Roteiro da Simulação 6: Filtragem de Sinais

Objetivos

Ilustrar, através de exemplos simples, a filtragem de sinais para eliminar interferências e ruído.

Introdução Teórica

Em diversas aplicações, é interessante mudar as amplitudes relativas dos componentes de frequência de um sinal ou talvez eliminar por completo alguns componentes de frequência. Tal processo é conhecido como filtragem. Os sistemas lineares invariantes no tempo (LIT), que mudam a forma do espectro, são conhecidos como filtros conformadores de frequência.

1. Característica de Filtragem de Sistemas Lineares

Para um determinado sistema LIT, com resposta ao impulso h(t), um sinal de entrada f(t) produz um sinal de resposta r(t)=f(t)*h(t), sendo o sinal f(t) processado de uma forma que é característica do sistema. A função de densidade espectral do sinal de entrada é dada por $F(j\omega)=\Im\{f(t)\}$, enquanto que a função de densidade espectral da resposta é dada por $R(j\omega)=\Im\{f(t)\}=\Im\{f(t)*h(t)\}=F(j\omega)H(j\omega)$ (Fig. 1). Portanto, o sistema modifica a função de densidade espectral do sinal de entrada. É evidente que o sistema atua como uma espécie de filtro, para as diferentes componentes de frequência. A intensidade de algumas componentes de frequência aumenta, a de outras atenua e a de outras ainda pode permanecer inalterada. Da mesma forma, cada componente de frequência sofre um deslocamento de fase diferente no processo de filtragem. Assim, o sistema modifica a função de densidade espectral de acordo com as suas características de filtragem. A modificação depende da função de transferência $H(j\omega)$, que representa a resposta do sistema às diferentes componentes de frequência. Portanto, $H(j\omega)$ atua como uma função ponderada para as diferentes frequências.

Fig. 1: Filtragem de sinais

2. Filtros Ideais

Um filtro ideal passa-baixas transmite, sem qualquer distorção, todos os sinais de frequências inferiores a uma determinada frequência W (rad/s). Os sinais de frequências superiores a W são completamente atenuados (Fig. 2a). Portanto, a resposta em frequência (característica de amplitude) de um filtro passa-baixas ideal é uma função porta $G_{2W}(j\omega)$. Quanto à resposta de fase do filtro ideal, admitindo-se pelo mesmo um atraso de tempo, a função de fase correspondente é $-\omega t_0$. Logo, a função de transferência desse filtro é dada por

$$\begin{split} H(j\omega) &= \mid H(j\omega) \mid e^{j\theta(\omega)} \\ &= G_{2W}(j\omega) \; e^{-j\omega t_0}. \end{split}$$

Pode-se encontrar a resposta h(t) ao impulso unitário desse filtro, calculando-se a transformada inversa de Fourier de $H(j\omega)$:

$$h(t) = \mathcal{F}^{-1}\{H(j\omega)\}$$

$$= \mathcal{F}^{-1}\{G_{2W}(j\omega) e^{-j\omega t_0}\}$$

$$= \frac{W}{\pi} Sa[W(t - t_0)].$$

A Fig. 2b mostra que a resposta ao impulso existe para os valores negativos de t. Certamente, esse resultado parece estranho, tendo-se em vista o fato de que a função de excitação (impulso unitário) foi aplicada em t=0. Portanto, a resposta aparece mesmo antes de se aplicar a função de excitação. O sistema parece antecipar-se à função de excitação. Infelizmente, é impossível construir na prática um sistema com essa propriedade (não causalidade). Por isso, conclui-se que, embora um filtro ideal passa-baixas seja muito desejável, ele não é fisicamente realizável. Da mesma forma, pode-se mostrar que outros filtros ideais, como os filtros passa-altas, passa-faixa e rejeita-faixa, também são fisicamente irrealizáveis. As respostas em frequência dos filtros ideais passa-altas e passa-faixa são mostradas na Fig. 3.

