IMPLEMENTASI ALGORITMA BOYER-MOORE DALAM SISTEM INFORMASI "LOST AND FOUND" DI UNIVERSITAS BAKRIE

TUGAS AKHIR

RISTANTI SEPTA AYU ANGGRAINI

1122001015

FAKULTAS TEKNIK DAN ILMU KOMPUTER
PROGRAM STUDI INFORMATIKA
UNIVERSITAS BAKRIE

JAKARTA

2016

Universitas Bakrie

PERNYATAAN PEMBIMBING

Yang bertanda tangan di bawah ini saya:

Pembimbing

Nama : Yusuf Lestanto, S.T., M.Sc.

Dengan ini menyatakan bahwa penelitian tugas akhir skripsi dengan judul:

"Implementasi Algoritma Boyer-Moore dalam Sistem Informasi "Lost and Found" di Universitas Bakrie"

Yang disusun oleh:

Nama : Ristanti Septa Ayu Anggraini

NIM : 1122001015

Telah selesai dan siap untuk diajukan dan dipertahankan di hadapan sidang tugas akhir.

Demikian pernyataan ini dibuat untuk dapat dipergunakan sebagai syarat kelengkapan mengikuti sidang tugas akhir di Universitas Bakrie.

Jakarta, 10 Agustus 2016

Yang menyatakan

Dosen Pembimbing

Yusuf Lestanto, S.T., M.Sc.

ii

IMPLEMENTASI ALGORITMA BOYER-MOORE DALAM SISTEM INFORMASI LOST AND FOUND DI UNIVERSITAS BAKRIE

Ristanti Septa Ayu Anggraini

ABSTRAK

Proses penemuan dan laporan kehilangan di lingkungan kampus sering menjadi persoalan di bagian security. Hal ini dikarenakan proses pembukuan dan rekapitulasi barang yang ditemukan dan laporan kehilangan masih dilakukan secara manual sehingga cara tersebut kurang efektif. Tidak hanya itu proses laporan pencarian barang yang sudah lama sulit ditemukan apabila masih menggunakan dokumen manual. Berdasarkan masalah tersebut diperlukan sebuah aplikasi pencarian dan sebagai penyimpanan data laporan barang kehilangan atau temuan. Aplikasi ini merupakan pengelolaan informasi tepat dan akurat yang dirancang untuk memberikan kemudahan dalam mengakses dan menyimpan data laporan temuan atau kehilangan barang. Aplikasi Lost and Found ini menerapkan algoritma Boyer-Moore pada proses string searching dengan fitur auto-complete, dimana pada proses pencocokan string dilakukan dari kanan ke kiri. Hasil dari penelitian ini berupa sistem informasi berbasis web dengan menggunakan fitur auto-complete.

Kata Kunci:

Boyer-Moore, Auto-complete, Laporan Temuan Barang, Laporan Kehilangan Barang

BOYER-MOORE STRING SEARCH ALGORITHM IMPLEMENTATION OF INFORMATION SYSTEM "LOST AND FOUND" IN BAKRIE UNIVERSITY

Ristanti Septa Ayu Anggraini

ABSTRACT

The report process of Lost and Found in university is often a problem in security. This is because documenting process and recapitulation of items Lost and Found is still done manually so the less effective way. Searching process for the Lost and Found item that have been stored too hard to find because searching data still use manual document. Based on these problems, required a search application and as a report of Lost and Found item in Universitas Bakrie. This application is precise and accurate management information designed to provide ease of accessing and storing data of Lost and Found reports. Application "Lost and Found" applies Boyer-Moore algorithm in string searching process with auto-complete feature, which is the string matching process do from right to left. The results of this research is a web-based information system by using the auto-complete feature.

Keywords:

Boyer-Moore, Auto-complete, Finding Report Item, Lost Report Item

DAFTAR ISI

PERNY	ATAAN PEMBIMBING	ii
ABSTR	RAK	iii
ABSTR	RACT	iv
DAFTA	AR ISI	v
DAFTA	AR GAMBAR	viii
DAFTA	AR TABEL	x
DAFTA	AR RUMUS	xi
DAFTA	AR LAMPIRAN	xii
DAFTA	AR SINGKATAN	xiii
BAB I.		1
1.1	Latar Belakang Masalah	1
1.2	Identifikasi Masalah	2
1.3	Rumusan Masalah	3
1.4	Batasan Masalah	3
1.5	Tujuan Penelitian	
1.6	Manfaat Penelitian	
1.7	Sistematika Penulisan	
2.1	Penelitian Terdahulu	5
2.2	Konsep Dasar Sistem Informasi	11
2.2	.1 Definisi Sistem Informasi	11
2.2	.2 Komponen Sistem Informasi	11
2.3	Konsep Dasar String Searching	12
2.4	Algoritma Boyer-Moore	14
2.4	.1 Good-suffix shift rule	16
2.4	.2 Bad-character rule	16
2.5	Model Siklus Pengembangan Perangkat Lunak	17
2.6	Bahasa Pemrograman	22

2.7	Unified Modeling Language (UML)			
2.8	Pe	ngujian	. 25	
BAB II	II		. 27	
3.1	Me	etode Perancangan dan Pengembangan	. 27	
3.1	.1	Pengamatan dan Perencanaan	. 27	
3.1	.2	Analisa Kebutuhan Aplikasi	. 27	
3.1	.3	Perancangan dan Pembangunan	. 28	
3.1	.4	Testing	. 49	
3.1	.5	Implementasi	. 51	
3.2	Ke	erangka Penelitian	. 51	
3.3	Jei	nis Penelitian	. 53	
3.4	Ob	ojek Penelitian	. 53	
3.5	Me	etode Pengumpulan Data	. 53	
3.6	Im	plementasi Algoritma <i>Boyer-Moore</i>	. 54	
3.7	Re	ncana Kegiatan Penelitian	. 57	
BAB I	V		. 58	
4.1	Im	plementasi Sistem	. 58	
4.2		plementasi Perancangan Antarmuka		
4.3		plementasi Data		
4.4		plementasi Algoritma <i>Boyer-Moore</i> pada Fitur <i>Auto-complete</i>		
4.5		asil Pencarian Berdasarkan Kata Kunci		
4.6	Pe	ngujian Algoritma	. 71	
4.7	7.1	Menentukan Pattern pada Teks	. 72	
4.7	7.2	Proses Pencarian Algoritma	. 73	
4.7	7.3	Menentukan Bobot Kriteria	. 77	
4.7	7.4	Pemberian Nilai Pada Setiap Kriteria	. 78	
4.7	7.5	Menghitung Skor	. 78	
4.7	7.6	Menentukan Prioritas Keputusan	. 80	
BAB V	·		. 81	
5.1	Sir	npulan	. 81	
5.2		ran		
		PUSTAKA		
		~ ~ 	. 55	

LAMPIRAN

DAFTAR GAMBAR

Gambar 2. 1 Komponen sebuah Sistem Informasi [7]	. 12
Gambar 2. 2 <i>Good-suffix shift</i> , u terjadi lagi didahului karakter c berbeda dari a	
[12]	. 16
Gambar 2. 3 <i>Good-suffix shift</i> , hanya suffix dari u yang terjadi lagi di pattern x	
[12]	. 16
Gambar 2. 4 Bad-character shift, b terdapat di pattern x [12]	. 16
Gambar 2. 5 Bad-character shift, b tidak ada di pattern x [12]	. 17
Gambar 2. 6 Software Engineering Layers [13]	. 18
Gambar 2. 7 Web Development Life Cycle Model (WDLC) [17]	. 19
Gambar 2. 8 Usage Statistics of Web Technologies [19]	. 22
Gambar 3. 1 Use Case Diagram Aplikasi Lost and Found	28
Gambar 3. 2 Activity Diagram Aplikasi Lost and Found	. 36
Gambar 3. 3 Sequence Diagram Halaman Login	. 38
Gambar 3. 4 Sequence Diagram Lihat Barang Temuan	. 39
Gambar 3. 5 Sequence Diagram Lihat dan Edit Barang Hilang	40
Gambar 3. 6 Sequence Diagram Tambah Barang Temuan	41
Gambar 3. 7 Sequence Diagram Tambah Barang Hilang	. 42
Gambar 3. 8 Sequence Diagram Search Barang Hilang	43
Gambar 3. 9 Sequence Diagram Search Barang Hilang	. 44
Gambar 3. 10 Sequence Diagram Tambah Konfirmasi Barang	45
Gambar 3. 11 Sequence Diagram Lihat Konfirmasi Barang	46
Gambar 3. 12 Sequence Diagram Logout	. 47
Gambar 3. 13 Class Diagram Aplikasi Lost and Found	48
Gambar 3. 14 Data Model Lost and Found	49
Gambar 3. 15 Kerangka Penelitian	. 52
Gambar 3. 16 Flowchart Algoritma Boyer-Moore [24]	. 55
Gambar 4. 1 Halaman <i>Login</i>	. 59
Gambar 4. 2 Halaman Awal Barang Temuan	60
Gambar 4. 3 Tampilan Menu Barang Hilang	61
Gambar 4. 4 Tambahkan data barang temuan atau hilang	62

Universitas Bakrie

Gambar 4. 5 Formulir konfirmasi barang	62
Gambar 4. 6 Tampilan detail barang temuan	63
Gambar 4. 7 Tampilan data pemilik	64
Gambar 4. 8 Notifikasi barang telah diambil	64
Gambar 4. 9 Pesan Konfirmasi barang hilang via e-mail	65
Gambar 4. 10 Konfirmasi pengambilan barang via e-mail	65
Gambar 4. 11 Program JavaScript untuk Fitur Auto-complete	67
Gambar 4. 12 Kode autocomplete.php	67
Gambar 4. 13 Fungsi cariTemuan() dalam class.BoyerMoore.php	68
Gambar 4. 14 Bentuk String yang Akan Diolah	68
Gambar 4. 15 Fungsi makechartable()	69
Gambar 4. 16 Search dengan Fitur Auto-Complete Kondisi Pertama	70
Gambar 4. 17 Hasil <i>Search</i> Pada Kondisi Pertama	70
Gambar 4. 18 Search dengan Fitur Auto-Complete Kondisi Kedua	71
Gambar 4. 19 Hasil dari Pencarian String Kondisi Kedua	71
Gambar 4. 20 Grafik Perhitungan Skor	79

DAFTAR TABEL

Tabel 2. 1 Perbandingan Jenis Algoritma <i>Boyer-Moore</i> [4]	7
Tabel 2. 2 Rangkuman Penelitian Terdahulu	9
Tabel 2. 3 Perbandingan dari kasus terbaik dan kasus terburuk [9]	14
Tabel 2. 4 Contoh Algoritma Boyer-Moore	15
Tabel 2. 5 Contoh Algoritma Boyer-Moore	15
Tabel 2. 6 Perbandingan model pengembangan aplikasi [15]	18
Tabel 2. 7 Tabel Perbandingan antara ASP.NET dan PHP [20]	23
Tabel 3. 1 Use Case Scenario Login	29
Tabel 3. 2 Use Case Scenario Mencari Data Barang Hilang	29
Tabel 3. 3 Use Case Scenario Mencari Data Barang Temuan	30
Tabel 3. 4 Use Case Scenario Melihat Data Barang Hilang	30
Tabel 3. 5 Use Case Scenario Melihat Data Barang Temuan	31
Tabel 3. 6 Use Case Scenario Mengedit Barang Hilang	32
Tabel 3. 7 Use Case Scenario Membuat Laporan Kehilangan	32
Tabel 3. 8 Use Case Scenario Membuat Konfirmasi Barang	33
Tabel 3. 9 Use Case Scenario Membuat Laporan Penemuan	34
Tabel 3. 10 Penentuan Kriteria [2]	50
Tabel 4. 1 Penentuan Pattern dan Teks Setelah Jumlah Hurufnya Disamakan	72
Tabel 4. 2 Simulasi Cara Kerja Algoritma Brute Force	73
Tabel 4. 3 Simulasi Cara Kerja Algoritma Boyer-Moore	75
Tabel 4. 4 Pembobotan Kriteria	77
Tabel 4. 5 Pemberian Nilai Pada Setiap Kriteria	78
Tabel 4. 6 Simulasi Perhitungan Analisa Menggunakan Perhitungan Perbandin	ıgan
Eksponensial	78
Tabel 4. 7 Prioritas Keputusan	80

DAFTAR RUMUS

Rumus 2/1	Rumus Metode	Perhandingan	Eksponensial	[2]	26
italiias 2. i	italias microac	1 Ci Cuii aiii 5uii	Litopoliciisiai	[-]	_0

DAFTAR LAMPIRAN

Lampiran	1 Software Requirement Specification	87
Lampiran	2 Elisitasi "Lost and Found"	100
Lampiran	3. Rencana Kegiatan Penelitian	101
Lampiran	4. Surat Keterangan Penelitian	102
Lampiran	5. Hasil Wawancara	103
Lampiran	6. Algoritma Boyer-Moore	104
Lampiran	7. Surat Pengujian Aplikasi	106

DAFTAR SINGKATAN

ASCII American Standard Code for Information Interchange

CSS Cascading Style Sheet

HTML Hyper Text Markup Language

J2EE Java 2, Enterprise Edition

JSON JavaScript Object Nation

KMP Knuth Morris Pratt

MPE Metode Perbandingan Eksponensial

MVC Model View Controller

PHP Hypertext Preprocessor

RAD Rapid Application Development

SDLC Software Development Life Cycle

SI Sistem Informasi

UML Unified Modeling Language

WDLC Web Development Life Cycle

BAB I PENDAHULUAN

1.1 Latar Belakang Masalah

Berdasarkan kemajuan teknologi di setiap instansi di Indonesia, penerapan sistem berbasis teknologi berfungsi untuk mempermudah setiap kegiatan yang dilakukan secara manual. Penerapan teknologi ini untuk mendukung penyampaian informasi yang dapat diakses dengan mudah, cepat, dan sesuai dengan kebutuhan. Selain itu, untuk membuat implementasi yang sesuai dengan kegiatan operasional, dan penyediaan informasi untuk mendukung ketersediaan pelayanan publik [1].

Kehilangan barang-barang pribadi di Universitas Bakrie merupakan hal yang sudah sering terjadi. Sebagian besar mahasiswa yang merasa kehilangan atau menemukan barang di lingkungan Universitas Bakrie akan segera melapor ke petugas *security* terdekat. Hal ini yang membuat *staff security* merasa kesulitan dalam melakukan penyimpanan dan pencarian barang yang telah ditemukan atau barang yang dicari karena jangka waktu penemuan terlalu lama ataupun catatan yang sudah menumpuk. Dalam satu minggu, pihak *security* bisa menerima laporan kehilangan atau penemuan sebanyak 10 kali laporan, jumlah ini termasuk cukup banyak mengingat jumlah mahasiswa di Universitas Bakrie yang sangat banyak (Lampiran 5).

Dari permasalahan tersebut, perlu adanya sebuah sistem atau sarana khusus yang dapat menampung data temuan barang dan lokasi penyimpanan barang tersebut. Salah satunya dengan membangun sistem informasi *Lost and Found* berbasis *web* yang dapat diakses oleh *staff security* di berbagai pos keamanan di Universitas Bakrie. Dengan adanya sistem informasi temuan barang ini akan memudahkan *staff security* untuk mengelola temuan barang dan laporan kehilangan secara efektif.

Dalam pembangunan sistem informasi *Lost and Found* dibutuhkan suatu metode pencarian yang dapat memudahkan sistem untuk melakukan pencarian. Hadirnya mesin pencarian (*Search Engine*) di dalam sistem informasi memudahkan pengguna komputer dalam mencari berbagai informasi. Untuk memudahkan penggunanya, *Search Engine* menambahkan fitur pencari sugesti

hasil terdekat pencarian yaitu menggunakan fitur *auto-complete* [2]. Dalam pencarian fitur *auto-complete*, diperlukan sebuah algoritma dalam pencarian *string*. Algoritma yang digunakan untuk pencarian *string* semakin berkembang dari hari ke hari. Tujuan utamanya tentu saja untuk mencari *string* seakurat dan secepat mungkin. Sampai saat ini algoritma pencarian *string* dibagi menjadi 3 kategori berdasarkan arah pencocokan *string* yaitu dari kiri ke kanan, kanan ke kiri, dan dari arah yang ditentukan secara spesifik. Metode pencocokan dari kiri ke kanan merupakan metode yang paling natural karena sesuai dengan arah membaca, pencocokan *string* dari kanan ke kiri merupakan metode yang dianggap paling efisien dalam praktiknya, dan pencocokan *string* dari arah yang ditentukan secara spesifik merupakan algoritma yang memiliki hasil yang paling baik secara teoritis [3].

Algoritma yang dianggap memiliki hasil yang paling baik dalam praktiknya merupakan algoritma yang bergerak mencocokkan *string* dari arah kanan ke kiri. Algoritma *Boyer-Moore* adalah salah satu contoh algoritma yang menggunakan arah dari kanan ke kiri. Algoritma ini telah banyak dikenal oleh masyarakat dan dianggap paling efisien untuk pencarian *string*. Ide dibalik algoritma ini adalah bahwa dengan memulai pencocokan karakter dari kanan, dan bukan dari kiri, maka akan lebih banyak informasi yang didapat [4].

1.2 Identifikasi Masalah

Ditinjau dari latar belakang dan masalah-masalah di atas dapat diidentifikasikan bahwa sistem barang hilang dan temuan di Universitas Bakrie masih dilakukan secara manual dan dibutuhkan sebuah sistem informasi dengan penerapan fitur *auto-complete searching* menggunakan sebuah algoritma pencarian untuk mempermudah sistem informasi. Salah satu algoritma *searching* yang efektif adalah algoritma *Boyer-Moore*.

1.3 Rumusan Masalah

Berdasarkan latar belakang di atas, dirumuskan masalah dalam penelitian ini adalah bagaimana penerapan algoritma *Boyer-Moore* dalam pencarian dengan fitur *auto-complete* pada sistem informasi *Lost and Found* berbasis *web*?

