Sinais e Sistemas Electrónicos

Capítulo 1: Fundamentos (parte 2)

Sinais e Sistemas Electrónicos – 2022/2023

Sumário

- Lei de Ohm;
- Resistividade;
- Potência dissipada numa resistência;
- Lei das correntes e lei das tensões de Kirchhoff;
- Análise de circuitos simples (um só loop / um par de nós);
- Combinação de fontes e de resistências;
- Divisores de tensão e de corrente.

Lei de Ohm

George Simon Ohm, físico alemão (16-03-1789, 06-07-1854)

E. Martins, DETI Universidade de Aveiro

Sinais e Sistemas Electrónicos – 2022/2023

Lei de Ohm

- Lei fundamental da electricidade enunciada pela primeira vez, em 1827, pelo físico alemão Georg Simon Ohm:
- "Para todo o condutor linear, existe uma razão constante entre a tensão v aos seus terminais e a corrente i que o atravessa"

- A constante de proporcionalidade é a Resistência, R.
- A resistência é uma medida da oposição que o condutor eléctrico oferece à passagem da corrente; Medida em $Ohm(\Omega)$;

E. Martins, DETI Universidade de Aveiro

Lei de Ohm e os sinais da tensão e corrente

• A expressão dada da Lei de Ohm é válida para uma resistência desde que se respeite a **CSEP**:

$$v = -R.i$$

E. Martins, DETI Universidade de Aveiro

1.2-5

Sinais e Sistemas Electrónicos – 2022/2023

Circuito aberto e curto-circuito

• Num circuito aberto,
$$R = \infty \implies i = v/R = 0$$

• Num curto-circuito,

curto-circuito,

$$R = 0 \implies v = R.i = 0$$

Nota: Nos circuitos que iremos estudar, os fios de ligação entre elementos são considerados ideais: apresentam $R = \theta \Omega$.

E. Martins, DETI Universidade de Aveiro

Resistência e resistividade de materiais

• Os condutores reais apresentam uma resistência eléctrica que pode ser determinada por:

$$R = \rho \frac{L}{A}$$

- ρ Resistividade do material, em Ωm ;
- L comprimento, em m;
- A -Área da secção, em m^2 .

Material	$\rho(\Omega m)$
prata (Ag)	1.6 x 10 ⁻⁸
cobre (Cu)	1.7 x 10 ⁻⁸
ouro (Au)	2.2 x 10 ⁻⁸
alumínio (Al)	2.7 x 10 ⁻⁸
tungsténio (W)	5.5 x 10 ⁻⁸

E. Martins, DETI Universidade de Aveiro

2-7

Sinais e Sistemas Electrónicos – 2022/2023

Potência dissipada numa resistência

- A resistência é o elemento passivo mais simples;
- A potência dissipada ou absorvida por uma resistência é sempre positiva;

$$p = v.i = (R.i).i \qquad p = R.i^{2}$$

$$p = v.i = v\left(\frac{v}{R}\right) \qquad p = \frac{v^{2}}{R}$$
• Qual \(\epsilon\) o valor da resist\(\hat{e}\) ncia do filamento da l\(\hat{a}\)mpada?
$$p = \frac{v^{2}}{R} \qquad \Leftrightarrow \qquad R = \frac{v^{2}}{p}$$

$$R = \frac{220^{2}}{100} = 484\Omega$$

E. Martins, DETI Universidade de Aveiro

Leis de Kirchhoff

lei das correntes

Gustav Robert Kirchhoff, físico alemão (12-03-1824, 17-10-1887)

E. Martins, DETI Universidade de Aveiro

1.2-9

Sinais e Sistemas Electrónicos – 2022/2023

Pressupostos e definições

Na análise que se segue consideramos:

- Nó Ponto de ligação de dois ou mais elementos;
- Ramo Caminho no circuito que liga dois nós.
- Caminho fechado ou *loop* Qualquer caminho através do circuito que começa e termina no mesmo nó;
- Malha Loop que não contém outros loops dentro dele.

