EJERCICIOS DE CÁLCULO

Asignatura: Matemáticas

Curso: Primero Grado: Óptica Año: 2020-2021

Autor: Alfredo Sánchez Alberca (asalber@ceu.es)

Índice

1. Cálculo diferencial en una variable

1. Calcular la derivada de la función $f(x) = x^3 - 2x^2 + 1$ para x = -1, x = 0 y x = 1 e interpretarla. Calcular la recta tangente a f en cada uno de los puntos anteriores.

```
SOLUCIÓN f'(-1) = 7, f'(0) = 0 \text{ y } f'(1) = -1. Recta tangente en x = -1: y = -2 + 7(x + 1). Recta tangente en x = 0: y = 1. Recta tangente en x = 1: y = -(x - 1).
```

2.	El pH de una solución mide la concentración de iones de hidrógeno (H^+) y se define como
	$pH = -\log_{10}(H^+).$
	Calcular la derivada del pH en función de la concentración de H^+ . ¿Cómo es el crecimiento del pH?
	Solución
	El pH decrece a medida que aumenta la concentración de H ⁺ .

3. La velocidad de crecimiento v de una planta depende de la cantidad de nitrógeno disponible n según la ecuación

$$v(n) = \frac{an}{k+n}, \quad n \ge 0,$$

donde a y k son constantes positivas. Estudiar el crecimiento de esta función e interpretarlo.

____ Solución _

La velocidad de crecimiento aumenta a medida que aumenta n pero cada vez con menos fuerza, de manera que cuando $n \to \infty$ la velocidad de crecimiento sería nula.

4. Para cada una de las siguientes curvas, hallar las ecuaciones de las rectas tangente y normal en el punto x_0 indicado.

a)
$$y = x^{\sin x}$$
, $x_0 = \pi/2$.

b)
$$y = \log \sqrt{\frac{1+x}{1-x}}, \quad x_0 = 0.$$

____ Solución ____

- a) Tangente: $y \frac{\pi}{2} = x \frac{\pi}{2}$. Normal: $y \frac{\pi}{2} = -x + \frac{\pi}{2}$.
- b) Tangente: y = x. Normal: y = -x.

5.	Un balón relleno de aire tiene radio 10 cm cuando se empieza a introducir más aire, de manera que e
	radio se incrementa con una velocidad de 2 cm/s. ¿Con qué velocidad varía el volumen en ese instante
	Nota: El volumen de una esfera es $V = \frac{4}{3}\pi r^3$.
	Solución
	$800\pi \text{ cm}^3/\text{s}.$

6.	Una pipeta cilíndrica de radio 5 mm almacena una solución. Si la pipeta empieza a vaciarse a razón
	de 0,5 ml por segundo, ¿a qué velocidad disminuye el nivel de la pipeta?
	Solución
	-6.37 mm/s.

7. La función que explica la desintegración radioactiva es

$$m(t) = m_0 e^{-kt},$$

donde m(t) es la cantidad de materia en el instante t, m_0 es la cantidad inicial de materia, k es una constante conocida como constante de desintegración y t es el tiempo. Calcular la velocidad de desintegración en cualquier instante t. Si para un material concreto k=0,002, ¿cuál es el periodo de semidesintegración del material?

Nota: El periodo de semidesintegración de un material radioactivo es el tiempo que transcurre hasta que la masa se reduce a la mitad de su valor inicial.

_ Solución _

Velocidad de desintegración: $-km_0e^{-kt}$. Periodo de semidesintegración: 346.57 años. 8. La posición que ocupa un coche que se mueve en línea recta, puede expresarse en función del tiempo según la ecuación

$$e(t) = 4t^3 - 2t + 1.$$

Calcular su velocidad y aceleración en cualquier instante.

Nota: La aceleración es la tasa de variación instantánea de la velocidad.

____ Solución ___

Velocidad $v(t) = 12t^2 - 2$ y aceleración a(t) = 24t.

