Modeling and Reasoning with Bayesian Networks: Inference by Variable Elimination 6.6-6.9

Relatório semana 5 - MAC0215 (Atividade Curricular em Pesquisa) Aluno: Renato Lui Geh (Bacharelado em Ciência da Computação)

Orientador: Denis Deratani Mauá

1 ATIVIDADES REALIZADAS NA SEMANA

Durante a semana foram lidos os seguintes tópicos do livro $Modeling\ and\ Reasoning\ with\ Bayesian\ Networks[1]:$

- 6 Inference by Variable Elimination
 - 6.6 Choosing an Elimination Order
 - 6.7 Computing Posterior Marginals
 - 6.8 Network Structure and Complexity
 - 6.9 Query Structure and Complexity

2 DEFINIÇÃO DAS ATIVIDADES

Foram estudados como encontrar a melhor ordem de eliminação de variáveis[2], definimos o que são grafos de interação de Redes Bayesianas, como calcularmos marginais posteriores (posterior marginals), algumas propriedades da estrutura de uma rede e como podar (prune) nós e arestas de uma Rede Bayesiana.

Esta seção será dividida em subseções onde veremos os itens enumerados no parágrafo acima. A cada tópico que não tenha sido apresentado ainda vamos abordar a teoria por trás e introduzir o assunto. Separaremos tais explicações em uma subsubseção equivalente. Abaixo está a lista de tópicos que iremos abordar.

- 1. Escolhendo uma ordem de eliminação
 - 1.1. Subgraphs, induced subgraphs, cliques e spanning subgraphs
 - 1.2. Grafo de interação
- 2. Computando posterior marginals
 - 2.1. Posterior marginals e joint marginals
- 3. Estrutura e complexidade da rede
 - 3.1. NP-hard e NP-complete
 - 3.2. Treewidth
 - 3.3. Tree networks, polytrees, trees e multiply connected
- 4. Pruning
 - 4.1. Pruning nodes
 - 4.2. Pruning edges
 - 4.3. Network pruning

2.1 ESCOLHENDO UMA ORDEM DE ELIMINAÇÃO

Como vimos no relatório anterior[2], queremos criar factors que sejam os menores possíveis. A ordem de eliminação que tiver menor w será a melhor. Dizemos que o w de uma ordem de eliminação é o maior width de todos os factors da ordem de eliminação.

Antes de acharmos a melhor ordem de eliminação precisamos saber como calcular o w de uma ordem. Um jeito ingênuo de acharmos é, a cada interação i de uma multiplicação e soma, acharmos o w_i com respeito a $\pi(i)$. No final retornamos o maior w_i .

i	$\pi(i)$	$\mathcal S$	f_i	w
		$\Theta_A\Theta_{B A}\Theta_{C A}\Theta_{D BC}\Theta_{E C}$		
			<u></u>	
1	B	$\Theta_A\Theta_{C A}\Theta_{E C}f_1(A,C,D)$	$f_1 = \sum_B \Theta_{B A} \Theta_{D BC}$	3
2	C	$\Theta_A f_2(A, D, E)$	$f_2 = \sum_C \Theta_{C A} \Theta_{E C} f_1(A, C, D)$	3
3	A	$f_3(D,E)$	$f_3 = \sum_A \Theta_A f_2(A, D, E)$	2
4	D	$f_4(E)$	$f_4 = \sum_D f_3(D, E)$	1

Na tabela acima a segunda coluna indica a variável $\pi(i)$ que queremos eliminar. A terceira coluna é o resultado da substituição de $\pi(i)$ pelo factor resultante na quarta coluna, onde multiplicamos e somamos as CPTs onde $\pi(i)$ está presente. A última coluna é o w_i de cada eliminação. Pode-se ver que o w dessa ordem é 3, já que é o maior w entre todas as iterações. Note que não precisamos realmente computar a eliminação das variáveis. De fato não fazemos tais eliminações, mas a cada $\pi(i)$ que aparecem nos factors $f(\mathbf{X}_k)$ substituímos tais factors por um novo factor sob as variáveis $\cup_k \mathbf{X}_k \setminus \pi(i)$.

Um outro jeito de se achar a *width* de uma ordem de eliminação é por meio de um grafo não direcionado que representa as interações das CPTs de uma Rede Bayesiana. Antes de definirmos esse grafo vamos introduzir alguns conceitos fundamentais sobre grafos.

2.1.1 Subgraphs, induced subgraphs, cliques e spanning subgraphs

Vamos definir V(G) como o conjunto de vértices do grafo G. Similarmente, E(G) é o conjunto de arestas do grafo G. Dizemos que um grafo é não directionado se para cada vértice x, y em G, tanto xy quanto yx são arestas válidas em G.

Primeiro vamos ver a definição de subgrafo:

Definição. Um grafo H é um subgrafo de G se V(H) é um subconjunto de V(G) e E(H) é subconjunto de E(G). Dizemos que G é o supergrafo de H se H é subgrafo de G.

Vamos agora definir o que é um grafo induzido:

Definição. Um subgrafo H de um grafo G é dito induzido se para cada par de vértices x, y em H, xy é uma aresta de H se e somente se xy é uma aresta em G. Ou seja, H é um subgrafo induzido de G se as arestas em H são exatamente as arestas que aparecem em G sob o mesmo conjunto de vértices. Se V(H) é um subconjunto S de V(G), então H pode ser escrito como G[S] e é dito ser induzido por S.

Agora iremos definir o que é a completude de um grafo:

Definição. Dizemos que um grafo G é completo se todo par de vértices distintos em G é conectado por uma aresta única.

Definimos agora o que é um clique:

Definição. Um clique é um subconjunto de vértices de um grafo não direcionado tal que o subgrafo induzido dele seja completo. Ou seja, todo par distinto de vértices em um clique é adjacente.

Vamos também definir o que é um spanning subgraph:

Definição. Dizemos que um subgrafo H cobre (spans) um grafo G se ele tem mesmo conjunto de vértices que G. H é então dito o spanning subgraph de G.

2.1.2 Grafo de interação

Agora que temos uma noção básica sobre grafos podemos definir o grafo de interação.

Definição. Seja $f_1, ..., f_n$ o conjunto de factors. O grafo de interação G desses factors é um grafo não directionado construído de tal forma que os nós de G são as variáveis que aparecem nos factors $f_1, ..., f_n$. Há uma aresta entre duas variáveis em G se e somente se essas variáveis aparecem no mesmo factor.

Em outras palavras, as variáveis \mathbf{X}_i de cada factor f_i formam um clique em G, ou seja, as variáveis emparelhadas são adjacentes.

REFERÊNCIAS

- [1] Adnan Darwiche. *Modeling and Reasoning with Bayesian Networks*. 1st Edition. Cambridge University Press, 2009.
- [2] Renato Lui Geh. Modeling and Reasoning with Bayesian Networks: Inference by Variable Elimination 6.1-6.5. 2. 2015. URL: http://www.ime.usp.br/~renatolg/mac0215/doc/reports/week2/relatorio.pdf.