软件分析技术课程讲义

熊英飞 北京大学

2023年11月28日

第一章 总览

1.1 引言

1.1.1 缺陷检测问题

为尽量减少软件中的缺陷, 我们希望自动回答如下问题。

定义 1 (缺陷检测问题). 针对给定的缺陷类型,输入程序P,求程序P中是否存在给定类型的缺陷。

比如,一个内存泄漏缺陷检测问题希望检测出程序中是否存在内存泄漏。这部分我们以该问题为例展现软件分析的困难。

1.1.2 哥德尔不完备定理

1931年提出的哥德尔不完备定理是二十世纪最重要的发现之一,他否定了希尔伯特计划,也间接展示了上述缺陷检测问题不可能自动回答。

哥德尔不完备定理包括两个主要定理。这里我们主要需要用到的是第一不完备定理。是指包含自然数和基本算术运算(如四则运算)的一致系统一定不完备,即包含一个无法证明或证伪的定理。这里一致性是指任意命题和其逆命题不能同时被证明。完备性是指对所有命题,该命题本身或其逆命题一定能被证明。

主流程序设计语言能表示自然数和基本运算,即落在哥德尔不完备定理的范围。注意这里说的主流程序设计语言可以表示自然数并不是指程序设计语言中有Int这样的数据类型,因为Int是有限的,而数学上自然数是通过皮亚诺算数公理定义的。这句话主要是指主流程序设计语言可以通过List等类型定义出一个无限递归的结构,或者熟悉函数式程序设计语言的同学可以很容易用代数数据类型定义出皮亚诺算数公理的自然数类型。

4 第一章 总览

那么根据哥德尔不完备定理,如果我们用的形式系统是一致的,一定 存在某定理T不能被证明。那么我们可以构造如下程序。

```
a=malloc();
if (T) free(a);
return;
```

如果T为永真式,则没有内存泄漏,否则就有。但由于T无法被证明,所以我们并不知道T是否为永真式。

哥德尔不完备定理的证明概要可以查阅课程胶片或者网上的一些科普 资料[8]。

1.1.3 停机问题

哥德尔不完备定理的完整证明较为复杂,软件分析的难度也可以从更 简单的停机问题上来理解。

停机问题是指判断一个程序在给定输入上是否会终止,图灵1936年证明不存在一个算法能回答停机问题的所有实例。

图灵的证明是反证法,通过现代编程语言的语法可以很容易地理解。注意判断一个程序在给定输入上是否会终止等价于判断一个没有输入的程序是否会终止,只要我们将输入定义为程序中常量就行。简单起见,我们只考虑没有输入的程序。假设存在停机问题的判定算法Halt(p),对于终止的程序p返回true,对于不终止的程序返回false。那么我们可以写出如下邪恶程序。

```
void Evil() {
  if (!Halt(Evil)) return;
  else while(1);
}
```

那么,Halt(Evil)的返回值是什么呢?容易看出,我们没法定义出该返回值。假设返回值为真,也就是判断Evil应该停机,但实际运行Evil会进入while(1)死循环,推出矛盾。假设返回值为假,也就是判断Evil应该不停机,但实际运行Evil会立刻返回,推出矛盾。因此,不存在这样的判定算法Halt。

套用以上证明过程,我们可以很容易证明很多缺陷检测问题也不存在算法能回答。比如我们可以假设存在判定内存泄漏的算法LeakFree(p),对

1.1 引言 5

没有内存泄漏的程序返回true,对有内存泄漏的程序返回false。那么我们可以写出如下邪恶程序。

```
void Evil() {
   int a = malloc();
   if (LeakFree(Evil)) return;
   else free(a);
}
```

容易看出,无论LeakFree(Evil)返回什么值,都会推出矛盾。

可能有同学会有疑问,图灵的原始停机问题证明是构建在图灵机上的,但上面的证明似乎和图灵机没有关系?实际上,因为现代编程语言都可以用图灵机来模拟,我们可以把上面的证明过程都转到图灵机上。用图灵机模拟函数,就是先在纸带的某个位置写下一函数输入,并将图灵机头对准该位置,切换到某个预定义的函数初态开始执行,然后图灵机运行到某个预定义的终态表示函数执行结束,这时写在在纸带特定位置的内容就是函数输出。我们还可以进一步写一个解释器函数interpret,输入是表示程序的字符串,输出是程序执行结果。换句话说,Halt的作用是,对于任何合法程序的字符串p都能运行结束,并且输出为true表示interpret(p)运行一定能到终态,输出为false表示interpret(p)的运行不能终止。然后我们可以在纸带上写下上面Evil程序的字符串,注意这里把Evil传递给Halt实际是把字符串的起始位置传递给Halt。通过以上论证,可以知道Halt无法返回正确结果。

1.1.4 莱斯定理

套用停机问题的证明,我们可以发现很多软件分析问题都不可判定。

但到底有多少问题是不可判定的呢?1953年的莱斯定理表明,几乎所有有意义的程序分析问题都是不可判定的。

莱斯定理的表述为,给定一个被图灵机M识别的递归可枚举语言¹,给定一个语言的属性P,如果P是非平凡的,那么该语言是否具有性质P是一个不可判定问题。一个性质P是平凡的,当且仅当要么该性质对所有的语言都为真,要么该性质对所有的语言都为假。

注意原始莱斯定理是定义在形式语言上的,可以看成是输入到布尔的函数。如何将莱斯定理应用到所有可计算的函数上呢?注意一个可计算的

¹递归可枚举语言即可以被图灵机识别的语言。

6 第一章 总览

函数用图灵机表示的时候,是首先在纸带上写下输入,然后图灵机运行到 达终态,这时纸带上的内容就是输出。那么我们可以把输入和输出排列在 一起写在纸带上。首先我们运行原始图灵机对输入进行处理,得到输出。 然后我们再启动一个图灵机来比较图灵机和期望输出的等价性。把这两个 图灵机组合到一起,我们就得到了一个新的图灵机接受该可计算函数的输入输出对,这样我们也就可以把函数的性质转换成递归可枚举语言的性质 了。

换句话说,莱斯定理告诉我们,除了不需要检查的平凡属性,所有非平凡属性都是不可判定的。注意这里的属性是定义在可计算函数的属性,这里的函数应该理解为数学上的函数,即输入输出对的集合,而不是程序中一个带语法的函数。举例来说,"永远不会返回0"是一个函数的属性,但"函数的实现代码不超过10行"不是。

注意"程序运行过程中不会发生内存泄漏"这样的运行时性质也可以看成是可计算函数的属性。我们只需要假设程序每一次调用malloc和free的时候都在输出中产生一份日志记录,然后我们可以在这样的日志记录中取定义"内存泄漏"这样的属性。

1.1.5 模型检查

无论是哥德尔不完备定理、停机问题还是莱斯定理,讨论的都是涉及 无穷的量的一些性质。比如,哥德尔不完备定理中涉及自然数,自然数的 大小是无穷的。停机问题和莱斯定理都涉及图灵机,而图灵机包含一个无 穷长的纸袋。但这些理论上的结果在实际中的计算机上是不存在的,因为 实际计算机的内存是有限的,如果我们考虑计算机通过网络连接,网络上 计算机的总数也是有限的,所以这些理论的结果并不适用实际的系统。

因为内存总大小是有限的,我们可以通过有限状态自动机来表示程序。 这里"状态"指一个程序运行过程中某个时刻内存中所有位置的值。给定 一个状态,程序的下一个状态是确定的。因此,我们可以得到一个图,图 中的节点为程序的状态,而图中的边是状态到状态的转移。可以看出,这 样一个图的节点数是有限的,不含环的路径长度和数量也是有限的。对于 大量属性,只需要在这样的路径上做遍历就可以完成。比如,对于停机问 题,我们检查从起始状态出发的路径是否有环。对于内存泄漏问题,我们 检查从起始状态出发的路径在终止或者进入重复状态之前,是否有分配的 内存没有释放。因为路径长度有限,这样的算法一定在有限时间内终止。 1.2 软件分析 7

基于这样思想开发的技术称为模型检查。模型检查被广泛用于检查硬件系统的实现正确性。但是,由于软件的复杂性,虽然内存大小理论上是有限的,但实际状态数仍然是天文数字,采用模型检查的方法基本不可能在有限时间内完成检查。

1.2 软件分析

定义 2 (软件分析技术). 给定软件系统, 回答关于系统行为的问题的技术, 称为软件分析技术

在很多情况下,软件分析指回答和系统行为无关的软件性质的问题, 比如程序有多少行。但这类问题的回答不在本课程范围内,所以没有包括 在软件分析技术的范围内。

在部分文献[3]中也严格软件分析问题和软件验证问题。其中软件分析返回程序符合的属性,比如:程序中有几处内存泄漏(按多少个malloc语句分配的内存有可能泄漏计算)?软件验证判断程序是否符合给定属性,比如:程序中是否只有不超过3处内存泄漏?

