

SIM800 系列_串口_应用文档_V1.01

手册名称	SIM800 系列_串口_应用文档			
版本	1.01			
日期	2014-08-05			
状态	发布			
文档控制号	SIM800 系列_串口_应用文档_V1.01			

一般事项

SIMCom把本手册作为一项对客户的服务,编排紧扣客户需求,章节清晰,叙述简要,力求客户阅读后,可以通过AT命令轻松使用模块,加快开发应用和工程计划的进度。

SIMCom不承担对相关附加信息的任何独立试验,包含可能属于客户的任何信息。而且,对一个包含SIMCom模块、较大型的电子系统而言,客户或客户的系统集成商肩负其系统验证的责任。

由于产品版本升级或其它原因,本手册内容会不定期进行更新。除非另有约定,本手册 仅作为使用指导,本手册中的所有陈述、信息和建议不构成任何明示或暗示的担保。手册中 信息修改,恕不另行通知。

版权

本手册包含芯讯通无线科技(上海)有限公司的专利技术信息。除非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本手册内容的部分或全部,并不得以任何形式传播,犯规者可被追究支付赔偿金。对专利或者实用新型或者外观设计的版权所有,SIMCom保留一切权利。

版权所有©芯讯通无线科技(上海)有限公司2014年

目录

1	简介		6
2	连接方	方式	7
3	电平转	专换	8
	3.1	连接MCU	8
	3.2	连接PC(RS232)	9
4	同步波	皮特率	11
5	流控		12
		软件流控 (XON/XOFF)	
		硬件流控(RTS/CTS flow control)	
6	控制引	引脚	13
	6.1	CTS	13
	6.2	RTS	13
		DCD	
	6.4	DTR	13
	6.5	RI	13
7	双串口	口功能	16
	7.1	双串口管脚定义	16
	7.2	双串口AT命令限制	18
	7.3	双串口睡眠模式	18
	7.3	7.3.1 通过UART1 进入休眠	18
	7.3	7.3.2 通过UART1 唤醒模块	18
	7.	7.3.3 通过UART2 进入休眠	
	7.	7.3.4 通过UART2 唤醒模块	19
附表			
	A.	参考文档	20
	B.	术语	20
	*		
C	Y		
	\mathcal{I}		

表格質	察 引	
表 1:	串口逻辑电平	8
表 2:	RS232 电平	9
表 3:	RI 响应	13
表 4:	AT+CFGRI 开启RI引脚提示	14
表 5:	SIM800H和SIM800L双串口管脚定义	16
表 6:	SIM800 和SIM800M64 双串口管脚定义	16
表 7:	AT+CMNRP 开启关闭双串口功能	17
表 8:	AT命令限制	18

图片雾	索引	
图 1:	全功能串口连接	7
图 2:	非全功能串口连接	7
图 3:	使用开漏输出缓冲器进行电平转换	8
图 4:	使用晶体管进行电平转换	9
图 5:	使用SP3238E进行电平转换——连接PC	10
图 6:	同步波特率流程	11
图 7:	RI响应	14
图 8:	串口连接图	17

版本历史

日期	版本	修改描述	作者
2013-07-25	1.00	第一版	杨明
2014-08-05	1.01	适用范围,增加部分项目	陈海兵
		第 6.5 章, 更新表格 3	陈海兵
		第7章,增加双串口功能和对应的AT	陈海兵

适用范围

本手册描述了模块串口接口及其使用方法。本文档适用于 SIM800V, SIM840V, SIM800W, SIM800W16, SIM840W16, SIM800L, SIM800H, SIM800, SIM800M64, SIM800G和 SIM808。

1 简介

本文档旨在介绍模块串口接口及其使用方法,便于客户快速了解模块串口功能。

2 连接方式

SIM800系列模块被设计为DCE(数据通信设备)。它提供了全功能串口,用作数据传输以及发送AT命令。包括数据传输线TXD和RXD,硬件流控线RTS和CTS,状态线DTR,DCD和RI。串口标准电压为2.80V。

如果模块使用全功能串口,所有的信号线都必须连接。下图显示了全功能串口模式下模块与终端(DTE)的连接方法。

图 1: 全功能串口连接

非全功能串口模式下,只需要连接RXD和TXD,其他接口悬空。下图显示了非全功能 串口模式下模块与终端(DTE)的连接方法。

图 2: 非全功能串口连接

注意:

