Written examination in Computer Networks

MOCK EXAM

Last name:	
First name:	
Student number:	

Result:

Question:	1	2	3	4	5	6	7	8	9	10	Σ	Grade
Maximum points:	10	7	14	11	15	11	9	14	10	10	111	
Achieved points:												

1.0: 111.0-105.5, 1.3: 105.0-100.0, 1.7: 99.5-94.5, 2.0: 94.0-89.0, 2.3: 88.5-83.0, 2.7: 83.0-77.5, 3.0: 77.5-72.0, 3.3: 72.0-66.5, 3.7: 66.5-61.0, 4.0: 61.0-55.5, 5.0: <55.5

First name:	Student number:
	Points:
_	orrect or wrong and explain shortly why.
P instead of UDP because	e it is more secure.
goodput of a network is a	lways limited by the data rate on the data
	port layer protocol you must also adapt
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	ollowing statements are covered vland) uses a determinist P instead of UDP because goodput of a network is a

e) Accessing a web page via HTTPS takes more time than accessing the same page via

HTTP.

f)	With IPv6 I do not need a transport layer protocol because it has so many addresses that I can assign one address for each network service.
g)	You can use NDP to find the MAC address for a given IPv4 address.
h)	When you try to access an e-mail server via SMTP your operating system will know the port automatically.
i)	Broadcasting video streams via the Internet makes efficient use of the networks' resources.
j)	When sending and receiving e-mails over TLS there is no need to encrypt the content of the e-mails themselves.

Last name:	First name:	Student number:		
Task 3)		Points:		

Maximum points: 14

For the network devices, protocols, transmission units, line codes and addressing schemes in the table, mark the corresponding layer of the <u>hybrid reference model</u>. (1 stands for bottom layer and 5 for top layer in the hybrid reference model. If more than just a single layer are a correct answer, it is sufficient to select at least one correct layer.)

	Hyb	rid ref	erence i	model	layer
	1	2	3	4	5
ALOHA					
Congestion control					
Differential Manchester-Code					
Dynamic Host Configuration Protocol (DHCP)					
Ethernet					
Flow control					
Frame					
Hub					
Hypertext Transfer Protocol (HTTP)					
ICMP					
Internet Protocol (IP)					
Internet Message Access Protocol					
Intermediate System to Intermediate System (IS-IS)					
Link state routing protocol					
Logical address					
Media access control					
Network Time Protocol (NTP)					
Non-Return to Zero (NRZ)					
Open Shortest Path First (OSPF)					
Packet					
Physical address					
Port number					
Repeater					
Spanning Tree Protocol (STP)					
Secure Shell (SSH)					
Transmission Media					
Non-Return to Zero Invert (NRZI)					
User Datagram Protocol (UDP)					

Task 4)

Points:

Maximum points: 2+4+2+3=11

For a given network connection you know the following properties:

- The channel bandwidth is $4 \, kHz \ (= 4000 \, Hz)$
- The signal power is $1 \, mW \ (= 0.001 \, W)$
- The noise on the channel has a maximum power of $5 \mu W$ (= 0.000005 W)
- Each symbol can encode 16 bit
- A line encoding scheme with 100% efficiency is used
- a) What is the symbol rate of the network?
- b) What is the maximum data rate of this network? (*Hint: Maybe more than one limit applies.*)

c) What is the maximum data rate if each symbol can encode 32 bit?

d) What is the maximum data rate if the noise increases to a peak value of $50 \mu W$ (= 0.00005 W)? (For the original 16 bit per symbol.)

Last name:

First name:

Student number:

Task 5)

Points:

Maximum points: 7+4+4=15

a) The following list contains the source and destination address of IP packets. Decide for each IP packet if a router in the Internet should forward the packet or not. If the packet should not be forwarded, explain briefly why.

