

Comportamiento arriba y abajo punto critico

No queremos que exista cluster percolante debajo de p_c

Haciendo la misma cuenta usual

$$\begin{aligned} \cos z &= (p - p_c) s^{\sigma} & \Rightarrow dz &= \sigma z \ ds/s \\ &\Rightarrow s &= z^{1/\sigma} (p - p_c)^{-1/\sigma} \end{aligned}$$

$$z &= (p - pc) s^{\sigma} \Rightarrow s &= [z/(p - p_c)]^{1/\sigma} = [|z|/|p - p_c|]^{1/\sigma}$$

$$dz &= (p - pc) \sigma s^{(\sigma - 1)} ds \Rightarrow ds &= dz/[(p - p_c) \sigma s^{(\sigma - 1)}]$$

ATENCION las integrales se hace a) entre 0 y ∞ para $p>p_c$ b) entre 0 y $-\infty$ para $p< p_c$ de alli los modulos

$$P = p - \sum_{s} n_{s}s + \sum_{s} n_{s}(p_{e})s - p_{e}$$

$$-P = \left[\sum_{s} n_{s}s - \sum_{s} n_{s}(p_{e})s\right] - \left[p - p_{e}\right]$$

$$= \sum_{s} \left[n_{s}(p) - n_{s}(p_{e})\right]s + O(p - p_{e})$$

$$= \int s^{1-\tau} [f(z) - f(0)] ds$$

$$= \int z^{(2-\tau)/\sigma} |(p - p_{e})|^{-(2-\tau)/\sigma} \frac{1}{z} [f(z) - f(0)] dz/\sigma$$

$$= |(p - p_{e})|^{(\tau-2)/\sigma} \int |z|^{-1+(2-\tau)/\sigma} [f(z) - f(0)] dz/\sigma$$

$$= |(p - p_{e})|^{(\tau-2)/\sigma} \int |z|^{-1+(2-\tau)/\sigma} [f(z) - f(0)] dz/\sigma$$
Como $\beta = (\tau - 2)/\sigma$ y $\gamma = (3 - \tau)/\sigma$ obtenemos que $\beta + \gamma = 1/\sigma$
reemplazando obtenemos
$$-P = (\beta + \gamma)(p - p_{e})^{\beta} \int z^{-1-\beta} [f(z) - f(0)] dz$$

La integral se hace en el rango $[0,\infty]$ para $p>p_c\ (z>0)$ y $[0,-\infty]$ para $p< p_c\ (z<0)$

Entonces f(z) debe ser tal que cuando $z > 0 \rightarrow P \neq 0$

Tambien, f(z) debe ser tal que cuando $z < 0 \rightarrow P = 0$ y por lo tanto $\int z^{-1+(2-t)/\sigma} [f(z) - f(0)] \ dz = 0$

o tambien $\int z^{-(2-\tau)/\sigma} \frac{[f(z)-f(0)]}{z} dz$ o tambien $\int z^{-(2-\tau)/\sigma} \frac{df(z)}{dz} dz = 0$

 $f(-x) \to 0$ (pues corresponde a $p < p_c \cos s$ grande), si f(z) crece desde 0 no puede ser siempre creciente pues para que se anule la integrar debera "oscilar" alrededor de f(0).

Ademas $f(0)=1 \leftarrow en p_c tenemos una powerlaw$

 $z = (p - pc)s^{\sigma}$

Se ha demostrado de f(z)tiene un solo maximo.

Sea este maximo z_{\max} y sea $f(z_{\max}) = f_{\max} \Rightarrow f(z) < f_{\max} \ \forall \ z \neq z_{\max}$

Entonces dado $n_s \propto s^{-r}f(z)$ si fijo el valor de s existira un maximo de n_s en p_{\max} que corresponde a (por debajo de \mathbf{p}_c)

 $z_{\text{max}} = (p_{\text{max}} - p_c)s^{\sigma} \Rightarrow p_{\text{max}} = p_c + z_{\text{max}}s^{-\sigma}.$

Para cada s

No queremos que existan divergencias en derivadas de p Supondremos tambien que f(z) es analítica (sus derivadas son finitas en todo punto)

Queremos recalcular γ Finalmente calculamos $S \propto \sum_{s} s^2 n_s$ $\propto \int s^{2-r} f(z) ds$ $\propto |p-p_c|^{(r-3)/\sigma} \int \dots$ $\propto |p-p_c|^{(r-3)/\sigma} = |p-p_c|^{-\gamma}$

Los exponentes criticos son importantes porque no dependen de la estructura de la red y solo dependen de la dimension.

El numero total de clusters se calcula del mismo modo

$$M_0 \propto | \; | \;$$

Esto ha sido constatado en numerosos tests numericos f(z) se determina en general por analisis numerico.

