Medidas de tendencia central en Python

Medidas de tendencia central

Media

$$\overline{X} = rac{\{x_1, x_2, \ldots X_n\}}{N} = rac{1}{N} \sum_{i=1}^N X_i$$

Mediana(impar)

$$X_{\left[rac{N+1}{2}
ight]}$$

Mediana(par)

$$\frac{X_{\left[\frac{N}{2}\right]}+X_{\left[\frac{N}{2}+1\right]}}{2}$$

Moda

 x_k

 $\mathsf{donde}\,\mathrm{Freq}(x_k) = \max\left(\mathrm{Freq}(x_i)\right)$

continuamos con el dataset https://www.kaggle.com/lepchenkov/usedcarscatalog

```
In [ ]: #Importando librerías y el dataset
import pandas as pd
```

Out[]:		manufacturer_name	model_name	transmission	color	odometer_value	year_produced	engine_fuel	engine_has_gas	engine_
	0	Subaru	Outback	automatic	silver	190000	2010	gasoline	False	gas
	1	Subaru	Outback	automatic	blue	290000	2002	gasoline	False	gas
	2	Subaru	Forester	automatic	red	402000	2001	gasoline	False	gas

3 rows × 30 columns

Tenemos que implementar los estadísticos descriptivos que hemos visto, para tener una información completa del data set

In []: df_cars.describe()

Out[]:

	odometer_value	year_produced	engine_capacity	price_usd	number_of_photos	up_counter	duration_listed
count	38531.000000	38531.000000	38521.000000	38531.000000	38531.000000	38531.000000	38531.000000
mean	248864.638447	2002.943734	2.055161	6639.971021	9.649062	16.306091	80.577249
std	136072.376530	8.065731	0.671178	6428.152018	6.093217	43.286933	112.826569
min	0.000000	1942.000000	0.200000	1.000000	1.000000	1.000000	0.000000
25%	158000.000000	1998.000000	1.600000	2100.000000	5.000000	2.000000	23.000000
50%	250000.000000	2003.000000	2.000000	4800.000000	8.000000	5.000000	59.000000
75%	325000.000000	2009.000000	2.300000	8990.000000	12.000000	16.000000	91.000000
max	1000000.000000	2019.000000	8.000000	50000.000000	86.000000	1861.000000	2232.000000

Out[]: 6639.971021255613

El resultado anterior quiere decir que en promedio los autos tienen un precio de **\$6639.97 dls** en ese catalogo o dataset de autos usados.

Pero eso no me dice nada, yo quisiera saber.

- Cual es el auto mas barato
- Cual es el auto mas costoso
- Qué tanto sesgo hay por valores atípicos.

```
In [ ]: #verifiquemos el valor de la Mediana con median
df_cars['price_usd'].median()
```

Out[]: 4800.0

Explicación

De acuerdo a lo visto tenemos que:

- media = \$6639.97
- mediana = \$4800.00

Con esto vemos que los 2 valores difieren como en el caso del Ejemplo Bill Gates. Podemos intuir que pueden existir valores atípicos, es decir; pueden existir autos que estén muy costosos y hace que el *promedio* o la media > mediana, con lo que podemos decir que la media esté mucho más a la derecha respecto de la mediana, haciendo parecer que los autos usados son costosos o que el promedio de un auto usado es elevado.

Diagrama de frecuencia vs Histograma

Diagrama de frecuencia

Cuando nosotros hablamos del diagrama de frecuencia utilizamos datos numéricos discretos como en el caso de la **Edad**, contamos personas que tengan cierta edad y eso lo graficamos en una **gráfica de barras**. Explicado de otro modo yo asigno una barra para cada tipo de ocurrencia de los datos, entonces una barra para los que tienen 15 años, otra barra para los que tienen 18 años y así sucesivamente.

