More Vector Spaces with Atoms of Finite Lengths

Jingjie Yang University of Oxford Mikołaj Bojańczyk University of Warsaw

Bartek Klin University of Oxford

Abstract—We say an infinite structure is oligomorphic over a field if the following holds for each of its finite powers: in the corresponding free vector space, strict chains of equivariant subspaces are bounded in length. It was shown that the countable pure set and the dense linear ordering without endpoints have this property. In this paper, we generalise these two results to a) reducts of smoothly approximable structures, provided the field has characteristic zero, and b) generaically ordered expansions of Fraïssé limits with free amalgamation. As a special case, we prove the Rado graph is oligomorphic over any field using both methods.

I. INTRODUCTION

II. RADO GRAPH, SANS COGS

A is:

- 1) oligomorphic if, for $k = 0, 1, 2, \dots, \mathbb{A}^k$ only has finitely many orbits;
- 2) \mathfrak{F} -oligomorphic if, for $k=0,1,2,\cdots, \operatorname{Lin}_{\mathfrak{F}}\mathbb{A}^k$ only has finitely long chains.

Of note: with Stirling numbers of the second kind and Gaussian 2-binomial coefficients, the orbit counts are given by

$$\#\mathbb{N}^k = \sum_{d=0}^k \begin{Bmatrix} k \\ d \end{Bmatrix}$$

$$\#\mathbb{Q}^k = \sum_{d=0}^k \begin{Bmatrix} k \\ d \end{Bmatrix} d!$$

$$\#\mathbb{G}^k = \sum_{d=0}^k \begin{Bmatrix} k \\ d \end{Bmatrix} 2^{\binom{d}{2}}$$

$$\#\mathbb{V}^k_{\infty} = \sum_{d=0}^k \begin{Bmatrix} k \\ d \end{Bmatrix}_2$$

$$\#\mathbb{W}^k_{\infty} = \sum_{d=0}^k \begin{Bmatrix} k \\ d \end{Bmatrix}_2$$

To introduce:

- 1) *smooth approximation* by *homogeneous substructures* [3] (N.B. 'smooth approximation' from [4, Definition 4] seems to be entirely different)
- 2) width-wise approximation of a homogeneous structure by finite substructures with uniformly few orbits (i.e., types) that cover the age of \mathbb{A}
- 3) For the equality and ordered atoms, being supportively \$\mathcal{F}\$-oligomorphic follows from being \$\mathcal{F}\$-oligomorphic [1, Theorem 4.10]

A. Symplectic vector spaces

Throughout this subsection let f denote a finite field.

Definition II.1. A *symplectic vector space* is an \mathfrak{f} -vector space \mathbb{W} equipped with a bilinear form $\omega : \mathbb{W} \times \mathbb{W} \to \mathfrak{f}$ that is

- 1) alternating: $\omega(v,v)=0$ for all v; and
- 2) non-degenerate: if $\omega(v, w) = 0$ for all w then v = 0.

Example II.2. Let \mathbb{W}_n be the f-vector space with basis $e_1, \dots, e_n, f_1, \dots, f_n$. Define ω by bilinearly extending

$$\omega(e_i, f_i) = 1 = -\omega(f_i, e_i), \quad \omega(-, *) = 0$$
 elsewhere; (§)

one may straightforwardly check that ω is alternating and non-degenerate. Moreover, noticing that $\mathbb{W}_0 \subseteq \mathbb{W}_1 \subseteq \mathbb{W}_2 \subseteq \cdots$, we obtain a countable-dimensional symplectic vector space $\mathbb{W}_{\infty} = \bigcup_n \mathbb{W}_n$.

We will refer to vectors satisfying (§) as a *symplectic basis* — indeed, they must be linearly independent. Such bases behave very much like the usual bases.

Proposition II.3. Assume that \mathbb{W} is a symplectic vector space that is at most countable. Then any finite symplectic basis $e_1, \ldots, e_n, f_1, \ldots, f_n$ can be extended to a symplectic basis that spans the whole \mathbb{W} .

