

ÁREAS EN SUPERFICIES

ALAN REYES-FIGUEROA GEOMETRÍA DIFERENCIAL

(AULA 19) 22.MARZO.2022

En el aula anterior vimos que si $S \subseteq \mathbb{R}^3$ es una superficie regular, entonces tenemos definida una forma cuadrática en cada punto $\mathbf{p} \in S$, llamada la forma fundamental $I_{\mathbf{p}}: T_{\mathbf{p}}S \to \mathbb{R}$ por

$$I_{\mathbf{p}}(\mathbf{v}) = \langle \mathbf{v}, \mathbf{v} \rangle_{\mathbf{p}}.$$

Además, si $\mathbf{x}: U \subseteq \mathbb{R}^2 \to V \cap S$ es una parametrización alrededor de \mathbf{p} , y si $\alpha: (-\varepsilon, \varepsilon) \to U$ es una curva con $\alpha(\mathbf{o}) = \mathbf{p}$, $\alpha'(\mathbf{o}) = \mathbf{v}$, y con coordenadas $\alpha(t) = (u(t), v(t))$, entonces la expresión de $I_{\mathbf{p}}$ en coordenadas locales es

$$I_{\mathbf{p}}(\mathbf{v}) = (u', v') \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} u' \\ v' \end{pmatrix}.$$

De modo que podemos escribir $I_{\mathbf{p}} = \begin{pmatrix} E & F \\ F & G \end{pmatrix}$.

donde
$$E = \langle \mathbf{x}_u, \mathbf{x}_u \rangle$$
, $F = \langle \mathbf{x}_u, \mathbf{x}_v \rangle$ y $G = \langle \mathbf{x}_v, \mathbf{x}_v \rangle$.

Vimos que

$$ds^2 = E du^2 + 2F du dv + G dv^2,$$

donde ds es el elemento de longitud de arco. Equivalentemente, en coordenadas locales tenemos que

$$\ell(\alpha) = \int_a^b \sqrt{E\left(\frac{du}{dt}\right)^2 + 2F\left(\frac{du}{dt}\right)\left(\frac{dv}{dt}\right) + G\left(\frac{dv}{dt}\right)^2} dt$$

da la longitud de arco.

Geometría de la primera forma fundamental.

Escribimos también

$$I_{\mathbf{p}} = egin{pmatrix} g_{11} & g_{12} \ g_{21} & g_{22} \end{pmatrix} = egin{pmatrix} g_{ij} \end{pmatrix},$$

donde $g_{ii} = \langle \mathbf{x}_i, \mathbf{x}_i \rangle$.

En general, en el caso de hiperficies $H \subset \mathbb{R}^{n+1}$, esto es superficies de dimensión n en \mathbb{R}^{n+1} (o de codimensión 1), la primera forma fundamental $I_{\mathbf{p}}$ se generaliza a la forma cuadrática

$$I_{\mathbf{p}} = egin{pmatrix} g_{11} & g_{12} & \cdots & g_{1n} \ g_{21} & g_{22} & \cdots & g_{2n} \ dots & dots & \ddots & dots \ g_{n1} & g_{n2} & \cdots & g_{nn} \end{pmatrix},$$

donde $g_{ij} = \langle \mathbf{x}_i, \mathbf{x}_j \rangle$.

Lema

Sea $S \subseteq \mathbb{R}^3$ superficie regular, **x** parametrización de S, y $\widetilde{\mathbf{x}} \circ \varphi$ otra parametrización obtenida mediante un cambio de coordenadas $\varphi: U_1 \subseteq \mathbb{R}^2 \to U_2 \subseteq \mathbb{R}^2$. Bajo este cambio de coordenadas, la primera forma fundamental en $\mathbf{p} \in S$ se comporta como

$$(\widetilde{g}_{ij}) = D\varphi(\mathbf{p})^{\mathsf{T}} (g_{ij}) D\varphi(\mathbf{p}).$$

Prueba:

