

Licht, Lampen und Farbe

Prof. Dr. Bernd Jödicke Institut für Naturwissenschaften und Mathematik

- was ist Licht
- was ist Farbe
- wieso wird Farbe gesehen
- wie wird Farbe gemessen
- wie wird Licht erzeugt
- warum gibt es so viele Lampen

Was ist Licht?

Licht

psychologisch

physiologisch

subjektiv

objektiv

technisches Licht

- was ist Licht
- Licht messen
- Licht sehen
- Licht erzeugen
- Licht einsetzen

620 660 700 740 780

 λ in nm

580

Farben Sehen

Farben Sehen

Auge sieht Farb-Unterschiede

Was ist Farbe ? "Relativ-Sehen"

Was ist Farbe ?
"Relativ-Sehen"

Das Äuge sieht relativ

Was ist Farbe?

"Relativ-Sehen"

Das Auge sieht relativ

Aus Purves, Lotto; why we see what we do

H T W G Auge

Grün wirkt heller als blau, obwohl weniger Strahlung davon ausgeht H T W

Was ist Licht?

Grün wirkt heller als rot, obwohl weniger Strahlung davon ausgeht

Empfindlichkeit Auge V(I)-Kurve

CIE 2° Daten xyz

Tageslicht, 2° Öffnungswinkel, definierte Umgebung

Gemittelte Kurve über viele Personen

Licht vom Auge bewertete Strahlung

Gleich viel Strahlung, aber unterschiedlich viel Licht

Elektromagnetisch Strahlung

Aufbau der Netzhaut

Wird Zapfen-Tripel gleich gereizt entsteht gleicher Farbeindruck

3 Zapfen-Werte

Wird Zapfen-Tripel gleich gereizt ensteht gleicher Farbeindruck

HTW

Weiß

Alle 3 Zapfen sind gleich gereizt

Alle Farben sind in dem Farbdreieck darstellbar

- Außen liegen die "Regenbodenfarben", also die ganz reinen, kräftigen Farben
- Innen liegen die gedeckten Farben.
- Und ganz in der Mitte weiß

Farbdreieck

Jede Farbe ist durch die beiden Werte x und y festgelegt

olanun

Farbe ist abhängig von Lampe und Material

Additive Farbmischung

subtraktive Farbmischung

Farbe

Mit 3 Farben lassen sich andere Farben herstellen

alle liegen innerhalb des aufgespannten Dreiecks

Gesättigte Farben können so nicht erzeugt werden

G

blau

grün

Wie wird Licht erzeugt?

Lampen

Lichtstrom

Φ

Einheit: [lm] lumen

Gibt an wieviel Licht von einer Lampe erzeugt wird

Angabe der Lichtströme in Lampenkatalogen

Lichtstrom

Lichtströme von Lampen

Lichtausbeute von Lampen

Leistungsaufnahme in W

Farbwiedergabe

Vergleich der Farbwirkung eines Stoffes unter der zu testenden Lampe und einer Normlampe

Ra = 100 Ra < 100

Temperatur Strahler

Jeder Körper auf einer Temperatur T strahlt elektro-magnetische Energie ab.

ampen

Temperatur Strahler

Jeder Körper auf einer Temperatur T strahlt elektro-magnetische Energie ab.

Je **höher** die Temperatur, Desto mehr Licht und desto blauer wird das Licht

Farbtemperatur einer Lampe: Lampen Licht wird mit Temperatur Strahler verglichen.

Sonne

Die Oberflächentemperatur der Sonne beträgt ca. 5500 K

Spektrum: alle Wellenlängen; UV und IR Anteil

Glühlampe

Ein heißer Draht strahlt Licht ab.

