Kapitel L:II

II. Aussagenlogik

- □ Syntax der Aussagenlogik
- Semantik der Aussagenlogik
- □ Eigenschaften des Folgerungsbegriffs
- □ Äquivalenz
- □ Formeltransformation
- Normalformen
- Bedeutung der Folgerung
- □ Erfüllbarkeitsalgorithmen
- □ Semantische Bäume
- □ Weiterentwicklung semantischer Bäume
- □ Syntaktische Schlussfolgerungsverfahren
- □ Erfüllbarkeitsprobleme

L:II-92 Aussagenlogik ©LETTMANN/STEIN 1996-2020

- Q. Warum ist der Begriff der Folgerung so wichtig?
- A. Folgern (Deduktion) ist ein zentrales Konzept zum Arbeiten mit Modellen.

Hintergrund: Sei α ein Modell eines Weltausschnitts. Der Modellierer vereinbart mit den Verwendern des Modells α folgende Beziehung (Pragmatik):

" α ist erfüllt" \Leftrightarrow "Der Weltausschnitt wird durch α beschrieben."

Sinnvolle Modelle entsprechen erfüllbaren Formeln. Sie dienen zur Simulation und werden konstruiert, um Vorhersagen zu machen.

L:II-93 Aussagenlogik ©LETTMANN/STEIN 1996-2020

- Q. Warum ist der Begriff der Folgerung so wichtig?
- A. Folgern (Deduktion) ist ein zentrales Konzept zum Arbeiten mit Modellen.

Hintergrund: Sei α ein Modell eines Weltausschnitts. Der Modellierer vereinbart mit den Verwendern des Modells α folgende Beziehung (Pragmatik):

" α ist erfüllt" \Leftrightarrow "Der Weltausschnitt wird durch α beschrieben."

Sinnvolle Modelle entsprechen erfüllbaren Formeln. Sie dienen zur Simulation und werden konstruiert, um Vorhersagen zu machen.

Sei β eine Folgerung aus α , in Zeichen: $\alpha \models \beta$, dann weiß man (aus der Definition der Folgerung):

$$\alpha \approx \alpha \wedge \beta$$

Das bedeutet aus Modellierungssicht:

- \Box β ist immer wahr, wenn α wahr ist.
- \Box β ist *verträglich* mit dem Modell α . β wird vom Modell α vorhergesagt.
- \Box Die Folgerung hat den verträglichen Sachverhalt β explizit gemacht, sie hat ihn bewiesen.
- Beachte: Die Folgerung hat uns über die Veträglichkeit von β lediglich *informiert*. Auch ohne das Explizitmachen hätte $\alpha \models \beta$ gegolten.

- Q. Warum ist der Begriff der Folgerung so wichtig?
- A. Folgern (Deduktion) ist ein zentrales Konzept zum Arbeiten mit Modellen.

Hintergrund: Sei α ein Modell eines Weltausschnitts. Der Modellierer vereinbart mit den Verwendern des Modells α folgende Beziehung (Pragmatik):

" α ist erfüllt" \Leftrightarrow "Der Weltausschnitt wird durch α beschrieben."

Sinnvolle Modelle entsprechen erfüllbaren Formeln. Sie dienen zur Simulation und werden konstruiert, um Vorhersagen zu machen.

Sei β eine Folgerung aus α , in Zeichen: $\alpha \models \beta$, dann weiß man (aus der Definition der Folgerung):

$$\alpha \approx \alpha \wedge \beta$$

Das bedeutet aus Modellierungssicht:

- \Box β ist immer wahr, wenn α wahr ist.
- \Box β ist *verträglich* mit dem Modell α . β wird vom Modell α vorhergesagt.
- \Box Die Folgerung hat den verträglichen Sachverhalt β explizit gemacht, sie hat ihn bewiesen.
- Beachte: Die Folgerung hat uns über die Veträglichkeit von β lediglich *informiert*. Auch ohne das Explizitmachen hätte $\alpha \models \beta$ gegolten.

Zusammengefasst. Arbeiten mit Modellen α heißt Folgerungen aus α zu erzeugen oder zu überprüfen, ob eine Formel β eine Folgerung aus α ist.

