

FORMATO PARA LA ELABORACIÓN DE DISEÑOS ELÉCTRICOS

PS - 010

FECHA: 01 – 08 – 2020

Versión:

1

MEMORIAS DE CÁLCULO SISTEMA SOLAR FOTOVOLTAICO ON – GRID 6.32 kWp 16 PANELES DE 395 Wp

Diseñador,

Lynch

FLORIDABLANCA, SANTANDER 2021

ELABORÓ	REVISÓ	APROBÓ
Bryam Galvis	ANGEL ARIAS	
	MP NS205-114912	

PROYECTO P108				
VERSIÓN	FECHA	DESCRIPCIÓN DEL CAMBIO		
0	20 – 10 – 2021	ENTREGA		

Contenido

INTRO	DUCCIÓN	4
NORM.	AS APLICABLES	4
RESUM	MEN GENERAL DEL PROYECTO	4
LOCAL	LIZACIÓN DEL PROYECTO	5
RADIA	CIÓN ELECTROMAGNÉTICA	5
COMPO	ONENTES DEL SISTEMA SOLAR FOTOVOLTAICO	6
•	Inclinación de los módulos	6
•	Inversor DC/AC	7
•	Arreglo fotovoltaico	7
CÁLCU	JLOS DE GENERACIÓN	8
SELEC	CIÓN DE MEDIDA	9
DISPO	NIBILIDAD DE RED	11
CUMPI	LIMIENTO DEL CNO 1322	11
Análisis armónic	s y cuadros de cargas iniciales y futuras, incluyendo análisis de factor de potencia y cos.	12
•	Análisis de cargas iniciales y futuras	12
•	Análisis del factor de potencia	12
•	Análisis de armónicos	13
Análisis	s de coordinación de aislamiento eléctrico.	13
	s de cortocircuito y falla a tierra.	14
	s de nivel de riesgo por rayos y medidas de protección contra rayos.	15
	s de riesgos de origen eléctrico y medidas para mitigarlos.	16
•	Matriz de riesgo eléctrico	17
Análisis	s del nivel tensión requerido.	23
Cálculo	de campos electromagnéticos para asegurar que, en espacios destinados a actividad	les
rutinaria	as de las personas, no se superen los límites de exposición definidos en la Tabla 14.	123
Cálculo	de transformadores incluyendo los efectos de los armónicos y factor de potencia en	
carga.		23
	del sistema de puesta a tierra.	24
	económico de conductores, teniendo en cuenta todos los factores de pérdidas, las	2.5
-	resultantes y los costos de la energía.	25
	ación de los conductores, teniendo en cuenta el tiempo de disparo de los interruptores	
	ente de cortocircuito de la red y la capacidad de corriente del conductor de acuerdo a IEC 60909, IEEE 242, capítulo 9 o equivalente.	26
	mecánico de estructuras y de elementos de sujeción de equipos.	27
	y coordinación de protecciones contra sobre - corrientes. En baja tensión se permit	
	ación con las características de limitación de corriente de los dispositivos según IEC	
	2 Anexo A.	28
	istema DC:	28
	istema AC:	29
	s de canalizaciones (tubo, ductos, canaletas y electroductos) y volumen de	
	mientos (cajas, tableros, conduletas, etc.).	29
	s de pérdidas de energía, teniendo en cuenta los efectos de armónicos y factor de	
	a y Cálculos de regulación.	30
Clasific	ación de áreas.	31
Elabora	ción de diagramas unifilares.	31
Elabora	ción de planos y esquemas eléctricos para construcción.	31

Especificaciones de construcción complementarias a los planos, incluyendo las de tipo téc	nico
de equipos y materiales y sus condiciones particulares.	31
Establecer las distancias de seguridad requeridas.	31
Distancias Mínimas de Seguridad en Zonas con Construcciones.	32
Justificación técnica de desviación de la NTC 2050 cuando sea permitido, siempre y cuando	lo
no comprometa la seguridad de las personas o de la instalación.	34
Los demás estudios que el tipo de instalación requiera para su correcta y segura operación,	
tales como condiciones sísmicas, acústicas, mecánicas o térmicas.	34
tales como condiciones sistincas, acasticas, inecameas o termicas.	54
Figura 1. Localización del proyecto.	5
Figura 2. Distancias de seguridad en zonas con construcciones	31
Figura 3. Distancias d1 y d en cruce y recorridos de vías.	32
Tabla 1. Resumen componentes.	4
Tabla 2. Ubicación geográfica.	5
Tabla 3. Irradiación solar global horizontal.	5
Tabla 4. Irradiación global horizontal mensual.	6
Tabla 5. Data Sheet Módulo solar fotovoltaico.	6
Tabla 6. Inclinación de módulos.	7
Tabla 7. DataSheet Inversor.	7
Tabla 8. Arreglos en serie y paralelo.	8
Tabla 9. Cálculos de generación mensual.	8
Tabla 10. Cálculos de generación diaria	9
Tabla 11. Clasificación de puntos de medición.	9
Tabla 12. Requisitos exactitud para medidores y transformadores de medida.	9
Tabla 13. Medidor seleccionado.	10
Tabla 14. Consumo histórico energético de las instalaciones.	12
Tabla 15. Consumo histórico energético de las instalaciones. (2)	12
Tabla 16. Análisis de factor de potencia.	12
Tabla 17. Analisis de aislamiento eléctrico.	13
Tabla 18. Evaluación de riesgos de descargas atmosféricas.	15
Tabla 19. Riesgos eléctricos más comunes.	17
Tabla 20. Nivel de tensión requerido.	23
Tabla 21. Valores de referencia para resistencia de puesta a tierra.	24
Tabla 22. Resistividad en distintos tipos de suelo.	24
Tabla 23. Tensiones de paso y contacto.	25
Tabla 24. Resistencia calculada SPT.	25
Tabla 25. Cálculo económico del conductor.	26
Tabla 26. Verificación del conductor.	27
Tabla 27. Cálculo de protecciones DC.	28
Tabla 28. Cálculo de protecciones AC.	29
Tabla 29. Cálculo de canalizaciones.	29 30
Tabla 30. Cálculo de regulación y pérdidas de potencia.	30

INTRODUCCIÓN

En el siguiente documento se encuentran plasmados los criterios técnicos y normativos para el diseño, instalación y puesta en marcha del sistema Hibrido planteado para suplir las necesidades energéticas en las instalaciones de CASA 2 LA PRADERA RUITOQUE CONDOMINIO, FLORIDABLANCA - SANTANDER y convertirse en AGPE.

NORMAS APLICABLES

En la realización del presente diseño se tendrán en cuenta los criterios aplicables contenidos en los siguientes documentos:

- Reglamento Técnico de Instalaciones Eléctricas RETIE
- Código Eléctrico Colombiano Norma NTC 2050
- Resolución CREG 030 de 2018
- Ley 1715 de 2014
- Norma ESSA

RESUMEN GENERAL DEL PROYECTO

Las instalaciones del proyecto a desarrollar es un sistema **RESIDENCIAL** que suple en su totalidad el consumo diario de energía eléctrica demandado.

Los componentes del sistema solar fotovoltaico son:

ÍTEM	DESCRIPCIÓN	MARCA	REFERENCIA	CNT.	POT.	P.TOTAL
1	Módulo solar fotovoltaico	Trina Solar	TSM 395 DE09	16	395 Wp	6.32 KWP
2	Inversor Híbrido DC/AC	APsystem	YC1000	4	1.13 KW	4.52 KW
3	Medidor bidireccional	ISKRA	MT-174D2	1	5 KW	5 KW

 ${\it Tabla~1.~Resumen~componentes.}$

LOCALIZACIÓN DEL PROYECTO

El proyecto se localiza en la ciudad de FLORIDABLANCA, SANTANDER, CASA 2 LA PRADERA RUITOQUE CONDOMINIO, Las coordenadas geográficas son las siguientes:

UBICACIÓN GEOGRÁFICA				
LATITUD LONGITUD ALTURA				
7.032712	-73.082409	1162 m		

Tabla 2. Ubicación geográfica.

Figura 1. Localización del proyecto.

RADIACIÓN ELECTROMAGNÉTICA

La localización del proyecto tiene las siguientes características de irradiación global horizontal anual según las coordenadas geográficas mencionadas anteriormente. A continuación, se extrae el promedio mensual de irradiación según el IDEAM en la plataforma **Atlas Solar.**

IRRADIAC	IRRADIACIÓN GLOBAL HORIZONTAL		UBICACIÓN:	RUITOQUE	SANTANDER
ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO
4,81	4,24	3,33	3,18	3,73	4,00
JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE
4,25	4,20	3,81	3,41	3,38	4,26
MÍNIMO	ANUAL	MÁXIMO	MÁXIMO ANUAL PROMEDIO ANU		O ANUAL
3,	18	4,81 3,88		88	

Tabla 3. Irradiación solar global horizontal.

Tabla 4. Irradiación global horizontal mensual.

COMPONENTES DEL SISTEMA SOLAR FOTOVOLTAICO

Módulos fotovoltaicos

Los módulos fotovoltaicos empleados son Monocristalinos de 395 Wp marca VERTEX que se encargará de captar la radiación electromagnética del sol y convertirlo en energía eléctrica en Corriente Directa (DC).

DATOS ELÉCTRICOS (STC)				
Potencia Máxima-PMAX (Wp)*	390	395	400	405
Tolerancia de Potencia-PMAX (W)		(~ +5	
Voltaje Máxima-VMPP (V)	33.8	34.0	34.2	34.4
Corriente Máxima-IMPP (A)	11.54	11.62	11.70	11.77
Tensión de Circuito Abierto-Voc (V)	40.8	41.0	41.2	41.4
Corriente de Corto Circuito-Isc (A)	12.14	12.21	12.28	12.34
Eficiencia del Módulo η m (%)	20.3	20.5	20.8	21.1
STC: Irradiación 1000W/m2, Temperatura de Célula 25°C, Masa de Aire AM1.5 *Toleranda de Medicióne: ±3%.				

Tabla 5. Data Sheet Módulo solar fotovoltaico.

• Inclinación de los módulos

La inclinación deber ser entre 5º y 15º con respecto a la horizontal y con orientación al sur para optimizar su generación solar fotovoltaica anualmente. La inclinación ideal según fórmula obtenida del manual de instalaciones solares fotovoltaicas de Herranz, inclinación respecto al sur.

