Complejidad algorítmica

Giovanni Ramírez García, PhD

Escuela de Ciencias Físicas y Matemáticas Universidad de San Carlos de Guatemala

Guatemala, 29 de enero de 2021

Introducción

Complejidad computacional

Clases de Complejidad

Algoritmos de ordenamiento Algoritmo de burbuja Merge Sort

Introducción

Complejidad computacional

Clases de Complejidad

Algoritmos de ordenamiento Algoritmo de burbuja Merge Sort

¿Cómo elijo un algoritmo?

- Lo más importante, en el momento del diseño e implementación, es que se debe resolver el problema.
- Algunas veces el rendimiento es un aspecto importante de la exactitud.
- Escribir un programa eficiente no es fácil [Guttag, 2013]

¿Cómo elijo un algoritmo?

- Lo más importante, en el momento del diseño e implementación, es que se debe resolver el problema.
- Algunas veces el rendimiento es un aspecto importante de la exactitud.
- Escribir un programa eficiente no es fácil [Guttag, 2013]

- La solución más sencilla no siempre es la más eficiente.
- Los algoritmos computacionalmente eficientes usualmente usan trucos que los hacen difíciles de entender.
- A esto se le conoce como incremento de la complejidad conceptual para reducir la complejidad computacional.

Introducción

Complejidad computacional

Clases de Complejidad

Algoritmos de ordenamiento Algoritmo de burbuja Merge Sort

¿en cuánto tiempo se ejecuta este código?

```
DO K=1,N

DO J=1,N

DO I=1,N

C(I,J)=C(I,J)+A(I,K)*B(K,J)

END DO

END DO

END DO
```

- ¿en cuánto tiempo se ejecuta este código?
- ¿depende de la computadora que se usa?

```
DO K=1,N

DO J=1,N

DO I=1,N

C(I,J)=C(I,J)+A(I,K)*B(K,J)

END DO

END DO

END DO
```


- ¿en cuánto tiempo se ejecuta este código?
- ¿depende de la computadora que se usa?
- ¿depende del sistema operativo?

```
DO K=1,N

DO J=1,N

DO I=1,N

C(I,J)=C(I,J)+A(I,K)*B(K,J)

END DO

END DO

END DO
```

" underador"

Vamo a Usar trempo

Comp Leyidad Computacións

¿en cuánto tiempo se ejecuta este código?

- DO K=1,N DO J=1,N DO I=1.N
- ¿depende de la computadora que se usa?
- C(I,J)=C(I,J)+A(I,K)*B(K,J)END DO
- ▶ ¿depende del sistema operativo? ✓ X END DO
 - SEND DO

¿depende del tamaño de las matrices?

lmeal

Los

Random Access Machine modelo de cómputo donde los pasos se ejecutan secuencialmente.

- Random Access Machine modelo de cómputo donde los pasos se ejecutan secuencialmente.
- Un paso es una operación que toma una cantidad fija de tiempo, por ejemplo: una comparación, una operación aritmética, acceso a memoria.

a=b

- Random Access Machine modelo de cómputo donde los pasos se ejecutan secuencialmente.
- Un paso es una operación que toma una cantidad fija de tiempo, por ejemplo: una comparación, una operación aritmética, acceso a memoria.
- Con este modelo, nuestra medida sólo depende del tamaño de la entrada y la medida del tiempo que se tarda es una buena aproximación

2,3,4:2 passo

- Random Access Machine modelo de cómputo donde los pasos se ejecutan secuencialmente.
- Un paso es una operación que toma una cantidad fija de tiempo, por ejemplo: una comparación, una operación aritmética, acceso a memoria.
- Con este modelo, nuestra medida sólo depende del tamaño de la entrada y la medida del tiempo que se tarda es una buena aproximación.

mejor caso: cuando las entradas son tan favorables como sea posible.

- Random Access Machine modelo de cómputo donde los pasos se ejecutan secuencialmente.
- Un paso es una operación que toma una cantidad fija de tiempo, por ejemplo: una comparación, una operación aritmética, acceso a memoria.
- Con este modelo, nuestra medida sólo depende del tamaño de la entrada y la medida del tiempo que se tarda es una buena aproximación.

