Аннотация

Данный курс посвящён решению задач школьной планиметрии. Он будет охватывать такие темы как: счёт углов, ортоцентр треугольника, степень точки, движения плоскости, гомотетия и другие. Темы выходят за рамки школьного курса геометрии, поэтому этот курс поможет по-новому взглянуть на знакомые темы и задачи, а при решении новых, покажет "незнакомые" пути решения.

Курс подойдет для школьников, которые уже знакомы с понятие "вписанные углы" или "вписанные четырехугольники".

Содержание

1	1 Счет углов	1
2	2 Площади 2.1 Площади простых фигур	 2 2
3	3 Ортоцентр треугольника 3.1 Другие популярные уголки	 2 5
4	4 Подобие треугольников	5
5	5 Симметрии	5
6	o crememb to min	5
	6.1 Радикальная ось	 7
3a	Задачи	9
	і Счёт углов-І	 9
	іі Площади	13
	ііі Счёт углов-II	 13
	iv Подобие	14
	v Симметрия	 14
	vi Степень точки и радикальная ось	 14
Ко	Контрольная работа	22

1 Счет углов

Под этим названием скрывается, не побоюсь этого слова, самый (!) используемый метод в решении задач. В каждой он встречается в том или ином виде. Поэтому, если вы хотите решать задачи, вам нужно его знать. В основном "считаются" углы, связанные с окружностями, но бывает и что-то другое.

Для примера, давайте дакажем, что высоты треугольника пересекаются в одной точке. Для этого вспомним «вписанные углы»

Теорема 1.1. Высоты треугольника конкурентны 1 .

Рис. 1: Высоты треугольника пересекаются в одной точке.

Лемма 1.2. Четырехугольник ABCD является вписанным, если $\angle ABC$ равен смежному углу $\angle ADC$.

¹Пересекаются в одной точке.

Рис. 2: Угол между касательной и хордой.

Утверждение 1.3. Пусть AB – хорда окружности, а С – точка касания касательной к окружности. Тогда угол между касательной и хордой равен вписанному углу, операющему на ту же дугу, что и хорда. То есть

$$\angle ACB = \frac{\widehat{AB}}{2}.$$

Доказательство. Пусть O – центр окружности. Тогда отрезки OB и равны как радиусы. При том, угол $∠BOC = 2 \cdot ∠BAC$. Радиус OC перпенидкулярен касательной в точке C. Значит угол между касательной и хордой равен:

$$90^{\circ} - \frac{180^{\circ} - 2 \cdot \angle BAC}{2} = \angle BAC.$$

2 Площади

2.1 Площади простых фигур

3 Ортоцентр треугольника

Ортоцентр – это такая особенная точка: конструкции, в которых используются его **симметрии** относительно чего-либо, **замечательно** связанны с описанной окружностью, и наоборот!

Определение 3.1. Ортоцентр **(H)** – это точка пересечения высот треугольника.

Я всегда буду ортоцентр треугольника *ABC* обозначать **большой зеленой точ-кой** (просто я так решил), а центр описанной окружности как выколотую (так уже более принято).

Теорема 3.2. *Если отразить ортоцентр относительно стороны, то он попадет на описанную окружность.*

Теорема 3.3. Если ортоцентр отразить относительно середины стороны, то он попадет на описанную окружность.

Следствие 3.3.1. Точка из теоремы ?? диаметрально противоположна противолежащей стороне вершине.

Следствие 3.3.2. Расстояние от вершины треугольника до ортоцентра в 2 раза больше расстояния от центра описанной окружности до противолежащей стороны.

Лемма 3.4 (Окружность Джонсона). (ABC) = (ABH), т.е. окружности, описанные вокруг $\triangle ABC$ и $\triangle ABH$ равны.

Определение 3.5 (Изогональное сопряжение¹). Точки P, Q называются изогонально сопряженными, если $\angle PAB = \angle QAC$, $\angle PBC = \angle QBA$, $\angle PCB = \angle QCA$.

Определение 3.7. Инцетр – это центр, вписанной в многоугольник окружности.

Определение 3.8. Ортотреугольник – это треугольник, вершины которого являются основаниями высот исходного треугольник.

Лемма 3.9. Ортоцентр является инцентром для ортотреугольника.

 $^{^{1}}$ Можно думать об изогональном сопряжении, как о симметрии относительно биссектрисы.

Следствие 3.9.1. Радиусы описанной окружности, проведённые к вершинам треугольника, перпендикулярны соответствующим сторонам ортотреугольника.

Лемма 3.10. Сумма квадратов расстояния от вершины треугольника до ортоцентра и длины стороны, противолежащей этой вершине, равна квадрату диаметра описанной окружности.

