(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平7-247895

(43)公開日 平成7年(1995)9月26日

(51) Int. Cl. 6	識別記号 庁内整理番号		FΙ	技術表示箇所
F02D 45/00	366 H			
	В			
	314 K			
41/18	Н			
	В			
			審査請求	き 未請求 請求項の数9 OL (全15頁)
(21)出願番号	特願平6-158316		(71)出願人	000003137
				マツダ株式会社
(22)出願日	平成6年(1994)7	月11日		広島県安芸郡府中町新地3番1号
			(72)発明者	南谷 邦公
(31)優先権主張番号	特願平6-5052			広島県安芸郡府中町新地3番1号 マツダ
(32)優先日	平6(1994)1月21日	3		株式会社内
(33)優先権主張国	日本(JP)		(72)発明者	吉岡 浩見
				広島県安芸郡府中町新地3番1号 マツダ
				株式会社内
			(72)発明者	堀 保義
				広島県安芸郡府中町新地3番1号 マツダ
				株式会社内
•			(74)代理人	弁理士 前田 弘 (外2名)

(54) 【発明の名称】エンジンの制御装置

(57)【要約】

【目的】 エンジン1の吸気行程終了前にホットワイヤ 式エアフローセンサ12により実測した吸入空気量 q a から求められる空気充填効率 C e の変化率から予測係数 γ を算出し、この予測係数 γ を基に吸気行程終了時の空気充填効率 C e f を予測演算するに当たり、エンジン1 の高負荷時に予測される予測空気充填効率 C e f が吸気脈動に伴い増幅されて空燃比が大きくずれるのを防止する。

【構成】 吸気脈動の大きくなるエンジン 1 の高負荷域では、空気充填効率 C e f の予測演算自体を禁止するか、或いは予測係数 γ 2 を低負荷時のそれ γ 1 よりも小さくする。

<u>~</u>

【特許請求の範囲】

【請求項1】 エンジンへ吸入される空気量を検出する空気量検出手段と、該空気量検出手段により吸気行程終了前に実測された空気量の変化率に基づいて吸気行程終了時の空気量を演算により予測する空気量予測手段とを備えたエンジンの制御装置において、

吸気脈動が所定値以上となるエンジン運転状態にあることを検出する運転状態検出手段と、

上記運転状態検出手段により、吸気脈動が所定値以上となるエンジン運転状態が検出されたとき、上記空気量予 10 測手段による空気量の予測演算を制限する制限手段とを設けたことを特徴とするエンジンの制御装置。

【請求項2】 請求項1記載のエンジンの制御装置において、

制限手段は、吸気脈動が所定値以上となるエンジン運転 状態では空気量の予測演算を禁止するものであることを 特徴とするエンジンの制御装置。

【請求項3】 請求項1記載のエンジンの制御装置において、

空気量予測手段は、吸気行程終了前に空気量検出手段に 20 より実測された空気量の変化率を基に予測係数を算出し て吸気行程終了時の空気量を演算するものであり、

制限手段は、吸気脈動が所定値以上となるエンジン運転 状態では空気量の変化率から算出される予測係数を、吸 気脈動が所定値よりも小さいエンジン運転状態よりも小 さく補正するように構成されていることを特徴とするエ ンジンの制御装置。

【請求項4】 エンジンへ吸入される空気量を検出する空気量検出手段と、吸気行程終了前に上記空気量検出手段により実測された空気量の変化率に基づいて吸気行程 30終了時の空気量を演算により予測する空気量予測手段と、該空気量予測手段により予測された空気量に基づいて所定の制御量を制御する制御手段とを備えたエンジンの制御装置において、

吸気脈動が所定値以上となるエンジン運転状態にあることを検出する運転状態検出手段と、

上記運転状態検出手段により吸気脈動が所定値以上となるエンジン運転状態が検出されたとき、上記制御手段が空気量予測手段により予測された空気量に基づいて制御量を制御することを禁止する制限手段とを設けたことを 40 特徴とするエンジンの制御装置。

【請求項5】 請求項4記載のエンジンの制御装置において、

制御手段は、空気量予測手段により予測された空気量に 基づいてエンジンへの燃料噴射量を制御するものである ことを特徴とするエンジンの制御装置。

【請求項6】 請求項1又は4記載のエンジンの制御装置において、

空気量検出手段は、ホットワイヤ式エアフローセンサを 備えたものであることを特徴とするエンジンの制御装 置。

【請求項7】 請求項1又は4記載のエンジンの制御装置において、

2

運転状態検出手段は、エンジンの負荷を検出する負荷検 出手段であり、

制限手段は、上記負荷検出手段によりエンジンの高負荷 域が検出されたとき、空気量の予測演算を制限し又は制 御量の制御を禁止するように構成されていることを特徴 とするエンジンの制御装置。

【請求項8】 請求項1又は4記載のエンジンの制御装 置において、

制限手段は、吸気脈動が所定値以上となるエンジン運転 状態が運転状態検出手段により検出されたとき、該検出 時点から所定時間の経過後に、空気量の予測演算を制限 し又は制御量の制御を禁止するように構成されているこ とを特徴とするエンジンの制御装置。

【請求項9】 請求項8記載のエンジンの制御装置において、

制限手段は、吸気脈動が所定値以上となるエンジン運転 状態が運転状態検出手段により検出されたとき、空気量 検出手段により検出された空気量と、該空気量をエンジ ンの吸気系の容積に関連付けてなまし補正したなまし空 気量との差が所定値以下になると、空気量の予測演算を 制限し又は制御量の制御を禁止するように構成されてい ることを特徴とするエンジンの制御装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、エンジンの制御装置 に関し、特に、エンジンの吸気行程終了時の空気量をそれよりも前の実測値を基に予測するようにしたものの改 良に関する。

[0002]

