Базы данных

Лекция 1

Меркурьева Надежда

Структура курса

- Лекция + Семинар (1 раза в неделю)
- Семинары: контрольные работы по практической части (подробности у семинаристов)
- Лекции: <u>большая</u> теоретическая контрольная в конце семестра
- Форма отчетности:
 - ПМФ дифференцированный зачет по итогам работы в семестре
 - ПМИ экзамен: оценка = оценка за семестр + ответ на экзамене

Формула для оценки

• ПМФ:

- За работу в семестре 6 баллов
- Лекционная контрольная 2 балла
- Устная беседа на зачете 2 балла

• ПМИ:

- За работу в семестре 3 балла
- Лекционная контрольная 2 балла
- Ответ на экзамене 5 баллов

Неудовлетворительная оценка хотя бы за один из пунктов – гарантированная пересдача

- Предпосылки к созданию баз данных (далее БД)
- Реляционная алгебра и реляционные БД
- Язык запросов SQL
- Системы управления базами данных (СУБД)
- Троичная логика
- Моделирование БД
- Продвинутые запросы SQL
- Оптимизация запросов
- Основы хранилищ данных (ХД) и современное применение БД
- Нереляционные базы данных (NoSQL)

Открытые вопросы

- Что такое базы данных?
- Зачем они нужны?
- Каковы предпосылки к их появлению?

База данных

• совокупность данных, хранимых в соответствии со схемой данных, манипулирование которыми выполняют в соответствии с правилами средств моделирования данных

• совокупность данных, организованных в соответствии с концептуальной структурой, описывающей характеристики этих данных и взаимоотношения между ними, причём такое собрание данных, которое поддерживает одну или более областей применения

Модели данных

Иерархическая модель данных

Сетевая модель данных

Реляционная модель данных

• IBM, 1960s

• Древовидная структура записей

 Потомок имеет ровно 1 предка

• Потомки общего предка – близнецы

• Чарльз Бахман, 1969

• Структура записей в виде графа

 Расширяет иерархическую модель данных

• Потомок может иметь более 1 предка

Недостатки иерархической и сетевой моделей данных

ВЫСОКАЯ СЛОЖНОСТЬ И ЖЕСТКОСТЬ СХЕМЫ БД

ОТСУТСТВИЕ ГИБКОСТИ МОДЕЛИ

ВЫПОЛНЕНИЕ ДАЖЕ ПРОСТЫХ ЗАПРОСОВ – СЛОЖНЫЙ ПРОЦЕСС

ЗАВИСИМОСТЬ ОТ ФИЗИЧЕСКОЙ ОРГАНИЗАЦИИ ДАННЫХ

НИЗКАЯ ПРОИЗВОДИТЕЛЬНОСТЬ

Реляционная модель данных

- 1969-1970 гг. Э. Кодд
- Июнь 1970 г. «A Relational Model of Data for Large Shared Data Banks»
- В основе модели математика и логика
- Логическая модель данных
- Не зависит от физических структур

Основные понятия

- Домен это множество допустимых значений
- Атрибут это наименование домена
- Кортеж это упорядоченный набор фиксированной длины
- Отношение это математическая структура, которая формально определяет свойства различных объектов и их взаимосвязи
- Арность отношения количество его элементов

Пример реляционной модели

Домен: натуральные числа

Заголовок отношения

ID –	FIRST_NM	LAST_NM	PHONE_NO	CREATE_DT
1	Иван	Иванов	79012345678	2017-08-12
101	Сергей	Серов	79023456689	2003-05-14
1006	Петр	Петров	79129876543	2018-06-24
70009	Николай	Сидоров	78123000101	2013-12-16

Пример реляционной модели

Отношение

ID	FIRST_NM	LAST_NM	PHONE_NO	CREATE_DT	
1	Иван	Иванов	79012345678	2017-08-12	
101	Сергей	Серов	79023456689	2003-05-14	Корт
1006	Петр	Петров	79129876543	2018-06-24	
70009	Николай	Сидоров	78123000101	2013-12-16	

Декартово произведение

- Пусть A и B множества:
 - $A = (a_1, a_2, ...)$
 - $B = (b_1, b_2, ...)$
- **Декартовым произведением** множеств A и B называется множество пар:

$$A \times B = \{(a, b) : a \in A \& b \in B\}$$

Расширенное декартово произведение

- Пусть S_1, S_2, \dots, S_N множества, где N > 1
 - $S_i = (s_{i1}, s_{i2}, ..., s_{ij}, ...)$
- *Расширенное декартово произведение* N множеств это множество вида:

$$S_1 \times S_2 \times \cdots \times S_N = \{(x_1, x_2, \dots, x_N) : x_i \in S_i, i = \overline{1, N}\}$$

• Элемент такого множества $(x_1, x_2, ..., x_N)$ называется кортежем.

