Работа 4.3.6.

Саморепродукция

Саморепродукция

Цель работы: Изучение явления саморепродукции и применение его к измерению параметров периодических структур.

Оборудование: лазер, кассета с сетками, мира, короткофокусная линза с микрометрическим винтом, экран, линейка.

При дифракции на предмете с периодической структурой наблюдается интересное явление: на некотором расстоянии от предмета вдоль направления распространения волны появляется изображение, которое потом периодически повторяется — репродуцируется.

Этот эффект имеет простое физическое объяснение. Если на пути распространения плоской волны в плоскости z=0 расположить транспарант (например, изображение предмета на фотоплёнке или стеклянной пластинке) с функцией пропускания, отличной от константы, то на выходе из него в плоскости $z=0_+$ волна уже перестанет быть плоской. Если при этом функция пропускания транспаранта – периодическая функция координат, периодической функцией будет и комплексная амплитуда волны на выходе из транспаранта, т. е. в плоскости $z=0_+$. Периодическому распределению комплексной амплитуды в плоскости $z=0_+$ будет соответствовать дискретный набор плоских волн с кратными пространственными частотами. При этом оказывается, что существуют плоскости (при z>0), где все плоские волны имеют те же самые фазовые соотношения, что и в плоскости $z=0_+$. В результате интерференции этих волн получается изображение, тождественное исходному периодическому объекту.

Найдём выражение для расстояния между этими плоскостями. Напомним, что плоской монохроматической волной называется волна вида

$$E(\vec{r},t) = a_0 e^{-i(\omega t - \vec{k}\vec{r} - \psi_0)} \tag{1}$$

где амплитуда a_0 – действительная постоянная, ω – круговая частота, \vec{k} – волновой вектор $(|\vec{k}|=2\pi/\lambda),\,\psi_0$ – начальная фаза. Колебания происходят синфазно во всех точках плоскости:

$$\vec{k}\vec{r} = ux + vy + \sqrt{k^2 - u^2 - v^2} \cdot z = const \tag{2}$$

Направление распространения плоской монохроматической волны характеризуется волновым вектором \vec{k} , а u и v есть проекции его на оси координат x и y соответственно. В дальнейшем мы будем опускать зависимость от времени $e^{-i\omega t}$ и использовать для описания монохроматической волны комплексную амплитуду.

Для плоской волны (1) комплексную амплитуду можно представить в виде

$$f(x,y,z) = a_0 e^{i\psi_0} e^{i(ux+vy)} e^{i\sqrt{k^2 - u^2 - v^2}z} = f(x,y,0) \cdot e^{i\sqrt{k^2 - u^2 - v^2}z}$$
(3)

Таким образом, для того чтобы получить комплексную амплитуду плоской волны в произвольной плоскости z=const, надо ее значение в плоскости z=0 домножить на фазовый множитель $e^{i\sqrt{k^2-u^2-v^2}z}.$

Пусть плоская волна падает перпендикулярно на транспарант, расположенный в плоскости z=0, тогда для падающей волны u=v=0, и комплексная амплитуда волны на входе в транспарант является константой $a_0e^{i\psi_0}$. Комплексную амплитуду волны в плоскости $z=0_+$ на выходе из транспаранта получаем, умножив комплексную амплитуду на входе в транспарант на функцию пропускания транспаранта t(x,y). Это правило является определением понятия функции пропускания транспаранта. Если функция пропускания периодическая с периодом d (для простоты рассмотрим одномерный случай t(x,y)=t(x)), то комплексная амплитуда на выходе из транспаранта $a_0e^{i\psi_0}t(x)$ также периодическая функция с тем же периодом d. Согласно теореме Фурье (доказываемой в курсе математического анализа) периодическая функция $a_0e^{i\psi_0}t(x)$ может быть представлена в виде ряда Фурье — суммы гармонических составляющих с кратными пространственными частотами $u_n=2\pi n/d$:

$$f(x, 0_{+}) = a_{0}e^{i\psi_{0}}t(x) = a_{0} + \sum_{n=1}^{\infty} [a_{n}\cos(nu_{n}x) + b_{n}\sin(nu_{n}x)]$$

