Homework 1

Submission Instruction: Create a directory called HW1. Then create two subdirectories called Q1, Q2 and so on. Place the answers of each question in the corresponding directories. Finally, zip the HW1 directory and submit.

- 1. (50 pts) As A = $\begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$, B = $\begin{bmatrix} \cos \beta & -\sin \beta & 0 \\ \sin \beta & \cos \beta & 0 \\ 0 & 0 & 1 \end{bmatrix}$, p = $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$,
 - (a) (10 pts) compute AB, Ap, ABp, ABp+p; draw vectors Ap, ABp, ABp+p in a 3D coordinate system
 - (b) (10 pts) If $\alpha=30, \beta=15$, compute AB, Ap, ABp; draw vectors Ap, ABp in a 3D coordinate system
 - (c) (5 pts) If $\alpha=45, \beta=-15$, compute AB, Ap, ABp; draw vectors Ap, ABp in a 3D coordinate system
 - (d) (15 pts) If $\alpha = 45$, $\beta = 15$, compute AB^{-1} , AB^{T} , $A^{-1}p$, $AB^{T}p$, $AB^{T}p$; draw vectors $A^{-1}p$, $A^{T}p$, $AB^{T}p$ in a 3D coordinate system
 - (e) (10 pts) If $\alpha=45$, $\beta=-45$, compute (Ap)x(Bp), ||(Ap)x(Bp)||; draw vector (Ap)x(Bp) in a 3D coordinate system

You can write the results and draw them on paper, scan and save as a PDF file. You can also compute them and draw them with Python code.

- 2. (30 pts for undergrads) Please write Python functions to compute AB, Ap, $A^{T}p$, $A^{-1}p$, $p_{1}xp_{2}$, $p_{1}^{T}p_{2}$, A_{1} $A_{2}A_{3}$ A_{4} A_{5} A_{6} A_{7} . (Upper case characters are matrixes, lower case characters are vectors).
 - (a) (20 pts) The functions work for all reasonable size matrixes and vectors
 - (b) (5 pts) The functions check dimension matching
 - (c) (5 pts) The functions are properly commented

Your submission should include test code. Feel free to use Python packages.

(20 pts) Download and install the robot simulator CoppeliaSim from
https://www.coppeliarobotics.com/. Create a scene with one table and one UR5 robotic arm.
Take a screen shot and submit it.