COMPLEX NUMBER

LEVEL-I

1.	Im(z_1z_2) = 0, then (A) $z_1 = -z_2$	mplex numbers such	that $arg(z_1+z_2) = 0$ and (B) $z_1 = z_2$	
	(C) $z_1 = \overline{z}_2$		(D) none of these	
2.	Roots of the equation x ^t (A) form a regular poly (C) are non-collinear.	$1 - 1 = 0$, $n \in I$, gon of unit circum-radius	s. (B) lie on a circle. (D) A & B	
3.	Which of the following (A) $6 + i > 8 - i$ (C) $6 + i > 4 + 2i$	g is correct	(B) 6 + i > 4 - i (D) None of these	
4.	If $(1+i\sqrt{3})^{1999} = a+ib$, the second of	√3	(B) $a = 2^{1999}$, $b = 2^{1999}\sqrt{3}$ (D) None of these	
5.	If $z = 1 + i\sqrt{3}$, then (A) $\pi/3$ (C) 0	arg(z) + arg(z) e	equals (Β) 2π/3 (D) π/2	
6.	The equation $z (z + i - 1)$	$+i\sqrt{3}$ $+z(z+1+i\sqrt{3})$ =	= 0 represents a circle with	
	(A) centre $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$	and radius 1	(B) centre $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$ and radius	։ 1
	(C) centre $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$	and radius 2	(D) centre $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$ and radius	3 2
7.	Number of solutions t (A) 1 (C) 3	o the equation (1 –i) ^x =	= 2 ^x is (B) 2 (D) no solution	
8.	If $arg(z) < 0$, then $arg(z) < 0$	$g(-z) - \arg(z) =$		
	(A) π	(B) $\frac{-\pi}{4}$ (C) $-\frac{\pi}{2}$	$\frac{\pi}{2}$ (D) $-\frac{\pi}{2}$	
9.			$+\left z\right ^{2}=0$, where $z\in C$ is	
	(A) one	(B) two (C) thr	ree (D) infinitely many	
10.	If ω is an imaginary α (A) 128 ω (C) 128 ω^2	ube root of unity, then	$(1 + \omega - \omega^2)^7$ equals (B) -128 ω (D) -128 ω^2	

11.	If z_1 and z_2 be the n^{th} roots of unity which sube of the form (A) $4k + 1$ (C) $4k + 3$	ubtend right angle at the origin. Then n must (B) 4k + 2 (D) 4k
12.	For any two complex numbers z_1 and $z_2 \sqrt{z_1} $ (A) $16(z_1 ^2 + z_2 ^2)$ (C) $8(z_1 ^2 + z_2 ^2)$	$\overline{7} z_1 + 3z_2 ^2 + 3z_1 - \sqrt{7} z_2 ^2$ is always equal to (B) $4(z_1 ^2 + z_2 ^2)$ (D) none of these
13.	If α is an nth root of unity other than unity its is	self, then the value of 1 + α + α^2 + + α
14.	Locus of 'z' in the Argand plane is $ z = 2$, the	nen the locus of z + 1 is -
	(A) a straight line	(B) a circle with centre (1, 0)
	(C) a circle with centre (0, 0)	(D) a straight line passing through (0, 0)
15.	Value of $\omega^{1999} + \omega^{299} + 1$ is (A) 1 (C) 0	(B) 2 (D) -1
16.	Square root(s) of '-1' is/ are -	
	$(A) \ \frac{1}{\sqrt{2}} (1-i)$	(B) $\frac{1}{\sqrt{3}}(i-1)$
	(C) $\pm \frac{1}{2} (1-i)$	(D) $-\frac{1}{\sqrt{2}}(1-i)$
17.	The real value of ' θ ' for which $\frac{3+2i\sin\theta}{1-2i\sin\theta}$ is	real is
	(A) $\theta = n\pi$, $n \in I$	(B) $\theta = n\pi + \frac{\pi}{3}, \ n \in I$
	(C) $\theta = n\pi + \frac{\pi}{2}, n \in I$	(D) $\theta = \frac{n\pi}{2}, n \in I$
18.	Principal argument of $z = -\sqrt{3} + i$ is	
	(A) $\frac{5\pi}{6}$	(B) $\frac{\pi}{6}$
	(C) $-\frac{5\pi}{6}$	(D) None
19.	Which one is not a root of the fourth root of (A) i	unity (B) 1
	(C) $\frac{i}{\sqrt{2}}$	(D) -i

