Quiz 5

Problem 1. Let $R = \mathbb{Z}[x]$ and let M = (2, x) be the ideal generated by 2 and x, considered as a submodule of R. Show that $\{2, x\}$ is not a basis of M. Show that the rank of M is 1 but that M is not free of rank 1.

Proof. Note that x(2) + (-2)(x) = 0 but $x \neq 0$ and $-2 \neq 0$ so $\{2, x\}$ cannot be a basis for M since this set is linearly dependent. This shows that the rank of M must be less than 2. Since M contains a nonzero element, it must have rank 1. But M is not free of rank 1 since we know the ideal (2, x) is not principal. \square

Problem 2. Let R be a P.I.D., let B be a torsion R-module and let p be a prime in R. Prove that if pb = 0 for some nonzero $b \in B$, then $Ann(B) \subseteq (p)$.

Proof. Since $b \neq 0$, we can form the nontrivial R-module Rb and note that $Rb \subseteq B$. This means that $Ann(B) \subseteq Ann(Rb)$. But note that $(p) \subseteq Ann(Rb)$ since pb = 0 and R is commutative. Since p is prime and R is a P.I.D., we know (p) is maximal. Thus either Ann(Rb) = (p) or Ann(Rb) = R. Suppose the latter. Then for each $r \in R$ we have rm = 0 for all $m \in Rb$. In particular, we have rb = 0 for all $r \in R$. Then Rb = 0 and we trivially have $Ann(B) \subseteq (p) \subseteq Ann(Rb) = 0$. On the other hand, if Ann(Rb) = (p) then we have $Ann(B) \subseteq Ann(Rb) = (p)$ as desired.