MEMS Resonators for High Frequency Applications

Prof. T.K. Bhattacharyya

Dept. of E&ECE, IIT Kharagpur

E&ECE Department IIT Kharagpur

Motivation

Miniaturization of Radio Frequency Transceivers

A. Maxey, "Switched-tank VCO designs and single crystal silicon contour-mode disk Thesis, Virginia Polytechnic esonators for use in Multiband Radio Frequency Sources," M. nstitute and State University, 2004. Source: C.

Contents

- Introduction: Resonators
- Micromechanical Resonators: Modes
- Literature Review
- Why Extensional Mode Resonators?
- Disk Resonators: Structure and operation
- Resonance Frequency Design
- Disk Resonators: Simulation
- Alternative Resonator Designs
- Disk Resonators: Fabrication and characterization
- Summary and conclusions
- Bibliography
- List of publications
- Future works
- Appendices

Page ■ 3

Introduction: Resonators

 Naturally oscillates at some frequencies (resonant frequencies) with greater amplitude than at others

- Used to:
 - generate signals of precise frequencies
 - select specific frequencies from a signal
- Key elements in the realization of filters and oscillators
- Variants:
 - Piezoelectric quartz crystal
 - On-chip tank
 - Microelectromechanical Resonato

Micromechanical Resonators: Modes

Modes of vibration:

Micromechanical Resonators: Literature Review

	Resonant structure	Material	Dimension(s)	freq.	Q	Schematic diagram
	Clamped-clamped beam (flexural mode) Lin et al.(2004)	Poly Silicon (2 μm thick)	Beam length = 40 μm, width = 8 μm	9.34 MHz	3,100	Anchor CC-Beam V_P $V_I \bigcirc V_I \bigcirc $
	Clamped-clamped beam (flexural mode) Pourkamali et al.(2003)	Single crystal silicon (20 μm thick)	Beam length = 700 μm, width = 6 μm	80 kHz	74,000	Submicron gaps Height SCS beam
			Beam length = 200 μm, width = 10 μm	3.2 MHz	4,500	Width Polysilison electrodes
	Free-free beam (flexural mode) Wang et al.(2000)	Poly silicon (2.05 μm thick)	Beam length = 13.1 μm, width = 6 μm. Supporting beam length = 10.3 μm, width = 1 μm	92 MHz	7,450	Metal Electrodes Nodes Anchors Volume 1
• 6	Comb drive (flexural mode) Cioffi and Hsu (2005)	Single crystal silicon (30 µm thick)	No. of comb fingers = 500, finger length = 10 μm, finger overlap = 4 μm	32 kHz	50,000	Folded-Beam Electrostatic Comb Suspension X L I I I I I I I I I I I I I I I I I I

Page ■

Micromechanical Resonators: Literature Review

Square-plate extensional (bulk acoustic mode) Lee et al.(2008)	Single crystal silicon (25 µm thick)	Side length = 2 mm	2.18 MHz	1,160,000	Motional
Square plate Lame (bulk) Bhave et al.(2005)	Poly silicon carbide (2 μm thick)	Side length ≈ 35 μm	173 MHz	9,300	
Wineglass Disk (bulk Acoustic mode) YW. Lin et al.(2004)	Poly silicon (3 μm thick)	Disk radius = 32 μm	60 MHz	48,000	Nodal Axis Anchor Anchor B Output Electrode Anchor
LEE and Seshia(2009)	Single crystal silicon (25 µm thick)	Disk radius = 400 μm	5.43 MHz	1,900,000	Input Electrode Anchor Output Electrode Anchor