Proof. Suppose that $e_1, \ldots, e_n, f_1, \ldots, f_n$ does not already span \mathbb{W} ; take v to be a witness (that is least according to some fixed enumeration of \mathbb{W} in the case it is infinite). Put

$$e_{n+1} = v - \sum_{i=1}^{n} \omega(e_i, v) f_i + \sum_{i=1}^{n} \omega(f_i, v) e_i$$

so that $\omega(e_i,e_{n+1})=0=\omega(f_i,e_{n+1})$. This cannot be the zero vector lest we contradict the choice of v. By the non-degeneracy of ω , there is — rescaling if necessary — some w such that $\omega(e_{n+1},w)=1$. Now define

$$f_{n+1} = w - \sum_{i=1^n} \omega(e_i, w) f_i + \sum_{i=1}^n \omega(f_i, w) e_i$$

in a similar manner, making $e_1, \ldots, e_n, e_{n+1}, f_1, \ldots, f_n, f_{n+1}$ a symplectic basis that spans v. We go through every element of \mathbb{W} by continuing this way.

In fact, we will also make use of the "symplectic basis and a half" variant below.

Proposition II.4. Now assume \mathbb{W} is a finite-dimensional symplectic vector space. Let

$$e_1, \ldots, e_n, e_{n+1}, \ldots, e_{n+k},$$

 f_1, \ldots, f_n

be linearly independent vectors satisfying (§). Then we can find the missing f_{n+1}, \ldots, f_{n+k} to complete the symplectic basis.

Proof. We first need the following notion. Given a subspace $V \subseteq \mathbb{W}$, consider its orthogonal complement

$$V^{\perp} = \{ w \in \mathbb{W} \mid \forall v \in V : \omega(v, w) = 0 \}.$$

It is the kernel of the composite linear map

$$\mathbb{W} \to (\mathbb{W} \xrightarrow{\text{lin.}} \mathfrak{f}) \to (V \xrightarrow{\text{lin.}} \mathfrak{f})$$
$$w \mapsto \omega(-, w) \mapsto \omega(-, w)|_{V}.$$

Note this map is surjective: the first part is injective by non-degeneracy and hence surjective for dimension reasons, and the second part is surjective since we can extend a basis of V to one of \mathbb{W} . Therefore

$$\dim V^{\perp} = \dim \mathbb{W} - \dim V,$$

and in particular $V^{\perp\perp}$ is precisely equal to V.

Now suppose we have found f_{n+1}, \ldots, f_{n+i} already. If e_{n+i+1} were to be spanned by

$$e_1, \ldots, e_{n+i}, \underline{e_{n+i+1}}, e_{n+i+2}, \ldots, e_{n+k},$$

 $f_1, \ldots, f_{n+i},$

it would be spanned by $e_{n+i+2}, \ldots, e_{n+k}$ alone because of (§); but this is impossible as we assumed linear independency. So

$$e_{n+i+1} \notin \langle e_1, \dots, e_{n+i}, e_{n+i+2}, f_1, \dots, f_{n+i} \rangle$$

= $\langle e_1, \dots, e_{n+i}, e_{n+i+2}, f_1, \dots, f_{n+i} \rangle^{\perp \perp}$,

i.e., some $f_{n+i+1} \in \langle e_1, \dots, e_{n+i}, e_{n+i+2}, f_1, \dots, f_{n+i} \rangle^{\perp}$ satisfies $\omega(e_{n+i+1}, f_{n+i+1}) = 1$.

Given two symplectic vector spaces \mathbb{W} and \mathbb{W}' , we call a function α between $X\subseteq \mathbb{W}$ and $X'\subseteq \mathbb{W}'$ isometric if $\omega(\alpha(x_1),\alpha(x_2))=\omega(x_1,x_2)$ for all $x_1,x_2\in X$. We can make an easy observation:

Lemma II.5. Let $\{e_i, f_i \mid i \in I\} \subseteq \mathbb{W}$, $\{e'_j, f'_j \mid j \in J\} \subseteq \mathbb{W}'$ be two symplectic bases and let $\alpha : I \to J$ be a bijection. Then

$$e_i \mapsto e'_{\alpha(i)}, f_i \mapsto f'_{\alpha(i)}$$

defines an isometric linear isomorphism $\langle e_i, f_i \rangle \rightarrow \langle e'_j, f'_j \rangle$.

