A Review of Descriptive Statistics, OLS and an Introduction to Stata

Andy Grogan-Kaylor

22 Aug 2021

Social Service Agency Data

Simulated data on social service clients

. use clients.dta, clear // use (get) the data (Simulated Clients)

. describe

Contains data from clients.dta
Observations: 521
Variables: 8

Simulated Clients 3 Jun 2020 15:14

Variable S	Storage type	Display format	Value label	Variable label
ID age	double double	%9.0g %9.0g		ID age
gender program	long long	%9.0g %9.0g	gender program	gender program
mental_health_1 mental_health_2 latitude		%9.0g %9.0g %9.0g		<pre>mental_health_T1 mental_health_T2 latitude</pre>
longitude	double	%9.0g		longitude

Sorted by:

One Line Stata

do_something to_variable(s), options

Quite often the default options are so well chosen that you do not need to specify any options.

- use mydata.dta
- summarize // descriptive statistics
- keep x1 x2 x3 // keep only selected variables
- list x1 x2 x3 in 1/10 // list cases for selected variables
- browse // look at data
- lookfor [word] // look for variables with a particular word

Figure 1: The Stata Interface

The Stata Interface

Measures of Central Tendency

- What are mean and median. Why are they different?
 - Where is standard deviation?
 - Subsets of variables?
- Finding variables?

. summarize					
Variable	Obs	Mean	Std. dev.	Min	Max
ID	521	2965.449	1158.32	1005	4989
age	521	28.0438	7.047373	18.05584	45.45653
gender	521	1.821497	.7549825	1	3
program	521	2.197697	.7973963	1	4
mental_hea_1	521	95.11707	5.161698	80.93709	108.5736
mental_hea_2	521	98.87066	7.423767	79.57518	118.2272
latitude	521	42.25321	.1027698	41.99847	42.6237
longitude	521	-83.74921	.0987047	-84.04328	-83.42666

. summarize age, detail

	age							
	Percentiles	Smallest						
1%	18.17739	18.05584						
5%	18.72159	18.05992						
10%	19.54324	18.10945	Obs	521				
25%	22.37428	18.13374	Sum of wgt.	521				
50%	26.61352		Mean	28.0438				
		Largest	Std. dev.	7.047373				

75%	32.88188	44.35607		
90%	38.46387	44.78399	Variance	49.66547
95%	41.26977	45.30344	Skewness	.5501433
99%	44.16425	45.45653	Kurtosis	2.317297

Measures of Variation

Some programs, e.g. R make you search for standard deviation. With Stata, sd is easily accessible with summarize.

```
. histogram mental_health_T1, normal scheme(burd) (bin=22, start=80.937087, width=1.2562034)
```

. graph export myhistogram.png, width(500) replace

Figure 2: histogram of mental health

Comparing Continuous and Continuous Variables

```
. twoway scatter mental_health_T1 age, msymbol(o) scheme(burd)
```

/ Users/agrogan/Desktop/GitHub/newstuff/categorical/review-stats-intro-stata/myscatter.pn > g saved as PNG format

[.] graph export myscatter.png, width(500) replace file

Figure 3: scatterplot of age and mental health

Correlation

Comparing Continuous Variables Across Categorical Variables

```
. graph bar mental_health_T2, over(program) scheme(burd)
```

. graph export mybargraph.png, width(500) replace file

t-test

- . preserve // preserve data set $% \left(1\right) =\left(1\right) \left(1\right)$
- . keep if program == 1 \mid program == 2 \mid only keep 2 programs for now (201 observations deleted)
- . ttest mental_health_T2, by(program)
 Two-sample t test with equal variances

