The Structure of Convexity

Roman Maksimovich

Belgrade, Serbia

June 6, 2023

Introduction

Introduction

- Convexity is an extremely popular concept.
- It is rarely studied as an abstract idea.
- 'Topology-like' proof methodology is pleasant.

Convex space

Definition

 (X, \mathcal{C}) is a convex space if:

- \varnothing , X lie in \mathcal{C} ;
- For every $\mathcal{A} \subset \mathcal{C}$ we have $\bigcap \mathcal{A} \in \mathcal{C}$;
- For every $net \mathcal{N} \subset \mathcal{C}$ we have $\bigcup \mathcal{N} \in \mathcal{C}$.

Definition

Convex hull $\langle A \rangle$ — the smallest convex set containing A.

Polytopes, freedom, dimension

Internal theory

Hyperplanes

Definition

Hyperplane — union of a **maximal** net of polytopes of the same dimension.

The Polytope Union Lemma

Internal theory

Lemma

Let P, Q, L be polytopes of equal dimension, $L \subset P \cap Q$. Then the dimension of $\langle P \cup Q \rangle$ is m.

Order convexity

Theorem

Every ordered convex space is free, i.e. contains only free polytopes.

n-Affinity

Definition

1-Affine convex space \iff each segment's convexity is induced by a linear order.

Metric convexity

$$d(a,b) = d(a,x) + d(x,b)$$

Definition

Convex \iff contains the segment connecting every pair of points.

Join, Finite-segmentiality

Theorem

2-Affine + TPUL + Finite-segmential \implies Free.

UGS

Uniquely Geodesic Metric Spaces

Definition

UGS: There is a unique path f such that |f| = d(a, b).

The Polytope Intersection Lemma

Definition

Free + Finite-dimensional + TPUL + TPIL ⇒ Topology

Local convexity

Roman Maksimovich

Belgrade, Serbia

Local isomorphism

Lemma

 \mathbb{R}^2 is not isomorphic to B^2 , but they are locally isomorphic.

al theory Inducing structures UGS

JGS

Riemannian manifolds

Lemma

All Riemannian manifolds are locally uniquely geodesic.

Summary of results

- **Internal theory:** Finite nature of convexity, technical statements, hyperplane properties, TPUL and its connection to hyperplanes.
- Inducing structures: Freedom of order convexities, Linear and 1-affine space properties, n-affinity, sufficient conditions for join-commutativity and freedom, attributes of UGS.
- Induced structures: Polytope interior, convex topology, Riemannian convexity.

Thank you for your attention!