Q. Wenn Folgern lediglich Explizitmachen ist, warum hat dann das Überprüfen oder Erzeugen von Folgerungen eine so große Bedeutung?

L:II-96 Aussagenlogik ©LETTMANN/STEIN 1996-2020

- Q. Wenn Folgern lediglich Explizitmachen ist, warum hat dann das Überprüfen oder Erzeugen von Folgerungen eine so große Bedeutung?
- A. Hier ist ein Modell α . Gilt $\alpha \models \text{"P3=5"}$?

 α = (:AND P1=3 O1=1 CYL2 IS OK CYL1 IS OK PIPE4 IS OK PIPE3 IS OK PIPE2 IS OK PIPE1 IS OK PUMP IS OK (:OR (:NOT PIPE1 IS OK) (:AND P1=5 P2=5 O1=2 O2=2) (:AND P1=5 P2=5 O1=1 O2=1) (:AND P1=5 P2=5 O1=0 O2=0) (:AND P1=4 P2=4 O1=2 O2=2) (:AND P1=4 P2=4 O1=2 O2=1) (:AND P1=4 P2=4 O1=0 O2=0) (:AND P1=3 P2=3 O1=2 O2=2) (:AND P1=3 P2=3 O1=1 O2=1) (:AND P1=3 P2=3 O1=0 O2=0) (:AND P1=2 P2=2 O1=2 O2=2) (:AND P1=2 P2=2 O1=1 O2=1) (:AND P1=2 P2=2 O1=0 O2=0) (:AND P1=1 P2=1 O1=2 O2=2) (:AND P1=1 P2=1 O1=1 O2=1) (:AND P1=1 P2=1 O1=0 O2=0) (:AND P1=0 P2=0 O1=2 O2=2) (:AND P1=0 P2=0 O1=1 O2=1) (:AND P1=0 P2=0 O1=0 O2=0)) (:OR (:NOT PIPE2 IS OK) (:AND P3=5 P4=5 O3=2 O4=2) (:AND P3=5 P4=5 O3=1 O4=1) (:AND P3=5 P4=5 O3=0 O4=0) (:AND P3=4 P4=4 O3=2 O4=2) (:AND P3=4 P4=4 O3=1 O4=1) (:AND P3=4 P4=4 Q3=0 Q4=0) (:AND P3=3 P4=3 Q3=2 Q4=2) (:AND P3=3 P4=3 Q3=1 Q4=1) (:AND P3=3 P4=3 Q3=0 Q4=0) (:AND P3=2 P4=2 Q3=2 Q4=2) (:AND P3=3 P4=3 Q3=0 Q4=0) P3=2 P4=2 Q3=1 Q4=1) (:AND P3=2 P4=2 Q3=0 Q4=0) (:AND P3=1 P4=1 Q3=2 Q4=2) (:AND P3=1 P4=1 Q3=1 Q4=1) (:AND P3=1 P4=1 Q3=0 Q4=0) (:AND P3=0 P4=0 Q3=2 Q4=2) (:AND P3=0 P4=0 Q3=1 Q4=1) (:AND P3=0 P4=0 Q3=0 Q4=0)) (:OR (:NOT PIPE3_IS OK) (:AND P5=5 P6=5 O5=2 O6=2) (:AND P5=5 P6=5 O5=1 O6=1) (:AND P5=5 P6=5 O5=0 O6=0) (:AND P5=4 P6=4 O5=2 O6=2) (:AND P5=4 P6=4 O5=1 O6=1) (:AND P5=4 P6=4 O5=0 O6=1) O6=0) (:AND P5=3 P6=3 O5=2 O6=2) (:AND