

Elektrotechnik I

Formelsammlung

1 Das elektrostatische Feld

Institut für Elektromagnetische Felder (IEF)

Elektrische Flussdichte	$\vec{\mathbf{D}} = \epsilon_{\rm r} \epsilon_0 \vec{\mathbf{E}}$	$\vec{\mathbf{D}}$, elektrische Flussdichte [C/m ²] $\epsilon_{\mathbf{r}}$, Dielektrizitätskonstante,
	$\iint_{\Gamma} \vec{\mathbf{p}} \cdot d\vec{\mathbf{A}} = 0$	einheitslos
	$\iint_{\partial V} \vec{\mathbf{D}} \cdot d\vec{\mathbf{A}} = Q$	Gauss'sches Gesetz (Integralform)
	$\nabla \cdot \vec{\mathbf{D}} = \rho$	Gauss'sches Gesetz (Differentialform)
Randbedingungen	$\vec{E}_{t1} = \vec{E}_{t2}$	Tangentialkomponente
	$D_{\rm n2} - D_{\rm n1} = \sigma$	Normalkomponente
Kapazität, Kondensatoren	$C = \frac{Q}{U}$	C, Kapazität, [F]=[As/V]
	· ·	Plattenkondensator
		Fläche A
	$C = \frac{\epsilon_r \epsilon_0 A}{d}$	
Serienschaltung	$C_{\text{ser}}^{-1} = \sum_{k=1}^{n} C_{k}^{-1}$	U_{gos} U_1 U_2 U_n
	$C_{12} = \frac{C_1 C_2}{C_1 + C_2}$	Spezialfall für zwei Kondensatoren
Spannungsteiler	$U_{\rm i} = U_{\rm ges} \frac{C_{\rm i}^{-1}}{\sum_{n} C_{\rm n}^{-1}}$	
	$C_{12} = \frac{C_1 C_2}{C_1 + C_2}$ $U_i = U_{\text{ges}} \frac{C_i^{-1}}{\sum_n C_n^{-1}}$ $U_1 = U_{\text{ges}} \frac{C_2}{C_1 + C_2}$	Spezialfall für zwei Kondensatoren
Parallelschaltung	$C_{\text{parr}} = \sum_{k=1}^{n} C_{k}$	U C_1 C_2 C_n
Ladungsteiler	$Q_{i} = Q_{ges} \frac{C_{i}}{\sum_{n} C_{n}}$ $Q_{1} = Q_{ges} \frac{C_{1}}{C_{1} + C_{2}}$ $W_{e} = \frac{1}{2} \frac{Q^{2}}{C} = \frac{1}{2} QU = \frac{1}{2} CU^{2}$	
	$Q_1 = Q_{\text{ges}} \frac{\mathcal{L}_1}{\mathcal{C}_1 + \mathcal{C}_2}$	Spezialfall für zwei Kondensatoren
Energie	$W_{\rm e} = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} QU = \frac{1}{2} CU^2$	W _e , Energie im Kondensator [J]

2 Das stationäre elektrische Strömungsfeld

Elektrischer Strom	$I(t) = \frac{\mathrm{d}Q}{\mathrm{d}t}$	I, Strom [Ampere, A]Q, el. Ladung, [Coulomb, C]
	$I = \iint_{\mathbf{A}} \vec{\mathbf{J}} \cdot d\vec{\mathbf{A}} = \kappa \iint_{\mathbf{A}} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}$	
Elektrische Stromdichte	$I = \iint_{A} \vec{\mathbf{J}} \cdot d\vec{\mathbf{A}}$	<i>J</i> , Stromdichte, [A/m ²]
	$I = \vec{\mathbf{J}} \cdot \vec{\mathbf{A}}$, wenn $J = \text{konstant auf A}$	
	$\vec{\mathbf{J}} = \frac{\Delta I}{\Delta A} \vec{\mathbf{e}}_{\mathbf{v}} = \rho \cdot \vec{\mathbf{v}}$	Konvektionsstrom
	$\vec{\mathbf{J}}_{\mathrm{v}} = \frac{\mathrm{d}}{\mathrm{d}t}\vec{\mathbf{p}}$	Verschiebungsstrom
Kontinuitätsgleichung	$\frac{\mathrm{d}\rho}{\mathrm{d}t} + \vec{\nabla} \cdot \vec{\mathbf{J}} = 0$	
	$ \oint_{A} \vec{\mathbf{J}} \cdot d\vec{\mathbf{A}} = 0 $ (geschlossene Fläche A!)	Spezialfall: ohne Ladungsträger- Generation, Senke
Materialeigenschaften	$\mu_{ m e} \vec{ m E} = \vec{ m v}_{ m e} \;\;, \mu_{ m h} \vec{ m E} = \vec{ m v}_{ m h}$	μ_e , μ_h , Mobilität Elektronen & Löcher, [m²/Vs]
	$\kappa=ne~\mu_{ m e}$	κ , Leitfähigkeit, [S/m]
	$ ho_R = rac{1}{\kappa}$	$ ho_{ m R}$, Spez. Widerstand, [Ω m]
Im elektrischen Leiter	$\vec{\mathbf{E}} = ho_{\mathrm{R}} \vec{\mathbf{J}}$	
	$\vec{J} = \kappa \vec{E}$	
Widerstand, Leitwert	$R = \rho_{\rm R} \frac{L}{A}$	
	$G = \frac{1}{R}$	
	$R(T) = \frac{l}{A} \rho_{20^{\circ}C} (1 + \alpha \Delta T + \beta \Delta T^{2})$	ρ_{20} , spez. Widerstand bei 20°C
	Kaltleiter (PTC) Heißleiter (NTC) $\frac{\theta}{\sqrt{c}}$	α , β , ρ -Temperaturkoeffizient, [1/T ⁿ] n = Korrektur Ordn. Negativer Temperaturkoeffizient (NTC) Positiver Temperaturkoeffizient (PTC)
Ohm'sches Gesetz	U = RI	U , Spannung, [Volt, V] R , Widerstand [Ohm, Ω]
	I = GU	G, Leitwert [Siemens, S]
Leistung	P = UI	P, Leistung, [Watt, W]
	$p = \frac{dP}{dV} = \vec{\mathbf{J}} \cdot \vec{\mathbf{E}}$	p , Leistungsdichte pro Volumen, [W/m 3]

