Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	6
1.2 Описание выходных данных	6
2 МЕТОД РЕШЕНИЯ	7
3 ОПИСАНИЕ АЛГОРИТМОВ	9
3.1 Алгоритм конструктора класса Triangle	9
3.2 Алгоритм метода operator+ класса Triangle	9
3.3 Алгоритм метода operator- класса Triangle	10
3.4 Алгоритм функции main	11
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	13
5 КОД ПРОГРАММЫ	16
5.1 Файл main.cpp	16
5.2 Файл Triangle.cpp	16
5.3 Файл Triangle.h	18
6 ТЕСТИРОВАНИЕ	19
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	20

1 ПОСТАНОВКА ЗАДАЧИ

Перегрузка арифметических операций.

Перезагрузка операции для объекта треугольник.

У треугольника есть стороны a, b, c и они принимают только натуральные значения. Определяем операцию сложения и вычитания для треугольников.

- + сложить значения сторон, если допустимо.
- вычесть значения сторон, если допустимо.

Складываются и вычитаются соответствующие стороны треугольников. Т.е. a1 + a2, b1 + b2, c1 + c2. Если после выполнения операции получается недопустимый треугольник, то результатом операции берется первый аргумент.

Написать программу, которая выполняет операции над треугольниками.

В основной программе реализовать алгоритм:

- 1. Ввод количества треугольников n.
- 2. В цикле для каждого треугольника вводятся исходные длины сторон. Далее создается объект, в конструктор которого передаются значения длин сторон. Каждый объект треугольника получает свой номер от 1 до п.
- 3. В цикле, последовательно, построчно вводится «номер первого треугольника» «символ арифметической операции + или -» «номер второго треугольника»
- 4. После каждого ввода выполняется операция, результат присваивается первому аргументу (объекту треугольника).
- 5. Цикл завершается по завершению данных.
- 6. Выводится результат последней операции.

Гарантируется:

• Количество треугольников больше или равно 2;

• Значения исходных длин сторон треугольников задаются корректно.

Реализовать перегрузку арифметических операции «+» и «-» для объектов треугольника посредством самостоятельных не дружественных функций.

1.1 Описание входных данных

Первая строка содержит значение количества треугольников n:

«Натуральное значение»

Далее п строк содержат

«Натуральное значение» «Натуральное значение»

Начиная с n + 2 строки:

«Натуральное значение» «Знак операции» «Натуральное значение»

1.2 Описание выходных данных

а = «Натуральное значение»; b = «Натуральное значение»; c = «Натуральное значение».

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект Triangle класса Triangle предназначен для массив для хранения сторон треугольника;
- функция main для главная функция программы;
- библиотека istream;
- объект сіп стандартного потока ввода с клавиатуры;
- объект cout стандартного потока вывода на экран;
- условная конструкция if;
- цикл со счётчиком for;
- цикл с предусловием while.

Класс Triangle:

- свойства/поля:
 - о поле первая сторона треугольника:
 - наименование side_a;
 - тип int;
 - модификатор доступа public;
 - о поле вторая сторона треугольника:
 - наименование side_b;
 - тип int;
 - модификатор доступа public;
 - о поле третья сторона треугольника:
 - наименование side_c;
 - тип int;
 - модификатор доступа public;
- функционал:

- о метод Triangle конструктор по умолчанию;
- метод Triangle параметризированный конструктор для установки значения сторон очередного треугольника;
- о метод operator+ перегрузка оператора сложения двух свойств объекта;
- о метод operator- перегрузка оператора разности двух свойств объекта.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса Triangle

Функционал: параметризированный конструктор для установки значения сторон очередного треугольника.

Параметры: нет.

Алгоритм конструктора представлен в таблице 1.

Таблица 1 – Алгоритм конструктора класса Triangle

N₂	Предикат	Действия	No
			перехода
1		Присвоение полю side_a значения переданного apryмeнтa side_a	2
2		Присвоение полю side_b значения переданного apryмeнтa side_b	3
3		Присвоение полю side_c значения переданного apryмeнтa side_c	Ø

3.2 Алгоритм метода operator+ класса Triangle

Функционал: перегрузка оператора сложения двух свойств объекта.

Параметры: ссылка на текущий объект класса Triangle.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода operator+ класса Triangle

N₂	Предикат	Действия	
			перехода
1	Треугольник существует?	Свойству side_а первого объекта присвоить сумму	2
		свойств side_a первого объекта и side_a второго	

No	Предикат	Действия	
			перехода
		объекта	
			Ø
2		Свойству side_b первого объекта присвоить сумму	3
		свойств side_b первого объекта и side_b второго	
		объекта	
3		Свойству side_с первого объекта присвоить сумму	Ø
		свойств side_c первого объекта и side_c второго	
		объекта	

3.3 Алгоритм метода operator- класса Triangle

Функционал: перегрузка оператора разности двух свойств объекта.

Параметры: ссылка на текущий объект класса Triangle.

Возвращаемое значение: Отсутствует.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода operator- класса Triangle

N₂	Предикат	Действия	№ перехода
1	Треугольник существует?	Свойству side_a первого объекта присвоить	
		разность свойств side_a первого объекта и side_a	
		второго объекта	
			Ø
2		Свойству side_b первого объекта присвоить	3
		разность свойств side_b первого объекта и side_b	
		второго объекта	
3		Свойству side_c первого объекта присвоить	Ø
		разность свойств side_c первого объекта и side_c	
		второго объекта	

3.4 Алгоритм функции main

Функционал: главная функция программы.

