

USP SÃO CARLOS

Estimador de Estado WLS

Modelo de medição:

$$\underline{z} = h(\underline{x}) + \underline{w}$$

O método WLS consiste da minimização do índice $J(\underline{x})$:

$$J(\underline{x}) = (\underline{z} - h(\underline{x}))^{T} \cdot R^{-1} \cdot (\underline{z} - h(\underline{x}))$$

Sendo $J(\underline{x})$ uma norma no espaço vetorial das medidas \Re^m induzida pelo produto interno $< u, v> = u^t.R^{-1}.v$

$$J(\underline{x}) = ||(\underline{z} - h(\underline{x}))||_{R^{-1}}^2 = \langle \underline{z} - h(\underline{x}), \underline{z} - h(\underline{x}) \rangle$$

Interpretação Geométrica do Índice UI

O índice UI é definido pela norma da componente não-detectável do erro sobre a norma da componente detectável do erro.

Sendo que $||w||_{R^{-1}}$ é uma norma no espaço vetorial das medidas \Re^m , induzida pelo produto interno $< u,v>=u^t.R^{-1}.v$

$$UI_{i} = \frac{||\underline{w}_{u}^{i}||_{R^{-1}}}{||\underline{w}_{d}^{i}||_{R^{-1}}} = \frac{\sqrt{K_{ii}}}{\sqrt{1 - K_{ii}}}$$

USP SÃO CARLOS

Estimando erros nas medidas com o índice UI

Como o vetor de resíduos é ortogonal ao plano da imagem da matriz Jacobiana temos:

$$\begin{split} & \underline{ec_i}^2 = (||w_{U_l}||_{R^{-1}})^2 + (||w_{D_l}||_{R^{-1}})^2 \\ & \underline{ec_i} = \sqrt{(||w_{U_l}||_{R^{-1}})^2 + (||w_{D_l}||_{R^{-1}})^2} \\ & \underline{ec_i} = \sqrt{(UI_i||w_{D_l}||_{R^{-1}})^2 + (||w_{D_l}||_{R^{-1}})^2} \end{split} \qquad UI_i = \frac{||\underline{w}_{u}^i||_{R^{-1}}}{||\underline{w}_d^i||_{R^{-1}}} \\ & \underline{ec_i} = \sqrt{(UI_i||w_{D_l}||_{R^{-1}})^2 + (||w_{D_l}||_{R^{-1}})^2} \end{split}$$

USP SÃO CARLOS

Estimando erros nas medidas com o índice UI

Como o vetor de resíduos é ortogonal ao plano da imagem da matriz Jacobiana temos:

$$\begin{split} & \underline{ec_i}^2 = (||w_{U_i}||_{R^{-1}})^2 + (||w_{D_i}||_{R^{-1}})^2 \\ & \underline{ec_i} = \sqrt{(||w_{U_i}||_{R^{-1}})^2 + (||w_{D_i}||_{R^{-1}})^2} & UI_i = \frac{||\underline{w}_{i}^i||_{R^{-1}}}{||\underline{w}_{d}^i||_{R^{-1}}} \\ & \underline{ec_i} = \sqrt{(UI_i||w_{D_i}||_{R^{-1}})^2 + (||w_{D_i}||_{R^{-1}})^2} & \longrightarrow & ||w_{Di}||_{R^{-1}} = r_i \end{split}$$

Estimando erros nas medidas com o índice UI

Como o vetor de resíduos é ortogonal ao plano da imagem da matriz Jacobiana temos:

$$\begin{split} & \underline{ec_i}^2 = (||w_{U_l}||_{R^{-1}})^2 + (||w_{D_l}||_{R^{-1}})^2 \\ & \underline{ec_i} = \sqrt{(||w_{U_l}||_{R^{-1}})^2 + (||w_{D_l}||_{R^{-1}})^2} \\ & \underline{ec_i} = \sqrt{(UI_i||w_{D_l}||_{R^{-1}})^2 + (||w_{D_l}||_{R^{-1}})^2} \\ & \underline{ec_i} = \sqrt{(UI_i \cdot \underline{r_i})^2 + r_i^2} \end{split}$$