1.4 Batasan Masalah

Untuk membatasi pembahasan agar tidak keluar dari konteks topik penelitian, maka batasan dalam pembahasan masalah sebagai berikut:

- Sistem Lost and Found dibangun sebagai sarana mempermudah bagian kemanan Universitas Bakrie
- Sistem Lost and Found hanya mengelola pencatatan barang yang telah ditemukan dan mendata laporan kehilangan dari civitas akademika Universitas Bakrie.

1.5 Tujuan Penelitian

Tujuan dilakukannya penelitian ini adalah dapat menerapkan dan membuktikan algoritma *Boyer-Moore* dapat diterapkan pada fitur *auto-complete* sehingga mempercepat proses pencarian data.

1.6 Manfaat Penelitian

Manfaat yang akan diperoleh dengan adanya penelitian ini adalah

- Memudahkan bagian security dalam melakukan pencatatan dan pencarian data barang yang telah ditemukan serta mengurangi kehilangan data inventaris
- 2. Menambah referensi bagi peneliti lain dalam penerapan algoritma *Boyer-Moore* dalam proses pencarian.

1.7 Sistematika Penulisan

Sistematika penulisan menguraikan secara singkat mengenai penelitian yang dilakukan. Adapun sistematika penulisan adalah sebagai berikut:

BAB I PENDAHULUAN

Bab ini menjelaskan mengenai latar belakang penelitian, identifikasi masalah, rumusan masalah, batasan masalah, tujuan penelitian, manfaat penelitian, dan sistematika penulisan.

BAB II TINJAUAN PUSTAKA

Bab ini menjelaskan *review* dari penelitian sebelumnya. Teori tersebut antara lain *Web Development Life Cycle*, Algoritma *Boyer-Moore*, dan *Unified Modeling Language*.

BAB III METODE PENELITIAN

Bab ini menjelaskan metode penelitian dan alokasi waktu yang dibutuhkan dalam menyelesaikan penelitian ini.

BAB IV IMPLEMENTASI DAN PENGUJIAN

Bab ini menjelaskan mengenai hasil implementasi algoritma *Boyer-Moore* dan pengujian meggunakan Metode Perbandingan Eksponensial.

BAB V SIMPULAN DAN SARAN

Bab ini menjelaskan simpulan dan saran yang mencakup seluruh hasil dari penelitian yang telah dilakukan

BAB II

TINJAUAN PUSTAKA

2.1 Penelitian Terdahulu

Dasar atau acuan yang berupa teori-teori atau temuan-temuan melalui hasil berbagai penelitian sebelumnya merupakan hal yang perlu dan dapat dijadikan data pendukung. Salah satu data pendukung yang menurut peneliti perlu dijadikan bagian tersendiri adalah penelitian terdahulu yang relevan dengan permasalahan yang sedang dibahas dalam penelitian ini. Dalam hal ini, fokus penelitian terdahulu yang dijadikan acuan adalah terkait dengan penerapan algoritma *Boyer-Moore* dan sistem *Lost and Found*. Oleh karena itu, peneliti melakukan langkah kajian terhadap beberapa hasil penelitian berupa tesis dan jurnal melalui internet.

Berikut ini adalah beberapa pemaparan singkat tentang perbandingan dari analisis yang akan dilakukan dengan menganalisis jurnal

 Analisa Perbandingan Algoritma Brute Force dan Boyer-Moore dalam pencarian Word Suggestion Menggunakan Metode Perbandingan Eksponensial (2013).

Dalam penelitian ini dirancang sebuah aplikasi *Word Suggestion*, yang merupakan aplikasi pencarian sugesti hasil terdekat dengan menggunakan *string matching* dalam sebuah pencarian, dalam perancangannya aplikasi tersebut membandingkan dua metode algoritma pencarian. Membandingkan metode algoritma *Boyer-Moore* dan *Brute Force* dengan beberapa percobaan dan menghitung keefektifan kedua algoritma menggunakan metode Perbandingan Eksponensial. Hasil dari penelitian tersebut adalah dari beberapa pencarian kata yang diperoleh berdasarkan jumlah iterasi yang ada pada kedua algoritma menunjukkan bahwa Algoritma *Boyer-Moore* memiliki jumlah iterasi paling sedikit sehingga menunjukkan Algoritma *Boyer-Moore* merupakan algoritma tercepat dibandingkan dengan Algoritma *Brute Force* [2].

2. Rancang Bangun Sistem Informasi Pencarian Benda Hilang 'Lost and Found' Berbasis Website di Universitas Brawijaya (2012).

Penelitian tersebut dilakukan dikarenakan tingkat pencarian dan penemuan barang hilang yang cukup banyak dan belum adanya sarana yang menampung barang yang ditemukan. Pencarian barang dan penemuan barang sebelumnya dilakukan dengan menempelkan brosur di tembok yang merupakan cara tradisional dan merusak keindahan tembok UB. Sehingga, peneliti membuat sarana informasi pencarian benda hilang berbasis web yang terintegrasi dengan layanan BAIS (Brawijaya Authentication and Identification System) yang memungkinkan pengguna single sign on untuk aplikasi dalam domain UB. Hanya pengguna otentik saja yang dapat menggunakan layanan aplikasi Lost and Found. Peneliti tersebut juga menerapkan rancang bangun menggunakan Framework Codeigniter dengan penerapan pola desain Model View Controller (MVC). Dalam perancangan aplikasi tersebut peneliti menggunakan 4 diagram yaitu use case diagram, activity diagram, sequence diagram, dan class diagram. Hasil dari penelitian tersebut adalah aplikasi lost and found berhasil dibangun dan ditujukan untuk mahasiswa Universitas Brawijaya setelah dilakukan dua tahap pengujian yaitu pengujian validasi dan pengujian feedback dari user [5].

3. Studi Perbandingan Implementasi Algoritma *Boyer-Moore*, *Turbo Boyer-Moore*, dan *Tuned Boyer-Moore* dalam Pencarian *String* (2013).

Dalam penelitian tersebut, peneliti menganalis dan membuat pencarian *string* dengan menggunakan tiga jenis Algoritma *Boyer-Moore* yaitu Algotima *Boyer-Moore*, *Turbo Boyer-Moore*, dan *Tuned Boyer-Moore* dengan tujuan adalah untuk mengetahui bagaimana performa algoritma-algoritma tersebut, terutama di bidang waktu yang diperlukan untuk mencari suatu *pattern* dalam *text*. Peneliti membangun sebuah aplikasi menggunakan metode *prototyping* dan menggunakan Microsoft Visual Studio dengan bahasa C#. Aplikasi tersebut mendukung pencarian dengan menggunakan tiga algoritma, pengubah kata (*replace*), *highlight* kata yang dicari, dan pemberian informasi waktu yang dibutuhkan masing-masing algoritma untuk pencarian serta

algoritma mana yang membutuhkan waktu paling sedikit untuk pencarian. Dari penelitian yang dilakukan, dapat disumpulkan bahwa algoritma yang tercepat dalam pencarian *string* adalah algoritma *Boyer-Moore*. Algoritma Turbo *Boyer-Moore* merupakan algoritma tercepat kedua dan yang paling lambat adalah *Tuned Boyer-Moore* [4].

Tabel 2. 1 Perbandingan Jenis Algoritma Boyer-Moore [4]

Algoritma	Karakteristik			
Boyer-Moore	Pencocokan karakter dari kanan ke kiri			
	dan bukan dari kiri ke kanan sehingga			
	akan lebih banyak informasi yang			
	didapat			
Turbo Boyer-Moore	Membutuhkan ruang lebih tetapi			
	membutuhkan pemrosesan ekstra. Ruang			
	ekstra yang diperlukan berguna untuk			
	mengingat faktor dari teks yang cocok			
	dengan akhiran dari string yang dicari			
	selama attempt terakhir dan hanya jika			
	good-suffix dilakukan			
Tuned Boyer-Moore	Fitur utama dari algoritma ini adalah			
	simplifikasi dari algoritma Boyer-Moore,			
	mudah untuk diimplementasikan, hanya			
	menggunakan bad-character shift, dan			
	sangat cepat dalam praktiknya			

4. Perancangan dan Pembuatan Sistem Informasi Kehilangan Berbasis *Web* (2014).

Penelitian tersebut bertujuan untuk membuat aplikasi berbasis *web* untuk sistem informasi kehilangan di Universitas Muhammadiyah Surakarta. Penelitian ini dilakukan mengingat mahasiswa merasa kesulitan dalam menemukan barang yang telah hilang dan mahasiswa tidak dapat mengandalkan pihak satpam saja, sehingga dibutuhkan suatu sarana yang

dapat diakses oleh semua pihak untuk menemukan barang dan dapat dijadikan arsip oleh pihak satpam setiap bulannya. Perancangan dilakukan menggunakan tool software ApacheFriends XAMPP (Barispaket) version 1.6.7 (MySQL 5.0.51 (Community Server), PHP 5.2.6 dan PHP 5.2.6 dan phpMyAdmin 2.11.7), dengan web desainer Macromedia Dreamweaver 8. Sistem kehilangan berbasis web tersebut sudah dibenahi dan dibuat dengan menggunakan bahasa pemrograman PHP dan database MySQL. Dari hasil pengujian dengan berbagai macam internet browser secara localhost maupun online dapat dilihat bahwa sistem dapat berjalan lancar [6].

Tabel 2. 2 Rangkuman Penelitian Terdahulu

No	Judul	Pengarang	Tahun	Permasalahan	Hasil
1	Analisa Perbandingan	Andri Januardi	2013	Pada proses perbandingan	Dibuat sebuah aplikasi word suggestion
	Algoritma Brute Force dan			kecepatan dua algoritma	pada mesin pencarian dengan
	Boyer-Moore dalam pencarian			pencarian dalam word	menggunakan dua perbandingan
	Word Suggestion			suggestion yang dilakukan.	algoritma yaitu Boyer-Moore dan Brute
	Menggunakan Metode				Force, dan hasil dari cara kerja kedua
	Perbandingan Eksponensial				algoritma menunjukkan bahwa
					Algoritma Boyer-Moore merupakan
					algoritma paling efektif daripada <i>Brute</i>
					Force.
2	Rancang Bangun Sistem	Dedi Arief Wibisono,	2012	Pencarian barang hilang	Dibuat sebuah aplikasi berbasis web
	Inforamsi Pencarian Benda	Diah Priharsari, ST., MT,		dengan menempelkan info	yang diintergrasikan dengan
	Hilang 'Lost and Found'	Adharul Muttaqin, ST.,		kehilangan di tembok-tembok,	menggunakan NIM & password yang
	Berbasis Website di	MT		belum tentu orang	dimiliki mahasiswa, maka mahasiswa
	Universitas Brawijaya.			mempedulikan info kehilangan	dapat <i>login</i> di aplikasi dan dapat
				tersebut. Terlebih,	memberi informasi mengenai
				pengumuman kehilangan	kehilangan/penemuan benda.
				tersebut hanya akan mengotori	
				tembok dan mengganggu	
				pemandangan.	

No	Judul	Pengarang	Tahun	Permasalahan	Hasil
3	Studi Perbandingan	Vina Sagita, Maria Irmina	2013	Seiring dengan banyaknya	Peneliti membandingkan dan
	Implementasi Algoritma	Prasetiyowati		pencarian string dalam jumlah	membangun sebuah aplikasi yang dapat
	Boyer-Moore, Turbo Boyer-			besar, maka diperlukan	menghitung kecepatan sebuah
	Moore, dan Tuned Boyer-			pencocokan karakter	pencarian data berdasarkan algoritma
	Moore dalam Pencarian			menggunakan algoritma yang	yang dipakai, hasilnya adalah algoritma
	String.			paling efektif dalam string	Boyer-Moore merupakan algoritma
				searching.	tercepat jika dibandingkan dengan
					algoritma Turbo Boyer-Moore dan
					Tuned Boyer-Moore.
4	Perancangan dan Pembuatan	Supriyanto	2014	Kasus hilangnya KTM atau	Perancangan website kehilangan
	Sistem Informasi Kehilangan			barang lain seperti STNK	dengan menggunakan software
	Berbasis Web			sering terjadi di lingkungan	ApacheFriends XAMPP (Barispaket)
				UMS, dan tidak ada tindak	version 1.6.7 (MySQL 5.0.51
				lanjut yang pasti dari pihak	(Community Server), PHP 5.2.6 dan
				satpam, pihak satpam hanya	phpMyAdmin 2.11.7), dengan web
				memberikan laporan dan tidak	desainer Macromedia Dreamweaver 8.
				memberikan kepastian apakah	
				barang ditemukan atau tidak.	
				Sehingga tidak ada suatu	
				wadah yang memungkinkan	
				untuk informasi mengenai	
				barang hilang	

2.2 Konsep Dasar Sistem Informasi

2.2.1 Definisi Sistem Informasi

Suatu sistem informasi (SI) dapat berupa kombinasi yang terorganisir pada manusia, *hardware*, *software*, jaringan komunikasi, *data resources*, kebijakan dan prosedur yang menyimpan, mengambil, mengubah dan menyebarkan informasi dalam sebuah organisasi. Manusia mengandalkan sistem informasi modern untuk berkomunikasi dengan satu sama lain menggunakan berbagai perangkat fisik (*hardware*), instruksi pemrosesan informasi dan prosedur (*software*), saluran komunikasi (*networks*), dan data yang tersimpan (*data resources*) [7].

Menurut Al-Bahra, sistem informasi dapat didefinisikan sebagai berikut :

- 1. Suatu sistem yang dibuat oleh manusia yang terdiri dari komponenkomponen dalam organisasi untuk mencapai suatu tujuan yaitu menyajikan informasi.
- Sekumpulan prosedur organisasi yang pada saat dilaksanakan akan memberikan informasi bagi pengambil keputusan dan atau untuk mengendalikan organisasi.
- 3. Suatu sistem dalam suatu organisasi yang mempertemukan kebutuhan pengolahan transaksi, mendukung operasi, bersifat manajerial, dan kegiatan strategi dari suatu organisasi dan menyediakan pihak luar tertentu dengan laporan-laporan yang diperlukan [8].

2.2.2 Komponen Sistem Informasi

Model sistem informasi ini menyoroti hubungan antara komponenkomponen dan kegiatan sistem informasi. Hal ini juga menyediakan kerangka kerja yang menekankan pada empat konsep utama yang dapat diterapkan untuk semua jenis sistem informasi:

- 1. Manusia, *hardware*, *software*, data, dan jaringan adalah lima sumber dasar sistem informasi
- 2. Sumber daya manusia termasuk pengguna akhir dan IS *Specialist*, sumber daya perangkat keras terdiri dari mesin dan media, sumber daya perangkat lunak mencakup program dan prosedur, sumber data

- meliputi data dan basis pengetahuan, dan sumber daya jaringan meliputi media komunikasi dan jaringan
- 3. Sumber data yang diubah oleh kegiatan pengolahan informasi menjadi berbagai produk informasi bagi pengguna akhir *(end user)*
- 4. Pengolahan informasi terdiri dari kegiatan sistem *input*, pengolahan, *output*, *storage*, dan kontrol [7].

Gambar 2. 1 Komponen sebuah Sistem Informasi [7]

2.3 Konsep Dasar String Searching

String adalah urutan dari karakter, yang mana karakter ini dapat terdiri dari beberapa alfabet. Misalnya adalah string biner yang terdiri dari dua alfabet, yaitu 0 dan 1, jadi string biner merupakan suatu urutan karakter 0 maupun 1. Contoh lain adalah string American Standard Code for Information Interchange (ASCII) yang terdiri dari 256 alfabet.

String searching pada dasarnya adalah mencari pola P yang memiliki panjang m dalam suatu teks T yang memiliki panjang n. Baik pola maupun teks

dinyatakan dalam array, pola dinyatakan dengan P[0 ... m-1] dan teks dinyatakan dengan T[0 ... n-1].

Kecocokan adalah apabila karakter pada teks dan karakter pada pola dibandingan adalah sama sedangkan ketidakcocokan adalah sebaliknya.

- Abu-abu muda menunjukkan kecocokan
- Abu Abu tua menunjukkan ketidakcocokan

Window adalah suatu kotak pada teks yang mempunyai ukuran sama dengan panjang pola, fungsinya untuk membantu dalam pencarian pola, pertama kali window ini diletakkan di posisi paling kiri dari teks. Kemudian dilakukan percobaan, yaitu perbandingan karakter-karakter di window dengan karakter-karakter di pola. Pergeseran window ke kanan akan dilakukan jika terjadi dua sebab, yang pertama adalah jika terjadi kecocokan dari semua karakter di pola atau berarti pola ditemukan di teks. Pergeseran karena sebab yang pertama ini dilakukan untuk mencari pola yang berikutnya. Sebab yang kedua adalah jika terjadi ketidakcocokan. Mekanisme ini diulang terus-menerus sampai batas kanan dari window melebihi batas kanan dari teks.

Misalnya S adalah sebuah *string* dengan panjang m maka ada beberapa bagian dari *string*:

- Substring S[i ... j] adalah bagian dari string antara i dan j

- Prefix dari S adalah sebuah substring yaitu S[0 ... i]

- Suffix dari S adalah sebuah substring yaitu S[i ... m-1]

Dimana i dan j adalah suatu indeks array antara 0 dan m-1

Contoh:

Sebuah *string S*

Panjang string = 6

Substring
$$S[1 ... 3] = "ndr"$$

Semua kemungkinan prefix dari S:

Semua kemungkinan suffix dari S:

Dalam penerapan *string searching*. terdapat beberapa algoritma dengan proses pencarian yang berbeda-beda. Adapun algoritma-algoritma yang telah berkembang adalah algoritma *Brute Force*, *Knuth Morris Pratt* (KMP), *Boyer-Moore*, *Karp Rabin*, dll.

Tabel 2. 3 Perbandingan dari kasus terbaik dan kasus terburuk [9]

Algoritma	Best Case	Worse Case
Brute Force	m+n	m.n
KMP	m+n	m+n
Boyer-Moore	n/m	m+n
Karp Rabin	m+n	m.n

2.4 Algoritma Boyer-Moore

Menurut Wibisono [3], algoritma *Boyer-Moore* adalah salah satu algoritma untuk mencari *string* di dalam teks, dibuat oleh R.M Boyer dan J.S Moore. Algoritma *Boyer-Moore* melakukan perbandingan dimulai dari kanan ke kiri, tetapi pergeseran *window* tetap dari kiri ke kanan. Jika terjadi kecocokan maka dilakukan perbandingan karakter teks dan karakter pola yang sebelumnya, yaitu dengan sama-sama mengurangi indeks teks dan pola masing-masing sebanyak satu [10].

