ENGENHARIA INFORMÁTICA E DE COMPUTADORES

Algoritmos e Estruturas de Dados

(parte 1 – Técnicas de Algoritmia)

2º Semestre 2022/2023 Instituto Superior de Engenharia de Lisboa Paula Graça

TÉCNICAS DE ALGORITMIA

- Principais técnicas de desenho de algoritmos
 - Força Bruta (Brute Force)
 - Programação Dinâmica (Dynamic Programming)
 - Técnica Gananciosa (Greedy)
 - Dividir para conquistar (Divide and Conquer)
 - Recursividade
 - Problemas tipo de ilustração das várias técnicas

- A técnica por Força Bruta (Brute Force) é a forma mais simples mas mais ineficiente de desenhar um algoritmo
 - Para calcular a solução:
 - Gera todas as combinações possíveis dentro do domínio de resultados para o problema em causa

Seleciona de entre todas as combinações geradas, qual a solução do

problema

- Problema: Ladrão da Mochila
 - Um ladrão entra numa loja com uma mochila de capacidade P (peso)
 - Na loja existem objetos de peso P_1 , P_2 , ..., P_n com valor V_1 , V_2 , ..., V_n
 - Qual o saque mais valioso que o ladrão pode levar na mochila?

- Solução através da técnica de força bruta
 - São identificadas todas as combinações possíveis dos n objetos (subconjuntos)
 - 2. É calculado o peso total de cada subconjunto, de forma a identificar os que são válidos (cujo peso não ultrapassa a capacidade da mochila)
 - 3. A solução é o subconjunto com maior valor, de entre todas as combinações válidas

Sub-conjuntos objetos	Peso total	Valor total
Ø	0	0€
{1}	7	42€
{2}	3	12€
{3}	4	40€
{4}	5	25€
{1,2}	10	54€
{1,3}	11	n/a
{1,4}	12	n/a
{2,3}	7	52€
{2,4}	8	37€
{3,4}	9	65€
{1,2,3}	14	n/a
{1,2,4}	15	n/a
{1,3,4}	16	n/a
{2,3,4}	12	n/a
{1,2,3,4}	19	n/a

Capacidade da mochila:

$$P = 10$$

Solução

Subconjunto de objetos com o saque mais valioso

- A Programação Dinâmica (Dynamic Programming) é uma técnica para a resolução de problemas complexos
 - Foi inventada pelo matemático Richard Belmann (US), em 1950
 - É do tipo space-for-time trade off (troca de tempo por espaço)
- 1. Parte o problema original em sub-problemas mais pequenos
- 2. As soluções parciais dos sub-problemas são então calculadas e memorizadas numa tabela (array ou estrutura similar), para evitar serem recalculadas
- A solução do problema original é obtida combinando as soluções dos sub-problemas

 A técnica pode ser usada em problemas que podem ser divididos em sub-problemas do mesmo tipo, cujas soluções são reutilizadas no cálculo da solução final

Pode ser calculado somando o resultado dos três sub-problemas:

0

2

Memória Adicional

11

$$val a = IntArray(3)$$

• 5 + 6 = 11

Solução final:

$$\cdot$$
 3 + 7 + 11

for (i in a.indices) a[i] ...

- Problema: Números de Fibonacci
 - Ilustração da técnica através dos números de Fibonacci, dados pela sequência:

Definição matemática

$$F(0) = 0$$
, $F(1) = 1$
 $F(n) = F(n-1) + F(n-2)$ para $n > = 2$

- O problema do cálculo de Fibonacci de n
 - **F**(n)
- É expresso em termos do cálculo dos sub-problemas
 - F(0), F(1), F(2), ... F(n)
- É necessário um array com n+1 posições para registar as soluções consecutivas dos sub-problemas de F(n)
 - Iniciando com F(0) = 0 e F(1) = 1
 - Usando as regras F(n) = F(n-1) + F(n-2), calcula-se e memoriza-se a solução de cada sub-problema em posições sucessivas do array
 - A última posição do array contém a solução final. Exemplo para F(7):

