

СОЮЗ СОВЕТСКИХ СОЦИАЛИСТИЧЕСКИХ РЕСПУБЛЫК

(19) SU (11) 1747673 A1

(51)5 E 21 B 29/10

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ИЗОБЛЕТЕНИЯМ И ОТКРЫТИЗМ ПРИ ГКНТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

к авторскому свидетельству

(21) 4715714/03

(22) 05.07.89

(46) 15.07.92. Бюл.№26

(71) Всесоюзный научно-исследовательский и проектный институт по креплению скважин и буровым растворам

(72) В.А.Юрьев

(53) 622 (088.8)

(56) Авторское свидетельство СССР № 562636, кл. Е 21 В 33/12, 1974.

Авторское свидетельство СССР
№ 1479614, кл. Е 21 В 29/10, 1987.
(54) УСТРОЙСТВО ДЛЯ УСТАНОВКИ ПЛАСТЫРЯ В ОБСАДНОЙ ТРУБЕ
(57) Изобретение относится к технике подземного ремонта, а именно к устройствам
для установки металлических пластырей для
восстановления герметичности обсадных
труб. Цель изобретения — упрощение конструкции устройства и снижение его массы.
Это достигается тем, что полый шток 12,
телескопически установленный в корпусе 6,
жестко связан с полой штангой 3, зафиксырован в исходном положении на корпусе 6 и

снабжен ограничителем 5 и фиксатором конечного положения в виде стопорного кольца 14, для которого на внутренней поверхности транспортной колонны 15 выполнена кольцевая проточка 16. При этом расстояние между стопорным кольцом 14 и кольцевой проточкой 16 в исходном положении выбрано равным длине хода дорнирующей головки 4, т.е. расстоянию от нижнего торца корпуса 6 до ограничителя 5. После фиксации устройства в обсадной трубе 20 в заданном интервале приступают к запрессовке пластыря 18 посредством продавления дорнирующей головки 4 через пластырь 18 весом НКТ. При этом срезается штифт 22, а жидкость под даслением через отверстие 7 поступает в полость манжеты 8 и выдвигает подвижные секторы 9 в рабочее положение. После этого якорь отключается от обсадной трубы 20 и дальнейшая запрессовка пластыря 18 осуществляется под давголовке лением возвратно-поступательном перемещении инструмента. 2 ил.

Изобретение относится к технике подземного ремонта, а именно к устройствам для установки металлических пластирей для восстановления герметичности обсадных труб нефтяных, водяных и газовых скважин.

Известно устройство, включающее штангу, на нижнем конце которой размещена дорнирующая головка, на верхнем конце – якорь, а между ними на штанге расположен пластырь.

Однако дорнирующая головка при расшилении пластыря до сопряжения с обсадной трубой протягивается через пластырь снизу вверх путем осевой нагрузки на инструмент (насосно-компрессорные трубы). В этсм случае НКТ подвергаются двойной нагрузке: гидравлическому давлению и осевому растяжению, что не исключает порыв труб в процессе их натяжения при установке пластыря на больших глубинах (более 3000 м).

Малестно устройство, включающие силедой гыдравлический толкатель, дорнирующую головку, полый шток, штангу с расположенными на ней цанговыми упорами пластыря, который размещен на этой 5 штанге.

Это устройство громоздко и металлоемко за счет наличия силовых цилиндров, неудобно в эксплуатации и обслуживании.

Цель изобретения – упрощение конст- 10 рукции устройства, снижание его массы.

Это достигается тем, что расширение пластыря до сопряжения с обсадной трубой обеспечивается путем создания расчетной осевой нагрузки на дорнирующую головку 15 за счет веса инструмента, опускаемого в скважину.

При этом полый шток жестко связан с полой штангой, зафиксирован на корпусе в исходном положении и имеет фиксатор ко- 20 нечного положения, при этом на внутренней поверхности транспортной колонны труб выполнена кольцевая проточка под фиксатор конечного положения, а полый шток имеет на наружной поверхности огра- 25 ничитель, причем длина хода корпуса гидравлической дорнирующей головки до ограничителя равна расстоянию между фиксатором конечного положения и кольцевой проточкой транспортной колонны труб. Кро- 30 ме того, гидравлический якорь устройства, выполняющий функцию упора пластыря, расположен на конце полости штанги под пластырем. Такое техническое решение позволяет отказаться от применения в устрой- 35 стве силового толкателя. При этом технология установки пластыря путем расширения его до сопряжения с обсадной трубой при протягивании дорнирующей головки сверху вниз обеспечивается весом 40 инструмента, расчетная нагрузка которого регулируется и контролируется по гидравлическому измерителю веса (ГИВу),

Такая компоновка устройства и использование массы инструмента для создания 45 осебой нагрузки на дорнирующую головку при расширении пластыря позволяет

- упростить технологию установки пластыря при отсутствии возможного попадания посторонних твердых предметов между колонной труб и пластырем в процессе его 50 расширения:

- обеспечить установку пластыря практически на любой глубине, не создавая дополнительной растягивающей осевой нагрузки на инструмент (НКТ), при этом на небольших 55 глубинах с целью увеличения веса инструмента используются утяжеленные бурильные трубы;

- упростить конструкцию устройства, снизись массу с сохранением его прочностных свойств, обеспечить удобство обслуживания и эксплуатации.