Menurut Chiquita [11], dengan menggunakan algoritma *Boyer-Moore* ini, secara rata-rata proses pencarian akan menjadi lebih cepat jika dibandingkan

dengan algoritma lainnya. Alasan melakukan pencocokan dari kanan (posisi terakhir *string* yang dicari) ditunjukkan dalam contoh berikut:

Tabel 2. 4 Contoh Algoritma Boyer-Moore

M	A	K	A	N	T	О	M	A	T
T	О	M	A	T					

Pada contoh di atas, dengan melakukan perbandingan dari posisi paling akhir *string* dapat dilihat bahwa karakter "n" pada *string* "makan" tidak cocok dengan karakter "t" pada *string* "tomat" yang dicari, dan karakter "n" tidak pernah ada dalam *string* "tomat" yang dicari sehingga *string* "tomat" dapat digeser melewati *string* "makan", sehingga posisinya seperti berikut.

Tabel 2. 5 Contoh Algoritma Boyer-Moore

M	A	K	A	N		T	О	M	A	T
					T	О	M	A	T	

Dalam contoh terlihat bahwa algoritma *Boyer-Moore* memiliki loncatan karakter yang besar sehingga mempercepat pencarian *string* karena dengan hanya memeriksa sedikit karakter, dapat langsung diketahui bahwa *string* yang dicari tidak ditemukan dan dapat digeser ke posisi berikutnya [10].

Secara sistematis, langkah-langkah yang dilakukan algoritma *Boyer-Moore* pada saat mencocokkan *string* adalah:

- 1. Algoritma Boyer-Moore mulai mencocokkan pattern pada awal teks
- 2. Dari kanan ke kiri, algoritma ini akan mencocokkan karakter per karakter *pattern* dengan karakter di teks yang bersesuaian sampai salah satu kondisi berikut dipenuhi:
 - a. Karakter di *pattern* dan di teks yang dibandingkan tidak cocok (mismatch)
 - b. Semua karakter di *pattern* cocok. Kemudian algoritma akan memberitahukan penemuan di posisi ini.

3. Algoritma kemudian menggeser *pattern* dengan memaksimalkan nilai pergeseran *good-suffix* dan pergeseran *bad-character*, lalu mengulangi langkah 2 sampai *pattern* berada di ujung teks

Algoritma *Boyer-Moore* ini juga memiliki beberapa aturan untuk pergeseran *pattern* yaitu *good-suffix rule* dan *bad character rule*.

2.4.1 *Good-suffix shift rule*

Good-suffix rule hanya membandingkan karakter yang sudah cocok ke karakter pattern, aturan dari good-suffix rule adalah sebagai berikut:

 Pergeseran dari x[i]=a ke karakter lain yang letaknya lebih kiri dari x[i] dan terletak di sebelah kiri segmen u.

Gambar 2. 2 Good-suffix shift, u terjadi lagi didahului karakter c berbeda dari a [12]

2. Jika tidak ada segmen yang sama dengan u, maka dicari u yang merupakan *suffix* terpanjang u.

Gambar 2. 3 Good-suffix shift, hanya suffix dari u yang terjadi lagi di pattern x [12]

2.4.2 Bad-character rule

Bad-character rule hanya membandingkan karakter yang tidak cocok ke karakter pattern, aturan dari bad-character rule adalah sebagai berikut:

1. Jika *bad-character* y[i+j] terdapat pada *pattern* di posisi tekanan k yang lebih kiri dari x[i] maka *pattern* digeser ke kanan sejauh i-k

Gambar 2. 4 Bad-character shift, b terdapat di pattern x [12]

2. Jika *bad-character* y[i+j] tidak ada *pattern* sama sekali, maka *pattern* digeser ke kanan sejauh i

Gambar 2. 5 Bad-character shift, b tidak ada di pattern x [12]

3. Jika *bad-character* y[i+j] terdapat pada *pattern* di posisi tekanan k yang lebih kanan dari x[i], maka *pattern* seharusnya digeser sejauh i-k yang hasilnya negatif (*pattern* digeser kembali ke kiri). Maka bila kasus ini terjadi akan diabaikan.

Pada kasus ketidakcocokan di atas, algoritma akan membandingkan langkah yang diambil oleh fungsi *good-suffix shift* dan *bad-charater shift* dimana langkah yang paling besar yang akan digunakan [12].

2.5 Model Siklus Pengembangan Perangkat Lunak

Pengembangan perangkat lunak dapat diartikan sebagai proses membuat suatu perangkat lunak baru untuk menggantikan perangkat lunak lama secara keseluruhan atau memperbaiki perangkat lunak yang telah ada. Agar lebih cepat dan tepat dalam mendeskripsikan solusi dan mengembangkan perangkat lunak, juga hasilnya lebih mudah untuk dikembangkan dan dipelihara, maka pengembangan perangkat lunak memerlukan suatu metodologi khusus. Metodologi pengembangan perangkat lunak adalah suatu pengorganisasian kumpulan metode dan konvensi notasi yang telah didefinisikan untuk mengembangkan perangkat lunak. Berikut batu landasan yang menopang rekayasa perangkat lunak [13, p. 14].

Gambar 2. 6 Software Engineering Layers [13]

Setiap pengembangan perangkat lunak tidak akan terlepas dari sebuah SDLC (Software Development Life Cycle). Dalam SDLC terdapat banyak model pengembangan yang dapat dipakai untuk mengembangkan sebuah perangkat lunak aplikasi yaitu: Waterfall, Spiral, RAD (Rapid, Application Development), dan sebagainya [14]. Penggunaan model yang sesuai dengan kebutuhan pada projek pengembangan aplikasi yang dilakukan akan berdampak pada kualitas aplikasi. Maka dari itu, pengembang aplikasi harus dapat mengukut aplikasi yang akan dibuat sebelum memilih SDLC yang sesuai dalam praktik pengembangan aplikasi. Untuk meningkatkan kualitas pengembangan aplikasi, maka perlu untuk mengetahui karakteristik dari masing-masing model pengembangan dan menyesuaikan kebutuhan dari beberapa aspek dalam projek yang dilakukan.

Tabel 2. 6 Perbandingan model pengembangan aplikasi [15]

Model/Features	Waterfall	Incremental	Spiral	Agile	RUP
Requirement	Beginning	Beginning	Beginning	Frequently	Beginning
Specifications				changed	
Cost	Low	Low	Expensive	Very High	Expensive
Resource	Yes	Yes	Yes	No	Yes
Control					
Simplicity	Simple	Intermediate	Intermedia	Complex	Simple and
			te		clear
Risk Analysis	Only at	Intermediate	High	High	Only at
	beginning				beginning

Model/Features	Model/Features Waterfall		Spiral	Agile	RUP	
					of last phase	
Flexibility	Rigid	Less Flexible	Flexible	Highly Flexible	Considera ble	
Reusability	Limited	Yes	Yes	Use Case reuse	Support reusability of existing classes	

Web Development Life Cycle (WDLC) adalah suatu metodologi baru yang diusulkan khusus untuk pengembangan aplikasi web. Metodologi ini didasarkan pada metodologi sebelumnya yang ditemukan dalam literatur untuk menciptakan suatu proses terstruktur untuk masalah yang sangat terstruktur dari pengembangan aplikasi web itu sendiri. WDLC adalah hibrida dari dua metodologi sebelumnya yang dikenal sebagai Systems Development Life Cycle and Prototyping. WDLC menggunakan komponen dari masing-masing metodologi, menggabungkan ke dalam sebuah pendekatan baru yang akan mengurangi waktu pengembangan, menambahkan struktur untuk masalah yang tidak terstruktur dan menjaga pengguna yang terlibat dalam seluruh siklus hidup pengembangan [16].

Ada lima tahapan WDLC yang memungkinkan proses perancangan selesai. Masing-masing tahapan mencakup seperangkat tugas, yang mengandalkan teknik yang menghasilkan *file* dokumen tertentu untuk memahami proyek [17].

Gambar 2. 7 Web Development Life Cycle Model (WDLC) [17]

1. Website Planning

Fase pertama dalam WDLC adalah *planning*. Beberapa tahapan yang harus dilakukan antara lain:

- a. Mengidentifikasi tujuan dari *website* yang akan dibangun, sehingga dapat menentukan perencanaan secara tepat
- b. Memahami siapakah yang akan menggunakan website, hal ini merupakan tahapan untuk mengidentifikasi target pengguna, menentukan halaman yang akan diakses oleh pengguna, dan mengidentifikasi teknologi yang dibutuhkan dalam mengakses website tersebut
- c. Memahami teknologi *website* apa yang akan digunakan, seperti *web browser*, akses internet, dan resolusi layar monitor
- d. Mengidentifikasi isi konten dari *website* yang dibedakan berdasarkan penggunanya
- e. Menentukan informasi apa saja yang perlu diletakkan di dalam website tersebut.

2. Website Analysis

Tahapan ini merupakan rangkaian aktivitas dimana seorang analis menggabungkan informasi yang dibutuhkan oleh pengguna, menganalisis kebutuhan fungsional dari sistem, kebutuhan masukan data dan sumber daya, serta kebutuhan presentasi dan keluaran data. Berikut ini adalah tahapan-tahapan yang perlu dilakukan.

- a. Mengidentifikasi tugas atau pekerjaan yang harus diselesaikan oleh masing-masing pengguna sistem
- b. Mengidentifikasi *site map*, menentukan struktur dari *website*, dan finalisasi konten yang akan diletakkan pada halaman *web*
- c. Menganalisa kualitas kebutuhan data yang memang benar-benar dibutuhkan oleh pengguna agar dapat dihasilkan keluaran yang benar dan tepat.

3. Web Page Design and Development

Tahapan ini meliputi *blue print* dari *website* dengan mempresentasikannya ke dalam desain *logical* dan *physical* yang akan dibangun pada tahapan *development*. Desain yang dibuat meliputi *data models, process models,* dan *presentation models*. Desain tersebut dibuat dalam bentuk dokumen sebagai panduan dalam pengembangan dan pengujian sistem.

Seorang *developer* memiliki tanggung jawab dalam pembangunan kode program, dan membuat *data sets* untuk masukan serta memverifikasi bahwa program dapat menghasilkan keluaran sesuai yang diharapkan oleh pengguna. Hanya pada tahapan ini, konseptual *website* diterjemahkan ke dalam sebuah *website* yang bermanfaat dan atraktif.

4. Website Testing

Tim pengembangan mendemonstrasikan website kepada pengguna. Mereka memastikan bahwa website berjalan sesuai dengan yang diharapkan oleh pengguna. Hal ini meliputi perencanaan pengujian, membuat text data, mengeksekusi text runs, mencocokkan hasil teks sesuai dengan yang diharapkan, menganalisa dan memperbaiki bugs yang terjadi hingga tidak terjadi kesalahan. Website harus diuji pada tahapan yang berbeda, yang meliputi content, functionality, usability, dan correctnest.

5. Website Implementation and Maintenance

Tahapan ini meliputi instalasi *website* pada sistem komputer yang dipakai oleh pengguna. Selanjutnya adalah tahapan pemeliharaan *website* yang ditujukan untuk memastikan bahwa kebutuhan informasi masih sesuai dengan yang diharapkan. Hal ini dapat menjaga agar *website* tetap *up to date*.

2.6 Bahasa Pemrograman

Teknologi layanan web didasarkan pada konsep komputasi berorientasi layanan-layanan web standar yang mengintegrasikan aplikasi berbasis web melalui menghubungkan dan berbagi proses bisnis di seluruh jaringan di mana aplikasi dari vendor yang berbeda, bahasa dan platform komunikasi satu sama lain dengan klien [18]. Beberapa teknologi terkemuka yang sebagian besar digunakan dalam mengembangkan dan menerapkan aplikasi berbasis web adalah ASP.NET, Hypertext Preprocessor (PHP), ColdFusion, Perl, Phyton, Java 2 Enterprise Edition (J2EE), Ruby on Rails dll. Dari statistik di bawah ini menunjukkan bahwa PHP berada pada posisi teratas yang paling sering digunakan sekitar 24692359 websites, dan posisi kedua adalah ASP.NET yang digunakan lebih dari 19365837 websites [19].

Gambar 2. 8 Usage Statistics of Web Technologies [19]

Salah satu aspek penting yang dicatat selama pengembangan adalah penggunaan memori. ASP.NET terlihat cukup mahal dengan penggunaan memori yang dapat menjadi masalah serius ketika mengembangkan aplikasi *web* yang lebih besar. Sedangkan penggunaan memori pada PHP lebih efisien daripada ASP.NET. Alasannya adalah PHP memiliki *code path* kecil yang berarti kode sisi *server* lebih sedikit jika dibandingkan dengan ASP.NET [20].

Tabel 2. 7 Tabel Perbandingan antara ASP.NET dan PHP [20]

Pengukuran	ASP.NET	РНР		
Biaya	Program ASP perlu	Program PHP berjalan		
	IIS untuk dipasang di	di <i>Apache</i> pada <i>server</i>		
	platform Windows	Linux dan Unix secara		
	server.	gratis.		
	Konektivitas database			
	mahal; MS-SQL	Menggunakan		
	adalah produk	MySQL sebagai		
	Microsoft	database (gratis)		
Kecepatan	ASP.NET adalah	PHP adalah bahasa		
	bahasa yang	yang ditafsirkan dan		
	dioptimalkan,	kurang cepat dalam		
	dikompilasi dan lebih	eksekusi		
	cepat dalam eksekusi			
Penggunaan Memori	Panjangnya code path	Kecilnya code path		
	membuat penggunaan	membuat penggunaan		
	memori lebih mahal	memori lebih efisien		
Support and	Perbaikan dan	Lebih banyak		
Resources	pembaruan dibuat	pengembang open		
	oleh jumlah yang	source dan sumber		
	tersedia dari developer	daya yang tersedia		
	Microsoft sendiri.	dari forum PHP.		
	Kurang dukungan	Dukungan lebih		
	yang tersedia untuk	tersedia dari forum		
	memecahkan	РНР		
	tantangan baru.			
Editor dan perangkat	Paling banyak	Editor independen.		
	Microsoft Visual	Memiliki akses ke		
	Studio yang	editor dalam jumlah		
	digunakan untuk	yang luas.		

Pengukuran	ASP.NET	PHP
	membangun aplikasi	
	.NET	
Pengembangan dan	Rata-rata waktu	Rata-rata waktu
coding	pengembangan lebih	pengembangan lebih
	lama untuk situs yang	singkat untuk situs
	lebih kecil.	yang lebih kecil.

2.7 Unified Modeling Language (UML)

UML adalah suatu kumpulan pemodelan yang digunakan untuk menggambarkan sebuah sistem *software* yang terkait dengan objek, yang dijelaskan sebagai berikut [21].

- a. Objek, merupakan sesuatu yang dapat dilihat, disentuh, atau dirasakan. Sehingga *user* dapat menyimpan serta melakukan pencatatan perilaku mengenai objek tersebut. Setiap objek memiliki dua karakteristik yaitu:
 - 1. Atribut, merupakan data yang mewakili karakteristik *interest* mengenai sebuah objek.
 - 2. *Behavior*, merupakan kumpulan dari sesuatu yang dapat dilakukan oleh objek dan terkait dengan fungsi-fungsi yang bertindak pada data objek (atribut). Pada siklus berorientasi objek, perilaku objek merujuk kepada metode, operasi, atau fungsi.
- b. Kelas, merupakan suatu set objek yang memiliki atribut dan *behavior* yang sama, biasanya disebut dengan *object class*.
- c. Generalisasi/Spesialisasi, merupakan sebuah teknik dimana atribut dan behavior yang umum pada beberapa tipe kelas objek, dikelompokkan (atau diabstraksi) ke dalam kelasnya sendiri, disebut sebagai supertype. Atribut dan metode kelas objek supertype kemudian diwariskan oleh kelas objek tersebut (subtype).
- d. *Inheritance*, merupakan konsep dimana metode dan atau atribut yang ditentukan di dalam sebuah *object class* lainnya.

Menurut penelitian yang dilakukan oleh Nabil Mohammed Ali Munasar yang berjudul Comparison Between Traditional Approach and Object Oriented Approach in Software Engineering Development (2011), di dalam UML terdapat beberapa diagram yang digunakan untuk menjelaskan sistem berorientasi objek [22].

a. Use Case

Use case merupakan deskripsi secara *static* yang menggambarkan bagaimana sistem itu digunakan oleh konsumen atau *user* dan sistem lainnya. Selain itu juga, *use case* diagram menjelaskan hubungan satu sama lainnya di dalam sistem. Lingkaran pada *use case* mempresentasikan aktivitas sedangkan *person* menggambarkan *user*.

b. Class Diagram

Class diagram menggambarkan kelas-kelas yang terdapat pada sistem. Di dalam class diagram terdapat kotak yang menggambarkan kelas itu sendiri serta hubungan antar kelas. Di dalam kotak tersebut terdapat function yang bisa digunakan dari kelas tersebut.

c. Sequence Diagram

Sequence diagram menggambarkan tentang interaksi antara objek pada sistem. Sequence digunakan selama desain subsystem dan merupakan pemodelan dinamis selama analisa, desain sistem bahkan penangkapan kebutuhan pada sistem.