DTE 发送数据给模块前必须拉低 DTR 引脚。如果 DTR 未连接至 DTE,必须通过 10K 电阻 短地。

3 电平转换

有效电平: 0V (位 0 或者有效状态); 2.80V (位 1 或者无效状态)。电气特性请参考下表。

表 1: 串口逻辑电平

参数	最小值	最大值	单位
V_{IL}	0	0.4	V
V_{IH}	2.4	3.0	V
V_{OL}	0	0.1	V
V_{OH}	2.7	3.0	V

如果 MCU 或 PC 端电平超出此表范围,需要使用电平转换电路。

3.1 连接 MCU

两种方法进行电平转换: 1,使用开漏输出缓冲器(如: NC7WZ07); 2,使用晶体管。

使用开漏输出缓冲器:

图 3: 使用开漏输出缓冲器进行电平转换

使用晶体管:

图 4: 使用晶体管进行电平转换

注意:

VDD_EXT 由模块供电(2.80V),VCC_MCU 由终端供电。

3.2 连接 PC (RS232)

表 2: RS232 电平

参数	输出电平	输入电平	单位
逻辑0	+5+15	+3+25	V
逻辑1	-515	-325	V
未定义	-	-3+3	V

建议使用 RS-232 收发器(如: SP3238E 或 MAX3221 等)进行电平转换。

全功能串口连接:

图 5: 使用 SP3238E 进行电平转换——连接 PC

如果只使用 RXD 和 TXD,可以使用 MAX3221 进行电平转换。

4 同步波特率

SIM800 系列模块的串口默认都是自适应波特(AT+IPR=0)。主机端必须首先与模块同步波特率。建议不停发送"AT"或"at"直到收到同步成功的回应"OK"为止。同步上波特率后,建议使用命令"AT+IPR"来设置固定波特率。下图显示了同步波特率的流程:

SIM800 系列_串口_应用文档_V1.01

5 流控

流控对于模块(DCE)和终端(DTE)之间数据传输的可靠性非常重要。比如如下应用场景:数据发送端发送速率快于接收端,当接收端缓冲过载,接收端可以通知发送端暂停数据发送,直到接收端缓冲区有足够空间继续处理数据。

SIM800 系列模块默认未启用流控功能。可以使用命令"AT+IFC"来开启硬件流控或软件流控功能。

5.1 软件流控 (XON/XOFF)

软件流控通过发送不同特征字符来暂停(XOFF, 0x13)和恢复(XON, 0x11)数据传输。常用于非全功能串口模式下。

命令"AT+IFC=1,1"开启软件流控。

开启软件流控功能后,PC 端串口通信工具(比如 ProComm Plus, Hyper terminal 或者 WinFax Pro)也必须同时开启软件流控功能。

注意:

当有二进制数据被发送或接收时,应关闭软件流控功能,因为DTE 可能把二进制数据当作软件流控字符。

5.2 硬件流控(RTS/CTS flow control)

硬件流控通过 RTS/CTS 信号来实现。当接收缓存快满的时候,模块(DCE)把 CTS 信号设置为无效,数据传输被暂停;当模块的接收缓存可以接收更多数据时,CTS 信号重新被设置为有效。

命令 "AT+IFC=2,2" 开启硬件流控功能。

要实现硬件流控功能,请确保 RTS/CTS 线的正确连接。

注意:

终端(DTE)发送数据时,必须拉低DTR 引脚; 否则,CTS 引脚状态变化可能被忽略。

6 控制引脚

6.1 CTS

该信号由模块(DCE)发送给终端(DTE),有效时(低电平),表示允许终端(DTE)发送数据;反之,禁止终端(DTE)发送数据。

6.2 RTS

该信号由终端(DTE)发送给模块(DCE),有效时(低电平),表示允许模块发送数据;反之,禁止模块发送数据。

6.3 DCD

指令AT&C用来设置DCD功能模式。"AT&C0", DCD保持有效(低电平); "AT&C1", DCD只在有数据载波时有效(低电平)。

6.4 DTR

设置AT+CSCLK=1后,如果模块处于待机状态并且DTR拉到高电平,没有其他中断产生(GPIO,来电,来短信等),模块会进入休眠状态,耗流降低至最低水平。休眠状态下,模块仍可正常接收来电和短信。如果拉低DTR,模块将退出休眠状态,串口恢复输入功能。通话中,DTR必须保持为低。

