طراحی پایگاه داده رابطه ای

قمرناز تدين

بستار مجموعه خصیصه

برای مجموعه خصیصه های α ، بستار α تحت f (که با α نشان داده می شود) مجموعه خصیصه هایی است که از نظر تابعی با α و تحت α تعیین می شوند.

$$R = (A, B, C, G, H, I)$$

$$F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H\}$$

$$(AG)^{+}$$
1. result = AG

- 2. $result = ABCG(A \rightarrow C \text{ and } A \rightarrow B)$
- 3. $result = ABCGH \quad (CG \rightarrow H \text{ and } CG \subset AGBC)$
- 4. $result = ABCGHI \quad (CG \rightarrow I \text{ and } CG \subset AGBCH)$
 - ایا AG کلید کاندیدا است؟
 - ا. آیا AG سو پر کلید است؟
 - 1. Does $AG \rightarrow R? == Is (AG)^+ \supseteq R$ 2. آیا زیرمجموعه ای از AG سویرکلید است؟
 - 1. Does $A \rightarrow R? == Is (A)^+ \supset R$
 - 2. Does $G \rightarrow R? == Is (G)^+ \supset R$

كاربرد بستار خصيصه

- بررسی سوپرکلید:
- و برای بررسی اینکه آیا α سوپرکلید است، α^+ را محاسبه میکنیم و بررسی میکنیم آیا شامل همه خصیصه های α هست.
 - بررسی وابستگی تابعی
- بررسی برقراری و ابستگی تابعی lpha
 ightarrow eta باید $eta
 ightarrow eta \subset lpha^+$ بررسی شود.
 - ◄ محاسبه بستار F
- برای هر $\gamma=\gamma$ بستار $\gamma=\gamma$ را محاسبه میکنیم و برای هر $\gamma=S$ و ابستگی تابعی $\gamma=\gamma=\gamma$ برای میکنیم.

تجزیه بدون ازدست دادن اطلاعات

برای حالتی که $(R_1, R_2) = R$ ، باید برای همه رابطه های \mathbf{R} ممکن \mathbf{r} با شمای \mathbf{R} داشته باشیم:

$$r = \prod_{R1}(r)^{\bowtie} \prod_{R2}(r)$$

ر تجزیه R به R_1 و R_2 بدون از دست دادن اطلاعات است اگر حداقل یکی از وابستگیهای زیر در F و جود داشته باشد:

- $\circ R_1 \cap R_2 \rightarrow R_1$
- $\circ R_1 \cap R_2 \rightarrow R_2$

Example

- R = (A, B, C) $F = \{A \rightarrow B, B \rightarrow C\}$
 - میتواند به دو شکل تجزیه شود:
- $R_1 = (A, B), R_2 = (B, C)$
 - تجزیه بدون از دست دادن اطلاعات

$$R_1 \cap R_2 = \{B\} \text{ and } B \rightarrow BC$$

حفظ وابستگیها

- $R_1 = (A, B), R_2 = (A, C)$
 - تجزیه بدون از دست دادن اطلاعات

$$R_1 \cap R_2 = \{A\} \text{ and } A \rightarrow AB$$

وابستگیها حفظ نمی شوند.

بدون محاسبه $R_1 \bowtie R_2$ نمی توان $B \rightarrow C$ را بررسی کرد.

حفظ وابستكيها

اگر F_i مجموعه ای در وابستگیهای F_i باشد که فقط شامل خصیصه های R_i است، تجزیه «وابستگیها را حفظ میکند» اگر:

$$(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$$

Example

- R = (A, B, C) $F = \{A \rightarrow B$ $B \rightarrow C\}$ $Key = \{A\}$
- R is not in BCNF
- ▶ Decomposition $R_1 = (A, B), R_2 = (B, C)$
 - R_1 and R_2 in BCNF
 - Lossless-join decomposition
 - Dependency preserving

مثال تجزیه BCNF

$$m{R}=(A,B,C)$$
 $F=\{A o B$
 $B o C\}$
 $Key=\{A\}$
 C
 $B o C$
 $B o C$

$$\circ R_1 = (B, C)$$

$$\circ R_2 = (A, B)$$

مثال تجزیه BCNF

- class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_number, capacity, time_slot_id)
 - وابستگیهای تابعی

- course_id→ title, dept_name, credits
- building, room_number→capacity
- course_id, sec_id, semester, year→building, room_number, time_slot_id
 - ▶ یک کلید کاندیدا:

{course_id, sec_id, semester, year}.

خزیه BCNF:

- ∘ course_id→ title, dept_name, credits
 - اما course_id سوپرکلید نیست.
 - Class به صورت زیر جایگزین می شود:
 - course(course_id, title, dept_name, credits)
 - class-1 (course_id, sec_id, semester, year, building, room_number, capacity, time_slot_id)

مثال تجزیه BCNF (ادامه)

- course is in BCNF

 class-1 در building, room_number→ capacity

 برقرار است.

 course is in BCNF

 building, room_number

 class-1 در است.

 class-1 در
 - اما {building, room_number} سوپرکلید در class-1 نیست.
 - *class-1* به صورت زیر جایگزین میشود:
 - classroom (building, room_number, capacity)
 - section (course_id, sec_id, semester, year, building, room_number, time_slot_id)
- classroom and section are in BCNF.

