EL3370 Mathematical Methods in Signals, Systems and Control

Topic 6: Estimation and Optimization in Hilbert Spaces

Cristian R. Rojas

Division of Decision and Control Systems KTH Royal Institute of Technology

Hilbert Space of Random Variables

Least Square Estimate

Minimum Variance Estimates

Recursive Estimation

Minimum Norm Problems

Optimization in RH_2

Hilbert Space of Random Variables

Least Square Estimate

Minimum Variance Estimates

Recursive Estimation

Minimum Norm Problems

Optimization in RH_2

Hilbert Space of Random Variables

 x_1, \dots, x_n : finite collection of random variables with $\mathbb{E}\{x_b^2\} < \infty$ for each *i*. Their second order statistical information is given by n expected values, $\mathbb{E}\{x_k\}$ $(k=1,\ldots,n)$ and the covariance matrix $cov\{x_1, ..., x_n\} \in \mathbb{R}^{n \times n}$, whose jk-th entry is $\mathbb{E}\{[x_i - \mathbb{E}\{x_i\}][x_k - \mathbb{E}\{x_k\}]\}$.

Define a Hilbert space H of all linear combinations of the x_k 's, with inner product $(x,y) := \mathbb{E}\{xy\}$. *H* has dimension at most $n < \infty$.

Generalization

 x_1, \ldots, x_n : collection of *m*-dimensional random vectors with $\mathbb{E}\{\|x_k\|^2\} < \infty$ for each *k*.

Let \mathcal{H} be the Hilbert space of all m-dimensional random vectors whose entries are linear combinations of the entries of x_1, \ldots, x_n , i.e., $x \in \mathcal{H}$ can be expressed as

$$x = K_1 x_1 + \dots + K_n x_n$$
, where $K_1, \dots, K_n \in \mathbb{R}^{m \times m}$.

The inner product of \mathcal{H} is $(x, y) := \mathbb{E}\{x^T y\} = \operatorname{tr} \mathbb{E}\{xy^T\}$ $(x, y \in \mathcal{H})$.

Hilbert Space of Random Variables

Least Square Estimate

Minimum Variance Estimates

Recursive Estimation

Minimum Norm Problems

Optimization in RH_2

Least Square Estimate

Suppose that a vector y of measurements (y_1, \ldots, y_m) is available, and we want to find a vector $\beta \in \mathbb{R}^n$ (n < m) s.t. $y \approx W\beta$ in a minimum Euclidean norm sense, *i.e.*, s.t. $\|y - W\beta\|_2$ is minimum, where W is given.

To use the projection theorem, consider the Hilbert space $H=\mathbb{R}^m$, and the closed linear subspace

$$M=\{x\in H\colon x=W\beta \text{ for some }\beta\in\mathbb{R}^n\}=\mathcal{R}(W).$$

The minimizer β^{opt} should satisfy $(y-W\beta^{\mathrm{opt}},W\beta)=0$ for all $\beta\in\mathbb{R}^n,$ or

$$\beta^T W^T [y - W \beta^{\text{opt}}] = 0$$
 for all $\beta \in \mathbb{R}^n$,

i.e., $W^Ty = W^TW\beta^{\text{opt}}$. Therefore, if the columns of W are l.i.:

$$\beta^{\text{opt}} = (W^T W)^{-1} W^T y.$$
 (Least squares solution)

Hilbert Space of Random Variables

Least Square Estimate

Minimum Variance Estimates

Recursive Estimation

Minimum Norm Problems

Optimization in RH_2

Minimum Variance Estimates

Consider measurements $y = W\beta + \varepsilon$, where both β and ε are random vectors. We want to minimize $\mathbf{E}\left\{\left\|\hat{\beta} - \beta\right\|_2^2\right\}$.

