

Designnotat

Tittel: Trekantoscillator

Forfattere: Mia Elisenberg

Versjon: 1.0 Dato: 25. februar 2020

Innhold

1	blembeskrivelse 2								
2	Prinsipiell løsning 2.1 Komparatoren	3 3 4 5							
3	Realisering og test 3.1 Punkter å ta hensyn til før testing 3.2 Verdier brukt i testene 3.3 Tester 3.4 Kommentarer til testene	7 7 8 9							
4	Konklusjon 10								
5	Takk								
A	A.1 Bestemmelse av faktisk maksimalt frekvensavvik A.2 Bestemmelse av frekvens og amplitude A.2.1 Å finne et uttrykk for $v_2(t)$ A.2.2 Å finne et uttrykk for T_f A.2.3 Å finne et uttrykk for $v_3(t)$ A.2.4 Å finne et uttrykk for A' A.2.5 Å finne et uttrykk for T_f gitt et uttrykk for A' A.2.6 Å finne et uttrykk for T_s A.2.7 Å finne et nytt uttrykk for $v_2(t)$	11 11 11 12 12 13 13 14 14 15 16							

1 Problembeskrivelse

Det kan være nyttig med periodiske signaler med en gitt frekvens i ulike situasjoner. Dette designnotatet skal ta for seg hvordan en kan generere et trekantsignal med en spesifisert frekvens og et spesifisert maksimalt frekvensavvik.

2 Prinsipiell løsning

Kretsdesignet for trekantoscillatoren vises i figur 1, og det består av en komparator (venstre) og integrator (høyre).

Komparatoren består av de to mostandene R_1 og R_2 og en operasjonsforsterker med forsyningsspenningene +V og -V (vist i figuren for å understreke at det er en komparator), hvor den inverterende terminalen går til jord, og den ikke-inverterende terminalen har inngangsspenning v_3 .

Integratoren består av motstanden R, kondensatoren C og en operasjonsforsterker med lik forsyningsspenning som komparatoren, ikke-inverterende terminal til jord og inverterende terminal med inngangsspenning v_1 .

Spenningene v_1 , v_2 og v_3 vil alle ha ulike oppførsel, men det endelige utgangssignalet v_2 vil være trekanta. Årsakene til dette forklares videre etter figuren, og alle fullstendige utregninger finnes i vedlegget.

Figur 1: Kretsdesign for en trekantoscillator.

2.1 Komparatoren

En komparator vil sammnenligne to inngangsspenningsverdier og returnere den høyeste verdien som utgangssignal. Når komparatoren har inngangsspenning $v_3(t)$, så vil utgangspenningen $v_1(t)$ være gitt ved

$$v_1(t) = \begin{cases} +V, & v_3(t) > 0 \\ -V, & v_3(t) < 0 \end{cases}$$
 (1)

 $v_1(t)$ vil være et firkantsignal som skifter mellom verdiene V og -V og er konstant mellom to skifter. For at disse skiftene skal fungere, så må $v_3(t)$ variere mellom positive og negative verdier, og verdien til $v_3(t)$ er gitt ved spenningsdelingen

$$v_3(t) = v_2(t) + \frac{R_1}{R_1 + R_2} (v_1(t) - v_2(t))$$
(2)

2.2 Integratoren

En integrator vil integrere inngangssignalet. Når integratoren har inngangsspenning $v_1(t)$, så vil utgangspenningen $v_2(t)$ være gitt som

$$v_2(t) = v_2(0) - \frac{1}{\tau} \int_0^t v_1(t)dt$$
 (3)

hvor tidskonstanten $\tau=RC$. Komparatoren gjør $v_1(t)$ til et firkantssignal, og da vil integratoren gjøre $v_2(t)$ til et trekantssignal. Dersom $v_1(t)$ er sentrert rundt 0, så vil $v_1(t)$ og $v_2(t)$ se ut som i figur 2. Der er minimumsverdien -V og maksimumsverdien V.

Figur 2: Firkantssignalet $v_1(t)$ (blå) og trekantssignalet $v_2(t)$ (grønn) som funksjoner av tiden t[t].

2.3 Komparatoren og integratoren sammen

Figur 3 viser hvordan $v_1(t)$, $v_2(t)$ og $v_3(t)$ oppfører seg inne i trekantoscillatoren. Der er A' og -A' spenningsverdiene $v_2(t)$ har ved starten og slutten av området hvor $v_1(t)$ er konstant lik -V, $v_1(t)$ er konstant lik -V i tidsrommet T_f , og T_s er tiden $v_1(t)$ bruker på å skifte mellom V og -V.

