Assignment-2

November 6, 2017

Instructor Prashanth L.A.

Contents

1	Question-I	3
2	Question-2	4
3	Question-3	6
4	Question-4	10

1 Question-I

Expectation:

$$E(\overline{X}) = E\left(\frac{X_1 + X_2 + \dots + X_n}{N}\right)$$

$$E(aX) = aE(X)$$

$$E(\overline{X}) = \frac{1}{N} \left(E(X_1) + E(X_2) + \dots + E(X_n)\right)$$

$$E(\overline{X}) = \frac{1}{N} \left(\mu + \mu + \dots + \mu\right)$$

$$E(\overline{X}) = \frac{1}{N} \left(N\mu\right)$$

$$E(\overline{X}) = \mu$$

Variance:
$$X_1, X_2,, X_n$$
 are i.i.d random variables
$$Var(X_1+X_2+X_3+.....+X_n) = Var(X_1)+Var(X_2)+Var(X_3)+....+Var(X_n)$$

$$Var(\overline{X}) = Var\left(\frac{X_1 + X_2 + \dots + X_n}{N}\right)$$

$$Var(aX) = a^2 Var(X)$$

$$Var(\overline{X}) = \frac{1}{N^2} Var\left(X_1 + X_2 + \dots + X_n\right)$$

$$Var(\overline{X}) = \frac{1}{N^2} \left(Var(X_1) + Var(X_2) + \dots + Var(X_n)\right)$$

$$Var(\overline{X}) = \frac{1}{N^2} \left(\sigma^2 + \sigma^2 + \dots + \sigma^2\right)$$

$$Var(\overline{X}) = \frac{1}{N^2} \left(N\sigma^2\right)$$

$$Var(\overline{X}) = \frac{\sigma^2}{N}$$

2 Question-2

Theorem 1: Let X_1, X_2, \ldots, X_n denote a sequence of i.i.d random variables with $X_i \in [a,b]$, for all i, where $-\infty < a <= b < \infty$. Letting $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$ and μ denote $E[X_i]$ for all i, we have

$$P(\overline{X}_N - \mu \ge \epsilon) \le exp\left(-\frac{2N\epsilon^2}{(b-a)^2}\right) \text{ and } P(\overline{X}_N - \mu \le -\epsilon) \le exp\left(-\frac{2N\epsilon^2}{(b-a)^2}\right)$$
(1)

We can rewrite equation 1 as

$$P(\overline{X}_N - \epsilon \ge \mu) \le exp\left(-\frac{2N\epsilon^2}{(b-a)^2}\right) \text{ and } P(\overline{X}_N + \epsilon \le \mu) \le exp\left(-\frac{2N\epsilon^2}{(b-a)^2}\right)$$
(2)

$$P(\mu \in [\overline{X}_N - \epsilon', \overline{X}_N + \epsilon']) \ge 1 - \delta$$
 (3)

from the given hint, Complement of L.H.S of equation 3 is at δ .

$$P\left(\mu \notin [\overline{X}_N - \epsilon', \overline{X}_N + \epsilon']\right) \le \delta \tag{4}$$

Substitute $\epsilon^{'}$ in equation 2

$$P(\overline{X}_{N} - \epsilon^{'} \ge \mu) \le exp\left(-\frac{2N\epsilon^{'2}}{(b-a)^{2}}\right) \ and \ P(\overline{X}_{N} + \epsilon^{'} \le \mu) \le exp\left(-\frac{2N\epsilon^{'2}}{(b-a)^{2}}\right)$$

$$(5)$$

Using equation (4) and (5) we can write

$$P(\overline{X}_{N} - \epsilon' \ge \mu) + P(\overline{X}_{N} + \epsilon' \le \mu) \le \delta \tag{6}$$

$$exp\left(-\frac{2N\epsilon^{'2}}{(b-a)^{2}}\right) + exp\left(-\frac{2N\epsilon^{2}}{(b-a)^{2}}\right) \le \delta$$
$$2 exp\left(-\frac{2N\epsilon^{'2}}{(b-a)^{2}}\right) \le \delta$$

