

Université Libre de Bruxelles

Synthèse

Compléments de mathématiques MATH-H-301

Auteur:

Nicolas Englebert

Professeur:

Anne Delandtsheer

Année 2015 - 2016

Appel à contribution

Synthèse OpenSource

Ce document est grandement inspiré de l'excellent cours donné par Anne Delandtsheer à l'EPB (École Polytechnique de Bruxelles), faculté de l'ULB (Université Libre de Bruxelles). Il est écrit par les auteurs susnommés avec l'aide de tous les autres étudiants et votre aide est la bienvenue! En effet, il y a toujours moyen de

l'améliorer surtout que si le cours change, la synthèse doit être changée en conséquence. On peut retrouver le code source à l'adresse suivante

https://github.com/nenglebert/Syntheses

Pour contribuer à cette synthèse, il vous suffira de créer un compte sur *Github.com*. De légères modifications (petites coquilles, orthographe, ...) peuvent directement être faites sur le site! Vous avez vu une petite faute? Si oui, la corriger de cette façon ne prendra que quelques secondes, une bonne raison de le faire!

Pour de plus longues modifications, il est intéressant de disposer des fichiers : il vous faudra pour cela installer LATEX, mais aussi git. Si cela pose problème, nous sommes évidemment ouverts à des contributeurs envoyant leur changement par mail ou n'importe quel autre moyen.

Le lien donné ci-dessus contient aussi le README contient de plus amples informations, vous êtes invités à le lire si vous voulez faire avancer ce projet!

Licence Creative Commons

Le contenu de ce document est sous la licence Creative Commons : Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). Celle-ci vous autorise à l'exploiter pleinement, compte- tenu de trois choses :

- 1. Attribution; si vous utilisez/modifiez ce document vous devez signaler le(s) nom(s) de(s) auteur(s).
- 2. Non Commercial; interdiction de tirer un profit commercial de l'œuvre sans autorisation de l'auteur
- 3. Share alike; partage de l'œuvre, avec obligation de rediffuser selon la même licence ou une licence similaire

Si vous voulez en savoir plus sur cette licence :

http://creativecommons.org/licenses/by-nc-sa/4.0/

Merci!

Table des matières

18	Méthode des approximations successives pour problèmes de Cauchy							
	18.4		pe de contraction de Banach					
		18.4.1	Contraction (de constante α)					
		18.4.2	Théorème de contraction de Banach					
	18.1	EDO n	ormale du premier ordre					
		18.1.1	Attention					
		18.1.2	Solution maximale et globale dans un cylindre					
		18.1.3	Régularité des solutions d'une EDO					
		18.1.4	Équation intégrale d'un problème de Cauchy					
	18.2	Théorè	eme de résolubilité locale					
		18.2.1	Théorème					
	18.3	L'opéra	ateur intégral de Picard					
		18.3.1	L'opérateur intégral de Picard					
		18.3.9	Erreur d'une approximation de la solution					
	18.5	Condit	ion de Lipschitz					
		18.5.1	Fonction totalement ou partiellement lipschitzienne					
		18.5.2	Fonctions localement lipschitzienne					
		18.5.4	CNS pour Lipschitz : composante par composante					
		18.5.5	C^1 garantit localement Lipschitz					
		18.5.3	Fonctions à variables séparées de Lipschitz					
		18.5.6	Fonctions linéaires en \vec{y} à coefficients continus en t					
	18.6	Théorè	emes d'existence et d'unicité pour Cauchy					
		18.6.1	Méthode des approximations successives de Picard					
		18.6.2	Espace normé, cylindres internes et de sécurité					
		18.6.3	T, opérateur interne et lipschitzien dans E					
		18.6.4	T est contractant dans E^* (de haute sécurité)					
		18.6.5	Théorème d'existence et d'unicité locale					
		18.6.6	Théorème d'existence et d'unicité d'une solution maximale					
17	Poly	nômes	s orthogonaux, fonctions spéciales et résolution d'ED par séries de					
	puis	sances	11					
	17.17	7Polynô	mes orthogonaux					
		17.17.2	Espaces à produit scalaire					
		17.17.3	Polynômes orthogonaux					
	17.18	3Théorè	eme d'approximation de Weierstrass					
		17.18.1	Fonctions continues comme limites uniformes de polynômes					
		17.18.2	Suites de Dirac					
		17.18.3	Polynôme p_n d'approximation "à la Dirac"					
	17.9	L'ELD	de Tchebychev					

17.9.1 Presentation trigonometrique des polynomes de Tchebychev		14						
17.9.4 Quelques propriétés des polynômes de Tchebychev		14						
17.19Quadratures et polynômes orthogonaux		15						
17.19.7 Quadrature par interpolation		15						
$17.19.8\mathrm{M\'ethode}$ de quadrature $M_{l,X}$								
17.19.9 Méthode de Gauss								
17.20 Résolution par séries : généralités		17						
17.20.1 EDL à coefficients analytiques								
$17.20.2\mathrm{EDL}$ et série-solution		18						
17.20.3 Point ordinaire, singulier, régulier ou non								
17.3 La théorie autour d'un point ordinaire		18						
17.3.2 Unicité : formules de récurrence pour l'EDL normale		18						
17.3.3 Théorème de convergence de Fuchs		19						
17.3.5 Récurrences pour l'EDL non-normale		19						
17.5 EDL et polynômes de Hermite $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$		19						
17.5.1 Les séries-solutions canoniques de Hermite		19						
17.5.2 Les polynômes de Hermite		20						
17.5.7 L'EDP de l'oscillateur harmonique quantique 1D								
17.7 Théorie à droite d'un point singulier régulier	Théorie à droite d'un point singulier régulier							
17.7.1 Série de Frobenius et exposant de la singularité		20						
17.7.2 Convergence et dérivation des séries de Frobenius		20						
17.7.4 Calcul des coefficients de solutions formelles de type Frobenius		20						
17.7.10 Théorème de Frobenius (admis)		22						
17.8 L'EDL hypergéométrique de Causs		22						

Chapitre 18

Méthode des approximations successives pour problèmes de Cauchy

18.4 Principe de contraction de Banach

18.4.1 Contraction (de constante α)

Le principe d'une contraction est que si deux points sont à une distance d, la distance entre leur image par la contraction sera inférieure à αd où $\alpha < 1$.

DÉFINITION: CONTRACTION DE BANACH

Une application $T: E \to E$ est une **contraction de constante** α ssi

$$\begin{cases} (i) & \forall x, x' \in E : ||Tx - Tx'|| \le \alpha ||x - x'|| \\ (ii) & \alpha < 1 \end{cases}$$
 (18.1)

Ainsi, une fonction lipschitzienne de constante strictement inférieure à 1 est une contraction.

Il est intéressant de travailler dans un espace de Banach (par exemple V), c'est à dire un espace vectoriel réel normé (on aura besoin de la notion de distance) **complet**. V est dit complet ssi toute suite dite de Cauchy converge. Pour rappel :

$$\forall \epsilon > 0, \exists N : \forall n \ge N, \forall l > 0 : ||u_{n+l} - u_n|| < \epsilon \tag{18.2}$$

On travaille souvent avec des fermés. Si E est fermé dans V alors toute suite d'éléments de E converge dans E!

18.4.2 Théorème de contraction de Banach

Théorème : Principe de Contraction de Banach Si $T: E \to E$ est une contraction de constante α , alors

- 1. T admet **un** et **un** seul point fixe \tilde{x}
- 2. $\forall x \in E : T^n(x) \to \tilde{x}$
- 3. $\forall x \in E : ||T^n(x) \tilde{x}|| \le \frac{\alpha^n}{-1\alpha} ||Tx x||$

De façon francisée, cela signifie que :

- 1. On admet un point fixe
- 2. D'où que l'on parte, pour chaque $x \in E(T^1, ..., T^n)$ cette suite converge vers ce point fixe
- 3. Quel que soit $x \in E$, si j'ai appliqué n fois la contraction je suis à une distance du point fixe majorée par le longueur du premier pas multiplié par ... Comme $\alpha < 1$, cela tend fortement vers zéro

Démonstration.

Prouvons d'abord qu'il s'agit d'une suite de Cauchy.

