Core Tile for ARM11 MPCore HBI-0146

User Guide

Core Tile for ARM11 MPCore User Guide

Copyright © 2005-2010 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Change History

Date	Issue	Confidentiality	Change
October 2005	A	Non-Confidential	First release
December 2005	В	Non -Confidential	Fixes for Errata
September 2006	C	Non-Confidential	Fixes for Errata
September 2008	D	Non-Confidential	Fixes for Errata
January 2009	Е	Non-Confidential	Fixes for Errata
July 2010	F	Non-Confidential	Document update

Proprietary Notice

Words and logos marked with® or ™ are registered trademarks or trademarks of ARM Limited in the EU and other countries, except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given by ARM Limited in good faith. However, all warranties implied or expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable for any loss or damage arising from the use of any information in this document, or any error or omission in such information, or any incorrect use of the product.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Conformance Notices

This section contains conformance notices.

Federal Communications Commission Notice

This device is test equipment and consequently is exempt from part 15 of the FCC Rules under section 15.103 (c).

CE Declaration of Conformity

The system should be powered down when not in use.

The Core Tile generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment causes harmful interference to radio or television reception, which can be determined by turning the equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures:

- ensure attached cables do not lie across the card
- · reorient the receiving antenna

TAT 4

- increase the distance between the equipment and the receiver
- connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- consult the dealer or an experienced radio/TV technician for help

—— Note —	_	
It is recommended that wherever	possible shielded interface cables be u	sed.

Contents

Core Tile for ARM11 MPCore User Guide

xi
X\
1-2
1-3
1-11
2-2
2-4
2-5
2-7
3-2
3-3
3-4
3-11
3-23
3-28

	3.7	AXI bus multiplexing	3-31
	3.8	Overview of Core Tile configuration	
	3.9	Memory configuration	
	3.10	Register configuration	
	3.11	JTAG support	3-60
Chapter 4	Test	Chip Hardware Description	
•	4.1	ARM11 MPCore test chip overview	4-2
	4.2	Clocks	
	4.3	Resets and interrupts	
	4.4	Power supply control	
	4.5	Memory configuration	
	4.6	L220 bypass and peripheral decode	
	4.7	Debug and JTAG configuration	
Chapter 5	CT11MPCore Signal Descriptions		
	5.1	Header connectors	5-2
	5.2	Links, test points, and LED indicators	
	5.3	AXI bus timing specification	
Appendix A	Specifications		
	A.1	Electrical specification	Δ-2
	A.2	Mechanical details	
	71.2	Wednesday details	^-¬
	Glos	ssary	

List of Tables

Core Tile for ARM11 MPCore User Guide

ii
3-17
3-21
3-25
3-37
3-39
3-41
3-45
3-48
3-50
3-52
3-53
3-55
3-56
3-57
3-58
3-59
3-61
4-9
4-12
4-13
4-15
4-16

Table 4-6	Test chip interrupt control register	4-18
Table 4-7	Internal interrupt lines	4-19
Table 4-8	Debug matrix control bits	4-20
Table 4-9	Test chip power status register	4-21
Table 4-10	Most useful settings of the L2BYPASS, MPMASTNUM, and L2MASTNUM config	uration
	bits	4-27
Table 4-11	Peripheral decoder mapping	4-29
Table 4-12	Test chip TAP instructions	4-31
Table 4-13	ARM11 MPCore TAP ID register	4-34
Table 4-14	Test chip TAP ID register	4-35
Table 5-1	Samtec part numbers	5-3
Table 5-2	HDRX signals	
Table 5-3	HDRY signals	5-10
Table 5-4	HDRZ signals	5-17
Table 5-5	Link function	
Table 5-6	Test point signal and description	5-29
Table 5-7	LED function	5-31
Table 5-8	Global timing parameters	5-34
Table 5-9	CT11MPCore multiplexed AXI bus timing parameters	5-35
Table A-1	Core Tile electrical characteristics	
Table A-2	Current requirements	A-2

List of Figures Core Tile for ARM11 MPCore User Guide

Figure 1-1	CT11MPCore layout	1-4
Figure 1-2	CT11MPCore and Emulation Baseboard	1-5
Figure 1-3	System block diagram	1-7
Figure 2-1	Core Tile, Logic Tile, and an Emulation Baseboard	2-3
Figure 2-2	EB power connectors	2-5
Figure 2-3	JTAG connection to an Emulation Baseboard	2-8
Figure 3-1	CT11MPCore block diagram	3-2
Figure 3-2	Clock routing and hardware initialization	
Figure 3-3	RDATA1[31:0] data fields when using CONFIGINIT	3-7
Figure 3-4	Clock divider setting in reset mode, dividing by two	3-8
Figure 3-5	PLL setting in reset mode, multiplying by four	3-10
Figure 3-6	Reset routing	3-14
Figure 3-7	EB and CT11MPCore reset sequence	3-16
Figure 3-8	Interrupt mode signal routing	3-19
Figure 3-9	HDRZ signal mux	3-24
Figure 3-10	Voltage control and voltage and current monitoring	3-28
Figure 3-11	CT11MPCore AXI bus multiplexing scheme	3-31
Figure 3-12	CT11MPCore AXI mux timing	3-33
Figure 3-13	MPCore AXI multiplexing logic	3-34
Figure 3-14	4-wire serial interface timing	3-38
Figure 3-15	SYS_PLD_CTRL1 register	3-49
Figure 3-16	SYS_PLD_CTL2 register	3-51
Figure 3-17	SYS_PLD_INIT register	3-53

Figure 3-18	SYS_VOLTAGE0 register	3-56
Figure 3-19	SYS_VOLTAGE1 register	3-57
Figure 3-20	SYS_VOLTAGE2 register	3-58
Figure 3-21	SYS_VOLTAGE3 register	3-59
Figure 3-22	JTAG debug mode routing (nCFGEN=1)	3-63
Figure 3-23	JTAG configuration mode routing (nCFGEN=0)	3-64
Figure 3-24	Additional JTAG configuration mode routing	3-65
Figure 3-25	JTAG debug (normal) mode scan chain routing (nCFGEN=1)	3-66
Figure 3-26	JTAG configuration mode scan chain (nCFGEN=0)	3-67
Figure 3-27	JTAG loopback control	
Figure 4-1	Top-level view of ARM11 MPCore test chip	4-2
Figure 4-2	Clock domain overview	4-5
Figure 4-3	PLL block diagram	4-7
Figure 4-4	Test chip PLL control register	4-9
Figure 4-5	AXI bus clock	4-11
Figure 4-6	Test chip clock divider register	4-12
Figure 4-7	Test chip interrupt control register	4-18
Figure 4-8	Test chip power status register	4-21
Figure 4-9	L220 data RAM organization	4-25
Figure 4-10	L220 bypass mechanism	
Figure 4-11	MPCore and L220 port configurations	
Figure 4-12	Test chip and ARM11 MPCore TAP controller connections	4-32
Figure 4-13	TAP signal connections between the four ARM11 MPCore CPUs	
Figure 4-14	TAP ID register	
Figure 5-1	HDRX, HDRY, and HDRZ (upper) pin numbering	5-2
Figure 5-2	Location of links (bottom)	5-25
Figure 5-3	Location of links (top)	5-26
Figure 5-4	Test point location	5-29
Figure 5-5	LED indicator location	5-31
Figure 5-6	CT11MPCore multiplexed AXI bus input setup timing	
Figure 5-7	CT11MPCore multiplexed AXI bus output valid timing	5-35
Figure A-1	Board outline (top view)	A-4

Preface

This preface introduces the RealView Core Tile for ARM11 MPCore and its reference documentation. It contains the following sections:

- About this book on page xii
- Feedback on page xv.

About this book

This book describes how to set up and use the CT11MPCore.

Intended audience

This book has been written for experienced hardware and software developers to aid the development of ARM-based products using the CT11MPCore as part of a development system.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction

This chapter introduces the CT11MPCore.

Chapter 2 Getting Started

This chapter describes how to set up and prepare the CT11MPCore for use.

Chapter 3 CT11MPCore Hardware Description

This chapter describes the on-board hardware of the CT11MPCore.

Chapter 4 Test Chip Hardware Description

This chapter describes the features of the ARM11 MPCore test chip which affect the CT11MPCore.

Chapter 5 CT11MPCore Signal Descriptions

This chapter provides a summary of signals present on the CT11MPCore connectors, test points, LED indicators, and the links that can be modified to change signal routing.

Appendix A Specifications

This appendix contains the electrical, timing, and mechanical specifications for the CT11MPCore.

Typographical conventions

The following typographical conventions are used in this document:

bold Highlights ARM signal names within text, and interface elements

such as menu names. This style is also used for emphasis in

descriptive lists where appropriate.

italic Highlights special terminology, cross-references and citations.

monospace Denotes text that can be entered at the keyboard, such as

commands, file names and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The

underlined text can be entered instead of the full command or

option name.

monospace italic Denotes arguments to commands or functions where the argument

is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

Further reading

This following publications by ARM Limited provide additional information on using the Core Tile and related products:

- ARM11 MPCore Processor Technical Reference Manual (ARM DDI 0360)
- L220 Cache Controller Technical Reference Manual (ARM DDI 0329)
- RealView Emulation Baseboard User Guide (ARM DUI 0303)
- *LT-XC2V4000+ User Guide* (ARM DUI 0186B)
- ARM RealView AT1 Analyzer Tile User Guide (ARM DUI 0189)
- *ARM Multi-ICE User Guide* (ARM DUI 0048)
- AMBA Specification (ARM IHI 0011)
- AMBA 3 AXI Protocol Specification (ARM IHI 0022)
- *ARM Architecture Reference Manual* (ARM DDI 0100)
- *ADS Tools Guide* (ARM DUI 0067)
- ADS Debuggers Guide (ARM DUI 0066)
- *ADS Debug Target Guide* (ARM DUI 0058)
- ADS Developer Guide (ARM DUI 0056)
- ADS CodeWarrior IDE Guide (ARM DUI 0065)
- RealView Debugger User Guide (ARM DUI 0153)
- RealView Compilers and Libraries Guide (ARM DUI 0205)
- RealView Linker and Utilities Guide (ARM DUI 0206)

• RealView ICE User Guide (ARM DUI 0155).

Feedback

ARM Limited welcomes feedback both on the ARM Core Tiles and on the documentation.

Feedback on this document

If you have any comments about this document, send email to errata@arm.com giving:

- the document title
- the document number
- the page number(s) to which your comments refer
- an explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the ARM Core Tiles

If you have any comments or suggestions about these products, contact your supplier giving:

- the product name
- an explanation of your comments.

Preface

Chapter 1 Introduction

This chapter introduces the Core Tiles. It contains the following sections:

- *About the Core Tiles* on page 1-2
- Overview of CT11MPCore on page 1-3
- *Precautions* on page 1-11.

Note

This guide covers the HBI-0146 (CT11MPCore) printed-circuit board.

This board supports the ARM11 MPCore test chip. The availability of Core Tiles however, depends on the availability of individual test chips. Contact your sales representatives for details on currently available Core Tiles.

1.1 About the Core Tiles

Core Tiles are development boards that enable you to develop products based on ARM processors and AMBA interfaces. Core Tiles are built around test chips, which are ASIC implementations of one or more ARM processors. Core Tiles provide one or more AMBA interfaces from the processor so that it can be connected to an AMBA-based system. See the *AMBA Specification* (ARM IHI 0011) and the *AMBA 3 AXI Protocol Specification* (ARM IHI 0022) for further information.

The Core Tile must be used in conjunction with a specific baseboard that implements the necessary system and memory controllers in an FPGA. The CT11MPCore is combined with the RealView Emulation Baseboard (EB) to provide a standalone system for product development. Third-party or custom development systems may also be used with a Core Tile.

Core Tiles do not have power or JTAG connectors. The tiles must be stacked on a baseboard that provides power and JTAG connections. The Core Tiles also require a reference clock (or clocks) to be supplied by the attached baseboard.

Through-board connectors on tile products allow stacking of multiple systems. Multiple combinations of Core Tile and Logic Tile can be used to create a multiprocessor system.

Note
Using the EB, you can build a dual processor system using Core Tiles without the need
for Logic Tiles. Using other baseboards, for example the PB926EJ-S, you must include
a Logic Tile between the baseboard and the Core Tile.

For debug, a Realview Analyzer Tile can be used to provide access to signals on the tile header connectors.

1.2 Overview of CT11MPCore

The major components on the CT11MPCore are as follows:

- microprocessor test chip
- tile headers on the top and bottom of the board
- bus interface logic
- clock selection and initialization logic
- controllable power supply for the test chip core and PLL
- test chip power monitoring logic
- configuration and control PLD
- ARM11 MPCore test chip signals routing
- AXI bus multiplexing logic.

Figure 1-1 on page 1-4 shows the layout of a CT11MPCore.

Figure 1-1 CT11MPCore layout

Figure 1-2 on page 1-5 shows a CT11MPCore together with an EB. Typically, the remaining tile site is occupied by a Core Tile or Logic Tile which can be used for custom peripheral development or to hold a synthesized core.

Refer to the *LT-XC2V4000+ Logic Tile User Guide* (ARM DUI 0186B) for details on the Logic Tile which can be used for system prototyping.

Figure 1-2 CT11MPCore and Emulation Baseboard

1.2.1 System architecture

Figure 1-3 on page 1-7 shows the architecture of a hardware development system consisting of a CT11MPCore and an EB. For details of the peripheral devices implemented on the EB and the available interfaces see *RealView Emulation Baseboard User Guide* (ARM DUI 0303).

1.2.2 External logic

The EB provides:

- power and JTAG connectors
- a reference clock
- a serial interface to the CT11MPCore PLD that loads the desired configuration
- initialization values to the PLD for the PLL and clock divider in the test chip
- peripheral devices (for example, memory controller, interrupt controller, DMA controller, system and reset controller, serial I/O). See *RealView Emulation Baseboard User Guide* (ARM DUI 0303) for details.

The external connectors and control logic are also provided by the baseboard. The FPGA on the baseboard or a Logic Tile provides system control functions for the CT11MPCore. See Chapter 3 *CT11MPCore Hardware Description*, and the documentation for your EB for more details.

Note
The FPGAs on the external baseboard or Logic Tile must be loaded with an appropriate
image. An application note, giving information on the FPGA images for the
combination of products that you are using may be available, please refer to the
documentation provided on the product CDs.

Figure 1-3 System block diagram

1.2.3 ARM processor test chip

The name of the Core Tile reflects the test chip fitted. The CT11MPCore has an ARM11 MPCore test chip which implements four ARM11 MPCore processors and a L220 level 2 cache controller.

For more details on processors and test chips, see the *Technical Reference Manual* for the processor family. Details on variations between test chips for the same processor family are also described in documents in the *product_name*\docs\test chips directory of the product CD.

Depending on the test chip, the core configuration signals are driven by the PLD or the FPGA on the baseboard, or by resistor links. In a production ASIC, these core signals are permanently tied HIGH or LOW. However, you can change the PLD register values via a 4-wire serial link controlled by the system registers in the baseboard, in order to experiment with different processor configurations. See *Overview of Core Tile configuration* on page 3-36 for details.

1.2.4 PLD

The PLD on the CT11MPCore receives configuration signals from the serial link, controlled by the baseboard.

The CT11MPCore PLD outputs signals that control:

- the DACs that control the power supplies for the test chip
- the clock control registers that control the reference clock source to the core
- the dual AXI bus interface
- the debug cross-trigger matrix
- multiplexing of some of the signals on the HDRZ header
- the test chip resets and configuration signals.

The PLD transmits status signals to the serial link:

- a PLD identifier (PLDVER) that can be used to identify the version of the PLD image
- the value of the test chip voltages
- the current drawn from the test chip core and PLL
- the test chip status signals.

Different Core Tiles might also transmit signals that are specific to that tile. For example, the CT11MPCore transmits a MPCore PLL update complete signal.

User control of the signals present in the serial interface is possible through the system control registers on the baseboard.

1.2.5 Processor bus

The test chip on the CT11MPCore has a dual AXI bus interface. See *Overview of Core Tile configuration* on page 3-36 for a description of the configuration options for the AXI bus and *Bus interface characteristics* on page A-2 for parametric data.

1.2.6 Memory

The CT11MPCore does not support PISMO Expansion Memory Modules but the ARM11 MPCore test chip has on chip memory. See *Memory configuration* on page 3-43 for details of the ARM11 MPCore test chip memory system. If additional system memory is required, you can add PISMO Expansion Memory Modules to the EB. See the *Realview Emulation Baseboard User Guide* (ARM DUI 0303) for details.

1.2.7 Clock generation

The primary reference clock for the CT11MPCore is provided by the attached EB or a Logic Tile fitted above the CT11MPCore. See *Clocks* on page 3-4 for details of the CT11MPCore clocking system.

1.2.8 JTAG

The CT11MPCore does not have a JTAG connector. You must use the JTAG connector on the EB. See *JTAG support* on page 3-60 for details of the CT11MPCore JTAG interface.

1.2.9 Power supply control

Interface logic on the CT11MPCore enables you to control and read different supply voltages. The current drawn by the test chip core and PLL can also be read to monitor power. The voltage control range available is set during board manufacture.

Power supply is by external board. The CT11MPCore requires the baseboard to provide 3V3 and 5V. The test chip core voltage and PLL voltage of 1V2 and the PLD core voltage of 1V8 are generated locally by the CT11MPCore. See *Power supply control* on page 3-28 for details of the CT11MPCore power supply interface.

1.2.10 Links and indicators

The CT11MPCore has factory-installed links for setting test chip configuration. For example, there are links to set **PERIPHBASE** which determines the base address for the ARM11 MPCore, L220 Cache Controller and ARM11 MPCore test chip specific registers. These links do not normally require changing. For more details, see *Links* on page 5-25.

The CT11MPCore has a Power Good (PGOOD) LED indicator for the VDDCORE power supply and four User LEDs. See *LED indicators* on page 5-30 for details. For details on indicators present on the Logic Tiles, Interface Modules, and baseboard products, see the documentation supplied with the product.

1.3 Precautions

This section contains safety information and advice on how to avoid damage to the Core Tile.

1.3.1 Ensuring safety

1.3.2 Preventing damage

The Core Tile is intended for use within a laboratory or engineering development environment. It is supplied without an enclosure and this leaves the board sensitive to electrostatic discharges and allows electromagnetic emissions.

To avoid damage to the Core Tile you must observe the following precautions:

- never subject the tile to high electrostatic potentials
- always wear a grounding strap when handling the tile
- only hold the tile by the edges
- avoid touching the component pins or any other metallic element.

Do not use the board near equipment that could be:

- sensitive to electromagnetic emissions, such as medical equipment
- a transmitter of electromagnetic emissions.

Introduction

Chapter 2 Getting Started

This chapter describes how to set up and prepare the CT11MPCore for use. It contains the following sections:

- Using the CT11MPCore with an Emulation Baseboard on page 2-2
- Using the CT11MPCore with a custom baseboard on page 2-4
- *Connecting power* on page 2-5
- *Connecting RealView ICE* on page 2-7.

The information in this chapter provides only a general overview. Details on using a Core Tile with different ARM products are covered in application notes. Ensure that you use the correct application note and FPGA image for your configuration.

The CT11MPCore must be used with a baseboard that provides the configuration control and additional peripherals. This requirement is fully met by the EB. The FPGA on the baseboard must contain an image that is explicitly designed to interface with the CT11MPCore.

2.1 Using the CT11MPCore with an Emulation Baseboard

A typical multi-processor development system is shown in Figure 2-1 on page 2-3.

To set up a development system using the *Emulation Baseboard* (EB):

- 1. Fit the CT11MPCore to tile site 1 on the EB.
- 2. If required, fit a further Core Tile or a Logic Tile to tile site 2 on the EB.
- 3. If required you can connect additional sets of Logic Tile and Core Tile at either tile site to create a tile stack.

Note -	
--------	--

To build a tile stack above the CT11MPCore, AXI bus multiplexing and demultiplexing logic must be included on the Logic Tile above the CT11MPCore. This will reduce the maximum operating frequency of tile site 1. It is recommended, for systems requiring additional processors, that the processor tile stack is built at tile site 2 to maximize system performance.

- 4. If required, you can connect a RealView Analyzer Tile between the baseboard and the Core Tile, to enable monitoring of signals using a logic analyser.
- 5. You can also place a Logic Tile and an Interface Tile on the top of the tile stack. The Logic Tile can be loaded with an appropriate image that contains your peripherals and the connectors on the Interface Tile can provide access to your peripherals instantiated in the Logic Tile.
- 6. Connect a JTAG debugger to the baseboard (see *Connecting a JTAG device to the EB* on page 2-8).
- 7. Set the CONFIG slide-switch on the baseboard to ON.
- 8. Supply power to the EB (see *Supplying power to the EB* on page 2-5).
- 9. Load the appropriate FPGA images into the Logic Tiles. See the application note for details on the image to use and see the *RealView Emulation Baseboard User Guide* and *LT-XC2V4000+ User Guide* for details on programming procedures.
- 10. Set the CONFIG slide-switch to OFF, power cycle the board, and load your application program.

Figure 2-1 Core Tile, Logic Tile, and an Emulation Baseboard

——Note ———
For details on how to load and run applications on an Emulation Baseboard system, see the *RealView Emulation Baseboard User Guide* (ARM DUI0303).

2.2 Using the CT11MPCore with a custom baseboard

If you are designing a custom baseboard to accept a CT11MPCore, you must ensure that your board meets the following requirements:

Mechanical layout

The mechanical layout is described in Appendix A Specifications.

Power supplies

The CT11MPCore uses 5V and 3V3 supplies connected through power-blades in the header connectors. See *Header connectors* on page 5-2 for details. The CT11MPCore uses the 5V supply to locally generate the 1V8 supply for the PLD core, the 1V2 supply for the test chip core (VDDCORE), and the 1V2 supply for the test chip PLL (AVDD). The 3V3 supply is used by the internal I/O and external interfaces. The test chip core and PLL voltage are controlled by logic in the PLD on the CT11MPCore. See *Power supply control* on page 3-28 for details on the voltage control logic.

Clock control

Your primary reference clock must be supplied by an attached Logic Tile or baseboard. The CT11MPCore clocking system is described in Chapter 3 CT11MPCore Hardware Description and the ARM11 MPCore test chip specific clocking requirements are described in Chapter 4 Test Chip Hardware Description. See also the ARM11 MPCore Processor Technical Reference Manual (ARM DDI 0360).

JTAG control

The CT11MPCore does not have a JTAG connector. The baseboard must provide a JTAG connector and route the JTAG signals to the header signals on the Core Tile. JTAG routing is described in *JTAG support* on page 3-60 and *Debug and JTAG configuration* on page 4-31.

Bus configuration signals

The ARM11 MPCore dual AXI bus and some of the signals on header HDRZ are controlled through multiplexers. Bus configuration is managed by the PLD on the Core Tile. See *Overview of Core Tile configuration* on page 3-36 for details.

