Exam Practice Questions

Calculate the estimators I:

Consider the following dataset, where Y is the dependent variable and X1 and X2 are the independent variables:

Observation	X1	X2	Υ
1	1	2	5
2	2	3	10
3	3	4	15
4	4	5	20

Calculate the β as **X'** * **X** and **X'** ***Y**.

Result

We want to fit a linear regression model of the form $Y = \beta 0 + \beta 1X1 + \beta 2X2 + e$

Compute the least squares estimates of β using the matrix formula:

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

Now, compute X^TX :

$$X^TX = egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & 2 & 3 & 4 \ 2 & 3 & 4 & 5 \end{bmatrix} egin{bmatrix} 1 & 1 & 2 \ 1 & 2 & 3 \ 1 & 3 & 4 \ 1 & 4 & 5 \end{bmatrix} = egin{bmatrix} 4 & 10 & 14 \ 10 & 30 & 40 \ 14 & 40 & 54 \end{bmatrix}$$

Next, compute X^TY :

$$X^TY = egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & 2 & 3 & 4 \ 2 & 3 & 4 & 5 \end{bmatrix} egin{bmatrix} 5 \ 10 \ 15 \ 20 \end{bmatrix} = egin{bmatrix} 50 \ 150 \ 200 \end{bmatrix}$$

We got the β 0, β 1 and β 2 when we multiply (X^T * X)**-1 and X^T * Y.

Calculate the estimators II:

The inverse of XT * X is given:

The inverse of X^TX is:

$$(X^TX)^{-1} = egin{bmatrix} 1.5 & -0.5 & 0 \ -0.5 & 0.5 & 0 \ 0 & 0 & 0.5 \end{bmatrix}$$

Find the estimators

Result

Final Answer:

$$eta = egin{bmatrix} 0 \ 50 \ 100 \end{bmatrix}$$

Final Model:

The linear regression model is:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

Substituting the values of β_0 , β_1 , and β_2 :

$$Y = 0 + 50X_1 + 100X_2$$

Simplifying:

$$Y = 50X_1 + 100X_2$$

Given our estimated model, calculate the MS-reg and MS-res:

Result

Regression Sum of Squares (SSR):

$$SSR = \sum (\hat{Y}_i - \bar{Y})^2 \ SSR = (250 - 12.5)^2 + (400 - 12.5)^2 + (550 - 12.5)^2 + (700 - 12.5)^2 \ SSR = (237.5)^2 + (387.5)^2 + (537.5)^2 + (687.5)^2 \ SSR = 56406.25 + 150156.25 + 288906.25 + 472656.25 \ SSR = 967125$$

Residual Sum of Squares (SSE):

$$SSE = \sum (Y_i - \hat{Y}_i)^2 \ SSE = (5 - 250)^2 + (10 - 400)^2 + (15 - 550)^2 + (20 - 700)^2 \ SSE = (-245)^2 + (-390)^2 + (-535)^2 + (-680)^2 \ SSE = 60025 + 152100 + 286225 + 462400 \ SSE = 960750$$

Step 3: Degrees of Freedom

Degrees of Freedom for Regression (df Reg):

$$df_{Req}=k=2$$

(number of predictors)

Degrees of Freedom for Residuals (df Res):

$$df_{Res} = n-k-1 = 4-2-1 = 1$$

Step 4: Calculate MS Reg and MS Res

Mean Square Regression (MS Reg):

$$MS_{Reg} = rac{SSR}{df_{Reg}} = rac{967125}{2} = 483562.5$$

Mean Square Residual (MS Res):

$$MS_{Res} = rac{SSE}{df_{Res}} = rac{960750}{1} = 960750$$

Now, form the hypothesis for our model, is our model significant (α = 0.05)?

Result

H0: $\beta 1 = \beta 2 = 0$

H1: At least one of our predictors are non-zero.

