情報工学実験Ⅱ(電子回路)

オシロスコープを用いた波形観測

オシロスコープとは・・・

- ◆ある時点の電圧を平面上の点で表す→2次元表示の電圧計
 - ●縦方向の位置:設定した縮尺で電圧に比例させる
 - ●横方向の位置:一定の速度で左から右へ動く

◆1回左から右に描き終わったら・・・

まずはここから

●再度左から右に向かって描く:周期的な波形の観測

●それ以上描かない : 1回限りの現象の観測

単に繰り返し描かせると・・・

◆描き始めの位置が一定しない

繰り返し描いた波形を静止させるには・・・

◆毎回同じ位置から描き始めるようにする

描き始めの位置の設定

◆描き始めを指示する信号 ートリガー の発生させ方を設定する

◆トリガの設定項目

ソース

●どの信号を利用するか

: しべル

●どの電圧になったら発生させるか

スロープ

●どのように変化したときに発生させるか

モード

●1回トリガを発生したらその後どうするか:

垂直軸と水平軸の設定項目

◆垂直軸

●どの位の大きさで表示させるか : 垂直感度(VOLTS/DIV)

●どの位置に表示させるか : <mark>垂直位置</mark>

(VERTICAL POSITION)

●信号の直流分を除去するか否か : 入力結合(COUPLING)

●プローブの減衰比

◆水平軸

●どの位の大きさで表示させるか : 掃引時間(SEC/DIV)

●どの位置に表示させるか

: 水平位置 (HORIZONTAL POSITION)

入力結合(垂直軸)による観測結果の違い

入力結合(垂直軸)の設定方針

◆ACにする場合

- ●交流分(変化する成分)のみを観測するとき
 - →直流分が大きい場合に有効
 - →整流波形におけるリップル分
 - →振幅変調(AM)波形における信号波
- ●直流分がないとき
 - →正弦波交流回路

◆DCにする場合

- ●被観測信号を忠実に観測するとき
 - →直流分と交流分を含む電圧(交流分のみの場合でも可)
 - →アナログ電子回路(増幅回路など)
 - →ディジタル電子回路(論理回路,パルス回路など)

オシロスコープと回路の接続

設定の練習 - プローブ補正信号の測定

CH1のプローブを プローブ補正端子 (PROBE COMP) に接続する CH2のプローブは 接続しない

- ◆プローブ補正端子の出力
 - ●周波数1 kHz,振幅5 Vp-pの方形波
 - ●電圧値は0 Vと5 Vを交互にとる

これを表示するための最適なトリガ,垂直軸,水平軸の設定とは?

プローブ補正信号測定時の設定

◆トリガ

●ソース

●レベル :

●スロープ:立上り

●モード : オート

◆垂直軸

●垂直感度(VOLTS/DIV)

●垂直位置(VERTICAL POSITION)

●入力結合(COUPLING)

●プローブの減衰比

●電圧は0 V~5 Vの間で変化

●縦軸は8目盛

●なるべく大きく表示させる

: 中央

:

: プローブに合わせる

●周波数は1 kHz

●横軸は10目盛

●1.5~2周期程度表示させる

◆水平軸

●掃引時間(SEC/DIV)

●水平位置(HORIZONTAL POSITION):

トリガ位置が画面内

に表示されるように

TDS1002Bにおける画面表示例

周期の異なる二つの同期した電圧波形の測定

◆同期した波形とは

- 独立した変化はしない
- ●何らかの関係を持って変化する
- ●論理回路やコンピュータのハードウェアで通常見られる

クロックに 合わせて変化する

- ◆測定上の注意
 - ●2現象で同時に測定する
 - トリガのソースを周期の長い方の信号とする。

ソースのとり方による観測結果の違い(1)

◆ソースをA(スロープ:立ち上がり)とした場合

トリガのかかる位置によって Bの表示が変化する

Bの表示が静止しない

ソースのとり方による観測結果の違い(2)

◆ソースB(スロープ:立ち上がり)とした場合

周期の異なる三つ以上の同期した電圧波形の測定

- ◆2現象オシロスコープで測定するには
 - ●二つずつ複数回測定する
 - ●複数回の測定結果を組み合わせる
- ◆測定上の注意
 - ●トリガのソースは最も周期の長い信号とする
 - ●最も周期の長い信号と他の信号を順に組み合わせて 測定する
 - ●外部トリガを利用する方法もある

ディジタル回路における測定例

正弦波交流測定時の設定

▶トリガ

: CH1 ●ソース ・レベル

0 V

最大値と最小値の間なら どの値でもトリガはかかる

●スロープ : 立上り ●モード : オート

▶垂直軸

●垂直感度(VOLTS/DIV)

:なるべく大きく表示

されるように

●垂直位置(VERTICAL POSITION) : 中央

●入力結合(COUPLING)

●プローブの減衰比

: AC

: プローブに合わせる

直流分(もともとない)を 除去する

▶水平軸

●掃引時間(SEC/DIV)

:1.5~2周期程度表示

されるように

トリガ位置が画面内 ●水平位置(HORIZONTAL POSITION):

に表示されるように

正弦波交流の最大値の測定

縦軸:なるべく大きく表示するように 横軸:1.5~2周期程度表示するように

正弦波交流の周期の測定

(2)VOLTS/DIV, SEC/DIV

縦軸:振り切れない程度に大きく表示

横軸:1.5~2周期程度表示

正弦波交流の最大値の調整

●回路に接続した状態で調整する (3)HORIZONTAL POSITION 最大値を取る位置を画面 中央の垂直目盛線に合わせる (2) VERTICAL POSITION 0 Vの位置を画面中央の 水平目盛線に合わせる (4)この長さが最大値 0.5 Vに合わせる場合は, $0.5 \text{ V} \div 0.2 \text{ V/DIV} = 2.5 \text{ DIV}$ なるようにする CH1 0.2V M 25.0μs (1)VOLTS/DIV, SEC/DIV あらかじめ適切な値に 合わせておく

正弦波交流の位相差の測定

- ◆単位の違い
 - ●オシロスコープの横軸は時間の単位
 - ●位相差は角度の単位

位相差は直読 できない

- ◆測定の方法
 - lacksquare2つの波形の間の時間差 ΔT を測定し、位相差に変換する
 - ●1周期=360°=2π radの関係を用いる
 - ●位相の進みと遅れを符号で区別する

表示された波形で 判断する

$$\theta = \frac{\Delta T}{T} \times 360 \text{ deg}$$

$$= \frac{\Delta T}{T} \times 2\pi \text{ rad}$$

 ΔT は正または負の値

位相差の測定例(1)

オシロスコープを用いた波形観測

異なっていてもよい

位相差の測定例(2)

(5)位相差の計算
θ=
$$\frac{-18\times10^{-6}}{200\times10^{-6}}\times360=-32$$
 ∘