在本课程中我们不对这两种问题进行严格区分,统一将其称为软件分析问题。事实上这两类问题通常是可以互相转换的。比如,如果我们有软件分析工具,我们让该工具分析处内存泄漏的数量,那就可以回答对应的验证问题。如果我们有软件验证工具,我们可以通过二分查找判断出程序中内存泄漏的数量。

1.3 近似求解软件分析问题

根据引言部分的分析,软件分析问题无法精确求解。实际中通常采用近似解。对于判定问题,近似的方法就是对于一部分实例回答"不知道"。对于返回值为集合的问题,近似方法就是返回一个和原始集合相近的集合。

由于程序分析常常被用于编译优化中,所以保证优化的正确性是很重要的。因此,通常会对近似的正确性(soundness)提出要求。具体要求取决于应用,常见要求包括:

• 判定问题下近似:只输出"是"或者"不知道",即返回"是"的实例 集合是真实实例集合的子集。

- 判定问题上近似:只输出"否"或者"不知道",即返回"不知道"的 实例集合是真实实例集合的超集。
- 集合问题下近似: 返回的集合是实际集合的子集。
- 集合问题上近似:返回的集合是实际集合的超集。

1.3.1 抽象法

抽象法通常对程序运行状态定义一个抽象域,同时将程序的执行过程重新定义在抽象域上。

下面以符号分析为例介绍抽象法。给定一个整数的四则运算表达式, 我们想要避免计算出结果,但尽量分析结果的符号。

我们可以定义如下抽象域 $\{ \mathbb{T}, \mathfrak{G}, \mathfrak{F}, \mathbb{R} \}$ 。抽象域中四个值的含义通过下面 γ 函数定义。

$$\gamma(\mathbb{E}) = \{i \mid i > 0\}$$

 $\gamma(\mathfrak{G}) = \{i \mid i < 0\}$
 $\gamma(\mathfrak{F}) = \{i \mid i = 0\}$

 $\gamma(R)$ = 所有整数和NaN

为了采用该抽象域进行运算,我们首先定义抽象函数将普通整数映射 到抽象域上。

$$\beta(i) = \begin{cases} \mathbb{E} & i > 0 \\ \emptyset, & i < 0 \\ \mathbb{E}, & i = 0 \end{cases}$$

然 \hat{c} 针对 $+,-,\times,/$ 等操作定义对应的抽象域上的运算 $\oplus,\ominus,\otimes,\oslash$ 。

然后我们就可以在抽象域上进行运算。比如 $5\times2+6$ 就可以运算为 $\beta(5)\otimes$ $\beta(2)\oplus\beta(6)$,从而在不计算出精确值的情况下计算出符号。注意由于我们做了抽象,所以有时我们会对正常的式子得出槑的结果,即结果不精确。

1.3.2 搜索法

搜索法通过遍历程序的输入空间,查看是否有触发缺陷的输入存在。 比如测试就是一种典型的搜索法。实际中的搜索法会通过引入各种剪枝和 推断算法来减少搜索空间。

实际分析中常常混合使用抽象法和搜索法。

10 第一章 总览

第二章 数据流分析

在引言部分我们了解了如何在对一个表达式进行抽象分析。这一章我们看看如何在一个命令式程序上进行分析。相比表达式,命令式程序的基本单位是命令,并且任意程序是通过顺序、选择、循环三种方式组成命令构成。分析命令式程序的基本框架为数据流分析框架,主要如何对命令、顺序、选择、循环这些结构进行抽象。

简单起见,本章先不考虑指针、数组、结构体、函数调用、动态内存 分配等高级编程语言成分,这些成分将在未来课程中处理。

数据流分析在控制流图上进行。我们这里假设程序已经被转换成了控制流图。转换成控制流图的算法可以参考龙书[1]等编译课本。

2.1 基础

定义 3 (半格). 半格是一个二元组 (S, \sqcup) , 其中S是一个集合, $\sqcup: S \times S \to S$ 是一个合并运算, 并且任意 $x, y, z \in S$ 都满足下列条件:

- 幂等性: $x \sqcup x = x$
- 交換性: $x \sqcup y = y \sqcup x$
- 结合性: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$

引理 1. 有界半格 (S, \sqcup_S, \bot_S) 和 (T, \sqcup_T, \bot_T) 的笛卡尔乘积 $(S \times T, \sqcup_{ST}, (\bot_S, \bot_T)$ 还是有界半格,其中 $(s_1, t_1) \sqcup_{ST} (s_2, t_2) = (s_1 \sqcup_S s_2, t_1 \sqcup_T t_2)$

定义 4 (有界半格). 有界半格是一个有最小元上的半格,满足 $x \sqcup \bot = x$ 。

定义 $\mathbf{5}$ (偏序). 偏序是一个二元组 (S, \sqsubseteq) , 其中S是一个集合, \sqsubseteq 是一个定义在S上的二元关系,并且满足如下性质:

- 自反性: $\forall a \in S, a \sqsubseteq a$
- 传递性: $\forall x, y, z \in S, x \sqsubseteq y \land y \sqsubseteq z \Rightarrow x = y$

定理 1. 每个半格都定义了一个偏序关系: $x \sqsubseteq y$ 当且仅当 $x \sqcup y = y$

定义 $\mathbf{6}$ (单调函数). 给定偏序关系 (S, \sqsubseteq_S) 和 (T, \sqsubseteq_T) ,称函数 $f: S \to T$ 为单调函数, 当且仅当对任意 $a, b \in S$ 满足

$$a \sqsubseteq_S \Rightarrow f(a) \sqsubseteq_T f(b)$$

如果f接收多个参数,在讨论f的单调性的时候,把f看做是定义在各个输入参数域的笛卡尔乘积上的一个函数。

定义 7 (图). 图是一个二元组(V, E), 其中V是节点的集合, $E \subseteq V \times V$ 是边的集合。

定义 8 (控制流图). 给定一个程序, 控制流图是一个图(V,E), 其中V是程序中基本块和条件表达式的集合, 另外包含特殊节点entry和exit; E表示节点之间控制转移关系, 满足: 如果存在一条执行序列, 执行完 v_1 之后立即执行 v_2 , 那么(v_1,v_2) \in E。对于任意节点v, 至少存在一条从entry到达该节点的路径, 也存在一个从该节点到达exit的路径。

我们用pred(v)表示图中一个节点的前驱节点,用succ(v)表示图中一个节点的后继节点。

定义 9 (不动点). 给定一个函数 $f: S \to S$, 如果f(x) = x, 则称x是f的一个不动点。

定理 2 (不动点定理). 给定高度有限的有界半格 (S, \sqcup, \perp) 和一个单调函数f,链 \perp , $f(\perp)$, $f^2(\perp)$, ...必定在有限步之内收敛于f的最小不动点,即存在非负整数n,使得 $f^n(\perp)$ 是f的最小不动点。

证明. 首先证明收敛于f的不动点。因为 \bot 是最小元,所以有 \bot \Box $f(\bot)$ 。

两边应用 f,因为 f 是单调函数,得到 $f(\bot) \subset f^2(\bot)$ 。

再次应用f, 得到 $f^2(\bot) \sqsubseteq f^3(\bot)$ 。

因此,原命题中的链是一个递减链。因为格的高度有限,所以必然存在某个位置前后元素相等,即,到达不动点。

然后证明收敛于最小不动点。假设有另一不动点u,则 \bot \sqsubseteq u。两边反复应用n次f,可得 $f^n(\bot)$ \sqsubseteq $f^n(u) = u$ 。因此, $f^n(\bot)$ 是最小不动点。

