

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FII	LING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO
09/823,905	0	3/30/2001	Bruce Miller	034300-101	7577
7590 06/17/2005				EXAMINER	
Robert Krebs			DEAN, RAYMOND S		
Thelen Reid & Priest LLP P.O. Box 640640				ART UNIT	PAPER NUMBER
San Jose, CA 95164-0640				2684	, -
				DATE MAILED: 06/17/2004	

Please find below and/or attached an Office communication concerning this application or proceeding.

	TA 11 11 11 11 11 11 11 11 11 11 11 11 11	A 11 (1)					
	Application No.	Applicant(s)					
	09/823,905	MILLER ET AL.					
Office Action Summary	Examiner	Art Unit					
	Raymond S Dean	2684					
The MAILING DATE of this communication appears on the cover sheet with the correspondence address Period for Reply							
A SHORTENED STATUTORY PERIOD FOR REPLY THE MAILING DATE OF THIS COMMUNICATION. - Extensions of time may be available under the provisions of 37 CFR 1.13 after SIX (6) MONTHS from the mailing date of this communication. - If the period for reply specified above is less than thirty (30) days, a reply - If NO period for reply is specified above, the maximum statutory period v - Failure to reply within the set or extended period for reply will, by statute, Any reply received by the Office later than three months after the mailing earned patent term adjustment. See 37 CFR 1.704(b).	36(a). In no event, however, may a reply be timed within the statutory minimum of thirty (30) days will apply and will expire SIX (6) MONTHS from a cause the application to become ABANDONE	nely filed s will be considered timely. the mailing date of this communication. D (35 U.S.C. § 133).					
Status							
1)⊠ Responsive to communication(s) filed on 29 A	oril 2005.						
	action is non-final.						
3) Since this application is in condition for allowar	Since this application is in condition for allowance except for formal matters, prosecution as to the merits is						
closed in accordance with the practice under E	closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.						
Disposition of Claims							
4) Claim(s) 1 - 8,10 - 17, 19, 21 - 22, and 24 - 25 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) is/are allowed. 6) Claim(s) 1 - 8,10 - 17, 19, 21 - 22, and 24 - 25 is/are rejected. 7) Claim(s) is/are objected to. 8) Claim(s) are subject to restriction and/or election requirement.							
Application Papers							
9) The specification is objected to by the Examine 10) The drawing(s) filed on 23 March 2004 is/are: a Applicant may not request that any objection to the Replacement drawing sheet(s) including the correct 11) The oath or declaration is objected to by the Ex	a)⊠ accepted or b)⊡ objected to drawing(s) be held in abeyance. See ion is required if the drawing(s) is obj	e 37 CFR 1.85(a). ected to. See 37 CFR 1.121(d).					
Priority under 35 U.S.C. § 119							
 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: 1. Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. 							
Attachment(s)							
1) Notice of References Cited (PTO-892)	4) Interview Summary						
 2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) Paper No(s)/Mail Date 	Paper No(s)/Mail Da 5) Notice of Informal P 6) Other:	ate atent Application (PTO-152)					

Art Unit: 2684

DETAILED ACTION

Response to Arguments

1. Applicant's arguments filed April 29, 2005 have been fully considered but they are not persuasive.

Hanawa teaches a connector adapted to transmit RF signals through a connection line capable of carrying a DC offset (See Figures 3, 7, Column 5 lines 63 – 67, Column 6 lines 1 – 7, Column 8 lines 60 – 67, Column 9 lines 1 – 3, the connector (57, 97) will enable a connection line to be established between the portable phone and the booster, when the booster is connected/disconnected there will be a low voltage/high voltage, which is a DC offset, on said connection line).

Claim Rejections - 35 USC § 102

2. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

- (b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.
- 3. Claims 1 3, 5, 7 8, 10, and 12 are rejected under 35 U.S.C. 102(b) as being anticipated by Hanawa et al. (5,890,077).

