Particle spectrograph

Wave operator and propagator

	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1^{-}\alpha}^{\#1}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1^{-}\alpha}^{\#1}$	$\tau_{1}^{\#2}{}_{\alpha}$
$r_1^{#1} + \alpha \beta$	0		$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$r_1^{#2} + \alpha \beta$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 (2 r_1 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\frac{1}{1+} + \alpha \beta$	$\tau_{1}^{\#1} + \alpha \beta \frac{i\sqrt{2}k}{t_1 + k^2 t_1}$	$\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_1+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1} +^{lpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1}$
$\sigma_1^{\#2} +^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$
$\tau_1^{\#_1} + ^\alpha$	0	0	0	0	0	0	0
$\tau_{1}^{#2} + \alpha$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2(r_1+r_5)\cdot t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$

	$\sigma_{2}^{\#1}{}_{lphaeta}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$

	$\omega_0^{\sharp 1}$	$f_{0}^{\#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^{+}}^{\#1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$-t_1$

Quadratic (free) action
Sp. ==
$\iiint_{6}^{1} (-6t_{1} \omega_{\alpha}^{\alpha \prime} \omega_{\kappa\alpha}^{\kappa} - 6t_{1} \omega_{\kappa\lambda}^{\kappa\lambda} \omega_{\kappa\lambda}^{\prime} + 6f^{\alpha\beta} \tau_{\alpha\beta} + 6\omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} - 6r_{5}\partial_{\iota}\omega^{\kappa\lambda}_{\kappa}$
$\partial' \omega_{\lambda}^{\ \alpha} - 4 r_1 \partial^{\beta} \omega^{\theta \alpha}_{\ \kappa} \partial_{\theta} \omega_{\alpha\beta}^{\ \kappa} - 4 r_1 \partial_{\theta} \omega_{\alpha\beta}^{\ \kappa} \partial_{\kappa} \omega^{\alpha\beta\theta} + 4 r_1 \partial_{\theta} \omega_{\alpha\beta}^{\ \kappa} \partial_{\kappa} \omega^{\theta\alpha\beta} -$
$6 r_5 \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \theta} \partial_\kappa \omega^{\theta \kappa \lambda} + 6 r_5 \partial_\theta \omega_\lambda^{\ \alpha}_{\ \ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda}_{\ \ \alpha} - 6 r_5 \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \theta} \partial_\kappa \omega^{\kappa \lambda \theta}_{\ \ \lambda} +$
$12r_5\partial_\theta\omega_^\alpha_{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - 3t_1\partial^\alpha f_{\beta}\partial^\kappa f_{\alpha}^{\theta} - 3t_1\partial^\alpha f_{\beta}\partial^\kappa f_{\theta}^{\theta} - 3t_1\partial^\alpha f^\lambda_{\lambda}\partial^\kappa f_{\lambda} +$
$6t_1\omega_{\kappa\alpha}^{}\partial^\kappa f^{\prime}{}_{} + 6t_1\omega_{\kappa\lambda}^{}\partial^\kappa f^{\prime}{}_{} + 12t_1\partial^\alpha f_{}\partial^\kappa f^{\prime}{}_{} - 6t_1\partial_\kappa f^{\lambda}{}_{}\partial^\kappa f^{\prime}{}_{} +$
$12t_1\ \omega_{_{/K}\theta}\ \partial^{K}f^{'\theta}\text{-}6t_1\ \omega_{_{'\alpha}}^{\ \alpha}\ \partial^{K}f^{'}_{\ \ _{K}}\text{-}6t_1\ \omega_{_{/\lambda}}^{\ \ \lambda}\ \partial^{K}f^{'}_{\ \ _{K}}+3t_1\partial^{\alpha}f^{\lambda}_{\ \ _{K}}\partial^{K}f_{\lambda\alpha}+$
$3t_1\partial_\kappa f_{\theta}^{\lambda}\partial^\kappa f_{\lambda}^{\theta} + 3t_1\partial_\kappa f^{\lambda}_{\theta}\partial^\kappa f_{\lambda}^{\theta} - 6t_1\partial^\alpha f^{\lambda}_{\alpha}\partial^\kappa f_{\lambda\kappa} + 4r_1\partial_\kappa \omega^{\alpha\beta\theta}\partial^\kappa \omega_{\alpha\beta\theta} -$
$4 r_1 \partial_{\kappa} \omega^{\theta \alpha \beta} \partial^{\kappa} \omega_{\alpha \beta \theta} + 4 r_1 \partial^{\beta} \omega_{\alpha}^{\ \alpha \lambda} \partial_{\lambda} \omega_{\alpha \beta}^{\ \prime} - 16 r_1 \partial^{\beta} \omega_{\alpha}^{\ \lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{\ \prime} +$
$6 r_5 \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \theta} \partial^\lambda \omega^{\theta \kappa}_{\ \kappa} - 6 r_5 \partial_\theta \omega_\lambda^{\ \alpha}_{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \kappa}) [t, \varkappa, y, z] dz dy dx dt$

Source constraints/gauge generators					
SO(3) irreps	Multiplicities				
$\tau_{0+}^{\#2} == 0$	1				
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1				
$\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#2\alpha} == 0$	3				
$\tau_1^{\#1\alpha} == 0$	3				
$\tau_{1+}^{\#1\alpha\beta} + ik\sigma_{1+}^{\#2\alpha\beta} == 0$	3				
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5				
Total constraints:	16				

_	$\sigma_{0}^{\sharp 1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$ au_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$-\frac{1}{t_1}$

$\omega_{2^{-}}^{\#1}\alpha\beta\chi$	0	0	$k^2 r_1 + \frac{t_1}{2}$
$\omega_{2}^{\#1}_{+lphaeta}f_{2}^{\#1}_{+lphaeta}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{\#1}{}_{\alpha\beta}$	$\frac{t_1}{2}$	$\frac{i k t_1}{\sqrt{2}}$	0
·	$\omega_2^{#1} + \alpha \beta$	$f_2^{\#1} + ^{\alpha\beta}$	$\omega_{2^{-}}^{\#1} +^{lphaeta\chi}$

	$\omega_{1}^{\sharp 1}{}_{lphaeta}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1^{-}\ lpha}^{\#1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_1^{\sharp 1} \dagger^{lpha eta}$	$k^2 (2r_1 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#2}\dagger^{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}$ † lpha	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt ₁
$\omega_1^{\#2}\dagger^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	- ī k t 1	0	0	0

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$