Source: 160.45.170.10 Destination: 160.45.114.11

Source: 10.51.0.23

Destination: 35.163.72.93

Source: 192.109.234.218 Destination: 193.99.144.80

Source: 172.18.42.23 Destination: 172.20.8.15

Source: fd41:9312::beef:ea:ff:1927 Destination: 2001:67c:254:b0b0::1

Source: 2a01:4f8:151:64::10

Destination: 2a00:1450:400f:804::200e

Source: 2a02:2e0:3fe:1001:302::

Destination: fe80::3772:d265:966c:95e6

b)	-	etwork $183.126.33.0$ for implementing 7 su answer the questions.	bnets. Calculate the
	Number of bits i		183.126.33.0
	Subnet mask: Number of bits f Number of host	for host IDs?	''
c)	Split the class C ne	etwork 211.252.127.0 into subnets which conet masks and answer the questions.	ontain 31 hosts each.
	Network ID: 1 Number of bits in Number of bits in	for subnet IDs?	211.252.127.0
	Subnet mask:		

Task 6) Points:

Maximum points: 8+3=11

a) Fill the missing IP addresses and port numbers into the figure that describes a NAT scenario where device C sends an HTTP request to a web server process that runs on device Z and can be accessed on device Z via port number 443.

b) The sender transmits an IP packet to a receiver. Calculate the subnet ID of sender and re-

ceiver and specify whether the IP packet leaves the subnet during transmission or not. Sender: 10000100.10011000.01010011.1111111 132.152.83.254

Subnet mask: 1111111.1111111.111111100.00000000 255.255.252.0

Receiver: 10000100.10011000.01010001.00000010 132.152.81.2 Subnet mask: 11111111.1111111.11111100.00000000 255.255.252.0

Subnet ID of sender?
Subnet ID of receiver?
Does the IP packet leave the subnet [yes/no]?

Task 7) Points:

Maximum points: 9

Calculate the shortest path from node A to all other nodes using Dijkstra's algorithm. Denote for each note the path cost and the predecessor node.

Task 8)

Points:

Maximum points: 4+5+5=14

a) The diagram shows the establishment of a TCP connection. Complete the table.

Message	ACK	SYN	FIN	Payload	Seq	Ack
	flag	flag	flag	length	number	number
1					3247	0
2					7	
3						

ACK=? SYN=? FIN=? Seq=3247 Ack=0 (1) 2 3

b) The diagram shows an excerpt of the transmission phase of a TCP connection. Complete the table.

Message	ACK	SYN	FIN	Payload	Seq	Ack
	flag	flag	flag	Payload length	number	number
4				130	50	500
5				200		
6						
7						

c) The diagram shows the termination of a TCP connection. Complete the table.

Message	ACK	SYN	FIN	Payload	Seq	Ack
	flag	flag	flag	length	number	number
8				0	1	2342
9				0		
10				0		
11				0		

e) Why does the sender maintain **two windows** when using TCP and not just a

single one?

Task 10)

Points:

Maximum points: 3+3+1+1+2=10

a) Describe the steps to generate a digitally signed message. The following objects and methods are available:

• Plaintext message: P

• Hash algorithm: H()

• Private key of the sender: K_A^-

• Cipher code: E()

- b) Describe the steps to verify a digitally signed message. The following objects and methods are available:
 - Received, potentially tampered message: P'
 - Received, potentially tampered signature: $VC_A{}'$
 - Hash algorithm: H()
 - Public key of the sender: K_A^+
 - Decryption code: D()

c)	Which of the following security goals can be addressed with digital signatures?
	☐ Confidentiality
	☐ Privacy
	☐ Integrity
	☐ Authenticity
	☐ Non-repudiation
	☐ Availability
d)	Explain whether the encryption for a digital signature uses a symmetric or asymmetric method.
e)	How could a "Man in the middle" attack against this method look like? What has an attacker to accomplish beforehand? What can an attacker achieve with a successful attack?

Formulas, Definitions, Specifications

- You may need some of these formulas:
 - Whittaker-Kotel'nikov-Shannon (WKS) sampling theorem $f_S = 2 * f_{max}$
 - Hartley's law $C = 2 * H * log_2(V)$
 - Shannon-Hartley theorem $C = H * log_2(1 + S/N)$
 - $\begin{tabular}{l} Latency & Latency & Propagation delay + Transmission delay + Waiting time \\ Propagation delay & & \hline{Speed of light*Velocity factor} \end{tabular}$
 - Change of logarithm base $log_b(x) = \frac{log_d(b)}{log_d(x)}$
- Some line encoding schemes you may need:
 - -NRZ

A logical 0 is encoded with physical signal level 1, a logical 1 is encoded with level 2.

- NRZI

A logical 0 is encoded as missing signal level change, a logical 1 is encoded as signal level change.

