Appendix A:

Basic Statistical Distributions

Discrete Distributions $\mathbf{A.1}$

A.1.1 Finite discrete distribution

 $X \sim \text{FDiscrete}_n(\boldsymbol{x}, \boldsymbol{p}), \ \boldsymbol{x} = (x_1, \dots, x_n)^\top, \ \boldsymbol{p} = (p_1, \dots, p_n)^\top \in \mathbb{T}_n = \{(p_1, \dots, p_n): \ p_i > 0, \sum_{i=1}^n p_i = 1\}.$ Notation:

 $Pr(X = x_i) = p_i, \quad i = 1, ..., n.$ Density:

 $E(X) = \sum_{i=1}^{n} x_i p_i$ and $Var(X) = \sum_{i=1}^{n} x_i^2 p_i - (\sum_{i=1}^{n} x_i p_i)^2$. Moments:

Note: The uniform discrete distribution is a special case of the finite

discrete distribution with $p_i = 1/n$ for all i.

Sampling: sample(x, size, replace = FALSE, prob = NULL) takes a

sample of the specified size from the elements of x using either

with or without replacement.

Examples: > sample(c(0,1), 100, replace= T, prob=c(0.8, 0.2))

> sample(1:20, 4) # the default: replace= F

A.1.2 Hypergeometric distribution

 $X \sim \text{Hgeometric}(m, n, k), m, n, k \text{ are positive integers.}$ Notation:

Hgeometric $(x|m,n,k) = \binom{m}{x} \binom{n}{k-x} / \binom{m+n}{k}$, where $x = \max(0,k-n), \ldots, \min(m,k)$. Density:

E(X) = km/N' and $Var(X) = kmn(N'-k)/[N'^{2}(N'-1)],$ Moments:

where N' = m + n.

Computing: > prod(5:1) = 5!

> prod(20:16) = $20 \times 19 \times 18 \times 17 \times 16$

> choose(40,5) $=\binom{40}{5}$

Functions: dhyper(x, m, n, k)
phyper(q, m, n, k)
qhyper(p, m, n, k)

rhyper(nn, m, n, k)

A.1.3 Poisson distribution

Notation: $X \sim \text{Poisson}(\lambda), \lambda > 0$

Density: Poisson $(x|\lambda) = \lambda^x e^{-\lambda}/x!, x = 0, 1, \dots, \infty.$

Moments: $E(X) = \lambda$ and $Var(X) = \lambda$.

Properties: • If $\{X_i\}_{i=1}^n \stackrel{\text{ind}}{\sim} \operatorname{Poisson}(\lambda_i)$, then

 $\sum_{i=1}^{n} X_{i} \sim \operatorname{Poisson}(\sum_{i=1}^{n} \lambda_{i}), \text{ and}$ $(X_{1}, \dots, X_{n}) | (\sum_{i=1}^{n} X_{i} = m) \sim \operatorname{Multinomial}_{n}(m, \boldsymbol{p}),$

where $\boldsymbol{p} = (\lambda_1, \dots, \lambda_n)^{\top} / \sum_{i=1}^n \lambda_i$;

• The Poisson and gamma distribution have relationship:

$$\sum_{x=k}^{\infty} \text{Poisson}(x|\lambda) = \int_{0}^{\lambda} \text{Gamma}(y|k,1) \, dy.$$

Functions: dpois(x, lambda)

ppois(q, lambda)

qpois(p, lambda)

rpois(n, lambda)

> x <- 0:20

> plot(x, dpois(x, 4), type="h") # histogram-like
Figure A.1

A.1.4 Binomial distribution

Notation: $X \sim \text{Binomial}(n, p), n \text{ is a positive integer, } p \in (0, 1).$

Density: Binomial $(x|n, p) = \binom{n}{x} p^x (1-p)^{n-x}, x = 0, 1, ..., n.$

Moments: E(X) = np and Var(X) = np(1-p).

Figure A.1 Point probabilities of Poisson(4).

Figure A.2 Point probabilities of Binomial(20, 0.4).

Properties: • If $\{X_i\}_{i=1}^d \stackrel{\text{ind}}{\sim} \text{Binomial}(n_i, p)$, then

$$\sum_{i=1}^{d} X_i \sim \text{Binomial}(\sum_{i=1}^{d} n_i, p);$$

• The binomial and beta distribution have relationship:

$$\sum_{x=0}^{k} \text{Binomial}(x|n,p) = \int_{0}^{1-p} \text{Beta}(x|n-k,k+1) \, dx,$$

where $0 \leqslant k \leqslant n$.