2.2 数据流分析框架

定义 10 (数据流分析问题). 给定如下输入:

- 控制流图(V, E)
- 有限高度的有界半格 (S, \sqcup, \bot)
- 一个起始节点的输入值OUTentry
- 一组单调函数,对任意 $v \in V \setminus \{entry\}$ 存在一个单调函数 f_v

数据流分析问题的目标是产生下列输出:

• 对任意 $v \in V \setminus \{entry\}$, 输出分析结果 OUT_v , 满足 $OUT_v = f_v(\sqcup_{w \in pred(v)} OUT_w)$

以上定义适用于正向数据流分析。对于反向数据流分析,只需要把数据流图的所有边起点和终点交换,同时交换*entry*和*exit*节点即可。

2.2.1 数据流分析问题的轮询算法

令 $V = \{v_1, \ldots, v_n\}$ 是控制流图的所有节点。首先定义轮询函数F,如下:

$$F(\text{OUT}_{v_1}, \text{OUT}_{v_2}, \dots, \text{OUT}_{v_n}) = \begin{pmatrix} f_{v_1}(\sqcup_{w \in pred(v_1)} \text{OUT}_w), \\ f_{v_2}(\sqcup_{w \in pred(v_2)} \text{OUT}_w), \\ \dots \\ f_{v_n}(\sqcup_{w \in pred(v_n)} \text{OUT}_w) \end{pmatrix}$$

数据流分析轮询算法反复将F应用到 $(\bot, ..., \bot)$ 上,直到到达不动点,即分析结果

$$(\mathrm{OUT}_{v_1}, \mathrm{OUT}_{v_2}, \dots, \mathrm{OUT}_{v_n}) = F^k(\bot, \dots, \bot),$$

其中k满足

$$F^k(\bot, ..., \bot) = F^{k+1}(\bot, ..., \bot)$$

定理 3 (正确性). 轮询算法执行结束之后,输出满足 $OUT_v = f_v(\sqcup_{w \in pred(v)} OUT_w)$ 。

证明. 根据F的定义和不动点的定义直接可得。

定理 4 (终止性). 以上轮询算法必然终止。

证明. 由于f和 \square 都是单调函数,所以F是单调函数,直接应用不动点定理可得。

2.2.2 数据流分析问题的工单算法

数据流分析工单算法的伪码如下:

定理 5 (终止性). 以上分析算法必然终止。

定理 6. 工单算法终止之后, 返回的结果必然和轮询算法相同。

以上两个定理的证明详见胶片。

引理 2 (正确性). 工单算法执行结束之后,输出满足 $\mathrm{OUT}_v = f_v(\sqcup_{w \in pred(v)} \mathrm{OUT}_w)$ 。

证明. 由以上定理和轮询算法的正确性, 直接可得。

2.3 数据流分析示例

设计一个数据流分析,即设计一套方法,在给定一个控制流图和其他所需条件的时候,给出数据流分析问题的输入。

2.3.1 符号分析

给定程序输入的符号,分析程序输出可能的符号。

分析方向: 正向分析

半格元素: 从变量到抽象值的函数 $X \to \{\mathbb{L}, \mathfrak{D}, \mathfrak{T}, \mathbb{R}, \mathbb{L}\}$,其中X是程序中所有变量的集合。

合并运算:

$$(s_1 \sqcup s_2)(x) = s_1(x) \sqcup s_2(x)$$

$$v_1 \sqcup v_2 = \begin{cases} v_2 & \text{if } v_1 = \bot \\ v_1 & \text{elif } v_2 = \bot \\ v_1 & \text{elif } v_1 = v_2 \\ \mathbb{R} & \text{elif } v_1 \neq v_2 \end{cases}$$

最小元:映射任何变量到上

输入值:根据输入的符号范围选择合适的抽象值

转换函数:根据相应语句,采用之前定义的抽象域操作进行运算。

2.3.2 可达定值分析

对程序中任意语句,分析运行该语句后每个变量的值可能是由哪些语句赋值的,给出语句标号。要求上近似,即返回值包括所有可能的定值。

分析方向: 正向分析

半格元素: 从变量到语句标号集合的函数 $X \to 2^L$,其中X是程序中所有变量的集合,L是程序中所有语句的标号的集合。

合并运算: 对应集合的并 $(s_1 \sqcup s_2)(x) = s_1(x) \cup s_2(x)$

最小元:映射任何变量到空集山

输入值:最小元

转换函数: $f_v(\mathbb{P})(x) = (\mathbb{P}(x) \setminus \text{KILL}_v^x) \cup \text{GEN}_v^x$, 其中

- 对于赋值给x的赋值语句,KILL $_v^x$ = 所有赋值给x的语句编号,GEN $_v^x$ = {当前语句编号}。
- 对于其他语句,KILL $_v^x = GEN_v^x = \emptyset$.

2.3.3 可用表达式分析

给定程序中某个位置p,如果从入口到p的所有路径都对表达式exp求值,并且最后一次求值后该表达式的所有变量都没有被修改,则exp称作p的

一个可用表达式。给出分析寻找可用表达式。要求下近似。

分析方向: 正向分析

半格元素:表达式的集合

合并运算:对应集合的交

最小元: 全集

输入值: 空集

转换函数: $f_v(\mathbb{P}) = (\mathbb{P} \setminus KILL_v) \cup GEN_v$, 其中

- 对于赋值给x的赋值语句, $KILL_v =$ 所有包含x的表达式, $GEN_v =$ 当前语句中求值的不含x的表达式。
- 对于其他语句, $KILL_v = \emptyset$, $GEN_v =$ 当前语句中求值的表达式.

2.3.4 活跃变量分析

给定程序中的某条语句s和变量v,如果在s执行前保存在v中的值在后续执行中还会被读取就被称作活跃变量。返回所有可能的活跃变量。

分析方向: 反向分析

半格元素:变量集合

合并运算:集合的并

最小元: 空集

输入值: 空集

转换函数: $f_v(\mathbb{P}) = (\mathbb{P} \setminus KILL_v) \cup GEN_v$, 其中

- 对于赋值给x的赋值语句,KILL $_v = \{x\}$; 对于其他语句,KILL $_v = \emptyset$ 。
- $GEN_v = v$ 中读取的所有变量.

2.3.5 繁忙表达式分析

从执行某个程序节点之前开始,在其中变量被修改之前,在所有终止 执行中一定会被读取的表达式。找到每个程序节点的繁忙表达式。要求下 近似。

具体定义方式留着练习。

2.4 加宽和变窄 17

2.4 加宽和变窄

标准数据流分析有可能收敛得很慢,甚至有可能因为半格的高度无限 导致不收敛。为了让结果收敛得更快,可以使用加宽的方法。加宽之后结 果也会随之变得不精确,这时候可以使用变窄的方法,进一步让结果变精 确。

2.4.1 加宽

加宽的基本思路是在每次更新OUT_v的时候,根据更新之前的值和新计算时的值,分析抽象值的变化趋势,然后根据变化趋势推测最终会收敛到的抽象值。

令A为抽象值的空间。加宽算子 $\nabla: A \times A \to A$ 负责完成上述推测操作。给定o为更新之前的值,n为更新之后的值,则o ∇n 表示根据o和n的差别推测的最终会收敛到的抽象值。

应用加宽之前,数据流分析算法采用如下语句更新OUT。的值。

$$OUT_v \leftarrow f_v(IN_v)$$

应用加宽之后,更新方式变成了:

$$\mathrm{OUT}_v \leftarrow \mathrm{OUT}_v \nabla f_v(\mathrm{IN}_v)$$

以上修改即可以应用于轮询算法也可以用于工单算法。由于工单算法 引入了随机性,理论讨论较为复杂,之后的讨论仅限于轮询算法。

定理 $\mathbf{7}$ (加宽安全性). 如果加宽算子满足 $y \subseteq x \nabla y$,加宽的轮询算法终止后,满足 $\mathrm{OUT}_v \subseteq \mathrm{OUT}_v^w$ 。其中 OUT_v 是原始轮询算法返回的结果, OUT_v^w 是加宽轮询算法返回的结果,v为任意控制流节点。¹

