

8按键触摸检测 IC

概述

● TTP226-809SN TonTouch[™] 是一款使用电容式感应原理设计的触摸 IC, 提供 8 个触摸键, 此触摸检测芯片是专为取代传统按键而设计, 触摸检测 PAD 的大小可依不同的灵敏度设计在合理的范围内, 低功耗与宽工作电压, 是此触摸芯片在 DC 或 AC 应用上的特性。

特点

- 工作电压 2.0V ~ 5.5V
- 工作电流在 VDD=3V 时典型值 80uA, 最大值 160uA
- 输出刷新率在 VDD=3V 时约 55Hz
- 16 阶可选灵敏度 (SLSE1~4 管脚选项)
- 稳定的人体接触检测,以取代传统直接切换的键(direct switch key)
- 提供直接(direct)模式、矩阵(matrix)模式和串行(serial)模式,由 pin 选项选择
- 直接模式下最多8个输入pads和8个输出;
 串行接口模式下最多8个输入pads;
 固定的2*4和3*3矩阵类型提供最多8个输入pads
- 输出可由 pin 选项选择为高电平有效或低电平有效
- 在上电之后有一段稳定时间,在此期间不要触摸键区(key-pad),且功能无效, TTP226-809SN 的是 $0.8^{\circ}1.0$ 秒
- 始终进行自校准, 当所有键没被触摸时, 重校准周期 TTP226-809SN 的是 $0.8^{\sim}1.0$ 秒

应用范围

- 各种消费性产品
- 取代按钮按键

方块图

直接(DIRECT)模式框图

串行接口(SERIAL INTERFACE)模式框图

键矩阵(KEY-MATRIX)模式框图

脚位定义

脚位顺序	脚位名称	共用脚位	I/0 类型	脚位定义
1	OSC2/TOPAD		I/0	传感器振荡器输入口和内部公共点(common point)
2	17		Ι	输入口
3	16		I	输入口
4	15		I	输入口
5	14		I	输入口
6	13		I	输入口
7	12		I	输入口
8	I1		I	输入口
9	10		Ι	输入口
10	OSC1		I/0	系统振荡器管脚
11	VSS		Р	负电源电压,接地
12	VDD		Р	正电源电压
13	OPS1		I-PH	输出类型选项管脚
14	OPS0		I-PH	输出类型选项管脚
15	AHL		I-PH	选择输出为高电平有效或低电平有效
16	Q0	(DO/SCNO)	1/0	Q0 为直接模式下的输出管脚 D0 为串行模式下的移位数据输出 SCNO 为矩阵模式下的第一个扫描(scanning)管脚
17	Q1	(SCN1)	I/0	Q1 为直接模式下的输出管脚 SCN1 为矩阵模式下的第二个扫描(scanning)管脚
18	Q2	(SCN2)	I/0	Q2 为直接模式下的输出管脚 SCN2 为矩阵模式下的第三个扫描(scanning)管脚
19	Q3	(SCN3)	I/0	Q3 为直接模式下的输出管脚 SCN3 为矩阵模式下的第四个扫描(scanning)管脚
20	Q4	(SCN4)	I/0	Q4 为直接模式下的输出管脚 SCN4 为矩阵模式下的第五个扫描(scanning)管脚
21	Q5	(SCN5)	I/0	Q5 为直接模式下的输出管脚 SCN5 为矩阵模式下的第六个扫描(scanning)管脚
22	Q6	(RST)	I/0	Q6 为直接模式下的输出管脚 RST 为串行模式下的复位输入管脚
23	Q7	(CK)	I/0	Q7 为直接模式下的输出管脚 CK 为串行模式下的时钟输入管脚
24	DV		0	(表示) 数据有效的输出信号
25	SLSE1		I-PH	SLSE1~4 均为选择灵敏度的选项管脚
26	SLSE2		I-PH	SLSE1~4 均为选择灵敏度的选项管脚
27	SLSE3		I-PH	SLSE1~4 均为选择灵敏度的选项管脚
28	SLSE4		I-PH	SLSE1~4 均为选择灵敏度的选项管脚

