Topic-11-recurrence-trees Tuesday, July 16, 2024 1:01 PM
RECURRENCE TREES
1) Intro: Recurrence trees are another way to understand recurrence relations:
(A) To calculate specific values
(B) To construct closed finlas in (perhaps) more
organized manner than digging down. (a) Server as background for proof of Master Theorem!
(a) Server as background for proof of Master Theorem!
Note: used for RR of the form things like T(n-1), T(n-2), etc.
$T(n) = \alpha T(\frac{n}{6}) + f(n)$
e yes, like T(n) = 2T(==)+6n
ges, wa (ch) - 2 (3) + 6h
Let's look at: T(n): 2T(\frac{n}{3})+5n+1 \w T(1)=7
2 Calc. Specific Values
Sps we want π_9
we'll construct the tree in stage! 1 = 9 n=3
start T(9) &
we obs. that T(9)= 2T(3)+5(9)+1
here's a tree which diagrams 3
5(a)+1
Ø ixtentical total sum!
T(3) T(3)
repeat(ish) using the fact that T(3) = 2T(1)+5(3)+1 replace the two T(3) by subtrees:
5(9)+1
5(3)+1 S(3)+1 @ and again,

we get	To 1(1.	when	3 K= 1 W	mich is when) K= 10g3 n	
· non-la	af levels	are 0,	1,2,, (logsr	1)-1		
oleaf le	vel 13	log ₃ n	to take in		al /	
INI2 N	ck i lybie	yielas	the total in	tatil -	tinodes · Valu	Inade
	0	A VIORES		(1) (5n+1		7/10012
	1	2	5(3)+1	(a) 1-12	141)	
	2	4	5(22)+1	(4)(5(3))+1) \ \alpha 0	ad em up!
	:	:		1		
	K-1	2 ^{k-1}	5(3ki)+1	2K-1(5(3k-1)+1)	
	K	214	7.	2k(7)		7
			blc T(1)=	7 By	a the pattern	! ——
	\ _ \	K-1	$(2^{i})(5(\frac{n}{3^{i}})$		•	
7 (1	11: 4.7	+ =0	(2')(5(31)	+1)		
Let's ev	aluate!	Eventually	we'll ab. k	= log;n	5:1	5+1-1
	- K	K-1	12:	1	\\ \frac{5}{2}r^{\displaystart = !}	r-1
I (N	1= +.1 +	= 2 5n	(3) + 2	J	Z. !	-r /
	- 2 2 × +	En Z	(3) + Z 2	i		1-1
	= 7.7k +	5n (3	$\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + 2^{k}$	1		
		_				
	= 7.2k-1	15n [(==)4-1]+2k-1			
NOM E	b K= 109	3 ^h				
T(n) :	8. 2 lug.	3n - 15n	$\left(\frac{2}{3}\right)^{\log_3 n}$	1]-1		
				3	A	0 14 -1 1
techniz	ally we're	done. He	owever, note	that (using	(C.o.B)	Could sub in
			1000193			, to get a

