T-PMTH-402 — Math. appliquées à l'info. Chapitre 4 — Théorie naïve des ensembles

Jean-Sébastien Lerat Jean-Sebastien.Lerat@heh.be

Haute École en Hainaut

2019-2020

Plan

- Introduction
- 2 Notation
 - Éléments
 - Ensemble
 - Appartenance
- Paradoxe de Russel
- Motions
 - Inclusion
 - Égalité
 - Cardinalité
 - Ensemble des parties

- Opérations
 - Produit cartésien
 - Union
 - Intersection
 - Complémentaire
- 6 Exercices

Introduction

- N les nombres naturels, exemple : 5
- ${\Bbb Z}$ les nombres entiers, exemple : -5
- \mathbb{Q} les nombres rationnels, exemple : $\frac{2}{5}$
- \mathbb{R} les nombres réels, exemple : π
- \mathbb{C} les nombres complexes, exemple : 2 + 5i

Plan

- Introduction
- 2 Notation
 - Éléments
 - Ensemble
 - Appartenance
- Paradoxe de Russel
- 4 Notions
 - Inclusion
 - Égalité
 - Cardinalité
 - Ensemble des parties

- Opérations
 - Produit cartésien
 - Union
 - Intersection
 - Complémentaire
- 6 Exercices

Éléments

Éléments

Un éléments est un objet

Par exemple, 4 (un nombre naturel) est un « objet ».

Par convention, un élément est noté à l'aide d'une lettre minuscule.

Ensemble

Ensemble

Un ensemble est une collection d'éléments

Il existe deux manières de définir un ensemble :

par extension donner explicitement tous les éléments de l'ensemble, par exemple $A = \{2, 3, 7, 11\}$

par compréhension donner une propriété qui définit les éléments, par exemple $B = \{un \text{ nombre entier } n | n \text{ est pair} \}$

La théorie naîve des ensemble est définie informellement à l'aide du langage naturel.

Par convention, un ensemble est noté à l'aide d'une lettre majuscule.

Appartenance

L'appartenance d'un objet a à un ensemble A est notée $a \in A$. L'objet a fait partie de la collection d'objets nommée A.

La non-appartenance d'un objet b à un ensemble A est notée $b \notin A$.

 $a \in A$ se lit « a appartient à A », « a est un élément de A » ou « a est dans A ». $A \ni a$ se lit « A possède a ».

Attention: $a \in A$ ne se lit pas « A contient a » car ceci correspond à l'inclusion.

Plan

- Introduction
- 2 Notation
 - Éléments
 - Ensemble
 - Appartenance
- Paradoxe de Russel
- 4 Notions
 - Inclusion
 - Égalité
 - Cardinalité
 - Ensemble des parties

- Opérations
 - Produit cartésien
 - Union
 - Intersection
 - Complémentaire
- 6 Exercices

Paradoxe de Russel

Paradoxe de Russel

L'ensemble R est l'ensemble des éléments x qui sont des ensembles, tel que x n'appartient pas à lui-même :

$$R = \{x | x \notin x\}$$

En quoi est-ce un paradoxe?

Paradoxe de Russel

Paradoxe de Russel

L'ensemble R est l'ensemble des éléments x qui sont des ensembles, tel que x n'appartient pas à lui-même :

$$R = \{x | x \notin x\}$$

En quoi est-ce un paradoxe?

Il y a deux possibilités :

Soit $R \in R$ ce qui implique par définition de R que $R \notin R$

Soit $R \notin R$ ce qui implique par définition de R que $R \in R$

Dans les deux cas c'est une contradiction!

Paradoxe de Russel

Paradoxe de Russel

L'ensemble R est l'ensemble des éléments x qui sont des ensembles, tel que x n'appartient pas à lui-même :

$$R = \{x | x \notin x\}$$

En quoi est-ce un paradoxe?

Il y a deux possibilités :

Soit $R \in R$ ce qui implique par définition de R que $R \notin R$

Soit $R \notin R$ ce qui implique par définition de R que $R \in R$

Dans les deux cas c'est une contradiction!

Ceci caractérise donc la théorie naïve des ensembles : la compréhension non restreinte.

Plan

- Introduction
- 2 Notation
 - Éléments
 - Ensemble
 - Appartenance
- Paradoxe de Russel
- 4 Notions
 - Inclusion
 - Égalité
 - Cardinalité
 - Ensemble des parties

- Opérations
 - Produit cartésien
 - Union
 - Intersection
 - Complémentaire
- 6 Exercices

Inclusion

Inclusion

Soient deux ensembles A, B. L'ensemble A est inclus à B si et seulement si

$$\forall x, x \in A \Rightarrow x \in B$$

A est alors appelé sous-ensemble de B qui est le super ensemble de A.

