Guilherme Augusto de Macedo, Matheus Liberato Domingues da Silva, Victor Hugo Carlquist da Silva

Modelo de Banco de Dados para Gerenciamento de Pizzaria: Modelagem e Implementação

Guilherme	Augusto	de	Macedo,	Matheus	Liberato	Domingues	da	Silva,	Victor
			Hugo	o Carlquis	t da Silva	a			

Modelo de Banco de Dados para Gerenciamento de Pizzaria: Modelagem e Implementação

Trabalho final apresentado na disciplina de Banco de Dados II no quarto módulo do curso de Tecnologia em Análise e Desenvolvimento de Sistemas do IFSP-CJO.

Instituto Federal de Educação, Ciência e Tecnologia de São Paulo - campus Campos do Jordão

Orientador: Paulo Giovani de Faria Zeferino

Campos do Jordão 2013

Guilherme Augusto de Macedo, Matheus Liberato Domingues da Silva, Victor Hugo Carlquist da Silva

MODELO DE BANCO DE DADOS PARA GERENCIAMENTO DE PIZZARIA: MODELAGEM E IMPLEMENTAÇÃO/ Guilherme Augusto de Macedo, Matheus Liberato Domingues da Silva, Victor Hugo Carlquist da Silva. – Campos do Jordão, 2013-40 p. : il. (algumas color.) ; 30 cm.

Orientador: Paulo Giovani de Faria Zeferino

Trabalho Final – Instituto Federal de Educação, Ciência e Tecnologia de São Paulo - campus Campos do Jordão, 2013.

1. Complexidade de Algoritmo. 2. Processamento de Imagens. I. Autor. II. Título III. Orientador. IV. Faculdade. V. Título

CDU 02:141:005.7

Guilherme Augusto de Macedo, Matheus Liberato Domingues da Silva, Victor Hugo Carlquist da Silva

Modelo de Banco de Dados para Gerenciamento de Pizzaria: Modelagem e Implementação

Trabalho final apresentado na disciplina de Banco de Dados II no quarto módulo do curso de Tecnologia em Análise e Desenvolvimento de Sistemas do IFSP-CJO.

Banca Examinadora

03 de dezembro de 2013

Prof. Paulo Giovani de Faria Zeferino Orientador

> Prof. Me. Alvaro Costa Neto Convidado 1

Prof. Esp. Alisson Ribeiro Convidado 2

> Campos do Jordão 2013

RESUMO

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Palavras-chaves: Complexidade de Algoritmos. Processamento de Imagens. Computação Heterogênea.

ABSTRACT

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Key-words: Algorithm Complexity. Image Processing. Heterogeneous Computing.

LISTA DE ILUSTRAÇÕES

Figura 1 – Epatas da metodologia	10
Figura 2 – Utilização de triggers para alimentar a tabela <i>Log</i>	12
Figura 3 – Entidades: Dependentes, Clientes e Pedidos	13
Figura 4 – Entidades: Fornecedor, Estoque e Produtos	14
Figura 5 – Modelo Conceitual Completo	15
Figura 6 – Modelo Lógico: Dependentes, Clientes, Logins e Pedidos	16
Figura 7 – Modelo Lógico: Produtos, Ingredientes, Produtos_Pedidos, Estoques,	
Estoques_Fornecedores e Fornecedores	17
Figura 8 – Modelo Lógico: Logs, Funcionários, Cargos, Funcionarios_Admissoes e	
Admissoes	18
Figura 9 – Modelo Lógico completo	19
Figura 10 – Resultado do select Lista alimentos e seus fornecedores	27
Figura 11 – Resultado do select	28
Figura 12 – Resultado do select lista os clientes e os logins de quem o tiver	29
Figura 13 – Resultado do select lista produtos pedidos	30
Figura 14 – Resultado do select lista dos clientes que fizeram pedidos	31
Figura 15 – Resultado do select clientes e seus dependentes	31
Figura 16 – Resultado do select Funcionários e Cargos	32
Figura 17 – Resultado do select funcionários, cargos e suas admissões	33
Figura 18 — Procedimento Armazenado para calcular idade	34
Figura 19 – Resultado do procedimento armazenado que retorna os pedidos reali-	
zados	35
Figura 20 — Procedimento Armazenado que retorna os pedidos de um determinado	
cliente via parâmetro do nome.	36
Figura 21 – Procedimento Armazenado que retorna os pedidos de um determinado	
cliente via parâmetro do nome.	36

LISTA DE TABELAS

SUMÁRIO

In	trodução	9
1	Metodologia Proposta	. (
2	Regras de Negócio	l 1
3	Modelo Conceitual	2
4	Modelo Lógico	.6
5	Implementação	20
6	Execução e Testes	26
	6.1 Consultas	
Co	onsiderações Finais	37
Re	e <mark>ferências</mark>	38
Α	nexos 3	9
ΑI	NEXO A Dados inseridos para teste	10

INTRODUÇÃO

O projeto proposto tem por objetivo a modelagem conceitual, lógica e física de um projeto de Banco de Dados para gerenciamento/automatização de uma pizzaria.

Depois de gerado o modelo físico, implementou-se a solução utilizando o SQL Server Management Studio. Com base nessa implementação, consultas, views, triggers, entre outras rotinas, foram criadas para fins de execução e testes.

Os capítulos seguintes estão divididos em Metodologia Proposta, onde é detalhada a metodologia utilizada para a execução o projeto, seguidos de explicações a respeito do modelo conceitual, lógico e físico. Posteriormente, as consultas realizadas são explicadas, assim como o restante das rotinas elaboradas.

1 METODOLOGIA PROPOSTA

Para a execução dessa trabalho a metodologia foi dividida em três etapas: Criação do modelo conceitual, Criação do modelo lógico, Criação do modelo físico, Implementação e Execução e Testes. A figura 1 ilustra a sequência de execução destas etapas.

Criação do modelo conceitual

Criação do modelo lógico

Criação do modelo físico

Implementação

Execução e Testes

Fonte: Autor

Figura 1 – Epatas da metodologia

2 REGRAS DE NEGÓCIO

A modelagem foi realizada tomando por base as seguintes regras de negócio requisitos:

- 1. Opção de realização de pedidos online;
- 2. Pizzaria delivery;
- 3. Após cadastro, opção do cliente cadastrar dependentes;
- 4. Registro de admissão e demissão de funcionários;
- 5. Log automático das atividades dos funcionários;
- 6. Controle de estoque com base nos fornecedores e nos ingredientes das pizzas;
- 7. Esquema de backup automático da base de dados.

3 MODELO CONCEITUAL

O modelo conceitual foi elaborado no programa BrModelo. A Figura 2 mostra como foi feita a modelagem para que os pedidos realizados pelos funcionários fossem armazenados na tabela Log. Isso é feito através de triggers.

Figura 2 – Utilização de triggers para alimentar a tabela Log

.

Na Figura 3 é possível notar que cada funcionário pode term nenhum ou vários dependentes. Também é possível observar que os clientes podem realizar nenhum ou vários pedidos, mas cada pedido pertence a um único cliente.

Figura 3 – Entidades: Dependentes, Clientes e Pedidos.

De acordo com a Figura 4, é possível observar que o Fornecedor alimenta o estoque e os produtos são feitos com ingredientes retirados do estoque.

Figura 4 – Entidades: Fornecedor, Estoque e Produtos

Na Figura 5 é possível observar como ficou a modelagem completa do sistema.

Figura 5 – Modelo Conceitual Completo.

4 MODELO LÓGICO

A Figura 6 representa, conforme o modelo conceitual, a possibilidade do cliente ter ou não login. Isso não impede que o mesmo efetue pedido. Isso aconteceria, por exemplo, no caso do cliente nunca ter feito pedido online.

Figura 6 – Modelo Lógico: Dependentes, Clientes, Logins e Pedidos

Na Figura 7 é possível observar os produtos sendo compostos por um ou mais ingredientes; os ingredientes sendo compostos por um ou mais itens do estoque, mas cada item do estoque podendo ser utilizado apenas em uma lista de ingredientes. Também é possível observar a tabela Estoques_Fornecedores, podendo conter vários fornecedores vários itens para o estoque.

Figura 7 – Modelo Lógico: Produtos, Ingredientes, Produtos_Pedidos, Estoques, Estoques_Fornecedores e Fornecedores.

