ABC为刚性横杆,AB=BC=a,杆 1 和杆 2 的横截面面积和材料均相同,长度均为 L。试求杆 1 和杆 2 的轴力。↔

$$F_1 = \frac{16}{17}F$$
 $F_2 = \frac{4}{17}F$

AB 段的直径 d_1 = 100 mm,BC 段的直径 d_2 = 50 mm,a = 1 m,在 B、C 两横截面处分别作用矩为 M_{BC} = 4.8 kN·m 和 M_{CC} = 1.6 kN·m 的外力偶。已知材料的剪切弹性模量 G = 80 GPa, $[\tau]$ = 70 MPa。试:(1)作扭矩图,并校核圆轴的强度;(2)求 C 截面相对于 A 截面的扭转角。 Φ

$$\tau_{\text{max}} = 65.22 \,\text{MPa} < [\tau] \leftrightarrow$$

$$\varphi_{CA} = 0.0611(rad) +$$

画出如图所示简支刚架的内力图(3个)。↩

本资源免费共享 收集网站 nuaa.store

试求: (1) P_1 单独作用时,梁上 C 截面的挠度; (2) P_1 和 P_2 共同作用时,梁上 C 截面的

挠度; (3) F2 单独作用时, 梁上 B 截面的转角 (梁在简单载荷作用下的变形表见试卷第

7页)。

(1)
$$w_{C1} = \frac{5F_1a^3}{6EI}$$
 ($|\vec{q}| \mp$)

(2)
$$W_C = \frac{5F_1a^3}{6EI} + \frac{8F_2a^3}{3EI} \ (\vec{\Box} \ \vec{\Box})$$

(3)
$$\theta_B = \frac{3F_2a^2}{2EI} (|| || || || || || || || ||$$

试求: (1) 图形对 y 轴的静矩; (2) 形心 C 至 y 轴的距离; (3) 图形对 y c 轴的惯性矩。↔

$$S_{_{T}}=1520~\mathrm{cm}^{^{3}}$$
 ; $~h_{_{C}}=19~\mathrm{cm}$; $~I_{_{N_{C}}}=8347~\mathrm{cm}^{^{4}}$ \leftrightarrow

本资源免费共享 收集网站 nuga store

F=50kN(向下)作用,试: (1)写出梁上最大正应力和最大切应力的表达式(即计算结果是含有直径 D 的表达式); (2)已知许用应力 $[\sigma]=10$ MPa, $[\tau]=0.8$ MPa时,确定截面直径 D 的大小。 \bullet

D ≥ 0.294 m (或 294 mm)

D ≥ 0.230 m (或 230 mm) 4

因此 直径 D 取值为0.294 m (或 294 mm) 。 ₽