Regulation of blood vessel diameter

Mechanisms that regulate blood vessel diameter:

- Central:
 - Neural,
 - Hormonal,
- Peripheral:
 - Myogenic,
 - Humoral,
 - Metabolic.

Neural regulation

- Vasoconstrictor nerve fibers innervate all blood vessels
 - Sympathetic fibers (T_1 - L_3 ; norepinephrine $\rightarrow \alpha_1$ adrenoreceptors)
- Vasodilator nerve fibers:
 - Parasympathetic fibers (acetylcholine $\rightarrow M_3$ cholinoreceptors):
 - Pelvic organs (S₂-S₄)
 - Coronary circulation (n.vagus)
 - Sympathetic vasodilator fibers (T_1 - L_3 ; acetylcholine $\rightarrow M_3$ cholinoreceptors):
 - Skeletal muscle arterioles,
 - Coronary arterioles,
 - Brain arterioles.
 - Dorsal root vasodilators axon reflex.

Central hormonal regulation

- Vasoconstrictor hormones:
 - Epinephrine, norepinephrine (α_1) ,
 - Renin-angiotensin system (AT₁, AT₂),
 - Vasopressin (V₁).
- Vasodilator hormones:
 - Epinephrine (β_2) ,
 - ANP, BNP.

Peripheral myogenic regulation

 Stretch of blood vessel wall leads to contraction of smooth muscle cells in it.

Peripheral humoral regulation

- Vasoconstrictor substances:
 - Serotonin,
 - Tromboxan A₂,
 - Leucotrienes,
 - Endothelins.
- Vasodilator substances:
 - Histamine,
 - Kinines,
 - NO (nitric oxide)
 - Prostacycline (PGI₂), PGE₂,
 - Endothelium derived hyperpolarizing factor (EDHF).

Peripheral metabolic regulation

Arterioles are dilated if:

- $\uparrow P_{CO_2}$,
- \downarrow PO₂,
- ↓ pH,
- †adenosine,
- $\uparrow K^+$.

Coupling in vascular smooth muscle contraction

Regional blood flow

Distribution of cardiac output

- Due to metabolism of tissues
- Due to performance of specific functions

Physical exercise (CO=25 l/min)

3% (0.75 L/min)

4% (1 L/min)

2% (0.5 L/min)

1% (0.25 L/min)

85% (21 L/min)

3% (0.75 L/min)

Distribution of cardiac output at rest and during physical exercise

Cerebral blood flow

Cerebral blood flow

- ~14% from cardiac output
- ~ 700 ml/min
- 50-60 ml/min/100 g
- Grey matter (75-80 ml/min/100g) supplied better than white (10-20 ml/min/100g)
- Relatively constant
- Activity of different brain areas

Cerebral blood flow affecting factors

- Intracranial pressure
- Arterial blood pressure decrease below 60 mmHg is critical for cerebral circulation
- Diameter of cerebral arteries

Regulation

 $\uparrow P_{CO_2}$ $\downarrow pH$ $\downarrow P_{O_2}$ \uparrow adenosine $\uparrow K^+$

Absence of stretch

Histamine Kinins NO PGI₂, PGE₂ EDHF

Symp NS
N.trigeminus
N. basalis
N.raphe
L.coeruleus

E (β_2) ANP, BNP • Peripheral:

• Metabolic

Myogenic

Humoral

 $\downarrow P_{CO_2}$ $\uparrow pH$ $\uparrow P_{O_2}$ $\downarrow adenosine$ $\downarrow K^+$

Stretch

Serotonin TxA_2 Leucotrienes
Endothelin

• Central:

Neural

Hormonal

Symp NS

E, NE (α_1) R-A system Vasopressin

CNS ischemic regulation –
 Cushing's reflex

Coronary blood flow

Coronary blood flow

- 4 % from cardiac output,
- 200 ml/min;
- 70-100 ml/min/100g
- 250 ml/min/100g during exercise
- High arterio-venous difference (70 80%)
- Great capillary density (~3000/mm²)
- High number of anastomoses

Factors that affect coronary blood flow

- Phase of cardiac cycle,
- Diastolic pressure in the aorta,
- Heart rate,
- Diameter of coronary arteries