или в комплексной форме –

$$f(x,0_{+}) = \sum_{n=-\infty}^{\infty} c_n e^{iu_n x} = \sum_{n=-\infty}^{\infty} c_n e^{i\frac{2\pi}{d}nx}$$

$$\tag{4}$$

Опираясь на теорему единственности решения волнового уравнения при заданных граничных условиях, мы можем утверждать, что периодическому распределению комплексной амплитуды в плоскости $z=0_+$ будет соответствовать при z>0 дискретный набор плоских волн с кратными пространственными частотами u_n . Как видно из (3), для плоской волны с пространственной частотой u_n волновой вектор \vec{k} имеет проекции $u_n, 0, \sqrt{k^2 - u_n^2}$. Разложение волны, продифрагировавшей на транспаранте, в ряд по плоским волнам позволяет легко найти комплексную амплитуду волны в произвольной плоскости z=const. Для этого достаточно домножить комплексные амплитуды плоских волн в суперпозиции (4) на соответствующий фазовый множитель $exp(i\sqrt{k^2-u_n^2})$:

$$f(x,z) = \sum_{n=-\infty}^{\infty} c_n e^{iu_n x} e^{i\sqrt{k^2 - u_n^2} z}$$

$$\tag{5}$$

Каждая плоская волна в суперпозиции (4) приобрела при распространении от транспаранта до плоскости наблюдения z = const набег фазы:

$$\varphi_n = \sqrt{k^2 - u_n^2} \cdot z$$

Для параксиальных волн $(u_n \ll 1)$:

$$\varphi_n \approx kz - \frac{u_n^2}{2k}z\tag{6}$$

и, таким образом, разность набегов фазы для любых двух плоских волн (с индексом n и m) равна

$$\Delta \varphi_{n,m} = (u_m^2 - u_n^2) \frac{z}{2k} = (m^2 - n^2) \frac{\pi \lambda}{d^2} z \tag{7}$$

Рис. 1: Принципиальная схема дифракции на сетке. Между сеткой 0 и плоскостью Π_1 наблюдаются репродуцированные изображения сетки

Легко видеть, что в плоскости наблюдения $z_0=2d^2/\lambda$ разность фазовых набегов оказывается кратной 2π для любых гармоник, входящих в состав суперпозиции (4), т.е. совпадают фазовые соотношения между колебаниями, которые создаются всеми плоскими волнами, входящими в состав суперпозиции (4) в предметной плоскости $z=0_+$ в плоскости изображения $z_1=2d^2/\lambda$. Поэтому в результате интерференции этих волн мы получаем изображение, тождественное исходному периодическому объекту. Описанное явление называется эффектом саморепродукции. Световая волна сама (без каких-либо линз или зеркал) создает изображение исходного объекта. Ясно, что все сказанное справедливо и для любого расстояния z_N , кратного z_1 :

$$z_N = \frac{2d^2}{\lambda} N \tag{8}$$

На опыте, вследствие ограниченности поперечного сечения светового пучка лазера, наблюдаются только несколько репродуцированных изображений решетки. Поясним этот эффект с помощью рис. 1.

На нем изображены только три продифрагировавших луча соответственно нулевого (n=0) и \pm первого порядка $(n=\pm 1)$. Там, где эти лучи перекрыва-

ются, образуется интерференционная картина с периодом, как раз равным периоду решетки d. Спроектировав картину с помощью линзы на экран, мы увидим изображения синусоидальной решетки с плавным переходом от максимумов к минимумам. Для того чтобы наблюдать более тонкие детали, необходимо, чтобы в плоскости наблюдения перекрывались лучи более высоких дифракционных порядков. На краях, где перекрываются только два луча (n=0) и n=+1 или n=0 и n=-1, также образуется интерференционная картина с периодом d, но менее контрастная.

Таким образом, левее плоскости Π_1 мы будем наблюдать, хотя и слегка размытые, репродуцированные изображения решетки. Правее плоскости Π_2 репродуцированных изображений не будет.

