Termochémia = je vedný odbor chémie, ktorý skúma tepelné javy a energetické zmeny pri chem. reakciách

energia sa pri chemickej reakcii môže: A) uvoľniť (vzniká pri reakcii) = EXOTERMICKÉ R.

B) spotrebovať (treba E na priebeh dodať) ENDOTERMICKÉ R.

Reakčné teplo Q

- ▶ veličina, ktorá udáva, koľko tepla sa pri chemickej reakcii uvoľní/spotrebuje, jednotkou je [kJ.mol⁻¹]
- ▶ je rovné **zmene entalpie ΔH** (čítaj delta há))

Teda platí:

ENTALPIA (H) = tepelný obsah látky

- určuje sa ako <u>rozdiel</u> entalpie **produktov a reaktantov** chemickej reakcie

$$Q = \Delta H = H - H$$
prod. reakt.

- závisí od: teploty, tlaku aj od látkového množstva R (priamo úmerne)

Termochemické reakcie obsahujú:

- 1. Chemické vzorce zlúčenín/značky prvkov (špecifikujú reaktanty a produkty)
- 2. Skupenské stavy v zátvorke:

g-gaseus – plynné

I -liquidus – kvapalné

s -solidus - tuhé

aq -aqua - vodný roztok

3. Hodnotu reakčného tepla Q alebo ΔH (priamo v reakcii, alebo vedľa rekcie)

Pr. $Ca(s) + 2 H_2O(I) \rightarrow Ca (OH)_2(aq) + H_2(g)$

 $\Delta H = -431,1 \text{ kJ. mol}^{-1}$

Reakčné teplo chemickej reakcie, pri štandardných podmienkach označujeme ΔH⁰. (štandardné podmienky: teplota 298,15 K, tlak 101,3 kPa)

1. EXOTERMICKÉ REAKCIE

-sú reakcie, pri ktorých **sa teplo (energia) uvoľňuje** napr. **horenie** (plynu,dreva, uhlia...), dýchanie, reakcia alkalických kovov napríklad sodíka s vodou, aluminotermia - zváranie koľajníc

Horenie zemného plynu (metánu): CH_4 (g) + $2O_2$ (g) $\rightarrow CO_2$ (g) + $2H_2O$ (g)

Rozpúšťanie NaOH vo vode aj riedenie kyselín s vodou – kadička je teplá!!!! **Hasenie vápna** – prudká exotermická reakcia!!!!! nabíjanie batérií napr. v telefóne, tvorba fosílnych palív, vznik uhlia, ropy a zemného plynu

všeobecný zápis EXOTERMICKEJ chemickej reakcie:

reaktanty → produkty + teplo

PLATÍ: ΔH < 0 je záporné číslo

Ak $\Delta H = H_P - H_R$ a entalpia produktov je menšia ako entalpia reaktantov a preto má reakčné teplo zápornú hodnotu ©

Rozklad peroxidu vodíka katalyzátor je MnO_2 (burel) $2H_2O_2(aq) \rightarrow O_2$ (g) $+ 2H_2O$ (g) dôkaz kyslíka tlejúcou špajdlou, ktorá sa rozhorí \odot

2.ENDOTERMICKÉ REAKCIE

Sú reakcie, pri ktorých sa teplo spotrebúva, treba ho dodávať!!!

Reakcie prebiehajú len za neustáleho dodávania tepla.

všeobecný zápis chemickej reakcie :

reaktanty

+ teplo

→ produkty

Ak $\Delta H = H_P - H_R$ a entalpia produktov je vyššia ako entalpia reaktantov preto má reakčné teplo kladnú hodnotu \odot

PLATÍ: $\Delta H > 0$ je kladné číslo

Topenie ľadu a vyparovanie – teplo treba dodať – ENDOTERMICKÝ dej.

Kondenzácia vody (skvapalnenie) a mrznutie – teplo sa uvoľňuje – EXOTERMICKÝ dej.

- Väčšina endotermických chemických reakcií prebieha len za stáleho dodávania tepla, teda za zahrievania
- ► Horenie = exotermická reakcia, pri ktorej sa uvoľňuje E- teplo a svetlo

Na začiatok pri horení na priebeh reakcie je potrebné malú energiu na spustenie reakcie dodať – zápalka, iskra.... Až tak bude papier, drevo...horieť

Táto energia potrebná na iniciovanie (začatie) reakcie sa rovná aktivačnej energii E_A

Ako zapisujeme reakčné teplo k reakcii?

► ENDOTERMICKÁ REAKCIA - 3 spôsoby ako to môžeme zapísať:

A) vpravo vedľa reakcie: $CaCO_3(s) \rightarrow CaO(s) + CO_2(g) \triangle H = 900 \text{ kJ.mol}^{-1}$

B) do reakcie k reaktantom (Ľ): $CaCO_3(s) + 900 \text{ kJ.mol}^{-1} \rightarrow CaO(s) + CO_2(g)$

C) do reakcie k produktom (P): $CaCO_3(s) \rightarrow CaO(s) + CO_2(g) (-900 \text{ kJ.mol}^{-1})$

► EXOTERMICKÁ REAKCIA - 3 spôsoby ako to môžeme zapísať:

A) vpravo vedľa reakcie: $C(s) + O_2(g) \rightarrow CO_2(g)$ $\Delta H = -395,5 \text{ kJ.mol-1}$

B) do reakcie k reaktantom(Ľ): $C(s) + O_2(g) - 395,5 \text{ kJ.mol}^{-1} \rightarrow CO_2(g)$

C) do reakcie k produktom (P): $C(s) + O_2(g) \rightarrow CO_2(g) + 395,5 \text{ kJ.mol}^{-1}$

DVA TERMOCHEMICKÉ ZÁKONY:

Prvý termochemický zákon, autori Lavoiser a Laplace (1780):

"Hodnota reakčného tepla priamej a spätnej reakcie je rovnaká a líši sa len znamienkom."

Príklad 1: Ak vieme, že hodnota reakčného tepla reakcie je

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$
 $\Delta H_1 = -483.9 \text{ kJ.mol}^{-1}$

Aká bude hodnota reakčného tepla pre spätnú (vratnú) reakciu?

$$2H_2O(g) \rightarrow 2H_2(g) + O_2(g)$$
 $\Delta H_2 =$

Druhý termochemický zákon, autor Hess (1840):

"Reakčné teplo určitej reakcie sa rovná súčtu reakčných tepiel jej čiastkových reakcií."

$$\Delta H = \Delta H_1 + \Delta H_2 + \dots$$

Príklad: Na základe termochemických rovníc čiastkových reakcií

1. Sn (s) + Cl₂ (g) SnCl₂ (s)
$$\Delta H_1 = -349,4 \text{ kJ.mol}^{-1}$$

2.
$$SnCl_2(s) + Cl_2(g) SnCl_4(l)$$
 $\Delta H_2 = -195,2 \text{ kJ.mol}^{-1}$

Proof. Riešenie: Sn (s) + 2 Cl₂ (g) → SnCl₄ (l) $\Delta H = ?$

 $\Delta H = \Delta H_1 + \Delta H_2 = -349,4 \text{ kJ.mol}^{-1} + (-195,2 \text{ kJ.mol}^{-1})$ $\Delta H = -544,6 \text{kJ.mol}^{-1}$