4,3,2

- mejor caso: cuando las entradas son tan favorables como sea posible.
- peor caso: cuando las entradas no son favorables y obtenemos el peor tiempo.

- Random Access Machine modelo de cómputo donde los pasos se ejecutan secuencialmente.
- Un paso es una operación que toma una cantidad fija de tiempo, por ejemplo: una comparación, una operación aritmética, acceso a memoria
- Con este modelo, nuestra medida sólo depende del tamaño de la entrada y la medida del tiempo que se tarda es una buena aproximación.

- mejor caso: cuando las entradas son tan favorables como sea posible.
- **peor caso**: cuando las entradas no son favorables y obtenemos el peor tiempo.
- caso promedio: es un tiempo promedio sobre todas las posibles entradas de un mismo tamaño.

$$f(x) = P_n(x) + O(x^{n+1})$$

- Función factorial
- → Entrada: número natural, n
- Salida: factorial de la entrada, $n! = n(n-1)(n-2)\cdots(2)(1)$
 - 1. factorial = 1
 - 2. MIENTRAS QUE n > 1 HACER
 - 2.1 factorial=factorial * n
 - $2.2 \quad n = n 1$
 - 3. FIN

Función factorial

Entrada: número natural, nSalida: factorial de la entrada, $n! = n(n-1)(n-2)\cdots(2)(1)$

- 1. $factorial = 1 \checkmark$
- 2. MIENTRAS QUE n > 1 HACER
 - 2.1 factorial = factorial * n
 - 2.2 n = n 1
- FIN

Conteo de pasos

 1 paso para asignar el primer valor

Función factorial

Entrada: número natural, nSalida: factorial de la entrada, $n! = n(n-1)(n-2)\cdots(2)(1)$

- 1. factorial = 1
- 2. MIENTRAS QUE n > 1 HACER
 - 2.1 factorial = factorial * n
 - 2.2 n = n 1
- 3. FIN

- 1 paso para asignar el primer valor
- n pasos para la comparación en el ciclo

Función factorial

Entrada: número natural, nSalida: factorial de la entrada, $n! = n(n-1)(n-2)\cdots(2)(1)$

- 1. factorial = 1
- 2. MIENTRAS QUE n > 1 HACER
 - 2.1 factorial=factorial * n ✓
 - 2.2 n = n 1
- 3. FIN

- 1 paso para asignar el primer valor
- ▶ n pasos para la comparación en el ciclo
- ▶ 2*n* pasos por el acceso a memoria y la operación aritmética

Función factorial

Entrada: número natural, nSalida: factorial de la entrada, $n! = n(n-1)(n-2)\cdots(2)(1)$

- 1. factorial = 1
- 2. MIENTRAS QUE n > 1 HACER
 - 2.1 factorial = factorial * n
 - 2.2 n = n 1
- 3. FIN

- ▶ 1 paso para asignar el primer valor
- n pasos para la comparación en el ciclo
- ▶ 2*n* pasos por el acceso a memoria y la operación aritmética
- ➤ 2*n* pasos por el acceso a memoria y la operación aritmética

Función factorial

Entrada: número natural. n Salida: factorial de la entrada. $n! = n(n-1)(n-2)\cdots(2)(1)$

- 1. factorial = 1
- 2. MIENTRAS QUE n > 1 HACER
 - 2.1 factorial=factorial * n
 - $2.2 \quad n = n 1$
- 3. FIN

- 1-paso para asignar el primer valor
- n-pasos para la comparación en el ciclo
- ▶ 2n-pasos por el acceso a memoria y la operación aritmética
- 2m pasos por el acceso a memoria y la operación aritmética
- ► TOTAL: 5n + 1

Función factorial

Entrada: número natural, nSalida: factorial de la entrada, $n! = n(n-1)(n-2)\cdots(2)(1)$

- 1. factorial = 1
- 2. MIENTRAS QUE n > 1 HACER
 - 2.1 factorial=factorial * n
 - $2.2 \ n = n 1$
- 3. FIN

- ▶ 1 paso para asignar el primer valor
- n pasos para la comparación en el ciclo
- ▶ 2*n* pasos por el acceso a memoria y la operación aritmética
- ▶ 2*n* pasos por el acceso a memoria y la operación aritmética
- ► TOTAL: 5n+1
- es decir O(n) Para n > 1