Histograma

Para este caso en el que tenemos datos continuos numéricos como parámetro **Precio** hacemos uso de algo similar pero que está dedicado para tipos de datos continuos, lo graficamos en algo que llamamos **histograma**, así que el histograma es la misma idea de un diagrama de barras pero cada barra no corresponde a un valor único sino a un **rango de valores**. Ahora vamos a agrupar en rangos de valores $\$0 - 100, \$100 - 200, \$200 - 300, \dots$ y así sucesivamente, por ejemplo. Entonces cada barra va a contar las ocurrencias de los autos que tienen un precio entre 0y100, etc. Eso es el histograma; una generalización del concepto de diagrama de frecuencias.

In []: #¿cómo hacemos la agrupación de los valores
#Con bins hacemos la segmentación de valores
#Para que los acomode en rangos
df_cars['price_usd'].plot.hist(bins=20)

Out[]: <Axes: ylabel='Frequency'>

Como podemos ver, el eje Y se llama frecuencia, que es el numero de ocurrencias de ciertos valores.

A simple vista podemos ver que la concentración de valores esta entre 0a10,000. También podemos ver el caso de valores atípicos en el extremo derecho que están en un rango de 30,00040,00 a \$50,000. Aunque son usados tienen esos valores.

Con ello podemos decir, aunque son autos usados hay un sesgo en los datos del conjunto y se debe a que estamos metiendo autos de todas las marcas, de todos los años, entonces es muy diversa la información.

Con esto podemos analizar de manera más profunda ciertas datos de un dataset con medidas estadísticas.

```
In [ ]: import seaborn as sns
In [ ]: #viendo las columnas que tengo
        for index,column in enumerate(df_cars.columns):
            print(f'Nombre de columna [{index}] = {column}')
       Nombre de columna [0] = manufacturer_name
       Nombre de columna [1] = model_name
       Nombre de columna [2] = transmission
       Nombre de columna [3] = color
       Nombre de columna [4] = odometer_value
       Nombre de columna [5] = year_produced
       Nombre de columna [6] = engine_fuel
       Nombre de columna [7] = engine_has_gas
       Nombre de columna [8] = engine_type
       Nombre de columna [9] = engine_capacity
       Nombre de columna [10] = body_type
       Nombre de columna [11] = has_warranty
       Nombre de columna [12] = state
       Nombre de columna [13] = drivetrain
       Nombre de columna [14] = price_usd
       Nombre de columna [15] = is_exchangeable
       Nombre de columna [16] = location_region
       Nombre de columna [17] = number_of_photos
       Nombre de columna [18] = up_counter
       Nombre de columna [19] = feature_0
       Nombre de columna [20] = feature_1
       Nombre de columna [21] = feature_2
       Nombre de columna [22] = feature_3
       Nombre de columna [23] = feature_4
       Nombre de columna [24] = feature_5
       Nombre de columna [25] = feature_6
       Nombre de columna [26] = feature_7
       Nombre de columna [27] = feature_8
       Nombre de columna [28] = feature_9
       Nombre de columna [29] = duration_listed
In [ ]: #Usando Displot [Distribution Plot]
        #Realizando segmentación con hue
        sns.displot(df_cars,x='price_usd',hue='manufacturer_name')
Out[]: <seaborn.axisgrid.FacetGrid at 0x7f00e3d82990>
```


El caso anterior pierde un poco el propósito que es resumir información, porque la gráfica está muy sobrecargada. Hay demasiadas categorías.

Lo mejor seria escoger otro tipo de segmentación, escogeremos una basada en el tipo de motor.

```
In [ ]: #Usando Displot [Distribution Plot]
    #Realizando segmentación con hue
    sns.displot(df_cars,x='price_usd',hue='engine_type')
```


Como se puede observar, las barras están superpuestas y es difícil visualizar los datos. Buscaremos barras apiladas o en **stack**, ¿cómo lo hacemos? con el argumento de la función multiple=stack

```
In []: #Usando Displot [Distribution Plot]
    #Realizando segmentación con hue
    sns.displot(df_cars,x='price_usd',hue='engine_type',multiple='stack')
```

