

Факультет компьютерных наук Департамент программной инженерии Выпускная квалификационная работа

Сервис распознавания лиц для идентификации личности

Студент: Константиновский Н.О. БПИ 143 Научный руководитель: д.т.н., профессор ДПИ, Александров Д.В.

iOS приложение, позволяющее идентифицировать человека по фотографии лица

Основные понятия и термины

- Нейронная сеть Математическая модель, а также ее программное воплощение, построенное по принципу биологических нейронных сетей.
- Сверточная нейронная сеть Специальная архитектура нейронных сетей, нацеленная на эффективное распознавание изображений.
- CoreML Фреймворк для интеграции моделей машинного обучения в iOS устройства, представленный Apple в 2017 году.
- SVM Набор алгоритмов машинного обучения с учителем, предназначенных для классификациии и регрессионного анализа.
- API Набор готовых функций предоставляемых приложением дляиспользования во внешних программах.

Актуальность

Распознавание образов при помощи машинного обучения является на данный момент одной из наиболее актуальных задач. Оно может использоваться в при разработке приложений в дополненной реальности, для социальных сетей и прочих подобных приложений. Распознавание людей по лицам является одной из наиболее важных частей распознавания образов.

FaceLock

True Key

FindFace

Цели и задачи

Цель

Разработать сервис распознавания лиц для идентификации личности, выполняющий вычисления по извлечению признаков лица на мобильном устройстве на платформе iOS и предоставляющий возможность идентифицировать личность в локальной или удаленной базе данных.

Задачи

- •Изучить подходы распознавания лиц;
- •Выбрать наиболее подходящий подход распознавания лиц для реализации на мобильном устройстве;
- •Изучить подходы поиска личности по лицу в базе данных;
- •Выбрать наиболее подходящий подход для поиска личности по лицу в базе данных для реализации на мобильном устройстве;
- Разработать необходимые для реализации сервиса модели для распознавания лиц на языке Python;
- Разработать серверную часть сервиса распознавания лиц для идентификации личности на языке Python;
- •Разработать АРІ сервиса;
- Разработать SDK сервиса для платформы iOS;
- Разработать тестовое iOS приложение, использующее SDK сервиса, демонстрирующее работу сервиса распознавания лиц для идентификации личности.

Анализ существующих решений

	Kairos	Amazon	Google	Microsoft	IBM	Affectiva
Обнаружение лиц	+	+	+	+	+	+
Распознавание лиц, изображение	+	+	_	+	_	_
Распознавание лиц, видео	+	-	_	_	-	-
API	+	+	+	+	+	+
Мобильное SDK	+	-	_	_	-	+
Оффлайн работа	-	-	-	_	-	-

Подход

Подход

10

Обнаружение лица

HOG face pattern generated from lots of face images Face pattern is pretty similar to this region of our image-we found a face!

HOG version of our image

Нормализация лица

Алгоритм кодирования лица

Inception v3

Алгоритм классификации

Архитектура. Клиент-сервер.

Архитектура. SDK

Архитектура. CoreML

Архитектура. CoreML

Тип модели	Поддерживаемые модели	Фреймворки
Нейронные сети	Прямого распространения, сверточные,	Caffe v1
	рекуррентные	Keras 1.2.2+
Древовидные ансамбли	Случайный лес, усиленные деревья,	scikit-learn 0.18
	деревья решений	XGBoost 0.6
SVM	Скалярная регрессия, многоклассовая	scikit-learn 0.18
	классификация	LIBSVM 3.22
Обобщенные линейные модели	Линейная регрессия, логистическая	scikit-learn 0.18
	регрессия	
Feature engineering	Разреженная векторизация, плотная	scikit-learn 0.18
	векторизация, категориальная обработка	
Pipeline models	Последовательные модели	scikit-learn 0.18

Архитектура. CoreML. Дополнительные слои

- •Square возведение в квадрат
- •Sqrt квадратный корень
- MulConstant умножение на константу
- ◆LRN Local Response Normalisation
- L2Normalize

Архитектура. CoreML. Дополнительные слои

LRN

$$b_{x,y}^{i} = \frac{a_{x,y}^{i}}{\left(k + \alpha \sum_{j=\max(0,i-\frac{n}{2})}^{\min(N-1,i+\frac{n}{2})} (a_{x,y}^{i})^{2}\right)^{\beta}}$$

L2Normalize

$$b_i = a_i / \sqrt{\sum_{j=1}^N (a_j)^2}$$

Архитектура. Сервер

База данных

API

Функция	Входные параметры	Выходные параметры	Описание
vector	vector – массив из 128 значений в формате float	person – строка с именем и фамилией искомого человека	По коду лица возвращает имя и фамилию искомого человека
load	load – числовой параметр, указывает что необходимо загрузить классификатор	Ссылка на скачиваемый классификатор	Скачать актуальный классификатор
image	image – файл-картинка, на котором распознается лицо	person – строка с именем и фамилией искомого человека	По фото возвращает имя и фамилию искомого человека

Технологии

Клиент

- iOS
- Swift
- Core ML

Сервер

- Python
- Flask

Результаты работы

- •Изучены различные подходы к распознаванию лиц
- •Выбраны подходящие подходы для распознавания лиц на устройстве iOS
- •Реализована клиентская часть по обнаружению и нормализации лица
- •Разработан конвертер для интеграции модели нейронной сети на устройство iOS
- •Разработаны дополнительные слои для нейронной сети на iOS
- •Разработан механизм загрузки обученного классификатора

Результаты работы

- ◆Разработано Web-приложение для управления данными о личностях и их фото
- •Разработан обучатель классификатора, позволяющий обучать классификаторы на новых личностях и фотографиях
- •Разработано API сервиса, позволяющее клиенту отправлять запросы на распознавание лиц в базе данных

Дальнейшая работа

- •Провести измерения точности различных подходов к распознаванию лиц
- •Провести оптимизацию с точки зрения энергопотребления
- •Использовать рекуррентные слои в нейронной сети для увеличения точности распознавания на видео

Список источников

- 1. Core ML; [Электронный ресурс]: Режим доступа: https://developer.apple.com/documentation/coreml, свободный.
- 2. Core ML API; [Электронный ресурс]: Режим доступа: https://developer.apple.com/documentation/coreml/core_ml_api, свободный.
- 3. Dlib; [Электронный ресурс]: Режим доступа: http://dlib.net/python/index.html, свободный.
- 4. Face Recognition Program for Person Identification; Aleksei A. Riabov, Faculty of Computer Science Higher School of Economics
- 5. OpenFace; [Электронный ресурс]: Режим доступа: https://cmusatyalab.github.io/, свободный.

101000, Россия, Москва, Мясницкая ул., д. 20 Тел.: (495) 621-7983, факс: (495) 628-7931 www.hse.ru