Recuperación de Información Multimedia

Descriptores Globales Color

CC5213 – Recuperación de Información Multimedia

Departamento de Ciencias de la Computación Universidad de Chile Juan Manuel Barrios – https://juan.cl/mir/ – 2019

Sistema Visual

Bastones y Conos

Degrees from visual axis (center of fovea)

Colores

Tres tipos de conos

¿De qué color es un objeto?

- Color de la luz
- Material de la superficie
- Sensibilidad de la cámara

Sistema visual y percepción

"Las personas vemos con el cerebro"

Sistema visual y percepción

 "Las personas vemos con el cerebro" (incluyendo los colores)

Benham's disk

https://youtu.be/hf3KTsRRPLs

Efecto McCollough

Colores primarios

Modelo aditivo y sustractivo

RGB como tres canales grises

Histograma por Canal

- Calcular histograma independiente para cada canal R, G y B y concatenarlos
 - □ Útil para buscar duplicados
 - No es adecuado para búsqueda por similitud (no representa colores)

M

Cubo RGB

Ver Gonzalez & Woods, cap 6.

M

Normalizar luz blanca

- White-patch. Asume que los valores máximos de color en los tres canales de la imagen es el color del blanco bajo la luz de la escena
 - \square Blanco=(R_{max}, G_{max}, B_{max})
 - Escalar cada canal en forma independiente al rango 0-255
 - □ Para cada pixel:
 - $(r, g, b) \rightarrow (r * 255/R_{max}, g * 255/G_{max}, b * 255/B_{max})$

Ŋ.

Coordenadas Cromáticas

Normalizar cada pixel por la suma de canales:

$$(R \quad G \quad B) \rightarrow \left(\frac{R}{R+G+B} \quad \frac{G}{R+G+B} \quad \frac{B}{R+G+B}\right)$$

- Notar que ante un cambio de intensidad (multiplicación por un factor) el valor no cambia
- Reducción del color a 2 dimensiones:

Histograma de Colores

- Dividir cada dimensión R, G y B en tramos de un mismo tamaño
 - □ Por ejemplo, dividiendo cada canal en 6 tramos: [0,42] [43,84] [85,127] [128,170] [171,212] [213,255]
 - □ Total bins: 63=216

M

Histograma de Colores

- Al dividir en tramos iguales R, G y B se obtienen bins muy grandes:
 - □ Con 6 tramos, los colores (0,0,0) (42,0,0) (0,42,0) (42,42,42) son todos considerados iguales.
- Divisiones más finas producen muchos bins
 - □ Con 32 tramos, es decir [0,7] [8,15] ... se obtienen 32 mil bins
- Idea: cambiar el espacio de colores buscando asimetrías entre canales

Ver Gonzalez, cap 6.

Ver Gonzalez & Woods, cap 6.

Espacios de Color "H___"

HSL=HSI=HLS

HSV=HSB

Espacios de Color "H___"

■ RGB → HSV es una transformación geométrica:

```
Max = max(R, G, B); Min = min(R, G, B);
Value = max(R, G, B);
if(Max == 0 ) then
   Saturation = 0; else
   Saturation = (Max-Min)/Max;
if(Max == Min ) Hue is undefined (achromatic color);
otherwise:
if(Max == R && G > B ) Hue = 60*(G-B)/(Max-Min)
else if(Max == R && G < B ) Hue = 360 + 60*(G-B)/(Max-Min)
else if(G == Max ) Hue = 60*(2.0 + (B-R)/(Max-Min))
else Hue = 60*(4.0 + (R-G)/(Max-Min))</pre>
```

Conversión entre espacios de color en OpenCV:

https://docs.opencv.org/3.4.1/de/d25/imgproc_color_conversions.html

Ver paper Manjunath et al., 2001.

NA.

Espacios de Color "Y___"

■ RGB \rightarrow Y (Gris) Y = (0.299)R + (0.587)G + (0.114)B

■ RGB \rightarrow YC_bC_r Cb = B - Y Cr = R - Y Cg = G - YP = 0.299*R + 0.587*G + 0.114*B

Cb = -0.169*R - 0.331*G + 0.500*B

Cr = 0.500*R - 0.419*G - 0.081*B

■ YUV, Y'UV, YC_bC_r, YC_rC_b, YP_bP_r, ...

