Принципы построения и архитектура ЭВМ

Основные блоки ЭВМ

- **↓** ЦП центральный процессор
- **❖** ОП − оперативная память
- **♦ ВУ** внешние устройства
- ❖ ЗУ − запоминающее устройство
- ❖ УВВ устройство ввода вывода
- СВ/В − системаввода/вывода
- УУ устройства управления
- УР − управляющие регистры

- *** АЛУ** арифметикологическое устройство
- **❖** РП регистровая память
- **❖ ИБ** интерфейсный блок
- **♦ БКФ** − блок контроля и диагностики
- ❖ РОН регистры общего назначения
- ПЗУ постоянное запоминающее устройство
- ❖ ОЗУ оперативное запоминающее устройство

Архитектурные решения

Большинство вычислительных машин построено на принципах фон Неймана.

Однопроцессорный компьютер

Все функциональные блоки связаны между собой общей шиной, называемой также системной магистралью.

Многопроцессорная архитектура

Наличие в компьютере нескольких процессоров означает, что параллельно может быть организовано много потоков данных и много потоков команд. Таким образом, параллельно могут выполняться несколько фрагментов одной задачи.

Многомашинная вычислительная система

Несколько процессоров, входящих в вычислительную систему, не имеют общей оперативной памяти, а имеют каждый свою (локальную).

Каждый компьютер в многомашинной системе имеет классическую архитектуру, и такая система применяется достаточно широко.

Принципы Джона фон Неймана

* Принцип программного управления

программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности

❖ Принцип однородности памяти

программы и данные хранятся в одной и той же памяти

Принцип адресности

основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка

Машина Джона фон Неймана

 это вычислительная система, построенная на следующих принципах:

Основные блоки:

АЛУ, УУ, ЗУ, УВВ

Программы и данные:

хранятся в одной и той же памяти

 $\underline{\coprod} = AЛУ + УУ$

Внутренний код машины: двоичный

Архитектура вычислительной машины фон Неймана

Системная магистраль

- ❖ Физически магистраль представляет собой многопроводную линию с гнездами для подключения электронных схем. Совокупность проводов магистрали разделяется на отдельные группы: шину адреса, шину данных и шину управления.
- ❖ Периферийные устройства (принтер и др.) подключаются к аппаратуре компьютера через специальные контроллеры устройства управления периферийными устройствами.

Контроллер

★ Контроллер — устройство, которое связывает периферийное оборудование или каналы связи с центральным процессором, освобождая процессор от непосредственного управления функционированием данного оборудования.

Уровни организации ЭВМ

средства любой ЭВМ способны Аппаратные только ограниченный выполнять сравнительно простых команд. Эти примитивные команды составляют так называемый машинный язык машины. Говоря о сложности аппаратуры компьютера, машинные команды целесообразно делать как можно проще, но примитивность большинства машинных команд делают использование неудобным и трудным. Вследствие чего разработчики вводят другой набор команд более удобный для человеческого общения (языки более высокого уровня).

Уровни организации ЭВМ

На функциональной схеме показаны типовые узлы каждого из основных устройств ЭВМ

Расшифровка обозначений:

- МПА микропрограммный автомат;
- СК счетчик команд;
- ❖ ДКОп дешифратор кода операции;
- РК регистр команд;
- ❖ РКОп регистр кода операции;
- РА регистр адреса;
- ❖ УС указатель стека;
- РАП регистр адреса памяти;
- ◆ РДП регистр данных памяти;
- ◆ ОП основная память;

Устройство управления (УУ) - важнейшая часть ЭВМ, организующая автоматическое выполнение программ (путем реализации функций управления) и обеспечивающая функционирование ЭВМ как единой системы.

Основной функцией УУ является формирование управляющих сигналов, отвечающих за извлечение команд из памяти в порядке, определяемом программой, и последующее исполнение этих команд. Кроме того, УУ формирует сигналы управления для синхронизации и координации внутренних и внешних устройств ЭВМ.

Счетчик команд (СК) - неотъемлемый элемент устройства управления любой ЭВМ, построенной в соответствии с фон-неймановским принципом программного управления.

Перед началом вычислений в СК заносится адрес ячейки основной памяти, где хранится команда, которая должна быть выполнена первой. В процессе выполнения каждой команды содержимое СК увеличивается на длину выполняемой команды, таким образом получается адрес следующей команды.

