EE 4323 – Industrial Control Systems Module 6: Frequency Response & Stability (Nyquist Criterion, Gain Margin)

James H. Taylor
Department of Electrical & Computer Engineering
University of New Brunswick
Frederiction, NB CANADA E3B 5A3
e-mail: jtaylor@unb.ca

web site: www.ee.unb.ca/jtaylor/

26 February 2007

Overview

- Introduction
- Bode Plots
- Nyquist Plots
- Linear System Stability via the Nyquist Criterion
- Comparison of the commands margin, nyquist, newnyq

Introduction

- The frequency domain $W(j\omega)$ is very important in control theory:
 - Performance specifications (bandwidth, gain margin, phase margin)
 - Stability conditions
 - Loop shaping via lead, lag, lead-lag compensation
- The basic thread from modelling to frequency response is:
 - 1. We usually start with a nonlinear model: $\dot{x} = f(x, u)$; y = h(x, u)
 - 2. Then we determine operating point(s): $u \equiv u_0 \rightarrow x \equiv x_0$
 - 3. Then generate linearized model(s): $\delta \dot{x} = A \, \delta x + B \, \delta u$; $\delta y = C \, \delta x + D \, \delta u$, with $\delta x = x x_0$, $\delta u = u u_0$
 - 4. Transform into Laplace variables, $\Delta X = \mathcal{L}(\delta x)$, $\Delta U = \mathcal{L}(\delta u)$, $\Delta Y = \mathcal{L}(\delta y)$: $(sI A)\Delta X = B\Delta U$, $\Delta Y = C\Delta X + D\Delta U$; $\Delta Y = [C(sI A)^{-1}B + D]\Delta U$
 - 5. Finally, obtain the transfer function:

$$W(s) = \frac{\mathcal{L}(\delta y)}{\mathcal{L}(\delta u)} = \frac{p(s)}{q(s)}$$
 (1)

$$= C(sI - A)^{-1}B + D (2)$$

Introduction (cont'd)

- Nyquist plots are most easily obtained from Bode plots, so we start with Bode plots:
- Bode plots are built up from the "very low frequency" term and first- and second-order factors:

$$W(s) = W_{LF}(s) \cdot \frac{(1 + T_1 s)(1 + T_2 s) \dots (1 + 2\zeta_1 s/\omega_{n1} + s^2/\omega_{n1}^2) \dots}{(1 + T_k s)(1 + T_{k+1} s) \dots (1 + 2\zeta_m s/\omega_{n,m} + s^2/\omega_{n,m}^2) \dots}$$
(3)

where $W_{LF}(s)$ may be a constant K; or have zeroes at s = 0, $W_{LF}(s) = K s^q$; or have poles, in which case q is negative; $W_{LF}(s)$ defines the behaviour of $W(j\omega)$ for very low frequencies – the remaining factors have a unity leading coefficient, so they are essentially 1 at low frequencies.

- We proceed by looking at the behaviour of various factors; then, since we use log scales in the Bode plot, we add the results to obtain the overall frequency response (magnitude and phase)
- Dealing with $W_{LF}(s)$:
 - $-W_{LF}(s) = K$ just add $20 \times \log_{10} |K|$ dB to the magnitude, the phase is 0 (K > 0) or $\pm 180 \deg (K < 0)$
 - $-W_{LF}(s) = K s^q$ for magnitude draw a line passing through the point $\omega = 1$, $|W(j\omega)|_{dB} = 20 \log_{10} |K|$ with slope 20 q dB/decade, and for phase add 90 q degrees (plus \pm 180 deg if K < 0); q may be positive or negative for this rule

Dealing with First-Order Factors

• ... and for first-order factors, $(1 + T_k s)$

- Note that the break frequency $\omega_k = 1/T_k$ is normalized to unity; shift these templates to the desired break frequency
- The asymptotic behaviour is 0 dB and 0 deg at low frequencies, \pm 20 dB/decade and \pm 90 degrees at high frequencies,

Dealing with Second-Order Factors

• ... and finally for second-order factors, $(1+2\zeta_1 s/\omega_{n1}+s^2/\omega_{n1}^2)$

Bode plot, $(1 + 2\zeta s + s^2)^{+1}$, $\zeta = 1, 0.3$ Bode plot, $(1 - 2\zeta s + s^2)^{+1}$, $\zeta = 1, 0.3$

(gb) 40 20 (gb) espend (gb) es

Bode plot, $(1 + 2\zeta s + s^2)^{-1}$, $\zeta = 1$, 0.3

Bode plot, $(1 - 2\zeta s + s^2)^{-1}$, $\zeta = 1$, 0.3

- Note that the break frequency ω_n is normalized to unity; shift these templates to the desired break frequency
- The asymptotic behaviour is 0 dB and 0 deg at low frequencies, \pm 40 dB/decade and \pm 180 degrees at high frequencies

Finally: Check the high-frequency behaviour against $W_{\infty} = K_{\infty}/s^{n-m}$; m = order(numerator), n = order(denominator)!