Out[]: <seaborn.axisgrid.FacetGrid at 0x7f00ecd33f20>

Recordemos que realizar el conteo de algo, también es un estadístico.

```
In []: # Haciendo conteo de agrupación de datos
# Es decir quiero saber cuantos autos
# existen con el parámetro 'engine_type' y que sean 'electric'
# Usamos groupby

df_cars.groupby('engine_type').count()
# La variable tiene que ser una variable categórica
```

Out[]:		manufacturer_name	model_name	transmission	color	odometer_value	year_produced	engine_fuel	engine_has_ga
	engine_type								
	diesel	12874	12874	12874	12874	12874	12874	12874	1287

diesel	12874	12874	12874 12874	12874	12874	12874	1287
electric	10	10	10 10	10	10	10	
gasoline	25647	25647	25647 25647	25647	25647	25647	2564

3 rows × 29 columns

Veamos que el número de autos eléctricos son tan solo 10, comparados contra 12mil y 25 mil, es una cantidad muy pequeña, por

eso que no se ven reflejados en la gráfica de histograma.

Algo importante, es que la estadística descriptiva no son solo números, también son visualizaciones y se va a dividir en 2 ramas fundamentales:

- La que tiene que ver con esos valores analíticos; promedio, mediana (números concretos)
- Visualizaciones

Como se puede observar, haciendo uso del groupby podemos calcular otros parámetros estadísticos

¿Cómo nos podemos enfocar en algo de interés?

Yo como usuario quiero comprar y comparar una marca que a mi me gusta mucho, me gustan mucho los autos Audi. Quiero hacer una descripción sencilla.

	manufacturer_name	model_name	transmission	color	odometer_value	year_produced	engine_fuel	engine_has_gas	en
19515	Audi	Q7	automatic	grey	275000	2007	diesel	False	
19547	Audi	Q7	automatic	white	105000	2014	diesel	False	
19559	Audi	Q7	automatic	other	170000	2006	diesel	False	
19574	Audi	Q7	automatic	black	185000	2016	diesel	False	
19583	Audi	Q7	automatic	other	210000	2010	diesel	False	
19660	Audi	Q7	automatic	grey	187000	2016	gasoline	False	
19680	Audi	07	automatic	black	170000	2007	gasoline	False	

7 rows × 30 columns

Por ultimo para cerrar, veamos que la concentración de autos ronda en valores de entre 10,000 a 20,000 USD y son autos con modelos entre 2006 a 2010. Que son los autos mas antiguos.

Por otro lado vemos que los autos más caros y que rondan entre 40,000 a 50,000 son los que tienen un modelo entre 2014 a 2016, además que hay menos en este set de datos.

Todo esto lo podemos ver sin la necesidad de explorar los registros completos de AUDI - Q7

Para completar un análisis estadístico descriptivo, necesitamos y tenemos que tener en cuenta otro tipo de medidas que son las de dispersión y eso es lo que se verá en la proxima clase.

