A Bayesian Approach to the Problem of Unknown Networks in Spatial Autoregressive Models

陳捷 Jesse Chieh Chen

2024-05-24

Contents

- 1 Introduction
- 2 Model Setup
- 3 Model Specifications
- 4 Sampling Procedure
- 5 Simulation
 - Basic ERGM
 - Sampson's Monk
 - Zachary's Karate Cub
- 6 Conclusion

Introduction

- Econometricians are interested in networks, but network data are hard to come by.
- In many cases, although the network structure is unknown, we have a good idea about its characteristics (e.g., small world, mutuality).

Question

How can we effectively incorporate these characteristics in estimation?

Literature

Introduction

In other fields:

- Causal Inference:
 - 1 Madigan and Raftery (1994): DAG causal graph recovery
 - 2 Yuan and Lin (2007): recover covariance relations

In Econometrics:

- Frequentist attempts: High-dimensional Methods
 - 1 Meinshausen and Bühlmann (2006): Lasso
 - 2 Lam and P. C. Souza (2020): Lasso
 - 3 de Paula, Rasul, and P. Souza (2023): Identification without sparsity, elastic net
- Bayesian attempt: Krisztin and Piribauer (2022)
 - Simple network priors (Erdős-Rényi type)
 - No motivation from network formation

Spatial Autoregressive Model

SAR

$$\mathbf{y}_{(N\times1)} = \lambda \mathbf{\bar{W}}_{(N\times N)} \mathbf{y} + \mathbf{X}_1 \mathbf{\beta}_1 + \mathbf{\bar{W}} \mathbf{X}_2 \mathbf{\beta}_2 + \mathbf{u}$$

- y: vector of outcome variables
- W: row-normalized adjacency matrix
- $\mathbf{X}_1, \mathbf{X}_2$: exogenous variables
- u: Gaussian error
- 1 λ : peer effect or endogenous effect
- β_1 : exogenous effect
- β_2 : contextual effect

Why Bayesian?

- There are two problems with SAR:
 - The network is endogenously formed
 - The network is, in many cases, unknown
- It is natural to specify a network formation model.
- Hence, the likelihood combined with the network formation probability gives the **complete** picture.
- This calls for a Bayesian approach.

$$f(\mathbf{y} \mid \lambda, \mathbf{W}, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2) \cdot \pi(\mathbf{W})$$
SAR likelihood
network
formation

■ In this research, we focus on ERGM priors.

Exponential Random Graph Model

ERGM

$$\pi(\mathbf{W} \,|\, \boldsymbol{\theta}) = \frac{1}{z(\boldsymbol{\theta})} \exp(\mathbf{s}(\mathbf{W})^{\top} \boldsymbol{\theta}) \ \text{ where } \ z(\boldsymbol{\theta}) = \sum_{\tilde{\mathbf{W}} \in \mathcal{W}} \exp(\mathbf{s}(\tilde{\mathbf{W}})^{\top} \boldsymbol{\theta})$$

- $\mathbf{s}(\mathbf{W})$: vector of sufficient statistics,
- \bullet : vector of natural parameters
- $z(\theta)$: normalizing constant.
- **11** Flexibility: $s(\theta)$ can be anything
 - Erdős-Rényi (Poisson), homophily models, etc
- Tractability: known algorithms to sample W and recover θ
- Interpretability: some microfoundation

Likelihood Function

$$f(\mathbf{y} \mid \lambda, \mathbf{W}, \boldsymbol{\beta}, \sigma^2)$$

$$= (2\pi)^{-N/2} (\sigma^2)^{-N/2} \det(\mathbf{M}) \exp\left(-\frac{1}{2\sigma^2} \|\mathbf{M}\mathbf{y} - \mathbf{H}\boldsymbol{\beta}\|_2^2\right)$$

