单机性能优化小作业 实验报告

测试结果

任务零: 观察不同的编译参数对性能的影响

编译器参数	用时 (sec)	性能 (GFlop/s)	加速比
-00	0.9993	0.2686	1
-01	0.3424	0.7840	2.92
-02	0.3291	0.8157	3.04
-03	0.0514	5.2175	19.09
-fast	0.0393	6.8361	25.45

任务一: 观察向量指令和循环展开对性能的影响

循环展开程度	用时 (sec)	性能 (GFlop/s)	加速比
1	2.0650	15.8686	1
2	1.9303	16.9754	1.070
4	1.8054	18.1502	1.144
8	1.7776	18.4334	1.162
16	1.8286	17.9199	1.129
32	1.9082	17.1726	1.082
64	2.1980	14.9079	0.939

为什么这里循环展开程度为16(及以上)时,用时反而变大了?是因为储存指令的开销变得过大了吗?

回答问题

- 1. 请参考 ICC 手册 并简述参数(-00 , -01 , -02 , -03 , -fast)分别进行了哪些编译优化。每种参数罗列几个优化技术即可。
 - -00 : 无优化
 - · -01: 在不增加代码量的前提下进行优化,包括数据依赖分析、代码移动、强度拆减等
 - · -02: 常见的优化选项, 在 01 基础上包括内联、常数折叠、复制传播、死代码消除等
 - · -03: 在 02 基础上进行浮点计算和循环相关优化,包括循环融合、合并分支判断等
 - o -fast:在 03 基础上进行智能优化,等价于 -ipo, -03, -static, -fp-model fast=2
- 2. 请简述任务一中循环展开带来的好处。

答:循环展开减少了循环变量 K 的比较次数,减少了计算量;同时减少了执行分支跳转指令的次数,有利于实现流水线更高的吞吐量。