Топология
1 курс 2 семестр
Задачи
А.Ю. Пирковский

Содержание

1	Листок 1	3
2	Листок 2	5
3	Листок 3	8

Листок 1

Задача 1

Пусть X — хаусдорфово топологическое пространство. Всегда ли верно, что $\overline{A \cap B} = \overline{A} \cap \overline{B}$ для любых $A, B \subset X$ (черта означает замыкание)?

▶

Пусть
$$A=(-1,0)$$
 $B=(0,1),$ тогда $\overline{A\cap B}=\varnothing,$ $\overline{A}=[-1,0]$ $\overline{B}=[0,1]$ тогда $\overline{A}\cap \overline{B}=0$

* Верно отношение: $A \cap B \subset A, \ A \cap B \subset B \Rightarrow \overline{A \cap B} \subset \overline{A}, \ \overline{A \cap B} \subset \overline{B} \Rightarrow \overline{A \cap B} \subset \overline{A} \cap \overline{B}$. Ответ: нет.

Задача 2

Снабдим пространство $\mathbb{R}^{\mathbb{R}}$ всех функций из \mathbb{R} в \mathbb{R} топологией произведения (она же – топология поточечной сходимости). Найдите замыкание в $\mathbb{R}^{\mathbb{R}}$ множества всех многочленов без свободного члена.

▶

Топология поточечной сходимости на \mathbb{R} – это топология, предбаза которой – образ множества $\sigma(X,I)$ $\forall x \in \mathbb{R}$ $\forall I \subset \mathbb{R}$

 $\{f \mid f(0) = 0\}\ A = \{$ многочлены без свободного члена $\}.$

- 1. Докажем, что ничего, кроме функций, проходящих через (0,0), не лежит в замыкании A. Рассмотрим произвольную функцию f, такую что $f(0) \neq 0$, и найдем ее окрестность, в которой нет точек из A. Без ограничения общности скажем, что f(0) = a, и зададим $I = (a \frac{|a|}{2}, a + \frac{|a|}{2})$, тогда в $\sigma(0, I)$ не лежит ни одного элемента из A, что равносильно тому, что $f \notin \overline{A}$, что и требовалось доказать
- 2. Докажем, что все функции проходят через (0,0) лежат в \overline{A} . f произвольная функция, такая что f(0)=0. Рассмотрим ее произвольную окрестность. Помимо условия в нуле у функции есть еще конечное множество точек с условием.

Тогда пусть есть $\sigma_i(x_i,I_i)$ i=1,...,n. Выберем в каждом I_i по точке. Получим набор из n+1 различной точки. Тогда составим по этим точкам интерполяционный многочлен Лагранжа. Известно, что он степени не выше $n.\Rightarrow$ в любой точке окрестности функции f мы нашли точку из A. Значит, f – предельная точка $A.\Rightarrow f\in \overline{A}$. Что и требовалось доказать

Ответ. Замыкание – все функции, проходящие через (0, 0).

Задача 3

Пусть X и Y — топологические пространства, причем Y хаусдорфово, и пусть $f: X \to Y$ — непрерывное отображение. Докажите, что его график (т.е. множество $\Gamma_f = \{(x, f(x)) : x \in X\}$) замкнут в $X \times Y$

>

Рассмотрим предельную точку графика, пусть это (x_0, y_0) . Предположим, что график не содержит предел (x_0, y_0) . Пусть $f(x_0) = y_1$, где $y_1 \neq y_0$. Тогда для y_1, y_0 существуют непересекающиеся окрестности. Так как отобраение непрерывно, то

$$\forall \varepsilon \ \exists \delta : \ x_0 \in (x_0 - \delta, x_0 + \delta), \ f(x_0) \in (y_1 - \varepsilon, y_1 + \varepsilon)$$

По определению предельной точки окрестности, для любой окрестности (x_0, y_0) существует хотя бы 1 точка из множества. Откуда в пересечении окрестностей еть точка из множества \Rightarrow противоречие. Тогда график содержит эту предельную точку, аналогично доказывается содержание и всех остальных точек.

