Relatório 2 O Pêndulo Físico

Autores:

Arthur Augusto Cândido Luércio (251818) Marcos Ferreira Semolini (204339) Pedro Henrique Segnini Ortolan (258610) Renato Moraes Ferreira Sene (238248) Gustavo Guimarães de Carvalho (258492)

Setembro, 2023

Resumo

Introdução

Objetivo

Modelo

Tomando o ponto de centro de massa como referência, podemos escrever uma lei equivalente a segunda lei de Newton, só que para Torques. Assim, podemos escrever que:

$$\sum \tau_i = I \cdot \alpha \tag{1}$$

De onde, para o nosso sistema, segue que:

$$I \cdot \frac{d^2\theta}{dt^2} = -mg \cdot sen(\theta) \tag{2}$$

Realizando a suposição de que a oscilação se dá para pequenos ângulos ($\theta \leq 10^{o}$), podemos aproximar $sen(\theta)$ para θ em radianos. O que resulta na equação (3):

$$I \cdot \frac{d^2\theta}{dt^2} = -mgD \cdot \theta \tag{3}$$

(E.D.O. de 2° ordem, Linear e Homogêna)

Supondo que a solução é do tipo $\theta=e^{\lambda t}$, desenvolvendo a equação, encontrando as raizes complexas. Obtemos que:

$$\theta(t) = \theta_0 \cdot \cos(\phi_0 + \omega \cdot t)$$
(Onde $\omega = \sqrt{\frac{\text{mgD}}{1}}$)

Por fim, como $T = \frac{2\pi}{\omega}$. Obtemos que:

$$T = 2\pi \sqrt{\frac{I}{\text{mgD}}} \tag{5}$$

Note que a equação (5) é uma generalização para qualquer tipo de pêndulo, entretanto trabalharemos com duas hipóteses:

$$T = \begin{cases} 2\pi \sqrt{\frac{D + \frac{K^2}{D}}{g}}, & \text{Pêndulo Físico (6)} \\ \\ 2\pi \sqrt{\frac{D}{g}}, & \text{Pêndulo Simples (7)} \end{cases}$$

Suposições

Procedimento experimental

Resultado

Discussão:

Conclusão:

Referências:

Apêndice A: Dados experimentais e incertezas