Micromechanical Resonators: Literature Review

Radial contour disk (bulk acoustic) Clark et al.(2005)	Poly silicon (2 μm thick)	Disk radius = 16.7 μm	156 MHz	9,290	Input Electrode Anchor Capacitive Gap V_0 $V_P \stackrel{\perp}{=} I$ Output Electrode
Circular disk (flexural Mode) Huang et al.(2008)	Nickel (3 μm thick)	Disk radius = 15 μm	11.6 MHz	1,651	Anchor Support Beam Output Electrode Input II Electrode V _i Input II I
Square plate (flexural mode) Demirici and Nguyen(2006)	Poly silicon (2.2 μm thick)	Side length = 16 μm	68 MHz	15,000	Anchor Anchor Input Electrode Vi Quiput Electrode To Plate Structure Anchor Anchor Vo Output Electrode to Plate Structure
Circular ring (contour mode) SS. Li et al.(2004) Page • 8	Poly silicon (2 μm thick)	Radii: r _i =11.8 μm, and r _o =18.7 μm	1.2 GHz	15,000	Anchor Stem Support Beam Drive Electrode V R R R R R R R R R R R R

Why Extensional Mode Resonators?

- Extensional mode resonators are much stiffer.
- Much higher frequencies for the same volume of the mechanical structure

Bulk Acoustic Mode of a Disk

- (a) Radial-contour (or, breathing) mode where the shape of the disk expands and contracts equally in all the lateral surface.
- (b) Elliptical (or, wine-glass) mode where the disk expands along one axis and contracts in the orthogonal axis forming two alternate and perpendicular ellipses per cycle of vibration with four nodal points at the perimeter.

Radial-contour modes provide higher effective stiffness and hence, are preferred.

Popular Structural Material for Micromechanical Resonators

Material	Young's modulus E (GPa)	Density ρ (kg m-3)	Poisson's ratio σ	Deposition temperature (°C)	Electrical conductivity (107 Ω-1 m-1)
Silicon <110>	165	2,330	0.28	1,000	0.00023
Polysilicon	158	2,300	0.226	588	0.001
Polydiamond	1,144	3,500	0.069	800	0.001
Silicon carbide	carbide 415		0.192	800	0.00083
PolySi _{0.35} Ge _{0.65}	146	4,280	0.23	450	0.005
Nickel	180	8,900	0.31	50	1.43

Objectives

- Design, simulation and characterization of MEMS based radial contour mode disk resonators using surface micromachined poly silicon, electroplated nickel and single crystal silicon (SOI) as structural material for high frequency applications.
- 2. Design and analysis of alternative extensional mode resonator geometries.
- 3. Fabrication of the structures using commercial Multi User MEMS Processes (MUMPs®).
- 4. Performance comparison of the disk resonators realized using different structural material.
- 5. Performance Comparison of the alternative extensional mode geometries.
- 6. Realization of MEMS based bandpass filters using laterally clamped and vertically stacked radial-contour mode disk resonators as a proof of concept.

Disk Resonators: Structure

Disk Resonators: Operation

$$f_{_{0}} = \frac{\lambda_{i}}{2\pi R} \sqrt{\frac{E}{\rho(1-\sigma^{2})}}$$

$$F_{i} = V_{dc} \left(\frac{\partial C_{1}}{\partial r} \right) v_{i}$$

$$\Gamma_{i} = V_{dc} / \partial r / V_{i}$$
 $\Gamma_{0} = V_{dc} / \partial r / \partial r$

Page • 14

Same free

V_{dc} applied to disk

Sinusoidal v_i applied to disk

Radial electrostatic force F_i on disk

Expansion and contraction of disk

Change in disk to o/p-electrode capacitance

Output motional current i_a

Appendix D

Disk Resonators: Electrical Model

$$\begin{bmatrix} \mathbf{i}_0 \\ \mathbf{v}_{\mathbf{i}} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{n} \\ \frac{1}{\mathbf{n}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{F} \\ \dot{\mathbf{r}} \end{bmatrix}$$

$$n_k = V_{\text{dc}} \, \frac{\partial C_k}{\partial r} = V_{\text{dc}} \, \frac{\partial}{\partial r} \bigg(\frac{\epsilon A_k}{d_0 - r} \bigg) \approx V_{\text{dc}} \bigg(\frac{\epsilon A_k}{d_0^2} \bigg) \quad (\text{for, } r << d)$$

$$L_{e} = \left(\frac{l_{e}}{n^{2}}\right)$$

$$C_e = (n^2 c_e)$$

$$R_e = \left(\frac{r_e}{n^2}\right)$$

$$R_e = \left(\frac{1.18 \times 10^{29}}{\text{QV}_{dc}^2}\right) \left(\frac{\text{d}^4}{\text{Rt}}\right)$$