- lacksquare is the vector of parameters $(\beta_1, \beta_2)^{\top}$
- **M** is the reduced form matrix $\mathbf{I} \lambda \mathbf{W}$
- **H** is the stacked exogenous variables $[X_1, WX_2]$
- $\|\mathbf{x}\|_2^2$ is the Euclidean norm $\mathbf{x}^{\top}\mathbf{x}$

Priors

Sampling Procedure

$$\begin{cases} \boldsymbol{\beta} & \sim \mathcal{N}(\boldsymbol{\mu}_{\boldsymbol{\beta}}, \mathbf{V}_{\boldsymbol{\beta}}) \\ \sigma^2 & \sim \mathcal{I}\mathcal{G}(a_{\sigma^2}, b_{\sigma^2}) \\ \boldsymbol{\lambda} & \sim \mathrm{Unif}(-1, 1) \\ \boldsymbol{\pi}(\mathbf{W} \,|\, \boldsymbol{\theta}) & \propto \exp(\mathbf{s}(\mathbf{W})^\top \boldsymbol{\theta}) \\ \boldsymbol{\theta} & \sim \mathcal{N}(\boldsymbol{\mu}_{\boldsymbol{\theta}}, \mathbf{V}_{\boldsymbol{\theta}}) \end{cases}$$
(ERGM)

Priors: Panel Data

- One observation of y contains too little information.
- We assume we have iid observations $\{y_t, X_t\}$ with likelihood function:

$$f(\{\mathbf{y}_t\} | \lambda, \mathbf{W}, \boldsymbol{\beta}, \sigma^2) = \prod_t f_t(\mathbf{y}_t | \lambda, \mathbf{W}, \boldsymbol{\beta}, \sigma^2)$$

Sampling: β and σ^2

- With prior $\beta \sim \mathcal{N}(\mu_{\beta}, V_{\beta})$, the posterior of β also follows normal distribution. (Normal-Normal conjugacy)
- With prior $\sigma^2 \sim \mathcal{IG}(a_{\sigma^2}, b_{\sigma^2})$, the posterior density of σ^2 also follows Inverse Gamma distribution. (Inverse Gamma-Normal conjugacy)

Sampling: λ

The posterior density of λ assumes no well-known form. With prior $\lambda \sim \text{Unif}(-1,1)$, the posterior density of λ is proportional to the likelihood function:

$$\pi(\lambda \mid \{\mathbf{y}_t\}, \mathbf{W}, \boldsymbol{\beta}, \sigma^2, \boldsymbol{\theta}) \propto f(\{\mathbf{y}_t\} \mid \lambda, \mathbf{W}, \boldsymbol{\beta}, \sigma^2)$$
$$= \prod_t f(\mathbf{y}_t \mid \lambda, \mathbf{W}, \boldsymbol{\beta}, \sigma^2).$$

- A simple Metropolis-Hastings Algorithm is used to sample posterior λ .
- One can also use Griddy-Gibbs Algorithm.

Sampling: W

The posterior probability of W assumes no well-known form, it is proportional to

$$\pi(\mathbf{W} | \{\mathbf{y}_t\}, \lambda, \boldsymbol{\beta}, \sigma^2, \boldsymbol{\theta})$$

$$\propto f(\{\mathbf{y}_t\} | \lambda, \mathbf{W}, \boldsymbol{\beta}, \sigma^2) \pi(\mathbf{W} | \boldsymbol{\theta})$$

$$\propto \det(\mathbf{M}) \exp\left(-\frac{1}{2\sigma^2} \sum_t \|\mathbf{M} \mathbf{y}_t - \mathbf{H}_t \boldsymbol{\beta}\|_2^2\right) \exp(\mathbf{s}(\mathbf{W})^\top \boldsymbol{\theta}).$$

Since this is a high-dimensional sampling problem, we use a discrete variant of Hamiltonian Monte Carlo to sample posterior W.