20. If
$$z^3 - 2z^2 + 4z - 8 = 0$$
 then (A) $|z| = 1$

(A)
$$|z| = 1$$

(C)
$$|z| = 3$$

(B)
$$|z| = 2$$

LEVEL-II

1.	If a,b, c are three complex numbers such real number λ , then points corresponding (A) vertices of a triangle (C) lying on a circle	
2.	If z be any complex number such that (A) an ellipse (C) a line-segment	3z-2 + 3z+2 =4, then locus of z is (B) a circle (D) None of these
3.	If $arg(\overline{z}_1) = arg(z_2)$, then (A) $z_2 = k z_1^{-1} (k > 0)$ (C) $ z_2 = \overline{z}_1 $	(B) $z_2 = kz_1$ (k > 0) (D) None of these.
4.	The value of the expression $2\left(1+\frac{1}{\omega}\right)\left(1+\frac{1}{\omega^2}\right)$	
	+ (n+1) $\left(n + \frac{1}{\omega}\right)\left(n + \frac{1}{\omega^2}\right)$, where ω is an i	maginary cube root of unity, is
	(A) $\frac{n(n^2+2)}{3}$ (B) $\frac{n(n^2-2)}{3}$	
5.	For a complex number z , $ z-1 + z+1 $ (A) parabola (C) circle	=2. Then z lies on a (B) line segment (D) none of these
6.	If z_1 and z_2 are two complex numbers such (A) $Im\left(\frac{z_1}{z_2}\right) = 0$	that $ z_1 = z_2 + z_1 - z_2 $, then (B) $Re\left(\frac{z_1}{z_2}\right) = 0$
	(C) $\operatorname{Re}\left(\frac{z_1}{z_2}\right) = \operatorname{Im}\left(\frac{z_1}{z_2}\right)$	(D) none of these.
7.	If $\left \frac{z_1}{z_2}\right = 1$ and arg $(z_1 z_2) = 0$, then	
	(A) $z_1 = z_2$ (C) $z_1 z_2 = 1$	(B) $ z_2 ^2 = z_1 z_2$ (D) none of these.
8.	Number of non-zero integral solutions to (3-(A) 1 (C) finitely many	$(+4i)^n = 25^n$ is (B) 2 (D) none of these.
9.	If z < 4, then iz +3 - 4i is less than (A) 4 (C) 6	(B) 5 (D) 9
10.	If z is a complex number, then $z^2 + \overline{z}^2 =$	2 represents

(A) a circle(C) a hyperbola

11.	If $\frac{1-i\alpha}{1+i\alpha} = A + iB$, then $A^2 + B^2$ equals to	
	(A) 1 (B) -1	(B) α^2 (D) - α^2
12.	of the triangle ABC is at the origin and circumcircle again at P, then P represents	
	(A) $-\frac{Z_1Z_2}{Z_3}$	(B) $-\frac{Z_2Z_3}{Z_1}$
	$(C) - \frac{z_3 z_1}{z_2}$	(D) $\frac{Z_1Z_2}{Z_3}$
13.	If $ z_1 = z_2 $ and $arg(z_1) + arg(z_2) = \pi/2$, the (A) $arg(z_1^{-1}) + arg(z_2^{-1}) = -\pi/2$ (C) $(z_1 + z_2)^2$ is purely imaginary	n (B) z ₁ z ₂ is purely imaginary (D) All the above.
14.	If z_1 and z_2 are two complex numbers satisf	Tying the equation $\left \frac{z_1 + iz_2}{z_1 - iz_2} \right = 1$, then $\frac{z_1}{z_2}$ is a
	(A) purely real(C) purely imaginary	(B) of unit modulus (D) none of these
15.	If the complex numbers z_1 , z_2 , z_3 , z_4 , tak rhombus, then	en in that order, represent the vertices of a
	(A) $z_1 + z_3 = z_2 + z_4$	(B) $ z_1 - z_2 = z_2 - z_3 $
	(C) $\frac{z_1 - z_3}{z_2 - z_4}$ is purely imaginary	(D) none of these
16.	If $\left \frac{z_1 z - z_2}{z_1 z + z_2} \right = k, (z_1, z_2 \neq 0)$ then	
	(A) for $k = 1$ locus of z is a straight line (B) for $k \notin \{1, 0\}$ z lies on a circle	
	(C) for k = 0 z represents a point (D) for k = 1,z lies on the perpendic $\frac{z_2}{z_1} \text{ and } -\frac{z_2}{z_1}$	cular bisector of the line segment joining
17.	If the equation $ z - z_1 ^2 + z - z_2 ^2 = k$ repress, $z_2 = 4 + 3i$ are the extremities of a diameter.	esents the equation of a circle, where $z_1 \equiv 2+$ eter, then the value of k is
	$(A) \qquad \frac{1}{4}$	(B) 4
	(C) 2	(D) None of these