Regarding Claim 1, Hanawa teaches a system comprising: a radio modem unit (Column 4 lines 16 – 29, the base band data modulates an RF carrier such that said base band data can be transmitted to the base station, the RF signal received from said

Page 3

Art Unit: 2684

base station is demodulated such that the base band data can be received thus the portable phone is acting as the radio modem); and an RF signal booster unit (Figure 7, Column 8 lines 30 – 32), wherein the booster unit is connectable to the radio modem unit with a connector adapted to transmit RF signals through a connection line capable of carrying a DC offset (Figures 3, 7, Column 5 lines 63 – 67, Column 6 lines 1 – 7, Column 8 lines 60 – 67, Column 9 lines 1 – 3, the connector (57, 97) will enable a connection line to be established between the portable phone and the booster, when the booster is connected/disconnected there will be a low voltage/high voltage, which is a DC offset, on said connection line); and auto-detect logic for detecting the DC offset in order to determine whether the booster unit is connected to the radio modem (Figure 7, Column 8 lines 60 – 67, Column 9 lines 1 – 3, the auto-detect circuitry is the connection detector (96), when the booster is connected there is a short which means that there will be a low voltage level, when said booster is disconnected there will be a high voltage level, a DC offset is a voltage level).

Regarding Claim 2, Hanawa teaches all of the claimed limitations recited in Claim Hanawa further teaches wherein the connector connects to a connection line between the radio modem unit and the booster unit (Figure 7, Column 8 line 39, since the connector connects the portable phone to the booster there is an inherent connection line).

Regarding Claim 3, Hanawa teaches all of the claimed limitations recited in Claim 1. Hanawa further teaches wherein the auto-detect logic is located within the radio modem unit (Figure 7, Column 8 lines 38 – 39).

Art Unit: 2684

Regarding Claim 5, Hanawa teaches all of the claimed limitations recited in Claim 1. Hanawa further teaches wherein the booster unit includes an element to reduce the DC power level to low if the radio modem unit is connected to the booster unit (Column 8 lines 60 - 67, Column 9 lines 1 - 3).

Regarding Claim 7, Hanawa teaches all of the claimed limitations recited in Claim 1. Hanawa further teaches wherein the voltage at the connector of the radio modem unit is high if no booster unit is connected but is low if a booster unit is connected (Column 8 lines 60 – 67, Column 9 lines 1 – 3, when the booster is connected there is a short which means that there will be a low voltage level, when said booster is disconnected there will be a high voltage level, a DC offset is a voltage level).

Regarding Claim 8, Hanawa teaches a radio modem unit comprising a radio (Column 4 lines 16 – 29, since the portable phone transmits/receives RF signals there is an inherent radio); an RF signal connector operably connected to the radio (Figure 3), the connector being connectable to a RF antenna or a booster unit and including a connection line adapted to carry an RF signal and a DC offset (Figures 3, 7, Column 5 lines 63 – 67, Column 6 lines 1 – 7, Column 8 lines 60 – 67, Column 9 lines 1 – 3, the connector (57, 97) will enable a connection line to be established between the portable phone and the booster, when the booster is connected/disconnected there will be a low voltage/high voltage, which is a DC offset, on said connection line); and a detector unit adapted to detect the DC offset to determine whether the connector is connected to a booster unit (Figure 7, Column 8 lines 60 – 67, Column 9 lines 1 – 3, when the booster is connected there is a short which means that there will be a low voltage level, when

said booster is disconnected there will be a high voltage level, a DC offset is a voltage level).

Regarding Claim 10, Hanawa teaches all of the claimed limitations recited in Claim 8. Hanawa further teaches wherein the DC offset of the connector is high if no booster unit is connected but is low if a booster unit is connected (Column 8 lines 60 – 67, Column 9 lines 1 – 3, when the booster is connected there is a short which means that there will be a low voltage level, when said booster is disconnected there will be a high voltage level, a DC offset is a voltage level).

Regarding Claim 12, Hanawa teaches all of the claimed limitations recited in Claim 8. Hanawa further teaches wherein the radio modem unit is connected to a booster unit, the booster unit including a circuit to pull the DC offset at the connector to low (Column 8 lines 60 - 67, Column 9 lines 1 - 3).

Claim Rejections - 35 USC § 103

- 4. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 5. Claims 4, 6, and 11 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hanawa et al. (5,890,077) in view of Myrskog et al. (5,457,814).

