

10/510490

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D	08 APR 2003
WIPO	PCT

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

Aktenzeichen: 102 15 605.0

Anmeldetag: 09. April 2002

Anmelder/Inhaber: Uhde GmbH,
Dortmund/DE

(vormals: Krupp Uhde GmbH)

Bezeichnung: Entstickungsverfahren

IPC: B 01 D 53/56

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ur-sprünglichen Unterlagen dieser Patentanmeldung.

München, den 20. März 2003
Deutsches Patent- und Markenamt
Der Präsident
 Im Auftrag

Wallner

Beschreibung

Entstickungsverfahren

Die Erfindung betrifft ein Verfahren zur Minderung des Gehaltes von Stickoxiden aus Ab- oder Prozessgasen

Bei vielen Prozessen, wie z. B. Verbrennungsprozessen oder bei der industriellen Herstellung von Salpetersäure resultiert ein mit Stickstoffmonoxid NO, Stickstoffdioxid NO₂ (zusammen bezeichnet als NO_x) sowie Lachgas N₂O beladenes Abgas. Während NO und NO₂ seit langem als Verbindungen mit ökotoxischer Relevanz bekannt sind (Saurer Regen, Smog-Bildung) und weltweit Grenzwerte für deren maximal zulässige Emissionen festgelegt sind, rückt in den letzten Jahren in zunehmenden Maße auch Lachgas in den Fokus des Umweltschutzes, da dieses in nicht unerheblichem Maße zum Abbau von stratosphärischem Ozon und zum Treibhauseffekt beiträgt. Es besteht daher aus Gründen des Umweltschutzes ein dringender Bedarf an technischen Lösungen, die Lachgasemissionen zusammen mit den NO_x-Emissionen zu beseitigen.

Zur separaten Beseitigung von N₂O einerseits und NO_x andererseits bestehen zahlreiche Möglichkeiten, die in zweistufigen Prozessen in geeigneter Weise kombiniert werden können.

Aus der EP-A-393,917 ist bekannt, dass Stickoxide mittels Ammoniak und ausgewählten Zeolith-Katalysatoren, aus Gasen entfernt werden können. Diese Schrift beschreibt allerdings nur die Reduktion von NO_x mittels Ammoniak. Als Zeolithe werden die Typen USY, Beta und ZSM-20 vorgeschlagen, die große Poren und ein spezielles Siliciumdioxid-zu-Aluminiumoxid-Verhältnis aufweisen.

Aus Chem. Commun. 2000, 745-6, ist bekannt, dass N₂O mit Methan in der Gegenwart von überschüssigem Sauerstoff und in Gegenwart eines eisenbeladenen Zeolithen vom Typ Beta (= BEA) selektiv katalytisch reduziert werden kann.

Die JP-A-09/000,884 offenbart ein Verfahren zur Verminderung des Gehaltes an N₂O und NO bei dem als Reduktionsmittel Ammoniak, Alkohole und/oder Kohlenwasserstoffe und als Katalysator Zeolith vom Typ Pentasil oder Mordenit eingesetzt werden.

5 Die JP-A-09/000,884 offenbart ein Verfahren zur Verminderung des Gehaltes an N₂O und NO bei dem als Reduktionsmittel Ammoniak, Alkohole und/oder Kohlenwasserstoffe und als Katalysator Zeolith vom Typ Pentasil oder Mordenit eingesetzt werden.

10 Ausgehend von diesem Stand der Technik wird durch die vorliegende Erfindung ein einfaches, aber äußerst wirtschaftlich arbeitendes Verfahren bereitgestellt, das bei niedrigen Betriebstemperaturen ausgezeichnete Umsätze sowohl für den NO_x als auch für den N₂O-Abbau liefert.

15 Es wurde überraschenderweise gefunden, dass bei der Reduktion von N₂O aus NO_x-haltigen Gasen das NO_x auf den Abbau des N₂O einen inhibierenden Effekt ausübt, und dass bei vollständiger Reduktion des NO_x eine verbesserte Reduktion des N₂O erfolgt.

20 Die Erfindung betrifft ein Verfahren zur Minderung des Gehalts von NO_x und N₂O in Gasen, insbesondere in Prozessgasen und Abgasen, umfassend die Maßnahmen:

- Zugabe von Ammoniak zu dem NO_x und N₂O enthaltenden Gas in einer solchen Menge, wie mindestens zur vollständigen Reduktion des NO_x benötigt wird,
- Zugabe eines Kohlenwasserstoffes, von Kohlenmonoxid, von Wasserstoff oder von einem Gemisch einer oder mehrerer dieser Gase zu dem NO_x und N₂O enthaltenden Gas in einer solchen Menge, wie zur Reduktion des N₂O benötigt wird,
- Einleiten des Gasgemisches in eine Vorrichtung mit mindestens einer Reaktionszone, die einen oder mehrere mit Eisen beladene Zeolithe enthält, vorzugsweise mit Eisen beladene Zeolithe, die aus Zwölfringen bestehende Kanäle enthalten, insbesondere mit Eisen beladene Zeolithe, deren sämtliche

30

Karäle aus Zwölfringen bestehen, ganz besonders bevorzugt mit Eisen beladene Zeolithen vom Typ BEA oder FAU, und

d) Einstellen einer Temperatur von bis zu 450°C in der Reaktionszone.

Zur Durchführung des erfindungsgemäßen Verfahrens wird das N₂O und NO_x enthaltende Gas zunächst mit Ammoniak und Kohlenwasserstoffen bzw. Kohlenmonoxid und/oder Wasserstoff gemischt und anschließend zum Abbau von N₂O und NO_x jeweils durch Reduktion bei einer Temperatur von weniger als 450°C.

Nach Merkmal a) des erfindungsgemäßen Verfahrens ist das Ammoniak in einer solchen Menge zuzusetzen, wie mindestens zur vollständigen Reduktion des NO_x benötigt wird. Unter der für die vollständige Reduktion des NO_x notwendigen Menge an Ammoniak wird im Rahmen dieser Beschreibung diejenige Menge an Ammoniak verstanden, die notwendig ist, um den Anteil des NO_x im Gasgemisch bis auf einen Restgehalt von kleiner als 50 ppm, vorzugsweise kleiner als 20 ppm und insbesondere kleiner als 10 ppm zu reduzieren.

Nach Merkmal b) des erfindungsgemäßen Verfahrens sind der Kohlenwasserstoff, das Kohlenmonoxid und/oder der Wasserstoff in einer solchen Menge zuzusetzen, wie zur Reduktion des N₂O benötigt wird. Darunter wird im Rahmen dieser Beschreibung diejenige Menge an Reduktionsmittel verstanden, die notwendig ist, um den Anteil des N₂O im Gasgemisch vollständig oder bis zur gewünschten Endkonzentration zu reduzieren.

Im allgemeinen beträgt die Temperatur in der Reaktionszone 200 bis 450°C, vorzugsweise 250 bis 450°C.

Die Minderung des Gehalts von NO_x und N₂O erfolgt vorzugsweise in Gegenwart eines einzigen Katalysators, welcher im wesentlichen einen oder mehrere mit Eisen beladene Zeolithen enthält.

Als Reduktionsmittel im Sinne der Erfindung werden für das NO_x Ammoniak und für das N₂O Kohlenwasserstoffe, Wasserstoff, Kohlenmonoxid oder deren Gemische, wie z.B. Synthesegas, eingesetzt.

Besonders bevorzugt als Reduktionsmittel für N₂O werden gesättigte Kohlenwasserstoffe oder deren Gemische, wie Methan, Ethan, Propan, Synthesegas oder LPG.

Ganz besonders bevorzugt wird Methan. Dieses wird insbesondere in Kombination mit eisenbeladenem Zeolith vom Typ BEA eingesetzt.

