Реализация схемы КГД для одномерной задачи в OpenFOAM (решатель QGDfoam)

Реализуем численную схему уравнений для одномерного плоского течения в OpenFOAM (уравнения (5.50)–(5.53) из [1], разностная схема приведена на стр. 119 – 120). Полагаем, что течение является невязким (в приведенных уравнениях принимаем $\mu = 0$, $\kappa = 0$). При необходимости вычисления значений полей на гранях конечнообъемной сетки используется линейная интерполяция. Схема по времени является явной.

Следует отметить, что реализованную в решателе QGD foam схему можно применять только для решения одномерных задач.

Тестирование решателя

Рассмотрим задачу Сода. Выберем длину расчетной области L=1. Положение контактного разрыва полагаем в центре области при x=0. Значение показателя адиабаты $\gamma=1.4$ ($C_p=1.4$, $C_v=1$). В начальный момент времени в левой части области значения полей равны $\rho_L=1.0$, $U_L=0.0$, $p_L=1.0$, $T_L=2.5$. Значения полей справа равны соответственно $\rho_R=0.125$, $U_R=0.0$, $p_R=0.1$, $T_R=2.0$. Конечное время счета составляет $t_{end}=0.25$.

На примере данной задачи исследуем сеточную сходимость и порядок метода. Для этого проведем расчеты при следующих параметрах пространственной и временной дискретизации (табл. 1). Здесь h — шаг пространственной дискретизации, N_x — количество ячеек на длину расчетной области, Δt — фиксированный шаг по времени. При решении тестовых задач параметр численной схемы α полагался равным 0.5.

Таблица 1. Параметры дискретизации для тестовых задач

$N_{\overline{0}}$ теста	h	N_x	Δt
1	0.01	100	$1\cdot 10^{-3}$
2	0.005	200	$0.5 \cdot 10^{-3}$
3	0.0025	400	$0.25 \cdot 10^{-3}$
4	0.00125	800	$0.125 \cdot 10^{-3}$

Результаты расчетов представлены на рис. 1 – 4. Черной пунктирной линией обозначено численное решение задачи Сода. Цветными линиями обозначены результаты численного решения для разных шагов пространственной дискретизации (см. табл. 1): синяя линия — тест 1, красная — тест 2, зеленая — тест 3, фиолетовая — тест 4.

Рис. 1. Распределение абсолютного значения скорости для задач из табл. 1 при t=0.15. Сравнение аналитического решения (черная пунктирная кривая) и численного решения на разных сетках (цветные линии)

Рис. 2. Распределение температуры для задач из табл. 1 при t=0.15. Сравнение аналитического решения (черная пунктирная кривая) и численного решения на разных сетках (цветные линии)

Рис. 3. Распределение давления для задач из табл. 1 при t=0.15. Сравнение аналитического решения (черная пунктирная кривая) и численного решения на разных сетках (цветные линии)

Рис. 4. Распределение плотности для задач из табл. 1 при t=0.15. Сравнение аналитического решения (черная пунктирная кривая) и численного решения на разных сетках (цветные линии)

Исследуем порядок точности метода. Вычислим L_2 -нормы ошибок численного решения для каждого теста из табл. 1 и возьмем логарифм от отношения значений соседних норм (табл. 2).

таолица 2. исследование порядка точности метода								
$N_{\overline{0}}$	$ U-U^* $	$ T-T^* $	$ p-p^* $	$\ \rho- ho^*\ $				
1	0.011856	0.018680	0.001062	0.000788				
2	0.006554	0.011366	0.000535	0.000422				
3	0.003406	0.006986	0.000259	0.000228				
4	0.001683	0.004345	0.000122	0.000127				
Nº	$\log_2 \frac{\ U_{(n-1)} - U^*\ }{\ U_{(n)} - U^*\ }$	$\log_2 \frac{\ T_{(n-1)} - T^*\ }{\ T_{(n)} - T^*\ }$	$\log_2 \frac{\ p_{(n-1)} - p^*\ }{\ p_{(n)} - p^*\ }$	$\log_2 \frac{\ \rho_{(n-1)} - \rho^*\ }{\ \rho_{(n)} - \rho^*\ }$				
2	0.855219	0.716866	0.990609	0.901026				
3	0.944223	0.702192	1.042890	0.885108				

Таблица 2. Исследование порядка точности метода

Вопросы для обсуждения

0.684969

1.017000

4

1. Сравнение решений задач Сода, полученных с использованием решателя QGD foam и в оригинальной программе (сравнение решений на сетке и норм ошибок для отладки).

1.088320

0.849146

- 2. Возможно ли исключение показателя адиабаты γ из уравнений? Если нет, то является ли в общем случае показатель адиабаты γ постоянным? Или необходимо его внесение под производную?
- 3. В квазигазодинамических уравнениях присутствуют слагаемые, которые невозможно напрямую аппроксимировать методом конечных объемов (к примеру, слагаемые, в которых входит тензор П). Как в общем случае (на неструктурированных сетках) вычисляются значения этих слагаемых в полуцелых точках (на гранях конечных объемов)?
- 4. Окончательное согласование системы уравнений и численной схемы.

Список литературы

1. Т.Г. Елизарова. Квазигазодинамические уравнения и методы расчета вязких теченийю — М: Научный мир, 2007. - 352 с.