3 Elektrische Netzwerke

Kirchhoff'sche
Gleichungen

$$\sum_{Knoton} I = 0$$

$$\sum_{Masche} U = \begin{bmatrix} U_{R_1} & & & \\ & & & \\ & & & \\ & & & \\ U_{R_4} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

$$R_{\rm ges} = \sum_{k=1}^{n} R_k$$

Gesamtwiderstand

$$R_{\text{ges}} \quad \sum_{k=1}^{n} R_{k}$$

$$G_{\text{ges}} = \sum_{k=1}^{n} G_{k}$$

$$R_{\text{ges}} = R_1 \parallel R_2 = \frac{R_1 R_2}{R_1 + R_2}$$

$$R_{\rm ges} = \frac{R}{n}$$

$$=\frac{R}{n}$$

Teiler

Spannungsteiler

$$\frac{U_2}{U} = \frac{R_2}{(R_1 + R_2)}$$

$$\frac{I_1}{I} = \frac{R_2}{R_1 + R_2} = \frac{G_1}{G_1 + G_2}$$

Umwandlung

Dreieck→ Stern

$$R_{1N} = \frac{R_{12}R_{31}}{R_{12} + R_{23} + R_{31}}$$

$$R_{2N} = \frac{R_{12}R_{23}}{R_{12} + R_{23} + R_{31}}$$

$$R_{3N} = \frac{R_{23}R_{31}}{R_{12} + R_{23} + R_{31}}$$

$$R_{12} = R_{1N} + R_{2N} + \frac{R_{1N}R_{2N}}{R_{3N}}$$

$$R_{23} = R_{2N} + R_{3N} + \frac{R_{2N}R_{3N}}{R_{2N}}$$

$$R_{12} = R_{1N} + R_{2N} + \frac{R_{2N}}{R_{3N}}$$

$$R_{23} = R_{2N} + R_{3N} + \frac{R_{2N}R_{3N}}{R_{1N}}$$

$$R_{31} = R_{1N} + R_{3N} + \frac{R_{1N}R_{3N}}{R_{2N}}$$

$$R_{3N}$$
 R_{2N}
 R_{2N}

Superpositionsprinzip Quellen: Die Gesamtquelle ist die lineare Superposition der Teillösungen von jeder einzelnen

Quelle

Spannungsquelle

Einzelne Quelle bestimmen: Ersatz durch Kurzschluss

Es darf bei Teillösungen keine zusätzliche Spannung über der Quelle abfallen

Stromquelle

Einzelne Quelle bestimmen: Ersatz durch Unterbruch

Es darf bei Teillösungen kein zusätzlicher Strom durch die Quelle fliessen.

Identische Quellen	Leerlaufspannung	Kurzschlussstrom	Innenwiderstand
Serienschaltung	$U_{0,\mathrm{n}}=n\;U_0$	$I_{K,n} = I_{K}$	$R_{i,n} = n R_i$
Parallelschaltung	$U_{0,n} = U_0$	$I_{K,n} = n I_K$	$R_{\rm i,n} = \frac{R_{\rm i}}{n}$

Leistungsanpassung

Von Spannungsquelle an Last abgegebene Leistung

$$P_{\rm L} = \left(\frac{U_0}{R_{\rm i} + R_{\rm L}}\right)^2 R_{\rm L}$$

Bei Leistungsanpassung: $R_L = R_i$

Maximal abgegebene Leistung

$$P_{\rm L,max} = \frac{U_0^2}{4R_i}$$

 $R_{\rm L} = R_{\rm i}$ Leistungsanpassung

Wirkungsgrad einer Spannungsquelle Wirkungsgrad einer

Stromquelle

$$\eta = \frac{P_{L}}{P_{\text{ges}}} = \frac{R_{L}}{(R_{i} + R_{L})} = \frac{U_{L}}{U_{0}}$$

$$\eta = \frac{P_{L}}{P_{\text{ges}}} = \frac{R_{i}}{(R_{i} + R_{L})} = \frac{I_{L}}{I_{K}}$$

Knotenpotentialverfahren

Allgemein

1) Knoten & Potentiale nummerieren

- Potential 0: «GND»
- k-1 freie

 $\varphi_{\rm i} = U_{\rm i0}$

2) Knotengleichungen

$$\sum_{j \neq i} I_{ij} = 0$$

 $1: I_3 + I_4 - I_q = 0$

3)Leitwerte & Potentiale einsetzen

- Stromquellen auf die rechte Seite

1: $G_3(\varphi_1 - \varphi_2) + G_4(\varphi_1 - \varphi_3) = I_q$

4) Nach Potentialen gruppieren

$$\left(\sum_{j \neq i} G_{ij}\right) \varphi_{i} - \sum_{j \neq i} G_{ij} \varphi_{j} = \sum_{j \neq i} I_{q,ij}$$
 2: $(G_{3} + G_{4}) \varphi_{1} - G_{3} \varphi_{2} - G_{4} \varphi_{3} = I_{q}$

5)Matrixform

- Leitwertmatrix M
- Quellenstromvektor \vec{I}

$$M_{ij} = \begin{cases} -G_{ij} & j \neq i \\ \sum_{l \neq i} G_{il} & j = i \end{cases}$$

$$\vec{I}_{i} = \sum_{l \neq i} I_{q,ij}$$

$$\begin{split} \mathbf{M}_{ij} = & \begin{cases} -G_{ij} & j \neq i \\ \sum_{l \neq i} G_{il} & j = i \end{cases} & \mathbf{M} = \begin{bmatrix} G_3 + G_4 & -G_3 & -G_4 \\ -G_3 & G_3 + G_5 + G_7 & -G_7 \\ -G_4 & -G_7 & G_4 + G_6 + G_7 \end{bmatrix} \\ \vec{I}_i = & \sum_{l \neq i} I_{\mathbf{q}, ij} & \vec{I} = \begin{bmatrix} I_{\mathbf{q}} \\ 0 \\ 0 \end{bmatrix} \end{split}$$

6) Matrixgleichung lösen

$$M\vec{\varphi} = \vec{I}$$

Maschenstromverfahren

Allgemein

Beispiel

- (Zweig-) Strompfeile definieren
- I_1 bis I_z , z Zweige
- Lin. unabhängige 2) Maschen finden

 M_1 bis M_m , m Maschen

Maschenstrom für jede Masche definieren

 I_{M_1} bis I_{M_m}

- Zweigströme als Kombination der Maschenströme schreiben
- $\forall i \in \{1, \dots, k\}, \; I_i$ $v_{i} \in \{1, ..., k\}, I_{i}$ $= \sum_{m} b_{n} I_{M_{n}}, \text{ mit } b_{n} \in \{0, \pm 1\}$

$$\begin{split} I_1 &= I_{M_1} + I_{M_3} \\ I_3 &= I_{M_1} \\ I_6 &= I_{M_1} - I_{M_2} \end{split}$$
 $\Rightarrow \vec{I} = A\vec{I}_M$

