title: "TSA Forecasting Competition" author: "Yu Hai and Jack Mitchell" date: "2022/3/31" output: pdf_document —

Link to github repository:

https://github.com/yh313/MitchellHai_ENV790_TSA_Competition

```
library(readxl)
library(ggplot2)
library(forecast)
library(Kendall)
library(tseries)
library(outliers)
library(tidyverse)
library(smooth)
library(zoo)
library(kableExtra)
#install.packages("writexl")
library(writexl)
#install.packages("smooth")
library(smooth)
```

```
load_data<-read_excel(path="./Data/load.xlsx") #import load data
head(load_data)</pre>
```

```
## # A tibble: 6 x 26
##
     meter_id date
                                      h1
                                            h2
                                                   h3
                                                               h5
                                                                           h7
                                                                                  h8
                                                         h4
                                                                     h6
##
     <chr>>
              <dttm>
                                   <dbl> <
## 1 0001
              2005-01-01 00:00:00 3304 3178
                                                2981
                                                       2944
                                                             2934
                                                                   2999
                                                                          3104
                                                                                3296
## 2 0001
              2005-01-02 00:00:00 2485
                                          2448
                                                2487
                                                       2553
                                                             2619
                                                                   2900
                                                                         3133
                                                                                3399
## 3 0001
                                    2417
                                          2435
                                                2448
                                                       2537
                                                                          3385
                                                                                3472
              2005-01-03 00:00:00
                                                             2674
                                                                   2900
## 4 0001
              2005-01-04 00:00:00
                                    2060
                                          2018
                                                2010
                                                       2094
                                                             2115
                                                                   2327
                                                                          2714
                                                                                2758
                                          1546
## 5 0001
              2005-01-05 00:00:00 1629
                                                1569
                                                       1566
                                                             1650
                                                                   1826
                                                                          2288
                                                                                2411
## 6 0001
              2005-01-06 00:00:00 1784 1703
                                                1679
                                                      1729
                                                            1773
                                                                   2049
                                                                                2629
## # ... with 16 more variables: h9 <dbl>, h10 <dbl>, h11 <dbl>, h12 <dbl>,
       h13 <dbl>, h14 <dbl>, h15 <dbl>, h16 <dbl>, h17 <dbl>, h18 <dbl>,
## #
       h19 <dbl>, h20 <dbl>, h21 <dbl>, h22 <dbl>, h23 <dbl>, h24 <dbl>
```

