Comparison tables: BBOB 2009 noisy testbed in 3-D

The BBOBies

November 20, 2009

Abstract

This document provides tabular results of the workshop for Black-Box Optimization Benchmarking at GECCO 2009, see http://coco.gforge.inria.fr/doku.php?id=bbob-2009. More than 30 algorithms have been tested on 24 benchmark functions in dimensions between 2 and 40. A description of the used objective functions can be found in [13, 8]. The experimental set-up is described in [12].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm. Consequently, the best (smallest) value is 1 and the value 1 appears in each column at least once. See [12] for details on how ERT is obtained. All numbers are computed with no more than two digits of precision.

Table 1: 03-D, running time excess ERT/ERT_{best} on f_{101} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

			щ		AMaLGaM IDEA [4]				BIPOP-CMA-ES [14]		DASA [18]			luf		1	MA-LS-Chain [19]							IPOF	NOBFIT [17]	VNS (Garcia) [10]
			11.1 12.7																							
	sns	1e-04	10.7	160	11	1.4	200																7			
)	moderate Gauss		6.73 9.33														3 20						. 4			
ension	Sphere	$1\hat{e}$ -01	6.33	59	7.3	1.7	130	4100 4	5.3	3.6	31	17	12	1.4	16	4.4	15	1.4	2.5	3.5	18	30	360	4.4	1	10
best ed by dim	101	1e+00	4.4	21	5.3	1.6	52	800	4	3.1	25	11	7.3	1.7	17	2.9	8.2		7	က	7.7	7.7	16	2.8	1.1	8.5
ابتنام مبرا			3 1.2																							
anlex sitt de	_		33 0.333	1.1	П.	2.1		т	П.	Η.	1.2	1.1	1.1	Η.	1.1	т	1.1	T	1.5	1.5	H	T	1.2	1.1	1.1	П.
s to read		1e+03	0.333	1	5A 1	1	1	1	SS 1	S	1	1	1	1	T	3A 1	T	-	П	1	1	-	П	-ES 1	1	
netion exaluations to reach		Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-E	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-	SNOBFIT	VNS (Garcia)

Table 2: 03-D, running time excess ERT/ERT_{best} on f_{102} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	16	190	11	2.2	180		9.1	5.2	52	33	120	1	8.1	7.8	17	26e-6/2e4	10	4.7	80	230		7.2	2.2	11
		1e-05	13	170	6.6	2.2	210		8.3	4.8	48	29	82	Н	9.3	7.1	19	2800	9.1	4.3	64	180		9.9	7	10
	ij		11.6																				8			
21.01	ate un	1e-03	10.8	120	7.7	2.8	190		6.5	4	38	21	30	н	10	5.5	19	140	8.9	3.6	37	110	3e5	5.1	1.4	9.2
	re mode	1e-02	9.33	83	6.5	2.6	100	11e-1/4e3	5.5	3.4	39	17	15	-1	12	4.2	16	38	7.2	3.2	26	73	2200	4.9	1.2	9.4
J 102,	\mathbf{z}	1e-01	7.56	54	5.7	2.9	110	7200	4.6	က	32	15	11	1.1	14	3.2	12	1.4	5.4	2.7	15	19	320	3.9	П	6.6
Dest	a by dimension 102 Sphe	1e+00	4.04	13	5.1	2.8	17	1500	3.2	5.6	29	11	8.2	1.7	14	က	10	П	5.7	3.1	8.9	7.7	11	3.5	1.5	6.6
7	aivide		1.2																							
	ms value	1e + 02	0.333	1	1.1	1.9	1.1	6.1	П	1.5	6.5	1	1.1	-	1	1	1.1	1	1.5	1.1	П	1	1.1	1	1.1	1
7	_	1e+03	0.333	1	1	Н	1	1	Н	П	1	1	П	н	1	1	1	Н	Н	1	Н	Н	Н	1	П	Н
	metion evaluations to reach	Δ ftarget	$\mathrm{ERT}_{\mathrm{hest}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 3: 03-D, running time excess ERT/ERT_{best} on f_{103} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	ERT_{best}/D	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ÈS [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	14.2	2.5e5	620	6	330	1.2	12	170	1e6	190	69e-7/1e5	1.8	33	810	25	98	8.6	880	19e-6/1e5	14e-6/1e5		9.3	Н	13
	1e-05	7.73	2e3	340	10	440	2.1	15	99	1.6e4	120	8e3	2.8	35	220	35	87	5.8	160	2.3e4	2.8e4		13	П	20
uchy	1e-04	6.58	280	91	9.5	510	2.5	14	40	2800	110	730	3.2	32	12	36	36	5.9	20	1600	4800	14e-4/1e6	12	1	19
noderate Cauchy	1e-03	6.38	200	22	5.6	320	2.6	12	25	440	64	100	77	20	9.3	34	2.1	8.8	14	340	250	5.3e5	10	П	16
_		6.38	120	13	7	310	2.6	7.8	7.8	130	28	21	1.3	17	6.9	23	71	3.4	7.2	28	92	1.2e4	7.6	П	14
103 Sphere $_{1}$	1e-01	6.38	7.1	9.2	1.6	140	2.5	5.3	4.9	49	17	11	1.3	14	4.4	13	1.3	5.6	3.7	18	31	320	5.1	П	12
$103 S_1$	1e+00	4.33	19	6.4	1.7	17	3.7	4	3.2	33	12	6.7	1.6	12	3.5	7.8	-	2.1	8.7	7.5	6.1	18	4.2	1.1	9.4
	1e+01	1.2	2.6	4.9	3.3	2.5	3.5	5.1	3.4	59	1.9	1.9	3.5	1.9	2.6	3.5	Н	3.4	3.3	2.2	2.3	3.4	4.5	2.3	5.6
	1e + 02	0.333	1	1.1	1.9	1	1.3	1.3	1	5.1	1	1.1	1	1.1	1.1	1.1	1	-	1.1	-	1.1	1	-	1.1	-
	1e+03	0.333	1	1	П	1	1	1	П	1	1	1	П	1	1	1	П	Н	П	1	П	1	П	Н	П
	Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 4: 03-D, running time excess ERT/ERT_{best} on f_{104} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

Table 5: 03-D, running time excess ERT/ERT_{best} on f_{105} , in italics is given the median function value and the median number of

					Rosenbr	ock m	oderate ur	ıij			
$\Delta \mathrm{ftarget}$	1e+03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-01 $1e-02$ $1e-03$ $1e-03$	1e-04		1e-07	$\Delta { m ftarget}$
ERT_{best}/D	1.4	5.64	9.29		357	1080	1080	1090	1090	1100	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$
ALPS	4.2	7.7	28		4.7	2.9	4.5	6.4		11	ALPS [15]
AMaLGaM IDEA	3.7	2.5	3.2		2.8	1.4	1.4	1.5		1.6	AMaLGaM IDEA [4]
avg NEWUOA	2.7	1.8	1.8		1.6	3.2	8.2	35		20e-4/6e3	avg NEWUOA [23]
BayEDAcG	3.5	3.3	26		10e-1/2e3						BayEDAcG [9]
BFGS	160	130	910								BFGS [22]
BIPOP-CMA-ES	4.2	2.7	4.1		2.5	1	1.2	1.2		1.3	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	2.7	1.6	2.1		3.4	1.9	4.9	7.8		10	(1+1)-CMA-ES [2]
DASA	69	24	22		34	32	94	300		4400	DASA [18]
DEPSO	4.3	ಬ	7.7		2.5	2.1	8.6	27			DEPSO [11]
EDA-PSO	3.2	3.9	6.9		9.1	6.1	6	12		23	EDA-PSO [5]
full NEWUOA	4.6	1.7	1.4		33	4.7	6.7	14		45	full NEWUOA [23]
GLOBAL	2.5	3.7	11		1	1	1	1		1	GLOBAL [20]
iAMaLGaM IDEA	2.5	1.5	2.1		3.7	1.3	1.3	1.3		1.4	iAMaLGaM IDEA [4]
MA-LS-Chain	3.1	5.3	7.1		11	4.8	5.2	5.4		5.4	MA-LS-Chain [19]
MCS (Neum)	1	П	1		37	100	57e-3/2e4				MCS (Neum) [16]
NEWUOA	ಬ	2.5	1.5		1.9	7	7.5	21		20	NEWUOA [23]
(1+1)-ES	6.1	3.2	2.8		3.9	IJ	12	38		1500	(1+1)-ES [1]
PSO	4.4	2.7	10		29	13	20	25		42	PSO [6]
PSO_Bounds	1.7	5.5	14		27	51	54	74		84	PSO_Bounds [7]
Monte Carlo	2.5	7.8	50		1400	6300	45e-3/1e6				Monte Carlo [3]
IPOP-SEP-CMA-ES	5.1	2.7	2.8		5.2	1.8	7	77		7	IPOP-SEP-CMA-ES [21]
SNOBFIT	3.8	77	1.8		10	11	10	16e-2/2e3			SNOBFIT [17]
VNS (Carcia)	C	¢	1	7	ì		1	,			() () () () () () () () () ()