【従来の技術】一般に、燃料噴射式エンジンにおいては、エンジンに吸入される吸入空気量をエアフローセンサにより検出して、この吸入空気量に基づいて空気充填効率を算出し、この充填効率に対応した基本燃料噴射量を決定してそれを補正した後、燃料噴射弁から噴射させるようになされている。

【0003】その場合、エンジンの吸気行程終了時にエアフローセンサにより検出された空気量を用いると、燃料噴射量の演算や燃料噴射弁からの実際の燃料噴射に間に合わないので、吸気行程終了前に検出された空気量が使用される。しかし、このように吸気行程終了前の空気量を用いると、エンジンの定常状態では、空気量の検出後の吸気行程終了時に空気量が変化することがあり、エンジンへの空気量を正確に検出しているとは言い難い。

【0004】そこで、従来、特公昭63-8296号公報に示されるように、吸気行程終了前にエアフローセンサで検出した空気量の変化率を基に予測係数を算出して

吸気行程終了時の空気量を予測演算し、この予測空気量 に基づいて各種の制御量を制御するようにすることが提 案されている。

[0005]

【発明が解決しようとする課題】しかし、この提案のものでも問題が全くないわけではない。すなわち、エンジンの気筒には間欠的に空気が吸入されるので、この吸気の脈動に伴い、エアフローセンサの検出信号にも脈動成分が生じ、特に応答性の良いホットワイヤ式のものでは顕著となる。そして、エアフローセンサの検出信号に予10 測係数を掛ける際、その脈動分に対しても予測係数が掛けられる結果、脈動がさらに増幅されて、却って予測空気量が不正確となり、例えば燃料噴射量の誤差により空燃比の変動が大きくなってエミッション性能が低下する等の問題がある。

【0006】本発明は斯かる諸点に鑑みてなされたもので、その目的は、実測の吸入空気量に基づいて吸気行程終了時の空気量を予測するときの予測条件又はその予測値の使用条件を特定するようにすることにより、エンジンの高負荷時に予測される予測値が吸気脈動に伴い増幅 20されて空燃比が大きくずれるのを効果的に防止しようとすることにある。

[0007]

【課題を解決するための手段】上記の目的を達成すべく、請求項1の発明では、吸気脈動の大きくなるエンジンの高負荷時等については、吸気行程終了前の実測値を基にした空気量の予測演算を制限するようにした。

【0008】すなわち、この発明では、図1に示すように、エンジン1へ吸入される空気量を検出する空気量検出手段32と、該空気量検出手段32により吸気行程終30了前に実測された空気量の変化率に基づいて吸気行程終了時の空気量を演算により予測する空気量予測手段28とを備えたエンジンの制御装置が前提である。

【0009】そして、エンジン1の吸気脈動が所定値以上となるエンジン運転状態にあることを検出する運転状態検出手段29と、この運転状態検出手段29により吸気脈動の所定値以上となるエンジン運転状態が検出されたとき、上記空気量予測手段28による空気量の予測演算を制限する制限手段30とを設けたことを特徴としている。

【0010】請求項2の発明では、具体的に、上記制限 手段30は、吸気脈動が所定値以上となるエンジン運転 状態では、空気量の予測演算を禁止するものとする。

【0011】また、請求項3の発明では、空気量予測手段28は、吸気行程終了前に空気量検出手段32により実測された空気量の変化率を基に予測係数を算出して吸気行程終了時の空気量を演算するものとし、その上で、制限手段30は、吸気脈動が所定値以上となるエンジン運転状態では、空気量の変化率から算出される予測係数を、吸気脈動が所定値よりも小さいエンジン運転状態の50

それよりも小さく補正するように構成されているものとする.

【0012】請求項4の発明では、請求項1の発明と同様に、エンジン1へ吸入される空気量を検出する空気量検出手段32と、吸気行程終了前に上記空気量検出手段32により実測された空気量の変化率に基づいて吸気行程終了時の空気量を演算により予測する空気量予測手段28により予測された空気量に基づいて所定の制御量を制御する制御手段31を備えたエンジンの制御装置において、吸気脈動が所定値以上となるエンジン運転状態にあることを検出する運転状態検出手段29を設ける。そして、この運転状態検出手段29を設ける。そして、この運転状態検出手段29により、吸気脈動が所定値以上となるエンジン運転状態が検出されたとき、上記制御手段31が空気量予測手段28により予測された空気量に基づいて制御量を制御することを禁止する制限手段30を設ける。

【0013】請求項5の発明では、上記制御手段31は、空気量予測手段28により予測された空気量に基づいてエンジン1への燃料噴射量を制御するものとする。 【0014】請求項6の発明では、上記空気量検出手段32は、ホットワイヤ式エアフローセンサを備えたもの

【0015】請求項7の発明では、上記請求項1又は4の発明において、運転状態検出手段29は、エンジン1の負荷を検出する負荷検出手段とする。そして、制限手段30は、上記負荷検出手段によりエンジン1の高負荷域が検出されたとき、空気量の予測演算を制限し又は制御量の制御を禁止するように構成する。

【0016】請求項8の発明では、請求項1又は4記載の発明において、制限手段30は、吸気脈動が所定値以上となるエンジン運転状態が運転状態検出手段29により検出されたとき、その検出時点から所定時間の経過後に、空気量の予測演算を制限し又は制御量の制御を禁止するように構成されているものとする。

【0017】この場合、請求項9の発明では、制限手段30は、吸気脈動が所定値以上となるエンジン運転状態が運転状態検出手段29により検出されたとき、空気量検出手段32により検出された空気量と、該空気量をエンジン1の吸気系の容積に関連付けてなまし補正したなまし空気量との差が所定値以下になると、空気量の予測演算を制限し又は制御量の制御を禁止するように構成する。

[0018]

とする。

【作用】上記の構成により、請求項1の発明では、エンジン1の運転状態が吸気脈動の所定値以上となる運転状態にないときには、空気量予測手段28において吸気行程終了前に空気量検出手段32により実測された空気量の変化率に基づいて吸気行程終了時の空気量が予測演算される。

