

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

РТУ МИРЭА

Отчет по выполнению практического задания №6 **Тема:** Однонаправленный динамический список Дисциплина Структуры и алгоритмы обработки данных

Выполнил студент Вагизов И.И.

группа ИКБО-01-20

Содержание

1.	Постановка задачи	3
2.	Определение операций над списком	3
	2.1. Определение структуры узла однонаправленного спис	ка3
	2.2. Изображение процесса выполнения операций на списы	ce4
	2.3. Используемая в операциях структура данных	14
3.	Код программы	14
]	ВЫВОДЫ	16
(СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ	16

1. Постановка задачи

Требуется реализовать программу решения следующих задач варианта №4 по использованию линейного однонаправленного списка:

- 1. Информационная часть узла содержит линейный однонаправленный список L1.
- 2. Разработать функцию для создания исходного списка, используя функцию вставки нового узла перед первым узлом.
- 3. Разработать функцию вывода списка.
- 4. Разработать функцию, которая переформирует список L1, переписав в начало списка его часть, начиная с заданной позиции.
- 5. Разработать функцию вставки узла в упорядоченный по не возрастанию список. Сформировать такой список L2.
- 6. Разработать функцию, которая удаляет из L2 все повторяющиеся значения, оставляя одно из них.
- 7. В основной программе выполнить тестирование каждой функции.

2. Определение операций над списком

2.1. Определение структуры узла однонаправленного списка

Согласно варианту №4 в качестве информационной части узла списка используются целые числа.

2.2. Изображение процесса выполнения операций на списке

1. Вставка нового узла перед первым:

Рис. 1 Изображение вставки узла перед первым

Рис. 2 Алгоритм вставки узла перед первым

Таблица 1 Набор тестов для функции

Номер теста	Входные данные	Ожидаемый результат	Результат выполнения программы
1	Длина списка: 1	5 6	Lenght: 2
	Значения: 5		5 -> 6
	Вставка: 6		3 / 0

2	Длина списка: 2 Значения: 5 6 Вставка: 1	5 6 1	Lenght: 3 5 -> 6 -> 1
3	Длина списка: 3 Значения: 5 6 1 Вставка: 9	5619	Lenght: 3 5 -> 6 -> 1 -> 9

2. Вывод списка на экран:

Рис. З Изображение вставки узла в конец списка

Рис. 4 Алгоритм вставки узла в конец списка

Таблица 2 Набор тестов для функции

Номер теста	Входные данные	Ожидаемый результат	Результат выполнения программы
1	Длина списка: 1 Значения: 5	5	Lenght: 1 5
2	Длина списка: 2 Значения: 5 6	5 -> 6	Lenght: 2 5 -> 6
3	Длина списка: 3 Значения: 5 6 1	5 -> 6 -> 1	Lenght: 3 5 -> 6 -> 1

3. Переформатирование списка:

Рис. 5 Изображение создания списка на основе удаления элементов массива с заданного числа

Рис. 6 Алгоритм переформатирования списка с заданного числа

Таблица 3 Набор тестов для функции

Номер теста	Входные данные	Ожидаемый результат	Результат выполнения программы
1	Длина списка: 2 Значения: 5 6 Форматирование до: 1	5	Lenght: 2 5
2	Длина списка: 3 Значения: 5 6 1 Форматирование до: 2	5 6	Lenght: 3 5 -> 6
3	Длина списка: 4 Значения: 5 6 1 9 Форматирование до: 2	5 6	Lenght: 4 5 -> 6

4. Вставка элемента в отсортированный список:

Рис. 7 Изображение вставки элемента в отсортированный список массива Начальное состояние:

Рис. 8 Алгоритм включения числа из списка в список массива

Таблица 5 Набор тестов для функции

Номер теста	Входные данные	Ожидаемый результат	Результат выполнения программы
1	Длина списка: 1 Значения: 5 Вставка: 6	6 ->5	Lenght: 1 6 -> 5
2	Длина списка: 2 Значения: 6 5 Вставка: 1	6 -> 5 -> 1	Lenght: 2 6 -> 5 -> 1
3	Длина списка: 3 Значения: 6 5 1 Вставка: 9	9 -> 6 -> 5 -> 1	Lenght: 3 9 -> 6 -> 5 -> 1

5. Удаление из списка повторяющихся элементов

Рис. 9 Изображение удаления из списка повторяющихся элементов

Рис. 10 Алгоритм удаления из списка повторяющихся элементов

Таблица 5 Набор тестов для функции

Номер теста	Входныеданные	Ожидаемыйрезультат	Результат выполнения программы
1	Длина списка: 3 Значения:5 1 1	5 -> 1	Lenght: 2 5 -> 1
2	Длина списка: 4 Значения: 5 2 2 2	5 -> 2	Lenght: 3 5 -> 2
3	Длина списка: 5 Значения: 5 2 2 2 1	5 -> 2 ->1	Lenght: 4 5 -> 2 -> 1

2.3. Используемая в операциях структура данных

Структура данных – однонаправленный линейный список – состоит из узлов, каждый из которых включает информационную часть и указатель на следующий узел:

```
class Node{
public:
    int n;
    Node* next;
    Node (int n) {
        this -> n = n;
        next = nullptr;
    }
```

3. Код программы

```
#include <iostream>
    Node (int n) {
    this -> n = n;
    next = nullptr;
    void pushBack(Node* a,int n) {
    void push in sort(Node* a,int n) {
                   Node* next = new Node(n);
```

```
void delete same(Node* a) {
Node* a = new Node(5);
```

ВЫВОДЫ

В ходе практической работы был разработан однонаправленный динамический список, получены знания и практические навыки управления однонаправленным динамическим списком; реализованы необходимые функции взаимодействия со списком, включая задания индивидуального варианта. Каждая выполняющаяся над списком операция прошла тестирование.

СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

- 1. Кораблин Ю.П., Сыромятников В.П., Скворцова Л.А. Учебно-методическое пособие Структуры и алгоритмы обработки данных, М.:МИРЭА, 2020
- 2. Никлаус Вирт Алгоритмы и структуры данных. Классика программирования М.:ДМК Пресс, 2016. 272 с.
- 3. Круз Р. Л. Структуры данных и проектирование программ / пер. с англ. 3-е издание / Р.Л. Круз. М.:Лаборатория знаний, 2017. 768
- 4. Алгоритмы и структуры данных: связный список // tpproger.ru [Электронный ресурс].- https://tproger.ru/translations/linked-list-for-beginners/- дата обращения(26.04.2021).