

Computation of Shallow Discourse Structure

Shallow Discourse Parsing

ESSLLI 2019, Riga

Tatjana Scheffler

tatjana.scheffler@uni-potsdam.de

Day 3, August 14, 2019

Shallow Discourse Parsing

CONLL Shared Task

CONLL Shared Task (2015/16)

https://www.cs.brandeis.edu/~clp/conll16st/

CoNLL 2016 Shared Task

Multilingual Shallow Discourse Parsing

Task period: January 15 - April 24, 2016

CoNLL Conference: August 11 - 12, 2016 in Berlin, Germany

Multilingual Shallow Discourse Parsing

This is the 2nd edition of the CoNLL Shared Task on Shallow Discourse Parsing, following the first edition in 2015. A participant system is given a piece of newswire text as input and returns discourse relations in the form of a discourse connective (explicit or implicit) taking two arguments (which can be clauses, sentences, or multi-sentence segments). Specifically, the participant system needs to

- locate both explicit (e.g., "because", "however") discourse connectives in the text.
- identify the spans of text that serve as the two arguments for each discourse connective.
- 3. predict the sense of the discourse connectives (e.g., "Cause", "Contrast")

Recognizing such discourse relations is an important part of natural language understanding, which benefits a wide range of natural language applications. More detail and examples.

What's new this year?

There are a faw thinns: More detail will be new/deri later

Official blind test sets in English and Chinese

The task has already concluded. We have released the blind test sets used in English and Chinese.

Joining the shared task

The instructions are the same whether you would like to participate in both languages and/or just the supplementary task.

- 1. Complete the registration form (one per team)
- 2. Submit the license agreement form to LDC
- 3. Download the data from the link, which LDC will send to you after a few days
- 4. Check out the resources that might be useful
- Login to the evaluation platform on tira io using your credential, which we will send to you
- 6. Clone/fork from our github repo and familiarize yourself with the data format
- 7. Start developing the parser

Stay updated

CONLL Shared Task (2015/16)

- https://www.cs.brandeis.edu/~clp/conll16st/
- common data sets (training, dev) and test platform
- well-defined problem
- standard input and output formats
- https://nbviewer.jupyter.org/github/attapol/conll16st/blo b/master/tutorial/tutorial.ipynb

Task

- Identify the text span of an explicit discourse connective, if present, or the position between adjacent sentences as the proxy site of an implicit discourse relation
- Identify the two text spans that serve as arguments to the relation
- Label the argument spans as Arg1 or Arg2, as appropriate
- Predict the sense of the discourse relation (e.g., "Cause", "Condition", "Contrast")

PDTB-style Discourse Parser

Lin et al. (2012)

https://www.comp.nus.edu.sg/~kanmy/papers/nleLin2012.pdf

Evaluation

□ Gold standard (GS) parses without error propagation

1. connective classifier

- assume a list of explicit connectives
- disambiguation problem
- MaxEnt classifier (logistic regression)
- syntactic and lexical features: connective, its POS-tag and immediate context, syntactic sisters and path to root
- Arr $F_1 = 95.76\%$

2. argument position

- relative position of Arg1 and Arg2
- same sentence, previous sentence
- features:
 - position of connective
 - contextual features
- \square Component $F_1 = 97.94\%$

3. argument extractor

```
Input: a discourse connective C and the text T
Output: Arg1 and Arg2 spans of C

    // Argument position classifier

 2: Classify the relative position of Arg1 as SS or PS
 3:
 4: // Argument extractor
 5: if the relative position of Arg1 is SS then
      Identify the Arg1 and Arg2 subtree nodes within the sentence parse tree
 6:
      Apply tree subtraction to extract the Arg1 and Arg2 spans
 8: else // the relative position of Arg1 is PS
      Label the sentence containing C as Arg2
 9:
       Identify and label the Arg1 sentence from all previous sentences of Arg2
10:
11: end if
```


3. argument extractor (results)

- split sentence into clauses
- assign probabilities to each node
- subtract subtrees from potential arguments
- \square component $F_1 = 86.24\%$ for partial matches
- \square component $F_1 = 53.85\%$ for exact matches

relation of Arg1 and Arg2 (SS)

example: nesting arguments

Fig. 7. The parse tree for Example 14 to illustrate Figure 6(c).

4. explicit (sense) classifier

- assign sense tag
- features: (only!)
 - connective C
 - its POS tag
 - C + previous word
- \square component $F_1 = 86.77\%$

5. non-explicit classifier

- classify all remaining adjacent sentence pairs as Implicit/AltLex, EntRel, NoRel
- one classifier for 11 sense types + EntRel, NoRel
- separately determine AltLex using first three words of Arg2
- features:
 - contextual
 - dependency/constituent parses
 - word pairs
- \square component $F_1 = 39.63\%$

6. attribution span labeler

- split text into clauses and determine which clauses are attribution spans
- mostly lexical features
- \square component $F_1 = 79.68\%$ for partial matches
- \square component $F_1 = 65.95\%$ for exact matches

results shallow discourse parsing

	Partial match F ₁	Exact match F ₁
GS + EP	46.80%	33.00%
Auto + EP	38.18%	20.64%