Erweiterung \mathcal{T}' :
 - Sei Σ' eine beliebige Signatur, die Σ enthält
 - Eine *Erweiterung* A' zu Σ' eines Σ -Modells A ist ein Σ' -Modell mit
 - dem selben Universum wie A und
 - alle Symbole aus Σ werden in Σ' gleich interpretiert
 - \mathcal{T}' ist die Menge aller möglichen Erweiterungen der Modelle aus \mathcal{T} zu Σ'
- Wir sprechen jedoch weiterhin von \mathcal{T} -erfüllbar, \mathcal{T} -folgern, usw., haben jedoch im Kopf, dass wir eigentlich von der Erweiterung \mathcal{T}' sprechen

Problemstellung – ground \mathcal{T} -satisfiability problem

Gegeben eine Σ -Theorie \mathcal{T} . Ist eine variablenfreie Formel über einer beliebigen Erweiterung von Σ mit uninterpretierten Konstanten \mathcal{T} -erfüllbar?

Bemerkung: φ ist \mathcal{T} -unerfüllbar, gdw. $\neg \varphi$ \mathcal{T} -valide ist.

Kombinierte Theorien

Wenn zwei (oder mehr) Theorien \mathcal{T}_1 und \mathcal{T}_2 in einer Formel kombiniert werden:

- Theorien über Axiome definiert? ⇒ neue Theorie Vereinigung der beiden Axiommengen
- Besitzen die beiden Signaturen von \mathcal{T}_1 und \mathcal{T}_2 gemeinsame Symbole?
 - Haben diese Symbole nicht die selbe Bedeutung (selbe Relation bzgl. des Universums), muss eines der beiden umbenannt werden

Bei uns jedoch: Theorie ist eine Menge von Modellen

- Ein Σ -Modell \mathcal{A} ist das Σ -Reduktum eines Σ' -Modells \mathcal{B} mit $\Sigma' \supseteq \Sigma$, wenn
 - \mathcal{A} das selbe Universum hat wie \mathcal{B} und
 - \mathcal{A} die Symbole exakt wie \mathcal{B} interpretiert
- Die Kombination $\mathcal{T}_1 \oplus \mathcal{T}_2$ von \mathcal{T}_1 und \mathcal{T}_2 ist die Menge aller $(\Sigma_1 \cup \Sigma_2)$ -Modelle \mathcal{B} , deren Σ_1 -Reduktum isomorph ist zu einem Modell von \mathcal{T}_1 und deren Σ_2 -Reduktum isomorph ist zu einem Modell von \mathcal{T}_2 .
- Zusammenhang zu axiomatischer Sichtweise: Wenn jedes \mathcal{T}_i die Menge aller Σ_i -Modelle ist, die eine Menge Γ_i an Axiomen erfüllen, dann ist $\mathcal{T}_1 \oplus \mathcal{T}_2$ genau die Menge aller $(\Sigma_1 \cup \Sigma_2)$ -Modelle, die $\Gamma_1 \cup \Gamma_2$ erfüllen.

Abstraktion

- assoziiere mit jeder Signatur Σ eine Signatur Ω , die enthält:
 - aussagenlogische Konstanten von Σ
 - Menge an neuen aussagenlogischen Symbolen mit der selben Kardinalität wie die Menge der variablenfreien Σ-Atome
- Bijektion T2B (aussagenlogische Abstraktion 'Theory-to-Bool') zwischen den variablenfreien Σ -Formeln ohne ite Ausdrücke und den aussagenlogischen Formeln über Ω
 - Jede aussagenlogische Konstante aus Σ wird auf sich selbst abgebildet
 - Alle nicht-propositionalen Σ -Atome (atomare Formeln) werden auf neue aussagenlogische Symbole in Ω abgebildet (also: atomare Formeln werden durch Symbole repräsentiert).
 - ite Ausdrücke werden durch rein aussagenlogische Ausdrücke ersetzt
- Inverses von T2B ist B2T (Refinement)

Notation:

- φ^p anstelle von $\mathcal{T}2\mathcal{B}(\varphi)$
- Für Menge Γ an Σ -Formeln: $\Gamma^p = \{ \varphi^p \mid \varphi \in \Gamma \}$
- Eine Σ -Formel φ ist aussagenlogisch unerfüllbar, wenn $\varphi^p \models \bot$
- $\Gamma \models_p \varphi$ bedeutet $\Gamma^p \models \varphi^p$
- $\Gamma \not\models_p \varphi$ impliziert $\Gamma \not\models_{\mathcal{T}} \varphi$, jedoch nicht umgekehrt

Wo sind wir?

- **n** Formales √
- Interessante Theorien
 - Gleichheitslogik und uninterpretierte Funktionen
 - Arithmetik
 - Arrays
 - Bit Vektoren

Ansätze zum Entscheiden von SMT Problemen

- Eager Approach
- Lazy Approach
- Das T-DPII Framework

A Kombination von Theorien

- Nelson-Oppen Methode f
 ür konvexe Theorien
- Nelson-Oppen Methode f
 ür nicht-konvexe Theorien

Gleichheitslogik und uninterpretierte Funktionen (EUF)

- **Üblicherweise:** Aus einer Theorie ergeben sich Restriktionen, wie Symbole der Theorie interpretiert werden (Arithmetik, Pointerlogik,...)
- **Spezialfall:** Keinerlei Restriktionen (außer Bedeutung von =), d.h. die Theorie \mathcal{T}_{Σ} besteht aus allen möglichen Modellen für eine Signatur Σ
- Man bezeichnet diese Theorie mit $\mathcal{T}_{\mathcal{E}}$ und spricht von der Theorie mit Gleichheit und uninterpretierten Funktionen (EUF)
- Entscheidbar in Polynomialzeit (congruence closure, siehe nächste Folie)

Verwendung: Abstraktion

- Abstrahieren von Theorien, die "schwerer" zu entscheiden sind
- Abstraktion UNSAT ⇒ Originalformel UNSAT (Gilt nicht für den Fall SAT, da in der Originalformel die constraints der Theorie hinzukommen)

Beispiel

- Original formelmenge: $\{a \cdot (f(b) + f(c)) = d, b \cdot (f(a) + f(c)) \neq d, a = b\}$
- Abstraktion: $\{h(a, g(f(b), f(c))) = d, h(b, g(f(a), f(c))) \neq d, a = b\}$
- Bereits Abstraktion ist UNSAT, daher auch die Originalformelmenge UNSAT

Entscheidungsverfahren für EUF: Kongruenzhülle

Kongruenzhüllen Algorithmus (Shostak, 1978)