AXI slaves

In order for the ARM11 MPCore to boot, the baseboard must implement AXI slaves that cover the 4GB memory map.

2.3 Connecting power

CT11MPCore power is supplied through power-blades in the header connectors. The power source is connected to the EB.

2.3.1 Supplying power to the EB

If the EB is not inserted into a PCI enclosure, you must connect the supplied 12VDC brick power supply to power socket J28 or an external bench power supply to the screw-terminal connector J27. See Figure 2-2.

Figure 2-2 EB power connectors

_____Note _____

If you are using the supplied brick power supply connected to J28, the Standby/power push button toggles the power on and off.

If you are using an external power supply connected to J27, or you are powering the board from the PCI backplane, the Standby/power switch is not used and power is controlled by shutting down the external power source.

You must only use one power source for the system. Use only the PCI connector, J27, or J28, do not, for example, use the PCI connector and J27 at the same time.

If you are using separate 5V and 3V3 bench supplies, always set sensible current limits. The 3V3 supply should track the 5V supply. On the EB, the 3V3 supply tracks the 5V supply after an initial 1ms delay.

2.4 Connecting RealView ICE

The Core Tile does not have a JTAG connector, but there are JTAG signals present on the header connectors. The Core Tile must be used with an EB or custom baseboard that contains a JTAG connector. External JTAG equipment can be used to:

Download and debug programs.

You can connect RealView ICE (RVI) or other JTAG debuggers to the external JTAG connector and download and debug programs.

 Download new images to the PLD on the Core Tile or to FPGAs or PLDs present on other attached boards.

For a CT11MPCore attached to an EB, either Multi-ICE, RVI or the USB debug port on the EB can be used for downloading FPGA images, but only RVI can be used for debug.

Selection between debugging programs and downloading new images to the FPGA is controlled by the CONFIG slide-switch on the EB. See the documentation supplied with the EB for more details on connecting JTAG and using the CONFIG slide-switch.

Because the Core Tile does not provide nonvolatile memory, programs are lost if the power is removed. Use flash memory for nonvolatile storage.

The flash memory can be:

- any unused space in the EB NOR flash
- nonvolatile memory available in the PISMO memory expansion slots on the EB
- DiskOnChip flash on the EB.

Do not use spare EB configuration flash space (address range: 0x4C000000–0x4DFFFFFF) for program storage.

See the *Programmer's Reference* chapter in the *RealView Emulation Baseboard User Guide* (DUI0303) for details of the EB memory map.

The JTAG connector provides a set of signals that allow debugging equipment to be used. If you are debugging a development system with multiple tiles, connect the JTAG debugging equipment to the EB and the JTAG signals will be routed through any connected tiles. See *JTAG loopback control* on page 3-68 for details of the JTAG routing within a tile stack.

The JTAG debug and configuration paths are described in *JTAG support* on page 3-60 and *Debug and JTAG configuration* on page 4-31.

2.4.1 Connecting a JTAG device to the EB

The JTAG setup for the EB and RVI is shown in Figure 2-3. (Refer to the documentation supplied with your debugger for information on connecting other JTAG interface products.)

Figure 2-3 JTAG connection to an Emulation Baseboard

The ARM11 MPCore test chip does not support trace.

Chapter 3 CT11MPCore Hardware Description

This chapter describes the on-board hardware of the CT11MPCore. It contains the following sections:

- *Core Tile architecture* on page 3-2
- About the ARM11 MPCore test chip on page 3-3
- *Clocks* on page 3-4
- Resets and interrupts on page 3-11
- *HDRZ signal mux* on page 3-23
- Power supply control on page 3-28
- AXI bus multiplexing on page 3-31
- Overview of Core Tile configuration on page 3-36
- *Memory configuration* on page 3-43
- Register configuration on page 3-44
- *JTAG support* on page 3-60.

Nata

——Note ———	
The HBI-0146 board supports the ARM11 MPCore test chip, but the availability o	f
boards depends on the availability of test chips. Contact your sales representatives	foi
details on currently available Core Tiles	

3.1 Core Tile architecture

The high level architecture of the CT11MPCore is shown in Figure 3-1.

Figure 3-1 CT11MPCore block diagram

3.2 About the ARM11 MPCore test chip

The ARM11 MPCore test chip is a proof-of-concept vehicle for the MPCore macrocell and is built for two reasons:

- It enables you to functionally validate the ARM11 MPCore macrocell on the silicon process it is built on.
- You can use it as a building block to create prototype systems designed for product and operating system development.

The ARM11 MPCore test chip functionality consists of:

- four ARM11 MPCore CPUs, each CPU may be suspended (clock is stopped)
- L220 level 2 cache controller
- PLL
- boundary scan logic
- input and output pads.

—— Note ———
For more details see Chapter 4 Test Chip Hardware Description on page 4-1 and the
ARM11 MPCore Processor Technical Reference Manual (ARM DDI 0360).

3.3 Clocks

The CT11MPCore does not have an on board reference clock. The single input clock required by the test chip PLL, **REFCLK** is routed either from the board below as **CLK_NEG_UP_IN**, or the board above as **CLK_NEG_DN_IN**, depending on the position of the CT11MPCore in the system stack and the board combination used.

As shown in Figure 3-2 on page 3-5 clock distribution and phase control of the AXI clock output from the test chip is provided on board by an ispClock5620 programmable clock generator. The ispClock5620 is PLL based and provides independent programmable control of termination, slew-rate, and timing skew. All configuration information is stored on-chip in nonvolatile EEPROM memory. The CT11MPCore uses the ispClock5620 in a single pre-programmed standalone configuration.

Note	
11010	

Figure 3-2 on page 3-5 is a simplified clock distribution diagram. The CT11MPCore uses two ispClock5620 programmable clock generators, one driven from **CLKOUTDIVD**. The additional de-skewed clock sources are required to multiplex the AXI port 0 and AXI port1 signals from the test chip onto the CT11MPCore X, Y and Z headers. See *AXI bus multiplexing* on page 3-31 for details.

3.3.1 Clock routing

The clock routing for the CT11MPCore and EB combination is shown in Figure 3-2 on page 3-5. This figure also shows the clock hardware initialization signals.

Selection of the clock source for the Core Tile is controlled by **CSEL** from the CT11MPCore PLD. **CSEL** selects the clock source as **CLK_NEG_DN_IN** from the board above, or **CLK_NEG_UP_IN** from the board below. The value of **CSEL** is set locally during power up by the CT11MPCore PLD.

Figure 3-2 Clock routing and hardware initialization

3.3.2 Clock setting in reset mode

	IGINIT, nCONFIGRST, RD[31:16] and RD[3:0] signals initialize the ock divider and test chip PLL control registers during reset.
Not	e ———
system base PLD on the	nitialization of the PLL and clock divider is controlled by firmware on the eboard. Hardware initialization values are transferred during reset to the CT11MPCore via a 4-wire serial interface, see <i>Clock routing and hardware n</i> on page 3-5 for details.
the CT11M	require changing the core to AXI bus clock ratio, and can tolerate resetting PCore, you can use the simpler procedure detailed in <i>Changing the core to tok ratio</i> on page 3-55.
	IGINIT and nCONFIGRST signals are controlled by the CT11MPCore e not accessible at the Core Tile headers.
nCONFIG	RST
	Resets the test chip clock divider and test chip PLL control registers.
CONFIGI	NIT
	Enables clocking of the <i>test chip clock divider</i> and <i>test chip PLL control</i> registers. The CONFIGINIT pulse defines valid data on the RDATA1[31:0] bus and is HIGH for at least two REFCLK cycles.
	——— Note ————
	CONFIGINIT enables simultaneous clocking of both registers. Any write access to the <i>test chip clock divider</i> register also writes to the <i>test chip PLL control</i> register and the other way round. To prevent corruption of data in either register, both RDATA1[31:16] and RDATA[3:0] are valid when CONFIGINIT is HIGH.
The RD[31	:16] and RD[3:0] values are driven by the CT11MPCore PLD.
RD[31:16]	
	When CONFIGINIT is high, drives bits [15:0] of the test chip <i>PLL</i> control register via RDATA1[31:16] on the test chip.
RD[3:0]	
	When CONFIGINIT is high, drives bits [3:0] of the test chip <i>Clock divider register</i> via RDATA1[3:0] on the test chip.

Figure 3-3 shows the **RDATA1[31:0**] data fields when using **CONFIGINIT**.

Figure 3-3 RDATA1[31:0] data fields when using CONFIGINIT

The control sequence for loading the clock divider setting in reset mode is shown in Figure 3-4 on page 3-8. In this example, the value written to the *Clock divider register* is b0001, setting it to divide by two. Since the *PLL control register* is also written to at this time, the full value written to **RDATA1[31:0]** is 0x00060001 so that:

- PLLEN= 0 masking the software PLL enable
- STBY=1 setting **CLKA** from the PLL to 0
- PSTBY=1 setting **CLKB** from the PLL to 0.

Figure 3-4 Clock divider setting in reset mode, dividing by two

The control sequence for loading the *PLL control register* is shown in Figure 3-5 on page 3-10. In this example, the PLL is set to multiply by four.

The initial conditions are:

- PLLEN=0 masking the software PLL enable
- STBY=1 setting **CLKA** from the PLL to 0
- PSTBY=1 setting CLKB from the PLL to 0
- clock divider=b0001 setting to divide by two.

The following values are driven on **RDATA1[31:0**]:

_____Note _____

- STBY must remain HIGH at least 15µs after Vdd becomes stable
- REFCLK must have been running for at least 1 µs before STBY is released.

0x01160001 Set the PLL divider values in PLL standby mode:

- PB divider=0
- PA divider=1

- N divider=1
- M=0.

PBSTBY and STBY remain HIGH.

The clock divider remains b0001.

0x01140001 Release the **STBY** bit.

STBY=0 and PBSTBY remains HIGH.

PB divider, PA divider, N divider, and M remain at the same values

The clock divider remains b0001.

_____Note _____

PBSTBY must be kept HIGH for at least 20µs after STBY is released.

0x01100001 Release the **PBSTBY** bit.

PBSTBY=0 and **STBY** remains LOW.

PB divider, PA divider, N divider, and M remain at the same values.

The clock divider remains at b0001.

Wait until **PLOCK** from the PLL is HIGH.

0x01110001 Set the PLL Enable bit.

PBSTBY=0 and STBY=0.

PB divider, PA divider, N divider, and M remain at the same values as for 0x01160001.

The clock divider remains at b0001.

Figure 3-5 PLL setting in reset mode, multiplying by four

3.4 Resets and interrupts

This section describes the reset and interrupt signals and contains the following sections:

- Resets
- *Interrupts* on page 3-18.

3.4.1 Resets

This section describes the resets and contains the following subsections:

- Baseboard resets
- ARM11 MPCore test chip resets
- Reset routing on page 3-12
- Resets on HDRZ signal mux on page 3-15
- Reset sequence on page 3-15.

Several resets are required by the baseboard and the ARM11 MPCore test chip.

Baseboard resets

The reset logic on the baseboard initializes attached Logic Tiles and Core Tiles, the system FPGA, and external controllers as a result of a reset. The baseboard has several reset sources and generates several reset signals.

The EB reset sources and the function of the EB reset signals are described in the *RealView Emulation Baseboard User Guide* (ARM DUI0303).

The EB generates the **nCOLDRSTIN** and **nWARMRSTIN** signals for the CT11MPCore. These signals are driven by the reset controller **nSYSRST** signal within the EB system FPGA.

ARM11 MPCore test chip resets

The ARM11 MPCore test chip requires the following reset signals:

- nSYSPORESET
- nCONFIGRST
- nWDRESET[3:0]
- nCPURESET[3:0]
- nPORESET[3:0]

nTRST.

.Chapter 4 Test Chip Hardware Description, in Resets on page 4-14.

Reset routing

The reset routing between the baseboard, CT11MPCore logic, and the ARM11 MPCore test chip is shown in Figure 3-6 on page 3-14.

In default operation, several of the ARM11 MPCore test chip resets are grouped and controlled by the CT11MPCore PLD.

If you require individual control of the ARM11 MPCore test chip resets, they can be isolated from the CT11MPCore PLD and driven from header HDRZ, see *Resets on HDRZ signal mux* on page 3-15 for details.

nCOLDRST

This reset signal from the CT11MPCore PLD controls these ARM11 MPCore test chip resets as a group:

- nPORESET[3:0]
- nWDRESET[3:0]
- nSYSPORESET

.

.These resets can also be controlled individually from header HDRZ by using the HDRZ signal mux.

nCPURESET[3:0]

These resets to the ARM11 MPCore test chip are controlled as a group by the **nWARMRSTIN** reset from the system FPGA. They can also be controlled individually using the serial write data register in the CT11MPCore PLD, or from header HDRZ by using the HDRZ signal mux.

- to control the nCPURESET[3:0] signals individually using the serial write data register in the CT11MPCore PLD, set the appropriate values in the nCPURESET[3:0] field in the SYS_PLD_CTRL1 register in the system FPGA on the EB
- to control the **nCPURESET[3:0]** signals individually using the HDRZ signal mux, set the appropriate value in the HDRZEN field in the SYS_PLD_CTRL1 register in the system FPGA on the EB.

Note
The HDRZ signal mux also enables other ARM11 MPCore test
chip signals to be individually accessed via header HDRZ. See
Table 3-3 on page 3-25 for a list of all the available signals.

Figure 3-6 Reset routing

Resets on HDRZ signal mux

The positioning of the HDRZ signal mux is shown in *Reset routing* on page 3-14. This mux enables the resets for the ARM11 MPCore test chip to be driven individually from header HDRZ rather than as a group from the CT11MPCore PLD.

The HDRZ mux is controlled by **HRDZEN** from the CT11MPCore PLD. **HRDZEN** is controlled by writing to the HRDZEN field in the SYS_PLD_CTRL1 register in the system FPGA on the EB. The value written is transferred via the 4-wire serial interface to the serial write data register in the CT11MPCore PLD by continuous update.

the principal advantage that it does not introduce any significant system delays. Controlling signals from the CT11MPCore PLD typically introduces a $2\mu S$ delay due to the serial communications link.

The HDRZ signal mux is shown in more detail in *HDRZ signal mux* on page 3-24. The ARM11 MPCore test chip signals that are available via header Z are shown in *HDRZ signal mux connections* on page 3-25.

Reset sequence

Correct initialization of a core tile and its associated baseboard requires a timed reset sequence. Details of the EB reset sequence are detailed in the *RealView Emulation Baseboard User Guide* (*ARM DUI 0303*). The reset timing when using a CT11MPCore in combination with an EB is shown in *EB and CT11MPCore reset sequence* on page 3-16. The reset signals are described in Table 3-1 on page 3-17.

Figure 3-7 EB and CT11MPCore reset sequence

Reset signals

Table 3-1 describes the reset signals. A reset controller, implemented in the EB system FPGA, monitors the reset sources and generates the appropriate reset signals.

Table 3-1 Reset signals

Name	Function
nBOARDPOR	This signal resets the EB PLD. This signal is also used to generate nTRST at power on.
nTRST	Open-collector TAP controller reset (the baseboard drives this signal with nBOARDPOR .) ——Note nTRST splits into D_nTRST , and C_nTRST to provide separate debug and configuration signals on HDRZ of the CT11MPCore.
LOCAL_DONE	A configuration signal, active during reset. This signal goes HIGH when the EB system FPGA has finished configuring. GLOBAL_DONE is LOW until this signal goes HIGH.
GLOBAL_DONE	A configuration signal, active during reset. This is an open-collector configuration signal that goes HIGH when all FPGAs have finished configuring. The system is held in reset until this signal goes HIGH.
nSYSPOR	Power-on reset signal that initializes the reset level state machine in the EB system FPGA. There is a fixed 7µS delay after GLOBAL_DONE goes HIGH before nSYSPOR is released.
PLDnRESET	Resets the 4-wire serial interface and signals the start of each serial transfer to the CT11MPCore PLD.
PLLLOCK	A PLL status signal. PLLLOCK indicates when the ARM11 MPCore test chip PLL is locked to REFCLK . It is used by the reset controller to determine when clocks are stable and the main system reset nSYSRST can be released.

Table 3-1 Reset signals (continued)

Name	Function
nSYSRST	Main core tile system reset that generates nWARMRSTIN and nCOLDRSTIN to the CT11MPCore PLD. Goes HIGH approximately 20μS after nSYSPOR goes high.
nWARMRSTIN	Resets all CPUs in the ARM11 MPCore test chip by forcing all the nCPURESET[3:0] signals LOW to the ARM11 MPCore test chip.
nCOLDRSTIN	Resets the ARM11 MPCore test chip logic, all CPUs, watchdog timers and the debug logic.
	——— Note ———
	By default, nCOLDRSTIN and nWARMRSTIN are both driven by nSYSRST in the EB system FPGA. These signals act as a <i>Power-On-Reset</i> to the ARM11 MPCore test chip resetting all CPUs, the <i>Snoop Control Unit</i> (SCU), the <i>Interrupt Distributor</i> , and all ARM11 MPCore test chip logic. See <i>Reset handling</i> on page 4-15 for further details on the ARM11 MPCore test chip reset options.

3.4.2 Interrupts

This section describes the interrupt modes and contains the following subsections:

- Interrupt routing
- *Interrupt routing options* on page 3-21

Three interrupt modes are supported by the CT11MPCore, these are:

- Legacy mode
- Normal mode with DCC interrupt routing
- Normal mode without DCC interrupt routing

To set the interrupt mode in the CT11MPCore PLD, set the appropriate values in the INTMODE[2:0] field in the SYS_PLD_CTL1 register in the EB system FPGA. See *EB system FPGA registers* on page 3-46 for register details.

Interrupt routing

The interrupt routing available in the different modes is shown in Figure 3-8 on page 3-19.

Legacy mode Interrupt routing

Normal mode with DCC Interrupt routing

Normal mode without DCC Interrupt routing

Figure 3-8 Interrupt mode signal routing

A total of 16 general purpose interrupt lines are provided at header HDRZ.

The CT11MPCore PLD routing functions are:

- to route the HDRZ header interrupt sources to the ARM11 MPCore test chip distributed interrupt controller inputs, INT[15:0]
 - set the INTMODE[2:0] field in the SYS_PLD_CTL1 register to bx00 to select *Legacy mode* interrupt routing
 - set the INTMODE[2:0] field in the SYS_PLD_CTL1 register to bx01 to select *Normal mode with DCC* interrupt routing
 - set the INTMODE[2:0] field in the SYS_PLD_CTL1 register to bx1x to select *Normal mode without DCC* interrupt routing.

Normal mode without BCC interrupt routing.
Note
INT[15:0] on the ARM11 MPCore test chip maps to INT[47:32] in the ARM1
MPCore distributed interrupt controller. See ARM11 MPCore Processor
Technical Reference Manual (ARM DDI 0360) for further details.

• to route the CPU legacy IRQ request input lines, **nIRQ[3:0**], for DCC interrupt handling

——Note ———
The COMMRX[3:0] DCC interrupt sources are inverted by the CT11MPCore PLD.

- to route the Z[215:212] pins on header HDRZ to drive the CPU legacy fast interrupt request lines, nFIQ[3:0]
 - set the INTMODE[2:0] field in the SYS_PLD_CTL1 register to b1xx to enable the nFIQ[3:0] interrupt lines.

_____Note _____

The CT11MPCore PLD inverts the Z[215:212] signals connected to **nFIQ[3:0**] when INTMODE[2] is HIGH. When INTMODE[2] is LOW, the CT11MPCore PLD disables the **nFIQ[3:0**] interrupt lines by forcing them HIGH.

Interrupt routing options

The interrupt routing options, between the ARM11 MPCore test chip and the EB, are shown in Table 3-2.

Table 3-2 Interrupt routing options

Interrupt	Legacy mode (bx00 default)	Normal mode with DCC (bx01)	Normal mode (bx1x)
INT 0	COMMRX[0]	AACI	AACI
INT 1	COMMRX[1]	EB_TIMER0/1	EB_TIMER0/1
INT 2	COMMRX[2]	EB_TIMER2/3	EB_TIMER2/3
INT 3	COMMRX[3]	USB	USB
INT 4	COMMTX[0]	EB_UART0	EB_UART0
INT 5	COMMTX[1]	EB_UART1	EB_UART1
INT 6	COMMTX[2]	EB_RTC	EB_RTC
INT 7	COMMTX[3]	EB_KMI0 (KYBD)	EB_KMI0 (KYBD)
INT 8	EB_GIC1_nIRQ	COMMTX[0]	EB_KMI1 (MOUSE)
INT 9	EB_GIC2_nIRQ	COMMTX[1]	EB_ETHINT
INT 10	USB	COMMTX[2]	EB_GIC1_nIRQ
INT 11	AACI	COMMTX[3]	EB_GIC2_nIRQ
INT 12	EB_GIC1_nFIQ	EB_GIC1_nFIQ	EB_GIC1_nFIQ
INT 13	EB_GIC2_nFIQ	EB_GIC2_nFIQ	EB_GIC2_nFIQ
INT 14	MMCI0	MMCI0	MMCI0
INT 15	MMCI1	MMCI1	MMCI1
nIRQ[0]	EB_GIC2_nIRQ	nCOMMRX[0]	1
nIRQ[1]	1	nCOMMRX[1]	1
nIRQ[2]	1	nCOMMRX[2]	1

Table 3-2 Interrupt routing options (continued)

Interrupt	Legacy mode (bx00 default)	Normal mode with DCC (bx01)	Normal mode (bx1x)
nIRQ[3]	1	nCOMMRX[3]	1
EB_COMMRX	COMMRX[0]	0	0
EB_COMMTX	COMMTX[1]	0	0

3.5 HDRZ signal mux

The function of the HDRZ signal mux is to provide individual access to several of the
ARM11 MPCore test chip signals, via header HDRZ, without introducing any
significant system delays.

Note
Due to pin limitations, the EB system FPGA does not have direct access to these signals.
As shown in Figure 3-9 on page 3-24, access is via a tile fitted at Tile Site 2 of the EB.

The structure of the mux and its connection to the EB is shown in Figure 3-9 on page 3-24. The positioning of the mux in the signal flow is shown in Figure 3-6 on page 3-14.

Figure 3-9 HDRZ signal mux

The HDRZ signal mux provides individual access to 32 ARM11 MPCore test chip signals. These signals are listed in Table 3-3.