Die zugesetzte Menge an Ammoniak muß dabei so ausgewählt werden, wie zur vollständigen Reduktion von NO_x erforderlich ist. Im Falle von Ammoniak betrifft die stöchiometrisch notwendige Menge für einen vollständigen Abbau des NO_x 1,33 (8/6) molare Anteile an Ammoniak, bezogen auf einen molaren Anteil an NO_x. Es hat sich herausgestellt, dass bei steigendem Druck bzw. bei sinkenden Reaktionstemperaturen die für einen vollständigen Abbau des NO_x erforderliche Menge an Ammoniak von den oben erwähnten 1,33 molaren Anteilen auf 0,9 molare Anteile sinkt. Gegebenenfalls wird ein geringer Anteil von Ammoniak auch bei der NO_x Reduktion verbraucht, so dass unter Umständen für die vollständige NO_x Reduktion eine entsprechend größere Menge an Ammoniak einzusetzen ist, beispielsweise bis zu 1,5 molare Anteile an Ammoniak, bezogen auf einen molaren Anteil an NO_x.

Als Katalysatoren finden die oben definierten eisenbeladene Zeolithen oder Mischungen von eisenbeladenen Zeolithen Verwendung.

Es wurde überraschenderweise gefunden, dass mit derartigen Katalysatoren bei vollständiger NO_x Reduktion eine sehr effiziente N₂O Reduktion vorgenommen werden kann.

Unter den vorliegenden Verfahrensbedingungen wirkt NH₃ hauptsächlich als Reduktionsmittel für NO_x und die Kohlenwasserstoffe, Kohlenmonoxid und/oder Wasserstoff reduzieren praktisch selektiv das im Abgas enthaltene N₂O.

Die Ausführung des Katalysatorbettes ist im Sinne der Erfindung frei gestaltbar. Sie kann beispielsweise in Form eines Röhreneraktors oder Radialkorbreaktors erfolgen. Auch die Art der Einbringung der gasförmigen Reduktionsmittel in den zu behandelnden Gasstrom ist im Sinne der Erfindung frei gestaltbar, solange dieses in Stromrichtung vor der Reaktionszone erfolgt. Sie kann zum Beispiel in der Eintrittsleitung vor dem Behälter für das Katalysatorbett oder unmittelbar vor dem Bett erfolgen. Die Reduktionsmittel können in Form von Gase oder auch in Form einer Flüssigkeit bzw. wässrigen Lösung eingebracht werden, die im zu behandelnden Gasstrom verdampft.

Die erfindungsgemäß verwendeten Katalysatoren sind dem Fachmann bekannt und können an sich bekannte Zusatzstoffe, wie z.B. Bindemittel, enthalten.

In den Katalysator integriert oder nachgeschaltet oder sonstwie verbunden kann ein Katalysator zur Oxidation von eventuell nicht umgesetztem oder von partiell oxidiertem Stoff aus der Gruppe, die von einem oder mehreren Kohlenwasserstoffen, vorzugsweise CH₄, oder C₂H₆, sowie CO und H₂ gebildet wird, sein.

Erfindungsgemäß verwendete Katalysatoren basieren vorzugsweise auf Zeolithen, In die durch einen Festkörper-Ionen austausch Eisen eingebracht wurde. Üblicherweise geht man hierfür von den kommerziell erhältlichen Ammonium-Zeolithen und den entsprechenden Eisensalzen (z.B. FeSO₄ x 7 H₂O) aus und mischt diese auf mechanischem Wege intensiv miteinander in einer Kugelmühle bei Raumtemperatur. (Turek et al.; Appl. Catal. 184, (1999) 249-256; EP-A-0 955 080). Auf diese Literaturstellen wird hiermit ausdrücklich Bezug genommen. Die erhaltenen Katalysatorpulver werden anschließend in einem Kammerofen an der Luft bei Temperaturen im Bereich von 400 bis 600°C kalziniert. Nach dem Kalzinieren werden die eisenhaltigen Zeolithen in destilliertem Wasser intensiv gewaschen und nach Abfiltrieren des Zeolithen getrocknet. Abschließend werden die so erhaltenen

eisenhaltigen Zeolithe mit den geeigneten Bindemitteln versetzt und gemischt und beispielsweise zu zylindrischen Katalysatorkörpern extrudiert. Als Bindemittel eignen sich alle üblicherweise verwendeten Binder, die gebräuchlichsten sind hierbei Aluminiumsilikate wie z.B. Kaolin.

