

SEQUENCE LISTING

Yu , Su-May Shaw, Jei-Fu

<120> TRANSGENIC SEEDS EXPRESSING AMYLOPULLULANASE AND USES THEREOF

<130> 08919-067001

<140> 10/050,763

<141> 2002-01-16

<160> 13

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1481

<212> PRT

<213> Thermoana ethanolicus <400> 1 Met Phe Lys Arg Arg Thr Leu Gly Phe Leu Leu Ser Phe Leu Leu Ile 10 Tyr Thr Ala Val Phe Gly Ser Met Pro Val Gln Phe Ala Lys Ala Glu 20 25 Thr Asp Thr Ala Pro Ala Ile Ala Asn Val Val Gly Asp Phe Gln Ser 40 Lys Ile Gly Asp Ser Asp Trp Asn Ile Asn Ser Asp Lys Thr Val Met Thr Tyr Lys Gly Asn Gly Phe Tyr Glu Phe Thr Thr Pro Val Ala Leu 75 Pro Ala Gly Asp Tyr Glu Tyr Lys Val Ala Leu Asn His Ser Trp Glu 90 Gly Gly Gly Val Pro Ser Gln Gly Asn Leu Ser Leu His Leu Asp Ser 105 Asp Ser Val Val Thr Phe Tyr Tyr Asn Tyr Asn Thr Ser Ser Val Thr 120 Asp Ser Thr Lys Tyr Thr Pro Ile Pro Glu Glu Lys Leu Pro Arg Ile 135 140 Val Gly Thr Ile Gln Ser Ala Ile Gly Ala Gly Asp Asp Trp Lys Pro 150 155 Glu Thr Ser Thr Ala Ile Met Arg Asp Tyr Lys Phe Asn Asn Val Tyr 165 170 Glu Tyr Thr Ala Asn Val Pro Lys Arg Tyr Tyr Glu Phe Lys Val Thr 185 190

