Disponible a un clic de distancia y sin publicidad

Sí este material te es útil, ayúdanos a mantenerlo online

Suscribete

Comparte

Comenta

Este material está en línea porque creo que a alguien le puede ayudar. Lo desarrollo y sostengo con recursos propios. Ayúdame a continuar en mi locura de compartir el conocimiento. Resuelva por método simplex, indicando claramente los desarrollos

1.1. Resolver también por método algebraico

$$Max Z = 30.000X_1 + 40.000X_2$$

S.A.

$$X_1 + 2X_2 \le 400$$

$$3X_1 + 2X_2 \le 600$$

$$X_1, X_2 \ge 0$$

1.2.

$$Max Z = 20X_1 + 25X_2$$

S.A.

$$2X_1 + 3X_2 \le 480$$

$$X_1 \le 150$$

$$X_2 \le 100$$

$$X_1, X_2 \ge 0$$

1.3.

$$Min Z = 400Y_1 + 600Y_2$$

S.A.

$$Y_1 + 3Y_2 \ge 30.000$$

$$2Y_1 + 2Y_2 > 40.000$$

$$Y_1, Y_2 \ge 0$$

1.1.
$$lla_{x} = 30.000x, +40.000x_{2}$$

Sujeto a $x, +2x_{2} \leq 400$
 $3x, +2x_{2} \leq 600$

Forma estandar

$$Max = 30000 \times 1 + 40000 \times 2 + 05 + 405 = 400$$

 $3x_1 + 2x_2 + 5_1 = 400$
 $3x_1 + 2x_2 + 5_2 = 600$

			7,	χ,	5,	S]
	Va	Ci	30000	40000	. 0	<u> </u>	
•	5.	2	1	2	<u> </u>	D	400
	5.	0	3	2	^	1	600
		2:	0	0_		0	0
		Ci-2;	+30.00	+40000	0	0	. 65
	i						. 6.0

Euha X2 Sale S, F2=F2-2F, Fi=F1/2.

	Ī	74,	702	S,	52	
VB	C;	30000	40000	0	0	
Y ₂	40000	7/2	ì	1/2	0	200
5,	0	2	0	5-1	1	200
	シ こ	20000	4000	20000	0	8000000
	Ci-2:	10.000	00	-20000	0	

200- 1/2 = 400 200-2 = 100 →min

Eutra X, Sale
$$52$$
.
 $F_2 = F_2/2$ $F_1 = F_1 - \frac{1}{2}F_2$

	. Î	χ,	7/2	ي.	52	
VB	CZ	~30 <i>0</i> 00	40000	0	. 0	
X 2	4000	0	ì	3/4	-14	120
x.	30000		0	-1/2	1/2	100
	2;	30000	40000	12000	5000	7000000
	Ci-Zi	0	0	-15000	-1000	

Toublero optimo. Solución

Método algebraico.

Max $z = 30.000 \times 1 + 40000 \times 2$ 5.A. $x_1 + 2x_2 \le 400$ $3x_1 + 2x_2 \le 600$ $x_1, x_2 \ge 0$

Para
$$3x_1+2x_2=600$$

 $5! \times_{1}=0 \times_{2}=300 (0,300)$
 $5: \lambda_{2}=0 \times_{1}=200 (200,0)$

Pava eucouhar c, corte entre las dos rectas.

$$(X_1 + 2X_2 = 400) (-3)$$

 $3X_1 + 2X_2 = 600$

$$-3x_{1}-6x_{2}=-1200$$

$$3x_{1}+2x_{2}=600$$

$$-4x_{2}=-600$$

la solución es ophima en x,=100 x2=150 2=9'000.000

1.2
$$M_{0x} = 20x_1 + 25x_2$$

S.a $2x_1 + 3x_2 \le 480$
 $x_1 \le 150$
 $x_2 \cdot \le 100$
 $x_1, x_2 \ge 0$

Forms estandor

Max
$$z = 20x_1 + 2x_2 + 0s_1 + 0s_2 + 0s_3$$

S.a $2x_1 + 3x_2 + s_1 = 480$
 $x_1 + s_2 = 150$
 $x_2 + s_3 = 100$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

		X,	×,	S,	<i>\$</i> 2	53.	
VB	Ğ	20	25	0	0	0	
Si	0	2	3	t	0	0	480
52	0	Ī	0	0	•	O	150
53	٥	0		ن	٥	<u> </u>	100
	2:	0	٥	0	Δ	0	0
	1-2:	20	25	٥	0	0	
-							

Euma
$$X_2$$
 Sale S_3

$$F_3 = \overline{5} \qquad F_1 = F_1 - 3F_3$$

-		_					
		X.	X2.	. 50	Sz	93	
YB	S	20	25	0	0	٥	
51	0	2	0	⊘ 1	O	-3	180
Sz	0	1	0	0	•	0	150
X2	25	Ö	101.	b -	0	1	100
	ટું	0	25	٥.	٥	25	2500
	Ci-2:	20	0	0	0	-25	

Euha X, Sale S, - F, = F1/2 F2=F2-F1

j		`X,	X ₂	S۱	S,	53]
18	9	20	25		0	0]
X	20	ł	0	72	O	-3/2	70
52	0	0	0	-1/2	1	3/2	60
x ,	25	0	1	_ 0	0	1	100
	Zi	20	25	10	٥	-5	4300
Ĉ	1-21	٥	0	-10	0	5	

$$60 \div \frac{3}{2} = 40$$
 $100 \div 1 = 100 \Rightarrow min$

Eutro 53 Sale Sz

 $x_1 = 150 \quad x_2 = 60$ $x_2 = 4500$ Tables optino 5,=0 Sz =40.

Solución alpebraica

0

$$Max = 20 \times 1 + 25 \times 2$$

 $5.a. 2x_1 + 3x_2 \leq 480$
 $x_1 \leq 150$
 $x_2 \leq 100$

Para 2x,+3x2=480 $x_2 = 160$ (0,160) $x_1 = 240$ (240,0) >; χ,=o x2 = 0 (240,0)

En $2x_1 + 3x_2 = 480$ 5: $x_1 = 150$ $x_2 = 60$ 5: $x_2 = 100$ $x_1 = 90$ a < (03,021) (90,100) → c

Punto Funcio n A(0,0) 20 = 0 + 25 = 0 = 0 B (0,100) 20.0 + 25.100 = 2100 20.90 + 25×100 = 4300 C (90,100) - mayimo. D (150,60) 20-150 + 25x60 = 4500 E (150,0) 20-150 + 25+0

Solucion X,=150 X=60 t=4500

1.3
$$\lim_{z \to 400 \, \text{Y}_1 + 600 \, \text{Y}_2} = 40.000 \, \text{Y}_1 + 3 \, \text{Y}_2 = 30.000 \, \text{Y}_1 + 2 \, \text{Y}_2 = 40.000 \, \text{Y}_1, \, \text{Y}_2 = 0$$

Forma eulandor

Max
$$z = -400Y_1 - 600Y_2 + 05_1 + 05_2 - 6000 A_1 - 6000 A_2$$

 $5 a$ $Y_1 + 3Y_2 - 5_1 + A_1 = 30000$
 $2Y_1 + 2Y_2 - 5_2 + A_2 = 40000$

Y, Y2, S, S2, A, A2 20

		Υ,	Y2	3,	8,	Α,	A ₂	60/
VB	C)	-400	-600	0	0	-6000	-6000	S.
A	- 6000	1	3	~,	0	1	0	30000
A2	-6000	2	2	0	-1	٥		40000 ·
	Z;=	-18000	-3000b	6000	6000	-6000	-6000	-42000000
	Ci-zi	17600	29400	-6000	-60ap	0	Co	
_	7 7							

Entro
$$Y_2$$
 Sale A_1 $F_1 = F_1/3$ $F_2 = F_2 - 2F_1$
 Y_1 Y_2 S_1 S_2 A_1 A_2
 Y_3 G_1 G_2 G_3 G_4 G_5 G_6 G_7 G_8 G_8

		Υ,	72	S,	Տչ	A,	AZ]
VB	c_i	-400	-600	0	0	-6000	-6000	7
Y2	-600	0	1	-42	14	1/2	-74	5000:
L Y	-400	+	. 0	1/2	-3/4	-1/2	3/4	15000
	2;	- 400	-660	100	150	-100	-120	- 9000.000
	C1-5:	0	0	-100	-150	-5900	-2810	

El hablero es optimo
$$Y_1 = 15.000 Y_2 = 5000$$

 $\frac{1}{2} = 9'000.000$

Mébodo algebraico. Min 2= 4007, +60072 5.a. Y, +372 230000 24, +242 240000. 4,72 20

Para Y, +372 = 30000 $3: Y_1 = 0 \quad Y_2 = 10000 \quad (0,10000) \quad 5: Y_1 = 0 \quad Y_2 = 20000 \quad (0,20000) \quad 5: Y_2 = 0 \quad Y_3 = 20000 \quad (20000,0)$

Pana 24,+24= 40000

Para B - lorte entre las rector.

 $(Y_1 + 3Y_2 = 30000)(-2)$ $2Y_1 + 2Y_2 = 40000$

 $-24, -64_{2} = -60000$ $-24, +24_{2} = 40000$ $-44_{2} = -20000$

Y, = 5000

4, = 30000 - 3 (5000)

Y. = 15000

Punko 400, 0 + 400 , 20000 = 12'000000 A (0, 20000) B (15:000, 5000) C (30000, 0)

400 = 15000 + 600 × 5000 = 9'000.000 - minimo. 400 x 30000 + 600 x 0 = 12'000.000

Solución optimo Y, = 15000 /2 = 5000 2=9'000.000=