Задача А. Массовая проверка простоты

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1.5 секунд Ограничение по памяти: 256 мегабайт

Целое число $p\geqslant 2$ является простым, если у него нет делителей кроме 1 и p. Необходимо для всех чисел во входном файле проверить простые они или нет.

Формат входных данных

В первой строке задано число n ($2 \le n \le 500\,000$). В следующих n строках заданы числа a_i ($2 \le a_i \le 2 \cdot 10^7$), которые нужно проверить на простоту

Формат выходных данных

Для каждого числа во входном файле выведите на отдельной строке «YES» или «NO» в зависимости от того, простое оно или нет.

стандартный ввод	стандартный вывод
4	NO
60	NO
14	YES
3	NO
55	

Алгоритмы и структуры данных Лабораторная работа по численным алгоритмам, 2020 год

Задача В. Массовое разложение на множители

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.5 секунд Ограничение по памяти: 64 мегабайта

Дано много чисел. Требуется разложить их все на простые множители.

Формат входных данных

В первой строке задано число n ($2 \le n \le 300000$). В следующих n строках заданы числа a_i ($2 \le a_i \le 10^6$), которые нужно разложить на множители.

Формат выходных данных

Для каждого числа выведите в отдельной строке разложение на простые множители в порядке возрастания множителей.

стандартный ввод	стандартный вывод
4	2 2 3 5
60	2 7
14	3
3	5 11
55	

Задача С. Больше простых!

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 10 секунд Ограничение по памяти: 64 мегабайта

Найдите все простые числа не большие n. Поскольку n в этой задаче не просто большое, а прямо здоровенное, для того чтобы проверить, что вы нашли числа правильно, мы попросим вас посчитать от найденных чисел специальный хеш.

Хеш будет считаться по следующему алгоритму. В начале переменная h=0. После каждого очередного встреченного простого числа p_i , будем пересчитывать h по формуле $h=h\cdot x+p_i$, при этом будем игнорировать переполнение знакового 32-битного целого типа. Значение переменной n в конце — это хеш, который вам нужно вывести.

Формат входных данных

Входной файл содержит два числа $n\ (2\leqslant n\leqslant 10^9)$ и $x\ (1\leqslant x\leqslant 10^9).$

Формат выходных данных

Выведите полученный хеш.

стандартный ввод	стандартный вывод
10 10	2357
11 100	203050711
100000000 2	1576840463

Задача D. Проверка на простоту

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дано n натуральных чисел a_i . Определите для каждого числа, является ли оно простым.

Формат входных данных

Программа получает на вход число $n, 1 \le n \le 1000$ и далее n чисел $a_i, 1 \le a_i \le 10^{18}$.

Формат выходных данных

Если число a_i простое, программа должна вывести YES, для составного числа программа должна вывести NO.

стандартный ввод	стандартный вывод
4	NO
1	YES
5	NO
10	YES
239	

Задача E. Взлом RSA

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

В 1977 году Ronald Linn Rivest, Adi Shamir и Leonard Adleman предложили новую криптографическую схему RSA, используемую до сих пор. RSA является криптосистемой с открытым ключом: зашифровать сообщение может кто угодно, знающий общеизвестный открытый ключ, а расшифровать сообщение — только тот, кто знает специальный секретный ключ.

Желающий использовать систему RSA для получения сообщений должен сгенерировать два простых числа p и q, вычислить n=pq и сгенерировать два числа e и d такие, что $ed\equiv 1\pmod{(p-1)(q-1)}$ (заметим, что $(p-1)(q-1)=\varphi(n)$). Числа n и e составляют открытый ключ и являются общеизвестными. Число d является секретным ключом, также необходимо хранить в тайне и разложение числа n на простые множители, так как это позволяет вычислить секретный ключ d.

