

《编译原理与技术》 习题课

计算机科学与技术学院 李 诚 6/11/2019

$$S \Rightarrow_{rm} \underline{(L)}$$

$$\Rightarrow_{rm} (\underline{L},\underline{S})$$

$$\Rightarrow_{rm} (L, \underline{(L)})$$

$$\Rightarrow_{rm} (L, (\underline{L}, \underline{S}))$$

$$\Rightarrow_{rm} (L, (L, \underline{a}))$$

$$\Rightarrow_{rm} (L, (\underline{S}, a))$$

$$\Rightarrow_{rm} (L, (\underline{a}, a))$$

$$\Rightarrow_{rm} (\underline{S}, (a, a))$$

$$\Rightarrow_{rm} (\underline{\mathbf{a}}, (\mathbf{a}, \mathbf{a}))$$

栈	输入	动作
\$	(a, (a, a))\$	移进
\$ (a, (a, a))\$	移进
\$ (a	, (a, a))\$	按S→a归约
\$ (S	, (a, a))\$	接 $L \rightarrow S$ 归约
\$ (L	, (a, a))\$	移进
\$ (L,	(a, a))\$	移进
\$ (L, (a, a))\$	移进
\$ (L, (a	, a))\$	接 $S \rightarrow a$ 归约
\$ (L, (S	, a))\$	接 $L \rightarrow S$ 归约
\$ (L, (L	, a))\$	移进

栈	输入	动作
\$ (L, (L,	a))\$	移进
\$ (L, (L, a))\$	按S→a归约
\$ (L, (L, S))\$	按 $L \rightarrow L$, S 归约
\$ (L, (L))\$	移进
\$ (L, (L))\$	按S → (L)归约
\$ (L, S)\$	按 $L \rightarrow L$, S 归约
\$ (L)\$	移进
\$ (L)	\$	按S → (L)归约
\$ S	\$	接受

state			action		goto			
	+	*	а	b	\$	е	t	f
0			s4	s5		1	2	3
1	s6				acc			
2	r2		s4	s5	r2			7
3	r4	s8	r4	r4	r4			
4	r6	r6	r6	r6	r6			
5	r7	r7	r7	r7	r7			
6			s4	s5			9	3
7	r3	s8	r3	r3	r3			
8	r5	r5	r5	r5	r5			
9	r1		s4	s5	r1			7


```
I_0:

E' 	o \cdot E, \

E 	o \cdot E + T, +/\$

E 	o \cdot T, +/\$

T 	o \cdot TF, a/b +/\$

T 	o \cdot F, a/b /+/\$

F 	o \cdot F^*, a/b /+/*/\$

F 	o \cdot a, a/b /+/*/\$

F 	o \cdot b, a/b /+/*/\$
```

以此为例来推演IO的形成过程

$$I_0$$
:
 $E' \rightarrow \cdot E, \$

考虑所有E的产生式 β为空, 先前看搜索符a为\$ 所以, 新的向前看搜索符为 FIRST(βa) = {\$}

 $I_0: E' \rightarrow \cdot E, $$

考虑所有E的产生式 β为空,先前看搜索符a为\$ 所以,新的向前看搜索符为 FIRST(βa) = {\$}

再考虑所有E的产生式 β为+T, 先前看搜索符a为\$ 所以, 新的向前看搜索符为 FIRST(βa) = {+}

$$I_0$$
:
 $E' \rightarrow \cdot E, \$$
 $E \rightarrow \cdot E + T, +/\$$
 $E \rightarrow \cdot T, +/\$$

考虑所有T的产生式 β为空, 先前看搜索符a为+/\$ 所以, 新的向前看搜索符为 FIRST(βa) = {+,\$}

$$I_{0}:$$

$$E' \rightarrow \cdot E, \, \$$$

$$E \rightarrow \cdot E + T, \, +/\$$$

$$E \rightarrow \cdot T, \, +/\$$$

$$T \rightarrow \cdot TF, \, +/\$$$

$$T \rightarrow \cdot F, \, +/\$$$

$$I_0$$
:
 $E' \rightarrow \cdot E, \$$
 $E \rightarrow \cdot E + T, +/\$$
 $E \rightarrow \cdot T, +/\$$

