Számítási modellek

5. előadás

Legyenek X és Y logikai változók (0 vagy 1 értékűek). A legfontosabb legfeljebb kétváltozós logikai műveletek:

X	Y	$\neg X$	$X \wedge Y$	$X \vee Y$	$X \to Y$	$X \otimes Y$
1	1	0	1	1	1	0
1	0	0	0	1	0	1
0	1	1	0	1	1	1
0	0	1	0	0	1	0

Legyenek X és Y logikai változók (0 vagy 1 értékűek). A legfontosabb legfeljebb kétváltozós logikai műveletek:

X	Y	$\neg X$	$X \wedge Y$	$X \vee Y$	$X \to Y$	$X \otimes Y$
1	1	0	1	1	1	0
1	0	0	0	1	0	1
0	1	1	0	1	1	1
0	0	1	0	0	1	0

 $X \rightarrow Y$ logikailag ekvivalens $\neg X \lor Y$ -nal.

 $X \otimes Y$ logikailag ekvivalens $(\neg X \land Y) \lor (X \land \neg Y)$ -nal.

Legyenek X és Y logikai változók (0 vagy 1 értékűek). A legfontosabb legfeljebb kétváltozós logikai műveletek:

X	Y	$\neg X$	$X \wedge Y$	$X \vee Y$	$X \to Y$	$X \otimes Y$
1	1	0	1	1	1	0
1	0	0	0	1	0	1
0	1	1	0	1	1	1
0	0	1	0	0	1	0

 $X \rightarrow Y$ logikailag ekvivalens $\neg X \lor Y$ -nal.

 $X \otimes Y$ logikailag ekvivalens $(\neg X \wedge Y) \vee (X \wedge \neg Y)$ -nal.

A logikai műveleteket Boole-függvényeknek is szokás nevezni.

Definíció

Boole-függvénynek nevezünk egy $f:\{0,1\}^n \to \{0,1\}$ leképezést.

Sok algoritmikus probléma valójában megfelel egy Boole-függvény kiszámításának.

Sok algoritmikus probléma valójában megfelel egy Boole-függvény kiszámításának.

Példa: Ha egy n csúcsú irányítatlan gráfról szeretnénk eldönteni, hogy rendelkezik-e egy tulajdonsággal, akkor az valójában egy $f:\{0,1\}^N \to \{0,1\}$ Boole-függvény kiszámítását jelenti, ahol $N=\binom{n}{2}$.

Sok algoritmikus probléma valójában megfelel egy Boole-függvény kiszámításának.

Példa: Ha egy n csúcsú irányítatlan gráfról szeretnénk eldönteni, hogy rendelkezik-e egy tulajdonsággal, akkor az valójában egy $f:\{0,1\}^N \to \{0,1\}$ Boole-függvény kiszámítását jelenti, ahol $N=\binom{n}{2}$. A változókat feleltessük meg az N csúcspárnak, és egy változó értéke akkor legyen 1, ha a gráfban a két csúcs között van él. Így a változókiértékelések bijekcióba állíthatók a lehetséges gráfokkal.

Sok algoritmikus probléma valójában megfelel egy Boole-függvény kiszámításának.

Példa: Ha egy n csúcsú irányítatlan gráfról szeretnénk eldönteni, hogy rendelkezik-e egy tulajdonsággal, akkor az valójában egy $f:\{0,1\}^N \to \{0,1\}$ Boole-függvény kiszámítását jelenti, ahol $N=\binom{n}{2}$. A változókat feleltessük meg az N csúcspárnak, és egy változó értéke akkor legyen 1, ha a gráfban a két csúcs között van él. Így a változókiértékelések bijekcióba állíthatók a lehetséges gráfokkal.

Akár NP-teljes problémák is leírhatók így, ha például ez a tulajdonság az, hogy van-e a gráfban Hamilton kör.

Definíció

A konjunkció, diszjunkció és negáció műveleteivel felírt kifejezéseket Boole-polinomoknak nevezzük.

Definíció

A konjunkció, diszjunkció és negáció műveleteivel felírt kifejezéseket **Boole-polinomoknak** nevezzük.

Tétel

Minden Boole-függvény kifejezhető Boole-polinomként.

Definíció

A konjunkció, diszjunkció és negáció műveleteivel felírt kifejezéseket **Boole-polinomoknak** nevezzük.

Tétel

Minden Boole-függvény kifejezhető Boole-polinomként.

Bizonyítás: Legyen $f(X_1,\ldots,X_n):\{0,1\}^n\to\{0,1\}$ egy tetszőleges Boole-függvény és vezessük be az $f^1=\{\mathbf{z}\in\{0,1\}^n\,|\,f(\mathbf{z})=1\}$ jelölést.

Definíció

A konjunkció, diszjunkció és negáció műveleteivel felírt kifejezéseket Boole-polinomoknak nevezzük.

Tétel

Minden Boole-függvény kifejezhető Boole-polinomként.

Bizonyítás: Legyen $f(X_1,\ldots,X_n):\{0,1\}^n\to\{0,1\}$ egy tetszőleges Boole-függvény és vezessük be az $f^1=\{\mathbf{z}\in\{0,1\}^n\,|\,f(\mathbf{z})=1\}$ jelölést. Ha $\mathbf{z}\in\{0,1\}^n$ akkor legyen

$$\varphi_{\mathbf{z}}(X_1,\ldots,X_n):=\bigwedge_{i=1}^n L_i,$$

ahol $L_i = X_i$ ha $z_i = 1$ és $L_i = \neg X_i$ ha $z_i = 0$.

Definíció

A konjunkció, diszjunkció és negáció műveleteivel felírt kifejezéseket Boole-polinomoknak nevezzük.

Tétel

Minden Boole-függvény kifejezhető Boole-polinomként.

Bizonyítás: Legyen $f(X_1,\ldots,X_n):\{0,1\}^n \to \{0,1\}$ egy tetszőleges Boole-függvény és vezessük be az $f^1=\{\mathbf{z}\in\{0,1\}^n\,|\,f(\mathbf{z})=1\}$ jelölést. Ha $\mathbf{z}\in\{0,1\}^n$ akkor legyen

$$\varphi_{\mathbf{z}}(X_1,\ldots,X_n):=\bigwedge_{i=1}^n L_i,$$

ahol $L_i = X_i$ ha $z_i = 1$ és $L_i = \neg X_i$ ha $z_i = 0$.

Ekkor $\varphi_{\mathbf{z}}(X_1,\ldots,X_n)=1$ akkor és csak akkor, ha $X_i=z_i$ minden $1\leqslant i\leqslant n$ esetén.

Tehát a

$$\psi(X_1,\ldots,X_n)=\bigvee_{\mathbf{z}\in f^1}\varphi_{\mathbf{z}}(X_1,\ldots,X_n)$$

Boole-polinomra

Tehát a

$$\psi(X_1,\ldots,X_n)=\bigvee_{\mathbf{z}\in f^1}\varphi_{\mathbf{z}}(X_1,\ldots,X_n)$$

Boole-polinomra
$$\psi(X_1,\ldots,X_n)=1\Longleftrightarrow$$
 valamely $\mathbf{z}\in f^1$ -re $\varphi_{\mathbf{z}}(X_1,\ldots,X_n)=1$

Tehát a

$$\psi(X_1,\ldots,X_n)=\bigvee_{\mathbf{z}\in f^1}\varphi_{\mathbf{z}}(X_1,\ldots,X_n)$$

Boole-polinomra $\psi(X_1,\ldots,X_n)=1 \Longleftrightarrow \text{valamely } \mathbf{z} \in f^1\text{-re}$ $\varphi_{\mathbf{z}}(X_1,\ldots,X_n)=1 \Longleftrightarrow \text{valamely } \mathbf{z} \in f^1\text{-re } X_i=z_i \text{ minden } 1 \leqslant i \leqslant n$

Tehát a

$$\psi(X_1,\ldots,X_n)=\bigvee_{\mathbf{z}\in f^1}\varphi_{\mathbf{z}}(X_1,\ldots,X_n)$$

Boole-polinomra $\psi(X_1,\ldots,X_n)=1 \Longleftrightarrow \text{valamely } z \in f^1\text{-re}$ $\varphi_{\mathbf{z}}(X_1,\ldots,X_n)=1 \Longleftrightarrow \text{valamely } \mathbf{z} \in f^1\text{-re } X_i=z_i \text{ minden } 1 \leqslant i \leqslant n \Longleftrightarrow (X_1,\ldots,X_n) \in f^1$

Tehát a

$$\psi(X_1,\ldots,X_n)=\bigvee_{\mathbf{z}\in f^1}\varphi_{\mathbf{z}}(X_1,\ldots,X_n)$$

Boole-polinomra
$$\psi(X_1, \ldots, X_n) = 1 \iff \text{valamely } z \in f^1\text{-re}$$

 $\varphi_z(X_1, \ldots, X_n) = 1 \iff \text{valamely } z \in f^1\text{-re } X_i = z_i \text{ minden}$
 $1 \le i \le n \iff (X_1, \ldots, X_n) \in f^1 \iff f(X_1, \ldots, X_n) = 1.$

