What Is Calculus?

Calculus is the mathematics of change—velocities and accelerations. Calculus is also the mathematics of tangent lines, slopes, areas, volumes, arc lengths, centroids, curvatures, and a variety of other concepts that have enabled scientists, engineers, and economists to model real-life situations.

Although precalculus mathematics also deals with velocities, accelerations, tangent lines, slopes, and so on, there is a fundamental difference between precalculus mathematics and calculus. Precalculus mathematics is more static, whereas calculus is more dynamic. Here are some examples.

- An object traveling at a constant velocity can be analyzed with precalculus mathematics. To analyze the velocity of an accelerating object, you need calculus.
- The slope of a line can be analyzed with precalculus mathematics. To analyze the slope of a curve, you need calculus.
- A tangent line to a circle can be analyzed with precalculus mathematics. To analyze a tangent line to a general graph, you need calculus.
- The area of a rectangle can be analyzed with precalculus mathematics. To analyze
 the area under a general curve, you need calculus.

Average and Instantaneous Speed

AVERAGE RATE OF CHANGE

$$\frac{\Delta y}{\Delta t} = \frac{f(t+h) - f(t)}{h}.$$

EXAMPLE 1 Finding an Average Speed

A rock breaks loose from the top of a tall cliff. What is its average speed during the first 2 seconds of fall?

SOLUTION

Experiments show that a dense solid object dropped from rest to fall freely near the surface of the earth will fall

$$y = 16t^2$$

feet in the first t seconds. The average speed of the rock over any given time interval is the distance traveled, Δy , divided by the length of the interval Δt . For the first 2 seconds of fall, from t=0 to t=2, we have

$$\frac{\Delta y}{\Delta t} = \frac{16(2)^2 - 16(0)^2}{2 - 0} = 32 \frac{\text{ft}}{\text{sec}}$$
. Now Try Exercise 1.

In Exercises 1–4, an object dropped from rest from the top of a tall building falls $y = 16t^2$ feet in the first t seconds.

1. Find the average speed during the first 3 seconds of fall.

average speed =
$$\frac{16(3)^2 - 16(0)^2}{3 - 0}$$

= $\frac{16(9)}{3} = \frac{16(3)}{3} = \frac{48 \text{ St}}{\text{Scc}}$

$$m_{sec} = \frac{f(c + \Delta x) - f(c)}{c + \Delta x - c} = \frac{f(c + \Delta x) - f(c)}{\Delta x} = \frac{1}{2} \frac{1}{2} = \frac{f(x+h) - f(x)}{2}$$

(a) The secant line through (c, f(c)) and $(c + \Delta x, f(c + \Delta x))$

Figure 1.2

(b) As Q approaches P, the secant lines approach the tangent line.

EXAMPLE 2 Finding an Instantaneous Speed

Find the speed of the rock in Example 1 at the instant t = 2.

SOLUTION

Solve Numerically We can calculate the average speed of the rock over the inter-

val from time
$$t = 2$$
 to any slightly later time $t = 2 + h$ as
$$\frac{\Delta y}{\Delta t} = \frac{16(2 + h)^2 - 16(2)^2}{h}.$$
A little After $t = 2$ (1)

We cannot use this formula to calculate the speed at the exact instant t=2 because that would require taking h = 0, and 0/0 is undefined. However, we can get a good idea of what is happening at t = 2 by evaluating the formula at values of h close to 0. When we do, we see a clear pattern (Table 2.1). As h approaches 0, the average speed approaches the limiting value 64 ft/sec.

Confirm Algebraically If we expand the numerator of Equation 1 and simplify, we find that

$$\frac{\Delta y}{\Delta t} = \frac{16(2+h)^2 - 16(2)^2}{h} = \frac{16(4+4h+h^2) - 64}{h}$$
$$= \frac{64h + 16h^2}{h} = 64 + 16h.$$

For values of h different from 0, the expressions on the right and left are equivalent and the average speed is 64 + 16h ft/sec. We can now see why the average speed has the limiting value 64 + 16(0) = 64 ft/sec as h approaches 0. Now Try Exercise 3.