Sampling: θ

The posterior density of θ assumes no well-known form, it is proportional to

$$\pi(\boldsymbol{\theta} \mid \{\mathbf{y}_t\}, \lambda, \mathbf{W}, \boldsymbol{\beta}, \sigma^2)$$

$$\propto \pi(\mathbf{W} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta})$$

$$\propto \frac{1}{z(\boldsymbol{\theta})} \exp(\mathbf{s}(\mathbf{W})^{\top} \boldsymbol{\theta}) \exp\left(-\frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\mu}_{\boldsymbol{\theta}})^{\top} \mathbf{V}_{\boldsymbol{\theta}}^{-1} (\boldsymbol{\theta} - \boldsymbol{\mu}_{\boldsymbol{\theta}})\right).$$

■ Since $z(\theta)$ is unknown, we use Exchange Algorithm to obtain posterior samples of θ .

Gibbs Sampling

- 1: Initialize $(\lambda, \mathbf{W}, \boldsymbol{\beta}, \sigma^2, \boldsymbol{\theta})$
- 2: while true do
- $\boldsymbol{\beta}' \leftarrow \text{sample from } \pi(\boldsymbol{\beta} | \{\mathbf{y}_t\}, \lambda, \mathbf{W}, \sigma^2) \text{ exactly}$ 3:
- $\sigma^{2\prime} \leftarrow \text{sample from } \pi(\sigma^2 \mid \{\mathbf{y}_t\}, \lambda, \mathbf{W}, \boldsymbol{\beta}') \text{ exactly}$
- $\lambda' \leftarrow \text{sample from } \pi(\lambda \mid \{\mathbf{y}_t\}, \mathbf{W}, \boldsymbol{\beta}', \sigma^{2t}) \text{ with Metropolis-}$ 5: Hastings Algorithm (M-H)
- $\mathbf{W}' \leftarrow \text{sample from } \pi(\mathbf{W} | \{\mathbf{y}_t\}, \lambda', \boldsymbol{\beta}', \sigma^{2\prime}, \boldsymbol{\theta}) \text{ with Hamilto-}$ 6: nian Monte Carlo (HMC)
- $\theta' \leftarrow$ sample from $\pi(\theta \mid \mathbf{W}')$ with Exchange Algorithm (EX) 7:
- $(\lambda, \mathbf{W}, \boldsymbol{\beta}, \sigma^2, \boldsymbol{\theta}) \leftarrow (\lambda', \mathbf{W}', \boldsymbol{\beta}', \sigma^{2\prime}, \boldsymbol{\theta}')$
- 9: end while
 - All sampling algorithms are implemented in R and C++

Basic ERGM

- This network is generated from ERGM with edges = -2 and mutual = 2.
- Simulated data is generated for T=12.

Group P1 and P2

- Group P1: X_1 is an $N \times 1$ matrix of exogenous variables generated from a normal distribution and X_2 equals X_1 .
- Group P2: X_1 is an $N \times 2$ matrix of exogenous variables generated from a normal distribution.

