INTRODUÇÃO SOBRE SISTEMAS DE TEMPO REAL

Prof. Osmar Marchi dos Santos

SISTEMAS DETEMPO REAL

- Um sistema de tempo real é um sistema de processamento de informações que responde a eventos/estímulos externos dentro de um período específico e finito
 - Logo, a corretude do sistema não depende somente dos resultados lógicos,
 mas também do tempo em que as respostas ocorrem
 - Um grande mal-entendido é pensar que sistemas de tempo real são simplesmente sistemas rápidos – previsibilidade é a chave
 - Uma falha em responder no tempo correto pode ser pior que responder de forma incorreta

SISTEMAS DETEMPO REAL

- Guindaste
- Automatização
- Requisitos Funcionais?
- Posição Inicial + Final
- Tempo?

SISTEMAS DE TEMPO REAL

 Sistemas de tempo real são normalmente implementados como sistemas embarcados, que são um componente de um sistema de engenharia de maior porte

- Um sistema de tempo real só pode ser dito previsível (predictable) se todos os requisitos temporais do sistema são garantidos
 - Dados as premissas (assumptions) sobre o modelo do sistema sendo desenvolvido (e.g., carga do sistema, hipótese de falhas, ...)

IMPLEMENTAÇÃO: DE CICLOS

- Várias implementações utilizam a noção de cyclic executive systems onde cada uma das tarefas executa após a outra, de forma sequencial
 - Noção de pequeno ciclo e grande ciclo (que comporta todos os pequenos ciclos)

- Alguns problemas dessa abordagem:
 - Qualquer mudança no projeto (design) da aplicação deve uma nova redefinição dos ciclos (muita dificuldade de integrar com outros sistemas)
 - Por não ter <u>preempção</u>, fica difícil conseguir lidar com funções que podem demorar mais tempo que inicialmente previsto (exemplo, múltiplos sensores)

EXEMPLO DE SISTEMA EM CICLOS

/* Cyclic executive system that reads the temperature of a sensor and updates an LCD display
 retirado da Wikipedia em 2012 */

```
main() {
// initialization code here
while (I) {
currTemp = tempRead();
lcdWrite(currTemp);
// waste CPU cycles until 50 ms
currTemp = tempRead();
// do other stuff
// waste CPU cycles until 100 ms
}
```

IMPLEMENTAÇÃO: DE SISTEMAS CONCORRENTES

Relembrando:

- Na computação concorrente, os sistemas são projetados como um conjunto de processos (ou threads) que podem executar em paralelo
- Isso acarreta vários problemas de sincronização e comunicação que devem ser resolvidos
- Paralelismo é independente dessa abstração, sendo mais um problema de implementação

IMPLEMENTAÇÃO: DE SISTEMAS CONCORRENTES

 Sistemas concorrentes e distribuídos são intrisicamente nãodeterminísticos

- Porém, com a teoria de escalonamento para sistemas de tempo real, é possível transformar um sistema concorrente em um sistema previsível e analisar seus requisitos temporais (deadlines)
 - Prioridades no escalonamento
 - Uso de equações para avaliar requisitos temporais

CONCORRÊNCIA?

SOLUÇÃO SEQUENCIAL (RETIRADO DOS SLIDES DO PROF. ANDY WELLINGS - UNIVERSITY OF YORK)

SOLUÇÃO CONCORRENTE (RETIRADO DOS SLIDES DO PROF. ANDY WELLINGS - UNIVERSITY OF YORK)

TERMINOLOGIA

- Sistemas de tempo real podem ser classificados de acordo com as funções que desempenha e na importância de cumprir seus requisitos temporais (deadlines)
 - Hard real-time systems: é necessário garantir todos os deadlines, caso contrário uma catástrofe pode ocorrer (sistema de controle de voos ou sinalização de ferrovias)
 - Soft real-time systems: deadlines são importantes, mas mesmo com uma falha ocasional, o sistema continua executando normalmente (sistema bancário ou sistema de comutação telefônico)

TERMINOLOGIA E EXEMPLOS

 Na prática um sistema pode conter um conjunto de deadlines (soft e hard) ou até uma função de custo associada a perdas de deadlines

 Dadas as características desses sistemas, eles tendem a ser sistemas complexos e bastante confiáveis

CONTROLE DE FLUÍDOS (RETIRADO DOS SLIDES DO PROF. ANDY WELLINGS - UNIVERSITY OF YORK)

PLANTA PARA TOSTAGEM DE GRÃOS (RETIRADO DOS SLIDES DO PROF. ANDY WELLINGS - UNIVERSITY OF YORK)

TÍPICO SISTEMA EMBARCADO (RETIRADO DOS SLIDES DO PROF. ANDY WELLINGS - UNIVERSITY OF YORK)

