Approximation Algorithms Part II: week 1 assignment

Anonymous

September 2, 2019

Primal-dual algorithm for Set Cover

Q1. maximize
$$\sum_{i=1}^{n} y_{i}$$
 s.t.
$$\sum_{i:e_{i} \in S_{j}}^{n} \leq w_{j} \quad \forall j = 1, \dots, m$$

$$y_{i} \geq 0 \quad \forall j = 1, \dots, m$$

Q2. At most n iterations.

 ${f Q3.}$ Each iteration covers at least one different elements, and there are n elements to cover. Therefore, the algorithm terminates with all elements covered.

Q4. $\operatorname{val}(y^*) \leq \operatorname{OPT}$.

Q5. Due to step 3 in the algorithm, the constraints in dual problem is always satisfied, thus solution y is feasible for the dual.

Q6. $\operatorname{val}(y) \leq \operatorname{val}(y^*) \leq \operatorname{OPT}$.

Q7. $\sum_{i:e_i \in S_j} y_i = w_j \text{ for all } j \in I.$

Q8. $\sum_{j \in I} \sum_{i: e_i \in S_j} y_i = \sum_{j \in I} w_j.$

Q9.

$$\sum_{j \in I} w_j = \sum_{j \in I} w_j x_j = \sum_{j \in I} \sum_{i: e_i \in S_j} x_j y_i$$

$$= \sum_j \sum_{i: e_i \in S_j} x_j y_i$$

$$= \sum_i \left(\sum_{j: e_i \in S_j} x_j \right) y_i$$

$$= f \sum_i y_i$$

$$= f \text{val}(y)$$

Q10. Therefore,

$$\sum_{j \in I} w_j \le f \cdot \text{val}(y) \le f \cdot \text{OPT}$$

So, this algorithm gives f-approximation.