From the previous calculations:

•
$$MS_{
m Reg} = 483562.5$$

$$MS_{\rm Res} = 960750$$

So:

$$F_{ ext{observation}} = rac{483562.5}{960750}pprox 0.503$$

- st $df_1=2$ (numerator degrees of freedom, e.g., for regression)
- ullet $df_2=1$ (denominator degrees of freedom, e.g., for residuals)

From the table:

- ullet Go to the row for $df_2=1.$
- ullet Go to the column for $df_1=2.$
- The critical F-value is 199.50.

0.5 < 199: Fail to reject the H0, our model is **NOT SIGNIFICANT.**

Since $F_{\rm observation} < F_{\rm table}$, we fail to reject the null hypothesis. This means that the regression model does not provide a statistically significant fit to the data at the lpha=0.05 level.

***Does adding X3, X4, X5, X6, and X7 to the model have a significant impact on improving the model's predictions? Form the hypothesis and test.

STAT 6004	Example/1.1	Page 6
	MLR EXAMPLE //.1 - GAS MILEAG	E 4
Model: MODEL2 Dependent Variable: MPG		
	Analysis of Variance	•
Source	Sum of Mea DF Squares Squar	n union ProbaF
Model Error C Total	2 1339.21617 669.6080 29 290.25101 10.0080 31 1629.46719	
Root MSE Dep Mean C.V.	3.16365 R-square 20.29062 Adj R-sq 15.59166	0.8219 0.8096
	Parameter Estimates	
Variable DF		T for H0: arameter=0 Prob > {T}
INTERCEP 1 SIZE 1 HP 1	33.491421 1.47544969 -0.040148 0.00990172 -0.016611 0.02250347	22.699 0.0001 -4.055 0.0003 -0.738 0.4663

Model: MODEL1

Dependent Variable: MPG

Analysis of Variance

Source		DF Squ	ares Sq	Mean ware F Val	
Model Error C Total		7 1466.8 24 162.5 31 1629.6	59329 6.7	7472	
Root Dep C.V.	: MSE Mean	2.60283 20.29062 12.82774	Adj R-sq	0.9002 0.8711	
		Para	meter Estimate	s	
Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > T
INTERCEP SIZE HP WEIGHT SHAPE CYLIN TRANS SPEEDS	1 1 1 1 1 1	45.026054 0.077614 -0.032959 -0.008264 1.283181 -3.169670 0.510739 1.869099	12.37472908 0.03039037 0.01916261 0.00228236 2.77643544 1.44712974 3.58673059 2.78918048	3.639 2.554 -1.720 -3.621 0.462 -2.190 0.142 0.670	0.0013 0.0174 0.0983 0.0014 0.6481 0.0385 0.8880 0.5092
Variable	DF	Type II SS			
INTERCEP SIZE HP WEIGHT SHAPE CYLIN TRANS	1 1 1 1 1 1	89.690772 44.187532 20.040986 88.815898 1.447078 32.501586 0.137370 3.042306			

Result

H0: β3 = β4 = β5 = β6 = β7 = 0

H1: At least one of the predictors are non-zero.

R(β 3, β 4, β 5, β 6, β 7 | β 1, β 2) = SSreg full - SSreg sub

Fobs = (SSreg full - SSreg sub / p) / MSres full model

To form this hypothesis we first look at the SSreg of the sub-model =1339, Next, we look at the SSreg of the full model containing X3, X4, X5, X6 = 1466

- 1. SSreg full model SSreg sub model = 1466 -1339 = 127
- 2. Divide it by the number of parameters in the model = 127 / 5 = 25.4
- 3. Divide it by MSres full model = 25.4 / 6.775 = 3.75 = Fobs
- 4. Look at the F table for (p, n-p-1) = F(5,24) = 2.62
- 5. Fobs (3.75) > Ftable (2.62), **Reject the null hypothesis**
- 6. Rejecting the H0 means adding these predictors significantly improves the model's predictions.