3

Задача 4

Пусть A и B — замкнутые подмножества топологического пространства X, причем $A \cup B$ и $A \cap B$ связны. Докажите, что A и B связны. Верно ли это, если не требовать замкнутости A и B?

▶

Докажем от противного:

Пусть A несвязно, тогда $A = A_1 \cup A_2$, где A_1, A_2 непустые и замкнутые множества.

1) $A_1 \cap B \neq \emptyset$ и $A_2 \cap B \neq \emptyset$

Тогда рассмотрим $(A_1 \cup A_2) \cap B = (A_1 \cap B) \cup (A_2 \cap B) = A \cup B$ — связно по условию. Тогда $(A_1 \cap B)$, $(A_2 \cap B)$ замкнуты (как пересечения замкнутых), откуда связное множество разбито на два непересекающихся замкнутых подмножества.

2)
$$A_1\cap B\neq\varnothing$$
 и $A_2\cap B=\varnothing$ $(A_1\cup A_2)\cup B=A_2\cup (A_1\cup B)$ тогда $(A_1\cup B)$ и A_2 замкнуты

3) $A_1 \cap B = \varnothing$ и $A_2 \cap B = \varnothing$ не может быть, так как $A \cup B$ связно

В случае когда A и/или B незамкнуто, есть контрпример: $A=[1,2],\ B=[0,1)\cup[2,3],\ A\cap B=\{2\}$ и $A\cup B=[0,3]$

Задача 5

Пусть X,Y,Z – топологические пространства, причем Y компактно, и пусть $f:X\times Y\to Z$ – непрерывное отображение.

Докажите, что для любого открытого множества $W \subset Z$ множество $M = \{x \in X \ \forall y \in Y: \ f(x,y) \in W\}$ открыто в X.

▶

 $x_0 \in M \ \forall y_i : \ f(x_0, y_i) \in W$

Так как Y – компактен, то для окретсностей y_i , назовем их U_i , выполнено: $\exists n : U_1 \cup U_2 \cup \ldots \cup U_n \supset Y$. Рассмотрим окрестность $(x_0, y_i) : V_i$ так как f непрерывно, W открыто, то $f(V_i) \subset W$

 $V_i = S_i \times U_i$, где S_i – окрестность x_i и $S = S_1 \cap S_2 \cap \ldots \cap S_n$, так как $S_1 \cap \ldots \cap S_n$ – пересечение конечного числа открытых множеств, то S открыто.

Тогда $(x_0, y) \in (S, U)$, тогда заметим, что $f(S, U) \subset W$ (по построению), тогда множество из (x_0, y) – открыто, откуда открыто и M, что и требовалось.

Задача 1

Условие

Пусть $X = [0,1) \cup [2,3) \cup \{4\}$ (с топологией, индуцированной из \mathbb{R}). Существует ли подмножество $Y \subset \mathbb{R}$, которому гомеоморфна одноточечная компактификация X_+ пространства X? Существует ли локально компактное пространство, не гомеоморфное X, одноточечная компактификация которого гомеоморфна X_+ ?

Решение

Рассмотрим $Y = [0, 2] \cup \{4\}$ Отображение $f: X_+ \to Y$

$$f(x) = \begin{cases} x: & x \in [0,1) \cap \{4\} \\ 4 - x: & x \in [2,3) \\ 1: & x = \infty \end{cases}$$

Для любого открытого $U\subset Y,\ 1\notin U:\ f^{-1}(U)$ — соотв. открыто в $X\Rightarrow$ открыто в X_+ Рассмотрим $U\subset Y$ — $f^{-1}(U)=(\alpha,1)\cup(4-\beta,3)\cup\{\infty\}$ где $\alpha\in[0,1)$, $\beta\in(1,2]$, $1\in(\alpha,\beta)=U$ Тогда $X_+/f^{-1}(U)=X/f^{-1}(U)=[0,\alpha]\cup[\beta,2]\cup\{4\}$ — ограничен и замкнут \Rightarrow компакт $\Leftrightarrow f^{-1}(U)$ открыто в топологии X_+

Обратно аналогично $\Rightarrow f$ – гомеоморфизм

Локально компактное пространство $Z \simeq X, \ Z_+ \simeq X_+, \ Z = [0,1) \cup \{4\}$ или Z = [0,1]

Задача 2

Условие

Постройте гомеоморфизм между $[0,1]/\left[\frac{1}{3},\frac{2}{3}\right]$ и [0,1]

Решение

Универсальное свойство факторпространств: Y — топологическое протранство, $f: X \to Y$ — непрерывное отображение, построенное на классах эквивалентности, то есть $x \sim y \Rightarrow f(x) = f(y)$ Тогда \exists ! непрерывное отображение \tilde{f} , делающее эту диаграмму коммутативной

$$f(x) = \begin{cases} x, & x \in \left[0, \frac{1}{3}\right) \\ \frac{1}{3}, & x \in \left[\frac{1}{3}, \frac{2}{3}\right] \\ x - \frac{1}{3}, & x \in \left(\frac{2}{3}, 1\right] \end{cases}$$

 $[0,1] \xrightarrow{f} [0,\frac{2}{3}]$ $g \downarrow \qquad \qquad \widetilde{f}$ $[0,1]/_{\left[\frac{1}{2},\frac{2}{3}\right]}$

 $\Rightarrow\exists !\tilde{f}$ непрерывна: $x\sim y \Rightarrow$ одноэлементные \to одноэлементные, $[\frac{1}{3},\frac{2}{3}]$ склеивается в 1 точку(*)

Универсальное свойство выполняется. Тогда известно, что:

- 1. \tilde{f} сюръекция $\Leftrightarrow f$ сюръекция
- 2. \tilde{f} инъекция $\Leftrightarrow \forall x,y \in X$ $x \sim y \Leftrightarrow f(x) = f(y)$ (показано ранее в (*) \Rightarrow инъекция)

f – сюръекция:

 $\forall x \in \left[0, \frac{1}{3}\right)$ $f(x) = x - \text{на}\left[0, \frac{1}{3}\right)$ сюръекция, $x = \frac{1}{3}$: $f(\left[\frac{1}{3}, \frac{2}{3}\right]) = \frac{1}{3} - \left\{\frac{1}{3}\right\}$ сюръекция, $\forall x \in \left(\frac{1}{3}, \frac{2}{3}\right]$: $f(x + \frac{1}{3}) = x - \left(\frac{1}{3}, \frac{2}{3}\right]$ сюръекция

Откуда следует что f – сюръекция $\Rightarrow \tilde{f}$ – сюръекция

To есть \tilde{f} – инъекция и сюръекция

Если [0,1] компактно (а это так, так как это отрезок), а $[0,\frac{2}{3}]$ хаусдорфово, то \tilde{f} – гомеоморфизм $[0,\frac{2}{3}]$ хаусдорфово, так как

- 1. для $a,b: a < b, a \neq 0, b \neq \frac{2}{3}, \varepsilon = b a$ искомые окрестности: $(0,a+\frac{\varepsilon}{2}),(b-\frac{\varepsilon}{2},\frac{2}{3})$
- 2. для a, b: $a < b, b \neq \frac{2}{3}, a = 0$: $\left[0, \frac{\varepsilon}{2}\right), \left(\frac{\varepsilon}{2}, b\right)$

3. для $a, b: a < b, a \neq 0, b = \frac{2}{3}, \varepsilon = b - a: (0, a + \frac{\varepsilon}{2}), (b - \frac{\varepsilon}{2}), (b - \frac{\varepsilon}{2})$

