**Europäisches Patentamt** 

**European Patent Office** 

Office européen des brevets



(11) EP 0 864 838 A2

(12)

# **EUROPÄISCHE PATENTANMELDUNG**

(43) Veröffentlichungstag: 16.09.1998 Patentblatt 1998/38

(51) Int. Cl.<sup>6</sup>: **F28F 9/00**, F28F 9/02

(21) Anmeldenummer: 98104133.8

(22) Anmeldetag: 09.03.1998

(84) Benannte Vertragsstaaten:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten: AL LT LV MK RO SI

(30) Priorität: 11.03.1997 DE 19709909 27.05.1997 DE 19722098

(71) Anmelder: Behr GmbH & Co. 70469 Stuttgart (DE)

(72) Erfinder: Ghiani, Franco 74321 Bietigheim-Bissingen (DE)

(74) Vertreter:

Wilhelm & Dauster
Patentanwälte
European Patent Attorneys
Hospitalstrasse 8

70174 Stuttgart (DE)

## (54) Wärmeübertrager für ein Kraftfahrzeug

(57) Ein bekannter Wärmeübertrager weist einen aus Flachrohren und Wellrippen zusammengesetzten Rippen/Rohrblock auf, wobei die Rohrenden der Flachrohre aufgeweitet sind und auf diese aufgeweiteten Rohrenden Sammelkästen aufgesetzt sind.

Erfindungsgemäß ist jeder Sammelkasten zu seinen - auf die Längsachse (L) bezogen - Seiten-

bereichen hin offen gestaltet, und die Seitenteile weisen an ihren gegenüberliegenden Stirnenden zu den Sammelkästen Abschlußabschnitte auf, die die offenen Seitenbereiche der Sammelkästen verschließen.

Einsatz für Wasserkühler von Kraftfahrzeugen.



### Beschreibung

Die Erfindung betrifft einen Wärmeübertrager für ein Kraftfahrzeug mit einem aus Flachrohren und Wellrippen zusammengesetzten Rippen/Rohrblock, wobei alle Rohrenden der Flachrohre für ein flächiges und bündiges Aneinanderliegen aufgeweitet sind, mit zwei Sammelkästen, die jeweils an die gegenüberliegenden Stimseiten des Rippen/Rohrblockes auf die Rohrenden aufgesetzt sind, wobei die Sammelkästen die Rohrenden bündig abschließend übergreifen, sowie mit zwei Seitenteilen, die sich wenigstens über die Länge des Rippen/Rohrblockes erstrecken und an gegenüberliegenden Seiten an den Rippen/Rohrblock anschließen.

Ein solcher Wärmeübertrager ist in der nicht vorveröffentlichten DE 195 43 986.4 beschrieben. Der Wärmeübertrager weist einen Rippen/Rohrblock auf. der aus einer Vielzahl von Flachrohren sowie zwischen diesen angeordneten Wellrippen zusammengesetzt ist. Die Rohrenden der Flachrohre sind auf beiden Stirnseiten des Rippen/Rohrblockes auf einen rechteckigen freien Querschnitt derart aufgeweitet, daß die jeweils gebildeten Langseiten der Rohrenden benachbarter Flachrohre flächig und fluchtend aneinanderliegen, so daß sich auf beiden Stirnseiten des Rippen/Rohrblokkes jeweils ein Rohrendenpaket ergibt. Dieses Rohrendenpaket wird auf beiden Stirnseiten von jeweils einem Sammelkasten übergriffen, der derart dimensioniert ist, daß er bündig abschließend mit den Schmalseiten der Rohrenden aufsetzbar ist. An den Seiten des Rippen/Rohrblockes sind Seitenteile angeordnet, die entweder außen oder innen an die geschlossenen Seitenbereiche der Sammelkästen anfügbar sind.

Aufgabe der Erfindung ist es, einen Wärmeübertrager der eingangs genannten Art zu schaffen, der einen vereinfachten Aufbau und demzufolge eine vereinfachte Herstellung aufweist.

