

Università degli Studi di Milano - Bicocca

Scuola di Scienze

Dipartimento di Informatica, Sistemistica e Comunicazione

Corso di laurea in Informatica

Integrazione di classificatori di ADL in App Android

Relatore: Prof.sa Daniela Micucci

Correlatore: Prof. Marco Mobilio

Relazione della prova finale di:

Gabriele De Rosa Matricola 829835

Sommario

Il riconoscimento dell'attività umana (Human Activity Recognition, HAR) è un campo molto attivo della ricerca e molte tecniche di *deep learning* sviluppate negli ultimi anni hanno dimostrato di essere affidabili per la classificazione delle attività di vita quotidiana (Activities of Daily Living, ADLs).

Malgrado le avanzate tecnologie messe in campo, spesso si incorre in limiti e problemi: alcuni di essi derivanti direttamente dalla non idealità del mondo reale in cui viviamo, altri invece da attribuire ad aspetti puramente organizzativi, di gestione e significato dei dati raccolti.

La seguente trattazione tenta di descrivere quanto svolto durante l'esperienza di stage presso l'Università degli Studi di Milano - Bicocca, durante il quale si è cercato di sviluppare un classificatore di ADLs in grado di apprendere ed analizzare i dati sensoriali ottenuti da un'applicazione Android.

Indice

1	Intr	oduzic	one								
	1.1	Dati ii	nerziali								
	1.2	Classif	ficazione								
		1.2.1	L'importanza dei dati								
	1.3	Obiett	civo e panoramica del progetto								
2	Ser	ver									
	2.1	REST	ful Web API								
		2.1.1	Protocollo e formato								
		2.1.2	Endpoints								
		2.1.3	Implementazione								
	2.2	Ricevi	tore								
		2.2.1	Protocollo e formato								
		2.2.2	Messaggi								
		2.2.3	Azioni								
3	App	olicazio	one								
	3.1	Interfa	accia								
		3.1.1	Sezione di analisi								
		3.1.2	Sezione di apprendimento								
		3.1.3	Sezione per l'inserimento di dati aggiuntivi								
	3.2	Feedba	ack sonoro								
	3.3	Countdown Timers									
	3.4	Access	so alle API								
	3.5	Sensor	ri di movimento								
	3.6	Comu	nicazioni con il server								
4	Clas	ssificaz	zione								
	4.1	Appre	ndimento e Test								
		4.1.1	Caricamento dei dati								
		4.1.2	Valutazione della posizione del dispositivo								
		4.1.3	Visualizzazione grafica dei dati								
		4.1.4	Partizionamento dei dati								
		4.1.5	Preparazione dei dati								
		4.1.6	Creazione della rete neurale								
		4.1.7	Statistiche del modello								
		4.1.8	Salvataggio del modello								
		1.1.0	Togting della rete neurale								

	4.2	Prediz	ioni	32
		4.2.1	Scelta del modello	32
		4.2.2	Preparazione dei dati	32
		4.2.3	Ipotesi dell'etichetta	34
5	Con	clusio	ıi	3 5
$\mathbf{R}^{\mathbf{i}}$	ferin	nenti		36
	Bibl	iografia		36
	Siti			36

Capitolo 1

Introduzione

Il riconoscimento dell'attività umana (Human Activity Recognition, HAR) è un campo molto attivo della ricerca e una quantità sempre maggiore di tecniche di deep learning sviluppate negli ultimi anni ha dimostrato di essere affidabile per la classificazione delle attività di vita quotidiana (Activities of Daily Living, ADLs).

Un aspetto che lega la quasi totalità delle tecniche messe in campo quando si parla di HAR è sicuramente l'ottenimento delle informazioni utili per le analisi.

Esistono diverse tecniche di acquisizione usate per il riconoscimento delle attività. Alcuni dati utili possono essere frame video e immagini oppure i dati inerziali ottenuti da sensori di movimento [1].

In questa trattazione ho scelto l'uso dei dati inerziali per il riconoscimento delle attività. Gli smartphone e gli indossabili (ad esempio braccialetti ed orologi intelligenti) sono sempre più comuni e perciò costituiscono una fonte di informazioni potenzialmente infinita.

1.1 Dati inerziali

Le informazioni relative al movimento di un corpo nello spazio tridimensionale sono raccolte dai cosiddetti **sensori inerziali**, principalmente accelerometro e giroscopio.

Accelerometro

L'accelerometro è un sensore capace di misurare l'accelerazione gravitazionale su un oggetto. Un tempo destinato ad usi scientifici e militari, è diventato di uso comune con l'avanzare della tecnologia.

La totalità degli smartphone e degli indossabili intelligenti sono oggi dotati di un accelerometro a 3 assi in grado di misurare l'accelerazione applicata su ognuno dei 3 assi dello spazio. Da questo deriva la possibilità di conoscere l'orientamento del dispositivo e di conseguenza i movimenti.

Giroscopio

Il giroscopio è un sensore capace di ricavare l'orientamento dell'oggetto sulla base di alcune proprietà fisiche che lo contraddistinguono.

Una buona parte di smartphone ed indossabili intelligenti sono dotati anche di un giroscopio a 3 assi che coopera con l'accelerometro nella raccolta di dati inerziali.

1.2 Classificazione

Il riconoscimento delle attività si basa sulla *classificazione*, un problema statistico che ha l'obiettivo di ipotizzare quale tra un insieme di etichette meglio definisce un insieme di caratteristiche.

La classificazione, in informatica, è un ramo dell'apprendimento supervisionato (supervised learning), ovvero una branca dell'apprendimento automatico (machine learning) che punta ad insegnare ad un sistema informatico una regola generale di calcolo su un certo dominio di dati in modo che successivamente possa applicare in autonomia le stesse leggi anche a dati futuri.

Definiamo quindi **classificatore** un algoritmo in grado di risolvere il problema della classificazione, ovvero di fornire in output l'etichetta che meglio identifica i dati ricevuti in input. Nel caso in esame il classificatore dovrà ipotizzare una attività ricevendo in input un set di dati inerziali raccolti dall'applicazione sviluppata.