Tehát a

$$\psi(X_1,\ldots,X_n)=\bigvee_{\mathbf{z}\in f^1}\varphi_{\mathbf{z}}(X_1,\ldots,X_n)$$

Boole-polinomra $\psi(X_1, \ldots, X_n) = 1 \iff \text{valamely } z \in f^1\text{-re}$ $\varphi_{\mathbf{z}}(X_1, \ldots, X_n) = 1 \iff \text{valamely } \mathbf{z} \in f^1\text{-re } X_i = z_i \text{ minden}$ $1 \leqslant i \leqslant n \iff (X_1, \ldots, X_n) \in f^1 \iff f(X_1, \ldots, X_n) = 1.$

Példa:

X_1	X_2	X_3	$f(X_1,X_2,X_3)$	$\psi(X_1,X_2,X_3) =$
1	1	1	0	
1	1	0	1	$(X_1 \wedge X_2 \wedge \neg X_3) \vee$
1	0	1	0	
1	0	0	0	
0	1	1	0	
0	1	0	1	$(\neg X_1 \wedge X_2 \wedge \neg X_3) \vee$
0	0	1	1	$(\neg X_1 \land \neg X_2 \land X_3) \lor$
0	0	0	1	$(\neg X_1 \wedge \neg X_2 \wedge \neg X_3)$

Definíció

Legyen G=(V,E) egy irányított gráf. A csúcsaink egy v_1,\ldots,v_n sorrendjét **topologikus sorrendnek** nevezzük, ha $(v_i,v_j)\in E \Rightarrow i < j$.

Definíció

Legyen G=(V,E) egy irányított gráf. A csúcsaink egy v_1,\ldots,v_n sorrendjét **topologikus sorrendnek** nevezzük, ha $(v_i,v_j)\in E \Rightarrow i< j$.

Tétel

Egy irányított gráf akkor és csak akkor aciklikus (azaz, irányított kört nem tartalmazó), ha a csúcsainak van topologikus sorrendje.

Definíció

Legyen G=(V,E) egy irányított gráf. A csúcsaink egy v_1,\ldots,v_n sorrendjét **topologikus sorrendnek** nevezzük, ha $(v_i,v_j)\in E \Rightarrow i< j$.

Tétel

Egy irányított gráf akkor és csak akkor aciklikus (azaz, irányított kört nem tartalmazó), ha a csúcsainak van topologikus sorrendje.

A tétel BSc-s tananyag, itt nem bizonyítjuk.

Definíció

Legyen G=(V,E) egy irányított gráf. A csúcsaink egy v_1,\ldots,v_n sorrendjét **topologikus sorrendnek** nevezzük, ha $(v_i,v_j)\in E \Rightarrow i < j$.

Tétel

Egy irányított gráf akkor és csak akkor aciklikus (azaz, irányított kört nem tartalmazó), ha a csúcsainak van topologikus sorrendje.

A tétel BSc-s tananyag, itt nem bizonyítjuk.

Gráfok körmentességének ellenőrzése és egyúttal aciklikusság esetén a csúcsok topologikus sorrendjének megadására hatékony, O('elsz'am) futási idejű algoritmusok ismeretesek (például a mélységi keresés befejezési száma szerinti csökkenő sorrend jó; egy gráf körmenetes a.cs.a. ha a mélységi keresés nem talál visszaélt).

A logikai hálózat logikai műveleteknek megfelelő kapuk hálózata, speciális esete a Boole-hálózat, ahol a kapuk típusa csak ¬, ∧ és ∨ lehet.

- A logikai hálózat logikai műveleteknek megfelelő kapuk hálózata, speciális esete a Boole-hálózat, ahol a kapuk típusa csak ¬, ∧ és ∨ lehet.
- A digitális áramkör elméleti megfelelője a Boole-hálózat, a modell számítási erejét tekintve a Turing gépekkel ekvivalens.

- A logikai hálózat logikai műveleteknek megfelelő kapuk hálózata, speciális esete a Boole-hálózat, ahol a kapuk típusa csak ¬, ∧ és ∨ lehet.
- A digitális áramkör elméleti megfelelője a Boole-hálózat, a modell számítási erejét tekintve a Turing gépekkel ekvivalens.
- A logikai hálózatok segítségével közvetlenül, jól áttekinthetően leírható az algoritmusok logikai struktúrája.

- A logikai hálózat logikai műveleteknek megfelelő kapuk hálózata, speciális esete a Boole-hálózat, ahol a kapuk típusa csak ¬, ∧ és ∨ lehet.
- A digitális áramkör elméleti megfelelője a Boole-hálózat, a modell számítási erejét tekintve a Turing gépekkel ekvivalens.
- A logikai hálózatok segítségével közvetlenül, jól áttekinthetően leírható az algoritmusok logikai struktúrája.
- Az algoritmusok logikai hálózatokkal történő leírása ötleteket adhat párhuzamos algoritmusok készítésére.

- A logikai hálózat logikai műveleteknek megfelelő kapuk hálózata, speciális esete a Boole-hálózat, ahol a kapuk típusa csak ¬, ∧ és ∨ lehet.
- A digitális áramkör elméleti megfelelője a Boole-hálózat, a modell számítási erejét tekintve a Turing gépekkel ekvivalens.
- A logikai hálózatok segítségével közvetlenül, jól áttekinthetően leírható az algoritmusok logikai struktúrája.
- Az algoritmusok logikai hálózatokkal történő leírása ötleteket adhat párhuzamos algoritmusok készítésére.
- A P≠NP sejtés támadására potenciálisan alkalmasnak vélt számítási modell.

- A logikai hálózat logikai műveleteknek megfelelő kapuk hálózata, speciális esete a Boole-hálózat, ahol a kapuk típusa csak ¬, ∧ és ∨ lehet.
- A digitális áramkör elméleti megfelelője a Boole-hálózat, a modell számítási erejét tekintve a Turing gépekkel ekvivalens.
- A logikai hálózatok segítségével közvetlenül, jól áttekinthetően leírható az algoritmusok logikai struktúrája.
- Az algoritmusok logikai hálózatokkal történő leírása ötleteket adhat párhuzamos algoritmusok készítésére.
- A P≠NP sejtés támadására potenciálisan alkalmasnak vélt számítási modell.
- A Cook-Levin tételre (a SAT nyelv NP-teljes) alternatív bizonyítás adható Boole-hálózatok segítségével.

Definíció

Boole-hálózat egy csúcscímkézett, aciklikus irányított gráf, melyre

Definíció

Boole-hálózat egy csúcscímkézett, aciklikus irányított gráf, melyre

 a források (bemeneti csúcsok) páronként különböző ítéletváltozókkal vannak címkézve,

Definíció

Boole-hálózat egy csúcscímkézett, aciklikus irányított gráf, melyre

- a források (bemeneti csúcsok) páronként különböző ítéletváltozókkal vannak címkézve,
- a többi csúcs logikai kapu, ezek az ¬, ∧, ∨ logikai műveletek valmelyikével vannak címkézve, a ¬ kapuk befoka 1, a ∧ és ∨ kapuk befoka 2,

Definíció

Boole-hálózat egy csúcscímkézett, aciklikus irányított gráf, melyre

- a források (bemeneti csúcsok) páronként különböző ítéletváltozókkal vannak címkézve,
- a többi csúcs logikai kapu, ezek az ¬, ∧, ∨ logikai műveletek valmelyikével vannak címkézve, a ¬ kapuk befoka 1, a ∧ és ∨ kapuk befoka 2,
- egyetlen 0 kifokú kapu (nyelő) van, ezt kimeneti kapunak (vagy kimeneti csúcsnak) nevezzünk.

Definíció

Boole-hálózat egy csúcscímkézett, aciklikus irányított gráf, melyre

- a források (bemeneti csúcsok) páronként különböző ítéletváltozókkal vannak címkézve,
- a többi csúcs logikai kapu, ezek az ¬, ∧, ∨ logikai műveletek valmelyikével vannak címkézve, a ¬ kapuk befoka 1, a ∧ és ∨ kapuk befoka 2,
- egyetlen 0 kifokú kapu (nyelő) van, ezt kimeneti kapunak (vagy kimeneti csúcsnak) nevezzünk.

Példa:

Boole-hálózatok kiértékelése

Definíció

Legyenek $V(C) = \{X_1, \dots, X_n\}$ a C Boole-hálózat bemeneti csúcsai és $I: V(C) \rightarrow \{0,1\}$ egy változókiértékelés.

Boole-hálózatok kiértékelése

Definíció

Legyenek $V(C)=\{X_1,\ldots,X_n\}$ a C Boole-hálózat bemeneti csúcsai és $I:V(C)\to\{0,1\}$ egy változókiértékelés. Tekintsük C egy tetszőleges topologikus sorrendjét.

Boole-hálózatok kiértékelése

Definíció

Legyenek $V(C)=\{X_1,\ldots,X_n\}$ a C Boole-hálózat bemeneti csúcsai és $I:V(C)\to\{0,1\}$ egy változókiértékelés. Tekintsük C egy tetszőleges topologikus sorrendjét. Ekkor az egyes logikai kapukhoz tartozó Boole-értéket ezen sorrend szerint a kapu típusa alapján a korábbi kapukhoz és bemeneti csúcsok rendelt Boole-értékek alapján meghatározhatjuk.

