

Université Libre de Bruxelles

Synthèse

Compléments de mathématiques MATH-H301

Auteur:

Nicolas Englebert

Année 2015 - 2016

Appel à contribution

Synthèse OpenSource

Ce document est grandement inspiré de l'excellent cours donné par Anne Delandtsheer à l'EPB (École Polytechnique de Bruxelles), faculté de l'ULB (Université Libre de Bruxelles). Il est écrit par les auteurs susnommés avec l'aide de tous les autres étudiants et votre aide est la bienvenue! En effet, il y a toujours moyen de

l'améliorer surtout que si le cours change, la synthèse doit être changée en conséquence. On peut retrouver le code source à l'adresse suivante

https://github.com/nenglebert/Syntheses

Pour contribuer à cette synthèse, il vous suffira de créer un compte sur *Github.com*. De légères modifications (petites coquilles, orthographe, ...) peuvent directement être faites sur le site! Vous avez vu une petite faute? Si oui, la corriger de cette façon ne prendra que quelques secondes, une bonne raison de le faire!

Pour de plus longues modifications, il est intéressant de disposer des fichiers : il vous faudra pour cela installer LATEX, mais aussi git. Si cela pose problème, nous sommes évidemment ouverts à des contributeurs envoyant leur changement par mail ou n'importe quel autre moyen.

Le lien donné ci-dessus contient aussi le README contient de plus amples informations, vous êtes invités à le lire si vous voulez faire avancer ce projet!

Licence Creative Commons

Le contenu de ce document est sous la licence Creative Commons : Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). Celle-ci vous autorise à l'exploiter pleinement, compte- tenu de trois choses :

- 1. Attribution; si vous utilisez/modifiez ce document vous devez signaler le(s) nom(s) de(s) auteur(s).
- 2. Non Commercial; interdiction de tirer un profit commercial de l'œuvre sans autorisation de l'auteur
- 3. Share alike; partage de l'œuvre, avec obligation de rediffuser selon la même licence ou une licence similaire

Si vous voulez en savoir plus sur cette licence :

http://creativecommons.org/licenses/by-nc-sa/4.0/

Merci!

Chapitre 18

Méthode des approximations successives pour problèmes de Cauchy

18.4 Principe de contraction de Banach

18.4.1 Contraction (de constante α)

Le principe d'une contraction est que si deux points sont à une distance d, la distance entre leur image par la contraction sera inférieure à αd où $\alpha < 1$.

DÉFINITION: CONTRACTION DE BANACH

Une application $T: E \to E$ est une **contraction de constante** α ssi

$$\begin{cases} (i) & \forall x, x' \in E : ||Tx - Tx'|| \le \alpha ||x - x'|| \\ (ii) & \alpha < 1 \end{cases}$$
 (18.1)

Ainsi, une fonction lipschitzienne de constante strictement inférieure à 1 est une contraction.

Il est intéressant de travailler dans un espace de Banach (par exemple V), c'est à dire un espace vectoriel réel normé (on aura besoin de la notion de distance) **complet**. V est dit complet ssi toute suite dite de Cauchy converge. Pour rappel :

$$\forall \epsilon > 0, \exists N : \forall n \ge N, \forall l > 0 : ||u_{n+l} - u_n|| < \epsilon \tag{18.2}$$

On travaille souvent avec des fermés. Si E est fermé dans V alors toute suite d'éléments de E converge dans E!

18.4.2 Théorème de contraction de Banach

Théorème : Principe de Contraction de Banach Si $T: E \to E$ est une contraction de constante α , alors

- 1. T admet **un** et **un** seul point fixe \tilde{x}
- 2. $\forall x \in E : T^n(x) \to \tilde{x}$
- 3. $\forall x \in E : ||T^n(x) \tilde{x}|| \le \frac{\alpha^n}{-1\alpha} ||Tx x||$

De façon francisée, cela signifie que :

- 1. On admet un point fixe
- 2. D'où que l'on parte, pour chaque $x \in E(T^1, ..., T^n)$ cette suite converge vers ce point fixe
- 3. Quel que soit $x \in E$, si j'ai appliqué n fois la contraction je suis à une distance du point fixe majorée par le longueur du premier pas multiplié par ... Comme $\alpha < 1$, cela tend fortement vers zéro

Démonstration.

Prouvons d'abord qu'il s'agit d'une suite de Cauchy.

