Propositional Logic: Proof Method

Source: Computational Logic Lecture Notes
Stanford University

IF2121 Computational Logic 2023/2024

Informatics Engineering Study Program School of Electrical Engineering and Informatics ITB

Contents

- Review
- ▶ Propositional Logic → Logical Entailment
 - Proof Method

Review

- Computational Logic
 - Propositional Logic:
 - ▶ Sintax → Simple sentence, Compound Sentence
 - ▶ Semantics → interpretation, evaluation, reverse evaluation, types of compund sentence
 - Logical Entailment
 - □ Semantic Reasoning

Proof of a conclusion from set of premises:

- Sequence of sentences terminating in conclusion in which each item is either a premise, an instance of axiom schema, or the result of applying a rule of inference to earlier items in sequence.
- Base: Applied Rule of Inference to premises

Proof of a conclusion from set of premises:

- Sequence of sentences terminating in conclusion in which each item is either a premise, an instance of axiom schema, or the result of applying a rule of inference to earlier items in sequence.
- Base: Applied Rule of Inference to premises

A rule of inference:

a pattern of reasoning consisting of premises and conclusions.

- More rule of inference:
- Modus ponens

:. q

3. Disjunctive syllogism

2. Modus tollens

$$\begin{array}{c}
p \to q \\
\sim q \\
\hline
\dots \sim p
\end{array}$$

4. Simplification

:. p

- More rule of inference:
- 5. Addition

p

 $\therefore p \vee q$

7. Hypothetical syllogism

 $p \to q$ $q \to r$

`

 $\therefore p \rightarrow r$

6. Conjunction

p

q

 $\therefore p \wedge q$

8. Resolution

 $p \vee q$

 $\sim p \vee r$

 $\therefore q \vee r$

Rules of Replacement

- ▶ Associativity → disjunction, conjunction, equivalence
- ▶ Commutativity → disjunction, conjunction, equivalence
- ▶ Distributivity: $p \lor (r \land q) \leftrightarrow (p \lor q) \land (p \lor q)$
- ▶ Double Negation: $\neg \neg p \leftrightarrow p$
- De Morgan's Law:

$$\neg(p \land q) \leftrightarrow (\neg p) \lor (\neg q)$$
$$\neg(p \lor q) \leftrightarrow (\neg p) \land (\neg q)$$

- ▶ Transposition: $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$
- ▶ Material Implication: $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$
- ▶ Tautology: $(p \land p) \leftrightarrow p$ or $(p \lor p) \leftrightarrow p$

Example

Premises:

```
I.p \rightarrow q
```

Conclusion: $m \rightarrow q$

$${p \rightarrow q, m \rightarrow p \lor q} = m \rightarrow q ?$$

$$3. \sim p \vee q$$
 Material Implication I

$$5. \sim m \vee q$$
 Resolution 3,4

Jadi dapat dibuktikan
$$\{p \rightarrow q, m \rightarrow p \lor q\} = m \rightarrow q$$

Exercise

Premis:

- Kalau mahasiswa malas belajar dan sering bolos kuliah, mahasiswa tidak lulus ujian.
- 2. Kalau mahasiswa tidak lulus ujian, orang tuanya akan marah.
- 3. Mahasiswa sering bolos kuliah tetapi orang tuanya tidak marah

Kesimpulan:

Mahasiswa tidak malas belajar.

Gunakan proposisi:

- malas: Mahasiswa malas belajar; bolos: Mahasiswa sering bolos kuliah
- Iulus: Mahasiswa lulus ujian; marah: Orang tua mahasiswa marah

Proving without premises

- No premise → no place to apply rules of inference
- ▶ Facts: valid sentences → true for all interpretations
- ▶ How to prove $p \rightarrow (q \rightarrow p)$ is a valid sentence?
- Requires: rule of inference without premises
- ► Example: axiom schemata