Theorem. Assume that $[\mathbb{E}\{yy^T\}]^{-1}$ exists. Then, the linear estimate $\hat{\beta}$ of β , based on y, minimizing $\mathbb{E}\left\{\|\hat{\beta}-\beta\|_2^2\right\}$ is $\hat{\beta}=\mathbb{E}\{\beta y^T\}[\mathbb{E}\{yy^T\}]^{-1}y$, with error covariance

$$\mathbb{E}\left\{\left[\hat{\beta} - \beta\right]\left[\hat{\beta} - \beta\right]^{T}\right\} = \mathbb{E}\left\{\beta\beta^{T}\right\} - \mathbb{E}\left\{\beta\mathbf{y}^{T}\right\} \left[\mathbb{E}\left\{\mathbf{y}\mathbf{y}^{T}\right\}\right]^{-1} \mathbb{E}\left\{\mathbf{y}\beta^{T}\right\}.$$

Proof. Let $\hat{\beta} = Ky$, with $K \in \mathbb{R}^{n \times m}$. If we consider the Hilbert space H generated from the entries of y and β , and let $M = \lim\{y_1, \dots, y_m\}$, which is closed, the projection theorem gives $(\beta - \hat{\beta}) \perp M$, or $\mathbb{E}\{\beta_k y^T\} = \mathbb{E}\{K_k yy^T\} = K_k \mathbb{E}\{yy^T\}$ (where K_k is the k-th row of K), i.e., $K = \mathbb{E}\{\beta y^T\}[\mathbb{E}\{yy^T\}]^{-1}$.

$$\begin{split} & \textbf{Corollary.} \text{ If } \mathbb{E}\big\{\varepsilon\varepsilon^T\big\} = Q \succeq 0, \, \mathbb{E}\big\{\beta\beta^T\big\} = R \succeq 0, \, \mathbb{E}\big\{\varepsilon\beta^T\big\} = 0, \, \text{with } WRW^T + Q > 0, \, \text{then } \\ & \hat{\beta} = RW^T(WRW^T + Q)^{-1}y = (W^TQ^{-1}W + R^{-1})^{-1}W^TQ^{-1}y, \, \text{with error covariance } \\ & R - RW^T(WRW^T + Q)^{-1}WR = (W^TQ^{-1}W + R^{-1})^{-1} \, \text{(assuming } Q, R > 0). \end{split}$$

Minimum Variance Estimates (cont.)

Properties

- 1. The minimum variance linear estimate of a linear function of β , e.g., $T\beta$, is $T\hat{\beta}$.

 Proof. If Γy is the optimal estimate of $T\beta$, then the projection theorem gives $\mathbb{E}\{y(T\beta \Gamma y)^T\} = 0$, or $\Gamma y = T \mathbb{E}\{\beta y^T\} [\mathbb{E}\{yy^T\}]^{-1} y = T\hat{\beta}$.
- 2. If $\hat{\beta}$ is the linear minimum variance estimate of β , then it is also the linear estimate minimizing $E\{(\hat{\beta}-\beta)^TP(\hat{\beta}-\beta)\}$ for every P>0.

Proof. From property 1, $P^{1/2}\hat{\beta}$ is the minimum variance estimate of $P^{1/2}\beta$, *i.e.*, $\hat{\beta}$ minimizes $\mathbb{E}\{\|P^{1/2}\hat{\beta}-P^{1/2}\beta\|_2^2\}=\mathbb{E}\{(\hat{\beta}-\beta)^TP(\hat{\beta}-\beta)\}.$

Minimum Variance Estimates (cont.)

Properties (cont.)

3. Let β∈ H (Hilbert space of random variables) and let β̂₁ denote its orthogonal projection on a closed subspace Y₁ of H. Let y₂ be a vector of m random variables generating Y₂ ⊆ H, ŷ₂ the component-wise projection of y₂ into Y₁, and ỹ₂ := y₂ − ŷ₂. Then, the projection of β into Y₁ + Y₂ is

$$\hat{\beta} = \hat{\beta}_1 + \mathbb{E} \big\{ \beta \tilde{y}_2^T \big\} \big[\mathbb{E} \big\{ \tilde{y}_2 \tilde{y}_2^T \big\} \big]^{-1} \tilde{y}_2.$$

Proof

Let \tilde{Y}_2 be s.t. $\tilde{Y}_2 \perp Y_1$ and $Y_1 \oplus \tilde{Y}_2 = Y_1 + Y_2$.

Also, if Y_2 is generated by a finite set of vectors, \bar{Y}_2 is generated by those vectors minus their projections into Y_1 (why?).

Since the projection into $Y_1 \oplus \tilde{Y}_2$ is equal to the projection into Y_1 plus the projection into \tilde{Y}_2 , the result follows. \square

Minimum Variance Estimates (cont.)

