Mohiem Agrawal ICS Sheet #9 9.1) B Cin Cout 0 0 0 0 as Summer DNF S-)(A)BACID) V (AAAB S= a) (7AABACin) V (7AABACin) V(AABACin) V (AABACin) (TAMBACin) V (AMTB *Cin) V CANBATCIA) V (ANBACIA) b) CNF S= (AVBVCin) 1 (AAV7BV7Cin) 1 (7AVBV7Cin) 1 (7AV7BVCIn)

Gove = (AVBV(in) A (AVBV7(in) A (AV7BVCin) A (1AVBVCin)

1 13 5		
((same	
-	5	
()	A B A V B A B A T B A T B T CAT	<u></u>
5	0001110000	
2	0 1 1 1 0 1 1 8 1	
5	161011	-
5=	0 4 1 1 0 0 0 0 1 1 1	
2		
3	As we can see AVB can also be expressed as	
2 0	(APB) T (APB)	•
3)		
3	5 = AVB VCin	
2)		
72	= (A1B) 1 (A TB) VCin	
D	=(
7	= ((ATB) T (ATB))T (ATB) T (ATB) T (ATB)	$1/\sqrt{c_{i}}$
2	- (O. 12) I CN (2) I FOR I ST	/n-
a C		
3	= ((IATB) MATB)) TCin) A ((IATB) TCATE)) 1 Cin)
3		-4
3	NOW AVB is represented by ATB and	
<u>-</u>	NOW AVB is represented by ATB and Rang ANB is represented by ATB so.	
<u> </u>	Adny 11/15/15 Tepreseries by	-
5	C-(AAB) V (Cin A (AVB))	
9		

C= (A AB) V (Cin A (AVB)) = (AAB) V (Cin A ((ATB) P(ATB)) = (AAB) V (Cin T (LAAB) (T (AAB)) + (ATB) V (CINT ((ATB) T (ATB)) = (ATB) T (Cin T ((ATB) T (ATB))) = (A7B) T (Cin T ((A7B) T (A TB)) Problem 9.2 To prone foldr op exs = foldl op exs. Base core when as hos I element, foldr ope [xs] = x op e fold ope [x] = e opx i. As e is a neutral element this is HIUR,

Induction step folder ope [x, x] = foldl ope [x... in] For n+1 element then, foldrope [x,...xn, xn+.] = x, op(x2 op (xn op (xn+ ope))) = oc, oplaz op... (och op (x n+1)) As e is neotral, = $(x_1, op(x_2, op(x_1))) op(x_1)$ (x, op (z, op (x, op (x, ope))) op xn+1 d This is equal to fold I ope (20, 20n)
(Induction hypothesis) fold ope [x,...xn] op xn+1 food ope Coc, ... xn, xn+1] / proved/

= foldlop2 e La and op2 xn+1 = foldlop2 e (x. xn, ocn,) // proved. c) To prove, foldropaxs = fold op' a (leverse fr) Base condition when as has 1 element: foldr op a [x] = x op a fola op'a [x] = a op' x. A: : As xopa = a opla given from question it is proved. Induction stop. fold op a se = fold op a (HENDER) for n+1 element. foldr op a Coc, ... orn, xn+1]

= (x, op (x, op (xn (xn+1 op a)))) = x, op (xn op a) op xn+1 associationly = fold | op'a [2, ... 2] op ocn+1 Induction hypothesis = x op'(fold! op'a [xn...x,])

n+1 given in questio

= fold! op'a [xn+1, xn, xn, x,], proved.