第1章 随机事件及其概率

(1) 排列 組合公式 $C_n^n = \frac{m!}{(m-n)!}$ 从 m 个人中挑出 n 个人进行排列的可能数。 $C_n^n = \frac{m!}{n!(m-n)!}$ 从 m 个人中挑出 n 个人进行组合的可能数。 $C_n^n = \frac{m!}{n!(m-n)!}$ 从 m 个人中挑出 n 个人进行组合的可能数。 $C_n^n = \frac{m!}{n!(m-n)!}$ 从 m 个人中挑出 n 个人进行组合的可能数。 m 从 m 关 m 来 m m 为 m 来 m		
C ⁿ = m! n!(m-n)! 从 m 个人申挑出 n 个人进行组合的可能数。 C ⁿ = m!(m-n)!	(1) 排列	$P_m^n = \frac{m!}{(m-n)!}$ 从 m 个人中挑出 n 个人进行排列的可能数。
(2) 加法	组合公式	$C_m^n = \frac{m!}{n!(m-n)!}$ 从 m 个人中挑出 n 个人进行组合的可能数。
(2) 加法		加法原理 (两种方法均能完成此事): m+n
(2) 加法 种方法来完成,则这件事可由 m·n 种方法来完成。		
和来 法原理 (两个步骤分别不能完成这件事): m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n 种方法来完成。则这件事可由 m×n 种方法来完成。 重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题 (4) 随机 试验 和随 机事件 (4) 随机 试验 的可能结果称为随机事件。 在一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。这样一组事件的每一个事件称为基本事件,用 @ 来表示。基本事件的全体,称为试验的样本空间,用 Ω表示。一个事件就是由 Ω 中的部分点(基本事件 @)组成的集合。通常用大写字母 A, B, C, …表示事件,它们是 Ω 的子集。 Ω 为必然事件, 0 为不可能事件。 不可能事件。 0 的概率为零,而概率为零的事件不一定是不可能事件; 同理,必然事件(②)的概率为零,而概率为零的事件不一定是不可能事件; 同理,必然事件(②)的概率为专,而概率为1 的事件也不一定是必然事件。 ①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): A ⊂ B 如果同时有 A ⊂ B, B ⊃ A, 则称事件 A 与事件 B 等价,或称 A 等于 B. A = B. A. B 中至少有一个发生的事件, A U B. 或者 A B. 高, A B 中至少有一个发生的事件, A U B. 或者 A B. 高, C表示 A 发生而 B 不发生的事件。 A. B 同时发生: A ∩ B. 或者 A B. A ∩ B = 0,则表示 A 与 B 不可能同时发生,	(2)加法	1,7,7,7
要件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n 种方法来完成,则这件事可由 m×n 种方法来完成。 重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题 (4) 随机 试验 和 随 机事件 (4) 随机 试验 的可能结果称为随机事件。 在一个试验产,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。这样一组事件中的每一个事件称为基本事件,用 ω 来表示。基本事件的全体,称为试验的样本空间,用 Ω 表示。一个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母 A、B、C、…表示事件,它们是 Ω 的子集。	和乘法原	
(3) 一些常见排列 (4) 随机 试验和的 规果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5) 基本 事件、样本 空间和事件 不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用 ω 来表示。 基本事件的全体,称为试验的样本空间,用 Ω 表示。 一个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母 A , B , C , …表示事件,它们是 Ω 的子集。 Ω 为必然事件, 0 为不可能事件。 不可能事件 (0) 的概率为零,而概率为 1 的事件也不一定是必然事件。 ②关系: 如果事件 A 的组成部分也是事件 B 的组成部分, $(A$ 发生必有事件 B 发生): $A \subset B$ 如果同时有 $A \subset B$, $B \supset A$,则称事件 $A = B$,你,或称 $A = B$,后,不是 $A = B$ 。 A 是	理	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
(3) 一些 常见排列		
(4) 随机		
電光排列	(3) 一些	
(4) 随机 试验 和随 机事件 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用 ω 来表示。 基本事件的全体,称为试验的样本空间,用 Ω 表示。 一个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母 A , B , C , …表示事件,它们是 Ω 的子集。 Ω 为必然事件, 0 为不可能事件。 不可能事件 (0) 的概率为零,而概率为 1 的事件也不一定是必然事件。 ②关系: 如果事件 A 的组成部分也是事件 B 的组成部分, A 发生必有事件 B 发生): A C B 如果同时有 A C B ,如果同时有 A C B , B D A ,则称事件 A 与事件 B 等价,或称 A 等于 B A B B A B	常见排列	
(4) 随机 阻在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。这样一组事件中的每一个事件称为基本事件,用 Θ 来表示。基本事件的全体,称为试验的样本空间,用 Ω 表示。一个事件就是由 Ω 中的部分点(基本事件 Θ)组成的集合。通常用大写字母 A,B,C,\cdots 表示事件,它们是 Ω 的子集。 Ω 为必然事件, 0 为不可能事件。 不可能事件(0)的概率为零,而概率为 1 的事件也不一定是不可能事件;同理,必然事件 (Ω) 的概率为 1 ,而概率为 1 的事件也不一定是必然事件。 ①关系: 如果事件 1 的组成部分也是事件 1 的组成部分,(1 发生必有事件 1 发生): 1 和 1		
式验和随	(4) 随机	
机事件 验。 试验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质; ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用 ω 来表示。 基本事件的全体,称为试验的样本空间,用 Ω 表示。 一个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母 A,B,C,\cdots 表示事件,它们是 Ω 的子集。 Ω 为必然事件, 0 为不可能事件。 不可能事件。 不可能事件。 (0)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件 (Ω) 的概率为1,而概率为1的事件也不一定是必然事件。 ①关系: 如果事件 A 的组成部分也是事件 B 的组成部分, A 发生必有事件 B 发生); $A \subset B$ 如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B 。 $A \cap B$ 。 属于 $A \cap A$ 函或者 $A \cap B$ 。 属于 $A \cap B$ 。 不为 $A \cap B$ 。 A		
式验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用 ω 来表示。 基本事件的全体,称为试验的样本空间,用 Ω 表示。 一个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母 A,B,C,\cdots 表示事件,它们是 Ω 的子集。 Ω 为必然事件。 0 为不可能事件。 不可能事件。 不可能事件。 0 的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件。 0 的概率为1,而概率为1的事件也不一定是必然事件。 ①关系: 如果事件 A 的组成部分也是事件 B 的组成部分, $(A$ 发生必有事件 B 发生): $A \subset B$ 如果同时有 $A \subset B, B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B : $A=B$ 。 A,B 中至少有一个发生的事件: $A \cup B$,或者 $A+B$ 。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A - B ,也可表示为 A - AB 或者 $A\overline{B}$,它表示 A 发生而 B 不发生的事件。 A,B 同时发生: $A \cap B$,或者 AB 。 $A \cap B=0$,则表示 A 与 B 不可能同时发生,		
如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用 ω 来表示。 基本事件的全体,称为试验的样本空间,用 Ω 表示。 一个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母 A , B , C , …表示事件,它们是 Ω 的子集。 Ω 为必然事件, 0 为不可能事件。 不可能事件(0)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 ①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): $A \subset B$ 如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B : $A = B$ 。 A , B 中至少有一个发生的事件: $A \cup B$,或者 $A + B$ 。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 $A - B$,也可表示为 $A - AB$ 或者 AB ,它表示 A 发生而 B 不发生的事件。 A , B 同时发生: $A \cap B$,或者 AB 。 A $B = \emptyset$,则表示 A 与 B 不可能同时发生,	- N R - 2- 1 1	
①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用 ω 来表示。 基本事件的全体,称为试验的样本空间,用 Ω 表示。 一个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母 A, B, C, \dots 表示事件,它们是 Ω 的子集。 Ω 为必然事件, \emptyset 为不可能事件。 不可能事件(\emptyset)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件 (Ω) 的概率为1,而概率为1的事件也不一定是必然事件。 ①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): $A \subset B$ 如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B : $A=B$ 。 A 、 B 中至少有一个发生的事件: $A \cup B$,或者 $A+B$ 。 属于 A 而不属于 B 的部分所构成的事件,称为 A B		在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有
②任何事件,都是由这一组中的部分事件组成的。这样一组事件中的每一个事件称为基本事件,用 ω 来表示。基本事件的全体,称为试验的样本空间,用 Ω 表示。一个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母 A, B, C, \cdots 表示事件,它们是 Ω 的子集。 Ω 为必然事件, 0 为不可能事件。 不可能事件(0)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。 ①关系: 如果事件 A 的组成部分也是事件 B 的组成部分, $(A$ 发生必有事件 B 发生): $A \subset B$ 如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B : $A=B$ 。 A 、 B 中至少有一个发生的事件: $A \cup B$,或者 $A+B$ 。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A - B ,也可表示为 A - AB 或者 $A\overline{B}$,它表示 A 发生而 B 不发生的事件。 A B 同时发生: $A \cap B$,或者 AB ,可表示 AB 与 AB 不可能同时发生,		如下性质:
事件、样本 空间和事 件 送棒一组事件中的每一个事件称为基本事件,用 ω 来表示。基本事件的全体,称为试验的样本空间,用 Ω 表示。一个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母 A , B , C , …表示事件,它们是 Ω 的子集。 Ω 为必然事件, \emptyset 为不可能事件。不可能事件(\emptyset)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(\emptyset)的概率为1,而概率为1的事件也不一定是必然事件。 ①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): $A \subset B$ 如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B : $A=B$ 。 A 、 B 中至少有一个发生的事件: $A \cup B$,或者 $A+B$ 。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A — B ,也可表示为 A — AB 或者 AB ,它表示 A 发生而 B 不发生的事件。 A 、 B 同时发生: A A B ,或者 AB 。 A B		①每进行一次试验,必须发生且只能发生这一组中的一个事件;
事件、样本 空间和事 件	(5) 基本	②任何事件,都是由这一组中的部分事件组成的。
室间和事件 基本事件的全体,称为试验的样本空间,用 Ω 表示。——个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母 A , B , C , …表示事件,它们是 Ω 的子集。 Ω 为必然事件, 0 为不可能事件。 不可能事件(0)的概率为零,而概率为零的事件不一定是不可能事件;同理,		这样一组事件中的每一个事件称为基本事件,用 ω 来表示。
件 $- $	* * * * * * * * * * * * * * * * * * *	基本事件的全体,称为试验的样本空间,用Ω表示。
A, B, C, \dots 表示事件,它们是 Ω 的子集。 Ω 为必然事件, \emptyset 为不可能事件。 不可能事件(\emptyset)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。 ①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): $A \subset B$ 如果同时有 $A \subset B$, $B \supset A$, 则称事件 A 与事件 B 等价,或称 A 等于 B : $A=B$ 。 A . B 中至少有一个发生的事件: $A \cup B$,或者 $A+B$ 。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A - B ,也可表示为 A - AB 或者 $A\overline{B}$,它表示 A 发生而 B 不发生的事件。 A . B 同时发生: $A \cap B$,或者 AB 。 $A \cap B=\emptyset$,则表示 A 与 B 不可能同时发生,		一个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母
不可能事件 (\emptyset) 的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件 (Ω) 的概率为 1,而概率为 1 的事件也不一定是必然事件。 ①关系: 如果事件 A 的组成部分也是事件 B 的组成部分, $(A$ 发生必有事件 B 发生): $A \subset B$ 如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B : $A=B$ 。 A B 中至少有一个发生的事件: $A \cup B$,或者 $A+B$ 。 属于 A 而不属于 B 的部分所构成的事件,称为 A $=$ B 的差,记为 A $=$ B 也可表示为 A $=$ A $=$ B 不发生的事件。 A B 同时发生: $A \cap B$,或者 A $=$ B $=$ $=$ B $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	' '	A , B , C , …表示事件,它们是 Ω 的子集。
必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。 ①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): $A \subset B$ 如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B : $A=B$ 。 A , B 中至少有一个发生的事件: $A \cup B$,或者 $A+B$ 。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A - B ,也可表示为 A - AB 或者 $A\overline{B}$,它表示 A 发生而 B 不发生的事件。 A , B 同时发生: $A \cap B$, 或者 AB 。 $A \cap B=\emptyset$,则表示 $A \subseteq B$ 不可能同时发生,		Ω为必然事件, ∅ 为不可能事件。
①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): $A \subset B$ 如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B : $A = B$ 。 A、B 中至少有一个发生的事件: $A \cup B$,或者 $A + B$ 。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 $A - B$,也可表示为 $A - AB$ 或者 $A\overline{B}$,它表示 A 发生而 B 不发生的事件。 A、B 同时发生: $A \cap B$,或者 AB 。 $A \cap B = \emptyset$,则表示 $A = B$ 不可能同时发生,		不可能事件(0)的概率为零,而概率为零的事件不一定是不可能事件;同理,
如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): $A \subset B$ 如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B : $A=B$ 。 A. B 中至少有一个发生的事件: $A \cup B$,或者 $A+B$ 。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 $A-B$,也可表示为 $A-AB$ 或者 $A\overline{B}$,它表示 A 发生而 B 不发生的事件。 A. B 同时发生: $A \cap B$,或者 AB 。 $A \cap B=\emptyset$,则表示 $A \subseteq B$ 不可能同时发生,		必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
$A \subset B$ 如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B : $A=B$ 。 $A \in B$ 和果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B 的 关系与运算 $A \cap B \cap $		
如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B : $A=B$ 。 $A : B$ 中至少有一个发生的事件: $A \cup B$,或者 $A+B$ 。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 $A-B$,也可表示为 $A-AB$ 或者 $A\overline{B}$,它表示 A 发生而 B 不发生的事件。 $A : B$ 同时发生: $A \cap B$,或者 AB 。 $A \cap B=\emptyset$,则表示 $A \subseteq B$ 不可能同时发生,		如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
(6) 事件 的 关 系 与 运算 $A = B$ 。 $A \cdot B$ 中至少有一个发生的事件: $A \cup B$,或者 $A + B$ 。 属于 A 而不属于 B 的部分所构成的事件,称为 $A = B$ 的差,记为 $A - B$,也可 表示为 $A - AB$ 或者 $A\overline{B}$,它表示 A 发生而 B 不发生的事件。 $A \cdot B$ 同时发生: $A \cap B$,或者 AB 。 $A \cap B = \emptyset$,则表示 $A = B$ 不可能同时发生,		$A \subset B$
(6) 事件 的 关 系 与 运算 A 、 B 中至少有一个发生的事件: $A \cup B$,或者 $A+B$ 。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 $A-B$,也可 表示为 $A-AB$ 或者 $A\overline{B}$,它表示 A 发生而 B 不发生的事件。 A 、 B 同时发生: $A \cap B$,或者 AB 。 $A \cap B=\emptyset$,则表示 A 与 B 不可能同时发生,	的关系与	如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B :
的 关 系 与 运算 A 、 B 中至少有一个发生的事件: $A \cup B$,或者 $A+B$ 。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 $A-B$,也可 表示为 $A-AB$ 或者 $A\overline{B}$,它表示 A 发生而 B 不发生的事件。 A 、 B 同时发生: $A \cap B$,或者 AB 。 $A \cap B=\emptyset$,则表示 A 与 B 不可能同时发生,		$A=B_{\circ}$
运算 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A $-B$,也可表示为 A $-AB$ 或者 AB ,它表示 A 发生而 B 不发生的事件。 A 、 B 同时发生: A \cap B ,或者 AB 。 A \cap B $=\emptyset$,则表示 A 与 B 不可能同时发生,		A 、 B 中至少有一个发生的事件: $A \bigcup B$,或者 $A+B$ 。
表示为 $A-AB$ 或者 $A\overline{B}$,它表示 A 发生而 B 不发生的事件。 A, B 同时发生: $A \cap B$,或者 AB 。 $A \cap B=\emptyset$,则表示 $A \subseteq B$ 不可能同时发生,		属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A – B ,也可
	24	表示为 A - AB 或者 \overline{AB} ,它表示 A 发生而 B 不发生的事件。
称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。		A 、 B 同时发生: $A \cap B$,或者 AB 。 $A \cap B=\emptyset$,则表示 $A 与 B$ 不可能同时发生,
		称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。

