Mãos à obra – Titanic – Machine Learning from Disaster

Este documento tem como objetivo principal descrever as fases realizadas ao longo do projeto, detalhando as informações obtidas a partir da exploração dos dados e relatando o passo a passo da manipulação das *features* e criação dos modelos.

1. Análise exploratória, limpeza e manipulação dos dados

A meta nessa fase é extrair o máximo de *insights* possíveis sobre os dados, buscando um maior entendimento sobre como se comportam de acordo com algum tipo de padrão e como se interinfluenciam.

1.1. Visão geral

Na figura abaixo estão as primeiras linhas do *Data Frame* do conjunto de treino, que foi carregado utilizando a coluna "*PassengerId*" como *index*. A primeira coluna contém a variável *target*, sendo que 1 indica que o passageiro sobreviveu ao desastre e 0 que veio a falecer. Os demais campos são os atributos relacionados a cada passageiro, com um total de 891 registros. Já à primeira vista, percebe-se que existem campos nulos na coluna *Cabin*. Verificando todas as colunas, também existem valores nulos para os atributos *Age* (idade) e *Embarked*, já trazendo a ideia que possivelmente serão necessárias técnicas para preenchimento.

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Passengerld											
1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С

O pandas também permite gerar um resumo estatístico básico sobre os dados, o que pode nos proporcionar um panorama geral sobre a distribuição e características dos valores.

	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75 %	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

1.2. Correlação

Como um problema de classificação binária, a partir da matriz de correlação é possível saber como um atributo está relacionado ao outro, a partir de um valor que varia de -1 a 1. Valores mais próximos de 1 indicam uma relação positiva (conforme um cresce o outro também), enquanto valores próximos de -1 indicam uma relação negativa (conforme um cresce o outro diminui). Já valores próximos de 0 indicam pouco relacionamento entre ambos.

Pclass	1	-0.37	0.083	0.018	-0.55	
Age	-0.37	1	-0.31	-0.19	0.096	
SibSp	0.083	-0.31	1	0.41	0.16	
Parch	0.018	-0.19	0.41	1	0.22	
Fare	-0.55	0.096	0.16	0.22	1	
,	Pclass	Age	SibSp	Parch	Fare	
	-0.4	-0.2 0.0	0.2	0.4 0.6	0.8 1	Ľ0

Pela matriz gerada, percebemos três correlações principais:

- *Pclass* e *Fare*: conforme o valor da classe aumenta o valor da tarifa tende a diminuir, o que faz sentido, já que a primeira classe tende a ser a mais cara e a terceira a mais barata;
- *Pclass* e *Age*: conforme a classe aumenta a idade do passageiro diminui, indicando que as pessoas de primeira classe tendem a ser mais velhas (mais estabelecidas financeiramente, possivelmente);
- SibSp e Parch: estes atributos são referentes à parceiros e família, portanto faz sentido que estejam relacionados, levando em conta que a viagem possivelmente era em família.

1.3. Idade dos passageiros

O histograma abaixo mostra a distribuição geral da idade dos passageiros. A maior parte dos passageiros possui idade entre 19 e 35 anos aproximadamente, além de uma boa quantidade de crianças com cerca de menos de 5 anos, mas com poucas pessoas acima dos 60 anos. No geral, observa-se que há uma distribuição aproximadamente normal das idades.

Olhando para a idade como fator de sobrevivência, a maior parte das pessoas que morreram estão justamente onde a distribuição se concentra. Porém, entre os sobreviventes já há um maior equilíbrio, indicando também que a maior parte das crianças foi salva.

1.4. Título dos passageiros e porto de embarque

Quando olhamos para o campo nome, à primeira vista, podemos ter a impressão de que ele não é de grande importância para determinar a sobrevivência de um passageiro. Entretanto, olhando detalhadamente, percebemos que todos possuem um título relacionado, o que pode determinar a importância de cada um no momento de ser salvo. Para extrair essa informação, foi criada uma função. Com o campo criado, é interessante ver os valores únicos e a quantidade de passageiros que os possuem.

