

Grelha de respostas certas

Versão A

Grupo	1		1 2					3			4			5			
	a)	b)	a) i.	a) ii.	b) i.	b) ii.	c)	a)	b)	c)	a)	b)	c)	a)	b)	c)	d)
	D	В	С	В	D	D	В	A	D	В	С	С	A	С	С	A	A

Versão B

Grupo	1		2					3			4			5			
	a)	b)	a) i.	a) ii.	b) i.	b) ii.	c)	a)	b)	c)	a)	b)	c)	a)	b)	c)	d)
	A	С	В	A	С	В	D	В	С	A	A	В	С	D	Α	В	С

Resolução abreviada do Exame de Recurso

- 1. Considerem-se os acontecimentos: Um doente
 - A-ter tomado o medicamento A
 - B-ter tomado o medicamento B
 - C-ter tomado o medicamento C
 - L-perder peso

$$P(A) = 0.3$$
 $P(B) = 0.3$ $P(C) = 0.4$ $P(L|A) = 0.9$ $P(L|B) = 0.8$ $P(L) = 0.75$

(a)
$$P(L) = P(L|A)P(A) + P(L|B)P(B) + P(L|C)P(C)$$

$$\Leftrightarrow 0.75 = 0.51 + 0.4 \times P(L|C) \Leftrightarrow P(L|C) = 0.6$$

(b)
$$P(A|L) = \frac{P(L|A)P(A)}{P(L)} = 0.36$$

2. (a) i. Seja W - n.º de dados vermelhos obtidos numa amostra de 4 dados (seleccionadas ao acaso e sem reposição). $W \sim H(20, 12, 4)$

ii.
$$P(W=3) = \frac{\binom{12}{3}\binom{8}{1}}{\binom{20}{4}} = 0.363261094$$

(b) $X \sim B\left(5, \frac{8}{20}\right) \equiv B(5, 0.4)$

i.
$$P(X > 4) = P(X = 5) = {5 \choose 5} 0.4^5 0.6^{5-5} = 0.01024$$

ii.
$$E(X) = 5 \times 0.4 = 2$$
 $V(X) = 5 \times 0.4 \times (1 - 0.4) = 1.2$

$$P(X \in]E(X) - 1.5\sigma(X), E(X) + 1.5\sigma(X)] = P(X \in]0.356832327, 3.643167673]$$

$$= \sum_{k=1}^{3} P(X=k) = \sum_{k=1}^{3} {5 \choose k} 0.4^{k} 0.6^{5-k} = 0.8352$$

(c)
$$Y \sim B(100, 0.4)$$
 $E(Y) = 40$ $V(Y) = 24$

Pelo TLC, e porque $np = 100 \times 0.4 > 5$ e $n(1-p) = 100 \times 0.6 > 5$

$$\begin{split} &\frac{Y-E\left(Y\right)}{\sqrt{V\left(Y\right)}} = \frac{Y-40}{\sqrt{24}} \overset{a}{\sim} N\left(0,1\right) \\ &P\left(33 < Y \le 47\right) = P\left(Y \le 47\right) - P\left(Y \le 33\right) = P\left(\frac{Y-40}{\sqrt{24}} \le \frac{47-40}{\sqrt{24}}\right) - P\left(\frac{Y-40}{\sqrt{24}} \le \frac{33-40}{\sqrt{24}}\right) \\ &\approx P\left(Z \le 1.43\right) - P\left(Z \le -1.43\right) = P\left(Z \le 1.43\right) - 1 + P\left(Z \le 1.43\right) = 2 P\left(Z \le 1.43\right) - 1 \end{split}$$

$$= 2 \times 0.9236 - 1 = 0.8472$$

3.
$$X \sim U(\theta, 0), \ \theta \in \mathbb{R}^ E(X) = \frac{\theta}{2}, \quad V(X) = \frac{\theta^2}{12}$$

(a)
$$E(X) = \overline{X} \Leftrightarrow \frac{\theta}{2} = \overline{X} \Leftrightarrow \theta = 2\overline{X}$$
 sendo $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

O estimador dos momentos para θ é, $\theta^* = 2 \overline{X}$

(b)
$$E\left(\tilde{\theta}\right) = \theta \Leftrightarrow E\left(a\,T_n + b\right) = \theta \Leftrightarrow a\,E\left(T_n\right) + b = \theta \Leftrightarrow a\frac{2\theta}{n} + b = \theta \Rightarrow b = 0; \quad a\frac{2}{n} = 1 \Rightarrow b = 0; \quad a = \frac{n}{2}$$

(c)
$$V\left(\hat{\theta}\right) = V\left(2\overline{X}\right) = 4\frac{V\left(X\right)}{n} = \frac{4}{n}\frac{\theta^2}{12} = \frac{\theta^2}{3n}$$

$$\frac{V\left(\ddot{\theta}\right)}{V\left(\dot{\theta}\right)} = \frac{\frac{\theta^2}{n\left(n+2\right)}}{\frac{\theta^2}{3n}} = \frac{3}{n+2} < 1 \quad \text{porque } n \ge 2$$

 $\ddot{\theta}$ é o estimador mais eficiente porque os dois estimadores são centrados e $V\left(\ddot{\theta}\right) < V\left(\hat{\theta}\right)$

4. Informação populacional: X-peso/saco (em kg)

Informação amostral: n = 25, $\overline{x} = \frac{1255}{25} = 50.2$, $s^2 = \frac{245.76}{25-1} = 10.24$, $s = \sqrt{s^2} = 3.2$