Histogramas incluyendo "Hue"

- La coordenada H representa el color puro, mientra que las otras dos dimensiones se refieren a la "variante" del color
 - Hacer una división asimétrica de las dimensiones
 - □ Ej: Dividir **H** en 16 tramos y las otras dos en 4 tramos \rightarrow 16 x 4 x 4 = 256 bins

Descriptor: Scalable Color (SCD)

- Histograma HSV con división:
 - □ 256 bins: 16 x 4 x 4
 - □ 128 bins: 8 x 4 x 4
 - □ 64 bins: 8 x 2 x 4
 - □ 32 bins: 8 x 2 x 2
 - □ 16 bins: 4 x 2 x 2

Descriptor: Color Structure Histogram

- Idea: Representar como está distribuido cada color en la imagen (si está agrupado en zonas o disperso por toda la imagen)
- Es un histograma del número de apariciones de cada color dentro de una máscara
 - Máscara de 8x8 que recorre la imagen (sliding window)
 - Para cada color se verifica si existe algún pixel dentro de la máscara con ese color

Descriptor: Color Structure Histogram

Máscara:

- □ Grilla de 8x8 con 64 posibles posiciones
- Para imágenes mayores a 256x256 se separan las celdas de la máscara (i.e., una máscara de 8x8 que abarca más espacio)


```
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A
    A</t
```

Ver paper Manjunath et al., 2001.

Histogramas de Color

- Cuando dos histogramas de color usan una misma división del espacio de color, se pueden comparar con distancia L₁ o L₂
- Problema: la distancia euclidiana ignora similitud entre dimensiones
- Idea: Incluir en la función de distancia la información de similitud entre bins

Comparar vectores considerando similitud entre bins

- Forma Cuadrática (Quadratic Form Distance)
 - □ Generalización de la distancia L₂
 - □ A es la Matriz de Similitud, donde a_{ij} es la similitud entre bin i y bin j
 - □ Costo de evaluación: O(n²)

$$QFD(\vec{x}, \vec{y}) = \sqrt{(\vec{x} - \vec{y})^T \cdot A \cdot (\vec{x} - \vec{y})}$$

Similitud entre colores

- Problema: Cómo definir la Matriz de Similitud entre colores
- Idea: Comparar colores con distancia euclidiana en el cubo RGB
- Problema: En la percepción humana no son simétricos los canales RGB. Ej:
 - □ El amarillo debiera ser más parecido al blanco que al magenta, pero el amarillo y magenta están a misma distancia del blanco.
 - El rojo debiera ser más parecido al amarillo que al verde, pero rojo y verde están a misma distancia del amarillo.
- Utilizar distancias dentro del espacio de color CIELAB o CIELUV

CIE

Commission
 Internationale
 de L'Eclairage

Cromacidad:

M

Espacios de Color "CIE ___"

- Experimentalmente definen CIE RGB (~1920)
 - □ Basado en la longitud de onda de la luz
- 1931: CIE XYZ
 - □ Transformación lineal de CIE RGB
- 1976: CIELAB (L*,a*,b*) y CIELUV (L*,u*,v*)
 - Transformación de XYZ para que la distancia euclidiana entre colores sea similar a la perceptual
 - □ Adecuado para comparar colores
- 2002: CIECAM

" Conversiones RGB a "CIE

RGB ↔ CIE L*a*b*

$$egin{aligned} \begin{bmatrix} X \ Y \ Z \end{bmatrix} \leftarrow egin{bmatrix} 0.412453 & 0.357580 & 0.180423 \ 0.212671 & 0.715160 & 0.072169 \ 0.019334 & 0.119193 & 0.950227 \end{bmatrix} \cdot egin{bmatrix} R \ G \ B \end{bmatrix} \\ X \leftarrow X/X_n, \text{ where } X_n = 0.950456 \\ Z \leftarrow Z/Z_n, \text{ where } Z_n = 1.088754 \\ L \leftarrow egin{bmatrix} 116 * Y^{1/3} - 16 & \text{for } Y > 0.008856 \ 903.3 * Y & \text{for } Y \leq 0.008856 \ a \leftarrow 500(f(X) - f(Y)) + delta \ b \leftarrow 200(f(Y) - f(Z)) + delta \ f(t) = egin{bmatrix} t^{1/3} & \text{for } t > 0.008856 \ 7.787t + 16/116 & \text{for } t < 0.008856 \ \end{bmatrix} \end{aligned}$$

RGB \leftrightarrow CIE L*u*v*

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \leftarrow \begin{bmatrix} 0.412453 & 0.357580 & 0.180423 \\ 0.212671 & 0.715160 & 0.072169 \\ 0.019334 & 0.119193 & 0.950227 \end{bmatrix} \cdot \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$L \leftarrow \begin{bmatrix} 116 * Y^{1/3} - 16 & \text{for } Y > 0.008856 \\ 903.3Y & \text{for } Y \leq 0.008856 \end{bmatrix}$$

$$u' \leftarrow 4 * X/(X + 15 * Y + 3Z)$$

$$v' \leftarrow 9 * Y/(X + 15 * Y + 3Z)$$

$$u \leftarrow 13 * L * (u' - u_n) \quad \text{where} \quad u_n = 0.19793943$$

$$v \leftarrow 13 * L * (v' - v_n) \quad \text{where} \quad v_n = 0.46831096$$

Conversión entre espacios de color en OpenCV:

