第四章随机变量的数字特征

第二节 随机变量的方差

- 1、随机变量的方差
- 2、常见分布的方差
- 3、随机变量的方差的性质
- 4、小结、思考

应用实例

谁的技术水平发挥的更稳定

已知甲乙两名射击运动员的历史记录为:

X	10	9	8	7	6	5	0
$P(X=x_i)$	0.5	0.2	0.1	0.1	0.05	0.05	0
Y	10	9	8	7	6	5	0
$P(Y=y_k)$	0.7	0.05	0.02	0.03	0.1	0.1	0

E(X)=10*0.5+9*0.2+8*0.1+7*0.1+6*0.05+5*0.05=8.85(环)E(Y)=10*0.7+9*0.05+8*0.02+7*0.03+6*0.1+5*0.1=8.92(环)

考虑对其平均水平偏差平方的平均值:

$$\sum_{k=5}^{10} (k - E(Y))^2 P\{Y = k\} = E\{[Y - E(Y)]^2\} = 3.4860$$

这说明甲的技术水平发挥的更稳定

4.2 随机变量的方差

甲

Z

定义:

设 X是随机变量, 若 $E\{[X-E(X)]^2\}$ 存在,称 $D(X)=E\{[X-E(X)]^2\}$

为X的方差。称 $\sigma(X) = \sqrt{D(X)}$ 为X的标准差或均方差

注: 1) D(X)是随机变量X的函数的数学期望。

当**X**为离散型时
$$D(X) = \sum_{i=1}^{+\infty} [x_i - E(X)]^2 P\{X = x_i\}$$

当X为连续型时
$$D(X) = \int_{-\infty}^{1-1} [x - E(X)]^2 f_X(x) dx$$

2)
$$D(X)\geq 0$$

常用计算公式: $D(X) = E(X^2) - E(X)^2$

1.若
$$X \sim P(\lambda)$$
 则 $E(X) = \lambda$ $D(X) = \lambda$

$$E(X^{2}) = \sum_{k=0}^{+\infty} e^{-\lambda} \frac{\lambda^{k}}{k!} k^{2} = \sum_{k=1}^{+\infty} e^{-\lambda} \frac{\lambda^{k} (k-1+1)}{(k-1)!}$$

$$= e^{-\lambda} \sum_{k=2}^{+\infty} \frac{\lambda^{k}}{(k-2)!} + e^{-\lambda} \sum_{k=1}^{+\infty} \frac{\lambda^{k}}{(k-1)!}$$

$$= e^{-\lambda} \lambda^{2} * e^{\lambda} + e^{-\lambda} \lambda * e^{\lambda}$$

$$= \lambda^{2} + \lambda$$

$$D(X) = E(X^{2}) - [E(X)]^{2} = \lambda^{2} + \lambda - \lambda^{2}$$

 $=\lambda$

2.若
$$X \sim N(\mu, \sigma^2)$$
 则 $E(X) = \mu$ $D(X) = \sigma^2$

证明:
$$D(X) = \int_{-\infty}^{+\infty} [x - \mu]^2 f(x) dx$$

$$= \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} (x - \mu)^{2} e^{-\frac{(x - \mu)^{2}}{2\sigma^{2}}} dx$$

$$t = \frac{x - \mu}{\sigma} \frac{\sigma^{2}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} t^{2} e^{-\frac{t^{2}}{2}} dt$$

$$= -\frac{\sigma^{2}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} t de^{-\frac{t^{2}}{2}}$$

分部积分

 σ^2

1.
$$X \sim P(\lambda)$$
 \emptyset $E(X) = \lambda$ $D(X) = \lambda$

2.
$$X \sim B(n, p)$$
 \emptyset $E(X) = np$ $D(X) = np(1-p)$

3.
$$X \sim N(\mu, \sigma^2)$$
 则 $E(X) = \mu$ $D(X) = \sigma^2$

4.两点分布
$$E(X)=p$$
 $D(X)=p(1-p)$

5.均匀分布
$$E(X)=(b+a)/2$$
 $D(X)=(b-a)^2/12$

6.指数分布
$$E(X)=\lambda^{-1}$$
 $D(X)=\lambda^{-2}$

例4.2.1 设随机变量X的分布律为

1)求
$$D(X)$$
 2) $Y=X^2+1$ 求 $D(Y)$

解: 1)
$$E(X)$$
=(-1)*1/2+0*1/3+1*1/6=-1/3
$$E(X^2)$$
=(-1)²*1/2+0²*1/3+1²*1/6=2/3
$$D(X)$$
= $E(X^2)$ -[$E(X)$]²=5/9
2) $E(Y)$ = $E(X^2)$ +1=5/3
$$E(Y^2)$$
= $E(X^4$ +2 X^2 +1)=3
$$D(Y)$$
= $E(Y^2)$ -[$E(Y)$]²=2/9

例4.2.2: 设随机变量 X = Y相互独立 ,且 $X,Y \sim N(0,\frac{1}{2})$ 求|X-Y| 的方差。

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} E^{-\Delta} & X - Y & N(0,1) \\ -Y & N(0,rac{1}{2}) \end{aligned} \end{aligned} egin{aligned} & \sum_{\substack{j=0 \ j=0 \ j=1 \ E(|Z|)=\sqrt{2/\pi}}} X - Y & N(0,1) & E(Z) = 0 & D(Z) = 1 \end{aligned}$$
 $E(|Z|) = \sqrt{2/\pi}$ $E(|Z|^2) = E(|Z|^2) = D(|Z| + |E(|Z|)^2 = 1$ $D(|X - Y|) = E(|Z|^2) - |E(|Z|)^2 = 1 - rac{2}{\pi}$

