

Дисковый затвор двухэксцентриковый с мягким уплотнением СТМ 0 41

Предназначены для герметичного перекрытия потока среды в технологических установках в нефтяной, газовой, химической, металлургической, энергетической промышленностях, хранении и транспортировании сжиженного природного газа.

Номинальный диаметр	DN 50÷1200 mm					
Номинальное давление	PN 1,6÷10,0 MПa					
Материал корпуса	ст. 20, ст. 09Г2С, ст. 12X18H12M3TЛ, A216 WCB, A351 CF8M Специальное исполнение по запросу					
Производственный ряд	PN 1,6÷2,5 MПa DN 50÷1200 мм PN 4,0 MПa DN 80÷1200 мм PN 6,3÷10,0 МПa DN 100÷600 мм					
Климатическое исполнение	ΓΟCT 15150-69					
Рабочая температура	-60°C ÷ + 260°C - широкий диапазон рабочих температур в зависимости от применяемых материалов					
Форма фланцев	ГОСТ 12815-80 Специальное исполнение по запросу					
Стандарт испытания герметичности в затворе	ΓΟCT 9544-2015					
Оснащение исполнительным механизмом	Ручной, электрический, пневматический Специальное исполнение по запросу					

Конструкция дискового затвора двухэксцентрикового с мягким уплотнением

1	Корпус	12	Кольцо сальника
2	Шпиндель	13	Поднабивочное кольцо
3	Диск	14	Крышка сальника
4	Седельное кольцо	15	Шпилька
5	Седло	16	Гайка
6	Держатель седла	17	Болт
7	Штифт	18	Уплотнение нижней крышки
8	Кольцо	19	Нижняя крышка
9	Втулка	20	Болт
10	Упорное кольцо	21	Шпонка
11	Сальник		

Стандартное исполнение

Вал с повышенной герметичностью Мягкое уплотнение

Специальное исполнение

Герметичное уплотнение с обеспечением нулевой протечки в обоих направлениях Огнестойкое исполнение в соответствии с ГОСТ 30247.0-94, СТ ЦКБА 001-2003, API 607, BS 6755-2. Удлинённый шпиндель Специальные материалы

Отличительные особенности

За счет двойного эксцентриситета в начале поворотного движения открывания возникает вращательное движение, на которое накладывается поступательное движение. Затвор поворачивается и одновременно движется по направлению от посадочного кольца. Таким образом, уже при небольшой степени открытия он приподнимается с седла, за счет чего уплотнительное кольцо разгружается. Такая конструкция уменьшает износ уплотнения и снижает крутящий момент, благодаря чему затворы с двойным эксцентриком могут выдерживать свыше 100 000 циклов закрытия и открытия при сохранении герметичности.

Ремонтопригодность с возможностью легкой замены элементов уплотнений.

Благодаря различным комбинациям уплотнительных материалов возможно получения наиболее удобной конфигурации дискового затвора. Принцип крепления уплотнения внутри дискового затвора позволяет использовать уплотнения для потоков жидкостей с очень высокой скоростью без риска вырывания из седла дискового затвора.

Материалы основных деталей

Корпус	A216 WCB	A351 CF8M	Кольцо сальника	A276 304	A276 316
Шпиндель	A564 630	A564 630	Поднабивочное кольцо	A276 304	A276 316
Диск	A216 WCB+316	A351 CF8M	Крышка сальника	A216 WCB	A351 CF8M
Седельное кольцо	FPM	FPM	Шпилька	A 194 2H	A 194 8
Седло	RPTFE	RPTFE	Гайка	A 193 B7	A193 B8
Держатель седла	A 105	F316	Болт	A 193 B8	A 193 B8M
Штифт	A564 630	A564 630	Уплотнение нижней крышки	304 + PTFE	316 + PTFE
Кольцо	A276 304	A276 304	Нижняя крышка	A 105	F316
Втулка	A240 304+PTFE	A240 304+PTFE	Болт	A 193 B7	A 193 B8M
Упорное кольцо	A276 304	A276 304	Шпонка	A576 1045	A576 1045
Сальник	RPTFE	RPTFE			