humidity_data<-read_excel(path="./Data/relative_humidity.xlsx") #import humidity data
head(humidity_data)</pre>

```
## # A tibble: 6 x 30
##
     date
                              hr rh_ws1 rh_ws2 rh_ws3 rh_ws4 rh_ws5 rh_ws6 rh_ws7
                                                  <dbl>
                                                         <dbl>
                                                                 <dbl>
                                                                         <dbl>
##
                                  <dbl>
                                          <dbl>
                                                                                <dbl>
     <dttm>
                           <dbl>
## 1 2005-01-01 00:00:00
                                      99
                                             93
                                                     93
                                                             90
                                                                     87
                                                                            93
                                                                                    93
                               1
## 2 2005-01-01 00:00:00
                                             93
                                                     97
                                                                     87
                                                                            97
                               2
                                      76
                                                             89
                                                                                    80
## 3 2005-01-01 00:00:00
                               3
                                      79
                                             93
                                                     93
                                                             90
                                                                     93
                                                                            97
                                                                                    83
                                      79
                                             93
                                                                            89
## 4 2005-01-01 00:00:00
                               4
                                                     93
                                                             90
                                                                    87
                                                                                    90
## 5 2005-01-01 00:00:00
                                      79
                                             93
                                                     96
                                                             93
                                                                    87
                                                                            90
                                                                                    93
                               5
## 6 2005-01-01 00:00:00
                                             93
                                                                            93
                                      82
                                                     97
                                                             97
                                                                    87
                                                                                    97
```

```
## # ... with 21 more variables: rh_ws8 <dbl>, rh_ws9 <dbl>, rh_ws10 <dbl>,
      rh_ws11 <dbl>, rh_ws12 <dbl>, rh_ws13 <dbl>, rh_ws14 <dbl>, rh_ws15 <dbl>,
      rh_ws16 <dbl>, rh_ws17 <dbl>, rh_ws18 <dbl>, rh_ws19 <dbl>, rh_ws20 <dbl>,
      rh_ws21 <dbl>, rh_ws22 <dbl>, rh_ws23 <dbl>, rh_ws24 <dbl>, rh_ws25 <dbl>,
## #
      rh_ws26 <dbl>, rh_ws27 <dbl>, rh_ws28 <dbl>
## #
temperature_data<-read_excel(path="./Data/temperature.xlsx") #import temp data
load_data$load_daily_avg = rowMeans(load_data[,c(3:26)]) #calculate avg daily load
load_data_rm_na <- lapply(load_data$load_daily_avg,na.aggregate)</pre>
ts load daily avg<-msts(load data$load daily avg, seasonal.periods =c(7,365.25), start=c(2005,01,01)) #co
ts_load_daily_avg_rm_na3<-msts(load_data_rm_na, seasonal.periods =c(7,365.25), start=c(2005,01,01)) #conv
humidity_data_daily <- humidity_data %>% #avg daily humidity data
  mutate( Year = year(date),
         Month = month(date),
          Day = day(date)) %>%
  select( date, Year, Month, Day, hr, rh_ws1) %>%
  group_by(date,Year,Month,Day) %>%
  summarise(daily_mean_humidity = mean(rh_ws1))
## 'summarise()' has grouped output by 'date', 'Year', 'Month'. You can override using the '.groups' ar
temperature_data_daily <- temperature_data %>% #avg daily temperature data
  mutate( Year = year(date),
          Month = month(date),
          Day = day(date)) %>%
  select( date, Year, Month, Day, hr, t_ws1) %>%
  group_by(date,Year,Month,Day) %>%
  summarise(daily_mean_temp = mean(t_ws1))
## 'summarise()' has grouped output by 'date', 'Year', 'Month'. You can override using the '.groups' ar
#convert other variables to time series
ts_temp_daily <- ts(temperature_data_daily$daily_mean_temp,frequency=365,start=c(2005,01))</pre>
ts humid daily <- ts(humidity data daily$daily mean humidity,frequency=365,start=c(2005,01))
plot(ts_temp_daily)
```


plot(ts_humid_daily)

n_for=365 # days in a year
ts_load_daily_avg_train<-subset(ts_load_daily_avg,end=length(ts_load_daily_avg)-n_for) #create training
ts_load_daily_avg_test<-subset(ts_load_daily_avg,start=length(ts_load_daily_avg)-n_for) #create testing
ts_load_daily_avg_train %>% mstl() %>%
autoplot() #decompose training subset

autoplot(ts_load_daily_avg_train) #time series plot of training subset

#splitting temperature data into train and test sets ts_temp_daily_train<-subset(ts_temp_daily,end=length(ts_load_daily_avg)-n_for) ts_temp_daily_test<-subset(ts_temp_daily,start=length(ts_load_daily_avg)-n_for) #splitting humidity data into train and test sets ts_humid_daily_train<-subset(ts_humid_daily,end=length(ts_load_daily_avg)-n_for) ts_humid_daily_test<-subset(ts_humid_daily,start=length(ts_load_daily_avg)-n_for)</pre>

#STL+ETS

ts_load_daily_avg_train %>% stlf(h=365) %>% autoplot()

Forecasts from STL + ETS(A,N,N)


```
ETS_fit <- stlf(ts_load_daily_avg_train,h=365)
autoplot(ts_load_daily_avg) +
  autolayer(ETS_fit, series="STL + ETS",PI=FALSE) +
  ylab("Daily Load")</pre>
```


Forecasts from Regression with ARIMA(5,1,0) errors


```
#Plot model + observed data
autoplot(ts_load_daily_avg) +
  autolayer(ARIMA_Four_for, series="ARIMA_FOURIER",PI=FALSE) +
  ylab("Daily Load")
```



```
# TBATS can take time to fit
TBATS_fit <- tbats(ts_load_daily_avg_train)</pre>
```