A Figura 8 mostra a tabela Logs dos funcionários. Essa tabela guarda todas as ações dos funcionários para possível auditorias. É possível observar também que os funcionários têm cargos e cada cargo pode ter muitos funcionários, mas cada funcionários pode ter apenas um cargo na empresa. Como um funcinário pode ser demitido e depois recontradado, existe uma tabela chamada *Funcionarios_Admissoes* onde são salvas as informações a respeito da contratação dos funcionários.

Figura 8 – Modelo Lógico: Logs, Funcionários, Cargos, Funcionarios_Admissoes e Admissoes.

A Figura 9 contém o modelo lógico completo.

Figura 9 – Modelo Lógico completo.

5 IMPLEMENTAÇÃO

O banco de dados foi implementado utilizando o software SQL Server 2010. Segue o código de execução para a criação das tabelas:

```
USE master
1
          GO
2
3
          IF EXISTS (select name from sys.databases where name = 'Pizzaria
              ')
                  DROP DATABASE Pizzaria
          go
6
          CREATE DATABASE Pizzaria
9
          go
10
          USE Pizzaria
11
12
13
          SET DATEFORMAT dmy
14
15
16
             ______
17
          -- Table Pizzaria.Logins
18
19
          CREATE TABLE Logins (
20
            idLogin INT NOT NULL,
21
            Usuario VARCHAR (45) NULL,
22
            Senha VARCHAR (20) NULL,
23
24
            PRIMARY KEY (idLogin)
          )
25
          GO
26
27
28
          -- Table Pizzaria. Clientes
29
           __ ______
30
          CREATE TABLE Clientes (
31
            idCliente INT NOT NULL PRIMARY KEY,
32
            Nome VARCHAR (200) NOT NULL,
33
            Endereco VARCHAR (200) NULL,
34
            idLogin INT DEFAULT NULL,
35
            Telefone VARCHAR (18) NULL,
36
            CONSTRAINT fk_Clientes_Logins
37
              FOREIGN KEY (idLogin)
38
              REFERENCES Logins (idLogin)
39
```

```
ON DELETE NO ACTION
40
                ON UPDATE NO ACTION
41
           )
42
            GO
43
44
45
            -- Table Pizzaria.Cargos
46
47
            CREATE TABLE Cargos (
48
              idCargo INT NOT NULL,
49
              Salario DECIMAL(6,2) NULL,
50
              NomeCargo VARCHAR (25) NULL,
51
              PRIMARY KEY (idCargo)
52
           )
53
            GO
54
56
            -- Table Pizzaria.Funcionarios
57
58
            CREATE TABLE Funcionarios (
59
              Nome VARCHAR (45) NULL,
60
              Endereco VARCHAR (200) NULL,
61
              Telefone VARCHAR (18) NULL,
62
              CPF VARCHAR (11) NOT NULL,
63
              RG VARCHAR (10) NULL,
64
              NumCarteira VARCHAR (45) NULL,
65
              DataNascimento DATE NULL,
66
              idCargo INT NOT NULL,
67
              PRIMARY KEY (CPF),
68
              CONSTRAINT fk_Funcionarios_Cargos
69
70
                FOREIGN KEY (idCargo)
                REFERENCES Cargos (idCargo)
71
72
                ON DELETE NO ACTION
                ON UPDATE NO ACTION
73
           )
74
            GO
75
76
77
            -- Table Pizzaria.Pedidos
78
              _____
79
            CREATE TABLE Pedidos (
80
              idPedido INT NOT NULL,
81
              data DATETIME NULL,
82
              idCliente INT NOT NULL,
83
              CPF VARCHAR (11) NOT NULL,
84
              Endereco VARCHAR (200) NULL,
85
              PRIMARY KEY (idPedido),
```

```
CONSTRAINT fk_Pedidos_Clientes
87
                 FOREIGN KEY (idCliente)
88
                 REFERENCES Clientes (idCliente)
89
                 ON DELETE NO ACTION
90
                 ON UPDATE NO ACTION,
91
92
               CONSTRAINT fk_Pedidos_Funcionarios
                 FOREIGN KEY (CPF)
93
                 REFERENCES Funcionarios (CPF)
94
                 ON DELETE NO ACTION
95
                 ON UPDATE NO ACTION
96
             )
97
             GO
98
99
100
             -- Table Pizzaria. Dependentes
101
102
             CREATE TABLE Dependentes (
103
               idDependentes INT NOT NULL,
104
               Nome VARCHAR (45) NULL,
105
               idCliente INT NOT NULL,
106
               PRIMARY KEY (idDependentes),
107
               CONSTRAINT fk_Dependentes_Clientes
108
                 FOREIGN KEY (idCliente)
109
                 REFERENCES Clientes (idCliente)
110
                 ON DELETE NO ACTION
111
                 ON UPDATE NO ACTION
112
             )
113
             GO
114
115
116
117
              - Table Pizzaria.Produtos
118
             CREATE TABLE Produtos (
119
               idProduto INT NOT NULL,
120
               Nome VARCHAR (45) NULL,
121
               PRIMARY KEY (idProduto)