Soit $x_0 \in E, x_n := T^n(x_0)$. On peut écrire

$$||x_{n+l} - x_n|| = ||T^{n+l}(x_0 \grave{\mathbf{a}} - T^n(x_0))|$$
(18.3)

L'idée à exploiter est que $T^n(x_0) = T(T^{n-1}(x_0))$. Je peux alors appliquer une majoration en sachant que appliquer T, c'est multiplier par α

$$||x_{n+l} - x_n|| \leq \alpha ||T^{n+l-1}(x_0) - T^{n-1}(x_0)||$$

$$\leq \alpha^2 ||T^{n+l-2}(x_0) - T^{n-2}(x_0)||$$

$$\leq \dots$$

$$\leq \alpha^n ||T^l(x_0) - x_0||$$
(18.4)

On a alors

$$||x_{n+l} - x_n|| \le \alpha^n . ||x_l - x_0|| \tag{*}$$

En appliquant l'inégalité triangulaire

$$||x_{l} - x_{0}|| \leq ||x_{l} - x_{l-1}|| + \dots + ||x_{2} - x_{1}|| + ||x_{1} - x_{0}||$$

$$\leq \underbrace{(\alpha^{l-1} + \dots + \alpha^{1} + \alpha^{0})}_{l-\alpha} ||x_{1} - x_{0}||$$

$$\underbrace{(18.6)}_{1-\alpha}$$

On a alors

$$||x_l - x_0|| \le \frac{1}{1 - \alpha} ||x_1 - x_0|| \tag{**}$$

En rassemblant (*) et (**):

$$||x_{n+l} - x_n|| \le \frac{\alpha^n}{1 - \alpha} ||x_1 - x_0|| \underbrace{\epsilon}_{\text{dès que } n \text{ grand } (l \ge 0)}$$
(18.8)

Ceci démontre que x_n est une suite de Cauchy.

Cette suite converge, car par hypothèse $V,+,\parallel\parallel$ est complet. Comme x_n est une suite de Cauchy, $x_n \to \tilde{x} \in V$. Par hypothèse E est fermé dans V. Comme $\underbrace{x_n}_{\in E} \to \tilde{x} \in V \Rightarrow \tilde{x} \in E$. \(^1\)

Il faut maintenant prouver que \tilde{x} est fixe : $T(\tilde{x}) = \tilde{x}$. Par continuité de la contraction :

$$T(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} T(x_n) = \lim_{n \to \infty} x_n = \tilde{x}$$
(18.9)

^{1.} x_n est une suite d'éléments dans E, elle converge forcément dans E: sa "limite", $\tilde{x} \in E$.

Prouvons maintenant l'unicité de ce point fixe par l'absurde. Soit \tilde{x}, \tilde{y} fixés par T contraction de sorte que $\|\tilde{x} - \tilde{y}\| \neq 0$. Alors

$$\|\tilde{x} - \tilde{y}\| = \|T(\tilde{x}) - T(\tilde{y})\| \le \alpha \|\tilde{x} - \tilde{y}\| < \|\tilde{x} - \tilde{y}\|$$
 (18.10)

On peut éviter la contradiction si $\|\tilde{x} - \tilde{y}\| = 0$ impliquant l' unicité du point fixe.

Il ne reste qu'a prouver la qualité de approximation :

$$||x_{n} - \tilde{x}|| = ||x_{n} - \lim_{l \to \infty} x_{n+l}||$$

$$= \lim_{l \to \infty} ||x_{n} - x_{n+l}||$$

$$\leq \left(\lim_{l \to \infty}\right) \frac{\alpha^{n}}{1-\alpha} ||x_{1} - x_{0}||$$
(18.11)

On peut donc dire que $\tilde{x} \approx x_n$ avec une erreur $\leq \frac{\alpha^n}{1-\alpha} ||x_1 - x_0||$ soit la longueur du premier pas.

18.1 EDO normale du premier ordre

18.1.1 Attention

Le problème de Cauchy

$$\begin{cases} xy' + 2y = 4x^2 \\ y(0) = 1 \end{cases}$$
 (18.12)

n'admet pas de solution car 0 est un point singulier! Il faut faire attention à pas confondre une ED implicite avec une ED explicite (y' = f(x, y)).

18.1.2 Solution maximale et globale dans un cylindre

Considérons le problème de Cauchy

$$\begin{cases}
y' = f(t, y) \\
y_0 = y(t_0)
\end{cases}$$
(18.13)

Si l'ED est scalaire, considérons un domaine rectangulaire et un cylindre s'il s'agit d'un SD. Les différents types de solutions sont :

- Maximale; Une solution est dite maximale ssi elle ne peut pas être prolongée en une autre solution, c'est à dire qu'on ne peut la prolonger sur un intervalle plus grand (Pas de solution dans un domaine plus étendu restant dans le domaine de f)
- Globale; Une solution est globale ssi la solution au problème de Cauchy est définie sur *I* tout entier.
- Locale; Une solution est locale ssi il existe un voisinage \mathcal{V} du point de la C.I. tel que la fonction est définie dans un sous-intervalle de I.

EXEMPLE. Soit l'EDO $y' = y^2$. Sa solution générale est $y(t) = -\frac{1}{t+C}$. A cause de l'asymptote, toutes ces solutions sont maximales mais seule la solution nulle est globale.

18.1.3 Régularité des solutions d'une EDO

PROPOSITION

Si $\vec{\varphi}$ est solution de $\vec{y}' = \vec{f}(t, \vec{y})$ pour $\vec{f} \in C^k$, alors $\vec{\varphi} \in C^{k+1}$

Démonstration.

Comme φ est solution d'EDO, il est dérivable (et donc C^0).

• Supposons k = 0

$$\left. \begin{array}{l} \varphi \in C^0 \\ f \in C^0 \end{array} \right\} \Rightarrow t \mapsto f(t, \varphi(t)) \in C^0 \tag{18.14}$$

Or $f(t, \varphi(t)) = \varphi'(t) \Rightarrow \phi \in C^1$.

• Récurrence $^2.$ Supposons vrai pour k-1 et montrons vrai pour k

Vrai pour
$$k-1$$

$$C^{k} \subset C^{k-1}$$
 $\vec{f} \in C^{k}$

$$\Rightarrow \vec{\varphi} \in C^{k} \Rightarrow t \mapsto \vec{f}(t, \vec{\varphi}(t)) \in C^{k}$$

$$(18.15)$$

Or $\vec{\varphi}'(t) = \vec{f}(t, \vec{\varphi}(t))$, d'où $\vec{\varphi}' \in C^k$ c'est-à-dire $\vec{\varphi} \in C^{k+1}$

18.1.4 Équation intégrale d'un problème de Cauchy

Proposition

 φ est solution du problème de Cauchy sur I

$$\begin{cases} y' = f(t,y) \\ y(t_0) = y_0 \end{cases}$$
 (18.16)

ssi

$$\begin{cases} \varphi \in C^0(I) \\ \forall t \in I : \varphi(t) = y_0 + \int_{t_0}^t f(\tau, \varphi(\tau)) d\tau \end{cases}$$
 (18.17)

Démonstration.

Sens direct : $\varphi'(t) = f(t, \varphi(t))$ par hypothèse, il suffit d'intégrer les deux membres de t_0 à t.

Sens indirect : $\varphi \in C^0 \Longrightarrow \tau \mapsto f(\tau, \varphi(\tau)) \in C^0$, d'où $\varphi'(t) = f(t, \varphi(t))$ en dérivant l'équation intégrale.

18.2 Théorème de résolubilité locale

18.2.1 Théorème

THÉORÈME: CAUCHY-PAENO-ARZELA

Le problème de Cauchy

$$\begin{cases}
y' = f(t,y) \\
y(t_0) = y_0
\end{cases}$$
(18.18)

où $f \in C^0(\mathcal{U})$ (\mathcal{U} étant ouvert) et $(t_0, y_0) \in \mathcal{U}$ admet **au moins** une solution locale.

2. ??

18.3 L'opérateur intégral de Picard

18.3.1 L'opérateur intégral de Picard

Inspiré par l'écriture intégrale d'un problème de Cauchy :

$$\vec{\varphi}(t) = \vec{y_0} + \int_{t_0}^t \vec{f}(\tau, \varphi(\tau)) d\tau \tag{18.19}$$

On définit l'opérateur intégral de Picard :

DÉFINITION: OPÉRATEUR INTÉGRAL DE PICARD

$$T: z \mapsto T(z) T(z)|_{t} := \vec{y}_{0} + \int_{t_{0}}^{t} \vec{f}(\tau, z(\tau)) d\tau$$
 (18.20)

T est l'opérateur intégral de Picard **associé au problème de Cauchy** ci-dessus. Les solutions de l'équation intégrale du problème de Cauchy sont donc exactement les points fixes de cet opérateur, c'est-à-dire les fonctions $\vec{\varphi}$ telles que $\vec{\varphi} = T(\vec{\varphi})$.