Warning in tbats(ts_load_daily_avg_train): Missing values encountered. Using
longest contiguous portion of time series

```
TBATS_for <- forecast::forecast(TBATS_fit, h=365)

#Plot foresting results
autoplot(TBATS_for) +
  ylab("Daily Load")</pre>
```

Forecasts from BATS(0.008, $\{0,3\}$, -, -)


```
#Plot model + observed data
autoplot(ts_load_daily_avg) +
  autolayer(TBATS_for, series="TBATS",PI=FALSE)+
  ylab("Daily Load")
```



```
#NN+fourier model forcing p=1,P=0

NN_fit <- nnetar(ts_load_daily_avg_train,p=1,P=0,xreg=fourier(ts_load_daily_avg_train, K=c(2,12)))

## Warning in nnetar(ts_load_daily_avg_train, p = 1, P = 0, xreg =
## fourier(ts_load_daily_avg_train,: Missing values in x, omitting rows

NN_for <- forecast::forecast(NN_fit, h=365,xreg=fourier(ts_load_daily_avg_train, K=c(2,12),h=365))

#Plot foresting results
autoplot(NN_for) +
ylab("Daily Load")</pre>
```

Forecasts from NNAR(1,15)


```
#Plot model + observed data
autoplot(ts_load_daily_avg) +
  autolayer(NN_for, series="Neural Network",PI=FALSE)+
  ylab("Daily Load")
```



```
#Seasonal naive model
SNAIVE <- snaive(ts_load_daily_avg_train, h=365)
autoplot(SNAIVE) +
  ylab("Daily Load")</pre>
```

Forecasts from Seasonal naive method


```
#Plot model + observed data
autoplot(ts_load_daily_avg) +
  autolayer(SNAIVE, series="Seasonal Naive",PI=FALSE)+
  ylab("Daily Load")
```



```
#Auto arima model
ARIMA_autofit <- auto.arima(ts_load_daily_avg_train, max.D = 0, max.P = 0, max.Q = 0)
ARIMA_forecast <- forecast::forecast(object = ARIMA_autofit, h = 365)
autoplot(ARIMA_forecast) +
   ylab("Daily Load")</pre>
```

Forecasts from ARIMA(5,0,0) with non-zero mean


```
#Plot model + observed data
autoplot(ts_load_daily_avg) +
  autolayer(ARIMA_forecast, series="Auto Arima",PI=FALSE)+
  ylab("Daily Load")
```



```
h=365
)
autoplot(ts_humid_daily) +
  autolayer(humid_for, series="humidity_forecast",PI=FALSE) +
  ylab("Humidity")
```


series

humidity_forecast

```
#SARIMA
```

SARIMA_autofit <- auto.arima(ts_load_daily_avg_train)
print(SARIMA_autofit)</pre>

```
## Series: ts_load_daily_avg_train
## ARIMA(5,0,0) with non-zero mean
##
## Coefficients:
##
                     ar2
                             ar3
                                      ar4
                                              ar5
                                                       mean
##
         1.0045 -0.3993 0.2156
                                 -0.0727
                                           0.1272 3306.509
                 0.0331 0.0340
## s.e. 0.0233
                                   0.0331
                                           0.0233
                                                     95.523
## sigma^2 = 262752: log likelihood = -13945.75
## AIC=27905.49
                 AICc=27905.55
                                  BIC=27944.06
SARIMA_forecast <- forecast::forecast(object = ts_load_daily_avg_train, h = 365)
plot(SARIMA_forecast)
```