	Ω –A 称为事件 A 的逆事件,或称 A 的对立事件,记为 \overline{A} 。它表示 A 不发生
	的事件。互斥未必对立。 ②运算:
	○
	分配率: (AB) ∪C=(A∪C) ∩ (B∪C) (A∪B) ∩C=(AC) ∪ (BC)
	德摩根率: $\bigcap_{i=1}^{n} A_i = \bigcup_{i=1}^{n} \overline{A_i}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$
	设 Ω 为样本空间, A 为事件,对每一个事件 A 都有一个实数 $P(A)$,若满
	足下列三个条件:
	1° $0 \leq P(A) \leq 1$, 2° $P(\Omega) = 1$
(7) 概率	3° 对于两两互不相容的事件 A_1 , A_2 ,…有
的公理化	
定义	$P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P(A_{i})$
	常称为可列(完全)可加性。
	则称 $P(A)$ 为事件 A 的概率。
	$1^{\circ} \Omega = \{\omega_1, \omega_2 \cdots \omega_n\},$
	$2^{\circ} P(\omega_1) = P(\omega_2) = \cdots P(\omega_n) = \frac{1}{n}$
(8) 古典	设任一事件 A ,它是由 $\omega_{\scriptscriptstyle 1},\omega_{\scriptscriptstyle 2}\cdots\omega_{\scriptscriptstyle m}$ 组成的,则有
概型	$P(A) = \{(\omega_1) \cup (\omega_2) \cup \cdots \cup (\omega_m)\} = P(\omega_1) + P(\omega_2) + \cdots + P(\omega_m)$
	·····································
	$=\frac{m}{n}=A$ 所包含的基本事件数 基本事件总数
	_ , , ,
	若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空
(9) 几何	间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何 概型。对任一事件 A,
概型	城空。利任一事什A,
190. 王	$P(A) = \frac{L(A)}{L(\Omega)}$ 。其中 L 为几何度量(长度、面积、体积)。
	$L(\Omega)$
(10) 加法	P(A+B) = P(A) + P(B) - P(AB)
公式	当 P(AB)=0 时, P(A+B)=P(A)+P(B)
(44) >======	P(A-B) = P(A) - P(AB)
(11) 减法	当 B⊂A 时, P(A-B)=P(A)-P(B)
公式	当 A=Ω时, $P(\overline{B})$ =1− $P(B)$
(12) 条件	定义 设 A、B 是两个事件,且 P(A)>0,则称 $\frac{P(AB)}{P(A)}$ 为事件 A 发生条件下,事
概率	件 B 发生的条件概率,记为 $P(B/A) = \frac{P(AB)}{P(A)}$ 。
	- ()
	条件概率是概率的一种,所有概率的性质都适合于条件概率。

