Chapitre 4 – Etude de fonctions

Compétence : Passer de la courbe au tableau de variation et au tableau de signes

Exercice 1 : Passer de la courbe au tableau de variation et au tableau de signes

On donne, dans chacun des cas suivants numérotés de $\mathbf{1}$ à $\mathbf{9}$, la représentation graphique d'une fonction f.

- 1. Préciser l'ensemble de définition
- 2. Dresser le tableau de variation de la fonction f.
- 3. Préciser les extremums de la fonction f sur son ensemble de définition.
- 4. Dresser le tableau de signes de la fonction f.

Compétence : Utiliser un tableau de variation

Exercice 2: Utiliser un tableau de variation

On donne, dans chacun des cas suivants numérotés de $\boxed{1}$ à $\boxed{6}$, le tableau de variation d'une fonction f.

- 1. Préciser l'ensemble de définition
- 2. Tracer une courbe susceptible de représenter la fonction f à partir de son tableau de variation.
- 3. Préciser les extremums de la fonction f sur son ensemble de définition. En quelles valeurs sont-ils atteints ?

Exercice 3 : Attribuer à chaque courbe son tableau de variations

Attribuer à chaque courbe son tableau de variations :

	Х	-5	-3	3	7
1.	f	5	*8	* ₅ /	8
	х	-5	0	3	7
2.	g	5	* 0	3	_ o
	х	-5	0	3	7
2	h	5	* 3/	* ⁵	^ 0

 $2 \rightarrow C_1$

 $1 \rightarrow C_3$

 $3 \rightarrow C_2$

Exercice 4 : Comparaison

On donne le tableau de variation d'une fonction f.

1. Déterminer l'ensemble de définition de f.

$$D_f = [-4; 6]$$

2. Décrire les variations de f.

La fonction f est strictement croissante sur [-4; -2] et sur [0; 4]. La fonction f est strictement décroissante sur [-2; 0] et sur [4; 6].

3. Quelle est le maximum de la fonction f sur [0; 6]?

Le maximum de la fonction f sur [0; 6] est 3 atteint en x = 4.

4. En justifiant ces réponses, indiquer dans chaque cas si l'affirmation est vraie ou fausse ou si le tableau ne permet pas de conclure.

	<u> </u>	
a.	f(1) < f(3)	1 < 3, or la fonction f est strictement croissante sur $[0;4]$ ainsi :
		f(1) < f(3). VRAIE.
b.	f(-2) > f(-1)	$-2 < -1$, or la fonction f est strictement décroissante sur $[-2 \ ; 0]$ ainsi :
		f(-2) > f(-1). VRAIE.
c.	f(-3) < 4	Sur $[-4; -2]$, le maximum de la fonction f est 4 , ainsi pour tout $x \in [-4; -2]$ on
		$a: f(x) \leq 4$. Or $-3 \in [-4\ ;\ -2]$ ainsi $f(-3) < 4$. VRAIE.
d.	f(0,1) < 0	Le tableau ne permet pas de conclure, on sait juste que pour tout $x \in [0; 4]$ on a
		$-3 \le f(x) \le 3.$
e.	$f(x) \ge -1 \mathrm{sur} \left[-4; 6 \right]$	Le minimum de la fonction f sur $[-4; 6]$ est -3 . Ainsi pour tout réel $x \in [-4; 6]$
		on a $f(x) \ge -3$ et non -1 . FAUSSE.
f.	f(1) = 0	Le tableau ne permet pas de conclure, on sait juste que pour tout $x \in [0; 4]$ on a
		$-3 \le f(x) \le 3.$
g.	f(2) > 3	Pour tout $x \in [0; 4]$ on a $-3 \le f(x) \le 3$. Or $2 \in [0; 4]$ donc FAUSSE.
h.	f(-3,5) = f(2)	Le tableau ne permet pas de conclure.
	· ·	
i.	Le minimum de f sur	Le minimum de la fonction f sur $[-4; 6]$ est -3 . FAUSSE.
	[-4; 6] est -1	

Exercice 5: Comparaison

On donne le tableau de variation d'une fonction f.