INCLINACIÓN DE MÓDULOS					
β(opt):	3,7	+	0,69	х	ΙφΙ
β(opt):	3,7	+	0,69	х	7,03
β(opt):	3,7	+	4,85		
β(opt):			8,55		

Tabla 6. Inclinación de módulos.

Inversor DC/AC

El equipo inversor de corriente directa se encarga de convertir la corriente directa generada por los módulos solares y convertirla en corriente alterna para su uso final con la señal de tensión y frecuencia que requieren las cargas eléctricas. El inversor seleccionado cumple con los estándares de prueba de la IEEE 1547, y de conformidad con el alcance de la UL 1741. La certificación será presentada al Operador de Red (OR) como requisito para la conexión del sistema de generación al SIN.

El/los equipo(s) empleado(s) fue(ron) 4 inversor(es) de 1.13 kW marca APSystrem referencia YC1000-3-208 con rango de tensión de salida auto – regulada 208V

Region	LATAM
Model	YC1000-3-208
Input Data (DC)	
MPPT Voltage Range	16V-55V
Operation Voltage Range	16V-55V
Maximum Input Voltage	60V
Startup Voltage	22V
Maximum Input Current	14.8A x 4
Output Data (AC)	
3-Phase Grid Type	120V/ 208V
Maximum Output Power	1130W
Nominal Output Current	3.14A x 3
Nominal Output Voltage/ Range	120V x 3/105.6V-132V*
Adjustable Output Voltage Range	82V-152V
Nominal Output Frequency/ Range	60Hz/ 59.3Hz-60.5Hz*
Adjustable Output Frequency Range	55.1Hz-64.9Hz
Power Factor	>0.99
Total Harmonic Distortion	<3%
Maximum Units per Branch	4units per 15AX3 AC breaker/ 5units per 20AX3 AC breaker**

Tabla 7. DataSheet Inversor.

Arreglo fotovoltaico

Una vez conocidas las características técnicas de los equipos principales del sistema a desarrollar se procede a realizar el cálculo de las configuraciones límites de generación fotovoltaica.

ARREGLO SOLAR EN PARALELO						
Número	Imax Inversor	>	Isc en paralelo			
máximo de	Imax Inversor	/	Isc en paralelo			
paneles en paralelo por	14,8A	/	12,2A			
MPPT		1				

ARREGLO SOLAR EN SERIE						
Número	Vmax Inversor	>	Voc panel			
máximo de	Vmax Inversor	/	Voc panel			
paneles en	55,0V	/	41,0V			
serie:	1					
Número	Vmin Inversor	<	Voc panel			
mínimo de paneles en serie:	Vmin Inversor	/	Voc panel			
	16,0V	/	41,0V			
	1	L				

Tabla 8. Arreglos en serie y paralelo.

CÁLCULOS DE GENERACIÓN

Una vez calculados los parámetros principales del sistema solar fotovoltaico se calcula la capacidad de generación solar fotovoltaica que alimentará las instalaciones.

CÁLCULO DE GENERACIÓN SOLAR MENSUAL								
Horas Pico Solar (HPS)	-	3,88						
Pérdidas reconocidas (PR)	-	0,7						
Potencia panel	kWp	0,395						
Cantidad de paneles	UND	16						
Generación solar diaria proyectada	kWh	17						
Generación mensual proyectada	kWh	515						
Consumo locación histórico	kWh	460						
Cubrimiento de demanda	%	112%						

Tabla 9. Cálculos de generación mensual.

Así mismo, se realiza el cálculo máximo de una generación en una hora por parte del sistema solar a instalar.

MÁXIMA GENERACIÓN EN UNA HORA								
PR		0,7						
Potencia panel	0,395	kWp						
Cantidad	16 und							
HORA	HPS	GEN. POR HORA kWh						
6-7	0,07	0,29						
7-8	0,19	0,85						
8-9	0,32	1,43						
9-10	0,43	1,89						
10-11	0,47	2,07						
11-12	0,57	2,51						
12-13	0,52	2,32						
13-14	0,44	1,97						
14-15	0,38	1,67						
15-16	0,28	1,26						
16-17	0,16	0,71						
17-18	0,05	0,20						
Total	3,88	17,18						

^{*}Los datos hora a hora fueron obtenidos del ATLAS SOLAR (IDEAM)

Tabla 10. Cálculos de generación diaria

SELECCIÓN DE MEDIDA

De acuerdo a la Resolución **CREG 038 / 2014**, Artículo 6, los puntos de medición se clasifican acorde con el consumo o transferencia de energía por la frontera, o por la capacidad instalada en el punto de conexión.

Tipo de puntos medición	Consumo o transferencia de energía, C, (MWh-mes)	Capacidad Instalada, CI (MVA)*
1	C≥15000	CI≥30
2	15000>C≥500	30>Cl≥1
3	500>C≥50	1>Cl≥0.1
4	50>C≥5	0.1>Cl≥0.01
5	C<5	CI<0.01

Tabla 11. Clasificación de puntos de medición.

Tipo de puntos medición	Índice de clase para medidores de energía activa	Índice de clase medidores de energía reactiva	Clase de exactitud transformadores de corriente	Clase de exactitud para transformadores de tensión
1	0.2S	2	0.25	0.2
2 y 3	0.5S	2	0.5S	0.5
4	1	2	0.5	0.5
5	1	2		

Tabla 12. Requisitos exactitud para medidores y transformadores de medida.

• Equipo de medida seleccionado

El equipo de medida seleccionado posee las siguientes especificaciones técnicas.

Repaso de	l tipo	MT174-D2 DIN	MT174-T1 DIN		
Red	Baja tensión	•	•		
	1F-2H	•			
Tipo de conexión	2F-3H	•			
	3F-4H	•	•		
Comuni	RS 485	•	•		
cación	Interfaz óptico	•	•		
s	Salida S0	•	•		
Opciones entrada-salida	Salida OPTOMOS	•	•		
Opentra	Entrada tarifa (1 o 2)	•			
Especifica	ciones técnicas	MT174-D2 DIN	MT174-T1 DIN		
Tensión no	ominal Un	3x120/208 V			
Rango de f	tensión	0,8 - 1	,15 Un		
0	Corriente base In	5 A	1 A		
Corriente	Corriente máxima Imax	120 A	6 A		
	Energía activa	Clase 1 (IEC 62053-21 NTC 4052			
Clase de Exactitud	Energía reactiva	Clase 2 (IEC 62053-23 NTC 4569			
	Energia aparente	Clase 2			
Reloj	Precisión	Mejor que ± 3 m	nin/año a 23°C		
tiempo real	Alimentación de respaldo	Pila Li: 5 años operac. hasta 20 años			
Rango	Operación	-40°C+60°C, extend40°C+70°C			
temp. IEC 62052-11 Almacenamiento		-40°C +80°C			
Protección	ingreso polvo y agua	IP54			
Consumo		0.6 W / 10 VA (sin RS485) 0.8 W / 10 VA (con RS 485)			

Tabla 13. Medidor seleccionado.

DISPONIBILIDAD DE RED

En concordancia con lo estipulado en el "Artículo 5. Estándares técnicos de disponibilidad del sistema en el nivel de tensión 1." de la resolución CREG 030 de 2018 se consulta en el operador de red la disponibilidad de la red.

Actualmente el proyecto cuenta con un transformador propio de **225 kVA** destinado a suplir las necesidades energéticas de las instalaciones administrativas, por lo tanto, su disponibilidad de red.

CUMPLIMIENTO DEL CNO 1322

ACUERDO CNO 1322								
Nivel de tensión		1						
Rango de potencia [MW]	<0.1 MW							
Requerimientos de protección	Equipo usado	Tiempo desconexión [s]						
Baja tensión (ANSI 27)	Apsystem YC1000	0.85 p.u.	2					
Sobre tensión (ANSI 59)	Apsystem YC1000	1.15 p.u.	2					
Baja frecuencia (ANSI 81U)	Apsystem YC1000	57 Hz	0,2					
Sobre frecuencua (ANSI 810)	Apsystem YC1000	63 Hz	0,2					
Anti - isla IEEE 1547	Apsystem YC1000		0,2					
Tabla 6. Acuerdo CON 1322 de 2020								

Siguiendo los lineamientos establecidos en el Artículo 10.1 del Reglamento Técnico de Instalaciones Eléctricas - Retie, el presente diseño es detallado y se basará en los parámetros contemplados en la Resolución No. 90708 del 30 de agosto de 2013 - RETIE expedido por el Ministerio de Minas y Energía.

Análisis y cuadros de cargas iniciales y futuras, incluyendo análisis de factor de potencia y armónicos.

Análisis de cargas iniciales y futuras

Tabla 14. Consumo histórico energético de las instalaciones.

MES	MAR	ABR	MAY	JUN	JUL	AGO	SEP	PROM.
CONSUMO (kWh)	789,0	790,0	1.650,0	3.290,0	3.420,0	3.040,0	3.420,0	2.342,7

Tabla 15. Consumo histórico energético de las instalaciones. (2)

• Análisis del factor de potencia

El factor de potencia promedio empleado en el proyecto es de $COS\Phi=0.90$. La siguiente tabla muestra factores de potencia para diferentes tipos de salidas individuales.

SALIDA	Factor de potencia	Comentario	
Carga resistiva	1.0	Plancha	
Iluminación	0.9 en atraso	Luminaria LED	
Tomacorrientes	0.9 en atraso	Cargas generales	
Motores	Según placa	Motobomba de presión	

Tabla 16. Análisis de factor de potencia.

Análisis de armónicos

Siguiendo lo indicado en el Std IEEE 519 de 1992, las principales fuentes de armónicos para una instalación eléctrica son:

- Convertidores
- > Hornos de arco
- > Compensador de VAR estático
- Inversores monofásicos
- Inversores trifásicos
- > Controles de fase electrónicos
- Ciclo-convertidores
- Variadores de modulación con ancho de pulso

En el presente proyecto se cuenta con un inversor **Trifásico** que según ficha técnica posee una distorsión armónica total (THD) <3% cumpliendo con los estándares de la resolución CREG 024 de 2005. **Ver ficha técnica anexa.**

Análisis de coordinación de aislamiento eléctrico.

