

LOW POWER QUAD OPERATIONAL AMPLIFIERS

■ WIDE GAIN BANDWIDTH: 1.3MHz

■ INPUT COMMON-MODE VOLTAGE RANGE INCLUDES GROUND

■ LARGE VOLTAGE GAIN: 100dB

■ VERY LOW SUPPLY CURRENT/AMPLI: 375µA

 LOW INPUT BIAS CURRENT: 20nA
 LOW INPUT OFFSET CURRENT: 2nA
 WIDE POWER SUPPLY RANGE: SINGLE SUPPLY: +3V TO +30V DUAL SUPPLIES: ±1.5V TO ±15V

DESCRIPTION

This circuit consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically for automotive and industrial control systems. It operates from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

ORDER CODES

Part	Temperature	Package		е		
Number	Range	N	D	Р		
LM2902	-40°C, +125°C	•	•	•		
Example: LM2902D						

PIN CONNECTIONS (top view)

August 1998 1/14

SCHEMATIC DIAGRAM (1/4 LM2902)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	LM2902	Unit
V_{cc}	Supply Voltage	±16 or 32	V
V_i	Input Voltage	-0.3 to +32	V
V _{id}	Differential Input Voltage	+32	V
P _{tot}	Power Dissipation N Suffix D Suffix	500 400	mW mW
-	Output Short-circuit Duration - (note 1)	Infinite	
l _{in}	Input Current – (note 6)	50	mA
T _{oper}	Operating Free Air Temperature Range	-40 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C

577

ELECTRICAL CHARACTERISTICS

 V_{CC}^+ = +5V, V_{CC}^- = Ground, V_O = 1.4V, T_{amb} = +25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{io}	Input Offset Voltage (note 3) $ T_{amb} = +25^{\circ}C $ $ T_{min.} \leq T_{amb} \leq T_{max}. $		2	7 9	mV
l _{io}	Input Offset Current $ T_{amb} = +25^{\circ}C $ $ T_{min.} \leq T_{amb} \leq T_{max}. $		2	30 40	nA
l _{ib}	Input Bias Current (note 2) $T_{amb} = +25^{\circ}C$ $T_{min.} \leq T_{amb} \leq T_{max}.$		20	150 300	nA
A _{vd}	Large Signal Voltage Gain ($V_{CC}^+ = +15V$, $R_L = 2k\Omega$, $V_O = 1.4V$ to 11.4V) $T_{amb} = +25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max}$.	50 25	100		V/mV
SVR	Supply Voltage Rejection Ratio (Rs \leq 10k Ω) (Vcc ⁺ = 5V to 30V) $T_{amb} = +25^{\circ}C$ $T_{min.} \leq T_{amb} \leq T_{max}.$	65 65	110		dB
Icc	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.7 1.5 0.8 1.5	1.2 3 1.2 3	mA
Vicm	Input Common Mode Voltage Range ($V_{CC} = +30V$) - (note 4) $T_{amb} = +25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$	0 0		V _{CC} -1.5 V _{CC} -2	V
CMR	Common-mode Rejection Ratio (Rs \leq 10k Ω) $T_{amb} = +25^{\circ}C$ $T_{min.} \leq T_{amb} \leq T_{max}$	70 60	80		dB
lo	Output Short-circuit Current ($V_{id} = +1V$) $V_{CC} = +15V$, $V_0 = +2V$	20	40	70	mA
I _{sink}	Output Sink Current ($V_{id} = -1V$) $V_{CC} = +15V$, $V_o = +2V$ $V_{CC} = +15V$, $V_o = +0.2V$	10 12	20 50		mA μA

