

Lecture 7: Lyapunov stability and invariance

Mikael Johansson

KTH - Royal Institute of Technology

KTH VITHURAND OCH KONST

Stability of dynamical systems

Consider the nonlinear system

$$x_{t+1} = f(x_t) \tag{1}$$

with equilibrium point x^{eq} , *i.e.* $x^{eq} = f(x^{eq})$.

Definition. The system is *globally asymptotically stable* if, for every trajectory $\{x_t\}$, we have that $x_t \to x^{eq}$ as $t \to \infty$.

Definition. The system is *locally asymptotically stable* near x^{eq} if there is a constant $\delta > 0$ such that $\|x_0 - x^{\text{eq}}\| \le \delta \Rightarrow x_t \to x^{\text{eq}}$ as $t \to \infty$.

Definition. The system is (locally) *stable* if for every (small) $\varepsilon > 0$, there exists $\delta > 0$ such that $||x_0 - x^{eq}|| \le \delta \Rightarrow ||x_t - x^{eq}|| \le \varepsilon$ for all $t \ge 0$.

Outline

- Lyapunov stability
- Linear systems and quadratic Lyapunov functions
- Application: closed-loop stability of infinite-horizon LQR
- Positively invariant sets
- Constrained invariant and control invariant sets

2 / 29

Stability concepts in pictures

Globally asymptotically stable

Locally asymptotically stable

Locally stable

3/29 4/29

KTH VETERISARY OCCURROUS TO SERVICE A SERVICE

How do we ensure that a system is globally asymptotically stable?

• Easy if system is linear:

$$X_{t+1} = AX_t$$

It is necessary and sufficient that all $|\lambda_i(A)| < 1$.

• Much more difficult for nonlinear or constrained systems

Lyapunov theory very powerful for analysis of nonlinear systems

- Basic idea: introduce energy measure, show that does not increase
- Allows to guarantee asymptotic stability, regions of local stability, etc
- Sometimes both necessary and sufficient

5 / 29

Lyapunov theorem in pictures

Lyapunov function (left); level sets and one state trajectory (right)

- once the state enters a level set, it never leaves.
- bounded level sets ensure bounded trajectories (stability).
- a few additional conditions on V will ensure asymptotic stability

A first Lyapunov theorem

Theorem. If there exists a continuous function V(x) whose sublevel sets

$$\mathcal{L}_V(\alpha) = \{x \,|\, V(x) \le \alpha\}$$

are bounded for every value of α , and

$$\Delta V(x) = V(f(x)) - V(x) \le 0$$
 $\forall x \in A$

then all trajectories of (1) are bounded.

Proof.

$$V(x_t) = V(x_0) + \sum_{k=0}^{t-1} \Delta V(x_k) \le V(x_0)$$

so trajectory lies in $\{x \mid V(x) \leq V(x_0)\}$ which is bounded by assumption.

6 / 29

Definition. A function $V: \mathbb{R}^n \mapsto \mathbb{R}$ is positive semidefinite if

$$V(x) \ge 0$$
 for all x

Definition. A function $V : \mathbb{R}^n \mapsto \mathbb{R}$ is *positive definite* if

- (a) $V(x) \ge 0$ for all x
- (b) V(0) = 0 if and only if x = 0
- (c) all sublevel sets of V are bounded

Condition (c) is equivalent to $V(x) \to \infty$ as $x \to \infty$

Example. $V(x) = x^T P x$ with $P = P^T$ is positive definite iff P > 0.

Ensuring asymptotic stability using Lyapunov functions

Theorem. If there exists a continuous function $V: \mathbb{R}^n \to \mathbb{R}$ such that

- V(x) is positive definite
- $V(f(x)) V(x) \le -l(x)$

for some positive semidefinite I(x), then $I(x_t) \to 0$ as $t \to \infty$; If, in addition, I(x) is positive definite, then $x_t \to 0$ as $t \to \infty$.

9 / 29

Lyapunov stability of linear systems

Theorem. The system

$$X_{t+1} = AX_t$$

is asymptotically stable if and only if, for every $Q \succ 0$ there exists a unique matrix $P \succ 0$ satisfying the Lyapunov equation

$$A^T P A - P + Q = 0. (2)$$

Note. Necessary and sufficient. P is only unique for each given Q.

Lyapunov stability

Proof. The second condition of the theorem implies that

$$I(x_k) \le V(x_k) - V(x_{k+1})$$

Summing up both sides over k = 0, 1, ... yields

$$\sum_{k=0}^{\infty} I(x_k) \le V(x_0) - \lim_{k \to \infty} V(x_k) \le V(x_0)$$

since $V(x) \ge 0$ for all x. Hence, the infinite sum tends to a finite limit.

By Cauchy's convergence criterion, convergence of the infinite sum implies that $I(x_k) \to 0$ as $k \to \infty$.

When I(x) is positive definite, I(x) = 0 implies that x = 0.

