PS11-231830106

Problem 1

(a):

0																		
			1	2	3	4	5	ь										
		1	0		∞													
		2	1		~ ~		∞											
		3	-				∞	-6										
			<i>∞</i>	2	0			_										
		4		∞		0		∞										
		5		7	ω		0	×										H
		Ь	∞	2	12	∞	80	0										
-								,	2.				_			,		
				2	3	4	۶	ь			J	2	3	4	5	ь		L
		/	0	w	~	∞	-(~		/	0	∞	∞		-(~		
		2	1	0	\sim	2	0	×		2	1		00	2	0	60		
		3	∞	2	0	∞	000	-6		3	~		-	4	2	-6		
		4	- 2	00	×	0	3	D00		4	-2	00	×	0	3	∞		
		5	∞	7	00	ಀ	0	∞		5	∞	7	~	9	0	∞		
		6	~	2	12	00	~	0		6	~	5	12	- 7	5	0		
3.									4									
			ſ	2	3	4	۶	ь	,		1	2	3	4	5	ь		
		1	0		000	60	-(~		/	0	w	∞	∞	-(∞		
		2	,	0	00	2	o	5		2	0	0	00	2	0	∞		
		3	~	2	0	4	2	-6		3	2	2	0	4	1	-6		
		4	-2	00	00		3			4	-2	00	∞	0	-3	∞		
		-	∞	7		9	0	∞		5	7	7	600	9	0	∞		
					12						5		12			n		H
		0		3		1	3	0					\		•	•		
(-									6.									
5.		J·	2	3	4	5	Ь		U.		J.	2	3	4	(-	ь		
	1	0								1								
	/				8					/	0	-		8	-(~		
	2	0			2					2	0				0			
	3	2	2	0	4					3			0	1	-2	b		
			_	∞		3				4					3			
	5	-	7	000		0	∞				7		000		0			
	6	5	5	12	. 7	4	0			Ь	5	5	12	- 7	4	0		

(b):

Problem 2

(a):

1. 思路:显然本题可类比于一个图, c_i 为顶点, $r_{i,j}$ 为边,本题即为找到s到t的最大乘积路径。设 $w_{i,j} = -\log(r_{i,j})$,则直接等价于求最短路径,由于图中可能含有负边,因此使用Bellman-Ford算法即可

Input: n (货币数量), r (汇率矩阵), s (起点货币), t (终点货币) Output: 最短路径的权重 distance[t], 以及对应的路径

1. 将汇率矩阵 r 转化为图的权重矩阵 w:

for i = 1 to n:

```
for j = 1 to n:
          if i \neq j:
              w[i][j] = -\log(r[i][j])
          else:
              w[i][j] = 0 # 自环权重为0
2. 初始化最短路径数组 distance 和前驱数组 predecessor:
  distance = [\infty, \infty, \ldots, \infty] (大小为 n)
  predecessor = [-1, -1, \ldots, -1] (大小为 n)
  distance[s] = 0
                                   (起点的距离为 0)
3. 进行 Bellman-Ford 松弛操作:
  for k = 1 to n-1:
                                    (最多 n-1 次迭代)
      for i = 1 to n:
                                    (遍历每条边)
          for j = 1 to n:
              if distance[i] + w[i][j] < distance[j]:</pre>
                  distance[j] = distance[i] + w[i][j]
                  predecessor[j] = i
4. 检测负权环(用于验证是否存在套利环):
  for i = 1 to n:
      for j = 1 to n:
          if distance[i] + w[i][j] < distance[j]:</pre>
              print("存在负权环(套利环)")
              return
5. 构造从 s 到 t 的路径:
  path = []
  current = t
  while current \neq -1:
      path.append(current)
      current = predecessor[current]
  path.reverse()
6. 输出结果:
  print("最优路径权重:", distance[t])
  print("最优路径:", path)
```

3. 时间复杂度:和Bellman-Ford算法一致,都为O(|V| + |E|)

1. 思路,监测负权环,使用Bellman-Ford算法即可

2. 伪代码: 为上一问的一个部分

3. 时间复杂度: 和上一问一致

Problem 3

(a):

- 1. 思路:设传递闭包关系图为一个二维数组,每次加入一个元素,就检测当前元素的行列的交点中有没有可改变的点即可。
- 2. 伪代码:

3. 时间复杂度: 显然两层循环的时间复杂度为 $O(|V|^2)$ 。

(b)

- 1. 思路: 设G有两个强连通分量A、B, 且 $|A|=|B|=\frac{|V|}{2}, a\in A, b\in B$ 。 Element_insert((a,b),T),即可。
- 2. 时间复杂度证明: 对 $\forall x \in A, y \in B$ 有(x,y) = 0,在 Element_insert((a,b),T)后, $\forall x \in A, y \in B$ 有(x,y) = 1,修改的边数量为 $|V|^2/4$,显然为 $O(|V|^2)$

