EFTERÅR 2018 EKSAMEN

MADS STEINER KRISTENSEN

AARHUS UNIVERSITY - AARHUS SCHOOL OF ENGINEERING

TABLE OF CONTENTS

EFTERÅR 2018 EKSAMEN	1
1 SANDSYNLIGHED	1
1.1 ALARM	
1.2 ALARM GIVET RØGUDVIKLING	
1.3 INGEN ALARM GIVET RØGUDVIKLING	
2 STOKASTISKE VARIABLE	
2.1 GYLDIG TÆTHEDSFUNKTION	3
2.2 FORDELINGSFUNKTION	3
2.3 MIDDELVÆRDI	4
2.4 VARIANS	_
3 STOKASTISKE PROCESSER	
3.1 REALISERING	
3.2 ENSEMBLE	
3.3 PROCESSEN	
4 STATISTIK	
4.1 ESTIMERET FORBEDRING	
4.2 STATISTIK TEST	
4.3 HYPOTESER	
4.4 SAMPLE VARIANS	_
4.5 P-VÆRDIEN	
4.6 KONFIDENSINTERVALLET	
4.7 SIGNIFIKANSNIVEAU	9
clc	
clear	
addpath('[0] Library');	
<pre>Color = load("colors.mat");</pre>	
<pre>smp = load("library.mat");</pre>	

1 SANDSYNLIGHED

1.1 ALARM

For at bestemme I hvor stor en del af situationerne der var alarm opstilles to hændelse givet ved A og B som følgende.

A: ALARM

B:RØG

$$P(B) = 0.33$$

$$P(A \cap B) = 0.32$$

$$P(A \cap \overline{B}) = 0.07$$

```
B = 0.33;
AAndB = 0.32;
ANotB = 0.07;
```

Dertil anvendes den totale sandsynlighed for A som er giver ved

$$P(A) = P(A \cap B) + P(A \cap \overline{B})$$

$$A = AAndB + ANotB$$

A = 0.3900

Dette betyder, at der i 39% af tilfældene var alarm.

1.2 ALARM GIVET RØGUDVIKLING

For at bestemme sandsynligheden for situationer uden røgudvikling, at der alligevel vil være alarm anvendes følgende.

$$P(A|\overline{B}) = \frac{P(A \cap \overline{B})}{P(\overline{B})}$$

$$P(\overline{B}) = 1 - P(B)$$

```
NotB = 1 - B;
AGivenNotB = ANotB / NotB
```

AGivenNotB = 0.1045

Dette betyder, at der i 10.45% af tilfældene uden røgudvikling vil være alarm.

1.3 INGEN ALARM GIVET RØGUDVIKLING

For at bestemme sandsynligheden for situationer med røgudvikling, at der ikke vil være alarm anvendes følgende.

$$P(\overline{A}|B) = 1 - P(A|B) = \frac{P(A \cap B)}{P(B)}$$

NotAGivenB = 1 - (AAndB / B)

NotAGivenB = 0.0303

Dette betyder, at der i 3% af tilfældene med røgudvikling ikke vil være alarm.

2 STOKASTISKE VARIABLE

En diskret stokastisk variabel X har en tæthedsfunktion som vist på nedenstående figur.

2.1 GYLDIG TÆTHEDSFUNKTION

For at bestemme a så $f_x(x)$ er en gyldig tæthedsfunktionen anvendes, at

$$\sum_{i=1}^{n} f_{x}(x_{i}) = \sum_{i=1}^{n} P(X = x_{i}) = 1$$

Dette betyder, at $f_x(x)$ er en gyldig tæthedsfunktion for $a = \frac{1}{6}$.

2.2 FORDELINGSFUNKTION

For at bestemme fordelingsfunktionen anvendes, at

$$F_x(x) = \sum_{x_i \le x}^n f_x(x_i)$$

Hvilket dermed giver, at

$$F_{x}(x) = \left\{ \begin{bmatrix} 0 & x < -1 \\ a & -1 \le x < 1 \\ 3a & 1 \le x < 2 \\ 4a & 2 \le x < 4 \\ 6a & x \ge 4 \end{bmatrix} \right\}$$

```
a = 1/6;

X = [-2, -1, 0, 1, 2, 3, 4, 5];

P = [0, a, 0, 2*a, a, 0, 2*a, 0];

Pcdf = [0, 0, 0, 0, 0, 0, 0, 0];
```

```
for n = 1:length(P)
    Pcdf(n) = sum(P(1:n));
end

figure(1)
stairs(X, Pcdf, 'Color', Color.DeepCleret);
grid on
title('Fordelingsfunktion')
ylabel('Fx(x)')
xlabel('x')
xlim([-2.00 5.00])
ylim([0.000 1.2])
```


2.3 MIDDELVÆRDI

For at finde middelværdien anvendes, at

$$\overline{X} = E[X] = \sum_{i=1}^{n} x_i \cdot f_X(x_i)$$

```
ExpectationValue = 0;

for n = 1:length(P)
    ExpectationValue = ExpectationValue + (X(n)*P(n));
end

ExpectationValue
```

Middelværdien er dermed bestemt til at være 1.8333.

2.4 VARIANS

For at finde variansen anvendes, at

$$Var(X) = \sigma_x^2 = E[X^2] - E[X]^2$$

```
ExpectationValueSquare = 0;

for n = 1:length(P)
    ExpectationValueSquare = ExpectationValueSquare + (X(n)^2 * P(n));
end

Variance = ExpectationValueSquare - ExpectationValue^2
```

Variance = 3.1389

Variansen er dermed bestemt til at være 3.1389.