- Für jede Masche Maschengleichung aufstellen.
- $\forall m \sum_{U \in M_m} U = 0$
- $U_1 + U_6 + U_3 U_{q1} = 0$

- Ohm'sches Gesetz anwenden. Ströme durch Maschenströme gemäss (4) ersetzen.
- $= \begin{cases} R_i I_i = R_i \sum_{n=1}^m b_n I_{M_n} & \text{, } \Omega\text{-Law} & R_1 \left(I_{M_1} + I_{M_2}\right) + R_6 \left(I_{M_1} I_{M_2}\right) + R_3 I_3 = U_{q1} \\ U_q & \text{, Quellen} \end{cases}$

Finde Maschenströme

$$\mathbf{R}\vec{I}_{M}=\vec{Q}$$

 $\begin{bmatrix} -R_6 & R_2 + R_6 + R_4 & R_4 \\ R_1 + R_3 + R_6 & -R_6 & R_1 \\ R_1 & R_4 & R_4 + R_5 + R_1 \end{bmatrix} \begin{bmatrix} I_{M1} \\ I_{M2} \\ I_{M3} \end{bmatrix} = \begin{bmatrix} U_{q2} \\ U_{q1} \\ I_{y1} \end{bmatrix}$

- 8) Finde Zweigströme
- $\vec{I} = A\vec{I}_M = AR^{-1}\vec{Q}$

4 Das stationäre Magnetfeld

Lorentz-Kraft auf bewegte Ladung	$\vec{\mathbf{F}} = q(\vec{\mathbf{v}} \times \vec{\mathbf{B}})$	 q, Elementarladung [C] v, Geschwindigkeitsvektor [m/s] B, Magnetische Flussdichte [T]
Lorentz-Kraft auf Leiter	$\vec{\mathbf{F}} = I(\vec{\mathbf{l}} \times \vec{\mathbf{B}})$	\vec{l} , Gerichtetes Leiterstück der Länge l
Gesetz von Oersted	$\oint\limits_C \vec{\mathbf{H}} \cdot \mathbf{d}\vec{\mathbf{s}} = \sum_k I_k := \Theta$	$\overrightarrow{\mathbf{H}}$, Magnetische Feldstärke [A/m] $\boldsymbol{\Theta}$, Durchflutung [A]
Durchflutungsgesetz/ Ampèresches Gesetz	$ \oint_C \vec{\mathbf{H}} \cdot d\vec{\mathbf{s}} = \iint_A \vec{\mathbf{J}} \cdot d\vec{\mathbf{A}} := \Theta $ $ \nabla \times \vec{\mathbf{H}} = \vec{\mathbf{J}} $	
Magnetische Feldstärke im Vakuum	$\vec{\mathbf{B}} = \mu_0 \vec{\mathbf{H}}$	μ_0 , Magnetische Feldkonstante [H/m=N/A ²]
Magnetische Spannung	$V_{ m m,AB} = \int_A^B \overrightarrow{f H} \cdot { m d} ec{f s}$	$V_{m,AB}$, Magnetische Spannung zwischen den Punkten A und B [A]
Magnetischer Fluss	$\Phi_{\mathbf{A}} = \iint\limits_{A} \overrightarrow{\mathbf{B}} \cdot \mathrm{d}\overrightarrow{\mathbf{A}}$	$\Phi_{\rm A}$, Magnetischer Fluss durch Fläche A
Magnetische Feldstärke eines unendlich langen geraden Leiters	$\vec{\mathbf{H}}(\rho) = \begin{cases} \vec{\mathbf{e}}_{\varphi} \frac{I}{2\pi a^2} \rho & \rho \leq a \\ \vec{\mathbf{e}}_{\varphi} \frac{I}{2\pi \rho} & \rho > a \end{cases}$	$ ho$, Abstand zum Zentrum des Leiters a , Radius des Leiters \vec{e}_{ϕ} , Einheitsvektor in ϕ -Richtung in Zylinderkoordinaten
Magnetische Feldstärke im Inneren einer idealisierten Toroidspule	$\vec{\mathbf{H}}(\rho) = \vec{\mathbf{e}}_{\varphi} \frac{NI}{2\pi\rho}$	ρ , Abstand zum Zentrum der Spule N , Wicklungszahl \vec{e}_{ϕ} , Einheitsvektor in ϕ -Richtung in Zylinderkoordinaten
Magnetische Feldstärke im Inneren einer idealisierten langgestreckten Zylinderspule	$\vec{\mathbf{H}} = \vec{\mathbf{e}}_{x} \frac{NI}{l}$	N , Wicklungszahl l , Spulenlänge $\vec{\mathbf{e}}_{\mathrm{x}}$, Einheitsvektor in x-Richtung
Gesetz von Biot-Savart	$\vec{\mathbf{H}}(\vec{\mathbf{r}}) = \frac{1}{4\pi} \iiint_{V} \vec{\mathbf{J}}(\vec{\mathbf{r}}') \times \frac{\vec{\mathbf{r}} - \vec{\mathbf{r}}'}{ \vec{\mathbf{r}} - \vec{\mathbf{r}}' ^{3}} dV'$	\vec{r} , Ortsvektor des Berechnungspunkts \vec{r}' , Ortsvektor des Leiterstücks
Magnetisches Moment	$\vec{\mathbf{m}} := \vec{\mathbf{n}} I A = I \vec{\mathbf{A}}$	↑m
Magnetisierung	$\overrightarrow{\mathbf{M}} := \frac{1}{V} \sum_{n=1}^{N} \overrightarrow{\mathbf{m}}_{n}$	π
Magnetische Polarisation	$\vec{\mathbf{J}} := \frac{1}{V} \sum_{n=1}^{N} \vec{\mathbf{J}}_{n} = \mu_{0} \vec{\mathbf{M}}$	A
Beziehung zwischen magnetischer Feldstärke und magnetischer Flussdichte	$\vec{\mathbf{B}} = \mu \vec{\mathbf{H}}$ $\vec{\mathbf{B}} = \mu_0 \vec{\mathbf{H}} + (\mu - \mu_0) \vec{\mathbf{H}} = \mu_0 \vec{\mathbf{H}} + \vec{\mathbf{J}}$	μ, Magnetische Permeabilität
Beziehungen zwischen den Feldgrössen, der Magnetisierung $\overline{\mathbf{M}}$ und	$\vec{\mathbf{J}} = (\mu - \mu_0)\vec{\mathbf{H}} = \mu_0(\mu_r - 1)\vec{\mathbf{H}}$ $= \mu_0 \chi \vec{\mathbf{H}}$ $\vec{\mathbf{B}} = \mu_0 (\vec{\mathbf{H}} + \vec{\mathbf{M}})$	μ , Magnetische Permeabilität μ_{r} , Relative Permeabilität $\overrightarrow{\mathbf{M}}$, Magnetisierung