Example

Assume we have an optimal estimate $\hat{\beta}$ of a random $\beta \in \mathbb{R}^n$, with $\mathrm{E}\{(\hat{\beta}-\beta)(\hat{\beta}-\beta)^T\} = R$. Given new measurements $y = W\beta + \varepsilon$, where ε has zero mean, covariance Q, and is uncorrelated with β and previous measurements, we want to update $\hat{\beta}$ to, say, $\hat{\beta}$.

The best estimate of y based on past measurements is $\hat{y} = W\hat{\beta}$ (why?), so $\tilde{y} = y - W\hat{\beta} = W(\beta - \hat{\beta}) + \varepsilon$.

By property 3:
$$\hat{\hat{\beta}} = \hat{\beta} + \mathbb{E} \big\{ \beta \tilde{y}^T \big\} \big[\mathbb{E} \big\{ \tilde{y} \tilde{y}^T \big\} \big]^{-1} \tilde{y} = \hat{\beta} + RW^T [WRW^T + Q]^{-1} (y - W\hat{\beta}).$$

The error covariance is: $\mathbb{E}\left\{\left(\hat{\hat{\beta}} - \beta\right)\left(\hat{\hat{\beta}} - \beta\right)^T\right\} = R - RW^T[WRW^T + Q]^{-1}WR$. (Exercise!)

Hilbert Space of Random Variables

Least Square Estimate

Minimum Variance Estimates

Recursive Estimation

Minimum Norm Problems

Optimization in RH

Bonus Slides

11

Recursive Estimation

A discrete random process is a sequence (x_n) of random variables. (x_n) is orthogonal or white if $\mathbb{E}\{x_jx_k\}=\alpha_j\delta_{j-k}$, and orthonormal if, in addition, $\alpha_j=1$ $(j\in\mathbb{N})$.

We assume that underlying an observed random process there is an orthonormal process.

Examples $((u_k)_{k\in\mathbb{Z}}$: orthonormal process)

- 1. Moving average: $x_n = \sum_{k=1}^\infty a_k u_{n-k}, \text{ where } \sum_{k=1}^\infty |a_k|^2 < \infty.$
- 2. Autorregresive of order 1: $x_n = ax_{n-1} + u_{n-1}$, |a| < 1. Notice that this process is equivalent to a moving average: $x_n = \sum_{k=1}^{\infty} a^{k-1} u_{n-k}$.
- 3. Autorregresive of order N: $x_n + a_1x_{n-1} + \dots + a_Nx_{n-N} = u_{n-1}$, where the polynomial $s^N + a_1s^{N-1} + \dots + a_N$ has all its roots in the open unit disk.

Recursive Estimation (cont.)

Definition

An *n-dimensional state-space model* of a random process consists of:

- 1. State equation: $x_{k+1} = \Phi_k x_k + u_k \ (k=0,1,\ldots)$, where x_k is an n-dimensional state (random) vector, $\Phi_k \in \mathbb{R}^{n \times n}$ is known, and u_k is an n-dimensional random vector of zero mean and $\mathbf{E}\{u_k u_l^T\} = Q_k \delta_{k-l}$.
- 2. Initial random vector: x_0 with an estimate \hat{x}_0 s.t. $\mathbb{E}\{(\hat{x}_0 x_0)(\hat{x}_0 x_0)^T\} = P_0$.
- 3. Measurements: $y_k = M_k x_k + w_k$ (k = 0, 1, ...), where $M_k \in \mathbb{R}^{m \times n}$ is known, and w_k is an m-dimensional random measurement vector of zero mean and $\mathbb{E}\{w_k w_l^T\} = R_k \delta_{k-l}$, with $R_k > 0$.

In addition, assume that x_0 , u_j and w_k are uncorrelated for all $j, k \ge 0$.

Recursive Estimation (cont.)

Estimation problem

Find the minimum variance estimate, $\hat{x}_{k|n}$, of x_k given measurements y_0, \dots, y_n .

We will focus only on the *prediction* problem: to find $\hat{x}_{k+1|k}$.

