On Symmetric Circuits and FPC

Anuj Dawar

University of Cambridge Computer Laboratory joint work with Matthew Anderson

Highlights, 20 September 2013

A property of *graphs* (or other relational structures) in P is recognised by a family of Boolean circuits C_n :

A property of *graphs* (or other relational structures) in P is recognised by a family of Boolean circuits C_n :

• inputs to C_n are n^2 potential edges, each taking value 0 or 1;

A property of *graphs* (or other relational structures) in P is recognised by a family of Boolean circuits C_n :

- inputs to C_n are n^2 potential edges, each taking value 0 or 1;
- the size of C_n is bounded by a polynomial p(n);

A property of *graphs* (or other relational structures) in P is recognised by a family of Boolean circuits C_n :

- inputs to C_n are n^2 potential edges, each taking value 0 or 1;
- the size of C_n is bounded by a polynomial p(n);
- the family is uniform, so the function $n \mapsto C_n$ is in P (or DLogTime).

A property of *graphs* (or other relational structures) in P is recognised by a family of Boolean circuits C_n :

- inputs to C_n are n^2 potential edges, each taking value 0 or 1;
- the size of C_n is bounded by a polynomial p(n);
- the family is uniform, so the function $n \mapsto C_n$ is in P (or DLogTime).

 C_n is *invariant* if the output is unchanged under a permutation of the inputs induced by a permutation of [n].

A property of *graphs* (or other relational structures) in P is recognised by a family of Boolean circuits C_n :

- inputs to C_n are n^2 potential edges, each taking value 0 or 1;
- the size of C_n is bounded by a polynomial p(n);
- the family is uniform, so the function $n \mapsto C_n$ is in P (or DLogTime).

 C_n is *invariant* if the output is unchanged under a permutation of the inputs induced by a permutation of [n].

Note: dropping the uniformity condition gives us P/poly. **Note also**: it makes no difference if the circuits are over the **Boolean basis** $\{AND, OR, NOT\}$ or a richer basis (within P).

Say C_n is *symmetric* if any permutation of [n] applied to its inputs can be extended to an automorphism of C_n .

Say C_n is *symmetric* if any permutation of [n] applied to its inputs can be extended to an automorphism of C_n .

Any symmetric circuit is invariant.

Say C_n is *symmetric* if any permutation of [n] applied to its inputs can be extended to an automorphism of C_n .

- Any symmetric circuit is invariant.
- Any formula of FP translates into a uniform family of polynomial-size symmetric Boolean circuits.
- Any formula of FPC translates into a uniform family of polynomial-size symmetric threshold (or majority) circuits.

There is trivially a polynomial-size family of symmetric circuits
 C_n deciding whether n is even.

- There is trivially a polynomial-size family of symmetric circuits
 C_n deciding whether n is even.
- Is there a polynomial-size family of symmetric Boolean circuits deciding if an n vertex graph has an even number of edges?
 No – as we shall see.

- There is trivially a polynomial-size family of symmetric circuits
 C_n deciding whether n is even.
- Is there a polynomial-size family of symmetric Boolean circuits deciding if an n vertex graph has an even number of edges?
 No – as we shall see.
- Are polynomial-size families of uniform symmetric threshold circuits more powerful than Boolean circuits? Yes – follows from above.

- There is trivially a polynomial-size family of symmetric circuits
 C_n deciding whether n is even.
- Is there a polynomial-size family of symmetric Boolean circuits deciding if an n vertex graph has an even number of edges?
 No – as we shall see.
- Are polynomial-size families of uniform symmetric threshold circuits more powerful than Boolean circuits? Yes – follows from above.
- Can every invariant circuit be translated into an equivalent symmetric threshold circuit, with only polynomial blow-up?
 No – as we shall see.

Main Results

Theorem

A class of graphs is accepted by a P-uniform, polynomial-size, symmetric family of Boolean circuits iff it is definable by an FP formula interpreted in $G \uplus ([n], <)$.

Main Results

Theorem

A class of graphs is accepted by a P-uniform, polynomial-size, symmetric family of Boolean circuits iff it is definable by an FP formula interpreted in $G \uplus ([n], <)$.

Theorem

A class of graphs is accepted by a P-uniform, polynomial-size, symmetric family of threshold circuits iff it is definable in FPC.