Сцепление кортежей

- Пусть *x* и *y* кортежи:
 - $x = (x_1, x_2, ..., x_n)$
 - $y = (y_1, y_2, ..., y_m)$
- Тогда сцеплением кортежей x и y будет кортеж размерности n+m вида:
 - $x \times y = (x_1, ..., x_n, y_1, ..., y_m)$

Основные понятия

- Пусть заданы домены D_1, D_2, \dots, D_N
- Пусть задан список атрибутов A_1, A_2, \dots, A_N так, что каждому домену D_i соответствует атрибут A_i , определенный на этом домене.
- Тогда *отношением* R, определенным на атрибутах A_1, A_2, \dots, A_N (доменах D_1, D_2, \dots, D_N) называется подмножество расширенного декартова произведения данных доменов:

$$R \subseteq D_1 \times \cdots \times D_N$$

Расширенное декартовое произведение отношений

Q

Фамилия	Имя	Отчество
Иванов	Иван	Иванович
Петров	Петр	Петрович
Васильев	Василий	Васильевич

Дата визита	Наименование филиала
12.12.2018	«Феникс»
01.01.2018	«Алмаз»

$$Q \times R = Z$$

- 1. Сколько кортежей будет в новом отношении Z?
- 2. Сколько атрибутов будет в новом отношении Z?

Расширенное декартовое произведение отношений

Q

Фамилия	Имя	Отчество
Иванов	Иван	Иванович
Петров	Петр	Петрович
Васильев	Василий	Васильевич

Ġ.		
ш	9)	
П	77	
٠	•	

Дата визита	Наименование филиала
12.12.2018	«Феникс»
01.01.2018	«Алмаз»

Фамилия	Имя	Отчество	Дата визита	Наименование филиала
Иванов	Иван	Иванович	12.12.2018	«Феникс»
Иванов	Иван	Иванович	01.01.2018	«Алмаз»
Петров	Петр	Петрович	12.12.2018	«Феникс»
Петров	Петр	Петрович	01.01.2018	«Алмаз»
Васильев	Василий	Васильевич	12.12.2018	«Феникс»
Васильев	Василий	Васильевич	01.01.2018	«Алмаз»

Основные понятия

- Арность отношения количество атрибутов.
- Заголовок отношения список атрибутов.
- Множество кортежей, входящих в состав отношения, *тело отношения*.
- Домен называется составным, если он представляет собой расширенное декартово произведение конечного числа простых доменов.
- Будем говорить, что два простых домена D1 и D2 являются совместимыми, если они либо совпадают, либо $D2 \subseteq D1$.

Свойства отношения

Нет двух одинаковых кортежей

Порядок кортежей не определён

Порядок атрибутов в заголовке не определён

Пример реляционной модели

Отношение. В общем случае таблица отношением не является! Почему?

ID	FIRST_NM	LAST_NM	PHONE_NO	CREATE_DT
1	Иван	Иванов	79012345678	2017-08-12
101	Сергей	Серов	79023456689	2003-05-14
1006	Петр	Петров	79129876543	2018-06-24
70009	Николай	Сидоров	78123000101	2013-12-16

Реляционная алгебра

Семейство $\mathfrak{A} \subset 2^X$ подмножеств множества X (носитель алгебры) называется алгеброй, если оно удовлетворяет следующим свойствам:

- $\emptyset \in \mathfrak{A}$
- Если $A \in \mathfrak{A}$, то $X \setminus A \in \mathfrak{A}$
- Если $A, B \in \mathfrak{A}$, то $A \cup B \in \mathfrak{A}$.