定理的证明见胶片。

以上安全性的证明仅限于分析终止的情况,目前没有找到容易的方式 来判断分析的终止性。大多数教材、专著和论文中会对加宽算子要求一个 比较强的终止性条件:对任意序列都终止。这个条件的形式和分析算法终 止性的定义差别不大,要求更强,所以实际对证明帮助有限。

 $^{^1}$ 在很多静态分析的教材[2, 9, 7, 5, 4]中,安全性同时还要求 $x \sqsubseteq x \nabla y$,但似乎不需要这个条件也能完成证明。

不过,加宽算子的一些性质通常对实现终止性有帮助,在实际设计时常常遵守。首先,最终达到收敛时,上一轮的值和本轮新计算的值会相等,所以通常加宽算子对两个相等的参数返回相等的参数。其次,由于转换函数和合并函数的单调性,数据流分析的过程中OUT。值是单调变大的。但 ∇ 并不具有单调性,所以有可能这一轮值比上一轮更小,形成振荡。为了避免这种情况,通常要求 $x \subseteq x \nabla y$,即加宽分析仍然确保OUT。值单调变大。注意如果所使用的抽象域仍然形成高度有限的半格的话, $x \subseteq x \nabla y$ 这个性质就可以保证分析终止了。但由于加宽处理的情况通常是高度无限的半格,所以并不能套用之前的方式来进行证明。

2.4.2 加宽示例:区间分析

假设程序中的变量都是整数,给定输入的上下界,求输出的上下界。 要求上近似。

分析方向: 正向分析

半格元素:程序中每个变量的区间

合并运算:每个变量的区间对应求并,区间的并定义为

$$[a,b] \sqcup [c,d] = [min(a,c), max(b,d)]$$

最小元:每个变量都映射到上

输入值:根据具体分析任务的输入上下界确定

转换函数:根据程序语句对区间进行计算。

以上分析是不保证终止的,因为半格的高度是无限的。为了解决这个问题,引入如下加宽算子。

$$[a,b]\nabla \bot = [a,b]$$

$$\bot \nabla [c,d] = [c,d]$$

$$[a,b]\nabla [c,d] = [m,n]$$

其中

$$m = \begin{cases} a & c \ge a \\ -\infty & c < a \end{cases}$$

$$n = \begin{cases} b & d \le b \\ +\infty & d > b \end{cases}$$

2.4 加宽和变窄 19

易见该加宽算子满足 $y \subseteq x \nabla y$,所以保证安全性。同时,该加宽算子也能保证终止。这是因为该算子满足 $x \subseteq x \nabla y$,所以在分析过程中 OUT_v 的值不会减小,同时上下界一旦出现扩大,就会被提升到 $\pm \infty$,不会出现无限增大的情况,因此一定保证终止。

2.4.3 变窄

加宽虽然能加快收敛,但也会导致很多分析返回不精确的结果。为了解决这样的问题,变窄通过再次应用原始分析对加宽的结果进行修正。给定加宽分析的OUT。值作为初值,变窄应用原始的数据流分析对OUT。值进行多轮迭代更新。可以证明,这样更新之后的结果精度介于加宽分析结果和原始分析结果之间,也就是说保证了安全性。具体证明见课件。

但变窄并不能保证终止。所以实践中通常是限制迭代的轮数,在迭代 次数到达上限时终止。

第三章 抽象解释

之前的课程内容中,程序分析的正确性是针对单独应用各自论证的,能否统一论证程序分析的正确性呢?这部分的抽象解释理论就是关于这部分的理论。同时,抽象解释理论也帮助我们理解不同程序分析之间的关系。

3.1 抽象解释理论框架

抽象解释主要关注一个抽象域和一个具体域之间的关系。这里的抽象域和具体域都是带偏序的集合。比如在符号分析中,抽象域的集合是 $\{ \mathbb{L}, \mathfrak{G}, \mathfrak{F}, \mathbb{R}, \mathbb{L} \}$,偏序关系是 \mathbb{L} ;具体域的集合是所有整数集合的幂集,偏序关系是子集关系。本文中采用中文粗体代表抽象域,如 \mathbb{L} ,采用英文大写字母代表具体域,如 \mathbb{L}

抽象解释采用抽象化函数和具体化函数来描述抽象域和具体域之间的关系

• 抽象化函数 $\alpha: \mathbf{D} \to \mathbf{c}$

• 具体化函数 $\gamma: \mathbf{c} \to \mathbf{D}$

我们之前已经见过 γ 函数,还使用过另一个 β 函数。 β 函数是在具体域中元素是集合的时候的特殊的抽象化函数,可以从 β 导出 α ,即 $\alpha(X) = \sqcup x \in X\beta x$.

抽象解释理论的核心是采用伽罗瓦连接描述了抽象化函数和具体化函数之间的关系。

定义 11 (伽罗瓦连接). 我们称 γ 和 α 构成抽象域**虚**和具体域D之间的一个伽罗瓦连接,记为

$$(D,\subseteq) \leftrightharpoons_{\alpha}^{\gamma} (\mathbf{z},\sqsubseteq)$$

当且仅当

$$\forall X \in \mathbf{D}, \, \mathbb{P} \in \mathbf{\&}, \, \alpha(X) \sqsubseteq \mathbb{P} \iff X \subseteq \gamma(\mathbf{D})$$

伽罗瓦连接的定义虽然很简洁,但也意味很多有用的性质。首先, α 和 γ 都是单调的。前面我们已经见过了,单调性在证明分析安全性的过程中起着很重要的作用。其次, $\gamma \circ \alpha$ 保持或增大输入。这个性质和安全性对应。当我们从具体值得到抽象值的时候,抽象值一定表示了一个包括具体值的范围。最后, $\alpha \circ \gamma$ 保持或缩小输入。这个性质意味着 α 函数应该返回尽可能小的抽象值。如果存在一个抽象值能表示当前具体值的时候,那么 α 函数的返回值不能比这个抽象值更大。关于该定理的定义和证明请参见胶片。

以上抽象域的讨论主要涉及到值,很多时候我们也需要关注函数。

定义 12 (函数抽象). 给定伽罗瓦连接(D,\subseteq) $\leftrightharpoons_{\alpha}^{\gamma}$ (\mathbf{z},\subseteq), 给定D上的函数f和**建**上的函数F, 我们说

• 子是f的安全抽象, 当且仅当

$$\alpha \circ f \circ \gamma(\Psi) \sqsubseteq \mathbf{\mathcal{F}}(\Psi)$$

• 子是f的最佳抽象, 当且仅当

$$\alpha \circ f \circ \gamma = \mathcal{F}$$

• 子是f的精确抽象, 当且仅当

$$f\circ\gamma=\gamma\circ$$
チ

注意精确抽象实际上意味着抽象域的函数不丢失信息,这样的函数抽象不一定存在。最佳抽象意味着返回尽可能精确的值,这样的函数抽象总是存在的,但在实际中不一定容易定义。之后我们会介绍符号抽象技术,用于针对特定具体域函数找到最佳抽象。最后,安全抽象是程序分析的基本要求,之后的讨论中主要使用的是安全抽象的概念。

3.2 抽象解释和分析正确性

一般而言,程序分析是分析程序在给定输入集合下的所有具体执行序列具有的性质。从抽象解释的角度来看,这里的具体域的元素是任意的程序在任意输入集合下的所有具体执行序列集合,抽象域是这组具体执行对应的分析结果。抽象域上的偏序关系就定义了分析的正确性或安全性:如

果分析出来的结果大于等于原结果,那么分析就是正确的。也就是说,我们可以用伽罗瓦连接来定义程序分析结果的正确性。

给定一个具体程序,该程序的具体执行语义定义了如何从一个输入集合产生该程序的所有执行序列,即一个从输入状态集合到具体执行序列集合的函数。那么,如果一个抽象解释对应的程序分析是正确的,该程序分析就应该是上述函数的安全抽象。

通过这样的方式,我们就把证明一个分析的正确性转为了证明特定伽罗瓦连接上安全函数抽象的问题。下面我们具体看一下如何定义具体语义和证明数据流分析的安全性。

3.2.1 控制流图上具体语义

一个程序的下一步执行由其内部执行状态决定,包括所有变量取值,堆上的值,和PC指针等。我们这里不去区分程序的内存的细节,只是简单假设存在一个内存状态集合M表示程序执行过程中所有可能的内存状态。给定一个控制流图(V,E),一个用控制流图表示的程序的一个执行状态就是由(v,m)组成的对,称为执行状态,其中 $v \in V, m \in M$ 。我们称由执行状态构成的序列为具体执行序列,或者称为一个执行踪迹(trace)。