Table 3-3 HDRZ signal mux connections

Z Bus	HDRZ pin	ARM11 MPCore test chip	Function
168	81	nPORESET0	Debug logic reset to ARM11 MPCore CPU 0
169	83	nPORESET1	Debug logic reset to ARM11 MPCore CPU 1
170	85	nPORESET2	Debug logic reset to ARM11 MPCore CPU 2
171	87	nPORESET3	Debug logic reset to ARM11 MPCore CPU 3
172	89	nCPURESET0	Reset to ARM11 MPCore CPU 0
173	91	nCPURESET1	Reset to ARM11 MPCore CPU 1
174	93	nCPURESET2	Reset to ARM11 MPCore CPU 2
175	95	nCPURESET3	Reset to ARM11 MPCore CPU 3
176	97	RESETREQ0	Watchdog reset request from ARM11 MPCore CPU 0
177	99	RESETREQ1	Watchdog reset request from ARM11 MPCore CPU 1
178	101	RESETREQ2	Watchdog reset request from ARM11 MPCore CPU 2
179	103	RESETREQ3	Watchdog reset request from ARM11 MPCore CPU 3
180	105	nWDRESET0	Watchdog reset to ARM11 MPCore CPU 0
181	107	nWDRESET1	Watchdog reset to ARM11 MPCore CPU 1
182	109	nWDRESET2	Watchdog reset to ARM11 MPCore CPU 2
183	111	nWDRESET3	Watchdog reset to ARM11 MPCore CPU 3

Table 3-3 HDRZ signal mux connections (continued)

Z Bus	HDRZ pin	ARM11 MPCore test chip	Function
184	113	EDBGRQ0	External debug request to ARM11 MPCore CPU 0
185	115	EDBGRQ1	External debug request to ARM11 MPCore CPU 1
186	117	EDBGRQ2	External debug request to ARM11 MPCore CPU 2
187	119	EDBGRQ3	External debug request to ARM11 MPCore CPU 3
188	121	DBGACK0	Debug acknowledge from ARM11 MPCore CPU 0
189	123	DBGACK1	Debug acknowledge from ARM11 MPCore CPU 1
190	125	DBGACK2	Debug acknowledge from ARM11 MPCore CPU 2
191	127	DBGACK3	Debug acknowledge from ARM11 MPCore CPU 3
192	128	SMPnAMP0	Indicates whether ARM11 MPCore CPU 0 is in AMP or SMP mode
193	126	SMPnAMP1	Indicates whether ARM11 MPCore CPU 1 is in AMP or SMP mode
194	124	SMPnAMP2	Indicates whether ARM11 MPCore CPU 2 is in AMP or SMP mode
195	122	SMPnAMP3	Indicates whether ARM11 MPCore CPU 3 is in AMP or SMP mode
196	120	STANDBYWFI0	Indicates whether ARM11 MPCore CPU 0 is in WFI state

Table 3-3 HDRZ signal mux connections (continued)

Z Bus	HDRZ pin	ARM11 MPCore test chip	Function
197	118	STANDBYWFI1	Indicates whether ARM11 MPCore CPU 1 is in WFI state
198	116	STANDBYWFI2	Indicates whether ARM11 MPCore CPU 2 is in WFI state
199	114	STANDBYWFI3	Indicates whether ARM11 MPCore CPU 3 is in WFI state

3.6 Power supply control

The EB system FPGA implements registers and a serial interface to the CT11MPCore PLD to enable you to:

- change the voltage supplied to the ARM11 MPCore test chip by writing values to the serially-programmed *digital to analog converters* (DACs)
- read CT11MPCore on-board voltages and currents from an 8-channel 12-bit *analog to digital converter* (ADC).

The voltage control and voltage and current monitoring scheme is shown in Figure 3-10.

Figure 3-10 Voltage control and voltage and current monitoring

The serial write data register in the CT11MPCore PLD is updated continuously with values from the SYS_VOLTAGE registers in the EB system FPGA. These values control DAC0 and DAC1 that set the voltages applied to the ARM11 MPCore test chip.

The SYS_VOLTAGE registers in the EB system FPGA are continually updated with voltage and current monitoring values from the serial read data register in the CT11MPCore PLD.

The DAC and ADC data values are transferred via the 4-wire serial interface.

3.6.1 Setting the ARM11 MPCore test chip voltage

The core voltages depend on:

- The feedback resistors for the regulators
 - resistors R47, R49, and R83 are the feedback resistors for the VDDCORE
 1V2 supply
 - resistors R54, R55, and R84 are the feedback resistors for the AVDD PLL 1V2 supply
 - resistors R62, R61 are the feedback resistors for the **1V8** supply.

These resistors define the supply voltages at power-on and the adjustment range for each supply, These resistors are fitted at manufacture to give the correct core and PLL voltage for the ARM11 MPCore test chip.

• The values loaded into the PLD for the DAC settings. The values provide a positive or negative offset to the default power-on voltages.

The output voltages are given by

- **VDDCORE** = 0.8V * ((1 + R47*[R49+R83]/[R49*R83]) (Idac*R47))
- AVDD = 0.6V * ((1 + R54*[R55+R84]/[R55*R84]) (Idac*R54))
- 1V8 = 0.6V * (1 + R62/R61)

Idac is the current sourced at **VOLTAGE_CTRLA** or **VOLTAGE_CTRLB** by the associated DAC. The current range is 0 to 50μ A. At power up Idac is set to 25μ A.

The resistor values are typically chosen to give a ± 0.25 V adjustment range for the **VDDCORE** and **AVDD** PLL voltage. The default value loaded into the 8 bit DAC is 0x80. A value of 0xFF gives maximum negative offset from the default (-0.25V) and a value of 0x0 gives maximum positive offset from the default (+0.25V).

3.6.2 Reading the voltages and currents

The ADC on the CT11MPCore continuously reads the voltages and currents and updates the read serial register in the CT11MPCore PLD. The PLD sends these values over the 4-wire serial interface to the EB system FPGA.

The ADC is a 12 bit serial converter and uses an internal 2.5V reference. The LSB of the ADC reading corresponds to $610\mu V$ (the 2.5V reference of the ADC divided by 4096).

The formula to calculate the supply voltages (V_{DDx}) is:

```
V_{DDx} = INT(ADC[11:0] * (610 * 10^{-6}))
```

Voltages proportional to the **VDDCORE** and **AVDD** currents are developed across the R_{sense} resistors R59 and R60 respectively. Each of the sense resistors has a voltage amplifier that has a fixed gain of 100. This is necessary because the voltage developed across the sense resistor is too low to measure directly with the ADC.

To calculate the current (I_{DDx}) drawn by a supply line use the formula:

By default, the R_{SENSE} resistor is 0.025Ω for **VDDCORE** and 0.5Ω for **AVDD**. This provides a linear voltage to current relationship of 2.5V/Amp for **VDDCORE** and 50V/Amp for **AVDD**.

See *EB system FPGA registers* on page 3-46 for details of the **SYS_VOLTAGE2** and **SYS_VOLTAGE3** registers which monitor the **VDDCORE** and **AVDD** current sensing values.

PGOOD signal and LED

The power-good signal (**PGOOD**) from the **VDDCORE** supply step-down regulator is pulled LOW if the output voltage is not within 7.5%.

The **PGOOD** signal is buffered and drives the CT11MPCore on board PGOOD LED indicator, D1. See *LED indicators* on page 5-30 for details of all the CT11MPCore indicators.

3.7 AXI bus multiplexing

This section describes the AXI bus multiplexing. A multiplexing scheme is necessary to reduce the number of pins required on the HDRX and HDRY headers.

3.7.1 Multiplexing scheme

The CT11MPCore AXI bus multiplexing and demultiplexing scheme is shown in Figure 3-11.

Figure 3-11 CT11MPCore AXI bus multiplexing scheme

Data is multiplexed as follows:

Dout is split bitwise into data **Dout/A** and **Dout/B** and is multiplexed onto **Mux** depending on the level of **CLKin**. When **CLKin** is HIGH, **Dout/A** is selected and when **CLKin** is LOW, **Dout/B** is selected. For example, when **CLKin** is HIGH, **RDATA0[31:0]** is selected and when **CLKin** is LOW, **RDATA0[63:32]** is selected. See *HDRY signals* on page 5-10 for details of the AXI port 0 multiplexed signals, and *HDRX signals* on page 5-3 for details of the AXI port 1 multiplexed signals.

Data is de-multiplexed as follows:

Dout/A is present on Mux when CLKin is HIGH and is latched onto DeMuxLatch when CLKin goes LOW. Dout/B is present on Mux when CLKin is LOW and is passed straight through as DeMux . DeMuxLatch and DeMux are combined bitwise as Din .
Note
CLKin is driven by distributed outputs from the ispClock5620 clock generators. The ispClock5620 clock generators are driven by CLKOUTDIV and CLKOUTDIVD from the ARM11 MPCore test chip.
This design requires that Dout is generated on the rising edge of CLKin , and that Din is captured on the rising edge of CLKin .
The multiplexer timing requirements at the board headers are shown in Figure 3-12 on page 3-33.

Timing requirements;

Toh min = 0ns (output hold)
Tov max = 2ns (output valid)
Tis max = 2ns (Inputsetup)
Tih max = 0ns (inputhold)

Tmux max = 6ns (multiplexer and board delay)

The CLKin is the clock driven into the MPCore Test Chip from the Core Tile. All I/O timing must be with respect to this clock.

Figure 3-12 CT11MPCore AXI mux timing

AXI multiplexing logic

The practical implementation of the AXI port 0 multiplexing is shown in Figure 3-13 on page 3-34.

_____Note _____

AXI port 0 from the ARM11 MPCore test chip can be isolated from HDRY upper and lower headers to make pins available for routing other signals between other tiles in the stack and the EB. Header isolation is achieved using the bus switches (PI3C34X245B) shown in Figure 3-13. These bus switches are not implemented in the AXI port 1 multiplexing logic.

Figure 3-13 MPCore AXI multiplexing logic

The AXI port 0 bus clock, **CLKOUTDIVD** from the ARM11 MPCore test chip is distributed to the multiplexer, *PI3B16233A* and the latch, *74ALVCH16373A*. Phase control of these signals is critical for the correct operation of the mux/demux scheme at high system clock frequencies. Phase control is achieved with the ispClock5620 clock generator. This minimizes clock skew issues in the multiplexing logic. The clock generator non-volatile configuration settings are JTAG configurable when the CT11MPCore is in JTAG configuration mode. See *JTAG control and clock routing* on page 3-63 for further details.

Two ispClock5620 clock generators are necessary to adequately distribute the AXI bus clock to all of the AXI bus multiplexers and latches. **CLKOUTDIV** from the ARM11 MPCore test chip is used as the AXI bus clock source for the second ispClock5620 clock generator. The second ispClock5620 clock generator also provides the external clocks. See *Clock routing* on page 3-4 for details.

AXI signal routing

The AXI signal routing scheme is as follows:

- the AXI Port 0 signals from the ARM11 MPCore test chip are 2:1 multiplexed onto pins Y0 through to Y143 on the CT11MPCore HDRY header
- the AXI Port 1 signals from the ARM11 MPCore test chip are 2:1 multiplexed onto pins X0 through to X143 on the CT11MPCore HDRX header.

See *HDRX signals* on page 5-3 and *HDRY signals* on page 5-10 for pinout information.

Note

When **AXInOE0** from the CT11MPCore PLD is set HIGH this isolates the multiplexed AXI Port 0 bus from the MPCore HDRY header allowing the Y bus to be used by other tiles. In this mode the CT11MPCore can use a single AXI bus (AXI port 1). Table 3-5 on page 3-39 gives details of the CT11MPCore PLD signals.

AWUSER and ARUSER sideband signal routing

These signals provide information about the L1 cache, write-back, and shared access.

The AWUSER0[4:0] and ARUSER0[4:0] sideband signals from AXI port 0 and the AWUSER1[4:0] and ARUSER1[4:0] sideband signals from AXI port 1 are 2:1 multiplexed onto pins on the CT11MPCore HDRZ header. The AWUSER0[4:0] and AWUSER1[4:0] buses are available when CLKin is HIGH and the ARUSER0[4:0] and ARUSER1[4:0] buses are available when CLKin is LOW. See HDRZ signals on page 5-16 for pinout information. Table 3-5 on page 3-39 gives details of the CT11MPCore PLD signals.

3.8 Overview of Core Tile configuration

The ARM11 MPCore test chip, clock source, voltage levels, and a number of system parameters are configurable on the CT11MPCore. In a final product, core configuration is static and the core configuration signals are tied HIGH or LOW and the voltage and clocks are fixed. However, the CT11MPCore allows you to program these signals for experimentation.

There are several ways that CT11MPCore configuration occurs:

- The CT11MPCore PLD.
 - This is the primary configuration source. The PLD serial registers are described in *CT11MPCore serial registers* on page 3-46.
- CT11MPCore specific configuration registers in the EB system FPGA. These
 registers allow you to change several of the parameters controlled by the
 CT11MPCore PLD.

These registers are described in *EB system FPGA registers* on page 3-46.

- Signals present on the Core Tile connector HDRZ.
 - The HDRZ configuration signals are described in HDRZ signal mux on page 3-23
- Control registers in the ARM11 MPCore test chip.
 - The control registers in the test chip are described in Chapter 4 *Test Chip Hardware Description*.
- Control registers in the ARM11 MPCore.
 - For details of the registers in the ARM11 MPCore see the ARM11 MPCore Processor Technical Reference Manual (ARM DDI 0360).

3.8.1 CT11MPCore PLD signals

The CT11MPCore PLD performs the following functions:

- loading of data to the DACs that control the programmable power supplies (see *Power supply control* on page 3-28)
- reading of data from the ADCs that monitor the ARM11 MPCore test chip voltages (see *Reading the voltages and currents* on page 3-30)
- configuring the ARM11 MPCore test chip PLL on power up (see *Clocks* on page 3-4)
- controlling the individual resets to the MPCore processors (see *Resets* on page 3-11)

- controlling the interrupt mode that defines the interrupt routing (see *Interrupts* on page 3-18)
- configuring the L2, AXI and memory sub-systems within the ARM11 MPCore test chip (see Chapter 4 *Test Chip Hardware Description*)
- controlling the HDRZ signal multiplexers (see *HDRZ signal mux* on page 3-23).

Note -	
--------	--

The binary image for the EB system FPGA depends on whether a tile is fitted in the remaining baseboard tile site. A further Core Tile or a Logic Tile may be fitted here for system prototyping. The application notes supplied include FPGA and PLD images for the current ARM supported tile combinations.

The CT11MPCore PLD is controlled by the serial interface signals listed in Table 3-4. These signals connect to the EB via the HDRZ header.

Table 3-4 PLD control signals

Signal	Description
PLDCLK	Clocks data into or out of the PLD
PLDD1	Serial data input to PLD
PLDD0	Serial data output from PLD
PLDnRESET	Resets the serial interface and signals the start of transfers

The EB system FPGA implements seven registers that hold values sent to and received from the CT11MPCore PLD using the 4-wire serial interface. The EB system FPGA provides the serialization and descrialization logic required for the interface. The interface timing is shown in Figure 3-14 on page 3-38.

Figure 3-14 4-wire serial interface timing

Data is output on the rising edge of **PLDCLK** and sampled on the falling edge. The interface is reset and re-synchronized by **PLDnRESET** after each 60 bit serial transfer. The rising edge of **PLDnRESET** also indicates the start of a transfer. The data is transferred MSB first in both directions across the interface.

Note -	
	erial data stream from the CT11MPCore PLD is only 43 bits long. Bits are used to transfer the data, PLDD0[59:43] are reserved and tied LOW.
The CT11MPO page 3-39.	Core PLD drives the configuration signals listed in Table 3-5 on
Note -	al of 60 bits used in the <i>Serial write data register</i> serial data stream.

Table 3-5 Serial write data register

PLD Pin Name	Serial Bits PLDD1	Definition	
RD_DIV[3:0]	3:0	ARM11 MPCore test chip PLL Clock divider.	
		See Clock setting in reset mode on page 3-6.	
RD_CTRL[31:16]	19:4	ARM11 MPCore test chip PLL Clock control.	
		See Clock setting in reset mode on page 3-6.	
PLLUPDATE	20	Start PLL update flag (reserved for future PLL support).	
L2BYPASS	21	Selects the L2 cache bypassing:	
		• 0: you can use the L2 cache	
		• 1: the L2 cache is bypassed.	
L2MASTNUM	22	Selects the number of L220 master ports:	
		 0: one master port, M1. When one master is selected, master port 1 is used 	
		• 1: two master ports, M0 and M1 are used.	
		The port options available are shown in Figure 4-11 on page 4-28.	
		Note	
		This bit is not currently user configurable and is set HIGH by the CT11MPCore PLD to select two L220 master ports when using the EB.	
MPMASTNUM	23	Selects the number of ARM11 MPCore test chip master ports:	
		• 0: one master port, M0. When one master is selected, master port 0 is used	
		• 1: two master ports, M0 and M1 are used.	
		The port options available are shown in Figure 4-11 on page 4-28.	
AXInOE0	24	AXI Mux output enable:	
		• 0: enable AXI Port 0 to Y headers	
		• 1: disable and isolate AXI Port 0 from Y headers.	
		See AXI bus multiplexing on page 3-31.	
HDRZEN	25	Header Z optional signal mux enable:	
		• 0: disable optional HDRZ signals	
		• 1: enable optional HDRZ signals.	
		See HDRZ signal mux on page 3-23.	

Table 3-5 Serial write data register (continued)

PLD Pin Name	Serial Bits PLDD1	Definition	
VINITHI[3:0]	29:26	When HIGH, indicates high-Vecs mode for the particular ARM11 MPCore processor.	
CFGEND[1:0]	31:30	The U and EE bits reset values in the CP15 Control Register and E Bit reset value in CPSR/SPSR depend on the value of CFGEND[1:0]. See the <i>ARM11 MPCore Processor Technical Reference Manual</i> (ARM DDI 0360) for details.	
nCPURESET[3:0]	35:32	Individual ARM11 MPCore processor resets.	
DBGMUX[11:0]	47:36	Debug matrix select. Selects the external debug request and debug acknowledge routing between the four ARM11 MPCore CPUs to enable cross-triggering.	
INTMODE[2:0]	50:48	Interrupt mode: • bx00: Legacy • bx01: New + DCC • bx1x: New no DCC • b1xx: FIQ[3:0] enable. See Interrupts on page 3-18.	
DACDAT[7:0]	58:51	Voltage control, 8 bit DAC value applied to the DAC channel selected by DACSEL . See <i>Setting the ARM11 MPCore test chip voltage</i> on page 3-29.	
DACSEL	59	Selects the voltage control DAC channel. See Setting the ARM11 MPCore test chip voltage on page 3-29.	

The CT11MPCore PLD *Serial read data register* provides the status signals listed in Table 3-6 on page 3-41.

Note —			
There are a total of 43	bits used in the Serial	read data register	data stream

Table 3-6 Read serial data register

PLD Pin Name	Serial Bits PLDD0	Definition
PLOCK	0	ARM11 MPCore test chip PLL lock indicator. O: ARM11 MPCore test chip PLL is not locked to REFCLK 1: ARM11 MPCore test chip PLL is locked to REFCLK . See <i>Clock setting in reset mode</i> on page 3-6.
ISP0nLOCK	1	 ispClock5620 PLL lock indicator 0. 0: ispClock5620 PLL 0 is locked to CLKOUTDIVD 1: ispClock5620 PLL 0 is not locked to CLKOUTDIVD. See Clocks on page 3-4.
ISP1nLOCK	2	 ispClock5620 PLL lock indicator 1. 0: ispClock5620 PLL 1 is locked to CLKOUTDIV 1: ispClock5620 PLL 1 is not locked to CLKOUTDIV. See Clocks on page 3-4.
PLLUPDATED	3	 MPCore PLL settings status. 0: ARM11 MPCore test chip PLL settings are being updated. 1: ARM11 MPCore test chip PLL settings are complete.
RESETREQ[3:0]	7:4	Individual watchdog reset requests, one from each ARM11 MPCore CPU
SMPnAMP[3:0]	11:8	 Individual AMP or SMP mode indicators, one from each MPCore CPU. 0: Indicates AMP mode (processor is not part of coherency) 1: Indicates SMP mode (processor is part of coherency) See the ARM11 MPCore Processor Technical Reference Manual (ARM DDI 0360).
STANDBYWFI[3:0]	15:12	Individual WFI indicators. Indicates if an MPCore CPU is in WFI state. See the <i>ARM MPCore Processor Technical Reference Manual</i> (ARM DDI 0360).
COMMTX[3:0]	19:16	Comms channel transmit from each ARM11 MPCore CPU.
COMMRX[3:0]	23:20	Comms channel receive from each ARM11 MPCore CPU.
ADCDAT[11:0]	35:24	Current sensing 12-bit ADC value (selected by ADCSEL[2:0]).

Table 3-6 Read serial data register (continued)

PLD Pin Name	Serial Bits PLDD0	Definition
ADCSEL[2:0]	38:36	ADC channel currently being converted (ADCDAT value is from ADC channel ADCSEL - 1).
PLDVER[3:0]	42:39	PLD build version.
Reserved	59:43	Legacy only (not used).

3.8.2 Core configuration from ARM CP15

The control coprocessor, CP15, implements a range of control functions and provides status information for the MPCore Multiprocessor.

The main functions controlled by CP15 are:

- overall system control and configuration of the MPCore
- cache configuration and management
- Memory Management Unit (MMU) configuration and management
- system performance monitoring.

See the ARM11 MPCore Processor Technical Reference Manual (ARM DDI 0360) for details on the CP15 registers.

3.9 Memory configuration

The memory subsystems implemented by the ARM11 MPCore test chip are:

MPCore Level 1 (L1)

The MPCore memory subsystem has 32KB of L1 instruction cache and 32KB of L1 data cache per CPU.

L220 cache controller Level 2 (L2)

The L220 cache controller memory subsystem has 1MB of L2 unified cache.

There is no provision for PISMO Expansion Memory Modules on the CT11MPCore, System *Level 3* (L3) memory is located on the EB. If additional L3 memory is required, you can add PISMO Expansion Memory Modules to the EB. Additional L3 memory may also be available via the EB second tile site, see *Realview Emulation Baseboard User Guide* (ARM DUI 0303) for system memory details.

For details of the L1 and L2 memory subsystems implemented in the ARM11 MPCore test chip see *Memory configuration* on page 4-23.

For general information about the L1 and L2 memory subsystems see the *ARM11 MPCore Processor Technical Reference Manual* (ARM DDI 0360) and the *L220 Cache Controller Technical Reference Manual* (ARM DDI 0329).

3.10 Register configuration

This section describes the CT11MPCore specific registers and contains the following subsections:

- ARM11 MPCore test chip registers
- CT11MPCore serial registers on page 3-46
- EB system FPGA registers on page 3-46

3.10.1 ARM11 MPCore test chip registers

The ARM11 MPCore test chip peripheral space consists of four reserved pages of 4KB.

PERIPHBASE[17:0] is an input to the test chip that defines the base address of the 16KB of peripheral memory space. Table 3-7 on page 3-45 lists all the available peripheral accesses.

The register base address **PERIPHBASE** [17:0] is configurable via links on the CT11MPCore and defines bits [31:14] of the full 32 bit peripheral address.

The default peripheral base address setting is:

Address=0x1F000000
Note
To reduce the number of pins, the ARM11 MPCore test chip integrates some AXI decoding logic for selecting the Level 2 Cache Controller (L2CC) peripheral port and the ARM11 MPCore test chip specific registers. See <i>Peripheral decoder</i> on page 4-2 for details.

