Прості та максимальні ідеали

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

1 березня 2023

Прості ідеали

Означення

Власний ідеал I комутативного кільця R називається *простим*, якщо з умови $xy \in I$ для деяких $x, y \in R$ випливає $x \in I$ або $y \in I$.

Приклад

- \bigcirc (2) = {..., -8, -6, -4, -2, 0, 2, 4, 6, 8, ...} простий ідеал кільця \mathbb{Z} .
- ② (6) = $\{\ldots, -18, -12, -6, 0, 6, 12, 18, \ldots\}$ не ϵ простим ідеалом кільця \mathbb{Z} .

Прості ідеали

Теорема

Нехай R — комутативне кільце з 1. Ідеал I кільця R є простим $\Leftrightarrow R/I$ є областю цілісності.

Доведення.

 (\Rightarrow) Припустимо, що I — простий ідеал, але R/I містить дільники нуля. Тоді

$$(x+I)(y+I)=0 \Leftrightarrow xy+I=I \Leftrightarrow xy \in I \Leftrightarrow x \in I \text{ abo } y \in I \Leftrightarrow x+I=0 \text{ abo } y+I=0 \text{ B } R/I.$$

(⇐) Припустимо, що в R/I немає дільників нуля, але існують такі $x, y \in R$, що $xy \in I$, але $x \notin I$, $y \notin I$.

Тоді $x + I \neq 0$, $y + I \neq 0$ в R/I, але

$$(x+I)(y+I) = xy + I = I = 0,$$

тобто x + I, y + I — дільники нуля $\frac{44}{5}$

Означення

Власний ідеал I називається максимальним, якщо з того, що існує ідеал J, для якого $I \subset J \subset R$, випливає J = I або J = R.

Приклад

- **②** (6) не ϵ максимальним: $\mathbb{Z} \supset (2) \supset (6) \supset ...$

Теорема

Нехай R — комутативне кільце з 1. Ідеал I ϵ максимальним ідеалом кільця $R \Leftrightarrow R/I$ — поле.

Доведення.

(⇒) Нехай $M \subset R$ — максимальний ідеал. Очевидно, R/M — комутативне кільце з 1.

Hexaй $0 \neq a + m$ — довільний.

Множина $J = R\alpha + M$ є ідеалом в R, бо

$$b(Ra + M) = bRa + bM \subset Ra + M \quad \forall b \in R.$$

За побудовою, $\mathcal{M} \subset J$, причому $\mathcal{M} \neq J$, бо $a=1\cdot a+0 \in J$, але $a \notin \mathcal{M}$.

 \mathcal{M} —максимальний \Rightarrow $R\alpha + \mathcal{M} = R \Rightarrow \exists x \in R, y \in \mathcal{M}$:

$$x\alpha + y = 1$$
.

Тоді

$$(x + M)(\alpha + M) = x\alpha + M = 1 - y + M = 1 + M.$$

Отже, R/M — поле.

Доведення.

```
(\Leftarrow) Припустимо, що R/I — поле, але I не \epsilon максимальним ідеалом.
```

Припустимо, що існує такий ідеал J, що $I\subsetneq J\subsetneq R$, зокрема, $1\not\in J$.

Тоді J/I — ідеал R/I.

Покажемо, що ідеал Ј/І — власний нетривіальний.

Дійсно, $J/I \neq 0$, бо $I \subset J$.

Також $J/I \neq R/I$, оскільки $1 + I \notin J + I$, бо інакше $1 = j + i, j \in J$, $i \in I$, а тому $1 \in J$, що не так.

Отже, в полі R/I існує власний нетривіальний ідеал, що неможливо.

Наслідок

Кожний максимальний ідеал в комутативному кільця з $1 \in$ простим, але не кожний простий \in максимальним.

Приклади

- **1** В кільці \mathbb{Z} кожен простий ідеал є максимальним і має вигляд (p), де p просте число.
- ② В кільці $\mathbb{Z}[i]$ ідеал M = (3) є максимальним. Нехай $M \subsetneq J$. Візьмемо $a + bi \in J$: $3 \nmid a$ або $3 \nmid b$. Тоді $3 \nmid (a^2 + b^2)$. Отже, $(3, a^2 + b^2) = 1 \implies \exists u, v \in \mathbb{Z}$:

$$3u + (a^2 + b^2)v = 1.$$

- $3 \in J$ (за побудовою), $a^2 + b^2 = (a + bi)(a bi) \in J \Rightarrow 1 \in J \Rightarrow J = \mathbb{Z}[i] \Rightarrow M$ максимальний ідеал $\Rightarrow \mathbb{Z}[i]/M$ поле.
- ③ В кільці $\mathbb{Z}[i]$ ідеал $\mathcal{M}=(2)$ не є максимальним. Оскільки 2=(1+i)(1-i), то елементи $(1\pm i)+(2)$ дільники нуля. Ідеал $\mathcal{M}=(2)$ також не є і простим.

Приклади

 \bigcirc Ідеал (x) в $\mathbb{R}[x]$ є максимальним, бо $\mathbb{R}[x]/(x) \simeq \mathbb{R}$ — поле.

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \in a_0 + (x)$$

- **⊙** Ідеал (x) в $\mathbb{Z}[x]$ є простим, але не є максимальним. Дійсно, $\mathbb{Z}[x]/(x) \simeq \mathbb{Z}$, а \mathbb{Z} є областю цілісності, але не полем. Або: $(x) \subset (2, x) \subset \mathbb{Z}[x]$.
- lacktriangle Ідеал (2,x) в $\mathbb{Z}[x]$ ϵ максимальним, бо $\mathbb{Z}[x]/(2,x)\simeq \mathbb{Z}_2$.