4. для $a,b: a=0, b=\frac{2}{3}: \left[0,\frac{1}{6}\right), \left(\frac{1}{2},\frac{2}{3}\right)$

Откуда \tilde{f} – гомеоморфизм

 $[0,\frac{2}{3}]\simeq [0,1]: x\to \frac{3}{2}x$ — непрерывно, $f^{-1}(x)=\frac{2}{3}$ следовательно это биекция, откуда $[0,1]/\left[\frac{1}{3},\frac{2}{3}\right]$ и [0,1], что и требовалось доказать

Задача 3

Условие

Пусть $D=\{z\in\mathbb{C}:\ |z|\leqslant 1\}$. Введем на D следующее отношение эквивалентности: $z\sim w$ тогда и только тогда, когда $z=i^kw$ для некоторого $k\in Z$. Докажите, что факторпространство D/\sim гомеоморфно D.

Решение

$$\begin{split} z &= |z|(\cos(\alpha) + i\sin(\alpha)) \\ i &= |i|(\cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2})) \\ w &= |w|(\cos(\beta) + i\sin(\beta)) \\ \\ z_1 \cdot z_2 &= |z_1| \cdot |z_2|(\cos(\varphi_{z_1} + \varphi_{z_2}) + i\sin(\varphi_{z_1} + \varphi_{z_2})) \\ |z|(\cos(\alpha) + i\sin(\alpha)) &= |w|(\cos(\beta + \frac{\pi k}{2}) + i\sin(\beta + \frac{\pi k}{2})) \\ z \sim w \text{ что то же самое, что и поворот } z \text{ на } \frac{\pi}{2} \end{split}$$

$$f:D o D$$

$$f(z)=z^4$$

$$z\sim w\ \Rightarrow f(z)=f(w)$$
непрерывно на классах эквивалентности

 $\exists !$ отображение $\tilde{f} \mid \tilde{f} \circ g = f$ (из теоремы) Докажем несколько фактов:

- $\begin{array}{lll} 1. \ f \ \ \mathrm{cюръекция}, \ \mathrm{так} \ \ \mathrm{как} \ \ \forall c \in D \quad f^{-1} \ = \ |c|^{\frac{1}{4}}(\cos(\frac{\alpha+2\pi k}{4}) + i\sin(\frac{\alpha+2\pi k}{4})) \ = \ |c|^{\frac{1}{4}}(\cos(\frac{\alpha}{4} + \frac{\pi k}{2}) + i\sin(\frac{\alpha}{4} + \frac{\pi k}{2})) \\ c = |c|(\cos(\alpha) + i\sin(\alpha)) \\ \cos(\alpha) \in [-1,1] & \sin(\alpha) \in [-1,1] & \cos(\frac{\alpha}{4} + \frac{\pi k}{2}) \in [-1,1] & \sin(\frac{\alpha}{4} + \frac{\pi k}{4}) \in [-1,1] \\ \tilde{f}(D/_{\sim}) = \tilde{f}(q(x)) = f(x), \ \mathrm{oткуда} \ \tilde{f} \ \ \mathrm{cюръекция} \end{array}$
- 2. $\forall x,y \in D \quad x \sim y$ и f(x) = f(y) (условия эквивалентны) так как при $x \not\sim z$ $|x|(\cos(\alpha) + i\sin(\alpha)) \neq |z|(\cos(\beta + \frac{\pi k}{2}) + i\sin(\beta + \frac{\pi k}{2})) \Rightarrow |x|^4(\cos(\varphi\alpha) + i\sin(\varphi\alpha)) \neq |z|^4(\cos(\varphi\beta) + i\sin(\varphi\beta) + i\sin(\varphi\beta)) \qquad f(x) \neq f(z)$ Откуда следует что: (f) инъекция (каждый класс эквивалентности перешел в разные элементы) (f) непрерывная биекция
- 3. D компактно (так как замкнуто и ограничено в метрическом пространстве) и хаусдорфово (так как у $x_0 \neq y_0$ \exists непересекающиеся окрестности: $|x-x_0| < r_1, \quad |y-y_0| < r_2)$

