(2012 年度前期 担当:佐藤)

問題 **4.5.** 2 次多項式 $\bar{\varphi}(\bar{x},\bar{y}) = 3\bar{x}^2 - 12\bar{x}\bar{y} - 6\bar{y}^2 + 18$ について、以下の問の答えなさい。

- $(1) \ \bar{\varphi}(\bar{x},\bar{y}) = \left(\begin{array}{cc} \bar{x} & \bar{y} \end{array}\right) \bar{A} \left(\begin{array}{c} \bar{x} \\ \bar{y} \end{array}\right) + 18 \ {\it E}$ 表すときの 2 次正方行列 \bar{A} を書きなさい.
- (2) $\bar{arphi}(ar{x},ar{y})=\left(egin{array}{cccc} ar{x} & ar{y} & 1 \end{array}
 ight)ar{A}_0 \left(egin{array}{ccccc} ar{x} \\ ar{y} \\ 1 \end{array}
 ight)$ と表すときの 3 次正方行列 $ar{A}_0$ を書きなさい.
- $(3) \det(\bar{A})$ および $\det(\bar{A}_0)$ を求めなさい。
- (4) 行列 \bar{A} の固有値と固有ベクトルを求めなさい.
- (5) 行列 \bar{A} の固有ベクトル $\vec{p_1}$, $\vec{p_2}$ で, $\|\vec{p_1}\| = \|\vec{p_2}\| = 1$ かつ $\vec{p_1} \cdot \vec{p_2} = 0$ を満たす組を 1 つ求めなさい.
- (6) (5) で定めたベクトルを並べて 2 次正方行列 $P = (\vec{p_1} \ \vec{p_2})$ を作りなさい.
- (7) (6) で定めた行列 P に対し, $\begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} = P \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix}$ と座標変換する.このとき,方程式 $\bar{\varphi}(\bar{x},\bar{y}) = 0$ を \tilde{x},\tilde{y} の方程式として表しなさい.

問題 **4.6.** 2 次方程式 $\bar{x}^2 - \bar{x}\bar{y} + \bar{y}^2 - 5 = 0$ が表す図形はどのような 2 次曲線か、問題 4.5 を参考にて考察しなさい。

問題 **4.7.** 2 次方程式 $16x^2 - 24xy + 9y^2 + 5x - 10y + 5 = 0$ が表す 2 次曲線は無心 2 次曲線である(問題 4.2 (2) を参照)。この 2 次曲線について次の問に答えなさい。

- (1) 問題 4.5 に方法を参考に、直交行列による座標変換を用いて方程式の 2 次の項を簡略化しなさい。
- (2) (1) の座標変換を施した方程式に対し、1 次の項を消せる場合は座標の平行移動により消しなさい。
- (3) この2次曲線がどのような形の2次曲線か答えなさい.

11 4.3