Note: When n = 1, binomial distribution is called *Bernoulli* distribu-

Functions: dbinom(x, size, prob) # size= n, prob= p

> pbinom(q, size, prob) qbinom(p, size, prob) rbinom(nn, size, prob)

> x <- 0:20

> plot(x, dbinom(x, size=20, prob=0.4), type="h")

A.1.5 Multinomial distribution

 $\mathbf{x} = (X_1, \dots, X_d)^{\top} \sim \text{Multinomial}(n; p_1, \dots, p_d) \text{ or }$ Notation:

 $\mathbf{x} = (X_1, \dots, X_d)^{\mathsf{T}} \sim \text{Multinomial}_d(n, \boldsymbol{p}),$

n is a positive integer, $\boldsymbol{p} = (p_1, \dots, p_d)^{\top} \in \mathbb{T}_d$,

 $\text{Multinomial}_d(\boldsymbol{x}|n,\boldsymbol{p}) = \binom{n}{x_1,\ldots,x_d} \prod_{i=1}^d p_i^{x_i},$ Density:

 $\mathbf{x} = (x_1, \dots, x_d)^{\mathsf{T}}, \ x_i \geqslant 0, \ \sum_{i=1}^d x_i = n.$

 $E(X_i) = np_i$, $Var(X_i) = np_i(1-p_i)$ and $Cov(X_i, X_i) = -np_ip_i$. Moments:

Note: The binomial distribution is a special case of the multinomial

with d=2.

dmultinom(x, size = NULL, prob) # size= n, prob= pFunctions:

rmultinom(nn, size, prob)

A.2 Continuous Distributions

A.2.1 Uniform distribution

Notation: $X \sim U(a, b)$ or $X \sim U[a, b], a < b$

Density: $U(x|a,b) = 1/(b-a), x \in (a,b) \text{ or } x \in [a,b].$

Moments: $E(X) = (a + b)/2 \text{ and } Var(X) = (b - a)^2/12.$

Properties: If $Y \sim U(0,1)$, then $X = a + (b-a)Y \sim U(a,b)$.

Functions: dunif(x, min= 0, max= 1) # min= a, max= b

punif(q, min= 0, max= 1)
qunif(p, min= 0, max= 1)

runif(n, min= 0, max= 1)

A.2.2 Beta distribution

Notation: $X \sim \text{Beta}(a, b), a > 0, b > 0.$

Density: Beta $(x|a,b) = x^{a-1}(1-x)^{b-1}/B(a,b), 0 < x < 1.$

Moments: E(X) = a/(a+b), $E(X^2) = a(a+1)/[(a+b)(a+b+1)]$ and

 $Var(X) = ab/[(a+b)^2(a+b+1)].$

Properties: If $Y_1 \sim \text{Gamma}(a,1)$, $Y_2 \sim \text{Gamma}(b,1)$, and $Y_1 \perp \!\!\! \perp Y_2$, then

 $Y_1/(Y_1 + Y_2) \sim \text{Beta}(a, b).$

Note: When a = b = 1, Beta(1, 1) = U(0, 1).

Functions: dbeta(x, shape1, shape2) # shape1= a, shape2= b

pbeta(q, shape1, shape2)
qbeta(p, shape1, shape2)
rbeta(n, shape1, shape2)

A.2.3 Exponential distribution

Notation: $X \sim \text{Exponential}(\beta)$, rate parameter $\beta > 0$.

Density: Exponential $(x|\beta) = \beta e^{-\beta x}, x \ge 0.$

Moments: $E(X) = 1/\beta$ and $Var(X) = 1/\beta^2$.

Properties: • If $U \sim U(0,1)$, then $-\log(U)/\beta \sim \text{Exponential}(\beta)$;

• If $\{X_i\}_{i=1}^n \stackrel{\text{iid}}{\sim} \text{Exponential}(\beta)$, then $\sum_{i=1}^n X_i \sim \text{Gamma}(n,\beta)$.

Functions: dexp(x, rate= 1) # rate= β

pexp(q, rate= 1)

qexp(p, rate= 1)

rexp(n, rate= 1)

A.2.4 Gamma distribution

Notation: $X \sim \text{Gamma}(\alpha, \beta)$, shape parameter $\alpha > 0$, rate parameter

 $\beta > 0$.

Density: Gamma $(x|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, x > 0.$

Moments: $E(X) = \alpha/\beta$ and $Var(X) = \alpha/\beta^2$.

Properties: • If $X \sim \text{Gamma}(\alpha, \beta)$ and c > 0, then $cX \sim \text{Gamma}(\alpha, \beta/c)$;

• If $\{X_i\}_{i=1}^n \stackrel{\text{ind}}{\sim} \text{Gamma}(\alpha_i, \beta), \text{ then } \sum X_i \sim \text{Gamma}(\sum \alpha_i, \beta);$

• $\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$, $\Gamma(1) = 1$ and $\Gamma(1/2) = \sqrt{\pi}$.

Note: $Gamma(1, \beta) = Exponential(\beta)$. $Gamma(\nu/2, 1/2) = \chi^2(\nu)$.

Functions: dgamma(x, shape, rate= 1) # shape= α , rate= β

pgamma(q, shape, rate= 1)

qgamma(p, shape, rate= 1)

rgamma(n, shape, rate= 1)

A.2.5 Chi-square distribution

Notation: $X \sim \chi^2(\nu) \equiv \text{Gamma}(\frac{\nu}{2}, \frac{1}{2})$, degrees of freedom $\nu > 0$.

Density: $\chi^2(x|\nu) = \frac{2^{-\nu/2}}{\Gamma(\nu/2)} x^{\nu/2-1} e^{-x/2}, x > 0.$

Moments: $E(X) = \nu$ and $Var(X) = 2\nu$.

