Gamme tempérée Fréquences des notes (en hertz)

■ Fréquence de référence

La fréquence du la₃ est fixée à 440 Hz.

Octaves

Le rapport des fréquences de deux notes à l'octave est de 2.

"Monter d'une octave" équivaut à "multiplier la fréquence par 2". Par exemple

fréquence du $la_3 = 440$ Hz; fréquence du $la_4 = 880$ Hz; fréquence du $la_5 = 1760$ Hz; etc.

"Descendre d'une octave" équivaut à "diviser la fréquence par 2":

fréquence du $la_2 = 220 \text{ Hz}$; fréquence du $la_1 = 110 \text{ Hz}$.

Demi-tons

La gamme tempérée est caractérisée par des demi-tons égaux. Le rapport des fréquences de deux demis-tons est r.

"Monter d'un demi-ton" équivaut à "multiplier la fréquence par r".

L'octave étant partagée en 12 demi-tons égaux, on peut dire que "monter d'une octave" équivaut à "monter de 12 demi-tons", ce qui conduit à l'équation

$$2 = r^{12}$$

On peut maintenant en déduire le rapport des fréquences de deux demis-tons

$$r = \sqrt[12]{2} \simeq 1.05946$$

■ Fréquence d'une note

Selon la règle "monter d'un demi-ton" équivaut à "multiplier la fréquence par r", on peut calculer la fréquence des notes: fréquence du $(la^{\ddagger})_3 = (440 \text{ Hz}) \times r \simeq 466.16 \text{ Hz}$

fréquence du (si)₃= (440 Hz) × (r^2) \simeq 493.88 Hz, etc.

Selon la règle "descendre d'un demi-ton" équivaut à "diviser la fréquence par r", on peut calculer la fréquence des notes: fréquence du $(sol^{\ddagger})_{a} = (440 \text{ Hz}) / r \approx 415.3 \text{ Hz}$

2)

fréquence du (sol)₃= $(440 \text{ Hz}) / (r^2) \simeq 392 \text{ Hz}$, etc.

La formule est donc

$$fréquence (note) = (440 Hz) r^n$$

où n est le nombre de demi-tons entre la note et le la₃, compté positivement vers le haut ou négativement vers le bas, par exemple

fréquence (do₄) = (440 Hz)
$$r^3 \simeq 523.251 Hz$$

fréquence (ré₃) = (440 Hz) $r^{-7} \simeq 293.665 Hz$

■ Tabelle des fréquences (avec Mathematica)

$$\mathbf{r} = \mathbf{N} \left[\sqrt[12]{2} \right]$$

1.05946

```
octave[3] = Table [440 * r^{k}, \{k, -9, 2\}]
{261.626, 277.183, 293.665, 311.127, 329.628,
349.228, 369.994, 391.995, 415.305, 440, 466.164, 493.883}
octave[k_] := 2^{k-3} * octave[3]
tabelle3 = Table[octave[k], {k, 0, 9}];
```

NumberForm[

"fa", "fa#", "sol", "sol#", "la", "la#", "si"}, Range[0, 9]}], 5]

	0	1	2	3	4	5	6	7	8	9
do	32.703	65.406	130.81	261.63	523.25	1046.5	2093.	4186.	8372.	16744.
do♯	34.648	69.296	138.59	277.18	554.37	1108.7	2217.5	4434.9	8869.8	17740.
ré	36.708	73.416	146.83	293.66	587.33	1174.7	2349.3	4698.6	9397.3	18795.
ré♯	38.891	77.782	155.56	311.13	622.25	1244.5	2489.	4978.	9956.1	19912.
mi	41.203	82.407	164.81	329.63	659.26	1318.5	2637.	5274.	10548.	21096.
fa	43.654	87.307	174.61	349.23	698.46	1396.9	2793.8	5587.7	11175.	22351.
fa♯	46.249	92.499	185.	369.99	739.99	1480.	2960.	5919.9	11840.	23680.
sol	48.999	97.999	196.	392.	783.99	1568.	3136.	6271.9	12544.	25088.
sol♯	51.913	103.83	207.65	415.3	830.61	1661.2	3322.4	6644.9	13290.	26580.
la	55	110	220	440	880	1760	3520	7040	14080	28160
la♯	58.27	116.54	233.08	466.16	932.33	1864.7	3729.3	7458.6	14917.	29834.
si	61.735	123.47	246.94	493.88	987.77	1975.5	3951.1	7902.1	15804.	31609.

Export["Tabelle.html", PaddedForm[TableForm[Transpose[tabelle3]], {6, 1}]]

Tabelle.html

■ Lien hypertexte vers la page mère: Musique

http://www.deleze.name/marcel/physique/musique/