Group_project_5014

Xinyi Song

11/21/2020

Social Disparity - Income

```
# 2019 region
library(plotrix)
library(treemap)
library(reshape2)
library(ggplot2)
Allraces - read.csv("~/Desktop/VTCourse/STAT 5014/Group Project/Total work experience-both sexes/2019/A
Allraces = as.data.frame(Allraces[-1,])
colnames(Allraces) = c('Region','Total', 'Total with Income', '$2499', '$2500-$4999', '$5000-$7499', '$
                                            '$10000-$12499', '$12500-$14999', '$15000-$17499', '$17500-$19999', '$20000-$224
                                            '$22500-$24999', '$25000-$27499', '$27500-$29999', '$30000-$32499', '$32500-$374
                                            '$42500-$44999', '$45000-$47499', '$47500-$49999', '$50000-$52499','$52500-$5499
                                            '$100000-'
all race income range = Allraces[,4:44]
colnames(all\_race\_income\_range) = c('$2499', '$2500-$4999', '$5000-$7499', '$7500-$9999', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7499', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$7500-$7500', '$75
                                            '$10000-$12499', '$12500-$14999', '$15000-$17499', '$17500-$19999', '$20000-$224
                                            '$22500-$24999', '$25000-$27499', '$27500-$29999', '$30000-$32499', '$32500-$374
                                            '$42500-$44999', '$45000-$47499', '$47999-$49999', '$50000-$52499','$52500-$5499
                                            '$100000-')
# Change the range to $10000
range_combine_allr = matrix(0, 4, 9)
for (i in 1:dim(all_race_income_range)[1]){
   for (j in 1:dim(all_race_income_range)[2]){
all_race_income_range[i,j] = as.numeric(gsub(",","", all_race_income_range[i,j]))
   }
for (i in 1:dim(all_race_income_range)[1]){
   range_combine_allr[i,1] = sum(as.numeric(all_race_income_range[i,1:5])) # 0 - 12499
   range_combine_allr[i,2] = sum(as.numeric(all_race_income_range[i,6:10])) #12500 - 24999
     range_combine_allr[i,3] = sum(as.numeric(all_race_income_range[i,11:15])) # 25000 - 37499
     range_combine_allr[i,4] = sum(as.numeric(all_race_income_range[i,16:20])) # 37500 - 49999
     range_combine_allr[i,5] = sum(as.numeric(all_race_income_range[i,21:25])) # 50000 - 62499
     range_combine_allr[i,6] = sum(as.numeric(all_race_income_range[i,26:30])) # 62500 - 74999
     range_combine_allr[i,7] = sum(as.numeric(all_race_income_range[i,31:35])) # 75000- 87499
     range_combine_allr[i,8] = sum(as.numeric(all_race_income_range[i,36:40])) # 87500 - 99999
     range_combine_allr[i,9] = sum(as.numeric(all_race_income_range[i,41])) # >= 100000
}
range_combine_allr = as.data.frame(range_combine_allr)
rownames(range_combine_allr) = c('Northeast', 'Midwest', 'South', 'West')
```

```
\#colnames(range\_combine\_allr) = c('0to12499', '12500to24999', '25000to37499', '37500to49999', '50000to62')
colnames(range_combine_allr) = seq(0,100000, 12500)
# After divide the total income range data, I tried to divide it into low, medium and high level
income_level_all = matrix(0, 4, 3)
for (i in 1:4){
  income_level_all[i,1] = sum(range_combine_allr[i,1:4]) # 0 - 49999 Low Level
  income_level_all[i,2] = sum(range_combine_allr[i,5:8]) # 49999- 99999 Medium Level
   income level all[i,3] = sum(range combine allr[i,9]) # >= 199999 High Level
}
income_level_all = as.data.frame(income_level_all)
colnames(income_level_all) = c('Low', 'Medium', 'High')
rownames(income_level_all) = c('Northeast', 'Midwest', 'South', 'West')
# Pie plot
###
par(mfrow=c(2,2))
x <- as.vector(unlist(income_level_all[1,]))</pre>
lbls <- c('Low', 'Medium', 'High')</pre>
pct <- round(x/sum(x)*100)
lbls <- paste(lbls, pct) # add percents to labels</pre>
lbls <- paste(lbls,"%",sep="") # ad % to labels</pre>
pie3D(x,labels=lbls,explode=0.1,labelcex =0.8, radius = 1.5,
   main="Income Level of Northeast in 2019", col = c('aliceblue', 'pink', 'purple'))
x <- as.vector(unlist(income_level_all[2,]))</pre>
lbls <- c('Low', 'Medium', 'High')</pre>
pct <- round(x/sum(x)*100)
lbls <- paste(lbls, pct) # add percents to labels</pre>
lbls <- paste(lbls,"%",sep="") # ad % to labels</pre>
pie3D(x,labels=lbls,explode=0.1, labelcex = 0.8, radius = 1.5,
   main="Income Level of Midwest in 2019", cex= 0.5, col = c('aliceblue', 'pink', 'purple'))
x <- as.vector(unlist(income_level_all[3,]))</pre>
lbls <- c('Low', 'Medium', 'High')</pre>
pct <- round(x/sum(x)*100)
lbls <- paste(lbls, pct) # add percents to labels</pre>
lbls <- paste(lbls,"%",sep="") # ad % to labels</pre>
pie3D(x,labels=lbls,explode=0.05,labelcex = 0.8, radius = 1.5,
   main="Income Level of South in 2019", col = c('aliceblue', 'pink', 'purple'))
x <- as.vector(unlist(income_level_all[4,]))</pre>
lbls <- c('Low', 'Medium', 'High')</pre>
pct <- round(x/sum(x)*100)
lbls <- paste(lbls, pct) # add percents to labels</pre>
lbls <- paste(lbls,"%",sep="") # ad % to labels</pre>
pie3D(x,labels=lbls,explode=0.05, labelcex = 0.8, radius = 1.5,
   main="Income Level of West in 2019", col = c('aliceblue', 'pink', 'purple'))
```