9. El espacio recorrido por un objeto que se lanza verticalmente hacia arriba, sin tener en cuenta la resistencia del aire, viene dado por la ecuación

$$e(t) = v_0 t - \frac{1}{2}gt^2$$

donde v_0 es la velocidad inicial con que se lanza el objeto, $g = 9.81 \text{ m/s}^2$ es la constante gravitatoria de la Tierra y t es el tiempo transcurrido desde que el objeto se lanza. Se pide:

- a) Calcular la velocidad y la aceleración en cualquier instante.
- b) Si el objeto se lanza inicialmente a 50 km/h, ¿cuál será la altura máxima que alcanzará el objeto? ¿Cuál será su velocidad en ese momento?
- c) ¿En qué instante volverá a tocar la tierra el objeto? ¿Con qué velocidad?

_ Solución _

- a) Velocidad $v(t) = v_0 gt$ y aceleración a(t) = -g.
- b) Alcanzará una altura máxima de 9,83 m a los 1,42 s. La velocidad en ese instante es nula.
- c) Tocará tierra de nuevo a los 2.83 s con velocidad -13.89 m/s.

10. Un cilindro de 4 cm de radio (r) y 3 cm de altura (h) se somete a un proceso de calentamiento con el que varían sus dimensiones de tal forma que $\frac{dr}{dt} = \frac{dh}{dt} = 1$ cm/s. Hallar de forma aproximada la variación de su volumen a los 5 segundos y a los 10 segundos.

____ Solución

 $dV = 2\pi rhdt + \pi r^2 dt$ y en el instante inicial tenemos $dV = 40\pi dt$. A los 5 segundos la variación aproximada será $dV(5) = 40\pi 5 = 200\pi$ cm³/s, y a los 10 segundos $dV(10) = 40\pi 10 = 400\pi$ cm³/s.

★ 11. La figura adjunta es la de la derivada de una función. Estudiar el comportamiento de la función (crecimiento, decrecimiento, extremos, concavidad y convexidad).

_ Solución _

Crecimiento: Decreciente en $(-\infty, a)$ y (c, e), y creciente en (a, c) y (e, ∞) .

Extremos: Mínimos en x = a y x = e, y máximo en x = c. Concavidad: Cóncava en $(-\infty, b)$ y (d, ∞) , y convexa en (b, d). 12. Hallar a, b y c en la función $f(x) = x^3 + bx^2 + cx + d$ para que tenga un punto de inflexión en x = 3, pase por el punto (1,0) y alcance un máximo en x = 1.

____ Solución ____

b = -9, c = 15 y d = -7.

13. La sensibilidad de S de un organismo ante un fármaco depende de la dosis \boldsymbol{x} suministrada según la relación

$$S(x) = x(C - x),$$

siendo C la cantidad máxima del fármaco que puede suministrarse, que depende de cada individuo. Hallar la dosis x para la que la sensibilidad es máxima.

Solución			

$$x = C/2$$
.

14. La velocidad v de una reacción irreversible $A+B\to AB$ es función de la concentración x del producto AB y puede expresarse según la ecuación

$$v(x) = 4(3-x)(5-x).$$

¿Qué valor de x maximiza la velocidad de reacción?

____ Solución ____

Ninguno.

15. La cantidad de trigo en una cosecha C depende del nivel de nitrógeno en el suelo n según la ecuación

$$C(n) = \frac{n}{1+n^2}, \quad n \ge 0.$$

¿Para qué nivel de nitrógeno se obtendrá la mayor cosecha de trigo?

Solución _____

n = 1.

16.	Se ha diseñado un envoltorio cilíndrico para unas cápsulas. Si el contenido de las cápsulas debe ser de
	0,15 ml, hallar las dimensiones del cilindro para que el material empleado en el envoltorio sea mínimo.
	Solución
	SOLUCION
	Radio 0,2879 cm y altura 0,5760 cm.

