Programación Orientada a Objetos (POO)

Pontificia Universidad Javeriana Gabriel Gómez Corredor

Características

- Objetos
- Representa las entidades como objetos
- Instancias

QUE ES?

Es un paradigma de la programación que facilita la estructuración de los componentes en un software

Objetos

- En POO un objeto va a representar una entidad
- Tiene como función promover la comprensión del mundo real y será la base de la implementación

Atributos

- Propiedades del objeto
- Son los datos que tiene el objeto

- placa
- marca
- color
- modelo

- altura
- num_pisos
- cant_residentes

Comportamiento del objeto

El comportamiento del objeto se refiere a los servicios que este presta

Propiedades:

- digito1
- digito2

Metodos:

- Sumar()
- Restar()
- Multiplicar()
- Dividir()

Interacción entre objetos

Al enfrentarnos a un software real, nuestros objetos tendrán que interactuar entre ellos

El objeto cajeroElectronico necesitará verificar su clave, para ello necesita del objeto Dispositivo Claves para que haga su labor

Mensajes

Para que un objeto realice una tarea se le debe enviar un mensaje

- Solo se le pueden enviar mensajes a objetos que entiendan el mensaje
- El objeto que recibe el mensaje deber tener un método para que maneje el mensaje recibido
- Los valores que viajan en el mensaje se llaman argumentos/parámetros

Herencia

una clase adquiere las:

- propiedades (atributos)

-comportamiento (métodos) de otra.

Ejemplo

La clase Corriente hereda
los atributos
de Cuenta
* En total Corriente tiene 3
atributos

Concepto de Herencia

Se puede definir una clase a partir de otra ya existente Heredando sus atributos y métodos, Y siendo posible:

- añadir nuevos elementos (atributos o métodos)
- Redefinir métodos

Jerarquia

Relación de Generalización

Caracterísiticas:

- Clase padre (Superclase)
- Clase hijo (Subclases)

La generalización tiene un triángulo apuntando a la superclase.

Herencia

No se heredan valores!!

Ejercicio

Dibujar un diagrama de herencia donde este represente un caso de la vida real

Que contenga:

- una superclase
- más de una subclase
- atributos
- métodos

Polimorfismo

En una relación de herencia, un objeto de la superclase puede almacenar un objeto de cualquiera de sus subclases

Poli: muchas morfismo: forma

Polimorfismo

El mismo método puede causar que diferentes acciones ocurran, dependiendo del tipo del objeto en el cual el método es invocado.

- Método calcular() en la superclase es abstracto
- Las clases Depósito y Retiro deben implementar sus métodos calcular()

Encapsulamiento

Nos permite ocultar o restringir el acceso a los atributos y/o métodos de una clase

Existen 3 niveles de acceso

- **Public**: Todos pueden acceder a los datos o métodos de una clase (+)
- **Protegido:** No son publicas, solo son accesibles dentro de su clase y por sus subclases (#)
- **Privado:** Solo accesible dentro de la propia clase (-)

Diagrama de clases

Características

- Entidades
- Relaciones
- Cardinalidad
- Navegación

Ejercicio

Realizar un diagrama de clases, que represente un caso de la vida real

Que contenga:

Todas las caracterísiticas de POO