II ELBA WORKSHOP IES LENGUAS VIVAS - FEBRUARY 11TH, 2017

Linearity determines Chain pronunciation

Carlos Muñoz Pérez Universidad de Buenos Aires & CONICET

I'll talk about the mechanisms that regulate the distribution of movement gaps.

- (1) Cosmo was arrested e_{gap}
- (2) *e_{gap} was arrested Cosmo
- (3) What book did Elaine read e_{gap} ?
- (4) *e_{gap} did Elaine read what book?

Different ways of explaining these facts under *Trace Theory* (Chomsky 1973, Fiengo 1977, i.a.)

- Proper Binding Condition (Fiengo 1977, Lasnik & Saito 1992)
- Empty Category Principle (Chomsky 1981)
- Cyclicity
- Other alternatives I don't know...

A similar intuition applies under the *Copy Theory* of movement (Chomsky 1993, Nunes 1995, i.a.).

- Pronounce the "most interpretable" copy (Nunes 1995, 2004)
- > Transparency (Brody 1995)
- I-Assignment (Saab 2008)
- Form Chain (Groat & O'Neil 1996)
- Many others

Let's summarize these proposals under a unique rule of chain pronunciation.

P-Highest

Given a chain CH= $\{\alpha^1, \dots, \alpha^n\}$, pronounce the occurrence of α that <u>c-commands</u> any other occurrence of α .

According to this definition, the distribution of movement gaps is based on structural relations.

I argue that *P-Highest* should be replaced by a distinct rule of chain pronunciation.

P-Leftmost

Given a chain CH= $\{\alpha^1, \dots, \alpha^n\}$, pronounce the occurrence of α that <u>precedes</u> any other occurrence of α .

According to this definition, the distribution of movement gaps is based on linear relations.

P-Leftmost requires pronouncing the first copy in linear order.

- (1) Cosmo was arrested Cosmo
- (2) *Cosmo was arrested Cosmo
- (3) What book did Elaine read what book?
- (4) *What book did Elaine read what book?

There are two main reasons to prefer P-Leftmost over P-Highest.

- The distribution of gaps seems to be sensitive to linearity.
- ii. There is an asymmetry between the left and the right peripheries of a sentence regarding movement.

Data from Romanian.

- (5) Cine ce precede? (7) *Ce ce precede? who what precedes What what precedes
- (6) *Cine precede ce? (8) Ce precede ce? who precedes what What precedes what

Bošković (2002): this is a *superficial restriction on pronouncing two linearly adjacent homophonous words*. (5) and (8) are generated through the same derivation.

- (5) Cine ce precede? Who what precedes
- (9) [CP cine_{SUBJ} ... ce_{OBJ} ... [TP ee_{SUBJ} ... precede ... ee_{OBJ}]]

However, if both pronouns are homophonous...

- (8) Ce precede ce?
 What precedes what
- (10) [CP cesubj ... eeOBJ ... [TP eeSUBJ ... precede ... ceOBJ]]

A similar pattern is attested in Bulgarian.

```
(11) Koj kogo na
                             e pokazal?
                   kogo
    who whom to
                   whom
                             is pointed-out
                   kogo e pokazal?
(12) *Koj na kogo
    who to whom
                   whom
                             is pointed-out
                   e pokazal
                                 kogo?
(13) Koj na kogo
                   is pointed-out whom
    who to whom
```

(14) [_{CP} koj_{SUBJ} ... [_{PP} na kogo_{IO}] ... kogo_{OBJ} ... e pokezal ... kogo_{OBJ}]

If Bošković's analysis is on the right track, these patterns constitute cases of linearity-based relations between constituents feeding the mechanisms of chain pronunciation.

- This is both surprising and difficult to capture under P-Highest.
- These kind of restrictions on chain pronunciation are expected under P-Leftmost.

There is still one more reason to prefer P-Leftmost over P-Highest.

- ▼ The distribution of gaps seems to be sensitive to linearity.
- ii. There is an asymmetry between the left and the right peripheries of a sentence regarding movement.

Consider the following.

P-Highest establishes a "vertical" constraint for distribution of unpronounced copies.

P-Leftmost introduces a "horizontal" type of restriction.

