

ELECTRICITY

PHYSICS

Lecture - 03

By - ER. RAKSHAK SIR

ics to be covered

OHM'S LAW

RESISTANCE

3 VERIFICATION OF OHM'S LAW

4 **FACTORS AFFECTING RESISTANCE**

DIFFERENCE BETWEEN

6 RESISTIVITY OF ELECTRICAL SUBSTANCES

* Pichli Kakshao Ka Nichod

$$V = 0$$
, $I = 0$
 $V = 2V = 27$
 $V = 100V = 1007$

ELECTRICAL CIRCUIT

Rheastat

Plug in -> ON Plug out -> OFF

Ans. A continuous and closed path made up of wires on which an electric current runs is called an electric circuit. An electric circuit consists of electric devices, a source of energy and wires that are connected with the help of a switch.

- (A) - 1) Ammeter

+(0=2) Vollmeter 5) Key-()-HHHHL3) Battery 6) Resistancy—m

4) Rheostat -m

CIRCUIT ELEMENTS

1
2()

Combination of cells

Battery

S. No.	Components	Symbols
K	An electric cell	<u>-</u> + -
~	A battery or a combination of cells	
S	Plug key or switch (open)	- () I = 0 `OFF'
V	Plug key or switch (closed) Plug in	—()— I≠0 ON'
4	A wire joint	
6	Wires crossing without joining	
4	Electric bulb	_m_ or
B8	A resistor of resistance R	
48.0	Variable resistance or rheostat	
\$ 10	Ammeter	_
女11	Voltmeter	+ (v)=

m- m

CIRCUIT ELEMENTS

BATTERY **ELIMINATORS**

AMMETER

PLUG KEY

- > Current measuring device
- Always connect in Series with the device
- >> Ideal Ammeter (R≈0)

- -> Voltage measuring device
- -> Always connected accoss posablel with the device
- Ideal Voltmeter (R200)

OHM'S LAW

$$V=0$$
 $T=0$

Voltage J Current J

Voltage 1 Current 1

flow level low

Flow high

Ohm's law states that, "Current flowing in a conductor is directly proportional to the amount of potential difference applied across the ends of the conductor, at a constant temperature".

Voltage & Current

Voltage & Current

Voltage Current

Voltage Current

QUESTION

How much current will an electric bulb draw from a 220 V source, if the resistance of the bulb filament is 1200 Ω ?

$$V = 1R$$
 $220 = 1 \times 1200$

$$T = 2200$$

$$T = 11 \times 1200$$

$$T = 11 \times 1200$$

$$T = 11 \times 1200$$