Fig. 2: Característica de um filtro ideal passa-baixas e a sua resposta ao impulso

Fig. 3: Características dos filtros ideais passa-altas e passa-faixa

3. Filtros RLC

Na prática, implementa-se filtros cujas características se aproximem das características dos filtros ideais. A Fig. 4 ilustra uma das formas de implementar um filtro passivo passa-baixas, utilizando apenas um resistor, um indutor e um capacitor, sendo, assim, conhecido como filtro passa-baixas RLC. Em baixas frequências, o indutor se comporta como um curto circuito, e o capacitor como um circuito aberto. Ao contrário, em altas frequências, o capacitor se comporta como um curto circuito, e o indutor como um circuito aberto. Logo, as componentes do sinal de tensão x(t) com frequências relativamente baixas aparecerão na saída y(t), a qual é tomada nos terminais do capacitor (devido à sua alta impedância em baixas frequências), e as componentes com frequências relativamente altas praticamente não estarão presentes em y(t). O ajuste dos valores de R, L e C possibilita determinar as frequências das componentes de x(t) que o filtro atenua ou deixa passar.

Fig. 4: Filtro passa-baixas RLC

No domínio do tempo, a equação diferencial de segunda ordem da malha do filtro é dada por

$$LC\frac{d^2y(t)}{dt^2} + RC\frac{dy(t)}{dt} + y(t) = x(t)$$

Através da aplicação da transformada de Laplace em ambos os lados da equação acima, obtém-se a função de transferência do filtro:

$$H(s) = \frac{Y(s)}{X(s)} = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

onde $\omega_n = \frac{1}{\sqrt{LC}}$ e $\xi = \frac{1}{2}R\sqrt{C/L}$. Sua resposta em frequência, $H(j\omega)$, pode ser obtida fazendo-se na expressão acima $s = j\omega$:

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{\omega_n^2}{-\omega^2 + j2\xi\omega_n\omega + \omega_n^2}$$

A frequência de corte ω_c de um filtro (ou frequência de 3dB, $\omega_{3dB})$ é definida quando

$$|H(\omega_c)| = \frac{1}{\sqrt{2}}$$

o que equivale a dizer que, na frequência de corte, a resposta de magnitude do filtro está 3dB abaixo daquela na banda passante:

$$20log_{10}|H(\omega_c)| = 20log_{10}\left(\frac{1}{\sqrt{2}}\right) \cong -3dB$$

Os filtros RLC passa-altas, passa faixa e rejeita faixa, com suas respectivas equações diferenciais de segunda ordem, são mostrados na Fig. 5.

Fig. 5: Filtros RLC (a) passa-altas, (b) passa faixa e (c) rejeita faixa

Simulação

Execute no MatLab o programa "respfreq" e visualize as respostas em frequência dos filtros RLC projetados no pré-estudo. Em seguida, implemente no Simulink o filtro passa-baixas, através de sua função de transferência, H(s) (programa "funtransfer"). Verifique o processo de filtragem, aplicando na entrada do filtro a soma de duas senóides, uma com frequência na faixa de passagem do filtro e outra com frequência em sua faixa de rejeição, acrescida de ruído branco. Varie apenas a relação sinal-ruído (SNR_ signal-to-noise ratio): $SNR_{dB}=10log_{10}(P_s/P_r)$, procurando perceber a interferência do ruído e a atenuação de sua potência pelo filtro. Procure escutar os sinais de entrada e saída do filtro para perceber o processo de filtragem. Para tal, após a execução do programa, execute os seguintes comandos na janela de comando do MatLab:

- >> sound(entrada.signals.values) (para escutar o sinal de entrada -> desejado+interferência+ruído)
- >> sound(saida.signals.values) (para escutar o sinal de saída)
- >> sound(desejado.signals.values) (para escutar apenas o sinal desejado)
- >> sound(interferencia.signals.values) (para escutar apenas o sinal de interferência)
- >> sound(ruido.signals.values) (para escutar apenas o ruído)