Basic ERGM: Results

Figure: True W

Basic ERGM: Results P10 W

Figure: Posterior Mean ${f W}$

Basic ERGM: Results P11 W

Figure: Posterior Mean ${f W}$

Basic ERGM: Results P12 W

Figure: Posterior Mean ${f W}$

Basic ERGM: Results P13 W

Figure: Posterior Mean ${f W}$

Basic ERGM: Results P14 W

Figure: Posterior Mean ${f W}$

Basic ERGM: Results P1

Spec.	Param.	True	Prior Dist.	Post. Mean	95% Credi $Q_{2.5\%}$	ble Interval $Q_{97.5\%}$
P12 T = 12	$egin{array}{c} \lambda \ \sigma^2 \ oldsymbol{eta}_1 \ oldsymbol{eta}_2 \ oldsymbol{ heta}_{ ext{edges}} \ oldsymbol{ heta}_{ ext{mutual}} \end{array}$	$\begin{array}{ c c c } & 0.1 & 2 & \\ & 1 & \\ & 0.5 & \\ & -2 & \\ & 2 & \end{array}$	Unif(-1,1) $\mathcal{IG}(1,1)$ $\mathcal{N}(0,30)$ $\mathcal{N}(0,30)$ $\mathcal{N}(0,1)$ $\mathcal{N}(0,1)$	0.0323 4.5741 0.9944 0.5930 -1.5410 0.4882	$\begin{array}{c} -0.0355 \\ 3.3396 \\ 0.9584 \\ 0.5386 \\ -2.0779 \\ -0.6913 \end{array}$	0.0964 6.2076 1.0334 0.6543 -1.0458 1.6313
P13 T = 12	$egin{array}{c} \lambda \ \sigma^2 \ oldsymbol{eta}_1 \ oldsymbol{eta}_2 \ oldsymbol{ heta}_{ ext{edges}} \end{array}$	$\begin{array}{ c c c } & 0.1 \\ & 2 \\ & 1 \\ & 0.5 \\ & -2 \end{array}$	Unif(-1,1) $\mathcal{IG}(1,1)$ $\mathcal{N}(0,30)$ $\mathcal{N}(0,30)$ $\mathcal{N}(0,1)$	$\begin{array}{c} 0.0333 \\ 4.6069 \\ 0.9937 \\ 0.5929 \\ -1.4252 \end{array}$	$-0.0311 \\ 3.3528 \\ 0.9572 \\ 0.5382 \\ -1.8560$	0.0991 6.1911 1.0308 0.6487 -1.0364

Basic ERGM: Results P20 W

Figure: Posterior Mean ${f W}$

Basic ERGM: Results P21 W

Figure: Posterior Mean ${\bf W}$

Basic ERGM: Results P22 W

Figure: Posterior Mean ${\bf W}$

Basic ERGM: Results P23 W

Figure: Posterior Mean ${f W}$

Basic ERGM: Results P24 W

Figure: Posterior Mean ${f W}$

Basic ERGM: Results P2

Spec.	Param.	True	Prior Dist.	Post. Mean	95% Credi $Q_{2.5\%}$	ble Interval $Q_{97.5\%}$
P22 T = 12	$egin{array}{c} \lambda \ \sigma^2 \ oldsymbol{eta}_1 \ oldsymbol{eta}_2 \ oldsymbol{ heta}_{ ext{edges}} \ oldsymbol{ heta}_{ ext{mutual}} \end{array}$	$\begin{array}{ c c c } & 0.1 \\ & 2 \\ & 1 \\ & 0.5 \\ & -2 \\ & 2 \end{array}$	$\begin{array}{l} \text{Unif}(-1,1) \\ \mathcal{IG}(1,1) \\ \mathcal{N}(0,30) \\ \mathcal{N}(0,30) \\ \mathcal{N}(0,1) \\ \mathcal{N}(0,1) \end{array}$	0.0978 2.2190 1.0026 0.1891 -1.7877 0.2623	$\begin{array}{c} 0.0470 \\ 1.6317 \\ 0.9795 \\ 0.1736 \\ -3.4018 \\ -1.3760 \end{array}$	$\begin{array}{c} 0.1466 \\ 3.1347 \\ 1.0253 \\ 0.2049 \\ -0.7241 \\ 1.7652 \end{array}$
P23 T = 12	$egin{array}{c} \lambda \ \sigma^2 \ oldsymbol{eta}_1 \ oldsymbol{eta}_2 \ oldsymbol{ heta}_{ ext{edges}} \end{array}$	$ \begin{array}{ c c c } \hline 0.1 \\ 2 \\ 1 \\ 0.5 \\ -2 \\ \end{array} $	Unif(-1,1) $\mathcal{IG}(1,1)$ $\mathcal{N}(0,30)$ $\mathcal{N}(0,30)$ $\mathcal{N}(0,1)$	0.0930 2.2601 1.0042 0.1894 -1.9940	0.0454 1.6619 0.9813 0.1735 -4.0807	0.1403 3.2626 1.0287 0.2056 -0.8732

Basic ERGM: Results Summary

- Significant results are obtained for λ , however, this depends heavily on the model specification.
 - In general, $\pi(\lambda | \mathbf{W}, \{\mathbf{y}_t\})$ is very different from $\pi(\lambda, \mathbf{W} | \{\mathbf{y}_t\})$

Sampling Procedure

- The spatial matrix **W** is well-recovered by the approach.
- Inference of θ is as expected, but only edges obtain consistently significant results.
- lacksquare Our model out performs specifications where only $heta_{ t edges}$ is specified in the prior, but only by a little.

Sampson's Monk

Introduction

Sampling Procedure

■ We use ERGM with edges = -3, mutual = 2, and $\mathtt{ctriad} = -0.5$ as prior.

- **I** Group S1: $X_1 = X_2$ are $N \times 2$ matrix of exogenous variables. In this group, the exogenous effects are larger than endogenous effects.
- **2** Group S2: $X_1 = X_2$ are $N \times 2$ matrix of exogenous variables. In this group, the some exogenous effects are smaller than some endogenous effects.

Sampson's Monk: Results

Figure: True W

Sampson's Monk: Results S10 \mathbf{W}

Figure: Posterior Mean ${f W}$

Sampson's Monk: Results S11 W

Figure: Posterior Mean W

Sampson's Monk: Results S12 W

Figure: Posterior Mean W

Sampson's Monk: Results S1

Spec.	Param.	True F	Prior Dist.	Post. Mean	95% Credible Interval	
					$Q_{2.5\%}$	$Q_{97.5\%}$
	λ	0.1	Unif(-1,1)	0.0320	-0.0857	0.1964
	σ^2	2	$\mathcal{IG}(1,1)$	2.8549	1.9332	5.6295
	$oldsymbol{eta}_{1,1}$	2	$\mathcal{N}(0,30)$	2.0123	1.9648	2.0617
S10	$oldsymbol{eta}_{1,2}$	2	$\mathcal{N}(0,30)$	2.0984	1.1329	2.7002
T = 18	$oldsymbol{eta}_{2,1}$	0.5	$\mathcal{N}(0,30)$	0.7005	0.4930	0.8812
1 — 10	$oldsymbol{eta}_{2,2}^{-,-}$	0.5	$\mathcal{N}(0,30)$	0.1332	-5.8634	3.3570
	$oldsymbol{ heta}_{ ext{edges}}$	-1.8	$\mathcal{N}(-3,1)$	-0.9080	-1.6285	-0.0488
	$oldsymbol{ heta}_{ exttt{mutual}}$	2.3	$\mathcal{N}(2,1)$	1.2242	0.3165	2.1608
	$oldsymbol{ heta}_{ exttt{ctriad}}$	-0.1	$\mathcal{N}(-0.5, 1)$	-0.2491	-0.7051	0.1311
	λ	0.1	Unif(-1,1)	0.0306	-0.0906	0.1989
	σ^2	2	$\mathcal{IG}(1,1)$	4.6437	1.7827	11.3241
\$11 T = 12	$oldsymbol{eta}_{1,1}$	2	$\mathcal{N}(0,30)$	2.0015	1.9525	2.0572
	$oldsymbol{eta}_{1,2}$	2	$\mathcal{N}(0,30)$	4.2848	1.2563	10.8403
	$oldsymbol{eta}_{2,1}$	0.5	$\mathcal{N}(0,30)$	0.6090	0.0223	0.9359
	$oldsymbol{eta}_{2,2}$	0.5	$\mathcal{N}(0,30)$	0.9627	-12.6832	10.0607
	$oldsymbol{ heta}_{ ext{edges}}$	-1.8	$\mathcal{N}(-3,1)$	-1.2569	-4.7459	0.3174
	$oldsymbol{ heta}_{ exttt{mutual}}$	2.3	$\mathcal{N}(2,1)$	0.6115	-1.0884	1.8689
	$oldsymbol{ heta}_{ exttt{ctriad}}$	-0.1	$\mathcal{N}(-0.5, 1)$	-0.3708	-1.9857	0.2509