1.2.1 L'importanza dei dati

Ipotizzando che la qualità dei dati sia ottima (o almeno sufficiente), l'aspetto di cui bisogna assolutamente tener conto quando si parla di apprendimento automatico è la quantità di dati che si è in grado di raccogliere. L'efficienza e l'efficacia di un classificatore, in generale, si basano interamente sui valori precedentemente appresi.

La necessità di un set di dati ampio per l'apprendimento è principalmente conseguenza del fatto che non viviamo in un mondo ideale: le attività svolte nella vita reale non sono perfettamente suddivisibili per essere facilmente classificate e inoltre, dato che diverse persone potrebbero svolgere una uguale attività in modi differenti, non si ha nemmeno una corrispondenza biunivoca tra un insieme di dati e l'attività [2].

1.3 Obiettivo e panoramica del progetto

Lo scopo del progetto è quindi lo sviluppo di un classificatore di ADLs in grado di interagire con una applicazione Android.

Figura 1.1: Panoramica del progetto

Applicazione

L'applicazione permette, mediante l'utilizzo dei principali sensori inerziali del dispositivo, la raccolta dei dati che saranno poi elaborati remotamente. Si occupa inoltre di fornire all'utente un riscontro dell'attività ipotizzata in fase di analisi.

Ricevitore

Chiameremo *ricevitore* il componente che si occupa di gestire ed immagazzinare i dati ricevuti dall'applicazione. Tra i suoi compiti anche quello di fornire eventuali risposte.

Classificatore

Il classificatore gestisce la mole di valori ottenuta dall'applicazione tentando di eseguire il riconoscimento vero e proprio delle attività per poi restituire l'ipotesi formulata.

Rest Web API

Sono state aggiunte delle RESTful Web API utilizzate come fonte iniziale di informazioni. Vedremo essere indispensabili per rendere l'intero sistema programmabile in modo dinamico, almeno per quanto riguarda tutto ciò che sarà impostabile da un amministratore in fase di avvio.

Capitolo 2

Server

Il passaggio principale che ho dovuto affrontare per l'inizio del progetto è stata l'inizializzazione di un server che potesse gestire lo scambio di informazioni con l'applicazione ed occuparsi di svolgere tutti i compiti del caso.

Il lavoro del server è facilmente scomponibile in due parti, la gestione dei dati utili per la classificazione (che sarà poi affrontata nel capitolo 4) e l'erogazione di dati informativi che vedremo consentire ad un amministratore l'interazione con il sistema.

Si è scelto di sviluppare il tutto con il linguaggio Python e di inserire per comodità il software in due differenti contenitori Docker, in modo da mantenere differenziate queste due parti anche a livello programmativo.

Docker

Docker [3] è un progetto open-source in grado di effettuare il deploy di applicazioni all'interno di contenitori software che grazie alla virtualizzazione si trovano ad un livello di astrazione differente dal sistema host. Questa tecnica è molto utile quando si vuole mantenere separati l'installazione di un'applicativo dal sistema ospitante.

2.1 RESTful Web API

Come si intuisce in figura 1.1, si è pensato alla creazione di una RESTful Web API, ovvero un'interfaccia composta da un insieme di *endpoints* pubblici che consentono di ottenere delle informazioni. Tutti i componenti interessati a tali informazioni sono in grado di ottenerle mediante un sistema di richiesta-risposta tra client e server.

Si ha accesso ad informazioni sempre aggiornate. Un cambiamento dei valori in fase di amministrazione consente la distribuzione delle modifiche senza la necessità di rilasciare un aggiornamento dell'applicazione o riprogrammare il ricevitore.

2.1.1 Protocollo e formato

Tutte le richieste e le risposte utilizzano per lo scambio dati il protocollo HTTP, il comune protocollo di livello applicativo utilizzato nel World Wide Web.

I dati sono trasmessi con il formato JSON, uno standard che sfrutta una notazione chiave-valore facilmente leggibile.

2.1.2 Endpoints

Gli endpoints sono i punti in cui un software esterno accede a determinate informazioni. L'accesso avviene mediante la chiamata ad uno specifico URL che ci si aspetta risponda con i dati richiesti.

Gli endpoints che ho previsto sono riservati ad ottenere informazioni su

- la lista delle attività classificabili
- la lista delle posizioni previste
- un modello per la richiesta di informazioni aggiuntive

```
http://IP_ADDRESS:PORT/activities
http://IP_ADDRESS:PORT/positions
http://IP_ADDRESS:PORT/form
```

Code Snippet 1: Elenco degli endpoints disponibili

Lista delle attività

Il primo degli endpoints impostato riguarda la lista di tutte le attività che il sistema imparerà a riconoscere.

Come è mostrato nel ritaglio di codice 2, la risposta di una chiamata a questo endpoint fornisce una lista di tutte le attività classificabili, ognuna contenente

- l'identificativo numerico
- il nome
- le traduzioni nelle lingue ammesse
- il tempo (in secondi) indicante la durata necessaria per l'addestramento

```
{
    "status": "success",
    "activities": [
        {
            "id": 0,
            "activity": "walk",
            "translations": {"en": "Walk", "it": "Camminata"},
            "time": 60,
            "sensors": [
                {"sensor": "accelerometer", "enabled": true},
                {"sensor": "gyroscope", "enabled": true}
            ]
        },
        {
            "id": 1,
            "activity": "run",
            "translations": {"en": "Run", "it": "Corsa"},
            "time": 60,
            "sensors": [
                {"sensor": "accelerometer", "enabled": true},
                {"sensor": "gyroscope", "enabled": true}
            ]
        },
            "id": 2,
            "activity": "jumps",
            "translations": {"en": "Jumps", "it": "Salti"},
            "time": 60,
            "sensors": [
                {"sensor": "accelerometer", "enabled": true},
                {"sensor": "gyroscope", "enabled": true}
              ]
        }
    ]
}
```