Реляционная алгебра:

• Носитель – множество (всевозможных) отношений различных (конечных) порядков

Операции реляционной алгебры

Теоретикомножественные

Реляционные

Теоретико-множественные операции

Применимы к совместимым отношениям:

- Объединение
- Разность
- Пересечение

Здесь и далее декартово произведение == расширенное декартово произведение, если не оговорено обратное

Объединение отношений

Семинаристы ПМФ

Фамилия	Имя
Роздухова	Нина
Житлухин	Дмитрий
Халяпов	Александр

Семинаристы ПМИ

Фамилия	Имя
Меркурьева	Надежда
Медведева	Анастасия
Житлухин	Дмитрий
Тюрюмина	Элла
Черняева	Надежда
Мазлов	Владимир
Халяпов	Александр

 $Q = R \cup S$

Семинаристы ФИВТ

Объединение отношений

Семинаристы ПМФ

Фамилия	Имя
Роздухова	Нина
Житлухин	Дмитрий
Халяпов	Александр

Семинаристы ПМИ

Фамилия	Имя
Меркурьева	Надежда
Медведева	Анастасия
Житлухин	Дмитрий
Тюрюмина	Элла
Черняева	Надежда
Мазлов	Владимир
Халяпов	Александр

Семинаристы ФИВТ

Фамилия	Имя
Роздухова	Нина
Житлухин	Дмитрий
Халяпов	Александр
Меркурьева	Надежда
Медведева	Анастасия
Тюрюмина	Элла
Черняева	Надежда
Мазлов	Владимир

Пересечение отношений

Семинаристы ПМФ

Фамилия	Имя
Роздухова	Нина
Житлухин	Дмитрий
Халяпов	Александр

Семинаристы ПМИ

Фамилия	Имя
Меркурьева	Надежда
Медведева	Анастасия
Житлухин	Дмитрий
Тюрюмина	Элла
Черняева	Надежда
Мазлов	Владимир
Халяпов	Александр

Пересечение отношений

Семинаристы ПМФ

Фамилия	Имя
Роздухова	Нина
Житлухин	Дмитрий
Халяпов	Александр

Семинаристы ПМИ

Фамилия	Имя
Меркурьева	Надежда
Медведева	Анастасия
Житлухин	Дмитрий
Тюрюмина	Элла
Черняева	Надежда
Мазлов	Владимир
Халяпов	Александр

Семинаристы, которые преподают и на ПМИ, и на ПМФ

Фамилия	Имя
Житлухин	Дмитрий
Халяпов	Александр

Разность отношений

Семинаристы ПМФ

Фамилия	Имя
Роздухова	Нина
Житлухин	Дмитрий
Халяпов	Александр

Семинаристы ПМИ

Фамилия	Имя
Меркурьева	Надежда
Медведева	Анастасия
Житлухин	Дмитрий
Тюрюмина	Элла
Черняева	Надежда
Мазлов	Владимир
Халяпов	Александр

Разность отношений

Семинаристы ПМФ

Фамилия	Имя
Роздухова	Нина
Житлухин	Дмитрий
Халяпов	Александр

Семинаристы ПМИ

Фамилия	Имя
Меркурьева	Надежда
Медведева	Анастасия
Житлухин	Дмитрий
Тюрюмина	Элла
Черняева	Надежда
Мазлов	Владимир
Халяпов	Александр

Семинаристы, которые преподают только на ПМИ

Фамилия	Имя
Меркурьева	Надежда
Медведева	Анастасия
Тюрюмина	Элла
Черняева	Надежда
Мазлов	Владимир

Реляционные операции

Построение нового отношения, в которое входят кортежи, удовлетворяющие заданному условию.

- R заданное отношение,
- A и B списки идентификаторов атрибутов,
- $\theta \in \{=, \neq, <, >, \geq, \leq\}$.

$$R[A\theta B] = \{r | r \in R \& (r[A]\theta r[B])\}$$

r[A], r[B] — однотипные

Проблема: допустимо только сравнение между собой значений (составных) атрибутов в рамках одного кортежа

• Пусть lpha — некоторая константа, совместимая с r[A]

$$R[A\theta\alpha] = (R \times (B_{\alpha})\{(\alpha)\})[A\theta B_{\alpha}]$$

• _ $(B_{lpha})\{(lpha)\}$ - безымянное отношение с единственным атрибутом B_{lpha}

$$R[A\theta B], если \lambda = A, \mu = B$$

$$R[\alpha\theta B] = (R \times _(A_{\alpha})\{(\alpha)\})[A_{\alpha}\theta B], если \lambda = \alpha, \mu = B$$

$$R[A\theta\beta] = (R \times _(B_{\beta})\{(\beta)\})[A\theta B_{\beta}], если \lambda = A, \mu = \beta$$

$$R[\alpha\theta\beta] = (R \times _(A_{\alpha})\{(\alpha)\} \times _(B_{\beta})\{(\beta)\}[A_{\alpha}\theta B_{\beta}], если \lambda = \alpha, \mu = \beta$$

- A и B некоторые атрибуты
- α , β некоторые константы
- Совместимость по типу!