Sampson's Monk: Results S20 \mathbf{W}

Figure: Posterior Mean ${f W}$

Sampson's Monk: Results S21 \mathbf{W}

Figure: Posterior Mean ${\bf W}$

Sampson's Monk: Results S22 W

Figure: Posterior Mean W

Sampson's Monk: Results S2

Spec.	Param.	True	True Prior Dist.	Post. Mean	95% Credible Interval	
					$Q_{2.5\%}$	$Q_{97.5\%}$
	λ	0.1	Unif(-1,1)	0.0933	-0.0515	0.2552
	σ^2	2	$\mathcal{IG}(1,1)$	6.0217	3.3168	10.7843
	$oldsymbol{eta}_{1,1}$	2	$\mathcal{N}(0,30)$	1.9934	1.9176	2.0710
S20	$oldsymbol{eta}_{1,2}$	0.5	$\mathcal{N}(0,30)$	0.8951	-0.1525	1.8155
T = 18	$oldsymbol{eta}_{2,1}$	2	$\mathcal{N}(0,30)$	2.0583	1.5653	2.4986
1 - 10	$oldsymbol{eta}_{2,2}$	0.5	$\mathcal{N}(0,30)$	-0.7854	-5.3961	3.1025
	$oldsymbol{ heta}_{ ext{edges}}$	-1.8	$\mathcal{N}(-3,1)$	-1.2451	-1.8671	-0.5679
	$ heta_{ exttt{mutual}}$	2.3	$\mathcal{N}(2,1)$	1.0436	0.1724	1.9152
	$oldsymbol{ heta}_{ exttt{ctriad}}$	-0.1	$\mathcal{N}(-0.5, 1)$	0.0069	-0.3277	0.2604
\$21 T = 12	λ	0.1	Unif(-1,1)	0.0339	-0.1151	0.2276
	σ^2	2	$\mathcal{IG}(1,1)$	6.1242	3.2807	13.9441
	$oldsymbol{eta}_{1,1}$	2	$\mathcal{N}(0,30)$	2.0333	1.8949	2.1770
	$oldsymbol{eta}_{1,2}$	0.5	$\mathcal{N}(0,30)$	0.9477	-0.1826	2.3512
	$oldsymbol{eta}_{2,1}$	2	$\mathcal{N}(0,30)$	2.2310	1.7853	2.5866
	$oldsymbol{eta}_{2,2}$	0.5	$\mathcal{N}(0,30)$	1.4372	-3.9601	5.0759
	$oldsymbol{ heta}_{ ext{edges}}$	-1.8	$\mathcal{N}(-3,1)$	-1.1667	-1.7794	-0.5208
	$oldsymbol{ heta}_{ exttt{mutual}}$	2.3	$\mathcal{N}(2,1)$	0.8031	-0.0575	1.6794
	$oldsymbol{ heta}_{ exttt{ctriad}}$	-0.1	$\mathcal{N}(-0.5, 1)$	0.0580	-0.2533	0.2849

Sampson's Monk: Results Summary

- The posterior **W** is more noisy when the network is more busy.
- Similar to the first simulation study, no significant result for λ .
- lacktriangle Posterior inferences for $m{ heta}$ is as expected: more significant results when the panel is longer.
- Matrix degeneracy is a problem in this simulation.

Zachary's Karate Cub

■ For this undirected network, we use ERGM with edges = -2, 2-star = 0.2, 3-star = -0.1, and triangle = 0.3.

Group K1 and K2

- Group K1: \mathbf{X}_1 is an $N \times 2$ matrix of exogenous variables. The endogenous effect of this group is $\lambda = 0.05$.
- Group K2: X_1 is an $N \times 2$ matrix of exogenous variables. The endogenous effect of this group is $\lambda = 0.1$.