Code Snippet 2: Esempio di risposta dell'endpoint delle attività

Lista delle posizioni del dispositivo

Il secondo endpoint fornisce la lista di tutte le posizioni in cui può essere posizionato il dispositivo durante l'esecuzione di una analisi o di un apprendimento.

```
{
    "status": "success",
    "positions": [
        {
            "id": 0,
            "position": "left_hand",
            "translations": {
                "en": "In left hand",
                 "it": "Nella mano sinistra"
            }
        },
            "id": 1,
            "position": "right_hand",
            "translations": {
                 "en": "In right hand",
                 "it": "Nella mano destra"
            }
        },
            "id": 2,
            "position": "front_left_pocket",
            "translations": {
                 "en": "In the front left pocket",
                 "it": "Nella tasca anteriore sinistra"
            }
        },
            "id": 3,
            "position": "front_right_pocket",
            "translations": {
                 "en": "In the front right pocket",
                 "it": "Nella tasca anteriore destra"
            }
        }
    ]
}
```

Code Snippet 3: Esempio di risposta dell'endpoint delle posizioni

Modello per la richiesta di informazioni aggiuntive

Il terzo endpoint fornisce una struttura per la generazione sull'applicazione di un modulo per la richiesta di dati aggiuntivi. Ne discuteremo meglio nel capitolo 3.

```
{
    "status": "success",
    "groups": [ {
             "elements": [
                 {
                     "id": "name",
                     "type": "input-text",
                     "uploadable": false,
                     "text": "Name",
                     "translations": {
                          "en": "Name",
                          "it": "Nome"
                     }
                 }
            ]
        },
             "elements": [ {
                     "id": "stature",
                     "type": "input-text",
                     "uploadable": true,
                     "text": "Stature",
                     "translations": {
                          "en": "Stature [m]", "it": "Altezza [m]"
                     },
                     "options": null
                 }, {
                     "id": "weight",
                     "type": "input-text",
                     "uploadable": true,
                     "text": "Weight",
                     "translations": {
                          "en": "Weight [Kg]", "it": "Peso [Kg]"
                     }
                 }
            ]
        }
    ]
}
```

Code Snippet 4: Esempio di risposta dell'endpoint sui dati aggiuntivi

2.1.3 Implementazione

L'implementazione del software è stata effettuata con l'utilizzo di Flask. Si occupa di esporre i file JSON contenenti le informazioni appena viste nei rispettivi endpoints.

Flask

Flask [4] è uno dei più famosi framework per lo sviluppo di applicazioni web con Python. La sue caratteristiche principali sono leggerezza e semplicità, pur permettendo anche implementazioni più avanzate.

```
from flask import Flask, json

api = Flask(__name__)

@api.route('/activities', methods=['GET'])

def get_activities():
    return json_activities_data

@api.route('/positions', methods=['GET'])

def get_positions():
    return json_positions_data

@api.route('/form', methods=['GET'])

def get_form():
    return json_form_data

if __name__ == '__main__':
    api.run(host='0.0.0.0', port=80)
```

Code Snippet 5: Flask App per una RESTful Web API con 3 endpoints

2.2 Ricevitore

Sempre da figura 1.1 è possibile intuire che sul server trovano luogo anche il classificatore, i dati che sono stati raccolti e tutti i modelli generati.

In questa sezione ci occuperemo di ciò che riguarda l'applicativo riservato a gestire la ricezione dei dati e fornire le risposte. In particolare la parte del software che si occupa di accettare le connessioni dai client (idealmente l'applicazione realizzata, di cui discuteremo nel capitolo 3) e di immagazzinare i dati ottenuti.

2.2.1 Protocollo e formato

Avendo la necessità di trasmettere i dati con il minimo ritardo, la connessione al ricevitore avviene via socket mediante TCP. Essendo un protocollo di rete a livello di trasporto ci consente di avere una velocità maggiore rispetto a HTTP.

Per comodità si continua ad utilizzare il formato JSON anche in questo frangente per organizzare le informazioni durante lo scambio dati.

2.2.2 Messaggi

Il ricevitore deve gestire due tipi di richieste, quelle che inviano i dati per effettuarne l'apprendimento e quelle che inviano i dati in attesa di ricevere il risultato di una classificazione. Malgrado ciò la lettura dei messaggi ricevuti resta la medesima ed il valore per identificare la tipologia di richiesta è disponibile internamente alle informazioni.

Come mostrato nell'esempio 6, oltre alle informazioni sul tipo di richiesta, un singolo messaggio contiene

- un codice identificante un gruppo di messaggi
- un indice indicante la progressione dei dati
- i valori dei 3 assi (x, y, z)
- il sensore di movimento che ha generato i valori ottenuti
- un valore temporale (timestamp)
- la posizione del telefono selezionata durante l'attività in corso
- e, in aggiunta, nel caso dell'apprendimento...
 - l'attività che si sta svolgendo

```
{
    "status": "OK",
    "mode": "learning",
    "data": {
        "archive": "bea38ae7-ff27-47eb-b907-de63eeb0772a",
        "type": "data",
        "info": {
            "index": 153,
            "activity": "walk",
             "sensor": "accelerometer",
             "position": "right_hand"
        },
        "values": {
            "x": 1.23456,
            "y": 1.23456,
            "z": 1.23456,
            "t": 1234567
        }
    }
}
```

Code Snippet 6: Esempio di messaggio ricevuto per l'apprendimento

2.2.3 Azioni

Le azioni da intraprendere per le diverse tipologie di richiesta sono differenti.

Messaggi di Apprendimento

Nel caso della ricezione di dati per l'apprendimento è necessario procedere al salvataggio degli stessi.

I record vengono suddivisi sulla base del relativo sensore. Per ogni sensore si genera un file CSV contenente i record con tutte le informazioni rimanenti.