Table 3-7 Peripheral accesses

Address range	Peripheral accessed
[PERIPHBASE, PERIPHBASE + 8KB -1] Default range: 0x1F000000 - 0x1F001FFF	Snoop Control Unit (SCU) control register space for MPCORE: Address[31:14]=PERIPHBASE[17:0] Address[13]=0 See the ARM11 MPCore Processor Technical Reference Manual for register details and address offset values.
[PERIPHBASE + 8KB, PERIPHBASE + 12KB -1] Default Range: 0x1F002000 - 0x1F002FFF	L220 control register space: Address[31:14]=PERIPHBASE[17:0] Address[13:12]=b10 See the L220 Cache Controller Technical Reference Manual for register details and address offset values.
[PERIPHBASE + 12KB, PERIPHBASE + 16KB -1] Default Range: 0x1F003000 - 0x1F003FFF	Test chip specific registers: Address[31:14]=PERIPHBASE[17:0] Address[13:12]=b11 Address[11:0] is as follows: 0x000: Test chip PLL control register. See Table 4-1 on page 4-9. 0x004: Test chip interrupt control register. See Table 4-6 on page 4-18. 0x008: Test chip cluster ID register. 0x00C: Test chip power status register. See Table 4-9 on page 4-21. 0x010: Test chip way map register (not use on CT11MPCore) 0x014: Test chip clock divider register. See Table 4-2 on page 4-12.
	The ARM11 MPCore test chip cluster ID register is provided for systems that use more than one ARM11 MPCore. Bits [3:0] of this register drive the ARM11 MPCore CLUSTERID[3:0] inputs. The default single ARM11 MPCore cluster ID is 0x0. See the ARM11 MPCore Processor Technical Reference Manual for more information.

——— Caution ———

When you access the ARM11 MPCore test chip peripheral space, you must use single accesses of 32-bit aligned type, otherwise an abort, due to slave error, is generated.

3.10.2 CT11MPCore serial registers

The CT11MPCore PLD implements two registers, the *Serial write data register* and the *Serial read data register*. These registers mirror the content of CT11MPCore specific registers implemented in the EB system FPGA. The registers are continually updated via a 4-wire serial link to ensure that the content of the CT11MPCore and EB registers remains coherent.

The bit allocations for the *Serial write data register* are shown in *Serial write data register* on page 3-39. The bit allocations for the *Serial read data register* are shown in *Read serial data register* on page 3-41.

Note -	
--------	--

The Serial write data register and the Serial read data register are only accessible via the 4-wire serial link. Changing or reading the contents of these registers is only possible by accessing the registers in the EB system FPGA. Not all fields in the Serial write data register are user configurable, some are pre-fixed by the EB system FPGA.

3.10.3 EB system FPGA registers

The CT11MPCore specific registers implemented in the EB system FPGA are:

SYS PLD CTRL1

This register sets the PLD serial write data register fields

- HDRZEN
- MPMASTNUM
- L2BYPASS
- INTMODE[2:0]
- DBGMUX[11:0]
- nCPURESET[3:0]
- CFGEND[1:0]
- VINITHI[3:0]

SYS PLD CTRL2

This register reads the PLD serial read data register fields

- COMMRX[3:0]
- COMMTX[3:0]
- STANDBYWFI[3:0]
- SMPnAMP[3:0]

- RESETREQ[3:0]
- PLDVER[3:0]

SYS_PLD_INIT

This register defines the ARM11 MPCore test chip *Test chip PLL control register* and *Test chip clock divider register* hardware initialization values.

The Test chip PLL control register initialization fields are:

PB[3:0]

PA[3:0]

N[3:0]

M[3:0]

PBSTBY

STBY

PLLEN

The Test chip clock divider register initialization fields are:

CLKOUTDIV[3:0]

—— Note	

The SYS_PLD_INIT register only loads the *Test chip PLL control* register and *Test chip clock divider register* after the EB nPB reset button is pressed.

The ARM11 MPCore test chip registers can also be accessed directly to control the PLL and clock divider once out of reset. See *Clocks* on page 4-4 for details on accessing the ARM11 MPCore test chip clock control registers.

SYS VOLTAGE0

This register reads and sets the **VDDCORE** voltage fields

- ADC_DATA[11:0]
- DAC_DATA[7:0]

SYS VOLTAGE1

This register reads and sets the AVDD (PLL) voltage fields

- ADC_DATB[11:0]
- DAC_DATB[7:0]

This register reads the VDDCORE current field

- ADC_DATC[11:0]
- **DAC_DATC**{7:0] (not used)

SYS_VOLTAGE3

This register reads the AVDD (PLL) current field

- ADC_DATD[11:0]
- **DAC_DATD[7:0]** (not used)

The EB SYS register base address, SYSBASE, is 0x10000000.

The EB system FPGA registers are listed in Table 3-8.

Table 3-8 EB system FPGA registers

Name	Address	Description
SYS_PLD_CTRL1	0x10000074	This register sets the PLD serial write data register fields. See SYS_PLD_CTRL1 on page 3-49 for details.
SYS_PLD_CTRL2	0x10000078	This register reads the PLD serial read data register fields. See SYS_PLD_CTRL2 on page 3-51 for details.
SYS_PLD_INIT	0x1000007C	This register sets the ARM11MPCore test chip <i>Test chip PLL control register</i> and <i>Test chip clock divider register</i> hardware initialization values. See <i>SYS_PLD_INIT</i> on page 3-52 for details.
SYS_VOLTAGE0	0x100000A0	This register reads and sets the VDDCORE voltage fields. See <i>SYS_VOLTAGE0</i> on page 3-56 for details.
SYS_VOLTAGE1	0x100000A4	This register reads and sets the AVDD (PLL) voltage fields. See <i>SYS_VOLTAGE1</i> on page 3-57 for details.
SYS_VOLTAGE2	0x100000A8	This register reads the VDDCORE current field. See <i>SYS_VOLTAGE2</i> on page 3-58 for details.
SYS_VOLTAGE3	0x100000AC	This register reads the AVDD (PLL) current field. See <i>SYS_VOLTAGE3</i> on page 3-58 for details.

_____Note _____

All writable EB SYS registers must be unlocked first.

Write 0xA05F to the SYS_LOCK register located at SYSBASE+0x20 as follows:

Address [31:0]=0x10000020, Data [15:0]=0xA05F

Once unlocked, the registers will remain unlocked until the EB is reset.

SYS_PLD_CTRL1

This register is located at SYSBASE+0x74 as follows:

Address [31:0]=0x10000074

_____Note _____

This register is locked for write by SYS_LOCK.

Write 0xA05F to 0x10000020 to unlock until next EB reset.

Figure 3-15 shows the SYS_PLD_CTRL1 register bit assignments.

Figure 3-15 SYS_PLD_CTRL1 register

Table 3-9 lists the SYS_PLD_CTRL1 register bit assignments.

Table 3-9 SYS_PLD_CTRL1 register

Bits	Access	Name	Reset value	Description
[31:28]	Write ignored	_	0x0	reserved.
[27]	Write only Lockable	HDRZEN	b0	Header Z optional signal mux enable: 0: disable optional HDRZ signals 1: enable optional HDRZ signals. See HDRZ signal mux on page 3-23.
[26]	Write only Lockable	MPMASTNUM	b0	Selects the number of ARM11 MPCore test chip master ports: • 0: one master port, M0. When one master is selected, master port 0 is used • 1: two master ports, M0 and M1 are used. See L220 bypass module on page 4-26.
[25]	Write only Lockable	L2BYPASS	b0	Selects the L2 cache bypassing: 0: you can use the L2 cache 1: the L2 cache is bypassed. See L220 bypass module on page 4-26.
[24:22]	Write only Lockable	INTMODE	b000	Interrupt mode: • bx00: Legacy • bx01: New with DCC • bx1x: New no DCC • b1xx: FIQ[3:0] enable (independent of INTMODE[1:0]). See <i>Interrupts</i> on page 3-18.
[21:10]	Write only Lockable	DBGMUX	0x000	Sets the user defined debug cross-trigger mode. The required ARM11 MPCore EDBGRQ[3:0] and DBGACK[3:0] signals are routed using a debug matrix in the CT11MPCore PLD. See <i>Debug cross-trigger matrix</i> on page 4-20.

Table 3-9 SYS_PLD_CTRL1 register (continued)

Bits	Access	Name	Reset value	Description
[9:6]	Write only Lockable	nCPURESET	b1111	Individual MPCore CPU resets. nCPURESET[x] resets CPU[x]. See <i>Resets</i> on page 3-11.
[5:4]	Write only Lockable	CFGEND	b00	The U and EE bits reset values in the CP15 Control Register and E Bit reset value in CPSR/SPSR depend on the value of CFGEND[1:0]. See the <i>ARM11 MPCore Processor Technical Reference Manual</i> (ARM DDI 0360).
[3:0]	Write only Lockable	VINITHI	b0000	When HIGH, indicates high-Vecs mode for the respective MPCore CPU. See <i>ARM11 MPCore Processor Technical Reference Manual</i> (ARM DDI 0360).

SYS_PLD_CTRL2

This register is located at SYSBASE+0x78 as follows:

Address [31:0]=0x10000078

Figure 3-16 shows the SYS_PLD_CTRL2 register bit assignments.

Figure 3-16 SYS_PLD_CTL2 register

Table 3-10 lists the SYS_PLD_CTRL2 register bit assignments.

Table 3-10 SYS_PLD_CTRL2 register

Bits	Access	Name	Reset value	Description
[31:24]	Read as zero, write ignored.	-	0x00	Undefined.
[23:20]	Read Only	COMMRX	bxxxx	Comms channels receive.
[19:16]	Read Only	COMMTX	bxxxx	Comms channels transmit.
[15:12]	Read Only	STANDBYWFI	bxxxx	Individual WFI indicators. Indicates if an ARM11 MPCore CPU is in WFI state.
				See the ARM11 MPCore Processor Technical Reference Manual (ARM DDI 0360).
[11:8]	Read Only	SMPnAMP	bxxxx	Individual AMP or SMP mode indicators, one from each ARM11 MPCore CPU.
				• 0: Indicates AMP mode (processor is not part of coherency)
				• 1: Indicates SMP mode (processor is part of coherency)
				See the ARM11 MPCore Processor Technical Reference Manual (ARM DDI 0360).
[7:4]	Read Only	RESETREQ	bxxxx	Individual watchdog reset requests, one from each ARM11 MPCore CPU.
[3:0]	Read Only	PLDVER	bxxxx	PLD build version.

SYS_PLD_INIT

This register is located at SYSBASE+0x7C as follows:

Address [31:0]=0x1000007C

_____ Note _____

This register is locked for write by SYS_LOCK.

Write 0xA05F to 0x10000020 to unlock until next EB reset.

SYS_PLD_INIT values will only be updated after nPB reset.

Figure 3-17 on page 3-53 shows the SYS_PLD_INIT register bit assignments.

Figure 3-17 SYS_PLD_INIT register

Table 3-11 lists the SYS_PLD_INIT register bit assignments.

Table 3-11 SYS_PLD_INIT register

Bits	Access	Name	Reset value	Description
[31:28]	Read/Write Lockable	PB divider	b0000	PB divider ratio that the PLL uses: 0000: pb-value is 1 0001: pb-value is 2 1111: pb-value is 16.
[27:24]	Read/Write Lockable	PA divider	b0000	PA divider ratio that the PLL uses: 0000: pa-value is 1 0001: pa-value is 2 1111: pa-value is 16.
[23:20]	Read/Write Lockable	N divider	b1011	N divider ratio that the PLL uses: 0000: n-value is 1 0001: n-value is 2 1111: n-value is 16.
[19]	Read/Write Lockable	M divider	b0	M divider ratio that the PLL uses: 0: m-value is 1 1: m-value is 2.

Table 3-11 SYS_PLD_INIT register (continued)

Bits	Access	Name	Reset value	Description
[18] Read/Write Lockable	PBSTBY	b0	• 0: CLKB from PLL is active	
			• 1: CLKB from PLL is 0.	
[17]	Read/Write	STBY	b0	• 0: CLKA from PLL is active
	Lockable			• 1: CLKA from PLL is 0.
[16]	Read/Write Lockable	PLLEN	b1	0: if <i>committed</i> and bit 0 of the PLL control test data register is 0 (its reset value) REFCLK will be selected as CLKOUT on the next rising edge of REFCLK
				 1: if committed, and bit 0 of the PLL control test data register is 0 (its reset value) the PLL will be selected as CLKOUT on the next rising edge of REFCLK.
			PLL enable is <i>committed</i> when STANDBYWFI[3:0] from the mpcore_tc_module == b1111 or the input signal CONFIGINIT == b1.	
[15:4]	Read as zero, write ignored.	-	0×000	Undefined
[3:0] Read/Write Lockable		CLKOUTDIV	b0000	The clock divider ratio to drive the AXI bus clock and the FPGA:
				0000: CLKOUTDIV is equal to CLKIN 0001: CLKOUTDIV is CLKIN divided by 2
				0010: CLKOUTDIV is CLKIN divided by 3
				0011: CLKOUTDIV is CLKIN divided by 4
				0100: CLKOUTDIV is CLKIN divided by 5
				0101: CLKOUTDIV is CLKIN divided by 6
				0110: CLKOUTDIV is CLKIN divided by 7
				0111: CLKOUTDIV is CLKIN divided by 8
				1000: CLKOUTDIV is CLKIN divided by 1
				1001: CLKOUTDIV is CLKIN divided by 10
				1010: CLKOUTDIV is CLKIN divided by 3
			1011: CLKOUTDIV is CLKIN divided by 12	
			1100: CLKOUTDIV is CLKIN divided by 5	
			1101: CLKOUTDIV is CLKIN divided by 14	
				1110: CLKOUTDIV is CLKIN divided by 7
				1111: CLKOUTDIV is CLKIN divided by 16

Changing the core to AXI bus clock ratio

The MPCore test chip PLL register value may be set by software to change the core to AXI bus clock ratio. The reference clock from the EB, **REFCLK** is a 20MHz clock. In Table 3-12, the PLL feedback divider and the test chip output divider values are always equal. For example, if the AXI bus runs at 20MHz and the core at 240MHz, this requires both dividers to divide by 12. The required SYS_PLD_INIT value is ratio option 12:1 in Table 3-12. The SYS_PLD_INIT register is described in *EB system FPGA registers* on page 3-46.

You can change the core to AXI clock frequency ratio to match a real system design as follows:

- 1. Write 0xA05F to 0x10000020 to unlock the SYS_PLD_INIT register.
- 2. Write the new value to the SYS_PLD_INIT register at 0x1000007C example PLL values are given in Table 3-12.
- 3. Shut down the debugger and press the RESET push button on the EB to load the new setting.

Table 3-12 SYS_PLD_INT register values

Ratio option (core to bus)	SYS_PLD_INIT value
1:1	0xFF010000
2:1	0x77110001
3:1	0x55210002
4:1	0x33310003
5:1	0x22410004
6:1	0x22510005
7:1	0x22610006
8:1	0x11710007
10:1	0x11910009
12:1	0x11B1000B
14:1	0x00D1000D
16:1	0x00F1000F

This register is located at SYSBASE+0xA0 as follows:

Address [31:0]=0x100000A0

_____Note _____

This register is locked for write by SYS_LOCK.

Write 0xA05F to 0x10000020 to unlock until next EB reset.

Figure 3-18 shows the SYS_VOLTAGE0 register bit assignments.

Figure 3-18 SYS_VOLTAGE0 register

Table 3-13 lists the SYS_VOLTAGE0 register bit assignments.

Table 3-13 SYS_VOLTAGE0 register

Bits	Access	Name	Reset value	Description
[31:20]	Read as zero, write ignored.	-	0x000	Undefined
[19:8]	Read only	ADC_DATA	0x000	Reads the VDDCORE voltage for the MPCore. The LSB of the ADC reading corresponds to $610\mu V$. The formula to calculate the supply voltage (VDDCORE) is: VDDCORE=INT(ADC_DATA[11:0]*($610*10^{-6}$))
[7:0]	Read/Write Lockable	DAC_DATA	0x80	Sets the VDDCORE voltage for the MPCore. The default value is 1.2V. Circuit values are typically chosen to give a ±0.25V adjustment range for the core voltage. A value of 0xFF gives maximum negative offset from the default (-0.25V) and a value of 0x0 gives maximum positive offset from the default (+0.25V).

This register is located at SYSBASE+0xA4 as follows:

Address [31:0]=0x100000A4

——Note ——
This register is locked for write by SYS_LOCK.

Write 0xA05F to 0x10000020 to unlock until next EB reset.

Figure 3-19 shows the SYS_VOLTAGE1 register bit assignments.

Figure 3-19 SYS_VOLTAGE1 register

Table 3-14 lists the SYS_VOLTAGE1 register bit assignments.

Table 3-14 SYS_VOLTAGE1 register

Bits	Access	Name	Reset value	Description
[31:20]	Read as zero, write ignored.	-	0×000	Undefined
[19:8]	Read only	ADC_DATB	0×000	Reads the AVDD voltage for the ARM11 MPCore test chip PLL.
				The LSB of the ADC reading corresponds to 610μV.
				The formula to calculate the supply voltage (AVDD) is:
				AVDD=INT(ADC_DATB[11:0]*(610*10-6))
[7:0]	Read/Write Lockable	DAC_DATB	0×80	Sets the AVDD voltage for the ARM11 MPCore test chip PLL. The default value is 1.2V.
				Circuit values are typically chosen to give a ± 0.25 V adjustment range for the PLL voltage. A value of 0xFF gives maximum negative offset from the default (-0.25V) and a value of 0x0 gives maximum positive offset from the default (+0.25V).

This register is located at SYSBASE+0xA8 as follows:

Address [31:0]=0x100000A8

Figure 3-20 shows the SYS_VOLTAGE2 register bit assignments.

Figure 3-20 SYS_VOLTAGE2 register

Table 3-15 lists the SYS_VOLTAGE2 register bit assignments.

Table 3-15 SYS_VOLTAGE2 register

Bits	Access	Name	Reset value	Description
[31:20]	Read as zero, write ignored.	-	0x000	Undefined
[19:8]	Read Only	ADC_DATC	0x000	Reads the VDDCORE current for the MPCore. To calculate the current (IDDCORE) use the formula: IDDCORE=INT(ADC_DATC[11:0]*(610*10 ⁻⁶))/R _{SENSE} *100 By default, the R _{SENSE} resistor is 0.025Ω .
[7:0]	Reserved	DAC_DATC	0x00	Legacy only (not used).

SYS_VOLTAGE3

This register is located at SYSBASE+0xAC as follows:

Address [31:0]=0x100000AC

Figure 3-21 on page 3-59 shows the SYS_VOLTAGE3 register bit assignments.

Figure 3-21 SYS_VOLTAGE3 register

Table 3-16 lists the SYS_VOLTAGE3 register bit assignments.

Table 3-16 SYS_VOLTAGE3 register

Bits	Access	Name	Reset value	Description
[31:20]	Read as zero, write ignored.	-	0x000	Undefined
[19:8]	Read Only	ADC_DATD	0x000	Reads the AVDD current for the ARM11 MPCore test chip PLL.
				To calculate the current (AIDD) use the formula:
				AIDD=INT(ADC_DATD[11:0]*(610*10 ⁻⁶))/R _{SENSE} *100
				By default, the R_{SENSE} resistor is 0.5Ω .
[7:0]	Reserved	DAC_DATD	0x00	Legacy only (not used).

3.11 JTAG support

JTAG signals are present on both the upper and lower HDRZ connectors. An external board provides the JTAG connector and the routing of the JTAG signals from the connector to HDRZ (see *JTAG control and clock routing* on page 3-63). The Core Tile routes the JTAG scan path through devices on the board. The logic devices that are placed in the Core Tile scan chain depend on the JTAG mode:

Debug mode	Debug mode is selected when the CONFIG slide-switch on the EB is set to OFF. It is the default mode used for general system development and debug. In this mode, the JTAG signals flow through the Debug Scan Chain (this scan chain connects to the ARM11 MPCore test chip only). The JTAG signals used for debug are identified by the D _ prefix.
	Note
	Common access to the MPCore CPU DBGTAP controllers is available in this mode. See <i>Debug</i> on page 4-32.
Configuratio	n mode
	In configuration mode, all FPGAs, PLDs, clock generators, and the ARM11 MPCore test chip are placed into the scan chain. This mode allows the programmable logic devices in the system to be reprogrammed and the test chip registers to be configured.
	To select configuration mode, set the CONFIG slide-switch on the EB to ON. This pulls the \mathbf{nCFGEN} signal LOW on the Core Tile and reroutes the JTAG scan path. The JTAG signals used for configuration are identified by the \mathbf{C} prefix.
	—— Note ———
	Access to the ARM11 MPCore test chip boundary scan TAP controller is available in this mode. See <i>JTAG Configuration</i> on page 4-33.
Table 3-17 on	page 3-61 provides a description of the JTAG signals.
Note	
hardware that	tion in Table 3-17 on page 3-61, the term JTAG equipment refers to any can drive the JTAG signals to devices in the scan-chain. Typically, E is used, although you can also use hardware from third-party suppliers of processors.

Table 3-17 JTAG signal description

Name	Description	Function
nBSTAPEN	Boundary scan TAP enable	In configuration mode, the boundary scan TAP logic (if present) in a test chip is enabled.
		——— Note ————
		nBSTAPEN drives the TESTMODE control pin on the ARM11 MPCore test chip. In JTAG configuration mode, nBSTAPEN is HIGH and the ARM11 MPCore test chip TAP controller is enabled. In JTAG debug mode, nBSTAPEN is LOW and the four daisy-chained DBGTAP controllers in the MPCore are enabled.
EDBGRQ[3:0]	External debug request (to CT11MPCore PLD)	EDBGRQ[3:0] is a request to the indexed MPCore CPU to enter the debug state.
DBGACK[3:0]	Debug acknowledge (to JTAG equipment)	DBGACK[3:0] indicates to the debugger that the indexed MPCore CPU has entered debug state.
nCFGEN	Configuration enable (controlled by config slide-switch on the baseboard)	nCFGEN is an active LOW signal used to put the boards into configuration mode. In configuration mode all FPGAs and PLDs are connected to the scan chain so that they can be configured by the JTAG equipment.
nRTCKEN	Return TCK enable (from Core Tile to baseboard)	nRTCKEN is an active LOW signal driven by any Core Tile that requires RTCK to be routed back to the JTAG equipment. If nRTCKEN is HIGH, the baseboard drives RTCK LOW. If nRTCKEN is LOW, the baseboard drives the TCK signal back up the stack to the JTAG equipment.
nTRST, D_nTRST, C_nTRST	Test reset (from JTAG equipment)	This active LOW open-collector signal is used to reset the JTAG port and the associated debug circuitry on the processor. It is asserted at power-up by each module, and can be driven by the JTAG equipment. This signal is also used in configuration mode to control the programming pin (nPROG) on FPGAs. D_nTRST is the reset for the debug mode scan chain and
		C_nTRST is the reset for the configuration mode scan chain.
		Note
		D_nTRST is always tied to D_nSRST . C_nTRST is tied to D_nTRST when configuration mode is enabled.

