PHYSICS

◎1

RETROALIMENTACIÓN

2nd SECONDARY

TOMO 2

Determine las dimensiones del presión (P) si $P = \frac{F}{A}$ donde:

A: tiene unidades de m², F: tiene unidades de fuerza

[fuerza] =
$$MLT_2$$

$$[área] = L^2$$

$$P = \frac{F}{A}$$

$$[P] = \frac{[fuerza]}{[área]}$$

$$P = \frac{MLT^{-2}}{L^2}$$

$$[P] = ML^{-1}T^{-2}$$

Determine las dimensiones de la cantidad física R, si $R = C \cdot O \cdot R \cdot O$, donde:

S: es longitud

A: tiene unidades de masa

C: se mide en metros

O: tiene unidades de tiempo

$$[longitud] = L$$

$$[masa] = M$$

$$[tiempo] = T$$

$$R = C \cdot O \cdot R \cdot O$$

$$[R] = [C][O][R][O]$$

$$[R] = L M T M$$

$$[R] = LM^2T$$

Un impulso cambia el momento lineal de un objeto, y tiene las mismas unidades y dimensiones que el momento lineal. Las unidades del impulso en el Sistema Internacional son kg.m/s Determine la dimensión del momento lineal

$$[longitud] = L$$
 $[masa] = M$ $[tiempo] = T$

$$I = \frac{\text{kg. m}}{\text{s}}$$

$$[I] = \frac{M L}{T}$$

$$[I] = MLT^{-1}$$

Determine los elementos del vector mostrado.

Resolución:

De la figura:

Módulo: 5(6 N) = 30 N

Dirección: $\theta = 180^{\circ} - 50^{\circ}$

$$\theta = 130^{\circ}$$

Determine el módulo y dirección de los vectores \vec{A} y \vec{B} , respectivamente.

Resolución:

Vector A

Módulo : A = 3 u

Dirección: $\theta = 270^{\circ}$

Vector B

 $M\'{o}dulo : B = 4u$

Dirección : $\theta = 180^{\circ}$

Determine el vector resultante de los vectores que se muestran.

$$\vec{A} = (-1\hat{i} - 2\hat{j})u \; ; \; \vec{B} = (-2\hat{i} + 3\hat{j})u$$

Sabemos:
$$\vec{R} = \vec{A} + \vec{B}$$

$$\vec{R} = (-1\hat{i} - 2\hat{j}) + (-2\hat{i} + 3\hat{j})$$

$$\vec{R} = (-3\hat{i} + 1\hat{i})u$$

Determine el vector de la resultante de los vectores mostrados.

Determine el vector resultante y su módulo del sistema de vectores si $|\vec{E}| = 4$ u.

Resolución:

$$\vec{R} = \vec{A} + \vec{B} + \vec{C} + \vec{D} + \vec{E}$$

$$\vec{R} = \vec{0} + \vec{E}$$

$$\vec{R} = \vec{E}$$

Módulo de R:

$$R = E$$

$$R = 4u$$

Los puntos A, B, C y D
pertenecen a un cuadrado de
lados 3 u. Determine el módulo
del vector resultante.

Del gráfico, determine el módulo del vector resultante.

Resolución:

Módulo de R:

$$R = 8u$$