Income Level of Northeast in 2019

Income Level of Midwest in 2019

Income Level of South in 2019

Income Level of West in 2019


```
# 2018 region
allraces_2018 <-read.csv("~/Desktop/VTCourse/STAT 5014/Group Project/Total work experience-both sexes/2
allraces 2018 = as.data.frame(allraces 2018 [-1,])
colnames(allraces_2018) = c('Region','Total', 'Total with Income', '$2499', '$2500-$4999', '$5000-$7499
                       '$10000-$12499', '$12500-$14999', '$15000-$17499', '$17500-$19999', '$20000-$224
                       '$22500-$24999', '$25000-$27499', '$27500-$29999', '$30000-$32499', '$32500-$374
                       '$42500-$44999', '$45000-$47499', '$47500-$49999', '$50000-$52499', '$52500-$5499
                       '$100000-'
                       )
all_race_income_range_2018 = allraces_2018[,4:44]
colnames(all_race_income_range_2018) = c('$2499', '$2500-$4999', '$5000-$7499', '$7500-$9999',
                       '$10000-$12499', '$12500-$14999', '$15000-$17499', '$17500-$19999', '$20000-$224
                       '$22500-$24999', '$25000-$27499', '$27500-$29999', '$30000-$32499', '$32500-$374
                       '$42500-$44999', '$45000-$47499', '$47999-$49999', '$50000-$52499','$52500-$5499
range_combine_allr_2018 = matrix(0, 4, 9)
for (i in 1:dim(all_race_income_range_2018)[1]){
  for (j in 1:dim(all_race_income_range_2018)[2]){
all_race_income_range_2018[i,j] = as.numeric(gsub(",","", all_race_income_range_2018[i,j]))
 }
}
for (i in 1:dim(all_race_income_range_2018)[1]){
  range_combine_allr_2018[i,1] = sum(as.numeric(all_race_income_range_2018[i,1:5])) # 0 - 12499
  range_combine_allr_2018[i,2] = sum(as.numeric(all_race_income_range_2018[i,6:10])) #12500 - 24999
  range_combine_allr_2018[i,3] = sum(as.numeric(all_race_income_range_2018[i,11:15])) # 25000 - 37499
  range_combine_allr_2018[i,4] = sum(as.numeric(all_race_income_range_2018[i,16:20])) # 37500 - 49999
  range_combine_allr_2018[i,5] = sum(as.numeric(all_race_income_range_2018[i,21:25])) # 50000 - 62499
  range_combine_allr_2018[i,6] = sum(as.numeric(all_race_income_range_2018[i,26:30])) # 62500 - 74999
  range_combine_allr_2018[i,7] = sum(as.numeric(all_race_income_range_2018[i,31:35])) # 75000- 87499
  range_combine_allr_2018[i,8] = sum(as.numeric(all_race_income_range_2018[i,36:40])) # 87500 - 99999
  range_combine_allr_2018[i,9] = sum(as.numeric(all_race_income_range_2018[i,41])) # >= 100000
```

```
range_combine_allr_2018 = as.data.frame(range_combine_allr_2018)
rownames(range_combine_allr_2018) = c('Northeast', 'Midwest', 'South', 'West')
\#colnames(range\_combine\_allr) = c('0to12499', '12500to24999', '25000to37499', '37500to49999', '50000to62
colnames(range\_combine\_allr\_2018) = seq(0,100000, 12500)
# After divide the total income range data, I tried to divide it into low, medium and high level
income_level_all_2018 = matrix(0, 4, 3)
for (i in 1:4){
  income level all 2018[i,1] = sum(range combine allr 2018[i,1:4]) # 0 - 49999 Low Level
  income_level_all_2018[i,2] = sum(range_combine_allr_2018[i,5:8]) # 49999- 99999 Medium Level
   income_level_all_2018[i,3] = sum(range_combine_allr_2018[i,9]) # >= 199999 High Level
}
income_level_all_2018 = as.data.frame(income_level_all_2018)
colnames(income_level_all_2018) = c('Low', 'Medium', 'High')
rownames(income_level_all_2018) = c('Northeast', 'Midwest', 'South', 'West')
# Pie plot
###
par(mfrow=c(2,2))
x <- as.vector(unlist(income_level_all_2018[1,]))</pre>
lbls <- c('Low', 'Medium', 'High')</pre>
pct <- round(x/sum(x)*100)
lbls <- paste(lbls, pct) # add percents to labels</pre>
lbls <- paste(lbls,"%",sep="") # ad % to labels</pre>
pie3D(x,labels=lbls,explode=0.1,labelcex = 0.8,
   main="Income Level Percent of Northeast of 2018", col = c('blue', 'yellow', '#009999'))
x <- as.vector(unlist(income_level_all_2018[2,]))</pre>
lbls <- c('Low', 'Medium', 'High')</pre>
pct <- round(x/sum(x)*100)
lbls <- paste(lbls, pct) # add percents to labels</pre>
lbls <- paste(lbls,"%",sep="") # ad % to labels</pre>
pie3D(x,labels=lbls,explode=0.1, labelcex = 0.8,col = c('blue', 'yellow', '#009999'),
   main="Income Level Percent of Midwest of 2018")
x <- as.vector(unlist(income_level_all_2018[3,]))</pre>
lbls <- c('Low', 'Medium', 'High')</pre>
pct <- round(x/sum(x)*100)
lbls <- paste(lbls, pct) # add percents to labels</pre>
lbls <- paste(lbls,"%",sep="") # ad % to labels</pre>
pie3D(x,labels=lbls,explode=0.05, labelcex = 0.8,col = c('blue', 'yellow', '#009999'),
   main="Income Level Percent of South of 2018")
x <- as.vector(unlist(income_level_all_2018[4,]))</pre>
lbls <- c('Low', 'Medium', 'High')</pre>
pct <- round(x/sum(x)*100)
lbls <- paste(lbls, pct) # add percents to labels
lbls <- paste(lbls,"%",sep="") # ad % to labels</pre>
pie3D(x,labels=lbls,explode=0.05, labelcex = 0.8,col = c('blue', 'yellow', '#009999'),
   main="Income Level Percent of West of 2018")
```

