CRITIGEN

MAP QUALITY MEASUREMENTS (MQM)

US Cities Road Data Quality on OpenStreetMap

CUGOS – Fall Fling 2019

Monica Brandeis, Senior GIS/Data Analyst
Critigen

OSM Data Integrity Assurance

Rule-Based Validation

- Finding Data Inconsistency (map errors)
 - Geometry-based
 - Attribute -based

Geometry–Based Map Error

Attribute-Based Map Error

Atlas Checks

A java based program that systematically flags various types of map errors

Atlas Checks

In order to run, need turn OSM data into atlas (a connected graph representation of the road network)

1 OSM Road

5 Atlas Features

Sign Post Check

+ Unusual Layer Check

+ Invalid Access Tag Check

Map Quality Measurement (MQM) Tool

- A vector grid layer showing map error hotspots
- Grid size is determined by the distribution of map errors

City Boundary

Generate Bounding Box

90% of grids have <10 errors on OSM features 10% of grids (HOTSPOT)

117 117

City Boundary

Generate Bounding Box

Recursively Divide it into half using K-D Tree

70

City Boundary

Generate Bounding Box

Recursively Divide it into half using K-D Tree

37

City Boundary

Generate Bounding Box

Recursively Divide it into half using K-D Tree

City Boundary

Generate Bounding Box

Recursively Divide it into half using K-D Tree

City Boundary

Generate Bounding Box

Recursively Divide it into half using K-D Tree

City Boundary

Generate Bounding Box

Recursively Divide it into half using K-D Tree

90% of grids have <10 errors on OSM features

Stop when >=90% of the grids have <10 features

Recursively Divide it into half using K-D Tree

Final MQM Layer

Recursively Divide it into half using K-D Tree

.

Re-prioritize Map Error Hot-Spots by Usage

Final MQM Layer

Final 3 Layers

MQM

MQM + Population

MQM + Car Ownership

CRITIGEN

The MQM Web App

https://osmquality.io

MQM Visualization and Stats for each city

Ranking List for 51 U.S. Cities

Future Enhancements

- Flexible data inputs (e.g., Overpass Turbo Results)
- Focus on other map layers (e.g., address, building, water, etc.)
- Other measurements for OSM data quality
- Tool incorporation (e.g. JOSM, HOT Task Manager, or MapRoulette)

MQM 2020

More Detail: https://youtu.be/8lpvf9aeyNI

Acknowledgment

Micah Nacht

Sayana Saithu

Ahmend Ahmouda

Lukas Kucinski

Ana Ordonez

Keahi Konishi

Amelia Watts

Mara Rae

Adam Shaw

Stephen Cerqueira

Daniel Baah

Kim Kearns

Todd Slind

Which city has the best OSM quality

Explore OSM Quality Ranking

Thank you!

Stay Connected with Critigen:

www.critigen.com

Monica.Brandeis@critigen.com

Office Phone: +1 (859) 312-9267

Address
1430 Summit Ave, Suite 100C
Seattle, WA 98122

Selected Atlas Checks for Road Network

Road Geometry

- EdgeCrossingEdgeCheck
- BuildingRoadIntersectionCheck
- SnakeRoadCheck
- RoundaboutValenceCheck
- InvalidMiniRoundaboutCheck

Road Tag and Relation

- SignPostCheck
- InvalidAccessTagCheck
- StreetNameIntegerOnlyCheck
- UnusualLayerTagCheck
- InvalidLanesTagCheck
- InvalidTurnRestrictionCheck

City Boundary

City Boundary

Generate Bounding Box

Re-prioritize Map Error Hot-Spots by Usage

Final MQM Layer

 Join American Community Survey (ACS) data to the census tracts

- Join American Community Survey (ACS) data to the census tracts
- Generate raster layers

Raster Layer

- Join American Community Survey (ACS) data to the census tracts
- Generate raster layers
- Generate grids using the city boundary

- Join American Community Survey (ACS) data to the census tracts
- Generate raster layers
- Generate grids using the city boundary
- Calculate the mean value of raster layer for each grid
- Normalize values and visualize the results

ACS Data

Combining MQM and Census Scores

OSM Data Quality Improved Overall

OSM Data Quality Improved Overall

• 69% of the cities (36 out of 51) have a decreased amount of error features

Billings, MT

Burlington, VT

Tucson, AZ

Madison, WI Errors: 0.95%

Boise, ID

Dallas, TX

Baltimore, MD Errors: 1.02%

Orlando, FL

Indianapolis, IN

Philadelphia, PA Errors: 1.07%

Wichita, KS Errors: 1.12%

Cheyenne, WY

Errors: 1.17%

Minneapolis, MN

Albuquerque, NM

Errors: 1.22%

OSM Data Quality Improved Overall

- 69% of the cities (35 out of 51) have a decreased amount of error features
- 86% of the cities (44 out of 51) have a lower MQM Errors rate

Billings, MT

Burlington, VT

Tucson, AZ

Madison, WI Errors: 0.95%

Boise, ID
Errors: 0.99%

Dallas, TX

Baltimore, MD

Orlando, FL

Errors: 1.03%

Indianapolis, IN

Philadelphia, PA

Wichita, KS

Cheyenne, WY

Minneapolis, MN

Albuquerque, NM

OSM Data Quality Improved Overall

- 69% of the cities (35 out of 51) have a decreased amount of error features
- 86% of the cities (44 out of 51) have a lower MQM Errors rate
- The total feature counts increased in each city

More accurate representations of cities

- More accurate representations of cities
- Different OSM data source

- More accurate representations of cities
- Different OSM data source
- Map error hot-spots reprioritization by usage

- More accurate representations of cities
- Different OSM data source
- Map error hot-spots reprioritization by usage
- Trend Analysis between 2018 and 2019

City Rankings

- Rankings are based on errors rates
- Error rate = $\frac{\#error\ features}{\#total\ features} \times 100\%$
- The error rate is an estimation of the percentage of road features that have mapping errors
- A city with increasing error features might rank higher than a city with decreasing error features

OSM Data Quality Improved Overall

- 69% of the cities (35 out of 51) have a decreased amount of error features
- 86% of the cities (44 out of 51) have a lower MQM Errors rate
- The total feature counts increased in each city
- The MQM Errors rate at each ranking decreased

