# Monthly Meeting on October

Yuichiro Honda Morita lab. M1

2016/10/05

- 1 Previous work
- Progress
- 3 Next step

#### Last month

- searched an (polynomial) algorithm to partition two matroids into their common bases
- 2 found an algorithm to find all common bases in two matroids in  $O(n(n^2 + t)\lambda)$

- Previous work
- 2 Progress
- 3 Next step

#### References



Komei Fukuda, Makoto Namiki: "Finding all common bases in two matroids", Discrete Applied Mathmatics 56 (1995) 231-243

#### Main result

Given two matroids  $M_1=(E,\mathcal{B}_1)$ ,  $M_2=(E,\mathcal{B}_2)$ , and a common base  $B^1\in\mathcal{B}_1\cap\mathcal{B}_2$ , there is an algorithm finding all common bases of them in  $O(n(n^2+t)\lambda)$  where  $\lambda$  is number of the bases and t is the time to make one pivot operation.

- The algorithm use enumeration tree whose height is |E| = n and the height is indexed in descending order from the root
- In the beginning, the initial comon base  $\mathcal{B}^1$  is placed at right most position
- n-dimentional vector  $P \in \{L, R\}^n$  is used to indicate the current position
- also current branch is indicated by  $f \in E$
- Each one step of algorithm,  $B^k$  goes left updating  $B^k$  to  $B^{k+1}$  if exists

#### initial state:



$$B^1 = \{2, 3, 4\}$$
  
 $P = (RRRR), f = 1$ 

#### example:



when the current base  $B^k = \{1, 3, 4\}$  is placed like above, P = (LLRR) and f = 3

next, we need a theorem to reduce the search space like a backtracking



bipartite graph  $G(B^k)$ 



#### Theorem 1

There exists a common base  $B^{k+1}$  in L if and only if there exists a directed cycle C in  $G(B^k)$  which contains f and consists of elements in E less than or equal to f.

bipartite graph  $G(B^k)$ when  $f = i_6...$ 



bipartite graph  $G(B^k)$ when  $f = i_6...$ 





#### simple algorithm example:

$$M_1 = M_2 = (E, \mathcal{B})$$
  
 $E = \{1, 2, 3\}, \mathcal{B} = \{\{1, 2\}, \{2, 3\}\}$   
 $B^1 = \{2, 3\}$ 



$$B^{1} = \{2, 3\}$$
  
 $P = (RRR)$   
 $P_{1} = R \text{ then } f = 1$ 



$$B^{1} = \{2, 3\}$$
  
 $P = (LRR)$   
 $P_{2} = R \text{ then } f = 2$ 



$$B^{1} = \{2, 3\}$$
  
 $P = (LLR)$   
 $P_{3} = R \text{ then } f = 3$ 



there exists an directed cycle C in bipartite graph  $G(B^1)$   $\rightarrow$  make pivot operation along C and get new base  $B^2 = \{1, 2\}$ 



$$B^2 = \{1, 2\}$$
  
 $P = (RRL)$   
 $P_1 = R \text{ then } f = 1$ 



$$B^{2} = \{1, 2\}$$

$$P = (LRL)$$

$$P_{2} = R \text{ then } f = 2$$



$$B^2 = \{1, 2\}$$

$$P = (LLL)$$

$$f \text{ doesn't exist}$$
end

#### alogrithm "Enumerate"

```
input: M_1 := (E, \mathcal{B}_1), M_2 := (E, \mathcal{B}_2), B^1 \in \mathcal{B}_1 \cap \mathcal{B}_2 output: all common bases of M_1 and M_2
```

- **1** k := 1, output  $B^k$ . P := (R, ..., R). (Here,  $P \in \{L, R\}^n$ )
- **2**  $f := min\{j \mid P_j = R\}$
- 3 If f doesn't exist, stop. Else, create  $G(B^k)$  and find directed cycle C satisfying theorem 1 with breadth first search.
- 4 If C doesn't exist, goto step 2. Else, k := k + 1, make pivot operation along C and obtain new  $B^k$ .  $P_f := L$ ,  $\forall j < k$ ;  $P_j := R$ , goto step 2.

Again, n = |E|,  $\lambda = |\mathcal{B}_1 \cap \mathcal{B}_2|$ , and t is time to generate  $G(B^k)$ .

#### time complexity

We evaluate the time from obtaining  $B^k$  to obtaining  $B^{k+1}$ . Let  $A_{max}$  be the maximum number of the arc in  $G(B^k)$ . Then C in  $G(B^k)$  satisfying Theorem 1 can be found in  $O(A_{max})$  using BFS. This is iterated at most n times(until finding such C). If such C exists, then we pivot elements in  $B^k$  along C to get  $B^{k+1}$  and generate  $G(B^{k+1})$ . This takes  $O(C_{max}t)$  where  $C_{max}$  is the length of the C.

Since we know  $A_{max} \le (\frac{n}{2})^2 \cdot 2 = \frac{n^2}{2}$  and  $C_{max} \le 2 \cdot \frac{n}{2} = n$ , it takes  $O(n^3 + nt)$  from  $B^k$  to  $B^{k+1}$ .

This is iterated  $\lambda$  times, so total time complexity is  $O((n^3 + nt)\lambda)$ .

(note: t depends on the imput form of the matroid. for example, the matroid is given in a form of a map,  $t = O(n^2)$ , but matroid is given in a form of a matrix, it's more than  $n^2$ )

- Previous work
- Progress
- 3 Next step

#### next month

#### TODO:

- 1 learn about matroid intersection
- 2 learn how to partition a matoid into bases
- tackle two different partition matroids (can be partitioned into their common bases)
- generalized partition matroid of two different uniform matroids and any matroid