https://docs.opencv.org/3.4.1/de/d25/imgproc color conversions.html

Número variable de bins

- Problema: Histogramas de color son muy largos, debido a que se necesita pre-definir una partición de colores
- Idea: Adaptive binning
 - Crear una partición del espacio de color variable, específica a los colores de cada imagen
 - □ Cada pixel corresponde a un punto (3d) en el espacio de color
 - □ Con clustering determinar N centroides (3d) por imagen
 - Calcular un histograma de N bins con las veces que aparece cada color correspondiente:
 - Hard Assignment: el color de cada pixel se "redondea" al centroide más cercano y se suma 1 a ese bin
 - Soft Assignment: cada color hace una votación ponderada a cada centroide según su distancia
- Problema: ¿Cómo comparar estos histogramas?

Histogramas con bins variables

- Descriptor tipo Signature:
 - □ Cada dimensión del descriptor corresponde a un vector s_i y el peso x_i de ese vector: $\mathbf{x} = \{(s_1, x_1), ..., (s_n, x_n)\}$
 - □ Usualmente s_i son vectores obtenidos por clustering
 - □ Ej: Para histogramas de color, s_i son vectores 3d que forman una partición del espacio de colores
- Distancia para comparar Signatures:
 - □ Earth Mover's Distance (EMD) compara dos Signatures no necesariamente del mismo largo
 - Calcula el costo mínimo para transformar un Signature en el otro
 - Requiere resolver el problema de transporte (optimización)

Earth Mover's Distance (EMD)

- Dado dos vectores $\mathbf{x} = (x_1, ..., x_n) \mathbf{y} = (y_1, ..., y_n) y$ una Matriz de Costos C_{n x m} con los costos para mover una unidad entre bins, EMD corresponde al costo mínimo a pagar para convertir la distribución x a la distribución y
- EMD calcula la Matriz de Flujos $F_{n \times m}$ que contiene los movimientos desde cada bin de x hacia cada bin de y que logran el mínimo costo total

Earth Mover's Distance (EMD)

- La Matriz de Costos C representa el costo c_{ij} de mover una unidad desde el bin i de x al bin j de y
 - ☐ *Ground-distance:* Función que compara distancias entre bins
 - En descriptores tipo Signature, la ground distance corresponde a la distancia usada para comparar los vectores s_i de cada descriptor (ej: distancia entre colores)
- La Matriz de Flujos F representa una solución con las cantidades f_{ii} a mover desde el bin i de x al bin j de y
- Costo evaluación: en general exponencial, usualmente O(n³ log n)
- Propiedades métricas de EMD dependen de la grounddistance

EMD

(0.23, 0.63, 0.14)

(0.22, 0.12, 0.24, 0.42)

1) Matriz de Costos:

C_{ij}: Lo que hay que "pagar" para mover una unidad del color i al color j (distancia en espacio CIE u otro)

3) EMD:

Costo total "a pagar" para convertir X en Y:

$$\mathsf{EMD}(\boldsymbol{X},\boldsymbol{Y}) = \sum C_{ij} F_{ij} = 0.13$$

2) Matriz de Flujos:

F_{ii}: Plan de "movimientos" a seguir para convertir la distribución X en la distribución Y con el mínimo costo

	0.22	0.12	0.24	0.42
0.23	0.08	0.12	0.03	0
0.63	0	0	0.21	0.42
0.14	0.14	0	0	0

Notar que si se usa cualquier otra matriz de flujos el valor de EMD(X,Y) puede aumentar.

Alternativa a EMD

- Signature Quadratic Form Distance (SQFD)
 - □ Forma Cuadrática para comparar Signatures
 - Se concatenan los vectores de pesos cambiando el signo
 - La matriz de similitud A contiene la similitud intra-bins e inter-bins
 - Crear A requiere una ground distance convertida a similitud

$$SQFD(\vec{x}, \vec{y}) = \sqrt{(\vec{x} \mid -\vec{y})^T \cdot A \cdot (\vec{x} \mid -\vec{y})}$$

Histogramas incluyendo posición

- Idea: Al calcular el clustering de colores de cada imagen, además del color (r,g,b) incluir la posición (i,j) de cada pixel
 - □ Requiere una distancia para vectores 5-d que pondere distancia entre colores y distancia espacial
 - □ El clustering determina centroides que incluyen colores y ubicación
 - □ Descriptor de colores con ubicación espacial

Bibliografía

Digital Image Processing. González et al. 2008

□ Cap 6 (Color)

Papers

- Manjunath et al. "Color and Texture Descriptors". 2001.
- Rubner et al. "The Earth Mover's Distance as a Metric for Image Retrieval". 2000.
- **Beecks et al**. "Signature Quadratic Form Distance". 2010.