Mr	517
Miss	182
Mrs	125
Master	40
Dr	7
Rev	6
Mlle	2
Major	2
Col	2
the Countess	1
Capt	1
Ms	1
Sir	1
Lady	1
Mme	1
Don	1
Jonkheer	1

Já olhando para os portos de embarque, a maioria disparada está concentrada no "S".

1.5. Sobreviventes por gênero

Olhando para a distribuição de sobreviventes por gênero, percebe-se que a maior parte foram mulheres, com uma boa diferença entre as quantidades. Porém, essa informação é ainda mais reforçada quando se calcula a proporção relativa, indicando que aproximadamente 74% das mulheres sobreviveram, enquanto para homens esse valor é de apenas 19%. Isso reforça a ideia de que durante o desastre foram priorizadas as mulheres e as crianças, o que é um procedimento padrão.

male

1.6. Sobreviventes por classe

Analisando-se o gráfico, existe um certo equilíbrio entre as classes dos sobreviventes. Contudo, mais uma vez olhando para proporções relativas, obtém-se uma grande discrepância, sendo que, proporcionalmente, para primeira, segunda e terceira classe, foram salvos, respectivamente, 63%, 47% e 24% dos passageiros, indicando que realmente a maior parte dos passageiros de primeira classe foram salvos.

Porcentagem de sobreviventes por classe

1.7. Relacionamentos a bordo

Para facilitar o processo, as colunas que indicam a quantidade de pessoas com a qual um passageiro está relacionado foram somadas, partindo do pressuposto que no momento do desastre qualquer nível de relacionamento impactaria nas atitudes. Para a construção do gráfico foi levado em conta se possuíam ao menos um companheiro, mais de um companheiro, e mais de dois companheiros. Pelas proporções, conforme o número de companheiros sobe a chance de sobrevivência diminui.

1.8. Sobrevivência por taxa paga

O gráfico mostra uma combinação entre a taxa paga, a classe e se sobreviveu ou não. Como era de se esperar, a maior parte dos passageiros com taxa alta sobreviveram, estando concentrados principalmente na primeira classe.

2. Feature Engineering

Nesta fase, o objetivo é que, após a análise dos dados, sejam feitas manipulações para criação de novos campos, ou a partir da manipulação dos já existentes, ou criando novos a partir de combinações. Para isso, foram desenvolvidas 3 etapas, evoluindo de um processamento inicial para um mais avançado, sendo cada caso testado separadamente na fase de criação dos modelos, que será tratada mais à frente.

2.1. Etapa 1

Nesta etapa, foi definido um pré-processamento inicial dos dados, que também foi utilizado nas demais, que envolve a criação definitiva de uma coluna título para treinamento e previsão, uma coluna de relações também já descrita anteriormente, e uma nova coluna, que busca sumarizar a classe do passageiro e a taxa paga, mais especificamente é a a razão entre taxa e classe.

Após isso, foram removidas as colunas que originam esses novos atributos: *Name, Pclass, SibSp, Parch e Fare*. Também foi removida a coluna *Ticket*, que em primeiro momento também não parece ser de muita ajuda, bem como a coluna *Cabin*, que possui quase 80% dos valores nulos.

Também foi criado um *pipeline*, que ficou encarregado de resolver problemas de valores faltantes e transformação dos dados. Para valores numéricos foi definido um *Imputer*, que preenche valores nulos a partir de um valor, sendo a mediana a escolhida para o caso. Já para valores categóricos, o *Imputer* utiliza o valor mais frequente, sendo aplicada posteriormente a técnica de *One-Hot-Encoding*.

2.2 Etapa 2

Nesta etapa, foi feito um aprimoramento do que já havia sido feito na anterior. Para a coluna título, foi feito um mapeamento, atribuindo valores mais generalistas para cada um. Para relações foram criadas 4 classes de acordo com o número de companheiros: 0 para nenhum, 1 para um, 2 para dois e 3 para três ou mais passageiros relacionados.

