复变函数基础知识(下)

复变函数基础知识(下)

共形映射

解析延拓

适合深入探讨的关联话题

共形映射

Def. 记 Ω 为 Riemann 曲面, 例如 \mathbb{C} , $\mathbb{C} \cup \{\infty\}$, \mathbb{C} 中某些区域等等. 记 $\mathrm{Aut}(\Omega)$ 为 Ω 的全纯子同构群, 即 Ω 至自身的全纯双射所成的群.

Thm. (Schwarz 引理) $f:\mathbb{D}\to\mathbb{D}, 0\mapsto 0$ 为全纯函数, 则

1. $|f'(0)| \leq 1$,

2. $|f(z)| \leq |z|, \forall z \in \mathbb{D}$.

等号成立当且仅当存在某些 $heta_0 \in [0,2\pi)$ 使得 $f(z)=e^{i heta_0}z$.

Proof. 定义 $\mathbb{D}\setminus\{0\}$ 上的全纯函数 $g(z)=rac{f(z)}{z}$, 根据可去奇点定理定义 g(0)=f'(0). 根据极大值原理有 $|g(z)|\leq \sup_{\theta\in\mathbb{R}}\lim_{r o 1}|g(re^{i\theta})|\leq 1$.

取等时, 据极大模原理知 g 为常数.

Thm. $\mathrm{Aut}(\mathbb{D})$ 中元素形如 $\Phi_{z_0}:\mathbb{D} o \mathbb{D}, z \mapsto e^{i heta_0} \cdot rac{z-z_0}{\overline{z_0}z-1}.$

 $extit{Proof.}\ orall f\in {
m Aut}(\mathbb{D})$,则 $g(z):=\Phi_{f(0)}\circ f(z)\in {
m Aut}(\mathbb{D})$. 注意到 g(0)=0,从而 $|g'(0)|\leq 1$. 由于 $g^{-1}\circ g(z)=z$,则 $|g^{-1}{}'(0)|\cdot |g'(0)|=1$. 根据 Schwarz 引理知 $|g^{-1}{}'(0)|, |g'(0)|\leq 1$,故 g'(0)=1.

是以 Schwarz 引理取等, $g\equiv r^{i heta_0}$ 为常函数. 从而 $\mathrm{Aut}(\mathbb{D})$ 中元素形如 Φ_{z_0} .

Col. 注意到全纯双射 $\varphi:=\mathbb{H}\to\mathbb{D}, z\mapsto \dfrac{z-i}{z+i}$, 从而 $\operatorname{Aut}(\mathbb{H})=\{\varphi\circ f\circ \varphi^{-1}\mid f\in\operatorname{Aut}(\mathbb{D})\}$. 计算得

$$\operatorname{Aut}(\mathbb{H})=\{z\mapsto rac{az+b}{cz+d}\mid ad-bc
eq 0, a,b,c,d\in\mathbb{R}\}=:\mathfrak{sl}_2(\mathbb{R}).$$

Example. 同理, $\operatorname{Aut}(\mathbb{C} \cup \{\infty\}) = \{z \mapsto \frac{az+b}{cz+d} \mid ad-bc \neq 0\} =: \mathfrak{sl}_2(\mathbb{C})$. 实际上, $\mathfrak{sl}_2(\mathbb{C})$ 为单超越扩域的 Galois 群.

Thm. (Riemann 映照定理) 记 $\Omega\subset\mathbb{C}$ 为单连通开区域, $\forall z_0\in\Omega$, 则存在 Ω 到单位圆盘 \mathbb{D} 的双射 $f:\Omega\to\mathbb{D}$ 使得 $f(z_0)=0$ 且 $f'(z_0)>0$.

Proof.

从略.

Example. 如下为常见区域间的共形映射关系

Example. (Dirichlet 边值问题) 设 Ω 边缘可微的单连通区域, 则如下 PDE 边值问题

$$\left\{ egin{aligned} \Delta u = 0 & \quad ext{in } \Omega, \ u = f & \quad ext{on } \partial \Omega \end{aligned}
ight.$$

在 Ω 上有且仅有一解.

Proof. 不妨设 φ 为 Ω 至 \mathbb{D} 的全纯双射, 则原方程化为

$$egin{cases} ilde{\Delta}[u\circarphi^{-1}] = 0 & ext{in } \mathbb{D}, \ u\circarphi^{-1} = f\circarphi^{-1} & ext{on } \partial\mathbb{D}. \end{cases}$$

根据 Poisson 求和公式,

$$u\circ arphi^{-1}(z_0) = rac{1}{2\pi} \int_0^{2\pi} rac{1-|z_0|^2}{|e^{i heta}-z_0|^2} f\circ arphi^{-1}(e^{i heta}) \mathrm{d} heta.$$

从而对任意的 $w_0 \in \Omega$,

$$u(w_0) = rac{1}{2\pi i} \int_{\partial\Omega} rac{1 - |arphi(w_0)|^2}{|\xi - arphi(w_0)|^2} f(\xi) \cdot rac{arphi'(\xi)}{arphi(\xi)} \mathrm{d} \xi.$$

显然该接存在且唯一.