P5=3 P6=3 O5=1 O6=1) (:AND P5=3 P6=3 O5=0 O6=0) (:AND P5=2 P6=2 O5=2 O6=2) (:AND P5=2 P6=2 O5=2 O6=2) (:AND P5=3 P6=3 O6 O5=1 O6=1) (:AND P5=2 P6=2 O5=0 O6=0) (:AND P5=1 P6=1 O5=2 O6=2) (:AND P5=1 P6=1 O5=1 O6=1) (:AND P5=1 P6=1 O5=0 O6=0) (:AND P5=0 O6=0) (:AND P6=0 O5=2 O6=2) (:AND P5=0 P6=0 O5=1 O6=1) (:AND P5=0 P6=0 O5=0 O6=0)) (:OR (:NOT PIPE4 IS OK) (:AND P7=5 P8=5 O7=2 O8=2) (:AND P7=5 P8=5 07=1 08=1) (:AND P7=5 P8=5 07=0 08=0) (:AND P7=4 P8=4 07=2 08=2) (:AND P7=4 P8=4 07=1 08=1) (:AND P7=4 P8=4 07=0 08=0) (:AND P7=4 P8=4 07=1 08=1) P7=3 P8=3 O7=2 O8=2) (:AND P7=3 P8=3 O7=1 O8=1) (:AND P7=3 P8=3 O7=0 O8=0) (:AND P7=2 P8=2 O7=2 O8=2) (:AND P7=2 P8=2 O7=1 O8=1) (:AND P7=2 P8=2 O7=0 O8=0) (:AND P7=1 P8=1 O7=2 O8=2) (:AND P7=1 P8=1 O7=1 O8=1) (:AND P7=1 P8=1 O7=0 O8=0) (:AND P7=0 P8=0 O7=2 08=2) (:AND P7=0 P8=0 07=1 08=1) (:AND P7=0 P8=0 07=0 08=0)) (:OR (:NOT CYL1 IS OK) (:AND P2=5 P3=4 02=2 03=2 VCYL1=2) (:AND P2=5 P3=4 O2=1 O3=1 VCYL1=1) (:AND P2=4 P3=3 O2=2 O3=2 VCYL1=2) (:AND P2=4 P3=3 O2=1 O3=1 VCYL1=1) (:AND P2=3 P3=2 O2=2 O3=2 VCYL1=2) (:AND P2=3 P3=2 Q2=1 Q3=1 VCYL1=1) (:AND P2=2 P3=1 Q2=2 Q3=2 VCYL1=2) (:AND P2=2 P3=1 Q2=1 Q3=1 VCYL1=1) (:AND P2=1 P3=0 Q2=2 Q3=2 VCYL1=2) O2=0 O3=0 VCYL1=0) (:AND P2=2 P3=2 O2=0 O3=0 VCYL1=0) (:AND P2=1 P3=1 O2=0 O3=0 VCYL1=0) (:AND P2=0 P3=0 O2=0 O3=0 VCYL1=0)) (:OR (:NOT CYL2_IS_OK) (:AND P4=5 P5=4 Q4=2 Q5=2 VCYL2=2) (:AND P4=5 P5=4 Q4=1 Q5=1 VCYL2=1) (:AND P4=4 P5=3 Q4=2 Q5=2 VCYL2=2) (:AND P4=4 P5=3 Q4=1 Q5=1 VCYL2=1) (:AND P4=3 P5=2 Q4=2 Q5=2 VCYL2=2) (:AND P4=3 P5=2 Q4=1 Q5=1 VCYL2=1) (:AND P4=2 P5=1 Q4=2 Q5=2 O4=0 O5=0 VCYL2=0) (:AND P4=4 P5=4 Q4=0 Q5=0 VCYL2=0) (:AND P4=3 P5=3 Q4=0 Q5=0 VCYL2=0) (:AND P4=2 P5=2 Q4=0 Q5=0 VCYL2=0) (:AND P4=1 P5=1 O4=0 O5=0 VCYL2=0) (:AND