

Lahore University of Management Sciences

CS202/EE202 - Data Structures

Spring 2016

Instructor	Dr. Ihsan Ayyub Qazi
Class Timings	4:30pm-5:45pm, Monday/Wednesday
Room No.	SBASSE 9-114A, Computer Science Department, LUMS
Office Hours	TBA
Email	ihsan.qazi@lums.edu.pk
Telephone	+92 42 3560 8368
Teaching Assistants (TAs)	TBA
Course URL	LMS (https://lms.lums.edu.pk)

Course Basics				
Credit Hours	3 credit hours			
Lecture(s)	2 Per Week		Duration	75 mins
Tutorial (per week)	1 Per Week		Duration	60 mins

Course Distribution		
Core	ore CS Majors, EE Majors, and CS Minors	
Elective	All	
Open for Student Category	All	
Close for Student Category	None	

COURSE DESCRIPTION

Data structures are essential building blocks for designing efficient algorithms. Thus, they play a central role in computer science and are important in many areas of electrical engineering, computational biology, computational finance, etc. They are used in a variety of applications today including search engines (e.g., Google, Bing), social networking applications (e.g., Facebook, Twitter), embedded systems (e.g., cell phones, robots), and DNA analysis. This course will introduce the fundamentals of data structures and will provide a thorough understanding of how to systematically organize data in a computer system. In addition, this course will introduce students to analytical tools for comparing data structures in terms of their time and space complexities. Moreover, students will appreciate the importance of programming structures, abstractions, and algorithms for improving the efficiency of computer programs.

COURSE PREREQUISITE	
•	CS 200 Introduction to Programming

COURSE OBJECTIVES		
•	To understand the design of fundamental data structures as well as algorithms that operate on them	
•	To understand the fundamental tradeoffs in the design of the data structures	
•	To introduce tools for analyzing the time and space complexity of data structures	
	To provide rigorous 'hands-on' experience with implementing different data structures in a programming language	

Learning Outcomes		
•	Students will be able to understand basic data structures	
•	Students will become aware of how data structures are used in real-world applications	
•	Students will understand the fundamental tradeoffs that exist in the design of data structures	
•	Students will be able to compare the time and space efficiency of different data structures	
	Students will be able to appreciate how changing application requirements can lead to new data structures	
•	Students will be able to write programs to efficiently manipulate, store, and retrieve data	

Grading Breakup and Policy

Programming Assignment(s) + Homeworks: 30%

Quiz(s): 20%

Midterm Examination: 20% Final Examination: 30%

Lahore University of Management Sciences

Examination [Examination Detail	
Midterm Exam	Yes/No: Yes Duration: 3 hours Preferred Date: TBA Exam Specifications: TBA	
Final Exam	Yes/No: Yes Duration: 3 hours Exam Specifications: TBA	

Textbook(s)/Supplementary Readings

Required Textbooks

- (GTM) Data Structures and Algorithms in C++ by Michael T. Goodrich, Roberto Tamassia, and David Mount (2nd Edition) (Weiss) Data Structures and Algorithm Analysis in C++ by Mark Allen Weiss (2nd Edition)

Session	Topics	Recommended Readings
1	Overview: Data Structures, Abstract Data Types, and Applications	
2	Analysis Tools: Experimental Analysis, Asymptotic Notation	(GTM) Chapters 4.1-4.2 + (Weiss) Chapter 6
3	Analysis Tools: Asymptotic Analysis, Arrays	(GTM) Chapters 3.1-3.4 + (Weiss) Chapters 16
4	Arrays, Lists (Singly Linked List, Doubly Linked List), Stacks	Above + (GTM) Chapters 5.1+(Weiss) Chapter 17, 16
5	Stacks, Queues	(GTM) Chapters 5.1-5.3 + (Weiss) Chapter 16
6	Trees: Foundations, Tree Traversals	(GTM) Chapters 7.1, 7.2 + (Weiss) Chapter 18.1
7	Trees: Tree Traversals, Binary Trees	Above + (GTM) Chapters 7.3 + (Weiss) Chapter 18.4
8	Binary Trees: Analysis, Applications	(GTM) Chapters 7.3 + (Weiss) Chapter 18.2, 18.3
9	Binary Search Trees (BST): Basics, BST Analysis	(GTM) Chapters 10.1 + (Weiss) Chapter 19.1-19.3
10	Balanced Binary Trees: AVL Trees	(GTM) Chapters 10.2 + (Weiss) Chapter 19.4
11	Balanced Binary Trees: AVL Trees, Red-Black Trees (optional)	(GTM) Chapters 10.5 + (Weiss) Chapter 19.4, 19.5
12	Hash Tables: Hash Functions	(GTM) Chapters 9.2 + (Weiss) Chapter 20.1, 20.2
13	Hash Tables: Chaining, Open Addressing	(GTM) Chapters 9.2 + (Weiss) Chapter 20.3
14	Midterm Exam	
15	Priority Queues: Foundations, Binary Heaps	(GTM) Chapters 8.1-8.3 + (Weiss) Chapter 21.1
16	Heaps: Binary Heaps, HeapSort	(GTM) Chapters 8.3 + (Weiss) Chapter 21.1, 21.2
17	Sorting: Insertion Sort, Selection Sort, Mergesort	(GTM) Chapters 11.1 + (Weiss) Chapter 9.1-9.5
18	Sorting: Quicksort, Bucket-Sort, Radix-Sort (optional)	(GTM) Chapters 11.2, 11.3 + (Weiss) Chapter 9.6-9.8
19	Data Compression: Applications, Huffman Coding	(GTM) Chapters 12.4 + (Weiss) Chapter 13.1 + Notes
20	Tries: Standard, Compressed, Suffix Tries	(GTM) Chapters 12.5
21	Graphs: Basics, Data Structures for Graphs	(GTM) Chapters 13.1, 13.2 + (Weiss) Chapter 15.1
22	Graph Traversals: Depth First Search, Breadth First Search	(GTM) Chapters 13.3 + (Weiss) Chapter 15.2
23	Weighted Graphs: Minimum Spanning Trees, Topological Sort	(GTM) Chapters 13.6 + (Weiss) Chapter 15.5
24	Weighted Graphs: Directed Graphs, Connected Components	(GTM) Chapters 13.4, 13.5 + (Weiss) Chapter 15.5
25	Shortest-Path Algorithms: Dijkstra's Algorithm	(GTM) Chapters 13.5 + (Weiss) Chapter 15.3
26	Network Flow Problem, Advanced DS: Distributed Hash Tables	Slides/Notes
27	Advanced DS: Bloom Filters, Memory Locality	Slides/Notes
28	Advanced DS: Parallel Algorithms/DS + Course Review	Slides/Notes