Значения условной пропускной способности Kvy, $м^3/4$

PN 1,6 ΜΠα, PN 2,5 ΜΠα

	Относительный угол открытия диска											
DN	10°	20°	30°	40°	50°	60°	70°	80°	90°			
50	3	6	13	25	70	60	80	108	132			
80	4	12	28	50	77	109	137	158	164			
100	9	27	56	102	155	222	280	323	333			
125	15	36	70	130	211	319	444	599	701			
150	31	72	124	193	292	452	666	950	1198			
200	57	147	249	405	607	940	1410	1978	2484			
250	88	222	399	621	932	1446	2156	3061	3815			
300	137	346	621	958	1446	2244	3327	4728	5899			
350	155	399	719	1109	1676	2573	3815	5411	6786			
400	204	515	905	1357	2147	3282	4888	6973	8693			
450	151	444	1047	1970	3123	4524	6174	8072	9315			
500	178	568	1357	2501	3993	5767	7806	10379	11977			
600	213	816	1952	3442	5891	8490	11355	15169	17742			
700	257	1153	2750	5056	8250	11977	16146	21202	24839			
750	284	1340	3194	5944	9492	13751	18541	24218	28388			
800	302	1428	3415	6343	10113	14638	19783	25815	30162			
900	425	2005	4817	9049	14549	20582	28122	36460	43026			
1000	595	3123	7629	13485	21113	29541	39033	48969	55001			
1050	621	3282	2984	14194	22178	31049	40896	51453	57663			
1200	816	4081	9758	17742	25815	38679	56509	71768	80728			

^{*} Специальное исполнение по запросу

PN 4,0 MΠa

	Относительный угол открытия диска											
DN	10°	10° 20° 30° 40° 50°		50°	60°	70°	80°	90°				
80	4	12	28	50	77	109	137	158	164			
100	9	27	56	102	155	222	280	323	333			
150	23	70	123	213	329	470	630	776	887			
200	42	107	213	359	558	842	1206	1526	1774			
250	54	133	262	452	692	1065	1543	1996	2350			
300	81	196	382	630	976	1500	2218	3016	3548			
350	88	213	435	736	1065	1570	2307	3105	3637			
400	137	372	648	1029	1633	2634	4036	5802	6919			
450	155	390	958	1747	2759	4019	5474	7097	8428			
500	160	470	1109	2066	3300	4790	6476	8490	9758			
600	204	736	1774	3282	5252	7602	10113	13395	15968			
750	257	1179	2865	5323	7541	12153	16767	21646	25726			
900	337	1535	4134	8072	13129	18630	25904	33799	39920			
1050	399	2307	6654	11533	16855	26614	37259	47904	53227			
1200	709	3903	8871	15081	23065	36372	51453	65647	73631			

^{*} Специальное исполнение по запросу

PN 6,3 MΠa, PN 10,0 MΠa

	Относительный угол открытия диска											
DN	10°	20°	20° 30° 40° 50° 60° 70°		70°	80°	90°					
100	4	27	40	62	84	133	186	239	266			
150	14	63	116 180 243 383		540	688	764					
200	18	70	185	306	425	666	932	1198	1331			
250	35	124	266	444	621	976	1367	1747	1952			
300	49	168	355	603	887	1375	1925	2475	2750			
350	62	178	372	648	976	1393	2129	2928	3460			
400	84	222	444	709	1065	1686	2573	3726	4436			
450	115	257	586	1065	1686	2484	3460	4436	5323			
500	127	355	842	1508	2395	3460	4702	6121	7097			
600	160	444	1065	1996	3194	4613	6210	8250	9758			

^{*} Специальное исполнение по запросу

Характеристики применяемых уплотнительных материалов

Значения давлений для конкретных исполнений корпуса дискового затвора определяют максимально допустимые границы применения материалов корпуса по температуре и давлению рабочей среды.

Значения температуры и давления могут быть меньше приведённых при определённых конструктивных исполнениях.

Для гарантированной работы корпуса дискового затвора рабочее давление должно быть на 20% меньше максимально допустимого для данной температуры и материала. Предельные значения выбирать не допускается.