Soit $x_0 \in E, x_n := T^n(x_0)$. On peut écrire

$$||x_{n+l} - x_n|| = ||T^{n+l}(x_0 \grave{\mathbf{a}} - T^n(x_0))|$$
(18.3)

L'idée à exploiter est que $T^n(x_0) = T(T^{n-1}(x_0))$. Je peux alors appliquer une majoration en sachant que appliquer T, c'est multiplier par α

$$||x_{n+l} - x_n|| \leq \alpha ||T^{n+l-1}(x_0) - T^{n-1}(x_0)||$$

$$\leq \alpha^2 ||T^{n+l-2}(x_0) - T^{n-2}(x_0)||$$

$$\leq \dots$$

$$\leq \alpha^n ||T^l(x_0) - x_0||$$
(18.4)

On a alors

$$||x_{n+l} - x_n|| \le \alpha^n . ||x_l - x_0|| \tag{*}$$

En appliquant l'inégalité triangulaire

$$||x_{l} - x_{0}|| \leq ||x_{l} - x_{l-1}|| + \dots + ||x_{2} - x_{1}|| + ||x_{1} - x_{0}||$$

$$\leq \underbrace{(\alpha^{l-1} + \dots + \alpha^{1} + \alpha^{0})}_{l-\alpha} ||x_{1} - x_{0}||$$

$$\underbrace{(18.6)}_{1-\alpha}$$

On a alors

$$||x_l - x_0|| \le \frac{1}{1 - \alpha} ||x_1 - x_0|| \tag{**}$$

En rassemblant (*) et (**):

$$||x_{n+l} - x_n|| \le \frac{\alpha^n}{1 - \alpha} ||x_1 - x_0|| \underbrace{\epsilon}_{\text{dès que } n \text{ grand } (l \ge 0)}$$
(18.8)

Ceci démontre que x_n est une suite de Cauchy.

Cette suite converge, car par hypothèse $V,+,\parallel\parallel$ est complet. Comme x_n est une suite de Cauchy, $x_n \to \tilde{x} \in V$. Par hypothèse E est fermé dans V. Comme $\underbrace{x_n}_{\in E} \to \tilde{x} \in V \Rightarrow \tilde{x} \in E$. \(^1\)

Il faut maintenant prouver que \tilde{x} est fixe : $T(\tilde{x}) = \tilde{x}$. Par continuité de la contraction :

$$T(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} T(x_n) = \lim_{n \to \infty} x_n = \tilde{x}$$
(18.9)

^{1.} x_n est une suite d'éléments dans E, elle converge forcément dans E: sa "limite", $\tilde{x} \in E$.

Prouvons maintenant l'unicité de ce point fixe par l'absurde. Soit \tilde{x}, \tilde{y} fixés par T contraction de sorte que $\|\tilde{x} - \tilde{y}\| \neq 0$. Alors

$$\|\tilde{x} - \tilde{y}\| = \|T(\tilde{x}) - T(\tilde{y})\| \le \alpha \|\tilde{x} - \tilde{y}\| < \|\tilde{x} - \tilde{y}\|$$
 (18.10)

On peut éviter la contradiction si $\|\tilde{x} - \tilde{y}\| = 0$ impliquant l' unicité du point fixe.

Il ne reste qu'a prouver la qualité de approximation :

$$||x_{n} - \tilde{x}|| = ||x_{n} - \lim_{l \to \infty} x_{n+l}||$$

$$= \lim_{l \to \infty} ||x_{n} - x_{n+l}||$$

$$\leq \left(\lim_{l \to \infty}\right) \frac{\alpha^{n}}{1-\alpha} ||x_{1} - x_{0}||$$
(18.11)

On peut donc dire que $\tilde{x} \approx x_n$ avec une erreur $\leq \frac{\alpha^n}{1-\alpha} ||x_1 - x_0||$ soit la longueur du premier pas.

18.1 EDO normale du premier ordre

18.1.1 Attention

Le problème de Cauchy

$$\begin{cases} xy' + 2y = 4x^2 \\ y(0) = 1 \end{cases}$$
 (18.12)

n'admet pas de solution car 0 est un point singulier! Il faut faire attention à pas confondre une ED implicite avec une ED explicite (y' = f(x, y)).