Table 6: 03-D, running time excess ERT/ERT_{best} on f_{106} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	ERT_{best}/D	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	482	37e-7/2e6	43	7.5	-	7.6	1.5	97	-		97e-5/1e5	1.6	16	51	1.6	-	33	3e4		-		1.2		Н
	1e-05	431	1900	27	ಬ		7.6	1.5	19	10e-5/1e6		3300	1.4	3.7	25	1.6		13	1200	14e-3/1e5	17e-4/1e5		1.2		1
chy	1e-04	276	240	32	3.3	-	7.6	2.2	11	0099		1600	П	2.2	31	2.3	40e-3/2e4	14	240	5400	1500		1.8		1.5
106 Rosenbrock moderate Cauchy	1e-03	253	55	31	2.1		∞	2.1	7.2	540	38e-3/2e3	460	1	1.3	22	2.4	086	7.4	100	1700	480		1.9	12e-2/2e3	1.5
orock mod	1e-02	148	25	34	П	-	13	3.3	6.2	270	200	52	П	2.1	24	3.4	810	4.4	32	910	620	42e-3/1e6	က	160	2.3
06 Rosenl	1e-01	52	37	30	1.9	73e-2/2e3	23	6.9	6.1	190	34	69	П	8. 8.	41	2	230	5.6	24	230	170	9100	7.1	63	5.6
. —	1e+00	22.8	56	18	2.4	32	18	7.1	5.5	150	12	44	1	8.9	37	8.3	23	3.3	3.5	14	33	590	7.5	3.6	8.1
	1e+01	9.6	21	3.7	1.1	7.5	12	က	1.9	14	11	7.6	1.2	9.4	2.4	6.4	1	1	2.1	œ	11	43	2.9	1.9	7.1
	1e + 02	6.87	5.3	77	1.1	3.8	7	1.9	1.1	12	3.2	3.1	1.3	4	1.5	4.4	П	Н	2.3	3.6	3.9	7.9	1.8	1.6	6.7
	1e+03	1.4	2.4	2.9	3.1	3.8	18	4.6	1.7	21	4.6	4.9	4.2	2.5	3.5	3.4	П	က	3.4	2.4	2.5	4.9	3.7	2.9	2.2
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 7: 03-D, running time excess ERT/ERT_{best} on f_{107} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	228	18	6.3		7.4		1	140		3.6	42	28e-4 /7e3	66e-4/700	11	4.6			780	7.2	22		3.8	35	2.8
	1e-05	168	16	∞	16e-3/6e3	7.1		1	61	24e-4/8e5	3.6	38	610	31	12	ಸು		57e-4/5e3	180	6.2	20		4.2	15	3.1
	1e-04	138	16	9.2	590	6.9		П	32	9.2e4	3.6	36	350	38	15	5.6	16e-4/2e4	530	64	5.9	18	16e-4/1e6	4.2	12	3.5
Gauss	1e-03	108	14	4.6	360	8.9		1	19	2.6e4	3.3	32	130	22	16	5.8	670	150	22	5.4	14	2.2e4	3.2	8. 8.	4.2
Sphere (1e-02	77.4	13	2.8	120	6.2		П	16	5e3	3.5	23	85	11	23	2.8	81	65	18	4.3	10	086	3.9	2.8	1.6
$107 S_1$	1e-01	51	6	7.8	45	4	10e-1/3e3	1	13	1400	2.5	6.1	40	6.5	14	4	13	61	14	7	5.4	58	ಬ	5.9	1.8
	1e+00	15.6	4.3	1.6	20	4.2	310	1.8	8.6	260	3.2	2.5	21	4.8	16	က	1	29	17	1.5	2.9	4.3	∞	3.6	2.3
	1e + 01	1.96	2.1	1.7	17	2.3	87	4	17	280	2.4	1.6	22	1.6	3.4	1.6	2.4	12	13	1.2	н	77	28	2.2	1.6
	1e+02	0.333	1.1	П	1	1	1	П	П	1.5	1.2	1.1		1	1	1.2		1.1	1.1	1.1	1.1	1.1	1	-	1
	1e + 03	0.333	1	1	Н	Т	1	1	1	Н	1	1	-1	Н	1	1	-1	Н	П	1	-1	Н	П	1	п
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 8: 03-D, running time excess ERT/ERT_{best} on f_{108} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

		Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	10700	3.1	32				П				9.9		-	100	20				42	64				490
		1e-05	5730	2.7	19				1				7.2			44	ro				23	41		91e-5/1e4		150
		1e-04	2060	2.1	15				1		99e-4/8e5		5.1			32	7			53e-5/1e6	11	45	92e-5/1e6	30		22
	iif	1e-03	3610	1.7	13				П	42e-3/1e4	3400		2.6		92e-3/1e3	16	1.5	37e-3/2e4		280	11	35	370	3.7	11e-2/2e3	13
	Sphere ur	1e-02	1840 3	1.5	9.2	39e-2/6e3	·						2.2	31e-2/7e3	10	17	1.4	130	41e-2/5e3	43	12	22	36	9	13	8.4
dimension	108		655					92e-2/800	1.2	7.2	230	9	1	50	2.6	20	1	8.8	36	13	13	П	2.7	7	4	10
alue divided by		1e+00	32.8	1.7	45	82	25	32	7.5	21	350	9	1.9	180	4.8	22	2.8	3.9	26	39	1	2.6	3.1	44	4.2	69
alue div		1e+01	1.93	1.4	1.3	120	2.4	38	36	72	510	4.4	1.5	82	2.1	92	1.9	3.2	110	24	1	2.5	1.1	180	1.5	1.6
n this v		1e + 02	0.333	1.1	1	1.5	1.1	П	1.2	1	11	1	1.1	15	1	1	1	1	П	П	1	1.1	1	1	П	н
s to reac		1e+03	0.333	1	1	1	П	П	1	1	П	1	1	1	1	1	1	1	П	П	1	1	1	1	П	н
innction evaluations to reach this v		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 9: 03-D, running time excess ERT/ERT_{best} on f_{109} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

Table 10: 03-D, running time excess ERT/ERT $_{\rm best}$ on f_{110} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension 110 Rosenbrock Gauss

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-0.7	21200	2.5	8.9				1							5.7				069	21e-2/1e5			8.9		11
	1e-05	20700	1.6	9.1				1		43e-4 /9e5					5.8	76e-3/2e4				72			3.2		8.9
	1e-04	20400	1.2	9.1				1	17e-3/1e4	630	16e-2/2e3		20e-2/7e3		5.8				7.1	32	25e-2/1e5		3.3		5.2
k Gauss		11800		16		60e-2/2e3		1.7	13	240	2.5		8.8	٠	8.6	9.2		22e-2/5e3	4.1	55	35	32e-3/1e6	3.5	76e-2/2e3	9.7
${f Kosenbrock}$	1e-02	6820	1.2	26	34e-2/6e3	4.2		2.9	3.7	180	1	98e-3/1e5	7.4	91e-2/400	11	16	87e-3/2e4	11	7	59	30	2100	6.1	3.6	8.4
110	1e-01	2090	П	33	8.4	14		5.6	2.5	170	1.9	43	8.5	1.7	8.5	6.5	8.6	4.3	1.6	26	73	200	6.6	3.4	16
	1e+00	307	2.6	8.4	9.9	4.8	19e+0/1e3	က	2.5	110		4.3	8.6	1.6	8.4	1.1	5.9	6	2.7	25	26	55	3.9	4.2	20
	1e+01	18.7	9.2	2.2	15	7.8	220	7	6.7	270	5.1	3.9	15	6.5	1.6	4	П	24	8.9	5.3	5.6	16	7.6	5.9	34
	1e + 02	8.44	3.9	1.8	18	က	29	1.5	5.8	230	4.4	2.1	20	3.5	1.2	3.8	-	20	6.3	5.6	2.1	3.2	15	1.6	71
	1e+03	1.44	2.3	2.7	18	2.3	50	3.2	8.1	410	6.9	2.4	53	4.2	2.5	3.2	1	23	6.2	2.4	2.4	77	3.8	3.4	2.4
	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 11: 03-D, running time excess ERT/ERT_{best} on f_{111} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

