Мрежова сигурност I

http://training.iseca.org/

Wi-Fi 1/2

2010-10-26

Acknowledgements

Some materials are based on work by

- Wikipedia users
 - MarkWarren, Zedh, Geocachernemesis, Stannered, Adamantios, MarkO

Преговор и план на курса

- Увод в мрежовата сигурност
- Криптография
- Увод в мрежите
- Ethernet
- → Wi-Fi
- IP
- UDP, DHCP, ARP, IP routing protocols
- IPv6
- TCP
- Тест средата-края на Ноември
- Демо
- ...

План

- Слоевете
- История на Wi-Fi
- Стандарти
- Физическа среда
- Ad-hoc mode
- Infrastructure mode
- Mesh
- Authentication and Encryption
- Инструменти и атаки

Слоевете

7. HTTP, FTP, SMTP, POP3, IMAP4, SIP, XMPP, IRC, SNMP, SSH, DNS, NTP, DHCP

4/5. TCP, UDP, RTP, SCTP

3. IP / IPv6

2. Ethernet, Wi-Fi, etc.

1. physical media, modulation and coding

История

- 1985 ISM bands
 - 5% of spectrum
- 1991 Pre-standard
 - WaveLAN NCR -> Lucent -> Proxim
- 802.11-1997 1Mbps, 2Mbps
- 1999
 - 802.11a 6-54Mbps @5GHz
 - 802.11b 5.5Mbps, 11Mbps
 - Wi-Fi Alliance formed
- 2003 802.11g 6-54Mbps @2.4GHz
- 2009 802.11n up to 600 Mbps @2.4GHz & 5GHz

Стандарти

- IEEE
 - Standards
 - http://standards.ieee.org/getieee802/802.11.html
- Wi-Fi Alliance
 - Certification, Interop and Early Standards
 - http://www.wi-fi.org/

Стандарти

- 802.11-2007, 802.11-2011
- 802.11 a,b,g,n
- 802.11i WPA2
- 802.11w Protected management frames

- WPA replaced by WPA2
- WPS

- Drafts
 - Draft 802.11s Mesh networking
 - Draft 802.11u Interworking with external networks

Физическата среда

Физическата среда

• Припокриващи се канали

• Други технологии на същите честоти

Физическата среда

- Ефир
- Дизайн на физическата среда
- Параметри
 - Прозрачност
 - Мощност на сигнала
 - Разпространение на сигнала

Ad-hoc mode

- a.k.a. IBSS (Independent Basic Service Set)
- Мрежа без централно управление
- Станциите комуникират директно една с друга

 Няма пълна свързаност, комуникацията не е гарантирана

Infrastructure mode

- Access point
 - Basic Service Set (BSS)
 - Authentication & Encryption
 - BSSID (BSS identifier)

- Multi-AP networks
 - Mobility & Hand-over
 - SSID (ESS/IBSS identifier)
- Bridge към Ethernet

Фрейма

• Data фреймове

Figure 7-1—MAC frame format

• Контролни фреймове – различен формат

Mesh

- WDS
- MANET
- Само-конфигурираща се мрежа
- Автоматичен relay на трафик между станциите

Въпроси

Authentication and Encryption

• 802.1X, EAP

- WEP
- WPA
 - TKIP/RC4
 - Съвместимост със стар хардуер
- 2004 802.11i WPA2
 - CCMP/AES
 - "Robust Security Network"

EAP

- IETF standard
 - 1998 RFC 2284 PPP EAP (obsoleted)
 - 2004 RFC 3748 EAP (proposed standard)
 - 2008 RFC 5247 EAP Key Management framework
- Everything over EAP
 - TLS (certificates)
 - EAP-MD5, EAP-PSK
- EAP over everything
 - EAP over GSM
 - EAP over 802.1X
 - EAP over PPP
 - EAP over RADIUS

Optional crypto

• Използването на WEP/WPA/WPA2 е по избор

• ... и изключено по подразбиране

Options

- Open, Shared
 - WEP
- WPA / WPA2
 - "Enterprise"
 - PMK derived through EAP
- WPA-PSK / WPA2-PSK
 - PMK= f(PSK)

WEP

- Stream cipher RC4
- Short IV 24 bits
 - birthday paradox
 - related key attack

Authentication and Encryption (WPA/WPA2)

- 1. Association
- 2.A. 802.1X / EAP Authentication or
- 2.B. Use PMK derived from PSK
- 3. Establish PTK

- PSK = Pre-shared key
- PMK = Pairwise master key
- PTK = Pairwise transient key
- GTK = Group transient key

Figure 5-11—Establishing the IEEE 802.11 association

2.A. Authentication (WPA/WPA2)

Figure 5-12—IEEE 802.1X EAP authentication

Figure 5-13—Establishing pairwise and group keys

Въпроси

Мрежова сигурност I

http://training.iseca.org/

Wi-Fi 2/2

2010-10-26

План

- Преговор
- История на Wi-Fi
- Стандарти
- Физическа среда
- Ad-hoc mode
- Infrastructure mode, roaming
- Mesh
- Authentication and Encryption

