G12: Correction rapide du CC3.

- **Exercice 1.** 1. Puisque les $(X_n)_{n\geq 1}$ sont i.i.d. et de carré intégrable, la loi forte des grands nombres donne la convergence presque sûre de $M_n = S_n/n$ vers $\mathbb{E}[X_1] = m$ tandis que le théorème limite central donne la convergence en loi de $T_n = \sqrt{n}(M_n m)$ vers G de loi $\mathcal{N}(0, \sigma^2 = \mathbb{V}(X_1))$. En particulier, $(M_n)_{n\geq 1}$ converge en probabilité vers la constante m. On peut donc appliquer le lemme de Slutsky pour obtenir la convergence en loi de $((T_n, M_n))$ vers (G, m).
- 2. Pour tout $n \ge 1$, $U_n = T_n(M_n + m)$. Comme l'application $(x, y) \longmapsto x(y + m)$ est continue, la convergence en loi de (T_n, M_n) vers (G, m) entraı̂ne la convergence en loi de U_n vers 2mG de loi $\mathcal{N}(0, 4m^2\sigma^2)$.

Exercice 2. 1. (a) Puisque que les $(X_n)_{n\geq 1}$ sont i.i.d. et que X_1 est intégrable, la loi forte des grands nombres donne la convergence presque sûre de $(S_n/n)_{n>1}$ vers $\mathbb{E}[X_1] = 0$.

(b) Pour tout $n \ge 1$,

$$\ln M_n = S_n - \frac{n}{2} = n \left(\frac{S_n}{n} - \frac{1}{2} \right).$$

Puisque $(S_n/n)_{n\geq 1}$ converge presque sûrement vers 0, $\lim_{n\to +\infty} \ln M_n = -\infty$ p.s. et $(M_n)_{n\geq 1}$ converge presque sûrement vers 0.

2. (a) Soit $n \in \mathbf{N}^*$. On a

$$\mathbb{E}\left[M_n\right] = e^{-n/2} \,\mathbb{E}\left[e^{S_n}\right] = e^{-n/2} \,\mathbb{E}\left[\prod_{1 \le k \le n} e^{X_k}\right].$$

Comme les variables $(X_n)_{n\geq 1}$ sont i.i.d. et que $e^x\geq 0$ pour tout réel x,

$$\mathbb{E}[M_n] \stackrel{i.}{=} e^{-n/2} \prod_{1 \le k \le n} \mathbb{E}\left[e^{X_k}\right] \stackrel{i.d.}{=} e^{-n/2} \mathbb{E}\left[e^{X_1}\right]^n = e^{-n/2} \left(e^{1/2}\right)^n = 1.$$

(b) Supposons que $(M_n)_{n\geq 1}$ converge vers M dans L^1 . En particulier, on a $\lim_{n\to +\infty} \mathbb{E}[M_n] = \mathbb{E}[M]$; d'après la question précédente, $\mathbb{E}[M] = 1$. D'autre part, il existe une sous-suite qui converge presque sûrement vers M. Comme on sait que $(M_n)_{n\geq 1}$ converge presque sûrement vers 0, on en déduit que M=0 p.s. Ceci est impossible.

Par conséquent, $(M_n)_{n>1}$ ne converge pas dans L¹.

3. (a) Les variables aléatoires $(a_n X_n)_{n\geq 1}$ sont indépendantes, centrées, de carré intégrable. De plus,

$$\sum_{n\geq 1} \mathbb{V}(a_n X_n) = \sum_{n\geq 1} a_n^2 \mathbb{V}(X_n) = \sum_{n\geq 1} a_n^2 < +\infty.$$

Il suffit d'appliquer le théorème sur les séries centrées.

(b) Notons, pour tout $n \in \mathbf{N}^*$, $Z_n = \sum_{k\geq 1}^n a_k X_k$. Puisque $(Z_n)_{n\geq 1}$ converge presque sûrement vers une v.a.r. Z, la convergence a également lieu en loi. D'après le théorème de Paul Lévy, $(\varphi_{Z_n})_{n\geq 1}$ converge simplement vers φ_Z sur \mathbf{R} . On a d'autre part, pour tout $n\geq 1$ et tout réel t, les $(X_n)_{n\geq 1}$ étant i.i.d,

$$\varphi_{Z_n}(t) = \mathbb{E}\left[\prod_{1 \le k \le n} e^{ita_k X_k}\right] = \prod_{1 \le k \le n} \mathbb{E}\left[e^{ita_k X_k}\right] = \prod_{1 \le k \le n} e^{-t^2 a_k^2/2} = \exp\left(-\frac{t^2}{2} \sum_{k=1}^n a_k^2\right).$$

Si $\sum_{n\geq 1} a_n^2 = +\infty$, alors $\varphi_Z(t) = \lim_{n\to +\infty} \varphi_{Z_n}(t) = \mathbf{1}_{\{0\}}(t)$, ce qui est impossible puisque φ_Z est continue sur \mathbf{R} .