1. Déterminer l'ensemble de définition de f.

$$D_f = [0; 5]$$

2. Décrire les variations de f.

La fonction f est strictement croissante sur [2; 4].

La fonction f est strictement décroissante sur [0; 2] et sur [4; 5].

3. Quelle est le minimum de la fonction f sur [2; 5]?

Le minimum de la fonction f sur [2;5] est -5 atteint en x=2.

4. En justifiant ces réponses, indiquer dans chaque cas si l'affirmation est vraie ou fausse ou si le tableau ne permet pas de conclure.

a. <i>f</i>	f(1) < f(3)	Le tableau ne permet pas de conclure.
b. <i>f</i>	f(1) < f(0)	0 < 1, or la fonction f est strictement décroissante sur $[0;2]$ ainsi : $f(0) > f(1)$. VRAIE.
c. <i>f</i>	f(3) < 0	Sur $[2;4]$, le maximum de la fonction f est -1 , ainsi pour tout $x \in [2;4]$ on a : $f(x) \le -1 < 0$. Or $3 \in [2;4]$ ainsi $f(3) < 0$. VRAIE.
d. <i>f</i>	f(3) = -3	Le tableau ne permet pas de conclure.
e. <i>f</i>	$f(x) \le -1 \mathrm{sur} \left[0; 5\right]$	Le maximum de la fonction f sur $[0;5]$ est -1 . Ainsi pour tout réel $x \in [0;5]$ on a $f(x) \le -1$. VRAIE.
f. <i>f</i>	f(1) = -4.5	Le tableau ne permet pas de conclure.
g. <i>f</i>	f(1) < f(5)	$f(5) = -2$. Pour tout $x \in [0;2]$ on a $-5 \le f(x) \le -4 < -2$. Or $1 \in [0;2]$ donc VRAIE.
h. <i>f</i>	f(2) = f(5)	$f(2) = -5$ et $f(5) = -2$. Ainsi $f(2) \neq f(5)$. FAUSSE.
	Le minimum de f sur $[0;5]$ est -2	Le minimum de la fonction f sur $[-4;6]$ est -5 . FAUSSE.

Exercice 6 : Images et antécédents

On donne le tableau de variation d'une fonction f.

1. Déterminer l'ensemble de définition de f.

$$D_f = [-2; 6]$$

2. Quelles sont les images par f de -1, 3 et 6?

f(-1) = 8	f(3)=9	f(6) = -1

3. Compléter le plus précisément possible :

a.
$$8 \le f(2) \le 9$$
 $-1 \le f(4) \le 9$

4. Donner un antécédent de -1. En possède-t-il d'autre(s) ?

6 est un antécédent de -1 par f. Il n'en possède pas d'autre.

5. Combien 0 a-t-il d'antécédent ?

0 possède un seul antécédent, celui-ci appartient à l'intervalle [3 ; 0] où pour tout réel x on a : $-1 \le f(x) \le 9$.

Exercice 7: Tracer une courbe

On donne le tableau de variation et le tableau de signe de la fonction f.

Proposer une représentation graphique de cette fonction.

Compétence : Parité

Exercice 8:

On considère la fonction f définie sur \mathbb{R} par : $f(x) = 2x^2 + 3$.

1. Démontrer que cette fonction est paire.

$$f(-x) = 2 \times (-x)^2 + 3 = 2x^2 + 3 = f(x)$$

2. Que pouvez-vous en déduire pour la représentation graphique de f?

La représentation graphique de f est symétrique par rapport à l'axe des abscisses.