Figur 3: Interne signaler i trekantoscillatoren.

En ser at signalene ikke oppfører seg helt ideelt som i figur 2, og dette skjer fordi komparatoren trenger tiden T_s på å skifte mellom verdiene V og -V, gitt ved

$$T_s = \frac{2V}{SR} \tag{4}$$

hvor SR er stigningsraten til den aktuelle operasjonsforsterkeren (opgitt i datablad).

Forsyningsspenningene til operasjonsforsterkerene er symmetriske om tidsaksen, og dermed vil $v_2(t)$ også være symmetrisk om tidsaksen. Ved å la tiden t=0 ved starten av T_f , så vil $v_2(0) = -A'$ og $v_2(T_f) = A'$. Dette gjør at T_f gis ved

$$T_f = \frac{4A'}{V}\tau\tag{5}$$

Ved å la t = 0 ved starten av T_s , så vil $v_1(t)$ være

$$v_1(t) = -V + \frac{2V}{SR}t\tag{6}$$

og av likning (3), så vil $v_2(t)$ være

$$v_2(t) = A' + \frac{V}{\tau} (t - \frac{t^2}{T_s}) \tag{7}$$

 $v_2(t)$ vil være en parabel med toppunkt midt i intervallet, og av likning (4), så vil verdien ved toppunktet være

$$v_2(\frac{1}{2}T_s) = A' + \frac{VT_s}{4\tau} = A' + \frac{V^2}{2\tau SR}$$
(8)

Det er denne parabelformen som gjør at $v_2(t)$ ikke er perfekt trekantforma, men vil få en parabelforma «hump» på toppen, med høyde ΔA over nivået A', gitt ved

$$\Delta A = \frac{V^2}{2\tau SR} \tag{9}$$

Av dette, så vil amplituden A til $v_2(t)$ være

$$A = A' + \Delta A = \frac{R_1}{R_2} V + \frac{V^2}{2\tau SR}$$
 (10)

Symmetrien til $v_1(t)$ gjør at alle signaletne i kretsen vil ha samme periode T, gitt ved

$$T = 2(T_f + T_s) \tag{11}$$

Trekantoscillatoren vil oscillere med en spesifisert frekvens $f_0[Hz]$, gitt ved

$$f_0 = \frac{1}{T} = \frac{1}{2(T_f + T_s)} \tag{12}$$

Oscillatoren vil oscillere med en aktuell frekvens f[Hz], gitt ved

$$f = \frac{1}{4} \left(\frac{R_2 S R}{R_1 \tau S R + V R_2} \right) \tag{13}$$

og skal ha et spesifisert maksimalt frekvensavvik $\Delta f_{\text{max}}[\text{ppm}]$, hvor det faktiske avviket skal være

$$|\Delta f| \le \frac{\Delta f_{max}}{10^6} f_0 \tag{14}$$

3 Realisering og test

3.1 Punkter å ta hensyn til før testing

- Ved bruk av operasjonsforsterkeren LF353P, så kan komparatoren fungere dårlig ved for høy spenning på v_3 . Fordi v_3 er gitt ved likning (2), som er en spenningsdeling, så må R_2 være stor nok i forhold til R_1 , og v_2 må ikke bli for høy.
- Det er sannsynlig at v_1 vil avvike noe fra $\pm V$.
- Ved valg av motstandsverdier, så må de være «passelige». Dvs. at de må ha en verdi mellom $1k\Omega$ og $100k\Omega$.
- Amplituden A til v_2 kan ikke være så høy at operasjonsforsterkeren går i metning og heller ikke så stor at v_3 blir for høy.
- Ofte vil $A' >> \Delta A$, og pga. dette og likning (10), så vil A være avhengig av R_1 og R_2 . I tillegg vil ofte $T_f >> T_s$, og pga. dette og likning (13), så vil frekvensen være avhengig av τ . Det kan dermed være gunstig å starte med å velge verdier for R_1 og R_2 så komparatoren virker, og så justere R-verdien for å få integratoren til å virke.

3.2 Verdier brukt i testene

Kretsen ble kobla opp etter figur 1, og de faste komponentverdiene er lista under. Motstandsverdiene ble endra for hver testing og er oppgitt i tabell 1.

