Skyhawk Therapeutics

Sanjana Gorlla

2022-09-26

Objective Compare differentially expressed genes from two experiments & assess if the perturbations in the experiments may act in similar pathways

```
# loading the required packages
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
##
      intersect, setdiff, setequal, union
##
library(ggplot2)
library(tidyr)
library(tidyverse)
## -- Attaching packages -----
                                                 ----- tidyverse 1.3.2 --
## v tibble 3.1.8
                     v stringr 1.4.1
## v readr
            2.1.2
                     v forcats 0.5.2
## v purrr
           0.3.4
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
```

Tasks & Conclusion Download the differential expression analysis results from two studies in the EBI expression atlas

In the first study, cells were treated with a drug, nutlin which activates the P53 pathway

In the second study, the spliceosome gene PRPF8 was silenced with RNAi

Filter the results to only significant changes using the typical cutoffs of pval < 0.05 and abs(log2fc) > 1

Merge the results \mathcal{E} prepare a scatter-plot to compare $\log 2$ fold-change observed in each gene btwn the experiments

comment on whether these results lead you to think that nutlin is acting on the same pathway as PRPF8 and why

Approach

- 1. Downloaded the differential expression analysis results from two studies in the EBI expression atlas following the links: (i). https://www.ebi.ac.uk/gxa/experiments/E-GEOD-53965 (ii). https://www.ebi.ac.uk/gxa/experiments/E-MTAB-3021/Results
- 2. Filtering based on condition:
 - read.table() load differential expression analysis results
 - subset() gene id, gene name, log2 fold changes and p-values
 - Indexing + condtion filtering
- 3. Merging the results from two experiments:
 - merge() merged both the experiments based on columns
- 4. Visualizing & comparing:
 - ggplot() + geom point scatterplot of log2fc of nutlin and PRPF8
- 5. Analyzing the graph and interpretation

Experiment 1 - read.table() - load differential expression analysis results - subset() - gene id, gene name, log2 fold changes and p-values - Indexing + condtion - filtering

```
# loading the experiment1 dataset
exp1<- read.table(file = "/Users/sanjanagorlla/Desktop/skyhawk/E-GEOD-53965-A-AFFY-141-query-results (1
                  sep = '\t', header = TRUE)
# Extract gene id, gene name, log2 fold changes and p-values of exp1 using subset()
exp1_filter<-subset(exp1, select = c("Gene.ID", "Gene.Name",</pre>
                                     "X10.micromolar..Nutlin.3.vs.DMSO.control.foldChange",
                                      "X10.micromolar..Nutlin.3.vs.DMSO.control.pValue"))
# Renaming column names
colnames(exp1_filter) <- c("Gene.ID", "Gene.Name","log2fc","pval" )</pre>
# Filter the results to only significant changes
# using the typical cutoffs of pval < 0.05 and abs(log2fc) > 1
# keep rows with p-value<0.05 & |log2FoldChange|>1
exp1_df<- data.frame(exp1_filter[exp1_filter$pval<0.05 &
                                   abs(exp1_filter$log2fc)>1,])
#rank tables high to low log2FoldChange_abs
exp1_final <- exp1_df %>%
  as.data.frame() %>%
  dplyr::arrange(dplyr::desc(log2fc))
# Top 10 genes
head(exp1_final, 10)
```

```
## Gene.ID Gene.Name log2fc pval

## 1 ENSG00000144452 ABCA12 3.1 3.193952e-06

## 2 ENSG00000115129 TP53I3 3.0 1.376041e-06

## 3 ENSG00000138271 GPR87 2.9 6.591147e-07
```

```
## 4 ENSG00000164938 TP53INP1
                                 2.6 1.005697e-06
## 5 ENSG00000196562
                         SULF2
                                 2.5 1.376041e-06
                                 2.4 5.014760e-06
## 6 ENSG00000162643
                         DNAI3
## 7 ENSG00000124762
                                 2.3 1.373261e-05
                        CDKN1A
## 8 ENSG00000159388
                         BTG2
                                 2.3 1.171309e-06
## 9 ENSG00000080546
                                 2.2 1.376041e-06
                         SESN1
## 10 ENSG00000026103
                                 2.1 1.439095e-06
                           FAS
```

Experiment 2

```
# loading the experiment2 dataset
exp2<- read.table(file = "/Users/sanjanagorlla/Desktop/skyhawk/E-MTAB-3021-query-results.tsv",</pre>
                  sep = '\t', header = TRUE)
#Extract gene id, gene name, log2 fold changes and p-values of exp1 using subset()
exp2_filter <-subset(exp2, select = c("Gene.ID", "Gene.Name",
                                       "PRPF8.vs.control..foldChange",
                                       "PRPF8.vs.control.pValue"))
# Renaming column names
colnames(exp2_filter) <- c("Gene.ID", "Gene.Name","log2fc","pval" )</pre>
# Filter the results to only significant changes
# using the typical cutoffs of pval < 0.05 and abs(log2fc) > 1
# keep rows with p-value<0.05 & |log2FoldChange|>1
exp2_df<- data.frame(exp2_filter[exp2_filter$pval<0.05 &
                                   abs(exp2_filter$log2fc)>1,])
#rank tables high to low log2FoldChange_abs
exp2_final <- exp2_df %>%
  as.data.frame() %>%
  dplyr::arrange(dplyr::desc(log2fc))
# Top 10 genes
head(exp2_final, 10)
```

```
##
             Gene.ID
                           Gene.Name log2fc
                                                    pval
## 1 ENSG00000153234
                               NR4A2
                                        5.6 7.720080e-80
## 2 ENSG00000130513
                               GDF15
                                        5.5 0.000000e+00
## 3 ENSG00000119508
                               NR4A3
                                        4.8 3.167293e-68
## 4 ENSG00000143217
                                        3.9 9.212338e-34
                             NECTIN4
## 5 ENSG00000128564
                                 VGF
                                        3.7 5.580199e-20
## 6 ENSG00000235609 ENSG00000235609
                                        3.7 6.107431e-87
## 7
     ENSG00000123358
                               NR4A1
                                        3.6 5.783256e-35
## 8 ENSG0000124762
                              CDKN1A
                                        3.4 0.000000e+00
## 9 ENSG0000158055
                               GRHL3
                                        3.4 5.123532e-22
## 10 ENSG00000237437
                             ASS1P12
                                        3.2 1.360937e-12
# sub-setting only geneID, genename and log2foldchange for further analysis
```

```
exp1df<-as.data.frame(subset(exp1_final, select = c("Gene.ID", "Gene.Name", "log2fc")))
exp2df<-as.data.frame(subset(exp2_final, select = c("Gene.ID", "Gene.Name", "log2fc")))</pre>
```

```
# Merging the results from both the experiments based on common genes
merge_df12 <- merge(exp1df, exp2df, by=c("Gene.ID", "Gene.Name"))
merge_df12</pre>
```

##		Gene. ID	Gene.Name	log2fc.x	log2fc.v
	1	ENSG00000012048	BRCA1	-1.5	-1.6
##	2	ENSG00000026103	FAS	2.1	2.3
##	3	ENSG00000056736	IL17RB	-1.1	-1.4
##	4	ENSG00000077514	POLD3	-1.3	-1.4
##	5	ENSG00000080546	SESN1	2.2	1.7
##	6	ENSG00000080839	RBL1	-1.2	-1.4
##	7	ENSG00000092470	WDR76	-1.9	-1.4
##	8	ENSG00000092853	CLSPN	-2.1	-1.3
##	9	ENSG00000100439	ABHD4	1.1	2.2
##		ENSG00000100647	SUSD6	1.2	1.3
##		ENSG00000101057	MYBL2	-1.1	-1.4
##	12	ENSG00000101412	E2F1	-1.1	-2.1
##	13	ENSG00000102384	CENPI	-1.3	-2.0
##	14	ENSG00000104738	MCM4	-1.1	-1.2
##	15	ENSG00000105011	ASF1B	-1.3	-1.8
##	16	ENSG00000106366	SERPINE1	1.9	2.8
##	17	ENSG00000107796	ACTA2	2.0	1.1
##	18	ENSG00000109674	NEIL3	-1.3	-1.2
##	19	ENSG00000111860	CEP85L	1.1	1.3
##	20	ENSG00000112029	FBX05	-1.8	-1.1
##	21	ENSG00000115129	TP53I3	3.0	1.6
##	22	ENSG00000116717	GADD45A	1.1	2.9
##	23	ENSG00000119969	HELLS	-1.1	-1.4
##	24	ENSG00000120278	PLEKHG1	1.2	1.3
##	25	ENSG00000120889	TNFRSF10B	1.2	1.4
##	26	ENSG00000123219	CENPK	-1.2	-2.0
##	27	ENSG00000124762	CDKN1A	2.3	3.4
##	28	ENSG00000128408	RIBC2	-1.4	-1.8
##	29	ENSG00000130513	GDF15	1.9	5.5
##	30	ENSG00000130707	ASS1	1.1	-1.7
##	31	ENSG00000130766	SESN2	1.1	2.3
##	32	ENSG00000131153	GINS2	-1.3	-1.5
##	33	ENSG00000135679	MDM2	1.2	2.1
##	34	ENSG00000136048	DRAM1	1.6	1.1
##	35	ENSG00000136492	BRIP1	-1.5	-1.7
##	36	ENSG00000136982	DSCC1	-1.4	-1.4
##	37	ENSG00000137310	TCF19	-1.2	-1.5
##	38	ENSG00000138376	BARD1	-1.4	-1.1
##	39	ENSG00000144452	ABCA12	3.1	1.7
##	40	ENSG00000149636	DSN1	-1.2	-1.4
##	41	ENSG00000159147	DONSON	-1.2	-1.3
##	42	ENSG00000159259	CHAF1B	-1.2	-1.8
##	43	ENSG00000159388	BTG2	2.3	2.3
##	44	ENSG00000161513	FDXR	1.8	1.8
##	45	ENSG00000162643	DNAI3	2.4	1.1
##	46	ENSG00000164331	ANKRA2	1.9	1.6
##	47	ENSG00000164938	TP53INP1	2.6	2.1
##	48	ENSG00000165244	ZNF367	-1.9	-1.3

```
## 49 ENSG00000166845 C18orf54
                                     -1.1
                                              -1.2
## 50 ENSG00000167081
                           PBX3
                                     -1.1
                                              -1.1
                                     -1.2
                                              -1.1
## 51 ENSG00000167670
                         CHAF1A
## 52 ENSG00000168209
                                      1.5
                                               1.3
                          DDIT4
## 53 ENSG00000171320
                          ESC02
                                     -1.4
                                              -1.1
## 54 ENSG00000172667
                                      1.7
                                               2.1
                          ZMAT3
## 55 ENSG00000173846
                           PLK3
                                      1.8
                                               2.6
## 56 ENSG00000175305
                                     -3.0
                                              -1.5
                          CCNE2
## 57 ENSG00000177076
                          ACER2
                                      1.4
                                               1.7
## 58 ENSG0000178966
                                              -1.4
                           RMI1
                                     -1.1
## 59 ENSG00000179630
                          LACC1
                                     1.4
                                               1.5
## 60 ENSG00000181218
                           H2AW
                                     -1.2
                                               1.5
## 61 ENSG00000181938
                          GINS3
                                     -1.1
                                              -1.3
## 62 ENSG00000184678
                                     -1.3
                                               2.2
                         H2BC21
## 63 ENSG00000185697
                          MYBL1
                                     -1.3
                                              -1.2
## 64 ENSG00000186529
                         CYP4F3
                                      1.2
                                               2.5
## 65 ENSG00000186638
                                              -1.3
                          KIF24
                                     -1.1
## 66 ENSG00000189057
                        FAM111B
                                     -2.5
                                              -1.3
## 67 ENSG00000196072
                        BL0C1S2
                                      1.1
                                               1.3
## 68 ENSG00000196152
                          ZNF79
                                      1.1
                                               1.8
## 69 ENSG00000196562
                          SULF2
                                      2.5
                                               2.6
## 70 ENSG00000198554
                          WDHD1
                                     -1.2
                                              -1.7
## 71 ENSG00000206075 SERPINB5
                                     1.9
                                               1.2
## 72 ENSG00000244509
                       APOBEC3C
                                     1.5
                                               1.2
## 73 ENSG00000276043
                                     -1.2
                                              -1.9
                          UHRF1
## 74 ENSG00000278828
                          H3C10
                                     -1.5
                                               1.3
```

```
# Final data for analysis
log2fc <- c(merge_df12$log2fc.x, merge_df12$log2fc.y)
Gene.ID <- c(merge_df12$Gene.ID, merge_df12$Gene.ID)
final_data <- data.frame(Gene.ID, log2fc)
final_data$Source <- c(replicate(74,"NUTLIN"),replicate(74,"PRPF8"))</pre>
```

Scatterplot for comparision

```
#scatter-plot to compare log2 fold-change observed in each gene between the experiments
ggplot(final_data, aes(x=Gene.ID, y= log2fc, color=Source))+
  geom_point(alpha = 0.5) + theme(axis.text.x = element_text(angle = 90, hjust = 3)) +
  ggtitle("Log2 fold-change in each gene between Nutlin and PRPF8")
```


Scatterplot for comparision

- 1. Cells were treated with a drug, nutlin which activates the P53 pathway: The connection between MDM2 and p53 is competitively blocked by nutlin-3, which stops p53 from being ubiquitinated and degraded. In numerous model systems, nutlin-3 treatment has been demonstrated to restore p53 activation and the concomitant production of apoptosis, senescence, or reversible cell cycle arrest.
- 2. The spliceosome gene PRPF8 was silenced with RNAi: Alterations in RNA splicing patterns across the human transcriptome that occur in conditions of restricted cellular PRPF8 abundance are defined by the altered splicing of introns with weak 5' splice sites.

Scatterplot: By comparing the genes regulated by both the pathways: we can observe that the genes expressed in P53 pathway due to Nutlin acts very similar to the PRPF8 pathway and is evident with the scatter-plot.

Except the genes PLK3 & KIF24 treated with Nutlin have negative log2fc values which means that the gene is less expressed with nutlin.

All the majority of genes have values >1 which are highly expressed.

Therefore, there is a high possibility that both the experimental perturbations act along similar pathways.

Based on the genes compared nutlin is acting on the same pathway as PRPF8