	例如 $P(\Omega/B)=1 \Rightarrow P(\overline{B}/A)=1-P(B/A)$
	乘法公式: $P(AB) = P(A)P(B/A)$
(13) 乘法	更一般地,对事件 A ₁ , A ₂ , ···A _n , 若 P(A ₁ A ₂ ···A _{n-1})>0,则有
公式	$P(A_1A_2A_n) = P(A_1)P(A_2 A_1)P(A_3 A_1A_2)P(A_n A_1A_2$
	A_{n-1})
	①两个事件的独立性
	设事件 A 、 B 满足 $P(AB) = P(A)P(B)$,则称事件 A 、 B 是相互独立的。
	若事件 A 、 B 相互独立,且 $P(A) > 0$,则有
	$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$
	$P(A) = \frac{P(A)}{P(A)} = \frac{P(A)}{P(A)}$
	若事件 A 、 B 相互独立,则可得到 \overline{A} 与 \overline{B} 、 A 与 \overline{B} 、 \overline{A} 与 \overline{B} 也都相互独
(14) 独立	立。
性	必然事件Ω和不可能事件∅与任何事件都相互独立。 ∅与任何事件都互斥。
	②多个事件的独立性
	设 ABC 是三个事件,如果满足两两独立的条件,
	P(AB) = P(A) P(B); P(BC) = P(B) P(C); P(CA) = P(C) P(A)
	并且同时满足 P(ABC)=P(A)P(B)P(C)
	那么 A、B、C 相互独立。
	对于 n 个事件类似。
	设事件 B_1, B_2, \cdots, B_n 满足
	$_{1}$ ° B_1, B_2, \cdots, B_n 两页不相容, $P(B_i) > 0 (i = 1, 2, \cdots, n)$,
(15) 全概	$A \subset \bigcup_{i=1}^n B_i$
公式	2° $\stackrel{i=1}{=}$,
	则有
	$P(A) = P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + \dots + P(B_n)P(A \mid B_n)$
	设事件 B_1 , B_2 ,, B_n \mathcal{A} 满足
	1° B_1 , B_2 ,, B_n 两两互不相容, $P(Bi)_{>0}$, $i=1, 2,, n$,
	$A \subset \bigcup_{i=1}^n B_i P(A) > 0$
(16) 贝叶	则
斯公式	$P(B_i/A) = \frac{P(B_i)P(A/B_i)}{n}, i=1, 2, \dots n.$
771 - 7	$P(B_i/A) = \frac{P(B_i)P(A/B_i)}{\sum_{i=1}^{n} P(B_j)P(A/B_j)}, i=1, 2, \dots, \infty$
	<i>j</i> =1 此公式即为贝叶斯公式。
	$P(B_i)$, $(i=1, 2,, n)$, 通常叫先验概率。 $P(B_i/A)$, $(i=1, 2,, n)$
	n),通常称为后验概率。贝叶斯公式反映了"因果"的概率规律,并作出了
	"由果朔因"的推断。
(17) 伯努	我们作了 n 次试验,且满足
利概型	◆ 每次试验只有两种可能结果, A 发生或 A 不发生;
7 4 1 7 -	◆ n 次试验是重复进行的,即 A 发生的概率每次均一样;

lacktriangle 每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与否是互不影响的。

这种试验称为伯努利概型,或称为n 重伯努利试验。

用 p 表示每次试验 A 发生的概率,则 \overline{A} 发生的概率为 1-p=q,用 $P_n(k)$ 表

示 n 重伯努利试验中 A 出现 $k(0 \le k \le n)$ 次的概率,

$$P_n(k) = C_n^k p^k q^{n-k}, \quad k = 0,1,2,\dots,n$$

第二章 随机变量及其分布

(1) 离散型随机变量的分布律

设离散型随机变量 X 的可能取值为 X_k ($k=1,2,\cdots$) 且取各个值的概率,即事件 ($X=X_k$) 的概率为

 $P(X=x_k)=p_k, k=1, 2, \dots,$

则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分布列的形式给出:

$$\frac{X}{P(X=x_k)} \left| \frac{x_1, x_2, \dots, x_k, \dots}{p_1, p_2, \dots, p_k, \dots} \right|$$

显然分布律应满足下列条件:

(1)
$$p_k \ge 0$$
, $k = 1, 2, \cdots$, (2) $\sum_{k=1}^{\infty} p_k = 1$

(2)连续型随机变量的分布密度

设F(x)是随机变量X的分布函数,若存在非负函数f(x),对任意实数x,有 $F(x) = \int_{-\infty}^{x} f(x) dx$

则称 X 为连续型随机变量。 f(x) 称为 X 的概率密度函数或密度函数,简称概率密度。

密度函数具有下面 4 个性质:

$$\begin{array}{ll}
1^{\circ} & f(x) \ge 0 \\
2^{\circ} & \int_{-\infty}^{+\infty} f(x) dx = 1
\end{array}$$

(3) 离散 与连续型 随机变量 的关系

 $P(X = x) \approx P(x < X \le x + dx) \approx f(x)dx$

积分元 f(x)dx 在连续型随机变量理论中所起的作用与 $P(X = x_k) = p_k$ 在离散型随机变量理论中所起的作用相类似。

(4) 分布	设 X 为随	机变量, x 是任意实数,则函数				
函数	F(x) = F	$P(X \le x)$				
	称为随机变量	X的分布函数,本质上是一个累积函数。				
	P(a < X)	$P(a < X \le b) = F(b) - F(a)$ 可以得到 X 落入区间 $(a,b]$ 的概率。分布				
	函数 <i>F(x)</i> 表表	示随机变量落入区间(- ∞, x]内的概率。				
	分布函数	具有如下性质:				
	1° 0≤	$F(x) \le 1, -\infty < x < +\infty;$				
	2° F(3	(x) 是单调不减的函数,即 $(x_1 < x_2)$ 时,有 $(x_1) \le F((x_2))$;				
	3° F(-	$F(x) = \lim_{x \to -\infty} F(x) = 0$, $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$;				
	4° $F($	(x+0) = F(x), 即 $F(x)$ 是右连续的;				
	5° P($X = x) = F(x) - F(x - 0) \circ$				
	对于离散型随	对于离散型随机变量, $F(x) = \sum_{x \le x} p_x$;				
	对于连续型随	型随机变量, $F(x) = \int_{-\infty}^{x} f(x) dx$ 。				
(5) 八大 分布	0-1 分布	P(X=1)=p, P(X=0)=q				
	二项分布	在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生				
		的次数是随机变量,设为 X ,则 X 可能取值为 $0,1,2,\cdots,n$ 。				
		$P(X=k) = P_n(k) = C_n^k p^k q^{n-k} , \qquad \sharp \qquad \dagger$				
		$q = 1 - p, 0 ,$				
		则称随机变量 X 服从参数为 n , p 的二项分布。记为				
		$X \sim B(n, p)$				
		当 $n = 1$ 时, $P(X = k) = p^k q^{1-k}$, $k = 0.1$,这就是(0-1)分				
		布,所以(0-1)分布是二项分布的特例。				

泊松	分布 设随林	机变量 X 的分布律为
	P	$P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}, \lambda > 0, k = 0, 1, 2 \cdots,$
	则称除	随机变量 X 服从参数为 λ 的泊松分布,记为 $X \sim \pi(\lambda)$ 或
	者 P() 泊松分	λ)。 分布为二项分布的极限分布 (np= λ , n→∞)。
超几	何分布 P(X	$= k) = \frac{C_M^k \bullet C_{N-M}^{n-k}}{C_N^n}, k = 0, 1, 2 \cdots, l$ $l = \min(M, n)$
	随机多	变量 X 服从参数为 n, N, M 的超几何分布,记为 H(n, N, M)。
几何	分布 P(X	$=k)=q^{k-1}p, k=1,2,3,\cdots$,其中 p \geqslant 0,q=1-p。
	随机多	变量 X 服从参数为 p 的几何分布,记为 G(p)。
均匀	分布 设随林	机变量 X 的值只落在 $[a,b]$ 内,其密度函数 $f(x)$ 在 $[a,b]$
	上为常	常数 $\frac{1}{b-a}$,即
	f(x)	$= \begin{cases} \frac{1}{b-a}, & a \leq x \leq b \\ 0, & \sharp \ell \ell, \end{cases}$
		随机变量 X 在 $[a, b]$ 上服从均匀分布,记为 $X\sim U(a, b)$ 。 函数为
		0, x <a,< td=""></a,<>
	F(x)	$0 = \int_{-\infty}^{x} f(x)dx = \begin{cases} 0, & x < a, \\ \frac{x - a}{b - a}, & a \le x \le b \\ 1, & x > b. \end{cases}$
		1, x>b.
		$\leq_{\mathbf{X}_1} <_{\mathbf{X}_2} \le \mathbf{b}$ 时, \mathbf{X} 落在区间($\mathbf{X}_1, \mathbf{X}_2$)内的概率为
	$P(x_1)$	$\langle X \langle x_2 \rangle = \frac{x_2 - x_1}{b - a} .$

