

## CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA - CAMPUS NOVA FRIBURGO

Disciplina: Eletrônica I - 2023.2

Data do Laboratório: 21/11/2023 (Lab. de Eng. 04)

Entrega do Relatório: 30/11/2023

#### <u>Laboratório de Eletrônica I</u> <u>Experimento 3: Polarização do TBJ</u>

#### 1) Objetivo

Comprovação experimental da relação entre as correntes da base e o coletor dos transistores NPN e PNP. Estudar um circuito de polarização do transistor.

### 2) Preparatório (OBRIGATÓRIO)

- **a)** Leia e imprima as especificações do fabricante FAIRCHILD para os transistores BC547 e BC557.
  - i. Quanto vale  $h_{FE}$  (ou mais conhecido como  $\beta$ ) para cada transistor?
  - ii. Qual é o máximo valor de tensão suportado entre coletor-emissor?
- iii. Quanto vale a tensão de saturação  $V_{CESat}$ ?
- **b**) Pesquise nas especificações do fabricante quais são os terminais de Base, Emissor e Coletor para os transistores da Figura 1.
- c) Estude os materiais necessários (disponíveis no laboratório), e faça um esquema de pré-montagem do protoboard para os circuitos das Figuras 2a, 2b e 3.



Figura 1: Encapsulado dos transistores BC557 e BC547

d) Calcule teoricamente e simule no LTSpice os valores pedidos na Tabela 3 para o circuito da Figura 3.

### 3) Procedimento experimental

- a) Curva IB IC do transistor NPN BC547.
  - i. Medir os valores reais de  $R_B$  e  $R_C$ .
  - ii. Montar o circuito da Figura 2.a).
- iii. Trocando o potenciômetro de posição é possível variar a corrente na base dos transistores ( $I_B$ ). Consequentemente, para cada corrente de base ajustada podemos medir as tensões  $V_{RB}$  e  $V_{RC}$  nas resistências  $R_B$  e  $R_C$ , respectivamente. Dessa forma, é possível calcular as correntes de base e coletor através da lei de Ohm (I=V/R). Complete a Tabela 1.
- iv. Plotar o resultado IC em função de IB.
- **b**) Curva IB IC do transistor PNP BC557.
  - i. Montar o circuito da Figura 2.b) com as mesmas resistências  $R_B$  e  $R_C$ .
  - ii. Repetir o procedimento a)iii para o circuito da Figura 2.b), preenchendo a Tabela 2.
- iii. Plotar o resultado IC em função de IB.
- c) Circuito de polarização por divisor de tensão.
  - i. Medir o valor real das resistências e montar o circuito da Figura 3.
  - ii. Completar a Tabela 3 com os valores experimentais.



# CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA - CAMPUS NOVA FRIBURGO



Figura 2: Circuitos para os experimentos a) e b).

Tabela 1 - Experimento a).

| $V_{RB}$             | 0 | 0.05 | 0.1 | 0.15 | 0.2 | 0.25 | 0.3 | 0.35 | 0.4 |
|----------------------|---|------|-----|------|-----|------|-----|------|-----|
| $V_{RC}$             |   |      |     |      |     |      |     |      |     |
| $I_B = V_{RB} / R_B$ |   |      |     |      |     |      |     |      |     |
| $I_C = V_{RC} / R_C$ |   |      |     |      |     |      |     |      |     |
| $\beta = I_C / I_B$  |   |      |     |      |     |      |     |      |     |

Tabela 2 - Experimento b).

| $V_{RB}$             | 0 | 0.05 | 0.1 | 0.15 | 0.2 | 0.25 | 0.3 | 0.35 | 0.4 |
|----------------------|---|------|-----|------|-----|------|-----|------|-----|
| $V_{RC}$             |   |      |     |      |     |      |     |      |     |
| $I_B = V_{RB} / R_B$ |   |      |     |      |     |      |     |      |     |
| $I_C = V_{RC} / R_C$ |   |      |     |      |     |      |     |      |     |
| $\beta = I_C / I_B$  |   |      |     |      |     |      |     |      |     |



Figura 3 - Circuito do experimento c).

Tabela 3 - Experimento c).

|              | $V_B$ | $V_E$ | $I_E$ | $I_C$ | $V_C$ | $V_{CE}$ | $V_{RC}$ | $V_{RE}$ |
|--------------|-------|-------|-------|-------|-------|----------|----------|----------|
| Teórico      |       |       |       |       |       |          |          |          |
| LTspice      |       |       |       |       |       |          |          |          |
| Experimental |       |       |       |       |       |          |          |          |