Diese Aufgabe wird dadurch gelöst, daß jeder Sammelkasten zu seinen - auf die Längsachse bezogen - Seitenbereichen hin offen gestaltet ist, und daß die Seitenteile an ihren gegenüberliegenden Stirnenden zu den Sammelkästen Abschlußabschnitte aufweisen, die die offenen Seitenbereiche der Sammelkästen verschließen. Durch die erfindungsgemäße Lösung ist es möglich, die Sammelkästen erheblich vereinfacht zu gestalten, da sie keine geschlossenen Seitenbereiche mehr aufweisen müssen. Das Verschließen der Seitenbereiche übernehmen vielmehr die Abschlußabschnitte der Seitenteile. Die erfindungsgemäße Lösung schafft die Voraussetzungen für einen maschinellen Zusammenbau des Wärmeübertragers, wodurch eine erheblich kostengünstigere Herstellung erzielt wird. Auch durch den einfachen Aufbau der Sammelkästen mit offenen Stirnbereichen wird der Herstellungsaufwand für den Wärmeübertrager reduziert. Durch das Anfügen der Seitenteile an den Rippen/Rohrblock wird in einfacher Weise auch das funktionsgerechte Verschließen der Seitenbereiche der Sammelkästen erzielt. Dadurch

ist eine einfache Positionierung und Ausrichtung der einzelnen Bauteile des Wärmeübertragers möglich. Dabei kann entweder zuerst das Aufsetzen der Sammelkästen auf den Rippen/Rohrblock und anschließend das Ansetzen der Seitenteile oder aber zuerst das Anfügen der Seitenteile und anschließend das Aufsetzen der Sammelkästen auf die vorgefügte Einheit aus Seitenteilen und Rippen/Rohrblock erfolgen.

2

In Ausgestaltung der Erfindung weist jeder offene Seitenbereich der Sammelkästen eine wenigstens über eine bestimmte axiale Länge - auf eine Längsachse jedes Sammelkastens bezogen - identische Innenkontur auf, und jeder Abschlußabschnitt der Seitenteile ist mit einer Abschlußkontur versehen, die derart an die Innenkontur des zugeordneten Seitenbereiches angepaßt ist, daß die Abschlußabschnitte in die Seitenbereiche bündig einfügbar sind. Diese Ausgestaltung ist besonders vorteilhaft, wenn die Sammelkästen wie der Rippen/Rohrblock und die Seitenteile ebenfalls aus Metall hergestellt sind und in einem gemeinsamen Lötvorgang mit dem Rippen/Rohrblock und den Seitenteiverlötet werden. Vorzugsweise Sammelkästen, die Seitenteile und der Rippen/Rohrblock wenigstens in ihren aneinanderzufügenden Bereichen lotplattiert. Die Sammelkästen, die Seitenteile und der Rippen/Rohrblock werden bereits vor dem eigentlichen Lötvorgang zusammengefügt, wobei die Seitenteile mit Hilfe von Spannbändern oder anderen Spanneinrichtungen an den Seiten des Rippen/Rohrblockes gehalten sind. In dieser zusammengefügten, jedoch noch nicht verlöteten Baueinheit verschließen die Abschlußabschnitte der Seitenteile bereits die Seitenbereiche der Sammelkästen. Dadurch, daß die Innenkontur der Sammelkästen über eine bestimmte axiale Länge identisch gestaltet ist, können sich die Seitenteile und damit auch die Abschlußabschnitte der Seitenteile während des Lötprozesses noch um einen bestimmten Betrag axial zur Mitte des Rippen/Rohrblockes hin bewegen, ohne daß der bündige Abschluß im Bereich der Sammelkästen verloren geht. Dies ist besonders vorteilhaft, da während des Lötprozesses durch den Fluß der Lotschichten eine Setzbewegung des Rippen/Rohrblockes und der Seitenteile achsparallel zu den Längsachsen der Sammelkästen zur Mitte des Rippen/Rohrblockes hin erfolgt, wobei durch eine geeignete Spanneinrichtung, insbesondere durch die Spannbänder, eine axiale Nachführung der Seitenteile erfolgt. Somit ist eine äußerst maßgenaue und funktionssichere Herstellung des Wärmeübertragers erzielt. Zusätzlich wird trotz einfacher Herstellung eine gute Dichtheit der Lötverbindungen gewährleistet.

