三角函数

注,本章节仅含存三角函数。和三角形,圆形相关的三角函数参见三角形和圆形章节

- $\sin \alpha = \frac{y}{r}$, $\cos \alpha = \frac{x}{r}$, $\tan \alpha = \frac{y}{x}$
- 正弦函数 $y=\sin x$ 在区间 $\left[-\frac{\pi}{2},\frac{3\pi}{2}\right]$ 上,从-1 增大到 1,是递增的;在区间 $\left[\frac{\pi}{2},\frac{3\pi}{2}\right]$ 上,从 1 减少到-1,是递減的。
- 余弦函数 $y=\cos x$ 在区间 $[-\pi,0]$ 上,从-1 增大到 1, 是递增的; 在区间 $[0,\pi]$ 上,从 1 减少到-1,是递减的。
- 正切函数在每一个开区间 $\left(-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi\right)(k\in {\bf Z})$ 上都是单调递增的 $\sin^2\alpha+\cos^2\alpha=1$ $\tan^2\alpha+1=\sec^2\alpha$
- $\cot^2 \alpha + 1 = \sec^2 \alpha$ $\cot^2 \alpha + 1 = \csc^2 \alpha$ $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$

- $\sin\left(-\alpha\right) = -\sin\alpha$
- $\cos(-\alpha) = \cos \alpha$
 - $\tan\left(-\alpha\right) = -\tan\alpha$
 - $\sin\left(\pi \pm a\right) = \mp \sin\alpha$
- $\cos(\pi \pm \alpha) = -\cos\alpha$
 - $\tan\left(\pi \pm \alpha\right) = \pm \tan\alpha$
 - $\sin\left(\frac{\pi}{2} \pm \alpha\right) = \cos\alpha$
- $\cos\left(\frac{\pi}{2} \pm \alpha\right) = \mp \sin \alpha$

$$\tan\left(\frac{\pi}{2} \pm \alpha\right) = \mp \cot\alpha$$

$$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$$

• $\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$

$$\tan (\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

$$\sin 2\alpha = 2\sin \alpha\cos \alpha$$

• $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 - 1 = 1 - 2\sin^2 \alpha$ $\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$

积化和差公式

$$\sin lpha \sin eta = -rac{1}{2}[\cos{(lpha + eta)} - \cos{(lpha - eta)}]$$

• $\sin \alpha \cos \beta = \frac{1}{2} [\sin (\alpha + \beta) + \sin (\alpha - \beta)]$

$$\cos \alpha \sin \beta = \frac{1}{2} [\sin (\alpha + \beta) - \sin (\alpha - \beta)]$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos (\alpha + \beta) + \cos (\alpha - \beta)]$$

和差化积公式

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$$
• $\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$
 $\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$
 $\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}$
半角公式

$$\sin \frac{a}{2} = \pm \sqrt{\frac{1-\cos \alpha}{2}}$$
 $\cos \frac{a}{2} = \pm \sqrt{\frac{1+\cos \alpha}{2}}$
 $\tan \frac{a}{2} = \pm \sqrt{\frac{1-\cos a}{1+\cos a}}$
万能公式

$$\sin a = rac{2 anrac{a}{2}}{1+ an^2rac{a}{2}}
onumber \ \cos a = rac{1- an^2rac{a}{2}}{1+ an^2rac{a}{2}}
onumber \ an a = rac{2 anrac{a}{2}}{1- an^2rac{a}{2}}
onumber \ an a$$

三角函数与向量

- 向量的数量积(内积) $a \cdot b = |a||b|\cos\langle a,b\rangle$
- 向量 a 在向量 b 上的投影 $|a|\cos\langle a,b\rangle$
- $a \perp b \Leftrightarrow a \cdot b = 0 \Leftrightarrow |a| \cos \langle a, b \rangle = 0$
- 向量加减内积运算满足交换律,结合律,分配律