Theorem (Kalman)

 $\hat{x}_{k+1|k}$ can be computed recursively from:

$$\hat{x}_{k+1|k} = \Phi_k P_k M_k^T (M_k P_k M_k^T + R_k)^{-1} (y_k - M_k \hat{x}_{k|k-1}) + \Phi_k \hat{x}_{k|k-1},$$

where P_k is the covariance of $\hat{x}_{k|k-1}$, which can also be computed recursively from

$$P_{k+1} = \boldsymbol{\Phi}_k P_k [\boldsymbol{I} - \boldsymbol{M}_k^T (\boldsymbol{M}_k P_k \boldsymbol{M}_k^T + \boldsymbol{R}_k)^{-1} \boldsymbol{M}_k P_k] \boldsymbol{\Phi}_k^T \boldsymbol{Q}_k.$$

The initial conditions for these equations are $\hat{x}_{0|-1} = \hat{x}_0$ and P_0 .

Recursive Estimation (cont.)

Proof

Suppose that measurements y_0,\ldots,y_{k-1} are available, as well as $\hat{x}_{k|k-1}$ and P_k , i.e., we have the projection of x_k onto $Y_{k-1} := \lim\{y_0,\ldots,y_{k-1}\}$.

The new measurement is $y_k = M_k x_k + w_k$. From the previous example, we have

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + P_k M_k^T (M_k P_k M_k^T + R_k)^{-1} (y_k - M_k \hat{x}_{k|k-1})$$

and covariance matrix $P_{k|k} = P_k - P_k M_k^T (M_k P_k M_k^T + R_k)^{-1} M_k P_k$.

Since $x_{k+1} = \Phi_k x_k + u_k$, and u_k is uncorrelated to v_k and x_k , Property 1 gives

$$\hat{x}_{k+1|k} = \Phi_k \hat{x}_{k|k},$$

with error covariance $P_{k+1} = \Phi_k P_{k|k} \Phi_k^T + Q_k$.

Hilbert Space of Random Variables

Least Square Estimate

Minimum Variance Estimates

Recursive Estimation

Minimum Norm Problems

Optimization in RH_2

Minimum Norm Problems

The projection theorem can also be used to explicitly solve some infinite dimensional problems. To this end, we can restate it as:

Theorem (minimum norm problem)

Let M be a closed subspace of a Hilbert space H. Let $x \in H$, and the *linear variety* $V = x + M := \{x + m : m \in M\}$. Then there is a unique $x_0 \in V$ of minimum norm. Furthermore, $x_0 \perp M$.

Proof. Translate V by -x, so that V turns into M, and $\|x_0\|$ becomes $\|x_0 - x\|$, so that the projection theorem can be applied.

Two types of varieties V are of interest: those with finite dimensional M, and those consisting of all $x \in H$ satisfying (for y_1, \ldots, y_n l.i.)

$$(x, y_1) = c_1,$$

$$\vdots \qquad (V \text{ has } co\text{-}dimension \ n.)$$
 $(x, y_n) = c_n.$

When M has finite dimension, e.g., $M = \{y_1, \dots, n\}$, then x_0 is of the form $x_0 = x + \sum_{k=1}^n \beta_k y_k$ for some scalars β_k that satisfy the orthogonality conditions

$$\left(x + \sum_{k=1}^{n} \beta_k y_k, y_i\right) = 0, \qquad i = 1, \dots, n,$$

or

$$(y_1, y_1)\beta_1 + \dots + (y_n, y_1)\beta_n = -(x, y_1),$$

$$\vdots$$

$$(y_1, y_n)\beta_1 + \dots + (y_n, y_n)\beta_n = -(x, y_n),$$

which is a system of n linear equations in n unknowns.

In the cases where V has finite co-dimension, the solution is given by the following result:

Theorem

Let $\{y_1,\ldots,y_n\}$ be l.i. vectors in a Hilbert space H, and $x_0\in H$ the vector of minimum norm s.t. $(x,y_k)=c_k$ for $k=1,\ldots,n$. Then $x_0=\sum_{k=1}^n\beta_ky_k$, where the coefficients β_k satisfy

$$(y_1,y_1)\beta_1+\dots+(y_n,y_1)\beta_n=c_1,$$

$$\vdots$$

$$(y_1,y_n)\beta_1+\dots+(y_n,y_n)\beta_n=c_n.$$

$$(*)$$

Proof. Let $M = \lim\{y_1, \dots, y_n\}$, which is closed. The linear variety of vectors $x \in H$ satisfying $(x, y_k) = c_k$ for $k = 1, \dots, n$ is a translation of M^{\perp} . Since M^{\perp} is closed, existence and uniqueness of x_0 follow from the modified projection theorem (if $M^{\perp} \neq \{0\}$). Furthermore, $x_0 \perp M^{\perp}$, *i.e.*, $x_0 \in (M^{\perp})^{\perp}$. Since M is closed, $(M^{\perp})^{\perp} = M$, so $x_0 \in M$, and $x_0 = \sum_{k=1}^n \beta_k y_k$ for some coefficients β_k , which must satisfy the constraints $(x_0, y_k) = c_k$; this gives the system of equations (*).