L'inclusion de A dans B (inclusion large) est notée $A \subseteq B$. Lorsque A n'est pas inclus à B, la notation utilisée est $A \not\subset B$.

Note : $\forall A, A \subseteq A$

Exemples d'inclusion

$$\begin{array}{cccc} \{1,2\} & \subset & \{1,2,3\} \\ & \mathbb{N} & \subset & \mathbb{Z} \\ & \{\mathbb{N}\} & \not\subset & \{\mathbb{Z}\} \\ & \mathbb{N} & \not\subset & \{\mathbb{N},\mathbb{Z}\} \end{array}$$

Inclusion

Soient deux ensembles A, B. L'ensemble A est inclus à B si et seulement si

$$\forall x, x \in A \Rightarrow x \in B$$

A est alors appelé sous-ensemble de B qui est le super ensemble de A.

L'inclusion de A dans B (inclusion large) est notée $A \subseteq B$.

Lorsque A n'est pas inclus à B, la notation utilisée est $A \not\subset B$.

Note : $\forall A, A \subseteq A$

Note: Lorsque A est inclus à B mais $A \neq B$, on écrit alors $A \subset B$ (inclusion stricte). C'est-à-dire lorsque $\exists x \in B, x \notin A$.

Ensemble vide

Ensemble vide

L'ensemble vide noté \emptyset , est l'unique ensemble ne contenant pas d'élément.

Propriété $1: \forall A, \emptyset \subset A$

Faux par définition de \emptyset $\forall x$. $\Rightarrow x \in A$ Toujours vrai

Égalité

Égalité

Soient deux ensembles A, B. L'ensemble A est égal à B si et seulement si

$$A \subset B$$
 et $B \subset A$

L'égalité de A et B est notée A = B. Lorsque A n'est pas égal à B, la notation utilisée est $A \neq B$.

L'égalité est réciproque, c'est-à-dire que $A = B \iff B = A$.

Exemples d'égalité

$$\begin{array}{rcl} \{1,2,3\} & = & \{3,1,2\} \, {}^{a} \\ \{\mathbb{N}\} & \neq & \{\mathbb{N},\mathbb{Z}\} \end{array}$$

a. La relation d'ordre n'est pas prise en compte ici.

Ensemble vide

Ensemble vide

L'ensemble vide noté \emptyset , est l'unique ensemble ne contenant pas d'élément.

Propriété 2 : Ø est unique.

Soient $V_1 = \{\}$ et $V_2 = \{\}$. Sur base de $\forall A, A \subseteq A$:

$$\left. egin{array}{lll} V_1 &\subseteq & V_2 \ V_2 &\subseteq & V_1 \end{array}
ight\} \Rightarrow V_1 = V_2$$

Cardinalité

Cardinalité

Soit A un ensemble, si A possède exactement n éléments $(n \in \mathbb{N})$, A est un ensemble **fini** de **cardinalité** n notée |A| = n.

Exemples de la cardinalité

$$|1, 2, 3| = 3$$

 $|\emptyset| = 0$
 $|\{\emptyset\}| = 1$

Ensemble vide

Ensemble vide

L'ensemble vide noté \emptyset , est l'unique ensemble ne contenant pas d'élément.

Propriété 3 : $|\emptyset| = 0$

$$|\emptyset| = \sum_{x \in \emptyset} 1$$

Or il n'y a aucune $x \in \emptyset \Rightarrow |\emptyset| = 0$

Ensemble des parties

Ensemble des parties

Soit un ensemble A, l'ensemble des parties de A noté $\mathcal{P}(A)$ ou 2^A , est l'ensemble des sous-ensembles de A:

$$\mathscr{P}(A) = \{X | X \subseteq A\}$$

 $\mathcal{P}(A)$ est de cardinalité $2^{|A|}$

Exemples d'ensemble des parties

Plan

- Introduction
- Notation
 - Éléments
 - Ensemble
 - Appartenance
- Paradoxe de Russel
- 4 Notions
 - Inclusion
 - Égalité
 - Cardinalité
 - Ensemble des parties

- Opérations
 - Produit cartésien
 - Union
 - Intersection
 - Complémentaire
- 6 Exercices

Produit cartésien

Produit cartésien

Soient A, B deux ensembles. Le **produit cartésien** de A et B est l'ensemble des paires ordonnées de la forme (a,b) où $a \in A$, $b \in B$, noté $A \times B$.

