REPORT

과 목 명 : 컴퓨터네트워크

담담교수 : 조경산 교수님

소 속 : 소프트웨어학과

학 번: 32151671

이 름: 박민혁

Computer Network(Second Homework)

- 1. We need to use synchronous TDM and combine 12 digital sources, each of 800bps. Each output slot carries 8 bits from each source, but one extra bit(framing bit) is added to each frame.
 - a) What is the size of an output frame in bits?

```
8bit * 12 + frame 당 1 extra bit = 한 frame size = 97bit.
```

b) What is the output data rate(bps)? 9700bps 물어보기.

 $(8bit \times 12 + 1) \times 800 = 77600bps = 77.6Kbps.$

2. In case of sending data "1110010" through RS-232C, illustrate the bit flows including start, parity(even, and stop bit.)

1은 마이너스 0은 플러스 parity는 0 stop bit는 잘 보냈냐 확인 마이너스

3. What is the difference between shift keying and modulation?

Modulation은 Analog 신호를 Analog로 바꿀 때, AM(Amplitude Modulation), FM(Frequency Modulation), PM(Phase Modulation) 기법들을 사용하는 것 Shift Keying은 Digital 신호를 Analog 신호로 바꿀 때, ASK(Amplitude Shfit Keying), FSK(Frequency Shift Keying), PSK(Phase Shift Keying)를 사용하는 것.

- 4. Consider a channel of 100m with a bandwidth of 10Gbps, and the propagation speed of $10^8 m/{\rm sec}\,(G\!=\!10^9)$
 - a) What is the propagation delay through this line?

Propagation delay = 거리 / 전파속도 = $100m/10^8m/\text{sec} = 10^{-6}\text{sec}$

b) What is the transmission delay of a packet of 1Mbytes? $(M=10^6)$

Transmission delay = 데이터의 크기 / 링크의 전송속도(대역폭)
$$= \frac{8\times(10^6)}{10\times(10^9)} = 8\times10^{-4}$$

C) How many bits can be contained in the link at most?

Bandwidth - Delay product =
$$Bandwidth \times latency = 10^{10}bit/sec \times 810 \times 10^{-6} = 10.125MB$$

5. Compare the throughput of the following transmissions.

a) parallel vs serial

parallel는 여러 와이어의 개수만큼 와이어당 1bit씩 전송 하고 serial은 한 번에 한번씩 1bit로 전송한다. 그래서 parallel이 전송률이 더 좋음.

Figure 9.2 Illustration of parallel transmission that uses 8 wires to send 8 bits at the same time.

b) FDM vs TDM

FDM은 주파수 다중 분활화로 한 전송 로의 대역폭을 여러 개의 작은 채널로 분할하여 여러 단말기가 동시에 이용하는 방식으로 동시전송이 가능하다. TDM은 시 분할 다중화로 하나의 전송로 대역폭을 시간을 분할하여 사용하는 것이고 동시전송이 불가능하다. 그렇

Figure 9.3 Illustration of a serial transmission mode.

기 때무에 FDM이 전송률이 더 좋음.

c) full-duplex vs half-duplex

full-dulpex는 양방향 통신이며 송신과 수신이 동시에 가능, half-duplex는 양방향 통신이지만 송신과 수신이 동시에 불가능하기 때문에 full-duplex가 전송률이 더 좋음.

d) synchronous vs asychronous

동기식은 data 전송이 끝나고 바로 다음 data가 일정한 간격으로 전송이 되는 방면 비동기식은 data 전송 과정에서 data 시작과 끝에 extra bit 때문에 시간당 전송률은 동기식 이 더 좋음.

6. Explain the size the fields in the Ethernet frame encapsulating an ARP request packet(28bytes) sent by the router with MAC address 23:45:AB:4F:67:CD. ARP request packet is sent to all stations in the Ethernet

a) In the CSMA protocol, what happens if two stations wait for the cable to be idel?

한 번 동시에 보내서 충돌이 일어나면 두 개의 스테이션 모두 대기 상태를 갖는다. 그 때 랜덤하게 대기시간이 주어지고 대기시간이 먼저 끝나는 것부터 전송을 시작한다. 만약 그이후에 또 충돌이 일어난다면, 대기시간을 두 배로 늘린다.

b) How is this problem handled in CSMA/CD?

