♥GMM-HMMとは?

- ❷ 隠れマルコフモデル
- ❷ 時系列データの統計モデル
- ♀ 個々のデータを生成する情報源(分布=状態)を考え、(音声 認識の場合は)left-to-right の状態列(=分布列)を想定する
- モデルを固定すると(与えられると), そのモデルからどのような時系列データが生成されやすいのか, の確率を与える

♥NN (Neural Network) とは?

- ♀ ニューロンの結合パターンとそれによる情報伝搬のモデル
- ♀ ニューロンモデル
 - ② 入力ベクトルの各次元に重みを掛け、バイアス項を足しあわせたものを (非線形) 関数 f を通して出力とする。 $o = f(o') = f(\vec{w} \cdot \vec{x} + b)$
 - $egin{align} egin{align} egin{align}$

https://thinkit.co.jp/article/30/2/

http://www.lab.kochi-tech.ac.jp/future/1110/okasaka/neural.htm

♥NNを分類器として使う、とは?

- 帰物ベクトルを入力として、出力はクラス事後確率とするNN
 - ◎ 文字認識, 数字認識, 音素認識, などなど
 - \bigcirc NNへの入力 $\vec{\sigma}$ に対して出力が $P(c_i|\vec{\sigma})$ となるよう,NNを学習
 - ◎ 出力が離散確率分布になるように学習する、とは?
 - 最終層の関数 f として, softmax 関数を使うことが多い。

$$P(c_i|\vec{o'}) = \frac{\exp(o'_i)}{\sum_i \exp(o'_i)}$$

♥NNに対してDNNとは?

- ♀ 中間層の数を増やしたもの
 - ❷ 最近では数十層という実装もある
 - ◎ 従来は総数を増やすと学習が困難で あったが、それを解決する方法が提案

⇒音声特徴をDNNに入れるとどうなる?

- ❷ 音素事後確率の推定器として機能
 - $\bigcirc \vec{x} \longrightarrow P(c_i|\vec{x})$
- $\mathbf{\Theta}$ 結局,音素事後確率は,音素状態事後確率に $\vec{x} \longrightarrow P(c_i|\vec{x})$
 - ◎ 入力特徴が数千次元のベクトルに

♥ 再度,HMMに戻ります

igotimes GMM-HMM の音声認識では $P(ec{x}|S_i)$ を計算した。

- igotimes GMM-HMM の音声認識では $P(ec{x}|S_i)$ を計算した。
 - ❷ 各状態=GMM
- ♀ ひっくり返します。

$$P(\vec{x}|S_i) = \frac{P(\vec{x}, S_i)}{P(S_i)} = \frac{P(S_i|\vec{x})P(\vec{x})}{P(S_i)}$$

- \odot ある \vec{x} を識別する問題を考える時は, $P(\vec{x})$ は定数として扱える。
- $\bigcirc P(S_i)$ は、音声データに状態 S_i 相当の音はどの程度の頻度で出現するのか、に相当する。コーパスを使って事前に求めておく。
- - DNN の事後確率を使って、間接的に(遠回りして)求める。
 - ♀ これを、DNN-HMM と言う。
- ♀ なんで、こんな遠回しの方法が良いのか?

考えられる理由

- - DNN の場合、特徴量分布を陽に仮定していない。
- ♀ CEP ではなく、スペクトルがそのまま用いられることが多い。
 - DNN は基本的に、行列演算+非線形関数
 - FFTは入力ベクトルに対する一次変換
 - ② であれば、スペクトルを入れてDNNを学習すれば、FFTっぽい行列が 第一層目として学習されるはず・・・?
 - そもそもCEPって最適な特徴量なの?
 - より raw 特徴量を入力して、あとは DNN に任せた方がよい?
- - ☑ DNN の場合、入力特徴量の次元を増やすことが比較的楽。
 - ♥ GMM の場合、より多くの学習データ量が必要となる。

₽ GMM-HMMとDNN-HMM

学両者の性能差

表 2 GMM-HMM と DNN-HMM の比較			
	学習	GMM-HMM	DNN-HMM
	データ	単語誤り率	単語誤り率
	(時間)		
TIMIT	10	27.3%	22.4%
音素認識			
Switchboard	300	23.6%	17.1%
電話音声			
Google	5870	16.0%	12.3%
音声検索			
JNAS 日本	85	6.8%	3.8%
語新聞記事			
CSJ 日本語	257	20.0%	16.9%
講演音声			