Data Science Overview

LESSONS & BEST PRACTICES
JAY SWARTZ
JAYWSWARTZ@GMAIL.COM

My Background

- Multiple Domain Expertise Spanning 45+ Years
 - Led Seagate Technologies Global IT Function
- C-Level Roles
- Start-Up Experience
 - Founder
 - Advisor
- Consulting & Contracting
 - Virtual Environments
 - Machine Learning
 - Engineering
 - Marketing

Overview

- Strategic Factors
- Success Plan
- Data Science Scope
- Processes
- Applications
- Q & A

Strategic Intents

- ROI-Based Project Selection
 - Lifetime Value
 - Offense Over Defense
- Architect for Scale
- Concurrent Workflows
- Extensible Approaches
 - Reusable Patterns
- Adjacent Compatibility

Success Factors

- Data Driven Decisions
- Tool Investment
 - Time & Error Reduction
- Shaping Techniques
- Reliable Methods
 - Incremental Process
 - Agile Kanban/Cynefin
 - Scope Bounding
- Expectation Management
 - Realistic Learning Abilities

Data Process Maturity

- Each Step Requires
 Previous Steps
- Bring All Data
 Streams to Same
 Phase Before
 Moving to Next
 Phase
- Decisions Based on Facts Remove Risk Associated with Instinctual Decisions

Intuition: Non-Obvious Al Advances

Worksheet for Data Science Success

- Tenets
 - Clear Vision
 - Cross-Functional
 - Data Access
 - Data Hygiene
 - Recognition
- Factors
 - Culture
 - Data
 - Talent
 - Technology

- Artifacts
 - Current State
 - Future State
 - Targets and Goals
 - Action Plan
 - Immediate Next Steps
 - Major Milestones

Source: Nir Kaldero
 Head of Data Science at Galvanize

Descriptions of Data Science

- Intersections of Three Domains
 - Each a Robust Discipline
 - Fundamentally Different
- Interdisciplinary Approach
- Many Variations Evolving
- DS Similar to Sports

Example Team Flow

Data Science Complexity

Ы

Data Science Complexity

Statistical Methods Versus Machine Learning

- Statistical Modeling
 - Common Pre-ML Approach
 - Generalized Linear Models (GLM)
 - Coefficients Support Natural Interpretation
- Machine Learning Models
 - Flexibility to Handle Non-Linearity
 - No Assumptions to Test
- Machine Learning Usually Wins Against GLMs

Model Type	Average Rank
eXtreme Gradient Boosting	3.50
RuleFit Regularized Tree Ensembles	3.68
Random Forest Trees	5.06
Generalized Linear Models	5.11
Support Vector Machine	5.44
Extra Trees	6.39
Gradient Boosting Model	6.40
K-Nearest Neighbors	8.87
Vopal Wabbit	8.93
TensorFlow	9.71
Decision Tree	10.15

Classic Analytic Decision Tree Branch

- Leaves Describe
 Visualizations
- Many Variations for Each Leaf
- Emphasis Varies with Data Set

Data Science Processes

- Numerous Potential Workflows
- Driven By
 - Business Model
 - Skill Capabilities
 - Transparency Requirements
 - Technology Availability

Macro Process

Model Development

- Iterate Between Data
 Preparation & Model Creation
- Data Preparation
 - Source Extracts
 - Transformations
 - Data Frame Design
 - Record Creation
 - Feature Design

- Model Creation
 - Modeling Technique Selection & Calibration
 - Algorithm Selection

Completing the Process

- Evaluation
 - Confirm Hypotheses
 - Evaluate Confidence
 - Refine/Release Decision
- Deploy & Monitor
 - Produce Report
 - Implement Processes
 - Identify Anomalies

- Refinement
 - Correct for Drift
 - Adjust for Change
 - Incorporate New Data Streams
 - Resolve Edge Cases

Intelligent Mobile Agent

- Based on IBM Watson & TensorFlow
- Natural Language Interface
- Health and Wellness Topics
- Advanced Behaviors
- Varies by Use Case

Development Process Flow

- Transform Content Sources
 - Ground Truth (GT)
 - Tone of Voice
- Distribute Activity Log Data to Appropriate Roles & Stakeholders
- Iterate Up Steps
- Continuous Improvement
 - Correct Drift
 - Diminish Edge Cases

Ground Truth Improvements

- Move to Synthetic Techniques
 - Seed 1: Manual GT Generation
 - Seed 2: Synthetic GT Generation
- Feature Testing
 - Pluralization
 - Synonyms
 - Spelling
 - 200+ Experiments

Intelligent Agent Architecture

Sampling of Machine Learning Implementations

- Image Recognition
 - GoogleMaps Street Digits
 - GoogleSearch Image Tab
- Language Recognition
 - Chatbots
 - Assistant Devices
- Detection/Prediction
 - User Behavior/Satisfaction
 - Creditworthiness
 - Churn Prevention

- Process Optimization
 - All Business Functions
 - Robotics

Jeremy Howard TED Talk:
 The wonderful
 and terrifying implication of
 computers that can learn

Sampling of Machine Learning Implementations

Q & A

Appendix

SUPPORTING INFORMATION

Machine Learning Rate of Change

- Early Start = Insurmountable Lead
- Multiple Accelerators
 - Open Source Community
 - New Effort Builds on Prior Effort
 - Refined Techniques
 - Magnitude Change In Compute
 - Growing Data Fidelity
- Adoption Decelerators
 - Talent Pool
 - Hype Obfuscation

Additional Factors

- Shaping Techniques
 - Corpora Structures
 - Ground Truth
 - Blackbox Validation
 - Classifier Balancing
- Proprietary Technology Tooling
 - Training @Scale
 - Corpus & Ground Truth Management

- Process Techniques
 - Context Boosting
 - Ethnomethodological Linguistic Expertise
- IBM Relationship
 - Broad & Deep Access
 - Infrastructure Tuning
 - Product Team Access & Influence
 - Early Technology Access
 - GitHub Contributions

Machine Learning Transparency

- Documentation
- Accuracy
- Sensitivity
- Input Impact on Outputs
- Use Case Specific Explanation