

Bas Nijholt and Serwan Asaad May 9, 2014

Outline

- 1 Quantum Point Contact Scattering theory
- 2 Transfer Matrix Method Discretize system Tight-binding Hamiltonian Transfer Matrix Results
- 3 Scattering Matrix Method
- 4 Results

Scattering theory

Definition

Set of incoming and outgoing waves at the leads.

$$\psi_{L} = \psi_{inc}^{i} + \Sigma_{j} r_{ji} \psi_{L,out} + \Sigma_{k} \beta_{ki} \psi_{L,ev}$$
 (1)

$$\psi_{R} = \sum_{j} t_{ji} \psi_{R,out} + \sum_{k} \alpha_{ki} \psi_{L,ev}$$
 (2)

$$\psi_{inc}^{i} - \cdots \qquad \psi_{R,out}$$

$$\psi_{L,out} - \cdots$$

$$\psi_{L,ev} \qquad \psi_{R,ev}$$

Quantum Point Contact

- Electrons travel from source to drain.
- Electrons experience potential barrier in the center
- Resulting in reflection and transmission

Figure: Experimental set-up.

Figure : Simulated potential barrier

Discretize system

We separate the system into discrete points

Discretize system

We view each column as a single wavefunction

$$\psi_n(y)$$

Tight-binding Hamiltonian

Definition

A tight-binding Hamiltonian only takes neighbours into account The tight-binding Hamiltonian used in our simulations is given by:

$$H = \begin{bmatrix} \mu_1 & t & & & \\ t & \mu_2 & t & & \\ & t & \mu_3 & \ddots & \\ & & \ddots & \ddots & t \\ & & & t & \mu_N \end{bmatrix}$$
(3)

Transfer Matrix

Definition

A transfer matrix T operates as follows:

$$\begin{pmatrix} \psi_{n+1} \\ t \ \psi_n \end{pmatrix} = T \begin{pmatrix} \psi_n \\ t \ \psi_{n-1} \end{pmatrix} \tag{4}$$

with

$$T = \begin{pmatrix} t^{-1}H & -1 \\ t & 0 \end{pmatrix} \tag{5}$$

Transfer matrices can be multiplied with each other

Matching conditions

- ullet Plane waves in the left lead Ψ_L and right lead Ψ_R
- Transfer matrices T_i in scattering region can be calculated
- Apply matching condition:

$$\Psi_R = \prod_{i=1} T_i \Psi_L = T_{tot} \Psi_L \tag{6}$$

Grouping waves together we end up with a system of equations

$$(U_{R,out}|U_{R,ev}| - T_{tot} \cdot U_{out}| - T_{tot} \cdot U_{ev}) \begin{pmatrix} t \\ \alpha \\ r \\ \beta \end{pmatrix} = T_{tot} \cdot U_{in}$$
 (7)

Transmission, Reflection, and Conductance

For each mode *i* the sum of transmissions and reflections must add up to unity:

$$\sum_{j=1}^{N} |r_{ij}|^2 + |t_{ij}|^2 = 1 \tag{8}$$

The conductance of the system is then given by Landauers formula:

$$G = G_0 \sum_{i,j} |t_{ij}|^2 \tag{9}$$

Transfer matrix method shows expected behaviour

However...

Transfer matrix method shows expected behaviour

However... Transfer matrix blows up after ± 20 iterations!

Transfer matrix method shows expected behaviour Transfer matrix blows up after ± 20 iterations!

• Plot of $\sum_{j=1}^{N} |r_{ij}|^2 + |t_{ij}|^2 = 1$ as a function of length of the system.

Scattering Matrix Method

- Cause: eigenvalues of transfer matrices have different values
 - Resulting elements behave exponentially
- Solution: transform transfer matrices into scattering matrices
 - All eigenvalues in scattering matrices have unity magnitude
 - No exponential behaviour!
- Scattering matrices transform incoming waves into outgoing waves
- Downsides of scattering matrices:
 - Scattering matrices are multiplied in a complex way
 - Must transform transfer matrix to scattering matrix at every step

Quantized conductance

Conductance is quantized according to the number of modes available

ullet Depends on chemical potential μ of leads

Figure: Our simulation.

Figure: Experiment ¹

¹B J van Wees, H van Houten, C W J Beenakker, J G Wdhamson, L P Kouwenhoven, D van der Marel, and C T Foxon, *Phys Rev Lett 60*, 848 (1988)

Optimization

- 1 Transfer matrix method
 - (+) Easy implementation
 - (+) Fast algorithm
 - 3 (-) Error grows exponentially
- Scattering matrix method
 - (+) Very stable
 - (-) Slow algorithm

Optimization

- Transfer matrix method
 - (+) Easy implementation
 - (+) Fast algorithm
 - **3** (-) Error grows exponentially
- Scattering matrix method
 - (+) Very stable
 - (-) Slow algorithm

Best of both worlds:

- < 3 Scatter matrix + < 3 Transfer matrix
- Speed up of 2.5x
- C++ (401 lines of code, 6.40s) and Python (160 lines, 5.01s)
- LAT_FX presentation (341 lines of code)