Successioni numeriche

Si definisce successione numerica ogni funzione f: N->R.

Il dominio di una successione può essere $A \subset N$, in genere di cardinalità infinita.

Gli elementi di Im(N) sono detti termini della successione

$$a_0$$
, a_1 , a_2 , ... $a_n = f(n)$, ...

Limite di una successione

L'unico punto di accumulazione per il dominio è + ∞

 $\rightarrow 1$

Cosa accade al valore di an al crescere di n?

- Cresce/decresce in modo indeterminato?
- Si attesta su un valore finito?
- Non sono in grado di stabilirlo.

Limite di una successione

$$\lim_{n\to\infty}a_n=\infty$$

$$\lim_{n\to\infty} a_n = l$$

$$\lim_{n\to\infty}a_n=\; \nexists$$

Le definizioni sono analoghe a quelle fornite per i limiti di funzione, per $x \rightarrow \infty$.

Limite di una successione Metodo di Esaustione

 $f: N \rightarrow R$.

Ad ogni numero naturale associa l'area del poligono regolare <u>inscritto</u>, con quel numero di lati

Ad ogni numero naturale associa l'area del poligono regolare <u>circoscritto</u>, con quel numero di lati

Definizione analitica
Viene fornita una
espressione algebrica che
definisce il termine
generico della successione

$$a_n = n+3$$

Definizione analitica

$$a_n = 1/n$$

$$a_n = (-1)^n$$

Definizione ricorsiva

Vengono definiti un certo numero di termini della successione (in genere il primo o i primi due) e la legge che permette di determinare gli altri elementi in termini dei precedenti

$$a_0 = 0$$

Successione di Fibonacci $a_1 = 1$
 $a_n = a_{n-1} + a_{n-2}$

Definizione ricorsiva

Successione di Fibonacci

$$a_0 = 0$$
 $a_1 = 1$
 $a_n = a_{n-1} + a_{n-2}$

Definizione ricorsiva

Successione di Fibonacci

$$\frac{a_{n+1}}{a_n} \to \varphi \text{ (il numero aureo)}$$

Definizione ricorsiva

Successione di Erone

$$a_0 = p$$

$$a_{n+1} = \frac{a_n + \frac{p}{a_n}}{2}$$

Descrive un processo per il calcolo delle radici quadrate infatti -> \sqrt{p}

Il numero di Nepero

$$a_n = (1 + 1/n)^n$$

$$\downarrow$$

$$e \sim 2,71828 ...$$

Successioni limitate

Una successione $f:A \subseteq N \rightarrow R$ si dice limitata superiormente se $\forall n \in A, a_n \le L \in R$

Una successione $f: A \subseteq N \rightarrow R$ si dice limitata inferiormente se $\forall n \in A, a_n \ge \ell \in R$

Una successione $f:A \subseteq N \rightarrow R$ si dice limitata se è limitata inferiormente e superiormente, cioè se esistono $L, \ell \in R$ tali che $\forall n \in A, \ell \leq a_n \leq L$

Successioni monotòne

Una successione $f: A \subseteq N \rightarrow R$ si dice crescente se $\forall i,j \in A$, $i < j \Rightarrow a_i \le a_j$

Una successione $f: A \subseteq N \rightarrow R$ si dice decrescente se $\forall i, j \in A$, $i \nmid j \Rightarrow a_i \geq a_j$

Una successione $f:A \subseteq N \rightarrow R$ si dice monotòna se è crescente o decrescente. Si dice oscillante se non è monotòna.

Esercizi

Date le seguenti successioni dire se sono limitate, monotòne o oscillanti

$$a_n = \frac{2}{2-n}$$
 Attenzione: n $\neq 2$

$$a_n = (-1)^n$$

$$\begin{cases} a_0 = 1 \\ a_{n+1} = 3 a_n \end{cases}$$

Teoremi importanti

- 1) Unicità del limite
- 2) Permanenza del segno
- 3) Operazioni tra limiti
- 4) Confronto tra infiniti e infinitesimi

Vedi limiti di funzioni

- 1) Ogni successione monotòna e limitata converge.
- 2) Ogni successione crescente (decrescente) e illimitata superiormente (inferiormente) diverge positivamente (negativamente)

Esercizi

Calcolare, se esiste, il limite delle seguenti successioni

•
$$a_n = \frac{2}{2-n}$$

•
$$a_n = (-1)^n$$

$$\begin{cases} a_0 = 1 \\ a_{n+1} = 3 a_n \end{cases}$$

Esercizi

Calcolare, se esiste, il limite delle seguenti successioni

•
$$a_n = -n + \log n$$

•
$$a_n = (2)^n - n$$

$$\begin{bmatrix} a_n = 0 \text{ se n pari} \\ a_n = \frac{1}{n} \text{ se n dispari} \end{bmatrix}$$

•
$$a_n = \frac{n-1}{n}$$

•
$$a_n = (2)^{-n}$$

•
$$a_n = \frac{n^2}{n!}$$