Analyze the following block of RISC-V assembly code and calculate the value stored in register t1, t2, t3 after all

☐ 1. Multiple Choice: 1: Analyze the following block of RISC-V...

Points: 0.5

li t1, 200	//t1=200
li t2, 300	//t2=300
add t3, t1, t2	//t3=t1+t2=500
sub t2, t3, t2	//t2=t3-t2=200

lines are executed. All numbers are decimal.

Answer

Question

b. t1= 300, t2=200, t3=500

c. t1= 200, t2=500, t3=300

d. t1= 200, t2=100, t3=500

 \square 2. Multiple Answer: 2: Which one of the following is a Pseud...

Question		e following is a Pseudo-Instruction in RISC-V ISA? Select all that apply. For help, look at RISC-V I documents uploaded in the reading section.	
Answer	👩 a. nop	no operation, (implemented with "addi x0, x0, 0")	

□ 3. Multiple Answer: 3: Which one of the following instructio...

Question

Which one of the following instructions or pseudo-Instructions is not valid in RISC-V ISA? Select all that apply. Look at the RISC-V user manual for help.

Answer

addi x1,x2,x3 format not correct, addi should contain an immediate value

li x5, 200 Correct format

bnez x5, label

Correct format

w iw x1,x2,x3 format not correct, should contain an immediate value.

(LW rd, rs1, imm)

□ 4. Multiple Answer: 4: Analyze the following block of code a...

Question

```
Analyze the following block of code and calculate the number of times the instruction "add
                 t2, t2, t1" will execute? All numbers are decimal.
                 li t1,5
                 li t2,100
                 loop:
                                                 iteration 1--iteration 2--iteration 3--iteration 4--iteration 5
         line 3 add t2, t2, t1 After line 3: t1=5 --t1=4 --t1=3 --t1=2 --t1=1 line 4 addi t1, t1, -1 After line 4: t1=4 --t1=3 --t1=2 --t1=0
         line 5 bnez t1, loop
                                      After line 5: branch --branch --branch --go to line 6
         line 6 addi sp, sp, -48
Answer
                 👩 a. 5
                     b. 100
                     c. 105
                     d. 6
```

 \square 5. Multiple Answer: 5: What is the content in memory address...

Points: 0.5

Question

What is the content in memory address 100 and 104 after executing the following code? All numbers are decimal.

Answer

a. Value in address 100 is 50.

Value in address 104 is 52

b. Value in address 100 is 100.

Value in address 104 is 102

c. Value in address 100 is 50.

Value in address 104 is 100

d. Value in address 100 is 52.

Value in address 104 is 56

Points: 0.5

Points: 0.5

☐ 6. Multiple Answer: 6: In the base RISCV 32 bit integer ISA,...

Question	· · · · · · · · · · · · · · · · · · ·	In the base RISCV 32 bit integer ISA, there are six instruction formats (look at the RISC-V Green card uploaded as reading materials on Blackboard).						
	Which one of the following instructi	Which one of the following instructions follows the R-format?						
Answer	a. Load Byte (LB)							
		from risc v	cheat	she	et in reading mater	ıal		
	b. Add Immediate (ADDI)	Compare	Set <	R	SLT rd,rs1,rs2	- ;		
	,	Compare Set < Imr		I	1 ' '	ll l		
	♂ C. Set less than (SLT)			_	SLTI rd,rs1,imm	ll l		
		Set < Ur	_		SLTU rd,rs1,rs2	ll ll		
		Set < Imm Ur	isignea	1	SLTIU rd,rs1,imm	1		
	👩 d. XOR	Logical	XOR	R x	OR rd,rs1,rs2			
	o. Non		ediate	_	ORI rd,rs1,imm			
			OR	R OI	· · · · · · · · · · · · · · · · · · ·			
	e. Jump and link (JAL)	OR Imm		_	RI rd,rs1,imm			
	. ,		AND	R Ai	ND rd,rs1,rs2			
		AND Imm	ediate	I Ai	NDI rd,rs1,imm			

☐ 7. Multiple Choice: 7: In the base RISCV 32 bit integer ISA,...

Question In the base RISCV 32 bit integer ISA, there are six instruction formats (look at the RISCV Green card uploaded as reading materials on Blackboard). In the I-format, how many bits are reserved for encoding the 'immediate' value? **32-bit Instruction Formats Answer** a. 12 30 25 2419 15 14 12 11 R funct7 rs2funct3 rdopcode rs1Ι imm[11:0] rs1 funct3 rdopcode b. 10 S imm[11:5] imm[4:0] rs2 funct3 opcode imm[12] imm[10:5] rs2 funct3 | imm[4:1] | imm[11] | opcode rs1 imm[31:12] $^{\rm rd}$ opcode c. 1 UJ imm[20] imm[10:1] imm[11] imm[19:12] opcode from risc v cheat sheet in reading material

□ 8. Multiple Answer: 8: Which one of the following opcodes is...