- **Eingabe:** Eine Konjunktion φ von Gleichungen und Ungleichungen über Variablen und uninterpretierten Funktionen
- Ausgabe: SAT, wenn φ erfüllbar ist, ansonsten UNSAT
- Generiere unter Kongruenz abgeschlossene Aquivalenzklassen
 - **1** Initialisierung: Zwei Terme t_1 und t_2 (Variablen oder UFs) sind in der selben Aguivalenzklasse, wenn es eine Gleichung $t_1 = t_2$ in φ gibt. Alle anderen Terme sind in einer eigenen Äquivalenzklasse.
 - 2 Teilen zwei Klassen einen Term, werden sie vereinigt. (Bis zum Fixpunkt)
 - 3 Sind t_1 und t_2 in der selben Klasse und sind $f(t_1)$ und $f(t_2)$ zwei Terme in φ , dann vereinige die Klassen von $f(t_1)$ und $f(t_2)$ (Bis zum Fixpunkt)
- 2 Ausgabe:
 - UNSAT, wenn es eine Ungleichung $t_1 \neq t_2$ in φ gibt, aber t_1 und t_2 in der selben Äguivalenzklasse sind
 - SAT sonst

Bemerkung: Algorithmus leicht erweiterbar auf UFs mit Stelligkeit > 1

Kongruenzhülle — Beispiel

Beispiel

$$\varphi = x_1 = x_2 \land x_2 = x_3 \land x_4 = x_5 \land x_5 \neq x_1 \land f(x_1) \neq f(x_3)$$

- Mongruenzhülle:
 - 1 Initialisierung:

$$\{x_1, x_2\}, \{x_2, x_3\}, \{x_4, x_5\}, \{f(x_1)\}, \{f(x_3)\}$$

2 Vereinigen:

$$\{x_1, x_2, x_3\}, \{x_4, x_5\}, \{f(x_1)\}, \{f(x_3)\}$$

S Kongruenzhülle:

$$\{x_1, x_2, x_3\}, \{x_4, x_5\}, \{f(x_1), f(x_3)\}$$

- $f(x_1)$ und $f(x_3)$ sind in der selben Äquivalenzklasse
- $f(x_1) \neq f(x_3)$ ist Term in φ
- $\Rightarrow \varphi$ ist UNSAT

Arithmetik

- Signatur: $\Sigma_{\mathcal{Z}} = (0, 1, +, -, \leq)$
- $\mathcal{T}_{\mathcal{Z}}$ besteht aus den Modellen, die $\Sigma_{\mathcal{Z}}$ über den Ganzen Zahlen interpretieren (auch bekannt als *Presburger Arithmetik*)
- ullet $\mathcal{T}_{\mathcal{R}}$ besteht aus den Modellen, die $\Sigma_{\mathcal{Z}}$ über den Reellen Zahlen interpretieren

Entscheidbarkeit

Sowohl $\mathcal{T}_{\mathcal{R}}$ als auch $\mathcal{T}_{\mathcal{Z}}$ und deren Erweiterungen sind entscheidbar

- $\mathcal{T}_{\mathcal{R}}$ ist in Polynomialzeit entscheidbar (aber Simplex, der im worstcase exponentiell ist, ist in der Praxis oft der beste Algorithmus)
- $\mathcal{T}_{\mathcal{Z}}$ ist NP-vollständig (siehe Pseudo Boolesche Optimierung...)
- Sobald man zu $\Sigma_{\mathcal{Z}}$ die Multiplikation hinzunimmt, wird $\mathcal{T}_{\mathcal{Z}}$ sogar für Konjunktionen von variablenfreien Formeln unentscheidbar (Matiyasevich 1971)
- $\mathcal{T}_{\mathcal{R}}$ mit Multiplikation ist entscheidbar (Tarski), aber doppelt exponentiell (Davenport-Heinz 1980)
- Multiplikation mit Konstanten kann in $\mathcal{T}_{\mathcal{Z}}$ verwendet werden: $4 \cdot x$ ist äquivalent zu x + x + x + x

Restriktionen der Arithmetik

Differenzlogik

- Jedes Atom ist von der Form $a b \bowtie t$ mit
 - a und b uninterpretierte Konstanten
 - $\bowtie \in \{=, \leq\}$
 - t Ganzzahl
- Effiziente Entscheidungsverfahren vorhanden

UTVPI

- Unit Two Variables per Inquality
- Erlauben neben obigen Formeln auch noch $a + b \bowtie t$

Anwendungen:

- Modellierung von endlichen Mengen
- Programm Arithmetik
- Zeigermanipulation
- Speichermodellierung
- Physikalische Eigenschaften
- ...

Arrays

- Signatur $\Sigma_A = (read, write)$
- Array a
 - read(a, i): Wert von a am Index i
 - write(a, i, v): Array, das identisch zu a ist, nur mit Wert v an Index i

Formale Axiome

- \bullet $\forall a \ \forall i \ \forall v \ (read(write(a, i, v), i) = v)$
- 2 $\forall a \ \forall i \ \forall i \ \forall v \ (i \neq j \rightarrow read(write(a, i, v), j) = read(a, j))$
- Theorie \mathcal{T}_A umfasst alle Modelle dieser Axiome
- Häufig auch noch $\forall a \ \forall b \ (\forall i \ (read(a, i) = read(b, i))) \rightarrow a = b$ (Extensionalitätsaxiom); Theorie heißt dann \mathcal{T}_{Aex}
- Sowohl \mathcal{T}_A als auch \mathcal{T}_{Aex} sind NP-vollständig, aber es gibt "gute" Algorithmen für praktische Probleme
- Kann auf EUF reduziert werden
- **Anwendung:** Modellierung von Datenstrukturen und Speicher

Bit Vektoren

- Bereits bekannt aus Bounded Model Checking
- Konstanten: Bit Vektoren, jede Konstante hat eine feste Anzahl an Bits assoziiert
- Funktionen und Prädikate: Extraktion, Konkatenation, Bitweise Boolesche Operatoren, Arithmetische Operatoren
- Entscheidbarkeit der Theorien ist NP-vollständig (kann in Polynomialzeit auf SAT reduziert werden \rightarrow Bit Blasting)
- Bit Vektor Probleme können oft effizienter gelöst werden als die entsprechende Modellierung auf Bit Ebene
- **Anwendungen:** Modellierung von Schaltkreisen, Maschinenoperationen

Wo sind wir?