It then follows from Proposition II.3 that, up to isometric linear isomorphisms, $\mathbb{W}_0, \mathbb{W}_1, \mathbb{W}_2, \dots, \mathbb{W}_{\infty}$ are all the countable symplectic vector spaces. Whilst we may deduce that \mathbb{W}_{∞} is oligomorphic by appealing to Ryll-Nardzewski, we will opt for a more direct proof that also establishes smooth approximation.

Proposition II.6 (Witt Extension). Any isometric linear injection $\alpha: \langle X \rangle \subseteq \mathbb{W}_n \to \mathbb{W}_n$ can be extended to an isometric linear automorphism of \mathbb{W}_n and in turn to one of \mathbb{W}_{∞} .

Proof. To begin with, find a basis x_1, \ldots, x_k for $\langle X \rangle^{\perp} = \{ w \in W \mid \forall x \in X : \omega(w, x) = 0 \}$ and extend it to a basis $x_1, \ldots, x_k, x_{k+1}, \ldots, x_d$ for $\langle X \rangle$. Notice that

$$U = \langle x_{k+1}, \dots, x_d \rangle$$

must be a symplectic subspace: as it intersects with $\langle X \rangle^{\perp}$ trivially, given any non-zero vector $u \in U$ we must have $0 \neq \omega(u, x + u') = \omega(u, u')$ for some $x \in \langle X \rangle^{\perp}$ and $u' \in U$. Hence use Proposition II.3 to find a symplectic basis $e_1, \ldots, e_n, f_1, \ldots, f_n$ for U. Observe that

$$e_1, \ldots, e_n, x_1, \ldots, x_k,$$

 f_1, \ldots, f_n

form a basis for $\langle X \rangle$ and satisfy (§). On the other hand,

$$\alpha(e_1), \ldots, \alpha(e_n), \alpha(x_1), \ldots, \alpha(x_k),$$

 $\alpha(f_1), \ldots, \alpha(f_n)$

form a basis for $\alpha(\langle X \rangle)$ and also satisfy (§). Therefore apply Proposition II.4 twice to find the missing y_1, \ldots, y_k and y'_1, \ldots, y'_k to complete the two symplectic bases — call them \mathcal{B} and \mathcal{B}' . They are of the same size.

Now, by using Proposition II.3, extend \mathcal{B} and \mathcal{B}' to symplectic bases \mathcal{C} and \mathcal{C}' that span \mathbb{W}_n . These must both have size 2n, so by Lemma II.5 we obtain an isometric linear automorphism $\beta: \mathbb{W}_n \to \mathbb{W}_n$ extending α .

To finish, notice that $\mathcal{C}, e_{n+1}, \ldots, f_{n+1}, \ldots$ as well as $\mathcal{C}', e_{n+1}, \ldots, f_{n+1}, \ldots$ form a symplectic basis spanning \mathbb{W}_{∞} . We obtain from Lemma II.5 another time an isometric linear automorphism $\gamma: \mathbb{W}_{\infty} \to \mathbb{W}_{\infty}$ extending β that is the identity almost everywhere. \square

Proposition II.7. \mathbb{W}_{∞}^k has precisely $\sum_{d=0}^k \left[\begin{smallmatrix} k \\ d \end{smallmatrix} \right]_q \cdot q^{\binom{d}{2}}$ orbits under isometric linear automorphisms, where $q=|\mathfrak{f}|$ and

$$\begin{bmatrix} k \\ d \end{bmatrix}_q = \frac{(q^k - 1)(q^{k-1} - 1) \cdots (q^{k-d+1} - 1)}{(q^d - 1)(q^{d-1} - 1) \cdots (q^1 - 1)}$$

is the q-binomial coefficient.

Remark. To anticipate the next subsection, we note a similarity with the Rado graph: in \mathbb{G}^k there are $\sum_{d=0}^k \binom{k}{d} \cdot 2^{\binom{d}{2}}$ orbits — we may impose any edge relation on d vertices.