Лемма 3.11. Если AA_1 и BB_1 – высоты треугольника ABC, то $\triangle ABC$ $\sim \triangle A_1B_1C$, $k=\cos \angle C$.

3.1 Другие популярные уголки

4 Подобие треугольников

5 Симметрии

6 Степень точки

Определение 6.1 (Степень точки). Степень точки P, находящейся на расстоянии d от центра окружности ω радиусом r, относительно этой же окружности.

ности:

$$pow(P, \omega) = d^2 - r^2.$$

Теорема 6.2. Если прямая $\ell \ni P$ касается окружность в точке K, то

$$pow(P, \omega) = PK^2$$
.

Теорема 6.3. Если прямая $\ell \ni P$ пересекает окружность ω в точках A u B, тогда

$$pow(P, \omega) = \overrightarrow{PA} \cdot \overrightarrow{PB}.$$

Следствие 6.3.1 (Теорема о касательной и секущей). *Если из точки P, проведена касательная PK к окружности \omega и прямая (\ell \ni P) пересекает окружность \omega в точках A и B, тогда*

$$PK^2 = PA \cdot PB$$
.

Теорема 6.4 (Главная теорема о степени точки). *Если через точку Р проходят две прямые, которые пересекают окружность \omega в точках A_1, A_2 и B_1, B_2 соответственно, то*

$$pow(P, \omega) = \overrightarrow{PA_1} \cdot \overrightarrow{PA_2} = \overrightarrow{PB_1} \cdot \overrightarrow{PB_2}.$$

6.1 Радикальная ось

Теорема 6.5. Геометрическое место точек (ГМТ), степени которых относительно двух неконцентрических окружностей равны, есть прямая, перпендикулярная линии центров этих окружностей.

Определение 6.6 (Радикальная ось). Прямая, состоящая из точек, степени которых относительно двух данных окружностей равны, называется радикальной осью этих окружностей.

Рис. 3: Радикальная ось двух окружностей.

Теорема 6.7 (Радикальный центр). *Радикальные оси трех окружностей либо конкурентны, либо параллельны.*

Рис. 4: Радикальный центр трех окружностей.

Теорема 6.8. $AC \perp BD^{1}$, если

$$pow(B, \omega_a) - pow(B, \omega_c) = pow(D, \omega_a) - pow(D, \omega_c)$$

 $^{^1}$ Типа крутая ??

Задачи

і Счёт углов-І

1. (Лемма Фусса) Окружности ω_1 и ω_2 пересекаются в точках A и B. Через точку A проведена прямая вторично пересекающая окружность ω_1 в точке A_1 и окружность ω_2 в точке A_2 . Точки B_1 и B_2 для прямой через точку B определяются аналогично. Докажите, что $A_1B_1 \parallel A_2B_2$.

```
Решение: По теореме 1.2 \angle B_1A_1A = \angle ABB_2 = 180^\circ - \angle B_2A_2A \Rightarrow \angle B_1A_1A_2 + \angle B_2A_2A_1 = 180^\circ \Rightarrow A_1B_1 \parallel A_2B_2.
```

2. В равнобедренном треугольник ABC (AB = AC) на меньшей дуге AB окружности (ABC) взята точка D. На продолжении отрезка AD за точку D выбрана точка E так, что точки A и E лежат по одну сторону относительно прямой BC. Окружность (BDE) пересекает прямую AB в точке F. Докажите, что $EF \parallel BC$.

Решение: По задаче **1** E и F – вторые точки пересечения окружности (BDE) с прямыми AD и AB соответственно. Тогда прямая EF параллельна касательной к (ABC) в точке A. И уже эта касательная параллельна BC, тогда и EF тоже.

3. В трапеции ABCD проведена окружность, проходящая через точки A и D. Окружность пересекает боковые стороны AB и CD (или их продолжения) в точках N и M соответственно. Докажите, что если точка пересечения прямых BM и CN равноудалена от точек A и D, то она лежит на окружности.

Решение: $AD \parallel BC$, тогда по обратной задаче **1** NBCM – вписанный. Тогда $\angle BNC = \angle BMC$.

По обратной теореме 1.2 для четырехугольников ANPD и $APMD \angle BNC = \angle PDA$ и $\angle BMC = \angle PAD$. Отсюда следует, что треугольник APD – равнобедренный, а значит P равноудалена от A и D.

- 4. В остроугольном треугольнике ABC на высоте, проведённой из вершины A, выбрана точка P. Пусть B_1 и C_1 проекции точки P на прямые AC и AB соответственно.
 - (a) Докажите, что точки B, C, B_1 , C_1 концикличны.

