数据采集方法作业

姓名: 蒋贵豪 学号: B+X9bo

2021年11月1日

- **题目 1.** 对于下面的 25 个 PSU 单元,研究人员希望抽取 10 个不等概的无放回的样本。
 - (1) 采用代码法抽取容量为 10 的无放回的样本。
 - (2) 采用拉希里法抽取容量为 10 的无放回的样本。

PSU	Z_i	PSU	Z_i
1	0.000 110	14	0.014 804
2	0.018 556	15	0.005 577
3	0.062 999	16	0.070 784
4	0.078 216	17	0.069 635
5	0.075 245	18	0.034 650
6	0.073 983	19	0.069 492
7	0.076 580	20	0.036 590
8	0.038 981	21	0.033 853
9	0.040 772	22	0.016 959
10	0.022 876	23	0.009 066
11	0.003 721	24	0.021 795
12	0.024 971	25	0.059 185
13	0.040 654		and the second second second

解答. (1) 由于 Z_i 不是整数,我们将 Z_i 统一乘以 10^6 ,使其变为整数,即我们的代码。得到代码后,我们计算代码的累计和为 1000054,然后给出每个单元所对应的代码,该过程如下表所示。

接着,我们在 [1,1000054] 生成一个随机数为 722822,对应的单元为 18。于是,我们的第一个样本单元为 18。

然后,我们将单元 18 除去,得到剩余的 24 个单元,我们对其重新进行编码,累计代码数为 1000054-34650=965494。我们在 [1,965494] 中随机生成一个随机数为

353480,对应的单元为7,于是我们的第二个样本单元为7。

重复上述过程,直至抽到 10 个样本。使用 **Matlab** 语言对该过程进行模拟,代码见附录。**我们使用代码法抽到的样本为:** 18,7,10,8,4,6,16,3,19,25。

PSU	Z_i	1000000Zi	累计	代码
1	0.000110	110	110	1 - 110
2	0.018556	18556	18666	111 - 18666
3	0.062999	62999	81665	18667 - 81665
4	0.078216	78216	159881	81666 - 159881
5	0.075245	75245	235126	159882 - 235126
6	0.073983	73983	309109	235127 - 309109
7	0.076580	76580	385689	309110 - 385689
8	0.038981	38981	424670	385690 - 424670
9	0.040772	40772	465442	424671 - 465442
10	0.022876	22876	488318	465443 - 488318
11	0.003721	3721	492039	488319 - 492039
12	0.024971	24971	517010	492040 - 517010
13	0.040654	40654	557664	517011 - 557664
14	0.014804	14804	572468	557665 - 572468
15	0.005577	5577	578045	572469 - 578045
16	0.070784	70784	648829	578046 - 648829
17	0.069635	69635	718464	648830 - 718464
18	0.034650	34650	753114	718465 - 753114
19	0.069492	69492	822606	753115 - 822606
20	0.036590	36590	859196	822607 - 859196
21	0.033853	33853	893049	859197 - 893049
22	0.016959	16959	910008	893050 - 910008
23	0.009066	9066	919074	910009 - 919074
24	0.021795	21795	940869	919075 - 940869
25	0.059185	59185	1000054	940870 - 1000054

(2) 由题意知,N=25,设 $Z^*=\max\{Z_i\}=0.078216$ 。我们在 [1,25] 和 [0,0.078216] 中随机抽取两个数为 24 和 0.041156。我们有 $Z_{24}=0.021795<0.041156$ 。于是该样本不入样。我们重新在 [1,25] 和 [0,0.078216] 中随机抽取两个数为 3 和 0.010099,我们有 $Z_3=0.062999>0.010099$ 。于是我们的第一个样本为 3 号单元。

去除第 3 个单元,在剩余的 24 个单元中, $Z^* = \max\{Z_i\} = 0.078216$ 。重复上述操作,直至抽满 10 个样本。使用 **Matlab** 语言对该过程进行模拟,代码见附录。**我们使** 拉希里法抽到的样本为: 3, 4, 8, 24, 17, 21, 5, 19, 9, 12。

题目 2. 下表给出了一个整群的总体。无放回地选择两个 PSU 单元,入样概率正比于 M_i 。使用布鲁尔方法构建所有可能样本的 π_{ij} 的表格。计算霍维茨-汤普森估计量的方差。

PSU	M_i	y _{ij}	t_i
1	5	3, 5, 4, 6, 2	20
2	4	7, 4, 7, 7	25
3	8	7, 2, 9, 4, 5, 3, 2, 6	38
4	5	2, 5, 3, 6, 8	24
5	3	9, 7, 5	21

