2022년 1학기 물리학 I: Quiz 14

김현철^{a1,†} and Hui-Jae Lee^{1,‡}

¹Hadron Theory Group, Department of Physics, Inha University, Incheon 22212, Republic of Korea (Dated: Spring semester, 2022)

문제 1. (30 pt) 그림 1에서 크기가 10 N인 힘이 질량 10 kg이고 반지름이 0.30 m인 바퀴에 수평방향으로 작용하고 있다. 바퀴는 수평면에 대하여 유연한 굴림 운동을 하며 질량중심에 대한 가속도의 크기는 0.60 m/s^2 이다.

FIG. 1. 문제 1

- (가) 바퀴에 작용하는 마찰력을 단위벡터로 표기하여라.
- (나) 질량중심을 지나는 회전축에 대한 바퀴의 회전관성은 얼마인가?

풀이:

(r) 바퀴가 회전하도록 하는 힘은 바퀴에 작용하는 마찰력이다. 이 마찰력을 F_s 라 하자. 바퀴의 질량을 m, 반지름을 r, 바퀴 중심에 대한 바퀴 끝 부분의 가속도를 a라 하면 각가속도 a와 돌림힘 r를 다음과 같이 표현할 수 있다.

$$\alpha = -\frac{a}{r}, \quad \tau = F_s r = I\alpha. \tag{1}$$

마찰력은 바퀴가 움직이는 방향의 반대방향으로 작용하므로

$$\vec{F}_s = -\frac{I\alpha}{r}\hat{i} \tag{2}$$

이다.

(나) 바퀴의 운동 방정식은 다음과 같다.

$$\sum F = ma = F_{app} - F_s. \tag{3}$$

마찰력은

$$F_s = \frac{I\alpha}{r} = \frac{Ia}{r^2} = F_{app} - ma \tag{4}$$

이므로 회전관성 *I*는 다음과 같다.

$$I = \frac{(F_{app} - ma)r^2}{a}. ag{5}$$

a Office: 5S-436D (면담시간 매주 화요일-16:00~20:00)

[†] hchkim@inha.ac.kr

 $^{^{\}ddagger}$ hjlee6674@inha.edu

수치를 대입하면,

$$I = \frac{(10 \,\mathrm{N} - (10 \,\mathrm{kg})(0.60 \,\mathrm{m/s^2}))(0.30 \,\mathrm{m})^2}{(0.60 \,\mathrm{m/s^2})}$$

$$= 0.6 \,\mathrm{kg} \cdot \mathrm{m}^2$$
(6)

이다. 따라서, 바퀴의 회전관성은 $0.6 \,\mathrm{kg} \cdot \mathrm{m}^2$ 이다.

문제 2. (30 pt) 그림 2는 질량이 m, 반지름이 R인 원형고리와 질량이 m, 길이 R인 네 개의 가느다란 막대로 만들어진 정사각형 강체이다. 강체는 주기가 2.5 초인 일정한 속력으로 수직축에 대하여 회전한다. R=0.50 cm, m=2.0 kg이라고 할 때,

FIG. 2. 문제 2

- (가) 회전축에 대한 강체의 회전관성과
- (나) 회전축에 대한 각운동량을 각각 구하여라.

풀이:

(가) 정사각형일 경우 회전축에 수평으로 놓인 막대, 수직으로 놓인 막대를 나누어 생각하자. 수평으로 놓인 막대의 회전관성 I_p 는 회전축에 R만큼 떨어진 막대와 회전축 위에 놓인 막대의 회전관성의 합이다. 회전축 위에 놓여 있는 막대의 회전관성은 0이므로 회전축에 R만큼 떨어진 막대의 회전관성만 고려해도 된다. ρ 를 고리의 밀도라하면 I_p 는

$$I_p = \int r^2 dm = \rho \int_0^R R^2 dz + 0 = \rho R^3, \ \rho = \frac{m}{R}.$$
 (7)

이다. 회전축에 수직으로 놓인 막대의 회전관성 I_o 는 다음과 같이 구할 수 있다.

$$I_0 = \int r^2 dm = \rho \int_0^R r^2 dr + \rho \int_0^R r^2 dr = \frac{2}{3} \rho R^3.$$
 (8)

정사각형 고리의 전체 회전관성은 I_p 와 I_o 를 합한 것이므로

$$I_p + I_0 = \frac{5}{3}\rho R^3 = \frac{5}{3}\left(\frac{m}{R}\right)R^3 = \frac{5}{3}mR^2.$$
(9)

즉, 정사각형 고리 전체의 회전관성 $I_p + I_0$ 은 $\frac{5}{3}mR^2$ 이다.