Регистр команды

Чтобы приступить к выполнению команды, ее необходимо извлечь из памяти и разместить в регистре команды (РК). Этот этап носит название выборки команды.

Любая команда содержит два поля: <u>поле кода операции и поле адресной части</u>. Учитывая это обстоятельство, регистр команды иногда рассматривают как совокупность двух регистров - <u>регистра кода операции</u> (РКОп) и <u>регистра адреса (РА)</u>, в которых хранятся соответствующие составляющие команды.

Указатель стека (УС) - это регистр, где хранится адрес вершины стека. В реальных вычислительных машинах стек реализуется в виде участка основной памяти, обычно расположенного в области наибольших адресов.

Регистр адреса памяти (РАП) предназначен для хранения адреса ячейки основной памяти вплоть до завершения операции (считывание или запись) с этой ячейкой. Наличие РАП позволяет компенсировать различия в быстродействии ОП и прочих устройств машины.

Регистр данных памяти (РДП) призван компенсировать разницу в быстродействии запоминающих устройств и устройств, выступающих в роли источников и потребителей хранимой информации. В РДП при чтении заносится содержимое ячейки ОП, а при записи - помещается информация, подлежащая сохранению в ячейке ОП. Собственно момент считывания и записи в ячейку определяется сигналами ЧтЗУ и ЗпЗУ соответственно.

Дешифратор кода операции (ДКОп) преобразует код операции в форму, требуемую для работы микропрограммного автомата (МПА). Информация после декодирования определяет последующие действия МПА, а ее вид зависит от организации МПА.

Микропрограммный автомат (МПА) формирует последовательность сигналов управления, в соответствии с которыми производятся все действия, необходимые для выборки из памяти и выполнения команд. Исходной информацией для МПА служат: декодированный код операции, состояние признаков (флагов), характеризующих результат предшествующих вычислений, а также внешние запросы на прерывание текущей программы и переход на программу обслуживания прерывания.

В зависимости от способа формирования микрокоманд различают микропрограммные автоматы:

- с жесткой или аппаратной логикой;
- с программируемой логикой.

Расшифровка обозначений:

- **•** РХ регистр X;
- Р Y регистр Y;
- ОПБ операционный блок;
- ❖ РПрз регистр признаков;
- Акк аккумулятор;
- ДВВ дешифратор номера порта вводавывода;
- ПУ периферийное устройство.

Арифметико-логическое устройство (АЛУ)

Это устройство, как следует из его названия, предназначено для арифметической и логической обработки данных. Он состоит из элементов:

Операционный блок (ОПБ) представляет собой ту часть АЛУ, которая, собственно, и выполняет арифметические и логические операции над поданными на вход операндами. Выбор конкретной операции из возможного списка операций для данного ОПБ определяется кодом операции команды.

Регистры операндов

Регистры РХ и **РУ** обеспечивают сохранение операндов на входе операционного блока вплоть до получения результата операции и его записи (в нашем случае в аккумулятор).

Регистр признаков (РПрз) предназначен для фиксации и хранения признаков (флагов), характеризующих результат последней выполненной арифметической или логической операции. Такие признаки могут информировать о равенстве результата нулю, о знаке результата, о возникновении переноса из старшего разряда, переполнении разрядной сетки и т. д.

Формирование признаков осуществляется блоком формирования состояний регистра признаков, который может входить в состав ОПБ либо реализуется в виде внешней схемы, располагаемой между операционным блоком и РПрз.

Аккумулятор (Акк) - это регистр, на который возлагаются самые разнообразные функции. Так, в него предварительно загружается один из операндов, участвующих в арифметической или логической операции. В Акк может храниться результат предыдущей команды и в него же заносится результат очередной операции. Через Акк зачастую производятся операции ввода и вывода.

Основная память

Вне зависимости от типа используемых микросхем основная память (ОП) представляет собой массив запоминающих элементов (ЗЭ), организованных в виде ячеек, способных хранить некую единицу информации, обычно один байт. Каждая ячейка имеет уникальный адрес.

Модуль ввода/вывода

На рисунке приведена упрощенная структура модуля ввода/вывода (МВВ) обеспечивает только пояснение логики работы ЭВМ.

Задачей МВВ является обеспечение подключения к ЭВМ различных периферийных устройств (ПУ) и обмена информацией с ними. В рассматриваемом варианте МВВ состоит из дешифратора номера порта ввода/вывода, множества портов ввода и множества портов вывода.