Откуда следует что \tilde{f} – гомеоморфизм

Задача 4

Условие

Пусть X — подмножество в произведении $\{0,1\}^S$ несчетного семейства двоеточий $\{0,1\}$, состоящее из всех тех элементов, у которых не более чем счетное число координат отличны от нуля. (Пространство $\{0,1\}$ здесь снабжается дискретной топологией, а пространство $\{0,1\}^S$ — топологией произведения, или, что то же самое, топологией поточечной сходимости.) Докажите, что X секвенциально компактно, но не замкнуто в $\{0,1\}^S$ и потому не компактно.

Решение

Для начала, попытаемся понять, что из себя представляет топология произведения или топология поточечной сходимости. База в топологии произведения — произведение открытых множеств, на счетном числе которых стоят открытые множества из X_i , а на остальных - X_i . (тоже проверяем определение)

В нашей задаче мы можем рассмотреть такие элементы из базы, на счетном числе которых стоят 1, на остальных – двоеточия $\{0,1\}$

Что такое окрестность элемента a? Это какое-то открытое множество из базы, то есть окрестность на счетном числе координат принимает такие же значения, как и a, а в остальных $\{0,1\}$.

Пусть X не замкнуто. Рассмотрим дополнение к X – последовательности из несчетного числа 0 и 1. окрестности элементов из дополнения к X могут быть такими: счетное количество 1 и на остальных координатах $\{0,1\}$. То есть окрестности дополнения пересекаются с X. Следовательно дополнение к X не является открытым множеством, откуда X не замкнуто.

Теперь мы докажем, что у любой последовательности есть сходящаяся подпоследовательность. Предленьная точка: существует номер начиная с которого все члены последовательности лежат в рассмтриваемой окрестности.

Задача 5

Условие

Пусть X – произведение континуального семейства двоеточий. Заметим, что X компактно в силу теоремы Тихонова. Покажите, что X не является секвенциально компактным.

Решение

X — компактно и не секвенц. $X = \{0,1\} \times \{0,1\} \times \dots$ компактно, Найдем последовательность у которой нет сходящейся подпоследовательности

Построим биекцию между континуальным семейством двоеточий и континуумом последовательностей из 0 и 1.

Построим последовательность в X:

 a_1 — первая координата последовательности(которая соответствует 0 или 1), a_2 — вторая координата, и так далее

Тогда, выбрав последовательность, мы выбрали номера координат последовательностей, которые однозначно соответствуют $\{0,1\}$

Следовательно найдется такой элемент a_m , что $a_m = 010101... \Rightarrow$ подпоследовательность не сходится То есть $\forall a_i \exists$ набор из 0 и 1 не имеющий предела

3 Листок 3

Задача 1

Α

Условие

Докажите, что M гомеоморфно ленте Мебиуса и гомотопически эквивалентно окружности.

Решение

Сперва докажем гомотопическую эквивалентность ленты Мебиуса и S^1 , а потом гомеоморфизм M и ленты Мебиуса.

Ленту Мебиуса можно представить как квадрат $[0,1] \times [0,1]$, определенный на концах $0 \times [0,1]$ и $1 \times [0,1]$ как $(0,x) \sim (1,1-x)$. Теперь мы можем сжимать эту группу, чтобы получить круг. Таким образом, имеется деформационный ретракт $f_t: M_0 \to M_0, \ t \in I$, где M_0 – лента Мебиуса, такой что f_0 – тождественное отображение на $M_0, \ f_1(M_0) = S^1$ и $f_t(s) = s$ для всех $s \in S^1$ и $t \in I$.

