SIMULATING THE EVOLUTION OF NEURAL PATHWAYS AND STRUCTURES

Development Journal

Kári Hlynsson¹ and Young Jun Lee²

¹University of Iceland, Department of Mathematics ²University of Oxford, Department of Biology

Contents

1	Theoretical basis			
	1.1	Note	4	
2	Model outline			
	2.1	Model outline	5	
		2.1.1 Overview	5	
		2.1.2 Sensory mapping of organisms	6	
	2.2	Simulation phases	7	
	2.3	Runtime optimization	7	
		2.3.1 Chunk system	8	
	2.4	Adjacent chunk loading and critical boundary	9	
	2.5	Performance comparison	9	
A	Prel	iminaries	11	

Index of notation

Abbreviation	Definition
$\mathcal{E} = [0; w] \times [0; h]$	Environment with width w and height h. The environment can also be expressed as the set of locations ℓ such that $\mathscr{E} = \{\ell := \langle x_i, y_j \rangle \mid x_i \in [0; w] \land y_j \in [0; h] \rangle \}$
n	Size of the population.
$E = (e_x, e_y)$	An entity with x and y coordinates in the environment such that $\ell_E \in \mathcal{E}$ (ℓ_E is the location which corresponds to the entity's location)
$\mathbf{C} = \{C_1, \dots, C_k\}$	The partition of $\mathscr E$ into k chunks C_1, \ldots, C_k such that $\bigcap_{i=1}^k C_i = \emptyset$ and $\bigcup_{i=1}^k C_i = \mathscr E$, i.e. the <i>set of chunks</i> $\mathbb C$ forms a complete partition of $\mathscr E$.
$\mathbf{O} = \{O_1, \dots, O_n\}$	The population, the set of all organisms present within the environment.
$\theta_R = \frac{1}{\delta_R}$	An organism's <i>ray resolution</i> . The ray resolution is defined as the inverse of the angle between the uniformly spaced sensory rays, δ_R which construct the organism's sensory field. The higher the value of θ_R , the more rays in the sensory field and vice versa.
$\mathcal{P}:0 ightarrow \ell$	Positional mapping. Returns vector representation of an entity's location at some point in time. Note that $\mathcal P$ is a random variable.

Common Acronyms

ACRONYM DEFINITION

CBS Chunk-Based System

UGP Undirected-Graph Partitioning

BFS Breadth-First Search

Chapter 1

Theoretical basis

1.1 Note

 $\begin{array}{c} \mbox{Hello there Jun} \\ \mbox{This is an } EXTREMELY \mbox{ primitive draft.} \end{array}$

None of this final and subject to changes as we cooperate on this project.

I also want to apologize for the common abbreviatons section, its a load of cowdung but I feel we will need this to make our lives easier later on.

Chapter 2

Model outline

2.1 Model outline

2.1.1 Overview

The aim of the model is to study the natural evolution of neural pathways in a population of organism when exposed to survivalistic conditions. A rigid logical and syntactical foundation will make all succeeding articulation on the model parameters and attributes easier. We therefore dedicate this first section towards establishing a foundation of terms and definitions which we build on later.

The most critical aspects of the model we define here is the *environment* and the *entities* contained therein. Neglecting any elevation, we define the environment as the bounded subset of the Cartesian plane, which we symbolize \mathcal{E}^{-1} .

Contained within the environment are *entities* which we can think of as actors within the simulation. The two types that occur in this model are *organisms* and *food*. Again, a simple intuitive definition is that the organism is an individual of a species present within the environment and nutrition is the foodstuffs which it consumes to gain energy and thus survive.

Entities can be divided into two types: *organisms* and *food*. What follows is simple: organisms are motile, can sense their surroundings and consume food to

¹Although elevation certainly plays a vital role in the foraging patterns of organisms in natural environments, we refrain from its implementation as it only adds a level of complexity to the model design while having no immediate benefit for the simulation.

gain energy. On the other hand, food has none of these qualities. We represent an entity as the object E, while organisms are denoted O and food by F.

