Alumno: Legajo:

Duración: dos horas. Una condición suficiente de aprobación es la resolución *completa* y *justificada* de dos ejercicios cualesquiera. No se consideran cálculos dispersos o sin comentarios, ni diagramas sin la identificación completa de sus elementos.

- 1. (a) En \mathbb{Z} se define la relación \sim tal que $x \sim y$ sii $x^2 = y^2 \pmod{5}$. Determinar el conjunto cociente \mathbb{Z}/\sim y hallar $X \subset \mathbb{Z}$ de cardinal 6 tal que satisfaga la ecuación [0]X = [7]X, donde [0] y [7] son las clases de equivalencia del 0 y del 7 respectivamente. Si X no es único, dar al menos dos.
 - (b) Proponer una ecuación de recurrencia $x_{n+2} = ax_{n+1} + bx_n$ con semillas x_0 , x_1 tal que la solución converja al valor 1 y determinar para la ecuación propuesta $sup(x_n)$ y $inf(x_n)$.
- 2. (a) Detallar el planteo de la ecuación de recurrencia que permite determinar cuántas palabras de longitud $n \in \mathbb{N}$ con una cantidad impar de letras a se pueden construir con un alfabeto $\Sigma = \{a, b, c, d\}$ y resolverla.
 - (b) Sean a, b átomos del álgebra de Boole (B, +,·,', $\mathbf{0}_B$, $\mathbf{1}_B$). Analizar el valor de verdad de la siguiente proposición y de su recíproca: una condición necesaria para que la ecuación aX = (a + b)X tenga solución es que a + b' sea una solución.
- 3. (a) Dado el alfabeto $\Sigma = \{a, b\}$ definir un autómata $M = \{\Sigma, Q, q_0, \Upsilon, F\}$ tal que reconozca el lenguaje $L = \{x \in \Sigma^* \mid x = aubb, u \in \Sigma^*\}$ y probar que el autómata definido cumple lo pedido.
 - (b) Se muestran los conjuntos de veracidad correspondientes a las proposiciones p, q y r como las 8 regiones definidas en I. Utilizando exclusivamente al condicional (\rightarrow) y la conjunción. Escribir una proposición cuyo conjunto de veracidad sea la región compuesta por 4, 6 y 7.

- 4. (a) En el conjunto D_{24} de divisores positivos se estructura el *poset* con $x \le y$ sii x|y. Sean $A = \{X \subset D_{24} / \sup(X) = 8\}$ y $B = \{X \subset D_{24} / \inf(X) = 6\}$. Calcular |A B|, |A + B| y $\max\{|X| / X \subset B\}$.
 - (b) Sean a y b átomos distintos del álgebra de Boole $(B, +, \cdot, ', \mathbf{0}_B, \mathbf{1}_B)$ cuyo cardinal de |B| = 128. Determinar la cantidad de soluciones de la ecuación en la incógnita $x \in B$ dada por ax = bx.