(a) •
$$W = \frac{(25-1) S^2}{\sigma^2} \sim \chi^2_{25-1} \equiv \chi^2_{24}$$

• $P(a \le W \le b) = 0.9$, com $P(W < a) = 0.05$ e $P(W > b) = 0.05$

•
$$P(a \le W \le b) = 0.9$$
, com $P(W < a) = 0.05$ e $P(W > b) = 0.05$

$$a = \chi^2_{24:0.95} = 13.8$$
 $b = \chi^2_{24:0.05} = 36.4$

•
$$13.8 \le \frac{24 S^2}{\sigma^2} \le 36.4 \quad \Leftrightarrow \quad \frac{24 S^2}{36.4} \le \sigma^2 \le \frac{24 S^2}{13.8}$$

•
$$IC_{90\%}\left(\sigma^2\right) \equiv \left[\frac{24 S^2}{36.4}, \frac{24 S^2}{13.8}\right]$$

$$IC_{90\%}\left(\sigma\right)\equiv\left[\sqrt{rac{24\,S^{2}}{36.4}}\,,\,\sqrt{rac{24\,S^{2}}{13.8}}
ight]$$

Estimativa por intervalo de 90% de confiança para σ

$$IC_{90\%}\left(\sigma\right) = \left[\sqrt{\frac{245.76}{36.4}}\,,\,\sqrt{\frac{245.76}{13.8}}\right] = \left[2.598393417\,,\,4.22003503\right]$$

(b) •
$$T = \sqrt{25} \frac{\overline{X} - \mu}{S} \sim t_{25-1} \equiv t_{24}$$

(b) •
$$T = \sqrt{25} \frac{\overline{X} - \mu}{S} \sim t_{25-1} \equiv t_{24}$$

• $P(-a \le T \le a) = 0.9$, com $P(T > a) = 0.05$, $a = t_{24:0.05} = 1.71$

•
$$-1.71 \le 5 \frac{\overline{X} - \mu}{S} \le 1.71 \iff \overline{X} - 1.71 \frac{S}{5} \le \mu \le \overline{X} + 1.71 \frac{S}{5}$$

•
$$IC_{90\%}\left(\mu\right)\equiv\left[\overline{X}-1.71\frac{S}{5}\;,\;\overline{X}+1.71\frac{S}{5}\right],\;\;$$
 cuja amplitude é $A_{90\%}\left(\mu\right)\equiv2\times1.71\frac{S}{5}$

A estimativa da amplitude do $IC_{90\%}(\mu)$ é: $A_{90\%}(\mu) = 2 \times 1.71 \frac{3.2}{5} = 2.1888$

(c) p = P (saco com peso superior a 51 kg)

Informação amostral: n = 100, $\hat{p} = 20/100 = 0.2$

•
$$W = \sqrt{100} \frac{\hat{P} - p}{\sqrt{\hat{P}\left(1 - \hat{P}\right)}} \stackrel{a}{\sim} N(0, 1)$$

•
$$P(-a \le W \le a) = 0.95 \Rightarrow a \approx z_{0.025} = 1.96$$

•
$$P(-a \le W \le a) = 0.95 \Rightarrow a \approx z_{0.025} = 1.96$$

• $-1.96 \le \sqrt{100} \frac{\hat{P} - p}{\sqrt{\hat{P}(1 - \hat{P})}} \le 1.96 \Leftrightarrow \hat{P} - 1.96 \sqrt{\frac{\hat{P}(1 - \hat{P})}{100}} \le \hat{P} + 1.96 \sqrt{\frac{\hat{P}(1 - \hat{P})}{100}}$

•
$$IC_{95\%}(p) \equiv \left[\hat{P} - 1.96\sqrt{\frac{\hat{P}(1-\hat{P})}{100}}, \hat{P} + 1.96\sqrt{\frac{\hat{P}(1-\hat{P})}{100}} \right]$$

$$\bullet \ \, \text{Estimativa:} \ \, IC_{95\%}\left(p\right) = \left[0.2 - 1.96\sqrt{\frac{0.2\left(1 - 0.2\right)}{100}} \, \, , \, \, 0.2 + 1.96\sqrt{\frac{0.2\left(1 - 0.2\right)}{100}}\right] = \left[0.1216 \, , \, \, 0.2784\right]$$

5. Informação populacional: X-tempo máximo/conjunto $X \sim N\left(\mu, \sigma^2\right)$

(a)
$$H_0: \sigma \geq \sigma_0$$

(b)
$$W = (25 - 1) \frac{S^2}{0.64} = 37.5 S^2 \underset{\sigma^2 = 0.64}{\sim} \chi_{25-1}^2 \equiv \chi_{24}^2$$

(c) A. $W = 37.5 S^2 \underset{\sigma^2 = 0.64}{\sim} \chi_{24}^2$
B. $R_{obs} =]w_{obs}, +\infty[=]29.6, +\infty[$

(c) A.
$$W = 37.5 S^2 \sim_{\sigma^2 = 0.64} \chi^2_{24}$$

B.
$$R_{obs} = |w_{obs}, +\infty| = |29.6, +\infty|$$

$$p - value = P(W \in R_{obs}) = P(W > 29.6) = 0.2$$

(d)
$$p - value = 0.15$$

Rejeitamos a hipótese H_0 ao nível α de significância, se $p-value < \alpha$.