Zachary's Karate Club: Results

Figure: True W

Zachary's Karate Club: Results K10 W

Introduction

Figure: Posterior Mean ${f W}$

Zachary's Karate Club: Results K11 W

Figure: Posterior Mean ${f W}$

Zachary's Karate Club: Results K12 W

Figure: Posterior Mean W

Zachary's Karate Club: Results K1

Spec.	Param.	True Prior Dist.	Post. Mean	95% Credible Interval		
				$Q_{2.5\%}$	$Q_{97.5\%}$	
	λ	0.05	Unif(-1,1)	0.2761	-0.3237	0.9442
	σ^2	5	$\mathcal{IG}(1,1)$	40.1132	8.4908	173.1849
	$oldsymbol{eta}_{1,1}$	2	$\mathcal{N}(0,30)$	2.0150	1.7000	2.2317
K10	$oldsymbol{eta}_{1,2}$	1	$\mathcal{N}(0,30)$	0.2775	-10.1314	8.5981
T=15	$oldsymbol{eta}_2$	0.5	$\mathcal{N}(0, 30)$	-0.1082	-1.7671	1.3477
1 – 10	$oldsymbol{ heta}_{ ext{edges}}$	-3	$\mathcal{N}(-3,1)$	-2.3436	-3.3285	-1.1674
	$oldsymbol{ heta}_ ext{2-star}$	0.2	$\mathcal{N}(0.2, 1)$	0.7999	0.1206	1.5804
	$oldsymbol{ heta}_{ exttt{3-star}}$	-0.1	$\mathcal{N}(-0.1, 1)$	-0.4000	-1.1722	-0.0340
	$oldsymbol{ heta}_{ exttt{triangle}}$	0.3	$\mathcal{N}(0.3, 1)$	0.2646	-0.8123	1.2890
	λ	0.05	Unif(-1,1)	0.0292	-0.3401	0.4165
	σ^2	5	$\mathcal{IG}(1,1)$	37.3011	8.3389	149.4285
	$oldsymbol{eta}_{1,1}$	2	$\mathcal{N}(0,30)$	2.0682	1.8333	2.4211
K11 T = 12	$oldsymbol{eta}_{1,2}$	1	$\mathcal{N}(0,30)$	1.0926	-4.0489	7.2829
	$oldsymbol{eta}_2$	0.5	$\mathcal{N}(0,30)$	0.4879	-0.4604	1.3605
	$oldsymbol{ heta}_{ ext{edges}}$	-3	$\mathcal{N}(-3,1)$	-2.4652	-3.6032	-1.2811
	$ heta_{ ext{2-star}}$	0.2	$\mathcal{N}(0.2, 1)$	0.7811	-0.0684	1.5686
	$oldsymbol{ heta}_{ exttt{3-star}}$	-0.1	$\mathcal{N}(-0.1, 1)$	-0.2669	-1.0970	1.1224
	$ heta_{ exttt{triangle}}$	0.3	$\mathcal{N}(0.3, 1)$	0.2900	-0.8121	1.4029