Leu Gly Pro Ser Trp Asp Ile Asn Tyr Gly Leu Asn Gly Glu Gln Asn 195 200

Gly Pro Asn Ile Pro Leu Asn Val Ala Tyr Asp Thr Lys Ile Thr Phe 215 220

Tyr Tyr Asp Ser Val Ser His Asn Ile Trp Thr Asp Tyr Asn Pro Pro 230 235

Leu Thr Gly Pro Asp Asn Asn Ile Tyr Tyr Asp Asp Leu Lys His Asp 245 250

Thr His Asp Pro Phe Phe Arg Phe Ala Phe Gly Ala Ile Lys Thr Gly 265 Asp Thr Val Thr Leu Arg Ile Gln Ala Lys Asn His Asp Leu Glu Ser 280 Ala Lys Ile Ser Tyr Trp Asp Asp Ile Lys Lys Thr Arg Thr Glu Val Pro Met Tyr Lys Ile Gly Gln Ser Pro Asp Gly Gln Tyr Glu Tyr Trp 310 Glu Val Lys Leu Ser Phe Asp Tyr Pro Thr Arg Ile Trp Tyr Tyr Phe 325 330 Ile Leu Lys Asp Gly Thr Lys Thr Ala Tyr Tyr Gly Asp Asn Asp Glu 340 345 Gln Leu Gly Gly Val Gly Lys Ala Thr Asp Thr Val Asn Lys Asp Phe 360 Glu Leu Thr Val Tyr Asp Lys Asn Leu Asp Thr Pro Asp Trp Met Lys 375 Gly Ala Val Met Tyr Gln Ile Phe Pro Asp Arg Phe Tyr Asn Gly Asp 390 395 Pro Leu Asn Asp Arg Leu Lys Glu Tyr Ser Arg Gly Phe Asp Pro Val 405 410 Glu Tyr His Asp Asp Trp Tyr Asp Leu Pro Asp Asn Pro Asn Asp Lys 425 Asp Lys Pro Gly Tyr Thr Gly Asp Gly Ile Trp Asn Asn Asp Phe Phe 440 Gly Gly Asp Leu Gln Gly Ile Asn Asp Lys Leu Asp Tyr Leu Lys Asn 455 460 Leu Gly Ile Ser Val Ile Tyr Leu Asn Pro Ile Phe Gln Ser Pro Ser 470 475 Asn His Arg Tyr Asp Thr Thr Asp Tyr Thr Lys Ile Asp Glu Leu Leu 485 490 Gly Asp Leu Asp Thr Phe Lys Thr Leu Met Lys Glu Ala His Ala Arg 500 505 Gly Ile Lys Val Ile Leu Asp Gly Val Phe Asn His Thr Ser Asp Asp 520 Ser Ile Tyr Phe Asp Arg Tyr Gly Lys Tyr Leu Asp Asn Glu Leu Gly 535 Ala Tyr Gln Ala Trp Lys Gln Gly Asp Gln Ser Lys Ser Pro Tyr Gly 550 555 Asp Trp Tyr Glu Ile Lys Pro Asp Gly Thr Tyr Glu Gly Trp Trp Gly 565 570 Phe Asp Ser Leu Pro Val Ile Arg Gln Ile Asn Gly Ser Glu Tyr Asn 585 Val Lys Ser Trp Ala Asp Phe Ile Ile Asn Asn Pro Asn Ala Ile Ser 600 Lys Tyr Trp Leu Asn Pro Asp Gly Asp Lys Asp Ala Gly Ala Asp Gly 615 Trp Arg Leu Asp Val Ala Asn Glu Ile Ala His Asp Phe Trp Val His 630 635 Phe Arg Ala Ala Ile Asn Thr Val Lys Pro Asn Ala Pro Met Ile Ala 645 650 Glu Leu Trp Gly Asp Ala Ser Leu Asp Leu Leu Gly Asp Ser Phe Asn 660 665 Ser Val Met Asn Tyr Leu Phe Arg Asn Ala Val Ile Asp Phe Ile Leu 680 Asp Lys Gln Phe Asp Asp Gly Asn Val Val His Asn Pro Ile Asp Ala 695 700 Ala Lys Leu Asp Gln Arg Leu Met Ser Ile Tyr Glu Arg Tyr Pro Leu

705					710					715					720
				725					730	Gly	Ser			735	Met
			Thr 740					745					750		
		755					760					765			
	770		Met			775					780				_
785			Gln		790					795					800
			Arg	805					810					815	
			Arg 820					825					830		
		835					840					845			
	850		Asp			855					860				
865			Asn		870					875					880
			Arg	885					890					895	
			Val 900					905					910		
		915	Ile				920					925			
	930		Thr			935					940				-
945			Ser		950					955				_	960
			Lys	965					970					975	
			Tyr 980					985					990		
		995	Thr				1000)				1005	,		
	1010)	Glu			1015	5				1020)		_	
1025)		Val		1030)				1035	5				1040
			Glu	1045	•				1050)				1055	,
			Met 1060)				1065	5				1070)	
		1075					1080	l				1085	ı		
	1090)	Trp			1095	i				1100				
1105	•		Met		1110)				1115	,				1120
			Arg	1125					1130)				1135	
			Asp 1140					1145	,				1150		
110	SET	1155	Asp	۷dl	GIU	PEO	Pro 1160	rnr	ΑΙΑ	Leu	GŢĀ	Leu 1165		Gln	Pro