Introducción

Complejidad computacional

Clases de Complejidad

Algoritmos de ordenamiento Algoritmo de burbuja Merge Sort

Clases de complejidad (I)

- ► O(1): tiempo constante
- $ightharpoonup O(\log(n))$: tiempo logarítmico
- ► O(n): tiempo lineal
- \triangleright $O(n \log(n))$: tiempo log-lineal \checkmark
- ► O(n^k): tiempo polinómico <</p>

 \triangleright $O(c^n)$: tiempo exponencial

ordenar numer enteres rge-sort -> Nlog(n)

Clases de complejidad (I)

- ► O(1): tiempo constante
- $ightharpoonup O(\log(n))$: tiempo logarítmico
- \triangleright O(n): tiempo lineal
- $ightharpoonup O(n \log(n))$: tiempo log-lineal
- \triangleright $O(n^k)$: tiempo polinómico
- \triangleright $O(c^n)$: tiempo exponencial

- Complejidad independiente de las entradas.
- Códigos con ciclos independientes de las entradas.
- Códigos con llamadas recursivas / independientes de las entradas.

Clases de complejidad (II)

- \triangleright O(1): tiempo constante
- $ightharpoonup O(\log(n))$: tiempo logarítmico
- \triangleright O(n): tiempo lineal
- \triangleright $O(n \log(n))$: tiempo log-lineal
- \triangleright $O(n^k)$: tiempo polinómico
- \triangleright $O(c^n)$: tiempo exponencial

Clases de complejidad (II)

- \triangleright O(1): tiempo constante
- ► $O(\log(n))$: tiempo logarítmico
- \triangleright O(n): tiempo lineal
- $ightharpoonup O(n \log(n))$: tiempo log-lineal
- \triangleright $O(n^k)$: tiempo polinómico
- \triangleright $O(c^n)$: tiempo exponencial

- Aplicaciones como la búsqueda binaria, el método de bisección.
- no importa la base del logaritmo

Clases de complejidad (III)

- \triangleright O(1): tiempo constante
- $ightharpoonup O(\log(n))$: tiempo logarítmico
- \triangleright O(n): tiempo lineal
- $ightharpoonup O(n \log(n))$: tiempo log-lineal
- \triangleright $O(n^k)$: tiempo polinómico
- \triangleright $O(c^n)$: tiempo exponencial

Clases de complejidad (III)

- \triangleright O(1): tiempo constante
- $ightharpoonup O(\log(n))$: tiempo logarítmico
- \triangleright O(n): tiempo lineal
- $ightharpoonup O(n \log(n))$: tiempo log-lineal
- \triangleright $O(n^k)$: tiempo polinómico
- $ightharpoonup O(c^n)$: tiempo exponencial

- Aparece varios problemas que implican listas, por ejemplo una búsqueda en una lista ordenada
- Puede haber ciclos, pero que no son dependientes del tamaño de la entrada

Clases de complejidad (IV)

- \triangleright O(1): tiempo constante
- $ightharpoonup O(\log(n))$: tiempo logarítmico
- \triangleright O(n): tiempo lineal
- $ightharpoonup O(n \log(n))$: tiempo log-lineal
- \triangleright $O(n^k)$: tiempo polinómico
- \triangleright $O(c^n)$: tiempo exponencial

Clases de complejidad (IV)

- \triangleright O(1): tiempo constante
- $ightharpoonup O(\log(n))$: tiempo logarítmico
- \triangleright O(n): tiempo lineal
- $ightharpoonup O(n \log(n))$: tiempo log-lineal
- \triangleright $O(n^k)$: tiempo polinómico
- \triangleright $O(c^n)$: tiempo exponencial

- Muchos de algoritmos prácticos están en esta clase.
- Por ejemplo el algoritmo de ordenamiento merge-sort

Clases de complejidad (V)

- \triangleright O(1): tiempo constante
- $ightharpoonup O(\log(n))$: tiempo logarítmico
- \triangleright O(n): tiempo lineal
- $ightharpoonup O(n \log(n))$: tiempo log-lineal
- \triangleright $O(n^k)$: tiempo polinómico
- \triangleright $O(c^n)$: tiempo exponencial

