SBA Statistical Business Analyst using SAS

SBA3 Predictive Modeling with Logistic Regression

W3b Working with Categorical Inputs

Introduction

In this topic, you learn to do the following:

- identify the problems associated with having numerous levels in a categorical input
- · identify possible solutions to those problems
- use the CLUSTER procedure to cluster the levels of a categorical input
- use smoothed weight-of-evidence coding to convert a categorical predictor to a continuous predictor

Problems Caused by Categorical Inputs

September 18, 2021 Suhaimi William Chan Page | 3

quasi-complete separation X D Logit В DA D_B D_{C} X 0 1 C 1 0 0 -1.39 28 7 C 0 1 0 -00 16 Α 0 A -2.14 0 0 1 94 11 D -0.08 D 0 0 0 23 21 C $logit(p) = log\left(\frac{p}{1-p}\right)$

X
D
B
C
C
A
D
C

quasi-complete separation

	Y		
х	0	1	
A	28	7	
В	16	0	
С	94	11	
D	23	21	

D _A	D _B	D _C	Logit
1	0	0	-1.39
0	1	0	-∞
0	0	1	-2.14
0	0	0	-0.08

$$logit(0) = log\left(\frac{0}{1-0}\right)$$

х	quasi-complete separation							
D B)	1	Problems			
С		X	0	1	complicates interpretation			
С		A	28	7	- complicates interpretation			
Α		В	16	0	can affect convergence of estimation algorithm			
Α		С	94	11	might lead to incorrect decisions about			
D		D	23	21	variable selection			
С	'							
i A								

Solutions to Problems Caused by Categorical Inputs

high dimensionality quasi-complete separation

Solutions

Creating smarter variables that link to other data sets

Collapsing the categories based on the number of observations in a category (thresholding)

Collapsing the categories based on the reduction in the chi-square test of association between the categorical input and the target

Using smoothed weight-of-evidence coding to convert the categorical input into a continuous input

Linking to Other Data Sets

Smarter Variables ZIP **HomeVal** Urbanicity Local ...

census

develop

Collapsing Categories by Thresholding

Level	Number of Cases	threshold = 50		
Α	1562			
В	970		1::/	limits spurious
с	223			input-target associations
D	111			4555014110115
E	85			
F	23	7		
G	17	044		
Н	12	Other		
1	5			

large number of levels

Dummy Variables

D,	D,	D,	D,
0	0	0	1
0	1	0	0
0	0	1	0
0	0	1	0
1	0	0	0
1	0	0	0
0	0	0	1
0	0	1	0
1	0	0	0
	:	:	-

September 18, 2021 Suhaimi William Chan Page | 16

Collapsing Categories by Using Greenacre's Method

	v	
X	0	1
A	28	7
В	16	0
С	94	11
	22	21
D	23	21

Demo Collapsing the Levels of a Nominal Input, Part 1

	1	Branch of	Bank	
Branch	Frequency	Percent	Cumulative Frequency	Cumulative Percent
B1	2819	8.74	2819	8.74
B10	273	0.85	3092	9.58
B11	247	0.77	3339	10.35
B12	549	1.70	3888	12.05
B13	535	1.66	4423	13.71
B14	1072	3.32	5495	17.03
B15	2235	6.93	7730	23.96
B16	1534	4.75	9264	28.71
B17	850	2.63	10114	31.35
B18	541	1.68	10655	33.02
B19	285	0.88	10940	33.91
B2	5345	16.57	16285	50.47

* Create an output data set that contains the proportion of events and the number of cases in each branch.

* Cluster the branches based on the reduction of the chi-square statistic using Greenacre's method.

```
proc means data=work.train_imputed noprint nway;
   class branch;
   var ins;
   output out=work.level mean=prop;
run;

title1 "Proportion of Events by Level";
proc print data=work.level;
run;
```

Proportion of Events by Level

Obs	Branch	_TYPE_	_FREQ_	prop
1	B1	1	1930	0.36995
2	B10	1	182	0.41758
3	B11	1	160	0.41875
4	B12	1	368	0.36957
5	B13	1	369	0.40650
6	B14	1	712	0.19663
7	B15	1	1510	0.23179
8	B16	1	1040	0.28558
9	B17	1	544	0.34007
10	B18	1	370	0.36757
11	B19	1	191	0.38743
12	B2	1	3543	0.32882

Suhaimi William Chan

		Clu	ster Hi	story		
Number of Clusters	Cluste	rs Joined	Freq	Semipartial R-Square	R-Square	Tie
18	B1	B12	2298	0.0000	1.00	
17	B18	В9	738	0.0000	1.00	
16	B10	B11	342	0.0000	1.00	
15	B19	B8	1069	0.0000	1.00	
14	CL17	В6	1676	0.0000	1.00	
13	B2	B7	4491	0.0000	1.00	
12	CL15	В3	2974	0.0001	1.00	
11	CL18	CL14	3974	0.0002	1.00	
10	CL16	B13	711	0.0004	.999	
9	CL12	B5	4793	0.0006	.999	
8	CL11	B4	7711	0.0008	.998	

7	B17	CL13	5035	0.0012	.997
6	CL10	CL9	5504	0.0072	.989
5	B14	B15	2222	0.0106	.979
4	CL8	CL6	13215	0.0204	.958
3	B16	CL7	6075	0.0297	.929
2	CL4	CL3	19290	0.2350	.694
1	CL2	CL5	21512	0.6937	.000