2.8 Pengujian

Metode Perbandingan Eksponensial (MPE) merupakan salah satu metode untuk menentukan urutan prioritas alternatif keputusan dengan kriteria jamak. Dalam pengerjaannya, metode perbandingan eksponensial memiliki beberapa prosedur antara lain:

- 1. Menyusun alternatif-alternatif
- 2. Menentukan kriteria atau perbandingan
- 3. Menentukan tingkat kepentingan dari setiap kriteria keputusan
- 4. Melakukan penilaian terhadap semua alternatif pada setiap kriteria
- 5. Menghitung skor atau nilai total setiap alternatif

6. Menentukan urutan prioritas keputusan.

Adapun rumus matematika yang dipakai dalam Metode Perbandingan Eksponensial adalah:

$$Total \ Nilai \ (TNi) = \sum_{i=1}^{m} (RK_{ij})^{TKK_{j}} \qquad \dots \dots \dots (Rumus 2.1)$$

Rumus 2. 1 Rumus Metode Perbandingan Eksponensial [2]

Keterangan:

TNi : Total nilai alternatif ke-i

 RK_{ii} : Derajat kepentingan relatif kriteria ke-j pada pilihan

keputusan i

 TKK_i : Derajat kepentingan kriteria keputusan ke-j; TKKj > 0

m : Jumlah kriteria keputusann : Jumlah pilihan keputusan

j: 1,2,3,...m; m: Jumlah kriteria

i: 1,2,3,...n; n: Jumlah pilihan kriteria [23]

BAB III

METODOLOGI PENELITIAN

3.1 Metode Perancangan dan Pengembangan

Penelitian ini menggunakan metode WDLC [17] yang merupakan gabungan dari metode SDLC dengan metode *prototype*. Metode ini akan diterapkan pada pembangunan sistem informasi "Lost and Found" Universitas Bakrie. Dalam penelitian ini, penggunaan metode pengembangan diterapkan dalam fase-fase sebagai berikut.

3.1.1 Pengamatan dan Perencanaan

Pada fase ini dilakukan pengamatan selama dua minggu mengenai masalah yang ada, melakukan wawancara dengan pihak *security* dan beberapa mahasiswa terkait dengan masalah yang ada untuk menganalisa dan melakukan perumusan masalah. Selain melakukan wawancara, pengumpulan indormasi juga dilakukan dengan studi kepustakaan, yaitu dengan *review* buku dan jurnal.

3.1.2 Analisa Kebutuhan Aplikasi

Pada tahapan ini akan menggabungkan seluruh informasi yang diperoleh pada tahap sebelumnya, kemudian menganalisis kebutuhan fungsional dan nonfungsional dari sistem tersebut, menganalisis kebutuhan data masukan dan data keluaran. Hasil dari analisis tersebut berupa elisitasi.

Selain itu, pada tahap ini dilakukan analisis *user requirement*. Terdapat dua *user requirement* yaitu *functional requirement* dan *non-functional requirement*. Keduanya akan menampilkan detail kebutuhan yang diinginkan oleh *user*. Pada tahap ini juga akan menjelaskan secara detail sistem yang akan dibuat dan menentukan informasi yang akan ditampilkan dalam sistem. Hasil kebutuhan aplikasi. Hasil analisa kebutuhan aplikasi yang terlampir pada lampiran.

3.1.3 Perancangan dan Pembangunan

Pada tahap ini akan dilakukan proses perancangan sistem berdasarkan hasil dari tahapan sebelumnya. Hasil dari perancangan sistem ini akan digunakan pada tahap pembangunan.

1. Use Case Diagram

Use case diagram menggambarkan apa saja fitur yang ada dalam perancangan aplikasi ini. Berikut use case diagram dari perancangan aplikasi Lost and Found.

Gambar 3. 1 Use Case Diagram Aplikasi Lost and Found

Deskripsi Gambar 3.1 dari *use case diagram* di atas akan dijelaskan secara lebih detail dalam tabel *use case scenario* berikut:

Tabel 3. 1 Use Case Scenario Login

Use case name	Login	
Use case ID	1	
Actor	User	
Description	Use case ini menggambarkan ke	egiatan pada saat <i>user</i> melakukan
	login	
Pre-Condition	User membuka aplikasi pada browser	
Trigger	Use case ini dilakukan agar actor dapat masuk ke dalam aplikasi.	
Typical of Event	Actor Action	System Response
	1. Membuka aplikasi	2. Menampilkan halaman untuk
		login ke dalam sistem
	3. Memasukkan <i>username</i>	4. Cek validasi <i>username</i> dan
	dan <i>password</i>	password
		5. Menampilkan halaman sesuai
		hak akses yang dimiliki actor
Alternate Course	Jika username dan password salah, maka akan muncul notifikasi lalu	
	Aktor harus melakukan <i>login</i> kembali.	
Post-Condition	Aplikasi menampilkan halaman	home.

Tabel 3. 2 Use Case Scenario Mencari Data Barang Hilang

Use case name	Mencari data barang hilang		
Use case ID	2	2	
Actor	User		
Description	Use case ini menggambarkan	kegiatan pada saat <i>user</i> melakukan	
	pencarian data barang hilang	pada database dengan fitur auto-	
	complete		
Pre-Condition	User membuka aplikasi pada browser		
Trigger	Use case ini dilakukan agar actor dapat mencari barang hilang yang		
	terdapat pada sistem		
Typical of Event	Actor Action	System Response	
	Membuka aplikasi	2. Menampilkan halaman untuk	
		login ke dalam sistem	
	3. Memasukkan <i>username</i>	4. Cek validasi <i>username</i> dan	
	dan <i>password</i>	password	
		5. Menampilkan halaman sesuai	
		hak akses yang dimiliki actor	

	6. Mengisi field search	7. Menampilkan auto-complete
	barang hilang	sesuai dengan string yang dicari
	8. Klik tombol search	9. Menampilkan data sesuai
		dengan yang dicari
Alternate Course	Jika barang yang dicari tidak ad	a di <i>database</i> maka akan muncul
	alert dan actor diharapkan untuk menambah data barang hilang.	
Post-Condition	Aplikasi menampilkan halaman data barang hilang yang dicari	

Tabel 3. 3 Use Case Scenario Mencari Data Barang Temuan

Use case name	Mencari data barang temuan	
Use case ID	3	
Actor	User	
Description	Use case ini menggambarkan	kegiatan pada saat <i>user</i> melakukan
	pencarian data barang temuan	pada database dengan fitur auto-
	complete	
Pre-Condition	User membuka aplikasi pada br	rowser
Trigger	Use case ini dilakukan agar act	or dapat mencari barang temuan yang
	terdapat pada sistem	
Typical of Event	Actor Action	System Response
	1. Membuka aplikasi	2. Menampilkan halaman untuk
		login ke dalam sistem
	3. Memasukkan <i>username</i>	4. Cek validasi <i>username</i> dan
	dan <i>password</i>	password
		5. Menampilkan halaman sesuai
		hak akses yang dimiliki <i>actor</i>
	6. Mengisi field search	7. Menampilkan auto-complete
	barang hilang	sesuai dengan string yang dicari
	8. Klik tombol <i>search</i>	9. Menampilkan data sesuai
		dengan yang dicari
Alternate Course	Jika barang yang dicari tidak ada di database maka akan muncul	
	alert dan actor diharapkan untuk menambah data barang hilang.	
Post-Condition	Aplikasi menampilkan halaman data barang temuan yang dicari.	

Tabel 3. 4 Use Case Scenario Melihat Data Barang Hilang

Use case name	Melihat data barang hilang
---------------	----------------------------

Use case ID	4	
Actor	User	
Description	Use case ini menggambarkan	kegiatan untuk melihat data Barang
	Hilang yang ada dalam bentuk t	abel
Pre-Condition	User membuka aplikasi pada br	owser
Trigger	Use case ini dilakukan agar aca	tor dapat mencari barang hilang yang
	terdapat pada sistem	
Typical of Event	Actor Action	System Response
	1. Membuka aplikasi	2. Menampilkan halaman untuk
		login ke dalam sistem
	3. Memasukkan <i>username</i>	4. Cek validasi <i>username</i> dan
	dan <i>password</i>	password
		5. Menampilkan halaman sesuai
		hak akses yang dimiliki actor
	6. Klik menu barang hilang	7. Menampilkan data barang
		hilang
Alternate Course	Tidak terdapat scenario error input pada tahap ini.	
Post-Condition	Aplikasi menampilkan halaman data barang hilang	

Tabel 3. 5 Use Case Scenario Melihat Data Barang Temuan

Use case name	Melihat data barang temuan	
Use case ID	5	
Actor	User	
Description	Use case ini menggambarkan	kegiatan untuk melihat data Barang
	Temuan yang ada dalam bentul	c tabel
Pre-Condition	User membuka aplikasi pada browser	
Trigger	Use case ini dilakukan agar actor dapat mencari barang temuan yang	
	terdapat pada sistem	
Typical of Event	Actor Action	System Response
	1. Membuka aplikasi	2. Menampilkan halaman untuk
		login ke dalam sistem
	3. Memasukkan <i>username</i>	4. Cek validasi username dan
	dan <i>password</i>	password
		5. Menampilkan halaman sesuai
		hak akses yang dimiliki actor
	6. Klik menu barang hilang	7. Menampilkan data barang
		hilang

Alternate Course	Tidak terdapat scenario error input pada tahap ini.	
Post-Condition	Aplikasi menampilkan halaman data barang temuan.	

Tabel 3. 6 Use Case Scenario Mengedit Barang Hilang

Use case name	Mengelola Barang Hilang	
Use case ID	6	
Actor	User	
Description	Use case ini menggambarkan k	egiatan untuk mengelola barang hilang
	yang telah disimpan dalam data	abase
Pre-Condition	User membuka aplikasi pada b	rowser
Trigger	Use case ini dilakukan agar act	or dapat mengelola barang hilang yang
	terdapat pada sistem	
Typical of Event	Actor Action	System Response
	Membuka aplikasi	2. Menampilkan halaman untuk
		login ke dalam sistem
	3. Memasukkan <i>username</i>	4. Cek validasi <i>username</i> dan
	dan <i>password</i>	password
		5. Menampilkan halaman sesuai
		hak akses yang dimiliki actor
	6. Klik menu barang hilang	7. Menampilkan data barang
		hilang
	8. Klik ikon edit	9. Menampilkan data barang yang
		akan diedit
	10. Insert data yang akan di	11. Meng-update data barang
	edit kemudian tekan ikon	hilang dan menampilkan
	update	notifikasi bahwa data telah di
		update, kemudian sistem akan
		langsung menuju data barang
		hilang
Alternate Course	Tidak terdapat scenario error input pada tahap ini.	
Post-Condition	Aplikasi menampilkan halaman data barang hilang.	

Tabel 3. 7 Use Case Scenario Membuat Laporan Kehilangan

Use case name	Membuat Laporan Kehilangan
Use case ID	7

Actor	User	
Description	Use case ini menggambarkar	n kegiatan untuk membuat laporan
	kehilangan dan akan disimpan d	lalam <i>database</i>
Pre-Condition	<i>User</i> membuka aplikasi pada <i>br</i>	rowser
Trigger	Use case ini dilakukan agar ac	ctor dapat menambahkan data barang
	hilang	
Typical of Event	Actor Action	System Response
	Membuka aplikasi	2. Menampilkan halaman untuk
		login ke dalam sistem
	3. Memasukkan username	4. Cek validasi <i>username</i> dan
	dan <i>password</i>	password
		5. Menampilkan halaman sesuai
		hak akses yang dimiliki actor
	6. Klik menu barang hilang	7. Menampilkan data barang
		hilang
	8. Klik <i>button</i> tambahkan	9. Menampilkan formulir data
	data	barang dan data pelapor
	10. Input data barang hilang	11. System akan menginputkan
	dan data pelapor dan klik	data ke dalam <i>database</i> dan
	button tambah	akan menampilkan notifikasi
		bahwa data telah di input
Alternate Course	Apabila ada data barang atau data pelapor yang tidak diisi maka akan	
	muncul notifikasi, dan user harus melengkapi data tersebut	
Post-Condition	Aplikasi menampilkan halaman data barang hilang.	

Tabel 3. 8 Use Case Scenario Membuat Konfirmasi Barang

Use case name	Membuat Konfirmasi Barang			
Use case ID	8			
Actor	User			
Description	Use case ini menggambarkan kegiatan untuk membuat laporan			
	kehilangan dan akan disimpan dalam database			
Pre-Condition	User membuka aplikasi pada browser			
Trigger	Use case ini dilakukan agar actor dapat membuat konfirmasi barang			
	apabila barang telah ditemukan			
Typical of Event	Actor Action	System Response		
	Membuka aplikasi	2. Menampilkan halaman untuk		
		login ke dalam sistem		

	3. Memasukkan <i>username</i>	4. Cek validasi <i>username</i> dan	
	dan <i>password</i>	password	
		5. Menampilkan halaman sesuai	
		hak akses yang dimiliki actor	
	6. Klik menu barang hilang	7. Menampilkan data barang	
		hilang	
	8. Klik <i>detail</i> barang	9. Menampilkan <i>detail</i> barang dan	
		pelapor	
	10. Klik ikon konfirmasi	11. Menampilkan formulir	
		konfirnasi barang	
Alternate Course	Apabila ada data pelapor yang tidak diisi maka akan muncul		
	notifikasi, dan <i>user</i> harus melengkapi data tersebut		
Post-Condition	Aplikasi menampilkan notifikasi barang dan mengirim konfirmasi		
	via e-mail.		

Tabel 3. 9 Use Case Scenario Membuat Laporan Penemuan

Use case name	Membuat Laporan Penemuan			
Use case ID	9			
Actor	User			
Description	Use case ini menggambarkan kegiatan untuk membuat laporan			
	penemuan dan akan disimpan dalam database			
Pre-Condition	User membuka aplikasi pada browser			
Trigger	Use case ini dilakukan agar actor dapat menambahkan data barang			
	temuan			
Typical of Event	Actor Action	System Response		
	Membuka aplikasi	2. Menampilkan halaman untuk		
		login ke dalam sistem		
	3. Memasukkan <i>username</i>	4. Cek validasi <i>username</i> dan		
	dan <i>password</i>	password		
		5. Menampilkan halaman sesuai		
		hak akses yang dimiliki actor		
	6. Klik menu barang temuan	7. Menampilkan data barang		
		temuan		
	8. Klik <i>button</i> tambahkan	9. Menampilkan formulir data		
	data	barang dan data pelapor		

	10. Input data barang temuan	11. System akan menginputkan		
	dan data pelapor dan klik	data ke dalam <i>database</i> dan		
	button tambah	akan menampilkan notifikasi		
		bahwa data telah di input		
Alternate Course	Apabila ada data barang atau data pelapor yang tidak diisi maka akan			
	muncul notifikasi, dan <i>user</i> harus melengkapi data tersebut			
Post-Condition	Aplikasi menampilkan halaman data barang temuan.			

2. Activity Diagram

Activity Diagram menggambarkan alur aktivitas yang memungkinkan dapat dilakukan pada aplikasi mulai dari awal proses hingga proses berakhir. Berikut adalah activity diagram pada aplikasi "lost and found".

Gambar 3. 2 Activity Diagram Aplikasi Lost and Found

Gambar 3.2 di atas merupakan activity diagram aplikasi Lost and Found. Langkah awal yaitu user melakukan login ke sistem dengan memasukkan nomor induk dan password. Jika nomor induk dan password yang dimasukkan salah, maka harus mengulang proses login. Namun jika proses login telah benar maka user akan masuk ke halaman home. User dapat melakukan pencarian barang sesuai dengan nama barang. Apabila barang ditemukan maka user dapat melihat detail barang sedangkan apabila barang tidak ditemukan di database maka user harus mengulang pencarian. Untuk barang hilang, user dapat melakukan akktivitas edit barang, cek status dan mengisi form barang sedangkan untuk barang temuan user dapat mengisi form dan cek status barang saja.

Untuk melakukan pengecekan status barang *user* diharapkan melihat status barang yang ada, apabila barang sudah diambil/sudah ditemukan maka *user* hanya dapat melihat pemilik barang/orang yang melakukan konfirmasi, sedangkan apabila status barang belum diambil/ditemukan maka *user* diharapkan mengisi form konfirmasi, form konfirmasi yang telah valid akan mengirimkan hasil konfirmasi via email kepada pemilik barang. Setelah semua aktivitas selesai, *user* dapat keluar dari sistem dengan menekan tombok untuk *logout*/

3. Sequence Diagram

Sequence diagram menggambarkan interaksi antar objek serta mengilustrasikan urutan pesan yang terjadi selama aplikasi Lost and Found Universitas Bakrie dijalankan yang terdapat pada use case scenario.

Gambar 3. 3 Sequence Diagram Halaman Login

Gambar 3.3 menjelaskan apa saja yang terlibat serta apa saja yang terjadi ketika *user* melihat halaman awal aplikasi. Sistem terlebih dahulu menjalankan UI untuk menampilkan peritah pada *user* dimana *user* dapat memasukkan nomor induk dan *password*. Kemudian sistem akan mengecek ke dalam *database* dengan memanggil fungsi doLogin () pada kelas *User* dan melakukan pengecekan validasi Run Query, kemudian mengirimkan hasil validasi ke tampilan untuk diberitahukan kepada pengguna aplikasi.

Gambar 3. 4 Sequence Diagram Lihat Barang Temuan

Gambar 3.4 menjelaskan kelas apa saja yang terlibat serta pesan apa saja yang terjadi ketikas *user* ingin melihat data barang temuan yang disediakan. Ketika *user* menekan menu yang diinginkan maka UI aplikasi akan memberikan menu yang tersedia. Seperti Gambar 3.3 menerangkan proses *request* halaman barang temuan untuk melihat data barang temuan yang ada, setelah itu *user* menekan menu detail barang untuk melihat detail barang yang temuan yang diinginkan.

Gambar 3. 5 Sequence Diagram Lihat dan Edit Barang Hilang

Gambar 3.5 menjelaskan proses lihat dan edit data barang hilang yang telah diinputkan oleh *user*. Setelah *user* melakukan *login*, *user* dapat melihat data barang hilang yang telah diinputkan oleh *user* dengan menggunakan fungsi getBarangHilang() pada kelas barang, setelah itu *user* dapat melakukan edit masing-masing barang hilang apabila pemilik barang meminta untuk mengubah data barang atau data pemilik yang telah diinput. Dalam proses edit data sistem menggunakan fungsi update() pada kelas barang untuk mengedit dan melakukan *update* data.

