V tabulce 1 se nachází hodnoty rychlosti větru naměřené anemometrem a otáčky vrtulky, které odpovídají polovině hodnoty naměřené otáčkoměrem.

U [V]	$v_{air} [\mathrm{m} \cdot \mathrm{s}^{-1}]$	$n_t [\min^{-1}]$	
0	0,00	0,0	
1	0,00	271,5	
2	0,00	671,0	
3	0,50	1042,0	
4	1,10	1344,0	
5	1,50	1625,0	
6	1,90	1859,0	
7	2,50	1726,5	
8	2,90	2355,5	
9	3,30	2539,5	
10	3,50	2742,5	
11	3,90	2876,5	
12	4,20	3017,5	

Table 1: Tabulka naměřených a vypočtených hodnot.

Obr. 1: Závislost rychlosti větru v_{air} na napětí zdroje.

Obr. 2: Závislost otáček n_t vrtulky na napětí zdroje.

4.

U [V]	I [A]	P_{in} [W]	P_V [W]	η [%]
6	0,33	1,98	0,139	7,02
12	0,74	8,88	1,501	16,91

Table 2: Tabulka naměřených a vypočtených hodnot.

Příklady výpočtu:

$$P_{in} = U \cdot I = 6 \cdot 0, 33 \doteq 1,98 \,\text{W}$$

$$P_{V} = \frac{1}{2} \cdot \rho \cdot v_{air}^{3} \cdot A = \frac{1,29 \cdot 1,9^{3} \cdot \pi \cdot 0,1^{2}}{2} \doteq 0,139 \,\text{W}$$

$$\eta = \frac{P_{V}}{P_{in}} \cdot 100 = \frac{1,98}{0,139} \doteq 7,02 \,\%$$

7. a 8.

U_{in} [V]	f [Hz]	$U_{OUT(p-p)}$ [V]	$n_g [\min^{-1}]$	p $[-]$
6	0,00	0,00	0,00	
7	4,50	61,50	57,00	4,74
8	16,72	180,00	184,07	5,45
9	30,30	357,50	293,75	6,19
10	50,00	580,00	521,50	5,75
11	163,00	1725,00	1681,20	5,82
12	193,00	1806,00	1920,00	6,03

Table 3: Tabulka naměřených a vypočtených hodnot.

Výpočet počtu pólových dvojic:

$$p = \frac{60f}{n_g} = \frac{60 \cdot 4, 5}{57} \doteq 4,74$$

Průměrem vypočtených hodnot je číslo 5,66 $\approx 6,$ tolik pólových dvojic odhaduji v motoru.

Obr. 3: Závislost výstupního napětí generátoru $U_{OUT(p-p)}$ na otáčkách vrtulky generátoru.

Obr. 4: Závislost výstupního napětí generátoru $U_{OUT(p-p)}$ na rychlosti větru.

Závěr

V první části úlohy jsme měřili pouze motorek, který pro nás slouží jako zdroj větru. Zjistili jsme, že rychlost produkovaného větru stoupá přibližně lineárně v závislosti na přiloženém napětí, přičemž aby se vrtulka vůbec začala točit, je potřeba napětí zhruba 3 V. Na průběhu závislosti otáček vrtulky na napětí zdroje vidíme vliv tlumení – růst není přesně lineární, pravděpodobně zde působí odpor vzduchu, který se s rychlostí vrtulky zvětšuje kvadraticky.

Dále jsme zde měřili účinnost přeměny elektrické energie na větrnou. Vyšly poměrně malé hodnoty, pro $6\,\mathrm{V}$ okolo $7\,\%$ a pro $12\,\mathrm{V}$ o něco lepší a to zhruba $17\,\%$.

Místo anemometru jsme připojili druhý motorek ve funkci generátoru a analyzovali přeměnu větrné energie zpět na elektrickou. Z naměřených hodnot frekvence výstupního napětí a otáček vrtulky generátoru jsme zjistili, že motorek má s nejvyšší pravděpodobností 6 pólových dvojic, měření ale není příliš přesné.

Aby se vrtulka generátoru vůbec dala do pohybu, je potřeba určitá rychlost větru, v našem případě přibližně $2.5\,\mathrm{m\cdot s^{-1}}$, při zvýšení rychlosti nad asi $3.5\,\mathrm{m\cdot s^{-1}}$ (cca 600 ot/min u generátoru) dochází k prudkému nárustu napětí na generátoru i rychlosti jeho otáček a pro lepší zmapování této oblasti by bylo potřeba změřit více hodnot.