3. Find the speed of the object at t = 3 seconds and confirm your answer algebraically.

$$\frac{16(3+h)^{2}-16(3)^{2}}{3+h-3} = \frac{16(3+h)^{2}-16(3)}{h}$$

$$\frac{16(6h)+16h^{2}}{h} = \frac{16(6h)+16h^{2}}{h} = \frac{16(6$$

$$(3,7(3))$$
 lim $16(6h) + 16h^{2}$ lim $16(6) + 16h^{3}$
 $(3+h,7(3+h))$ h \Rightarrow_{D} $h \Rightarrow_{D}$ $= h \Rightarrow_{D}$ $= 16(6) = 96.576$

$$\frac{3+h-3}{\sin^{2}\frac{16(6h)+16h^{2}}{n=0}} = \lim_{n\to 0} \frac{16(6)+16h^{2}}{n\to 0}$$

Limit process

Calculus

I Like Pushing

Things to the Limits

$$\frac{d}{dx}f(x) = \lim_{\Delta \to 0} \frac{f(x - \Delta) - f(x)}{\Delta}$$

DEFINITION Limit

Assume f is defined in a neighborhood of c and let c and L be real numbers. The function f rasLimit L as x approaches c if, given any positive number ε , there is a positive number δ such that for all x,

$$0<|x-c|<\delta\Rightarrow |f(x)-L|<\varepsilon.$$

We write

$$\lim_{x \to c} f(x) = L.$$

X	Y1	
.1	.99833 .99998	
1E-4	1	
0	ERROR	
7.01	.99998	
.1	.55855	

If
$$f(x) = \frac{\sin x}{x}$$
 then $f(0) = \frac{1}{2}$ in $f(x)$

THEOREM 1 Properties of Limits If L, M, c, and k are real numbers and

 $\lim_{x \to c} f(x) = L$ and $\lim_{x \to c} g(x) = M$, then 1. Sum Rule:

2. Difference Rule:

3. Product Rule:

$$\lim_{x \to c} (f(x) + g(x)) = L + M$$

The limit of the sum of two functions is the sum of their limits. $\lim_{x \to c} (f(x) - g(x)) = L - M$

The limit of the difference of two functions is the difference of their limits.

Product Rule:
$$\lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M$$

$$(f(x))$$

In this is the content of the content of

$$\lim_{x \to c} (k \cdot f(x)) = k \cdot L$$

$$\lim_{x \to c} (k \cdot f(x)) = k \cdot L$$

5. Quotient Rule:
$$\lim_{x \to c} \frac{g(x)}{g(x)} = \frac{L}{M}, M \neq 0$$
The limit of a quotient of two functions is the quotient of their limits, provided

6. Power Rule: If r and s are integers,
$$s \neq 0$$
, then
$$\lim_{x \to c} (f(x))^{r/s} = L^{r/s}$$

provided the latter is a real number.

the limit of the denominator is not zero.

provided that
$$L^{r/s}$$
 is a real number.

The limit of a rational power of a function is that power of the limit of the function,

 $\lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M$ The limit of a product of two functions is the product of their limits.

In Exercises 7–14, determine the limit by substitution. Support

graphically. **7.**
$$\lim_{x \to 0} 3x^2(2x-1)$$
 8. $\lim_{x \to 0} (x+3)^{1998}$

7.
$$\lim_{x \to -1/2} 3x^2(2x-1)$$
 8. $\lim_{x \to -4} (x+3)^{1998}$

$$\lim_{x \to 1} (x^3 + 3x^2 - 2x - 17)$$
 10. $\lim_{y \to 2} \frac{y^2 + 5y + 6}{y + 2}$

$$\frac{y^2 + 4y + 3}{2}$$
 12. lim int x

11.
$$\lim_{y \to -3} \frac{y^2 + 4y + 3}{y^2 - 3}$$
12. $\lim_{x \to 1/2} \operatorname{int} x$
13. $\lim_{x \to -2} (x - 6)^{2/3}$
14. $\lim_{x \to 2} \sqrt{x + 3}$

9.
$$\lim_{x \to 1} (x^3 + 3x^2 - 2x - 17)$$
10. $\lim_{y \to 2} \frac{y^2 + 5y + 6}{y + 2}$
11. $\lim_{y \to -3} \frac{y^2 + 4y + 3}{y^2 - 3}$
12. $\lim_{x \to 1/2} \operatorname{int} x$

$$\lim_{y \to -3} \frac{y^2 + 4y + 3}{y^2 - 3}$$
12. $\lim_{x \to 1/2} \inf x$

$$\lim_{x \to -2} (x - 6)^{2/3}$$
14. $\lim_{x \to 2} \sqrt{x + 3}$

$$\lim_{x \to 2} (x - 6)^{2/3}$$
14. $\lim_{x \to 2} \sqrt{x + 3}$
Practice (See Next 5 \(i \) des

