EDO: Equations Différentielles Ordinaires

(E): $F(x, y, y', y'', \dots, y^{(n)}) = 0$

Inconnue : $y:I\mapsto \mathbb{K}$ n fois dérivable.

Variable: $x \in I$

F: une fonction de n+2 variables. Ci-haut une EDO d'ordre n.

1. EDO à variables séparables

(E): y'. f(y) = g(x)

g fonction continue sur I. f fonction continue sur y(I).

Résolution : on passe ce qui concerne les y, y', y'' ... d'un côté de l'égalité et ce qui concerne x de l'autre côté, puis on

2. EDL: EDO Linéaires

F est multilinéaire d'où :

(E):
$$a_0(x).y + a_1(x).y' + a_2(x).y'' + \dots + a_n(x).y^{(n)} = g(x)$$

les a_i et g: fonctions continues de I dans \mathbb{K} .

Equation homogène (sans second membre):

$$(E_h)$$
: $a_0(x).y + a_1(x).y' + a_2(x).y'' + \dots + a_n(x).y^{(n)} = 0$

2.1. EDL1

EDL du 1er ordre :

(E):
$$y' + a(x). y = b(x)$$

a et b: fonctions continues de I dans \mathbb{K} .

2.1.1. EDL1 à coefficient constant : $a \in \mathbb{K}$

(E):
$$y' + a. y = b(x)$$

SH: $y_h = \lambda. e^{-ax}$; $\lambda \in \mathbb{K}$ (espace vect. de dim=1)

- a) $b(x) = P_n(x)$; polynôme $d^{\circ} = n$ $y_p = \begin{cases} Q_n(x) & \text{si } a \neq 0 \\ x. \, Q_n(x) & \text{si } a = 0 \end{cases} \text{ où } Q_n \text{ polyn. } d^\circ = n$
- b) $b(x) = P_n(x).e^{\alpha x}$; $\alpha \in \mathbb{K}$ $y_p = \begin{cases} Q_n(x). e^{\alpha x} & \text{si } \alpha \neq -a \\ x. Q_n(x). e^{\alpha x} & \text{si } \alpha = -a \end{cases}$

 $o\grave{u}\ Q_n$ polyn. $d^\circ=n$

- c) $\mathbb{K} = \mathbb{R}$ et $b(x) = P_n(x) . cos(\omega x)$; $\omega \in \mathbb{R}$ (resp. $b(x) = P_n(x) \cdot sin(\omega x)$) $y_n = Re(z_n)$ (resp. $y_p = Im(z_p)$) où z_p SP de $z' + a.z = P_n(x).e^{i\omega x}$
- d) Cas général : b continue de I dans \mathbb{K} : y_p : par Méthode de Variation de la Constante (MVC): $y_p := \lambda(x). e^{-ax}$ où $\lambda'(x) = b(x). e^{a.x}$

 $SG = SH + SP: y = y_h + y_p$

2.2. EDL2

EDL du 2nd ordre :

(E):
$$y'' + a(x).y' + b(x).y = c(x)$$

a, b et c: fonctions continues de I dans \mathbb{K} .

2.2.1. EDL2 à coefficients constants : $a, b \in \mathbb{K}$

(E):
$$y'' + a.y' + b.y = c(x)$$

SH: (espace vect. de dim=2)

Equation caractéristique : $r^2 + ar + b = 0$; $\Delta = a^2 - 4b$

Cadre complexe $\mathbb{K} = \mathbb{C} \ (y : I \mapsto \mathbb{C} \ \text{et} \ a, b \in \mathbb{C})$ d'où $\Delta \in \mathbb{C}$ (pas de relation d'ordre : > ou < 0)

- $\Delta \neq 0$: \rightarrow 2 racines complexes $r_1, r_2 \in \mathbb{C}$ $y_h = \lambda . e^{r_1 x} + \mu . e^{r_2 x}$; $\lambda, \mu \in \mathbb{C}$
- $\Delta = 0$: \rightarrow 1 racine double $r \in \mathbb{C}$ $y_h = (\lambda x + \mu). e^{rx}$; $\lambda, \mu \in \mathbb{C}$

Cadre réel $\mathbb{K} = \mathbb{R} \ (y : I \mapsto \mathbb{R} \ \text{et} \ a, b \in \mathbb{R})$ d'où $\Delta \in \mathbb{R}$

