Informatik I: Einführung in die Programmierung 28. Constraint Satisfaction, Backtracking und Constraint Propagierung

Bernhard Nebel 02.02.2016

Constraint-Satisfaction-Probleme

Backtracking-Suche

Constraint-Satisfaction Probleme

Backtracking-Suche

Constraint-Propagierung

Platziere die 8 Damen so, dass sie sich nicht schlagen können

Platziere die 8 Damen so, dass sie sich nicht schlagen können

2	7	8		3		1	
	9				6	4	
	5		6		2		
		6			თ		
	1		5				

9 7 2 8

Motivation

Constraint-Satisfaction Probleme

Backtracking-Suche

Constraint-Propagierung

业

Motivation

Constraint-Satisfaction Probleme

> Backtracking-Suche

Constraint-Propagierung

₩							
				业			
	业						
					₩		
		业					
						业	
			业				
							业

Platziere die 8 Damen so, dass sie sich nicht schlagen können

			9			7	2	8
2	7	8			З		1	
	9					6	4	
	5			6		2		
		6				З		
	1			5				
1			7		6		3	4
			5		4			
7		9	1			8		5

Fülle die leeren Felder entsprechend der Sudoku-Regeln

Constraint-Satisfaction-Probleme

Backtracking-Suche

UNI FREIBU

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Constraint-Propagierun

Färbe die australischen Bundesstaaten so mit drei Farben ein, dass zwei aneinander stoßende Staaten nicht die gleiche Farbe haben.

Constraint-Satisfaction-Probleme

Backtracking-Suche

Wo liegt der Fehler auf der letzten Folie?

Constraint-Satisfaction-Probleme

Backtracking-Suche

Wo liegt der Fehler auf der letzten Folie?

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierun

Sicht auf die ANU (Australian National University) und den Telstra-Turm in der Hauptstadt Canberra.

Wo liegt der Fehler auf der letzten Folie?

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Constraint-Propagierun

Sicht auf die ANU (Australian National University) und den Telstra-Turm in der Hauptstadt Canberra. Canberra liegt innerhalb des *Australian Capital Territory* (ACT), das wiederum innerhalb von NSW liegt.

UNI FREIBURG

Motivation

Constraint-Satisfaction-Probleme

8-Damen

Problemen

Backtracking-

Constraint-Propagierung

Constraint-Satisfaction-Probleme

Es handelt sich um kombinatorische Probleme, auch Constraint-Satisfaction-Probleme (CSP) genannt:

Motivation

Constraint-Satisfaction-Probleme

3-Färbbarkei 8-Damen-

Problemen Sudoku (1)

Backtracking-Suche

Propagierung

- NI
- Es handelt sich um kombinatorische Probleme, auch Constraint-Satisfaction-Probleme (CSP) genannt:
 - Es existieren n Variablen X_i , die Werte aus einem Bereich $D = \{d_1, d_2, \dots, d_m\}$ annehmen können.

Constraint-Satisfaction-Probleme

3-Farbbarke 8-Damen-

> Problemen Sudoku (1)

Backtracking-Suche

Propagierung

- Es handelt sich um kombinatorische Probleme, auch Constraint-Satisfaction-Probleme (CSP) genannt:
 - Es existieren n Variablen X_i , die Werte aus einem Bereich $D = \{d_1, d_2, \dots, d_m\}$ annehmen können.
 - Es gibt Bedingungen (Constraints) für die Belegung der Variablen, die erfüllt sein müssen, z.B. $X_i \neq X_{2i}$ für alle i.

Constraint-Satisfaction-Probleme

3-Färbbarkei

Problemen

Backtracking Suche

Es existieren n Variablen X_i , die Werte aus einem Bereich $D = \{d_1, d_2, \dots, d_m\}$ annehmen können.

- Es gibt Bedingungen (Constraints) für die Belegung der Variablen, die erfüllt sein müssen, z.B. $X_i \neq X_{2i}$ für alle i.
- Eine Lösung eines CSP ist eine Belegung der Variablen mit Werten, so dass alle Constraints erfüllt sind.

Motivation

Constraint-Satisfaction-Probleme

3-Färbbarke

Problemen Sudoku (1)

Backtracking-

- Es existieren n Variablen X_i , die Werte aus einem Bereich $D = \{d_1, d_2, \dots, d_m\}$ annehmen können.
- Es gibt Bedingungen (Constraints) für die Belegung der Variablen, die erfüllt sein müssen, z.B. $X_i \neq X_{2i}$ für alle i.
- Eine Lösung eines CSP ist eine Belegung der Variablen mit Werten, so dass alle Constraints erfüllt sind.
- Diese Probleme zeichnen sich dadurch aus, dass der Raum der möglichen Lösungen (der Suchraum) oft astronomisch groß ist, und deshalb nicht vollständig abgesucht werden kann.

Constraint-Satisfaction-Probleme

3-Färbbarke

Problemen Sudoku (1)

Backtracking Suche

- Es existieren n Variablen X_i , die Werte aus einem Bereich $D = \{d_1, d_2, \dots, d_m\}$ annehmen können.
- Es gibt Bedingungen (Constraints) für die Belegung der Variablen, die erfüllt sein müssen, z.B. $X_i \neq X_{2i}$ für alle i.
- Eine Lösung eines CSP ist eine Belegung der Variablen mit Werten, so dass alle Constraints erfüllt sind.
- Diese Probleme zeichnen sich dadurch aus, dass der Raum der möglichen Lösungen (der Suchraum) oft astronomisch groß ist, und deshalb nicht vollständig abgesucht werden kann.
- Beispiel Sudoku: Meist müssen 81-17=64 Felder mit den Ziffern 1 bis 9 belegt werden. Das sind $9^{64}\approx 10^{61}$ Möglichkeiten.

Constraint-Satisfaction-Probleme

3-Färbbarke

-Damenroblemen

Backtracking-Suche

Wir haben 7 CSP-Variablen: WA, NT, SA, Q, NSW, V, T.

Motivation

Constraint-Satisfaction-Probleme

3-Färbbarkeit

8-Damen-Problemen

Backtracking-

- UNI FREIBURG
- Wir haben 7 CSP-Variablen: WA, NT, SA, Q, NSW, V, T.
- Diese können die Werte red, blue, green annehmen.

Motivation

Constraint-Satisfaction-Probleme

3-Färbbarkeit

Problemen

Backtracking-Suche

- UNI
- Wir haben 7 CSP-Variablen: WA, NT, SA, Q, NSW, V, T.
- Diese können die Werte red, blue, green annehmen.
- Die Constraints sind: $WA \neq NT$, $WA \neq SA$, $NT \neq SA$, $NT \neq Q$, $SA \neq Q$, $SA \neq NSW$, $SA \neq V$, $Q \neq NSW$, $NSW \neq V$.

Constraint-Satisfaction-Probleme

3-Färbbarkeit

Problemen Sudoku (1)

Backtracking-Suche

- Wir haben 7 CSP-Variablen: WA, NT, SA, Q, NSW, V, T.
- Diese können die Werte red, blue, green annehmen.
- Die Constraints sind: $WA \neq NT$, $WA \neq SA$, $NT \neq SA$, $NT \neq Q$, $SA \neq Q$, $SA \neq NSW$, $SA \neq V$, $Q \neq NSW$, $NSW \neq V$.
- Eine mögliche Lösung wäre:

 WA = red, NT = green, SA = blue, Q = red, NSW = green,

 V = red, T = green.

Motivation

Constraint-Satisfaction-Probleme

3-Färbbarkeit

Problemen Sudoku (1)

Backtracking-Suche

■ 16 CSP-Variablen: R_i , C_i (row, column) für die Damen i = 1, ..., 8

Motivation

Satisfaction-

3-Färbbarke

8-Damen-Problemen

Sudoku (1)

Backtracking-Suche

- 16 CSP-Variablen: R_i , C_i (row, column) für die Damen i = 1, ..., 8
- 8 verschiedene Werte: k = 1,...,8 (für die jeweilige Reihe oder Spalte)

- 16 CSP-Variablen: R_i , C_i (row, column) für die Damen i = 1, ..., 8
- 8 verschiedene Werte: k = 1, ..., 8 (für die jeweilige Reihe oder Spalte)
- Constraints

8-Damen-Problemen

Backtracking-Suche

Propagierung

8 Damen platzieren (1)

- 16 CSP-Variablen: R_i , C_i (row, column) für die Damen i = 1, ..., 8
- 8 verschiedene Werte: k = 1,...,8 (für die jeweilige Reihe oder Spalte)
- Constraints:
 - II $R_i \neq R_j$ für alle $i \neq j$ (die Damen sollen in unterschiedlichen Reihen stehen)

Motivatio

Constraint-Satisfaction-Probleme

8-Damen-

Problemen Sudoku (1)

Backtracking-Suche

8 Damen platzieren (1)

- 16 CSP-Variablen: R_i , C_i (row, column) für die Damen i = 1, ..., 8
- 8 verschiedene Werte: k = 1,...,8 (für die jeweilige Reihe oder Spalte)
- Constraints:
 - If $R_i \neq R_j$ für alle $i \neq j$ (die Damen sollen in unterschiedlichen Reihen stehen)
 - 2 $C_i \neq C_j$ für alle $i \neq j$ (die Damen sollen in unterschiedlichen Spalten stehen)

Motivation

Constraint-Satisfaction-Probleme

> 3-Färbbarkei 8-Damen-

Problemen Sudoku (1)

Backtracking-Suche

8 Damen platzieren (1)

- 16 CSP-Variablen: R_i , C_i (row, column) für die Damen i = 1, ..., 8
- 8 verschiedene Werte: k = 1,...,8 (für die jeweilige Reihe oder Spalte)
- Constraints:
 - 1 $R_i \neq R_j$ für alle $i \neq j$ (die Damen sollen in unterschiedlichen Reihen stehen)
 - 2 $C_i \neq C_j$ für alle $i \neq j$ (die Damen sollen in unterschiedlichen Spalten stehen)
 - die Damen sollen nicht auf einer gemeinsamen Diagonalen stehen

Motivation

Constraint-Satisfaction-Probleme

8-Damen-

Problemen Sudoku (1)

Backtracking-Suche

Auf dem Schachbrett kann man die Diagonalen durch Summen bzw. Differenzen der Reihen- und Spalten-Indizes charakterisieren.

Motivation

Constraint-Satisfaction

3-Färbbarkei
8-Damen-

Problemen Sudoku (1)

Backtracking-

Constraint-Satisfaction Probleme

3-Färbbarke
8-Damen-

Problemen Sudoku (1)

Backtracking Suche

Constraint-

- Auf dem Schachbrett kann man die Diagonalen durch Summen bzw. Differenzen der Reihen- und Spalten-Indizes charakterisieren.
- Die Diagonalen von links oben nach rechts unten haben konstante Summen, die alle verschieden sind.

Auf dem Schachbrett kann man die Diagonalen durch Summen bzw. Differenzen der Reihen- und Spalten-Indizes charakterisieren.

- Die Diagonalen von links oben nach rechts unten haben konstante Summen, die alle verschieden sind.
- D.h. $R_i + C_i \neq R_j + C_j$ für alle Damen i,j mit $i \neq j$ beschreibt die gewünschten Constraints.

