

3. PROIECTAREA ANGRENAJULUI CONIC

Calculul de rezistență a angrenajelor conice cu dantura în evolventă este reglementat în **STAS 12268-84**, considerând încărcarea reală atât la solicitarea flancului prin oboseală de contact cât și la solicitarea de încovoiere a dinților.

Forța tangențială reală pentru calculul *la solicitarea flancului prin oboseală de contact* are valoarea:

$$F_{tmHreală} = F_{tmH} \cdot K_A \cdot K_V \cdot K_{H\beta} \cdot K_{H\alpha} \quad (3.1)$$

iar pentru *solicitarea de încovoiere a dinților* :

$$F_{tmFreală} = F_{tmF} \cdot K_A \cdot K_V \cdot K_{F\beta} \cdot K_{F\alpha} \quad (3.2)$$

în care: F_{tmH} și F_{tmF} sunt forțele nominale pe conul frontal mediu, iar factorii K_A , K_V , $K_{H\beta}$, $K_{H\alpha}$, $K_{F\beta}$, $K_{F\alpha}$ se aleg din tabele sau nomograme.

3.1. Predimensionarea angrenajului conic

Se determină diametrul mediu minim al pinionului și modulul normal mediu minim din condițiile de rezistență la solicitarea de *oboseală de contact*, respectiv *încovoiere* a dinților, se aleg numerele de dinti și deplasările specifice de profil pentru cele două roți conice.

Calculul la oboseala de contact a flancurilor dinților se poate realiza prin compararea tensiunii de contact σ_{Hv} cu tensiunea admisibilă de contact $\sigma_{HP1(2)}$ cu relația:

$$\sigma_{Hv} = Z_H \cdot Z_\epsilon \cdot Z_E \cdot Z_\beta \cdot \sqrt{\frac{F_{tmH} \cdot K_A \cdot K_V \cdot K_{H\beta} \cdot K_{H\alpha}}{b \cdot d_{m1v}}} \cdot \frac{u_v + 1}{u_v} \leq \sigma_{HP1(2)} \quad (3.3)$$

cu: $\sigma_{HP1(2)} = \frac{\sigma_{H\lim1(2)}}{S_{HP1(2)}}$ (3.4)

unde: $\sigma_{H\lim1(2)}$ este tensiunea limită la oboseala de contact a pinionului, respectiv roții conice conduse și $S_{HP1(2)}$ este coeficientul de siguranță la solicitarea de contact.

Înlocuind în relațiile anterioare:

$$\begin{aligned} F_{tmH} &= F_{tm1} = \frac{2 \cdot T_{1k}}{d_{m1}}; & b &= \psi_{Rm} \cdot Rm; & \psi_{Rm} &= 2 \cdot \psi_{dm} \cdot \sin \delta_1 \\ R_m &= \frac{d_{m1}}{2 \cdot \sin \delta_1}; & d_{m1v} &= \frac{d_{m1}}{\cos \delta_1}; & \cos \delta_1 &= \frac{u_k}{\sqrt{u_k^2 + 1}}; & u_v &= u_k^2 \end{aligned}$$

rezultă relația de calcul pentru **diametrul mediu minim al pinionului**:

$$d_{m1\min} = \left[\frac{2 \cdot T_{1k} \cdot K_A \cdot K_V \cdot K_{H\beta} \cdot K_{H\alpha}}{\psi_{dm} \cdot (\sigma_{H\lim b} / S_{HP})^2} \cdot \frac{\sqrt{u_k^2 + 1}}{u_k} \cdot \left(\frac{Z_H \cdot Z_\epsilon \cdot Z_E \cdot Z_\beta}{Z_N \cdot Z_L \cdot Z_R \cdot Z_V \cdot Z_x \cdot Z_W} \right)^2 \right]^{1/3} \quad (3.5)$$

Valoarea calculată se rotungește la o valoare întreagă mai mare d_{m1} [mm].