 \bigstar 17. Mediante simulación por ordenador se ha podido cuantificar la cantidad de agua almacenada en un acuífero en función del tiempo, m(t), en millones de metros cúbicos, y el tiempo t en años transcurridos desde el instante en el que se ha hecho la simulación, teniendo en cuenta que la ecuación sólo tiene sentido para los t mayores que 0:

$$m(t) = 10 + \frac{\sqrt{t}}{e^t}$$

- a) En el límite, cuando t tiende a infinito, qué cantidad de agua almacenada habrá en el acuífero?
- b) Mediante derivadas, calcular el valor del tiempo en el que el agua almacenada ser máxima y cuál es su cantidad de agua correspondiente en millones de metros cúbicos.

_ Solución _

- a) $\lim_{t\to\infty} m(t) = 10$.
- b) $\frac{dm}{dt} = e^{-t}(\frac{1}{2}t^{-1/2} t^{1/2})$. El instante en el que el agua almacenada será máxima es t=0,5 años y en dicho instante habrá 10,429 millones de m³.

2. Ecuaciones Diferenciales

18. La desintegración radioactiva está regida por la ecuación diferencial

$$\frac{\partial x}{\partial t} + ax = 0,$$

donde x es la masa, t el tiempo y a es una constante positiva. La vida media T es el tiempo durante el cual la masa se desintegra a la mitad de su valor inicial. Expresar T en función de a y evaluar a para el isótopo de uranio U^{238} , para el cual $T=4'5\cdot 10^9$ años.

19.	El azúcar se disuelve en el agua con una velocidad proporcional a la cantidad que queda por disolver.
	Si inicialmente había 13.6 kg de azúcar y al cabo de 4 horas quedan sin disolver 4.5 kg, ¿cuánto
	tardará en disolverse el 95 % del azúcar contando desde el instante inicial?

____ Solución ____

 $C(t)=13.6e^{-0.276t}$ y el instante en que se habrá disuelto el 95 % del azúcar es $t_0=10.854$ horas.

 \bigstar 20. Una reacción química sigue la siguiente ecuación diferencial

$$y' - 2y = 4,$$

donde y = f(t) es la concentración de oxígeno en el instante t (medido en segundos). Si la concentración de oxígeno al comienzo de la reacción era nula, ¿cuál será la concentración (mg/lt) a los 3 segundos? ¿En qué instante la concentración de oxígeno será de 200 mg/lt?

____ Solución _

 $y(t) = 2e^{2t} - 2$. La concentración a los tres segundos será y(3) = 804 mg/lt y el instante en que la concentración de oxígeno será de 200 mg/lt es $t_0 = 2{,}3076$ s.

21. Un depósito contiene 5 kg de sal disueltos en 500 litros de agua en el instante en que comienza entrar una solución salina con 0.4 kg de sal por litro a razón de 10 litros por minuto. Si la mezcla se mantiene uniforme mediante agitación y sale la misma cantidad de litros que entra, ¿cuánta sal quedará en el depósito después de 5 minutos? ¿y después de 1 hora?

Nota: La tasa de variación de la cantidad de sal en el tanque es la diferencia entre la cantidad de sal que entra y la que sale del tanque en cada instante.

____ Solución

 $C(t)=-195e^{-t/50}+200.$ La cantidad de sal a los 5 minutos será $C(5)=23{,}557~\rm kg$ y a la hora $C(60)=141{,}267~\rm kg.$

 \bigstar 22. Sea la siguiente ecuación diferencial que relaciona la temperatura y el tiempo en un determinado sistema físico:

$$x't^2 - x't + x' - 2xt + x = 0,$$

siendo x la temperatura expresada en Kelvins y t el tiempo en segundos.

Sabiendo que la temperatura en el instante inicial del experimento es 100 K, calcular la temperatura en función del tiempo, y dar la temperatura del sistema físico tres segundos después de comenzar el experimento.

 $x(t) = 100(t^2 - t + 1)$ y la temperatura del sistema a los tres segundos de comenzar el experimento es x(3) = 700 K.

