Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware

RSS 2023

양현서

July 12, 2024

About

 Author: Tony Z. Zhao, Vikash Kumar, Sergey Levine, Chelsea Finn

• Conference: RSS 2023

Motivation

- Fine manipulation tasks such as
 - threading cable ties
 - slotting a battery

Motivation

- Fine manipulation tasks such as
 - threading cable ties
 - slotting a battery

Requires

- precision
- careful coordination of contact forces
- closed-loop visual feedback

Low cost and imprecise hardware for fine manipulation tasks

Suggestion

Low-cost system that performs end-to-end **imitation learning** directly from real demonstrations, collected with a custom teleoperation interface

Challenges in Imitation Learning

• Errors in the policy can compound over time

Challenges in Imitation Learning

- Errors in the policy can compound over time
- Human demonstrations can be non-stationary

• Fine manipulation tasks require precision and coordination

- Fine manipulation tasks require precision and coordination
- Current systems are expensive and complex

- Fine manipulation tasks require precision and coordination
- Current systems are expensive and complex
- Goal: Develop a low-cost, effective system for bimanual manipulation

- Fine manipulation tasks require precision and coordination
- Current systems are expensive and complex
- Goal: Develop a low-cost, effective system for bimanual manipulation
- Key contributions:
 - Low-cost hardware setup
 - Novel imitation learning algorithm (ACT)
 - Successful demonstration on various tasks

System Design - Low-cost hardware

ViperX 6-DoF robot arms

• 3D printed components

Cost: <\$20k

System Design - Design principles

- Versatile
- User-friendly
- Repairable
- Easy-to-build

System Design - Design principles - Teleoperation setup

- Joint-space mapping for control
- High-frequency control (50Hz)
- 3D printed "see-through" fingers, gripping tape

Joint space mapping for control

- Directly maps "Leader" joint angles to "Follower" joint angles
- Solves IK failing problem

Imitation Learning Algorithm

- Challenges:
 - Compounding errors in policy
 - Non-stationary human demonstrations
- Solution: Action Chunking with Transformers (ACT):
 - Predicts sequences of actions (chunks)
 - Reduces effective horizon of tasks
 - Uses temporal ensembling for smoothness

Training ACT on a New Task

- Record leader joint positions as actions
- Observations: follower joint positions, 4 camera feeds
- Train ACT: predict future actions from observations
- Test: use policy with lowest validation loss
- Challenge: Compounding errors

Action Chunking

Groups individual actions into units for efficient storage and execution

- Reduces the effective horizon of long trajectories
- Every k steps, the agent receives an observation and generates k actions
- Mitigates issues with non-stationary demonstrations

Temporal Ensemble

- Creates overlapping action chunks
- Queries the policy at every step for precise and smoother motions
- · Combines predictions using a weighted average
- No additional training cost, only extra inference-time computation

Human demonstrations are noisy and inconsistent

- Human demonstrations are noisy and inconsistent
- Different trajectories can be used for the same observation

- Human demonstrations are noisy and inconsistent
- Different trajectories can be used for the same observation
- Human actions are more stochastic where precision matters less

- Human demonstrations are noisy and inconsistent
- Different trajectories can be used for the same observation
- Human actions are more stochastic where precision matters less

Policy must focus on high precision areas

Conditional Variational Autoencoder (CVAE)

Train action chunking policy as a generative model

Conditional Variational Autoencoder (CVAE)

- Train action chunking policy as a generative model
- Only decoder (policy) used in deployment

Conditional Variational Autoencoder (CVAE)

- Train action chunking policy as a generative model
- Only decoder (policy) used in deployment
- Maximize log-likelihood of demonstration action chunks

Implementation of ACT: Encoder

- CVAE encoder and decoder implemented with transformers
- BERT-like transformer encoder used
- Inputs: current joint positions and target action sequence
- Outputs: mean and variance of "style variable" z
- Encoder only used during training

Implementation of ACT: Decoder

Predicts next k actions

- Inputs: current observations and z
- Observations: 4 RGB images and joint positions of 2 robot arms

ResNet18 used for image processing

Implementation of ACT: Decoder

- Transformer encoder synthesizes information
- Transformer decoder generates action sequence
- L1 loss used for precise action sequence modeling

Experiment Tasks

- Slide Ziploc: Grasp and open ziploc bag slider
- Slot Battery: Insert battery into remote controller slot
- Open Cup: Open lid of small condiment cup
- Thread Velcro: Insert velcro cable tie into loop
- Prep Tape: Cut and hang tape on box edge
- Put On Shoe: Put shoe on mannequin foot and secure velcro strap
- Transfer Cube (sim): Transfer red cube to other arm
- Bimanual Insertion (sim): Insert peg into socket in mid-air

Challenges

- Requires ine-grained bimanual control
- Perception challenges (e.g., transparency, low contrast)
- Random initial placement of objects
- Need for visual feedback to correct perturbations
- Precise manipulation needed

Data Collection

Collected demonstrations using ALOHA teleoperation for 6 real-world tasks

- Each episode: 8-14 seconds (400-700 time steps at 50Hz)
- 50 demonstrations per task (100 for Thread Velcro)
- Total: 10-20 minutes of data per task

- Two types of demonstrations for simulated tasks: scripted policy and human demonstrations
- Human demonstrations are stochastic:
 - Mid-air handover example: position varies each time
 - Policy must learn dynamic adjustments, not memorization

Experiment Comparison

- Compared ACT with four methods:
 - BC-ConvMLP: Simple baseline with convolutional network
 - BeT: Uses Transformers, no action chunking, separate visual encoder
 - RT-1: Transformer-based, predicts one action from history
 - VINN: Non-parametric, uses k-nearest neighbors
- ACT directly predicts continuous actions

Experiment Results

ACT outperforms all prior methods in both simulated and real tasks

- Simulated tasks: ACT shows 20%-59% higher success rates
- Real-world tasks: Slide Ziploc (88%), Slot Battery (96%)
- ACT's performance in Thread Velcro was lower (20%) due to precision challenges

Experimental Results - Performance

Success rates of 80-90%

- Comparison with baselines:
 - ACT significantly outperforms other methods
 - Effective in both simulated and real-world tasks

Conclusion and Future Work

· Conclusion:

- Developed a low-cost, effective system for fine manipulation
- Proposed a novel imitation learning algorithm (ACT)

Future Work:

- Improving generalization to new tasks
- Enhancing hardware precision
- Exploring more complex manipulation tasks