- C = 100 nF
- 2 operasjonsforsterkere av typen LF353P, hvor typiske stigerate $SR=13\frac{\rm V}{\mu \rm s}$

Den spesifiserte og ønskede frekvensen til $v_2(t)$ ble satt til $f_0=300{\rm Hz}$. Det spesifiserte maksimale frekvensavviket ble dermed $\Delta f_{\rm max}=10000{\rm ppm}$. Av likning (15), så ble det faktiske maksimale frekvensavviket 3Hz.

Forsyningsspenningen for operasjonsforsterkerne ble satt til +V = 5V og -V = -5V.

3.3 Tester

Likninger brukt for til beregninger i tabell 1:

- $\tau = RC$
- (13): $f = \frac{1}{4} \left(\frac{R_2 SR}{R_1 \tau SR + VR_2} \right)$

Den fysiske implementeringa vises i figur 4.

Figur 4: Fysisk implementering.

Tabell 1: Målte verdier ved testing.

Testnr.	$R_1[\Omega]$	R_2 $[\Omega]$	R $[\Omega]$	τ [s]	$v_1[{f V}]$	$f[\mathrm{Hz}]$	$ \Delta f $ [Hz]
1	1k	10k	50k	0.005	2.7	500	200
2	1k	10k	100k	0.01	2.7	250	50
3	4k	47.6k	100k	0.01	2.7	297	2.63
4	1k	5.95k	50k	0.005	2.7	297	2.63

3.4 Kommentarer til testene

Av tabell 1, så finner man at test nr. 3 og 4 gir nøyaktig samme resultat i endelig frekvens f=297 og frekvensavvik $|\Delta f|=2.63$. Figur 5 viser signalet ut av komparatoren og integratoren. Det er forventa å se ut som i figur 3, men dette viser seg å ikke stemme. Dette må være grunnet feil kombinasjon i motstandsverdier.

Figur 5: Firkantsignalet fra komparatoren og trekantsignalet fra integratoren.

4 Konklusjon

Et kretsoppsett som i figur 1 vil gi et trekantsignal, for komparatoren vil gi ut et firkantsignal, og integratoren vil gi ut et trekantsignal. Ved å bruke bestemte kombinasjoner av motstandsverdier, så vil en oppnå et trekantsignal med en bestemt frekvens med et bestemt maksimalt frekvensavvik. For å konkludere, så er den prinsippielle løsningen for systemet godt, men tetsingen og den fysiske implementeringa er mer komplisert å få til for å nå kravspesifikasjonene til testene.

5 Takk

Takk til Stud. Marie Eriksen Grude, Stud. Anders Lundberg og Stud. Sivert Sivertsen for godt samarbeid og nyttige diskusjoner om både teori og praktisk implementering av design-prosjektet.

A Fullstendige utregninger

A.1 Bestemmelse av faktisk maksimalt frekvensavvik

1ppm = $\frac{1}{10^6}$ av utgangssignalets frekvens f_0 . Dette gjør at faktisk frekvensavvik Δf , med xppm er gitt som

$$\Delta f = \frac{f_0 \cdot x}{10^6} \tag{15}$$

Dette tilsvarer høyresida av ulikheten (14).

A.2 Bestemmelse av frekvens og amplitude

I de fullstendige utregningene under vil det bestemmes uttrykk for frekvens og amplitude, uttrykt ved forsyningsspenningen V, tidskonstanten for integratordelen av kretsen $\tau = RC$, motstandene i spenningsdeleren i komparatordelen av kretsen R_1 og R_2 , og stigeraten SR.

A.2.1 Å finne et uttrykk for $v_2(t)$

En ser på figur 3 og ser først på intervallet T_f hvor $v_1(t)$ har den konstante verdien -V. Forsyningsspenningene til operasjonsforsterkerene er symmetriske, og dermed vil $v_2(t)$ også være symmetrisk om tids-aksen. Ved å la tiden t=0 ved starten av T_f , så vil $v_2(0)=-A'$ og $v_2(T_f)=A'$. Av likning (3) er dermed

$$v_2(t) = -\frac{1}{RC} \int v_1(t)dt \tag{16}$$

Her er $v_1(t) = -V$, slik at

$$v_{2}(t) = -\frac{1}{\tau} \int -V dt$$

$$= \frac{1}{\tau} \int V dt$$

$$= \frac{1}{\tau} V t + C$$

$$= \frac{V}{\tau} t + C$$
(17)

hvor C er en konstant bestemt ved å sette inn $v_2(0) = -A'$ i uttrykket over, slik at

$$v_2(t) = \frac{V}{\tau}t + C$$

$$-A' = C$$
(18)