Motivation

Constraint-Satisfaction-

3-Färbbarkei
8-Damen-

Problemen Sudoku (1)

Backtracking Suche

- Auf dem Schachbrett kann man die Diagonalen durch Summen bzw. Differenzen der Reihen- und Spalten-Indizes charakterisieren.
- Die Diagonalen von links oben nach rechts unten haben konstante Summen, die alle verschieden sind.
- D.h. $R_i + C_i \neq R_j + C_j$ für alle Damen i,j mit $i \neq j$ beschreibt die gewünschten Constraints.
- Die Diagonalen von links unten nach rechts oben haben konstante Differenzen, die ebenfalls alle verschieden sind.

Constraint-Satisfaction

3-Färbbarke

8-Damen-Problemen

Sudoku (1)

Suche

8 Damen platzieren (2): Diagonalen-Constraints

12 / 59

- Auf dem Schachbrett kann man die Diagonalen durch Summen bzw. Differenzen der Reihen- und Spalten-Indizes charakterisieren.
- Die Diagonalen von links oben nach rechts unten haben konstante Summen, die alle verschieden sind.
- D.h. $R_i + C_i \neq R_j + C_j$ für alle Damen i,j mit $i \neq j$ beschreibt die gewünschten Constraints.
- Die Diagonalen von links unten nach rechts oben haben konstante Differenzen, die ebenfalls alle verschieden sind.
 - D.h. $R_i C_i \neq R_i C_i$ für $i \neq j$ sind die Constraints.

Motivation

Constraint-Satisfaction-

3-Färbbarke

8-Damen-Problemen

Backtrackin

Damen platzieren (3): Suchraum-Reduktion

■ Es dauert rund 10⁻⁶ Sekunden, um eine Stellung zu testen.

Motivation

Constraint-Satisfaction-Probleme

> 3-Färbbarkei 8-Damen-

Problemen

Backtracking-

Suche

Propagierung

Damen platzieren (3): Suchraum-Reduktion

- Es dauert rund 10⁻⁶ Sekunden, um eine Stellung zu testen.
- Wir können die erste Dame auf 64 verschiedene Felder stellen, die zweite auf 63, ...

Motivation

Constraint-Satisfaction-

3-Färbbarkei

8-Damen-Problemen

Backtracking-

Damen platzieren (3): Suchraum-Reduktion

- Es dauert rund 10⁻⁶ Sekunden, um eine Stellung zu testen.
- Wir können die erste Dame auf 64 verschiedene Felder stellen, die zweite auf 63, ...
- Wir haben $64!/(64-8)! \approx 1.8 \cdot 10^{14}$ Möglichkeiten. D.h. wir brauchen rund $1.8 \cdot 10^8$ Sekunden ≈ 7 Jahre Rechenzeit, um alle Stellungen zu testen.

Motivation

Constraint-Satisfaction-

> 8-Damen-Problemen

Sudoku (1)

Backtracking Suche

Damen platzieren (3): Suchraum-Reduktion

- Es dauert rund 10⁻⁶ Sekunden, um eine Stellung zu testen.
- Wir können die erste Dame auf 64 verschiedene Felder stellen, die zweite auf 63, ...
- Wir haben $64!/(64-8)! \approx 1.8 \cdot 10^{14}$ Möglichkeiten. D.h. wir brauchen rund $1.8 \cdot 10^8$ Sekunden ≈ 7 Jahre Rechenzeit, um alle Stellungen zu testen.
- Da die Damen aber nicht unterscheidbar sind, und in jeder Reihe genau eine Dame stehen muss, können wir die Reihenvariaben mit $R_i = i$ vorbelegen.

Motivation

Constraint-Satisfaction-Probleme

> 8-Damen-Problemen

Sudoku (1)

Backtracking Suche

Damen platzieren (3): Suchraum-Reduktion

- Es dauert rund 10⁻⁶ Sekunden, um eine Stellung zu testen.
- Wir können die erste Dame auf 64 verschiedene Felder stellen, die zweite auf 63, ...
- Wir haben $64!/(64-8)! \approx 1.8 \cdot 10^{14}$ Möglichkeiten. D.h. wir brauchen rund $1.8 \cdot 10^8$ Sekunden ≈ 7 Jahre Rechenzeit, um alle Stellungen zu testen.
- Da die Damen aber nicht unterscheidbar sind, und in jeder Reihe genau eine Dame stehen muss, können wir die Reihenvariaben mit $R_i = i$ vorbelegen.
- Damit ergeben sich dann nur noch $8^8 \approx 1.7 \cdot 10^7$ Möglichkeiten, entsprechend 17 Sekunden Rechenzeit.

Z H

Motivation

Constraint-Satisfaction-Probleme

> 8-Damen-Problemen

Sudoku (1)

Backtracking Suche

■ Ein Sudoku-Feld besteht aus 81 Zellen, in denen jeweils die Ziffern 1 bis 9 eingetragen werden sollen.

Motivation

Constraint-Satisfaction-Probleme

8-Damon-

Problemen Sudoku (1)

Backtracking-

- JNI REIBURG
- Ein Sudoku-Feld besteht aus 81 Zellen, in denen jeweils die Ziffern 1 bis 9 eingetragen werden sollen.
- Diese werden gerne wie folgt durchnummeriert:

1	ucii	gcn	10 44	10 10	igi u	ui Ci i	Hull		ici t.
	A1	A2	A3	A4	A5	A6	A7	A8	A9
	B1	B2	B3	B4	B5	B6	B7	B8	В9
	C1	C2	C3	C4	C5	C6	C7	C8	C9
	D1	D2	D3	D4	D5	D6	D7	D8	D9
	E1	E2	E3	E4	E5	E6	E7	E8	E9
	F1	F2	F3	F4	F5	F6	F7	F8	F9
	G1	G2	G3	G4	G5	G6	G7	G8	G9
	H1	H2	H3	H4	H5	H6	H7	H8	H9
	11	12	13	14	15	16	17	18	19

Motivation

Constraint-Satisfaction-Probleme

3-Farbbarkeri 8-Damen-

Problemen Sudoku (1)

Backtracking-

- Ein Sudoku-Feld besteht aus 81 Zellen, in denen jeweils die Ziffern 1 bis 9 eingetragen werden sollen.
- Diese werden gerne wie folgt durchnummeriert:

•	GO: I	90			.g. u	ai oi i			.0
	A1	A2	A3	A4	A5	A6	A7	A8	A9
	B1	B2	B3	B4	B5	B6	B7	B8	B9
	C1	C2	C3	C4	C5	C6	C7	C8	C9
	D1	D2	D3	D4	D5	D6	D7	D8	D9
	E1	E2	E3	E4	E5	E6	E7	E8	E9
	F1	F2	F3	F4	F5	F6	F7	F8	F9
	G1	G2	G3	G4	G5	G6	G7	G8	G9
	H1	H2	H3	H4	H5	H6	H7	H8	H9
	11	12	13	14	15	16	17	18	19

■ Jeweils neun Zellen einer Zeile, einer Spalte oder eines Blocks bilden eine Gruppe.

Motivation

Constraint-Satisfaction-Probleme

> 3-Farbbarkeit 8-Damen-

Sudoku (1)

Backtracking-Suche

- Ein Sudoku-Feld besteht aus 81 Zellen, in denen jeweils die Ziffern 1 bis 9 eingetragen werden sollen.
- Diese werden gerne wie folgt durchnummeriert:

•		90			.9. ∽	G. G.			
	A1	A2	A3	A4	A5	A6	A7	A8	A9
	B1	B2	B3	B4	B5	B6	B7	B8	B9
	C1	C2	C3	C4	C5	C6	C7	C8	C9
	D1	D2	D3	D4	D5	D6	D7	D8	D9
	E1	E2	E3	E4	E5	E6	E7	E8	E9
	F1	F2	F3	F4	F5	F6	F7	F8	F9
	G1	G2	G3	G4	G5	G6	G7	G8	G9
	H1	H2	H3	H4	H5	H6	H7	H8	H9
	11	12	13	14	15	16	17	18	19

■ Jeweils neun Zellen einer Zeile, einer Spalte oder eines Blocks bilden eine Gruppe.

Motivation

Constraint-Satisfaction-Probleme

8-Damen-

Sudoku (1)

_ ...

Backtracking-Suche

- UNI FREIBURG
- Ein Sudoku-Feld besteht aus 81 Zellen, in denen jeweils die Ziffern 1 bis 9 eingetragen werden sollen.
- Diese werden gerne wie folgt durchnummeriert:

•		90			.9. ∽	G. G.			
	A1	A2	A3	A4	A5	A6	A7	A8	A9
	B1	B2	B3	B4	B5	B6	B7	B8	B9
	C1	C2	C3	C4	C5	C6	C7	C8	C9
	D1	D2	D3	D4	D5	D6	D7	D8	D9
	E1	E2	E3	E4	E5	E6	E7	E8	E9
	F1	F2	F3	F4	F5	F6	F7	F8	F9
	G1	G2	G3	G4	G5	G6	G7	G8	G9
	H1	H2	H3	H4	H5	H6	H7	H8	H9
	l1	12	13	14	15	16	17	18	19

■ Jeweils neun Zellen einer Zeile, einer Spalte oder eines Blocks bilden eine Gruppe.

Motivation

Constraint-Satisfaction-Probleme

> 3-Parbbarkeit 3-Damen-

Sudoku (1)

Backtracking-

- Ein Sudoku-Feld besteht aus 81 Zellen, in denen jeweils die Ziffern 1 bis 9 eingetragen werden sollen.
- Diese werden gerne wie folgt durchnummeriert:

•		9			. 9				
	A1	A2	A3	A4	A5	A6	A7	A8	A9
	B1	B2	B3	B4	B5	B6	B7	B8	B9
	C1	C2	C3	C4	C5	C6	C7	C8	C9
	D1	D2	D3	D4	D5	D6	D7	D8	D9
	E1	E2	E3	E4	E5	E6	E7	E8	E9
	F1	F2	F3	F4	F5	F6	F7	F8	F9
	G1	G2	G3	G4	G5	G6	G7	G8	G9
	H1	H2	H3	H4	H5	H6	H7	H8	H9
	11	12	13	14	15	16	17	18	19

■ Jeweils neun Zellen einer Zeile, einer Spalte oder eines Blocks bilden eine Gruppe.

Motivation

Constraint-Satisfaction-Probleme

B-Damen-

Sudoku (1)

Backtracking-Suche

- Ein Sudoku-Feld besteht aus 81 Zellen, in denen jeweils die Ziffern 1 bis 9 eingetragen werden sollen.
- Diese werden gerne wie folgt durchnummeriert:

•	GO: I	90			.g. u	a. o			.0
	A1	A2	A3	A4	A5	A6	A7	A8	A9
	B1	B2	B3	B4	B5	B6	B7	B8	B9
	C1	C2	C3	C4	C5	C6	C7	C8	C9
	D1	D2	D3	D4	D5	D6	D7	D8	D9
	E1	E2	E3	E4	E5	E6	E7	E8	E9
	F1	F2	F3	F4	F5	F6	F7	F8	F9
	G1	G2	G3	G4	G5	G6	G7	G8	G9
	H1	H2	H3	H4	H5	H6	H7	H8	H9
	11	12	13	14	15	16	17	18	19

- Jeweils neun Zellen einer Zeile, einer Spalte oder eines Blocks bilden eine Gruppe.
- In jeder Gruppe müssen die Ziffern 1 bis 9 genau einmal vorkommen.