Boole-hálózatok kiértékelése

Definíció

Legyenek $V(C)=\{X_1,\ldots,X_n\}$ a C Boole-hálózat bemeneti csúcsai és $I:V(C)\to\{0,1\}$ egy változókiértékelés. Tekintsük C egy tetszőleges topologikus sorrendjét. Ekkor az egyes logikai kapukhoz tartozó Boole-értéket ezen sorrend szerint a kapu típusa alapján a korábbi kapukhoz és bemeneti csúcsok rendelt Boole-értékek alapján meghatározhatjuk. A C Boole-hálózat $\mathcal{B}_I(C)$ Boole-értéke I-ben a kimeneti kapuhoz rendelt Boole-érték.

Boole-hálózatok kiértékelése

Definíció

Legyenek $V(C)=\{X_1,\ldots,X_n\}$ a C Boole-hálózat bemeneti csúcsai és $I:V(C)\to\{0,1\}$ egy változókiértékelés. Tekintsük C egy tetszőleges topologikus sorrendjét. Ekkor az egyes logikai kapukhoz tartozó Boole-értéket ezen sorrend szerint a kapu típusa alapján a korábbi kapukhoz és bemeneti csúcsok rendelt Boole-értékek alapján meghatározhatjuk. A C Boole-hálózat $\mathcal{B}_I(C)$ Boole-értéke I-ben a kimeneti kapuhoz rendelt Boole-érték.

Példa:

Boole-hálózat által kiszámított Boole-függvény

Definíció

A C Boole-hálózat által kiszámított Boole-függvény alatt az $f:(I(X_1),\ldots,I(X_n))\mapsto \mathcal{B}_I(C)$ függvényt értjük $(I:V(C)\to\{0,1\}$ tetszőleges).

Boole-hálózat által kiszámított Boole-függvény

Definíció

A C Boole-hálózat által kiszámított Boole-függvény alatt az $f: (I(X_1), \ldots, I(X_n)) \mapsto \mathcal{B}_I(C)$ függvényt értjük $(I: V(C) \to \{0,1\} \text{ tetszőleges}).$

A kiszámított Boole-függvény:

X_1	X_2	X_3	$\mathcal{B}_{I}(C)$
1	1	1	0
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	0
0	1	0	1
0	0	1	1
0	0	0	1

Példa: A parity_n : $\{0,1\}^n \to \{0,1\}$ Boole függvény akkor és csak akkor ad 1-et, ha páratlan sok 1-es bemenete van.

Példa: A parity_n : $\{0,1\}^n \to \{0,1\}$ Boole függvény akkor és csak akkor ad 1-et, ha páratlan sok 1-es bemenete van. n=4:

$$\mathsf{parity}_1(X_1) = X_1,$$

Példa: A parity_n : $\{0,1\}^n \to \{0,1\}$ Boole függvény akkor és csak akkor ad 1-et, ha páratlan sok 1-es bemenete van. n=4:

$$\operatorname{parity}_1(X_1) = X_1$$
, $\operatorname{parity}_2(X_1, X_2) = X_1 \otimes X_2$,

Példa: A parity_n : $\{0,1\}^n \rightarrow \{0,1\}$ Boole függvény akkor és csak akkor ad 1-et, ha páratlan sok 1-es bemenete van. n=4:

$$\mathsf{parity}_1(X_1) = X_1$$
, $\mathsf{parity}_2(X_1, X_2) = X_1 \otimes X_2$, $\mathsf{parity}_3(X_1, X_2, X_3) = X_1 \otimes (X_2 \otimes X_3)$,

Példa: A parity_n : $\{0,1\}^n \to \{0,1\}$ Boole függvény akkor és csak akkor ad 1-et, ha páratlan sok 1-es bemenete van. n=4:

 $\begin{array}{ll} \mathsf{parity}_1(X_1) = X_1, & \mathsf{parity}_2(X_1, X_2) = X_1 \otimes X_2, \\ \mathsf{parity}_3(X_1, X_2, X_3) = X_1 \otimes (X_2 \otimes X_3), \\ \mathsf{parity}_4(X_1, X_2, X_3, X_4) = (X_1 \otimes X_2) \otimes (X_3 \otimes X_4), \end{array}$

Példa: A parity_n : $\{0,1\}^n \rightarrow \{0,1\}$ Boole függvény akkor és csak akkor ad 1-et, ha páratlan sok 1-es bemenete van. n=4:

$$\begin{array}{ll} \mathsf{parity_1}(X_1) = X_1, & \mathsf{parity_2}(X_1, X_2) = X_1 \otimes X_2, \\ \mathsf{parity_3}(X_1, X_2, X_3) = X_1 \otimes (X_2 \otimes X_3), \\ \mathsf{parity_4}(X_1, X_2, X_3, X_4) = (X_1 \otimes X_2) \otimes (X_3 \otimes X_4), \\ \mathsf{parity_n}(X_1, \dots, X_n) = \mathsf{parity_{n-2}}(X_1, \dots, X_{n-2}) \otimes (X_{n-1} \otimes X_n). \end{array}$$

Egy általánosítási lehetőség ha több nyelőt is megengedünk, akkor tetszőleges függvényeket is kiszámíthatunk Boole hálózatok segítségével. Ilyenkor a kimenet egy bitsorozat, melynek a hossza a nyelők száma. Általánosabb függvények kiszámításához kódoljuk át a be- és kimeneteket $\{0,1\}$ feletti szóvá.

Egy általánosítási lehetőség ha több nyelőt is megengedünk, akkor tetszőleges függvényeket is kiszámíthatunk Boole hálózatok segítségével. Ilyenkor a kimenet egy bitsorozat, melynek a hossza a nyelők száma. Általánosabb függvények kiszámításához kódoljuk át a be- és kimeneteket $\{0,1\}$ feletti szóvá.

Példa:

Megkonstruálható egy olyan Boole-hálózat, amelynek a bemeneti változói $X_0,\ldots,X_{n-1},Y_0,\ldots,Y_{n-1}$ és az n+1 kimeneti kapuján az $X_{n-1}\cdots X_0$ és $Y_{n-1}\cdots Y_0$ bináris számok összegének a bitjeit számítja ki.

Egy általánosítási lehetőség ha több nyelőt is megengedünk, akkor tetszőleges függvényeket is kiszámíthatunk Boole hálózatok segítségével. Ilyenkor a kimenet egy bitsorozat, melynek a hossza a nyelők száma. Általánosabb függvények kiszámításához kódoljuk át a be- és kimeneteket $\{0,1\}$ feletti szóvá.

Példa:

Megkonstruálható egy olyan Boole-hálózat, amelynek a bemeneti változói $X_0,\ldots,X_{n-1},Y_0,\ldots,Y_{n-1}$ és az n+1 kimeneti kapuján az $X_{n-1}\cdots X_0$ és $Y_{n-1}\cdots Y_0$ bináris számok összegének a bitjeit számítja ki.

Ha $R_0, \ldots R_{n-1}$ a maradékok bitjei és $Z_0, \ldots Z_n$ az eredmény bitjei, akkor könnyen látható, hogy $Z_0 = X_0 \otimes Y_0$,

Egy általánosítási lehetőség ha több nyelőt is megengedünk, akkor tetszőleges függvényeket is kiszámíthatunk Boole hálózatok segítségével. Ilyenkor a kimenet egy bitsorozat, melynek a hossza a nyelők száma. Általánosabb függvények kiszámításához kódoljuk át a be- és kimeneteket $\{0,1\}$ feletti szóvá.

Példa:

Megkonstruálható egy olyan Boole-hálózat, amelynek a bemeneti változói $X_0,\ldots,X_{n-1},Y_0,\ldots,Y_{n-1}$ és az n+1 kimeneti kapuján az $X_{n-1}\cdots X_0$ és $Y_{n-1}\cdots Y_0$ bináris számok összegének a bitjeit számítja ki.

Ha $R_0, \ldots R_{n-1}$ a maradékok bitjei és $Z_0, \ldots Z_n$ az eredmény bitjei, akkor könnyen látható, hogy $Z_0 = X_0 \otimes Y_0$, $R_0 = X_0 \wedge Y_0$,

Egy általánosítási lehetőség ha több nyelőt is megengedünk, akkor tetszőleges függvényeket is kiszámíthatunk Boole hálózatok segítségével. Ilyenkor a kimenet egy bitsorozat, melynek a hossza a nyelők száma. Általánosabb függvények kiszámításához kódoljuk át a be- és kimeneteket $\{0,1\}$ feletti szóvá.

Példa:

Megkonstruálható egy olyan Boole-hálózat, amelynek a bemeneti változói $X_0,\ldots,X_{n-1},Y_0,\ldots,Y_{n-1}$ és az n+1 kimeneti kapuján az $X_{n-1}\cdots X_0$ és $Y_{n-1}\cdots Y_0$ bináris számok összegének a bitjeit számítja ki.