122
             )
123
             GO
124
125
126
               Table Pizzaria. Estoques
127
128
             CREATE TABLE Estoques (
129
130
               idEstoque INT NOT NULL,
               Produto VARCHAR (45) NULL,
131
               Quantidade INT NULL,
132
               PRIMARY KEY (idEstoque)
133
```

```
)
134
             GO
135
136
137
138
139
             -- Table Pizzaria. Ingredientes
140
             CREATE TABLE Ingredientes (
141
               idProduto INT NOT NULL,
142
               idEstoque INT NOT NULL,
143
               Qtd FLOAT NOT NULL,
144
               FOREIGN KEY (idProduto)
145
                   REFERENCES Produtos (idProduto)
146
                   ON DELETE NO ACTION
147
                   ON UPDATE NO ACTION,
148
               FOREIGN KEY (idEstoque)
149
                   REFERENCES Estoques (idEstoque)
150
                   ON DELETE NO ACTION
151
                   ON UPDATE NO ACTION
152
             )
153
             GO
154
155
156
             -- Table Pizzaria.Fornecedores
157
158
             CREATE TABLE Fornecedores (
159
               idFornecedor INT NOT NULL,
160
               Nome VARCHAR (45) NULL,
161
               CNPJ VARCHAR (25) NULL,
162
               Endereco VARCHAR (95) NULL,
163
164
               Telefone VARCHAR (18) NULL,
               PRIMARY KEY (idFornecedor)
165
             )
166
             GO
167
168
169
170
             -- Table Pizzaria. Estoques_Fornecedores
171
             CREATE TABLE Estoques_Fornecedores (
172
               idEstoque INT NOT NULL,
173
               idFornecedor INT NOT NULL,
174
               CONSTRAINT fk_Estoque_has_Fornecedor_Estoque
175
                 FOREIGN KEY (idEstoque)
176
                 REFERENCES Estoques (idEstoque)
177
                 ON DELETE NO ACTION
178
                 ON UPDATE NO ACTION,
179
               CONSTRAINT fk_Estoque_has_Fornecedor_Fornecedor
180
```

```
FOREIGN KEY (idFornecedor)
181
                REFERENCES Fornecedores (idFornecedor)
182
                ON DELETE NO ACTION
183
                ON UPDATE NO ACTION
184
            )
185
186
            GO
187
188
189
             - Table Pizzaria.Produtos_Pedidos
               ______
190
            CREATE TABLE Produtos_Pedidos (
191
              idProduto INT NOT NULL,
192
              idPedido INT NOT NULL,
193
              CONSTRAINT fk_Produtos_has_Pedidos_Produtos
194
                FOREIGN KEY (idProduto)
195
                REFERENCES Produtos (idProduto)
196
                ON DELETE NO ACTION
197
                ON UPDATE NO ACTION,
198
              CONSTRAINT fk_Produtos_has_Pedidos_Pedidos
199
                FOREIGN KEY (idPedido)
200
                REFERENCES Pedidos (idPedido)
201
                ON DELETE NO ACTION
202
                ON UPDATE NO ACTION
203
            )
204
            GO
205
206
207
208
            -- Table Pizzaria. Admissoes
209
            CREATE TABLE Admissoes (
210
211
              idAdmissao INT NOT NULL,
              DataAdmissao DATE NULL,
212
213
              DataDemissao DATE NULL,
              PRIMARY KEY (idAdmissao)
214
            )
215
            GO
216
217
218
            -- Table Pizzaria.Funcionarios_Admissoes
219
220
            CREATE TABLE Funcionarios_Admissoes (
221
              CPF VARCHAR (11) NOT NULL,
222
              idAdmissão INT NOT NULL,
223
224
              CONSTRAINT fk_Funcionarios_has_Admissão_Funcionarios
                FOREIGN KEY (CPF)
225
                REFERENCES Funcionarios (CPF)
226
                ON DELETE NO ACTION
227
```

```
228
                  ON UPDATE NO ACTION,
               {\tt CONSTRAINT} \  \  {\tt fk\_Funcionarios\_has\_Admiss\~ao\_Admiss\~ao}
229
                  FOREIGN KEY (idAdmissão)
230
                  REFERENCES Admissoes (idAdmissao)
231
                  ON DELETE NO ACTION
232
233
                  ON UPDATE NO ACTION
             )
234
             GO
235
236
237
             -- Table Pizzaria.Logs
238
239
             CREATE TABLE Logs (
240
                idLog INT NOT NULL,
241
               DescAtividade VARCHAR (200) NULL,
242
               DataHora DATETIME NULL,
243
244
               CPF VARCHAR (11) NOT NULL,
               PRIMARY KEY (idLog),
245
               CONSTRAINT fk_Log_Funcionarios
246
247
                  FOREIGN KEY (CPF)
                  REFERENCES Funcionarios (CPF)
248
                  ON DELETE NO ACTION
249
                  ON UPDATE NO ACTION
250
251
             )
             GO
252
```

