Mitschrift Stochastik - Kapitel 2, Statistische Standardmodelle

Sarah, Julius

25. November 2015

Inhaltsverzeichnis

werteilung modell mit Zurücklegen geordnete Stichprobe ungeordnete Stichprobe Zusammenfassung modell ohne Zurücklegen
geordnete Stichprobe
ungeordnete Stichprobe
Zusammenfassung
Zusammenfassung
modell ohne Zurücklegen
nummerierte Kugeln
gefärbte Kugeln
n-Verteilung
zeitverteilung
negative Binominial verteilung
llverteilung
22

1 Einführung

2 Stochastische Standardmodelle

2.1 Gleichverteilung

Definition 2.1 (diskrete Gleichverteilung). Wahrscheinlichkeitsraum (Ω, A, \mathbb{P}) wird als Laplace-Raum bezeichnet.

$$n := |\Omega|,$$

$$\Omega := \{\omega_1, \dots, \omega_n\},$$

$$\mathcal{A} := P(\Omega),$$

$$\mathbb{P}(A) := \frac{|A|}{|\Omega|} =: \mathcal{U}_{\Omega}$$

Anwendung wenn diskret und alle $\omega \in \Omega$ gleichberechtigt.

Beispiel: Bose Einstein Verteilung System n unterschiedlicher Teilchen, die sich in N unterschiedlichen Zellen befinden.

Suche die Anzahl der Teilchen in einer bestimmten Zelle.

Definition 2.2 (stetige Gleichverteilung, GLV in Kontinuum). Analog:

$$\Omega :\subseteq R^{n},$$

$$\mathcal{A} := \mathcal{B}_{\Omega},$$

$$\rho(x) := \frac{1}{\lambda^{n}(\Omega)},$$

$$\mathcal{U}_{\Omega}(A) := \int_{A} \rho(u) du = \frac{\lambda(A)}{\lambda^{n}(\Omega)}$$

Anwendung wenn Ω nicht endlich und alle $\omega \in \Omega$ gleichberechtigt.

2.2 Urnenmodell mit Zurücklegen

2.2.1 geordnete Stichprobe

Definition 2.3 (geordentes Urnenmodell mit Zurücklegen). Es seien gegeben

N := Anzahl Kugeln,

 $E := Menge \ der \ Farben, \ hier \ soll \ 2 \le |E| < \infty,$

 $a := Farbe \ a \in E$,

 $F_a := Menge \ der \ Nummern \ der \ Kugeln \ mit \ Farbe \ a \in E,$

 $N_a := |F_a|, Anzahl der Kugeln der Farbe a \in E,$

 $n := Anzahl \ der \ Stichproben \ (Z"uge \ aus \ der \ Urne),$

 $\Omega := E^n$,

 $\mathcal{F} := P(\Omega),$

 $\mathbb{P} := gesuchtes Wahrscheinlichkeitsma\beta.$

Zur Konstruktion des Maßes nummeriere die Kugeln mit Zahlen aus $\{1, \ldots N\}$ durch und vergrößere künstlich die Beobachtungstiefe, sodass die bereits definierte diskrete Gleichverteilung verwendet werden kann.

$$\bar{\Omega} := \{1, \dots, N\}^n, \quad \bar{\mathcal{F}} := \mathbb{P}(\bar{\Omega}), \quad \bar{\mathbb{P}} := \mathcal{U}_{\bar{\Omega}}.$$

Erhalte somit durch Konstruktion einer Zufallsvariable $X: \bar{\Omega} \to \Omega$ durch Komponentenweise Betrachtung:

$$\mathbb{P}(\{\omega\}\}) := \bar{\mathbb{P}} \circ X^{-1}(\{\omega\}) = \prod_{i=1}^{n} \rho(\omega_i)$$

mit

$$\rho(\omega_i) := \frac{|N_{\omega_i}|}{N},$$

in Worten Die Wahrscheinlichkeit, dass unter Berücksichtigung der Reihenfolge die Kugeln $\omega_1, \ldots, \omega_n$ gezogen werden, ist gegeben durch

$$\prod_{i=1}^n \frac{Anzahl\ der\ Kugeln\ Mit\ Farbe\ \omega_i}{Anzahl\ der\ Kugeln\ insgesamt}.$$

Definition 2.4. Es sei ρ Zähldichte auf E. Die n-fache Produktdichte von ρ ist definiert als

$$\rho^{\times n}(\omega) := \prod_{i=1}^{n} \rho(\omega_i).$$

Das zugehörige Wahrscheinlichkeitsmaß heißt n-faches Produktmaß zu ρ .

2.2.2 ungeordnete Stichprobe

Es ist wieder eine künstliche Vergrößerung der Beobachtungstiefe erforderlich. Definiere für k_a Anzahl der Kugeln mit Farbe a folgenden Wahrscheinlichkeitsraum:

$$\hat{\Omega} := \{ \vec{k} = (k_a)_{a \in E} : k_a \in \mathbb{N}_0, \sum_{a \in E} k_a = n \}$$

$$\hat{\mathcal{F}} := P(\Omega)$$

$$\hat{\mathbb{P}}(\{\omega\}) := \binom{n}{\vec{k}} \cdot \prod_{a \in E} \rho(a)^{k_a}$$

Definition 2.5 (Multinoumialkoeffizient). Für $\vec{k} = (k_a)_{a \in E}$ definiere

2.2.3 Zusammenfassung

$$\begin{array}{ccc} Gleichverteilung & (\bar{\Omega}, \bar{\mathcal{F}}, \bar{\mathbb{P}} = \mathcal{U}_{\bar{\Omega}}) \\ & & & & \\ geordneteSticprobe & (\Omega, \mathcal{F}, \mathbb{P}) \\ & & & \\ & & & \\ unegordneteStichprobe & (\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathbb{P}}) \end{array}$$

Zugehörige Wahrscheinlichkeitsmaße:

$$\mathbb{P}(\{\omega\}) := \prod_{i=1}^{n} \rho(\omega_i)$$
$$\hat{\mathbb{P}}(\{\omega\}) := \binom{n}{\vec{k}} \cdot \prod_{a \in E} \rho(a)^{k_a}$$

- 2.3 Urnenmodell ohne Zurücklegen
- 2.3.1 nummerierte Kugeln
- 2.3.2 gefärbte Kugeln
- 2.4 Poisson-Verteilung
- 2.5 Wartezeitverteilung
- 2.5.1 negative Binominial verteilung
- 2.5.2 Gamma-Verteilung
- 2.5.3 Die Beta-Verteilung
- 2.6 Normalverteilung

- 3 BEDINGTE WAHRSCHEINLICHKEITEN UND UNABHÄNGIGKEIT6
- 3 Bedingte Wahrscheinlichkeiten und Unabhängigkeit
- 3.1 Bedingte Wahrscheinlichkeiten