Conference(s) debrief: QUACCS & ACCOMC

Atmospheric Composition and Chemistry Observations and Modelling Conference incorporating the Cape Grim Annual Science Meeting 2018

Tuesday 4 December - Thursday 6 December 2018

QUACCS - Write your own MP2 - Simon McKenzie

Workshop less about MP2 than its implementation

In brief:

First level of theory to include e⁻-e⁻ correlation.

Perturb with virtual orbitals from HF solution.

$$H = H_{o} + \lambda V$$

$$E = E^{(o)} + \lambda E^{(1)} + \lambda^{2} E^{(2)} + \lambda^{3} E^{(3)} + \dots$$

$$E_{\text{MP}}^{(2)} = \sum_{ij}^{\text{occ}} \sum_{ab}^{\text{vir}} \frac{\langle ia|jb \rangle [2 \langle ia|jb \rangle - \langle ib|ja \rangle]}{\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b}$$

The importance of loops

Since you are calculation electron repulsion integrals (ERI), many permutation loops.

ightharpoonup Naive implementations scale as $O(N^8)$!

```
// Perform the naive A0 to M0 integral transformation

for(unsigned i=0; i < n_occ; i++ )
   for(unsigned a=0; a < n_vir; a++ )
   for(unsigned j=0; j < n_occ; j++ )
   for(unsigned b=0; b < n_vir; b++ )
   for(unsigned mu=0; mu < n_ao; mu++ )
   for(unsigned nu=0; nu < n_ao; nu++ )
   for(unsigned lam=0; lam < n_ao; lam++ )
   for(unsigned sig=0; sig < n_ao; sig++ ) {
        t_mo_int[i][a][j][b] += mat_mo_coeff(i,mu)*mat_mo_coeff(n_occ+a,nu)*mat_mo_coeff(j,lam)*mat_mo_coeff(n_occ+b,sig)*t_ao_int[mu][nu][lam][sig];
   }
}</pre>
```

- ightharpoonup Conventional implementations scale as O(N⁵) or better
- •Preference looping over occupied (i,j) rather than virtual (a,b) orbitals many more virt. orb.s
- •Piecewise MO -> AO transformation •ERI pre-screening $4e^- \rightarrow 3e^- \& 2e^-$ integrals w/ aux. basis

ACCOMC - Testing estimates of terrestrial productivity using carbonyl sulfide - Peter Rayner

► S=C=O (COS) most abundant sulfurous compound (0.5 ppb) in the atmosphere¹

Sources: CS₂ oxidation, oceanic vents, soils, biomass burning

- ► Loss mechanism is from vegetation,² CO₂-fixing enzymes making a mistake!
- ► ∴ COS direct tracer of plant fixing rates Gross Primary Productivity (GPP)

► Inversion modelling is where you work backwards from atmospheric observations

Budget modelling: sum known sources & sinks

Inversion modelling: statistically estimate the variables driving an observation³

Uncertainties in GPP

figure taken from Anav et al. 2015.

- global estimates of GPP vary by 40%
- Even larger variations regionally;
- trends, variability and sensitivity equally uncertain.

Sinks ∝ [COS]

 $F_{canopy} = \lambda \times GPP \times [COS]$

 $\lambda = COS vs. CO_2 pref.$

λ highly uncertain!

From known budget:

-Insert flux into transport models.

-Vary estimates of GPP & λ

Comparison at Cape Grim

Future Work & Conclusions

Future Work:

- \blacktriangleright Global & local inversion models attempt to constrain good estimates for λ
- ► Implement improved transport parameters & a photosynthesis model¹

Conclusions:

- ► Seasonal variance in [COS] offers a window to constrain GPP estimates
- ► Many confounding factors, but they don't seem to affect seasonal variations
- ► No clear best estimate, location dependent
- ► Inversion modelling can quantify confidence. Need leaf uptake parameters.v

Thank you!

