KECE471 Computer Vision

EM Algorithm and Mean Shift

Chang-Su Kim

Chapter 14, Computer Vision by Forsyth and Ponce Chapter 5, Computer Vision by Richard Szeliski Note: Dr. Forsyth's notes are partly used.

The contents on meanshift part are copied from the ppt file of

Yaron Ukrainitz & Bernard Sarel

EM - EXPECTATION MAXIMIZATION

K-means and EM algorithm

- K-Means
 - Hard Clustering

An instance belongs to only one cluster

- EM
 - Soft Clustering.

 An instance belongs to several clusters with membership probability

Clustering - EM algorithm

- Gaussian mixture model
 - A mixture is a set of k Gaussian distributions, representing k clusters.
 - Each Gaussian distribution is represented by mean and variance.

The mixture model combines several Gaussian

distributions.

Clustering - EM algorithm

• Example : Mixture of 3 Gaussians

Fitting a Gaussian Mixture

- Given the data set, estimate the parameters:
 - Mixing coefficients
 - Means
 - Variances
- If we know which cluster generates each data point, the estimation is very easy
- But the information is unknown

Informal derivation

- Iterative scheme
 - Make initial guesses for the parameters
 - Alternate between the following two stages:
 - 1. E-step: evaluate responsibilities
 - 2. M-step: update parameters using ML results

teration

Another Example

• Data set – 6 clusters

Fitting the Gaussian Mixture

Resulting density estimation

Another Example

Original image

2 clusters

5 clusters

10 clusters 20 clusters 50 clusters

MEAN SHIFT AND MODE FINDING

- D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis," IEEE Trans. PAMI, vol. 24, no. 5, pp. 603-619, 2002.
- Slides are excerpted from those of Yaron Ukrainitz & Bernard Sarel

Mean shift and Mode Finding

What is Mean Shift?

A tool for:

Finding modes in a set of data samples, representing an underlying probability density function (PDF) in R^N

Density Estimation

Density Estimation

Parametric density estimation

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right)$$

Nonparametric density estimation

$$f(x) = \sum_{i} k(x - x_i)$$

- Kernel density estimation
- Parzen window technique

Non-Parametric Density Estimation

Non-Parametric Density Estimation

Mean Shift Operation

- In the mean shift procedure, we obtain not the density f(x), but its gradient $\nabla f(x)$
- Clustering
 - Record the moving trajectory of each point
 - All points leading to a mode form a cluster
- A faster approach
 - Randomly subsample input points
 - Keep track of the temporal evolution of each point.
 - Classify the remaining points based on the nearest evolution path

Clustering

<u>Cluster</u>: All data points in the *attraction basin* of a mode

<u>Attraction basin</u>: the region for which all trajectories lead to the same mode

Drainage Basin (Watershed)

What Is a Watershed?

A watershed is the area of land that drains to a particular point along a stream

Râul Latorița, afluent al Lotrului

Segmentation Example

Segmentation Example

Supplemental Materials

Sequential Clique Optimization for Video Object Segmentation

Anonymous ECCV Submission
Paper ID 2253