 Algoritmo para o cálculo dos Números de Fibonacci através da programação dinâmica

```
// Cálculo do n-ésimo número de Fibonacci
fun fibonacci1(n: Int): Int {
   val f = IntArray(n+1)
   f[0] = 0
   f[1] = 1
   for (i in 2..n)
      f[i] = f[i-1] + f[i-2]
   return f[n]
}
```

- Problema: Ladrão da Mochila
- Solução através da técnica de programação dinâmica
 - Calcular a melhor combinação para todas as mochilas de capacidade 1 até M (capacidade máxima)
 - Começar por considerar que só se pode usar o objeto 1,
 - depois os objetos 1 e 2,
 - depois os objetos 1, 2 e 3,
 - e finalmente todos os objetos de 1 a N ($N = n^{\circ}$ de objetos)

- Problema: Ladrão da Mochila
- Solução através da técnica de programação dinâmica

 A técnica Gananciosa (Greedy) calcula a melhor solução de um problema através de uma repetição de uma série de passos (escolha de soluções parciais), até obter a solução ótima final

- Em cada passo, a escolha tem que ser
 - Ótima tem que ser a melhor escolha entre todas as possíveis e disponíveis até ao momento
 - Possível não pode violar as restrições do problema (solução impossível)
 - Irreversível uma vez escolhida, não pode ser alterada (voltar atrás) nos passos subsequentes do algoritmo

- Problema: Troco em Moedas
 - Calcular o troco em moedas de uma dada quantia, no menor número possível de moedas. Em cada passo é escolhida uma moeda
 - Exemplo para um troco = 2.59€
 - Pode ser escolhida uma moeda de qualquer valor. Contudo, a técnica gananciosa leva à escolha de 2€ pois reduz ao máximo a quantia restante, para 59 cent
 - Dispomos igualmente de moedas de todos os valores, mas não podem ser escolhidas 2€ e 1€ pois violam as restrições do problema (ultrapassam o valor do troco). A melhor escolha é de 50 cent, restando 9 cent
 - Seguindo a mesma técnica, as restantes moedas são: 5 cent, 2 cent e 2 cent

- Problema: Ladrão da mochila
- Solução através da técnica gananciosa
 - Calcular: a relação valor-peso V_i / P_i, para todos os objetos (para conhecer quais os mais valiosos com menor peso)
 - Ordenar: os objetos por ordem decrescente da relação valorpeso
 - 3. Repetir: até a mochila estar cheia ou não existirem mais objetos:
 - Percorrer os objetos por ordem decrescente de relação-peso
 - Se o objeto cabe na mochila, coloca-se, senão descarta-se
 - Proceder para o próximo objeto

Capacidade da mochila:

Objeto	Peso (P)	Valor (V)	V/P	
1	7	42€	6	
2	3	12€	4	
3	4	40€	10	
4	5	25€	5	

	Objeto	Peso (P)	Valor (V)	V/P
Solução Subconjunto de objetos com o saque mais valioso: 65€	3	4	40€	10
	1	7	42€	6
	—4	5	25€	5
	2	3	12€	4

RECURSIVIDADE

- Algoritmo para o cálculo dos Números de Fibonacci através da solução naive recursiva
 - É menos eficiente em termos de tempo

Os sub-problemas são recalculados várias vezes

Definição matemática:

$$F(0) = 0$$
, $F(1) = 1$
 $F(n) = F(n-1) + F(n-2)$ para $n > = 2$

F(1) F(0)

F(1)

F(1)

F(0)

F(1)

// Cálculo do n-ésimo número // de Fibonacci

F(3)

Problema: Torres de Hanoi

O matemático Édouard Lucas inspirou-se numa lenda para construir o jogo das Torres de Hanói em 1883, o qual consiste numa base contendo três pinos. No primeiro são então dispostos alguns discos uns sobre os outros em ordem decrescente de diâmetro. O problema consiste em passar todos os discos de um pino para outro, movendo um disco de cada vez e usando um dos pinos como auxiliar, de maneira que um disco menor fique sempre em cima de outro maior. O número de discos pode variar, sendo três na situação mais simples.

