Introduction to Statistical Inference (QTM 100 Lab)

Lecture 1: Introduction to Data

Justin Eloriaga — Emory University

Fall 2024

Gameplan

Getting Started with Data

Working with Data

Plotting Data

Getting Started with Data

Dr. Arbuthnot's Baptism Records

- Dr. John Arbuthnot, 18th century all arounder.
- Gathered a dataset with baptism records for children born in London every year from 1629 to 1710

Downloading the Dataset

- You will need to download the dataset arbuthnot.csv from Canvas and load it
- To import this dataset, you need to use one of the methods discussed (point and click or working directory)

```
setwd("YourFilePath")
arbuthnot <- read.csv("arbuthnot.csv", header = TRUE)</pre>
```

 The variable's name (data frame) can be anything. It is not necessary to be arbuthnot.

Looking at the data

head(), tail(), and dim()

- We use the head() function to display the first six entries.
- We use the tail() function to display the last six entries
- We use the dim() function to display the dimensions of the data. In this case, it has 82 rows and 3 columns.

The summary() function

 We use the summary() function to get a quick overview of the dataset.
 Particularly, this gives us a notion of range!

Working with Data

Selecting a column

- We use the \$ to select a specific column from a data frame. It allows us to access columns from a data frame.
- arbuthnot\$boys and arbuthnot\$girls selects the column for boys and girls respectively
- What is the first number? A: The births in 1629 (the first year in the dataset)
- $5218 + 4683 = 9901 \rightarrow \text{total births in}$ 1629!

Working with Proportions and Variable Assignment

- What is the proportion of boys to the total number of births in 1629? A: 0.5270175
- We can go further! We can create a new column which is the proportion of boys to the total of births for each year. Use the command below!
- Keep in mind the order of operations!!

arbuthnot\$propBoys <- arbuthnot\$boys /(arbuthnot\$boys + arbuthnot\$girls)

Making Comparisons

 We can compare two variables using some logical operators

9

Plotting Data

The plot() function

- What is the proportion of male baptisms, and does it vary by year?
- We can answer this question using a scatterplot!
- By default R, using the plot command, will generate a scatter plot plot(x = arbuthnot\$year, y = arbuthnot\$propBoys
- Do you notice anything?

Connecting with lines

- If we modify the command to plot(x = arbuthnot\$year, y = arbuthnot\$propBoys, type ="1"), we can connect the points with lines!
- When do you know whether you can add another argument like type? You can use the ?plot command (or the question mark to be specific!)

Changing colors

 We can modify the code to change many things, one of which is the color! There are many ways to do that though... plot(x = arbuthnot\$year, y = arbuthnot\$propBoys, type
 ="1",col ="2")

```
You can even be more specific
plot(x = arbuthnot$year, y =
arbuthnot$propBoys, type
="1",col ="plum")
```