南京航空航天大学 2011 级硕士研究生

共5页 第1页

成绩

2011~2012 学年第 1 学期 《矩阵论》 课程考试 A 卷 考试日期: 2012 年 1 月 9 日,:

姓名

学号

 $(20 分) 设 A = \begin{pmatrix} 3 & 6 & -15 \\ 1 & 2 & -5 \\ 1 & 2 & -5 \end{pmatrix} .$

专业

学院

- (1) 求 A 的特征多项式和 A 的全部特征值;
- (2) 求 A 的行列式因子,不变因子,初等因子和最小多项式;
- (3) 写出 A 的 Jordan 标准形 J。

(1)
$$|\lambda I - A| = \lambda^3$$
, 3' A 的特征值 $\lambda_1 = 1, \lambda_2 = \lambda_3 = 0$; 3' (2) A 的行列式因子1, λ, λ^3 ; 3' A 的不变因子1, λ, λ^2 ; 3' A 的初等因子 λ, λ^2 ; 2' A 的最小多项式 λ^2 ; 1' (3) A 的 Jordan 标准形 $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 。 5'

二 (20 分) (1) 设
$$A = \begin{pmatrix} 2 & 1 \\ -1 & 2 \\ 0 & -3 \end{pmatrix}$$
, 求 $||A||_1, ||A||_2, ||A||_{\infty}, ||A||_{F}$;

- (2) 设 $A = (a_{ij}) \in C^{m \times n}$, 证明:
- (i) 对m阶酉矩阵U 和n阶酉矩阵V, 有 $\|UAV\|_F = \|A\|_F$;

(ii) 若
$$rank(A) = r$$
, $\sigma_1, \sigma_2, \dots, \sigma_r$ 为 A 的全部正奇异值,则 $\sum_{k=1}^r \sigma_k^2 = \sum_{i=1}^m \sum_{j=1}^n \left| a_{ij} \right|^2$ 。

(1)
$$||A||_1 = 6$$
,

$$A^{H}A = \begin{pmatrix} 14 & 0 \\ 0 & 5 \end{pmatrix}, \|A\|_{2} = \sqrt{14};$$

$$||A||_{\infty} = 3;$$

$$||A||_{E} = \sqrt{19}$$
.

(2)(i)
$$||UAV||_F = [tr((UAV)^H UAV)]^{\frac{1}{2}} = [tr(V^H A^H U^H UAV)]^{\frac{1}{2}}$$

$$= [tr(V^H A^H AV)]^{\frac{1}{2}} = [tr(V^{-1} A^H AV)]^{\frac{1}{2}} = [tr(A^H A)]^{\frac{1}{2}} = ||A||_F.$$
5'

(ii) 因为 rank(A) = r , 则由奇异值分解定理知, 存在 m 阶酉矩阵 U 和 n 阶酉矩阵 V ,

使得
$$U^HAV = \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix}$$
,其中 $\Sigma = diag(\sigma_1, \sigma_2, \dots, \sigma_r)$,从而

$$\sum_{i=1}^{r} \sigma_i^2 = \left\| \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} \right\|_F^2 = \left\| U^H A V \right\|_F^2 = \left\| A \right\|_F^2 = \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2$$
 5'

$$\Xi$$
 (20分) 设 $A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 1 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix}$.

- (1) 计算 A 的满秩分解;
- (2) 计算广义逆矩阵 A+;
- (3) 用广义逆矩阵判定线性方程组 Ax = b 是否相容。若相容,求其通解;若不相容,求其极小最小二乘解。

(1)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix};$$
 8'

(2)
$$A^+ = C^T (CC^T)^{-1} (B^T B)^{-1} B^T$$

$$=\frac{1}{15} \begin{pmatrix} 5 & -4 & 1\\ 0 & 3 & 3\\ -5 & 7 & 2\\ 5 & -4 & 1 \end{pmatrix}$$
 6'

(3) 因为
$$AA^{+}b = \frac{1}{15} {50 \choose 5} = \frac{1}{3} {10 \choose 1} \neq b$$
,所以 $Ax = b$ 不相容。 2'

$$Ax = b$$
 的极小最小二乘解为 $x = A^+b = \frac{1}{15} \begin{pmatrix} 19\\12\\-7\\19 \end{pmatrix}$ 。

四(20 分)(1)设
$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 3 & -3 \\ 0 & -3 & 2 \end{pmatrix}$$
,判断 A 是否是正定或半正定矩阵,并