7.
$$\lim_{x \to -1/2} 3x^2(2x - 1)$$

= $3(-\frac{1}{2})^2(2(-\frac{1}{2}) - 1)$

$$= 3(-2)^{2}(2(-12)-1)$$

$$= 3 - (-2)$$

$$3(-2)^{2}(2(-12)-1)$$
 $3+(-2)$
 -3

8.
$$\lim_{x \to -4} (x + 3)^{1998}$$

$$= (-4 + 3)^{1998}$$

$$= (-1)^{1998}$$

$$= (-1)^{1998}$$

12.
$$\lim_{x \to 1/2} \inf x = \lim_{x \to 1/2} [x] = 0$$

14. $\lim_{x \to 2} \sqrt{x+3} = \sqrt{5}$

$$\begin{bmatrix}
 1 \\
 1
 \end{bmatrix} = 1
 \begin{bmatrix}
 -13 \\
 -13 \\
 -13
 \end{bmatrix} = -2
 \begin{bmatrix}
 1.13 \\
 -2 \\
 -2 \\
 -3
 \end{bmatrix}
 \begin{bmatrix}
 1.13 \\
 -2
 \end{bmatrix}
 \begin{bmatrix}
 1.13 \\
 -2
 \end{bmatrix}
 \begin{bmatrix}
 23 \\
 23
 \end{bmatrix}
 \begin{bmatrix}
 23 \\
 3
 \end{bmatrix}
 \begin{bmatrix}
 23 \\
 \end{bmatrix}
 \begin{bmatrix}
 23 \\$$

In Exercises 25-34, determine the limit graphically. Confirm alge-

braically.

25. Fig.
$$\frac{x-1}{2}$$

26. Fig. $\frac{t^2-3t+2}{2}$

26.
$$\lim_{t \to 2} \frac{1}{t^2 - 4}$$

$$\lim_{x \to 0} \frac{5x^3 + 8x^2}{3x^4 - 16x^2}$$
28.
$$\lim_{x \to 0} \frac{\frac{1}{2 + x} - \frac{1}{2}}{x}$$

0.
$$\lim_{x \to 0} \frac{(2+x)^3 - 8}{x}$$
 30. $\lim_{x \to 0} \frac{\sin 2}{x}$

30.
$$\lim_{x \to 0} \frac{\sin 2x}{x} = 2$$

$$\frac{2^{2}-3(2)+2}{2^{2}-4} = \frac{2}{6} \left(\frac{xy}{y}\right)$$

$$\frac{1}{2^{2}-4} = \frac{2}{6} \left(\frac{xy}{y}\right)$$

26.
$$\lim_{t\to 2} \frac{t^2-3t+2}{t^2-4} = .25$$

28.
$$\lim_{x\to 0} \frac{2}{x}$$

$$\frac{1}{2+x} - \frac{1}{2} = -25$$

$$\lim_{x \to 0} \frac{\frac{1}{2+x} - \frac{1}{2}}{x}$$

$$\frac{1}{X-20} = \frac{1}{2+x} - \frac{1}{2} \left(\frac{2(2+x)}{2(2+x)} \right)$$

$$\lim_{X\to 0} \frac{2-(2+x)}{2\times(2+x)} = \lim_{X\to 0} \frac{-X}{2\times(2+x)}$$

$$= \lim_{x \to 0} \frac{-1}{z(z+x)} = \frac{-1}{z(z)} = -\frac{1}{2}$$

In Exercises 43 and 44, which of the statements are true about the function y = f(x) graphed there, and which are false?

(a)
$$\lim_{x \to -1^+} f(x) = 1$$
 (b) $\lim_{x \to 0^-} f(x) = 0$

(e)
$$\lim_{x \to 0} f(x)$$
 exists \int () $\lim_{x \to 0} f(x) = 0$ () $\lim_{x \to 0} f(x) = 1$ () $\lim_{x \to 1} f(x) = 1$

(g)
$$\lim_{x \to 0} f(x) = 1$$
 (1) $\lim_{x \to 1} f(x) = 1$ (2) $\lim_{x \to 1} f(x) = 1$ (3) $\lim_{x \to 1} f(x) = 2$ (4) $\lim_{x \to 1} f(x) = 2$

 $\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L,$

 $\lim_{x \to c} f(x) = L.$

EXAMPLE 9 Using the Sandwich Theorem

[-14 Sin (=) =1

 $-\chi^2 \leq \chi^2 \sin(\frac{1}{x}) \leq \chi^2$

Show that $\lim_{x \to 0} [x^2 \sin(1/x)] = 0$.

