Let G = (V,T,P,S) be a context-free grammar.

Prove that there exists a context-free grammar **G**' such that $L(G') = L(G) - \{\epsilon\}$ and **G**' does not contain redundant symbols and ϵ -rules.

Lets define the set **E(G)** as follows:

$$E_0 = \{ A \in V \mid (A \longrightarrow \varepsilon) \in P \}$$

 $\forall n \in \mathbb{N}, \ E_{n+1} = E_n \cup \{ \ A \in V \ | \ \exists \ t \in \mathbb{Z}^+, \ \exists \ X_1, \dots, X_t \in E_n \ , (A \longrightarrow X_1 \dots X_t) \in P \}$ Since the E_i 's form an ascending chain (i.e. $E_0 \subseteq E_1 \subseteq E_2 \subseteq E_3 \subseteq \dots \subseteq V$) and since V is finite, there is a least i, say i_0 such that $E_{i_0} = E_{i_0+1}$, Now we'll define $E(G) = E_{i_0}$, it can be shown that $E(G) = \{ A \in V \ | \ A \Longrightarrow_G^* \varepsilon \}$.

The set **E(G)** will be called: **The set of erasable variables**, or alternatively: **The set of nullable variables**.

Now we'll define the set of production rules **P**' of the new grammar **G**' as follows:

First we'll define a function $F : V \cup T \longrightarrow \mathcal{P}(V \cup T \cup \{\epsilon\})$ as follows:

$$\forall X \in V \cup T, F(X) = \begin{cases} \frac{\{X\} & X \notin E(G)}{\{\varepsilon, X\} & X \in E(G)} \end{cases}$$

(It is clear that $\forall a \in T$, $F(a) = \{a\}$ since it cannot be the case that $a \in E(G)$ since $E(G) \subseteq V$)

Now we can define P' as follows:

$$P' = \{ A \longrightarrow \alpha_1 \dots \alpha_t \mid \exists \ t \in \mathbb{Z}^+, \ \exists \ X_1, \dots, X_t \in V \cup T, \ (A \longrightarrow X_1 \dots X_t) \in P \land \\ (\forall \ i \in \{1, \dots, t\}, \ \alpha_i \in F(X_i)) \land \ (\exists \ i \in \{1, \dots, t\}, \ \alpha_i \neq \epsilon) \}$$

Now we can define the grammar G' as: G' = (V, T, P', S)

We'll prove that $\forall A \in V$, $w \in T^*$, $A \Longrightarrow_{G}^* w \land w \neq \varepsilon \longrightarrow A \Longrightarrow_{G}^{,*} w \equiv \forall n \in \mathbb{Z}^+$, $\forall A \in V$, $w \in T^*$, $A \Longrightarrow_{G}^n w \land w \neq \varepsilon \longrightarrow A \Longrightarrow_{G}^{,*} w$ by induction on n:

Basis

For n = 1 we must show that $\forall A \in V, w \in T^*, A \Longrightarrow_{G^1} w \land w \neq \varepsilon \longrightarrow A \Longrightarrow_{G^*} w$:

Let $A \in V$ and $w \in T^*$ be such that $A \Longrightarrow_{G^1} w$ and $w \neq \varepsilon$.

Since $A \Longrightarrow_{G^1} w$ we get that there must be some production rule of the form $(A \longrightarrow w) \in P$, since $w \ne \varepsilon$ we get that IwI > 0, Now if we let t = IwI then we we'll get that t > 0 and $\exists X_1, ..., X_t \in T$, $w = X_1 ... X_t$, and so $(A \longrightarrow X_1 ... X_t) \in P$, Now since $\forall i \in \{1, ..., t\}$, $X_i \in T$ we get that $\forall i \in \{1, ..., t\}$, $F(X_i) = \{X_i\}$ by definition of F, Now it is clear from the definition of the set P' that $(A \longrightarrow X_1 ... X_t) \in P$ ' which means that $(A \longrightarrow w) \in P$ ' and so $A \Longrightarrow_{G'} w$ which implies that $A \Longrightarrow_{G'} w$ as was to be shown.

