Homework 11

MATH 364 November 30, 2021

Kevin Evans ID: 11571810

6.3.2 Solve using the cutting plane algorithm.

(b) Maximize
$$3x_1 + 8x_2$$

subject to
$$x_1 + 2x_2 \le 9$$

$$2x_2 \le 5$$

$$x \ge 0, x \in \mathbb{Z}^2$$

Solution. Putting this in a tableau and applying the simplex method to solve the LP relaxation,

x_1	x_2	x_3	x_4		
1	2	1	0	9	x_3
0	2	0	1	5	$\overline{x_4}$
3	8	0	0	0	-z
1	2	1	0	9	x_1
0	2	0	1	5	x_4
0	2	-3	0	-27	-z
1	0	1	-1	4	x_1
0	1	0	1/2	5/2	x_2
0	0	-3	-1	-32	-z

The LP relaxation is optimal at $x^* = (4, 5/2)$, $z^* = 32$. The second constraint has a non-integral coefficient,

$$x_2 + (1/2)x_4 = 5/2.$$

Rearranging this to integral and nonintegral parts,

$$x_2 + (1/2)x_4 = 2 + 1/2$$
$$(1/2)x_4 - 1/2 = -x_2 + 2.$$
$$\implies (1/2)x_4 - 1/2 \ge 0 \quad (\in \mathbb{Z})$$

We can add a new constraint,

$$(-1/2)x_4 + x_5 = -1/2.$$

The modified tableau is

x_1	x_2	x_3	x_4	x_5		
1	0	1	-1	0	4	x_1
0	1	0	1/2	0	5/2	x_2
0	0	0	-1/2	1	-1/2	x_5
0	0	-3	-1	0	-32	-z
1	0	1	0	-2	5	x_1
0	1	0	0	1	2	x_2
0	0	0	1	-2	1	x_4
0	0	-3	0	-2	-31	-z

The optimal solution to the IP is $\bar{x} = (5, 2)$, $\bar{z} = 31$.

6.4.2 Solve using the branch and bound approach.

(a) Maximize $4x_1 + 5x_2 + 3x_3$

subject to

Solution. Using a computer solver, the LP relaxation (1) solution is $x^{(1)}=(5.75,1.125,0)$, $z^{(1)}=28.625$.

i.
$$L = \{(1)\}$$

 $B = \emptyset$
 $\bar{z} = -\infty$

Looking at (1), we can split the solution on $x_1^{(1)} = 5.75$, we can add

$$x_1^{(2)} \le 5 \tag{2}$$

$$x_1^{(3)} \ge 6. (3)$$

ii.
$$L = \{(2), (3)\}$$

$$B = \emptyset$$

$$\bar{z} = -\infty$$

Looking at (2), $x^{(2)} = (5, 0.75, 1.5)$, $z^{(2)} = 28.25$. We'll add constraints

$$x_2^{(4)} = 0 (4)$$

$$x_2^{(5)} \ge 1. (5)$$

iii.
$$L = \{(3), (4), (5)\}$$

$$B = \emptyset$$

$$\bar{z} = -\infty$$

Looking at (5), $x^{(5)} = (5, 1, 1)$ and $z^{(5)} = 28$. This is integer and we can add it into B and set \bar{z} .

iv. $L = \{(3), (4)\}$ 3 is infeasible and can just be removed from the list.

$$B = \{(5)\}$$

$$\bar{z}=28$$

v.
$$L = \{(4)\}$$

$$B = \{(5)\}$$

$$\bar{z}=28$$

Looking at (4), we'll have $x^{(4)} = (3.5, 0, 4.5)$ and $z^{(4)} = 27.5$. Since the objective value is worse than (5), we can ignore this one.

vi.
$$L = \emptyset$$

$$B = \{(5)\}$$

$$\bar{z}=28$$

The algorithm is now finished and we're left with an optimal solution from (5):

$$\bar{x} = (5, 1, 1)$$

$$\bar{z}=28$$