Dermed er uttrykket for $v_2(t)$ gitt som

$$v_2(t) = -A' + \frac{V}{\tau}t\tag{19}$$

A.2.2 Å finne et uttrykk for T_f

 T_f er tida $v_1(t) = -V$. I tidsintervallet T_f går $v_2(t)$ fra -A' til $A' \implies v_2(T_f) = A'$. Bruker uttrykket fra likning (19) og løser for T_f slik at

$$v_{2}(t) = -A' + \frac{V}{\tau}t$$

$$v_{2}(T_{f}) = -A' + \frac{V}{\tau}T_{f}$$

$$\frac{v_{2}(T_{f}) + A'}{V}\tau = T_{f}$$

$$\frac{A' + A'}{V}\tau = T_{f}$$

$$T_{f} = \frac{2A'}{V}\tau$$
(20)

A.2.3 Å finne et uttrykk for $v_3(t)$

Fordi det ikke går noen strøm inn i den ikke-inverterende inngangsterminalen til komparatoren så kan en bruke spenningsdeling gitt ved

$$V_x = \frac{R_x}{R_x + R_y} V_s \tag{21}$$

hvor V_x er den ønskede spenningen, R_x er motstanden spenningen ligger over, nevneren i brøken er summen av motstandene R_x og R_y i kretsen, og V_s er spenningskilden. Med verdiene fra kretsen blir spenningsdelingsuttrykket

$$v_{R_1} = \frac{R_1}{R_1 + R_2} (v_1 - v_2) \tag{22}$$

Dermed blir det totale uttrykket for $v_3(t)$

$$v_3(t) = v_2(t) + \frac{R_1}{R_1 + R_2} (v_1(t) - v_2(t))$$
(23)

A.2.4 Å finne et uttrykk for A'

Ved T_f er $v_3(t)$ gitt som $v_3(T_f) = 0$, og det er der $v_1(t)$ går fra -V til V. Setter denne v_3 -verdien inn i likning (23), og en har at $v_1(T_f) = -V$ og $v_2(T_f) = A'$.

$$v_{3}(t) = v_{2}(t) + \frac{R_{1}}{R_{1} + R_{2}}(v_{1}(t) - v_{2}(t))$$

$$v_{3}(T_{f}) = v_{2}(T_{f}) + \frac{R_{1}}{R_{1} + R_{2}}(v_{1}(T_{f}) - v_{2}(T_{f}))$$

$$0 = A' + \frac{R_{1}}{R_{1} + R_{2}}(-V - A')$$

$$0 = \frac{(R_{1} + R_{2})A' + R_{1}(-V - A')}{R - 1 + R_{2}}$$

$$0 = \frac{A'R_{1} + A'R_{2} - VR_{1} - A'R_{1}}{R_{1} + R_{2}}$$

$$0 = \frac{A'(R_{1} + R_{2} - R_{1}) - VR_{1}}{R_{1} + R_{2}}$$

$$0 = \frac{A'R - 2 - VR_{1}}{R_{1} + R_{2}}$$

$$0 = \frac{A'R_{2}}{R_{1} + R_{2}} - \frac{VR_{1}}{R_{1} + R_{2}}$$

$$\frac{VR_{1}}{R_{1} + R_{2}} = \frac{A'R_{2}}{R_{1} + R_{2}}$$

$$VR_{1} = A'R_{2}$$

$$A' = \frac{R_{1}}{R_{2}}V$$

A.2.5 Å finne et uttrykk for T_f gitt et uttrykk for A'

Bruker uttrykket for T_f fra likning (20) og uttrykket for A' fra likning (24).

$$T_f = \frac{2A'}{V}\tau$$

$$= \frac{2\frac{R_1}{R_2}V}{V}\tau$$

$$= 2\frac{R_1}{R_2}\tau$$
(25)