Статический режим работы PTFE, PEEK

Давление, МПа 45,00 40,00 35,00 30,00 25,00 25,00 15,00 10,00 5,00 0,00 -100 -46 -29 0 38 93 149 204 260 Temneparypa, °C

Динамический режим работы PTFE, PEEK

Статический режим работы VITON, H-NBR

Динамический режим работы VITON, H-NBR

VITON - фторэластомер, из которого изготавливаются уплотнения и, особенно, сальники, прокладки, уплотнительные кольца, уплотнения шпинделей высшего качества для применения в промышленном оборудовании для различных сред. VITON обладает улучшенными температурными свойствами, стойкостью к воздействию агрессивных сред, превосходной теплостойкостью, широкой химической совместимостью, обеспечение чистоты и целостности технологического процесса.

H-NBR - гидрированный бутадиен-нитрильный эластомер. Это термостойкий каучук с высокой стойкостью к воздействию озона и химических веществ. H-NBR обладает лучшими механическими свойствами, такими как прочность при разрыве, относительное удлинение при разрыве, устойчивость к истиранию. H-NBR применяется в основном в тех областях, в которых наряду с высокой устойчивостью к минеральным маслам также требуется хорошая эластичность при высокой температуре в масле с высоким процентом добавок, например, уплотнительные элементы при добыче сырой нефти и природного газа (также для кислого природного газа).

PTFE / **Фторопласт-4** (**Ф-4**) обладает исключительной химической инертностью по отношению практически ко всем агрессивным средам (за исключением расплавов щелочных металлов, хлора). Это качество PTFE используется при эксплуатации трубопроводов для транспортировки высоко агрессивных сред, запорной арматуры, прокладочно-уплотнительных деталей контактирующих с агрессивными

средами и др.

РЕЕК - полиэфирэфиркетон (ПЭЭК) является линейным, ароматическим, полукристаллическим полимером, который считается одним из самых высокоэффективных термопластических материалов в мире. Полимеры РЕЕК обладают уникальной комбинацией свойств, включающей высокую термостойкость, стойкость к воздействию химических веществ, стойкость к гидролизу, износостойкость, а также электрические и механические свойства.

Монтажные и габаритные размеры

- * L ФП строительная длина дискового затвора фланцевого присоединения
 - L MП строительная длина дискового затвора межфланцевого присоединения
 - L CП строительная длина дискового затвора стяжного присоединения через проушины корпуса

