Analítica de datos

Estadísticos descriptivos

Profesor: Nicolás Velásquez

Estadísticos descriptivos

Medidas de tendencia central.

Medidas de variación.

Medidas de forma.

3

4

El diagrama de caja y brazos.

Medidas de relación lineal entre dos variables.

Resumen de Definiciones

- La tendencia central nos dice alrededor de qué valor se mueven los valores de una variable numérica.
- La variación nos dice qué tan dispersos están los datos o qué tanto se alejan de su tendencia central.
- La **forma** es el patrón de la distribución de los valores.

Medidas de Tendencia Central: Media

(Average)

• La media es la medida más común de tendencia central:

• Para una muestra de tamaño n:

Media (muestral)

Valor número i

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Tamaño muestra

Valores observados

Medidas de Tendencia Central: Media

- Media = suma de los valores dividido el número de valores.
- Afectada por valores extremos ("outliers")

$$\frac{11+12+13+14+15}{5} = \frac{65}{5} = 13$$

$$\frac{11+12+13+14+20}{5} = \frac{70}{5} = 14$$

Medidas de Tendencia Central: Mediana

• La posición de la mediana cuando los valores están ordenados de más bajo a más alto:

$$Posición = \frac{n+1}{2}$$

- Si el número de valores es impar, la mediana es el número del medio.
- Si el número de valores es par, la mediana es el promedio de los números del medio.

Note que $\frac{n+1}{2}$ no es el *valor* de la mediana, solamente la *posición* en los datos ordenados!

Medidas de Tendencia Central: Mediana

 Valor para el cuál 50% de las observaciones quedan abajo y 50% arriba.

• Menos sensible que la media a valores extremos (outliers).

Medidas de Tendencia Central: Ejemplo

Medidas de Tendencia Central: Moda

- Valor más frecuente.
- No afectada por valores extremos.
- Podría haber varias modas

Varias modas

Medidas de Tendencia Central: Un ejemplo

\$2,000,000 \$500,000 \$300,000 \$100,000 \$100,000 \$3,000,000

```
Media: ($3,000,000/5) = $600,000
```

```
Mediana = $300,000
```

```
Moda = $100,000
```

Medidas de Tendencia Central: Resumen

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Valor de en medio en datos ordenados.

Valor más frecuente.

Medidas de Variación

Medidas sobre la dispersión de los datos.

Medidas de Variación: Rango

- Medida más simple de variación.
- Diferencia entre el valor más grande y el más pequeño:

Rango =
$$X_{+grande} - X_{+pequeño}$$

Medidas de Variación: el rango es normalmente una mala medida

No toma en cuenta cómo se distribuyen los datos.

Sensible a outliers **1**,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,**5**

Rango =
$$5 - 1 = 4$$

Medidas de Variación: Varianza

- Promedio de las desviaciones de la media, al cuadrado:
 - Varianza (muestral):

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$$

donde X = media n = tamaño muestra $X_i = valor i-ésimo$

Medidas de Variación: Desviación Estándar

- Medida más común.
- Muestra variabilidad alrededor de la media.
- Es la raíz de la varianza.
- Expresada en las mismas unidades que los datos.

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$

Medidas de Variación: Desviación Estándar

Datos

 (X_i) :

10

$$n = 8$$
 Media = $\overline{X} = 16$

$$S = \sqrt{\frac{(10 - \overline{X})^2 + (12 - \overline{X})^2 + (14 - \overline{X})^2 + \dots + (24 - \overline{X})^2}{n - 1}}$$

$$=\sqrt{\frac{(10-16)^2+(12-16)^2+(14-16)^2+\cdots+(24-16)^2}{8-1}}$$

$$=\sqrt{\frac{130}{7}} = \boxed{4.3095} \Longrightarrow$$

 $=\sqrt{\frac{130}{7}}$ = 4.3095 Una medida de la desviación media de la media.

Medidas de Variación: <u>Desviación</u> Estándar

Medidas de Variación: <u>Desviación</u> <u>Estándar</u>

Medidas de Variación: Resumen

- Entre más dispersos los datos, el rango, varianza y desviación estándar serán más grandes.
- Entre más concentrado, serán menores.
- Si todos los valores son los mismos (no hay variación), todas las medidas serían cero.
- Ninguna medida es negativa.
- Mejor utilizar la desviación estándar.

Medidas de Variación: Coeficiente de Variación

En términos porcentuales (%).

- Muestra variación relativa a la media.
- Utilizado para comparar volatilidad de dos acciones distintas (finanzas)

$$CV = \left(\frac{S}{X}\right) \cdot 100\%$$

Medidas de Variación: Coeficiente de Variación

- Acciones A:
 - Precio medio = \$50.
 - Desviación estándar = \$5.

$$CV_A = \left(\frac{S}{\overline{X}}\right) \cdot 100\% = \frac{\$5}{\$50} \cdot 100\% = \boxed{10\%}$$

- Acciones B:
 - Precio medio = \$100.
 - Desviación estándar = \$5.

$$CV_{B} = \begin{pmatrix} S \\ \frac{1}{2} \end{pmatrix} \cdot 100\% = \frac{\$5}{\$100} \cdot 100\% = \frac{5\%}{\$100}$$

Ambas acciones tiene la misma desviación estándar, pero para B, la variabilidad es menor relativo a la media.

Medidas de Variación: Coeficiente de Variación

Acciones A:

- Precio medio = \$50.
- Desviación estándar = \$5. $CV_A = \begin{pmatrix} S \\ \frac{1}{2} \end{pmatrix} \cdot 100\% = \frac{\$5}{\$50} \cdot 100\% = 10\%$

• Acciones C:

- Precio medio = \$8.
- Desviación estándar = \$2.

$$CV_C = \begin{pmatrix} S \\ \overline{X} \end{pmatrix} \cdot 100\% = \frac{\$2}{\$8} \cdot 100\% = 25\%$$

C tiene menor desviación estándar, pero mayor coeficiente de variación.

EJERCICIO

<u>Utilizando los datos de</u> concerts.csv:

Construya un cuadro de resumen estadístico de las variables numéricas (pueden enfocarse en net_sales, impressions ó spend por canal-tactico y variables macro):

- 1. Las medidas de tendencia central de los datos: Media, mediana y moda.
- 2. Las medidas de dispersión de los datos: Varianza, desviación estándar y rango.
- 3. El coeficiente de variación.

Pista: Puede usar los paquetes {gt} o flextable. Acá pueden ver varios paquetes de tablas: https://towardsdatascience.com/top-7-packages-for-making-beautiful-tables-in-r-7683d054e541

Medidas de Forma de la Distribución

- Describen cómo se distribuyen los datos.
 - Asimetría o (Skewness):
 - Mide qué tan asimétricamente están distribuidos los datos.
 - Curtosis:
 - Mide que tan "picuda" es la distribución.
 - No cubriremos este estadístico.

Forma de la Distribución: Asimetría

Mide la asimetría de los datos

Explorando los datos utilizando <u>Cuartiles</u>

- Se puede visualizar la distribución de los valores:
 - Calculando los cuartiles.
 - Haciendo el resumen de 5 estadísticos y,
 - Construyendo un diagrama de caja y brazos.

• Se dividen los datos en cuatro segmentos, con el mismo número de observaciones/valores por segmento.

- El primer cuartil, Q₁, es el valor para el cual el 25% de los valores son más pequeños y el 75% más grandes.
- Q_2 es la mediana (50% son menores y 50% mayores).
- Solo el 25% de los valores son más grandes que el tercer cuartil.

Se encuentra la posición en los datos:

$$Q_1 = (n+1)/4$$

$$Q_2 = (n+1)/2$$

$$Q_3 = 3(n+1)/4$$

donde **n** es el número de valores.

Datos ordenados: 11 12 13 16 16 17 18 21 22

$$(n = 9)$$

 Q_1 está en la (9+1)/4 = 2.5 posición.

Tomamos la el promedio entre la posición 2 y la posición 3.

 $Q_1 = 12.5$

Datos ordenados: 11 12 13 16 16 17 18 21 22

(n = 9)
Q₁: (9+1)/4 = 2.5 posición,
Q₁ = (12+13)/2 = 12.5.
Q₂: (9+1)/2 = 5 posición
Q₂ = mediana = 16.
Q₃:
$$3(9+1)/4 = 7.5$$
 posición,
Q₃ = (18+21)/2 = 19.5.

Cuartiles: El Rango Intercuartílico (RIC)

• RIC = $Q_3 - Q_1$ y mide la variabilidad del 50% de los datos que están en medio.

- Una medida de variabilidad no afectada por outliers.
- Las medidas como Q_1 , Q_3 , y RIC que no son influenciadas por outliers se llaman medidas resistentes.

Rango Intercuartílico

Ejemplo:

Resumen de 5 estadísticos y el Diagrama de Caja y Brazos

Ejemplo:

Resumen de 5 estadísticos y el Diagrama de Caja y Brazos

 Si los datos están distribuidos simétricamente alrededor de la mediana, entonces la caja está centrada:

Se puede mostrar horizontal o verticalmente

Forma de la Distribución y el Diagrama de Caja y Brazos

Sesgo izq.

Simétrico

Sesgo der.

Diagrama de Caja y Brazos: Ejemplo

• Sesgo o Asimetría a la derecha.

Medidas Descriptivas para una Población

- Los estadísticos descriptivos discutidos anteriormente describen una muestra, pero no a la población.
- Las medidas que describen a una población se llaman parámetros. Utilizamos letras griegas para referirnos a ellos.
- Los parámetros más importantes son: la media, mediana, y desviación estándar.