/* Run this code before demo I3d2a */

%global inputs;

```
%let inputs=ACCTAGE DDA DDABAL DEP DEPAMT CASHBK
     CHECKS DIRDEP NSF NSFAMT PHONE TELLER
     SAV SAVBAL ATM ATMAMT POS POSAMT CD
     CDBAL IRA IRABAL LOC LOCBAL INV
     INVBAL ILS ILSBAL MM MMBAL MMCRED MTG
     MTGBAL CC CCBAL CCPURC SDB INCOME
     HMOWN LORES HMVAL AGE CRSCORE MOVED
     INAREA;
proc means data=work.develop n nmiss mean min max;
 var &inputs;
run;
proc freq data=work.develop;
 tables ins branch res;
run;
/* ========= */
/* Lesson 1, Section 2: l1d2.sas
 Demonstration: Splitting the Data */
/* ========== */
/* Sort the data by the target in preparation for stratified sampling. */
proc sort data=work.develop out=work.develop_sort;
 by ins;
run;
```

```
/* The SURVEYSELECT procedure will perform stratified sampling
 on any variable in the STRATA statement. The OUTALL option
 specifies that you want a flag appended to the file to
 indicate selected records, not simply a file comprised
 of the selected records. */
proc surveyselect noprint data=work.develop_sort
         samprate=.6667 stratumseed=restore
         out=work.develop_sample
         seed=44444 outall;
 strata ins;
run;
/* Verify stratification. */
proc freq data=work.develop_sample;
 tables ins*selected;
run;
/* Create training and validation data sets. */
data work.train(drop=selected SelectionProb SamplingWeight)
  work.valid(drop=selected SelectionProb SamplingWeight);
 set work.develop_sample;
 if selected then output work.train;
 else output work.valid;
run;
```

```
/* ========= */
/* Lesson 2, Section 1: I2d1.sas
 Demonstration: Fitting a Basic Logistic
 Regression Model, Parts 1 and 2
/* =========== */
title1 "Logistic Regression Model for the Variable Annuity Data Set";
proc logistic data=work.train
      plots(only maxpoints=none)=(effect(clband x=(ddabal depamt checks res))
      oddsratio (type=horizontalstat));
 class res (param=ref ref='S') dda (param=ref ref='0');
 model ins(event='1')=dda ddabal dep depamt
      cashbk checks res / stb clodds=pl;
 units ddabal=1000 depamt=1000 / default=1;
 oddsratio 'Comparisons of Residential Classification' res / diff=all cl=pl;
 effectplot slicefit(sliceby=dda x=ddabal) / noobs;
 effectplot slicefit(sliceby=dda x=depamt) / noobs;
run;
title1;
/* -----*/
/* Lesson 2, Section 1: I2d2.sas
 Demonstration: Scoring New Cases */
/* ========= */
/* Score a new data set with one run of the LOGISTIC procedure with the
 SCORE statement. */
```

```
proc logistic data=work.train noprint;
 class res (param=ref ref='S');
 model ins(event='1')= res dda ddabal dep depamt cashbk checks;
 score data = pmlr.new out=work.scored1;
run;
title1 "Predicted Probabilities from Scored Data Set";
proc print data=work.scored1(obs=10);
 var p_1 dda ddabal dep depamt cashbk checks res;
run;
title1 "Mean of Predicted Probabilities from Scored Data Set";
proc means data=work.scored1 mean nolabels;
 var p_1;
run;
/* Score a new data set with the OUTMODEL= amd INMODEL= options */
proc logistic data=work.train outmodel=work.scoredata noprint;
 class res (param=ref ref='S');
 model ins(event='1')= res dda ddabal dep depamt cashbk checks;
run;
proc logistic inmodel=work.scoredata noprint;
 score data = pmlr.new out=work.scored2;
run;
title1 "Predicted Probabilities from Scored Data Set";
```

```
proc print data=work.scored2(obs=10);
 var p_1 dda ddabal dep depamt cashbk checks res;
run;
/* Score a new data set with the CODE Statement */
proc logistic data=work.train noprint;
 class res (param=ref ref='S');
 model ins(event='1')= res dda ddabal dep depamt cashbk checks;
 code file="&PMLRfolder/pmlr_score.txt";
run;
data work.scored3;
 set pmlr.new;
 %include "&PMLRfolder/pmlr_score.txt";
run;
title1 "Predicted Probabilities from Scored Data Set";
proc print data=work.scored3(obs=10);
 var p_ins1 dda ddabal dep depamt cashbk checks res;
run;
title1;
/* ========== */
/* Lesson 2, Section 2: I2d3.sas
 Demonstration: Correcting for Oversampling
                                            */
/* ========== */
```

```
/* Specify the prior probability to correct for oversampling. */
%global pi1;
%let pi1=.02;
/* Correct predicted probabilities */
proc logistic data=work.train noprint;
 class res (param=ref ref='S');
 model ins(event='1')=dda ddabal dep depamt cashbk checks res;
 score data=pmlr.new out=work.scored4 priorevent=&pi1;
run;
title1 "Adjusted Predicted Probabilities from Scored Data Set";
proc print data=work.scored4(obs=10);
 var p_1 dda ddabal dep depamt cashbk checks res;
run;
title1 "Mean of Adjusted Predicted Probabilities from Scored Data Set";
proc means data=work.scored4 mean nolabels;
 var p_1;
run;
title1;
/* Correct probabilities in the Score Code */
proc logistic data=work.train noprint;
 class res (param=ref ref='S');
 model ins(event='1')=dda ddabal dep depamt cashbk checks res;
 /* File suffix "txt" is used so you can view the file */
```

```
/* with a native text editor. SAS prefers "sas", but */
 /* when specified as a filename, SAS does not care. */
 code file="&PMLRfolder/pmlr_score_adj.txt";
run;
%global rho1;
proc SQL noprint;
 select mean(INS) into :rho1
 from work.train;
quit;
data new;
 set pmlr.new;
 off=log(((1-&pi1)*&rho1)/(&pi1*(1-&rho1)));
run;
data work.scored5;
 set work.new;
 %include "&PMLRfolder/pmlr_score_adj.txt";
 eta=log(p_ins1/p_ins0) - off;
 prob=1/(1+exp(-eta));
run;
title1 "Adjusted Predicted Probabilities from Scored Data Set";
proc print data=scored5(obs=10);
 var prob dda ddabal dep depamt cashbk checks res;
run;
title1;
```

```
/* ========= */
/* Lesson 3, Section 1: I3d1.sas
 Demonstration: Imputing Missing Values
/* ========== */
title1 "Variables with Missing Values";
proc print data=work.train(obs=15);
 var ccbal ccpurc income hmown;
run;
title1;
/* Create missing indicators */
data work.train_mi(drop=i);
 set work.train;
 /* name the missing indicator variables */
 array mi{*} MIAcctAg MIPhone MIPOS MIPOSAmt
      MIInv MIInvBal MICC MICCBal
      MICCPurc Milncome MIHMOwn MILORes
      MIHMVal MIAge MICRScor;
 /* select variables with missing values */
 array x{*} acctage phone pos posamt
      inv invbal cc ccbal
      ccpurc income hmown lores
      hmval age crscore;
 do i=1 to dim(mi);
  mi{i}=(x{i}=.);
  nummiss+mi{i};
 end;
```

```
run;
/* Impute missing values with the median */
proc stdize data=work.train_mi reponly method=median out=work.train_imputed;
 var &inputs;
run;
title1 "Imputed Values with Missing Indicators";
proc print data=work.train_imputed(obs=12);
 var ccbal miccbal ccpurc miccpurc income miincome hmown mihmown nummiss;
run;
title1;
/* ========== */
/* Lesson 3, Section 2: I3d2a.sas
 Demonstration: Collapsing the Levels of a Nominal Input,
 Part 1
 [m643_2_g1; derived from pmlr03d02.sas]
/* ========== */
proc means data=work.train_imputed noprint nway;
 class branch;
 var ins;
 output out=work.level mean=prop;
run;
title1 "Proportion of Events by Level";
proc print data=work.level;
run;
```

```
/* Use ODS to output the ClusterHistory output object into a data set
    named "cluster." */

ods output clusterhistory=work.cluster;

proc cluster data=work.level method=ward outtree=work.fortree
    plots=(dendrogram(vertical height=rsq));
    freq _freq_;
    var prop;
    id branch;
run;
```

Demo Collapsing the Levels of a Nominal Input, Part 2

- * Compute the log of the *p*-value for each cluster solution, and plot the log of the *p*-value by the number of clusters.
- * Create an output data set that shows which branches were assigned to each cluster.

* Assign the branches to dummy variables.

```
/* Use the FREQ procedure to get the Pearson Chi^2 statistic of the full BRANCH*INS table. */

**proc freq data=work.train_imputed noprint; tables branch*ins / chisq; output out=work.chi(keep=_pchi_) chisq; run;

**pmirosd02.sos**
```

```
/* Use a one-to-many merge to put the Chi^2 statistic onto the clustering results. Calculate a (log) p-value for each level of clustering. */

*data work.cutoff;
if _n_=1 then set work.chi;
set work.cluster;
chisquare=_pchi_*rsquared;
degfree=numberofclusters-1;
logpvalue=logsdf('CHISQ',chisquare,degfree);
run;
```

```
/* Plot the log p-values against number of clusters. */

title1 "Plot of the Log of the P-Value by Number of Clusters";

proc sgplot data=work.cutoff;

scatter y=logpvalue x=numberofclusters

/ markerattrs=(color=blue symbol=circlefilled);

xaxis label="Number of Clusters";

yaxis label="Log of P-Value" min=-120 max=-85;

run;

title1;
```



```
/* Create a macro variable (&ncl) that contains the number of clusters
   associated with the minimum log p-value. */
   proc sql;
   select NumberOfClusters into :ncl
   from work.cutoff
   having logpvalue=min(logpvalue);
quit;
```



```
proc tree data=work.fortree nclusters=&ncl out=work.clus noprint;
  id branch;
run;
```

```
proc sort data=work.clus;
  by clusname;
run;
```

```
title1 "Levels of Branch by Cluster";

proc print data=work.clus;

by clusname;

id clusname;

run;

title1;
```