- **●** Formales √
- **②** Interessante Theorien √
 - Gleichheitslogik und uninterpretierte Funktionen
 - Arithmetik
 - Arrays
 - Bit Vektoren

Ansätze zum Entscheiden von SMT Problemen

- Eager Approach
- Lazy Approach
- Das \mathcal{T} -DPLL Framework

A Kombination von Theorien

- Nelson-Oppen Methode f
 ür konvexe Theorien
- Nelson-Oppen Methode für nicht-konvexe Theorien

Eager vs. Lazy Encodings

Eager Approach

- Methodologie: Übersetze gesamtes Problem in eine erfüllbarkeitsäquivalente Formel in Aussagenlogik und benutze SAT Solver
- Warum "eager": Sämtliche Theorieinformation wird von Anfang an verwendet (in ihrer Übersetzung)
- Vor/Nachteile:
 - + Fortschritte in SAT direkt nutzbar (verwende besten SAT Solver)
 - Schwierige Kodierung einiger Theorien in AL

Lazy Approach

- Methodologie: Rufe speziellen Theory Solver auf, wenn er gebraucht wird
- Warum "lazy": Theorieinformation wir erst benutzt, wenn der jeweilige Theory Solver aufgerufen wird
- Vor/Nachteile:
 - + Modular und flexibel (Theory Solver können gepluggt werden)
 - Die (SAT-)Suche wird nicht durch die Theorieinformation geleitet (kein feed-back von der Theorie zum SAT-Solver)

Eager Approach — Beispiel

Beispiel

Formel: $f(a) = f(b) \land f(b) \neq f(c)$

- Entferne Funktionen und Prädikate durch Konstanten (z.B. Ackermann Reduktion)
 - Ersetze f(a) durch A, f(b) durch B und f(c) durch C
 - Füge Klauseln hinzu: $a = b \rightarrow A = B$, $a = c \rightarrow A = C$ und $b = c \rightarrow B = C$
 - Jetzt sind alle Atome Gleichungen zwischen Konstanten

$$A = B \land \neg (B = C) \land a = b \rightarrow A = B \land a = c \rightarrow A = C \land b = c \rightarrow B = C$$

- 2 Übersetze Formeln in Aussagenlogik
 - Small Domain Encoding
 - Wenn es n verschiedene Konstanten gibt, gibt es im Fall dieser einfachen Gleichungslogik ein Modell mit Größe $\leq n$, falls es überhaupt ein Modell gibt (andere Logiken wie z.B. Differenzlogik oder UTVPI haben höhere Schranken)
 - Benutze log *n* Bits um den Wert jeder Konstante zu kodieren
 - a = b wird mithilfe der Bits für a und b (bitweise) übersetzt
 - Direct Encoding (Per-Constraint Encoding)
 - Jedes Atom a = b wird mit Variable $P_{a,b}$ ersetzt
 - Relevantes Wissen über die ersetzte Relation wird als Constraints zugefügt
 - Hier z.B. Transitivitätsconstraints: P_{a,b} ∧ P_{b,c} → P_{a,c}

Lazy Approach: Was sollte ein Theorie (\mathcal{T} -)Solver können?

- Model Generation: Wird der \mathcal{T} -Solver auf eine \mathcal{T} -konsistente Menge Γ angewandt, kann er ein \mathcal{T} -Modell \mathcal{I} mit $\mathcal{I} \models_{\mathcal{T}} \Gamma$ zurückgeben
- Conflict Set Generation: Wird der T-Solver auf eine T-inkonsistente Menge Γ angewandt, kann er eine (möglichst minimale) Teilmenge η von Γ zurückgeben, die die Inkonsistenz verursacht hat
- Incrementality: Der T-Solver ist inkrementell. Nach Lösung von Γ kann er in diesem Zustand weitermachen, um $\Gamma \cup \Delta$ zu lösen
- Backtrackability: Der T-Solver kann Berechnungsschritte effizient rückgängig machen und zu einem früheren Zustand zurückkehren
- Deduction of Unassigned Literals: Auf eine T-konsistente Menge Γ angewandt, kann ein \mathcal{T} -Solver Deduktionen der Form $\Gamma' \models_{\mathcal{T}} \ell^p$ ausführen mit $\Gamma' \subset \Gamma$ und ℓ^p ein bisher unbelegtes Literal
- Deduction of Interface Equalities: Wenn der T-Solver SAT zurückgibt, kann er Deduktionen der Form $\Gamma \models_{\mathcal{T}} e$ vollziehen
 - e ist eine Gleichung zwischen Variablen oder Termen, die in Atomen von Γ vorkommen

Offline Integration

- Einfachste Integrationsform
- Eingabeformel φ mit aussagenlogischer Abstraktion φ^p
- Entscheide φ^p (wird in CNF übersetzt) mit DPLL Solver
- Ergebnis UNSAT: Auch φ ist UNSAT
- Ergebnis SAT mit erfüllender Belegung (Modell) Γ^p
 - Menge an entsprechenden \mathcal{T} -Literalen Γ wird separat mit \mathcal{T} -Solver entschieden
 - Γ ist \mathcal{T} -konsistent: Auch φ ist \mathcal{T} -konsistent
 - Γ ist T-inkonsistent: $\neg \Gamma^p$ als Klausel zu φ^p hinzugefügt und SAT Solver wird komplett neu gestartet um weiteres Modell von φ^p zu finden
- DPLL Solver wird als Black Box verwendet
 - keine Veränderungen nötig
 - jeder Solver kann benutzt werden

Nachteile

- SAT Solver wird jedesmal komplett neu gestartet
- T-Solver bekommt immer nur vollständige Modelle von φ^p zur Entscheidung

Online Integration

- Intelligentere Integrationsform
- SAT Solver wird dahingehend modifiziert, dass er die erfüllenden Belegungen Γ^p von φ^p enumeriert und jeweils die \mathcal{T} -Literale Γ mit dem \mathcal{T} -Solver auf Konsistenz prüft, bis ein \mathcal{T} -konsistentes Γ gefunden ist (oder die Modelle von φ^p erschöpft sind).
- Die folgende Folie zeigt eine online T-DPLL Prozedur
 - Eingabe φ ist eine \mathcal{T} -Formel
 - Eingabe Γ ist eine (Referenz auf eine) anfangs leere Menge von \mathcal{T} -Literalen.
 - Der eingebettete DPLL-Solver arbeitet auf φ^p und erneuert Γ^p
 - \mathcal{T} -DPLL kennt die Literale von φ und die bijektive Abbildung $\mathcal{B}2\mathcal{T}/\mathcal{T}2\mathcal{B}$.
- DPLL Solver wird verändert und mit T-Solver integriert
- Backtracking und Lernen des DPLL-Solvers kann vom \mathcal{T} -Solver profitieren

Nachteile

- T-DPLL profitiert nicht automatisch von Verbesserungen im SAT Solving
- Es können nicht automatisch verschiedene SAT Solver ausgetauscht werden