Induction hypothesis

Suppose that for some $n = k \ge 1$ we have: $\forall j \in \{1, ..., k\}, \forall A \in V, w \in T^*, A \Longrightarrow_{G^j} w \land w \ne \varepsilon \longrightarrow A \Longrightarrow_{G^{j^*}} w$

Induction step

We must prove that $\forall A \in V$, $w \in T^*$, $A \Longrightarrow_{G^{k+1}} w \land w \neq \varepsilon \longrightarrow A \Longrightarrow_{G^{k+1}} w$:

Let $A \in V$ and $w \in T^*$ be such that $A \Longrightarrow_{G}^{k+1} w$ and $w \ne \varepsilon$. Since $A \Longrightarrow_{G}^{k+1} w$ we get that $\exists \beta \in (V \cup T)^*$, $A \Longrightarrow_{G}^{1} \beta \Longrightarrow_{G}^{k} w$ and so $(A \longrightarrow \beta) \in P$, Since $k \ge 1$ and since G is a context-free grammar we get that $\beta \in (V \cup T)^* V(V \cup T)^*$ and so $|\beta| \ge 1$. Now we'll denote $t = |\beta|$ and we get that

 $\exists X_1, \ldots, X_t \in V \cup T, \beta = X_1 \ldots X_t \text{ and thus } (A \longrightarrow X_1 \ldots X_t) \in P,$ Now we get that $A \Longrightarrow_{G}^1 X_1 \ldots X_t \Longrightarrow_{G}^k w$ In particular we get $X_1 \ldots X_t \Longrightarrow_{G}^k w$ and thus $\forall i \in \{1, \ldots, t\}, \ \exists \ w_i \in T^*, \ (\exists j \in \{1, \ldots, k\}, \ X_i \Longrightarrow_{G}^j w_i) \lor X_i = w_i$ and $w = w_1 \ldots w_t$

Now we will show that (*) $\forall i \in \{1, ..., t\}, \alpha_i \Longrightarrow_{G'} w_i$ where

$$\forall i \in \{1, \dots, t\}, \alpha_i = \begin{cases} X_i & w_i \neq \varepsilon \\ \hline \varepsilon & w_i = \varepsilon \end{cases}$$

Let $i \in \{1, ..., t\}$, there are two cases: $w_i \neq \varepsilon \lor w_i = \varepsilon$

- (§1) If $w_i \neq \varepsilon$ we get that $\alpha_i = X_i$, and now there are two cases: $(\exists j \in \{1,...,k\}, X_i \Longrightarrow_{G^j} w_i) \vee X_i = w_i$
 - (§1.1) If $\exists j \in \{1,...,k\}$, $X_i \Longrightarrow_{G^j} w_i$ then we get by the induction hypothesis that $X_i \Longrightarrow_{G^{i^*}} w_i$ and so $\alpha_i \Longrightarrow_{G^{i^*}} w_i$
 - (§1.2) If $X_i = w_i$, Since $w_i \Longrightarrow_{G'} w_i$ we get $X_i \Longrightarrow_{G'} w_i$ and so $\alpha_i \Longrightarrow_{G'} w_i$
- (§2) If $\mathbf{w}_i = \varepsilon$ we get that $\alpha_i = \varepsilon$ and since $\varepsilon \Longrightarrow_{\mathbf{G}^*} \varepsilon$ we get that $\alpha_i \Longrightarrow_{\mathbf{G}^*} \mathbf{w}_i$

From cases (§1) and (§2) we can conclude that it is always true that $\alpha_i \Longrightarrow_{G'}^* \mathbf{w}_i$ as was to be shown.

Now we'll show that $\mathbf{A} \Longrightarrow_{\mathbf{G}^{,*}} \mathbf{w}$.

It is clear that $(A \longrightarrow \alpha_1 \dots \alpha_t) \in P'$ by definition of P' (Since $w \neq \varepsilon$ and since

 $\mathbf{w} = \mathbf{w}_1 \dots \mathbf{w}_t$ we get that $\exists i \in \{1, \dots, t\}, \mathbf{w}_i \neq \varepsilon$ and so $\exists i \in \{1, \dots, t\}, \alpha_i \neq \varepsilon$, also we know that $(\mathbf{A} \longrightarrow \mathbf{X}_1 \dots \mathbf{X}_t) \in \mathbf{P}$ and we know that

 \forall i \in {1,...,t}, $\alpha_i \in F(X_i)$ and so $(A \longrightarrow \alpha_1 ... \alpha_t) \in P'$).

