King Saud University College of Computer and Information Sciences Computer Science Department

Computer Science Department	Computer Science Department	
CSC 220		
Computer Organization		
S1 – 1442 (Fall-2020-21)		
Midterm 1		
15/10/2020 I	Ouration	90 minutes
	CSC 220 Computer Organization S1 – 1442 (Fall-2020-21) Midterm 1	CSC 220 Computer Organization S1 – 1442 (Fall-2020-21) Midterm 1

Course Learning O	utcomes	Relevant question	Full mark	Student mark
Knowledge	CLO 1, 2, 4	1	9	
Cognitive Skills	CLO 1, 2	2	8	
Cognitive Skills	CLO 1, 2, 4	3	8	
Total			25	

Feed	bac	k/C	omm	ients:
------	-----	-----	-----	--------

Question 1. (2+2+1+2+2)

(a) Perform the following conversions:

- **i.** $(101101.11)_2 = (0100\ 0101.\ 0111\ 0101)_{BCD}$
- **ii.** $(0101\ 0001\ 0011.0101)_{BCD} = (201.8)_{16}$
- **(b)** Using truth table, show that $A \oplus B$ is logically equivalent to A'B+AB'.

A	В	$A \oplus B$	A'B	AB'	A'B+AB'
0	0	0	0	0	0
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	0	0	0

So $A \oplus B$ and A'B+AB'. Both are logically same.

(c) Write smallest and largest decimal number that can be represented in 2's complement notation using 8 bits.

Smallest number is: -128

Largest number is: 127

- (d) What will be the decimal value for the binary number 1011 0110 when it is represented in the following systems?
 - i. Signed Magnitude representation Ans. -54
 - ii. Two's complements representation Ans. -74
- (e) What is a full adder? Give the truth table for a full adder.

Three input bits addition to generate sum and carry bit is called full adder.

X	Y	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Question 2 (8 Marks: 4+4)

- (a) A majority function is generated in a combinational circuit when the output is equal to 1 if the input variables have more 1's than 0's, the output is 0 otherwise.
 - i. Give truth table four-input majority function
- ii. Write the output expression in SOP form (without simplification)
- iii. Draw the logic circuit.

(f) Simplify the following Boolean function f together with don't-care condition d and implement it with basic logic gates: $f(A, B, C, D) = \sum_{m} (1,3,5,9,10,11) + \sum_{d} (6,12,14)$.

	CD 00		1	
AB \	00	01	11	10
00				
01		1		X
11	X		-	X
10		1	1	1
			4	$\overline{-}$

F = B'D + AB'C + A'C'D

Question 3 (8 Marks: 4+4)

(a) Given two decimal numbers A = -32 and B = -7, convert them into 2's complement representation using 8 bits and show how to compute A+B and A-B.

A (2's comp. using 8 bits)	Ans: 11100000
B (2's comp. using 8 bits)	Ans: 11111001
A+B (2's comp. using 8 bits)	Ans: 11011001
A-B (2's comp. using 8 bits)	Ans: 11100111

- (b) You need to design a binary adder-subtractor circuit with overflow and sign detection for a 4-bit computer
 - i. Draw the adder-subtractor circuit
- ii. Add the functionality of overflow and sign detection
- iii. Show the inputs and outputs of the circuit to compute (2-3).

