MATH 287 HOMEWORK 5

ANDREW MOORE

Date: October 1, 2021.

Exercise 1. Show some of your favorite equations in *inline* and **display** mathematics.

Answer. Some people like small equations such as $e^{\pi i} + 1 = 0$ or $a^2 + b^2 = c^2$.

My favorite small equation is $A^T A \mathbf{x} = A^T \mathbf{b}$.

Other people like big equations like

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

and

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1} + C.$$

My favorite big equation is

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

 \Diamond

Exercise 2. Project 5.16(ii). Prove or give a counterexample: For all sets $A,B,C,\,A\cap(B-C)=(A\cap B)-(A\cap C).$

Answer. I claim that this statement is true.

Proof. Take an element on the left-hand side, called x, we can see that

(because
$$x \in A \cap (B - C)$$
) $x \in A$
(definition of \cap) $\Rightarrow x \in (B - C)$
(definition of $-$) $\Rightarrow (x \in B) \wedge (x \notin C)$
 $\Rightarrow (x \in A \cap B) \wedge (x \notin A \cap C)$
 $\Rightarrow x \in (A \cap B) - (A \cap C)$
 $\Rightarrow A \cap (B - C) \subseteq (A \cap B) - (A \cap C)$.

Then, taking an element y on the right-hand side, we have

$$(\text{definition of } -) \qquad \qquad (y \in A \cap B) \land (y \notin A \cap C)$$

$$(\text{definition of } \cap) \qquad \Rightarrow (y \in A) \land (y \in B) \land (y \notin C)$$

$$\Rightarrow y \in (B - C)$$

$$\Rightarrow y \in A \cap (B - C)$$

$$\Rightarrow (A \cap B) - (A \cap C) \subseteq A \cap (B - C).$$

Thus we have shown that

$$A\cap (B-C)\subseteq (A\cap B)-(A\cap C)$$

$$(A\cap B)-(A\cap C)\subseteq A\cap (B-C)$$

which means that $A \cap (B - C) = (A \cap B) - (A \cap C)$.

 \Diamond

Exercise 3. Proposition 5.20(ii). If A,B,C are any sets, then $A\times (B\cap C)=(A\times B)\cap (A\times C).$

Proof. Take an element x on the left-hand side. We know $x \in A$, because we are taking the cross product of A and $B \cap C$. This also tells us that $x \in B \cap C$.

Exercise 4. Project 5.21(ii).

(Prove or disprove. If you believe the equation is true, give a proof. If you believe it is not true for all sets, give a counterexample. You can try making up some random sets and working out each side of the equation to see if they match or not.)

Exercise 5. Find $\sum_{j=0}^{k} f_j^2$ = (your answer), where the are Fibonacci numbers as defined in the textbook. Prove your answer.

Your answer will have a clear statement: (your answer). Then, a proof of your answer.

For your proof, use induction.

For example, since the Fibonacci numbers start with , you will get values starting with 0, 1, 1, 2, 3, 5, 8, ..., you will get values starting with $0^2 = 0$, $0^2 + 1^2 = 1$, $1^2 + 1^2 = 2$, $1^2 + 1^2 + 2^2 = 6$, and so on.

Hint: Work out some of the values and look for a pattern. It might be helpful to look at factorizations of the values.

Answer. After inspecting the series/summation, I propose that

$$\sum_{j=0}^{k} f_j^2 = f_k \cdot f_{k+1}$$

for $k \geq 1$.

Proof. Let P(k) be defined as $\sum_{j=0}^{k} f_j^2 = f_k \cdot f_{k+1}$ for $k \ge 1$. As a base case, we will examine P(1):

$$\sum_{j=0}^{1} f_j^2 = 0^2 + 1^2 = 0 + 1 = 1$$

$$f_1 \cdot f_2 = 1 \cdot 1 = 1.$$

We know P(k) is true for some k. Let us assume P(k) is true, and use this to show that P(k+1) is also true. That is, we intend to show that P(k+1),

$$\sum_{j=0}^{k+1} f_j^2 = f_{k+1} \cdot f_{k+2}$$

is true. \Box

 \Diamond