Lecture 3

Understanding asymmetry and variability in the data, Skewness, Correlation.

Content

- Understanding asymmetry and variability in the data
- Skewness
- Correlation

Estimates of Location - Mean

- Also known as the 'average'.
- The sum of all values divided by the number of values.
- Denoted by greek letter 'mu' for the population
 - And x-bar for a sample out of the population
 - Can be calculated as
 - o or

$$\underline{x_1 + x_2 + x_3 + \dots + x_N}$$

$$\frac{\sum_{i=1}^{N} x_i}{N}$$

N

Estimates of Location - Mean - 2

- Very popular as easy to understand.
- But easily affected by 'outliers'.
- Outlier: A data value that is very different from most of the data.
 - Synonyms: extreme value

	New York City	Los Angeles
Mean	\$ 11.00	\$ 5.50

Position	New York City	Los	s Angeles
1	\$ 1.00		\$ 1.00
2	\$ 2.00		\$ 2.00
3	\$ 3.00		\$ 3.00
4	\$ 3.00		\$ 4.00
5	\$ 5.00		\$ 5.00
6	\$ 6.00		\$ 6.00
7	\$ 7.00		\$ 7.00
8	\$ 8.00		\$ 8.00
9	\$ 9.00		\$ 9.00
10	\$ 11.00		\$ 10.00
11	\$ 66.00		

Estimates of Location - Median

- Also known as the '50th percentile'.
- The middle number in the dataset.
- The value such that one-half of the data lies above and below.
- How to calculate this:
 - o Arrange data in descending order.
 - \circ Median = the number at position (n+1)/2 in the ordered list.

$$x_{(\frac{N+1}{2})}$$

Estimates of Location - Median - 2

- Not affected by extreme prices.
- Robust: Not sensitive to extreme values.
 - Synonyms: resistant

	New York City	Los Angeles
Mean	\$ 11.00	\$ 5.50
Median	\$ 6.00	\$ 5.50

Position	New York City	Los	Angeles	
1	\$ 1.00		\$ 1.00	
2	\$ 2.00		\$ 2.00	
3	\$ 3.00		\$ 3.00	
4	\$ 3.00		\$ 4.00	
5	\$ 5.00		\$ 5.00	
6	\$ 6.00		\$ 6.00	
7	\$ 7.00		\$ 7.00	
8	\$ 8.00		\$ 8.00	
9	\$ 9.00		\$ 9.00	
10	\$ 11.00		\$ 10.00	
11	\$ 66.00			6

Estimates of Location - Mode

The value that occurs the most.

	New York City	Los Angeles
Mean	\$ 11.00	\$ 5.50
Median	\$ 6.00	\$ 5.50
Mode	\$ 3.00	-

Position		New York City	Los	Angeles
	1	\$ 1.00		\$ 1.00
	2	\$ 2.00		\$ 2.00
	3	\$ 3.00		\$ 3.00
	4	\$ 3.00		\$ 4.00
	5	\$ 5.00		\$ 5.00
	6	\$ 6.00		\$ 6.00
	7	\$ 7.00		\$ 7.00
	8	\$ 8.00		\$ 8.00
9		\$ 9.00		\$ 9.00
	10	\$ 11.00		\$ 10.00
	11	\$ 66.00		

Estimates of Asymmetry

Skewness: Tells us if the data is concentrated on one side or not.

Dataset 3

Estimates of Variability

- Variance
- Standard Deviation
- Coefficient of Variation

Estimates of Variability - Variance

- Sample statistic is an approximation of the population parameter.
- 10 different samples will get you 10 different measures.

