Кузнечик (по имени Кронекер)

- **1.** На бесконечной в одну сторону клетчатой полоске записаны произвольные числа. Докажите, что найдется кусок полоски такой, что сумма чисел в его клетках отличается от целого числа не более, чем на 0,001.
- **2.** Дано положительное иррациональное число α , меньшее 1. Кузнечик прыгает по окружности длины 1. За каждую секунду он прыгает по часовой стрелке на дугу длины α .
 - (а) Докажите, что когда-нибудь он окажется на расстоянии меньше чем 0,001 от своего исходного положения (расстояние считается по окружности).
 - **(б)** Докажите, что кузнечик рано или поздно посетит любую наперёд выбранную дугу окружности. Верно ли, что он посетит любую наперёд заданную точку окружности?
 - (в) (Теорема Кронекера). Докажите, что если $\alpha > 0$ иррациональное число, то произвольный интервал (a,b) числовой прямой содержит число вида $n\alpha m$, где m,n неотрицательные целые числа. (Иными словами, множество значений выражения $n\alpha m$ всюду плотно на числовой прямой).
- 3. По круглому стадиону длины 1 прыгает кузнечик с иррациональным шагом α . Стадион разбит на два равных сектора: первый и второй. Судья записывает номера секторов, посещаемых кузнечиком. Докажите, что эта последовательность непериодична.
- **4.** Два кузнечика одновременно начинают прыгать по окружности из одной точки, один с шагом α , другой с шагом β . Докажите, что для любого $\epsilon > 0$ рано или поздно оба одновременно окажутся в ϵ -окрестности стартовой точки.
- **5.** Кузнечик прошел курсы повышения квалификации и теперь он умеет делать два прыжка: с длинами $\sqrt{2}$ и $\sqrt{3}$ в обе стороны. Теперь кузнечик готов прыгать по прямой. Докажите, что он сможет попасть в любой отрезок на прямой.
- **6.** В каждой точке координатной плоскости с целыми координатами сидит круглый дятел радиуса r > 0. У дятла в точке (0,0) есть ружьё. Докажите, что в каком бы направлении он не стрельнул, пуля попадёт в другого дятла.
- **7. (а)** Докажите, что степень двойки с натуральным показателем может начинаться на любую цифру.
 - **(б)** Докажите, что степень двойки с натуральным показателем может начинаться на любую комбинацию цифр.