Name: Solutions

_____ / 40

Assessment 2 Instructions:

- The AS-2 is 10 problems and is worth 40 points.
- You will have 1 hour to complete AS-2.
- The AS-2 is closed book and closed notes.
- Calculators are allowed only for the problem # 10 on the AS-2.
- Show all your work for full credit and box your final answer.

1. [4 points]

Find the equation of the straight line that passes through the point (2,5) and is **perpendicular** to the line 2(y+x)-3(x-y)=-9. Graph the line 2(y+x)-3(x-y)=-9 and the obtained perpendicular line below

- **2.** [4 points] Given the two points (5, -4) and (4, 3):
 - **a**. find the length of the line segment (distance) between the points

b. find the midpoint of the segment

3. [4 points] Solve the linear inequality $|y-3x| \le 2$ by graphing its solution set

4. [4 points] Find the standard form for the equation of the circle

$$x^2 + y^2 - 8x + 12y + 43 = 0$$

Precisely state the coordinates of the center point and the radius. Graph the obtained circle.

5. [4 points] For each of the following relations, determine the domain and range:

a.
$$R = \{(3,3), (-4,3), (3,8), (3,-2)\}$$

b.
$$y = 7\pi^2$$
 - horizontal line

6. [4 points] Determine the implied domain of the following function

$$f(x) = \frac{5}{\sqrt[3]{3 - x^2}}$$

$$3-x^2 \neq 0$$

$$x^2 \neq 3$$

- Dom(f) = 12 \ 9 ± 13 }
- 7. [4 points] Graph the following quadratic function and state the coordinates of its vertex.

$$y = (x+3)^2 - 2$$

$$y=0$$
: $(x+3)^2-2=0$
 $(x+3)^2=2$

$$(x+3)^2 = 2$$

8. [4 points] Graph the following linear function $f(x) = 3\left(1 - \frac{1}{3}x\right) + x$. **State** precisely its **slope** and *y*-intercept point.

f(x)=3-x+x=3

m=0
y-intercept: None

9. [4 points] Among all pairs of numbers with a difference of 6, find the pair whose product is minimum. Write your answer in the form: $x = \dots, y = \dots, x \cdot y = min \ product$. (*Hint:* you need to create a quadratic function, graph it with indicating its vertex coordinates)

x-y=6 = 3 y=x-6 $x \cdot y - 2 min$

 $x(x-6) = x^2 - 6x - 3 min$

f(x) = x(x-6)

0 = x(x-6) = 3 X= 0 or X=6

x=3: $f(3)=3\cdot(-3)=-9$

z=3 Thus

y=x-6 y=-3 10. [4 points] The coordinates of the four graphed points are

$$\{(1,5),(2,1),(3,5),(4,4)\}.$$

We also know the following information:

•
$$\bar{x} = 2.5, \bar{y} = 3.75$$

•
$$\sum (\Delta x)^2 = 5$$
, $\sum \Delta x \Delta y = 0.5$, $\sum (\Delta y)^2 = 10.75$

a. Using the following formulas

$$m = \frac{\sum \Delta x \Delta y}{\sum (\Delta x)^2}$$
 and $b = \bar{y} - m\bar{x}$

find the equation of the line y = mx + b of the best fit. Sketch the obtained straight line on the coordinate plane given above.

$$m = \frac{0.5}{5} = 0.1 \quad \beta = 3.75 - 0.1 \cdot 2.5$$

$$\beta = 3.5$$
Thus
$$y = 0.1x + 3.5$$

b. Using the following formula

$$r = \frac{\sum \Delta x \Delta y}{\sqrt{\sum (\Delta x)^2} \sqrt{\sum (\Delta y)^2}}$$

calculate the Pearson correlation coefficient r. Make a conclusion about the linear dependence of the variable y on the variable x.

$$r = \frac{0.5}{\sqrt{5} \cdot \sqrt{10.75}} \approx \frac{0.5}{7.33} \approx 0.07$$

We can conclude that there is almost the linear dependence of x on y.