Решение: Пусть точка D – основания высоты из вершины A. Тогда $BDPC_1$ и AC_1PB_1 – вписаные четырехугольники. По теореме 1.2 $\angle ABC = \angle APC_1$ и $\angle APC_1 = \angle AB_1C_1$. Тогда по обратной теореме 1.2 BCC_1B_1 – вписанный четырехугольник.

(b) Докажите, что отрезок, соединяющий проекции точек B_1 и C_1 , на прямые AB и AC соответственно, параллелен стороне BC.

Решение: По задаче $\frac{4a}{B}CC_1B_1$ – вписанный, а также $B_1C_1C_2B_2$ (B_1C_1 – диаметр). Тогда по теореме $\frac{1.2}{A}C_1 = \angle AB_1C_1 = \angle AC_2B_2 \Rightarrow B_2C_2 \parallel BC$.

5. В остроугольном треугольнике *ABC* проведена высота *AD*. Пусть точки *K* и *L* – проекции точки *D* на стороны *AB* и *AC* соответственно. Известно, что $\angle BAC = 72^{\circ}$, $\angle ABL = 30^{\circ}$. Чему равен угол $\angle DKC$?

Решение: По задаче 4a BCLK – вписанный, тогда $\angle ABL = \angle LCK$. $\angle DKC = \angle BDK - \angle DCK$. $\angle BDK = \angle BAD$ (углы при высоте прямоугольного треугольника). $\angle DCK = \angle ACD - \angle LCK = 90^{\circ} - \angle CAD - \angle LCK = 90^{\circ} - \angle CAD - \angle ABL$. $\angle DKC = \angle BAD - 90^{\circ} + \angle CAD + \angle ABL = \angle BAC + \angle ABL - 90^{\circ} = 72^{\circ} + 30^{\circ} - 90^{\circ} = 12^{\circ}$.

6.* (Окружность Тейлора) Докажите, что шесть точек в виде шести проекций трёх оснований высот треугольника, пересекающих каждую сторону, на две оставшиеся стороны лежат на одной окружности.

Решение: Пусть точки H_a , H_b и H_c – основания высот из соответствующих вершин треугольника ABC. Пусть B_a и C_a – проекции точки H_a на прямые AB и AC соответственно. Точки A_b , C_b , A_c и B_c определяются аналогично.

Тогда по задаче 4а BCB_AC_A – вписанный. Тогда по теореме 1.2 $\angle ACB = \angle AC_aB_a$.

По задаче 4b $AB \parallel A_bB_a \Rightarrow \angle AC_aB_a = \angle A_bB_aC_a$, и $AC \parallel A_cC_a \Rightarrow \angle ACB = \angle A_cC_aB$.

Тогда по обратной теореме 1.2 $A_cA_bB_aC_a$ – вписанный. Аналогично $B_aB_cC_bA_b$ и $C_bC_aA_cB_c$ – вписанные. Тогда и $A_cA_bB_aB_cC_bC_a$ – вписанный, т.к. точки лежат на сторонах треугольника (строго позже).

7. (а) (Точка Микеля треугольника) На сторонах AB, BC и AC треугольника ABC или их продолжениях, выбраны точки C_1 , B_1 и A_1 соответственно. Докажите, что окружности (AB_1C_1) , (A_1BC_1) и (A_1B_1C) пересекаются в одной точке.

Решение: Пусть $(AB_1C_1) \cap (A_1BC_1) = P$. Будем доказывать, что $P \in (A_1B_1C)$. По теореме 1.2 $\angle BC_1P = \angle CA_1P = \angle AB_1P$. Отсюда по обратной теореме 1.2 точки A_1, B_1, C и P концикличны.

(b)* (Точка Микеля четырехсторонника) На плоскости даны четыре прямые общего положения. Эти прямые образуют 4 треугольника. Докажите, что описанные окружности этих треугольников пересекаются в одной точке.

Решение: Пусть на первой прямой лежат точки A, F и B, на второй B, D и C, на третьей C, A и E и на четвертой E, D и F. Тогда по задаче ABC и точек ABC и точек

$$(AFE) \cap (BFD) \cap (CDE) = M. \tag{6.1}$$

По задаче 7a для $\triangle AFE$ и точек B, D и C

$$(ABC) \cap (FBD) \cap (EDC) = G. \tag{6.2}$$

Но по уравнение (6.1) и (6.2) $G \equiv M$. Отсюда следует, что все нужные окружности пересекаются в одной точке.

8. В треугольнике ABC точки B_1 и C_1 – основания высот, проведенных из вершин B и C соответственно. Точка D – проекция точки B_1 на сторону AB, точка E – пересечения перпендикуляра, опущенного из точки D на сторону BC, с отрезком BB_1 . Докажите, что $EC_1 \perp BB_1$.

