

Stamford University Bangladesh Department of Computer Science and Engineering

Midterm Examination

Trimester: Spring 2021

Course Code: MATH 319

Course Title: Fourier Analysis & Laplace Transformation

Batch: CSE-S-71-A

Time: 2 Hours and 30 Minutes

Full marks: 30

(There are eight short questions and two long questions. You have to answer all the questions)

Part-I (Short Questions):

1.	Write down the basic difference between Fourier series and Fourier transformation?	01
2.	Examine whether the following functions are even, odd or neither: (a) $\sin 5t$ (b) $e^{2t} - t$. Justify your answer for both cases.	01
3.	Write down the main directions of Dirichlet's conditions for Fourier transformations.	01
4.	Determine the coefficient a_0 for the Fourier series of $f(x) = \begin{cases} 0, & for -\pi < x < 0 \\ 2, & for 0 < x < \pi \end{cases}$	01
5.	What will be the Parseval's identity for half-range Fourier sine and cosine series?	01
6.	Obtain the frequency domain by using Fourier sine transform for the function $f(x) = e^{-2x}$ for $x \ge 0$.	01
7.	Sketch the graph of the aperiodic waveform in the time domain	02

8. Find the Fourier cosine series for the function
$$f(x) = \begin{cases} 1, & \text{for } 0 < x < \frac{\pi}{2} \\ 0, & \text{for } \frac{\pi}{2} < x < \pi \end{cases}$$
.

 $f(t) = \begin{cases} 4, when - 3 \le x \le 0 \\ 0, otherwise \end{cases}$ Also calculate it's Fourier transformations.

(Please go to 2nd page)

Part-II (Subjective Questions):

- **9.** (a) Express f(x) = x as a half range Fourier cosine series in the interval 0 < x < 2.
 - (b) Consider $f(t) = t^2$ is a signal whose period lies on $-\pi \le t \le \pi$. Find the Fourier expression for this function. Also, deduce that $\frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \dots = \frac{\pi^2}{12}$.
 - (c) Show that the complex Fourier series for $f(x) = \cos ax$ (where $-\pi < x < \pi$) is $f(x) = \frac{a \sin a\pi}{\pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a^2 n^2} e^{inx}.$
- **10.(a)** If $f(t) = \begin{cases} 3, & for \ |t| < a \\ 0, & for \ |t| > a \end{cases}$ and $F(\omega) = \frac{6 \sin a\omega}{\omega}$, by using Parseval's identity of Fourier transformation, prove that $\int_0^\infty \frac{\sin^2 at}{\omega^2} dt = \frac{a\pi}{6}$.
 - **(b)** Find the Fourier cosine transformation of the function $f(x) = \begin{cases} 0 & when \ 0 < x < 1 \\ 2 x & when \ 1 < x < 2. \\ 2 & when \ x > 2 \end{cases}$
 - (c) Find the Fourier sine integral for the function: $f(x) = e^{-3\alpha x}$, where α is a constant. Hence, show that $\int_0^\infty \frac{u \sin ux}{9\alpha^2 + u^2} du = \frac{\pi}{2} e^{-3\alpha x}$.

NB: After 2:30 hours you will get extra 30 minutes to send your answer script as a single PDF file to edmodo class (CSE 71A (MATH 319)_FALT (Spring 2021)) whose class code: 3hnm4w

-----THE END-----