무선 통신인 LAN의 경우에 CSMA/CD를 사용할 수 없다. 무선통신은 거리에 제한이 있어서 거리가 먼 곳은 통신하기 전 확인하는 과정을 거칠 때 다른 멀리 있는 단말기가 통신 중인 것을 알 수 있다.

8. Why is there no need for CSMA/CD in a full-duplex Ethernet?

모든 스테이션은 다른 케이블을 사용하여 스위치에 연결되며, 모든 스테이션은 신호를 독립적으로 보내고 받을 수 있다 이 링크는 스테이션과 스위치 사이의 전용 경로로써, CSMA/CD half-duplex 보다 full-duplex를 훨씬 간단하게 만든다. 캐리어 감지가 필요 없고, 충돌 감지가 필요 없기 때문에 캐리어 감지 및 충돌 감지 기능이 가능하다. MAC 하위계층에서 돌릴 수 있다.

9. Compare Ethernet hubs and Layer switches.

허브는 한 포트에서 수신한 프레임을 모든 포트도 전송하여 다른 포트가 프레임을 전송할 때 충돌이 일어날 수 있다. 하지만 스위치에서는 한 포트에서 전송된 프레임이 MAC 주소 테이블에 특정 포트로만 전송되기 때문에 다른 포트가 전송하는 프레임과 충돌이 일어나지 않는다.

10. Find out the MAC address of your computer.

집에서 확인한 MAC Address.(알아야함)시험

속성	값
연결별 DNS 접미사	
설명	Intel(R) Dual Band Wireless-AC 7260
물리적 주소	28-B2-BD-77-B5-C8
DHCP 사용	Й
IPv4 주소	172, 30, 1, 3
IPv4 서브넷 마스크	255, 255, 255, 0
임대 시작 날짜	2019년 4월 9일 화요일 오후 10:27:02
임대 만료 날짜	2019년 4월 10일 수요일 오전 3:27:03
IPv4 기본 게이트웨이	172, 30, 1, 254
IPv4 DHCP 서버	172, 30, 1, 254
IPv4 DNS 서버	168, 126, 63, 1
	168, 126, 63, 2
IDM WING 11HI	100, 120, 00, 2

11. Explain the information obtained by executing "ping www.dankook.ac.kr" from your computer

집에서 확인 했는데 손실이 뜸.

```
##Jsers#user>ping www.dankook.ac.kr

ing www.dankook.ac.kr [220.69.176.17] 32바이트 데이터 사용:
요청 시간이 만료되었습니다.
**20.69.176.17에 대한 Ping 통계:
패킷: 보냄 = 4, 받음 = 0, 손실 = 4 (100% 손실).
```

학교 인터넷에서 확인.

```
St. C:#Windows#system32#cmd.exe

Microsoft Windows [Uersion 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:#Users#user>ping www.dankook.ac.kr

Ping www.dankook.ac.kr [220.69.176.17] 32바이트 데이터 사용:
220.69.176.17의 응답: 바이트=32 시간=96ms TTL=251
220.69.176.17의 응답: 바이트=32 시간=32ms TTL=251
220.69.176.17의 응답: 바이트=32 시간=32ms TTL=251
220.69.176.17의 응답: 바이트=32 시간=162ms TTL=251
220.69.176.17에 대한 Ping 통계:
패킷: 보냄 = 4, 받음 = 4, 손실 = 0 (0% 손실),
왕복 시간(밀리초):
최소 = 8ms, 최대 = 162ms, 평균 = 74ms

C:#Users#user>
```

12. Capture Ethernet frames using "Wireshark" and explain them.

Ethernet

-Destination: 01:00:5e:7f:ff:fa -Source: 74:b5:87:a1:53:8f

-Type: 0800: IP

Internet Protocol -Version: 4: IPV4

-Header Length 5 : 5word, 20btyes

-Type od Service: 00

-Total Length: 0099: 153byte -Identification: 4669: 18025

-Flags: 0x0000

-Fragment offset: 0 0000 0000 0000: 0

-Time to live : 01 -Protocol : 17 : UDP

-Header Checksum: 0xaf59 (validation disabled)

-Source : ac 1f 27 78 : 172.31.39.120 -Destination : ef ff ff fa : 239.255.255.250 기말고사땐 wireshark 시험문제 3분의1