Problem B: Bound Found

You are given a sequence of \mathbf{n} integers and a non-negative target \mathbf{t} . You are to find a non-empty range of the sequence (i.e. a continuous subsequence) and output its lower index \mathbf{l} and its upper index \mathbf{u} . The absolute value of the sum of the values of the sequence from the \mathbf{l} -th to the \mathbf{u} -th element (inclusive) must be at least as close to \mathbf{t} as the absolute value of the sum of any other non-empty range.

Input Specification

The input file contains several test cases. Each test case starts with two numbers \mathbf{n} and \mathbf{k} . Input is terminated by $\mathbf{n} = \mathbf{k} = \mathbf{0}$. Otherwise, $1 \le \mathbf{n} \le \mathbf{100000}$ and there follow \mathbf{n} integers with absolute values $\le \mathbf{10000}$ which constitute the sequence. Then follow \mathbf{k} queries for this sequence. Each query is a target \mathbf{t} with $\mathbf{0} \le \mathbf{t} \le \mathbf{1000000000}$. The sum of all \mathbf{k} in the input file is $\le \mathbf{1000}$.

Output Specification

For each query output 3 numbers on a line: some closest absolute sum and the lower and upper indices of some range where this absolute sum is achieved. Possible indices start with 1 and go up to $\bf n$.

Sample Input

```
5 1
-10 -5 0 5 10
3
10 2
-9 8 -7 6 -5 4 -3 2 -1 0
5 11
15 2
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
15 100
0 0
```

Sample Output

```
5 4 4
5 2 8
9 1 1
15 1 15
15 1 15
```