

Alicja Gosiewska

Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej

LIME

Local Interpretable Model-Agnostic Explanations

This movie is not very good.

LIME explanations

Anchor explanations

This movie is not bad.

 $f: X \to Y$ - black box model

 $x \in X$ - an instance to be explained

 \mathcal{D}_x - perturbation distribution

A - a rule (set of predicates)

 $\mathcal{D}_x(\cdot|A)$ - conditional distribution when the rule A applies

This director is always bad.
This movie is not nice.
This stuff is rather honest.
This star is not bad.

A is an anchor if:

$$\mathbb{E}_{\mathcal{D}(z|A)}[\mathbb{1}_{f(x)=f(z)}] \ge \tau$$

	If	Predict
ult	No capital gain or loss, never married	≤ 50 K
adı	Country is US, married, work hours > 45	> 50K

An anchor A is a set of feature predicates that achieves $prec(A) \ge \tau$, where $prec(A) = \mathbb{E}_{\mathcal{D}(z|A)} \left[\mathbb{1}_{f(x)=f(z)} \right]$

Probabilistic definition: $P\left(\operatorname{prec}(A) \geq \tau\right) \geq 1 - \delta$

 $\operatorname{cov}(A) = \mathbb{E}_{\mathcal{D}(z)}[A(z)]$

Search for an anchor is the following combinatorial optimization problem: $\max_{A \text{ s.t. } P(\operatorname{prec}(A) > \tau) > 1 - \delta} \operatorname{cov}(A)$

Algorithm 1 Identifying the *Best* Candidate for Greedy

```
function GenerateCands(\mathcal{A}, c)
   \mathcal{A}_{x} = \emptyset
   for all A \in \mathcal{A}; a_i \in x, a_i \notin A do
       if cov(A \land a_i) > c then {Only high-coverage}
           A_r \leftarrow A_r \cup (A \wedge a_i) {Add as potential anchor}
   return A_r {Candidate anchors for next round}
function BestCand(\mathcal{A}, \mathcal{D}, \epsilon, \delta)
   initialize prec, prec<sub>ub</sub>, prec<sub>lb</sub> estimates \forall A \in \mathcal{A}
   A \leftarrow \arg \max_A \operatorname{prec}(A)
   A' \leftarrow \arg\max_{A' \neq A} \operatorname{prec}_{ub}(A', \delta) \qquad \{\delta \text{ implicit below}\}\
   while \operatorname{prec}_{ub}(A') - \operatorname{prec}_{lb}(A) > \epsilon \operatorname{do}
       sample z \sim \mathcal{D}(z|A), z' \sim \mathcal{D}(z'|A') {Sample more}
       update prec, prec<sub>ub</sub>, prec<sub>lb</sub> for A and A'
       A \leftarrow \arg \max_A \operatorname{prec}(A)
       A' \leftarrow \operatorname{arg\,max}_{A' \neq A} \operatorname{prec}_{ub}(A')
    return A
```


Method	Precision		Coverage		Time/pred	
	adult	rcdv	adult	rcdv	adult	rcdv
No expls	54.8	83.1	79.6	63.5	29.8 ±14	35.7±26
LIME(1) Anchor(1)	68.3 100.0	98.1 97.8	89.2 43.1	55.4 24.6	$\frac{28.5 \pm 10}{13.0 \pm 4}$	24.6±6 14.4±5

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.

<u>Anchors: High-Precision Model-Agnostic Explanations</u>

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.

Nothing Else Matters: Model-Agnostic Explanations

By Identifying Prediction Invariance

The anchor_exp python package