Пусть теперь $g: S^1 \to M_0$ — отображение вложения. Пусть $h: M_0 \to S^1$ — такое отображение, что $h = f_1$. Тогда $h \circ g = \mathrm{id}_{S^1}$ и $f_0 \simeq f_1, \ f_1 \simeq f_0$. Заметим, что $f_1: M_0 \to M_0$ эквивалентно $g \circ h: M_0 \to M_0$. Тогда, у нас есть $g \circ h \simeq f_0$ — тождественное отображение на M_0 . Откуда $M_0 \simeq S_1$ по определению.

Теперь построим гомеоморфизм между M и лентой Мебиуса

Заметим, что M это RP2 с дыркой, так как RP2 мы можем определить как множество всех прямых, проходящих через (0,0,0), тогда строится биекция прямых с поверхностью сферы(так как прямая задается по точке пересечения со сферой), а дыркой является шапка, срезанная ограничением $z\leqslant \frac{1}{2}$, тогда необходимо доказать гомеоморфность RP2 с дыркой и ленты мебиуса.

- 1) А.Л.Городенцев "Линейная алгебра и геометрия", 2020, 17 лекция, стр. 203
- 2) Докажем более общий случай $\mathbb{R}P^n=\mathbb{R}^n\cup\mathbb{R}P^{n-1}$ определим функцию $i:\mathbb{R}^n\to\mathbb{R}P^n$ определенную как $i(x_1,x_2,\ldots,x_n)=[1,x_1,x_2,\ldots,x_n]$. Тогда образ $i(\mathbb{R}^n)$ в $\mathbb{R}P^n$

$$\{[0, x_1, x_2, \dots, x_n] \mid (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \setminus \{0\}\} \cong \mathbb{R}P^{n-1}$$

Тогда в нашем случае $\mathbb{R}P^2 = \mathbb{R}^2 \cup \mathbb{R}P^1$, где $\mathbb{R}P^1$ уже определен как S^1 . Теперь рассмотрим круги, заданные $[1, r\cos\phi, r\sin\phi]$. Предположим $r \to \infty$, круг удвоит покрытие $\mathbb{R}P^1 \cong S^1$. Это дает необходимое разложение

$$\begin{split} \mathbb{R}P^2 &= \{[1,r\cos\phi,r\sin\phi]|0\leq r\leq 1 \text{ и } \phi\in[0,2\pi)\}\\ \cup \{[r,\cos\phi,\sin\phi]|0\leq r\leq 1 \text{ и } \phi\in[0,2\pi)\} \end{split}$$

Где два компонента отождествляются с закрытым диском D^2 и лентой Мебиуса M, с общей границей S^1 .

Б

Условие

Пусть $\iota: M \to \mathbb{R}P^2$ тавтологическое вложение ($l(a) = a \in \mathbb{R}P^2$ для всякой точки $a \in M \subset \mathbb{R}P^2$). Вычислите гомоморфизм групп $\iota_*: \pi_1(M) \to \pi_1\left(\mathbb{R}P^2\right)$ (т.е. сначала найдите группу $\pi_1(M)$; группа $\pi_1(\mathbb{R}P^2)$ вычислялась на лекциях. После этого для каждого элемента $x \in \pi_1(M)$ укажите явно элемент $\iota_*(x) \in \pi_1\left(\mathbb{R}P^2\right)$.

Решение

Найдем фундаментальную группу M. M гомеоморфно ленте Мебиуса M_0 .

рассмотрим M_0 . так как средняя линия ленты мебиуса – строгий деформационный ретракт (мы это доказывали в 1а, но можно привести еще одно доказательство^{*}), а деформационная ретрация является гомотопической эквивалентностью (так как по определению р: $X \to A$, in: $A \to X$, in: $p \sim \mathrm{id}_x$ (гомотопно)), то $\pi_1(M_0) \sim \pi_1(S^1) \sim \mathbb{Z}$. Получаем отображение $f: Z \to Z/2Z$, f(2x) = 0, f(2x+1) = 1

 (\star)

