УДК 574.34

Рубрика 69.09.00

ОБНОВЛЕННЫЕ РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ СОСТОЯНИЯ ЗАПАСА И ПРОМЫСЛА КРЫМСКО-КАВКАЗСКОЙ ЕДИНИЦЫ ЗАПАСА ЧЕРНОМОРСКОГО ШПРОТА В ПЕРИОД 2001–2021 гг.

CRIMEAN-CAUCASIAN BLACK SEA SPRAT UPDATED STOCK ASSESSMENT RESULTS DURING THE PERIOD 2001–2021

<u>Пятинский Михаил Михайлович</u>¹, Шляхов Владислав Алексеевич¹, Афанасьев Дмитрий Федорович¹

 1 Азово-Черноморский филиал ФГБНУ «ВНИРО» («АзНИИРХ»), г. Ростов-на-Дону

<u>Piatinskii Mikhail Mikhailovich</u>¹, Shlyakhov Vladislav Alexeevich¹, Afanasiev Dmitrii Fedorovich¹

¹ Azov-Black Sea branch of VNIRO («AzNIIRKH»), Rostov-on-Don

Введение

Черноморский шпрот — короткоцикловый, холоднолюбивый мелкий стайный пелагический представитель ихтиофауны Черного моря [Асланова, 1954]. Шпрот в Черном море не совершает продолжительных горизонтальных миграций, за исключением нерестовонагульной миграции из открытых морских вод в шельфовую зону и обратно. Промысловые скопления образует в придонном слое ниже уровня термоклина в апреле-сентябре в период нагула. Питается преимущественно зоопланктоном холодноводного комплекса, совершая суточные вертикальные миграции в различные водные слои. Наиболее плотные промысловые скопления формируются в период июнь-август.

Начиная с 1940-х годов, исследователи отметили высокую перспективность добычи шпрота для развития промышленного рыболовства в Черном море [Голенченко, 1940; Любимова, 1957]. Промышленное рыболовство черноморского шпрота отечественными рыбодобытчиками с применением тралов выполняется с 1976 г. С середины 1990-х годов целевую добычу шпрота активными орудиями лова (близнецовыми тралами и кошельковыми неводами) в Черном море начала выполнять Турция. В некоторые годы турецкие уловы существенно превышали вылов всех остальных стран Причерноморья (в 2011 г. турецкий вылов составил 87 тыс. т, или 72 % от общего годового вылова этой рыбы).

В настоящее время объемы добычи шпрота в российских водах Черного моря занимают 1–2 место среди всех промышляемых видов рыб данного бассейна, изредка уступая по объемам добычи азовскому анчоусу. Надежное краткосрочное прогнозирование объемов биомассы запаса, уровня промысловой эксплуатации и возможной величины рекомендованного вылова является важной задачей обеспечения рациональной эксплуатации и обеспечения продовольственной безопасности региона.

Ранее группой исследователей [Пятинский и др., 2020] была реализована когортная модель XSA, позволяющая оценивать запасы шпрота и прогнозировать допустимые объемы его добычи на основе промыслово-биологических данных за период 1994—2019 гг. в водах России. В настоящей работе представлены обновленные результаты моделирования на данных 2001—2021 гг. и актуальная информация о состоянии промысла в 2022 г.

Данные и методы

Основа методологии данной обновленной работы взята из ранней публикации соавторов статьи [Пятинский и др., 2020].

В качестве исходных данных для построения модели используются фондовые данные Азово-Черноморского филиала ФГБНУ ВНИРО, собранные в ходе мониторинга промысла.

Они содержат биологическую информацию о популяции шпрота за период 2001–2021 гг.: возрастная структура промыслового изъятия, средняя промысловая навеска по возрастным когортам, рыбопромысловая статистика годового вылова, оценки естественной смертности, огива созревания. Дополнительно к промысловым данным использовались индексы изобилия по возрастным когортам, полученные в результате научного мониторинга у берега Крыма (съемка №1) и Кавказа (съемка №2) за период 2014–2021 гг.

Моделирование динамики численности крымско-кавказской единицы запаса выполнено при помощи когортной модели расширенного анализа выживания – XSA (eXtended survivour analysis) [Darby, Flatman, 1994; Бабаян и др., 2018]. При моделировании выполнялось восстановление биомассы и численности нерестовой популяции в возрасте 1–4 лет (SSB), промысловая смертность для возрастных когорт 1–3 лет (Fbar), а также численность пополнения нерестового запаса в возрасте 0+ лет (Rec).