Appendix C: Mechanical Model

$$\begin{split} \boldsymbol{m}_{\mathrm{eff}} &= \frac{2\boldsymbol{E}_{\mathrm{k}}}{\boldsymbol{v}^{2}\left(\boldsymbol{R}\right)} = \frac{2\pi\rho t \int_{0}^{\boldsymbol{R}}\boldsymbol{r}\,\boldsymbol{J}_{1}(\boldsymbol{h}\boldsymbol{r})^{2}\;\boldsymbol{d}\boldsymbol{r}}{\boldsymbol{J}_{1}(\boldsymbol{h}\boldsymbol{R})^{2}} = \pi\rho t\boldsymbol{R}^{2} \Bigg[1 - \frac{\boldsymbol{J}_{0}(\boldsymbol{h}\boldsymbol{R})\boldsymbol{J}_{2}(\boldsymbol{h}\boldsymbol{R})}{\boldsymbol{J}_{1}(\boldsymbol{h}\boldsymbol{R})^{2}} \Bigg] \\ & \text{with, } \boldsymbol{h} = \boldsymbol{\omega}_{0}\,\sqrt{\frac{\rho}{\left(\frac{\boldsymbol{E}}{1+\sigma}\right) + \left(\frac{\boldsymbol{E}\sigma}{1-\sigma^{2}}\right)}} = \frac{\lambda_{i}}{\boldsymbol{R}} \end{split}$$

$$\omega_0 = \sqrt{k_{eff}/m_{eff}}$$

$$b_{eff} = \frac{\omega_{o} m_{eff}}{Q} = \frac{\sqrt{k_{eff} m_{eff}}}{Q}$$

Page ■ 16

Disk Resonators: Equivalent Model

Electrical quantity	Mechanical analog			
Voltage (V)	Force (F)			
Current (I)	Velocity (v)			
Resistance (R)	Damping (b)			
Capacitance (C)	Compliance (1/k)			
Inductance (L)	Mass (m)			

Resonance Frequency Design

Fig.: Variation of breathing mode resonance frequencies with disk radius using nickel as structural material.

Resonance Frequency Design

Fig.: Variation of first radial contour mode frequencies with disk radius

Disk Resonators: Equivalent Model

Disk Resonator: Anchored at the Center

Fig: Bottom Anchored Disk

- The disk is suspended by a narrow cylindrical stem (anchor).
- V_{dc} applied to disk through the anchor

The Resonant frequency can be calculated as:

$$f_{_{0}} = \frac{\lambda_{i}}{2\pi R} \sqrt{\frac{E}{\rho(1-\sigma^{2})}}$$

R → Radius of the disk

E → Young's modulus

 $\rho \rightarrow$ mass density

 $\sigma \rightarrow$ Poisson's ratio

Disk Resonator: Side anchored

This design is compatible with the fabrication processes which has a provision of a trench beneath the structural layer.

To minimize the energy loss of the vibration through the anchors, a quarter wavelength long beams should be used. The support-beam length is thus given as:

$$L_s = \frac{1}{4f_0} \sqrt{\frac{E}{\rho}}$$

Disk Resonator Dimensions

Design Parameters	Centrally anchored(Ni)	Centrally anchored(Pol y Si)	Side anchored(Ni)	Side anchored(Poly Si)	Side anchored(SOI)
Analytical resonance frequency(MHz)		27.12	15.50	27.12	27.12
Radius of the disk (μm)	Radius of the disk (µm) 100		100	99	104
Thickness of the disk (μm)	gth of the support		20.5*	2*	25.5*
Length of the support beam(μm)			72.5	76	76
Thickness of the support beam (µm)			20.5*	2*	25*
Disk to electrode gap (μm)	9*	3*	9*	3*	3*

Disk Resonators: Modal Simulation (Ni based)

Disk Resonators: Modal Simulation (Poly Si based)

Disk Resonators: Modal Simulation (SOI)

Disk Resonators: Frequency Response

Structural response of the Ni disk resonator subjected to a harmonic excitation:

Alternative geometries: LBR

Page

- 1. This type of structure is therefore the easiest to design and realize for a certain fabrication process.
- 2. Not a suitable configuration as the transduction area of these beams are very limited.