E. Martins, DETI Universidade de Aveiro

Caminhos fechados ou loops

- Para analisar um circuito é importante <u>identificar *loops*</u> nesse circuito (embora não seja preciso identificar todos os *loops* possíveis).
- Alguns desses *loops* são:

E. Martins, DETI Universidade de Aveiro

1.2-13

Sinais e Sistemas Electrónicos – 2022/2023

Lei das Correntes de Kirchhoff – 1^a lei: KCL

• "A soma das correntes que entram num nó é igual à soma das correntes que saem desse nó"

$$i_a + i_b = i_c + i_d$$

- É uma consequência da Lei da Conservação da Carga: a carga não se pode perder nem criar num nó;
- Alternativamente pode ser enunciada como:
- "A soma algébrica das correntes que entram num nó é zero"

$$\sum_{n=1}^{N} i_n = 0$$

$$i_a + i_b - i_c - i_d = 0$$

E. Martins, DETI Universidade de Aveiro

Leis de Kirchhoff

lei das tensões

E. Martins, DETI Universidade de Aveiro

Lei das Tensões de Kirchhoff – 2ª lei: KVL

- "A soma algébrica das tensões ao longo de um caminho fechado ($\it loop$) é zero" $v_1+v_2+v_3+v_4=0$
- É uma consequência da Lei da Conservação da Energia;
- Mais genericamente, $\sum_{n=1}^{N} v_n = 0$

E. Martins, DETI Universidade de Aveiro

1.2-17

Sinais e Sistemas Electrónicos – 2022/2023

Lei das Tensões de Kirchhoff – 2ª lei: KVL

Para escrever a soma das tensões de um loop, procedemos da seguinte maneira:

- 1- Escolhemos um nó como ponto de partida do caminho fechado;
- 2- Percorremos o *loop* no sentido horário ou anti-horário, adicionando cada uma das tensões que encontramos;

- 3- O sinal algébrico atribuído a cada tensão é:
 - Positivo, se encontramos primeiro o sinal positivo (+) dessa tensão;
 - Negativo, se encontramos primeiro o sinal negativo (-) dessa tensão;

$$-v_A - v_B + v_C + v_D = 0$$

E. Martins, DETI Universidade de Aveiro

Lei das Tensões de Kirchhoff – 2ª lei: KVL

• Podemos escrever tantas equações quantos os *loops* que conseguirmos identificar no circuito:

$$-v_X + v_B - v_D = 0$$

Excepção: Caminho a azul não é um loop, mas pode ser considerado para efeitos da aplicação da KVL:

E. Martins, DETI Universidade de Aveiro

1.2-19

Sinais e Sistemas Electrónicos – 2022/2023

Análise de circuitos simples

E. Martins, DETI Universidade de Aveiro

Circuito com um só loop (ou uma só malha)

• Pretendemos analisar o circuito série dado;

• Como este é um circuito série, a grandeza mais importante a determinar (da qual todas as outras dependem) é a corrente, *i*, no circuito.

E. Martins, DETI Universidade de Aveiro

1.2-21

Sinais e Sistemas Electrónicos – 2022/2023

Circuito com um só loop – determinação de i

da KVL

1- Arbitrar um sentido de referência para a corrente

Lembremos que elementos em série são percorridos pela mesma corrente.

Aplicação

2- Escolher as polaridades de referência para as tensões desconhecidas

Convém escolher as polaridades de forma a que a corrente entre pelo lado positivo.

E. Martins, DETI Universidade de Aveiro

Circuito com um só loop – determinação de i

3- Com base na Lei das Tensões de Kirchhoff, escrever a equação:

$$-v_{s1} + v_{R1} + v_{s2} + v_{R2} = 0$$

$$\downarrow i \\ v_{R1} \\ \downarrow v_{R2} \\ \downarrow v_{R2} \\ \downarrow i \\ \downarrow v_{R2} \\ \downarrow R2$$