Докажем, что средняя линия L ленты Мёбиуса M_0 является её строгим деформационным ретрактом. Геометричесое рассуждение очевидно: в качестве h_t можно взять сжатие с коэффициентом 1-t ленты Мёбиуса по направлению к ее средней линии. Таким образом h_0 тождественно, а h_1 отображает M_0 в L. Выпишем формулы, так как M_0 — факторпространство квадрата, то рассмотрим гомотопию

$$H:\ I\times I\times I\to I\times I:\ (u,v,t)\to (u,(1-t)v+\frac{t}{2})$$

При этом

$$\forall I \quad H(u, \frac{1}{2}, t) = (u, \frac{1}{2})$$

И так как

$$(1-t)v + \frac{t}{2} + (1-t)(1-v) + \frac{t}{2} = 1$$

То эта гомотопия выдерживает факторизацию, порождая гомотопию

$$h: M_0 \times I \to M_0$$

Имеем

$$H(u, v, 0) = (u, v)$$

Откуда

$$h_0 = \mathrm{id}_{M_0}$$

$$H_1(u,v) = (u,\frac{1}{2})$$

Чтобы доказать что средняя линия ленты мебиуса это деформационный ретракт ленты мебиуса, определим fundamental square как $[0,1] \times [0,1]$ со сторонами $\{0\} \times [0,1]$ и $\{1\} \times [0,1]$ соединенными: $(0,t) \sim (1,1-t)$

Построим деформационный ретракт этого квадрата на интервал $[0,1] \times \{\frac{1}{2}\}$ через отображение F((x,y),t) = $(x, \frac{t}{2} + (1-t)y)$. Тогда $[0, 1] \times \{\frac{1}{2}\}/(0, \frac{1}{2}) \sim (1, \frac{1}{2}) \cong S^1$

Задача 2

Α

Топологическое пространство $Y_3 \stackrel{\text{def}}{=} \{(u_1,u_2,u_3)\,,u_1,u_2,u_3\in\mathbb{R}^2|u_1\neq u_2\neq u_3\neq u_1\}$. На нем действует группа перестановок S_3 : если $\sigma\in S_3$ перестановка чисел 1,2,3 , то отображение $R_\sigma: Y_3\to Y_3$ определено формулой $R_{\sigma}\left(u_{1},u_{2},u_{3}\right)\stackrel{\mathrm{def}}{=}\left(u_{\sigma(1)},u_{\sigma(2)},u_{\sigma(3)}\right)$. Пусть X_{3} — фактор Y_{3} по действию группы (две тройки $(a_1,b_1,c_1)\,,(a_2,b_2,c_2)\in Y_3$ эквивалентны, если отличаются только порядком точек). Докажите, что отображение проекции $p: Y_3 \to X_3$ – накрытие.

Решение

Определение накрытия:

 $p:Y_3 o X_3$ непрерывно, сюръективно и $\forall\ V\in X_3\ \exists v\in V$ – окрестеность, такая что $p^{-1}(U)$ представляется в виде U непересекающихся открытых множеств V_{α} , каждое из кторых гомеоморфно отображению на U

$$Y_3 = \{(u_1, u_2, u_3) \mid u_1, u_2, u_3 \in \mathbb{R} \mid u_1 \neq u_2 \neq u_3 \neq u_1\}$$

окрестность элемента $u \in Y_3$: $U = U_1 \times U_2 \times U_3$, $u_i \in U_i$ Так как \mathbb{R}^2 – хаусдорфово, то для $u_1 \neq u_2 \neq u_3 \neq u_1$ существуют непересекающиеся окрестности U_1, U_2, U_3 Теперь рассмотрим $p^{-1}(v) = (v_1, v_2, v_3)$, $V = (v_1, v_2, v_3)$ с точностью до перестановки, то есть $p^{-1}(V) = (v_1, v_2, v_3)$

