Spam or Not? Building a Robust SMS Classifier

TEAM NEURAL NEXUS

PRESENTED BY:

- · ARKAPRAVO DAS
- · SAYAN ROY
- · HARSH RAJ GUPTA
- ARITRO SHOME
- SUBHRANIL NANDY

INTRODUCTION

Problems:

- Wastes time and inconvenience for users.
- Security risks, including phishing and malware.
- Impact on productivity and system efficiency.

Need for a Classifier:

- Reducing manual filtering.
- Enhancing communication reliability.

Objective:

To create an end-to-end solution that processes SMS messages, trains a robust classification model, and accurately identifies messages as spam or ham using NLP techniques.

DATASET OVERVIEW:

Dataset Source:

• The "Spam SMS Classification Using NLP" dataset is sourced from a publicly available repository for research purposes.

Number of Samples:

Total Messages: 5,574

Class Distribution:

- Ham (Non-Spam): 4,825 messages (86.6%)
- Spam: 747 messages (13.4%)
 Characteristics:
- Spam messages are generally shorter but contain more promotional or suspicious keywords.
- Ham messages tend to be more conversational and longer.

DATASET PREPROCESSING

Words like "running" or "checked" are converted to "run" and "check".

Common stopwords like "the", "and", "is" are eliminated.

CLEANED DATASET

	Class	Message	Message_cleaned	labels
C) ham	Go until jurong point, crazy Available only	Go jurong point, crazy avail bugi n great wo	0
1	l ham	Ok lar Joking wif u oni	Ok lar joke wif u oni	0
2	spam	Free entry in 2 a wkly comp to win FA Cup fina	free entri 2 wkli comp win FA cup final tkt 21	1
3	ham	U dun say so early hor U c already then say	U dun say earli hor U c alreadi say	0
4	l ham	Nah I don't think he goes to usf, he lives aro	nah I think goe usf, live around though	0
		•••		
5569	spam	This is the 2nd time we have tried 2 contact u	thi 2nd time tri 2 contact u. U £750 pound pri	1
5570) ham	Will ü b going to esplanade fr home?	will ü b go esplanad fr home?	0
5571	l ham	Pity, * was in mood for that. Soany other s	pity, * mood that. soani suggestions?	0
5572	ham	The guy did some bitching but I acted like i'd	the guy bitch I act like i'd interest buy some	0
5573	ham	Rofl. Its true to its name	rofl. it true name	0
5574 rows × 4 columns				

FEATURE ENGINEERING AND BALANCING THE DATASET

MOST COMMON PHRASES IN SPAM MESSAGES

MODEL DEVELOPMENT

Algorithm and Approach:

- Base Model: **LSTM** (Long Short-Term Memory)
- Embedding Layer: Pre-trained Word2Vec

Layers:

- Input: **Embedding vector** (size equal to Word2Vec dimensions).
- LSTM Layer: Captures sequential dependencies in the text.
- Fully Connected Layer: Outputs probabilities for "spam" or "ham."

Training Process:

- **Data split:** 80% training, 10% validation, 10% testing with stratification to maintain class distribution.
- Batch size: 32.
- **Optimizer:** Adam.
- Loss function: Binary Cross-Entropy Loss.

Model Tuning:

Used techniques like:

- Hyperparameter tuning: Number of LSTM units, dropout rates, and learning rates.
- Early stopping to prevent overfitting.

IMPLEMENTATION DETAILS:

- Frameworks/Libraries: PyTorch, Gensim , Scikit-learn.
- **Runtime:** Model trained for 300 epochs, achieving convergence at high accuracy levels.

Final Training Metrics:

- Train Accuracy: 96.82%
- Validation Accuracy: 97.47%
- Valiation Loss: 8.07%
- *Train loss:* 9.09%
- Test Accuracy: 98.21 %
- **Test F1 Score:** 0.93
- Test Precision: 0.92
- Test Loss: 0.0717

RESULTS AND EVALUATION

INITIAL EPOCH (TILL 50):

FINAL EPOCH (TILL 250):

(MODEL PIPELINING)

USER INTERFACE

EVOLUTION OF THE MODEL

PRELIMINARY
TENSORFLOW MODEL
WITH CLASS
IMBALANCING

CLASS BALANCED SIMPLE
NEURAL NETWORK MODEL

CLASS IMBALANCED

RESISTANT

BIDIRECTIONAL

LSTM MODEL

LINKS

- Github Repository Link: https://github.com/sortira/sms-spam
- Website Link: https://sms-spam-11dm.onrender.com/

FUTURE INSIGHTS

- A smarter approach to vectorization of messages can be implemented
- Other than LSTMs, much **simpler algorithms** like Random Forests Classifier or Support Vector Machine can be **experimented** with.
- The **small dataset** affects prediction accuracy. Future improvements should focus on **increasing data volume**.
- Given enough time, we would love to explore new ways of detecting spams because in a growing AI field, spams like this will go out of hand soon.