Levels of Branch by Cluster

CLUSNAME	Branch	CLUSTER
B16	B16	5

CLUSNAME	Branch	CLUSTER
CL5	B14	4
	B15	4

CLUSNAME	Branch	CLUSTER
CL6	B10	2
	B11	2
	B19	2
	B8	2
	B3	2

CLUSNAME	Branch	CLUSTER
CL7	B2	3
	B7	3
	B17	3

CLUSNAME	Branch	CLUSTER
CL8	B1	1
	B12	1
	B18	1
	B9	1
	B6	1
	B4	1

```
/* The DATA Step creates the scoring code to assign the branches to a clustifilename brclus "&PMLRfolder\branchclus.sas";

data _null_;
   file brclus;
   set work.clus end=last;
   if _n_=1 then put "select (branch);";
   put " when ('" branch +(-1) "') branch_clus = '" cluster +(-1) "';";
   if last then do;
      put " otherwise branch_clus = 'U';" / "end;";
   end;
run;
```

```
data work.train_imputed_greenacre;
   set work.train_imputed;
   %include brclus / source2;
run;
   I
```

```
Log - (Untitled)
OTE: %INCLUDE (level 1) file BRCLUS is file S:\workshop\branchclus.sas.
561 +select (branch);
562 +
        when ('B16') branch_clus = '5';
        when ('B14) branch_clus = '4'
563 +
564 +
        when ('B15') branch_clus = '4'
        when ('B10') branch_clus = '2'
when ('B11') branch_clus = '2'
when ('B19') branch_clus = '2'
565 +
566 +
567 +
        when ('B8') branch_clus = '2'
when ('B3') branch_clus = '2'
568 +
569 +
        when ('B13') branch_clus = '2
570 +
        when ('B5') branch_clus = '2';
571 +
        when ('B2') branch_clus = '3'
572 +
        when ('B7') branch_clus = '3'
573 +
        when ('B17') branch_clus = '3'
574 +
        when ('B1') branch_clus = '1';
575 +
        when ('B12') branch_clus = '1
576 +
        when ('B18') branch_clus = '1'
when ('B9') branch_clus = '1';
when ('B6') branch_clus = '1';
when ('B4') branch_clus = '1';
when ('B4') branch_clus = '1';
577 +
578 +
579 +
580 +
581 +
        otherwise branch_clus = 'U';
582 +end;
561 +select (branch);
       when ('B16') branch_clus = '5';
when ('B14') branch_clus = '4';
562 +
563 +
       when ('B15') branch_clus = '4';
564 +
       when ('B10') branch_clus = '2';
565 +
566 + when ('B11') branch_clus = '2';
data null;
     file brclus;
     set work.clus end=last;
    if n =1 then put "select (branch);";
     put " when ('" branch + (-1) "') branch clus = '" cluster + (-1) "';";
     if last then do;
        put " otherwise branch clus = 'U';" / "end;";
     end;
 run;
/* Run this code before demo I3d2b */
/* ============ */
/* Lesson 1, Section 1: l1d1.sas
 Demonstration: Examining the Code for Generating
 Descriptive Statistics and Frequency Tables
/* ============ */
```

```
data work.develop;
 set pmlr.develop;
run;
%global inputs;
%let inputs=ACCTAGE DDA DDABAL DEP DEPAMT CASHBK
     CHECKS DIRDEP NSF NSFAMT PHONE TELLER
     SAV SAVBAL ATM ATMAMT POS POSAMT CD
     CDBAL IRA IRABAL LOC LOCBAL INV
     INVBAL ILS ILSBAL MM MMBAL MMCRED MTG
     MTGBAL CC CCBAL CCPURC SDB INCOME
     HMOWN LORES HMVAL AGE CRSCORE MOVED
     INAREA;
proc means data=work.develop n nmiss mean min max;
 var &inputs;
run;
proc freq data=work.develop;
 tables ins branch res;
run;
/* ========= */
/* Lesson 1, Section 2: l1d2.sas
 Demonstration: Splitting the Data */
/* ========= */
/* Sort the data by the target in preparation for stratified sampling. */
```

```
proc sort data=work.develop out=work.develop_sort;
 by ins;
run;
/* The SURVEYSELECT procedure will perform stratified sampling
 on any variable in the STRATA statement. The OUTALL option
 specifies that you want a flag appended to the file to
 indicate selected records, not simply a file comprised
 of the selected records. */
proc surveyselect noprint data=work.develop_sort
         samprate=.6667 stratumseed=restore
         out=work.develop_sample
         seed=44444 outall;
 strata ins;
run;
/* Verify stratification. */
proc freq data=work.develop_sample;
 tables ins*selected;
run;
/* Create training and validation data sets. */
data work.train(drop=selected SelectionProb SamplingWeight)
  work.valid(drop=selected SelectionProb SamplingWeight);
 set work.develop_sample;
```

```
if selected then output work.train;
 else output work.valid;
run;
/* ========== */
/* Lesson 2, Section 1: I2d1.sas
 Demonstration: Fitting a Basic Logistic
                                       */
 Regression Model, Parts 1 and 2
/* ========= */
title1 "Logistic Regression Model for the Variable Annuity Data Set";
proc logistic data=work.train
      plots(only maxpoints=none)=(effect(clband x=(ddabal depamt checks res))
      oddsratio (type=horizontalstat));
 class res (param=ref ref='S') dda (param=ref ref='0');
 model ins(event='1')=dda ddabal dep depamt
      cashbk checks res / stb clodds=pl;
 units ddabal=1000 depamt=1000 / default=1;
 oddsratio 'Comparisons of Residential Classification' res / diff=all cl=pl;
 effectplot slicefit(sliceby=dda x=ddabal) / noobs;
 effectplot slicefit(sliceby=dda x=depamt) / noobs;
run;
title1;
/* ========== */
/* Lesson 2, Section 1: I2d2.sas
```

```
Demonstration: Scoring New Cases
                                   */
/* ========== */
/* Score a new data set with one run of the LOGISTIC procedure with the
 SCORE statement. */
proc logistic data=work.train noprint;
 class res (param=ref ref='S');
 model ins(event='1')= res dda ddabal dep depamt cashbk checks;
 score data = pmlr.new out=work.scored1;
run;
title1 "Predicted Probabilities from Scored Data Set";
proc print data=work.scored1(obs=10);
 var p_1 dda ddabal dep depamt cashbk checks res;
run;
title1 "Mean of Predicted Probabilities from Scored Data Set";
proc means data=work.scored1 mean nolabels;
 var p_1;
run;
/* Score a new data set with the OUTMODEL= amd INMODEL= options */
proc logistic data=work.train outmodel=work.scoredata noprint;
 class res (param=ref ref='S');
 model ins(event='1')= res dda ddabal dep depamt cashbk checks;
run;
```

```
proc logistic inmodel=work.scoredata noprint;
 score data = pmlr.new out=work.scored2;
run;
title1 "Predicted Probabilities from Scored Data Set";
proc print data=work.scored2(obs=10);
 var p_1 dda ddabal dep depamt cashbk checks res;
run;
/* Score a new data set with the CODE Statement */
proc logistic data=work.train noprint;
 class res (param=ref ref='S');
 model ins(event='1')= res dda ddabal dep depamt cashbk checks;
 code file="&PMLRfolder/pmlr_score.txt";
run;
data work.scored3;
 set pmlr.new;
 %include "&PMLRfolder/pmlr_score.txt";
run;
title1 "Predicted Probabilities from Scored Data Set";
proc print data=work.scored3(obs=10);
 var p_ins1 dda ddabal dep depamt cashbk checks res;
run;
title1;
```

```
/* ========= */
/* Lesson 2, Section 2: I2d3.sas
 Demonstration: Correcting for Oversampling */
/* ========= */
/* Specify the prior probability to correct for oversampling. */
%global pi1;
%let pi1=.02;
/* Correct predicted probabilities */
proc logistic data=work.train noprint;
 class res (param=ref ref='S');
 model ins(event='1')=dda ddabal dep depamt cashbk checks res;
 score data=pmlr.new out=work.scored4 priorevent=&pi1;
run;
title1 "Adjusted Predicted Probabilities from Scored Data Set";
proc print data=work.scored4(obs=10);
 var p_1 dda ddabal dep depamt cashbk checks res;
run;
title1 "Mean of Adjusted Predicted Probabilities from Scored Data Set";
proc means data=work.scored4 mean nolabels;
 var p_1;
run;
title1;
/* Correct probabilities in the Score Code */
```

```
proc logistic data=work.train noprint;
 class res (param=ref ref='S');
 model ins(event='1')=dda ddabal dep depamt cashbk checks res;
 /* File suffix "txt" is used so you can view the file */
 /* with a native text editor. SAS prefers "sas", but */
 /* when specified as a filename, SAS does not care. */
 code file="&PMLRfolder/pmlr_score_adj.txt";
run;
%global rho1;
proc SQL noprint;
 select mean(INS) into :rho1
 from work.train;
quit;
data new;
 set pmlr.new;
 off=log(((1-&pi1)*&rho1)/(&pi1*(1-&rho1)));
run;
data work.scored5;
 set work.new;
 %include "&PMLRfolder/pmlr_score_adj.txt";
 eta=log(p_ins1/p_ins0) - off;
 prob=1/(1+exp(-eta));
run;
title1 "Adjusted Predicted Probabilities from Scored Data Set";
```

```
proc print data=scored5(obs=10);
 var prob dda ddabal dep depamt cashbk checks res;
run;
title1;
/* ========== */
/* Lesson 3, Section 1: I3d1.sas
 Demonstration: Imputing Missing Values
/* -----*/
title1 "Variables with Missing Values";
proc print data=work.train(obs=15);
 var ccbal ccpurc income hmown;
run;
title1;
/* Create missing indicators */
data work.train_mi(drop=i);
 set work.train;
 /* name the missing indicator variables */
 array mi{*} MIAcctAg MIPhone MIPOS MIPOSAmt
      MIInv MIInvBal MICC MICCBal
      MICCPurc Milncome MIHMOwn MILORes
      MIHMVal MIAge MICRScor;
 /* select variables with missing values */
 array x{*} acctage phone pos posamt
