Bridge-Finding Game

in the Generic Group Model

Bridge event since $\tau(-x_1 - x_2) = \tau(x_2 + 7) = 01101101$ but $((-1, -1, 0), 0) \neq ((0, 1, 0), 7)$

Then we learned

$$-x_1 - x_2 = x_2 + 7$$

Theorem (informal).
$$\Pr[\mathsf{BRIDGE}] \leq \mathcal{O}\left(\frac{q^2+qN}{p}\right)$$
.

au(y)	$ec{a}$	b
au(1)	(0, 0, 0)	1
$ au(x_1)$	(1, 0, 0)	0
$\tau(x_2)$	(0, 1, 0)	0
$\tau(x_3)$	(0, 0, 1)	0
$\tau(x_1+x_2)$	(1, 1, 0)	0
τ (01101101 ₂)	(-1, -1, 0)	0
$\tau(x_1 + 1)$	(1, 0, 0)	1
ŋ	(0, 0, 0)	7
01101101	(0, 1, 0)	7
• • •	• • •	

Multi-User Security of Short Schnorr Signatures

in the ROM+GGM

$$\begin{split} \Pr\Big[\mathsf{SigForge}_{\mathcal{A},\Pi}^{\mathsf{RO},\mathsf{GO},N}(k) &= 1\Big] &\leq \Pr[\mathsf{BRIDGE}] + \Pr[\mathsf{Bad}] \\ &\leq \mathcal{O}\left(\frac{q^2 + qN}{p} + \frac{q}{2^k}\right) \\ &\leq \mathcal{O}\left(\frac{q + N}{2^k}\right), \end{split}$$

where $p \simeq 2^{2k}$.