考虑所有T的产生式 β为空, 先前看搜索符a为+/\$ 所以, 新的向前看搜索符为 FIRST(βa) = {+,\$} $I_{0}:$ $E' \rightarrow \cdot E, $$ $E \rightarrow \cdot E + T, +/$$ $E \rightarrow \cdot T, +/$$ $T \rightarrow \cdot TF, +/$$ $T \rightarrow \cdot F, +/$$

再考虑所有T的产生式 β为F, 先前看搜索符a为+/\$ 所以, 新的向前看搜索符为 FIRST(βa) = {a, b}

$$I_0$$
:
 $E' \rightarrow \cdot E, \$
 $E \rightarrow \cdot E + T, +/\$$
 $E \rightarrow \cdot T, +/\$$
 $T \rightarrow \cdot TF, a/b+/\$$
 $T \rightarrow \cdot F, a/b+/\$$

$$I_0$$
:
 $E' \rightarrow \cdot E, \$
 $E \rightarrow \cdot E + T, +/\$$
 $E \rightarrow \cdot T, +/\$$
 $T \rightarrow \cdot TF, a/b+/\$$
 $T \rightarrow \cdot F, a/b+/\$$

```
考虑所有F的产生式
β为空, 先前看搜索符a为
a/b/+/$
所以, 新的向前看搜索符为
FIRST(βa) = {a, b,+,$}
```

```
I_0:

E' \rightarrow \cdot E, \$

E \rightarrow \cdot E+T, +/\$

E \rightarrow \cdot T, +/\$

T \rightarrow \cdot TF, a/b+/\$

T \rightarrow \cdot F, a/b/+/\$

F \rightarrow \cdot F^*, a/b/+/\$

F \rightarrow \cdot a, a/b/+/\$

F \rightarrow \cdot b, a/b/+/\$
```

```
I_0:

E' \rightarrow \cdot E, $

E \rightarrow \cdot E + T, +/$

E \rightarrow \cdot T, +/$

T \rightarrow \cdot TF, a/b +/$

T \rightarrow \cdot F, a/b / +/$

F \rightarrow \cdot F^*, a/b / +/*/$

F \rightarrow \cdot a, a/b / +/*/$

F \rightarrow \cdot b, a/b / +/*/$
```

```
再考虑所有F的产生式
β为*, 先前看搜索符a为a/b/+/$
所以, 新的向前看搜索符为
FIRST(F$) = {*}
```


移进的时候不看向前看搜索符,只看·后面的终结符 归约的时候只看向前看搜索符 没有同心集可以合并,因此LR(1)与LALR分析表相同 也与SLR分析表相同

state			action	goto				
	+	*	а	b	\$	e	t	f
0			s4	s5		1	2	3
1	s6				асс			
2	r2		s4	s5	r2			7
3	r4	s8	r4	r4	r4			
4	r6	r6	r6	r6	r6			
5	r7	r7	r7	r7	r7			
6			s4	s5			9	3
7	r3	s8	r3	r3	r3			
8	r5	r5	r5	r5	r5			
9	r1		s4	s5	r1			7

□是LL(1)

- ❖考虑S的两个可以选择的产生式
- ❖FIRST(AaAb) = {a} // ε并不包含在内
- ❖FIRST(BbBa) = {b} // ε并不包含在内
- ❖无交集

设文法G是LL(1)文法,则G中的每一个非终结符号A的任何两个不同的产生式A \rightarrow α | β ,下列条件成立:

- 1. $FIRST(\alpha) \cap FIRST(\beta) = \emptyset$;
- 2. 若 β ⇒* ε, 那么FIRST(α) \cap FOLLOW(A) = \varnothing ;

□不是SLR(1)

$$I_0:$$
 $S' \rightarrow \cdot S$
 $S \rightarrow \cdot AaAb$
 $S \rightarrow \cdot BbBa$
 $A \rightarrow \cdot$
 $B \rightarrow \cdot$

Follow(A) =
$$\{a, b\}$$

Follow(B) = $\{a, b\}$

状态	动作					转移		
	а	b	С	d	\$	S	Α	В
0		s3		s5		1	2	4
1					acc			
5	r5		r6					
9	r9		r5					

