CloudBurst, Crossbow & Contrail: Scaling Up Bioinformatics with Cloud Computing

Michael Schatz

March 15, 2010 CHI XGen Congress

The Evolution of DNA Sequencing

Year	Genome	Technology	Cost
2001	Venter et al.	Sanger (ABI)	\$300,000,000
2007	Levy et al.	Sanger (ABI)	\$10,000,000
2008	Wheeler et al.	Roche (454)	\$2,000,000
2008	Ley et al.	Illumina	\$1,000,000
2008	Bentley et al.	Illumina	\$250,000
2009	Pushkarev et al.	Helicos	\$48,000
2009	Drmanac et al.	Complete Genomics	\$4,400

(Pushkarev et al., 2009)

Critical Computational Challenges: Alignment and Assembly of Huge Datasets

Hadoop MapReduce

http://hadoop.apache.org

- MapReduce is the parallel distributed framework invented by Google for large data computations.
 - Data and computations are spread over thousands of computers, processing petabytes of data each day (Dean and Ghemawat, 2004)
 - Indexing the Internet, PageRank, Machine Learning, etc...
 - Hadoop is the leading open source implementation
- Benefits
 - Scalable, Efficient, Reliable
 - Easy to Program
 - Runs on commodity computers
- Challenges
 - Redesigning / Retooling applications
 - Not Condor, Not MPI
 - Everything in MapReduce

K-mer Counting

- Application developers focus on 2 (+1 internal) functions
 - Map: input → key:value pairs
 - Shuffle: Group together pairs with same key
 - Reduce: key, value-lists → output

Map, Shuffle & Reduce All Run in Parallel

ATGAACCTTA

```
(ATG:1) (ACC:1)
(TGA:1) (CCT:1)
(GAA:1) (CTT:1)
(AAC:1) (TTA:1)
```

(ACA:1) (ATG:1) (CAA:2) (GCA:1) (TGA:1) (TTA:3)

GAACAACTTA

```
(GAA:1) (AAC:1)
(AAC:1) (ACT:1)
(ACA:1) (CTT:1)
(CAA:1) (TTA:1)
```

ACT -> 1
AGG -> 1
CCT -> 1
GGC -> 1
TTT -> 1

(ACT:1)
(AGG:1)
(CCT:1)
(GGC:1)
(TTT:1)

TTTAGGCAAC

```
(TTT:1) (GGC:1)
(TTA:1) (GCA:1)
(TAG:1) (CAA:1)
(AGG:1) (AAC:1)
```

AAC -> 1,1,1,1 ACC -> 1 CTT -> 1,1 GAA -> 1,1 TAG -> 1

(AAC:4) (ACC:1) (CTT:1) (GAA:1) (TAG:1)

reduce

map

shuffle

Hadoop Architecture

- Hadoop Distributed File System (HDFS)
 - Data files partitioned into large chunks (64MB), replicated on multiple nodes
 - NameNode stores metadata information (block locations, directory structure)
- Master node (JobTracker) schedules and monitors work on slaves
 - Computation moves to the data, rack-aware scheduling
- Hadoop MapReduce system won the 2009 GreySort Challenge
 - Sorted 100 TB in 173 min (578 GB/min) using 3452 nodes and 4x3452 disks

Amazon Web Services

http://aws.amazon.com

- Elastic Compute Cloud (EC2)
 - On demand computing power
 - Support for Windows, Linux, & OpenSolaris
 - Starting at 8.5¢ / core / hour
- Simple Storage Service (S3)
 - Scalable data storage
 - 10¢ / GB upload fee, 15¢ / GB monthly fee
- Elastic MapReduce (EMR)
 - Point-and-click Hadoop Workflows
 - Computation runs on EC2

Hadoop on AWS

After machines spool up, ssh to master as if it was a local machine. Use S3 for persistent data storage, with very fast interconnect to EC2.