      inv invbal cc ccbal
      ccpurc income hmown lores
```

```
hmval age crscore;
 do i=1 to dim(mi);
  mi\{i\}=(x\{i\}=.);
  nummiss+mi{i};
 end;
run;
/* Impute missing values with the median */
proc stdize data=work.train_mi reponly method=median out=work.train_imputed;
 var &inputs;
run;
title1 "Imputed Values with Missing Indicators";
proc print data=work.train_imputed(obs=12);
 var ccbal miccbal ccpurc miccpurc income miincome hmown mihmown nummiss;
run;
title1;
/* ========= */
/* Lesson 3, Section 2: I3d2a.sas
 Demonstration: Collapsing the Levels of a
                                  */
 Nominal Input, Part 1
/* ========== */
proc means data=work.train_imputed noprint nway;
 class branch;
 var ins;
```

```
output out=work.level mean=prop;
run;
title1 "Proportion of Events by Level";
proc print data=work.level;
run;
/* Use ODS to output the ClusterHistory output object into a data set
 named "cluster." */
ods output clusterhistory=work.cluster;
proc cluster data=work.level method=ward outtree=work.fortree
   plots=(dendrogram(vertical height=rsq));
 freq _freq_;
 var prop;
 id branch;
run;
/* ========= */
/* Lesson 3, Section 2: I3d2b.sas
 Demonstration: Collapsing the Levels of a Nominal Input,
 Part 2
                                      */
 [m643_2_g2; derived from pmlr03d02.sas]
/* ========= */
/* Use the FREQ procedure to get the Pearson Chi^2 statistic of the
 full BRANCH*INS table. */
```

```
proc freq data=work.train_imputed noprint;
 tables branch*ins / chisq;
 output out=work.chi(keep=_pchi_) chisq;
run;
/* Use a one-to-many merge to put the Chi^2 statistic onto the clustering
 results. Calculate a (log) p-value for each level of clustering. */
data work.cutoff;
 if _n_=1 then set work.chi;
 set work.cluster;
 chisquare=_pchi_*rsquared;
 degfree=numberofclusters-1;
 logpvalue=logsdf('CHISQ',chisquare,degfree);
run;
/* Plot the log p-values against number of clusters. */
title1 "Plot of the Log of the P-Value by Number of Clusters";
proc sgplot data=work.cutoff;
 scatter y=logpvalue x=numberofclusters
     / markerattrs=(color=blue symbol=circlefilled);
 xaxis label="Number of Clusters";
 yaxis label="Log of P-Value" min=-120 max=-85;
run;
title1;
/* Create a macro variable (&ncl) that contains the number of clusters
 associated with the minimum log p-value. */
```

```
proc sql;
 select NumberOfClusters into :ncl
 from work.cutoff
 having logpvalue=min(logpvalue);
quit;
proc tree data=work.fortree nclusters=&ncl out=work.clus noprint;
 id branch;
run;
proc sort data=work.clus;
 by clusname;
run;
title1 "Levels of Branch by Cluster";
proc print data=work.clus;
 by clusname;
 id clusname;
run;
title1;
/* The DATA Step creates the scoring code to assign the branches to a cluster. */
filename brclus "&PMLRfolder/branch_clus.sas";
data _null_;
 file brclus;
 set work.clus end=last;
```

```
if _n_=1 then put "select (branch);";
 put " when (" branch +(-1) "') branch_clus = " cluster +(-1) "';";
 if last then do;
  put " otherwise branch_clus = 'U';" / "end;";
 end;
run;
data work.train_imputed_greenacre;
 set work.train_imputed;
 %include brclus / source2;
run;
/* Run this code before doing practice I3p2 */
/* ========= */
/* Lesson 1, Practice 1
 Practice: Exploring the Veterans' Organization Data
 Used in the Practices
                                 */
/* ========= */
data pmlr.pva(drop=control_number
        MONTHS SINCE LAST_PROM_RESP
        FILE_AVG_GIFT
        FILE CARD GIFT);
 set pmlr.pva_raw_data;
 STATUS_FL=RECENCY_STATUS_96NK in("F","L");
 STATUS_ES=RECENCY_STATUS_96NK in("E","S");
 home01=(HOME_OWNER="H");
 nses1=(SES="1");
```

```
nses3=(SES="3");
 nses4=(SES="4");
 nses_=(SES="?");
 nurbr=(URBANICITY="R");
 nurbu=(URBANICITY="U");
 nurbs=(URBANICITY="S");
 nurbt=(URBANICITY="T");
 nurb_=(URBANICITY="?");
run;
proc contents data=pmlr.pva;
run;
proc means data=pmlr.pva mean nmiss max min;
 var _numeric_;
run;
proc freq data=pmlr.pva nlevels;
 tables _character_;
run;
/* ======== */
/* Lesson 1, Practice 2
 Practice: Splitting the Data
/* -----*/
proc sort data=pmlr.pva out=work.pva_sort;
 by target_b;
```

```
run;
proc surveyselect noprint data=work.pva_sort
        samprate=0.5 out=pva_sample seed=27513
        outall stratumseed=restore;
 strata target_b;
run;
data pmlr.pva_train(drop=selected SelectionProb SamplingWeight)
  pmlr.pva_valid(drop=selected SelectionProb SamplingWeight);
 set work.pva_sample;
 if selected then output pmlr.pva_train;
 else output pmlr.pva_valid;
run;
/* ========== */
/* Lesson 2, Practice 1
 Practice: Fitting a Logistic Regression Model */
/* ========= */
/* Modifications for your SAS software:
 (Optional) To avoid a warning in the log about the
 suppression of plots that have more than 5000
 observations, you can add the MAXPOINTS= option
 to the PROC LOGISTIC statement like this:
 plots(maxpoints=none only). Omitting the
 MAXPOINTS= option does not affect the results
```

```
of the practices in this course.
*/
%global ex_pi1;
%let ex_pi1=0.05;
title1 "Logistic Regression Model of the Veterans' Organization Data";
proc logistic data=pmlr.pva_train plots(only)=
       (effect(clband x=(pep_star recent_avg_gift_amt
       frequency_status_97nk)) oddsratio (type=horizontalstat));
 class pep_star (param=ref ref='0');
 model target_b(event='1')=pep_star recent_avg_gift_amt
         frequency_status_97nk / clodds=pl;
 effectplot slicefit(sliceby=pep_star x=recent_avg_gift_amt) / noobs;
 effectplot slicefit(sliceby=pep_star x=frequency_status_97nk) / noobs;
 score data=pmlr.pva_train out=work.scopva_train priorevent=&ex_pi1;
run;
title1 "Adjusted Predicted Probabilities of the Veteran's Organization Data";
proc print data=work.scopva_train(obs=10);
 var p_1 pep_star recent_avg_gift_amt frequency_status_97nk;
run;
title;
/* ========= */
/* Lesson 3, Practice 1
 Practice: Imputing Missing Values
                                           */
```

```
/* ========== */
data pmlr.pva_train_mi(drop=i);
 set pmlr.pva_train;
 /* name the missing indicator variables */
 array mi{*} mi_DONOR_AGE mi_INCOME_GROUP
      mi_WEALTH_RATING;
 /* select variables with missing values */
 array x{*} DONOR_AGE INCOME_GROUP WEALTH_RATING;
 do i=1 to dim(mi);
  mi{i}=(x{i}=.);
  nummiss+mi{i};
 end;
run;
proc rank data=pmlr.pva_train_mi out=work.pva_train_rank
    groups=3;
 var recent_response_prop recent_avg_gift_amt;
 ranks grp_resp grp_amt;
run;
proc sort data=work.pva_train_rank out=work.pva_train_rank_sort;
 by grp_resp grp_amt;
run;
proc stdize data=work.pva_train_rank_sort method=median
     reponly out=pmlr.pva_train_imputed;
 by grp_resp grp_amt;
 var DONOR_AGE INCOME_GROUP WEALTH_RATING;
```

```
run;
options nolabel;
proc means data=pmlr.pva_train_imputed median;
 class grp_resp grp_amt;
 var DONOR_AGE INCOME_GROUP WEALTH_RATING;
run;
options label;
/* solution for I3p2 */
/* step 2 */
proc means data=pmlr.pva_train_imputed noprint nway;
 class cluster_code;
 var target_b;
 output out=work.level mean=prop;
run;
/* step 3 */
ods output clusterhistory=work.cluster;
proc cluster data=work.level method=ward
      outtree=work.fortree
      plots=(dendrogram(horizontal height=rsq));
 freq _freq_;
 var prop;
```

```
id cluster_code;
run;
/* step 4 */
proc freq data=pmlr.pva_train_imputed noprint;
 tables cluster_code*target_b / chisq;
 output out=work.chi(keep=_pchi_) chisq;
run;
data work.cutoff;
 if _n_=1 then set work.chi;
 set work.cluster;
 chisquare=_pchi_*rsquared;
 degfree=numberofclusters-1;
 logpvalue=logsdf('CHISQ',chisquare,degfree);
run;
title1 "Plot of the Log of the P-Value by Number of Clusters";
proc sgplot data=work.cutoff;
 scatter y=logpvalue x=numberofclusters
     / markerattrs=(color=blue symbol=circlefilled);
 xaxis label="Number of Clusters";
 yaxis label="Log of P-Value" min=-40 max=0;
run;
title1;
```

```
/* step 5 */
%global ncl;
proc sql;
 select NumberOfClusters into :ncl
 from work.cutoff
 having logpvalue=min(logpvalue);
quit;
/* step 6 */
proc tree data=work.fortree nclusters=&ncl
     out=work.clus noprint;
 id cluster_code;
run;
proc sort data=work.clus;
 by clusname;
run;
title1 "Cluster Assignments";
proc print data=work.clus;
 by clusname;
 id clusname;
run;
```

```
/* step 7 */
filename clcode "&PMLRfolder/cluster_code.sas";
data _null_;
 file clcode;
 set work.clus end=last;
 if _n_=1 then put "select (cluster_code);";
 put " when (" cluster_code +(-1) "') cluster_clus=" cluster +(-1) "';";
 if last then do;
   put " otherwise cluster_clus='U';" / "end;";
 end;
run;
data pmlr.pva_train_imputed_clus;
 set pmlr.pva_train_imputed;
 %include clcode;
run;
```