Ha $R_0, \ldots R_{n-1}$ a maradékok bitjei és $Z_0, \ldots Z_n$ az eredmény bitjei, akkor könnyen látható, hogy $Z_0 = X_0 \otimes Y_0$, $R_0 = X_0 \wedge Y_0$, $Z_i = \text{parity}_3(X_i, Y_i, R_{i-1}) \ (1 \leq i \leq n-1)$,

Egy általánosítási lehetőség ha több nyelőt is megengedünk, akkor tetszőleges függvényeket is kiszámíthatunk Boole hálózatok segítségével. Ilyenkor a kimenet egy bitsorozat, melynek a hossza a nyelők száma. Általánosabb függvények kiszámításához kódoljuk át a be- és kimeneteket $\{0,1\}$ feletti szóvá.

Példa:

Megkonstruálható egy olyan Boole-hálózat, amelynek a bemeneti változói $X_0,\ldots,X_{n-1},Y_0,\ldots,Y_{n-1}$ és az n+1 kimeneti kapuján az $X_{n-1}\cdots X_0$ és $Y_{n-1}\cdots Y_0$ bináris számok összegének a bitjeit számítja ki.

Ha $R_0,\ldots R_{n-1}$ a maradékok bitjei és $Z_0,\ldots Z_n$ az eredmény bitjei, akkor könnyen látható, hogy $Z_0=X_0\otimes Y_0$, $R_0=X_0\wedge Y_0$,

$$\begin{split} Z_i &= \mathsf{parity}_3(X_i, Y_i, R_{i-1}) \ (1 \leqslant i \leqslant n-1), \\ R_i &= \mathsf{majority}_3(X_i, Y_i, R_{i-1}) \ (1 \leqslant i \leqslant n-1), \end{split}$$

Egy általánosítási lehetőség ha több nyelőt is megengedünk, akkor tetszőleges függvényeket is kiszámíthatunk Boole hálózatok segítségével. Ilyenkor a kimenet egy bitsorozat, melynek a hossza a nyelők száma. Általánosabb függvények kiszámításához kódoljuk át a be- és kimeneteket $\{0,1\}$ feletti szóvá.

Példa:

Megkonstruálható egy olyan Boole-hálózat, amelynek a bemeneti változói $X_0,\ldots,X_{n-1},Y_0,\ldots,Y_{n-1}$ és az n+1 kimeneti kapuján az $X_{n-1}\cdots X_0$ és $Y_{n-1}\cdots Y_0$ bináris számok összegének a bitjeit számítja ki.

Ha $R_0,\ldots R_{n-1}$ a maradékok bitjei és $Z_0,\ldots Z_n$ az eredmény bitjei, akkor könnyen látható, hogy $Z_0=X_0\otimes Y_0,\ R_0=X_0\wedge Y_0$,

$$Z_i = \mathsf{parity}_3(X_i, Y_i, R_{i-1}) \quad (1 \leqslant i \leqslant n-1),$$

$$R_i = \mathsf{majority}_3(X_i, Y_i, R_{i-1}) \quad (1 \leqslant i \leqslant n-1),$$

$$Z_n = R_{n-1},$$

Egy általánosítási lehetőség ha több nyelőt is megengedünk, akkor tetszőleges függvényeket is kiszámíthatunk Boole hálózatok segítségével. Ilyenkor a kimenet egy bitsorozat, melynek a hossza a nyelők száma. Általánosabb függvények kiszámításához kódoljuk át a be- és kimeneteket $\{0,1\}$ feletti szóvá.

Példa:

Megkonstruálható egy olyan Boole-hálózat, amelynek a bemeneti változói $X_0,\ldots,X_{n-1},Y_0,\ldots,Y_{n-1}$ és az n+1 kimeneti kapuján az $X_{n-1}\cdots X_0$ és $Y_{n-1}\cdots Y_0$ bináris számok összegének a bitjeit számítja ki.

Ha $R_0,\ldots R_{n-1}$ a maradékok bitjei és $Z_0,\ldots Z_n$ az eredmény bitjei, akkor könnyen látható, hogy $Z_0=X_0\otimes Y_0$, $R_0=X_0\wedge Y_0$,

$$Z_i = \mathsf{parity}_3(X_i, Y_i, R_{i-1}) \ (1 \leqslant i \leqslant n-1),$$

$$R_i = \mathsf{majority}_3(X_i, Y_i, R_{i-1}) \ (1 \leqslant i \leqslant n-1),$$

 $Z_n=R_{n-1}$, ahol parity₃-t lásd fenn, míg majority₃ a 3 bit többségi bitjét adja vissza.

Felmerülhet egyéb kapuk használata is.

Felmerülhet egyéb kapuk használata is.

Minden Boole-függvény leírható Boole-polinommal, így további kaputípusok alkalmazása nem növeli a modell számítási erejét.

Felmerülhet egyéb kapuk használata is.

Minden Boole-függvény leírható Boole-polinommal, így további kaputípusok alkalmazása nem növeli a modell számítási erejét.

Vegyük észre, hogy a kapuk valójában maguk is Boole-függvények. Így 2-nél több bemenetű kapuk használata esetén a kapuk komplexitását is figyelembe kéne venni a hálózat bonyolultságának definiálásakor különben használhatatlanná válik a modellünk.

Felmerülhet egyéb kapuk használata is.

Minden Boole-függvény leírható Boole-polinommal, így további kaputípusok alkalmazása nem növeli a modell számítási erejét.

Vegyük észre, hogy a kapuk valójában maguk is Boole-függvények. Így 2-nél több bemenetű kapuk használata esetén a kapuk komplexitását is figyelembe kéne venni a hálózat bonyolultságának definiálásakor különben használhatatlanná válik a modellünk.

Extrém példa: az NP-teljes Hamilton kör probléma kiszámítható egyetlen $\binom{n}{2}$ változós Hamilton-kapuval, melynek $\binom{n}{2}$ bemenete meghatároz egy gráfot (van-e az egyes pontpárok között él), kimenete $1 \Longleftrightarrow$ a gráfban van Hamilton kör.

Felmerülhet egyéb kapuk használata is.

Minden Boole-függvény leírható Boole-polinommal, így további kaputípusok alkalmazása nem növeli a modell számítási erejét.

Vegyük észre, hogy a kapuk valójában maguk is Boole-függvények. Így 2-nél több bemenetű kapuk használata esetén a kapuk komplexitását is figyelembe kéne venni a hálózat bonyolultságának definiálásakor különben használhatatlanná válik a modellünk.

Extrém példa: az NP-teljes Hamilton kör probléma kiszámítható egyetlen $\binom{n}{2}$ változós Hamilton-kapuval, melynek $\binom{n}{2}$ bemenete meghatároz egy gráfot (van-e az egyes pontpárok között él), kimenete $1 \Longleftrightarrow$ a gráfban van Hamilton kör.

Ezért a legfeljebb 2 befokú \neg, \land, \lor kapukra korlátozzuk a megengedett kaputípusokat. Meggondolható, hogy az egyéb 2 változós műveleteknek megfelelő kapuk mindegyike néhány (egyszámjegyű) \neg, \land, \lor kapuval helyettesíthető.

Felmerülhet az is hogy egy korlátot adjunk meg a kapuk ki-fokára. Néha célszerű lehet feltenni, hogy egy kapu az általa kiszámított bitet nem tudja akárhány helyre "ingyen" szétosztani.

Egyetlen Boole-hálózat önmagában csak adott hosszúságú bemeneteket tud kezelni.

Egyetlen Boole-hálózat önmagában csak adott hosszúságú bemeneteket tud kezelni.

Definíció

Boole-hálózatok egy családja alatt Boole-hálózatok egy végtelen $\mathcal{C}=(C_0,C_1,C_2,\ldots)$ sorozatát értjük, ahol C_n -nek n bemeneti változója van.

Egyetlen Boole-hálózat önmagában csak adott hosszúságú bemeneteket tud kezelni.

Definíció

Boole-hálózatok egy családja alatt Boole-hálózatok egy végtelen $C = (C_0, C_1, C_2, \ldots)$ sorozatát értjük, ahol C_n -nek n bemeneti változója van.

Legyen C egy Boole-hálózat az X_1,\ldots,X_n bemeneti változókkal és $w=a_1\cdots a_n\in\{0,1\}^*$, ekkor $C(w):=\mathcal{B}_I(C)$, ahol $I(X_i)=a_i\ (1\leqslant i\leqslant n)$.

Egyetlen Boole-hálózat önmagában csak adott hosszúságú bemeneteket tud kezelni.

Definíció

Boole-hálózatok egy családja alatt Boole-hálózatok egy végtelen $\mathcal{C}=(\mathcal{C}_0,\mathcal{C}_1,\mathcal{C}_2,\ldots)$ sorozatát értjük, ahol \mathcal{C}_n -nek n bemeneti változója van.

Legyen C egy Boole-hálózat az X_1, \ldots, X_n bemeneti változókkal és $w = a_1 \cdots a_n \in \{0, 1\}^*$, ekkor $C(w) := \mathcal{B}_I(C)$, ahol $I(X_i) = a_i \ (1 \leqslant i \leqslant n)$.

Definíció

Boole-hálózatok egy $\mathcal C$ családja **eldönti** az $L\subseteq\{0,1\}^*$ nyelvet, ha minden $w\in\{0,1\}^*$ szóra, $w\in L$ akkor és csak akkor, ha $C_n(w)=1$, ahol n=|w|.