- Solução para 3 discos
 - O objetivo é mover todos os discos um pino para a direita de acordo com as seguintes regras:
 - Só se pode mover um disco de cada vez
 - Só se pode colocar um disco num pino vazio ou sobre um disco de diâmetro superior

ISEL/AED 28/02/2023 20

- Solução para 3 discos
 - O objetivo é mover todos os discos um pino para a direita de acordo com as seguintes regras:
 - Só se pode mover um disco de cada vez
 - Só se pode colocar um disco num pino vazio ou sobre um disco de diâmetro superior

- Solução para 3 discos
 - O objetivo é mover todos os discos um pino para a direita de acordo com as seguintes regras:
 - Só se pode mover um disco de cada vez
 - Só se pode colocar um disco num pino vazio ou sobre um disco de diâmetro superior

- Solução para 3 discos
 - O objetivo é mover todos os discos um pino para a direita de acordo com as seguintes regras:
 - Só se pode mover um disco de cada vez
 - Só se pode colocar um disco num pino vazio ou sobre um disco de diâmetro superior

- Solução para 3 discos
 - O objetivo é mover todos os discos um pino para a direita de acordo com as seguintes regras:
 - Só se pode mover um disco de cada vez
 - Só se pode colocar um disco num pino vazio ou sobre um disco de diâmetro superior

- Solução para 3 discos
 - O objetivo é mover todos os discos um pino para a direita de acordo com as seguintes regras:
 - Só se pode mover um disco de cada vez
 - Só se pode colocar um disco num pino vazio ou sobre um disco de diâmetro superior

- Solução para 3 discos
 - O objetivo é mover todos os discos um pino para a direita de acordo com as seguintes regras:
 - Só se pode mover um disco de cada vez
 - Só se pode colocar um disco num pino vazio ou sobre um disco de diâmetro superior

- Solução para 3 discos
 - O objetivo é mover todos os discos um pino para a direita de acordo com as seguintes regras:
 - Só se pode mover um disco de cada vez
 - Só se pode colocar um disco num pino vazio ou sobre um disco de diâmetro superior

- Solução para 3 discos
 - O objetivo é mover todos os discos um pino para a direita de acordo com as seguintes regras:
 - Só se pode mover um disco de cada vez
 - Só se pode colocar um disco num pino vazio ou sobre um disco de diâmetro superior

- Solução para 3 discos
 - O objetivo é mover todos os discos um pino para a direita de acordo com as seguintes regras:
 - Só se pode mover um disco de cada vez
 - Só se pode colocar um disco num pino vazio ou sobre um disco de diâmetro superior

- Solução para 5 discos
 - Para mover os 5 discos um pino para a direita
 - Movem-se os 4 discos menores um pino à esquerda
 - Move-se o disco 5 um pino à direita
 - Movem-se os 4 discos menores um pino à esquerda

- Solução para 5 discos
 - Para mover os 5 discos um pino para a direita
 - Movem-se os 4 discos menores um pino à esquerda
 - Move-se o disco 5 um pino à direita
 - Movem-se os 4 discos menores um pino à esquerda

Considera-se uma movimentação circular nos pinos para a esquerda ou para a direita

- Solução para 5 discos
 - Para mover os 5 discos um pino para a direita
 - Movem-se os 4 discos menores um pino à esquerda
 - Move-se o disco 5 um pino à direita
 - Movem-se os 4 discos menores um pino à esquerda

- Solução para 5 discos
 - Para mover os 5 discos um pino para a direita
 - Movem-se os 4 discos menores um pino à esquerda
 - Move-se o disco 5 um pino à direita
 - Movem-se os 4 discos menores um pino à esquerda

- Solução para 5 discos
 - Para mover os 5 discos um pino para a direita
 - Movem-se os 4 discos menores um pino à esquerda
 - Move-se o disco 5 um pino à direita
 - Movem-se os 4 discos menores um pino à esquerda

- Solução para 5 discos
 - Para mover os 5 discos um pino para a direita
 - Movem-se os 4 discos menores um pino à esquerda
 - Move-se o disco 5 um pino à direita
 - Movem-se os 4 discos menores um pino à esquerda

- Solução para 5 discos
 - Para mover os 5 discos um pino para a direita
 - Movem-se os 4 discos menores um pino à esquerda
 - Move-se o disco 5 um pino à direita
 - Movem-se os 4 discos menores um pino à esquerda

Mas não se podem mover 4 discos de cada vez. Então ...

