2-Dimensional Range Minimum Queries

Amihood Amir¹, Johannes Fischer², and Moshe Lewenstein¹

¹Computer Science Department Bar Ilan University

²Institut für Informatik Ludwig-Maximilians-Universität München

July 2007, London (Ontario)

Outline

- Introduction to RMQs
 - Formal Problem Definition
 - Previous Results
- Solution Methods
 - Overview
 - Preprocessing of First Level
 - Other Levels and Microblock-Queries

Outline

- Introduction to RMQs
 - Formal Problem Definition
 - Previous Results
- Solution Methods
 - Overview
 - Preprocessing of First Level
 - Other Levels and Microblock-Queries

Formal Problem Definition

The Problem

given: matrix A[1..m][1..n] (totally ordered objects)

task: preprocess A to answer "efficiently"

$$RMQ(y_1, y_2, x_1, x_2) = \underset{(y, x) \in [y_1: y_2] \times [x_1: x_2]}{\operatorname{argmin}} A[y][x]$$

Main Result

The Problem

```
given: matrix A[1..m][1..n] (totally ordered objects)
```

task: preprocess A to answer "efficiently"

$$RMQ(y_1, y_2, x_1, x_2) = \underset{(y, x) \in [y_1: y_2] \times [x_1: x_2]}{\operatorname{argmin}} A[y][x]$$

Theorem (2-Dimensional RMQs)

 $O(nm(k + \log^{[k+1]}(mn)))$ -preprocessing using O(kmn) space for O(1)-RMQs, for any k > 1.

Converges towards $O(mn \log^*(mn))$ preprocessing time **and** space, and O(1) query time.

Our Result in Context

N := mn

	preprocessing		query
	time	space	time
Gabow et al.'84	$O(N \log N)$	$O(N \log N)$	O(log N)
Chazelle- Rosenberg'89	O(RN)	O(RN)	$O(\alpha^2(RN,N))$
(with $R = \text{const}$)	O(N)	<i>O</i> (<i>N</i>)	$O(\alpha^2(RN,N))$
Mäkinen'03	$O(N \log m)$	$O(N \log m)$	<i>O</i> (1)
this paper	$O(N(k + \log^{[k+1]} N))$	O(kN)	O(1)
(with $k=2$)	$O(N \log \log \log N)$	O(N)	O(1)
this paper	$O(N \log^* N)$	$O(N \log^* N)$	<i>O</i> (1)

 $R \ge 144$, $k \ge 2$ (both not necessarily constants!)

Results for 1-Dimensional RMQs

 Results for O(n) preprocessing time and O(1) query time:

	space (bits)	
	final	peak
Berkman-Vishkin'93	$O(n \log n)$	$O(n \log n)$
Bender- Farach-Colton'00	$O(n \log n)$	$O(n \log n)$
Farach-Colton'00 Alstrup et al.'02	$O(n \log n)$	$O(n \log n)$
Fischer-Heun'06	$O(n \log n)$	$O(n \log n)$
Sadakane'02	4n + o(n)	$O(n \log n)$
Fischer-Heun'07	2n + o(n)	2n + o(n)

Cartesian Trees (=treaps) important tool for all!

Outline

- Introduction to RMQs
 - Formal Problem Definition
 - Previous Results
- Solution Methods
 - Overview
 - Preprocessing of First Level
 - Other Levels and Microblock-Queries

Overview of the Algorithm

- impose grids on A (widths $s_1 \geq s_2 \geq \cdots \geq s_k$)
- preprocess each "layer" seperately
- level *i*: queries crossing grid s_i . but no grid s_i for j < i
- other queries: precompute all possible!
- time:

S2

Preprocessing on Level 1

- assume A is square ($\Rightarrow n = m, N = n^2$)
- $s_1 = \log n$: grid-width on level 1
- decompose RMQ (y_1, y_2, x_1, x_2) into nine sub-queries:
- several blocks
 in both
 directions
- 2-5 several blocks in 1 direction
- 6-9 in-block, but "touches" boundary

Precomputation of Queries 1–9

• Precompute only queries that span $2^k \times 2^l$ blocks

- Answer all queries by selecting at most four overlapping "power-of-two"-queries
- same idea as for 1D-RMQ!

Recursive Partitioning

perform same preprocessing for grid-widths

$$s_2 = \log \log n, s_3 = \log \log \log n, \dots, s_k = \log^{[k]} n$$

- either stopping at some fixed k > 1...
- ... or until $s_k = O(1)$ ($\iff k = \Theta(\log^* n)$)

Recursive Partitioning

perform same preprocessing for grid-widths

$$s_2 = \log \log n, s_3 = \log \log \log n, \dots, s_k = \log^{[k]} n$$

- either stopping at some fixed k > 1...
- ... or until $s_k = O(1)$ ($\iff k = \Theta(\log^* n)$)
- naive query-answering would cost O(k) or O(log* n) time!
- ⇒ store additional structures of size o(n) for selecting the right grid in O(1) time

What to do with microblock-queries?

Key-property for 1D-RMQs

2 blocks have same answers to all RMQs \iff they have equal Cartesian Trees

Problem: nothing similar for 2D

Weaker Property

2 blocks have same answers to all RMQs ← elements have same relative order

What to do with microblock-queries (2)?

Weaker Property

2 blocks have same answers to all RMQs ← elements have same relative order

- \Rightarrow sort microblocks (e.g. row-wise) to get permutation of [1 : S] (=relative order), $S = s_k^2$
 - precompute microblock-queries only for different permutations and not for all occurring microblocks

What to do with microblock-queries (2)?

Weaker Property

2 blocks have same answers to all RMQs \leftarrow elements have same relative order

- \Rightarrow sort microblocks (e.g. row-wise) to get permutation of [1:S] (=relative order), $S = s_k^2$
 - precompute microblock-queries only for different permutations and not for all occurring microblocks
 - space is

$$O(S^2 \times S!) = \cdots = O(N)$$
 (if $k > 1$)

• time is $O(\frac{N}{S} \times S \log S) = O(N \log^{[k+1]} n)$

Summary

- preprocessing-scheme for 2D-RMQs (N: size of input)
 - space O(N)
 - preprocessing time O(N)
 - query time *O*(1)
- generalizes to higher dimensions d: query time O(C^d), C =const
- open question: can we achieve O(N) preprocessing time and O(1) query time?
 - impossible for slightly more general operations! (Chazelle-Rosenberg'89)