Egyetlen Boole-hálózat önmagában csak adott hosszúságú bemeneteket tud kezelni.

Definíció

Boole-hálózatok egy családja alatt Boole-hálózatok egy végtelen $\mathcal{C}=(\mathcal{C}_0,\mathcal{C}_1,\mathcal{C}_2,\ldots)$ sorozatát értjük, ahol \mathcal{C}_n -nek n bemeneti változója van.

Legyen C egy Boole-hálózat az X_1, \ldots, X_n bemeneti változókkal és $w = a_1 \cdots a_n \in \{0, 1\}^*$, ekkor $C(w) := \mathcal{B}_I(C)$, ahol $I(X_i) = a_i \ (1 \leqslant i \leqslant n)$.

Definíció

Boole-hálózatok egy $\mathcal C$ családja **eldönti** az $L\subseteq\{0,1\}^*$ nyelvet, ha minden $w\in\{0,1\}^*$ szóra, $w\in L$ akkor és csak akkor, ha $C_n(w)=1$, ahol n=|w|.

Definíció

Egy Boole-hálózat mérete a kapuinak száma

- Egy Boole-hálózat mérete a kapuinak száma
- Egy Boole-hálózat mélysége a leghosszabb irányított útjának hossza. (Ez nyilván valamelyik bemeneti csúcstól a nyelőig vezet.)

- Egy Boole-hálózat mérete a kapuinak száma
- Egy Boole-hálózat mélysége a leghosszabb irányított útjának hossza. (Ez nyilván valamelyik bemeneti csúcstól a nyelőig vezet.)
- A C és C' Boole-hálózatok **ekvivalensek**, ha megegyezik a bemeneti csúcsaiknak a száma (n) és minden $w \in \{0,1\}^n$ esetén C(w) = C'(w).

- Egy Boole-hálózat mérete a kapuinak száma
- Egy Boole-hálózat mélysége a leghosszabb irányított útjának hossza. (Ez nyilván valamelyik bemeneti csúcstól a nyelőig vezet.)
- A C és C' Boole-hálózatok **ekvivalensek**, ha megegyezik a bemeneti csúcsaiknak a száma (n) és minden $w \in \{0,1\}^n$ esetén C(w) = C'(w).

Definíció

- Egy Boole-hálózat mérete a kapuinak száma
- Egy Boole-hálózat mélysége a leghosszabb irányított útjának hossza. (Ez nyilván valamelyik bemeneti csúcstól a nyelőig vezet.)
- A C és C' Boole-hálózatok **ekvivalensek**, ha megegyezik a bemeneti csúcsaiknak a száma (n) és minden $w \in \{0,1\}^n$ esetén C(w) = C'(w).

Definíció

Egy Boole-hálózat minimális méretű, ha nincs vele ekvivalens kisebb méretű hálózat.

Definíció

- Egy Boole-hálózat mérete a kapuinak száma
- Egy Boole-hálózat mélysége a leghosszabb irányított útjának hossza. (Ez nyilván valamelyik bemeneti csúcstól a nyelőig vezet.)
- A C és C' Boole-hálózatok **ekvivalensek**, ha megegyezik a bemeneti csúcsaiknak a száma (n) és minden $w \in \{0,1\}^n$ esetén C(w) = C'(w).

- Egy Boole-hálózat minimális méretű, ha nincs vele ekvivalens kisebb méretű hálózat.
- Egy Boole-hálózat minimális mélységű, ha nincs vele ekvivalens kisebb mélységű hálózat.

Minimális méretű/mélységű Boole-hálózat család

Definíció

▶ Boole-hálózatok egy $C = (C_1, ...)$ családja minimális méretű, ha minden $i \in \mathbb{N}$ esetén a C_i Boole-hálózat minimális méretű.

Minimális méretű/mélységű Boole-hálózat család

Definíció

- ▶ Boole-hálózatok egy $C = (C_1, ...)$ családja minimális méretű, ha minden $i \in \mathbb{N}$ esetén a C_i Boole-hálózat minimális méretű.
- ▶ Boole-hálózatok egy $C = (C_1, ...)$ családja minimális mélységű, ha minden $i \in \mathbb{N}$ esetén a C_i Boole-hálózat minimális mélységű.

Definíció

▶ Boole-hálózatok egy $\mathcal{C} = (C_1, \ldots)$ családjának **méretbonyolultságán** azt az $f : \mathbb{N} \to \mathbb{N}$ függvényt értjük, melyre f(n) a C_n mérete $(n \in \mathbb{N})$.

Definíció

- ▶ Boole-hálózatok egy $C = (C_1, ...)$ családjának **méretbonyolultságán** azt az $f : \mathbb{N} \to \mathbb{N}$ függvényt értjük, melyre f(n) a C_n mérete $(n \in \mathbb{N})$.
- ▶ Boole-hálózatok egy $C = (C_1, ...)$ családjának **mélységbonyolultságán** azt az $f : \mathbb{N} \to \mathbb{N}$ függvényt értjük, melyre f(n) a C_n mélysége $(n \in \mathbb{N})$.

Definíció

- ▶ Boole-hálózatok egy $C = (C_1, ...)$ családjának **méretbonyolultságán** azt az $f : \mathbb{N} \to \mathbb{N}$ függvényt értjük, melyre f(n) a C_n mérete $(n \in \mathbb{N})$.
- ▶ Boole-hálózatok egy $C = (C_1, ...)$ családjának **mélységbonyolultságán** azt az $f : \mathbb{N} \to \mathbb{N}$ függvényt értjük, melyre f(n) a C_n mélysége $(n \in \mathbb{N})$.

Definíció

- ▶ Boole-hálózatok egy $C = (C_1, ...)$ családjának **méretbonyolultságán** azt az $f : \mathbb{N} \to \mathbb{N}$ függvényt értjük, melyre f(n) a C_n mérete $(n \in \mathbb{N})$.
- ▶ Boole-hálózatok egy $C = (C_1, ...)$ családjának **mélységbonyolultságán** azt az $f : \mathbb{N} \to \mathbb{N}$ függvényt értjük, melyre f(n) a C_n mélysége $(n \in \mathbb{N})$.

Definíció

► Egy L ⊆ {0,1}* nyelv hálózatméret-bonyolultságán egy minimális méretű, őt eldöntő Boole-hálózat család méretbonyolultságát értjük.

Definíció

- ▶ Boole-hálózatok egy $C = (C_1, ...)$ családjának **méretbonyolultságán** azt az $f : \mathbb{N} \to \mathbb{N}$ függvényt értjük, melyre f(n) a C_n mérete $(n \in \mathbb{N})$.
- ▶ Boole-hálózatok egy $C = (C_1, ...)$ családjának **mélységbonyolultságán** azt az $f : \mathbb{N} \to \mathbb{N}$ függvényt értjük, melyre f(n) a C_n mélysége $(n \in \mathbb{N})$.

Definíció

- ► Egy L ⊆ {0,1}* nyelv hálózatméret-bonyolultságán egy minimális méretű, őt eldöntő Boole-hálózat család méretbonyolultságát értjük.
- ► Egy L ⊆ {0,1}* nyelv hálózatmélység-bonyolultságán egy minimális, őt eldöntő Boole-hálózat család mélységbonyolultságát értjük.

Példa:

Legyen
$$L_{\mathsf{parity}} = \big\{ a_1 \cdots a_n \in \{0,1\}^* \, \big| \, \sum_{i=1}^n a_i \equiv 1 (\mathsf{mod} \,\, 2) \big\}.$$

Példa:

Legyen
$$L_{\mathsf{parity}} = \{a_1 \cdots a_n \in \{0,1\}^* \mid \sum_{i=1}^n a_i \equiv 1 \pmod{2}\}.$$

Könnyen készíthető olyan Boole-hálózat család, amelynek az elemei rendre a

$$\mathsf{parity}_1 = X_1 \quad \mathsf{parity}_2 = X_1 \otimes X_2$$

 $\mathsf{parity}_n = \mathsf{parity}_{n-2} \otimes (X_{n-1} \otimes X_n)$

Példa:

Legyen
$$L_{\mathsf{parity}} = \{a_1 \cdots a_n \in \{0,1\}^* \mid \sum_{i=1}^n a_i \equiv 1 \pmod{2}\}.$$

Könnyen készíthető olyan Boole-hálózat család, amelynek az elemei rendre a

$$\mathsf{parity}_1 = X_1 \quad \mathsf{parity}_2 = X_1 \otimes X_2$$

 $\mathsf{parity}_n = \mathsf{parity}_{n-2} \otimes (X_{n-1} \otimes X_n)$

Boole-függvényeket számítják ki $(n \in \mathbb{N})$.

Példa:

Legyen
$$L_{\mathsf{parity}} = \{a_1 \cdots a_n \in \{0,1\}^* \mid \sum_{i=1}^n a_i \equiv 1 \pmod{2}\}.$$

Könnyen készíthető olyan Boole-hálózat család, amelynek az elemei rendre a

$$\mathsf{parity}_1 = X_1 \quad \mathsf{parity}_2 = X_1 \otimes X_2$$

 $\mathsf{parity}_n = \mathsf{parity}_{n-2} \otimes (X_{n-1} \otimes X_n)$

Boole-függvényeket számítják ki $(n \in \mathbb{N})$.