Institut für Elektromagnetische Felder (IEF)

der magnetischen Polarisation \vec{J}	$\overrightarrow{\mathbf{M}} = \chi \overrightarrow{\mathbf{H}}$	χ, Magneti	ische Suszeptibilität
Feldgrössen an Grenzflächen	$B_{\mathrm{n}1} = B_{\mathrm{n}2}$ n, Normalkomponente t, Tangentialkomponente $H_{\mathrm{t}1} = H_{\mathrm{t}2}$ $\mu_1 H_{\mathrm{n}1} = \mu_2 H_{\mathrm{n}2}$ n, Normalkomponente t, Tangentialkomponente μ , Magnetische Permeabilität $H_{\mathrm{t}1} = H_{\mathrm{t}2}$		ialkomponente
$\begin{array}{c c} B \\ \hline B_s \\ \hline \\ B_r \\ \hline \end{array}$ Hystereseschleife $\begin{array}{c} B_r \\ \hline \\ B_r \\ \hline \end{array}$ Neukurve $\begin{array}{c} B \\ \hline \\ H \\ \hline \end{array}$ Sättigung		B_s , Sättigungsflussdichte B_r , Remanenzflussdichte H_c , Koerzitivfeldstärke	
	Bezeichnung	Elektrisches Netzwerk	Magnetisches Netzwerk
	Leitfähigkeit	κ	μ
	Widerstand	$R = \frac{l}{\kappa A}$	$R_m = \frac{l}{\mu A}$
	Leitwert	$G = \frac{1}{R}$	$\Lambda_m = \frac{1}{R_m}$
Magnetischer Kreis	Spannung	$U_{12} = \int\limits_{\mathrm{P_{I}}}^{\mathrm{P_{2}}} \vec{\mathbf{E}} \cdot \mathrm{d}\vec{\mathbf{s}}$	$V_{m12} = \int\limits_{\mathrm{P_{1}}}^{\mathrm{P_{2}}}\!$
	Strom bzw. Fluss	$I = \iint_{A} \vec{\mathbf{J}} \cdot d\vec{\mathbf{A}} = \kappa \iint_{A} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}$	$\Phi = \iint_A \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = \mu \iint_A \vec{\mathbf{H}} \cdot d\vec{\mathbf{A}}$
	Ohm'sches Gesetz	U = RI	$V_m = R_m \Phi$
	Maschengleichung (Abb. 5.26)	$U_0 = \sum_{Masche} R I$	$\Theta = \sum_{Masche} R_m \Phi$
	Knotengleichung	$\sum_{Knoten} I = 0$	$\sum_{Knoten} \Phi = 0$

Verfahren magnetischer Kreis

Allgemein

Netzwerkgleichungen des magnetischen Kreises

$$\sum_{Knoten\ i} \Phi_i = 0$$

$$\begin{split} & \Phi_K - \Phi_L = 0 \\ & \to & \Phi \equiv \Phi_K = \Phi_L \end{split}$$

$$\Theta = \sum_{Masche \ i} V_{m_i} = \sum_{i} R_{m_i} \Phi_i$$

$$\Theta = \Phi(R_{\rm m,K} + R_{\rm m,L})$$

iii) Ohm'sches Gesetz

$$V_{\rm m,i} = \phi_{\rm i} R_{\rm m,i}$$

$$V_{\mathrm{m,K}} = \Phi R_{\mathrm{m,K}},$$

 $V_{\mathrm{m,L}} = \Phi R_{\mathrm{m,L}}$

Jetzt noch die fehlenden Grössen bestimmen:

iv) Durchflutung θ via Ampére.

(i.e. Quellen bestimmen &

Vorzeichen beachten!)

 $\Theta = \sum_{i} H_i l_i = \sum_{i} N_i I_i$

$$\Theta = NI$$

v) Magnetische Widerstände

 $R_{\rm m,i}$ bestimmen

(Mittlere Längen l_i)

 $R_{\rm m,i} = \frac{l_{\rm i}}{\mu_0 \mu_{\rm r,i} A_{\rm i}}$

$$R_{\text{m,K}} = \frac{2(b+c) - l}{\mu_0 \mu_r a^2}$$
 $R_{\text{m,L}} = \frac{l}{\mu_0 a^2}$

→ Nach gewünschter Grösse auflösen

z.B.
$$\Phi = \frac{NI}{R_{m,K} + R_{m,L}}$$

		· · ·
Mit der Spule verketteter Fluss	$\Phi = N\Phi_{\rm A}$	N, Windungszahl
Induktivität	$L = \frac{\Phi}{I}$	L, Induktivität [H]
Induktivität aus Reluktanzmodell	$L = \frac{N^2}{R_{\rm m}}$	
Induktivität einer Ringkernspule	$L = N^{2} \frac{\mu h}{2\pi} \ln \left(\frac{b}{a}\right)$ $\approx N^{2} \frac{\mu h}{2\pi} \frac{b-a}{a}, b-a \ll a$	N, Windungszahl μ, Magnetische Permeabilität h, Kernhöhe b, Äusserer Radius a, Innerer Radius
Induktivität einer Doppelleitung pro Längeneinheit	$L = \frac{\mu_0}{\pi} \left(\frac{1}{4} + \ln \left(\frac{b}{a} \right) \right)$	μ ₀ , Permeabilitätskonstante b, Leiterabstand a, Leiterradius

5 Das zeitlich veränderliche elektromagnetische Feld

Induzierte Spannung in
der Leiterschleife gemäss
Abbildung

$$U = -\frac{\mathrm{d}\Phi}{\mathrm{d}t}$$

Faraday'sche Induktionsgesetz

$$\oint_{C} \vec{\mathbf{E}}' \cdot d\vec{\mathbf{s}} = -\frac{\mathrm{d}}{\mathrm{d}t} \iint_{\mathbf{A}} \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}}$$

Lenz'sche Regel

Der induzierte Strom ist so gerichtet, dass er die Ursache seines Entstehens zu verhindern sucht

Induktivität

$$u_{\rm L} = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

L, Induktivität [Henry, H]

