Lecture slides, activities, and additional supplementary materials are available online at: ssa200.github.io

What is a model?

The purpose of modeling

- · Statistical analysis of data
- Use statistical analysis to predict the future
- Explaining variation
- Using data analysis to understand ecological processes
- Predict patterns in the future
- Evaluate competing hypothesis about how the system works

Statistical distributions

Name	Continuous or Discrete	Bounds	Common applications	Shape	Notes
Normal	Continuous	-∞,∞	Linear regression		
Binomial	Discrete	0 or 1	Occupancy Survival		
Multinomial	Discrete	0, ∞	State transitions		
Poisson	Discrete	0, ∞	Count data		
Negative Binomial	Discrete	0, ∞	Counts with many zeros		
Log-normal	Continuous	0, ∞	Population- level productivity (projections)		
Beta	Continuous	0, 1	Population rates (projections)		
Uniform	Continuous	User- defined	Variety of applications (projections)		

Linear regression and AIC

General linear model – response variable (y) has a Normal distribution

Generalized linear model – response variable (y) has some other distribution

- **Logistic** regression Binomial distribution
- **Poisson** regression Poisson distribution

Parameter	Estimate	SE	t	p-value	
Intercept	-0.22	1.29	-0.169	0.866	
b	2.07	0.0978	21.16	< 0.0001	

Model	AIC	ΔΑΙC	Np	W_i
Int + Covariate 1 + Covariate 3	345.8	0	3	0.82
Int + Covariate 1 + Covariate 2 + Covariate 3	349.1	3.1	4	0.18
Int	359.8	14.0	2	0
Int + Covariate 2	361.1	15.3	1	0

Types of uncertainty

Partial controllability – We are unable to control the exact management actions taken in a system.

Examples:

 Setting management goals – we may intend to fully restore a habitat, but may not be able to implement the exact management goals due to other logistical constraints

Observational uncertainty – We are unable to perfectly observe the state of natural systems.

Examples:

 Count data – in almost all cases, we cannot count every individual present at a specific location, but instead assume there is some probability of detecting individuals

Environmental variation – Stochastic environmental fluctuations mean that conditions typically vary randomly from year to year.

Examples:

- Predicting effects of temperature – we may estimate a relationship between temperature and survival probability that we can use to predict survival under future temperature conditions, but temperature will likely vary in a stochastic way from year to year.

Ecological uncertainty – We have an imperfect understanding of how ecological systems work.

Examples:

 Metapopulation dynamics – we think a set of populations function as a metapopulation, but have not conducted studies to explicitly estimate immigration among sites, and therefore we are unsure to what extent immigration plays a role in measured population growth rate at each site.

Some key terms

- **Response/dependent variable** in a statistical model, the variable that you are interested in better understanding or predicting (the "y" variable)
- **Predictor/independent variable** in a statistical model, the variable(s) that explain some of the observed variation in the response variable (the "x" variables)
- **Covariate** an environmental or ecological quantity that usually represents a stressor or species need and is included in a model as a predictor variable
- Parameter statistical quantities that are estimated to explain the relationship between predictor and response variables. Can also be used to refer to demographic vital rates of interest
- **Collinearity** occurs when two predictor variables in the same model are correlated with each other
- **Overfitting** occurs when too many predictor variables are included in the model, resulting in a model that is not very useful for prediction
- AIC stands for Aikaike's Information Criterion a metric used to rank models based on how well they fit the data with a penalty for the number of covariates in the model (to avoid overfitting)
- **Intercept** the theoretical value of the response variable if all predictors were equal to zero
- **Null model** the "intercept-only" model that does not include any covariates
- Global model the most complex model in the model set that includes all covariates
- **Population closure** an important concept for occupancy and abundance estimation, a population is considered "closed" when there are no births, deaths, immigration, or emigration

This roadmap is to serve as a general guide and is not an exhaustive list of all analysis options Also, always check the specific assumptions of your planned modeling approach!