第十四届 蓝桥杯 嵌入式设计与开发项目 国赛

第一部分 客观试题 (15分)

不定项选择 (1.5 分/题)

(1)	描述电容的技术指标有哪些()。	
	A. 容量	В.	耐压值
	C. 耐温值	D.	ESR
(2)	竞赛平台上的 STM32 微控制器支持的通信接口包括()。		
	A. USB	В.	DCMI
	C. Ethernet	D.	CAN
(3)	一个 $R=10K\Omega$, $C=3.3$ μ F 的低通滤波器,截至频率约为() Hz 。		
	A. 1	В.	4. 82
	C. 159.2	D.	0.88
(4)	一个由电池供电的硬件系统需要将输入电源 12V 电压转换为 4.2V,输出电流 3A,		
	比较合适的解决方案是()。		
	A. LDO	В.	DC/DC (BUCK)
	C. DC/DC (BOOST)	D.	三端线性稳压器
(5)	32.768KHz 的晶振常用于为微控制器的哪些外设提供时钟信号()。		
	A. GPIO	В.	ADC 转换单元
	C. RTC 时钟单元	D.	USB 通信单元
(6)	在电路板上,信号传输过程中产	生生	信号反射的原因是()。
	A. 走线宽度不够	В.	铜皮厚度不足
	C. 信号源功率不足	D.	线路阻抗不连续
(7)	放大电路的静态工作点包括()。	
	A. 基极电流 IB	В.	集电极电流 Ic
	C. 基极发射极间电压 UBE	D.	集电极发射极间电压 Uce
(8)	一个 SPI 主机控制多个 SPI 从机时,若从机的读写极性、相位均相同,SPI 从机		
	可以共用主机提供的哪些信号	()	0
	A. CS	В.	MISO
	C. MOSI	D.	CLK
(9)	关于单片机系统中的看门狗,下列说法中正确是()。		
	A. 看门狗本质上是一个定时器	0	
	B. 启动看门狗以后, 需要在程	序中	口喂狗。
	C. 看门狗可能导致系统复位,应尽量避免使用。		
	D. 可以提高系统的稳定性、可靠性。		
(10)	关于以太网的说法中正确的是	()	0
	A. 常用 RJ45 连接器		B. 基于 802.1 协议实现
	C. 数据是以广播的形式发送的	Ì	D. 使用 MAC 地址标识主机

第十四届 蓝桥杯 嵌入式设计与开发项目 国赛

第二部分程序设计试题(85分)

1. 基本要求

- 1.1 使用大赛组委会提供的四梯/国信长天嵌入式竞赛实训平台和配套资源扩展板,完成本试题的程序设计与调试。
- 1.2 选手在程序设计与调试过程中,可参考组委会提供的"资源数据包"。
- 1.3 请注意:程序编写、调试完成后,选手需通过考试系统提交包含其自行编写的最终版本的.c、.h 源文件(不包含库文件)和.hex 文件的压缩文件。
- 1.4 .hex 文件是成绩评审的依据,要求以硬件平台版本+选手准考证号命名,举 例说明:
 - 使用新版本竞赛平台(微控制器型号 STM32G431RBT6)参加比赛,将 hex 文件命名为 G 准考证号. hex,如 G12345678. hex。
 - 使用旧版本竞赛平台(微控制器型号 STM32F103RBT6)参加比赛,将 hex 文件命名为 F 准考证号. hex,如 F12345678. hex。

说明

- 需提交的.c、.h 源文件是指选手工程文件中自行编写或修改过的.c 和.h 文件。资源数据包中原有的选手未修改过的.c、.h 源文件和其他文件不需要上传考试系统。.hex 文件由 Keil 集成开发环境编译后生成,选手可以在工程文件相应的输出文件夹中查找。
- 请严格遵循 1.3 和 1.4 的文件提交与命名要求,不符合文件提交与命名要求的作品将被评为零分。

2. 硬件框图

图1系统框图

3. 功能要求

3.1 功能概述

- 1) 测量输入到 PA1 引脚的脉冲信号频率和占空比。
- 2) 通过 PA7 引脚输出频率、占空比可调的脉冲信号。
- 3) 通过资源扩展板上的 DS18B20 (PA6-DS18B20:DQ) 获取环境温度数据。

- 4) 通过微控制器的 ADC 功能, 检测电位器 R37 上输出的模拟电压信号。
- 5) 依试题要求,通过 LCD 完成数据显示等功能。
- 6) 依试题要求,通过按键完成界面切换、参数设置等功能。
- 7) 依试题要求,通过LED完成报警输出和状态指示功能。

