Esercizio 1

$$T(n) = \begin{cases} 4, \text{ se } n \leq 2 \\ \sqrt[3]{n^2} \cdot T(\sqrt[3]{n}) + n, \text{ altriment:} \end{cases}$$

Livello	Nodi per livello	Dimensione di input	Contributo per noolo	Contributo totale per livello
0	4	n	n	n
1	n ³	n 3 3	n 3	n
2	n 8	, d	U 4	n
3	26 D	1 27	n 27	n
i	3 ⁱ -1 3 ⁱ	1. n	n 3:	n

Calcolo l'altezza:

$$\frac{1}{3^{h}} \leq 2 \stackrel{2}{\leftarrow} \frac{1}{3^{h}} \log_{2}(n) \leq 1 \stackrel{2}{\leftarrow} 3^{h} \geqslant \log_{2}(n) \stackrel{2}{\leftarrow} h \geqslant \log_{3}(\log_{2}(n))$$

Il nisultato sara:
$$\mathbb{B}\left(n \log_2(\log_2(n))\right)$$