These two situations can be seen as duals of each other, because they are related, via translation, to the problem of projecting $x \in H$ into a linear subspace M of finite dimension (in the first case), or to its orthogonal complement M^{\perp} (in the second case):

The situations are completely symmetrical, because $(M^{\perp})^{\perp} = M!$

In both cases, since $H=M\oplus M^\perp$, x needs to be decomposed as $x=m_0+m_0^\perp$, where $m_0\in M$ and $m_0^\perp\in M^\perp$. As M has finite dimension, computing m_0 is a finite dimensional problem. Once m_0 is found, we directly obtain $m_0^\perp=x-m_0!$

See end of slides for a wider range of problems reducible to finite dimensions.

Example

The shaft angular velocity ω of a DC motor driven by a current u satisfies $\dot{\omega}(t) + \omega(t) = u(t)$.

The shaft angular position is θ (i.e., $\dot{\theta} = \omega$). The motor is initially at rest: $\theta(0) = \omega(0) = 0$.

We want to find the current of minimum energy, $\int_0^1 u^2(t)dt$, that drives the motor to $\theta(1)=1$, $\omega(1)=0$.

This problem can be treated as a minimum norm problem in $L_2[0,1]$: By integration,

$$\begin{split} \omega(1) &= \int_0^1 e^{t-1} u(t) dt = (u, y_1) \stackrel{!}{=} 0, & y_1(t) = e^{t-1}, \\ \theta(1) &= \int_0^1 (1 - e^{t-1}) u(t) dt = (u, y_2) \stackrel{!}{=} 1, & y_2(t) = 1 - e^{t-1}. \end{split}$$

According to the previous theorem, $u(t) = \beta_1 e^{t-1} + \beta_2 (1 - e^{t-1})$, and by forcing the constraints,

$$u(t) = \frac{1}{3-e}(1+e-2e^t), \quad t \in [0,1].$$

Hilbert Space of Random Variables

Least Square Estimate

Minimum Variance Estimates

Recursive Estimation

Minimum Norm Problems

Optimization in RH_2

Optimization in RH_2

Motivation

Many problems in control, signal processing and communications can be posed as minimization problems in RH_2 . This is because the variance of a discrete-time stationary process x[k] = H(q)e[k], where e is white noise of variance λ and H(q) is a stable rational transfer function (i.e., in RH_2), can be written as

$$\operatorname{var}\{x[k]\} = \mathbb{E}\{x^2[k]\} = \frac{\lambda}{2\pi} \int_{-\pi}^{\pi} |H(e^{i\omega})|^2 d\omega = \lambda \|H\|_2^2.$$

Example. Let x and y be stationary processes with joint spectrum $\begin{bmatrix} \Phi_x(\omega) & \Phi_{xy}(\omega) \\ \Phi_{xy}(-\omega) & \Phi_y(\omega) \end{bmatrix}.$

The problem of finding a predictor $H \in RH_2$ that allows us to estimate y[k] as H(q)x[k] with minimum variance error corresponds to solving

$$\min_{H \in RH_2} \frac{1}{2\pi} \int_{-\pi}^{\pi} [H(e^{i\omega}) - 1] \begin{bmatrix} \Phi_x(\omega) & \Phi_{xy}(\omega) \\ \Phi_{xy}(-\omega) & \Phi_y(\omega) \end{bmatrix} \begin{bmatrix} H(e^{-i\omega}) \\ -1 \end{bmatrix} d\omega = \|AH - B\|_2^2,$$

where $A \in RH_2$ and $B \in RL_2$ are s.t. $|A(e^{i\omega})|^2 = \Phi_x(e^{i\omega})$ and $A(e^{i\omega})B(e^{-i\omega}) = \Phi_{xy}(e^{i\omega})$ (obtained via spectral factorization).

