

Объектно-ориентированное программирование

Лекция 5. Введение в технологию программирования

UML диаграмма классов

Название класса
Атрибуты
Методы

+	Публичный (Public)
-	Приватный (Private)
#	Защищённый (Protected)
/	Производный (Derived) (может быть совмещён с другими)
~	Пакет (Package)

UML диаграмма классов (пример)

Принципы SOLID

- Single Responsibility (Принцип единственной ответственности)
- Open-Closed (Принцип открытости-закрытости)
- Liskov Substitution (Принцип подстановки Барбары Лисков)
- Interface Segregation (Принцип разделения интерфейсов)
- **D**ependency Inversion (Принцип инверсии зависимостей)

Принцип единственной ответственности

Модуль должен иметь одну и только одну причину для изменения

Принцип открытости/закрытости

Принцип подстановки Барбары Лисков

Подклассы должны дополнять, а не замещать поведение базового класса.

Принцип разделения интерфейсов

Клиенты не должны зависеть от методов, которые они не используют.

Принцип инверсии зависимостей

Классы верхних уровней не должны зависеть от классов нижних уровней. Оба должны зависеть от абстракций. Абстракции не должны зависеть от деталей. Детали должны зависеть от абстракций.

Вместо заключения...