Online Integration: $\mathcal{T} ext{-}\mathsf{DPLL}$

```
Algorithm 1: Online Schema für \mathcal{T}-DPLL
```

```
Input: \mathcal{T}-Formel \varphi, \mathcal{T}-Belegung \Gamma
Output: SAT oder UNSAT
if \mathcal{T}-preprocess(\varphi, \Gamma) == Conflict then
 return UNSAT
while true do
    \mathcal{T}-decide_next_branch(\varphi^p, \Gamma^p)
    while true do
         status = \mathcal{T}-deduce(\varphi^p, \Gamma^p)
         if status == T-SAT then
              \Gamma = \mathcal{B}2\mathcal{T}(\Gamma^p)
           return SAT
         else if status == \mathcal{T}-Conflict then
              blevel = \mathcal{T}-analyze_conflict(\varphi^p, \Gamma^p)
              if blevel == -1 then
               return UNSAT
             \mathcal{T}-backtrack(blevel, \varphi^p, \Gamma^p)
         else
```

 $_{-}$ break

\mathcal{T} -DPLL Algorithmus — Erklärungen

- \mathcal{T} -preprocess: Simplifiziert φ und updated Γ , so dass \mathcal{T} -Erfüllbarkeit von $\varphi \wedge \Gamma$ erhalten bleibt (AL Simplifikation + \mathcal{T} -Rewriting)
- T-decide_next_branch: Wählt nächste Variable aus
- T-deduce: Siehe nächste Folie
- T-analyze_conflict: Erweiterung der klassischen DPLL Konfliktanalyse
 - Boolescher Konflikt: Boolesche Konfliktmenge η^p (entspricht einer gelernten Klausel $\neg \eta^p$) und entsprechendes blevel
 - \mathcal{T} -Konflikt: Benutze die AL-Abstraktion η^p der Konfliktmenge η des \mathcal{T} -Solvers
- T-backtrack: Wie Backtracking im DPLL
 - $\neg \eta^p$ wird zu φ^p hinzugefügt
 - Backtracking zu Level blevel

Erweiterung von DPLL

- **1 Deduktion** nicht nur Boole sch $(\Gamma^p \wedge \varphi^p \models_p \ell^p)$ sondern auch in der Theorie $(\Gamma \models_{\mathcal{T}} \ell)$
- **2** Nicht nur Boole sche **Konflikte** $(\varphi^p \wedge \Gamma^p \models_p \bot)$ sondern auch Theorie Konflikte ($\Gamma \models_{\mathcal{T}} \bot$)

Deduktion im \mathcal{T} -DPLL Framework

\mathcal{T} -deduce (φ^p, Γ^p)

Folgert iterativ Boole'sche Literale ℓ^p , die durch die aktuelle Belegung impliziert werden (d.h. $\varphi^p \wedge \Gamma^p \models_p \ell^p$), bis eine der folgenden Bedingungen wahr wird:

- **1** Γ^p verletzt φ^p aussagenlogisch, d.h. $\Gamma^p \wedge \varphi^p \models_p \bot$
 - Verhalten wie DPLL
 - Rückgabe: CONFLICT
- **2** Γ^p erfüllt φ^p aussagenlogisch, d.h. $\Gamma^p \models_p \varphi^p$
 - T-Solver wird auf Γ angewandt
 - Wenn T-konsistent, Rückgabe: SAT
 - Andernfalls Rückgabe: CONFLICT
- 3 Keine weiteren Literale können mehr gefolgert werden
 - Rückgabewert: UNKNOWN
 - Oder: \mathcal{T} -Solver wird auf (noch unvollständigem) Γ aufgerufen, wenn Γ schon jetzt \mathcal{T} -inkonsistent, dann Rückgabe CONFLICT (Early Pruning)

Bemerkung: Große Verbesserung kann erzielt werden, wenn der T-Solver "Deduction of Unassigned Literals" beherrscht

$$\varphi = \qquad \qquad \varphi^{p} = \\ c_{1}: \quad \{\neg(2x_{2} - x_{3} > 2) \lor A_{1}\} \qquad \qquad \{\neg B_{1} \lor A_{1}\} \\ c_{2}: \quad \{\neg A_{2} \lor (x_{1} - x_{5} \leq 1)\} \qquad \qquad \{\neg A_{2} \lor B_{2}\} \\ c_{3}: \quad \{(3x_{1} - 2x_{2} \leq 3) \lor A_{2}\} \qquad \qquad \{B_{3} \lor A_{2}\} \\ c_{4}: \quad \{\neg(2x_{3} + x_{4} \geq 5) \lor \neg(3x_{1} - x_{3} \leq 6) \lor \neg A_{1}\} \qquad \{\neg B_{4} \lor \neg B_{5} \lor \neg A_{1}\} \\ c_{5}: \quad \{A_{1} \lor (3x_{1} - 2x_{2} \leq 3)\} \qquad \qquad \{A_{1} \lor B_{3}\} \\ c_{6}: \quad \{(x_{2} - x_{4} \leq 6) \lor (x_{5} = 5 - 3x_{4}) \lor \neg A_{1}\} \qquad \{B_{6} \lor B_{7} \lor \neg A_{1}\} \\ c_{7}: \quad \{A_{1} \lor (x_{3} = 3x_{5} + 4) \lor A_{2}\} \qquad \{A_{1} \lor B_{8} \lor A_{2}\}$$

$$\varphi = \qquad \qquad \varphi^{p} = \\ c_{1}: \quad \{\neg(2x_{2} - x_{3} > 2) \lor A_{1}\} \qquad \{\neg B_{1} \lor A_{1}\} \\ c_{2}: \quad \{\neg A_{2} \lor (x_{1} - x_{5} \leq 1)\} \qquad \{\neg A_{2} \lor B_{2}\} \\ c_{3}: \quad \{(3x_{1} - 2x_{2} \leq 3) \lor A_{2}\} \qquad \{B_{3} \lor A_{2}\} \\ c_{4}: \quad \{\neg(2x_{3} + x_{4} \geq 5) \lor \neg(3x_{1} - x_{3} \leq 6) \lor \neg A_{1}\} \qquad \{\neg B_{4} \lor \neg B_{5} \lor \neg A_{1}\} \\ c_{5}: \quad \{A_{1} \lor (3x_{1} - 2x_{2} \leq 3)\} \qquad \{A_{1} \lor B_{3}\} \\ c_{6}: \quad \{(x_{2} - x_{4} \leq 6) \lor (x_{5} = 5 - 3x_{4}) \lor \neg A_{1}\} \qquad \{B_{6} \lor B_{7} \lor \neg A_{1}\} \\ c_{7}: \quad \{A_{1} \lor (x_{3} = 3x_{5} + 4) \lor A_{2}\} \qquad \{A_{1} \lor B_{8} \lor A_{2}\}$$

$$arphi^p = \{ \neg B_1 \lor A_1 \}$$
 $\{ \neg A_2 \lor B_2 \}$
 $\{ B_3 \lor A_2 \}$
 $\{ \neg A_1 \}$
 $\{ A_1 \lor B_3 \}$
 $\{ A_1 \lor B_3 \lor A_2 \}$
 $\{ A_1 \lor B_3 \lor A_2 \}$