我们同时假定每个控制流节点v对应一个具体转换函数 $trans_v: M \to 2^M$ 和一个控制转移函数 $next_v: M \to 2^{succ(v)}$ 。两个函数返回的都是幂集,是因为程序可能有不确定的情况,一个状态可以有多个下一个状态,比如有随机函数。同时,在程序结束的时候下一个状态是空集。当我们考虑反向分析的时候,我们还需要反向定义程序语义,而反向语义通常是不确定的。

那么我们可以定义出如下的单步执行函数 $step: \mathbb{T} \to \mathbb{T}$,其中 \mathbb{T} 是执行踪迹的全集。

$$step(t) = \{t + (v', m') \mid v' \in next_{last(t),node}(last(t).mem), m' \in trans_{v'}(last(t).mem)\},\$$

其中+表示序列的追加,last返回序列的最后一个元素,s.node返回状态s对应的控制流节点,s.mem返回状态s对应的内存状态。

我们接着将单步执行函数扩展到集合上,即

$$Step(T) = \bigcup_{t \in T} step(t)$$

那么,一个程序从输入状态集合 T_I 出发所能产生的所有执行踪迹就为 $Step^{\infty}(T_I) = \lim_{n \to \infty} Step^n(T_I)$ 。

这种将程序映射为执行踪迹集合的语义定义方式通常称为迹语义(Trace Semantics)。

3.2.2 数据流分析的安全性

下面我们证明数据流分析是安全的。我们之前定义过轮询函数F,而数据流分析就是反复应用轮询函数直到不动点,即结果为 $F^{\infty}(I)$ 。我们试图论证F是Step的安全抽象,然后自然 F^{∞} 就是 $Step^{\infty}$ 的安全抽象。换个角度,我们可以认为F定义了控制流图上的抽象语义。

因为数据流分析其实是分析出从起始节点到某个节点v的所有执行踪迹所满足的性质,所以我们区分具体分析定义的伽罗瓦连接和数据流分析的伽罗瓦连接。具体分析定义的伽罗瓦连接记为是 $(\mathbf{D},\subseteq) \leftrightharpoons_{\alpha}^{\gamma}(\mathbf{e},\sqsubseteq)$,其中具体域是从起始节点到某个节点的执行踪迹的集合,抽象域是该集合的性质。

因为数据流分析对每个控制流节点返回一个值,所以数据流分析可以看做是两个伽罗瓦连接的复合。第一次将所有执行踪迹的集合抽象为一个映射,映射的输入是节点v,输出是从起始节点到某个节点v的所有执行踪迹。第二次基于(\mathbf{D},\subseteq) $\leftrightharpoons_{\alpha}^{\gamma}$ (\mathbf{e},\sqsubseteq)将每个节点对应的执行踪迹集合抽象为该踪迹集合的性质。第一个伽罗瓦连接用(\mathbf{D},\subseteq) $\leftrightharpoons_{\alpha_w}^{\gamma_w}$ (\mathbf{D}_w,\subseteq_w)表示,第二个用(\mathbf{D}_w,\subseteq_w) $\leftrightharpoons_{\alpha_a}^{\gamma_a}$ (\mathbf{e}_w,\subseteq_w)表示。数据流分析产生的完整伽罗瓦连接是两次连接的复合,即 $\alpha=\alpha_a\circ\alpha_w$, $\alpha_a(d)(v)=\alpha(d(v))$ 。 γ 类似。

我们要求抽象域上的节点转换函数 f_v 满足如下条件。

$$\forall t \in \gamma(\mathbb{P}), (t' \in step(t) \land last(t').node = v) \Rightarrow t' \in \gamma(f_v(\mathbb{P}))$$

即节点转换函数只需要对于会实际执行当前节点的任意踪迹保证安全即可。

基于上面的条件,采用之前具体数据流分析部分讲过的方法,可以很容易证明F是Step的安全抽象,这里不再详细展开。

3.3 流非敏感分析

如果我们不区分不同节点上的OUT值,我们就得到了流非敏感分析,即

$$F_{fi}(\text{OUT}) = \bigsqcup_{v \in V} f_v(\text{OUT})$$

可以证明 F_{fi} 的分析结果和F的分析结果形成了伽罗瓦连接,即流非敏感分析是对流敏感分析的进一步抽象。该抽象忽略掉了"节点"这个维度。之后会看到不同敏感性的分析,都是在分析中添加/去掉某个维度得到。

第四章 过程间分析

之前的章节中,我们没有考虑过程和过程调用,即分析都限制在一个过程内部,这样的分析被称为过程内分析。这一章我们考虑过程间分析,即考虑过程和过程调用的分析。

之前我们定义的控制流图是针对过程内部的,只有一个entry节点和一个exit节点。现在我们程序由多个过程组成,则这样的程序就对应多个控制流图,对于过程p,对应控制流图的入口节点为 $entry_p$,出口节点为 $exit_p$ 。同时,控制流图上会有两类特殊的节点,过程调用节点负责调用一个其他过程,过程返回节点负责处理调用过程的返回值。过程调用节点没有后继节点,而过程返回节点的前驱节点为过程调用节点的前驱节点。

4.1 上下文不敏感的过程间分析

处理过程调用的方式就是直接的方式就是把不同过程的控制流图连起来,称为超级控制流图。如果有一个过程调用节点call调用了过程p,同时对应的过程返回节点为resume,那么我们就添加两条边:从call到 $entry_p$,从 $exit_p$ 到resume。

很多分析是针对程序中的每个变量分析出一个值,比如符号分析。由于通常不同过程有不同的本地变量,所以一般对每个过程采用不同的抽象域。这样,call和resume就负责在不同的抽象域之间转换。call根据当前过程的抽象域计算出实参的抽象值,然后转化为被调用过程的实参抽象值。resume根据被调用过程的抽象域计算出抽象返回值,然后在被调用进程中替换给合适的变量,类似赋值语句。注意这里resume不能直接把前驱节点的值合并起来,而需要区分当前过程的前驱节点和exitp节点。

如果某过程p涉及到读全局变量g,全局变量g要添加到p和所有直接和间接调用p过程的输入中。类似的,如果某过程p涉及到写全局变量g,全局

变量g要添加到p和所有直接和间接调用p过程的输出中。全局变量被大量添加是分析大型软件的一个问题。

4.2 基于克隆的过程间分析

前面这种方式会产生不精确,因为在分析过程中混淆了不同调用上的结果。比如A过程和B过程都调用了C过程,但A过程传入C的值对应的返回值可能会流入B过程。即会考虑实际不可能出现的执行轨迹。

为了避免这种情况,我们需要细化一下具体执行的语义。之前我们认为一个执行状态包括一个控制流图节点和一个内存状态,但引入过程调用之后,具体执行状态需要额外包含一个调用栈,才能进行正确的返回。具体而言,调用栈是一个序列,按顺序包括所有之前执行了但还没有返回的过程调用节点。

为了匹配具体执行中的调用行为,我们需要在抽象域也引入调用栈,这样函数返回的时候就可以根据调用栈进行返回。但是,调用栈是一个无穷的集合,所以我们需要设计一个调用栈的抽象域。通常的做法是取最近k次调用,即调用栈的长度最多为k。这样抽象调用栈就变成了一个有穷集合。简单起见,我们通常认为抽象调用栈的长度固定为k,对于长度不到k的调用栈引入特殊符号补齐。比如k=3,具体调用栈中只包含一次调用v,那么对应的抽象调用栈就是(-,-,v),其中—是用来补全的特殊符号。