Proof. To each $v_{\bullet} \in \mathbb{W}_{\infty}^k$ we associate a *type*, which comprises the following data:

1) pivot indices $I \subseteq \{1, \ldots, k\}$ containing every i such that v_i is not spanned by v_1, \ldots, v_{i-1} — so we inductively ensure that

$$\{v_{i'} \mid i' \in I, i' \le i\}$$

is a basis for $\langle v_1, \ldots, v_i \rangle$;

2) for each $j \notin I$, an assignment $\Lambda_j : \{i \in I \mid i < j\} \to \mathfrak{f}$ such that $v_j = \sum_{i \in I, i < j} \Lambda_j(i) v_i$;

3) a map $\Omega:\binom{I}{2}\to\mathfrak{f}$ defined by $\Omega(\{i'< i\})=\omega(v_{i'},v_i).$ If $\pi:\mathbb{W}_\infty\to\mathbb{W}_\infty$ is an isometric linear automorphism, then $v_\bullet=(v_1,\ldots,v_k)$ and $\pi\cdot v_\bullet=(\pi(v_1),\ldots,\pi(v_k))$ evidently share the same type. Conversely, if w_\bullet has the type of v_\bullet , then

$$\alpha: \langle v_i \mid i \in I \rangle \to \langle w_i \mid i \in I \rangle \subseteq \mathbb{W}_n$$
$$v_i \mapsto w_i$$

gives an isometric linear injection for some large enough n. Observe that α must send $v_j \mapsto w_j$ for $j \notin I$ too, and that it may be extended to an isometric linear automorphism π of \mathbb{W}_{∞} by Propsoition II.6. Furthermore we can find some v_{\bullet} that realises any given type $(I, \{\Lambda_i\}_i, \Omega)$: it suffices to put

$$v_i = e_i + \sum_{i' \in I. i' < i} \Omega(i', i) f_{i'}$$

for $i \in I$ and $v_j = \sum_{i \in I, i < j} \in \Lambda_j(i)v_i$ for $j \notin I$. Therefore the number of types is precisely the number of orbits in \mathbb{W}_{∞}^k .

Finally, we do some combinatorics. Fix $0 \le d \le k$ and count the number of types with |I| = d. There are $q^{\binom{d}{2}}$ choices for Ω and say $\#_{k,d}$ choices for the Λ_j 's; the two can be chosen separately. In total, this gives

$$\sum_{d=0}^{k} q^{\binom{d}{2}} \cdot \#_{k,d}$$

types for vectors in \mathbb{W}_{∞}^d . So focus on $\#_{k,d}$, the number of $linear\ types$ — i.e., $(I,\{\Lambda_j\}_j)$, ignoring Ω — in \mathbb{W}_{∞}^k . (Incidentally $\sum_{d=0}^k \#_{k,d}$ is the number of orbits in \mathbb{W}_{∞}^k or, more generally, any countable-dimensional \mathfrak{f} -vector space under linear automorphisms.) On the small values we easily check that

$$\begin{split} \#_{0,0} &= 1 = \left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right]_q, \\ \#_{1,0} &= 1 = \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right]_q, \qquad \#_{1,1} = 1 = \left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right]_q. \end{split}$$

Given a linear type in \mathbb{W}_{∞}^k with |I|=d, we either have $1\in I$ or $I\subseteq\{2,\ldots,k\}$. In the first case, the linear type is specified by one of the $\#_{k-1,d-1}$ linear types in $\mathbb{W}_{\infty}^{k-1}$ together with how v_1 is involved in the span of the (k-1)-(d-1) non-pivot vectors. In the second case, the linear type is simply one of the $\#_{k-1,d}$ linear types in $\mathbb{W}_{\infty}^{k-1}$. Thus

$$\#_{k,d} = q^{k-d} \cdot \#_{k-1,d-1} + \#_{k-1,d}$$

$$= q^{k-d} \cdot \begin{bmatrix} k-1 \\ d-1 \end{bmatrix}_q + \begin{bmatrix} k-1 \\ d \end{bmatrix}_q = \begin{bmatrix} k \\ d \end{bmatrix}_q. \qquad \Box$$

Theorem II.8. The symplectic vector space \mathbb{W}_{∞} is smoothly approximated by $\mathbb{W}_0 \subseteq \mathbb{W}_1 \subseteq \mathbb{W}_2 \subseteq \cdots$.

Corollary II.9. Provided \mathfrak{F} is of characteristic 0, the symplectic f-vector space \mathbb{W}_{∞} is \mathfrak{F} -oligomorphic.