Ehhez csak n-1 darab \otimes kapu kell. Az előző példában látott konstrukció alapján egy \otimes kapu összesen 5 darab \neg, \land, \lor kapuval szimulálható, így L_{parity} hálózatméret-bonyolultsága legfeljebb 5(n-1)=O(n).

Tétel

Ha $L \in \mathsf{TIME}(f(n))$, és $f(n) \ge n$, akkor L hálózatméretbonyolultsága $O(f(n)^2)$.

Tehát "kis" időbonyolultságú problémák hálózatméret-bonyolultsága is "kicsi".

Tétel

Ha $L \in \mathsf{TIME}(f(n))$, és $f(n) \ge n$, akkor L hálózatméretbonyolultsága $O(f(n)^2)$.

Tehát "kis" időbonyolultságú problémák hálózatméret-bonyolultsága is "kicsi".

Következmény

Ha egy $L \in NP$ nyelv hálózatméret-bonyolultsága polinomiálisnál nagyobb aszimptotikus nagyágrendű, akkor $P \neq NP$.

Tétel

Ha $L \in \mathsf{TIME}(f(n))$, és $f(n) \ge n$, akkor L hálózatméretbonyolultsága $O(f(n)^2)$.

Tehát "kis" időbonyolultságú problémák hálózatméret-bonyolultsága is "kicsi".

Következmény

Ha egy $L \in NP$ nyelv hálózatméret-bonyolultsága polinomiálisnál nagyobb aszimptotikus nagyágrendű, akkor $P \neq NP$.

Így ez a tétel egy lehetséges támadási felületet ad a Peq NP sejtés bizonyításához.

Bizonyítás: Legyen $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ egy f(n) időkorlátos, L-et eldöntő determinisztikus TG és $w = x_1 \cdots x_n$ egy n hosszú inputja.

Bizonyítás: Legyen $M=\langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ egy f(n) időkorlátos, L-et eldöntő determinisztikus TG és $w=x_1\cdots x_n$ egy n hosszú inputja. Azaz egyszerűség kedvéért feltesszük, hogy a TIME(f(n)) definíciójában lévő O(f(n)) konstans faktora 1 (különben mindent ezzel a faktorral kéne szorozni). Feltehető továbbá, hogy $\Sigma=\{0,1\}$.

Bizonyítás: Legyen $M=\langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ egy f(n) időkorlátos, L-et eldöntő determinisztikus TG és $w=x_1\cdots x_n$ egy n hosszú inputja. Azaz egyszerűség kedvéért feltesszük, hogy a TIME(f(n)) definíciójában lévő O(f(n)) konstans faktora 1 (különben mindent ezzel a faktorral kéne szorozni). Feltehető továbbá, hogy $\Sigma=\{0,1\}$.

Ekkor M számítása w-re a konfigurációi által leírhatók, melyeket ha egymás alá írunk, akkor ez a számítás egy $(f(n)+1)\times(2f(n)+1)$ -es T táblázattal leírható. A kezdőkonfiguráció az első sor közepén, az f(n)+1-edik cellán kezdődik. $(f(n)\geqslant n$ esetén w belefér T-be.)

Bizonyítás: Legyen $M=\langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ egy f(n) időkorlátos, L-et eldöntő determinisztikus TG és $w=x_1\cdots x_n$ egy n hosszú inputja. Azaz egyszerűség kedvéért feltesszük, hogy a TIME(f(n)) definíciójában lévő O(f(n)) konstans faktora 1 (különben mindent ezzel a faktorral kéne szorozni). Feltehető továbbá, hogy $\Sigma=\{0,1\}$.

Ekkor M számítása w-re a konfigurációi által leírhatók, melyeket ha egymás alá írunk, akkor ez a számítás egy $(f(n)+1) \times (2f(n)+1)$ -es T táblázattal leírható. A kezdőkonfiguráció az első sor közepén, az f(n)+1-edik cellán kezdődik. $(f(n) \geqslant n$ esetén w belefér T-be.)

A konfigurációk minden betűje saját cellába kerül, kivétel a fej alatt lévő betű, mely kerüljön az állapottal egy cellába az állapot után konkatenálva.

Bizonyítás: Legyen $M=\langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ egy f(n) időkorlátos, L-et eldöntő determinisztikus TG és $w=x_1\cdots x_n$ egy n hosszú inputja. Azaz egyszerűség kedvéért feltesszük, hogy a TIME(f(n)) definíciójában lévő O(f(n)) konstans faktora 1 (különben mindent ezzel a faktorral kéne szorozni). Feltehető továbbá, hogy $\Sigma=\{0,1\}$.

Ekkor M számítása w-re a konfigurációi által leírhatók, melyeket ha egymás alá írunk, akkor ez a számítás egy $(f(n)+1) \times (2f(n)+1)$ -es T táblázattal leírható. A kezdőkonfiguráció az első sor közepén, az f(n)+1-edik cellán kezdődik. $(f(n) \geqslant n$ esetén w belefér T-be.)

A konfigurációk minden betűje saját cellába kerül, kivétel a fej alatt lévő betű, mely kerüljön az állapottal egy cellába az állapot után konkatenálva.

Például, ha a konfiguráció $01q_6101$, akkor a \square -eket tároló celláktól eltekintve sorra $0,1, q_61, 0,1$ a cellák tartalma.

$$2f(n) + 1$$
 oszlop

$$2f(n) + 1$$
 oszlop

Ha esetleg f(n)-nél rövidebb idő alatt jut M megállási konfigurációba, akkor a táblázat utolsó sorait identikusan, ezen utolsó konfigurációval töltjük ki.

$$2f(n) + 1$$
 oszlop

Ha esetleg f(n)-nél rövidebb idő alatt jut M megállási konfigurációba, akkor a táblázat utolsó sorait identikusan, ezen utolsó konfigurációval töltjük ki.

T(i,j) értéke a konfigurációátmenet definíciója szerint csak a T(i-1,j-1), T(i-1,j), T(i-1,j+1) értékeitől függ.

A C_n Boole-hálózat konstrukciója:

 $k:=|\Gamma\cup Q\times \Gamma|$, ennyi fajta tartalma lehet a celláknak. Képzeljük azt, hogy minden (i,j) cellához tartozik k darab villanykörte (light $[i,j,1],\ldots$,light[i,j,k]) a cella minden lehetséges tartalmához pontosan egy. A C_n hálózatban a light[i,j,s] villanykörte akkor és csak akkor fog égni, ha az (i,j) cella tartalma éppen az s-edik $\Gamma\cup Q\times \Gamma$ -beli szimbólum. (Rögzítjük $\Gamma\cup Q\times \Gamma$ elemeinek egy sorrendjét.)

A villanykörtéknek nincsen hatásuk a kimeneti értékre, a bizonyítás megértését segítik, és a bizonyítás végén ki is iktatjuk őket.

Legyenek $(a_1,b_1,c_1),(a_2,b_2,c_2),\ldots,(a_r,b_r,c_r)$ azok a (light $[i-1,j-1,s_1]$, light $[i-1,j,s_2]$, light $[i-1,j+1,s_3]$) rendezett 3-asok, melyeknek megfelelő égők, ha világítanak akkor az (i,j) cella tartalma az s-edik $\Gamma \cup Q \times \Gamma$ -beli szimbólum lesz.

Legyenek $(a_1,b_1,c_1),(a_2,b_2,c_2),\ldots,(a_r,b_r,c_r)$ azok a $(\text{light}[i-1,j-1,s_1],\, \text{light}[i-1,j,s_2],\, \text{light}[i-1,j+1,s_3])$ rendezett 3-asok, melyeknek megfelelő égők, ha világítanak akkor az (i,j) cella tartalma az s-edik $\Gamma\cup Q\times \Gamma$ -beli szimbólum lesz.

Vegyük észre, hogy r értéke egy csak M-től függő konstans, n-től (és f(n)-től) nem függ.

Legyenek $(a_1,b_1,c_1),(a_2,b_2,c_2),\ldots,(a_r,b_r,c_r)$ azok a $(\text{light}[i-1,j-1,s_1],\, \text{light}[i-1,j,s_2],\, \text{light}[i-1,j+1,s_3])$ rendezett 3-asok, melyeknek megfelelő égők, ha világítanak akkor az (i,j) cella tartalma az s-edik $\Gamma\cup Q\times \Gamma$ -beli szimbólum lesz.

Vegyük észre, hogy r értéke egy csak M-től függő konstans, n-től (és f(n)-től) nem függ.

Kössük össze ezen 3-asoknak megfelelő villanykörtéket egy-egy \land -kapuval, majd ezt az r \land -kaput egy \lor -kapuval, amit vezessünk light[i,j,s]-be. (Mivel bináris kapukat használunk ezt persze több bináris \land illetve \lor kapuval kell megoldani.)

