Assignment Project Exam Help

Regres https://eduassistpro.github.io/ Introduction Add WeChat edu_assist_pro Regression

Ch.4 Multivariate Data Analysis. Joseph Hair et al. 2010. Pearson

Ch.6. Learn R for Applied Statistics. Eric Hui. 2018. Apress

Ch.2 Regression Analysis. William Mendenhall and Terry Sincich. 2012. 7th edition. Pearson

Ch.7. Simple Linear Regression. David Dalpiaz. 2019

Regression in Applied Statistics

Hypothesis: **null** (H_0) and **alternative** (H_A)

Inference Test signment Project Exam Help p < 0.05 (alpha) p > 0.05 (alpha)

Reject

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Regression:

a set of statistical processes to estimate the relationships between all the variables

Descriptive Statistics

Derives dataset summary:

- central tendency
- dispersion
- skewness

Inferential Statistics

- Makes inference about the population
- Use hypothesis testing and parameter estimation

Model

The variable to be predicted (or modeled), y, is called the **dependent** (or **response**) variable

- Response = Prediction + Error
- Response = Signal + Noise
- Response = Model + Unexplained
- Response = Deterministic + Random
- Response = Explainable + Unexplainable

Assignment Project Exam Help

https://eduassistpro.github.io/

The variables used to predict of thou echat educassistement

variables and are denoted by the symbols x_1 , x_2 , x_3

$$Y=f(X)+\epsilon.$$
 $Y=eta_0+eta_1X+\epsilon.$

(beta zero) = y-intercept of the line [the line intercepts the y-axis] (beta one) = Slope of the line [amount of increase (or decrease) in the mean of y for every 1-unit increase in x

Regression Types

Independent Variables

Regression Line Shape

Dependent variable

Assignment Project Exam Help

Linear

Continuous

Multiple

Simple

> 1 Independent

1 Independent

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Logistic Binary

Ridge

Highly correlated

Curvilinear

Nominal

> 2 categories

Count

Stepwise

Identification of best variables

Logistic

Ordinal

Poisson

Ordered response

Lasso

Ridge with variable

selection

Multivariate

> 1 dependent

Key Terms: Error Types

α (alpha) The level of risk we accept in making a wrong decision about a null hypothesis

Level of significance 0.05, 0.01, 0.001

When a is set to 0.05 Apsyaly from 2.05 implicates ignificance Help

Null is https://eduassistpro.gitfaub.io/

Reject null Type I errox (FalsweChat) edu_assistisieno

Retain null Right decision Type II error (False Negative)

β (beta)

The probability of committing Type II error

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

Simple y depends on only one other variable

$$\epsilon_i \sim N(0,\sigma^2).$$

Assignment Project Exam Help

Fixed known constant: X_i

https://eduassistpro.github.io/

X - Predictor

(David Dalpiaz, 2019)

Fixed unknown parame

: β_0 β_1 , Add WeChat edu_assist_pro

Random unobserved variable: ϵ_i - independently and identically distributed (iid) normal random error variables

Random variable: Y_i and their possible values y_i

Note: for each x the y-values spread about the mean E(y) and with a standard deviation σ that is the same for every value of x.

(Shaffer and Zhang, 2019. Introductory Statistics)

Simple Linear Regression Assumptions

- **1. Variables Type** Continuous (Interval or Ratio)
- **2. Linear**: The relationship between Y and x is linear
- 3. Outliers: There should be no significant outliers (Recoject Exam Help) Ch.13 Applied Statistics in R. Davi
- 4. Independence: You should have in observations

5. Equal Variance: The variances along the line of best fit remain similar.

Normal: The errors ϵ are normally distributed

Note: the values of x are fixed. We do not make a distributional assumption about the predictor variable.

Inspect your Y and X relationship in scatterplot

High leverage, Large residuals, Large Influence

Heteroscedasticity

Homoscedasticity

Fitting the Model: The Method of Least Squares

Vertical distance between observed and predicted values

Find the line that minimizes **the sum of all** the squared distances from the points to the line

y-hat $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ fitted line

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

deviation
$$(y_i - \hat{y}_i)$$
 residual

the sum of residuals

the sum of squares of SSE =
$$\sum_{i=1}^{n} [y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2$$
 residuals

least squares estimates

We need to find β_0 and β_1 that make the SSE a minimum.

Model Summary in R: Im()

summary(model)

 $model = Im(dist \sim speed, data = cars)$

response predictor

Mean = 0

Residuals 5 summary poi Assignment Project Exam Help

intercept = MEAN(distance) https://eduassistpro.github.io/

slope = for every 1 mph increase, the Wechat edu_assist_pro distance is increased by 3.9 feet

MY HOBBY: EXTRAPOLATING

AS YOU CAN SEE, BY LATE
NEXT MONTH YOU'LL HAVE
OVER FOUR DOZEN HUSBANDS.
BETTER GET A
BULK RATE ON
WEDDING CAKE.

https://xkcd.com/605/

Model Summary in R: Im()

summary(model)

Standard Error: The standard deviation of an estimate. Low values are ideal.

Mean = 0

- t value coefficient/std erroxssignment Project Exam Help
- 3
- 5

p value individual p value for e parameter

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- Residual Standard Error: a measure of the quality of a linear regression fit
- R-squared: how well the model is fitting the actual data
- 7
- F-Statistic indicator of a relationship between predictor and response

Model Summary in Python: OLS

```
y = data.dist
x = data.speed
x = sm_add_constant(x)
```

```
model = smf.OLS(y, x)
results = model.fit()
print(results.summary())
```

```
Add Intercept (None - by
default)
```

import statsmodels.formula.api as smf

```
Im()
```

```
Call:
                                        lm(formula = dist ~ speed, data = cars)
                                        Residuals:
                                           Min
                                                  10 Median
                                                             30
                                                                  Max
                                        -29.069 - 9.525 - 2.272
                                                           9.215 43.201
                                        Coefficients:
Assignment Project Exam Help
                                                 Estimate Std. Error t value Pr(>|t|)
                                        (Intercept) -17.5791
                                                          6.7584 - 2.601 0.0123 *
                                                  3.9324
                                                          0.4155 9.464 1.49e-12 ***
      https://eduassistpro.github.io/
                                        Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1
      Add WeChat edu_assist_pro
```

```
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
```

Workflow

STEP 1. Confirm Linear Relationship

```
data(cars)
with(cars, plot(y=dist, x=speed))
```

%matplotlib inline import matplotlib.pyplot as plt import pandas as pd plt.style.use('seaborn')

df = pdLread_csv("cars.csv")

Assignment Project Examf. Pictip = 'speed', y = 'dist', kind='scatter')
plt.show()

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

The plot shows a fairly strong positive relationship

Workflow Example

STEP 2 Run Regression

model = Im(dist~speed, data=cars) summary(model)

import statsmodels.api as sm

y = df.dist

x = df.speed

 $x = sm.add_constant(x)$

model = sm.OLS(y, x)

results = model.fit()

Assignment Project Exam Heithresults.summary())

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

STEP 3. Interpret Summary Output

Workflow

STEP 4. Create a plot with abline

```
ggplot(cars, aes(x=speed, y=dist))+
geom_point()+
geom_smooth(method=lm, seignment Project Exam Help
```

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

```
import seaborn as sns
sns.set(color_codes=True)
g = sns.lmplot(x="speed", y="dist", data=df)
```