UN La

Universidad Nacional de Lanús

Departamento de Desarrollo Productivo y Tecnológico

Carrera: Licenciatura en Sistemas

Asignatura: Arquitectura de Computadoras

Alumno: Ramil Elías

Docentes: Roberto García

Miguel Lanzeni

<u>Año</u>: 2023

Cuatrimestre: 1º Año - 2º Cuatrimestre

; Configuración del PIC16F628A

list p=16F628A ; Lista de instrucciones del PIC16F628A #include <P16F628A.INC> ; Archivo de inclusión específico del PIC16F628A

__CONFIG 3F10

; Definición bloque de control

CBLOCK 0x20

COUNT1

COUNT2

ENDC

; Registros:

Ta equ 0x20 ; Pos Temperatura actual del agua en °C Ca equ 0x21 ; Pos Cantidad actual del agua en litros

Aux equ 0x22 ; Pos Auxiliar

; Constantes

#DEFINE CT d'110' ; Capacidad del Termotanque en litros #DEFINE Tm d'20' ; Temperatura mínima de trabajo en °C

#DEFINE TM d'45'; Temperatura máxima donde debe dejar de calentar en °C #DEFINE MA d'50'; Min de Agua en el termotanque para cerrar la canilla en litros

#DEFINE Calculo_Agua d'10'; Para hacer los calculos del agua

```
#DEFINE Calculo_Temp d'5'; Para hacer los calculos de la Temperatura
; Luces de los leds
#DEFINE BA 0 ; Azul ---> Bomba de Agua
#DEFINE VT 1 ; Rojo ---> Verificando Temperatura del agua
#DEFINE RT 2 ; Amarillo ---> Resistencia Trabajando
#DEFINE RA 3 ; Verde ---> Resistencia Apagada
#DEFINE CA 4 ; Blanco ---> Canilla Abierta
  ORG 0x00
  GOTO Inicio
; Rutina de interrupción
  ORG 0x04
  RETFIE
; Subrutina para esperar 1 microsegundo
Esperar1ms:
       movlw d'250'
       movwf COUNT1
loop
       nop
       decfsz COUNT1, 1
       goto loop
       return
; Subrutina para esperar 250 microsegundos
Esperar250ms:
       movlw d'250'
       movwf COUNT2
loop2
       call Esperar1ms
       decfsz COUNT2, 1
       goto loop2
       return
; Subrutina para verificar si hay agua suficiente en el termotanque
Verificar_Agua:
       ; Verificar si el termotanque tiene suficiente agua (si es menor de 110 litros)
  ; Si es menor, se enciende la bomba (BA) y se espera a que la cantidad de agua alcance el nivel
necesario.
loop_agua
       movlw CT
       movwf Aux
       movfw Ca
       subwf Aux, w
       btfsc STATUS, Z
       goto tanque full
       bsf PORTB, BA
```