Calculul dinților la oboseala prin încovoiere scris sub forma:

$$\sigma_F = \frac{F_{tmF} \cdot K_A \cdot K_V \cdot K_{F\beta} \cdot K_{F\alpha}}{b \cdot m_{nm}} \cdot Y_{Fa} \cdot Y_{Sa} \cdot Y_\beta \cdot Y_\varepsilon \leq \sigma_{FP} \quad (3.6)$$

în care:

$$\sigma_{FP} = \frac{\sigma_{F\lim}}{S_{FP}} \quad (3.7)$$

determină relația pentru **modulul normal mediu minim**:

$$m_{nm\min} = \frac{2 \cdot T_{1k} \cdot K_A \cdot K_V \cdot K_{F\beta} \cdot K_{F\alpha} \cdot Y_{Fa} \cdot Y_{Sa} \cdot Y_\beta \cdot Y_\varepsilon}{\psi_{dm} \cdot d_{m1}^2 \cdot (\sigma_{0\lim} / S_{FP}) \cdot Y_N \cdot Y_\delta \cdot Y_R \cdot Y_X} \quad (3.8)$$

Valoarea calculată se rotunjește la o valoare standardizată în **STAS 822 - 82, tabelul 1.13**

Mărimi de calcul

1. Date initiale :

- Momentul de torsiune al pinionului: $T_{1k} = \frac{P_{1k}}{\omega_{1k}} \cdot 10^6$ [N· mm] (3.9)

- Puterea transmisă de pinionul conic: $P_{1k} = P \cdot \eta_{tc} \cdot \eta_r$ [kW] (3.10)

- Turația pinionului: $n_{1k} = \frac{n_i}{i_{tc}}$ [rot/min] (3.11)

- Viteza unghiulară a pinionului : $\omega_{1k} = \frac{\pi \cdot n_{1k}}{30}$ [rad/s] (3.12)

- Raportul numerelor de dinți: $u_k = \frac{z_{mare}}{z_{mic}} = i_k$ (3.13)

- Turația roții conice condusă: $n_{2k} = \frac{n_{1k}}{i_k}$ [rot/min] (3.14)

- Numărul de cicluri de funcționare ale pinionului (pentru solicitarea de contact și încovoiere):

$$N_{Hk} = N_{Fk} = 60 \cdot n_{1k} \cdot D_h \quad (3.15)$$

- Unghiul dintre axe: $\Sigma = 90^\circ$

- Condițiile de funcționare: specificate prin tema de proiectare.

2. Date adoptate

- Tipul angrenajului: **conic cu dinți drepti**

- Materialul și tratamentul termic: se aleg *oțeluri laminate sau forjate*. Marca de oțel și tehnologia de fabricație se stabilesc astfel încât să poată oferi dinților condiții optime de duritate și structură, astfel:

-
- *oțeluri de îmbunătățire* ($HB \leq 3000...3500$ MPa) pentru viteze periferice $v_p = 4...12$ m/s cu tratament termic de călire-revenire înaltă în toată masa semifabricatului;
 - *oțeluri durificate superficial* ($HB > 3500$ MPa) pentru viteze periferice $v_p > 12$ m/s cu tratament termic de *nitrurare* (în baie, gaz), *călire* prin curenți de înaltă frecvență (CIF) sau călire cu flacără (CFL) sau *cementare*

Tabelul 1.1 - marca oțel, duritatea flancului, mărimea caracteristică "s" (dimensiunea roții dințate pe a cărei direcție se primește și se cedează cantitatea maximă de căldură în timpul încălzirii și aplicării sarcinii).

- Clasa de precizie: se adoptă - *clasa mijlocie : 7 ; 8 ; 9*

- Roata plană de referință **STAS 6844 - 80**: $\alpha_n = 20^\circ$, $h_a^* = 1$, $h_f^* = 1,2$, $c^* = 0,2$, $\delta_f^* = 0,3$

- Unghiul mediu de înclinare al danturii: β_m - se recomandă :

$$\begin{aligned} &= 0^\circ && \text{- dantura dreaptă;} \\ &= 10^\circ, 15^\circ, 20^\circ && \text{- dantura înclinată} \end{aligned}$$

- Coeficientul diametral al lățimii danturii: $\psi_{dm} = \frac{\psi_{Rm}}{2 \cdot \sin \delta_1}$ (3.16)

în care: $\psi_{Rm} = \frac{b}{R_m}$ se alege din **tabelul 2.6** - în funcție de tipul danturii și mărimea solicitării;

$$\sin \delta_1 = \frac{1}{\sqrt{u_k^2 + 1}} \quad (3.17)$$

cu: δ_1 - semiunghiul conului de divizare al pinionului conic

- Factorul de utilizare: $K_A = K_{Am} \cdot K_{Al}$ - **tabelele 1.5 și 1.6** - funcție de caracteristicile și tipul mașinii motoare și a mașinii de lucru (antrenate)