Art Unit: 2684

Regarding Claims 4, 11, Hanawa teaches all of the claimed limitations recited in Claims 1, 8. Hanawa further teaches allowing the DC offset to be placed onto the connector (Column 8 lines 60 - 67, Column 9 lines 1 - 3).

Hanawa does not teach an inductor and not allowing radio frequency energy to pass up into the auto-detect circuit.

Myrskog teaches an inductor and not allowing radio frequency energy passing up a line (Column 7 lines 7-8).

Hanawa and Myrskog both teach a booster for a mobile terminal thus it would have been obvious to one of ordinary skill in the art at the time the invention was made to use the inductor taught above in Myrskog in the booster system of Hanawa for the purpose of preventing unwanted RF signals from propagating along a transmission line.

Regarding Claim 6, Hanawa teaches all of the claimed limitations recited in Claim 5. Hanawa does not teach an inductor.

Myrskog teaches an inductor (Column 7 lines 7 - 8).

Hanawa and Myrskog both teach a booster for a mobile terminal thus it would have been obvious to one of ordinary skill in the art at the time the invention was made to use the inductor taught above in Myrskog in the booster system of Hanawa for the purpose of preventing unwanted RF signals from propagating along a transmission line.

6. Claims 13 – 17 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hanawa et al. (5,890,077) in view of Barber (US 6,230,031 B1).

Art Unit: 2684

Regarding Claim 13, Hanawa teaches a system comprising: a radio modem unit (Column 4 lines 16 – 29, the base band data modulates an RF carrier such that said base band data can be transmitted to the base station, the RF signal received from said base station is demodulated such that the base band data can be received thus the portable phone is acting as the radio modem); and an RF signal booster unit, wherein the booster unit is connectable to the radio modem unit with a single connector adapted to transmit RF signals and a DC offset indicative of the presence of the booster unit (Figures 3, 7, Column 5 lines 63 – 67, Column 6 lines 1 – 7, Column 8 lines 60 – 67, Column 9 lines 1 – 3, the connector (57, 97) will enable a connection line to be established between the portable phone and the booster, when the booster is connected/disconnected there will be a low voltage/high voltage, which is a DC offset, on said connection line).

Hanawa does not teach a coaxial connector and wherein base band signals are transmitted to the RF signal booster unit by way of the single coaxial connector by the radio modem and are used by the booster unit to prepare for transmission.

Barber teaches a coaxial connector adapted to transmit RF signals (Column 5 lines 7 – 10, since there is an RF coaxial cable there is an inherent coaxial connector for the connection of said RF coaxial cable) and wherein base band signals are transmitted to the RF signal booster by the radio modem and are used by the booster unit to prepare for transmission (Figure 4, Figure 5, Figure 6, Column 5 lines 15 – 18, Column 5 lines 30 – 46, Column 6 lines 5 – 55, the CPU in the wireless radio transceiver and the CPU in the booster module communicate via digital control messages, the CPUs

communicate via signals that are in the digital information range which is the range where the digital information signal has not been mixed with a high frequency carrier such that it modulates said carrier, this is the base band range).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to use the connector and control signals taught above in Barber in the booster system of Hanawa for the purposes of providing an alternative means for transmission of signals from the portable terminal to the booster and dynamically adjusting the power of said booster thereby enabling optimal transmission power as taught by Barber.

Regarding Claim 14, Hanawa in view of Barber teaches all of the claimed limitations recited in Claim 13. Hanawa further teaches wherein a connector line is connected between the connector at the RF signal booster unit to a connector at the radio modem unit (Figures 3, 7).

Regarding Claim 15, Hanawa in view of Barber teaches all of the claimed limitations recited in Claim 13. Barber further teaches wherein the base band signals are power control signals (Figure 4, Figure 5, Figure 6, Column 5 lines 15 – 18, Column 5 lines 30 – 46, Column 6 lines 5 – 55, the CPU in the wireless radio transceiver and the CPU in the booster module communicate via digital control messages, the CPUs communicate via signals that are in the digital information range which is the range where the digital information signal has not been mixed with a high frequency carrier such that it modulates said carrier, this is the base band range).