【0019】これに対し、吸気脈動が所定値以上となるエンジン運転状態にあると、そのことが運転状態検出手段29により検出され、この運転状態検出手段29の出力信号を受けた制限手段30により、上記空気量予測手段28による空気量の予測演算が制限される。こうして吸気脈動が大きくなるエンジン1の運転状態では、吸気行程終了前の実測空気量に基づく吸気行程終了時の空気量の予測演算が制限されるので、予測演算の実行に伴い吸気脈動が増幅されて空気量の予測値が大きく変化するのを防止することができ、よって空燃比のずれ等を効果 10的に抑制することができる。

【0020】請求項2の発明では、吸気脈動が所定値以上となるエンジン運転状態では、制限手段30により空気量の予測演算が禁止される。このため、このエンジン運転状態では、吸気行程終了時の空気量の予測演算が全く行われなくなり、空気量の予測値が大きく変化するのを確実に防止することができる。

【0021】請求項3の発明では、吸気脈動が所定値以上となるエンジン1の運転状態にあるとき、空気量検出手段32により検出された実測の空気量の変化率から算20出される予測係数が、吸気脈動の所定値未満となるエンジン1の運転状態で同様に算出される予測係数よりも小さく補正される。このため、吸気脈動が所定値以上となるエンジン運転状態では、その他の運転状態に比べ、予測演算によって吸気脈動が増幅され難くなり、空気量の予測を精度良く行って、その予測値が大きく変化するのを防止できる。

【0022】請求項4の発明では、請求項1の発明と同様に、エンジン1が吸気脈動の所定値以上となる運転状態にないときには、空気量予測手段28において吸気行30程終了前に空気量検出手段32により実測された空気量の変化率に基づいて吸気行程終了時の空気量が予測演算され、この空気量予測手段28により予測された空気量に基づいて所定の制御量が制御手段31で制御される。

【0023】これに対し、エンジン1が吸気脈動の所定値以上となる運転状態にあると、そのことが運転状態検出手段29により検出され、この運転状態検出手段29の出力信号を受けた制限手段30により、上記制御手段31において空気量予測手段28により予測された空気量に基づいて制御量を制御することが禁止される。こう40して吸気脈動が大きくなるエンジン1の運転時には、吸気行程終了前の実測空気量に基づく吸気行程終了時の空気量の予測演算は実行されるものの、その予測値を使用することが禁止されるので、予測演算の実行に伴い吸気脈動が増幅された予測値の使用により制御量が大きく変化するのを防止することができる。

【0024】請求項5の発明では、上記制御手段31が、空気量予測手段28により予測された空気量に基づいてエンジン1への燃料噴射量を制御するものであるので、制御量としての燃料噴射量を精度良く算出して空燃50

比のふらつきを防止でき、エンジン1のエミッション性 能を向上させることができる。

【0025】請求項6の発明では、空気量検出手段32は、ホットワイヤ式エアフローセンサを備えたものであるので、この応答性の良いエアフローセンサにより吸気脈動が顕著に検出されたとしても、その吸気脈動の増幅は防止され、有効な効果が得られる。

【0026】請求項7の発明では、吸気脈動が所定値以上となるエンジン運転状態はエンジン1の高負荷域であり、エンジン1が高負荷域にあると、そのことが、運転状態検出手段29としての負荷検出手段により検出され、制限手段30によって空気量の予測演算が制限され、又は制御量の制御が禁止される。このため、吸気脈動が大きくなるエンジン1の高負荷時には、予測演算の実行に伴い吸気脈動が増幅されて空気量の予測値が大きく変化するのを防止し、或いは吸気脈動が増幅された予測値の使用により制御量が大きく変化するのを防止することができる。

【0027】請求項8の発明では、吸気脈動が所定値以上となるエンジン運転状態が運転状態検出手段29により検出されると、その検出時点から所定時間が経過した後に初めて、制限手段30が作動し、空気量の予測演算が制限され又は制御量の制御が禁止される。このため、例えば空気量に基づいて燃料噴射量等を制御する場合、検出時点から直ちに制限手段30が作動して空気量の予測演算が制限され又は制御量の制御が禁止されるのに比べ、この予測制限等に伴って燃料噴射量が急激に変化することはなく、エンジン1の出力等の急変を回避して違和感を防止することができる。

【0028】請求項9の発明では、吸気脈動が所定値以上となるエンジン運転状態が運転状態検出手段29により検出されたとき、空気量検出手段32により検出された空気量と、その空気量をエンジン1の吸気系の容積に関連付けて補正したなまし空気量との差が所定値以下になると、制限手段30により、空気量の予測演算が制限され又は制御量の制御が禁止される。従って、上記エンジン出力等の急変を回避して違和感を防止する効果が精度よく得られる。

[0029]

) 【実施例】以下、本発明の実施例を図2以下の図に基づいて説明する。

(実施例1)図4は本発明の実施例1に係るエンジンの制御装置を示す。1はエンジンで、このエンジン1は、複数の気筒2,2,…(1つのみ図示する)を有するシリンダブロック3と、そのシリンダブロック3の上面に組み付けられたシリンダヘッド4と、各気筒2内に往復動可能に嵌挿されたピストン5とを備え、各気筒2内にはピストン5及びシリンダヘッド4により囲まれる燃焼室6が形成されている。7は気筒2内の燃焼室6上部に臨設された点火プラグで、この点火プラグ7は、後述の

ጸ

コントロールユニット25からの点火信号を受けて高圧 の2次電圧を発生する点火コイル8にディストリビュー タ9を介して接続されている。

【0030】11は上記各気筒2内の燃焼室6に吸気(空気)を供給する吸気通路で、この吸気通路11の上流端は図外のエアクリーナに接続され、下流端は吸気弁11aを介して燃焼室6に連通されている。吸気通路11には、エンジン1へ実際に吸入される吸入空気量qaを検出するホットワイヤ式エアフローセンサ12と、吸気通路11を絞るスロットル弁13と、サージタンク14と、コントロールユニット25からの燃料噴射信号を受けて燃料を噴射供給する燃料噴射弁15(インジェクタ)とが上流側から順に配設されている。