B. Symplectic graphs

For this subsection let f be the two-element field.

Definition II.10. For n=0,1,2,..., the symplectic graph $\widetilde{\mathbb{W}}_n$ has vertices \mathbb{W}_n and edges

$$v_1 \sim v_2 \iff \omega(v_1, v_2) = 1.$$

This is indeed an undirected graph: as ω is alternating, we have $\omega(v_1, v_2) = -\omega(v_2, v_1) = \omega(v_2, v_1)$.

Proposition II.11. $\operatorname{Aut}(\widetilde{\mathbb{W}}_n) = \operatorname{Aut}(\mathbb{W}_n)$.

Proof. Clearly any isometric linear automorphism of $\widetilde{\mathbb{W}}_n$ is a graph automorphism of $\widetilde{\mathbb{W}}_n$. Conversely, any $f \in \widetilde{\mathbb{W}}_n$ is evidently isometric. To show that f is linear, take $\lambda_1, \lambda_2 \in \mathfrak{f}$ and $v_1, v_2 \in \mathbb{W}$. We calculate:

$$\omega \left(f(\sum_{i} \lambda_{i} v_{i}) - \sum_{i} \lambda_{i} f(v_{i}), f(w) \right)$$

$$= \omega \left(f(\sum_{i} \lambda_{i} v_{i}), f(w) \right) - \sum_{i} \lambda_{i} \omega \left(f(v_{i}), f(w) \right)$$

$$= \omega \left(\sum_{i} \lambda_{i} v_{i}, w \right) - \sum_{i} \lambda_{i} \omega (v_{i}, w)$$

$$= \omega(0, w) = 0$$

for all $f(w) \in f(\mathbb{W}_n) = \mathbb{W}_n$; since ω is non-degenerate, we conclude that $f(\sum_i \lambda_i v_i) = \sum_i \lambda_i f(v_i)$.

So the number of orbits in $\widetilde{\mathbb{W}}_n^k$ is precisely equal to the number of orbits in \mathbb{W}_n^k — in particular, it is bounded above by $\sum_{d=0}^k \left[\begin{smallmatrix} k \\ d \end{smallmatrix} \right]_2 \cdot 2^{\binom{d}{2}}$ independently of n by Proposition II.7.¹ It remains to show $\widetilde{\mathbb{W}}_0 \subseteq \widetilde{\mathbb{W}}_1 \subseteq \widetilde{\mathbb{W}}_2 \subseteq \cdots$ embeds all finite graphs:

Proposition II.12 ([2, Theorem 8.11.2]). Every graph on at most 2n vertices embeds into $\widetilde{\mathbb{W}}_n$.

Proof. Let G be a graph on at most 2n vertices. The conclusion is trivial when n=0. Also, if G contains no edges, we can choose any 2n of the 2^n vectors in $\langle e_1, \ldots, e_n \rangle \subseteq \widetilde{\mathbb{W}}_n$.

So suppose $n \geq 1$ and G has an edge $s \sim t$. Let $G_{s,t}$ be the graph on vertices $G \setminus \{s,t\}$ with edges which we will specify later. By induction, some embedding $f: G_{s,t} \to \widetilde{\mathbb{W}}_{n-1}$ exists. Define $f': G \to \widetilde{\mathbb{W}}_n$ by

$$x \in G_{s,t} \mapsto f(x) - [x \sim s] f_n + [x \sim t] e_n$$

 $s \mapsto e_n$
 $t \mapsto f_n$

where $\llbracket \phi \rrbracket$ is 1 if ϕ holds and 0 otherwise. Then we have $\omega(f'(x),f'(s))=\llbracket x\sim s \rrbracket$ and $\omega(f'(x),f'(t))=\llbracket x\sim t \rrbracket$ as desired, on one hand. On the other,

$$\omega(f'(x_1), f'(x_2)) = [x_1 \sim x_2] + [x_1 \sim s] [x_2 \sim t] + [x_1 \sim t] [x_2 \sim s]$$

tells us how we should define the edge relation in $G_{s,t}$ for f' to be an embedding of graphs.

Theorem II.13. The Rado graph is width-wise approximated by $\widetilde{\mathbb{W}}_0 \subseteq \widetilde{\mathbb{W}}_1 \subseteq \widetilde{\mathbb{W}}_2 \subseteq \cdots$.

