Workshop-related resources

Books

While there are a large number of resources available for R, the following form a core start point:

- 1. R for Data Science¹ is available online and can also be purchased from various sellers. It is a solid introduction to using the tidyverse set of packages and working with R in general.
- 2. ggplot2: Elegant Graphics for Data Analysis² is an excellent in-depth look at the ggplot2 package and its capabilities.
- 3. Linear Models with R³ discusses linear modeling with a more practical viewpoint and using a lot of R code in the process.
- 4. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models⁴ discusses more advanced modeling, including topics like Logistic Regression, Random Effects and Repeated Measures.
- 5. An Introduction to Statistical Learning: with Applications in R⁵ is a great broad introduction to various topics related to statistical learning.

Cheatsheets

- Various RStudio-provided cheatsheets⁶. Most other links are from that site.
- Data Import⁷ with the readr package and its friends.
- Graphing⁸ with ggplot2.
- Data Transformations⁹ with dplyr. There is also an older version¹⁰ that is slightly different.
- The stringr¹¹ package for string manipulations.
- The purrr¹² package for working with lists of items in a consistent way.
- R Markdown¹³ and another reference¹⁴.
- RStudio IDE¹⁵.
- Mosaic¹⁶

¹http://r4ds.had.co.nz/

²https://www.amazon.com/ggplot2-Elegant-Graphics-Data-Analysis/dp/331924275X/

³https://www.amazon.com/Linear-Models-Chapman-Statistical-Science/dp/1439887330

⁴https://www.amazon.com/Extending-Linear-Model-Generalized-Nonparametric/dp/149872096X/

⁵https://www.amazon.com/Introduction-Statistical-Learning-Applications-Statistics/dp/1461471370

⁶https://www.rstudio.com/resources/cheatsheets/

⁷https://github.com/rstudio/cheatsheets/raw/master/data-import.pdf

⁸https://github.com/rstudio/cheatsheets/raw/master/data-visualization-2.1.pdf

⁹https://github.com/rstudio/cheatsheets/raw/master/data-transformation.pdf

¹⁰https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

¹¹https://github.com/rstudio/cheatsheets/raw/master/strings.pdf

¹²https://github.com/rstudio/cheatsheets/raw/master/purrr.pdf

¹³https://github.com/rstudio/cheatsheets/raw/master/rmarkdown-2.0.pdf

¹⁴https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf

¹⁵https://github.com/rstudio/cheatsheets/raw/master/rstudio-ide.pdf

¹⁶ https://github.com/rstudio/cheatsheets/raw/master/mosaic.pdf

Datasets

• compression.xlsx¹⁷ Data on the effects of various compression techniques, collected by Shelby Williamson for her senior thesis project at Hanover College, under the supervision of Molly Winke.

Other links

¹⁷datasets/compression.xlsx