Inteligência Computacional para Otimização

Marcone Jamilson Freitas Souza

Departamento de Computação http://www.iceb.ufop.br/prof/marcone

- Área da Pesquisa Operacional que utiliza o método científico para <u>apoiar</u> a tomada de decisões, procurando determinar como melhor projetar e operar um sistema, usualmente sob condições que requerem a alocação de recursos <u>escassos</u>
- Trabalha com modelos determinísticos
 - As informações relevantes são assumidas como conhecidas (sem incertezas)
- Aplicações típicas:
 - Roteirização, Programação de horários (timetabling)
 - Escala de motoristas, Seqüenciamento da produção

Problema de Roteamento de Veículos (Vehicle Routing Problem)

Problema de Roteamento de Veículos (Vehicle Routing Problem)

Dentre todas as possíveis roteirizações, determine aquela que minimiza a distância total percorrida

3

Redução de um tripulante!

INTRODUÇÃO

- √ Montar uma tabela de jogos entre os times participantes de uma competição esportiva
- ✓ Satisfazer as restrições da competição
- ✓ Minimizar os custos relativos ao deslocamento dos times

INTRODUÇÃO

Vitória x Atlético | Grêmio x Atlético | Atlético x Santos Distância total percorrida: 6760 Km

Atlético x Vitória | Grêmio x Atlético | Atlético x Santos Distância total percorrida: 5382 Km

Economia = 1378 Km

JUSTIFICATIVA DO TRABALHO

- Gastos com deslocamento
- Influência no desempenho dos times
- Enquadra-se na classe de problemas NP-difíceis
- Número de tabelas possíveis para uma competição envolvendo n times confrontando-se entre si em turnos completos (Concílio & Zuben (2002)):

$$(n-1)!(n-3)!(n-5)!...(n-(n-1)) \bowtie 2^{(n-1)\times \frac{n}{2}}$$

 Competição com 20 participantes: 2,9062x10¹³⁰ tabelas possíveis (aprox. 10¹¹⁴ anos para analisar todas as tabelas em um computador que analisa uma tabela em 10⁻⁸ segundos)

PROBLEMA ABORDADO

- 1ª Divisão do Campeonato Brasileiro de Futebol 2004, 2005 e 2006
- 2ª Divisão do Campeonato Brasileiro de Futebol 2006
- Competições realizadas em dois turnos completos e espelhados
- Restrições do problema
- 1. Dois times jogam entre si duas vezes, uma no turno e a outra no returno, alternando-se o mando de campo entre os mesmos
- 2. Nas duas primeiras rodadas de cada turno, cada time alternará seus jogos, sendo um em casa e o outro na casa do adversário. Por ex.: 1ª fora, 2ª em casa
- 3. As duas últimas rodadas de cada turno devem ter a configuração inversa das duas primeiras rodadas de cada turno com relação ao mando de campo. Ex.: Penúltima em casa, Última fora
- 4. Não pode haver jogos entre times do mesmo estado na última rodada
- 5. A diferença entre os jogos feitos em cada turno em casa e fora de casa de um time não pode ser maior que uma unidade
- 6. Um time não pode jogar mais que duas vezes consecutivas dentro ou fora de casa

RESULTADOS COMPUTACIONAIS

Melhores soluções obtidas pelos métodos

Instâncias	CBF		Biajoli et	al. (2004)	ILS-MRD				
IIIstalicias	DIST	DIF	DIST	DIF	DIST	DIF	%MDIST	%MDIF	
bssp2004	905316	86610	789480	53309	754935	51199	16,61	40,89	
bssp2005	838464	70655	-	-	696800	46821	16,90	33,73	
bssp2006-A	658195	50769	-	-	562886	37628	14,48	25,88	
bssp2006-B	998675	61454	-	-	967374	23848	3,13	61,19	

- DIST: Distância total percorrida por todos os times durante o campeonato
- DIF: Distância entre o time que mais viajou e o que menos viajou
- 2004:
 - Time que menos viajou: Santos ; Campeão: Santos
- 2005:
 - Time que menos viajou: Vasco; Campeão: Coríntians (viajou 500 Km a mais que o Vasco)