Serienschaltung

$$L_{\rm ser} = \sum_{k=1}^{n} L_{\rm k}$$

Parallelschaltung

$$L_{\text{parr}}^{-1} = \sum_{k=1}^{n} L_{k}^{-1}$$

$$\begin{array}{c|c}
i_{ges} \\
u \\
L_1 \\
\end{array}$$

$$\begin{array}{c|c}
i_1 \\
L_2 \\
\end{array}$$

$$L_n \\$$

$$L_{\text{parr}} = \frac{L_1 L_2}{L_1 + L_2}$$

Spezialfall für zwei Induktivitäten

 Φ_{11} , Fluss durch C_1 aufgrund $i_1(t)$

 Φ_{12} , Fluss durch C_1 aufgrund $i_2(t)$ Φ_{21} , Fluss durch C_2 aufgrund $i_1(t)$ Φ_{22} , Fluss durch C_2 aufgrund $i_2(t)$

Gekoppelte Leiterschleifen

$$u_1 = R_1 i_1 + L_{11} \frac{\mathrm{d}i_1}{\mathrm{d}t} + L_{12} \frac{\mathrm{d}i_2}{\mathrm{d}t}$$

$$u_2 = R_2 i_2 + L_{21} \frac{di_1}{dt} + L_{22} \frac{di_2}{dt}$$

 L_{11}, L_{22} , Selbstinduktivität L_{12}, L_{21} , Gegeninduktivität

Gegeninduktion

$$M = L_{\rm ik} = L_{\rm ki}$$

Swiss Federal Institute of Technology Zurich

Gegeninduktivität zweier Doppelleitungen

$$L_{12} = \frac{\mu_0 l}{2\pi} \ln \left(\frac{bc}{ad} \right)$$

l, Länge des Leiterabschnitts

Kopplungsfaktoren

$$k_{12} = \frac{\phi_{12}}{\phi_{22}} = \frac{M}{L_{22}}$$

$$k_{21} = \frac{\phi_{21}}{\phi_{11}} = \frac{M}{L_{11}}$$

$$k = \pm \sqrt{k_{12}k_{21}}$$

Streuung

 $\sigma = 1 - k^2$

k, Kopplungsfaktor

Energieinhalt Induktivitäten

$$W_{\rm m} = \frac{1}{2}LI^2 = \frac{1}{2}\Phi I$$

Einzelne Spule

 $W_{\rm m} = \frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} L_{ik} I_i I_k$

Gekoppelte Spulen

 $w_{\rm m} = \int_{-\infty}^{\infty} H \mathrm{d}B = \frac{1}{2} \overrightarrow{\mathbf{H}} \cdot \overrightarrow{\mathbf{B}}$ Energiedichte

 $w_{\rm m}$, Energiedichte [VAsm⁻³]

Magnetische Energie

$$W_{\rm m} = \iiint\limits_V w_{\rm m} \mathrm{d}V = \frac{1}{2} \iiint\limits_V \overrightarrow{\mathbf{H}} \cdot \overrightarrow{\mathbf{B}} \mathrm{d}V$$

Rotierende Leiterschleife im Magnetfeld

Wechselspannung

 $\Phi = \widehat{\Phi}\cos(\omega t)$

 $\widehat{\Phi}$, der maximale magnetische Fluss

u_{1N}, Strangspannung L1 nach N u_{2N} , Strangspannung L2 nach N u_{3N} , Strangspannung L3 nach N

 u_{12} , Leiterspannung L1 nach L2 u₂₃, Leiterspannung L2 nach L3 u_{31} , Leiterspannung L3 nach L1

 ω , Kreisfrequenz t, Zeit

 $u(t) = -\frac{d}{dt}\Phi(t) = \hat{u}\sin(\omega t)$

 \hat{u} , Spitzenspannung ω, Kreisfrequenz

Sternschaltung Strangspannung

 $u_{kN} = \hat{\mathbf{u}} \sin\left(\omega t - (k-1)\frac{2\pi}{3}\right)$

Leiterspannung Spitzenwert

 $\hat{\mathbf{u}}_{12} = \hat{\mathbf{u}}_{23} = \hat{\mathbf{u}}_{31} = \sqrt{3}\hat{\mathbf{u}}$

Neutralleiterstrom bei symmetrischer Last

û, maximale Spannung (Spitzenspannung)

 i_1 , Leiterstrom in L1 i₂, Leiterstrom in L2 i_3 , Leiterstrom in L3 i_N, Neutralleiterstrom

k, Index der Leitung $k \in \{1,2,3\}$

 u_{12} , Leiterspannung L1 nach L2

 u_{23} , Leiterspannung L2 nach L3

u₃₁, Leiterspannung L3 nach L1

 i_1 , Leiterstrom in L1

i₂, Leiterstrom in L2

 i_3 , Leiterstrom in L3

 i_{12} , Strangstrom L1 nach L2

 i_{23} , Strangstrom L2 nach L3

 i_{31} , Strangstrom L3 nach L1

Dreieckschaltung Leiterspannung

$$u_{12} = \hat{\mathbf{u}} \sin(\omega t)$$

$$u_{23} = \hat{\mathbf{u}}\sin(\omega t + 2\pi/3)$$

$$u_{31} = \hat{\mathbf{u}}\sin(\omega t + 4\pi/3)$$

Leiterstrom Spitzenwert bei symmetrischer Last

$$\hat{\mathbf{i}}_k = \sqrt{3}\hat{\mathbf{i}}_{12} = \sqrt{3}\hat{\mathbf{i}}_{23} = \sqrt{3}\hat{\mathbf{i}}_{31}$$

k, Index der Leitung $k \in \{1,2,3\}$

 u_1 , Spannung an der Primärseite

 u_2 , Spannung an der Sekundärseite

 i_1 , Strom auf der Primärseite

 i_2 , Strom auf der Sekundärseite

 N_1 , Anzahl Windungen auf der Primärseite

 N_2 , Anzahl Windungen auf der Sekundärseite

Der verlustlose streufreie Transformator

$$\frac{u_1}{u_2} = \pm \frac{N_1}{N_2}$$

Der ideale Transformator

$$\frac{i_1}{i_2} = \mp \frac{N_2}{N_1}$$

$$P_1 = P_2$$

Übersetzungsverhältnis

$$\ddot{\mathbf{u}} = \frac{N_1}{N_2}$$

 P_1 , Leistung auf der Primärseite P_2 , Leistung auf der Sekundärseite

Widerstands-Transformation

$$R_{\rm E} = \frac{u_1}{i_1} = \ddot{u}u_2\frac{\ddot{u}}{i_2} = \ddot{u}^2R_2$$