Second-Order Factors, Effect of Damping

Unfortunately, the damping ζ makes a lot of difference; for the factor $1/(s^2+2\zeta s+1)$ we have the following:

Bode Plot, Simple Example

Example 1: Given a stable plant, $W_1(s) = \frac{2(s+3)}{s^2 + 4s + 25}$

- 1. First put $W_1(s)$ in standard form: $W_1(s) = 0.24 \cdot \frac{(1+s/3)}{(1+0.16s+s^2/25)}$
- 2. Then, $W_{LF} = 0.24 \rightarrow -12.4 \text{ dB}$, 0 deg for all ω
- 3. Draw the individual templates for each factor: \circ for W_{LF} , \Box for (1+s/3), \diamond for $(1+0.16s+s^2/25)$; notice $\zeta=0.4$
- 4. Add magnitude & phase to obtain the final plot (solid curve):

5. Finally, check against $W_{\infty} = 2/s$ (dash-dot curve)

Bode Plot, Unstable Plant

Example 2: Given an unstable plant, $W_2(s) = \frac{s+2}{s^2-4s-5}$

- 1. First put $W_2(s)$ in standard form: $W_2(s) = -0.4 \cdot \frac{(1+s/2)}{(1-s/5)(1+s)}$
- 2. Then, $W_{LF} = -0.4 \rightarrow -8 \text{ dB}, -180 \text{ deg for all } \omega$
- 3. Draw the individual templates for each factor: \circ for W_{LF} , \square for numerator, \times for (1-s/5), \diamond for (1+s)
- 4. Add magnitude & phase to obtain the final plot (solid curve):

Finally, check against $W_{\infty} = 1/s$ (dashed curve)

Bode to Nyquist Plot Process

The following data is taken from the preceeding Bode plot:

Table to create a Nyquist plot:

W	dB	deg	mag
0.1	-7.99	-181.7	0.398
0.316	-8.283	-184.9	0.385
1.0	-10.17	-187.1	0.310
3.16	-14.39	-162.5	0.19
10.	-20.8	-122.2	0.091

Basic Nyquist Plot from Bode Data

Again, given the unstable plant $W_2(s) = \frac{s+2}{s^2-4s-5}$ the data from the preceding table can be used directly to generate the Nyquist plot:

Nyquist Plot and Criterion

Example 2 (Cont'd): Given an unstable plant, $W_2(s) = \frac{s+2}{s^2-4s-5}$

s-plane region mapped

 $W_2(s)$ -map for the Nyquist criterion

A New MATLAB Nyquist Tool

Another example: Consider a simple stable plant:

$$W_3(s) = \frac{s+1}{s^4 + 2s^3 + 25s^2 + 3s + 1} \tag{4}$$

The report that newnyq provides is:

>> newnyq(num,den)

Comparison of nyquist, newnyq and margin

Final example: Consider a high-order unstable plant:

$$W_4(s) = 10^4 \cdot \frac{s^2 + 2s + 1}{s^5 + 63s^4 + 659s^3 + 319s^2 + 19538s + 3900}$$
 (5)

num = 1.e4*[1 2 1];
den = [1 63 659 319 19538 3900];
margin(num,den);
title('num = 1.e4*[1 2 1]; den = [1 63 659 319 19538 3900];');

 $\label{eq:bode Diagram} Bode \ Diagram \\ Gm = 9.8 \ dB \ (at 22.2 \ rad/sec) \ , \ Pm = 17.7 \ deg \ (at 12.1 \ rad/sec)$

Comparison of nyquist, newnyq and margin (Cont'd)

```
num = 1.e4*[1 2 1];
den = [ 1 63 659 319 19538 3900 ];
nyquist(num,den);
title('nyquist, num = 1.e4*[1 2 1]; den = [ 1 63 659 319 19538 3900 ];')
```

nyquist, num = 1.e4*[1 2 1]; den = [1 63 659 319 19538 3900];

Comparison of nyquist, newnyq and margin (Cont'd)

```
num = 1.e4*[1 2 1];
den = [ 1 63 659 319 19538 3900 ];
newnyq(num,den);
title('newnyq, num = 1.e4*[1 2 1]; den = [ 1 63 659 319 19538 3900 ];');
```


The report that newnyq provides is:

```
stable k range
0.22906 < k < 3.0905
```

The Nyquist Criterion – Why it is so Important in Practice

- You do not need a precise analytic model just $W(j\omega)$ (although it is important to keep in mind the usual context starting from modelling and linearization)
- Empirical data (amplitude and phase data taken in the lab) is directly useful without a need to assume system order and perform curve fitting
- You have a direct graphical interpretation of the impact of uncertainty just draw a **band** instead of a precise locus of $W(j\omega)$; this is especially useful in dealing with empirical data