Spektrum: alle Wellenlängen; wenig UV; sehr viel IR

Allgebrauchs-Glühlampe

Leistung P

15 - 200 W

Lichtausbeute h

10 - 12 lm/W

Lebensdauer

1000 h

Farbwiedergabe

Ra

100

Spektrum: alle Wellenlängen; wenig UV; sehr viel IR

Allgebrauchs-Glühlampe

Wolfram verdampft

Wolfram kondensiert am Glaskolben

Allgebrauchs-Glühlampe

Chlor-Gas im Glaskolben

Wolfram verbindet sich mit Chlor und kann nicht mehr kondensieren

_ampen

Halogen-Glühlampe

Chlor ist ein Halogen

Konvektion hält Wolfram im Kreislauf

Erhöhung der Temperatur und längere Lebensdauer

Halogen-Glühlampe

Leistung P

15 - 2000 W

Lichtausbeute η

15 - 20 lm/W

Lebensdauer

2000 h

Farbwiedergabe

Ra

100

Spektrum: alle Wellenlängen; etwas UV; viel IR

Entladungs-Lampe

Jedes Atom sendet charakteristische Strahlung aus

Bau einer Lampe

Atom anregen Licht-Linie erscheint

Entladungs-Lampe

Überschlag regt Gas an

Gas sendet Lichtlinie aus

Geräte nötig für

- Gas erwärmen
- Überschlag erzeugen
- Strom begrenzen

Entladungs-Lampe

Jedes Atom sendet charakteristische Strahlung aus

Bau einer Lampe

Atom anregen Licht-Linie erscheint

ichtplanu

Natrium Niederdruck Lampe bis 200 lm/W

Entladungs-Lampe

Jedes Atom sendet charakteristische Strahlung aus

Kompakte Bauform

Außer HQI/HIT/CDM keine im Innenraum verwendbar

. HIT Lampe

bis 60 - 100 lm/W; 8000 h

Anschalt- und Dimmverhalten beachten

Leuchtstoff-Lampe

Leuchtstoff-Lampe

Verwendung von flüssigem Quecksilber

Achtung: **Sondermüll**

Leuchtstoff-Lampe

Quecksilber muss gasförmig werden

Achtung: Anlaufzeit mehrere Minuten

Aufgabe: Messen Sie die Beleuchtungsstärke unter einer Leuchtstofflampe als Funktion der Zeit

Leuchtstoff-Lampe

Quecksilber sendet **UV Strahlung** aus

Leuchtstoff-Lampe

Quecksilber sendet **UV Strahlung** aus

Leuchtstoffe werden auf die Glaswand aufgebracht

Leuchtstoff-Lampe

Quecksilber sendet UV Strahlung aus

Leuchtstoffe werden auf die Glaswand aufgebracht

weißes Licht entsteht aus verschiedene Spektrallinien

Leuchtstoff-Lampe

Wellenlänge in nm

Wellenlänge in nm

Leuchtstoff-Lampe

Lichtfarbe: ww, nw, tw

hat keinen Einfluss auf die Lichtausbeute

Farbwiedergabe hat Einfluss

auf die Lichtausbeute

3 - Banden bis 100 lm/W Biolux / Standard bis 65 lm/W

Leuchtstoff-Lampe

Lage der Lampe und Betriebtemperatur

haben Einfluss auf Lichtstrom

Achtung:

Schlechte Leuchten haben oft keine definierte Betriebstemperatur

Leuchtstoff-Lampe

Vorschaltgeräte

EVG haben Vorteile wegen

- Sofortstart
- kein Stroboskop-Effekt
- Dimmbarkeit
- Energieverbrauch

LED weiß

LED leuchtet blau

Leuchtstoffe wandeln Teil in grün und rot

Lampen

Lichtquellen für den Innenraum

Temperatur Strahler

Sonne

Glühlampe

Halogen-Glühlampe

10-20 lm/W sehr gute Farbwiedergabe LD: 1000 h

Fluoreszenz Strahler Entladungslampen

Reine Entladungslampen

Hal Metalldampf HQI, HIT, CDM (Natriumdampf) Leuchtstofflampen

3-Banden-LL T5/T16 Lampe Vollspektrum LL Kompakt-LL

40-200 lm/W gute bis schlechte Farbwiedergabe LD: 8000 h

Halbleiter

LED

Farb-LED weiße LED

60-130 lm/W gute bis schlechte Farbwiedergabe LD: 20000 h