Curso Completo de Lógica de Programação usando Java

Seção: Matrizes

Exercícios propostos

1) Ler dois números M e N, e depois ler uma matriz MxN de números inteiros, conforme exemplo. Em seguida, mostrar na tela somente os números negativos da matriz.

Entrada:

A entrada contém os números M e N na mesma linha, depois os dados da matriz.

Saída

A saída contém uma mensagem e depois os números negativos da matriz, conforme exemplo.

Exemplo:

Entrada	Saída
2 3	VALORES NEGATIVOS:
12 -8 5	-8
-13 10 -6	-13
	-6

2) Ler um número N e depois uma matriz quadrada NxN com números inteiros. Depois, mostrar na tela a soma dos elementos de cada linha da matriz.

Entrada:

A entrada contém o número N, depois os dados da matriz.

Saída:

A saída contém os números representando a soma dos elementos de cada linha da matriz.

Exemplo:

Entrada	Saída
3	11
5 2 4	19
10 3 6	29
9 8 12	

3) Ler um inteiro N e uma matriz quadrada de ordem N. Mostrar qual o maior elemento de cada linha. Suponha não haver empates.

Entrada:

A entrada contém o número N, depois os dados da matriz.

Saída:

A saída contém os números representando o maior elemento de cada linha da matriz.

Exemplo:

Entrada	Saída
4	12
10 5 12 3	7
4 7 0 6	8
3 3 8 1	15
15 13 4 7	

4) Ler um inteiro N e uma matriz quadrada de ordem N. Mostrar a soma dos elementos acima da diagonal principal.

Entrada:

A entrada contém o valor N, depois os dados da matriz.

Saída:

A saída contém a soma dos elementos da diagonal principal.

Exemplo:

Entrada	Saída
3	12
10 3 2	
5 15 7	
8 6 4	

5) Fazer um programa para ler duas matrizes de números inteiros A e B, contendo de M linhas e N colunas cada. Depois, gerar uma terceira matriz C onde cada elemento desta é a soma dos elementos correspondentes das matrizes originais. Imprimir na tela a matriz gerada.

Entrada:

A entrada contém os valores de M e N, depois os valores da primeira matriz A, depois os valores da segunda matriz B, conforme exemplo.

Saída:

A saída contém os valores da matriz gerada C, conforme exemplo.

Exemplo:

Entrada	Saída	
2 3	5 9 7	
3 5 2	5 13 9	
4 5 1		
2 4 5		
1 8 8		

- 6) Ler uma matriz quadrada de ordem N, contendo números reais. Em seguida, fazer as seguintes ações:
- a) calcular e imprimir a soma de todos os elementos positivos da matriz.
- b) fazer a leitura do índice de uma linha da matriz e, daí, imprimir todos os elementos desta linha.
- c) fazer a leitura do índice de uma coluna da matriz e, daí, imprimir todos os elementos desta coluna.
- d) imprimir os elementos da diagonal principal da matriz.
- e) alterar a matriz elevando ao quadrado todos os números negativos da mesma. Em seguida imprimir a matriz alterada.

Entrada:

A entrada contém o número inteiro N, seguido dos valores da matriz com uma casa decimal cada, seguido do índice de uma linha, seguido do índice de uma coluna, conforma exemplo.

Saída:

A saída contém os valores de saída de cada ação, com uma casa decimal, na ordem em que foram apresentadas no enunciado, conforme exemplo.

Exemplo:

Entrada	Saída
3	SOMA DOS POSITIVOS: 40.0
7.0 -8.0 10.0	LINHA ESCOLHIDA: -2.0 3.0 5.0
-2.0 3.0 5.0	COLUNA ESCOLHIDA: 10.0 5.0 4.0
11.0 -15.0 4.0	DIAGONAL PRINCIPAL: 7.0 3.0 4.0
1	MATRIZ ALTERADA:
2	7.0 64.0 10.0
	4.0 3.0 5.0
	11.0 225.0 4.0

7) O sargento Silva organiza seu pelotão em M filas numeradas a partir de 1, sendo cada fila com a mesma quantidade de soldados. Por exemplo, a figura abaixo mostra a organização do pelotão em 3 filas com 8 soldados em cada uma.

Um dos exercícios que o sargento Silva realiza com o pelotão é o exercício "girar fila", que consiste em dizer o número de uma fila, de modo que os soldados desta fila devem se mover para a direita, e o último soldado da direita vai para a posição mais à esquerda. Você deve fazer um programa para ler a formação do pelotão e executar o exercício "girar fila".

Entrada:

A entrada consiste em um inteiro M representando o número de filas, um inteiro N representado a quantidade de soldados por fila, as M filas de soldados (cada soldado é representado por um número inteiro), e o número inteiro para o exercício "girar fila".

Saída:

A saída contém a formação do pelotão após a execução do exercício "girar fila".

Exemplo:

Entrada	Saída
3	1034 2271 9013 9281 1138
5	7201 2837 1827 1074 9271
1034 2271 9013 9281 1138	1822 1977 1821 2278 1821
2837 1827 1074 9271 7201	
1822 1977 1821 2278 1821	
2	