Assignment 2

1.1 Are either $\lceil \lg n \rceil!$ or $\lceil \lg \lg n \rceil!$ polynomially bounded?

Polynomially bounded means $f_n = O(n^k)$ for some constant k (e.g., whether $f_n \le c \cdot n^k$ for constants c and k as n approaches ∞). For the first function $\lceil \lg n \rceil!$, without loss of generality, assume $n = 2^a$ (where $a \in \mathbb{N}$).

$$\lceil \lg n \rceil! \le c \cdot n^k$$
$$\lg(2^a)! \le c \cdot (2^a)^k$$
$$a! \le c \cdot 2^{ak}$$

The statement $a! \le c \cdot 2^{ak}$ is a contradiction, as the factorial function a! is not exponentially bounded. Therefore, $\lceil \lg n \rceil !$ is not polynomially bounded (via proof by contradiction). For the second function $\lceil \lg \lg n \rceil !$, without loss of generality, assume $n = 2^{2^a}$ (where $a \in \mathbb{N}$).

$$\begin{split} \lceil \lg \lg n \rceil! &\leq c \cdot n^k \\ \lg \lg \left(2^{2^a} \right)! &\leq c \cdot \left(2^{2^a} \right)^k \\ a! &\leq c \cdot 2^{k \cdot 2^a} \\ 1 \cdot 2 \cdot 3 \cdots a &\leq c \cdot \left(2^{2k} \cdot 2^{4k} \cdot 2^{8k} \cdots 2^{2^a \cdot k} \right) \end{split}$$

The statement $1 \cdot 2 \cdot 3 \cdots a \leq c \cdot (2^{2k} \cdot 2^{4k} \cdot 2^{8k} \cdots 2^{2^{a_k}})$ is obviously true. Therefore $\lceil \lg \lg n \rceil!$ is polynomially bounded (via direct proof).

- 1.2 Use induction to prove $F_i = \frac{\phi^i \hat{\phi}^i}{\sqrt{5}}$; where $F_i = F_{i-2} + F_{i-1}$, and ϕ is the golden ratio $\frac{1+\sqrt{5}}{2}$.
- 1.3 Show that $k \lg k = \Theta(n)$ implies $k = \Theta(\frac{n}{n \ln n})$.
- 1.4 Are either 2^{n+1} or 2^{2n} big-O of 2^{n} ?
- 1.5 For each pair of functions (A,B), indicate whether A is O,o,Ω,ω , or Θ of B. Assume $k\geq 1,\ \epsilon>0,\ c>1$ are constants.

	\boldsymbol{A}	B	0	o	Ω	ω	Θ
a.	$\lg^k n$	n^{ϵ}	yes	yes			
b.	n^k	c^n	yes	yes			
c.	\sqrt{n}	$n^{\sin n}$					
d.	2^n	$2^{n/2}$			yes	yes	
e.	$n^{\lg c}$	$c^{\lg n}$	yes		yes		yes
f.	$\lg(n!)$	$\lg(n^n)$	yes		yes		yes

1.6 Order the following functions such that $f_1 = \Omega(f_2), f_2 = \Omega(f_3), ..., f_{29} = \Omega(f_{30})$, and partition them into equivalence classes such that each function is big- Θ of each other.

$$\begin{split} f_0 0 &= 2^{2^{n+1}} &= \Omega \left(2^{2^n} \right), \\ f_0 0 &= 2^{2^n} &= \Omega((n+1)!), \\ f_0 0 &= (n+1)! &= \Omega(n!), \\ f_0 0 &= n! &= \Omega \left(e^n \right), \\ f_0 0 &= e^n &= \Omega \left(n \cdot 2^n \right), \\ f_0 0 &= n \cdot 2^n &= \Omega \left(2^n \right), \\ f_0 0 &= 2^n &= \Omega \left(\frac{3}{2} \right)^n, \\ f_0 0 &= 2^n &= \Omega \left(\frac{3}{2} \right)^n, \\ f_0 0 &= \left(\frac{3}{2} \right)^n &= \Omega \left(\log n \right)^{\log n}, \\ f_0 0 &= \left(\log n \right)^{\log n} &= \Omega \left(\log n \right)^{\log n}, \\ f_0 0 &= (\log n)^{\log n} &= \Omega \left(\log n \right)^{\log n}, \\ f_0 0 &= (\log n)! &= \Omega \left(\log n \right)^{\log n}, \\ f_0 0 &= n^2 &= \Omega \left(n^2 \right), \\ f_0 0 &= n^2 &= \Omega \left(n^2 \right), \\ f_0 0 &= \log n^2 &= \Omega \left(n^2 \right), \\ f_0 0 &= \log n^2, \\ f_0 0 &= \log$$