Alternative geometries: Beam with Flanges

- For a certain fabrication process where the minimum gap and the thickness of the structural material is predefined, the only way to increase the overlap between the resonator and the electrode is by increasing the width of the resonator.
- 2. Difficulty to reach higher frequencies because it is more difficult to design the beam

Alternative geometries: PBR

- 1. This type of MEM resonator is composed of a rectangular membrane fragmented by parallel rectangular holes.
- 2. Has the unique feature that the resonance frequency is governed by the geometry of a single beam (mainly, its length) while the transduction area is related to the number of connected beams or the.

This design is the best option for realizing longitudinal beam based resonators for high frequency applications.

Alternative geometries : Square Plate

- 1. Easier to integrate in a process as the design only has straight edges.
- 2. Air-gap can be reduced a bit here in comparison to that for a circular-disk resonator fabricated using the same process.
- 3. The main disadvantage of these resonators is that the maximum transduction occur at the four corners than the sides of the plate.

Alternative geometries: Hexagonal Plate

- 1. The extensional mode vibration pattern of the hexagonal geometry is very similar in nature with the disk structure.
- 2. The transduction gap between the resonator and electrodes can be reduced for the hexagonal structure following the design rules since it has straight edges; and therefore, shows enhanced performance

Very attractive and practical alternative to the widely demonstrated micromechanical disk resonators, as they provide enhanced performance for a given specification.

Fabrication Using PolyMUMPs

 PolyMUMPs process file from CoventorWare foundry processes library

Micrographs of Fabricated Devices

Bottom Anchored Disk

Disk Supported at Periphery

Micrographs of Fabricated Devices (Alternative Geometries)

MetalMUMPs Micromachining Process

- (1) Electroplated nickel is used as the primary structural material and electrical interconnect layer
- (2) Doped polysilicon can be used for resistors, additional mechanical structures, and/or cross-over electrical routing.
- (3) Silicon nitride is used as an electrical isolation layer
- (4) Deposited oxide is used for the sacrificial layers
- (5) A trench layer in the silicon substrate can be incorporated for additional thermal and electrical isolation

Substrate		Oxide 1		Poly		Oxide 2		Metal
Isolation Oxide		Nitride 1		Nitride 2		Anchor Metal		Sidewall Metal
Photoresist								

Micrographs of Fabricated Devices

Bottom Anchored Disk

Disk Supported at Periphery

SOI Micromachining Process

- (1) A silicon-on-insulator (SOI) wafer is used as the starting substrate:
 - •Silicon thickness:10 ± 1 mm or 25 ± 1 μm
 - •Oxide thickness:1 ± 0.05 mm (10 mm) or 2 ± 0.05 mm (25 mm)
 - •Handle wafer (Substrate) thickness:400 ± 5 mm
- (2) The Silicon layer is patterned and etched down to the Oxide layer. This layer can be used for mechanical structures, resistor structures, and/or electrical routing.
- (3) The Substrate can be patterned and etched from the "bottom" side to the Oxide layer. This allows for through-hole structures.
- (4) A shadow-masked metal process is used to provide coarse Metal features such as bond pads, electrical routing, and optical mirror surfaces.

SOI Disk Resonators: 3D Structure

1 µm thick Oxide layer underneath the SOI layer

Micrographs of Fabricated Device

Characterization: Material

From the EDS spectrum, it can be clearly seen that the structural layer of the MetalMUMPs® resonators consist of both gold and nickel and for PolyMUMPs® resonators the structural layer consists of only silicon.

Fig. : EDS spectrum of the structural layer of the MetalMUMPs® (a) and PolyMUMPs® (b) resonators

Characterization: Surface Roughness Measurements

The measured roughness are 145 nm for the gold layer (nickel based process) and 12.4 nm for the polysilicon layer(polysilicon based process) and 2.01 nm for the SOI layer.