movlw Calculo_Agua

```
addwf Ca, w
       movwf Ca
       goto loop_agua
tanque_full
       ; Apagar la bomba (BA)
  bcf PORTB, BA
       return ; Fin Verificar_Agua
;Subrutina para verificar la temperatura del agua
Verificar Temperatura:
       bsf PORTB, VT ; Led que indica que se esta verificando la temp
       movfw Ta
       movwf Aux
       movlw Tm
       subwf Aux, w
       btfss STATUS, Z
       goto agua_caliente
loop_temp
       movlw TM
       movwf Aux
       movfw Ta
       subwf Aux, w
       btfsc STATUS, Z
       goto agua_caliente
       bcf PORTB, RA
       bsf PORTB, RT
       call Esperar250ms
       bcf PORTB, RT
       movlw Calculo_Temp
       addwf Ta, w
       movwf Ta
       goto loop_temp
agua_caliente
       bcf PORTB, VT
       bsf PORTB, RA
       return ; Fin Verificar_Temperatura
; Subrutina para verificar si la canilla debe abrirse o cerrarse
Verificar_Canilla:
loop_canilla
       movfw Ca
       movwf Aux
       movlw MA
       subwf Aux, w
       btfsc STATUS, Z
       goto cerrar_canilla
```

```
bsf PORTB, CA
       movlw Calculo_Agua
       subwf Ca, w
       movwf Ca
       goto loop_canilla
cerrar_canilla
       bcf PORTB, CA
       movlw Calculo_Temp
       subwf Ta, w
       movwf Ta
       return ; Fin Verificar Canilla
Inicio:
       ; Configuración de puertos
 bsf STATUS, RPO
                             ; Seleccionar el banco 1 de registros
 clrf TRISB
                             ; Config TRISB
                     ; Deseleccionar el banco de registros 1 (volver al banco 0)
 bcf STATUS, RPO
       bsf PORTB, RA
                             ; Resistencia apagada y termotanque prendido
       ; Inicializar valores:
       movlw d'25'
                             ; Temperatura actual del agua
       movwf Ta
       movlw d'90'
                             ; Cantidad actual de agua
       movwf Ca
Bucle Principal
       call Verificar_Agua
       call Verificar_Temperatura
       call Esperar250ms
                                    ; Espera de 1 segundo
       call Esperar250ms
       call Esperar250ms
       call Esperar250ms
       call Verificar Canilla
       goto Bucle_Principal
                     ; Fin del programa
       end
Ejercicio 2:
; Configuración del PIC16F628A
                          ; Lista de instrucciones del PIC16F628A
       list p=16F628A
       #include <P16F628A.INC>; Archivo de inclusión específico del PIC16F628A
       __CONFIG 3F10
; Definición de constantes, bloque de control
  CBLOCK 0x20
  COUNT1
  COUNT2
  ENDC
  ORG 0x00
```

GOTO Inicio

```
; Rutina de interrupción
  ORG 0x04
  RETFIE
; Rutina para esperar 1 microsegundo
Esperar1ms:
      movlw d'250'
      movwf COUNT1
loop
      nop
      decfsz COUNT1, 1
      goto loop
      return
; Rutina para esperar 250 microsegundos
Esperar250ms:
      movlw d'250'
      movwf COUNT2
loop2
      call Esperar1ms
      decfsz COUNT2, 1
      goto loop2
      return
; Programa principal
Inicio:
  ; Configurar puertos
      BSF STATUS, RP0
                                        ; Seleccionar el banco de registros 1
  MOVLW 0x00
  MOVWF TRISB
                                        ; Deseleccionar el banco de registros 1 (volver al
      BCF STATUS, RP0
banco 0)
LOOP
  ; Punto 1: Encender todos los leds (RB0, RB1, RB2, RB3)
  MOVLW 0x0F
  MOVWF PORTB
  ; Esperar un segundo
  CALL Esperar250ms
  CALL Esperar250ms
  CALL Esperar250ms
  CALL Esperar250ms
  ; Punto 2: Encender y apagar todos los leds cada un segundo
  MOVLW 0x00
  MOVWF PORTB
  CALL Esperar250ms
```

```
CALL Esperar250ms
```

CALL Esperar250ms

CALL Esperar250ms

MOVLW 0x0F

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

CALL Esperar250ms

CALL Esperar250ms

MOVLW 0x00

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

CALL Esperar250ms

CALL Esperar250ms

; Punto 3: Encender los leds durante un segundo y apagarlos leds durante medio segundo, repetir

4 veces

MOVLW 0x0F

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

CALL Esperar250ms

CALL Esperar250ms

MOVLW 0x00

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

MOVLW 0x0F

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

CALL Esperar250ms

CALL Esperar250ms

MOVLW 0x00

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

MOVLW 0x0F

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

CALL Esperar250ms

CALL Esperar250ms

MOVLW 0x00

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

MOVLW 0x0F

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

CALL Esperar250ms

```
CALL Esperar250ms
MOVLW 0x00
MOVWF PORTB
CALL Esperar250ms
CALL Esperar250ms
```

; Punto 4: Encender los LEDs de RB0 a RB3 con una demora de 500ms entre ellos

MOVLW 0x01

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

MOVLW 0x03

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

MOVLW 0x07

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

MOVLW 0x0F

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

; Punto 5: Apagar los LEDs de RB3 a RB0 con una demora de 500ms entre ellos

MOVLW 0x07

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

MOVLW 0x03

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

MOVLW 0x01

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

MOVLW 0x00

MOVWF PORTB

CALL Esperar250ms

CALL Esperar250ms

GOTO LOOP

END

