MATH1061 Course Notes

Paddy Maher 29th of July, 2021

1 Logic

1.1 Logical Connectives

1.1.1 Basic logical connectives

For a given logical statement come logical connectives. Basic logical connectives include:

- $\mathbf{not} = \sim$
- and = \wedge
- or $= \lor$
- exclusive or $= \oplus$

1.1.2 Logical Equivalence

Given two statement forms, you can show that they are logically equivalent by using a truth table or by using the laws of logical equivalence.

The logical equivalence between two statements is demonstrated by the symbol =

[insert truth table]

1.1.3 Conditional logical connectives

Logical connectives and equivalences, for given truth statements 'p' and 'q'

- if .. then $= \rightarrow$
- if and only if $= \leftrightarrow$
- $\bullet \ p \to q \equiv \ \sim p \ \lor \ q \equiv \ \sim q \to \ \sim p$

1.1.4 Order of Operations

- $1. \sim$
- 2. \land and \lor , use parentheses to specify. If no parentheses given, work from left to right.
- 3. \rightarrow and \leftrightarrow , use parentheses to specify. If no parentheses given, work from left to right.

1.2 Necessary and sufficient conditions

For given truth statements p' and q':

- p is a necessary condition for q means "if $\sim p$ then $\sim q$ " or equivalently "if q then p" or "q only if p".
- p is a sufficient condition for q means "if p then q" or equivalently "q if p"

1.3 Definitions

1.3.1 Tautology and contradictions

- A <u>tautology</u> is a statement form which always takes truth values "**true**" for all possible truth values of its variables.
- A <u>contradiction</u> is a statement form which always takes truth values "false" for all possible truth values of its variables.

1.3.2 Contrapositive

For given truth statements 'p' and 'q' The contrapositive of $p \to q$ is $\sim q \to \sim p$

• These are logically equivalent: $p \rightarrow q \equiv \sim q \rightarrow \sim p$

1.3.3 Biconditional

For given truth statements 'p' and 'q'

The <u>biconditional</u> of p and q, denoted $p \leftrightarrow q$, is defined by the following truth table:

[insert truth table]

2 Logical Equivalences

Given any statement variables 'p', 'q' and 'r', a tautology 't' and contradiction 'c', the following logical equivalences hold.

2.1 Commutative laws

- $p \wedge q \equiv q \wedge p$
- $p \lor q \equiv q \lor p$

2.2 Associative laws

- $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
- $\bullet \ (p \mathrel{\vee} q) \mathrel{\vee} r \equiv p \mathrel{\vee} (q \mathrel{\vee} r) \\$

2.3 Distributive laws

- $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
- $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

- 2.4 Identity laws
 - $p \wedge \mathbf{t} \equiv p$
 - $p \vee \mathbf{c} \equiv p$
- 2.5 Negation laws
 - $p \vee \sim p \equiv \mathbf{t}$
 - $p \wedge \sim p \equiv \mathbf{c}$
- 2.6 Double negative laws
 - $\sim (\sim p) \equiv p$
- 2.7 Idempotent laws
 - $p \lor p \equiv p$
 - $p \wedge p \equiv p$
- 2.8 Universal bound laws
 - $p \vee \mathbf{t} \equiv \mathbf{t}$
 - $p \wedge \mathbf{c} \equiv \mathbf{c}$
- 2.9 De Morgan's laws
 - $\bullet \ \sim (p \, \wedge \, q) \equiv \sim p \, \vee \sim q$
 - $\bullet \ \sim (p \lor q) \equiv \sim p \land \sim q$
- 2.10 Absorption laws
 - $\bullet \ p \lor (p \land q) \equiv p$
 - $\bullet \ p \, \wedge \, (p \, \vee \, q) \equiv p$
- ${\bf 2.11}\quad {\bf Negations\ of\ t\ and\ c}$
 - $\bullet \ \sim \!\! \mathbf{t} \equiv \mathbf{c}$
 - $\bullet \ \sim\!\! \mathbf{c} \equiv \mathbf{t}$