P4=0 P5=0 O4=0 O5=0 VCYL2=0)) (:OR (:NOT VT IS OK) (:AND P6=5 P7=5 O6=0 O7=0) (:AND P6=5 P7=4 O6=1 O7=1) (:AND P6=5 P7=3 O6=2 O7=2) (:AND P6=4 P7=4 O6=0 O7=0) (:AND P6=4 P7=3 O6=1 O7=1) (:AND P6=4 P7=2 O6=2 O7=2) (:AND P6=3 O7=2) (:AND P6=3 O7=2) (:AND P6=4 P7=3 O6=2 O7=2) (:AND P6=3 O7=2) (:AND P6=4 P7=3 O6=2 O7=2) (:AND P6=3 P7 P7=3 Q6=0 Q7=0) (:AND P6=3 P7=2 Q6=1 Q7=1) (:AND P6=3 P7=1 Q6=2 Q7=2) (:AND P6=2 P7=2 Q6=0 Q7=0) (:AND P6=2 P7=1 Q6=1 Q7=1) (:AND P6=2 P7=2 Q6=0 Q7=0) P6=2 P7=0 Q6=2 Q7=2) (:AND P6=1 P7=1 Q6=0 Q7=0) (:AND P6=1 P7=0 Q6=1 Q7=1) (:AND P6=0 P7=0 Q6=0 Q7=0)) (:OR (:NOT Q1=1) (:NOT Q1=2)) (:OR (:NOT O1=0) (:NOT O1=2)) (:OR (:NOT O1=0) (:NOT O1=1)) (:OR (:NOT P1=4) (:NOT P1=5)) (:OR (:NOT P1=3) (:NOT P1=5)) (:OR (:NOT P1=5)) P1=3) (:NOT P1=4)) (:OR (:NOT P1=2) (:NOT P1=5)) (:OR (:NOT P1=2) (:NOT P1=4)) (:OR (:NOT P1=2) (:NOT P1=3)) (:OR (:NOT P1=3)) (:OR (:NOT P1=3)) (:OR (:NOT P1=4)) (:OR (:NOT P1=4)) (:OR (:NOT P1=3)) (:OR (:NOT P1=4)) (:OR (:NOT P1=3)) (:OR (:NOT P1=3)) (:OR (:NOT P1=4)) (:OR (:NOT P1=3)) (:OR (:NOT P1=3)) (:OR (:NOT P1=3)) (:OR (:NOT P1=4)) (:OR (:NOT P1=3)) (:OR (:NOT P1=5)) (:OR (:NOT P1=1) (:NOT P1=4)) (:OR (:NOT P1=1) (:NOT P1=3)) (:OR (:NOT P1=1) (:NOT P1=2)) (:OR (:NOT P1=0) (:NOT P1=5)) (:OR (:NOT P1=0) (:NOT P1=4)) (:OR (:NOT P1=0) (:NOT P1=3)) (:OR (:NOT P1=0) (:NOT P1=2)) (:OR (:NOT P1=0) (:NOT P1=1)) (:OR (:NOT P1=1)) (:NOT 08=2)) (:OR (:NOT 08=0) (:NOT 08=0) (:NOT 08=1)) (:OR (:NOT P8=4) (:NOT P8=5)) (:OR (:NOT P8=3) (:NOT P8=5)) (:OR (:NOT P8=3) (:NOT P8=4)) (:OR (:NOT P8=2) (:NOT P8=5)) (:OR (:NOT P8=2) (:NOT P8=4)) (:OR (:NOT P8=2) (:NOT P8=3)) (:OR (:NOT P8=3)) (:OR (:NOT P8=4)) P8=1) (:NOT P8=5)) (:OR (:NOT P8=1) (:NOT P8=4)) (:OR (:NOT P8=1) (:NOT P8=3)) ...