指数分布	1	
	$\int \lambda e^{-\lambda x}$,	$x \ge 0$,
	$f(x) = \begin{cases} f(x) = \begin{cases} f(x) = \begin{cases} f(x) = \\ f(x) = \end{cases} \end{cases}$	0
	0,	x < 0,

其中 $\lambda > 0$,则称随机变量 X 服从参数为 λ 的指数分布。 X的分布函数为

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

$$\int_{0}^{+\infty} x^{n} e^{-x} dx = n!$$

正态分布

设随机变量 X 的密度函数为

所受里 A 的智度函数 A
$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < +\infty,$$

其中 μ 、 $\sigma > 0$ 为常数,则称随机变量X 服从参数为 μ 、 σ

的正态分布或高斯(Gauss)分布,记为 $X \sim N(\mu, \sigma^2)$ 。

f(x) 具有如下性质:

f(x) 的图形是关于 $x = \mu$ 对称的:

$$2^{\circ}$$
 当 $x = \mu$ 时, $f(\mu) = \frac{1}{\sqrt{2\pi\sigma}}$ 为最大值; 若 $X \sim N(\mu, \sigma^2)$, 则必 的分布函数为 $F(x) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x} e^{-\frac{2\sigma^2}{2\sigma^2}} dt$

$$\frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x} e^{-\frac{1}{2\sigma^2} dt} dt$$

参数 $\mu=0$ 、 $\sigma=1$ 时的正态分布称为标准正态分布, 记为

$$X \sim N(0,1)$$
 其密度函数记为
$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-2}$$
 , $-\infty < x < +\infty$,

分布函数为

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

 $\Phi(x)$ 是不可求积函数,其函数值,已编制成表可供查用。

$$\Phi(-x) = 1 - \Phi(x) \coprod \Phi(0) = \frac{1}{2}$$
.

如果 $X^{\sim}N(\mu,\sigma^2)$,则 $\frac{X-\mu}{\mu}^{\sim}N(0,1)$ 。

$$P(x_1 < X \le x_2) = \Phi\left(\frac{x_2 - \mu}{-\mu}\right) - \Phi\left(\frac{x_1 - \mu}{-\mu}\right).$$

(6)分位 数		$C(X \leq \mu_{\alpha}) = \alpha$;
	上分位表: P	$P(X > \mu_{\alpha}) = \alpha$
(7)函数 分布	离散型	已知 X 的分布列为 $ \frac{X}{P(X=x_i)} \begin{vmatrix} x_1, & x_2, & \cdots, & x_n, & \cdots \\ p_1, & p_2, & \cdots, & p_n, & \cdots \end{vmatrix}, $ $Y=g(X)$ 的分布列($y_i=g(x_i)$ 互不相等)如下: $ \frac{Y}{P(Y=y_i)} \begin{vmatrix} g(x_1), & g(x_2), & \cdots, & g(x_n), & \cdots \\ p_1, & p_2, & \cdots, & p_n, & \cdots \\ \hline $ 若有某些 $g(x_i)$ 相等,则应将对应的 p_i 相加作为 $g(x_i)$ 的概率。
	连续型	先利用 X 的概率密度 $f_x(x)$ 写出 Y 的分布函数 $F_y(y) = P(g(X) \le y)$, 再利用变上下限积分的求导公式求出 $f_y(y)$ 。

第三章 二维随机变量及其分布

		.早 — 维	地がしる	2里以	.共刀1	IJ		
(1) 联合 分布	离散型	如果二维	随机向量	<u>ξ</u> (χ,	Y)的所	有可能取	值为至多	可列
		个有序对(x,	y),则 移	$x\xi$ 为离	散型随机	星。		
		设 <i>ξ</i> = ()	X, Y) 的	所有可能	能取值为	$(x_i, y_j)(i$	$j = 1, 2, \cdots$	··) ,
		且事件{ξ=(χ	(x_i, y_j)	的概率为	<i>p_{i,j,}</i> ,称			
		$P\{(X,Y)\}$	$(x_i, y_i) = (x_i, y_i)$	$(y_j)\} = p$	$o_{ij}(i, j=1)$,2,)		
		为 <i>ξ</i> = (X, Y))的分布	律或称为	为 X 和 Y	的联合分	布律。联	合分
		布有时也用下	面的概率	区分布表	来表示:			
		Y	<i>y</i> 1	y_2	•••	y_j		
		X_{I}	p_{II}	p_{12}	•••	p_{lj}	•••	
		<i>X</i> 2	p_{21}	<i>p</i> ₂₂	•••	p_{2j}	•••	
		:	:	:		:	:	
		X_i	p_{i1}		•••	p_{ij}	•••	
		÷	:	÷		÷	÷	
		这里 p _{ij} 具有了				ı	1	
		(1) $p_{ij} \geqslant 0$ (,) ;				
		$(2) \sum_{i} \sum_{j}$	$p_{ij} = 1$.					

	连续型	对于二维随机向量 $\xi=(X,Y)$,如果存在非负函数			
		$f(x,y)$ ($-\infty < x < +\infty, -\infty < y < +\infty$),使对任意一个其邻边			
		分别平行于坐标轴的矩形区域 D, 即 D={(X, Y) a <x<b, c<y<d}<br="">有</x<b,>			
		$P\{(X,Y) \in D\} = \iint_D f(x,y) dx dy,$			
		则称 ξ 为连续型随机向量;并称 $f(x,y)$ 为 $\xi=(X,Y)$ 的分布			
		密度或称为 X 和 Y 的联合分布密度。 分布密度 $f(x,y)$ 具有下面两个性质: (1) $f(x,y) \ge 0$;			
		(2) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1.$			
(2) 二维 随机变量 的本质	$\xi(X=x,Y=$	$(x,y) = \xi(X = x \cap Y = y)$			
(3) 联合	设 (X, Y) 为	二维随机变量,对于任意实数 x, y, 二元函数			
分布函数	$F(x, y) = P\{X \le x, Y \le y\}$				
	称为二维随机向量(X,Y)的分布函数,或称为随机变量 X 和 Y 的联合分布函数。				
	分布函数是一个以全平面为其定义域,以事件				
	$\{(\omega_1,\omega_2) -\infty < X(\omega_1) \le x,-\infty < Y(\omega_2) \le y\}$ 的概率为函数值的一个实值函				
	数。分布函数 F(x,y) 具有以下的基本性质:				
	$(1) \ 0 \le F(x)$	$(x, y) \leq 1;$			
	 (2) F (x, y) 分别对 x 和 y 是非减的,即 当 x₂>x₁时,有 F (x₂, y) ≥F(x₁, y); 当 y₂>y₁时,有 F(x, y₂) ≥F(x, y₁); (3) F (x, y) 分别对 x 和 y 是右连续的,即 				
	F(x, y) = F(x + 0, y), F(x, y) = F(x, y + 0);				
	(4) $F(-\infty, -\infty) = F(-\infty, y) = F(x, -\infty) = 0, F(+\infty, +\infty) = 1.$ (5) 对于 $x_1 < x_2, y_1 < y_2,$				
	$F(x_2, y_2)$	$F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \ge 0.$			
(4) 离散型 与连续型的关系	P(X=x, Y)	$f = y \approx P(x < X \le x + dx, y < Y \le y + dy) \approx f(x, y) dx dy$			
王明大东					

(5)边缘	离散型	X 的边缘分布为
分布	内队空	
77.14		$P_{i\bullet} = P(X = x_i) = \sum_{i} p_{ij} (i, j = 1, 2, \dots);$
		Y的边缘分布为
		$P_{\bullet j} = P(Y = y_j) = \sum_i p_{ij} (i, j = 1, 2, \dots)$
	连续型	X的边缘分布密度为
		$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy;$
		Y的边缘分布密度为
		$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$
(6) 条件	离散型	在已知 X=x _i 的条件下,Y 取值的条件分布为
分布		$P(Y = y_j \mid X = x_i) = \frac{p_{ij}}{p_{i\bullet}};$
		在已知 Y=y;的条件下,X 取值的条件分布为
		$P(X = x_i Y = y_j) = \frac{p_{ij}}{p_{\bullet j}},$
	连续型	在已知 Y=y 的条件下, X 的条件分布密度为
		$f(x \mid y) = \frac{f(x, y)}{f_Y(y)};$
		在已知 X=x 的条件下, Y 的条件分布密度为
		$f(y \mid x) = \frac{f(x, y)}{f_X(x)}$
(7) 独立	一般型	$F(X, Y) = F_X(x) F_Y(y)$
性	离散型	n - n n
		$p_{ij} = p_{i\bullet} p_{\bullet j}$
		有零不独立
	连续型	$f(x, y) = f_X(x) f_Y(y)$
		直接判断,充要条件:
		①可分离变量 ②正概率密度区间为矩形
	二维正态分	②正帆平击反区四/3/尼//>
	布	$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]},$
		$\rho = 0$
	随机变量的	若 X ₁ , X ₂ , ···X _m , X _{m+1} , ···X _n 相互独立, h, g 为连续函数,则:
	函数	h (X ₁ , X ₂ , ···X _m) 和 g (X _{m+1} , ···X _n) 相互独立。
		特例: 若 X 与 Y 独立,则: h (X) 和 g (Y) 独立。
		例如: 若 X 与 Y 独立,则: 3X+1 和 5Y-2 独立。