Notación: estadísticos muestrales vs. parámetros poblacionales

Medida	Parámetro poblacional	Estadístico muestral	
Media	μ	\overline{X}	
Varianza	σ^2	S^2	
Desviación estándar	σ	S	

Medidas de la Relación entre Dos Variables

Como vimos, los gráficos de dispersión nos ayudan a visualizar y examinar la relación entre dos variables numéricas.

Ahora vamos a discutir dos medidas cuantitativas de dichas relación:

- La Covarianza
- El Coeficiente de Correlación.

Covarianza

- La covarianza mide qué tan fuerte es la relación (lineal) de **dos variables numéricas** (X & Y).
- La covarianza muestral:

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$$

- Solamente mide la "fuerza" de la relación.
- No habla sobre causalidad.

Covarianza

Interpretando la Covarianza

• Covarianza entre dos variables:

 $cov(X,Y) > 0 \longrightarrow X$ and Y se mueven en la misma dirección.

cov(X,Y) < 0 → X and Y se mueven en dirección opuesta.

 $cov(X,Y) = 0 \longrightarrow X$ and Y son independientes.

- La covarianza tiene un gran defecto:
 - No se puede determinar la fuerza relativa de la relación solamente mirando la covarianza.

- Mide la fuerza relativa de la relación lineal entre dos variables.
- Coeficiente de correlación muestral:

$$r = \frac{\text{cov}(X, Y)}{S_X S_Y}$$

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$$

$$S_X = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$

$$S_X = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$

$$S_Y = \sqrt{\frac{\sum_{i=1}^n (Y_i - \overline{Y})^2}{n-1}}$$

- Al parámetro **poblacional**, el coeficiente de correlación en la población lo llamamos ρ .
- Al muestral lo llamamos r.
- ρ y r tienen las siguientes propiedades:
 - No están medidos en unidades.
 - Entre -1 y 1.
 - Más cerca a –1, más fuerte la relación lineal negativa.
 - Más cerca a 1, más fuerte la relación lineal positiva.
 - Más cerca a 0, más débil la relación lineal.

Gráficas de Dispersión con sus respectivos Coeficientes de Correlación

EJERCICIO

Utilizando los datos de concerts.csv:

- 1. Construya una matriz de correlación entre las variables de spend y net_sales.
- 2. Grafique la relación entre net_sales y unemployment.
- 3. ¿Podría unemployment ser un predictor de net_sales? Justifique su respuesta.

A Fine is a Price

Uri Gneezy y Aldo Rustichini (JELS, 2000)

Introducción

- · Guarderías en Haifa con moderado problema: algunos padres llegan tarde por sus hijos.
- Una posible solución: introducir una multa por llegar tarde
- Idea: las personas funcionan con incentivos (monetarios) y este es un incentivo para llegar a tiempo.

Introducción

• Estudio elaborado en 10 guarderías en Haifa, por 20 semanas.

• Pequeñas guarderías para máximo 35 niños.

 Guarderías cierran a las 4pm. Un empleado de la guardería se queda cuidando de los niños.

No hay multas por llegar tarde.

Experimento

- Por las primeras 4 semanas, los investigadores recolectan información sobre el número de padres que llegan tarde cada semana..
- Iniciando la semana 5, una multa en 6 de 10 centros.
 - > 10 minutos.
 - Por niño.
 - 10 NIS (\$2.75 of 1998).

Experimento

 A lxs niñerxs se les informa de la multa, pero no del estudio.

• Padres informados en tablero de anuncios, frecuentemente leído.

• Se elimina la multa al final de la semana 17.

Resultados

FIGURE 1.—Average number of late-coming parents, per week

Resultados

TABLE 2

AVERAGE NUMBER OF LATE-COMING PARENTS, ACCORDING TO FOUR PERIODS OF THE STUDY

Center	No. of Children	Weeks 1-4	Weeks 5-8	Weeks 5-16	Weeks 17–20
1	37	7.25	9.5	12.5	15.25
2	35	5.25	9	12.2	13.25
3	35	8.5	10.25	16.8	22
4	34	9	15	19.1	20.25
5	33	11.75	20	24.6	29.5
6	28	6.25	10	13.1	12
7	35	8.75	8	7.2	6.75
8	34	13.25	10.5	10.9	9.25
9	34	4.75	5.5	5.5	4.75
10	32	13.25	12.25	13.1	12.25

Note.—The four periods of the study are as follows: before the fine (weeks 1-4), the first 4 weeks with the fine (weeks 5-8), the entire period with the fine (weeks 5-16), and the postfine period (weeks 17-2).

Conclusiones

 La pequeña multa aumenta el número de niños que son recogidos tarde. La multa no funciona.

 Una vez se elimina la multa, no hay un regreso a la situación inicial: los padres en las guarderías con multas siguen llegando tarde.

 Explicación: la multa es un incentivo externo que diminuye la motivación interna.