Embedded and Pervasive Systems Project presentation

Smart Blinds

Overview

- Introduction
- Presentation
- Project
 - sensor monitoring
 - code snippets
 - Stepper motor
 - code snippets
 - web application
 - code snippets
- limitations
- difficulties
- Conclusion

Presenters:

Wolfgang Holzner k00842263 Andreas Gaderer k01455595 Daniel Baumgartinger k11828579 Roland Zopf k01055675 Adrian Vinojcic k11904250 Tobias Pilz k11914471

Introduction

- Project idea
- 3 Teams
 - Motor Handling
 - Sensors
 - light intensity, pressure
 - Web App

Presentation

- Stages
 - sensor without light
 - o lightsource added
 - senor sends request to motor
 - o motor opens the "shader"
 - light source removed
 - reverts back to original state
- we could not show changes of pressure or humidity in our testing environment

Projekt <sensor monitoring>

- if air pressure drops, shutters always remain open to prevent damage
- high light intensity -> shutters close
- difficulties with data conversion from analog to digital
 –solution–> enviro PHAT
 - we tried different approaches, for example Photocell(Cds photoresistor)

Sensor monitoring <code snippets>

- ranges were chosen by current conditions while implementing
 - for example pressure at the time of testing was around 995
 - pressure drop as a result of weather conditions was defined as below 980
- pressure prevents shutters from closing while thunderstorm is active

```
url = 'http://192.168.0.9:3000/sensorData'
while True:
    if weather.pressure() < 980:
        data = {'blindsRange': '0'}
        requests.post(url, json = data)
        print("opening shaders")
        if light.light() > 1000:
            data = {'blindsRange': '100'}
            requests.post(url, json = data)
            print("closing shaders")
            data = {'blindsRange': '0'}
            requests.post(url, json = data)
            print("opening shaders")
    time.sleep(0.5)
```

Project <Stepper motor>

- Stepper motor with 4 coils
- Stepper HAT
- "MacGyver" power supply

Stepper Motor Code snippets

```
while True:
    # Read values from web interface
    json_string = requests.get(address).content
    blinds = json.loads(json_string)
    level = blinds['blindsRange']
    if level != state:
        turn(level - state)
        state = level
```

```
def turn(amount):
    down = amount >= 0
    amount = abs(amount) * one_percent

if down:
    for i in range(amount):
        kit.stepper1.onestep()

else:
    for i in range(amount):
        kit.stepper1.onestep(direction=stepper.BACKWARD)
```

control the stepper motor

Read the Data Files

Project < Web Application & REST API>

- REST API made with Node.js & express.js
- serves a static html page as UI
- Collects data from sensor PI & website
- Gets requests from Motor PI and sends blinds status

Wep Application <Code snippets>

- Communication
 - REST
- Web App with slider

```
app.get('/', (req, res) => {
    res.sendFile( dirname + "/public" + "/index.html")
app.get('/index.html', (req, res) => {
    res.sendFile( dirname + "/public" + "/index.html" );
app.post('/automatic', (req, res) => {
    console.log(req.body)
    automatic = req.body.automatic
    res.sendStatus(200)
app.post('/blindRange', (req, res) => {
    console.log(req.body)
    blindsRange = parseInt(req.body.value)
    res.sendStatus(200)
app.get('/data', (req, res) => {
    res.send({
        "automatic": automatic,
        "blindsRange": blindsRange
```

Limitations

The project could be expanded:

- Measuring the inside temperature to change the temperature by opening and closing the shutters.
- The evaluation of the data from the sensors could also be used to control other systems in the house.
 (e.g. heating or air conditioning)

Link: https://businesswest.com/blog/smart-home-technology-puts-homeowners-in-full-control-wherever-they-are/

Difficulties

Problems we encountered during project development:

- Defective SD card
- Problems connecting the Raspberry Pi to the Internet
- The connection between Raspberry Pi and Sensor Pack did not work for the time being.
- Problems with the light sensitivity sensor
- Problems with the contacts of the enviro PHAT
- We had to replace our Raspberry Pi several times, which required us to reconfigure and rebuild our system and Raspberry Pis several times

Conclusions

