Deep Neural Network based Power Management System Control for Hybrid Vehicle

Juhui Gim, Wansik Choi School of Mechanical Engineering, Pusan National University, BUSAN, KOREA

Introduction

Power Management System for HEV

Optimal PMS Control

Dynamic Programming based PMS control strategy

Dynamic Programming

Global optimal method, but not practical

minimize
$$J = \sum_{k=0}^{N-1} [J_k^*(x_k)] + J_N^*$$

Requires future information -> Impractical method in real

Practical PMS Control

Rule based PMS control strategy in real environment

Proposed Research

Development of deep learning based PMS control strategy

Objective

Deep learning based model design for getting higher fuel efficiency

Objective

Deep learning based model design for getting higher fuel efficiency

Vehicle Model

Longitudinal Vehicle Model

$$M\dot{v} = (F_{x,f} + F_{x,r}) - D_A - (R_{x,f} + R_{x,r})$$

$$\hline \text{Traction force} \qquad \hline \text{Rolling resistance force} = \frac{1}{2}\rho_{air}A_fC_dv^2$$

$$P_{v[k]} = (F_{x,f} + F_{x,r})v_{[k]}$$

 $ho_{air} = air \, density [kg \, / \, m^3]$ $A_f = vehicle \, frontal \, area [m^2]$ $C_d = aerodynamics \, drag \, coefficient$ $f = rolling \, resistance \, coefficient$

Hybrid Power System

Kinematics of Hybrid Power System

 $W_{g}S + W_{m}R = W_{e}(R+S)$

Dynamics of Hybrid Power System

$$T_g + SF = I_g \dot{W}_g$$

$$T_m - T_{load} + RF = I_m \dot{W}_m$$

$$T_m - (R + S)F - I_m \dot{W}_m$$

$$T_{m} - T_{load} + RF = I_{m}\dot{W}_{m}$$

$$T_{e} - (S+P) \cdot 2F = I_{e}\dot{W}_{e}$$

$$T_{e} - (R+S)F = I_{e}\dot{W}_{e}$$

$$R = 2P + S$$

Inertia of planetary gear is ignored

$$\begin{bmatrix} \left(\frac{R_{tire}}{K_{FR}}\right)^2 M + I_m & 0 & 0 & -R \\ 0 & I_e & 0 & R+S \\ 0 & 0 & I_g & -S \\ -R & R+S & -S & 0 \end{bmatrix} \begin{bmatrix} \dot{W}_m \\ \dot{W}_e \\ \dot{W}_g \\ F \end{bmatrix} = \begin{bmatrix} T_m - T_{load} \\ T_e \\ T_g \\ 0 \end{bmatrix}$$

$$T_{load} = \left(M\dot{v} + Mgf_v + \frac{1}{2}\rho_{air}A_fC_dv^2\right)R_{tire}$$

$$v: \text{ Velocity of the vehicle}$$

$$T_{load} = \left(M\dot{v} + Mgf_v + \frac{1}{2}\rho_{air}A_fC_dv^2\right)R_{tire}$$

 ν : Velocity of the vehicle

Battery Dynamics

$$S\dot{O}C = -\frac{V_{oc} - \sqrt{V_{oc}^2 - 4(T_m W_m \eta_m^k + T_g W_g \eta_g^k)R_{int}}}{C_{battery}}$$

 $C_{battery}$: battery capacity

Apply to Vehicle

Training Data

Speed Profiles

9 speed profiles for training

Additional Features from Speed Profiles

$$P_{v[k]} = \left(M\dot{v}_{k} + Mgf_{v} + \frac{1}{2}\rho_{air}A_{f}C_{d}v_{[k]}^{2}\right)v_{[k]}$$

$$W_{v[k]} = \frac{v_{[k]}}{R_{tire}}$$

$$SOC_{[k]} = SOC_{[k-1]} + dSOC_{[k-1]} \cdot dt, \ SOC_{[0]} = 0.55$$

Additional Features from Speed Profiles

$$W_{g[k]} = \frac{W_{e[k]} \cdot (R+S) + W_{v[k]} \cdot K_{FR} \cdot (-R)}{S}$$

$$W_{m[k]} = W_{v[k]} \cdot K_{FR}$$

$$\begin{split} W_{e[k]} &= W_{e[k-1]} + \left\{ T2W_{(1,1)}T_{e[k-1]} + \right. \\ &\left. T2W_{(1,2)} \left(T_{m+brake[k-1]} \cdot MR - T_{o[k-1]} \right) + T2W_{(1,3)}T_{g[k-1]} \right\} dt \end{split}$$

