Sistema de Numeração e Códigos

Sistemas de Informação CPCX – UFMS Prof. Renato F. dos Santos

Objetivos

- Converter um número de um sistema de numeração (decimal, binário ou hexadecimal) no seu equivalente em qualquer outro sistema de numeração.
- Citar as vantagens do sistema de numeração hexadecimal
- Contar em hexadecimal
- Representar números decimais usando o código BCD; citar os prós e os contras no uso do código BCD.
- Compreender a diferença entre BCD e binário puro.
- Compreender o propósito dos códigos alfanuméricos, como o código ASCII.
- Explicar o método de paridade para detecção de erro.
- Determinar o bit de paridade a ser acrescentado a uma sequência de dados.

Introdução

- O sistema binário é o mais importante sistema de numeração em sistemas digitais
- O sistema decimal é importante porque é universalmente usado para representar quantidades fora do sistema digital
- O sistema de numeração de base hexadecimal se tornou a maneira padrão de comunicar valores numéricos sistemas digitais
- Outro método de representar quantidades decimais com dígitos de codificação binária facilita a conversão entre o código binário e decimal

2.1 Conversões de binário para decimal

- O sistema de numeração binário é um sistema posicional em que cada dígito possui um certo peso
- Qualquer número binário pode ser convertido decimal, somando os pesos das posições em que o número binário tiver um bit 1

11011, no seu equivalente decimal.

1 1 0 1
$$1_2$$

 $2^4 + 2^3 + 0 + 2^1 + 2^0 = 16 + 8 + 2 + 1$
 $= 27_{10}$

Vejamos um outro exemplo com um número maior de bits

1 0 1 1 0 1 0
$$1_2 =$$

 $2^7 + 0 + 2^5 + 2^4 + 0 + 2^2 + 0 + 2^0 = 181_{10}$

2.2 Conversões de decimal para binário

· Há duas maneiras:

- Processo inverso
 - O número decimal é expresso como uma soma de potências de 2;
 - 1s e 0s são colocados nas posições corretas dos bits;
 - Todas as posições têm de ser consideradas.

Para ilustrar:

$$45_{10} = 32 + 8 + 4 + 1 = 2^{5} + 0 + 2^{3} + 2^{2} + 0 + 2^{0}$$

= 1 0 1 1 0 1₂

Outro exemplo:

$$76_{10} = 64 + 8 + 4 = 2^{6} + 0 + 0 + 2^{3} + 2^{2} + 0 + 0$$

= 1 0 0 1 1 0 0₂

2.2 Conversões de decimal para binário (Continuação)

- Divisões sucessivas
 - Divisões sucessivas por 2 (decimal);
 - A divisões ocorrem até que um quociente 0 seja obtido;
 - O resultado binário é alcançado, escrevendo do primeiro resto na posição do LSB e o último resto na posição do MSB;
 - Se o quociente da divisão (12,5) possuir uma parte fracionária (0,5), o resto é 1.

$$25_{10} = 11001_{2}$$

Exemplo 2.1

$$37_{10} = 100101_{2}$$

Faixa de contagem

Geralmente, podemos dizer:

Usando N bits, podemos representar números decimais na faixa de 0 a 2^N -1, em um total de 2^N números diferentes.

2.3 Sistema de numeração hexadecimal

- Usa a base 16
- Possui 16 símbolos possíveis para os dígitos:
 - de 0 a 9 mais as letras A, B, C, D, E e F.
- Os dígitos recebem pesos como potências de 16:

16 ⁴	16 ³	16 ²	16 ¹	16°	, 16 ⁻¹	16 ⁻²	16 ⁻³	16-4	
-----------------	-----------------	-----------------	-----------------	-----	--------------------	------------------	------------------	------	--

Hexadecimal	Decimal	Binário
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

 Tabela 2.1
 Relações entre hexadecimal, decimal e binário.

Conversão de hexa em decimal

– Um número hexa pode ser convertido no seu equivalente em decimal devido ao fato de que a posição de cada dígito hexa tem um peso que é uma potência de 16.

$$356_{16}$$
 = $3 \times 16^{2} + 5 \times 16^{1} + 6 \times 16^{0}$
= $768 + 80 + 6$
= 854_{10}

$$2AF_{16}$$
= 2 X 16² + 10 X 16¹ + 15 X 16⁰
= 512 + 160 + 15
= 687₁₀

Observe que o valor 10 foi substituído por A e o valor 15 por F.

Conversão de decimal em hexa

- Semelhante a conversão de decimal em binário usando divisões sucessivas por 2
- porém a conversão de hexa para decimal usa divisões sucessivas por 16
- Os restos do precesso de divisão sucessiva formam os dígitos do número hexa
- Restos maiores que 9 são representados pelas letras de A até F

Exemplo 2.3 (a)

Hexa	Decimal	Binário
8	8	1000
9	9	1001
A	= 10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Conversão de 423₁₀ em hexa.

$$423_{10} = 1A7_{16}$$

Exemplo 2.3 (b)

Conversão de 21410₁₀ em hexa.

Hexa	Decimal	Binário
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
С	12	1100
D	= 13	1101
E	14	1110
F	15	1111

$$214_{10} = D6_{16}$$

Conversão de hexa em binário

- O sistema de numeração hexadecimal é usado principalmente como um método compacto para representar um número binário
- Cada dígito hexa é convertido no equivalente binário de 4 bits

Conversão de 9F2₁₆:

Hexa	Binário	
8	1000	
9	= 1001	
Α	1010	
В	1011	
С	1100	
D	1101	
E	1110	
(F	= 1111	

$$9F2_{16} = 9$$
 F 2
= 1 0 0 1 1 1 1 1 0 0 1 0
= 1001111110010_{2}

Conversão de binário em hexa

- Consiste em fazer o inverso do processo anterior
- O número binário é disposto em 4 bits, e cada grupo é convertido no dígito hexa equivalente
- São acrescentados zeros quando necessário, para completar um grupo de 4 bits

Hexa	Binário		
8	1000		
9	1001		
A	= 1010		
В	1011		
С	1100		
D	1101		
Е	1110		
F	1111		

Contagem hexadecimal

- Cada dígito pode ser incrementado (acrescido de 1) de 0 a F
- Quando o dígito de uma posição chega no valor
 F, este volta para 0, e o dígito da próxima posição é incrementado
 - (a) 38, 39, 3^a, 3B, 3C, 3D, 3E, 3F, 40, 41, 42
 - (b) 6F8, 6F9,6FA, 6FB, 6FC, 6FD, 6FE, 6FF, 700
- Com N dígitos hexa podemos contar de 0 até o decimal 16^N -1, em um total de 16^N valores diferentes

Vantagens do sistema hexa

- É uma forma "compacta" de representar seqüências de bits
- Essas seqüências binárias podem ser algum tipo de código que representam uma informação não numérica
- Maior conveniência e menor possibilidade de erros
- É importante sempre ter em mente que os sistemas digitais sempre trabalham com binários

Resumo sobre conversões

- 1. Quando converter o binário ou hexa em decimal, use o método da soma dos pesos de cada dígito.
- 2. Quando converter o decimal em binário ou hexa, use o método de divisões sucessivas por 2 (binário) ou 16 (hexa), reunindo os restos da divisão.
- 3. Quando converter o binário em hexa, agrupe os bits em grupos de quatro e converta cada grupo no dígito hexa equivalente.
- 4. Quando converter o hexa em binário, converta cada dígito em 4 bits equivalente.