3.2 性能要求

- 1) 按键响应时间: ≤0.1秒。
- 2) 温度数据刷新时间: ≤1秒。
- 3) 频率精度要求: ±3%(全量程)。
- 4) 占空比精度要求: ±1%
- 5) 输出动作响应时间: ≤0.1秒。

3.3 显示功能

1) 实时数据界面

显示要素包括界面名称(DATA)、输入到 PA1 引脚的信号频率和占空比(F、D)、电位器 R37 输出的实时电压值(A)、采集到的环境温度值(T)。

图 2 实时数据界面

输入到 PA1 引脚的脉冲信号频率 (F) 数据单位为 Hz,整数。 电位器 R37 输出的实时电压值(A)单位为 V,保留小数点后 1 位有效数字。 采集到的环境温度值单位为℃,保留小数点后 1 位有效数字。

2) 报警参数界面

显示要素包括界面名称(PARA)、频率上限参数(FH)、电压上限参数(AH)和温度上限参数(TH)的数值。

图 3 报警参数界面

频率上限参数 (FH): 单位为 Hz, 整数。

电压上限参数 (AH): 单位为 V, 保留小数点后 1 位有效数字。

温度上限参数 (TH): 单位为℃,整数。

3) 报警统计界面

显示要素包括:界面名称(RECD)、频率报警次数(FN)、电压报警次数(AN)和温度报警次数(TN)。

图 4 报警统计界面

频率、电压和温度报警次数数据为整数。频率、电压、温度的实时值大于对应的上限参数,相应的报警次数累加一次,持续处于报警状态不累加。

4) 回放设置界面

显示要素包括:界面名称(FSET)、脉冲信号回放分频系数(FP)、电压信号回放最小值(VP)和记录回放时间(TT)。

图 5 数据统计界面

脉冲信号回放分频系数(FP)为整数。

电压信号回放最小值(VP)保留小数点后1位有效数字。

记录回放时间(TT)单位为秒,整数。

5) LCD 通用显示要求

- 显示背景色(BackColor): 黑色
- 显示前景色(TextColor): 白色
- 数据项与对应的数据之间使用"="间隔开。
- 请严格按照图示 2、3、4、5 要求设计各个信息项的名称(区分字母大小写)和行列位置。

3.4 信号记录

记录内容: R37 电位器输出的电压变化、输入到 PA1 引脚的脉冲信号频率、占空比。记录时长为记录回放时间(TT)的值。

3.5 信号回放

通过 PA7 输出频率、占空比可调的脉冲信号,完成信号的回放功能。回放的时长为记录回放时间(TT)的值。回放结束后, PA7 输出低电平。

1) 脉冲信号的回放

将记录下来的一段输入到 PA1 引脚上信号频率和占空比的连续变化,通过 PA7 播放输出,输出信号频率按照脉冲信号回放分频系数 (FP)进行分频 处理,占空比与记录值保持一致。

2) 电压信号的回放:

将记录下来的一段电位器 R37 电压输出的连续变化,通过 PA7 引脚播放输出,输出信号频率固定为 1KHz,信号占空比如图 6 所示。

图 6 电压信号与 PA7 输出信号占空比的关系

VP 是回放设置界面的电压信号回放最小值。

3.6 按键功能

1) B1:定义为"界面"按键,按下 B1 按键可以往复切换实时数据、报警参数、报警统计和回放设置四个界面,切换模式如图 7 所示。

图 7 LCD 界面切换模式

每次从实时数据界面进入到报警参数界面,默认当前可调整的报警参数是 频率上限参数 (FH)。

每次从报警统计界面进入到回放设置界面,默认当前可调整的是脉冲信号回放分频系数(FP)。

2) B2

① 在实时数据界面下,定义为"记录"按键。

按下按键后,系统开始记录电位器 R37 输出电压和输入到 PA1 引脚的脉冲信号频率、占空比。记录完成前,设备处于"锁定状态",所有按键操作失效,直至信号记录完成后恢复。仅保留最近一次记录的一组数据。

② 在报警参数界面和回放设置界面下,定义为"选择"按键。

在报警参数界面下,按下按键,切换选择频率上限参数(FH)、电压上限参数(AH)和温度上限参数(TH),从报警参数界面退出时,新的FH、AH和

TH参数生效。切换模式如图 8 所示。

图 8 报警参数切换模式

在回放设置界面下,按下按键,切换选择脉冲信号回放分频系数(FP)、电压信号回放最小值(VP)和记录回放时间(TT),从回放设置界面退出时,新的FP、VP和TT参数生效。切换模式如图9所示。