6 EXECUÇÃO E TESTES

As execuções e os testes foram feitos utilizando o $software\ SQL\ Server\ Management\ Studio\ 2010.$

6.1 CONSULTAS

A consulta a seguir foi realizada utilizando as tabelas Estoques e Fornecedores e o resultado pode ser visualizado na figra 10

```
-- Lista alimentos e seus fornecedores
3
  SELECT Estoques.Produto as [Alimento],
4
           Fornecedores.Nome as [Fornecedor]
5
       FROM Estoques_Fornecedores
6
         INNER JOIN Estoques ON
7
             Estoques.idEstoque = Estoques_Fornecedores.idEstoque
         INNER JOIN Fornecedores ON
9
             Fornecedores.idFornecedor = Estoques_Fornecedores.idFornecedor
     ORDER BY Fornecedores. Nome, Estoques. Produto
11
12 GO
```

	Alimento	Fomecedor
1	Abobrinha	Alimentos Já
2	Bacon	Alimentos Já
3	Beringela	Alimentos Já
4	Calabresa	Alimentos Já
5	Came Seca	Alimentos Já
6	Champignon	Alimentos Já
7	Farinha de Trigo	Alimentos Já
8	Lombo	Alimentos Já
9	Ovo	Alimentos Já
10	Requeijão Cre	Alimentos Já
11	Bróculis	Boa Massa
12	Cebola	Boa Massa
13	Extrato de To	Boa Massa
14	Frango desfiado	Boa Massa
15	Manjericão	Boa Massa
16	Oregano	Boa Massa
17	Palmito	Boa Massa
18	Queijo Mussar	Boa Massa
19	Queijo parmesão	Boa Massa
20	Tomate	Boa Massa

Figura 10 – Resultado do select Lista alimentos e seus fornecedores

A consulta a seguir foi realizada utilizando as tabelas Produtos e Estoques e o resultado pode ser visualizado na figura 11

```
-- Lista os nomes dos produtos, seus ingredientes e a
2
   -- quantidade em estoque
   SELECT Produtos. Nome,
5
           Estoques.Produto,
6
           Estoques.Quantidade
7
       FROM Ingredientes
8
         INNER JOIN Produtos ON
9
             Produtos.idProduto = Ingredientes.idProduto
10
11
         INNER JOIN Estoques ON
12
             Estoques.idEstoque = Ingredientes.idEstoque
     ORDER BY Produtos. Nome, Estoques. Produto
13
14 GO
```