Clases de complejidad (V)

- \triangleright O(1): tiempo constante
- $ightharpoonup O(\log(n))$: tiempo logarítmico
- \triangleright O(n): tiempo lineal
- $ightharpoonup O(n \log(n))$: tiempo log-lineal
- ▶ $O(n^k)$: tiempo polinómico, K: Lte
- $ightharpoonup O(c^n)$: tiempo exponencial

- Otros algoritmos prácticos están en esta clase, en especial de orden cuadrático. にこ, にこり
- Por ejemplo: el algoritmo para verificar si un conjunto es subconjunto de otro, bubble sort

Clases de complejidad (VI)

- \triangleright O(1): tiempo constante
- $ightharpoonup O(\log(n))$: tiempo logarítmico
- \triangleright O(n): tiempo lineal
- $ightharpoonup O(n \log(n))$: tiempo log-lineal
- \triangleright $O(n^k)$: tiempo polinómico
- $ightharpoonup O(c^n)$: tiempo exponencial

Clases de complejidad (VI)

- \triangleright O(1): tiempo constante
- $ightharpoonup O(\log(n))$: tiempo logarítmico
- \triangleright O(n): tiempo lineal
- $ightharpoonup O(n \log(n))$: tiempo log-lineal
- \triangleright $O(n^k)$: tiempo polinómico
- \triangleright $O(c^n)$: tiempo exponencial

 muchos problemas importantes son exponenciales, por ejemplo generar el conjunto potencia, las Torres de Hanoi

Puntos a tomar en cuenta

- ► Tener en cuenta que esta aproximación de complejidad usando el tiempo es distinta a la aproximación del espacio necesario para un algoritmo.
- Por ejemplo, en una función recursiva el espacio aumenta pues se reserva una nueva pila por cada llamada recursiva.

Which time /usr/bn/time

- En GNU/Linux se puede medir la memoria RAM usada y el porcentaje de procesador.
- ▶ Ejemplo: uso de time
 - time sleep 3
 - ▶ /usr/bin/time -f "%e%M%P"sleep 3
- append of the thempo of log sleep

 of the thempo of the thempo (5)

 of M: Memorial (16)

 of P: Romaniage

Introducción

Complejidad computacional

Clases de Complejidad

Algoritmos de ordenamiento Algoritmo de burbuja Merge Sort

Son algoritmos que se usan para <u>ordenar números enteros</u> en una secuencia (ordenamiento numérico) o para ordenar letras (ordenamiento lexicográfico)

ordenamiento numérico

ordenamiento lexicográfico

Exiten varios tipos: partitioning, merging, selection, insertion, exchanging

Son algoritmos que se usan para ordenar números enteros en una secuencia (ordenamiento numérico) o para ordenar letras (ordenamiento lexicográfico)

ordenamiento numérico {5,3,2,6}

{2,3,5,6} ordenamiento lexicográfico

a, z, m, pa, m, p, z

Exiten varios tipos: partitioning, merging, selection, insertion, exchanging

Algunos algoritmos (de una lista de 24 en Wikipedia):

- ▶ Insertion sort
- ► Selection sort
- ► Merge sort
- ► Heapsort
- Quicksort
- ▶ Bubble sort
- Comb sort
- Counting sort
- Bucket sort

Son algoritmos que se usan para ordenar números enteros en una secuencia (ordenamiento numérico) o para ordenar letras (ordenamiento lexicográfico)

ordenamiento numérico $\{5,3,2,6\}$

{2,3,5,6} ordenamiento lexicográfico

$${a, z, m, p}$$

 ${a, m, p, z}$

Exiten varios tipos: partitioning, merging, selection, insertion, exchanging Algunos algoritmos (de una lista de 24 en Wikipedia):

- ► Insertion sort
- ► Selection sort
- ► Merge sort
- Heapsort
- Quicksort
- ▶ Bubble sort
- Comb sort
- Counting sort
- Bucket sort

Simples

Son algoritmos que se usan para ordenar números enteros en una secuencia (ordenamiento numérico) o para ordenar letras (ordenamiento lexicográfico)

ordenamiento numérico $\{5,3,2,6\}$ $\{2,3,5,6\}$ ordenamiento lexicográfico $\{a,z,m,p\}$ $\{a,m,p,z\}$