In weiterer Ausgestaltung der Erfindung sind den Seitenbereichen jedes Sammelkastens Sicherungselemente zur axialen Stützung - auf die Längsachse jedes Sammelkastens bezogen - des eingefügten Abschlußabschnittes jedes Seitenteiles zugeordnet. Diese Sicherungselemente sind insbesondere vorteilhaft zum Zusammenhalten der einzelnen Bauteile der Wärme-

40

übertragerbaueinheit vor einer festen Verbindung durch einen entsprechenden Lötprozeß. Die Sicherungelemente dienen somit dazu, einen Zusammenhalt der Baueinheit aus den Sammelkästen, dem Rippen/Rohrblock und den Seitenteilen in einem Vormontagestadium und damit insbesondere vor dem eigentlichen Lötvorgang zu erzielen.

In weiterer Ausgestaltung der Erfindung sind als Sicherungselemente einstückig an den Seitenbereichen jedes Sammelkastens angeformte Stützlaschen vorgesehen, die durch eine Deformationskraft aus einer mit der Innenkontur des Seitenbereiches fluchtenden Freigabeposition in eine den jeweiligen Abschlußabschnitt axial hintergreifende Sicherungsposition überführbar sind. Dies ist eine besonders einfache und funktionssichere Ausgestaltung, die durch die Anformung der Stützlaschen am Sammelkasten ohne zusätzliche Bauteile auskommt.

In weiterer Ausgestaltung der Erfindung sind die Abschlußabschnitte der Seitenteile auf Höhe der Sicherungselemente mit korrespondierenden Führungsteilen versehen, wobei die Sicherungselemente und die Führungsteile in der Sicherungsposition ineinandergreifen. Die Sicherungselemente und die Führungsteile sind derart aufeinander abgestimmt, daß zusätzlich zu einer axialen Sicherung der Seitenteile an den Sammelkästen die Sammelkästen selbst gegen ein Lösen in Längsrichtung des Rippen/Rohrblockes und damit in Längsrichtung der Flachrohre gesichert sind, wodurch sich eine maßgerechte Positionierung aller Bauteile des Wärmeübertragers zueinander ergibt.

In weiterer Ausgestaltung der Erfindung sind die Seitenteile aus Seitenprofilen sowie starr mit diesen verbundenen Abschlußprofilen zusammengesetzt, wobei die Abschlußprofile die Abschlußabschnitte bilden und in Verlängerung der Stirnenden der Seitenprofile an diese angesetzt sind. Dadurch ist es möglich, die Seitenprofile als einfache Längsprofile in einem Strangpreß- oder einem Biegeverfahren herzustellen, wodurch der Herstellungsaufwand für die Seitenteile reduzierbar ist.

Weitere Vorteile und Merkmale der Erfindung ergeben sich aus den Unteransprüchen sowie aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung, das anhand der Zeichnungen dargestellt ist.

- Fig. 1 zeigt eine Ausführungsform eines erfindungsgemäßen Wärmeübertragers im Bereich seiner gegenüberliegenden Sammelkästen,
- Fig. 2 eine Draufsicht auf den Wärmeübertrager nach Fig. 1 in Richtung des Pfeiles II in Fig. 1.
- Fig. 3 eine Ansicht eines Seitenteiles des Wärmeübertragers nach den Fig. 1 und 2 in Pfeil-

richtung III nach Fig. 1,

- Fig. 4 eine weitere Ansicht des Seitenteiles nach Fig. 3 in Richtung des Pfeiles IV in Fig. 3,
- Fig. 5 eine Draufsicht auf einen Seitenbereich eines Sammelkastens des Wärmeübertragers nach Fig. 1,
- Fig. 6 eine Ansicht des Seitenbereiches in Richtung des Pfeiles VI in Fig. 5, und
  - Fig. 7 eine Ansicht des Seitenbereiches nach Fig. 6 in Richtung des Pfeiles VII in Fig. 6, wobei Stützlaschen in ihre Sicherungsposition umgebogen sind.