(8) 二维 均匀分布

设随机向量(X,Y)的分布密度函数为

$$f(x,y) = \begin{cases} \frac{1}{S_D} & (x,y) \in D \\ 0, & 其他 \end{cases}$$

其中 S_D 为区域 D 的面积,则称 (X,Y) 服从 D 上的均匀分布,记为 (X,Y) \sim U (D)。

例如图 3.1、图 3.2 和图 3.3。

图 3.1

图 3.2

(9) 二维	设随机向量(X, Y) 的分布密度函数为				
正态分布	$f(x, y) = \frac{1}{2\pi}$	$\frac{1}{\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-\frac{2\rho(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}}+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right]},$				
	其中 $\mu_1, \mu_2, \sigma_1 > 0, \sigma_2 > 0, \rho < 1$ 是 5 个参数,则称(X,Y)服从二维正态分					
	布,	布,				
	记为 (X, Y)	\sim N ($\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, ho$).				
	由边缘密度的 布,	7计算公式,可以推出二维正态分布的两个边缘分布仍为正态分				
	即 X \sim N(μ_1 ,	$\sigma_1^2), Y \sim N(\mu_{2,}\sigma_2^2).$				
	但是若 X~N(但是若 $X \sim N$ (μ_1, σ_1^2), $Y \sim N(\mu_2, \sigma_2^2)$, (X , Y)未必是二维正态分布。				
(10) 函数 分布	Z=X+Y	根据定义计算: $F_Z(z) = P(Z \le z) = P(X + Y \le z)$				
		对于连续型, $f_z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$				
		两个独立的正态分布的和仍为正态分布($\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2$)。				
		n 个相互独立的正态分布的线性组合,仍服从正态分布。				
		$\mu = \sum_{i} C_i \mu_i$, $\sigma^2 = \sum_{i} C_i^2 \sigma_i^2$				
	Z=max,min($X_1, X_2, \dots X_n$)	若 $X_1, X_2 \cdots X_n$ 相 互 独 立 , 其 分 布 函 数 分 别 为				
		$F_{x_1}(x)$, $F_{x_2}(x)\cdots F_{x_n}(x)$,则 Z=max,min(X ₁ ,X ₂ ,···X _n)的分布				
		函数为:				
		$F_{\max}(x) = F_{x_1}(x) \bullet F_{x_2}(x) \cdots F_{x_n}(x)$				

 $F_{\min}(x) = 1 - [1 - F_{x_1}(x)] \bullet [1 - F_{x_2}(x)] \cdots [1 - F_{x_n}(x)]$

 χ^2 分布

设 n 个随机变量 X_1, X_2, \cdots, X_n 相互独立,且服从标准正态分布,可以证明它们的平方和

$$W = \sum_{i=1}^{n} X_i^2$$

的分布密度为

$$f(u) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} u^{\frac{n}{2} - 1} e^{-\frac{u}{2}} & u \ge 0, \\ 0, & u < 0. \end{cases}$$

我们称随机变量 W 服从自由度为 n 的 χ^2 分布, 记为 W $\sim \chi^2(n)$, 其中

$$\Gamma\left(\frac{n}{2}\right) = \int_0^{+\infty} x^{\frac{n}{2}-1} e^{-x} dx.$$

所谓自由度是指独立正态随机变量的个数,它是随机变量 分布中的一个重要参数。

 χ^2 分布满足可加性:设

$$Y_i - \chi^2(n_i),$$

则

$$Z = \sum_{i=1}^{k} Y_i \sim \chi^2(n_1 + n_2 + \dots + n_k).$$

t分布

设X,Y是两个相互独立的随机变量,且

$$X \sim N(0,1), Y \sim \chi^{2}(n),$$

可以证明函数

$$T = \frac{X}{\sqrt{Y/n}}$$

的概率密度为

$$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} \qquad (-\infty < t < +\infty).$$

我们称随机变量 T 服从自由度为 n 的 t 分布,记为 $T \sim t(n)$ 。

$$t_{1-\alpha}(n) = -t_{\alpha}(n)$$

F分布	设 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$, 且 X 与 Y 独立, 可以证明
	$F = \frac{X/n_1}{Y/n_2}$ 的概率密度函数为
	$f(y) = \begin{cases} \frac{\Gamma\left(\frac{n_1 + n_2}{2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)} \left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} y^{\frac{n_1}{2}-1} \left(1 + \frac{n_1}{n_2}y\right)^{-\frac{n_1 + n_2}{2}}, y \ge 0 \\ 0, y < 0 \end{cases}$
	我们称随机变量 F 服从第一个自由度为 n_1 ,第二个自由度为 n_2 的 F 分布,记为 $F \sim f(n_1, n_2)$. $F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$

第四章 随机变量的数字特征

(1)		 	法 使刑
(1)		离散型	连续型
一维	期望	设 X 是离散型随机变量,其分布	设 X 是连续型随机变量,其概率密
随 机	期望就是平均值	$ $ 律为 P($X=x_k$) = p_k ,	度为 f(x),
变 量		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+∞
的数		k=1, 2, ···, n,	$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$
字特			
征		$E(X) = \sum_{k=1}^{n} x_k p_k$	 (要求绝对收敛)
1111.		$E(X) - \sum_{k=1}^{\infty} x_k p_k$	(安米绝州収姒)
		(要求绝对收敛)	
	函数的期望	Y=g(X)	Y=g(X)
		n	+∞
		$E(Y) = \sum_{k=1}^{n} g(x_k) p_k$	$E(Y) = \int_{-\infty}^{+\infty} g(x) f(x) dx$
		k=1	
	++		
	方差		+∞
	$D(X) = E[X - E(X)]^{2}$	$D(X) = \sum_{k} [x_k - E(X)]^2 p_k$	$D(X) = \int_{0}^{+\infty} [x - E(X)]^2 f(x) dx$
	标准差	<u>k</u>	-∞
	(W) D(W)		
	$\sigma(X) = \sqrt{D(X)} ,$		

	矩	①对于正整数 k ,称随机变量 X 的 k 次幂的数学期望为 X 的 k 阶原点矩,记为 v_k ,即	①对于正整数 k, 称随机变量 X 的 k 次幂的数学期望为 X 的 k 阶原点矩,记为 v _k ,即
		$v_{k} = E(X^{k}) = \sum_{i} x_{i}^{k} p_{i} ,$	$v_k = E(X^k) = \int_{-\infty}^{+\infty} x^k f(x) dx,$
		k=1, 2, ····.	k=1, 2, ···.
		②对于正整数 k, 称随机变量 X 与 E(X)差的 k 次幂的数学期	②对于正整数 k, 称随机变量 X 与 E(X) 差的 k 次幂的数学期望为 X
		望为 X 的 k 阶中心矩,记为 μ_k ,	的 k 阶中心矩,记为 μ_k ,即
		即	$\mu_k = E(X - E(X))^k$
		$\mu_k = E(X - E(X))^k$	
			$=\int_{-\infty}^{+\infty} (x - F(X))^k f(x) dx$
		$= \sum_{i} (x_i - E(X))^k p_i ,$	$\int_{-\infty}^{\infty} (X - L(X)) \int_{-\infty}^{\infty} (X) dX,$ $ x = 1, 2, \dots$
		k=1, 2, ···.	K-1, 2, .
	切比雪夫不等式		X) = μ, 方差 D (X) = σ ² , 则对于
		任意正数 ε ,有下列切比雪夫不 	寺八
		$ P(X - \mu \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2} $	
		切比雪夫不等式给出了在未知X	的分布的情况下, 对概率
		P(X	$-\mu \geq \varepsilon$)
		的一种估计,它在理论上有重要	意义。
(2) 期望 的性	(1) $E(C) = C$ (2) $E(CX) = CE(X)$		
质	(3) $E(X+Y)=E(X)+E(Y)$	$E(\sum_{i=1}^{n} C_{i} X_{i}) = \sum_{i=1}^{n} C_{i} E(X_{i})$	
	(4) $E(XY) = E(X) E(Y)$,	充分条件: X和Y独立; 充要条件: X和Y不相关。	
(3)	(1) $D(C)=0$; $E(C)=C$	- () - ()	
方差	(2) $D(aX) = a^2D(X);$, , , , ,	
的性质	(3) $D(aX+b) = a^2D(X);$ (4) $D(X) = E(X^2) - E^2(X)$	E(aX+b)=aE(X)+b	
灰		Y), 充分条件: X 和 Y 独立;	
	\(\(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}{2}\) \(\frac{1}{2	充要条件:X和Y不相关。	
	$D(X \pm Y) = D(X) + D$	$(Y) \pm 2E[(X-E(X))(Y-E(Y))], \pi$	E条件成立。
	$\overrightarrow{\Pi} E(X+Y) = E(X) +$	-E(Y), 无条件成立。	
(4)		期望	方差
常见分布	0-1 分布 B(1, p)	p	p(1-p)