Порты ввода/вывода

Портом называют схему, ответственную за передачу информации из периферийного устройства ввода в аккумулятор АЛУ (порт ввода) или из аккумулятора на периферийное устройство вывода (порт вывода). Схема обеспечивает электрическое и логическое сопряжение ЭВМ с подключенным к нему периферийным устройством.

Дешифратор номера порта ввода/вывода

В модуле ввода/вывода рассматриваемой ЭВМ предполагается, что каждое ПУ подключается к своему порту. Каждый порт имеет уникальный номер, который указывается в адресной части команд ввода/вывода. Дешифратор номера порта ввода/вывода (ДВВ) обеспечивает преобразование номера порта в сигнал, разрешающий операцию ввода или вывода на соответствующем порте. Непосредственно ввод (вывод) происходит при поступлении из МПА сигнала Вв (Выв).

Памятью ЭВМ называется совокупность устройств, служащих для запоминания, хранения и выдачи информации.

Отдельные устройства, входящие в эту совокупность, называются **запоминающими устройствами** (3Y) того или иного типа.

По некоторым оценкам производительность компьютера на разных классах задач на 40-50% определяется характеристиками 3Y различных типов, входящих в его состав.

К основным параметрам, характеризующим запоминающие устройства, относятся емкость и быстродействие.

Емкость

Емкость памяти - это максимальное количество данных, которое в ней может храниться.

Емкость запоминающего устройства измеряется количеством адресуемых элементов (ячеек) ЗУ и длиной ячейки в битах.

Емкость

В настоящее время практически все запоминающие устройства в качестве минимально адресуемого элемента используют 1 байт

1 байт = 8 двоичных разрядов (бит).

Емкость памяти обычно определяется в байтах, килобайтах, мегабайтах, гигабайтах и т.д.

За одно обращение к запоминающему устройству производится считывание или запись некоторой единицы данных, называемой словом, различной для устройств разного типа.

Это определяет разную организацию памяти.

Например, память объемом 1 мегабайт может быть организована как 1М слов по 1 байту, или 512К слов по 2 байта каждое, или 256К слов по 4 байта и т.д.

В то же время, в каждой ЭВМ используется свое понятие машинного слова, которое применяется при определении архитектуры компьютера, в частности при его программировании, и не зависит от размерности слова памяти, используемой для построения данной ЭВМ.

Например, компьютеры с архитектурой IBM PC имеют машинное слово длиной 2 байта.

Быстродействие

Определяется продолжительностью операции обращения:

- ❖ временем, затрачиваемым на поиск нужной информации в памяти и на ее считывание,
- ❖ временем на поиск места в памяти, предназначаемого для хранения данной информации.

Классификация ЗУ

Классификация ЗУ

ЗУ первого типа используются в процессе работы процессора для хранения выполняемых программ, исходных данных, промежуточных и окончательных результатов.

В ПЗУ хранятся системные программы, необходимые для запуска компьютера в работу, а также константы.

В некоторых ЭВМ, предназначенных, например, для работы в системах управления по одним и тем же неизменяемым алгоритмам, все программное обеспечение может храниться в ПЗУ.

Микросхема ПЗУ

Микросхема ПЗУ(BIOS) содержит:

- BIOS(Basic Input/Output System)
- **❖** POST
- программа первоначальной загрузки
- * программа SetUp

ЗУ с произвольным доступом

RAM - random access memory

Время доступа не зависит от места расположения участка памяти (например, O3V).

Типы:

- ❖ SDRAM,
- **❖** DDR SDRAM
- **❖** DR DRAM

Аппаратная реализация:

❖ модули SIMM, DIMM

ЗУ с произвольным доступом

Презентация – оперативная память

ЗУ с прямым (циклическим) доступом

Благодаря непрерывному вращению, возможность обращения к некоторому участку носителя циклически повторяется.

Время доступа:

- 1. зависит от взаимного расположения участка и головок чтения/записи
- 2. определяется скоростью вращения носителя

ЗУ с последовательным доступом

Последовательно просматриваются участки, пока нужный участок не займет некоторое нужное положение напротив головок чтения/записи

Магнитные ленты

Иерархическая организация памяти в современных ЭВМ

Идеальное ЗУ:

- 1. бесконечно большая емкость
- 2. бесконечно малое время обращения

На практике эти параметры находятся в противоречии друг другу: в рамках одного типа **ЗУ** улучшение одного из них ведет к ухудшению значения другого.

