

AOT240L/AOB240L/AOTF240L

40V N-Channel MOSFET

General Description

The AOT240L & AOB240L & AOTF240L uses Trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Crss.

Product Summary

 V_{DS} $$40V$ \\ I_{D}~(at~V_{GS}\text{=}10V)$ 105A/85A $$

$$\begin{split} R_{DS(ON)} & (\text{at V}_{GS} \text{=-}10\text{V}) & < 2.9 \text{m}\Omega \quad (< 2.6 \text{m}\Omega^*) \\ R_{DS(ON)} & (\text{at V}_{GS} \text{=-}4.5\text{V}) & < 3.7 \text{m}\Omega \quad (< 3.5 \text{m}\Omega^*) \end{split}$$

100% UIS Tested 100% R_q Tested

Orderable Part Number	Package Type	Form	Minimum Order Quantity		
AOT240L	TO-220	Tube	1000		
AOB240L	TO-263	Tape & Reel	800		
AOTF240L	TO-220F	Tube	1000		

Parameter		Symbol	AOT240L/AOB240L	AOTF240L	Units	
Drain-Source Voltage		V_{DS}	40		V	
Gate-Source Voltage		V _{GS}	±20		V	
Continuous Drain	T _C =25°C	ı	105	85		
Current ^G	T _C =100°C	I _D	82	60	Α	
Pulsed Drain Current ^C		I _{DM}	400			
Continuous Drain	T _A =25°C	i i	20	A		
Current	T _A =70°C	IDSM	16	A I		
Avalanche Current ^C		I _{AS}	68		Α	
Avalanche energy L=0.1mH ^C		E _{AS}	231		mJ	
	T _C =25°C	р	176	41	W	
Power Dissipation ^B	T _C =100°C	$-P_{D}$	88	20	VV	
	T _A =25°C	1.9			W	
Power Dissipation A	T _A =70°C	P _{DSM}	1.2			
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 175		°C	

Thermal Characteristics						
Parameter		Symbol	AOT240L/AOB240L	AOTF240L	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	15	15	°C/W	
Maximum Junction-to-Ambient AD	Steady-State	IN _θ JA	65	65	°C/W	
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	0.85	3.6	°C/W	

^{*} Surface mount package TO263

Electrical Characteristics (T_{.1}=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		40			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =40V, V _{GS} =0V				1	μА
	Zero Gate Voltage Brain Gurrent					5	μΑ
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$		1	1.7	2.2	V
$I_{D(ON)}$	On state drain current	$V_{GS}=10V, V_{DS}=5V$		400			Α
		V_{GS} =10V, I_D =20A		2.4 2.9		2.9	mΩ
		TO220/TO220F	T _J =125°C		3.7	4.7	1115.2
		V_{GS} =4.5V, I_D =20A			3	3.7	mΩ
P	Static Drain-Source On-Resistance	TO220/TO220F			,	3.7	1112.2
R _{DS(ON)}	Static Dialii-Source Off-Resistance	V_{GS} =10V, I_D =20A			2.1	0.0	 0
		TO263		2.1	2.6	mΩ	
		V_{GS} =4.5V, I_D =20A			2.7	3.5	0
		TO263			2.7	3.5	mΩ
g _{FS}	Forward Transconductance	$V_{DS}=5V$, $I_{D}=20A$			78		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.65	1	V
Is	Maximum Body-Diode Continuous Curre	ent ^G				105	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance				3510		pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =20V, f=1MHz			1070		pF
C_{rss}	Reverse Transfer Capacitance				68		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		0.5	1	1.5	Ω
SWITCHI	NG PARAMETERS		-				
Q _g (10V)	Total Gate Charge	V _{GS} =10V, V _{DS} =20V, I _D =20A			49	72	nC
Q _g (4.5V)	Total Gate Charge				22	32	nC
Q_{gs}	Gate Source Charge				9		nC
Q_{gd}	Gate Drain Charge				7		nC
t _{D(on)}	Turn-On DelayTime	V_{GS} =10V, V_{DS} =20V, R_L =1 Ω , R_{GEN} =3 Ω			11		ns
t _r	Turn-On Rise Time				10		ns
t _{D(off)}	Turn-Off DelayTime				38		ns
t _f	Turn-Off Fall Time				11		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=500A/μs			21		ns
Q_{rr}	Body Diode Reverse Recovery Charge				58		nC

A. The value of $R_{0,IA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R _{BJA} and the maximum allowed junction temperature of 150 ° C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175° C may be used if the PCB allows it.

- D. The R_{BJA} is the sum of the thermal impedance from junction to case R_{BJC} and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsirk, assuming a maximum junction temperature of $T_{J(MAX)}$ =175 $^{\circ}$ C. The SOA curve provides a single pulse rating.
- G. The maximum current limited by package.
- H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T₄=25° C.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

Rev 3.1: April 2024 www.aosmd.com Page 2 of 7

B. The power dissipation P_D is based on T_{J(MAX)}=175° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=175° C. Ratings are based on low frequency and duty cycles to keep initial T_J =25° C.

V_{DS} (Volts) Fig 1: On-Region Characteristics (Note E)

V_{GS}(Volts)
Figure 2: Transfer Characteristics (Note E)

I_D (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)

V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)

V_{SD} (Volts)
Figure 6: Body-Diode Characteristics (Note E)

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance for AOT240L and AOB240L (Note F)

Rev 3.1: April 2024 **www.aosmd.com** Page 4 of 7

600 500 400 400 200 100 0.001 0.01 0.1 1 10 100 1000

Figure 12: Maximum Forward Biased Safe Operating Area for AOTF240L

Pulse Width (s)
Figure 13: Single Pulse Power Rating Junction-to-Case for AOTF240L (Note F)

Pulse Width (s)
Figure 14: Normalized Maximum Transient Thermal Impedance for AOTF240L (Note F)

Rev 3.1: April 2024 **www.aosmd.com** Page 5 of 7

Pulse Width (s)
Figure 19: Normalized Maximum Transient Thermal Impedance (Note H)

Rev 3.1: April 2024 **www.aosmd.com** Page 6 of 7

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Rev 3.1: April 2024 **www.aosmd.com** Page 7 of 7