Does removing $\beta 4$, $\beta 3$, and $\beta 2$ sequentially reduce the model's prediction quality significantly? (MSres full model = 0.0499, n = 20)

d) Type I SS = sequential SS	
$R(\beta_1) = R(\beta_1)$	= 22,5590 = 0.3825
$R(\beta_2 \beta_1) = R(\beta_1, \beta_2) - R(\beta_1)$ $R(\beta_3 \beta_1, \beta_2) = R(\beta_1, \beta_2, \beta_3) - R(\beta_1, \beta_2)$	= 0,1353
$R(\beta_4)\beta_4\beta_3,\beta_3) = R(\beta_1,\beta_2,\beta_3,\beta_4) - R(\beta_1,\beta_2,\beta_3)$	7
notes: (i) adding these sequential SS yiels $R(\beta_1,\beta_2,\beta_3,\beta_4) = 22.9809$	ds: = SSreggall

Result

X4: Fobs = 0.0041 / 0.0499 = 0.082, F(1, 15) = 4.54, Accept the H0 and drop X4,

X3: Fobs = 0.1353 / 0.0499 = 2.710, F(1,15) = 4.54, Accept the H0 and drop X3,

X2: Fobs= 0.2825 / 0.0499 = 5.65, F(1,15) = 4.54, **Reject the H0** and **keep** X2.

<u>e</u>	Do we need x 4 ?
	Do we need &
	Fobs = R(B4 B1, B2, B3) / 10041082 ~ F(1)
. '	MSresfull .0499
	to a v
	F(1,15), 95 = 4.54 => non-significant => drop X
	Do we need x3?
)	Do we need χ $Folios = \frac{R(\beta_3 \beta_1\beta_2)/1}{M^5 res_{full}} = \frac{.1353}{.0499} = 2.710 \times 4.54$
	Folos (C.P3171/P1)/1 = 0499
	Misresfull to unu-circuiticout to drop X3
	SV UNA_FIREITI NAI
	The second secon
659	Do we need X^{2} ? $R(\beta_{2} \beta_{1})/1 = .2825 = 5.657 > 4.54$
	Tobs = R(β2 β1)/12825 _ 5.657 > 4.54
	Msres full .0499
	\Rightarrow stop and include x^2 and x $y=\beta_0+\beta_1x+\beta_1$
	2 Stop and thousand
	After deciding that 2nd order model is adequate, we must run the 2nd order model to obtain the
	After deciding that 2 oracl model is the
	we must run the 2nd order model To oblain the
	input: PROC REG; to run 2nd order model
	$\frac{MODEL\ Y=X\ X^2j}{model}$
	this is on p.3
	output from this is on p.3
-	Final prediction equation is: \$\hat{Y} = .1776 + 2.0469 \times1756 \times^2\$
	ŷ= .1776_+2.0469 X = .1736 A

Can we remove the β4 from the model?

		Analy	sis of Variand	ce .		
Source			in or	Mean ware F Val	ue Prob>F	
Model Error		7 1466.8	6.7	5341 30.9	0.0001	
C Total		31 1629.4	6719			
Root	MSE Mean	2.60283 20.29062 12.82774	R-square Adj R-sq	0.9002 0.8711		
		Para	meter Estimate	· s		
Variable	DF	Parameter Estimate	Standard Error	T for RO: Parameter∞0	Prob > T	
INTERCEP SIZE HP WEIGHT	1 1 1	45.026054 0.077614 -0.032959 -0.008264	12.37472908 0.03039037 0.01916261 0.00228236	3.639 2.554 -1.720 -3.621 0.462	0.0013 0.0174 0.0983 0.0014 0.6481	
SHAPE CYLIN TRANS SPEEDS	1 1 1	-3.169670 0.510739 1.869099	1.44712974 3.58673059 2.78918048	-2.190 0.142 0.670	0.0385 0.8880 0.5092	
Variable	DF	Type II ss		ا م		
INTERCEP SIZE HP WEIGHT SHAPE	1 1 1	89.690772 44.187532 20.040986 88.815898 1.447078		· · · · · · · · · · · · · · · · · · ·		
CYLIN TRANS SPEEDS	1 1	32.501586 0.137370 3.042306				

Result

To see if we can remove the $\beta 4$ from the model we have to look at the predictors.

$$\beta$$
1 = SIZE, B2 = HP, β 3 = WEIGHT, β 4 = SHAPE, ...