El objetivo de la coordinación de aislamiento es establecer en los diferentes materiales y equipos eléctricos en sus partes energizadas el aislamiento requerido para prevenir contacto eléctrico en las estructuras de media tensión y baja tensión que forman parte de la construcción, sin embargo, cabe aclarar que este ítem es variable según el proyecto ya que en algunos casos no es necesario desarrollarlo ya que se aplican normas de construcción eléctrica con productos estandarizados. El tipo de aislamiento se debe seleccionar según el nivel de tensión del servicio. Para el presente diseño las tensiones de servicio en son de DC 41.0 V y en AC 208 V en baja tensión.

Para evitar que chispas, arcos eléctricos o cortocircuitos que puedan ser originados por sobretensiones transitorias ya sea por impacto directo de rayo en la edificación, o en sus acometidas de servicios (tales como electricidad, teléfono, gas, ductos metálicos), al igual que por tensiones inducidas por impactos indirectos o lejanos, que puedan generar incendios, explosiones o sobretensiones que pongan en riesgo vidas humanas; se debe equipotencializar las acometidas de servicios, pantallas de cables, y otras partes metálicas no energizadas. A continuación, se presenta la Tabla E.3 Tensión al impulso que deben soportar los equipos (extraída de la NTC4552-2)

		BIL requer	ido en (kV)	
Nivel de tensión de operación de los equipos (V)	Tableros, Contadores interruptores, cables, etc.		Electrodomésti cos, herramientas portátiles	Equipo electrónico
	Categoría IV	Categoría III	Categoría II	Categoría I
120-240; 120/208	4	2,5	1,5	0,8
254/440 ; 277/480	6	4	2,5	1,5

Tabla 17. Analisis de aislamiento eléctrico.

Análisis de cortocircuito y falla a tierra.

El cálculo de corrientes de cortocircuito se requiere para todo tipo de instalaciones eléctricas, estas se producen por fallas las cuales pueden ocurrir en cualquier punto de la instalación eléctrica proyectada. Es por ello que el dimensionamiento de la mayor corriente de falla a tierra se apoya en la plataforma "Fault Current Calculator" by Schneider Electric.

Ilustración 1. Cálculo de corriente de falla.

Las protecciones y equipos seleccionados deben ser con poder de corte mayor a 6kA.

Análisis de nivel de riesgo por rayos y medidas de protección contra rayos.

La ubicación del proyecto se encuentra en un espacio poblado bajo condiciones normales de descargas atmosféricas. Se evalúa el riesgo con la siguiente tabla "Lightning Protection Risk Assessment Calculator" donde se encuentra dentro de los parámetros aceptables y no requiere de SIPRA.

LIGHTNING RISK ASSESSMENT CAL	CUL	<u>ATIONS</u>
Building / Installation :		RUITOQUE, SANTANDER
Building ID No.		CASA 2, CONDOMINIO LA PRADERA
LIGHTNING DENSITY	Ng=	50
STRUCTURE Length L(m)		10
Width W(m)	W=	11,27
Height H(m)	Hi=	3
Chimney/Tower height (m)	<i>T</i> =	0
DANGER FOR PEOPLE	h=	No particular danger
OCCUPATION OF THE STRUCTURE	Lf1=	Structure unoccupied
LIGHTNING CONDUCTOR	Pd=	None
Electrical Line	Ai=	Aerial
RELATIVE LOCATION OF THE STRUCTURE	Cd=	Structure surrounded by similar or lower objects
FIRE RISK	rf=	Low
SERVICE	Lf2=	TV, Communication, Electricity, Radio
SURGE ARRESTOR	Pi=	None
RESULTS OF THE RISK ASSESSMENT		
Risk of human loss	R1=	ACCEPTABLE
Risk of loss of service	R2=	ACCEPTABLE
Risk of loss of cultural heritage	R3=	ACCEPTABLE
Notes:		

Tabla 18. Evaluación de riesgos de descargas atmosféricas.

Análisis de riesgos de origen eléctrico y medidas para mitigarlos.

Todo proyecto eléctrico tiene asociados una serie de riesgos que es necesario controlar y minimizar para garantizar la seguridad de las personas y de la instalación.

Según lo señalado en el Artículo 9.3 del RETIE, los factores de riesgo eléctrico más comunes son los siguientes:

POSIBLES CAUSAS: Unión y separación constante de materiales como aislantes,

MEDIDAS DE PROTECCIÓN: Sistemas de puesta a tierra, conexiones equipotenciales, aumento de la humedad relativa, ionización del ambiente, eliminadores eléctricos y

conductores, sólidos o gases con la presencia de un aislante.

radiactivos, pisos conductivos.

	POSIBLES CAUSAS: Mal mantenimiento, mala instalación, mala utilización, tiempo de uso, transporte inadecuado. MEDIDAS DE PROTECCIÓN: Mantenimiento predictivo y preventivo, construcción de instalaciones siguiendo las normas técnicas, caracterización del entorno electromagnético.
X	RAYOS
	POSIBLES CAUSAS: Fallas en: el diseño, construcción, operación, mantenimiento del sistema de protección.
	MEDIDAS DE PROTECCIÓN: Pararrayos, bajantes, puestas a tierra, equipotencialización, apantallamientos, topología de cableados. Además, suspender actividades de alto riesgo, cuando se tenga personal al aire libre.
	SOBRECARGA
	POSIBLES CAUSAS: Superar los límites nominales de los equipos o de los conductores, instalaciones que no cumplen las normas técnicas, conexiones flojas, armónicos, no controlar el factor de potencia.
	MEDIDAS DE PROTECCIÓN : Uso de Interruptores automáticos con relés de sobrecarga, interruptores automáticos asociados con cortacircuitos, cortacircuitos, fusibles bien dimensionados, dimensionamiento técnico de conductores y equipos, compensación de energía reactiva con banco de condensadores.
	TENSIÓN DE CONTACTO
	POSIBLES CAUSAS: Rayos, fallas a tierra, fallas de aislamiento, violación de distancias de seguridad.
	MEDIDAS DE PROTECCIÓN: Puestas a tierra de baja resistencia, restricción de accesos, alta resistividad del piso, equipotencializar.
	TENSIÓN DE PASO
	POSIBLES CAUSAS: Rayos, fallas a tierra, fallas de aislamiento, violación de áreas restringidas, retardo en el despeje de la falla,
	MEDIDAS DE PROTECCIÓN: Puestas a tierra de baja resistencia, restricción de accesos, alta resistividad del piso, equipotencial izar.
Tahla 19 Riesaos eléctricos más c	omunas

Tabla 19. Riesgos eléctricos más comunes.

• Matriz de riesgo eléctrico

Con el fin de evaluar el nivel de riesgo de tipo eléctrico, el RETIE recomienda aplicar la matriz que se muestra a continuación con los tipos de riesgo eléctrico que se pueden presentar al momento del uso yo construcción de la red eléctrica:

• Evaluación de riesgo 1 Y 2

EVALUACIÓN RIESGO 1

FACTOR DE RIESGO POR ARCOS ELÉCTRICOS

POSIBLES CAUSAS: En el desarrollo de la instalación eléctrica se pueden presentar quemaduras eléctricas por malos contactos, contocircuitos.

MEDIDAS DE PROTECCIÓN: Utilizar avisos de precaución, tableros bien cerrados y debidamente rotulados con riesgo eléctrico.

				rocución o emadura				Arcos Eléctrico	os		TENSIÓN DE RED 220/127 V MÓDULOS SOLARES	
R	IESGO A EVALUAI	R:	EVENT	O O EFECTO	por	por FACTOR DE RIESGO (CAUSA)			(al) o (en)	FUENTE		
			(Ej: Qi	uemaduras)		(Ej: Aræ electrica)				(Ej: Celda	de 13,8k V)	
	POTENCIAL		х		REAL	х	х					
								E	D	С	В	A
co	En personas	Εœ	nómicas	de la empresa	de la empresa N		No ha ocurrido en el sector	Ha ocurrido en el sector	Ha ocurrido en la Empresa	Sucede varias veces al año en la Empresa	Sucede varias veces al mes en la Empresa	
	Una o mas muertes	salida de subestación Daños severos. Interrupción Temporal (sin Daños importante: Interrupción breve		Contaminación ineparable.	Internacional	5		MEDIO	ALTO	ALTO	ALTO	MUY ALTO
N S E C	Incapacidad parcial permanente			Contaminación mayor	Nacional	4		MEDIO	MEDIO	MEDIO	MEDIO	ALTO
D E N C I	Incapacidad temporal (>1 día)			Contaminación localizada	Regional	з		BAIO	MEDIO	MEDIO	MEDIO	ALTO
A S	tesión menor (sin incapacidad)			Efecto meror	Local	2		BAIO	BAIO	MEDIO	MEDIO	MEDIO
	Molestia funcional (afecta rendimiento laboral)			Sinefecto	Inte ma	1		MUY BAIO	BAIO	BAIO	BAIO	MEDIO
Evaluadon Ing. Dicson Vega		on Vega	MP:			NS 205-136	5138	FECHA:	11/07	//2021		

RETIE: TABLA 9.3 Matriz para análisis de riesgos EVALUACIÓN RIESGO 2

FACTOR DE RIESGO POR CONTACTO DIRECTO

POSIBLES CAUSAS: En el desarrollo de la instalación primaria en baja tensión se pueden presentar electrocución por negligencia de técnicos y por violación de las distancias mínimas de a seguridad.