- Initiale Belegung: $\Gamma^p = \{\neg B_5, B_8, B_6, \neg B_1\}$
- Damit erfüllt: c₁, c₄, c₆, c₇
- Keine Propagation möglich
- Erweiterter Fall 3) von T-deduce

$$\begin{array}{lll} \varphi = & \varphi^{p} = \\ c_{1} \colon & \{ \neg (2x_{2} - x_{3} > 2) \lor A_{1} \} & \{ \neg B_{1} \lor A_{1} \} \\ c_{2} \colon & \{ \neg A_{2} \lor (x_{1} - x_{5} \leq 1) \} & \{ \neg A_{2} \lor B_{2} \} \\ c_{3} \colon & \{ (3x_{1} - 2x_{2} \leq 3) \lor A_{2} \} & \{ B_{3} \lor A_{2} \} \\ c_{4} \colon & \{ \neg (2x_{3} + x_{4} \geq 5) \lor \neg (3x_{1} - x_{3} \leq 6) \lor \neg A_{1} \} & \{ \neg B_{4} \lor \neg B_{5} \lor \neg A_{1} \} \\ c_{5} \colon & \{ A_{1} \lor (3x_{1} - 2x_{2} \leq 3) \} & \{ A_{1} \lor B_{3} \} \\ c_{6} \colon & \{ (x_{2} - x_{4} \leq 6) \lor (x_{5} = 5 - 3x_{4}) \lor \neg A_{1} \} & \{ B_{6} \lor B_{7} \lor \neg A_{1} \} \\ c_{7} \colon & \{ A_{1} \lor (x_{3} = 3x_{5} + 4) \lor A_{2} \} & \{ A_{1} \lor B_{3} \lor A_{2} \} \end{array}$$

- $\Gamma^p = \{ \neg B_5, B_8, B_6, \neg B_1 \}$
- T-Solver wird auf

$$\Gamma = \{\neg (3x_1 - x_3 \le 6), (x_3 = 3x_5 + 4), (x_2 - x_4 \le 6), \neg (2x_2 - x_3 > 2)\}$$

angewendet

$$\begin{array}{lll} \varphi = & \varphi^{p} = \\ c_{1} \colon & \{ \neg (2x_{2} - x_{3} > 2) \lor A_{1} \} & \{ \neg B_{1} \lor A_{1} \} \\ c_{2} \colon & \{ \neg A_{2} \lor (x_{1} - x_{5} \leq 1) \} & \{ \neg A_{2} \lor B_{2} \} \\ c_{3} \colon & \{ (3x_{1} - 2x_{2} \leq 3) \lor A_{2} \} & \{ B_{3} \lor A_{2} \} \\ c_{4} \colon & \{ \neg (2x_{3} + x_{4} \geq 5) \lor \neg (3x_{1} - x_{3} \leq 6) \lor \neg A_{1} \} & \{ \neg B_{4} \lor \neg B_{5} \lor \neg A_{1} \} \\ c_{5} \colon & \{ A_{1} \lor (3x_{1} - 2x_{2} \leq 3) \} & \{ A_{1} \lor B_{3} \} \\ c_{6} \colon & \{ (x_{2} - x_{4} \leq 6) \lor (x_{5} = 5 - 3x_{4}) \lor \neg A_{1} \} & \{ B_{6} \lor B_{7} \lor \neg A_{1} \} \\ c_{7} \colon & \{ A_{1} \lor (x_{3} = 3x_{5} + 4) \lor A_{2} \} & \{ A_{1} \lor B_{8} \lor A_{2} \} \end{array}$$

- T-Solver folgert (z.B.) $\neg (3x_1 2x_2 < 3)^p = \neg B_3$ als Konsequenz von $\neg B_5$ und $\neg B_1$ (B_3 ist in c_3 und c_5 enthalten)
- Also $\neg B_5 \land \neg B_1 \models \neg B_3$ (Deduction of unassigned literal $\neg B_3$)
- $\Gamma^p = \{ \neg B_5, B_8, B_6, \neg B_1, \neg B_3 \}$

$$\begin{array}{lll} \varphi = & \varphi^{\rho} = \\ c_1 \colon & \{ \neg (2x_2 - x_3 > 2) \lor A_1 \} & \{ \neg B_1 \lor A_1 \} \\ c_2 \colon & \{ \neg A_2 \lor (x_1 - x_5 \le 1) \} & \{ \neg A_2 \lor B_2 \} \\ c_3 \colon & \{ (3x_1 - 2x_2 \le 3) \lor A_2 \} & \{ B_3 \lor A_2 \} \\ c_4 \colon & \{ \neg (2x_3 + x_4 \ge 5) \lor \neg (3x_1 - x_3 \le 6) \lor \neg A_1 \} & \{ \neg B_4 \lor \neg B_5 \lor \neg A_1 \} \\ c_5 \colon & \{ A_1 \lor (3x_1 - 2x_2 \le 3) \} & \{ A_1 \lor B_3 \} \\ c_6 \colon & \{ (x_2 - x_4 \le 6) \lor (x_5 = 5 - 3x_4) \lor \neg A_1 \} & \{ B_6 \lor B_7 \lor \neg A_1 \} \\ c_7 \colon & \{ A_1 \lor (x_3 = 3x_5 + 4) \lor A_2 \} & \{ A_1 \lor B_8 \lor A_2 \} \end{array}$$

- Unit Propagations:
 - A_1 wegen c_5
 - A_2 wegen c_3
 - B_2 wegen c_2
- Dadurch $\Gamma'^p = \{ \neg B_5, B_8, B_6, \neg B_1, \neg B_3, A_1, A_2, B_2 \}$
- Schicke entsprechende Teilmenge γ' von Γ' an \mathcal{T} -Solver: $\gamma'^p = \{ \neg B_5, B_8, B_6, \neg B_1, \neg B_3, B_2 \}$
- Rückgabe: UNSAT (wegen T-Literalen 1, 2 und 6)
- Rückgabe von \mathcal{T} -deduce: CONFLICT Küchlin / Walter (Universität Tübingen