RESULTADOS COMPUTACIONAIS

Melhores soluções obtidas pelos métodos

Instâncias	CBF		Biajoli et	al. (2004)	ILS-MRD				
IIIStaticias	DIST	DIF	DIST	DIF	DIST	DIF	%MDIST	%MDIF	
bssp2004	905316	86610	789480	53309	754935	51199	16,61	40,89	
bssp2005	838464	70655	-	-	696800	46821	16,90	33,73	
bssp2006-A	658195	50769	-	-	562886	37628	14,48	25,88	
bssp2006-B	998675	61454	-	-	967374	23848	3,13	61,19	

Economia possível:

- ✓ Considerando o custo do quilômetro aéreo a R\$0,70
- ✓ Delegação de 20 pessoas
- ✓ Campeonatos 2004 e 2005, Série A: Aprox. R\$ 2 milhões
- ✓ Campeonato 2006, Série A: Aprox. R\$ 1 milhão
- ✓ Campeonato 2006, Série B: Aprox. R\$ 500 mil

- Aplicação na mina Cauê, Itabira (MG), da CVRD
- 3 pátios de estocagem de minérios
- Minérios empilhados em balizas
- Pilhas formadas por subprodutos com composição química e granulométrica diferentes
- Objetivo é compor um lote de vagões (± 80), atendendo às metas de qualidade e produção de um dado produto
- Exemplos de algumas restrições operacionais:
 - Retomar uma pilha toda sempre que possível
 - Concentrar retomada
 - Retomar minério da esquerda para a direita e de cima para baixo

Pátio de Estocagem Cauê

Equipamentos de empilhamento e recuperação

Recuperadora (Bucket Wheel)

Recuperadora Tambor (Drum)

Empilhadeira (Stacker)

Silos de embarque

Programação/Simulação

	SECA	Fe	SiO ₂	P	Al ₂ O ₃	Mn	MgO	H2O	+6,3	+1,0	-0,15
LSG		-	4,35	0,040	1,00	0,600	-	-	11,00	-	37,00
LSE		-	3,85	0,028	0,80	0,300	-	6,50	8,00	•	27,00
META		-	3,60	0,022	0,70	0,150	-	-	6,50	61,00	22,00
LIE		-	-	-	-	-	-	-	-	58,00	-
LIG		-	-	-	-	-	-	•	-	52,00	-
CRIT.		-	CR	CR	CR	-	-	-	-	-	CR

SFCA	Fe	SiO ₂	P	Al ₂ O ₃	Mn	MgO	H2O	+6,3	+1,0	-0,15
LSG	-	5,10	0,059	1,80	-	-	7,50	•	-	44,00
LSE	-	4,50	0,043	1,40	-	-	6,50	•	-	36,00
META	-	4,20	0,035	1,20	0,170	-	6,00	-	53,00	32,00
LIE	65,00	3,70	-	-	-	-	-	•	-	-
LIG	-	2,70	-	-	-	-	•	•	-	-
CRIT.	-	CR	MI	CR	-	-	MI	-	-	CR

Carregamento de produtos em Navios

Produto 1

Produto 2

• • •

Produto m

- Turnos de 6 horas de trabalho:
 - 7h-13h
 - 13h-19h
 - 19h-1h
 - 1h-7h
- 8 tipos de turnos:
 - Dia útil (horários normal e noturno)
 - Sábado (horários normal e noturno)
 - Domingo (horários normal e noturno)
 - Feriado (horários normal e noturno)
- Terno: equipe de trabalho atuando em um porão durante um turno

- Existe um certo número de máquinas disponíveis para fazer o carregamento do navio: CN, CG e GB.
- Cada máquina possui uma produtividade diferente para cada tipo de produto.

- Produtos carregados em uma ordem preestabelecida.
- As equipes são remuneradas de acordo com a produção (ton.).
- Os custos variam de acordo com o produto carregado e o tipo do turno em que ocorre o terno.
- O custo total é dado pelo somatório dos custos com docas, encarregados, guincheiros, conferentes, estivadores e equipamento utilizado.

