In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sb
import matplotlib.pyplot as pp
```

In [2]:

```
df1 = pd.read_csv(r"C:\Users\user\Desktop\c10\stations.csv")
df = df1.head(1000)
df
```

Out[2]:

	id	name	address	lon	lat	elevation
0	28079004	Pza. de España	Plaza de España	-3.712247	40.423853	635
1	28079008	Escuelas Aguirre	Entre C/ Alcalá y C/ O' Donell	-3.682319	40.421564	670
2	28079011	Avda. Ramón y Cajal	Avda. Ramón y Cajal esq. C/ Príncipe de Vergara	-3.677356	40.451475	708
3	28079016	Arturo Soria	C/ Arturo Soria esq. C/ Vizconde de los Asilos	-3.639233	40.440047	693
4	28079017	Villaverde	C/. Juan Peñalver	-3.713322	40.347139	604
5	28079018	Farolillo	Calle Farolillo - C/Ervigio	-3.731853	40.394781	630
6	28079024	Casa de Campo	Casa de Campo (Terminal del Teleférico)	-3.747347	40.419356	642
7	28079027	Barajas Pueblo	C/. Júpiter, 21 (Barajas)	-3.580031	40.476928	621
8	28079035	Pza. del Carmen	Plaza del Carmen esq. Tres Cruces.	-3.703172	40.419208	659
9	28079036	Moratalaz	Avd. Moratalaz esq. Camino de los Vinateros	-3.645306	40.407947	685
10	28079038	Cuatro Caminos	Avda. Pablo Iglesias esq. C/ Marqués de Lema	-3.707128	40.445544	698
11	28079039	Barrio del Pilar	Avd. Betanzos esq. C/ Monforte de Lemos	-3.711542	40.478228	674
12	28079040	Vallecas	C/ Arroyo del Olivar esq. C/ Río Grande.	-3.651522	40.388153	677
13	28079047	Mendez Alvaro	C/ Juan de Mariana / Pza. Amanecer Mendez Alvaro	-3.686825	40.398114	599
14	28079048	Castellana	C/ Jose Gutierrez Abascal	-3.690367	40.439897	676
15	28079049	Parque del Retiro	Paseo Venezuela- Casa de Vacas	-3.682583	40.414444	662
16	28079050	Plaza Castilla	Plaza Castilla (Canal)	-3.688769	40.465572	728
17	28079054	Ensanche de Vallecas	Avda La Gavia / Avda. Las Suertes	-3.612117	40.372933	627
18	28079055	Urb. Embajada	C/ Riaño (Barajas)	-3.580747	40.462531	618
19	28079056	Pza. Fernández Ladreda	Pza. Fernández Ladreda - Avda. Oporto	-3.718728	40.384964	604
20	28079057	Sanchinarro	C/ Princesa de Eboli esq C/ Maria Tudor	-3.660503	40.494208	700
21	28079058	El Pardo	Avda. La Guardia	-3.774611	40.518058	615
22	28079059	Juan Carlos I	Parque Juan Carlos I (frente oficinas mantenim	-3.609072	40.465250	660
23	28079060	Tres Olivos	Plaza Tres Olivos	-3.689761	40.500589	715

```
In [3]:
```

```
df=df.dropna()
```

In [4]:

```
df.columns
```

Out[4]:

```
Index(['id', 'name', 'address', 'lon', 'lat', 'elevation'], dtype='objec
t')
```

In [5]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 24 entries, 0 to 23
Data columns (total 6 columns):
    # Column Non-Null Count Dtype
```

#	COTUMN	Non-Null Count	. Dtype
0	id	24 non-null	int64
1	name	24 non-null	object
2	address	24 non-null	object
3	lon	24 non-null	float64
4	lat	24 non-null	float64
5	elevation	24 non-null	int64
dtypes: float64(2), int64(2)			object(2)

memory usage: 1.3+ KB

In [6]:

```
data=df[['lon' ,'lat']]
data
```

Out[6]:

	lon	lat
0	-3.712247	40.423853
1	-3.682319	40.421564
2	-3.677356	40.451475
3	-3.639233	40.440047
4	-3.713322	40.347139
5	-3.731853	40.394781
6	-3.747347	40.419356
7	-3.580031	40.476928
8	-3.703172	40.419208
9	-3.645306	40.407947
10	-3.707128	40.445544
11	-3.711542	40.478228
12	-3.651522	40.388153
13	-3.686825	40.398114
14	-3.690367	40.439897
15	-3.682583	40.414444
16	-3.688769	40.465572
17	-3.612117	40.372933
18	-3.580747	40.462531
19	-3.718728	40.384964
20	-3.660503	40.494208
21	-3.774611	40.518058
22	-3.609072	40.465250
23	-3.689761	40.500589