Now we can get by applying (*) multiple times: $\mathbf{A} \Longrightarrow_{\mathbf{G}^{,1}} \alpha_1 \alpha_2 \dots \alpha_t \Longrightarrow_{\mathbf{G}^{,*}} \mathbf{w}_1 \mathbf{w}_2 \dots \alpha_t \Longrightarrow_{\mathbf{G}^{,*}} \mathbf{w}_1 \mathbf{w}_2 \dots \mathbf{w}_t = \mathbf{w}$ and so $\mathbf{A} \Longrightarrow_{\mathbf{G}^{,*}} \mathbf{w}$ as was to be shown.

Now we'll prove that $\forall A \in V$, $w \in T^*$, $A \Longrightarrow_{G^{,*}} w \longrightarrow A \Longrightarrow_{G^{,*}} w \land w \neq \varepsilon$ in two parts: First we'll prove that $\forall A \in V$, $w \in T^*$, $A \Longrightarrow_{G^{,*}} w \longrightarrow w \neq \varepsilon$ and then we'll prove that $\forall A \in V$, $w \in T^*$, $A \Longrightarrow_{G^{,*}} w \longrightarrow A \Longrightarrow_{G^{,*}} w$.

We'll prove that $\forall A \in V$, $w \in T^*$, $A \Longrightarrow_{G^{,*}} w \longrightarrow w \neq \varepsilon$: by proving the following propositions in order:

- (§1) $\forall A \in V, \alpha \in (V \cup T)^*, (A \longrightarrow \alpha) \in P' \longrightarrow \alpha \neq \varepsilon$
- (§2) $\forall \alpha, \beta \in (V \cup T)^*, \alpha \Longrightarrow_{G'} \beta \longrightarrow \beta \neq \varepsilon$
- (§3) $\forall A \in V, w \in T^*, A \Longrightarrow_{G^*} w \longrightarrow w \neq \varepsilon$

Proof of (§1):

Let $A \in V$ and $\alpha \in (V \cup T)^*$ be such that $(A \longrightarrow \alpha) \in P'$,

(we must show that $\alpha \neq \varepsilon$)

Now we get by definition of P' that

 $\exists \ \ t \in \mathbb{Z}^+, \ \exists \ \alpha_1, \dots, \alpha_t \in V \cup T \cup \{\varepsilon\}, \ \alpha = \alpha_1 \dots \alpha_t \ \text{and so}$

 $(A \longrightarrow \alpha_1 \dots \alpha_t) \in P'$, Again, by definition of P' we get that

 $\exists i \in \{1, ..., t\}, \alpha_i \neq \varepsilon$ and so $|\alpha| = |\alpha_1| ... \alpha_t| = |\alpha_1| + ... + |\alpha_t| + ... + |\alpha_t| > 0$ and so $\alpha \neq \varepsilon$ as was to be shown.

Proof of (§2):

Let $\alpha, \beta \in (V \cup T)^*$ be such that $\alpha \Longrightarrow_{G'} \beta$, (We must show that $\beta \neq \varepsilon$)

Since $\alpha \Longrightarrow_{\mathbf{G}'} \mathbf{\beta}$ we get by definition of the $\Longrightarrow_{\mathbf{G}'}$ relation that

 $\exists \psi, \chi, \gamma \in (V \cup T)^*, A \in V, \alpha = \psi A \chi \land \beta = \psi \gamma \chi \land (A \longrightarrow \gamma) \in P'$

Now since $A \in V$, $\gamma \in (V \cup T)^*$ and $(A \longrightarrow \gamma) \in P$ we get by (§1) that $\gamma \neq \varepsilon$ and so $|\beta| = |\psi| + |\gamma| + |\gamma| + |\gamma| \ge |\gamma| > 0$ and so $\beta \neq \varepsilon$ as was be shown.

