	_
Computer Systems	
Computer systems	
Steven Moerman	
	-
1	
	_
IIA Flactina naist actallan a 70	
H4 Floating point getallen p79	
Floating point	
 Vast aantal cijfers (= precisie) 	
Macht van grondtal (= schuiven links / rechts)	
10^-308 <-> 10^308	
- Teken + of -	
- lekell + Ol -	
Het getal pi = 3,141592654	
De constante van Avogadro is 0,602214x10^27	
2	
_	
	_
H4 Floating point getallen	
Floating point	
23456 x 10^0	-
= 0,23456 x 10^5	
= 234560000 x 10^-4	
= 0,0023456 x 10^7	
Precisie: 0,00234 x 10^7 <> 0,0023456 x 10^7	
၁	
3	

	H4 Floating point getallen		
	 Floating point Exponentiële of Wetenschappelijke notatie Het teken van het getal (+of-) Het getal of de mantissa (23456) Het teken van de exponent (+of-) De exponent De basis (10) (bij pc's 2) De positie van de komma / punt 		
4			
	• Floating point getallen • Floating point Vb0,3579x10^-6 • Het teken van het getal : - • Het getal of de mantissa: 0,3579 • Het teken van de exponent : - • De exponent is 6 • De basis is 10 • De positie van de komma is tussen 1ste & 2de cijfer		
<u>Б</u>		7	
	 H4 Floating point getallen Floating point Formaat (komma en basis, gestandaardiseerd) 		
	SMMM MMMM -999 9999 =< getal =< +999 9999	-	
	SEEM MMMM Precisie ?? Bereik ??		
	S = sign (teken van getal)		
	E = exponent		
П	M = mantissa	-	

Floating point

Excess-N

EE = exponent (zonder teken) 00-99

EE = -50 ... +49

Offset of bias : + 50 (Excess-50)

7

H4 Floating point getallen

- Floating point
 - Excess-50

komma voor de 5 cijfers:

0,00001 x 10^-50 =< getal =< 0,99999 x 10^49

– Eerste cijfers mantissa niet 0.

0,10000 x 10^-50 =< getal =< 0,99999 x 10^49

8

H4 Floating point getallen

- Floating point
 - Overflow (bij EE>49, ++++)
 - Underflow (bij EE<-55, ----) (-55 = -50-5cijfers)</p>

	-
H4 Floating point getallen	
Floating point	
Positieve waarden beginnen met 0	
Negatieve getallen beginnen met 5	
$053\overline{24657} = 0,24657 \times 10^3 = 246,57$	
$548\overline{10000} = 0,10000 \times 10^{-2} = -0,001$	
$555555 = 0,55555 \times 10^5 = -55555$	
$\boxed{0}49\boxed{25000} = 0,25000 \times 10^{-1} = 0,025$	
10	
	1
H4 Floating point getallen	
- Floring select	
 Floating point Normalisatie (onbeduidende 0 verwijderen) 	-
	-
0,00001 x 10^0 = 0,1 x 10^-4	
.MMMMM x 10^EE	
11	
	1
H4 Floating point getallen	
- Flanking saint	
Floating point Normalisatie	
1. Geen exponent => Exponent 0	
 Komma naar links (of rechts) Precisie: afronden of 0 toevoegen. 	
4. Floating point (bv excess-50) maken 4. Floating point (bv excess-50) maken	