111 Rosenbrock unif

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	4.91e5	6.1	30				П			-				30										13e-6/9e6
	1e-05	4.76e5	1.2	9.1				1							15					87e-3/1e5					28
	1e-04	2e5	1	9.1				2.4							16					3.4	25e-3/1e5				16
nun		64900		22				6.2				15e-2/1e5			12	52e-3/2e4			64e-4/1e6	10	10		47e-2/1e4		9.3
Semprock	1e-02	990 25300	1	16				13	89e-2/1e4	29e-2/8e5		57		25e-1/1e3	13	8.9	47e-2/2e4	74e-1/5e3	36	16	8.9	75e-3/1e6	5.9		8.1
III PC	1e-01	0666	1	7		15e+0/2e3		3.1	15	210	12e-1/2e3	19	76e-1/7e3	7	13	1.7	5.3	7.8	8.7	8.4	4.5	80	4.5	37e-1/2e3	6.4
	1e+00	1160	1.3	4.2	45e-1/6e3	11	25e+0/600	1.4	9.3	250	3.4	2.9	25	က	11	1	7.5	32	5.3	11	1.6	19	5.1	6.4	9
	1e+01	28	4.8				150	4.1	17	350	4.2	22	96	4.3	32	2.4	7.4	85	11	1.8	2.9	8.9	24	8.6	46
	1e + 02	17.2	2.1	1.4	99	4.6	12	9.2	16	310	2.1	1.1	73	1.9	18	77	2.4	42	12	1	1.4	2.4	26	1.9	27
	1e + 03	3.36	1.8	1.1	52	1.7	15	က	20	310	2.1	1	79	1.2	1.1	1.5	2.2	32	17	1.1	1.3	-	2.9	1.8	1
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	$_{ m DASA}$	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 12: 03-D, running time excess ERT/ERT_{best} on f_{112} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	1180		170				1.2							200	60e-5/2e4							1		1
	1e-05	1040	55e-5/2e6	140				1.1		48e-4/1e6					140	92		44e-4/5e3	30e-5/1e6				1		1.1
		993	1.2e4	68	20e-3/6e3			1.1		1.4e4			13e-3/7e3		100	44		73	3300		72e-3/1e5		1		1.1
Cauchy	1e-03							1	18e-3/1e4	7e3		39e-3/1e5	49		74	18		37	320	20e-2/1e5	1500	60e-3/1e6	1	17e-2/2e3	П
112 Rosenbrock Cauchy	1e-02	826	37	63	9.2							1800	13	30e-2/400	58	6.2	12e-2/2e4	8.7	23	340	200	8300	1.1	30	1.1
$112~\mathrm{R}$	1e-01	523	5.3	24	1.8	10e-1/2e3	11e-1/3e3	1	6.4	87	16	61	5.6	2.4	51	2.7	20	1.4	3.2	400	170	096	1.2	6.1	1.3
	1e+00	113	7.4	12	2.5	22	43	1	2.6	61	3.5	6.4	1.7	77	4.9	1.8	11	1.7	2.1	22	7.8	160	2.5	5.9	3.2
	1e+01	9.6	27	4	2.1	7.7	20	က	3.3	06	7.8	6.1	2.2	11	2.4	6.9	1	1.3	2.5	7.7	12	41	2.7	2.2	6.7
	1e + 02	6.38	9.1	2.5	1.1	3.5	53	77	2.1	59	3.5	3.1	1.4	5.1	1.8	4.6	1.1	1	2.4	3.4	2.9	10	1.7	1.3	7.4
	1e + 03	1.4	4.3	2.5	2.8	3.3	39	3.8	3.9	39	5.3	3.5	4.3	2.2	က	3.3	1	77	4.3	2.6	3.7	3.4	2.3	2.5	2.2
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 13: 03-D, running time excess ERT/ERT_{best} on f_{113} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

1.7.7 3.1 7.2 1.9 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.8 2.1 2.1 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 8.2<	inction evaluations to reach this value of Afficients 19409 1	reach tl	his value	e divided	d by d	113 Step-el	$ \frac{1}{1000} $	$\mathbf{Gauss}_{\frac{16-03}{1}}$	10-01	-01 75	10-01	Afternot
1.7 3.1 7.2 1.5 1.8 2.1 2.1 2.2 2 2.1 1.9 2.1 2.2 2 2 2.1 1.9 2.1 2.2 2 2 2.2 2 1.9 2.1 2.2 3 8 9 1 9 1 9		0.333	1.13	8.8	42.2	1e-01 649	16-02 1030	1080	10-04 1080	1080	1140	$\Delta \mathrm{rtarget}$ $\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$
2 1.1 1 1.9 2.1 2 2 2 1.9 5.6 8.2 15 8 25 75 75 75 77 77 1.9 43 95 710 $19-1$ /2e3		1.3	1.7	3.1	7.2	1.5	1.8	2.1	2.1	2.1	2.2	ALPS [15]
8.2 15 8 25 75 75 75 $57e-3/6e3$ 1.8 2.8 3.4 8.5 8.2 8.2 8.2 8.2 8.5 <td></td> <td>1.5</td> <td>77</td> <td>1.1</td> <td>П</td> <td>1.9</td> <td>2.1</td> <td>7</td> <td>77</td> <td>7</td> <td>1.9</td> <td>AMaLGaM İDEA [4]</td>		1.5	77	1.1	П	1.9	2.1	7	77	7	1.9	AMaLGaM İDEA [4]
1.8 2.8 3.4 8.5 8.2 8.2 8.8 8 95 710 $19e-1/2e3$. .		1.6	5.6	8.2	15	∞	22	75	75	72	57e-3/6e3	avg NEWUOA [23]
95 710 $19e-1/2e3$ <th< td=""><td></td><td>1.4</td><td>Н</td><td>1.8</td><td>2.8</td><td>3.4</td><td>8.5</td><td>8.2</td><td>8.2</td><td>8.2</td><td>œ</td><td>BayEDAcG [9]</td></th<>		1.4	Н	1.8	2.8	3.4	8.5	8.2	8.2	8.2	œ	BayEDAcG [9]
1.2 15 3.7 2.4 2.4 1.9 1.9 1.9 1.9 1.8 1.8 1.3 1.8 16 12 2.5 6.8 22 22 22 1.7 1.8 16 12 6.8 22 22 22 1.7 1.7 2.0 120 6.8 22 22 22 1.3 2.9 1 2.0 1.2 6.8 22 22 22 1.3 2.1 1.2 1.2 3.7 3.7 1.4 4.4		7.1	43	95	710	19e-1/2e3						BFGS [22]
16 12 2.5 6.8 22 22 22 22 220 530 120 800 1e3 1e3 1e3 1400 3.3 2.9 1 1 1 1 1 1 2.2 3.7 2.4 36 3.7 3.7 4.4 4.4 9.7 14 7.7 16 95 95 95 15c-3/7e3 1.8 3.9 2.3 4.2 12c-2/400 2.5 17 4.8 4.6 4.6 4.6 4.6 4.4 4.4 1.8 3.6 2.4 2 2.1 2.1 2.1 2.1 2.3 2.7 3.8 50 2.3 2.3 2.3 2.3 1.4 5.1 1.2 1.2 1.2 1.2 1.2 1.1 1.4 3.7 1.2 1.2 2.3 2.6 2.6 <td></td> <td>1.2</td> <td>15</td> <td>3.7</td> <td>2.4</td> <td>2.4</td> <td>1.9</td> <td>1.9</td> <td>1.9</td> <td>1.9</td> <td>1.8</td> <td>BIPOP-CMA-ES [14]</td>		1.2	15	3.7	2.4	2.4	1.9	1.9	1.9	1.9	1.8	BIPOP-CMA-ES [14]
5.7 170 220 530 120 800 le3 le3 le3 1400 1.2 2.9 3.7 4.4 1 1 1 1 1 1.3 2.1 2.2 3.7 4.4 1.5 1.5 3.7 4.4 4.4 1.5 2.6 1.8 3.9 2.3 4.2 12e-2/400		1.3	1.8	16	12	2.5	8.9	22	22	22	22	(1+1)-CMA-ES [2]
1.2 2.9 3.3 2.9 1 4		5.7	170	220	530	120	800	1e3	1e3	1e3	1400	DASA [18]
1.3 2.1 2.2 3.7 3.7 3.7 3.7 3.7 4.4 1.5 7.5 9.7 14 7.7 16 95 95 95 15e-3/7e3 1.5 2.6 1.8 3.9 2.3 4.2 $12e-2/400$ 1.3 1.5 2.5 17 4.6 4.6 4.6 4.6 4.4 1.3 1.9 1.8 3.6 2.4 2 2.1 2.1 2.1 1.5 1.9 1.8 3.6 2.4 2 2.1 2.1 2.1 1.5 1.4 7.7 1.4 5.1 1.2 1.2 1.0 $7e-3/5e3$ 1.3 1.4 3.7 1.2 1.0 1.2 1.2 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2		1.2	2.9	3.3	2.9	1	1	1	1	-	1	DEPSO [11]
1.5 7.5 9.7 14 7.7 16 95 95 95 95 $15e-3/7e3$ 1.5 2.6 1.8 3.9 2.3 4.2 $12e-2/400$ $.$ $.$ 1.3 1.9 1.8 3.9 2.3 4.6 4.6 4.6 4.6 4.4 1.3 1.9 1.8 3.6 2.4 2.1 <td></td> <td>1.3</td> <td>2.1</td> <td>2.5</td> <td>3.7</td> <td>2.4</td> <td>3.6</td> <td>3.7</td> <td>3.7</td> <td>3.7</td> <td>4.4</td> <td>EDA-PSO [5]</td>		1.3	2.1	2.5	3.7	2.4	3.6	3.7	3.7	3.7	4.4	EDA-PSO [5]
1.5 2.6 1.8 3.9 2.3 4.2 $12e-2/400$ 1.2 1.5 2.5 17 4.8 4.6 4.6 4.6 4.4 4.4 1.3 1.9 1.8 3.6 2.4 2 2.1 2.1 2.1 2.1 2.1 1.5 1.4 7.7 1.4 5.1 1.2 70 70 70 74e-3/5e3 1.9 1.6 1.1 7.3 2.1 1.4 23 23 23 23 28 1.9 1.6 1.1 1.2 1.2 1.2 1.2 1.1 1.1 1.3 1.4 3.7 1.2 2.3 2.6 2.6 2.6 2.6 2.8 1.3 1.4 3 1.7 2.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 1.3 1.4 3 4.7 6.9 6.6 6.6		1.5	7.5	9.7	14	7.7	16	95	95	92	15e-3/7e3	full NEWUOA [23]
1.2 1.5 25 17 4.8 4.6 4.6 4.6 4.6 4.6 4.4 4.4 1.3 1.9 1.8 3.6 2.4 2 2.1 2.1 2.1 2.1 1.5 1.4 7.7 1.4 5.1 1.4 7.0 70 70 70 74 3.7 1.9 1.6 1.1 7.3 2.1 1.4 23 2.3 2.3 2.8 2.8 1.3 1.7 1.4 3.7 1.2 10 12 12 12 13 2.8 1.3 1.4 3 1.7 2.8 2.0 1300 1300 1300 1300 1.9 4.2 2.6 1.6 2.9 2.9 2.9 2.9 3.1 1 1.2 1.1 1 8 4.7 6.9 6.6 6.6 6.6 6.6 6.4 1.2 3.1 11 <th< td=""><td></td><td>1.5</td><td>2.6</td><td>1.8</td><td>3.9</td><td>2.3</td><td>4.2</td><td>12e-2/400</td><td>٠</td><td></td><td></td><td>GLOBAL [20]</td></th<>		1.5	2.6	1.8	3.9	2.3	4.2	12e-2/400	٠			GLOBAL [20]
1.3 1.9 1.8 3.6 2.4 2 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.8 3.2 3.3 2.8 3.2 3.3 2.8 3.2 3.3 3.3 3.8 3.8 3.2 3.2 3.2 3.8 3.8 3.8 3.8 3.8 3.9 3.9 3.8 3.8 3.8 3.8 3.8 3.9 3.9 3.9 3.9 3.9 3.1 1.1 3.8 4.7 6.9 6.6 6.6 6.6 6.6 6.8 6.4 1.2 3.1 11 5.8 6.2 6.8 6.8 6.8 6.8 6.4		1.2	1.5	25	17	4.8	4.6	4.6	4.6	4.6	4.4	iAMaLGaM IDEA [4]
1 2.1 2.3 2.7 3.8 50 230 230 $15e-3/2e4$ 1.5 14 7.7 14 5.1 12 70 70 70 $76e-3/2e4$ 1.9 16 11 7.3 2.1 14 3.7 1.2 10 12 12 12 12 28 1.3 1.4 3.7 1.6 2.9 1.6 2.3 2.6 2.6 2.6 2.8 1.3 1.4 3 17 28 520 1300 1300 4200 1.9 4.2 26 16 3.5 3 2.9 2.9 2.9 3.1 1 1.1 1 8 4.7 6.9 6.6 6.6 6.6 6.6 6.6 6.4 1 2.5 3.1 11 5.8 6.2 6.8 6.8 6.8 6.8 6.4		1.3	1.9	1.8	3.6	2.4	77	2.1	2.1	2.1	2.1	MA-LS-Chain [19]
1.5 14 7.7 14 5.1 12 70 70 70 $74e-3/5e3$ 1.91.61.1 7.3 2.1 14 23 23 23 28 1.31.71.4 3.7 1.2 10 12 12 12 11 1.31.4 3 1.7 28 52 2.6 2.6 2.6 2.8 1.9 4.2 26 16 3.5 3 2.9 2.9 2.9 2.9 3.1 1 1.21.1 1 8 4.7 6.9 6.6 <		П	2.1	2.3	2.7	3.8	20	230	230	230	15e-3/2e4	MCS (Neum) [16]
1.9 16 11 7.3 2.1 14 23 23 23 28 1.3 1.7 1.4 3.7 1.2 10 12 12 12 11 1.3 1.4 3 1.7 2.8 2.6 2.6 2.6 2.8 2.8 1.9 4.2 26 16 3.5 3 2.9 2.9 2.9 4.20 1.2 1.1 1 8 4.7 6.9 6.6 6.6 6.6 6.2 6.3 6.4 1 2.5 3.1 11 5.8 6.2 6.8 6.8 6.8 6.4		1.5	14	7.7	14	5.1	12	20	20	70	74e-3/5e3	NEWUOA [23]
1.3 1.7 1.4 3.7 1.2 10 12 12 12 12 11 11 1.3 1.3 1.6 2.9 1.6 2.3 2.6 2.6 2.6 2.6 2.8 1.3 1.4 3 17 28 50 1300 1300 4200 1.9 4.2 26 16 3.5 2.9 2.9 3.1 1 1.2 1.1 1 8 4.7 6.9 6.6 6.6 6.6 6.6 6.2 1 2.5 3.1 11 5.8 6.2 6.8 6.8 6.8 6.8 6.4		1.9	16	11	7.3	2.1	14	23	23	23	28	(1+1)-ES [1]
1.31.62.91.62.32.62.62.62.82.81.31.4317285201300130042001.21.21.1184.76.96.66.66.66.66.212.53.1115.86.26.86.86.86.86.4		1.3	1.7	1.4	3.7	1.2	10	12	12	12	11	PSO [6]
1.3 1.4 3 17 28 520 1300 1300 1300 4200 1.9 4.2 26 16 3.5 3 2.9 2.9 2.9 3.1 1 1.2 1.1 1 8 4.7 6.9 6.6 6.6 6.6 6.2 6.2 1 2.5 3.1 11 5.8 6.2 6.8 6.8 6.8 6.4		1.3	1.3	1.6	2.9	1.6	2.3	2.6	2.6	5.6	2.8	PSO_Bounds [7]
1.9 4.2 26 16 3.5 3 2.9 2.9 2.9 3.1 1 1.2 1.1 1 8 4.7 6.9 6.6 6.6 6.6 6.2 1 2.5 3.1 11 5.8 6.2 6.8 6.8 6.8 6.4		1.3	1.4	က	17	28	520	1300	1300	1300	4200	Monte Carlo [3]
1 8 4.7 6.9 6.6 6.6 6.6 6.2 3.1 11 5.8 6.2 6.8 6.8 6.8 6.4 7		1.9	4.2	26	16	3.5	က	2.9	2.9	2.9	3.1	IPOP-SEP-CMA-ES [21]
3.1 11 5.8 6.2 6.8 6.8 6.8 6.4		1.2	1.1	П	œ	4.7	6.9	9.9	9.9	9.9	6.2	SNOBFIT [17]
		-	2.2	3.1	11	5.8	6.2	8.9	8.9	8.9	6.4	VNS (Garcia) [10]