 $\bigcup\limits_{\substack{i,j,k=1\\i\neq j\neq k\neq i\\\text{лению}}}^3 V_i\times V_j\times V_k$ – непересекающиеся открытые множества из $Y_3,$ тогда p является накрытием по определению

Б

Пусть $u\in Y_3$ – какая-то точка, и $v\stackrel{\mathrm{def}}{=} p(u)\in X_3$. Рассмотрим петлю $\gamma:[0,1]\to X_3$ такую, что $\gamma(0)=\gamma(1)=v$, и пусть $\Gamma:[0,1]\to Y_3$ – ее поднятие с начальной точкой $\Gamma(0)=u$. Обозначим $\sigma\in S_3$ перестановку, для которой $\Gamma(1)=R_\sigma(u)$. Докажите, что соответствие $\gamma\mapsto\sigma^{-1}$ – гомоморфизм групп $\pi_1\left(X_3,v\right)\to S_3$.

Решение

$$u \in Y_3$$

$$\Gamma(0) = u$$

$$\Gamma(1) = \mathbb{R}_{\sigma}(u)$$

$$v = p(u) \in X_3$$

$$\gamma(0) = \gamma(1) = v$$

Лемма о накрывающем пути:

 \forall пути $s:I\to X_3$, начинающемся в v,

 $\exists !$ путь $\tilde{s}:I\to Y_3,$ начинающийся в u и накрывающий s То есть

$$\exists \ \tilde{s}: I \to X_3 \quad \gamma(0) = \gamma(1) = v \quad \exists! \ \Gamma: I \to Y_3 \mid \Gamma(0) = u$$

Следовательно $\pi_1(X_3,v)$ состоит из петель γ_i , которым однозначно соответствуют $\sigma_i \Rightarrow$ соответствуют σ_i^{-1} (так как $\forall \ \sigma_i \ \exists! \ \sigma_i^{-1} \ | \ \sigma_i \cdot \sigma_i^{-1} = \sigma_i^{-1} \cdot \sigma_i = \mathrm{id}$)

$$\begin{split} & \pi_1(X_3, v) \xrightarrow{f} S_3 \\ & \gamma \xrightarrow{f} \sigma^{-1} \\ & f(\gamma_i) = f(p(R_{\sigma_i}(u))) = \sigma_i^{-1} \\ & f(\gamma_1) \cdot f(\gamma_2) = f(p(R_{\sigma_1}(u))) \cdot f(p(R_{\sigma_2}(u))) = fp(u_{\sigma_1(1)}, u_{\sigma_1(2)}, u_{\sigma_1(3)}) \times fp(u_{\sigma_2(1)}, u_{\sigma_2(2)}, u_{\sigma_2(3)}) = (1) \end{split}$$

Так как $\sigma_1 \cdot \sigma_2 = p(R_{\sigma_1}(u) \cdot R_{\sigma_2}(u))$ то

$$(1) = fp(u_{\sigma_2\sigma_1(1)}, u_{\sigma_2\sigma_1(2)}, u_{\sigma_2\sigma_1(3)}) = fp(R_{\sigma_2\sigma_1}(u)) = (\sigma_2\sigma_1)^{-1} = \sigma_1^{-1}\sigma_2^{-1}$$

То есть это гомоморфизм, что и требовалось доказать.

В

Условие

Докажите, что группа $\pi_1(X_3, v)$ некоммутативна

Решение

рассмотрим перестановки $\sigma_1=(1,3)(2),\ \sigma_2=(3,1,2)$ Тогда

$$\sigma_1 \cdot \sigma_2 = (12)(3)$$

$$\sigma_2 \cdot \sigma_1 = (123)$$

$$\sigma_1 \cdot \sigma_2 \neq \sigma_2 \cdot \sigma_1$$

$$\gamma_1 \cdot \gamma_2 \neq \gamma_2 \cdot \gamma_1$$

Откуда следует что группа $\pi_1(X_3, v)$ некоммутативна