H4 Floating point getallen	
Floating point – Normalisatie	
+ 246,8035	
Een exponent toevoegen. + 246,8035 x 10^0 We verschuiven de komma naar links en verhogen de exponent.	
+ 0,2468035 x 10^3 3. Er zijn 7 cijfers in het getal, dus moeten we er 2 laten vallen.	-
+ 0,24680 x 10^3 De exponent 3 wordt in excess-50 voorgesteld als 53. Het+ teken wordt voorgesteld door een 0. Dan bekomen we volgend resultaat:	
05324680	
	J
13	
	_
H4 Floating point getallen]
Floating point – Normalisatie	
+ 1255 x 10^-3	
Het getal heeft al een exponent. We verschuiven de komma naar links en verhogen de exponent. + 0,1255 x 10^1	-
 We voegen een 0 toe om onze 5 cijfers voor de precisie te bekomen. + 0,12550 x 10^1 	
De exponent 1 wordt in excess-50 voorgesteld als 51. Het + teken wordt voorgesteld door een 0. Dan bekomen we volgend resultaat: 05112550	
031230	
14	
H4 Floating point getallen	1
114 Houting point getainen	
• Opdracht p86	
• 0,038 1. 0,038×10^0	
2. 0,38x10^-1	
3. 0,38000×10^-1 4. 04938000	

H4 Floating point getallen	
 Opdracht p86 3985,3 3985,3×10^0 0,39853×10^4 0,39853×10^4 05439853 	
16	
16	
H4 Floating point getallen	
 Opdracht p86 -23,7867 123,7867x10^0 20,237867x10^2 30,23787x10^2 4. 55223787 	
47	
17	1
H4 Floating point getallen	
 Opdracht p86 -0,0035 10,0035x10^0 20,35x10^-2 	
30,35000x10^-2 4. 54835000	

H4 Floating point getallen	
Opdracht p86	
• 87,38x10^2	
1. 87,38x10^2 2. 0,8738x10^4	
3. 0,87380x10^4 4. 05487380	
19	
	1
H4 Floating point getallen	
Floating point – bewerkingen "som en verschil"	
Uitlijning (komma)Mantissa (som of verschil)	
 Overflow (cijfers 1 positie naar rechts en EE 1 omhoog) 	
L 20	J
20	
H4 Floating point getallen	
Floating point – bewerkingen "som en verschil"	
SEEM MMMM = -0.MMMMMx10^EE	
0 51 99520 0 51 99520 0 52 099520 0 49 67850 0 51 0067850 0 52 00067850	
(opgelet 1 carry!!!) 0 5110019850 0 52 10019850 0 52 10020	

H4 Floating point getallen	
Floating point – bewerkingen "vermenigvuldiging en deling" Geen uitlijning	
- EE • optellen (bij x) – excessnotatie	
verschil (bij /) + excessnotatie – Mantissa normaliseren	
22	J
	_
H4 Floating point getallen	
Floating point – bewerkingen "vermenigvuldiging en deling"	
SEEM MMMM = -0.MMMMMx10^EE	
0 52 20000 x 0 47 12500 52 + 47 – 50 = 49 (EE)	
0,20000 x 0,12500 = 0,0250000000 = 0 48 25000	
23	
	1
H4 Floating point getallen	
Opdrachten p8910+0,37	
10 x 10^0 = 0,10000x10^2 = 0 52 10000 (fp) 0,37x10^0 = 0,37000x10^0 = 0 50 37000 (fp)	
0 52 10000 (fp) 0 52 0037000 (fp)	
0 52 10370 (fp) 0,10370x10^2 = 0,10370x100 = 10,370	
i e e e e e e e e e e e e e e e e e e e	I and the second

H4 Floating point getallen	
Opdrachten p8910 - 0,37	
0 52 10000 (fp)	
<u>- 0 52 0037000</u> (fp)	
0.52.0963000 (fp)	
0 51 96300 (fp) 0,96300x10^1 = 0,96300x10 = 9,6300	
25	
ua et a caracia de la caracia]
H4 Floating point getallen	
Opdrachten p89	
• 10 x 0,37	
0 52 10000 (fp) x 0 50 37000 (fp)	
52 + 50 - 50 = 52 (EE)	
0,10000 x 0,37000 = 0,0 <u>37000</u> 0000 => 0 51 37000 (fp) = 0,37000 x 10^1 = 3,7000	
=> 0 31 37000 (1p) = 0,37000 x 10··1 = 3,7000	
26	
	1
H4 Floating point getallen	
Opdrachten p89	
• 10:0,37	
0 52 10000 (fp) : 0 50 37000 (fp)	
52 - 50 + 50 = 52 (EE)	
0,10000 : 0,37000 = 0, <u>27027</u> 0270	
=> 0 52 27027 (fp) = 0,27027 x 10^2 = 27,027	

