25-09-2008

Recap:

* proved Division Theorem

m=ng+r (osren)

* GCD Algo:

gcd(m,n) = gcd(n,r)gcd(n,0) = n

* Inverse a' of a in Zn

a' . a = 1

* Lemma 2.5

a has inverse => a·nx = b
in Zn has unique solution

proof of Theorem 2.7

* Let a' be an inverse of a. In

 \Rightarrow $a \cdot n a' = 1$

=> It is a solution to

 $Q \cdot x \times = 1$

=> According Lemma 2.5, (*)

has only one possible solution

=> a' must be unique

Proved.

More examples on the use of corollary 2.6

$$*$$
 3.6 $X = 2$ (*)

$$f$$
 6 has no inverse in Zq
6 $\cdot q$ $X = 2$ (Xf)

Lemma 2.8:
$$Q \cdot n \times = 1$$
 has soln in Zn
(=) $Ax + ny = 1$ for some integers $x \in Y$

$$\Rightarrow$$
 $ab = 9n + 1$

$$=$$
 $ab + n(-9) = 1$

$$\Rightarrow a \times + ny = 1 : X = b, Y = -9$$

$$\Rightarrow$$
 $ax = (-y)n+1$

$$\Rightarrow$$
 (a (x mod n)) mod n = 1

Proved.

L5-10

Theorem 2.4: a has inverse in Zn

ax + ny=1 for some integers
 X & Y

corollary of Lemma 2.8

€. †

Corollary 2.10: It exist integer x, y, s.t.

ax tny =1.

then inverse of a in Zn is

x mod n

Follows from 2nd part of the proof of Lemma 2.8.

How do we find X & Y? Link it to gcd.

Lemma 2.11: a, n >0, integers ax + ny = 1 for some integer (x, y =) gcd (a, n)=1 Proof: Suppose kla, kln, k>0

 \Rightarrow a = s.k, n = qk for some s, q

1 = ax + ny

= eskx+eqky

= (+ mi) K

女

=> K | 1

 $\Rightarrow k=1. \Rightarrow g(d(a,n)=1)$

proved.

Extended GCD Algo

* Input: a, n >0, integers

* output:

$$ax + hy = gcd(a,n)$$

Questions

1. Does a have inverse in Zn?

Answer: yes iff gcd (a,n) = 1

2. How to find in verse of a?

Answer: a= x mod n

Extended GCO Aljo

slide 45

* Have:

$$k = jq + r \qquad 0$$

$$x', y': rx' + jy' = gcdcr, j)$$

* Find X.Y s.t.

$$jx + ky = gcd(j.k)$$

$$0 \Rightarrow Y = k - jq$$
 (3)

(3)+(2) =>
$$(k-j9)x'+jy'=gcd(r.j)$$

$$\Rightarrow j(Y'-ix')+kx'=gcd(j.k)$$

so, if we set

$$x = y' - 1x', y = x'$$

then (F) is satisfied.

Extended GCD Algo: Example

$$K = 24$$
, $j = 14$

	x = y' - qx', y = x'			
$K = j \cdot q + r$	X	4	x'	γ'
24 = 14.1 + 10	- 5	3	3	-2
\$14 = 10.1 + 4	3	-2	-2) K
510 = 4.2 + 2	-2	Ì		0
G 4 = 2.2		O	S2005/078	

$$gcd = 2$$
 $x = -5$, $Y = 3$

$$jx + ky = gcd(j.k)$$