Fig: 3D AFM image of the surface of the gold layer of MetalMUMPs (a) and surface of the POLY1 layer of PolyMUMPs (b).

Characterization: 3D Topography

Fig. : 3D view of the measured topography of the nickel based (a) and polysilicon based (b) disk.

Characterization: 3D Topography

Fig.: 3D view of the measured topography of the square (a) and hexagonal (b) geometry

Mechanical Characterization

Laser Doppler Vibrometry (LDV) of a disk resonator:

This confirms the proper release of the structure

Mechanical Characterization

LDV of a side anchored disk resonator

Mechanical Characterization (PBR)

Mechanical Characterization

LDV of Square and Hexagonal resonator

Electrical Characterization

- For the electrical characterization, a typical two-port biasing and excitation scheme was used.
- The fabricated resonators were placed in a RF probe station (Cascade Microtech Inc., USA) and an Agilent network analyzer was used to test their capacitive transduction characteristics.
- dc-bias was applied through the anchors

Nickel Resonators: Transmission Characteristics (air)

Page ■ 50

PolysiliconResonators: Transmission Characteristics (air)

Page ■ 51

SOI Resonators : Transmission Characteristics (air)

Nickel Resonators: Transmission Characteristics (vacuum)

Page ■ 53

Performance summary of the disk resonators.

Parameter	Poly Si Based bottom anchored disk	Poly Si Based side anchored disk	Ni Based bottom anchored disk	Ni Based side anchored disk	SOI Based side anchored disk
Radius (μm)	99	99	100	100	104
Analytical resonance frequency, f_0 . (MHz)	27.12	27.12	15.50	15.50	27.12
Simulated resonance frequency, f_0 . (MHz)	27.72	27.71	15.76	15.015	27.93
Measured resonance frequency, f_0 . (MHz)	25.1	26.2	15.35	14.93	27.2
Applied dc Bias, V _{dc} ·(V)	15	15	40	40	40
Q (simulated)	~68	~62	~101	~96	~123
Q _{Air} (measured)	53.4	48.2	77.5	73.8	102
Q _{vacuum} 54 (measured)	59.7	53.1	82	77.6	116

Influence of pressure on Q value

Value of Q factor shows very little change below 10 mbar

Frequency Stability: Temperature dependence

Frequency Stability: DC bias dependence

Plot of measured resonance frequency versus DC bias voltage for Polysilicon bottom anchored disk

Performance summary of the alternative extensional mode geometries (Poly Si as structural material)

Parameter	Longitudinal beam	Beam with flanges	Parallel beam resonator	Square plate resonator	Hexagonal plate resonator
Analytical resonance frequency, f ₀ . (MHz)	27.12		28.9	27.12	27.12
Simulated resonance frequency, f_0 . (MHz)	28.09	25.81	29.2	27.83	27.75
Measured resonance frequency, f_0 . (MHz)	27.62	25.35	28.89	27.1	25.22
Applied dc Bias, V _{dc} .(V)	15	15	15	15	15
Fabricated Devices	X) _{[2} = (67.100 a) (her 202 b) (her 20 a) (her 202 b) (her	10 pm 66 + 1000 Reg + 101 1 to 10 100 100 100 100 100 100 100 100 100	TO per controller based on the	22 Jpm	30 pm 101 100 married 100 marr
Q _{Air} (measured)	31.5	35.2	39	44.3	61.7

Summary: Fabrication processes at a glance

Features	Polysilicon based Process	Nickel based Process	SOI Process
Acoustic Velocity (m/s)	Acoustic Velocity (m/s) ~8300		~8400
Formation of structural layer	LPCVD	Electroplating	Etching of SOI wafers
Deposition Temperature (⁰ C)	~ 600 °C	~ 50 °C	
Transduction Gap (μm)	3	9	3
Thickness of the structural layer (μm)	2	20.5	25
Fabricated Devices	And the state that the state of	11 600 ED-100- 220	
Q (Air)	53.4 48.2	73.8 77.5	102
Q (Vacuum)	59.7 53.1	77.5 82	116