SHAPE predictor has 1.4471 Type I SS, which is equivalent to:

R(
$$\beta4$$
 | $\beta1$, $\beta2$, $\beta3$, $\beta5$, $\beta6$, $\beta7$) = SS full - SS sub

F-obs = (R(β 4 | β 1, β 2, β 3, β 5, β 6, β 7) / p) / MS res full = ((SS full - SSsub) / p) / MSres full model

(1.4471 / 1) / 6.774 = 0.214

Now we want to compare the F-obs with F-table = F(1,24) = 4.26

We now can compare F-obs < F-table, **Fail to Reject H0**, We can drop **X4** because its contribution to the model is **not significant**.

Note: You can directly look at the **"T for H0: Parameter = 0"** value from the table to see if the parameter is significant according to Type II SS (partial SS)

!!! F-obs = T-obs 2 — 0.462 2 = 0.214

c) Type I SS = partial SS
added to the model. For each vbl. separately we ask whether it would be worth adding it all the other
whether it would be worth adding it all
predictors were already in the model.
example. II. (p. 2 of output): $R(\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6, \beta_7) = 44.1875$
R(β2/β3,β3,β4,β5,β6,β7) = 20.0410
to tested as a partial
ii) each of these can be tested as a partial
test.
example: Ho: By=0 in full model
Fobs = R(β4 β1,β2,β3,β5,β6,β7)/1 = 1.4471/1 Fobs = MS resfull 6.7747
MS restall
21" A F
= 4.26 = paccept to for x=,05
F(1/24), 95 = 4.26 = Daccept to for K=,05 =D we could delete X4 from the full model =D we could delete X4 from the full model
without significant loss in predictability
(1) cas extent contains
tabs = VEORS UNDER HEADING
("I FOR HO PARAMETER = 0") Note that for
$\frac{X_4 \left(SHAPE\right)}{tobs} = \frac{462}{462} = \sqrt{214} = \sqrt{Fobs}$
Xy (SHAPE) , Tobs - Tour with our condusion
p-value is 6.481, consistent with our conduction

Explain

Explain the following SAS inputs

```
1. Proc PRINT;
```

- 2. Proc REG;
 - Model Y = X X2 X3 X4 / SS1;
- 3. Proc REG;
 - Model Y = X X2;
- 4. Proc REG;
 - MODEL MPG = SIZE WEIGHT SHAPE / P SS2;
 - RUN;

- 1. Prints the data, the output contains the values of Y, X, X2, X3, X4 (ie: $X2 = X^2$)
- 2. To examine 4th order model (X, X^2 , X^3 , X^4), SS1 = Sequential SS
- 3. To examine 2th order model (X, X^2)
- 4. Builds a multiple linear regression model to predict Y (MPG) with X1 (Size), X2 (Weight) and X3 (Shape) features. Options: P = Requests predicted values (Ŷ) and residuals (e) for each observation. SS2: Provides the Type II SS = Partial SS for the model.

Draw the flow chart for the Forward Selection:

Draw the flow chart for the Backward Elimination:

Draw the flow chart for the Stepwise Procedure:

Result

Explain the cross-validation procedure step by step.

- 1. **Split Data:** Randomly divide data into training and validation sets.
- 2. **Fit Model:** Use the training set to select variables and fit the model.
- 3. **Predict:** Apply the model to the validation set to predict outcomes.

- 4. **Compare:** Check prediction accuracy by comparing predicted and actual values, often using sum of squared errors (SSE).
- 5. **Refit or Revise:** If the model performs well, refit using all data for stable estimates. If not, reduce predictors or revise the model to avoid **overfitting**.

Look at the Graps, and write the cause of outlier pattern or position (X or Y)

Result

a. Location X and Y

- b. Location X and Y, and Pattern
- c. Location X and Pattern
- d. Location Y and Pattern
- e. Only Pattern