Table 3-17 JTAG signal description (continued)

Name	Description	Function
RTCK, D_RTCK	Return TCK (to JTAG equipment)	Some devices sample TCK (for example a synthesizable core with only one clock), and this has the effect of delaying the time when a component actually captures data. RTCK is a mechanism for returning the sampled clock to the JTAG equipment, so that the clock is not advanced until the synchronizing device has captured the data. In a multiple device JTAG chain, the D_RTCK output from a component connects to the TCK input of the down-stream device. The RTCK signal on the EB connector HDRZ returns TCK to the JTAG equipment. D_RTCK is the RTCK signal in the debug scan chain. RTCK is not available in the configuration mode scan chain.
TCK, D_TCK, C_TCK	Test clock (from JTAG equipment)	TCK synchronizes all JTAG transactions. TCK connects to all JTAG components in the scan chain. Series termination resistors are used to reduce reflections and maintain good signal integrity. TCK flows up the stack of modules and connects to each JTAG component. However, if there is a device in the scan chain that synchronizes TCK to some other clock, then all down-stream devices are connected to the RTCK signal on that component (see RTCK). D_TCK is the clock for the debug mode scan chain and C_TCK is the clock for the configuration mode scan chain.
TDI, D_TDI, C_TDI	Test data in (from JTAG equipment)	TDI goes up the stack of tiles from the baseboard (or Interface Module) and then back down the stack (as TDO) connecting to each component in the scan chain. D_TDI is the data signal for the debug mode scan chain and C_TDI is the data signal for the configuration mode scan chain.
TDO, D_TDO, C_TDO	Test data out (to JTAG equipment)	TDO is the return path of the data input signal TDI. For a stack of RealView products, TDI goes up to the top of the stack and returns down as TDO. The JTAG components are connected in the return path so that the length of track driven by the last component in the chain is kept as short as possible. D_TDO is the data signal for the debug mode scan chain and C_TDO is the data signal for the configuration mode scan chain.
TMS, D_TMS, C_TMS	Test mode select (from JTAG equipment)	TMS controls transitions in the tap controller state machine. TMS connects to all JTAG components in the scan chain. D_TMS is the control signal for the debug mode scan chain and C_TMS is the control signal for the configuration mode scan chain.

3.11.1 JTAG control and clock routing

Figure 3-22 shows the JTAG *Debug Mode* routing of the **D_nTRST**, **D_TCK**, and **D_TMS** signals to the ARM11 MPCore test chip. The bus switches, unless otherwise indicated, are controlled by **nCFGEN** from the baseboard. JTAG debug mode routing is selected when **nCFGEN** is HIGH. This is the default baseboard setting.

At power-up, the baseboard **nSYSPOR** power-on-reset signal initializes the boundary scan tap controller and the four DBGTAP controllers in the ARM11 MPCore test chip by forcing **ARM_nTRST** LOW.

Figure 3-22 JTAG debug mode routing (nCFGEN=1)

The JTAG input and output routing shown in Figure 3-22 on page 3-63 is for a single tile. In this case, no tile is connected to the upper HDRZ header and **D_TCK_OUT**, and **D_RTCK** from the upper HDRZ header, are not used. For details on JTAG input and output routing in a tile stack, see *JTAG loopback control* on page 3-68. JTAG loopback routing is controlled by **nTILE_DET**.

Figure 3-23 shows the JTAG *Configuration Mode* routing of the **C_nTRST**, **C_TCK**, and **C_TMS** signals to the ARM11 MPCore test chip. The bus switches, unless otherwise indicated, are controlled by **nCFGEN** from the baseboard. JTAG configuration mode routing is selected when **nCFGEN** is LOW.

To select JTAG configuration mode, set the CONFIG slide-switch to ON on the EB. This pulls the **nCFGEN** signal LOW on the CT11MPCore and reroutes the JTAG scan path.

Figure 3-23 JTAG configuration mode routing (nCFGEN=0)

The Core Tile JTAG input and output routing shown in on page 3-64 is for a single tile. In this case, no tile is connected to the upper HDRZ header and **D_TCK_OUT**, and **D_RTCK** from the upper HDRZ header, are not used. For details on Core Tile JTAG input and output routing in a tile stack, see *JTAG loopback control* on page 3-68. JTAG loopback routing is controlled by **nTILE_DET**.

_____ Note _____

PLL_nTRST is tied to ARM_nTRST. See Figure 3-23 on page 3-64 for details.

The ispClock generator does not have a **nTRST** pin. The TAP controller is reset by keeping **TMS** HIGH, this forces its TAP controller into the *Test-Logic-Reset* steady state within 5 **TCK** cycles. *Test-Logic-Reset* is also the power-on default state.

Figure 3-24 shows the distribution of the critical **C_TCK** and **C_TMS** signals to the remaining JTAG configurable devices on the CT11MPCore. Buffered versions of the signals, **C_TCK_OUT** and **C_TMS_OUT** are provided at the upper HDRZ header to drive the **C_TCK** and **C_TMS** inputs of the next tile in a tile stack.

Figure 3-24 Additional JTAG configuration mode routing

3.11.2 JTAG debug mode scan chain routing

Figure 3-25 on page 3-66 shows the JTAG *Debug Mode* scan chain routing.

In JTAG debug (normal) mode the ARM11 MPCore test chip is connected in the debug scan chain. The bus switches, unless otherwise indicated, are controlled by **nCFGEN** from the baseboard. JTAG debug mode routing is selected when **nCFGEN** is HIGH. This is the default baseboard setting.

The JTAG input and output routing shown in Figure 3-25 is for a single tile. In this case, no tile is connected to the upper HDRZ header and **D_TDO_IN** and **C_TDO_IN** are not used. For details on JTAG input and output routing in a tile stack, see *JTAG loopback control* on page 3-68. JTAG loopback routing is controlled by **nTILE_DET**.

Figure 3-25 JTAG debug (normal) mode scan chain routing (nCFGEN=1)

3.11.3 JTAG configuration mode scan chain routing

Figure 3-26 shows the JTAG Configuration Mode routing.

In JTAG configuration mode all the JTAG configurable devices (ISP clock generator 0, ISP clock generator 1, PLD, and ARM11 MPCore test chip) are connected in the configuration scan chain. The bus switches are controlled by **nCFGEN** from the baseboard. JTAG configuration mode routing is selected when **nCFGEN** is LOW.

The JTAG input and output routing shown in Figure 3-26 is for a single tile. In this case, no tile is connected to the upper HDRZ header and **D_TDO_IN** and **C_TDO_IN** are not used. For details on JTAG input and output routing in a tile stack, see *JTAG loopback control* on page 3-68. JTAG loopback routing is controlled by **nTILE_DET**.

Figure 3-26 JTAG configuration mode scan chain (nCFGEN=0)

3.11.4 JTAG loopback control

A number of tiles may be stacked above the EB. Figure 3-27 shows the TDI, TDO, and RTCK loopback control for a multi-tile stack. The JTAG debug and configuration TDI signals from the baseboard, **D_TDI** and **C_TDI** are made available to every tile in the stack by feeding through from the lower to the upper header HDRZ on each tile. The bus switches are controlled by **nTILE_DET**. If a tile is the top tile in the stack **nTILE_DET** remains pulled HIGH. **C_TDI** and **D_TDI** loopback is then achieved by the bus switches connecting this last tile in the stack to the **C_TDI** and **D_TDI** signals. For tiles further down the stack **nTILE_DET** is pulled LOW by the tile above and these tiles connect to the **C_TDO_OUT** and **D_TDO_OUT** signals from the tile above.

D_RTCK is made available from every tile in the stack by feeding through from the upper to the lower header HDRZ on each tile. The bus switches are controlled by **nTILE_DET**. If a tile is the top tile in the stack **nTILE_DET** remains pulled HIGH. **D_RTCK** loopback is then achieved by the bus switches connecting **D_TCK_OUT** from this last tile in the stack to **D_RTCK**. For tiles further down the stack **nTILE_DET** is pulled LOW by the tile above and these tiles connect to the **D_TCK_OUT** signal from the tile below.

Figure 3-27 JTAG loopback control

3.11.5 Debug request and acknowledge routing

Routing of the ARM11 MPCore external debug request and debug acknowledge signals, **EDBGRQ[3:0]** and **DBGACK[3:0]** is not implemented in the CT11MPCore PLD image provided with this CD release. This will be implemented in future releases of this product.

Chapter 4 **Test Chip Hardware Description**

This chapter provides details of the ARM11 MPCore test chip which affect the CT11MPCore.

It contains the following sections:

- ARM11 MPCore test chip overview on page 4-2
- *Clocks* on page 4-4
- Resets and interrupts on page 4-14
- Power supply control on page 4-21
- *Memory configuration* on page 4-23
- L220 bypass and peripheral decode on page 4-26
- *Debug and JTAG configuration* on page 4-31.

——— Note ————
Refer to the ARM11 MPCore Processor Technical Reference Manual and the L220
Cache Controller Technical Reference Manual for further details on the major test chip
components.

4.1 ARM11 MPCore test chip overview

Figure 4-1 shows the top-level functionality of the test chip.

Figure 4-1 Top-level view of ARM11 MPCore test chip

The main features of the test chip are:

- a ARM11 MPCore incorporating:
 - four ARM11 MPCore CPUs with Vector Floating Point (VFP) that implement the ARM architecture v6
 - Level 1 (L1) memory subsystem providing 32KB instruction cache and 32KB data cache per CPU
 - JTAG-based debug.

- L220 Cache Controller incorporating 1MB of Level 2 (L2) unified cache
- peripheral decoder providing dual 64-bit external AXI buses
- on-chip PLL with skew control
- test chip register bank for configuring the ARM11 MPCore test chip
- design for test (DFT):
 - test control via a TEST_MODE test data register
 - L1 and L2 memory systems Memory Built-In Self Test (MBIST)
 - full chip and boundary scan support

See the ARM11 MPCore Processor Technical Reference Manual and the L220 Cache Controller Technical Reference Manual for further details on these features.

4.2 Clocks

This section describes the clocking requirements for the ARM11 MPCore test chip and contains the following subsections:

- Clocking overview
- PLL on page 4-6
- *PLL bypass module* on page 4-7
- Test chip PLL control register on page 4-8
- *Clock module* on page 4-10
- Test chip clock divider register on page 4-11
- *Clock signals overview* on page 4-12.

4.2.1 Clocking overview

Figure 4-2 on page 4-5 shows the clock domains within the ARM11 MPCore test chip.

Figure 4-2 Clock domain overview

The MPCore test chip clock domain consists of the PLL, the PLL bypass module, and the Clock module. As well as generating the main clock, **CLK** the PLL bypass module and the Clock module enable the bypassing of the PLL so that the test chip input clock,

REFCLK can be used to generate the internal and external clocks. The PLL bypass module ensures that the Clock module can switch from the PLL output clock, **CLKOB** to the test chip input clock, **REFCLK** without glitches.

ARM11 MPCore

The ARM11 MPCore has a single clock domain and is clocked by the main clock, **CLK**. generated by the test chip Clock module.

The debug signals **TCK**, **RTCK**, and **TCKEN** are generated in the ARM11 MPCore. **TCK** is synchronized to the main clock, **CLK** in the ARM11 MPCore.

L220 Cache Controller

Clocking of the L220 RAM arrays is synchronized to the main clock, **CLK** by the L220.

Peripheral decoder

The Peripheral decoder is required to interface externally at a lower AXI bus frequency. A clock enable signal, **ACLKEN** combined with the main clock, **CLK** are used to drive this interface. **CLK** and **ACLKEN** are generated by the test chip Clock module.

ARM11 MPCore test chip registers

The test chip registers are clocked by the main clock, **CLK** generated by the test chip Clock module.

4.2.2 PLL

The ARM11 MPCore test chip contains an on-board PLL with skew control. Skew control ensures there is a known fixed phase delay between the feedback clock to the PLL and the reference clock, **REFCLK**. Phase delay is typically 0ns, with a jitter in the order of 100ps.

The main clock required by the ARM11 MPCore test chip is provided by either:

- the reference clock, **REFCLK** from an external source
- the integrated PLL, **CLKOB** output.

The feedback clock, for skew control, must always be **CLKOA**. Therefore, the clock tree insertion delay is always put in the **CLKOA** path. The skew between **CLKOA** and **CLKOB** is very small and is in the order of 105ps. Figure 4-3 on page 4-7 shows the PLL block diagram.

Figure 4-3 PLL block diagram

The following equations describe the relationships between **REFCLK**, **CLKOA**, **CLKOB**, **Fvco**, pa-value, pb-value, m-value, and n-value.

$$\frac{\text{REFCLK}}{\text{m-value}} = \frac{\text{Fvco}}{\text{pa-value x n-value}} \text{ therefore, } \text{Fvco} = \frac{\text{REFCLK x pa-value x n-value}}{\text{m-value}}$$

$$\frac{\text{CLKOA}}{\text{pa-value}} = \frac{\text{Fvco}}{\text{pa-value}} \text{ therefore, } \text{CLKOA} = \frac{\text{REFCLK x n-value}}{\text{m-value}}$$

$$\frac{\text{CLKOB}}{\text{pb-value}} = \frac{\text{Fvco}}{\text{pb-value}} \text{ therefore, } \text{CLKOB} = \frac{\text{REFCLK x pa-value x n-value}}{\text{m-value x pb-value}}$$

Referring to the *PLL block diagram*:

- the n-value comes from N[3:0] and can have a value between 1 and 16
- the m-value comes from **M** and can have a value of 1, or 2
- the pa-value comes from **PA[3:0]** and can have a value between 1 and 16
- the pb-value comes from **PB[3:0]** and can have a value between 1 and 16.

4.2.3 PLL bypass module

The PLL bypass module enables you to select between **REFCLK** and **CLKOB** as output. These signals are considered to be unrelated and asynchronous. Logic is included in the test chip to prevent glitches when the selected clock changes.

te
te

Any pulse, HIGH or LOW, with a duration shorter than the corresponding pulse of the input clock, before or after the selected clock switches, is considered to be a glitch.

To ensure glitch free clock switching:

- the selection of the previous clock must go from HIGH to LOW before the selection of the new clock goes from LOW to HIGH
- A guard band time must be provided between deselecting and selecting the clocks
 to guarantee there is no overlap. This is because the clocks have different
 frequencies and synchronizations. The guard band time is set by using a timer.
 The lowest frequency, REFCLK, drives the timer, and the timer counts four
 cycles whenever the selection changes.

——— Note	
11010	

REFCLK is considered to be the lowest clock frequency, so it must always be lower than **CLKOB**. You must take this into account when you program the PLL divider values.

Either of the following can bypass the PLL:

- a hardware PLL enable, **PLLEN**, an external primary input pin
- bit 0, of the test chip PLL control register, a software PLL enable.

You can initialize the *Test chip PLL control register* before you release the main reset by using the test chip **CONFIGINIT** feature. This is the initialization method used by the system FPGA on the EB. See *Clock setting in reset mode* on page 3-6 for further information on this hardware initialization feature.

4.2.4 Test chip PLL control register

A 32-bit read/write register programs several **REFCLK/CLKOB/CLKOA** ratios that the PLL requires. This register contains a bit to enable/disable the PLL using software. Use this register in a read-modify-write sequence, so that you do not disturb any other ratios. You can also access this PLL control register after releasing the main reset using an AXI interface connected to the Peripheral decoder. See *Peripheral accesses* on page 3-45 for details.

This register is located at first address PERIPHBASE + 12KB as follows:

```
Address [31:14]=PERIPHBASE [17:0]
Address [13:12]=b11, Address [11:0]=0x00
```

Figure 4-4 on page 4-9 shows the test chip PLL control register bit assignments.

Figure 4-4 Test chip PLL control register

Table 4-1 lists the test chip PLL control register bit assignments.

Table 4-1 Test chip PLL control register

Bits	Read/write	Name	Reset value	Description
[31]	RO	PLL lock	b0	Reflects the PLOCK output of the PLL: O: PLL is not locked
				• 1: PLL is locked.
[30:16]	Read as zero, write ignored.	-	b0	Undefined
[15:12]	RW	PB divider	b0000	PB divider ratio that the PLL uses:
				0000: pb-value is 1
				0001: pb-value is 2
				1111: pb-value is 16.
[11:8]	RW	PA divider	b0000	PA divider ratio that the PLL uses:
				0000: pa-value is 1
				0001: pa-value is 2
				1111: pa-value is 16.
[7:4]	RW	N divider	b0000	N divider ratio that the PLL uses:
				0000: n-value is 1
				0001: n-value is 2
				1111: n-value is 16.

Table 4-1 Test chip PLL control register (continued)

Bits	Read/write	Name	Reset value	Description
[3]	RW	M divider	b0	M divider ratio that the PLL uses: 0: m-value is 1 1: m-value is 2.
[2]	RW	PBSTBY	b1	0: CLKB from PLL is active1: CLKB from PLL is 0.
[1]	RW	STBY	b1	0: CLKA from PLL is active1: CLKA from PLL is 0.
[0]	RW	PLL enable	b0	0: if <i>committed</i> and bit 0 of the PLL control test data register is 0 (its reset value) REFCLK will be selected as CLKOUT on the next rising edge of REFCLK
				• 1: if <i>committed</i> , and bit 0 of the PLL control test data register is 0 (its reset value) the PLL will be selected as CLKOUT on the next rising edge of REFCLK .
				PLL enable is <i>committed</i> when STANDBYWFI[3:0] == b1111 or the input signal CONFIGINIT == b1.

_____ Note _____

Because the **REFCLK** frequency must always be lower than **CLKOB**, to enable normal behavior of the PLL bypass module, then the following must be true:

 $(n\text{-value} \times pa\text{-value})/(m\text{-value} \times pb\text{-value}) \ge 1$

4.2.5 Clock module

Figure 4-2 on page 4-5 shows the Clock module inputs and outputs. The **clkout_o** signal is exactly **clkin_i**, and **clkoutdiv_o** is a divided version of **clkin_i**. An output signal, **clkouten_o**, enables you to use **clkout_o** either in combination with **clkouten_o**, or in combination with **clkoutdiv** o as Figure 4-5 on page 4-11 shows.

Figure 4-5 AXI bus clock

____ Note _____

- The **clkout_o** and **clkouten_o** signals drive the internal AXI components.
- The **clkoutdiv_o** signal drives the external AXI components.

The clock divider value is set by the **divider_i[3:0]** output from the *Test chip clock divider register*.

The *test chip clock divider register* can be initialized before releasing the main reset by using the test chip **CONFIGINIT** feature. This is the initialization method used by the *CT11MPCore PLD*. See *Clock setting in reset mode* on page 3-6 for a description this hardware initialization feature. You can also access this test chip divider register after releasing the main reset using an AXI interface connected to the Peripheral decoder. See *Peripheral accesses* on page 3-45 for details.

4.2.6 Test chip clock divider register

The test chip clock divider register is located at address PERIPHBASE + 12KB as follows:

```
Address [31:14]=PERIPHBASE [17:0]
Address [13:12]=b11, Address [11:0]=0x014
```

Figure 4-6 on page 4-12 shows the test chip clock divider register bit assignments.

Figure 4-6 Test chip clock divider register

Table 4-2 lists the test chip clock divider register bit assignments.

Table 4-2 Test chip clock divider register

Bits	Read/write	Name	Reset value	Description
[31:4]	Read as zero, write ignored	-	b0	Undefined
[3:0]	RW	Clock divider	b0000	The clock divider ratio to drive the AXI bus clock and the FPGA:
				0000: CLKOUTDIV is equal to CLKIN 0001: CLKOUTDIV is CLKIN divided by 2
				0010: CLKOUTDIV is CLKIN divided by 3
				0011: CLKOUTDIV is CLKIN divided by 4
				0100: CLKOUTDIV is CLKIN divided by 5
				0101: CLKOUTDIV is CLKIN divided by 6
				0110: CLKOUTDIV is CLKIN divided by 7
				0111: CLKOUTDIV is CLKIN divided by 8
				1000: CLKOUTDIV is CLKIN divided by 1
				1001: CLKOUTDIV is CLKIN divided by 10
				1010: CLKOUTDIV is CLKIN divided by 3
				1011: CLKOUTDIV is CLKIN divided by 12
				1100: CLKOUTDIV is CLKIN divided by 5
				1101: CLKOUTDIV is CLKIN divided by 14
				1110: CLKOUTDIV is CLKIN divided by 7
				1111: CLKOUTDIV is CLKIN divided by 16

4.2.7 Clock signals overview

The clock related signals are summarized in Table 4-3 on page 4-13.

Table 4-3 Clock signals

Signal	Direction	Description	Toggling rate	Pad type
CLKOUTDIV	Output	This is the AXI bus clock. You can use it to drive a companion FPGA.	18.75-133MHz	9mA output pad
CLKOUTDIVD	Output	Reflects exactly the CLKOUTDIV output. This is a second pad to drive out the AXI bus clock.	18.75-133MHz	9mA output pad
CLKOUTDIVSTOPPED	Output	When HIGH, indicates that the CLKOUTDIV output becomes LOW.	18.75-133MHz	9mA output pad
CONFIGINIT	Input	Clock enable according to REFCLK . The PLL and clock divider control registers use this clock enable.	18.75-133MHz	Standard input pad
nCONFIGRST	Input	Resets the PLL and clock divider control registers.	Not applicable	Schmidt trigger input pad
PLLEN	Input	Enables or disables the PLL. When LOW, REFCLK drives the entire test chip.	Static input	Standard input pad
PLOCK	Output	Indicates whether the PLL is locked. 0: PLL is not locked. 1: PLL is locked	18.75-133MHz	9mA output pad
REFCLK	Input	Global clock. This clock is a reference clock for the PLL.	18.75-133MHz	Schmidt trigger input pad

4.3 Resets and interrupts

This section describes the reset and interrupt signals that enter the ARM11 MPCore test chip pins and contains the following sections:

- Resets
- *Interrupts* on page 4-17.

4.3.1 Resets

This section describes all the reset signals that enter the test chip:

nTRST This is the test logic reset. It also acts as the reset to the TAP controller.

nSYSPORESET

This is the main system reset on the ARM11 MPCore test chip. It resets:

- The peripheral decoder.
- The test chip-specific registers, apart from the test chip PLL control register, and the test chip clock divider register.
- The L220.
- All the debug registers that can be reset, and all the watch and breakpoint registers in the ARM11 MPCore. It also drives the ARM11 MPCore snoop control unit nSCURESET signal.
- MBISTRESETN of the ARM11 MPCore MBIST controller.
- MBISTRESETN of the L220 MBIST controller.

nCONFIGRST

This signal resets:

- the test chip PLL control register
- the test chip clock divider register
- the PLL bypass module
- the clock module.