Archive	Index	X Axis	Y Axis	Z Axis	Timestamp	Positions	Activity
8e9c147c-6fa0-466f-993b-f726a786933c		1.325.225.830.078.120	4.625.091.552.734.370	611.468.505.859.375	1592314676717	right_hand	walk
8e9c147c-6fa0-466f-993b-f726a786933c		15.047.760.009.765.600	4.826.629.638.671.870	5371100.45.00	1592314676719	right_hand	walk
8e9c147c-6fa0-466f-993b-f726a786933c		176.776.123.046.875	5.177.413.940.429.680	853.094.482.421.875	1592314676721	right_hand	walk
8e9c147c-6fa0-466f-993b-f726a786933c		17.921.142.578.125	5.622.589.111.328.120	9.804.702.758.789.060	1592314676724	right_hand	walk
8e9c147c-6fa0-466f-993b-f726a786933c		18.303.985.595.703.100	5.408.004.760.742.180	12.129.501.342.773.400	1592314676790	right_hand	walk
8e9c147c-6fa0-466f-993b-f726a786933c		329.852.294.921.875	3.734.664.916.992.180	1.715.325.927.734.370	1592314676797	right_hand	walk
8e9c147c-6fa0-466f-993b-f726a786933c		34.316.558.837.890.600	2.520.126.342.773.430	1.686.737.060.546.870	1592314676799	right_hand	walk
8e9c147c-6fa0-466f-993b-f726a786933c	9	233.697.509.765.625	2.123.687.744.140.620	152.672.119.140.625	1592314676870	right_hand	walk
8e9c147c-6fa0-466f-993b-f726a786933c	10	10.340.576.171.875	221.173.095.703.125	12.205.001.831.054.600	1592314676873	right_hand	walk
8e9c147c-6fa0-466f-993b-f726a786933c	1	-2.960.205.078.125	29.204.254.150.390.600	8.565.078.735.351.560	1592314676876	right_hand	walk
8e9c147c-6fa0-466f-993b-f726a786933c	12	-40.704.345.703.125	38.975.830.078.125	34016933.05.00	1592314676879	right_hand	walk
8e9c147c-6fa0-466f-993b-f726a786933c	13	1.982.269.287.109.370	4.698.699.951.171.870	507.843.017.578.125	1592314676950	right_hand	walk
8e9c147c-6fa0-466f-993b-f726a786933c	14	120.355.224.609.375	53.319.854.736.328.100	5.075.714.111.328.120	1592314676956	right_hand	walk
8e9c147c-6fa0-466f-993b-f726a786933c	19	19.846.649.169.921.800	5.592.987.060.546.870	63.537.445.068.359.300	1592314676961	right_hand	walk
8e9c147c-6fa0-466f-993b-f726a786933c	10	24.078.521.728.515.600	5.583.526.611.328.120	7.306.808.471.679.680	1592314676968	right_hand	walk
8e9c147c-6fa0-466f-993b-f726a786933c	1	7 22.655.181.884.765.600	54.467.315.673.828.100	783.056.640.625	1592314677031	right_hand	walk
8e9c147c-6fa0-466f-993b-f726a786933c	19	115.960.693.359.375	4.864.990.234.375	644538.15.00	1592314677043	right_hand	walk
8e9c147c-6fa0-466f-993b-f726a786933c	20	3.939.361.572.265.620	42.266.693.115.234.300	72.860.107.421.875	1592314677049	right_hand	walk
8e9c147c-6fa0-466f-993b-f726a786933c	2:	-67.889.404.296.875	34.715.118.408.203.100	75.244.293.212.890.600	1592314677111	right_hand	walk
9a0a147a 6fa0 466f 002h f726a796022a	2.	1 704 422 020 125	20 500 010 500 070 100	77 220 224 051 171 000	1502214677117	right hand	walk

Figura 2.1: Esempio del dataset CSV contenente dati accelerometrici

Ogni volta che la base di dati subisce delle modifiche si avvia il processo di *train* del classificatore, trattato nel capitolo 4.

Messaggi di Analisi

Nel caso di ricezione di dati per l'analisi non si deve immagazzinare le informazioni ricevute. L'obiettivo di questa fase è quello di fornire in risposta al client l'informazione che si aspetta.

Alla ricezione di un numero minimo di record si avvia il processo di classificazione, trattato sempre nel capitolo 4. L'ipotesi ottenuta dal classificatore sarà inviata come risposta.

```
{
    "status": "OK",
    "type": "prediction",
    "activity": "run"
}
```

Code Snippet 7: Esempio del messaggio di risposta con l'ipotesi formulata

Capitolo 3

Applicazione

Un altro aspetto chiave del progetto è l'applicazione Android, sviluppata per essere fonte per la raccolta di qualsiasi dato utile alla classificazione. Sintetizzando l'intero funzionamento è possibile raccogliere le funzionalità offerte nella

- raccolta di dati per l'analisi dell'attività.
- raccolta di dati per l'apprendimento.
- raccolta di dati aggiuntivi.

Compatibilità

La compatibilità offerta è con tutte le versioni di Android che supportano la versione delle API 16 o superiore, nella pratica tutte le versioni maggiori o uguali ad Android 4.1 rilasciato nel 2012. Nella pratica, al momento della stesura di questa relazione, ciò assicura il funzionamento dell'app sul 99,8% dei dispositivi con questo sistema operativo.

ANDROID PLATFORM VERSION		CUMULATIVE DISTRIBUTION
4.0 Ice Cream Sandwich	15	
4.1 Jelly Bean	16	99,8%
4.2 Jelly Bean	17	99,2%
4.3 Jelly Bean	18	98,4%
4.4 KitKat	19	98,1%
5.0 Lollipop	21	94,1%
5.1 Lollipop	22	92,3%
6.0 Marshmallow	23	84,9%
7.0 Nougat	24	73,7%
7.1 Nougat	25	66,2%
8.0 Oreo	26	60,8%
8.1 Oreo	27	53,5%
		39,5%
9.0 Pie	28	
10. Android 10	29	8,2%

Figura 3.1: Distribuzione cumulativa delle versioni di Android

Linguaggi di sviluppo

I linguaggi utilizzati sono stati Java per quanto riguarda l'aspetto programmativo, mentre XML per tutti i layout.

Traduzioni

L'intero applicativo, di cui segue la spiegazione, è stato interamente sviluppato con un supporto multilingua: italiano e inglese.