Motivatio

Constraint-Satisfaction-Probleme

> 3-Farbbarkeit 3-Damen-

Sudoku (1)

Backtracking Suche

Constraint-Propagierun

14 / 59

- Ein Sudoku-Feld besteht aus 81 Zellen, in denen jeweils die Ziffern 1 bis 9 eingetragen werden sollen.
- Diese werden gerne wie folgt durchnummeriert:

٠		90			.9. ∽	G. O			
	A1	A2	A3	A4	A5	A6	A7	A8	A9
	B1	B2	B3	B4	B5	B6	B7	B8	B9
	C1	C2	C3	C4	C5	C6	C7	C8	C9
	D1	D2	D3	D4	D5	D6	D7	D8	D9
	E1	E2	E3	E4	E5	E6	E7	E8	E9
	F1	F2	F3	F4	F5	F6	F7	F8	F9
	G1	G2	G3	G4	G5	G6	G7	G8	G9
	H1	H2	H3	H4	H5	H6	H7	H8	H9
	I1	12	13	14	15	16	17	18	19

- Jeweils neun Zellen einer Zeile, einer Spalte oder eines Blocks bilden eine Gruppe.
- In jeder Gruppe müssen die Ziffern 1 bis 9 genau einmal vorkommen.
- Für eine gegebene Zelle heißen alle Zellen, die in einer Gruppe mit dieser Zelle vorkommen, *Peers* dieser Zelle.

Motivatio

Constraint-Satisfaction-Probleme

> 3-Farbbarkeit 3-Damen-

Sudoku (1)

Backtracking

14 / 59

- Ein Sudoku-Feld besteht aus 81 Zellen, in denen jeweils die Ziffern 1 bis 9 eingetragen werden sollen.
- Diese werden gerne wie folgt durchnummeriert:

•		90			.9. ∽	G. G.			
	A1	A2	A3	A4	A5	A6	A7	A8	A9
	B1	B2	B3	B4	B5	B6	B7	B8	B9
	C1	C2	C3	C4	C5	C6	C7	C8	C9
	D1	D2	D3	D4	D5	D6	D7	D8	D9
	E1	E2	E3	E4	E5	E6	E7	E8	E9
	F1	F2	F3	F4	F5	F6	F7	F8	F9
	G1	G2	G3	G4	G5	G6	G7	G8	G9
	H1	H2	H3	H4	H5	H6	H7	H8	H9
	l1	12	13	14	15	16	17	18	19

- Jeweils neun Zellen einer Zeile, einer Spalte oder eines Blocks bilden eine Gruppe.
- In jeder Gruppe müssen die Ziffern 1 bis 9 genau einmal vorkommen.
- Für eine gegebene Zelle heißen alle Zellen, die in einer Gruppe mit dieser Zelle vorkommen, Peers dieser Zelle.

Motivatio

Constraint-Satisfaction-Probleme

> 3-Paribbarkeri 3-Damen-

Sudoku (1)

Backtracking-

- Ein Sudoku-Feld besteht aus 81 Zellen, in denen jeweils die Ziffern 1 bis 9 eingetragen werden sollen.
- Diese werden gerne wie folgt durchnummeriert:

•		90			.9. ∽	G. G.			
	A1	A2	A3	A4	A5	A6	A7	A8	A9
	B1	B2	B3	B4	B5	B6	B7	B8	B9
	C1	C2	C3	C4	C5	C6	C7	C8	C9
	D1	D2	D3	D4	D5	D6	D7	D8	D9
	E1	E2	E3	E4	E5	E6	E7	E8	E9
	F1	F2	F3	F4	F5	F6	F7	F8	F9
	G1	G2	G3	G4	G5	G6	G7	G8	G9
	H1	H2	H3	H4	H5	H6	H7	H8	H9
	l1	12	13	14	15	16	17	18	19

- Jeweils neun Zellen einer Zeile, einer Spalte oder eines Blocks bilden eine Gruppe.
- In jeder Gruppe müssen die Ziffern 1 bis 9 genau einmal vorkommen.
- Für eine gegebene Zelle heißen alle Zellen, die in einer Gruppe mit dieser Zelle vorkommen, *Peers* dieser Zelle.
- Die Peers einer Zelle müssen alle einen anderen Wert als die Zelle haben!

Motivatio

Constraint-Satisfaction-Probleme

8-Damen-

Sudoku (1)

Backtracking-

Sudoku (2): CSP-Formulierung

■ Wir haben 81 CSP-Variablen: A1 ... I8,

Motivation

Constraint-Satisfaction-Probleme

3-Färbbark

8-Damen-Problemen

Sudoku (1)

Backtracking-Suche Constraint-Propagierung

02.02.2016 B. Nebel – Info I 15 / 59

- Motivation
- Constraint-Satisfaction-Probleme
- 3-Fărbbari
- Problemen
- Sudoku (1)
- Backtracking-
- Constraint-Propagierung

- Wir haben 81 CSP-Variablen: A1 ... I8,
- Diese können die Werte 1, 2, ... 9 annehmen.

- Wir haben 81 CSP-Variablen: A1 ... l8.
- Diese können die Werte 1, 2, ... 9 annehmen.
- Die Constraints sind: Jede Zelle muss einen Wert besitzen, der verschieden ist von den Werten ihrer Peers.

Motivation

Constraint-Satisfaction-Problems

3-Färbbarke

Problemen

Sudoku (1)

Backtracking-Suche

- Der Suchraum hat in den meisten Fällen (17 Vorgaben) eine Größe von ca. 10⁶¹ möglichen Kombinationen.
- Würden wir eine Milliarde (10^9) Kombinationen pro Sekunde testen können, wäre die benötigte Rechenzeit $10^{61}/(10^9 \cdot 3 \cdot 10^7) \approx 3 \cdot 10^{44}$ Jahre.
- Die Lebensdauer des Weltalls wird mit 10¹¹ Jahren angenommen (falls das Weltall geschlossen ist).
- Selbst bei einer Beschleunigung um den Faktor 10³⁰ würde die Rechnung nicht innerhalb der Lebensdauer des Weltalls abgeschlossen werden können.
- Trotzdem scheint das Lösen von Sudokus ja nicht so schwierig zu sein ...

Motivation

Constraint-Satisfaction-

> 3-Färbbarkeit 8-Damen-

Sudoku (1)

Backtracking Suche

Backtracking-Suche

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche Oz-Backtracking

8-Damen-Backtracking

Sudoku-Backtracking

Abkürzungen wählen

Bei den genannten Abschätzungen wurde ja immer davon ausgegangen, dass wir immer alle CSP-Variablen mit Werten belegen und dann testen, ob es eine Lösung ist.

Motivation

Probleme

Backtracking-Suche Oz-Backtracking

Backtracking

Backtracking

- Bei den genannten Abschätzungen wurde ja immer davon ausgegangen, dass wir immer alle CSP-Variablen mit Werten belegen und dann testen, ob es eine Lösung ist.
- Dabei würden wir aber viele Kombinationen testen, die ganz offensichtlich keine Lösungen sind.

Dabei würden wir aber viele Kombinationen testen, die ganz offensichtlich keine Lösungen sind.

■ Wenn z.B. beim Australienproblem WA und NT mit der gleichen Farbe belegt wurden, dann werden alle Vervollständigungen keine Lösung sein!

Backtracking-Suche Oz-Backtracking

- Bei den genannten Abschätzungen wurde ja immer davon ausgegangen, dass wir immer alle CSP-Variablen mit Werten belegen und dann testen, ob es eine Lösung ist.
- Dabei würden wir aber viele Kombinationen testen, die ganz offensichtlich keine Lösungen sind.
- Wenn z.B. beim Australienproblem *WA* und *NT* mit der gleichen Farbe belegt wurden, dann werden alle Vervollständigungen keine Lösung sein!
- Man kann an dieser Stelle abkürzen und z.B. für NT eine andere Farbe ausprobieren.

- Bei den genannten Abschätzungen wurde ja immer davon ausgegangen, dass wir immer alle CSP-Variablen mit Werten belegen und dann testen, ob es eine Lösung ist.
- Dabei würden wir aber viele Kombinationen testen, die ganz offensichtlich keine Lösungen sind.
- Wenn z.B. beim Australienproblem WA und NT mit der gleichen Farbe belegt wurden, dann werden alle Vervollständigungen keine Lösung sein!
- Man kann an dieser Stelle abkürzen und z.B. für NT eine andere Farbe ausprobieren.
- Idee: Schrittweise Werte an CSP-Variablen zuweisen, wobei die Constraints der schon zugewiesenen CSP-Variablen immer erfüllt sein müssen.

- Dabei würden wir aber viele Kombinationen testen, die ganz offensichtlich keine Lösungen sind.
- Wenn z.B. beim Australienproblem WA und NT mit der gleichen Farbe belegt wurden, dann werden alle Vervollständigungen keine Lösung sein!
- Man kann an dieser Stelle abkürzen und z.B. für NT eine andere Farbe ausprobieren.
- Idee: Schrittweise Werte an CSP-Variablen zuweisen. wobei die Constraints der schon zugewiesenen CSP-Variablen immer erfüllt sein müssen.
- Wichtig: Dabei muss man manchmal auch Entscheidungen rückgängig machen, wenn wir keine Vervollständigung finden können.

Backtracking Suche Oz-Backtracking

Motivation

Backtracking-Suche Oz-Backtracking

8-Damen-Backtracking

Backtracking

Wähle eine noch unbelegte CSP-Variable aus.

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

8-Damen-Backtracking Sudoku-

Sudoku-Backtracking

- Wähle eine noch unbelegte CSP-Variable aus.
- Weise der CSP-Variablen einen Wert zu, der alle Constraints mit schon belegten CSP-Variablen erfüllt.

Motivation

Probleme

Backtracking-Suche Oz-Backtracking

Backtracking

Backtracking

- Wähle eine noch unbelegte CSP-Variable aus.
- Weise der CSP-Variablen einen Wert zu, der alle Constraints mit schon belegten CSP-Variablen erfüllt.
- Versuche rekursiv eine Belegung für die restlichen CSP-Variablen zu finden

Backtracking-Suche Oz-Backtracking

- Wähle eine noch unbelegte CSP-Variable aus.
- Weise der CSP-Variablen einen Wert zu, der alle Constraints mit schon belegten CSP-Variablen erfüllt.
- Versuche rekursiv eine Belegung für die restlichen CSP-Variablen zu finden
- Gelingt dies, sind wir fertig und geben die Belegung zurück.

Backtracking-Suche

- Wähle eine noch unbelegte CSP-Variable aus.
- Weise der CSP-Variablen einen Wert zu, der alle Constraints mit schon belegten CSP-Variablen erfüllt.
- 3 Versuche rekursiv eine Belegung für die restlichen CSP-Variablen zu finden.
- 4 Gelingt dies, sind wir fertig und geben die Belegung zurück.
- Nimm ansonsten die Belegung der CSP-Variablen zurück, wähle einen bisher noch nicht ausprobierten Wert und belege die CSP-Variable damit. Mache mit Schritt 3 weiter.

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

8-Damen-Backtracking

Backtracking

Constraint-

02.02.2016 B. Nebel – Info I 20 / 59

- Wähle eine noch unbelegte CSP-Variable aus.
- Weise der CSP-Variablen einen Wert zu, der alle Constraints mit schon belegten CSP-Variablen erfüllt.
- 3 Versuche rekursiv eine Belegung für die restlichen CSP-Variablen zu finden.
- Gelingt dies, sind wir fertig und geben die Belegung zurück.
- Nimm ansonsten die Belegung der CSP-Variablen zurück, wähle einen bisher noch nicht ausprobierten Wert und belege die CSP-Variable damit. Mache mit Schritt 3 weiter.
- 6 Wurden alle Werte erfolglos probiert, gebe False zurück.

