Integrales de Linea

Curva suave

La imagen de una función vectorial $\bar{\sigma}:I\subset\mathbb{R}\to\mathbb{R}^n$ continua, donde I es un conjunto conexo es una curva.

$$Im(\bar{\sigma}) = C$$

 $\operatorname{Si} \bar{\sigma} \in C^1 \ \text{y} \ \bar{\sigma}^{\, \prime}(t) \neq \bar{0} \qquad \forall t \, \in \, I$

Entonces C es una curva suave y $\bar{\sigma}(t)$ una parametrización

$$\bar{\sigma}:[a,b]\to\mathbb{R}^3$$

$$Im(\bar{\sigma}) = C$$

 $t_0 \in (a, b)$

$$\bar{\sigma}'(t_0) \neq \bar{0}$$

 $\bar{x} = \bar{\sigma}(t_0) + \lambda \cdot \bar{\sigma}'(t_0) \quad \lambda \in \mathbb{R}$ Recta tangente

Longitud del arco de una curva

$$L(c) = \int_{a}^{b} \left\| \bar{\sigma}'(t) \right\| dt$$

Ej:

Para la parametrización de la siguiente curva

$$\bar{\sigma}: [0, 2\pi] \to \mathbb{R}^2 / \bar{\sigma}(t) = (\cos t, \sin t)$$

se cumple:

$$\begin{cases} x = \cos(t) \\ y = \sin(t) \end{cases} \quad 0 \le t \le 2\pi$$

IntegralesDeLinea - Jupyter Notebook

 $x^2 + y^2 = 1$ Es la circunferencia unitaria

$$\bar{\sigma}'(t) = (-\sin(t), \cos(t))$$

 $\|\bar{\sigma}'(t)\| = \sqrt{\sin^2(t) + \cos^2(t)} = 1$

 $\|\bar{\sigma}'(t)\|$ es constante $\forall t \in [0, 2\pi]$

$$L(c) = \int_0^{2\pi} 1dt = t \begin{vmatrix} 2\pi \\ 0 \end{vmatrix} = 2\pi$$

Integral de linea de campo escalar

Sea $f:D\subset\mathbb{R}^n\to\mathbb{R}$ un campo escalar continuo en D y C una curva suave tal que $Im(\bar{\sigma})=C$

$$\bar{\sigma}: [a,b] \to \mathbb{R}^n, \quad \bar{\sigma} \text{ continua}, \quad \bar{\sigma} \in C^1, \quad \bar{\sigma}'(t) \neq \bar{0}$$

La integral del campo escalar f a lo largo de $\bar{\sigma}$ se define:

$$\int_C f ds = \int_a^b f[\bar{\sigma}(t)] \cdot ||\bar{\sigma}'(t)|| dt$$

No importa el sentido de la parametrización.

Si el campo escalar f va de \mathbb{R}^2 a \mathbb{R} entonces la integral de linea puede interpretarse como el area debajo de una superficie de ecuación f(x,y)=z a lo largo de un camino $\bar{\sigma}$

Ej:

Calcular
$$\int_C f ds$$
, $f(x, y) = xy$

$$\bar{\sigma}: [0, \pi] \to \mathbb{R}^2 / \bar{\sigma}(t) = (2\cos t, 2\sin t)$$

Hallamos la derivada de la parametrización de la curva:

$$\bar{\sigma}'(t) = (-2\sin t, 2\cos t) , ||\bar{\sigma}'(t)|| = 2 \quad \forall t \in [0, \pi]$$

Reemplazando en la definición queda:

$$f[\bar{\sigma}(t)] = 4\cos t \sin t , ||\bar{\sigma}'(t)||dt = 2dt$$

$$\int_C f ds = \int_0^{\pi} 4\cos t \sin t \cdot 2dt = 8 \int_0^{\pi} \cos t \sin t \, dt = 8 \frac{\sin^2 t}{2} \Big|_0^{\pi} = 0$$

3 de 9

Integral de linea de campo vectorial

Sea $\bar{F}:D\subset\mathbb{R}^3\to\mathbb{R}^3$ un campo vectorial continuo sobre la trayectoria $\bar{\sigma}:[a,b]\to\mathbb{R}^3$

Si $\bar{\sigma}\in C^1$ entonces la integral de linea del campo vectorial \bar{F} a lo largo de la curva $C=Im(\bar{\sigma})$ se define :

$$\int_{C} \bar{F} \cdot d\bar{s} = \int_{a}^{b} \bar{F} \left[\bar{\sigma}(t) \right] \cdot ||\bar{\sigma}'(t)|| dt$$

A la integral de linea de un campo vectorial se la suele llama *circulación*, algunos solo llaman circulación si C es cerrada $\oint_C \bar{F} \cdot \bar{ds}$

Propiedades

1. Linealidad

$$\int_{c} (a\bar{F} + b\bar{G}) \cdot d\bar{s} = a \int_{c} \bar{F} \cdot d\bar{s} + b \int_{c} \bar{G} \cdot d\bar{s}$$

2. Propiedad aditiva respecto del camino de integración

$$C = C_1 \cup C_2 \cup \cdots \cup C_n$$

$$\int_C \bar{F} \cdot d\bar{s} = \int_{C_1} \bar{F} \cdot d\bar{s} + \int_{C_2} \bar{F} \cdot d\bar{s} + \dots + \int_{C_n} \bar{F} \cdot d\bar{s}$$

3. Importa el sentido de la parametrización

Si $\bar{\sigma}_1$ y $\bar{\sigma}_2$ son dos parametrizaciones distintas de la misma curva orientadas en sentidos opuestos entonces:

$$\int_{\bar{\sigma}_1} \bar{F} \cdot \bar{ds} = -\int_{\bar{\sigma}_2} \bar{F} \cdot \bar{ds}$$

