Overparameterization of Realistic Quantum Systems

Matthew Duschenes*, Juan Carrasquilla, Raymond Laflamme University of Waterloo, Institute for Quantum Computing, & Vector Institute

January 26, 2023

Canadian Graduate Quantum Conference

Parameterized Quantum Systems

Evolution via $\Lambda_{\theta\gamma}^{(\lambda)}$ at time λ

• Experimental feasibility affects our ability to perform useful tasks i.e) Unitary compilation $\Lambda_{\theta\gamma} \approx U$, State preparation $\rho_{\Lambda_{\theta\gamma}} \approx \rho_U$

- Experimental feasibility affects our ability to perform useful tasks i.e) Unitary compilation $\Lambda_{\theta\gamma} \approx U$, State preparation $\rho_{\Lambda_{\theta\gamma}} \approx \rho_U$
- These systems require incredibly precise control of parameters $\theta^{(\lambda)}$

$$H_{\theta}^{(\lambda)} = \sum_{i} \theta_{i}^{x(\lambda)} X_{i} + \sum_{i} \theta_{i}^{y(\lambda)} Y_{i} + \sum_{i} h_{i} Z_{i} + \sum_{i < j} J_{ij} Z_{i} Z_{j}$$
 (1)

- Experimental feasibility affects our ability to perform useful tasks i.e) Unitary compilation $\Lambda_{\theta\gamma} \approx U$, State preparation $\rho_{\Lambda_{\theta\gamma}} \approx \rho_U$
- These systems require incredibly precise control of parameters $\theta^{(\lambda)}$

$$H_{\theta}^{(\lambda)} = \sum_{i} \theta_{i}^{x(\lambda)} X_{i} + \sum_{i} \theta_{i}^{y(\lambda)} Y_{i} + \sum_{i} h_{i} Z_{i} + \sum_{i < j} J_{ij} Z_{i} Z_{j}$$
 (1)

- These systems are also severely *constrained* i.e) Bounds on the fields, and imposing Uniformity or Boundary-conditions

- Experimental feasibility affects our ability to perform useful tasks i.e) Unitary compilation $\Lambda_{\theta\gamma} \approx U$, State preparation $\rho_{\Lambda_{\theta\gamma}} \approx \rho_U$
- These systems require incredibly precise control of parameters $\theta^{(\lambda)}$

$$H_{\theta}^{(\lambda)} = \sum_{i} \theta_{i}^{x(\lambda)} X_{i} + \sum_{i} \theta_{i}^{y(\lambda)} Y_{i} + \sum_{i} h_{i} Z_{i} + \sum_{i < j} J_{ij} Z_{i} Z_{j}$$
 (1)

- These systems are also severely *constrained*i.e) Bounds on the fields, and imposing Uniformity or Boundary-conditions
- Systems detrimentally interact with their environment, resulting in noise γ i.e) Dephasing $\mathcal{K}_{\gamma} = \{\sqrt{1-\gamma} I, \sqrt{\gamma} Z\}$

Learning Optimal Quantum Systems

How does the amount of noise γ and the evolution depth M of a constrained system $\Lambda_{\theta\gamma}$ affect its classical simulation and optimization, and resulting parameters θ ?

Learning Optimal Quantum Systems

How can we leverage approaches from quantum optimal control and learning theory to describe these relationships?

Learning Phenomena

• Essential to characterize how optimization and learning algorithms *learn*, and converge towards an optimal solution, as they traverse the *objective landscape*

- Several interesting phenomena occur in conventional learning
 - Overparameterization: Learning can converge exponentially quickly
 - Lazy training: Parameters may change negligibly from their initial values
- Ansatz generators $\{G_{\mu}\}$ form a dynamical Lie algebra \mathcal{G} , with dimensionality $G = |\mathcal{G}|$, that determines the expressivity of an ansatz, depending if the circuit depth $M \leq O(G)$ (Larocca et al. arXiv:2109.11676 (2021))

Unconstrained vs. Constrained Optimization

• Haar random unitary compilation for N=4 qubits, with bounded fields shared across all qubits, and Dirichlet boundary conditions

Noisy Optimization

• Haar random state preparation for N=4 qubits, with independent dephasing

(c) Trained Noisy Infidelity, and Tested Infidelity of Noisy Parameters in Noiseless Ansatz

(d) Critical Depth for Noisy Infidelity

What Have We Learned About Learning?