- Computers werken binair (niet decimaal)
 - 4-bytes, 8-bytes of 16-bytes floating point

 31
 30
 23
 22
 0

 MS
 EE
 MM (msb)
 (lsb)

MS = Mantissa Sign = teken van de mantissa, bit 31

EE = Exponent = 8 bits (1 byte, bit 23 t.e.m. 30), excess-127

MM = Mantissa = 23 bits (bit 0 t.e.m. 22)

28

H4 Floating point getallen

- Computers werken binair (niet decimaal)
 - Bereik 10^-38 tot 10^38 (p90)
 - EE is 8 bits of bereik 256 of excess-127

29

H4 Floating point getallen

• Computers werken binair (niet decimaal)

(-, 132-127 = 5, 100001111...) = - 10000,111100000000000000

1011111101010101010101010101010101

(-, 126-127 = -1, 101010...) = -0,01010101010101010101010101

- Computers werken binair (niet decimaal)
 - 23-bits (0-22) fixen naar 24-bits ipv 0, denken aan 1,
 - Gevolg: 0 kan niet voorgesteld worden met 0,1 als begin

31

H4 Floating point getallen

- IEEE-754 met enkelvoudige precisie, 32 bits
 - 1 tekenbit (MS), (p91)
 - − 8 bits voor EE (excess-127, basis 2), EE<>0 & 255
 - 23 bits voor de mantissa
 - Normalisatie naar 1,MMMM... (of hidden bit)

Getal	Exponent	Mantissa	IEEE-voorstelling
0	0	0	0 00000000 0000000000000000000000000000
+ ∞	255	0	0 11111111 0000000000000000000000000000
- 00	255	0	1 11111111 0000000000000000000000000000

32

H4 Floating point getallen

- IEEE-754 met enkelvoudige precisie, 32 bits
 - Uitzondering voor kleine getallen
 - EE = C
 - **0,**MMM...MMM x 2^-126
 - Bv 2^-23 x 2^-126 = 2^-149 = 1,401 x 10-45

Getal	Exponent	Mantissa	IEEE-voorstelling
0	0	0	0 00000000 0000000000000000000000000000
+ ∞	255	0	0 11111111 0000000000000000000000000000
- 00	255	0	1 11111111 0000000000000000000000000000

H4 Floating point getallen	
 IEEE-754 met enkelvoudige precisie, 32 bits (p92) Basis b (= 2) 	
Precisie p (= 24 bits)EE	
 Ondergrens (= -126) Bovengrens (= +127) 	
– Normalisatie (1,MMM (of hidden bit))	
	<u> </u>
34	
H4 Floating point getallen	1
IEEE-754 met enkelvoudige precisie, 32 bits (p93)	
Kleinste genormaliseerde mantissa	
(1,175x10^-38) 1,000 0000 0000 0000 0000 0000(2) — Grootste genormaliseerde mantissa	
(3,403x10^38) 1,111 1111 1111 1111 1111 1111 ₍₂₎	
35	
	٦
H4 Floating point getallen	
IEEE-754 met dubbele precisie, 64 bits	
 1 tekenbit (MS) 11 bits EE (excess-1023, basis 2) 	
– 52 bits mantissa	
 Normalisatie (1,MMM (of hidden bit)) 	
Precisie van 15 decimale cijfers en bereik 10^-308 tot 10^308	

- IEEE-754 temporary real, 80 bits
 - 1 tekenbit (MS)
 - 15 bits EE (excess-16383, basis 2)
 - 64 bits mantissa
 - Normalisatie (0,MMM....)

Tussentijdse berekeningen.