EXEMPLO DE RECURSIVIDADE

- Para mover os 4 discos um pino para a esquerda
 - Movem-se os 3 discos menores um pino à direita
 - Move-se o disco 4 um pino à esquerda
 - Movem-se os 3 discos menores um pino à direita
 - Mas não se podem mover 3 discos de cada vez. Então ...

EXEMPLO DE RECURSIVIDADE

- Para mover os 3 discos um pino para a direita
 - Movem-se os 2 discos menores um pino à esquerda
 - Move-se o disco 3 um pino à direita
 - Movem-se os 2 discos menores um pino à esquerda
 - Mas não se podem mover 2 discos de cada vez. Então ...
 - ... Repete-se até reduzir a 1 disco, o qual pode ser movido

EXEMPLO DE RECURSIVIDADE

- Solução recursiva para N discos
 - Para mover os N discos um pino para a direita
 - Movem-se os N-1 discos menores um pino à esquerda
 - Move-se o disco N um pino à direita
 - Movem-se os N-1 discos menores um pino à esquerda

```
Caso de menor dimensão

fun hanoi(n: Int, d: Int) {

if (n == 1) move (n, +d)

else {

hanoi(n - 1, -d)

move (n, +d)

hanoi(n - 1, -d)

hanoi(n - 1, -d)

}

}
```

- A técnica Dividir para Conquistar (Divide and Conquer) é provavelmente uma das melhores técnicas conhecidas de desenho de algoritmos
 - Alguns dos algoritmos mais eficientes, são implementações específicas desta estratégia
- Divide o problema em sub-problemas (idealmente com a mesma dimensão), os quais são instâncias mais pequenas do mesmo problema
- 2. Conquista os sub-problemas resolvendo-os recursivamente (tipicamente). Se estes são suficientemente pequenos (casos de menor dimensão), a solução é logo encontrada
- 3. Combina as soluções dos sub-problemas para obter a solução do problema original

PESQUISA

Problema:

 Pretende-se pesquisar se existe um dado elemento num array ordenado. Caso exista, a função devolve o seu índice. Senão, devolve -1

```
Array a 1 3 5 6 8 11 15 30

O 1 2 3 4 5 6 7

left right
```

Solução: força bruta

```
fun linearSearch (a: IntArray, left: Int, right: Int, x: Int): Int {
   for (i in left..right)
      if (x == a[i]) return i;
   return -1;
}
```

PESQUISA BINÁRIA

- Solução: dividir para conquistar (o array tem que estar ordenado)
 - Divide o problema particionando o array ao meio sucessivamente, até encontrar o elemento ou o array ficar vazio
 - Conquista os sub-problemas verificando em cada instância, se o elemento procurado está na posição central. Caso esteja, a solução é encontrada devolvendo o índice do elemento. Senão, se o elemento procurado for menor que o elemento central, a pesquisa continua na metade esquerda do array, caso contrário continua na metade direita
 - Combina (não implica nenhuma operação adicional)

PESQUISA BINÁRIA

```
fun binarySearchRecursive (a: IntArray, left: Int, right: Int, x: Int): Int {
   if (left > right) return -1
   val mid = (left + right) / 2
   if (x == a[mid]) return mid
   else if (x < a[mid]) return binarySearchRecursive(a, left,mid-1, x)
   else return binarySearchRecursive(a, mid+1, right, x)
}</pre>
```

 Algoritmo iterativo

```
fun binarySearchIterative (a: IntArray, left: Int, right: Int, x: Int): Int {
   var I = left
   var r = right
   while (I <= r) {
      val mid = (I + r) / 2
      if (x == a[mid]) return mid else if (x < a[mid]) r = mid -1
      else I = mid + 1
   }
   return -1
}</pre>
```

- Problema: Máximo de um Array
 - Dado um array preenchido com números inteiros, encontrar o maior