Решение: Нужно доказать, что DC_1EB_1 – вписанный, тогда утверждение верно. B_1EFC – вписанный, тогда по теореме $\mathbf{1.2}\ \angle B_1CF = \angle B_1ED$. Также BCC_1B_1 – вписанный, тогда, опять же, по теореме $\mathbf{1.2}\ \angle BCB_1 = \angle B_1C_1D$. Тогда, раз $\angle B_1ED = \angle B_1ED = \angle B_1C_1D$, то DC_1EB_1 – вписанный.

9. На гипотенузе AC прямоугольного треугольника ABC во внешнюю сторону построен квадрат с центром в точке O. Докажите, что BO – биссектриса угла ABC.

Решение:

Лемма 6.9. Если в четырехугольнике ABCD, AC – биссектриса угла A и BC = CD, то этот четырехугольник либо вписанный, либо дельтойд.

ABCO – вписанный, т.к. $\angle B = \angle O = 90^\circ$. AO = OC, т.к. это половины диагоналей квадрата. Тогда BO – биссектриса угла ABC.

10. В треугольнике ABC угол A равен 60°. Биссектрисы треугольника BB_1 и CC_1 пересекаются в точке I. Докажите, что $IB_1 = IC_1$.

Решение:

Лемма 6.10. Если в треугольнике ABC, точка I – инцентр, то

$$\angle AIC = 90^{\circ} + \frac{1}{2} \angle ABC$$

По теореме 6.10 $\angle BIC = 90^{\circ} + \frac{1}{2} \angle BAC = 90^{\circ} + 30^{\circ} = 120^{\circ}$. Тогда $AB_{1}IC_{1}$ – вписанный. AI – биссектриса, поэтому $IB_{1} = IC_{1}$.

11. Прямая ℓ касается описанной окружности треугольника ABC в точке B. Точки A_1 и C_1 – проекции точки $P \in \ell$ на прямые AB и BC соответственно. Докажите, что $A_1C_1 \perp AC$.

Решение:

Лемма 6.11. Угол между касательной и хордой окружности, равен половине градусной меры дуги, стягиваемой данной хордой.

Следствие 6.11.1. Если к окружности (ABC) провели касательную BK, $mo: \angle BAC = \angle CBK$.

По следствии 6.11.1 $\angle PBA_1 = \angle BAC$. PC_1BA_1 – вписанный, поэтому $\angle PC_1A_1 = \angle PBA_1$.

 $\angle PC_1A_1 + \angle A_1C_1B = 90^\circ = \angle BAC + \angle (AB,A_1C_1) \Rightarrow AC \perp A_1C_1.$

12. Окружности ω_1 и ω_2 пересекаются в точках A и B. Прямая ℓ касается окружностей ω_1 и ω_2 в точках P и Q соответственно (точка B^1 лежит внутри треугольника APQ). Прямая BP вторично пересекает ω_2 в точке T. Докажите, что AQ – биссектриса угла $\angle PAT$.

Решение: По следствии 6.11.1 для прямой PQ и окружностей ω_1 и ω_2 $\angle BPQ = \angle BAP$ и $\angle BQP = \angle BAQ$. Тогда угол $TBQ = \angle BAQ + \angle BAP = \angle PAQ$ (внешний в треугольнике BPQ).

Так как BQTA – вписанный, то $\angle TBQ = \angle TAQ = \angle PAQ$. Тогда и получается, что AQ – биссектриса угла PAT.

13.* Пусть AA_1 , BB_1 и CC_1 – высоты остроугольного треугольника ABC. Докажите, что проекции точки A_1 на прямые AB, AC, BB_1 , CC_1 коллинеарны.

 $^{^{1}}$ Точка B называется точкой Шалтая треугольника APQ .

Решение: Докажем, что проекции на AB, BB_1 и CC_1 коллинеарны. Аналогично будет следовать, что и проекция на AC лежит на этой прямой. Пусть X, Y и Z – проекции на AB, BB_1 и CC_1 соответственно, а H – ортоцентр. Тогда по задаче AB0 и теореме AB1. AB2 и Теореме AB4 и AB4 и AB7. Т.к. AB8 и AB9 вписанный, то AB9 и AB9 и

14.* В треугольнике ABC точки D и E – основания биссектрис из углов A и C соответственно, а точка I – центр вписанной в треугольник ABC окружности. Точки P и Q – пересечения прямой DE с (AIE) и (CID) соответственно, причем $P \neq E, Q \neq D$. Докажите, что $\angle EIP = \angle DIQ$.

