Worksheet 7 Review 2

Hyungmo Gu

April 17, 2020

Question 1

a. In this case assume that $n \leq 1$.

We want to show $n \leq 1$.

Since the assumption tells us $n \leq 1$, we can conclude this is true.

b. Proof. Let a=d and b=k. Assume there exists $d\in\mathbb{N}$ where $(\exists k\in\mathbb{Z}, n=dk)\wedge d\neq 1\wedge d\neq n$. Assume n>1

We need to prove that $n \nmid a, n \nmid b$ and $n \mid ab$.

We will do so in parts.

Part 1 (Proving $n \nmid a$):

We need to prove $n \nmid a$.

First, we need to show $n \geq d$.

The fact 2 tells us

$$\forall x, y \in \mathbb{N}, y \ge 1 \land x \mid y \Rightarrow 1 \le x \le y \tag{1}$$

and we know from headers that $d \mid n, n > 1$, and $n, d \in \mathbb{N}$.

Then, by using these facts, we can write

$$1 \le d \le n \tag{2}$$

Second, we need to show n = d.

The definition of divisibility tells us for n to divide d, there must be some $k_1 \in \mathbb{Z}$ such that d is equal to $k_1 \cdot n$.

Then, since we know $n \ge d$, by using these facts, we can conclude the definition of divisibility is satisfied only when $k_1 = 1$, or when n = d.

Finally, since we know from the header that $n \neq d$, we can conclude $n \nmid d$.

Then, since we know d = a from the header, we can conclude $n \nmid a$.

Part 2 (Proving $n \nmid b$):

We need to prove $n \nmid b$.

First, we need to show $k \mid n$.

The assumption tells us n = kd.

Then, it follows from the definition of divisibility that $k \mid d$.

Second, we need to show $k \geq 1$.

The header tells us n > 1 $d \ge 0$, and we know from assumption that n = dk.

Since the facts tell us $k \leq 0$ results in $n \leq 0$ and this cannot happen, we can conclude $k \geq 1$.

Third, we need to show $n \ge k$ using the fact $k \ge 1$ and $k \mid n$.

The fact 2 tells us

$$\forall x, y \in \mathbb{N}, y \ge 1 \land x \mid y \Rightarrow 1 \le x \le y \tag{3}$$

Since we know $k \mid n, n > 1$ and $k, n \in \mathbb{N}$, we can conclude $k \leq n$.

Fourth, we need to show n = k.

The definition of divisibility tells us for n to divide k, there must be some $k_1 \in \mathbb{Z}$ such that k is equal to $k_1 \cdot n$.

Then, using the fact $n \ge k$, we can conclude the definition of divisibility is satisfied only when $k_1 = 1$, or n = k.

Finally, since we know from the header that $n \neq k$, we can conclude $n \nmid k$.

Then, it follows from the fact k = b, we can conclude $n \nmid b$.

Part 3 (Proving $n \mid ab$):

We need to prove $n \mid ab$.

The fact 1 tells us

$$\forall x \in \mathbb{Z}, x \mid x \tag{4}$$

Since we know $n \in \mathbb{N}$, we can conclude $n \mid n$.

Then, since we know n = dk, d = a and k = b, we can conclude $n \mid ab$.

Pseudoproof:

Let a=d and b=k. Assume there exists $d\in\mathbb{N}$ where $(\exists k\in\mathbb{Z}, n=dk)\land d\neq 1\land d\neq n$. Assume n>1

We need to prove that $n \nmid a, n \nmid b$ and $n \mid ab$.

We will do so in parts.

1. Show $n \nmid a$.

First, we need to show $n \nmid a$.

1. Show $n \ge d$.

The fact 2 tells us

$$\forall x, y \in \mathbb{N}, y \ge 1 \land x \mid y \Rightarrow 1 \le x \le y \tag{5}$$

and we know from headers that $d \mid n, n > 1$, and $n, d \in \mathbb{N}$.

Then, by using these facts, we can write

$$1 \le d \le n \tag{6}$$

2. Show that for n to divide d, n = d.

Now, the definition of divisibility tells us for n to divide d, there must be some $k_1 \in \mathbb{Z}$ such that d is equal to $k_1 \cdot n$.

Then, since we know $n \geq d$, by using these facts, we can conclude the definition of divisibility is satisfied when $k_1 = 1$, or when n = d.

3. Conclude $n \nmid a$.

Then, since we know from header that $n \neq d$, we can conclude $n \nmid d$.

Part 1 (Proving $n \nmid a$):

We need to prove $n \nmid a$.

First, we need to show $n \geq d$.

The fact 2 tells us

$$\forall x, y \in \mathbb{N}, y \ge 1 \land x \mid y \Rightarrow 1 \le x \le y \tag{7}$$

and we know from headers that $d \mid n, n > 1$, and $n, d \in \mathbb{N}$.

Then, by using these facts, we can write

$$1 \le d \le n \tag{8}$$

Second, we need to show n = d.

The definition of divisibility tells us for n to divide d, there must be some $k_1 \in \mathbb{Z}$ such that d is equal to $k_1 \cdot n$.