(B) a straight line (D) an ellipse

18.	If z be a complex nu	mber and ai	, b_i , ($i=1$,2,3) are real	numbers,	then the	value of th	ıe
	$a_1z + b_1\overline{z}$	$a_2z + b_2\overline{z}$	$a_3z + b_3\overline{z}$					
	determinant b ₁ z + a ₁ z	$b_2z + a_2\overline{z}$	$b_3z + a_3\overline{z}$	is equal to				
	$b_1z + a_1$	$b_2z + a_2$	$b_3z + a_3$					

- (A) $(a_1 a_2 a_3 + b_1 b_2 b_3) |z|^2$
- (B) $|z|^2$

- (D) None of these
- 19. If z = x + iy satisfies the equation arg (z-2) = arg(2z+3i), then 3x-4y is equal to (C)7(D) 6
- If a complex number x satisfies $\log_{1/\sqrt{2}} \left(\frac{\mid z \mid^2 + 2 \mid z \mid + 6}{2 \mid z \mid^2 2 \mid z \mid + 1} \right) < 0$, then locus / region of the 20. point represented by z is
 - (A) |z| = 5

(C) |z| > 1

- (B) |z| <5 (D) 2<|z|<3
- If for a complex number z=x+iy, $sec^{-1}\left(\frac{z-2}{i}\right)$ is an acute angle, then 21.
 - (A) x = 2, y = 1

xv <0 (C)

- Number of solutions of Re $(z^2) = 0$ and $|Z| = a\sqrt{2}$, where z is a complex number and a > 22.
 - (A) 1

(B)

(C)

- (D)
- 23. If the area of the triangle formed by the points represented by, Z, Z + iZ and iZ is 200,
- 24. Let z is a variable complex number and a is a real constant. Then the solution set for z, satisfying the equation, |z-a| + |z + a| = |a| is _
- If Z_1 , Z_2 be two non zero complex numbers satisfying the equation $\left| \frac{Z_1 + Z_2}{Z_1 Z_2} \right| = 1$ 25. then $\frac{Z_1}{Z_2} + \left(\frac{Z_1}{Z_2}\right)$ is _____.
- If $(x iy)^{1/3} = a ib$, then $\frac{x}{a} + \frac{y}{b}$ equals 26.
 - (A) $-2 (a^2 + b^2)$

4(a + b)(B)

(C) 4(a-b)

(D) 4 ab

27.		+i) ⁿ = 2 ⁿ , where n is an integer, then n is a multiple of 5 n is a multiple of 10	(B) (D)	n is a multiple of 6 none of these
28.	and C	respectively and if ΔABC is isosceles		z_2 and z_3 in the Argand plane are A,B ight angled at B then a possible value
	οτ <u>z</u> 3	$\frac{-z_2}{-z_2}$ is		
	(A) (C)	1 i	(B) (D)	-1 none of these
29.		and z_2 are two complex numbers satisfy $\left \frac{z_2}{z_2} \right = 1$, then $\left \frac{z_1}{z_2} \right $ is a number which is		equation
	(A) (C)	Real Zero	(B) (D)	Imaginary None of these
30.	If z =	1, then z-1 is		
	(A) (C)	< arg z = arg z	(B) (D)	> arg z None of these
31.	If z ₁ , z	₂ and z ₃ , z ₄ are two pairs of conjugate	comple	ex numbers then
	$arg\left(\frac{z}{z}\right)$	$\left(\frac{z_1}{z_4}\right) + \arg\left(\frac{z_2}{z_3}\right)$ equals		
	(A)	$\frac{\pi}{2}$	(B)	π
	(C)	$\frac{3\pi}{2}$	(D)	0
32.	(A)	$2 - z-2 = a^2, z \in C$ is representin [-1, 0] $(0, \infty)$	g a hyp (B) (D)	erbola for $a \in S$, then S contains $[-\infty, 0]$ none of these
33.	If z =	1 and $z \neq \pm i$, then $\frac{z+i}{z-i}$ is		
	(A) (B) (C) (D)	purely real purely imaginary a complex number with equal real an none of these	nd imag	inary parts
34.	(A) x+	ocus of z which satisfied the inequestrian - 2y > 1 x - 2y > 3	(B) x -	
35.	Let Z ₁	and Z_2 be the complex roots of $ax^2 +$	bx + c :	= 0, where $a \ge b \ge c > 0$. Then

