

Rajshahl University of Engineering & Technology

Department of Computer Science & Engineering

Title: Vision Based Malware Classification Framework Based On Neural Network

Supervised By

Prof. Dr. Md. Ali Hossain Professor Dept. Of CSE, RUET Presented By

Shah Ahmed Saad Rupai Roll No.: 1703069 Dept. Of CSE, RUET

Table of contents

- 01 Introduction
 - 02 Motivation
- 03 Objectives
- 04 Literature Review
- 05 Dataset

06 Proposed Method & Workflow

- 07 Implementation
- 08 Result Analysis
- 09 Model Comparison10 Future Work
- 11 Conclusion
- 12 Reference

02

Introduction

Malware, or malicious software, refers to any type of program or code designed to harm computer systems or steal data.

There are a varieties of malwares present today, some of which are - Zeus, My-doom, Storm-worm, Slammer etc.

Different approaches have been used to detect & classify malwares. But malwares have emerged in such an extraordinary way that the traditional approaches are now not very effective.

Motivation

Traditional **signature-based** methods are less effective

A **vision-based** malware classification framework will work well

Neural Network has emerged as a promising solution

Objectives

Literature review

Diterature review				
Paper Title & Author	Dataset & Models Used	Accuracy Accuracy - 98%		
Malware Images: Visualization and Automatic Classification. [1] L. Nataraj (2011)	 Malware binaries are visualized as gray-scale images Classified using standard image features (PCA) and knn model by 10 fold cross validation using k=3 			
Using convolutional neural networks for classification of malware represented as images. [2] Daniel Gibert (2018)	 Malimg dataset & Microsoft Big dataset Convolution neural network(CNN) is used to classify 	Accuracy: Malimg dataset - 96% & Microsoft Big dataset - 97.3%		
Towards Building an Intelligent Anti-Malware System: A Deep Learning Approach using Support Vector Machine (SVM) for Malware Classification.[3] Abien Fred M. Agarap (2019)	 Malimg dataset CNN-SVM, GRU-SVM, and MLP-SVM models used for classification 	Accuracy: 84.92%		

Dataset Description

The deep learning (DL) model in this study will be evaluated on the Malimg dataset[4],

- The dataset contains 9,339 malware samples
- These malware samples are from 25 different malware families

Dataset Description Cont.

Table 1 shows the frequency distribution of malware families and their variants in the Malimg dataset[4].

No.	Family	Family Name	No. of Variants	
01	Dialer	Adialer.C		
02	Backdoor	Agent.FYI	116	
03	Worm	Allaple.A	2949	
04	Worm	Allaple.L	1591	
05	Trojan	Alueron.gen!J	198	
06	Worm:AutoIT	Autorun.K	106	
07	Trojan	C2Lop.P	146	
08	Trojan	C2Lop.gen!G	200	
09	Dialer	Dialplatform.B	177	
10	Trojan Downloader	Dontovo.A	162	
11	Rogue	Fakerean	381	
12	Dialer	Instantaccess	431	
13	PWS	Lolyda.AA 1	213	
14	PWS	Lolyda.AA 2	184	
15	PWS	Lolyda.AA 3	123	
16	PWS	Lolyda.AT	159	
17	Trojan	Malex.gen!J	136	
18	Trojan Downloader	Obfuscator.AD	142	
19	Backdoor	Rbot!gen	158	
20	Trojan	Skintrim.N	80	
21	Trojan Downloader	Swizzor.gen!E	128	
22	Trojan Downloader	Swizzor.gen!I	132	
23	Worm	VB.AT	408	
24	Trojan Downloader	Wintrim.BX	97	
25	Worm	Yuner.A	800	

Dataset Description Cont.

Figure 1: Image from [4]. Visualizing malware as a grayscale image.

Proposed Method

Figure 2: Workflow of the proposed method

Proposed Method Cont.

Figure 3: Basic CNN architecture

Proposed Method Cont.

Figure 4: Basic MLP architecture

Workflow

Gathering and preprocessing of data

Applying different model architectures Analyzing the results through performance metrics like Accuracy, Precision, and F1 Score

Implementation

Gathered Dataset and done sampling and scaling

Converted malware binaries into grayscale image

Applied CNN for classification

Applied PCA and SPCA for dimensionality reduction

Applied Multi Layer Perceptron for classification

Figure 5 : Grayscale images of malware binaries

Figure 6: Confusion Matrix using CNN model

Result Analysis (PCA-MLP)

Components:

Accuracy: 97.13%

Precision: 94.23%

F1 Score : 94.00%

Figure 7: Confusion Matrix using PCA-MLP model

Components: 30

Accuracy: 97.13%

Precision: 94.23%

F1 Score: 94.00%

19.08.2023

Vision Based Malware Classification Framework Based on Neural Network

+

Result Analysis (SPCA-MLP)

Components:

Accuracy: 97.49%

Precision: 94.82%

F1 Score: 94.51%

Figure 9: Confusion Matrix using SPCA-MLP model

19.08.2023

Vision Based Malware Classification Framework Based on Neural Network

Figure 10: Confusion Matrix using SPCA-MLP model

19.08.2023

Model	Accuracy	Recall	Precision	F1 Score
CNN	97.57%	95.68%	95.68%	95.68%
PCA-MLP	97.13%	94.69%	94.23%	94.00%
SPCA-MLP	97.49%	95.44%	94.82%	94.51%

Table 2: Comparison of the models

Future Work

Implement ResNet-152 architecture for feature extraction

Implement other deep learning models

Search for better accuracy and compare the outcomes

Conclusion

1

Vision-based malware detection can detect malware that has been encrypted to avoid detection by traditional methods

2

Vision-based malware detection can be used to detect new and unknown malware that has not yet been categorized or identified by traditional methods

3

Deep learning approach performs better than traditional methods providing better accuracy and efficiency.

Reference

[1] Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S.: Malware images: visualization and automatic classification. In: Proceedings of the 8th International Symposium on Visualization for Cyber Security, VizSec '11, pp. 4:1–4:7. ACM, New York, NY, USA (2011).

[2] Gibert, D., Mateu, C., Planes, J. *et al.* Using convolutional neural networks for classification of malware represented as images. *J Comput Virol Hack Tech* **15**, 15–28 (2019).

[3] Agarap, A. F. (2017). Towards building an intelligent anti-malware system: a deep learning approach using support vector machine (SVM) for malware classification. *ArXiv Preprint ArXiv:1801.00318*.

[4] https://www.dropbox.com/s/ep8qjakfwh1rzk4/malimg_dataset.zip?dl=0

Thanks!

Do you have any questions?

saadrupai1997@gmail.com