"squeeze"

THEOREM 4 The Sandwich Theorem
$$54 \text{ U.e.} = 67$$

If $g(x) \le f(x) \le h(x)$ for all $x \ne c$ in some interval about c , and

THEOREM 4

then

Figure 2.7 Sandwiching f between g

by the SANDWICH T.

lim x25in(x)=0

and h forces the limiting value of f to be

between the limiting values of g and h.

 $\frac{Sinx}{x} = 1$ Prove that)im X PD sector unitary \odot (1) sinx $\leq \times (1)^2 \leq (1)$ tax $A O = \pi r^2$ $A D = \pi r^2$ SINX = a $t_{x} = \frac{1}{b} \left(\frac{h_{y}}{b_{y}} + \frac{1}{b_{y}} \right) = \frac{1}{b} \left(\frac{x}{s_{x}} \right) = \frac{1}{cosx}$ AND -X (TIP) = XrZ 1 3 51 NX Z 605X lin 605x=/ lim 51NX=1

49.

- (a) $\lim_{x \to 0^{-}} F(x) = \frac{1}{2}$ (b) $\lim_{x \to 0^{+}} F(x) = -\frac{3}{2}$
- (c) $\lim_{x\to 0} F(x)$
- (**d**) F(0) __

Standardized Test Questions

71. True or False If
$$\lim_{x \to c^{-}} f(x) = 2$$
 and $\lim_{x \to c^{+}} f(x) = 2$, then $\lim_{x \to c} f(x) = 2$. Justify your answer.

$$\lim_{x \to c} f(x) = 2. \text{ Justify your answer.}$$

$$\lim_{x \to c} f(x) = 2. \text{ Justify your answer.} \qquad \text{VNe}$$
72. True or False $\lim_{x \to 0} \frac{x + \sin x}{x} = 2. \text{ Justify your answer.} \qquad \text{Im Exercises 73–76, use the following function.} \qquad \text{Images of } 1 + \frac{\sin x}{x} = 1 + 1 = 2$

$$f(x) = \begin{cases} 2 - x, & x \le 1 \\ x = 1 \end{cases} \qquad \text{Y-O}$$

$$f(x) = \begin{cases} 2 - x, & x \le 1 \\ \frac{x}{2} + 1, & x > 1 \end{cases}$$

73. Multiple Choice What is the value of
$$\lim_{x\to 1^-} f(x)$$
?

(A) $5/2$ (B) $3/2$ (C) 1 (D) 0 (E) does not exist

74. Multiple Choice What is the value of
$$\lim_{x\to 1^+} f(x)$$
?

75. Multiple Choice What is the value of
$$\lim_{x\to 1} f(x)$$
?

76. Multiple Choice What is the value of
$$f(1)$$
?

(A) $5/2$ (B) $3/2$ (C) 1 (D) 0 (E) does not exist

$$\lim_{X \to 0} \frac{1 - \omega_{5X}}{X} = \frac{777}{5in^{2}x + \omega_{5}^{2}x} = 1$$

$$\lim_{X \to 0} \frac{1 - \omega_{5X}}{x} \frac{(1 + \omega_{5X})}{(1 + \omega_{5X})} \to \lim_{X \to 0} \frac{1 - \omega_{5}^{2}x}{x(1 + \omega_{5X})}$$

$$\lim_{X \to 0} \frac{\sin^{2}x}{x(1 + \omega_{5X})} \to \lim_{X \to 0} \frac{\sin x}{x} \frac{\sin x}{x} \frac{\sin x}{x \to 0}$$

$$\lim_{X \to 0} \frac{\sin^{2}x}{x(1 + \omega_{5X})} \to \lim_{X \to 0} \frac{\sin x}{x} \frac{\sin x}{x}$$

$$\lim_{X \to 0} \frac{\sin^{2}x}{x(1 + \omega_{5X})} \to \lim_{X \to 0} \frac{\sin x}{x} = 1$$

HOMEWORK PAGES 66-68 2-70 EVEN