 R_2 , Widerstand auf Sekundärseite R_E , Ersatzwiderstand auf Primärseite

6 Wechselstrom

Mittelwert	$\overline{u} = \frac{1}{T} \int_{t=t_0}^{t_0+T} u(t) \mathrm{d}t$	
Effektivwert	$U_{\text{eff}} = \sqrt{\frac{1}{T} \int_{t=t_0}^{t_0+T} u^2(t) dt} = \sqrt{\frac{1}{2\pi} \int_{\varphi=\varphi_0}^{\varphi_{0+2\pi}} u^2(\varphi) d\varphi}$	
	$I_{\rm eff} = \hat{l}/\sqrt{2}$, $U_{\rm eff} = \hat{u}/\sqrt{2}$	Sinusförmige Anregung
Instantane Leistung	$p(t) = u(t) \cdot i(t)$	
Mittlere Leistung	$ar{P} = rac{1}{T} \int_{t=t_0}^{t_0+T} p(t) \; \mathrm{d}t = U_{\mathrm{eff}} \cdot I_{\mathrm{eff}}$	

Zusammenhang zwischen Strang- und Außenleitergrößen					
Komponente	Spannung	Strom	Gleichung		
i(t) R $u(t)$	$u(t) = R \ i(t)$	$i(t) = \frac{1}{R} u(t)$	(7.3)		
$\frac{i_L(t)}{u_L(t)} \frac{L}{u_L(t)}$	$u_L(t) = L \frac{\mathrm{d}i_L(t)}{\mathrm{d}t}$	$i_L(t) = \frac{1}{L} \int u_L(t) \mathrm{d} t$	(7.4)		
$\frac{i_{C}(t)}{u_{C}(t)}$	$u_{C}(t) = \frac{1}{C} \int i_{C}(t) dt$	$i_{C}(t) = C \frac{\mathrm{d} u_{C}(t)}{\mathrm{d} t}$	(7.5)		

Komplexe Amplitude
$$u(t) = \hat{u}\cos(\omega t + \varphi) = \text{Re}\{\underline{\hat{u}} \cdot e^{j\omega t}\}$$

$$i(t) = \hat{\iota}\cos(\omega t + \varphi) = \text{Re}\{\underline{\hat{\iota}} \cdot e^{j\omega t}\}$$

Strom- und Spannungsbeziehungen an den linearen, passiven Netzwerkelementen

Komponente	Spannung	Strom	Impedanz	Admittanz	Gl.
$\begin{array}{c c} \hat{\underline{i}} & R \\ \hline & \hat{\underline{u}} \end{array}$	$\underline{\hat{u}} = R \ \underline{\hat{i}}$	$\hat{\underline{i}} = \hat{\underline{u}} / R$	$\underline{Z}_R = R$	$\underline{Y}_R = \frac{1}{R} = G$	(8.28)
	$ \hat{\underline{u}} = j\omega L \hat{\underline{i}} $	$ \hat{\underline{i}} = \frac{\hat{\underline{u}}}{\mathrm{j}\omega L} $	$\underline{Z}_L = j\omega L \stackrel{(8.13)}{=} jX_L$	$\underline{Y}_{L} = \frac{1}{\mathrm{j}\omega L} = \mathrm{j}B_{L}$	(8.29)
$\hat{\underline{u}}$				$\mathrm{mit} \ B_{L} = -\frac{1}{\omega L}$	
$\frac{\hat{\underline{i}}}{}$	$\underline{\hat{u}} = \frac{1}{\mathrm{j}\omega C} \ \underline{\hat{i}}$		$\underline{Z}_C = \frac{1}{\mathrm{j}\omega C} = \mathrm{j}X_C$	$\underline{Y}_C = j\omega C \stackrel{(8.15)}{=} jB_C$	(8.30)
$\hat{\underline{u}}$			$\operatorname{mit} \ X_C = -\frac{1}{\omega C}$		

Vorgehen zur Netzwerkanalyse

- 1. Ersatzschaltbild
- 2. Mehrere Strom-, Spannungsquellen via Superposition
- 3. Vom Zeit- in Frequenzraum transformieren, komplexe Impedanzen
- 4. Vereinfachen: Serien- und Parallelschaltung, Maschen- und Knotenregeln, Spannungs- und Stromteiler
- 5. Rücktransformation in Zeitbereich

Zeitabhängige Spannung und zugehörige komplexe Amplitude		
Zeitabhängige Spannung	Komplexe Amplitude	
$\hat{u}\cos\omega t$	$\underline{\hat{u}} = \hat{u}$	
$\hat{u}\cos(\omega t + \varphi_u)$	$\underline{\hat{u}} = \hat{u} e^{j\varphi_u}$	
$\hat{u}\sin\omega t = \hat{u}\cos(\omega t - \pi/2)$	$\underline{\hat{u}} = \hat{u} e^{-j\pi/2}$	
$\hat{u}\sin(\omega t + \varphi_u)$	$\underline{\hat{u}} = \hat{u} \mathrm{e}^{\mathrm{j}(\varphi_u - \pi/2)}$	

Ohm'sches Gesetz

$$\underline{\hat{u}} = \underline{Z}\,\underline{\hat{\iota}}$$

Z, Komplexe Impedanz

Maschenregel

$$\sum_{\text{Masche}} \underline{\hat{u}}_{i} = 0$$

$$\sum_{\hat{l}_{i}} \underline{\hat{l}}_{i} = 0$$

Knotenregel

$$\underline{Y}_{\text{ges}} = \sum_{k=1}^{n} \underline{Y}_{k}$$

Parallelschaltung: Admittanz-Addition

Spannungsteiler

$$\frac{\hat{\underline{\iota}}_1}{\hat{\underline{\iota}}_2} = \frac{\underline{Y}_1}{\underline{Y}_2} = \frac{\underline{Z}_2}{\underline{Z}_1}$$