(A)
$$|Z_1 + Z_2| \le 1$$

(B)
$$|Z_1 + Z_2| > 2$$

(C)
$$|Z_1| = |Z_2| = 1$$

(D) none of these

If the roots of $z^3 + az^2 + bz + c = 0$, a, b, $c \in C$ (set of complex numbers) acts as the 36. vertices of a equilateral triangle in the argand plane, then

(A)
$$a^2 + b = c$$

(B) $a^2 = b$

(C)
$$a^2 + b = 0$$

(D) none of these

37. If $|z_1| = 4$, $|z_2| = 4$, then $|z_1 + z_2 + 3 + 4i|$ is less than

If z = x + iy satisfies $Re\{z - |z - 1| + 2i\} = 0$, then locus of z is 38.

(A) parabola with focus
$$\left(-\frac{1}{2}, \frac{1}{2}\right)$$
 and directrix $x + y = \frac{1}{2}$

(B) parabola with focus
$$\left(-\frac{1}{2}, \frac{1}{2}\right)$$
 and directrix $x + y = -\frac{1}{2}$

(C) parabola with focus
$$\left(0, \frac{1}{2}\right)$$
 and directrix $y = -\frac{1}{2}$

(D) parabola with focus
$$\left(\frac{1}{2}, 0\right)$$
 and directrix $x = -\frac{1}{2}$

39. If |z+1| = z+1, where z is a complex number, then the locus of z is

(A) a straight line

(B) a ray

(C) a circle

(D) an arc of a circle

Length of the curved line traced by 40. the point represented by z, when $arg \frac{z-1}{z+1} = \frac{\pi}{4}$, is

(A) $2\sqrt{2}\pi$

(B) $\sqrt{2} \pi$

(C) $\frac{\pi}{\sqrt{2}}$

(D) none of these

If $8iz^3 + 12z^2 - 18z + 27i = 0$ then 41.

- (A) |z| = 3/2 (B) |z| = 1 (C) |z| = 2/3 (D) |z| = 3/4

If $|z-i| \le 2$ and $z_1 = 5 + 3i$ then the maximum value of $|iz + z_1|$ is 42.

- (A) $2 + \sqrt{31}$ (B) $\sqrt{31} 2$ (C) $\sqrt{31} + 2$ (D) 7

 $\sin^{-1}\left\{\frac{1}{i}(z-1)\right\}$, where z is not real, can be the angle of the triangle if 43.

- (A) $Re(z) = 1, I_m(z) = 2$
- (B) $Re(z) = 1, -1 \le I_{m}(z) \le 1$
- (C) $Re(z) + I_m(z) = 0$
- (C) None of these

