Transformations

V – Transformée de Fourier

G. Chênevert

23 novembre 2021

Au menu aujourd'hui

De Laplace à Fourier

De C. Fourier à T. Fourier

Transformée de Fourier

Rappel : transformée de Laplace

$$X(\mathbf{p}) = \int_0^{+\infty} x(t) e^{-\mathbf{p}t} dt \qquad \longleftrightarrow \qquad x(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} X(\mathbf{p}) e^{+\mathbf{p}t} d\mathbf{p}$$

Outil parfaitement adapté à

- la résolution mécanique d'ÉDO linéaires à coefficients constants
- l'étude de la stabilité à long terme d'un système (position des pôles)

Le problème avec Laplace

$$X(\mathbf{p}) = \int_0^{+\infty} x(t) e^{-\mathbf{p}t} dt \qquad \longleftrightarrow \qquad x(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} X(\mathbf{p}) e^{+\mathbf{p}t} d\mathbf{p}$$

On peut par contre déplorer

- le fait de privilégier des conditions initiales nulles (même si on se débrouille)
- l'asymétrie apparente entre les domaines : $t \in \mathbb{R}$ vs $p \in \mathbb{C}$
- et surtout le fait qu'on ne peut travailler sans perte qu'avec des fonctions causales.

Remarque

On peut tenter de régler ce dernier problème en travaillant plutôt avec la

transformée de Laplace bilatère :
$$X(p) = \int_{-\infty}^{+\infty} x(t) e^{-pt} dt$$

qui coı̈ncide avec la transformée usuelle lorsque le signal est de la forme $H(t) \cdot x(t)$.

(En fait : c'est techniquement ce qu'on a fait à chaque fois qu'il y avait ambiguité en 0)

Mais ça ne règle pas fondamentalement le problème. . .

Exemple

Transformée bilatère de $t \mapsto 1$???

Exponentielles complexes

$$p = \sigma + i\omega \in \mathbb{C}$$

$$e^{pt} = e^{m{\sigma}t}ig(\cos(\omega t) + \mathrm{i}\sin(\omega t)ig)$$

amortissement et pulsation

période
$$T=rac{2\pi}{\omega}$$
 fréquence $f=rac{1}{T}=rac{\omega}{2\pi}$

Analyse fréquentielle

Pour étudier le contenu fréquentiel d'un signal, il faudrait n'utiliser que des valeurs de p de la forme

$$p = i \omega = 2\pi i f$$
.

Transformée de Laplace inverse (avec $\sigma = 0$) :

$$x(t) = \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} X(p) e^{pt} dp = \int_{-2\pi i\infty}^{+2\pi i\infty} X(2\pi i f) e^{2\pi i f t} \frac{dp}{2\pi i}$$

$$= \int_{-\infty}^{+\infty} X(2\pi i f) e^{2\pi i f t} df$$

Symétrie parfaite

On voit donc que si l'on pose

$$\widehat{x}(\mathbf{f}) := X(2\pi i \mathbf{f}) = \int_{-\infty}^{\infty} x(\mathbf{t}) e^{-2\pi i \mathbf{f} \mathbf{t}} d\mathbf{t}$$

on aura

$$x(t) = \int_{-\infty}^{+\infty} \widehat{x}(f) e^{+2\pi i f t} df.$$

La variable du coté transformé s'interprète comme une fréquence $f \in \mathbb{R}$.

Au menu aujourd'hui

De Laplace à Fourier

De C. Fourier à T. Fourier

Transformée de Fourie

Autre point de vue

On se rappelle que si x(t) est un signal T-périodique, on a une représentation

$$x(t) = \sum_{n=-\infty}^{+\infty} c_n e^{\frac{2\pi i n t}{T}} = \sum_{n=-\infty}^{+\infty} c_n e^{2\pi i f_n t}$$

avec

$$c_{\mathbf{n}} = \frac{\langle \mathbf{e}_{\mathbf{n}} | x \rangle}{\|\mathbf{e}_{\mathbf{n}}\|^2} = \frac{1}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} x(t) e^{-2\pi i \mathbf{f}_{\mathbf{n}} t} dt$$

Passage au cas non-périodique

Si x(t) est un signal quelconque, on peut toujours le périodiser « de force » :

en considérant $x_T(t)$ le signal T-périodique coïncidant avec x(t) sur $[-\frac{T}{2},\frac{T}{2}]$.

$$x_T(t) = \sum_{n=-\infty}^{+\infty} c_{n,T} e^{2\pi i f_n t} = \sum_{n=-\infty}^{+\infty} \underline{T c_{n,T}} e^{2\pi i f_n t} \Delta f$$

$$x(t) = \lim_{T \to \infty} x_T(t) = \int_{-\infty}^{+\infty} \widehat{x}(f) e^{2\pi i f t} df$$

avec
$$\widehat{x}(f) = \lim_{T \to \infty} T c_{n,T} = \int_{-\infty}^{+\infty} x(t) e^{-2\pi i f t} dt$$
.

Exemple : bosses (point de vue temporel)

Exemple : bosses (point de vue fréquentiel)

Exemple : porte (point de vue temporel)

Exemple : porte (point de vue fréquentiel)

Au menu aujourd'hui

De Laplace à Fourier

De C. Fourier à T. Fourier

Transformée de Fourier

Transformée de Fourier

Définition

La transformée de Fourier d'un signal x(t) est définie par

$$\widehat{x}(f) := \int_{-\infty}^{+\infty} x(t) e^{-2\pi i f t} dt.$$

On y pense comme le « produit scalaire » (hermitien) entre

$$x(t)$$
 et $e^{2\pi i f t}$

représentant la proportion de l'onde pure $\tilde{\mathbf{e}}_{\mathbf{f}}(t) = e^{2\pi \mathbf{i} \mathbf{f} t}$ présente dans x(t).