Reto

Realizar un análisis similar con una marca y un auto de tu agrado

```
In [ ]: # Explorando las marcas de carros
         df_cars['manufacturer_name'].unique()
Out[]: array(['Subaru', 'LADA', 'Dodge', 'УАЗ', 'Kia', 'Opel', 'Москвич',
                 'Alfa Romeo', 'Acura', 'Dacia', 'Lexus', 'Mitsubishi', 'Lancia',
                'Citroen', 'Mini', 'Jaguar', 'Porsche', 'SsangYong', 'Daewoo',
                'Geely', 'BA3', 'Fiat', 'Ford', 'Renault', 'Seat', 'Rover',
                'Volkswagen', 'Lifan', 'Jeep', 'Cadillac', 'Audi', '3A3', 'Toyota',
                'FA3', 'Volvo', 'Chevrolet', 'Great Wall', 'Buick', 'Pontiac',
                'Lincoln', 'Hyundai', 'Nissan', 'Suzuki', 'BMW', 'Mazda',
                'Land Rover', 'Iveco', 'Skoda', 'Saab', 'Infiniti', 'Chery',
                'Honda', 'Mercedes-Benz', 'Peugeot', 'Chrysler'], dtype=object)
In [ ]: # Explorando la marca Suzuki para ver los modelos
         df_Suzuki=df_cars[df_cars['manufacturer_name']=='Suzuki']
         df_Suzuki['model_name'].unique()
Out[ ]: array(['Liana', 'Grand Vitara', 'SX4', 'Baleno', 'Wagon R', 'Swift',
                 'Splash', 'XL7', 'Vitara', 'SX4 S-Cross', 'Alto', 'Forenza',
                'Verona', 'Samurai', 'Ignis', 'Jimny', 'Aerio'], dtype=object)
In [ ]: # Escojo a XL7
         # Declararé nuevamente el dataframe
         df_Suzuki=df_cars[(df_cars['manufacturer_name']=='Suzuki')&(df_cars['model_name']=='XL7')]
         df_Suzuki
Out[]:
                manufacturer_name model_name transmission color odometer_value year_produced engine_fuel engine_has_gas er
         27294
                            Suzuki
                                            XL7
                                                   automatic
                                                               silver
                                                                             273588
                                                                                              2002
                                                                                                       gasoline
                                                                                                                         False
                                                   automatic brown
         27355
                            Suzuki
                                            XL7
                                                                              22000
                                                                                              2007
                                                                                                                          True
                                                                                                           gas
                                            XL7
                                                                                              2007
         27476
                            Suzuki
                                                   automatic
                                                               silver
                                                                             300000
                                                                                                       gasoline
                                                                                                                         False
         27493
                                                                             240000
                                            XL7
                                                                                              2004
                            Suzuki
                                                   mechanical
                                                               silver
                                                                                                         diesel
                                                                                                                         False
```

4 rows × 30 columns

Al parecer no fue buena opción porque no hay muchos. Intentaré buscar los que tengan más registros.

```
In [ ]: df_Suzuki=df_cars[df_cars['manufacturer_name']=='Suzuki']
df_Suzuki.groupby('model_name').count()
```

model_name								
Aerio	1	1	1	1	1	1	1	
Alto	11	11	11	11	11	11	11	1
Baleno	39	39	39	39	39	39	39	3
Forenza	2	2	2	2	2	2	2	
Grand Vitara	68	68	68	68	68	68	68	6
Ignis	5	5	5	5	5	5	5	
Jimny	2	2	2	2	2	2	2	
Liana	18	18	18	18	18	18	18	1
SX4	27	27	27	27	27	27	27	2
SX4 S-Cross	1	1	1	1	1	1	1	
Samurai	2	2	2	2	2	2	2	
Splash	10	10	10	10	10	10	10	1
Swift	22	22	22	22	22	22	22	2
Verona	3	3	3	3	3	3	3	
Vitara	7	7	7	7	7	7	7	
Wagon R	12	12	12	12	12	12	12	1
XL7	4	4	4	4	4	4	4	

17 rows × 29 columns

In []: # Escogeré Grand Vitara

Declararé nuevamente el dataframe df_Suzuki=df_cars[(df_cars['manufacturer_name']=='Suzuki')&(df_cars['model_name']=='Grand Vitara')]

df_Suzuki

Out[]:		manufacturer_name	model_name	transmission	color	odometer_value	year_produced	engine_fuel	engine_has_gas	en
	27267	Suzuki	Grand Vitara	automatic	black	169000	2010	gasoline	False	
	27270	Suzuki	Grand Vitara	automatic	blue	102000	2011	gasoline	False	
	27273	Suzuki	Grand Vitara	automatic	black	150000	2013	gasoline	False	
	27274	Suzuki	Grand Vitara	automatic	other	132000	2008	gasoline	False	
	27276	Suzuki	Grand Vitara	automatic	black	157000	2010	gasoline	False	
	•••									
	27485	Suzuki	Grand Vitara	mechanical	silver	260000	2006	diesel	False	
	27490	Suzuki	Grand Vitara	automatic	black	157000	2011	gasoline	False	
	27492	Suzuki	Grand Vitara	mechanical	blue	111000	2007	gasoline	False	
	27498	Suzuki	Grand Vitara	automatic	grey	138000	2007	gasoline	False	
	27499	Suzuki	Grand Vitara	automatic	black	177028	2007	gasoline	False	