Экспериментальная установка. Хорошим приближением к плоской волне в нашем эксперименте является излучение лазера. Луч лазера падает перпендикулярно на периодический объект O, установленный в плоскости P_0 (рис. 2).

За плоскостью P_0 (в плоскостях $P_1 - P_N$) периодически по z возникают изображения объекта, которые с помощью линзы Π можно поочерёдно проецировать на экран, установленный в плоскости Э. Если убрать линзу, то на экране наблюдается картина дифракции луча лазера на периодическом объекте.

Рис. 2: Схема установки: ОКГ – гелий-неоновый лазер, 0 – двумерная решетка, P_N – плоскости, где наблюдаются репродуцированные изображения, Π – короткофокусная линза, Θ – экран для наблюдения изображения объекта

Экран устанавливается достаточно далеко от объекта, так что продифрагировавшие лучи, соответствующие различным порядкам дифракции $(\sin \varphi_n = n\lambda/d)$, разделяются.

Измерив расстояние между дифракционными максимумами и расстояние от объекта до экрана, мы определим $\sin \varphi_n$ и d.

В нашей работе в к ачестве периодических объектов применяется мира — набор различным образом ориентированных одномерных решеток разного периода (рис. 4), а также двумерная решетка-сетка. Сетку можно рассматривать как две взаимно перпендикулярные решетки. Узкий пучок монохроматического света, пройдя через первую решетку с вертикальными штрихами, должен дать совокупность максимумов, расположенных вдоль горизонтальной линии.

Световой пучок, соответствующий каждому максимуму, проходя через вторую

решетку, распадается на новую совокупность пучков, дающих максимумы вдоль вертикальной линии. В результате главные максимумы возникают тогда, когда одновременно выполняются условия

$$d\sin\varphi_x = n_x\lambda, \quad d\sin\varphi_y = n_y\lambda \tag{9}$$

где n_x и n_y – два целых числа, характеризующих порядки дифракционных максимумов, φ_x и φ_y – направления на главные дифракционные максимумы в горизонтальной и вертикальной плоскостях соответственно (рис. 3). Максимумы показаны кружками, размеры которых характеризуют интенсивность.

Рис. 3: Спектр решётки-сетки

Ход работы.

- 1. Определим расстояние от кассеты до экрана. Получим 135 ± 2 см.
- 2. Измерим расстояние между максимумами для различных решеток:

ПЕРЕДЕЛАТЬ

\overline{N}	m	X, mm	x, MM	d, mkm	
1	6	223	37.2	20	
5	14	56	4.0	190	
4	16	50	3.1	240	
3	20	31	1.6	460	

Зная, что $d=\lambda/\varphi\approx \lambda/(x/L)$, получим значения d. λ примем равной 550 нм.

3. Установим линзу. Измерим расстояния a и b от линзы до сетки и до экрана соответственно. Получим: a=4 см, b=131 см.

Определим размеры сеток на экране:

N	m	mD, mm	D, mm	$d_{\scriptscriptstyle m J},{\scriptscriptstyle m MM}$
5	14	56	4.0	0.12
4	16	50	3.1	0.09
3	20	31	1.6	0.05

4. Перемещая линзу с помощью микрометрического винта, получим координаты плоскостей саморепродукции:

N=3			N=4		N=5			
z, MM	n	z_n , MM	z, MM	$\mid n \mid$	z_n , MM	z, MM	n	z_n , MM
100	0	0	100	0	0	100	0	0
93.6	1	6.4	71.2	1	28.8	50.2	1	48.8
85.6	2	14.4	43.0	2	57.0			
79.0	3	21.0						
72.6	4	27.4						
65.8	5	34.2						
59.0	6	41.0						
51.8	7	48.2						

Построим графики $z_n = f(N)$:

$$N = 3$$

Отсюда получим:

$$z_n = \frac{2d^2}{\lambda}N \Rightarrow d = \sqrt{\frac{\lambda \cdot z_n}{2 \cdot N}} = \sqrt{\frac{\lambda \cdot (dz_n/dN)}{2}}$$

N	dреп, мм
3	0.04
4	0.09
5	0.12