接脚类型

■ I CMOS 单纯输入

● 0 CMOS 输出

● I/0 CMOS 输入/输出

● P 电源/接地

● I-PH CMOS 输入内置上拉电阻

● I-PL CMOS 输入内置下拉电阻

• 0D 开漏输出,无二极管保护电路

Ver: 1.0

电气特性

• 最大绝对额定值

参数	符号	条件	值	单位
工作温度	T_{OP}	_	−20~+70	$^{\circ}$ C
储存温度	$T_{ ext{STG}}$	_	-50∼+125	$^{\circ}$ C
电源供应电压	VDD	Ta=25°C	VSS-0. 3∼VSS+5. 5	V
输入电压	V _{IN}	Ta=25°C	VSS-0.3∼VDD+0.3	V
芯片抗静电强度 HBM	ESD	_	5	KV
备注: VSS 代表系统接地				

• DC / AC 特性: (测试条件为室温 = 25 ℃)

参 数	符号	测试条件	最小值	典型值	最大值	单位
工作电压	VDD		2. 0	3	5. 5	V
参考振荡器	OSC1			440K		Hz
传感器振荡器	OSC2			440K		Hz
工作电流	$\mathrm{I}_{\mathtt{OP}}$	VDD=3V 输出无负载		80	160	uА
输入埠	$V_{\scriptscriptstyle \mathrm{IL}}$	输入低电压	0		0. 2	VDD
输入埠	$V_{\scriptscriptstyle \mathrm{IH}}$	输入高电压	0.8		1.0	VDD
输出埠灌电流 Sink Current	${ m I}_{ m OL}$	VDD=3V, V _{OL} =0.6V		8		mA
输出埠源电流 Source Current	${ m I}_{ m OH}$	VDD=3V, V _{OH} =2.4V		-4		mA

功能描述

I. 系统时序控制

▶ 为输入检测灵敏度保留了4个管脚选项16阶

性能	特性	举例
系统时钟	OSC1	440KHz 在3V时
输出刷新率	<= 0SC1/1024/8	~55Hz
DV 有效脉冲宽度	<= OSC1/8	~55KHz

Ⅱ. 系统初始信号

系统初始或者模式初始			
状态	功能		
上电复位	系统复位至初始状态		
RST=1	串行模式移位计数器复位		

Ⅲ. 中断

对于 MCU 系统,中断请求有益于软件编程。DV 信号提供了考虑周到的输出控制。DV 可为高电平有效或低电平有效,由 AHL 管脚选择。任何能通过去除抖动(de-bounce)过程的有效输入都将激活 DV 信号。

对于不同的应用,有些输出需要高电平有效而有些需要低电平有效。AHL管脚提供了可选择的性能。

AHL 管脚选项	输出有效状态	
	去除抖动的 Ii 触发 Qi	
AHL=0	DV=0	
	Qi=0	
	去除抖动的 Ii 触发 Qi	
AHL=1	DV=1	
	Qi=1	

AHL	输入的 Ii	输出的 Qi 或 DV
0	非有效	1
	有效	0
1	非有效	0
	有效	1

IV. 输出模式

大多数输出模式工作在直接(direct)或串行(serial)模式。只有当0PS0=0时,输出模式会为矩阵(matrix)类型。

	输出类型选项					
OPS1 OPS0 输出类型 备注						
1	1	直接(Direct)类型	Qi ← 去除抖动的 Ii			
0	1	串行(Serial)类型	使用 CK & RST & DO 串行输出去除抖动的键			
1	1 0 <i>矩阵(Matrix)类型</i> 固定的 3*3 矩阵类型					
0	0	矩阵(Matrix)类型	固定的 2*4 矩阵类型			

a. 直接模式: OPS1=1 & OPS0=1

直接模式	输出状态	
输入触发	去除抖动的 Ii 触发 Qi	

b. 键矩阵模式: OPS1=X & OPS0=0

b-1: 2*4 键映射 (OPS1=0 时)

矩阵	SCN2	SCN3	SCN4	SCN5
SCN0	10	I2	I4	I6
SCN1	I1	I3	I5	17

b-2: 3*3 键映射 (OPS1=1 时)

矩阵	SCN3	SCN4	SCN5
SCN0	10	13	I6
SCN1	I1	I4	17
SCN2	I2	I5	_

c. 串行模式: OPS1=0 & OPS0=1

串行模	式过程(0PS1=0)				
复位 & 时钟	移位计数器	DO			
RST =1	0	去除抖动的 I0			
1 st CK	1	去除抖动的 I1			
2 nd CK	2	去除抖动的 I2			
3 rd CK	3	去除抖动的 I3			
4 th CK	4	去除抖动的 I4			
5 th CK	5	去除抖动的 I5			
6 th CK	6	去除抖动的 I6			
7 th CK	7	去除抖动的 I7			
8 th CK	0	去除抖动的 I0			
9 th CK	1	去除抖动的 I1			