Proof of (§3)

Let $A \in V$ and $w \in T^*$ be such that $A \Longrightarrow_{G'} w$ (we must show that $w \neq \varepsilon$)

It is clear that $\mathbf{A} \Longrightarrow_{\mathbf{G}'}^{\mathbf{+}} \mathbf{w}$ and so $\exists \mathbf{j} \in \mathbb{Z}^{\mathbf{+}}$, $\mathbf{A} \Longrightarrow_{\mathbf{G}'}^{\mathbf{j}} \mathbf{w}$ and thus $\exists \boldsymbol{\beta} \in (\mathbf{V} \cup \mathbf{T})^*$, $\mathbf{A} \Longrightarrow_{\mathbf{G}'}^{\mathbf{j}-1} \boldsymbol{\beta} \Longrightarrow_{\mathbf{G}'} \mathbf{w}$, in particular $\boldsymbol{\beta} \Longrightarrow_{\mathbf{G}'} \mathbf{w}$ and by (§2) we get that $\mathbf{w} \neq \boldsymbol{\varepsilon}$ as was to be shown.

Now we'll prove that (§4) $\forall A \in V$, $w \in T^*$, $A \Longrightarrow_{G^*} w \longrightarrow A \Longrightarrow_{G^*} w \equiv \forall n \in \mathbb{Z}^+$, $\forall A \in V$, $w \in T^*$, $A \Longrightarrow_{G^*} w \longrightarrow A \Longrightarrow_{G^*} w$ by induction on n:

Basis

For n = 1 we must show that $\forall A \in V$, $w \in T^*$, $A \Longrightarrow_{G}^{1} w \longrightarrow A \Longrightarrow_{G}^{*} w$:

Let $A \in V$ and $w \in T^*$ be such that $A \Longrightarrow_{G^{,1}} w$, Since $A \Longrightarrow_{G^{,1}} w$ we get that $(A \longrightarrow w) \in P'$ and $A \Longrightarrow_{G^{,*}} w$, Now by (§3) we get that $w \ne \varepsilon$.

Let's denote $\mathbf{t} = \mathbf{IwI}$ and we will get that $\exists \ \alpha_1, \dots, \alpha_t \in T$, $\mathbf{w} = \alpha_1 \dots \alpha_t$, thus $(\mathbf{A} \longrightarrow \alpha_1 \dots \alpha_t) \in \mathbf{P}$, and by definition of \mathbf{P} ' we will get that $\exists \ \mathbf{X}_1, \dots, \mathbf{X}_t \in \mathbf{V} \cup \mathbf{T}$, $(\mathbf{A} \longrightarrow \mathbf{X}_1 \dots \mathbf{X}_t) \in \mathbf{P}$ and $\forall \ \mathbf{i} \in \{1, \dots, t\}, \ \alpha_i \in \mathbf{F}(\mathbf{X}_i)$ and $\exists \ \mathbf{i} \in \{1, \dots, t\}, \ \alpha_i \neq \epsilon$.

We'll prove that (§4.1) \forall i \in {1, ..., t}, $X_i \in T$ by contradiction:

Suppose that $\exists i \in \{1, ..., t\}$, $X_i \notin T$, Since $X_i \in V \cup T$ we get that it must be the case $X_i \in V$, Now since $E(G) \subseteq V$ we get that there are two cases: $X_i \in E(G) \vee X_i \notin E(G)$:

(§4.1.1) If $X_i \in E(G)$ we get that $F(X_i) = \{\varepsilon, X_i\}$ and since $\alpha_i \in F(X_i)$ we get that $\alpha_i \in \{\varepsilon, X_i\}$, Now there are two additional cases: $\alpha_i = \varepsilon \vee \alpha_i = X_i$:

(§4.1.1.1) If $\alpha_i = \varepsilon$, Since $\alpha_i \in T$ we get that $\varepsilon \in T$ which contradicts the fact that $\varepsilon \notin T$.

(§4.1.1.2) If $\alpha_i = X_i$, Since $X_i \in V$ we get that $\alpha_i \in V$ and since $\alpha_i \in T$ we get that $\alpha_i \in V \cap T$ and so $V \cap T \neq \emptyset$ which contradicts the fact that $V \cap T = \emptyset$.

(§4.1.2) If $X_i \not\in E(G)$ we get that $F(X_i) = \{X_i\}$ and so $\alpha_i \in \{X_i\}$ which implies that $\alpha_i = X_i$, Since $X_i \in V$ we get that $\alpha_i \in V$ and since $\alpha_i \in T$ we get that $\alpha_i \in V \cap T$ and so $V \cap T \neq \emptyset$ which contradicts the fact that $V \cap T = \emptyset$.

