Contents

1	Assignment Questions		1
2	Solution of Assignment Questions		
	2.1	Solution of Question No. 1	2
	2.2	Solution of Question No. 2	3
	2.3	Solution of Question No. 3	3
	2.4	Solution of Question No. 4	4
3	Rof	orances	5

$oldsymbol{1} oldsymbol{Assignment~Questions}$

Instruction: Attempt any four of the following questions -

- 1. Give examples of families of sets that are not an algebra or a σ algebra.
- 2. Prove that each closed subset of \mathbb{R}^d is a G_δ and each open subset of \mathbb{R}^d is F_{σ} —set.
- 3. Prove that Lebesgue outer measure on \mathbb{R}^d is an outer measure, and it assigns to each d dimensional interval its volume.
- 4. Let (X, \mathscr{A}) be a measurable space, and let A be a subset of X that belongs to \mathscr{A} . For a function $f: A \to \mathbb{R}$, the conditions
 - (a) f is measurable with respect to \mathscr{A} ,
 - (b) for each open subset U of \mathbb{R} the set $f^{-1}(U)$ belongs to \mathscr{A} ,
 - (c) for each closed subset C of $\mathbb R$ the set $f^{-1}(C)$ belongs to $\mathscr A,$ and
 - (d) for each Borel subset B of $\mathbb R$ the set $f^{-1}(B)$ belongs to $\mathscr A$ are equivalent.
- 5. Let (X, \mathscr{A}, μ) be a measure space.Let (Y, \mathscr{B}) be a measurable space and let $f: (X, \mathscr{A}) \to (Y, \mathscr{B})$ be measurable.Let g be an extended real valued \mathscr{B} measurable function on Y then g is μf^{-1} integrable if and only if $g \circ f$ is μ integrable. If these are integrable then

$$\int_Y gd(\mu f^{-1}) = \int_X gofdu$$

 $\mathbf{2}$

2 Solution of Assignment Questions

2.1 Solution of Question No. 1

Let us define σ -algebra;

A collection \mathscr{A} of subsets of X is a σ -algebra on X If

- a) $X \in \mathscr{A}$,
- b) for each set A that belongs to \mathscr{A} , the set A^c belongs to \mathscr{A} .
- c) for each infinite sequence $\{A_i\}$ of sets that belong to \mathscr{A} , the set $\bigcup_{i=1}^{\infty} A_i$ belongs to \mathscr{A} , and
- d) for each infinite sequence $\{A_i\}$ of sets that belong to \mathscr{A} , the set $\bigcap_{i=1}^{\infty} A_i$ belongs to \mathscr{A}

Thus a σ -algebra on X is a family of subsets of X that contains X and is closed under complementation, under the formation of countable unions, and under the formation of countable intersections.

Examples of Families of sets that are not σ -algebra:

- 1) Let X be an infinite set, and let \mathscr{A} be the collection of all finite subsets of X. Then \mathscr{A} does not contain X and is not closed under complementation; hence it is not an algebra (or a σ -algebra) on X.
- 2) Let X be an infinite set, and let \mathscr{A} be the collection of all subsets A of X such that either A or A^c is finite. Then \mathscr{A} is an algebra on X but is not closed under the formation of countable unions; hence it is not a σ -algebra.
- 3) Let X be an uncountable set, and let \mathscr{A} be the collection of all countable (i.e., finite or countably infinite) subsets of X. Then \mathscr{A} does not contain X and is not closed under complementation; hence it is not an algebra.
- 4) Let L be the collection of all finite disjoint unions of all intervals of the form:

$$(-\infty, a], (a, b], (b, \infty), \emptyset, \mathbb{R}.$$

Then L is an algebra over \mathbb{R} , but not a σ -algebra because union of sets $\left\{(0, \frac{i-1}{i}]\right\}$ for all $i \geq 1 = (0, 1) \notin L$.

¹The terms field and σ -field are sometimes used in place of algebra and σ -algebra.

2.2 Solution of Question No. 2

Suppose that F is a closed subset of \mathbb{R}^d . We need to construct a sequence $\{U_n\}$ of open subsets of \mathbb{R}^d such that $F = \bigcap_n U_n$. For this define U_n by

$$U_n = \left\{ x \in \mathbb{R}^d : ||x - y|| < \frac{1}{n} \quad \text{for some } y \text{ in } F \right\}$$

(Note that U_n is empty if F is empty.) It is clear that each U_n is open and that $F \subseteq \cap_n U_n$. The reverse inclusion follows from the fact that F is closed (note that each point in $\cap_n U_n$ is the limit of a sequence of points in F). Hence each closed subset of \mathbb{R}^d is a G_δ .

