Plano de Ensino – Análise de Algoritmos

Instituto Federal de Educação, Ciência e Tecnologia de Brasília

Campus Taguatinga

1 Identificação da Disciplina

- Nome da Disciplina: Análise de Algoritmos;
- Curso: Bacharelado em Ciência da Computação;
- Pré-requisitos: Algoritmos e Programação de Computadores;
- Carga Horária: 72 h/a;
- Período: 2024/1;
- Professores: Daniel Saad Nogueira Nunes e Leandro Vaguetti.

2 Ementa

Modelos computacionais. Cotas inferiores e superiores. Medidas de eficiência de algoritmos. Técnicas de projeto e análise de algoritmos. Algoritmos de ordenação e busca. Redutibilidade. Complexidade computacional. Classes de problemas. Problemas NP-completos. Tratamento de problemas NP- difíceis.

3 Objetivos

- Estudar métodos de análise de algoritmos e relações de recorrência.
- Verificar paradigmas de projeto de algoritmos.
- Detectar a dificuldade inerente de problemas.

4 Habilidades Esperadas

- Analisar as soluções propostas quanto aos recursos de tempo/espaço em termos assintóticos.
- Dominar os paradigmas de divisão e conquista, algoritmos gulosos e programação dinâmica para projeto de algoritmos.
- Identificar a intratabilidade de problemas.

5 Conteúdo Programático

- 1. Introdução à disciplina.
- 2. Conceitos preliminares.
- 3. Notação assintótica.
- 4. Relações de recorrência.
- 5. Projeto por indução.
- 6. Algoritmos gulosos.
- 7. Programação dinâmica.
- 8. Casamento de padrões.
- 9. Compressão de dados.
- 10. Classes de complexidade P e NP.
- 11. Problemas NP-Completos.
- 12. Redução de problemas.
- 13. Tratamento de problemas difíceis.

6 Metodologias de Ensino

PBL.

7 Recursos de Ensino

Os recursos de ensino baseiam-se, mas não são limitados em:

- Computador;
- Internet;
- Quadro branco, pincel e apagador;
- Projetor multimídia;
- Visitas técnicas e participação em eventos;
- Grupo de discussão restrito da disciplina.

8 Avaliação

A nota da disciplina consiste na média aritmética da avaliação de quatro projetos.

$$N_f = \frac{P_1 + P_2 + P_3}{3}$$

9 Observações

Será atribuída nota ZERO a qualquer avaliação que incida em plágio.

10 Cronograma

O planejamento de atividades da disciplina (sujeito à alterações) segue disposto na Tabela 1.

Bibliografia

- [AB09] Sanjeev Arora and Boaz Barak, Computational complexity A modern approach, Cambridge University Press, 2009.
- [CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, *Introduction to algorithms (3. ed.)*, MIT Press, 2009.
- [Knu68] Donald E. Knuth, The art of computer programming, volume I: fundamental algorithms, Addison-Wesley, 1968.

Tabela 1: Cronograma.

Dia	Conteúdo	Total de Horas
16/fev	Introdução à disciplina	4
23/fev	Exposição do projeto 01	4
01/mar	Elaboração do projeto 01	4
08/mar	Exposição do projeto 02	4
15/mar	Elaboração do projeto 02	4
22/mar	Elaboração do projeto 02	4
29/mar	Feriado	0
05/abr	Exposição do projeto 03	4
12/abr	Elaboração do projeto 03	4
19/abr	Elaboração do projeto 03	4
26/abr	Análise Assintótica	4
03/mai	Relações de recorrência	4
10/mai	Relações de recorrência	4
26/jul	Relações de recorrência e ordenação	4
02/ago	Verificação do andamento dos projetos	4
09/ago	Algoritmos gulosos e entrega do projeto 01	4
16/ago	Programação dinâmica	4
23/ago	Programação dinâmica	4
30/ago	Verificação do andamento dos projetos e entrega do projeto 02	4
06/set	Classes P e NP	4
13/set	Classes P e NP e entrega do projeto 03	4
$20/\mathrm{set}$	Fechamento e revisão das notas	4
	Total	80

- [Knu69] _____, The art of computer programming, volume II: seminumerical algorithms, Addison-Wesley, 1969.
- [Knu73] _____, The art of computer programming, volume III: sorting and searching, Addison-Wesley, 1973.
- [KT06] Jon M. Kleinberg and Éva Tardos, Algorithm design, Addison-Wesley, 2006.
- [Man89] Udi Manber, Introduction to algorithms a creative approach, Addison-Wesley, 1989.
- [Pap07] Christos H. Papadimitriou, Computational complexity, Academic Internet Publ., 2007.
- [Ski08] Steven Skiena, The algorithm design manual (2. ed.), Springer, 2008.