18.3.9 Erreur d'une approximation de la solution

Étudions la différence entre la solution exacte et l'approximation

$$|y(t) - y_n(t)| = |y_0 + \int_{t_0}^t f(\tau, y(\tau)) d\tau - y_0 - \int_{t_0}^t f(\tau, y_n(\tau)) d\tau|$$

$$= |\int_{t_0}^t (f(\tau, y(\tau)) - f(\tau, y_n(\tau))) d\tau|$$

$$\leq \sup_t |t - t_0|; \sup_\tau |f(\tau, y(\tau)) - f(\tau, y_n(\tau))|$$
(18.21)

Pour que l'erreur soit petite, il faut que t soit proche de t_0 , que l'on parte d'une bonne approximation et aussi que f ne varie pas trop vite en sa deuxième variable y (c'est à dire sup $|\partial f/\partial y|$ petit si f est "brave" (c'est-à-dire lipschitzienne)).

18.5 Condition de Lipschitz

18.5.1 Fonction totalement ou partiellement lipschitzienne

DÉFINITION : FONCTION LIPSCHITZIENNE $f: A \subseteq \mathbb{R} \to \mathbb{R}$ est dite **lipschitzienne** ssi

$$\exists M \in \mathbb{R}(=V) : \forall x, \tilde{x} \in A : |f(x) - f(\tilde{x}) \le M|x - \tilde{x}| \tag{18.22}$$

Ceci signifie que M majore toutes les valeurs absolues de pentes de cordes du graphe de f. Être lipschitzienne est plus fort qu'être continue, mais cela n'implique pas la dérivabilité. Par contre si une fonction est dérivable à dérivée bornée alors elle est lipschitzienne.

On peut généraliser dans le cas où $V=\mathbb{R}^n\times\mathbb{R}^m$ en considérant une condition de Lipschitz "partielle", avec \vec{x} constant

DÉFINITION:

 $\vec{f}: \mathcal{U} \subseteq \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p \text{ est } \Lambda - \text{ lipschitzienne en } \vec{y} \text{ (sur } \mathcal{U}) \text{ ssi}$

$$\forall (x,y), (x,\tilde{y}) \in \mathcal{U} : ||f(x,y) - f(x,\tilde{y})|| \le \Lambda ||y - \tilde{y}||$$
(18.23)

On remarque bien qu'ici x est fixé, constant.

18.5.2 Fonctions localement lipschitzienne

Comme être lipschitzienne est fort contraignant, on ne demande parfois que localement. La définition est presque identique, sauf que l'on se limite à comparer les points de même abscisse en restant dans un voisinage \mathcal{V}_0 .

DÉFINITION:

 $\forall (x_0, y_0) \in \mathcal{U}, \exists \mathcal{V}_0 \text{ voisinage de } (x_0, y_0), \exists \Lambda_0 \in \mathbb{R} :$

$$\forall (x,y), (x,\tilde{y}) \in \mathcal{V}_0 \cap \mathcal{U} : |f(x,y) - f(x,\tilde{y})| \le \Lambda_0 |y - \tilde{y}|$$
(18.24)

Ceci se généralise aux fonction vectorielles en changeant | | par || ||.

18.5.4 CNS pour Lipschitz : composante par composante

PROPOSITION

 \vec{f} est lipschitzienne en \vec{y} ssi $\forall i = 1, \dots, p : f_i$ est lipschitzienne en \vec{y}

Démonstration.

 \vec{f} Λ -lipschitzienne en \vec{y}

$$\Leftrightarrow \forall (\vec{x}, \vec{y}), (\vec{x}, \tilde{\vec{y}}) \in \mathcal{U} : ||\vec{f}(\vec{x}, \vec{y}) - \vec{f}(\vec{x}, \tilde{\vec{y}})||_p^2 \leq \Lambda^2 ||\vec{y} - \tilde{\vec{y}}||_m^2$$

$$\Leftrightarrow \forall (\vec{x}, \vec{y}), (\vec{x}, \tilde{\vec{y}}) \in \mathcal{U} : \sum_{i=1}^p (f_i(\vec{x}, \vec{y}) - f_i(\vec{x}, \tilde{\vec{y}}))^2 \leq \Lambda^2 ||\vec{y} - \tilde{\vec{y}}||_m^2$$

$$\Leftrightarrow \forall i = 1, \dots, p, \quad \forall (\vec{x}, \vec{y}), (\vec{x}, \tilde{\vec{y}}) \in \mathcal{U} : (f_i(\vec{x}, \vec{y}) - f_i(\vec{x}, \tilde{\vec{y}}))^2 \leq \lambda_i^2 ||\vec{y} - \tilde{\vec{y}}||_m^2$$

$$\Leftrightarrow \forall i = 1, \dots, p, \quad f_i \text{ est } \lambda_i \text{ -lipschitzienne}.$$

L'équivalence surmontée d'un point d'interrogation s'établit comme suit :

 \implies est vraie si on a posé $\lambda_i := \Lambda$.

Cette démonstration est naturelle dans le sens ou si \vec{f} est vectorielle et lipschitzienne de même constante, chacune de ses composantes l'est également. Notons que dès que l'on a une constante de Lipschitz, tout nombre supérieur à celle-ci est également une constante de Lipschitz.

18.5.5 C^1 garantit localement Lipschitz

Le plus simple est de travailler avec des dérivées. Si les dérivées d'ordre p sont bornées alors la fonction est lipschitzienne.

Lemme:

Si \vec{f} est différentiable sur $\operatorname{int}(\mathcal{U})$ et continue sur \mathcal{U} et que ses fonctions dérivées $\frac{\partial \vec{f}}{\partial y_1}, \dots, \frac{\partial \vec{f}}{\partial y_m}$ sont bornées sur $\operatorname{int}(\mathcal{U})$, alors \vec{f} est lipschitzienne en \vec{y} sur \mathcal{U} .

 $D\'{e}monstration.$

Supposons que f est scalaire (grâce à la précédente proposition). Grâce au théorème des ac-

croissement fini on peut écrire la différence selon la première égalité si $\exists \vec{c} \in]\vec{y}\vec{y}[\subset \mathbb{R}^m:$

$$|f(\vec{x}, \vec{y}) - f(\vec{x}, \tilde{\vec{y}})| = \left| \langle \vec{\nabla} f \Big|_{(\vec{x}, \vec{c})}, (\vec{x}, \vec{y}) - (\vec{x}, \tilde{\vec{y}}) \rangle \right|$$

$$= |\langle \left(\frac{\partial f}{\partial y_1}, \dots, \frac{\partial f}{\partial y_m} \right) \Big|_{(\vec{x}, \vec{c})}, (y_1 - \tilde{y}_1, \dots, y_m - \tilde{y}_m) \rangle |$$

$$= |\sum_{i} \frac{\partial f}{\partial y_i} \Big|_{(\vec{x}, \vec{c})} (y_i - \tilde{y}_i) |$$

$$\leq \sqrt{\sum_{i} \frac{\partial f}{\partial y_i} \Big|_{(\vec{x}, \vec{c})}^2} ||\vec{y} - \tilde{\vec{y}}||_{m}$$

$$(18.25)$$

On pourrait directement écrire la troisième égalité. Comme il n'y a pas de différence entre \vec{x} et \vec{x} , seul intervienne les dérivées par rapports aux y_i . La dernière inégalité s' obtient grâce à l'inégalité de Cauchy-Schwarz.

Si toute les dérivées $\frac{\partial f}{\partial y_i}$ sont en valeurs absolue majorée par M, alors f est $\sqrt{mM^2}$ -lipschitzienne en \vec{y} .

PROPOSITION

Si $\vec{f} \in C^1(\mathcal{U})$, alors \vec{f} est localement lipschitzienne sur int (\mathcal{U}) .

Démonstration. Non vu?