Ein Wärmeübertrager nach den Fig. 1 bis 7, der beim dargestellten Ausführungsbeispiel als Wasserkühler für ein Kraftfahrzeug ausgeführt ist, weist gemäß Fig. 1 einen als Sammelkasten dienenden oberen Wasserkasten 1 sowie einen ebenfalls als Sammelkasten dienenden unteren Wasserkasten 2 auf. Zwischen den beiden Wasserkästen 1, 2 erstreckt sich ein Rippen/Rohrblock 3, der aus einer Vielzahl von parallel zueinander verlaufenden Flachrohren 5 sowie zwischen diesen angeordneten Wellrippen 4 zusammengesetzt ist. Sowohl die Wasserkästen 1, 2 als auch der Rippen/Rohrblock sind aus lotplattiertem Aluminiumblech hergestellt.

Im Bereich der Wasserkästen 1, 2 sind alle Rohrenden der Flachrohre 5 derart aufgeweitet, daß sich identische, rechteckige freie Querschnitte ergeben, wobei jeweils die Langseiten benachbarter Rohrenden flächig aneinanderliegen und die Schmalseiten aller Rohrenden 6 auf jeweils einer Stirnseite des Rippen/Rohrblokkes 3 auf gegenüberliegenden Seiten miteinander fluchten. Der Rippen/Rohrblock 3 einschließlich der Rohrenden 6 ist entsprechend der nicht vorveröffentlichten DE 195 43 986.4 gestaltet.

Die beiden Wasserkästen 1, 2 sind jeweils als einfache. U-artige Profile gestaltet (Fig. 7), wobei sie sowohl zu den Rohrenden 6 des Rippen/Rohrblockes 3 hin als auch zu ihren axialen Stirnseiten hin - auf eine Längsachse L jedes Wasserkastens 1, 2 bezogen offen gestaltet sind. Die offenen Stirnseiten jedes Wasserkastens 1, 2 bilden Seitenbereiche 10, die durch als Abschlußabschnitte dienende Abschlußprofile 9 von Seitenteilen 7 verschlossen sind. Die Seitenteile 7 sowie ihre Einfügung in die Seitenbereiche 10 der Wasserkästen 1 und 2 werden nachfolgend näher beschrieben

Der obere Wasserkasten 1 ist mit einem Eintrittsstutzen 11 sowie einem - auf die Längsachse L bezogen - axial versetzten Austrittsstutzen 12 versehen, die seitlich an entsprechende Öffnungen des Wasserkastens 1 dicht angefügt sind. Um eine Trennung zwischen Eintritts- und Austrittsbereich des

Wasserkastens 1 zu erhalten, ist in einem Trennbereich 19 eine nicht näher bezeichnete Trennwand im Inneren des Wasserkastens 1 vorgesehen. Wie aus Fig. 7 erkennbar ist, ist der Trennbereich 19 durch bogenartige, rippenförmige Einprägungen gebildet, an denen sich eine Trennwand im Inneren des Wasserkastens 1 abstützen kann. Auch der untere Wasserkasten 2 ist mit einem Trennbereich 20 versehen, der analoge rippenförmige Einprägungen aufweist, die jedoch beim dargestellten Ausführungsbeispiel für den Wasserkasten 2 keine nähere Funktion aufweisen.