(C) line

44.	The value of $ln(-1)$ (A) does not exist (B)	$2 \ln i$	(C) <i>iπ</i>	(D) 0		
45.	If n_1, n_2 are positive if and only if	ntegers then (1	$(1+i)^{n_1}+(1+i^3)$	$(1+i^5)^{n_2} + (1+i^5)^{n_1}$	$+(1+i^7)^{n_2}$ is a real N	lumber
	(A) $n_1 = n_2 + 1$	(B) $n_1 + 1 = n_2$	(C) $n_1 = n_2$	(D) n_1, n_2 be	+ve integers	
46.	Let z_1, z_2 be two not equation of a circle with (A) 4 (B) 3		ds of a diamet	er then the val		be the
47.	The center of the arc	$arg\left(\frac{3z-6-3i}{2z-6-3i}\right)$	$\left(\frac{\pi}{2}\right) = \frac{\pi}{4}$ is			
		(2z-8-6i) (B) (1,4)		,5)	(D) (3,1)	
48.	The value of $\sum_{k=1}^{6} \left(\sin^{\frac{1}{2}} \right)^{k}$	$\frac{2\pi k}{7} - i\cos\frac{2\pi k}{7}$				
	(A) i (B) $-i$	(C) 1	(D) -1			
49.	The complex number	s z_1 , z_2 and z_3 s	satisfying $\frac{z_1 - z_2}{z_2 - z_3}$	$\frac{z_3}{z_3} = \frac{1 - i\sqrt{3}}{2} a$	re the vertices of a	
	triangle which is (A) of area zero (C) equilateral		(B) rig	ht angled isos tuse angled is	celes	
50.	If $ z = 3$ then the num	nber $\frac{z-3}{z+3}$ is				
	(A) purely real (C) a mixed number	2+3	· , , .	rely imaginary one of these	,	
51.	If $iz^3 + z^2 - z + i = 0$, the	nen z is equal	to			
52.	If α and β are differer	it complex num	bers with $ \beta $ =	1, then $\frac{\beta - \alpha}{1 - \overline{\alpha}\beta}$	$\frac{1}{3}$ is equal to	
53.	If the complex number	ers z ₁ , z ₂ , z ₃ are	in A.P., then t	hey lie on a		
	(A) circle		(B) pa	rabola		

(D) ellipse

- 54. If z_1 and z_2 are two nth roots of unity, then $arg\left(\frac{z_1}{z_2}\right)$ is a multiple of
- 55. The maximum value of |z| when z satisfies the condition $\left|z + \frac{2}{z}\right| = 2$ is
- 56. All non-zero complex numbers z satisfying $\bar{z} = iz^2$ are.....
- 57. Common roots of the equation $z^3 + 2z^2 + 2z + 1 = 0$ and $z^{1985} + z^{100} + 1 = 0$ is

LEVEL-III

1.	If points corresponding	j to the complex	c numbers z_1 , z_2 , z_3 and	z ₄ are the	vertices of a
	rhombus, taken in orde	r, then for a nor	n-zero real number k		
	(A) $z_1 - z_2 = i k(z_2 - z_4)$		(B) $z_4 - z_2 = i k(z_2 - z_3)$	-7 ₄)	

(A)
$$z_1 - z_3 = i k(z_2 - z_4)$$

(B)
$$z_1 - z_2 = i k(z_3 - z_4)$$

(C)
$$Z_1 + Z_3 = k(Z_2 + Z_4)$$

(D)
$$z_1 - z_2 = k(z_3 - z_4)$$

(D) $z_1 + z_2 = k(z_3 + z_4)$

2. If z_1 and z_2 are two complex numbers such that $|z_1 - z_2| = |z_1| - |z_2|$, then $argz_1 - argz_2$ is equal to

(A) -
$$\pi/4$$

(B) -
$$\pi/2$$

(C)
$$\pi/2$$

If f(x) and g(x) are two polynomials such that the polynomial $h(x) = x f(x^3) + x^2 g(x^6)$ 3. is divisible by $x^2 + x + 1$, then

(A)
$$f(1) = g(1)$$

(B)
$$f(1) \neq -g(1)$$

(C)
$$f(1) = g(1) \neq 0$$

(D)
$$f(1) = -g(1) \neq 0$$

4. Consider a square OABC in the argand plane, where 'O' is origin and $A = A(z_0)$. Then the equation of the circle that can be inscribed in this square is; (vertices of square are given in anticlockwise order)

(A)
$$|z - z_0(1+i)| = |z_0|$$

(B)
$$2\left|z - \frac{z_0(1+i)}{2}\right| = \left|z_0\right|$$

(C)
$$\left|z - \frac{z_0(1+i)}{2}\right| = \left|z_0\right|$$

For a complex number z, the minimum value of $|z| + |z - \cos\alpha - i\sin\alpha|$ is 5.

(A) 0

(C) 2

(D) none of these

The roots of equation $z^n = (z + 1)^n$ 6.