→Инструменти и атаки

Класове проблеми

- Подслушване
- AP impersonation, Endpoint impersonation
- Physical DoS
- Logical DoS
 - disassociation
- WEP слабости
- ТКІР/RC4 слабости
- ССМР/AES слабости
- Password (PSK/PMK) brute force
- Бъгове в драйвери

Ethernet - Физически слой - атаки

- DoS на споделената среда
- Пасивно подслушване 10/100
- MITM

Wardriving

Impersonalization

- SSID/BSSID spoofing
- MAC spoofing
 - MAC filter brute force

Physical DoS

- Заглушаване
 - Continuous wave transmitter
 - Микровълнова печка (800 W магнетрон)
- Фарадеев кафез
 - Anti-wifi боя

Логически DoS

Disassociation / deauthentication

5.8.2.3 Disassociation

Disassociation initiated by either STA in an RSNA causes the deletion of the PTKSA at both ends and the deletion of the GTKSA in a non-AP STA. The controlled and uncontrolled ports created for this association will also be deleted.

Frame fuzzing

WEP

- Weak crypto
- Fragmentation attack
 - Obtain key material from traffic
- Chop-Chop
 - get packet
 - chop one byte off
 - try 256 different check-sums by asking AP
- Café Latte attack
 - Pretend to be AP (optional)
 - Client associates. Get ARP packet from client. Send crafted ARP. Client responds

WEP Fragmentation attack

"BAD" frag1 frag2 ... fragN

packet

packet

packet

TKIP/RC4 слабости

- 2008 Beck-Tews attack
 - chop-chop revisited
 - "Practical attacks against WEP and WPA"
- 2009 Ohigashi-Morii attack
 - "A Practical Message Falsification Attack on WPA"

CCMP/AES слабости

- 2006 "Vulnerabilities of IEEE 802.11i Wireless LAN CCMP Protocol"
 - TMTO Effective key strength 85 bits
- 2010 Hole 196

• Най-големия проблем е все още brute force на паролата

Hole 196

8.5.1 Key hierarchy

RSNA defines two key hierarchies:

- a) Pairwise key hierarchy, to protect unicast traffic
- b) GTK, a hierarchy consisting of a single key to protect multicast and broadcast traffic

NOTE—Pairwise key support with TKIP or CCMP allows a receiving STA to detect MAC address spoofing and data forgery. The RSNA architecture binds the transmit and receive addresses to the pairwise key. If an attacker creates an MPDU with the spoofed TA, then the decapsulation procedure at the receiver will generate an error. GTKs do not have this property.

196

Copyright © 2007 IEEE. All rights reserved.

Проблеми в драйверите

- madwifi bug
- Apple bug
- Fuzzing

Въпроси

Tools

BackTrack Linux

- aircrack-ng
- pyrit WPA/WPA2-PSK PMK pre-computation
- mdk3 attack toolbox
- Kismet
- Wireshark
- openwrt

Aircrack-ng

Aircrack-ng is an 802.11 WEP and WPA-PSK keys cracking program that can recover keys once enough data packets have been captured. It implements the standard FMS attack along with some optimizations like KoreK attacks, as well as the all-new PTW attack, thus making the attack much faster compared to other WEP cracking tools.

In fact, Aircrack-ng is a set of tools for auditing wireless networks.

pyrit

Pyrit allows to create massive databases, precomputing part of the WPA/WPA2-PSK authentication phase in a space-time-tradeoff. Exploiting the computational power of Many-Coreand other platforms through ATI-Stream, Nvidia CUDA, OpenCL and VIA Padlock, it is currently by far the most powerful attack against one of the world's most used security-protocols.

mdk3

- Features:
- Bruteforce MAC Filters
- Bruteforce hidden SSIDs (some small SSID wordlists included)
- Probe networks to check if they can hear you intelligent Authentication-DoS to freeze APs (with success checks)
- FakeAP Beacon Flooding with channel hopping (can crash NetStumbler and some buggy drivers)
- Disconnect everything (aka AMOK-MODE) with Deauthentication and Disassociation packets
- WPA TKIP Denial-of-Service
- WDS Confusion Shuts down large scale multi-AP installations

Kismet

Kismet is an 802.11 layer2 wireless network detector, sniffer, and intrusion detection system. Kismet will work with any wireless card which supports raw monitoring (rfmon) mode, and (with appropriate hardware) can sniff 802.11b, 802.11a, 802.11g, and 802.11n traffic. Kismet also supports plugins which allow sniffing other media such as DECT.

Kismet identifies networks by passively collecting packets and detecting standard named networks, detecting (and given time, decloaking) hidden networks, and infering the presence of nonbeaconing networks via data traffic.

Допълнителни материали

Ще публикуваме на сайта на курса

Въпроси

