Corrigé

I. Composés aromatiques (13 pts)

- 1) stabilité du noyau aromatique, voir manuel page 5
- 2) voir manuel page 44
- 3) $C_6H_5NO_2 + Cl_2 \rightarrow C_6H_4CINO_2 + HCI$ (catalyseur AlCl₃)

Formation du m-chloronitrobenzène (effet mésomère accepteur de doublet)

Voir page 45

4) n(chloronitrobenzène) = 10g/157,5= 0,0635mol n(nitrobenzène)=0,0635/0,75=0,0847mol n(benzène)=0,0847/0,65=0,130mol m(benzène)=0,130·78=10,2g

II. Alcools de fusel (15 pts)

1) M(A) = 16/0,182 = 88 g/mol

 $M(C_nH_{2n+1}OH) = 88 \text{ g/mol}$

 $M(C_nH_{2n+1}) = 88-17 = 71 \text{ g/mol}$

V(benzène)=1,2/0,88=11,5mL

Donc: 12n + 2n + 1 = 71

⇔ n = 5

Formule brute: C₅H₁₁OH

2) Réactif de Schiff -> rouge donc aldéhyde, il s'agit d'un alcool primaire. Le seul alcool primaire chiral est le 2-méthylbutan-1-ol

3)

- 4) Il s'agit d'un alcool tertiaire : 2,2-diméthylpropanol
- 5) CH₃C(O)OCH(CH₂CH₃)₂ + H2O <-> CH₃COOH + CH₃CH₂CH(OH)CH₂CH₃ Augmenter concentration de l'eau ou ester, distiller le produit le plus volatil, ajouter base
- 6) Voir manuel page 65
- 7) Voir manuel page 62

III. Le glutathion (7 pts.)

- 2) voir manuel page 84
- 3) voir manuel page 85
- 4) L-cystéine, R-cystéine

IV. L'acide palmitoléique (7 pts)

- 3) Voir manuel page 75 remplacer (CH₂)₁₄CH₃ et (CH₂)₁₆CH₃ par CH₃(CH₂)₅CH=CH(CH₂)₇
- 4) voir manuel page 76

V. Dosage d'une solution d'acide pyruvique (18 pts)

- 1) voir manuel page 71 et 72 (effet inductif/effet mésomère dans le groupement non dissocié et dans l'anion carboxylate
- 2) acide pyruvique plus fort à cause de l'effet l'
- 3) P.E. à 11,5 mL HCl

$$c_{acide} = c_{KOH} \cdot V_{KOH/}V_{acide}$$
$$= 0.5 \cdot 11.5/15$$
$$= 0.383 \text{ mol/L}$$

4) pKa = 2,5, Ka= $3,2\cdot10^{-3}$

Formule approximative : α =0,091

1) - pH de la solution initiale

$$x^{2} + K_{a}x - K_{a}c_{0} = 0$$

 $x = [H_{3}O^{+}] = 0,0331 \text{ mol/L}$
pH = 1,48

$$n_{acide} = 0,004 \text{ mol}$$

 $pH = pK_a + log n_{base}/n_{acide}$

$$pH = 2,5 - 0,36$$

$$pH = 2,14$$

- Au P.E.

$$c_{R-coo-} = 0,217 \text{ mol/L}$$

 $x^2 + K_b x - K_b c_0 = 0$
 $x = [OH] = 8,28 \cdot 10^{-9} \text{ mol/L}$
 $pOH = 6,1 \text{ pH} = 7,9$

pKa =
$$2.5$$

Ka = $3.2 \cdot 10^{-3}$
 $c_0 = 0.383 \text{ mol/L}$

pKb=11,5 Kb=3,16·10⁻¹²