- MLT-3

A logical 0 is encoded as no signal level change, a logical 1 is alternating encoded, according to the sequence +, 0, -, 0

-RZ

A logical 0 is encoded as low signal level for half a clock cycle before returning to the middle signal level. A logical 1 is encoded as high signal level for half a clock cycle before returning to the middle signal level.

Unipolar RZ

A logical 0 is encoded as low signal level, a logical 1 is encoded as high signal level for half a clock cycle before returning to the low signal level.

- Manchester

A logical 0 is encoded with a **falling edge**, a logical 1 is encoded with a **rising edge**

- Differential Manchester

A logical 0 is encoded as a signal level change taking place at the beginning and the middle of a clock cycle. A logical 1 is encoded as a signal level change only in the middle of a clock cycle.

• Some IP address ranges:

- IPv4

- * 127.0.0.1/32 is loopback (localhost)
- * Class A defines a /8 network with a prefix of 0.
- * Class B defines a /16 network with a prefix of 10.
- * Class C defines a /24 network with a prefix of 110.
- $\ast\,$ Class D is reserved for multicast. The prefix is 1110.
- * 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16 are defined as private address range.
- * 169.254.0.0/16 is link-local

- IPv6

- * ::1/128 is loopback (localhost)
- * fc00::/7 is unique-local
- * fe80::/10 is link-local
- * ff00::/8 is multicast
- * ff02::1:ff00:0/104 is solicited-node multicast