Art Unit: 2684

Regarding Claim 16, Hanawa in view of Barber teaches all of the claimed limitations recited in Claim 13. Barber further teaches wherein the power control signals are used to control the power and channel (Column 5 lines 30 – 46, the channel can be the 800 MHz band or the 1.9 GHz band).

Regarding Claim 17, Hanawa in view of Barber teaches all of the claimed limitations recited in Claim 13. Barber further teaches wherein the RF signal booster unit that includes a switch in the transmit line that prevents RF energy from being provided to a power amplifier in the booster unit until a valid power controller message is received from the wireless radio transceiver (Figure 4, Figure 5, Figure 6, Figure 9, Figure 10, Column 5 lines 15 – 18, Column 5 lines 30 – 46, Column 6 lines 5 – 55, Column 10 lines 17 – 24, the diodes/switches are reversed biased such that the incoming signal is severely attenuated thereby causing the signal transmission portion of the amplifier circuit to shut down, the CPU in the wireless radio transceiver and the CPU in the booster module communicate via digital control messages, the CPU in the booster module will reverse bias the diodes such that a particular amplification circuit will shut down based on the mode of the wireless radio transceiver, said radio transceiver mode control message is transmitted by the wireless radio transceiver CPU to the booster module CPU such that the booster module is configured to produce the correct power level),

7. Claims 19 and 21 are rejected under 35 U.S.C. 103(a) as being unpatentable over Barber (US 6,230,031 B1) in view of Hanawa et al. (5,890,077) and in further view of Lind (4,371,749).

Regarding Claim 19, Barber teaches an RF signal booster unit adapted to amplify RF signals from a radio modem, (Abstract, Figure 1, Figure 4, Figure 5, Column 4 lines 66 – 67, Column 5 lines 1 – 10, the radio transceiver modulates and demodulates the signals that are transmitted and received thus said radio transceiver is acting as the radio modem), the booster unit including a switch that significantly attenuates the RF energy from the radio modem that is provided to a power amplifier in the booster unit by way of a connection line (Figure 4, Figure 9, Figure 10, connection line (74), Column 10 lines 17 - 24, the diodes/switches are reversed biased such that the incoming signal is severely attenuated thereby causing the signal transmission portion of the amplifier circuit to shut down), until a valid power control message is received from the radio modem (Figure 4, Figure 5, Figure 6, Column 5 lines 15 – 18, Column 5 lines 30 – 46, Column 6 lines 5 – 55, the CPU in the wireless radio transceiver and the CPU in the booster module communicate via digital control messages, the CPU in the booster module will reverse bias the diodes such that a particular amplification circuit will shut down based on the mode of the wireless radio transceiver, said radio transceiver mode control message is transmitted by the wireless radio transceiver CPU to the booster module CPU such that the booster module is configured to produce the correct power level), the switch comprising a pair of diodes disposed in the RF signal path (Figure 10), such that when the switch is in the ON

position RF signals pass through the diodes from the radio modem to the booster unit, and when the switch is in an OFF position, RF signals are precluded by the diodes from effectively passing from the radio modem to the booster unit (Figure 9, Figure 10, Column 10 lines 17 – 24, when the diodes/switches are reversed biased that is the OFF position, when said diodes/switches are forward biased that is the ON position, the booster comprises amplifier circuits that are shut down when the diodes/switches are reversed biased thus preventing the RF signals from passing to said booster).

Barber does not teach a connection line adapted to further carry a DC offset indicative of the presence of the booster.

Hanawa teaches a connection line adapted to further carry a DC offset indicative of the presence of the booster (Figures 3, 7, Column 5 lines 63 – 67, Column 6 lines 1 – 7, Column 8 lines 60 – 67, Column 9 lines 1 – 3, the connector (57, 97) will enable a connection line to be established between the portable phone and the booster, when the booster is connected/disconnected there will be a low voltage/high voltage, which is a DC offset, on said connection line).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to use the connection line taught by Hanawa in the system of Barber as an alternative means for transmitting signals from the mobile phone to the booster and as an alternative means of determining whether the booster in connected.