3.1 Interfaccia

Si è voluta dare un'interfaccia minimale sviluppata secondo le linee guida dell'ormai conosciuto Material Design.

Material Design

Con Material Design [5] si intende un linguaggio visivo che sintetizza i principi classici del buon design utilizzando le nuove innovazioni della tecnologia e della scienza.

L'intero linguaggio si basa sul concetto fisico "Materiale" di cui si vuole effettuare una trasposizione nel design di tutte le caratteristiche (luci, ombre, etc.) che lo definiscono nel mondo reale.

Suddivisione per funzionalità

Le 3 sezioni presenti suddividono con esattezza le 3 funzionalità offerte: l'analisi dell'attività, l'apprendimento di una attività e l'inserimento di informazioni aggiuntive.

Figura 3.2: Le 3 sezioni principali dell'applicazione

3.1.1 Sezione di analisi

La sezione di analisi consente di testare l'efficacia del classificatore. Per meglio dire, è possibile avviare il processo di invio dei dati sensoriali al server ricevitore che, come abbiamo visto nella sezione 2.2, restituirà in risposta l'ipotesi.

L'insieme delle azioni svolte in questa sezione sono divisibili in 4 fasi.

Fase 1: Inizializzazione

In una prima fase l'applicazione scarica tramite l'utilizzo delle API (viste nella sezione 2.1) le informazioni relative alle posizioni del dispositivo che sono disponibili e selezionabili. L'utente ha quindi la possibilità di selezionare la posizione in cui desidera tenere il telefono durante l'esecuzione della attività ed in seguito avviare l'analisi.

Fase 2: Preparazione

All'avvio dell'analisi sarà inizializzato un servizio in foreground [6] che si occuperà di svolgere tutte le azioni necessarie per le fasi seguenti. La UI continuerà ad essere aggiornata con le informazioni ricevute dal servizio.

Il primo obiettivo è quello di contattare il server per stabilire una connessione TCP ed iniziare lo scambio dati. Qualora la connessione avvenisse con successo passerà qualche altro secondo prima che i sensori inizino la raccolta dei dati. Durante questo tempo di preparazione, pensato appositamente in modo da consentire all'utente di prepararsi posizionando il dispositivo nella posizione selezionata, sarà mostrato un countdown.

Fase 3: Analisi

Allo scadere del countdown i sensori vengono abilitati. Ogni informazione raccolta è organizzata in un formato JSON organizzato in modo simile a quanto visto nell'esempio ?? ed inviata come messaggio.

Fase 4: Predizione

Durante il processo di analisi si ottengono numerose risposte dal server che manda sia messaggi di conferme che messaggi contenenti le ipotesi sulla attività. La predizione ottenuta è mostrata all'utilizzatore.

Figura 3.3: Le 4 fasi dell'analisi

3.1.2 Sezione di apprendimento

Nella sezione di apprendimento è possibile avviare un processo di raccolta dati del tutto simile a quanto appena visto, ma al quale si associa anche una attività tra quelle selezionabili.

L'obiettivo sarà poi quello di utilizzare questi dati sensoriali di cui si conosce la corrispondenza pratica per effettuare il *train* della rete neurale da cui si genererà il modello. In questa fase si da piena fiducia all'utente sulla correttezza dei dati inseriti.

L'insieme delle azioni svolte in questa sezione sono divisibili in 3 fasi.

Fase 1: Inizializzazione

In questa prima fase l'applicazione scarica diverse informazioni tramite l'utilizzo delle API (viste nella sezione 2.1):

- le informazioni relative alle posizioni del dispositivo selezionabili
- la lista di attività addestrabili e il tempo necessario per il loro apprendimento

Prima dell'avvio dell'apprendimento l'utilizzatore dovrà quindi selezionare sia la posizione in cui tenere il telefono durante l'esecuzione che l'attività da allenare.

Fase 2: Preparazione

Anche in questo frangente sarà inizializzato un servizio in foreground [6] che si occuperà di svolgere tutte le azioni necessarie per le fasi seguenti e la UI continuerà ad essere aggiornata con le informazioni ricevute da questo servizio.

Nuovamente come prima cosa viene contattato il server per stabilire una connessione TCP ed una volta ricevuta risposta affermativa sarà avviato il conto alla rovescia per la preparazione.

Fase 3: Apprendimento

Allo scadere del countdown sono avviati in parallelo un ulteriore conto alla rovescia e tutti i sensori per la raccolta dei dati.

Il secondo countdown indica il tempo di esecuzione necessario e potrebbe differire tra le diverse attività. Fino allo scadere del tempo tutti i dati raccolti dai sensori sono inviati al server.

Figura 3.4: Le 3 fasi dell'apprendimento

3.1.3 Sezione per l'inserimento di dati aggiuntivi

La sezione è utile per dare la possibilità di inserire dati aggiuntivi che potrebbero essere utilizzati in qualche modo dal classificatore. Un esempio possibile è la richiesta di dati fisici dell'utente (altezza, peso, etc.) qualora in futuro si decidesse dar loro una rilevanza nella classificazione.

Malgrado agli occhi dell'utente appaia come un semplice modulo di inserimento dati, la sezione in questione è la più dinamica di tutti per quanto riguarda l'interfaccia. Il modulo che richiede all'utente i dati personali è generato programmativamente per intero a partire da quanto scaricato dal relativo endpoint delle API. Questa opportunità permette ad un amministratore di sistema di variare le richieste senza dover rilasciare un'aggiornamento dell'applicazione.

Figura 3.5: Il modulo di inserimento dati generato programmativamente

3.2 Feedback sonoro

Dal funzionamento che abbiamo appena visto è intuibile che l'app possa essere utilizzata con il dispositivo situato in posizioni che non permetterebbero un collegamento visivo diretto. Quando la posizione selezionata è, per esempio, nelle tasche.