Решение: Т.к. *AEPI* и *CQDI* – вписанные, то $\angle PIE = \angle PAE$ и $\angle DIQ = \angle DCQ$. Пусть точка T – пересечение прямых AP и CQ. Тогда нужно доказывать, что APTC – вписанный. Пусть $\angle ABC = 2\beta$, тогда по теореме 6.10 $\angle AIC = 90^\circ + \frac{1}{2} \angle ABC = 90^\circ + \beta$, тогда внешние углы PIA и DIA равны $90^\circ - \beta$. По теореме 1.2 для четырехугольников AEPI и CQDI $\angle PIA = \angle TPQ$ и $\angle DIA = TQP$. Тогда $\angle PTQ = 180^\circ - 2(90^\circ - \beta) = 2\beta = \angle ABC$. Тогда APTC – вписанный.

іі Площади

ііі Счёт углов-II

1. В треугольнике ABC проведены высоты BB_1 и CC_1 , а также отмечена точка M – середина стороны BC. Точка H – его ортоцентр, а точка P – пересечения луча (!) MH с окружностью (ABC). Докажите, что точки P,A,B_1,C_1 концикличны.

Решение: Отметим вторую точку пересечения Q окружности (ABC) с прямой MH. Тогда по следствии $3.3.1~\mathrm{AQ}$ – диаметр, а значит $\angle APQ = 90^\circ$. Тогда P, A, C_1 , B_1 , H концикличны, т.к. лежат на окружности с диаметром AH.

2. Во вписанном четырехугольнике ABCD точка P – точка пересечения диагоналей AC и BD. Точка O – центр окружности (ABP). Докажите, что $OP \perp CD$.

 $^{^{1}}$ Сделав инверсию в точке A или I получите задачу с Высшей Пробы 2024.

Решение: Т.к. ABCD – вписанный, то $\triangle BAP \sim \triangle CPD$ (по двум углам). Тогда если O_1 – центр окружности (CPD), то $\angle APO = \angle DPO_1$. По теореме 3.6 в треугольнике CPD, если H_1 – его ортоцентр, $\angle DPO_1 = \angle CPH_1$. Тогда точки O, P, H – коллинеарны, т.к. $\angle CPH = \angle APO$ (вертикальные). А значит $OP \equiv PH \perp CD$.

3. (Муниципальный этап ВСОШ (Москва), 2020, 9.4) Пусть точки B и C лежат на полуокружности с диаметром AD. Точка M – середина отрезка BC. Точка N такова, что точка M – середина отрезка AN, докажите что $BC \perp ND$.

Решение: ABNC – параллелограмм. Тогда раз AD – диаметр, то $AB \perp BD$ и $AC \perp CD$. Но $AB \parallel CN$ и $AC \parallel BN$. Тогда $BD \perp CN$ и $CD \perp BN$. Значит C – ортоцентр треугольника BND, а значит $BC \perp ND$.

4. В треугольнике ABC проведена высота AD и отмечен центр описанной окружности – O. Пусть точки E и F – проекции точек B и C на прямую AO. N – точка пересечения прямых AC и DE, а M – точка пересечения прямых AB и DF. Докажите, что точки A, D, N, M концикличны.

Решение: Пусть точка A' – диаметрально противоположна A. Тогда $ACA' = \angle ABA' = 90^\circ$, отсюда $\angle CA'A = \angle ACF$ и $\angle BA'A = \angle ABE$. Т.к. ABDE и ADFC – вписанные и по теореме 1.2 $\angle ABE = \angle ADN$ и $\angle ACF = \angle ADM$. Тогда $\angle NDM = \angle BA'C$, а значит ADNM – вписанный, раз ABA'C был вписанным.

5. (Baltic Way, 2019, problem 12) Let ABC be a triangle and H its orthocenter. Let D be a point lying on the segment AC and let E be the point on the line BC such that $BC \perp DE$. Prove that $EH \perp BD$ if and only if BD bisects AE.

Решение: Докажем в одну сторону, что если *BD* разделила *AE* пополам, то *EH* \perp *BD*. Пусть *X* – точка пересечения *AH* и *DE* Тогда раз *AH* \equiv *AX* \perp *BC* \wedge *DE* \perp *BC* \Rightarrow *AH* \parallel *DE* и *BD* \equiv *XB* делит *AE* пополам, то значит *AXED* – параллелограмм, отсюда *XE* \parallel *AD*. А раз *XE* \parallel *AD* \wedge *AD* \perp *BH*, значит *X* – ортоцентр треугольника *BHE*, а значит *BX* \equiv *BD* \perp *EH*.

iv Подобие

v Симметрия

vi Степень точки и радикальная ось

1. Докажите, что высоты треугольника конкурентны. 0_0

Решение: Пусть H_a , H_b , H_c – основания высот треугольника ABC из вершин A, B и C соответственно.

Четырехугольники ABH_aH_b , ACH_aH_c и BCH_bH_c – вписанные. По теореме 6.7 прямые AH_a , BH_b , CH_c конкурентны.