- Factorul dinamic: $K_V = 0,96 + 0,00032 \cdot n_{1k}$ - pentru dinți drepti și $HB_{1(2)} < 3500$ MPa;
 $= 0,97 + 0,00014 \cdot n_{1k}$ - pentru dinți drepti și $HB_{1(2)} > 3500$ MPa;
 $= 0,98 + 0,00011 \cdot n_{1k}$ - pentru dinți înclinați și $HB_{1(2)} < 3500$ MPa;
 $= 0,96 + 0,00007 \cdot n_{1k}$ - pentru dinți înclinați și $HB_{1(2)} > 3500$ MPa

- Factorul repartiției sarcinii pe lățimea danturii: $K_{H\beta} = K_{F\beta}$ - **tabelul 2.5** - funcție de: coeficientul ψ_{dm} , treapta de precizie a angrenajului și poziția roților față de reazeme

- Factorul repartiției frontale a sarcinii la solicitarea de contact:

$$\begin{aligned} K_{H\alpha} &= 1 - \text{la danturi drepte precise (treptele 1...7);} \\ &= 1/Z_\varepsilon^2 - \text{la danturi neprecise (treptele > 7)} \end{aligned}$$

- Factorul influenței formei dinților : $Z_H = \left(\frac{2 \cdot \cos \beta_b}{\sin \alpha_t \cdot \cos \alpha_t} \right)^{1/2}$ (3.18)

unde: - unghiul de înclinare pe cercul de bază $\beta_h = \arcsin(\sin \beta \cdot \cos \alpha_h)$ (3.19)

$$\beta_b = \arcsin(\sin \beta \cdot \cos \alpha_n) \quad (3.19)$$

- unghiul de presiune de referință frontal: $\alpha_t = \arctg(\tg \alpha_n / \cos \beta)$ (3.20)

- Pentru dantura dreaptă: $Z_H = 2,5$

- Factorul influenței lungimii minime de contact:

$Z_{\varepsilon} = 0,95$ la danturi drepte sau înclinate cu $\psi_{dm} \leq 0,5$;

= 0,88 pentru $\psi_{dm} > 0,5$

- Factorul materialelor: Z_E - din **tabelul 1.9**, funcție de tipul materialelor roților și modulele de elasticitate

- Factorul influenței înclinării danturii: $Z_\beta = (\cos \beta_m)^{1/2}$ (3.21)

- Rezistență limită de bază la oboseala de contact: $\sigma_{H \lim b}$ - se calculează cu relațiile din **tabelul 1.11** - funcție de tipul materialului, tratamentul termic și duritatea flancurilor dintilor

- Factorul de siguranță admisibil pentru solicitarea de contact: S_{H_p} - **tabelul 1.10**

- Factorul influenței duratei de funcționare asupra solicitării de contact și încovoiere: Z_N , respectiv Y_N - **tabelul 1.12** - funcție de materialul, tratamentul termic al danturii și numărul de cicluri de solicitare la contact, respectiv încovoiere ($N_H = N_F$)

- Factorul influenței ungerii: $Z_L = 1$

- Factorul influenței rugozității flancurilor dinților: $Z_R = 1$ - la danturi rectificate;
 $= 0,9$ - la danturi frezate

- Factorul influenței vitezei periferice: $Z_V = 1$

- Factorul de dimensiune: $Z_X = 1$

- Factorul influenței raportului duratăilor flancurilor dintilor celor două roți: $Z_W = 1$

- Factorul repartitiei intre dinti a sarcinii pentru solicitarea de incovoiere:

$K_{F\alpha} = 1$ - pentru angrenaje precise (trepte 1...7) cu încarcare normală sau mare;

= $1 / Y_{\varepsilon}$ - pentru angrenaje neprecise (treptele 7 ... 11)

- Factorul de formă a dintelui: $Y_{Fa} = 2,5$ - la danturi îmbunătățite;
 $= 3,5$ - la danturi durificate