USP SÃO CARLOS

Estimando erros nas medidas com o índice UI

Como o vetor de resíduos é ortogonal ao plano da imagem da matriz Jacobiana temos:

$$\begin{split} & \underline{ec_i}^2 = (||w_{U_l}||_{R^{-1}})^2 + (||w_{D_l}||_{R^{-1}})^2 \\ & \underline{ec_i} = \sqrt{(||w_{U_l}||_{R^{-1}})^2 + (||w_{D_l}||_{R^{-1}})^2} \\ & \underline{ec_i} = \sqrt{(UI_i||w_{D_l}||_{R^{-1}})^2 + (||w_{D_l}||_{R^{-1}})^2} \\ & \underline{ec_i} = \sqrt{(UI_i \cdot \underline{r_i})^2 + r_i^2} \end{split}$$

$$\underline{ec_i} = \sqrt{(UI_i^2 + 1) \cdot r_i^2}$$

Estimando erros nas medidas com o índice UI

Como o vetor de resíduos é ortogonal ao plano da imagem da matriz Jacobiana temos:

$$\underline{ec_i}^2 = (||w_{U_i}||_{R^{-1}})^2 + (||w_{D_i}||_{R^{-1}})^2$$

$$\underline{ec_i} = \sqrt{(||w_{U_i}||_{R^{-1}})^2 + (||w_{D_i}||_{R^{-1}})^2}$$

$$\underline{ec_i} = \sqrt{(UI_i||w_{D_i}||_{R^{-1}})^2 + (||w_{D_i}||_{R^{-1}})^2}$$

$$\underline{ec_i} = \sqrt{(UI_i \cdot \underline{r_i})^2 + {r_i}^2}$$

$$\underline{ec_i} = \sqrt{(UI_i^2 + 1). r_i^2}$$

$$\underline{ec_i} = \underline{r_i}.\sqrt{(U{I_i}^2 + 1)}$$

37

USP SÃO CARLOS

Estimando erros nas medidas com o índice UI

Torna-se então possível obter o erro composto em desvio padrão:

$$\underline{e}_{\sigma_i} = \underline{r_i}^N \cdot \sqrt{(U I_i^2 + 1)}$$

USP SÃO CARLOS

Estimando erros nas medidas com o índice UI

Torna-se então possível obter o erro composto em desvio padrão:

$$\underline{e}_{\sigma_i} = \underline{r_i}^N \cdot \sqrt{(U I_i^2 + 1)}$$

Logo com o \underline{e}_{σ_i} torna-se possível estimar o erro de uma medida:

$$\widehat{w}_i = \underline{e}_{\sigma_i}.\sigma_i$$

USP SÃO CARLOS

Estimando erros nas medidas com o índice UI

Torna-se então possível obter o erro composto em desvio padrão:

$$\underline{e}_{\sigma_i} = \underline{r_i}^N . \sqrt{(U I_i^2 + 1)}$$

Logo com o \underline{e}_{σ_i} torna-se possível estimar o erro de uma medida:

$$\underline{\widehat{w}_i} = \underline{e}_{\sigma_i}.\sigma_i$$

A partir da estimativa do erro é possível corrigir a medida:

$$\underline{z_i}^{corrigido} = \underline{z_i}^{erro} - \widehat{w_i}$$

40

USP SÃO CARLOS

Estimando erros nas medidas com o índice UI

Torna-se então possível obter o erro composto em desvio padrão:

$$\underline{e}_{\sigma_i} = \underline{r_i}^N . \sqrt{(U I_i^2 + 1)}$$

Logo com o \underline{e}_{σ_i} torna-se possível estimar o erro de uma medida:

$$\underline{\widehat{w}_i} = \underline{e}_{\sigma_i}.\sigma_i$$

A partir da estimativa do erro é possível corrigir a medida:

$$\underline{z_i}^{corrigido} = \underline{z_i}^{erro} - \widehat{w}_i$$

$$\underline{z}_i^{corrigido} = \underline{z}_i^{erro} - \underline{e}_{\sigma_i} \cdot \sigma_i$$

41

USP SÃO CARLOS

Simulações Computacionais:

Foram implementados os seguintes algoritmos:

- Estimador de estado WLS convencional não linear
- Estimador de estado híbrido WLS, conforme proposto em Fantin et al. (2015)
- · Teste do maior resíduo normalizado
- Teste do índice J(x)
- Processamento de EG através do Teste- \hat{b}
- · Cálculo do UI em medidas
- Processamento de EGs através do erro composto em desvio padrão