【0031】上記スロットル弁13上下流側の吸気通路11,11はバイパス通路17により接続され、このバイパス通路17には、コントロールユニット25からのISCバルブ駆動信号を受けて作動するアクチュエータ18により駆動されるISCバルブ19(アイドルスピードコントロールバルブ)が配設されており、このISCバルブ19の開度を制御することで、エンジン1のア 20イドル回転数を制御するようになっている。

【0032】一方、21は上記燃焼室6内の排気ガスを排出する排気通路で、その上流端は排気弁21aを介して燃焼室6に連通されている。排気通路21の途中には、排気ガス中の酸素濃度を基に吸気の空燃比を検出する空燃比センサ22と、排気ガスを浄化する排気浄化装置23とが上流側から順に配設されている。上記空燃比センサ22は、その出力信号の大きさが空燃比の変化に応じて比例的に変化するリニアO2センサで構成されている。

【0033】上記各燃料噴射弁15、点火コイル8及び ISCバルブ19のアクチュエータ18はコントロール ユニット25(詳しくはエンジンコントロールユニット)により制御されるようになっている。このコントロールユニット25には、上記エアフローセンサ12から 出力される吸入空気量信号と、エンジン回転数neの算出のために、エンジン1のクランク軸(図示せず)の回転角度に対応した上記ディストリビュータ9の回転を示すクランク角信号と、上記空燃比センサ22の出力信号と、エンジン1のシリンダブロック3におけるウォータ 40ジャケット3aに臨設した水温センサ26からの水温信号と、上記スロットル弁の開度を検出するスロットルセンサ27からのスロットル開度信号とが少なくとも入力されている。

S3では、上記吸入空気量 qaをエンジン回転数 neで 割った後に定数Kを掛けて、本発明でいう「空気量」と しての空気充填効率Ce(=K×qa/ne)を算出 し、ステップS4で、この充填効率Ceと前回値Ceo との比つまり充填効率Ceの変化率に定数K,を掛けて 予測係数 γ (=K, \times Ce/Ce σ) を算出する。次の ステップS5で、今回算出した充填効率Ceを前回値C e o として置き換えた後、ステップS6において今回の 充填効率Ceと所定の定数Kcとの大小を判定する。こ の判定がCeくKcのYESのときには、エンジン1は 低負荷域にあるとして、ステップS7に進み、上記予測 係数γに今回の充填効率Ceを掛けて予測充填効率Ce fを求めた後、ステップS9に進む。一方、ステップS 6の判定がCe≥KcのNOのときには、エンジン1は 高負荷域にあると見做し、ステップS8に進んで上記今 回の充填効率Ceをそのまま予測充填効率Cefとした 後、ステップS9に進む。このステップS9では、ステ ップS7, S8で得られた予測充填効率Cefに定数K fを掛けて燃料噴射信号のパルス幅 τ を演算し、しかる 後、ステップS10において上記パルス幅τの燃料噴射 信号を燃料噴射弁15に出力して燃料を噴射させる。

【0035】この実施例では、上記各フローのステップ S1~S3及びエアフローセンサ12により、エアフローセンサ12にて吸気行程終了前に実測された吸入空気 量qaに基づいて空気充填量Ceを算出するようにした 空気量検出手段32が構成されている。

【0036】また、ステップS4,S5,S7により、空気量検出手段32により吸気行程終了前に求められた空気充填効率Ceの変化率から予測係数ヶを算出し、そ30の予測係数ヶに基づいて吸気行程終了時の空気量としての予測充填効率Cefを予測演算するようにした空気量予測手段28が構成されている。

【0037】また、ステップS6により、エンジン1が 高負荷域、つまり吸気脈動が所定値以上となるエンジン 運転状態にあることを検出するようにした負荷検出手段 としての運転状態検出手段29が構成されている。

【0038】さらに、ステップS8により、上記運転状態検出手段29により、吸気脈動が所定値以上となるエンジン1の高負荷域が検出されたとき、上記空気量予測手段28による予測充填効率Cef(空気量)の予測演算を制限、具体的には禁止して、実測した吸入空気量 q a から得られる空気充填効率Ceを吸気行程終了時の予測充填効率Cefとしてそのまま用いるようにした制限手段30が構成されている。

【0039】次に、上記実施例の作用について説明する。エンジン1の運転に伴い、その気筒2内の燃焼室6に吸入される吸入空気量qaが吸気行程終了前にエアフローセンサ12により検出され、この吸入空気量qa及びエンジン回転数neに基づいて空気充填効率Ceが算出されるとともに、該空気充填効率Ceとその前回値C

e o との比から予測係数 γ が算出される。そして、この空気充填効率 C e と所定の定数 K c との比較によりエンジン1の負荷状態が判定され、図 3 の左右両側にて示すように、スロットル弁 1 3 の開度が小さくて空気の充填効率 C e が定数 K c よりも小さいときには、エンジン1が吸気脈動の小さい低負荷域にあるとして、上記充填効率 C e、つまり吸気行程終了前にエアフローセンサ 1 2により実測された吸入空気量 q a からの充填効率 C e の変化率に基づいて得られる予測係数 γ から吸気行程終了時の予測充填効率 C e f が演算され、この予測充填効率 10 C e f を基に燃料噴射信号のパルス幅 τ が演算されて、そのパルス幅 τ の燃料噴射信号の燃料噴射弁 1 5 への出力により燃料が噴射供給される。

【0040】これに対し、図3の左右中央にて示すように、スロットル開度が増大して上記充填効率Ceが定数 Kc以上にあるときには、エンジン1は吸気脈動の所定値以上となる高負荷域とされ、上記予測充填効率Cefの予測演算は行われず、今回算出された、実測吸入空気量 qaに基づく空気充填効率Ceがそのまま予測充填効率Cefとして使用される。