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

Exemple de produit cartésien

Soient
$$A = \{1, 2, 3\}$$
 et $B = \{a, b\}$
 $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$
 $B \times A = \{(a, 1), (b, 1), (a, 2), (b, 2), (a, 3), (b, 3)\}$

$$A \times B \neq B \times A$$

$$\underbrace{A \times \ldots \times A}_{n \text{ fois}} = \prod_{i=1}^{n} A = A^{n}$$

Ensemble vide

Ensemble vide

L'ensemble vide noté \emptyset , est l'unique ensemble ne contenant pas d'élément.

Propriété 4 : $\emptyset \times A = \emptyset = A \times \emptyset$.

$$\emptyset \times A = \emptyset : \{a_1, \dots, a_n\} \times \{\} = \{(a_1, \dots, (a_n,))\} = \{\} = \emptyset$$

$$\Leftrightarrow A \times \emptyset$$

Union

Union

Soient A, B deux ensembles. L'**union** de A et B est l'ensemble des éléments appartenant à A ou à B, noté $A \cup B$.

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$$

Exemple d'union

Soient
$$A = \{1, 2, 3\}$$
 et $B = \{a, b\}$
 $A \cup B \ \{x \mid x \in A \text{ ou } x \in B\} = \{x \mid x \in \{1, 2, 3\} \text{ ou } x \in \{a, b\}\}$
 $= \{1, 2, 3, a, b\}$

$$A \cup B = B \cup A$$

$$\underbrace{A_1 \cup \ldots \cup A_n}_{n \text{ ensembles}} = \bigcup_{i=1}^n A_i$$

Ensemble vide

Ensemble vide

L'ensemble vide noté \emptyset , est l'unique ensemble ne contenant pas d'élément.

Propriété 5 : $\emptyset \cup A = A$.

$$\emptyset \cup A = \{x \mid x \in \{\} \text{ ou } x \in \{a_1, \dots, a_n\}\} = \{a_1, \dots, a_n\} = A$$

Intersection

Intersection

Soient A, B deux ensembles. L'**intersection** de A et B est l'ensemble des éléments appartenant à A et à B, noté $A \cap B$.

$$A \cap B = \{x \mid x \in A \text{ et } x \in B\}$$

Exemple d'intersection

Soient
$$A = \{1, 2, 3\}$$
 et $B = \{a, b\}$
 $A \cap B \ \{x \mid x \in A \text{ et } x \in B\} = \{x \mid x \in \{1, 2, 3\} \text{ et } x \in \{a, b\}\}$
 $= \{\} = \emptyset$

$$A \cap B = B \cap A$$

$$\underbrace{A_1 \cap \ldots \cap A_n}_{n \text{ ensembles}} = \bigcap_{i=1}^n A_i$$

Ensemble vide

Ensemble vide

L'ensemble vide noté ∅, est l'unique ensemble ne contenant pas d'élément.

Propriété 6 : $\emptyset \cap A = \emptyset$.

$$\emptyset \cap A = \{x \mid x \in \{\} \text{ et } x \in \{a_1, \dots, a_n\}\} = \{\} = \emptyset$$

Complémentaire

Complémentaire

Soient A un ensemble qui est un sous-ensemble de l'univers U, ensemble de tous les éléments. Le **complémentaire** de A est l'ensemble des éléments du U n'appartenant pas à A, noté \bar{A} :

$$\bar{A} = \{x \mid x \in U, x \notin A\}$$

Exemple de complémentaire

Soient
$$U = [1, 10]$$
 et $A = \{1, 2, 3\}$. $\bar{A} = \{x \mid x \in U, \notin A\} = \{4, 5, 6, 7, 8, 9, 10\}$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Plan

- Introduction
- Notation
 - Éléments
 - Ensemble
 - Appartenance
- Paradoxe de Russel
- Motions
 - Inclusion
 - Égalité
 - Cardinalité
 - Ensemble des parties

- Opérations
 - Produit cartésien
 - Union
 - Intersection
 - Complémentaire
- 6 Exercices

Exercices – Vrai ou Faux

- $\mathbf{0} \ 1 \in \mathbb{N}$
- $2 1 \in 2^{\mathbb{N}}$
- $\emptyset \in \emptyset$