Изобретение обеспечивает в момент захода дорнирующей головки в пластырь синхронность годачи жидкости на подвижные секторы с взаимодействием хода головки до ее нижнего ограничителя и кольцевой канавки со стопорным кольцом.

На фиг.1 изображено устройство в сборе с пластырем, спущенное в скважину к месту дефекта обсадной колонны; на фиг.2 – дорнирующая головка, разрез.

Устройство содержит гидравлический якорь 1 с подвижными плашками 2, который посредством полой штанги 3 соединен с гидравлической головкой 4, состоящей из нижнего упора 5, корпуса 6 с отверстием 7. манжеты 8, подвижных секторов 9, обойм 10, конусного пуансона 11, штока 12, уплотнительных колец 13, стопорного кольца 14 и верхнего патрубка 15 с кольцевой проточкой 16, над головкой размещен циркуляционный клапан 17, а между якорем и головкой пластырь 18, спускаемый на инструменте (HKT) 19 в обсадную трубу 20 к месту дефекта 21. Для предотвращения преждевременного захода в пластырь дорнирующей головки она снабжена срезным штифтом 22.

После спуска устройства в сборе с пластырем 18 на инструменте 19 в обсадную. трубу 20 и ориентации пластыря на дефект 21 в системе создается избыточное гидравлическое давление. Жидкость под давлением поступает в полость якоря 1, который своими плашками 2 с размещенными на нем зубьями якорится за обсадную трубу 20. обеспечивая упор пластырю. Запрессовка пластыря 18 к впутренней стенке обсадной трубы 20 для перекрытия дефекта 21 осуществляется при протягивании дорнирующей головки 4 через пластырь весом инструмента 19. При этом срезается штифт 22, а избыточное давление в полость манжеты 8 поступает через отверстие 7 и передает радиальную нагрузку на подвижные секторы 9 в момент захода головки в пластырь, т.е. тогда, когда нижний торец А корпуса 6 доходит до упора 5 и стопорное кольцо 14 занимает место в кольцевой проточке 16.

После прохода дорнирующей головки 4 в пластыре на заданную величину (например, 1,5 м), ксторая обеспечивает контактное сопряжение пластыря 18 с обсадной трубой 20, якорь 1 автоматически отключастся от обсадной трубы с сохранением избыточного давления-дорнирующая головка

4 вес и инструмента расширяет пластыры на сцей его дличе.

Так как дорнирующая головка благодаря нижнему упору 5 и соединению стопорного кольца 14 с кольцевой проточкой 16 после прохода отрезка в не имоет осового 5 переме цения, то калибровку пластыра (повторные проходы) осуществляют под давлением в головке 4 как снизу вверх подъемом инструмента, так и сверху вниз - весом инмент при его подъеме незначительные.

После установки пластыря устройство поднимается на поверхность, слив жидкости с поднимаемого инструмента обеспечивается через циркуляционный клапан 17.

Устройство имеет следующие преимущества:

- для осевого перемещения дорнирующей головки по всей длине пластыря сверху вниз используется вес инструмента без дополни- 20 тельной осевой нагрузки на него;

- упрощается технология установки пластыря практически на любой глубине с отсутствием возможного попадания посторонних и пластырем:

- упрощается конструкция, сниждется масса без потери прочностных свойств устрой-

Экономический эффект от применения данного технического решения ориентировочно составит 1 - 2 тыс.руб. на одну операцию.

Формула изобретения

Устройство для установки пластыря в обсадной трубе, включающее установленный на транспортной колонне труб полый корпус с радиальными отверстиями и гидравлической дорнирующей головкой, телеструмента. При этом нагрузки на инстру- 10 стопически установленный в корпусе полый шток, образующей с корпусом гидравлическую камеру, полую штангу с гидравлическим якорем и пластырь, размещенный на полой штанге, отличающееся тем, что. 15 с целью упрощения конструкции устройства и снижения его массы, полый шток жестко связан с полой штангой, зафиксирован на корпусе в исходном положении и имеет фиксатор конечного положения, при этом на внутренней поверхности транспортной колонны труб выполнена кольцевая проточка под фиксатор конечного положения, а полый шток имеет на наружной поверхности ограничитель, причем длина хода корпуса твердых предметов между обсадной трубой 25 гидравлической дорнирующей головки до ограничителя равна расстоянию между фиксатором конечного положения и кольцевой проточкой транспортной колонны труб.

Редактор Н. Федорова

Составитель В. Юрьев Техред М.Моргентал

Корректор К.Нацибулина.

Заказ 2482

Тираж

Подписное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва, Ж-35, Раушская наб., 4/5