2. Окружность делит каждую из сторон треугольника на три равные части. Докажите, что этот треугольник – равносторонний.

Решение: Пусть окружность высекает на сторонах AB, AC и BC треугольника ABC отрезки CC_1 , BB_1 , AA_1 .

$$\begin{cases}
AB_2 = B_1B_2 = B_1C = b \\
AC_1 = C_1C_2 = BC_2 = c \\
BA_1 = A_1A_2 = A_2C = a
\end{cases}$$
(6.3)

Т.к. $A_1 A_2 B_1 B_2$ – вписанный, то

$$pow(C, (A_1A_2B_1B_2)) = CA_1 \cdot CA_2 = CB_1 \cdot CB_2 \implies c \cdot 2c = b \cdot 2b \implies c = b \implies AC = BC.$$

$$(6.4)$$

Т.к. $A_1 A_2 C_1 C_2$ – вписанный, то

$$pow(B, (A_1A_2C_1C_2)) = BA_1 \cdot BA_2 = BA_1 \cdot BA_2 \implies a \cdot 2a = c \cdot 2c \implies a = c \implies AB = AC.$$

$$(6.5)$$

Из уравнений (6.4) и (6.5) следует что AB = AC = BC.

3. Окружности ψ и ω вписаны в вертикальный угол $\angle nm$, ψ касается прямой n в точке N, а ω касается прямой m в точке M. Докажите, что ψ и ω высекают на NM равные отрезки.

Решение: Пусть окружность ψ касается прямой m в точке Q, а ω касается n в точке P. Точка R – вторая точка пересечения прямой MN с ψ . Точка T – вторая точка пересечения прямой MN с ω .

По следствии 6.3.1

$$\begin{cases}
\operatorname{pow}(M, \psi) = MN \cdot MR = MQ^{2} \\
\operatorname{pow}(N, \omega) = NM \cdot NT = NP^{2}
\end{cases}
\Rightarrow MN \cdot MR = NM \cdot NT \Rightarrow$$

$$MQ = NP, \quad \text{symmetry}$$

$$\Rightarrow MR = NT \Rightarrow MR - MN = NT - MN \Rightarrow NR = MT.$$
(6.6)

4. (ММО, 2013, 11.3) Четырёхугольник ABCD такой, что AB = BC и AD = DC. Точки K, L и M – середины отрезков AB, CD и AC соответ-

ственно. Перпендикуляр, проведённый из точки A к прямой BC, пересекается с перпендикуляром, проведённым из точки C к прямой AD, в точке T. Докажите, что прямые $KL \perp TM$.

Решение: Пусть точка P – основание перпендикуляра из точки A на прямую BC, а точка Q – основание перпендикуляра из точки на прямую AD. Т.к. AB = BC и AD = DC, то $AC \perp BD$ и $AC \cap BD = M$. Тогда четырехугольники APBM, BCDQ, APCQ – вписанные, с центрами K, L, M соответственно.

По теореме 6.7

$$\begin{cases}
AP = \text{radical axis}((AB), (AC)) \\
CQ = \text{radical axis}((CD), (AC))
\end{cases} \Rightarrow AP \cap CQ = T = \text{radical center}((AB), (AC), (CD)).$$
(6.7)

По уравнении (6.7)

$$M \in (AB) \cap (CD) \implies M \in \text{radical axis}((AB), (CD)) \implies KL \perp TM.$$
 (6.8)

5. Точка D – основание биссектрисы из точки A треугольника ABC. Окружность (ABD) повторно пересекает прямую AC в точке E, а окружность (ACD) повторно пересекает прямую BC в точке F. Докажите, что BF = CE.

Решение:

Теорема 6.12 (Теорема о биссектрисе). В треугольнике ABC провели биссектрису AD, тогда

$$\frac{AB}{AC} = \frac{BD}{DC}.$$

По теореме 6.4

$$\begin{cases} pow(B, (ADC)) = BF \cdot BA = BD \cdot BC \\ pow(C, (ADB)) = CE \cdot CA = CD \cdot CB \end{cases} \implies \frac{BF \cdot BA}{BD} = \frac{CE \cdot CA}{CD}. \quad (6.9)$$

По уравнении (6.9) и теореме 6.12

$$\frac{BF}{CE} = \frac{BD \cdot CA}{BA \cdot CD} = \frac{BD}{CD} \cdot \frac{CA}{BA} = 1. \tag{6.10}$$

6. Окружность ω проходит через вершины A и D равнобокой трапеции ABCD и пересекает диагональ BD и боковую сторону CD в точках P

и Q соответственно. Точки P' и Q' симметричны точкам P и Q относительно середин отрезков BD и CD соответственно. Докажите, что B, C, P' и Q' концикличны.