Legyenek $(a_1,b_1,c_1),(a_2,b_2,c_2),\ldots,(a_r,b_r,c_r)$ azok a $(\text{light}[i-1,j-1,s_1],\, \text{light}[i-1,j,s_2],\, \text{light}[i-1,j+1,s_3])$ rendezett 3-asok, melyeknek megfelelő égők, ha világítanak akkor az (i,j) cella tartalma az s-edik $\Gamma\cup Q\times \Gamma$ -beli szimbólum lesz.

Vegyük észre, hogy r értéke egy csak M-től függő konstans, n-től (és f(n)-től) nem függ.

Kössük össze ezen 3-asoknak megfelelő villanykörtéket egy-egy \land -kapuval, majd ezt az r \land -kaput egy \lor -kapuval, amit vezessünk light[i,j,s]-be. (Mivel bináris kapukat használunk ezt persze több bináris \land illetve \lor kapuval kell megoldani.)

A táblázat szélein az értékek persze csak 2 fölötte lévő cella értékétől függnek, ezekre értelemszerűen módosítjuk a konstrukciót.

Az első sorban lévő celláknak nincs megelőzője, villanykörtéi a bemeneti változókhoz kapcsolódnak. Tehát a light $[1,f(n)+1,\ q_01]$ villanykörte az x_1 inputhoz kapcsolódik, mivel a kezdőkonfiguráció a kezdőállapottal kezdődik, az író-olvasó fej pedig x_1 -re mutat.

Az első sorban lévő celláknak nincs megelőzője, villanykörtéi a bemeneti változókhoz kapcsolódnak. Tehát a light $[1,f(n)+1,\ q_01]$ villanykörte az x_1 inputhoz kapcsolódik, mivel a kezdőkonfiguráció a kezdőállapottal kezdődik, az író-olvasó fej pedig x_1 -re mutat.

Hasonlóképpen light[1, f(n)+1, q_00] egy — kapun keresztül a x_1 inputhoz kapcsolódik.

Az első sorban lévő celláknak nincs megelőzője, villanykörtéi a bemeneti változókhoz kapcsolódnak. Tehát a light $[1,f(n)+1,\ q_01]$ villanykörte az x_1 inputhoz kapcsolódik, mivel a kezdőkonfiguráció a kezdőállapottal kezdődik, az író-olvasó fej pedig x_1 -re mutat.

Hasonlóképpen light $[1, f(n) + 1, q_00]$ egy — kapun keresztül a x_1 inputhoz kapcsolódik.

light[1, f(n) + i, 1] az x_i bemenethez, light[1, f(n) + i, 0] egy \neg kapun keresztül szintén az x_i bemenethez van bedrótozva.

Az első sorban lévő celláknak nincs megelőzője, villanykörtéi a bemeneti változókhoz kapcsolódnak. Tehát a light $[1,f(n)+1,\ q_01]$ villanykörte az x_1 inputhoz kapcsolódik, mivel a kezdőkonfiguráció a kezdőállapottal kezdődik, az író-olvasó fej pedig x_1 -re mutat.

Hasonlóképpen light $[1,\ f(n)+1,\ q_00]$ egy \neg kapun keresztül a x_1 inputhoz kapcsolódik.

light[1,f(n) + i, 1] az x_i bemenethez, light[1,f(n) + i, 0] egy \neg kapun keresztül szintén az x_i bemenethez van bedrótozva.

Minden más j-re a light $[1,j,\sqcup]$ villanykörték felkapcsolt állapotban vannak, a többi lámpa az első sorban lekapcsolt állapotban van.

Az első sorban lévő celláknak nincs megelőzője, villanykörtéi a bemeneti változókhoz kapcsolódnak. Tehát a light $[1,f(n)+1,\ q_01]$ villanykörte az x_1 inputhoz kapcsolódik, mivel a kezdőkonfiguráció a kezdőállapottal kezdődik, az író-olvasó fej pedig x_1 -re mutat.

Hasonlóképpen light $[1, f(n) + 1, q_00]$ egy — kapun keresztül a x_1 inputhoz kapcsolódik.

light[1,f(n) + i, 1] az x_i bemenethez, light[1,f(n) + i, 0] egy \neg kapun keresztül szintén az x_i bemenethez van bedrótozva.

Minden más j-re a light $[1,j,\sqcup]$ villanykörték felkapcsolt állapotban vannak, a többi lámpa az első sorban lekapcsolt állapotban van.

Ez utóbbi megoldható: egy tetszóleges rögzített x_i bemenethez drótozzuk be simán és \neg -kapun keresztül is a villanykörtét és ezt a két drótot aszerint kapcsoljuk \lor - vagy \land -kapun keresztül a villanykörtéhez, hogy melyik konstans Boole-értéket szeretnénk hozzárendelni. (*)

M akkor és csak akkor fogadja el w-t, ha T utolsó, f(n)+1-edik sorában megtalálható q_i . Ez $(2f(n)+1)|\Gamma|$ darab villanykörtének felel meg, kössük össze őket egy \vee -kapuval, és ez legyen a kimeneti kapu. (ezt persze több bináris \vee kapuval kell megvalósítani).

M akkor és csak akkor fogadja el w-t, ha T utolsó, f(n)+1-edik sorában megtalálható q_i . Ez $(2f(n)+1)|\Gamma|$ darab villanykörtének felel meg, kössük össze őket egy \vee -kapuval, és ez legyen a kimeneti kapu. (ezt persze több bináris \vee kapuval kell megvalósítani).

A villanykörték kiiktatása (1 a be-fokuk):

M akkor és csak akkor fogadja el w-t, ha T utolsó, f(n)+1-edik sorában megtalálható q_i . Ez $(2f(n)+1)|\Gamma|$ darab villanykörtének felel meg, kössük össze őket egy \vee -kapuval, és ez legyen a kimeneti kapu. (ezt persze több bináris \vee kapuval kell megvalósítani).

A villanykörték kiiktatása (1 a be-fokuk):

Meggondoltuk tehát, hogy (C_0, C_1, \ldots) eldönti L-et.

 C_n konstukciójában $O(f(n)^2)$ villanykörtét használtunk. Egy villanykörte előző sortól való függőségét egy csak M-től függő konstans darab kapuval szimuláltuk. Az elején és a végén kell még O(f(n)) kapu, tehát C_n összesen $O(f(n)^2)$ kaput használ.

CIRCUIT-SAT

Definíció

Egy C n bemenetű Boole-hálózatot **kielégíthetőnek** nevezünk, ha van olyan $w \in \{0,1\}^n$, melyre C(w) = 1.

CIRCUIT-SAT

Definíció

Egy C n bemenetű Boole-hálózatot **kielégíthetőnek** nevezünk, ha van olyan $w \in \{0,1\}^n$, melyre C(w) = 1.

CIRCUIT-SAT := $\{\langle C \rangle | C \text{ kielégíthető Boole-hálózat } \}$.

(Szokásos módon $\langle C \rangle$ a C valamely legalább bináris ábécé feletti tömör kódját jelöli.)

Tétel

CIRCUIT-SAT NP-teljes.

Bizonyítás: Könnyen meggondolható, hogy CIRCUIT-SAT NP-beli. (Egy konkrét bemenetre O(hálózat méret) időben kiszámítható a kimenet.)

Tétel

CIRCUIT-SAT NP-teljes.

Bizonyítás: Könnyen meggondolható, hogy CIRCUIT-SAT NP-beli. (Egy konkrét bemenetre O(hálózat méret) időben kiszámítható a kimenet.)

Legyen $L \in \operatorname{NP}$, kell, hogy $L \leqslant_p \operatorname{CIRCUIT-SAT}$, azaz meg kell adnunk egy olyan polinom időben kiszámítható φ függvényt, melyre $w \in L \Leftrightarrow \varphi(w)$ kielégíthető Boole-hálózat.

Tétel

CIRCUIT-SAT NP-teljes.

Bizonyítás: Könnyen meggondolható, hogy CIRCUIT-SAT NP-beli. (Egy konkrét bemenetre *O*(hálózat méret) időben kiszámítható a kimenet.)

Legyen $L \in \operatorname{NP}$, kell, hogy $L \leqslant_p \operatorname{CIRCUIT-SAT}$, azaz meg kell adnunk egy olyan polinom időben kiszámítható φ függvényt, melyre $w \in L \Leftrightarrow \varphi(w)$ kielégíthető Boole-hálózat.

Mivel $L \in NP$ ezért van olyan p(n) polinom időkorlátos M NTG, mely eldönti L-et. Legyen w egy n hosszúságú szó.

Tétel

CIRCUIT-SAT NP-teljes.

Bizonyítás: Könnyen meggondolható, hogy CIRCUIT-SAT NP-beli. (Egy konkrét bemenetre O(hálózat méret) időben kiszámítható a kimenet.)

Legyen $L \in \operatorname{NP}$, kell, hogy $L \leqslant_p \operatorname{CIRCUIT-SAT}$, azaz meg kell adnunk egy olyan polinom időben kiszámítható φ függvényt, melyre $w \in L \Leftrightarrow \varphi(w)$ kielégíthető Boole-hálózat.

Mivel $L \in NP$ ezért van olyan p(n) polinom időkorlátos M NTG, mely eldönti L-et. Legyen w egy n hosszúságú szó.

