MATH-302 Midterm 02	3 Contract of S = 50 S = 50 S	a jeta. Leva	Created by Pierre-O. Parisé 2022/11/01, Fall 2022
Last name:			

Instructions:

- Make sure to write your complete name on your copy.
- You must answer all the questions below and write your answers directly on the questionnaire.
- You have 75 minutes to complete the exam.
- When you are done (or at the end of the 75min period), return your copy.
- No devices such as a smart phone, cell phone, laptop, or tablet can be used during the exam.
- Turn your cellphone off during the exam.
- You may use a digital calculator (no graphical calculators or symbolic calculators will be allowed).
- You are not allowed to use the lecture notes or the textbook.
- You may bring one 2-sided cheat sheet of handwriting notes.
- You must show ALL your work to have full credit. An answer without justification is worth no point.

Your Signature: .		- F.

May the Force be with you!

Pierre-Olivier Parisé

QUESTION 1

(20 pts)

For the given ODE, find the general solution.

(a) (10 points) y'' + 2y' + y = 0.

Chanacteristic
$$\frac{cq}{r^2}$$
: $r^2 + 2r + 1 = 0$ (1) $(r + 1)^2 = 0$

(2) $r = -1$ mult roots

(b) (10 points) y'' + 6y' + 10y = 0.

Char. eq.
$$r^2 + 6r + 10 = 0$$
 $\Rightarrow r = -6 \pm \sqrt{36 - 40}$

$$\Rightarrow r_1 = -3 \pm \sqrt{-4}$$

$$\Rightarrow r_2 = -3 - 2i$$

$$\Rightarrow r_3 = -3 + 2i$$

$$\Rightarrow r_4 = -3 - 2i$$

$$S_{0}$$
, $y(x) = c_{1}e^{-3x} \cos(x) + c_{2}e^{-3x} \sin(x)$.

— QUESTION 2

For the following ODEs, give the form of the particular solution. Don't solve for the

(a) (10 points) $y'' + 5y' - 6y = 22 + 18x - 18x^2$.

(1) Compt. equal. r2 + 5r - 6 = 0 =) (r+6)(r-1) = 0

So, y(x) = ciex + cze-6x

(2) Port solu.

So exponentials => | Year (x) = Ax2 + Bx + C.

(b) (10 points) $y'' - 2y' + 5y = e^x ((6+8x)\cos(2x) + (6-8x)\sin(2x))$.

(1) Compl. Eq. -12-21+5=0 => 1= 2 = 14-20

 $\Rightarrow r_1 = 1 + \sqrt{-16}, \quad r_2 = 1 - \sqrt{-16}$

=> 1= 1+41, r2= 1-41

So, $y(x)=(e^{x}\cos(7x)+cze^{x}\sin(2x)$.

(2) Fourt Sul, ex cos(720) & ex sir(2x) one in Right-hand

ypar (x) = xe (Ax+B) (05(2x) + (6x+D) om(2x)).

QUESTION 3

(20 pts)

Find the general solution to the following ODE:

$$y'' - 4y' - 5y = -6e^{-x}.$$

(Complement Equations.

$$y'' - 4y' - 5y = 0 = 3 r^2 - 4r - 5 = 0$$

=> $(r+1)(r-5) = 0$
=> $r=-1$ & $r=5$.

(2) Pont Solut.

We have
$$y' = Ae^{-x} - Axe^{-x}$$

 $y'' = -Ae^{-x} - Ae^{-x} + Axe^{-x} = -7Ae^{-x} + Axe^{-x}$

$$A = 1.$$
 So, $y_{par}(x) = xe^{-x}$

3 Arsuer, General Solution

(20 pts)

Find the general solution to the following ODE:

$$x^2y'' + xy' - 4y = -6x - 4$$

knowing that $y_1(x) = x^2$ is a solution to the complementary equation.