但是,如果只是简单将抽象调用栈加到抽象域中并不解决问题,因为我们还是无法区分抽象状态中代表的执行踪迹哪些来自于A哪些来自于B,即我们无法写出有实际效果的状态压缩函数。为了区分来自不同调用的执行踪迹,我们进一步细化OUT值。之前对于每个控制流节点有一个OUT值,现在我们针对每一个控制流节点和每一个抽象调用栈有一个OUT值。令v为非过程调用/返回节点的任意控制流节点,c为任意抽象调用栈,call为调用p的过程调用节点,resume为call对应的过程返回节点,inproc_pred负责返回当前过程内的前驱节点,tail返回序列除了第一个元素之外的子序列,那么我们有如下方程组。

$$OUT_{v,c} = f_v \left(\bigsqcup_{w \in pred(v)} OUT_{w,c} \right)$$

$$OUT_{call,tail(c)+call} = f_{call} \left(\bigsqcup_{w \in pred(v)} OUT_{w,c} \right)$$

$$OUT_{resume,c} = f_{resume} \left(\bigsqcup_{w \in inproc_pred(v)} OUT_{w,c}, OUT_{exit_p,tail(c)+call} \right)$$

用轮询/工单算法求解这组方程,就得到了过程间分析的解。

这里的抽象调用栈可以看做是当前调用的上下文,因此这种分析被称为上下文敏感分析。添加新的OUT值等价于克隆被调用过程的控制流图,因此这种分析被称为基于克隆的上下文敏感分析。根据需要,也可以采用不同类型的上下文。比如在面向对象语言中,函数调用是针对某个特定的对象发起,比如x.m()是针对x发起,那么可以用x的具体值作为上下文(如何抽象表达x的值是后续指针分析介绍的内容),这样的分析通常称为对象敏感分析。

4.3 基于上下文无关文法可达性的分析

基于克隆的上下文敏感分析只是考虑最近k次调用,能否完整考虑所有调用栈呢?即我们永远不会考虑在函数调用关系上不成立的执行轨迹。这样的分析也被称为精确的上下文敏感分析。

本章介绍一种基于上下文无关文法(CFL)可达性的分析方法。该方法针对满足分配性的数据流分析开展,具有直观的图形表示和较好的理论性质,是目前被广泛使用的一种方法。该方法的主要思路是,精确的上下文敏感分析主要是要正确匹配调用边和返回边。一个执行序列中的调用边和返回边是否匹配和匹配括号一样,是一个上下文无关属性,可以用上下文无关文法来捕获。即如下Dvck上下文无关文法。

$$S \rightarrow \{_1S\}_1$$

$$\mid \{_2S\}_2$$

$$\mid \dots$$

$$\mid SS$$

$$\mid \epsilon$$

这里每一个 $\{i$ 表示一个调用节点, $\}j$ 表示一个返回节点,i=j表示调用和返回匹配。如果我们把一个执行轨迹上的所有调用节点和返回节点都提取出来组成子序列,如果这个子序列符合上面的文法,就说明执行序列在调用关系上是合法的。

那么怎么做到只分析了这样的执行序列呢? CFL可达性首先利用数据流分析的分配性,把任意转换函数分解为一系列单位元素组成的图的可达性问题。然后在这个图上求解如下的CFL可达性问题:对于图中任意结

 $点v_1$ 、 v_2 ,确定是否存在从 v_1 到 v_2 的路径,使得该路径上的标签组成了给定上下文无关文法中的句子。对于精确的上下文敏感分析,这里的上下文无关文法就是上面的Dyck文法。具体图的转法用latex不太好排版,详见课件。

虽然求解CFL可达性问题存在通用算法,但针对精确的上下文敏感分析,可以发展出更高效的算法,避免计算不可达的路径。基于这样算法形成的分析框架叫做IFDS框架。

4.4 函数摘要分析

换个角度来看,IFDS的求解算法可以认为是对每个过程做了一个函数抽象,在给定输入的抽象值之后,可以利用IFDS算法得到的图计算过程的输出抽象值。这样的函数对于任何上下文都是固定不变的,所以如果A调用了B,在生成A的函数抽象过程中,我们只需要直接使用B的函数抽象就可以了,而不需要对于不同地方对B的调用进行不同的分析。

基于这个思路,我们可以泛化出一套基于函数摘要的精确上下文敏感分析。具体而言,我们首先分析出每个过程对应的抽象域上的函数摘要,然后对于Main函数的摘要传入抽象域的输入,我们就能得到抽象域上的输出。这样,我们可以根据分析的特点来选择函数表示方式,有可能做到比IFDS更高效的分析。

比如我们考虑数据流分析标准型。假设全集集合中有m个元素,那么每个控制流节点就要展开成m个节点。然后假设一个过程中所有的n个节点的Gen和Kill都为空,那么通过选择合适的函数表示,我们可能可以用O(n)的时间计算出来这个过程整体的转换函数Gen和Kill都为空,但CFL可达性分析必须在O(nm)个节点的图上跑可达性分析。

注意IFDS算法本身是一个不断加边直到到达不动点的过程,所以产生函数摘要的过程也是一个程序分析过程。首先我们需要选择一个合适的抽象域来表示函数。这个抽象域必须能表示函数的复合和函数的合并两种操作,即:

$$(f_2 \circ f_1)(x) = f_2(f_1(x))$$

 $(f_1 \sqcup f_2)(x) = f_1(x) \sqcup f_2(x)$

针对数据流标准型,我们可以用Gen和Kill两个集合来表示函数。考虑合并操作为集合的并集,函数的复合和合并分别定义如下。

$$(g_2, k_2) \circ (g_1, k_1) = (g_2 \cup (g_1 - k_2), k_1 \cup k_2)$$

 $(g_1, k_1) \cup (g_2, k_2) = (g_1 \cup g_2, k_1 \cap k_2)$

可以验证以上计算式符合上面的要求。

然后,我们在程序上做一个数据流分析来得到所有函数的摘要。每个控制流图节点的输出值是从函数入口位置到当前节点的函数摘要。因为该摘要是对原数据流分析的摘要,为了区分,我们用 f_v 表示原数据流分析的转换函数,用 \hat{f}_v 表示用来产生函数摘要的数据流分析的转换函数,那么对于非过程调用节点, \hat{f}_v 定义如下:

$$\hat{f}_v((g,k)) = f_v \circ (g,k)$$

对于过程调用节点call,假设call调用了过程p,那么转换函数定义如下:

$$\hat{f}_{call}((g,k)) = OUT_{exit_p} \circ (g,k)$$

可以归纳证明上面的转换函数都是单调函数。

每个过程Entry节点的初值是一个等价变换函数,即 (\emptyset,\emptyset) 。

通过以上分析,我们可以得到每个过程的函数摘要,再传入初值就得 到了分析的结果。

第五章 稀疏分析

大量的程序分析是关于变量中保存了什么值。对于这样的分析,典型的抽象域是一个映射,从变量映射到变量的值。但由于一个程序每个语句一般只读取少部分变量,最多修改一个变量,这样的数据流分析就造成两方面的冗余开销。

- 空间的冗余:每个节点都要对所有变量保存一份值,即使大部分变量 的值都是相同的。
- 时间的冗余:如果一个控制流节点不修改变量的x,那么该节点的转换 函数只是简单传递x的值。整个分析中大部分都是这样冗余的传递。

稀疏分析采用一个预分析来构建更稀疏的分析方程,避免这样的冗余 开销。为了避免空间的冗余,稀疏分析不在每个节点都保存所有变量的抽 象值,而是只保存当前修改的变量的抽象值。为了能在控制流节点需要值 的时候读取相应的值,稀疏分析不再沿着数据流图传递抽象值,而是在需 要某个变量的值的时候直接从该变量最后一次赋值的位置读取相应的值。

为了实现上述分析,我们必须知道每个变量的值是在什么地方最后被赋值的。注意因为有控制流汇合的情况,一个变量最后被赋值的位置可能有多个。为了捕获这样的信息,我们引入"定义-使用"关系的概念。给定变量x,如果节点A可能修改x的值,节点B可能读取由A写入的x的值,我们就说A和B之间存在"定义-使用"关系,记为 $def(A) \xrightarrow{x} use(B)$ 。稀疏分析假设存在一个预分析来获得这个信息。

有了"定义-使用"关系之后,我们就可以利用这个关系构建数据流分析了。给定一个控制流节点v,假设其读取的变量是 $\{r_1, \ldots, r_n\}$,写入的变量是 $\{w_1, \ldots, w_m\}$,那么我们得到如下的方程。其中 f_v 是节点v对应的转换