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

8-Damen-Backtracking Sudoku-

Sudoku-Backtracking

Weise der CSP-Variablen einen Wert zu, der alle Constraints mit schon belegten CSP-Variablen erfüllt.

Versuche rekursiv eine Belegung für die restlichen CSP-Variablen zu finden.

Gelingt dies, sind wir fertig und geben die Belegung zurück.

Nimm ansonsten die Belegung der CSP-Variablen zurück, wähle einen bisher noch nicht ausprobierten Wert und belege die CSP-Variable damit. Mache mit Schritt 3 weiter.

Wurden alle Werte erfolglos probiert, gebe False zurück.

Man nennt diese Art der Suche auch Backtracking-Suche, da man im Schritt 5 einen Schritt zurück nimmt und etwas anderes probiert. Motivation

Constraint-Satisfaction Probleme

Backtracking Suche

Oz-Backtracking 8-Damen-Backtracking

Backtracking Sudoku-Backtracking

- Wähle eine noch unbelegte CSP-Variable aus.
- Weise der CSP-Variablen einen Wert zu, der alle Constraints mit schon belegten CSP-Variablen erfüllt.
- 3 Versuche rekursiv eine Belegung für die restlichen CSP-Variablen zu finden.
- Gelingt dies, sind wir fertig und geben die Belegung zurück.
- Nimm ansonsten die Belegung der CSP-Variablen zurück, wähle einen bisher noch nicht ausprobierten Wert und belege die CSP-Variable damit. Mache mit Schritt 3 weiter.
- 6 Wurden alle Werte erfolglos probiert, gebe False zurück.

Man nennt diese Art der Suche auch Backtracking-Suche, da man im Schritt 5 einen Schritt zurück nimmt und etwas anderes probiert.

Statt Rücksetzen kann man beim rekursiven Aufruf in Schritt 3 natürlich eine Kopie der Variablenbelegung nutzen.

Mativation

Constraint-Satisfaction-Probleme

Backtracking Suche

> B-Damen-Backtracking Sudoku-

Backtracking in Oz

Für unser Beispiel zum Einfärben der australischen Landkarte könnte das so aussehen:

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Oz-Backtracking

8-Damen-Backtracking Sudoku-Backtracking

Backtracking in Oz

REIBURG

Für unser Beispiel zum Einfärben der australischen Landkarte könnte das so aussehen:

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Oz-Backtracking

8-Damen-Backtracking Sudoku-Backtracking

Backtracking in Oz

NI

Für unser Beispiel zum Einfärben der australischen Landkarte könnte das so aussehen:

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Oz-Backtracking

8-Damen-Backtracking Sudoku-Backtracking

Backtracking in Oz

JNI REIBURG

Für unser Beispiel zum Einfärben der australischen Landkarte könnte das so aussehen:

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Oz-Backtracking

8-Damen-Backtracking Sudoku-Backtracking

Backtracking in Oz

NI

Für unser Beispiel zum Einfärben der australischen Landkarte könnte das so aussehen:

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

> Oz-Backtracking 8-Damen-

Backtracking Sudoku-Backtracking

```
EIBURG
```

```
oz.py(1)
```

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Oz-Backtracking 8-Damen-

Backtracking Sudoku-Backtracking

■ Variablennamen und Werte als Strings innerhalb von Tupeln aufzählen.

Motivatio

Constraint-Satisfaction-Probleme

Backtracking-Suche

Oz-Backtracking 8-Damen-

Backtracking Sudoku-Backtracking

```
oz.py(1)
```

- Variablennamen und Werte als Strings innerhalb von Tupeln aufzählen.
- Constraints als ein dict, in dem für jeden Staat die Nachbarstaaten angegeben werden.

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche Oz-Backtracking

8-Damen-Backtracking Sudoku-

Sudoku-Backtracking

```
oz.py(1)
```

- Variablennamen und Werte als Strings innerhalb von Tupeln aufzählen.
- Constraints als ein dict, in dem für jeden Staat die Nachbarstaaten angegeben werden.
- Belegungen werden über dicts realisiert, die dynamisch wachsen.

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche Oz-Backtracking

8-Damen-Backtracking Sudoku-

Constraint-Propagierung

02.02.2016 B. Nebel – Info I 22 / 59

Backtracking in Oz – mit Python (2)

■ Um ein Element aus einer Liste zu wählen, benutzen wir die Funktion some:

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

> Oz-Backtracking 8-Damen-

Backtracking Sudoku-Backtracking

■ Um ein Element aus einer Liste zu wählen, benutzen wir die Funktion some:

```
oz.py(2)

def some(seq):
   for e in seq:
        if e: return e
   return False
```

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

> Oz-Backtracking 8-Damen-

Backtracking Sudoku-Backtracking

■ Um ein Element aus einer Liste zu wählen, benutzen wir die Funktion some:

```
oz.py(2)

def some(seq):
    for e in seq:
        if e: return e
```

■ Funktioniert ähnlich wie any, gibt aber ein Element zurück, wenn ein nicht-False Element vorhanden ist.

Motivatio

Constraint-Satisfaction-Probleme

Suche
Oz-Backtracking

8-Damen-

Sudoku-Backtracking

Backtracking in Oz – mit Python (3)

Die Funktion assign(vals, x, d) führt die Zuweisung des Wertes d an die CSP-Variable x durch: FREIBURG

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

> Oz-Backtracking 8-Damen-Backtracking

Sudoku-Backtracking

Backtracking in Oz – mit Python (3)

■ Die Funktion assign(vals, x, d) führt die Zuweisung des Wertes d an die CSP-Variable x durch:

```
oz.py(3)
def assign(vals, x, d):
    "assign d to var x if feasible, otherwise return False"
    for y in vals:
        if x in neighbor[y] and vals[y] == d:
            return False
    vals[x] = d
    return vals
```

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche Oz-Backtracking

8-Damen-Backtracking

Sudoku-Backtracking

ZZ

■ Die Funktion assign(vals, x, d) führt die Zuweisung des Wertes d an die CSP-Variable x durch:

```
oz.py(3)
def assign(vals, x, d):
    "assign d to var x if feasible, otherwise return False"
    for y in vals:
        if x in neighbor[y] and vals[y] == d:
            return False
    vals[x] = d
    return vals
```

■ vals ist das dict, in dem die Belegung aufgebaut wird.

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Oz-Backtracking

Backtracking Sudoku-Backtracking

■ Die Funktion assign(vals, x, d) führt die Zuweisung des Wertes d an die CSP-Variable x durch:

```
oz.py(3)
def assign(vals, x, d):
    "assign d to var x if feasible, otherwise return False"
    for y in vals:
        if x in neighbor[y] and vals[y] == d:
            return False
    vals[x] = d
    return vals
```

- vals ist das dict, in dem die Belegung aufgebaut wird.
- Erst testen, ob der Wert d ein möglicher Wert für die Variable x ist, indem die Constraints für bereits belegte CSP-Variablen überprüft werden.

Motivation

Constraint-Satisfaction Probleme

Backtracking-Suche

Oz-Backtracking 8-Damen-

Backtracking Sudoku-Backtracking

Constraint-Propagierung

02.02.2016 B. Nebel – Info I 24 / 59

■ Die Funktion assign(vals, x, d) führt die Zuweisung des Wertes d an die CSP-Variable x durch:

```
oz.py(3)
def assign(vals, x, d):
    "assign d to var x if feasible, otherwise return False"
    for y in vals:
        if x in neighbor[y] and vals[y] == d:
            return False
    vals[x] = d
    return vals
```

- vals ist das dict, in dem die Belegung aufgebaut wird.
- Erst testen, ob der Wert d ein möglicher Wert für die Variable x ist, indem die Constraints für bereits belegte CSP-Variablen überprüft werden.
- Falls nicht, False zurück geben.

Motivation

Constraint-Satisfaction Probleme

Backtracking-Suche

Oz-Backtracking

Backtracking Sudoku-Backtracking

Constraint-

02.02.2016 B. Nebel – Info I 24 / 59

Backtracking in Oz – mit Python (3)

■ Die Funktion assign(vals, x, d) führt die Zuweisung des Wertes d an die CSP-Variable x durch:

```
2<u>E</u>
```

```
oz.py(3)
def assign(vals, x, d):
    "assign d to var x if feasible, otherwise return False"
    for y in vals:
        if x in neighbor[y] and vals[y] == d:
            return False
    vals[x] = d
    return vals
```

- vals ist das dict, in dem die Belegung aufgebaut wird.
- Erst testen, ob der Wert d ein möglicher Wert für die Variable x ist, indem die Constraints für bereits belegte CSP-Variablen überprüft werden.
- Falls nicht, False zurück geben.
- Ansonsten wird vals erweitert und zurück gegeben.

Motivation

Constraint-Satisfaction-

Backtracking-Suche

Oz-Backtracking

Backtracking Sudoku-

Backtracking

Constraint-

oz.py(4)

def search(vals):

"Recursively search for a satisfying assignment" if vals is False: return False # failed earlier nextvar = some(x for x in varlist if x not in vals) if not nextvar:

return vals # we have found a complete assignment else:

■ vals kann False werden, wenn assign einen Wert nicht zulässt.

Motivatio

Constraint-Satisfaction-Probleme

Backtracking Suche

Oz-Backtracking 8-Damen-

Sudoku-Backtracking

oz.py(4)

def search(vals):

"Recursively search for a satisfying assignment" if vals is False: return False # failed earlier nextvar = some(x for x in varlist if x not in vals) if not nextvar:

return vals # we have found a complete assignment else:

- vals kann False werden, wenn assign einen Wert nicht zulässt.
- vals wird vor jedem Aufruf von assign kopiert!

Motivatio

Constraint-Satisfaction-Probleme

Backtracking Suche

Oz-Backtracking

Backtracking Sudoku-

Backtracking

oz.py(4)

def search(vals):

"Recursively search for a satisfying assignment" if vals is False: return False # failed earlier nextvar = some(x for x in varlist if x not in vals) if not nextvar:

return vals # we have found a complete assignment else:

- vals kann False werden, wenn assign einen Wert nicht zulässt.
- vals wird vor jedem Aufruf von assign kopiert!
- Dann müssen wir die Belegung nicht nach dem rekursiven Aufruf rückgängig machen.

Motivatio

Constraint-Satisfaction-Probleme

Backtracking Suche

Oz-Backtracking

Backtracking Sudoku-

Sudoku-Backtracking

return False

print(" "*len(vals), "trying out ...")


```
oztrace.py
def assign(vals, x, d):
    print(" "*len(vals), "check value %s for var %s" % (d, x))
    for y in vals:
        if x in neighbor[y] and vals[y] == d:
```

```
print(" "*len(vals), "not possible!")
```

Oz-Backtracking

Backtracking

Propagierung

return vals Python-Interpreter

. . .

vals[x] = d

```
>>> search(dict())
check value red for var WA
trying out ...
  check value red for var NT
```

■ Erzeuge alle Lösungen mit einem Generator.

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Oz-Backtracking

8-Damen-Backtracking Sudoku-Backtracking

- Erzeuge alle Lösungen mit einem Generator.
- Fehlschläge müssen nicht zurück geben werden.

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Oz-Backtracking

Backtracking Sudoku-Backtracking

- Erzeuge alle Lösungen mit einem Generator.
- Fehlschläge müssen nicht zurück geben werden.
- Achtung: Der rekursive Generator muss in einer for-Schleife aufgerufen werden.