18.5.3 Fonctions à variables séparées de Lipschitz

Proposition

Si

- $f: A \subseteq \mathbb{R} \to \mathbb{R}: x \mapsto f(x)$ est continue,
- $g: B \subseteq \mathbb{R} \to \mathbb{R}: y \mapsto g(x)$ est localement lipschitzienne,

alors

$$F: A \times B \to \mathbb{R}: (x, y) \mapsto f(x).g(y)$$
 (18.26)

est localement lipschitzienne en y

$D\'{e}monstration.$

Une telle fonction est-elle lipschitzienne? On va essayer de la majorer. Comme x est constant, je peux écrire

$$|f(x)g(y) - f(x)g(\tilde{y})| = |f(x)| \cdot |g(y) - g(\tilde{y})|$$
(18.27)

Je peux toujours majorer de la sorte

$$|f(x)g(y) - f(x)g(\tilde{y})| \le \sup_{\mathcal{V}_{x_0}} |f| \cdot \lambda_0 \cdot |y - \tilde{y}|$$
 (18.28)

Si $\sup_{\mathcal{V}_{x_0}} = M_0 \in \mathbb{R}, F$ est $\lambda_0 M_0$ - lipschitzienne en y. 3

^{3.} J'applique la "définition" de Lipschitz pour la partie en $|g(y) - g(\tilde{y})|$.

18.5.6 Fonctions linéaires en \vec{y} à coefficients continus en t

Considérons la fonction

$$\vec{f}(t, \vec{y}) := A(t)\vec{y} + \vec{b}(y)$$
 (18.29)

où A(y) est $\forall t$ une application linéaire $\mathbb{R}^m \to \mathbb{R}^m$. Une telle fonction est-elle lipschitzienne? On va essayer de la majorer. Par linéarité, je peux mettre en évidence un facteur ||y-z|| pour prendre l'image d'un vecteur normé par A(t) $(\vec{y}, \vec{z} \in \mathbb{R}^m)$

$$\vec{f}(t,\vec{y}) - \vec{f}(t,\vec{z}) = A(t)\vec{y} + \vec{b} - (A(t)\vec{z} + \vec{b})
= A(t)(\vec{y} - \vec{z}) = ||\vec{y} - \vec{z}||A(t)\left(\frac{\vec{y} - \vec{z}}{||\vec{y} - \vec{z}||}\right)$$
(18.30)

Notons l'utilisation d'une petit artifice de calcul à la deuxième ligne, on à multiplié par $\frac{\|\vec{y}-\vec{z}\|}{\|\vec{y}-\vec{z}\|}$. On peut majorer et y aller à la grosse louche à l'aide de la norme de l'application linéaire A(t). Je peux en effet dire que le carré d'une somme est majoré par le carré des éléments de la matrice

$$\|\vec{f}(t,\vec{y}) - \vec{f}(t,\vec{z})\| \le \|\vec{y} - \vec{z}\| \underbrace{\max_{\|\vec{u}\| = 1} \|A(t)(\vec{u})\|}_{\||A(t)|\| \le \sqrt{\sum_{ij} (a_{ij}(t))^2} := \Lambda(t)} (t \text{ fixé!})$$
(18.31)

Dernier souci : $\Lambda(t)$ n'est pas constante. Heureusement, si on prend le suprémum des normes quand t est confiné à un compact, ce suprémum existe dans \mathbb{R} .

18.6 Théorèmes d'existence et d'unicité pour Cauchy

18.6.1 Méthode des approximations successives de Picard

Considérons l'opérateur intégral 4 $T:z\to T(z)$ où

$$T(z)|_{t} := y_{0} + \int_{t_{0}}^{t} f(\tau, z(\tau))d\tau$$
 (18.32)

relatif au **problème de Cauchy** $\begin{cases} y'(t) = f(t,y) \\ y(t_0) = y_0 \end{cases}$ dont les solutions sont les points fixes de

T. Si on arrive à prouver que T est contractant et que l'on est dans un espace de Banach alors on prouve que cet opérateur admet un et un seul point fixe, soit une et une seule solution pour le problème de Cauchy. De plus, d'où que l'on parte, on convergera vers cette sainte solution.

18.6.2 Espace normé, cylindres internes et de sécurité

Il faut travailler dans un espace de Banach, c'est-à-dire un espace vectoriel réel normé et complet. Je m'intéresse à des fonctions au moins dérivables, et donc continue : $V = C^0(I, \mathbb{R}^m)$ (où I est un intervalle autour de t_0 à préciser) muni de la norme suprémum :

$$\|\|_{\infty} : \vec{y} \to \|\vec{y}\|_{\infty} = \sup_{t \in I} \|\vec{y}(t)\|$$
 (18.33)

On a maintenant un espace de Banach dont la convergence sera même uniforme. Il faut maintenant définir E. Je travaille dans un intervalle centrée sur t_0 de demi- côté l et r.

$$C = [t_0 - l, t_0 + l] \times \vec{B}(\vec{y_0}, \vec{r}) \subseteq \mathcal{U}$$
(18.34)

^{4.} Revient très souvent à l'examen!

De façon préventive, le cylindre sera dit de sécurité si $l.\sup_C \|\vec{f}\| \le r$. Autrement dit, le maximum de la pente en valeur absolue ne dépasse pas r; on n'en sortira pas.

Dès lors E:= ensemble des fonctions $y\in C^0(\underbrace{[t_0-l,t_0+l]}_{:=I},\mathbb{R}^m)$ telles que $gph(y)\subset C$, le cylindre de sécurité. C'est-à- dire : $\forall t\in I: \|y(t)-y_0\|\leq r$. On dit bien que y(t) est à une distance de y_0 qui ne dépassera jamais r.

18.6.3 T, opérateur interne et lipschitzien dans E

La première chose à vérifier est que l'on reste toujours dans E

1. T est un opérateur interne à $E: y \in E \to T(y) \in E$. Si $y \in C^0(I, \mathbb{R}^m) \Longrightarrow T(\vec{y}) \in C^0(I, \mathbb{R}^m)$ Comme le graphe de T(y) reste dans C (et on majore l'intégrale comme d'hab):

$$||y(t) - y_0|| \le r \Longrightarrow ||T(y)|_t - y_0|| = ||\int_{t_0}^t f(\tau, y(\tau)) d\tau||$$

$$\le |t - t_0| \sup_{\tau \in I} ||f(\tau, y(\tau))||_m$$

$$\le l\mu$$

$$\le r \qquad \text{(par def. du cylindre de sécurité)}$$

$$(18.35)$$

2. T est lipschitzien (...si f l'est par rapport à y). Il faut avant tout que f ne varie pas trop vite par rapport à y, c'est à dire que pour un même t, la pente ne devrait pas varier trop vite. Je dois prouver que la distance entre les images est inférieure à une constante*... (def. lips.)

$$||T(y) - T(z)||_{\infty} = \sup_{t \in I} \left\| \int_{t_0}^t (f(\tau, y(\tau)) - f(\tau, z(\tau))) d\tau \right\|$$

$$\leq \sup_{\tau \in I} ||f(\tau, y(\tau)) - f(\tau, z(\tau))|| \cdot \sup_{t \in I} |t - t_0|$$

$$\leq \Lambda \cdot \sup_{\tau \in I} ||y(\tau) - z(\tau)| \cdot l$$
(18.36)

où Λ est une constante de Lipschitz de f_C relativement à y. On a ici majoré pour faire apparaître la définition d'une fonction lipschitzienne. D'où

$$||T(y) - T(z)||_{\infty} < \Lambda ||y - a||_{\infty}$$
 (18.37)

C'est-à-dire que Tt est Λl -lipschitzien.

18.6.4 T est contractant dans E^* (de haute sécurité)

Si l est suffisament petit, on rentre dans les conditions de haute sécurité. Le cylindre :

$$C^*[t_0 - l^*, t_0 + l^*] \times \vec{B}(y_0, r)$$
 (18.38)

est dit de haute sécurité si de plus $\Lambda l^* =: \alpha < 1$.

Si l'on définit l'ensemble E^* des fonctions admissibles associé au cylindre C^* alors $T: E^* \to E^*$ est une contraction.

18.6.5 Théorème d'existence et d'unicité locale

Compte-tenu des deux sections précédentes, le principe de contraction de Banach peut s'appliquer. On conclut à l'existence et l'unicité de la solution du problème de Cauchy dont le graphe est inclus dans C^* .

Théorème :

Si $\vec{f}: \mathcal{U} \subseteq \mathbb{R} \times \mathbb{R}^m \to \mathbb{R}^m : (t, \vec{y}) \to \vec{f}(t, \vec{y})$ est continue et lipschitzienne en \vec{y} au **voisinage** de $(t_0, \vec{y}_0) \in \text{int } \mathcal{U}$, alors le problème de Cauchy $\begin{cases} \vec{y}' = \vec{f}(t, \vec{y}) \\ \vec{y}(t_0) = \vec{y}_0 \end{cases}$ admet une seule courbe intégrale au voisinage de (t_0, \vec{y}_0) .

