Documento de Arquitetura

Sistema de Gêmeo Digital para Monitoramento de Saúde e Otimização de Energia

Sumário

- 1. Introdução
- 2. Requisitos Arquiteturalmente Significativos
- 3. Visão Geral da Solução
- 4. Padrões Arquiteturais Adotados
- 5. Visões Arquiteturais
- 6. Decisões Arquiteturais
- 7. Qualidade e Táticas Arquiteturais
- 8. Riscos e Mitigações
- 9. Apêndices
- 10. Referências

1. Introdução

1.1 Propósito

Este documento descreve a arquitetura de um sistema de gêmeo digital para monitoramento de saúde e otimização de energia de dispositivos IoT médicos. O sistema foi projetado como exemplo prático da aplicação de padrões arquiteturais modernos em sistemas distribuídos da área de saúde.

1.2 Escopo

O sistema demonstra a aplicação dos seguintes conceitos arquiteturais:

- Arquitetura em camadas
- Padrões de integração
- Arquitetura orientada a eventos
- Padrões de microserviços
- Digital Twin pattern
- Padrões de segurança

1.3 Público-Alvo

- Pacientes sendo monitorados
- Profissionais de saúde
- Desenvolvedores do sistema
- Administradores de TI

2. Requisitos Arquiteturalmente Significativos

2.1 Atributos de Qualidade Prioritários

1. Desempenho:

- Latência < 100ms para operações críticas
- Processamento em tempo real de sinais vitais
- Throughput de 1000 eventos/segundo por dispositivo

2. Disponibilidade

- Recuperação automática de falhas
- Redundância geográfica

3. Segurança

- Conformidade com HIPAA e LGPD
- Criptografia fim-a-fim
- Autenticação multi-fator

4. Modificabilidade

- Independência de tecnologia
- Baixo acoplamento
- Alta coesão

2.2 Restrições Técnicas

- Compatibilidade com protocolos médicos (HL7/FHIR)
- Limitações de energia dos dispositivos IoT
- Requisitos regulatórios do setor de saúde

3. Visão Geral da Solução

3.1 Contexto do Sistema

Figura 2.1: Diagrama de Contexto do Sistema para Otimização

Diagrama de Contexto

Figura 2.2: Diagrama de Contexto do Sistema Para Provisionamento de Dados

As Figura 2.1 e 2.2 ilustram o contexto do sistema e suas principais interações com:

- Dispositivos IoT médicos
- Sistemas hospitalares (EHR)
- Profissionais de saúde

- Sistemas de emergência
- Serviços de monitoramento
- Sistema de Otimização

3.2 Visão Conceitual

Modelo Conceitual

Figura 3: Modelo Conceitual da Solução

A Figura 3 apresenta o modelo conceitual do sistema, destacando:

- Entidades principais
- Relacionamentos
- Domínios de negócio
- Fronteiras do sistema

4. Padrões Arquiteturais Adotados

4.1 Padrão de Camadas

Figura 4: Implementação do Padrão de Camadas

A Figura 4 detalha a implementação do padrão de camadas, mostrando:

- 1. Camada de Física
- 2. Camada de Coleta
- 3. Camada de Armazenamento e processamento de dados
- 4. Camada de Núvem e Modelagem

5. Camada Virtual

Justificativa da adoção:

- Separação clara de responsabilidades
- Facilidade de manutenção e evolução
- Isolamento de complexidade

4.2 Padrão Digital Twin

Figura 5: Implementação do Padrão Digital Twin

A Figura 5 mostra como o padrão Digital Twin foi implementado, destacando:

- 1. Representação física
- Representação virtual
- 3. Conexão de dados

Benefícios obtidos:

- Monitoramento em tempo real
- Simulação e predição
- Otimização baseada em dados

5. Visões Arquiteturais

5.1 Visão Lógica

Visão Lógica

Figura 6: Visão Lógica da Arquitetura

A Figura 6 apresenta os principais componentes lógicos e suas interações.

5.2 Visão de Processo

Visão de Processo

Figura 7: Visão de Processo

A Figura 7 mostra os principais fluxos e processos do sistema.

5.3 Visão de Implantação

Visão de Implantação

Figura 8: Visão de Implantação

A Figura 8 detalha como os componentes são distribuídos na infraestrutura.