Forecasts from STL + ETS(A,N,N)


```
autoplot(ts_load_daily_avg) +
autolayer(SARIMA_forecast, series="temp_forecast",PI=FALSE) +
ylab("Daily Load")
```



```
#SARIMA forecast with temperature for Jan 2022
SARIMA_autofit2 <- auto.arima(ts_load_daily_avg,xreg=ts_temp_daily)
print(SARIMA_autofit2)</pre>
```

```
## Series: ts_load_daily_avg
## Regression with ARIMA(0,1,5) errors
##
## Coefficients:
##
             ma1
                       ma2
                                 {\tt ma3}
                                          ma4
                                                          {\tt drift}
                                                    ma5
                                                                      xreg
##
                            -0.1799
                                      -0.0940
                                                          1.0690
                                                                  -40.3669
         -0.0434
                   -0.3345
                                                -0.0075
## s.e.
          0.0216
                    0.0216
                              0.0218
                                       0.0212
                                                 0.0214
                                                         3.4539
                                                                    2.0949
##
## sigma^2 = 224819: log likelihood = -16554.61
## AIC=33125.23
                   AICc=33125.29
                                    BIC=33170.76
```

SARIMA_forecast2 <- forecast::forecast(object = SARIMA_autofit2, xreg=ts_temp_for2,h = 31)
plot(SARIMA_forecast2)</pre>

Forecasts from Regression with ARIMA(0,1,5) errors

autoplot(SARIMA_forecast2) + ylab("Daily Load")

Forecasts from Regression with ARIMA(0,1,5) errors


```
## Warning in forecast_ARIMA(ARIMA_Four_temp_fit, xreg =
## cbind(ts_temp_daily_test[1:365], : xreg contains different column names from the
## xreg used in training. Please check that the regressors are in the same order.
```

```
#Plot foresting results
autoplot(ARIMA_Four_temp_for) + ylab("Daily Load")
```

Forecasts from Regression with ARIMA(0,1,0) errors


```
#Plot model + observed data
autoplot(ts_load_daily_avg) +
  autolayer(ARIMA_Four_temp_for, series="ARIMA_FOURIER",PI=FALSE) +
  ylab("Daily Load")
```



```
#Arima model with fourier terms + humidity
ARIMA_Four_humid_fit <- auto.arima(ts_load_daily_avg_train,
                             seasonal=FALSE,
                             lambda=0,
                             xreg=cbind(ts_humid_daily_train,fourier(ts_load_daily_avg_train,
                                           K=c(2,12)
                             ))
ARIMA_Four_humid_for <- forecast::forecast(ARIMA_Four_humid_fit,</pre>
                           xreg=cbind(ts_humid_daily_test[1:365],fourier(ts_load_daily_avg_train,
                                        K=c(2,12),
                                        h=365)),
                           h=365
## Warning in forecast_forecast_ARIMA(ARIMA_Four_humid_fit, xreg =
## cbind(ts_humid_daily_test[1:365], : xreg contains different column names from
## the xreg used in training. Please check that the regressors are in the same
## order.
#Plot foresting results
autoplot(ARIMA_Four_humid_for) + ylab("Daily Load")
```

Forecasts from Regression with ARIMA(0,1,0) errors


```
#Plot model + observed data
autoplot(ts_load_daily_avg) +
  autolayer(ARIMA_Four_humid_for, series="ARIMA_FOURIER",PI=FALSE) +
  ylab("Daily Load")
```



```
#Auto arima with temperature
ARIMA_with_temp_autofit <- auto.arima(ts_load_daily_avg_train, max.D = 0, max.P = 0, max.Q = 0,xreg=ts_
ARIMA_with_temp_forecast <- forecast::forecast(object = ARIMA_with_temp_autofit,xreg=ts_temp_daily_test
autoplot(ts_load_daily_avg) +
   autolayer(ARIMA_with_temp_forecast, series="Auto Arima",PI=FALSE)+
   ylab("Daily_Load")</pre>
```


autoplot(ARIMA_with_temp_forecast) +
 ylab("Daily Load")