La ecuación $(g_{ij}) = D\mathbf{x}(\mathbf{p})^T \cdot D\mathbf{x}(\mathbf{p})$ es directa. Luego

$$\begin{aligned}
\widetilde{(g_{ij})} &= D\widetilde{\mathbf{x}}(\mathbf{p})^{\mathsf{T}} \cdot D\widetilde{\mathbf{x}}(\mathbf{p}) = D(\mathbf{x} \circ \varphi)(\mathbf{p})^{\mathsf{T}} \cdot D(\mathbf{x} \circ \varphi)(\mathbf{p}) \\
&= D\varphi(\mathbf{p})^{\mathsf{T}} D\mathbf{x}(\mathbf{q})^{\mathsf{T}} D\mathbf{x}(\mathbf{q}) D\varphi(\mathbf{p}) = D\varphi(\mathbf{p})^{\mathsf{T}} \cdot (g_{ij}) \cdot D\varphi(\mathbf{p}).
\end{aligned}$$

De la primera forma fundamental I_p se derivan varias cantidades importantes. Ya vimos una, el elemento de longitud ds:

$$ds^2 = Edu^2 + 2Fdu dv + Gdv^2.$$

Otra cantidad que se deriva de I_p es el coseno angular entre las curvas coordenadas canónicas \mathbf{x}_u y \mathbf{x}_v :

$$\cos \varphi = rac{\langle \mathbf{x}_u, \mathbf{x}_v
angle}{||\mathbf{x}_u|| \ ||\mathbf{x}_v||} = rac{F}{\sqrt{EG}}.$$

El determinante de la primera forma fundamental también juega un papel importante en la integración de funciones. De alguna manera, $\det(g_{ij})$ indica el elemento de superficie o elemento de área que se utiliza en las llamadas integrales de superficie.

Ejemplo:

Consideremos la helicoide

Una parametrización de la helicoide $S\subseteq\mathbb{R}^3$ es dada por

$$\mathbf{x}(u,v) = (v\cos u, v\sin u, au), \quad a > 0, u \in (0,2\pi), v \in \mathbb{R}.$$

En este caso, $\mathbf{x}_u = (-v \sin u, v \cos u, a)$ y $\mathbf{x}_v = (\cos u, \sin u, o)$, y tenemos

$$\begin{split} E &= \langle \mathbf{x}_u, \mathbf{x}_u \rangle = \mathbf{v}^2 + a^2, \ F &= \langle \mathbf{x}_u, \mathbf{x}_v \rangle = 0, \ G = \langle \mathbf{x}_v, \mathbf{x}_v \rangle = 1, \\ y \ I_\mathbf{p} &= \begin{pmatrix} \mathbf{v}^2 + a^2 & o \\ o & 1 \end{pmatrix}. \end{split}$$

Recordemos que si $\mathbf{a}, \mathbf{b} \in \mathbb{R}^2$ son vectores, entonces el área del paralelogramo generado por \mathbf{a} y \mathbf{b} (en ese orden) está dado por $|\mathbf{a} \times \mathbf{b}|$.

Propiedad

$$|\mathbf{a} \times \mathbf{b}|^2 + \langle \mathbf{a}, \mathbf{b} \rangle^2 = ||\mathbf{a}||^2 ||\mathbf{b}||^2.$$

<u>Prueba</u>: Sean $\mathbf{a}=a_1\mathbf{e}_1+a_2\mathbf{e}_2$, $\mathbf{b}=b_1\mathbf{e}_1+b_2\mathbf{e}_2$. Entonces

$$|\mathbf{a} \times \mathbf{b}|^{2} + \langle \mathbf{a}, \mathbf{b} \rangle^{2} = |(a_{1}\mathbf{e}_{1} + a_{2}\mathbf{e}_{2}) \times (b_{1}\mathbf{e}_{1} + b_{2}\mathbf{e}_{2})|^{2} + \langle a_{1}\mathbf{e}_{1} + a_{2}\mathbf{e}_{2}, b_{1}\mathbf{e}_{1} + b_{2}\mathbf{e}_{2} \rangle^{2}$$