Gambar 3. 6 Sequence Diagram Tambah Barang Temuan

Gambar 3.6 menjelaskan kelas apa saja yang terlibat serta pesan apa saja yang terjadi ketika *user* melakukan penambahan data pengguna aplikasi. Ketika *user* membuka menu tambah barang temuan, maka sistem akan menampilkan formulir untuk mengisi data lengkap barang temuan dan data pelapor. Setelah *user* melakukan input data secara lengkap, maka sistem akan memanggil fungsi createfound() pada kelas barang dan menyimpan data yang akan dimasukkan ke dalam *database*. Kemudian memberikan pemberitahuan dengan menampilkan notifikasi pada tampilan yang akan langsung me-*refresh* halaman barang temuan.

Gambar 3. 7 Sequence Diagram Tambah Barang Hilang

Gambar 3.7 menjelaskan kelas apa saja yang terlibat serta pesan apa saja yang terjadi ketika *user* melakukan penambahan data pengguna aplikasi. Ketika *user* membuka menu tambah barang hilang, maka sistem akan menampilkan formulir untuk mengisi data lengkap barang hilang dan data pelapor. Setelah *user* melakukan input data secara lengkap, maka sistem akan memanggil fungsi createlost() pada kelas barang dan menyimpan data yang akan dimasukkan ke dalam *database*. Kemudian memberikan pemberitahuan dengan menampilkan notifikasi pada tampilan yang akan langsung me-*refresh* halaman barang hilang.

Gambar 3. 8 Sequence Diagram Search Barang Hilang

Gambar 3.8 menjelaskan kelas apa saja yang digunakan dalam proses pencarian barang temuan, ketika *user* memasukkan kata berbentuk *string* ke dalam kolom *search* maka sistem akan memanggil fungsi getNamaBarang() kemudian memanggil fungsi setBoyerMoore() untuk melakukan pencarian dengan *pattern* yang sesuai, dari hasil fungsi setBoyerMoore() maka akan dipanggil fungsi makechartable() yang akan mengeksekusikan hasil dari fungsi setBoyerMoore() dan dicocokkan kembali dengan data yang ada di *database* dengan fungsi cariBarangTemuan().

Gambar 3. 9 Sequence Diagram Search Barang Hilang

Gambar 3.9 menjelaskan kelas apa saja yang digunakan dalam proses pencarian barang hilang, ketika *user* memasukkan kata berbentuk *string* ke dalam kolom *search* maka sistem akan memanggil fungsi getNamaBarang() kemudian memanggil fungsi setBoyerMoore() untuk melakukan pencarian dengan *pattern* yang sesuai, dari hasil fungsi setBoyerMoore() maka akan dipanggil fungsi makechartable() yang akan mengeksekusikan hasil dari fungsi setBoyerMoore() dan dicocokkan kembali dengan data yang ada di *database* dengan fungsi cariBarangHilang().

Gambar 3. 10 Sequence Diagram Tambah Konfirmasi Barang

Gambar 3.10 menjelaskan kelas apa saja yang terlibat serta pesan apa saja yang terjadi ketika *user* melakukan penambahan data konfirmasi barang . Ketika *user* membuka menu konfirmasi barang, maka sistem akan menampilkan formulir untuk mengisi data lengkap konfirmasi barang. Setelah *user* melakukan input data secara lengkap, maka sistem akan memanggil fungsi createkonfirmasi() pada kelas barang dan menyimpan data yang akan dimasukkan ke dalam *database*. Kemudian memberikan pemberitahuan dengan menampilkan notifikasi pada tampilan yang akan langsung me*-refresh* halaman utama. Pada fitur konfirmasi ini, *user* akan meminta pemilik atau pelapor untuk mengecek *e-mail* karena pemberitahuan telah mengambil barang akan dikirimkan via *e-mail*.

Gambar 3. 11 Sequence Diagram Lihat Konfirmasi Barang

Gambar 3.11 menjelaskan kelas apa saja yang terlibat serta pesan apa saja yang terjadi ketika *user* melihat data konfirmasi barang. Ketika *user* membuka menu detail konfirmasi, maka sistem akan menampilkan data konfirmasi barang yang telah dipilih. Data yang telah dipilih ini memanggul fungsi getIDKonfirmasi() yang berisi data konfirmasi yang telah terhubung.

Gambar 3. 12 Sequence Diagram Logout

Gambar 3.12 menjelaskan aktivitas *logout user*. Ketika perintah *logout* dilakukan, maka sistem akan memanggil fungsi doLogout() pada kelas *User* dan melakukan perintah destroy session pada fungsi setLogout() pada kelas *User*, kemudian mengirimkan hasil validasi ke tampilan untuk diberitahukan kepada pengguna aplikasi dan kembali ke halaman *login* aplikasi.

4. Class Diagram

Class diagram menggambarkan kelas yang dibuat dengan hubungannya terhadap kelas lainnya. Penentuan kelas dikelompokkan berdasarkan kemiripan behavior. Berikut adalah rancangan class diagram dari aplikasi Lost and Found Universitas Bakrie yang dibuat.

Gambar 3. 13 Class Diagram Aplikasi Lost and Found

Pada Gambar 3.13 menjelaskan bahwa terdapat 4 kelas yang akan digunakan pada pengembangan sistem informasi *Lost and Found* Universitas Bakrie, antara lain:

- *Connection*, merupakan *class interface* yang akan menghubungkan koneksi aplikasi ke *database*. Kelas ini hanya memiliki metode yang bertugas untuk menghubungkan koneksi.
- User, merupakan kelas yang mengelola proses data dari pengguna aplikasi.
 Kelas ini akan mengelola semua tugas yang berhubungan dengan pengguna aplikasi.
- Barang, merupakan kelas yang mengelola proses data yang berhubungan dengan barang temuan dan barang hilang. Kelas ini dikelompokkan berdasarkan *behavior* yang dimiliki yaitu bertugas mengelola data barang hilang dan barang temuan dalam aplikasi.

 Boyer-Moore, merupakan kelas yang menjalankan fungsi-fungsi dari algoritma boyer-moore. Kelas ini dikelompokkan berdasarkan behavior yang dimiliki yaitu bertugas melakukan pencarian data barang hilang dan barang temuan.

5. Database design

Perancangan *database* adalah untuk menentukan isi dan pengaturan data yang dibutuhkan dalam suatu perancangan sistem. Berikut adalah rancangan *database* untuk sistem *Lost and Found* Universitas Bakrie:

Gambar 3. 14 Data Model Lost and Found

3.1.4 Testing

Proses pengujian dilakukan dengan MPE yang akan menguji efektivitas dari Algoritma *Boyer-Moore*. Adapun tahapan analisis yang akan dilakukan adalah:

a. Menentukan alternatif

Analisa ini menggunakan alternatif Algoritma *Brute Force* sebagai pembanding dari Algoritma *Boyer-Moore*.

b. Menentukan kriteria

Dalam menentukan kriteria yang akan dipakai, dapat dijelaskan pada tabel 3.10

Tabel 3. 10 Penentuan Kriteria [2]

Kriteria		Keterangan			
Jumlah I	[terasi	Perhitungan jumlah iterasi/perulangan			
Algoritma		(Looping) yang terjadi pada saat			
		algoritma melakukan usaha			
		pencocokan string			
Jumlah I	Huruf	Jumlah huruf yang dicocokkan oleh			
Pada <i>pattern</i>		algoritma			

c. Menentukan bobot kriteria

Penentuan bobot merupakan salah satu komponen paling penting yang berpengaruh pada hasil analisa.

d. Pemberian nilai pada setiap kriteria

Tahap ini adalah tahap dimana setiap kriteria yang telah terbentuk diberi nilai.

e. Menghitung skor

Setelah nilai pada setiap kriteria dimasukkan, maka tahapan selanjutnya yang akan dilakukan adalah melakukan perhitungan dengan rumus Metode Perbandingan Eksponensial (1).

f. Menentukan prioritas keputusan

Pada prioritas keputusan akan terlihat total nilai dari alternatif terendah yang memperoleh nilai pertama, karena semakin tinggi total nilai yang diperoleh maka akan semakin tinggi jumlah usaha yang dilakukan oleh algoritma tersebut.

3.1.5 Implementasi

Pada tahap terakhir dilakukan pengimplementasian sistem informasi dan melakukan pengujian akhir sistem

3.2 Kerangka Penelitian

Pada penelitian ini memiliki tahapan atau aktivitas yang dilakukan sebagai berikut.

Gambar 3. 15 Kerangka Penelitian

3.3 Jenis Penelitian

Jenis penelitian yang dilakukan adalah implementasi algoritma *Boyer-Moore* yang akan diterapkan pada aplikasi sistem *Lost and Found* di Universitas Bakrie berbasis *website*. Rancang bangun yang dilakukan diawali dengan identifikasi kebutuhan dan batasan kebutuhan pengguna, dalam hal ini akan dilakukan pengamatan, wawancara dengan narasumber dan studi literatur.

3.4 Objek Penelitian

Objek penelitian yang dilakukan adalah aplikasi *Lost and Found* yang akan diterapkan di Universitas Bakrie. Aplikasi ini berfungsi untuk memudahkan bagian *security* dalam memproses berita kehilangan dan pencarian hasil barang temuan yang telah disimpan oleh bagian *security*. Aplikasi ini berbasis *web* dengan menerapkan algoritma *Boyer-Moore* pada proses pencarian *string*.

3.5 Metode Pengumpulan Data

Pengumpulan data dan analisa data dalam proses penelitian ini dilakukan untuk melengkapi metode penelitian. Adapun pengumpulan data yang dilakukan adalah sebagai berikut.

1. Pengamatan

Pada proses pengamatan, dilakukan sebagai tahap awal dalam penentuan penelitian yang akan dilakukan. Dalam hal ini melihat proses kerja secara langsung dan membuat hipotesa masalah-masalah yang terjadi pada pegalaman kehilangan barang dan penemuan barang di Universitas Bakrie. Berikut ini merupakan definisi lokasi penelitian yang berlangsung:

Nama Institusi : Universitas Bakrie Jakarta

Bidang : Lembaga Pendidikan

Alamat : Jl. HR.Rasuna Said Kav C-22

Gedung Pasar Festival Lt GF/22, Setiabudi,

Jakarta Selatan

Telp : 021 5276543

Waktu Wawancara: 12 Februari 2016

2. Wawancara

Wawancara dilakukan kepada koordinator *security* Universitas Bakrie yang menangani kehilangan barang maupun temuan barang. Berikut ini merupakan rincian wawancara:

Narasumber : Universitas Bakrie Jakarta

Profesi : Koordinator Security Universitas Bakrie

Alamat : Jl. HR.Rasuna Said Kav C-22

Gedung Pasar Festival Lt GF/22, Setiabudi,

Jakarta Selatan

Telp : 021 5276543

Waktu Wawancara: 12 Februari 2016

Hasil dari wawancara serta daftar pernyataan terlampir pada lampiran.

3. Studi Literatur

Dalam melakukan penelitian ini, dilakukan kajian pustaka dengan mempelajari beberapa buku teks, jurnal penelitian, *e-book*, tugas akhir serta materi-materi di internet yang mendukung dalam proses penelitian. Hasil dari tahap ini merupakan sebuah *literature review* yang dapat digunakan untuk menentukan landasan teori yang tepat untuk penelitian. *Literature Review* juga digunakan untuk pemilihan metode sistem pencarian *string*, model siklus pengembangan perangkat lunak, bahasa pemrograman, dan pengujian aplikasi dalam penelitian.

3.6 Implementasi Algoritma Boyer-Moore

Algoritma *Boyer-Moore* dianggap sebagai algoritma pencocokan *string* (*string matching*) yang paling efisien pada kebanyakan aplikasi, sebagai contoh pada *text editor* dan *command substitution*. Hal ini dikarenakan algoritma ini bekerja sangat cepat pada kasus dimana alfabet berukuran sedang dan *pattern* yang akan dicari relatif panjang.

Algoritma *Boyer-Moore* menelusuri karakter-karakter pada *pattern* dari kanan ke kiri, dimulai dari karakter yang berada pada posisi paling kanan. Selama proses pencocokan antara *pattern* P dengan *text* T, ketidakcocokan antara karakter

text T[i] = c dengan karakter *pattern* P[j] yang bersesuaian ditangani dengan skenario sebagai berikut.

Jika c tidak terdapat pada P, maka geser P secara keseluruhan melewati T[i]. Atau jika tidak – c terdapat dalam P – geser P sampai kemunculan karakter c pada P dapat bersesuaian dengan T[i].

Gambar 3. 16 Flowchart Algoritma Boyer-Moore [24]

Teknik ini mampu menghindari perbandingan-perbandingan yang tidak dibutuhkan dengan menggeser *pattern* relatif terhadap *text*.

Setiap karakter c pada alfabet memiliki nilai kemunculan (*last*(c)) sebagai berikut [25].

$$Last (c) = \begin{cases} & Index & (posisi) & kemunculan \\ & terakhir karakter c pada \textit{pattern} & Jika c ada dalam P \\ & P & & & \\ & -1 & Jika c tidak ada dalam P \end{cases}$$

Nilai kemunculan ini menentukan seberapa jauh pergeseran *pattern* P dapat dilakukan jika karakter C di dalam *text* tidak cocok dengan *pattern*. Berikut ini adalah contoh dari nilai kemunculan suatu karakter.

Maka, didapatkan nilai kemunculan sebagai berikut.

С	A	С	T	G	S
Last(c)	4	3	2	5	-1

Implementasi algoritma *Boyer-Moore* yang diterapkan pada tugas akhir ini, didasarkan pada *pseudocode* berikut.

```
Input : Text dengan n karakter dan Pattern dengan m
karakter
Output : Index dari substring awal dari T yag cocok
dengan P

for x € ∑
   last [x] ← -1
for y ← m downto 1
   last [P[y]] ← y

i ← m-1
j ← m-1
Repeat
```

Komputasi dari fungsi *last* itu sendiri membutuhkan waktu $O(m + |\Sigma|)$. Sedangkan pada kasus terbaik dari algoritma tersebut, untuk teks dengan panjang n dan pola yang akan dicari dengan panjang m, dibutuhkan waktu n/m. Hal ini dikarenakan pada kasus terbaik, hanya satu karakter di dalam m yang perlu di cek. Hal ini juga menjelaskan bahwa semakin panjang pola yang akan dicari, maka akan semakin cepat algoritma tersebut menemukannya.

Pada kasus terburuk algoritma ini membutuhkan waktu m*n untuk dapat menemukan hasil yang cocok. Kasus buruk ini terjadi ketika *string* yang dicari terdiri dari pengulangan sebuah karakter, dan *string* yang menjadi target terdiri dari m-1 pengulangan dari karakter itu yang didahului dengan suatu karakter yang berbeda. Pada skenario ini, harus dilakukan pengecekan sebanyak n-m+1, dimana setiap pengecekan membutuhkan m perbandingan. Oleh karena itu, *running time* algoritma *Boyer-Moore* pada kasus terburuk adalah $O(nm + |\Sigma|)$.

3.7 Rencana Kegiatan Penelitian

Penelitian ini dilakukan dari bulan Februari 2016. Alokasi waktu penelitian yang dibutuhkan untuk melakukan penelitian ini adalah 7 bulan. Adapun rencana kegiatan penelitian terlampir pada lampiran.

BAB IV

IMPLEMENTASI DAN PENGUJIAN

Bab ini membahas mengenai implementasi fitur search dengan *auto-complete* pada *search* barang aplikasi "*Lost and Found* Universitas Bakrie" menggunakan algoritma *Boyer-Moore*. Perancangan dan implementasi algoritma *Boyer-Moore* didasarkan pada analisis yang telah dilakukan pada bab sebelumnya. Bab ini juga akan membahas mengenai pengujian algoritma serta analisis dari hasil penerapan algoritma *Boyer-Moore* pada aplikasi *Lost and Found* Universitas Bakrie.

4.1 Implementasi Sistem

Implementasi sistem merupakan kumpulan dari elemen-elemen yang telah dirancang dalam bentuk pemrograman untuk menghasilkan suatu tujuan yang dibuat berdasarkan kebutuhan yang telah dibuat. Berikut adalah spesifikasi *hardware* dan *software* yang digunakan dalam tahapan implementasi.

1. Informasi Hardware

Informasi *hardware* yang digunakan dalam pengembangan aplikasi ini adalah sebagai berikut:

Nama *device* : Bisa untuk sebagian besar PC

Operating system: Windows 7 Home Premium

Processor : Intel(R) Core (TM) i5-3210M CPU @ 2,5GHz 2.50

GHz

Memory : 4.00 GB RAM

2. Informasi Software

Informasi Software untuk pengembangan aplikasi adalah sebagai berikut:

- XAMPP version 3.2.2 sebagai web server, database server, dan application server
- Mozilla Firefox version 47.0.1 sebagai web browser

• Sublime Text *Copyright* 2006-2014 Sublime HQ Pty Ltd untuk membangun aplikasi

4.2 Implementasi Perancangan Antarmuka

Berdasarkan hasil perancangan *user interface* pada tahap sebelumnya, implementasi dari *user interface* dilakukan dengan menggunakan *front-end framework Hyper Text Markup Language* (HTML) *Cascading Style Sheet* (CSS) yaitu *Bootstrap*. Berikut tampilan hasil rancangan yang telah dibuat:

Gambar 4. 1 Halaman Login

Gambar 4.1 di atas menggambarkan halaman awal bagi *user* untuk dapat mengakses aplikasi "*Lost and Found*". *User* harus memasukkan "nomor induk" dan "*password*" dengan benar sehingga *user* dapat akses masuk ke dalam aplikasi.

Gambar 4. 2 Halaman Awal Barang Temuan

User dapat melihat semua data barang yang telah di-*submit* dengan keterangan barang temuan. Gambar 4.2 menampilkan data barang temuan dalam bentuk tabel dan gambar sehingga dapat memudahkan *user* untuk melihat barang yang akan dicari.

Gambar 4. 3 Tampilan Menu Barang Hilang

User dapat melihat semua data barang hilang yang telah di-*submit* dengan keterangan barang temuan. Gambar 4.3 menampilkan data barang temuan dalam bentuk tabel sehingga dapat memudahkan *user* untuk melihat barang yang akan dicari.

Gambar 4. 4 Tambahkan data barang temuan atau hilang

Gambar 4.4 menampilkan halaman *insert* data barang hilang maupun temuan ke dalam *database*.

Gambar 4.5 Formulir konfirmasi barang

Gambar 4.5 menampilkan formulir konfirmasi barang yang akan diisi sesuai data *user* yang benar.

Gambar 4. 6 Tampilan detail barang temuan

Gambar 4.6 menampilkan data barang yang belum di ambil oleh pemilik, perbedaannya adalah dengan adanya status barang pada *detail* barang tersebut. Status barang yang belum diambil diberikan "Disimpan" sedangkan yang telah diambil adalah "Sudah Diambil".

Gambar 4. 7 Tampilan data pemilik

Gambar 4.7 menampilkan data pemilik yang telah mengambil barang temuan.

Gambar 4. 8 Notifikasi barang telah diambil

Gambar 4.8 menampilkan hasil dari konfirmasi barang yang telah diambil dan disarankan pemilik mengecek *e-mail* yang telah didaftarkan untuk pemberitahuan lebih lengkap.

Gambar 4. 9 Pesan Konfirmasi barang hilang via e-mail

Pada gambar 4.9 merupakan contoh *e-mail* dari bagian *security* untuk konfirmasi bahwa barang telah ditemukan dan dapat diambil di bagian *security* dengan batas waktu yang telah ditentukan.

Gambar 4. 10 Konfirmasi pengambilan barang via e-mail

Pada gambar 4.10 merupakan contoh *e-mail* dari bagian *security* untuk konfirmasi pengambilan barang.

4.3 Implementasi Data

Data yang digunakan dalam penelitian ini adalah data barang temuan yang diambil sampelnya dari salah satu jenis barang. Kumpulan data tersebut dimasukkan dalam *database* mysql menggunakan perangkat bantuan phpmyadmin. *File* data ini bernama "dbpdo.sql", *file* ini di-*import* ke dalam *database* "dbpdo". Data yang digunakan sebagai sampel dalam implementasi *search* ini adalah data dari barang-barang yang sering dilaporkan hilang oleh pihak *security*. Jenis ini dipilih sebagai tes data karena memiliki jumlah informasi terbesar dibandingkan dengan jenis lainnya.

4.4 Implementasi Algoritma *Boyer-Moore* pada Fitur *Auto-complete*

Fitur *auto-complete* digunakan pada pengisian nama barang untuk proses pencarian barang. Dengan adanya fitur *auto-complete*, pengguna tidak perlu memasukkan nama lengkap barang untuk mencari jika barang tersebut memang ada pada basis data yang ada.

Algoritma *Boyer-Moore* berperan sebagai mencari *pattern* (P) yang dicari pada *full-text* (S) nama barang yang ada di tabel tb_found dan tb_lost. Dalam pengaplikasiannya, saat pengguna memasukkan minimal satu karakter pada *search* form, program JavaScript akan melakukan panggilan fungsi PHP dengan Asynchronous Javascript and XML (AJAX) seperti yang digambarkan pada Gambar 4.11. Program ini bergantung pada *library* jQuery untuk menghasilkan bentuk *auto-complete* yang menerima daftar *string* yang akan ditampilkan dalam format *JavaScript Object Notation* (JSON).

Gambar 4. 11 Program JavaScript untuk Fitur Auto-complete

Program JavaScript paga Gambar 4.11 menggunakan metode GET untuk melakukan request ke program PHP pada server side. Program PHP autocomplete.php akan menjalankan panggilan fungsi untuk menjalankan fungsi algoritma Boyer-Moore yang ada pada program boyermoore.php. Gambar 4.12 memberikan gambaran mengenai kode pada autocomplete.php

```
<?php
if (!isset($_GET['term'])) {
        die();
}

$keyword = $_GET['term'];
//$data = searchForKeyword($keyword);
$search = new search();
$data = $search->cariTemuan($keyword); //ada di database.php
//$data->array semua barang yang ditemuin
echo json_encode($data);

?>
```

Gambar 4. 12 Kode autocomplete.php

Program class.boyermoore.php bertugas untuk mengambil data nama barang dari *database* dan mengolahnya dengan algoritma *Boyer-Moore* untuk menemukan *pattern* (P) tertentu sesuai yang diinginkan oleh pengguna. Gambar 4.13 menggambarkan bagaimana program mengakses *database* dan

mengubahnya menjadi *string* yang memiliki pola yang ditunjukkan pada Gambar 4.14.

Gambar 4. 13 Fungsi cariTemuan () dalam class.BoyerMoore.php

```
Nama barang 1*nama barang 2* nama barang 3*...*
```

Gambar 4. 14 Bentuk String yang Akan Diolah

Sebelum melakukan pengolahan dengan Boyer-Moore, program PHP pada class.boyermoore.php khususnya fungsi makechartable() membuat sebuah tabel dalam bentuk array dari pattern (P) dengan pola array(2) { ['karakter pertama}=> int(i) [karakter kedua]=> int(0) ... }. Gambar 4.15 menunjukkan potongan kode pada fungsi makechartable().

```
function makeCharTable($string) {
    $len = strlen($string);
    $table = array();
    for ($i=0; $i < $len; $i++) {
        $table[strtolower($string[$i])] = $len - $i - 1;
    }
    return $table;
}</pre>
```

Gambar 4.15 Fungsi makechartable()

Fungsi paling krusial yang berperan sebagai pencari *pattern* (P) pada *string* adalah fungsi Boyermoore (\$text, \$pattern) yang ditunjukkan pada Lampiran. Selain menggunakan *Boyer-Moore* untuk menentukan dimana indeks *string* saat *pattern* ditemukan, fungsi ini juga menggandakan seluruh nama barang sehingga walaupun *pattern* ditemukan di tengah nama barang, seperti menemukan *pattern* "ge" dalam "Buku Management, nama lengkap dari barang akan diambil dan hasilnya dapat dilihat dalam fitur *auto-complete*.

4.5 Hasil Pencarian Berdasarkan Kata Kunci

Bagian ini menjelaskan mengenai hasil pencarian *string* yang dilakukan *user* pada *field search*. Kata kunci yang dimasukkan akan ditampilkan dalam beberapa kondisi. Kondisi pertama adalah hasil pencarian yang terdapat pada *database* dan ditampilkan oleh fitur *auto-complete*. Hasil yang ditampilkan merupakan semua data yang ada di *database* dan merupakan *string* dari yang telah di-*input*-kan. Kondisi kedua adalah hasil pencarian yang tidak terdapat pada *database* dan tidak dapat ditampilkan oleh fitur *auto-complete* karena tidak sesuai dengan *string* yang ada di *database*.

Gambar 4. 16 Search dengan Fitur Auto-Complete Kondisi Pertama

Pada Gambar 4. 16 merupakan hasil pencarian data nama barang dengan menggunakan string "har" dan *auto-complete* dapat menampilkan semua hasil dari *string* "har" yang ada di *database*.

Gambar 4. 17 Hasil Search Pada Kondisi Pertama

Pada Gambar 4.17 menampilkan hasil dari pencarian kata "har" pada kondisi pertama, terdapat 2 data barang yang tersimpan dengan kata yang mengandung *string* "har".

Gambar 4. 18 Search dengan Fitur Auto-Complete Kondisi Kedua

Pada Gambar 4. 18 merupakan hasil pencarian data nama barang dengan menggunakan string "bak" dan *auto-complete* tidak dapat menampilkan semua hasil dari *string* "bak" yang dari *database*.

Gambar 4. 19 Hasil dari Pencarian String Kondisi Kedua

Pada Gambar 4.19 menampilkan hasil dari pencarian kata yang mengandung "bak" dan sistem tidak dapat menemukan nama barang yang cocok dengan yang di-*input*-kan pada kolom *search*.

4.6 Pengujian Algoritma

Berdasarkan rencana pengujian algoritma bagian 3.1.5 di atas, pengujian akan dilakukan dengan memakai Metode Perbandingan Eksponensial. Penulis mengadopsi *draft* pengujian mengacu pada penelitian [26] yang menerapkan Metode Perbandingan Eksponensial sebagai metode pengujian penentuan ranking. Berikut adalah penjelasan pengujian algoritma *Boyer-Moore* berdasarkan MPE:

4.7.1 Menentukan *Pattern* pada Teks

Algoritma *Boyer-Moore* merupakan algoritma pencocokan *string* yang terdiri dari dua komponen yaitu *pattern* dan teks. Dalam penentuan *pattern* dan teks untuk analisa data diambil dari analisa pada Tabel 4.1.

Tabel 4. 1 Penentuan Pattern dan Teks Setelah Jumlah Hurufnya Disamakan

Proses Ke-	Pattern	Teks Setelah Dipotong	Teks di Database
		h	Handphone Samsung
		h	Headset Putih
		h	Buku Hitam Notes
		h	Charger Iphone
1	h	h	Hardisk
1	11	h	Buku Tulis Merah
		b	Mouse Merah Kecil
		d	Dompet Kulit
		b	Buku Bahasa Jurnalistik
		b	Buku Database
		ha	Handphone Samsung
	ha	ho	Handphone Samsung
		he	Headset Putih
		hi	Buku Hitam Notes
		ha	Charger Iphone
2		ho	Charger Iphone
2		ha	Hardisk
		hi	Buku Tulis Merah
		h-	Mouse Merah Kecil
		do	Dompet Kulit
		ha	Buku Bahasa Jurnalistik
		bu	Buku Database
		han	Handphone Samsung
		hon	Handphone Samsung
		hea	Headset Putih
		hit	Buku Hitam Notes
3	har	har	Charger Iphone
5	11a1	hon	Charger Iphone
		har	Hardisk
		h	Buku Tulis Merah
		h-k	Mouse Merah Kecil
		dom	Dompet Kulit

Proses Ke-	Pattern	Teks Setelah Dipotong	Teks di Database
		has	Buku Bahasa Jurnalistik
		buk	Buku Database
		hand	Handphone Samsung
		hone	Handphone Samsung
		head	Headset Putih
		hita	Buku Hitam Notes
		harg	Charger Iphone
4	hard	hone	Charger Iphone
4	Haru	hard	Hardisk
		h	Buku Tulis Merah
		h-ke	Mouse Merah Kecil
		domp	Dompet Kulit
		hasa	Buku Bahasa Jurnalistik
		buku	Buku Database

4.7.2 Proses Pencarian Algoritma

Setelah *pattern* dan teks terbentuk maka proses selanjutnya adalah pencocokan karakter. Dalam proses pengujian ini, digunakan sebuah pembanding algoritma yaitu algoritma *brute-force* yang melakukan pencarian dari *string* paling kiri ke kanan. Berikut adalah tabel yang menggambarkan ilustrasi pencocokan karakter yang dilakukan oleh Algoritma *Brute Force*.

Tabel 4. 2 Simulasi Cara Kerja Algoritma Brute Force

Prose s ke-	Iteras i Ke-	Patter n	Teks	Teks di Database	Pencocoka n Brute Force	Hasil Sugesti
	1		h	Handphone Samsung	h = h	Handphone Samsung
	2		h	Headset Putih	h = h	Headset Putih
	3		h	Buku Hitam Notes	h = h	Buku Hitam Notes
1	4	h	h	Charger Iphone	h = h	Charger Iphone
1	5	11	h	Hardisk	h = h	Hardisk
	6		h	Buku Tulis Merah	h = h	Buku Tulis Merah
	7		h	Mouse Merah Kecil	h = h	Mouse Merah Kecil
	8		d	Dompet Kulit	$h \neq d$	-

Prose s ke-	Iteras i Ke-	Patter n	Teks	Teks di Database	Pencocoka n Brute Force	Hasil Sugesti
	9		h	Buku Bahasa Jurnalistik	h = h	Buku Bahasa Jurnalistik
	10		b	Buku Database	$h \neq b$	Jumansuk
	10			Buku Butubuse	$h \neq 0$	-
	1		ha	Handphone Samsung	11 – 11	
	2				a = a	Samsung
	5		he	Headset Putih	h = h	-
	6			1100000001100001	h ≠ e	-
	7		hi	Buku Hitam Notes	h = h	-
	8		111	Buku IIItuiii I (Otes	h ≠ h	-
	9		ha	Charger Iphone	h = h	-
	10		Thu .	Charger iphone	a = a	Charger Iphone
2	11	ha	ha	Hardisk	h = h	-
	12		iiu	Hartisk	a = a	Hardisk
	13		h-	Buku Tulis Merah	h = h	-
	14		11-	Buku Tulis Merali	a ≠ -	-
	15		h-	Mouse Merah Kecil	h = h	-
	16		11-	Wouse Wichail Recii	a ≠ -	-
	17		do	Dompet Kulit	$h \neq d$	-
	18		bu	Buku Bahasa Jurnalistik	$h \neq b$	-
	19		bu	Buku Database	h ≠ b	-
	1				h = h	-
	2		han		a = a	-
	3			Handphone Samsung	$r \neq n$	-
	4		hon		h = h	-
	5		11011		a ≠ o	-
	6		hea	Headset Putih	h = h	-
	7		iica	Headsel I ddii	$a \neq e$	-
	8		hit	Buku Hitam Notes	h = h	-
	9		IIIt	Buku Tittain Tvotes	a ≠ i	-
3	10	har			h = h	-
	11		har	Charger Iphone	a = a	-
	12				r = r	Charger Iphone
	13				h = h	-
	14		har	Hardisk	a = a	-
	15				r = r	Hardisk
	16		h	Buku Tulis Merah	h = h	-
	17		11	Duku Tuns Metan	a ≠ -	-
	18		h-k	Mouse Merah Kecil	h = h	-
	19		11-K	Mouse Michail Recil	h ≠ -	-

Prose s ke-	Iteras i Ke-	Patter n	Teks	Teks di Database	Pencocoka n Brute Force	Hasil Sugesti
	20		dom	Dompet Kulit	h ≠ d	-
	21				h = h	-
	22		has	Buku Bahasa Jurnalistik	a = a	-
	23			Jununguk	r ≠ s	-
	24		buk	Buku Database	$h \neq b$	-
	1				h = h	-
	2		hand		a = a	-
	3			Handphone Samsung	$r \neq n$	-
	4		hone		h = h	
	5		none		$a \neq o$	
	6		head	Headset Putih	h = h	-
	7		nead	Headset Futili	a ≠ e	-
	8		hita	Buku Hitam Notes	h = h	-
	9		IIIta	Buku filalii Notes	a ≠ i	-
	10		hana		h = h	-
	11			Charger Iphone	a = a	-
	12		harg		$\mathbf{r} = \mathbf{r}$	-
	13				$d \neq g$	-
4	14	hard	hone		h = h	-
	15		none		a ≠ o	-
	16				h = h	-
	17		hard	Hardisk	a = a	-
	18		naru	Haraisk	r = r	-
	19				d = d	Hardisk
	20		h	Buku Tulis Merah	h = h	-
	21		11	Duku Tulis Wiciali	a ≠ -	-
	22		mous	Mouse Merah Kecil	$h \neq m$	-
	23		dom p	Dompet Kulit	h ≠ d	-
	24			Buku Bahasa	h = h	-
	25		hasa	Jurnalistik	a = a	-
	26				$r \neq s$	-
	27		buku	Buku Database	$h \neq b$	-

Tabel 4. 3 Simulasi Cara Kerja Algoritma Boyer-Moore

Proses ke	Iterasi Ke-	Pattern	Teks	Teks di Database	Pencocokan Boyer Moore	Hasil Sugesti
1		h	h	Handphone		Handphone
1	1	11	11	Samsung	h = h	Samsung

Proses ke	Iterasi Ke-	Pattern	Teks	Teks di Database	Pencocokan Boyer Moore	Hasil Sugesti
	2		h	Headset Putih	h = h	Headset Putih
	3		h	Buku Hitam Notes	h = h	Buku Hitam Notes
	4		h	Charger Iphone	h = h	Charger Iphone
	5		h	Hardisk	h = h	Hardisk
	6		h	Buku Tulis Merah	h = h	Buku Tulis Merah
	7		h	Mouse Merah Kecil	h = h	Mouse Merah Kecil
	8		d	Dompet Kulit	$h \neq d$	-
	9		b	Buku Bahasa Jurnalistik	$h \neq b$	-
	10		b	Buku Database	$h \neq b$	-
	1		_	Handphone	a = a	-
	2		ha	Samsung	h = h	Handphone Samsung
	3		he	Headset Putih	a ≠ e	-
	4		hi	Buku Hitam Notes	a ≠ i	-
	5		ha	Charger Iphone	a = a	-
	6		IIα	Charger iphone	h = h	Charger Iphone
_	8	_	ha	Hardisk	a = a	-
2	9	ha	Πα	Huraisk	h = h	Hardisk
	10		h-	Buku Tulis Merah	a ≠ -	-
	11		bu	Mouse Merah Kecil	a≠u	-
	12		do	Dompet Kulit	a ≠ o	-
	13		_	Buku Bahasa	a = a	-
	14		ha	Jurnalistik	h = h	Buku Bahasa Jurnalistik
	15		bu	Buku Database	a ≠ u	-
	1		han	Handphone	$r \neq n$	-
	2		hon	Samsung	$r \neq n$	-
	3		hea	Headset Putih	r ≠ a	-
	4		hit	Buku Hitam Notes	r≠t	-
	5				r = r	-
	6		har	Charger Iphone	a = a	-
3	7	har			h = h	Charger Iphone
	9		_		r = r	-
	10		har	Hardisk	a = a	-
	11				h = h	Hardisk
	12		h	Buku Tulis Merah	r ≠ -	-
	13		h-k	Mouse Merah Kecil	r ≠ k	-
	14		dom	Dompet Kulit	$r \neq m$	-

Proses ke	Iterasi Ke-	Pattern	Teks	Teks di Database	Pencocokan Boyer Moore	Hasil Sugesti
	15		has	Buku Bahasa Jurnalistik	$r \neq s$	-
	16		buk	Buku Database	$r \neq k$	-
	1		hand	77 1 1	d = d	-
	2		Hanu	Handphone Samsung	$r \neq n$	-
	3		hone	Sumsung	d ≠ e	-
	4		head	Headset Putih	d = d	-
	5		neau	Heaasei Fuilli	$r \neq a$	-
	6		hita	Buku Hitam Notes	$d \neq a$	-
	7		harg	Changar Inhone	$d \neq g$	-
	8		hone	Charger Iphone	d ≠ e	-
4	9	hard			d = d	-
4	10	naru	hard	Hardisk	$\mathbf{r} = \mathbf{r}$	-
	11		naru	Haraisk	a = a	-
	12				h = h	Hardisk
	13		h	Buku Tulis Merah	d ≠ -	-
	14		h-ke	Mouse Merah Kecil	d ≠ e	-
	15		domp	Dompet Kulit	$d \neq p$	-
	16		hasa	Buku Bahasa Jurnalistik	$d \neq a$	-
	17		buku	Buku Database	$d \neq u$	-

4.7.3 Menentukan Bobot Kriteria

Penentuan bobot kriteria dijelaskan pada tabel berikut:

Tabel 4. 4 Pembobotan Kriteria

Kriteria	Persentase pengaruh kriteria	Bobot range (0-1)	Keterangan
Jumlah iterasi algoritma	80%	0,8	Tingkat pengaruh iterasi algoritma terhadap kecepatan sangat tinggi karena semakin banyak perulangan/iterasi maka akan semakin lambat suatu algoritma menyelesaikan masalah
Jumlah huruf pada <i>pattern</i>	20%	0,2	Jumlah huruf pada <i>pattern</i> merupakan kriteria yang juga mempengaruhi kecepatan, namun tidak lebih berpengaruh dari pada relasi

4.7.4 Pemberian Nilai Pada Setiap Kriteria

Tahap ini adalah tahap dimana setiap kriteria yang telah terbentuk diberi nilai. Untuk dapat memberikan nilai, berikut adalah contoh hasil simulasi *auto-complete* Universitas Bakrie yang diambil dari pembahasan analisa pada bagian 4.7.2.