- (A) are vertices of regular polygon
- (C) are collinear

- (B) lie on a circle
- (D) none of these

The vertices of a triangle in the argand plane are 3 + 4i, 4 + 3i and $2\sqrt{6} + i$, then 7. distance between orthocentre and circumcentre of the triangle is equal to.

(A)
$$\sqrt{137-28\sqrt{6}}$$

(B)
$$\sqrt{137 + 28\sqrt{6}}$$

(C)
$$\frac{1}{2}\sqrt{137+28\sqrt{6}}$$

(D)
$$\frac{1}{3}\sqrt{137+28\sqrt{6}}$$
.

One vertex of the triangle of maximum area that can be inscribed in the curve 8. |z-2i|=2, is 2+2i, remaining vertices is / are

(A) -1+ i(2 +
$$\sqrt{3}$$
)

(B)
$$-1-i(2+\sqrt{3})$$

(C) 1+ i(
$$2-\sqrt{3}$$
)

(D)
$$-1-i(2-\sqrt{3})$$

(C) Re (z)	_	∫3	5
(C) Re (2)	←	$\frac{1}{2}$	2

(D) None of these

17. If x = 1 + i, then the value of the expression

$$x^4 - 4x^3 + 7x^2 - 6x + 3$$
 is

(A) -1

(B) 1

(C) 2

(D) None of these

18. If z lies on the circle centred at origin. If area of the triangle whose vertices are z, ω z and z + ω z, where ω is the cube root of unity, is $4\sqrt{3}$ sq. unit. Then radius of the circle is

(A) 1 unit

(B) 2 units

(C) 3 units

(D) 4 units

19. If $\theta_i \in [0, \pi/6]$, i = 1, 2, 3, 4, 5 and $\sin \theta_1 z^4 + \sin \theta_2 z^3 + \sin \theta_3 z^2 + \sin \theta_4 z + \sin \theta_5 = 2$, then z satisfies.

(A) $|z| > \frac{3}{4}$

(B) $|z| < \frac{1}{2}$

(C) $\frac{1}{2} < |z| < \frac{3}{4}$

(D) None of these

20. If α is the angle which each side of a regular polygon of n sides subtends at its centre, then 1 + $\cos \alpha$ + $\cos 2\alpha$ + $\cos 3\alpha$... + $\cos (n-1)\alpha$ is equal to

(A) n

(B) 0

(C)1

(D) None of these

21. Triangle ABC, $A(z_1)$, $B(z_2)$, $C(z_3)$ is inscribed in the circle |z| = 2. If internal bisector of the angle A meets its circumcircle again at $D(z_d)$ then

(A) $z_d^2 = z_2 z_3$

(B) $z_d^2 = z_1 z_3$

(C) $z_d^2 = z_2 z_1$

(D) none of these

ANSWERS

LEVEL -I

 \mathbf{C} 1. 5. В 9. D 13. 0

A

D

0

В

2. D 6. В 10. D 14. В

A

18.

3. D 7. A 11. D C C 15.

19.

4. A 8. A 12. A 16. A 20. В

4.

LEVEL -II

17.

21.

25.

29.

52.

- 1. В 5. В 9. D 13. D 17. В
- \mathbf{C} 2. 6. A C 10. 14. A 18. \mathbf{C} 22. A 26. A
- 3. A 7. В 11. A A, B, C 15. 19. D 23. 20 27. D D 31. 35. Α 39. В
- \mathbf{C} 8. D 12. В A, B, C, D 16. 20. В 24. φ C 28. 32. A 36. D 40. D \mathbf{C} 44. 48.

- 33. В 37. D 41. A C C 45. 49.
- 30. A 34. \mathbf{C} 38. D 42. D 46. В 50. В 53. \mathbf{C}
- В 47. A 51. 1 $\frac{2\pi}{n}$ 54.

43.

 $1 + \sqrt{3}$ 55.

$$56. \qquad \left(\pm \frac{\sqrt{3}}{2}, \frac{1}{2}\right)$$

1

57.
$$\omega, \omega^2$$

LEVEL -III

- 1. A В 5. C 9. 13. B, C 17. В 21. A
- 2. D C 6. 10. D A, B 14. 18. D
- 3. A 7. В 11. \mathbf{C} 15. A 19. A
- 4. В 8. A 12. Α 16. \mathbf{C} 20. В