Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчёт по лабораторной работе №1 по дисциплине «Интервальный анализ»

Выполнил студент: Величко Арсений Юрьевич

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Содержание

1	Пос	танов	ка задачи
	1.1	Выясн	нение радиуса элементов матрицы, при котором она стано-
		вится	особенной
		1.1.1	Линейная и полиномиальная регрессия
		1.1.2	Задачи томограции
	1.2	Глоба	льная оптимизация
2	Teo	рия	
	2.1	Опред	целения
	2.2	Крите	ерий Баумана
	2.3	Призн	нак Румпа
3	Pea	ълизация	
4	Результаты		
	4.1	Линейная регрессия	
		4.1.1	Критерий Баумана
		4.1.2	Признак Румпа
		4.1.3	Пример особенной точечной матрицы
	4.2	Задачи томографии	
		4.2.1	Критерий Баумана
		4.2.2	Признак Румпа
		4.2.3	Пример особенной точечной матрицы
	4.3	Глоба	льная оптимизация
			•

1 Постановка задачи

1.1 Выяснение радиуса элементов матрицы, при котором она становится особенной

1.1.1 Линейная и полиномиальная регрессия

Задача регрессии может быть записана в следующем виде

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} \tag{1}$$

Пусть \mathbf{X} - интервальная матрица и

$$\operatorname{mid}(\mathbf{X}) = \begin{pmatrix} 1 & 1\\ 1.1 & 1 \end{pmatrix} \tag{2}$$

Необходимо рассмотреть матрицу вида

$$\mathbf{X} = \begin{pmatrix} [1 - \varepsilon, 1 + \varepsilon] & 1\\ [1.1 - \varepsilon, 1.1 + \varepsilon] & 1 \end{pmatrix}$$
 (3)

и определить при каком радиусе она содержит особенную матрицу.

1.1.2 Задачи томограции

При решении задач томографии, имеем уравнения типа

$$\mathbf{A}x = \mathbf{b} \tag{4}$$

Необходимо рассмотреть интервальную матрицу 2 × 2

$$\mathbf{A} = \begin{pmatrix} [1 - \varepsilon, 1 + \varepsilon] & [1 - \varepsilon, 1 + \varepsilon] \\ [1.1 - \varepsilon, 1.1 + \varepsilon] & [1.1 - \varepsilon, 1.1 + \varepsilon] \end{pmatrix}$$
 (5)

и определить при каком радиусе она содержит особенную матрицу.

1.2 Глобальная оптимизация

При помощи простейшего метода глобальной оптимизации найти точки глобального минимума для функции МакКормика

$$f(x,y) = \sin(x+y) + (x-y)^2 - 1.5x + 2.5y + 1, \quad -1.5 \le x \le 4$$
$$-3 < y < 4$$
 (6)

И функции Химмельблау

$$f(x,y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2, \quad -5 \le x, y \le 5$$
 (7)

Также необходимо привести иллюстрации:

- положения брусов из рабочего списка алгоритма и положения их центров
- графики радиусов рабочих брусов в логарифмическом масштабе
- расстояния до точки минимума в логарифмических координатах

2 Теория

2.1 Определения

- Середина матрицы $\operatorname{mid}(\mathbf{A}) = \{A \mid a_{ij} = \operatorname{mid}(\mathbf{a}_{ij})\}$
- Радиус матрицы $rad(\mathbf{A}) = \{A \mid a_{ij} = rad(\mathbf{a}_{ij})\}$
- Матрица $\mathbf{A} \in \mathbb{IR}$ называется особенной, если $\exists A \in \mathbf{A} : det(A) = 0$.
- Числа $\sigma_1...\sigma_k$, равные квадратным корням из собственных значений матрицы AA^T , называется сингулярными числами матрицы A.
- Множество вершин интревальной матрицы $\operatorname{vert}(\mathbf{A}) = \{ A \in \mathbb{IR}^{m \times n} \mid A = (a_{ij}) \ a_{ij} \in \{ \underline{\mathbf{a}}_{ij}, \overline{\mathbf{a}}_{ij} \} \}$

2.2 Критерий Баумана

Интервальная матрица А неособенна тогда и только тогда, когда

$$(\det(A')) * (\det(A'')) > 0 \quad \forall A', A'' \in \text{vert}(A)$$
(8)

2.3 Признак Румпа

Если для интервальной матрицы $\mathbf{A} \in \mathbb{IR}^{m \times n}$ имеет место

$$\sigma_{\max}(\operatorname{rad}(\mathbf{A})) < \sigma_{\min}(\operatorname{mid}(\mathbf{A}))$$
 (9)

Тогда А неособенна.