Schemata

- Schema: expression satisfying the grammatical rules of our language → occurs meta-variables in the expression
 - $\phi \rightarrow (\psi \rightarrow \phi)$
- Instance of sentence schema: substituting the occurrences of metavariables, form legal expressions

$$p \Rightarrow (p \Rightarrow p) \qquad p \Rightarrow (p \land p \Rightarrow p) \qquad p \Rightarrow (p \lor p \Rightarrow p)$$

$$p \Rightarrow (q \Rightarrow p) \qquad p \Rightarrow (p \land q \Rightarrow p) \qquad p \Rightarrow (p \lor q \Rightarrow p)$$

$$p \Rightarrow (r \Rightarrow p) \qquad p \Rightarrow (p \land r \Rightarrow p) \qquad p \Rightarrow (p \lor r \Rightarrow p)$$

$$q \Rightarrow (p \Rightarrow q) \qquad \dots \qquad \dots$$

$$q \Rightarrow (q \Rightarrow q) \qquad \dots \qquad \dots$$

$$q \Rightarrow (q \Rightarrow q) \qquad \dots \qquad \dots$$

$$r \Rightarrow (p \Rightarrow r) \qquad r \Rightarrow (p \Rightarrow r)$$

$$r \Rightarrow (q \Rightarrow r)$$

$$r \Rightarrow (q \Rightarrow r)$$

Axiom

- Axiom:
 - Proposition that is believed to be true
 - base assumption for proving
 - valid proposition
- $\blacktriangleright \text{ Example: } p \rightarrow (q \rightarrow p)$

13

Standard Axiom Schemata

► Implication Introduction (II): $A \rightarrow (B \rightarrow A)$

- ► Implication Distribution (ID): $A \rightarrow (B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
- ► Contradiction Realization (CR): $(A \rightarrow \sim B) \rightarrow ((A \rightarrow B) \rightarrow \sim A)$ $(\sim A \rightarrow B) \rightarrow ((\sim A \rightarrow \sim B) \rightarrow A)$

Standard Axiom Schemata (2)

• Equivalence (EQ):

$$(A \leftrightarrow B) \rightarrow (A \rightarrow B)$$

$$(A \leftrightarrow B) \rightarrow (B \rightarrow A)$$

$$(A \rightarrow B) \rightarrow ((B \rightarrow A) \rightarrow (A \leftrightarrow B))$$

Other operators:

$$(A \leftarrow B) \leftrightarrow (B \rightarrow A)$$

$$(A \lor B) \leftrightarrow (\sim A \rightarrow B)$$

$$(A \land B) \leftrightarrow \sim (\sim A \lor \sim B)$$

Proofs

- Prove all logical consequences from any set of premises
 - Standard axiom schemata
 - Modus Ponen

Example

- Whenever p is true, q is true. Whenever q is true, r is true. Prove that whenever p is true, r is true.
- ▶ Premis: $p \rightarrow q$, $q \rightarrow r$
- ▶ Konklusi: p→r

1.	$p \rightarrow q$	premise
2.	q→r	premise
3.	$(q \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))$	II
4.	$(p \rightarrow (q \rightarrow r))$	Modus Ponen 2,3
5.	$(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$	ID
6.	$(p \rightarrow q) \rightarrow (p \rightarrow r)$	Modus Ponen 4,5
7.	$p \rightarrow r$	Modus Ponen 1,6

Exercise Axiom Schemata

Premises: $p \rightarrow q$, $q \rightarrow r$ Prove conclusion: $(p \rightarrow \sim r) \rightarrow \sim p$

II:
$$A \rightarrow (B \rightarrow A)$$

ID: $A \rightarrow (B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
 $CR: (A \rightarrow \sim B) \rightarrow ((A \rightarrow B) \rightarrow \sim A)$
 $(\sim A \rightarrow \sim B) \rightarrow ((\sim A \rightarrow B) \rightarrow A)$
 $EQ: (A \leftrightarrow B) \rightarrow (A \rightarrow B)$
 $(A \leftrightarrow B) \rightarrow (B \rightarrow A)$
 $(A \rightarrow B) \rightarrow ((B \rightarrow A) \rightarrow (A \leftrightarrow B))$
O: $(A \leftarrow B) \leftrightarrow (B \rightarrow A)$
 $(A \lor B) \leftrightarrow (\sim A \rightarrow B)$
 $(A \land B) \leftrightarrow (\sim A \lor \sim B)$

$$\{p \rightarrow q, q \rightarrow r\} \mid = (p \rightarrow \sim r) \rightarrow \sim p$$