Wie insbesondere aus Fig. 7 erkennbar ist, weisen die Seitenbereiche 10 jedes Wasserkastens 1, 2 von ihr em Stirnrand ausgehend bis zur Mitte jedes Wasserkastens 1 hin - in axialer Richtung der Längsachse L gesehen - eine gleichbleibende Innenkontur auf, wobei der eine Schenkel des U-artigen Profiles jedes Seitenbereiches 10 mit einer größeren Krümmung an eine Kopfseite des Profils anschließt als der andere Schenkel. Die beiden Abschlußabschnitte 9 jedes Seitenteiles 7 weisen eine als Abschlußkontur dienende Außenkontur auf, die exakt an die Innenkontur des zugehörigen Seitenbereiches 10 jedes Wasserkastens 1, 2 angepaßt ist. Jeder Abschlußabschnitt 9 ist als zungenartiges Blechteil aus Aluminium gestaltet, das symmetrisch zu der Aufweitung der Rohrenden abgewinkelt ist (Fig. 1). Am Außenrand jedes Abschlußabschnittes 9 ist ein umlaufender Anlageflansch 17 vorgesehen, der rechtwinklig von dem Abschlußabschnitt 9 abragt und die an die Innenkontur des Seitenbereiches 10 jedes Wasserkastens 1, 2 angepaßte Abschlußkontur 12 jedes Abschlußabschnittes 9 definiert. Der Anlageflansch 17 dient außerdem zur Versteifung des Abschlußabschnittes 9. Wie aus Fig. 1 erkennbar ist, sind die Abschlußabschnitte 9 an den beiden Wasserkästen 1, 2 derart positioniert, daß sie die äußere Wellrippe 4 auf jeder Seite des Rippen/Rohrblockes 3 begrenzen und an dem jeweiligen Rohrende 6 des korrespondierenden äußeren Flachrohres 5 anliegen. Von dem jeweiligen Rohrende 6 aus verläuft der plattenartige Boden jedes Abschlußabschnittes 9 in paralleler Verlängerung der Flachrohre 5 rechtwinklig zur Längsachse L jedes Wasserkastens 1 bis zur Kopfseite des Seitenbereiches 10 jedes Wasserkastens 1. Der Anlageflansch 17 ragt ieweils nach außen bis zum Stirnrand des jeweiligen Seitenbereiches 10 ab und schließt mit seinem Stirnrand mit dem Stirnrand des jeweiligen Seitenbereiches 10 ab. Die Außenseite des Anlageflansches 17 liegt umlaufend flächig an der Innenkontur des Seitenbereiches 10 jedes Wasserkastens 1 an.

Jedes Seitenteil 7 ist aus einem U-förmigen Seitenprofil 8 sowie den in Verlängerung des Seitenprofiles 8 an dieses angesetzten Abschlußabschnitten 9 zusammengesetzt. Die Abschlußabschnitte 9 sind paßgenau in die gegenüberliegenden Stirnseiten des U-förmigen Seitenprofiles 8 eingesetzt und mittels einer Nietverbindung 13 sowie mit Hilfe von zwei Lötpunkten 14 mit dem Seitenprofil 8 verbunden. In den Seitenprofilen 8 sind im Anschluß an die Abschlußabschnitte 9 jeweils zwei einander gegenüberliegende Ausstanzungen 15 vorgesehen, die zur Festlegung von Befestigungselementen zur Halterung des Wärmeübertragers im Kraftfahrzeug dienen.

Um die Wasserkästen 1, 2 und die Seitenteile 7 in ihrer Position relativ zueinander sowie in ihrer gemeinsamen Position relativ zu dem Rippen/Rohrblock 3 vor einer Verlötung der gesamten Einheit zu sichern, sind an den Stirnrändern jedes Seitenbereiches 10 auf gegenüberliegenden Seiten und auf gleicher Höhe zwei Stützlaschen 18 ausgestanzt, die mit den Seitenwandungen jedes Wasserkastens 1 und damit auch mit der Innenkontur des zugeordneten Seitenbereiches 10 fluchten. Auf gleicher Höhe weist jeder Aufnahmeabschnitt 9 zwei in ihren Dimensionen an die Stützlaschen 18 angepaßte Aufnahmenuten 16 auf, die auf gleicher Höhe auf zwei gegenüberliegenden Seiten in dem Anlageflansch 17 ausgestanzt sind (insbesondere Fig. 4).