To solve problems of the form $\min_{H \in RH_2} \|AH - B\|_2^2$, the following lemmas are useful:

Lemma. The orthogonal complement of RH_2 in RL_2 consists exactly of those $f \in RL_2$ which are analytic in $\mathbb D$ and s.t. f(0) = 0.

Proof. Let $g \in RH_2$ and $f \in RL_2$ s.t. f is analytic in $\mathbb D$ and f(0) = 0. Then, (g,f) is the negative of the sum of the residues of $g(z)f(z^{-1})/z$ at its poles in $\mathbb E$; since g is analytic in $\mathbb E$, as well as $z \mapsto f(z^{-1})/z$ (and at $z = \infty$, $\operatorname{Res}_{z = \infty} f(z^{-1})/z = -\lim_{z \to \infty} zf(z^{-1})/z = f(0) = 0$), we have that (g,f) = 0, so $f \in RH_2^{\perp}$. Conversely, if $f \in RL_2$ is not analytic in $\mathbb D$ nor s.t. f(0) = 0, it can be decomposed via partial fraction expansion as a sum of a constant plus positive powers and simple fractions. Let \tilde{f}_1 consist of the constant and fractions with poles in $\mathbb E$, and $\tilde{f}_2 := f - \tilde{f}_1$. Then, let $f_1 := \tilde{f}_1 + \tilde{f}_2(0) \neq 0$ and $f_2 := \tilde{f}_2 - \tilde{f}_2(0)$, so $f_1 \in RH_2$ and f_2 is analytic in $\mathbb D$ and s.t. $f_2(0) = 0$. From the previous argument, we have that $(f_1,f) = (f_1,f_1) > 0$, since $f_1 \neq 0$, thus $f \notin RH_2^{\perp}$ because it is not orthogonal to $f_1 \in RH_2$.

Corollary. Every function $f \in RL_2$ can be decomposed as $f = f_1 + f_2$, where $f_1 \in RH_2$, $f_2 \in RH_2^{\perp}$, and $\|f\|_2^2 = \|f_1\|_2^2 + \|f_2\|_2^2$.

Proof. From the proof of the theorem, every $f \in RL_2$ can be decomposed as $f = f_1 + f_2$, where $f_1 \in RH_2$ and $f_2 \in RH_2^{\perp}$. The identity $\|f\|_2^2 = \|f_1\|_2^2 + \|f_2\|_2^2$ follows from Pythagoras' theorem.

RL_{∞} / RH_{∞} spaces

 RL_∞ : normed space of real-rational functions, analytic in $\mathbb T$, with usual addition and scalar multiplication, and norm

$$||f||_{\infty} := \max_{\omega \in [-\pi,\pi]} |f(e^{i\omega})|, \qquad f \in RL_{\infty}.$$

 RH_{∞} : subspace of RL_{∞} , of functions analytic in $\overline{\mathbb{E}}$, with same norm as RL_{∞} .

Note. If $f \in RL_2$ and $g \in RL_\infty$, then $fg \in RL_2$ and $\|fg\|_2 \le \|g\|_\infty \|f\|_2$; similarly for $f \in RH_2$ and $g \in RH_\infty$.

Inner-Outer Factorization

Assume that $f \in RH_2$ has no zeros in \mathbb{T} . Then, f can be described as

$$f(z) = K \frac{\prod\limits_{k=1}^{m_1} (z-z_k) \prod\limits_{k=m_1+1}^m (z-z_k)}{\prod\limits_{k=1}^n (z-p_k)}, \qquad K, z_1, \dots, z_m, p_1, \dots, p_n \in \mathbb{C}, \quad n, m \in \mathbb{N}_0,$$

where $|z_1|, \ldots, |z_{m_1}| > 1$ and $|z_{m_1+1}|, \ldots, |z_m| < 1$, so it can be decomposed as

$$f(z) = \underbrace{\prod_{k=1}^{m_1} (z-z_k)}_{=:f_I(z)} \cdot \underbrace{K}^{\prod_{k=1}^{m_1} (1-z_k z) \prod_{k=m_1+1}^{m} (z-z_k)}_{=:f_O(z)}.$$

This is the inner-outer factorization of f: the inner function $f_I \in RH_{\infty}$ has constant, non-zero modulus in \mathbb{T} , i.e., $|f_I(e^{i\omega})| = \text{constant for } \omega \in [-\pi,\pi]$, while the outer function f_O satisfies $f_O, 1/f_O \in RH_2$.