USP SÃO CARLOS

Comparando \underline{e}_{σ_i} e o teste- $\widehat{\boldsymbol{b}}$

Através de uma análise comparativa entre a equação do \hat{b}_i e a equação do erro composto em desvio padrão (e_{σ_i}), verifica-se:

$$\underline{e}_{\sigma_i} = \underline{r_i}^N \cdot \sqrt{(U I_i^2 + 1)} = \underline{r_i}^N \cdot \sqrt{\frac{K_{ii}}{(1 - K_{ii})} + 1}$$

$$\underline{e}_{\sigma_i} = \underline{r}_i^N \cdot \sqrt{\frac{K_{ii} + 1 - K_{ii}}{(1 - K_{ii})} + 1} = \underline{r}_i^N \cdot \sqrt{\frac{1}{(1 - K_{ii})}}$$

$$\underline{e}_{\sigma_i} = \underline{r}_i^N \cdot \sqrt{\frac{R_{ii}}{\Omega_{ii}}} = \frac{\underline{r}_i^N \cdot \sigma_i}{\sqrt{\Omega_{ii}}} = \hat{\underline{b}}_i$$

$$\underline{e}_{\sigma_i} = \underline{\hat{b}}_i$$

USP SÃO CARLOS

Preparação de Dados:

Medidas sem ruídos:

- 1. Obtenção de medidas pelo ANAREDE
- 2. Cálculo dos desvios padrão

$$\sigma_i = \frac{|z_i^{fc}|.pr}{3}$$

Sendo $pr_{scada}=2\%$ e $pr_{PMU}=0.5\%$

Geração de Medidas com ruídos gaussianos:

- 1. Obtenção de valores de referência pelo ANAREDE
- 2. Cálculo dos desvios padrão
- Sorteiam-se número aleatórios com distribuição normal de média zero e desvios padrão calculados no passo 2.
- Quando os números sorteados forem menores (em módulo) que 2,5 vezes os desvios padrão das medidas, adicionam-se, esses números, aos valores de referência obtidos pelo fluxo de carga

44

Testes realizados:

- Foram adicionados EGs simples, em uma medida i de cada vez, com um valor de $10.\,\sigma_i$ e $20.\,\sigma_i$
- Foram testados vários métodos de processamento de EGs baseados nos resíduos do estimador WLS

Limiares de Detecção		
Métodos	SCADA	PMUs
Índice J(x)	$\lambda = \chi_{43;(1-0,05)} \cong 58$	$\lambda = \chi_{189;(1-0,05)} \cong 222$
Resíduos Normalizados	$\beta = 3$	$\beta = 3$
Teste- $\widehat{m{b}}$	c = 4	c = 4
\underline{e}_{σ_i}	c = 3	c = 3

USP SÃO CARLOS

Algoritmo e_{σ}

- 1. Determinar as variáveis de estado
- 2. Calcular as matrizes $K \in (I K)$
- 3. Calcular os r_N e o índice UI das medidas
- 4. Calcular o e_{σ}
- 5. Encontrar a medida i de maior resíduo normalizado em módulo
- 6. Verificar se a medida i possui EG
 - Se e_{σ_i} > c, a medida possui EG
 - Se $e_{\sigma_i} \leq$ c, a medida não possui EG
- 7. Corrigir a medida com EG

USP SÃO CARLOS

Algoritmo teste- \hat{b} 1. Determinar as variáveis de estado
2. Calcular os r_N das medidas
3. Encontrar a medida i de maior resíduo normalizado em módulo
4. Determinar o erro estimado \hat{b}_i 5. Verificar se a medida i possui EG
• Se $\hat{b}_i > c$, a medida possui EG
• Se $\hat{b}_i < c$, a medida não possui EG
6. Remova a medida com erro grosseiro

Considerações Finais:

- O índice UI classifica as medidas de acordo com o quanto o resíduo caracteriza o erro.
- As medidas com índice UI elevado apresentam maior dificuldade no processamento de EGs através da análise dos resíduos.
- O índice UI varia muito pouco em relação a medidas sem ou com ruído gaussiano.
- Os valores de \hat{b} e e_{σ} calculados foram iguais.

61

Índice UI

Autora: Camila Silva Vieira Orientador: Prof. João Bosco Augusto London Jr.

USP SÃO CARLOS

Considerações Finais:

- Nos testes sem ruídos gaussianos a medida portadora de EG foi sempre a de maior resíduo normalizado.
 - Nos testes com ruído gaussianos apresentou casos em que isso não ocorreu.
- O método de J(x) foi o que apresentou pior desempenho no processamento de EGs.
- Nos sistemas híbridos os testes funcionaram bem devido a alta redundância de medidas.
- O último teste apresentado mostrou uma melhoria no processamento de EGs utilizando PMUs.

62