	Nome	Produto	Quantidade
1	Calabresa	Calabresa	7
2	Calabresa	Cebola	13
3	Calabresa	Extrato de Tomate	12
4	Calabresa	Queijo Mussarela	10
5	Frango C/ Catupiry	Extrato de Tomate	12
6	Frango C/ Catupiry	Frango desfiado	14
7	Frango C/ Catupiry	Requeijão Cremoso	10
8	Frango Especial	Bacon	18
9	Frango Especial	Extrato de Tomate	12
10	Frango Especial	Frango desfiado	14
11	Frango Especial	Oregano	4
12	Frango Especial	Requeijão Cremoso	10
13	Lombo	Extrato de Tomate	12
14	Lombo	Extrato de Tomate	12
15	Lombo	Queijo Mussarela	10
16	Margarita	Extrato de Tomate	12
17	Margarita	Manjericão	7
18	Margarita	Queijo Mussarela	10
19	Margarita	Queijo parmesão	13

Figura 11 – Resultado do select

A consulta a seguir foi realizada utilizando as tabelas Logins e Clientes e o resultado pode ser visualizado na figra 12.

```
1 -- -- Lista os clientes e os logins de quem o tiver.
3 -- -- CREATE VIEW ClientesComLogin
5 AS
6 SELECT Logins.Usuario,
7 Clientes.idCliente FROM Logins
8 RIGHT JOIN Clientes ON
9 Logins.idLogin = Clientes.idLogin
10 GO
```

	Usuario	idCliente
1	Guilherme	1
2	Matheus	2
3	Victor	3
4	Marcelo	4
5	Pedro	5
6	Joao	6
7	NULL	7
8	NULL	8
9	NULL	9
10	NULL	10

Figura 12 – Resultado do select lista os clientes e os logins de quem o tiver.

A consulta a seguir foi realizada utilizando as tabelas Produtos e Pedidos e o resultado pode ser visualizado na figra 13.

```
-- Lista produtos pedidos
3
   CREATE VIEW PedidosRealizados
4
5
6
     SELECT Produtos.Nome AS [Produto],
7
             Pedidos.idCliente
           FROM Produtos_Pedidos
8
9
           INNER JOIN Produtos ON
                Produtos.idProduto = Produtos_Pedidos.idProduto
10
           INNER JOIN Pedidos ON
11
               Pedidos.idPedido = Produtos_Pedidos.idPedido
13 GO
```

	Produto	idCliente
1	Calabresa	1
2	Frango C/ Catupiry	1
3	Lombo	1
4	Margarita	2
5	Portuguesa	2
6	Napolitana	4
7	Frango Especial	4
8	Toscana	3
9	Nordestina	2
10	Vegetariana	3

Figura 13 – Resultado do select lista produtos pedidos.

A consulta a seguir foi realizada utilizando as views ClientesComLogin e Pedidos-Realizados e o resultado pode ser visualizado na figra 14.

```
1
   -- Lista dos clientes que fizeram pedidos.
2
   CREATE VIEW ClientesQueFizeramPedidos
4
   AS
5
   SELECT
           ClientesComLogin.Usuario,
6
       PedidosRealizados.Produto
7
        FROM PedidosRealizados
8
     INNER JOIN ClientesComLogin ON
9
         ClientesComLogin.idCliente = PedidosRealizados.idCliente
10
   GO
11
12
13
           ClientesQueFizeramPedidos.Usuario,
14
           COUNT(*) AS [Quantidade de Pedidos]
15
       FROM ClientesQueFizeramPedidos
16
         GROUP BY ClientesQueFizeramPedidos.Usuario
17
```

	Usuario	Quantidade de Pedidos
1	Gyilherme	3
2	Marcelo	2
3	Matheus	3
4	Victor	2

Figura 14 – Resultado do select lista dos clientes que fizeram pedidos.

A consulta a seguir foi realizada utilizando a view ClientesComLogin e a tabela Dependentes e o resultado pode ser visualizado na figra 15.