图 9 回放设置切换模式

- ③ 在报警统计界面下,按下 B2 按键:清零频率、电压和温度报警统计次数。
- 3) B3: 定义为"加"按键。
 - ① 在报警参数界面下,按下 B3 按键:

若当前选择的是频率上限参数 (FH), FH 值加 1000Hz。

若当前选择的是电压上限参数 (AH), AH 值加 0.3V。

若当前选择的是温度上限参数 (TH), TH 值加 1℃。

② 在回放设置界面下, 按下 B3 按键:

若当前选择的是脉冲信号回放分频系数 (FP), FP 值加 1。

若当前选择的是电压信号回放最小值(VP), VP值加0.3V。

若当前选择的是记录回放时间(TT), TT 值加 2 秒。

③ 在实时数据界面下, 按下 B3 按键:

若设备已经完成了数据记录,则通过 PA7 引脚回放"电压信号"。

- 4) B4: 定义为"减"按键。
 - ① 在报警参数界面下, 按下 B4 按键:

若当前选择的是频率上限参数 (FH), FH 值减 1000Hz。

若当前选择的是电压上限参数(AH), AH 值减 0.3V。

若当前选择的是温度上限参数 (TH), TH 值减 1℃。

② 在回放设置界面下,按下 B4 按键:

若当前选择的是脉冲信号回放分频系数 (FP), FP 值减 1。

若当前选择的是电压信号回放最小值(VP), VP值减0.3V。

若当前选择的是记录回放时间(TT), TT值减2秒。

③ 在实时数据界面下,按下 B4 按键:

若设备已经完成了数据记录,则通过 PA7 引脚回放"脉冲信号"。

5) B3, B4.

在任何一个界面下,所检测到 B3、B4 按键均处于按下状态,且持续时间超

过2秒,设备回到初始状态。(4. 初始状态说明)

- 6) 通用按键要求:
 - 按键应进行有效的防抖处理,避免出现一次按键动作触发多次功能等 情形。
 - 按键动作不应影响数据采集过程和屏幕显示效果。
 - 有效区分长、短按键功能, 互不影响。
 - 参数调整应考虑边界值,不出现无效参数。
 - 当前界面下无功能的按键按下,不触发其它界面的功能。

3.7 LED 指示灯功能

- 1) LD1:处于记录信号状态时,指示灯LD1以0.1秒为间隔切换亮、灭状态,其余时间熄灭。
- 2) LD2:处于回放脉冲信号状态时,指示灯 LD2 以 0.1 秒为间隔切换亮、灭状态,其余时间熄灭。
- 3) LD3:处于回放电压信号状态时,指示灯LD3以0.1秒为间隔切换亮、灭状态,其余时间熄灭。
- 4) LD4: 频率报警指示灯,满足 F>FH 时,指示灯点亮,否则熄灭。
- 5) LD5: 电压报警指示灯,满足 A>AH 时,指示灯点亮,否则熄灭。
- 6) LD6:温度报警指示灯,满足 T>TH 时,指示灯点亮,否则熄灭。
- 7) LD7-LD8 指示灯始终处于熄灭状态。

4. 初始状态说明

请严格按照下列要求设计作品的初始状态:

- 1) 处于实时数据界面
- 2) 频率上限参数 (FH) 默认值: 2KHz, 可调整范围: 1KHz 10KHz。
- 3) 电压上限参数 (AH) 默认值: 3.0V, 可调整范围: 0V 3.3V。
- 4) 温度上限参数 (TH) 默认值: 30°C, 可调整范围: 0°C 80°C。
- 5) 脉冲信号回放分频系数 (FP) 默认值: 1, 可调整范围: 1-10。
- 6) 电压信号回放最小值(VP)默认值: 0.9V,可调整范围: 0V 3.3V。
- 7) 记录回放时间(TT)默认值:6秒,可调整范围:2秒-10秒。
- 8) 报警统计界面(FN、AN、TN)初始值为0。

5. 资源扩展板跳线配置

扩展板跳线配置如图 10 所示。请将嵌入式竞赛实训平台的 J3 接口与资源扩展板的 P1 接口对位连接,以免损坏硬件。

图 10 扩展板连接配置