MEDIDAS DE PROTECCIÓN: Establecer distancias de seguridad, utilizar elementos de protección personal, instalar puestas a tierra solidas, o temporales.

				rocución o emadura			Contacto direc	to		TENSIÓN DE R MÓDULO:	RED 220/127 V 5 SOLARES
R	IESGO A EVALUA	R:	EVENT	O O EFECTO	por		FACTOR DE RIES (CAUSA)	6 0	(al) o (en)	FUENTE	
			(Ej: Qu	iemaduras)			(Ej: Arca electri	co)		(Ej: Celda	de 13,8k V)
	POTENCIAL		х		REAL	L X					
							E	D	С	В	A
	En personas	Eco	nómicas	Ambientales	En la imagen de la empresa		No ha ocurrido en el sector	Ha ocurrido en el sector	la Empresa	Sucede varias veces al año en la Empresa	Sucede varias veces al mes en la Empresa
c	Una o mas muertes	infra Int	iograve en restructura errupción egional.	Contaminación ine parable.	Internacional	5	MEDIO	ALTO	ALTO	ALTO	MUY ALTO
N S E C U	Incapacidad parcial permanente	si	os mayores, alida de bestación	Contaminación mayor	Nacional	4	MEDIO	MEDIO	MEDIO	MEDIO	ALTO
E N C I	Incapacidad temporal (>1 día)	Int	os severos. errupción emporal	Contaminación localizada	Regional	3	BAIO	MEDIO	MEDIO	MEDIO	ALTO
A S	Lesión menor (sin incapacidad)	Daños Intern	importantes upción breve	Efecto meror	Local	2	BAIO	BAIO	MEDIO	MEDIO	MEDIO
	Molestia funcional (afecta rendimiento laboral)		os leves, No errupción	Sinefecto	Inte ma	1	MUY BAIO	BAIO	BAIO	BAIO	MEDIO
	Evaluador:		Ing. Dics	on Vega	MP:		NS 205-138	5138	FECHA:	11/07	//2021
\vdash					RETIE: TABLA	9.3 Matriz	para aná l ísis de	riesgos	l	l	

• Evaluación de riesgo 3 Y 4

EVALUACIÓN RIESGO 3

FACTOR DE RIESGO POR CONTACTO INDIRECTO

POSIBLES CAUSAS: En el desarrollo de la instalación eléctrica de baja tensión se puede presentar electrocución por fallas de aislamiento, por falta de conductor de puesta a tierra o quemaduras por inducción al violar distancias de segundad.

MEDIDAS DE PROTECCIÓN: Establecer distancias de seguridad, utilizar elementos de protección personal, instalar puestas a tiema solidas, hacer mantenimiento preventivo y correctivo.

		-		rocución o emadura				Contacto indire	cto			ED 220/127 V SOLARES
F	RIESGO A EVALUA	R:	EVENT	O O EFECTO	por			FACTOR DE RIES (CAUSA)	5G O	(al) o (en)	FUENTE	
			(Ej: Q:	remaduras)				(Ej: Arca electri	ica)		(Ej: Celda de 13,8kV)	
	POTENCIAL		х		REAL	,						
								E	D	С	В	A
	En personas	Ecc	nómicas	Ambientales	En la irragen de la empresa			No ha ocurrido en el sector	Haocurrido en el sector	Ha ocurrido en la Empresa	Sucede varias veces al año en la Empresa	Sucede varias veces al mes en la Empresa
co	Una o mas muertes	infra Int	ograve en restructura errupción egional.	Contaminación ineparable.	Internacio na l		5	MEDIO	ALTO	ALTO	ALTO	MUY ALTO
N S E C	Incapacidad parcial permanente	s	os mayores, alida de bestación	Contaminación mayor	Nacional	å	ı	MEDIO	MEDIO	MEDIO	MEDIO	ALTO
U E N C I	Incapacidad temporal (>1 día)	Int	os severos. errupción emporal	Contaminación localizada	Regional	3	;	BAIO	MEDIO	MEDIO	MEDIO	ALTO
A S	Lesión menor (sin incapacidad)		importantes upción breve	Efecto meror	Local	2	:	BAIO	BAIO	MEDIO	MEDIO	MEDIO
	Molestia funcional (afecta rendimiento laboral)		os leves, No errupción	Sinefecto	Inte ma	1		MUY BAIO	BAIO	BAIO	BAIO	MEDIO
	Evaluadon		Ing. Dics	on Vega	MP:			NS 205-136	5138	FECHA:	11/07	/2021

RETIE: TABLA 9.3 Matriz para análisis de riesgos

EVALUACIÓN RIESGO 4

FACTOR DE RIESGO POR CORTO CIRCUITOS

POSIBLES CAUSAS: En el desarrollo de la instalación eléctrica de baja tensión se puede presentar electrocución por fallas de aislamiento, por falta de conductor de puesta a tierra o quemaduras por inducción al violar distancias de seguridad.

MEDIDAS DE PROTECCIÓN: Establecer distancias de seguridad, utilizar elementos de protección personal, instalar puestas a tiema solidas, hacer mantenimiento preventivo y correctivo, instalación de equipos de corte certificados.

				rocución o emadura			Cortocircuito	s		TENSIÓN DE R MÓDULOS	ED 220/127 V SOLARES
R	IESGO A EVALUA	R:	EVENT	O O EFECTO	por		FACTOR DE RIES (CAUSA)	5G O	(al) o (en)	FUE	NTE
			(Ej: Qi	iemaduras)			(Ej: Arca electri	ica)		(Ej: Celda	de 13,8k V)
	POTENCIAL		х		REAL	х					
							E	D	С	В	A
	En personas	Eω	nómicas	Ambientales	En la imagen de la empresa		No ha ocurrido en el sector	Ha ocurrido en el sector	Ha ocurrido en	Sucede varias veces al año en la Empresa	Sucede varias veces al mes en la Empresa
c	Una o mes muertes	infra Int	iograve en restructura errupción egional.	Contaminación ineparable.	Internacional	5	MEDIO	ALTO	ALTO	ALTO	MUY ALTO
N S E C U	Incapacidad parcial permanente	Si	os mayores, alida de bestación	Contaminación mayor	Nacional	4	MEDIO	MEDIO	MEDIO	MEDIO	ALTO
E N C I	Incapacidad temporal (> 1 día)	Int	os severos. errupción emporal	Contaminación localizada	Regional	3	BAIO	MEDIO	MEDIO	MEDIO	ALTO
A S	Lesión menor (sin incapacidad)		importantes upción breve	Efecto meror	Local	2	BAIO	BAIO	MEDIO	MEDIO	MEDIO
	Molestia funcional (afecta rendimiento laboral)		os leves, No errupción	Sinefecto	Inte ma	1	MUY BAIO	BAIO	BAIO	BAIO	MEDIO
	Evaluador:		Ing. Dics	on Vega	MP:		NS 205-136	5138	FECHA:	11/07	//2021
\vdash							(4.1.				

RETIE: TABLA 9.3 Matriz para análisis de riesgos

• Evaluación de riesgo 5 Y 6

EVALUACIÓN RIESGO 5

FACTOR DE RIESGO POR RAYOS (DESCARGAS ATMOSFERICAS)

POSIBLES CAUSAS: En el desarrollo de la instalación eléctrica de baja tensión se puede presentar electrocución por fallas de aislamiento, por falta de conductor de puesta a tierra o quemaduras por inducción al violar distancias de segundad al momento del impacto de un rayo.

MEDIDAS DE PROTECCIÓN: Instalar puestas a tierras solidas, equipotendalización de sistema de puesta a tierra y de apantallamiento de ser necesarios.

	Electrocución o quemadura				Rayos				RED 220/127 V S SOLARES		
R	IESGO A EVALUA	R:	EVENT	O O EFECTO	por		FACTOR DE RIES (CAUSA)	6 0	(al) o (en)	FUENTE	
			(Ej: Qu	iemaduras)		(Ej: Arca electrica)			(Ej: Celda de 13,8kV)		
	POTENCIAL		х		REAL	х					
							E	D	С	В	A
	En personas	Eω	nómicas	Ambientales	En la irragen de la empresa		No ha ocurrido en el sector	Haocurrido en el sector	Ha ocurrido en la Empres a	Sucede varias veces al año en la Empresa	Sucede varias veces al mes en la Empresa
c	Una o mas muertes	infra Int	ograve en estructura errupción egional.	Contaminación ineparable.	Internacio na l	5	MEDIO	ALTO	ALTO	ALTO	MUY ALTO
N S E C	Incapacidad parcial permanente	Si	os mayores, alida de pestación	Contaminación mayor	Nacional	4	MEDIO	MEDIO	MEDIO	MEDIO	ALTO
UENCI	Incapacidad temporal (>1 día)	Int	os severos. errupción emporal	Contaminación localizada	Regional	3	BAIO	MEDIO	MEDIO	MEDIO	ALTO
A S	Lesión menor (sin incapacidad)		importantes upción breve	Efecto meror	Local	2	BAIO	BAIO	MEDIO	MEDIO	MEDIO
	Molestia funcional (afecta rendimiento laboral)		is leves, No emupción	Sinefecto	Inte ma	1	MUY BAIO	BAIO	BAIO	BAIO	MEDIO
	Evaluador:		Ing. Dics	nn Vora	MP:		NCORE 174	139	FECHA:	11 (07	V2021
-	ESS IGE GOT	_	116. 010	un rego	(TIP)	MP: NS 205-136138		FECHA: 11/07/2021		72021	

RETIE: TABLA 9.3 Matriz para análisis de riesgos

EVALUACIÓN RIESGO 6

FACTOR DE RIESGO POR SOBRECARGA

POSIBLES CALEAS: En las instalaciones eléctricas de baja tensión se pueden presentar incencios, daños a equipos, por corrientes nominales superiores de los equipos y conductores, instalaciones que no cumplen con normas técnicas y conexiones flojas.

MEDIDAS DE PROTECCIÓN: Usar interruptores automáticos con relés de sobrecarga, dimensionamiento técnico de conductores y equipos.

			ı	rocución o emadura			Sobrecarga				ED 220/127 V SOLARES
R	IESGO A EVALUA	R:	EVENT	O O EFECTO	por		FACTOR DE RIES (CAUSA)	60 GO	(al) o (en)	FUE	NTE
			(Ej: Qı	uemaduras)	Ī		(Ej: Arca electri	ica)		(Ej: Celda	de 13,8k V)
	POTENCIAL		ж		REAL	х					
							ш	D	С	В	A
	En personas	Eω	nómicas	Ambientales	En la irragen de la empresa		No ha ocurrido en el sector	Haocurrido en el sector	Ha ocurrido en	Sucede varias veces al año en la Empresa	Sucede varias veces al mes en la Empresa
co	Una o mas muertes	infra Int	iograve en restructura errupción egional.	Contaminación ineparable.	Internacional	5	MEDIO	ALTO	ALTO	ALTO	MUY ALTO
N S E C U	Incapacidad parcial permanente	Si	os mayores, alida de bestación	Contaminación mayor	Nacional	4	MEDIO	MEDIO	MEDIO	MEDIO	ALTO
E N C I	Incapacidad temporal (>1 día)	Int	os severos. errupción emporal	Contaminación localizada	Regional	я	BAIO	MEDIO	MEDIO	MEDIO	ALTO
A S	Lesión menor (sin incapacidad)		importantes upción breve	Efecto meror	Local E2	2	BAIO	BAIO	MEDIO	MEDIO	MEDIO
	Molestia funcional (afecta rendimiento laboral)		os leves, No errupción	Sinefecto	Inte ma	1	MUY BAIO	BAIO	BAIO	BAIO	MEDIO
	Evaluador:		Ing. Dics	on Vega	MP:		NS 205-136	5138	FECHA:	11/07	/2021
							 	L			

• Evaluación de riesgo 7 Y 8

EVALUACIÓN RIESGO 7

FACTOR DE RIESGO POR TENSIÓN DE CONTACTO

POSIBLES CAUSAS: En el des arrollo de la instalación eléctrica se pueden presentar quemaduras eléctricas por malos contactos, cortocircuitos.