指令"AT&D"用来设置DTR功能模式:

- 设置"AT&D0", TA将忽略DTR引脚状态。
- 设置"AT&D1", DTR由ON(低)->OFF(高)时: TA保持数据通话, 切换至命令模式。
- 设置"AT&D2", DTR由ON(低)->OFF(高)且超过ATS10设置的时长时: TA释放数据通话,切换至命令模式。

TCP/IP应用仅支持AT&D1和AT&D0。DTR被用来切换数据模式至命令模式(详情请参考TCP/IP应用文档)。首先,设置AT&D1,然后拉低DTR至少1秒,接着再拉高,模块将从数据模式切换至命令模式,并且返回OK,指示切换成功。

6.5 RI

RI状态请见表3。

表 3: RI 响应

状态	RI响应
待机	高
通话(包括语音	如果模块主叫,RI将保持为高电平。
与数据)	如果模块被叫,RI响应情况如下所示:
(不受CFGRI	切换至低,然后:
设置控制)	(1) 建立连接,RI切换至高。
	(2) 执行指令ATH,RI切换至高。
	(3) 主叫挂断,RI切换至高。

	(4) 收到SMS,RI切换至高。		
SMS	接收到SMS时会触发RI产生120ms低电平脉冲,然后再切换至高;同		
(不受 CFGRI	时串口会上报如下URC:		
设置控制)	+CMTI:		
	+CMT:		
	+CDS:		
TCPIP	以下情况将触发RI产生120ms低电平脉冲,然后再切换至高:		
(受 CFGRI 设	(1) TCP通过CIICR激活账户		
置控制)	(2) TCP通过CIPSHUT去激活账户	-	
	(3)TCP通过CIPSTART建立联接		
	(4) TCP通过CIPCLOSE关闭联接		
	(5) TCP通过CIPSEND发送数据		
	(6)接收到数据		
FTP	FTP主动上报消息时会触发RI产生120ms低电平脉冲,然后再切换至		
(受 CFGRI 设	高。		
置控制)			
URC	下面的URC消息将触发RI产生120ms低电平脉冲,然后再切换至高:		
(受 CFGRI 设	UNDER-VOLTAGE WARNNING		
置控制)	OVER-VOLTAGE WARNNING		
	Call Ready		

图 7: RI 响应

表 4: AT+CFGRI 开启 RI 引脚提示

AT+CFGRI 开启 RI 引脚提示

查询命令	响应:
AT+CFGRI?	+CFGRI: <status></status>
	OK
	参数说明:
	见设置命令
写命令	响应:
AT+CFGRI= <st< th=""><th>OK</th></st<>	OK
atus>	ERROR
	参数说明:
	<status></status> <u>0</u> 关闭
	1 开启
参数保存方式	AT&W_SAVE
最大响应时间	-
参考	

建议连接RI至MCU外部中断引脚,可以用来唤醒MCU

7 双串口功能

7.1 双串口管脚定义

SIM800H, SIM800L, SIM800 和 SIM800M64 模块支持双串口功能,硬件可以同时支持一路全功能串口(UART2)和一路三线串口(UART1)。双串口功能需要在 UART1 设置 AT 命令"AT+CMNRP=1"之后才生效。客户需要双串口时,可以按如下表格进行硬件设计。

表 5: SIM800H 和 SIM800L 双串口管脚定义

表 6: SIM800 和 SIM800M64 双串口管脚定义

串口1定义	名称	引脚	信号方向	描述
UART1_TXD	TXD	9	输出	用于升级的串口
UART1_RXD	RXD	10	输入	
串口2定义	名称	引脚	信号方向	描述
UART2_TXD	RTS	8	输出	
UART2_RXD	CTS	7	输入	
UART2_RTS	UART_RI	4	输入	清除发送
UART2_CTS	UART_DCD	5	输出	请求发送
UART2_DTR	UART_DTR	3	输入	
UART2_RI	ROW4	40	输出	
UART2_DCD	COL4	47	输出	