If U is open, then U^c is closed and so is a G_δ . Thus there is a sequence $\{U_n\}$ of open sets such that $U^c = \cap_n U_n$. The sets U_n^c are then closed, and $U = \cup_n U_n^c$; hence U is an F_σ .

2.3 Solution of Question No. 3

We begin by verifying that m^* is an outer measure. The relation $m^*(\emptyset) = 0$ holds, since for each positive number ϵ there is a sequence $\{(a_i, b_i)\}$ of open intervals (whose union necessarily includes \emptyset) such that $\sum_i (b_i - a_i) < \epsilon$. For the monotonicity of m^* , note that if $A \subseteq B$, then each sequence of open intervals that covers B also covers A, and so $m^*(A) \le m^*(B)$. Now consider the countable subadditivity of m^* . Let $\{A_n\}_{n=1}^{\infty}$ be an arbitrary sequence of subsets of \mathbb{R} . If $\sum_n m^*(A_n) = +\infty$, then $m^*(\cup_n A_n) \le \sum_n m^*(A_n)$ certainly holds.

So suppose that $\sum_{n} m^*(A_n) < +\infty$, and let ϵ be an arbitrary positive number. For each n choose a sequence $\{(a_{n,i}, b_{n,i})\}_{i=1}^{\infty}$ that covers A_n and satisfies

$$\sum_{i=1}^{\infty} (b_{n,i}, a_{n,i}) < m^*(A_n) + \frac{\epsilon}{2^n}.$$

If we combine these sequences into one sequence $\{(a_j,b_j)\}$, then the combined sequence satisfies

$$\cup_n A_n \subseteq U_j(a_j, b_j)$$

and

$$\sum_{j} (b_j - a_j) < \sum_{n} \left(m^*(A_n) + \frac{\epsilon}{2^n} \right) = \sum_{n} m^*(A_n) + \epsilon$$

These relations, together with the fact that ϵ is arbitrary, imply that $m^*(\cup_n A_n) \leq \sum_n m^*(A_n)$. Thus m^* is an outer measure.

Now, Suppose that if K is a compact d-dimensional interval and if $\{\mathbb{R}_i\}_{i=1}^{\infty}$ is a sequence of bounded and open d-dimensional intervals for which $K \subseteq \bigcup_{n=1}^{\infty} \mathbb{R}_i$, then there is a positive integer n such that $K \subseteq \bigcup_{n=1}^{\infty} \mathbb{R}_i$, and K can be decomposed into a finite collection $\{K_j\}$ of d-dimensional intervals that overlap only on their boundaries and are such that for each j the interior of K_j is included in some \mathbb{R}_i (where $i \leq n$). From this it follows that

$$\operatorname{vol}(K) = \sum_{j} \operatorname{vol}(K_{j}) \leq \sum_{i} \operatorname{vol}(\mathbb{R}_{i})$$

and hence that $vol(K) \leq m^*(K)$.

Overall, we shown that "Lebesgue outer measure on \mathbb{R}^d is an outer measure, and it assigns to each d-dimensional interval its volume".

2.4 Solution of Question No. 4

Let $\mathscr{F} = \{B \subseteq \mathbb{R} : f^{-1}(B) \in \mathscr{A}\}$. Then the fact that $f^{-1}(\mathbb{R}) = A$ and the identities

$$f^{-1}(B^c) = A - f^{-1}(B)$$

and

$$f^{-1}\left(\bigcup_{n} B_{n}\right) = \bigcup_{n} f^{-1}(B_{n})$$

imply that \mathscr{F} is a σ -algebra on \mathbb{R} . To require that f be measurable is to require that \mathscr{F} contain all the intervals of the form $(-\infty, b]$ or equivalently (since \mathscr{F} is a σ -algebra) to require that \mathscr{F} include the σ -algebra on \mathbb{R} generated by these intervals. Since the σ -algebra generated by these intervals is the σ -algebra of Borel subsets of \mathbb{R} so it is obvious, conditions (a) and (d) are equivalent. However the σ -algebra of Borel subsets of \mathbb{R} is also generated by the collection of all open subsets of \mathbb{R} and by the collection of all closed subsets of \mathbb{R} , and so conditions (b) and (c) are equivalent to the others.

3 References

- Measure Theory : Donald L. Cohn(Birkhauser edition)
- Measure, Integration & Real Analysis : Sheldon Axler(Springer edition)
- JBH (https://math.stackexchange.com/users/91349/jbh), Example of an algebra which is not a σ -algebra., URL (version: 2013-08-22): https://math.stackexchange.com/q/473549
- For document related info visit https://github.com/akhlak919/LaTeX_Stuffs