MEDIDAS DE PROTECCIÓN: Establecer distancias de seguridad, utilizar elementos de protección personal, instalar puestas a tiema solidas, hacer mantenimiento preventivo y correctivo, instalación de equipos de corte certificados.

	Electrocución o quemadura				Tersión de cont	acto			RED 220/127 V S SOLARES		
R	IESGO A EVALUA	R:	EVENT	O O EFECTO	por		FACTOR DE RIES (CAUSA)	5G O	(al) o (en)	FUE	:NTE
			(Ej: Qı	iemaduras)		(Ej: Arca electrica)			(Ej: Celda de 13,8kV)		
	POTENCIAL		х		REAL	х					
							E	D	С	В	A
	En personas	Eω	nómicas	Ambientales	En la irragen de la empresa		No ha ocurrido en el sector	Ha ocurrido en el sector	Ha ocurrido en la Empres a	Sucede varias veces al año en la Empresa	Sucede varias veces al mes en la Empresa
c	Una o mas muertes	infra Int	ograve en restructura errupción egional.	Contaminación ineparable.	Internacio na l	5	MEDIO	ALTO	ALTO	ALTO	MUY ALTO
N S E C	Incapacidad parcial permanente	Si	os mayores, alida de bestación	Contaminación mayor	Nacional	4	MEDIO	MEDIO	MEDIO	MEDIO	ALTO
UENCI	Incapacidad temporal (>1 día)	Int	os severos. errupción emporal	Contaminación localizada	Regional	3	BAIO	MEDIO	MEDIO	MEDIO	ALTO
A S	Lesión menor (sin incapacidad)		importantes upción breve	Efecto meror	Local E2	2	BAIO	BAIO	MEDIO	MEDIO	MEDIO
	Molestia funcional (afecta rendimiento laboral)		os leves, No errupción	Sinefecto	Inte ma	1	MUY BAIO	BAIO	BAIO	BAIO	MEDIO
	Evaluador:		Jan. Dice	nn 1/0mn	MP:		Meane 12	130	FECHA:	11 (07	7/2021
	CVB (CB COT)	_	ng. DiG	Dics on Vega MP: NS 205-136138		i cone:	11/07	12021			

RETIE: TABLA 9.3 Matriz para análisis de riesgos

EVALUACIÓN RIESGO 8

FACTOR DE RIESGO POR TENSIÓN DE PASO

POSIBLES CAUSAS: En el desamollo de la instalación eléctrica interna y extemas de baja tensión se pueden presentar electrocución por falla de ablamiento en conductores y fallas a tierra.

MEDIDAS DE PROTECCIÓN: Haœr puestas a tierra de baja resistencia y equipotencializar.

				rocución o emadura			Tersiónde pa	သ		TENSIÓN DE R MÓDULOS	ED 220/127 V SOLARES
R	IESGO A EVALUA	R:	EVENT	O O EFECTO	por		FACTOR DE RIES (CAUSA)	GO	(al) o (en)	FUE	NTE
			(Ej: Qi	uemaduras)			(Ej: Arca electri	co)		(Ej: Celda	de 13,8k V)
	POTENCIAL		х		REAL	х					
							E	D	С	В	A
	En personas	Eω	nómicas	Ambientales	En la irragen de la empresa		No ha ocurrido en el sector	Haocurrido en el sector	Ha ocurrido en	Sucede varias veces al año en la Empresa	Sucede varias veces al mes en la Empresa
c	Una o mas muertes	infra Int	iograve en restructura errupción egional.	Contaminación ineparable.	Internacional	5	MEDIO	ALTO	ALTO	ALTO	MUY ALTO
N S C U	Incapacidad parcial permanente	Si	os mayores, alida de bestación	Contaminación mayor	Nacional	4	MEDIO	MEDIO	MEDIO	MEDIO	ALTO
E N C I	Incapacidad temporal (>1 día)	Int	os severos. errupción emporal	Contaminación localizada	Regional	3	BAIO	MEDIO	MEDIO	MEDIO	ALTO
A S	tesión menor (sin incapacidad)		importantes upción breve	Efecto meror	Local E2	2	BAIO	BAIO	MEDIO	MEDIO	MEDIO
	Molestia funcional (afecta rendimiento laboral)		os leves, No errupción	Sinefecto	Inte ma	1	MUY BAIO	BAIO	BAIO	BAIO	MEDIO
	Evaluadon		Ing. Dics	on Vega	MP:		NS 205-136	5138	FECHA:	11/07	/2021
<u> </u>							/41.				

• Evaluación de riesgo 9 Y 10

EVALUACIÓN RIESGO 9

FACTOR DE RIESGO POR ELECTRICIDAD ESTÁTICA

POSIBLES CAUSAS: En el desarrollo de la instalación eléctrica interna y extemas de baja tensión se pueden presentar electrocución por falla de ablamiento en conductores y fallas a tierra.

MEDIDAS DE PROTECCIÓN: Hacer puestas a tierra de baja resistencia y equipotencializar.

				rocución o emadura				Electricidad esta	ítica			ED 220/127 V S SOLARES
R	IESGO A EVALUA	R:	EVENT	O O EFECTO	por			FACTOR DE RIES (CAUSA)	6 0	(al) o (en)	FUE	NTE
			(Ej: Q:	uemaduras)				(Ej: Araa eleatri	ica)		(Ej: Celda	de 13,8kV)
	POTENCIAL		ж		REAL)	t					
								E	D	С	В	A
	En personas	Eω	nómicas	Ambientales	En la irragen de la empresa			No ha ocurrido en el sector	Ha ocurrido en el sector	Ha ocurrido en la Empres a	Sucede varias veces al año en la Empresa	Sucede varias veces al mes en la Empresa
co	Una o mes muertes	infra Int	ograve en estructura errupción egional.	Contaminación ineparable.	Internacio na l		5	MEDIO	ALTO	ALTO	ALTO	MLY ALTO
N S E C	Incapacidad parcial permanente	Si	os mayores, alida de pestación	Contaminación mayor	Nacional	å	1	MEDIO	MEDIO	MEDIO	MEDIO	ALTO
U E N C I	Incapacidad temporal (>1 día)	Int	os severos. errupción emporal	Contaminación localizada	Regional	3	3	BAIO	MEDIO	MEDIO	MEDIO	ALTO
A S	tesión menor (sin incapacidad)		importantes upción breve	Efecto meror	Local E2	2	2	BAIO	BAIO	MEDIO	MEDIO	MEDIO
	Molestia funcional (afecta rendimiento laboral)		s leves, No emupción	Sinefecto	Inte ma	1		MLY BAIO	BAIO	BAIO	BAIO	MEDIO
	Evaluador		Ing. Dics	on Vega	MP:			NS 205-136	5138	FECHA:	11/07	/2021

RETIE: TABLA 9.3 Matriz para análisis de riesgos

EVALUACIÓN RIESGO 10 FACTOR DE RIESGO POR EQUIPOS DEFECTUOSO

POSIBLES CAUSAS: En el desamollo de la instalación eléctrica primaria externa se pueden presentar quemaduras eléctricas por malos contactos, contocircuitos o contactos con equipos energizados a través de equipos defectuosos.

MEDIDAS DE PROTECCÓN: Utilizar guantes dieléctricos para media tensión y gafas de protección ultravioleta; además de ropa de dotación hecha a base de algodón. Efectuar mantenimiento a los equipos utilizados.

				rocución o emadura			Arcos Eléctrico	os			S SOLARES
F	IESGO A EVALUA	R:	EVENT	O O EFECTO	por		FACTOR DE RIES (CAUSA)	5G O	(al) o (en)	FUE	NTE
			(Ej: Qu	ıemaduras)			(Ej: Arca electri	ica)		(Ej: Celda	de 13,8k V)
	POTENCIAL		х		REAL	х					
							E	D	С	В	A
	En personas	Eφ	nómicas	Ambientales	En la imagen de la empresa		No ha ocurrido en el sector	Ha ocurrido en el sector	Ha ocurrido en	Sucede varias veces al año en la Empresa	Sucede varias veces al mes en la Empresa
co	Una o mas muertes	infra Into	ograve en estructura errupción egional.	Contaminación ineparable.	Internacional	5	MEDIO	ALTO	ALTO	ALTO	MUY ALTO
N S E C U	Incapacidad parcial permanente	Si	s mayores, alida de sestación	Contaminación mayor	Nacional	4	MEDIO	MEDIO	MEDIO	MEDIO	ALTO
ENCI	Incapacidad temporal (>1 día)	Inte	os severos. errupción emporal	Contaminación localizada	Regional	3	BAIO	MEDIO	MEDIO	MEDIO	ALTO
A S	tesión menor (sin incapacidad)		importantes upción breve	Efecto meror	Local E2	2	BAIO	BAIO	MEDIO	MEDIO	MEDIO
	Molestia funcional (afecta rendimiento laboral) Molestia Daños leves, No Interrupción Sin efecto Inter		Inte ma	1	MUY BAIO	BAIO	BAIO	BAIO	MEDIO		
	Evaluador		Ing. Dics	on Vega	MP:	NS 205-136138		6138	FECHA:	11/07	//2021
					DETIC: TADIA	0.2 M -++	z nara anáficis de	riores			

RETIE: TABLA 9.3 Matriz para análisis de riesgos

Decisiones y acciones para controlar el riesgo

En la tabla mostrada a continuación se presentan las decisiones tomadas respecto al nivel de riesgo evaluado anteriormente:

