The group G is isomorphic to the group labelled by [78, 1] in the Small Groups library. Ordinary character table of $G \cong C13$: C6:

Trivial source	character	table of	$G \cong$	C13:	C6 at	p = 13

p-subgroups of G up to conjugacy in G				P_1						P_2		
Representatives $n_j \in N_i$	1 <i>a</i>	2a	3b	6a	3a	6b	1a	3b	2a	3a	6a	6b
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$	13	1	E(3)	E(3)	$E(3)^2$	$E(3)^2$	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$	13	-1	1	-1	1	-1	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$	13	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$	13	-1	E(3)	-E(3)	$E(3)^{2}$	$-E(3)^2$	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$	13	1	1	1	1	1	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$		-1	$E(3)^{2}$	$-E(3)^2$	E(3)	-E(3)	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	1	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	1	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	1	$E(3)^{2}$	E(3)	$E(3)^{2}$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$		1	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	1	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	E(3)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	-1	1	-1	1	-1	1	1	-1	1	-1	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$		-1	E(3)	-E(3)	$E(3)^{2}$	$-E(3)^2$	1	E(3)	-1	$E(3)^{2}$	-E(3)	$-E(3)^2$
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$		-1	$E(3)^{2}$	$-E(3)^{2}$	E(3)	-E(3)	1	$E(3)^{2}$	-1	E(3)	$-E(3)^{2}$	-E(3)

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1,27,57,9,39,69,21,51,4,33,63,15,45)(2,30,60,12,42,72,24,54,6,36,66,18,48)(3,32,62,14,44,74,26,56,8,38,68,20,50)(5,35,65,17,47,76,29,59,11,41,71,23,53)(7,37,67,19,49,77,31,61,13,43,73,25,55)(10,40,70,22,52,78,34,64,16,46,75,28,58)]) \cong C13$

 $N_1 = Group([(1,2)(3,5)(4,72)(6,69)(7,10)(8,72)(6,69)(7,10)(8,72)(1,24,53$

 $\begin{vmatrix} \chi_7 & 6 & E(13) + E(13)^3 + E(13)^4 + E(13)^9 + E(13)^{10} + E(13)^{12} & E(13)^2 + E(13)^5 + E(13)^6 + E(13)^7 + E(13)^8 + E(13)^{11} & 0 & 0 & 0 & 0 \\ \chi_8 & 6 & E(13)^2 + E(13)^5 + E(13)^6 + E(13)^7 + E(13)^8 + E(13)^{11} & E(13) + E(13)^3 + E(13)^4 + E(13)^9 + E(13)^{10} + E(13)^{12} & 0 & 0 & 0 & 0 \end{vmatrix}$