応用幾何 ma・pa 課題 #5 解答例.

(2023.10.27)

(1) a,b を 正の定数 とし, $c=\frac{1}{\sqrt{a^2+b^2}}$ とおく. 次の空間曲線を考える.

 $C: \mathbf{x}(s) = (a\cos cs, \ a\sin cs, \ bcs)$

- (i) $\mathbf{x}(s)$ が C の 弧長パラメータ表示 であることを示せ.
- (ii) ベクトル t(s), n(s), b(s) を求めよ. (iii) 曲率 $\kappa(s)$ 及び 捩率 $\tau(s)$ を求めよ.

(解答例)

- (i) $\mathbf{x}'(s) = (-ac\sin cs, ac\cos cs, bc) = c(-a\sin cs, a\cos cs, b)$ $\therefore \|\mathbf{x}'(s)\| = |c|\sqrt{(-a\sin cs)^2 + (a\cos cs)^2 + b^2} = c\sqrt{a^2 + b^2} = 1$
- (ii) $\mathbf{x}'(s) = c(-a\sin cs, a\cos cs, b)$

$$\mathbf{x}''(s) = -ac^2(\cos cs, \sin cs, 0)$$
 $\|\mathbf{x}''(s)\| = ac^2$

$$\therefore \mathbf{t}(s) = \mathbf{x}'(s) = c\left(-a\sin cs, \ a\cos cs, \ b\right) \qquad \mathbf{n}(s) = \frac{\mathbf{x}''(s)}{\|\mathbf{x}''(s)\|} = -(\cos cs, \ \sin cs, \ 0)$$

(iii)
$$\kappa(s) = \|\mathbf{x}''(s)\| = ac^2 = \frac{a}{a^2 + b^2}$$

$$b'(s) = c (bc \cos cs, bc \sin cs, 0) = -bc^2(-\cos cs, -\sin cs, 0) = -bc^2 n(s)$$

$$\tau(s) = bc^2 = \frac{b}{a^2 + b^2}$$

- (2) 次の各文章の (1) ~ (5) の中に適当な 式・用語 を記せ.
 - (i) $\mathbf{x}(s)$ を 曲線 C の 弧長パラメータ表示 とするとき、フルネ・セレーの公式 は 次式で与えられる.

- (ii) 2 曲線 C_1, C_2 について C_1 と C_2 が 向きを保つ合同変換 で写り合う \iff (2)
- (iii) 曲線 C について (a) 曲率 $\kappa \equiv 0 \iff \boxed{(3)}$ (b) 捩率 $\tau \equiv 0 \iff \boxed{(4)}$
- (iv) 曲率 κ , 捩率 τ が 共に ゼロでない定数関数 である 曲線 は |(5)| である.

(解答例)

 $ig| (2) ig| C_1, C_2$ が 同じ長さを持ち, C_1, C_2 が (各々の 適当な 弧長パラメータ表示 に関して) 同じ 曲率関数 $\kappa(s)$, 捩率関数 $\tau(s)$ を持つ

- (3) Cが直線(の一部)
- (4) C が ある平面に含まれる
- (5) 螺線(の一部)