Organização Industrial e Regulação I Prof.: Rodrigo Moita

Aluno: Daniel H. A. Reis - Nº USP: 11863164

Lista 1: Estimação de Demanda e Simulação de Fusão

Estimação de Demanda I

1. Estime um logit agregado de demanda por MQO. Especifique a equação a ser estimada, as variáveis usadas - lembre-se de incluir dummies de mercado e de ano - e apresente os resultados.

Resposta:

A demanda por logit agregado vai ser estimada por:

$$ln(s_i) - ln(s_0) = x_i\beta - \alpha P_i + \xi_i$$

O modelo específico a ser estimado:

$$ln(s_{j}/s_{0}) = \beta_{0} + \beta_{1}princ + \beta_{1}hp + \beta_{2}li + \beta_{3}wi + \beta_{4}we + \beta_{5}he + \beta_{6}cy + \beta_{7}home + \sum_{t=71}^{99} \gamma_{t}D_{yet} + \sum_{i=2}^{5} \gamma_{i}D_{ma} + \xi_{j}he + \beta_{5}he + \beta_{6}cy + \beta_{7}home + \sum_{i=71}^{99} \gamma_{i}D_{yet} + \sum_{i=2}^{5} \gamma_{i}D_{ma} + \xi_{j}he + \beta_{5}he + \beta_{6}cy + \beta_{7}home + \sum_{i=71}^{99} \gamma_{i}D_{yet} + \sum_{i=2}^{5} \gamma_{i}D_{ma} + \xi_{j}he + \beta_{6}cy + \beta_{7}home + \sum_{i=71}^{99} \gamma_{i}D_{yet} + \sum_{i=2}^{5} \gamma_{i}D_{ma} + \xi_{j}he + \beta_{6}cy + \beta_{7}home + \sum_{i=71}^{99} \gamma_{i}D_{yet} + \sum_{i=2}^{5} \gamma_{i}D_{ma} + \xi_{j}he + \beta_{6}cy + \beta_{7}home + \sum_{i=1}^{99} \gamma_{i}D_{yet} + \sum_{i=2}^{5} \gamma_{i}D_{ma} + \xi_{j}he + \beta_{6}cy + \beta_{7}home + \sum_{i=1}^{99} \gamma_{i}D_{yet} + \sum_{i=2}^{99} \gamma_{i}D_{ma} + \xi_{j}he + \beta_{6}cy + \beta_{7}home + \sum_{i=1}^{99} \gamma_{i}D_{yet} + \sum_{i=2}^{99} \gamma_{i}D_{ma} + \xi_{j}he + \beta_{6}cy + \beta_{7}home + \sum_{i=1}^{99} \gamma_{i}D_{yet} + \sum_{i=1}^{99} \gamma$$

Obs: A Estimação segue as dummies de Ano foram omitidas para que o output da estimação estivesse mais limpo.

	(1)	
	m_ls	
princ	-1.083***	
	(-17.30)	
hp	-0.00517**	
_	(-3.21)	
li	-0.106***	
	(-8.64)	
wi	0.0561***	
	(14.37)	
we	0.00118***	
	(6.07)	
he	0.0259***	
	(5.07)	
cy	-0.000771***	
	(-8.67)	
home	1.848***	
	(83.08)	
99.ye	-1.552***	
	(-15.75)	
2.ma	-0.955***	
	(-38.82)	
3.ma	-0.846***	
	(-33.74)	
4.ma	-0.627***	
	(-20.45)	
5.ma	-0.536***	
	(-16.98)	
_cons	-16.98***	
	(-18.39)	
N	11549	

* p < 0.05, ** p < 0.01, *** p < 0.001

- 2. O modelo estimado no item 1 está incorreto: o preço é endógeno. Re-estime o mesmo modelo usando variáveis instrumentais. Apresente resultados usando instrumentos similares aos sugeridos por Hausman (1996), e também os resultados usando instrumentos (iguais os similares) sugeridos por Barry, Levinsohn e Pakes (1995). Qual seria o seu modelo final? Qual os instrumentos usados por Verboven (1996)? Resposta:
 - Instrumento de Hausman Preço do bem em outros mercados Eu não consegui criar o instrumento de Hausman, Preços de um determinado bem em outro mercado.
 - Instrumento BLP Soma do vetor de características dos outros bens do mercado e da

Obs: A Estimação segue as dummies de Ano foram omitidas para que o output da estimação estivesse mais limpo.