PN 1,6 MΠa, PN 2	.5 МПа
------------------	--------

DN	LΦΠ	L CΠ, L MΠ	H1	H2	B1	B2	E	Α	W	Вес, СП	Вес, МП
50	-	43	80	171	12	7	48	159	150	5	4
65	-	46	95	200	15	11,5	60	159	150	7	5
80	114	48	105	201	19,5	15,5	73	159	150	9	7
100	127	54	120	223	26	22	96	159	150	15	9
125	140	56	135	230	42	32	115	159	150	17	10
150	140	57	145	241	50	40	147	159	150	20	14
200	152	64	185	298	67	62	193	162	200	30	25
250	165	71	220	364	92	78	242	220	350	49	40
300	178	81	255	417	110	97	287	229	350	70	55
350	190	92	289	452	120	104	318	229	460	105	75
400	216	102	329	512	142	123	367	360	600	152	120
450	222	114	354	537	158	146	418	402	600	200	160
500	229	127	399	661	177	160	465	520	600	268	210
600	267	154	455	721	206	203	583	520	600	400	310
700	292	165	515	865	275	236	677	543	750	570	460
800	318	190	580	837	291	284	766	604	750	800	600
900	330	203	652	949	335	330	868	604	750	1100	810
1000	410	216	715	997	366	350	955	604	750	1500	1200
1200	470	254	829	1095	464	464	1176	643	750	2200	1900
PN 4,0 M			1	•				•			
DN	LΦΠ	L CП, L MП	H1	H2	B1	B2	E	Α	W	Вес, СП	Вес, МП
80	114	48	120	210	20	16	74	159	150	11	7
100	127	54	145	245	29	24	97	159	150	13	9
150	140	59	180	320	51	41	146	162	200	30	20
200	152	73	210	370	70	53	194	220	350	48	38
250	165	83	245	445	90	71	244	229	460	68	45
300	178	92	290	780	110	90	290	360	600	110	78
350	190	117	325	525	108	99	318	402	600	190	125
400	216	133	365	585	122	116	364	520	600	250	165
450	222	149	395	640	141	128	414	520	600	390	260
500	229	159	425	735	147	134	456	543	750	455	320
600	267	181	505	305	191	182	552	604	750	660	445
900	330	241	710	1080	309	300	889	660	750	2500	1600
1000	410	300	730	1505	339	323	950	754	800	2600	1800
1200	470	350	830	1625	442	424	1100	855	800	4000	2600
PN 6,3 M	, <u> </u>	1	l	T	1 -4	T			T	I	
DN	LΦΠ	L CN, L MN	H1	H2	B1	B2	E	A	W	Вес, СП	Вес, МП
100	190	64	160	265	25	15	97	162	200	25	18
150	210	78	230	360	43	39	147	229	350	52	34
200	230	102	250	410	53	41	189	360	600	95	66
250	250	117	315	480	71	71	233	402	600	162	110
300	270	140	345	570	88	78	275	520	600	220	150
350	290	155	380	600	92	82	284	520	600	295	200
400	310	178	420	650	96	90	316	543	750	440	300
450	330	200	470	680	118	109	381	643	750	580	395
500	350	216	510	715	127	118	421	643	750	635	435
600	390	232	550	820	147	147	510	643	750	935	641

Варианты оснащения исполнительными механизмами

Неполнооборотные приводы AUMA обеспечат расширенные возможности контроля потоков: расширенный диапазон времени перекрытия, высокую точность и адаптацию к любым условиям работы, безопасное управление и интеллектуальное взаимодействие с арматурой

Червячные редукторы AUMA, производимые с использованием высококачественных материалов и технологий сборки, гарантируют надежность конструкции при работе, эксплуатацию в яюбых климатических условиях, а также во взрывоопасных зонах

Комбинация редуктора и многооборотного электропривода AUMA: передаточное отношение позволяет использовать многооборотные приводы меньших размеров, а соответственно и менее дорогостоящих

Варианты оснащения исполнительными механизмами

Для расчета и выбора типоразмера привода необходимо учитывать факторы, влияющие на значение требуемого крутящего момента. В первую очередь на данное значение влияют перепад давления на рабочем органе, вязкость рабочей среды и наличие механических примесей. Также количество срабатываний арматуры в определенный отрезок времени является решающим фактором при расчете требуемого крутящего момента. Чем реже происходит срабатывание арматуры, тем больший коэффициент запаса следует учитывать.

Для расчета и выбора схемы управления приводом учитываются требования Заказчика по управляющим сигналам и сигналам обратной связи. Данные сигналы должны соответствовать системе АСУТП на предприятии или стыковаться с последней посредством специальных коммутационных устройств/схем.

Для расчета типа присоединения привода к арматуре необходимо обеспечить сопряжение фланца привода и посадочного места на клапанной части. В случае невозможности реализации данного сопряжения, изготавливаются и устанавливаются специальные промежуточные переходные конструкции.

Каждый технологический процесс рассматривается нашими специалистами индивидуально. Все вышеперечисленные технические особенности рассчитываются и реализуются на основании данных Опросного листа, а также данных, дополнительно полученных от Заказчика. В связи с вышеизложенным, будем Вам признательны за предоставление максимально подробной информации.

Рекомендации по заказу

Обращаем Ваше внимание, что задача контроля потока среды требует комплексного решения.

Для ее решения необходимо, помимо верного подбора арматуры, осуществить прецизионный подбор приводной части и навесного оборудования.

Данный подбор будет осуществлен оптимально только в случае предоставления Вами полной информации как по характеристикам потока и среды (клапанная часть), так и по параметрам управления, обратной связи (сервопривод и навесное оборудование). Нами приветствуется отображение данной информации в форме опросного листа.

