Data Structures & Algorithms

Lecture 10: Heaps

Recap

- Binary Search Trees (BST)
- BST Operations
 - ▶ Insertion
 - Search
 - ▶ Traversal
 - Deletion

- BST Functions
 - Minimum/Maximum function
 - Successor function
 - Predecessor function

Heap

- A heap is a specialized tree-based data structure
- Can be viewed as a nearly complete binary tree
- A complete binary tree is a tree in which leaves are filled from left to right on one level before moving to next level

 Heap - a tree completely filled on all levels except possibly the lowest

Implementation

- Heaps can be easily implemented by arrays
- Each node represents an element of the array
- Complete binary tree if not full, then the only unfilled level is filled in from left to right

Heaps

- Two kinds of binary heaps
 - Max-heap
 - Min-heap
- Values in the nodes satisfy the heap properties
 - Max-heap property
 - Min-heap property

Heap Property

 The heap property of a tree is a condition that must be true for the tree to be considered a heap

Min-heap property

A[parent(i)] ≤ A[i] So, the root of any sub-tree holds the **least** value in that sub-tree

Max-heap property

A[parent(i)] ≥ A[i]

The root of any sub-tree holds the greatest value in the sub-tree

Heap Property

Operations on Heaps

- Maintain/Restore the max-heap property
 - MAX-HEAPIFY
- Create a max-heap from an unordered array
 - ▶ BUILD-MAX-HEAP
- Sort an array in place
 - ► HEAPSORT
- Priority queues

Maintaining the Heap Property

- Suppose a node is smaller than a child
 - Left and Right subtrees of i are max-heaps
- To eliminate the violation:
 - Exchange with larger child
 - Move down the tree
 - Continue until node is not smaller than children

Max-Heapify(A,1,n)

Another Example

MAX-HEAPIFY(A, 2, 10)

 $A[2] \leftrightarrow A[4]$

A[2] violates the heap property

A[4] violates the heap property

Max-Heapify

- MAX-HEAPIFY lets the value at A[i] "float down" in the max-heap so that the subtree rooted at index i obeys the max-heap property
 - Exchange with bigger of the two children and keep sifting down
 - So, A[i] moves down in the heap
 - The move of A[i] may have caused a violation of the max-heap property at its new location. So, we must recursively call Max-Heapify(A,i) at the location i where the node "lands"
 - This is a top down approach

Max-Heapify

Assumptions:

- Left and Right subtrees of i are max-heaps
- A[i] may be smaller than its children

MAX-HEAPIFY(A, i, n)

- 1. I = LEFT(i)
- 2. r = RIGHT(i)
- 3. if $l \le n$ and A[l] > A[i]
- 4. largest = l
- 5. else largest = i
- 6. if $r \le n$ and A[r] > A[largest]
- 7. largest = r
- 8. if largest ≠ i
- 9. exchange A[i] with A[largest]
- 10. MAX-HEAPIFY(A, largest, n)

Running time of Max-Heapify

Intuitively

- In worst case, it traces a path from the root to a leaf (longest path length: d)
- At each level, it makes exactly 2 comparisons
- Total number of comparisons is 2d
- Running time is O(d) or since $d = log_2 n 1$, so O(log n)

Building a Heap

- How to build a heap from scratch?
 - Convert an arbitrary array into a max-heap
 - We call Max-Heapify(A, i, n) for every i starting at last node and going to the root
 - I.e., follow **bottom-up** strategy

Build-Max-Heap(A)

- 1. n = length[A]
- 2. for i = n down to 1
- 3. Max-Heapify(A, i, n)

How Build-Max-Heap(A)

works? A 4 1 3 2 16 9 10 14 8 7

Important observation

- There is no need to call Max-Heapify() on leaf nodes
- Since, each is a 1-element heap to begin with, this call always returns without any change to original Heap
- For array of length n, all elements in range A[n/2+1 ... n] are leaves of the tree

So, what will be better array index to start with?

Start at internal node

How Build-Max-Heap(A) works?