Note -	
--------	--

The CT11MPCore uses the **CONFIGINIT** feature and activates this signal before all other reset signals. See *Clock setting in reset mode* on page 3-6 for more information.

nWDRESET[3:0]

Individual watchdog resets inputs.

nCPURESET[3:0]

These signals individually reset each ARM11 MPCore processor by waking up processors that are in WFI state.

nPORESET[3:0]

Drives the ARM11 MPCore nPORESET[3:0] inputs.

RESETREQ[3:0]

This is an output to request individual watchdog resets.

Table 4-4 describes how the resets are handled.

Table 4-4 Reset handling

nTRST	nCONFIGRST	nSYSPOR ESET	nPORESE T[3:0]	nWDRE SET[3:0]	nCPURES ET[3:0]	Description
X	0	X	X	X	X	Resets: test chip PLL control register test chip clock divider register PLL bypass module clock module.
X	X	0	All 0	All 0	All 0	Power-on reset. Resets: all processors Snoop Control Unit (SCU) interrupt distributor test chip logic.
X	X	1	[n]=0	[n]=0	[n]=0	Individual processor power-on reset. Resets all processor logic, including debug logic.
X	X	1	All 1	[n]=0	[n]=0	Individual processor soft reset. Resets all processor logic, excluding debug logic.

Table 4-4 Reset handling (continued)

nTRST	nCONFIGRST	nSYSPOR ESET	nPORESE T[3:0]	nWDRE SET[3:0]	nCPURES ET[3:0]	Description
X	X	1	All 1	All 1	[n]=0	Individual processor reset from watchdog request, processor logic reset, excluding debug and watchdog reset flag.
0	X	X	X	X	X	Resets the TAP logic embedded in the ARM11 MPCore. Generates and synchronizes: TDI TMS TCK RTCK test chip TAP controller.
X	X	1	All 1	All 1	All 1	No reset, normal run mode.

_____ Note _____

Ensure that you assert all reset signals asynchronously, and deassert them synchronously with respect to their clock domains.

When in test mode, **TESTMODE** is tied to Vdd. When the test mode selected enables the SCAN, all resets must be asynchronous. Table 4-5 lists the reset deassertions with the respective clock.

Table 4-5 Reset deassertion with respective clock

Reset signal	Deasserted synchronously with primary input:	Deasserted synchronously with Clock module output:
nTRST	тск	clkout_o when clkouten_o is HIGH
nCONFIGRST	REFCLK	clkout_o
nSYSPORESET	N/A	clkout_o when clkouten_o is HIGH

Table 4-5 Reset deassertion with respective clock (continued)

Reset signal	Deasserted synchronously with primary input:	Deasserted synchronously with Clock module output:
nWDRESET[3:0]	N/A	clkout_o when clkouten_o is HIGH
nCPURESET[3:0]	N/A	clkout_o when clkouten_o is HIGH
nPORESET[3:0]	N/A	clkout_o when clkouten_o is HIGH

4.3.2 Interrupts

This section describes all the interrupt signals that enter the test chip:

The ARM11 MPCore test chip has the following interrupt lines:

nIRQ[3:0] CPU legacy IRQ request input lines. Each bit is connected directly to each corresponding CPU:

nIRQ [0] to CPU#0

nIRQ [1] to CPU#1

nIRQ [2] to CPU#2

nIRQ [3] to CPU#3

nFIQ[3:0] CPU private FIQ request input lines. Each bit is connected directly to each corresponding CPU:

nFIQ [0] to CPU#0

nFIQ [1] to CPU#1

nFIQ [2] to CPU#2

nFIQ [3] to CPU#3

You can configure each *Fast Interrupt Request* (FIQ) as a *Non Maskable Interrupt* (NMI) by using a specific test chip register, the test chip interrupt control register. Figure 4-7 on page 4-18 shows the test chip interrupt control register bit assignments.

This register is located at address:

Address [31:14]=PERIPHBASE [17:0]

Address [13:12]=11, Address [11:0]=0x004

Figure 4-7 Test chip interrupt control register

Table 4-6 describes the test chip interrupt control register.

Table 4-6 Test chip interrupt control register

Bits	Read/write	Reset value	Description
[31:4]	Read as zero, write ignored	0	Undefined
[3]	RW	0	Disable the FIQ mask bit in the <i>Current Program Status Register</i> (CPSR) for CPU#3 so that the FIQ acts as a NMI
[2]	RW	0	Disable the FIQ mask bit in the CPSR for CPU#2 so that the FIQ acts as a NMI
[1]	RW	0	Disable the FIQ mask bit in the CPSR for CPU#1 so that the FIQ acts as a NMI
[0]	RW	0	Disable the FIQ mask bit in the CPSR for CPU#0 so that the FIQ acts as a NMI

INT[15:0] Distributed Interrupt Controller hardware interrupts. Each bit is connected directly to the corresponding Distributed Interrupt Controller hardware interrupt line.

Dual flip flops, clocked by the output clock of the clock module, **CLKOUT**, synchronize the **nIRQ[3:0]**, **nFIQ[3:0]**, and **INT[15:0]** signals.

Interrupt Routing

A total of 32 interrupt lines, **INT[31:0]** are provided by the Distributed Interrupt Controller in the MPCore multiprocessor. Refer to the *ARM11 MPCore Processor Technical Reference Manual* (ARM DDI 0360) for further details on interrupt handling within the MPCore.

Only **INT** [15:0] are available at the input pins of the ARM11 MPCore test chip for connection to external interrupts, **INT** [31:16] are used internally. Table 4-7 lists the internal connections of **INT**[31:16] in the test chip.

Table 4-7 Internal interrupt lines

MPCore interrupt line number	Description
31	Interrupt from L220: Decode error received on master ports from L3
30	Interrupt from L220: Slave error received on master ports from L3
29	Interrupt from L220: Event counter overflow/increment
28	Interrupt from MPCore (SCU): PMUIRQ [11]
27	Interrupt from MPCore (SCU): PMUIRQ [10]
26	Interrupt from MPCore (SCU): PMUIRQ [9]
25	Interrupt from MPCore (SCU): PMUIRQ [8]
24	Interrupt from MPCore (SCU): PMUIRQ [7]
23	Interrupt from MPCore (SCU): PMUIRQ [6]
22	Interrupt from MPCore (SCU): PMUIRQ [5]
21	Interrupt from MPCore (SCU): PMUIRQ [4]
20	Interrupt from MPCore (CPU3): PMUIRQ [3]
19	Interrupt from MPCore (CPU2): PMUIRQ [2]
18	Interrupt from MPCore (CPU1): PMUIRQ [1]
17	Interrupt from MPCore (CPU0): PMUIRQ [0]
16	Tied internally to Gnd

Interrupt routing to the **INT** [15:0] input pins of the test chip is controlled by the control PLD on the CT11MP Core. Values written to bits INTMODE[1:0] in the serial write data register using the 4 wire serial interface allow the selection of three routing modes. Refer to *Interrupt routing* on page 3-18 for further details.

Debug cross-trigger matrix

The cross-trigger matrix enables use of a single debug channel that all debug acknowledge (**DBGACK[3:0**]) can feed into and all debug requests (**DBGRQ[3:0**]) can be fed from. All inputs and outputs have a corresponding enable bit in DBGMUX to remove or attach them to the channel (DBGCH).

The debug routing matrix **DBGMUX[11:0]** signals are controlled from bits SYS_PLD_CTRL1[21:10] as listed in Table 4-8:

Table 4-8 Debug matrix control bits

Debug matrix bits	Debug signals
[11]	Reserved
[10]	Reserved
[9]	Reserved
[8]	Reserved
[7]	DBGRQ[3]
[6]	DBGACK[3]
[5]	DBGRQ[2]
[4]	DBGACK[2]
[3]	DBGRQ[1]
[2]	DBGACK[1]
[1]	DBGRQ[0]
[0]	DBGACK[0]

See SYS_PLD_CTRL1 on page 3-49 for more detail on setting the control register bits.

4.4 Power supply control

This section describes the ARM11 MPCore test chip power management.

The whole test chip has a single power domain. No *Intelligent Energy Management*, IEM or adaptive shutdown mechanism is provided. Software can put each ARM11 MPCore CPU in WFI mode. In this case, clock gating ensures that the minimum amount of logic is toggling. Some ARM11 MPCore outputs that provide power information are stored in a specific test chip register. Figure 4-8 shows the test chip power status register bit assignments.

This register is located at address:

```
Address [31:14]=PERIPHBASE [17:0]
Address [13:12]=b11, Address [11:0]=0x00C
```


Figure 4-8 Test chip power status register

Table 4-9 lists the test chip power status register bit assignments.

Table 4-9 Test chip power status register

Bits	Read/write	Reset value	Description
[31:12]	Read as zero, write ignored.	0	Undefined.
[11:8]	RO	b0000	Reflects the value of the ARM11 MPCore DBGNOPWRDWN [3:0] output. See the <i>ARM11 MPCore Processor Technical Reference Manual</i> (ARM DDI 0360) for more information.
[7:6]	RO	ь00	Reflects the value of the ARM11 MPCore PWRCTLO3[1:0] output. See the <i>ARM11 MPCore Processor Technical Reference Manual</i> (ARM DDI 0360) for more information.

Table 4-9 Test chip power status register (continued)

Bits	Read/write	Reset value	Description
[5:4]	RO	00	Reflects the value of the ARM11 MPCore PWRCTLO2[1:0] output. See the <i>ARM11 MPCore Processor Technical Reference Manual</i> (ARM DDI 0360) for more information.
[3:2]	RO	00	Reflects the value of the ARM11 MPCore PWRCTLO1 1:0] output. See the <i>ARM11 MPCore Processor Technical Reference Manual</i> (ARM DDI 0360) for more information.
[1:0]	RO	00	Reflects the value of the ARM 11 MPCore PWRCTLO0[1:0] output. See the <i>ARM11 MPCore Processor Technical Reference Manual</i> (ARM DDI 0360) for more information.

4.5 Memory configuration

The ARM11 MPCore test chip implements *Level 1* (L1) and *Level 2* (L2) memory subsystems.

The ARM11 MPCore L1 memory subsystem has 32KB of instruction cache and 32KB of data cache per CPU.

The L220 cache controller memory subsystem has 1MB of L2 unified cache.

Note	
------	--

Software can change the L2 cache size using L2 control registers. See *Peripheral decoder* on page 4-29 for details of the L220 register base address allocation and the *L220 Cache Controller Technical Reference Manual* (ARM DDI 0329) for details of the L2 control registers.

4.5.1 ARM11 MPCore

The *Level 1* (L1) memory subsystem has 32KB of instruction cache and 32KB of data cache per CPU.

The ARM11 MPCore control register block requires 8KB of memory space. The **PERIPHBASE** [17:0] input, an input to the test chip, defines a space of 16KB. The ARM11 MPCore control register block uses the first 8KB.

4.5.2 L220 cache controller

The L2 memory consists of 1MB of L2 unified cache.

L2CC control register block requires 4KB memory space. The **PERIPHBASE**[17:0] input, an input to the test chip, defines a space of 16KB. The L2CC control register block is located at PERIPHBASE + 8KB.

The fixed configuration settings for the L220 in the test chip are:

- The L220 does not use parity.
- The TrustZone feature is not required, so all transactions are considered to be secure.
- *Intelligent Energy Manager* (IEM) support is not provided.

- An external input pin, **L2MASTNUM**, enables you to select either one or two master AXI ports:
 - L2MASTNUM=0 indicates one master AXI port, and master port 1 is used.
 - L2MASTNUM=1 indicates two master AXI ports.
- L220 and MPCore are synchronous, and L2 cache operates at the core frequency.
- The way size is fixed at 128K.
- You can bypass the L2 cache using the L220 Control Register. This is the default state. In this case, you have an additional latency of the pipeline length of the L2 cache.

For details on the L220 Level 2 cache implementation see the L220 Cache Controller Technical Reference Manual (ARM DDI 0329).

RAM organization

Data RAM requires byte-enable access for data RAM without parity. Figure 4-9 on page 4-25 shows the L220 data RAM organization.

	L2 cache size=1MB
Addr0	way0 (256 bits)
Addr1	way0 (256 bits)
Addr2	way0 (256 bits)
	•
Addr(4096-1)	way0 (256 bits)
Addr4096	way1 (256 bits)
Addr(4096+1)	way1 (256 bits)
Addr(4096+2)	way1 (256 bits)
	•
Addr(2*4096-1)	way1 (256 bits)
Addr(7*4096)	way7 (256 bits)
Addr(7*4096+1)	way7 (256 bits)
Addr(7*4096+2)	way7 (256 bits)
	•
Addr(8*4096-1)	way7 (256 bits)

Figure 4-9 L220 data RAM organization

4.6 L220 bypass and peripheral decode

This section describes the L220 bypass mechanism and the built-in peripheral decoder. It contains the following sections:

- L220 bypass module
- Peripheral decoder on page 4-29.

4.6.1 L220 bypass module

You can use the L220 bypass module shown in Figure 4-10 on page 4-27 to bypass the L220. Whether the L220 is bypassed is determined by the **L2BYPASS** bit in the *Serial write data register*. The **L2BYPASS** bit is user configurable in the SYS_PLD_CTRL1 register implemented in the system FPGA on the EB.

It is possible to have one or two AXI ports active at the L220 and MPCore levels:

•	the number of master ports you use at the L220 level is set by the L2MASTNUM bit in the CT11MPCore <i>Serial write data register</i>			
	Note			
	L2MASTNUM is not currently user configurable. For dual external AXI port operation with the EB, L2MASTNUM is tied HIGH by the CT11MPCore PLD making two AXI master ports active at the L220 level.			
•	the number of master ports you use at the MPCore level is set by the MPMASTNUM bit in the CT11MPCore <i>Serial write data register</i> . MPMASTNUM is user configurable in the SYS_PLD_CTRL1 register implemented in the EB system FPGA.			
	— Note ———			
the c	one master configuration, the default master for the L220 is master 1. For MPCore, default master is master 0. Therefore, inside the L220 bypass module, the two AXI connections are not only bypassed, but are also exchanged between ports 0 and 1.			

Figure 4-10 on page 4-27 shows the L220 bypass mechanism.

Figure 4-10 L220 bypass mechanism

Table 4-10 lists the most useful settings of the **L2BYPASS**, **MPMASTNUM**, and **L2MASTNUM** configuration bits.

Table 4-10 Most useful settings of the L2BYPASS, MPMASTNUM, and L2MASTNUM configuration bits

L2BYPASS	MPMASTNUM	L2MASTNUM	Description
0	1	0	The two MPCore masters are used. Master 1 of L220 is used, and AXI port 1 is used externally.
0	1	1	The two MPCore masters are used. Masters 0 and 1 of L220 are used, and the two AXI ports are used externally.
1	0	0	Master 0 of MPCore is used. Because AXI port 1 is used externally, the L220 bypass module exchanges the connection between port 0 and port 1.
1	1	1	Master 0 and 1 of MPCore are used, and the two AXI ports are used externally.
0	0	0	Master 0 of MPCore is used. Master 1 of L220 is used, and AXI port 1 is used externally.

Figure 4-11 on page 4-28 shows all possible ARM11 MPCore and L220 port combinations using **MPMASTNUM** and **L2MASTNUM**. The positioning of the Peripheral Decoder, is also shown. See *Peripheral decoder* on page 4-29 for further details.

Figure 4-11 MPCore and L220 port configurations

4.6.2 Peripheral decoder

As shown in Figure 4-11 on page 4-28, the ARM11 MPCore test chip integrates some AXI decoding logic for selecting the L220 peripheral port and the test chip configuration registers. The Peripheral decoder locally decodes the regions listed in Table 4-11.

Table 4-11 Peripheral decoder mapping

Address space	Peripheral accessed
[PERIPHBASE + 8KB - PERIPHBASE + 12KB -1]	L220 control register space
[PERIPHBASE + 12KB - PERIPHBASE + 16KB -1]	Test chip-specific registers space

The PERIPHBASE address defines a 16KB memory space. You can configure this base address using an external input bus, **PERIPHBASE** [17:0]. Links are provided on the CT11MPCore to configure this bus. The ARM supplied configuration software requires the peripheral base address to be set to 0x1F000000. This is the default link setting on the CT11MPCore.

_____ Note _____

The ARM11 MPCore SCU decodes the region [PERIPHBASE - PERIPHBASE + 8KB -1] to control the peripheral registers of the ARM11 MPCore.

Because accesses to the peripheral ports are rare, they have priority. When a peripheral access arrives from one of the slave ports, the decoder waits for all accesses to M0 and M1 to complete before it acknowledges the peripheral access. This access then goes to either the P or the C port.

_____Note _____

During this time, no other accesses are accepted. If there are other accesses to a peripheral port from the same slave port, they are routed without wait.

The routing possibilities of the decoder are:

- idle
- normal
- **S0** to peripheral
- S1 to peripheral.

In normal mode, accesses from S0 are routed to M0, and accesses from S1 are routed to M1.

——Note ———
The master inputs and outputs are registered, so one cycle of delay is added for each channel.
In 'S0 to peripheral' mode, all accesses from S1 are blocked, and in 'S1 to peripheral' mode, all accesses from S0 are blocked. If an access from S1 targets the peripheral region, it must wait for all transfers from S0 to be completed. The state machine then goes into 'idle' mode, and S1 goes into 'peripheral' mode.
 Note ———— The state machine always spends one cycle in 'idle' mode before it switches to another routing mode, irrespective of the current mode.

Between the decoder and the downsizer in the Peripheral decoder, all the AXI

channels are registered, so one delay cycle is added.

4.7 Debug and JTAG configuration

This section describes the Debug and JTAG hardware of the test chip. It contains the following sections:

- TAP controller
- *Debug* on page 4-32
- *JTAG Configuration* on page 4-33
- *TAP ID registers* on page 4-33.

4.7.1 TAP controller

An IEEE 1149.1 TAP controller is instantiated at the top-level of the test chip to provide a boundary scan chain. The IEEE 1149.1 TAP controller uses the same IEEE 1149.1 pins that the RealView ICE communication uses, so that the number of additional pins required is kept to a minimum.

BYPASS, EXTEST, and SAMPLE/PRELOAD instructions are the minimum functionality you require to perform the boundary scan during JTAG configuration of the test chip.

The test chip provides a specific ID code and you can obtain this using the IDCODE instruction. Table 4-12 lists the test chip TAP instructions.

Table 4-12 Test chip TAP instructions

TAP controller instruction	Instruction encoding
BYPASS	b11111
EXTEST	b00000
IDCODE	b00001
SAMPLE/PRELOAD	b00010

A separate control pin, **TESTMODE**, multiplexes the IEEE 1149.1 port. See Figure 4-12 on page 4-32.

_____Note _____

When **TESTMODE** is LOW, the TAP controllers of the ARM11 MPCore CPUs are used. A JTAG port synchronizer is also included as part of the ARM11 MPCore.

Figure 4-12 on page 4-32 shows the test chip and ARM11 MPCore TAP controller connections.

Key:

T Tri-state output

X No boundary scan on input/output pad

Figure 4-12 Test chip and ARM11 MPCore TAP controller connections

4.7.2 **Debug**

When the CONFIG slide-switch on the EB is OFF, the **TESTMODE** input is LOW and the four ARM11 MPCore DBGTAP controllers are selected, one per ARM11 MPCore CPU. You can now debug the ARM11 MPCore using a DBGTAP debugger such as RealView ICE. The four DBGTAP controllers have common **TCK**, **TMS**, and **nTRST** signals and the **TDI** and **TDO** paths are daisy-chained as shown in Figure 4-13 on page 4-33.

Figure 4-13 TAP signal connections between the four ARM11 MPCore CPUs

4.7.3 JTAG Configuration

When the CONFIG slide-switch on the EB is ON, the **TESTMODE** input is HIGH and the test chip boundary scan chain cells are controlled using the test chip TAP controller. You can now configure the test chip using its input and output pins.

All inputs and outputs, except for the 5-pin JTAG interface, **RTCK** and **TESTMODE**, have boundary scan cells on them. The boundary scan chain order follows that of the pads.

4.7.4 TAP ID registers

The TAP ID code is a 32-bit number divided into multiple fields. Figure 4-14 on page 4-34 shows the TAP ID register bit assignments.

Figure 4-14 TAP ID register

You can access the ARM11 MPCore TAP ID code when the CT11MPCore is in Debug mode.

The ARM11 MPCore TAP ID code is:

0x07B37477

Table 4-13 lists how the register divides the number.

Table 4-13 ARM11 MPCore TAP ID register

Bit field	Use	Description	Value
[31:28]	Revision number	Revision number for the ARM11 MPCore, not necessarily the same as the test chip revision number.	0x0
[27:12]	Part number	[27:24] prefix. This is a fixed pattern.	0x7
		[23:20] IR length. Identifies the length of the instruction register within the TAP.	0xB
		[19:12] device code. This pattern identifies the ARM11 MPCore.	0x37
[11:1]	Manufacturer ID	Holds the officially registered pattern.	b0100 0111 011
[0]	Marker bit	Always set to 1, as required by the JTAG specification.	b1

See the *ARM11 MPCore Processor Technical Reference Manual* (ARM DDI 0360) for details of the remaining Debug registers in the ARM11 MPCore.

You can access the *test chip TAP ID code* when the CT11MPCore is in JTAG Configuration mode.

The test chip TAP ID is:

0x17536021

Table 4-13 on page 4-34 lists how the register divides the number.

Table 4-14 Test chip TAP ID register

Bit field	Use	Description	Value
[31:28]	Revision number	Revision number for the test chip, not necessarily the same as the core revision number.	0x1
[27:12]	Part number	[27:24] prefix. This is a fixed pattern.	0x7
		[23:20] IR length. Identifies the length of the instruction register within the TAP.	0x5
		[19:12] device code. This pattern identifies the test chip.	0x36
[11:1]	Manufacturer ID	Holds the officially registered pattern.	b0000 0010 000
[0]	Marker bit	Always set to 1, as required by the JTAG specification.	b1

Test Chip Hardware Description

Chapter 5 CT11MPCore Signal Descriptions

This chapter provides a summary of signals present on the CT11MPCore connectors, test points, and the links that can be modified to change signal routing. It contains the following sections:

- *Header connectors* on page 5-2
- Links, test points, and LED indicators on page 5-25
- *AXI bus timing specification* on page 5-33.

5.1 Header connectors

Figure 5-1 shows the pin numbers and power-blade usage of the HDRX, HDRY, and HDRZ headers on the upper side of the MPCore. For details on power supply usage see *Power supply control* on page 3-28.

Figure 5-1 HDRX, HDRY, and HDRZ (upper) pin numbering

Table 5-1 on page 5-3 lists the Samtec part numbers.

The CT11MPCore uses the Samtec -02- connectors on the top and the Samtec -01-connectors on the bottom of the board. The total board separation is 8mm. The Core Tiles have a maximum component height of 2.5mm on the bottom and 5mm on the top of the board. This ensures that there are no component interference problems with mated boards.

Samtec describes the QTH connector (used on the upper side of the tile) as a header and the QSH connector (used on the lower side of the tile) as a socket.