	Usuario	Nome do dependente
1	Guilherme	José da Silva
2	Matheus	Bertoldo Morae
3	Victor	Geovane Cardoso

Figura 15 – Resultado do select clientes e seus dependentes

A consulta a seguir foi realizada utilizando as tabelas Funcionários e Cargos e o resultado pode ser visualizado na figra 16.

```
Funcionários e Cargos
2
3
   SELECT
           Funcionarios. Nome,
4
           Funcionarios.CPF,
5
           Cargos.NomeCargo,
6
7
           Cargos.Salario
       FROM Funcionarios
8
         INNER JOIN Cargos ON
9
             Cargos.idCargo = Funcionarios.idCargo
11
     ORDER BY Cargos.NomeCargo, Funcionarios.Nome
  GO
12
```

	Nome	CPF	NomeCargo	Salario
1	Amanda Silveira	12332112365	Balconista	1000.00
2	Carlos Eduardo	12332112366	Balconista	1000.00
3	Catarina Santos	12332112361	Balconista	1000.00
4	Miguel de Souza	12332112362	Entregador	1500.00
5	Sérgio Malandro	12332112363	Entregador	1500.00
6	Carlos Belozo	12332112368	Garçon	1500.00
7	Sandra de Sá	12332112369	Garçon	1500.00
8	Roberto Jefferson	12332112364	Gerente	2500.00
9	José Benedito	12332112360	Pizzaiolo	2000.00
10	Miguel de Arrais	12332112367	Pizzaiolo	2000.00

Figura 16 – Resultado do select Funcionários e Cargos

A consulta a seguir foi realizada utilizando as tabelas Funcionários e Cargos e o resultado pode ser visualizado na figra 17.

```
1
2
   -- Funcionários, cargos e suas admissões
3
   SELECT Funcionarios. Nome,
           Admissoes.DataAdmissao,
6
           Cargos.NomeCargo,
7
           Cargos.Salario
8
       FROM Funcionarios_Admissoes
9
         INNER JOIN Funcionarios ON
10
             Funcionarios.CPF = Funcionarios_Admissoes.CPF
11
         INNER JOIN Admissoes
12
13
             ON Admissoes.idAdmissao = Funcionarios_Admissoes.idAdmissão
14
         INNER JOIN Cargos
             ON Cargos.idCargo = Funcionarios.idCargo
15
16 GO
```

	Nome	DataAdmissao	NomeCargo	Salario
1	José Benedito	2005-08-30	Pizzaiolo	2000.00
2	Catarina Santos	2007-04-28	Balconista	1000.00
3	Miguel de Souza	2009-06-30	Entregador	1500.00
4	Sérgio Malandro	2009-10-14	Entregador	1500.00
5	Roberto Jefferson	2010-08-15	Gerente	2500.00
6	Amanda Silveira	2010-08-25	Balconista	1000.00
7	Carlos Eduardo	2011-09-30	Balconista	1000.00
8	Miguel de Arrais	2011-10-01	Pizzaiolo	2000.00
9	Carlos Belozo	2011-11-30	Garçon	1500.00
10	Sandra de Sá	2012-04-01	Garçon	1500.00

Figura 17 – Resultado do select funcionários, cargos e suas admissões

6.2 PROCEDIMENTOS ARMAZENADOS

Procedimento armazenado para cálculo do aniversários de cada funcionário na empresa.

```
CREATE PROCEDURE usp_idadeFuncionarios
2
     SELECT
3
              Nome,
              DATEDIFF(YEAR, DataNascimento, GETDATE()) - CASE
4
              WHEN GETDATE() < DATEADD(YEAR,
5
                  DATEDIFF (YEAR, DataNascimento,
6
                                       GETDATE()),
                              DataNascimento)
8
                THEN 1
9
                ELSE 0
10
11
              END AS 'Idade',
12
                       CONVERT (VARCHAR (10),
                       DataNascimento, 103) As 'Data de Nascimento'
13
         FROM Funcionarios
15
   GO
16
   EXEC usp_idadeFuncionarios
17
```

Depois de executado, o reultado obtido pode ser visualizado na Figura 18.

	Nome	Idade	Data de Nascimento
1	José Benedito	31	14/09/1982
2	Catarina Santos	32	18/09/1981
3	Miguel de Souza	26	08/08/1987
4	Sérgio Malandro	28	18/04/1985
5	Roberto Jefferson	44	01/12/1969
6	Amanda Silveira	39	23/07/1974
7	Carlos Eduardo	40	02/03/1973
8	Miguel de Arrais	22	09/12/1990
9	Carlos Belozo	23	15/08/1990
10	Sandra de Sá	22	11/09/1991