Иерархическая организация памяти в современных ЭВМ

Иерархическая структура памяти позволяет экономически эффективно сочетать хранение больших объемов информации с быстрым доступом к информации в процессе ее обработки.

Иерархическая организация памяти в современных ЭВМ

Регистровая память

Регистровая память - набор регистров, входящих непосредственно в состав микропроцессора (CPU).

Регистры СРU программно доступны и хранят информацию наиболее часто используемую при выполнении программы: промежуточные результаты, составные части адресов, счетчики циклов и т.д.

Регистровая память

Регистровая память имеет относительно небольшой объем (до нескольких десятков машинных слов).

РП работает на частоте процессора, поэтому время доступа к ней минимально.

Например, при частоте работы процессора 2 ГГц время обращения к его регистрам составит всего 0,5 нс.

Оперативная память

Оперативная память - устройство, которое служит для хранения информации, непосредственно используемой в ходе выполнения программы в процессоре.

Оперативная память работает на частоте системной шины, например, при частоте работы системной шины 100 МГц время обращения к оперативной памяти составит несколько десятков наносекунд.

Кэш-память

- более быстродействующая статическая оперативная память
- специальный механизм записи и считывания информации
- предназначена для хранения информации, наиболее часто используемой при работе программы
- программно недоступна. Для обращения ней используются аппаратные средства процессора и компьютера.

Кэш-память

Кэш

Внутренний

располагается непосредственно на кристалле микропроцессора

Внешний

располагается вне кристалла микропроцессора

Кэш-память

Презентация про кеш-память

Жесткие диски

Презентация по HDD Анатомия HDD

Внешняя память

Магнитные и оптические диски, магнитные ленты.

Емкость дисковой памяти: 10-ки ГБ при времени обращения менее 1 мкс.

Магнитные ленты:

- 1. малое быстродействие и большая емкость
- 2. используются в настоящее время в основном как устройства резервного копирования данных, обращение к которым происходит редко, а может быть и никогда.
- 3. Время обращения может достигать нескольких десятков секунд.

Процессор

Процессор — выращенный по специальной технологии кристалл кремния.

Содержит в себе многие миллионы отдельных элементов — транзисторов, которые в совокупности наделяют компьютер способностью «думать» — вычислять, производя определённые математические операции с числами, в которые преображается любая поступающая в компьютер информация.

На кристалле процессора расположены

Процессор

Главное вычислительное устройство

Кэш-память 1 уровня

небольшая (несколько десятков Кб) сверхбыстрая память, предназначенная для хранения промежуточных результатов вычислений.

Сопроцессор

специальный блок для операций с «плавающей точкой». Ведение особо точных и сложных расчётов, работа с рядом графических программ.

Кэш-память 2 уровня

Более медленная, размер от 128 Кб до 2048 Кб

Характеристики процессора

- ❖ тип архитектуры (CISC, RISC)
- разрядность (бит): внутренняя (регистров) и внешняя (шины данных)
- наличие кэш-памяти
- тактовая частота (МГц)
- степень интеграции

Характеристики процессора

Тактовая частота – величина, измеряемая в мегагерцах (МГц), показывает, сколько инструкций способен выполнить процессор в течение секунды.

Тактовая частота обознается цифрой в названии процессора:

Pentium 4-2400, т.е. процессор поколения Pentium 4 с тактовой частотой 2400 МГц или 2.4 ГГц

Характеристики процессора

Тактовая частота — самый важный показатель скорости работы процессора.

Но далеко не единственный. Иначе как объяснить тот странный факт, что процессоры Celeron, Athlon и Pentium 4 на одной и той же частоте работают... с разной скоростью?

Иерархия шин

Шины используются для передачи данных от центрального процессора к другим устройствам персонального компьютера.

Для того, чтобы согласовать передачу данных к отдельным компонентам, работающих на своей частоте, используется **чипсет** — набор контроллеров, конструктивно объединенных в **северный** и **южный мосты**:

- Северный мост отвечает за обмен информацией с оперативной памятью и видеосистемой
- **Южный** за функционирование других устройств, подключаемых через соответствующие разъемы

В современных системах северный мост встроен в процессор.