10 / 29

Lyapunov stability of linear systems

Proof. Consider $V(x) = x^T P x$ where P > 0 satisfies (2). Then

$$V(x_{t+1}) - V(x_t) = -x_t^T Q x_t$$
 for all $x_t \neq 0$

Since $V(x) = x^T P x$ and $I(x) = x^T Q x$ are positive definite, $x_t \to 0$. Thus, the Lyapunov equation implies asymptotic stability.

If the system is asymptotically stable, then $|\lambda_i(A)| < 1$ for all i, and

$$P = \sum_{k=0}^{\infty} (A^k)^T Q A^k$$

exists and satisfies the Lyapunov equation.

11/29 12/29

Lyapunov stability of linear systems

To show uniqueness of P, assume that P' also satisfies (2). Then

$$A^{T}(P-P')A-(P-P')=0$$

Repeated application of this relationship yields

$$P - P' = A^{T}(P - P')A = \cdots = \lim_{k \to \infty} (A^{T})^{k}(P - P')A^{k} = 0$$

by stability of A. Thus, P' = P, i.e. P is unique.

The proof is complete.

13 / 29

Lyapunov stability of linear systems

Proof. Consider an arbitrary eigenvector $v \neq 0$ of A, *i.e.* $Av = \lambda v$.

Pre- and post-multiplying the Lyapunov equation with v yields

$$(|\lambda|^2 - 1)v^*Pv = -||Q^{1/2}v||^2$$

By the PBH test, observability implies that $Q^{1/2}v \neq 0$, hence $||Q^{1/2}v|| > 0$.

Now, since $P \succ 0$, this implies that $|\lambda| < 1$.

This condition holds for all eigenvalues of A, which is thus stable.

The converse direction relies on establishing that

$$P = \sum_{k=0}^{\infty} (A^{k})^{T} (Q^{1/2})^{T} Q^{1/2} A^{k} = \lim_{k \to \infty} \mathcal{O}_{k}^{T} \mathcal{O}_{k}$$

satisfies the Lyapunov equation and is positive definite (due to the observability assumption). Uniqueness follows earlier proof.

Lyapunov stability of linear systems

KTH VITENBRAD DUTH KONST

Theorem. Suppose that $(A, Q^{1/2})$ is observable. Then

$$X_{t+1} = AX_t$$

is asymptotically stable if and only if there exists a unique matrix $P \succ 0$ which satisfies the Lyapunov equation

$$A^T P A - P + Q = 0.$$

Note. $Q = (Q^{1/2})Q^{1/2}$ is only guaranteed to be positive *semidefinite*.

14 / 29

Application: closed-loop stability of LQR

Theorem. Let (A, B) be reachable, $(A, Q_1^{1/2})$ observable and $Q_2 \succ 0$. Then infinite-horizon LQR control gives asymptotically stable closed-loop.

Recall: the optimal solution to the infinite-horizon LQR problem is

$$u_t = -Lx_t = -(Q_2 + B^T P B)^{-1} B^T P A x_t$$

where $P = P^T \succ 0$ satisfies the ARE

$$P = Q_1 + A^T PA - A^T PB(Q_2 + B^T PB)^{-1}B^T PA$$

Convenient to re-write ARE as

$$P = Q_1 + L^T Q_2 L + (A - BL)^T P(A - BL)$$

15/29

Proof. Use Lyapunov function $V(x) = x^T P x$ where P solves ARE. Then

$$V(x_{t+1}) - V(x_t) = x_t^T (A - BL)^T P(A - BL) x_t - x_t^T P x_t =$$

$$= x_t^T ((A - BL)^T P(A - BL) - P) x_t =$$

$$= -x_t^T (Q_1 + L^T Q_2 L) x_t$$

In other words, P satisfies the Lyapunov equation

$$(A - BL)^{T} P(A - BL) - P = -Q_{1} - L^{T} Q_{2} L$$

It may be that the right hand-side is only negative semidefinite.

To guarantee asymptotic stability of the closed-loop, we then have to require that $(A - BL, (Q_1 + L^T Q_2 L)^{1/2})$ is observable. Is it?

17 / 29

Outline

- Lyapunov stability
- Linear systems: quadratic Lyapunov functions necessary and sufficient
- Application: closed-loop stability of infinite-horizon LQR
- Positively invariant sets
- Constrained invariant and control invariant sets

Application: closed-loop stability of LQR

Lemma. Let $Q_2 = Q_2^T \in \mathbb{R}^{m \times m}$ be positive definite, and let $L \in \mathbb{R}^{m \times n}$. If $(A, Q_1^{1/2})$ is observable, then so is $(A - BL, (Q_1 + L^T Q_2 L)^{1/2})$.

Proof. If the system is unobservable, then there is $v \neq 0$ such that

$$(A - BL)v = \lambda v$$
, $(Q_1 + L^T Q_2 L)^{1/2} v = 0$

which implies that

$$v^*(Q_1 + L^T Q_2 L)v = ||Q_1^{1/2} v||^2 + ||Q_2^{1/2} L v||^2 = 0$$

i.e. that $Q_1^{1/2}v = 0$ and Lv = 0. Thus

$$(A - BL)v = Av = \lambda v \qquad Q_1^{1/2}v = 0$$

which contradicts that $(A, Q_1^{1/2})$ is observable.