Figura 18 – Procedimento Armazenado para calcular idade.

```
CREATE PROCEDURE usp_pedidosRealizados
     Onome VARCHAR (45)
2
   AS
3
     SELECT F. Nome,
4
              C.NomeCargo as 'Cargo',
5
6
              Prod.Nome,
              CONVERT (VARCHAR (10), P.data, 103) As 'Data do Pedido'
7
           FROM Funcionarios F
8
                INNER JOIN Cargos C ON
9
                    C.idCargo = F.idCargo
10
                INNER JOIN Pedidos P ON
11
                    P.CPF = F.CPF
12
                INNER JOIN Produtos_Pedidos PP ON
13
                    PP.idPedido = P.idPedido
14
                INNER JOIN Produtos Prod ON
15
                    Prod.idProduto = PP.idProduto
16
            WHERE F. Nome = @nome
17
  GO
18
```

Depois de executado, o reultado obtido pode ser visualizado na Figura 19.

	Nome	Cargo	Nome Produto	Data do Pedido
1	Sérgio Malandro	Entregador	Calabresa	01/12/2013
2	Sérgio Malandro	Entregador	Frango C/ Catupiry	01/12/2013
3	Sérgio Malandro	Entregador	Lombo	01/12/2013
4	Miguel de Souza	Entregador	Margarita	30/11/2013
5	Miguel de Souza	Entregador	Portuguesa	30/11/2013
6	Miguel de Souza	Entregador	Napolitana	30/11/2013
7	Miguel de Souza	Entregador	Frango Especial	30/11/2013
8	Sérgio Malandro	Entregador	Toscana	30/11/2013
9	Miguel de Souza	Entregador	Nordestina	30/11/2013
10	Sérgio Malandro	Entregador	Vegetariana	30/11/2013

Figura 19 – Resultado do procedimento armazenado que retorna os pedidos realizados.

```
CREATE PROCEDURE usp_pedidosRealizadosCliente
     Onome VARCHAR (45)
2
   AS
3
     SELECT Cli.Nome,
4
              Prod. Nome,
5
6
              CONVERT (VARCHAR (10),
              P.data, 103) As 'Data do Pedido'
7
       FROM Clientes Cli
8
           INNER JOIN Pedidos P ON
9
                P.idCliente = Cli.idCliente
10
           INNER JOIN Produtos_Pedidos PP
11
                ON PP.idPedido = P.idPedido
12
           INNER JOIN Produtos Prod
13
                ON Prod.idProduto = PP.idProduto
14
           WHERE Cli.Nome = @nome
15
  GO
16
```

Depois de executado, o reultado obtido pode ser visualizado na Figura 20 e também na Figura ??.

	Nome	Nome	Data do Pedido
1	Robervaldo	Calabresa	01/12/2013
2	Robervaldo	Frango C/ Catupiry	01/12/2013
3	Robervaldo	Lombo	01/12/2013

Figura 20 – Procedimento Armazenado que retorna os pedidos de um determinado cliente via parâmetro do nome.

	Nome	Nome	Data do Pedido
1	Valdomiro	Margarita	30/11/2013
2	Valdomiro	Portuguesa	30/11/2013
3	Valdomiro	Nordestina	30/11/2013

Figura 21 – Procedimento Armazenado que retorna os pedidos de um determinado cliente via parâmetro do nome.

CONSIDERAÇÕES FINAIS

Apesar de parecer simples, criar um banco de dados para uma pizzaria mostrou-se uma tarefa cheia de detalhes a se pensar. Ao ser implementado, tornou-se funcional, sendo possível utilizá-lo em um ambiente real.

REFERÊNCIAS

ANEXO A – DADOS INSERIDOS PARA TESTE

Sed mattis, erat sit amet gravida malesuada, elit augue egestas diam, tempus scelerisque nunc nisl vitae libero. Sed consequat feugiat massa. Nunc porta, eros in eleifend varius, erat leo rutrum dui, non convallis lectus orci ut nibh. Sed lorem massa, nonummy quis, egestas id, condimentum at, nisl. Maecenas at nibh. Aliquam et augue at nunc pellentesque ullamcorper. Duis nisl nibh, laoreet suscipit, convallis ut, rutrum id, enim. Phasellus odio. Nulla nulla elit, molestie non, scelerisque at, vestibulum eu, nulla. Ut odio nisl, facilisis id, mollis et, scelerisque nec, enim. Aenean sem leo, pellentesque sit amet, scelerisque sit amet, vehicula pellentesque, sapien.