3.
$$(q \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))$$

4.
$$(p\rightarrow (q\rightarrow r))$$
 Modus Ponen 2,3

5.
$$(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$$
 ID

6.
$$(p \rightarrow q) \rightarrow (p \rightarrow r)$$
 Modus Ponen 4,5

8.
$$(p \rightarrow r) \rightarrow ((p \rightarrow \sim r) \rightarrow \sim p)$$
 CR

9.
$$(p \rightarrow r) \rightarrow p$$
 Modus Ponen 7,8

Provability

- ▶ A B
- ▶ Previous Example: $\{p \rightarrow q, q \rightarrow r\}$ \vdash $(p \rightarrow r)$
- $(A B) \longleftrightarrow (A = B)$

Deduction Theorems

 $A \vdash (B \rightarrow C) \text{ iff } A \cup \{B\} \vdash C$

Example:

$${p \rightarrow q, q \rightarrow r} \mid - (p \rightarrow r)$$

 ${p \rightarrow q, q \rightarrow r, p} \mid - r$

Review

- $\Delta = \varphi$
 - Set of premises Δ logically entails a conclusion ϕ iff every interpretation that satisfies the premises also satisfies the conclusion
- Propositional Logic: Propositional entailment
- Semantic reasoning:
 - Truth table
 - Validity checking
 - Unsatisfiability checking
- Proof Method:
 - Rules of Inference
 - Axiom schemata

Exercise 1

Prove:

$$\{p\rightarrow q, q\rightarrow r\} \mid = (q\rightarrow r)\rightarrow ((p\rightarrow \sim r)\rightarrow \sim p)$$
 using:

 Axiom schemata, Rule of Inference (without Deduction Theorems)

Exercise 2

- Sesuatu di laut yang tidak diperhatikan, bukan putri duyung.
- 2. Sesuatu di laut yang dicatat pada log, berarti layak untuk diingat.
- 3. Sesuatu yang saya lihat di laut, tidak ada yang layak untuk diingat.
- 4. Sesuatu yang saya perhatikan di laut, adalah sesuatu yang saya catat di log.
- Buktikan bahwa kesimpulan: "Sesuatu yang saya lihat di laut, bukanlah putri duyung", dapat diturunkan dari kumpulan fakta tersebut dengan memanfaatkan kaidah inferensi saja.

Exercise 2 (2)

Gunakan proposisi sebagai berikut:

- n: sesuatu di laut yang saya (di) perhatikan;
- m: putri duyung;
- l: sesuatu di laut yang dicatat di log;
- r: sesuatu di laut yang layak untuk diingat;
- i: sesuatu yang saya lihat di laut.

Nilai:

- Pengubahan ke kalimat logika proposisi (premis dan kesimpulan)
- 2. Pembuktian

Exercise 3

Buktikan bahwa kesimpulan $(\sim r \rightarrow (\sim q \land \sim p)) \rightarrow ((p \rightarrow \sim r) \rightarrow \sim p)$ dapat ditarik dari kumpulan fakta $\{p \rightarrow q, q \rightarrow r\}$ dengan memanfaatkan *axiom schema* dan *modus ponen* saja .

Exercise 4

Misal Γ dan Δ adalah kumpulan kalimat dalam logika proposisi, kemudian ψ dan ϕ adalah sebuah kalimat dalam logika proposisi. Tentukan tiap pernyataan di bawah ini benar atau salah.

- ▶ Jika $\Gamma \neq \psi$ maka $\Gamma = \neg \psi$.
- ▶ Jika $\Gamma \models \varphi$ dan $\Delta \models \varphi$ maka $\Gamma \cup \Delta \models \varphi$.
- ▶ Jika $\Gamma \models \varphi$ dan $\Delta \models \varphi$ maka $\Gamma \cap \Delta \models \varphi$.
- ▶ Jika $\Gamma \models \varphi$ dan $\Delta \not\models \varphi$ maka $\Gamma \cup \Delta \models \varphi$.
- Jika $\Gamma \mid \psi$ maka $\Gamma \mid = \psi$.
- ▶ Jika $\Gamma \cup \neg \psi$ valid, maka $\Gamma \models \psi$.

THANK YOU