3. Calculer, sans calculatrice, les images de 0, 5 et 10.

$$f(0) = 2 \times 0^2 + 3 = 3$$
 $f(5) = 2 \times 5^2 + 3 = 2 \times 25 + 3 = 53$ $f(10) = 2 \times 10^2 + 3 = 2 \times 100 + 3 = 203$

4. Quelles autres images pouvez-vous donner, sans aucun calcul?

$$f(-5) = f(5) = 53$$
 $f(-10) = f(10) = 203$

Exercice 9:

On considère la fonction f définie sur \mathbb{R} par : $f(x) = -x^3 + 2x$.

1. Démontrer que cette fonction est impaire.

$$f(-x) = -(-x)^3 + 2 \times (-x) = x^3 - 2x = -(-x^3 + 2x) = -f(x)$$

2. Que pouvez-vous en déduire pour la représentation graphique de f ?

La représentation graphique de f est symétrique par rapport à l'origine du repère.

- 3. VRAI ou FAUX ? Justifier...
 - a) Le point A (2; -4) appartient à la courbe de f.

$$f(2) = -2^3 + 2 \times 2 = -8 + 4 = -4$$
. VRAI

b) Le point B(-2; -4) appartient à la courbe de f.

FAUX, la fonction est impaire donc f(-2) = -f(2) = 4.

c) Le point C (-2; 4) appartient à la courbe de f.

VRAI, voir au-dessus.

Exercice 10 : Ne pas confondre recette et bénéfice

Une entreprise fabrique et commercialise un produit. Chaque semaine, elle limite sa production à 21kg.

I) Etude de la recette

L'entreprise vend ce produit 84€/kg.

a. Quelle est sa recette si elle en vend 5kg? 10kg?

$$R(5) = 84 \times 5 = 420 \in$$

$$R(10) = 84 \times 10 = 840$$
€

b. Pour x kg vendus, on note la recette R(x). Déterminer l'expression de R(x) en fonction de x.

Pour tout réel $x \in [0; 21]$ on a R(x) = 84x.

c. Dans le repère ci-dessous, identifier la courbe représentative de la fonction R.

La fonction R est une fonction linéaire, ainsi elle est représentée par une droite passant par l'origine, c'est la courbe rouge.

II) Etude du coût de production

Pour x kg de produit fabriqué, le coût de fabrication en euros est donné par : $C(x) = \frac{1}{3}x^3 - 10x^2 + 120x + 72$

a. Combien coûte la fabrication de 6kg de produit ? 10kg ?

$$C(6) = \frac{1}{3} \times 6^3 - 10 \times 6^2 + 120 \times 6 + 72$$

= 504 €

$$C(10) = \frac{1}{3} \times 10^3 - 10 \times 10^2 + 120 \times 10 + 72$$

$$\approx 605 \varepsilon \qquad \left(\frac{1816}{3}\right)$$

b. Donner le tableau de valeurs de la fonction \mathcal{C} sur [0;21] avec un pas de 3.

\boldsymbol{x}	0	3	6	9	12	15	18	21
C(x)	72	351	504	585	648	747	936	1269

c. On admet que la fonction C est croissante sur [0;21]. Identifier la courbe représentative de la fonction C.

Comme C est croissante sur [0; 21], sa courbe représentative est la courbe bleue.

d. Résoudre graphiquement l'équation R(x) = C(x)

$$S = \{6\}$$

Ainsi lorsque l'entreprise produit et vend 6kg de produit, la recette et le cout de production sont égaux (ainsi le bénéfice est nul).

e. Résoudre graphiquement l'inéquation R(x) > C(x)

$$S =]6; 21]$$

Ainsi lorsque l'entreprise produit et vend entre 6 et 21kg de produit, la recette est supérieur au cout de production (ainsi l'entreprise fait un bénéfice).

f. Interpréter ces deux derniers résultats.