The CLUSTER Procedure Ward's Minimum Variance Cluster Analysis

	Eigenvalues of the Covariance Matrix							
	Eigenvalue Difference Proportion Cumulative							
1	1	0.00145225		1.0000	1.0000			

Root-Mean-Square Total-Sample Standard Deviation 0.038108

Root-Mean-Square Distance Between Observations 0.053893

	Cluster History							
Number of Clusters	Clusters Joined		Freq	Semipartial R-Square	R-Square	Tie		
53	16	25	325	0.0000	1.00			
52	19	45	291	0.0000	1.00			
51	03	05	254	0.0000	1.00			
50	18	23	455	0.0000	1.00			
49	CL52	44	473	0.0000	1.00			
48	47	49	432	0.0000	1.00			
47	22	53	265	0.0000	1.00			
46	15	CL50	565	0.0000	1.00			
45	26	35	472	0.0000	1.00			
44	07	48	192	0.0000	1.00			
43	09	52	107	0.0000	1.00			
42	17	31	296	0.0000	1.00			
41	02	33	247	0.0000	1.00			
40	11	34	374	0.0000	1.00			
39	CL47	42	397	0.0000	1.00			

28	CL39	46	580	0.0000	1.00
27	CL38	CL53	451	0.0001	1.00
26	CL49	30	735	0.0001	1.00
25	24	36	769	0.0001	.999
24	CL37	CL36	751	0.0001	.999
23	CL41	CL32	1108	0.0002	.999
22	CL34	51	413	0.0002	.999
21	CL44	CL48	624	0.0002	.999
20	CL33	37	521	0.0003	.999
19	CL40	CL28	954	0.0003	.998
18	14	CL31	1045	0.0005	.998
17		20	407	0.0006	.997
16	CL30	CL25	1532	0.0006	.997
15	12	CL24	1062	0.0007	.996
14	CL29	28	574	0.0008	.995
13	80	32	261	0.0009	.994
12	CL21	CL26	1359	0.0014	.993
11	CL23	CL27	1559	0.0021	.991
10	CL22	CL13	674	0.0032	.987
9	CL17	CL14	981	0.0043	.983
8	CL16	CL19	2486	0.0049	.978
7	CL12	CL15	2421	0.0054	.973
6	CL10	CL20	1195	0.0107	.962
5	CL8	CL18	3531	0.0159	.946
4	CL5	CL11	5090	0.0409	.905
3	CL6	CL7	3616	0.0722	.833
2	CL9	CL4	6071	0.1358	.697
1	CL2	CL3	9687	0.6973	.000

