

ANALISI DELLE VARIABILITA' DELLE CARATTERISTICHE DI RETI MICROVASCOLARI 3D

Stato dell'Arte

ID 7: Alberto Rota, Martina Senesi, Adelaide Stucchi, Irene Venturelli Relatrice: Marialaura Costantino, Tutor: Luca Possenti

Reti Microvascolari

Una **rete microvascolare** è un fitto intreccio di microvasi che perfonde un organo o un tessuto.

Informazioni ottenute dall'analisi di reti microvascolari sono utili per capire particolari aspetti della microcircolazione, tra cui:

- Trasporto di ossigeno
- Distribuzione di pressioni
- Sforzi di taglio sull'endotelio
- Regolazione del flusso sanguigno

Applicabilità

Partendo da immagini ottenute tramite microscopia confocale, è possibile generare modelli di **reti microvascolari 3D** caratterizzati da un numero elevato di parametri e risolvibili tramite l'impiego di **metodi computazionali**.

AMBITI APPLICATIVI:

- Neurologia
- Nefrologia
- Oncologia
- Oftalmologia

Metodi di Analisi

	Linguaggio	Anno	Punti di Forza	Rif. bibliografico
AngioQuant	MATLAB	2005	Versatilità delle immagini in input, adattabilità dell'algoritmo di segmentazione	[Niemistö A. et al.]
AngioTool	Java, ImageJ	2011	Comprensivo di Segmentazione, Scheletrizzazione e Analisi → Ottimizzazione dei risultati	[Zudaire E. et al.]
RAVE	MATLAB	2011	Capacità di distinzione di immagini che risultano visivamente molto simili	[Seaman M.E., Peirce M. Kelly K.]
REAVER	MATLAB	2020	Basso tempo di esecuzione. Elevata accuratezza dei risultati ottenuti	[Corliss B.A. et al.]

PARAMETRI DI INTERESSE:

Lunghezza della centerline del vaso, distribuzione del diametro, densità di ramificazioni, tortuosità, auto-similarità, distanza media dallo scheletro.

Obiettivi

L'obiettivo dello studio consiste nell'ottenimento di parametri quantitativi relativi alla rete microvascolare e nello sviluppo di un file da impiegare come input per una **simulazione fluidodinamica**.

Nello specifico:

- Pre-processing di immagini provenienti di microscopia confocale
- Ottenimento dello scheletro della rete
- Post-processing ed estrapolazione dei dati
- Simulazione fluidodinamica

Bibliografia

- Antti Niemistö, Valerie Dunmire, Olli Yli-Harja, Wei Zhang, and Ilya Shmulevich -Robust quantification of in vitro angiogenesis through image analysis, ResearchGate 2005
- Marc E. Seaman, Shayn M. Peirce, Kimberly Kelly Rapid Analysis of Vessel Elements (RAVE): A Tool for Studying Physiologic, Pathologic and Tumor Angiogenesis, PlosONE 2011
- Enrique Zudaire, Laure Gambardella, Christopher Kurcz, Sonja Vermeren A Computational Tool for Quantitative Analysis of Vascular Networks, PlosONE 2011
- Bruce A. Corliss, Richard W. Doty, Corbin Mathews, Paul A. Yates, Tingting Zhang, Shayn M. Peirce - REAVER: A Program for Improved Analysis of Highresolution Vascular Network Images, CrossMark 2020
- Bruce A. Corliss, Corbin Mathews, Richard Doty, Gustavo Rohde, Shayn M. Peirce - Methods to label, image, and analyze the complex structural architectures of microvascular networks, Wiley 2018
- Francis Cassot, Fredric Lauwers, Celine Fouard, Steffen Prohaska, Valerie Lauwers-Cancer - A Novel Three-Dimensional Computer-Assisted Method for a Quantitative Study of Microvascular Networks of the Human Cerebral Cortex, Taylor and Francis 2006