Q Given an array . Find the nearest smaller clement
On left for every clement. It position wise (nearest index)
index)
Ex1 A[]: 4 5 2 10 11 2
NSE: -1 4 -1 2 10 -1
// 56 . ' _ 10
Day 1 . To a (2)
Brote force: 2 loops: Tc:0(n²)
Sc: 0(1)
•
Ex2 A[]: 4 6 10 11 78 35
NSG: -1 4 6 10 6 7 -1 3
A[]: 4 5 2 10 11 2
NSE: -1 4 -1 2 10 -1
<u>-</u>
Tc: 0(n)
Sc: O(n)
Candidate list
Stank

Pseudo	Code
•	

ind gan [n], int are [n], stack < int > st.

for (inti=0; i2n; i+1) L.

while (| St. empty () bl st. top () = aso[i]) Sol. pop();

if (st.empty())

are (i) = -1;

clac

ars [i] = st.top(); > Detuons the

St. puch (arr [i]); de steet.

						_			
1	CJ A		<u> </u>						
<u>+</u>	NSE								
	10 5 0								
				^	רח	2			
						-1			
								•	1

int gar [n], int are [n], stack < int > st.
for (inti=0; i2n; i+1) d
while (St. empty () bl and [2+. top ()] \geq and [i]) sol. pop();
if (st.empty()) ars (i) = -1; clac
ars [i] = St. top(); Detvons the topmost clement of etech.
Tc: O(n)
SC: O(n)

Fix every element as hearth & find
$$P_{p}$$
 & P_{1} .

Width $\Rightarrow (P_{p}-P_{1}+1)$

height $\Rightarrow ab(i)$:

TC: $o(n)$ Sc: $o(n)$

area with all 115 in it.

Ex1				\									
	1.	1	0	1	0	1	1	기	0	1	0	1	
	0	ㅓ	Ь	4	1	1	0	2	4	2	1	2	
n	1	ᅿ	1	1	1	0	11	3	N	3	2	0	
	1	0	1	0	0	1	2	0	3	Ŏ	S	7	
	1	ᅱ	0	0	1	1	3	1	0	0	1	م	

Tc: O(mn) Sc: O(m)

0:35

O6	Similar	40	NSL	, Can	we	ρ_{i}	nd	NGL	-LNGR	
								- 1	1	
							Near area	rest atox	Nerree-1- greator to sight	
							l et	e1+	45 sight	-
	E J A	:	٢4 ي	5 2	lo	Jς	2			
	ngL	:	-1 -	1 5	-1	-1	11			
			5 1							
					•					

Or Given an array. Find the sum of max of every subarray! Ex an [] = [1 4 3] [14] = 4 [143] = 4[43] = 4 [4] - 4 [3] = 3: (onto bution technique. (nGL==-1) L 10 2 7 6 11 9]) (nGR ==-1) 471-1 X => nGL+1 Tc:O(n)7 non -1 Sc: (m)

$$\frac{(i-x+1)\times(y-i+1)}{(i-nn-1)}\times(nn-i+1)\times(nn-i+1)$$

$$\frac{(i-nn-1)\times(nn-i)}{(i-nn-1)}\times(nn-i)$$

Total subarry which cantain i

