1.

Let L be a language and a be the symbol in \sum . Let A = L and B = L/a

Given: $L/a = \{w \mid wa \in L\}$

Basis: $A \cap B$ Induction:

 $A \cap B \equiv A \cup B$ by DeMorgan's Law

Here we can find the intersection between A and B and dinfe the differences where $A \neq B$. By using DeMorgan's Law we can find all the subsets of B in the language A.

2.

A	=					
В	X	=				
С	X	X	=			
D	X	X	X	=		
Е	X	X	X	=	=	
F	X	=	X	X	X	
	A	В	С	D	Е	F

Equivalences:

B=F

D=E

3a.

 $L = \{www \mid w \in \{a,b\}^*\}$

Claim: Leq is regular.

Let p = P/L constant

By contradiction let Leq be not regular

Therefore our claim is invalid this is not a regular language.

3b. L =
$$\{a^n b^{2n} | n > 0$$

Claim: Let leq be regular

Let
$$p = P/L$$
 constant

By contradiction let Leq be not regular

Consider the string $w = a^n b^{2n} \varepsilon L$

$$w = a^{n-b}(a^b)b^{2n}$$

 $w = a^{n-b}(a^b)^i b^{2n}$

$$a = a^{n-b}$$

$$b = (a^b)$$

$$c = b^{2n}$$

$$\underline{i} = 0$$

$$a^{n-b}(a^b)^0 b^{2n}$$

 $a^{n-b}b^{2n}$
 $xy^0z \epsilon L \epsilon == not epsilon)$

Therefore our claim is invalid, because b will not be 2n bigger than a proving this is not a regular language.