Motivation

Constraint-Satisfaction Probleme

Backtracking Suche

Oz-Backtracking

Backtracking Sudoku-Backtracking

- Erzeuge alle Lösungen mit einem Generator.
- Fehlschläge müssen nicht zurück geben werden.
- Achtung: Der rekursive Generator muss in einer for-Schleife aufgerufen werden.
- Essentiell: Kopieren von vals.

Motivation

Constraint-Satisfaction Probleme

Backtracking Suche

Oz-Backtracking

Backtracking Sudoku-Backtracking

JNI

- Erzeuge alle Lösungen mit einem Generator.
- Fehlschläge müssen nicht zurück geben werden.
- Achtung: Der rekursive Generator muss in einer for-Schleife aufgerufen werden.
- Essentiell: Kopieren von vals.

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Oz-Backtracking

Backtracking Sudoku-Backtracking

Constraint-

02.02.2016 B. Nebel – Info I 27 / 59

Bemerkungen zur Backtracking-Suche: Variablenauswahl

Wie sollte man die nächste zu belegende CSP-Variable auswählen?

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Oz-Backtracking

8-Damen-Backtracking Sudoku-Backtracking

Backtracking

Bemerkungen zur Backtracking-Suche: Variablenauswahl

Wie sollte man die nächste zu belegende CSP-Variable auswählen?

Für die Korrektheit ist es egal, welche Variable man wählt.

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Oz-Backtracking

Backtracking Sudoku-

Sudoku-Backtracking

Wie sollte man die nächste zu belegende CSP-Variable auswählen?

- Für die Korrektheit ist es egal, welche Variable man wählt.
- Es kann aber für die Laufzeit Unterschiede machen.

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Oz-Backtracking

Backtracking Sudoku-

Sudoku-Backtracking

Wie sollte man die nächste zu belegende CSP-Variable auswählen?

- Für die Korrektheit ist es egal, welche Variable man wählt.
- Es kann aber für die Laufzeit Unterschiede machen.
- → Eine gute Heuristik ist es, die Variable zu wählen, die die wenigsten noch möglichen Werte besitzt.

Oz-Backtracking

Wie sollte man die nächste zu belegende CSP-Variable auswählen?

- Für die Korrektheit ist es egal, welche Variable man wählt.
- Es kann aber für die Laufzeit Unterschiede machen.
- → Eine gute Heuristik ist es, die Variable zu wählen, die die wenigsten noch möglichen Werte besitzt.
 - Grund: Reduktion der Verzweigung im Aufrufbaum weit oben.

Oz-Backtracking

Bemerkungen zur Backtracking-Suche: Variablenauswahl

Wie sollte man die nächste zu belegende CSP-Variable auswählen?

- Für die Korrektheit ist es egal, welche Variable man wählt.
- Es kann aber für die Laufzeit Unterschiede machen.
- → Eine gute Heuristik ist es, die Variable zu wählen, die die wenigsten noch möglichen Werte besitzt.
 - Grund: Reduktion der Verzweigung im Aufrufbaum weit oben.
 - Beispiel:

Oz-Backtracking

Bemerkungen zur Backtracking-Suche: Werteauswahl

NI REIBURG

In welcher Reihenfolge sollte man die Werte durchprobieren?

■ Für die Korrektheit egal.

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Oz-Backtracking

8-Damen-Backtracking

Sudoku-Backtracking

Bemerkungen zur Backtracking-Suche: Werteauswahl

- Für die Korrektheit egal.
- Wenn man schnell eine Lösung finden will, sollte man mit den Werten beginnen, die die anderen Variablen möglichst wenig einschränkt.

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Oz-Backtracking

Backtracking Sudoku-

- Für die Korrektheit egal.
- Wenn man schnell eine Lösung finden will, sollte man mit den Werten beginnen, die die anderen Variablen möglichst wenig einschränkt.
- Erfordert allerdings, dass wir voraus schauen und bestimmen, welche Werte bei anderen Variablen noch möglich sind.

Backtracking Suche

Oz-Backtracking

Backtracking Sudoku-

Sudoku-Backtracking

- Für die Korrektheit egal.
- Wenn man schnell eine Lösung finden will, sollte man mit den Werten beginnen, die die anderen Variablen möglichst wenig einschränkt.
- Erfordert allerdings, dass wir voraus schauen und bestimmen, welche Werte bei anderen Variablen noch möglich sind.
- Beispiel:

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Oz-Backtracking

Backtracking Sudoku-

Sudoku-Backtracking

- Für die Korrektheit egal.
- Wenn man schnell eine Lösung finden will, sollte man mit den Werten beginnen, die die anderen Variablen möglichst wenig einschränkt.
- Erfordert allerdings, dass wir voraus schauen und bestimmen, welche Werte bei anderen Variablen noch möglich sind.
- Beispiel:

■ Wir werden im Weiteren aber sowohl Variablen- als auch Werte-Auswahl erst einmal einfach halten.

Oz-Backtracking

Backtracking für 8 Damen – mit Python (1)

Für die Problemrepräsentation beim 8-Dame-Problem bietet es sich an, die Belegung durch ein Tupel col zu repräsentieren, bei dem der i-te Eintrag für die Spalte steht, in der die i-te Dame steht, wobei Dame i in der i-ten Reihe steht (i = 0, ..., 7).

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

> Oz-Backtracking 8-Damen-

Backtracking Sudoku-

- Für die Problemrepräsentation beim 8-Dame-Problem bietet es sich an, die Belegung durch ein Tupel col zu repräsentieren, bei dem der i-te Eintrag für die Spalte steht, in der die i-te Dame steht, wobei Dame i in der i-ten Reihe steht (i = 0, ..., 7).
- Die Constraints ergeben sich dann, wie weiter oben beschrieben.

Constraint-Satisfaction-Probleme

Backtracking Suche Oz-Backtracking

> 8-Damen-Backtracking

Sudoku-Backtracking

- Für die Problemrepräsentation beim 8-Dame-Problem bietet es sich an, die Belegung durch ein Tupel col zu repräsentieren, bei dem der i-te Eintrag für die Spalte steht, in der die i-te Dame steht, wobei Dame i in der i-ten Reihe steht (i = 0, ..., 7).
- Die Constraints ergeben sich dann, wie weiter oben beschrieben.

```
8queens.py (1)
```

```
def assign(col, x, d):
    for y in range(len(col)):
         if col[y] == d: # same column?
             return False
         if (col[y] + y == d + x \text{ or } \# \text{ same diagonal}?
             col[y] - y == d - x):
             return False
    return col + (d,) # return copy!
```

Oz-Backtracking

8-Damen-Backtracking

Propagierung

Backtracking für 8 Damen – mit Python (2)

 Die eigentlich Suchfunktion sieht ganz ähnlich aus wie im Fall der 3-Färbbarkeit von Australien.

Motivation

Constraint-Satisfaction Probleme

Backtracking Suche Oz-Backtracking

8-Damen-

Backtracking Sudoku-

Backtracking

Backtracking für 8 Damen – mit Python (2)

- Die eigentlich Suchfunktion sieht ganz ähnlich aus wie im Fall der 3-Färbbarkeit von Australien.
- Kopiert wird hier die neue Belegung bereits in assign, da wir mit Tupeln arbeiten.

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

> Oz-Backtracking 8-Damen-

Backtracking Sudoku-

Backtracking

- Die eigentlich Suchfunktion sieht ganz ähnlich aus wie im Fall der 3-Färbbarkeit von Australien.
- Kopiert wird hier die neue Belegung bereits in assign, da wir mit Tupeln arbeiten.

```
8queens.py (2)
def search(col):
    if col is False: return False
    nextvar = len(col)
    if next.var == 8:
        return col
    else:
        for d in range(8):
            result = search(assign(col, nextvar, d))
            if result: return result
        return False
```

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

> Oz-Backtracking 8-Damen-

Backtracking Sudoku-

Backtracking

Backtracking für 8 Damen – mit Python (3)

Eigentlich würden wir ja gerne sehen, wie das Schachbrett dann aussieht.

Motivation

Probleme

Suche

Oz-Backtracking 8-Damen-

Backtracking

Backtracking

Propagierung

■ Eigentlich würden wir ja gerne sehen, wie das Schachbrett dann aussieht.

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

> Oz-Backtracking 8-Damen-Backtracking

Sudoku-Backtracking

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

Motivation

Constraint-Satisfaction Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-

Backtracking

ConstraintPropagierung

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

Motivation

Constraint-Satisfaction Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

8-Damen-

Backtracking Sudoku-

Backtracking

Motivation

Constraint-Satisfaction Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-

Backtracking

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-

Backtracking

Motivation

Constraint-Satisfaction Probleme

Backtracking-Suche

8-Damen-

Backtracking Sudoku-

Backtracking

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

Motivation

Constraint-Satisfaction Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

Motivation

Constraint-Satisfaction Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-

Backtracking

Motivation

Constraint-Satisfaction Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

Motivation

Constraint-Satisfaction Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

Motivation

Backtracking-Suche Oz-Backtracking

8-Damen-Backtracking

Backtracking

Propagierung

Motivation

Constraint-Satisfaction Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

Motivation

Constraint-Satisfaction

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

Constraint-

Motivation

Constraint-Satisfaction Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-

Sudoku-Backtracking

Motivation

Constraint-Satisfaction Probleme

Backtracking-Suche Oz-Backtracking

8-Damen-Backtracking

Sudoku-Backtracking

O

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

Motivation

Constraint-Satisfaction Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-

Backtracking

Motivation

Constraint-Satisfaction Probleme

Backtracking-Suche

8-Damen-

Backtracking Sudoku-

Backtracking

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

8-Damen-

Backtracking Sudoku-

Sudoku-Backtracking

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-

Backtracking

Motivation

Constraint-Satisfaction Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-

Backtracking

Motivation

Constraint-Satisfaction Probleme

Backtracking-Suche

8-Damen-

Backtracking Sudoku-

Backtracking

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

Backtracking für 8 Damen - Generatoren

Und wie s\u00e4he das aus, wenn wir Generatoren einsetzen wollten?

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Oz-Backtracking 8-Damen-

Backtracking Sudoku-

Sudoku-Backtracking

- Und wie s\u00e4he das aus, wenn wir Generatoren einsetzen wollten?
- Statt return, yield.

Constraint-Satisfaction-Probleme

Backtracking Suche

Oz-Backtracking 8-Damen-

Backtracking Sudoku-

Sudoku-Backtracking

- Und wie s\u00e4he das aus, wenn wir Generatoren einsetzen wollten?
- Statt return, yield.
- Keine Fehlschläge, sondern nur die erfolgreichen Zweige weiter verfolgen!

Constraint-Satisfaction-Probleme

Backtracking Suche

Oz-Backtracking 8-Damen-

Backtracking Sudoku-

Sudoku-Backtracking

- Und wie s\u00e4he das aus, wenn wir Generatoren einsetzen wollten?
- Statt return, yield.
- Keine Fehlschläge, sondern nur die erfolgreichen Zweige weiter verfolgen!
- Aufrufe nur in for-Schleifen.

Constraint-Satisfaction-Probleme

Backtracking Suche

> Oz-Backtracking 8-Damen-

Backtracking Sudoku-

Sudoku-Backtracking

- Und wie s\u00e4he das aus, wenn wir Generatoren einsetzen wollten?
- Statt return, yield.
- Keine Fehlschläge, sondern nur die erfolgreichen Zweige weiter verfolgen!
- Aufrufe nur in for-Schleifen.
- Verschiedene Lösungen unterscheidbar machen (Leerzeile nach jeder Lösung).