• \mathcal{T} -analyze_conflict und \mathcal{T} -backtrack folgern und lernen die Klausel

$$c_8 = B_5 \vee \neg B_8 \vee \neg B_2$$

- Rücksprung zu entsprechendem blevel
- c₈ ist danach unit

T-DPLL — Beispiel

$$\varphi = \qquad \qquad \varphi^{p} = \\ c_{1} : \quad \{ \neg (2x_{2} - x_{3} > 2) \lor A_{1} \} \qquad \{ \neg B_{1} \lor A_{1} \} \\ c_{2} : \quad \{ \neg A_{2} \lor (x_{1} - x_{5} \leq 1) \} \qquad \{ \neg A_{2} \lor B_{2} \} \\ c_{3} : \quad \{ (3x_{1} - 2x_{2} \leq 3) \lor A_{2} \} \qquad \{ B_{3} \lor A_{2} \} \\ c_{4} : \quad \{ \neg (2x_{3} + x_{4} \geq 5) \lor \neg (3x_{1} - x_{3} \leq 6) \lor \neg A_{1} \} \qquad \{ \neg B_{4} \lor \neg B_{5} \lor \neg A_{1} \} \\ c_{5} : \quad \{ A_{1} \lor (3x_{1} - 2x_{2} \leq 3) \} \qquad \{ A_{1} \lor B_{3} \} \\ c_{6} : \quad \{ (x_{2} - x_{4} \leq 6) \lor (x_{5} = 5 - 3x_{4}) \lor \neg A_{1} \} \qquad \{ B_{6} \lor B_{7} \lor \neg A_{1} \} \\ c_{7} : \quad \{ A_{1} \lor (x_{3} = 3x_{5} + 4) \lor A_{2} \} \qquad \{ A_{1} \lor B_{8} \lor \neg B_{2} \}$$

$$\varphi^{p} = \{ \neg B_{1} \lor A_{1} \}
\{ \neg A_{2} \lor B_{2} \}
\{ B_{3} \lor A_{2} \}
\{ \neg B_{4} \lor \neg B_{5} \lor \neg A_{1} \}
\{ A_{1} \lor B_{3} \}
\{ B_{6} \lor B_{7} \lor \neg A_{1} \}
\{ A_{1} \lor B_{8} \lor A_{2} \}
\{ B_{5} \lor \neg B_{8} \lor \neg B_{2} \}$$

- Unit Propagations
 - $\neg B_2$ wegen c_8
 - $\neg A_2$ wegen c_2
 - B_3 wegen c_3
- Alle Klauseln sind erfüllt
- \Rightarrow \mathcal{T} -deduce gibt SAT zurück
- $\Rightarrow \mathcal{T}$ -DPLL gibt SAT zurück

Wo sind wir?

- **n** Formales √
- - Gleichheitslogik und uninterpretierte Funktionen
 - Arithmetik
 - Arrays
 - Bit Vektoren
- Ansätze zum Entscheiden von SMT Problemen √
 - Eager Approach
 - Lazy Approach
 - Das T-DPII Framework
- A Kombination von Theorien
 - Nelson-Oppen Methode f
 ür konvexe Theorien
 - Nelson-Oppen Methode f
 ür nicht-konvexe Theorien

Kombination von Theorien

Beispiel

Häufig müssen verschiedene Theorien kombiniert werden:

Lineare Arithmetik (LA) und Uninterpretierte Funktionen (EUF):

$$(x_2 \ge x_1) \land (x_1 - x_3 \le x_2) \land (x_3 \ge 0) \land f(f(x_1) - f(x_2)) \ne f(x_3)$$

• Bit Vektoren (BV) und Uninterpretierte Funktionen (EUF):

$$f(a[32], b[1]) = f(b[32], a[1]) \land a[32] = b[32]$$

• Arrays (AR) und lineare Arithmetik (LA):

$$x = a\{i \leftarrow e\}[j] \land y = a[j] \land x > e \land x > y$$

Idee von Nelson-Oppen Methode

- Eigener Solver für jede Theorie
- Solver können "Interface"-Informationen untereinander austauschen

Nelson-Oppen Methode — Voraussetzungen

Um die Nelson-Oppen Methode anwenden zu können, müssen die Theorien T_1, \ldots, T_n im einfachsten Fall folgende Eigenschaften erfüllen:

- \bullet T_1, \ldots, T_n sind quantorenfreie first-order Theorien mit Gleichheit
- **2** Es gibt jeweils eine Entscheidungsprozedur für T_1, \ldots, T_n
- **3** Die Signaturen sind disjunkt, d.h. für alle $1 \le i < j \le n, \Sigma_i \cap \Sigma_j = \emptyset$
- **4** T_1, \ldots, T_n werden über unendlichen Domänen interpretiert (z.B. lineare Arithmetik über \mathcal{R} , aber nicht Theorie der endlich breiten Bit Vektoren)

Es gibt Erweiterungen von Nelson-Oppen für jede dieser Restriktionen

Im Allgemeinen wird die Methode wesentlich effizienter, wenn zusätzlich gilt:

5 T_1, \ldots, T_n sind konvexe Theorien

Die Methode prüft die Erfüllbarkeit einer Konjunktion φ von atomaren Formeln (ggf. zuvor DNF herstellen). Die atomaren Formeln werden zunächst mit Hilfe von Hilfsvariablen in neue "reine" (pure) Atome zerlegt, die jeweils zu genau einer Theorie gehören (purification).

Konvexe Theorien

Definition (Konvexe Theorie)

Eine Σ -Theorie T ist konvex, wenn für jede konjunktive Σ -Formel φ gilt:

$$(\varphi \Rightarrow \bigvee_{i=1}^{n} x_i = y_i)$$
 ist T -valide für ein endliches $n > 1 \Longrightarrow (\varphi \Rightarrow x_i = y_i)$ ist T -valide für ein $i \in \{1, \dots, n\}$

mit x_i, y_i Variablen.

D.h. Wenn eine Formel eine Disjunktion von Gleichungen impliziert, impliziert sie mindestens eine dieser Gleichungen separat.

Beispiel

- Lineare Arithmetik über ℝ ist konvex
- Lineare Arithmetik über Z ist nicht konvex
 - $x_1 = 1 \land x_2 = 2 \land 1 \le x_3 \land x_3 \le 2 \Rightarrow (x_3 = x_1 \lor x_3 = x_2)$ gilt
 - $x_1 = 1 \land x_2 = 2 \land 1 \le x_3 \land x_3 \le 2 \Rightarrow x_3 = x_1$ gilt nicht
 - $x_1 = 1 \land x_2 = 2 \land 1 \le x_3 \land x_3 \le 2 \Rightarrow x_3 = x_2$ gilt nicht

Purification — 1

- ullet Erfüllbarkeitsäquivalente Transformation einer Konjunktion arphi zu arphi'
- In Konjunktion φ' ist jede atomare Formel aus nur einer Theorie (ist pur)
- Es werden Hilfsvariablen a_{ij}, b_{ij}, \ldots aus einer Menge C eingeführt, die jeweils 2 Theorien T_i und T_i verbinden indem sie beiden angehören.