18.1.2 Solution maximale et globale dans un cylindre

Considérons le problème de Cauchy

$$\begin{cases} y' = f(t, y) \\ y_0 = y(t_0) \end{cases}$$

$$(18.13)$$

Si l'ED est scalaire, considérons un domaine rectangulaire et un cylindre s'il s'agit d'un SD. Les différents types de solutions sont :

- Maximale; Une solution est dite maximale ssi elle ne peut pas être prolongée en une autre solution, c'est à dire qu'on ne peut la prolonger sur un intervalle plus grand (Pas de solution dans un domaine plus étendu restant dans le domaine de f)
- Globale; Une solution est globale ssi la solution au problème de Cauchy est définie sur *I* tout entier.
- Locale; Une solution est locale ssi il existe un voisinage \mathcal{V} du point de la C.I. tel que la fonction est définie dans un sous-intervalle de I.

EXEMPLE. Soit l'EDO $y' = y^2$. Sa solution générale est $y(t) = -\frac{1}{t+C}$. A cause de l'asymptote, toutes ces solutions sont maximales mais seule la solution nulle est globale.

18.1.3 Régularité des solutions d'une EDO

PROPOSITION

Si $\vec{\varphi}$ est solution de $\vec{y}' = \vec{f}(t, \vec{y})$ pour $\vec{f} \in C^k$, alors $\vec{\varphi} \in C^{k+1}$

Démonstration.

Comme φ est solution d'EDO, il est dérivable (et donc C^0).

• Supposons k = 0

$$\left. \begin{array}{l} \varphi \in C^0 \\ f \in C^0 \end{array} \right\} \Rightarrow t \mapsto f(t, \varphi(t)) \in C^0 \tag{18.14}$$

Or $f(t, \varphi(t)) = \varphi'(t) \Rightarrow \phi \in C^1$.

• Récurrence $^2.$ Supposons vrai pour k-1 et montrons vrai pour k

Vrai pour
$$k-1$$

$$C^{k} \subset C^{k-1}$$
 $\vec{f} \in C^{k}$

$$\Rightarrow \vec{\varphi} \in C^{k} \Rightarrow t \mapsto \vec{f}(t, \vec{\varphi}(t)) \in C^{k}$$

$$(18.15)$$

Or $\vec{\varphi}'(t) = \vec{f}(t, \vec{\varphi}(t))$, d'où $\vec{\varphi}' \in C^k$ c'est-à-dire $\vec{\varphi} \in C^{k+1}$

18.1.4 Équation intégrale d'un problème de Cauchy

Proposition

 φ est solution du problème de Cauchy sur I

$$\begin{cases} y' = f(t,y) \\ y(t_0) = y_0 \end{cases}$$
 (18.16)

ssi

$$\begin{cases} \varphi \in C^0(I) \\ \forall t \in I : \varphi(t) = y_0 + \int_{t_0}^t f(\tau, \varphi(\tau)) d\tau \end{cases}$$
 (18.17)

Démonstration.

Sens direct : $\varphi'(t) = f(t, \varphi(t))$ par hypothèse, il suffit d'intégrer les deux membres de t_0 à t.

Sens indirect : $\varphi \in C^0 \Longrightarrow \tau \mapsto f(\tau, \varphi(\tau)) \in C^0$, d'où $\varphi'(t) = f(t, \varphi(t))$ en dérivant l'équation intégrale.

18.2 Théorème de résolubilité locale

18.2.1 Théorème

THÉORÈME: CAUCHY-PAENO-ARZELA

Le problème de Cauchy

$$\begin{cases}
y' = f(t,y) \\
y(t_0) = y_0
\end{cases}$$
(18.18)

où $f \in C^0(\mathcal{U})$ (\mathcal{U} étant ouvert) et $(t_0, y_0) \in \mathcal{U}$ admet **au moins** une solution locale.

2. ??

18.3 L'opérateur intégral de Picard

18.3.1 L'opérateur intégral de Picard

Inspiré par l'écriture intégrale d'un problème de Cauchy :

$$\vec{\varphi}(t) = \vec{y_0} + \int_{t_0}^t \vec{f}(\tau, \varphi(\tau)) d\tau \tag{18.19}$$

On définit l'opérateur intégral de Picard :

DÉFINITION: OPÉRATEUR INTÉGRAL DE PICARD

$$T: z \mapsto T(z) T(z)|_{t} := \vec{y}_{0} + \int_{t_{0}}^{t} \vec{f}(\tau, z(\tau)) d\tau$$
 (18.20)

T est l'opérateur intégral de Picard **associé au problème de Cauchy** ci-dessus. Les solutions de l'équation intégrale du problème de Cauchy sont donc exactement les points fixes de cet opérateur, c'est-à-dire les fonctions $\vec{\varphi}$ telles que $\vec{\varphi} = T(\vec{\varphi})$.