Corollary II.14. Provided \mathfrak{F} is of characteristic 0, the Rado graph is \mathfrak{F} -oligomorphic.

¹This is the kth term in the OEIS sequence A028631.

This proof of finite length also applies to *oriented graphs* (i.e., $x \to y \implies y \not\to x$ but unlike in a tournament, it may occur that $x \not\to y \land y \not\to x$) — use the three-element field as $\mathfrak f$ instead.

III. RADO GRAPH, WITH COGS

In this section we work with the following setting:

- \$\mathcal{L}_0\$ is a (possibly infinite) relational language containing a binary symbol =;
- C_0 is a free amalgamation class of L_0 -structures where = is interpreted as true equality, but every other $R \in L_0$ is interpreted irreflexively.²
- \mathcal{L} consists of \mathcal{L}_0 together with a new binary symbol <;
- C consists of L-structures obtained from C_0 by expanding with all possible linear orderings;
- \mathbb{A}_0 and \mathbb{A} are the respective Fraïssé limits of \mathcal{C}_0 and \mathcal{C} , where without loss of generality we assume \mathbb{A}_0 and \mathbb{A} share the same domain so that $\mathrm{Aut}(\mathbb{A}_0) \supseteq \mathrm{Aut}(\mathbb{A})$.

Example III.1. Take \mathcal{L}_0 consist of = only and let \mathcal{C}_0 to be all finite sets. Then \mathbb{A}_0 is isomorphic to the pure set \mathbb{N} , whereas \mathbb{A} is isomorphic to \mathbb{Q} with the usual order.

Example III.2. Let \mathcal{L}_0 consist of = and a single binary symbol \sim and let \mathcal{C}_0 consist of all finite undirected graphs not embedding the complete graph K_n , where $3 \leq n \ (\leq \infty)$. Then \mathbb{A}_0 is the K_n -free Henson graph (or the Rado graph when $n = \infty$), and \mathbb{A} is its generically ordered counterpart. (Allowing n = 2 makes these degenerate to \mathbb{N} and \mathbb{Q} above).

We note two technicalities and a triviality.

Lemma III.3. Let \mathcal{F}_0 consist of minimal \mathcal{L}_0 -structures which do not appear in \mathcal{C}_0 . Then

- 1) C_0 consists of every \mathcal{L}_0 -structure that does not embed any $F \in \mathcal{F}_0$.
- 2) C consists of every L-structure whose L_0 -reduct does not embed any $F \in \mathcal{F}_0$.
- 3) Given $F \in \mathcal{F}_0$, every two distinct $x, y \in F$ are related by some $R \in \mathcal{L}_0$.

Proof. As \mathcal{C}_0 is closed under substructures, its complement is closed under superstructures and thus — since there are no infinite strictly descending chain of embedded substructures — determined by its minimal structures. 2) follows because an \mathcal{L} -structure is in \mathcal{C} precisely when its \mathcal{L}_0 -reduct is in \mathcal{C}_0 . For 3), notice that $F \setminus \{x\}$, $F \setminus \{y\}$ are in \mathcal{C}_0 by 1); therefore so is their free amalgam over $F \setminus \{x,y\}$, which then cannot agree with F.

Lemma III.4. Let $X, Y, \{a\} \subseteq \mathbb{A}$ be disjoint. Then there is some automorphism $\tau \in \operatorname{Aut}(\mathbb{A})$ such that

 $^2\mathrm{We}$ can enforce irreflexivity by considering a language \mathcal{L}_0' which consists, for each $R\in\mathcal{L}_0\setminus\{=\}$ of arity r and each partition \P of r into k parts, of a k-ary relation symbol R_\P . Then \mathcal{L}_0 -structures may be viewed as \mathcal{L}_0' -structures and vice versa, without changing the meaning of embeddings. In this way, we get a free amalgamation class \mathcal{C}_0' with a Fraïssé limit which, viewed as an \mathcal{L}_0 -structure, is isomorphic to \mathbb{A}_0 .

- 1) τ fixes every $x \in X$;
- 2) $\tau(a)$ is not related with any $y \in Y \cup \{a\}$ by any $R \in \mathcal{L}_0$;
- 3) $\tau(a) > a$.

