Remarques sur TD1

Proposition 1. Soient k un corps infini, $f(X_1,...,X_n) \in k[X_1,...,X_n]$ un polynôme. Supposons que pour tout $(x_1,...,x_n) \in k^n$, on a $f(x_1,...,x_n) = 0$, alors le polynôme f = 0.

Corollaire 2. Soient k un corps infini, $f(X_1,...,X_n) \in k[X_1,...,X_n]$ un polynôme. Supposons que l'application $k^n \to k$, $(x_1,...,x_n) \mapsto f(x_1,...,x_n)$ definie par le polynôme f est une forme linéaire, alors f(0,...,0) = 0 et deg $f \le 1$.

Remarque 3. En revanche, soit k un corps fini (par exemple, $k = \mathbb{Z}/p\mathbb{Z}$ où $p \in \mathbb{N}$ est un premier). Posons $q := \operatorname{Card} k$ (la cardinalité du ensemble k). Alors pour tout $x \in k$, on a $x^q = x$. Par conséquent, l'application $k \to k, x \mapsto x^q$ donnée par le polynôme $f(X) = X^q$ s'identifie à l'application $k \to k, x \mapsto x$, qui est une forme linéaire, mais deg f = q > 1.