- Custo do carregamento dado pelo somatório dos custos dos ternos
- Carregamento concluído depois da data prevista em contrato:
 - Demurrage (multa por dia de atraso)
- Carregamento concluído antes da data prevista em contrato:
 - Prêmio (metade da multa)
- Objetivo é reduzir os custos com a mãode-obra

Diferenças entre as metodologias usadas para resolver os problemas anteriores

- Problema do controle do pátio de minérios: resolvido de forma "exata" (Encontrada a solução ótima);
- Problema da alocação de jogos: resolvido de forma "aproximada" (a solução final não é necessariamente ótima)
- Problema de carregamento de produtos em navios: também resolvido de forma "aproximada"

- Imagine que os alunos da disciplina sejam contemplados com um cruzeiro marítimo após o término do curso;
- Porém, em alto mar o navio começa a afundar...
- Só existe um barco salva-vidas, que, no entanto, só pode levar c quilos

Exemplo: Problema da Mochila

- Cada pessoa no navio tem um certo peso pi
- Cada pessoa i proporciona um benefício b_i se for levada para o barco salva-vidas
- O problema consiste em escolher as pessoas que trarão o maior benefício possível <u>sem ultrapassar</u> a capacidade do barco

Exemplo: Problema da Mochila

Pessoa	Peso (Kg)	Benefício

✓ Capacidade do barco: 250 Kg.

Pessoa	Peso (Kg)	Benefício
cruzeirense	140	0

Peso (Kg)	Benefíci	0
140		
170	0	
60	1	
		140 0 60 1

Pessoa	Peso (Kg)	Benefício
cruzeirense	140	0
Recém-graduado	60	1
ATLETICANO	100	3

Pessoa	Peso (Kg)	Benefício
cruzeirense	140	0
Recém-graduado	60	1
ATLETICANO	100	3
Professor de geografia	80	4

Pessoa	Peso (Kg)	Benefício	O
cruzeirense	140	0	
Recém-graduado	60	1	
ATLETICANO	100	3	
Professor de geografia	80	4	
Morena "olhos verdes"	75	3	

Pessoa	Peso (Kg)	Benefíci	0
cruzeirense	140	0	
Recém-graduado	60	1	
ATLETICANO	100	3	
Professor de geografia	80	4	
Morena "olhos verdes"	75	3	
Loira	60	2	

Pessoa	Peso (Kg)	Benefíci	0
cruzeirense	140	0	
Recém-graduado	60	1	
ATLETICANO	100	3	
Professor de geografia	80	4	
Morena "olhos verdes"	75	3	
Loira	60	2	
Marcone	90	10	

- ✓ Capacidade do barco: 250 Kg.
- ✓ Solução 1: M + L + A (250 Kg) Benefício = 15

Pessoa	Peso (Kg)	Benefíci	O
cruzeirense	140	0	
Recém-graduado	60	1	
ATLETICANO	100	3	
Professor de geografia	80	4	
Morena "olhos verdes"	75	3	
Loira	60	2	
Marcone	90	10	

✓ Capacidade do barco: 250 Kg.

✓ Solução 1: M + L + A (250 Kg) Benefício = 15

✓ Solução 2: M + MOV + PG (245 Kg) Benefício = 17

Complexidade do Problema da mochila

- Para n pessoas há 2ⁿ configurações possíveis
- Exemplo: Para n = 50 há 10^{15} soluções para serem testadas
- Um computador que realiza uma avaliação em 10⁻⁸ segundos gastaria cerca de 130 dias para encontrar a melhor solução por enumeração completa!
- Conclusão: O barco afundaria antes que fosse tomada a decisão de quem seriam os escolhidos

Problema da Mochila: observações

- Problema NP-difícil
- Ainda não existem algoritmos que o resolva em tempo polinomial
- Abordado por métodos heurísticos

Possibilidade de resolver os problemas anteriores na otimalidade

- Problema do controle do pátio de minérios: relativamente fácil encontrar a solução ótima;
- Problema da alocação de jogos: praticamente impossível encontrar a melhor solução em um tempo razoável (quando há muitos times):
 - Em um torneio com 20 times existem 2,9062×10¹³⁰ tabelas possíveis (9x10¹¹⁴ anos para resolvê-lo);
 - Problema NP-difícil;
 - Tempos proibitivos para encontrar a melhor solução na maioria dos casos reais

Programação matemática

Fundamentação: na matemática

Vantagem: garantem a solução ótima (menor custo)

Desvantagens:

Modelagem mais complexa

Podem gastar um tempo proibitivo para gerar a solução ótima

✓ Nem sempre conseguem produzir uma (boa) solução viável rapidamente

Heurísticas

Fundamentação: na Inteligência Artificial

Vantagens:

De fácil implementação

Produzem boas soluções rapidamente

Desvantagem:

✓ Não garantem a otimalidade da solução obtida