18.3.9 Erreur d'une approximation de la solution

Étudions la différence entre la solution exacte et l'approximation

$$|y(t) - y_n(t)| = |y_0 + \int_{t_0}^t f(\tau, y(\tau)) d\tau - y_0 - \int_{t_0}^t f(\tau, y_n(\tau)) d\tau|$$

$$= |\int_{t_0}^t (f(\tau, y(\tau)) - f(\tau, y_n(\tau))) d\tau|$$

$$\leq \sup_t |t - t_0|; \sup_\tau |f(\tau, y(\tau)) - f(\tau, y_n(\tau))|$$
(18.21)

Pour que l'erreur soit petite, il faut que t soit proche de t_0 , que l'on parte d'une bonne approximation et aussi que f ne varie pas trop vite en sa deuxième variable y (c'est à dire sup $|\partial f/\partial y|$ petit si f est "brave" (c'est-à-dire lipschitzienne)).

18.5 Condition de Lipschitz

18.5.1 Fonction totalement ou partiellement lipschitzienne

DÉFINITION : FONCTION LIPSCHITZIENNE $f: A \subseteq \mathbb{R} \to \mathbb{R}$ est dite **lipschitzienne** ssi

$$\exists M \in \mathbb{R}(=V) : \forall x, \tilde{x} \in A : |f(x) - f(\tilde{x}) \le M|x - \tilde{x}| \tag{18.22}$$

Ceci signifie que M majore toutes les valeurs absolues de pentes de cordes du graphe de f. Être lipschitzienne est plus fort qu'être continue, mais cela n'implique pas la dérivabilité. Par contre si une fonction est dérivable à dérivée bornée alors elle est lipschitzienne.

On peut généraliser dans le cas où $V=\mathbb{R}^n\times\mathbb{R}^m$ en considérant une condition de Lipschitz "partielle", avec \vec{x} constant

DÉFINITION:

 $\vec{f}: \mathcal{U} \subseteq \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p \text{ est } \Lambda - \text{ lipschitzienne en } \vec{y} \text{ (sur } \mathcal{U}) \text{ ssi}$

$$\forall (x,y), (x,\tilde{y}) \in \mathcal{U} : ||f(x,y) - f(x,\tilde{y})|| \le \Lambda ||y - \tilde{y}||$$
(18.23)

On remarque bien qu'ici x est fixé, constant.

18.5.2 Fonctions localement lipschitzienne

Comme être lipschitzienne est fort contraignant, on ne demande parfois que localement. La définition est presque identique, sauf que l'on se limite à comparer les points de même abscisse en restant dans un voisinage \mathcal{V}_0 .

DÉFINITION:

 $\forall (x_0, y_0) \in \mathcal{U}, \exists \mathcal{V}_0 \text{ voisinage de } (x_0, y_0), \exists \Lambda_0 \in \mathbb{R} :$

$$\forall (x,y), (x,\tilde{y}) \in \mathcal{V}_0 \cap \mathcal{U} : |f(x,y) - f(x,\tilde{y})| \le \Lambda_0 |y - \tilde{y}|$$
(18.24)

Ceci se généralise aux fonction vectorielles en changeant | | par || ||.

18.5.4 CNS pour Lipschitz : composante par composante

PROPOSITION

 \vec{f} est lipschitzienne en \vec{y} ssi $\forall i = 1, \dots, p : f_i$ est lipschitzienne en \vec{y}

Démonstration.

 \vec{f} Λ -lipschitzienne en \vec{y}

$$\Leftrightarrow \forall (\vec{x}, \vec{y}), (\vec{x}, \tilde{\vec{y}}) \in \mathcal{U} : ||\vec{f}(\vec{x}, \vec{y}) - \vec{f}(\vec{x}, \tilde{\vec{y}})||_p^2 \leq \Lambda^2 ||\vec{y} - \tilde{\vec{y}}||_m^2$$

$$\Leftrightarrow \forall (\vec{x}, \vec{y}), (\vec{x}, \tilde{\vec{y}}) \in \mathcal{U} : \sum_{i=1}^p (f_i(\vec{x}, \vec{y}) - f_i(\vec{x}, \tilde{\vec{y}}))^2 \leq \Lambda^2 ||\vec{y} - \tilde{\vec{y}}||_m^2$$