Exiten varios tipos: partitioning, merging, selection, insertion, exchanging Algunos algoritmos (de una lista de 24 en Wikipedia):

- ▶ Insertion sort
- ► Selection sort
- ► Merge sort 🗸
- Heapsort
- Quicksort

Eficientes

- Bubble sort
- Comb sort
- Counting sort
- Bucket sort

Son algoritmos que se usan para ordenar números enteros en una secuencia (ordenamiento numérico) o para ordenar letras (ordenamiento lexicográfico)

ordenamiento numérico {5, 3, 2, 6}

{2,3,5,6} ordenamiento lexicográfico

$${a, z, m, p}$$

 ${a, m, p, z}$

Exiten varios tipos: partitioning, merging, selection, insertion, exchanging Algunos algoritmos (de una lista de 24 en Wikipedia):

- ► Insertion sort
- ► Selection sort
- ► Merge sort
- Heapsort
- Quicksort
- ► Bubble sort ✓
- ► Comb sort ✓ Burbuja
- Counting sort
- Bucket sort

Son algoritmos que se usan para ordenar números enteros en una secuencia (ordenamiento numérico) o para ordenar letras (ordenamiento lexicográfico)

ordenamiento numérico

ordenamiento lexicográfico

$${a, z, m, p}$$

 ${a, m, p, z}$

Exiten varios tipos: partitioning, merging, selection, insertion, exchanging Algunos algoritmos (de una lista de 24 en Wikipedia):

- ▶ Insertion sort
- ► Selection sort
- Merge sort
- Heapsort
- Quicksort
- ▶ Bubble sort
- Comb sort
- Counting sort
 - Bucket sort

Distribución

- Consiste en ir examinando la lista, tomando pares de números y comparándolos para ordenarlos haciendo un intercambio o swap si es necesario.
- El proceso se repite hasta que los números están ordenados.

- Consiste en ir examinando la lista, tomando pares de números y comparándolos para ordenarlos haciendo un intercambio o swap si es necesario.
- ► El proceso se repite hasta que los números están ordenados.

Es un algoritmo del tipo de ordenamiento por comparación o comparison sort. $\{4,2,6,1\}$

- Consiste en ir examinando la lista, tomando pares de números y comparándolos para ordenarlos haciendo un intercambio o swap si es necesario.
- ► El proceso se repite hasta que los números están ordenados.
 - Es un algoritmo del tipo de ordenamiento por comparación o comparison sort.

 $\{4, 2, 6, 1\}$

- Consiste en ir examinando la lista, tomando pares de números y comparándolos para ordenarlos haciendo un intercambio o swap si es necesario.
- ► El proceso se repite hasta que los números están ordenados.

Es un algoritmo del tipo de ordenamiento por comparación o comparison sort. {4, 2, 6, 1} {2, 4, 6, 1}

- Consiste en ir examinando la lista, tomando pares de números y comparándolos para ordenarlos haciendo un intercambio o swap si es necesario.
- ► El proceso se repite hasta que los números están ordenados.

Es un algoritmo del tipo de ordenamiento por comparación o comparison sort. $\{4,2,6,1\} \\ \{2,\textbf{4},\textbf{6},1\}$

- Consiste en ir examinando la lista, tomando pares de números y comparándolos para ordenarlos haciendo un intercambio o swap si es necesario.
- El proceso se repite hasta que los números están ordenados.

Es un algoritmo del tipo de ordenamiento por comparación o comparison sort.

- Consiste en ir examinando la lista, tomando pares de números y comparándolos para ordenarlos haciendo un intercambio o swap si es necesario.
- ► El proceso se repite hasta que los números están ordenados.

{4,	2,	6,	1
{2,			
{2,	4,	1,	6

- Consiste en ir examinando la lista, tomando pares de números y comparándolos para ordenarlos haciendo un intercambio o swap si es necesario.
- El proceso se repite hasta que los números están ordenados.

Es un algoritmo del tipo de ordenamiento por comparación o comparison sort. {4, 2, 6, 1} {2, 4, 6, 1} {2, 4, 1, 6}

- Consiste en ir examinando la lista, tomando pares de números y comparándolos para ordenarlos haciendo un intercambio o swap si es necesario.
- ► El proceso se repite hasta que los números están ordenados.

