Intégration et théorie de la mesure

Théorie de la mesure

Question 1/11

Espace mesuré

Réponse 1/11

$$(X, \mathcal{A}, \mu)$$

Question 2/11

Mesure (positive)

Réponse 2/11

$$\mu: \mathcal{A} \to \mathbb{R}_+$$
 est une mesure si $\mu(\emptyset) = 0$ et pour tout $(A_n) \in \mathcal{A}^{\mathbb{N}}$ vérifiant $i \neq j \Rightarrow A_i \cap A_j = \emptyset$ alors $\mu\left(\bigcup_{n \in \mathbb{N}} (A_n)\right) = \sum_{n \in \mathbb{N}} (\mu(A_n))$

Question 3/11

Fonction mesurable

Réponse 3/11

$$f:(X,\mathcal{A})\to (Y,\mathcal{B})$$
 est mesurable si $f^{-1}(\mathcal{B})\subset \mathcal{A}$

Question 4/11

Tribu borélienne

Réponse 4/11

Tribu engendrée par les ouverts

Question 5/11

Mesure σ -finie

Réponse 5/11

$$\exists (X_n) \in \mathcal{A}^{\mathbb{N}}, X = \bigcup_{n \in \mathbb{N}} (A_n) \text{ et } \forall n \in \mathbb{N},$$

$$\mu(A_n) < +\infty$$

Question 6/11

$$\sigma$$
-algèbre (ou tribu)

Réponse 6/11

$$\mathcal{A}$$
 est une σ -algèbre si $\varnothing \in \mathcal{A}$, $\forall A \in \mathcal{A}$, $A^{\complement} \in \mathcal{A}$ et $\forall (A_n) \in \mathcal{A}^{\mathbb{N}}$, $\bigcup (A_n) \in \mathcal{A}$

 $n \in \mathbb{N}$

Question 7/11

Espace mesurable

Réponse 7/11

$$(X,\mathcal{A})$$

Question 8/11

Intersection de tribus

Réponse 8/11

Toute intersection de tribus est une tribu

Question 9/11

$$\sigma(C)$$

Réponse 9/11

$$\bigcap_{\substack{\mathcal{A} \text{ tribu} \\ C \subset \mathcal{A}}} (\mathcal{A})$$

Question 10/11

Algèbre (de Boole)

Réponse 10/11

$$\mathcal{A}$$
 est une algèbre si $\varnothing \in \mathcal{A}$, $\forall A \in \mathcal{A}$, $A^{\complement} \in \mathcal{A}$ et $\forall (A, B) \in \mathcal{A}^2$, $A \cup B \in \mathcal{A}$

Question 11/11

Mesure finie

Réponse 11/11

$$\mu(X) < +\infty$$