ncome Level Percent of Northeast of 201{Income Level Percent of Midwest of 2018

Income Level Percent of South of 2018 Income Level Percent of West of 2018


```
# 2017 region
allraces_2017 <- read.csv("~/Desktop/VTCourse/STAT 5014/Group Project/Total work experience-both sexes/
allraces_2017 = as.data.frame(allraces_2017[-1,])
colnames(allraces_2017) = c('Region','Total', 'Total with Income', '$2499', '$2500-$4999', '$5000-$7499
                       '$10000-$12499', '$12500-$14999', '$15000-$17499', '$17500-$19999', '$20000-$224
                       '$22500-$24999', '$25000-$27499', '$27500-$29999', '$30000-$32499', '$32500-$374
                       '$42500-$44999', '$45000-$47499', '$47500-$49999', '$50000-$52499', '$52500-$5499
                       '$100000-'
                       )
all_race_income_range_2017 = allraces_2017[,4:44]
colnames(all_race_income_range_2017) = c('$2499', '$2500-$4999', '$5000-$7499', '$7500-$9999',
                       '$10000-$12499', '$12500-$14999', '$15000-$17499', '$17500-$19999', '$20000-$224
                       '$22500-$24999', '$25000-$27499', '$27500-$29999', '$30000-$32499', '$32500-$374
                       '$42500-$44999', '$45000-$47499', '$47999-$49999', '$50000-$52499','$52500-$5499
# Change the range to $10000
range_combine_allr_2017 = matrix(0, 4, 9)
for (i in 1:dim(all_race_income_range_2017)[1]){
 for (j in 1:dim(all_race_income_range_2017)[2]){
all_race_income_range_2017[i,j] = as.numeric(gsub(",","", all_race_income_range_2017[i,j]))
  }
}
for (i in 1:dim(all_race_income_range_2017)[1]){
  range_combine_allr_2017[i,1] = sum(as.numeric(all_race_income_range_2017[i,1:5])) # 0 - 12499
  range_combine_allr_2017[i,2] = sum(as.numeric(all_race_income_range_2017[i,6:10])) #12500 - 24999
   range_combine_allr_2017[i,3] = sum(as.numeric(all_race_income_range_2017[i,11:15])) # 25000 - 37499
  range_combine_allr_2017[i,4] = sum(as.numeric(all_race_income_range_2017[i,16:20])) # 37500 - 49999
  range_combine_allr_2017[i,5] = sum(as.numeric(all_race_income_range_2017[i,21:25])) # 50000 - 62499
  range_combine_allr_2017[i,6] = sum(as.numeric(all_race_income_range_2017[i,26:30])) # 62500 - 74999
  range_combine_allr_2017[i,7] = sum(as.numeric(all_race_income_range_2017[i,31:35])) # 75000- 87499
  range_combine_allr_2017[i,8] = sum(as.numeric(all_race_income_range_2017[i,36:40])) # 87500 - 99999
  range_combine_allr_2017[i,9] = sum(as.numeric(all_race_income_range_2017[i,41])) # >= 100000
```

```