的期			
望和	二项分布 B(n, p)	np	np(1-p)
方差	泊松分布 P (λ)	λ	λ
	几何分布 $G(p)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
	超几何分布 $H(n,M,N)$	$\frac{nM}{N}$	$\frac{nM}{N} \left(1 - \frac{M}{N} \right) \left(\frac{N-n}{N-1} \right)$
	均匀分布 $U(a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
	指数分布 $e(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
	正态分布 $N(\mu,\sigma^2)$	μ	σ^2
	χ ² 分布	n	2n
	t 分布	0	$\frac{n}{n-2} \text{ (n>2)}$
(5) 二维 随机	期望	$E(X) = \sum_{i=1}^{n} x_i p_{i\bullet}$	$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$
变量 的 字特		$E(Y) = \sum_{j=1}^{n} y_j p_{\bullet j}$	$E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dy$
征	函数的期望	E[G(X,Y)] =	E[G(X,Y)] =
		$\sum_{i}\sum_{j}G(x_{i},y_{j})p_{ij}$	$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} G(x, y) f(x, y) dx dy$
	方差	$D(X) = \sum_{i} [x_i - E(X)]^2 p_{i\bullet}$	$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f_X(x) dx$
		$D(X) = \sum_{i} [x_i - E(X)]^2 p_{i\bullet}$ $D(Y) = \sum_{j} [x_j - E(Y)]^2 p_{\bullet j}$	$D(Y) = \int_{-\infty}^{+\infty} [y - E(Y)]^2 f_Y(y) dy$

	协方差	对于随机变量 X 与 Y ,称它们的二阶混合中心矩 μ_{11} 为 X 与 Y 的协方
		差或相关矩,记为 $\sigma_{\scriptscriptstyle XY}$ 或 $\operatorname{cov}(X,Y)$,即
		$\sigma_{XY} = \mu_{11} = E[(X - E(X))(Y - E(Y))].$
		与记号 σ_{xy} 相对应, X 与 Y 的方差 $D(X)$ 与 $D(Y)$ 也可分别记为 σ_{xx}
		与 $\sigma_{\gamma\gamma}$ 。
	相关系数	对于随机变量 X 与 Y, 如果 D (X) >0, D(Y)>0, 则称
		$rac{\sigma_{_{XY}}}{\sqrt{D(X)}\sqrt{D(Y)}}$
		$\sqrt{D(X)}\sqrt{D(Y)}$
		为 X 与 Y 的相关系数,记作 $ ho_{XY}$ (有时可简记为 $ ho$)。
		$\mid \rho \mid \leq 1$,当 $\mid \rho \mid$ =1 时 称 X 与 Y 完全相关: $P(X=aY+b)=1$
		而当 $\rho=0$ 时,称 X 与 Y 不相关。
		以下五个命题是等价的:
		$ \bigcirc \rho_{XY} = 0; $
		$\textcircled{2}\operatorname{cov}(X,Y)=0;$
	协方差矩阵	$egin{pmatrix} \sigma_{_{XX}} & \sigma_{_{XY}} \ \sigma_{_{YX}} & \sigma_{_{YY}} \end{pmatrix}$
	混合矩	对于随机变量 X 与 Y ,如果有 $E(X^kY^l)$ 存在,则称之为 X 与 Y 的
		$k+1$ 阶混合原点矩,记为 v_{kl} ; $k+1$ 阶混合中心矩记为:
		$u_{kl} = E[(X - E(X))^{k} (Y - E(Y))^{l}].$
(6)	(i) cov (X, Y)=cov (Y,	
协 方 差 的	(ii) $cov(aX, bY) = ab cov(X, Y);$ (iii) $cov(X_1+X_2, Y) = cov(X_1, Y) + cov(X_2, Y);$	
性质	(iv) $cov(X_1 + X_2, -1) = Cov(X_1 + X_2, -1) = Co$	

(1) 若随机变量 X 与 Y 相互独立,则 $\rho_{XY}=0$; 反之不真。 和 不 相关 相关 (ii) 若 $(X, Y) \sim N (\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$, 则 X 与 Y 相互独立的充要条件是 X 和 Y 不相关。

第五章 大数定律和中心极限定理

(1) 大数定律 $\overline{X} \rightarrow \mu$	切比雪 夫大数 定律	设随机变量 X_1 , X_2 , …相互独立,均具有有限方差,且被同一常数 C 所界: D (X_i) $< C$ ($i=1,2,\cdots$),则对于任意的正数 ε ,有 $\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \frac{1}{n}\sum_{i=1}^n E(X_i)\right < \varepsilon\right) = 1.$ 特殊情形:若 X_1 , X_2 , …具有相同的数学期望 E (X_1) $= \mu$,则上式成为 $\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \mu\right < \varepsilon\right) = 1.$
	伯努利 大数定 律	设 μ 是 n 次独立试验中事件 A 发生的次数, p 是事件 A 在每次试验中发生的概率,则对于任意的正数 ε ,有 $\lim_{n\to\infty}P\left(\left \frac{\mu}{n}-p\right <\varepsilon\right)=1.$ 伯努利大数定律说明,当试验次数 n 很大时,事件 A 发生的频率与概率有较大判别的可能性很小,即 $\lim_{n\to\infty}P\left(\left \frac{\mu}{n}-p\right \geq\varepsilon\right)=0.$ 这就以严格的数学形式描述了频率的稳定性。
	辛钦大数定律	设 X_1 , X_2 ,, X_n ,是相互独立同分布的随机变量序列,且 E $(X_n) = \mu$, 则对于任意的正数 ε 有 $\lim_{n \to \infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \mu\right < \varepsilon\right) = 1.$

(2) 中心极限定	列维一	设随机变量 X1, X2, …相互独立, 服从同一分布, 且具有
理	林德伯	相 同 的 数 学 期 望 和 方 差 :
$\overline{X} \to N(\mu, \frac{\sigma^2}{n})$	格定理	$E(X_k) = \mu, D(X_k) = \sigma^2 \neq 0 (k = 1, 2, \dots)$,则随机变量
		$Y_n = \frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n\sigma}}$
		no
		的分布函数 $F_n(x)$ 对任意的实数 x ,有
		$\lim_{n\to\infty} F_n(x) = \lim_{n\to\infty} P\left\{\frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n}\sigma} \le x\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$
		此定理也称为 独立同分布 的中心极限定理。
	棣莫弗 一拉普	设随机变量 X_n 为具有参数 n, p(0 \langle p \langle 1)的二项分布,则对于
	拉斯定	任意实数 x, 有
	理	$= \lim_{n \to \infty} P \left\{ \frac{X_n - np}{\sqrt{np(1-p)}} \le x \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$
(3)二项定理	若当 $N \to \infty$ 时, $\frac{M}{N} \to p(n, k$ 不变),则	
		$\frac{C_M^k C_{N-M}^{n-k}}{C_N^n} \to C_n^k p^k (1-p)^{n-k} \qquad (N \to \infty).$
	超几何分	分布的极限分布为二项分布。
(4) 泊松定理	若当	
	$C_n^k p^k (1-p)^{n-k} \to \frac{\lambda^k}{k!} e^{-\lambda}$ $(n \to \infty).$	
	其中 k=0, 1, 2, …, n, …。 二项分布的极限分布为泊松分布。	
		

第六章 样本及抽样分布

(1) 数理	总体	在数理统计中,常把被考察对象的某一个(或多个)指标的全
统计的基		体称为总体(或母体)。我们总是把总体看成一个具有分布的随
本概念		机变量(或随机向量)。
	个体	总体中的每一个单元称为样品(或个体)。

	- ∕ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬
样本	
十十十	我们把从总体中抽取的部分样品 x_1, x_2, \cdots, x_n 称为样本。样本
	中所含的样品数称为样本容量,一般用 n 表示。在一般情况下,总是把样本看成是 n 个相互独立的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。在泛指任一次抽取的结
	果时, x_1, x_2, \cdots, x_n 表示 n 个随机变量 (样本);在具体的一次
	抽取之后, x_1, x_2, \cdots, x_n 表示 n 个具体的数值 (样本值)。我们
	称之为样本的两重性。
样本函数和 统计量	设 x_1, x_2, \cdots, x_n 为总体的一个样本,称
	$\varphi = \varphi \qquad (x_1, x_2, \dots, x_n)$
	为样本函数,其中 φ 为一个连续函数。如果 φ 中不包含任何未
	知参数,则称 φ (x_1, x_2, \dots, x_n) 为一个统计量。
常见统计量 及其性质	样本均值
	样本方差
	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}.$
	样本标准差 $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}.$
	样本 k 阶原点矩
	$M_k = \frac{1}{n} \sum_{i=1}^n x_i^k, k = 1, 2, \cdots$
	样本 k 阶中心矩
	$M'_{k} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{k}, k = 2,3,\dots$
	$E(\overline{X}) = \mu, D(\overline{X}) = \frac{\sigma^2}{n},$
	$E(S^2) = \sigma^2, E(S^{*2}) = \frac{n-1}{n}\sigma^2,$
	其中 $S^{*2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$,为二阶中心矩。