特殊角的三角函数值

RAD	DEG	Sin	Cos	Tan	求解方法	注释
0	0	0	1	0	显然	
$\frac{1}{15}\pi$	12°	略	略	略	$\sin\left(\frac{\pi}{15}\right) = \sin\left(\frac{\pi}{6} - \frac{\pi}{10}\right)$	
$\frac{1}{12}\pi$	15°	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$2-\sqrt{3}$	半个30°, 或 $\sin\left(\frac{\pi}{12}\right) = \sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right)$	$x^2-4x+1=0$ 的解,也 叫白金分割数
$\frac{1}{10}\pi$	18°	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{1}{5}\sqrt{25-10\sqrt{5}}$	半个36°	
$\frac{1}{9}\pi$	20°	略	略	略	$\sin{(3\alpha)}=3\sin{\alpha}-4\sin^3{\alpha}$	<u>wolfram</u>
$\frac{1}{8}\pi$	22.5°	$\frac{\sqrt{2-\sqrt{2}}}{2}$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$\sqrt{2}-1$	半个45°	$x^2-2x-1=0$ 的解,也 叫白银分割数
$\frac{1}{6}\pi$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	半个等边三角形	
$\frac{1}{5}\pi$	36°	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{4}$	$\sqrt{5-2\sqrt{5}}$	$\sin{(5lpha)} = 5\sin{lpha} - 20\sin^3{lpha} + 16\sin^5{lpha}$	$\cos\left(\frac{\pi}{5}\right)$ 为半个黄金分割数
$\frac{1}{4}\pi$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	等腰直角三角形	
$\frac{3}{10}\pi$	54°	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{1}{5}\sqrt{25+10\sqrt{5}}$	参见36°	
$\frac{1}{3}\pi$	60°	$\frac{\sqrt{3}}{2}$	1/2	$\sqrt{3}$	等边三角形	
$\frac{3}{8}\pi$	67.5	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$\frac{\sqrt{2-\sqrt{2}}}{2}$	$\sqrt{2} + 1$	参见22.5°	
$\frac{2}{5}\pi$	72°	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\sqrt{5+2\sqrt{5}}$	参见18°	
$\frac{5}{12}\pi$	75°	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$2+\sqrt{3}$	参见15°	
$\frac{1}{2}\pi$	90°	1	0	NA	显然	

解题技巧

- 一个包含sin和cos的算式,可以除以sin $^2x+\cos^2x$,然后分子分母同时除以 \cos^2x ,变成只有tan的算式
- 同时有lpha和eta的方程组,可以写成一边是lpha另一边是eta,然后利用 $\sin^2lpha+\cos^2lpha=1$ 消去一个角度
- 三角函数换算表。查表用,无需记忆。严格讲每个根号前应有正负号。

函数	\sin	cos	tan	cot	sec	csc
$\sin \theta$	$\sin heta$	$\sqrt{1-\cos^2 heta}$	$rac{ an heta}{\sqrt{1\!+\! an^2 heta}}$	$rac{1}{\sqrt{1+\cot^2 heta}}$	$\frac{\sqrt{\sec^2\theta-1}}{\sec\theta}$	$\frac{1}{\csc \theta}$
$\cos \theta$	$\sqrt{1-\sin^2\theta}$	$\cos heta$	$rac{1}{\sqrt{1+ an^2 heta}}$	$rac{\cot heta}{\sqrt{1+\cot^2 heta}}$	$\frac{1}{\sec \theta}$	$\frac{\sqrt{\csc^2\theta - 1}}{\csc\theta}$
$\tan \theta$	$\frac{\sin\theta}{\sqrt{1-\sin^2\theta}}$	$\frac{\sqrt{1-\cos^2\theta}}{\cos\theta}$	an heta	$\frac{1}{\cot \theta}$	$\sqrt{\sec^2 \theta - 1}$	$\frac{1}{\sqrt{\csc^2 \theta - 1}}$
$\cot \theta$	$\frac{\sqrt{1-\sin^2\theta}}{\sin\theta}$	$\frac{\cos\theta}{\sqrt{1-\cos^2\theta}}$	$\frac{1}{\tan \theta}$	$\cot heta$	$\frac{1}{\sqrt{\sec^2 \theta - 1}}$	$\sqrt{\csc^2 \theta - 1}$
$\sec \theta$	$rac{1}{\sqrt{1-\sin^2 heta}}$	$\frac{1}{\cos \theta}$	$\sqrt{1+ an^2 heta}$	$rac{\sqrt{1+\cot^2 heta}}{\cot heta}$	$\sec heta$	$\frac{\csc\theta}{\sqrt{\csc^2\theta-1}}$
$\csc \theta$	$\frac{1}{\sin \theta}$	$\frac{1}{\sqrt{1-\cos^2\theta}}$	$rac{\sqrt{1 + an^2 heta}}{ an heta}$	$\sqrt{1+\cot^2 heta}$	$\frac{\sec\theta}{\sqrt{\sec^2\theta - 1}}$	$\csc \theta$