- Consiste en ir examinando la lista, tomando pares de números y comparándolos para ordenarlos haciendo un intercambio o swap si es necesario.
- ► El proceso se repite hasta que los números están ordenados.

{4,	2,	6,	1
{4, {2,	4,	6,	1
{2,	4,	1,	6
{2,			

- Consiste en ir examinando la lista, tomando pares de números y comparándolos para ordenarlos haciendo un intercambio o swap si es necesario.
- ► El proceso se repite hasta que los números están ordenados.

{4,	2,	6,	1
{4, {2,	4,	6,	1
{2,	4,	1,	6
{2,	1,	4 ,	6

- Consiste en ir examinando la lista, tomando pares de números y comparándolos para ordenarlos haciendo un intercambio o swap si es necesario.
- ► El proceso se repite hasta que los números están ordenados.

{4,	2,	6,	1
$\hat{2}$	4,	6,	1
2,			
{ <mark>2</mark> ,	1,	4,	6

- Consiste en ir examinando la lista, tomando pares de números y comparándolos para ordenarlos haciendo un intercambio o swap si es necesario.
- ► El proceso se repite hasta que los números están ordenados.

4,	2,	6,	1
2, 2, 2,	4,	6,	1
2,	4,	1,	6
2,	1,	4,	6
[1,	2,	4,	6

- Consiste en ir examinando la lista, tomando pares de números y comparándolos para ordenarlos haciendo un intercambio o swap si es necesario.
- ► El proceso se repite hasta que los números están ordenados.

{4,	2,	6,	1
{4, {2,	4,	6,	1
{2,	4,	1,	6
2,			
$\{1,$			

- Consiste en ir examinando la lista, tomando pares de números y comparándolos para ordenarlos haciendo un intercambio o swap si es necesario.
- ► El proceso se repite hasta que los números están ordenados.

{4,		
{2, {2,		
$\{2, \ \{1,$		

- Consiste en ir examinando la lista, tomando pares de números y comparándolos para ordenarlos haciendo un intercambio o swap si es necesario.
- El proceso se repite hasta que los números están ordenados.

```
{4, 2, 6, 1}
{2, 4, 6, 1}
{2, 4, 1, 6}
{2, 1, 4, 6}
{1, 2, 4, 6}
```

- Consiste en ir examinando la lista, tomando pares de números y comparándolos para ordenarlos haciendo un intercambio o swap si es necesario.
- ► El proceso se repite hasta que los números están ordenados.

Es un algoritmo del tipo de ordenamiento por comparación o comparison sort.

$$\{4, 2, 6, 1\}
 \{2, 4, 6, 1\}
 \{2, 4, 1, 6\}
 \{2, 1, 4, 6\}
 \{1, 2, 4, 6\}$$

la cadena está ordenada

- ► Mejor caso: n
- ▶ Caso promedio: n²
 ▶ Peor caso: n²

Complejidad del algoritmo bubblesort

Algoritmo

Entrada: Lista de números enteros de longitud n .

Salida: Lista de números ordenados

- 1. swap=.TRUE. { boolean variable}
- 2. MIENTRAS QUE *swap*=.TRUE. HACER
 - 2.1 swap=.FALSE. 2.2 PARA 1 < i < n-1 HACER 2.2.1 SI Lista(i)>Lista(i+1) HACER (a) intercambiar los numeros (b) swap=.TRUE.
- 3. FIN

- Mejor caso: *n*
- Caso promedio: n²
- Peor caso: n^2

Optimización: después de <u>m</u> revisiones de la lista, hay <u>m</u> números ordenados.

Optimización: sólo revisar hasta la posición donde se hizo el último swap.

n:

- Se divide la lista original en *n* sublistas ordenadas.
- ► Luego se unen o concatenan en n/2 sublistas ordenadas.
- ► Luego en <u>n/4</u> sublistas ordenadas.
- Se repite hasta que queda una sola lista.

- Se divide la lista original en n sublistas ordenadas.
- ► Luego se unen o concatenan en n/2 sublistas ordenadas.
- ▶ Luego en n/4 sublistas ordenadas.
- Se repite hasta que queda una sola lista.