Az előző tétel C_n konstrukciója szimulált egy determinisztikus TG-et bármely n hosszú inputra. Vegyük észre a következőket:

A konstrukció működik NTG-re is.

- A konstrukció működik NTG-re is.
- Az előző bizonyításban (*)-al jelölt ötlet alapján könnyen módosíthatjuk a konstrukciót úgy, hogy minden bemenetre w-t szimulálja (a w bitjeinek megfelelő villanykörtéket konstans igazra, minden mást konstans hamisra állítva), jelölje ezt C_w , így C_w minden bemenetre w működését szimulálja M-en, így a C_w hálózat akkor és csak akkor kielégíthető, ha $w \in L$. Tehát $\varphi(w) := C_w$ visszavezetés.

- A konstrukció működik NTG-re is.
- Az előző bizonyításban (*)-al jelölt ötlet alapján könnyen módosíthatjuk a konstrukciót úgy, hogy minden bemenetre w-t szimulálja (a w bitjeinek megfelelő villanykörtéket konstans igazra, minden mást konstans hamisra állítva), jelölje ezt C_w , így C_w minden bemenetre w működését szimulálja M-en, így a C_w hálózat akkor és csak akkor kielégíthető, ha $w \in L$. Tehát $\varphi(w) := C_w$ visszavezetés.
- $|C_w| = O(p(n)^2)$, mely $O(p(n)^2)$ idő alatt el is készíthető, így φ poilnomiális.

Tétel

3SAT NP-teljes.

2. Bizonyítás: [1. Bizonyítás : lásd BSc-n]

3Sat NP-beli. Elég: Circuit-Sat $\leq_p 3$ Sat.

Tétel

3SAT NP-teljes.

2. Bizonyítás: [1. Bizonyítás: lásd BSc-n]

3Sat NP-beli. Elég: Circuit-Sat $\leq_p 3$ Sat.

Legyenek $x_1, \ldots x_n$ a C Boole-hálózat bemeneti változói és rendeljük hozzá az $x_{n+1}, \ldots x_m$ változókat a kapukhoz. Készítünk egy 3KNF-et, melynek $x_1, \ldots x_m$ lesznek a változói.

Tétel

3SAT NP-teljes.

2. Bizonyítás: [1. Bizonyítás : lásd BSc-n]

3Sat NP-beli. Elég: Circuit-Sat $\leq_p 3$ Sat.

Legyenek $x_1, \ldots x_n$ a C Boole-hálózat bemeneti változói és rendeljük hozzá az $x_{n+1}, \ldots x_m$ változókat a kapukhoz. Készítünk egy 3KNF-et, melynek $x_1, \ldots x_m$ lesznek a változói.

Minden kapuhoz tartozik 1 vagy 2 bemeneti változó a be-élek alapján és egy kapuhoz tartozó kimeneti változó.

Tétel

3SAT NP-teljes.

2. Bizonyítás: [1. Bizonyítás: lásd BSc-n]

3Sat NP-beli. Elég: Circuit-Sat $\leq_p 3$ Sat.

Legyenek $x_1, \ldots x_n$ a C Boole-hálózat bemeneti változói és rendeljük hozzá az $x_{n+1}, \ldots x_m$ változókat a kapukhoz. Készítünk egy 3KNF-et, melynek $x_1, \ldots x_m$ lesznek a változói.

Minden kapuhoz tartozik 1 vagy 2 bemeneti változó a be-élek alapján és egy kapuhoz tartozó kimeneti változó.

¬-kapu:

$$(\bar{x}_i \to x_j) \land (\bar{x}_j \to x_i)$$
 (x_i bemeneti x_j kimeneti változó)

Tétel

3SAT NP-teljes.

2. Bizonyítás: [1. Bizonyítás : lásd BSc-n]

3Sat NP-beli. Elég: Circuit-Sat $\leq_p 3$ Sat.

Legyenek $x_1, \ldots x_n$ a C Boole-hálózat bemeneti változói és rendeljük hozzá az $x_{n+1}, \ldots x_m$ változókat a kapukhoz. Készítünk egy 3KNF-et, melynek $x_1, \ldots x_m$ lesznek a változói.

Minden kapuhoz tartozik 1 vagy 2 bemeneti változó a be-élek alapján és egy kapuhoz tartozó kimeneti változó.

$$(\bar{x}_i \to x_j) \land (\bar{x}_j \to x_i)$$
 (x_i bemeneti x_j kimeneti változó)

∧-kapu:

$$(\bar{x}_i \wedge \bar{x}_j \to \bar{x}_k) \wedge (\bar{x}_i \wedge x_j \to \bar{x}_k) \wedge (x_i \wedge \bar{x}_j \to \bar{x}_k) \wedge (x_i \wedge x_j \to x_k)$$

 $(x_i, x_i \text{ bemeneti } x_k \text{ kimeneti változó})$

∨-kapu:

$$\begin{array}{c} (\bar{x}_i \wedge \bar{x}_j \to \bar{x}_k) \wedge (\bar{x}_i \wedge x_j \to x_k) \wedge (x_i \wedge \bar{x}_j \to x_k) \wedge (x_i \wedge x_j \to x_k) \\ & (x_i, x_j \text{ bemeneti } x_k \text{ kimeneti változó}) \end{array}$$

∨-kapu:

$$(\bar{x}_i \wedge \bar{x}_j \to \bar{x}_k) \wedge (\bar{x}_i \wedge x_j \to x_k) \wedge (x_i \wedge \bar{x}_j \to x_k) \wedge (x_i \wedge x_j \to x_k)$$

 $(x_i, x_j \text{ bemeneti } x_k \text{ kimeneti változó})$

Az A-sel összekötött részformulákat alakítsuk klózokká.

∨-kapu:

$$\begin{array}{c} (\bar{x}_i \wedge \bar{x}_j \to \bar{x}_k) \wedge (\bar{x}_i \wedge x_j \to x_k) \wedge (x_i \wedge \bar{x}_j \to x_k) \wedge (x_i \wedge x_j \to x_k) \\ & (x_i, x_j \text{ bemeneti } x_k \text{ kimeneti változó}) \end{array}$$

Az A-sel összekötött részformulákat alakítsuk klózokká.

Még egy klóz: x_m önmagában, ha x_m a kimeneti kapu.

∨-kapu:

$$(\bar{x}_i \wedge \bar{x}_j \to \bar{x}_k) \wedge (\bar{x}_i \wedge x_j \to x_k) \wedge (x_i \wedge \bar{x}_j \to x_k) \wedge (x_i \wedge x_j \to x_k)$$

 $(x_i, x_j \text{ bemeneti } x_k \text{ kimeneti változó})$

Az A-sel összekötött részformulákat alakítsuk klózokká.

Még egy klóz: x_m önmagában, ha x_m a kimeneti kapu.

A hiányos klózokat egészítsük ki 3 hosszúvá.

∨-kapu:

$$(\bar{x}_i \wedge \bar{x}_j \to \bar{x}_k) \wedge (\bar{x}_i \wedge x_j \to x_k) \wedge (x_i \wedge \bar{x}_j \to x_k) \wedge (x_i \wedge x_j \to x_k)$$

 $(x_i, x_j \text{ bemeneti } x_k \text{ kimeneti változó})$

Az A-sel összekötött részformulákat alakítsuk klózokká.

Még egy klóz: x_m önmagában, ha x_m a kimeneti kapu.

A hiányos klózokat egészítsük ki 3 hosszúvá.

A klózok konjunkciója lesz a \emph{C} -nek megfelelő φ formula.

∨-kapu:

$$(\bar{x}_i \wedge \bar{x}_j \to \bar{x}_k) \wedge (\bar{x}_i \wedge x_j \to x_k) \wedge (x_i \wedge \bar{x}_j \to x_k) \wedge (x_i \wedge x_j \to x_k)$$

 $(x_i, x_j \text{ bemeneti } x_k \text{ kimeneti változó})$

Az A-sel összekötött részformulákat alakítsuk klózokká.

Még egy klóz: x_m önmagában, ha x_m a kimeneti kapu.

A hiányos klózokat egészítsük ki 3 hosszúvá.

A klózok konjunkciója lesz a C-nek megfelelő φ formula.

Meggondolható, hogy C kielégíthető akkor és csak akkor, ha φ kielégíthető

∨-kapu:

$$(\bar{x}_i \wedge \bar{x}_j \to \bar{x}_k) \wedge (\bar{x}_i \wedge x_j \to x_k) \wedge (x_i \wedge \bar{x}_j \to x_k) \wedge (x_i \wedge x_j \to x_k)$$
 (x_i, x_j bemeneti x_k kimeneti változó)

Az ^-sel összekötött részformulákat alakítsuk klózokká.

Még egy klóz: x_m önmagában, ha x_m a kimeneti kapu.

A hiányos klózokat egészítsük ki 3 hosszúvá.

A klózok konjunkciója lesz a $\mathit{C} ext{-nek}$ megfelelő φ formula.

Meggondolható, hogy C kielégíthető akkor és csak akkor, ha φ kielégíthető és hogy a konstrukció polinomiális idejű valamint polinomiális méretű φ -t ad.