Disk Resonator-based BPF

Entity	Value	
Disk radius (R)	50 μm	
Disk and coupler thickness (t)	2.0 μm	
Stem radius (r)	2.0 μm	
Coupler length (L _s)	38.5 μm	
Coupler width (W _s)	2.98 µm	
Resonator spring constant (k _r)	3.150e6 N/m	
Coupler spring constant (K_{sij})	3.83246e4 N/m	
Resonance frequencies	54.303, 54.758 & 55.252 MHz	

Some parameters of a PolyMUMPs based BPF

No. of modes = no. of coupled resonators

Un-terminated harmonic response of triple disk BPF

Disk Resonator-based BPF: Vertical Stacking

Entity	Value	
Disk Radius	99 μm	
Thickness of the upper disk	1.5 μm	
Thickness of the lower disk	2.0 μm	
Height of the coupling stem	0.75 μm	
Height of the bottom anchor	2.0 μm	
Disk to electrode gap	3.0 μm	
Resonance frequencies	27.654 & 28.068 MHz	

Page **■** 61

Conclusions

- 1. MEMS based radial contour mode disk resonators using surface micromachined poly silicon, electroplated nickel and single crystal silicon (SOI) as structural material were developed. Electrical, material and mechanical characterization of the structures were carried out to analyze their functionality.
- 2. Different extensional mode resonator geometries using polysilicon as structural material were fabricated and characterized. Among them, Hexagonal plate extensional mode geometry provides a better alternative to the disk resonators.
- 3. Performance comparison of the disk resonators realized using different structural material was done. Disk resonators fabricated using SOI (Silicon-on-Insulator) process which has larger structural layer thickness (25µm) and transduction gap (3µm) comparable to the Polysilicon process results in improved performance.
- 4. Feasibility of electrodeposited nickel as a low cost CMOS compatible MEMS functional layer has been studied extensively.
- 5. Attempt was made to develop disk resonator based filter design as a proof of concept.

Future Work : Resonators with higher resonance frequency

Hexagonal resonator with $f_0 = 915 \text{ MHz}$

MEMS on top of CMOS: SiGe MEMS

Process information:

- The SiGeMEMS process can be processed on top of previously processed CMOS wafers.
- Poly-SiGe is used as structural material.
- 500 nm horizontal gaps can be achieved for capacitive devices

Fig: Schematic process flow

Fig: Schematic cross section of the SiGeMEMS process indicating materials, functional parts and the main Page ■ 64 dimensional features

Future Work: Nano resonators

Schematic diagram (a) and SEM (b) of a suspended graphene resonator

Bibliography

- C.T.C Nguyen, "Frequency selective MEMS for miniaturized low-power communication devices," *IEEE Trans. Microwave Theory Tech.*, Vol.47, pp.1486-1503, 1999.
- J. Wang, Z. Ren, and C. T.-C. Nguyen, "1.156-GHz self-aligned vibrating micromechanical disk resonator," *IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control*, vol. 51, pp. 1607–1628, December 2004.
- C. T.C. Nguyen, "MEMS Technology for Timing and Frequency Control," *IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control*, vol. 54, no.2, pp.251–270, February 2007.
- Y.-W. Lin, S. Lee, S.-S. Li, Y. Xie, Z. Ren, and C. T.-C. Nguyen, "Seriesresonant VHF micromechanical resonator reference oscillators," *IEEE Journal of Solid-State Circuits*, vol. 39, pp. 2477–2491, 2004.
- S. Lucyszyn, "Review of radio frequency microelectromechanical systems technology," *IEE Proceedings- Science, Measurement and Technology*, vol. 151, pp. 93–103, 2004.
- J. R. Clark, W. -T. Hsu, M. A. Abdelmoneum, and Clark T.-C. Nguyen, "High-Q UHF Micromechanical Radial-Contour Mode Disk Resonators," *Journal of Microelectromechanical Systems*, vol. 14, no. 6, pp. 1298–1310, 2005.
- R. T. Howe and R. S. Muller, "Polycrystalline silicon micromechanical beams," *Journal of the Electrochemical Society*, vol. 130, pp. 1420–1423, 1983.
- F. D. Bannon, J. R. Clark and C. T. C. Nguyen, "High frequency micromechanical filters," *IEEE Journal of Solid-State Circuits*, vol. 35, pp. 512–526, 2000.
- Y. -W. Lin, S. Lee, S. -S. Li,Y. Xie, Z. Ren, and C.T.-C. Nguyen, "Series resonant VHF micromechanical resonator reference oscillators," *IEEE Journal of Solid-State Circuits*, vol. 39, no. 12, pp. 2477–2491, 2004.
- S. Pourkamali, A. Hashimura, R. Abdolvand, G. K. Ho, A. Erbil, and F. Ayazi, "High-Q single crystal silicon HARPSS capacitive beam resonators with selfaligned sub-100-nm transduction gaps," *Journal of Microelectromechanical Systems*, vol. 12, no. 4, pp. 487–496, 2003.

