An introduction to survival analysis

Georg Wölflein

School of Computer Science, University of St Andrews

January 15, 2022

Contents

1 Time-to-event data

2 Survival and hazard functions

We can measure **time** in:

- years
- months
- seconds

We can measure **time** in:

- years
- months
- seconds

The **event** could be:

- death from disease
- product failure
- losing a customer

We can measure **time** in:

- years
- months
- seconds

The **event** could be:

- death from disease
- product failure
- losing a customer

must be a binary variable

We can measure **time** in:

- years
- months
- seconds

The **event** could be:

```
death from disease
product failure
losing a customer

must be a binary variable
```

yes/no

TTE data consists of (time, event) tuples.

Time-to-event (TTE) data

TTE analysis is also known as:

- survival analysis
- failure time analysis
- reliability theory (engineering)
- duration modelling (economics)
- event history analysis (sociology)

Time-to-event (TTE) data

TTE analysis is also known as:

- survival analysis
- failure time analysis
- reliability theory (engineering)
- duration modelling (economics)
- event history analysis (sociology)

Use cases for TTE analysis:

TODO

A randomised controlled trial (n = 4) was conducted to assess the efficacy of drug ABC in treating Covid-19. This is what happened to the patients:

A randomised controlled trial (n = 4) was conducted to assess the efficacy of drug ABC in treating Covid-19. This is what happened to the patients:

patient	received ABC?	outcome				
1	yes	died from Covid-19 on day 15				
2	no	dropped out of the study after day 3				
3	yes	died by a lightning stroke on day 5				
4	no	survived the study (30 days)				

The **time** is the number of days since testing positive for Covid-19. The **event** is whether the patient died due to Covid-19.

The **time** is the number of days since testing positive for Covid-19. The **event** is whether the patient died due to Covid-19.

Time-to-event data				
	patient	time	event	
	1	15	yes	
	2	?	?	
	3	?	?	
	4	?	no	

The **time** is the number of days since testing positive for Covid-19. The **event** is whether the patient died due to Covid-19.

Time-to-event data			
	patient	time	event
	1	15	yes
	2	[0, 3]	no
	3	[0, 5)	no
	4	[0, 30]	no

Censoring

We just saw an example of right-censored data.

Survival function

Let T be a continuous random variable representing survival time. The **survival function** S(t) is the probability that an individual will survive until at least time t.

Survival function

Let T be a continuous random variable representing survival time. The **survival function** S(t) is the probability that an individual will survive until at least time t.

Survival function

$$S(t) = \Pr(T > t)$$

The **hazard function** expresses the *instantaneous rate of* occurrence of the event.

The **hazard function** expresses the *instantaneous rate of* occurrence of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

The **hazard function** expresses the *instantaneous rate of occurence* of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

$$\lambda(t) = \frac{\Pr(|)}{}$$

The **hazard function** expresses the *instantaneous rate of* occurrence of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

$$\lambda(t) = \frac{\Pr(t \le T \le t + dt|)}{|t|}$$

The **hazard function** expresses the *instantaneous rate of* occurrence of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

Hazard function

$$\lambda(t) = \frac{\Pr(t \leq T \leq t + dt | T \geq t)}{|T|}$$

St Andrews

The **hazard function** expresses the *instantaneous rate of occurence* of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

$$\lambda(t) = \frac{\Pr(t \leq T \leq t + dt | T \geq t)}{dt}$$

The **hazard function** expresses the *instantaneous rate* of occurence of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

$$\lambda(t) = \lim_{dt \to 0} \frac{\Pr(t \le T \le t + dt | T \ge t)}{dt}$$

The **hazard function** expresses the *instantaneous rate of occurence* of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

$$\lambda(t) = \lim_{dt \to 0} \frac{\Pr(t \le T \le t + dt | T \ge t)}{dt}$$
$$= \lim_{dt \to 0} \frac{\Pr(t \le T \le t + dt)}{dt \cdot \Pr(T \ge t)}$$

The **hazard function** expresses the *instantaneous rate of occurence* of the event.

Supposing an individual survived until time t, it expresses the probability of dying within a short additional time dt, per unit time.

$$\lambda(t) = \lim_{dt \to 0} \frac{\Pr(t \le T \le t + dt | T \ge t)}{dt}$$
$$= \lim_{dt \to 0} \frac{\Pr(t \le T \le t + dt)}{dt \cdot \frac{S(t)}{s}}$$