MATLAB: Assignment 5

Instructions

- Once you have completed the problem, generate a pdf file with the results using the **Publish** option in matlab. **Please give me a hard copy of the pdf file.**
- Failure to follow these instructions will result in loss points (up to the full amount of the homework total).

Due on Monday, August 5th in class

In this exercise, you will write MATALB scripts to approximate an initial value problem using the Euler and Runge-Kutta methods (RK2 and RK4).

Problem 1

Use **Euler method** with n = 20 to approximate the solution of the following IVP:

$$\frac{dy}{dt} = t^2(2+y), \quad y(0) = 1, \quad 0 \le t \le 1.$$

Plot the points (t_i, y_i) obtained by the Euler method for each n = 20 value. Also in the same figure, plot the actual solution (to solve the IVP analytically, please refer your MAT 239 notes). Explain steps by commenting on them.

Problem 2

Use **Modified Euler method** with n = 20 to approximate the solution of the following IVP:

$$\frac{dy}{dt} = t^2(2+y), \quad y(0) = 1, \quad 0 \le t \le 1.$$

Plot the points (t_i, y_i) obtained by the Modified Euler method for each n = 20 value. Also in the same figure, plot the actual solution (to solve the IVP analytically, please refer your MAT 239 notes). Explain steps by commenting on them.

Problem 3

Use 4th order Runge-Kutta method with n = 20 to approximate the solution of the following IVP:

$$\frac{dy}{dt} = t^2(2+y), \quad y(0) = 1, \quad 0 \le t \le 1.$$

Plot the points (t_i, y_i) obtained by the RK4 method for each n = 20 value. Also in the same figure, plot the actual solution (to solve the IVP analytically, please refer your MAT 239 notes). Explain steps by commenting on them.