$$\Leftrightarrow \forall i = 1, \dots, p, \quad \forall (\vec{x}, \vec{y}), (\vec{x}, \tilde{\vec{y}}) \in \mathcal{U} : (f_i(\vec{x}, \vec{y}) - f_i(\vec{x}, \tilde{\vec{y}}))^2 \leq \lambda_i^2 ||\vec{y} - \tilde{\vec{y}}||_m^2$$

$$\Leftrightarrow \forall i = 1, \dots, p, \quad f_i \text{ est } \lambda_i \text{ -lipschitzienne}.$$

L'équivalence surmontée d'un point d'interrogation s'établit comme suit :

 \implies est vraie si on a posé $\lambda_i := \Lambda$.

Cette démonstration est naturelle dans le sens ou si \vec{f} est vectorielle et lipschitzienne de même constante, chacune de ses composantes l'est également. Notons que dès que l'on a une constante de Lipschitz, tout nombre supérieur à celle-ci est également une constante de Lipschitz.

18.5.5 C^1 garantit localement Lipschitz

Le plus simple est de travailler avec des dérivées. Si les dérivées d'ordre p sont bornées alors la fonction est lipschitzienne.

Lemme:

Si \vec{f} est différentiable sur $\operatorname{int}(\mathcal{U})$ et continue sur \mathcal{U} et que ses fonctions dérivées $\frac{\partial \vec{f}}{\partial y_1}, \dots, \frac{\partial \vec{f}}{\partial y_m}$ sont bornées sur $\operatorname{int}(\mathcal{U})$, alors \vec{f} est lipschitzienne en \vec{y} sur \mathcal{U} .

 $D\'{e}monstration.$

Supposons que f est scalaire (grâce à la précédente proposition). Grâce au théorème des ac-

croissement fini on peut écrire la différence selon la première égalité si $\exists \vec{c} \in]\vec{y}\vec{y}[\subset \mathbb{R}^m:$

$$|f(\vec{x}, \vec{y}) - f(\vec{x}, \tilde{\vec{y}})| = \left| \langle \vec{\nabla} f \Big|_{(\vec{x}, \vec{c})}, (\vec{x}, \vec{y}) - (\vec{x}, \tilde{\vec{y}}) \rangle \right|$$

$$= |\langle \left(\frac{\partial f}{\partial y_1}, \dots, \frac{\partial f}{\partial y_m} \right) \Big|_{(\vec{x}, \vec{c})}, (y_1 - \tilde{y}_1, \dots, y_m - \tilde{y}_m) \rangle |$$

$$= |\sum_{i} \frac{\partial f}{\partial y_i} \Big|_{(\vec{x}, \vec{c})} (y_i - \tilde{y}_i) |$$

$$\leq \sqrt{\sum_{i} \frac{\partial f}{\partial y_i} \Big|_{(\vec{x}, \vec{c})}^2} ||\vec{y} - \tilde{\vec{y}}||_{m}$$

$$(18.25)$$

On pourrait directement écrire la troisième égalité. Comme il n'y a pas de différence entre \vec{x} et \vec{x} , seul intervienne les dérivées par rapports aux y_i . La dernière inégalité s' obtient grâce à l'inégalité de Cauchy-Schwarz.

Si toute les dérivées $\frac{\partial f}{\partial y_i}$ sont en valeurs absolue majorée par M, alors f est $\sqrt{mM^2}$ -lipschitzienne en \vec{y} .

PROPOSITION

Si $\vec{f} \in C^1(\mathcal{U})$, alors \vec{f} est localement lipschitzienne sur int (\mathcal{U}) .

Démonstration. Non vu?

