

Theory and Practice of Finite Element Methods

Luca Heltai < luca.heltai@sissa.it >

International School for Advanced Studies (<u>www.sissa.it</u>)

Mathematical Analysis, Modeling, and Applications (<u>math.sissa.it</u>)

Master in High Performance Computing (<u>www.mhpc.it</u>)

SISSA mathLab (<u>mathlab.sissa.it</u>)

Course objectives

```
from fenics import *
import matplotlib.pyplot as plt
# Create mesh and define function space
mesh = UnitSquareMesh(8, 8)
V = FunctionSpace(mesh, 'P', 1)
# Define boundary condition
u_D = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]', degree=2)
def boundary(x, on_boundary):
    return on_boundary
bc = DirichletBC(V, u_D, boundary)
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = dot(grad(u), grad(v))*dx
L = f*v*dx
# Compute solution
u = Function(V)
solve(a == L, u, bc)
# Plot solution and mesh
plot(u)
plot(mesh)
```

Go from this:

Course objectives

To this:

Movie credit: Michał Wichrowski Institute of Fundamental Technological Research

Two parallel parts

- Theory of Finite Elements (Tuesdays)
 - Galerkin methods
 - Basic theory: Lax Milgram, Cea, Bramble Hilbert, Nitsche's trick, etc.
 - Petrov Galerkin methods
 - Mixed and Hybrid Methods
 - A posteriori error analysis

- Practice of Finite Elements (Thursdays)
 - Serial scalar poisson solver, in various flavours
 - Convergence tests
 - Vector and Mixed problems
 - Local adaptivity
 - Parallelisation techniques in FEM
 - If time permits: more advanced topics

Tools, Techniques, Best Practices

- What you will learn:
 - Advanced Finite Element theory
 - How to use a modern C++ IDE, to build and debug your codes
 - How to use a large FEM library to solve complex PDE problems
 - How to properly document your code using Doxygen
 - How to use a proper Git workflow to develop your applications
 - How to leverage GitHub actions, google tests, and docker images to test and deploy your application
 - How hybrid parallelisation (threads + MPI + GPU) works in real life FEM applications

In Outcome of the course

- You will produce your own FEM application based on deal. II which:
 - Solves a PDE of interest to you, on adaptively refined grids, in parallel
 - Uses modern version control tools (on GitHub)
 - Is tested automatically (through GitHub actions) every time you push a commit, or open a pull request
 - Is documented using Doxygen, and its web page is updated and deployed automatically every time you merge to master a new branch

Prerequisites

- Theory:
 - Some knowledge of Sobolev Spaces
 - Linear operators, Banach and Hilbert spaces, duality, etc.
 - One elementary course on Numerical Analysis
 - Quadrature, interpolation, Taylor expansions, etc.

- Practice (for the first few lectures):
 - a machine with Visual Studio
 Code installed
 (c++-11 is required)
 - Docker
 - A GitHub account

More Info

- Course pages:
 - Official course page (the most up to date information is found here): https://www.math.sissa.it/course/phd-course/theory-and-practice-finite-element-methods
 - Course classroom on GitHub (for assignments/exercises) https://classroom.github.com/classrooms/14195552-theory-and-practice-of-finite-element-methods
 - Course slides, notes, materials, and codes: https://github.com/luca-heltai/theory-and-practice-of-fem
 - Course recordings: https://bit.ly/3uKDQWa
 - Email: prof. Luca Heltai < luca.heltai@sissa.it>

Theory and Practice of Finite Element Methods

Introduction

Luca Heltai < luca.heltai@sissa.it >

International School for Advanced Studies (<u>www.sissa.it</u>)
Mathematical Analysis, Modeling, and Applications (<u>math.sissa.it</u>)
Master in High Performance Computing (<u>www.mhpc.it</u>)
SISSA mathLab (<u>mathlab.sissa.it</u>)