In [7]:

data.plot.line(subplots=True)

Out[7]:

array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

In [8]:

data.plot.line()

Out[8]:

<AxesSubplot:>

In [9]:

x = data[0:100]

In [10]:

x.plot.bar()

Out[10]:

<AxesSubplot:>

In [11]:

data.plot.hist()

Out[11]:

<AxesSubplot:ylabel='Frequency'>

In [12]:

data.plot.area()

Out[12]:

<AxesSubplot:>

In [13]:

data.plot.box()

Out[13]:

<AxesSubplot:>

In [14]:

x.plot.pie(y='lat')

Out[14]:

<AxesSubplot:ylabel='lat'>

In [15]:

data.plot.scatter(x='lon' ,y='lat')

Out[15]:

<AxesSubplot:xlabel='lon', ylabel='lat'>

In [16]:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 24 entries, 0 to 23
Data columns (total 6 columns):
    Column
               Non-Null Count Dtype
0
    id
               24 non-null
                               int64
 1
              24 non-null
                               object
    name
 2
    address
              24 non-null
                               object
 3
    lon
               24 non-null
                               float64
                               float64
 4
    lat
               24 non-null
 5
    elevation 24 non-null
                               int64
dtypes: float64(2), int64(2), object(2)
```

memory usage: 1.3+ KB

In [17]:

```
df.describe()
```

Out[17]:

	id	lon	lat	elevation
count	2.400000e+01	24.000000	24.000000	24.000000
mean	2.807904e+07	-3.679019	40.434616	658.333333
std	1.799094e+01	0.049324	0.043022	38.295949
min	2.807900e+07	-3.774611	40.347139	599.000000
25%	2.807902e+07	-3.711718	40.405489	625.500000
50%	2.807904e+07	-3.687797	40.431875	661.000000
75%	2.807905e+07	-3.649968	40.465331	687.000000
max	2.807906e+07	-3.580031	40.518058	728.000000

In [18]:

```
df1=df[['id', 'name', 'address', 'lon', 'lat', 'elevation']]
```

In [19]:

sb.pairplot(df1[0:100])

Out[19]:

<seaborn.axisgrid.PairGrid at 0x1f9e809f400>

In [20]:

```
sb.distplot(df1['lon'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:255
7: FutureWarning: `distplot` is a deprecated function and will be remove d in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[20]:

<AxesSubplot:xlabel='lon', ylabel='Density'>

In [21]:

```
sb.heatmap(df1.corr())
```

Out[21]:

<AxesSubplot:>

In [22]:

```
x=df[['id', 'lon', 'lat', 'elevation']]
y=df['elevation']
```

In [23]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [24]:
```

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[24]:

LinearRegression()

In [25]:

```
lr.intercept_
```

Out[25]:

6.227082849363796e-09

In [26]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[26]:

Co-efficient

id -2.221287e-16

lon 2.018873e-13

lat 2.522868e-13

elevation 1.000000e+00

In [27]:

```
prediction =lr.predict(x_test)
pp.scatter(y_test,prediction)
```

Out[27]:

<matplotlib.collections.PathCollection at 0x1f9e94ea760>


```
In [28]:
lr.score(x_test,y_test)
Out[28]:
1.0
In [29]:
lr.score(x_train,y_train)
Out[29]:
1.0
In [30]:
from sklearn.linear_model import Ridge,Lasso
In [31]:
r=Ridge(alpha=10)
r.fit(x_train,y_train)
Out[31]:
Ridge(alpha=10)
In [32]:
r.score(x_test,y_test)
Out[32]:
0.9999996035447566
In [33]:
r.score(x_train,y_train)
Out[33]:
0.9999997616610735
In [34]:
l=Lasso(alpha=10)
1.fit(x_train,y_train)
Out[34]:
Lasso(alpha=10)
In [35]:
1.score(x_train,y_train)
Out[35]:
0.9999406444858906
```