	Anexo General Reglamento Técnico de Instalac	ciones Eléctricas - RETIE
NIVEL DE RIESGO	DECISIONES A TOMAR Y CONTROL	PARA EJECUTAR LOS TRABAJOS
MUYALTO	Inadmisible para trabajar: Hay que eliminar fuentes potenciales, hacer reingeniería o minimizarlo y volver a valorarlo en grupo, hasta reducirlo. Requiere permiso especial de trabajo.	Buscar procedimientos alternativos si se decide hacer e trabajo. La alta dirección participa y aprueba el Análisis de Trabajo Seguro (ATS) y autoriza su realización mediante ur Permiso Especial de Trabajo. (PES).
ALTO	Minimizarlo: Buscar alternativas que presenten menor riesgo. Demostrar cómo se va a controlar el riesgo, aislar con barreras o distancia, usar EPP. Requiere permiso especial de trabajo.	
MEDIO	Aceptarlo: Aplicar los sistemas de control (minimizar, aislar, suministrar EPP, procedimientos, protocolos, lista de verificación, usar EPP). Requiere permiso de trabajo.	El líder del grupo de trabajo diligencia el Análisis de Trabajo Seguro (ATS) y el jefe de área aprueba el Permiso de Trabajo (PT) según procedimiento establecido.
BAJO	Asumirlo: Hacer control administrativo rutinario. Seguir los procedimientos establecidos. Utilizar EPP. No requiere permiso especial de trabajo.	El líder de trabajo debe verificar: •¿Qué puede salir mal o fallar? •¿Qué puede causar que algo salga mal o falle? •¿Qué podemos hacer para evitar que algo salga mal o falle?
MUY BAJO	Vigilar posibles cambios	No afecta la secuencia de las actividades
	MUYALTO ALTO MEDIO	NIVEL DE RIESGO Inadmisible para trabajar: Hay que eliminar fuentes potenciales, hacer reingeniería o minimizarlo y volver a valorarlo en grupo, hasta reducirlo. Requiere permiso especial de trabajo. Minimizarlo: Buscar alternativas que presenten menor riesgo. Demostrar cómo se va a controlar el riesgo, aislar con barreras o distancia, usar EPP. Requiere permiso especial de trabajo. Aceptarlo: Aplicar los sistemas de control (minimizar, aislar, suministrar EPP, procedimientos, protocolos, lista de verificación, usar EPP). Requiere permiso de trabajo. Asumirlo: Hacer control administrativo rutinario. Seguir los procedimientos establecidos. Utilizar EPP. No requiere permiso especial de trabajo.

RETIE: TABLA 9.4 Decisiones y acciones para controlar el riesgo

Análisis del nivel tensión requerido.

Las tensiones que se manejarán en el proyecto son las siguientes:

EQUIPO	SISTEMA DC	SISTEMA AC
String de paneles solares	41.0 V	N/A
Inversor	208 V	3Φ – 208V

Tabla 20. Nivel de tensión requerido.

Cálculo de campos electromagnéticos para asegurar que, en espacios destinados a actividades rutinarias de las personas, no se superen los límites de exposición definidos en la Tabla 14.1

No aplica para este tipo de proyecto, referirse a parágrafos 1 y 2 del literal 14.4 del RETIE

Cálculo de transformadores incluyendo los efectos de los armónicos y factor de potencia en la carga.

El presente proyecto no posee transformadores.

Cálculo del sistema de puesta a tierra.

El sistema de puesta a tierra tiene por finalidad proteger la vida de las personas, evitar daños en los equipos por sobretensiones y mejorar la efectividad de las protecciones eléctricas, al proporcionar una adecuada conducción de la corriente de falla a tierra.

La resistencia de puesta a tierra debe garantizar que las tensiones de paso y contacto sean inferiores a las máximas admisibles exigidas. De la tabla 10 Según RETIE artículo 15 numeral 15.4 y se presentan en la siguiente tabla.

APLICACIÓN	VALORES MÁXIMOS DE RESISTENCIA DE PUESTA A TIERRA
Estructuras de líneas de transmisión o torrecillas metálicas de distribución con cable de guarda	20 Ω
Subestaciones de alta y extra alta tensión.	1 Ω
Subestaciones de media tensión.	10 Ω
Protección contra rayos.	10 Ω
Punto neutro de acometida en baja tensión.	25 Ω
Redes para equipos electrónicos o sensibles	10 Ω

Tabla 21. Valores de referencia para resistencia de puesta a tierra.

La resistencia de puesta a tierra debe ser menor o igual a 25Ω en baja tensión y garantizar que las tensiones de paso y contacto sean inferiores a las máximas admisibles exigidas.

Para el cálculo de la resistividad del terreno se tendrán en cuenta las resistividades del terreno según el tipo de suelo, como se muestra en la siguiente tabla, tomas del estudio "Manual para la interpretación del perfil de resistividad obtenido al realizar el estudio de la resistividad del suelo a partir de las configuraciones del método de Wenner - Juan David Cárdenas Valencia, Esteban Galvis García de la Universidad Tecnológica de Pereira.

Los valores de resistencia de puesta a tierra aquí calculados serán confrontados con las medidas que se realicen posteriormente en el terreno.

Tipo de terreno	Resistividad ρ (Ω-m)				
Terrenos vegetales húmedos	10-50				
Arcilla, gredas, limos	20 - 60				
Arenas arcillosas	60 - 120				
Fangos, turbas	150 - 300				
Arenas	250 - 500				
Suelos pedregosos	300 - 400				
Rocas	1.000 - 10.000				
Concreto húmedo	100 - 240				
Concreto seco	10.000 - 50.000				

Tabla 22. Resistividad en distintos tipos de suelo.

En la siguiente tabla calculada según los lineamientos de la Norma IEEE Standard 80 se muestran los valores típicos de tensiones de paso y contacto tolerables por el cuerpo humano, dependiendo del tipo de suelo, la resistividad del terreno y el tiempo de duración de la falla para personas con un peso promedio de 70 kg.

		Duración d	e falla 0.5 s	Duración de falla 1.0 s		
Tipo de suelo	Resistividad (Ω-m)	Tensión de paso(V)	Tensión de contacto (V)	Tensión de paso (V)	Tensión de contacto (V)	
Orgánico Mojado	10	174	166	123	118	
Húmedo	100	263	186	186	133	
Seco	1 000	1 154	405	816	286	
Piedra partida 105 mm	3 000	3 143	885	2 216	626	

Tabla 23. Tensiones de paso y contacto.

El terreno sobre el cual se piensa realizar la construcción tiene características de arenas arcillosas por lo que se presenta el siguiente cálculo.

El sistema de puesta a tierra será mejorado con suelo de baja impedancia para mejorar las características de resistividad del terreno (Ω -m) según resistencia calculada por la siguiente tabla.

Selección del bajante de puesta a tierra:

DESDE	HASTA	CONDUCTOR	REFERENCIA
Barraje SPT principal	Varilla de SPT 5/8"	8 AWG Cu	Tabla 250-94
Paneles Solares	Barraje SPT principal	10 AWG Cu	Tabla 250-95

Tabla 24. Resistencia calculada SPT.

Cálculo económico de conductores, teniendo en cuenta todos los factores de pérdidas, las cargas resultantes y los costos de la energía.

El cálculo económico de conductores es un estudio que se realiza con el fin de establecer en términos de dinero las pérdidas de energía debidas a la resistencia propia de cada conductor. Dichas pérdidas son calculadas mediante la siguiente ecuación:

$$E = R * Imax^2 * \Delta t$$

Donde,

E: Energía disipada por el conductor,

R: resistencia propia del conductor (ver ficha técnica del conductor)

Imax: corriente máxima que pasará por el conductor

Δt: es el intervalo de tiempo

En la siguiente tabla se demuestra la comparación entre el conductor seleccionado para cada sistema y el conductor anterior.

ECUACIÓN $E = R * Imax^2 * \Delta t$ **INVERSORES** \mathbf{AC} Sistema INVERSOR **INVERSOR** MPPT 1 MPPT2 MPPT4 MPPT 3 1+2+3+4 1, 2, 3, 4 I max (A) 12,21 12,21 12,21 12,21 4,00 16,00 Delta t (h) 8 8 8 8 8 8 12 AWG **Calibre seleccionado 12 AWG** 12 AWG 12 AWG 12 AWG 12 AWG 6,56 6,56 6,56 Resistencia (Ω/km) 6,56 6,56 6,56 Distancia (km) 0,04 0,04 0,04 0,04 0,04 0,04 Energía disipada (Wh/km) 0,0336 0,5374 0,3130 0,3130 0,3130 0,3130 Valor kWh (\$600) \$ 187,77 \$ 187,77 \$ 187,77 \$ 187,77 \$ 20,15 \$ 322,44 **Calibre anterior** 14 AWG 14 AWG 14 AWG 14 AWG 14 AWG 14 AWG Resistencia (Ω/km) 10,17 10,17 10,17 10,17 10,17 10,17 Energía disipada (Wh) 0,49 0,49 0,49 0,49 0,05 0,83 Valor kWh (\$600) \$ 291,11 \$ 291,11 \$ 291,11 \$ 291,11 \$ 31,24 \$ 499,88 Pérdida COP\$ -\$ 103,33 -\$ 103,33 -\$ 103,33 -\$ 103,33 -\$ 11,09 -\$ 177,44

Tabla 25. Cálculo económico del conductor.

Verificación de los conductores, teniendo en cuenta el tiempo de disparo de los interruptores, la corriente de cortocircuito de la red y la capacidad de corriente del conductor de acuerdo con la norma IEC 60909, IEEE 242, capítulo 9 o equivalente.

En este punto se hace un análisis con las especificaciones de instalación; a continuación, se muestra una tabla con las características del conductor empleado en cada tramo.

SISTEMA AC									
DESCRIPCIÓN	CNT.	UND							
Acometida principal	4,52	kVA							
Tensión	208	٧							
Corriente	12,55	Α							
Corriente x 125%	15,68	Α							
Calibre seleccionado	12	AWG							
Ampacidad de calibre Tabla 310-16	30	Α							
Temperatura ambiente instalación	23	°C							
Corrección de ampacidad por temperatura	32,4	Α							
Protección seleccionada	3X20	Α							

SISTEMA DC										
DESCRIPCIÓN	CNT.	UND								
Cada Mppt por INVERSORES	0,395	kVA								
Tensión	41	V								
Corriente	12,21	Α								
Corriente x 125%	15,26	Α								
Calibre seleccionado	4mm2	AWG								
Ampacidad de calibre Tabla 310-16	30	Α								
Temperatura ambiente instalación	28	°C								
Corrección de ampacidad por temperatura	32,4	Α								
Protección seleccionada	2X16	Α								

Tabla 26. Verificación del conductor.