	(1) m_ls		
princ	-1.684*** (-7.39)		
hp	-0.00195 (-0.97)		
li	-0.108*** (-8.79)		
wi	0.0575*** (14.54)		
we	0.00130*** (6.51)		
he	0.0265*** (5.16)		
cy	-0.000670*** (-6.93)		
home	1.838*** (81.22)		
99.ye	-1.771*** (-13.93)		
2.ma	-0.935*** (-36.16)		
3.ma	-0.892*** (-29.36)		
4.ma	-0.465*** (-6.99)		
5.ma	-0.345*** (-4.50)		
_cons	-17.19*** (-18.48) 11549		
t statistics in	t statistics in parentheses		

Então meu modelo final é o mesmo estimado no item anterior mas com variáveis instrumentais para o preço. As VI utilizadas foram as mesma utilizada pelo BLP (1995), a soma do vetor de características dos outros bens da mesma firma e a soma do vetor de características dos outros bens de firmas diferentes. As características utilizadas dentro dos instrumentos foram : hp, li, wi, we, he, cy e home.

- Instrumento Verboven (1996) O instrumento utilizado por Verboven (1996) é muito parecido com os intrumentos utilizados no BLP (1995), usando a média da soma do vetor de características dos outros bens da mesma firma e a média da soma do vetor de características dos outros bens de firmas diferentes.
- 3. Crie uma matriz com as elasticidades-preço próprias e cruzadas usando para o ano de 1998, para os 20 carros mais vendidos no mercado alemão naquele ano.

Resposta:

Foi criada uma matriz de elasticidades 20x20 no do-file.

Estimação de Demanda II

1. Estime o logit aninhado com e sem VI. Compare os resultados. Eles são consistentes com a teoria econômica? Explique.

Resposta:

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

A demanda por logit aninhado vai ser estimada por:

$$ln(s_j) - ln(s_0) = x_j\beta - \alpha P_j + \sigma_1 ln(s_{j|hq}) + \sigma_2 ln(s_{h|q}) + \xi_j$$

O modelo específico a ser estimado:

$$ln(s_{j}/s_{0}) = \beta_{0} + \beta_{1}princ + \sigma_{1}ln(M_{l}sjg) + \sigma_{2}ln(M_{l}shg) + \beta_{1}cy + \beta_{2}li + \beta_{3}wi + \beta_{4}he + \beta_{5}home + \sum_{t=71}^{99} \gamma_{t}D_{yet} + \sum_{i=2}^{5} \gamma_{i}D_{ma} + \xi_{j}home + \sum_{i=1}^{199} \gamma_{i}D_{yet} + \sum_{i=1}^{199} \gamma_{i}$$

A regressão (1) é o Modelo sem variável instrumental e a regressão (2) utiliza o instrumento do BLP (1995) soma do vetor de características. Obs.: Estimação segue as dummies de Ano foram omitidas para que o output da estimação estivesse mais limpo.

Os resultados encontrados estão de acordo com a teoria econômica, o preço em ambos modelos é negativo, ou seja, um aumento de preço ceteris paribus diminui a demanda. Também os coeficientes para os ninhos seguem o sinal esperados da teoria econômica, $1 > \sigma_1 \ge \sigma_2 \ge 0$. A regressão (1) o preço e os shares são endógenos. Então a regressão (2) com o VI é a correta. Percebe-se que (1) as estimativas são subestimadas e em geral apresentam sinal similar.