Constraint-Satisfaction-Probleme

Backtracking Suche

> Oz-Backtracking 8-Damen-

Backtracking Sudoku-

Sudoku-Backtracking

```
sudoku.py (1)
def cross(A, B):
    return [a+b for a in A for b in B]
digits = '123456789'
digits0p = digits + '0.'
rows = 'ABCDEFGHT'
cols = digits
squares = cross(rows, cols)
unitlist = ([cross(rows, c) for c in cols] +
            [cross(r, cols) for r in rows] +
            [cross(rs, cs) for rs in ('ABC', 'DEF', 'GHI')
                           for cs in ('123','456','789')])
units = dict((s, [u for u in unitlist if s in u])
             for s in squares) # s -> all units of s
peers = dict((s, set(sum(units[s],[]))-set([s]))
             for s in squares) # s -> set of peers of s
```

Constraint-Satisfaction-Probleme

Backtracking-Suche

Oz-Backtracking 8-Damen-Backtracking

Sudoku-Backtracking

■ Die CSP-Variablen sind durch die Liste squares gegeben:

```
['A1', 'A2', ..., 'A9', 'B1', 'B2', ..., 'I9']
```

unitlist ist eine Liste, deren Elemente Listen sind, die jeweils alle Felder einer Gruppe enthalten:

```
[['A1', 'B1', ..., 'I1'], ['A2', 'B2', ..., 'I2'], ..., ['A1', 'A2', ..., ['A1', 'A2', 'A3', 'B1', 'B2', ...'C3'], ...]
```

units spezifiziert für jedes Feld, in welchen Gruppen es Mitglied ist:

```
{ 'A1': [['A1', ..., 'I1'], ['A1', ..., 'A9'], ['A1', ..., 'C3']], ...}
```

peers spezifiziert für jedes Feld die Menge der Peers:
{'D8': {'E9', 'E8', 'D9', 'G8', 'D2', 'D3', 'D1',

```
'D6', 'D7', ...}, ...}
```

Motivation

Constraint-Satisfaction-Probleme

> Backtracking-Suche

B-Damen-Backtracking

Sudoku-Backtracking

JNI

■ Wir wollen ja verschiedene Sudokus lösen.

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Oz-Backtracking 8-Damen-Backtracking

Sudoku-Backtracking

JNI REIBL

- Wir wollen ja verschiedene Sudokus lösen.
- D.h. wir müssen die Aufgabe parsen und in eine interne Struktur überführen.

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

> 8-Damen-Backtracking

Sudoku-Backtracking

NI REIBURG

- Wir wollen ja verschiedene Sudokus lösen.
- D.h. wir müssen die Aufgabe parsen und in eine interne Struktur überführen.
- Aufgabe besteht aus 81 Zeichen 0 9 und '.', wobei 0 und '.' für ein leeres Feld stehen.

Backtracking Suche

Backtracking

Sudoku-Backtracking

JNI

- Wir wollen ja verschiedene Sudokus lösen.
- D.h. wir müssen die Aufgabe parsen und in eine interne Struktur überführen.
- Aufgabe besteht aus 81 Zeichen 0 9 und '.', wobei 0 und '.' für ein leeres Feld stehen.
- Alle anderen Zeichen werden ignoriert. D.h. wir können die Aufgabe auch als Tabelle angeben.

Backtracking Suche

Oz-Backtracking

Backtracking Sudoku-

Sudoku-Backtracking

- Wir wollen ja verschiedene Sudokus lösen.
- D.h. wir müssen die Aufgabe parsen und in eine interne Struktur überführen.
- Aufgabe besteht aus 81 Zeichen 0 9 und '.', wobei 0 und '.' für ein leeres Feld stehen.
- Alle anderen Zeichen werden ignoriert. D.h. wir können die Aufgabe auch als Tabelle angeben.

Constraint-Satisfaction-Probleme

Backtracking-Suche

Oz-Backtracking 8-Damen-

Sudoku-Backtracking

Sudoku-Backtracking (3): Ausgabe

■ Die Lösungen sollen natürlich auch dargestellt werden.

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

Sudoku-Backtracking (3): Ausgabe

- UNI FREIBURG
- Die Lösungen sollen natürlich auch dargestellt werden.
- display gibt eine Belegung aus.

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

> Oz-Backtracking 8-Damen-Backtracking

Sudoku-Backtracking

Constraint-Propagierung

02.02.2016 B. Nebel – Info I 38 / 59

- Die Lösungen sollen natürlich auch dargestellt werden.
- display gibt eine Belegung aus.

```
sudoku.py (3)
def display(values):
    "Display values as a 2-D grid."
    if not values:
        print("Empty grid")
        return
    line = '+'.join(['-'*6]*3)
    for r in rows:
        print(''.join(values.get(r+c,'.')+ ' ' +
                        ('|' if c in '36' else '')
                      for c in cols))
        if r in 'CF': print(line)
    print()
```

Constraint-Satisfaction-Probleme

Backtracking Suche

> Oz-Backtracking 8-Damen-Backtracking

Sudoku-Backtracking

Sudoku-Backtracking (4): assign

UNI FREIBURG

■ Die Zuweisung funktioniert wieder ähnlich wie in den beiden anderen Fällen.

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Oz-Backtracking 8-Damen-Backtracking

Sudoku-Backtracking

Sudoku-Backtracking (4): assign

- UNI FREIBURG
- Die Zuweisung funktioniert wieder ähnlich wie in den beiden anderen Fällen.
- D.h. es werden die Constraints überprüft und im Erfolgsfall die erweiterte Belegung zurück gegeben.

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

8-Damen-Backtracking

Sudoku-Backtracking

Sudoku-Backtracking (4): assign

- UNI FREIBURG
- Die Zuweisung funktioniert wieder ähnlich wie in den beiden anderen Fällen.
- D.h. es werden die Constraints überprüft und im Erfolgsfall die erweiterte Belegung zurück gegeben.
- Ansonsten wird False zurück gegeben.

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

> Oz-Backtracking 8-Damen-Backtracking

Sudoku-Backtracking

- Die Zuweisung funktioniert wieder ähnlich wie in den beiden anderen Fällen.
- D.h. es werden die Constraints überprüft und im Erfolgsfall die erweiterte Belegung zurück gegeben.
- Ansonsten wird False zurück gegeben.

Constraint-Satisfaction-Probleme

Backtracking-Suche

> Oz-Backtracking 8-Damen-

Sudoku-Backtracking

Sudoku-Backtracking (5): Rekursive Suche

■ Völlig analog zu den beiden vorherigen Fällen:

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

■ Völlig analog zu den beiden vorherigen Fällen:

```
sudoku.py (5)
def search(values):
    "Search for solution"
    if not values: return False # failed earlier
    s = some(s for s in squares if s not in values)
    if not s: return values
    return some(search(assign(values.copy(), s, d))
                for d in digits)
import time
def timed search(grid):
    start = time.process time()
    search(parse_grid(grid))
    return time.process_time() - start
```

Motivation

Constraint-Satisfaction-Probleme

Suche Oz-Backtracking

Sudoku-Backtracking

Python-Interpreter

- >>> grid1='''003020600 900305001 001806400 008102900
- ... 700000008 006708200 002609500 800203009
- ... 005010300'''
- >>> display(search(parse_grid(grid1)))

Motivation

Constraint-Satisfaction Probleme

Backtracking Suche

> Oz-Backtracking 8-Damen-Backtracking

Sudoku-Backtracking

Sudoku-Backtracking (6): In Aktion ...


```
Python-Interpreter
```

9 5 | 4 1 7 | 3 8 2

```
>>> grid1='''003020600 900305001 001806400 008102900
   700000008 006708200 002609500 800203009
... 005010300'''
>>> display(search(parse grid(grid1)))
 8 3 19 2 1 16 5 7
   7 13 4 5 18 2 1
  5 1 18 7 6 14 9 3
  4 8 11 3 2 19 7
      15
         6 4
1 3 6 17 9 8 12 4 5
         8
      12.5
          .3
```

Oz-Backtracking

Sudoku-

Backtracking

Propagierung

Python-Interpreter

>>> timed_search(grid1) 0.01417400000013913

Motivation

Probleme

Backtracking-Suche

Oz-Backtracking Backtracking

Sudoku-Backtracking

Propagierung

Python-Interpreter

>>> timed_search(grid1)

0.01417400000013913

>>> timed_search(grid2)

660.3158369999999

EIBURG

FREIB

Motivation

Constraint-Satisfaction Probleme

Backtracking-Suche

Oz-Backtracking 8-Damen-Backtracking

Sudoku-Backtracking

Python-Interpreter

>>> timed_search(grid1)

0.01417400000013913

>>> timed_search(grid2)

660.3158369999999

>>> timed_search(hard1)

24.7700200000000002

NI REIBUR

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

> Backtracking Sudoku-

Sudoku-Backtracking

Python-Interpreter

>>> timed_search(grid1)

0.01417400000013913

>>> timed_search(grid2)

660.3158369999999

>>> timed_search(hard1)

24.770020000000002

>>> timed_search(hard2)

0.693335000000161

JNI

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Oz-Backtracking 8-Damen-Backtracking

Sudoku-Backtracking

Constraint-Propagierung

02.02.2016 B. Nebel – Info I 42 / 59

NI REIBUR

Python-Interpreter

>>> timed_search(grid1)

0.01417400000013913

>>> timed_search(grid2)

660.3158369999999

>>> timed_search(hard1)

24.770020000000002

>>> timed_search(hard2)

0.693335000000161

>>> timed_search(hard3)

28.898888999999826

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Oz-Backtracking 8-Damen-

Sudoku-Backtracking

NI REIBUR

Python-Interpreter

>>> timed_search(grid1)

0.01417400000013913

>>> timed_search(grid2)

660.3158369999999

>>> timed_search(hard1)

24.770020000000002

>>> timed_search(hard2)

0.693335000000161

>>> timed_search(hard3)

28.898888999999826

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Oz-Backtracking 8-Damen-

Sudoku-Backtracking

REIBURG

Python-Interpreter

```
>>> timed_search(grid1)
0.0141740000013913
>>> timed_search(grid2)
660.3158369999999
>>> timed_search(hard1)
24.770020000000002
>>> timed_search(hard2)
0.693335000000161
>>> timed_search(hard3)
28.898888999999826
```

hard1 und hard2 sind zwei von dem finnischen Mathematiker Arto Inkala entworfene Sudokus, die er als "die schwersten" Sudokus bezeichnet. Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche Oz-Backtracking

> 8-Damen-Backtracking

Sudoku-Backtracking

UNI

Python-Interpreter

```
>>> timed_search(grid1)
0.0141740000013913
>>> timed_search(grid2)
660.3158369999999
>>> timed_search(hard1)
24.770020000000002
>>> timed_search(hard2)
0.693335000000161
>>> timed_search(hard3)
28.898888999999826
```

- hard1 und hard2 sind zwei von dem finnischen Mathematiker Arto Inkala entworfene Sudokus, die er als "die schwersten" Sudokus bezeichnet.
- hard3 (von Peter Norvig) ist auch für Computer eine harte Nuss; aber es ist kein Sudoku, da nicht eindeutig.