2.1.2 Sensory mapping of organisms

One of the key characteristics of organisms is that they are able to sense their proximal surroundings and base their succeeding actions on the information they have gathered on the environment. In this section we aim to establish a mathematical and syntactical foundation describing the sensory capabilities of organisms which allows passing environmental data to the organism's neural network.

A convenient and well established method of sensory mapping is obtained through the use of *raycasting* or *raylines*, where several line segments originating from the organism's point location are used as collision sensors which serve as sensors for distance. By calculating the distance of the intersection between some rayline emitted by an organism and an entity in the field, a metric describing the *sensory depth* from the organism to another entity is established.

To begin the formalization, we consider how to construct such a set of rays and what qualities it has.

Definition 1 (Ray set). Let $\lambda \in \mathbb{R}^+$ and $t \in [0; 2\pi]$. Further suppose that an organism O in an environment $\mathscr E$ with a present entity set $\mathbf E$ has the forward facing angle θ . We define the *ray set* of the organism as the linearly spaced vector $\mathbf R = \{r_1, \ldots, r_{\nu_{\mathbf R}}\}$ from $[\theta + \Delta_{\mathbf R}; \theta - \Delta_{\mathbf R}]$ numbering $\nu_{\mathbf R}$ elements ($\nu_{\mathbf R}$ is called the *ray number*). Furthermore, we define the quantity $\mathcal S_{\mathbf R} = 2\Delta_{\mathbf R}$ as the *span* of the ray set.

We now consider a function which returns the point locations of the rays along the sensory field from which we can construct line segments originating from the organism, yielding the raylines.

Definition 2 (Ray map function). The ray map function $\mathcal{R}_{\lambda}: \mathbf{R} \to \mathcal{E}$ is the bijective function from the set of rays \mathbf{R} to the

2.2 Simulation phases

For your contemplation (Jun, if you're reading this): I've thought of dividing the simulation into a *foraging phase*, where organisms roam around and collect food. If they don't get any or deplete their energy, they die. Once the foraging phase is over, the *reproductive phase* starts, where remaining energy is a measure of how likely organisms are to find a partner and reproduce (this is of course a simplication, there are many other ways to go about this I'm sure). This way, we don't have to make the reproduction itself an extreme pain (organisms having to find each other, etc.) This would mean that the reproductive phase is not carried out in the "plane" where the simulation occurs but rather "off screen" where its just a bunch of calculations really.

On the other hand it might make for some really interesting data if we were to assign individuals genders and they would map their current energy level and the gender of individuals in their sensory field and allow for them to reproduce "in the field" lol. Let me know what you think!

2.3 Runtime optimization

One of the run-ins we've had so far is determining how to design the sensory mapping capabilities of organisms within the environment. By sensory mapping, I am referring to the organism's ability to sense its proximal surroundings, sensing the proximity and types of the various entities they may encounter. This will be fed into their neural network, which outputs some response which instructs the organism how to behave given its current surroundings.

The first attempt I made was in the days where the environment was grid-based instead of a float-based environment. There, sensory mapping was quite easy as all that had to be done was inspect the proximal tiles and check for the entity type present in the tile. This is not possible in the float-based environment, so we propose another solution.

An excellent idea you came up with was the idea of partitioning the environment into separate chunks, which organisms restrict their sensory mapping to unless there sensory fields intersect another adjacent chunk (more on that later). We will

start by discussing this idea, which as you will see, will be of great use.

2.3.1 Chunk system

In this section, we will be doing a mathematical analysis of the chunk system to see how it will benefit the simulation. To start off, we inspect what fundamental laws apply to this system.