Forecasts from Regression with ARIMA(0,0,1) errors

#Model 1: STL + ETS

ETS_scores <- accuracy(ETS_fit\$mean,ts_load_daily_avg_test)</pre>


```
#Model 2: ARIMA + Fourier
ARIMA_scores <- accuracy(ARIMA_Four_for$mean,ts_load_daily_avg_test)
# Model 3: TBATS
TBATS_scores <- accuracy(TBATS_for$mean,ts_load_daily_avg_test)</pre>
# Model 4: Neural Network
NN_scores <- accuracy(NN_for$mean,ts_load_daily_avg_test)</pre>
# Model 5: Seasonal Naive
SNAIVE_scores <- accuracy(SNAIVE$mean,ts_load_daily_avg_test)</pre>
#Model 6: Auto Arima
AutoArima_scores <- accuracy(ARIMA_forecast$mean,ts_load_daily_avg_test)</pre>
scores <- as.data.frame(</pre>
 rbind(ETS_scores, ARIMA_scores, TBATS_scores, NN_scores, SNAIVE_scores,AutoArima_scores)
row.names(scores) <- c("STL+ETS", "ARIMA+Fourier", "TBATS", "NN", "SNAIVE", "Auto Arima")
#choose model with lowest RMSE
best_model_index <- which.min(scores[,"RMSE"])</pre>
cat("The best model by RMSE is:", row.names(scores[best_model_index,]))
```

The best model by RMSE is: ARIMA+Fourier

Table 1: Forecast Accuracy for Load

	ME	RMSE	MAE	MPE	MAPE	ACF1	Theil's U
STL+ETS	-662.0823	1229.251	1038.4385	-27.07241	33.15822	0.79853	2.79951
ARIMA+Fourier	-532.5219	1097.439	913.7556	-21.65772	28.02236	0.84122	2.34306
TBATS	936.1087	1619.426	1230.4608	15.34879	28.36684	0.91559	2.34101
NN	461.3108	1124.543	776.4283	6.96826	18.11293	0.82425	1.66166
SNAIVE	327.1963	1224.535	877.9736	3.52559	21.67954	0.72619	1.95747
Auto Arima	431.8726	1349.124	1087.2661	0.67161	28.46012	0.90965	2.30293

#January 2011 Forecasts

Forecasts from Regression with ARIMA(5,1,0) errors


```
#Convert forecasting results to dataframe
Forecast1 <- data.frame(load = ARIMA_Four_for2[["mean"]])</pre>
```

```
#Seasonal naive model
SNAIVE_for <- snaive(ts_load_daily_avg, h=31)
autoplot(SNAIVE_for) +
  ylab("Daily Load")</pre>
```

Forecasts from Seasonal naive method


```
#Convert forecasting results to dataframe
Forecast2 <- data.frame(load = SNAIVE_for[["mean"]])

#NN+fourier
NN_fit2 <- nnetar(ts_load_daily_avg,p=1,P=0,xreg=fourier(ts_load_daily_avg, K=c(2,12)))

## Warning in nnetar(ts_load_daily_avg, p = 1, P = 0, xreg = 
## fourier(ts_load_daily_avg, : Missing values in x, omitting rows

NN_for2 <- forecast::forecast(NN_fit2, h=31,xreg=fourier(ts_load_daily_avg, K=c(2,12),h=31))

#Plot foresting results
autoplot(NN_for2) + 
ylab("Daily Load")</pre>
```

Forecasts from NNAR(1,15)


```
#Convert forecasting results to dataframe
Forecast3 <- data.frame(load = NN_for2[["mean"]])</pre>
```

```
#SARIMA
SARIMA_autofit3 <- auto.arima(ts_load_daily_avg)

SARIMA_forecast3 <- forecast::forecast(object = SARIMA_autofit3,h = 31)

autoplot(SARIMA_forecast3) + ylab("Daily Load")</pre>
```

Forecasts from ARIMA(5,1,0)


```
#Convert forecasting results to dataframe
Forecast4 <- data.frame(load = SARIMA_forecast3[["mean"]])</pre>
```

```
#SARIMA forecast with temperature
SARIMA_autofit2 <- auto.arima(ts_load_daily_avg,xreg=ts_temp_daily)
print(SARIMA_autofit2)</pre>
```

```
## Series: ts_load_daily_avg
## Regression with ARIMA(0,1,5) errors
##
## Coefficients:
##
                                                ma5
            ma1
                     ma2
                              ma3
                                       ma4
                                                      drift
                                                                 xreg
##
         -0.0434 -0.3345 -0.1799
                                   -0.0940 -0.0075 1.0690
                                                            -40.3669
## s.e.
         0.0216
                  0.0216
                            0.0218
                                     0.0212
                                             0.0214 3.4539
                                                               2.0949
##
## sigma^2 = 224819: log likelihood = -16554.61
## AIC=33125.23
                 AICc=33125.29
                                 BIC=33170.76
```