- □没有冲突,故而该文法是LR(1)文法
- □合并同心项目集5和9时出现冲突,归约-归约冲突。

I1:
$$L \rightarrow L \cdot, \$$$

I2:

$$L \rightarrow M \cdot Lb, \$$$

 $L \rightarrow \cdot MLb, b$
 $L \rightarrow \cdot a, b$
 $M \rightarrow \cdot, a$

I3:
$$L \rightarrow a \cdot , \$$$

I4:
$$L \rightarrow ML \cdot b$$
, \$

I5:

$$L \rightarrow M \cdot Lb, b$$

 $L \rightarrow \cdot MLb, b$
 $L \rightarrow \cdot a, b$
 $M \rightarrow \cdot, a$

I6:
$$L \rightarrow a \cdot , b$$

I7:
$$L \rightarrow MLb \cdot , \$$$

I8:
$$L \rightarrow ML \cdot b, b$$

I9:
$$L \rightarrow MLb \cdot, b$$

□S: 无符号数

□I: 无符号整型

□R: 无符号实数

UW: 无符号实数的小数点前面部分

口F: 无符号实数的小数点后面部分

□action[0, d] = s4/r8, 移进归约冲突,所以不 是LR(1)

```
I_0:

S' \rightarrow \cdot S, \$

S \rightarrow \cdot I, \$

S \rightarrow \cdot R, \$

I \rightarrow \cdot d, d/\$

I \rightarrow \cdot Id, d/\$

R \rightarrow \cdot WpF, \$

W \rightarrow \cdot Wd, p

W \rightarrow \cdot, d/p
```

□基础运算1: 计算闭包CLOSURE(I)

- ❖I中的任何项目都属于CLOSURE(I)
- ◇若有项目 $[A \rightarrow \alpha \cdot B\beta, a]$ 在CLOSURE(I)中,而 $B \rightarrow \gamma$ 是文法中的产生式,b是FIRST(βa)中的元素,则 $[B \rightarrow \gamma, b]$ 也属于CLOSURE(I)

I0:

$$S' \rightarrow S,$$
\$

$$S \rightarrow V = E,$$
\$

$$S \rightarrow E,$$
\$

$$V -> * E, =/$$
\$

$$V -> id, =/$$
\$

$$E \rightarrow V$$
, \$

I4:

$$V -> * \cdot E_* = /$$

$$E -> V_1 = /$$
\$

$$V -> \cdot * E_1 = /$$

$$V \rightarrow id = /$$

I1:

$$S' \rightarrow S \cdot , \$$$

I2:

$$S \rightarrow V = E,$$
\$

$$E \rightarrow V \cdot,$$
\$

I3:

$$S \rightarrow E \cdot ,$$
\$

I7:

I9:

$$S \rightarrow V = E \cdot ,$$
\$

I6:

I5:

$$S \rightarrow V = \cdot E$$
, \$

 $V \rightarrow id\cdot, =/$

$$E \rightarrow V$$
, \$

$$V -> \cdot * E, $$$

$$V \rightarrow id$$
, \$

I8:

$$E -> V \cdot, =/$$
\$

I10:

$$E \rightarrow V \cdot ,$$
\$

I11:

$$V \rightarrow *\cdot E,$$
\$

$$E \rightarrow V$$
, \$

$$V \rightarrow * E.$$
\$

$$V \rightarrow id$$
, \$

I12:

$$V \rightarrow id$$
, \$

I13:

$$V -> *E \cdot, $$$

(I4, I11), (I5, I12), (I8, I10) 同心项目集合并后无冲突

□L = {w | w ∈ (a|b)* 并且在w的任何前缀中, a 的个数不少于b的个数}

□该文法是二义的

- ❖对aaba
- $S \Rightarrow aS \Rightarrow aabS \Rightarrow aabS \Rightarrow aabaS \Rightarrow aabaS$
- $S \Rightarrow aSbS \Rightarrow aaSbS \Rightarrow aabS \Rightarrow aabaS \Rightarrow aa$

口改写文法

```
S \rightarrow aS \mid aYbS \mid \varepsilon

Y \rightarrow aYbY \mid \varepsilon
```


《编译原理与技术》 习题课

The end!