深圳永嘉微电科技有限公司

串行模式 RST、CK 和 DO 的时序 (图中为最小值)

V. 有效KEY触发,输出持续时间

TTP226-809SN 有输出定时器功能(key-on-time),时间为大约 10 秒,一旦检测到 $I0^{\sim}I7$ 键中的任意键,就会开启输出定时计数器,直到不再有键接触。而且如果在此持续周期中检测到另一个键,输出定时计数器将会重新计数。

VI. 灵敏度选择

键检测条件(condition)指的是检测从没有接触到有接触的 No-windows 值(不同时钟数)。 当已经检测到键的时候,键检测和释放的条件将改变为选定的 windows 值,请参阅灵敏度表。

灵敏度表

SLS	$SE[4^{\sim}]$	1] 管	脚	不同时钟数(△_CLK)		
4	3	2	1	No-Windows	1/2-Windows	
1	1	1	1	2	1	
1	1	1	0	4	2	
1	1	0	1	6	3	
1	1	0	0	8	4	
1	0	1	1	10	5	
1	0	1	0	12	6	
1	0	0	1	14	7	
1	0	0	0	16	8	
0	1	1	1	18	9	
0	1	1	0	20	10	
0	1	0	1	22	11	
0	1	0	0	24	12	
0	0	1	1	26	13	
0	0	1	0	28	14	
0	0	0	1	30	15	
0	0	0	0	32	16	

Ⅶ. 选项管脚(Option pin)

出于对省电和封装焊接选项的考虑,所有性能选项管脚都为锁存(latch)类型,在上电时初始化为1。如果这些管脚被强制接到(forced to) VSS,状态将改变为0,此过程中没有电流泄漏,不与省电策略冲突。

性能选项管脚	上电初始状态		
OPS1	1		
0PS0	1		
AHL	1		
SLSE1~SLSE4 灵敏度	1111		

应用电路

a. 直接模式

直接键输出模式的应用

- 附: 1. 在PCB上,从触摸点到IC管脚K0到K7的连线长度最好相同。 并且连线不要并行或者与其他线交叉。
 - 2. 供电电源必须稳定。如果电源电压漂移或者快速变化,可能引起灵敏度不正常或者 检测错误。
 - 3. 覆盖在PCB上的面板不能是带有金属成份或其它导电的材料,包括最表面的涂料。
 - 4. VDD及VSS必需使用电容器C2做滤波,同时在布线时C2电容器必需是最近距离靠近 IC的VDD及VSS管脚之间(TTP226-809SN)。
 - 5. 电容器Ci及Co的电容值可根据实际应用选取。

b. 矩阵键模式

矩阵键输出模式的应用

- 附: 1. 在PCB上,从触摸点到IC管脚K0到K7的连线长度最好相同。 并且连线不要并行或者与其他线交叉。
 - 2. 供电电源必须稳定。如果电源电压漂移或者快速变化,可能引起灵敏度不正常或者 检测错误。
 - 3. 覆盖在PCB上的面板不能是带有金属成份或其它导电的材料,包括最表面的涂料。
 - 4. VDD及VSS必需使用电容器C2做滤波,同时在布线时C2电容器必需是最近距离靠近 IC的VDD及VSS管脚之间(TTP226-809SN)。
 - 5. 电容器Ci及Co的电容值可根据实际应用选取。

c. 串行输出模式

串行输出模式的应用

- 附: 1. 在PCB上,从触摸点到IC管脚K0到K7的连线长度最好相同。 并且连线不要并行或者与其他线交叉。
 - 2. 供电电源必须稳定。如果电源电压漂移或者快速变化,可能引起灵敏度不正常或者 检测错误。
 - 3. 覆盖在PCB上的面板不能是带有金属成份或其它导电的材料,包括最表面的涂料。
 - 4. VDD及VSS必需使用电容器C2做滤波,同时在布线时C2电容器必需是最近距离靠近 IC的VDD及VSS管脚之间(TTP226-809SN)。
 - 5. 电容器Ci及Co的电容值可根据实际应用选取。

封装外观尺寸

封装类型 SSOP-28

封装配置

TTP226-809SN

封装类型 SSOP-28

订	购	信	息			
		,	TTP226	-809SN		
封装型号			芯	片型号	晶圆型	텦 号
T	TP226-80	O9SN	No	support	No sup	port

修订记录

1. 2016/01/18

-原始版本: V_1.0