【0041】したがって、こうして吸気脈動が大きくなるエンジン1の高負荷時には、吸気行程終了前の空気充填効率Ceに基づいた吸気行程終了時の予測充填効率Ceがそのまま予測充填効率Ceがそのまま予測充填効率Cefとして使用されるので、予測演算の実行に伴い吸気脈動が増幅されて予測充填効率Cefが大きく変化するのを防止できる。よって、エンジン1の負荷の増大に伴い、応答性の良いホットワイヤ式エアフローセンサ12によって吸気脈動が顕著に検出されたとしても、図3に示す如く、空燃比のふらつきを効果的に防30止して空気の予測充填効率Cefを精度良く算出でき、延いてはエンジン1のエミッション性能を向上させることができる。

【0042】(実施例2)図5は本発明の実施例2を示し(尚、以下の各実施例では図4と同じ部分については同じ符号を付してその詳細な説明は省略する)、上記実施例1ではエンジン1の負荷が大きいときには、予測充填効率Cefの予測演算自体を禁止するようにしているのに対し、その予測演算に使用する予測係数γを低負荷域に比べて変更するようにしたものである。

【0043】具体的には、この実施例では、基本的な構成は実施例1と同様であり(図4参照)、コントロールユニット25において燃料噴射弁15へ燃料噴射信号を出力して燃料噴射量を制御するときの信号処理動作が異なる。

【0044】そして、図5に示すステップT1~T3は 実施例1のステップS1~S3と、またステップT9, T10は同ステップS9, S10とそれぞれ同じであ り、ステップT4~T8が変化している。すなわち、ス テップT3で空気充填効率Ceを算出した後、ステップ 50

T4において、この今回の充填効率Ceと所定の定数K cとの大小を判定する。この判定がCe<KcのYES のときには、エンジン1は吸気脈動が小さい低負荷域にあるとして、ステップT5に進み、今回の充填効率Ce と前回値Ceoとの比に定数K、」を掛けて予測係数 r1 (=K、、×Сe/Сeo)を算出した後、ステップT7に進む。一方、ステップT4の判定がCe≧Kcの NOのときには、エンジン1は吸気脈動が所定値以上となる高負荷域にあると見做し、ステップT6に進んで、今回の充填効率Ceと前回値Ceoとの比に上記定数K、、」よりも小さい定数K、、(<K、、)を掛けて予測係数 r2 (=K、、×Сe/Сeo)を算出した後、ステップT7に進む。このステップT7では、今回算出した充填効率Ceを前回値Ceoとして置き換えた後、ステップT8に進む。

【0045】この実施例では、上記各フローのステップ T1~T3により空気量検出手段32が、またステップ T5, T7, T8により空気量予測手段28が、さらに ステップT4により運転状態検出手段29がそれぞれ構 20 成されている。

【0046】また、ステップT6により、上記運転状態 検出手段29にて、吸気脈動が所定値以上となるエンジン1の高負荷域が検出されたとき、上記空気量予測手段 28による予測充填効率Cef(空気量)の予測演算を 制限、具体的には充填効率Ceの変化率から算出される 予測係数 72をエンジン1の低負荷域の予測係数 71よ りも小さく補正して予測充填効率Cefを演算するよう にした制限手段30が構成されている。

【0047】したがって、この実施例においては、エンジン1が吸気脈動の大きくなる高負荷域にあるとき、エアフローセンサ12により検出された実測の吸入空気量 q aに基づく空気充填効率C e の変化率から算出される予測係数 γ 2が、エンジン1の低負荷域で同様に算出される予測係数 γ 1よりも小さくなる。このため、エンジン1の高負荷域では低負荷域に比べ、予測演算によって吸気脈動が増幅され難くなる。よって、実施例1と同様に、空気充填効率C e f の予測を精度良く行うことができ、空燃比のずれを確実に抑制してエンジン1のエミッション性能を向上させることができる。

40 【0048】 (実施例3)図6は実施例3を示し、上記各実施例ではエンジン1の負荷が大きいときには予測充填効率Cefの予測演算を制限するようにしているのに対し、予測充填効率Cefの演算は常時行い、その代わり、その演算された予測充填効率Cefをエンジン1の高負荷域では燃料噴射量の決定のために使用しないようにしたものである。

【0049】この実施例でも基本的な構成は実施例1と同様である(図4参照)。また、コントロールユニット25において燃料噴射弁15へ燃料噴射信号を出力して燃料噴射量を制御するときの信号処理動作は図6に示す

とおりであり、そのうち、ステップ $U1\sim U5$ は実施例 1のステップ $S1\sim S5$ と、またステップU10, U1 1は同ステップS9, S10とそれぞれ同じであり、ステップ $U6\sim U9$ が異なっている。

【0050】すなわち、ステップU5で、今回算出した空気の充填効率Ceを前回値Ceoとして置き換えた後、ステップU6に進み、ステップU4で算出した予測係数ヶに今回の充填効率Ceを掛けて予測充填効率Cefを求め、次いで、ステップU7において今回の充填効率Ceと所定の定数Kcとの大小を判定する。この判定10がCeくKcのYESのときには、エンジン1は低負荷域にあるとして、ステップU8に進み、上記ステップU6で算出した予測充填効率Cefをそのまま使用するようにした後、ステップU10に進む。一方、ステップU7の判定がCe≥KcのNOのときには、エンジン1は高負荷域にあると見做し、ステップU9に進んで上記今回の充填効率Ceを予測充填効率Cefとした後、ステップU10に進む。

【0051】この実施例では、上記各フローのステップ $U1\sim U3$ により空気量検出手段 32が、またステップ 20 $U4\sim U6$ により空気量予測手段 28が、さらにステップ U7 により運転状態検出手段 29 がそれぞれ構成され ている。