68 rows × 30 columns

In []: sns.histplot(df_Suzuki,x='price_usd',hue='year_produced',multiple='stack')

Out[]: <Axes: xlabel='price_usd', ylabel='Count'>

Voy a personalizar mas la gráfica con Latex y otros parámetros

```
In [ ]: import numpy as np
        import matplotlib.pyplot as plt
        #Configurando Latex
        # Configuración de Matplotlib para usar LaTeX
        plt.rcParams.update({
            "text.usetex": True,
            "font.family": "serif",
            "font.serif": ["Computer Modern Roman"],
            "text.latex.preamble": r"\usepackage{amsmath}"
        })
In [ ]: #Definiendo estilos
        plt.style.use('ggplot')
        fig, ax = plt.subplots(figsize=(5,5))
        sns.histplot(df_Suzuki,x='price_usd',hue='year_produced',multiple='stack',ax=ax,palette=["#1f77b4", "#ff7f0e", "#2ca(
        sns.move\_legend(ax, 'upper left', bbox\_to\_anchor=(1, 0.9), title='Year produced\n')
        plt.title('Suzuki\nGran Vitara\n',fontsize=23)
        plt.xlabel('\nPrecio USD',fontsize=18)
        plt.ylabel('Conteo\n',fontsize=18)
        plt.show()
```

Suzuki Gran Vitara

Precio USD

```
In [ ]: df_group=df_Suzuki.groupby('year_produced').count()
    df_group.sort_values(by='manufacturer_name',ascending=False)
```

t[]:		manufacturer_name	model_name	transmission	color	odometer_value	engine_fuel	engine_has_gas	engine_typ
	year_produced								
	2007	19	19	19	19	19	19	19	1
	2006	11	11	11	11	11	11	11	1
	2008	7	7	7	7	7	7	7	
	2010	5	5	5	5	5	5	5	
	2011	5	5	5	5	5	5	5	
	2005	4	4	4	4	4	4	4	
	2001	3	3	3	3	3	3	3	

15 rows × 29 columns

Out[]:

```
In [ ]: #Definiendo estilos
        plt.style.use('seaborn-v0_8-whitegrid')
        fig, ax = plt.subplots(figsize=(5,5))
        sns.histplot(df_Suzuki,x='price_usd',hue='color',multiple='stack',ax=ax,palette=["black", "blue", "#7B68EE", "#C0C0C@
        sns.move_legend(ax,'upper left', bbox_to_anchor=(1, 0.8),title='Color\n',frameon=True)
        plt.title('Suzuki\nGran Vitara\n',fontsize=23)
        plt.xlabel('\nPrecio USD',fontsize=18)
        plt.ylabel('Conteo\n',fontsize=18)
        plt.show()
```

Suzuki Gran Vitara

Precio USD

```
df_color=df_Suzuki.groupby('color').count()
df_color.sort_values(by='manufacturer_name',ascending=False)
```

Out[]:		manufacturer_name	model_name	transmission	odometer_value	year_produced	engine_fuel	engine_has_gas	engine_ty
	color								
	black	19	19	19	19	19	19	19	
	silver	16	16	16	16	16	16	16	
	red	8	8	8	8	8	8	8	
	blue	7	7	7	7	7	7	7	
	other	7	7	7	7	7	7	7	
	brown	3	3	3	3	3	3	3	
	green	3	3	3	3	3	3	3	
	grey	3	3	3	3	3	3	3	
	white	2	2	2	2	2	2	2	

Recursos extras

9 rows × 29 columns

- Visualizing distributions of data
- Guía definitiva para dominar Pandas