- Solução: força bruta
 - Pesquisa exaustiva percorrendo e comparando todas as posições do array até encontrar o maior valor

```
fun maxOfArray(a: IntArray, left: Int, right: Int): Int {
   var maxV = a[left]
   for (i in left + 1..right)
      if (a[i] > maxV) maxV = a[i]
   return maxV
}
```

- Solução: dividir para conquistar
 - Divide o problema particionando o array ao meio sucessivamente, até que cada metade tenha dimensão 1
 - Conquista os sub-problemas calculando recursivamente o maior valor de cada metade. Como estas têm dimensão 1 (caso de menor dimensão), o máximo valor em cada uma é logo encontrado
 - Combina os resultados calculando em cada instância o maior valor de ambas as metades

• O algoritmo particiona o array a[left, ..., right] em duas metades:

```
a[left, ..., mid] e a[mid+1, ..., right]
```

- Até que cada metade tenha dimensão 1 (left = right)
- Calcula o máximo valor de cada metade
- Devolve o maior valor de ambas as metades, que na ultima instância é o máximo de todo o array

- Problema: SubArray Máximo
 - O problema do subarray máximo consiste em encontrar a maior soma de números consecutivos, num array unidimensional preenchido com números inteiros (positivos e negativos)
 - Exemplo: resultados do lucro da empresa X Corp.

Ano		2	3	4	5	6	7	8
Lucro M€	2	1	-4	5	2	-1	3	-3

- Qual o máximo de lucro ganho pela X Corp. em anos consecutivos?
- Entre o ano 1 e 8

$$2 + 1 - 4 + 5 + 2 - 1 + 3 - 3 = 5 M \in$$

Entre o ano 2 e 6

$$1-4+5+2-1=3 M \in$$

Entre os anos 4 e 7 a X Corp. ganhou:

$$5 + 2 - 1 + 3 = 9 M \in$$

- Solução: força bruta
 - Calcula-se a soma de todos os sub-conjuntos possíveis do array, comparando e guardando a maior

```
Array a 2 1 -4 5 2 -1 3 -3

0 1 2 3 4 5 6 7

right
```

```
fun maximumSubArray(a: IntArray, left: Int, right: Int): Int {
  var maxSum = 0 // soma máxima
  for (i in left..right) {
    var currSum = 0 // soma corrente
    for (j in i..right) {
        currSum += a[j]
        if (currSum > maxSum) maxSum = currSum
      }
  }
  return maxSum
}
```

```
i = 0 1 2 3 4 5 6 7

j = 0

j = 0 1

j = 0 1 2

j = 0 1 2 3

j = 0 1 2 3 4

j = 0 1 2 3 4 5

j = 0 1 2 3 4 5 6

j = 0 1 2 3 4 5 6

j = 0 1 2 3 4 5 6 7
```

- Solução: programação dinâmica (Algoritmo de Kadane)
 - Consiste em percorrer todo o array, calculando em cada posição a soma máxima obtida até à posição corrente
 - Em cada posição, adiciona-se o valor corrente à soma obtida até ao momento
 - Caso a soma corrente dê um valor negativo, recomeça-se com soma = 0
 - Caso contrário, o elemento corrente fica a fazer parte da soma

A	array a	2	1	-4	5	2	-1	3	-3	
		0 left	1	2	3	4	5	6	7 right	
currSum = -1										
currSum	0	2	3	0	5	7	6	9	6	
maxSum	0	2	3	3	5	7	7	9	9	9

Algoritmo de Kadane

```
Array a 2 1 -4 5 2 -1 3 -3

0 1 2 3 4 5 6 7

left right
```

```
fun maximumSubArrayKadane(a: IntArray, left: Int, right: Int): Int {
  var maxSum = 0 // soma máxima
  var currSum = 0 // soma corrente
  for (i in left..right) { //i = 0 1 2 3 4 5 6 7
      currSum = if (currSum + a[i] > 0) currSum + a[i] else 0
      if (currSum > maxSum) maxSum = currSum
  }
  return maxSum
}
```

ISEL/AED