Definitionen: Sei $\Sigma = \Sigma_1 \cup \Sigma_2 \cup C$. Ein Σ -Term t ist ein i-Term wenn sein oberstes Funktionssymbol in $\Sigma_i \cup C$ ist. Ein Σ -Literal α ist ein i-Literal wenn sein oberstes Prädikatssymbol in $\Sigma_i \cup C$ ist oder wenn es die Form $(\neg)(s=t)$ hat und s und t beides i-Terme sind. Falls s und t unterschiedlichen Theorien angehören, wird s=t einer der beiden Theorien zugeschlagen. Ein Teilterm eines i-Atoms α ist ein fremder (alien) Teilterm, wenn das oberste Symbol nicht in $\Sigma_i \cup C$ ist und alle Superterme i-Terme sind. Ein i-Term oder i-Literal ist rein (pure) wenn nur Symbole aus $\Sigma_i \cup C$ enthalten sind.

Purification:

- $\bullet \varphi' := \varphi$
- **2** Iteriere solange wie möglich: Für jeden fremden Teilterm t eines Literals in φ'
 - Ersetze t mit neuer Hilfsvariable (Konstante) a_t
 - Füge Constraint $a_t = t \operatorname{zu} \varphi'$ hinzu

Purification — 2

Beispiel

Lineare Arithmetik + Uninterpretierte Funktionen:

$$\varphi=x_1\leq f(g())$$

Nach Purifikation:

$$\varphi'=x_1\leq a\wedge a=f(g())$$

Beispiel

Lineare Arithmetik + Uninterpretierte Funktionen:

$$\varphi = (f(x_1, 0) > x_3)$$

Purifikation in 2 Schritten mit $C = \{a, b, c\}$:

$$\varphi' = a > x_3 \wedge a = f(x_1, 0)$$

$$\varphi'' = a > x_3 \land a = f(b, c) \land b = x_1 \land c = 0$$

Die Nelson-Oppen Methode für konvexe Theorien

- **Eingabe:** Konjunktion φ über verschiedenen konvexen Theorien T_1, \ldots, T_n
- Ausgabe: SAT, wenn φ erfüllbar ist, UNSAT sonst
- **1 Purification:** Purifizieren von φ zu $\varphi' = \{F_1, \ldots, F_n\}$ mit $F_i \in T_i$.
- **2** T_i -**Decision:** Wende Entscheidungsverfahren für T_i auf F_i an
 - Wenn ein i existiert, so dass F_i in T_i nicht erfüllbar ist, Rückgabe: UNSAT
- **3 Equality Propagation:** Wenn i und j existieren, so dass
 - F_i in T_i eine "Interface"-Gleichung a=b mit zwischen T_i und T_j geteilten Hilfsvariablen impliziert und
 - diese Gleichung aber noch nicht von F_j in T_j impliziert wird,

dann füge diese Gleichung zu F_j hinzu und gehe wieder zu Schritt 2.

A Rückgabe SAT

Eingabeformel muss eine Konjunktion sein. Im Allgemeinen macht die Hinzunahme von Disjunktionen eine Theorie nicht-konvex.

Nach der Purifikation:

- **1** Für alle i: F_i gehört zu T_i und ist eine Konjunktion von T_i -Literalen
- Geteilte (shared) Variablen sind erlaubt
- **3** φ ist in der kombinierten Theorie erfüllbar, gdw. $\bigwedge_{i=1}^n F_i$ in der kombinierten Theorie erfüllbar ist

Beispiel

$$(f(x_1,0) \ge x_3) \land (f(x_2,0) \le x_3) \land (x_1 \ge x_2) \land (x_2 \ge x_1) \land (x_3 - f(x_1,0) \ge 1)$$
 mischt lineare Arithmetik und Uninterpretierte Formeln.

Purifikation:
$$(a_1 \ge x_3) \land (a_2 \le x_3) \land (x_1 \ge x_2) \land (x_2 \ge x_1) \land (x_3 - a_1 \ge 1) \land (a_1 = f(b_1, b_0)) \land (b_1 = x_1) \land (b_0 = 0) \land (a_2 = f(b_2, b_0)) \land (b_2 = x_2)$$

Vorgenommene Optimierungen:

- Beide Instanzen von $f(x_1, 0)$ werden auf die selbe Hilfsvariable a_1 abgebildet
- Beide Instanzen von 0 werden auf die selbe Hilfsvariable b_0 abgebildet

Beispiel

$$(a_1 \ge x_3) \land (a_2 \le x_3) \land (x_1 \ge x_2) \land (x_2 \ge x_1) \land (x_3 - a_1 \ge 1) \land (a_1 = f(b_1, b_0)) \land (a_2 = f(b_2, b_0)) \land (b_0 = 0) \land (b_1 = x_1) \land (b_2 = x_2)$$

F_1 (Arithmetik über \mathbb{R})	F ₂ (EUF)
$a_1 \geq x_3$	$a_1=f(b_1,b_0)$
$a_2 \leq x_3$	$a_2=f(b_2,b_0)$
$x_1 \ge x_2$	
$x_2 \ge x_1$	
$x_3-a_1\geq 1$	
$b_0 = 0$	
$b_1 = x_1$	
$b_2 = x_2$	

Beispiel

$$(a_1 \ge x_3) \land (a_2 \le x_3) \land (x_1 \ge x_2) \land (x_2 \ge x_1) \land (x_3 - a_1 \ge 1) \land (a_1 = f(b_1, b_0)) \land (a_2 = f(b_2, b_0)) \land (b_0 = 0) \land (b_1 = x_1) \land (b_2 = x_2)$$

F_1 (Arithmetik über \mathbb{R})	F ₂ (EUF)
$a_1 \ge x_3$	$a_1=f(b_1,b_0)$
$a_2 \leq x_3$	$a_2=f(b_2,b_0)$
$x_1 \geq x_2$	
$x_2 \ge x_1$	
$x_3-a_1\geq 1$	
$b_0 = 0$	
$b_1 = x_1$	
$b_2 = x_2$	
$x_1 = x_2$	
$b_1 = b_2$	$b_1 = b_2$

- Aus $(x_1 \ge x_2) \land (x_2 \ge x_1)$ folgere $(x_1 = x_2)$
- Aus $(x_1 = x_2)$ folgere $(b_1 = b_2)$ in F_1 und ebenfalls $(b_1 = b_2)$ in F_2

Küchlin / Walter (Universität Tübingen)

Beispiel

$$(a_1 \ge x_3) \land (a_2 \le x_3) \land (x_1 \ge x_2) \land (x_2 \ge x_1) \land (x_3 - a_1 \ge 1) \land (a_1 = f(b_1, b_0)) \land (a_2 = f(b_2, b_0)) \land (b_0 = 0) \land (b_1 = x_1) \land (b_2 = x_2)$$

F_1 (Arithmetik über \mathbb{R})	F ₂ (EUF)
$a_1 \geq x_3$	$a_1=f(b_1,b_0)$
$a_2 \leq x_3$	$a_2=f(b_2,b_0)$
$x_1 \ge x_2$	
$x_2 \ge x_1$	
$x_3-a_1\geq 1$	
$b_0 = 0$	
$b_1 = x_1$	
$b_2 = x_2$	
$x_1 = x_2$	
$b_1 = b_2$	$b_1 = b_2$
$a_1 = a_2$	$a_1 = a_2$

Wegen $(b_1 = b_2)$ folgere $(a_1 = a_2)$ in F_2 und ebenfalls $(a_1 = a_2)$ in F_1 .

