CS & IT

ENGINEERING

OPERATING SYSTEMS

CPU Scheduling

Lecture No. 1

By- Dr. Khaleel Khan Sir

Process Times:

5) Completion Time (CT)

4·T)			T.P	1.1			> \	
	(W.T ₁)	B.T,	IOBT	Wiz	Biz	Wis	B.73	
(Vi)	R.Q		σο <u>Γ</u>		сри	R.Q	Cpu	
A.T		,			γ,		<u> </u>	C-T
			_> <	lime	•			

2 IOBT=0

WT=TAT-BT

)
$$\pi$$
 - processes $(P_1 - P_n)$
2) $A \cdot T(P_i) = A_i$
3) $B \cdot T(P_i) = X_i$
4) $IOBT(P_i) = Y_i$
5) $C \cdot T(P_i) = C_i$
Average $TAT = \sum_{i=1}^{n} C_i - A_i$
Average $TAT = \sum_{i=1}^{n} C_i - A_i$
 π

= Man(ci)-Min(Ai) Thrubut = No. 9 Trocens Completed Per unit Jime

CPU Scheduling Occurs

Lifecycle 9 Rogers

Load store add store read from file

CPU burst

wait for I/O

I/O burst

Store increment Index write of file

CPU burst

wait for I/O

I/O burst

load store add store read from file

CPU burst

wait for I/O

I/O burst

CPU-I/O bursts

Process execution consists of a cycle of CPU execution and I/O wait

 different processes may have different distributions of burts

CUP-bound process: performs lots of computations in long bursts, very little I/O

I/O-bound process: performs
lots of I/O followed by short
burst of computation

 ideally, the system admits a mix of CPU bound and I/Obound processes to maximize CPU and I/O

8

1. FCFS < FIrst Come First Served> TAT=CI-AT Selection Criteria: A.T WT=TAT-BT L= 12-0=12 Mode of operation: Non-RecEmptive JAT Conflict resolution: Lower Pid 2 — 0 — 3 — 7 Assumbtims: A.TAT = 23/3 A.WT=11/3 (i) Time is in clock Ticks NO JOBT'S (iii) Schollygorhd (8)=0

$$\mathcal{L} = 24 - 3 = 21$$

$$2\left(\text{cpu Jolleness}\right) = \left(\frac{5}{21}\right)$$

$$\int = 12 - 3 = 9$$

$$\mathcal{L} = 25-2=23$$
Av. TAT = 4.3 = ?
Av. WT = 7/6 = ?

× cpu 9dlenens = $\frac{4}{23}$

weeew I could stay here forever Anyway, I'm not going back to the end of the queue

Fist come, first served