Short Read Mapping with MapReduce

- Given a reference and many subject reads, report one or more "good" end-to-end alignments per alignable read
 - Finds where in the genome the read most likely originated
- Mapping of a whole human requires ~1,000 CPU hours
 - Alignments are "embarassingly parallel" by read
 - Variant detection is parallel by chromosome region

CloudBurst

http://cloudburst-bio.sourceforge.net

- I. Map: Catalog K-mers
 - Emit k-mers in the genome and reads
- 2. Shuffle: Collect Seeds
 - Conceptually build a inverted index of k-mers
- 3. Reduce: End-to-end alignment
 - If read aligns end-to-end with \leq k errors, record the alignment

EC2 Evaluation

http://cloudburst-bio.sourceforge.net

Evaluate mapping 7M reads to human chromosome 22 with at most 4 mismatches on a local and 2 EC2 clusters.

- 24-core High-CPU Medium Instance EC2 cluster is faster than 24-core local cluster.
- 96-core cluster is 3.5x faster than the 24-core, and 100x faster than serial RMAP.

CloudBurst: Highly Sensitive Read Mapping with MapReduce.

Schatz MC (2009) Bioinformatics. 25:1363-1369

Crossbow

http://bowtie-bio.sourceforge.net/crossbow

- Align billions of reads and find SNPs
 - Reuse software components: Hadoop Streaming
- Map: Bowtie (Langmead et al., 2009)
 - Find best alignment for each read
 - Emit (chromosome region, alignment)
- Shuffle: Hadoop
 - Group and sort alignments by region
- Reduce: SOAPsnp (Li et al., 2009)
 - Scan alignments for divergent columns
 - Accounts for sequencing error, known SNPs

Performance in Amazon EC2

http://bowtie-bio.sourceforge.net/crossbow

	Asian Individual Genome		
Data Loading	3.3 B reads	106.5 GB	\$10.65
Data Transfer	Ih :15m	40 CPUs	\$3.40
Setup	0h : 15m	320 CPUs	\$13.94
Alignment	Ih:30m	320 CPUs	\$41.82
Variant Calling	Ih:00m	320 CPUs	\$27.88
End-to-end	4h:00m		\$97.69

Analyze an entire human genome for < \$100 in an afternoon.

Accuracy validated at > 99%

Searching for SNPs with Cloud Computing.

Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology.

Short Read Assembly

- Genome assembly as finding an Eulerian tour of the de Bruijn graph
 - Human genome: >3B nodes, >10B edges
- The new short read assemblers require tremendous computation
 - Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM
 - ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
 - SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM

Genome Assembly with MapReduce

Advantages

- Proven system for processing huge datasets
 - PageRank: Significance of > I trillion pages
 - CloudBurst: Highly Sensitive Alignment
 - Crossbow: Searching for SNPs in the Clouds
- Simple programming model
 - Reliability, redundancy, scalability built-in

Challenges

- How to efficiently implement assembly graph algorithms when adjacent nodes are stored on different machines?
 - Restricted programming model (not Shared Memory, not MPI)

K-mer Counting

- Application developers focus on 2 (+1 internal) functions
 - Map: input → key:value pairs
 - Shuffle: Group together pairs with same key
 - Reduce: key, value-lists → output

Map, Shuffle & Reduce All Run in Parallel

ACA:1

ATG: 1

CAA:2

GCA:1

TGA:1

TTA:3

ACT:1

AGG: 1

CCT:1

GGC:1

TTT:1

AAC:4

ACC:1

CTT:1

GAA:1

TAG:1

ATGAACCTTA

```
(ATG:1) (ACC:1)
(TGA:1) (CCT:1)
(GAA:1) (CTT:1)
(AAC:1) (TTA:1)
```

(GAA:1) (AAC:1)

(AAC:1) (ACT:1)

(ACA:1) (CTT:1)

(CAA:1) (TTA:1)