 At most, the internal node with the largest index is equal to n/2

Build-Max-Heap(A)

- 1. n = length[A]
- 2. for i = n/2 down to 1
- 3. Max-Heapify(A, i, n)

Working of Build-Max-Heap

Working of Build-Max-Heap

Build-Max-Heap(A)

- 1. n = length[A]2. for i = n/2 down to 1 O(log n) O(n) 3. Max-Heapify(A, i, n)
- ⇒ Running time: O(nlogn)
- This is correct upper bound, however, this is not an asymptotically tight upper bound

Heapsort

- Goal:

Sort an array using heap representations

(7) (3) (1) (2)

Idea:

- Build a max-heap from the array
- Swap the root (the maximum element) with the last element in the array
- "Discard" this last node by decreasing the heap size
- Call MAX-HEAPIFY on the new root
- Repeat this process until only one node remains

Heapsort

Heapsort(A)

- Build-Max-Heap(A)
- **2.** for i = length[A] downto 2
 - 3. exchange A[1] \leftrightarrow A[i]
 - $_{4.}$ heap-size[A] = heap-size[A]-1
 - 5. Max-Heapify(A,1, heap-size[A])

Example: Heapsort

10

3

3

8

i = 2

i = 8

i = 5

8

Heapsort

n - 1

times

O(n)

Heapsort(A)

- 1. Build-Max-Heap(A)
- 2. for i = length[A] downto 2
 - 3. exchange A[1] \leftrightarrow A[i]
 - $_{4.}$ heap-size[A] = heap-size[A]-1
 - 5. Max-Heapify(A,1, heap-size[A]) O(log n)
 - Each of the n 1 calls to Max-Heapify() takes O(log n) time => O(n log n)
 - Uses the very useful heap data structure
 - Complete binary tree
 - ▶ Heap property: parent key >= children's keys
 - Sorts in place

Priority Queues

- Heapsort is an excellent algorithm, but a good implementation of quicksort usually beats it in practice
- Nevertheless, the heap data structure itself has many uses
- In this lecture, we present one of the most popular applications of a heap i.e., as an efficient priority queue
 - ► As with heaps, priority queues come in two forms: max-priority queues and min-priority queues
 - ► We will focus here on how to implement max-priority queues, which are in turn based on max-heaps

Priority Queues

Properties

- Each element is associated with a value (priority)
- The key with highest (or lowest) priority is extracted first

Priority Queues

- A priority queue is a data structure for maintaining a set S of elements, each with an associated value called a key
- Max-priority queues support the following operations:
 - HEAP-MAXIMUM(S): <u>returns</u> element of S with largest key
 - HEAP-EXTRACT-MAX(S): <u>removes and returns</u> element of S with largest key (DEQUEUE)
 - ► HEAP-INCREASE-KEY(S, x, k): increases value of element x's key to k (Assume k ≥ x's current key value)
 - MAX-HEAP-INSERT(S, x): <u>inserts</u> element x into set S (ENQUEUE)

Max-Priority Queues

- Among their other applications, we can use max-priority queues to schedule jobs on a shared computer
 - ► The max-priority queue keeps track of the jobs to be performed and their relative priorities
 - When a job is finished or interrupted, the scheduler selects the highest-priority job from among those pending by calling EXTRACT-MAX
 - The scheduler can add a new job to the queue at any time by calling INSERT

HEAP-MAXIMUM

Goal:

Return the largest element of the heap

HEAP-MAXIMUM(A)

Running time: O(1)

1. **return** A[1]

Heap-Maximum(A) returns 7

HEAP-EXTRACT-MAX

Goal:

Extract the largest element of the heap i.e., return the max value and also remove that element from the heap

Idea:

- Exchange the root element with the last
- Decrease the size of the heap by 1 element
- Call MAX-HEAPIFY on the new root, on a heap of size n-1

Example:

HEAP-EXTRACT-MAX

Heap size decreased with 1

HEAP-EXTRACT-MAX

HEAP-EXTRACT-MAX(A, n)

- 1. if n < 1
- 2. **error** "heap underflow"
- 3. max = A[1]
- 4. A[1] = A[n]
- 5. MAX-HEAPIFY(A, 1, n-1) // remakes heap

MAX-HEAPIFY

6. return max

Running time: $O(\log n)$ since it performs only a constant amount of work on top of the $O(\log n)$ time for

Dequeue

HEAP-INCREASE-KEY

Goal:

► Increases the key of an element *i* in the heap we wish to increase

Idea:

- ▶ Increment the key of A[i] to its new value
- ► If the max-heap property does not hold anymore: traverse a path toward the root to find the proper place for the newly increased key

Example: HEAP-INCREASE-KEY

HEAP-INCREASE-KEY

HEAP-INCREASE-KEY(A, i, key)

- if key < A[i]
- **2. error** "new key is smaller than current key"
- 3. A[i] = key
- 4. while i > 1 and A[PARENT(i)] < A[i]
- 5. exchange $A[i] \leftrightarrow A[PARENT(i)]$
 - 6. i = PARENT(i)

Running time: $O(\log n)$ since the path traced from the node updated in line 3 (2) to the root has length $O(\log n)$

16