【0052】また、ステップU8, U10, U11により、空気量予測手段28により予測された予測充填効率 Cef(空気量)に基づいてエンジン1への燃料噴射量に対応する燃料噴射信号のパルス幅 τ を制御する制御手段31が構成されている。

【0053】また、ステップU9により、上記運転状態 検出手段29によりエンジン1の高負荷域が検出された 30 とき、上記制御手段31が空気量予測手段28により予 測された吸気充填量Cefに基づいて燃料噴射信号のパ ルス幅 τ を制御することを禁止するようにした制限手段 30が構成されている。

【0054】したがって、この実施例においては、エンジン1が運転状態にあると、上記と同様に、その気筒2の吸気行程終了前にエアフローセンサ12により実測された吸入空気量qaからの空気充填効率Ceの変化率に基づいて吸気行程終了時の予測充填効率Cefが演算される。そして、エンジン1が吸気脈動の小さい低負荷域40にあるときには、上記演算された予測充填効率Cefに基づいてエンジン1の燃料噴射信号のパルス幅τが制御される。

【0055】しかし、エンジン1が高負荷域にあって吸気脈動が大きくなると、上記演算された予測充填効率C efに基づいて燃料噴射信号のパルス幅 τ を制御することは禁止され、今回算出された充填効率Ceが使用されてパルス幅 τ が制御される。すなわち、吸気脈動が大きくなるエンジン1の高負荷時には、吸気行程終了前の空気充填効率Ceに基づく吸気行程終了時の充填効率Ce

f の予測演算は通常どおり実行されるが、その予測充填 効率 C e f を使用することは禁止されるので、予測演算 の実行に伴い吸気脈動が増幅された予測充填効率 C e f の使用により燃料噴射信号のパルス幅 τ つまり燃料噴射 量が大きく変化するのを防止でき、実施例 1, 2 と同様 の作用効果が得られる。

【0056】尚、以上の各実施例 $1\sim3$ においては、空気の予測充填効率Cefを、燃料噴射信号のパルス幅 τ を演算して燃料噴射量を求めるために使用しているが、この予測充填効率Cefを燃料噴射量以外の他の制御量、例えばエンジン1の点火時期を制御するために使用するようにしてもよい。

【0057】(実施例4)図7~図13は実施例4を示し、上記各実施例では、エンジン1が高負荷域になると、その時点から直ちに予測充填効率の予測演算を制限するようにしているのに対し、高負荷域への移行時点から所定時間の経過を待って予測演算の制限を実行するようにしたものである。

【0058】この実施例では、コントロールユニット25の信号処理動作は図7~図9に示すとおりである。まず、ステップV1でエアフローセンサ12により検出された吸入空気量gatを読み込み、ステップV2でエンジン回転数neを読み込む。次のステップV3では、吸入空気量の正味体積効率ve(後述するステップV16にて求められる)が所定の定数k1よりも小さいかどうかを判定する。この判定がveくk1のYESのときには、ステップV4において判定フラグxfinhをxfinh=0にセットした後、ステップV7に進む。上記判定フラグxfinhは、後述の熱応答補正と吸気充填効率の予測演算とを共に禁止するか否かを識別するもので、xfinh=1のときに禁止を行わないように設定される。

【0059】一方、上記ステップV3でve≥k1のN Oと判定されると、ステップV5に進み、上記判定フラ グxfinhがxfinh=0、つまりエンジン1が初 めて髙負荷域になったかどうかを判定する。この判定が xfinh=0のYESのときには、過渡判定係数dv eacc (後述のステップV14にて求められる)が所 定の定数k2よりも大きいかどうかを判定し、この判定 がdveacc>k2のYESのときには上記ステップ V7に進む。このステップV7では、熱応答補正空気量 gat0を求め、しかる後にステップV10に進む。こ の熱応答補正空気量gat0は、ホットワイヤ式のエア フローセンサ12自体の熱容量によりその出力信号に応 答遅れが生じるので、この遅れを補償するためにエアフ ローセンサ12の出力値について実際の吸入空気量ga t との差分を埋める補正を行ったものであり、ここで は、前回の吸入空気量をgatb、所定定数をkA(0 <kA1<1)として式

 $gat 0 = (gat - kA1 \times gat b) / (1 - kA$

1)

により求められる。

【0060】上記ステップV5の判定がxfinh=1のNOのとき、或いはステップV6の判定がdveacc≤k2のNOのときには何れもステップV8に進み、判定フラグxfinhxfinh=1にし、ステップx9で熱応答補正空気量x10を吸入空気量x210に進む。

【0061】上記ステップV10では、今回の吸入空気 量gatを前回値gatbとしてストアし、次のステッ 10 プV11で、上記ステップV7, V9で求められた熱応 答補正空気量gat0とエンジン回転数neとに基づき 見掛け体積効率ve0を式

 $ve0=kG1\times (gat0/ne)$

により演算する。ここで k G 1 は係数で、吸入空気温度 が高いほど、また大気圧が低いほどそれぞれ大きい値と なる。尚、この係数に代えて所定の定数を用いてもよ い。

【0062】この後、ステップV12において、予めエンジン回転数neの関数として設定されている過渡補正 20係数kcca=f1(ne)を演算する。この過渡補正係数kccaは、図10に示す如く、エンジン回転数neの増大に応じてkcca=1. 0から次第に減少するように設定されている。

【0063】次いで、ステップV13に進み、上記見掛け体積効率ve0及び過渡補正係数kccaを基にして過渡補正体積効率veccaを式

vecca=kcca×vecca+ (1-kcca) ×ve0

により演算し、ステップV14では、上記見掛け体積効率ve0及び過渡補正体積効率veccaから過渡判定係数dveaccを式

dveacc= (ve0-vecca) /vecca により求める。

【0064】次のステップV15では、図11に示すように予めエンジン回転数ne及び上記過渡補正体積効率 veccaの関数として設定されている補正マップに基づき体積効率補正係数Cveは、エンジン1やエアフローセンサ12のばらつきを吸収する狙40いで定常時の正味体積効率veの誤差補正を行うためのものである。この後、ステップV16において、上記体積効率補正係数Cveと過渡補正体積効率veccaとを掛け合わせて正味体積効率ve=Cve×veccaを算出する。