3 Реализация

Лабораторная работа выполнена при помощи пакета Matlab с использованием библиотеки IntLab.

Ссылка на репозиторий с исходный кодом:

https://github.com/ArsenyVelichko/IntervalAnalysis

4 Результаты

4.1 Линейная регрессия

4.1.1 Критерий Баумана

$$\Delta_1(\mathbf{X}) = \begin{vmatrix} 1 - \varepsilon & 1 \\ 1.1 - \varepsilon & 1 \end{vmatrix} = -0.1 \tag{10}$$

$$\Delta_2(\mathbf{X}) = \begin{vmatrix} 1 + \varepsilon & 1 \\ 1.1 - \varepsilon & 1 \end{vmatrix} = -0.1 + 2\varepsilon \tag{11}$$

$$\Delta_3(\mathbf{X}) = \begin{vmatrix} 1 - \varepsilon & 1 \\ 1.1 + \varepsilon & 1 \end{vmatrix} = -0.1 - 2\varepsilon \tag{12}$$

$$\Delta_4(\mathbf{X}) = \begin{vmatrix} 1 + \varepsilon & 1 \\ 1.1 + \varepsilon & 1 \end{vmatrix} = -0.1 \tag{13}$$

Все определители должны иметь отрицательный знак

$$\begin{cases} -0.1 + 2\varepsilon < 0 \\ -0.1 - 2\varepsilon < 0 \end{cases} \Rightarrow \varepsilon < 0.05$$

4.1.2 Признак Румпа

$$rad(\mathbf{X}) = \begin{pmatrix} \varepsilon & 0 \\ \varepsilon & 0 \end{pmatrix} \quad mid(\mathbf{X}) = \begin{pmatrix} 1 & 1 \\ 1.1 & 1 \end{pmatrix}$$
 (14)

$$\sigma(\operatorname{rad}(\mathbf{X})) = \{0, \varepsilon\sqrt{2}\} \Rightarrow \sigma_{\max}(\operatorname{rad}(\mathbf{X})) = \varepsilon\sqrt{2}$$
 (15)

$$\sigma(\text{mid}(\mathbf{X})) = \left\{ \sqrt{\frac{421 + 21\sqrt{401}}{200}}, \sqrt{\frac{421 - 21\sqrt{401}}{200}} \right\} \approx \tag{16}$$

$$\approx \{2.0512, 0.0488\} \Rightarrow \sigma_{\min}(\operatorname{mid}(\mathbf{X})) = 0.0488$$

$$\varepsilon\sqrt{2} < 0.0488 \Rightarrow \varepsilon < 0.0345 \tag{17}$$

4.1.3 Пример особенной точечной матрицы

При $\varepsilon=0.05$

$$X = \begin{pmatrix} 1.05 & 1\\ 1.05 & 1 \end{pmatrix} \quad \det(X) = 0 \tag{18}$$

4.2 Задачи томографии

4.2.1 Критерий Баумана

$$\Delta_{1}(\mathbf{X}) = \begin{vmatrix} 1 - \varepsilon & 1 - \varepsilon \\ 1.1 - \varepsilon & 1 - \varepsilon \end{vmatrix} = -0.1 + 0.1\varepsilon \quad \Delta_{2}(\mathbf{X}) = \begin{vmatrix} 1 + \varepsilon & 1 - \varepsilon \\ 1.1 - \varepsilon & 1 - \varepsilon \end{vmatrix} = -0.1 + 2.1\varepsilon - 2\varepsilon^{2}$$
(19)

