Problème. Une fonction et une suite.

Dans ce problème, on travaillera avec la fonction $f: x \mapsto \frac{x}{\ln(x)}$.

Les parties B et C du problème sont indépendantes.

Partie A : Variations de f.

Étudier soigneusement les variations de f sur son ensemble de définition.

Partie B : Étude de la régularité de f en 0.

Dans cette partie, la fonction f est considérée sur l'intervalle]0,1[.

- 1. Justifier que f est prolongeable par continuité en 0. Définir ce prolongement. Notre prolongement, défini sur [0,1[est toujours noté f dans la suite.
- 2. Justifier que le nombre $\lim_{x\to 0+} f'(x)$ existe et donner sa valeur. Justifier alors que f est de classe \mathcal{C}^1 sur [0,1[et préciser f'(0).
- 3. Démontrer que f' n'est pas dérivable en 0.

Partie C : Suite récurrente associée à f.

On considère la suite $(v_n)_{n\geq 0}$ définie par $\begin{cases} v_0=3 \\ \forall n\in\mathbb{N} & v_{n+1}=f(v_n) \end{cases} .$

- 1. Montrer que $\forall n \in \mathbb{N} \ v_n \geq e$.
- 2. Justifier que la suite (v_n) est convergente et déterminer sa limite.
- 3. Montrer que pour tout $u \in [0,1]$, on a $0 \le u(1-u) \le \frac{1}{4}$. Montrer ensuite que $\forall x \ge e, \ 0 \le f'(x) \le \frac{1}{4}$.
- 4. Démontrer que pour tout $n \in \mathbb{N}$, on a $|v_{n+1} e| \leq \frac{1}{4}|v_n e|$. En déduire :

$$\forall n \in \mathbb{N}, \quad |v_n - e| \le \frac{1}{4^n}.$$

5. Déterminer n pour lequel v_n est une valeur approchée de e à 10^{-12} près.

Exercice. Calcul des nombres $\left[\frac{\mathrm{d}^n}{\mathrm{d}x^n}\arcsin^2\right](0)$.

Dans cet exercice, on note $f: x \mapsto \arcsin^2(x)$. Elle est de classe \mathcal{C}^{∞} sur]-1,1[.

1. Démontrer que

$$\forall x \in]-1,1[(1-x^2)f''(x) - xf'(x) = 2.$$

2. Démontrer que

$$\forall n \in \mathbb{N}^* \quad \forall x \in]-1,1[\quad (1-x^2)f^{(n+2)}(x)-(2n+1)xf^{(n+1)}(x)-n^2f^{(n)}(x)=0.$$

3. En déduire que

$$\forall n \in \mathbb{N}^* \quad f^{(n+2)}(0) = n^2 f^{(n)}(0).$$

4. Exprimer alors pour tout $n \in \mathbb{N}$ les nombres $f^{(2n)}(0)$ et $f^{(2n+1)}(0)$

(on utilisera les factorielles lorsque cela s'y prête)