Tabel 4. 5 Pemberian Nilai Pada Setiap Kriteria

Alternatif	Proses ke-	Jumlah Iterasi Algoritma	Jumlah Huruf Pada Pattern
	1	10	1
Banan Maana	2	15	2
Boyer-Moore	3	16	3
	4	17	4
	1	10	1
Boots Esses	2	19	2
Brute Force	3	24	3
	4	27	4

4.7.5 Menghitung Skor

Nilai pada kriteria dimasukkan dalam nilai bobot yang telah ditentukan. Tahapan selanjutnya adalah dengan melakukan perhitungan menggunakan rumus Metode Perbandingan Eksponensial.

Tabel 4. 6 Simulasi Perhitungan Analisa Menggunakan Perhitungan Perbandingan Eksponensial

			Krite	ria				Total Nilai BM
Proses Ke-	Jur	nlah Itera	asi	Ju	mlah Hu	ruf	Total Nilai BF	
IXC-	В	BF	BM	В	BF	BM	Dr	DIVI
	Ъ	N	N	В	N	N		
1	0,8	10	10	0,2	1	1	7,310	7,310
2	0,8	19	15	0,2	2	2	11,693	9,876
3	0,8	24	16	0,2	3	3	13,956	10,435
4	0,8	27	17	0,2	4	4	15,286	10,966
		T	48,245	38,587				

Keterangan

BF : Algoritma Brute Force
 BM : Algoritma Boyer-Moore

3. B : Nilai Bobot

4. N : Nilai Dari Kriteria

5. Total Nilai : $\sum (N)^B$

Contoh perhitungan:

Nilai pada proses 2.

Nilai BF =
$$(19)^{0.8} + (2)^{0.2}$$

= $10.544 + 1.149$
= 11.693

Nilai BM =
$$(15)^{0.8} + (2)^{0.2}$$

= $8,727 + 1,149$
= $9,876$

Gambar 4. 20 Grafik Perhitungan Skor

Pada Gambar 4.20 menunjukkan bahwa grafik perhitungan skor algoritma *boyer-moore* lebih rendah daripada algoritma *brute-force*, hal itu berarti algoritma

boyer-moore lebih efektif dari segi jumlah iterasi yang dilakukan pada setiap kali pencarian

4.7.6 Menentukan Prioritas Keputusan

Setelah Total Nilai dari setiap alternatif dihitung maka tahapan selanjutnya adalah tahapan akhir yaitu menentukan prioritas keputusan berdasarkan total nilai dari setiap alternatif. Secara rinci dapat dilihat sebagai berikut:

Tabel 4. 7 Prioritas Keputusan

Alternatif	Total Nilai	Rangking
Algoritma Boyer Moore	48,245	1
Algoritma Brute Force	38,587	2

Pada tabel 4.7 terlihat bahwa total nilai dari alternatif terendah yang memperoleh rangking pertama, hal ini dikarenakan semakin tinggi jumlah usaha yang dilakukan oleh algoritma tersebut. Berdasarkan analisa tersebut maka Algoritma *Boyer-Moore* yang menjadi algoritma tercepat dalam pencarian menggunakan *auto-complete* serta permasalah dapat terpecahkan.

BAB V SIMPULAN DAN SARAN

5.1 Simpulan

Berdasarkan hasil analisis, perancangan, implementasi, dan pengujian yang telah dilakukan, dapat diambil kesimpulan bahwa Algoritma Boyer-Moore dapat diterapkan pada fitur auto-complete aplikasi Lost and Found berbasis web. Algoritma Boyer-Moore juga dapat berjalan dengan baik pada fitur autocomplete pencarian barang dengan melakukan pencarian dari karakter paling kanan ke karakter paling kiri dengan menggunakan pergeseran pattern goodsuffix shift rule dan bad character rule. Dari hasil pengujian menggunakan Metode Perbandingan Eksponensial, grafik perhitungan skor menunjukkan bahwa jumlah iterasi yang dilakukan oleh algoritma Boyer-Moore lebih sedikit daripada algoritma Brute Force yang dijadikan sebagai algoritma pembanding untuk fitur pencarian menggunakan fitur auto-complete. Hasil pencarian algoritma Boyer-Moore juga bergantung pada dua hal, yaitu panjang pattern yang diinputkan dan kata kunci yang di-input-kan oleh user. Apabila user memasukkan jumlah pattern sedikit maka peluang untuk sistem menampilkan hasil pencarian lebih lama, semakin banyak jumlah pattern yang dimasukkan maka semakin kecil sistem mendapatkan sugesti kemiripannya.

5.2 Saran

Berdasarkan hasil penulisan yang telah dilakukan, maka beberapa saran untuk pengembangan penulisan selanjutnya adalah sebagai berikut.

1. Untuk meningkatkan akurasi dari hasil pencarian *auto-complete* menggunakan algoritma *Boyer-Moore*, maka diharapkan *user* melakukan beberapa hal dalam proses pencarian, yang pertama adalah *user* memasukkan data dengan nama barang yang spesifik disertai dengan tipe barang agar menghindari kesamaan barang yang disimpan. Kedua, diharapkan *user* melakukan pencarian dengan memasukkan nama barang yang spesifik (*pattern* yang panjang) supaya hasil pencarian lebih akurat.

2. Aplikasi *Lost and Found* ini dikembangkan untuk meningkatkan jumlah keakurasian dalam pencarian data menggunakan *auto-complete* dengan menambahkan metode pencocokan *string* lainnya.

DAFTAR PUSTAKA

- [1] Suprawoto, "Akurat, Cepat, Mudah, dan Merata Sebuah Praktik Pengelolaan Informasi Publik," *Bali: Konferensi Perpustakaan Digital Indonesia ke-1*, pp. 1-11, 2008.
- [2] A. Januardi, "Analisa Perbandingan Algoritma Brute Force dan Boyer Moore dalam Pencarian Word Suggestion Menggunakan Metode Perbandingan Eksponensial," *Pelita Informatika Budi Darma ISSN: 2301-9425*, vol. IV, no. 1, pp. 18 24, 2013.
- [3] G. H. Kumara, "Visualisasi Beberapa Algoritma Pencocokan String dengan Java," *Jurusan Teknik Informatika, Fakultas Elektro Informatika, Institut Teknologi Bandung,* pp. 1-14, 2009.
- [4] V. Sagita dan M. I. Prasetyowati, "Studi Perbandingan Implementasi Algoritma Boyer-Moore, Turbo Boyer-Moore, dan Tuned Boyer-Moore dalam Pencarian String," *ULTIMATICS, ISSN 2085-4552*, vol. IV, no. 1, pp. 31-37, 2013.
- [5] D. A. Wibisono, D. Priharsari dan A. Muttaqin, "Rancang Bangun Sistem Informasi Pencarian Benda Hilang 'Lost and Found' Berbasis Website di Universitas Brawijaya," pp. 1-8, 2012.
- [6] Supriyanto, "Perancangan dan Pembuatan Sistem Informasi Kehilangan Berbasis Web," pp. 1-12, 2014.
- [7] J. A. O'Brien dan G. M. Marakas, Management Information System 10e, New York: McGraw-Hill/Irwin, 2010.
- [8] M. Z. Halim, "Rancang Bangun Sistem Informasi Penyewaan Pada Rental Mobil Berbasis Web dan Menggunakan SMS Gateway," *Laporan Skripsi*, pp. 7-8, 2013.
- [9] D. Utomo, E. W. Harjo dan Handoko, "Perbandingan Algoritma String Searching Brute Force, Knuth Morris Pratt, Boyer Moore, dan Karp Rabin pada Teks Alkitab Bahasa Indonesia," *Techne Jurnal Ilmiah Elektronika*, vol. 7, no. 1, pp. 1-13, 2011.
- [10] K. W. Argakusumah dan S. Hansun, "Implementasi Algoritma Boyer-Moore pada Aplikasi Kamus Kedokteran Berbasis Android," *Ultimatics* Vol. VI, No. 2 ISSN 2085-4552, p. 71, 2014.

- [11] C. Chiquita, "Penerapan Algoritma Boyer-Moore Dynamic Programming untuk Layanan Auto-Complete dan Auro Correct," *Makalah IF3051 Strategi Algoritma*, pp. 1-6, 2012.
- [12] S. Kristanto, A. Rachmat dan R. G. Santosa, "Implementasi Algoritma Boyer-Moore Pada Permainan Word Search Puzzle," *Conference Paper*, pp. 1-9, 2013.
- [13] R. S. Pressman, Software Engineering, A Practitioner's Approach, Seventh Edition, New York: McGraw-Hill, 2010.
- [14] P. E. Mountaines, "Pengembangan Aplikasi Berbasis Web untuk Menampilkan Absensi dan Nilai Akhir Peserta Didik," *Tugas Akhir*, p. 3, 2013.
- [15] A. Mujumdar, G. Masiwal dan P. Chawan, "Analysis of various Software Process Models," *International Journal of Engineering Research and Applications (IJERA) ISSN: 2248 9622 vol.2, Issue 3*, pp. 2015 2021, 2012.
- [16] A. M. French, "Web Development Life Cycle: A New Methodology for Developing Web Applications," *Journal of Internet Banking and Commerce*, vol 16 no.2, p. 5, 2011.
- [17] Kamatchi, J. Iyer dan S. Singh, "Software Engineering: Web Development Life Cycle," *International Journal of Engineering Research & Technology* (*IJERT*) *ISSN*:2278-0181, vol. 2, no. 3, pp. 1-4, 2013.
- [18] S. Al-Fedaghi, "Developing Web Applications," *International Journal of Software Engineering and Its Applications Vol. 5 No.2*, vol. 5, no. 2, pp. 57-68, 2011.
- [19] R. Nagila, "Comparison of Web Development Technologies ASP.NET & PHP," *Master Thesis in Web Development Malarden University*, p. 12, 2013.
- [20] S. P. Chandran dan M. Angepat, "Comparison between ASP.NET and PHP Implementation of a Real Estate Web Application," *Master Thesis in Software Engineering, Malardalens hogskola Eskilstuna Vasteras*, pp. 34-35, 2011.
- [21] J. L. Whitten dan L. D. Bentley, System Analysis and Design Methods 7/E, New York: McGraw-Hill, 2007.
- [22] N. M. A. Munassar dan A. Govardan, "Comparison Study Between Traditional and Object-Oriented Approaches to Develop All Projects in

- Software Engineering," *International Journal of Computer Science and Information Technologies*, vol. 3, no. 1, pp. 3022-3028, 2012.
- [23] Marimin, Teknik dan Aplikasi Pengambilan Keputusan dengan Kriteria Majemuk, Jakarta: Grasindo, 2015.
- [24] H. R. Pratiwi, D. Syarif dan A. Wibowo, "Prototype Aplikasi SMS Content Filtering Menggunakan Metode String Matching (Studi Kasus: Content Iklan)," *Jurnal Teknik Informatika*, vol. 1, pp. 1-8, 2012.
- [25] Kent, "Boyer-Moore Algorithm," 4 April 2015. [Online]. Available: http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/StringMatch/boyerMoore.htm.
- [26] D. Mahardika, "Sistem Pendukung Keputusan Promosi Kenaikan Jabatan Manager dengan Metode Perbandingan Eksponensial Pada PT Texmaco Perkasa Engineering Kendal," pp. 1-14, 2012.

Universitas Bakrie

LAMPIRAN

Lampiran 1 Software Requirement Specification SOFTWARE REQUIREMENT SPECIFICATION (SRS)

Implementasi Algoritma Boyer-Moore dalam Sistem Informasi "Lost and Found" di Universitas Bakrie

1. Pendahuluan

Software Requirement Specification (SRS) adalah dokumen yang menjelaskan rincian kebutuhan spesifik dalam perancangan sistem lost and found di Universitas Bakrie berbasis web yang terdiri dari kebutuhan fungsional dan non-fungsional sesuai dengan kriteria sistem yang akan dirancang. Software Requirement Specification (SRS) ini dibuat untuk membantu spesifikasi sistem lost and found. Kriteria yang diperluka dijelaskan secara rinci dan sistematis karena digunakan sebagai evaluasi hasil analisa sistem lost and found yang dirancang, agar menjawab permasalahan sesuai dengan keperluan user dan tidak menyimpang dari tujuan pembuatan sistem informasi tersebut. Sistem informasi yang sesuai dengan kriteria yang telah ditentukan sebelumnya akan berjalan lebih lancar dalam pengoperasiannya. Dan Software Requirement Specification (SRS) dapat digunakan sebagai acuan evaluasi dalam pengerjaan sistem informasi agar dapat berjalan sesuai dengan kriteria yang diinginkan.

1.1 Latar Belakang

Kehilangan barang-barang pribadi di Universitas Bakrie merupakan hal yang sudah sering terjadi. Sebagian besar mahasiswa yang merasa kehilangan atau menemukan barang di lingkungan Universitas Bakrie akan segera melapor ke petugas *security* terdekat. Hal ini yang membuat *staff security* merasa kesulitan dalam melakukan penyimpanan dan pencarian barang yang telah ditemukan atau barang yang dicari karena jangka waktu penemuan terlalu lama ataupun catatan yang sudah menumpuk. Dalam satu minggu, pihak *security* bisa menerima laporan kehilangan atau penemuan sebanyak 10 kali laporan, jumlah ini termasuk cukup banyak mengingat jumlah mahasiswa di Universitas Bakrie yang sangat banyak. Dari permasalahan

tersebut, penulis merasa perlu adanya sebuah sistem atau sarana khusus yang dapat menampung data temuan barang dan lokasi penyimpanan barang tersebut. Salah satunya dengan membangun sistem informasi *Lost and found* berbasis *web* yang dapat diakses oleh *staff security* di berbagai pos keamanan di Universitas Bakrie. Dengan adanya sistem informasi temuan barang ini akan memudahkan *staff security* untuk mengelola temuan barang dan laporan kehilangan secara efektif.

1.2 Tujuan

Software Requirement Specification (SRS) ini diharapkan menjadi acuan evaluasi dalam pengerjaan pengembangan sistem lost and found. Software Requirement Specification (SRS) ini digunakan sebagai standar pembuatan mengacu pada penjelasan rincian kebutuhan spesifik dalam perancangan lost and found yang terdiri dari kebutuhan fungsional dan nonfungsional sesuai dengan kriteria sistem lost and found yang akan dirancang. Dalam pengerjaannya diharapkan sistem lost and found tidak menyimpang dari standar dan kriteria pembuatan sehingga dapat menghasilkan sistem informasi yang memuaskan dan bermanfaat bagi user.

1.3 Batasan

Batasan yakni ruang lingkup kebutuhan yang dibutuhkan dalam perancangan sistem *lost and found*. Dalam dokumen ini dijelaskan agar dalam pengembangan sistem *lost and found* tidak keluar dari topik masalah yang ada maka terdapat batasan sistem informasi yang dibuat. Sistem informasi *lost and found* hanya melakukan pencatatan dan dokumentasi pada laporan civitas akademika yang menemukan barang dan kehilangan barang. Semua kegiatan dalam sistem informasi membutuhkan *login* untuk otorisasi dan autentikasi pengguna. *User* dapat mengelola data penemuan barang dan laporan kehilangan barang yang disesuaikan dengan sistem yang berlaku di *security* Universitas Bakrie. Secara teknis, sistem *lost and found* berbasis *web* dengan *database* MySQL. Pengujian algoritma pada sistem informasi *lost and found* menggunakan Metode Perbandingan Eksponensial.

1.4 Definisi, Istilah dan Singkatan

- **Software Requirement Specification (SRS):** Dokumen yang menggambarkan secara jelas dan rinci spesifikasi kebutuhan *softwatre* dalam pembuatan sistem *lost and found* berbasis *web* pada bagian *security*.
- **Software:** Perangkat lunak yang dijalankan di komputer.
- **Hardware:** Perangkat keras yang secara fisik digunakan dalam pengoperasian komputer.
- **Interface:** Tampilan pada layar yang ditampilkan ke pengguna.
- Web Server: Pusat komputer/sistem yang mengelola data yang terhubung dengan jaringan.