Cálculo mecánico de estructuras y de elementos de sujeción de equipos.

	Descripción	Uso	Cantidad
L - Foot		Anclaje a piso y/o techo, se debe impermeabilizar la perforación para evitar filtraciones. Se emplea tornillo autoperforante.	1 soporte de L cada dos metros para el sostenimiento del RIEL
Riel		Soporte transversal de los paneles solares, van sostenidos por las L - foot. Cada panel requiera ya sea de manera horizontal o vertical el paso de dos rieles transversalmente.	Generalmente, cada riel viene de 4.2 m que permiten ubicar 4 paneles verticalmente sobre ellos, es decir que para 4 paneles de 1m de ancho se requieren 2 rieles de 4.2 m.
MID Clamp	0)	Punto de anclaje de los paneles solares contra el riel, evita su movimiento por vientos o su propio peso, cada MID soporta dos paneles.	Cada MID va entre dos paneles, es decir que por cada dos paneles se requieren 2 MID Clamp.
END Clamp		Punto de anclaje de los paneles solares contra el riel, evita su movimiento por vientos o su propio peso, cada END soporta dos paneles.	Cada END va al final de cada cadena de paneles, es decir que por cada dos paneles se requieren 2 END Clamp.

Cálculo y coordinación de protecciones contra sobre - corrientes. En baja tensión se permite la coordinación con las características de limitación de corriente de los dispositivos según IEC 60947-2 Anexo A.

La elección de protecciones según corrientes normalizadas y adecuadas para la configuración DC / AC son seleccionados según los siguientes cálculos:

• Sistema DC:

Sistema DC										
Protección integrada contra sobre corriente:										
		Paneles en paralelo	Х	Isc panel solar						
		1	Х	12,21A						
	MPPT 1	12,2	21A							
	IVIFFI	12,21A	Х	125%						
⊋		15,2	26A							
7,8,1		Protección fusible	:	16A						
(1,2		Paneles en paralelo	Х	Isc panel solar						
508		1	Х	12,21A						
-3.2	MPPT 2	12,2	21A							
90.	IVIFFIZ	12,21A	Х	125%						
YC1		15,26A								
em		Protección fusible	:	16A						
MICRO-INVERSOR APsystem YC1000-3 208 (1,2,3,4)		Paneles en paralelo	Х	Isc panel solar						
AP		1	Х	12,21A						
O. R	MPPT 3	12,2	21A							
ĒRS		12,21A	Х	125%						
2		15,2	26A							
Å		Protección fusible	:	16A						
S N		Paneles en paralelo	Х	Isc panel solar						
_		1	Х	12,21A						
	MPPT 4	12,2	21A							
		12,21A	Х	125%						
		15,2	26A							
Protección fusible : 16A										
Protección contra sobre tensión:										
DPS Tipo II - 1000Vdc										
12.5kA										

Tabla 27. Cálculo de protecciones DC.

• Sistema AC:

Sistema AC						
Sistema 208V						
Inversor Apsystem YC1000-208-3 1+2+3	3+4					
Protección contra sobre corriente:						
Sistema:	3Ф	N	Т			
Potencia (kVA):	4,52					
Tensión de línea (V):	208	208				
Intensidad max (A):	12,5	5				
Factor de carga continua:	125%	6				
Intensidad resultante (A): 15,68						
Protección termomagnética:	3X16	Α				
Conductor seleccionado:	12 AW	i Cu				

Tabla 28. Cálculo de protecciones AC.

Cálculos de canalizaciones (tubo, ductos, canaletas y electroductos) y volumen de encerramientos (cajas, tableros, conduletas, etc.).

	Sistema AC										
Inversores a t	Inversores a tablero de protecciones AC										
Conductores	Conductores										
Cable Cantidad Diametro Sección Ocupación Área con transv. mm2 mm2 mm2											
12 AWG	3	3,36	8,87	26,60	66,5						
12 AWG	1	3,36	8,87	8,87	22,2						
Conduit	Conduit										
Coraza liquid tight	Cantidad		Diametro externo mm	Sección transv. mm2	Ocupación de conductores						
1/2"	1	15		176,71	20%						

Tabla 29. Cálculo de canalizaciones.

Cálculos de pérdidas de energía, teniendo en cuenta los efectos de armónicos y factor de potencia y Cálculos de regulación.

	REGULACIÓN DE CORRIENTE SISTEMA FOTOVOLTAICO EN AC													
Tensión d	e linea (V)		20	08		Siste	ema	3F	Temperatur	a Ambiente	23		°C	
Tramo	Regulación de tensión	Impedancia efectiva (Zef)		tiva	Resistencia	Inductancia	Conduit	Demanda Conduit máxima		Distancia	Pérdidas de potencia	Cond	uctor	
	%R	Cos	0,80	Sen	0,60	Ω/km	Ω/km		kVA	Α	km	%Pp	AWG/mm2	Amperios
Inversor 1+2+3+4 a Tablero AC	0,13		5,	35		6,56	0,177	PVC	4,52	12,55	0,004	0,34	12	30
	0,13													

Tenido de linea (V)		REGULACIÓN DE CORRIENTE SISTEMA FOTOVOLTAICO EN DC													
Trambo T	Tensión d	e linea (V)		4	1		Siste	ema	N/A	Temperatu	ra Ambiente	23		°C	
NR Cos 1,00 Sen 0,00 0,1 km 0,1 km 0,1 km N/A A km N/P AWG/mn2 Amperic	Trama		lm			ctiva	Resistencia do	Inductancia	Canduit		Corriente	Distancia		Cond	uctor
2,2,1 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 3,3,1 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 4,4,1 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 1,1,2 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 2,2,2 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 3,3,2 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 4,4,2 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 1,1,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12	Iramo	%R	Cos	1,00	Sen	0,00	Ω/km	Ω/km	Conduit	kVA	А	km	%Рр	AWG / mm2	Amperios
3,3,1 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 1,1,2 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 2,2,2 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 3,3,2 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 4,4,2 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 1,1,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 2,2,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 3,3,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 4,4,2 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 4,4,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 3,3,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 1,1,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 1,1,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 2,2,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30	1,1,1	0,29		6,	56		6,56	N/A	PVC	0,45	12,21	0,0015	0,26	12	30
4.4.1 0.29 6.56 6.56 N/A PVC 0.45 12,21 0.0015 0.26 12 30 1,1,2 0.29 6.56 6.56 N/A PVC 0.45 12,21 0.0015 0.26 12 30 2,2,2 0.29 6.56 6.56 N/A PVC 0.45 12,21 0.0015 0.26 12 30 3,3,2 0.29 6.56 6.56 N/A PVC 0.45 12,21 0.0015 0.26 12 30 4,4,2 0.29 6.56 6.56 N/A PVC 0.45 12,21 0.0015 0.26 12 30 1,1,3 0.29 6.56 6.56 N/A PVC 0.45 12,21 0.0015 0.26 12 30 2,2,3 0,29 6.56 6.56 N/A PVC 0.45 12,21 0.0015 0.26 12 30 3,3,3 0,29 6.56 6.56 N/A PVC 0.45 12,21 0.0015 0.26 12	2,2,1	0,29		6,	56		6,56	N/A	PVC	0,45	12,21	0,0015	0,26	12	30
1,1,2 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 2,2,2 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 3,3,2 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 4,4,2 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 1,1,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 2,2,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 3,3,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 4,4,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12	3,3,1	0,29		6,	56		6,56	N/A	PVC	0,45	12,21	0,0015	0,26	12	30
2,2,2 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 3,3,2 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 4,4,2 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 1,1,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 2,2,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 3,3,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 4,4,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 1,1,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12	4,4,1	0,29		6,	56		6,56	N/A	PVC	0,45	12,21	0,0015	0,26	12	30
3,3,2 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 4,4,2 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 1,1,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 2,2,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 3,3,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 4,4,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 1,1,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 2,2,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30	1,1,2	0,29		6,	56		6,56	N/A	PVC	0,45	12,21	0,0015	0,26	12	30
4,4,2 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 1,1,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 2,2,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 3,3,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 4,4,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 1,1,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 2,2,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30	2,2,2	0,29		6,56		6,56	N/A	PVC	0,45	12,21	0,0015	0,26	12	30	
1,1,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 2,2,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 3,3,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 4,4,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 1,1,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 2,2,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30	3,3,2	0,29		6,56		6,56	N/A	PVC	0,45	12,21	0,0015	0,26	12	30	
2,2,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 3,3,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 4,4,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 1,1,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 2,2,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30	4,4,2	0,29		6,56			6,56	N/A	PVC	0,45	12,21	0,0015	0,26	12	30
3,3,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 4,4,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 1,1,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 2,2,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30	1,1,3	0,29		6,	56		6,56	N/A	PVC	0,45	12,21	0,0015	0,26	12	30
4,4,3 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 1,1,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 2,2,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30	2,2,3	0,29		6,	56		6,56	N/A	PVC	0,45	12,21	0,0015	0,26	12	30
1,1,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30 2,2,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30	3,3,3	0,29		6,	56		6,56	N/A	PVC	0,45	12,21	0,0015	0,26	12	30
2,2,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30	4,4,3	0,29		6,	56		6,56	N/A	PVC	0,45	12,21	0,0015	0,26	12	30
	1,1,4	0,29	6,56		6,56	N/A	PVC	0,45	12,21	0,0015	0,26	12	30		
3,3,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30	2,2,4	0,29		6,	56		6,56	N/A	PVC	0,45	12,21	0,0015	0,26	12	30
	3,3,4	0,29		6,	56		6,56	N/A	PVC	0,45	12,21	0,0015	0,26	12	30
4,4,4 0,29 6,56 6,56 N/A PVC 0,45 12,21 0,0015 0,26 12 30	4,4,4	0,29		6,	56		6,56	N/A	PVC	0,45	12,21	0,0015	0,26	12	30

Tabla 30. Cálculo de regulación y pérdidas de potencia.

Clasificación de áreas.

Instalaciones especiales, según RETIE 2013, Art. 28.3: Son aquellas instalaciones que por estar localizadas en ambientes clasificados como peligrosos, o por alimentar equipos o sistemas complejos, presentan mayor probabilidad de riesgo que una instalación básica, y, por tanto, requieren de medidas especiales para mitigar o eliminar tales riesgos. Para el presente proyecto no aplica el proyecto como área de atmósfera peligrosa o área clasificada.