Dynamic Programming

State variables	Engine speed (W_e) SOC		$0 \le w_e (x_1) \le 4000rpm$ $0.4 \le SOC(x_2) \le 0.7$
Control inputs	Engine torque (T_e) Generator torque (T_{mg1})	Constraints	$-55 \le T_{mg1} (u_1) \le 55Nm$ $0 \le T_e (u_2) \le 100Nm$

Additional Features from DP

Output from DP

Supervised Learning

Supervised Learning: Problem Definition

• T_e/T_g prediction with various DNN structures (Regression problem)

Supervised Learning:Designed Model 1 (Based on FCL)

Directly regression model with fully-connected layer

Supervised Learning:Prediction Result for Model 1

Supervised Learning:Designed Model 2 (Based on CNN)

Directly regression model with CNN

Time window = 10 steps

Supervised Learning:Prediction Result for Model 2 (Case 1)

Generator torque (Nm)	0 -50						
Ö.	₋₁₀₀						
	0	100	200	300 Time (sec)	400	500	600

Supervised Learning: Prediction Result for Model 2 (Case 2)

RMSE	Train result	Test result (US06) 62.1841		
Te	44.1325	62.1841		
Tg	22.5541	35.5008		

Supervised Learning:Designed Model 3 (Based on LSTM)

Directly regression model with LSTM

Supervised Learning: Prediction Result for Model 3 (Sequence = 2 sec)

Generator torque (Nm)	0 -50						
<u>ن</u> .	·100 () 1(00 20	00 30	00 40	00 50	00 600
		, 10	JO 20	Time		,,	,0 000

Supervised Learning:Prediction Result for Model 3 (Sequence = 3 sec)

RMSE	Train result	Test result (US06)		
Te	32.7164	43.1871		
$T_{\mathcal{g}}$	11.0311	16.4077		

→ Sequence ↑ → accuracy ↓(No time series feature in database)

Supervised Learning:Designed Model 4 (Based on GRU)

Directly regression model with GRU

Supervised Learning: Prediction Result for Model 4 (Sequence = 2 sec)

RMSE	Train result	Test result (US06)
Te	29.2779	35.8741
T_g	11.0861	14.7434

Generator torque (Nm)						
0	100	200	300	400	500	600
			Time (sec)			

Supervised Learning:Prediction Result for Model 4 (Sequence = 3 sec)

RMSE	Train result	Test result (US06)
Te	33.7160	42.5497
T_g	12.5286	17.8591

Generator torque (Nm)	50 0 -50 -100						
	0	10	00 20	00 30	00 4	.00 5	00 600
				Time	(sec)		

→ Sequence ↑ → accuracy ↓(No time series feature in database)

Supervised Learning: Summary of 4 Models for Direct Output Prediction

Lower RMSE for test data **FCL LSTM CNN GRU** Error for T_{ρ} 12.3085 39.3080 39.2727 35.8741 Error for T_o 5.8915 24.0154 15.7211 14.7434

Best choice for regression

Supervised Learning: New Approach with Classification of Engine Switching

• Engine switching prediction with various DNN structures (Classification) + T_e/T_g prediction with FCL structure

Supervised Learning:Designed Model 5 (Based on FCL)

Engine switching classification model with fully-connected layer

Supervised Learning:Prediction Result for Model 5

Accuracy (%)	Train result	Test result (US06)
No- Sequence	97.51	96.5

Supervised Learning: Designed Model 6 (Based on CNN)

Engine switching classification model with CNN

Time window = 10 steps

Supervised Learning:Prediction Result for Model 6

Accuracy (%)	Train result	Test result (US06)
Case1 (CPCPCP)	38.05	58.04
Case2 (CCCP)	38.05	59.22

→ CNN is not effective for this case

Supervised Learning:Designed Model 7 (Based on LSTM)