Conversion table between decimal and binary representation

```
0 - 00000000
                       64 - 01000000
                                             128 - 10000000
                                                                     192 - 11000000
                                             129 - 10000001
                                                                     193 - 11000001
 1 - 00000001
                       65 - 01000001
                                                                     194 - 11000010
 2 - 00000010
                       66 - 01000010
                                             130 - 10000010
                                             131 - 10000011
                                                                     195 - 11000011
 3 - 00000011
                       67 - 01000011
                                             132 - 10000100
 4 - 00000100
                      68 - 01000100
                                                                    196 - 11000100
                                             133 - 10000101
134 - 10000110
                                                                    197 - 11000101
198 - 11000110
 5 - 00000101
                      69 - 01000101
                       70 - 01000110
 6 - 00000110
 7 - 00000111
                                             135 - 10000111
                                                                    199 - 11000111
                       71 - 01000111
 8 - 00001000
                      72 - 01001000
                                             136 - 10001000
                                                                     200 - 11001000
                                             137 - 10001001
 9 - 00001001
                       73 - 01001001
                                                                     201 - 11001001
                                             138 - 10001010
10 - 00001010
                      74 - 01001010
                                                                     202 - 11001010
                                           139 - 10001011
140 - 10001100
                      75 - 01001011
                                                                     203 - 11001011
11 - 00001011
                       76 - 01001100
                                                                     204 - 11001100
12 - 00001100
                      77 - 01001101
                                            141 - 10001101
                                                                     205 - 11001101
13 - 00001101
                      78 - 01001110
                                                                     206 - 11001110
207 - 11001111
                                            142 - 10001110
143 - 10001111
14 - 00001110
15 - 00001111
                       79 - 01001111
16 - 00010000
                      80 - 01010000
                                             144 - 10010000
                                                                     208 - 11010000
                     81 - 01010001
                                             145 - 10010001
146 - 10010010
17 - 00010001
                                                                     209 - 11010001
                                                                     210 - 11010010
18 - 00010010
                      82 - 01010010
19 - 00010011
                      83 - 01010011
                                            147 - 10010011
                                                                     211 - 11010011
                     84 - 01010100
                                            148 - 10010100
149 - 10010101
                                                                     212 - 11010100
213 - 11010101
20 - 00010100
                      85 - 01010101
21 - 00010101
22 - 00010110
                      86 - 01010110
                                             150 - 10010110
                                                                     214 - 11010110
                     87 - 01010111
                                                                     215 - 11010111
                                             151 - 10010111
152 - 10011000
23 - 00010111
                      88 - 01011000
                                                                     216 - 11011000
24 - 00011000
25 - 00011001
                      89 - 01011001
                                             153 - 10011001
                                                                     217 - 11011001
                     90 - 01011010
                                             154 - 10011010
155 - 10011011
                                                                     218 - 11011010
219 - 11011011
26 - 00011010
                      91 - 01011011
27 - 00011011
28 - 00011100
                      92 - 01011100
                                             156 - 10011100
                                                                     220 - 11011100
                                             157 - 10011101
158 - 10011110
                     93 - 01011101
29 - 00011101
                                                                     221 - 11011101
                                                                     222 - 11011110
30 - 00011110
                      94 - 01011110
31 - 00011111
                      95 - 01011111
                                             159 - 10011111
                                                                     223 - 11011111
                     96 - 01100000
                                             160 - 10100000
161 - 10100001
                                                                     224 - 11100000
225 - 11100001
32 - 00100000
33 - 00100001
                      97 - 01100001
34 - 00100010
                      98 - 01100010
                                             162 - 10100010
                                                                     226 - 11100010
                                             163 - 10100011
                                                                     227 - 11100011
35 - 00100011
                      99 - 01100011
                                             164 - 10100100
                                                                     228 - 11100100
36 - 00100100
                      100 - 01100100
37 - 00100101
                                             165 - 10100101
                                                                     229 - 11100101
                     101 - 01100101
                                                                     230 - 11100110
231 - 11100111
                                             166 - 10100110
167 - 10100111
                     102 - 01100110
38 - 00100110
                      103 - 01100111
39 - 00100111
40 - 00101000
                     104 - 01101000
                                             168 - 10101000
                                                                     232 - 11101000
41 - 00101001
                     105 - 01101001
                                             169 - 10101001
                                                                     233 - 11101001
42 - 00101010
                      106 - 01101010
                                             170 - 10101010
                                                                     234 - 11101010
43 - 00101011
                                             171 - 10101011
                                                                     235 - 11101011
                     107 - 01101011
                                            172 - 10101100
173 - 10101101
44 - 00101100
                     108 - 01101100
                                                                     236 - 11101100
                                                                     237 - 11101101
45 - 00101101
                      109 - 01101101
                                             174 - 10101110
46 - 00101110
                     110 - 01101110
                                                                     238 - 11101110
                                            175 - 10101111
                                                                     239 - 11101111
47 - 00101111
                    111 - 01101111
                      112 - 01110000
                                             176 - 10110000
                                                                     240 - 11110000
48 - 00110000
                                             177 - 10110001
                                                                     241 - 11110001
49 - 00110001
                     113 - 01110001
50 - 00110010
                     114 - 01110010
                                             178 - 10110010
                                                                     242 - 11110010
                      115 - 01110011
                                             179 - 10110011
51 - 00110011
                                                                     243 - 11110011
                                             180 - 10110100
52 - 00110100
                     116 - 01110100
                                                                     244 - 11110100
                     117 - 01110101
                                                                     245 - 11110101
53 - 00110101
                                             181 - 10110101
                      118 - 01110110
                                             182 - 10110110
54 - 00110110
                                                                     246 - 11110110
55 - 00110111
                                             183 - 10110111
                                                                     247 - 11110111
                     119 - 01110111
56 - 00111000
                     120 - 01111000
                                             184 - 10111000
                                                                     248 - 11111000
                                             185 - 10111001
57 - 00111001
                      121 - 01111001
                                                                     249 - 11111001
58 - 00111010
                     122 - 01111010
                                             186 - 10111010
                                                                     250 - 11111010
                                             187 - 10111011
                                                                     251 - 11111011
59 - 00111011
                     123 - 01111011
60 - 00111100
                      124 - 01111100
                                             188 - 10111100
                                                                     252 - 11111100
61 - 00111101
                     125 - 01111101
                                             189 - 10111101
                                                                     253 - 11111101
62 - 00111110
                     126 - 01111110
                                            190 - 10111110
                                                                     254 - 11111110
63 - 00111111
                     127 - 01111111
                                             191 - 10111111
                                                                     255 - 11111111
```

Units conversion table

Data units

```
1 B = 1 Byte = 8 bit = 8 b  
1 kB = 1,000 B  
1 MB = 1,000 kB = 1,000,000 B  
1 GB = 1,000 MB = 1,000,000 kB = 1,000,000,000 B
```

Units of length

```
 \begin{array}{l} 1 \ m=1 \ \text{meter} \\ 1 \ km=1,000 \ m \\ 1 \ cm=0.01 \ m \\ 1 \ mm=0.1 \ cm=0.001 \ m \\ \end{array}
```

Units of time

```
1 s = 1 second

1 min = 1 minute = 60 s

1 h = 1 hour = 60 min = 3,600 s

1 d = 1 day = 24 h = 1,440 min = 86,400 s
```