

3rd Year

TABLE OF CONTENTS

PART I: Analysis of Normal Code	
QUESTION#1	2
QUESTION#2	2
PART II: Analysis of Recursive Code	
QUESTION#1	4
QUESTION#1QUESTION#2	4
PART III: Asymptotic Notations	5
QUESTION#1	5
QUESTION#2	5
QUESTION#3	5
PART IV: Recurrence Equations	6
QUESTION#1 QUESTION#2	6
UESTION#2	6
UESTION#3	6

3rd Year 2nd Semester - 2024

PART I: Analysis of Normal Code

QUESTION#1

QUESTION#2

For each group of functions, sort the functions in increasing order of asymptotic (big-O) complexity:

Group1	Group2 Group3	
$ f_1(n) = n^{0.999999} \log n f_2(n) = 10000000n f_3(n) = 1.000001^n f_4(n) = n^2 $	$f_1(n) = 2^{2^{1000000}}$ $f_2(n) = 2^{100000n}$ $f_3(n) = \binom{n}{2}$ $f_4(n) = n\sqrt{n}$	$ f_1(n) = n^{\sqrt{n}} f_2(n) = 2^n f_3(n) = n^{10} \cdot 2^{n/2} f_4(n) = \sum_{i=1}^n (i+1) $

1 -> 2 -> 4 -> 3

Faculty of Computer & Information Sciences
Ain Shams University

Algorithms Design and Analysis ANALYSIS Sheet

3rd Year 2nd Semester - 2024

Group1

Solution: The correct order of these functions is $f_1(n)$, $f_2(n)$, $f_4(n)$, $f_3(n)$. To see why $f_1(n)$ grows asymptotically slower than $f_2(n)$, recall that for any c > 0, $\log n$ is $O(n^c)$. Therefore we have:

$$f_1(n) = n^{0.999999} \log n = O(n^{0.999999} \cdot n^{0.000001}) = O(n) = O(f_2(n))$$

The function $f_2(n)$ is linear, while the function $f_4(n)$ is quadratic, so $f_2(n)$ is $O(f_4(n))$. Finally, we know that $f_3(n)$ is exponential, which grows much faster than quadratic, so $f_4(n)$ is $O(f_3(n))$.

Group2

Solution: The correct order of these functions is $f_1(n)$, $f_4(n)$, $f_3(n)$, $f_2(n)$. The variable n never appears in the formula for $f_1(n)$, so despite the multiple exponentials, $f_1(n)$ is constant. Hence, it is asymptotically smaller than $f_4(n)$, which does grow with n. We may rewrite the formula for $f_4(n)$ to be $f_4(n) = n\sqrt{n} = n^{1.5}$. The value of $f_3(n) = \binom{n}{2}$ is given by the formula n(n-1)/2, which is $\Theta(n^2)$. Hence, $f_4(n) = n^{1.5} = O(n^2) = O(f_3(n))$. Finally, $f_2(n)$ is exponential, while $f_3(n)$ is quadratic, meaning that $f_3(n)$ is $O(f_2(n))$.

3rd Year 2nd Semester - 2024

PART II: Analysis of Recursive Code

QUESTION#1

What's the exact complexity of the following code?	
Fun2(A, S, E)	Θ(N)
<pre>IF (S == E) return A[S]</pre>	b. Θ(N ³)
S1 = (S + E) / 3	c. $\Theta((\log(N))^3)$
$S2 = 2 \times (S + E) / 3$	d. Θ(log(N))
R1 = Fun2(A, S, S1) R2 = Fun2(A, S1+1, S2)	e. $\Theta(3 \times \log(N))$
R3 = Fun2(A, S1+1, S2) R3 = Fun2(A, S2+1, E)	f. $\Theta(1)$
Return Max(R1, R2, R3)	

QUESTION#2

For the following "Main" function:

```
Main(A, N)
                                               Fun(\mathbb{Z}, \mathbb{L})
       I = N
                                                      If (Z == 2)
       Sum = 0
                                                             Return 0
       For (J = 0; J < I; J += N/2)
                                                      For I = 1 to L
                                                              If (random(1,1000) % 2 == 0)
              While (I > 1)
                     Sum = Sum + 1
                                                                     X += I \times \mathbf{Fun}(\frac{Z}{L}, L)
                      I = I - 1
              EndWhile
                                                                    X += (I + 1) \times \mathbf{Fun}(\frac{Z}{2 \times I}, L)
              I = N
       EndFor
                                                      EndFor
       Return 5 \times Fun(N, 4)
                                               End Fun
End Main
                                               //random(1,1000): generates a random integer
                                               between 1 & 1000 in O(1)
```

- 1. What's the complexity of the non-recursive part of code? theta(n)
- 2. What's the recurrence equation (T(N)) that represents the LOWER BOUND of the entire code? T(N) = 4T(N/8) + theta(1); --> theta(n^0.6667)
- 3. What's the LOWER BOUND complexity of entire code? theta(n)
- **4.** What's the recurrence equation (T(N)) that represents the UPPER BOUND of the entire code? T(N) = 4T(N/4) + theta(1); --> theta(n)
- **5.** What's the UPPER BOUND complexity of entire code? theta(n)

so, as lower bound complexity == upper bound complexity then, theta of entire code = n;

