

A Stochastic Reachability Approach to Asset Allocation.

From time-based to event-driven systematic strategies.

Andrea Schiavon andrea.schiavon1992@gmail.com

Che cos'è l'Asset Allocation?

Definition

L'asset allocation è il processo con il quale si decide in che modo distribuire le risorse fra diversi i possibili investimenti

Raggiungibilità Stocastica: un esempio di applicazione

Raggiungibilità Stocastica in Finanza

Piano della presentazione

- Approccio Time-Driven
- 2 Approccio Event-Driven
- 3 Conclusioni

Approccio Time-Driven

Modello matematico

Dinamica di portafoglio

$$x_{k+1} = x_k(1 + \boldsymbol{u}_k^T \boldsymbol{w}_{k+1}), \quad k \in \mathbb{N}$$

dove

- x_k stato del sistema e valore del portafoglio al'istante $k \in \mathbb{N}$
- u_k variabile di controllo del sistema e vettore dei pesi di portafoglio
- \mathbf{w}_{k+1} vettore dei rendimenti dei titoli

Modello matematico

Dinamica di portafoglio

$$x_{k+1} = x_k(1 + \boldsymbol{u}_k^T \boldsymbol{w}_{k+1}), \quad k \in \mathbb{N}$$

dove

- x_k stato del sistema e valore del portafoglio al'istante $k \in \mathbb{N}$
- u_k variabile di controllo del sistema e vettore dei pesi di portafoglio
- \mathbf{w}_{k+1} vettore dei rendimenti dei titoli

Obiettivo

$$\max_{\pi \in \mathcal{U}_{N-1}} \mathbb{P}\Big(\big\{\omega \in \Omega : x_0 \in X_0, \dots, x_N \in X_N\big\}\Big).$$

Modello Matematico

Optimal Dynamic Asset Allocation (ODAA) Algorithm

$$J_N(x) = \mathbb{1}_{X_N}(x)$$

$$J_k(x) = \sup_{\boldsymbol{u}_k \in U_k} \int_{X_{k+1}} J_{k+1}(z) p_{f(x,\boldsymbol{u}_k,\boldsymbol{w}_{k+1})}(z) dz$$

$$\forall k = N-1, \dots, 1, 0.$$

In output l'algoritmo fornisce la strategia ottima

$$\pi^* = \{\mu_0^*, \dots, \mu_{N-1}^*\},\$$

ossia una sequenza di mappe

$$\mu_k^{\star} : x \mapsto \boldsymbol{u}_k^{\star}, \quad \forall k$$

Modello Matematico

Optimal Dynamic Asset Allocation (ODAA) Algorithm

$$J_N(x) = \mathbb{1}_{X_N}(x)$$

$$J_k(x) = \sup_{\boldsymbol{u}_k \in U_k} \int_{X_{k+1}} J_{k+1}(z) p_{f(x,\boldsymbol{u}_k,\boldsymbol{w}_{k+1})}(z) dz$$

$$\forall k = N-1, \dots, 1, 0.$$

In output l'algoritmo fornisce la strategia ottima

$$\pi^* = \{\mu_0^*, \dots, \mu_{N-1}^*\},\$$

ossia una sequenza di mappe

$$\mu_k^{\star} : x \mapsto \boldsymbol{u}_k^{\star}, \quad \forall k$$

Elevato costo computazionale

un'ottimizzazione vincolata $\forall k = 1, \dots, N-1, \quad \forall x \in X_k$

Modello di mercato

I rendimenti delle asset class \mathbf{w}_{k+1} vengono modellizzati con una Mistura Gaussiana:

$$p_{\mathbf{w}_{k+1}} = \lambda \varphi_{(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)} + (1 - \lambda) \varphi_{(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)}, \quad \lambda \in [0, 1]$$

Mappe di Allocazione:

parametri investimento:

- orizzonte 2 anni
- ribilanciamento settimanale
- $x_0 = 1$
- target return 7% annuo
- $V@R_{1-\alpha} = 7\%$

probabilità raggiungimento target: $p^* = 78.59\%$

Simulazione Monte Carlo

Approccio Event-Driven

Definizione di "Evento"

Definition

si dice che un **evento** è accaduto ogniqualvolta il rendimento cumulato dell'asset rischioso supera una prefissata soglia superiore o inferiore.

Modello Event-Driven

Dinamica del titolo rischioso

$$S_{k+1} = S_k(1 + J\widetilde{N}_{k+1}), \quad k \in \mathbb{N}$$

- J = ampiezza salto
- $\widetilde{N}_{k+1} \sim B(p)$

Modello Event-Driven

Dinamica del titolo rischioso

$$S_{k+1} = S_k(1 + J\widetilde{N}_{k+1}), \quad k \in \mathbb{N}$$

- J = ampiezza salto
- $\widetilde{N}_{k+1} \sim B(p)$

Dinamica di Portafoglio

$$x_{k+1} = x_k(\exp\{r\tau_{k+1}\} + u_k J\widetilde{N}_{k+1}), \quad k \in \mathbb{N}$$

Mappe allocazione titolo rischioso

parametri investimento

- 10 riallocazioni
- r = 1%
- $X_{10} = [1.07^4, \infty]$

probabilità raggiungimento target:

$$p^* = 73.5\%$$

Estensione

Conclusioni

Caratteristiche strategia ottima:

- multi-periodale
- 2 indipendente da ipotesi distribuzionali sui rendimenti