Gly Ile Glu Ser Ser Arg	y Val Thr Leu Asn T 1175		Asp
Asn Val Ala Ile Tyr Gly	Y Tyr Glu Ile Tyr L		
		195	1200
Gly Pro Phe Val Lys Ile 1205	Ala Thr Val Ala A 1210	sp Thr Val Tyr Asn 1215	- -
Val Asp Thr Asp Val Val 1220	l Asn Gly Lys Val T 1225	yr Tyr Tyr Lys Val	Val
Ala Val Asp Thr Ser Phe	Asn Arg Thr Ala S 1240		Ala
Thr Pro Asp Ile Ile Pro	Ile Lys Val Ile P		Pro
	1255	1260	
Asp Tyr Thr Pro Asp Asp 1265 127	70 1.	275	1280
Ala Phe Trp Asn Pro Ser 1285	Ala His Gln Met Ti		Asn
Thr Tyr Ser Ile Thr Leu	Thr Leu Asn Glu G	1295 ly Thr Gln Leu Glu	Tyr
1300 Lys Tyr Ala Arg Gly Ser	1305	1310	
1315	1320	1325	GIÀ
Glu Glu Ile Ala Asn Arg 1330	Lys Ile Thr Val Val Val Va	al Asn Gln Gly Ser 1340	Asn
Thr Met Val Val Asn Asp	Thr Val Gln Arg T	rp Arg Asp Leu Pro	Ile
1345 135	0 13	355	1360
Tyr Ile Tyr Ser Pro Lys 1365	1370	1375	
Glu Ile Glu Ile Lys Gly 1380	1385	1390	
Asn Asp Glu Ser Phe Val 1395	Gln Gln Glu Asn Gl 1400	ly Val Phe Thr Lys	Val
Val Pro Leu Glu Tyr Gly 1410			Pro
Ser Gly Asp Lys Asn Asn		1420	
1425 143			vai 1440
Ile Arg Glu Glu Pro Val 1445	Gln Glu Lys Glu Pr	to Thr Pro Thr Pro	Glu
Ser Glu Pro Ala Pro Met	1450 Pro Glu Pro Gln Pr	1455 to Thr Pro Thr Pro	Glu
1460 Pro Gln Pro Ser Ala Ile	1465	1470	
1475	1480		
<210> 2			
<210> 2 <211> 2863			
<212> DNA			
<213> Thermoana ethano	licus		
<400> 2			
ttaagcttgc atcttgattc ac	gattctgta gtaactttt	t attacaacta taata	cttca 60
agtgttactg attcacaaaa ta	atacaccaa ttccggaag	a aaaacttcca agaatt	totao 120
gtactataca atcagcaata go	gagcaggtg atgattgga	a acctgaaaca tcgac	arcta 180
taatgagaga ctataagttt aa	acaatgttt acgaataca	c tocaaatott ccaaaa	aagat 240
attatgagtt taaagtaact ti	tagggccct catgggata	t aaattatggc ttaaaf	taata 300
aacaaaatgg tccaaatatt co	ctttgaatg tagcctatg	a tactaagatt acatti	tact 360
atgattcggt ttcacataat at	catggacag attacaatc	c acctctcaca gggcc1	gata 420
ataacatata ttatgacgat tt	adaacatg acacccatg	a cccattcttc cgctto	egett 480
tcggtgcaat aaaaacaggt ga ttgagtcagc taaaatttct ta	attgggatg atattaaaa	u acaggetaaa aateat a aacaagaaca gaagto	gacc 540 cccga 600
			94 000