Параметры: нет.

Возвращаемое значение: целое, индикация корректности работы программы.

Алгоритм функции представлен в таблице 4.

Таблица 4 – Алгоритм функции таіп

No	Предикат	Действия	№ перехода
1		Объявление целочисленных переменных n, a, b и с	
2		Ввод с клавиатуры значения п	3
3	Инициализация указателя array на объект класса Triangle, хранящего динамический массив размера n		
4		Инициализация целочсиленной переменной счётчика і значением 0	5
5	_	Ввод значений сторон a, b и с очередного треугольника	6
	Значение переменной і не меньше значения переменной п		8
кла оче		Присвоение i-ому элементу массива объекта класса Triangle значений введённых сторон очередного треугольника, при передаче параметризированному конструктору введённых значений a, b и с	
7		Инкремент переменной і	
8		Объявление переменной строкового типа sign	
9	Ввод значений переменных а (номер 1 треугольника), sign (арифметическая операция (+		

N₂	Предикат	Действия	
			перехода
		или -)) и b (номер треугольника)	
10	Ввод отсутствует (пустой)	Отстановка (break)	14
	Ввод не отсутствует (не пустой)		11
11	Значение переменной sign	Замена операции вычитания действием перегрузки	12
	равняется "-"	оператора вычитания operator+	
	Значение переменной sign не		12
	равняется "-"		
12	Значение переменной sign	Замена операции сложения действием перегрузки	13
	равняется "+"	оператора сложения operator+	
	Значение переменной sign не		13
	равняется "+"		
13		Присвоение переменной п значения переменной а	9
14		Вывод:" a = ",<<значение свойства side_a	Ø
		последней операции>>,"; b = ",<<значение	
		свойства side_b последней операции>>,"; с =	
		",<<значение свойства side_с последней	
		операции>>"."	

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-3.

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл таіп.срр

Листинг 1 – main.cpp

```
#include "Triangle.h"
#include <iostream>
using namespace std;
int main()
  int n, a, b, c;
  cin >> n;
  Triangle* array = new Triangle[n];
  for(int i = 0; i < n; i++)
      cin >> a >> b >> c;
      array[i] = Triangle(a, b, c);
  string sign;
  while (true)
      cin >> a >> sign >> c;
      if (cin.fail()) {break;}
     if (sign == "-") {array[a-1] - array[c-1];}
if (sign == "+") {array[a-1] + array[c-1];}
      n = a;
  cout << "a = " << array[n - 1].side_a << "; b = " << array[n - 1].side_b
<< "; c = " << array[n - 1].side_c<< ".";
  return 0;
```

5.2 Файл Triangle.cpp

Листинг 2 – Triangle.cpp

```
#include "Triangle.h"
```

```
Triangle :: Triangle(int side_a, int side_b, int side_c)
  this -> side_a = side_a;
  this -> side_b = side_b;
  this -> side_c = side_c;
Triangle :: Triangle(){}
float Triangle :: Area()
  float half_perimetr = (side_a + side_b + side_c)/2.0;
  float area = sqrt(half_perimetr*(half_perimetr - side_a)*(half_perimetr -
side_b)*(half_perimetr - side_c));
  return area;
int Triangle :: Perimetr()
  int perimetr = side_a + side_b + side_c;
  return perimetr;
void Triangle::operator+(Triangle& Object)
  if ((Object.side_a + this -> side_a + Object.side_b + this -> side_b >
Object.side_c + this -> side_c) && (Object.side_a + this -> side_a +
Object.side_c + this -> side_c > Object.side_b + this -> side_b) &&
(Object.side c + this -> side c + Object.side b + this -> side b >
Object.side_a + this -> side_a))
  {
     this -> side_a += Object.side_a;
     this -> side_b += Object.side_b;
     this -> side_c += Object.side_c;
}
void Triangle :: operator-(Triangle& Object)
  if(this -> side_a - Object.side_a > 0 && this -> side_b - Object.side_b >
0 && this -> side_c - Object.side_c > 0 && this -> side_a - Object.side_a +
this -> side_b - Object.side_b > this -> side_c - Object.side_c && this ->
side_a - Object.side_a + this -> side_c - Object.side_c > this -> side_b -
Object.side_b && this -> side_c - Object.side_c + this -> side_b -
Object.side_b > this -> side_a - Object.side_a)
     this -> side_a = this -> side_a - Object.side_a;
     this -> side_b = this -> side_b - Object.side_b;
     this -> side_c = this -> side_c - Object.side_c;
}
```

5.3 Файл Triangle.h

Листинг 3 – Triangle.h

```
#ifndef __TRIANGLE__H
#define __TRIANGLE__H
class Triangle
  public:
  /*2_1_2c
  Triangle(int side_a, int side_b, int side_c);
  float Area();
  int Perimetr();
  */
  Triangle(int side_a, int side_b, int side_c);
  Triangle();
  void operator+(Triangle& Object);
  void operator-(Triangle& Object);
  int side_a, side_b, side_c;
};
#endif
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 5.

Таблица 5 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
2 1 2 3 4 5 6 1 - 2 2 - 1 2 - 1	a = 3; b = 3; c = 3.	a = 3; b = 3; c = 3.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).