说明理由;

- (2) 设A 是n 阶 Hermite 正定矩阵,B 是n 阶 Hermite 矩阵,证明: AB 相似于实对角矩阵;
- (3) 设A, B均为n阶 Hermite 矩阵,并且AB = BA, $\lambda \in AB$ 的特征值,证明: 存在A的特征值 $\alpha \cap B$ 的特征值 β , 使得 $\lambda = \alpha\beta$ 。
- (1) 因为 A 的顺序主子式 $\Delta_1=2>0$, $\Delta_2=5>0$, $\Delta_3=-8<0$,所以 A 不是正定的。 4' 因为 A 有一个主子式 $\Delta_3=-8<0$ 或 $\begin{vmatrix} 3 & -3 \\ -3 & 2 \end{vmatrix}=-3<0$,所以 A 也不是半正定的。 4'
- (2) 因为 A 是 n 阶 Hermite 正定矩阵,则存在可逆 Hermite 矩阵 S ,使得 $A = S^2$,从而 AB 相似于 $S^{-1}ABS = SBS = S^HBS$ 。

又因为B 是Hermite矩阵,则 S^HBS 是Hermite矩阵。由Hermite矩阵的谱分解 S^HBS 相似于实对角矩阵,再由相似的传递性知,AB 相似于实对角矩阵。

(3) 因为 A , B 均为 n 阶 Hermite 矩阵,并且 AB = BA ,则存在 n 阶酉矩阵U ,使得 $U^{H}AU = diag(\alpha_{1}, \dots, \alpha_{n}), U^{H}BU = diag(\beta_{1}, \dots, \beta_{n})$ 。 3'

从而 $U^HABU=diag(\alpha_1eta_1,\cdots,\alpha_neta_n)$,即AB相似于对角矩阵 $diag(\alpha_1eta_1,\cdots,\alpha_neta_n)$ 。因此,如果 λ 是AB的特征值,则存在A的特征值 α 和B的特征值 β ,使得 $\lambda=\alpha\beta$ 。

3'

- 五(20 分)设 $R[x]_3$ 表示实数域R上次数小于 3 的多项式再添上零多项式构成的线性空间。
 - (1) 确定 R[x]。的维数,并写出 R[x]。的一组基;
 - (2) 对 $f(x) = a_0 + a_1 x + a_2 x^2 \in R[x]_3$, 在 $R[x]_3$ 上定义线性变换T 如下: $T(f(x)) = (a_0 a_1) + (a_1 a_2)x + (a_2 a_0)x^2$,

求T在(1)中所取基下的矩阵表示;

- (3) 求(2) 中线性变换T 的值域R(T)和核Ker(T),并确定它们的维数;
- (4) 在R[x]。中定义内积

$$(f,g) = \int_{-1}^{1} f(x)g(x)dx, \ \forall f(x), g(x) \in R[x]_{3}$$

求 R[x], 的一组标准正交基。

(1)
$$\dim(R[x]_3) = 3$$
,

$$R[x]_3$$
的一组基为 $\alpha_1 = 1, \alpha_2 = x, \alpha_3 = x^2$ 。

(2) 因为

$$T(\alpha_1) = 1 - x^2 = \alpha_1 - \alpha_3$$

 $T(\alpha_2) = -1 + x = -\alpha_1 + \alpha_2$
 $T(\alpha_3) = -x + x^2 = -\alpha_2 + \alpha_3$

则
$$T$$
 在基 α_1 , α_2 , α_3 下的矩阵为 $\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix}$.

(3)
$$R(T) = span(T(\alpha_1), T(\alpha_2), T(\alpha_3)) = span(\alpha_1 - \alpha_3, -\alpha_1 + \alpha_2)$$
, 1'

$$\dim(R(T)) = 2,$$

$$Ker(T) = span(\alpha_1 + \alpha_2 + \alpha_3),$$
1'

$$\dim(Ker(T)) = 1_{\circ}$$

$$1'$$

(4) R[x]₃的一组标准正交基为

$$\varepsilon_1 = \frac{1}{\sqrt{2}}$$
;

$$\varepsilon_2 = \frac{\sqrt{3}}{\sqrt{2}}x$$

$$\varepsilon_3 = \frac{3\sqrt{5}}{2\sqrt{2}} (x^2 - \frac{1}{3})$$