- 0 $1 \subseteq \mathbb{N}$
- $1 \subseteq 2^{\mathbb{N}}$

- $\emptyset \in \mathbb{N}$
- $\emptyset \in 2^{\mathbb{N}}$
- $A \in 2^A$
- $\mathbf{0} \quad \emptyset \subset \mathbb{N}$
- $A \subset 2^A$

Exercices – Vrai ou Faux

- $\ \, \mathbf{1} \in \mathbb{N} \,\, \mathsf{Vrai} \,\,$
- $\mathbf{2} \quad 1 \in 2^{\mathbb{N}} \; \mathsf{Faux}$
- $\emptyset \ \emptyset \in \emptyset \ \mathsf{Faux}$
- $\{1\} \in \mathbb{N}$ Faux
- $\emptyset \ \emptyset \subseteq \emptyset \ Vrai$
- \bigcirc 1 \subseteq \mathbb{N} Faux
- $\mathbf{0}$ $1 \subseteq 2^{\mathbb{N}}$ Faux

- \bigcirc $\{1\} \subset \mathbb{N}$ Vrai
- $\emptyset \subset \{\emptyset\}$ Vrai
- ∅ ∅ ∈ ℕ Faux
- $\emptyset \in 2^{\mathbb{N}} \text{ Vrai}$
- $A \in 2^A \text{ Vrai}$
- $\emptyset \subset \mathbb{N}$ Vrai
- $A \subset 2^A$ Faux

Exercices - Extension d'ensembles

Lister les éléments des ensembles :

Exercices - Extension d'ensembles

Lister les éléments des ensembles :

③
$$\{x \in \mathbb{Q} \mid x^2 + 2 = 0\}$$
 ∅

Exercices – Égalité d'ensembles

Établissez les égalités entre :

$$\{1,2,3\}$$
 et $\{1,2,2,3,1\}$

$$\{x \in \mathbb{R} \mid x^2 - 2x + 1 = 0\} \text{ et } \{1\}$$

③ { $n \in \mathbb{N} \mid n \text{ est premier}$ } et 2ℕ

Exercices – Égalité d'ensembles

Établissez les égalités entre :

- {1,2,3} et {1,2,2,3,1} égaux
- **2** $\{x \in \mathbb{R} \mid x^2 2x + 1 = 0\}$ et $\{1\}$ égaux
- **③** $\{n \in \mathbb{N} \mid n \text{ est premier}\}$ et $2\mathbb{N}$ inégaux

Exercices – Relation d'inclusion

Établissez la relation d'inclusion entre :

- $2^A \cap 2^B \text{ et } 2^{A \cap B}$

Exercices - Relation d'inclusion

Établissez la relation d'inclusion entre :

- 2 $2^A \cap 2^B$ et $2^{A \cap B}$ $2^A \cap 2^B \subseteq 2^{A \cap B}$ et $2^A \cap 2^B \supseteq 2^{A \cap B}$

Exercices - Produit cartésien

Soient
$$A = \{1, 2\}$$
, $B = \{3, 4, 5\}$ et $C = \{7\}$, calculez :

- \bullet $A \times B$
- $2^{A \times C}$

 $2^A \times C$

Exercices - Produit cartésien

Soient $A = \{1, 2\}$, $B = \{3, 4, 5\}$ et $C = \{7\}$, calculez :

- $2^{A \times C} A \times C = \{(1,7),(2,7)\}$ $2^{A \times C} = \{\emptyset,\{(1,7)\},\{(2,7)\},\{(1,7),(2,7)\}\}$
- **3** $2^A \times C$ $2^A = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$ $2^A \times C = \{(\emptyset, 7), (\{1\}, 7), (\{2\}, 7), (\{1, 2\}, 7)\}$

Exercices – Équivalence

Prouvez les équivalences suivantes :

Exercices – Équivalence

Prouvez les équivalences suivantes :

●
$$A \subset B \Leftrightarrow A \cap \bar{B} = \emptyset$$

⇒ $(\forall x \in A \Rightarrow x \in B)$ ⇒ $((x \in A \text{ et } x \in \bar{B}) = \emptyset)$

or par définition $(x \in A \Rightarrow x \in B)$

or par définition $(x \in A \Rightarrow x \in B)$
 $(x \in A \text{ et } x \notin B)$

or par définition $(x \in A \Rightarrow x \in B)$
 $(x \in A \text{ et } x \notin B)$

or par définition de $(x \in A \text{ et } x \notin A)$

Or par définition de $(x \in A \text{ et } x \notin A)$

de manière similaire

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{ et } x \notin B)$$

$$(x \in A \text{$$