SARIMA_forecast2 <- forecast::forecast(object = SARIMA_autofit2, xreg=ts_temp_for2,h = 31)
plot(SARIMA_forecast2)</pre>

Forecasts from Regression with ARIMA(0,1,5) errors

autoplot(SARIMA_forecast2) + ylab("Daily Load")

Forecasts from Regression with ARIMA(0,1,5) errors


```
#Convert forecasting results to dataframe
Forecast5 <- data.frame(load = SARIMA_forecast3[["mean"]])</pre>
```

```
## Warning in forecast.forecast_ARIMA(ARIMA_Four_temp_fit2, xreg =
## cbind(ts_temp_for2, : xreg contains different column names from the xreg used in
## training. Please check that the regressors are in the same order.
```

Forecasts from Regression with ARIMA(0,1,0) errors

Forecast6 <- data.frame(load = ARIMA_Four_temp_for2[["mean"]])

```
## Warning in forecast_ARIMA(ARIMA_Four_humid_fit2, xreg =
## cbind(ts_humid_for2, : xreg contains different column names from the xreg used
## in training. Please check that the regressors are in the same order.
```

Missing values in x, omitting rows

Forecasts from Regression with ARIMA(0,1,0) errors


```
Forecast7 <- data.frame(load = ARIMA_Four_humid_for2[["mean"]])
```

```
## Warning in forecast.nnetar(NN_temp_fit, xreg = cbind(ts_temp_for2,
## fourier(ts_load_daily_avg, : xreg contains different column names from the xreg
## used in training. Please check that the regressors are in the same order.
```

```
#Plot foresting results
autoplot(NN_temp_for) +
  ylab("Daily Load")
```

Forecasts from NNAR(1,16)

Warning in forecast.nnetar(NN_humid_fit, xreg = cbind(ts_humid_for2,
fourier(ts_load_daily_avg, : xreg contains different column names from the xreg
used in training. Please check that the regressors are in the same order.

```
#Plot foresting results
autoplot(NN_humid_for) +
  ylab("Daily Load")
```

Forecasts from NNAR(1,16)


```
#Convert forecasting results to dataframe
Forecast9 <- data.frame(load = NN_humid_for[["mean"]])</pre>
```

```
#NN+fourier
NN_fit3 <- nnetar(ts_load_daily_avg, xreg=fourier(ts_load_daily_avg, K=c(2,12)))</pre>
```

```
## Warning in nnetar(ts_load_daily_avg, xreg = fourier(ts_load_daily_avg, K =
## c(2, : Missing values in x, omitting rows
```

Forecasts from NNAR(8,1,19)[365]


```
Forecast10 <- data.frame(load = NN_for3[["mean"]])

NN_humid_fit4 <- nnetar(ts_load_daily_avg, xreg=cbind(ts_temp_daily,fourier(ts_load_daily_avg, K=c(2,12))

))

## Warning in nnetar(ts_load_daily_avg, xreg = cbind(ts_temp_daily, ## fourier(ts_load_daily_avg, : Missing values in x, omitting rows

NN_humid_for4 <- forecast::forecast(NN_humid_fit4, xreg=cbind(ts_temp_for2, fourier(ts_load_daily_avg, K=c(2,12), h=31)), h=31

)

## Warning in forecast.nnetar(NN_humid_fit4, xreg = cbind(ts_temp_for2, ## fourier(ts_load_daily_avg, : xreg contains different column names from the xreg ## used in training. Please check that the regressors are in the same order.

##Plot foresting results
```

autoplot(NN_humid_for4) +
 ylab("Daily Load")

Forecasts from NNAR(8,1,20)[365]

#Plot foresting results
autoplot(NN_humid_for5) +
 ylab("Daily Load")

Forecasts from NNAR(8,1,20)[365]

#Convert forecasting results to dataframe
Forecast12 <- data.frame(load = NN_humid_for5[["mean"]])</pre>