5 Gemäß der vorliegenden Erfindung sind die verwendbaren Zeolithe mit Eisen beladen. Der Eisengehalt kann dabei bezogen auf die Masse an Zeolith bis zu 25% betragen, vorzugsweise jedoch 0,1 bis 10%. (Eisen berechnet als Fe₂O₃).

10 Genaue Angaben zum Aufbau oder Struktur dieser Zeolithe werden im Atlas of Zeolite Structure Types, Elsevier, 4th revised Edition 1996, gegeben, auf den hiermit ausdrücklich Bezug genommen wird.

15 Erfindungsgemäß bevorzugte Zeolithe sind vom FAU-Typ und insbesondere vom BEA-Typ.

Das mit Stickstoffoxiden beladene Gas wird üblicherweise mit einer Raumgeschwindigkeit von 200 bis 200.000 h⁻¹, vorzugsweise 5.000 bis 100.000 h⁻¹, bezogen auf das Katalysatorenvolumen, über den Katalysator geleitet.

20 Unter dem Begriff Raumgeschwindigkeit ist dabei der Quotient aus Volumenanteilen Gasgemisch pro Stunde bezogen auf einen Volumenanteil Katalysator zu verstehen. Die Raumgeschwindigkeit kann somit über die Strömungsgeschwindigkeit des Gases und/oder über die Katalysatormenge eingestellt werden.

25 Das erfindungsgemäße Verfahren wird im allgemeinen bei einem Druck im Bereich von 1 bis 50 bar, vorzugsweise 1 bis 25 bar durchgeführt, wobei ein höherer Betriebsdruck den Verbrauch an Reduktionsmittel, die Nebenproduktbildung und den Schlußpf verringert.

30 Die Einspeisung des Reduktionsmittels in das zu behandelnde Gas erfolgt durch eine geeignete Vorrichtung, wie z.B. einem entsprechenden Druckventil oder entsprechend ausgestalteten Düsen.

Der Wassergehalt des Reaktionsgases liegt vorzugsweise im Bereich von <25 Vol.%, insbesondere im Bereich <15 Vol.%.

Im allgemeinen wird eine relativ niedrige Wasserkonzentration bevorzugt, da höhere Wassergehalte höhere Betriebstemperaturen erforderlich machen würden. Diese könnte je nach eingesetztem Zeolithtyp und Betriebsdauer die hydrothermalen Stabilitätsgrenzen des Katalysators überschreiten und ist somit dem jeweils gewählten Einzelfall anzupassen.

Auch die Anwesenheit von CO₂ sowie von anderen deaktivierenden Bestandteilen des Reaktionsgases, die dem Fachmann bekannt sind, sollten nach Möglichkeit minimiert werden, da sich diese negativ auf den N₂O- und NO_x-Abbau auswirken würden.

Das erfindungsgemäße Verfahren arbeitet auch in Gegenwart von O₂, da die erfindungsgemäß verwendeten Katalysatoren entsprechende Selektivitäten aufweisen, die bei Temperaturen <450°C eine Reaktion des gasförmigen Reduktionsmittels, wie NH₃, mit O₂ unterdrücken.

All diese Einflußfaktoren, sowie die gewählte Katalysatorbelastung d.h. Raumgeschwindigkeit sind bei der Wahl der geeigneten Betriebstemperatur der Reaktionszone zu berücksichtigen.

Die mit dem vorliegenden Verfahren bei niedrigen Betriebstemperaturen erzielbaren Umsätze für N₂O und NO_x liegen für NO_x bei nahezu 100 % und für N₂O vorzugsweise bei > 70%, insbesondere bei > 80%. Das Verfahren ist damit hinsichtlich seiner Leistungsfähigkeit, d.h. der erzielbaren Umsatzgrade des N₂O und NO_x Abbaus, sowie hinsichtlich der Betriebs- und Investitionskosten dem Stand der Technik überlegen.

