Лаб 3

РТ5-61Б Слкуни Герман

Задание: Выберите набор данных (датасет) для решения задачи классификации или регрессии. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков. С использованием метода train_test_split разделите выборку на обучающую и тестовую. Обучите модель ближайших соседей для произвольно заданного гиперпараметра К. Оцените качество модели с помощью подходящих для задачи метрик. Произведите подбор гиперпараметра К с использованием GridSearchCV и RandomizedSearchCV и кросс-валидации, оцените качество оптимальной модели. Используйте не менее двух стратегий кросс-валидации. Сравните метрики качества исходной и оптимальной моделей.

Подключение библиотек

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split, GridSearchCV, Randomiz
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, classification_report, confusior
```

Загрузка датасета

```
In [2]: data = pd.read_csv('Cancer_Data.csv', sep=",")
    data = data.dropna(axis=1)

X = data.drop('diagnosis', axis=1)
y = data['diagnosis']

X.head()
```

\circ			\neg	٦.
U	u٦	CΙ		

id	radius_mean	texture_mean	perimeter_mean	area_mean	smoot
842302	17.99	10.38	122.80	1001.0	
842517	20.57	17.77	132.90	1326.0	

U	042302	17.33	10.50	122.00	1001.0	
1	842517	20.57	17.77	132.90	1326.0	
2	84300903	19.69	21.25	130.00	1203.0	
3	84348301	11.42	20.38	77.58	386.1	
4	84358402	20.29	14.34	135.10	1297.0	

 $5 \text{ rows} \times 31 \text{ columns}$

```
In [9]: print("Уникальные классы:", np.unique(y))
```

Уникальные классы: ['В' 'М']

Разделение на обучающую и тестовую выборки

```
In [4]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, rar
```

Обучение KNN с произвольным К и оценка

```
In [5]: knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)

# Оценка качества модели
print("Точность:", accuracy_score(y_test, y_pred))
print("\nKлассификационный отчёт:\n", classification_report(y_test, y_pred))
```

Точность: 0.695906432748538

Классификационный отчёт:

•	precision	recall	fl-score	support
В М	0.69 0.71	0.93 0.31	0.79 0.43	107 64
accuracy macro avg weighted avg	0.70 0.70	0.62 0.70	0.70 0.61 0.66	171 171 171

Подбор гиперпараметров: GridSearchCV

```
In [6]: param_grid = {'n_neighbors': np.arange(1, 31)}
    cv1 = KFold(n_splits=5, shuffle=True, random_state=42)
    grid_search = GridSearchCV(KNeighborsClassifier(), param_grid, cv=cv1, scori
    grid_search.fit(X_train, y_train)
```

```
print("Лучший параметр K (GridSearchCV):", grid_search.best_params_)
print("Лучшая точность (GridSearchCV):", grid_search.best_score_)
Лучший параметр K (GridSearchCV): {'n neighbors': np.int64(1)}
```

Подбор гиперпараметров: RandomizedSearchCV

```
In [7]: cv2 = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
random_search = RandomizedSearchCV(KNeighborsClassifier(), param_distributic
random_search.fit(X_train, y_train)

print("Лучший параметр K (RandomizedSearchCV):", random_search.best_params_)
print("Лучшая точность (RandomizedSearchCV):", random_search.best_score_)

Лучший параметр K (RandomizedSearchCV): {'n_neighbors': np.int64(1)}
Лучшая точность (RandomizedSearchCV): 0.7990822784810125
```

Финальная модель с оптимальным К

Лучшая точность (GridSearchCV): 0.7814240506329113

```
In [8]: best_k = grid_search.best_params_['n_neighbors']
    final_model = KNeighborsClassifier(n_neighbors=best_k)
    final_model.fit(X_train, y_train)
    final_preds = final_model.predict(X_test)

print("\n=== Ouehka ontumanshou modenu ===")
    print("Touhocts (accuracy):", accuracy_score(y_test, final_preds))
    print("\nKnaccuфukauuohhbu otuët:\n", classification_report(y_test, final_preds))

# Сравнение точности
base_acc = accuracy_score(y_test, y_pred)
final_acc = accuracy_score(y_test, final_preds)

print(f"\nTouhocts модели c K=5: {base_acc:.4f}")
print(f"Touhocts модели c ontumanshым K={best_k}: {final_acc:.4f}")
```

=== Оценка оптимальной модели === Точность (accuracy): 0.8011695906432749

Классификационный отчёт:

	precision	recall	f1-score	support
В	0.81	0.90	0.85	107
М	0.79	0.64	0.71	64
accuracy			0.80	171
macro avg	0.80	0.77	0.78	171
weighted avg	0.80	0.80	0.80	171

```
Точность модели с K=5: 0.6959
Точность модели с оптимальным K=1: 0.8012
```

```
In [ ]:
```

10	- 1	- 1	

This notebook was converted with convert.ploomber.io