はな下的 四大分布	(-) T.		
$ u \frac{d\sigma}{\sigma/\sqrt{n}} \times N(0,1). $ t 分布	(2)正态总体下的	正态分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
	四大分布		本函数
			$u \stackrel{def}{=} \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \sim N(0,1).$
$t^{\frac{def}{S}}\frac{\overline{x}-\mu}{s/\sqrt{n}}\sim t(n-1),$ 其中 $t(n-1)$ 表示自由度为 $n-1$ 的 t 分布。 $\chi^2 分布$ 设 x_1,x_2,\cdots,x_n 为来自正态总体 $N(\mu,\sigma^2)$ 的一个样本,则样本函数 $w^{\frac{def}{S}}\frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1),$ 其中 $\chi^2(n-1)$ 表示自由度为 $n-1$ 的 χ^2 分布。 $F 分布$ 设 x_1,x_2,\cdots,x_n 为来自正态总体 $N(\mu,\sigma_1^2)$ 的一个样本,而 y_1,y_2,\cdots,y_n 为来自正态总体 $N(\mu,\sigma_2^2)$ 的一个样本,则样本 函数 $F^{\frac{def}{S}}\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}\sim F(n_1-1,n_2-1),$ 其中 $S_1^2=\frac{1}{n_1-1}\sum_{i=1}^{n_1}(x_i-\overline{x})^2,\qquad S_2^2=\frac{1}{n_2-1}\sum_{i=1}^{n_2}(y_i-\overline{y})^2;$ $F(n_1-1,n_2-1)$ 表示第一自由度为 n_1-1 ,第二自由度为 n_2-1 的 F 分布。		t 分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
其中 $t(n-1)$ 表示自由度为 $n-1$ 的 t 分布。 $\chi^2 分布$ 设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样本函数 $w^{\frac{def}{2}} \frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1),$ 其中 $\chi^2 (n-1)$ 表示自由度为 $n-1$ 的 χ^2 分布。 $F 分布$ 设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma_1^2)$ 的一个样本,而 y_1, y_2, \cdots, y_n 为来自正态总体 $N(\mu, \sigma_2^2)$ 的一个样本,则样本 函数 $F \stackrel{\text{def}}{=} \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1),$ 其中 $S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \overline{x})^2, \qquad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \overline{y})^2;$ $F(n_1 - 1, n_2 - 1)$ 表示第一自由度为 $n_1 - 1$,第二自由度为 $n_2 - 1$ 的 F 分布。 $\overline{X} = \frac{1}{2} \sum_{i=1}^{n_2} (x_i - \overline{x})^2, \qquad \overline{X} = \frac{1}{2} \sum_{i=1}^{n_2} (x_i - \overline{y})^2;$			本函数
$\chi^2 分布 \qquad $			$t = \frac{def}{s / \sqrt{n}} \sim t(n-1),$
本函数 $ w^{\frac{def}{G}} \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1), $ 其中 $\chi^2(n-1)$ 表示自由度为 $n-1$ 的 χ^2 分布。 $ F $			其中 t(n-1)表示自由度为 n-1 的 t 分布。
$w^{\frac{\deg}{2}}\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$ 其中 $\chi^2(n-1)$ 表示自由度为 $n-1$ 的 χ^2 分布。 $F 分布$ 设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma_1^2)$ 的一个样本,而 y_1, y_2, \cdots, y_n 为来自正态总体 $N(\mu, \sigma_2^2)$ 的一个样本,则样本 函数 $F^{\frac{\deg}{2}}\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1-1, n_2-1),$ 其中 $S_1^2 = \frac{1}{n_1-1}\sum_{i=1}^{n_1}(x_i-\bar{x})^2, \qquad S_2^2 = \frac{1}{n_2-1}\sum_{i=1}^{n_2}(y_i-\bar{y})^2;$ $F(n_1-1, n_2-1)$ 表示第一自由度为 n_1-1 ,第二自由度为 n_2-1 的 F 分布。		χ ² 分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
其中 $\chi^2(n-1)$ 表示自由度为 $n-1$ 的 χ^2 分布。 F 分布 设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma_1^2)$ 的一个样本,而 y_1, y_2, \cdots, y_n 为来自正态总体 $N(\mu, \sigma_2^2)$ 的一个样本,则样本 函数 $F \frac{def}{def} \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1-1, n_2-1),$ 其中 $S_1^2 = \frac{1}{n_1-1} \sum_{i=1}^{n_1} (x_i - \bar{x})^2, \qquad S_2^2 = \frac{1}{n_2-1} \sum_{i=1}^{n_2} (y_i - \bar{y})^2;$ $F(n_1-1,n_2-1)$ 表示第一自由度为 n_1-1 ,第二自由度为 n_2-1 的 F 分布。			本函数
F分布 $ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			$w \stackrel{\text{def}}{=} \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$
俊 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma_1^2)$ 的一个样本,而 y_1, y_2, \cdots, y_n 为来自正态总体 $N(\mu, \sigma_2^2)$ 的一个样本,则样本 函数 $F \stackrel{def}{=} \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1),$ 其中 $S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \overline{x})^2, \qquad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \overline{y})^2;$ $F(n_1 - 1, n_2 - 1)$ 表示第一自由度为 $n_1 - 1$,第二自由度为 $n_2 - 1$ 的 F 分布。			其中 $\chi^2(n-1)$ 表示自由度为 $n-1$ 的 χ^2 分布。
函数 $F \stackrel{def}{=} \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1),$ 其中 $S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \overline{x})^2, \qquad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \overline{y})^2;$ $F(n_1 - 1, n_2 - 1) \ \bar{x} \bar{x} \bar{y} - \bar{y} \bar{y}$		F分布	设 x_1, x_2, \dots, x_n 为来自正态总体 $N(\mu, \sigma_1^2)$ 的一个样本,而
$F \stackrel{\text{def}}{=} \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1),$ 其中 $S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \overline{x})^2, \qquad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \overline{y})^2;$ $F(n_1 - 1, n_2 - 1) \ \text{表示第一自由度为} \ n_1 - 1 , \ \text{第二自由度为} \ n_2 - 1 \text{的 F} \text{分布} .$			y_1, y_2, \cdots, y_n 为来自正态总体 $N(\mu, \sigma_2^2)$ 的一个样本,则样本
其中 S_2^2/σ_2^2 其中 $S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \bar{x})^2, \qquad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \bar{y})^2;$ $F(n_1 - 1, n_2 - 1) \ \text{表示第一自由度为} \ n_1 - 1 \ \text{第二自由度为} \ n_2 - 1 \text{的 F} \ \text{分布} .$			函数
$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \overline{x})^2, \qquad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \overline{y})^2;$ $F(n_1 - 1, n_2 - 1) \ \bar{\xi} \bar{\pi} \bar{\pi} - \bar{\eta} \bar{\eta} $			
$F(n_1-1,n_2-1)$ 表示第一自由度为 n_1-1 ,第二自由度为 n_2-1 的 F 分布。 \overline{X} 与 S^2 独立。			其中
n_2 -1 的 F 分布。 $ (3) $			$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \overline{x})^2, \qquad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \overline{y})^2;$
(3) 正态 \overline{X} 与 S^2 独立。			$F(n_1-1,n_2-1)$ 表示第一自由度为 n_1-1 ,第二自由度为
$ $ 总 体 下 分 $ $ $ X$ 与 $ S^2$ 独立。			$n_2 - 1$ 的 F 分布。
	总体下分	\overline{X} 与 S^2 独立	0

第七章 参数估计

(1)点	矩估计
估计	

设总体 X 的分布中包含有未知数 $\theta_1,\theta_2,\cdots,\theta_m$,则其分布函数可以表成 $F(x;\theta_1,\theta_2,\cdots,\theta_m)$. 它的 k 阶原点矩 $v_k=E(X^k)(k=1,2,\cdots,m)$ 中也包含了未知参数 $\theta_1,\theta_2,\cdots,\theta_m$,即 $v_k=v_k(\theta_1,\theta_2,\cdots,\theta_m)$ 。 又设 x_1,x_2,\cdots,x_n 为总体 X 的 n 个样本值,其样本的 k 阶原点矩为

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}^{k}$$
 $(k=1,2,\cdots,m).$

这样,我们按照"当参数等于其估计量时,总体矩等于相应的样本矩"的原则建立方程,即有

$$\begin{cases} v_1(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i, \\ v_2(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i^2, \\ \dots \\ v_m(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i^m. \end{cases}$$

由上面的 m 个方程中,解出的 m 个未知参数 $(\hat{\theta_1},\hat{\theta_2},\cdots,\hat{\theta_m})$ 即为参数 $(\theta_1,\theta_2,\cdots,\theta_m)$ 的矩估计量。

若 $\hat{\theta}$ 为 θ 的矩估计,g(x)为连续函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的矩估计。