Name	Amount
Иван	10
Петр	3
Николай	15
Сергей	20
Илья	0
Анна	5
Максим	30
Дмитрий	7

Name	Amount
Иван	10
Петр	3
Николай	15
Сергей	20
Илья	0
Анна	5
Максим	30
Дмитрий	7

Name	Amount
Николай	15
Сергей	20
Максим	30

Реляционные операции: проекция

• Построение нового отношения с заданным списком атрибутов.

$$R[L] = \{r[L] | r \in R\}$$

- По Кодду: r[]=r , соответственно R[]=R .
- Мы будем считать, что результат проекции на пустое множество отношение с пустым заголовком.

Отношение с пустым заголовком

- Существует всего 2:
 - Пустое тело (⊥)
 - Единственный элемент кортеж нулевой арности (Т)

$$R[] = \begin{cases} \bot, если R было пустым \\ \mathsf{T}, если R было непустым \end{cases}$$

Реляционные операции: проекция

Name	Surname	Amount
Иван	Иванов	10
Петр	Петров	3
Николай	Иванов	15
Сергей	Серов	20
Илья	Иванов	0
Анна	Петрова	5
Максим	Серов	30
Дмитрий	Петров	7

Реляционные операции: проекция

Name	Surname	Amount
Иван	Иванов	10
Петр	Петров	3
Николай	Иванов	15
Сергей	Серов	20
Илья	Иванов	0
Анна	Петрова	5
Максим	Серов	30
Дмитрий	Петров	7

Реляционные операции: соединение

- Композиция декартова произведения двух отношений с последующим ограничением по заданному условию.
 - $\theta \in \{=, \neq, <, >, \leq, \geq\}$
 - $R_1(A_1, ..., A_n)$ отношение
 - $R_2(B_1, ..., B_m)$ отношение

$$R_1 \left[R_1[A_i] \theta R_2[B_j] \right] R_2 = \{ r_1 \times r_2 | r_1 \in R_1 \& r_2 \in R_2 \& r_1[A_i] \theta r_2[B_j] \}$$

- В качестве A_i , B_j можно использовать списки атрибутов.
- Естественное соединение: лишний атрибут удаляет

Реляционные операции: соединение

ID	UID	TASK	RESULT
1	123456	Α	Awful
2	101010	Α	Excellent
3	123456	В	Terrible
4	101010	В	Outstanding
5	123456	С	So-so
6	101010	С	Unbelievable
7	101010	D	The best of the best

	Q = R1[R1[UID] = R2[UID]]R2
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	RZ[UIDII
9	J/R2
	upl/R2
	B2[UII
	PIRILU
,	Q = RI[RI[UID]] = R2[UID][R2]

D	か
\mathcal{U}	4

NAIVIE
You
Son of your mother's friend
Bob

Реляционные операции: соединение

ID	UID	TASK	RESULT
1	123456	Α	Awful
2	101010	Α	Excellent
3	123456	В	Terrible
4	101010	В	Outstanding
5	123456	С	So-so
6	101010	С	Unbelievable
7	101010	D	The best of the best

0.	
R1/p	
INTIVIDI	
Q = R1[R1[UID] = R2[UID]	$\sqrt{\ }$
1010	1/82
	112

	ID	UID	TASK	RESULT	Name
	1	123456	Α	Awful	You
	2	101010	Α	Excellent	Son of your mother's friend
\	3	123456	В	Terrible	You
>-	4	101010	В	Outstanding	Son of your mother's friend
/	5	123456	С	So-so	You
	6	101010	С	Unbelievabl e	Son of your mother's friend
	7	101010	D	The best of the best	Son of your mother's friend

1	ന
	K //
ı	کالا لا

NAME
You
Son of your mother's friend
Bob

Реляционные операции: деление

ID	NAME	CHANNEL
0	The Simpsons	RenTV
0	The Simpsons	2x2
0	The Simpsons	СТС
1	Family Guy	RenTV
1	Family Guy	2x2
2	Duck Tales	СТС
2	Duck Tales	2x2

Q = R/S	
Ψ <i>π/υ</i>	_ /

ID	NAME
0	The Simpsons
1	Family Guy

C	
2)	

CHANNEL		
RenTV		
2x2		

Ставьте лайки, подписывайтесь на наш канал в ТГ Прим. ТГ – запрещенный на территории Российской Федерации мессенджер