省选 2024 模拟赛 Day 2 (2.17)

By YeahPotato

2024.2.17

题目名称	土豆田	像素原神	区间操作
题目类型	传统型	传统型	传统型
源程序文件名	potato.cpp	mc.cpp	oper.cpp
输入文件名	potato.in	mc.in	oper.in
输出文件名	potato.out	mc.out	oper.out
每个测试点时限	2s	3s	2s
内存限制	512MB	512MB	512MB
子任务数目	4	9	7
是否有 spj	否	否	否

开 02、无限栈、C++ 11 以上。

评测机上的单个测试点时限为上表规定时限与 std 在本题测试点中运行时间最大值的 1.5 倍的较大值。

土豆田

题目背景

深蓝的天空中挂着一轮金黄的明月,下面是海边的沙地,都种着一望无际的碧绿的 potato.....

YeahPotato 种了一块 n 行 m 列的土豆田,田中每一格都种着一个 potato。 然而,有些 potato 变异成了 yeahpotato。

为了研究这些变异物种,YeahPotato 需要在土豆田内选一块非空矩形区域保护起来。YeahPotato 将会进行 yeahpotato 人工授粉杂交实验以研究它们的相对性状,所以需要矩形里有至少两个 yeahpotato。

题目描述

土豆田可以抽象成一个 $n \times m$ 的 01 矩阵,若一个位置为 0,则代表这个土豆没变异,否则为 1,代表变异了。

YeahPotato 需要你求出,这个矩阵中有多少个连续的子矩阵包含 ≥ 2 个 1。这里,连续的子矩阵指行列均为连续一段的矩形。

输入格式

一行四个整数 n, m, t, seed。

本题输入量较大,矩阵由随机数生成器生成。你需要通过以下代码获得 01 矩阵:

```
#include <bits/stdc++.h>
using namespace std;
typedef unsigned int uint;
int T, n, m, t; uint seed;
bool a[5005][5005];
bool Rand(uint &x) {
    x ^= x << 16;
   x ^= x >> 5;
    x ^= x << 1;
    return (x & 65535) < t;</pre>
}
int main() {
    scanf ("%d", &T);
    while (T --) {
        scanf ("%d%d%d%u", &n, &m, &t, &seed);
        for (int i=1; i<=n; i++)</pre>
            for (int j=1; j<=m; j++)</pre>
                a[i][j] = Rand(seed);
        /* Code your solution here. */
   } return 0;
}
```

输出格式

一行一个答案。

样例输入 1

2 3 32768 666

样例输出 1

4

样例解释 1

其中褐色的为普通 potato, 绿色的为 yeahpotato。

样例输入 2

3 3 32768 2

样例输出 2

22

样例输入 3

11 45 14191 9810

样例输出 3

59729

数据范围

子任务编号	$n \le$	$m \le$	分值
1	100	100	10
2	400	400	30
3	1500	1500	30
4	5000	5000	30

对于 100% 的数据, $1 \le n, m \le 5000$, $0 \le t \le 65536$, $0 \le seed < 2^{32}$.

像素原神

题目描述

你很迷人, 但我要回家玩像素原神。

《像素原神》是由 Bugjump 自研的一款全新开放世界沙盒游戏。其单个地图为一个无限大的二维正方形网格平面,用有序对(i,j)描述一个位置(格子)。根据地图种子具体生成如下:

- 1. 一开始所有位置都为水,形成一片无限大的海洋。
- 2. 生成一块陆地。陆地占用至少一个位置,其占用的位置应当为 $\{(i,j) \mid 1 \leq i \leq n, 1 \leq j \leq m\}$ 的子集,并且形成一个连通块。
- 3. 陆地可能会包围住一些水。如果一个水连通块的面积有限,则将其全部替换为岩浆,整体称为一片岩浆湖。