Tale situazione renderebbe impossibile l'accesso alle informazioni relative al progresso dell'attività in corso di esecuzione, che sia un'analisi o un apprendimento. Questa eventualità ha reso necessaria l'implementazione di un feedback sonoro realizzato mediante le librerie di sintetizzazione vocale per il text to speech [7] offerte da Android.

Oltre al feedback visivo è offerto quindi un feedback sonoro per tutte le informazioni rilevanti, come l'inizio e la fine dell'attività, il conto alla rovescia ed i risultati dell'attività ipotizzata.

```
// Set TTS object
TextToSpeech textToSpeech = new TextToSpeech(this,
    new TextToSpeech.OnInitListener() {
    @Override
    public void onInit(int status) {
        if (status == TextToSpeech.SUCCESS) {
            Locale curr = new Locale(getString(R.string.current_lang));
            int ttsLang = textToSpeech.setLanguage(curr);
            if (ttsLang == TextToSpeech.LANG_MISSING_DATA
                    || ttsLang == TextToSpeech.LANG_NOT_SUPPORTED) {
                Log.e("[TTS]", "The Language is not supported!");
            } else {
                Log.i("[TTS]", "Language Supported.");
            Log.i("[TTS]", "Initialization success.");
        } else {
            Log.e("[TTS]", "Initialization failed!");
        }
    }
});
// and then
int speechStatus
    = textToSpeech.speak(tts, TextToSpeech.QUEUE_FLUSH, null);
if (speechStatus == TextToSpeech.ERROR) {
    Log.e("[TTS]", "Error in converting Text to Speech!");
}
```

Code Snippet 8: Implementazione del text to speech in Android

3.3 Countdown Timers

I countdown che regolano il tempo di svolgimento delle attività sono implementati utilizzando la classe CountDownTimer [8] offerta direttamente da Android.

I due timer implementati non hanno un tempo stabilito in partenza. I secondi utili per la preparazione possono essere facilmente impostati dall'utente mediante un input nelle impostazioni. Il tempo per l'apprendimento dell'attività è invece scaricato dalle API tramite le medesima richiesta delle informazioni sulle attività.

Code Snippet 9: Implementazione di un conto alla rovescia

3.4 Accesso alle API

Le chiamate alle API, di cui abbiamo visto le varie applicazioni per l'ottenimento di dati informativi, sono fatte utilizzando la librerie Retrofit. Questa libreria, implementando le classi opportune associate ai dati che ci si aspetta dalle risposte (API Response), permette di ottenere facilmente le informazioni discusse.

Retrofit

Retrofit [9] è una librerie open source nata per trasformare una richiesta ad una REST API in una Java Interface.

3.5 Sensori di movimento

I sensori di movimento implementati sono accelerometro e giroscopio.

Entrambi presentano gli stessi valori informativi (i tre assi x, y, z), pertanto durante lo sviluppo sono stati gestiti in modo analogo.

I sensori sono gestiti dal sistema operativo stesso. Per richiedere l'accesso è necessario fare richiesta al gestore (SensorManager) per abilitare i sensori necessari ed implementare la classe SensorEventListener [10] insieme ai callback che saranno chiamati dal sistema ad ogni evento.

Callback

Una callback è una funzione richiamata dal sistema operativo quando si verifica un determinato evento, in modo da implementarne una gestione personalizzata.

```
public void onSensorChanged(SensorEvent event) {
    if(event.sensor.getType() == Sensor.TYPE_GYROSCOPE) {
        // Get values
        float x = event.values[0];
        float y = event.values[1];
        float z = event.values[2];
        // and send data
        sendGyroscopeData(x, y, z);
    }
    if (event.sensor.getType() == Sensor.TYPE_ACCELEROMETER) {
        // Get values
        float x = event.values[0];
        float y = event.values[1];
        float z = event.values[2];
        // and send data
        sendAccelerometerData(x, y, z);
    }
}
```

Code Snippet 10: Implementazione del callback dei sensori

3.6 Comunicazioni con il server

Oltre a ricavare le informazioni sensoriali è ovviamente necessario procedere al loro invio al server dove verranno processate come visto nella sezione 2.2.

Connessione al server

Per prima cosa però è indispensabile avere una connessione attiva. Tale connessione è richiesta all'avvio dei servizi di analisi e apprendimento.

Come abbiamo precedentemente discusso si è scelta una connessione TCP via socket. La corrispondente implementazione Java avviene proprio mediante la classe *Socket* [11].

```
socket = new Socket(DESTINATION, PORT);
```

Code Snippet 11: Implementazione della connessione via socket

Invio di un messaggio

Una volta attiva la connessione è attiva, si può procedere con l'invio dei dati ogni qual volta che il sistema operativo notifica un cambiamento di stato dei sensori mediante l'apposito callback di cui abbiamo visto l'implementazione.

Code Snippet 12: Implementazione dell'invio di un messaggio

Ricezione di un messaggio

La ricezione delle risposte da parte del server avviene invece rimanendo in ascolto dei messaggi in ricezione.

Code Snippet 13: Implementazione della ricezione di un messaggio

Capitolo 4

Classificazione

Il cuore del progetto riguarda la classificazione delle attività mediante i dati ottenuti. Ho optato per l'utilizzo di Keras di cui vediamo le fasi di training e di prediction.

Keras

Keras [12] è una libreria open-source per le reti neurali che astrae lo sviluppo rendendolo più comprensibile, pur mantenendo pieno supporto alle librerie di più basso livello (es. Tensorflow [13]) su cui si basa.

4.1 Apprendimento e Test

Un classificatore basa le sue predizioni sui modelli che riesce a ricavare dall'insieme di informazioni che ha a disposizione. Nel nostro caso l'insieme di queste informazioni è contenuto nei file con i valori generati e ricevuti dall'applicazione.

4.1.1 Caricamento dei dati

I file CSV presentano sono organizzati come nell'esempio visto in figura 2.1.

È necessario ricordare che i dati ottenuti da differenti sensori sono stati immagazzinati dal *ricevitore* in diversi file CSV. Nel caso in esame sono quindi presenti due file, uno per l'accelerometro ed un secondo per il giroscopio.