Campos de gradientes

Sea $\bar{F}: H \subset \mathbb{R}^n \to \mathbb{R}^n$. Se dice que \bar{F} es un campo de gradientes en H si existe un campo escalar $\phi: H \subset \mathbb{R}^n \to \mathbb{R}, \ \phi \in Dif(H)$ tal que:

4 de 9 8/11/2021 5:48 p. m.

$$\bar{F} = \nabla \phi$$

Ej:

El campo $\bar{F}(x,y)=(2x,3y^2)$ s un campo de gradientes en \mathbb{R}^2 En efecto si $\phi(x,y)=x^2+y^3$ tenemos:

$$\nabla \phi(x, y) = \left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}\right) = (2x, 3y^2) = \bar{F}(x, y)$$

Tambien decimos que ϕ es función potencial del campo $ar{F}$

Propiedad

Independencia del camino en integral de linea.

La circulación de \bar{F} desde \bar{A} hasta \bar{B} a lo largo de cualquier curva suave a trozos $C\subset H$ no depende de la curva que se utilice y además:

$$\int_C \bar{F} \cdot \bar{ds} = \phi(\bar{B}) - \phi(\bar{A})$$

Consecuencia directa del teorema:

La integral a lo largo de todo camino cerrado es 0

$$\oint_C \bar{F} \cdot \bar{ds} = \phi(\bar{A}) - \phi(\bar{A}) = 0$$

Además si $\phi(ar{A})=\phi(ar{B})$ entonces

$$\int_C \bar{F} \cdot \bar{ds} = \phi(\bar{B}) - \phi(\bar{A}) = 0$$

Condición [necesaria] para que un campo sea de gradientes

Como $ar{F} \in C^1(H)$ entonces $\nabla \phi \in C^1(H)$ y entonces $\phi \in C^2(H)$

La matriz jacobiana de $ar{F}$ es simetrica.

$$D\bar{F} = \begin{pmatrix} \phi_{xx}'' & \phi_{xy}'' \\ \phi_{yx}'' & \phi_{yy}'' \end{pmatrix}$$

Si F es campo de gradientes entonces su matriz jacobiana es simetrica.

En particular nos interesa el teorema reciproco. Es decir si la matriz NO es simetrica entonces \bar{F} no puede ser campo de gradientes.

6 de 9 8/11/2021 5:48 p. m.

Ej :
$$(P(x, y), Q(x, y)) = (\phi'_x, \phi'_y)$$

Conjunto simplemente conexo

Un conjunto conexo $H \subset \mathbb{R}^n$ se dice simplemente conexo cuando toda curva cerrada contenida en H puede por deformación continua reducirse a un punto manteniéndose en el conjunto.

En \mathbb{R}^2 la idea se puede reemplazar por si el conjunto H tiene "agujeros" o no. Si los tiene entonces no es simplemente conexo.

H es simplemente conexo.

7 de 9 8/11/2021 5:48 p. m.

N no es simplemente conexo.

En \mathbb{R}^3 estos "agujeros" deben ser interpretados como rectas infinitas, ya que si fuesen solo un segmento la curva *cerrada* podría colapsar a punto "esquivando" el segmento no incluido en el conjunto H

Con el concepto de conjunto simplemente conexo podemos definir una condición suficiente para que un campo sea de gradientes.

Condición [suficiente] para que un campo sea de gradientes

Sea $\bar{F}: H \subset \mathbb{R}^n \to \mathbb{R}^n$ con matriz jacobiana $D\bar{F}$ continua y **simetrica** en el conjunto H abierto y **simplemente conexo**. Entonces existe $\phi: H \subset \mathbb{R}^n \to \mathbb{R}$ tal que $\nabla \phi = \bar{F}$

Construcción de la función potencial

Sea
$$\bar{F}: \mathbb{R}^2 \to \mathbb{R}^2$$
 / $\bar{F}(x, y) = (x + y^2, 2xy)$

Sabemos que $ar F\in C^1(\mathbb R^2)$ por sus componentes ser suma y producto de funciones $C^1(\mathbb R^2)$

Calculamos su matriz jacobiana para ver si es simetrica y saber si admite función potencial.

$$D\bar{F} = \begin{pmatrix} 1 & 2y \\ 2y & 2x \end{pmatrix}$$

Como es simetrica y continua en \mathbb{R}^2 entonces admite función potencial por ser \mathbb{R}^2 un conjunto abierto y **simplemente conexo**

$$\phi: \mathbb{R}^2 \to \mathbb{R} / \nabla \phi(x, y) = \bar{F}(x, y)$$

8/11/2021 5:48 p. m.

8 de 9

Como $ar{F}$ es el gradiente de ϕ entonces sus componentes son las derivadas parciales de ϕ

$$\begin{cases} \phi'_x(x, y) = x + y^2 & (1) \\ \phi'_y(x, y) = 2xy & (2) \end{cases}$$

Integramos (1) respecto de x:

$$\phi(x, y) = \frac{x^2}{2} + y^2 x + \alpha(y)$$
 (3)

Derivamos (3) respecto de y e igualamos a (2) para hallar $\alpha(y)$

$$2xy + \alpha'(y) = 2xy$$

$$\alpha'(y) = 0 \Rightarrow \alpha(y) = c$$

Luego reemplazando $\alpha(y)$ en nuestra ecuación de ϕ nos queda una familia de funciones potenciales:

$$\phi: \mathbb{R}^2 \to \mathbb{R} / \phi(x, y) = \frac{1}{2}x^2 + y^2x + c$$

$$\nabla \phi(x, y) = (x + y^2, 2xy)$$