Points: 0.5

Which one of the following opcodes is not a valid control flow instruction or pseudo-instruction in the RISCV ISA? Select all that apply. Refer to the RISC-V user manual (https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf).
a. ble
b. beqz
⊘ C. bgr
d. blt
e. jalr
√ f. jrl

 \square 9. Multiple Answer: 9: Which ones are 'caller saved' registe...

Points: 1

lecture 6

Question	Which ones are 'caller saved' register in a procedure call? Select all that apply.							
		Symbolic name	Registers	Description	Saver			
Answer	a. Saved register, s1	a0 to a7	x10 to x17	Function arguments	Caller			
		a0 and a1	x10 and x11	Function return values	Caller			
		ra	x1	Return address	Caller			
	👩 b. Function argument register, a0	t0 to t6	x5-7, x28-31	Temporaries	Caller			
		s0 to s11	x8-9, x18-27	Saved registers	Callee			
	🗸 c. Return address register, ra	sp	x2	Stack pointer	Callee			
		gp	x3	Global pointer				
		tp	x4	Thread pointer				
		zero	x0	Hardwired zero				

d. Stack pointer register, sp

 $\ \square$ 10. Multiple Choice: 10: Let us assume that we have an instruc...

Points: 0.5

32 bit data

Jump to bar()

Question	Let us assume that we have an instruction "jal ra, func" in memory location 104. Register 'ra' holds the return address and 'func' is the label of a procedure.						
	What is the address stored in 'ra' after executing this instruction? All numbers are in decimal.						
Answer	⊘ a. 108 b. 100	during procedure call, before we make the jump we must store the return address to reg ra. The return address is the next address from which we are calling the procedure. Next address for 32 bit RISC-V is current add.+ 4.	def foo (): x = 1 bar () z = 2				
	c. 104	In the example to the right, function foo() has a procedure bar(). When we jump to bar() we have store	def bar (): y = 7				
	d. 400	the return address because after bar() is complete we want to continue from $z=2$ in address 12. So ret add is 12					

 $\hfill \square$ 11. Multiple Choice: 11: Following the RISC-V calling conven...

Qu	es	ti	o	n

Following the RISC-V calling convention (slide 21 of lecture 6), the return value a+b of function sum() in the following code should be stored using which register?

```
int sum(int a, int b){
    return a+b;
void main() {
     int x=10;
     int y=20;
     int z = sum(x, y);
     z++;
     x=x+2;
```

the function return values are stored using reg a0

Symbolic name	Registers	Description	Saver
a0 to a7	x10 to x17	Function arguments	Caller
a0 and a1	x10 and x11	Function return values	Caller
ra	x1	Return address	Caller
t0 to t6	x5-7, x28-31	Temporaries	Caller
s0 to s11	x8-9, x18-27	Saved registers	Callee
sp	x2	Stack pointer	Callee
gp	x3	Global pointer	
tp	x4	Thread pointer	
zero	×0	Hardwired zero	

Answer

a. ra

b. sp

c. t0

👩 d. ao

☐ 12. Multiple Choice: 12: Consider the following C code. Let us...

Question Consider the following C code. Let us assume that the function sum() is currently executing in the processor. Which main memory address is currently available in the return address register ra? during procedure call, before we make the jump int sum(int a, int b){ we must store the return address to reg ra. return a+b; The return address is the next address from which we are calling the procedure. Next address for 32 bit RISC-V is current add. + 4. void main() { In the example to the right, function foo() has a int x=10; procedure bar(). When we jump to bar() we have store int y=20; the return address because after bar() is complete we want to continue from z=2 in address 12. So ret add is 12 int z = sum(x,y); +‡+ Z++; def foo (): x=x+2; x = 1bar () z = 2

•		
	Address	32 bit data
	0	foo()
	4	X=1
	8	Jump to bar()
	12	Z=2
	16	
ĺ	24	bar()
ĺ	28	Y=7
ĺ		

def bar ():y = 7

Answer

a. Memory address that stores line "z++;"

b. Memory address that stores line "int x=10;"

c. Memory address that stores line "return a+b;"

d. Memory address that stores line "int z = sum(x,y);"

☐ 14. Multiple Choice: 15: State true or false: For the followin...

Question

State true or false: For the following C code, since function sum() contains no other function call inside its code, it is not necessary to store the return address to the stack before executing sum().

```
int sum(int a, int b){
    return a+b;
}

void main() {
    int x=10;
    int y=20;
    int z= sum(x,y);
    z++;
    x=x+2;
}
```

For the same example, we know that we are storing the return address to register ra.

But what if function bar() has another function call inside, say bar2(). If we jump to bar2() and store a new return address to reg ra, our return address to go back to foo() will get deleted. So before we make a jump to bar2(), we store the current return address register's value to stack. After that we can use reg ra.

```
def foo ():

x = 1

bar ()

z = 2

def bar ():

y = 7
```

	•	
•		1
	Address	32 bit data
	0	foo()
	4	X=1
	8	Jump to bar()
	12	Z=2
	16	
	24	bar()
	28	Y=7

Answer

a. True

b. False