MATEMÁTICAS BÁSICAS Cuarta entrega (Tipo 1)

1. Encontrar dos números complejos cuyo cuadrado sea

$$z_0 := -8 + 6i$$
.

2. Se define la transformación $T:\mathbb{C}\to\mathbb{C}$ como $T(z)=z^2$. Calcula la imagen por T de las rectas $y=x,\,y=-x$ y x=1. Representa gráficamente las rectas anteriores y sus imágenes por T. Encuentra un subconjunto de \mathbb{C} cuya imagen sea una circunferencia.

MATEMÁTICAS BÁSICAS Cuarta entrega (Tipo 2)

- 1. Se consideran los números complejos $z_1 := -i$, $z_2 := 2 5i$ y $z_3 := 4 + i$ y el triángulo \mathcal{T} que los tiene por vértices. ¿Es \mathcal{T} isósceles? ¿Es \mathcal{T} rectángulo?
- 2. Se define la transformación $T: \mathbb{C} \to \mathbb{C}$ como $T(z) := \overline{z}(z \mathbf{i})$. Calcula $T^{-1}(\{0\})$. ¿Es T inyectiva? Para cada $z := x + y\mathbf{i} \in \mathbb{C}$, calcula la parte real y la parte imaginaria de T(z). Describe los conjuntos

$$\{z \in \mathbb{C} : \operatorname{Re}(T(z)) = 0\}$$
 y $\{z \in \mathbb{C} : \operatorname{Im}(T(z)) = 0\}.$

Representa ambos conjuntos y su intersección.

MATEMÁTICAS BÁSICAS Cuarta entrega (Tipo 3)

- 1. Dada la función $f: \mathbb{C} \to \mathbb{C}, z \mapsto \frac{z}{1-\mathbf{i}}$, donde $\mathbf{i} = \sqrt{-1}$, se definen las funciones $f^2 := f \circ f$ y $f^k := f \circ f^{k-1}$ para cada entero $k \geq 3$.
 - (i) Demostrar que $f^n(z) = \frac{z}{(1-i)^n}$, para cada $n \in \mathbb{N}^+$.
 - (ii) Hallar el menor entero positivo n tal que $s_n := \sum_{k=1}^n f^k(i)$ es un número real y calcular s_n para dicho valor de n.
 - (iii) Hallar $z^{1/6}$ donde $f^{200}(z) = i$.

MATEMÁTICAS BÁSICAS Cuarta entrega (Tipo 4)

1. Encuentra todos los números complejos z que cumplan:

$$|z - 2i| = 2|z + 3|$$
.

2. Sea $z_0 := 3 + i$ el centro de un cuadrado y $z_1 := 5 + 3i$ uno de sus vértices. Halla los otros vértices del cuadrado.