

EDICIÓN 2023

Certamen CANSAT Argentina

EQUIPO

Maximiliano Pisano

Comisión Nacional de Actividades Espaciales

Denise Ofmann

Comisión Nacional de Actividades Espaciales

Mario Chury

Universidad Tecnológica Nacional Facultad Regional Concordia

Julieta Palmieri

Ministerio de Ciencia, Tecnología e Innovación

Laura Rouco

Comisión Nacional de Actividades Espaciales

Pablo González

Universidad Tecnológica Nacional Facultad Regional Haedo

Guillermo Gutierrez

Universidad Tecnológica Nacional Facultad Regional Córdoba

Educación

Observación del Espacio Exterior

Procesamiento y
distribución de
información satelital

Operación de estaciones terrenas de recepción y comando de satélites

Capacitación inicial Lunes 24

Bienvenida y Presentación

Módulo 1: Introducción a la ingeniería espacial

Introducción a los sistemas espaciales Modelo de cargas útiles estudiantiles: CANSAT Metodologías de un proyecto

Martes 25

Módulo 2: Construcción del CANSAT

- Estructura
- Sistemas de descenso

Miércoles 26

- Programación de microcontroladores para CANSAT
 - Sensorica de un CANSAT

Jueves 27

Telemetría y módulos de comunicación

Módulo 3: Validación del CANSAT

- Ensayos ambientales
 - Calificación en vuelo

Viernes 28

- Metodología del certamen
 - Comunicación
 - Ganadores 2022

. ¿Por qué el espacio?

Ing. Pablo M. González

Grupo de Tecnología Aeroespacial

Universidad Tecnológica Nacional Facultad Regional Haedo

PARTES de la Presentación

El espacio exterior

Desarrollo tecnológico para alcanzar el espacio

Breve cronología

Argentina en el espacio

Definición de misión

Misión satelital

Segmentos Terreno y Espacial

Consideraciones para el diseño de la misión

¿Qué es el espacio exterior?

Línea de Karman (UAI): 100 km sobre la superficie terrestre.

El sueño de elevarse

El ser humano imaginó formas diversas para alcanzar el cielo

Los primeros intentos

El avance tecnológico permitió hace poco mas de 100 años lograrlo.

Los límites naturales

Aviones y globos necesitan la atmósfera para elevarse.

El vehículo adecuado

El cohete resulta por ahora el medio mas eficaz para salir de la Tierra.

Desarrollo del cohete

La evolución se dio fundamentalmente en los motores químicos.

1957: Sputnik

1961: Primer ser humano en el espacio (Yuri Gagarin)

1969: Primer ser humano en la luna (Neil Armstrong)

1977 - : Exploración robótica del sistema solar - Voyager

1998: Estación Espacial Internacional

MARTE, el gran objetivo.

Explotación comercial del espacio

La gran cantidad de satélites que orbitan la Tierra cumplen distintas misiones.

ARGENTINA en el espacio

Desde el inicio de la carrera espacial, Argentina tuvo un papel destacado en el ámbito espacial

Comisión Nacional de Actividades Espaciales

La CONAE desarrolla desde 1991 su rol de administrador de toda la actividad espacial argentina.

Acceso al espacio

El objetivo es completar el ciclo de dominio de la tecnología espacial para poner en órbita satélites propios, diseñados y fabricados en la Argentina, y poder ofrecer este servicio a otros países de la región y del mundo.

Comisión Nacional de Actividades Espaciales

Actualmente CONAE posee instalaciones, estaciones y laboratorios

distribuidos en distintos puntos del país

Misiones espaciales

¿Cuáles son los objetivos de la exploración espacial?

- Obtener un punto de vista privilegiado donde observar, estudiar y controlar nuestro planeta.
 - Investigar el entorno del espacio exterior para entender cómo afecta al planeta Tierra.
 - Evaluar la capacidad humana para establecer un habitat fuera del planeta.
 - Explorar los posibles recursos que permitan mejorar la vida en la Tierra.
- Observar el cosmos fuera de la atmósfera y acercar instrumentos a los objetos celestes cercanos.

Tipos de misión

Clasificación (JPL Caltech)

- Sobrevuelo (flyby) Voyager
- Orbitador Cassini
- Sonda atmosférica Huygens
- Desembarco (lander) Venera
- Penetrador de superficie Deep Space 2
- Vehículo de superficie (rover) Curiosity
- Observación SAC C
- Comunicación y Navegación ARSAT 1

Misión satelital

Un satélite se define por su órbita alrededor de otro objeto.

Un **satélite natural** es cualquier cuerpo celeste que orbita alrededor de un planeta. La Tierra posee un satélite natural, la Luna.

Un **satélite artificial** es un objeto **fabricado** en la Tierra y colocado en órbita alrededor de un cuerpo celeste. Hay aproximadamente 7000 satélites artificiales en órbita

Tipos de satélites

Según su objetivo de misión, pueden clasificarse en:

Satélites de servicio:

- Comunicación
- Posicionamiento

Satélites científicos:

- Observación terrestre (meteorológicos, relevamiento, medición de variables superficiales)
- Observación astronómica
- Experimentación científica y tecnológica.

Satélites militares

Orbitas satelitales

Según su objetivo, el satélite viaja sobre trayectorias cerradas (elipses) siguiendo las leyes de Kepler.

Puesta en órbita

Los cohetes por etapas constituyen la opción mas utilizada.

Sistema espacial

Un sistema espacial está formado por un segmento terreno y un segmento de vuelo.

Estación terrena + instalaciones

Lanzador + carga útil

Sistema espacial

El sistema espacial debe analizarse desde el planteo del cumplimiento de la misión y cuáles son los pasos necesarios para alcanzar el objetivo: capacidades, medios, costos, riesgos y las

probabilidades de éxito.

¡Gracias por su atención!