★ 23.	Se tiene un medicamento en un frigorífico a 2^{o} C, y se debe administrar a 15^{o} C. A las 9 h se saca el medicamento del frigorífico y se coloca en una habitación que se encuentra a 22^{o} C. A las 10 h se observa
	que el medicamento está a $10^{\rm o}$ C. Suponiendo que la velocidad de calentamiento es proporcional a la
	diferencia entre la temperatura del medicamento y la del ambiente, ¿en qué hora se deberá administrar
	dicho medicamento?
	Solución
	A las 11,06 horas.

★ 24. En una reacción química, un compuesto se transforma en otra sustancia a un ritmo proporcional al cuadrado de la cantidad no transformada. Si había inicialmente 20 gr de la sustancia original y tras 1 hora queda la mitad, ¿en qué momento se habrá transformado el 75 % de dicho compuesto?

——— Solución

 $C(t) = \frac{20}{t+1}$ y el instante en que se habrá transformado el 75 % de la cantidad inicial es $t_0 = 3$ horas.

 \bigstar 25. La cantidad de masa, M, expresada en Kg, de sustancias contaminantes en un depósito de aguas residuales, cumple la ecuación diferencial:

$$\frac{dM}{dt} = -0.5M + 1000$$

donde k es una constante y t es el tiempo expresado en días (podemos imaginar que el depósito está conectado a una depuradora que elimina sustancia contaminante con un ritmo proporcional a la propia cantidad de contaminante, lo cual explicaría el sumando -0.5M, y que también hay un aporte constante de contaminante de 1000 kg/día, que puede provenir de un desagüe, lo cual explicaría el sumando constante +1000).

Si la cantidad inicial de contaminante es de 10000 Kg:

- a) ¿Cuál será la cantidad de contaminante para todo tiempo t?
- b) ¿Cuál será la cantidad de contaminante al cabo de una semana?

____ Solución _

- a) $M(t) = 8000e^{-0.5t} + 2000$.
- b) M(7) = 2241,579 kg.

26.	El plasma sanguíneo se conserva a 4ºC. Para poder utilizarse en una transfusión el plasma tiene que
	alcanzar la temperatura del cuerpo (37ºC). Sabemos que se tardan 45 minutos en alcanzar dicha
	temperatura en un horno a 50°C. ¿Cuánto se tardará si aumentamos la temperatura del horno a 60°?

Solución	
Con el horno a 50° C se tiene $T(t) = -46e^{-0.02808t} + 50$, con el horno a 60° C se tiene $T(t)$	-
$-56e^{-0.02808t} + 60$ y en este horno tardará 31,69 min.	

- ★ 27. El carbono contenido en la materia viva incluye una ínfima proporción del isótopo radioactivo C^{14} , que proviene de los rayos cósmicos de la parte superior de la atmósfera. Gracias a un proceso de intercambio complejo, la materia viva mantiene una proporción constante de C^{14} en su carbono total (esencialmente constituido por el isótopo estable C^{12}). Después de morir, ese intercambio cesa y la cantidad de carbono radioactivo disminuye: pierde 1/8000 de su masa al año. Estos datos permiten determinar el año en que murió un individuo. Se pide:
 - a) Si el análisis de los fragmentos de un esqueleto de un hombre de Neandertal mostró que la proporción de C^{14} era de $6,24\,\%$ de la que hubiera tenido al estar vivo. ¿Cuándo murió el individuo?
 - b) Calcular la vida media del carbono C^{14} , es decir, el tiempo a partir del cual se ha desintegrado la mitad del carbono inicial.
 - 28. Una colonia de salmones vive tranquilamente en una zona costera. La tasa de natalidad es del 2% por día y la de mortalidad del 1% por día. En el instante inicial, la colonia tiene 1000 salmones y ese día llega un tiburón a esa zona costera que se come 15 salmones todos los días. ¿Cuánto tiempo tarda el tiburón en hacer desaparecer a la colonia de salmones?

el tiburón en hacer desaparecer a la colonia de salmones?
Solución
Aproximadamente 110 días.