1.5 Tinjauan

Software Requirementt Specification (SRS) ini diharapkan menjadi acuan evaluasi dalam pengerjaan pengembangan sistem lost and found. Software Requirement Specification (SRS) ini digunakan sebagai standar pembuatan mengacu pada penjelasan rincian kebutuhan spesifik dalam perancangan sistem lost and found yang terdiri dari kebutuhan fungsional dan non-fungsional sesuai dengan kriteria sistem lost and found yang dirancang. Dalam pengerjaannya diharapkan sistem lost and found tidak menyimpang dari standar dan kriteria pembuatan sehingga dapat menghasilkan sistem informasi yang memuaskan dan bermanfaat bagi user.

2. Deskripsi Keseluruhan

Berdasarkan studi awal yang telah dilakukan, didapatkan hasil bahwa kebutuhan pengguna merujuk pada pencatatan laporan kehilangan dan penemuan barang yang memiliki fungsi antara lain melakukan pencatatan laporan kehilangan barang pada *form* kehilangan barang, pencatatan laporan penemuan barang pada *form* penemuan barang, konfirmasi barang dan pencarian data barang (*searching*). Berdasarkan fungsi tersebut, akan dibuat sebuah sistem informasi *lost and found* berbasis *web* yang akan digunakan oleh *security* Universitas Bakrie.

2.1 Perspektif Produk

Menurut penjelasan sebelumnya, bagian *security* Universitas Bakrie membutuhkan sistem pencatatan laporan dan dokumentasi barang hilang yang dapat meningkatkan kinerja untuk pengelolaan data barang hilang dan laporan kehilangan barang. Dengan adanya permintaan *user* dan batasan dalam perancangan sistem *lost and found*, ada beberapa fungsi yang dikembangkan yakni:

- Sistem dapat digunakan untuk melakukan pencarian barang hilang dan barang temuan
- 2. Sistem dapat menampilkan data barang temuan dan barang hilang
- 3. Sistem dapat menyimpan data barang temuan dan barang hilang
- 4. Sistem dapat mengedit data barang hilang
- 5. Sistem dapat melakukan konfirmasi barang
- 6. Sistem dapat mengirim konfirmasi barang via email
- 7. Terdapat menu *login* untuk dapat masuk ke dalam sistem
- 8. Terdapat menu *logout* untuk keluar dari sistem

2.2 Karakteristik Pengguna

User	Action
Security	1. Security dapat melakukan login ke dalam sistem lost and
	found
	2. Security dapat melihat form penemuan dan kehilangan
	barang
	3. Security dapat menginputkan data penemuan dan laporan
	kehilangan barang
	4. Security dapat melakukan pencarian data barang hilang
	atau laporan kehilangan barang
	5. Security dapat mengupdate data barang hilang
	6. Secuirty dapat melakukan logout

2.3 Batasan

Pada SRS ini, batasan dari pengerjaan sistem informasi *lost and found* berbasis *web* pada bagian *security* Universitas Bakrie antara lain:

- 1. Sistem informasi *lost and found* dikembangkan dengan bahasa pemrograman PHP dan berbasis *web*.
- 2. Database yanng digunakan adalah MySQL
- 3. Untuk memudahkan implementasi maka diawali dengan data sampel
- 4. Pengujian menggunakan Metode Perbandingan Eksponensial dengan membandingkan cara kerja algoritma *Boyer-Moore* dengan *Brute-Force* berdasarkan jumlah iterasi
- 5. Tidak membahas keamanan data dan keamanan jaringan
- 6. Pengguna sistem informasi *lost and found* adalah *staff security* Universitas Bakrie.

2.4 Asumsi dan Ketergantungan

Sistem informasi *lost and found* yang akan dibangun sangat tergantung pada koneksi internet dan *server* yang digunakan. Apabila koneksi internet yang digunakan oleh pengguna lambat, maka kinerja sistem informasi *lost and found* juga akan lambat. *Server down* atau terjadi kerusakan juga akan membuat sistem informasi *lost and found* tidak dapat diakses oleh pengguna.

2.5 Metode Pengembangan

Pengembangan sistem informasi *lost and found* ini menggunakan WDLC (Web Development Life Cycle). Perancangan sistem *lost and found* diperlukan dalam pengembangan perangkat lunak yang bertujuan agar sistem informasi *lost and found* tersebut dapat memenuhi kebutuhan klien. . Pemahaman klien dan kebutuhan klien seringkali berkembang, konsekuensi dari kenyataan ini yakni sistem melampaui spesifikasi yang dirancang dan digunakan dalam konteks yang lebih luas. Hal ini mempersulit kemampuan untuk secara jelas menentukan sistem persyaratan. Metode WDLC dipilih karena metode ini adalah metode pengembangan dari metode *prortyping* dan

SDLC (Software Development Life Cycle). WDLC menggunakan komponen dari masing-masing metodologi, menggabungkan ke dalam sebuah pendekatan baru yang akan mengurangi waktu pengembangan, menambahkan struktur untuk masalah yang tidak terstruktur dan menjaga pengguna yang terlibat dalam seluruh siklus hidup pengembangan.

3. Spesifikasi Kebutuhan

Pembuatan sistem informasi *lost and found* didasarkan kepada kebutuhan pengguna yang diperoleh melalui proses elisitasi. Proses elisitasi kebutuhan dilakukan melalui wawancara dengan beberapa pihak yang akan menggunakan sistem informasi inventaris ini.

3.1 Fungsional

- 3.1.1 Sistem informasi *lost and found* yang terintegrasi
 - = Menampilkan tampilan *lost and found* yang beroperasional dengan baik dan bersesuaian dengan fungsi-fungsi yang ditampilkan.
- 3.1.2 Menampilkan Master Menu *Home*
 - = Menampilkan tampilan yang dapat melihat semua master menu.
- 3.1.3 Menampilkan Master Menu Data Barang Hilang
 - = Menampilkan tampilan yang dapat melihat semua data laporan barang hilang beserta menu yang memfasilitasi tampilan data barang hilang beserta menu yang memfasilitasi tampilan tersebut baik menambah, mengedit, dan menghapus data.
- 3.1.4 Menampilkan Master Menu Data Barang Temuan
 - = Menampilkan tampilan yang dapat melihat semua data laporan barang hilang beserta menu yang memfasilitasi tampilan data barang hilang beserta menu yang memfasilitasi tampilan tersebut baik menambah, mengedit, dan menghapus data.
- 3.1.5 Menampilkan Master Menu Penambahan Data Barang Hilang
 - = Menampilkan *form* dalam menambahkan data laporan barang hilang.
- 3.1.6 Menampilkan Menu *Search* untuk Pencarian
 - = Menampilkan fasilitas pencarian nama barang berdasarkan label barang.

- 3.1.7 Menampilkan Menu *Edit* Data Barang Hilang
 - = Menampilkan *form edit* untuk mengubah keterangan barang hilang.
- 3.1.8 Menampilkan Menu Paging
 - = Menampilkan *paging* data agar data tertata berdasar *paging*.
- 3.1.9 Menampilkan Fasilitas untuk *Login User*
 - = Menampilkan form untuk masuk ke dalam sistem informasi lost and found
- 3.1.10 Menampilkan nama user pada halaman home
 - = Terdapat keterangan nama pengguna *user* berdasarkan dari *privilage login*
- 3.1.11 Menampilkan Nama dan alamat Universitas Bakrie
 - = Terdapat keterangan nama dan alamat Universitas di bagian *header* dan *footer*.
- 3.1.12 Menyediakan fasilitas *logout*
 - = Terdapat button untuk mengakhiri sesi dalam sistem informasi lost and found

3.2 Non-fungsional

- 3.2.1 Tampilan sistem user friendly
 - = Tampilan sistem informasi *lost and found* yang mudah dipahami.
- 3.2.2 Tampilan sistem simpel dan menarik
 - = Tampilan sistem informasi *lost and found* simpel dan menarik bagi pengguna

3.3 Logical View

Client Layer: Layer ini merupakan tampilan halaman web dari sistem informasi lost and found yang akan dibuat. Pengguna dapat melakukan akses ke sistem informasi lost and found ini dengan jaringan internet. Fungsi yang akan ditampilkan bergantung kepada hak akses yang dimiliki oleh pengguna.

Business Layer: Sistem informasi lost and found akan bertugas untuk menerima request yang telah dikirimkan melalui client layer. Sistem informasi inventaris akan menerima query yang telah diinputkan oleh pengguna untuk diteruskan ke database layer. Setelah query dieksekusi, hasil akan ditampilkan kembali ke client layer.

Database Layer: Penyimpanan data akan dilakukan pada layer ini agar data dapat diakses oleh sistem informasi lost and found untuk memenuhi request dari pengguna melalui client layer.

3.4 Antarmuka

Kebutuhan antarmuka yang didefinisikan pada dokumen ini mencakup antarmuka pengguna, antarmuka perangkat keras, dan antarmuka komunikasi.

3.4.1 Antarmuka Pengguna

User interface dari sistem informasi lost and found menggunakan desain antarmuka yang merupakan bagian dari sistem informasi lost and found yang memiliki peran penting dan membantu pengguna untuk melakukan kegiatan dengan sistem informasi lost and found tersebut.

Perancangan aplikasi sangat dibutuhkan dalam sebuah pengembangan software. Adapun model perancangan aplikasi adalah sebagai berikut :

1. User Interface

Berikut adalah rancangan *Graphic User Interface* (GUI) dari aplikasi *Lost and Found* yang akan dibuat.

Gambar 1. GUI Halaman Awal User

Gambar 1 menampilkan halaman ketika *user* membuka aplikasi saat pertama kali dan klik menu 'LOGIN'. Terdapat beberapa menu navigasi yang dapat dipilih.

Gambar 2. Halaman Home

Gambar 2 menggambarkan halaman home, ketika user sudah melakukan login.

Gambar 4. 21 Halaman Barang Temuan

Gambar 3 menggambarkan halaman awal setelah *user* melakukan 'klik' Barang Temuan pada navigasi.

Gambar 4. 22 Tampilan Barang Hilang

Gambar 4 menggambarkan tampilan barang hilang ketika *user* melakukan 'klik' barang hilang pada navigasi.

Gambar 4. 23 Insert Data Barang

Gambar 5 Menggambarkan pengisian form barang temuan yang kemudian disimpan ke dalam *database*.

Gambar 4. 24 Konfirmasi Barang

Universitas Bakrie

Gambar 6 menggambarkan form konfirmasi barang apabila telah cocok dengan

barang yang dilaporkan hilang.

3.4.2 Antarmuka Perangkat Keras

Antarmuka perangkat keras yang dibutuhkan untuk membantu

kelengkapan dari pembangunan sistem informasi lost and found yang sedang

dirancang meliputi:

a. Keyboard, merupakan salah satu alat yang digunakan dalam proses

input informasi berbentuk papan yang terdiri atas tombol-tombol

seperti huruf alfabet (A-Z) serta simbol untuk pengetikan.

b. Mouse, perangkat yang mendeteksi gerakan input dari pengguna

dengan melakukan click, drag, dll.

c. Monitor, display adalah tampilan visual elektronik untuk komputer

yang memudahkan pengguna melihat hasil *output* dari sistem.

3.4.3 Antarmuka Komunikasi

Dalam pengembangan web ini, dibutuhkan perangkat lunak untuk

mendukung pengembangan web. Perangkat lunak untuk mendukung

pengembangan web. Perangkat lunak tersebut antara lain:

a. Sistem Operasi

Sistem Operasi (Server)

: Apache (xampp)

Sistem Operasi (Client)

: Windows 7

b. Bahasa Pemrograman

Bahasa

: PHP dan HTML

Aplikasi

: Sublime Text

c. RDBMS

Nama RDBMS

: MySQL

Aplikasi

: xampp

98

3.4.4 Antramuka Komunikasi

Desain antarmuka komunikasi dari sistem informasi *lost and found* akan dibangun menggunakan *Apache webserver* sebagai penghubung antara *server* dengan komputer pengguna. Dengan menggunakan jaringan internet, pengguna dapat melakukan akses terhadap sistem informasi *lost and found* kapanpun dan dimanapun.

3.5 Persyaratan Perijinan

Implementasi dan instalasi sistem informasi *lost and found* ini akan terdistribusi sesuai dengan ketentuan operasional yang berlaku.

3.6 Hukum, Hak Cipta dan Pemberitahuan Lainnya

Hak cipta sistem informasi *lost and found* merupakan milik pengembang proyek dan bagian *security* Universitas Bakrie. Masing-masing pihak tidak dapat mendistribusikan sistem informasi *lost and found* kepada pihak lain tanpa adanya kesepakatan bersama.

3.7 Applicable Standards

- XAMPP v3.2.2
- Sublime Text

4. Informasi Pendukung

Dokumen-dokumen yang terkait dalam pembuatan *Software* Requirement Specification (SRS) ini meliputi:

- Transkrip wawancara
- Surat keterangan penelitian dengan koordinator security Universitas Bakrie

Lampiran 2 Elisitasi "Lost and Found"

Terlampir di bawah ini Elisitasi *"Lost and Found"* yang mendeskripsikan kebutuhan *functional* dan *non-functional* aplikasi *"Lost and Found"*

Fun	ctional								
1.	Sistem informasi lost and found yang terintegrasi sebagai								
	working prototype								
2.	Menampilkan Master Menu <i>Home</i>								
3.	Menampilkan Master Menu Data Barang Hilang								
4.	Menampilkan Master Menu Data Barang Temuan								
5.	Menampilkan Master Menu Penambahan Data Barang Hilang								
6.	Menampilkan Menu Search untuk pencarian								
7.	Menampilkan Menu <i>Edit</i> Data Barang Hilang								
8.	Menampilkan Menu Paging								
9.	Menampilkan Fasilitas untuk Login User								
10.	Menyediakan fasilitas <i>Logout</i>								
11.	Menampilkan Nama <i>user</i> pada halaman <i>home</i>								
12.	Menampilkan Nama dan alamat Universitas Bakrie								
Non	-Functional								
1.	Tampilan sistem simple dan menarik								
2.	Tampilan sistem user friendly								

Lampiran 3. Rencana Kegiatan Penelitian

															20	16													
No	Rancangan Penelitian		Februari				Maret			April			Mei				Juni				Juli				Agustus				
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	Pengamatan dan Observasi																												
2	Menentukan Rumusan Masalah																												
3	Studi Literatur																												
5	Penulisan Bab I - Pendahuluan Penulisan Bab II - Landasan Teori																												
6	Penulisan Bab III - Metodologi Penelitian																												
7	Pengajuan Proposal																												
8	Seminar Proposal																												
9	Revisi Proposal																												
10	Perancangan dan pembangunan aplikasi																												
11	Testing																												
12	Penulisan Bab IV - Pembahasan																												1
13	Penulisan Bab V - Kesimpulan dan Saran																												
14	Pengajuan Sidang TA																												
15	Sidang TA																												
16	Revisi Laporan TA																												

Lampiran 4. Surat Keterangan Penelitian

Terlampir di belakang halaman ini surat keterangan penelitian yang telah ditanda tangani oleh Bapak Surayo selaku Koordinator *Security* Universitas Bakrie

Lampiran 5. Hasil Wawancara

Terlampir di belakang halaman ini Transkrip Wawancara yang dilakukan kepada Bapak Surayo selaku Koordinator *Security* Universitas Bakrie.

Lampiran 6. Algoritma Boyer-Moore

```
class search
public function setBoyerMoore($text, $pattern) {
    $textLower = strtolower($text);
    $patternLower = strtolower($pattern);
    $patlen = strlen($pattern);
    $textlen = strlen($text);
    $table = $this->makeCharTable($patternLower);
    p = 0;
    q = 0;
    $arr = array(""); //hasil akan disimpan di array ini
    $i=$patlen-1;
    while ($i < $textlen) {
        $t = $i;
        for ($j=$patlen-1; $patternLower[$j] == $textLower[$i]; $j-
            if(\$j == 0) {
                //untuk munduk mengambil satu nama barang jika
     ditemukan
                //pattern pada tengah kata nama barang
                if (\$i == 0 \mid | \$text[\$i - 1] == '*') \{ //'*' sebagai \}
     pembatas nama barang
                $q = $i; //i adalah index dimana pattern ditemukan
                }
                else {
                $x = $i;
                for (\$x = \$i; \$text[\$x] != '*'; \$x--) {
                if ($x == 0)
                break;
                q = (x == 0 ? x : x + 1);
                $str = '';
                while ($text[$q] != '*') { //gandakan string untuk
     hasil temuan
                $str .= $text[$q];
                $q++;
                $t = $q;
                arr[p] = str;
                $p++;
                break;
            }
        }
        $i = $t;
        if(array key exists($textLower[$i], $table)) { //jika
     karakter pada text ditemukan pada pattern
```

```
$i = $i + max($table[$textLower[$i]], 1); //maju sejauh
                  index pada ditemukannya karakter itu,
                                              //atau jika diawal pattern, maju satu langkah
                               else { //karakter tidak ada di pattern, maka akan dimajukan
                  sejauh panjang pattern
                                              $i += $patlen;
               }
               return $arr;
}
function makeCharTable($string) {
               $len = strlen($string);
               $table = array();
               for ($i=0; $i < $len; $i++) {
                              \hat{s} = 
               return $table;
}
function cariTemuan($key) {
               $barang = new barang();
               $hasil = '';
               $table = 'tb found';
               $res= $barang->getNamaBarangFrom($table);
               $size = sizeof($res);
               for ($i = 0; $i < $size; $i++) {
                               foreach ($res[$i] as $a => $b) {
                                              $hasil .= ($b . "*");
                               }
               }
               $cari = $this->setBoyerMoore($hasil, $key);
               return $cari;
}
function cariHilang($key) {
               $barang = new barang();
               $hasil = '';
               $table = 'tb lost';
               $res= $barang->getNamaBarangFrom($table);
               $size = sizeof($res);
               for ($i = 0; $i < $size; $i++) {
                               foreach ($res[$i] as $a => $b) {
                                              $hasil .= ($b . "*");
                               }
               }
               $cari = $this->setBoyerMoore($hasil, $key);
               return $cari;
?>
```

Lampiran 7. Surat Pengujian Aplikasi

Terlampir di belakang halaman ini surat pengujian aplikasi yang telah ditandatangani oleh Bapak Surayo selaku Koordinator *Security* Universitas Bakrie sebagai *user* dari penelitian ini.