Параметризация модели произведена в соответствии с ранее выполненной работой [Пятинский и др., 2020]. При диагностике модели был уточнен параметр допустимой ошибки стягивания (shinkage.se) — ретроспективная диагностика указала на более надежные результаты при увеличении допустимой неопределенности при помощи увеличения ошибки стягивания с 0,5 (использованной ранее на входных данных 1994–2019 гг.) до 1,0.

Результаты

В ходе предварительной диагностики устойчивости и надежности модели был выполнен ретроспективный тест и его аналитическая интерпретация — тест Мона [Mohn, 1999]. Полученные показатели теста Мона $p_{SSB} = -0.07$, $p_{Fbar} = 0.23$ существенно не выходят за интервал рекомендованных значений для когортных моделей p = [-0.22; +0.2]. Несколько отклоняющееся значение коэффициента Мона при p_{Fbar} указывает на возможную незначительную переоценку уровня промысловой смертности в прогнозном периоде.

При диагностике невязок индексов изобилия возрастной структуры по результатам съемок у берегов Крыма и Кавказа не было выявлено трендовых возрастных или годовых отклонений, которые могли бы ухудшить надежность модели. При диагностике невязок были получены следующие максимальные значения за последние 4 года — для Крымской съемки: $residual_{Crimea}$ = [-0,9; 1,3], $residual_{Caucasian}$ = [-1,5; 1,4]. Имеющиеся невязки подгонки модели к индексам изобилия не отклонялись от предельного диапазона допустимых невязок на логарифмической шкале [-2,25; +2,25].

В целом итоги диагностики свидетельствовали об удовлетворительной подгонке модели XSA для описания динамики численности запаса крымско-кавказской единицы запаса черноморского шпрота. Результаты оценивания нерестовой биомассы запаса, промысловой смертности, численности пополнения и предосторожных ориентиров управления в соответствии с ранее описанной методикой [Пятинский и др., 2020], представлены на рис. 1.

Рис 1. Результаты моделирования крымско-кавказской единицы запаса черноморского шпрота: а) Оценки нерестовой биомассы запаса, граничного (Blim) и предосторожного (Вра) ориентира управления запасом, численности пополнения нерестового запаса; б) Оценки промысловой смертности и предосторожный ориентир эксплуатации (F0.1)

На основе полученной ретроспективной модели динамики запаса крымско-кавказской единицы запаса шпрота был выполнен краткосрочный прогноз при разных сценариях его эксплуатации в период 2022–2024 гг., таблица 1. В качестве прогнозных сценариев рассматриваются 3 сценария:

- сценарий «статус-кво» F_SQ прогноз на уровне эксплуатации близком к среднемноголетнему в период 2019–2021 гг.;
- предосторожный сценарий F0.1 прогноз при эксплуатации на уровне предосторожного ориентира F0.1 = 0,605;
- сценарий максимально устойчивого вылова FMSY прогноз при эксплуатации на уровне максимально устойчивого вылова FMSY.

Таблица 1. Прогноз биомассы и вылова крымско-кавказской единицы запаса черноморского шпрота в период 2022–2024 гг. при различных сценариях эксплуатации, тыс.

T.							
Сценарий эксплуатации в 2022–2024 гг.							
Го	од	F(SQ)=0,46		F(0.1)=0,605		F(MSY)=0,64	
		Биомасса	Вылов	Биомасса	Вылов	Биомасса	Вылов
20	022	82,7	19,1	82,7	23,6	82,7	24,6
20	023	75,2	17,9	70,9	20,4	69,9	20,9
20	024	71,5	16,9	65,7	18,4	64,5	18,7

Обсуждение результатов

Результаты ретроспективного моделирования, рис. 1, указывают на снижение биомассы нерестового запаса шпрота в период с 2001 по 2012 гг. на фоне очевидной тенденции снижения численности пополнения запаса с 2002 по 2009 гг. Начиная с 2005 г. снижение биомассы запаса и численности пополнения отчасти обуславливалось промысловой переэксплуатацией. В период 2005-2012 гг. промысловая смертность регулярно превышала уровень рациональной эксплуатации и предосторожный ориентир $F_{0.1}$. Основными причинами стремительного сокращения нерестового запаса и численности пополнения в период 2001-2004 гг. являлись изменение состояния среды обитания шпрота и реакция ее биотической составляющей на вселение двух инвазивных видов пищевых конкурентов гребневиков [Shiganova et.al., 2003], а также участившиеся массовые заходы средиземноморской хищной пеламиды в Черное море, вплоть до берегов Крыма [Genc et.al., 2019].