Tests numericos

Log-Log representacion de los numeros de fragmentos en el punto

critico para red triangular (95000X95000)

Si nos fijamos en la ecuacion de escala para los fragmentos

tenemos que

$$n_s \propto s^{-\tau} f(z)$$

De donde $[n_s(p)/n_s(p_c)] = f(z) \operatorname{con} z = (p - p_c)s^{\sigma}$

O sea que si tomo los cocientes para diferentes masas y grafico para z deberia obtener la "misma" curva

Esto se calculo y se grafico en rangos (32-63) (64-127) etc y efectivamente da.

Si se calcula P y M_2 sabemos que se deben comportar como

$$P \propto (p - p_c)^{\beta} \cos \beta = (\tau - 2)/\sigma$$

$$M_2 \propto |p-p_c|^{(r-1-2)/\sigma}$$

Como el data usado es para una red pequeña si estudio el data como viene, no dan las rectas que espero, pero si admito que $p_c=0.5083$ (para tomar en cuenta los efectos de tamaño finito) , da

Table 2. Percolation exponents for $d=2,3,4,5,6-\epsilon$ and in the Bethe lattice together with the page number defining the exponent. Rational numbers give (presumably) exact results, whereas those with a decimal fraction are numerical estimates.

Exponent	d=2	d=3	d = 4	d = 5	$d = 6 - \varepsilon$	Bethe	Page
α	-2/3	-0-62	-0.72	-0.86	-1+1/7	-1	39
B	5/36	0.41	0.64	0.84	1 - c/7	1	37
7	43/18	1-80	1.44	1-18	$1 + \epsilon/7$	1	37
r .	4/3	0-88	0-68	0-57	+ 50/84	1/2	60
ø	36/91	0.45	0.48	0-49	+ O(c2)	1/2	35
r	187/91	2-18	2.31	2.41	3 - 3ef14	5/2	33
$D(p = p_c)$	91/48	2-53	3-06	3-54	4 - 10c/21	4	10
$D(p < p_c)$	1-56	2	12/5	2-8	-	4	62
$D(p > p_r)$	2	3	4	5	-	4	62
$\zeta(p < p_c)$	1	1	1	1	-	1	56
$\xi(p > p_c)$	1/2	2/3	3/4	4/5	-	1	56
$p(p < p_c)$	1	3/2	1.9	2.2	-	5/2	54
$f(p > p_c)$	5/4	-1/9	1/8	- 449/450	-	5/2	54
f _{max}	5-0	1.6	1-4	1-1		1	42
	1-30	2-0	2-4	2.7	$3 - 5\epsilon/21$	3	91
	1-30	0.73	0.4	0.15		0	93
On .	1.6	1.74	1.9	2.0	2 + c/21	2	95
$O_{\min}(p = p_c)$	1-13	1-34	1-5	1-8	2-0/6	2	97
$P_{\min}(p < p_c)$	1-17	1-36	1-5		-	2	98
$D_{\text{ens}}(p = p_c)$	1-4	1-6	1.7	1.9	$2 - \varepsilon / 42$	2	97

For the exponents at p_c , the Bethe lattice values are exact at $d \geqslant 6$. A dash means that 6 is not the upper critical dimension for the c-expansion.

El numero de clusters lejos de p_c

Por debajo de $p_{\it c}$

En esta region es apropiado pensar que el numero de clusters es exponencial.

$$\ln n_s \propto -s$$
 $(s \rightarrow \infty, p < p_c)$

Lo cual es consistente con la aproximacion de Fisher. (S finito)

Por otro lado tenemos que el comportamiento de los lattice animals

es del tipo $g_s \propto s^{-\theta} cte^s$ de donde

$$\ln g_s \propto -\theta \ln s + s \ln cte \propto s$$
 $(s \to \infty)$

luego va como ctes

Entonces como para p pequeño $n_s(p \to 0) \propto s^{-\theta} p^s cte^s$ (esto es asi porque el termino $(1-p)^s$ es del orden de 1 en $p \sim 0$) el comportamiento exponencial es correcto.

Por encima de p_c

En esta region

$$\ln n_s(p>p_c) \propto -s^{1-1/d}$$

Pero $s^{1-1/d}$ es esencialmente la superficie de una esfera en d dimensiones, o sea que corresponden a estructuras compactas en PSEPERBIONE que esto es valido para s grande

Si quiero cortar una esfera en $p \gg p_c$ tendre que hacer $(1-p)^t$ pero

$$t \propto r^2$$
 o sea $(1-p)^{r^2} \Rightarrow n_s \propto \exp(-cte \cdot r^2) = \exp(-cte \cdot s^{1-1/d})$