ACA -> 1

ATG -> 1

 $CAA \rightarrow 1,1$

GCA -> 1

TGA -> 1

TTA -> 1,1,1

ACT -> 1

AGG -> 1

CCT -> 1

GGC -> 1

TTT -> 1

ACC -> 1

CTT -> 1,1

TTTAGGCAAC

GAACAACTTA

reduce

 $AAC \rightarrow 1,1,1,1$

 $GAA \rightarrow 1,1$

TAG -> 1

map shuffle

Graph Construction

- Application developers focus on 2 (+1 internal) functions
 - Map: input → key:value pairs
 - Shuffle: Group together pairs with same key
 - Reduce: key, value-lists → output

Map, Shuffle & Reduce All Run in Parallel

ATGAACCTTA

```
(ATG:A) (ACC:T)
(TGA:A) (CCT:T)
(GAA:C) (CTT:A)
(AAC:C)
```

ACA -> A
ATG -> A
CAA -> C,C
GCA -> A
TGA -> A
TTA -> G

ACA:CAA
ATG:TGA
CAA:AAC
GCA:CAG
TGA:GAA
TTA:TAG

GAACAACTTA

ACT -> T
AGG -> C
CCT -> T
GGC -> A

ACT:CTT
AGG:GGC
CCT:CTT
GGC:GCA
TTT:TTA

TTTAGGCAAC

```
(TTT:A) (GGC:A)
(TTA:G) (GCA:A)
(TAG:G) (CAA:C)
(AGG:C)
```

AAC -> C,A,T ACC -> T CTT -> A,A GAA -> C,C TAG -> G

TTT -> A

AAC:ACC,ACA,ACT
ACC:CCT
CTT:TTA
GAA:AAC
TAG:AGG

map

shuffle

reduce

Graph Compression

- After construction, many edges are unambiguous
 - Merge together compressible nodes
 - Graph physically distributed over hundreds of computers

Distributed Graph Processing

MapReduce
Message Passing

Input:

Graph stored as node tuples

A: (N E:B W:42) B: (N E:I,J,K W:33)

Мар

- For all nodes, re-emit node tuple
- For all neighbors, emit value tuple

A: (N E:B W:42)

B: (V A 42)

B: (N E:I,J,K W:33)

•••

Shuffle

Collect tuples with same key

B: (N E:I,J,K W:33)

B: (V A 42)

Reduce

- Add together values, save updated node tuple

B: (N E:I,J,K W:75)

Iterative Path Compression

Iteratively identify and collapse the beginning of each chain

Map:

 Emit messages to the neighbors of the head of each chain

Reduce:

Update links, node label

Requires S MapReduce cycles, where S is the length of the longest simple path

• *B. anthracis*: L=5.2Mbp S=268,925

• *H. sapiens* chr 22: L=49.6Mbp S=33,832

• *H. sapiens* chr 1: L=247.2Mbp S=37,172

Fast Path Compression

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign H/T to each compressible node
- Compress (H)→T links

Performance

- Compress all chains in log(S) rounds (<20)
- If <1024 nodes to compress (from any number of chains), assign them all to the same reducer (save 10 rounds)

Randomized Speed-ups in Parallel Computation.

Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Node Types

Isolated nodes (10%)

Contamination

Tips (46%)

Clip short tips

Bubbles/Non-branch (9%)

Pop bubbles

Dead Ends (.2%)

Split forks

Half Branch (25%)

Unzip

Full Branch (10%)

Thread reads, cloud surfing

(Chaisson, 2009)

Contrail

Scalable Genome Assembly with MapReduce

- Genome: E. coli 4.6Mbp bacteria
- Input: 20M 36bp reads, 200bp insert
- Preprocessor: Quality-Aware Error Correction

Assembly of Large Genomes with Cloud Computing.

Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

Summary

- I. Hadoop is very well suited to analyzing very large next generation sequence datasets.
- Hadoop Streaming for easy scaling of existing software.
- 3. Cloud computing is an attractive platform to augment resources.
- Look for many cloud computing & MapReduce solutions this year.

Acknowledgements

Steven Salzberg

Ben Langmead

Mihai Pop

Dan Sommer

Jimmy Lin

David Kelley

Thank You!

http://www.cbcb.umd.edu/~mschatz

@mike_schatz