$$= (a_{1}b_{2} - a_{2}b_{1})^{2} + (a_{1}b_{1} + a_{2}b_{2})^{2}$$

$$= (a_{1}^{2}b_{2}^{2} - 2a_{1}a_{2}b_{1}b_{2} + a_{2}^{2}b_{1}^{2}) + (a_{1}^{2}b_{1}^{2} + 2a_{1}a_{2}b_{1}b_{2} + a_{2}^{2}b_{2}^{2})$$

$$= a_{1}^{2}b_{1}^{2} + a_{1}^{2}b_{2}^{2} + a_{2}^{2}b_{1}^{2} + a_{2}^{2}b_{2}^{2}$$

$$= (a_{2}^{2} + a_{2}^{2})(b_{2}^{2} + b_{2}^{2}) = ||\mathbf{a}||^{2} ||\mathbf{b}||^{2}.$$

Reescribiendo la propiedad anterior, tenemos

$$|\mathbf{a} \times \mathbf{b}|^2 = ||\mathbf{a}||^2 ||\mathbf{b}||^2 - \langle \mathbf{a}, \mathbf{b} \rangle^2.$$

En particular, cuando tomamos la base canónica del plano T_pS , obtenemos la siguiente forma de calcular el área del paralelogramo generado por los vectores \mathbf{x}_u y \mathbf{x}_v :

$$|\mathbf{X}_{u} \times \mathbf{X}_{v}|^{2} = ||\mathbf{X}_{u}||^{2} ||\mathbf{X}_{v}||^{2} - \langle \mathbf{X}_{u}, \mathbf{X}_{v} \rangle^{2} = EG - F^{2}.$$

En otras palabras, el área del paralelogramo generado por los vectores \mathbf{x}_u y \mathbf{x}_v es

$$area(\mathbf{x}_u, \mathbf{x}_v) = \sqrt{EG - F^2} = \sqrt{\det \begin{pmatrix} E & F \\ F & G \end{pmatrix}} = \sqrt{\det I_{\mathbf{p}}}.$$

Definición

Un **dominio** D de una superficie regular $S \subseteq \mathbb{R}^3$ es un abierto conexo tal que la frontera ∂D es la imagen de una aplicación diferenciable $f: S^1 \to \partial D$, y es un homeomorfismo regular, excepto posiblemente en un número finito de puntos.

Una **región** R es la unión de un dominio D con su frontera, i.e. $R = D \cup \partial D$.

Propiedad

Sea S superficie regular, y $\mathbf{x}: U \subseteq \mathbb{R}^2 \to V \cap S$ parametrización. Si $R \subseteq \mathbf{x}(U)$ es una región en S, entonces $Q = \mathbf{x}^{-1}(R)$ es una región en U.

Prueba: Ejercicio!

Para definir el área de una región $R \subseteq S$ comenzamos con una partición \mathcal{P} de R en un número finito de regiones R_i , es decir, $R = \bigcup_i R_i$, donde la intersección de dos de tales regiones $R_i \cap R_j$ es vacía o formada por puntos límite de ambas regiones.

El diámetro de R_i es el supremo de la distancias (en \mathbb{R}^3) de dos puntos cualesquiera en R_i , esto es, diam $R_i = \sup_{\mathbf{x},\mathbf{y}\in R_i} ||\mathbf{x}-\mathbf{y}||$; el mayor diámetro de los R_i en la partición \mathcal{P} se llama la **norma** $||\mathcal{P}||$ de \mathcal{P} . Considerando ahora una partición de cada R_i , obtenemos una segunda partición de R, que refina a \mathcal{P} .

Dada una partición $R = \bigcup_i R_i$ de R, elegimos arbitrariamente los puntos $\mathbf{p}_i \in R_i$ y proyectamos R_i sobre el plano tangente en \mathbf{p}_i en la dirección de la normal en \mathbf{p}_i ; esta proyección se denota por \overline{R}_i y su área por $A(\overline{R}_i)$. La suma $\sum_i A(\overline{R}_i)$ es una aproximación del área de R.