Table 14: 03-D, running time excess ERT/ERT_{best} on f_{114} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 15: 03-D, running time excess ERT/ERT_{best} on f_{115} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

					4	_			4							[4]								[21]		
		Δ ftarget	ERT_{best}/D	ALPS [15]	AMaLGaM IDEA	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	415	200	6.9	59	69		3.6	78	11e-3/9e5	6.5	490	28		8.6	9.9		150	130	1e3	410	32e-4/1e6	1	28	1.5
		1e-05	297	99	8.2	45	96		4.1	49	1.4e4	6.1	320	56	٠	10	6.2		220	53	280	220	5100	1	81	77
		1e-04	297	99	8.2	45	96		4.1	49	1.4e4	6.1	320	56		10	6.2		220	53	280	220	5100	Н	81	77
	Cauchy	1e-03	297	99	8.2	45	96		4.1	49	1.4e4	6.1	320	26	41e-3/600	10	6.2	39e-3/2e4	220	53	580	570	5100	1	81	73
,	piosd	1e-02	280	49	8.9	19	48		3.8	30	5300	5.2	100	15	31	œ	4.6	850	99	24	280	430	1700	1	82	1.9
			198																							
r by difficient	$115 \mathrm{ St}$	1e+00	39.5	7.8	П	2.6	7.9	50e-1/2e3	1.5	4.8	480	3.4	2.6	1.8	4.6	12	2.6	3.2	4	2.8	4.1	390	21	1.3	5.3	2.5
anvide		1e + 01	3.87	6.9	3.2	1.1	4.4	190	2.9	4.8	380	7.4	3.6	1.4	3.9	2.1	2.8	н	П	က	4.4	4.4	7.2	2.9	7	6.9
tilis value divide		1e + 02	0.933	2.1	1.6	3.1	7	89	3.5	2.5	110	4.8	2.4	2.6	1.6	1.6	7	П	2.8	2.1	1.8	1.9	3.3	က	1.9	က
		1e + 03	0.333	1.1	1.3	1.5	1.1	11	1.7	1.8	ಬ	1.6	1.1	1.9	1.5	1.3	1.1	н	2.4	1.1	1.3	1.3	1	1.7	1.2	н
nenon evaluations to reach		Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 16: 03-D, running time excess ERT/ERT_{best} on f_{116} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