4- Aplica-se a Lei de Ohm para expressar v_{RI} e v_{R2} em função de i:

$$v_{R1} = R_1.i$$
 $v_{R2} = R_2.i$ $i = \frac{v_{s1} - v_{s2}}{R_1 + R_2}$

E. Martins, DETI Universidade de Aveiro

1.2-23

Sinais e Sistemas Electrónicos – 2022/2023

Circuito com um só loop

- Sabendo *i* podemos calcular praticamente tudo sobre o circuito, por exemplo:
 - ullet A tensão aos terminais de R1: $v_{R1}=R_{1}.i$
 - A potência dissipada em R2: $p_{R2} = R_2 . i^2$
 - As potências <u>absorvidas</u> por cada uma dos geradores: $p_{s1} = v_{s1}.(-i)$

$$p_{s2} = v_{s2}.i$$

E. Martins, DETI Universidade de Aveiro

Circuito com um par de nós

• Pretendemos analisar o circuito paralelo dado;

• Neste caso, como se trata de um circuito paralelo, a grandeza mais importante a determinar (da qual todas as outras dependem) é a tensão, v, entre os dois nós.

E. Martins, DETI Universidade de Aveiro

Circuito com um par de nós – determinação de *v*

Aplicação da KCL

1- Arbitrar uma polaridade de referência para a tensão v;

Lembremos que elementos em paralelo estão todos à mesma tensão.

2- Escolher sentidos de referência para as correntes desconhecidas;

Convém escolher os sentidos de forma a que as correntes entrem pelo lado positivo da tensão.

E. Martins, DETI Universidade de Aveiro

1.2-27

Sinais e Sistemas Electrónicos – 2022/2023

Circuito com um par de nós – determinação de v

3- Com base na Lei das Correntes de Kirchhoff, escrever a equação do nó:

$$-i_{s1}+i_{G1}+i_{s2}+i_{G2}=0$$

$$\downarrow i_{G1}$$

$$\downarrow i_{G2}$$

4- Aplica-se a Lei de Ohm para expressar i_{GI} e i_{G2} em função de v:

$$i_{G1} = G_1.v$$
 $i_{G2} = G_2.v$
 $-i_{s1} + G_1.v + i_{s2} + G_2.v = 0$
$$v = \frac{i_{s1} - i_{s2}}{G_1 + G_2}$$

E. Martins, DETI Universidade de Aveiro

Combinação de fontes e resistências

... para simplificar a análise de circuitos

E. Martins, DETI Universidade de Aveiro

1.2-29

Sinais e Sistemas Electrónicos – 2022/2023

Combinação de fontes

• Notar que a posição relativa dos elementos num circuito série não afecta a corrente no mesmo.

• Podemos combinar as fontes de tensão vs1 e vs2:

Circuito equ

E. Martins, DETI Universidade de Aveiro

Combinação de fontes

Sinais e Sistemas Electrónicos – 2022/2023

Combinação de resistências - em série

E. Martins, DETI Universidade de Aveiro

Combinação de resistências - em paralelo

$$G_{eq} = G_1 + G_2 + ... + G_N$$

Nota: Para *N*=2 a resistência equivalente é dada por:

$$R_{eq2} = \frac{R_1.R_2}{R_1 + R_2}$$

 $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$

E. Martins, DETI Universidade de Aveiro

1.2-33

Sinais e Sistemas Electrónicos – 2022/2023

Erros frequentes: Combinação de resistências

• Nos elementos em série, não pode haver derivação nos pontos intermédios.

E. Martins, DETI Universidade de Aveiro

Divisores de tensão e de corrente

Circuitos muito comuns em electrónica!

E. Martins, DETI Universidade de Aveiro

Divisor de tensão

- Serve para exprimir a tensão aos terminais de uma resistência num circuito com várias resistências em série.
- Aplicando a Lei de Ohm a R_i (com $1 \le j \le N$)

$$v_j = R_j.i$$

• Aplicando a mesma lei ao circuito todo

icando a mesma lei ao to todo
$$i = \frac{v_s}{R_1 + R_2 + ... + R_N}$$

• Substituindo na expressão acima dá:

$$v_j = \frac{R_j}{R_1 + R_2 + \dots + R_N} v_s$$

E. Martins, DETI Universidade de Aveiro

1.2-37

Sinais e Sistemas Electrónicos – 2022/2023

Divisor de tensão com duas resistências

• Aparece com mais frequência com apenas duas resistências (ou dois conjuntos) ligadas a uma fonte de tensão.

$$v_2 = \frac{R_2}{R_1 + R_2} v_s$$

Mnémónica: Tensão numa das resistências é a resistência em causa a dividir pela soma das resistências, vezes a tensão da fonte.