Number of Clusters	27	1
4	01	1
	46	1
	24	1
01	36	1
Cluster Assignments	14	1

Olu	Cluster Assignments			14	1
CLUSNAME	CLUSTER_CODE	CLUSTER			
CL4	16	1	CLUSNAME	CLUSTER_CODE	CLUSTER
	25	1	CL6	09	3
	03	1		52	3
	05	1		06	3
	18	1		10	3
	23	1		41	3
	22	1		51	3
	53	1		37	3
	15	1		08	3
	26	1		32	3
	35	1			
	17	1			
	31	1	CLUSNAME	CLUSTER_CODE	CLUSTER
	02	1	CL7	19	2
	33	1		45	2
	11	1		44	2
	34	1		47	2
	42	1		49	2
	04	1		07	2
	50	1		48	2
	40	1		21	2

43	2
29	2
39	2
30	2
12	2

CLUSNAME	CLUSTER_CODE	CLUSTER
CL9	13	4
	38	4
		4
	20	4
	28	4

Replacing Categorical Levels by Using Smoothed Weight-of-Evidence Coding

	0	1	SWOE
A	28	7	-1.399
В	16	0	-2.021
С	94	11	-1.978
D	23	21	-0.499

$$C = 24$$
 $\rho_1 = 0.195$

$$\ln(\frac{\#events + c\rho_1}{\#nonevents + c(1 - \rho_1)}) = \ln(\frac{0 + 24*0.195}{16 + 24(1 - 0.195)})$$

Demo Computing the Smoothed Weight of Evidence

Branch of Bank						
Branch	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
B1	2819	8.74	2819	8.74		
B10	273	0.85	3092	9.58		
B11	247	0.77	3339	10.35		
B12	549	1.70	3888	12.05		
B13	535	1.66	4423	13.71		
B14	1072	3.32	5495	17.03		
B15	2235	6.93	7730	23.96		
B16	1534	4.75	9264	28.71		
B17	850	2.63	10114	31.35		
B18	541	1.68	10655	33.02		
B19	285	0.88	10940	33.91		

```
/* Rho1 is the proportion of events in the training data set. */
 %global rho1;
proc sql noprint;
    select mean(ins) into :rho1
    from work.train imputed;
 quit;
 /* The output data set from PROC MEANS will have the number of
    observations and events for each level of branch. */
proc means data=work.train imputed sum nway noprint;
    class branch;
    var ins;
    output out=work.counts sum=events;
/* The DATA Step creates the scoring code that assigns each branch to
  a value of the smoothed weight of evidence. */
filename brswoe "&PMLRfolder\swoe branch.sas";
data null;
  file brswoe;
  set work.counts end=last;
  logit=log((events + &rho1*24)/(FREQ - events + (1-&rho1)*24));
  if n =1 then put "select (branch);";
  put " when ('" branch + (-1) "') branch swoe = " logit ";";
  if last then do;
                                                             Ι
  logit=log(&rho1/(1-&rho1));
  put " otherwise branch swoe = " logit ";" / "end;";
run;
data work.train imputed swoe;
    set work.train imputed;
    %include brswoe / source2;
run;
```

```
swoe_branch.sas
        (branch);
 select
   when ('B1') branch swoe = -0.533682018;
   when ('B10') branch swoe = -0.366920929;
   when ('B11') branch swoe = -0.366824824
   when ('B12') branch swoe = -0.540183932
   when ('B13') branch swoe = -0.393681164
   when ('B14') branch swoe = -1.376871614
   when ('B15') branch swoe = -1.188201904;
   when ('B16') branch swoe = -0.91025293;
   when ('B17') branch swoe = -0.661782256;
   when ('B18') branch swoe = -0.548226206;
   when ('B19') branch swoe = -0.477468642;
   when ('B2') branch swoe = -0.713003789;
 when ('B18') branch swoe = -0.548226206;
 when ('B19') branch swoe = -0.477468642;
 when ('B2') branch swoe = -0.713003789
 when ('B3') branch swoe = -0.477918403
 when ('B4') branch swoe = -0.518845457
 when ('B5') branch swoe = -0.450637056
 when ('B6') branch swoe = -0.552908065
 when ('B7') branch swoe = -0.719594589;
 when ('B8') branch swoe = -0.468178724
 when ('B9') branch swoe = -0.551166668
  otherwise branch swoe = -0.635055959
end;
```

```
/* Run this code before doing practice I3p3 */
/* ========= */
/* Lesson 1, Practice 1
 Practice: Exploring the Veterans' Organization Data
 Used in the Practices
                                */
/* ========== */
data pmlr.pva(drop=control_number
        MONTHS SINCE LAST_PROM_RESP
        FILE_AVG_GIFT
        FILE_CARD_GIFT);
 set pmlr.pva_raw_data;
 STATUS_FL=RECENCY_STATUS_96NK in("F","L");
 STATUS_ES=RECENCY_STATUS_96NK in("E","S");
 home01=(HOME_OWNER="H");
 nses1=(SES="1");
 nses3=(SES="3");
 nses4=(SES="4");
 nses_=(SES="?");
 nurbr=(URBANICITY="R");
 nurbu=(URBANICITY="U");
 nurbs=(URBANICITY="S");
 nurbt=(URBANICITY="T");
 nurb_=(URBANICITY="?");
run;
proc contents data=pmlr.pva;
run;
```

```
proc means data=pmlr.pva mean nmiss max min;
 var _numeric_;
run;
proc freq data=pmlr.pva nlevels;
 tables _character_;
run;
/* ========= */
/* Lesson 1, Practice 2
 Practice: Splitting the Data
/* -----*/
proc sort data=pmlr.pva out=work.pva_sort;
 by target_b;
run;
proc surveyselect noprint data=work.pva_sort
       samprate=0.5 out=pva_sample seed=27513
       outall stratumseed=restore;
 strata target_b;
run;
data pmlr.pva_train(drop=selected SelectionProb SamplingWeight)
  pmlr.pva_valid(drop=selected SelectionProb SamplingWeight);
 set work.pva_sample;
 if selected then output pmlr.pva_train;
```

```
else output pmlr.pva_valid;
run;
/* ========== */
/* Lesson 2, Practice 1
 Practice: Fitting a Logistic Regression Model
/* ========= */
/* Modifications for your SAS software:
 (Optional) To avoid a warning in the log about the
 suppression of plots that have more than 5000
 observations, you can add the MAXPOINTS= option
 to the PROC LOGISTIC statement like this:
 plots(maxpoints=none only). Omitting the
 MAXPOINTS= option does not affect the results
 of the practices in this course.
*/
%global ex_pi1;
%let ex_pi1=0.05;
title1 "Logistic Regression Model of the Veterans' Organization Data";
proc logistic data=pmlr.pva_train plots(only)=
      (effect(clband x=(pep_star recent_avg_gift_amt
      frequency_status_97nk)) oddsratio (type=horizontalstat));
 class pep_star (param=ref ref='0');
 model target_b(event='1')=pep_star recent_avg_gift_amt
```

```
frequency_status_97nk / clodds=pl;
 effectplot slicefit(sliceby=pep_star x=recent_avg_gift_amt) / noobs;
 effectplot slicefit(sliceby=pep_star x=frequency_status_97nk) / noobs;
 score data=pmlr.pva_train out=work.scopva_train priorevent=&ex_pi1;
run;
title1 "Adjusted Predicted Probabilities of the Veteran's Organization Data";
proc print data=work.scopva_train(obs=10);
 var p_1 pep_star recent_avg_gift_amt frequency_status_97nk;
run;
title;
/* ========= */
/* Lesson 3, Practice 1
 Practice: Imputing Missing Values
                                */
/* -----*/
data pmlr.pva_train_mi(drop=i);
 set pmlr.pva_train;
 /* name the missing indicator variables */
 array mi{*} mi_DONOR_AGE mi_INCOME_GROUP
      mi_WEALTH_RATING;
 /* select variables with missing values */
 array x{*} DONOR_AGE INCOME_GROUP WEALTH_RATING;
 do i=1 to dim(mi);
  mi\{i\}=(x\{i\}=.);
  nummiss+mi{i};
```

```
end;
run;
proc rank data=pmlr.pva_train_mi out=work.pva_train_rank
    groups=3;
 var recent_response_prop recent_avg_gift_amt;
 ranks grp_resp grp_amt;
run;
proc sort data=work.pva_train_rank out=work.pva_train_rank_sort;
 by grp_resp grp_amt;
run;
proc stdize data=work.pva_train_rank_sort method=median
     reponly out=pmlr.pva_train_imputed;
 by grp_resp grp_amt;
 var DONOR_AGE INCOME_GROUP WEALTH_RATING;
run;
options nolabel;
proc means data=pmlr.pva_train_imputed median;
 class grp_resp grp_amt;
 var DONOR_AGE INCOME_GROUP WEALTH_RATING;
run;
options label;
/* ========= */
/* Lesson 3, Practice 2
```