Stromteiler

Grenzfrequenz ω_{g}	$\left \frac{\underline{\hat{u}}_{2}(\omega_{\mathrm{g}})}{\underline{\hat{u}}_{1}(\omega_{\mathrm{g}})}\right ^{2} = \frac{1}{2}$	
RC Hochpass	$u_1(t)$ C R $u_2(t)$	$\frac{\underline{\hat{u}}_2}{\underline{\hat{u}}_1} = \frac{\underline{Z}_R}{\underline{Z}_R + \underline{Z}_C} = \frac{j\omega RC}{j\omega RC + 1}$ $\Delta \varphi = \angle \frac{\underline{\hat{u}}_2}{\underline{\hat{u}}_1} = \tan^{-1} \left(\frac{1}{\omega RC}\right)$ $\omega_g = \frac{1}{RC}$
RC Tiefpass	$u_1(t)$ R C $u_2(t)$	$\frac{\underline{\hat{u}}_2}{\underline{\hat{u}}_1} = \frac{\underline{Z}_C}{\underline{Z}_R + \underline{Z}_C} = \frac{1}{j\omega RC + 1}$ $\Delta \varphi = \angle \frac{\underline{\hat{u}}_2}{\underline{\hat{u}}_1} = \tan^{-1}(-\omega RC)$
RL Hochpass	$u_1(t)$ R L $u_2(t)$	$\frac{\hat{\underline{u}}_2}{\hat{\underline{u}}_1} = \frac{\underline{Z}_L}{\underline{Z}_R + \underline{Z}_L} = \frac{\mathrm{j}\omega L}{R + \mathrm{j}\omega L}$ $\Delta \varphi = \angle \frac{\hat{\underline{u}}_2}{\hat{\underline{u}}_1} = \tan^{-1} \left(\frac{R}{\omega L}\right)$ $\omega_{\mathrm{g}} = \frac{R}{L}$
RL Tiefpass	$u_1(t)$ L $u_2(t)$	$\frac{\underline{\hat{u}}_2}{\underline{\hat{u}}_1} = \frac{\underline{Z}_R}{\underline{Z}_R + \underline{Z}_L} = \frac{R}{R + j\omega L}$ $\Delta \varphi = \angle \frac{\underline{\hat{u}}_2}{\underline{\hat{u}}_1} = \tan^{-1} \left(\frac{-\omega L}{R}\right)$
RLC Oszillator	$ \begin{array}{c c} \hat{\underline{\hat{l}}} & & & \\ \hat{\underline{\hat{u}}}_L & & & \\ \hat{\underline{\hat{u}}}_C & & \\ & & & \\ \end{array} $	$\frac{\hat{u}_{R}}{\hat{u}} = \frac{Z_{R}}{Z_{R} + Z_{L} + Z_{C}}$ $= \frac{Rj\omega C}{Rj\omega C - \omega^{2}LC + 1}$ $\left \frac{\hat{u}_{R}}{\hat{u}}\right = \frac{R}{\sqrt{R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}}}$
	$\omega_0 = 2\pi f_0 = \frac{1}{\sqrt{LC}}$ $Q_s = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{1}{d_s}$ $B = \frac{1}{2\pi} \frac{R}{L} = \frac{f_0}{Q_s}$	ω_0 , Resonanzfrequenz $Q_{\rm s}$, Güte $d_{\rm s}$, Dämpfung B , Bandbreite

7 Halbleiter

Bandlücke E_{G}	$E_{\rm G} = E_{\rm L} - E_{ m V}$	$E_{ m L}$, Leitungsband $E_{ m V}$, Valenzband
Halbleiter	$0.1 \text{ eV} < E_{\text{G}} < 4 \text{ eV}$	$1 \text{ eV} = 1.602 \cdot 10^{-19} \text{ J}$
Kinetische Energie	$E_{\rm kin} = \frac{1}{2}mv^2 = \frac{p^2}{2m}$	 m, Masse v, Geschwindigkeit p, Impuls h, Planck'sche Konstante
De Broglie	$p = \frac{h}{\lambda} = \hbar k$	\hbar , Flanck sche Konstante $\hbar = h/2\pi$, reduzierte Planck'sche K. $h = 6.626 \cdot 10^{-34}$ Js
Energie eines Elektrons	$E_{\rm tot} = \frac{\hbar^2 k^2}{2 m_{\rm eff}}$	$m_{\rm eff}$, effektive Masse
Boltzmann-Konstante	$k_{ m B}$	$k_{\rm B} = 1.380 \cdot 10^{-23} \text{J K}^{-1}$ $k_{\rm B} = 8.617 \cdot 10^{-5} \text{ eV K}^{-1}$
Fermi-Dirac-Verteilung	$f_{\rm FD}(E) = \frac{1}{1 + e^{\frac{E - E_{\rm F}}{k_{\rm B}T}}}$	$E_{\rm F}$, Fermi-Energie
Boltzmann-Verteilung	$f_{\rm B}(E) = e^{-\frac{E - E_{\rm F}}{k_{\rm B}T}}$	
Ladungsträgerdichte im Leitungsband, allg.	$n = \int_{E_{\rm L}}^{\infty} f(E) \rho_{\rm n}(E) \mathrm{d}E$	ρ , Zustandsdichte
Ladungsträgerdichte im Leitungsband, mit Boltzmann-Annäherung	$n = N_{\rm L} \exp\left(-\frac{E_{\rm L} - E_{\rm F}}{k_{\rm B}T}\right)$	
Äquivalente Zustandsdichte im Leitungsband N _L	$N_{\rm L} = 2 \left(\frac{2\pi \cdot m_{\rm eff,n} \cdot k_{\rm B}T}{h^2} \right)^{3/2}$	
Ladungsträgerdichte im Valenzband	$p = N_{\rm V} \exp\left(-\frac{E_{\rm F} - E_{\rm V}}{k_{\rm B}T}\right)$	
Äquivalente Zustandsdichte im Valenzband <i>N</i> V	$N_{\rm V} = 2 \left(\frac{2\pi \cdot m_{\rm eff,p} \cdot k_{\rm B}T}{h^2} \right)^{3/2}$	
Eigenhalbleiter	$n_{ m th}=p_{ m th}=n_{ m i}$	$n_{ m i}$, Eigenleitungsträgerdichte th, thermische Ladungsträger
Massenwirkungsgesetz	$n_{\rm i}^2(T) = np$	
Donatorenniveau $E_{\rm D}$	$\Delta E_{\rm D} = E_{\rm L} - E_{\rm D}$	$E_{\rm D}$ ist <i>unter</i> dem Leitungsband
Akzeptorenniveau $E_{\rm A}$	$\Delta E_{\rm A} = E_{\rm A} - E_{\rm V}$	E _A ist <i>über</i> dem Valenzband
Ladungsneutralität	$n + n_{\rm A}^- = p + n_{\rm D}^+$	$n_{\rm A}^-$, ionisierte Akzeptorendichte
Ladungsneutramat	A I D	$n_{\rm D}^+$, ionisierte Donatorendichte
Drift	$\vec{\mathbf{J}}_{\mathrm{Drift}} = \left[en\mu_{\mathrm{n}} + ep\mu_{\mathrm{p}}\right]\vec{\mathbf{E}}$	\vec{J}_{Drift} , Drift-Stromdichte
Leitfähigkeit	$\kappa = en\mu_{\rm n} + ep\mu_{\rm p}$	
Diffusion	$\vec{J}_{\text{Diff}} = \vec{J}_{\text{n, Diff}} + \vec{J}_{\text{p, Diff}}$	\vec{J}_{Diff} , Diffusions-Stromdichte
	$\vec{\mathbf{J}}_{\mathrm{n,D}} = +eD_{\mathrm{n}}\nabla n$	$\vec{J}_{n,Diff}$, ElektrDiffusionsstromdichte D , Diffusionskonstante
	$\vec{\mathbf{J}}_{\mathrm{p,D}} = -eD_{\mathrm{p}}\nabla p$	$\vec{J}_{p,Diff}$, Löcher-Diffusionsstromdichte