(c):

- 1. 思路:运行x次(a)中的算法
- 2. 伪代码

```
function x_insert(S,T):
    for (u,v) in S:
        Element_insert((u,v),T)
```

3. 时间复杂度:

执行x次insert,时间复杂度为 $O(|x|\cdot|V|^2)$,在最坏情况下x为V^2。但是从摊还分析的视角来看,插入的(u,v)有可能已经是1了,此时本次insert的时间复杂度为O(1),而矩阵一共需要 $O(|V|^2)$ 次从0-1的修改,而0-1后不可能变回0,因此本算法的时间复杂度和warshall算法的更新传递闭包一致都为 $O(|V|^3)$ 。

Problem 4

(a):

对一个子问题 $A_p\cdots A_q$,且q-p=n-1,需要依赖其中所有的 $i,j\in[p,q]$

- 1. 点数量显然为所有可能的(i,j)的数量和各个矩阵本身, $n + \frac{n(n-1)}{2} = \frac{n(n+1)}{2}$ 。
- 2. 边的数量,对所有 $k \in [p,q]$,有p-q条边与(p,k)和(k+1,j)连接,因此最后答案为 $\sum_{i=1}^n \sum_{j=1}^n ((j-i) = O(n^3)$ 。

(b):

子问题只有规模相同,而每个子问题中需要处理的数具体来说是不同的,不能通过数组或其其 他方式进行记忆化和复用。

Problem 5

(a):

1. 思路:只需要在递归表达式中增加减去c这一项即可,最后的表达式为 定义R(n)为长度为n时的最大收益,R(0)

$$R(n) = \max_{1 \leq i \leq n} \left(p_i + p_{n-i} - c + R(i) + R(n-i)
ight)$$

2. 伪代码

```
# 输入: 钢条各长度段价格列表 p, 钢条总长度 n, 每次切割的固定成本 c
# 输出: 长度为 n 的钢条能获得的最大收益

def rod_cutting_with_cost(p, n, c):
    R = [0] * (n + 1)
    for i in range(1, n + 1):
        max_value = float('-inf')
        for j in range(1, i + 1):
        value = p[j - 1] + R[i - j] - c
        max_value = max(max_value, value)
```

```
dp[i] = max_value
return R[n]
```

3. 时间复杂度:

两层循环, 时间复杂度为 $O(n^2)$ 。

(b):

- 1. 思路
 - 1. 定义子问题:设 dp[k] 表示长度为 k的杆所能获得的最大收益。
 - 2. 状态转移: 对于每种长度 j,考虑每种可能的切割数量 m从 1 到 l_i :
 - 我们可以做出选择使用 m 个长度为 j 的杆段,切割后的总长度为 $j \times m$ 。
 - 对每种选择,更新 dp[k]。
 - 3. 递推关系:

 $dp[k] = \max(dp[k], dp[k-j \times m] + p[j] \times m)$ 对于所有 m 使得 $j \times m \le k$

2. 伪代码

- 3. 时间复杂度:
- 外层循环 j 和中层循环 k 的时间复杂度为 $O(n^2)$ 。
- 内层循环 m 的最大次数为 $O(l_i)$,整个结构的时间复杂度为:

$$O(n^2 \cdot L)$$
 (其中 $L = \max_{1 \le j \le n} l_j$)

Problem 6

(a)

1. 状态转移方程: if s[i]=s[j]: dp[i][j]=dp[i-1][j-1]+2 else dp[i][j]=max(dp[i][j-1],dp[i+1][j])

2. 伪代码:

3. 时间复杂度 两层循环,时间复杂度明显为 $O(n^2)$

(b)

1. 状态转移方程 if s[i]=s[j]: dp[i][j]=dp[i-1][j-1] else dp[i][j]=min(dp[i][j-1],dp[i+1][j])+1

2. 伪代码

```
def shortest_palindrome_supersequence(s):
    n = len(s)
    dp = [[0] * n for _ in range(n)]

# 初始化边界
    for i in range(n):
        dp[i][i] = 0 # 单个字符本身是回文

# 填充 dp 表,从短区间到长区间
```

```
for length in range(2, n + 1): # 子串长度从 2 开始
    for i in range(n - length + 1): # 起始位置
        j = i + length - 1 # 结束位置
        if s[i] == s[j]:
            dp[i][j] = dp[i + 1][j - 1]
        else:
            dp[i][j] = min(dp[i + 1][j], dp[i][j - 1]) + 1

# 最短回文超序列的长度
return n + dp[0][n - 1]
```

3. 时间复杂度:

两层循环,时间复杂度明显为 $O(n^2)$