18.6.6 Théorème d'existence et d'unicité d'une solution maximale

C'est possible de l'étendre, mais ce n'est pas vu!

Chapitre 17

Polynômes orthogonaux, fonctions spéciales et résolution d'ED par séries de puissances

17.17 Polynômes orthogonaux

17.17.2 Espaces à produit scalaire

Pour toute fonction w continue et positive sur [a, b]:

$$\langle a, b \rangle := \int_{a}^{b} w f g^{*}$$
 (17.1)

Celui-ci défini un produit scalaire hermition sur l'EV $C^0([a,b],\mathbb{K})$ et un presque" produit scalaire sur 1 $L^2([a,b],\mathbb{K})$.

Soit E un espace pré-hilbertien et E_n un sous-espace de dimension n de E. Notons pr_{E_n} f la projection de f sur E_n .

PROPOSITION

 pr_{E_n} f existe $(n < \infty)$ et est la meilleure approximation de $f \in E$ par un élément de E_n pour $\|\cdot\|$.

17.17.3 Polynômes orthogonaux

Considérons une fonctions poids $w \in C^0(]a, b[, \mathbb{R}_0^+)$ telle que $\forall n \in \mathbb{N} : \int_a^b |x|^n w(x) dx$ converge. Soit E l'EV des fonctions continues dans]a, b[et de carré sommable pour le produit scalaire

$$\langle f, g \rangle := \int_{a}^{b} f(x)g^{*}(x)w(x)dx$$
 (17.2)

Notons $\| \ \|_2$ la norme L_2 , la norme en moyenne quadratique. Donc

$$E = C^{0}(|a, b[, \mathbb{R}) \cap L_{2}(|a, b[, \mathbb{R}))$$
(17.3)

Un polynôme p_n de degré n est dit **unitaire** (ou **monique**) ssi le coefficient de x^n dans $p_n(x)$ vaut 1.

^{1.} Fonction de carré sommable si $\int_a^b |f|^2 w < +\infty$.

Théorème:

 $\forall w, \exists 1!$ suite de polynôme unitaire $(p_n)_{n \in \mathbb{N}}$ tels que

$$\begin{cases} \deg p_n = n \\ p_n \perp p_m & \text{si } n \le m \end{cases}$$
 (17.4)

Démonstration.

 $\forall n \text{ les polynômes } 1, x, x^2, \dots, x^n \text{ sont L.I. dans } \mathcal{P}. \text{ Il s'agit d'une suite de polynômes unitaires de degré } 0,1,dots, n. En appliquant Gram-Schmidt on obtient une suite satisfaisant aux hypothèses.}$

Voir le théorème 17.31 page 113 également, un peu la flemme.

Théorème:

 $\forall w|_{[a,b]}, p_n$ possède n zéros distincts dans [a,b[.

Démonstration.

Soit x_1, \ldots, x_k les zéros de p_n dans]a, b[et leurs multiplicités m_1, \ldots, m_k . On a que $m_1 + \cdots + m_k \le n = \deg p_n$. Définissons $\epsilon_i := \begin{cases} 0 & \text{si } m_i \text{ pair} \\ 1 & \text{si } m_i \text{ impair} \end{cases}$ et construisons le produit suivant

$$q(x) := \prod_{i=1}^{k} (x - x_i)^{\epsilon_i} \qquad \deg q \le k \le n$$
(17.6)

Je multiplie p_n par q: si l'exposant est impair je l'augmente d'une unité et s'il est pair je ne fais rien. Le polynôme p_nq a pour zéros x_1, \ldots, x_k avec comme multiplicité $m_1 + \epsilon_1 + \cdots + m_k + \epsilon_k$, toutes paires. Dans $]a,b[\setminus \{x_1,\ldots,x_k\},p_nq]$ est de signe constant 2 . On a alors

$$\langle p_n, q \rangle = \int_a^b p_n q w \neq 0$$
 (17.7)

Or $p_n \perp \mathcal{P}_{n-1}$ et deg $q \leq n$. On en déduit que deg $q = n \Longrightarrow k = n$ et tous les $m_i = 1$.

THÉORÈME:

 $\forall f \in E, \forall n \in \mathbb{N}, \exists 1! \text{ polynôme } q_n \in \mathcal{P}_n \text{ tel que } ||f - q_n|| = \min\{||f - p||_2; p \in \mathcal{P}_n\} =: d_2(f, \mathcal{P}_n)$

On dit que q_n est le polynôme de meilleure approximation quadratique de f à l'ordre n.

Démonstration. Cf. Analyse II

Théorème:

Si]a,b[est **borné** (!), alors $\forall f \in E: \lim_{n \to \infty} ||f - q_n||_2 = 0$

Cela signifie que l'ensemble $(p_k)_{k \in \mathbb{N}_0}$ est complet relativement à E; le développement de Fourier va converger quadratiquement.

2. ??

Démonstration.

Pour se simplifier la vie, on travaille dans un fermer et f est continue en a et $b: f \in C^0([a,b])$. Considérons r_n , un polynôme de degré au plus n étant la meilleure approximation UNIFORME de f dans \mathcal{P}_n (alors que q_n est le champion en quadratique). On a donc

$$||f - q_n||_2^2 \le ||f - r_n||_2^2 = \int_a^b |f - r_n|^2 w$$

$$\le ||f - r_n||_\infty^2 \int_a^b w$$
 (17.8)

En effet ³, par définition $||f - r_n||_{\infty}^2 = \sup_{[a,b]} |f - r_n|^2$. Par le théorème de Weirestrass $||f - r_n||_{\infty}^2 \to 0$ quand $n \to \infty$.

17.18 Théorème d'approximation de Weierstrass

17.18.1 Fonctions continues comme limites uniformes de polynômes

THÉORÈME:

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue. Pour tout $\epsilon>0$, il existe une fonction polynomiale p telle que $\|f-p\|_{\infty}<\epsilon$

Autrement dit, $\forall \epsilon > 0, \exists$ polynôme p(x) tel que

$$\forall x \in [a, b] : p(x) - \epsilon \le f(x) \le p(x) + \epsilon + \tag{17.9}$$

17.18.2 Suites de Dirac

On définira l'outil de Dirac

$$\varphi_n(x) := \begin{cases} 0 & \text{si } x \notin [-1, 1] \\ \mu_n(1 - x^2)^n & \text{si } x \in [-1, 1] \end{cases}$$
 (17.10)

où μ_n est un réel tel que $\int_{-1}^1 \varphi_n = 1$ et donc

$$\int_{-\infty}^{\infty} \varphi_n = 1 \tag{17.11}$$

On peut prouver qu'il $\exists \mathcal{C} : \mu_n \leq \mathcal{C}\sqrt{n}$.

17.18.3 Polynôme p_n d'approximation "à la Dirac"

Supposons que a et b sont compris entre 0 et 1 (par changement de variable par exemple), ceci n'est pas restrictif. Définitions le produit de convolution suivant (et utilisons l'outil de Dirac) :

$$\forall \xi \in [a, b] : p_n(\xi) := \int_0^1 f(x) \varphi_n(x - \xi) dx
= \mu_n \int_0^1 f(x) (1 - (x - \xi)^2)^n dx$$
(17.12)

où $(1-(x-\xi)^2)^n$ est un polynôme en ξ de degré 2n.

Deux cas:

1. Si $x \notin V_{\xi}$, alors $\varphi_n(x-\xi).f(x) \approx 0$ au point que l' $\int = 0$. En effet, $\varphi_n(x-\xi)$ est très centrée autour de ξ . Si on en est loin, le produit est forcément proche de zéro.

^{3.} On peut majorer cette fonction par le suprémum de ce carré et le sortir de l'intégrale. (On majore l'intégrale comme d'hab?)