Practice: Collapsing the Levels of a Nominal Input

```
Note: After you submit this code, a note in the log
 indicates that argument 3 to the LOGSDF function
 is invalid. You can ignore this note; it is not
 important for this analysis. The note pertains
 to the situation in which the number of clusters is 1.
 In this case, the degrees of freedom is 0 (degrees of
 freedom is equal to the number of clusters minus 1) and
 the mathematical operation cannot be performed in the
 LOGSDF function. Therefore, the log of the p-value is
                                   */
 set to missing.
/* ================ */
proc means data=pmlr.pva_train_imputed noprint nway;
 class cluster_code;
 var target_b;
 output out=work.level mean=prop;
run;
ods output clusterhistory=work.cluster;
proc cluster data=work.level method=ward
      outtree=work.fortree
      plots=(dendrogram(horizontal height=rsq));
 freq _freq_;
 var prop;
 id cluster_code;
run;
```

```
proc freq data=pmlr.pva_train_imputed noprint;
 tables cluster_code*target_b / chisq;
 output out=work.chi(keep=_pchi_) chisq;
run;
data work.cutoff;
 if _n_=1 then set work.chi;
 set cluster;
 chisquare=_pchi_*rsquared;
 degfree=numberofclusters-1;
 logpvalue=logsdf('CHISQ',chisquare,degfree);
run;
title1 "Plot of the Log of the P-Value by Number of Clusters";
proc sgplot data=work.cutoff;
 scatter y=logpvalue x=numberofclusters
     / markerattrs=(color=blue symbol=circlefilled);
 xaxis label="Number of Clusters";
 yaxis label="Log of P-Value" min=-40 max=0;
run;
title1;
%global ncl;
proc sql;
 select NumberOfClusters into :ncl
 from work.cutoff
```

Suhaimi William Chan

```
having logpvalue=min(logpvalue);
quit;
proc tree data=work.fortree nclusters=&ncl
     out=work.clus noprint;
 id cluster_code;
run;
proc sort data=work.clus;
 by clusname;
run;
title1 "Cluster Assignments";
proc print data=work.clus;
 by clusname;
 id clusname;
run;
filename clcode "&PMLRfolder/cluster_code.sas";
data _null_;
 file clcode;
 set work.clus end=last;
 if _n_=1 then put "select (cluster_code);";
 put " when (" cluster_code +(-1) "')
     cluster_clus="" cluster +(-1) "";";
 if last then do;
   put " otherwise cluster_clus='U';" / "end;";
 end;
```

run;

data pmlr.pva_train_imputed_clus;
 set pmlr.pva_train_imputed;
 %include clcode;

run;

The MEANS Procedure						
Variable	Mean	N Miss	Maximum	Minimum		
TARGET B	0.2500000	0	1.0000000	0		
TARGET D	15.6243444	14529	200.0000000	1.0000000		
MONTHS SINCE ORIGIN	73.4099732	0	137.0000000	5.0000000		
DONOR ĀGE	58.9190506	4795	87.0000000	0		
IN HOUSE	0.0731984	0	1.0000000	0		
INCOME GROUP	3.9075434	4392	7.0000000	1.0000000		
PUBLISHED PHONE	0.4977287	0	1.0000000	0		
MOR_HIT_RATE	3.3616560	0	241.0000000	0		
WEALTH RATING	5.0053967	8810	9.0000000	0		
Luceum Transc varie	4070.07		0000000			

The FREQ Procedure

Number of Variable Levels				
Variable	Levels			
URBANICITY	6			
SES	5			
CLUSTER_CODE	54			
HOME_OWNER	2			
DONOR_GENDER	4			
OVERLAY_SOURCE	4			
RECENCY_STATUS_96NK	6			

URBANICITY	Frequency	Percent	Cumulative Frequency	Cumulative Percent
?	454	2.34	454	2.34
С	4022	20.76	4476	23.11
R	4005	20.67	8481	43.78
S	4491	23.18	12972	66.96
T	3944	20.36	16916	87.32
U	2456	12.68	19372	100.00

SES	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	5924	30.58	5924	30.58
2	9284	47.92	15208	78.51
3	3323	17.15	18531	95.66
4	387	2.00	18918	97.66
?	454	2.34	19372	100.00

CLUSTER_CODE	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	454	2.34	454	2.34
01	239	1.23	693	3.58
02	380	1.96	1073	5.54
03	300	1.55	1373	7.09
04	113	0.58	1486	7.67
05	199	1.03	1685	8.70
06	123	0.63	1808	9.33
07	184	0.95	1992	10.28
08	378	1.95	2370	12.23
09	153	0.79	2523	13.02
10	387	2.00	2910	15.02
11	484	2.50	3394	17.52
12	631	3.26	4025	20.78
13	579	2.99	4604	23.77
14	454	2.34	5058	26.11
15	223	1.15	5281	27.26
16	384	1.98	5665	29.24
17	349	1.80	6014	31.04
18	619	3.20	6633	34.24
19	98	0.51	6731	34.75
20	317	1.64	7048	36.38
21	353	1.82	7401	38.20
22	251	1.30	7652	39.50
23	293	1.51	7945	41.01
24	795	4.10	8740	45.12
25	273	1.41	9013	46.53

26	202	1.04	9215	47.57
27	666	3.44	9881	51.01
28	343	1.77	10224	52.78
29	170	0.88	10394	53.65
30	519	2.68	10913	56.33
31	249	1.29	11162	57.62
32	152	0.78	11314	58.40
33	109	0.56	11423	58.97
34	284	1.47	11707	60.43
35	727	3.75	12434	64.19
36	716	3.70	13150	67.88
37	204	1.05	13354	68.93
38	240	1.24	13594	70.17
39	512	2.64	14106	72.82
40	830	4.28	14936	77.10
41	431	2.22	15367	79.33
42	284	1.47	15651	80.79
43	468	2.42	16119	83.21
44	383	1.98	16502	85.18
45	482	2.49	16984	87.67
46	369	1.90	17353	89.58
47	185	0.95	17538	90.53
48	180	0.93	17718	91.46
49	675	3.48	18393	94.95
50	156	0.81	18549	95.75
51	460	2.37	19009	98.13
52	60	0.31	19069	98.44
53	303	1.56	19372	100.00

HOME_OWNER	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Н	10606	54.75	10606	54.75
U	8766	45.25	19372	100.00

DONOR_GENDER	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Α	1	0.01	1	0.01
F	10401	53.69	10402	53.70
M	7953	41.05	18355	94.75
U	1017	5.25	19372	100.00

OVERLAY_SOURCE	Frequency	Percent	Cumulative Frequency	Cumulative Percent
В	8732	45.08	8732	45.08
M	1480	7.64	10212	52.72
N	4392	22.67	14604	75.39
Р	4768	24.61	19372	100.00

RECENCY_STATUS_96NK	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Α	11918	61.52	11918	61.52
E	427	2.20	12345	63.73
F	1521	7.85	13866	71.58
L	93	0.48	13959	72.06
N	1192	6.15	15151	78.21
S	4221	21.79	19372	100.00

Logistic Regression Model of the Veterans' Organization Data

The LOGISTIC Procedure

Model Information			
Data Set	PMLR.PVA_TRAIN		
Response Variable	TARGET_B		
Number of Response Levels	2		
Model	binary logit		
Optimization Technique	Fisher's scoring		

Number of Observations Read	9687
Number of Observations Used	9687

Response Profile					
Ordered Value	Ordered Value TARGET_B				
1	0	7265			
2	1	2422			

Probability modeled is TARGET_B=1.