Eligiendo particiones $\mathcal{P}_1,\ldots,\mathcal{P}_k,\ldots$ cada vez más finas y tales que $||\mathcal{P}_k||\to 0$, existe el límite

$$\lim_{||\mathcal{P}_k||\to 0} \sum_i A(\overline{R}_i).$$

Este límite es independiente de todas las particiones.

Definición

Bajo la construcción anterior, decimos que la región R **tiene un área** A(R) dada por

 $A(R) = \lim_{||\mathcal{P}_k|| \to 0} \sum_i A(\overline{R}_i).$

Mostramos ahora que toda región limitada R en una superficie regular $S \subseteq \mathbb{R}^3$ posee un área.

Por simplicidad, vamos a restringirnos a regiones contenidas dentro de una vecindad parametrizada **x**, y obtendermos una expresión para el área en términos de los coeficientes de la primera forma fundamental de **x**.

Teorema

Sea $S \subset \mathbb{R}^3$ una superficie regular, y $R \subseteq S$ una región limitada en S, contenida dentro de una vecindad parametrizada $\mathbf{x}: U \subseteq \mathbb{R}^2 \to V \cap S$. Entonces, el área superficial de R está dada por

$$A(R) = \iint_{Q} |\mathbf{x}_{u} \times \mathbf{x}_{v}| du dv, \quad com \ Q = \mathbf{x}^{-1}(R).$$

<u>Prueba</u>: Considere una partición $R = \bigcup_i R_i$ de R. Como R es cerrado y limitado, es compacto, y podemos suponer que la partición está suficientemente refinada de modo que dos líneas normales de R_i nunca sean ortogonales.

Como estas normales varían continuamente en S (campo normal continuo), para cada $\mathbf{p} \in R$ existe una vecindad $V_{\mathbf{p}} \cap S$ de \mathbf{p} donde dos normales cualesquiera nunca son ortogonales; estas vecindades forman una cobertura abierta de R.

Siendo R compacto, considerando una partición $\mathcal P$ de R cuya norma $||\mathcal P||<\lambda$, el número de Lebesgue de la cobertura.

Fijamos una región R_i de la partición y elegimos un punto $\mathbf{p}_i \in R_i = \mathbf{x}(Q_i)$. Queremos calcular el área de la proyección normal \overline{R}_i de R_i sobre el plano tangente $T_{\mathbf{p}_i}S$. Para hacer esto, considere un nuevo sistema de ejes $O\overline{xyz}$ en \mathbb{R}^3 , obtenido de Oxyz por una transformación rígida, de modo que el eje \overline{z} coincida con la normal i en \mathbf{p}_i , y el plano $O\overline{xy}$ con el plano tangente $T_{\mathbf{p}_i}S$, y ambos sistemas tengan la misma orientación.

En los nuevos ejes, la parametrización se puede escribir

$$\overline{\mathbf{x}}(u,v) = (\overline{x}(u,v), \overline{y}(u,v), \overline{z}(u,v)).$$

En esas nuevas coordenadas, se tiene

$$\frac{\partial(\overline{x},\overline{y})}{\partial(x,y)}\neq 0$$
, en Q_i ;

de lo contrario, la componente \bar{z} de algún vector normal en R_i es cero y hay dos líneas normales ortogonales en R_i , contrario a la hipótesis.