- Overparameterization is robust to constraints; requires $\sim O(N)$ greater depth
- Accumulation of noise induces a critical depth M_{γ} that prevents convergence
- Non-trivial compromises between numerical and experimental feasibility
- Channel fidelities and entanglement measures will further quantify effects of noise on the abilities of variational ansatz to learn tasks

Appendix

How May We Control Quantum Systems?

- Represented as channels $\Lambda_{\theta\gamma} = \mathcal{N}_{\gamma} \circ \mathcal{U}_{\theta}$ with unitary evolution \mathcal{U}_{θ} , and noise \mathcal{N}_{γ}
- Evolution generated by Hamiltonians with localized generators $\{G_{\mu}\}$

$$H_{\theta}^{(\lambda)} = \sum_{\mu} \theta_{\mu}^{(\lambda)} G_{\mu} \rightarrow U_{\theta} \approx \prod_{\lambda} U_{\theta}^{(\lambda)} : U_{\theta}^{(\lambda)} = e^{-i\delta H_{\theta}^{(\lambda)}} \approx \prod_{\mu} e^{-i\delta\theta_{\mu}^{(\lambda)} G_{\mu}}$$
(2)

i.e) NMR with variable transverse fields and constant longitudinal fields (Peterson et~al., PRA 13 (2020)) (Coloured in circuit \searrow)

$$H_{\theta}^{(\lambda)} = \sum_{i} \theta_{i}^{x(\lambda)} X_{i} + \sum_{i} \theta_{i}^{y(\lambda)} Y_{i} + \sum_{i} h_{i} Z_{i} + \sum_{i < j} J_{ij} Z_{i} Z_{j} \tag{3}$$

• Noise generated by constant *Kraus* operators $\{\mathcal{K}_{\gamma_{\alpha}}\}$ i.e) Dephasing $\{\sqrt{1-\gamma} I, \sqrt{\gamma} Z\}$

$$\rho \to \rho_{\Lambda_{\theta\gamma}} = \prod_{\lambda}^{M} \mathcal{N}_{\gamma} \circ \mathcal{U}_{\theta}^{(\lambda)}(\rho) = \prod_{\lambda}^{M} \left[\sum_{\alpha} \mathcal{K}_{\gamma_{\alpha}} U_{\theta}^{(\lambda)} \rho U_{\theta}^{(\lambda)^{\dagger}} \mathcal{K}_{\gamma_{\alpha}^{\dagger}}^{\dagger} \right]$$
(4

How Do We Optimize Quantum Systems?

- Systems must be efficiently simulated *classically* i.e) Just-in-time compilation
- Parameters are optimized with gradient methods i.e) Automatic differentiation
- Desired tasks are represented as *objectives* to be minimized i.e) (In)Fidelities

$$\mathcal{L}_{\theta\gamma} \sim \operatorname{tr}\left(\rho_{\Lambda_{\theta\gamma}}\rho_U\right) \tag{5}$$

• Analogous forms of gradients of objectives in noiseless and noisy system i.e) Exact parameter-shift rules, for some generator-dependent angle ζ

$$\partial \mathcal{L}_{\theta\gamma} \sim \mathcal{L}_{\theta+\zeta \gamma} - \mathcal{L}_{\theta-\zeta \gamma} \tag{6}$$

Overparameterization Phenomena

• Overparameterized regime is reached with constraints for sufficient depth M > O(G) (For universal \mathcal{G}_{NMR} , $G = 2^{2N} - 1 = 255$)

(e) Negligible Relative Change of Parameters from Initialization

(f) Fisher Information Rank Saturation at G