

Hydraulische Formelsammlung

Verfasser: Houman Hatami

Tel.: 1225

Fax: 1293

houman.hatami@rexroth.de

Stand: 13.03.00

Formelsammlung Hydraulik

INHALTSVERZEICHNIS

1	BEZIEHUNGEN ZWISCHEN EINHEITEN	3
2.	ALLGEMEINE HYDRAULISCHE BEZIEHUNGEN	5
	2.1 Kolbendruckkraft	5
	2.2 Kolbenkräfte	5
	2.3 Hydraulische Presse	
	2.4 Kontinuitätsgleichung	6
	2.5 Kolbengeschwindigkeit	6
	2.6 Druckübersetzer	6
3	HYDRAULISCHE SYSTEMKOMPONENTE	7
	3.1 Hydropumpe	
	3.2 Hydromotor	
	3.2.1 Hydromotor variabel	
	3.2.2 Hydromotor konstant	
	3.2.3 Hydromotoreigenfrequenz	
	3.3 Hydrozylinder	
	3.3.1 Differentialzylinder	
	3.3.2 Gleichgangzylinder	
	3.3.3 Zylinder in Differentialschaltung	
	3.3.4 Zylindereigenfrequenz bei Differentialzylinder	
	3.3.5 Zylindereigenfrequenz bei Gleichgangzylinder	
4	3.3.6 Zylindereigenfrequenz bei Plungerzylinder	
5 V	ANWENDUNGSBEISPIELE ZUR BESTIMMUNG DER ZYLINDERDRÜCKE UND LUMENSTRÖME UNTER POS. UND NEG. LASTEN	19
5.	DIFFERENTIALZYLINDER AUSFAHREND MIT POSITIVER LAST	
	5.1 DIFFERENTIALZYLINDER EINFAHREND MIT POSITIVER LAST	
	5.2 DIFFERENTIALZYLINDER AUSFAHREND MIT NEGATIVER LAST	22
	5.3 DIFFERENTIALZYLINDER EINFAHREND MIT NEGATIVER LAST	
	DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER	
	AST	
	5.5 DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT POSITIVER LAST	
	DIFFERENTIALZYLINDER AUSFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER	
	AST	
	5.7 DIFFERENTIALZYLINDER EINFAHREND AUF EINER SCHIEFEN EBENE MIT NEGATIVER	
	AST	
	5.8 HYDRAULIKMOTOR MIT EINER POSITIVEN LAST	
6	ERMITTLUNG DER REDUZIERTEN MASSEN VERSCHIEDENE SYSTEMEN	
-		
	5.1 LINEARE ANTRIEBE	
	6.1.1 Primäranwendungen (Energiemethode)	
	6.1.2 Punktmasse bei linearen Bewegungen	
	6.1.3 Verteilte Masse bei lineare Bewegungen	
	5.2 ROTATION	
7	HYDRAULISCHE WIDERSTÄNDE	
•		
	7.1 Blendengleichung	
8	HYDROSPEICHER	38

Forn 9	melsammlung Hydraulik WÄRMETAUSCHER (ÖL-WASSER)	Verfasser: Houman Hatam39
10	AUSLEGUNG FINES VENTILS	4

Verfasser: Houman Hatami

Beziehungen zwischen Einheiten

-	Bezierrangen z		
Größe	Einheit	Symbol	Beziehung
Längen	Mikrometer	μm	$1\mu m=0{,}001mm$
	Millimeter	mm	1 mm = 0.1 cm = 0.01 dm = 0.001 m
	Zentimeter	cm	$1\text{cm}=10\text{mm}=10.000\mu\text{m}$
	Dezimeter	dm	$1dm = 10cm = 100mm = 100.000 \mu m$
	Meter	m	$1m = 10dm = 100cm = 1.000mm = 1.000.000\mu m$
	Kilometer	km	1 km = 1.000 m = 100.000 cm = 1.000.000 mm
Flächen	Quardratzentimeter	cm ²	$1 cm^2 = 100 mm^2$
	Quadratdezimeter	dm^2	$1 dm^2 = 100 cm^2 = 10.000 mm^2$
	Quadratmeter	m^2	$1m^2 = 100dm^2 = 10.000cm^2 = 1.000.000mm^2$
	Ar	a	$1a = 100m^2$
	Hektar	ha	$1\text{ha} = 100\text{a} = 10.000\text{m}^2$
	Quadratkilometer	km^2	$1 \text{km}^2 = 100 \text{ha} = 10.000 \text{a} = 1.000.000 \text{m}^2$
Volumen	Kubikzentimeter	cm ³	$1 \text{cm}^3 = 1.000 \text{mm}^3 = 1 \text{ml} = 0.0011$
	Kubikdezimeter	dm ³	$1 dm^3 = 1.000 cm^3 = 1.000.000 mm^3$
	Kubikmeter	m^3	$1 \text{m}^3 = 1.000 \text{dm}^3 = 1.000.000 \text{cm}^3$
	Milliliter	ml	$1ml = 0,0011 = 1cm^3$
	Liter	1	$11 = 1.000 \text{ ml} = 1 \text{dm}^3$
	Hektoliter	hl	$1hl = 100l = 100dm^3$
Dichte	Gramm/	$\frac{g}{cm^3}$	$1\frac{g}{cm^3} = 1\frac{kg}{dm^3} = 1\frac{t}{m^3} = 1\frac{g}{ml}$
	Kubikzentimeter	CIII	C.I. G.I. III
Kraft	Newton	N	$1N = 1 \frac{kg \bullet m}{s^2} = 1 \frac{J}{m}$
Gewichtskraft			5
			1 daN = 10N
Duchasanant	Nonetananatan	N	1M 11
Drehmoment	Newtonmeter	Nm	1Nm = 1J
Druck	Pascal	Pa	$1Pa = 1N/m^2 = 0.01 \text{mbar} = \frac{1\text{kg}}{\text{m} \cdot \text{s}^2}$
	Bar	bar	"
			$1bar = 10 \frac{N}{cm^2} = 100.000 \frac{N}{m^2} = 10^5 Pa$
Masse	Milligramm	mg	1 mg = 0.001 g
	Gramm	g	1g = 1.000mg
	Kilogramm	kg	1 kg = 1000 g = 1.000.000 mg
	Tonne	t	1t = 1000kg = 1.000.000g
			-

Formelsammlung Hy	ydraulik		Verfasser: Houman Hata
	Megagramm	Mg	1Mg = 1t
Beschleunigung	Meter/	$\frac{\mathrm{m}}{\mathrm{s}^2}$	$1\frac{\mathrm{m}}{\mathrm{s}^2} = 1\frac{\mathrm{N}}{\mathrm{kg}}$
	Sekundenquadrat	S	$1g = 9.81 \text{ m/s}^2$
			1g – 9,01 IIVS
Winkel-	Eins/ Sekunde	1	$\omega = 2 \bullet \pi \bullet n \text{n in } 1/\text{s}$
geschwindigkeit		$\frac{1}{s}$	$\omega = 2 \bullet \pi \bullet \Pi \Pi \Pi 1/S$
gesenwindigheit	Radiant/ Sekunde	rad	
		S	
Leistung	Watt	W	No. I kan m
Leistung	Newtonmeter/ Sekunde	Nm/s	$1W = 1\frac{Nm}{s} = 1\frac{J}{s} = 1\frac{kg \bullet m}{s^2} \bullet \frac{m}{s}$
	Joule/ Sekunde	J/s	
A shait / Esamaia	Wetterland	W	1
Arbeit/ Energie	Wattsekunde	Ws	$1Ws = 1Nm = 1\frac{kg \bullet m}{s^2} \bullet m = 1J$
Wärmemenge	Newtonmeter	Nm	S
	Joule	J	$1 \text{kWh} = 1.000 \text{ Wh} = 1000 \cdot 3600 \text{Ws} = 3,6 \cdot 10^6 \text{Ws}$
	Kilowattstunde	kWh	$= 3.6 \cdot 10^{3} \text{ kJ} = 3600 \text{ kJ} = 3.6 \text{MJ}$
	Kilojoule	kJ	= 3,0.10 kJ = 3000kJ = 3,0NJ
	Megajoule	MJ	
Mechanische-	Newton/	$\frac{N}{mm^2}$	$1\frac{N}{mm^2} = 10bar = 1MPa$
Spannung	Millimeterquadrat		
Ebener-	Sekunde	"	1'' = 1'/60
Winkel	Minute	,	1' = 60''
	Grad	0	$1^{\circ} = 60' = 3600 '' = \frac{p}{180^{\circ}} \text{rad}$
	Radiant	rad	180°
			$1 \text{rad} = 1 \text{m/m} = 57,2957^{\circ}$
			$1 \text{rad} = 180^{\circ}/\pi$
Drehzahl	Eins/Sekunde	1/s	$\frac{1}{-} = s^{-1} = 60 \text{min}^{-1}$
	Eins/Minute	1/min	S
			$\frac{1}{\min} = \min^{-1} = \frac{1}{60s}$
			IIIII OUS