函数,根据读取变量的抽象值返回写入变量的抽象值; $i \in \{1...n\}$ 。

$$\begin{split} \mathrm{IN}_v^{r_i} &= \bigsqcup_{def(v') \xrightarrow{r_i} use(v)} \mathrm{OUT}_{v'}^{r_i} \\ (\mathrm{OUT}_v^{w_1}, \ldots \mathrm{OUT}_v^{w_m}) &= f_v(\mathrm{IN}_v^{r_1}, \ldots, \mathrm{IN}_v^{r_n}) \end{split}$$

求解该方程组,就得到了稀疏分析的结果。

5.1 获得"定义-使用"关系

获得"定义-使用"关系通常有两种方法。一种是执行可达定值分析,可达定值分析的结果就对应了程序中所有的"定义-使用"关系。另外一种是把程序转换成静态单赋值的形式,该形式保证所有变量只被赋值一次,顺着变量名就能直接找到所有的"定义-使用"关系。

需要注意的是,因为标准的可达定值分析和静态单赋值形式都只考虑 栈上的变量,稀疏分析通常只针对栈上的变量。堆上的值通过指针等结构 进行间接访问,虽然也可以通过抽象的方式定义出"定义-使用"关系,但 构建高效的预分析较为困难。

第六章 指针分析

指针分析是关于回答指针之间关系的程序分析的统称。在指针分析中,被研究得最多的问题就是指向分析(points-to analysis),即分析每个指针变量可能指向的地址。其他很多分析,比如别名分析(判断两个指针是否可能指向同一位置),通常也是以指向分析为基础构建。

指向分析有两种基础算法,分别被称为Anderson指向分析算法和Steensgaard指向分析算法。Anderson算法更精确,Steensgaard算法速度更快。

6.1 Anderson指向分析

Anderson指向分析就是按程序分析标准流程对指针操作做抽象之后产 生的分析。

首先我们假设程序中没有堆上分配的内存,没有结构体、数组等数据结构,没有*(p+1)等指针运算。这样,程序中可能保存值的地址就是局部和全局变量在栈上的地址。程序分析的结果就是从指针变量到变量地址集合的映射。我们用OUT $_v$ *来表示a指针变量在v节点执行之后保存的变量地址的值,在不引起混淆的情况下直接用a表示变量a的地址,那么一个流敏感的指针分析就是对每个节点v和每个变量x计算所有的OUT $_v$ *值,每个值是由变量地址组成的集合。

在忽略上述复杂结构之后,和指针的操作可以看做由如下四种基本语 句构成:

- a=&b
- a=b
- a=*b

• *a=b

其他语句可以看做是由这四条复合而成,比如*a=**b,可以写成:

c=*b; d=*c; *a=d;

因此我们只需要对这四种基本语句定义转换函数即可。我们这里采用方程的表示形式。下表给出了我们针对每个语句产生的约束。我们假设对于每个节点v和每个变量x,都有 $\mathrm{IN}_v^x = \bigcup_{v' \in pred(v)} \mathrm{OUT}_v^x$ 。同时,对于表格中没有出现在等号左边的变量,默认方程为 $\mathrm{OUT}_v^x = \mathrm{IN}_v^x$ 。

赋值语句	约束		
a=&b	$OUT_v^a = \{b\}$		
a=b	$OUT_v^a = IN_v^b$		
a=*b	$OUT_v^a = \bigcup_{x \in IN_v^b} IN_v^x$		
*a=b	$\forall x \in \mathrm{IN}_v^a, \mathrm{OUT}_v^x = \mathrm{IN}_v^b$	$ \mathrm{IN}_v^a $	=1
	$\forall x \in \mathrm{IN}_v^a, \mathrm{OUT}_v^x = \mathrm{IN}_v^x \cup \mathrm{IN}_v^b$	$ \mathrm{IN}_v^a $	> 1

对于最后一列的两种情况,一般把第一种情况称为强更新(strong update),第二种情况称为弱更新(weak update)。

对于流非敏感分析,将同一变量在不同控制流节点的值对应合并,同时转换函数也对应合并即可。注意这样合并之后强更新实际就不存在,因为a在其他位置的值一定是直接传递的。

接下来我们考虑堆上分配的内存。这里的主要问题是每次执行malloc或者new语句就会产生一个新的地址,这样整个程序中的地址是无穷的。为了解决这个问题,一般是对地址坐抽象,常用方法是针对每个malloc语句创建一个抽象地址,代表由这个语句分配的所有对象的具体地址。这样,对于一个分配语句,我们产生如下约束。

接下来我们考虑结构体。假设我们有如下结构体。

```
struct Node {
    int value;
    Node* next;
    Node* prev;
};
```

该结构体内部又包含两个指针,next和prev,因此,我们需要额外对这两个指针添加指针变量。由于在所有出现该结构体的地方都包含这两个指针,所以我们需要对所有Node类型的地址x都添加两个指针变量: x.next和x.prev。注意这里x即可以是栈上的变量也可以是malloc分配在堆上的地址。

类似地,因为结构体中的每个字段都可以被取地址,所以对每个Node类型的地址x我们都需要增加三个新的地址:x.value、x.next和x.prev,分别表示三个域的地址。

添加这些变量和地址之后,产生约束的时候对应考虑这些约束和地址就可以。同之前的情况类似,访问字段的情况可以用如下三种情况概括,其对应约束和之前类似,主要需要考虑指向结构体的指针的所有可能性。

赋值语句	约束	
a=&b.f	$OUT_v^a = \{x.f \mid x \in IN_v^b\}$	
a=b->f	$\begin{array}{c} V & V & V \\ \mathrm{OUT}_v^a = \bigcup_{x \in \mathrm{IN}_v^b} \mathrm{IN}_v^{x,f} \\ \forall x \in \mathrm{IN}_v^a, \mathrm{OUT}_v^{x,f} = \mathrm{IN}_v^b \end{array}$	
a->f=b	$\forall x \in \mathrm{IN}_v^a, \mathrm{OUT}_v^{x,f} = \mathrm{IN}_v^b$	$ \mathrm{IN}_v^a = 1$
	$\forall x \in \mathrm{IN}_v^a, \mathrm{OUT}_v^{x.f} = \mathrm{IN}_v^x \cup \mathrm{IN}_v^b$	$ \mathrm{IN}_v^a > 1$

6.1.1 Steensgaard指向分析

Anderson算法的开销主要来自于顺着在集合之间传递地址,如果能取消这个传递就有望显著提升算法分析效率。Steensgaard指向分析算法的基本思路是通过牺牲精度来避免这个传递。具体而言,如果两个指针变量的指向集合有可能需要传递地址,那么Steensgaard算法就会认为这两个指针变量所指向的集合完全相同。在实际实现中,可以直接将这两个指针变量合并成一个。对比Anderson算法的三次方复杂度,Steensgaard算法的复杂度为 $O(n\alpha(n))$,接近线性时间。

具体而言,针对一个流非敏感的指向分析,Steensgaard指向分析产生 如下约束。

赋值语句	约束
a=&b	$b \in \mathrm{OUT}^a$
a=b	$OUT^a = OUT^b$
a=*b	$OUT^a = OUT^{*b}$
*a=b	$OUT^{*a} = OUT^b$

同时,Steensgaard算法添加一条额外的等价关系 $\forall y, \forall x \in \text{OUT}^y, \text{OUT}^x = \text{OUT}^{*y}$ 。即对于任意一个二级指针,其指向的指针变量对应的集合都相等。

这是因为这个二级指针的值一旦进行了读取或者写入,所有被指向的变量的值就会和同一个值产生关联,按照Steensgaard算法的标准就应该相等。

不同于Anderson算法,Steensgaard算法为*a等间接访问的指针变量也创建集合,因为别名指针对应的集合会被快速合并,所以并不会产生额外的维护开销。

Steensgaard算法的具体计算过程见课件。

6.1.2 基于CFL可达性的指向分析

指向分析也可以转成CFL可达性的问题求解。具体而言,我们首先创建一个指向关系的图,其中图上的有两类节点。第一类是所有的抽象地址。第二类是指针变量,然后针对赋值语句创建不同类型的边。