【0065】次のステップV17では、上記判定フラグ x f i n hが x f i n h = 0 か否かを判定する。この判 定が x f i n h = 0 の Y E S のときには、ステップV18に進み、上記過渡補正体積効率 v e c c a 及びその前 回値 v e c c a b、定数 k F 並びにエンジン回転数 n e

から充填効率予測係数 γ v e f を式

14

【0066】上記ステップV20では、今回の過渡補正体積効率veccaを前回値veccabとしてストアし、次のステップV21で、上記過渡補正体積効率vecaとステップV18,V19で求められた充填効率予測係数 rvefとを掛け合わせて過渡補正後予測体積効率veccaf=rvef×veccaを演算する。次いで、ステップV22では、予めエンジン回転数ne及び過渡補正後予測体積効率veccafの関数として設定されているマップに基づき体積効率補正係数 Cvef=f2(ne,veccaf)を演算する。この体積効率補正係数 Cvefは、上記ステップV15で演算される体積効率補正係数 Cveと同じ目的を持つもので、マップも図11に示すものにおいて一方のパラメータが過渡補正体積効率veccafに変わっただけのものである。

【0067】次のステップV23では、上記体積効率補正係数Cvefと過渡補正後予測体積効率veccafとの乗算により正味予測体積効率vef=Cvef×veccafを求める。次いで、ステップV24に進み、上記正味体積効率veと係数kG2との積として充填効率Ce=kG2×veを算出する。ここで係数kG2は、吸入空気温度が高いほど、また大気圧が低いほどそれぞれ小さい値となる。この係数に代えて定数を用いることも可能である。

【0068】次いで、ステップV25において、上記正味予測体積効率vefと係数kG2との積により予測充填効率 $Cef=kG2\times vef$ を算出し、ステップV26では、この予測充填効率Cefに定数kTを掛けて噴射パルス幅 $ta=kT\times Cef$ を求める。

【0069】この後、ステップV27において、図12に示す如く予めエンジン回転数ne及び充填効率Ceの関数として設定されている点火時期マップに基づき点火時期thtig=f3(ne,Ce)を演算する。次のステップV28では、上記ステップV26で求められた噴射パルス幅taで燃料噴射t15から燃料を噴射させ、ステップV29では、ステップV27で演算された点火時期thtigの点火信号を点火プラグ7に出力し、以上で制御を終了する。

【0070】この実施例では、ステップV1, V2, V11により、エアフローセンサ12にて吸気行程終了前に実測された吸入空気量gatに基づいて吸入空気量としての見掛け体積効率ve0を算出するようにした空気

量検出手段32が構成されている。

【0071】また、ステップV18~V25により、吸 気行程終了前に空気量検出手段32により算出された見 掛け体積効率ve0に基づく過渡補正体積効率vecc aの変化率から予測係数γvefを算出し、その予測係 数 r v e f を基に吸気行程終了時の空気量としての予測 充填効率 Cefを予測演算するようにした空気量予測手 段28が構成されている。

【0072】また、ステップV3により、エンジン1が 高負荷域、つまり吸気脈動が所定値以上となるエンジン 10 運転状態にあることを検出するようにした負荷検出手段 としての運転状態検出手段29が構成されている。

【0073】 さらに、ステップV5~V9, V13, V 14, V18, V19により制限手段30が構成され、 この制限手段30により、吸気脈動が所定値以上となる エンジン1の高負荷域が上記運転状態検出手段29にて 検出されたとき、その検出時点から所定時間が経過する まで、つまり空気量検出手段32により検出された空気 量としての見掛け体積効率ve0と、その体積効率ve 0をエンジン1の吸気系の容積に関連付けてなまし補正 20 したなまし空気量としての過渡補正体積効率vecca との差に対応する過渡判定係数 d v e a c c が定数 k 2 (所定値) よりも大きい間は、予測充填効率 Cefの演 算及び熱応答補正をそのまま継続して行い、上記過渡判 定係数dveaccが定数k2以下になって、検出時点 から所定時間が経過すると、その後に、予測充填効率C e f の演算及び熱応答補正を制限するようになされてい る。

【0074】したがって、この実施例の場合、図13に 示すように、吸気脈動が所定値以上となるエンジン1の 髙負荷域が検出されると、上記実施例1のように、その 検出時点から直ちに空気量の予測演算が制限されず(こ の検出時点から直ちに熱応答補正及び空気量の予測演算 を制限した状態を図13(d)~(f)に示してい る)、図13(g)~(j)に示す如く、見掛け体積効 率ve0とエンジン1の吸気系の容積を考慮したなまし 空気量としての過渡補正体積効率veccaとの差に対 応する過渡判定係数 d v e a c c が定数 k 2 よりも大き い間は、空気量の予測演算及び熱応答補正の各制御がそ のまま低負荷時と同様に継続して行われる。そして、そ 40 の後、上記過渡判定係数 d v e a c c が定数 k 2以下に なって、検出時点から所定時間が経過すると、空気量の 予測演算及び熱応答補正の各制御が制限される。このた め、例えばエンジン1の加速時に負荷が増大するときに おいて、予測充填効率Ceに基づいて演算される燃料噴 射のパルス幅 t a が上記予測制限の実行に伴って急激に 減少変化することはなく、エンジン1の出力の急低下を 回避して加速時の失速感を防止することができる利点が ある。