2. Si $x \in V_{\xi}$, on remplace brutalement f(x) par $f(\xi)$ et on peut le sortir de l'intégrale. Il ne reste que l'intégrale de φ_n près de x et celle ci ≈ 1

$$\int_{V_{\xi}} f(x).\varphi_n(x-\xi)dx \approx f(\xi) \int_{V_0} \varphi_n \approx f(\xi)$$
(17.13)

17.9 L'ELD de Tchebychev

17.9.1 Présentation trigonométrique des polynômes de Tchebychev

On peut utiliser la formule du binôme de Newton sur le deuxième membre de la formule d'Euler $\cos(n\theta) + i\sin(n\theta) = (\cos\theta + i\sin\theta)^n$. On obtient alors :

$$\cos^{n}\theta + n\cos^{n-1}\theta(i\sin\theta) + \binom{n}{2}\cos^{n-2}\theta(i\sin\theta)^{2} + \dots + (i\sin\theta)^{n}$$
 (17.14)

En identifiant les parties réelles des deux membres :

$$\cos(n\theta) = \text{combili}\left(\cos^{n-2k}\theta \underbrace{(i\sin\theta)^{2k}}_{(-1)^k(1-\cos^2\theta)^k}\right)$$
(17.15)

soit un polynôme en $\cos \theta$.

On définit le n^e polynôme de Tchebychev à partir de $\cos n\theta =: T_n(\cos \theta)$ où T_n est défini sur [-1,1]. Autrement dit :

$$T_n(x) = \cos(n\arccos x) \tag{17.16}$$

Ceci revient par exemple à considérer $T_n(\cos \theta)$ comme le développement de $\cos n\theta$ sous forme de polynôme en $\cos \theta$. Le polynôme $T_n : \mathbb{R} \to \mathbb{R}$ de degré n en $x \in \mathbb{R}$ est obtenu en prolongeant $T_n|_{[-1,1]}$. Il n'est **pas** unitaire et est normé pour la norme sup.

$$||T_n||_{\infty,[-1,1]} = \sup_{x \in [-1,1]} |T_n(x)| = \sup_{\theta \in [0,\pi]} |\cos n\theta| = 1$$
(17.17)

La fonction $y = \cos(n\theta)$ est solution de

$$\frac{d^2y}{d\theta^2} + n^2y = 0 (17.18)$$

En posant $x := \cos \theta \to \tilde{y}(x) = y(\cos n\theta)$ on obtient l'**EDL de Tchebychev**

$$(1-x^2)\frac{d^2\tilde{y}}{dx^2} - x\frac{d\tilde{y}}{dx} + n^2\tilde{y} = 0 (17.19)$$

Une telle EDL (si $n^2 \in \mathbb{R}^+$) admet une solution \tilde{y} dont la dérivée est bornée pour $x \to 1 \Leftrightarrow n^2$ est un carré parfait $\Leftrightarrow \tilde{y}$ est un polynôme de Tchebychev de degré n.

17.9.4 Quelques propriétés des polynômes de Tchebychev

Voir syllabus page 54 et slide 26.

Les polynômes unitaires de Tchebychev sont $2^{1-n}T_n$, c'est-à-dire que $||T_n||_{\infty,[-1,1]} = ||\cos(n\theta)||_{\infty,[0,\pi]} = 1$. Donc

$$||2^{1-n}T_n||_{\infty,[-1,1]} = 2^{1-n} = \left(\frac{1}{2}\right)^{n-1}$$
(17.20)

Ce polynôme réalise le minimum pour cette norme, c'est le "champion" : celui possédant la plus petite distance dans l'espace des polynômes unitaires est donné par Tchebychev.

On en tire la Proposition du minimax

PROPOSITION

Dans $\mathcal{P}\mathcal{U}_n$, les polynômes unitaires de degré n > 0:

1. $2^{1-n}T_n$ minimise $\| \|_{\infty,[-1,1]}$ dans l'ensemble des polynômes unitaires.

2.
$$||2^{1-n}T_n||_{\infty,[-1,1]} = 2^{1-n} = \left(\frac{1}{2}\right)^{n-1}$$

Démonstration par l'absurde.

Supposons P, un polynôme unitaire dont la norme est plus petite, encore meilleur que celui de Tchebychev : $||P||_{\infty,[-1,1]} < 2^{1-2}$. L'équation

$$2^{1-n}T_n(x) = 2^{1-n}\cos n\theta \tag{17.21}$$

prends les valeurs $2^{1-n}, -2^{1-n}, 2^{1-n}, \dots, (-1)^n 2^{1-n}$ aux points $\theta = 0, \pi/n, 2\pi/n, \dots, n\pi/n$. Comme P est la meilleure approximation, la fonction Q(x) ci-dessous est forcément positive (l'autre terme étant forcément plus grand)

$$Q(x) := 2^{1-n}T_n(x) - P(x)$$
(17.22)

Q(x) a le même signe que 2^{1-n} en ces points, donc Q à au moins n zéros sur [-1,1]. Or, deg $Q \le n-1$. (car $2^{1-n}T_n$ et P sont unitaires, du coup le terme avec le facteur 1 disparaît d'office : degré n-1). On a contradiction.

17.19 Quadratures et polynômes orthogonaux

17.19.7 Quadrature par interpolation

On préfère le mot quadrature à interpolation. Ces méthodes consistent à approcher l'intégrale $\int_a^b fw$ par une formule d'interpolation

$$\int_{a}^{b} fw \approx \sum_{k=0}^{l} A_k f(x_k) \tag{17.23}$$

où les A_k sont les coefficients d'interpolation.

17.19.8 Méthode de quadrature $M_{l,X}$

Supposons que l'on possède l points x_0, \ldots, x_l . Soit $P_l(x_k) \approx f(x)$, le polynôme d'interpolation de degré $\leq l$ par les $(x_k, f(x_k))$. Au différents points connus, $f(x_k) = P_l(x_k) \forall k = 0, \ldots, l$. On associe un polynôme de Lagrange aux points x_0, \ldots, x_l . Soit $L_k(x) :=$ le polynôme de degré

$$l$$
 tel que
$$\begin{cases} L_k(x_k) &= 1\\ L_k(x_j) &= 0 \ \forall j \neq k \end{cases}$$
 On l'écrit

$$L_l(x) = \prod_{j=0,\dots,l; j \neq k} \frac{x - x_j}{x_k - x_j}$$
 (17.24)

Le polynôme d'interpolation est combili des polynômes de Lagrange

$$P_l(x) = \sum_{k=0}^{l} f(x_k) L_k(x)$$
 (17.25)

Par exemple, pour l=1: $P_1(x)=f(x_0)L_0(x)+f(x_1)L_1(x)$. Cette fonction vérifie bien les points donnés: $P_1(x_0)=f(x_0)*1+0,\ldots$ Cette fonction $P_l(x)$ va alors servir à approcher des fonctions dont on connaît une série de points.

Ici l'idée est d'approcher $\int_a^b fw$ par $\int_a^b P_l w$:

$$\int_{a}^{b} fw \approx \int_{a}^{b} P_{l}(x)w(x)dx = \int_{a}^{b} \sum_{k=0}^{l} f(x_{k})L_{k}(x)w(x)dx
= \sum_{k=0}^{l} f(x_{k}) \int_{a}^{b} L_{k}(x)w(x)dx
= \sum_{k=0}^{l} f(x_{k}) A_{k} := M_{l,X}(f)$$
(17.26)

Il s'agit de la méthode $M_{l,\{x_0,\dots,x_l\}}$. L'approximation est fournie par la somme ci-dessous où les A_k sont calculés indépendamment de f.

LEMME : L'ordre de toute méthode de quadrature $M_{l,X}$ (par interpolation) est $\geq l$.

Cela signifie que si on prend un polynôme de degré au plus l, l'approximation sera parfaite.

Démonstration.

Les points x_0, \ldots, x_l sont donnés. Si f est un polynôme de degré $\leq l$, alors f est le polynôme d'interpolation de f par les points x_0, \ldots, x_l . Donc

$$\int_{a}^{b} fw = \sum_{k=0}^{l} f(x_k) A_k \tag{17.27}$$

17.19.9 Méthode de Gauss

Proposition

La méthode de quadrature par interpolation $M_{l,X}$ est d'ordre 2l+1 ssi les points d'interpolations x_0, \ldots, x_l sont les zéros du $(l+1)^{\text{ème}}$ polynôme (noté P_{l+1}) dans la suite des polynômes unitaires orthogonaux de degrés croissants pour le produit scalaire $\langle f, g \rangle = \int_a^b f g w$.

Si w = 1, on parlera de la méthode de Gauss.

Démonstration.