方 差

练习:设一次试验成功的概率为p,进行100次独立重复试验,当p=1/2时,成功次数的标准差的值最大,其值为

解:设成功次数为X,则 $X \sim B(100,p)$

$$\sigma(X) = \sqrt{D(X)} = \sqrt{100p(1-p)} = 10\sqrt{p(1-p)}$$
$$p = \frac{1}{2}$$
时取最大值

随机变量的方差的性质

设 X, X_1, X_2, \ldots, X_n 是随机变量, c, b 是常数。

1)
$$E(c) = c$$
 $D(c) = 0$

2)
$$E(a+b X) = a+bE(X)$$
 $D(a+b X) = b^2 D(X)$

3)
$$E\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} E\left(X_{i}\right)$$

$$D\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} D(X_{i}) + 2\sum_{i=1}^{n} E\left\{\left[X_{i} - E(X_{i})\right]\left[X_{j} - E(X_{j})\right]\right\}$$

若
$$X_1, X_2, ..., X_n$$
相互独立,则 $D\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n D(X_i)$

$$D\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} D(X_{i}) + 2\sum_{i=1}^{n} E\left\{\left[X_{i} - E(X_{i})\right]\left[X_{j} - E(X_{j})\right]\right\}$$
若 $X_{1}, X_{2}, \dots, X_{n}$ 相互独立,则
$$D\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} D(X_{i})$$
若 $X_{1}, X_{2}, \dots, X_{n}$ 相互独立,则
$$E\left(\prod_{i=1}^{n} X_{i}\right) = \prod_{i=1}^{n} E(X_{i})$$

4)
$$D(X) = 0 \iff P\{X = E(X)\} = 1$$

方 差 $M = \mathbb{Z}$ 例 4.2.4 随机变量 X的 E(X), D(X) 存在,且 D(X) > 0

证明: $E(X^*)=0$ $D(X^*)=1$

证明: $E\left(X^*\right) = \frac{1}{\sqrt{D\left(X\right)}}E\left[X - E\left(X\right)\right] = 0$

$$D(X^*) = \frac{1}{D(X)}D[X - E(X)] = \frac{D(X)}{D(X)} = 1$$

称 X^* 为X的标准化随机变量。

特别地:
$$X \sim N(\mu, \sigma^2)$$
,则 $\frac{X - \mu}{\sigma} \sim N(0,1)$

方 差

例4.2.5 证明:(Chebyshev不等式)

若随机变量X的方差D(X)存在,则 $\forall \varepsilon > 0$ 有 $P\{X - E(X) \ge \varepsilon\} \le \frac{D(X)}{\varepsilon^2}$

(我们仅就 X为连续型的情况给出证 明)

证明:
$$P\{X - E(X) \ge \varepsilon\} = \int_{\{x \mid x - E(X) \ge \varepsilon\}} f(x) dx$$

$$\leq \int_{\{x \mid |x-E(X)| \geq \varepsilon\}} \frac{\left|x-E(X)\right|^2}{\varepsilon^2} f(x) dx$$

$$\leq \frac{1}{\varepsilon^2} \int_{-\infty}^{+\infty} [x - E(X)]^2 f(x) dx$$

$$= \frac{D(X)}{\varepsilon^2}$$

方 差

(Chebyshev 不等式) 若随机变量 X的方差 D(X)存在,则 $\forall \varepsilon > 0$ 有

$$P\left\{X - E\left(X\right) \mid \geq \varepsilon\right\} \leq \frac{D\left(X\right)}{\varepsilon^{2}}$$

固定ε(一个较小的数)

<u>若X的方差小</u>,则事件{|X-E(X)|≥ε}发生的概率小即事件{|X-E(X)|<ε}发生的概率大。

$$\left(P\left\{X-E\left(X\right)\right|<\varepsilon\right\}\geq 1-\frac{D\left(X\right)}{\varepsilon^{2}}\right)$$

方差刻划了随机变量X围绕它的数学期望的偏离程度!

例4.2.7 设随机变量 $X_1, X_2, ..., X_n$ 相互独立,且 $E(X_i) = \mu$

$$D(X_i) = \sigma^2, \bar{X} = \frac{1}{n} (X_1 + X_2 + \dots + X_n)$$
的数学期望和方差

解:

$$E(\overline{X}) = E\left[\frac{1}{n}(X_1 + X_2 + \dots + X_n)\Pi_J \oplus X_J + H_J \right]$$

$$= \frac{1}{n}E(X_1 + X_2 + \dots + X_n)$$

$$= \frac{1}{n}\sum_{i=1}^n E(X_i) = \frac{1}{n}n\mu = \mu$$

$$D(\overline{X}) = D\left[\frac{1}{n}(X_1 + X_2 + \dots + X_n)\right]$$

$$= \frac{1}{n^2}D(X_1 + X_2 + \dots + X_n)$$

$$= \frac{1}{n^2}\sum_{i=1}^n D(X_i) = \frac{1}{n^2}n\sigma^2 = \frac{1}{n}\sigma^2$$

小 结

- 1. 方差刻划了随机变量X围绕它的数学期望的偏离程度!
- 2. 方差计算与性质。
- 3. 要防止计算中的错误:

$$D(cX) = cD(X)$$
 $D(X \pm Y) = D(X) \pm D(Y)$

练习

设随机变量(X,Y)服从顶点为(0,1)(1,0)(1,1)的三角形上的均匀分布,试求随机变量 Z=X+Y的方差。

Answer:1/18