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{OH}	High Level Output Voltage $(V_{CC} = +30V)$ $T_{amb} = +25^{\circ}C$ $R_L = 2k\Omega$	26	27		V
	$ \begin{array}{l} T_{min.} \leq T_{amb} \leq T_{max.} \\ T_{amb} = +25^{\circ}C \\ T_{min.} \leq T_{amb} \leq T_{max.} \\ (V_{CC} = +5V, R_L = 2k\Omega) \end{array} $	26 27 27	28		
	$T_{amb} = +25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max}.$	3.5 3			
V _{OL}	Low Level Output Voltage ($R_L = 10k\Omega$) $T_{amb} = +25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max}$.		5	20 20	mV
SR	Slew Rate (V_{CC} = 15V, V_I = 0.5 to 3V, R_L = 2k Ω , C_L = 100pF, unity gain)		0.4		V/μs
GBP	Gain Bandwidth Product ($V_{CC} = 30V$ f = 100kHz, $V_{in} = 10$ mV, $R_L = 2$ k Ω , $C_L = 100$ pF)		1.3		MHz
THD	Total Harmonic Distortion (f = 1kHz, A_V = 20dB, R_L = 2k Ω , V_O = 2 V_{pp} C_L = 100pF, V_{CC} = 30V)		0.015		%
e _n	Equivalent Input Noise Voltage (f = 1kHz, $R_s = 100\Omega$, $V_{CC} = 30V$)		40		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
DVio	Input Offset Voltage Drift		7	30	μV/°C
DI _{IO}	Input Offset Current Drift		10	200	pA/°C
V ₀ 1/V ₀ 2	Channel Separation (note 5) $1kHz \le f \le 20kHz$		120		dB

- Notes: 1. Short-circuits from the output to V_{CC} can cause excessive heating if V_{CC} > 15V. The maximum output current is approximately 40mA independent of the magnitude of V_{CC}. Destructive dissipation can result from simultaneous short-circuit on all amplifiers.
 - 2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
 - of the output so no loading change exists on the input lines. 3. $V_o = 1.4V$, $R_s = 0\Omega$, $5V < V_{CC}^+ < 30V$, $0 < V_{ic} < V_{CC}^+ - 1.5V$
 - 4. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is Vcc⁺ - 1.5V, but either or both inputs can go to +32V without damage.
 - 5. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequences.
 - 6. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. this transistor action can cause the output voltages of the Op-amps to go to the V_{CC} voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative.

This is not destructive and normal output will set up again for input voltage higher than -0.3V.

INPUT BIAS CURRENT versus AMBIENT TEMPERATURE

-55-35-15 5 25 45 65 85 105 125 AMBIENT TEMPERATURE (C)

INPUT VOLTAGE RANGE

AMBIENT TEMPERATURE (C)

CURRENT LIMITING (Note 1)

SUPPLY CURRENT

VOLAGE FOLLOWER PULSE RESPONSE

OUTPUT CHARACTERISTICS

VOLTAGE FOLLOWER PULSSE RESPONSE (SMALL SIGNAL)

OUTPUT CHARACTERISTICS

TYPICAL SINGLE - SUPPLY APPLICATIONS

AC COUPLED INVERTING AMPLIFIER

AC COUPLED NON-INVERTING AMPLIFIER

57

TYPICAL SINGLE - SUPPLY APPLICATIONS

NON-INVERTING DC GAIN

DC SUMMING AMPLIFIER

HIGH INPUT Z ADJUSTABLE GAIN DC INSTRUMENTATION AMPLIFIER

LOW DRIFT PEAK DETECTOR

TYPICAL SINGLE - SUPPLY APPLICATIONS

ACTIVER BANDPASS FILTER

$R_{100k}^{100k}\Omega$ $R_{100k}^{100k}\Omega$ $R_{10k}^{100k}\Omega$ $R_{10k}^{100k}\Omega$ $R_{10k}^{100k}\Omega$ $R_{10k}^{100k}\Omega$ $R_{10k}^{100k}\Omega$ $R_{100k}^{100k}\Omega$ $R_{100k}^{100k}\Omega$

HIGH INPUT Z, DC DIFFERENTIAL AMPLIFIER

USING SYMMETRICAL AMPLIFIERS TO REDUCE INPUT CURRENT (GENERAL CONCEPT)

■ LARGE VOLTAGE GAIN: 100dB

■ VERY LOW SUPPLY CURRENT/AMPLI : 375μA

■ LOW INPUT BIAS CURRENT: 20nA

■ LOW INPUT OFFSET VOLTAGE: 2mV

■ LOW INPUT OFFSET CURRENT: 2nA

■ WIDE POWER SUPPLY RANGE: SINGLE SUPPLY: +3V to +30V DUAL SUPPLIES: ±1.5V to ±15V

Applies to: LM2902

** Standard Linear Ics Macromodels, 1993.

** CONNECTIONS:

* 1 INVERTING INPUT

* 2 NON-INVERTING INPUT

* 3 OUTPUT

* 4 POSITIVE POWER SUPPLY

* 5 NEGATIVE POWER SUPPLY

.SUBCKT LM2902 1 3 2 4 5 (analog)