```
In [36]:
1.score(x_test,y_test)
Out[36]:
0.9999133689718303
In [37]:
from sklearn.linear_model import ElasticNet
e=ElasticNet()
e.fit(x_train,y_train)
Out[37]:
ElasticNet()
In [38]:
e.coef_
Out[38]:
                  , 0.
                                , 0.
array([-0.
                                                0.99922987])
In [39]:
e.intercept_
Out[39]:
0.5008724113449716
In [40]:
prediction=e.predict(x_test)
In [41]:
e.score(x_test,y_test)
Out[41]:
0.9999991343567602
In [42]:
from sklearn import metrics
In [43]:
print(metrics.mean_squared_error(y_test,prediction))
0.0010737763362632603
In [44]:
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
0.0327685266111136
```

```
In [45]:
print(metrics.mean_absolute_error(y_test,prediction))
0.027965296078377833
In [46]:
from sklearn.linear_model import LogisticRegression
In [47]:
feature_matrix=df[['id']]
target_vector=df['elevation']
In [48]:
feature_matrix.shape
Out[48]:
(24, 1)
In [49]:
target_vector.shape
Out[49]:
(24,)
In [50]:
from sklearn.preprocessing import StandardScaler
In [51]:
fs=StandardScaler().fit_transform(feature_matrix)
In [52]:
logr=LogisticRegression(max_iter=10000)
logr.fit(fs,target_vector)
Out[52]:
LogisticRegression(max_iter=10000)
In [53]:
observation=[[1]]
In [54]:
prediction=logr.predict(observation)
print(prediction)
[604]
```

```
In [55]:
logr.classes_
Out[55]:
array([599, 604, 615, 618, 621, 627, 630, 635, 642, 659, 660, 662, 670,
       674, 676, 677, 685, 693, 698, 700, 708, 715, 728], dtype=int64)
In [56]:
logr.score(fs,target_vector)
Out[56]:
0.1666666666666666
In [57]:
logr.predict_proba(observation)[0][0]
Out[57]:
0.05149080255479361
In [58]:
logr.predict_proba(observation)
Out[58]:
array([[0.0514908 , 0.07628281, 0.06459573, 0.06111161, 0.02846647,
        0.05992926, 0.01982391, 0.00955813, 0.02542849, 0.03721458,
        0.06573175, 0.05391838, 0.01206135, 0.04186834, 0.05270507,
        0.04305319, 0.03836362, 0.0181069 , 0.04069126, 0.06344616,
        0.01416966, 0.06685293, 0.05512959]])
In [59]:
from sklearn.ensemble import RandomForestClassifier
In [60]:
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
Out[60]:
RandomForestClassifier()
In [64]:
parameters={'max_depth':[1,2,3,4,5],
            'min_samples_leaf':[5,10,15,20,25],
            'n estimators':[10,20,30,40,50]
}
```

```
In [65]:
```

```
from sklearn.model selection import GridSearchCV
grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection\_split.
py:666: UserWarning: The least populated class in y has only 1 members, wh
ich is less than n_splits=2.
  warnings.warn(("The least populated class in y has only %d"
Out[65]:
GridSearchCV(cv=2, estimator=RandomForestClassifier(),
             param_grid={'max_depth': [1, 2, 3, 4, 5],
                         'min_samples_leaf': [5, 10, 15, 20, 25],
                         'n_estimators': [10, 20, 30, 40, 50]},
             scoring='accuracy')
In [66]:
rfc_best=grid_search.best_estimator_
```

In [67]:

```
from sklearn.tree import plot_tree
pp.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b','c','d'],f
```

Out[67]:

```
[Text(2232.0, 1087.2, 'gini = 0.883\nsamples = 11\nvalue = [1, 3, 2, 2, 0,
2, 0, 1, 0, 2, 1, 1, 0, 0\n1]\nclass = b')]
```

```
gini = 0.883
                samples = 11
value = [1, 3, 2, 2, 0, 2, 0, 1, 0, 2, 1, 1, 0, 0]
                  class = b
```

logistic regression is suitable

In []: