Mathematical Foundations - II Paper-BCA-124

lin	ne: I	hree Hours]		[IVI	ixiiiiu	III Marks . 90
1.	(a)	Define Subgroup; Normal Subgroup; Principal Ideal. 3				
	(b)	Construct 3×3 matrix who i. Also name this matrix.	se ele	ments	are gi	ven by $a_{ij} = j$.
			1	w	w^2	z .
	(c)	Find the rank of the matrix	w w^2	w^2	1 w	where w is a
		cube root of unity.	_			3
	(d)	If $x^2 = e$ for all $x \in G$ whe	re G is	s a gro	up. Th	en prove that

G is an ablian group.

(e) Construct the truth table of $(p \land q) \lor \sim (p \lor q)$. 3 Prove that a group of order 2 is an abelian. SECTION-I (a) Prove that $5^n > 3^n$ for all $n \in \mathbb{N}$. 6 2. (b) Prove that $[(p \Leftrightarrow q) \land \{(q \Rightarrow r) \land r\}] \Rightarrow r$ is a 6 tautology. (c) Prove that $(1+x)^n \ge 1 + nx$ for all $x \in N$. 6 (a) Prove that $x^n - y^n$ is divisible by x - y; $x \neq y$. 6 (b) Identify the quantifiers and write the negation of the 12 statements: There exists a capital for every state in India. (i) Some real numbers are rotational. (ii) Every child is naughty or intelligent. (iv) Any integer is either positive or negative **SECTION-II** (a) Prove that set of Natural number is not a RING. (b) Prove that the set $G = \{1, -1, i, -i\}$ is an abelian group under multiplication. Also find all its subgroups. (a) Let $G = \{1, 2, 3, 4, 5, 6\}$ find the orders of elements of the group G under binary operation multiplication Modulo 7.9 (b) Show that the Set $\left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} / a, b \in z \right\}$ is a right ideal but not a left ideal in the ring of all 2 × 2 matrices, whose elements are integers.

SECTION-III

6. (a) If $A = \begin{bmatrix} 3 & 5 \\ 2 & 7 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$;

then show that $(AB)^{-1} = B^{-1} A^{-1}$.

9

- (b) Prove that the rank of the product of two matrices can not exceed the rank of either matrix.
- 7. (a) For what values of λ, μ , the system of equations

$$x + y + z = 6$$
; $x + 2y + 3z = 10$; $x + 2y + \lambda z = \mu$ has

- (i) no solution.
- (ii) a unique solution
- (iii) an infinite number of solution
- (b) Solve by matrix number of solutions.

9

$$\frac{2}{x} - \frac{3}{v} + \frac{3}{z} = 10$$

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10$$

$$\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13$$

SECTION-IV

- 8. (a) Prove that the characteristic roots of a real symmetric matrix are all real.
 - (b) Varify Caylay-Hamilton theorem for matrix

9

Also find A.

Diagonalize the matrix
$$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

if possible.