Day 2

Euclid's Algorithm

- 1. Well-ordering of the integers. Every nonempty set of positive integers has a least element.
- 2. Let a and b be nonzero integers. Consider the set

$$X = \{ax + by : x, y \in \mathbb{Z}\}\$$

- 1. X contains positive elements.
- 2. X contains a smallest positive element, call it d. So ax + by = d.
- 3. Note that X contains every (positive and negative) multiple of d.
- 4. Take any other positive element z of X. Then z = qd + r but also z = ax' + by'. Suppose r > 0. So qd + r = ax' + by' and therefore r = a(x' qx) + b(y' qy). This means that r is in X; but since r is less than d, this cannot happen. It follows that r = 0 and every element of X is a multiple of d.
- 5. We conclude that $X = d\mathbb{Z}$.
- 6. Since X contains both a and b, we see that d is a common divisor of a and b
- 7. If g is any other common divisor of a and b, then g divides d since d = ax + by.
- 8. Therefore d is the *greatest* common divisor of a and b, and any other common divisor of a and b is a divisor of d.
- 9. a and b are called relatively prime if their greatest common divisor is 1.

Theorem: Given nonzero integers x and y, the equation ax + by = z has a solution if and only if z is a multiple of the greatest common divisor of a and b.

Corollary 1: If a and n are relatively prime, and $a \mid nb$, then $a \mid b$.

Proof: Write ax + ny = 1. Multiply by b to get abx + nby = b. Since a divides both terms on the left, it divides b.

Corollary 2: Given integers a and b with greatest common divisor d, the integers a/d and b/d are relatively prime (i.e. have gcd equal to one).

Proof: Divide ax + by = d by d.

Corollary 3: The least common multiple of m and n is mn/d where $d = \gcd(m, n)$.

Proof: Suppose x is a common multiple of m and n. Write x = am. Then $n \mid x$ so $n \mid am$ and therefore $\frac{n}{d} \mid a\frac{m}{d}$. By Corollaries 1 and 2 this means $\frac{n}{d}$ divides a, so mn/d divides x. Thus mn/d is the least common multiple and any common multiple is a multiple of mn/d.

Congruences

Theorem: The congruence equation

$$ax \equiv b \pmod{n}$$

has solutions if and only if $d = \gcd(a, n)$ divides b. In that case it has n/d solutions modulo n.

Proof: Solving the congruence equation

$$ax \equiv b \pmod{n}$$

is equivalent to solving the equation

$$ax + ny = b$$
.

Euclid's algorithm tells us this equation has a solution if and only if $d = \gcd an$ divides b. When this holds, swe have a solution to our congruence x to our congruence. Notice that $x + k \frac{n}{d}$ is also a solution to this equation for $k = 0, \ldots, d-1$, so we actually have d solutions. If x and x' are any two solutions to this equation, then subtracting ax + ny = b from ax' + ny' = b yields

$$a(x - x') + n(y - y') = 0$$

and so, since n/d and a/d have gcd equal to one we conclude that x-x' is divisible by n/d. Therefore we have found all solutions.

Cyclic Groups

Key Facts about Cyclic Groups

- 1. Any cyclic group of infinite order is isomorphic to \mathbb{Z} . Any cyclic group of finite order n is isomorphic to $\mathbb{Z}/n\mathbb{Z}$. A group G is cyclic if and only if there is a surjective homomorphism from \mathbb{Z} to G.
- 2. An infinite cyclic group has two generators.
- 3. If g is a generator of a finite cyclic group G of order n, then g^a has order $n/\gcd(n,a)$. Thus g^a generates G if and only if $\gcd(n,a) = 1$.
- 4. Every subgroup of $\mathbb{Z}/n\mathbb{Z}$ is cyclic, and there is a unique such subgroup for every $d \mid n$.
- 5. If H is the cyclic subgroup of $\mathbb{Z}/n\mathbb{Z}$ of order d where $d \mid n$, then the elements of H are the multiples of n/d. The generators of H are the multiples kn/d where $\gcd(k,d)=1$.

- 6. If gcd(n, m) = 1 then $\mathbb{Z}/nm\mathbb{Z}$ is isomorphic to $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$.
- 7. A pair (a,b) generates $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ if and only if a and b generate $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ respectively. Therefore $\phi(nm) = \phi(n)\phi(m)$ when n and m are relatively prime.
- 8. If $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$ where the p_i are distinct primes then

$$\phi(n) = \prod_{i=1}^{k} (p^{e_i} - p^{e_i - 1}) = n \prod_{p|n} (1 - \frac{1}{p})$$

For discussion

- 1. We know that $\mathbb{Z}/6\mathbb{Z}$ is a subgroup of $\mathbb{Z}/24\mathbb{Z}$. Find all injective maps $\mathbb{Z}/3\mathbb{Z} \to \mathbb{Z}/12\mathbb{Z}$.
- 2. "Reduction mod 6" gives a surjective homomorphism $\mathbb{Z}/24\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$. Find the inverse image of 5 under this map.
- 3. Find all surjective homomorphisms $\mathbb{Z}/24\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$.
- 4. Prove that $(\mathbb{Z}/11\mathbb{Z})^{\times}$ is cyclic. In fact $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is always cyclic, we'll prove this later.