29.	La sala de disección de un forense se mantiene fría a una temperatura constante de $5^{\circ}C$. Mientras se
	encontraba realizando la autopsia de una víctima de asesinato, el forense es asesinado y el cuerpo de la
	víctima robado. A las 10 de la mañana el ayudante el forense descubre su cadáver a una temperatura
	de $23^{\circ}C$ y llama a la policía. A medio día llega ésta y comprueba que la temperatura del cadáver es
	de $18'5^{\circ}C$. Supuesto que el forense tenía en vida una temperatura normal de $37^{\circ}C$, ¿a qué hora fue
	asesinado?
	Corverón

de 10 0 e : Sapasso que el ferense tema en trada ana temperatura normal de 0, e, ça que nora ra
asesinado?
Solución
Fue asesinado a las 6 de la mañana aproximadamente.

3. Trigonometría

30.	¿Es posible construir un triángulo de lados 70cm, 60cm y 100cm? Justifica la respuesta.
	Solución
	Si.

31. Dado el siguiente triángulo rectángulo,

- a) Calcular sus ángulos en radianes.
- b) Calcular el valor del lado BC.

____ Solución ____

- a) $\alpha = 0.64$ rad, $\beta = \pi/2$ rad y $\gamma = 0.93$ rad.
- b) 6.

32. Dado el siguiente triángulo rectángulo,

- a) Calcular el ángulo γ en radianes.
- b) Calcular la longitud de sus lados AB y BC.
- c) Calcular su área.

____ Solución ____

- a) $\gamma = 60$ rad.
- b) $|AB| = 6 \text{ y } |BC| = \sqrt{48}$.
- c) $3\sqrt{48}$.

33. Calcular la longitud de los lados del triángulo rectángulo siguiente si el área es 25.

Solución	
$x = 5 \text{ y } h = 5\sqrt{5}.$	
x = 0 y $n = 0$ v 0.	

34. Dado el siguiente triángulo,

demostrar las siguientes igualdades:

- $a) \ \frac{AD}{CD} = \frac{CD}{DB}.$
- b) $AC^2 = AB \cdot AD$.
- c) $BC^2 = AB \cdot DB$.
- $d)\ AC^2+BC^2=AB^2$ (teorema de Pitágoras).

35.	Desde un barco se avista la luz de un faro sobre un acantilado con un ángulo de 30° sobre la línea de
	horizonte, y tras alejarse 1 km el ángulo de la visual es de 10°. ¿A qué altura sobre el nivel del ma
	está la luz del faro?
	Solución
	250 m.

36.	Desde lo alto de un edificio de 100 metros se observa la base de otro edificio con un ángulo de 20° y
	su punto más alto con un ángulo de 10 grados. ¿Cuál es la altura de segundo edificio?
	Solución
	148,45 m.

lguna sobre un obelisco. Más tarde, el mismo día y a la misma hora observó que en Alejandría lo	S
ayos del sol proyectaban una sombra de 1,263 m al caer sobre un obelisco de 10 m. Calcular el radi	О
e la tierra con estos datos, sabiendo que la distancia entre Syene y Alejandría en línea recta es d $00~\mathrm{km}$ aproximadamente.	e
Solución	_
366 m.	

37. En el siglo III a.C. Eratóstenes observó que en su ciudad Syene los rayos del sol no provocaban sombra

38.	Un avión se aproxima al aeropuerto de aterrizaje con un una altura de avión se encuentra a una altura
	de 1500 metros. Desde lo alto de la torre de control se observa el avión con un ángulo de 30° sobre la
	horizontal. ¿A qué distancia se encuentra el avión de la base de la torre de control si la torre mide 50
	m?
	Solución
	6366 m.

39. Dado el siguiente triángulo,

- a) Calcular los ángulos α , β y el lado b.
- b) Calcular su área.

____ Solución ____

- a) $\alpha = 36,22, \, \beta = 63,78 \text{ y } b = 9,11.$
- b) 26,91.

40. Dado el siguiente triángulo,

- a) Calcular los ángulos α , β y el lado c.
- b) Calcular su área.

____ Solución __

- a) $\alpha = 42,96, \beta = 57,04 \text{ y } b = 8,67.$
- b) 18,18.

Nota: Los problemas con la marca (\bigstar) son problemas de exámenes de otros años.