赋值语句	边
a=&b	$b \xrightarrow{new} OUT^a$
a=malloc()//id:1	$1 \xrightarrow{new} OUT^a$
a=b	$OUT^b \xrightarrow{assign} OUT^a$
a=*b	$OUT^b \xrightarrow{get[*]} OUT^a$
a=b->f	$OUT^b \xrightarrow{get[f]} OUT^a$
a=b	$OUT^b \xrightarrow{put[]} OUT^a$
a->f=b	$OUT^b \xrightarrow{put[f]} OUT^a$

对于图上的每条边 $x \xrightarrow{l} y$,同时添加反向边 $y \xrightarrow{\bar{l}} x$ 。然后针对如下上下文无关文法进行CFL可达性分析。

 $FlowTo = new (assign | put[f] Alias get[f])^*$ $PointsTo = (\overline{assign} | \overline{get[f]} Alias \overline{put[f]})^* \overline{new}$

 $Alias = PointsTo\ FlowTo$

可以证明基于CFL可达性的指向分析和Anderson指向分析算法等价

6.2 控制流分析

之前我们一直假设对于某个函数调用,我们能静态知道该调用是调用的哪个函数。但实际由于函数指针的存在,这个假设是不成立的。因此,产生完整控制流图的过程必须和指针分析同时进行,该分析通常被称为控制流分析。

6.2 控制流分析 39

具体来说,在存在函数调用的时候,我们需要根据对应程序设计语言的语义执行添加"对于函数指针指向的任意函数,添加调用边和回边"这样的约束。因为这个约束涉及到动态添加边,所以无法预先转成图,所以在进行上下文敏感分析的时候通常采用展开多层的方式进行。

第七章 关系型抽象域

之前学习过有大量分析是关于变量中可以保存什么值的,比如指向分析、区间分析、符号分析等。我们目前学习过的分析都是对每个变量单独进行抽象,不考虑变量之间的关系。这类不考虑变量之间关系的抽象称为非关系抽象。

非关系型抽象由于忽略了变量之间的关系,在进行分析的时候常常无法得到精确的结果。比如,我们可以考虑下面的程序。

a=x;

b=x;

c=a-b;

如果起始状态中x的区间为[0,1],那么区间分析的结果是[-1,1]。但其实在这个例子中,[0,1]。和b之间始终都有等价关系,所以精确结果应该是[0,0]。

本章我们介绍关系抽象,其基本特点是考虑了变量之间的关系。

7.1 简单仿射关系抽象

简单仿射关系抽象[10]是区间抽象的改进版本,其基本思路是对区间抽象域进行扩展,将变量的值记录为由一系列抽象符号组成的线性表达式,而针对这些抽象符号记录区间。这里介绍流敏感的简单仿射关系抽象。

为了限制抽象符号空间的大小,简单仿射关系抽象采用为每个变量在每个控制流节点记录一个抽象符号,即 $s_{v,x}$,其中v为控制流节点,x为变量名。

抽象域的每个值为两个函数(申, 酉)。其中申记录了每个变量对应的抽象符号线性表达式,即申是一个从变量到抽象符号线性表达式的函数,给定任意变量x,其对应的申的函数值要么是 \bot ,要么是 $\sigma w_{v,x} s_{v,x}$,其中 $s_{v,x}$ 为

抽象符号, $w_{v,x}$ 为对应的线性系数。 酉记录了每个抽象符号对应的区间。

对于每个节点v,我们首先要合并其前驱节点的值。这个合并我们针对申和酉分别进行。对于申来说,如果任意一个前驱的表达式是 $_{\perp}$,则忽略这个前驱;如果某个变量 $_x$ 在所有前驱节点对应的表达式都相同,则保留这个表达式,否则则令表达式直接为 $_{s_{v,x}}$,即采用一个新的抽象符号来表示该节点的抽象值。这样,申所对应的格的高度实际只有 $_{z}$,确保分析收敛。对于酉来说,因为酉是从抽象符号到区间的映射,那么和区间抽象类似,直接合并对应符号的区间即可。由于区间的范围是无限的,所以在分析的时候需要再加上之前加宽的方法来确保收敛。

对于节点v的转换函数主要看该转换函数执行的是线性运算还是不是线性运算。如果赋值语句执行的是线性运算,比如x=a+b,那么就在申中记录对应的线性运算,即:

$$OUT^{\ddagger}(x) = IN^{\ddagger}(a) + IN^{\ddagger}(b)$$

$$OUT^{\ddagger}(y) = IN^{\ddagger}(y) \qquad \forall y \neq x$$

$$OUT^{\ddagger} = IN^{\ddagger}$$

如果赋值语句执行的不是线性运算,如x=a*b,那么就采用一个新的抽象符号来表示该节点的抽象值,即 $OUT^{\dagger}(x) = s_{v,x}$,并且 $s_{v,x}$ 在酉中记录的区间根据区间分析的计算得出。

初试把所有节点所有变量的申值都设置为₁,所有抽象符号的酉值都设置为空集合,然后用数据流分析的方法分析即可。

在下面这个例子中:

- 1: a=x;
- 2: b=x;
- 3: c=a-b;

我们首先会为x创建抽象符号 $s_{1,x}$,并且记录该抽象符号的区间为[0,1],然后记录a和b对应的表达式为 $s_{1,x}$,最后c对应的表达式就为 $s_{1,x}-s_{1,x}=0$,从而得到c的区间为[0,0]。

简单仿射关系抽象这个名字来源于仿射关系抽象[6]。简单仿射关系抽象不能直接得到线性关系的时候(如两个表达式合并、非线性计算)直接创建新的符号值,但完整的仿射关系抽象在这些情况仍然会试图找到尽可能精确的线性关系来刻画程序执行轨迹集合。

7.2 八边形抽象 43

7.2 八边形抽象

简单仿射关系抽象的关系主要依靠赋值语句推出,如果两个变量之间 没有赋值关系,简单仿射关系抽象就无法推出两个变量之间的关系了。我 们考虑这个如下程序:

```
x=0;

y=0;

while (x<10){

x++;

y--;

}
```

在这个程序中,x和y之间一直有互为相反数的关系,但这个关系无法由简单仿射关系推出,因为二者之间没有互相赋值。八边形抽象对于任意两个变量之间都用一组区间来刻画两个变量满足的关系,因此可以克服该问题。

具体而言,八边形抽象对于任意两个变量x和y记录如下四个区间:

- x+y的区间
- x-y的区间
- x的区间
- y的区间

在一个由x和y组成的二维坐标系统中,x和y的区间可以看做是水平和竖直的四条直线,而x+y和x-y可以看做是斜45度的四条直线,这些直线合在一起组成了一个八边形,八边形内部就是x和y对应的可能取值,所以叫做八边形抽象。

第八章 符号执行

参考文献

- [1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. *Compilers: Principles, Techniques, and Tools (2nd Edition)*. Addison Wesley, August 2006.
- [2] P. Cousot. Principles of Abstract Interpretation. The MIT Press, 2021.
- [3] P. Cousot, R. Giacobazzi, and F. Ranzato. Program analysis is harder than verification: A computability perspective. In H. Chockler and G. Weissenbacher, editors, Computer Aided Verification 30th International Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II, volume 10982 of Lecture Notes in Computer Science, pages 75–95. Springer, 2018.
- [4] C. H. Flemming Nielson, Hanne Riis Nielson. Principles of Program Analysis. Springer, 1999.
- [5] C. L. G. Jonathan Aldrich and R. Padhye. Program analysis, 2022. Carnegie Mellon University, https://cmu-program-analysis.github.io/.
- [6] M. Karr. Affine relationships among variables of a program. *Acta Informatica*, 6:133–151, 1976.
- [7] A. Møller and M. I. Schwartzbach. Static program analysis, 2023. Department of Computer Science, Aarhus University, http://cs.au.dk/~amoeller/spa/.

48 参考文献

[8] P. Raatikainen. Gödel's Incompleteness Theorems. In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Spring 2022 edition, 2022.

- [9] K. Y. Xavier Rival. Introduction to Static Analysis: An Abstract Interpretation Perspective. The MIT Press, 2020.
- [10] Y. Zhang, L. Ren, L. Chen, Y. Xiong, S. Cheung, and T. Xie. Detecting numerical bugs in neural network architectures. In P. Devanbu, M. B. Cohen, and T. Zimmermann, editors, ESEC/FSE '20: 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020, pages 826-837. ACM, 2020.