Zur Montage des Wärmeübertragers werden die Wasserkästen 1, 2 auf die jeweiligen Rohrenden 6 in Längsrichtung des Rippen/Rohrblockes 3 und damit in Längsrichtung der Flachrohre 5 aufgeschoben und die Seitenteile 7 von gegenüberliegenden Seiten her an den Rippen/Rohrblock 3 angesetzt. Dabei werden die Abschlußabschnitte 9 der Seitenteile 7 axial - auf die Längsachse L jedes Wasserkastens 1, 2 bezogen - in die offenen Seitenbereiche 10 der Wasserkästen 1, 2 eingeschoben, bis die Stirnränder der Anlageflansche 17 und der Seitenbereiche 10 bündig miteinander abschließen. Nun werden die Stützlaschen 18 um die bodenseitigen Ränder der zugeordneten Aufnahmenuten 16 herum nach innen gedrückt, wodurch sie den Anlageflansch 17 des jeweiligen Abschlußabschnittes 9 hintergreifen und umkrallen. Da die Stützlaschen 18 paßgenau in die Aufnahmenuten 16 eingreifen, stellen die Stützlaschen 16 Sicherungskrallen dar, die zum einen die Abschlußabschnitte 9 der Seitenteile 7 - auf die Längsachse L bezogen - axial zur Mitte jedes Wasserkastens 1, 2 hin belasten und die zum anderen eine formschlüssige Sicherung der Wasserkästen 1, 2 in Längsrichtung des Rippen/Rohrblockes 3 und damit in Längsrichtung der Flachrohre 5 bieten, so daß die einzelnen Bauteile auch ohne den nachfolgenden Lötvorbereits zu einer kompakten gang zusammengefügt sind. Mit Hilfe einer Spanneinrichtung werden die Seitenteile 7 nun insbesondere durch den Einsatz von Spannbändern quer zur Längsrichtung des Rippen/Rohrblockes 3 belastet, wodurch der gesamte Rippen/Rohrblock 3 auf Druck in Querrichtung belastet wird. Im anschließenden Lötprozeß beginnen die Lotschichten der verschiedenen Lotplattierungen zu fließen, wodurch eine Setzbewegung der gesamten Einheit erfolgt, die ein Zusammenschieben, d.h. ein Nachführen der Seitenteile und des Rippen/Rohrblokkes 3 in Querrichtung des Rippen/Rohrblockes 3 zu seiner Mitte hin bewirkt. Da die Innenkonturen der Seitenbereiche 10 und die Anlagekonturen 12 der

45

10

15

20

30

Abschlußabschnitte 9 der Seitenteile 7 aufeinander abgestimmt sind, bleibt der dichte Abschluß der Seitenbereiche 10 der Wasserkästen 1, 2 mittels der Abschlußabschnitte 9 auch während des Lötprozesses erhalten. Somit wird eine einfache und maschinell durchführbare Herstellung und Verlötung des Wärmeübertragers erzielt.

Der anhand des zuvor beschriebenen Ausführungsbeispieles dargestellte Wärmeübertrager kann auch für andere Übertragermedien außer Wasser und Luft, wie dies beim vorliegenden Ausführungsbeispiel der Fall ist, eingesetzt werden. Hierfür seien insbesondere Luft/Luft-Wärmeübertrager genannt. Selbstverständlich muß beim dargestellten Ausführungsbeispiel der für die Kühlflüssigkeit verwendete Begriff "Wasser" mit dem Wissen eines Fachmannes verstanden werden, so daß das Wasser entweder mit bestimmten Zusätzen versetzt sein kann oder aber anstelle von Wasser andere Kühlflüssigkeiten vorgesehen sein können.