A.2.6 Å finne et uttrykk for T_s

 $v_1(t)$ skal stige fra -V til V på tida T_s , og dette er en verdiendring på 2V. Når T_s er tida, SR er en rate (fart), så kan en sammenlikne situasjonen med formelen for vei-fart-tid, gitt ved

$$v = \frac{s}{t} \tag{26}$$

hvor v er farta, s er veien (strekningen), og t er tida. For trekantoscillatoren er dermed 2V veien signalet må gå i løpet av tida T_s , med farta SR, og T_s blir gitt som

$$T_s = \frac{2V}{SR}. (27)$$

A.2.7 Å finne et nytt uttrykk for $v_2(t)$

 $v_2(t)$ er resultatet etter en integrasjon, så av likning (3), så er

$$v_2(t) = -\frac{1}{\tau} \int v_1(t)dt$$
 (28)

og en vet fra tidligere utregninger at $v_1(t) = -V + \frac{2V}{T_s}t$. Da er

$$v_{2}(t) = -\frac{1}{\tau} \int v_{1}(t)dt$$

$$= -\frac{1}{\tau} \int (-V + \frac{2V}{T_{s}}t)dt$$

$$= -\frac{1}{\tau} [-Vt + 2\int \frac{V}{T_{s}}tdt]$$

$$= -\frac{1}{\tau} [-Vt + 2\frac{1}{2}\frac{V}{T_{s}}t^{2}] + C$$

$$= \frac{1}{\tau} Vt - \frac{1}{\tau} \frac{V}{T_{s}}t^{2} + C$$

$$= \frac{V}{\tau} (t - \frac{t^{2}}{T_{s}}) + C$$
(29)

C er en konstant bestemt ved å sette inn $v_2(0) = A' \implies A' = C$. Dermed er

$$v_2(t) = A' + \frac{V}{\tau} (t - \frac{t^2}{T_c}) \tag{30}$$

A.2.8 Å finne et uttrykk for ΔA

Ved en tid t er $v_2(t)$ lik $A = A' + \Delta A$. Dette brukes til å finne ΔA .

 $v_2(t)$ er en funksjon av tid, og ekstremalpunktene finnes der den deriverte er lik 0, så

$$\frac{d}{dt}v_{2}(t) = 0$$

$$0 = \frac{d}{dt}(A' + \frac{V}{\tau}(t - \frac{t^{2}}{T_{s}}))$$

$$0 = \frac{1}{\tau}(V + 2\frac{V}{T_{s}}t)$$
(31)

Dette gjør at

$$V + 2\frac{V}{T_s}t = 0$$

$$\frac{V}{T_s}t = -V$$

$$t = \left|\frac{-VT_s}{2V}\right|$$

$$t = \frac{T_s}{2}$$
(32)

Setter inn denne t-verdien i uttrykket for $v_2(t)$ og får at

$$v_{2}(t) = A' + \frac{1}{\tau} (Vt - \frac{V}{T_{s}} t^{2})$$

$$v_{2}(T_{s}) = A' + \frac{1}{\tau} (V\frac{T_{s}}{2} - \frac{V}{T_{s}} \frac{T_{s}^{2}}{4})$$

$$= A' + \frac{1}{\tau} (\frac{VT_{s}}{2} - \frac{T_{s}}{4})$$

$$= A' + \frac{1}{\tau} (\frac{2VT_{s} - VT_{s}}{4})$$

$$= A' + \frac{1}{\tau} \frac{VT_{s}}{4}$$

$$= A' + \frac{VT_{s}}{4\tau}$$
(33)

Likheten $v_2(T_s) = A = A' + \Delta A$ og at $SR = \frac{2V}{T_s} \implies T_s = \frac{2V}{SR}$ gir at

$$A' + \Delta A = A' + \frac{VT_s}{4\tau}$$

$$A' + \Delta A = A' + \frac{V}{4\tau} \frac{2V}{SR}$$

$$\Delta A = \frac{V^2}{2\tau R}$$
(34)

A.2.9 Å finne et endelig uttrykk for perioden T, frekvensen f og amplituden A

Frekvens f er gitt som 1 over perioden T, så $f=\frac{1}{T}$. Perioden er det dobbelte av summen av de to tidsintervallene T_f og T_s , så $T=2(T_f+T_s)$. En har at $T_f=2\frac{R_1}{R_2}\tau$ og $T_s=\frac{2V}{SR}$. Dermed er perioden

$$T = 2(T_f + T_s)$$

$$= 2(2\frac{R_1}{R_2}\tau + \frac{2V}{SR})$$

$$= 4(\frac{R_1}{R_2}\tau + \frac{V}{SR})$$

$$= 4(\frac{R_1\tau SR + VR_2}{R_2SR})$$
(35)

Dette gjør at frekvensen er

$$f = \frac{1}{4} \left(\frac{R_2 S R}{R_1 \tau S R + V R_2} \right) \tag{36}$$

og amplituden er

$$A = A' + \Delta A = \frac{R_1}{R_2} V + \frac{V^2}{2\tau SR}$$
 (37)