Решение: По обратной теореме 6.4

$$pow(C,\Omega) = DQ' \cdot DC = DP' \cdot DB. \tag{6.11}$$

Если P' и Q' симметричны относительно середин отрезков BD и CD, то DP'=BP и CQ=DQ'. Тогда уравнении (6.9) преобразовывается в

$$\underbrace{CQ \cdot CD}_{\text{pow}(C,\omega)} = \underbrace{BP \cdot BD}_{\text{pow}(B,\omega)}$$
(6.12)

Уравнение (6.12) верно, т.к. ω , B, C – все эти объекты симметричны относительно серединного перпендикуляра к AD.

7. (JBMO Shortlist, 2022, G6) Пусть Ω – описанная окружность треугольника ABC. Взяты точки P и Q, так что P равноудалена от A и B, а Q равноудалена от A и C и углы PBC и QCB равны. Докажите, что касательная к Ω в точке A, прямая PQ и BC пересекаются в одной точке

Решение: Пусть ℓ – касательная в точке B к окружности (ABC). По следствии 6.11.1 существует окружность ω , которая касается прямой AP в точке A, а прямой BQ в точке B.

$$\begin{cases} AP^2 = BP^2 \\ CQ^2 = BQ^2 \end{cases} \implies PQ = \text{radical axis}((B), \omega). \tag{6.13}$$

$$\begin{cases} BC = \text{radical axis}(\omega, (ABC)) \\ PQ = \text{radical axis}((B), \omega) \\ \ell = \text{radical axis}((B), (ABC)) \end{cases} \Rightarrow BC \cap PQ \cap \ell \neq \emptyset. \tag{6.14}$$

8. Вневписанные окружности ω_b и ω_c треугольника ABC касаются сторон AC и AB соответственно в точках E и F. Прямая EF повторно пересекает окружности ω_b и ω_c в точках X и Y соответственно. Касательные в точках X и Y проведенные к окружностям ω_b и ω_c пересекают прямые AC и AB в точках K и L соответственно. Докажите, что середина отрезка KL равноудалена от точек E и F.

Решение: По задаче 3 EX = FY.

Пусть K', L' – середины отрезков EX, YF соответственно. Тогда $YL' = L'F = EK' = K'X, LL' \perp EF$ и $KK' \perp EF$. Тогда и середина KL проецируется в середину XY, что эквивалентно середине EF.

9. (а) Пусть C_1 и B_1 – точки на сторонах AB и AC треугольника ABC соответственно. Докажите что, радикальная ось окружностей, построенных на BB_1 и CC_1 как на диаметре, проходит через ортоцентр треугольника ABC.

Решение: Пусть окружность (BB_1) пересекает сторону AC в точке P, а окружность (CC_1) пересекает сторону AB в точке Q. Тогда BQ, CP – высоты треугольника ABC, тогда $BQ \cap CP = H$ – ортоцентр. Построим окружность $(BC) \subset \{P,Q\}$.

$$\begin{cases}
BQ = \operatorname{radical axis}((BC), (BB_1)) \\
CP = \operatorname{radical axis}((BC), (CC_1))
\end{cases} \Rightarrow \\
\Rightarrow H = \operatorname{radical center}((BC), (BB_1), (CC_1)) \Rightarrow \\
\Rightarrow H \in \operatorname{radical axis}((BB_1), (CC_1)).
\end{cases} (6.15)$$

(b) (Ось Обера) Докажите, что четыре ортоцентра четырёх треугольников, образованных четырьмя попарно пересекающимися прямыми, никакие три из которых не проходят через одну точку¹, коллинеарны.

 $^{^{1}}$ Такие прямые образуют фигуру, называемую полным четырёхсторонником.

Решение: Пусть треугольник ABC пересекает прямая ℓ , которая пересекает стороны AB, AC, BC в точках C_1, B_1, A_1 соответственно. Через $H_{ABC}, H_{A_1B_1C}, H_{A_1BC_1}, H_{AB_1C_1}$ будем обозначать ортоцентры соотетствующих треугольников.

Построим на AA_1 , BB_1 , CC_1 окружности как на диаметрах. Тогда по задаче 9a для треугольника ABC

$$\begin{cases} H_{ABC} \in \operatorname{radical axis}((AA_1), (BB_1)) \\ H_{ABC} \in \operatorname{radical axis}((AA_1), (CC_1)) \\ H_{ABC} \in \operatorname{radical axis}((BB_1), (CC_1)) \end{cases} \tag{6.16}$$

Аналогичные утверждения можно произвести для других ортоцентров, таким образом получается, что каждый ортоцентр лежит на каждой радикальной оси каждой пары окружности. Т.к. ортоцентры различны, то радикальные оси не могут пересекаться в одной точке, а значит радикальные оси совпадают. И каждый ортоцентр лежит на этой общей радикальной оси.