上文所说的连通块都是在四连通意义下的。

作为一名速通筛种玩家,NoPotato 需要统计用于浇筑地狱门的岩浆湖的出现情况。他想知道,对于所有可能的生成情况,岩浆湖数量之和模 P。

输入格式

一行两个正整数 n, m, P。

输出格式

一行表示答案。

样例输入 1

3 3 998244353

样例输出 1

5

样例解释 1

其中周围一圈水代表 i/j=0/4 的部分。

样例输入 2

3 4 998244353

样例输出 2

77

样例输入 3

4 5 998244353

样例输出 3

38565

样例输入 4

6 16 1000000007

样例输出 4

575015136

数据范围

子任务编号	$n \le$	$m \leq$	分值
1	5	5	12
2	3	100	12
3	3	10^{6}	8
4	4	200	8
5	5	40	8
6	6	40	8
7	7	40	8
8	9	200	20
9	12	160	16

对于 100% 的数据, $1 \le n \le 12$, $1 \le m$, $10^8 < P \le 10^9 + 7$, P 为质数。

区间操作

题目描述

春春: ?

现在有一个序列 $a_{1\cdots m}$,它的元素都是 [1,n] 中的整数。

YeahPotato 希望将它的元素变成全 k。他手里只有一种机器,内置了一个 n 阶置换,用排列 $p_{1\cdots n}$ 表示。 每次他可以选择 a 中的一段区间 [l,r],用这个机器将置换作用于这个区间内的每个数。即,对于每个 $i\in[l,r]$, a_i 变为 p_{a_i} 。

他希望你帮他求出,对于每个 $k=1,\cdots,n$,将 a 中元素全部变为 k 的最小操作次数。

输入格式

本题有多组数据,第一行一个正整数 T,表示数据组数。

每组数据,第一行两个正整数 n, m。

第二行 n 个数 $p_{1\cdots n}$ 。

第三行 m 个数 $a_{1\cdots m}$ 。

输出格式

T 行。每行若干个数,第 i 行第 k 个数表示第 i 组数据中,a 全变为 k 的最小次数。若无法使 a 中元素 变为全 k,则该数应为 -1。

本题所有数据中的序列均有行末空格。

样例输入 1

```
3
5 4
3 5 2 1 4
1 1 4 5
3 2
1 3 2
2 2
5 11
3 1 4 2 5
2 3 4 2 1 3 2 1 3 4 2
```

样例输出 1

```
2 4 3 5 4
-1 0 1
8 7 9 10 -1
```

样例解释 1

以下是第一组数据的操作方案。

全 1: $[1,1,4,5] \rightarrow [1,1,1,4] \rightarrow [1,1,1,1]$, 共 2 次。

全 2: $[1,1,4,5] \rightarrow [3,3,1,4] \rightarrow [2,2,3,1] \rightarrow [2,2,2,3] \rightarrow [2,2,2,2]$, 共 4 次。

全 3: $[1,1,4,5] \rightarrow [3,3,1,4] \rightarrow [3,3,3,1] \rightarrow [3,3,3,3]$, 共 3 次。

全 4: $[1,1,4,5] \rightarrow [3,3,4,5] \rightarrow [2,2,4,5] \rightarrow [5,5,4,5] \rightarrow [4,4,4,5] \rightarrow [4,4,4,4]$, 共 5 次。

全 5: $[1,1,4,5] \rightarrow [3,3,1,5] \rightarrow [2,2,3,5] \rightarrow [5,5,2,5] \rightarrow [5,5,5,5]$, 共 4 次。

样例 2

见于下发文件中。

数据范围

子任务编号	$n,m \leq$	$\sum n, \sum m \leq$	分值
1	5	1000	5
2	16	2000	5
3	50	2000	10
4	300	3000	10
5	1000	5000	20
6	50000	100000	30
7	200000	200000	20

对于 100% 的数据, $1 \leq T \leq 10^3$, $1 \leq n, m, \sum n, \sum m \leq 2 \times 10^5$, $1 \leq p_i, a_j \leq n$ 。