Remarques

• $Si \times (t)$ est causal et stable quand $t \to +\infty$, on peut y penser comme

$$\widehat{x}(f) = X(2\pi i f)$$
 $X(p) = \widehat{x}\left(\frac{p}{2\pi i}\right)$

mais en général les deux transformées auront des champs d'application différents.

- On trouve dans la littérature plusieurs définitions de la transformée de Fourier :
 - en fréquence (f, ξ ou ν) ou en pulsation (ω),
 - avec facteur de normalisation : 1, $\frac{1}{\sqrt{2\pi}}$ ou $\frac{1}{2\pi}$;

l'important est de comprendre la philosophie – et de savoir mettre les bonnes constantes au bon endroit pour une convention donnée.

Remarques

$$\widehat{x}(f) = \int_{-\infty}^{+\infty} x(t) e^{-2\pi i f t} dt$$

- $\widehat{x}(0)$ représente l'aire totale sous la courbe A(x) $\widehat{x}(f) \ll$ l'aire \gg totale sous la courbe \ll tordue \gg par $e^{-2\pi i f t}$ Si cette aire diverge il est possible que $\widehat{x}(f)$ ne soit pas une fonction!
- Le signal $\widehat{x}(f)$ est en général à valeurs complexes : **spectre** de x. Il est souvent plus aisé de se représenter $|\widehat{x}(f)|$ (spectre d'amplitude) mais on perd alors l'information sur la phase.

Exemple : transformée d'une porte

Prenons une porte de largeur 1 : $\Pi(t) = \Pi_1(t)$

$$\widehat{\Pi}(\mathbf{f}) = \int_{-\infty}^{+\infty} \Pi(\mathbf{t}) e^{-2\pi i \mathbf{f} t} dt$$

$$= \int_{-\frac{1}{2}}^{+\frac{1}{2}} e^{-2\pi i \mathbf{f} t} dt$$

$$= \frac{e^{-2\pi i \mathbf{f} t}}{-2\pi i \mathbf{f}} \Big|_{-\frac{1}{2}}^{+\frac{1}{2}} = \frac{e^{-\pi i \mathbf{f}} - e^{\pi i \mathbf{f}}}{-2\pi i \mathbf{f}}$$

$$= \frac{1}{\pi \mathbf{f}} \cdot \frac{e^{\pi i \mathbf{f}} - e^{-\pi i \mathbf{f}}}{2i} = \frac{\sin(\pi \mathbf{f})}{\pi \mathbf{f}}$$

Exemple : transformée d'une porte

$$\widehat{\Pi}(f) = \operatorname{sinc}(\pi f)$$
 avec $\operatorname{sinc}(x) := \frac{\sin x}{x}$

Exemple : transformée d'une porte

Spectre d'amplitude : $|\widehat{\Pi}(f)| = |\operatorname{sinc}(\pi f)|$

Transformée d'une porte : cas général

Si on prend pour Π une porte supportée sur [a, b] de hauteur A

retardée de $\frac{a+b}{2}$ de $A \cdot \Pi_{b-a}(t)$, alors on trouve (exercice!)

$$\widehat{\Pi}(f) = \underbrace{A(b-a)}_{\text{aire}} \quad \operatorname{sinc}(\pi f \underbrace{(b-a)}_{\text{largeur}}) \quad \underbrace{e^{-2\pi i f \frac{a+b}{2}}}_{\text{facteur de phase}}$$

Transformée d'une porte : cas général

Appliquette

Transformée des fonctions

Théorème

Si x(t) est une fonction intégrable :

$$\int_{-\infty}^{+\infty} |x(t)| \, dt < +\infty$$

alors sa transformée de Fourier

$$\widehat{x}(f) = \int_{-\infty}^{+\infty} x(t) e^{-2\pi i f t} dt$$

est une fonction. Si de plus celle-ci est intégrable, alors on a presque partout :

$$x(t) = \int_{-\infty}^{+\infty} \widehat{x}(f) e^{+2\pi i f t} df.$$

Philosophie pragmatique

$$\begin{cases} \widehat{x}(f) = \int_{-\infty}^{+\infty} x(t) e^{-2\pi i f t} dt & (\text{TF directe}) \\ x(t) = \int_{-\infty}^{+\infty} \widehat{x}(f) e^{+2\pi i f t} df & (\text{TF inverse}) \end{cases}$$

Nous allons toujours travailler avec des signaux qui peuvent être vus comme limites de fonctions intégrables : ces deux formules seront donc toujours vraies si on les interprète de façon appropriée.

Par exemple : aux discontinuités d'une fonction $\mathcal{C}^1_{\mathsf{mcx}},$

$$\int_{-\infty}^{+\infty} \widehat{x}(f) e^{+2\pi i f t} df = \frac{x(t^+) + x(t^-)}{2} \qquad \text{(formule de Dirichlet)}.$$

Résumé

On a introduit la transformée de Fourier d'un signal x(t)

$$\widehat{x}(f) = \int_{-\infty}^{+\infty} x(t) e^{-2\pi i f t} dt$$

qui peut être vue comme

- ullet une version continue des coefficients de Fourier obtenue en prenant $T o +\infty$;
- un cas particulier de Laplace $\widehat{x}(f) = X(2\pi i f)$ quand cela a du sens.

Formule de transformée inverse :

$$x(t) = \int_{-\infty}^{+\infty} \widehat{x}(f) e^{+2\pi i f t} df.$$

La prochaine fois

On refait la synthèse et le ménage dans tout ça!