La expresión de $A(\overline{R}_i)$ es dada por

$$A(\overline{R}_i) = \iint_{\overline{R}_i} d\overline{x} d\overline{y}.$$

Como $\frac{\partial(\overline{x},\overline{y})}{\partial(x,y)} \neq 0$, hacemos el cambio de coordenadas $\overline{x} = \overline{x}(u,v)$,

$$\overline{y} = \overline{y}(u, v) y$$

$$A(\overline{R}_i) = \iint_{\Omega} \frac{\partial(\overline{x}, \overline{y})}{\partial(u, v)} du dv.$$

Como los vectores $\overline{\mathbf{x}}_u$ y $\overline{\mathbf{x}}_v$ pertenecen al plano $O\overline{xy}$, entonces $\frac{\partial z}{\partial u} = \frac{\partial \overline{z}}{\partial v} = 0$ en \mathbf{p}_i . Luego

$$\left| \frac{\partial (\overline{\mathbf{x}}, \overline{\mathbf{y}})}{\partial (\mathbf{u}, \mathbf{v})} \right| = \left| \overline{\mathbf{x}}_{\mathbf{u}} \times \overline{\mathbf{x}}_{\mathbf{v}} \right|, \text{ en } \mathbf{p}_{i}.$$

De ahí,

$$\left|\frac{\partial(\overline{\mathbf{x}},\overline{\mathbf{y}})}{\partial(u,\mathbf{v})}\right| - \left|\overline{\mathbf{x}}_u \times \overline{\mathbf{x}}_{\mathbf{v}}\right| = \varepsilon_i(u,\mathbf{v}), \text{ para } (u,\mathbf{v}) \in Q_i,$$

donde $\varepsilon_i(u, v)$ es una función continua en Q_i con $\varepsilon_i(\mathbf{x}^{-1}(\mathbf{p}_i)) = \mathbf{0}$. Dado que la norma de un vector se preserva por movimientos rígidos,

$$|\mathbf{x}_u \times \mathbf{x}_v| = |\overline{\mathbf{x}}_u \times \overline{\mathbf{x}}_v| = \left|\frac{\partial(\overline{\mathbf{x}}, \overline{\mathbf{y}})}{\partial(u, v)}\right| - \varepsilon_i(u, v).$$

Sean m_i y M_i el mínimo y máximo de la función $\varepsilon_i(u, v)$ en la región compacta Q_i . En particular,

$$m_i \leq \left| \left| \frac{\partial (\overline{\mathbf{x}}, \overline{\mathbf{y}})}{\partial (\mathbf{u}, \mathbf{v})} \right| - \left| \mathbf{x}_{\mathbf{u}} \times \mathbf{x}_{\mathbf{v}} \right| \right| \leq M_i, \text{ en } Q_i,$$

Integrando la desigualdad anterior sobre Q_i

$$\Rightarrow m_i \iint_{Q_i} du \, dv \leq \left| A(\overline{R}_i) - \iint_{Q_i} \left| \mathbf{x}_u \times \mathbf{x}_v \right| du \, dv \right| \leq M_i \iint_{Q_i} du \, dv, \quad \forall i.$$

Haciendo lo mismo para todos los R_i , obtenemos

$$\sum_{i} m_{i} A(Q_{i}) \leq \left| \sum_{i} A(\overline{R}_{i}) - \iint_{Q} \left| \mathbf{x}_{u} \times \mathbf{x}_{v} \right| du \, dv \right| \leq \sum_{i} M_{i} A(Q_{i}).$$

Ahora, refinamos más y más la partición \mathcal{P} vía una secuencia de particiones $\mathcal{P}_1, \ldots, \mathcal{P}_k, \ldots$, de tal manera que $||\mathcal{P}_k|| \to 0$.

Entonces $M_i \rightarrow m_i$, $\forall i$, y se tiene

$$\lim_{||\mathcal{P}||\to 0} \sum_{i} m_{i} A(Q_{i}) = \lim_{||\mathcal{P}||\to 0} \sum_{i} A(\overline{R}_{i}) - \iint_{Q} |\mathbf{x}_{u} \times \mathbf{x}_{v}| du dv = \lim_{||\mathcal{P}||\to 0} \sum_{i} M_{i} A(Q_{i}).$$