解答. 由题意知: $M_0 = \sum_{i=1}^5 M_i = 25, Z_i = \frac{M_i}{M_0}$ 。布鲁尔方法的包含概率为:

$$\pi_{ij} = \frac{4Z_i Z_j (1 - Z_i - Z_j)}{(1 - 2Z_i) (1 - 2Z_j) \left(1 + \sum_{i=1}^{N} \frac{Z_i}{1 - 2Z_i}\right)}$$

霍维茨-汤普森估计量的方差为:

$$v\left(\hat{Y}_{\pi ij}\right) = \sum_{i=1}^{N} \sum_{j>i}^{N} \left(\pi_i \pi_j - \pi_{ij}\right) \left(\frac{Y_i}{\pi_i} - \frac{Y_j}{\pi_j}\right)^2 = 243.0652 \tag{1}$$

使用布鲁尔方法构建所有可能样本的 π_{ij} 的表格如下表所示。

样本	π_{ij}
1,2	0.068092
1,3	0.192926
1,4	0.090434
1,5	0.048549
2,3	0.147531
2,4	0.068092
2,5	0.036286
3,4	0.192926
3,5	0.106617
4,5	0.048549
求和	1
-	

题目 3. 某市建筑行业集团共有 48 个单位,有载货汽车 186 辆。按与每个单位的车辆拥有量成比例的概率进行放回的 PPS 抽样,共抽取 10 次。对抽中单位的所有车辆调查季度运量(单位:吨)。样本数如下表所示(其中有一家单位被抽中两次,即 i=3,7)。试估计全集团的季度总运量及 95% 的置信区间。

单位编号	车辆数 Mi	单位运量总和 yi	平均每车运量 y
1	5	14 230	2 846
2	8	21 336	2 667
3	5	13 650	2 730
4	4	11 568	2 892
5	6	15 216	2 536
6	9	23 049	2 566
7	5	13 650	2 730
8	3	7 443	2 481
9	7	16 723	2 389
10	3	8 391	2 797

解答. 由题意知: $M_0 = 186$, 全集团季度总运量的估计为:

$$\widehat{Y}_{HH} = \frac{1}{n} \sum_{i=1}^{10} \frac{y_i}{Z_i} = \frac{M_0}{n} \sum_{i=1}^{10} \frac{y_i}{M_i} = 495299.4$$

全集团季度总运量的方差为:

$$v(\widehat{Y}_{HH}) = \frac{1}{n(n-1)} \sum_{i=1}^{10} \left(\frac{y_i}{Z_i} - \widehat{Y}_{HH}\right)^2 = 95182398.76$$

于是,全集团的季度总运量及95%的置信区间为:

$$[\widehat{Y}_{HH} \pm t_{\frac{\alpha}{2},n-1} \sqrt{v(\widehat{Y}_{HH})}] = [495299.4 \pm 2.2622 \times 9756.15] = [473229.0375, 517369.7625]$$

附录

代码法抽取无放回的样本:

```
function [B, D] = code(A, D 1)
      #输入A为单元大小M_i, D_1为对应的单元i
      #输出无放回抽样后的单元大小B和对应的单元D
      a = length(A);
      for i = 1:a
          sumA(i) = sum(A(1:i));
      end
      Rand = sumA(a)*rand(1);
      j = 1;
      while (sumA(j) < Rand)
          j = j+1;
      end
12
      k = j;
      if k == 1
          B(1:a-1) = A(2:a);
15
          D(1:a-1) = D_1(2:a);
      else
17
          B(1:k-1) = A(1:k-1);
          D(1:k-1) = D_1(1:k-1);
          B(k:a-1) = A(k+1:a);
20
          D(k:a-1) = D_1(k+1:a);
      end
22
```

拉希里法抽取无放回的样本:

```
function [B,D] = lahici(A,D_1)
      #输入A为单元大小M_i, D_1为对应的单元i
      #输出无放回抽样后的单元大小B和对应的单元D
      a = length(A);
      Z = \max(A);
      Rand = floor(a * rand(1)) + 1;
      Rand_1 = floor(Z * rand(1)) + 1;
       while A(Rand) < Rand_1
           Rand = floor(a * rand(1)) + 1;
          Rand_1 = floor(Z * rand(1)) + 1;
10
       end
11
      k = Rand;
12
       if Rand == 1
          B(1:a-1) = A(2:a);
14
          D(1:a-1) = D_1(2:a);
15
       else
16
          B(1:k-1) = A(1:k-1);
17
          D(1:k-1) = D_1(1:k-1);
          B(k:a-1) = A(k+1:a);
19
          D(k:a-1) = D_1(k+1:a);
20
       \quad \text{end} \quad
```