tgtataaaat	tggtcaaagt	cctgacgggc	aatatgaata	ctgggaagtg	aagttaagct	660
ttgactatcc	cacaagaatt	tggtattact	ttatacttaa	agacgggaca	aaaactqctt	720
attacggaga	taacgatgaa	caattaggtg	gagtaggtaa	agccacagat	acggtaaata	780
aagactttga	acttactgta	tacgataaaa	atttagacac	ccctgattgg	atgaaagggg	840
cagtaatgta	tcaaatattc	ccagatagat	tttacaatgg	tgacccttta	aatgaccgcc	900
taaaggaata	cagtagaggt	tttgatcctg	ttgaatatca	tgacgactgg	tatgaccttc	960
ccgacaatcc	gaatgataaa	gataaacctg	gatatacagg	ggatggtata	tggaataatg	1020
acttctttgg	tggtgattta	caaggtataa	atgataaatt	ggattatcta	aaaaaccttg	1080
gaatatcagt	tatttatctc	aatccaattt	tccaatcacc	ttccaatcac	cgatatgata	1140
caaccgatta	cacaaagata	gacgagttat	tgggagattt	agatacattt	aaaacactta	1200
tgaaagaagc	ccatgcaaga	ggaattaaag	taatacttga	tggcgtcttc	aatcatacaa	1260
gtgatgatag	tatttattt	gatagatacg	ggaagtactt	ggataatgaa	ttaggtgctt	1320
atcaagcctg	gaaacaggga	gatcagtcaa	aatctccata	cggtgactgg	tacqaaatta	1380
agcctgacgg	tacctatgag	ggctggtggg	gatttgacag	cttaccggta	ataaggcaga	1440
taaacggaag	tgagtacaat	gtaaaaagtt	gggcagattt	tatcataaat	aatcctaatq	1500
caatatctaa	gtattggtta	aatcctgatg	gggataaaga	tgcaggtgca	gatggctgga	1560
gattggatgt	tgcaaatgaa	attgctcacg	atttctgggt	tcattttaga	gctgcaatta	1620
atactgtgaa	accaaatgcg	ccaatgattg	cagaactttg	gggagatgct	tcattagatt	1680
tacttggaga	ttcttttaac	tctgttatga	actatctttt	tagaaatgca	gttattgatt	1740
ttatactcga	taaacagttt	gatgatggaa	atgtggttca	caatcctata	gatgcagcaa	1800
aacttgacca	aaggcttatg	agcatatatg	agagatatcc	tcttccaqta	ttttattcta	1860
ctatgaacct	tttaggttct	catgacacca	tgagaatatt	gacagtattt	ggatataact	1920
ctgctaatga	aaatcaaaat	tctcaagagg	cgaaagacct	tgcagttaag	aggettaaac	1980
ttgccgcaat	attgcaaatg	ggctatccgg	gaatgccttc	tatttactat	ggtgacgagg	2040
caggacaatc	tggtggaaaa	gacccagata	acaggagaac	attctcttgg	ggaagagaag	2100
ataaagatct	gcaggatttc	tttaagaaag	tcgtaaacat	aaggaatgaa	aatcaagttt	2160
taaaaacagg	agaccttgaa	acactttatg	caaatggcga	tgtttatgcc	tttggaagaa	2220
gaattataaa	tggaaaagat	gtatttggta	attcttatcc	tgacagtgta	gctattgttg	2280
tgattaataa	aggtgaggca	aagtcagtac	aaatagatac	tactaaattt	gtaagagatg	2340
gagttgcttt	tacagatgcc	ttaagtggta	agacatacac	ggttcgtgat	ggacaaattg	2400
ttgtagaagt	tgtggcattg	gatggggcta	tactcatttc	agatccagga	cagaatttga	2460
cggcacctca	gccaataaca	gaccttaaag	cagtttcagg	aaatggtcaa	gtagaccttt	2520
cgtggagtgc	agtagataga	gcagtaagtt	ataacattta	ccqctctaca	gtcaaaggag	2580
ggctatatga	aaaaatagct	tcaaatgtta	cgcaaattac	ttatattgat	acagatgtta	2640
ccaatggtct	aaagtatgtg	tattctgtaa	cggctgtaga	tagtgatgga	aatgaaagtg	2700
ctttaagcaa	tgagttgagg	catatccagc	attttctatt	ggttgggcag	gaaatatgaa	2760
ccaagttgat	acccatgtaa	taggcgtaaa	taatccagtt	gaagtttatq	ctgaaatttg	2820
ggcagaagga	ttaacagata	aacctggcca	aggggaaaat	atg	,	2863
				-		
<210> 3						
<211> 29						
<212> DNA						
<213> Artif	icial Seque	ence				
<220>						
<223> Prime	~					
<223> PIIMe	ī					
<400> 3						
ggggaattcg	atctcgattt	ttgaggaat				20
JJJJ						29
<210> 4						
<211> 29						
<212> DNA						
<213> Artif	icial Seque	nce				
	•					
<220×						

<220>

<223> Primer

<400> 4 gggggatccc atagctattt gtacttgct	29
<210> 5 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 5 gggggatccg ggattaaata gctgggcca	29
<210> 6 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 6 cgggattcct taagcttgca tcttga	26
<210> 7 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 7 ccggcggccg cctacatatt ttccccttgg cca	33
<210> 8 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 8 tccgagctcc agatcgttca aacattt	27
<210> 9 <211> 26 <212> DNA <213> Artificial Sequence	
<220>	
<400> 9	

agcgagctcg atcgatctag taacat	26
<210> 10 <211> 27	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 10	
cgccgcggta gctttagcta tagcgat	27
<210> 11 <211> 27	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 11 tccccgcggg tcctctaagt gaaccgt	27
<210> 12 <211> 28	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 12 cgcatatgtt aagcttgcat cttgattc	28
<210> 13	
<211> 31	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
VSCON LITHIGE	
<400> 13	
ccgctcgagc tacatatttt ccccttggcc a	31