**PHY 171** Exam 1 Fall 2018 Name: Question 1 A week contains approximately  $6.05 \times 10^5 \text{ s}$  $2.6 \times 10^5 \text{ s}$  $2.6 \times 10^6 \text{ s}$  $1 \times 10^4 \text{ s}$  $6.05\times10^4~\mathrm{s}$ A ship travels 200 km to the south and then 400 km to the west. The ship's displacement Question 2 from its starting point is 200 km  $350~\mathrm{km}$ 400 km600 km $450~\mathrm{km}$ Question 3 A racehorse accelerates from rest to a velocity of 15.6 m/s in 2.10 s. What is the average acceleration?  $7.43 \text{ m/s}^2$ 6.95 m/s $32.8 \text{ m/s}^2$ 7.43 m/s $8.33 \text{ m/s}^2$ A jogger runs down a straight road with an average velocity of 3.5 m/s for 4.00 minutes. Question 4 What is her final position if her initial position was zero.  $14.5 \mathrm{m}$  $840 \mathrm{m}$  $860 \mathrm{m}$  $875~\mathrm{m}$  $14~\mathrm{m}$ 



For your examination, preferably print documents compiled from auto-multiple-choice.

| Question 10 A balttleship fires two shell at the same time towards the enemy ships. If the shells follow the parabolic trajectories shown, which ship get hit first?                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>☐ They will be hit at the same time</li> <li>☐ Ship B</li> <li>☐ Need more information</li> <li>☐ Ship A</li> </ul>                                                                                                                                                                    |
| Question 11 A rocket sled with a 5-rocket propulsion system has a mass of 2300 kg. The sled's initial acceleration is $53 \text{ m/s}^2$ . The force of friction opposing the motion is known to be 5780 N. What is the magnitude of force exerted, called thrust, by each of the five rockets? |
| $\begin{array}{ c c c c c }\hline 2.55 \times 10^4 \text{ N}\\ \hline 2.44 \times 10^4 \text{ N}\\ \hline 2.32 \times 10^4 \text{ N}\\ \hline 1.22 \times 10^5 \text{ N}\\ \hline 1.27 \times 10^5 \text{ N}\\ \hline\end{array}$                                                               |
| Question 12 Draw a free body diagram for the rocket sled from the previous problem. wpmc                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                 |



Question 13 Suppose a 120 kg wooden crate is resting on a wood floor. What is the maximum force you can exert horizontally on the crate without moving it? For wood on wood  $\mu_s = 0.5$  and  $\mu_k = 0.3$ .



Question 14 If you continue to exert this force and the crate starts to slip, what will be the magintude of the acceleration?

- $1.86 \text{ m/s}^2$
- $\Box$  5.36 m/s<sup>2</sup>
- $3.14 \text{ m/s}^2$
- $\square$  1.96 m/s<sup>2</sup>
- $2.14 \text{ m/s}^2$



Question 15 A skier with a mass of 75 kg is sliding down a snowy slope. The slope makes a  $30^\circ$ angle with the horizontal. What is the normal force on teh skier?  $\mathbf{w} \ \Box \mathbf{p} \ \Box \mathbf{m} \ [$ 