В случае пожелания заказчика по поставке комплектного оборудования (шаровой кран, привод, навесное оборудование) последнее поставляется в сборе или собирается непосредственно на объекте. Гарантийные обязательства распространяются в полном объеме на всю сборочную единицу.

По требованию заказчика возможно осуществление помощи (силами наших специалистов) непосредственно на объекте на любой стадии процесса заказа:

- заполнение опросных листов;
- диагностика существующей схемы управления;
- монтаж и позиционирование оборудования (поэтапное и единовременное) непосредственно на объекте;
 - пусконаладочные работы;
 - обучение обслуживающего персонала.

Опросный лист на запорную арматуру

Заказчин	к / Конечный потреб	итель:						
Адрес:								
Тел/факс	, E-mail:							
Проект /	Объект реконструкц	ии:						
Технолог	ическая позиция: _							
1	Тип арматуры			Шаровой кран		□ Задвиж	кка	
<u>'</u>	тип арматуры			Дисковый затвор		🗆 Другое		
2	Марка ранее уста	новленной арматуры (замена)						
3	Условный диамет	р Ду, мм						
4	Условное давлени	ие Ру, МПа/бар						
5	Требуемое количе	ество, шт. -					I	
6		Агрегатное состояние		Жидкость	□ 「a	33	□ Пар	
7	Рабочая среда	Название рабочей среды / состав						
8	т исс тал сроди	Максимальное рабочее давление, МПа/бар						
9		Максимальная рабочая температура, °С						
10		Пожаробезопасное исполнение		Да		□ Нет		
11		Материал корпуса		Чугун		□ Углеродистая сталь		
				Нержавеющая сталь			700	
12		Материал рабочего органа		Чугун		□ Угл	еродистая сталь	
	Исполнение			Нержавеющая сталь		□ Дру	700	
13		Герметичность затвора						
14		Уплотнение затвора			l		1	
15		Присоединение к трубопроводу		Фланцевое		риварное	□ Резьбовое	
				Межфланцевое		□ Друг	00	
16	Гидравлические	Макс. перепад давления в закрытом положении, МПа/ бар						
17	характеристики	Условная пропускная способность Kvy, м³/ч						
18		Направление подачи среды		Одностороннее		□ 2-х с	гороннее	
19		Тип привода		Ручной		□ Элект	грический	
17	Характеристики	тип привода		Пневматический		□ Друго	oe .	
20	привода	Время открытия / закрытия, сек						
21		Степень защиты от внешнего		IP66		□ IP67		
		воздействия		IP68		□ Другое	•	
22				Exia		□ Exd		
		Степень взрывозащиты		Общепромышленное	I	□ Другое) 	
23		Электрический, напряжение питания		~380 B	□ ~22	20 B	□= 24 B	
24		Электрический, управляющий сигнал						
25		Электрический, сигнал обратной связи						
26		Пневматический, способ подачи		Простого действия		□ Дв	ойного действия	

27		Минимальное давление воздуха необходимое для работы привода, МПа/бар							
28		Положение безопасности		Открыт	□ Закрыт		□ Текущее положение		
29				IP66			IP67		
27		Степень защиты от внешнего воздействия		IP68			Другое		
20				Exia			Exd		
30		Степень взрывозащиты		Общепромышленно	ое исполнение		Другое		
31		Датчик конечных положений		Да			Нет		
32	Навесное оборудование	Ручной дублер		Да			Нет		
33	осорудование	Электромагнитный клапан для		Да			Нет		
34		Позиционер для пневмопривода		Да			Нет		
35		Фильтр-редуктор, тип пневмоприсоединения G/NPT							
36		Другие принадлежности (указать)							
37		Место установки		Помещение	🗆 Откр. плоц	Ц.	□ Подземная		
38		Размер присоединяемого трубопровода							
39	Установка	Материал трубы							
40		Комплект ответных фланцев	□ Да			□ Нет			
41		Температура окружающей среды	Мин.				Макс.		
42	Дополнительная и	информация:							
Контакті	ное лицо		дпис	ib	(ONO)		
Дата заг	полнения	«»		20 г.					