Institut für Elektromagnetische Felder (IEF)

Einschuss v. Ladungsträgern	$pn > n_{\rm i}^2$	n, Elektronendichte p, Löcherdichte
	$\Delta n = \Delta p = g au_{ m n/p}$	g , Generationsrate $\tau_{\rm n/p}$, Lebensdauer von Elektronen (n) und Löchern (p)
Kontinuitätsgleichung	$\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{\mathbf{J}} = e(g_{\rm n} - r_{\rm n}) - e(g_{\rm p} - r_{\rm p})$	ρ , Raumladungsdichte
	$\rho = e(p + n_{\mathrm{D}}^+ - n - n_{\mathrm{A}}^-)$	
Elektronenstromdichte	$\vec{J}_{n} = \vec{J}_{n,Drift} + \vec{J}_{n,Diff}$	\vec{J}_n , totale Elektronen-Stromdichte
	$\vec{\mathbf{J}}_{\mathrm{n}} = e n \mu_{\mathrm{n}} \vec{\mathbf{E}} + e D_{\mathrm{n}} \nabla n$	
Löcherstromdichte	$\vec{J}_{\rm p} = \vec{J}_{\rm p,Drift} + \vec{J}_{\rm p,Diff}$	\vec{J}_n , totale Löcher-Stromdichte
	$\vec{\mathbf{J}}_{\mathrm{p}} = ep\mu_{\mathrm{p}}\vec{\mathbf{E}} - eD_{\mathrm{p}}\nabla p$	
Kontinuitätsgleichung für Löcher	$\frac{\partial (ep)}{\partial t} + \nabla \cdot \vec{\mathbf{J}}_{\mathrm{p}} = e(g_{\mathrm{p}} - r_{\mathrm{p}}) + eg_{\mathrm{ext}}$	
Kontinuitätsgleichung für Elektronen	$\frac{\partial (-en)}{\partial t} + \nabla \cdot \vec{\mathbf{J}}_{n} = -e(g_{n} - r_{n}) - eg_{\text{ext}}$	
Poisson Gleichung	$\Delta \phi = -rac{ ho}{arepsilon} = -rac{e}{arepsilon}(p+n_{ m D}^+-n-n_{ m A}^-)$	ϕ , Potential ρ , Raumladungsdichte ε , Permittivität

8 pn-Diode

Diffusionsspannung

$$U_{\rm D} = \frac{k_{\rm B}T}{e} \ln \left(\frac{n_{\rm D}n_{\rm A}}{n_{\rm i}^2} \right)$$

Verhalten der RLZ bei angelegter Spannung U > 0

 $U_{\rm D}$, Diffusionsspannung

Verhalten der RLZ

Diodenkennlinie

$$I = I_{\rm n} + I_{\rm p} = I_{\rm S} \left(e^{\frac{eU}{k_{\rm B}T}} - 1 \right)$$

Photodiode

$$I_{\rm PD} = I_{\rm L} - I_{\rm S} \left(e^{\frac{eU}{k_{\rm B}T}} - 1 \right)$$

Kleinsignal:
- Leitwert

$$g(U) = \frac{dI}{dU} = \frac{e}{k_{\rm B}T}(I(U) + I_{\rm S})$$

- Sperrschichtkapazität

$$C_{\rm S} = \frac{dQ}{dV} = \frac{A}{l} \epsilon_{\rm r} \epsilon_{\rm 0}$$

U, Spannung über der Diode *I*_{PD}, Strom erzeugt durch die Photodiode *I. I.* (photo) Drift Sparsstro

I, Strom durch die Diode

 I_L , I_S , (photo) Drift-, Sperrstrom

g, Kleinsignal Leitwert

 $C_{\rm S}$, Kleinsignal Kapazität

Kleinsignal Ersatzschaltbild

Diodenkennlinie

Aktive Bauelemente 9

Linear: $I_{DS} = \beta (V_{GS} - V_T) V_{DS}$ Sättigung: $I_{DS} = \frac{\beta}{2} (V_{GS} - V_T)^2$ **Anwendung**: Digitales

Zener Diode

Anwendung: Schaltungsschutz Typ. Char.: Durchbruch nach einer gewissen Spannung, Widerstand sackt zu sehr kleinen Werten.

Anwendung: Licht-Generation Typ. Char.: Wie normale pn-diode.

Solarzelle/Photodetektor

 $I = I_L - I_S (e^{\frac{eU}{kT}} - 1)$ **Anwendung**: Solarenergie, Quelle Typ. Char.: Maximum Power Point

10 Konstanten

Elementarladung $e = 1.6 \times 10^{-19} \,\mathrm{C}$ [C] = [As]

Vakuumpermittivität $\epsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$ [F/m] = [As/Vm]

 $\begin{array}{ll} \text{Vakuumpermeabilit"at} & \mu_0 = 4\pi \times 10^{-7} \text{ H/m} \\ &\approx 1.26 \times 10^{-6} \text{ H/m} \end{array} \qquad \qquad \left[\frac{\text{H}}{\text{m}}\right] = \left[\frac{\text{N}}{\text{A}^2}\right] = \left[\frac{\text{kg m}}{\text{s}^2\text{A}^2}\right] \end{array}$

Boltzmann-Konstante $k_{\rm B} = 1.380 \times 10^{-23} \text{ J/K}$ = 8.617 × 10⁻⁵ eV K⁻¹

Thermische Energie bei $k_{\rm B}T=25.9~{\rm meV}$ Raumtemperatur $=4.14\times10^{-21}~{\rm J}$ Raumtemperatur: 300 K