37

H4 Floating point getallen

• IEEE floating point en conversie (p94)

25,375

- omzetten van 25₍₁₀₎ naar binaire vorm = 11001
 omzetten van 0,375₍₁₀₎ naar binaire vorm = 0,011
- het getal is 11001,011₍₂₎ x 10^0 (= 25,375₍₁₀₎ x 2^0)
- $-\,$ normalisatie van het getal 1,1001011 $_{\scriptscriptstyle (2)}$ x 10^100 (= 1,5859375₍₁₀₎ x 2^4)
- de exponent in excess-127 = 4 + 127 = 131(10) = 1000 0011(2) de tekenbit is 0, omdat het een positief getal is

38

H4 Floating point getallen

• IEEE floating point en conversie (p94)

25,375

BYTE 1 BYTE 2 BYTE 3 BYTE 4	BYTE 2 BYTE 3 BYTE 4	MS	EXPON	ENT HB			IANTIS		
	01 1100 1011 0000 0000 0000 0000	0	1000 0	011 1	100	101100	00000	00000	0000
	01 1100 1011 0000 0000 0000 0000	B	YTE 1	ВУТЕ	2	ВУТ	E 3	ВУТ	E 4
0100 0001 1100 1011 0000 0000 0000 00	HEY A					0000	0000	0000	0000

• IEEE floating point en conversie (p94)

- omzetten van 37₍₁₀₎ naar binaire vorm = 100101

- omzetten van 0,25(10) naar binaire vorm = 0,01 het getal is 100101,01(2) x 10^0 (= 37,25(10) x 2^0) normalisatie van het getal 1,0010101(2) x 10^101 (= 1,1640625(10) x 2^5) de exponent in excess-127 = 5 + 127 = 132(10) = 1000 0100(2)
- de tekenbit is 0, omdat het een positief getal is

40

H4 Floating point getallen

• IEEE floating point en conversie (p94)

37,25

MS	EXPONE	NT HB		MANTISS	A
0	1000 0	100 1	0010101	0000000	000000000
В	YTE 1	BYTE	2 BY	TE 3	BYTE 4
010	0 0010	0001 0	101 0000	0000	0000 0000
-	IEX 1	HEX :	2 H	EX 3	HEX 4
4	2	1	5 0	0	0 0

41

H4 Floating point getallen

• IEEE floating point en conversie (p94)

-17,375

- omzetten van 17₍₁₀₎ naar binaire vorm = 10001
 omzetten van 0,375₍₁₀₎ naar binaire vorm = 0,011
- het getal is 10001,011₍₂₎ x 10^0 (= 17,375₍₁₀₎ x 2^0)
- normalisatie van het getal 1,0001011₍₂₎ x 10^100 (= 1,0859375₍₁₀₎ x 2^4)
- de exponent in excess-127 = $4 + 127 = 131_{(10)} = 1000\ 0011_{(2)}$
- de tekenbit is 1, omdat het een negatief getal is

114	-1 -	:	:		۱
Н4	FIO.	atıng	point	getai	ıen

• IEEE floating point en conversie (p94)

-17,375

MS	EXPONE	INT	HB			MANTIS		
1	1000 0	011	1	000	10110	000000	000000	0000
В	YTE 1		BYTE	2	ВҮТ	TE 3	BY	TE 4
110	0 0001	10	00 1	011	0000	0000	0000	000
-	HEX 1		HEX :	2	HE	х з	не	X 4
	ien a	-	IILA .	_		^ ^		^

43

H4 Floating point getallen

• Opdrachten p95

 $1,75_{(10)} = 1,11_{(2)} = 1_{(2)} + 0,11_{(2)} = 1_{(10)} + 0,5_{(10)} + 0,25_{(10)}$

EE = $0_{(2)} + 0111 \ 1111_{(2)} = 0_{(10)} + 127_{(10)}$

44

H4 Floating point getallen

- Opdrachten p95
- -17,375₍₁₀₎ = p95

• Opdrachten p95

1000,256(10)

- = 11 1110 1000(2) + 0,0100 0001 1000 100(2)
- = 11 1110 1000,0100 0001 1000 100(2)
- = 1,1111 0100 0010 0000 1100 0100₍₂₎ x 10^1001 (= 1,MMM...)