2. Allgemeine hydraulische Beziehungen

2.1 Kolbendruckkraft

Abbildung	Gleichung /	Gleichungsumstellung	Formelzeichen / Einheiten
	$F = p \bullet A$	F = p • A • h	F = Kolbendruckkraft[daN]
	_	_	p = Flüssigkeitsdruck[bar]
	$\Delta = \frac{\mathrm{d}^2 \bullet \boldsymbol{p}}{2}$		A = Kolbenfläche[cm ²]
	4		d = Kolbendurchmesser[cm]
A	$d = \sqrt{\frac{4 \bullet F}{\boldsymbol{p} \bullet p}}$		$\eta = Wirkungsgrad\ Zylinder$
	$p = \frac{4 \bullet F}{\boldsymbol{p} \bullet d^2}$		

2.2 Kolbenkräfte

Abbildung	Gleichung / Gleichungsumstellung	Formelzeichen / Einheiten
	$F = p_e \bullet A$ $F = p_e \bullet A \bullet h$	F = Kolbendruckkraft[daN]
	-	$p_e = \ddot{U}berdruck$ auf den
(- A) n =	$_{\Lambda} = d^2 \bullet \boldsymbol{p}$	Kolben[bar]
	$A = {4}$	A = Wirksame
	A Für Kreisringfläche:	Kolbenfläche[cm ²]
		d = Kolbendurchmesser[cm]
(t, 7)	$\mathbf{p} = (D^2 - d^2) \bullet \mathbf{p}$	η = Wirkungsgrad Zylinder
√1- \	$A = \frac{4}{4}$	

2.3 Hydraulische Presse

Abbildung	Gleichung / Gleichungsumstellung	Formelzeichen / Einheiten
	F_1 F_2	$F_1 = Kraft am$
-	$\frac{1}{A_1} = \frac{2}{A_2}$	Pumpenkolben[daN]
7 5	1 2	$F_2 = Kraft am$
1 1	$F_1 \bullet S_1 = F_2 \bullet S_2$	Arbeitskolben[daN]
্ব নি চীজ		A ₁ = Fläche des Pumpenkolbens
		[cm ²]
	$\frac{1}{1} - \frac{F_1}{F_1} - \frac{A_1}{F_1} - \frac{S_2}{F_1}$	A ₂ = Fläche des Arbeitskolbens
A A	$i = \frac{F_1}{F_2} = \frac{A_1}{A_2} = \frac{S_2}{S_1}$	[cm ²]
		s ₁ = Weg des Pumpenkolbens
		[cm]
		s ₂ = Weg des Arbeitskolbens
		[cm]
		i = Übersetzungsverhältnis

2.4 Kontinuitätsgleichung

Verfasser: Houman Hatami

Abbildung	Gleichung / Gleichungsumstellung	Formelzeichen / Einheiten
Q ₁ A ₂ Q ₂ Q ₂	$Q_1 = Q_2$ $Q_1 = A_1 \bullet v_1$ $Q_2 = A_2 \bullet v_2$ $A_1 \bullet v_1 = A_2 \bullet v_2$	$\begin{split} Q_{1,2} &= Volumenströme \\ & [cm^3/s, dm^3/s, m^3/s] \\ A_{1,2} &= Querschnittsflächen \\ & [cm^2, dm^2, m^2] \\ v_{1,2} &= Strömungs- \\ & geschwindigkeiten \\ & [cm/s, dm/s, m/s] \end{split}$

2.5 Kolbengeschwindigkeit

Abbildung	Gleichung / Gleichungsumstellung	Formelzeichen / Einheiten
Q_1 Q_2 Q_2	$v_{1} = \frac{Q_{1}}{A_{1}}$ $v_{2} = \frac{Q_{2}}{A_{2}}$ $A_{1} = \frac{d^{2} \cdot \mathbf{p}}{4}$ $A_{2} = \frac{(D^{2} - d^{2}) \cdot \mathbf{p}}{4}$	v _{1,2} = Kolbengeschwindigkeit [cm/s] Q _{1,2} = Volumenstrom [cm³/s,] A ₁ = Wirksame Kolbenfläche (Kreis) [cm²] A ₂ = Wirksame Kolbenfläche (Kreisring) [cm²]

2.6 Druckübersetzer

Abbildung	Gleichung / Gleichungsumstellung	Formelzeichen / Einheiten
R A1	$p_1 \bullet A_1 = p_2 \bullet A_2$	$\begin{aligned} p_1 &= Druck \ im \ kleinen \ Zylinder \\ & [bar] \\ A_1 &= Kolbenfläche \ [cm^2] \\ p_2 &= Druck \ am \ großen \ Zylinder \\ & [bar] \\ A_2 &= Kolbenfläche \ [cm^2] \end{aligned}$

Verfasser: Houman Hatami

3 Hydraulische Systemkomponente

3.1 Hydropumpe

$$Q = \frac{V \bullet n \bullet \boldsymbol{h}_{vol}}{1000} [1/min]$$

$$P_{an} = \frac{p \bullet Q}{600 \bullet \boldsymbol{h}_{ges}} [kW]$$

$$M = \frac{1,59 \bullet V \bullet \Delta p}{100 \bullet \mathbf{h}_{mh}} [daNm]$$

$$\boldsymbol{h}_{\mathrm{ges}} = \boldsymbol{h}_{\mathrm{vol}} \bullet \boldsymbol{h}_{\mathrm{mh}}$$

Q = Volumenstrom [l/min]

V = Nennvolumen [cm³]

 $n = Antriebsdrehzahl der Pumpe [min^{-1}]$

P_{an} = Antriebsleistung [kW]

p = Betriebsdruck [bar]

M = Antriebsmoment [daNm]

 η_{ges} = Gesamtwirkungsgrad (0,8-0,85)

 $\eta_{\text{vol}} = \text{volumetr. Wirkungsgrad} (0.9-0.95)$

 η_{mh} = hydr.-mechanischer Wirkungsgrad (0,9-0,95)

3.2 Hydromotor

$$Q = \frac{V \bullet n}{1000 \bullet \boldsymbol{h}_{\text{total}}}$$

$$n = \frac{Q \bullet \boldsymbol{h}_{vol} \bullet 1000}{V}$$

$$\mathbf{M}_{ab} = \frac{\Delta \mathbf{p} \bullet \mathbf{V} \bullet \boldsymbol{h}_{mh}}{200 \bullet \boldsymbol{p}} = 1,59 \bullet \mathbf{V} \bullet \Delta \mathbf{p} \bullet \boldsymbol{h}_{mh} \bullet 10^{-3}$$

$$P_{ab} = \frac{\Delta p \bullet Q \bullet \boldsymbol{h}_{ges}}{600}$$

Q = Volumenstrom [l/min]

V = Nennvolumen [cm³]

n = Antriebsdrehzahl der Pumpe [min⁻¹]

 $\eta_{ges} = Gesamtwirkungsgrad (0,8-0,85)$

 $\eta_{vol} = volumetr. Wirkungsgrad (0,9-0,95)$

 η_{mh} = hydr.-mechanischer Wirkungsgrad (0,9-0,95)

Δp = druckdifferenz zwischen Eingang und Ausgang des Motors [bar]

P_{ab} = Abtriebsleistung des Motors [kW]

 $M_{ab} = Abtriebsdrehmoment [daNm]$

Formelsammlung Hydraulik

3.2.1 Hydromotor variabel

$$M_{d} = \frac{30000}{p} \bullet \frac{P}{n}$$

$$P = \frac{p}{m} \bullet M_{d} \bullet M_{d}$$

$$P = \frac{\boldsymbol{p}}{30000} \bullet M_d \bullet n$$

$$n = \frac{30000}{\boldsymbol{p}} \bullet \frac{P}{M_d}$$

$$M_{d} = \frac{M_{d \, max}}{i \bullet h_{Getr}}$$

$$n = \frac{n_{\text{max}}}{i}$$

$$\Delta p = 20 \boldsymbol{p} \bullet \frac{M_d}{V_g \bullet \boldsymbol{h}_{mh}}$$

$$Q = \frac{V_g \bullet n}{1000 \bullet \boldsymbol{h}_{vol}}$$

$$Q_{P} = \frac{V_{g} \bullet n \bullet \boldsymbol{h}_{vol}}{1000}$$

$$P = \frac{Q \bullet \Delta p}{600 \bullet \boldsymbol{h}_{ges}}$$

M_d=Drehmoment [Nm]

P=Leistung [kW]

n=Drehzahl [min⁻¹]

 M_{dmax} =Drehmoment max [Nm]

i=Getriebeübersetzung

 η_{Getr} =Getriebewirkungsgrad

 η_{mh} =Mech./Hydr. Wirkungsgrad

 η_{vol} =Vol. Wirkungsgrad

V_g=Fördervolumen [l]

Formelsammlung Hydraulik

3.2.2 Hydromotor konstant

$$\mathbf{M}_{\mathrm{d}} = \frac{30000}{\boldsymbol{p}} \bullet \frac{\mathrm{P}}{\mathrm{n}}$$

$$P = \frac{\boldsymbol{p}}{30000} \bullet M_d \bullet n$$

$$n = \frac{30000}{\boldsymbol{p}} \bullet \frac{P}{M_d}$$

$$\mathbf{M}_{d} = \frac{\mathbf{M}_{d \, \text{max}}}{\mathbf{i} \bullet \mathbf{h}_{Getr}}$$

$$n = \frac{n_{\text{max}}}{i}$$

$$\Delta p = 20 \boldsymbol{p} \bullet \frac{M_d}{V_g \bullet \boldsymbol{h}_{mh}}$$

$$Q = \frac{V_g \bullet n}{1000 \bullet \boldsymbol{h}_{vol}}$$

$$Q_{P} = \frac{V_{g} \bullet n \bullet \boldsymbol{h}_{vol}}{1000}$$

$$P = \frac{Q \bullet \Delta p}{600 \bullet \boldsymbol{h}_{ges}}$$

M_d=Drehmoment [Nm]

P=Leistung [kW]

n=Drehzahl [min⁻¹]

 M_{dmax} =Drehmoment max [Nm]

i=Getriebeübersetzung

 $\eta_{\text{Getr}} \!\!=\!\! \text{Getriebewirkungsgrad}$

 η_{mh} =Mech./Hydr. Wirkungsgrad

 η_{vol} =Vol. Wirkungsgrad

 V_g =Fördervolumen [l]

3.2.3 Hydromotoreigenfrequenz

$$\boldsymbol{w}_{0} = \sqrt{\frac{2 \bullet E}{J_{red}} \bullet \frac{(\frac{V_{G}}{2\boldsymbol{p}})^{2}}{(\frac{V_{G}}{2} + V_{R})}}$$

$$\mathbf{f}_0 = \frac{\mathbf{w}_0}{2\mathbf{p}}$$

V_G=Schluckvolumen [l]

 $\omega_0 \text{=} Eigenkreis frequenz$

 f_0 =Eigenfrequenz

 J_{red} =Trägheitsmoment red.

 $E_{\ddot{o}l}=1400 \text{ N/mm}^2$

V_R=Volumen der Leitung

Formelsammlung Hydraulik

3.3 Hydrozylinder

$$A = \frac{d_1^2 \bullet p}{400} = \frac{d_1^2 \bullet 0,785}{100} [cm^2]$$

$$A_{st} = \frac{{d_2}^2 \bullet 0,785}{100} [cm^2]$$

$$A_{R} = \frac{(d_{1}^{2} - d_{2}^{2}) \bullet 0,785}{100} [cm^{2}]$$

$$F_{D} = \frac{p \bullet d_{1}^{2} \bullet 0,785}{10000} [kN]$$

$$F_z = \frac{p \bullet (d_1^2 - d_2^2) \bullet 0,785}{10000} [kN]$$

$$F_{S} = \frac{p \bullet d_{2}^{-2} \bullet 0,785}{10000} \text{[kN]}$$

$$v = \frac{h}{t \cdot 1000} = \frac{Q}{A \cdot 6} [\text{m/s}]$$

$$Q_{th} = \frac{A \bullet v}{10} = \frac{V}{t} \bullet 60 \text{ [l/min]}$$

$$Q = \frac{Q_{th}}{\boldsymbol{h}_{vol.}}$$

$$V = \frac{A \bullet h}{10000} [1]$$

$$t = \frac{A \bullet h \bullet 6}{Q \bullet 1000} \text{ [s]}$$

A = Kolbenfläche [cm²]

 $A_{st} = Kolbenstangenfläche [cm²]$

 $A_R = Kolbenringfläche [cm²]$

 $d_1 = Kolbendurchmesser [mm]$

 $d_2 = Kolbenstangendurchmesser [mm]$

 $F_D = Druckkraft [kN]$

 $F_Z = Zugkraft [kN]$

 $F_S = Stangenkraft [kN]$

p = Betriebsdruck [bar]

v = Hubgeschwindigkeit [m/s]

V = Hubvolumen [1]

Q = Volumenstrom mit Berücksichtigung der Leckagen [l/min]

Q_{th} = Volumenstrom ohne Berücksichtigung der Leckagen [l/min]

η_{vol} = volumetrischer Wirkungsgrad (ca. 0,95)

h = Hub [mm]

t = Hubzeit [s]

Formelsammlung Hydraulik

3.3.1 Differentialzylinder

$$d_{K} = 100 \bullet \sqrt{\frac{4 \bullet F_{D}}{\boldsymbol{p} \bullet p_{K}}}$$

$$p_{K} = \frac{4 \bullet 10^{4} \bullet F_{D}}{\boldsymbol{p} \bullet d_{K}^{2}}$$

$$p_{St} = \frac{4 \bullet 10^4 \bullet F_Z}{\boldsymbol{p} \bullet (d_K^2 - d_{St}^2)}$$

$$\mathbf{j} = \frac{{d_{K}}^{2}}{({d_{K}}^{2} - {d_{St}}^{2})}$$

$$Q_K = \frac{6 \bullet \boldsymbol{p}}{400} \bullet V_a \bullet d_K^2$$

$$Q_{St} = \frac{6 \bullet \boldsymbol{p}}{400} \bullet v_e \bullet (d_K^2 - d_{St}^2)$$

$$v_{e} = \frac{Q_{St}}{\frac{6p}{400} \bullet (d_{K}^{2} - d_{St}^{2})}$$

$$V_a = \frac{Q_K}{\frac{6\boldsymbol{p}}{400} \bullet d_K^2}$$

$$\operatorname{Vol}_{p} = \frac{\boldsymbol{p}}{4 \cdot 10^{6}} \cdot \operatorname{d}_{\operatorname{St}}^{2} \cdot \operatorname{h}$$

$$Vol_F = \frac{\mathbf{p}}{4 \cdot 10^6} \cdot h \cdot (d_K^2 - d_{St}^2)$$

d_K=Kolbendurchmesser [mm]

d_{st}=Stangendurchmesser [mm]

F_D=Druckkraft [kN]

Fz=Zugkraft [kN]

p_K=Druck auf der Kolbenseite [bar]

φ=Flächenverhältnis

Q_K=Volumenstrom Kolbenseite [l/min]

Q_{St}=Volumenstrom Stangenseite [l/min]

v_a=Ausfahrgeschwindigkeit [m/s]

v_e=Einfahrgeschwindigkeit [m/s]

Vol_p=Pendelvolumen [1]

Vol_F=Füllvolumen [1]

Formelsammlung Hydraulik

3.3.2 Gleichgangzylinder

$$p_{A} = \frac{4 \cdot 10^{4}}{p} \cdot \frac{F_{A}}{(d_{K}^{2} - d_{StA}^{2})}$$

$$p_{B} = \frac{4 \cdot 10^{4}}{p} \cdot \frac{F_{B}}{(d_{K}^{2} - d_{StB}^{2})}$$

$$Q_{A} = \frac{6 \cdot p}{400} \cdot v_{a} \cdot (d_{K}^{2} - d_{StA}^{2})$$

$$Q_{B} = \frac{6 \cdot p}{400} \cdot v_{b} \cdot (d_{K}^{2} - d_{StB}^{2})$$

$$v_{e} = \frac{Q_{St}}{\frac{6p}{400} \cdot (d_{K}^{2} - d_{St}^{2})}$$

$$v_{a} = \frac{Q_{K}}{\frac{6p}{400} \cdot d_{K}^{2}}$$

$$Vol_{p} = \frac{p}{4 \cdot 10^{6}} \cdot d_{St}^{2} \cdot h$$

$$Vol_{FA} = \frac{p}{4 \cdot 10^{6}} \cdot h \cdot (d_{K}^{2} - d_{StA}^{2})$$

 $Vol_{FB} = \frac{\boldsymbol{p}}{4 \cdot 10^6} \cdot h \cdot (d_K^2 - d_{StB}^2)$

$$d_{stA}$$
=Stangendurchmesser A-Seite [mm]
 d_{stB} =Stangendurchmesser B-Seite [mm]
 F_A =Kraft A [kN]
 F_B =Kraft B [kN]
 p_A =Druck auf der A-Seite [bar]
 p_B =Druck auf der B-Seite [bar]
 Q_A =Volumenstrom A-Seite [l/min]

Q_B=Volumenstrom B-Seite [l/min]

d_K=Kolbendurchmesser [mm]

3.3.3

Zylinder in Differentialschaltung

Verfasser: Houman Hatami

$$d_{t} = 100 \bullet \sqrt{\frac{4 \bullet F_{D}}{\boldsymbol{p} \bullet p_{St}}}$$

$$p_K = \frac{4 \cdot 10^4 \cdot F_D}{\mathbf{p} \cdot d_{St}^2}$$

$$p_{St} = \frac{4 \bullet 10^4 \bullet F_Z}{\boldsymbol{p} \bullet (d_K^2 - d_{St}^2)}$$

$$Q = \frac{6 \bullet \boldsymbol{p}}{400} \bullet v_a \bullet d_{St}^2$$

Ausfahren:

$$\mathbf{v}_{\mathbf{a}} = \frac{\mathbf{Q}_{\mathbf{P}}}{\frac{6\boldsymbol{p}}{400} \bullet \mathbf{d}_{\mathbf{St}}^{2}}$$

$$Q_K = \frac{Q_P \bullet d_K^2}{d_{St}^2}$$

$$Q_{St} = \frac{Q_{P} \bullet (d_{K}^{2} - d_{St}^{2})}{d_{St}^{2}}$$

Einfahren:

$$v_{e} = \frac{Q_{P}}{\frac{6p}{400} \cdot (d_{K}^{2} - d_{St}^{2})}$$

 $Q_{St}=Q_P$

$$Q_{K} = \frac{Q_{P} \cdot d_{K}^{2}}{(d_{K}^{2} - d_{St}^{2})}$$

$$\operatorname{Vol}_{p} = \frac{\boldsymbol{p}}{4 \cdot 10^{6}} \cdot d_{St}^{2} \cdot h$$

$$Vol_{F} = \frac{\boldsymbol{p}}{4 \cdot 10^{6}} \cdot h \cdot (d_{K}^{2} - d_{St}^{2})$$

d_K=Kolbendurchmesser [mm]

d_{st}=Stangendurchmesser [mm]

F_D=Druckkraft [kN]

Fz=Zugkraft [kN]

p_K=Druck auf der Kolbenseite [bar]

p_{St}=Druck auf der Stangenseite [bar]

h=Hub [mm]

Q_K=Volumenstrom Kolbenseite [l/min]

Q_{St}=Volumenstrom Stangenseite [l/min]

Q_P=Pumpenförderstrom [l/min]

v_a=Ausfahrgeschwindigkeit [m/s]

v_e=Einfahrgeschwindigkeit [m/s]

Vol_p=Pendelvolumen [1]

Vol_F=Füllvolumen [1]

3.3.4 Zylindereigenfrequenz bei Differentialzylinder

$$A_{K} = \frac{d_{K}^{2} \boldsymbol{p}}{\frac{4}{100}}$$

$$A_{R} = \frac{(d_{K}^{2} - d_{St}^{2})\boldsymbol{p}}{\frac{4}{100}}$$

$$V_{RK} = \frac{d_{RK}^2 \boldsymbol{p}}{4} \bullet \frac{L_K}{1000}$$

$$V_{RSt} = \frac{d_{RSt}^2 \boldsymbol{p}}{4} \bullet \frac{L_{St}}{1000}$$

$$m_{RK} = \frac{V_{RK} \bullet \boldsymbol{r}_{\ddot{0}}}{1000}$$

$$m_{RSt} = \frac{V_{RSt} \bullet \boldsymbol{r}_{\ddot{o}l}}{1000}$$

$$h_{k} = \frac{\left(\frac{A_{R} \bullet h}{\sqrt{A_{R}}^{3}} + \frac{V_{RSt}}{\sqrt{A_{R}}^{3}} - \frac{V_{RK}}{\sqrt{A_{K}}^{3}}\right)}{\frac{1}{\sqrt{A_{R}}} + \frac{1}{\sqrt{A_{K}}}}$$

$$\mathbf{w}_{0} = 100 \bullet \sqrt{\frac{E_{01}}{m_{\text{red}}} \bullet (\frac{A_{K}^{2}}{\frac{A_{K} \bullet h_{K}}{10} + V_{RK}} + \frac{A_{R}^{2}}{\frac{A_{R} \bullet h - h_{K}}{10} + V_{RSt}})}$$

$$\mathbf{w}_{01} = \mathbf{w}_{0} \bullet \sqrt{\frac{m_{\text{red}}}{m_{\text{olred}} + m_{\text{red}}}}$$

$$\mathbf{f}_0 = \frac{\boldsymbol{w}_0}{2\boldsymbol{p}}$$

$$m_{\text{ölred}} = m_{\text{RK}} \left(\frac{d_{\text{K}}}{d_{\text{RK}}} \right)^4 + m_{\text{RSt}} \left(\frac{1}{d_{\text{RSt}}} \sqrt{\frac{400 \bullet A_{\text{R}}}{\boldsymbol{p}}} \right)$$

$$d_{St}$$
=Kolbenstangendurchmesser [mm]

[mm]

$$\boldsymbol{w}_{01} = \boldsymbol{w}_0 \bullet \sqrt{\frac{\mathbf{m}_{red}}{\mathbf{m}_{olred} + \mathbf{m}_{red}}}$$

$$\mathbf{f}_{01} = \frac{\boldsymbol{w}_{01}}{2\boldsymbol{p}}$$

Verfasser: Houman Hatami

3.3.5 Zylindereigenfrequenz bei Gleichgangzylinder

$$A_{R} = \frac{(d_{K}^{2} - d_{St}^{2})\boldsymbol{p}}{\frac{4}{100}}$$

$$V_{R} = \frac{d_{RK}^{2} \boldsymbol{p}}{4} \bullet \frac{L_{K}}{1000}$$

$$m_{R} = \frac{V_{R} \bullet \boldsymbol{r}_{\text{ol}}}{1000}$$

$$\mathbf{w}_{0} = 100 \bullet \sqrt{\frac{2 \bullet \mathbf{E}_{\text{ol}}}{\mathbf{m}_{\text{red}}} \bullet (\frac{\mathbf{A}_{\text{R}}^{2}}{\mathbf{A}_{\text{R}} \bullet \mathbf{h}} + \mathbf{V}_{\text{RSt}}})$$

$$\mathbf{f}_0 = \frac{\boldsymbol{w}_0}{2\boldsymbol{p}}$$

$$m_{\text{olred}} = 2 \bullet m_{RK} \left(\frac{1}{d_R} \sqrt{\frac{400 \bullet A_R}{\boldsymbol{p}}} \right)^4$$

$$\boldsymbol{w}_{01} = \boldsymbol{w}_0 \bullet \sqrt{\frac{m_{red}}{m_{olred} + m_{red}}}$$

$$\mathbf{f}_{01} = \frac{\boldsymbol{w}_{01}}{2\boldsymbol{p}}$$

A_R=Kolbenringfläche [cm²]

 d_K =Kolbendurchmesser [mm]

d_{St}=Kolbenstangendurchmesser [mm]

 $d_R=NW$ [mm]

L_K=Länge Kolbenseite [mm]

h=Hub [mm]

V_R=Volumen der Leitung [cm³]

m_R=Masse des Öles in der Leitung [cm³]

 f_0 =Eigenfrequenz

3.3.6 Zylindereigenfrequenz bei Plungerzylinder

$$A_{K} = \frac{d_{K}^{2} \boldsymbol{p}}{\frac{4}{100}}$$

$$V_{R} = \frac{d_{K}^{2} \boldsymbol{p}}{4} \bullet \frac{L_{K}}{1000}$$

$$m_{R} = \frac{V_{R} \bullet \boldsymbol{r}_{\ddot{o}l}}{1000}$$

$$\mathbf{W}_0 = 100 \bullet \sqrt{\frac{\mathrm{E}_{\mathrm{iil}}}{\mathrm{m}_{\mathrm{red}}} \bullet (\frac{\mathrm{A}_{\mathrm{K}}^2}{\mathrm{A}_{\mathrm{K}} \bullet \mathrm{h} + \mathrm{V}_{\mathrm{RSt}}})}$$

$$\mathbf{f}_0 = \frac{\boldsymbol{w}_0}{2\boldsymbol{p}}$$

$$m_{\text{olred}} = 2 \bullet m_R \left(\frac{d_K}{d_R}\right)^4$$

$$\boldsymbol{w}_{01} = \boldsymbol{w}_0 \bullet \sqrt{\frac{m_{red}}{m_{olred} + m_{red}}}$$

$$\mathbf{f}_{01} = \frac{\boldsymbol{w}_{01}}{2\boldsymbol{p}}$$

A_K=Kolbenfläche [cm²]

 d_K =Kolbendurchmesser [mm]

L_K=Länge Kolbenseite [mm]

L_R=Leitungslänge [mm]

h=Hub [mm]

V_R=Volumen der Leitung [cm³]

m_R=Masse des Öles in der Leitung [cm³]

f₀=Eigenfrequenz

Formelsammlung Hydraulik

4 Rohrleitungen

$$\Delta p = \mathbf{I} \bullet \frac{1 \bullet \mathbf{r} \bullet \mathbf{v}^2 \bullet 10}{\mathsf{d} \bullet 2}$$

$$I_{\text{lam.}} = \frac{64}{\text{Re}}$$

$$\boldsymbol{I}_{\text{turb.}} = \frac{0.316}{4 \bullet \sqrt{\text{Re}}}$$

$$Re = \frac{\mathbf{v} \bullet \mathbf{d}}{\mathbf{u}} \bullet 10^3$$

$$v = \frac{Q}{6 \cdot d^2 \cdot \frac{\boldsymbol{p}}{4}} \cdot 10^2$$

$$d = \sqrt{\frac{400}{6 \cdot \boldsymbol{p}} \cdot \frac{Q}{V}}$$

 $\Delta p = Druckverlust$ bei gerader Rohrleitung [bar]

 $\rho = Dichte [kg/dm^3] (0.89)$

 $\lambda = Rohrreibungszahl$

 $\lambda_{lam.} = Rohrreibungszahl$ für laminare Strömung

 $\lambda_{turb.} = Rohrreibungszahl$ für turbulente Strömung

l = Leitungslänge [m]

v = Strömungsgeschwindigkeit in der Leitung

d = Innendurchmesser der Rohrleitung [mm]

v = Kinematischer Viskosität [mm²/s]

Q = Volumenstrom in der Rohrleitung [l/min]

5 Anwendungsbeispiele zur Bestimmung der Zylinderdrücke und Volumenströme unter pos. und neg. Lasten

Nomenklatur

Parameter	Symbolik	Einheiten
Beschleunigung / Verzögerung	a	m/s ²
Zylinderfläche	A ₁	cm ²
Ringfläche	A ₂	cm ²
Flächenverhältnis	R=A ₁ /A ₂	-
Gesamtkraft	F _T	daN
Beschleunigungskraft	F _a =0,1•m•a	daN
Äußere Kräfte	F _E	daN
Reibkräfte (Coulombsche Reibung)	F _C	daN
Dichtungsreibung	F _R	daN
Gewichtskraft	G	daN
Masse	$m = \frac{G}{g} + m_{K}$	kg
Kolbenmasse	m _K	kg
Volumenstrom	Q=0,06• A• v _{max}	l/min
	V _{max}	cm/s
Drehmoment	T=α•J+ T _L	Nm
Lastmoment	$T_{ m L}$	Nm
Winkelbeschleunigung	α	rad/s ²
Massenträgheitsmoment	J	kgm ²

Formelsammlung Hydraulik

5.0 Differentialzylinder ausfahrend mit positiver Last

Auslegung:

$$F_T = F_a + F_R + F_C + F_E$$
 [daN]

Gegebene Parameter

F_T=4450 daN

P_s=210 bar

 $P_T=5,25$ bar

 $A_1=53,50 \text{ cm}2$

 $A_2=38,10 \text{ cm}2$

R=1,40

 v_{max} =30,00 cm/s

 $==> p_1 \text{ und } p_2$

$$p_1 = \frac{p_S A_2 + R^2 [F_T + (p_T A_2)]}{A_2 (1 + R^3)} \text{ bar}$$

$$\boldsymbol{p}_2 = \boldsymbol{p}_T + \frac{\boldsymbol{p}_S - \boldsymbol{p}_1}{\boldsymbol{R}^2} \text{ bar }$$

Überprüfung der Zylinderdimensionierung und Berechnung des Nennvolumenstromes Q_N , in Abhängigkeit des Lastdruckes p_1 .

$$Q=0.06 \bullet A_1 \bullet v_{max}$$
 1/min

$$Q_{N} = Q \sqrt{\frac{35}{p_{S} - p_{1}}} \quad \text{l/min}$$

Auswahl eines Servoventils 10% größer als berechnete Nennvolumenstrom.

Berechnung:

$$p_1 = \frac{210 \bullet 38,1 + 1,4^2[4450 + (5,25 \bullet 38,1)]}{38,1(1+1,4^3)} = 120bar$$

$$p_2 = 5.25 + \frac{210 - 120}{1.4^2} = 52bar$$

Q= 0,06 - 53,5 - 30=96 I/min

$$Q_N = 96\sqrt{\frac{35}{210 - 120}} = 601 / \min$$

Formelsammlung Hydraulik

5.1 Differentialzylinder einfahrend mit positiver Last

Auslegung:

$$F_T = F_a + F_R + F_C + F_E$$
 [daN]

Gegebene Parameter

F_T=4450 daN

P_S=210 bar

P_T=5,25 bar

A₁=53,50 cm2

A₂=38,10 cm2

R=1,40

 v_{max} =30,00 cm/s

 $==> p_1 \text{ und } p_2$

$$p_2 = \frac{(p_{\rm S} A_2 R^3) + F_{\rm T} + (p_{\rm T} A_2 R)]}{A_2 (1 + R^3)} \ \, {\rm bar} \label{eq:p2}$$

$$p_1 = p_T + [(p_S - p_2)R^2]$$
 bar

Überprüfung der Zylinderdimensionierung und Berechnung des Nennvolumenstromes Q_N , in Abhängigkeit des Lastdruckes p_1 .

$$Q=0.06 \bullet A_2 \bullet v_{max}$$
 l/min

$$Q_{N} = Q_{\sqrt{\frac{35}{p_{S} - p_{2}}}} \quad 1/min$$

Auswahl eines Servoventils 10% größer als der berechnete Nennvolumenstrom.

Berechnung:

$$p_2 = \frac{(210 \bullet 38, 1 \bullet 1, 4^2) + 4450 + (5, 25 \bullet 38, 1 \bullet 1, 4)]}{38, 1(1 + 1, 4^3)} = 187 bar$$

$$p_1 = 5.25 + [(210 - 187)1,4^2] = 52bar$$

Q= 0,06 · 38,1 · 30=69 I/min

$$Q_N = 96\sqrt{\frac{35}{210 - 187}} = 841 / \min$$

Verfasser: Houman Hatami

5.2 Differentialzylinder ausfahrend mit negativer Last

Auslegung:

$$F_T = F_a + F_R - G$$
 [daN]

Gegebene Parameter

F_T=-2225 daN

P_S=175 bar

P_T=0 bar

A₁=81,3 cm2

A₂=61,3 cm2

R=1,3

 $v_{max}=12,7$ cm/s

 $==> p_1$ und p_2

$$p_1 = \frac{p_S A_2 + R^2 [F_T + (p_T A_2)]}{A_2 (1 + R^3)} \text{ bar}$$

$$p_2 = p_T + \frac{p_S - p_1}{R^2} \text{ bar}$$

Überprüfung der Zylinderdimensionier- ung und Berechnung des Nenn-volumenstromes Q_N , in Abhängigkeit des Lastdruckes p_1 .

$$Q=0.06 \bullet A_1 \bullet v_{max}$$
 1/min

$$Q_{N} = Q \sqrt{\frac{35}{p_{S} - p_{1}}} \quad 1/\min$$

Auswahl eines Servoventils 10% größer als der berechnete Nennvolumenstrom.

Berechnung:

$$p_1 = \frac{175 \bullet 61,3 + 1,3^2[-2225 + (0 \bullet 61,3)]}{61,3(1+1,3^3)} = 36 bar$$

$$p_2 = 0 + \frac{175 - 36}{1,3^2} = 82bar$$

Q= 0,06-81,3-12,7=62 l/min

$$Q_{N} = 62\sqrt{\frac{35}{175 - 36}} = 311 / \min$$

5.3 Differentialzylinder einfahrend mit negativer Last

Auslegung:

 $F_T = F_a + F_R - G$ [daN]

Gegebene Parameter

F_T=-4450 daN

P_S=210 bar

P_T=0 bar

 $A_1=81,3 \text{ cm}2$

 $A_2=61,3 \text{ cm} 2$

R=1,3

 v_{max} =25,4 cm/s

 $==> p_1 \text{ und } p_2$

$$p_2 = \frac{(p_S A_2 R^3) + F_T + (p_T A_2 R)]}{A_2 (1 + R^3)} \text{ bar}$$

$$p_1 = p_T + [(p_S - p_2)R^2]$$
 bar

Überprüfung der Zylinderdimensionierung und Berechnung des Nennvolumenstromes Q_N , in Abhängigkeit des Lastdruckes p_1 .

$$Q=0.06 \bullet A_2 \bullet v_{max}$$
 1/min

$$Q_{N} = Q \sqrt{\frac{35}{p_{S} - p_{2}}} \quad 1/\text{min}$$

Auswahl eines Servoventils 10% größer als der berechnete Nennvolumenstrom.

Berechnung:

$$p_2 = \frac{(210 \bullet 61, 3 + 1, 3^2) - 4450 + (0 \bullet 61, 3 \bullet 1, 3)]}{61, 3(1 + 1, 3^3)} = 122bar$$

$$p_1 = 0 + [(210 - 122)] = 149bar$$

Q= 0,06-61,3-25,4=93 l/min

$$Q_{N} = 93\sqrt{\frac{35}{210 - 122}} = 591 / \min$$

Verfasser: Houman Hatami

5.4 Differentialzylinder ausfahrend auf einer schiefen Ebene mit positiver

Last

Auslegung:

 $F_T = F_a + F_E + F_S + [G \cdot (\mu \cdot \cos \alpha + \sin \alpha)] daN$

Gegebene Parameter

F_T=2225 daN

 $P_S=140$ bar

 $P_T=3,5$ bar

 $A_1=31,6 \text{ cm}^2$

 $A_2=19,9 \text{ cm}^2$

R=1,6

 v_{max} =12,7 cm/s

 $==> p_1 \text{ und } p_2$

$$p_1 = \frac{p_S A_2 + R^2 [F + (p_T A_2)]}{A_2 (1 + R^3)} \text{ bar}$$

$$p_2 = p_T + \frac{p_S - p_1}{R^2} \text{ bar}$$

Überprüfung der Zylinderdimensionierung und Berechnung des Nennvolumenstromes Q_N, in Abhängigkeit des Lastdruckes p₁.

$$Q=0.06 \bullet A_1 \bullet v_{max}$$
 1/min

$$Q_{N} = Q \sqrt{\frac{35}{p_{s} - p_{1}}} \quad 1/min$$

Auswahl eines Servoventils 10% größer als der berechnete Nennvolumenstrom.

Berechnung:

$$p_1 = \frac{(140 \bullet 19.9) + 1.6^2[2225 + (3.5 \bullet 19.9)]}{19.9(1 + 1.6^3)} = 85bar$$

$$p_2 = 35 + \frac{140 - 85}{1.6^2} = 25$$
bar

Q= 0,06•31,6•12,7=24 I/min

$$Q_{_{\rm N}} = 24 \sqrt{\frac{35}{140-85}} = 19 \text{ I/min}$$

Verfasser: Houman Hatami

5.5 Differentialzylinder einfahrend auf einer schiefen Ebene mit positiver Last

Auslegung:

 $F_T = F_a + F_E + F_S + [G \cdot (\mu \cdot \cos \alpha + \sin \alpha)] daN$

Gegebene Parameter

F_T=1780 daN

P_S=140 bar

 $P_T=3,5$ bar

 $A_1=31,6 \text{ cm}^2$

 $A_2=19,9 \text{ cm}^2$

R=1,6

 $v_{max}=12,7$ cm/s

 $==> p_1 \text{ und } p_2$

$$p_2 = \frac{(p_S A_2 R^3) + F + (p_T A_2 R)]}{A_2 (1 + R^3)} \text{ bar}$$

$$p_1 = p_T + [(p_S - p_2)R^2]$$
 bar

Überprüfung der Zylinderdimensionierung und Berechnung des Nennvolumenstromes Q_N, in Abhängigkeit des Lastdruckes p₁.

$$Q=0.06 \bullet A_2 \bullet v_{max}$$
 l/min

$$Q_{N} = Q \sqrt{\frac{35}{p_{S} - p_{2}}} \quad 1/min$$

Auswahl eines Servoventils 10% größer als der berechnete Nennvolumenstrom.

Berechnung:

$$p_2 = \frac{(140 \bullet 19.9 \bullet 1.6^3) + 1780 + [3.5 \bullet 19.9 \bullet 1.6)]}{19.9(1 + 1.6^3)} = 131bar$$

$$p_1 = 3.5 + [(140 - 131) \cdot 1.6^2 = 26bar$$

Q= 0,06 · 19,9 · 12,7=15 l/min

$$Q_{_{N}}=15\sqrt{\frac{35}{140-131}}=30 \text{ I/min}$$

Verfasser: Houman Hatami

5.6 Differentialzylinder ausfahrend auf einer schiefen Ebene mit negativer

Last

Auslegung:

 $F_T = F_a + F_E + F_R + [G \cdot (\mu \cdot \cos \alpha - \sin \alpha)] daN$

Gegebene Parameter

 F_{T} =-6675 daN

P_S=210 bar

P_⊤=0 bar

 $A_1=53,5 \text{ cm}^2$

 $A_2=38,1 \text{ cm}^2$

R=1,4

v_{max}=25,4 cm/s

 $==> p_1 \text{ und } p_2$

$$p_1 = \frac{p_S A_2 + R^2 [F + (p_T A_2)]}{A_2 (1 + R^3)} \text{ bar}$$

$$\boldsymbol{p}_2 = \boldsymbol{p}_{\mathrm{T}} + \frac{\boldsymbol{p}_{\mathrm{S}} - \boldsymbol{p}_{\mathrm{1}}}{\boldsymbol{R}^2} \text{ bar}$$

Überprüfung der Zylinderdimensionierung und Berechnung des Nennvolumenstromes Q_N, in Abhängigkeit des Lastdruckes p₁.

 $Q=0.06 \bullet A_1 \bullet v_{max}$ l/min

$$Q_{N} = Q \sqrt{\frac{35}{p_{S} - p_{1}}} \quad 1/min$$

Auswahl eines Servoventils 10% größer als der berechnete Nennvolumenstrom.

Berechnung:

$$p_1 = \frac{(210 \bullet 106) + 1,2^2[-6675 + (0 \bullet 106)]}{106(1 + 1,4^3)} = 131bar$$

Vorsicht!!!

Negative Belastung führt zu Zylinderkavitation. Vorgegebene Parameter durch Erhöhung der Zylinder-Nenngröße, oder des Systemdrucks, oder Reduzierung der erforderlichen Gesamtkraft verändern

$$A_1 = 126 \text{ cm}^2$$
 $A_2 = 106 \text{ cm}^2$ $R=1,2$

$$p_2 = \frac{210 - 44}{1,2^2} = 116bar$$

$$Q_{_{\rm N}} = 192 \sqrt{\frac{35}{210-44}} = 88 \text{ l/min}$$

Verfasser: Houman Hatami

5.7 Differentialzylinder einfahrend auf einer schiefen Ebene mit negativer

Last

Auslegung:

 $F=F_a+F_E+F_R+[G\bullet(\mu\bullet\cos\alpha-\sin\alpha)]$ daN

Gegebene Parameter

F=-6675 daN

P_S=210 bar

P_⊤=0 bar

 $A_1=53,5 \text{ cm}^2$

 $A_2=38,1 \text{ cm}^2$

R=1,4

 v_{max} =25,4 cm/s

 $==> p_1 \text{ und } p_2$

$$p_2 = \frac{(p_S A_2 R^3) + F + (p_T A_2 R)]}{A_2 (1 + R^3)} \text{ bar}$$

$$p_1 = p_T + [(p_S - p_2)R^2]$$
 bar

Überprüfung der Zylinderdimensionierung und Berechnung des Nennvolumenstromes Q_N , in Abhängigkeit des Lastdruckes p_2 .

$$Q=0.06 \bullet A_2 \bullet v_{max}$$
 1/min

$$Q_{N} = Q \sqrt{\frac{35}{p_{S} - p_{2}}} \quad 1/\min$$

Auswahl eines Servoventils 10% größer als der berechnete Nennvolumenstrom.

Berechnung:

$$p_2 = \frac{(210 \bullet 38, 1 \bullet 1, 4^3) + [-6675 + (0 \bullet 38, 1 \bullet 1, 4)]}{38, 1(1 + 1, 4^3)} = 107 \text{bar}$$

$$p_1 = 0 + [(210 - 107) \bullet 1,4^2] = 202bar$$

$$Q_{_{\rm N}} = 58 \sqrt{\frac{35}{210-107}} = 34 \text{ l/min}$$

5.8 Hydraulikmotor mit einer positiven Last

Auslegung:

 $T=\alpha \bullet J+T_L$ [Nm]

Gegebene Parameter

T=56,5 Nm P_S =210 bar P_T =0 bar D_M =82 cm³/rad ω_M = 10 rad/s

 $==> p_1 \text{ und } p_2$

$$p_1 = \frac{p_S + p_T}{2} + \frac{10pT}{D_M} \text{ bar}$$

$$p_2 = p_S - p_1 + p_T \text{ bar}$$

Überprüfung der Zylinderdimensionierung und Berechnung des Nennvolumenstromes Q_N , in Abhängigkeit des Lastdruckes p_1 .

$$Q_M = 0.01 \bullet \omega_M \bullet D_M \hspace{0.5cm} \text{1/min}$$

$$Q_{N} = Q_{M} \sqrt{\frac{35}{p_{S} - p_{1}}} \quad 1/\min$$

Auswahl eines Servoventils 10% größer als der berechnete Nennvolumenstrom.

Berechnung:

$$p_1 = \frac{210 + 0}{2} + \frac{10 \cdot p \cdot 56,5}{82} = 127 \text{bar}$$

$$p_2 = 210 - 127 + 0 = 83 \text{bar}$$

Q_M= 0,01 · 10 · 82=8,2 I/min

$$Q_N = 8.2 \sqrt{\frac{35}{210 - 127}} = 5.3 \text{ l/min}$$

5.9 Hydraulikmotor mit einer negativen Last

Auslegung:

 $T=\alpha \bullet J-T_L$ [Nm]

Gegebene Parameter

T=-170 Nm

P_S=210 bar

P_T=0 bar

D_M=82 cm³/rad

 $\omega_{\rm M}$ = 10 rad/s

 $==> p_1$ und p_2

$$p_1 = \frac{p_S + p_T}{2} + \frac{10pT}{D_M} \text{ bar}$$

$$\boldsymbol{p}_2 = \boldsymbol{p}_S - \boldsymbol{p}_1 + \boldsymbol{p}_T \text{ bar}$$

Überprüfung der Zylinderdimensionierung und Berechnung des Nennvolumenstromes Q_N, in Abhängigkeit des Lastdruckes p₁.

$$Q_M = 0.01 \bullet \omega_M \bullet D_M \quad 1/min$$

$$Q_{N} = Q_{M} \sqrt{\frac{35}{p_{S} - p_{I}}} \quad l/min$$

Auswahl eines Servoventils 10% größer als der berechnete Nennvolumenstrom.

Berechnung:

$$p_1 = \frac{210 + 0}{2} + \frac{10 \bullet p \bullet (-170)}{82} = 40bar$$

$$p_2 = 210 - 40 + 0 = 170$$
bar

 $Q_M = 0.01 \cdot 10 \cdot 82 = 8.2 \text{ l/min}$

$$Q_N = 8.2 \sqrt{\frac{35}{210 - 40}} = 3.6 \text{ l/min}$$

6 Ermittlung der reduzierten Massen verschiedene Systemen

Für die Auslegung der benötigten Kräften eines Hydrauliksystems muß man die verschiedene Komponenten (Zylinder / Motoren ...) dimensionieren, damit die Beschleunigung, Bremsen einer Masse richtig und gezielt erfolgt.

Durch die Mechanik des Systems werden die Hübe der Zylinder und Motoren bestimmt.

Geschwindigkeit- und Kraftberechnungen müssen durchgeführt werden.

Durch die Festlegung der reduzierte Masse eines Systems können Aussagen über die Beschleunigung und deren Auswirkung auf das System getroffen werden.

Die reduzierte Masse (M) ist eine Punktmasse, die die gleichen Kräfte- und Beschleunigskomponenten auf das richtige System ausübt, wie die normale Masse.

Für rotatorische Systeme ist die reduzierte Trägheitsmoment (I_e) zu betrachten.

Bei Überlegungen mit Weg-Meßsysteme oder Anwendungen mit Abbremsen einer Masse muß zuerst die reduzierte Masse festgelegt werden!

Für die Bestimmung der Beschleunigungskräfte verwendet man die 2. Newtonsche Grundgesetz.

 $F = m \bullet a$

F= Kraft [N]

m= Masse [kg]

a= Beschleunigung [m/s²]

Für rotatorische Bewegungen verwendet man die folgende Gleichung.

$$\Gamma = \mathbf{I} \bullet \boldsymbol{q}''$$

 Γ = Drehmoment [Nm]

Í= Trägheitsmoment [kgm²]

 $\mathbf{q''}$ = Winkelbeschleunigung [rad/s²]

Formelsammlung Hydraulik

6.1 Lineare Antriebe

6.1.1 Primäranwendungen (Energiemethode)

Die Masse m ist eine Punktmasse und die Stange I ist Gewichtslos. Die Zylinderachse ist rechtwinklig zu der Stange I.

Beziehungen zwischen Zylinder und Stange lauten:

$$q' = \frac{V_c}{r} = \frac{V_m}{1}$$

$$q'' = \frac{a_c}{r} = \frac{a_m}{1}$$

Benötigte Drehmoment für die Beschleunigung der Masse.

$$\Gamma = IX \mathbf{q}'' = F \bullet r$$

$$= m \bullet 1^{2} X \mathbf{q}'' \qquad I = m \bullet 1^{2}$$

$$= m \bullet 1^{2} X \frac{a_{m}}{1} \qquad \mathbf{q}'' = \frac{a_{m}}{1}$$

$$= m \bullet 1X a_{m}$$

$$= F = \frac{m \bullet 1 \bullet a_{m}}{r} = m \bullet i \bullet a_{m} \qquad i = \frac{1}{r}$$

m•i kann als Bewegung der Masse m betrachtet werden.

$$F = m \bullet i \bullet a_m = m \bullet i \bullet \frac{1 \bullet a_c}{r} = m \bullet i^2 \bullet a_c = M \bullet a_c \qquad \text{mit} \quad \frac{a_c}{r} = \frac{a_m}{1}$$

F= Zylinderkraft

M= reduzierte Masse

a_c= Beschleunigung der Zylinderstange

Allgemein gilt:
$$M = m \bullet i^2$$

Das gleiche Ergebnis kann mit Hilfe der Energiemethode (kinetische Energie der Masse m) erzielt werden. Die Abhängigkeit der Massenbewegung mit der Zylinderbewegung kann mit Hilfe der Geometrie des Systems bestimmt werden.

Energie der Masse:

$$KE = \frac{1}{2}I \bullet \boldsymbol{q}'^2 = \frac{1}{2}m \bullet l^2 \bullet \boldsymbol{q}'^2 \qquad (I=m\bullet i^2)$$

Verfasser: Houman Hatami

$$= \frac{1}{2} \mathbf{m} \bullet 1^2 \bullet \left(\frac{\mathbf{v}_c}{\mathbf{r}}\right)^2$$

$$(v_c=r \bullet \boldsymbol{q'})$$

$$= \frac{1}{2} \mathbf{m} \bullet \frac{1^2}{r^2} \bullet \mathbf{v_c}^2$$

$$= \frac{1}{2} \mathbf{M} \bullet \mathbf{v_c}^2$$

6.1.2 Punktmasse bei linearen Bewegungen

v ist die Horizontalkomponente von v´. v´ist rechtwinklig zu der Stange I.

Energiemethode:

$$KE = \frac{1}{2}I \cdot \mathbf{q}'^{2} = \frac{1}{2}m \cdot l^{2} \cdot \mathbf{q}'^{2}$$

$$= \frac{1}{2}m \cdot l^{2} \cdot \left(\frac{\mathbf{v}'}{\mathbf{r}}\right)^{2}$$

$$= \frac{1}{2}m \cdot \frac{l^{2}}{\mathbf{r}^{2}} \cdot \mathbf{v}'^{2}$$

$$= \frac{1}{2}m \cdot i^{2} \cdot \mathbf{v}'^{2}$$

mit v=v ´•cosα

$$=> KE = \frac{1}{2} m \bullet i^{2} \bullet v'^{2}$$
$$= \frac{1}{2} \frac{m \bullet i^{2}}{(\cos \mathbf{a})^{2}} \bullet v^{2} = \frac{1}{2} M \bullet v^{2}$$

mit
$$M = m \frac{i^2}{(\cos a)^2}$$
 ==> M ist Positionsabhängig

Wenn:
$$\alpha$$
= 0 dann, α =1 und M=mi²
$$\alpha$$
=90° dann, $\cos\alpha$ =0 und M= ∞
$$\alpha$$
=30° dann, $\cos\alpha$ = \pm 0,7 und M $_{\alpha}$ =0

Wenn ein Zylinder eine Masse wie im vorherigen Bild bewegt, und die Bewegung zwischen -30° und +30° ist, müssen die Beschleunigungs- und Abbremskräfte im Drehpunkt mit reduzierte Masse, die zwei mal größer ist als im neutralen Punkt gerechnet werden.

6.1.3 Verteilte Masse bei lineare Bewegungen

Betrachtet man die gleiche Stange I mit der Masse m kann man auch hier die reduzierte Masse der Stange berechnen.

$$KE = \frac{1}{2}I \cdot \mathbf{q}'^{2} = \frac{1}{2}X \cdot \frac{1}{3}m \cdot l^{2} \cdot \mathbf{q}'^{2}$$

$$= \frac{1}{2}X \cdot \frac{1}{3}m \cdot l^{2} \cdot \left(\frac{\mathbf{v}'}{\mathbf{r}}\right)^{2}$$

$$= \frac{1}{2}X \cdot \frac{1}{3}m \cdot \frac{l^{2}}{\mathbf{r}^{2}} \cdot \mathbf{v}'^{2}$$

$$= \frac{1}{2}X \cdot \frac{1}{3}m \cdot i^{2} \cdot \mathbf{v}'^{2}$$

mit v=v´•cosα

$$= \frac{1}{2} \mathbf{X} \bullet \frac{1}{3} \bullet \frac{\mathbf{m} \bullet \mathbf{i}^2}{(\cos a)^2} \bullet \mathbf{v}^2 = \frac{1}{3} \bullet \mathbf{M} \bullet \mathbf{v}^2$$

$$M = \frac{1}{2} \bullet \frac{m \bullet i^2}{(\cos a)^2}$$

Verfasser: Houman Hatami

6.2 Rotation

Betrachtet man nun eine rotierende Masse mit einem Trägheitsmoment I, angetrieben mit einem Motor (Verhältnis D/d).

$$KE = \frac{1}{2} \mathbf{I} \bullet \mathbf{q'}^2{}_{m} = \frac{1}{2} \mathbf{I} \bullet (\mathbf{q'} \bullet \frac{d}{D})^2$$

$$= \frac{1}{2} \mathbf{I} \bullet \left(\frac{d}{D}\right)^2 \bullet \mathbf{q'}^2$$

$$= \frac{1}{2} \mathbf{I} \bullet i^2 \bullet \mathbf{q'}^2$$

$$= \frac{1}{2} \mathbf{I}_{e} \bullet \mathbf{q'}^2$$

$$I_{e} = \mathbf{I} \bullet i^2$$

$$i = d/D$$

$$I = \text{Trägheitsmoment [kgm^2]}$$

$$\mathbf{q'} = \text{Winkelbeschleunigung [rad/s^2]}$$

$$\mathbf{I}_{e} = \mathbf{I} \bullet \mathbf{i'}^2$$

$$i = d/D$$

Wenn Getriebe eingesetzt werden muß i berücksichtigt werden.

Wenn i=D/d dann ist I_e=I/i²

6.3 Kombination aus linearer und rotatorischer Bewegung

Eine Masse m wird hier mit einem Rad mit dem Radius r bewegt. Das Rad ist gewichtslos.

$$KE = \frac{1}{2} m \cdot v^{2}$$

$$= \frac{1}{2} m \cdot (r \cdot q')^{2} \qquad v = r \cdot q'$$

$$= \frac{1}{2} m \cdot r^{2} \cdot q'^{2}$$

$$= \frac{1}{2} I_{e} \cdot q'^{2} \qquad I_{e} = m \cdot r^{2}$$

Verfasser: Houman Hatami

7 Hydraulische Widerstände

Der Widerstand einer Querschnittsverengung ist die Änderung des anliegenden Druckunterschiedes Δp zur entsprechenden Volumenstromänderung.

7.1 Blendengleichung

$$Q_{Blende} = \mathbf{a}_{K} \bullet A_{0} \bullet \sqrt{\frac{2 \bullet \Delta p}{r}}$$

 α_K =Durchflußzahl (0,8)

 ρ =0,88 [kg/dm³]

A₀=Blendenfläche [mm²]

 Δ p=Druckdifferenz [bar]

7.2 Drosselgleichung

$$Q_{Drossel} = \frac{\boldsymbol{p} \cdot r^4}{8 \cdot \boldsymbol{h} \cdot 1} \cdot (p_1 - p_2)$$

 $\eta = \rho \bullet \nu$

η=Dynamische Viskosität [kg/ms]

l=Drossellänge [mm]

r=Radius [mm]

v=kinematische Viskosität [kg/ms]

ρ=Ölviskosität [kg/m³]

Formelsammlung Hydraulik

8 Hydrospeicher

$$\Delta V = V_0 \left(\frac{p_0}{p_1} \right)^{\frac{1}{k}} \bullet \left[1 - \left(\frac{p_1}{p_2} \right)^{\frac{1}{k}} \right]$$

$$p_2 = \frac{p_1}{1 - \frac{\Delta V}{V_0 \left(\frac{p_0}{p_1}\right)^{\frac{1}{k}}}}$$

$$V_0 = \frac{\Delta V}{\left(\frac{p_0}{p_1}\right)^{\frac{1}{k}} \bullet \left[1 - \left(\frac{p_1}{p_2}\right)^{\frac{1}{k}}\right]}$$

κ=1,4 (adiabatische Verdichtung)

 $\Delta V=Nutzvolumen$ [1]

V₀=Speichergröße [1]

p₀=Gasfülldruck [bar]

p₁=Betriebsdruck min [bar] (Druckabfall am Ventil)

p₂=Betriebsdruck max [bar]

$$p_0 = <0,9*P_1$$

Bei druckgereglete Pumpen ein Speicher im

Druckkreislauf vorsehen.

Schwenkzeit der Pumpe t_{SA} aus Pumpenkatalog.

$$\Delta V = Q \bullet t_{SA}$$

9 Wärmetauscher (Öl-Wasser)

 $ETD = t_{ol} - t_{K}$

 $p_{01} = \frac{P_{V}}{ETD}$

 $\Delta t_{_{\rm K}} = \frac{14 \bullet P_{_{\rm V}}}{V_{_{\rm K}}}$

Berechnung von $\Delta t_{\ddot{O}l}$ ist je nach Druckflüssigkeit verschieden.

 $V_{\ddot{O}l}\!\!=\!\!\ddot{O}lstrom~[l/min]$

P_V=Verlustleistung [kW]

t_{Öl}=Eintrittstemperatur Öl [°C]

Δt_{Öl}=Abkühlung des Öls [K]

 t_K =Eintrittstemperatur Kühlwasser [°C]

 Δt_K =Erwärmung des Kühlwassers [K]

 V_K =Kühlwasserstrom [l/min]

ETD=Eintritts-Temperatur-Differenz [K]

 p_{01} =spez. Kühlleistung [kW/h]

Aus dem errechneten Wert p_{01} kann man aus Diagramme der verschiedenen Hersteller die Nenngröße der Wärmetauscher bestimmen.

Formelsammlung Hydraulik Beispiel AB-Normen:

Verfasser: Houman Hatami

Verfasser: Houman Hatami

10 Auslegung eines Ventils

Aus den Zylinderdaten und den Ein- und Ausfahrgeschwindigkeiten lässt sich der erforderliche Volumenstrom berechnen.

P= P_S Systemdr.-P_LLastdr.-P_TRücklaufdr.

(Lastdruck
$$\approx \frac{2}{3}$$
*Systemdruck)

Bei optimalen Wirkungsgrad.

F_T=Lastkraft [daN]

P_S=Systemdruck [bar]

P_T=Rücklaufdruck [bar]

A₁=Kolbenfläche cm2

A₂=Ringfläche cm2

R=Flächenverhältniss Zylinder

v_{max}=Ausfahrgeschwindigkeit des Zylinders cm/s

 \rightarrow p₁ und p₂

$$p_2 = \frac{(p_S A_2 R^3) + F_T + (p_T A_2 R)]}{A_2 (1 + R^3)} \text{ bar}$$

$$p_{_{1}} = p_{_{T}} + [(p_{_{S}} - p_{_{2}})R^{^{2}}] \text{ bar}$$

Überprüfung der Zylinderdimensionierung und Berechnung des Nennvolumenstromes Q_N , in Abhängigkeit des Lastdruckes p_1 .

$$Q = 0.06 \bullet A_2 \bullet v_{max}$$
 l/min

$$Q_{\scriptscriptstyle N} = Q \sqrt{\frac{X}{p_{\scriptscriptstyle S} - p_{\scriptscriptstyle 2}}} \quad \text{l/min}$$

X= 35 (Servoventil) Druckabfall über eine Steuerkante X= 35 (Propventil) Druckabfall über eine Steuerkante (Propventil mit Hülse)

X= 5 (Propventil) Druckabfall über eine Steuerkante (Propventil ohne Hülse)

Auswahl eines Ventils 10% größer als der berechnete Nennvolumenstrom.