3NF Example

- Relation dept_advisor.
 - dept_advisor(s_ID, i_ID, dept_name)
 F = {s_ID, dept_name → i_ID, i_ID → dept_name}
 - Two candidate keys: s_ID, dept_name, and i_ID, s_ID
 - R is in 3NF
 - s_ID , $dept_name \rightarrow i_ID$ s_ID
 - dept_name is a superkey
 - i_ID → dept_name
 - dept_name is contained in a candidate key

3NF Decomposition: An Example

Relation schema:

```
cust_banker_branch = (customer_id, employee_id,
branch_name, type)
```

- The functional dependencies for this relation schema are:
 - 1. customer_id, employee_id → branch_name, type
 - 2. employee_id → branch_name
- 3. customer_id, branch_name → employee_id (customer_id, employee_id, type) (customer_id, branch_name, employee_id)

واہستگی چندمقداری Multivalued Dependencies

- ﴿ نام فرزندان و شماره تلفنهای استاد:
- inst_child(ID, child_name)
- inst_phone(ID, phone_number)
 - ﴿ از ترکیب دو رابطه فوق:
- inst_info(ID, child_name, phone_number)
- Example data:
 - (99999, David, 512-555-1234)
 - (99999, David, 512-555-4321)
 - (99999, William, 512-555-1234)
 - (99999, William, 512-555-4321)
 - ر ابطه در BCNF است.

Multivalued Dependencies (MVDs)

اگر R شمای رابطه باشد و $\alpha \subseteq R$ و ابستگی $\alpha \subseteq R$ و ابستگی چندمقداری زیر در R برقراراست:

$$\alpha \rightarrow \rightarrow \beta$$

t2 اگر در هر رابطه منطقی r(R) برای همه جفت رکوردهای t_1 و t_2 در t_3 اشند به در $t_1[\alpha] = t_2[\alpha]$ در t_3 در اشند به طوری که:

$$t_{1}[\alpha] = t_{2}[\alpha] = t_{3}[\alpha] = t_{4}[\alpha]$$

 $t_{3}[\beta] = t_{1}[\beta]$
 $t_{3}[R - \beta] = t_{2}[R - \beta]$
 $t_{4}[\beta] = t_{2}[\beta]$
 $t_{4}[R - \beta] = t_{1}[R - \beta]$

MVD (Cont.)

$$\alpha \rightarrow \beta$$

	α	β	$R-\alpha-\beta$
t_1	$a_1 \dots a_i$	$a_{i+1} \dots a_j$	$a_{j+1} \dots a_n$
t_2	$a_1 \dots a_i$	$b_{i+1} \dots b_j$	$b_{j+1} \dots b_n$
t_3	$a_1 \dots a_i$	$a_{i+1} \dots a_j$	$b_{j+1} \dots b_n$
t_4	$a_1 \dots a_i$	$b_{i+1} \dots b_j$	$a_{j+1} \dots a_n$

Example

- فرض کنید R یک شمای رابطه ای باشد که خصیصه های آن به سه مجموعه غیرتهی تقسیم شده اند: X, Z, W
- میگوییم $Z \longrightarrow Y$ (Y به طور چندمقداری Z را تعیین میکند) اگر و تنها اگر برای همه روابط ممکن r(R):
 - $< y_1, z_1, w_1 > \in r \text{ and } < y_1, z_2, w_2 > \in r$ then
 - $\langle y_1, z_1, w_2 \rangle \in r \text{ and } \langle y_1, z_2, w_1 \rangle \in r$ $Y \rightarrow Z \text{ if } Y \rightarrow W$

Example (Cont.)

◄ در مثال:

شکل نرمال چهارم Fourth Normal Form

- ر شمای رابطه ای R با مجموعه و ابستگیهای تابعی و چند مقداری D^+ ست اگر برای همه و ابستگیهای چندمقداری در ANF است اگر برای همه و ابستگیهای چندمقداری در به شکل $\beta \longrightarrow \alpha \subset R$ که $\alpha \longrightarrow \beta$ و $\alpha \longrightarrow \beta$ ، حداقل یکی از موارد زیر برقرار باشد:
 - $(\beta \subseteq \alpha \text{ or } \alpha \cup \beta = R)$ بدیهی باشد $\alpha \longrightarrow \beta$
 - برای شمای R سوپرکلید باشد. α
 - اگر رابطه در 4NF باشد در BCNF هم هست.

$$R = (A, B, C, G, H, I)$$
 $F = \{A \rightarrow \rightarrow B \\ B \rightarrow \rightarrow HI \\ CG \rightarrow \rightarrow H\}$
 $CG \rightarrow \rightarrow H\}$
 $CG \rightarrow \rightarrow H\}$
 $CG \rightarrow A$
 $A \rightarrow A$
 $A \rightarrow B$
 $A \rightarrow$