- $\Delta > 0$: \rightarrow 2 racines réelles $r_1, r_2 \in \mathbb{R}$ $y_h = \lambda. e^{r_1 x} + \mu. e^{r_2 x}$; $\lambda, \mu \in \mathbb{R}$
- $\Delta = 0$: \rightarrow 1 racine double $r \in \mathbb{R}$ $y_h = (\lambda x + \mu). e^{rx}$; $\lambda, \mu \in \mathbb{R}$
- $\Delta < 0: \rightarrow 2$ racines complexes conjuguées : $r_{1,2} = \alpha \pm i\omega$; $(\alpha, \omega) \in \mathbb{R} \times \mathbb{R}^*$ $y_h = (\lambda . \cos(\omega x) + \mu . \sin(\omega x)) . e^{\alpha x}; \lambda, \mu \in \mathbb{R}$

SP:

- a) $c(x) = P_n(x)$; polynôme $d^{\circ} = n$ $y_p = x^m . Q_n(x)$ où Q_n polyn. $d^{\circ} = n$, et : $m = \begin{cases} 0 & si \ b \neq 0 \\ 1 & si \ b = 0, a \neq 0 \\ 2 & si \ b = 0 = a \end{cases}$
- b) $c(x) = P_n(x) \cdot e^{\alpha x}$; $\alpha \in \mathbb{K}$ $y_n = x^m$. $Q_n(x)$. $e^{\alpha x}$ où Q_n polyn. $d^{\circ} = n$, et: (0 si α non racine de l'éq. caract. $m = \begin{cases} 1 \text{ si } \alpha \text{ racine } \mathbf{simple} \text{ de } l' \text{\'eq. caract.} \\ 2 \text{ si } \alpha \text{ racine } \mathbf{double} \text{ de } l' \text{\'eq. caract.} \end{cases}$
- c) $\mathbb{K} = \mathbb{R}$ et $c(x) = P_n(x) . cos(\omega x)$; $\omega \in \mathbb{R}$ (resp. $c(x) = P_n(x) \cdot sin(\omega x)$) $y_p = Re(z_p)$ (resp. $y_p = Im(z_p)$) où z_p SP de $z'' + a.z' + b.z = P_n(x).e^{i\omega x}$
- d) Cas général : c continue de I dans \mathbb{K} : y_n : par Méthode de Variation des Constantes (MVC): Voir 2.2.2 (pareil que le cas des coeff. non constants)

$$SG = SH + SP : y = y_h + y_p$$

2.1.2. EDL1 à coefficient non constant : a C°

$$(E): \quad y' + a(x). \, y = b(x)$$

(E): y' + a(x). y = b(x)SH: $y_h = \lambda. e^{-A(x)}$; $\lambda \in \mathbb{K}$, A une primitive de a.

SP:

On cherche une solution évidente (constante, polynôme, sin, cos, ...), ou:

 $MVC: y_p := \lambda(x). e^{-A(x)} \text{ où } \lambda'(x) = b(x). e^{A(x)}$ On intègre, on trouve λ , d'où γ_n .

$$\underline{SG} = \underline{SH} + \underline{SP} : y = y_h + y_p$$

2.2.2. EDL2 à coefficients non constants : $a, b : C^{\circ}$ (E): y'' + a(x).y' + b(x).y = c(x)

1^{er} cas: On peut trouver 2 solutions de (E_h) :

SH:

- Rappel: si $a, b \in \mathbb{K}$, on sait trouver $y_h = \lambda y_1 + \mu y_2$
- Si a et b deux fonctions, il n'y a pas de méthode générale (contrairement aux EDL1 par MVC). D'où on cherche 2 solutions évidentes/simples (constantes, polynômes, sin, cos, ...)

SP:

Si on suppose qu'on connaît deux solutions de (E_h) : y_1 et y_2 , alors : $y_h = \lambda y_1 + \mu y_2$, et :

$$\mathsf{MVC}: y_p \coloneqq \lambda(x).\,y_1 + \mu(x).\,y_2$$

où λ' et μ' sont imposées solutions de :

(S):
$$\begin{cases} \lambda'. y_1 + \mu'. y_2 = 0 \\ \lambda'. y_1' + \mu'. y_2' = c(x) \end{cases}$$

On trouve λ' et μ' , on intègre et on trouve λ et μ , d'où y_p .

$$\mathbf{SG} = \mathbf{SH} + \mathbf{SP} : \mathbf{y} = \mathbf{y}_h + \mathbf{y}_p$$

2^{nd} cas : On n'a pas de solution de (E_h) :

- a) Changement de la variable x: t := f(x)puis $y(x) = y \circ f^{-1}(t) = z(t) = z(f(x))$ \Rightarrow EDO pour z(t) à résoudre
- b) Changement de l'inconnue $y: \mathbf{z}(x) \coloneqq f(y(x))$ puis $y(x) = f^{-1}(z(x))$ (y en fonction de z) \Rightarrow EDO pour z(x) à résoudre

Attention: On doit dériver par rapport à x!

c) Autres méthodes (TF, TL, Méthodes numériques...)