Objetivo: Recordar diferencias finitas y pasos óptimos en una dimensión.

1. Teoría de aproximar derivadas

Bajo las hipótesis $f \in C^3[a-\delta,a+\delta]$ y $|h| \leq \delta$, se puede mostrar que existe $\xi \in [a-h,a+h]$, tal que

$$f'(a) = \frac{f(a+h) - f(a-h)}{2h} - \frac{h^2}{6}f'''(\xi).$$

Ayuda: Se requiere el teorema de valor intermedio.

Denotamos la diferencia central de la función f en el punto $a \in \mathbb{R}$ por $D_h^c[f]|_a$, i.e.

$$D_h^c[f]|_a := \frac{f(a+h) - f(a-h)}{2h}, \qquad f'(a) = D_h^c[f]|_a - \frac{h^2}{6}f'''(\xi).$$

En general, se puede ver que D_h^c es un operador lineal (en f) y aproxima a f'(a). Nótese que $D_h^c[f]|_a$ se obtiene ignorando un termino $e_T(h)$, este se llama error de truncamiento. En este caso: $e_T(h) = \frac{h^2}{6}f'''(\xi)$.

Con el fin de deducir un paso óptimo h_{\star} , supongamos que el error de truncamiento e_T es acotado.

Sea $|f'''(t)| \leq M$ para toda $t \in [a - \delta, a + \delta]$, entonces para $|h| \leq \delta$, entonces

$$|e_T(h)| = |f'(a) - D_h^c[f]| \le \frac{h^2 M}{6}.$$

Esa cota se cumple en aritmética continua (NO en la computadora). La razón es que en la máquina no evaluamos a f(a) de manera exacta, sino a \tilde{f} (una versión de f redondeada). Por errores de redondeo se cumple $\tilde{f}(a) = f(a) + r(a)$, donde la función del error r no es continua y satisface $|r(a)| \le \epsilon_f := C \cdot \varepsilon_M$ con una constante C>0 que depende de como f este evaluada, de que tan rápido cambia f y de la distancia entre dos puntos flotantes al rededor de a. Además, es razonable suponer que $r(a \pm h) \approx r(a)$ si f se comporta similar al rededor de a. Entonces, la linealidad de D_h^c y la desigualdad del triángulo nos da:

$$\left|D_h^c[\tilde{f}] - D_h^c[f]\right| = \left|D_h^c[r]\right| \le \frac{|r(a+h)| + |r(a-h)|}{2h} \le \frac{\epsilon_f}{h}.$$

Juntando las dos cotas, la desigualdad del triángulo implica

$$|f'(a) - D_h^c[\tilde{f}]| \le |f'(a) - D_h^c[f]| + |D_h^c[f] - D_h^c[\tilde{f}]| \le g(h) := \frac{h^2 M}{6} + \frac{\epsilon_f}{h}.$$
 (1)

Note, la definición de la cota superior g(h) del error total.

Esa cota g(h) es convexa para h > 0 y tiene un mínimo global en $h_{\star} = \left(3\epsilon_f/M\right)^{1/3} > 0$.

En la práctica usamos $\tilde{h}_\star \coloneqq (\varepsilon_M)^{1/3} (|a|+1) > |a| \cdot \varepsilon_M/2$.

Las razones son de Matemática Computacional:

- La distancia entre un punto flotante a y su sucesor es proporcional a |a|. Más aún, si $h < |a| \cdot \varepsilon_M/2$, entonces $a + h \stackrel{\text{comp}}{=} a$. Por lo cual, $D_h^c[f]|_a \stackrel{\text{comp}}{=} 0$ para $h < |a| \cdot \varepsilon_M/2$ (independiente de la función). Para esos pasos el error total es igual a |f'(a)|.
- Queremos $\tilde{h}_{\star} > 0$, por lo cual sumamos 1 a |a|.
- Bajo la hipótesis $3C/M \approx 1$ (ya que las constantes son desconocidos) obtenemos $\tilde{h}_{\star} \approx h_{\star}$.

1.1. Cálculos exactos.

- 1. Suponga que $f \in C^3$ con $|f'''(t)| \leq M$ y evaluada con un error tal que $|r(t)| \leq \epsilon_f$. Ahora, considere la diferencia finita centrada $D_h^c[f]|_a$ que aproxima a f'(a) y la cota g(h) de la teoría, ver (1).
 - a) Encuentre el paso óptimo h_{\star} , es decir, el paso que minimice la cota g(h). Respuesta: $h_{\star}=\left(3\epsilon_f/M\right)^{1/3}$.
 - b) ¿Cuál es el valor mínimo de la cota, i.e., $g(h_{\star})$? Respuesta: $g(h_{\star}) = 3\left(\epsilon_f^2 M/24\right)^{1/3}$.
 - c) Si $\epsilon_f = 2^{-52}$ y M=1. ¿Cuál es el paso óptimo? ¿Cuántas cifras decimales correctas se pueden esperar en el paso óptimo? Respuesta: $g(h_\star) \approx 3.8 \cdot 10^{-11}$ (casi once cifras).

2. Un ejemplo para la primera derivada

La a diferencia hacia adelante esta definida por

$$D_h^+[f] \coloneqq \frac{f(a+h) - f(a)}{h} \qquad \text{y tiene la cota del error} \qquad g(h) = \frac{hM}{2} + \frac{2\epsilon_f}{h} \,.$$

La diferencia central esta (como arriba) definida por

$$D_h^c[f] \coloneqq \frac{f(a+h) - f(a-h)}{2h} \qquad \text{y su cota del error es} \qquad g(h) = \frac{h^2 M}{6} + \frac{\epsilon_f}{h} \,.$$

He usado D_h^+ y D_h^c para aproximar la primera derivada de $f(x) = \sin(x)$ en $x = a = \pi/4$ y hice la siguiente visualización de los errores con distintos pasos h en escalas logarítmicas (usando el comando loglog de MatLab):

Lo importante es que el paso óptimo teórico de D_h^c tiene la aproximación

$$h_{\star} \approx (\varepsilon_M)^{1/3} (|a|+1)$$
.

Note que $\varepsilon_M \approx 10^{-16}$.

3. Un ejemplo para la segunda derivada

El argumento teórico de la página 1 se puede aplicar a aproximaciones de la segunda derivada. Aquí solo muestro el resultado de tal argumento. Definimos dos aproximaciones de la segunda derivada. A la primera le llamamos diferencia central 1. Esa, esta definida por

$$D_1^c[f] \coloneqq \frac{f(a+h) - 2f(a) - f(a-h)}{h^2} \qquad \text{y tiene la cota del error} \qquad g(h) = \frac{h^2M}{12} + \frac{4\epsilon_f}{h^2} \,.$$

La segunda, se llama diferencia central 2y definida por

$$D_2^c[f] \coloneqq \frac{f(a+2h)-2f(a)-f(a-2h)}{4h^2} \qquad \text{y su cota del error es} \qquad g(h) = \frac{h^2M}{3} + \frac{\epsilon_f}{h^2} \,.$$

He usado D_1^c y D_2^c para aproximar la segunda derivada de $f(x) = \sin(x)$ en $x = a = \pi/4$ y hice la siguiente visualización de los errores con distintos pasos h en escalas logarítmicas (usando el comando loglog de MatLab):

Lo importante es que el paso óptimo teórico (de las dos aproximaciones) tiene la aproximación

$$h_{\star} \approx (\varepsilon_M)^{1/4} (|a|+1)$$
.

Note que $\varepsilon_M \approx 10^{-16}$.