평행축 정리를 이용하여 원형고리의 회전관성을 구하자. I를 축을 이동한 후의 회전관성, I_{cm} 을 축을 이동하기 전의 회전관성이라 하면 평행축 정리는 다음과 같다.

$$I = I_{cm} + mh^2. (10)$$

h는 이동하기 전 축과 이동한 후 축 사이의 거리이다. 이동하기 전의 축이 원형 고리의 중심을 지난다고 하면 축을 이동한 후의 원형고리의 회전관성 I_{cir} 은

$$I_{cir} = I_{cm} + mR^2 \tag{11}$$

이다. 원형고리일 경우 밀도 ρ 는 다음과 같다.

$$\rho = \frac{m}{2\pi R}.\tag{12}$$

이제 축을 옮기기 전의 회전관성 I_{cm} 을 구해보자. 미소질량 dm'을 생각하면, 미소질량 dm'은

$$dm' = \rho R \, d\theta = \frac{m}{2\pi} \, d\theta \tag{13}$$

이다. θ 는 축과 중심을 잇는 선, 중심과 dm'을 잇는 선이 이루는 각이다. 구면좌표계에서 z축과 이루는 각도를 생각하면 된다. r은 미소질량과 회전축 사이 거리이므로 $r=R\sin\theta$ 이다. 따라서 I_{cm} 은

$$I_{cm} = \int r^2 dm' = \frac{m}{2\pi} R^2 \int_0^{2\pi} \sin^2 \theta \, d\theta = \frac{m}{2\pi} R^2 \pi = \frac{1}{2} m R^2$$
 (14)

이다. I_{cm} 를 식 (10)에 대입하면 I_{cir} 은 다음과 같다.

$$I_{cir} = \frac{1}{2}mR^2 + mR^2 = \frac{3}{2}mR^2. {15}$$

총 회전관성 I는 정사각형 고리의 회전관성과 원형고리의 회전관성을 합한 것이므로

$$I = I_p + I_o + I_{cir} = \frac{5}{3}mR^2 + \frac{3}{2}mR^2 = \frac{19}{6}mR^2$$
(16)

이다. 수치를 대입하자.

$$I = \frac{19}{6} (2.0 \text{ kg}) (0.50 \text{ cm})^2$$

$$= 1.6 \text{ kg} \cdot \text{cm}^2$$

$$= 1.6 \times 10^{-4} \text{ kg} \cdot \text{m}^2.$$
(17)

총 회전관성 I는 $1.6 \times 10^{-4} \, \text{kg} \cdot \text{m}^2$ 이다.

(나) 정의에 따르면 각속도 ω 는

$$\omega = \frac{2\pi}{T} \tag{18}$$

이고 각운동량 L은 다음과 같다.

$$L = I\omega = \frac{2\pi I}{T} = \frac{19\pi mR^2}{3T}.\tag{19}$$

수치를 대입하여 값을 구해보면 다음과 같다.

$$L = \frac{19\pi (2.0 \,\mathrm{kg})(0.50 \,\mathrm{cm})^2}{3(2.5 \,\mathrm{s})}$$

$$= 4.0 \,\mathrm{kg} \cdot \mathrm{cm}^2/\mathrm{s}$$

$$= 4.0 \times 10^{-4} \,\mathrm{kg} \cdot \mathrm{m}^2/\mathrm{s}.$$
(20)

회전축에 대한 각운동량은 $4.0 \times 10^{-4} \, \mathrm{kg \cdot m^2/s}$ 이다.

문제 3. (40pt) 질량이 4.0 kg이고 길이가 0.50 m인 가늘고 균일한 막대가 수평면에서 중심을 지나는 수직축에 대하여 회전할 수 있다. 질량이 3.0 g인 총알이 막대의 회전면에서 정지하고 있는 막대의 왼쪽 끝을 향하여 발사되었다. 위에서 보았을 때 총알의 경로는 그림 3처럼 막대와 $\theta=60^\circ$ 의 각도를 이룬다. 총알이 막대에 박히고 충돌 직후 막대의 가속도가 10 rad/s이라면 충돌 직전 총알의 속력은 얼마인가?

FIG. 3. 문제 3

풀이 : \vec{r} 과 \vec{p} 는 충돌 직전 회전축에 대한 총알의 위치와 운동량이다. 총알의 질량을 m_2 총알의 속력을 v_2 라 하자. 총알이 충돌하기 직전의 각운동량 L_1 은 다음과 같다.

$$L_1 = |\vec{r} \times \vec{p}| = \frac{1}{2} m_2 v_2 d \sin \theta. \tag{21}$$

나중 각운동량 L_2 은

$$L_2 = I_1 \omega + I_2 \omega. \tag{22}$$

이다. I_1 은 막대의 회전관성, I_2 는 총알의 회전관성이다. 막대 질량을 m_1 , 막대 길이를 d라 하면 막대의 회전관성 I_1 은

$$I_1 = \int r^2 dm = \rho \int_{-\frac{1}{2}d}^{\frac{1}{2}d} r^2 dr = \left(\frac{m_1}{d}\right) \left(\frac{1}{24}d^3 - \left(-\frac{1}{24}d^3\right)\right) = \frac{1}{12}m_1d^2$$
 (23)