Table 5-1 Samtec part numbers

Header	Part number	Mating height
HDRX (upper)	QTH-090-02-F-D-A-K	8mm
HDRXL (lower)	QSH-090-01-F-D-A-K	5mm
HDRY (upper)	QTH-090-02-F-D-A-K	8mm
HDRYL (lower)	QSH-090-01-F-D-A-K	5mm
HDRZ (upper)	QTH-150-02-F-D-A-K	8mm
HDRZL (lower)	QSH-150-01-F-D-A-K	5mm

5.1.1 HDRX signals

Table 5-2 on page 5-4 describes the signals on the HDRX pins for the CT11MPCore and EB baseboard. The MPCore AXI port 1 signals are multiplexed onto the pins on this header.

——Note	

All signals on the upper and lower HDRX headers are the same for the CT11MPCore.

The signal on the upper header of the CT11MPCore is named XUn and the signal on the lower header is named XLn, the table entry is Xxn. Replace x by L for the signal on the lower header and by U for the signal on the upper header. For example, the pin 1 signal for the lower header is **XL90** and the pin 1 signal for the upper header is **XU90** and the corresponding CT11MPCore signal is **ARADDR13/ARADDR29**. This example also illustrates the designation used for a multiplexed signal, X/Y where signal X is present when **CLKOUTDIV** is HIGH and signal Y is present when **CLKOUTDIV** is LOW. See *Multiplexing scheme* on page 3-31 for further details of the AXI signal multiplexing.

For the EB there are two HDRX headers (tile site 1 and tile site 2). Replace the **TnX** signal prefix in the table by **T1X** or **T2X** to get the signal name for tile site 1 or 2 respectively.

Table 5-2 HDRX signals

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
ARADDR12 / ARADDR28	TnX89	2	1	TnX90	ARADDR13 / ARADDR29
ARADDR11 / ARADDR27	TnX88	4	3	TnX91	ARADDR14 / ARADDR30
ARADDR10 / ARADDR26	TnX87	6	5	TnX92	ARADDR15 / ARADDR31
ARADDR9 / ARADDR25	TnX86	8	7	TnX93	ARID0 / ARID2
ARADDR8 / ARADDR24	TnX85	10	9	TnX94	ARID1 / ARID3
ARADDR7 / ARADDR23	TnX84	12	11	TnX95	ARLEN0 / ARLEN2
ARADDR6 / ARADDR22	TnX83	14	13	TnX96	ARLEN1 / ARLEN3
ARADDR5 / ARADDR21	TnX82	16	15	TnX97	ARSIZE0 / ARSIZE1
ARADDR4 / ARADDR20	TnX81	18	17	TnX98	ARID4 / ARPROT2
ARADDR3 / ARADDR19	TnX80	20	19	TnX99	ARPROT0 / ARPROT1
ARADDR2 / ARADDR18	TnX79	22	21	TnX100	ARBURST0 / ARBURST1
ARADDR1 / ARADDR17	TnX78	24	23	TnX101	ARLOCK0/ ARLOCK1
ARADDR0 / ARADDR16	TnX77	26	25	TnX102	ARCACHE0 / ARCACHE2
BREADY	TnX76	28	27	TnX103	ARCACHE1 / ARCACHE3
BVALID	TnX75	30	29	TnX104	ARVALID / b0

Table 5-2 HDRX signals (continued)

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
BRESP0 / BRESP1	TnX74	32	31	TnX105	ARREADY
BID4 / (not connected)	TnX73	34	33	TnX106	RDATA0 / RDATA32
BID1 / BID3	TnX72	36	35	TnX107	RDATA1 / RDATA33
BID0 / BID2	TnX71	38	37	TnX108	RDATA2 / RDATA34
AWREADY	TnX70	40	39	TnX109	RDATA3 / RDATA35
AWVALID /	TnX69	42	41	TnX110	RDATA4 / RDATA36
AWCACHE1 / AWCACHE3	TnX68	44	43	TnX111	RDATA5 / RDATA37
WCACHE0 / WCACHE2	TnX67	46	45	TnX112	RDATA6 / RDATA38
WLOCK0 / WLOCK1	TnX66	48	47	TnX113	RDATA7 / RDATA39
AWBURST0 / AWBURST1	TnX65	50	49	TnX114	RDATA8 / RDATA40
WPROT0 / WPROT1	TnX64	52	51	TnX115	RDATA9 / RDATA41
RM_nRESET	TnX63	54	53	TnX116	RDATA10 / RDATA42
WID4 / WPROT2	TnX62	56	55	TnX117	RDATA11 / RDATA43
WSIZE0 / WSIZE1	TnX61	58	57	TnX118	RDATA12 / RDATA44
AWLEN1 / AWLEN3	TnX60	60	59	TnX119	RDATA13 / RDATA45

Table 5-2 HDRX signals (continued)

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
AWLEN0 / AWLEN2	TnX59	62	61	TnX120	RDATA14 / RDATA46
AWID1 / AWID3	TnX58	64	63	TnX121	RDATA15 / RDATA47
AWID0 / AWID2	TnX57	66	65	TnX122	RDATA16 / RDATA48
AWADDR15 / AWADDR31	TnX56	68	67	TnX123	RDATA17 / RDATA49
AWADDR14 / AWADDR30	TnX55	70	69	TnX124	RDATA18 / RDATA50
AWADDR13 / AWADDR29	TnX54	72	71	TnX125	RDATA19 / RDATA51
AWADDR12 / AWADDR28	TnX53	74	73	TnX126	RDATA20 / RDATA52
AWADDR11 / AWADDR27	TnX52	76	75	TnX127	RDATA21 / RDATA53
AWADDR10 / AWADDR26	TnX51	78	77	TnX128	RDATA22 / RDATA54
AWADDR9 / AWADDR25	TnX50	80	79	TnX129	RDATA23 / RDATA55
AWADDR8 / AWADDR24	TnX49	82	81	TnX130	RDATA24 / RDATA56
AWADDR7 / AWADDR23	TnX48	84	83	TnX131	RDATA25 / RDATA57
AWADDR6 / AWADDR22	TnX47	86	85	TnX132	RDATA26 / RDATA58
AWADDR5 / AWADDR21	TnX46	88	87	TnX133	RDATA27 / RDATA59
AWADDR4 / AWADDR20	TnX45	90	89	TnX134	RDATA28 / RDATA60

Table 5-2 HDRX signals (continued)

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
AWADDR3 / AWADDR19	TnX44	92	91	TnX135	RDATA29 / RDATA61
AWADDR2 / AWADDR18	TnX43	94	93	TnX136	RDATA30 / RDATA62
AWADDR1 / AWADDR17	TnX42	96	95	TnX137	RDATA31 / RDATA63
AWADDR0 / AWADDR16	TnX41	98	97	TnX138	RID0 / RID2
WREADY	TnX40	100	99	TnX139	RID1 / RID3
WVALID / b0	TnX39	102	101	TnX140	RRESP0 / RRESP1
WLAST / WID4	TnX38	104	103	TnX141	RLAST / RID4
WSTRB3 / WSTRB7	TnX37	106	105	TnX142	RVALID / (not connected)
WSTRB2 / WSTRB6	TnX36	108	107	TnX143	RREADY
WSTRB1 / WSTRB5	TnX35	110	109	TnX144	Xx144
WSTRB0 / WSTRB4	TnX34	112	111	TnX145	Xx145
WID1 / WID3	TnX33	114	113	TnX146	Xx146
WID0 / WID2	TnX32	116	115	TnX147	Xx147
WDATA31 / WDATA63	TnX31	118	117	TnX148	Xx148
WDATA30 / WDATA62	TnX30	120	119	TnX149	Xx149

Table 5-2 HDRX signals (continued)

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
WDATA29 / WDATA61	TnX29	122	121	TnX150	Xx150
WDATA28 / WDATA60	TnX28	124	123	TnX151	Xx151
WDATA27 / WDATA59	TnX27	126	125	TnX152	Xx152
WDATA26 / WDATA58	TnX26	128	127	TnX153	Xx153
WDATA25 / WDATA57	TnX25	130	129	TnX154	Xx154
WDATA24 / WDATA56	TnX24	132	131	TnX155	Xx155
WDATA23 / WDATA55	TnX23	134	133	TnX156	Xx156
WDATA22 / WDATA54	TnX22	136	135	TnX157	Xx157
WDATA21 / WDATA53	TnX21	138	137	TnX158	Xx158
WDATA20 / WDATA52	TnX20	140	139	TnX159	Xx159
WDATA19 / WDATA51	TnX19	142	141	TnX160	Xx160
WDATA18 / WDATA50	TnX18	144	143	TnX161	Xx161
WDATA17 / WDATA49	TnX17	146	145	TnX162	Xx162
WDATA16 / WDATA48	TnX16	148	147	TnX163	Xx163
WDATA15 / WDATA47	TnX15	150	149	TnX164	Xx164

Table 5-2 HDRX signals (continued)

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
WDATA14 / WDATA46	TnX14	152	151	TnX165	Xx165
WDATA13 / WDATA45	TnX13	154	153	TnX166	Xx166
WDATA12 / WDATA44	TnX12	156	155	TnX167	Xx167
WDATA11 / WDATA43	TnX11	158	157	TnX168	Xx168
WDATA10 / WDATA42	TnX10	160	159	TnX169	Xx169
WDATA9 / WDATA41	TnX9	162	161	TnX170	Xx170
WDATA8 / WDATA40	TnX8	164	163	TnX171	Xx171
WDATA7 / WDATA39	TnX7	166	165	TnX172	Xx172
WDATA6 / WDATA38	TnX6	168	167	TnX173	Xx173
WDATA5 / WDATA37	TnX5	170	169	TnX174	Xx174
WDATA4 / WDATA36	TnX4	172	171	TnX175	Xx175
WDATA3 / WDATA35	TnX3	174	173	TnX176	Xx176
WDATA2 / WDATA34	TnX2	176	175	TnX177	Xx177
WDATA1 / WDATA33	TnX1	178	177	TnX178	Xx178
WDATA0 / WDATA32	TnX0	180	179	TnX179	Xx179

For a description of the AXI bus signals see *AMBA AXI Protocol Specification* (ARM IHI 0022), *Chapter 2 Signal Descriptions*.

5.1.2 HDRY signals

Table 5-3 describes the signals on the HDRY pins for the CT11MPCore and EB baseboard. The MPCore AXI port 0 signals are multiplexed onto the pins on this header.

_____Note _____

All signals on the upper and lower HDRY headers are the same for the CT11MPCore.

The signal on the upper header of the CT11MPCore is named YUn and the signal on the lower header is named YLn, the table entry is Yxn. Replace x by L for the signal on the lower header and by U for the signal on the upper header. For example, the pin 1 signal for the lower header is **YL89** and the pin 1 signal for the upper header is **YU89** and the corresponding CT11MPCore signal is **ARADDR12 / ARADDR28**. This example also illustrates the designation used for a multiplexed signal, X / Y where signal X is present when **CLKOUTDIV** is HIGH and signal Y is present when **CLKOUTDIV** is LOW. See *Multiplexing scheme* on page 3-31 for further details of the AXI signal multiplexing scheme.

For the EB there are two HDRY headers (tile site 1 and tile site 2). Replace the **TnY** signal prefix in the table by **T1Y** or **T2Y** to get the signal name for tile site 1 or 2 respectively.

Table 5-3 HDRY signals

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
ARADDR13 / ARADDR29	TnY90	2	1	TnY89	ARADDR12 / ARADDR28
ARADDR14 / ARADDR30	TnY91	4	3	TnY88	ARADDR11 / ARADDR27
ARADDR15 / ARADDR31	TnY92	6	5	TnY87	ARADDR10 / ARADDR26
ARID0 / ARID2	TnY93	8	7	TnY86	ARADDR9 / ARADDR25
ARID1 / ARID3	TnY94	10	9	TnY85	ARADDR8 / ARADDR24

Table 5-3 HDRY signals (continued)

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
ARLEN0 / ARLEN2	TnY95	12	11	TnY84	ARADDR7 / ARADDR23
ARLEN1 / ARLEN3	TnY96	14	13	TnY83	ARADDR6 / ARADDR22
ARSIZE0 / ARSIZE1	TnY97	16	15	TnY82	ARADDR5 / ARADDR21
ARID4 / ARPROT2	TnY98	18	17	TnY81	ARADDR4 / ARADDR20
ARPROT0 / ARPROT1	TnY99	20	19	TnY80	ARADDR3 / ARADDR19
ARBURSTO / ARBURST1	TnY100	22	21	TnY79	ARADDR2 / ARADDR18
ARLOCK0/ ARLOCK1	TnY101	24	23	TnY78	ARADDR1 / ARADDR17
ARCACHE0 / ARCACHE2	TnY102	26	25	TnY77	ARADDR0 / ARADDR16
ARCACHE1 / ARCACHE3	TnY103	28	27	TnY76	BREADY
ARVALID / b0	TnY104	30	29	TnY75	BVALID
ARREADY	TnY105	32	31	TnY74	BRESP0 / BRESP1
RDATA0 / RDATA32	TnY106	34	33	TnY73	BID4 / (not connected)
RDATA1 / RDATA33	TnY107	36	35	TnY72	BID1 / BID3
RDATA2 / RDATA34	TnY108	38	37	TnY71	BID0 / BID2
RDATA3 / RDATA35	TnY109	40	39	TnY70	AWREADY

Table 5-3 HDRY signals (continued)

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
RDATA4 / RDATA36	TnY110	42	41	TnY69	AWVALID / b0
RDATA5 / RDATA37	TnY111	44	43	TnY68	AWCACHE1 / AWCACHE3
RDATA6 / RDATA38	TnY112	46	45	TnY67	AWCACHE0 / AWCACHE2
RDATA7 / RDATA39	TnY113	48	47	TnY66	AWLOCK0 / AWLOCK1
RDATA8 / RDATA40	TnY114	50	49	TnY65	AWBURST0 / AWBURST1
RDATA9 / RDATA41	TnY115	52	51	TnY64	AWPROT0 / AWPROT1
RDATA10 / RDATA42	TnY116	54	53	TnY63	ARM_nRESET
RDATA11 / RDATA43	TnY117	56	55	TnY62	AWID4 / AWPROT2
RDATA12 / RDATA44	TnY118	58	57	TnY61	AWSIZE0 / AWSIZE1
RDATA13 / RDATA45	TnY119	60	59	TnY60	AWLEN1 / AWLEN3
RDATA14 / RDATA46	TnY120	62	61	TnY59	AWLEN0 / AWLEN2
RDATA15 / RDATA47	TnY121	64	63	TnY58	AWID1 / AWID3
RDATA16 / RDATA48	TnY122	66	65	TnY57	AWID0 / AWID2
RDATA17 / RDATA49	TnY123	68	67	TnY56	AWADDR15 / AWADDR31
RDATA18 / RDATA50	TnY124	70	69	TnY55	AWADDR14 / AWADDR30

Table 5-3 HDRY signals (continued)

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
RDATA19 / RDATA51	TnY125	72	71	TnY54	AWADDR13 / AWADDR29
RDATA20 / RDATA52	TnY126	74	73	TnY53	AWADDR12 / AWADDR28
RDATA21 / RDATA53	TnY127	76	75	TnY52	AWADDR11 / AWADDR27
RDATA22 / RDATA54	TnY128	78	77	TnY51	AWADDR10 / AWADDR26
RDATA23 / RDATA55	TnY129	80	79	TnY50	AWADDR9 / AWADDR25
RDATA24 / RDATA56	TnY130	82	81	TnY49	AWADDR8 / AWADDR24
RDATA25 / RDATA57	TnY131	84	83	TnY48	AWADDR7 / AWADDR23
RDATA26 / RDATA58	TnY132	86	85	TnY47	AWADDR6 / AWADDR22
RDATA27 / RDATA59	TnY133	88	87	TnY46	AWADDR5 / AWADDR21
RDATA28 / RDATA60	TnY134	90	89	TnY45	AWADDR4 / AWADDR20
RDATA29 / RDATA61	TnY135	92	91	TnY44	AWADDR3 / AWADDR19
RDATA30 / RDATA62	TnY136	94	93	TnY43	AWADDR2 / AWADDR18
RDATA31 / RDATA63	TnY137	96	95	TnY42	AWADDR1 / AWADDR17
RID0 / RID2	TnY138	98	97	TnY41	AWADDR0 / AWADDR16
RID1 / RID3	TnY139	100	99	TnY40	WREADY

Table 5-3 HDRY signals (continued)

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
RRESP0 / RRESP1	TnY140	102	101	TnY39	WVALID / b0
RLAST / RID4	TnY141	104	103	TnY38	WLAST / WID4
RVALID / (not connected)	TnY142	106	105	TnY37	WSTRB3 / WSTRB7
RREADY	TnY143	108	107	TnY36	WSTRB2 / WSTRB6
Yx144	TnY144	110	109	TnY35	WSTRB1 / WSTRB5
Yx145	TnY145	112	111	TnY34	WSTRB0 / WSTRB4
Yx146	TnY146	114	113	TnY33	WID1 / WID3
Yx147	TnY147	116	115	TnY32	WID0 / WID2
Yx148	TnY148	118	117	TnY31	WDATA31 / WDATA63
Yx149	TnY149	120	119	TnY30	WDATA30 / WDATA62
Yx150	TnY150	122	121	TnY29	WDATA29 / WDATA61
Yx151	TnY151	124	123	TnY28	WDATA28 / WDATA60
Yx152	TnY152	126	125	TnY27	WDATA27 / WDATA59
Yx153	TnY153	128	127	TnY26	WDATA26 / WDATA58
Yx154	TnY154	130	129	TnY25	WDATA25 / WDATA57

Table 5-3 HDRY signals (continued)

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
Yx155	TnY155	132	131	TnY24	WDATA24 / WDATA56
Yx156	TnY156	134	133	TnY23	WDATA23 / WDATA55
Yx157	TnY157	136	135	TnY22	WDATA22 / WDATA54
Yx158	TnY158	138	137	TnY21	WDATA21 / WDATA53
Yx159	TnY159	140	139	TnY20	WDATA20 / WDATA52
Yx160	TnY160	142	141	TnY19	WDATA19 / WDATA51
Yx161	TnY161	144	143	TnY18	WDATA18 / WDATA50
Yx162	TnY162	146	145	TnY17	WDATA17 / WDATA49
Yx163	TnY163	148	147	TnY16	WDATA16 / WDATA48
Yx164	TnY164	150	149	TnY15	WDATA15 / WDATA47
Yx165	TnY165	152	151	TnY14	WDATA14 / WDATA46
Yx166	TnY166	154	153	TnY13	WDATA13 / WDATA45
Yx167	TnY167	156	155	TnY12	WDATA12 / WDATA44
Yx168	TnY168	158	157	TnY11	WDATA11 / WDATA43
Yx169	TnY169	160	159	TnY10	WDATA10 / WDATA42

Table 5-3 HDRY signals (continued)

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
Yx160	TnY170	162	161	TnY9	WDATA9 / WDATA41
Yx171	TnY171	164	163	TnY8	WDATA8 / WDATA40
Yx172	TnY172	166	165	TnY7	WDATA7 / WDATA39
Yx173	TnY173	168	167	TnY6	WDATA6 / WDATA38
Yx174	TnY174	170	169	TnY5	WDATA5 / WDATA37
Yx175	TnY175	172	171	TnY4	WDATA4 / WDATA36
Yx176	TnY176	174	173	TnY3	WDATA3 / WDATA35
Yx177	TnY177	176	175	TnY2	WDATA2 / WDATA34
Yx178	TnY178	178	177	TnY1	WDATA1 / WDATA33
Yx179	TnY179	180	179	TnY0	WDATA0 / WDATA32

For a description of the AXI bus signals see *AMBA AXI Protocol Specification* (ARM IHI 0022), *Chapter 2 Signal Descriptions*.

5.1.3 HDRZ signals

Table 5-4 on page 5-17 describes the signals on the HDRZ pins for the CT11MPCore and the EB.

_____Note _____

Except for the clock and JTAG signals, and **nTILE_DET**, the CT11MCore either has the same signal on both the upper and lower pins or a signal on the lower pins only.

Some of the HDRZ signals can be isolated from the HDRZ header pins and these are shown bracketed in the table listing. See *HDRZ signal mux connections* on page 3-25 for details.

Some of the HDRZ signals are multiplexed and use the designation X/Y where signal X is present when **CLKOUTDIV** is HIGH and signal Y is present when **CLKOUTDIV** is LOW. See *Multiplexing scheme* on page 3-31 for further details of the AXI signal multiplexing scheme.

The signal on the upper header of the CT11MPCore is named ZUn and the signal on the lower header is named ZLn, the table entry is Zxn. Replace x by L for the signal on the lower header and by U for the signal on the upper header. For example, the pin 1 signal for the lower header is **ZL128** and the pin 1 signal for the upper header is **ZU128**.

For the EB there are two HDRZ headers (tile site 1 and tile site 2). Replace the **TnZ** signal prefix in the table by **T1Z** or **T2Z** to get the signal name for tile site 1 or 2 re respectively.

