Задание 2. Электрические качели.

В этой задаче мы предлагаем Вам рассмотреть колебания в LC-контуре с переменной емкостью. При непрерывном изменении емкости конденсатора, описание колебаний в контуре — очень большая проблема.

Поэтому в данной задаче емкость будет изменяться только в определенные моменты времени

и на определенную величину, что существенно облегчит изучение такой системы.

Колебательный контур состоит из конденсатора, емкость которого можно изменять, увеличивая или уменьшая расстояние между пластинами, и катушки с индуктивностью L, сопротивлением которой можно пренебречь (рис. 1).

Рис.1

Часть первая. Толчок.

В начальный момент времени емкость конденсатора равна C_0 , а расстояние между пластинами равно d. В контуре возбуждают колебания. В момент времен, когда напряжение на конденсаторе достигает максимального значения, расстояние между пластинами мгновенно увеличивают на некоторую малую величину Δx . Обозначим относительное увеличение расстояния между пластинами $\delta = \frac{\Delta x}{d}$.

- **1.1** Покажите, что при таком изменении расстояния емкость конденсатора уменьшается на ту же относительную величину, т.е. что $\frac{\Delta C}{C} = -\delta$.
- **1.2** Определите относительное изменение напряжения на пластинах U, полной энергии колебательного контура W и периода колебаний T при таком перемещении.

Если изменения некоторых двух величин (Δx и Δy) и их абсолютные значения (x и y) удовлетворяют уравнению $\frac{\Delta y}{\Delta x} = k \frac{y}{x}$, то из этого можно сделать вывод, что $y \sim x^k$.

- 1.3 Покажите, что отношение максимального напряжения на конденсаторе к полной энергии контура остается постоянным при увеличении расстояния между пластинами.
- 1.4 Покажите, что произведение квадрата периода колебаний на полную энергию также не изменяется в таком процессе.

Часть 2. Раскачка.

В этой части задачи расстояние между пластинами будем изменять неоднократно. Попрежнему будем увеличивать расстояние между пластинами на Δx ($\delta = \frac{\Delta x}{d}$) в моменты времени, когда напряжение на конденсаторе достигает максимального значения, но в моменты, когда напряжение на конденсаторе становится равным нулю, пластины снова сдвигают так, что расстояние между ними становится прежним.

- **2.1** Пусть $\delta = 0.01$. Определите, сколько времени понадобится для увеличения полной энергии в контуре в 10 раз. Выразите это время в полных периодах колебаний T_0 .
- **2.2** Предположим, что индуктивность обладает небольшим сопротивлением R . Оцените, каким должно быть значение δ , чтобы колебания в контуре не затухали.

Часть 3. Сбой по согласованию.

Предположим, что операция, производимая во второй части задачи, осуществляется с частотой немного меньшей, чем удвоенная частота колебаний контура, т.е. промежуток времени между двумя последовательными увеличениями (или уменьшениями) расстояния между пластинами $\tau = \frac{T_0}{2} + \Delta t$. Причем $\Delta t << T_0$. Качественно опишите зависимость максимального напряжения на конденсаторе от времени и определите промежуток времени между двумя последовательными максимумами напряжения. Сопротивление катушки равно нулю.