1 Форматы файлов

1.1 Task 1

samtools view -S -b /srv/common/midterm/task_adh1b.sam > ~/test1/task1.bam samtools sort task1.bam -o sorted_task1.bam samtools index sorted_task1.bam

1.2 Task 2

samtools view -H sorted task1.bam | grep 'LN:249250621

Результат: hg19

1.3 Task 3

Mutation	REF Sequence	Sample Variants
rs4988235	G/G	G/G
rs41380347	A/A	A/A
rs145946881	C/C	C/C
rs41525747	G/G	G/G
rs121908937	C/C	C/C
rs121908936	-	-

Непереносимости нет

1.4 Task 4

samtools view /srv/common/midterm/task_adh1b.bam chr4 | wc -l

Результат: 78105

1.5 Task 5

samtools view /srv/common/midterm/task_gender.bam chrX | wc -l

Результат: 592941

samtools view /srv/common/midterm/task gender.bam chrY | wc -l

Результат: 380490

1.6 Task 7

view -H /srv/common/midterm/chip.vcf.gz | wc -l

Результат: 1001385

1.7 Task 8

bcftools index chip.vcf.gz bcftools view -r chr21:5215000-5233000 chip.vcf.gz | grep -v "^#" | wc -l

Результат: 97

1.8 Task 9

Chromosome	Position	Reference Allele	Alternate Allele	Genotype
chr21	5219624	\mathbf{C}	A	0 1
chr21	5231730	\mathbf{C}	G	0 1
chr21	5225197	G	T	1 1

1.9 Task 10

bcftools view -r chr21:5215000-5233000 -i 'INFO/AF>=0.05' chip.vcf.gz | grep -v "^#" | wc -l

Результат: 5

2 Глобальные и локальные выравнивания

2.1 Task 1

Выровняйте следующие последовательности с помощью алгоритма Нидлмана-Вунша: ATGCCCGA

GTCACCC

Используйте следующие параметры для выравнивания: награда за совпадение: +1, штраф за замену: -1, штраф за вставку или удаление: -2.

Формула для заполнения:

$$\begin{aligned} & \text{Score}(i,j) = \max \begin{cases} & \text{Score}(i-1,j-1) + \text{match/mismatch,} \\ & \text{Score}(i-1,j) + \text{gap penalty,} \\ & \text{Score}(i,j-1) + \text{gap penalty} \end{cases} \end{aligned}$$

Получим таблицу:

то есть выравнивание выглядит так:

ATGCCCGA

-TC-ACCC

2.2 Task 2

нуклеотидная последовательность белка эндонуклеазы III (Nth) из бактерии Escherichia coli, штамм K-12, субштамм MG1655, бластнув получим Shigella flexneri strain STIN_92 chromosome

<u>♣ Download</u> ✓ <u>GenBank</u> <u>Graphics</u>

Shigella flexneri strain STIN_92 chromosome, complete genome

Sequence ID: CP054977.1 Length: 4813336 Number of Matches: 1

Score	()	Expect	Identities	Gaps	Strand	
1175 b	oits(636)	0.0	636/636(100%)	0/636(0%)	Plus/Minus	
)uery	1		AAAACGCCTGGAGATCCT			60
bjct	2260651		AAAACGCCTGGAGATCCT			2260592
uery	61	ACCACCGAGCT	TAATTTCAGTTCGCCTTT	TGAATTGCTGATTGCCGT	ACTGCTTTCCGCT	120
bjct	2260591	ACCACCGAGCT	TAATTTCAGTTCGCCTTT	TGAATTGCTGATTGCCGT	ACTGCTTTCCGCT	2260532
uery	121		TGTCAGTGTTAATAAGGC		GGTGGCGAATACG	180
bjct	2260531				GGTGGCGAATACG	2260472
uery	181		GCTTGAACTGGGCGTTGA			240
bjct	2260471					2260412
uery	241		CAAAGCAGAAAATATCAT		GCTGGAGCAGCAT	300
bjct	2260411				TGCTGGAGCAGCAT	2260352
uery	301	AATGGCGAGGT	TCCGGAAGATCGTGCTGC	GCTTGAAGCCCTGCCCGG	CGTAGGTCGTAAA	360
bjct	2260351	AATGGCGAGGT	TCCGGAAGATCGTGCTGC		GCGTAGGTCGTAAA	2260292
uery	361	ACAGCCAACGT	CGTATTAAACACTGCATT	CGGCTGGCCGACTATTGC	TGTCGACACGCAC	420
bjct	2260291	ACAGCCAACGT	CGTATTAAACACTGCATT	CGGCTGGCCGACTATTGC	TGTCGACACGCAC	2260232
uery	421	ATTTTCCGCGT	TTGTAATCGTACTCAATT	TGCGCCGGGGAAAAACGT	CGAACAGGTAGAA	480
bjct	2260231	ATTTTCCGCGT	TTGTAATCGTACTCAATT	TGCGCCGGGGAAAAACGT	TCGAACAGGTAGAA	2260172
uery	481	GAAAAGCTACT	GAAAGTGGTTCCAGCAGA	GTTTAAAGTCGACTGCCA	ACCATTGGTTGATC	540
bjct	2260171	GAAAAGCTACT		GTTTAAAGTCGACTGCCA	ACCATTGGTTGATC	2260112
uery	541	CTGCACGGGCG	TTATACCTGCATTGCCCG	CAAGCCCCGCTGTGGCTC	TTGTATTATTGAA	600
bjct	2260111	CTGCACGGGCG	TTATACCTGCATTGCCCG	CAAGCCCCGCTGTGGCTC	CTTGTATTATTGAA	2260052
uery	601		ATACAAAGAGAAAGTTGA			
bjct	2260051					

2.3 Task 3

BRCA1

3 Множественные выравнивания

3.1 Task 1

Возьмем:

BRCA1 isoform 2 [Pan troglodytes] Sequence ID: PNI33707.1,

breast cancer type 1 susceptibility protein homolog isoform X1 [Gorilla gorilla gorilla] Sequence ID: XP 030867412.3,

breast cancer type 1 susceptibility protein [Pan paniscus] Sequence ID: NP_001288687.1, breast cancer type 1 [Gorilla gorilla] Sequence ID: AAT44835.1

- >BRCA1 Pan troglodytes

 MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTKCDHIFCKFCMLKLLNQKKG

 >BRCA1 Gorilla gorilla
- 4 MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTKCDHIFCKFCMLKLLNQKKG
- 5 >BRCA1 Pan paniscus
- 6 MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTKCDHIFCKFCMLKLLNQKKG
- 7 >BRCA1 Gorilla gorilla
- 8 MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTKCDHIFCKFCMLKLLNQKKG
- 9

4 Филогенетика

4.1 Task 1

4.2 Task 2

	AGCTGA	AGTTGA	CGCTGA	AGCTGG	CGTTGA
AGCTGA	0	1	1	1	2
AGTTGA	1	0	2	2	1
CGCTGA	1	2	0	2	1
AGCTGG	1	2	2	0	2
CGTTGA	2	1	1	2	0

4.3 Task 3

4.4 Task 4

Рис. 3: UPGMA

Кто ближайший сосед человеку – мышь или собака? Можем ли мы доказать независимое происхождение ламантинов и китообразных? Кто ближайший сосед летучим мышам – собака или человек?

МР - Мышь

– Да

– Человек

NJ - Собака

– Нет

– Человек

UPGMA – Собака

– Нет

- Собака

4.5 Task 5

4.6 Task 6