Barber in view of Hanawa does not teach a pair of diodes arranged back to back.

Lind teaches a pair of diodes arranged back to back (Figure 3, Column 4 lines 8 – 16).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to use the back-to-back configuration taught above in Lind in the amplifier of Barber in view of Hanawa as an alternative means to limiting the amplitude of the signals and thus preventing said signals from passing to said amplifier.

Regarding Claim 21, Barber in view of Hanawa and in further view of Lind teaches all of the claimed limitations recited in Claim 19. Barber further teaches wherein when the switch is in the ON position, current flows through the diodes and the RF impedance of the switch is reduced, but when the switch is in the OFF position, current is not flowing through the diodes, and the RF impedance of the switch is high (Column 10 lines 17 – 24, when the diodes/switches are reversed biased said switches will be in the OFF position, which means that the impedance will be high, when said diodes/switches are forward biased said switches will be in the ON position, which means that the impedance will be low thus this is an inherent characteristic).

8. Claims 22 and 24 – 25 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hanawa et al. (5,890,077) in view of Barber (US 6,230,031 B1).

Regarding Claim 22, Hanawa teaches a method of using a radio modem unit and an RF signal booster unit, the booster unit and radio modem unit connectable using a connector establishing a connection line (Figures 3, 7, the connector (57, 97) will enable a connection line to be established between the portable phone and the booster), the method comprising: in the radio modem unit, detecting a DC offset on the connection line to determine whether the booster unit is connected (Column 8 lines 60 – 67,

Column 9 lines 1-3, when the booster is connected there is a short which means that there will be a low voltage level, when said booster is disconnected there will be a high voltage level, a DC offset is a voltage level); transmitting base band signals on the connection line (Figure 3, the base band signals are the CPU signals).

Hanawa does not teach transmitting base band signals on the connection line from the radio modem to the booster unit to allow the booster unit to prepare for transmission; and thereafter, transmitting an RF signal on the connector from the radio modem to the booster unit.

Barber teaches transmitting base band signals from the radio modem to the booster unit to allow the booster unit to prepare for transmission (Figure 4, Figure 5, Figure 6, Column 5 lines 15 - 18, Column 5 lines 30 - 46, Column 6 lines 5 - 55, the CPU in the wireless radio transceiver and the CPU in the booster module communicate via digital control messages, the CPUs communicate via signals that are in the digital information range which is the range where the digital information signal has not been mixed with a high frequency carrier such that it modulates said carrier, this is the base band range); and thereafter, transmitting an RF signal on a connector from the radio modem to the booster unit (Column 5 lines 7 - 10).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to use the base band signals taught above in Barber in the booster system of Hanawa for the purpose of dynamically adjusting the power of said booster thereby enabling optimal transmission power as taught by Barber.

Art Unit: 2684

Regarding Claim 24, Hanawa in view of Barber teaches all of the claimed limitations recited in Claim 22. Barber further teaches wherein the base band signal is the power control signal (Figure 4, Figure 5, Figure 6, Column 5 lines 15 – 18, Column 5 lines 30 – 46, Column 6 lines 5 – 55, the CPU in the wireless radio transceiver and the CPU in the booster module communicate via digital control messages, the CPUs communicate via signals that are in the digital information range which is the range where the digital information signal has not been mixed with a high frequency carrier such that it modulates said carrier, this is the base band range).

Regarding Claim 25, Hanawa in view of Barber teaches all of the claimed limitations recited in Claim 24. Barber further teaches wherein the power control signal includes a channel control and power level indications (Figure 4, Figure 5, Figure 6, Column 5 lines 15 – 18, Column 5 lines 30 – 46, Column 6 lines 5 – 55, the channel can be the 800 MHz band or the 1.9 GHz band).

Conclusion

9. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Raymond S Dean whose telephone number is 571-272-7877. The examiner can normally be reached on 7:00-3:30.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Nay A Maung can be reached on 571-272-7882. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Business Center (EBC) at 866-217-9197 (toll-free).

Art Unit: 2684

Page 15

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic

Raymond S. Dean May 31, 2005

NAY MAUNG
SUPERVISORY PATENT EXAMINED