Já no *pipeline*, também foi inclusa uma técnica de *scaling* para valores numéricos, permitindo que valores em escalas diferentes possam ser melhor interpretados pelos modelos. Além disso, a coluna de relações também foi considerada como sendo categórica.

2.3. Etapa 3

Na fase de análise observou-se que o conjunto estava com um certo nível de desbalanceamento entre as classes. Nesta etapa, foi feito um balanceamento utilizando *oversampling*, gerando valores randômicos com base nos existentes para equilibrar o número de registros da classe minoritária em relação à majoritária.

3. Criação dos modelos

Para previsão dos valores, foram utilizados os modelos: *Decision Tree, Random Forest, Naive Bayes* e *Support Vector Machines*. Para cada modelo foi criado um *pipeline* combinado ao que foi desenvolvido nas etapas de Feature Engineering. Para validação, foi utilizado o método de validação cruzada com cv = 5 e acurácia média como métrica de avaliação de desempenho. Os resultados de validação para cada modelo em cada etapa estão na tabela abaixo.

Modelo	Etapa 1	Etapa 2	Etapa 3
Decision Tree	0.7587	0.7598	0.8588
Random Forest	0.7890	0.7811	0.8706
Naive Bayes	0.7497	0.7811	0.7823
Support Vector Machines	0.6836	0.8136	0.7887

Pelos valores, percebemos que na Etapa 1 todos se saíram muito bem, com exceção do SVM. Porém, na Etapa 2, enquanto os outros se mantiveram ou melhoraram apenas um pouco, o SVM obteve um ganho representativo. Isso ocorreu, possivelmente, pelo processo de *scaling*, já que, no caso, o modelo faz o uso de hiperplanos que levam em conta a distância dos atributos, e, portanto, o

processo de diminuir e padronizar as escalas permite que ele identifique melhor os padrões. Já para a Etapa 3 o destaque fica para os modelos baseados em árvores, que aparentemente se comportam melhor com conjunto mais balanceados.

4. Submissão das previsões

Juntamente com os dados de treino, foram disponibilizados também dados de teste, que são o que de fato servem para avaliar a eficiência das previsões dos modelos. Na Etapa 1, foi escolhido o modelo de *Random Forest* para gerar as previsões, já que obteve a maior acurácia na validação. Como resultado, obteve-se 75.119% de acerto das previsões.

Com a melhora dos modelos na Etapa 2, desta vez foram utilizadas as previsões geradas com o modelo de SVM, atingindo acurácia de 76.076%. Na Etapa 3, porém, apesar do modelo de *Random Forest* atingir uma acurácia de 87% na validação, na submissão esse valor foi de 74.162%.

5. Conclusões

Ao longo do processo, o principal objetivo era colocar em prática algumas das lições aprendidas nos cursos disponibilizadas pelo próprio *Kaggle*, envolvendo análise básica de dados a partir de visualização gráfica e manipulação com pandas, bem como desenvolver novas *features* e criar modelos com *pipeline* de processamento dados.

No geral, os dados estavam bem organizados, o que exige menos de quem está participando no que diz respeito à limpeza e estruturação, o que já havia sido dito, já que se trata de uma competição inicial.

Sobre o processo, acredito que foi possível identificar bons *insights* sobre os dados e resumir bem algumas informações combinando os atributos, mas ainda deve ser possível extrair mais um pouco, utilizando por exemplo os campos *Ticket* e *Cabin*.

Em relação aos modelos, foi interessante ver como cada um se comporta de acordo como os atributos são fornecidos para treinamento e predição, dando destaque ao SVM, que teve uma melhora significativa após o processo de *scaling* nos dados numéricos. Porém, também se percebe que muitas vezes, apesar da validação apresentar um valor relativamente alto, esse pode não ser o comportamento com dados exclusivamente novos.