

HFM 2018

July 9, 2018 UC Davis, Davis

Randomness-induced quantum spin liquid behavior in the s=1/2 Heisenberg antiferromagnet on the pyrochlore lattice

H. Kawamura and K. Uematsu Osaka University

Quantum spin liquids now observed in many 2D frustrated magnets

RVB state

[P.W. Anderson ('73)]

* Triangular lattice S=1/2 organic salts

 κ -(ET)₂Cu₂(CN)₃ EtMe₃Sb[Pd(dmit)₂]₂ κ -H₃(Cat-EDT-TTF)₂

[K. Kanoda, R. Kato, H. Mori, et al]

* Kagome lattice

herbersmithite: ZnCu₃(OH)₆Cl₂

[D.G. Nocera et al]

* Honeycomb-lattice and square-lattice magnets

 $6HB-Ba_3NiSb_2O_9$ (s=1)

[J. Quilliam et al., 2016]

 $Sr_2CuTe_{1-x}W_xO_6$

[O. Mustonen et al., 2018]

Competing interactions

Gapless QSL widely observed experimentally

Triangular organic salt k-ET

Kagome herbertsmithite ZnCu₃(OH)₆Cl₂

inelastic neutron scattering

$\frac{Square\ mixed\text{-}crystal\ AF}{Sr_2CuTe_{1\text{-}x}W_xO_6}$

[O .Musutone et al, 2018]

Some (many?) of experimentally QSL might be randomness-induced ones?

Randomness (inhomogeneity)

[K. Watanabe, H. Kawamura, H. Nakano and T. Sakai, JPSJ 83, 034714 (2014);

- H. Kawamura, K. Watanabe and T. Shimokawa, JPSJ 83, 103704 (2014);
- T. Shimokawa, K. Watanabe and H. Kawamura, PRB 92, 134407 (2015)]

"Anderson localization" of spin singlets?

Origin of randomness or inhomogeneity could be either extrinsic or intrinsic

Extrinsic randomness

Quenched disorder

- * intersite disorder: kagome herbersmithite
- * mixed crystal: Sr₂CuTe_{1-x}W_xO₆
- * defects, impurities ...

Intrinsic randomness

Effective randomness for spin degrees of freedom can be self-generated even in clean systems via the coupling to other degrees of freedom in magnets, e.g., charge, lattices, *etc*.

- * coupling to charge (dielectric) degrees of freedom: k-ET & dmit salts
- * coupling to protons at the hydrogen bond: Cat salt

Extrinsic randomness (quenched randomness)

Kagome herbertsmithite: ZnCu₃(OH)₆Cl₂

intersite disorder

10~15% Zn²⁺ on the triangular layer randomly replaced by Cu²⁺

bond-random modulation of the effective exchange J on the kagome plane

Local Jahn-Teller distortion

<u>Mixed crystal of square-lattice AFMs: $Sr_2CuTe_{1-x}W_xO_6$ </u>

Random s=1/2 J_1 - J_2 square-lattice Heisenberg AF Sr_2CuTeO_6 $(J_2/J_1=0.03, T_N=29K)$ and Sr_2CuWO_6 $(J_2/J_1=7.92, T_N=24K)$

⇒ Significant quenched disorder associated with the Te/W occupation

Relevant randomness (inhomogeneity) exists in trianglar organic salts?

Charge inhomogeneity dynamically self-generated

Effective randomness is self-generated via the spin-charge coupling

The "third" quantum spin liquid

κ-H₃(Cat-EDT-TTF)₂

[H. Mori's group, 2013]

melectron - proton coupled triangular organic conductor hydrogen-bonded

Proton remains delocalized

[T. Tsumuraya et al, 2015]

- ightarrow possibly slowed down into random positions at low-T
- \rightarrow yielding random fields to π -electrons
- ightarrow spatially modified random exchange coupling J_{ij}

Gapless random-singlet state

Bond-random *S*=1/2 AF Heisenberg model on the triangular & kagome lattices

$$\mathcal{H} = \sum_{\substack{\langle i,j \rangle \\ (0 \leq J(1-\Delta) \leq J_{ij} \leq J(1+\Delta))}} J_{ij} \hat{S}_i \cdot \hat{S}_j$$

Exact diagonalization (ED) calculation performed on various 2D models, including triangular, kagome, $J_1 J_2$ honeycomb and square lattices

→ find a QSL-like state (random-singlet state)

ED numerical results on 2D models

Random triangular model

Random kagome model

Dynamical spin structure factor

Randomness-induced QSL state
--- random-singlet state --appear to be realized in
a variety of 2D frustrated magnets

Randomness-induced QSL state ever possible in 3D?

e.g., pyrochlore?