Main Results

Theorem

A class of graphs is accepted by a P-uniform, polynomial-size, symmetric family of Boolean circuits iff it is definable by an FP formula interpreted in $G \uplus ([n], <)$.

Theorem

A class of graphs is accepted by a P-uniform, polynomial-size, symmetric family of threshold circuits iff it is definable in FPC.

This gives a natural and purely circuit-based characterisation of FPC definability.

For a gate g in a symmetric circuit C_n , say that a partition \mathcal{P} supports g if every permutation that fixes each $P \in \mathcal{P}$ also fixes g.

For a gate g in a symmetric circuit C_n , say that a partition \mathcal{P} supports g if every permutation that fixes each $P \in \mathcal{P}$ also fixes g.

$$\operatorname{Stab}^{\bullet}(\mathcal{P}) \subseteq \operatorname{Stab}(g) \subseteq \operatorname{Stab}(\mathcal{P})$$

For a gate g in a symmetric circuit C_n , say that a partition \mathcal{P} supports g if every permutation that fixes each $P \in \mathcal{P}$ also fixes g.

$$\operatorname{Stab}^{\bullet}(\mathcal{P}) \subseteq \operatorname{Stab}(g) \subseteq \operatorname{Stab}(\mathcal{P})$$

- Each g has a *unique coarsest* support, Supp(g).
- An upper bound on Stab(g) gives us a lower bound on the *orbit* of g.

For a gate g in a symmetric circuit C_n , say that a partition \mathcal{P} supports g if every permutation that fixes each $P \in \mathcal{P}$ also fixes g.

$$\operatorname{Stab}^{\bullet}(\mathcal{P}) \subseteq \operatorname{Stab}(g) \subseteq \operatorname{Stab}(\mathcal{P})$$

- Each g has a *unique coarsest* support, Supp(g).
- An upper bound on Stab(g) gives us a lower bound on the *orbit* of g.

Conversely, knowing that the orbit of g is at most polynomial in n gives us bounds on $\operatorname{Supp}(g)$.

Support Theorem

For a circuit C, $\operatorname{Supp}(C)$ denotes the maximum over all gates g in C of the size of the union of all but the largest part in $\operatorname{Supp}(g)$.

Support Theorem

For a circuit C, $\operatorname{Supp}(C)$ denotes the maximum over all gates g in C of the size of the union of all but the largest part in $\operatorname{Supp}(g)$.

Theorem

For any $1 > \epsilon \ge \frac{2}{3}$, let C be a symmetric s-gate circuit over [n] with $n \ge \frac{48}{\epsilon}$, and $s \le 2^{n^{1-\epsilon}}$. Then

$$\operatorname{Supp}(C) \le \frac{20}{\epsilon} \frac{\log s}{\log n}.$$

Support Theorem

For a circuit C, $\operatorname{Supp}(C)$ denotes the maximum over all gates g in C of the size of the union of all but the largest part in $\operatorname{Supp}(g)$.

Theorem

For any $1 > \epsilon \ge \frac{2}{3}$, let C be a symmetric s-gate circuit over [n] with $n \ge \frac{48}{\epsilon}$, and $s \le 2^{n^{1-\epsilon}}$. Then

$$\operatorname{Supp}(C) \le \frac{20}{\epsilon} \frac{\log s}{\log n}.$$

Corollary

Polynomial-size symmetric circuits have constant support.

Translating Symmetric Circuits to Formulas

Given a polynomial-time function $n \mapsto C_n$ that generates symmetric circuits:

- 1. There is a formula of FP interpreted on ([n], <) that defines a structure C_n .
- 2. Label gates with their support partition.
- 3. Transform labels into tuples by duplicating gates.
- 4. Determine equality test indicating edges of C_n .
- 5. Evaluate circuit on unordered universe (in FP for a Boolean circuit, in FPC for one with threshold gates.)

Big Picture

Logic	Circuits
FP on structures with a disjoint number sort $([n], <)$.	Poly-size <i>symmetric</i> Boolean circuits.
Additional predicates on number sort.	Non-uniformity (of function $n \mapsto C_n$).
Connections between element sort and number sort (FPC and FPrk).	Additional gates (counting and rank).
Choiceless polynomial time.	Breaking symmetry (how?).