summary

简单介绍一下

论文简单过了一遍, 主要的时间都花在配置环境上了, 过程中踩的坑以及解决方案总结如下:

GitHub上的代码作为算法的演示以 i pynb 文件的形式给出,跑起来还是相对容易的,并且在repo的 README.md 文件中作者很贴心地给出了三种运行方式:

• anaconda (conda)

docker

```
Docker image

Alternatively, you can use a Docker image that exposes a Jupyter Notebook with all required dependencies. To build this image ensure you have both docker and nvidia-docker installed, then run nvidia-docker build -t deep-image-prior .

After the build you can start the container as

nvidia-docker run --rm -it --ipc=host -p 8888:8888 deep-image-prior

you will be provided an URL through which you can connect to the Jupyter notebook.
```

• google colab

Google Colab

To run it using Google Colab, click here and select the notebook to run. Remember to uncomment the first cell to clone the repository into colab's environment.

conda和colab的方式我都试了一下,具体的一个一个说。

anaconda

一些anaconda的介绍和使用也可以提两句,最重要的操作莫过于换源(我一般用<u>tuna镜像</u>)和环境管理,查看文档点这里,也可以点这里看别人的总结

实际上用的是conda搭建环境,当然用pip也可以,区别在于conda会自动解决依赖,pip要手动解决 (我记得pip能解决一些)

说回正题,Python(解释器)、numpy、jupyter之流安装起来都非常容易,搭建环境的核心在于安装pytorch,官网上给了详细的文档,当然为了下载速度还需要国内镜像

第一个问题

第一个问题是尽管pytorch有 cpu-only 和 gpu 的版本,但是要跑起来这里的代码只能用 gpu 版本,作者使用的环境是 pytorch0.4 + cuda9.0 ,但是cuda9.0和我的显卡不兼容,所以最后我选了最新的pytorch1.7(stable)+cuda11.0+cuDNN11.2 (Python版本还是3.6),幸运的是代码也能运行

在安装cuda的时候一定要注意版本,首先要满足显卡兼容性(按照经验是不能用早于显卡出厂时间的版本),然后要满足框架(比如pytorch最高支持cuda11.0,而cuda的最新版本号是11.2),这种对应关系在pytorch等的官网上可以查到,当然还可以用百度搜索,当然还可以看镜像站上具体包的包名

用 nvidia-smi 检查显卡驱动 (这里显示的cuda版本是最新版,不用管它):

用 nvcc -v 检查cuda版本:

检查cuda能否与显卡建立连接的最严谨的方法是运行 deviceQuery.exe 和``, 这也是nvidia官网guide中的方法

还有通过pytorch检查的,见下。

第二个问题

解决cuda和cuDNN的问题之后就可以用conda配置环境了,conda有导出环境的功能,但实质上是一个"配置单",该下载的包还是要重新下载,而且由于上述问题,pytorch和cuda不会匹配,所以无视作者给的 environment.yml ,手动配置conda,首先创建环境:

conda会自动解决包依赖的问题, 打印所有需要下载的包。

第二个问题就是conda下载速度慢的问题,当下载量很大时,很有可能出现无法下载的情况:

conda没有断点续传功能,这时候需要手动删除已下载的**不完整的**包(必要时重启),然后重试下载:


```
Moderate products and a second second
```

下载速度慢毫无疑问是网络的问题,这时候当然首先考虑换源,然而操作的过程中发现即使换了国内镜像,下载速度还是很慢,大文件几乎成功不了,换源之后再挂上VPN效果不错。

当然这并不能完全解决问题并不能解决问题,要完全解决这个问题,可以采取如下方案:

- 修改conda用于下载文件的函数的所在文件
 - 用 python -c "from conda.gateways.connection import download;print(download.__file__)"找到目标文件
 - 找到 download() 函数,该函数的开始处加上如下代码:

```
from ...base.constants import CONDA_TEMP_EXTENSION
tmp_file_path = target_full_path + CONDA_TEMP_EXTENSION
if exists(tmp_file_path):
    print("\n[Download patch] file exists: %s", tmp_file_path)
    checksum_ok = True
    if sha256 or md5:
        builder = hashlib.new("sha256" if sha256 else "md5")
        checksum = sha256 if sha256 else md5
       with open(tmp_file_path, 'rb') as f:
            for chunk in iter(lambda: f.read(4096), b''):
                builder.update(chunk)
        actual_checksum = builder.hexdigest()
        if actual_checksum != checksum:
            print("\n[Download patch] cached file checksum mismatch: %s (%s
!= %s)",
                checksum_type, actual_checksum, checksum)
        checksum_ok = actual_checksum == checksum
    if checksum_ok:
        from ..disk.update import backoff_rename
        backoff_rename(tmp_file_path, target_full_path, True)
        if progress_update_callback:
            progress_update_callback(1.0)
```

```
print("\n[Download patch] using cached file instead of download",
target_full_path)
return
```

- 从镜像站手动下载需要的包,放到conda的pkgs目录下
- (重启电脑)
- 重复下载过程,应该出现 [Download patch] using cached file instead of download 等字样,下载进度条直接跑到底,稍等片刻即可

最后检查安装情况:

```
Control Review (18 A. A. M.S. 19)

Of 200 Reveals Capacities Significant
(Control Capacities S
```

这种方法本质上是离线安装,只适用于下载的包很少的情况(一般来说可以在线下载体积较小的包,像pytorch这样1GB多的包应该是少数情况)。

docker

暂时没用过,据说可以满足多下同切换和直接调GPU资源的需求。

Google Colab

要搭梯子。

这大概是跑这篇论文的代码的最简单的方式,作者已经把环境都配置好了(查了一下git log,后期不少提交都是关于colab的,可能作者也觉得环境不好整[doge]),注意看注释(要先把相关的仓库clone到colab环境中)。

据说colab的IO瓶颈是个大问题,当然网速也是,我想如果后期需要类似的平台训练可以用百度paddle之类国内平台。

还有一些问题

• 论文不能完全看懂

这是知识储备的问题,数字图像处理、机器学习、深度学习、线性代数概率论等基础该学还得学

• 科学上网的问题

科学上网快成刚需了,ExpressVPN,NordVPN这些服务商提供的VPN服务支持多人共用一个账号,我们三个人分摊一下差不多每个月每人二十到三十

我好奇这笔支出能报销么[doge]

• 环境切换和算力的问题

需要在不同的环境(操作系统)下切换,包括Windows,Ubuntu16,Ubuntu18等,虚拟机和WSL(WSL1和WSL2中的一个甚至用不了GPU)的方案根据测试GPU性能的折损挺厉害的,双系统一次只能跑一个,也不是很好的方案,docker据说可以直接调用GPU,这个有待研究,比较靠谱的方法可能是用colab这样的平台,或者租服务器自己搭平台(费用挺高,并且我们没有相关的经验)