Lista de Exercícios Calcula I

- É dado o gráfico de uma função f.
 - (a) Obtenha o valor de f(-1).
 - (b) Estime o valor de f(2).
 - (c) f(x) = 2 para quais valores de x?
 - (d) Estime os valores de x para os quais f(x) = 0.
 - (e) Obtenha o domínio e a imagem de f.
 - (f) Em quais intervalos f é crescente?

2. Encontre o domínio e esboce o gráfico da função:

$$f(x) = 5$$

$$f(t) = t^2 - 6t$$

$$g(x) = \sqrt{x-5}$$

$$G(x) = \frac{3x + x}{x}$$

$$f(x) = \begin{cases} x & \text{se } x \le 0 \\ x+1 & \text{se } x > 0 \end{cases}$$

$$f(x) = \begin{cases} x+2 & \text{se } x \le -1\\ x^2 & \text{se } x > -1 \end{cases}$$

3. Determine se as funções abaixo são pares, impares ou nenhum dos dois.

- a) f(x)=4
- b) $f(a)=2^{a}$
- c) $f(x)=x^{-2}$ d) $f(x) = 3x^2 + x^3$ e) $f(x) = 7 x^4$

4. Classifique cada função:

(a)
$$f(x) = \sqrt[5]{x}$$

(b)
$$g(x) = \sqrt{1 - x^2}$$

(c)
$$h(x) = x^9 + x^9$$

(a)
$$f(x) = \sqrt[5]{x}$$
 (b) $g(x) = \sqrt{1 - x^2}$
(c) $h(x) = x^9 + x^4$ (d) $r(x) = \frac{x^2 + 1}{x^3 + x}$

(e)
$$s(x) = \lg 2x$$

(e)
$$s(x) = \lg 2x$$
 (f) $t(x) = \log_{10} x$

5. Calcule $f \circ g$, $g \circ f$, f + g, f - g, $f \cdot g$ e f/g nos casos abaixo. Estabeleça o domínio e a imagem de cada uma das funções envolvidas, bem como da composta encontrada.

a)
$$g(x) = x + 1 e^{h(x)} = x - 1$$

b)g(x)=x²-3 e
$$h(x) = \frac{1}{x} + 2$$

c)
$$g(x) = 2x e^{h(x)} = \sqrt[3]{x^2}$$

d)
$$g(x) = -1 e^{h(x)} = \sqrt[3]{x^2}$$

6. Sendo $g(x) = \sqrt{x} e^{h(x)} = \sqrt{3-x}$, encontre, se possível, cada uma das funções abaixo, especificando o seu domínio.

7. Encontre $f \circ g \circ h$, sendo

a)
$$f(x) = \sqrt{x}$$
; $g(x)=x-3$; $h(x)=x3+3$

$$f(x) = \frac{1}{x-1}$$
; $g(x) = \frac{1}{x+1}$; $h(x) = \frac{1}{x}$

8. Dadas as funções abaixo, escreva cada uma delas como uma composição de outras funções.

a)
$$f(x) = \cos(3x - 4)$$

$$_{b)}f(x) = \sqrt[3]{\ln(x^2 - 4)}$$

9. Calcule a função inversa:

a)
$$f(x)=2^{x-3}+4$$
 c) $f(x)=2x^3-2$

b)
$$f(x) = x^2$$
 d) $f(x) = \frac{(2x+3)}{(3x-5)}$

10. Qual o valor de:

a)
$$\log_5\left(\frac{5^{1000}}{25}\right)$$

c)
$$\log_3 \sqrt{27}$$

b)
$$\log_{\frac{1}{4}} 32$$

d)
$$2^{1 + \log_2 5}$$

11. Calcule:

- a) $\lim (x^2-6x+9)/(x-3)$ quando x tende a 3
- b) $\lim (x^3+x^2+2x)/(x^3+3x)$ quando x tende a 0
- c) $\lim (z^2+9z+20)/(z^2+6z+8)$ quando x tende a -4
- d) $\lim (x^3+4x^2+5x+2)/(x^2+2x+1)$ quando x tende a -1
- e) $\lim (x^2-2^2)/(x-2)$ quando x tende a 2
- f) lim sen(x)/x quando x tende a zero
- g) lim sen(5x)/x qunado x tende a zero
- h) lim tg(x)/x quando x tende a zero
- i) lim sen(7x)/sen(5x) quando x tende a 0
- j) lim tg(x)/sen(x) quando x tende a 0

$$\lim_{m} x \xrightarrow{\lim_{x \to \infty} \frac{5x}{\sqrt[3]{7x^3 + 3}}}$$

- n) lim x3+7 quando x tende ao infinito positivo
- o) lim x²-x quando x tende ao infinito positivo

o) lim
$$x^2$$
-x quando x tende ao in x^2 -x quando x tende ao in x^2 -y x^2

$$\lim_{q \to +\infty} \frac{x^{100} - x^{17}}{-x^{100} + x^{58}}$$

$$\lim_{(x)} x \xrightarrow{1} \lim_{x \to +\infty} \frac{\sqrt{8x^2 + 3}}{\sqrt{9x^2 - 7x}}$$

$$\lim_{s \to x} \frac{x^5+1}{3x^3-9x}$$

12. Determine se há continuidade:

- a) $f(x)=x^2+3$ no ponto x=2
- b) $g(x)=1/x^2$ no ponto x=0

c)
$$f(x) = \frac{x^2 - 1}{x^2 + 1} \text{ em x=-1}$$

$$_{\rm d)} f(x) \! = \! \left\{ \! \! \! \! \! \! \begin{array}{l} x \! + \! 1, \ x \! < \! 1 \\ 2 \! - \! x, \ x \! \geq \! 1 \end{array} \! \! \! \right\}$$