Es un algoritmo del tipo *divide y* vencerás y su invención se atribuye a John von Neumann en 1945. $\{4,2,6,1\}$

- Se divide la lista original en n sublistas ordenadas.
- ► Luego se unen o concatenan en n/2 sublistas ordenadas.
- Luego en n/4 sublistas ordenadas.
- Se repite hasta que queda una sola lista.

Es un algoritmo del tipo *divide y* vencerás y su invención se atribuye a John von Neumann en 1945. {4, 2, 6, 1} {4, 2}; {6, 1}

- Se divide la lista original en n sublistas ordenadas.
- ► Luego se unen o concatenan en n/2 sublistas ordenadas.
- Luego en n/4 sublistas ordenadas.
- Se repite hasta que queda una sola lista.

```
{4, 2, 6, 1}
{4, 2}; {6, 1}
{4}; {2}; {6}; {1}
```

- Se divide la lista original en n sublistas ordenadas.
- ► Luego se unen o concatenan en n/2 sublistas ordenadas.
- ► Luego en <u>n/4 sub</u>listas ordenadas.
- Se repite hasta que queda una sola lista.

- Se divide la lista original en n sublistas ordenadas.
- ► Luego se unen o concatenan en n/2 sublistas ordenadas.
- ▶ Luego en n/4 sublistas ordenadas.
- Se repite hasta que queda una sola lista.

```
{4, 2, 6, 1}
{4, 2}; {6, 1}
{4}; {2}; {6}; {1}
{2, 4}; {1, 6}
{1, 2, 4, 6}
```

- Se divide la lista original en n sublistas ordenadas.
- ► Luego se unen o concatenan en n/2 sublistas ordenadas.
- ▶ Luego en n/4 sublistas ordenadas.
- Se repite hasta que queda una sola lista.

```
{4, 2, 6, 1}
{4, 2}; {6, 1}
{4}; {2}; {6}; {1}
{2, 4}; {1, 6}
{1, 2, 4, 6}
```

- Mejor caso: $n \log(n) \checkmark$
- ightharpoonup Caso promedio: $n\log(n)$ \checkmark
- ▶ Peor caso: $n \log(n)$. ✓

Complejidad del algoritmo mergesort

Algoritmo recursivo MergeSort

Entrada: Lista de números enteros de longitud n.

Salida: Lista de números ordenados

- 1. SI n < 1 ENTONCES Regresar
- 2. SI n = 2 ENTONCES
 - 2.1 Ordenar los dos números
 - 2.2 Regresar
- Llamada recursiva a Merge-Sort(mitad izquierda de Lista)
- Llamada recursiva a Merge-Sort(mitad derecha de Lista)
- Llamada a Merge(mitad izquierda, mitad derecha)
- 6. FIN

Complejidad del algoritmo mergesort

Algoritmo recursivo MergeSort

Entrada: Lista de números enteros de longitud *n*

Salida: Lista de números ordenados

- 1. SI n < 1 ENTONCES Regresar
- 2. SI n = 2 ENTONCES
 - 2.1 Ordenar los dos números
 - 2.2 Regresar
- Llamada recursiva a Merge-Sort(mitad izquierda de Lista)
- 4. Llamada recursiva a Merge-Sort(mitad derecha de Lista)
- 5. Llamada a Merge(mitad izquierda, mitad derecha)
- 6. FIN

Algoritmo Merge

Entrada: Listas izquierda L y derecha R, con longitudes n_L y n_R Salida: Lista de números ordenados W de longitud $n = n_L + n_R$

- 1. i = 1, j = 1, k = 1
- 2. MIENTRAS $(i < n_L) \land (j < n_R)$ HACER
 - 2.1 SI L(i) < R(j) ENTONCES W(k) = L(i), i = i + 1;SINO W(k) = R(j), j = j + 1
- 3. SI $i < n_L$ ENTONCES $W(k:n) = L(i:n_L)$
- 4. FIN

¡Muchas gracias!

Contacto: Giovanni Ramírez García, PhD ramirez@ecfm.usac.edu.gt http://ecfm.usac.edu.gt/ramirez