 $EE = 9 + 127 = 136_{(10)} = 0000 \ 1001_{(2)} + 0111 \ 1111_{(2)} = 1000 \ 1000_{(2)}$

46

H4 Floating point getallen

• Opdrachten p95 1000,256₍₁₀₎

47

H4 Floating point getallen

- Opdrachten p95 0,234375₍₁₀₎
- = 0,0011 1100(2)
- = 1,1110 0000 0000 0000 0000 0000₍₂₎ x 10^-11 (= 1,MMM...)

 $\mathsf{EE} = 127\text{-}3 = 124_{(10)} = 0111\ 1111_{(2)} - 0000\ 0011_{(2)} = 0111\ 1100_{(2)}$

• Opdrachten p95 0,234375₍₁₀₎

[MS				Ε	Ε				нв	Γ									1	Ma	nti	SS	3									
ı	0	0	1	1	1	1	1	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ī			В	yte	: 1				П			Ву	te	2				П			Byt	e :	3			П			371	e ·	4		Т
	0	0	1	1	1	1	1	0	0		1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			Н	EX	1							H	X	2							HE	X 3	3						HE	Χ	1		
ı		3			П	8			П		7			Г		0			()			- 0)		П	- ()			- (0	Т

49

H4 Floating point getallen

- Opdrachten p95
- 3,14159265359(10)
- = 11₍₂₎ + 0,0010 0100 0011 1111 0110 1010 1₍₂₎
- = 11,0010 0100 0011 1111 0110 1010 1(2)
- = 1,1001 0010 0001 1111 1011 0101(2) x 10^1 (= 1,MMM...)

 $\mathsf{EE} = 127 + 1 = 128_{(10)} = 0111\ 1111_{(2)} + 0000\ 0001_{(2)} = 1000\ 0000_{(2)}$

50

H4 Floating point getallen

• Opdrachten p95 3,14159265359(10)

MS	Г				El	Ε				НВ										1	Иa	nt	ss	3									
0	1	0	0	Ī	0	0	0	0	0	1	1	0	0	1	0	0	1	0	0	0	0	1	1	1	1	1	1	0	1	1	0	1	C
		В	yt	ė	1				Г			Ву						Г			3yt					Г				e a			
0	1	0	0	Į	0	0	0	0	0		1	0	0	1	0	0	1	0	0	0	0	1	1	1	1	1	1	0	1	1	0	1	c
		ŀ	(E)	¢	1				П			HE	X	2				Г			HE	X 3				П			HE	χ.4			
	4			Ι		()				4				-	9			-)		Г					ī	0		Г	ı	ī	

0,28318530718x2	٠	0,56637061436	0
0,56637061436x2	٠	1,13274122872	1
0,13274122872×2		0,26548245744	0
0,26548245744x2		0,53096491488	0
0,53096491488x2		1,06192982976	1
0,06192982976x2		0,12385965952	0
0,12385965952x2		0,24771931904	0
0,24771931904x2		0,49543863808	0
0,49543863808x2		0,99087727616	0
0,99087727616x2		1,98175455232	1
0,98175455232x2	-	1,96350910464	1
0,96350910464x2		1,92701820928	1
0,92701820928x2		1,85403641856	1
0,85403641856x2		1,70807283712	1
0,70807283712x2		1,41614567424	1
0,41614567424x2			0
0,83229134848x2	-	1,66458269696	1
0,66458269696x2		1,32916539392	1
0,32916539392x2			0
0,65833078785x2			1
0.31666157569x2	-	0.63332315139	0

Opdrachten p96 (checked: IEEE-754 Floating Point Converter (h-schmidt.net))

49800000(IEEE-754SP) = 1,00...(2) x 10^10100

= 1 0000 0000 0000 0000 0000,0(2)

= 1 048 576(10)