Zachary's Karate Club: Results K20 W

Introduction

Figure: Posterior Mean ${f W}$

Zachary's Karate Club: Results K21 W

Figure: Posterior Mean ${f W}$

Zachary's Karate Club: Results K22 W

Introduction

Figure: Posterior Mean W

Zachary's Karate Club: Results K2

Spec.	Param.	True Prio	Prior Dist.	Post. Mean	95% Credible Interval	
			5		$Q_{2.5\%}$	$Q_{97.5\%}$
	λ	0.1	Unif(-1,1)	0.0527	-0.2202	0.3424
	σ^2	5	$\mathcal{IG}(1,1)$	45.0312	8.3686	140.6322
	$oldsymbol{eta}_{1,1}$	2	$\mathcal{N}(0,30)$	1.9974	1.5802	2.5150
K20	$oldsymbol{eta}_{1,2}$	1	$\mathcal{N}(0,30)$	0.8264	-5.0927	8.6789
T=15	$oldsymbol{eta}_2$	0.5	$\mathcal{N}(0,30)$	0.6450	0.1342	0.9109
1 – 10	$oldsymbol{ heta}_{ ext{edges}}$	-3	$\mathcal{N}(-3,1)$	-2.4708	-3.4504	-1.2638
	$oldsymbol{ heta}_ ext{2-star}$	0.2	$\mathcal{N}(0.2, 1)$	0.7538	0.1035	1.4728
	$ heta_{ exttt{3-star}}$	-0.1	$\mathcal{N}(-0.1, 1)$	-0.3072	-0.9901	-0.0301
	$oldsymbol{ heta}_{ exttt{triangle}}$	0.3	$\mathcal{N}(0.3, 1)$	0.2463	-0.6884	1.1994
	λ	0.1	Unif(-1,1)	0.0216	-0.3382	0.3432
	σ^2	5	$\mathcal{IG}(1,1)$	43.4672	7.9732	178.8634
	$oldsymbol{eta}_{1,1}$	2	$\mathcal{N}(0,30)$	2.0573	1.6866	2.4233
K21 $T = 12$	$oldsymbol{eta}_{1,2}$	1	$\mathcal{N}(0,30)$	1.0191	-3.1973	4.3400
	$oldsymbol{eta}_2$	0.5	$\mathcal{N}(0,30)$	0.6581	0.0032	1.3475
	$oldsymbol{ heta}_{ ext{edges}}$	-3	$\mathcal{N}(-3,1)$	-2.4819	-3.3739	-1.3568
	$ heta_{ ext{2-star}}$	0.2	$\mathcal{N}(0.2, 1)$	0.7527	0.1402	1.5161
	$ heta_{ exttt{3-star}}$	-0.1	$\mathcal{N}(-0.1, 1)$	-0.2971	-0.9783	-0.0365
	$ heta_{ exttt{triangle}}$	0.3	$\mathcal{N}(0.3, 1)$	0.2581	-0.7139	1.2428

Zachary's Karate Club: Results Summary

- A larger λ leads to a more volatile estimation of the parameters.
- A more complex ERGM does not necessarily perform better, this is perhaps due to high correlation in some dimensions in the posterior of θ . In fact, the correlation between posterior $\theta_{kstar(2)}$ and $\theta_{kstar(3)}$ is about 0.8, which is to be expected.

Conclusion

- In this paper, we present a novel method to estimate SAR models that introduces a network formation process/probability as a prior distortion on network W.
- This approach brings two main benefits:
 - 1 It is a natural extension of high-dimensional methods to more complex restrictions.

Sampling Procedure

- It has more economic interpretability compared to common high-dimensional restrictions and can be easily extended for different scenarios.
- The main difficulty lies in efficient sampling algorithms and a data set that is sufficiency informative.
- The effect of the most interest λ cannot be reliably recovered.

ERGM Terms

Term	Description
edges	number of edges
kstar(2)	number of 2-stars
kstar(3)	number of 3-stars
triangle	number of triangles
ctriad	number of cyclic triples
ttriad	number of transitive triples

Table: Implemented ERGM terms.

Loss Functions

- A common loss function is the mean-square loss. This loss corresponds to the posterior mean decision.
- 2 A more reasonable loss for in our case for **W** is miss-categorization loss:

$$L(\hat{\mathbf{W}}, \mathbf{W}_0) = \#\{(i, j) : \hat{\mathbf{W}}_{i, j} \neq (\mathbf{W}_0)_{i, j}\}.$$

This loss corresponds to the decision:

$$\hat{\mathbf{W}}_{i,j} = \mathbf{1} \left\{ \pi((\mathbf{W}_0)_{i,j} = 1 \mid \{\mathbf{y}_t\}) \ge 0.5 \right\}.$$