- Factorul concentratorului de tensiune la piciorul dintelui: $Y_{Sa} = 2$

- Factorul înclinării dinților: $Y_\beta = \begin{cases} 1 & \text{dacă } \beta_m = 0^\circ \\ 0,9 & \text{dacă } 0^\circ < \beta_m \leq 10^\circ \\ 0,8 & \text{dacă } \beta_m > 10^\circ \end{cases}$
- Factorul gradului de acoperire: $Y_c = 1$
- Rezistență limită de bază la solicitarea de încovoeire: $\sigma_{0\lim}$ - **tabelul 1.14 a, b, c, d** - funcție de materialul danturii, tratamentul termic și duritatea flancului în zona de racordare
- Factorul de siguranță admisibil pentru solicitarea de încovoieri: S_{FP} - **tabelul 1.10** - funcție de tipul angrenajului și condițiile de funcționare
- Factorul sensibilității materialului solicitat la oboseală la concentratorul de tensiune: $Y_\delta = 1,1$
- Factorul de rugozitate: $Y_R = 1$
- Factorul de dimensiune: $Y_X = 1$ - pentru $m_n \leq 5$ mm
= se determină din **tabelul 1.15** funcție de material și valoarea modulului m_n estimată.

3. Elemente geometrice calculate

- Diametrul mediu minim al pinionului conic: $d_{m1\min}$ [mm] - dat de relația (3.5)
- Diametrul mediu al pinionului: d_{m1} [mm] - valoarea calculată anterior, rotunjită la o valoare întreagă superioară
- Diametrul de divizare al pinionului pe conul frontal exterior:
$$d_{e1} = d_{m1}(1 + \psi_{dm} \cdot \sin \delta_1) \quad [\text{mm}] \quad (3.22)$$
- Modulul normal mediu minim: $m_{nm\min}$ [mm] - calculat cu relația (3.8)
- Modulul normal mediu: m_{nm} [mm] - valoare superioară celei calculate **supraunitară**
- Modulul frontal median: $m_{tm} = m_{nm} / \cos \beta_m$ [mm] (3.23)
- Modulul frontal pe conul exterior: $m_{te} = m_{tm}(1 + \psi_{dm} \cdot \sin \delta_1)$ [mm] (3.24)

se standardizează conform **STAS 822-82 (tabelul 1.13)** - din următorul sir de valori:

1; 1,125; 1,25; 1,375; 1,5; 1,75; 2; 2,25; 2,5; 2,75; 3; 3,5; 4; 4,5; 5; 5,5; 6; 7; 8; 9; 10; 11; 12; 14; 16; 18; 20; 22; 25; 28; 32; 36; 40; 45; 50; 60; 70; 80; 90; 100.

- Numărul maxim de dinți pentru pinionul conic: $z_{1k \max} = d_{e1} / m_{te}$ (3.25)

- Numărul de dinți pentru pinion: z_{1k} - se alege din **recomandări** - funcție de raportul de transmitere:

i_k	1	2	3	4	5	6,3
z_{1k}	18 ... 40	15 ... 30	12 ... 23	10 ... 18	8 ... 14	6 ... 10

- Numărul de dinți pentru roata conică condusă: $z_{2k} = u \cdot z_{1k}$ (3.26)

Observații:

- z_{1k} și z_{2k} se rotunjesc la valori întregi cu respectarea condiției:

$$\Delta u = \left| \frac{u_{dat} - u_{realizat}}{u_{dat}} \right| \cdot 100 \leq \Delta u_a \quad (3.27)$$

unde: $u_{dat} = i_k = u$; $u_{realizat} = z_{2k} / z_{1k}$; $\Delta u_a = 3\%$

- Dacă nu se realizează condiția: se micșorează sau se măresc z_{1k} și /sau z_{2k} pe cât posibil să nu aibă divizori comuni.

- Modulul frontal recalculat: $m_{te} = d_{e1} / z_{1k}$ [mm] (3.28)

Valoarea calculată se **standardizează** (**tabelul 1.13**).

- Coeficientul deplasărilor de profil (radiale și tangențiale): angrenajele conice se realizează ca angrenaje *zero* sau *zero deplasate*, astfel:

- deplasările radiale de profil:

- pentru pinion: x_{r1} - se stabilește din **tabelul 2.11** - funcție de: β_m , z_{1k} , u ;
- pentru roata condusă: $x_{r2} = -x_{r1}$;

- deplasările tangențiale de profil:

- pentru pinion: x_{t1} - din **tabelul 2.14** - funcție de: β_m și u ;
- pentru roata condusă: $x_{t2} = -x_{t1}$.