III) Etude du bénéfice

Pour x kg de produit fabriqué et vendu, le bénéfice est donné par : B(x) = R(x) - C(x)

a. Montrez que le bénéfice est donné par : $B(x) = -\frac{1}{3}x^3 + 10x^2 - 36x - 72$

$$B(x) = R(x) - C(x)$$

$$= 84x - \left(\frac{1}{3}x^3 - 10x^2 + 120x + 72\right)$$

$$= 84x - \frac{1}{3}x^3 + 10x^2 - 120x - 72$$

$$= -\frac{1}{2}x^3 + 10x^2 - 36x - 72$$

b. Donner le tableau de valeurs de la fonction B sur [0; 21] avec un pas de 3.

x	0	3	6	9	12	15	18	21
B(x)	-72	-99	0	171	360	513	576	495

c. On admet que la fonction *B* est décroissante sur [18 ; 21]. Identifier la courbe représentative de la fonction B.

Il s'agit de la courbe verte.

d. Résoudre graphiquement l'équation B(x) = 0. Est-ce cohérent avec votre réponse à la question II (d) ?

$S = \{6\}$. Cela est cohérent.

e. Résoudre graphiquement l'équation B(x) > 0. Est-ce cohérent avec votre réponse à la question II (f) ?

S =]6; 21]. Cela est cohérent.

Déterminer graphiquement la quantité pour laquelle le bénéfice est maximal.

Quelle est alors la valeur de ce bénéfice ? Comment aurait été possible d'établir ce résultat grâce aux courbes représentatives des fonctions R et C ?

Le bénéfice est maximal pour 18kg de produits fabriqués et vendus. Ce bénéfice est alors de 576 \in . Il suffisait de regardait pour quel quantité de produits l'écart entre la recette et le cout de production est le plus grand (lorsque la droite est au-dessus de C_c).

Exercice supplémentaire: Optimisation

On dispose d'un carré de métal de 25 cm de côté. Pour fabriquer une boîte sans couvercle, on enlève à chaque coin un carré de côté x et on relève les bords par pliage.

1. a. Calculer le volume V de la boîte si x = 2.

$$V = L \times l \times h$$
 avec $L = 25 - 2 \times 2 = 21, l = 21$ et $h = 2$.

$$V = 23 \times 23 \times 2 = 882cm^3$$

b. Exprimer en fonction de x le volume V. On note V = f(x)

$$f(x) = x(25-2x)^2 = x(625-100x+4x^2) = 4x^3-100x^2+625x.$$

c. x peut-il prendre n'importe quelle valeur ? En déduire l'ensemble de définition de f.

$x \ge 0$ puisque une longueur est toujours positive et il faut que $2x \le 25$ c'est-à-dire $x \le 12, 5$. Ainsi $D_f = [0; 12, 5]$.

d. À quelle condition (sur x) le volume est-il nul ?

$$f(x) = 0$$

$$x(25-2x)^2=0$$

$$x = 0$$
 ou $25 - 2x = 0$

$$x = 0$$
 ou $x = 12, 5$.

Le volume est nul pour x = 0 cm et x = 12, 5 cm

- 2. On vient de définir une fonction qui, à tout nombre de l'intervalle [0;12,5], associe le volume de la boîte V=f(x).
 - a. À l'aide de la calculatrice, donner le tableau de valeurs de la fonction f sur [0; 12,5] avec un pas de 1.

x	0	1	2	3	4	5	6	7	8	9	10	11	12	12,5
f(x)	0	529	882	1083	1156	1125	1014	847	648	441	250	99	12	0

b. Tracer la courbe représentative de f.

c. Résoudre graphiquement les équations :

$$f(x) = 500$$
 et $f(x) = 1000$.

$S \approx \{0, 93; 8, 71\}$ pour $f(x) = 500$	$S \approx \{2, 5, 6, 1\} \text{ pur } f(x) = 1000$

3. a. Dresser le tableau de variation de la fonction f.

x	0	4,17	12,5
f(x)	800	1157,41	850

b. Quel le volume maximal? En quelle valeur est-il atteint?

Le volume maximal est d'environ $1157,41cm^3$ pour environ x=4,17 cm