Exercise 1.5.3.

Suppose p is an attracting fixed point for f. Show that there is a neighborhood U of p such that the forward orbit of every point in U converges to p.

(1)

Proof + reasoning:

Let's work out the meanings of the assumptions and of the required result.

(2)

What is an attracting fixed point for f? A fixed point p is attracting if there exists a neighborhood U of p such that \overline{U} is compact, $f(\overline{U}) \subseteq U$, and $\bigcap_{n\geq 0} f^n(U) = \{p\}.$

(3)

From the definition of p, we are already given a candidate neighborhood U of p. Intuitively, it seems that $f^n(U)$ form a sequence of sets in which each is contained in the previous, with a single point p in the intersection, so orbits should converge to p or to a point in $\bigcap_{n>0} f^n(\overline{U})$. But $f(\overline{U}) \subseteq$ U makes it likely that $\bigcap_{n>0} f^n(\overline{U}) = \bigcap_{n>0} f^n(\overline{U})$. Let's prove those intuitions.

(4)(5)

Is
$$f^{n+1}(U) \subset f^n(U)$$
 for all $n \in \mathbb{N}$?

By assumption, there exists a neighborhood U of p such that \overline{U} is compact, $f(\overline{U}) \subseteq U$, and $\bigcap_{n>0} f^n(\overline{U}) = \{p\}.$

(6)

(14)

Clearly,
$$U \subset \overline{U}$$
. (7)

From (7) and (6)
$$f(U) \subseteq f(\overline{U}) \subseteq U$$
. (8)

Therefore,
$$f^{n+1}(U) \subseteq f^n(U)$$
 for all $n \in \mathbb{N}$ (9)

Is it true that
$$\bigcap_{n\geq 0} f^n(\overline{U}) = \bigcap_{n\geq 0} f^n(U)$$
? (10)

Is it true that
$$\bigcap_{n\geq 0} f^n(\overline{U}) = \bigcap_{n\geq 0} f^n(U)$$
? (10)
Clearly,
$$\bigcap_{n\geq 0} f^n(U) \subseteq \bigcap_{n\geq 0} f^n(\overline{U})$$
 (11)

Conversely,

$$\bigcap_{n\geq 0} f^n(\overline{U}) \subseteq \bigcap_{n\geq 1} f^n(\overline{U}) = \bigcap_{n\geq 0} f^{n+1}(\overline{U}) \subseteq \bigcap_{n\geq 0} f^n(U)$$
 (12)

$$\bigcap_{n\geq 0} f^n(\overline{U}) \subseteq \bigcap_{n\geq 1} f^n(\overline{U}) = \bigcap_{n\geq 0} f^{n+1}(\overline{U}) \subseteq \bigcap_{n\geq 0} f^n(U)$$
So, from (12)
$$\bigcap_{n\geq 0} f^n(U) = \bigcap_{n\geq 0} f^n(\overline{U})$$
(13)

The answer to (10) is yes. Now, let's try to prove convergence of forward orbits.

Let
$$x \in U$$
. Define $(x_n)_{n \in \mathbb{N}} = (f^n(x))_{n \in \mathbb{N}}$. (15)

Does
$$(x_n)$$
 converge to p ? (16)

Assume (x_n) does not converge. Then $\exists \varepsilon' > 0$ such that $\forall n : \exists k \geq n$: $d(f^k(x), p) > \varepsilon'$. (18)

this stuck. I know there are immittely many points in $U \setminus B(p,\varepsilon)$. Intuitively, this should contradict the fact that $\bigcap_{n\geq 0} f^n(\overline{U})$ only contains	
p.	(
Let me check what given assumptions I haven't used in my proof yet. I haven't used that p is a fixed point, that f is continuous, or the com-	
pactness of U .	(
Let me think of properties that we can use, or look up general consequences of these facts.	(
In a metric space, the intersection of compact sets is compact.	(
If some $y \in U$ is not in $f^n(U)$ for some $n \in \mathbb{N}$, it won't be in any $f^k(U)$ for $k \geq n$.	(
In a compact metric space, all sequences have convergent subsequences.	(
I think I can apply (24) to show a contradiction:	(
From (18), there exists a sequence $f^{m_n}(x)$ such that $d(f^{m_n}(x), p) \geq \varepsilon$ for all $n \geq 0$. By compactness of \overline{U} , this sequence has a convergent	(
subsequence $(f^{z_n}(x))_{n\geq 0}$ with $f^{z_n}(x)\to z\in \overline{U}$ and $z_n\to\infty$.	
Since f is continuous and \overline{U} compact, $f^n(\overline{U})$ is compact for all $n \geq 0$.	(
$\forall n \geq 0 \text{ there exists } K \text{ s.t. } f^{z_K}(x) \in f^n(\overline{U}), \text{ hence } \forall m \geq K, f^{z_m}(x) \in f^n(\overline{U}).$	(
From (28), the limit point z must be in $f^n(\overline{U})$ for all $n \ge 0$.	(
Therefore, $z \in \bigcap_{n>0} f^n(\overline{U}) = \{p\}.$	(
So, $z = p$, which contradicts (18), so assumption (17) is false. Hence (x_n) converges.	(
We still need to show that (x_n) converges to p , but the proof will likely be almost the same as above.	(
Suppose $x_n \to q$ and $q \neq p$.	(
Let $n \geq 0$. $(x_i)_{i \geq n}$ is contained in $f^n(\overline{U})$, which is compact, so $q \in f^n(\overline{U})$.	(
By (34), $q \in \bigcap_{n \ge 0} f^n(\overline{U})$.	(
By (13), $q \in \bigcap_{n>0} f^n(U) = \{p\},$	(
which is a contradiction, so (33) is false.	(
From (37) and (31), we get $x_n \to p$. Therefore, the forward orbit of any	
point in U converges to p .	(