Example. u 为 \mathbb{H} 上的调和函数, u 在 \mathbb{R} 取值 f(x), 则

$$u(x,y)=rac{y}{\pi}\int_{\mathbb{R}}rac{f(t)}{(t-x)^2+y^2}\mathrm{d}t.$$

解析延拓

Def. U,V 均为 $\mathbb C$ 中开集, $U\subset V$. 若存在 $f\in \operatorname{Hol}(\Omega)$, $F\in \operatorname{Hol}(V)$ 使得 $f=F|_U$, 则称 F 为 f 的解析延拓.

Def. U_1 , U_2 均为 $\mathbb C$ 中开集, 记 $U_3:=U_1\cap U_2\neq\emptyset$. 若存在 f_1 , f_2 使得 $f_i\in \mathrm{Hol}(U_i)$ (i=1,2), 且 $f_1|_{U_1}=f_2|_{U_2}$, 则称 f_1 与 f_2 互为解析延拓.

Example. 幂级数 $f(z)=\sum_{n\geq 1}z^{n!}$ 在单位圆周 $\partial\mathbb{D}$ 上处处有奇点, 从而不在 $\partial\mathbb{D}$ 上解析; 但 $f\in \mathrm{Hol}(\mathbb{H})$.

Proof. 幂级数收敛半径 $[\limsup |a_n|^{1/n}]^{-1}=1$, 从而 $f\in \operatorname{Hol}(\mathbb{H})$. 由于形如 $e^{p/q\cdot 2\pi i}$ 的点在 $\partial\mathbb{D}$ 上稠密, 从而 $\partial\mathbb{D}$ 上奇点稠密.

Thm. (Painlevé) Ω 为 $\mathbb C$ 中开区域, $\gamma:[0,1]\to\mathbb C$ 为分段光滑路径. 若 $f:\Omega\to\mathbb C$ 在 Ω 上连续且在 $\Omega\setminus\gamma$ 上全纯, 则 f 在 Ω 上全纯.

Thm. (Schwarz 反射定理) U 为 $\mathbb H$ 上开区域, 且存在 $\mathbb R$ 上开区间 I=(a,b) 使得 $f:U\cup I\to\mathbb C$ 满足

- f 在 U ∪ I 上连续,
- f 在 U 上全纯,
- *f* 在 *I* 上取实值.

则 f 可被延拓为 $U \cup I \cup U^*$ 上的全纯函数 $U^* := \{\overline{z} \mid z \in U\}$.

Proof. 定义 U^* 上函数 $z\mapsto \overline{f(\overline{z})}$. 则 f 在 $U\cup U^*$ 上有相同的 Taylor 展开. 根据 Painlevé 定理, f 在 $U\cup I\cup U^*$ 上解析.

Prop. (圆盘边缘处的 Schwarz 反射定理) 记 Ω_\pm 为 $\partial B(z_0,r)$ 的内外 (顺序不影响结论). 取 U 为 Ω_+ 中的开区域使得 $I:=\partial U\cap\partial B(z_0,r)$ 非空. 若 $f:U\cup I\to\mathbb{C}$ 满足

- 1. f 在 $U \cup I$ 上连续,
- 2. f 在 U 上全纯,
- 3. 存在 $w_0,
 ho > 0$ 使得 $f(I) \subset B(w_0,
 ho)$,
- 4. $w_0 \notin f(U)$.

则 f 可被全纯延拓至 $U^*:=\{z_0+r^2/(\overline{z}-\overline{z}_0)\mid z\in U\}.$

Example. 圆环 $A(0,r_1,R_1)$ 与 $A(0,r_2,R_2)$ 存在全纯双射若且仅若 $\dfrac{R_1}{r_1}=\dfrac{R_2}{r_2}$.

Proof. 必要性显然. 反之,若全纯双射满足 $\partial B(0,r_1)\to \partial B(0,r_2)$, $\partial B(0,R_1)\to \partial B(0,R_2)$,则根据 Schwarz 反射定理可构造 $A(0,r_1^2/R_1,R_1)$ 至 $A(0,r_2^2/R_2,R_2)$ 的全纯双射. 如是往复,得 $A(R_i(r_i/R_i)^n,R_i)$ 间的全纯双映射. 令 $n\to\infty$,得

$$f: B(0,R_1) \to B(0,R_2), 0 \mapsto 0.$$

由于 $\operatorname{Aut}(\mathbb{D})$ 中满足 $0\mapsto 0$ 的映射一定为 $z\mapsto e^{i\theta_0}z$ 之形式,从而 $f:z\mapsto \frac{R_2}{R_1}\cdot e^{i\theta_0}z$. 根据 $B(0,r_1)\to B(0,r_2)$ 得 $\frac{R_1}{R_2}=\frac{r_1}{r_2}$.

若双全纯映射满足 $\partial B(0,r_1)\to\partial B(0,R_2)$, $\partial B(0,R_1)\to\partial B(0,r_2)$, 则考虑上一情形复合上 $A(0,r_1,R_1)$ 的自同构 $z\mapsto \dfrac{r_1\cdot R_1}{z}$ 即可.

Example. Aut(\mathbb{C}) = az + b, Aut($\mathbb{C} \setminus \{0\}$) = $\{az, b/z \mid a, b \neq 0\}$.

适合深入探讨的关联话题

调和分析相关话题.

划分函数,模形式等话题.

解析数论相关话题.

共形映射,复几何等话题.

Riemann 曲面, 代数几何等话题.