3rd Year 2nd Semester - 2024

PART III: **Asymptotic Notations**

QUESTION#1

202011111	_				
Chose the notat	tion that BEST	REPRESEN	TS the		
WORST case?					
Fun2 (N)				a. O(1)	
Sorted = true			b. Θ(1)		
<pre>I = 1 While (I < N AND Sorted == true)</pre>				c. O(N) d. Θ(N) e. Ω(1)	
			d ==		
Sorted = false		se	f. Ω(N)		
End If			g. Θ(N-1)		
I = I + 1			h. None of the choices		
End wh					
Print	Sorted				
QUESTION#2		NI) – NI vyh	at's the nor	ssible value(s) of N ₀ that make	c f(NI) -
$\Omega(g(N))$ for cons		IN) – IN, WII	at s the pos	ssible value(s) of N ₀ that make:	S I(IV) -
a. 1≤ N0≤32	b. 0< N0 ≤ 2	c. N0 ≥ 2	d. N0 ≥ 4	e. No values exist. The relation	n is no
				valid	
0.1.1.0.0.1.1.1.0		•	•		
QUESTION#3					
Given the follow	ving orders (<i>lo</i>	g is base 2):		
$1)\sqrt{e^{\log(N)}+N}$	$\overline{I^3}$, 2) $1/\sqrt{\log}$	$\overline{(N)}$,3) N	$(4) N^3, 5)$	$4^{\log(N)}, 6) N \log(N)$	
Arrange them in	n increasing or	der of gro	wth rate (v	vith g(n) following f(n) in your l	ist if
and only if f(n)=	O(g(n))). Chos	e the corre	ct order?		
226544	224654	2.63	4.5.4.	f. N	one of
a. 2,3,6,5,1,4 k	2 ,3,1,6,5,4	c. 2,6,3,	1,5,4 a. 2	2,3,6,1,5,4 e. 4,5,1,3,6,2	hoice

3rd Year 2nd Semester - 2024

PART IV: Recurrence Equations

QUESTION#1

Using the RECURSION TREE method, Answer the following questions:

 $T(N) = T(N/5) + T(7N/10) + \Theta(N); T(1) = 1$

	Question	Answer
1.	What's the EXACT total number of levels in this tree?	lg10/7(n)
2.	What's the complexity of each level?	(9/10)^i * n
3.	What's the complexity of LAST level?	1
4.	What's the UPPER BOUND order of this tree?	O(n)

QUESTION#2

Given T(N) = 64 T(N / 16) + (22/7) NVN, using Master Method: what's the correct value of E

- 0 < ε ≤ 1.5
- 0 < ε ≤ 0.5
- ε = 1.6
- No possible ε

It's case2: no & is required

QUESTION#3

Select the correct asymptotic complexity of an algorithm with runtime T(n;
 n) where:

$$\begin{array}{lll} T(x,c) &=& \Theta(x) & \text{for } c \leq 2, \\ T(c,y) &=& \Theta(y) & \text{for } c \leq 2, \text{ and } \\ T(x,y) &=& \Theta(x+y) + T(x/2,y/2). \end{array}$$

3rd Year

- 1. $\Theta(\log n)$.
- 2. $\Theta(n)$.

3. $\Theta(n \log n)$.

- 4. $\Theta(n \log^2 n)$.
- 5. $\Theta(n^2)$.
- 6. $\Theta(2^n)$.

Solution: The correct answer is $\Theta(n)$. To see why, we rewrite the recurrence relation to avoid Θ notation as follows:

$$T(x,y) = c(x + y) + T(x/2, y/2).$$

We may then begin to replace T(x/2, y/2) with the recursive formula containing it:

$$T(x,y) = c(x+y) + c\left(\frac{x+y}{2}\right) + c\left(\frac{x+y}{4}\right) + c\left(\frac{x+y}{8}\right) + \dots$$

This geometric sequence is bounded from above by 2c(x+y), and is obviously bounded from below by c(x+y). Therefore, T(x,y) is $\Theta(x+y)$, and so T(n,n) is $\Theta(n)$.

2. Select the correct asymptotic complexity of an algorithm with runtime T(n; n) where:

$$T(x,c) = \Theta(x)$$
 for $c \le 2$,

$$T(c,y) = \Theta(y)$$
 for $c \le 2$, and

$$T(x,y) = \Theta(x) + T(x,y/2).$$

- 1. $\Theta(\log n)$.
- 2. $\Theta(n)$.
- $\Theta(n \log n)$.
- $\overline{4.} \ \Theta(n \log^2 n).$
- 5. $\Theta(n^2)$.
- 6. $\Theta(2^n)$.

3rd Year

2nd Semester - 2024

Solution: The correct answer is $\Theta(n \log n)$. To see why, we rewrite the recurrence relation to avoid Θ notation as follows:

$$T(x,y) = cx + T(x,y/2).$$

We may then begin to replace T(x, y/2) with the recursive formula containing it:

$$T(x,y) = \underbrace{cx + cx + cx + \ldots + cx}_{\Theta(\log y) \text{ times}}.$$

As a result, T(x,y) is $\Theta(x \log y)$. When we substitute n for x and y, we get that T(n,n) is $\Theta(n \log n)$.

3. Select the correct asymptotic complexity of an algorithm with runtime T(n; n) where:

$$\begin{array}{lll} T(x,c) &=& \Theta(x) & \text{for } c \leq 2, \\ T(x,y) &=& \Theta(x) + S(x,y/2), \\ S(c,y) &=& \Theta(y) & \text{for } c \leq 2, \text{and} \\ S(x,y) &=& \Theta(y) + T(x/2,y). \end{array}$$

- 1. $\Theta(\log n)$.
- $2. \Theta(n).$
- 3. $\Theta(n \log n)$.
- 4. $\Theta(n \log^2 n)$.
- 5. $\Theta(n^2)$.
- 6. $\Theta(2^n)$.