Algebra II: Tutorial 4

March 14, 2022

Problem 1 (Recap on irreducibility). Let $f(x) = x^4 - 2x^2 + 9 \in \mathbb{Q}[x]$.

- 1. Show that $\pi_p(f(x))$ is reducible for p=2,3,5,7.
- 2. Show that f(x) is irreducible over \mathbb{Q} .

Solution. 1. These are a direct computation. $\pi_2(f) = x^4 + 1 = (x+1)^4$, $\pi_3(f) = x^4 - 2x^2 = x^2(x^2+1)$, $\pi_5(f) = x^4 + 3x^2 + 4 = (x^2+x+2)(x^2+4x+2)$, and $\pi_7(f) = x^4 + 5x^2 + 2 = (x^2+x+3)(x^2+6x+3)$.

2. If f has a proper factorisation containing a linear factor, then f must have a root equal to $\pm 1, \pm 3, \pm 9$. A direct check shows none of these are roots of f. Therefore, f must have a factorisation into two quadratics, say $f = (x^2 + ax + b)(x^2 + cx + d)$. If a = 0, then c = 0 and the pair of integers (b, d) must solve the system b + d = -2m bd = 9 - this system has no integer solutions. Hence, assume that $a \neq 0$. Then, d = b = 3, and $a^2 = 8$, which is again a contradiction. Hence, f has no proper factorisation over \mathbb{Z} , and by Gauss's lemma has no proper factorisation over \mathbb{Q} .

Problem 2. Suppose that $a, b \in \mathbb{C}$ have same minimal polynomial over $\mathbb{Q}[x]$. Show that $\mathbb{Q}(a) \cong \mathbb{Q}(b)$.

Solution. Denote by $m(x) \in \mathbb{Q}[x]$ the minimal polynomial of a and b. By a theorem in the notes, $\mathbb{Q}(a) \cong \mathbb{Q}[x]/(m(x)) \cong \mathbb{Q}(b)$, proving our claim.

Problem 3. Let p, q be two distinct prime numbers. Calculate $[\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}]$.

Solution. By the tower theorem, $[\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}(\sqrt{q})][\mathbb{Q}(\sqrt{q}) : \mathbb{Q}]$. We know that $[\mathbb{Q}(\sqrt{q}) : \mathbb{Q}]$ is equal to the degree of the minimal polynomial of \sqrt{q} over \mathbb{Q} . Since $x^2 - q$ is irreducible over \mathbb{Q} with root \sqrt{q} , $[\mathbb{Q}(\sqrt{q}) : \mathbb{Q}] = 2$. Similarly, $[\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}(\sqrt{q})]$ is equal to the degree of the minimal polynomial of \sqrt{p} over $\mathbb{Q}(\sqrt{q})$. It is clear this is at most two. Suppose that the extension has degree one, i.e. $\sqrt{p} \in \mathbb{Q}(\sqrt{q})$. Then, there exist $a, b \in \mathbb{Q}$ such that $\sqrt{p} = a + b\sqrt{q}$, with $b \neq 0$. Squaring both sides and re-arranging, we get that $p - a^2 - b^2q = 2ab\sqrt{q}$. The left-hand side is rational but \sqrt{q} is irrational; this implies that a = 0. In other words, $\sqrt{q} = b\sqrt{q}$; this is a contradiction. Hence, the extension $[\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}(\sqrt{q})]$ is strictly larger than 1 and smaller than or equal to 2. All in all, $[\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}] = 2 \cdot 2 = 4$.

Problem 4. Suppose that α, β are transcendental over \mathbb{Q} . Show that either $\alpha + \beta$ or $\alpha\beta$ is transcendental over \mathbb{Q} .

Solution. Suppose not, say $\alpha + \beta$ and $\alpha\beta$ are algebraic. We know that simple algebraic extensions are finite; therefore $[\mathbb{Q}(\alpha+\beta):\mathbb{Q}]<\infty$ and $[\mathbb{Q}(\alpha\beta):\mathbb{Q}]<\infty$. By the tower theorem, $[\mathbb{Q}(\alpha\beta,\alpha+\beta):\mathbb{Q}]$ is equal to the product $[\mathbb{Q}(\alpha\beta,\alpha+\beta):\mathbb{Q}(\alpha+\beta)][\mathbb{Q}(\alpha+\beta):\mathbb{Q}]$, which is also finite. Now, notice that $(x-\alpha)(x-\beta)=x^2-(\alpha+\beta)x+\alpha\beta$, and so α is algebraic over $\mathbb{Q}(\alpha+\beta,\alpha\beta)$. Again by appealing to the Tower theorem, this implies that $\mathbb{Q}(\alpha)$ is a finite extension of \mathbb{Q} , a contradiction.