	4/18 WebAssign Friday Monday
3	9.4 Approximation of Definite Integrals
	Suppose we want to find I f(x) dx
	$\int_{A}^{A} f(x)$
	n=4
	Let x, x2, xn be midpoints
	Let X1, X2, Xn be midpoints of each subinterval, then the Riemann sum approximation

Recall:
$$\Delta x = \frac{b-a}{n}$$

$$\int_{q}^{b} f(x) dx \approx \frac{f(a_0) + f(a_1)}{2} \Delta x$$

$$\int_{q}^{b} avea of = \frac{1}{2} \frac{2}{2} \frac{1}{2} \frac{1}{$$

Simpson's rule:

$$\int_{0}^{b} f(x) dx \approx \frac{2}{3} M + \frac{1}{3} T$$

approximation approx.

As ing miapoint using trapezoic rule

midpoint rule approximation:

$$h = 2$$

$$0 = -2$$

$$b = 2$$

$$\Delta x = b - q = 4 = 2$$

$$h$$

Left endpoints Right endpoints Midpoint
$$q_0 = -2$$
 $q_1 = 0$ -1 $q_2 = 2$ $q_3 = 2$ $q_4 = 2$ $q_4 = 2$ $q_5 = 2$ $q_6 = 2$ $q_7 = 0$ $q_8 = 2$ $q_8 = 2$

$$\Delta X = \frac{2}{4} = \frac{1}{2}$$
Let's draw $\frac{1}{1+e^{x}} = f(x) = (1+e^{x})$

$$f(x) = -1(1+e^{x}) \cdot e^{-1}$$

$$f(x) = -1(1+e^{x}) \cdot e^{-1}$$

left endpoints right endpt

$$q_0 = 0$$
 $q_1 = \frac{1}{2}$
 $q_1 = \frac{1}{2}$ $q_2 = 1$
 $q_3 = \frac{3}{2}$ $q_4 = \frac{3}{2}$

$$T = \left[f(a_0) + 2 f(a_1) + 2 f(a_2) + 2 f(a_3) + 4 (a_4) + 4 (a_5) + 2 f(a_5) + 4 (a_5) + 4 (a$$