$$\Delta_{3}(\mathbf{X}) = \begin{vmatrix} 1 - \varepsilon & 1 + \varepsilon \\ 1.1 - \varepsilon & 1 - \varepsilon \end{vmatrix} = -0.1 - 2.1\varepsilon + 2\varepsilon^{2} \quad \Delta_{4}(\mathbf{X}) = \begin{vmatrix} 1 - \varepsilon & 1 - \varepsilon \\ 1.1 + \varepsilon & 1 - \varepsilon \end{vmatrix} = -0.1 - 1.9\varepsilon + 2\varepsilon^{2}$$
(20)

$$\Delta_{5}(\mathbf{X}) = \begin{vmatrix} 1 - \varepsilon & 1 - \varepsilon \\ 1.1 - \varepsilon & 1 + \varepsilon \end{vmatrix} = -0.1 + 2.1\varepsilon - 2\varepsilon^{2} \quad \Delta_{6}(\mathbf{X}) = \begin{vmatrix} 1 + \varepsilon & 1 + \varepsilon \\ 1.1 - \varepsilon & 1 - \varepsilon \end{vmatrix} = -0.1 - 0.1\varepsilon$$
(21)

$$\Delta_{7}(\mathbf{X}) = \begin{vmatrix} 1+\varepsilon & 1-\varepsilon \\ 1.1+\varepsilon & 1-\varepsilon \end{vmatrix} = -0.1 + 0.1\varepsilon \quad \Delta_{8}(\mathbf{X}) = \begin{vmatrix} 1+\varepsilon & 1-\varepsilon \\ 1.1-\varepsilon & 1+\varepsilon \end{vmatrix} = -0.1 + 4.1\varepsilon$$
(22)

$$\Delta_{9}(\mathbf{X}) = \begin{vmatrix} 1 - \varepsilon & 1 + \varepsilon \\ 1.1 + \varepsilon & 1 - \varepsilon \end{vmatrix} = -0.1 - 4.1\varepsilon \quad \Delta_{10}(\mathbf{X}) = \begin{vmatrix} 1 - \varepsilon & 1 + \varepsilon \\ 1.1 - \varepsilon & 1 + \varepsilon \end{vmatrix} = -0.1 - 0.1\varepsilon$$
(23)

$$\Delta_{11}(\mathbf{X}) = \begin{vmatrix} 1 - \varepsilon & 1 - \varepsilon \\ 1.1 + \varepsilon & 1 + \varepsilon \end{vmatrix} = -0.1 + 0.1\varepsilon \quad \Delta_{12}(\mathbf{X}) = \begin{vmatrix} 1 + \varepsilon & 1 + \varepsilon \\ 1.1 + \varepsilon & 1 - \varepsilon \end{vmatrix} = -0.1 - 2.1\varepsilon - 2\varepsilon^{2}$$
(24)

$$\Delta_{13}(\mathbf{X}) = \begin{vmatrix} 1+\varepsilon & 1+\varepsilon \\ 1.1-\varepsilon & 1+\varepsilon \end{vmatrix} = -0.1 + 1.9\varepsilon + 2\varepsilon^2 \quad \Delta_{14}(\mathbf{X}) = \begin{vmatrix} 1+\varepsilon & 1-\varepsilon \\ 1.1+\varepsilon & 1+\varepsilon \end{vmatrix} = -0.1 + 2.1\varepsilon + 2\varepsilon^2$$
(25)

$$\Delta_{15}(\mathbf{X}) = \begin{vmatrix} 1 - \varepsilon & 1 + \varepsilon \\ 1.1 + \varepsilon & 1 + \varepsilon \end{vmatrix} = -0.1 - 2.1\varepsilon - 2\varepsilon^2 \quad \Delta_{16}(\mathbf{X}) = \begin{vmatrix} 1 + \varepsilon & 1 + \varepsilon \\ 1.1 + \varepsilon & 1 + \varepsilon \end{vmatrix} = -0.1 - 0.1\varepsilon$$
(26)

Из $\Delta_6, \Delta_{10}, \Delta_{15}$ видим, что все определители должны быть отрицательными. Из линейных функций быстрее всех возрастает Δ_8 , а из квадратичных - Δ_{14} , таким образом

$$\begin{cases} -0.1 + 4.1\varepsilon < 0 \\ -0.1 + 2.1\varepsilon + 2\varepsilon^2 < 0 \end{cases} \Rightarrow \varepsilon < \frac{1}{41}$$