Assume both occurrences of XP form a chain.

P-Highest

XP < Z < Y

Z < Y < XP

P-Leftmost

XP < Z < Y

Z < XP < Y

The lack of overt "rightward movement" allows explaining many things.

- It is rare.
- Kayne (2003): There are no verb penultimate languages (vs. V2 languages).
- Abels & Neeleman (2009):
 Greenberg's Universal 20
- Zeijlstra (2015): FOFC

P-Highest

P-Leftmost Z < XP < Y

OK, now what?

So there are some nice consequences of preferring P-Leftmost to P-Highest.

Now we face with a technical issue:

How do we implement P-Leftmost in an explicit way?

Assumptions

- ➤ No linear order in narrow syntax (cf. Chomsky 1995). It is computed at PF.
- Late Insertion (Halle & Marantz 1993). Vocabulary Insertion (VI) introduces phonological matrixes into abstract syntactic nodes at PF.
- ➤ VI is sensitive to linear order (e.g., Arregi and Nevins 2012) and applies according to it, i.e., you assign phonological representation to constituents from "left to right".

How it works

Assume than an operation Lin takes as input a branching node α and creates a linearization statement $\langle \beta, \gamma \rangle$ with α 's daughters.

Then, VI introduces phonological matrixes according to this information.

- a. $Lin(VP) = \langle V, DP \rangle$
- b. $Lin(DP) = \langle D, N \rangle$

read the book

CP DPi Ν ΤP what book did DPi VP the woman DPi read what book

How it works

Should we apply *Lin* to both copies of *what book*?

Assume that *Lin* obeys economy conditions: you apply it only once per chain.

Lin applies in cycles. First to the main c-command unit, and then to specs and adjuncts.

How it works

CP DPi Ν ΤP what did book DPi VP the woman DPi read N what book

Lin – First cycle

a. $Lin(CP) = \langle DP^i, C' \rangle$

b. $Lin(C') = \langle C, TP \rangle$

c. Lin(TP) = $\langle DP^j, T' \rangle$

d. $Lin(T') = \langle T, VP \rangle$

e. $Lin(VP) = \langle V, DP^i \rangle$

f. $Lin(DP^i) = \langle D, N \rangle$

Lin - Second cycle

a. $Lin(DP^{j}) = \langle D, N \rangle$

what book did the woman read

Remnant Movement

Lin – First cycle

a. $Lin(CP) = \langle DP^i, C' \rangle$

b. $Lin(C') = \langle C, TP \rangle$

c. Lin(TP) = $\langle DP^j, T' \rangle$

d. $Lin(T') = \langle T, VP \rangle$

e. $Lin(VP) = \langle V, DP^i \rangle$

f. $Lin(DP^i) = \langle D, N \rangle$

Lin – Second cycle

a. $Lin(DP^{j}) = \langle D, N \rangle$

what book did the woman read

Remnant Movement

Remnant Movement dependencies are an apparent counterexample to P-Leftmost.

- (15) ... and arrested Cosmo was.
- (16) $[_{CP} [_{VP} \text{ arrested } \frac{\text{Cosmo}}{\text{Cosmo}}] [_{C'} C [_{TP} \frac{\text{Cosmo}}{\text{Cosmo}}]]]]$

In (16) an unpronounced copy of *Cosmo* precedes the Spec,T position.

Remnant Movement

Well, this is not a problem AT ALL.

Lin – First cycle

a.
$$Lin(CP) = \langle VP^i, C' \rangle$$

b.
$$Lin(C') = \langle C, TP \rangle$$

c. Lin(TP) =
$$\langle DP^j, T' \rangle$$

d. Lin(T') =
$$\langle T, VP^i \rangle$$

e.
$$Lin(VP) = \langle V, DP^i \rangle$$

Lin – Second cycle

arrested Cosmo was

Concluding Remarks

- ➤ P-Leftmost supposes a direct relation between linear order and chain pronunciation, which allows explaining the data from Romanian and Bulgarian.
- P-Leftmost derives the asymmetry between leftward and rightward movement without adopting additional assumptions.

The version of P-Leftmost introduced here allows accounting for Remnant Movement dependencies

Thank you!