

PROGRAMMING and ALGORITHMS II

CYK, Prim's and
Dijkstra's Algorithms

Dr Tilo Burghardt

Unit Code COMS10001

CYK Example 1

Department of Computer Science

Prim Example 1

Prim Example 2

W = { S

visited

nodes

Department of Computer Science

current best

distance

Dijkstra Example 1

Department of Computer Science

G=(V,E) ... graph with weights $d(v,w) \ge 0$ for all $v,w \in V$ (where $d(v,w) = \infty$ if $(v,w) \notin E$)

 $W \subseteq V$... set of visited nodes

 $s \in V$... source vertex to calculate distances to D(v) ... current shortest distance estimate from s to v

- 1) Initialise: $W = \{s\}; \forall_{v \in V} : D(v) = d(s, v)$
- 2) Select a new current vertex w in $V \mid W$ with minimal D(w)
- 3) Add current vertex w to W
- 4) Update distances: $\forall_{v \in V \setminus W} : D(v) = \min(D(v), D(w) + d(w, v))$
- 5) If V=W then exit, otherwise Goto 2)

Dijkstra Example 2

Department of Computer Science

G=(V,E) ... graph with weights $d(v,w) \ge 0$ for all $v,w \in V$ (where $d(v,w) = \infty$ if $(v,w) \notin E$)

 $W \subseteq V$... set of visited nodes

 $s \in V$... source vertex to calculate distances to D(v) ... current shortest distance estimate from s to v

- 1) Initialise: $W = \{s\}; \forall_{v \in V} : D(v) = d(s, v)$
- 2) Select a new current vertex w in $V \setminus W$ with minimal D(w)
- 3) Add current vertex w to W
- 4) Update distances: $\forall_{v \in V \setminus W} : D(v) = \min(D(v), D(w) + d(w, v))$
- 5) If V=W then exit, otherwise Goto 2)

