PL-	07	Puga Fernández	Gonzalo
01		Maldonado Escobedo	Roberto Carlos
Nº PLo	Equipo	Apellidos	Nombre

71.779.257-Y	UO277906@uniovi.es
73208290	UO297453@uniovi.es
DNI	e-mail

6	Simulación y análisis del rendimiento de un servidor	
Nº	Título	Calificación
Práctica		

Comentarios sobre la corrección	

Asignatura de

CONFIGURACIÓN Y EVALUACIÓN DE SISTEMAS

Curso 2022-2023

Área de Arquitectura y Tecnología de Computadores

Departamento de Informática de la Universidad de Oviedo

Índice

- 1) Objetivos de la práctica
- 2) Pruebas a realizar
 3) Cuestiones redactadas en el guion de la práctica

1. Objetivos de la práctica.

El objetivo de esta práctica es el de combinar los conocimientos y los datos obtenidos empleando dos técnicas de análisis: medición y modelado analítico, para posteriormente, utilizando la técnica de evaluación por simulación, enriquecer la representatividad del modelo del sistema con objeto de conseguir un mayor ajuste de las predicciones a los resultados observados.

En esta práctica se ha usado el programa jmt-mod-uniov-v4 para desarrollar el modelado analítico, simulación y creación del modelado a nivel ce componentes.

2. Pruebas a realizar

Parte 1: Validación del modelo de simulación

La primera parte de esta práctica tiene como objetivo hacer una simulación del modelado y una vez hecha, se compararán los resultados obtenidos en dicha simulación, con los resultados obtenidos en el modelo analítico de la práctica 5 y los resultados medidos en la práctica 3.

Parte 2: Estudio del transitorio y la parada

En la segunda parte de esta práctica, se busca realizar diferentes simulaciones usando JSIM, en las que se irá variando el Máximo error relativo asignado a los diferentes índices de rendimiento, y después comparar en una tabla los resultados obtenidos.

Parte 3: Estudio de peticiones a través de Internet

Para la última parte de esta práctica, se realizará un análisis del comportamiento del sistema bajo unas condiciones de carga diferente a las medidas. Este cambio de configuración consistirá en añadir peticiones enviadas desde otros computadores a través de Internet a nuestro sistema. Una vez ajustado el modelad, y establecidas las características necesarias, se realizarán 1 o varias simulaciones con el objetivo de recopilar toda la información necesaria para poder comparar nuestro nuevo sistema con el sistema original También se realizarán comparaciones y gráficas entre las distintas clases de peticiones dentro de nuestro nuevo sistema.

3. Cuestiones redactas en el guion de la práctica

• Un análisis de la validez del modelo de simulación desarrollado en esta práctica, en comparación con los valores medidos del servidor (práctica 3) y los obtenidos por resolución analítica (práctica 5). Para ello debes entregar las gráficas indicadas en el punto 2, en el que se comparan para cada métrica los resultados obtenidos por: medición, modelado analítico y simulación. Realiza un análisis y valoración de los resultados conseguidos.

Gráficas obtenidas en el punto 2:

Los resultados del tiempo de respuesta coinciden drásticamente en los 3 apartados.

Los resultados de la productividad coinciden con mucha aproximación en las 3 pruebas realizadas.

Las comparativas del uso de red se ajustan mucho en el modelado analítico y en la simulación. En cambio en la medición hecha en la práctica 3 difiere ligeramente, esto es debido al ajuste utilizado en la práctica 5 para realizar el modelo. No conseguimos un modelo que se ajustara mejor.

La comparación de la CPU es la más afectada, ya que es el valor que fue el único valor (Service time distribution) con el que se establecía el modelo de la práctica 5 .

La utilización del disco sufre una diferencia mas aguda a partir de los 200 usuarios.

Compara los efectos de establecer diferentes valores para el error (0.15, 0.03 y 0.01) sobre las métricas del sistema. Puedes realizar una comparación construyendo una tabla en la que para cada métrica se indique el número de muestras en función del error. ¿Cómo afecta el nivel de error deseado al número de muestras necesarias y por ende a la duración de la simulación?

Nivel de error	Nº Max de muestras	Para la métrica	De la estación/cola
0,01	1000001	Residence time	CPU
0,01	819200	Utilization	Disco
0,01	737280	System Response Time	Network
0,01	573440	System Throughput	Network
0,03	163840	Residence time	Disco

0,03	245760	Utilization	Red
0,03	256000	System Response Time	Network
0,03	66560	System Throughput	Network
0,15	97280	Residence time	CPU
0,15	81920	Utilization	CPU y Disco
0,15	51200	System Response Time	Network
0,15	66560	System Throughput	Network

También se adjuntan las capturas de pantalla de las 3 simulaciones realizadas con los distintos valores de errores relativos.

A simple vista se puede apreciar que a mayor nivel de error, menor es el N^0 máximo de muestras, y por ende, menor es la duración de la simulación al necesitar menos muestras.

- Un análisis de la extensión del modelo al introducir las peticiones originadas en Internet. Para ello debes proporcionar:
- 1. Una representación gráfica del modelo realizado (captura de pantalla de JSIM), junto con una descripción cualitativa y cuantitativa de los cambios realizados al introducir Internet.