range_combine_allr_2017 = as.data.frame(range_combine_allr_2017)
rownames(range_combine_allr_2017) = c('Northeast', 'Midwest', 'South', 'West')
\#colnames(range\_combine\_allr) = c('0to12499', '12500to24999', '25000to37499', '37500to49999', '50000to62
colnames(range_combine_allr_2017) = seq(0,100000, 12500)
# After divide the total income range data, I tried to divide it into low, medium and high level
income_level_all_2017 = matrix(0, 4, 3)
for (i in 1:4){
  income_level_all_2017[i,1] = sum(range_combine_allr_2017[i,1:4]) # 0 - 49999 Low Level
  income_level_all_2017[i,2] = sum(range_combine_allr_2017[i,5:8]) # 49999- 99999 Medium Level
   income_level_all_2017[i,3] = sum(range_combine_allr_2017[i,9]) # >= 199999 High Level
}
income_level_all_2017 = as.data.frame(income_level_all_2017)
colnames(income_level_all_2017) = c('Low', 'Medium', 'High')
rownames(income_level_all_2017) = c('Northeast', 'Midwest', 'South', 'West')
par(mfrow=c(2,2))
x <- as.vector(unlist(income_level_all_2017[1,]))</pre>
lbls <- c('Low', 'Medium', 'High')</pre>
pct <- round(x/sum(x)*100)
lbls <- paste(lbls, pct) # add percents to labels</pre>
lbls <- paste(lbls,"%",sep="") # ad % to labels</pre>
pie3D(x,labels=lbls,explode=0.1,labelcex = 0.8,
   main="Income Level Percent of Northeast of 2017", col = c('navajowhite1', 'tan1', 'mediumvioletred')
x <- as.vector(unlist(income_level_all_2017[2,]))
lbls <- c('Low', 'Medium', 'High')</pre>
pct <- \text{round}(x/\text{sum}(x)*100)
lbls <- paste(lbls, pct) # add percents to labels</pre>
lbls <- paste(lbls,"%",sep="") # ad % to labels</pre>
pie3D(x,labels=lbls,explode=0.1, labelcex = 0.8,col = c('navajowhite1', 'tan1', 'mediumvioletred'),
   main="Income Level Percent of Midwest of 2017")
x <- as.vector(unlist(income_level_all_2017[3,]))</pre>
lbls <- c('Low', 'Medium', 'High')</pre>
pct <- round(x/sum(x)*100)
lbls <- paste(lbls, pct) # add percents to labels</pre>
lbls <- paste(lbls,"%",sep="") # ad % to labels</pre>
pie3D(x,labels=lbls,explode=0.05, labelcex = 0.8,col = c('navajowhite1', 'tan1', 'mediumvioletred'),
   main="Income Level Percent of South of 2017")
x <- as.vector(unlist(income_level_all_2017[4,]))
lbls <- c('Low', 'Medium', 'High')</pre>
pct <- round(x/sum(x)*100)
lbls <- paste(lbls, pct) # add percents to labels
lbls <- paste(lbls,"%",sep="") # ad % to labels</pre>
pie3D(x,labels=lbls,explode=0.05, labelcex = 0.8,col = c('navajowhite1', 'tan1', 'mediumvioletred'),
   main="Income Level Percent of West of 2017")
```

