R CODES FOR DATA SCIENCE PROJECT

```
DataSc <- read.csv("C:/Users/Iqra/Downloads/data science project.csv")</pre>
View(DataSc)
#installing packages and loading libraries.
install.packages("tidyverse")
library(tidyverse)
install.packages("readxl")
library(readxl)
install.packages("dplyr")
library(dplyr)
install.packages("purrr")
library(purrr)
#datacleanong/transforming
dim(Datasc)
Datasc %>% summarise(count = sum(is.na(education ID)))
       Datasc %>%
        summarise(count = sum(is.na(Financial status)))
       Datasc%>%
        summarise(count=sum(is.na(Education ID)))
DataSc %>%
 group by(Body Weight) %>%
 summarise(mean_value = mean(numeric_variable)
DataS <- na.omit(Datasc)
dim(DataS)
#Expolatory Data Analysis
# Summary statistics
summary(DataS)
head(DataS)
tail(DataS)
# Correlation matrix
cor(DataS)
# Scatter plot matrix
pairs(DataS)
```


Boxplots boxplot(DataS)

Histogram of DataS\$MMSE_class_binary

Histogram of DataS\$Age

Histogram of DataS\$Body_Weight

Histogram of DataS\$Body_Height

Histogram of DataS\$Financial_status

Histogram of DataS\$Marital_status_ID

Histogram of DataS\$MNAa_total

Histogram of DataS\$MNAb_total

Histograms hist(DataS\$MMSE_class_binary) hist(DataS\$Age) hist(DataS\$Body_Weight) hist(DataS\$Body_Height) hist(DataS\$Financial_status) hist(DataS\$Marital_status_ID) hist(DataS\$MNAa_total) hist(DataS\$MNAb_total)

Bar plot
DAge <- DataS\$Age
DAge
table(DAge)
barplot(table(DAge)

table(DAge)

DAge																			
51	55	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77
78																			
1	1	1	6	11	25	40	33	36	52	70	89	60	76	70	47	58	61	53	59
59																			
79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98
99																			
58	70	77	67	60	55	64	74	44	42	40	23	29	24	24	18	7	10	4	5
5																			

100 101 102 104

table (DFinancial)

DFinancial

1 2 3 4 5 6 7 8 726 233 10 307 405 10 6 18

DFinancial <- DataS\$Financial_status DFinancial table(DFinancial) barplot(table(DFinancial))

DMMSE <- DataS\$MMSE_class_binary DMMSE table(DMMSE) barplot(table(DMMSE))

table(DMMSE)

DMMSE

0 1 1428 287

DMartial <- DataS\$Marital_status_ID DMartial table(DMartial) barplot(table(DMartial))

table(DMartial)

DMartial

1 2 3 4 5 6 90 969 562 12 81 1

mean(DataS\$Age)

[1] 77.73294