Définissons le polynôme unitaire α de degré $l+1:\alpha(x):=(x-x_0)(x-x_1)\dots(x-x_l)\perp_w \mathcal{P}_l$. Par hypothèse si l'ordre $\geq 2l+1$ j'obtiens la solution exacte :

$$\forall f \in \mathcal{P}_{2l+1} : \int_a^b fw = \sum_{k=0}^l f(x_k) A_k \quad \text{où } A_k = \int_a^b L_k(x) w(x) dx$$
 (17.28)

Notons que comme $\alpha'(x) = \prod_{j \neq l} (x_k - x_j)$, on a

$$L_k(x) = \frac{\alpha(x)/(x - x_k)}{\alpha'(x)}$$
(17.29)

Si $Q \in \mathcal{P}_l$ un polynôme quelconque ⁴ de degré $\leq l : \alpha Q \in \mathcal{P}_{2l+1}$, d'où

$$\int_{a}^{b} \alpha Q w = \sum_{k=0} \underbrace{\alpha(x_k)}_{=0} Q(x_k) A_k = 0$$
(17.30)

$$\Longrightarrow \forall Q \in \mathcal{P}_l : \alpha \perp_w Q \Rightarrow \alpha \perp_w \mathcal{P}_l \Rightarrow \alpha = P_{l+1}.$$

^{4.} Attention, \mathcal{P}_l ne désigne pas seulement les polynômes unitaires!

Pro	ÞΩ	าตา	וחו	ON
LRU	72	ר.נ		

Toute méthode de quadrature par interpolation en x_0, \ldots, x_l est d'ordre $\leq 2l+1$.

Démonstration par l'absurde.

Par le même raisonnement : $\alpha \perp_m \mathcal{P}_{l+1}$ et donc $\alpha \perp_m \alpha$, ce qui est absurde.

Théorème:

Les méthodes de quadrature par interpolation polynomiales en l+1 points sont d'ordre σ : $l \leq \sigma \leq 2l+1$.

Démonstration. Voir les trois lemmes précédents.

Théorème:

La méthode $M_{l,X}$ est d'ordre maximal (2l+1) ssi les points d'interpolation x_0, \ldots, x_l sont les zéros du polynôme P_{l+1} de degré $l+1 \perp_m \mathcal{P}_l$ pour le produit scalaire...

Démonstration. Voir lemmes précédents

PROPOSITION

Si $\alpha \perp_m \mathcal{P}_l$, alors la méthode est d'ordre $\geq 2l+1$.

Démonstration. Voir page 136.

17.20 Résolution par séries : généralités

17.20.1 EDL à coefficients analytiques

Considérons la série entière en $(x-x_0)$:

$$\sum_{k=0}^{\infty} a_k (x - x_0)^k \tag{17.31}$$

converge dans un voisinage de x_0 autour de x_0 . Si l'on multiplie cette série par $(x-x_0)^r$, on parlera de série de Frobenius.

Une fonction f de classe C^{∞} au voisinage de x_0 est **analytique** en x_0 ssi sa série de Taylor de f autour de x_0 converge vers f au voisinage de x_0 .

A retenir:

La série $\sum_{k=0}^{\infty}$ est **d'exposant** r ssi $\forall k > 0$: $a_k = 0$ et $a_r \neq 0$? Son terme dominant pour

 $x \to 0$ est le terme de plus bas degré (il donne une première approximation du comportement pour cette limite.

PROPOSITION

$$\frac{P(x)}{Q(x)} = \frac{x^{r_P}(a_0 + a_1 x + \dots)}{x^{r_Q}(b_0 + b_1 x + \dots)}$$
(17.32)

est analytique en $0 \Leftrightarrow r_Q \leq r_P \Leftrightarrow 0$ n'est pas racine de Q ou la multiplicité de 0 dans $Q \leq$ multiplicité de 0 dans P.

17.20.2 EDL et série-solution

Considérons l'équation (à droite, sous sa forme normale)

$$P(x)y'' + Q(x)y' + R(x)y = 0, y'' + p(x)y' + q(x)y = 0 (17.33)$$

Cette équation est facilement généralisable aux ordres supérieurs, pareil pour la version non-homogène. On va chercher une solution au voisinage d'un point $x_0 \in \overline{\mathbb{R}}$ de la forme

$$y(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$$
 (17.34)

Si $x_0 = 0$, il s'agit de la série de Maclaurin. Si l'on désire, on peut effectuer le changement $t := x - x_0$ pour travailler autour de 0. Si $x_0 = \infty$, poser t = 1/x et travailler autour de zéro.

17.20.3 Point ordinaire, singulier, régulier ou non

Considérons deux prototypes, une EDLcc et une EDLee :

- 1. $y'' + p_0 y' + q_0 y = 0$
- 2. $x^2y'' + xp_0y' + q_0y = 0$

Remplaçons p_0 et q_0 par une fonction analytique en zéro, à savoir leur développement de Maclaurin. Pour le point 0, trois cas sont possibles :

- 1. Ordinaire: $y'' + \left(\sum_{k=0}^{\infty} p_k x^k\right) y' + \left(\sum_{k=0}^{\infty} q_k x^k\right) y = 0$
- 2. Singulier régulier : $x^2y'' + x\left(\sum_{k=0}^{\infty} p_k x^k\right)y' + \left(\sum_{k=0}^{\infty} q_k x^k\right)y = 0$
- 3. Singulier irrégulier : P(x)y'' + Q(x)y' + R(x)y = 0

A retenir:

Soit la définition générale : P(x)y'' + Q(x)y' + R(x)y = 0.

- x_0 est un **point ordinaire** ssi $P(x_0) \neq 0$.
- x_0 est un **point singulier** ssi $P(x_0) = 0$.
- x_0 est un **point singulier régulier** ssi
 - * Soit x_0 est un zéro simple de P.
 - * Soit x_0 est un zéro double de P, mais aussi un zéro de Q.

Notons que dans ce cours, on travaillera toujours au voisinage de $x_0 = 0$ par changement de variable.

17.3 La théorie autour d'un point ordinaire

17.3.2 Unicité : formules de récurrence pour l'EDL normale

On cherche une solution de la forme $y(x) = \sum_{k=0}^{\infty} a_k x^k$ de l'équation y'' + p(x)y' + q(x)y = 0. On remplace :

$$\sum_{k=2}^{\infty} k(k-1)a_k x^{k-2} + \left(\sum_{k=0}^{\infty} p_k x^k\right) \left(\sum_{k=0}^{\infty} k a_k x^{k-1}\right) + \left(\sum_{k=0}^{\infty} q_k x^k\right) \left(\sum_{k=0}^{\infty} a_k x^k\right) = 0 \quad (17.35)$$

Il faut changer un peu les termes pour commencer partout en k=0: $\sum_{k=2}^{\infty} k(k-1)a_k x^{k-2} =$

$$\sum_{k=0}^{\infty} (k+2)(k+1)a_{k+2}x^k \text{ et } \sum_{k=0}^{\infty} ka_k x^{k-1} = \sum_{k=0}^{\infty} (k+1)a_{k+1}x^k.$$

En regroupant les termes en x^k et en effectuant le produit de Cauchy :

$$\sum_{k=0}^{\infty} \left((k+2)(k+1)a_{k+2} + \sum_{n=0}^{\infty} ((n+1)a_{n+1}p_{k-n} + a_n q_{k-n}) \right) = 0$$
 (17.36)

On trouve alors l'équation de récurrence (R_k) :

$$\underbrace{(k+2)(k+1)}_{\neq 0} a_{k+2} + \sum_{n=0}^{\infty} ((n+1)a_{n+1}p_{k-n} + a_n q_{k-n} = 0$$
 (17.37)

Grâce à cette équation, si a_0, a_1 sont donnés, on peut univoquement déterminer tout le reste : cela prouve l'unicité des a_k . L'ennui est que beaucoup de calculs ont été fait et il faudrait être assurer de trouver un résultat avant ça.

17.3.3 Théorème de convergence de Fuchs

Ce théorème nous donne un **minorant** du rayon de convergence de la série. On l'énonce ici en toute généralité (et pas autour de 0).

THÉORÈME: (admis)

Soient p et q analytiques en x_0 , de rayons de convergences respectifs ρ_p et ρ_q . Soient a_0, a_1 , deux réels arbitraires.