4.2.2 Признак Румпа

$$rad(\mathbf{A}) = \begin{pmatrix} \varepsilon & \varepsilon \\ \varepsilon & \varepsilon \end{pmatrix} \quad mid(\mathbf{A}) = \begin{pmatrix} 1 & 1 \\ 1.1 & 1 \end{pmatrix}$$
 (27)

$$\sigma(\operatorname{rad}(\mathbf{A})) = \{0, 2\varepsilon\} \Rightarrow \sigma_{\max}(\operatorname{rad}(\mathbf{A})) = 2\varepsilon$$
 (28)

$$\sigma(\text{mid}(\mathbf{X})) = \left\{ \sqrt{\frac{421 + 21\sqrt{401}}{200}}, \sqrt{\frac{421 - 21\sqrt{401}}{200}} \right\} \approx (29)$$

$$\approx \{2.0512, 0.0488\} \Rightarrow \sigma_{\min}(\operatorname{mid}(\mathbf{X})) = 0.0488$$

$$2\varepsilon < 0.0488 \Rightarrow \varepsilon < 0.0244 \tag{30}$$

4.2.3 Пример особенной точечной матрицы

При $\varepsilon = \frac{1}{41}$

$$A = \begin{pmatrix} 1 + \frac{1}{41} & 1 - \frac{1}{41} \\ 1.1 - \frac{1}{41} & 1 + \frac{1}{41} \end{pmatrix} \quad \det(A) = 0$$
 (31)

4.3 Глобальная оптимизация

Функция МакКормика.

Рис. 1: Положения брусов и их центров для функции МакКормика (6)

Рис. 2: Радиусы брусов для функции МакКормика (6)

Рис. 3: Расстояние до точки минимума для функции МакКормика (6)

Функция Химмельблау.

Рис. 4: Положения брусов и их центров для функции Химмельблау (7)

Рис. 5: Радиусы брусов для функции Химмельблау (7)

Рис. 6: Расстояние до точки минимума для функции Химмельблау (7)

5 Обсуждение

1. В обеих задачах значения критерия Баумана и признака Румпа согласуются между собой. В задаче регрессии признак Румпа даёт более узкий интервал

для ε , а в задаче томографии - почти идентичный, что и критерий Баумана.

- 2. На графике радиусов брусов для функции МакКормика мы видим, что монотонное убывание отсутствует. Это означает, что мы не всегда дробим брусы «вглубь», и периодически выбираем новый ведущий брус, не являющийся потомком предыдущего. Данное обстоятельство делает график расстояния до минимума куда менее релевантным, однако мы всё равно можем увидеть его убывание до порядка 10⁻¹.
- 3. На функции МакКормика скорость сходимости алгоритма сильно падает, в связи с чем увеличение кол-ва итераций больше 200 имеет малый смысл. Причиной этого является пункт обсуждения (2) и широкое «дно» в овражной структуре данной функции, внутри которого она крайне мало изменяет своё значение.
- 4. Для функции МакКормика алгоритм остановился на брусе $\begin{bmatrix} [-0.3469, -0.2812] \\ [-1.3750, -1.2874] \end{bmatrix}$, минимальное значение в котором равно -2.25, в то время как реальный минимум f(-0.54719, -1.54719) = -1.9133. Тот факт, что брус не содержит точку минимума вновь отсылает нас к пункту обсуждения (2), и означает лишь то, что мы в дальнейшем бы перешли к брусу, который бы содержал точку минимума.
- 5. Для функции Химмельблау радиусы брусов монотонно убывают, это означает, что для каждого из минимумов мы постоянно выбираем в качестве нового ведущего бруса потомка предыдущего.
- 6. Для функции Химмельблау алгоритм сошёлся к вырожденному брусу [3.5844, -1.8481], который описывает соответствующий минимум с точностью порядка 10^{-5} .
- 7. Можно сделать вывод, что работа алгоритма сильно зависит от поведения функции в окрестности минимума, в связи с чем результат может сильно уступать в точности классическим численным методам. Безусловным плюсом данного алгоритма является возможность вычисления сразу нескольких локальных экстремумов.