Entrambi contengono la stessa tipologia di informazioni e sono strutturati in modo equivalente. Per questo motivo nelle procedure seguenti considererò un singolo dataset, ricordando però di dover applicare tutti i passaggi indistintamente ad entrambi.

Lettura del file

L'intero dataset contiene un ampio numero di record, ognuno dei quali è composto dalle seguenti informazioni:

- un identificativo che raggruppa i valori ottenuti da una singola esecuzione
- un indice crescente che ordina i record di un archivio
- i valori acquisiti dal sensore
- l'istante temporale di acquisizione

- la posizione del dispositivo
- la relativa attività

Come è possibile notate i valori contenuti in un singolo record corrispondono a quelli inviati dall'applicazione durante la raccolta dei dati sensoriali di apprendimento, eccezion fatta per il tipo di sensore che è già stato usato per la divisione preliminare.

Code Snippet 14: Creazione del dataframe a partire dal file CSV

4.1.2 Valutazione della posizione del dispositivo

Comunemente la posizione del dispositivo di raccolta dati viene spesso sottovalutata durante lo sviluppo di tecniche per il riconoscimento delle attività. Tuttavia si tratta di un aspetto molto importante per la valutazione dei dati [14].

Dopo una prima valutazione che prevedeva l'utilizzo di questo dato come una semplice caratteristica informativa, ho deciso di dare ad esso un'importanza maggiore.

Il maggior valore è derivato dalla decisione di partizionare i record presenti nel dataset in base alla relativa posizione. Tale scelta comporta la necessità di eseguire le procedure di *train* e *test* seguenti su tutte le diverse partizioni e conseguentemente la creazione di un modello indipendente per ognuna di esse.

Ai fini della trattazione proseguirò considerando solamente il gruppo di dati relativo ad una posizione tra quelle che ho personalmente impostato.

Ricordando che i dati sono già stati in precedenza partizionati in base al sensore di riferimento, è importante tener presente che tutte le seguenti procedure dovranno essere ripetute per ogni posizione e per ogni sensore.

Consideriamo quindi solo i dati accelerometrici e "nella mano destra".

4.1.3 Visualizzazione grafica dei dati

Suddivisione grafica

Per ogni partizione di dati che si va a considerare è possibile ottenere una chiara visualizzazione grafica della suddivisione per attività dei dati presenti.

Figura 4.1: Visualizzazione della suddivisione per attività

Grafici delle attività

Inoltre, di ogni attività è possibile utilizzare una visualizzazione grafica per meglio comprendere le differenze tra le attività anziché basarsi solamente sulla lettura dei valori.

Figura 4.2: Dati accelerometrici durante l'attività "Salti" con il dispositivo nella mano destra

Figura 4.3: Dati accelerometrici durante l'attività "Corsa" con il dispositivo nella mano destra

Figura 4.4: Dati accelerometrici durante l'attività "Camminata" con il dispositivo nella mano destra

4.1.4 Partizionamento dei dati

La mole di dati considerata necessita un partizionamento per differenziare i dati che saranno utilizzati per l'apprendimento e quelli che saranno utilizzati per il test.

È indispensabile verificare che le partizioni non abbiano sovrapposizioni se non si vuole ottenere una valutazione dell'efficienza falsata.

Personalmente ho scelto una semplice suddivisione che prevede l'utilizzo di $\frac{4}{5}$ dei dati per il *train* e la parte restante $(\frac{1}{5})$ per il *test*.

4.1.5 Preparazione dei dati

A questo punto è necessario organizzare i dati in nostro possesso in modo che ad una serie di caratteristiche (i tre assi x, y, z ed il valore temporale) sia associabile un'etichetta rappresentate l'attività.

Trasformazione del valore temporale

Una delle quattro caratteristiche che intendiamo utilizzare è il valore temporale. I *time-stamp*s però rappresentano il tempo assoluto, ovvero il momento esatto di svolgimento dell'attività durante la raccolta dei dati.

Il momento esatto non è in alcun modo rilevante nella classificazione, ma a partire da questo è possibile ricavare il tempo trascorso tra l'acquisizione di una tripla di dati (x, y, z) e l'acquisizione di quella immediatamente successiva. Posso presumere una somiglianza in tali distanze temporali durante lo svolgimento di una uguale attività.

Normalizzazione dei dati

La rete neurale accetta in ingresso valori compresi tra 0 e 1. Eseguo una semplice normalizzazione sui dati delle caratteristiche.

```
# Normalize features for data set (values between 0 and 1)

df['x-axis'] = df['x-axis'] / df['x-axis'].max()

df['y-axis'] = df['y-axis'] / df['y-axis'].max()

df['z-axis'] = df['z-axis'] / df['z-axis'].max()

df['timestamp'] = df['timestamp'] / df['timestamp'].max()
```

Code Snippet 15: Banale normalizzazione dei dati

Creazione dei segmenti e delle etichette

La parte principale dell'intero adattamento risulta essere quella che suddivide i dati in un formato che possa realizzare l'associazione tra una serie di caratteristiche e una etichetta.

Per realizzare ciò i record sono presi a gruppi, anche sovrapposti (così come si vede in figura 4.5). Ogni raggruppamento sarà caratterizzato da

- un segmento contenente i record con le sole caratteristiche
- l'etichetta più frequente

Figura 4.5: Creazione dei segmenti e delle etichette

Figura 4.6: Risultato dopo la creazione dei segmenti e delle etichette

Alla fine del processo ho quindi ottenuto una serie di segmenti di dati a cui posso singolarmente associare una determinata etichetta identificativa.

4.1.6 Creazione della rete neurale

Una volta generati i dati nel formato supportato da *keras* procedo alla creazione di una rete neurale che abbia

- in input il formato dei dati appena generato
- 5 strati di 100 nodi connessi
- in output il calcolo di propabilità per ogni classe

```
# Create DNN
model_m = Sequential()
model_m.add(Dense(100, activation='relu')) # Layer 1
model_m.add(Dense(100, activation='relu')) # Layer 2
model_m.add(Dense(100, activation='relu')) # Layer 3
model_m.add(Dense(100, activation='relu')) # Layer 4
model_m.add(Dense(100, activation='relu')) # Layer 5
model_m.add(Flatten())
model_m.add(Dense(num_classes, activation='softmax'))
```

Code Snippet 16: Creazione della DNN

Per poi procedere all'apprendimento.