From cases (§4.1.1) and (§4.1.2) we get a contradiction, And so (§4.1) must be true.

We'll prove that (§4.2) \forall i \in {1, ..., t}, α _i = X_i:

Let $i \in \{1, ..., t\}$, Since $\alpha_i \in F(X_i)$ and since by (§4.1) $X_i \in T$ we get that $F(X_i) = \{X_i\}$ and so $\alpha_i \in \{X_i\}$ which implies that $\alpha_i = X_i$ as was to be shown.

Now we'll show that $\mathbf{A} \Longrightarrow_{\mathbf{G}}^{*} \mathbf{w}$:

Since $(A \longrightarrow X_1 ... X_t) \in P$ we get by (§4.2) that $(A \longrightarrow \alpha_1 ... \alpha_t) \in P$ and so $(A \longrightarrow w) \in P$ which implies that $A \Longrightarrow_{G}^{1} w$ and so $A \Longrightarrow_{G}^{*} w$ as was to be shown.

Induction hypothesis

Suppose that for some $n = k \ge 1$ we have: $\forall j \in \{1, ..., k\}, \forall A \in V, w \in T^*, A \Longrightarrow_{G}^{j} w \longrightarrow A \Longrightarrow_{G}^{*} w$

Induction step

We must prove that $\forall A \in V$, $w \in T^*$, $A \Longrightarrow_{G^*} k+1 \ w \longrightarrow A \Longrightarrow_{G^*} w$:

Let $A \in V$ and $w \in T^*$ be such that $A \Longrightarrow_{G'}^{k+1} w$, Therefore we get that $\exists \beta \in (V \cup T)^*$, $A \Longrightarrow_{G'}^1 \beta \Longrightarrow_{G'}^k w$ and $(A \longrightarrow \beta) \in P'$, Therefore we get that $\exists t \in \mathbb{Z}^+$,

$$\exists \alpha_1, \ldots, \alpha_t \in V \cup T \cup \{\varepsilon\}, \beta = \alpha_1 \ldots \alpha_t \land$$

$$\exists X_1, ..., X_t \in V \cup T, (A \longrightarrow X_1 ... X_t) \in P$$
 \land

$$\forall i \in \{1, \dots, t\}, \ \alpha_i \in F(X_i)$$

$$\exists i \in \{1, ..., t\}, \alpha_i \neq \varepsilon$$

Therefore we get that $A \Longrightarrow_{G}^{1} X_{1} \dots X_{t}$ and $\alpha_{1} \dots \alpha_{t} \Longrightarrow_{G}^{,k} w$ and so

$$\forall i \in \{\ 1\ , \ \dots, \ t\ \}, \ \exists\ w_i \in T^*, \ (\exists j \in \{1\ , \ \dots, \ k\}, \ \alpha_i \Longrightarrow_{G^{,j}} w_i) \ \lor \ \alpha_i = w_i$$

We'll prove that (§5) \forall i \in {1, ..., t}, $\alpha_i \Longrightarrow_{G}^* w_i$:

Let $i \in \{1, ..., t\}$, There are two cases $(\exists j \in \{1, ..., k\}, \alpha_i \Longrightarrow_{G^{ij}} w_i) \vee \alpha_i = w_i$

(§5.1) If $\exists j \in \{1, ..., k\}$, $\alpha_i \Longrightarrow_{G^{,j}} w_i$ then it must be the case that $\alpha_i \in V$, Thus we get by the induction hypothesis that $\alpha_i \Longrightarrow_{G^*} w_i$.

(§5.2) If $\alpha_i = w_i$ we get that $\alpha_i \Longrightarrow_{G} w_i$ and so $\alpha_i \Longrightarrow_{G} w_i$.

Therefore, by (§5.1) and (§5.2) we get that it is always the case that $\alpha_i \Longrightarrow_{G}^* \mathbf{w}_i$ as was to be shown.