Engine switching classification model with LSTM

Supervised Learning:Prediction Result for Model 7

Accuracy (%)	Train result	Test result (US06)
Sequence =2steps	83.89	78.30
Sequence =3steps	68.18	72.74

→ Sequence ↑ → accuracy ↓
 (No time series feature in database)

Supervised Learning: Designed Model 8 (Based on GRU)

Engine switching classification model with GRU

Supervised Learning:Prediction Result for Model 8

Accuracy (%)	Train result	Test result (US06)
Sequence =2steps	67.17	71.45
Sequence =3steps	76.68	68.90

→ Sequence ↑ → accuracy ↓
 (No time series feature in database)

Supervised Learning: Summary of 4 Models for Engine Switching Prediction

Best choice for classification

Supervised Learning:Regression Model w.r.t. Engine Switching

• T_e/T_g prediction model with FCL structure w.r.t. engine switching

Supervised Learning:Regression Model when Engine Off

• T_g prediction model with fully-connected layer

Supervised Learning: Prediction Result for FCL Model when Engine Off

RMSE	Train result	Test result (US06)
T_g	3.1208	7.0292

Supervised Learning:Regression Model when Engine On

• T_e/T_g prediction model with fully-connected layer

Supervised Learning: Prediction Result for FCL Model when Engine On

RMSE	Train result	Test result (US06)
Te	8.4417	14.5458
$T_{\mathcal{G}}$	3.1392	8.3587

Supervised Learning: Final Model for PMS Control

• Engine switching prediction with FCL structure $\rightarrow T_e/T_g$ prediction with FCL structure

Supervised Learning:Simulation Validation for Final Model

Validation with train data (one of a highway cycle)

	Fuel Efficiency [mpg]
DP based	55.0117
DNN based	49.8925 (90.69%)

엔진 작동 구간

배터리 작동 구간

Supervised Learning:Simulation Validation for Final Model

Validation with train data (one of a city cycle)

	Fuel Efficiency [mpg]
DP based	57.8730
DNN based	34.4497 (78.20%)

엔진 작동 구간

배터리 작동 구간

Supervised Learning:Simulation Validation for Final Model

Validation with test data

	Fuel Efficiency [mpg]
DP based	38.6082
DNN based	36.1688 (93.68%)

엔진 작동 구간

DP based **DNN** based 120 120 100 100 Torque (Nm) Torque (Nm) 80 80 60 60 40 40 20 20 2000 2500 3000 2000 2500 3000 3500 4000 1000 1500 3500 1500 Speed (rpm) Speed (rpm)

배터리 작동 구간

Reinforcement Learning

Reinforcement Learning: Deep Deterministic Policy Gradients

The model trained by the loop with 2 steps

- 1) Exploration
- 2) Optimization

1) Exploration

Reinforcement Learning: Deep Deterministic Policy Gradients

2) Optimization – Update Critic

Reinforcement Learning: Deep Deterministic Policy Gradients

2) Optimization – Update Actor

3) Soft copy Actor' and Critic'

Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." arXiv preprint arXiv:1509.02971 (2015).

Reinforcement Learning: Structure of Actor and Critic

Inputs: acceleration, generator speed, engine speed, motor speed, SOC, mean of velocity, std of velocity (5)

Outputs: desired engine torque, desired engine speed (2)

Hidden layers: 5 hidden layers with 30 nodes (leaky relu)

Inputs: acceleration, generator speed, engine speed, motor speed, SOC, desired engine torque, desired engine speed, mean of velocity, std of velocity (9)

Outputs: Q value (1)

Hidden layers: 5 hidden layers with 40 nodes (leaky relu)

Reinforcement Learning: Result

One of a city cycle

	Fuel Efficiency [mpg]
DP based	57.8730
RL based	29.9903 (51.82%)

Conclusions

Conclusions

PMS control with supervised learning

DNN based fuel efficiency

36.1688 mpg (93.68%)

Conclusions

PMS control with reinforcement learning

The fuel consumption performance is worse than DNN

- → The states can not represent the features clearly
 - Similar inputs with different outputs → Not trainable dataset)
- → The inputs with exploration are loosely bounded
 - Without precise bound, explorations are useless (ex: break the SOC bound or cycle)

	Fuel Efficiency [mpg]
DP based	57.8730
RL based	29.9903 (51.82%)

Thank you