Code Snippet 17: Apprendimento della rete neurale

4.1.7 Statistiche del modello

Al termine dell'attività di apprendimento il modello è stato generato. Ed è possibile vedere un grafico riassuntivo dei risultati ottenuti.

Figura 4.7: Statistiche del modello ottenuto

4.1.8 Salvataggio del modello

Il modello generato è facilmente salvato in un file con estensione .h5 che mi permetterà in seguito di ricaricarlo senza dover rieffettuare l'intero processo sui dati.

```
model_m.save(model_file, overwrite=True)
```

Code Snippet 18: Salvataggio del modello ottenuto

4.1.9 Testing della rete neurale

Per testare il modello appena creato utilizzo la partizione precedentemente separata.

L'intento è quello di effettuare una predizione con i dati di test di cui però si conoscono già i risultati. Sarà quindi immediato trovare l'efficienza del modello creato mediante un banale confronto tra i dati ipotizzati dalla rete neurale e i risultati corretti.

La qualità dei dati può essere visualizzata mediante una matrice di confusione che fornisce una rappresentazione grafica del confronto appena descritto.

Matrice di confusione

La matrice di confusione è una tabella di rappresentazione dell'accuratezza di un modello di classificazione. In una matrice di confusione sono contrapposti i valori ipotizzati da un modello di classificazione e i valori reali di cui si conosceva il corretto risultato.

Figura 4.8: Matrice di confusione del modello ottenuto

4.2 Predizioni

Il processo di predizione consiste nell'ipotizzare, grazie ad un modello tra quelli generati, l'etichetta più opportuna da assegnare ad un insieme di record contenenti

- i valori ottenuti dal sensore
- il dato temporale
- il tipo di sensore a cui si riferiscono
- la posizione del dispositivo durante l'esecuzione

4.2.1 Scelta del modello

Per prima cosa, tra le informazioni devo differenziare i dati che mi permetteranno di identificare il modello e le caratteristiche su cui avvierò la predizione.

Ricordo che durante l'apprendimento l'informazione che identificava il tipo di sensore e quella che differenziava la posizione del dispositivo sono state utilizzate per la generazione di differenti modelli. Disponendo di queste informazioni è quindi possibile ricavare il modello corretto.

Si nota che le informazioni rimanenti (valori degli assi e valore temporale) corrispondono alle caratteristiche di analisi.

4.2.2 Preparazione dei dati

Fornita una serie di caratteristiche (i tre assi x, y, z ed il valore temporale), ci si aspetta di ottenere in risposta un'etichetta rappresentante l'attività.

Perchè tutto funzioni è indispensabile che i dati forniti alla rete neurale durante la fase di ipotesi abbiano la stessa struttura di quelli utilizzati durante la generazione dei modelli. Si attuano in questa fase le stesse procedure viste in precedenza nella corrispondente sezione 4.1.5 di apprendimento.

Operazioni preliminari

Per prima cosa si attua la trasformazione del valore temporale dal significato assoluto a quello relativo. Ed in seguito si normalizzano le 4 caratteristiche.

Creazione dei segmenti

L'insieme dei record è nuovamente preso a gruppi, anche sovrapposti, per la creazione dei segmenti.

Figura 4.9: Creazione dei segmenti

Figura 4.10: Risultato dopo la creazione dei segmenti

4.2.3 Ipotesi dell'etichetta

A questo punto il lavoro è delegato alla rete neurale che ricevendo in input l'insieme dei segmenti e con l'ausilio del modello selezionato fornisce in output l'insieme delle etichette ipotizzate. Il risultato ottenuto è un'insieme di etichette, ognuna associata ad un segmento.

Per ricavare l'etichetta assoluta associata alle caratteristiche date in input procedo banalmente considerando quella che compare più volte.

Figura 4.11: Processo di predizione

Capitolo 5

Conclusioni

Riferimenti

Bibliografia

- [1] C. Jobanputra, J. Bavishi e N. Doshi. «Human Activity Recognition: A Survey». In: 155 (2019), pp. 698–703. ISSN: 1877-0509. DOI: 10.1016/j.procs.2019.08.100 (cit. a p. 3).
- [2] A. Ferrari et al. «A Framework for Long-Term Data Collection to Support Automatic Human Activity Recognition». In: (2019). DOI: 10.3233/AISE190067 (cit. ap. 4).
- [14] E. Casilari, J. A. Santoyo-Ramón e J. M. Cano-García. «UMAFall: A Multisensor Dataset for the Research on Automatic Fall Detection». In: (2017). DOI: 10.1016/j.procs.2017.06.110 (cit. a p. 25).

Siti

- [3] Docker. URL: https://github.com/docker (cit. a p. 6).
- [4] Flask. URL: https://github.com/pallets/flask/ (cit. a p. 11).
- [5] Material Design. URL: https://material.io/(cit. a p. 15).
- [6] Android Services. URL: https://developer.android.com/guide/components/services (cit. alle pp. 16, 17).
- [7] TextToSpeech. URL: https://developer.android.com/reference/android/speech/tts/TextToSpeech?hl=en (cit. a p. 19).
- [8] CountDownTimer. URL: https://developer.android.com/reference/android/os/CountDownTimer (cit. a p. 20).
- [9] Retrofit. URL: https://square.github.io/retrofit/(cit. a p. 20).
- [10] SensorEventListener. URL: https://developer.android.com/reference/android/hardware/SensorEventListener?hl=en (cit. a p. 21).
- [11] Socket. URL: https://developer.android.com/reference/java/net/Socket (cit. a p. 22).
- [12] Keras. URL: https://github.com/keras-team/keras (cit. a p. 24).
- [13] Tensorflow. URL: https://github.com/tensorflow/tensorflow (cit. a p. 24).