3 STOKASTISKE PROCESSER

En diskret stokastisk process X[n]er givet ved

$$X[n] = 2 \cdot Y[n] + W$$

Hvor

$$Y[n] \sim N(5, 2)$$

Samt

$$W \sim U(-2, 2)$$

Som er kontinuært uniform fordelt. Det antages, at Yog Wer uafhængige.

3.1 REALISERING

Realiseringen er lavet i matlab.

```
Y = sqrt(2) * randn(1, 11) + 5;
W = 2 * rand - 2;
X = 2 * Y + W;

n = linspace(0, 10, 11);

figure(2)
plot(n, X, 'x', 'Color', Color.DeepCleret);
grid on
title('Realisering af X(n)')
axis([0, 10, 0, 20])
```

ylabel('X(n)')
xlabel('n')

3.2 ENSEMBLE

For at bestemme middelværdien anvendes, at

$$E[X(n)] = E[2 \cdot Y + W]$$

$$E[X(n)] = 2 \cdot E[Y] + E[W]$$

hvor

$$E[W]=\mu=\frac{a+b}{2},\ U(a,b)$$

$$E[W] = \frac{-2+2}{2} = 0$$

Samt

$$E[Y] = 5, N(5,2)$$

Dermed kan det bestemmes at middelværdien er som følgende

$$E[X] = 2 \cdot 5 + 0 = 10$$

For at bestemme variansen anvendes, at

$$Var[aX + b] = a^2 \cdot Var(X)$$

Hvormed der i dette tilfælde gælder, at

$$Var[X] = Var[2 \cdot Y + W]$$

$$Var[X] = Var[2 \cdot Y] + Var[W]$$

$$Var[X] = 2^2 \cdot Var[Y] + Var[W]$$

hvor variansen til Yfindes ved normalfordelingen som er opgivet og bestemt til 2 og variansen for Wbestemmes for en uniform fordeling ved følgende udtryk.

$$Var[W] = \sigma^2 = \frac{1}{12}(b-a)^2$$

EnsembleVariance =
$$2^2 * 2 + (1/12 * (2 - (-2))^2)$$

EnsembleVariance = 9.3333

Variansen er dermed bestemt til at være 9.3333.

3.3 PROCESSEN

Processen er stationær i den bredde forstand da middelværdien og variansen er konstant og uafhængig af tid. Da Wer forskellig for de enkelte realisationer er processen ikke ergodisk.

4 STATISTIK

Test af software for en virksomhed viser følgende resultater for det gamle software og det nye. Tiden er angivet i sekunder.

Billede nr.	1	2	3	4	5	6	7	8	9	10	11	12
GI. SW	253	302	241	187	265	313	468	192	226	316	225	172
Ny SW	189	165	254	187	132	190	343	105	203	188	105	99

4.1 ESTIMERET FORBEDRING

For at finde den estimeret forbedring tages differencen mellem gammel og ny værdi og gennemsnittet af dette. Det gøres ved, at anvende følgende udtryk.

$$\widehat{\delta} = \overline{d} = \frac{1}{n} \sum_{i=1}^{n} (X_{1i} - X_2)$$

```
measurements = 12;
OldData = [253, 302, 241, 187, 265, 313, 468, 192, 226, 316, 225, 172];
NewData = [189, 165, 254, 187, 132, 190, 343, 105, 203, 188, 105, 99];
Delta = 1 / measurements * sum(OldData - NewData)
```

Den estimeret forbedring er bestemt til at være 83.3333 sekunder.

4.2 STATISTIK TEST

Der bør anvendes en parret t-test som oftest anvendes til at teste på data fra før og efter målinger.

4.3 HYPOTESER

Der en null hypotese hvor den forventede tidsændring er lig med 2 minutter, altså 120 sekunder. Alternativ er den forskellig fra de 120 sekunder.

 H_0 : forventet tidsændring $(\delta) = 120$

 H_1 : forventet tidsændring $(\delta) \neq 120$

4.4 SAMPLE VARIANS

For at bestemme sample variansen anvendes, at

$$s_d^2 = \frac{1}{n-1} \sum_{i=1}^n \left(d_i - \overline{d} \right)^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_{1i} - X_{2i} - \overline{d} \right)^2$$

```
SampleVariance = (1 / (measurements - 1)) * ...
sum(((OldData - NewData) - Delta).^2)
```

SampleVariance = 2.9413e+03

Sample variansen er dermed bestemt til at være 2941.3.

4.5 P-VÆRDIEN

For at bestemme p værdien anvendes, at

$$p = 2 \cdot (1 - t_{\text{cdf}}(|t|, n - 1))$$

hvor

$$t = \frac{\overline{d} - \delta}{\frac{s_d}{\sqrt{n}}}$$

```
t = (Delta - 120) / (sqrt(SampleVariance) / sqrt(measurements));
PValue = 2 * (1 - tcdf(abs(t), measurements -1))
```

PValue = 0.0390

P værdien er dermed bestemt til at være 0.039.

4.6 KONFIDENSINTERVALLET

For at bestemme konfidensintervallet anvendes, at

$$\delta_{\pm} = \overline{d} \pm t_0 \cdot \frac{s_d}{\sqrt{n}}$$

```
TZero = tinv(0.975, measurements - 1);
Confidens.Min = Delta - TZero * (sqrt(SampleVariance) / sqrt(measurements));
Confidens.Max = Delta + TZero * (sqrt(SampleVariance) / sqrt(measurements));
Confidens
```

```
Confidens = struct with fields:
   Min: 48.8747
   Max: 117.7920
```

Dermed er konfidensintervallet bestemt til at være [48.8747; 117.7920].

4.7 SIGNIFIKANSNIVEAU

Da p værdien er under et 5% signifikansniveau vist som følgende

må antagelsen om en forbedring på 2 minutter forkastes.