- Q. Was hat die Beantwortung der Folgerungsfrage "Gilt $\alpha \models \beta$?" mit dem Erfüllbarkeitsproblem zu tun?
- A. Die Frage "Gilt $\alpha \models \beta$?" lässt sich mit Hilfe eines Erfüllbarkeitsalgorithmus beantworten.

$$\alpha \models \beta$$

- \Leftrightarrow jede Bewertung \mathcal{I} mit $\mathcal{I}(\alpha) = 1$ erzwingt $\mathcal{I}(\beta) = 1$
- $\Leftrightarrow \quad \alpha \to \beta \quad \text{ist tautologisch}$
- $\Leftrightarrow \quad \alpha \land \neg \beta \text{ ist widerspruchsvoll bzw. unerfüllbar}$

bzw.

$$\alpha \not\models \beta$$

- \Leftrightarrow nicht $(\alpha \land \neg \beta \text{ ist unerfüllbar})$
- $\Leftrightarrow \quad \alpha \land \neg \beta \text{ ist erfullbar}$

Verschiedene Möglichkeiten, die Erfüllbarkeit einer Formel α zu entscheiden.

Erstellen einer Wahrheitstafel

Vorteil: beliebige Formelstruktur, beliebige Junktoren

Nachteil: auch in einfachen Fällen exponentiell,

keine Berücksichtigung der Formelstruktur

L:II-99 Aussagenlogik ©LETTMANN/STEIN 1996-2020

Verschiedene Möglichkeiten, die Erfüllbarkeit einer Formel α zu entscheiden.

Erstellen einer Wahrheitstafel

Vorteil: beliebige Formelstruktur, beliebige Junktoren

Nachteil: auch in einfachen Fällen exponentiell,

keine Berücksichtigung der Formelstruktur

Analyse der Formelstruktur

- (a) Top-down-Auswertung des Formelbaumes mit Fallunterscheidung bei Alternativen.
- (b) systematische Anwendung mit Darstellung als Baum: analytisches Tableau

Vorteil: beliebige Formelstruktur, beliebige Junktoren

Nachteil: auch in einfachen Fällen exponentiell,

umfangreiche Implementation

Semantische Bäume

Kombination aus der Überprüfung von Bewertungen und Analyse der Formelstruktur.

Vorteil: sukzessive Auswertung orientiert sich an Formelstruktur

Nachteil: reduzierte (=teil-ausgewertete) Formel relativ kompliziert zu berechnen

L:II-101 Aussagenlogik ©LETTMANN/STEIN 1996-2020

Bemerkungen:

- Die Bewertung eines Atoms A mit 0 bzw. 1 kann auf Formelebene dadurch nachgebildet werden, dass A durch die widerspruchsvolle Formel $T \wedge \neg T$ bzw. die tautologische Formel $T \vee \neg T$ substituiert wird. (T beliebig, aber fest, für alle Ersetzungen gleich wählbar.)
- □ Die reduzierte Formel ist die Formel, die sich aufgrund der möglichen Vereinfachungen aus einer entsprechend substituierten Formel ergibt. Die Vereinfachungsregeln folgen auf der nächsten Folie.

L:II-102 Aussagenlogik ©LETTMANN/STEIN 1996-2020

Definition 33 (1-Äquivalenzen, 0-Äquivalenzen)

1.
$$\neg(\beta \lor \neg\beta) \approx (\beta \land \neg\beta),$$

 $\neg(\beta \land \neg\beta) \approx (\beta \lor \neg\beta)$

- 2. $\alpha \vee (\beta \vee \neg \beta) \approx (\beta \vee \neg \beta) \vee \alpha \approx (\beta \vee \neg \beta),$ $\alpha \vee (\beta \wedge \neg \beta) \approx (\beta \wedge \neg \beta) \vee \alpha \approx \alpha$
- 3. $\alpha \wedge (\beta \vee \neg \beta) \approx (\beta \vee \neg \beta) \wedge \alpha \approx \alpha$, $\alpha \wedge (\beta \wedge \neg \beta) \approx (\beta \wedge \neg \beta) \wedge \alpha \approx (\beta \wedge \neg \beta)$
- 4. $\alpha \to (\beta \lor \neg \beta) \approx (\beta \lor \neg \beta),$ $\alpha \to (\beta \land \neg \beta) \approx \neg \alpha,$ $(\beta \lor \neg \beta) \to \alpha \approx \alpha,$ $(\beta \land \neg \beta) \to \alpha \approx (\beta \lor \neg \beta)$
- 5. $\alpha \leftrightarrow (\beta \land \neg \beta) \approx (\beta \land \neg \beta) \leftrightarrow \alpha \approx \neg \alpha$, $\alpha \leftrightarrow (\beta \lor \neg \beta) \approx (\beta \lor \neg \beta) \leftrightarrow \alpha \approx \alpha$

Definition 34 (1-Reduktion, 0-Reduktion)

Sei α eine aussagenlogische Formel und $A \in atoms(\alpha)$. Weiterhin sei β das Ergebnis der Ersetzung jedes Vorkommens von A in α durch $A \vee \neg A$. Dann bezeichne

$$\alpha[A/1]$$

eine kürzeste Formel, die aus β unter Anwendung der 1- bzw. 0-Äquivalenzen entstehen kann. (1-Reduktion)

Sei α eine aussagenlogische Formel und $A \in atoms(\alpha)$. Weiterhin sei β das Ergebnis der Ersetzung jedes Vorkommens von A in α durch $A \wedge \neg A$. Dann bezeichne

$$\alpha[A/0]$$

eine kürzeste Formel, die aus β unter Anwendung der 1- bzw. 0-Äquivalenzen entstehen kann. (0-Reduktion)

Mehrfache Reduktionen hintereinander werden in einer Klammer zusammengefasst. Beispiel: $\alpha[A/1,B/1,C/0]:=((\alpha[A/1])[B/1])[C/0]$

Lemma 35 (Splitting Regel)

Für eine aussagenlogische Formel α und ein Atom $A \in atoms(\alpha)$ gilt

$$\alpha$$
 erfüllbar \Leftrightarrow $\alpha[A/1]$ erfüllbar oder
$$\alpha[A/0] \text{ erfüllbar}$$

L:II-105 Aussagenlogik ©LETTMANN/STEIN 1996-2020

Beschränkung der Formelstruktur: Sei $\alpha \in \mathsf{KNF}, \ A \in \mathit{atoms}(\alpha)$

```
Algorithmus: SPLIT-SAT Input: \alpha. A formula in CNF.
```

Output

Output: sat. A flag indicating whether α is satisfiable.

```
SPLIT-SAT (\alpha)

IF \alpha = \beta \land \neg \beta AND \beta is prime formula

THEN RETURN ('FALSE')

IF \alpha = \beta \lor \neg \beta AND \beta is prime formula

THEN RETURN ('TRUE')

A = \text{choose}(atoms(\alpha))

IF SPLIT-SAT (\alpha[A/1])

THEN RETURN ('TRUE')

ELSE RETURN SPLIT-SAT (\alpha[A/0])
```

Fragen:

- ☐ Welche Suchstrategie verfolgt SPLIT-SAT?
- ☐ Geht SPLIT-SAT systematisch vor?

Verbesserung von SPLIT-SAT.

□ Idee 1:

Tritt in einer Formel $\alpha \in \mathsf{KNF}$ eine Unitklausel L auf, so muss L mit 1 bewertet werden.

Stichwort: Unit-Reduktion

□ Idee 2:

Tritt in einer Formel $\alpha \in \mathsf{KNF}$ ein Atom A nur in positiven oder nur in negativen Literalen auf, so kann das Literal mit 1 bewertet werden, um α zu erfüllen.

Stichwort: Pure-Literal-Reduktion

Bemerkung: Beachte den Unterschied zwischen "muss" und "kann".

Verallgemeinerung von $\alpha[A/1]$.

Sei L ein Literal über $atoms(\alpha)$.

- figc Dann gilt für L=A: lpha[L/1]:=lpha[A/1]
- □ Dann gilt für $L = \neg A$: $\alpha[L/1] = \alpha[\neg A/1] := \alpha[A/0]$

Mit $\neg L$ meinen wir das komplementäre Literal, d.h. für $L = \neg A$ sei $\neg L = A$.

Beispiel:

Sei $\alpha = \neg A$ und $L = \neg A$.

$$\alpha[L/1] = \alpha[\neg A/1] = \alpha[A/0] \approx \neg(T \land \neg T) \approx T \lor \neg T$$

Man ersetzt quasi Literal und Komplement durch die Formeln für die Wahrheitswerte.

Algorithmische Hinweise zur Realisierung von SPLIT-SAT

- Datenstruktur: Listen von Listen von Literalen
- \Box Berechnung von $\alpha[L/1]$:
 - 1. Streiche Klauseln mit Literal *L*.
 - 2. Streiche $\neg L$ in den verbliebenen Klauseln.
 - 3. α erfüllbar, falls Klauselliste leer; falls eine Literalliste leer, Backtracking.

Davis-Putnam-Algorithmus [Davis/Putnam 1960, Davis/Loveland/Logemann 1962]

1. Unit-Reduktion

Algorithmus: DPLL-SAT

2. Pure-Literal-Reduktion

Input: α . A formula in CNF.