(c) (Теорема Гаусса-Боденмиллера) Докажите, что прямая Гаусса перпендикулярна оси Обера.

Решение: По теореме 6.5 и задаче 9b *Ось Обера* будет перпендикулярна линии центров данных окружностей. А линия центров данных окружностей и есть *прямая Гаусса*, т.к. центрами окружностей являются центры диагоналей четырехсторонника.

10. Чевианы AD, BE и CF треугольника ABC конкурентны. Прямая EF пересекает окружность (ABC) в точках P и Q. Докажите, что P, Q, D и середина отрезка BC концикличны.

 $^{^{1}}$ Прямой Гаусса полного четырёхсторонника называется прямая, проходящая через середины трех его диагоналей.

Решение:

Теорема 6.13 (Теорема Чевы). Чевианы AA_1 , BB_1 , CC_1 треугольника ABC конкурентны тогда и только тогда, когда

$$\frac{AC_1}{C_1B} \cdot \frac{BA_1}{A_1C} \cdot \frac{CB_1}{B_1A} = 1.$$

Теорема 6.14 (Теорема Менелая). Точки A_1 , B_1 , C_1 на прямых BC, AC, AB соответственно коллинеарны тогда и только тогда, когда

$$\frac{AC_1}{C_1B} \cdot \frac{BA_1}{A_1C} \cdot \frac{CB_1}{B_1A} = 1.$$

Пусть прямая PQ пересекает прямую BC в точке T, а точка M – середина BC.

$$pow(T, (ABC)) = TP \cdot TQ = TB \cdot TC. \tag{6.17}$$

Чтобы искомая окружность ω существовало должно выполняться

$$pow(T,\omega) = TD \cdot TM = \underbrace{TP \cdot TQ = TB \cdot TC}_{\text{по уравнении (6.17)}}.$$
 (6.18)

Также по теоремах 6.13 и 6.14

$$\frac{BT}{CT} = \frac{BF}{\text{по теореме 6.14}} \frac{AE}{FA} \cdot \frac{AE}{EC} = \frac{BD}{DC}.$$
 (6.19)

Заметим что в уравнениях (6.18) и (6.19) остались только точки на прямой BC. Такую задачу можно решить координатным способом, за начало координат приняв T.

$$\frac{TB}{TC} = \frac{BD}{DC} = \frac{TD - TB}{TC - TD} \iff$$

$$\Leftrightarrow TB(TC - TD) = TC(TD - TB)$$

$$TB \cdot TC - TB \cdot TD = TC \cdot TD - TB \cdot TC$$

$$2TB \cdot TC = TD (TC + TB)$$

$$TB \cdot TC = TD \cdot \frac{TC + TB}{2} = TD \cdot TM.$$
(6.20)

Хочется еще отметить, что из уравнения (6.20) следует, что

$$TD = \frac{2TB \cdot TC}{TB + TC} = \frac{2}{\frac{1}{TB} + \frac{1}{TC}}$$

Поэтому четверка точек (Т, В, D, С) называется гармонической.

11. В треугольнике ABC проведены высоты AD, BE, CF. Прямые DE, EF и DF пересекаются прямые AB, BC и AC. В точках C_1 , B_1 , A_1 соответственно. Докажите, что точки A_1 , B_1 , C_1 лежат на прямой 1 перпендикулярной прямой 2 эйлера треугольник 2

Решение: По теореме об окружности Эйлера Точки D, E, F лежат на окружности Эйлера ω_9 треугольника ABC. А Ω – описанная окружность этого треугольника.

Каждый из четырехугольников ABDE, BCEF, CAFD является вписанным.

$$\begin{cases}
\underbrace{A_{1}B \cdot A_{1}C}_{\text{pow}(A_{1},\omega_{9})} = \underbrace{A_{1}F \cdot A_{1}E}_{\text{pow}(A_{1},\Omega)} \\
\underbrace{B_{1}C \cdot B_{1}A}_{\text{pow}(B_{1},\omega_{9})} = \underbrace{B_{1}D \cdot B_{1}F}_{\text{pow}(B_{1},\Omega)} \\
\underbrace{C_{1}A \cdot C_{1}B}_{\text{pow}(C_{1},\omega_{9})} = \underbrace{C_{1}E \cdot C_{1}D}_{\text{pow}(C_{1},\Omega)}
\end{cases} \Rightarrow \{A_{1}, B_{1}, C_{1}\} \in \text{radical axis}(\omega_{9}, \Omega). \quad (6.21)$$

¹Такая прямая называется трилинейной полярой ортоцентра, или ортоцентрической осью, или центральной линией центра описанной окружности.

Контрольная работа