Then, since we know $n \ge d$, by using these facts, we can conclude the definition of divisibility is satisfied only when $k_1 = 1$, or when n = d.

Finally, since we know from the header that $n \neq d$, we can conclude $n \nmid d$.

Then, since we know d = a from the header, we can conclude $n \nmid a$.

2. Show $n \nmid b$

• Show $k \mid n$

First, we need to show $k \mid n$.

- State n = kd.

The assumption tells us n = kd.

- Show $k \mid n$ by using the definition of divisibility

Then, it follows from the definition of divisibility that $k \mid d$.

First, we need to show $k \mid n$.

The assumption tells us n = kd.

Then, it follows from the definition of divisibility that $k \mid d$.

• Show $k \ge 1$.

Second, we need to show $k \geq 1$.

Second, we need to show $k \geq 1$.

The header tells us n > 1 $d \ge 0$, and we know from assumption that n = dk.

Since the facts tell us $k \leq 0$ results in $n \leq 0$ and this cannot happen, we can conclude $k \geq 1$.

• Show $n \ge k$ using the fact $k \mid n$ and $k \ge 1$.

Third, we need to show $n \geq k$.

Third, we need to show $n \geq k$.

The fact 2 tells us

$$\forall x, y \in \mathbb{N}, y \ge 1 \land x \mid y \Rightarrow 1 \le x \le y \tag{9}$$

Since we know $k \mid n, n > 1$ and $k, n \in \mathbb{N}$, we can conclude $k \leq n$.

• Show that for n to divide k, n = k.

Fourth, we need to show n = k.

Fourth, we need to show n = k.

The definition of divisibility tells us for n to divide k, there must be some $k_1 \in \mathbb{Z}$ such that k is equal to $k_1 \cdot n$.

Then, using the fact $n \geq k$, we can conclude the definition of divisibility is satisfied only when $k_1 = 1$, or n = k.

• Conclude $n \nmid a$.

Finally, since we know from the header that $n \neq k$, we can conclude $n \nmid k$.

It follows from the fact k=b, we can conclude $n \nmid b$.

Part 2 (Proving $n \nmid b$):

We need to show $n \nmid b$.

First, we need to show $k \mid n$.

The assumption tells us n = kd.

Then, it follows from the definition of divisibility that $k \mid d$.

Second, we need to show $k \geq 1$.

The header tells us n > 1 $d \ge 0$, and we know from assumption that n = dk.

Since the facts tell us $k \leq 0$ results in $n \leq 0$ and this cannot happen, we can conclude $k \geq 1$.

Third, we need to show $n \ge k$ using the fact $k \ge 1$ and $k \mid n$.

The fact 2 tells us

$$\forall x, y \in \mathbb{N}, y \ge 1 \land x \mid y \Rightarrow 1 \le x \le y \tag{10}$$

Since we know $k \mid n, n > 1$ and $k, n \in \mathbb{N}$, we can conclude $k \leq n$.

Fourth, we need to show n = k.

The definition of divisibility tells us for n to divide k, there must be some $k_1 \in \mathbb{Z}$ such that k is equal to $k_1 \cdot n$.

Then, using the fact $n \geq k$, we can conclude the definition of divisibility is satisfied only when $k_1 = 1$, or n = k.

Finally, since we know from the header that $n \neq k$, we can conclude $n \nmid k$.

Then, it follows from the fact k = b, we can conclude $n \nmid b$.

3. Show $n \mid ab$

We need to show $n \mid ab$.

• State fact 1

The fact 1 tells us

$$\forall x \in \mathbb{Z}, x \mid x \tag{11}$$

• Show $n \mid n$

Since we know $n \in \mathbb{N}$, we can conclude $n \mid n$.

• Show $n \mid ab$ using the fact n = dk where a = d and b = k.

Then, since we know n = dk, d = a and k = b, we can conclude $n \mid ab$.

Part 3 (Proving $n \mid ab$):

We need to show $n \mid ab$.

The fact 1 tells us

$$\forall x \in \mathbb{Z}, x \mid x \tag{12}$$

Since we know $n \in \mathbb{N}$, we can conclude $n \mid n$.

Then, since we know n = dk, d = a and k = b, we can conclude $n \mid ab$.

Notes:

- Made some serious errors (i.e. show n = a or n = b) :(.
- How can a proof be organized so it's structurally clear so moe 3 months from now can say I understand this proof? I used first, second and third to show steps involved but I still feel something is missing...
- Can I write a predicate logic for proving $n \nmid b$ or $n \nmid a$? (i.e. ... $\Rightarrow n \nmid b$)?

Question 2

a. Proof. Let $m, n \in \mathbb{N}$. Assume Prime(n) and $n \nmid m$.

We need to prove there are some integer numbers r and s such that rn + sm = 1.

First, we need to show gcd(n, m) = 1.

The fact 3 tells us

$$\forall n, m \in \mathbb{Z}, \ Prime(n) \land n \nmid m \Rightarrow gcd(n, m) = 1 \tag{1}$$

Because we know from assumption that n is prime and $n \nmid m$, we can write gcd(n, m) = 1. Finally, the fact 6 tells us

$$\forall n, m \in \mathbb{N}, \ \exists r, s \in \mathbb{Z}, \ rn + sm = \gcd(n, m)$$
 (2)

Since gcd(n, m) = 1, we can conclude

$$gcd(n,m) = rn + sm = 1 (3)$$

Pseudoproof:

Let $m, n \in \mathbb{N}$. Assume Prime(n) and $n \nmid m$.

We need to prove $\exists r, s \in \mathbb{Z}, rn + sm = 1$.

1. Show gcd(n, m) = 1, using fact 3

First, we need to show gcd(n, m) = 1.

First, we need to show gcd(n, m) = 1.

The fact 3 tells us

$$\forall n, m \in \mathbb{Z}, \ Prime(n) \land n \nmid m \Rightarrow gcd(n, m) = 1 \tag{4}$$

Because we know from assumption that n is prime and $n \nmid m$, we can write gcd(n,m) = 1.

2. Show rn + sm = gcd(n, m) = 1 using fact 6

Finally, the fact 6 tells us

$$\forall n, m \in \mathbb{N}, \ \exists r, s \in \mathbb{Z}, \ rn + sm = \gcd(n, m) \tag{5}$$

Since gcd(n, m) = 1, we can conclude

$$gcd(n,m) = rn + sm = 1 (6)$$

Notes:

• Noticed that professor doesn't put ∃ symbols in 'we need to prove that...'.

Let $n, m \in \mathbb{N}$. Assume that n is prime and that n - m. We want to prove there exist $r, s \in \mathbb{Z}$, rn + sm = 1.

- 형모야. 오늘도 사랑하는 내 여보 향해 화이팅 :)
- 오늘 캘거리에 구름이 많은데 날씨가 굉장히 밝구나.
- 오오오오오!!!!
- b. Contrapositive of Statement: $\forall n, m \in \mathbb{N}, n \mid m \Rightarrow \neg Prime(n) \lor (\forall r, s \in \mathbb{Z}, rn + sm \neq 1)$

Proof. Let $n, m \in \mathbb{N}$. Assume $n \mid m$, and assume n is prime, i.e $n > 1 \land (\forall d \in \mathbb{N}, d \mid n \Rightarrow d = 1 \lor d = n$, where $n \in \mathbb{N}$)

We need to prove for every $r, s \in \mathbb{Z}$, $rn + sm \neq 1$.

First, we need to show qcd(n, m) = n.

The definition of greatest common divisor tells us

$$\forall n, m \in \mathbb{Z}, \ IsCD(n, m, n) \land (\forall d_1 \in \mathbb{Z}, \ IsCD(n, m, d_1) \Rightarrow d_1 \leq n)$$
 (7)

Because we know n is a common divisor to both n and m, and n is the highest value that divides n and m, we can conclude qcd(n,m) = n.

Second, we need to show for every $r, s \in \mathbb{Z}$, $rn + sm \ge n$.

The fact 5 tells us

$$\forall n, m \in \mathbb{N}, \forall r, s \in \mathbb{Z}, gcd(n, m) \mid (rn + sm)$$
(8)

Using the fact gcd(n, m) = n, we can write $rn + sm \ge n$.

Finally, because we know n > 1 from assumption and $rn + sm \ge n$, we can conclude rn + sm > 1, which is $rn + sm \ne 1$.

Pseudoproof:

Let $n, m \in \mathbb{N}$. Assume $n \mid m$ and assume n is prime, i.e $n > 1 \land (\forall d \in \mathbb{N}, d \mid n \Rightarrow d = 1 \lor d = n$, where $n \in \mathbb{N}$)

We need to prove for every $r, s \in \mathbb{Z}$, $rn + sm \neq 1$.

1. Show gcd(n, m) = n

First, we need to show gcd(n, m) = n.

First, we need to show gcd(n, m) = n.

The definition of greatest common divisor tells us

$$\forall n, m \in \mathbb{Z}, IsCD(n, m, n) \land (\forall d_1 \in \mathbb{Z}, IsCD(n, m, d_1) \Rightarrow d_1 \leq n)$$
 (9)

Because we know n is a common divisor to both n and m, and n is the highest value that divides n and m, we can conclude gcd(n, m) = n.

2. Show $\forall r, s \in \mathbb{Z}, rn + sm \geq n$.

Second, we need to show $\forall r, s \in \mathbb{Z}, rn + sm \geq n$.

Second, we need to show for every $r, s \in \mathbb{Z}, rn + sm \ge n$.

The fact 5 tells us

$$\forall n, m \in \mathbb{N}, \forall r, s \in \mathbb{Z}, gcd(n, m) \mid (rn + sm)$$
 (10)

Using the fact gcd(n, m) = n, we can write $rn + sm \ge n$.

3. Conclude $rn + sm \neq 1$ using the fact n > 1.

Finally, because we know n>1 from assumption and $rn+sm\geq n$, we can conclude rn+sm>1, or $rn+sm\neq 1$.

Question 3