

X3-Class HiPERFET™ **Power MOSFET**

IXFA50N20X3 IXFP50N20X3

= 200V50A $30m\Omega$

N-Channel Enhancement Mode Avalanche Rated

G

G = Gate	D	=	Drain
S = Source	Tab	=	Drain

Symbol	Test Conditions	Maximum R	atings
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	200	V
V _{DGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{GS} = 1M\Omega$	200	V
V _{GSS}	Continuous	±20	V
V _{GSM}	Transient	±30	V
I _{D25}	T _C = 25°C	50	A
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	70	Α
I _A	T _C = 25°C	25	А
E _{AS}	$T_{c} = 25^{\circ}C$	400	mJ
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	50	V/ns
$\overline{P_{D}}$	T _C = 25°C	240	W
T _J		-55 +150	°C
T _{JM}		150	°C
T _{stg}		-55 +150	°C
T _L	Maximum Lead Temperature for Soldering	g 300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
F _c	Mounting Force (TO-263) Mounting Torque (TO-220)	1065 / 2.214.6 1.13 / 10	N/lb Nm/lb.in
Weight	TO-263 TO-220	2.5 3.0	g g

Features

- International Standard Packages
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

Symbol (T _J = 25°C,	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max.
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	200		V
V _{GS(th)}	$V_{DS} = V_{GS}$, $I_{D} = 1 \text{mA}$	2.5		4.5 V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100 nA
I _{DSS}	$V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			10 μA 350 μA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$		25	30 mΩ

Symbol	Test Conditions	Characteristic Values		Values
$(T_J = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max
g _{fs}	V _{DS} = 10V, I _D = 0.5 • I _{D25} , Note 1	25	42	S
R_{Gi}	Gate Input Resistance		1.9	Ω
C _{iss}			2100	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		390	pF
C _{rss}			1.5	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related $\int V_{GS} = 0V$		200	pF
$C_{o(tr)}$	Time related $\int_{DS} V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		600	pF
t _{d(on)}	Resistive Switching Times		16	ns
t _r	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		24	ns
t _{d(off)}	$R_{G} = 100$, $V_{DS} = 0.0$ V_{DSS} , $I_{D} = 0.0$ I_{D25}		46	ns
t,	n _G = 1052 (External)		11	ns
Q _{g(on)}			33	nC
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		8	nC
Q _{gd}			10	nC
R _{thJC}				0.52 °C/W
R _{thCS}	TO-220		0.50	°C/W

Source-Drain Diode

Symbol $(T_J = 25^{\circ}C, U)$	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max	
I _s	$V_{GS} = 0V$			50	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			200	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left. egin{array}{c} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight. ight.$	$I_F = 25A$, -di/dt = 100A/ μ s $V_R = 100V$		70 220 6.2		ns nC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

SYM	INCHES		MILLIMETER		
21M	MIN	MAX	MIN	MAX	
Α	.170	.185	4.30	4.70	
A1	.000	.008	0.00	0.20	
A2	.091	.098	2.30	2.50	
Ь	.028	.035	0.70	0.90	
b2	.046	.060	1.18	1.52	
С	.018	.024	0.45	0.60	
C2	.049	.060	1.25	1.52	
D	.340	.370	8.63	9.40	
D1	.300	.327	7.62	8.30	
E	.380	.410	9.65	10.41	
E1	.270	.330	6.86	8.38	
е	.100	BSC	2.54	BSC	
Н	.580	.620	14.73	15.75	
L	.075	.105	1.91	2.67	
L1	.039	.060	1.00	1.52	
L2	_	.070	_	1.77	
L3	.010	BSC	0.254	BSC	

SYM	INC	INCHES		ETERS
2114	MIN	MAX	MIN	MAX
Α	.169	.185	4.30	4.70
A1	.047	.055	1.20	1.40
A2	.079	.106	2.00	2.70
Ф	.024	.039	0.60	1.00
b2	.045	.057	1.15	1.45
O	.014	.026	0.35	0.65
	.587	.626	14.90	15.90
D1	.335	.370	8.50	9.40
(D2)	.500	.531	12.70	13.50
E	.382	.406	9.70	10.30
(E1)	.283	.323	7.20	8.20
ψ	.100 BSC		2.54 BSC	
e1	.200 BSC		5.08 BSC	
H1	.244	.268	6.20	6.80
L	.492	.547	12.50	13.90
L1	.110	.154	2.80	3.90
ØΡ	.134	.150	3. 4 0	3.80
Q	.106	.126	2.70	3.20

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.