Population Variance

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)}{N}$$

Sample Variance

$$s^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})}{n-1}$$

Estimates of Variability - Variance -2

Population			
1	Mean	3.00	
2	Population variance	2.00	
3	Sample variance	2.50	
4	1		observation mean
5	$\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{\sum_{i=1}^{N} (x_i - \mu)^2} = \frac{(1 - \mu)^2}{2}$	$-3)^2+(2$	$(3-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2$
	N		5

Population variance formula

$$\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}{n-1}=\frac{(1-3)^{2}+(2-3)^{2}+(3-3)^{2}+(4-3)^{2}+(5-3)^{2}}{4}$$

Estimates of Variability - Variance -3

Population		
1	Mean	3.00
2	Population variance	2.00
3	Sample variance	2.50
4		
5		

lmaginary population				
	1		Mean	3.20
	1		Population variance	2.96
	1			
2				
3				
	4			
	5			
	5			
	5			
	5			

Estimates of Variability - SD

- Variance can have a very high value.
- SD more meaningful.

Population SD

$$\sigma_s = \sqrt{\sigma^2}$$

Sample SD

$$s_s = \sqrt{s^2}$$

Estimates of Variability - Coeff of variation

Also known as relative standard deviation

$$\frac{SD}{Mean}$$

Population CV

$$c_v = \frac{\sigma}{\mu}$$

Sample CV

$$\hat{c_v} = \frac{s}{\overline{x}}$$

Estimates of Variability - Coeff of variation -2

NY Dollars	Pesos
\$ 1.00	MXN 18.81
\$ 2.00	MXN 37.62
\$ 3.00	MXN 56.43
\$ 3.00	MXN 56.43
\$ 5.00	MXN 94.05
\$ 6.00	MXN 112.86
\$ 7.00	MXN 131.67
\$ 8.00	MXN 150.48
\$ 9.00	MXN 169.29
\$ 11.00	MXN 206.91

	Dollars	Pesos
Mean	\$ 5.50	MXN 103.46
Sample variance	\$2 10.72	MXN2 3793.69
Sample standard deviation	\$ 3.27	MXN 61.59
Sample coefficient of variation	0.60	0.60

Measure of Relationship

- Covariance
- Linear correlation coefficient

Measure of Relationship - Covariance

Let's look at houses data

Size (ft.)	Price (\$)
650	772,000
785	998,000
1200	1,200,000
720	800,000
975	895,000

$$s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) * (y_i - \overline{y})^{\perp}}{n-1}$$

$$\sigma_{xy} = \frac{\sum_{i=1}^{N} (x_i - \mu_x) * (y_i - \mu_y)}{N}$$

Measure of Relationship - Covariance -2

	(x- x)*(y- y)
	34,776,000
	- 5,265,000
	89,178,000
	19,418,000
	- 4,142,000
Sum	133,965,000
Sample size	5
Cov. Sample	33,491,250

	Size (ft.)	Price (\$)
	650	772,000
	785	998,000
	1200	1,200,000
	720	800,000
	975	895,000
Mean	866	933,000

$$s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) * (y_i - \overline{y})}{n-1}$$

Measure of Relationship -

- Similar issue as before.
 - Covariance can be massively high positively or negatively.
 - Output Description
 Output
 - Solution: Correlation coefficient

 Correlation adjust covariance, so that the relationship between the variables is more easy to interpret.

Measure of Relationship -

- Similar issue as before.
 - Covariance can be massively high positively or negatively.
 - o How to get a measure of value?
 - Solution: Correlation coefficient

Correlation adjust covariance, so that the relationship between the variables is more easy to interpret.

$$\frac{Cov(x,y)}{StDev(x)*StDev(y)}$$

Measure of Relationship - Correlation coefficient

- Similar issue as before.
 - Covariance can be massively high positively or negatively.
 - o How to get a measure of value?
 - Solution: Correlation coefficient

Correlation adjust covariance, so that the relationship between the variables is more easy to interpret.

$$\frac{Cov(x,y)}{StDev(x)*StDev(y)}$$

Measure of Relationship - Correlation coefficient

(x-x)*(y-y) 34,776,000 - 5,265,000 89,178,000 19,418,000 - 4,142,000 Sum 133,965,000 Sample size Cov. Sample 33,491,250 Correlation coeff. 0.87

	Size (ft.)	Price (\$)
	650	772,000
	785	998,000
	1200	1,200,000
	720	800,000
	975	895,000
Mean	866	933,000

