STAT/BIOSTAT 534 Statistical Computing Univariate Logistic Regression

Adrian Dobra adobra@uw.edu

We assume to have observed the n independent samples

$$\mathcal{D} = \{(y_1, x_1), \dots, (y_n, x_n)\}.$$

The response variable Y is binary, i.e. $y_i \in \{0,1\}$ for $i=1,2,\ldots,n$. The explanatory variable X can be continuous or discrete. We consider the univariate logistic regression model

$$\log \frac{P(y=1|x)}{P(y=0|x)} = \beta_0 + \beta_1 x.$$
 (1)

Our model assumptions say that each y_i follows a Bernoulli distribution with probability of success $\pi_i = P(y_i = 1|x_i)$:

$$y_i \sim Ber(\pi_i)$$
.

Since the samples are assumed to be independent, the likelihood is:

$$L(\beta_0, \beta_1 | \mathcal{D}) = \prod_{i=1}^n [P(y_i = 1 | x_i)]^{y_i} [1 - P(y_i = 1 | x_i)]^{1-y_i},$$

where

$$\pi_i = P(y_i = 1|x_i) = logit^{-1}(\beta_0 + \beta_1 x_i) \in (0, 1).$$

We define the *logit* function:

$$logit: (0,1) \longrightarrow (-\infty, +\infty), \quad logit(p) = \log \frac{p}{1-p}.$$

Its inverse is:

$$logit^{-1}: (-\infty, +\infty) \longrightarrow (0, 1), \quad logit^{-1}(x) = \frac{\exp(x)}{1 + \exp(x)}.$$

The log-likelihood is

$$l(\beta_0, \beta_1 | \mathcal{D}) = \log L(\beta_0, \beta_1 | \mathcal{D}), \tag{2}$$

$$= \sum_{i=1}^{n} (y_i \log \pi_i + (1 - y_i) \log[1 - \pi_i]). \tag{3}$$

Simple calculations show that

$$\frac{\partial l(\beta_0, \beta_1 | \mathcal{D})}{\partial \beta_0} = \sum_{i=1}^n [y_i - \pi_i],$$

$$\frac{\partial l(\beta_0, \beta_1 | \mathcal{D})}{\partial \beta_1} = \sum_{i=1}^n [y_i x_i - \pi_i x_i].$$

The gradient of $l(\beta_0, \beta_1)$ is

$$\nabla l(\beta_0, \beta_1) = \begin{pmatrix} \frac{\partial l(\beta_0, \beta_1)}{\partial \beta_0} \\ \frac{\partial l(\beta_0, \beta_1)}{\partial \beta_1} \end{pmatrix}.$$

The Hessian matrix associated with $l(\beta_0, \beta_1)$ is

$$D^{2}l(\beta_{0},\beta_{1}) = \begin{bmatrix} \frac{\partial^{2}l(\beta_{0},\beta_{1})}{\partial\beta_{0}^{2}} & \frac{\partial^{2}l(\beta_{0},\beta_{1})}{\partial\beta_{0}\partial\beta_{1}} \\ \frac{\partial^{2}l(\beta_{0},\beta_{1})}{\partial\beta_{1}\partial\beta_{0}} & \frac{\partial^{2}l(\beta_{0},\beta_{1})}{\partial\beta_{1}^{2}} \end{bmatrix}.$$

We determine the mode log-likelihood (2), i.e.

$$(\widehat{\beta}_0, \widehat{\beta}_1) = \operatorname{argmax}_{(\beta_0, \beta_1) \in \Re^2} l(\beta_0, \beta_1),$$

by employing the Newton-Raphson algorithm. The procedure starts with the initial values $\left(\beta_0^{(0)},\beta_1^{(0)}\right)=(0,0)$. At iteration k, we update our current estimate $\left(\beta_0^{(k-1)},\beta_1^{(k-1)}\right)$ of the mode $\left(\widehat{\beta}_0,\widehat{\beta}_1\right)$ to a new estimate $\left(\beta_0^{(k)},\beta_1^{(k)}\right)$ as follows:

$$\begin{pmatrix} \beta_0^{(k)} \\ \beta_1^{(k)} \end{pmatrix} = \begin{pmatrix} \beta_0^{(k-1)} \\ \beta_1^{(k-1)} \end{pmatrix} - \left[D^2 l(\beta_0^{(k-1)}, \beta_1^{(k-1)}) \right]^{-1} \nabla l(\beta_0^{(k-1)}, \beta_1^{(k-1)}).$$

The procedure stops when the estimates of the mode do not change after performing a new update, i.e. $|\beta_0^{(k)} - \beta_0^{(k-1)}| < \epsilon$ and $|\beta_1^{(k)} - \beta_1^{(k-1)}| < \epsilon$. Here ϵ is some small positive number, e.g. 0.0001.