- K. Wang, A.-C. Wong and C. T.-C. Nguyen, "VHF free-free beam high-Q micromechanical resonators," *Journal of Microelectromechanical Systems*, vol. 9, no. 3, pp. 347–360, 2000.
- W. C. Tang, T.-C. H. Nguyen, and R. T. Howe, "Laterally driven polysilicon resonant microstructures," *Proceedings of the IEEE Micro Electro MechanicalSystems*, Salt Lake City, Utah, February 1989, pp. 53–59.
- K. R. Cioffi and W.-T. Hsu, "32 KHz MEMS-based oscillator for low-power applications," *Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition*, Vancouver, Canada, August 2005, pp.551–558.
- J. E.-Y. Lee, B. Bahreyni, Y. Zhu, and A. A. Seshia, "A Single-Crystal-Silicon Bulk-Acoustic-Mode Microresonator Oscillator," *IEEE Electron Device Letters*, vol. 29, no. 7, pp. 701–703, 2008.
- S. A. Bhave, G. Di, R. Maboudian, and R.T. Howe, "Fully-differential poly-SiC Lame mode resonator and checkerboard filter," *Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems*, Miami, FL, January–February 2005, pp. 223–226.
- Y.-W. Lin, S. Lee, S.-S. Li, Y. Xie, Z. Ren, and C. T.-C. Nguyen, "60-MHz wine glass micromechanical disk reference oscillator," *Digest of Technical Papers of the 2004 IEEE International Solid-State Circuits Conference*, San Francisco, CA, February 2004, pp. 322–323.
- J.E.-Y. Lee and A.A. Seshia, "5.4-MHz single-crystal silicon wine glass mode disk resonator with quality factor of 2 million," *Sensors and Actuators A*, vol. 156, 28–35, 2009.
- J. R. Clark, W.-T. Hsu, M. A. Abdelmoneum, and C. T.-C. Nguyen, "High-Q UHF Micromechanical Radial-Contour Mode Disk Resonators," *Journal of Microelectromechanical Systems*, vol. 14, pp. 1298–1310, 2005.
- Huang W.L, Ren Z, Lin Y.W, Chen H.Y, Lahann J, Nguyen C.T.C, "Fully monolithic CMOS nickel micromechanical resonator oscillator," *In: Proceedings of the 21st IEEE international conference on microelectromechanical systems*, Tucson, Arizona, pp 10–13,2008.

List of publications

Journal:

- **1. Ritesh Ray Chaudhuri** and Tarun K. Bhattacharyya, "Electroplated nickel based micromachined disk resonators for high frequency applications" *Microsystem Technologies*, vol. 19(4), pp. 525-535, 2013.
- 2. Ritesh Ray Chaudhuri and Tarun K. Bhattacharyya, "Design and fabrication of micromachined polysilicon resonators," *Journal of ISSS (under review)*.