Motivation

Constraint-Satisfaction-Probleme

Suche
Oz-Backtracking

Backtracking Sudoku-

Sudoku-Backtracking

Backtracking: Fazit

Mit Hilfe der Backtracking-Suche kann man auch sehr große Suchräume absuchen. Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

8-Damen-Backtracking

Sudoku-Backtracking

- Mit Hilfe der Backtracking-Suche kann man auch sehr große Suchräume absuchen.
- Die Methode garantiert, dass wir eine Lösung finden, wenn eine existiert.

Constraint-Satisfaction-Probleme

Backtracking Suche

> Oz-Backtracking 8-Damen-Backtracking

Sudoku-Backtracking

Constraint-Propagierung

Probleme

Oz-Backtracking

Sudoku-Backtracking

Propagierung

- Mit Hilfe der Backtracking-Suche kann man auch sehr große Suchräume absuchen.
- Die Methode garantiert, dass wir eine Lösung finden, wenn eine existiert.
- Die tatsächlich notwendige Zeit kann stark schwanken.

B Nebel - Info I 02 02 2016 43 / 59

- Mit Hilfe der Backtracking-Suche kann man auch sehr große Suchräume absuchen.
- Die Methode garantiert, dass wir eine Lösung finden, wenn eine existiert.
- Die tatsächlich notwendige Zeit kann stark schwanken.
- Können wir vielleicht weitere Abkürzungen bei der Suche einsetzen?

Constraint-Satisfaction-Probleme

Backtracking Suche

> B-Damen-Backtracking

Sudoku-Backtracking

Constraint-Propagierung

ZE ZE

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierung

Die Idee Sudoku-Constraint-Propagierung

Constraint-Propagierung

Constraint-Propagierung: Die Idee

Im Zusammenhang mit der Auswahl der nächsten Variable und des nächsten Wertes wurde bereits erwähnt, dass man die noch möglichen Werte pro Variable kennen sollte. Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Constraint-Propagierun

Die Idee

Propagierung

- Im Zusammenhang mit der Auswahl der nächsten Variable und des nächsten Wertes wurde bereits erwähnt, dass man die noch möglichen Werte pro Variable kennen sollte.
- Idee: Wann immer ein Wert fest gelegt wird, eliminiere jetzt unmögliche Werte für andere Variablen.

Constraint-Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierun

Die Idee

- Im Zusammenhang mit der Auswahl der nächsten Variable und des nächsten Wertes wurde bereits erwähnt, dass man die noch möglichen Werte pro Variable kennen sollte.
- Idee: Wann immer ein Wert fest gelegt wird, eliminiere jetzt unmögliche Werte für andere Variablen.
- Forward-Checking erlaubt uns die Suche früher abzubrechen.

Constraint-Satisfaction-Probleme

Backtracking Suche

Constraint-Propagierun

Die Idee

- Idee: Wann immer ein Wert fest gelegt wird, eliminiere jetzt unmögliche Werte für andere Variablen.
- Forward-Checking erlaubt uns die Suche früher abzubrechen.
 - Beispiel: Wenn im Färbbarkeitsbeispiel *WA* = *red* gewählt wird, dann kann man für *NT red* ausschließen.

Constraint-Satisfaction-Probleme

Backtracking Suche

> Constraint-Propagierun

Sudoku-Constrai

- Nach Zuweisung eines neuen Wertes an Variable X eliminiere in allen über Constraints verbundene Variablen jetzt nicht mehr möglichen Werte.
- Leite Backtracking ein, wenn für eine Variable kein Wert mehr möglich ist.

Constraint-Satisfaction-Probleme

Backtracking Suche

> Constraint-Propagierung

Die Idee

Propagierung

- Nach Zuweisung eines neuen Wertes an Variable X eliminiere in allen über Constraints verbundene Variablen jetzt nicht mehr möglichen Werte.
- Leite Backtracking ein, wenn für eine Variable kein Wert mehr möglich ist.

Constraint-Satisfaction Probleme

Backtracking Suche

> Constraint-Propagierun

Die Idee Sudoku-Constra Propagierung

- Nach Zuweisung eines neuen Wertes an Variable X eliminiere in allen über Constraints verbundene Variablen jetzt nicht mehr möglichen Werte.
- Leite Backtracking ein, wenn für eine Variable kein Wert mehr möglich ist.

Constraint-Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierun

- Nach Zuweisung eines neuen Wertes an Variable X eliminiere in allen über Constraints verbundene Variablen jetzt nicht mehr möglichen Werte.
- Leite Backtracking ein, wenn für eine Variable kein Wert mehr möglich ist.

■ Für SA ist jetzt kein Wert mehr möglich! Bereits jetzt kann Backtracking eingeleitet werden.

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Constraint-Propagierun

JNI REIBURG

■ Forward-Checking übersieht manchmal Probleme, da nur Information von belegten Variablen zu unbelegten Variablen fließt:

WA	NT	Q	NSW	V	SA	Т

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

> Constraint-Propagierung

Die Idee Sudoku-Constra

■ Forward-Checking übersieht manchmal Probleme, da nur Information von belegten Variablen zu unbelegten Variablen fließt:

Da SA und NSW benachbart sind, ist blue für NSW nicht mehr möglich.

Die Idee

48 / 59

JNI

48 / 59

■ Forward-Checking übersieht manchmal Probleme, da nur Information von belegten Variablen zu unbelegten Variablen fließt:

- Da SA und NSW benachbart sind, ist blue für NSW nicht mehr möglich.
- Schlimmer: Da *SA* und *NT* benachbart sind, kann auch für *NT* der Wert *blue* ausgeschlossen werden.

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierun

UNI FREIBURG

■ Forward-Checking übersieht manchmal Probleme, da nur Information von belegten Variablen zu unbelegten Variablen fließt:

- Da *SA* und *NSW* benachbart sind, ist *blue* für *NSW* nicht mehr möglich.
- Schlimmer: Da *SA* und *NT* benachbart sind, kann auch für *NT* der Wert *blue* ausgeschlossen werden.
- Generell: Immer wenn irgendwo ein Wert eliminiert wird, sollte man bei den über Constraints "verbundenen" Variablen Werte eliminieren

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

> Constraint-Propagierun Die Idee

Constraint-Propagierung beim Sudoku

Wir merken uns bei jedem Feld, welche Ziffern noch möglich sind. Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierung

- Wir merken uns bei jedem Feld, welche Ziffern noch möglich sind.
- Wird eine Ziffer eliminiert, überprüfen wir:

Constraint-Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierun

Constraint-Propagierung beim Sudoku

- Wir merken uns bei jedem Feld, welche Ziffern noch möglich sind.
- Wird eine Ziffer eliminiert, überprüfen wir:
 - Hat das Feld jetzt nur noch eine einzige Möglichkeit, dann kann die Möglichkeit bei allen Peers eliminiert werden.

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Constraint-Propagierun

- Wir merken uns bei jedem Feld, welche Ziffern noch möglich sind.
- Wird eine Ziffer eliminiert, überprüfen wir:
 - Hat das Feld jetzt nur noch eine einzige Möglichkeit, dann kann die Möglichkeit bei allen Peers eliminiert werden.
 - Ist in einer Gruppe eine bestimmte Ziffer nur noch in einem Feld möglich, so können wir die Ziffer hier platzieren (und alle anderen Möglichkeiten eliminieren).

Constraint-Satisfaction-Probleme

Backtracking Suche

Constraint-Propagierur

- Wir merken uns bei jedem Feld, welche Ziffern noch möglich sind.
- Wird eine Ziffer eliminiert, überprüfen wir:
 - Hat das Feld jetzt nur noch eine einzige Möglichkeit, dann kann die Möglichkeit bei allen Peers eliminiert werden.
 - Ist in einer Gruppe eine bestimmte Ziffer nur noch in einem Feld möglich, so können wir die Ziffer hier platzieren (und alle anderen Möglichkeiten eliminieren).
- Jede Eliminierung stößt diesen Prozess wieder an.

Constraint-Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierun

- Wir merken uns bei jedem Feld, welche Ziffern noch möglich sind.
- Wird eine Ziffer eliminiert, überprüfen wir:
 - Hat das Feld jetzt nur noch eine einzige Möglichkeit, dann kann die Möglichkeit bei allen Peers eliminiert werden.
 - Ist in einer Gruppe eine bestimmte Ziffer nur noch in einem Feld möglich, so können wir die Ziffer hier platzieren (und alle anderen Möglichkeiten eliminieren).
- Jede Eliminierung stößt diesen Prozess wieder an.
- Man kann noch weitere Regeln aufstellen (speziell mit 2 und mehr Feldern/Werten) ...

Constraint-Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierun

Verwalten der möglichen Werte: Einlesen

Wir benutzen Strings von Ziffern um die Mengen der möglichen Werte zu repräsentieren.

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierun

- FREIBU
- Wir benutzen Strings von Ziffern um die Mengen der möglichen Werte zu repräsentieren.
- Eigentlich wäre ja der Datentyp Set angemessener.

Constraint-Satisfaction-Probleme

Backtracking Suche

Constraint-Propagierun

FREIBU

- Wir benutzen Strings von Ziffern um die Mengen der möglichen Werte zu repräsentieren.
- Eigentlich wäre ja der Datentyp Set angemessener.
- Aber das würde bedeuten, dass wir statt der copy-Methode die copy.deepcopy()-Funktion benutzen müssten, die sehr viel ineffizienter ist.

Motivation

Constraint-Satisfaction Probleme

Backtracking Suche

> Constraint-Propagierun

- Eigentlich wäre ja der Datentyp Set angemessener.
- Aber das würde bedeuten, dass wir statt der copy-Methode die copy.deepcopy()-Funktion benutzen müssten, die sehr viel ineffizienter ist.
- Und mit Strings haben wir auch alle Mengen-Operationen, die wir benötigen.

Constraint-Satisfaction-Probleme

Backtracking Suche

Constraint-Propagierur

- Wir benutzen Strings von Ziffern um die Mengen der möglichen Werte zu repräsentieren.
- Eigentlich wäre ja der Datentyp Set angemessener.
- Aber das würde bedeuten, dass wir statt der copy-Methode die copy.deepcopy()-Funktion benutzen müssten, die sehr viel ineffizienter ist.
- Und mit Strings haben wir auch alle Mengen-Operationen, die wir benötigen.

```
sudokucp.py (1)
```

```
def parse grid(grid):
    values = {(s, digits) for s in squares}
    for s,d in (zip(squares, [c for c in grid
                                 if c in digitsOp])):
        if d in digits and not assign(values, s, d):
            return False
    return values
```

Verwalten der möglichen Werte: Ausgabe

Um auch nicht fertig gelöste Sudokus ausgegeben zu können, soll die display-Funktion so erweitert werden, dass sie alle Werte für die Felder ausgeben kann. JNI REIBURG

Motivation

Constraint-Satisfaction Probleme

Backtracking Suche

Constraint-Propagierun

```
sudokucp.py (2)
def display(values):
    "Display values as a 2-D grid."
    if not values:
        print("Empty grid")
        return
    width = 1+max(len(values[s]) for s in squares)
    line = '+'.join(['-'*(width*3)]*3)
    for r in rows:
        print(''.join(values[r+c].center(width) +
                      ('|' if c in '36' else '')
                      for c in cols))
        if r in 'CF': print(line)
    print()
```

Constraint-Satisfaction-Probleme

Backtracking Suche

> Constraint-Propagierung

Verwalten der möglichen Werte: Zuweisung

assign eliminiert jetzt alle Werte außer dem zugewiesenen. Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierur Die Idee