Proof. In \mathbb{A}_0 , form the free amalgam

so that $x\mapsto x, a\mapsto a'$ is an embedding, and no relation in \mathcal{L}_0 is satisfied by any tuple in which both a' and an element of $Y\cup\{a\}$ appear. Now we make $X\cup Y\cup\{a,a'\}$ an \mathcal{L} -structure: inherit the order on $X\cup Y\cup\{a\}$ from \mathbb{A} , and declare that a< a' as well as a'< z if z, the next element of $X\cup Y$ larger than a, exists at all. Notice that $x\mapsto x, a\mapsto a'$ is still an embedding in presence of the order. By homogeneity, we may embed $X\cup Y\cup\{a,a'\}$ into \mathbb{A} via some f which is the identity on $X\cup Y\cup\{a\}$; again by homogeneity, we may extend the embedding $f(x)\mapsto f(x), f(a)\mapsto f(a')$ to some automorphism of \mathbb{A} which makes 1), 2), and 3) true. \square

Proposition III.5. The S-supported length of $\operatorname{Lin} \mathbb{A}_0^d$ is at most that of $\operatorname{Lin} \mathbb{A}^d$ for any finite $S \subseteq \mathbb{A}_0 = \mathbb{A}$.

Proof. Any chain of subspaces in $\operatorname{Lin} \mathbb{A}_0^d = \operatorname{Lin} \mathbb{A}^d$ that are invariant under $\operatorname{Aut}(\mathbb{A}_0)_{(S)}$ must also be invariant under the subgroup $\operatorname{Aut}(\mathbb{A})_{(S)}$.

A. Cogs in an orbit

Whilst \mathbb{A}^d may have many orbits, we would like to focus on a single one at a time.

Proposition III.6. A is \mathfrak{F} -oligomorphic if and only if it is oligomorphic and for all d, for any equivariant orbit $\mathcal{O} \subseteq \mathbb{A}^d$, the length of $\operatorname{Lin}_{\mathfrak{F}} \mathcal{O}$ is finite.

Proof. Indeed we have $\operatorname{len}(\operatorname{Lin}_{\mathfrak{F}}\mathbb{A}^d) = \operatorname{len}(\operatorname{Lin}_{\mathfrak{F}}(\biguplus_i\mathcal{O}_i)) = \operatorname{len}(\bigoplus_i\operatorname{Lin}_{\mathfrak{F}}\mathcal{O}_i) = \sum_i\operatorname{len}(\operatorname{Lin}_{\mathfrak{F}}\mathcal{O}_i)$, where the \mathcal{O}_i 's are the equivariant orbits of \mathbb{A}^d .

Definition III.7. We say $a_{\bullet}|b_{\bullet}$ O-cogpoles

$$\mathbb{A} \models R(x_{\bullet}) \leftrightarrow R(x_{\bullet}[o_i/a_i, o_i/b_i \mid 1 \le i \le d])$$

 $a_{\bullet} \lozenge b_{\bullet} \mathcal{O}$ -cogs

ACKNOWLEDGEMENTS

Hrushovski Evans

REFERENCES

- [1] Mikołaj Bojańczyk et al. "Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata". In: *TheoretiCS* Volume 3 (May 2024). ISSN: 2751-4838. DOI: 10.46298/theoretics.24.13. URL: http://dx.doi.org/10.46298/theoretics.24.13.
- [2] Chris Godsil and Gordon Royle. *Algebraic graph theory*. 1st ed. Graduate Texts in Mathematics. Springer, 2001. ISBN: 978-0-387-95241-3.
- [3] W. M. Kantor, Martin W. Liebeck, and H. D. Macpherson. "ℵ₀-Categorical Structures Smoothly Approximated by Finite Substructures". In: *Proceedings of the London Mathematical Society* s3-59.3 (1989), pp. 439–463. DOI: https://doi.org/10.1112/plms/s3-59.3.439.
- [4] Antoine Mottet and Michael Pinsker. "Smooth approximations: An algebraic approach to CSPs over finitely bounded homogeneous structures". In: *J. ACM* 71.5 (Oct. 2024). DOI: 10.1145/3689207.