Conference:

- 1. Ritesh Ray Chaudhuri and Tarun K. Bhattacharyya, "Microelectromechanical Longitudinal Beam Resonator for Frequency Reference Applications" 26th International Conference on VLSI Design, Pune, 2013.
- 2. Ritesh Ray Chaudhuri, Joydeep Basu and Tarun Kanti Bhattacharyya, "Design and Fabrication of Micromachined Resonators." Sixth International Conference on Smart Materials Structures and Systems (ISSS), Bangalore, 2012.
- Joydeep Basu, Ritesh Ray Chaudhuri, Anindya lal Roy and Tarun Kanti Bhattacharyya, "A Microelectromechanical Disk Resonator-based Bandpass Filter for Wireless RF Applications." IEEE Applied Electromagnetics Conference, Kolkata, 2011.

Thank You . . .

Appendix A

$$\left(\frac{\zeta}{\xi}\right) \frac{J_0(\zeta/\xi)}{J_1(\zeta/\xi)} = 1 - \sigma \tag{1}$$

Where

$$\zeta = 2\pi f_0 R \sqrt{\frac{\rho(2+2\sigma)}{E}}$$
 (2)

$$\xi = \sqrt{\frac{2}{1 - \sigma}} \tag{3}$$

$$\lambda_i \frac{J_0(\lambda_i)}{J_1(\lambda_i)} = 1 - \sigma \tag{4}$$

$$f_0 = \frac{\lambda_i}{2\pi R} \sqrt{\frac{E}{\rho(1-\sigma^2)}}$$
 (5)

Appendix B

Mode number (i)	Value of frequency parameter (λ_i) for Nickel	Value of frequency parameter (λ _i) for PolySilicon	Value of frequency parameter (λ _i) for single crystal silicon
1	2.06	1.99	2.05
2	5.4	5.37	5.39
3	8.58	8.42	8.58
4	11.74	11.52	11.74

Appendix C: Mechanical Model

$$\begin{split} m_{\rm eff} &= \frac{2E_{\rm k}}{v^2 \, (R)} = \frac{2\pi \rho t \int_0^R r \, J_1 (hr)^2 \, dr}{J_1 (hR)^2} = \pi \rho t R^2 \Bigg[1 - \frac{J_0 (hR) J_2 (hR)}{J_1 (hR)^2} \Bigg] \\ & \text{with, } h = \omega_0 \, \sqrt{\frac{\rho}{\left(\frac{E}{1+\sigma}\right) + \left(\frac{E\sigma}{1-\sigma^2}\right)}} = \frac{\lambda_i}{R} \end{split}$$

$$\omega_0 = \sqrt{k_{eff}/m_{eff}}$$

$$b_{eff} = \frac{\omega_{o} m_{eff}}{Q} = \frac{\sqrt{k_{eff} m_{eff}}}{Q}$$

Page ■ 72

Appendix D

Disk Resonators: Electrical Model

$$\begin{bmatrix} \mathbf{i}_0 \\ \mathbf{v}_{\mathbf{i}} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{n} \\ \frac{1}{\mathbf{n}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{F} \\ \dot{\mathbf{r}} \end{bmatrix}$$

$$\begin{split} n_k &= V_{dc} \, \frac{\partial C_k}{\partial r} = V_{dc} \, \frac{\partial}{\partial r} \bigg(\frac{\epsilon A_k}{d_0 - r} \bigg) \approx V_{dc} \bigg(\frac{\epsilon A_k}{d_0^2} \bigg) \quad (for, \, r << d) \\ L_e &= \bigg(\frac{l_e}{r^2} \bigg) \end{split}$$

$$C_e = (n^2 c_e)$$

$$R_e = \left(\frac{r_e}{n^2}\right)$$

$$R_e = \left(\frac{1.18 \times 10^{29}}{\text{QV}_{dc}^2}\right) \left(\frac{\text{d}^4}{\text{Rt}}\right)$$

Appendix E

Structural response of the disk resonator subjected to a harmonic excitation:

Appendix E

Structural response of the disk resonator subjected to a harmonic excitation:

Appendix F

Back

Disk Resonators: Equivalent Model

Electrical quantity	Mechanical analog
Voltage (V)	Force (F)
Current (I)	Velocity (v)
Resistance (R)	Damping (b)
Capacitance (C)	Compliance (1/k)
Inductance (L)	Mass (m)

Disk Resonators: Equivalent Model