- assign eliminiert jetzt alle Werte außer dem zugewiesenen.
- Treten bei der Eliminierung Fehler auf, dann ist die Zuweisung nicht möglich

Constraint-Satisfaction-Probleme

Backtracking Suche

Constraint-Propagierun

Die Idee Sudoku-Constraint-Propagierung

- assign eliminiert jetzt alle Werte außer dem zugewiesenen.
- Treten bei der Eliminierung Fehler auf, dann ist die Zuweisung nicht möglich

```
sudokucp.py (3)

def assign(values, s, d):
    "Try to assign value d to square s"
    others = values[s].replace(d, '')
    if all(eliminate(values, s, e) for e in others):
        return values
    return False
```

Constraint-Satisfaction-Probleme

Backtracking Suche

Constraint-Propagierun

- Nach der Eliminierung muss getestet werden, ob Lösung noch möglich.
- Dann werden die zwei Propagierungsregeln angewendet.

```
sudokucp.py (4)
def eliminate(values, s, d):
    if d not in values[s]:
        return values # already eliminated
    values[s] = values[s].replace(d, '')
    if not values[s]: # no more values left for s
        return False
    # check if value[s] has only one value left
    if not propagate single value(values, s):
        return False
    # check if unit has only a single square for value d
    if not propagate_single_square(values, s, d):
        return False
    return values
```

Constraint-Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierur

Verwalten der möglichen Werte: Propagierung

Die beiden Propagierungsregeln:

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierur

■ Die beiden Propagierungsregeln:

```
sudokucp.py (5)
def propagate_single_value(values, s):
    if len(values[s]) == 1:
        return all(eliminate(values, s2, values[s])
                   for s2 in peers[s])
    return True
def propagate_single_square(values, s, d):
    for u in units[s]:
        dplaces = [s for s in u if d in values[s]]
        if len(dplaces) == 0:
            return False # contradiction!
        elif len(dplaces) == 1:
            if not assign(values, dplaces[0], d):
                return False
    return True
```

REIB

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Constraint-Propagierung

Verwalten der möglichen Werte: Suche

 Geänderte Erfolgsbedingung (alle Var. haben genau einen Wert)

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierun

Verwalten der möglichen Werte: Suche

- UNI FREIBURG
- Geänderte Erfolgsbedingung (alle Var. haben genau einen Wert)
- Geänderte Variablenauswahl (kleinster Wertebereich)

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Constraint-Propagierun

Verwalten der möglichen Werte: Suche

- UNI FREIBURG
- Geänderte Erfolgsbedingung (alle Var. haben genau einen Wert)
- Geänderte Variablenauswahl (kleinster Wertebereich)
- Geänderte Werteselektion (nur mögliche Werte)

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Constraint-Propagierun

- Geänderte Erfolgsbedingung (alle Var. haben genau einen Wert)
- Geänderte Variablenauswahl (kleinster Wertebereich)
- Geänderte Werteselektion (nur mögliche Werte)

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Constraint-Propagierun

Testen der Propagierung (1)

Python-Interpreter

```
>>> display(parse_grid(grid1))
```

```
4 8 3 | 9 2 1 | 6 5 7
```

```
3 7 2 | 6 8 9 | 5 1 4
```

8 1 4 | 2 5 3 | 7 6 9

6 9 5 | 4 1 7 | 3 8 2

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierung

Die Idee

Testen der Propagierung (1)

Python-Interpreter

```
>>> display(parse_grid(grid1))
 8 3 19 2 1 16 5 7
    7 | 3 4 5
             18 2 1
 5 1 18 7 6 14 9 3
  4 8 11 3 2 19 7 6
  2 9 15 6 4
1 3 6 | 7 9 8 | 2 4 5
  7 2 16 8 9
             15 1 4
 1 4 12 5 3 17 6 9
 9 5 | 4 1 7 | 3 8 2
```

Das Sudoku wurde bereits beim Einlesen gelöst! Tatsächlich ist das bei allen einfachen Sudokus so.

02.02,2016 B. Nebel – Info I 56 / 59

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Constraint-Propagierung

Die Idee Sudoku-Constraint-

Propagierung

Testen der Propagierung (2)

Python-Interpreter

>>> display(parse_grid(grid2))

4	1679	12679	Τ	139	2369	269	1	8	1239	5
26789	3	1256789	Τ	14589	24569	245689	1	12679	1249	124679
2689	15689	125689	Τ	7	234569	245689	1	12369	12349	123469
			+-				+			
3789	2	15789	Τ	3459	34579	4579	1	13579	6	13789
3679	15679	15679	Τ	359	8	25679	1	4	12359	12379
36789	4	56789	Τ	359	1	25679	1	23579	23589	23789
			+-				+			
289	89	289	Τ	6	459	3	1	1259	7	12489
5	6789	3	1	2	479	1	1	69	489	4689
1	6789	4	Τ	589	579	5789	1	23569	23589	23689

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierur Die Idee

Testen der Propagierung (2)

Python-Interpreter

>>> display(parse_grid(grid2))

4 26789 2689	1679 3 15689	12679 1256789 125689	1 1 1	139 14589 7	2369 24569 234569	269 245689 245689	1111	8 12679 12369	1239 1249 12349	5 124679 123469
3789 3679 36789	2 15679 4	15789 15679 56789	1111	3459 359 359	34579 8 1	4579 25679 25679	1111	13579 4 23579	6 12359 23589	13789 12379 23789
289 5 1	89 6789 6789	289 3 4	1 1	6 2 589	459 479 579	3 1 5789	111	1259 69 23569	7 489 23589	12489 4689 23689

Hier gibt es offensichtlich noch viele offene Möglichkeiten!

Motivation

Probleme

Backtracking-Suche

Die Idee

>>> timed_search(grid1)

0.008320000000000001

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierun Die Idee

Sudoku-Constraint-Propagierung

02.02.2016 B. Nebel – Info I 58 / 59

>>> timed_search(grid1)

0.008320000000000001

>>> timed_search(grid2)

0.013170000000000001

Motivation

Constraint-Satisfaction Probleme

Backtracking Suche

Constraint-Propagierun

Die Idee Sudoku-Constraint-Propagierung

>>> timed_search(grid1)

0.008320000000000001

>>> timed_search(grid2)

0.013170000000000001

>>> timed_search(hard1)

0.00993699999999988

Motivation

Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierun

- >>> timed_search(grid1)
- 0.008320000000000001
- >>> timed_search(grid2)
- 0.013170000000000001
- >>> timed search(hard1)
- 0.00993699999999988
- >>> timed_search(hard2)
- 0.01353999999999996

Motivation

Satisfaction Probleme

Backtracking-Suche

> Constraint-Propagierun

>>> timed_search(grid1)

0.008320000000000001

>>> timed_search(grid2)

0.013170000000000001

>>> timed_search(hard1)

0.00993699999999988

>>> timed_search(hard2)

0.01353999999999996

>>> timed_search(hard3)

118.054612

Motivation

Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierun

>>> timed_search(grid1)

0.008320000000000001

>>> timed_search(grid2)

0.013170000000000001

>>> timed_search(hard1)

0.00993699999999988

>>> timed_search(hard2)

0.01353999999999996

>>> timed_search(hard3)

118.054612

Motivation

Satisfaction Probleme

Backtracking-Suche

Constraint-Propagierun

>>> timed_search(grid1)

0.008320000000000001

>>> timed_search(grid2)

0.013170000000000001

>>> timed_search(hard1)

0.00993699999999988

>>> timed_search(hard2)

0.01353999999999996

>>> timed_search(hard3)

118.054612

Praktisch alle Sudokus können so in weniger als einer Sekunde gelöst werden. Motivation

Satisfaction Probleme

Backtracking-Suche

Constraint-Propagierun

- >>> timed_search(grid1)
- 0.008320000000000001
- >>> timed_search(grid2)
- 0.013170000000000001
- >>> timed_search(hard1)
- 0.00993699999999988
- >>> timed_search(hard2)
- 0.01353999999999996
- >>> timed_search(hard3)
- 118.054612
 - Praktisch alle Sudokus können so in weniger als einer Sekunde gelöst werden.
 - hard3 ist eine Ausnahme allerdings auch kein eindeutig lösbares Sudoku.

Motivation

Satisfaction Probleme

Backtracking-Suche

Constraint-Propagierun

■ Backtracking zusammen mit Constraint-Propagierung ist eine extrem mächtige Technik, um schwierige kombinatorische Probleme zu lösen.

Motivation

Constraint-Satisfaction Probleme

Backtracking-

Constraint-Propagierun

- JNI
- Backtracking zusammen mit Constraint-Propagierung ist eine extrem mächtige Technik, um schwierige kombinatorische Probleme zu lösen.
- Wird auch in anderen Kontexten (z.B. SAT-Solving mit Millionen von Variablen) erfolgreich eingesetzt.

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Constraint-Propagierun

- Backtracking zusammen mit Constraint-Propagierung ist eine extrem mächtige Technik, um schwierige kombinatorische Probleme zu lösen.
- Wird auch in anderen Kontexten (z.B. SAT-Solving mit Millionen von Variablen) erfolgreich eingesetzt.
- Es gibt aber immer wieder Probleminstanzen, die sich als extrem schwierig heraus stellen.

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierun

- Backtracking zusammen mit Constraint-Propagierung ist eine extrem mächtige Technik, um schwierige kombinatorische Probleme zu lösen.
- Wird auch in anderen Kontexten (z.B. SAT-Solving mit Millionen von Variablen) erfolgreich eingesetzt.
- Es gibt aber immer wieder Probleminstanzen, die sich als extrem schwierig heraus stellen.
- Ab einer gewissen Größe (verallgemeinertes Sudoku!) wird es wirklich schwierig, wenn die Probleminstanzen nicht einfach durch Constraint-Propagierung lösbar sind.

Motivation

Constraint-Satisfaction-Probleme

Backtracking Suche

Constraint-Propagierung

- Backtracking zusammen mit Constraint-Propagierung ist eine extrem mächtige Technik, um schwierige kombinatorische Probleme zu lösen.
- Wird auch in anderen Kontexten (z.B. SAT-Solving mit Millionen von Variablen) erfolgreich eingesetzt.
- Es gibt aber immer wieder Probleminstanzen, die sich als extrem schwierig heraus stellen.
- Ab einer gewissen Größe (verallgemeinertes Sudoku!) wird es wirklich schwierig, wenn die Probleminstanzen nicht einfach durch Constraint-Propagierung lösbar sind.
- Es handelt sich hier um die so genannten NP-vollständigen Probleme.

Motivation

Constraint-Satisfaction Probleme

Backtracking-Suche

Constraint-Propagierun

- Backtracking zusammen mit Constraint-Propagierung ist eine extrem mächtige Technik, um schwierige kombinatorische Probleme zu lösen.
- Wird auch in anderen Kontexten (z.B. SAT-Solving mit Millionen von Variablen) erfolgreich eingesetzt.
- Es gibt aber immer wieder Probleminstanzen, die sich als extrem schwierig heraus stellen.
- Ab einer gewissen Größe (verallgemeinertes Sudoku!) wird es wirklich schwierig, wenn die Probleminstanzen nicht einfach durch Constraint-Propagierung lösbar sind.
- Es handelt sich hier um die so genannten NP-vollständigen Probleme.
- Und es gibt viel aktive Forschung in der Informatik, diesen Problemen zu Leibe zu rücken.

Motivation

Constraint-Satisfaction-Probleme

Backtracking-Suche

Constraint-Propagierung