18.5.3 Fonctions à variables séparées de Lipschitz

Proposition

Si

- $f: A \subseteq \mathbb{R} \to \mathbb{R}: x \mapsto f(x)$ est continue,
- $g: B \subseteq \mathbb{R} \to \mathbb{R}: y \mapsto g(x)$ est localement lipschitzienne,

alors

$$F: A \times B \to \mathbb{R}: (x, y) \mapsto f(x).g(y)$$
 (18.26)

est localement lipschitzienne en y

$D\'{e}monstration.$

Une telle fonction est-elle lipschitzienne? On va essayer de la majorer. Comme x est constant, je peux écrire

$$|f(x)g(y) - f(x)g(\tilde{y})| = |f(x)| \cdot |g(y) - g(\tilde{y})|$$
(18.27)

Je peux toujours majorer de la sorte

$$|f(x)g(y) - f(x)g(\tilde{y})| \le \sup_{\mathcal{V}_{x_0}} |f| \cdot \lambda_0 \cdot |y - \tilde{y}|$$
 (18.28)

Si $\sup_{\mathcal{V}_{x_0}} = M_0 \in \mathbb{R}, F$ est $\lambda_0 M_0$ - lipschitzienne en y. 3

^{3.} J'applique la "définition" de Lipschitz pour la partie en $|g(y) - g(\tilde{y})|$.

18.5.6 Fonctions linéaires en \vec{y} à coefficients continus en t

Considérons la fonction

$$\vec{f}(t, \vec{y}) := A(t)\vec{y} + \vec{b}(y)$$
 (18.29)

où A(y) est $\forall t$ une application linéaire $\mathbb{R}^m \to \mathbb{R}^m$. Une telle fonction est-elle lipschitzienne? On va essayer de la majorer. Par linéarité, je peux mettre en évidence un facteur ||y-z|| pour prendre l'image d'un vecteur normé par A(t) $(\vec{y}, \vec{z} \in \mathbb{R}^m)$

$$\vec{f}(t,\vec{y}) - \vec{f}(t,\vec{z}) = A(t)\vec{y} + \vec{b} - (A(t)\vec{z} + \vec{b})
= A(t)(\vec{y} - \vec{z}) = ||\vec{y} - \vec{z}||A(t)\left(\frac{\vec{y} - \vec{z}}{||\vec{y} - \vec{z}||}\right)$$
(18.30)

Notons l'utilisation d'une petit artifice de calcul à la deuxième ligne, on à multiplié par $\frac{\|\vec{y}-\vec{z}\|}{\|\vec{y}-\vec{z}\|}$. On peut majorer et y aller à la grosse louche à l'aide de la norme de l'application linéaire A(t). Je peux en effet dire que le carré d'une somme est majoré par le carré des éléments de la matrice

$$\|\vec{f}(t,\vec{y}) - \vec{f}(t,\vec{z})\| \le \|\vec{y} - \vec{z}\| \underbrace{\max_{\|\vec{u}\| = 1} \|A(t)(\vec{u})\|}_{\||A(t)|\| \le \sqrt{\sum_{ij} (a_{ij}(t))^2} := \Lambda(t)} (t \text{ fixé!})$$
(18.31)

Dernier souci : $\Lambda(t)$ n'est pas constante. Heureusement, si on prend le suprémum des normes quand t est confiné à un compact, ce suprémum existe dans \mathbb{R} .

18.6 Théorèmes d'existence et d'unicité pour Cauchy

18.6.1 Méthode des approximations successives de Picard

Considérons l'opérateur intégral 4 $T:z\to T(z)$ où

$$T(z)|_{t} := y_{0} + \int_{t_{0}}^{t} f(\tau, z(\tau))d\tau$$
 (18.32)

relatif au **problème de Cauchy** $\begin{cases} y'(t) = f(t,y) \\ y(t_0) = y_0 \end{cases}$ dont les solutions sont les points fixes de

T. Si on arrive à prouver que T est contractant et que l'on est dans un espace de Banach alors on prouve que cet opérateur admet un et un seul point fixe, soit une et une seule solution pour le problème de Cauchy. De plus, d'où que l'on parte, on convergera vers cette sainte solution.

18.6.2 Espace normé, cylindres internes et de sécurité

Il faut travailler dans un espace de Banach, c'est-à-dire un espace vectoriel réel normé et complet. Je m'intéresse à des fonctions au moins dérivables, et donc continue : $V = C^0(I, \mathbb{R}^m)$ (où I est un intervalle autour de t_0 à préciser) muni de la norme suprémum :

$$\|\|_{\infty} : \vec{y} \to \|\vec{y}\|_{\infty} = \sup_{t \in I} \|\vec{y}(t)\|$$
 (18.33)

On a maintenant un espace de Banach dont la convergence sera même uniforme. Il faut maintenant définir E. Je travaille dans un intervalle centrée sur t_0 de demi- côté l et r.

$$C = [t_0 - l, t_0 + l] \times \vec{B}(\vec{y_0}, \vec{r}) \subseteq \mathcal{U}$$
(18.34)

^{4.} Revient très souvent à l'examen!