Note. If $f,g \in RL_2$, and $|g(e^{i\omega})| \equiv \alpha$ (constant), then $||gf||_2 = \alpha ||f||_2$.

Theorem. Let $A \in RH_2$ and $B \in RL_2$, where A has no zeros in \mathbb{T} . Then,

$$\arg\min_{H\in RH_2}\|AH-B\|_2^2 = \frac{1}{A_O}P_{RH_2}\left(\frac{B}{A_I}\right),$$

where $A = A_I A_O$ is the inner-outer factorization of A, and $P_{RH_2}: RL_2 \to RH_2$ is the projection operator onto RH_2 , $P_{RH_2}(f) := f_1$ for $f \in RL_2$ (where f_1 is defined as in the Corollary in Slide 24).

Proof. Note that $\|AH-B\|_2^2 = \|A_IA_OH-B\|_2^2 = \alpha\|A_OH-B/A_I\|_2^2$, where $\alpha = \|A_I\|_\infty^2 > 0$. Let $B/A_I = f_1 + f_2$, as in the Corollary of Slide 24, where $f_1 = P_{RH_2}(B/A_I)$, and noting that $A_OH \in RH_2$, we obtain by Pythagoras' theorem

$$\|AH-B\|_{2}^{2} = \alpha \|A_{O}H - f_{1} - f_{2}\|_{2}^{2} = \alpha \|A_{O}H - f_{1}\|_{2}^{2} + \alpha \|f_{2}\|_{2}^{2} \geqslant \alpha \|f_{2}\|_{2}^{2},$$

where equality in last step is attained iff $H = f_1/A_O = P_{RH_2}(B/A_I)/A_O$. This concludes the proof.

Remark. This result can be extended in several ways. E.g., if $H \in RH_2$ is required to fulfil the interpolation constraint H(x) = y, for $x, y \in \mathbb{C}$, then H can be written as $H(z) = \frac{z-x}{z} \check{H}(z) + y$, where $\check{H} \in RH_2$ is arbitrary, so the cost function can be re-written as $\|AH - B\|_2^2 = \|\left(\frac{z-x}{z}A\right)\check{H} - (B-yA)\|_2^2$.

Also, the function $\|A_1H - B_1\|_2^2 + \|\bar{A_2}H - B_2\|_2^2$ can be written as $\|AH - B\|_2^2 + \text{constant}$ by completion of squares.

Example

Let y[k] be a signal described by the recursive equation $y[k] = e[k] + \alpha e[k-1]$, where (e[k]) is white noise of variance 1 and $|\alpha| > 1$. We want to predict y[k], with error of minimum variance, based on past values of itself, as $\hat{y}[k] = H(q)y[k]$, where $H \in RH_2$ is s.t. $H(z) = h_1 z^{-1} + h_2 z^{-2} + \cdots$, i.e., $H(\infty) = 0$.

Note that $H(\infty) = 0$ means that $H(z) = z^{-1}\tilde{H}(z)$, where $\tilde{H} \in RH_2$. Then,

$$\begin{split} & \mathrm{E}\{(y[k]-\hat{y}[k])^2\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |1-H(e^{i\omega})|^2 \Phi_y(\omega) d\omega \\ & = \frac{1}{2\pi} \int_{-\pi}^{\pi} |1-H(e^{i\omega})|^2 |1+\alpha e^{-i\omega}|^2 d\omega \\ & = \|(1+\alpha q^{-1})[1-q^{-1}\tilde{H}(q)]\|_2^2 \\ & = \|(1+\alpha q^{-1})[q-\tilde{H}(q)]\|_2^2 \qquad \text{(multiplying cost by q, which has} \\ & = \left\|q+\alpha-\frac{q+\alpha}{q}\tilde{H}(q)\right\|_2^2 \qquad \text{constant modulus in \mathbb{T})} \\ & = \left\|\frac{1+\alpha q}{q+\alpha} \left(q+\alpha-\frac{q+\alpha}{q}\tilde{H}(q)\right)\right\|_2^2 \\ & = \left\|1+\alpha q-\frac{1+\alpha q}{q}\tilde{H}(q)\right\|_2^2 = \alpha^2 \|q\|_2^2 + \left\|1-\frac{1+\alpha q}{q}\tilde{H}(q)\right\|_2^2 \geqslant \alpha^2 \|q\|_2^2. \end{split}$$

Example (cont.)