Este es el modelo realizado al introducir las peticiones originadas en Internet.

Comparándolo con el modelo inicial que teníamos:

Para pasar de este modelo al modelo con Internet, se han realizado los siguientes cambios:

- Se ha añadido un nuevo "Source", que funciona como Internet In. Este se ha conectado entrando en el componente Red. Internet in -> Red.
- Se ha añadido un componente "Sink", llamado Internet Out. Este se ha conectado uniendo como
- salida Red, y como entrada Internet Out. Red -> Internet Out. Además, se ha creado otra clase llamada "Peticiones Internet", de tipo abierta, y con una distribución exponencial de 25 peticiones/segundo, cuya estación de referencia es Internet in.

- En todas las estaciones, se ha igualado los parámetros de la clase inicial "Peticiones" a la clase "Peticiones Internet", tanto en la pestaña Queue section, Service Section, como en Routing Section, salvo en la estación Red, en cuyo caso, para las políticas de enrutado, se ha establecido una probabilidad de 0.5 a CPU y 0.5 a Internet Out, a diferencia de las usadas en a clase Peticiones, que son 0.5 a usuarios y 0.5 a CPU.
- √ Para obtener todos los Índices de rendimiento necesarios para obtener todos los datos en una sola simulación, se han marcado todas las utilizaciones posibles para cada combinación de Clase/Estación. De igual forma se ha hecho con residence time. También se han recogido las productividades de las 2 clases Peticiones y Peticiones Internet, asi como de la productividad total o conjunta.

√_

2. Graficas comparativas para cada métrica, entre el sistema original, correspondiente al apartado 2 de esta práctica, y el sistema mixto final (valor global de las métricas), tal como se indica en la descripción del impacto del nuevo servicio en el punto anterior.

3. Gráficas, solo para el modelo mixto (con internet), en las que se desglose, para cada métrica, la influencia de las peticiones procedentes de cada origen (terminales o internet) y el valor global de las métricas, tal como se describe en el reparto de carga, del punto anterior.

• ¿Qué relación existe para cada métrica entre los valores obtenidos para cada clase de petición y el valor global que no distingue entre clases?

El valor de la métrica que no distingue entre clases es aproximadamente la suma de ambas métricas, salvo para el tiempo de respuesta. (No salen valores exactos en excel)

Nº Us uar ios	Red_ All class es_Ut ilizati on	Red utilizat ion Interne t + Peticio nes	CPU_ All class es_U tiliza tion	CPU Utiliz ation Intern et + Petici ones	Disc o_All clas ses_ Utili zati on	Disco Utiliza tion Intern et + Petici ones	Tiem po de resp uest a all class es	Suma tiempo respue sta Interne t + Peticio nes	Pro duc tivi dad all clas ses	Suma produ ctivida d Intern et + Peticio nes
5	0,0006 63167	0,0006 62803	0,329 85285 1	0,333 6443 72	0,147 1192 77	0,146 9446 54	0,033 67811 4	0,0662 23948	27,5 5605 469	27,55 51130 4
60	0,0013 20026	0,0013 15318	0,647 14635 4	0,653 7883 22	0,288 9029 69	0,289 2011 98	0,047 41638 2	0,0945 4038	54,4 2165 867	54,26 26424 3
11 5	0,0018 74424	0,0018 73894	0,937 38758 6	0,936 3099 58	0,413 9213 37	0,417 9135 6	0,149 96438 3	0,2969 60868	78,9 5244 894	79,00 45529 5
17 0	0,0020 35157	0,0020 23235	1	1,023 4109 74	0,443 8062 82	0,447 3449 15	0,876 93041 5	1,7568 08135	84,4 4275 266	83,64 38616 8
22 5	0,0020 14005	0,0020 08098	1	0,986 9123 15	0,444 2798 48	0,442 0902 75	1,822 66389 5	3,6544 89537	84,0 1959 842	83,63 87522 3
28 0	0,0020 8473	0,0020 44074	1	1,001 9565 26	0,445 6816 22	0,457 8001 38	2,401 06048 8	5,0447 65114	84,2 5791 49	83,74 32322
33 5	0,0020 32969	0,0020 22373	1	1,019 1276 14	0,446 0765 45	0,449 5868 31	3,292 90055 4	6,6018 2119	83,9 9566 759	84,25 39359 4
39 0	0,0020 16914	0,0020 15782	1	0,985 7011	0,447 7086	0,439 3451	4,401 40024	9,1053 52506	83,8 9248	83,30 83222

				35	2	69	8		713	1
44	0,0020	0,0020		1,023	0,444	0,452	5,188	10,633	84,0	83,12
	•	•	1	6192	7307	9077	30110		4690	84195
5	30884	12904		77	87	46	9	46402	866	3
EΩ	0.0020	0.0020		0,987	0,448	0,453	5,578	11 655	84,0	83,83
50	0,0020	0,0020	1	2841	5862	1770	54440	11,655	4746	55742
0	24513	28905		74	98	08	6	2406	012	6

• La relación observada en el punto anterior ¿es la misma para todas las métricas?

No, para el tiempo de respuesta no.