1 nolen

. (השלימו את הפרטים) $R = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$, $A = \{1,2,3\}$: דוגמא אפשרית

(מקציר) ב החופה

- א. au אותו סגוֹר טרנזיטיבי. au שיש להם אותו סגוֹר טרנזיטיבי.
- ב. auאת מפריך את מעל A שאינו טרנזיטיבי והסבירו מדוע זה מפריך את הטענה.
 - ג. t(R) היחס R, היחס לכן לכל יחס כלשהו הוא טרנזיטיבי של יחס כלשהו הטרנזיטיבי של יחס טרנזיטיבי שליטיבי של יחס טרנזיטיבי של יחס טרנזיטיבי
 - ד. **לא**. השלימו נימוק: תנו דוגמא נגדית.

3 nolen

- K א. היחס הריק מעל A הוא סימטרי ואינו רפלקסיבי, לכן הוא אבר של א. היחס הריק מוכל בכל יחס, לכן בפרט הוא מוכל בכל יחס השייך ל
 - . K -ביותר ביותר האבר הקטן לכן \varnothing
 - $R_1 = A \times A \{(1,1)\}$ ב.

. הוא יחס סימטרי. הוא אינו רפלקסיבי כי הזוג (1,1) לא נמצא בו R_1

היחס היחיד מעל A שמכיל-ממש את R_1 הוא R_1 הוא שמכיל-ממש את היחס היחיד מעל R_1 שמכיל-ממש את הוא אבר של R_1 הוא אבר R_1 הוא אבר R_1 הוא אבר אחר של R_1 הוא אבר ב- R_1

- K -מקסימלי ב
- ג. בדומה לסעיף הקודם מובן שגם $R_2 = (A \times A) \{(2,2)\}$ הוא אבר מקסימלי ב- R_1 , והוא אונה מ- R_1 . כעת, לפי שאלה 3.21 , אם בקבוצה סדורה-חלקית יש יותר מאבר מקסימלי אחד, אין בקבוצה אבר גדול ביותר.

4 22167

- $f(2) = f(4) = \{2\}$ א. מובן שלא. למשל
- f ב. לא. אמנם כל תת-קבוצה סופית של K מתקבלת על-ידי

(הוכחה לטענה זו: אם M_X היא קבוצה סופית של ראשוניים, תהי M_X מכפלת כל הוכחה לטענה זו: אם M_X היא קבוצה סופית של M_X היא קבוצה M_X ולפי ההגדרה M_X (M_X) ברי M_X אברי M_X או M_X היא קבוצה סופית של M_X היא קבוצה סופית מכפלת כל הוכחה של M_X היא קבוצה סופית של M_X הוכחה של M_X היא קבוצה סופית של M_X היא קבוצה מוכחה של M_X היא מוכחה של M_X היא קבוצה מוכחה של M_X היא היא מוכחה של M_X היא מוכחה של M_X היא מוכחה של M_X היא מוכחה של M_X הוברי M_X היא מוכחה של M_X היא מוכחה של

אבל קבוצת הראשוניים K מכילה גם תת-קבוצות אינסופיות, למשל K עצמה. אף קבוצה אינסופית של ראשוניים אינה בתמונה של f, כי לכל מספר טבעי יש רק מספר סופי של גורמים ראשוניים!

- ... החזקות של 5, כלומר כל המספרים מהצורה 5^n כאשר $1 \le n \in \mathbb{N}$ (הראו זאת).
 - . כל המספרים מהצורה $2^m 5^n$ כאשר $1 \le m, n \in \mathbb{N}$ והראו זאת).

5 nalen

$$0^2+1^2+2^2+3^2+4^2+5^2=0+1+4+9+16+25=55$$
 : $n=0$ בדיקה עבור $n=0$: $n=0$. $n=0$

,12 - בחילוק הטענה (נניח שארית a_n - כלומר (נניח ש- חילוק ב- 7 בחילוק ב- 12 מעבר: נניח שהטענה נכונה a_{n+1} ב- 12 בחילוק ב- 12 ונוכיח שגם a_{n+1}

:נחשב

$$a_{n+1} = (n+1)^2 + (n+2)^2 + (n+3)^2 + (n+4)^2 + (n+5)^2 + (n+6)^2$$
$$= a_n + (n+6)^2 - n^2 = a_n + 12n + 36$$

אותה ב- 12 מתחלק ב- 12 ללא שארית, לכן $a_n+12n+36=12(n+3)$ מתחלק ב- 12 מתחלק ב- 12 אותה אותה וו היא 7. לפי הנחת האינדוקציה שארית מו a_n לפי הנחת האינדוקציה שארית או היא 7.

.12 -בחילוק ב- 7 מותן שארית a_{n+1} ש- הראינו אפוא הראינו

. טבעיn טבעיה הטענה נכונה לכל אינדוקציה בטבעיים, הטענה לכל n טבעי