	极大似	当 总 体 X 为 连 续 型 随 机 变 量 时 , 设 其 分 布 密 度 为
	然估计	$f(x; \theta_1, \theta_2, \cdots, \theta_m)$, 其中 $\theta_1, \theta_2, \cdots, \theta_m$ 为未知参数。又设
		x_1, x_2, \dots, x_n 为总体的一个样本,称
		$L(\theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n f(x_i; \theta_1, \theta_2, \dots, \theta_m)$
		为样本的似然函数,简记为 L_n . 当 总 体 X 为 离 型 随 机 变 量 时 , 设 其 分 布 律 为
		$P\{X=x\}=p(x;\theta_1,\theta_2,\cdots,\theta_m), 则称$
		$L(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n p(x_i; \theta_1, \theta_2, \dots, \theta_m)$
		为样本的似然函数。
		若似然函数 $L(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_m)$ 在 $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m$ 处取
		到最大值,则称 $\hat{\theta}_1$, $\hat{\theta}_2$,, $\hat{\theta}_m$ 分别为 θ_1 , θ_2 ,, θ_m 的最大似然估计值,相应的统计量称为最大似然估计量。
		$\left. \frac{\partial \ln L_n}{\partial \theta_i} \right _{\theta_i = \hat{\theta}_i} = 0, i = 1, 2, \cdots, m$
		$\stackrel{\wedge}{B}$ 为 θ 的极大似然估计, $g(x)$ 为单调函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的极大似然估计。
(2)估 计量的	无偏性	设 $\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$ 为未知参数 θ 的估计量。若E ($\hat{\theta}$) = θ ,则称
评选标 准		$\hat{m{ heta}}$ 为 $m{ heta}$ 的无偏估计量。
		$E(\overline{X}) = E(X), E(S^2) = D(X)$
	有效性	设 $\hat{\theta}_1 = \hat{\theta}_1(x_1, x_{,2}, \dots, x_n)$ 和 $\hat{\theta}_2 = \hat{\theta}_2(x_1, x_{,2}, \dots, x_n)$ 是未知参数 θ
		的两个无偏估计量。若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。

	一致性	设 $\overset{\wedge}{ heta}_n$ 是 $ heta$ 的一串估计量,如果对于任意的正数 $ heta$,都有
		$\lim_{n\to\infty} P(\stackrel{\circ}{\theta}_n - \theta > \varepsilon) = 0,$
		则称 $\overset{\wedge}{ heta}_n$ 为 $ heta$ 的一致估计量(或相合估计量)。
		$\stackrel{\circ}{E}$ 为 θ 的无偏估计,且 $D(\hat{\theta}) \rightarrow 0$ ($n \rightarrow \infty$),则 $\stackrel{\circ}{\theta}$ 为 θ 的一致估计。 只要总体的 $E(X)$ 和 $D(X)$ 存在,一切样本矩和样本矩的连续函数都是相应总体的一致估计量。
(3)区 间估计	置信区间和置	设总体 X 含有一个待估的未知参数 θ 。如果我们从样本 $x_1, x_{,_2}, \cdots, x_n$ 出
	信度	发 , 找 出 两 个 统 计 量 $\theta_1 = \theta_1(x_1, x, 2, \cdots, x_n)$ 与
		$\theta_2 = \theta_2(x_1, x, 2, \cdots, x_n)$ $(\theta_1 < \theta_2)$, 使 得 区 间 $[\theta_1, \theta_2]$ 以
		$1-\alpha(0<\alpha<1)$ 的概率包含这个待估参数 $ heta$,即
		$P\{\theta_1 \le \theta \le \theta_2\} = 1 - \alpha,$
		那么称区间[$ heta_1, heta_2$]为 $ heta$ 的置信区间, $1-lpha$ 为该区间的置信度(或置
		信水平)。
	单正态 总体的	设 x_1, x_2, \dots, x_n 为总体 $X \sim N(\mu, \sigma^2)$ 的一个样本,在置信度为 $1-\alpha$
	期望和方差的	下,我们来确定 μ 和 σ^2 的置信区间 $[heta_1, heta_2]$ 。具体步骤如下:
	区间估	(i)选择样本函数;
	计	(ii) 由置信度1-α, 查表找分位数;
		(iii)导出置信区间[$ heta_1, heta_2$]。
		已知方差,估计均值 (i)选择样本函数
		$u = \frac{\overline{x - \mu}}{\sigma_0 / \sqrt{n}} \sim N(0,1).$
		(ii) 查表找分位数
		$P\left(-\lambda \leq \frac{\bar{x} - \mu}{\sigma_0 / \sqrt{n}} \leq \lambda\right) = 1 - \alpha.$
		(iii) 导出置信区间
		$\left[\overline{x} - \lambda \frac{\sigma_0}{\sqrt{n}}, \overline{x} + \lambda \frac{\sigma_0}{\sqrt{n}} \right]$
		1

未知方差,估计均值	(i)选择样本函数
117477	_
	$t = \frac{x - \mu}{S / \sqrt{n}} \sim t(n - 1).$
	(ii)查表找分位数
	$P\left(-\lambda \le \frac{\bar{x} - \mu}{S / \sqrt{n}} \le \lambda\right) = 1 - \alpha.$
	(iii) 导出置信区间
	$\left[\overline{x} - \lambda \frac{S}{\sqrt{n}}, \overline{x} + \lambda \frac{S}{\sqrt{n}} \right]$
方差的区间估计	(i) 选择样本函数
	$w = \frac{(n-1)S^2}{\sigma^2} \sim \kappa^2 (n-1).$
	(ii) 查表找分位数
	$P\left(\lambda_1 \le \frac{(n-1)S^2}{\sigma^2} \le \lambda_2\right) = 1 - \alpha.$
	(iii)导出 σ 的置信区间
	$\left[\sqrt{\frac{n-1}{\lambda_2}}S, \sqrt{\frac{n-1}{\lambda_1}}S\right]$

第八章 假设检验

基本思想	假设检验的统计思想是,概率很小的事件在一次试验中可以认为基本上是			
	不会发生的,即小概率原理。			
	为了检验一个假设 14是否成立。我们先假定 14是成立的。如果根据这个假			
	定导致了一个不合理的事件发生,那就表明原来的假定 14是不正确的,我们拒			
	绝接受 K; 如果由此没有导出不合理的现象,则不能拒绝接受 K,我们称 K,是			
	相容的。与从相对的假设称为备择假设,用从表示。			
	这里所说的小概率事件就是事件 $\{K\in R_{\alpha}\}$,其概率就是检验水平 α ,通			
	常我们取 α =0.05,有时也取 0.01 或 0.10。			
基本步骤	假设检验的基本步骤如下:			
	(i) 提出零假设 <i>H</i> ;			
	(ii) 选择统计量 <i>K</i> ;			
	(iii) 对于检验水平 α 查表找分位数 λ;			
	(iv) 由样本值 x_1, x_2, \dots, x_n 计算统计量之值 K ;			
	将 $\stackrel{\wedge}{K}$ 与 λ 进行比较,作出判断: 当 $ \stackrel{\wedge}{K} >\lambda$ (或 $\stackrel{\wedge}{K}>\lambda$)时否定 \mathcal{H} ,否则认为 \mathcal{H}			
	相容。			

两类错误	第二类错误	当 H 为真时,而样本值却落入了否定域,按照我们规定的检验法则,应当否定 H。这时,我们把客观上 H 成立判为 H 为不成立(即否定了真实的假设),称这种错误为"以真 当假"的错误或第一类错误,记 A 为犯此类错误的概率,即 P {否定 H H 为真} = a; 此处的 a 恰好为检验水平。 当 H 为真时,而样本值却落入了相容域,按照我们规定的检验法则,应当接受 H。这时,我们把客观上 H。不成立判 为 H 成立(即接受了不真实的假设),称这种错误为"以假 当真"的错误或第二类错误,记 B 为犯此类错误的概率,即
		P{接受 <i>H</i> <i>H</i> 为真} = β。
	两类错误的关系	人们当然希望犯两类错误的概率同时都很小。但是,当容量 n 一定时,

单正态总体均值和方差的假设检验

条件	零假设	统计量	对应样本 函数分布	否定域
已知 σ^2	$H_0: \mu = \mu_0$	$U = \frac{\bar{x} - \mu_0}{\sigma_0 / \sqrt{n}}$	N(0, 1)	$ u > u_{1-\frac{\alpha}{2}}$
	$H_0: \mu \leq \mu_0$			$u > u_{1-\alpha}$
	$H_0: \mu \geq \mu_0$			$u < -u_{1-\alpha}$
未知 σ^2	$H_0: \mu = \mu_0$	$T = \frac{\overline{x} - \mu_0}{S / \sqrt{n}}$	<i>t</i> (<i>n</i> – 1)	$ t > t_{1-\frac{\alpha}{2}}(n-1)$
	$H_0: \mu \leq \mu_0$			$t > t_{1-\alpha}(n-1)$
	$H_0: \mu \geq \mu_0$			$t < -t_{1-\alpha} (n-1)$
未知 σ^2	$H_0: \sigma^2 = \sigma^2$	$w = \frac{(n-1)S^2}{\sigma_0^2}$	$\kappa^2(n-1)$	$w < \kappa_{\frac{\alpha}{2}}^2 (n-1)$ 或
	$H_0.0 - 0$			$w > \kappa^2_{1-\frac{\alpha}{2}}(n-1)$

$H_0: \sigma^2 \le \sigma_0^2$		$w > \kappa_{1-\alpha}^2 (n-1)$
$H_0: \sigma^2 \ge \sigma_0^2$		$w < \kappa_{\alpha}^{2}(n-1)$