Относительная стабилизация биомассы запаса в период 2013—2021 гг. обусловлена сокращением уровня промысловой смертности и отсутствием признаков значимой переэксплуатации в этот период, рис. 1б. Тем не менее, в данный период продолжается снижение качественных характеристик шпрота (навесок особей по возрастам) по причине монотонного потепления температуры воды [Пятинский и др., 2022]. Начиная с 2019 г. отмечается незначительное сокращение нерестовой биомассы запаса (с 101 тыс. т. в 2019 г. до 84 тыс. т. в 2021 г.) и заметное сокращение численности пополнения нерестового стада (с 104 млрд экз. в 2019 г. до 70 млрд экз. в 2021 г.).

В современный период отмечается постепенное уменьшение количества судов на промысле шпрота – с 35 шт. в 2018 г. до 27 шт. в 2021 г., сопровождающееся увеличением средних уловов на час траления с 1,22 т в 2018 г. до 2,02 т в 2021 г. В 2022 г. по состоянию на август произошло еще более стремительное сокращение количества судов на промысле – до 19 единиц, в результате чего величина промыслового усилия снизилась на 58 % относительно предшествующего года, и это привело к соответствующему снижению объемов добычи черноморского шпрота. В крымских водах, где траловый промысел шпрота производится преимущественно среднетоннажными судами, падение вылова по состоянию на 1 августа 2022 г. по отношению к аналогичному периоду 2021 г., составило 41 %, при этом производительность лова (уловы на единицу обловленной площади) по отношению к

аналогичному периоду 2021 г. заметно увеличилась (рис. 2). У берегов Кавказа, где работает исключительно малотоннажный флот, снизился и вылов (на 71 %), и его производительность.

Рис 2. Промысловые уловы шпрота на единицу площади, т/км 2 в 2021 и 2022 г. по состоянию на август

Общей причиной снижения промысловых усилий являлось удорожание топлива, к которой добавились другие — частичное закрытие районов промысла в северо-западной части Черного моря и аномально высокое развитие апвеллинга у берегов Кавказа, отрицательно повлиявшее на плотность облавливаемых косяков шпрота. Мониторинг тралового промысла шпрота в августе 2022 г. показывает сохранение отмеченных выше отрицательных факторов, и нарастание его недолова по отношению к минувшему году.

Заключение

Полученные результаты моделирования свидетельствуют о допустимой эксплуатации крымско-кавказской единицы запаса шпрота на уровне 18–20 тыс. т в период 2023–2024 г. Однако наблюдаемая в последние 5 лет тенденция сокращения числа судов в совокупности с возможным повторением в прогнозируемом периоде неблагоприятных условий ведения промысла шпрота, включая антропогенные и природные факторы снижения доступности его запаса, может привести к существенному недолову относительно прогнозируемых значений.

Благодарность

Авторы благодарят Шляхову О.В., Исачкова А.Е. за многолетний труд по сбору и обработке биологических материалов шпрота.

Список литературы

- 1. *Асланова Н.Е.* Шпрот Черного моря // Труды ВНИРО. 1954. Т. 28. С. 75–100.
- 2. *Бабаян В.К., Бобырев А.Е., Булгакова Т.И.* и др. Методические рекомендации по оценке запасов приоритетных видов водных биологических ресурсов. // М.: Изд-во ВНИРО. 2018. 312 с.
- 3. *Голенченко А.П.* Шпрот в Черном море // Рыбное хозяйство. 1940. № 9. С. 11—14.
- 4. *Любимова Т.Г.* О распределении шпрота в северо-западной части Черного моря // Рыбное хозяйство. -1957. -№ 12. C. 62-64.
- 5. *Пятинский М.М., Шляхов В.А., Шляхова О.В.* Динамика запасов шпрота в Черном море и перспективы его освоения // Вопросы рыболовства. 2020. Т. 21, № 4. С. 396-410.

- 6. *Genç Y., Başçınar N. S., Dağtekin M.* Feeding habits during migration of the Atlantic bonito Sarda sarda (Bloch, 1793) to the Black Sea // Marine Biology Research. 2019. Vol. 15, №. 2. P. 125–136.
- 7. *Mohn R*. The retrospective problem in sequential population analysis: an investigation using cod fishery and simulated data // ICES Journal of Marine Science. − 1999. − Vol. 56, № 4. − P. 473–488.
- 8. *Shiganova T.A., Musaeva E.I., Bulgakova Yu.V.*, et.al. Invaders ctenophores Mnemiopsis leidyi (A. Agassiz) and Beroe ovata Mayer 1912, and their influence on the pelagic ecosystem of Northeastern Black Sea // Biology Bulletin of the Russian Academy of Sciences. − 2003. − Vol. 30, № 2. − P. 180–190.