18 / 29

Invariant sets

Definition. The set $\mathcal{I} \subseteq \mathbb{R}^n$ is *(positively) invariant* under $x_{t+1} = f(x_t)$ if

$$x_t \in \mathcal{I} \Rightarrow x_k \in \mathcal{I} \text{ for all } k \geq t \dots$$

Interpretation: if x_t enters \mathcal{I} , it will never leave.

Definition. The set $C \subseteq \mathbb{R}^n$ is control invariant under $x_{t+1} = f(x_t, u_t)$ if

$$x_t \in \mathcal{C} \Rightarrow \exists \{u_t, u_{t+1}, \dots\} : x_k \in \mathcal{C} \text{ for all } k \geq t$$

Interpretation: if x_t enters C, there is a control that makes it stay in C.

19 / 29 20 / 29

Invariant sets from Lyapunov functions

Proposition. Let V(x) be a Lyapunov function for $x_t = f(x_t)$. Then

$$\mathcal{L}_V(\alpha) = \{ x \mid V(x) \le \alpha \}$$

is invariant under $x_{t+1} = f(x_t)$.

Example. Stable linear systems admit quadratic Lyapunov functions

$$V(x) = x^T P x$$

where $P = P^T > 0$ satisfy $A^T P A - P - Q = 0$ for some $Q = Q^T > 0$. Their level sets

$$\mathcal{L}_V(\alpha) = \{ x \mid x^T P x \leq \alpha \}$$

define invariant ellipsoids.

21 / 29

Invariant sets from local Lyapunov functions

Theorem. If there exists a continuous function V(x) such that

$$\Delta V(x) = V(f(x)) - V(x) \le 0 \quad \forall x \in X$$

then every sub-level set

$$\mathcal{L}_V(\alpha) = \{ x \mid V(x) \le \alpha \}$$

which is fully contained in X is invariant under $x_{t+1} = f(x_t)$.

22 / 29

KTH VITENSIAN AND SON NORTH

Ellipsoidal invariant sets for constrained linear systems

Example. Consider the autonomous linear system

$$x_{t+1} = \begin{bmatrix} 1.5 & -0.9 \\ 1.0 & 0.0 \end{bmatrix} x_t$$

under state constraints

$$x_t \in X = \{x : ||x||_{\infty} \le 1\}$$
 for all $t = 0, 1, ...$

For which initial values can you guarantee that $x_t \in X$?

Solution. Solve Lyapunov equation

$$A^T P A - P + Q = 0$$

for some Q > 0. Find the largest value of α such that

$$\mathcal{L}_{V}(\alpha) = \left\{ x \,|\, x^{T} P x \leq \alpha \right\} \subset X$$

KTH

Ellipsoidal invariant sets for constrained linear systems

Invariant set from Lyapunov function (shaded) and two trajectories.

Reasonably tight estimate (for this system).

23/29 24/29

Polyhedral invariant sets

KTH VETHASAN

Natural to consider polyhedral invariant sets.

Proposition. Assume that a polyhedral constraint set

$$X = \{x \mid Px \le p\}$$

is given. The largest invariant set contained in X under the dynamics $x_{t+1} = Ax_t$ is the polyhedron

$$\begin{bmatrix} P \\ PA \\ PA^2 \\ \vdots \end{bmatrix} x \le \begin{bmatrix} p \\ p \\ p \\ \vdots \end{bmatrix}$$

Once we note that all inequalities in $PA^k \leq p$ are redundant, we can stop.

25 / 29

KTH VETENSKAP OUCH KONST

Polyhedral invariant sets for constrained linear systems

Polyhedral invariant set for autonomous linear system from earlier example.

26 / 29

KTH vetenskar och konst

Control invariant sets

Can also construct control invariant sets from the definition.

The control invariant set contained in $X = \{x \mid Px \leq p\}$ is

$$\begin{bmatrix} P & 0 & \dots & 0 \\ PA & PB & \ddots & \vdots \\ PA^2 & PAB & PB & 0 \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} x \\ u_1 \\ u_2 \\ u_3 \\ \vdots \end{bmatrix} \leq \begin{bmatrix} p \\ p \\ p \\ p \\ \vdots \end{bmatrix}$$

A polyedron in $\mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^m \times \cdots$.

We are interested in the projection onto the first n coordinates.

Control invariant set for constrained linear system

Control invariant set (dark) for

$$x_{t+1} = \begin{bmatrix} 1.5 & -0.9 \\ 1.0 & 0.0 \end{bmatrix} x_t + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u_t$$

Significantly larger than invariant set for autonomous system (light).

27/29 28/29

KTH VITTERS AS A V

Summary

- Lyapunov stability
- Linear systems: quadratic Lyapunov functions necessary and sufficient
- Application: closed-loop stability of infinite-horizon LQR
- Positively invariant sets
- Constrained invariant and control invariant sets

Reading instructions: Lecture notes Chapter 2.