.MODEL MDTH D IS=1E-8 KF=3.104131E-15

CJO=10F

* INPUT STAGE

CIP 2 5 1.000000E-12

CIN 1 5 1.000000E-12

EIP 10 5 2 5 1

EIN 16 5 1 5 1

RIP 10 11 2.600000E+01

RIN 15 16 2.600000E+01

RIS 11 15 2.003862E+02

DIP 11 12 MDTH 400E-12

DIN 15 14 MDTH 400E-12

VOFP 12 13 DC 0

VOFN 13 14 DC 0

IPOL 13 5 1.000000E-05

CPS 11 15 3.783376E-09

DINN 17 13 MDTH 400E-12

VIN 17 5 0.000000e+00

DINR 15 18 MDTH 400E-12

VIP 4 18 2.000000E+00

FCP 4 5 VOFP 3.400000E+01

FCN 5 4 VOFN 3.400000E+01

FIBP 2 5 VOFN 2.000000E-03

FIBN 5 1 VOFP 2.000000E-03

* AMPLIFYING STAGE

FIP 5 19 VOFP 3.600000E+02

FIN 5 19 VOFN 3.600000E+02

RG1 19 5 3.652997E+06

RG2 19 4 3.652997E+06

CC 19 5 6.000000E-09

DOPM 19 22 MDTH 400E-12

DONM 21 19 MDTH 400E-12

HOPM 22 28 VOUT 7.500000E+03

VIPM 28 4 1.500000E+02

HONM 21 27 VOUT 7.500000E+03

VINM 5 27 1.500000E+02

EOUT 26 23 19 5 1

VOUT 23 5 0

ROUT 26 3 20

COUT 3 5 1.000000E-12 DOP 19 25 MDTH 400E-12

VOP 4 25 2.242230E+00

DON 24 19 MDTH 400E-12

VON 24 5 7.922301E-01

.ENDS

ELECTRICAL CHARACTERISTICS

 V_{CC}^+ = +5V, V_{CC}^- = 0V, T_{amb} = 25°C (unless otherwise specified)

Symbol	Conditions	Value	Unit
V_{io}		0	mV
A _{vd}	$R_L = 2k\Omega$	100	V/mV
I _{CC}	No load, per operator	350	μΑ
V _{icm}		-15 to +13.5	V
V _{OH}	$R_{L} = 2k\Omega (V_{CC}^{+} = 15V)$	+13.5	V
V_{OL}	$RL = 10k\Omega$	5	mV
los	V _O = +2V, V _{CC} = +15V	+40	mA
GBP	$R_L = 2k\Omega$, $C_L = 100pF$	1.3	MHz
SR	$R_L = 2k\Omega$, $C_L = 100pF$	0.4	V/μs

PACKAGE MECHANICAL DATA

14 PINS - PLASTIC DIP

Dimensions		Millimeters			Inches		
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.	
a1	0.51			0.020			
В	1.39		1.65	0.055		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		15.24			0.600		
F			7.1			0.280	
i			5.1			0.201	
L		3.3			0.130		
Z	1.27		2.54	0.050		0.100	

PACKAGE MECHANICAL DATA
14 PINS - PLASTIC MICROPACKAGE (SO)

Dimensions		Millimeters			Inches	
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.75			0.069
a1	0.1		0.2	0.004		0.008
a2			1.6			0.063
b	0.35		0.46	0.014		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.020	
c1			45°	(typ.)		
D	8.55		8.75	0.336		0.334
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		7.62			0.300	
F	3.8		4.0	0.150		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.020		0.050
М			0.68			0.027
S			8° (r	nax.)		•

PACKAGE MECHANICAL DATA

14 PINS - THIN SHRINK SMALL OUTLINE PACKAGE

Dim.		Millimeters		Inches		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.20			0.05
A1	0.05		0.15	0.01		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.15
С	0.09		0.20	0.003		0.012
D	4.90	5.00	5.10	0.192	0.196	0.20
E		6.40			0.252	
E1	4.30	4.40	4.50	0.169	0.173	0.177
е		0.65			0.025	
k	0°		8°	0°		8°
1	0.50	0.60	0.75	0.09	0.0236	0.030

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

 $\ensuremath{{\odot}}$ The ST logo is a trademark of STMicroelectronics

© 1998 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. ORDER CODE: