Allocations sans-envie pour les groupes en présence de biens et de tâches indivisibles

Simon Rey, en collaboration avec Haris Aziz

September 6, 2019

1. Partage équitable

Problématique

Étant donné un *ensemble d'objets* et un *ensemble d'agents* ayant des *préférences* sur les objets, comment *distribuer* les objets aux agents de la manière la plus *juste* possible ?

Problématique

Étant donné un *ensemble d'objets* et un *ensemble d'agents* ayant des *préférences* sur les objets, comment *distribuer* les objets aux agents de la manière la plus *juste* possible ?

Les applications potentielles peuvent être :

- Partage d'un héritage
- Allocation de créneaux horaires pour des cours
- Formation d'équipes sportives
- ...

Prémisses du partage équitable

La Genèse décrit pour la première fois le protocole *I cut, you choose* pour diviser un terrain entre Abraham et Lot.

Prémisses du partage équitable

La Genèse décrit pour la première fois le protocole *l cut, you choose* pour diviser un terrain entre Abraham et Lot.

Hugo Steinhauss définit en 1948 *The Fair Division Problem*, il introduit formellement le problème du *cake-cutting* et propose des règles de partage.

Partage équitable

Partage équitable

Partage équitable

Équilibre général

Gérard Debreu

Kenneth Arrow

Choix social

Amartya Sen

Kenneth Arrow

Partage équitable

Théorie des jeux

John von Neumann

Oscar Morgenstern

John Nash

Lloyd Shpaley

Une littérature foisonnante

2. Modélisation

Allocation de ressources indivisibles

Allocation de ressources indivisibles

Allocation de ressources indivisibles

DÉFINITION: ALLOCATION

Soient $\mathcal N$ un ensemble d'agent et $\mathcal O$ un ensemble d'objets, une allocation $\pi = \left\langle \pi_1, \dots, \pi_{|\mathcal N|} \right\rangle$ de $\mathcal O$ à $\mathcal N$ est un vecteur d'ensemble d'objets dont la composante i correspond à l'ensemble d'objets reçu par l'agent i. Une allocation est telle que :

- tous les objets sont alloués, et,
- un objet n'est alloué qu'à un seul agent.

Préférences des agents

Un agent $i \in \mathcal{N}$ exprime ses préférences par une fonction d'utilité :

$$u_i:2^{\mathcal{O}}\to\mathbb{R}.$$

Préférences des agents

Un agent $i \in \mathcal{N}$ exprime ses préférences par une fonction d'utilité :

$$u_i:2^{\mathcal{O}}\to\mathbb{R}.$$

Les préférences sont supposées *additives* : pour tout agent $i \in \mathcal{N}$ et pour toute ressource $O \subseteq \mathcal{O}$, on a :

$$u_i(O) = \sum_{o \in O} u_i(o).$$

Préférences des agents

Un agent $i \in \mathcal{N}$ exprime ses préférences par une fonction d'utilité :

$$u_i:2^{\mathcal{O}}\to\mathbb{R}.$$

Les préférences sont supposées *additives* : pour tout agent $i \in \mathcal{N}$ et pour toute ressource $O \subseteq \mathcal{O}$, on a :

$$u_i(O) = \sum_{o \in O} u_i(o).$$

Pour un agent $i \in \mathcal{N}$, une ressource $o \in \mathcal{O}$ est :

- un bien si $u_i(o) \geq 0$,
- une *tâche* si $u_i(o) \leq 0$.

3. L'absence d'envie comme critère de justice

13²21

L'absence d'envie comme critère de justice

Lorsque toutes les ressources sont des biens

Absence d'envie (EF)

Absence d'envie (EF)

Résumé sur l'absence d'envie

Résumé sur l'absence d'envie

✗ Il n'existe pas de garantie d'existence d'allocation sans-envie lorsque les ressources sont indivisibles.

Résumé sur l'absence d'envie

X II n'existe pas de garantie d'existence d'allocation sans-envie lorsque les ressources sont indivisibles.

Comment faire pour obtenir une garantie d'existence ?

Résumé sur l'absence d'envie à un bien près

Pierre: Cédric: Cédric est envieux à un bien près.

Nicolas: Nicolas:

[1] Lipton, Markakis, Mossel, and Saberi "On approximately fair allocations of indivisible goods" (2004)

Résumé sur l'absence d'envie à un bien près

Pierre: Cédric: Cédric: n'est pas EF1 : Cédric est envieux à un bien près.

Nicolas: Nicolas:

✓ Une allocation sans-envie à un bien près peut toujours être calculé en temps polynomial même pour des préférences très générales. [1]

[1] Lipton, Markakis, Mossel, and Saberi "On approximately fair allocations of indivisible goods" (2004)

Résumé sur l'absence d'envie à un bien près

Pierre: Cédric: Cédric: n'est pas EF1 : Cédric est envieux à un bien près.

Nicolas:

- ✓ Une allocation sans-envie à un bien près peut toujours être calculé en temps polynomial même pour des préférences très générales. [1]
- Qu'est ce qu'il se passe lorsque des tâches doivent être distribuées?
 - [1] Lipton, Markakis, Mossel, and Saberi "On approximately fair allocations of indivisible goods" (2004)

L'absence d'envie comme critère de justice

t absence a crivic comme entere de justice

Lorsqu'il y a des biens et des tâches

Allocation de biens et de tâches indivisibles

Allocation de biens et de tâches indivisibles

Absence d'envie (EF)

Absence d'envie (EF)

Résumé sur l'absence d'envie à une ressource près

✓ Pierre:

Cédric:
Satisfait EF1.

Nicolas:

[2] Aziz, Caragiannis, Igarashi, and Walsh "Fair allocation of combinations of indivisible goods and chores" (2019)

Résumé sur l'absence d'envie à une ressource près

✓ Pierre:

Cédric:
Satisfait EF1.

Nicolas:

✓ Une allocations sans-envie à une ressource près peut toujours être calculée en temps polynomial, quelques soient les préférences. [2]

[2] Aziz, Caragiannis, Igarashi, and Walsh "Fair allocation of combinations of indivisible goods and chores" (2019)

Résumé sur l'absence d'envie à une ressource près

✓ Pierre:

Cédric:
Satisfait EF1.

Nicolas:

✓ Une allocations sans-envie à une ressource près peut toujours être calculée en temps polynomial, quelques soient les préférences. [2]

Comment généraliser cette notion à des groupes d'agents?

[2] Aziz, Caragiannis, Igarashi, and Walsh "Fair allocation of combinations of indivisible goods and chores" (2019)

4. Allocations sans-envie pour les groupes

Que veut dire "préfèrent" ?

Résumé sur l'absence d'envie pour les groupes

Pierre:

Cédric

Simo

Nicolas

n'est pas sans-envie pour les groupes.

Résumé sur l'absence d'envie pour les groupes

Pierre: © Cédric:

Х

Simon: 📿 🗓 🕒

Nicolas

n'est pas sans-envie pour les groupes.

X II n'existe pas de garantie d'existence d'allocation sans-envie lorsque les ressources sont indivisibles.

Résumé sur l'absence d'envie pour les groupes

Pierre: © Cédric:

n'est pas sans-envie pour les groupes.

X II n'existe pas de garantie d'existence d'allocation sans-envie lorsque les ressources sont indivisibles.

Comment faire pour obtenir une garantie d'existences ?

Absence d'envie pour les groupes à une ressource près

Absence d'envie pour les groupes à une ressource près

Absence d'envie pour les groupes à une ressource près

► Il faut vérifier que l'envie peut être éliminer pour toutes les réallocations des ressources de Pierre et Cédric à Simon et Nicolas.

Formalisation de GEF1

DÉFINITION: GEF1

Soit $I = \langle \mathcal{N}, \mathcal{O}, (u_i)_{i \in \mathcal{N}} \rangle$ une instance avec des biens et des tâches. Une allocation $\pi \in \Pi(\mathcal{O}, \mathcal{N})$ est sans-envie pour les groupes à une ressource près si :

- pour toute paire de groupes d'agents non vide, $S \subseteq \mathcal{N}$ et $T \subseteq \mathcal{N}$, tels que |S| = |T|,
- ② pour toute réallocation $\pi' \in \Pi(\pi_T, S)$, et
- **o** pour tout agent $i \in S$, il existe $o_i \in \pi_i \cup \pi'_i$ telle que

 $\langle u_i(\pi_i'\setminus\{o_i\})\rangle_{i\in S}$ ne Pareto-domine pas $\langle u_i(\pi_i\setminus\{o_i\})\rangle_{i\in S}$.

5. Existence d'allocations GEF1

Lorsque les ressources sont des biens

Lorsqu'il n'y a que des biens, [3] ont montré qu'une allocation GEF1 peut être calculé via le produit de Nash.

<u>Théorème</u>: Conitzer, Freeman, Shah, and Vaughan Soit $I = \langle \mathcal{N}, \mathcal{O}, (u_i)_{i \in \mathcal{N}} \rangle$ une instance avec seulement des biens et telle que les préférences sont *additives*. Une allocation $\pi \in \Pi(\mathcal{O}, \mathcal{N})$ satisfaisant GEF1 *existe toujours* et peut être calculé en *temps pseudo-polynomial*.

[3] Conitzer, Freeman, Shah, and Vaughan "Group Fairness for the Allocation of Indivisible Goods" (2019)

Lorsque les ressources sont des biens

Lorsqu'il n'y a que des biens, [3] ont montré qu'une allocation GEF1 peut être calculé via le produit de Nash.

<u>Théorème</u>: Conitzer, Freeman, Shah, and Vaughan Soit $I = \langle \mathcal{N}, \mathcal{O}, (u_i)_{i \in \mathcal{N}} \rangle$ une instance avec seulement des biens et telle que les préférences sont *additives*. Une allocation $\pi \in \Pi(\mathcal{O}, \mathcal{N})$ satisfaisant GEF1 *existe toujours* et peut être calculé en *temps pseudo-polynomial*.

Ce résultat peut-il être généralisé pour les tâches ?

[3] Conitzer, Freeman, Shah, and Vaughan "Group Fairness for the Allocation of Indivisible Goods" (2019)

Existence d'allocations GEF1

Lorsque les préférences sont identiques

GEF1 avec des préférences identiques

LEMME:

Soit $I = \langle \mathcal{N}, \mathcal{O}, (u_i)_{i \in \mathcal{N}} \rangle$ une instance avec des biens et des tâches et telle que les préférences sont *identiques et additives*. Toute allocation $\pi \in \Pi(\mathcal{O}, \mathcal{N})$ satisfaisant *EFX* est aussi *GEF1*.

L'algorithme egal-sequential

LEMME:

Une allocation satisfaisant *EFX* peut être calculée en temps $\mathcal{O}(mn)$.

```
Input: Une instance I = \langle \mathcal{N}, \mathcal{O}, (u_i)_{i \in \mathcal{N}} \rangle \in \mathcal{I} telle que
           \forall i \in \mathcal{N}, u_i = u, pour une fonction d'utilité u
Output: \pi \in \Pi(\mathcal{O}, \mathcal{N}) une allocation satisfaisant EFX
\pi \leftarrow allocation vide
Ordonner les ressources o_1, \ldots, o_m de \mathcal{O} en ordre décroissant de |u(o)|
for j = 1 à m do
     if u(o_i) \geq 0 then
           Choisir i^* \in \arg\min_{i \in \mathcal{N}} u(\pi_i)
     else
           Choisir i^* \in \arg\max_{i \in \mathcal{N}} u(\pi_i)
     Allouer o_i à i^*: \pi_{i^*} \leftarrow \pi_{i^*} \cup \{o_i\}
return \pi
```

GEF1 avec des préférences identiques

THÉORÈME:

Soit $I = \langle \mathcal{N}, \mathcal{O}, (u_i)_{i \in \mathcal{N}} \rangle$ une instance avec des biens et des tâches et telle que les préférences sont *identiques et additives*. Une allocation $\pi \in \Pi(\mathcal{O}, \mathcal{N})$ satisfaisant GEF1 *existe toujours* et peut être calculé en *temps polynomial*.

Exemple d'application

 $\underline{\mathrm{Exemple}}\text{: }\mathsf{Consid\acute{e}rons}\;\mathsf{deux}\;\mathsf{agents}\;\mathsf{avec}\;\mathsf{les}\;\mathsf{pr\acute{e}f\acute{e}rences}\;\mathsf{suivantes}$

5

__.

3

-6

1

2

Exemple d'application

EXEMPLE: Considérons deux agents avec les préférences suivantes

-6

5 –

3

2

L

L'allocation construite est :

Pierre: Ø

Cedric: \emptyset

Utilité: 0

Utilité: 0

Exemple d'application

EXEMPLE: Considérons deux agents avec les préférences suivantes

L'allocation construite est :

Pierre:

Cedric: Ø

Utilité: -6

Utilité: 0

EXEMPLE: Considérons deux agents avec les préférences suivantes

-6

· –

3

L'allocation construite est :

Pierre:

Cedric: Ø

Utilité: -1

EXEMPLE: Considérons deux agents avec les préférences suivantes

L'allocation construite est :

Cedric:

Utilité : −1

Utilité: -4

EXEMPLE: Considérons deux agents avec les préférences suivantes

L'allocation construite est :

Pierre:

Utilité: -1

Utilité: -1

EXEMPLE: Considérons deux agents avec les préférences suivantes

L'allocation construite est :

Pierre:

Utilité: -1

EXEMPLE: Considérons deux agents avec les préférences suivantes

L'allocation construite est :

Utilité: 0

Existence d'allocations GEF1

Préférences symétriques et ternaire

Préférences symétriques et ternaires

DÉFINITION:

Un agent $i \in \mathcal{N}$ a des préférences symétriques et ternaires si elles sont additives et pour chaque ressources $o \in \mathcal{O}$, on a $u_i(o) \in \{-\alpha_i, 0, \alpha_i\}$ pour un $\alpha_i \in \mathbb{R}_{>0}$ donné.

GEF1 avec des préférences symétriques et ternaires

LEMME:

Soit $I = \langle \mathcal{N}, \mathcal{O}, (u_i)_{i \in \mathcal{N}} \rangle$ une instance avec des biens et des tâches et telle que les préférences sont *symétriques et ternaires*. Toute allocation $\pi \in \Pi(\mathcal{O}, \mathcal{N})$ *leximin-optimale* est aussi *GEF1*.

Algorithme de flot leximin-optimal

LEMME:

Une allocation leximin-optimale peut être calculée en temps polynomial.

Input: Une instance $I = \langle \mathcal{N}, \mathcal{O}, (u_i)_{i \in \mathcal{N}} \rangle$ avec des préférences symétriques et ternaires

Output: $\pi \in \Pi(\mathcal{O}, \mathcal{N})$ une allocation leximin-optimale

$$O^{+} = \{ o \in \mathcal{O} : \max_{i} u_{i}(o) > 0 \}, \ O^{0} = \{ o \in \mathcal{O} : \max_{i} u_{i}(o) = 0 \}$$

$$O^{-} = \{ o \in \mathcal{O} : \max_{i} u_{i}(o) < 0 \}$$

$$O^-=\{o\in\mathcal{O}: \mathsf{max}_i\,u_i(o)<0\}$$

$$orall i \in \mathcal{N}$$
, $orall o \in O^+$, $u_i'(o) = \left\{egin{array}{l} 1 \ ext{si} \ u_i(o) = 1, \ 0 \ ext{sinon} \end{array}
ight.$

Soit π l'allocation calculée par le Nash flow algorithm sur $\langle \mathcal{N}, O^+, (u_i')_{i \in \mathcal{N}} \rangle$.

for
$$o \in O^-$$
 do

Allouer
$$o$$
 à $i^* \in \operatorname{arg\,max}_{i \in \mathcal{N}} u(\pi_i)$

for
$$o \in O^0$$
 do

Allouer o à un agent i^* tel que $u_{i^*}(o) = 0$.

return π

GEF1 avec des préférences symétriques et ternaires

THÉORÈME:

Soit $I = \langle \mathcal{N}, \mathcal{O}, (u_i)_{i \in \mathcal{N}} \rangle$ une instance avec des biens et des tâches et telle que les préférences sont *symétriques et ternaires*. Une allocation $\pi \in \Pi(\mathcal{O}, \mathcal{N})$ satisfaisant GEF1 *existe toujours* et peut être calculé en *temps polynomial*.

EXEMPLE: Considérons trois agents avec les préférences suivantes

Cédric Pierre 3 -3 0 -3 -3

Nicolas

On a donc:

EXEMPLE: On applique alors le Nash flow algorithm [4] à l'instance

[4] Darmann and Schauer "Maximizing Nash product social welfare in allocating indivisible goods" (2015)

EXEMPLE:

EXEMPLE: L'allocation partielle obtenue est :

Pierre:

Nicolas:

Cédric: (2)

Utilité: 3

Utilité: 5

EXEMPLE: L'allocation partielle obtenue est :

Pierre:

Nicolas:

Cédric: (2)

Utilité: 3

Utilité: 5

Utilité: 1

En distribuant les dernières ressources, on obtient :

Pierre:

Nicolas:

Utilité: 0

Utilité: 0

6. Conclusion

.423 E.12, 203 E.2 425 E.2 425 E.23 E.12

Conclusion

Nous avons...

- ... introduit formellement une définition d'envie pour les groupes en présence de biens et de tâches,
- ... présenté ses relations avec d'autres concepts d'équité,
- ... et donné plusieurs résultats d'existence.

Conclusion

Nous avons...

- ... introduit formellement une définition d'envie pour les groupes en présence de biens et de tâches,
- ... présenté ses relations avec d'autres concepts d'équité,
- ... et donné plusieurs résultats d'existence.

Il reste à ...

- ... donner un résultat d'existence pour GEF1 avec des préférences additives,
- ... étudier une variante "up to any item" de GEFX pour obtenir des résultats sur EFX,
- … développer de nouveaux critères de justice considérant des groupes d'agents.