TP Optimización

Problemas de portafolio

1. Considere la evolución de precios de los siguientes 3 activos

	YPFD.BA	SID.BA	GFG.BA
Timestamp	Trade Close	Trade Close	Trade Close
31/12/2006	87,74	1,16	2,79
31/12/2007	82,38	1,19	2,25
31/12/2008	120,11	0,68	0,82
31/12/2009	134,65	1,19	2,10
31/12/2010	178,21	1,79	5,92
31/12/2011	161,59	1,33	2,80
31/12/2012	96,51	1,25	4,43
31/12/2013	288,24	2,62	9,23
31/12/2014	309,89	5,42	18,34
31/12/2015	217,21	7,87	36,59
31/12/2016	257,74	9,13	42,58
31/12/2017	394,60	13,50	92,15

Usted desea encontrar las combinaciones óptimas de dichos papeles para maximizar las oportunidades de inversion. Para ello deberá en primer lugar computar los retornos anuales de cada papel haciendo

$$r_{i,t} = \frac{P_{i,t} - P_{i,t-1}}{P_{i,t-1}}$$

donde i es el indicador de la acción y t el año para el que se computa dicho retorno.

Una vez determinados los retornos anuales, estimaremos el retorno promedio (que supondremos el retorno esperado) para cada activo, a partir de la expresión

$$\mu_i = \frac{1}{N} \sum_{t=1}^{N} r_{i,t}$$

y construiremos el vector de retornos esperados $\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{pmatrix}$.

Seguidamente debemos construir la matriz \sum de varianzas y covarianzas entre los activos haciendo

$$\sigma_{i,j} = \frac{1}{N} \sum_{t=1}^{N} (r_{i,t} - \mu_i) (r_{j,t} - \mu_j)$$

donde μ_i y μ_j son los retornos promedios obtenidos previamente.

La varianza de cada papel σ_i^2 no es otra cosa que la covarianza consigo mismo $\sigma_{i,i}$. Obtenga Σ y verifique que es simétrica. Obtenga asimismo las volatilidades individuales $\sigma_i = \sigma_{i,i}^{1/2}$, y los coeficientes de correlación entre los activos $\rho_{i,j} = \frac{\sigma_{i,j}}{\sigma_i \sigma_j}$. Vea si las correlaciones son positivas o negativas, y explique intuitivamente como se mueven relativamente entre si los distintos papeles.

Construidos μ y Σ , vamos a formular los problemas de portafolio óptimo.

En primer lugar, vamos a resolver el problema de Markowitz

$$\max_{w} w^{T} \mu - \lambda w^{T} \Sigma w$$

$$s.a \quad w^T \overline{1} = 1$$
$$w \geq 0$$

donde impondremos la condicion que prohibe la venta en corto. Resuelva el problema para varios valores de λ en el intervalo $0 \le \lambda \le 1000$, guardando el portafolio resultante, el retorno esperado del portafolio $E(r) = w^T \mu$ y su respectiva volatilidad $\sigma^p(w) = (w^T \Sigma w)^{1/2}$. Haga una gráfica de los pares $((w^T \Sigma w)^{1/2}, w^T \mu)$ para los distintos valores de λ , e incluya en la misma gráfica la posicion (σ_i, μ_i) de cada activo. **Habrá encontrado la frontera eficiente** (frontera de posibilidades de inversion).

2. Para los mismos parametros μ y Σ del problema anterior, resuelva ahora **el problema primal**

$$\max_{w} w^T \mu$$

s.a.
$$(w^T \Sigma w)^{1/2} \leq \sigma^*$$

 $w^T \overline{1} = 1$
 $w \geq 0$

Que busca la máxima rentabilidad esperada de portafolio, sujeto a que la volatilidad del mismo no puede superar un umbral dado σ^* . Plantee un rango de variacion equiespaciado para σ^* , que vaya desde 0 hasta 1.5 veces la máxima volatilidad individual de los activos. Vea si para algunos valores de σ^* no hay solucion factible, y a partir de que valor de σ^* la solución no cambia más.

Para cada valor de σ^* para el que haya una solución, guarde el portafolio resultante, el retorno esperado del portafolio $E\left(r\right)=w^T\mu$ y su respectiva volatilidad $\sigma^p\left(w\right)=\left(w^T\Sigma w\right)^{1/2}$. Haga una gráfica de los pares $\left(\left(w^T\Sigma w\right)^{1/2},w^T\mu\right)$ para los distintos valores de σ^* . Habrá encontrado (nuevamente) la frontera eficiente (frontera de posibilidades de inversion). Comparela con la obtenida en el punto 1.

3. Finalmente, resolveremos el problema dual

$$\min_{w} w^T \Sigma w$$

$$s.a. w^{T} \mu \geq r^{*}$$

$$w^{T} \overline{1} = 1$$

$$w \geq 0$$

donde se busca el mínimo riesgo (varianza), sujeto a que el rendimiento esperado del portafolio es mayor o igual a cierto umbral dado r^* . Plantee un rango de variacion equiespaciado para r^* , que vaya desde 0 hasta 1.5 veces el máximo μ_i de los 3 activos. Vea si para algunos valores de r^* no hay solucion factible, y a partir de que valor de r^* la solución no cambia más.

Para cada valor de r^* para el que haya una solución, guarde el portafolio resultante, el retorno esperado del portafolio $E\left(r\right)=w^T\mu$ y su respectiva volatilidad $\sigma^p\left(w\right)=\left(w^T\Sigma w\right)^{1/2}$. Haga una gráfica de los pares $\left(\left(w^T\Sigma w\right)^{1/2},w^T\mu\right)$ para los distintos valores de r^* . Habrá encontrado (una vez más) la frontera eficiente (frontera de posibilidades de inversion). Comparela con las obtenidas en los puntos 1 y 2.

4. Incorpore un activo más a la terna. Un activo especial libre de riesgo (una tasa de interés de bonos soberanos), que supondremos tiene $\mu_i = 0.10$ y $\sigma_i = 0$ (porque es libre de riesgo). Dado que ya vimos que los 3 problemas son equivalentes, formule el problema que más le guste teniendo ahora en cuenta

2

los 3 activos previos y el activo libre de riesgo. Encuentre la nueva frontera eficiente. Verifique que la frontera sin activo libre de riesgo es tangente a la frontera con activo libre de riesgo y encuentre el **portafolio tangente** para el que ello sucede. Constate que para el punto de tangencia, la posición w en el activo libre de riesgo es 0 y que todos los portafolios eficientes encontrados con 4 activos se pueden describir como asignar una proporción w_f al activo libre de riesgo y otra $(1-w_f)$ al **portafolio tangente**.