function evaluations to reach this v	s to read	ch this ι	value div	ralue divided by dimension	nension						
				,	116 Ellips	116 Ellipsoid Gauss	7.0				
$\Delta { m ftarget}$	1e + 03	1e + 02	1e+01	1e+00	1e-01	1e-02		1e-04	1e-05	1e-07	$\Delta { m ftarget}$
ERT_{best}/D	6.2	25.3	56.2	881	1470	2050	2380	3150	3200	3790	$\mathrm{ERT_{best}/D}$
ALPS	1.8	2.5	9.4	1.6	2.9	3.9	5.3	9	9.2	14	ALPS [15]
AMaLGaM IDEA	1.6	1.2	1	1.7	1.4	1	1	1	1	1	AMaLGaM İDEA [4]
avg NEWUOA	19	24	65	28	30e-1/6e3						avg NEWUOA [23]
$\operatorname{BayEDAcG}$	1.9	7.8	24	6.9	9.2	49e-1/2e3					BayEDAcG [9]
BFGS	35	36	300	73e+0/1e3							BFGS [22]
BIPOP-CMA-ES	1.5	3.1	8.8	2.4	3.4	က	3.1	2.4	2.4	2.1	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	6.2	9	16	6.7	19	72	23e-2/1e4				(1+1)-CMA-ES [2]
DASA	140	190	530	280	2800	19e-2/9e5				٠	DASA [18]
DEPSO	1.7	2.6	4.9	1.1	2.3	4.5	6.1	15e-2/2e3			DEPSO [11]
EDA-PSO	1.7	2.6	17	3.5	30	61	170	130	130	110	EDA-PSO [5]
full NEWUOA	32	17	35	14	89	49	13e-1/7e3				full NEWUOA [23]
GLOBAL	2.5	2.2	7.2	2.8	3.5	5.7	4.9	21e-1/700			GLOBAL [20]
iAMaLGaM IDEA	2.1	П	5.3	П	1	1.1	1.6	1.2	1.3	1.2	iAMaLGaM IDEA [4]
MA-LS-Chain	1.8	1.9	8.3	2.1	4.4	8.1	14	11	13	59	MA-LS-Chain [19]
MCS (Neum)	1.8	1.5	4.2	5.3	37	26e-2/2e4					MCS (Neum) [16]
NEWUOA	12	18	45	41	20	49e-1/5e3				٠	NEWUOA [23]
(1+1)-ES	11	10	19	7.8	23	70	410	92e-5/1e6			(1+1)-ES [1]
PSO	1.4	1.5	280	45	120	150	009	460	450	390	PSO [6]
PSO_Bounds	1.7	1.8	290	100	110	100	280	31e-2/1e5			PSO_Bounds [7]
Monte Carlo	2.5	7	48	87	1300					٠	Monte Carlo [3]
IPOP-SEP-CMA-ES	54	22	22	3.6	က		2.3	1.8	1.7	1.6	IPOP-SEP-CMA-ES [21]
SNOBFIT	7	က	14	13	∞		24e-1/2e3				SNOBFIT [17]
VNS (Garcia)	П	4.7	43	10	13		15	16	17	15	VNS (Garcia) [10]

Table 17: 03-D, running time excess ERT/ERT_{best} on f_{117} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

117 Filipsoid unif

	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	26700	450	23		٠		1				٠			16		-			•		٠		٠	19e-5/9e6
	1e-05	24600	30	13				1				64e-2/1e5			8.8	•					17e-1/1e5				2500
	1e-04	23500	9.7	7.9		-		1				61	-		7.6	28e-2/2e4					61				920
nif	1e-03	20600	4.8	5.5				1				69			6.9	11			43e-3/1e6	٠.	34		12e-1/1e4		140
Ellipsoid u	e-01 1e-02	18800	3.2	4.5				1		49e-2/8e5		75			4.5	5.8	19e-1/2e4		170		36	17e-2/1e6	∞		27
117	1e-01	13200	1.2	2.4				1	28e-1/1e4	440	12e+0/2e3	17			က	2.9	18		40	32e-2/1e5		360	11		8.6
	1e+00	4790	1	2.6	44e+0/6e3	44e+0/2e3	52e+0/600	1.1	5.1	160	6.1	8.9	17e+0/7e3		2.6	1.7	8.4	23e+0/5e3	7.1	16	25	10	3.7	98e-1/2e3	3.3
	1e+01	797	Т	5.8	33	36	11	2.9	9	82	4.7	2.2	22	2.6	5.8	1.5	7	96	7.2	13	47	က	4.2	2.5	7.4
	1e+02	9.92	1.8	16	48	12	7.1	6.4	6.3	110	3.2	1.1	22	2.5	19	2.5	1.1	27	6	1	1.7	1.4	13	1.7	30
	1e+03	6.2	1.5	7	99	2.2	12	18	27	310	3.3	1.5	62	2.3	20	1.8	77	46	24	7	2.4	1.4	57	2.3	П
	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 18: 03-D, running time excess ERT/ERT $_{\text{best}}$ on f_{118} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

function evaluations to reach this value	is to rea	ch this	value di	divided by	dimension						
					118 EII	ipsoid	Cauchy				
$\Delta { m ftarget}$	1e+03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
$\text{ERT}_{ ext{best}}/ ext{D}$	4.6	8.9	36.3	68.2	237	284	336	392	428	531	${ m ERT_{best}/D}$
ALPS	3.6	20	14	19	13	280	4100	83e-5/2e6	-		ALPS [15]
AMaLGaM IDEA	1.4	3.6	1.3	1	4.8	6.5	8.4	12	20	41	AMaLGaM İDEA [4]
avg NEWUOA	1	1.4	П	22	5.4	26	22	43e-4/6e3			avg NEWUOA [23]
BayEDAcG	2.8	30	110	130	15e+0/2e3				-		BayEDAcG [9]
BFGS	37	88	09	220	37e-1/3e3						BFGS [22]
BIPOP-CMA-ES	2.8	7.3	4.6	5.1	2.3	2.3	2.2	2.1	2.1	1.9	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1.7	4.5	3.1	5.1	7.1	100	14e-3/1e4				(1+1)-CMA-ES [2]
DASA	36	240	250	1600	4300	1.7e4	60e-3/1e6		-		DASA [18]
DEPSO	3.5	10	8.1	18	22						DEPSO [11]
EDA-PSO	2.8	8.6	25	45	160	490	2e3	12e-3/1e5			EDA-PSO [5]
full NEWUOA	1	1	П	2.7	5.8		140				full NEWUOA [23]
GLOBAL	4.1	12	3.3	2.8	1.8		27e-3/400				GLOBAL [20]
iAMaLGaM IDEA	1.7	2.9	П	7.5	4		20		51	84	iAMaLGaM IĎEÁ [4]
MA-LS-Chain	2.3	7	4.8	6.9	4.2		14	22	32	61	MA-LS-Chain [19]
MCS (Neum)	2.5	7.4	6.3	92	510						MCS (Neum) [16]
NEWUOA	1.3	1.4	1.7	3.7	6.5	43	110	19e-3/5e3			NEWUOA [23]
(1+1)-ES	4.2	7.3	11	20	52	230	3800	1.8e4	93e-5/1e6		(1+1)-ES [1]
PSO	2.1	6.3	10	260	1200	4900	4200	42e-2/1e5			PSO [6]
PSO_Bounds	2.4	7.8	12	1e3	850	1500	4400	68e-2/1e5			PSO_Bounds [7]
Monte Carlo	1.9	18	69	1e3	2e4	16e-2/1e6					Monte Carlo [3]
IPOP-SEP-CMA-ES	1.9	7.8	6.5	5.1	1.7	1.6	1.7	1.6	1.6	1.4	IPOP-SEP-CMA-ES [21]
SNOBFIT	1.6	6.2	9.5	28	66	15e-1/2e3				-	SNOBFIT [17]
VNS (Garcia)	1.3	8.9	3.1	2.9			Н	1	1	Н	VNS (Garcia) [10]

Table 19: 03-D, running time excess ERT/ERT_{best} on f_{119} , in italics is given the median final function value and the median number of

		Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	5240	28	1				2.8			33e-6/2e3	130			2.1	42			11e-6/1e6	280	130		1.1	38e-4/2e3	110
		1e-05	4010	3.3	1		47e-5/2e3		2.5	24e-4/1e4		1.8	2.5			1.7	1.5	94e-4/2e4		420	24	16		1.2	6.2	4.1
	75		1890																- 5							
	different powers ($^{-}1e-03$	899	3.4	4.5	13e-3/6e3	2.3		1.2	21	1.9e4		7.9	150	6.4	5.1	1.6	350	110	30	7	4.8	35e-4/1e6	2.7	8.5	3.3
.∺	of	1e-02	203	6.3	2.6	51	3.5	69e-2/3e3	1	11	2700	2.2	14	41	7.3	13	3.4	91	120	22	2.4	7.1	066	3.9	5.8	4.7
	• 1	1e-01	140	3.9	3.3	16	2.4	310	1	6.9	410	1.4	5.6	18	5 .8	4.8	2.2	3.8	27	5.1	1.4	2.5	33	3.7	3.1	4.7
divided by	$11\overline{9}$	1e+00	22.1	2.7	19	8.2	5.8	93	2.2	11	460	2.4	П	9.7	1.8	11	1.6	1.3	18	5.2	1.6	1.8	2.6	17	$^{2.6}$	22
ralue div		1e + 01	0.733	2.4	1.7	23	77	90	3.3	12	280	2.1	1.5	3.9	2.1	2.3	2.4	9.9	13	12	1.6	2.4	1.4	3.9	2.5	П
		1e + 02	0.333	1.3	1.1	1	1.1	ಬ	1.1	1	44	1	1.1	1.9	1.3	1.1	1.2	1	2.5	2.4	1.2	1.1	1.1	2.1	1.2	1
to reac		1e+03	0.333	1	1	1	П	1	1	1	П	1	1	1	1	1	1	1	П	-	П	1	П	1	1	1
function evaluations to reach this v		$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 20: 03-D, running time excess ERT/ERT_{best} on f_{120} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Aftarget	H		e6 AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	e5 PSO [6]	e5 PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	e6 VNS (Garcia) [10]
	16-07	88600	18e-7/2	28e-6/1e6	•	•		П		•					160	•		•		58e-5/1	12e-4/1e5				16e-6/9e6
	1e-05	40100	11	92				1				19e-5/1e5			110					37	36				220
innif	uiiii 1e-04	25300	8	24				1	-	-		12				57e-5/2e4			25e-4/1e6	12	18		61e-4/1e4		68
· boutone	16-03	10600	2.1	12				-	53e-3/1e4	47e-3/8e5		4.6		13e-2/1e3	17	1.5	38e-3/2e4		099	8.4	13	44e-4/1e6	4.5		17
7 dimension 190 Sum of different nouvers unif	or dineren 1e-02	2310	3.4	17	36e-2/6e3	43e-2/2e3		1		5400	11e-2/2e3	9	25e-2/7e3	8.1	15	2.1	31	42e-2/5e3	06	15	20	150	4.7	12e-2/2e3	16
e divided by dimension	120 Sum 1e-01	601	2.1	20	40	47	10e-1/900	1.5	8.9	330	6.4	2.4	85	4.9	21	1	6.5	62	13	21	43	7.1	9.4	4.2	17
vided b	1e+00	26.8	2.3	38	99	20	20	10	23	440	2.8	2.5	74	2.3	26	1.3	4.3	62	18	1	270	73	32	6.5	130
value di	1e+01	0.733	2.4	2.2	120	1.9	48	22	47	260	2.5	1.9	140	1.6	2.5	2.4	9.9	120	34	1.9	2.3	1.7	180	1.9	Н
cn tnis	1e + 02	0.333	1.3	1.2	24	1.3	6.1	Н	2.3	2.6	1.2	1	3.1	1.1	Н	1.2	1	1.7	1.4	1.1	1.3	1.1	П	1.3	П
s to read	1e+03	0.333	1	1	1	П	1	1	1	П	1	1	1	1	1	1	1	1	1	1	П	н	1	1	1
function evaluations to reach this valu	Aftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${f BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 21: 03-D, running time excess ERT/ERT_{best} on f_{121} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]		iAMaLGaM IDEA [4]		MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-0.7	1110		140				2.5							220	43e-6/2e4							1		1.1
	1e-05	992	27e-5/2e6	54		31e-5/2e3	12e-3/3e3	1.9			12e-4/2e3	•		•	79	29	·	•		•	·	•	1.1		-1
Cauchy	$^{1e-04}$	200	2.3e4	36	47e-4/5e3	28	95	1.5	44e-4/1e4		58		18e-4 /6e3		28	18			24e-5/1e6	20e-4/1e5		31e-4/1e6	1.3	10e-3/2e3	1
nt powers	1e-02 $1e-03$	233	1500	15	320	8.7	100	П	290	25e-3/9e5	23	51e-4/1e5	88	12e-3/800	25	10	22e-3/2e4	62e-4/5e3	640	6300	16e-3/1e5	6.1e4	1.5	49	1.2
$\operatorname{differe}$	1e-02	83.4	110	22	27	14	09	1	47	4.3e4	9	630	8.9	59	20	2.2	2800	43	46	780	2200	2200	1.2	32	1.8
21 Sum of	1e-01	38.6			5.3																210				2.5
121 Sum of di	1e+00	13.5	3.4	1.3	3.5	4.4	21	-	1.8	220	2.3	1.8	2.3	3.7	19	2.1	1.4	3.6	1.4	1.6	2.1	3.7	1.1	-	2.7
200	1e + 01	0.733	1.9	2.5	5.9	2.2	09	3.4	1.8	270	2.3	2.5	4.2	1.4	3.1	1.7	2.1	3.2	ъ	2.8	2.4	2.4	4.8	2.3	1
	1e+02	0.333	1.2	1.3	2.3	1.3	П	П	1.9	15	П	1.3	2.5	1.1	1.1	1.1	1	1.2	1.1	1.1	1.2	1.2	1.1	1.2	П
CICACII	1e + 03	0.333	1	1	1	-	1	1	1	-	П	П	1	П	1	1	1	П	1	П	1	П	1	П	П
ranceion evaluations to reach the	Δ ftarget	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 22: 03-D, running time excess ERT/ERT $_{
m best}$ on f_{122} , in italics is given the median function value and the median number of

		$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	6340	12	3.8				1				11			6.9	15e-7/2e4		•		51	72	٠	3.5	•	2600
		1e-05	4080	4.9	2.4		-		П		-		11			6.9	3.8		•		28	45		2.4	-	160
		1e-04	3460	3.5	2.7				1				8.5			7.4	2.6			12e-3/1e6	29	48		2.7	27e-2/2e3	28
	auss	1e-03	2530	3.2	2.7				1			23e-3/2e3	6.9			6.9	2.7			2600	26	50		2.5	6.6	11
	122 Schaffer F7 Gauss	1e-02	1440	3.4	3.2		67e-3/2e3		П	11e-2/1e4					52e-2/1e3	10	2.8	16e-2/2e4	65e-2/5e3	1300	29	29	79e-3/1e6	2.3	17	6
mension	$122~\mathrm{Schs}$	1e-01	601	3.6	5.2	37e-2/6e3	3.1		1	35	1e4	2.4	5.4	32e-2/7e3	25	12	2.6	84	120	20	27	120	1e3	3.6	5.6	9.4
divided by dimension	,	1e+00	119	3	2.2	22	2.1	21e-1/3e3	2.3	10	390	7	3.1	12	3.1	5.1	1.6	1.7	21	8.4	1	130	9.9	3.2	က	8.9
		1e+01	1.93	-1	7	13	1.4	43	28	18	64	3.7	1.9	14	က	1.6	1.5	П	8.5	12	1.1	2.2		22	2.2	1.8
this v		1e + 02	0.333	1.2	1.2	2.1	1.4	44	1.1	Н	48	1.6	1.2	2.1	1.1	1.5	1.5	П	1.1	1.5	1.1	1.2	1.3	1.4	1.2	1
to read		1e+03	0.333	1	1	п	Н	-	П	-	Н	Н	1	П	Н	-	П	1		1	1	п	1	п	Н	1
function evaluations to reach this value		$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 23: 03-D, running time excess ERT/ERT_{best} on f_{123} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

tuncolon evaluations to reach this value divided by unitables. The first of	123 Schauer F (unii	1e+02 $1e+01$ $1e+00$ $1e-01$ $1e-02$ $1e-03$ $1e-04$ $1e-05$ $1e-07$	1.64 515 7280 16700 31100 43100 63600	220 12e-3/2e6		1 12 120 33 $16e-1/6e3$ avg NEWUOA [23]	м · · ·	23 22e-1/900	1.4	8.5 60e-2/1e4		5.5 11e-1/2e3	2.2 17 88e-3/1e5		1.2 59e-2/1e3 .		12e-2/2e4	3.2 43e-2/2e4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.6 110 $72e-3/1e6$ (1.	22	15 20		9.1	1.7 77e-2/2e3	11
i tilis value divided		1e+01	1.64			12 120 3	1.1 2.4 5	5.3 27 2															1.3 1.9			1 2.1 1
diction evaluations to reach			ERT_{best}/D 0.333	ALPS 1	AMaLGaM IDEA 1	avg NEWUOA 1	BayEDAcG 1	BFGS 1	BIPOP-CMA-ES 1	(1+1)-CMA-ES 1	DASA 1	DEPSO 1	EDA-PSO 1	full NEWUOA 1	GLOBAL 1.1	iAMaLGaM IDEA 1	MA-LS-Chain 1	MCS (Neum) 1	NEWUOA 1	(1+1)-ES 1	PSO 1	PSO_Bounds 1	Monte Carlo 1.1	IPOP-SEP-CMA-ES 1	SNOBFIT 1.1	VNS (Garcia) 1