注意:

- 1: 客户设计双串口时需要占用按键的COL4、ROW4。
- 2: AT 命令"AT+CMNRP"只能在UART1 执行。
- 3: B05 及之后的版本支持双串口功能。

表 7: AT+CMNRP 开启关闭双串口功能

AT+CMNRP 开启关闭双串口功能 测试命令 响应 AT+CMNRP=? +CMNRP: (0-1) OK 参数 参考写命令 读命令 响应 AT+CMNRP? +CMNRP: <mode> OK 参数 参考写命令 写命令 响应 AT+CMNRP=< OK mode> **ERROR** 参数 0 单串口模式,关闭双串口功能。 <mode> 1 双串口模式,打开双串口功能。 参数保存方式 AT&W_SAVE 最大响应时间 参考

模块双串口与客户设备连接示意图如下:

图 8: 串口连接图

7.2 双串口 AT 命令限制

当模块工作在双串口模式时,部分AT命令只能在某一个串口上执行,具体如下:

表 8: AT 命令限制

AT命令	UART1	UART2	备注
AT+IFC=2,2	不支持	支持	UART1接口无硬件流程pin脚
AT+CSCLK=1	不支持	支持	UART1接口无DTR pin脚
ATD*99# (PPP)	不支持	支持	PPP连接后UART1会丢数据
AT+CSCLK=2	支持	不支持	UART2接口的RXD pin脚无中断功能
AT+CMNRP=0	支持	不支持	
AT+CMNRP=1	支持	不支持	

7.3 双串口睡眠模式

在双串口模式下,UART1和UART2默认都是自适应波特(AT+IPR=0)。在没有同步串口波特率的情况下,模块无法进入休眠;两个串口波特率均进行同步以后模块才可以进入睡眠模式。

7.3.1 通过UART1 进入休眠

在双串口模式和下,UART1是三线串口(只连接TXD,RXD,GND三个信号线),休眠功能只能采用休眠模式2。设置AT+CSCLK=2后,模块会连续监测UART1和UART2,如果模块的UART1和UART2上都没有数据输入,并且没有其他中断产生(GPIO,来电,来短信等),5秒后模块会自动进入休眠模式2。在这种模式下,模块仍能接收来自网络的呼叫和短消息。

7.3.2 通过UART1 唤醒模块

当模块处于休眠模式2时,可以通过以下的几种方法唤醒模块。

- 接收到外部中断信号;
- 接收到语音或数据呼叫;
- 接收到短消息(SMS);
- UART1接收到数据(第一个字符会丢失)。

注音

在UART2处输入AT命令不会唤醒模块,拉低UART2 DTR也不会唤醒模块。

7.3.3 通过UART2 进入休眠

客户可以拉高UART2接口的DTR使模块进入休眠模式1。客户设置"AT+CSCLK=1"后,如果模块处于待机状态并且DTR是高电平,没有其他中断产生(GPIO,来电,来短信,UART1 无数据等),模块将自动进入休眠模式1。在这种模式下,模块仍能接收来自网络的呼叫和

短消息。在休眠模式1下,串口是不可用的。

7.3.4 通过UART2 唤醒模块

当模块处于休眠模式1时,可以通过以下的几种方法唤醒模块。

- 接收到外部中断信号;
- 接收到语音或数据呼叫;
- 接收到短消息(SMS);
- 拉低UART2 DTR引脚。

接收到语音或数据呼叫,接收到短消息(SMS)时模块会通过串口上报URC,但不可以输入AT命令;只有在DTR引脚被拉到低电平大概50mS后,串口才可以输入AT命令。

注意:

在UARTI 输入AT 命令不会唤醒模块。

附录

A. 参考文档

编号	文档名称	说明
[1]	SIM800 Series AT Command Manual	
[2]	SIM800 系列_TCPIP_应用文档	

B. 术语

术语	描述	
DCE	Data Communication Equipment	
DTE	Data Terminal Equipment	
UART	Universal Asynchronous Receiver and transmitter	

联系我们:

芯讯通无线科技(上海)有限公司

地址: 上海市金钟路 633 号晨讯科技大楼 A 楼

邮编: 200335

电话: +86 21 3252 3300 传真: +86 21 3252 3020 网址: www.sim.com/wm