1 Chapter 12

1.1 Problem.2

Solution: We assume that the one-way function does not exists. Then for any function $f: \{0,1\}^* \to \{0,1\}^*$, there exists a PPT algorithm that can inverts f.

In a one-time one bit signature scheme $\Pi = (\mathsf{Gen}, \mathsf{Sign}, \mathsf{Ver})$. Gen generates a public-private key pair (pk, sk) with a security parameter 1^{λ} . Sign takes as input a bit b and the private key sk and outputs the signature σ . Ver takes as input a bit b, a public key pk and the signature σ , and only outputs 1 when σ is a valid signature of b.

If one-way function does not exists, we can construct an algorithm \mathcal{A} to attack the one-time one bit signature scheme Π as follows:

- 1. Run $Gen(1^{\lambda})$ to generate a key pair (sk, pk).
- 2. Choose a random bit $b \in \mathbb{R}\{0,1\}$, and ask the signature oracle $\sigma \leftarrow \mathsf{Sign}(sk,b)$.
- 3. According to the signature σ as output, calls a invert algorithm to invert the Sign algorithm, which returns sk in polymal time.
- 4. Computes with $\sigma' \leftarrow Sign(sk, 1 b)$ and uses $(1 b, \sigma)$ as the input of the Ver algorithm, which return 1 with probability 1.

Thus, we conclude that if one way function does not exists, then secure one-time signature scheme can't exists, which proves the theory.