Now we'll prove that (§6) \forall i \in {1, ..., t}, $X_i \Longrightarrow_G^* w_i$:

Let $i \in \{1, ..., t\}$, Therefore $\alpha_i \in F(X_i)$, By (§5) we get that $\alpha_i \Longrightarrow_{G}^* w_i$, Now since $X_i \in V \cup T$ there are two cases: $X_i \in V \vee X_i \in T$

(§6.1) If $X_i \in V$, There are two cases: $X_i \in E(G) \vee X_i \notin E(G)$

(§6.1.1) If $X_i \in E(G)$ then $F(X_i) = \{\varepsilon, X_i\}$, Now since $\alpha_i \in F(X_i)$ we get that $\alpha_i \in \{\varepsilon, X_i\}$, Now there are two cases: $\alpha_i = \varepsilon \vee \alpha_i = X_i$

(§6.1.1.1) If $\alpha_i = \varepsilon$ then we get that $\varepsilon \Longrightarrow_{G}^* \mathbf{w}_i$ and now it must be the case that $\varepsilon \Longrightarrow_{G}^0 \mathbf{w}_i$ and so $\varepsilon = \mathbf{w}_i$, Now since $\mathbf{X}_i \in \mathbf{E}(\mathbf{G})$ we get that $\mathbf{X}_i \Longrightarrow_{G}^* \varepsilon$ and so $\mathbf{X}_i \Longrightarrow_{G}^* \mathbf{w}_i$.

(§6.1.1.2) If $\alpha_i = X_i$, Since $\alpha_i \Longrightarrow_{G}^* w_i$ we get that $X_i \Longrightarrow_{G}^* w_i$.

(§6.1.2) If $X_i \not\in E(G)$ then $F(X_i) = \{X_i\}$, Now since $\alpha_i \in F(X_i)$ we get that $\alpha_i \in \{X_i\}$ and so $\alpha_i = X_i$, Now since $\alpha_i \Longrightarrow_{G}^* w_i$ we get that $X_i \Longrightarrow_{G}^* w_i$.

(§6.2) If $X_i \in T$ then we get that $F(X_i) = \{X_i\}$, Now since $\alpha_i \in F(X_i)$ we get that $\alpha_i \in \{X_i\}$ and so $\alpha_i = X_i$, Now since $\alpha_i \Longrightarrow_{G}^* w_i$ we get that $X_i \Longrightarrow_{G}^* w_i$.

Therefore we got that $X_i \Longrightarrow_{G}^* w_i$ as was to be shown.

Now we'll show that $\mathbf{A} \Longrightarrow_{\mathbf{G}}^{*} \mathbf{w}$:

 $A \Longrightarrow_G^1 X_1 \dots X_t \Longrightarrow_G^* w_1 \dots w_t = w$

And so $\mathbf{A} \Longrightarrow_{\mathbf{G}^*} \mathbf{w}$ as was to be shown.

Now by combining (§3) and (§4) we get:

 $\forall A \in V, w \in T^*, A \Longrightarrow_{G^*} w \longrightarrow A \Longrightarrow_{G^*} w \land w \neq \varepsilon$ as was to be shown.

From the two proofs we get:

$$\forall A \in V, w \in T^*, A \Longrightarrow_{G^{,*}} w \longleftrightarrow A \Longrightarrow_{G^{,*}} w \land w \neq \varepsilon$$

Now we'll show that $L(G') = L(G) - \{\epsilon\}$:

Let **w∈T***:

$$\mathbf{w} \in \mathbf{L}(\mathbf{G}') \iff \mathbf{S} \Longrightarrow_{\mathbf{G}'}^{*} \mathbf{w} \iff \mathbf{S} \Longrightarrow_{\mathbf{G}}^{*} \mathbf{w} \land \mathbf{w} \neq \varepsilon \iff \mathbf{w} \in \mathbf{L}(\mathbf{G}) - \{\varepsilon\}.$$
 and so $\mathbf{L}(\mathbf{G}') = \mathbf{L}(\mathbf{G}) - \{\varepsilon\}.$

Now we can build a new grammar G'' = (V'',T'',P'',S) by using **Theorem 7.3** on the grammar G'. The grammar G'' does not contain redundant symbols and $L(G'') = L(G') = L(G) - \{\epsilon\}$, Now since the grammar G'' is a sub grammar of the grammar G'' and since G' does not contain ϵ -rules we get that the grammar G'' does not contain ϵ -rules and so:

There exists grammar **G**" that satisfies $L(G'') = L(G) - \{\varepsilon\}$ and **G**" does not contain redundant symbols and ε -rules as was to be shown.

Q.E.D.