# Introduction to Normal Distribution

your name

2024-10-3

### Math 2265 Sec 4.1 Normal Distribution Part I

- · Work as a group!
- You will need to replace "ans" or your\_answer in the source code or answer questions
- Update your name in L3
- Add your group members name below
- Make sure your save and knit your work (to html or pdf) before submitting it to Canvas

### Question 0. Who are your group members? (List their first names should be sufficient)

#### Answer:

1. <name\_1> 2. <name\_2>

#### Load Packages

```
## Loading required package: airports
## Loading required package: cherryblossom
## Loading required package: usdata
## Registered S3 method overwritten by 'mosaic':
##
    method
                                      from
     fortify.SpatialPolygonsDataFrame ggplot2
##
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
##
  The following objects are masked from 'package:dplyr':
##
       count, do, tally
##
  The following object is masked from 'package:Matrix':
##
##
       mean
## The following object is masked from 'package:ggplot2':
##
##
       stat
## The following object is masked from 'package:openintro':
```

```
## dotPlot
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
```

If you need more time to get used to Markdown, use the Visual mode.

The icon is located in the upper-left corner next to source.

### Example 1: Plot normal distributions

```
curve(dnorm(x, mean = 0, sd = 1), from = -6, to = 6,
    main = "Normal Distribution (PDF, mean = 0, sd = 1)",
    xlab = "x", ylab = "Density")
```

# Normal Distribution (PDF, mean = 0, sd = 1)



Task 1: Plot some normal distributions with mean and standard deviation of your choice You may need to change from and to parameters too.

Your Example 1:

```
curve(dnorm(x, mean = 2, sd = 1.2), from = -6, to = 6)
```



### Your Example 2:

```
curve(dnorm(x, mean = -1, sd = 3), from = -6, to = 6)
```



# Example 2: Normal distribution with colors

```
# Plot the normal distribution curve
curve(dnorm(x, mean = 0, sd = 1), from = -4, to = 4,
    main = "Normal Distribution with Shaded Area (x <= 0)",
    xlab = "x", ylab = "Density")</pre>
```

```
# Shade the area under the curve for x <= 0
x_vals <- seq(-4, 0, length.out = 100) # Sequence of x values from -4 to 0
y_vals <- dnorm(x_vals, mean = 0, sd = 1) # Corresponding y values for the curve
polygon(c(x_vals, 0), c(y_vals, 0), col = "lightblue", border = NA) # Fill the area</pre>
```

# Normal Distribution with Shaded Area $(x \le 0)$



This example is excellent but a bit involved. We will use another package mosaic for plotting normal distributions.

### Example with the Mosaic pacakge

```
xpnorm(0) # if we skip mean and sd, the default values are mean = 0 and sd = 1

##

## If X ~ N(0, 1), then

## P(X <= 0) = P(Z <= 0) = 0.5

## P(X > 0) = P(Z > 0) = 0.5

##
```



## [1] 0.5

So the following is the same as above.

$$xpnorm(0, mean = 0, sd = 1)$$

##

## If X  $\sim$  N(0, 1), then

##  $P(X \le 0) = P(Z \le 0) = 0.5$ 

## P(X > 0) = P(Z > 0) = 0.5

##



## [1] 0.5

The first argument (0 in the example) is the x-value or Z-score when mean = 0 and sd = 1.

### **Z-Score**

The possums example in the video follows the normal distribution with mean 92.6 and sd 3.6. Recall the Z-score formula.

$$Z = \frac{x - \mu}{\sigma},$$

where  $\mu$  is the mean and  $\sigma$  is the standard deviation.

**Task 2:** Therefore, when x = 98, the Z-score is

$$(98 - 92.6)/3.6$$

## [1] 1.5

Therefore, when x = 89, the Z-score is

## [1] -1

# Task 3: Compute the Z-Score and percentile (with table and pnorm)

The pnorm function will give you the percentile of the Z-score. Here is an example.

## pnorm(0)

## ## [1] 0.5

Use pnorm to compute the percentile for the two Z-score you computed for x = 98 and x = 89.

For x = 98,

## pnorm(1.5)

# ## [1] 0.9331928

For x = 89,

## pnorm(-1)

## [1] 0.1586553

# Task 4: Sketch the normal distribution graphs using the function xpnorm

For x = 98,

## xpnorm(1.5)

##

## If X 
$$\sim$$
 N(0, 1), then

## 
$$P(X \le 1.5) = P(Z \le 1.5) = 0.9332$$

## 
$$P(X > 1.5) = P(Z > 1.5) = 0.06681$$

##



## [1] 0.9331928

For x = 89,

xpnorm(-1)

##

## If X  $\sim$  N(0, 1), then

## 
$$P(X \le -1) = P(Z \le -1) = 0.1587$$

## 
$$P(X > -1) = P(Z > -1) = 0.8413$$

##



## [1] 0.1586553

Task 5: Try the first HW problem.

Question 1:

**3.1 Area under the curve, Part I**: Find the probability of each of the following, if  $Z \sim N(\mu = 0, \sigma = 1)$ .

a) 
$$P(Z<-1.35) =$$

## [1] 0.08850799

b) 
$$P(Z>1.48) =$$

```
q1_b <- 1-pnorm(1.48)
q1_b

## [1] 0.06943662
c) P(-0.4< Z< 1.5) =
q1_c <- pnorm(1.5) - pnorm(-0.4)
q1_c

## [1] 0.5886145
d) P(|Z|>2) =
q1_d <- 2*pnorm(-2)
q1_d

## [1] 0.04550026</pre>
```

### Task 6. Knit your code and check your outcomes.

You are only allowed to upload pdf or html

### Task 7. Check your answer

```
if(sum((c(q1_a, q1_b, q1_c, q1_d) - c(0.0885,0.0694,0.5886,0.0455))<0.001)==4) {
  print("Your answers are correct")
} else {
  print("Check your answers")
}</pre>
```

## [1] "Your answers are correct"

Share your work and help your group members before uploading your work to Canvas