Différence symétrique et distance dans (X_t)

Julien David, Lionel Pournin, Rakotonarivo Rado

14 novembre 2017

1 Définition

Soient deux polytopes $x = \{u_1, \ldots, u_l\}$ et $y = \{v_1, \ldots, v_k\} \in \Omega$. On définit par $x \triangle y$ la **différence symétrique** entre x et y telle que

$$x \triangle y = \{ u \in x : u \notin y \text{ et } v \in y : v \notin x \}$$
 (1)

On peut voir la différence symétrique de manière ensembliste comme étant $x \triangle y = x \cup y \setminus x \cap y$ cependant quelques précisions sont à mentionner :

- $x \cup y$ ne constitue pas forcément une enveloppe convexe.
- $|x \cup y| = |x| + |y| \text{ si } x \cap y = \emptyset.$
- $x \triangle y$ est maximal quand x et y n'ont aucun sommet en commun.

Proposition 1. La distance entre x et y dans le graphe de X_t est bornée par le cardinal de $x \triangle y$, on notera cette distance $\delta(x, y)$ et on a:

$$\delta(x,y) \ge |x \triangle y| \tag{2}$$

Démonstration. Considérons x et $y \in \Omega$. Comme $x \triangle y$ constitue l'ensemble des sommets sur lesquels x diffère de y et réciproquement, passer de x en y avec un nombre minimal d'étapes consiste à choisir un chemin qui fera en sorte de réduire $x \triangle y$ d'un sommet à chaque étape. Par conséquent, il faut au moins $|x \triangle y|$ étapes pour passer de x en y.

Mettre en place la notion de différence symétrique entre deux états x et y va permettre d'assurer l'irréductibilité de notre chaîne (X_t) . En effet passer de x en y consiste en à trouver un nombre fini d'opérations d'ajouts et de suppressions de sommets. L'idéal serait de directement ajouter des sommets de y et de supprimer ceux de x. Toutefois on peut tomber dans des cas où on ne peut ni supprimer des sommets de x (le cas où x est un simplexe) ni ajouter des sommets de y. On met alors en emphase plusieurs cas à distinguer :

- 1. x est n'est pas un simplexe.
 - (a) $x \subset y$: On ajoute un élément de $y \setminus x$
 - (b) $x\not\subset y$: On supprime un élément de $x\setminus y$
- 2. x est un simplexe.
 - (a) Si on peut ajouter un élément de $y \setminus x$ alors on le fait
 - (b) Sinon:
 - i. Ajouter un point extérieur à $x \triangle y$
 - ii. Supprimer un élémént de $x \setminus y$
 - iii. Ajouter un élément de $y \setminus x$

Proposition 2. On pose la conjecture suivante : $\exists z \in \Omega$, tel que $x \triangle y \supset z \triangle y$, pour lequel on a $\delta(x,z) \leq 3$

Cette conjecture nous dit qu'on peut trouver un état transitoire z entre x et y tel qu'en au plus de 3 étapes on peut réduire $x \triangle y$ d'un sommet.