3. Splitting

```
Output: sat. A flag indicating whether \alpha is satisfiable.
DPLL-SAT (\alpha)
  IF \alpha = \beta \land \neg \beta AND \beta is prime formula
  THEN RETURN ('FALSE')
  IF \alpha = \beta \vee \neg \beta AND \beta is prime formula
  THEN RETURN ('TRUE')
  IF units (\alpha) \neq \emptyset
  THEN L = choose (units (\alpha)), RETURN (DPLL-SAT (\alpha[L/1]))
  IF pures (\alpha) \neq \emptyset
  THEN L = choose (pures (\alpha)), RETURN (DPLL-SAT (\alpha[L/1]))
  A = \text{choose}(atoms(\alpha))
  IF DPLL-SAT (\alpha[A/1])
  THEN RETURN ('TRUE')
  ELSE RETURN DPLL-SAT (\alpha[A/0])
```

Beispiel für DPLL-SAT:

$$\alpha = (A \vee \neg B \vee \neg C) \wedge (\neg A \vee B \vee C) \wedge (\neg B \vee \neg C) \wedge (\neg B \vee \neg C) \wedge (\neg B \vee \neg C) \wedge (\neg F \vee C)$$

$$\alpha[\neg F/1] = (A \vee \neg B \vee \neg C) \wedge (\neg A \vee B \vee C) \wedge (\neg B \vee C) \wedge (B \vee \neg C) \wedge (\neg B \vee \neg C)$$

$$\alpha[\neg F/1, A/1] = (B \vee C) \wedge (\neg B \vee C) \wedge (B \vee \neg C) \wedge (\neg B \vee \neg C)$$

$$\alpha[\neg F/1, A/0] = (\neg B \vee \neg C) \wedge (\neg B \vee C) \wedge (B \vee \neg C) \wedge (\neg B \vee \neg C)$$

$$\alpha[\neg F/1, A/1, B/1] = C \wedge \neg C$$

$$\alpha[\neg F/1, A/1, B/0] = C \wedge \neg C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

$$\alpha[\neg F/1, A/0, B/0] = \neg C \wedge C$$

L:II-110 Aussagenlogik ©LETTMANN/STEIN 1996-2020

 $C \wedge \neg C$

Auswahlkriterien für Splittingregel:

- Erstes Vorkommen des Atoms bzw. Literals (systematische Suche)
- häufigstes Atom bzw. Literal(gute Heuristik, falls Wahrscheinlichkeit für Erfüllbarkeit der Formel hoch)
- Atom mit größter Differenz aus Anzahl positiver und negativer Vorkommen

L:II-111 Aussagenlogik ©LETTMANN/STEIN 1996-2020

Auswahlkriterien für Splittingregel:

- Erstes Vorkommen des Atoms bzw. Literals (systematische Suche)
- häufigstes Atom bzw. Literal
 (gute Heuristik, falls Wahrscheinlichkeit für Erfüllbarkeit der Formel hoch)
- Atom mit größter Differenz aus Anzahl positiver und negativer Vorkommen
- van Geldern:
 - a) Mehrere Atome mit mehr als 3 Vorkommen vorhanden:
 Wähle Atom mit maximalem Produkt aus Anzahl positiver und negativer Vorkommen.
 - b) Wähle Atom mit maximalem Vorkommen (2 oder 3).

L:II-112 Aussagenlogik ©LETTMANN/STEIN 1996-2020

Auswahlkriterien für Splittingregel:

- Erstes Vorkommen des Atoms bzw. Literals (systematische Suche)
- häufigstes Atom bzw. Literal(gute Heuristik, falls Wahrscheinlichkeit für Erfüllbarkeit der Formel hoch)
- Atom mit größter Differenz aus Anzahl positiver und negativer Vorkommen
- van Geldern:
 - a) Mehrere Atome mit mehr als 3 Vorkommen vorhanden:
 Wähle Atom mit maximalem Produkt aus Anzahl positiver und negativer Vorkommen.
 - b) Wähle Atom mit maximalem Vorkommen (2 oder 3).
- □ SAT-Winner (Paderborn, 1991):

 $h_i(L)$ = Anzahl Klauseln der Länge i mit Literal L.

$$H_i(A) = \max(h_i(A), h_i(\neg A)) + 2 \cdot \min(h_i(A), h_i(\neg A))$$

Wähle Atom A mit lexikographisch größtem Vektor

$$(H_2(A), H_3(A), \ldots, H_n(A))$$

L:II-113 Aussagenlogik