Proposition 1. Let \mathscr{E} be an environment paritioned into k chunks such that $\mathbb{C} = \{C_1, \ldots, C_k\}$. The probability of an entity being present in a generic chunk C_i equals 1/k, i.e.

$$\Pr\{E \in C_i\} = \frac{1}{k}$$

Proof. Let \mathscr{E} be the space $[0; w] \times [0; h]$ with area $(\mathscr{E}) = wh$ and the partition \mathbb{C} . Under the assumption that the chunks are of uniform size, we assume

$$\operatorname{area}(C_i) = \frac{\operatorname{area}(\mathscr{E})}{k} \tag{*}$$

for all $C_i \in \mathbb{C}$ where $i \in [1; k]$. Under conventional probability theory, we can express the probability of an entity being in a generic chunk as the area of that particular chunk over the area of the environment, i.e.

$$\Pr\{E \in C_i\} = \frac{|C_i|}{|\mathcal{E}|}$$
$$= \frac{\operatorname{area}(C_i)}{\operatorname{area}(\mathcal{E})}$$
$$= \frac{1}{k}$$

The result of the calculations above are immediate of the definition of the area of the chunks, which is derived in (*).

Definition 3 (Chunk load). The random variable \mathcal{L} , or the *chunk load* of some generic chunk C_i , denotes the number of entities contained within the chunk. Immediate of proposition 1, we have that $\mathcal{L} \sim \text{Bin}(n, 1/k)$, where n is the total

number of entities in the environment. ²

Figure 2.1: An example binomial distribution

It should come as no surprise that the ratio of chunks to the population size has some impact on the max chunk load, as can be seen in the picture below.

2.4 Adjacent chunk loading and critical boundary

We define the *critical boundary* of a chunk C_i as the area in which the sensory field of a organism with a range of possible positions intersects an adjacent chunk.

2.5 Performance comparison

In this section we compare the CBS versus non-CBS runtime performance to obtain a metric description of performance improvements as a result of the CBS implementation.

²Note that this assumes the uniform distribution of entities within the environment, which is obviously true. This is because there is no logical restraint on where an entity can be at any given time, i.e. there is not a consistent probabilistic hindrance in an entity having a certain position.

Figure 2.2: \mathcal{L}_{max} by population size and number of chunks

Algorithm 1 Comparisonal simulation of CBS versus non-CBS runtime

Require: The chunk set \mathbb{C} which partitions \mathscr{E} into k disjoint subsets C_1, \ldots, C_k where $|\mathbb{C}| = k$. Entity set \mathbb{E} within \mathscr{E} where $|\mathbb{E}| = N$ with organism subset \mathbb{O} such that $|\mathbb{O}| = n$.

```
1: procedure CbsComparison(C, E)
2:
          cost_{CBS} \leftarrow 0
                                                                                          ▶ Amortized CBS cost
          cost_{non-CBS} \leftarrow n(N-1)
                                                                                   ▶ Amortized non-CBS cost
3:
          for C_i \in \mathbf{C} do
4:
                Assign C_i chunk load \mathcal{L}_{C_i} \sim \text{Bin}(N, 1/k) by random process
5:
               n_{O \in C_i} = |\{O \in \mathbf{O} \mid O \in C_i\}|
6:
                                                                                                          \triangleright n_{O \in C_i} \le n
               \mathrm{cost}_{\mathrm{CBS}} \leftarrow \mathrm{cost}_{\mathrm{CBS}} += n_{O \in C_i} (\mathcal{L}_{C_i} - 1)
7:
8:
          cost_{CBS} \leftarrow cost_{CBS} += k
```

Note: This algorithm does not take ACL into account, which we need to implement.

Appendix A

Preliminaries

Definition 4 (Probability). Let ω be some event from the probability space Ω . We represent the probability of the event ω occurring using the notation $\Pr\{\omega\} = x$ where $x \in [0; 1]$.

Definition 5 (Random variable). A random variable X is the mapping from the probability space Ω to the real number line, i.e. $X : \Omega \to \mathbb{R}$.

Remark. An example of a random variable is the varying height of a population, where Ω is the space of all possible outcomes and the random variable H (height) is for example 180 cm, or 157 cm.

Definition 6 (Expected value). Let X be a random variable. The expected value is denoted $\mathbb{E}[X]$.

Definition 7 (Probability distribution). Let X be a random variable. When it follows for example the Poisson distribution, we write $X \sim \text{Poisson}(\lambda)$.