 $\mathsf{EE} \ = 1001\ 0011_{(2)} = 147_{(10)} = 127_{(10)} + 20_{(10)}$

MS			Е	Ε				нв	Т										Иа	nti	SS	a								
0	1 0	0	1	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
	Е	lyte	1							Ву	te	2							391	e :	3			Г		Ī	391	e 4		
0	1 0	0	1	0	0	1	1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
	- 1	(E)	(1				Г			Н	X	2			П				HE	X 3	3			Г		ī	HE	X 4		
	4		Г	9	•		Г		8			Г	-	0		П	-	0		Г	-	0		Г	()			0	

52

H4 Floating point getallen

Opdrachten p96 (checked: IEEE-754 Floating Point Converter (h-schmidt.net))

42040000(IEEE-754SP) = 1,0000 10...(2) x 10^101

= 10 0001,0000 0000 0000 0000(2)

= 33(10)

 $\mathsf{EE} \ = 1000\ 0100_{(2)} = 132_{(10)} = 127_{(10)} + 5_{(10)}$

MS	Γ			E	Ε				НВ	Γ									ħ	Иа	nti	is sa	3									
0	1	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		В	yte	1							Ву	te	2						E	391	e :	3						Ву	te -	4		
0	1	0	0	0	0	1	0	0		0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		ŀ	(E)	(1				Г			HE	X	2			П				HE	X 3	3			Г			HE	χ	1		
	4			Γ		2		Г		0			Г		4			-)		Г	-)		Г	-	0		Г	-)	

53

H4 Floating point getallen

Opdrachten p96 (checked: IEEE-754 Floating Point Converter (h-schmidt.net))

C2800000(IEEE-754SP) = -1,0000...(2) x 10^110

= -100 0000,000...(2)

= -64(10)

EE = 1000 0101₍₂₎ = 133₍₁₀₎ = 127₍₁₀₎ + $6_{(10)}$

	MS				Е	Ε				ΗВ	Г									Ī	M:	int	iss	а									
1	1	1	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			В	yte	1				Г			Ву	te	2							Ву	te	3			Г			Byt	e	4		
	1	1	0	0	0	0	1	0	1		0	0	0	0	0	0	0	0	0	0	0	0	0	o	o	0	0	0	0	0	0	0	0
			Н	EΧ	1							H	X	2							HE	X.	3			Г			HE	Χ	4		
- 1		0				-					0			П	-				,			П		2		П		^			-		Ξ

Opdrachten p96 (checked: | EEE-754 Floating Point Converter (h-schmidt.net))

C1140000(IEEE-754SP) = -1,0010 1000...(2) x 10^11

= -1001,0100 0...(2)

= -9,25(10)

 $\mathsf{EE} \ = 1000\ 0010_{(2)} = 130_{(10)} = 127_{(10)} + 3_{(10)}$

MS	EE	НВ					- 1	Ma	nti	ssa							
1 1 0 0	0001	0 1	0 0 1	0 1 0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0 0
Byte	1		Byte	2		Г		Byt	e 3	3				Byt	e ·	4	
1 1 0 0	0 0 0 1	0	0 0 1	0 1 0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0 0
HEX	1		HEX	2	П	Г		HE	х 3					HE	χ	1	
С	1		1	4			0			0			0		Г	0	

55

H4 Floating point getallen

Opdrachten p96 (checked: IEEE-754 Floating Point Converter (h-schmidt.net))

41840000(IEEE-754SP) = 1,0000 1000 0000...(2) x 10^100

= 1 0000,1000 0000...(2)

= 16,5(10)

 $\mathsf{EE} \ = 1000\ 0011_{(2)} = 131_{(10)} = 127_{(10)} + 4_{(10)}$

MS				Е	Ε				нв										ħ	Иа	nti	SS	3								
0	1	0	0	0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		Ву	te	1							Ву	te	2						E	391	e :	3						Ву	e	4	
0	1	0	0	0	0	0	1	1		0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
		X	1				Г			HE	X	2			П				HE	X 3	3			Г			HE	X.	4		
	4				-	ī		Г		8			Г		4			-)		Г	-)		Г		0		Г	-)