 $Take\ Natural\ logarithm\ on\ both\ sides$

$$-\frac{2N\epsilon^{'2}}{(b-a)^2} \le \ln\left(\frac{\delta}{2}\right)$$
$$\frac{2N\epsilon^{'2}}{(b-a)^2} \le \ln\left(\frac{2}{\delta}\right)$$
$$\epsilon^{'2} = \frac{(b-a)^2}{2N} \ln\left(\frac{2}{\delta}\right)$$
$$\epsilon^{'} = \sqrt{\frac{(b-a)^2}{2N}} \ln\left(\frac{2}{\delta}\right)$$

$$\epsilon' = \sqrt{\frac{(b-a)^2}{2N} \ln\left(\frac{2}{\delta}\right)}$$
 (7)

$$\delta = 2 \exp\left(-\frac{2N\epsilon'^2}{(b-a)^2}\right) \tag{8}$$

3 Question-3

Figure 1: Histogram plots of sample mean with 1000 bars Mean Value on X-axis Number of times mean Appeared on Y-axis

Based on Numerical results

a)

Yes, sample mean is close to true mean whenever sample size is large enough. If we draw a sample of individuals from a poission distributed population, the sample will follow a poission distribution. Sample will display the same characteristics. The Central Limit theorem says that if we draw a large enough sample, the way the sample mean varies around the population mean can be described by a normal distribution, irrespective of the population distribution looks like. Sample Mean came from Normal Distribution. And Standard deviation is estimated by

 $\frac{\sigma}{-}$

.

properties of Normal Distrubution

a)68% of the time, the sample mean and population mean will be within 1^{st} standard deviation of each other.

b)95% of the time, the sample mean and population mean will be within 2^{nd} standard deviation of each other.

c)99% of the time, the sample mean and population mean will be within 3^{rd} standard deviation of each other, and so on.

So If n is large, standard deviation of sample is less, so there is a more chance sample mean and population mean will be closer to each other.

b)

Table 1: Sample Mean Interval

		N			
		10	100	1000	10000
Interval	9.90-10.10	1169	2490	6834	9985
	9.99-10.01	400	367	803	2552

c)

Table 2: Confidence Interval

N				
# of times true mean falls	10	100	1000	10000
outside Confidence Interval	811	544	540	496

d) Theorem 1 is applicable for random variables which lies in the finite closed interval, but poission random variables can take any value between $-\infty$ to $+\infty$ e)

Standard Mean Error
$$=\frac{\sigma}{\sqrt{N}}$$

$$Error_1 = 0.1, Varianceis(\lambda) = 10$$

$$\sqrt{N_1} = \frac{\sqrt{10}}{0.1}$$

$$N_1 = \frac{10}{0.01}$$

$$N_1 = 1000$$

$$Error_2 = 0.01, Variance is(\lambda) = 10$$

$$\sqrt{N_2} = \frac{\sqrt{10}}{0.01}$$

$$N_2 = \frac{10}{0.0001}$$

$$N_2 = 100000$$

$$N_2 - N_1 = 100000 - 1000 = 99000$$

By 99000 the sample size will increase.

If error is differ by one decimal place

Assume Error is E_1 , both errors are differing by 1 decimal place so

$$E_2 = \frac{E_1}{10}$$

$$N_1 = \frac{\sigma^2}{E_1^2}$$

$$N_2 = \frac{10^2 \sigma^2}{E_1^2}$$

$$\frac{N_2}{N_1} = 100$$

Jump is 100

$$N_2 = 100N_1$$

4 Question-4

$$f(k) = \frac{A}{k^2} for k = \pm 1, \pm 2, \pm 3....$$

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$
 so
$$\sum_{k\neq 0} f(k) = \frac{2\pi^2}{6}$$

$$\sum_{k\neq 0} Af(k) = A\frac{2\pi^2}{6}$$

$$A\frac{2\pi^2}{6} = 1$$

$$A = \frac{3}{\pi^2}$$

b)

Figure 2: Histogram plots of sample mean with 1000 bars Mean Value on X-axis Number of times mean Appeared on Y-axis

 ${\bf Table~3:~Confidence~Interval~Limits~for~Different~number~of~samples}$

N=	1000	N=10000		
Lower Limit	Upper Limit	Lower Limit	Upper Limit	
-0.0037	0.0010	-0.0078	0.0224	
-0.0006	0.0018	-0.0041	0.0023	
-0.0004	0.0006	-0.0003	0.0009	
-0.0012	0.0030	-0.0011	0.0066	
-0.0008	0.0012	-0.0026	0.0008	
-0.0017	0.0009	-0.0006	0.0010	
-0.0008	0.0010	-0.0004	0.0032	
-0.0007	0.0006	-0.0009	0.0026	