ncome Level Percent of Northeast of 2017 Income Level Percent of Midwest of 2017

Income Level Percent of South of 2017 Income Level Percent of West of 2017


```
# Social disparity about Education level
Education_2017 <- read.csv("~/Desktop/VTCourse/STAT 5014/Group Project/Total work experience-both sexes
Education_2017 <- Education_2017[-c(1,2,8),]
Education_2017[,1] <- c('9th_Grade', '12th_Grade', 'High_School', 'College', 'Associate', 'Bachelor', 'M
rowname edu = Education 2017[,1]
Education_2017 <- as.data.frame(Education_2017[,-(1:3)])</pre>
rownames(Education_2017) <- rowname_edu</pre>
colnames(Education_2017) = c('$2499', '$2500-$4999', '$5000-$7499', '$7500-$9999',
                       '$10000-$12499', '$12500-$14999', '$15000-$17499', '$17500-$19999', '$20000-$224
                       '$22500-$24999', '$25000-$27499', '$27500-$29999', '$30000-$32499', '$32500-$374
                       '$42500-$44999', '$45000-$47499', '$47999-$49999', '$50000-$52499', '$52500-$5499
                       '$100000-')
edu_income_range_2017 = matrix(0, 9, 9)
for (i in 1:dim(Education_2017)[1]){
  for (j in 1:dim(Education_2017)[2]){
Education_2017[i,j] = as.numeric(gsub(",","", Education_2017[i,j]))
  }
}
for (i in 1:dim(edu_income_range_2017)[1]){
  edu_income_range_2017[i,1] = sum(as.numeric(Education_2017[i,1:5])) # 0 - 12499
  edu_income_range_2017[i,2] = sum(as.numeric(Education_2017[i,6:10])) #12500 - 24999
   edu_income_range_2017[i,3] = sum(as.numeric(Education_2017[i,11:15])) # 25000 - 37499
   edu_income_range_2017[i,4] = sum(as.numeric(Education_2017[i,16:20])) # 37500 - 49999
   edu_income_range_2017[i,5] = sum(as.numeric(Education_2017[i,21:25])) # 50000 - 62499
   edu_income_range_2017[i,6] = sum(as.numeric(Education_2017[i,26:30])) # 62500 - 74999
   edu_income_range_2017[i,7] = sum(as.numeric(Education_2017[i,31:35])) # 75000- 87499
   edu_income_range_2017[i,8] = sum(as.numeric(Education_2017[i,36:40])) # 87500 - 99999
   edu_income_range_2017[i,9] = sum(as.numeric(Education_2017[i,41])) # >= 100000
edu_income_range_2017 = as.data.frame(edu_income_range_2017)
rownames(edu_income_range_2017) = c('9th_Grade', '12th_Grade', 'High_School', 'College', 'Associate', 'B
\#colnames(range\_combine\_allr) = c('0to12499', '12500to24999', '25000to37499', '37500to49999', '50000to62')
```

```
colnames(edu_income_range_2017) = seq(0,100000, 12500)
# After divide the total income range data, I tried to divide it into low, medium and high level
income_edu_2017 = matrix(0, 9, 3)