이고 총알의 회전관성 I_2 는

$$I_2 = mr^2 = \frac{1}{4}m_2d^2 \tag{24}$$

이다. 식 (22)에 I_1 과 I_2 를 대입하면 L_2 는

$$L_2 = \left(\frac{1}{12}m_1 + \frac{1}{4}m_2\right)\omega d^2 \tag{25}$$

이다. 각운동량 보존 법칙에 따르면 $L_1 = L_2$ 이다. 따라서,

$$\frac{1}{2}m_2v_2d\sin\theta = \left(\frac{1}{12}m_1 + \frac{1}{4}m_2\right)\omega d^2. \tag{26}$$

 v_2 에 대해 정리해보면 다음과 같다.

$$v_2 = \left(\frac{1}{6}m_1 + \frac{1}{2}m_2\right) \frac{\omega d}{m_2 \sin \theta}.$$
 (27)

수치를 대입하여 총알의 속력 v_2 를 구할 수 있다.

$$v_2 = \left(\frac{1}{6}(4.0 \,\mathrm{kg}) + \frac{1}{2}(3.0 \times 10^{-3} \,\mathrm{kg})\right) \frac{(10 \,\mathrm{rad/s})(0.50 \,\mathrm{m})}{(3.0 \times 10^{-3} \,\mathrm{kg})\sin 60^{\circ}}$$

$$= 1.3 \times 10^3 \,\mathrm{m/s}. \tag{28}$$

총알의 속력은 $1.3 \times 10^3 \,\mathrm{m/s}$ 이다.

문제 4. (60pt) 난이도 상: 그림 4에서 질량 $30 \,\mathrm{kg}$ 의 아이가 질량이 $100 \,\mathrm{kg}$, 반지름이 $2.0 \,\mathrm{m0}$ 정지해 있는 원판의 가장자리에 서 있다. 원판의 중심에 있는 회전축에 대한 회전관성은 $150 \,\mathrm{kg} \cdot \mathrm{m}^2$ 이다. 이때 친구가 던진 질량이 $1.0 \,\mathrm{kg}$ 인 공을 아이가 잡았다. 공을 잡기 직전에 수평방향인 공의 속도 \vec{v} 의 크기는 $12 \,\mathrm{m/s}$ 이고 원판의 가장자리의 접선과 \vec{v} 가 이루는 각도는 37° 이다. 아이가 공을 잡은 직후 원판의 각속력을 구하여라.

FIG. 4. 문제 4

풀이 : \vec{r} 과 \vec{p} 는 아이가 공을 잡기 직전 회전축에 대한 공의 위치와 운동량이다. 원판 반지름을 R, 공 질량과 공 속력을 m_3 , v_3 라고 하면 공을 잡기 직전 공의 각운동량 L_i 는

$$L_i = |\vec{r} \times \vec{p}| = m_3 v_3 R \sin(270^\circ - \phi) \tag{29}$$

이다. 공을 잡은 후 각운동량을 L_f 라 하면,

$$L_f = I\omega \tag{30}$$

이다. 이 때 I는 계의 총 회전관성이다. 즉, 원판, 아이, 공의 회전관성을 더한 것이 된다. 아이의 질량을 m_2 라 할 때 공을 잡은 후 아이와 공의 회전관성 I_2 는

$$I_2 = mr^2 = (m_2 + m_3)R^2 (31)$$

이다. 원판의 회전관성을 I_1 라 하자. 전체 회전관성 I는,

$$I = I_1 + I_2 = I_1 + (m_2 + m_3)R^2 (32)$$

이다. 따라서 공을 잡은 후 각운동량 L_f 는 다음과 같다.

$$L_f = I\omega = (I_1 + (m_2 + m_3)R^2)\omega. (33)$$

각운동량 보존 법칙에 의해 $L_i = L_f$ 이므로 다음과 같이 쓸 수 있다.

$$m_3 v_3 R \sin(270^\circ - \phi) = (I_1 + (m_2 + m_3)R^2)\omega.$$
 (34)

각속도 ω 에 대해 정리하고 수치를 대입하여 구해보자.

$$\omega = \frac{m_3 v_3 R}{I_1 + (m_2 + m_3) R^2} \sin(270^\circ - \phi)$$

$$= \frac{(1.0 \text{ kg})(12 \text{ m/s})(2.0 \text{ m})}{(150 \text{ kg} \cdot \text{m}^2) + ((30 \text{ kg}) + (1.0 \text{ kg}))(2.0 \text{ m})^2} \sin 233^\circ$$

$$= -0.070 \text{ rad/s}.$$
(35)

따라서 각속력은 0.070 rad/s이다.