	(1)	(2)	
	M_ls -1.157***	M_ls -1.948***	
princ			
	(-45.46)	(-14.21)	
M lsjh	0.909***	0.942***	
111_10,111	(230.66)	(19.79)	
	(200.00)	(17.77)	
M_lshg	0.584***	0.537***	
	(72.29)	(9.58)	
cy	0.000268***	0.000591***	
	(8.40)	(6.45)	
li	-0.0238***	-0.0207**	
11	(-4.70)	(-3.24)	
	(-4.70)	(-3.24)	
wi	0.0125***	0.0144***	
	(7.89)	(5.03)	
he	0.00239	0.00261	
	(1.13)	(1.00)	
homo	0.505***	0.479***	
home	(42.93)	(7.97)	
	(42.93)	(7.97)	
99.ye	0.0298	-0.122	
	(0.77)	(-1.42)	
2.ma	-0.635***	-0.664***	
	(-48.05)	(-10.96)	
2 ma	-0.609***	-0.743***	
3.ma	(-43.66)	-0./43*** (-9.11)	
	(-43.00)	(-9.11)	
4.ma	-0.486***	-0.316***	
	(-33.04)	(-7.04)	
5.ma	-0.388***	-0.190***	
	(-25.55)	(-3.97)	
	F F49***	F 602***	
_cons	-5.542***	-5.603***	
	(-14.39) 11549	(-7.85) 11549	
		11349	
t statistics in parentheses			

t statistics in parentheses

2. Crie uma matriz com as elasticidades-preço próprias e cruzadas usando para o ano de 1988, para os 20 carros mais vendidos no mercado alemão naquele ano.

Resposta:

Assim como nas elasticidades do item anterior, foi criada uma matriz de elasticidades 20x20 no do-file.

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

3. Simula uma fusão na Alemanha (país 3) em 1998, onde a Opel (empresa = 15) vende suas operações para a VW (empresa = 26). Suponha que não há economias de custo marginal para o vendedor ou computador, e que não há conluio parcial(antes ou depois da fusão). Qual é o aumento percentual esperado do preço da Opel e da VW? Como os rivais se encontram em termos de aumento de preços? Quais são as mudanças de market share para Opel e para VW resultante da fusão.

Resposta:

Após a fusão entre as duas empresas, o aumento esperado de preços da Opel é de 7,1% e da VW é de 3.3%.

Para os rivais o aumento esperado de preços de 0,3% para a BMW, 2,2% para Ford, 0,3% para a Mercedes e 0,1% para a Daimler.

Após a fusão o market share das empresas diminuiram, a Opel reduziu 5,8% e a VW 2,0%, e agora detem 10,8% e 28,0% respectivamente. A VW já era a maior empresa do mercado alemão detendo 30% e a Opel a segunda, juntas deixaram o mercado ainda mais concentrado.

4. Simula a mesma fusão que em (3), mas agora assumindo que há ganhos de eficiência, representados por uma diminuição dos custos marginais de todos os produtos do comprador e do vendedor. Considere uma queda de 2% do custo marginal. Nesse caso, qual o efeito final sobre os carros da Opel e da VW? Como eles se comparam aos aumentos de preços quando não há ganhos de eficiência? Essas reduções de custo são repassadas para os consumidores?

Resposta:

Neste caso, fusão com ganho de eficiência, os preços da Opel e VW aumentam, mas menos que no item anterior. O aumento do preço da Opel é de 6% e da VW é de 2,1%, enquanto que sem ganho de eficiência os aumentos foram de 7,1% e 3,3% respectivamente.

Para os concorrentes houve um aumento de 0,1% para BMW, 1,9%, 0,1% para Mercedes e 0,1% para Daimler. E houve uma redução de 0,1% nos preços da Nissan.

A redução de custos é repassada não é repassada pelos consumidores, uma vez que seria necessário uma redução de custo de 11,4% para que os preços não se alterassem, e consequentemente uma redução de custos maior que 11.4% para que houvesse uma redução de preços.