時の検出時点から見掛け体積効率ve0と過渡補正体積 効率veccaとの差に対応する過渡判定係数dvea c c が定数 k 2以下になったときに空気量の予測演算及 び熱応答補正の各制御を制限するようにしているが、検 出時点からの経過時間をタイマでカウントし、このカウ ント値が所定値になると、空気量の予測演算及び熱応答 補正の各制御を制限するようにしてもよい。

【0076】また、上記実施例3と同様に、エンジン1 の高負荷域の検出時点から所定時間が経過した後、制御 量の制御を禁止するようにすることもできる。

[0077]

【発明の効果】以上説明した如く、請求項1の発明によ ると、エンジンの吸気行程終了前に空気量検出手段によ り実測した空気量の変化率に基づいて吸気行程終了時の 空気量を予測演算する場合に、吸気脈動が所定値以上と なるエンジン運転状態では上記空気量の予測演算を制限 するようにしたことにより、この吸気脈動の大きくなる エンジンの運転時、予測演算の実行に伴う吸気脈動の増 幅により空気量の予測値が大きく変化するのを防止で き、空燃比のずれ等の抑制を有効に図ることができる。

【0078】請求項2の発明によれば、エンジンの吸気 脈動が所定値以上となる運転時には空気量の予測演算を 禁止するようにしたことにより、空気量の予測値の変化 を確実に防止することができる。

【0079】請求項3の発明によれば、吸気脈動が所定 値以上となるエンジン運転状態では、吸気行程終了前に 実測された空気量の変化率を基に吸気行程終了時の空気 量を演算するに当たり使用する予測係数を、吸気脈動が 所定値よりも小さいエンジン運転状態のそれよりも小さ く補正するようにしたことにより、エンジンの髙負荷域 では低負荷域に比べ、予測演算によって吸気脈動を増幅 し難くでき、空気量の予測値が大きく変化するのを防止 できる。

【0080】請求項4の発明によると、エンジンの吸気 行程終了前に空気量検出手段により実測した空気量の変 化率に基づいて吸気行程終了時の空気量を予測演算し、 その予測された空気量に基づいて所定の制御量を制御す る場合に、吸気脈動の大きくなるエンジンの運転時に は、上記予測演算された空気量の使用を禁止するように したことにより、予測演算の実行に伴い吸気脈動が増幅 された予測値を使用したときに制御量が大きく変化する ことを防止でき、空燃比のずれ等の抑制を有効に図るこ とができる。

【0081】請求項5の発明によれば、予測された空気 量に基づいてエンジンへの燃料噴射量を制御量として制 御するようにしたことにより、燃料噴射量を精度良く算 出して空燃比のふらつきを防止でき、エンジンのエミッ ション性能の向上を図ることができる。

【0082】請求項6の発明では、空気量検出手段は、 【0075】尚、この実施例では、エンジン1の高負荷 50 応答性の良いホットワイヤ式エアフローセンサを備えた

ものとしたことにより、このエアフローセンサにより吸 気脈動が顕著に検出されたとしても、その吸気脈動の増 幅を効果的に防止して上記効果を有効に奏することがで きる。

【0083】請求項7の発明によると、上記吸気脈動が 所定値以上となるエンジン運転状態をその髙負荷域とし たことにより、エンジンの高負荷域で空気量の予測演算 を制限し、又は制御量の制御を禁止でき、吸気脈動が大 きくなるエンジンの高負荷時に、予測演算の実行に伴い 吸気脈動が増幅されて空気量の予測値が大きく変化した 10 り、或いは吸気脈動が増幅された予測値の使用により制 御量が大きく変化したりするのを防止できる。

【0084】請求項8の発明によると、吸気脈動が所定 値以上となるエンジン運転状態が検出されると、その検 出時点から所定時間が経過した後に、空気量の予測演算 を制限し又は制御量の制御を禁止するようにしたことに より、例えば空気量に基づいて燃料噴射量等を制御する 場合に、空気量の予測演算の制限に伴って燃料噴射量等 が急激に変化するのを防ぎ、エンジン出力等の急変を回 避して違和感の防止を図ることができる。

【0085】請求項9の発明によると、吸気脈動が所定 値以上となるエンジン運転状態が検出されたとき、検出 された空気量と、それをエンジンの吸気系の容積を考慮 して補正したなまし空気量との差が所定値以下になる と、空気量の予測演算を制限し又は制御量の制御を禁止 するようにしたことにより、上記エンジン出力等の急変 を回避して違和感を防止する効果が精度よく得られる。

【図面の簡単な説明】

【図1】本発明の構成を示す図である。

【図2】本発明の実施例1のコントロールユニットで燃 30 qa, gat 吸入空気量 料噴射制御のために行われる処理動作を示すフローチャ ート図である。

【図3】実施例1における各種状態量の変化を示すタイ ムチャート図である。

【図4】実施例1の全体構成図である。

【図5】本発明の実施例2を示す図2相当図である。

【図6】実施例3を示す図2相当図である。

【図7】実施例4のコントロールユニットでの処理動作 の前部を示すフローチャート図である。

18

【図8】 コントロールユニットでの処理動作の中間部を 示すフローチャート図である。

【図9】コントロールユニットでの処理動作の後部を示 すフローチャート図である。

【図10】エンジン回転数に応じた過渡補正係数の特性 を示す図である。

【図11】体積効率補正係数のマップを例示する図であ る。

【図12】点火時期マップを例示する図である。

【図13】実施例4における各種状態量の変化を示すタ イムチャート図である。

【符号の説明】

1 エンジン

2 気筒

11 吸気通路

12 エアフローセンサ

20 15 燃料噴射弁

25 コントロールユニット

28 空気量予測手段

29 運転状態検出手段

30 制限手段

31 制御手段

32 空気量検出手段

Ce 空気充填効率

γ, γ1, γ2, γve f 予測係数

Cef 予測充填効率

ne エンジン回転数

ve0 見掛け体積効率

vecca 過渡補正体積効率

k 2 定数

dveacc 過渡判定係数

【図10】

【図11】

【図12】

【図4】

【図8】