Beispiel

$$(a_1 \ge x_3) \land (a_2 \le x_3) \land (x_1 \ge x_2) \land (x_2 \ge x_1) \land (x_3 - a_1 \ge 1) \land (a_1 = f(b_1, b_0)) \land (a_2 = f(b_2, b_0)) \land (b_0 = 0) \land (b_1 = x_1) \land (b_2 = x_2)$$

F_1 (Arithmetik über \mathbb{R})	F ₂ (EUF)
$a_1 \ge x_3$	$a_1=f(b_1,b_0)$
$a_2 \leq x_3$	$a_2=f(b_2,b_0)$
$x_1 \ge x_2$	
$x_2 \ge x_1$	
$x_3-a_1\geq 1$	
$b_0 = 0$	
$b_1 = x_1$	
$b_2 = x_2$	
$x_1 = x_2$	
$b_1 = b_2$	$b_1 = b_2$
$a_1 = a_2$	$a_1 = a_2$

Aus $(a_1 = a_2)$ folgere $(a_1 = x_3)$ und mit $(x_3 - a_1 \ge 1)$ einen Widerspruch in F_1 ,

Nicht-konvexe Theorien — 1

Beispiel (Problem bei nicht-konvexen Theorien)

- $\varphi = (1 \le x) \land (x \le 2) \land p(x) \land \neg p(1) \land \neg p(2)$ mit $x \in \mathbb{Z}$ Theorien: LA über \mathbb{Z} (nicht konvex) plus EUP (uninterpretierte Prädikate)
- $\varphi' = (1 \le x) \land (x \le 2) \land p(a_0) \land \neg p(a_1) \land \neg p(a_2) \land a_0 = x \land a_1 = 1 \land a_2 = 2$

F_1 (Arithmetik über \mathbb{Z})	F_2 (EUP)
$1 \le x$	$p(a_0)$
$x \leq 2$	$\neg p(a_1)$
$a_0 = x$	$\neg p(a_2)$
$a_1 = 1$	
$a_2 = 2$	

- Sowohl F_1 als auch F_2 unabhängig voneinander erfüllbar
- · Keine neuen Gleichungen werden impliziert
- ⇒ Rückgabewert: SAT
 - Originalformel ist jedoch UNSAT in der kombinierten Theorie
 - Lösung: F_1 impliziert $x = 1 \lor x = 2$.

Küchlin / Walter (Universität Tübingen)

Nicht-konvexe Theorien — 2

Beispiel (Case Split bei nicht-konvexen Theorien)

- $\varphi' = (1 \le x) \land (x \le 2) \land p(a_0) \land \neg p(a_1) \land \neg p(a_2) \land a_0 = x \land a_1 = 1 \land a_2 = 2$
- F_1 impliziert $x = 1 \lor x = 2 \Rightarrow$ Case Split

F_1 (LA über \mathbb{Z})	F ₂ (EUP)	F_1 (LA über \mathbb{Z})	F_2 (EUP)
$1 \le x$	$p(a_0)$	$1 \le x$	$p(a_0)$
$x \le 2$	$\neg p(a_1)$	$x \le 2$	$\neg p(a_1)$
$a_0 = x$	$\neg p(a_2)$	$a_0 = x$	$\neg p(a_2)$
$a_1 = 1$		$a_1 = 1$	
$a_2 = 2$		$a_2 = 2$	
x = 1		x = 2	
$x = a_1$		$x = a_2$	
$a_0 = a_1$	$a_0=a_1$	$a_0 = a_2$	$a_0 = a_2$
	false		false

- $a_0 = a_1$ bzw. $a_0 = a_2$ sind die einzigen abgeleiteten Gleichungen in der Theorie LA über \mathbb{Z} , die auch in EUP sind und deshalb propagiert werden.
- In beiden Fällen ist die Rückgabe false, also ist Gesamtergebnis UNSAT

Die Nelson-Oppen Methode für nicht-konvexe Theorien

- **Eingabe:** Konjunktion φ über verschiedenen Theorien T_1, \ldots, T_n
- Ausgabe: SAT, wenn φ erfüllbar ist, UNSAT sonst
- **1 Purification:** Purifizieren von φ zu einer Literalmenge $\varphi' = \{F_1, \dots, F_n\}$
- **2** T_i -**Decision:** Wende Entscheidungsverfahren für T_i auf F_i an
 - Wenn ein i existiert, so dass F_i in T_i nicht erfüllbar ist, Rückgabe: UNSAT
- **3 Equality Propagation:** Wenn i und j existieren, so dass
 - F_i in T_i eine "Interface"-Gleichung a=b mit zwischen T_i und T_j geteilten Hilfsvariablen impliziert und
 - diese Gleichung aber noch nicht von F_i in T_i impliziert wird,

dann füge diese Gleichung zu F_j hinzu

- **4 Splitting:** Wenn ein *i* existiert mit
 - $F_i \Rightarrow (x_1 = y_1 \vee \cdots \vee x_k = y_k)$ und
 - $\forall j \in \{1,\ldots,k\} : F_i \not\Rightarrow x_j = y_j$

Rufe Nelson-Oppen rekursiv auf den Teilproblemen

$$\varphi' \wedge x_1 = y_1, \dots, \varphi' \wedge x_k = y_k$$

auf. Ist eines der Subprobleme SAT, so gebe SAT zurück, ansonsten wenn alle UNSAT sind, dann UNSAT.

6 Rückgabe SAT

Wir sind fertig

- **●** Formales √
- **②** Interessante Theorien √
 - Gleichheitslogik und uninterpretierte Funktionen
 - Arithmetik
 - Arrays
 - Bit Vektoren
- Ansätze zum Entscheiden von SMT Problemen √
 - Eager Approach
 - Lazy Approach
 - Das \mathcal{T} -DPLL Framework
- - Nelson-Oppen Methode f
 ür konvexe Theorien
 - Nelson-Oppen Methode für nicht-konvexe Theorien