Gapless QSL behavior observed in pyrochlore AF: Lu₂Mo₂O₅N₂

[L. Clark, ... A. Harrison, J. P. Attfield, B.D. Gaulin, PRL 113, 117201 (2014)]

$\underline{\text{Lu}_2\text{Mo}_2\text{O}_7}$

 Mo^{4+} $4d^2$ S=1 \rightarrow Orbital degrees of freedom

Apparently disorder-free system

Spin-glass order at $T_f = 16$ K (similarly to $Y_2Mo_2O_7$)

due to the spin-orbital coupling

Spin glass

$\underline{Lu_2Mo_2O_5N_2}$

Random substitution of O²⁻ by N³⁻

$$Mo^{5+} 4d^1 S = 1/2$$

S=1/2 pyrochlore Heisenberg AF

QSL!

with significant exchange randomness

QSL behavior of Lu₂Mo₂O₅N₂

Gapless QSL behavior with the T-linear specific heat and broad features in the spin structure factor

Model: s = 1/2 random-bond AF Heisenberg model on the 3D pyrochlore lattice

$$\mathcal{H} = \sum_{\langle i,j \rangle} J_{ij} \ \overrightarrow{S_i} \cdot \overrightarrow{S_j}$$

- * Nearest-neighbor coupling
- * Periodic boundary conditions
- * ED (ground state properties, $N \leq 36$)
 - & Hams-de Raedt method (finite-temperature properties, N = 32)
- * Averaged over 10~100 samples

* Preceding works on the regular model

some sort of non-magnetic state [1-7]

- •Valence Bond Crystal? [1-4]
- •Chiral Spin Liquid? [5,6]
- •something else? [7]

- [1] A. B. Harris et al., J. Appl. Phys. 69, 5200 (1991).
- [2] M. Isoda and S. Mori, J. Phys. Soc. Jpn. 67, 4022 (1998).
- [3] H. Tsunetsugu, J. Phys. Soc. Jpn. 70, 640 (2001).
- [4] E. Berg et al., Phys. Rev. Lett. 90, 147204 (2003).
- [5] J. H. Kim and J. H. Han, Phys. Rev. B 78, 180410 (2008).
- [6] F. J. Burnell et al., Phys. Rev. B 79, 144432 (2009).
- [7] V. R. Chandra and J. Sahoo, Phys. Rev. B 97, 144407 (2018).

Results: Ground state properties

Spin freezing parameter q

Spin gap

No magnetic order at any Δ

Seems to be gapful for $\Delta < \Delta_c \sim 0.6$ but gapless for $\Delta > \Delta_c$

Gapful-gapless transition at $\Delta = \Delta_c \sim 0.6$

Random singlet state realized at $\Delta = \Delta_c \sim 0.6$

Rate of triplet ground states

Finite-temperature properties

T(K)

Static spin correlations (T=0)

Static spin structure factor S(q)

Random: $\Delta = 1$

Very broad spin structure factors without any peaky structure

Dynamical spin correlations (T=0)

Dynamical spin structure factor $S(q,\omega)$

Random: $\Delta = 1$

[L. Clark *et al.*, 2014]

Random-singlet state in 3D looks similar to the one in 2D

e.g., specific heat

3D pyrochlore

2D models

Summary

* Zero-T and finite-T properties of the bond-randm s=1/2 AF Heisenberg model

Randomness or inhomogeneity plays a role in quantum magnetism!

- * The random-singlet state in 3D is very much similar to the one in 2D, characterized by the T-linear low-T specific heat, gapless susceptibility with a Curie-like tail, and broad features in the spin structure factor.
- * The results are consistent with the recent experimental result on the pyrochlore AF $Lu_2Mo_2O_5N_2$

Possible chiral order?

No chiral(-glass) order both in the regular and the random cases

Origin of the T-linear specific heat in the random-singlet state

T-linear specific heat generically realized in spin glasses and molecular glasses, reflecting continuous low-energy excitations with a nonzero density of states down to zero.

Nature of the "random-singlet" state

Anderson-localized RVB state?

A subtle balance between the kinetic energy (resonance) and the potential energy (random J_{ij})

Gapless behavior robust against $P(J_{ii})$?

Gapless behavior for larger randomness (δ) even for the discrete (binary) J_{ii} distributin