Figure 4: bar graph of mental health at time 2

Group	Obs	Mean	Std. err.	Std. dev.	[95% conf.	interval]
Program Program	111 209	94.7963 105.3512	.4969934 .3562424	5.23615 5.150136	93.81138 104.6489	95.78123 106.0535
Combined	320	101.69	.4033737	7.215767	100.8964	102.4836
diff		-10.55491	.6083793		-11.75187	-9.357953
<pre>diff = mean(Program) - mean(Program) H0: diff = 0</pre>				Degrees	t of freedom	= -17.3492 = 318

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0 Pr(T < t) = 0.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 1.0000

ANOVA

- . restore // restore old version of data
- . oneway ${\tt mental_health_T2}$ program, tabulate // oneway analysis of variance

	Summary o	of mental_heal	.th_T2			
program	Mean	Std. dev.	Freq.			
Program A	94.796305	5.2361502	111			
Program B	105.35121	5.1501362	209			
Program C	94.299149	5.2002254	188			
Program D	95.582917	5.6199143	13			
Total	98.870656	7.4237673	521			
Analysis of variance						
Source	SS	df	MS			

Source	SS	df	MS	F	Prob > F
Between groups Within groups	14689.6155 13968.791	3 517	4896.53849 27.0189382	181.23	0.0000

```
Total 28658.4065 520 55.1123202

Bartlett's equal-variances test: chi2(3) = 0.1991 Prob>chi2 = 0.978
```

Importantly, ,tabulate gives us a table of results.

Regression

• What is the equation?

Program C

Program D

_cons

- What do the results mean?
- What is substantively or statistically significant?

	regress	mental.	health_	T2	mental.	_health	_T1	i.prog	gram
--	---------	---------	---------	----	---------	---------	-----	--------	------

-.494409

.7226213

97.90435

Source		SS	df		MS	Number of	obs	=	521
						F(4, 516)		=	135.94
Model	14	1704.3725	4	3676	3.09313	Prob > F		=	0.0000
Residual	:	13954.034	516	27.0	427015	R-squared	l	=	0.5131
						Adj R-squ	ared	=	0.5093
Total	28	3658.4065	520	55.1	123202	Root MSE		=	5.2003
	<u>'</u>								
mental_health	_T2	Coefficient	Std.	err.	t	P> t	[95%	conf	. interval]
mental_health_	_T1	0327405	.04	4321	-0.74	0.460	119	8123	.0543314
progi Program		10.57171	.611	1758	17.30	0.000	9.37	1008	11.77241

0.427

0.636

0.000

0.47

23.11

-1.717323

-2.27703

89.58195

.728505

3.722272

106.2267

What if We Want to Allow For Different Slopes?

.6224837

1.526873

4.236239

Instructor will draw this out.

. regress mental_health_T2 c.mental_health_T1##i.program

Source	ss	df	MS	Number of	obs =	521	
				F(7, 513)	=	77.65	
Model	14743.6327	7	2106.23324	Prob > F	=	0.0000	
Residual	13914.7738	513	27.1243155	R-squared	=	0.5145	
				Adj R-squa	ared =	0.5078	
Total	28658.4065	520	55.1123202	Root MSE	=	5.2081	
ment	tal_health_T2	Coefficie	ent Std. err	. t	P> t	[95% conf.	interval]
ment	tal_health_T1	.003810	08 .0940124	0.04	0.968	1808858	.1885074
	program						
	Program B	14.1388	32 11.07298	1.28	0.202	-7.615155	35.89279
	Program C	2.22782	25 11.6862	0.19	0.849	-20.73087	25.18653
	Program D	27.3043	39 22.3002	1.22	0.221	-16.50657	71.11535
program#c.ment	tal_health_T1						
	Program B	037570	08 .1162481	-0.32	0.747	2659517	.1908101
	Program C	028683	32 .1228833	-0.23	0.816	2700997	.2127332
	Program D	285133	. 2385022	-1.20	0.232	7536944	.1834281
	_cons	94.4345	55 8.938253	10.57	0.000	76.87446	111.9946

Regression Assumptions and the Issue of "Normality"

Questions?