Сообщениями в системе RSA являются числа из \mathbb{Z}_n . Пусть M — исходное сообщение. Для его шифрования вычисляется значение $C = M^e \mod n$ (для этого необходимо только знание открытого ключа). Полученное зашифрованное сообщение C передается по каналу связи. Для его расшифровки необходимо вычислить значение $M = C^d \mod n$, а для этого необходимо знание секретного ключа.

Вы перехватили зашифрованное сообщение C и знаете только открытый ключ: числа n и e. "Взломайте" RSA — расшифруйте сообщение на основе только этих данных.

Формат входных данных

Программа получает на вход три натуральных числа: $n, e, C, n \leq 10^9, e \leq 10^9, C < n$. Числа n и e являются частью какой-то реальной схемы RSA, т.е. n является произведением двух простых и e взаимно просто с $\varphi(n)$. Число C является результатом шифрования некоторого сообщения M.

Формат выходных данных

Выведите одно число M ($0 \le M < n$), которое было зашифровано такой криптосхемой.

стандартный ввод	стандартный вывод
143	123
113	
41	
9173503	111111
3	
4051753	

Задача F. Китайская теорема

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Решите в целых числах систему уравнений

$$\begin{cases} x \equiv a \pmod{n} \\ x \equiv b \pmod{m}, \end{cases}$$

где n и m взаимно просты. Среди решений следует выбрать наименьшее неотрицательное число.

Формат входных данных

Первая строка входных данных содержит число $N,\,1\leqslant N\leqslant 10^4,$ —количество тестов, для которых нужно решить задачу.

Следующие N строк содержат по четыре целых числа a_i, b_i, n_i и m_i $(1 \leqslant n_i, m_i \leqslant 10^9, 0 \leqslant a_i < n_i, 0 \leqslant b_i < m_i)$.

Формат выходных данных

Для каждого из тестов выведите искомое наименьшее неотрицательное число x_i .

стандартный ввод	стандартный вывод

Алгоритмы и структуры данных Лабораторная работа по численным алгоритмам, 2020 год

Задача G. Дискретное логарифмирование

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Даны натуральные числа a, b, n. Требуется найти $\partial uc\kappa pemnuŭ$ логарифм b по основанию a по модулю n, то есть такое число x ($0 \le x < n$), что $a^x \equiv b \pmod{n}$.

Формат входных данных

В первой строке заданы через пробел три целых числа a, b и $n \ (0 \leqslant a, b, n \leqslant 10^{12}), n \neq 0$.

Формат выходных данных

В первой строке выведите -1, если дискретного логарифма не существует. Иначе следует вывести его значение.

Если ответ неоднозначен, разрешается выводить любой.

Задача Н. Задача для второклассника

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Вам даны два числа. Необходимо найти их произведение.

Формат входных данных

Входные данные состоят из двух строк, на каждой из которых находится целое одно целое число, длина которого не превосходит двухсот пятидесяти тысяч символов.

Формат выходных данных

Выведите произведение данных чисел.

стандартный ввод	стандартный вывод
2	4
2	
1	-1
-1	

Задача I. AVL

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

AVL деревья, придуманные российскими учёными Адельсон-Вельским и Ландисом, являются примером сбалансированного бинарного дерева поиска. В терминологии AVL, подвешенное бинарное дерево называется *сбалансированным*, если для каждой вершины высоты её левого и правого поддеревьев отличаются не более, чем на один. Такое дерево, собственно, и называется *AVL-деревом*. Разумеется, существует далеко не единственное AVL-дерево при фиксированном числе вершин. К примеру, существует шесть AVL-деревьев с пятью вершинами, они изображены на рисунке ниже.

Деревья с одинаковым числом вершин могут иметь разную высоту, к примеру, на рисунке снизу нарисовано два дерева с семью вершинами, которые имеют высоты 2 и 3, соответственно.

Вам даны два числа — N и H, требуется найти число AVL-деревьев, которые состоят из N вершин и имеют высоту H. Поскольку их число довольно велико, выведите искомое количество по модулю $786\,433$.