De façon préventive, le cylindre sera dit de sécurité si $l. \sup_C ||\vec{f}|| \le r$. Autrement dit, le maximum de la pente en valeur absolue ne dépasse pas r; on n'en sortira pas.

Dès lors E:= ensemble des fonctions $y\in C^0(\underbrace{[t_0-l,t_0+l]}_{:=I},\mathbb{R}^m)$ telles que $gph(y)\subset C$, le cylindre de sécurité. C'est-à- dire : $\forall t\in I: \|y(t)-y_0\|\leq r$. On dit bien que y(t) est à une distance de y_0 qui ne dépassera jamais r.

18.6.3 T, opérateur interne et lipschitzien dans E

La première chose à vérifier est que l'on reste toujours dans E

1. T est un opérateur interne à $E: y \in E \to T(y) \in E$. Si $y \in C^0(I, \mathbb{R}^m) \Longrightarrow T(\vec{y}) \in C^0(I, \mathbb{R}^m)$ Comme le graphe de T(y) reste dans C (et on majore l'intégrale comme d'hab):

$$||y(t) - y_0|| \le r \Longrightarrow ||T(y)|_t - y_0|| = ||\int_{t_0}^t f(\tau, y(\tau)) d\tau||$$

$$\le |t - t_0| \sup_{\tau \in I} ||f(\tau, y(\tau))||_m$$

$$\le l\mu$$

$$\le r \qquad \text{(par def. du cylindre de sécurité)}$$

$$(18.35)$$

2. T est lipschitzien (...si f l'est par rapport à y). Il faut avant tout que f ne varie pas trop vite par rapport à y, c'est à dire que pour un même t, la pente ne devrait pas varier trop vite. Je dois prouver que la distance entre les images est inférieure à une constante*... (def. lips.)

$$||T(y) - T(z)||_{\infty} = \sup_{t \in I} \left\| \int_{t_0}^t (f(\tau, y(\tau)) - f(\tau, z(\tau))) d\tau \right\|$$

$$\leq \sup_{\tau \in I} ||f(\tau, y(\tau)) - f(\tau, z(\tau))|| \cdot \sup_{t \in I} |t - t_0|$$

$$\leq \Lambda \cdot \sup_{\tau \in I} ||y(\tau) - z(\tau)| \cdot l$$
(18.36)

où Λ est une constante de Lipschitz de f_C relativement à y. On a ici majoré pour faire apparaître la définition d'une fonction lipschitzienne. D'où

$$||T(y) - T(z)||_{\infty} < \Lambda ||y - a||_{\infty}$$
 (18.37)

C'est-à-dire que Tt est Λl -lipschitzien.

18.6.4 T est contractant dans E^* (de haute sécurité)

Si l est suffisament petit, on rentre dans les conditions de haute sécurité. Le cylindre :

$$C^*[t_0 - l^*, t_0 + l^*] \times \vec{B}(y_0, r)$$
 (18.38)

est dit de haute sécurité si de plus $\Lambda l^* =: \alpha < 1$.

Si l'on définit l'ensemble E^* des fonctions admissibles associé au cylindre C^* alors $T: E^* \to E^*$ est une contraction.

18.6.5 Théorème d'existence et d'unicité locale

Compte-tenu des deux sections précédentes, le principe de contraction de Banach peut s'appliquer. On conclut à l'existence et l'unicité de la solution du problème de Cauchy dont le graphe est inclus dans C^* .

Théorème :

Si $\vec{f}: \mathcal{U} \subseteq \mathbb{R} \times \mathbb{R}^m \to \mathbb{R}^m : (t, \vec{y}) \to \vec{f}(t, \vec{y})$ est continue et lipschitzienne en \vec{y} au **voisinage** de $(t_0, \vec{y}_0) \in \text{int } \mathcal{U}$, alors le problème de Cauchy $\begin{cases} \vec{y}' = \vec{f}(t, \vec{y}) \\ \vec{y}(t_0) = \vec{y}_0 \end{cases}$ admet une seule courbe intégrale au voisinage de (t_0, \vec{y}_0) .

18.6.6 Théorème d'existence et d'unicité d'une solution maximale

C'est possible de l'étendre, mais ce n'est pas vu!

Chapitre 17

Polynômes orthogonaux, fonctions spéciales et résolution d'ED par séries de puissances