Properties: • If $Y \sim N(0,1)$, then $X = Y^2 \sim \chi^2(1)$;

• If $\{X_j\}_{j=1}^m \stackrel{\text{ind}}{\sim} \chi^2(\nu_j)$, then $\sum_{j=1}^m X_j \sim \chi^2(\sum_{j=1}^m \nu_j)$.

```
Functions: dchisq(x, df) # df = nu
    pchisq(q, df)
    qchisq(p, df)
    rchisq(nn, df)
```

```
> x <- seq(0.01, 25, 0.1)

> par(mfrow=c(2, 2))  # Figure A.3

> curve(dchisq(x, df= 1), from=0.1, to = 25)

> curve(dchisq(x, df= 2), from=0.1, to = 25)

> curve(dchisq(x, df= 3), from=0.1, to = 25)

> curve(dchisq(x, df= 4), from=0.1, to = 25)
```

Figure A.3 Density functions of $\chi^2(\nu)$ for various ν . (i) $\nu = 1$; (ii) $\nu = 2$; (iii) $\nu = 3$; (iv) $\nu = 4$.

A.2.6 t- or Student's t-distribution

Notation: $X \sim t(\nu), \ \nu > 0$ is a positive real number.

Density:
$$t(x|\nu) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\pi\nu} \Gamma(\frac{\nu}{2})} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}, \quad -\infty < x < \infty.$$

Moments:
$$E(X) = 0$$
 (if $\nu > 1$) and $Var(X) = \frac{\nu}{\nu - 2}$ (if $\nu > 2$).

Properties: Let $Z \sim N(0,1), Y \sim \chi^2(\nu)$, and $Z \perp \!\!\! \perp Y$, then

$$\frac{Z}{\sqrt{Y/\nu}} \sim t(\nu).$$

Note: When $\nu = 1$, $t(\nu) = t(1)$ is called *standard Cauchy distribution*, whose mean and variance are undefined.

A.2.7 F or Fisher's F-distribution

Notation: $X \sim F(n_1, n_2), n_1, n_2$ are positive integers.

Density:
$$F(x|n_1, n_2) = \frac{(n_1/n_2)^{n_1/2}}{B(\frac{n_1}{2}, \frac{n_2}{2})} x^{\frac{n_1}{2} - 1} (1 + \frac{n_1 x}{n_2})^{-\frac{n_1 + n_2}{2}}, x > 0.$$

Moments:
$$E(X) = \frac{n_2}{n_2 - 2}$$
 (if $n_2 > 2$), $Var(X) = \frac{2n_2^2(n_1 + n_2 - 2)}{n_1(n_2 - 4)(n_2 - 2)^2}$ (if $n_2 > 4$).

Properties: Let $Y_i \sim \chi^2(n_i)$, i = 1, 2, and $Y_1 \perp \!\!\!\perp Y_2$, then

$$\frac{Y_1/n_1}{Y_2/n_2} \sim F(n_1, n_2).$$

A.2.8 Normal or Gaussian distribution

Notation: $X \sim N(\mu, \sigma^2), -\infty < \mu < \infty, \sigma^2 > 0.$

Density: $N(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], -\infty < x < \infty.$

Moments: $E(X) = \mu$ and $Var(X) = \sigma^2$.

Properties: • If $\{X_i\} \stackrel{\text{ind}}{\sim} N(\mu_i, \sigma_i^2)$, then $\sum a_i X_i \sim N(\sum a_i \mu_i, \sum a_i^2 \sigma_i^2)$;

• If $X_1|X_2 \sim N(X_2, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$, then

$$X_1 \sim N(\mu_2, \sigma_1^2 + \sigma_2^2).$$

Functions: dnorm(x, mean=0, sd= 1) # mean= μ , sd= σ

pnorm(q, mean=0, sd= 1)

qnorm(p, mean=0, sd= 1)

rnorm(n, mean=0, sd= 1)

> x < - seq(-4, 4, 0.1)

> plot(x, dnorm(x), type="l",

ylab="Density function of N(0,1)")

Note that this is the letter "l", not the digit "1"

Figure A.4

An alternative way of creating the plot is

> curve(dnorm(x), from=-4, to = 4,

ylab="Density function of N(0,1)")

A.2.9 Multivariate normal or Gaussian distribution

Notation: $\mathbf{x} = (X_1, \dots, X_d)^{\top} \sim N_d(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \text{ or } N(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \, \boldsymbol{\mu} \in \mathbb{R}^d, \, \boldsymbol{\Sigma} > 0.$

Density: $N_d(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(\sqrt{2\pi})^d |\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\}, \, \boldsymbol{x} \in \mathbb{R}^d.$

Moments: $E(\mathbf{x}) = \boldsymbol{\mu}$ and $Var(\mathbf{x}) = \boldsymbol{\Sigma}$.

Functions: Producing one or more samples from the specified multivariate normal distribution

mvrnorm(n= 1, mu, Sigma, tol= 1e-6, empirical= F)
rmvn(n, mu, V)

Figure A.4 Density functions of N(0,1).