Portanto, existe el límite de $\sum_i A(\overline{R}_i)$, y es dado por

$$A(R) = \lim_{||\mathcal{P}|| \to 0} \sum_{i} A(\overline{R}_i) = \iint_{O} \left| \mathbf{x}_u \times \mathbf{x}_v \right| du \, dv = \iint_{O} \sqrt{EG - F^2} \, du \, dv.$$

Ejemplos

Ejemplo 1: Calculamos el área superficial de la esfera S².

$$\mathbf{X}(u,v) = (r\cos v\cos u, r\cos v\sin u, r\sin v), \quad u \in (0,2\pi), \quad v \in (-\frac{\pi}{2}, \frac{\pi}{2}), r > 0.$$

 $\mathbf{x}_u = (-r \cos v \sin u, r \cos v \cos u, \mathbf{0}), \mathbf{x}_v = (-r \sin v \cos u, -r \sin v \sin u, r \cos v).$ Luego

$$E = \langle \boldsymbol{x}_u, \boldsymbol{x}_u \rangle = r^2 \cos^2 v, \ F = \langle \boldsymbol{x}_u, \boldsymbol{x}_v \rangle = o, \ G = \langle \boldsymbol{x}_v, \boldsymbol{x}_v \rangle = r^2.$$

$$\begin{aligned} \mathsf{y} \\ \mathsf{A}(\mathsf{S}) &= \int_{-\pi/2}^{\pi/2} \int_{0}^{2\pi} \sqrt{\mathsf{EG} - \mathsf{F}^2} \, \mathsf{d}u \, \mathsf{d}v = \int_{-\pi/2}^{\pi/2} \int_{0}^{2\pi} \sqrt{r^4 \cos^2 v} \, \mathsf{d}u \, \mathsf{d}v \\ &= \int_{-\pi/2}^{\pi/2} \int_{0}^{2\pi} r^2 \cos v \, \mathsf{d}u \, \mathsf{d}v = 2\pi r^2 \int_{-\pi/2}^{\pi/2} \cos v \, \mathsf{d}v = 2\pi r^2 \sin v \bigg|_{-\pi/2}^{\pi/2} = 4\pi r^2. \end{aligned}$$

Ejemplos

Ejemplo 2: Calculamos el área superficial del toro \mathbb{T} .

$$\mathbf{x}(u,v) = \big((R+r\cos v)\cos u, (R+r\cos v)\sin u, r\sin v\big), \ u,v \in (0,2\pi), \ R>r>0.$$

$$\mathbf{x}_{u} = (-(R + r\cos v)\sin u, (R + r\cos v)\cos u, 0),$$

$$\mathbf{x}_{v} = (-r \sin v \cos u, -r \sin v \sin u, r \cos v)$$
. Luego

$$E = \langle \mathbf{x}_u, \mathbf{x}_u \rangle = (R + r \cos v)^2, \ F = \langle \mathbf{x}_u, \mathbf{x}_v \rangle = 0, \ G = \langle \mathbf{x}_v, \mathbf{x}_v \rangle = r^2.$$

$$\begin{aligned} \mathsf{Y} \\ \mathsf{A}(\mathsf{S}) &= \int_0^{2\pi} \int_0^{2\pi} \sqrt{\mathsf{E}\mathsf{G} - \mathsf{F}^2} \, \mathsf{d}u \, \mathsf{d}v = \int_0^{2\pi} \int_0^{2\pi} \sqrt{(\mathsf{R} + r\cos \mathsf{v})^2 r^2} \, \mathsf{d}u \, \mathsf{d}v \\ &= \int_0^{2\pi} \int_0^{2\pi} r(\mathsf{R} + r\cos \mathsf{v}) \, \mathsf{d}u \, \mathsf{d}v = 2\pi r \int_0^{2\pi} (\mathsf{R} + r\cos \mathsf{v}) \, \mathsf{d}v = 2\pi r (\mathsf{R}\mathsf{v} + r\sin \mathsf{v}) \Big|_0^{2\pi} \\ &= 2\pi r (2\pi R) = 4\pi^2 r R. \end{aligned}$$