Also, $\|q\|_2^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\omega} e^{-i\omega} d\omega = 1$, so the lower bound becomes α^2 , which is attained iff $1 - \frac{1 + \alpha z}{z} \tilde{H}(z) \equiv 0$. This shows that $\tilde{H}^{\text{opt}}(z) = \frac{z}{1 + \alpha z}$, so

$$H^{\mathrm{opt}}(z) = \frac{1}{1+\alpha z},$$

so the optimal predictor satisfies the recursive equation $\alpha \hat{y}[k+1] + \hat{y}[k] = y[k]$.

Note that the minimum attainable variance for the prediction error, α^2 , grows with $|\alpha|$!

Exercise: Repeat this example assuming that $|\alpha| < 1$, and show that the minimum variance does not depend on the value of α .

Next Topic

Dual Spaces

Hilbert Space of Random Variables

Least Square Estimate

Minimum Variance Estimates

Recursive Estimation

Minimum Norm Problems

Optimization in RH_2

Bonus: Regularization and Representer Theorem

In data science, given a data set $\{(x_1,y_1),\ldots,(x_n,y_n)\}$, where $x_i\in\mathcal{X}$ (\mathcal{X} arbitrary) and $y_i\in\mathbb{R}$ $(i=1,\ldots,n)$, a standard problem is to find a function $f:\mathcal{X}\to\mathbb{R}$ s.t. $f(x_i)\approx y_i$ for all i. To address it, an approach consists in fixing a *feature map* $\psi:\mathcal{X}\to H$, where H is a Hilbert space, and solve (where $\lambda>0$ is a fixed *regularization parameter*)

$$\min_{g \in H} \sum_{i=1}^{n} \|y_i - g(\psi(x_i))\|^2 + \lambda \|g\|^2, \tag{*}$$

Then, $f = g \circ \psi$ provides the sought function. This is an infinite-dimensional problem, but in many instances it can be solved exactly, thanks to the following result.

Representer Theorem. Let $\Phi: H \to \mathbb{R}$ be a function on a Hilbert space H defined as $\Phi(f) := F(l_1(f), \ldots, l_n(f), \|f\|^2)$, where $l_1, \ldots, l_n \in H^*$, and $F: \mathbb{R}^{n+1} \to \mathbb{R}$ is monotonically increasing w.r.t. its last argument $(\|f\|^2)$. Assume that there exists at least one $f^* \in H$ which attains the minimum of Φ over H. Then, there exists a minimizer of Φ of the form $\hat{f} = \sum_{i=1}^n \alpha_i y_i$, where y_i is s.t. $l_i(f) = (f, y_i)$ for $i = 1, \ldots, n$, and $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$.

This result is most useful when H is a reproducing kernel Hilbert space, i.e., a Hilbert space whose elements are real-valued functions on an arbitrary set \mathcal{X} , s.t. all the evaluation functionals $l_x \colon H \to \mathbb{R}$, defined as $l_x(f) = f(x)$ $(x \in \mathcal{X}, f \in H)$, are bounded. For such a Hilbert space, the representer theorem can be directly applied to (\star) (why?).

Bonus: Regularization and Representer Theorem (cont.)

Proof (of Representer Theorem)

Let $M= \lim\{y_1,\dots,y_n\}$, and assume that the minimizer f^* does not belong to M. Then, $f^*=f_1+f_2$, where $f_1\in M$ and $f_2\in M^\perp$, but

$$\begin{split} F(l_1(f^*),\dots,l_n(f^*),\|f^*\|^2) &= F(l_1(f_1+f_2),\dots,l_n(f_1+f_2),\|f_1\|^2 + \|f_2\|^2) \\ &= F(l_1(f_1),\dots,l_n(f_1),\|f_1\|^2 + \|f_2\|^2) \\ &\leq F(l_1(f_1),\dots,l_n(f_1),\|f_1\|^2), \end{split}$$

due to the monotonicity of F w.r.t. its last argument, and that $l_i(f_2) = (f_2, y_i) = 0$ (because $y_i \in M$ and $f_2 \in M^{\perp}$). Therefore, $f_1 \in M$ is a minimizer of Φ too.