Table 5-4 HDRZ signals

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
255	TnZ255	2	1	TnZ128	Zx128
254	TnZ254	4	3	TnZ129	Zx129
253	TnZ253	6	5	TnZ130	Zx130
7.252	TnZ252	8	7	TnZ131	Zx131
Z251	TnZ251	10	9	TnZ132	Zx132
Z250	TnZ250	12	11	TnZ133	Zx133
Z 249	TnZ249	14	13	TnZ134	Zx134
Z248	TnZ248	16	15	TnZ135	Zx135
Z 247	TnZ247	18	17	TnZ136	Zx136
Z246	TnZ246	20	19	TnZ137	Zx137
Z245	TnZ245	22	21	TnZ138	Zx138
Z244	TnZ244	24	23	TnZ139	Zx139

Table 5-4 HDRZ signals (continued)

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
Z243	TnZ243	26	25	TnZ140	Zx140
Z242	TnZ242	28	27	TnZ141	Zx141
Z241	TnZ241	30	29	TnZ142	Zx142
Z240	TnZ240	32	31	TnZ143	Zx143
Z239	TnZ249	34	33	TnZ144	Zx144
Z238	TnZ248	36	35	TnZ145	Zx145
Z237	TnZ237	38	37	TnZ146	Zx146
Z236	TnZ236	40	39	TnZ147	Zx147
Z235	TnZ235	42	41	TnZ148	Zx148
Z234	TnZ234	44	43	TnZ149	Zx149
Z233	TnZ233	46	45	TnZ150	Zx150
Z232	TnZ232	48	47	TnZ151	Zx151
nWARMRST	TnZ231	50	49	TnZ152	Zx152
PLDCLK	TnZ230	52	51	TnZ153	Zx153
PLDnRESET	TnZ229	54	53	TnZ154	Zx154
PLDD0	TnZ228	56	55	TnZ155	Zx155
PLDD1	TnZ227	58	57	TnZ156	Zx156
AWUSER1_SW4 / ARUSER1_SW4	TnZ226	60	59	TnZ157	Zx157
AWUSER1_SW3 / ARUSER1_SW3	TnZ225	62	61	TnZ158	Zx158
AWUSER1_SW2 / ARUSER1_SW2	TnZ224	64	63	TnZ159	Zx159
AWUSER1_SW1 / ARUSER1_SW1	TnZ223	66	65	TnZ160	Zx160
AWUSER1_SW0 / ARUSER1_SW0	TnZ222	68	67	TnZ161	Zx161

Table 5-4 HDRZ signals (continued)

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
AWUSER0_SW4 / ARUSER0_SW4	TnZ221	70	69	TnZ162	Zx162
AWUSER0_SW3 / ARUSER0_SW3	TnZ220	72	71	TnZ163	Zx163
AWUSER0_SW2 / ARUSER0_SW2	TnZ219	74	73	TnZ164	Zx164
AWUSER0_SW1 / ARUSER0_SW1	Zx218	76	75	TnZ165	Zx165
AWUSER0_SW0 / ARUSER0_SW0	Zx217	78	77	TnZ166	Zx166
nCOLDRST	Zx216	80	79	TnZ167	Zx167
INT15	Zx215	82	81	TnZ168	Zx168 (nPORESET0)
INT14	Zx214	84	83	TnZ169	Zx169 (nPORESET1)
INT13	Zx213	86	85	TnZ170	Zx170 (nPORESET2)
INT12	Zx212	88	87	TnZ171	Zx171 (nPORESET3)
INT11	Zx211	90	89	TnZ172	Zx172 (nCPURESET0)
INT10	Zx210	92	91	TnZ173	Zx173 (nCPURESET1)
INT9	Zx209	94	93	TnZ174	Zx174 (nCPURESET2)
INT8	Zx208	96	95	TnZ175	Zx175 (nCPURESET3)
INT7	Zx207	98	97	TnZ176	Zx176 (RESETREQ0)

Table 5-4 HDRZ signals (continued)

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
INT6	Zx206	100	99	TnZ177	Zx177 (RESETREQ1)
INT5	Zx205	102	101	TnZ178	Zx178 (RESETREQ2)
INT4	Zx204	104	103	TnZ179	Zx179 (RESETREQ3)
INT3	Zx203	106	105	TnZ180	Zx180 (nWDRESET0)
INT2	Zx202	108	107	TnZ181	Zx181 (nWDRESET1)
INT1	Zx201	110	109	TnZ182	Zx182 (nWDRESET2)
INT0	Zx200	112	111	TnZ183	Zx183 (nWDRESET3)
Zx199 (STNBYWFI3)	Zx199	114	113	TnZ184	Zx184 (EDBGRQ0)
Zx198 (STNBYWFI2)	Zx198	116	115	TnZ185	Zx185 (EDBGRQ1)
Zx197 (STNBYWFI1)	Zx197	118	117	TnZ186	Zx186 (EDBGRQ2)
Zx196 (STNBYWFI0)	Zx196	120	119	TnZ187	Zx187 (EDBGRQ3)
Zx195 (SMPnAMP3)	Zx195	122	121	TnZ188	Zx188 (DBGACK0)
Zx194 (SMPnAMP2)	Zx194	124	123	TnZ189	Zx189 (DBGACK1)
Zx193 (SMPnAMP1)	Zx193	126	125	TnZ190	Zx190 (DBGACK2)
Zx192 (SMPnAMP0)	Zx192	128	127	TnZ191	Zx191 (DBGACK3)

Table 5-4 HDRZ signals (continued)

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
CLK_POS_DN	CLK_POS_DN_IN	130	129	D_nSRST	D_nSRST
CLK_NEG_DN_IN CLK_NEG_DN_OUT	CLK_NEG_DN_IN	132 (U) 132 (L)	131	D_nTRST	D_nTRST
CLK_POS_UP	CLK_POS_UP_OUT	134	133 (U) 133 (L)	D_TDO_IN	D_TDO_IN D_TDO_OUT
CLK_NEG_UP_OUT CLK_NEG_UP_IN	CLK_NEG_UP_OUT	136 (U) 136 (L)	135	D_TDI	D_TDI
CLK_UP_MINUS2	CLK_UP_THRU	138	137 (U) 137 (L)	D_TCK_OUT	D_TCK_OUT D_TCK_IN
CLK_UP_MINUS1	CLK_OUT_PLUS1	140	139 (U) 139 (L)	D_TMS_OUT	D_TMS_OUT D_TMS_IN
CLK_UP_THRU	CLK_OUT_PLUS2	142	141	D_RTCK	D_RTCK
CLK_DN_PLUS2	CLK_IN_PLUS2	144	143	C_nSRST	C_nSRST
CLK_DN_PLUS1	CLK_IN_PLUS1	146	145	C_nTRST	C_nTRST
CLK_DN_THRU	CLK_DN_THRU	148	147 (U) 147 (L)	C_TDO_IN	C_TDO_IN C_TDO_OUT
CLK_GLOBAL	CLK_GLOBAL	150	149	C_TDI	C_TDI
FPGA_IMAGE	FPGA_IMAGE	152	151 (U) 151 (L)	C_TCK_OUT	C_TCK_OUT C_TCK_IN
nSYSPOR	nSYSPOR	154	153 (U) 153 (L)	C_TMS_OUT	C_TMS_OUT C_TMS_IN
nSYSRST	nSYSRST	156	155 (U) 155 (L)	nTILE_DET	nTILE_DET GND
nRTCKEN	nRTCKEN	158	157	nCFGEN	nCFGEN
SPARE12	SPARE12 (reserved)	160	159	GLOBAL_DONE	GLOBAL_DONE
SPARE10	SPARE10 (reserved)	162	161	SPARE11 (reserved)	SPARE11
SPARE8	SPARE8 (reserved)	164	163	SPARE9 (reserved)	SPARE9

Table 5-4 HDRZ signals (continued)

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
SPARE6	SPARE6 (reserved)	166	165	SPARE7 (reserved)	SPARE7
SPARE4	SPARE4 (reserved)	168	167	SPARE5 (reserved)	SPARE5
SPARE2	SPARE2 (reserved)	170	169	SPARE3 (reserved)	SPARE3
SPARE0	SPARE0 (reserved)	172	171	SPARE1 (reserved)	SPARE1
Zx64	TnZ64	174	173	TnZ63	Zx63
Zx65	TnZ65	176	175	TnZ62	Zx62
Zx66	TnZ66	178	177	TnZ61	Zx61
Zx67	TnZ67	180	179	TnZ60	Zx60
Zx68	TnZ68	182	181	TnZ59	Zx59
Zx69	TnZ79	184	183	TnZ58	Zx58
Zx70	TnZ70	186	185	TnZ57	Zx57
Zx71	TnZ71	188	187	TnZ56	Zx56
Zx72	TnZ72	190	189	TnZ55	Zx55
Zx73	TnZ73	192	191	TnZ54	Zx54
Zx74	TnZ74	194	193	vZ53	Zx53
Zx75	TnZ75	196	195	TnZ52	Zx52
Zx76	TnZ76	198	197	TnZ51	Zx51
Zx77	TnZ77	200	199	TnZ50	Zx50
Zx78	TnZ78	202	201	TnZ49	Zx49
Zx79	TnZ79	204	203	TnZ48	Zx48
Zx80	TnZ80	206	205	TnZ47	Zx47
Zx81	TnZ81	208	207	TnZ46	Zx46
Zx82	TnZ82	210	209	TnZ45	Zx45
Zx83	TnZ83	212	211	TnZ44	Zx44

Table 5-4 HDRZ signals (continued)

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
Zx84	TnZ84	214	213	TnZ43	Zx43
Zx85	TnZ85	216	215	TnZ42	Zx42
Zx86	TnZ86	218	217	TnZ41	Zx41
Zx87	TnZ87	220	219	TnZ40	Zx40
Zx88	TnZ88	222	221	TnZ39	Zx39
Zx89	TnZ89	224	223	TnZ38	Zx38
Zx90	TnZ90	226	225	TnZ37	Zx37
Zx91	TnZ91	228	227	TnZ36	Zx36
Zx92	TnZ92	230	229	TnZ35	Zx35
Zx93	TnZ93	232	231	TnZ34	Zx34
Zx94	TnZ94	234	233	TnZ33	Zx33
Zx95	TnZ95	236	235	TnZ32	Zx32
Zx96	TnZ96	238	237	TnZ31	Zx31
Zx97	TnZ97	240	239	TnZ30	Zx30
Zx98	TnZ98	242	241	TnZ29	Zx29
Zx99	TnZ99	244	243	TnZ28	Zx28
Zx100	TnZ100	246	245	TnZ27	Zx27
Zx101	TnZ101	248	247	TnZ26	Zx26
Zx102	TnZ102	250	249	TnZ25	Zx25
Zx103	TnZ103	252	251	TnZ24	Zx24
Zx104	TnZ104	254	253	TnZ23	Zx23
Zx105	TnZ105	256	255	TnZ22	Zx22
Zx106	TnZ106	258	257	TnZ21	Zx21
Zx107	TnZ107	260	259	TnZ20	Zx20

Table 5-4 HDRZ signals (continued)

Core Tile signals	Baseboard signals	Even pins	Odd pins	Baseboard signals	Core Tile signals
Zx108	TnZ108	262	261	TnZ19	Zx19
Zx109	TnZ109	264	263	TnZ18	Zx18
Zx110	TnZ110	266	265	TnZ17	Zx17
Zx111	TnZ111	268	267	TnZ16	Zx16
Zx112	TnZ112	270	269	TnZ15	Zx15
Zx113	TnZ113	272	271	TnZ14	Zx14
Zx114	TnZ114	274	273	TnZ13	Zx13
Zx115	TnZ115	276	275	TnZ12	Zx12
Zx116	TnZ116	278	277	TnZ11	Zx11
Zx117	TnZ117	280	279	TnZ10	Zx10
Zx118	TnZ118	282	281	TnZ9	Zx9
Zx119	TnZ119	284	283	TnZ8	Zx8
Zx120	TnZ120	286	285	TnZ7	Zx7
Zx121	TnZ121	288	287	TnZ6	Zx6
Zx122	TnZ122	290	289	TnZ5	Zx5
Zx123	TnZ123	292	291	TnZ4	Zx4
Zx124	TnZ124	294	293	TnZ3	Zx3
Zx125	TnZ125	296	295	TnZ2	Zx2
Zx126	TnZ126	298	297	TnZ1	Zx1
Zx127	TnZ127	300	299	TnZ0	Zx0

5.2 Links, test points, and LED indicators

This section describes the links, test points and LED indicators present on the CT11MPCore.

5.2.1 Links

Figure 5-2 shows the location of the links on the bottom of the CT11MPCore. Figure 5-3 on page 5-26 shows the location of the links on the top of the CT11MPCore. The function of each link is listed in Table 5-5 on page 5-27.

Figure 5-2 Location of links (bottom)

Figure 5-3 Location of links (top)

Table 5-5 Link function

Link	Description
R1	When fitted, the ISP1 clock generator output is enabled. When not fitted, the ISP1 clock generator output is either HIGH or LOW.
	Note
	This link is fitted by default and is required for normal operation.
R3-R20	PERIPHBASE [17:0] value. Defines bits [31:14] of the 32 bit peripheral address for the ARM11 MPCore test chip. Link R3 defines bit 0, link R4 defines bit 1, and so on through to R20 which defines bit 17. A bit is tied LOW, through a $10\text{K}\Omega$ resistor, unless a link is fitted to force the bit HIGH by direct connection to the 3V3 supply. The default setting of PERIPHBASE [17:0] is b000111110000000000 (0x1F00 0000). See <i>ARM11 MPCore test chip registers</i> on page 3-44.
R43	When fitted, nRTCKEN is tied LOW in normal mode and floats in configuration mode. When not fitted, nRTCKEN floats unless controlled via header HDRZ.
	When the CT11MPCore is used with the EB this link is not fitted.

Table 5-5 Link function (continued)

Link	Description		
R56	When fitted, the ISP0 clock generator output is enabled. When not fitted, the ISP0 clock generator output is either HIGH or LOW.		
	Note		
	This link is fitted by default and is required for normal operation.		
R57	When fitted, enables the AXI bus switches. When not fitted, the AXI bus switches are isolated for test purposes.		
	Note		
	When the CT11MPCore is used with the EB this link is fitted to provide dual AXI ports.		
R67-70, R79-R82	JTAG configuration mode routing options.		
	The default routing option, when R79, R81, R68, and R70 are fitted, connects all JTAG configurable devices, the ISP clock generator 0, ISP clock generator 1, the PLD, and the ARM11 MPCore test chip in the configuration scan chain.		
	Note		
	This link option is the only supported option and is required for normal operation. Other available option are for production test purposes only.		

5.2.2 Test points

Figure 5-4 on page 5-29 shows the location of test points on the CT11MPCore. Table 5-6 on page 5-29 lists the function of the signal at each test point.

Figure 5-4 Test point location

Table 5-6 Test point signal and description

Test point	Signal	Description	
TP1	REFOUT0	Local clock generator CLK1 output.	
TP2	VDDCORE	1V2 supply to the ARM11 MPCore test chip core.	
TP3	GND	Ground (0V) reference loop for signal measurements.	
TP4	GND	Ground (0V) reference loop for signal measurements.	
TP7	PLD_SPARE0	Function not implemented, used in development only,	

Table 5-6 Test point signal and description (continued)

Test point	Signal	Description		
TP8	nLOCK1	Lock indicator. Indicates that the ISP1 clock generator is locked to CLKOUTDIV from test chip PLL.		
TP9	ISP1_9A	ISP1 clock generator output Bank 9A.		
TP10	ISP1_9B	ISP1 clock generator output Bank 9B.		
TP11	CLKOUTDIV	Input clock to ISP1 clock generator from the test chip PLL.		
TP12	nLOCK0	Lock indicator. Indicates that the ISPO clock generator is locked to CLKOUTDIVD from the test chip PLL.		
TP13	ISP0_7A	ISP0 clock generator output Bank 7A.		
TP14	ISP0_7B	ISP0 clock generator output Bank 7B.		
TP15	CLKOUTDIVD	Input clock to ISP0 clock generator from the test chip PLL.		
TP16	AVDD	1V2 supply to the ARM11 MPCore test chip PLL.		
TP17	1V8	1V8 supply to the PLD core.		
TP18	REFCLK	Reference clock from selected external source.		
TP19	RVALID0	RVALID from AXI port 0.		
TP20	ARVALID0	ARVALID from AXI port 0.		
TP21	RVALID1	RVALID from AXI port 1.		
TP22	ARVALID1	ARVALID from AXI port 1.		

——Note ——TP5 and TP6 are not included on the production release of the Core Tile.

5.2.3 LED indicators

Figure 5-5 on page 5-31 shows the location of LED indicators on the CT11MPCore. Table 5-7 on page 5-31 lists the function of each LED indicator.

Figure 5-5 LED indicator location

Table 5-7 LED function

LED	Color	Description
PGOOD	Green	Indicates that the ARM11 MPCore test chip VDDCORE power supply is ON and within tolerance.
USER0	Green	Indicates by 1Hz flashing that the serial link to the CT11MPCore control PLD is locked.

Table 5-7 LED function (continued)

LED	Color	Description
USER1	Green	Indicates that the ISP1 clock generator is locked to the CLKOUTDIV PLL output clock.
USER2	Green	Indicates that the ISP0 clock generator is locked to the CLKOUTDIVD PLL output clock.
USER3	Green	Indicates that the ARM11 MPCore test chip PLL is locked to the REFCLK input clock.

The USER[3:0] LED functions are programmable. The functions listed in Table 5-7 on page 5-31 are the default functions pre-programmed by the CT11MPCore control PLD design.

5.3 AXI bus timing specification

This section describes the timing for the CT11MPCore multiplexed AXI system bus.

5.3.1 Core Tile timing and the AMBA 3 AXI Protocol

The worst case timing figures at the CT11MPCore headers are shown in Table 5-8 on page 5-34 and Table 5-9 on page 5-35. You must use these figures as a guideline when designing your own boards.

The system bus on RealView Logic Tiles and baseboards is routed between FPGAs. The exact performance of a system depends on the timing parameters of the baseboard and all tiles in the system. Some allowance also has to be made for clock skew, routing delays and number of modules (that is, loading).

Not all Logic Tile or baseboard FPGA implementations meet the ideal timing parameters, due to the complexity of the design or routing congestion within the device. For this reason, the PLL clock generators on baseboards default to a safe low value that all modules can achieve. See the documentation supplied with your baseboard for details on changing the clock frequency.

A detailed timing analysis involves calculating the input/output delays between modules for all timing parameters. In general, the simplest approach to determine the maximum operating frequency is to increase the frequency of the clock generators until the system becomes unstable.

AXI Clock

The AMBA 3 AXI protocol includes a single clock signal, **ACLK**. All input signals are sampled on the rising edge of **ACLK**. All output signal changes must occur after the rising edge of **ACLK**.

There must be no combinatorial paths between input and output signals on both master and slave interfaces.

—— Note ———				
The CT11MPCore has three clocks:				
CLKOUTDIV	This clock drives the on-board AXI port 1 signal multiplexers and is buffered out to the Core Tile headers as CLK_GLOBAL .			
CLKOUTDIVD	This clock, identical to CLKOUTDIV , drives the on-board AXI port 0 signal multiplexers.			
CLK_GLOBAL	This clock is the global AXI clock (ACLK).			

AXI Reset

The AMBA 3 AXI protocol includes a single active LOW reset signal, **ARESETn**. The reset signal can be asserted asynchronously, but deassertion must be synchronous after the rising edge of **ACLK**.

5.3.2 Timing parameters

The following timings are based on the grouped delays for the CT11MPCore. They include the test chip input and output delay, and the delay due to the AXI bus multiplexing.

Table 5-8 shows the Global timing parameters.

Table 5-8 Global timing parameters

Parameter	Description	Max
T _{clk}	CLK_GLOBAL clock frequency	20MHz
T _{isrst}	nSYSPORESET deasserted setup time before CLK_GLOBAL	5ns

_____Note _____

During reset the following interface requirements apply:

- a master interface must drive ARVALID, AWVALID, and WVALID LOW
- a slave interface must drive RVALID and BVALID LOW.

All other signals can be driven to any value.

A master interface must begin driving **ARVALID**, **AWVALID**, or **WVALID** HIGH only at a rising **CLK_GLOBAL** edge after **nSYSPORESET** is HIGH.

The CT11MPCore uses a multiplexed AXI bus. Figure 5-6 on page 5-35 shows the CT11MPCore multiplexed AXI bus input setup timing.

Figure 5-6 CT11MPCore multiplexed AXI bus input setup timing

T_{ctis} Input setup to clock

This is the longest time that the CT11MPCore requires a valid AXI bus signal level to be presented at the Core Tile header before a rising or falling edge of **CLK_GLOBAL**.

Figure 5-7 shows the CT11MPCore multiplexed AXI bus output valid timing.

Figure 5-7 CT11MPCore multiplexed AXI bus output valid timing

T_{ctov} Core Tile output valid after clock

This is the longest delay between a rising or falling edge of **CLK_GLOBAL** and a valid AXI bus output signal level arriving at the CT11MPCore header.

Table 5-9 shows the CT11MPCore AXI bus worst case timings when characterized for a slow process, a **VDDCORE** voltage of 1.1V, and a core temperature of 85°C.

 Parameter
 Description
 Max

 Tctis
 Input setup time to either edge of CLK_GLOBAL
 8.6ns

 Tctov
 Output valid time from either edge of CLK_GLOBAL
 9.4ns

Table 5-9 CT11MPCore multiplexed AXI bus timing parameters

Appendix A **Specifications**

This appendix contains the specifications for the CT11MPCore. It contains the following sections:

- Electrical specification on page A-2
- *Mechanical details* on page A-4.

Note			
See AXI bus timing specificat	ion on page 5-33 fc	or the timing specific	ations for Core
Tiles that use the HRI-0146 h	oard		

A.1 Electrical specification

This section provides details of the voltage and current characteristics for the CT11MPCore.

A.1.1 Bus interface characteristics

Table A-1 shows the Core Tile electrical characteristics for the system bus interface. The CT11MPCore uses 3.3V and 5V sources.

Table A-1 Core Tile electrical characteristics

Symbol	Description	Min	Max	Unit
3V3	Supply voltage (interface signals)	3.1	3.5	V
5V	Supply voltage (regulators)	4.75	5.25	V
V _{IH}	High-level input voltage	2.0	3.6	V
V _{IL}	Low-level input voltage	0	0.8	V
V _{OH}	High-level output voltage	2.4	-	V
V _{OL}	Low-level output voltage	-	0.4	V
C _{IN}	Input capacitance	-	20	pF

A.1.2 Current requirements

Table A-2 shows current requirements measured at room temperature and nominal voltage.

The power regulators are all powered from the 5V supply. Interface logic on the board is powered from the on board 3.3V.

Table A-2 Current requirements

Component	VDDCORE 1V2	AVDD 1V2	1V8	3V3
MPCore core	500mA	-	-	-
MPCore PLL	-	10mA	-	-

Table A-2 Current requirements (continued)

Component	VDDCORE 1V2	AVDD 1V2	1V8	3V3
MPCore I/O	-	-	-	1A
Control PLD core	-	-	100mA	
Control PLD I/O and Mux logic	-	-	-	500mA

Note
The current requirements shown are typical and are dependant on the application being

run.

A.2 Mechanical details

Figure A-1 shows the mechanical outline of the CT11MPCore.

Figure A-1 Board outline (top view)

Glossary

This glossary lists all the abbreviations used in the User Guide.

Analog to Digital Converter. A device that converts an analog signal into digital data.

AXI Advanced eXtensible Interface. An ARM open standard bus protocol.

AMBA 3 Advanced Microcontroller Bus Architecture version 3.

DAC Digital to Analog Converter. A device that converts digital data into analog level signals.

DCC Debug Communications Controller. The DCC is the set of resources that the external

DBGTAP debugger uses to communicate with a piece of software running on the core.

DMA Direct Memory Access.

EB RealView Emulation Baseboard. A hardware platform used for system prototyping and

debugging of ARM microprocessors.

FPGA Field Programmable Gate Array.

ICE In Circuit Emulator. A interface device for configuring and debugging processor cores.

I/O Input/Output.

JTAG Joint Test Action Group. The committee which defined the IEEE test access port and

boundary-scan standard.

LED Light Emitting Diode.

Multi-ICE A system for debugging embedded processor cores using a JTAG interface.

PCI Peripheral Component Interconnect. A circuit board level bus interconnect.

PISMO Memory specification for plug in memory modules.

PLD Programmable Logic Device.

PLL Phase-Locked Loop, a type of programmable oscillator.

RAM Random Access Memory.

RVI RealView ICE. A system for debugging embedded processor cores using a JTAG

interface.

SCU Snoop Control Unit. A system block that maintains coherency across the L1 cache

memory systems in the ARM11 MPCore.

USB Universal Serial Bus. Hardware interface for connecting peripheral devices.