6. Decisões Arquiteturais

6.1 Diagrama de Componentes

6.2 Interfaces Principais

```
// IoT Device Interface
interface IoTDevice {
    sendTelemetry(data: SensorData): Promise<void>;
    updateConfig(config: DeviceConfig): Promise<void>;
    getBatteryStatus(): BatteryStatus;
}
// Digital Twin Interface
interface DigitalTwin {
    updateState(data: SensorData): void;
    getOptimizationConfig(): DeviceConfig;
    processHistoricalData(timeRange: TimeRange): Analysis;
}
// Optimization Engine Interface
interface OptimizationEngine {
    analyzePatterns(data: TimeSeriesData): Pattern[];
    calculateOptimalConfig(state: DeviceState): DeviceConfig;
    predictEnergyUsage(config: DeviceConfig): Prediction;
}
```

6.3 Matriz de Decisões Arquiteturais

Matriz de Decisões Arquiteturais

Decisão	Motivação	Impacto	Trade-offs
Digital Twin Pattern	Monitoramento em tempo real	+ Desempenho + Disponibilidade	Maior complexidade Maior consumo de recursos
Event-Driven	Desacoplamento	+ Escalabilidade	Consistência eventual
	e escalabilidade	+ Manutenibilidade	Complexidade de depuração
Microservices	Independência e	+ Escalabilidade	Complexidade operacional
	autonomia	+ Resiliência	Overhead de comunicação

Figura 9: Matriz de Decisões Arquiteturais

A Figura 9 apresenta as principais decisões arquiteturais e seus impactos.

6.4 Trade-offs Considerados

Cada decisão arquitetural foi avaliada considerando:

- Impacto nos atributos de qualidade
- Custos e benefícios
- Riscos associados
- Alternativas consideradas

7. Qualidade e Táticas Arquiteturais

7.1 Táticas para Disponibilidade

Táticas de Disponibilidade

Figura 10: Táticas de Disponibilidade

A Figura 10 mostra as táticas implementadas para garantir alta disponibilidade.

8. Riscos e Mitigações

8.1 Análise de Riscos

ID	Risco	Probabilidade	Impacto	Nível	Estratégia de Mitigação
R1	Falha na sincronização entre dispositivo físico e gêmeo digital	Alta	Alto	Crítico	- Implementar mecanismos de validação de estado
					- Ajustar QoS de comunicação (MQTT QoS 2)
					- Implementar mecanismo de reconciliação de estados

ID	Risco	Probabilidade	Impacto	Nível	Estratégia de Mitigação
R2	Vazamento de dados sensíveis de saúde	Média	Alto	Alto	- Criptografia fim- a-fim dos dados
					- Implementar controle de acesso baseado em funções (RBAC)
					- Auditoria regular de segurança

Riscos de Média Prioridade

ID	Risco	Probabilidade	Impacto	Nível	Estratégia de Mitigação
R3	Degradação de performance do sistema	Média	Médio	Médio	- Implementar caching em múltiplas camadas
					- Monitoramento proativo de performance
					- Estratégias de auto- scaling
R4	Falha na integração com sistemas legados	Média	Médio	Médio	- Usar padrões de interoperabilidade (HL7/FHIR)
					- Implementar adaptadores de integração
					- Testes automatizados de integração

Riscos de Baixa Prioridade

ID	Risco	Probabilidade	Impacto	Nível	Estratégia de Mitigação
R5	Indisponibilidade temporária de dados históricos	Baixa	Baixo	Baixo	- Implementar cache local nos dispositivos
					- Replicação de dados críticos
R6	Dificuldade de evolução do sistema	Baixa	Médio	Baixo	- Documentação detalhada da arquitetura
					- Princípios SOLID e Clean Architecture
					- Code reviews rigorosos

Matriz de Risco vs Impacto

Matriz Visual de Riscos Arquiteturais

Figura 12: Matriz de Riscos Arquiteturais

A Figura 12 apresenta os principais riscos identificados e suas estratégias de mitigação.

Notas sobre Priorização

- Crítico: Requer ação imediata e monitoramento constante
- Alto: Requer plano de ação definido e revisão regular
- Médio: Requer monitoramento e medidas preventivas
- Baixo: Monitorar, mas sem ação imediata necessária

Processo de Revisão

- 1. Revisão mensal dos riscos e efetividade das mitigações
- Atualização trimestral da matriz de riscos
- Avaliação de novos riscos a cada release principal
- 4. Auditoria anual completa do plano de gerenciamento de riscos

9. Apêndices

9.1 Glossário Técnico

- Digital Twin: Representação virtual de um objeto ou sistema físico
- Event-Driven: Arquitetura baseada em eventos e mensagens
- FHIR: Padrão para interoperabilidade em saúde

10. Referências

- 1. Bass, L., Clements, P., & Kazman, R. (2012). Software Architecture in Practice
- Fowler, M. (2002). Patterns of Enterprise Application Architecture
- Richards, M. (2015). Software Architecture Patterns
- 4. ISO/IEC/IEEE 42010:2011 Systems and software engineering