Table 24: 03-D, running time excess ERT/ERT_{best} on f_{124} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

by minension 124 Schaffer F7 Cauchy	1e-01 $1e-02$ $1e-03$	309 1140 2360 3100 4300 4960 E	27 2.1e4 17e-3/2e6 .	3.9 4.8	59	2.9 1.9 34e-4/2e3	10e-1/3e3 .	1		4.1e4	4 3/e-3/2e-3	230 47e-3/1e5	17	30e-2/600	11	2.7 58 89 36e-3/2e4 1	$170 15e-2/2e4 \qquad . \qquad . \qquad . \qquad . \qquad N$	36 14e-2/5e3	29 $1900 12e-3/1e6 . . (1$		730	4500 96e-3/1e6	1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4
	1e-04							1.3							52	36e-3/5							1		r.
uchv	1e-03	2360	17e-3/2e6	10		34e-4/2e3		1.3							19	68			12e-3/1e6				1		1.9
Fer F7 Ca	1e-02										ľ	•									- `				14
$124~\mathrm{Schaf}$	1e-01	309	27	3.9	59	2.9	10e-1/3e3	1	34	4.1e4	4	230	17	30e-2/600	11	2.7	170	36	29	360	730	4500	1.1	92	_
ided by	1e+00	65.2	4.7	1	7.7	1.4	81	1.5	4.1	250	2.5	1.4	2.6	3.6	3.8	1.5	9.9	13	2.6	1.6	3.9	11	3.4	1.7	=
ine anv	1e+01	1.2	2	7	11	2.8	94	2.5	17	330	3.8	77	11	1.9	2.5	2.4	П	5.6	10	2.1	2.3	3.3	4.3	77	5.9
. UIIIS VA	1e + 02	0.333	1.2	1.2	1.5	1.4	14	1.1	1	5.7	1.2	1.2	က	1.4	1.1	1.5	-	1.5	1.5	1.4	1.1	1.1	1.3	1.1	-
o reach	1e + 03	0.333	1	1	П	1	1	1	1	1	1	1.1	1	1	1	П	-	П	1	П	-	П	1	П	-
function evaluations to reach this value divided by difficultion 124 Sch	Δ ftarget	ERT_{hest}/D	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	AMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 25: 03-D, running time excess ERT/ERT_{best} on f_{125} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS $[22]$	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	12700	2.7	1.9	40e-4/6e3			1	48e-4/1e4	28e-4/9e5		52			7.4	5.7		19e-4/5e3	240	52	34		37e-4/1e4		22
		1e-05	12100	1.7	7	6.7			П	12	066	·	20	25e-4 /7e3		7	2.8		1.9	30	55	11	31e-5/1e6	12	•	11
	Gauss	1e-04	11700	1.6	2.1	6.9			П	5.9	510	67e-4/2e3	12	8.4	13e-3/1e3	7.2	1.7		7	22	22	7.2	1200	13		7.8
	senbrock G	1e-03	8230	1.4	2.9	က	92e-4 /2e3	٠	Н	5.2	330	3.6	4	3.7	2.2	6.3	1.2	20e-4 /2e4	2.8	7.9	36	6.3	51	18	17e-3/2e3	5.9
_			1290																1							
dimension	125 Grie	1e-01	0.333	520	100	330	310	1.2e4	290	220	1.4e4	540	280	280	420	1500	240	П	330	730	440	750	710	510	320	230
rided by	12	1e+00	0.333	9.2	6.7	9.3	9.6	170	9.3	92	1900	11	9.2	11	8.3 8.3	7.7	2.8	1	10	89	16	9.1	12	11	15	23
value div		1e+01	0.333	1.1	1.2	1.4	П	6.3	1.1	1.3	14	1.6	1.2	2.1	1.2	1.1	1.1	1	8.8	2.1	1.2	1.1		1	1.3	1.4
		1e+02	0.333	Т	1	Н	Н	Н	Н	Н	Н	П	1	П	Н	Н	1	Н	Н	Н	1	П	П	Н	Н	П
to reac		1e + 03	0.333	1	П	1	-	П	1	1	П	-	П	п	1	-	П	1	-	1	1	п		1	П	1
function evaluations to reach this		$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 26: 03-D, running time excess ERT/ERT_{best} on f_{126} , in italics is given the median final function value and the median number of function avaluations to reach this value divided by dimension

	Affarget	ERT_{best}/D	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO $[11]$	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	3.2e5	5.7	21e-5/1e6		•		П			-	-			45	-		•	55e-5/1e6		27e-4/1e5	28e-5/1e6			130
	1e-05	2.08e5	2.3	29		٠		Н		٠		15e-4/1e5			33	25e-4/2e4		•	72	43e-4/1e5	7.2	71	14e-3/1e4		23
٠	1e-04	1.11e5	3.4	40				1				6.4			15	7		٠	28	13	13	29	1.4		17
ar loon day	120 GTEWAIIK-INOSCIIDIOCK UIIII 30 1e-01 1e-02 1e-03 1e	37700	3.4	6.4		95e-3/2e3		1	12e-3/1e4	50e-4/8e5	23e-3/2e3	8.5			12	5.9	10e-3/2e4	48e-3/5e3	17	38	8.3	20	4	29e-3/2e3	19
ion Des	walik-ros 1e-02	4500	1.3	4.2	49e-3/6e3	6.3	10e-2/900	1	4.7	130	3.3	4.4	63e-3/7e3	34e-3/1e3	3.2	1	5.1	17	22	5.7	13	4.6	5.7	1.6	9.6
dimens	16-01	0.333	650	4800	6200	2700	5200	920	1500	2.6e4	1500	910	1.1e4	520	3600	270		8600	1400	260	4.6e4	650	3200	1100	8200
ded by	1e+00	0.333	∞	œ	260	12	29	16	160	099	12	9.7	250	7.9	16	8.9	-	270	89	6.5	12	6.5	8.9	13	23
value divided by dimension	1e+01	0.333	1.1	1.3	1.7	1.3	3.9	П	п	9.3	1.3	1.2	16	1.1	1	1.1	-	13	1.3	1.3	1.1	П	1	1.1	1.4
	1e+02	0.333	-	-	1	-	1	П	-	1	1	-	П	1	1	-	1	П	1	-	1	-	1	-	П
so reach	1e+03	0.333	1	1	Н	1	1	Н	1	Т	П	1	1	1	1	1	Н	1	П	1	Н	Н	П	1	1
function evaluations to reach this	Aftarget	$ m ERT_{best}/D$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 27: 03-D, running time excess ERT/ERT $_{\rm best}$ on f_{127} , in italics is given the median function value and the median number of

			Δ ftarget	ERT_{best}/D	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	POP-SEP-CMA-ES [21]	SNOBFIT [17]	,
			1e-07	15300	57e-6/2e6	26				1.5					-		09			61e-4/4e3	19e-5/1e6			74e-5/1e6	=	•	
				15100				72e-4/2e3		1.5		62e-4/8e5		·			28	36e-4/2e4		4.2	460	-	67e-4/1e5	450	1	•	
		Cauchy	1e-04	15000	94	7.6		7		1.4					44e-4/6e3		16	15		4.3	160		47	450	1		
)		enbrock Ca	1e-03	13000	19	4.3	61e-4/5e3	2.3		1	16e-3/1e4	920	2.3	55	7	44e-3/1e3	11	8.3	47e-4/2e4	2.3	27	46e-4/1e5	35	61	1	29e-3/2e3	
ì.	sion	Griewank-Rosenbrock	1e-02	1170	8.1	10	4.5	П	51e-3/3e3	1.3	20	260	3.5	29	2.4	14	8.6	3.2	7.3	1.6	12	36	58	20	က	4.7	
; ;	dimen		1e-01	0.333	490	140	290	230	5100	120	920	2.3e4	310	540	270	640	2300	150	П	280	1e3	1400	2.2e4	290	420	006	
. בממו	ided by	127	1e+00	0.333	13	8.9	11	6.6	190	8.9	11	870	11	6	13	7.7	11	8.9	п	18	48	12	10	13	10	8.9	
`;	alue div		1e+01	0.333	1	1.2	2.1	1.3	П	1	1.5	20	1.5	1.5	1.7	1.3	1.2	1.1	п	2.1	1.1	1.1	1.3	1.1	1.1	1.3	
	this va		1e+02	0.333	1	1	1	П	н	1	1	П	1	1	1	1	-1	1	П	1	П	1	П	1	1	1	
,	to reach		1e + 03	0.333	1	1	1	1	1	1	1	1	1	-	1	1		1	1	1	1	1	1	1	1	1	
	function evaluations to reach this value divided by dimension		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	

Table 28: 03-D, running time excess ERT/ERT $_{\rm best}$ on f_{128} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

			0		(DEA [4]	[23]	[6]		S [14]	S [2]			2	[23]	[0	EA [4]	[19]	[16]	23]	1		[_1]	[3]	ES [21]	[2]	[10]
		Δ ftarget	ERT_{best}/D	ALPS [15]	AMaLGaM IDE	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [(1+1)-CMA-ES	DASA [18]	DEPSO [11	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDI	MA-LS-Chain [19]	MCS (Neum)	NEWUOA [(1+1)-ES	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21	SNOBFIT []	VNS (Garcia) [10]
		1e-07	1450	1.8	6.1	45e-3/6e3	•		4.9	3.9	096	1.4	13	35	1	7.6	1.3	77e-6/2e4		5.3	22	20	84e-7/1e6	4.8	8.3	7.1
		1e-05	905	2.1	9.7	45	٠	٠	7.7	4.7	340	2.1	20	6.2	1	12	7	59	89e-4 /5e3	3.2	34	30	1200	6.1	3.1	11
	œ		903				∞																			
			639																							
ion	Gallagher	$1e-0\overline{2}$	449	1.5	19	25	33	12e-1/3e3	15	3.1	140	3.7	37	6.1	1	21	2.5	3.9	14	4.1	29	58	18	11	2.3	22
dimensi	128 G	1e-01	375	1.1	21	19	7.1	22	14	2.3	100	4	43	4.1	-	23	1.8	1.3	9.1	3.7	92	89	2.2	13	1.5	56
ded by	•	1e+00	142	1	7.9	10	က	36	11	က	06	3.9	52	5.9	1.1	22	1.1	1.4	7	5.6	110	110	П	8.4	7	29
is value divided		1e+01	1.84	1.3	1.4	4.3	1.5	56	2.3	1.4	80	1.7	1.5	6.6	1.4	2.1	-1	4.8	1.7	4	1.6	1.4	2.1	2.8	1.9	2.2
this val		1e + 02	0.333	1	1	1	П	П	П	1	1	1	1	Н	1	1	1	1	1	1	1	1	1	П	П	П
o reach		1e + 03	0.333	1	1	1	1	1	П	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	П	1
function evaluations to reach the		$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 29: 03-D, running time excess ERT/ERT_{best} on f_{129} , in italics is given the median final function value and the median number of

	, 00		1 29 Gallagn 1e-02	$\begin{array}{c} \textbf{Llagher unit} \\ 2 \\ \end{array}$	1e-04	1e-05	16-07	$\Delta { m ftarget}$
1.6 121 1130			2620	3860	8260	9450	12800	${ m ERT_{best}/D}$
2.4 1			1.1	1.4	П	П	П	ALPS [15]
38 18			22	24	15	14	10	AMaLGaM IDEA [4]
34 12			15	21	6.6	23e-2/6e3		avg NEWUOA [23]
15 25		e_{I}	e-2/2e3				-	BayEDAcG [9]
9.1 5.4		88	se-2/900	-				BFGS $[22]$
5.8 1.8			1.1	1	3.1	3.5	2.7	BIPOP-CMA-ES [14]
16 4.1			7.5	8.5	18	17e-3/1e4		(1+1)-CMA-ES [2]
160 91			98	140	320	640	20e-5/8e5	DASA [18]
3.9 3.3			5.4	11e-2/2e3				DEPSO [11]
1.8 17			18	18	13	12	9.3	EDA-PSO [5]
44 16			18	12	50e-2/7e3			full NEWUOA [23]
1.6 1.2			2.5	50e-3/1e3				GLOBAL [20]
56 7.5			5.8	7.8	6.7	9	7.1	iAMaLGaM IDEA [4]
1 1.8			1.6	1.7	1.8	1.9	2.5	MA-LS-Chain [19]
3.3 2.1			4.1	10	29	25	37e-4/2e4	MCS (Neum) [16]
63 21			30	21	79e-2/5e3			NEWUOA [23]
6.2 3.1			3.1	ಬ	9.7	31	200	(1+1)-ES [1]
150 61			51	41	26	23	22	PSO [6]
130 60			44	31	19	17	13	PSO_Bounds [7]
1.6 1.1			1.7	8.9	20	150	1100	Monte Carlo [3]
25 10			9.4	6.7	5.2	7.1	11	IPOP-SEP-CMA-ES [21]
2.7 1.1			-	1.9	1.4	1.2	22e-3/2e3	SNOBFIT [17]
40 11			9.5	8.8	ю	4.8	4.5	VNS (Garcia) [10]

Table 30: 03-D, running time excess ERT/ERT_{best} on f_{130} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Aftarget 1e+05 ERT _{best} /D 0.333 ALPS 1 AMALGAM IDEA 1	~	1e+02 1e+01 1e+0 0.333 1.84 81.7 1 1.1 2.4 1 1.4 92	1.4 1.4		130 Gal 0 1e-01 172 2.5	lagher (Cauchy 1e-03 501 4.3	1e-04 2260 3.3 1.7	1e-05 3980 9	1e-07 4780 180 11	Aftarget ERT.pest/D ALPS [15] AMaLGaM IDEA [4]
$egin{array}{l} ext{avg NEWUOA} \ ext{BayEDAcG} \ ext{BFGS} \end{array}$			2.6 1.4 34	3.9 3.3	33 93 93	8.5 27 53e-2/3e3	111	 	7.2	90e-5/5e3 6.2	$_{ m avg}$ NEWUOA [23] $_{ m BayEDAcG}$ [9] $_{ m BFGS}$ [22]
$\begin{array}{c} \text{BIPOP-CMA-ES} \\ (1+1)\text{-CMA-ES} \\ \text{DASA} \end{array}$			1.9 2.2	24 6 130	44 7 230	8.8 740	46 15 790	10 4.4 800	8.3 1500	4.9 30 17e-5 /9e5	BIPOP-CMA-ES [14] $(1+1)$ -CMA-ES [2] $DASA$ [18]
DEPSO EDA-PSO			1.4 1.7	6.1 1.4	5.6 5.6	8 8 37	6.3 98	2.8 85	1.7 180	14e-5/3e3 63e-4/2e3 15e-5/1e5	$\begin{array}{c} \mathrm{DEPSO} & \mathrm{[15]} \\ \mathrm{DEPSO} & \mathrm{[11]} \\ \mathrm{EDA-PSO} & \mathrm{[5]} \end{array}$
full NEWUOA GLOBAL			1.3	4.1 1	6.4 1	5.6	7.7	2.2	⊳ = 0	53e-6/6e3 2.6	full NEWUOA [23] GLOBAL [20]
1AMaLGaM 1DEA MA-LS-Chain MCS (Neum)			2.3 2.9	9.8 9.9	74 10 7.5	60 7.1 9.6	47 6.8 19	11. 1.7 54	1 62	1.1 1.7 36e-5/2e4	MA-LS-Chain [19] MCS (Neum) [16]
$\stackrel{ ext{NEWUOA}}{(1+1) ext{-ES}}$			5 5 8.8	3	9.4 2.8	18 4.9	21 5.2	6.6 5.6	17	86e-4/5e3 150	$\begin{array}{c} \text{NEWUOA} \ [23] \\ (1+1)\text{-ES} \ [1] \end{array}$
PSO PSO_Bounds			1.6	5.8 95	150 390	130 290	110 240	74 69	100	300 140	PSO [6] PSO_Bounds [7]
Monte Carlo IPOP-SEP-CMA-ES			1.3	2.1	4.4 23	1 1 1 2	62 9.2	% c1	300 1.2	3e3 1	Monte Carlo [3] IPOP-SEP-CMA-ES [21]
SNOBFIT VNS (Garcia)			1.4 2.2	4.6 83	5.8	12 61	15 52	42e-3/2e3 11	6.6	9.5	SNOBFIT $[17]$ VNS (Garcia) $[10]$

References

- [1] Anne Auger. Benchmarking the (1+1)-ES with one-fifth success rule on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2453–2458.
- [2] Anne Auger and Nikolaus Hansen. Benchmarking the (1+1)-CMA-ES on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2467–2472.
- [3] Anne Auger and Raymond Ros. Benchmarking the pure random search on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2485–2490.
- [4] Peter A. N. Bosman, Jörn Grahl, and Dirk Thierens. AMaLGaM IDEAs in noisy black-box optimization benchmarking. In Rothlauf [24], pages 2351–2358.
- [5] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using an EDA and PSO hybrid. In Rothlauf [24], pages 2263–2268.
- [6] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using particle swarm optimization. In Rothlauf [24], pages 2269–2274.
- [7] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using PSO_Bounds. In Roth-lauf [24], pages 2275–2280.
- [8] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noisy functions. Technical Report 2009/21, Research Center PPE, 2009.
- [9] Marcus R. Gallagher. Black-box optimization benchmarking: results for the BayEDAcG algorithm on the noisy function testbed. In Rothlauf [24], pages 2383–2388.
- [10] Carlos García-Martínez and Manuel Lozano. A continuous variable neighbourhood search based on specialised EAs: application to the noisy BBObenchmark 2009 testbed. In Rothlauf [24], pages 2367–2374.
- [11] José García-Nieto, Enrique Alba, and Javier Apolloni. Particle swarm hybridized with differential evolution: black box optimization benchmarking for noisy functions. In Rothlauf [24], pages 2343–2350.
- [12] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.
- [13] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noisy functions definitions. Technical Report RR-6869, INRIA, 2009.
- [14] Nikolaus Hansen. Benchmarking a bi-population CMA-ES on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2397–2402.

- [15] Gregory S. Hornby. The Age-Layered Population Structure (ALPS) evolutionary algorithm, July 2009. Noisy testbed.
- [16] Waltraud Huyer and Arnold Neumaier. Benchmarking of MCS on the noisy function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 988.
- [17] Waltraud Huyer and Arnold Neumaier. Benchmarking of SNOBFIT on the noisy function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 987.
- [18] Peter Korosec and Jurij Silc. A stigmergy-based algorithm for black-box optimization: noisy function testbed. In Rothlauf [24], pages 2375–2382.
- [19] Daniel Molina, Manuel Lozano, and Francisco Herrera. A memetic algorithm using local search chaining for black-box optimization benchmarking 2009 for noisy functions. In Rothlauf [24], pages 2359–2366.
- [20] László Pál, Tibor Csendes, Mihály Csaba Markót, and Arnold Neumaier. BBO-benchmarking of the GLOBAL method for the noisy function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 985.
- [21] Raymond Ros. Benchmarking sep-CMA-ES on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2441–2446.
- [22] Raymond Ros. Benchmarking the BFGS algorithm on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2415–2420.
- [23] Raymond Ros. Benchmarking the NEWUOA on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2429–2434.
- [24] Franz Rothlauf, editor. Genetic and Evolutionary Computation Conference, GECCO 2009, Proceedings, Montreal, Québec, Canada, July 8-12, 2009, Companion Material. ACM, 2009.