La solution de y'' + py' + qy = 0 satisfaisant à $y(x_0) = a_0$ et $y'(x_0) = a_1$ (CI de Cauchy) est analytique en x_0 et peut s'écrire

$$\sum_{k=0}^{\infty} a_k (x - x_0)^k \tag{17.38}$$

qui converge (au moins) sur $]x_0 - \rho_m, x_0 + \rho_m[$ où $\rho_m := \min\{\rho_p, \rho_q\}.$

17.3.5 Récurrences pour l'EDL non-normale

Si l'on a une EDL P(x)y'' + Q(x)y' + R(x)y = 0 où P, Q, R sont des polynômes, il n'est pas utile de se ramener à y'' + p(x) + q(x)y = 0: on ne s'encombre pas avec les séries de Taylor

17.5 EDL et polynômes de Hermite

17.5.1 Les séries-solutions canoniques de Hermite

Voici l'**EDL de Hermite**, définie sur R

$$y'' - 2xy' + 2py = 0 \qquad \text{où } p \in \mathbb{R}$$
 (17.39)

On peut en tirer une équation de récurrence. En effet, tout point x_0 est ordinaire, les coefficients a_k de toute série solution $\sum_{k=0}^{\infty} a_k x^k$ satisfont la relation de récurrence

$$a_{k+2} = -\frac{2(p-k)}{(k+2)(k+1)}a_k \tag{17.40}$$

On peut en tirer deux séries-solutions canoniques : une paire et une impaire. Si $p \in \mathbb{N}$, alors une de ces solutions est un polynôme de degré n (à un multiple scalaire près) alors que l'autre est infinité de termes non nuls (pas top-top).

17.5.2 Les polynômes de Hermite

En choisissant le multiple scalaire 5 comme valant 2^n , on définit le n^{eme} polynôme de Hermite, noté H_n

$$H_n(x) = \sum_{k=0}^{\lfloor \frac{p}{2} \rfloor} (-1)^k \frac{n!}{k!(n-2k)!} (2x)^{n-2k}$$

$$= 2^n x^n + \dots$$

$$= \text{le polynome de Hermite de degré } n.$$
(17.41)

Les section 17.5.3/4 donnent la fonction génératrice ainsi que quelques propriétés intéressantes. Je ne l'inclus pas ici, mais à lire.

17.5.7 L'EDP de l'oscillateur harmonique quantique 1D

Page 22-25 et slides 27-28. C'est plus une illustration qu'autre chose.

17.7 Théorie à droite d'un point singulier régulier

17.7.1 Série de Frobenius et exposant de la singularité

Considérons une EDLee $x^2y'' + xp_0y' + q_0y = 0$. Plus généralement, si 0 est un point singulier régulier

$$x^{2}y'' + x\left(\sum_{k=0}^{\infty} p_{k}x^{k}\right)y' + \left(\sum_{k=0}^{\infty} q_{k}x^{k}\right)y = 0$$
(17.42)

L'espoir et que si r est solution de l'équation indicielle (cette solution est l'exposant de la singularité) $r(r-1) + p_0 r + q_0 = 0$, alors x^r est solution de l'EDLee et on peut espérer une solution pour notre cas général de la forme

$$x^{r} \sum_{k=0}^{\infty} a_{k} x^{k} = \sum_{k=0}^{\infty} a_{k} x^{k+r}$$
 (17.43)

soit une série de Frobenius d'exposant r. Si $a_0 \neq 0$ on peut l'écrire sous la forme

$$a_0 x^r \left(1 + \sum_{k=1}^{\infty} \frac{a_k}{a_0} x^k \right) \tag{17.44}$$

qui sera dite canonique quand $a_0 = 1$. On verra que si r_1, r_2 sont les deux exposants de la singularité on obtiendra deux solutions L.I. sauf dans certains cas malheureux.

17.7.2 Convergence et dérivation des séries de Frobenius

La série $x^r \sum_{k=0}^{\infty} a_k x^k$ converge $\Leftrightarrow \sum_{k=0}^{\infty} a_k x^{k+r}$ convergent et leurs sommes sont égales. La dérivée de cette série converge uniformément sur]0, R[, on peut donc la dériver terme à terme.

17.7.4 Calcul des coefficients de solutions formelles de type Frobenius

Comme précédemment, on dérive et on remplace!

$$S(x) = \sum_{k=0}^{\infty} a_k x^{r+k} xS'(x) = \sum_{k=0}^{\infty} (r+k) a_k x^{r+k} x^2 S''(x) = \sum_{k=0}^{\infty} (r+k) (r+k-1) a_k x^{r+k}$$
(17.45)

5. ??

On remarque que grâce aux x, x^2 il ne faut plus rien modifier : on effectue le produit de Cauchy et on déduit la relation de récurrence (R_k) :

$$(r+k)(r+k-1)a_k + \sum_{l=0}^{k} (a_l(r+l)p_{k-l} + a_lq_{k-l}) = 0$$
(17.46)

où encore

$$((r+k)(r+k-1) + (r+k)p_0 + q_0)a_k = -\sum_{l=0}^{k-1} a_l((r+l)p_{k-l} + q_{k-l}) = 0$$
 (17.47)

 R_0 est ainsi l'équation indicielle et r est forcément solution (sinon il n'existera pas de solution de Frobenius). En déballant la somme pour une valeur de k, je peux obtenir les premiers a_k .

Définissons le premier membre de l'équation, $\mathcal{P}_0(r) := r(r-1) + p_0r + q_0$, comme étant le polynôme indiciel de degré 2 et $\mathcal{P}_n(r) := p_nr + q_n$ le polynôme de degré ≤ 1 . On peut réécrire R_k :

$$\mathcal{P}_0(r+k)a_k = -\sum_{m=0}^{\infty} \mathcal{P}_{k-l}(r+l)a_l$$
 (17.48)

où le premier terme est non nul, si $r + k \neq r_1, r_2$. Rappelons que $a_0 = 1$ et que pour $R_0 \Longrightarrow \mathcal{P}_0(r) = 0 \Leftrightarrow r = r_1, r_2$.

Si 6 $r_1 \in \mathbb{R}$ et $r_1 - r_2 \neq \mathbb{Z}$ et $a_0 = 1$ alors les (R_k) déterminent univoquement les $a_k(r_1)$ et les $a_k(r_2)$. Les deux séries solutions sont alors

$$\begin{array}{ll}
x^{r_1}(1+\sum_{k=1}^{\infty}a_k(r_1)x^k) & (=y_1(x)) \\
x^{r_2}(1+\sum_{k=1}^{\infty}a_k(r_2)x^k) & (=y_2(x))
\end{array}$$
(17.49)

Ces deux solutions ayant un comportement différent pour $x \to 0$, elles sont forcément L.I.

Si $r_1 \notin \mathbb{R}$: $r_1 = \alpha + i\beta$, $r_2 = r_1^*$ comme les coefficients sont réels. On trouve alors en remplaçant r_1 dans la série solution trouvée précédemment pour trouver la série solutions à valeurs dans \mathbb{C} . Pour le reste ça ne change pas et l'on pourra tout déterminer à partir de $a_0 (= 1)$.

Si
$$r_1 + r_2 + \tilde{k}$$
 avec $\tilde{k} \in \mathbb{N}_0$, alors $R_{\tilde{k}}$ pour $r = r_2$ est : $0.a_{\tilde{k}} = \underbrace{-\sum_{l=0}^{\tilde{k}-1} \mathcal{P}_{\tilde{k}-l}(r_2+l)a_l}_{2-0}$.

Si c'est nul, alors $a_{\tilde{k}}$ est indéterminé et l'on peut choisir $a_{\tilde{k}}=0$ pour déterminer tout le reste. La série-solution vaut alors

$$x^{r_2} \left(1 + \sum_{k \neq \tilde{k}, 0}^{\infty} a_k x^k \right) \tag{17.50}$$

Si c'est non nul, il n'existe pas de série de Frobenius d'exposant r_2 et on peut trouver une solution du type (admis)

$$b_1 y_1(x) \ln(x) + x^{r_1} \left(1 + \sum_{k=1}^{\infty} c_k x^k \right)$$
 (17.51)

Pour le cas $r_1 = r_2$, voir slide 39.

^{6. ??}

17.7.10 Théorème de Frobenius (admis)

Théorème :

- Toutes les séries solutions formelles trouvées (section 7) convergent dans $]0, \rho[$.
- Leurs sommes sont des solutions de l'EDL

$$x^{2}y'' + x\left(\sum_{k=0}^{\infty} p_{k}x^{k}\right)y' + \left(\sum_{k=0}^{\infty} q_{k}x^{k}\right)y = 0$$
(17.52)

où $\rho := \min\{\rho_p, \rho_q\}.$

17.8 L'EDL hypergéométrique de Gauss