#### Patentansprüche

1. Wärmeübertrager für ein Kraftfahrzeug mit einem aus Flachrohren und Wellrippen zusammengesetzten Rippen/Rohrblock, wobei alle Rohrenden der Flachrohre für ein flächiges und bündiges Aneinanderliegen aufgeweitet sind, mit zwei Sammelkästen, die jeweils an gegenüberliegenden Stirnseiten des Rippen/Rohrblockes auf die Rohrenden aufgesetzt sind, wobei die Sammelkästen die Rohrenden bündig abschließend übergreifen, sowie mit zwei Seitenteilen, die sich wenigstens über die Länge des Rippen/Rohrblockes erstrecken und an gegenüberliegenden Seiten an den Rippen/Rohrblock anschließen,

#### dadurch gekennzeichnet,

daß jeder Sammelkasten (1, 2) zu seinen - auf seine Längsachse (L) bezogen - Seitenbereichen (10) hin offen gestaltet ist, und daß die Seitenteile (7) an ihren gegenüberliegenden Stirnenden zu den Sammelkästen (10) Abschlußabschnitte (9) aufweisen, die die offenen Seitenbereiche (10) der Sammelkästen (1, 2) verschließen.

- 2. Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, daß jeder offene Seitenbereich (10) der Sammelkästen (1, 2) eine wenigstens über eine bestimmte axiale Länge auf eine Längsachse (L) jedes Sammelkastens (1, 2) bezogen identische Innenkontur aufweist, und daß jeder Abschlußabschnitt (9) der Seitenteile (7) mit einer Abschlußkontur (12) versehen ist, die derart an die Innenkontur des zugeordneten Seitenbereiches (10) angepaßt ist, daß die Abschlußabschnitte (9) in die Seitenbereiche (10) bündig einfügbar sind.
- 3. Wärmeübertrager nach Anspruch 1 oder 2,

dadurch gekennzeichnet, daß die Sammelkästen (10) mit den Rohrenden (6) des Rippen/Rohrblokkes (3) und den Abschlußabschnitten (9) der Seitenteile (7) dicht verlötbar sind.

- Wärmeübertrager nach Anspruch 3, dadurch gekennzeichnet, daß den Seitenbereichen (10) jedes Sammelkastens (1, 2) Sicherungselemente (18) zur wenigstens axialen Stützung - auf die Längsachse jedes Sammelkastens (1, 2) bezogen des eingefügten Abschlußabschnittes (9) jedes Seitenteiles (7) zugeordnet sind.
- 5. Wärmeübertrager nach Anspruch 4, dadurch gekennzeichnet, daß als Sicherungselemente einstückig an den Seitenbereichen (10) jedes Sammelkastens (1, 2) angeformte Stützlaschen (18) vorgesehen sind, die durch eine Deformationskraft aus einer mit der Innenkontur des Seitenbereiches (10) fluchtenden Freigabeposition in eine den jeweiligen Abschlußabschnitt (9) axial hintergreifende Sicherungsposition überführbar sind.
- 6. Wärmeübertrager nach Anspruch 3, dadurch gekennzeichnet, daß die Abschlußkontur (12) jedes Abschlußabschnittes (9) durch einen sich - auf die Längsachse (L) jedes Sammelkastens (1, 2) bezogen - axial erstreckenden Anlageflansch (17) gebildet ist, der flächig mit der Innenkontur des jeweiligen Seitenbereiches (10) abschließt.
- 7. Wärmeübertrager nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Abschlußabschnitte (9) der Seitenteile (7) auf Höhe der Sicherungselemente (18) mit korrespondierenden Führungsteilen (16) versehen sind, wobei die Sicherungselemente (18) und die Führungsteile (16) in der Sicherungsposition ineinandergreifen.
- 40 8. Wärmeübertrager nach Anspruch 7, dadurch gekennzeichnet, daß die Anlageflansche (17) der Abschlußabschnitte (9) mit als Führungsteile dienenden Aufnahmenuten (16) versehen sind, die für einen Eingriff der Stützlaschen (18) an die Abmessungen der Stützlaschen (18) angepaßt sind.
  - 9. Wärmeübertrager nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Seitenteile (7) aus Seitenprofilen (8) sowie starr mit diesen verbundenen Abschlußprofilen (9) zusammengesetzt sind, wobei die Abschlußprofile die Abschlußabschnitte bilden und in Verlängerung der Stirnenden der Seitenprofile (8) an diese angesetzt sind.

50





Fig. 5



Fig. 6



Fig. 7