=>
$$y' = u'x^2 + 2xu$$

 $y'' = u''x^2 + 4xu' + 2u$

Insert in the ODE &

x2 (u" x2 + 4xu" + Zu) + x (u'x2 + 7xu) - 4ux2 = -6x - 4

=> u"x"+4x3w+2x2w+ w'x3+2x2w-4xx2 = -6x-4

$$\Rightarrow u''x'' + 5x^3u' = -6x-4$$

$$\Rightarrow 2^{3}x^{4} + 5x^{3}z = -6x - 4.$$

mul.xx 2/25+ 524 = - Lex2-4x

$$=) \qquad \left(2 \times 5\right)^2 = -4 \times 2^2 - 4 \times$$

$$=) \qquad 2x^5 = -2x^3 - 2x^2 + C,$$

$$= \frac{7}{2^2} - \frac{7}{2^3} + \frac{c_1}{2^5}$$

Since
$$Z=u'=1$$
 $u(x)=\frac{2}{x}+\frac{1}{x^2}-\frac{c_1}{4x^4}+c_2$

(3) Arguer:

$$y(x) = u(x) \cdot x^2 = \left[2x + 1 - \frac{c_1}{4x^2} + c_2 x^2 \right]$$

Page 5

(a) (5 points) If y_1 and y_2 are two functions, the Wronkians W of $\{y_1,y_2\}$ is

$$W = y_1 y_2' - y_1' y_2.$$

Show that if $\{y_1, y_2\}$ is **not** a set of fundamental solutions, then W = 0.

If {9., yz} is not a set of fundamental solution, then $\frac{y_1}{y_2} = c$ for some constant c.

Take the divative:

$$\frac{y_{1}^{2}y_{2}-y_{1}y_{2}^{2}}{y_{2}^{2}}=0$$
and multiplying by y_{2}^{2} & by -1
$$\Rightarrow y_{1}y_{2}^{2}-y_{1}^{2}y_{2}=0 \implies W=0$$

(b) (5 points) Solve the following IVP:

2

$$y'' + y = 0$$
, $y(0) = 0$, $y'(0) = 1$.

The general solution is y/x)=(105/x)+QDin(x).

9100 = 01 = 0

 $y'(x) = -c_1 \sin x + c_2 \cos(x)$ => $y'(0) = c_2 = 1$.

So, g(x) = pin(x).

QUESTION 6	(10 pts)
Answer the following statements with True or False. Write your a line at the end of each statement. Justify your answer in the white statement.	answer on the horizontal
(a) (/2) $\{x,1\}$ is a fundamental of solutions to $y''=0$.	
integrate two times: Az+ B = y(x)	
8 ~ () 11	•
$4 = x \pmod{\text{constant}}$.	
	(a) <u>True</u> .
(b) (/ 2) If $y_1(x) = \cos(2x) + \sin(2x)$ and $y_2(x) = 2\cos(2x) + 2$ $y'' + 4y = 0$, then $y(x) = 3\cos(2x) + 3\sin(2x)$ is a solution to y''	+4y=0.
Principle of superposition: y,+yz	solution to y'thy = 0.
We see that y(x) = y,(x)+ y2(x).	,
	(b) True
(c) (/ 2) In the Spring-mass system model $y'' + (k/m)y = \frac{F_0}{m}\cos(w)$ when $\sqrt{k/m} = \omega$.	(ωt) , a resonance occurs
True, the sol, to the complementary of	oq. is
Yelx) = Acos(VFT x)+ Bsin1	
= A cos (wor) + B sin (w	(121)
	(c) 1 me.
(d) (/ 2) If $y_1 = x$ and $y_2 = e^x$ are solutions to the complementar $xy' + y = (x - 1)^2$, then the solution should have the form $y(x) = xy' + y = (x - 1)^2$	
This is the method of Von. of Panan	ws fu 2rd
ordu deff. equa.	1
	(d) Tue
(e) (/ 2) The function $y(x) = \sin(x) + \cos(x)$ is a solution to the fol	
y(0) = 1, y'(0) = 1.	
$y''(x) = -\sin(x) - \cos(x)$	0)= 1
$y''(x) = -\sin(x) - \cos(x)$ $+ y(x) = \sin(x) + \cos(x)$ $y''(x) = \sin(x) + \cos(x)$	$ 0\rangle = \cos(0) = 1$
y''+y(x)=0	
	(e) _ Thue .