CS 575 Project #1 OpenMP: Monte Carlo Simulation

Xuming Wu wuxum@oregonstate.edu

Code was run on the flip server. Got result as:

NUMT(Thread)	NUMTRIALS	NUMTRIES	Probability	Performance	speedup	Fp=(n/n-1)(1-1/S)
1	50	50	4.00%	4.46		
1	500	50	8.20%	4.76		
1	5000	50	6.28%	4.78		
1	50000	50	6.54%	8.7		
1	500000	50	6.56%	8.76		
2	50	50	12.00%	7.99	1.79148	0.883604506
2	500	50	4.80%	9.3	1.953782	0.976344086
2	5000	50	6.90%	9.49	1.985356	0.992623815
2	50000	50	6.64%	9.56	1.098851	0.179916318
2	500000	50	6.55%	17.27	1.971461	0.98552403
4	50	50	4.00%	10.2	2.286996	0.750326797
4	500	50	7.00%	17.73	3.72479	0.97537131
4	5000	50	6.58%	18.62	3.895397	0.991049051
4	50000	50	6.58%	18.84	2.165517	0.717622081
4	500000	50	6.60%	33.82	3.860731	0.987975557
8	50	50	4.00%	11.94	2.67713	0.715960756
8	500	50	6.20%	23.28	4.890756	0.909180167
8	5000	50	6.70%	28.34	5.92887	0.950095776
8	50000	50	6.45%	37.74	4.337931	0.879400409
8	500000	50	6.50%	40.72	4.648402	0.896996913
16	50	50	6.00%	8.56	1.919283	0.510903427
16	500	50	6.40%	33.55	7.048319	0.915330353
16	5000	50	6.66%	54.31	11.36192	0.972785859
16	50000	50	6.83%	55.44	6.372414	0.899278499
16	500000	50	6.55%	56.02	6.394977	0.899869094

We can get the Performance vs. the number of Monte Carlo trials graph and the Performance vs. the number OpenMP threads graph as:

From the results, we can estimate that the actual probability is about 6.55%. Pick the parallel fraction of cases with maximum Monte Carlo trials, we have Fp:

threads: Fp = 0.98552403
threads: Fp = 0.987975557
threads: Fp = 0.896996913
threads: Fp = 0.899869094