Class Level Information				
Class Value Design Variables				
PEP_STAR 0		0		
	1	1		

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics						
Criterion	Intercept Only	Intercept and Covariates				
AIC	10897.230	10663.061				
SC	10904.409	10691.776				
-2 Log L	10895.230	10655.061				

Testing Global Null Hypothesis: BETA=0						
Test Chi-Square DF Pr > ChiSq						
Likelihood Ratio	240.1690	3	<.0001			
Score	242.9486	3	<.0001			
Wald	237.2875	3	<.0001			

Type 3 Analysis of Effects							
Effect DF Chi-Square Pr > ChiSq							
PEP_STAR	1	43.4902	<.0001				
RECENT_AVG_GIFT_AMT	1	3.9559	0.0467				
FREQUENCY_STATUS_97N	1	83.8209	<.0001				

Analysis of Maximum Likelihood Estimates							
Parameter DF Estimate Standard Chi-Square Pr > ChiSq							
Intercept		1	-1.6454	0.0831	392.4480	<.0001	
PEP_STAR	1	1	0.3371	0.0511	43.4902	<.0001	
RECENT_AVG_GIFT_AMT		1	-0.00579	0.00291	3.9559	0.0467	
FREQUENCY_STATUS_97N		1	0.2179	0.0238	83.8209	<.0001	

Association of Predicted Probabilities and Observed Responses					
Percent Concordant	59.9	Somers' D	0.208		
Percent Discordant	39.0	Gamma	0.211		
Percent Tied	1.1	Tau-a	0.078		
Pairs	17595830	С	0.604		

Odds Ratio Estimates and Profile-Likelihood Confidence Intervals					
Effect Unit Estimate 95% Confidence Limit					
PEP_STAR 1 vs 0	1.0000	1.401	1.267	1.549	
RECENT_AVG_GIFT_AMT	1.0000	0.994	0.988	1.000	
FREQUENCY_STATUS_97N	1.0000	1.243	1.187	1.303	

Adjusted Predicted Probabilities of the Veteran's Organization Data

Obs	P_1	PEP_STAR	RECENT_AVG_GIFT_AMT	FREQUENCY_STATUS_97NK
1	0.046390	1	15.00	1
2	0.033094	0	17.50	1
3	0.064890	0	8.33	4
4	0.090167	1	5.00	4
5	0.059152	1	8.33	2
6	0.058117	1	11.57	2
7	0.046941	1	12.86	1
8	0.031733	0	25.00	1
9	0.045126	1	20.00	1
10	0.032091	0	23.00	1

The MEANS Procedure

grp_resp	grp_amt	N Obs	Variable	Median
0	0	487	DONOR_AGE INCOME_GROUP WEALTH_RATING	65.0000000 4.0000000 5.0000000
	1	1147	DONOR_AGE INCOME_GROUP WEALTH_RATING	58.0000000 4.0000000 5.0000000
	2	1612	DONOR_AGE INCOME_GROUP WEALTH_RATING	58.0000000 4.0000000 6.0000000
1	0	671	DONOR_AGE INCOME_GROUP WEALTH_RATING	65.0000000 4.0000000 4.5000000
	1	1270	DONOR_AGE INCOME_GROUP WEALTH_RATING	59.0000000 4.0000000 5.0000000
	2	1202	DONOR_AGE INCOME_GROUP WEALTH_RATING	57.0000000 4.0000000 5.0000000
2	0	2155	DONOR_AGE INCOME_GROUP WEALTH_RATING	63.0000000 4.0000000 5.0000000
	1	733	DONOR_AGE INCOME_GROUP WEALTH_RATING	61.0000000 4.0000000 6.0000000
	2	410	DONOR_AGE INCOME_GROUP WEALTH_RATING	58.5000000 4.0000000 6.0000000

The CLUSTER Procedure Ward's Minimum Variance Cluster Analysis

	Eigenvalues of the Covariance Matrix						
	Eigenvalue	Difference	Proportion	Cumulative			
1	0.00145225		1.0000	1.0000			

Root-Mean-Square Total-Sample Standard Deviation 0.038108

Root-Mean-Square Distance Between Observations 0.053893

	Cluster History					
Number of Clusters	Clusters	s Joined	Freq	Semipartial R-Square	R-Square	Tie
53	16	25	325	0.0000	1.00	
52	19	45	291	0.0000	1.00	
51	03	05	254	0.0000	1.00	
50	18	23	455	0.0000	1.00	
49	CL52	44	473	0.0000	1.00	
48	47	49	432	0.0000	1.00	
47	22	53	265	0.0000	1.00	
46	15	CL50	565	0.0000	1.00	
45	26	35	472	0.0000	1.00	
44	07	48	192	0.0000	1.00	
43	09	52	107	0.0000	1.00	
42	17	31	296	0.0000	1.00	
41	02	33	247	0.0000	1.00	
40	11	34	374	0.0000	1.00	

Number of Clusters	
4	

Cluster Assignments

CLUSNAME	CLUSTER_CODE	CLUSTER
CL4	16	1
	25	1
	03	1
	05	1
	18	1
	23	1
	22	1
	53	1
	15	1
	26	1
	35	1
	17	1
	31	1
	02	1
	33	1
	11	1
	34	1
	42	1
	04	1
	50	1

CLUSNAME	CLUSTER_CODE	CLUSTER
CL6	09	3
	52	3
	06	3
	10	3
	41	
	51	3
	37	3
	08	3
	32	3

CLUSNAME	CLUSTER_CODE	CLUSTER
CL7	19	2
	45	2
	44	2
	47	2
	49	2
	07	2
	48	2
	21	2
	43	2
	29	2
	39	2
	30	2
	12	2

CLUSNAME	CLUSTER_CODE	CLUSTER
CL9	13	4
	38	4
		4
	20	4
	28	4

```
/* Solution for I3p3.sas */
/* step 2 */
%global rho1_ex;
proc sql noprint;
 select mean(target_b) into :rho1_ex
 from pmlr.pva_train_imputed;
run;
proc means data=pmlr.pva_train_imputed
     sum nway noprint;
 class cluster_code;
 var target_b;
 output out=work.counts sum=events;
run;
/* step 3 */
filename clswoe "&PMLRfolder/swoe_cluster.sas";
data _null_;
 file clswoe;
 set work.counts end=last;
   logit=log((events + &rho1_ex*24)/
      (_FREQ_ - events + (1-&rho1_ex)*24));
 if _n_=1 then put "select (cluster_code);";
```

```
put " when ('" cluster_code +(-1) "')
   cluster_swoe=" logit ";" ;
 if last then do;
   logit=log(&rho1_ex/(1-&rho1_ex));
   put " otherwise cluster_swoe=" logit ";" / "end;";
 end;
run;
data pmlr.pva_train_imputed_swoe;
 set pmlr.pva_train_imputed;
 %include clswoe;
run;
title;
proc print data=pmlr.pva_train_imputed_swoe(obs=1);
 where cluster_code = "01";
 var cluster_code cluster_swoe;
run;
```

Obs	CLUSTER_CODE	cluster_swoe
267	01	-0.98447