Elaboración de diagramas unifilares.

Ver plano anexo

Elaboración de planos y esquemas eléctricos para construcción.

Ver plano anexo

Especificaciones de construcción complementarias a los planos, incluyendo las de tipo técnico de equipos y materiales y sus condiciones particulares.

Ver plano anexo

Establecer las distancias de seguridad requeridas.

En el presente proyecto solar se encuentran cables aislados tipo **SOLAR** por lo que no deben cumplir con las distancias de seguridad.

Para el presente proyecto se tendrán en cuenta las distancias de seguridad señaladas en el Capítulo 13 del Reglamento Técnico de Instalaciones Eléctricas — RETIE puesto que su incumplimiento es fuente de riesgos que afectarán la integridad de las personas y sus bienes.

Teniendo en cuenta que la red de media tensión utiliza conductores desnudos, las distancias verticales se toman siempre desde el punto energizado más cercano al lugar de posible contacto.

Figura 2. Distancias de seguridad en zonas con construcciones

La distancia horizontal "b" se toma desde la parte energizada más cercana al sitio de posible contacto, es decir, trazando un círculo desde la parte energizada, teniendo en cuenta la

posibilidad real de expansión vertical que tenga la edificación y que en ningún momento la red quede encima de la construcción.

Si se tiene un tendido aéreo con cable aislado y con pantalla no se aplican estas distancias; tampoco se aplica para conductores aislados para baja tensión.

Distancias Mínimas de Seguridad en Zonas con Construcciones.

DISTANCIAS MÍNIMAS DE SEGURIDAD EN ZONAS CON CONSTRUCCIONES										
Descripción	Tensión nominal entre fases (kV)	Distancia (m)								
Distancia vertical "a" sobre techos y proyecciones, aplicable solamente a	44/34,5/33	3,8								
zonas de muy difícil acceso a personas y siempre que el propietario o tenedor de la instalación eléctrica tenga absoluto control tanto de la	13,8/13,2/11,4/7,6	3,8								
instalación como de la edificación (Figura 13.1).	<1	0,45								
Side of the first LIMP.	66/57,5	2,5								
Distancia horizontal "b" a muros, balcones, salientes, ventanas y diferentes áreas independientemente de la facilidad de accesibilidad de	44/34,5/33	2,3								
personas. (Figura 13.1)	13,8/13,2/11,4/7,6	2,3								
	<1	1,7								
Distancia vertical "c" sobre o debajo de balcones o techos de fácil acceso	44/34,5/33	4,1								
a personas, y sobre techos accesibles a vehículos de máximo 2,45 m de	13,8/13,2/11,4/7,6	4,1								
altura. (Figura 13.1)	<1	3,5								
	115/110	6,1								
Distancia vertical "d" a carreteras, calles, callejones, zonas peatonales,	66/57,5	5,8								
áreas sujetas a tráfico vehicular. (Figura 13.1) para vehículos de más de	44/34,5/33	5,6								
2,45 m de altura.	13,8/13,2/11,4/7,6	5,6								
	<1	5								

Tabla 30. Distancias mínimas de seguridad en zonas con construcciones

Las distancias mínimas de seguridad que deben guardar las partes energizadas respecto de las construcciones se muestran en la siguiente tabla.

No se deben instalar conductores de redes o líneas del servicio público, por encima de edificaciones donde se tenga presencia de personas

Figura 3. Distancias d1 y d en cruce y recorridos de vías.

En los tendidos de la red de distribución se debe tener en cuenta que las alturas de los conductores **d1** y **d** con respecto al piso o de la vía no podrán ser inferiores a las distancias que se muestran a continuación.

Descripción	Tensión nominal entre fases (kV)	Distancia (m)
	500	11,5
	230/220	8,5
	115/110	6,1
Distancia mínima al suelo "d" en cruces con carreteras, calles, callejones, zonas	66/57,5	5,8
peatonales, áreas sujetas a tráfico vehicular (Figura 13.2).	44/34,5/33	5,6
	13,8/13,2/11,4/7,6	5,6
	15,0/15,2/11,4/7,0	5,0 5,0
Consider Manager Annual Angles Teach Manager Annual Annual Manager Annual Annual Manager Annual Annual Manager		
Cruce de líneas aéreas de baja tensión en grandes avenidas.	<1	5,6
	500	11,5
	230/220	8,0
Distancia mínima al suelo "d1" desde líneas que recorren avenidas,	115/110	6,1
•	66/57,5	5,8
carreteras y calles (Figura 13.2).	44/34,5/33	5,6
	13,8/13,2/11,4/7,6	5,6
	<1	5,0
	500	8,6
	230/220	
Distancia mínima al suelo "d" en zonas de bosques de arbustos, áreas cultivadas,		6,8
·	115/110	6,1
pastos, huertos, etc. Siempre que se tenga el control de la altura máxima que	66/57,5	5,8
pueden alcanzar las copas de los arbustos o huertos, localizados en la zonas de	44/34,5/33	5,6
servidumbre (Figura 13.2).	13,8/13,2/11,4/7,6	5,6
	<1	5,0
F. C d. b b d d	500	11,1
En áreas de bosques y huertos donde se dificulta el control absoluto del	230/220	9,3
crecimiento de estas plantas y sus copas puedan ocasionar acercamientos	115/110	8,6
peligrosos, se requiera el uso de maquinaria agrícola de gran altura o en cruces	66/57,5	
de ferrocarriles sin electrificar, se debe aplicar como distancia "e" estos valores		8,3
	44/34,5/33	8,1
(Figura 13.3) ⁹	13,8/13,2/11,4/7,6	8,1
(Figura 15.5)	<1	7,5
	500	4,8
	230/220	3,0
Distancia mínima vertical en el cruce "" a les conductores elimentadores de	115/110	2,3
Distancia mínima vertical en el cruce "f" a los conductores alimentadores de	66/57,5	2,0
ferrocarriles electrificados, teleféricos, tranvías y trole-buses (Figura 13.4)	44/34,5/33	1,8
	13,8/13,2/11,4/7,6	1,8
	<1	1,2
	500	12,9
	230/220	
Distancia mínima vertical respecto del máximo nivel del agua "g" en cruce con		11,3
· · · · · · · · · · · · · · · · · · ·	115/110	10,6
ríos, canales navegables o flotantes adecuados para embarcaciones con altura	66/57,5	10,4
superior a 2 m y menor de 7 m (Figura 13.4)	44/34,5/33	10,2
	13,8/13,2/11,4/7,6	10,2
	<1	9,6
	500	7,9
	230/220	6,3
Distancia mínima vertical respecto del máximo nivel del agua "g" en cruce con	115/110	5,6
ríos, canales navegables o flotantes, no adecuadas para embarcaciones con	66/57,5	5,4
	44/34,5/33	5,2
altura mayor a 2 m. (Figura 13.4)	42.0/42.2/44.4/7.6	r 2
	13,8/13,2/11,4/7,6	5,2 4,6
	500	14,6
Distancia mínima vertical al piso en cruce por espacios usados como campos	230/220	12,8
deportivos abiertos, sin infraestructura en la zona de servidumbre, tales como	115/110	12
graderías, casetas o cualquier tipo de edificaciones ubicadas debajo de los	66/57,5	12
	44/34,5/33	12
conductores.	13,8/13,2/11,4/7,6	12
	<1	12
	500	11,1
	230/220	9.3
Distancia mínima horizontal en cruce cercano a campos deportivos que incluyan	115/110	7,0
	66/57,5	
infraestructura, tales como graderías, casetas o cualquier tipo de edificación		7,0
asociada al campo deportivo.	44/34,5/33	7,0
	13,8/13,2/11,4/7,6 <1	7,0 7,0 7,0

Para el caso de cruces o recorridos paralelos de distintas líneas, se deben tener en cuenta las siguientes distancias mínimas.

		DISTANCIAS EN METROS								
Tensión	500	4,8	4,2	4,2	4,2	4,3	4,3	4,6	5,3	7,1
	230/220	3,0	2,4	2,4	2,4	2,5	2,6	2,9	3,6	
	115/110	2,3	1,7	1,7	1,7	1,8	1,9	2,2		
	66	2,0	1,4	1,4	1,4	1,5	1,5			
nominal (kV) entre fases	57,5	1,9	1,3	1,3	1,3	1,4				
de la línea superior	44/34,5/33	1,8	1,2	1,2	1,3					
	13,8/13,2/11,4/7,6	1,8	1,2	0,6						
	<1	1,2	0,6							
	Comunicaciones	0,6								
				13,8/	44/			115/	230	
		Comunicación	<1	13,2/	34,5/	57,5	57,5 66			500
				11,4/ 7,6	33			110	220	
		Tensión nominal (kV) entre fases de la línea inferior								

Tabla 31. Distancias verticales mínimas en vanos con líneas de diferentes tensiones.

Los conductores sobre apoyos fijos, deben tener distancias horizontales y verticales entre cada uno, no menores que el valor que se muestra en la siguiente tabla.

CLASE DE CIRCUITO Y TENSIÓN ENTRE LOS CONDUCTORES CONSIDERADOS	DISTANCIAS HORIZONTALES DE SEGURIDAD (cm)
Conductores de comunicación expuestos	15 (1) 7,5 (2)
Alimentadores de vías férreas 0 a 750 V (4/0 AWG o mayor calibre). 0 a 50 V (calibre menor de 4/0 AWG). Entre 750 V y 8,7 kV.	15 30 30
Conductores de suministro del mismo circuito. 0 a 8,7 kV Entre 8,7 y 50 kV Más de 50 kV	30 30 más 1 cm por kV sobre 8,7 kV Debe atender normas internacionales
Conductores de suministro de diferente circuito (3) 0 a 8,7 kV Entre 8,7 y 50 kV Entre 50 kV y 814 kV	30 30 más 1 cm por kV sobre 8,7 kV 71,5 más 1 cm por kV sobre 50 kV

Tabla 32. Distancia horizontal entre conductores soportados en la misma estructura.

Justificación técnica de desviación de la NTC 2050 cuando sea permitido, siempre y cuando no comprometa la seguridad de las personas o de la instalación.

Los demás estudios que el tipo de instalación requiera para su correcta y segura operación, tales como condiciones sísmicas, acústicas, mecánicas o térmicas.

Los anteriores numerales no aplican para este tipo de proyecto.