Infolge der nahezu vollständigen NO_x-Reduktion wird auch ein besonders hoher Abaugrad an N₂O erreicht und es wird ein überraschend geringer Verbrauch des Reduktionsmittels für N₂O erreicht, was ein Vorteil der Erfindung ist.

5	Das erfindungsgemäße Verfahren kann besonders bei der Salpetersäureproduktion, bei Kraftwerksabgasen oder bei Gasturbinen zum Einsatz kommen. In diesen Prozessen fallen stickoxidhaltige Prozeß- und Abgase an, die mit Hilfe des hier aufgezeigten Verfahrens kostengünstig entstickt werden können.
10	In einer Ausführungsform des erfindungsgemäß Verfahrens wird einem Stickoxide enthaltenden Gas ein Gemisch aus CH ₄ und NH ₃ zugemischt und beides wird zusammen in einen Reaktor, welcher einen eisenbeladenen Zeolith vom Typ BEA enthält, geleitet und dort entstickt. Das gereinigte Abgas wird in die Atmosphäre geleitet. Anstelle der vorherigen Mischung von Methan und Ammoniak können die Gase dem Stickoxide enthaltenden Gas vor dem Eintritt in den Reaktor auch getrennt zugeführt werden.
15	

1. Verfahren zur Minderung des Gehalts von NO_x und N_2O in Gasen, insbesondere in Prozeßgasen und Abgasen, umfassend die Maßnahmen:

- a) Zugabe von Ammoniak zu dem NO_x und N_2O enthaltenden Gas in einer solchen Menge, wie mindestens zur vollständigen Reduktion des NO_x benötigt wird,
- b) Zugabe eines Kohlenwasserstoffes, von Kohlenmonoxid, von Wasserstoff oder von einem Gemisch einer oder mehrerer dieser Gase zu dem NO_x und N_2O enthaltenden Gas in einer solchen Menge, wie zur Reduktion des NO_x benötigt wird,
- c) Einleiten des Gasgemisches in eine Vorrichtung mit mindestens einer Reaktionszone, die einen oder mehrere mit Eisen beladene Zeolithe enthält, und
- d) Einstellen einer Temperatur von bis zu 450°C in der Reaktionszone.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Katalysator ein mit Eisen beladener Zeolith ist, der aus Zwölffringen bestehende Kanäle enthält.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Katalysator ein mit Eisen beladener Zeolith ist, dessen sämtliche Kanäle aus Zwölffringen bestehen.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Katalysator ein mit Eisen beladener Zeolith vom Typ BEA oder FAU ist.

5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das als Reduktionsmittel für N_2O Ethan, Propan, Synthesegas oder LPG und insbesondere Methan eingesetzt werden.

6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das als Reduktionsmittel für N_2O Methan, Propan und/oder Synthesegas und als Katalysator ein mit Eisen beladener Zeolith vom Typ BEA eingesetzt werden.

Beschrieben wird ein Verfahren zur Minderung des Gehalts von NO_x und N_2O in Gasen, insbesondere in Prozeßgasen und Abgasen, umfassend die Maßnahmen:

- a) Zugabe von Ammoniak zu dem NO_x und N_2O enthaltenden Gas in einer solchen Menge, wie mindestens zur vollständigen Reduktion des NO_x benötigt wird,
- b) Zugabe eines Kohlenwasserstoffes, von Kohlenmonoxid, von Wasserstoff oder von einem Gemisch einer oder mehrerer dieser Gase zu dem NO_x und N_2O enthaltenden Gas in einer solchen Menge, wie zur Reduktion des NO_x benötigt wird,
- c) Einleiten des Gasgemisches in eine Vorrichtung mit mindestens einer Reaktionszone, die einen oder mehrere mit Eisen beladene Zeolithe enthält, und
- d) Einstellen einer Temperatur von bis zu 450°C in der Reaktionszone.

Das Verfahren lässt sich insbesondere bei der Salpetersäureproduktion, bei Kraftwerksabgasen oder bei Gasturbinen einsetzen.