Формат входных данных

Единственная строка входного файла содержит два числа — N и H ($1 \leqslant N \leqslant 65\,535, 0 \leqslant H \leqslant 15$).

Формат выходных данных

Выведите единственное число — количество AVL деревьев с N вершинами высоты H, по модулю 786 433.

Пример

стандартный ввод	стандартный вывод
7 3	16

Замечание

 $786\,433$ простое число, и $786\,433 = 3\cdot 2^{18} + 1$.

Задача J. RSA factoring

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

RSA — криптографическая система, где важную роль играют числа вида n=pq, где p и q — различные простые числа. Число n называют модулем RSA и используют для дальнейших вычислений. Стойкость RSA основана на том факте, что для известного числа n не известно достаточно быстрого алгоритма разложения n на множители для достаточно длинных чисел n (от 1024 бит и больше). При этом, рекомендуется выбирать p и q большими случайными простыми числами примерно одинаковой длины. Генерация таких n — процесс, требующий аккуратности и понимания происходящего. Существует большое количество атак на ключи RSA, которые были сгенерированы ненадлежащим образом. Знание других деталей реализации RSA для этой задачи не понадобится.

Прочитав, что в RSA используют близкие простые числа, Карл реализовал свой алгоритм генерации:

- 1. Сгенерировать случайное простое число p_1 , состоящее из b бит.
- 2. Начиная с $p_1 + 1$, перебрать все числа подряд по возрастанию, пока не встретим следующее простое число p_2 .
- 3. Выдать $n = p_1 p_2$.

Поскольку выбирается случайное простое число p_1 , а в среднем расстояние между соседними простыми числами невелико, этот алгоритм достаточно быстро найдет следующее простое число p_2 . Друг Карла Пьер обнаружил, что числа, которые выдает алгоритм Карла, можно быстро разложить на делители. Поэтому Пьер предложил брать не два простых числа, а четыре! Независимо от p_1 мы также выберем случайное b-битное простое число q_1 и следующее за ним простое число q_2 и возьмем $n = p_1 p_2 q_1 q_2$. Однако такой способ генерации тоже оказался уязвим: число n возможно разложить на множители.

Вам дано число *n*, сгенерированное либо изначальным методом Карла с 2 простыми множителями, либо с обновленным методом Пьера с 4 простыми множителями. Разложите его на простые множители.

Формат входных данных

В первой строке заданы два числа b и k ($4 \le b \le 60$, k=2 или k=4). В следующей строке содержится число n в шестнадцатеричной системе счисления, от старших разрядов к младшим, без ведущих нулей.

Гарантируется, что n является произведением ровно k простых множителей, сгенерированных случайно одним из двух методов, описанных в условии. Каждый из этих множителей состоит ровно из b бит в двоичной системе счисления, все множители различны.

Формат выходных данных

Выведите k простых множителей n в шестнадцатеричной записи без ведущих нулей, по одному в каждой строке.

Система оценки

Алгоритмы и структуры данных Лабораторная работа по численным алгоритмам, 2020 год

	_	
Подзадача	Баллы	Ограничения
1	10	$b \leqslant 8, k = 2$
2	10	$b \leqslant 8, k = 4$
3	7	$b \le 15, k = 2$
4	8	$b \le 15, k = 4$
5	15	$b \le 30, k = 2$
6	15	$b \le 30, k = 4$
7	15	$b \le 60, k = 2$
8	20	$b \le 60, k = 4$

Примеры

стандартный ввод	стандартный вывод
4 2	b
8f	d
6 4	25
534ee3	29
	3b
	3d

Пояснения к примерам

В первом примере $n=8 f_{16}=143=11\cdot 13.$ b_{16} равно числу 11, а d_{16} равно числу 13. Во втором примере задано число n=5459683, что раскладывается в произведение $37\cdot 41\cdot 59\cdot 61.$