Coronary blood flow during the cardiac cycle

Coronary steal phenomenon

Rest Physical exercise, stress, vasodilator use

Regulation

 \uparrow P_{CO_2} \downarrow pH \downarrow P_{O_2} \uparrow adenosine \uparrow K^+

Absence of stretch

Histamine Kinins NO PGI₂, PGE₂ EDHF

Symp NS Parasymp NS

 $E(\beta_2)$ ANP, BNP

• Peripheral:

Metabolic

Myogenic

Humoral

• Central:

Neural

Hormonal

 $\begin{array}{c} \downarrow P_{CO_2} \\ \uparrow pH \\ \uparrow P_{O_2} \\ \downarrow adenosine \\ \downarrow K^+ \end{array}$

Stretch

Serotonin TxA_2 Leucotrienes
Endothelin

Symp NS

E, NE (α_1) R-A system Vasopressin

Blood flow to lungs

Blood flow to lungs

- Bronchial circulation
 - From aorta
 - Low flow-high pressure
 - 1-2 % from cardiac output
 - Supplies bronchi to terminal bronchioles, pleura
- Pulmonary circulation
 - From right ventricle
 - High flow-low pressure
 - 100% from cardiac output
 - Supplies respiratory bronchioles and alveoli

Pulmonary blood flow

- Low resistance,
- Low blood pressure,
- Depends on gravity,
- Hypoxic vasoconstriction

Koeppen & Stanton: Berne and Levy physiology 6th edition

Small circuit of the circulation

Summary cross-sectional area (cm²)

Linear velocity of blood(cm/s)

Small circuit of the circulation

Blood volume distribution

Blood pressure (mmHg)

Skeletal muscle blood flow

Blood flow to skeletal

muscles

- 21% of cardiac output
- 3-5 ml/min/100 g at rest
- 50-80 ml/min/100g at maximal exercise
- In the oxidative part of the skeletal muscle 300-400 ml/min/100g
- During the contraction phase lower than during the relaxation
- In rhythmic exercise greater than in the static

Elsevier Ltd. Boron & Boulpaep: Medical Physiology, Updated Edition www.studentconsult.com

Guyton and Hall Textbook of Medical Physiology, 13th Edition, Saunders, 2015

Regulation

 \uparrow P_{CO_2} \downarrow pH \downarrow P_{O_2} \uparrow adenosine \uparrow K^+

Absence of stretch

Histamine Kinins NO PGI₂, PGE₂ EDHF

Symp NS Parasymp NS

 $E(\beta_2)$ ANP, BNP

• Peripheral:

Metabolic

Myogenic

Humoral

• Central:

Neural

Hormonal

 $\begin{array}{c} \downarrow P_{CO_2} \\ \uparrow pH \\ \uparrow P_{O_2} \\ \downarrow adenosine \\ \downarrow K^+ \end{array}$

Stretch

Serotonin TxA_2 Leucotrienes
Endothelin

Symp NS

E, NE (α_1) R-A system Vasopressin

Changes in the cardiovascular system during exercise

Changes of heart rate, stroke volume and cardiac due to workload

Changes of peripheral resistance due to workload increase in

Changes of heart rate, stroke volume and cardiac due to workload increase in exercise

Changes of oxygen consumption due to workload increase in

Maximal oxygen uptake

- Maximal oxygen consumption during exercise
 - Untrained 2-3 l/min
 - Trained up to 6.5 l/min
- Average:
 - Men 35-45 ml/min/kg
 - Women 30-40 ml/min/kg

Limiting factors for maximal oxygen uptake

- Oxygen use in skeletal muscles
- Oxygen delivery
 - Respiratory increases function until ~65% of maximal capacity
 - Heart increases function until about ~90% of maximal

Heart adaptation to exercise

- Increased parasympathetic influence
- Decreased sympathetic influence

From Weiner RB, Baggish AL. Exercise-induced cardiac remodeling. *Prog Cardiovasc Dis* . 2012;54:380

Normal to slightly reduced resting LVEF

- Normal to hyperdynamic resting LVEF

Skeletal muscle adaptation to exercise

- Decreased peripheeral reesistance in muscles
- Increased density of capillaries
- Increased amount of myoglobin
- Increased number and activity of mitochondria
- Increased enzyme activity