E. Martins, DETI Universidade de Aveiro

Divisor de corrente

- É o dual do divisor de tensão e serve para exprimir a corrente através de uma resistência num circuito com várias resistências em paralelo.
- Aplicando a Lei de Ohm a G_i (com 1 $\leq j \leq N$)

$$i_j = G_j.v$$

• Aplicando a mesma lei ao circuito todo

$$v = \frac{i_s}{G_1 + G_2 + ... + G_N}$$

- Substituindo na expressão acima dá: $i_j = \frac{G_j}{G_1 + G_2 + ... + G_N} i_s$

$$i_{j} = \frac{\frac{1}{R_{j}}}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots + \frac{1}{R_{N}}} i_{s}$$

E. Martins, DETI Universidade de Aveiro

1.2-39

Sinais e Sistemas Electrónicos – 2022/2023

Divisores de corrente com duas resistências

• É também com apenas duas resistências (ou grupos de resistências) que o divisor de corrente surge com mais frequência.

$$i_2 = \frac{R_1}{R_1 + R_2} i_s$$

Mnémónica: Corrente numa das resistências é a outra resistência a dividir pela soma das resistências, vezes a corrente da fonte.

Exercício de aplicação

E. Martins, DETI Universidade de Aveiro

1.2-41

Sinais e Sistemas Electrónicos – 2022/2023

Problema

Um par de condutores de cobre com 0,75mm² de secção é utilizado para ligar uma bateria de 12 V (tensão nominal) ao circuito que alimenta. O circuito e a bateria estão distantes entre si de 20m.

- Determine a resistência de cada um destes condutores.
- Se o circuito consumir 3A e a bateria tiver uma tensão de 12,3 V aos seus terminais, qual a d.d.p. aos terminais do circuito?

E. Martins, DETI Universidade de Aveiro

Resolução

1º: Resistência de cada fio condutor, R_C

$$R_C = \rho \frac{L}{\Lambda}$$

$$R_C = \rho \frac{L}{A}$$
 $\rho = 1.68 \times 10^{-8} \Omega.m$ $L = 20m$ $A = 0.75 mm^2 = 0.75 \times 10^{-6} m^2$

$$A = 0.75mm^2 = 0.75x10^{-6}m^2$$

$$R_C = 1.68 \times 10^{-8} \frac{20}{0.75 \times 10^{-6}} = 0.448 \Omega$$

E. Martins, DETI Universidade de Aveiro

1.2-43

Sinais e Sistemas Electrónicos – 2022/2023

2° : Tensão aos terminais do circuito, V_L

O circuito equivalente é:

- Para determinar V_L vamos usar KVL;
- ...mas para isso precisamos de marcar tensões de referência nas resistências.

E. Martins, DETI Universidade de Aveiro

- Aplicando KVL, obtermos: $-12.3 V_1 + V_L + V_2 = 0$
- Usando a Lei de Ohm: $V_1 = -R_C I$ e $V_2 = R_C I$
- Substituindo... $-12.3 + R_C I + V_L + R_C I = 0$
- • Substituindo os valores de R_C e I: $-12.3 + 2(0.448 \text{x} 3) + V_L = 0$ $V_L = 9.6 V$

E. Martins, DETI Universidade de Aveiro

1.2-45

Sinais e Sistemas Electrónicos – 2022/2023 $V_1 = -R_C I = -1.35V$ $V_1 = -R_C I = -1.35V$ $V_L = 9.6V \qquad V_L$ $V_L = 9.6V \qquad V_L$ $R_C = 0.448\Omega$ $R_C = 0.448\Omega$ $V_2 = R_C I = 1.35V$ $V_2 = R_C I = 1.35V$ $V_3 = R_C I = 1.35V$

E. Martins, DETI Universidade de Aveiro