for (i in 1:9){
  income_edu_2017[i,1] = sum(edu_income_range_2017[i,1:4]) # 0 - 49999 Low Level
  income_edu_2017[i,2] = sum(edu_income_range_2017[i,5:8]) # 49999- 99999 Medium Level
   income_edu_2017[i,3] = sum(edu_income_range_2017[i,9]) # >= 199999 High Level
income_edu_2017= as.data.frame(income_edu_2017)
colnames(income_edu_2017) = c('Low', 'Medium', 'High')
rownames(income_edu_2017) =c('9th_Grade', '12th_Grade', 'High_School', 'College', 'Associate', 'Bachelor
income_edu_2017_mod = matrix(0, 3, 3)
for (i in 1:dim(income_edu_2017_mod)[2]){
income_edu_2017_mod[1,i] = sum(income_edu_2017[1:3,i])
income_edu_2017_mod[2,i] = sum(income_edu_2017[4:5,i])
income_edu_2017_mod[3,i] = sum(income_edu_2017[6:9,i])
income_edu_2017_mod = as.data.frame(income_edu_2017_mod)
colnames(income_edu_2017_mod) = c('Low', 'Medium', "High")
rownames(income_edu_2017_mod) = c('HighSchool', 'College', 'Bachelor Above')
# Education 2018
Education_2018 <- read.csv("~/Desktop/VTCourse/STAT 5014/Group Project/Total work experience-both sexes
Education_2018 <- Education_2018[-c(1,2,8),]
Education_2018[,1] <- c('9th_Grade', '12th_Grade', 'High_School', 'College', 'Associate', 'Bachelor', 'M
rowname_edu = Education_2018[,1]
Education_2018 <- as.data.frame(Education_2018[,-(1:3)])</pre>
rownames(Education_2018) <- rowname_edu</pre>
colnames(Education 2018) = c('$2499', '$2500-$4999', '$5000-$7499', '$7500-$9999',
                       '$10000-$12499', '$12500-$14999', '$15000-$17499', '$17500-$19999', '$20000-$224
                      '$22500-$24999', '$25000-$27499', '$27500-$29999', '$30000-$32499', '$32500-$374
                      '$42500-$44999', '$45000-$47499', '$47999-$49999', '$50000-$52499','$52500-$5499
                      '$100000-')
edu_income_range_2018 = matrix(0, 9, 9)
for (i in 1:dim(Education_2018)[1]){
  for (j in 1:dim(Education_2018)[2]){
Education_2018[i,j] = as.numeric(gsub(",",",", Education_2018[i,j]))
}
for (i in 1:dim(edu_income_range_2018)[1]){
  edu_income_range_2018[i,1] = sum(as.numeric(Education_2018[i,1:5])) # 0 - 12499
  edu_income_range_2018[i,2] = sum(as.numeric(Education_2018[i,6:10])) #12500 - 24999
   edu_income_range_2018[i,3] = sum(as.numeric(Education_2018[i,11:15])) # 25000 - 37499
   edu_income_range_2018[i,4] = sum(as.numeric(Education_2018[i,16:20])) # 37500 - 49999
   edu_income_range_2018[i,5] = sum(as.numeric(Education_2018[i,21:25])) # 50000 - 62499
   edu_income_range_2018[i,6] = sum(as.numeric(Education_2018[i,26:30])) # 62500 - 74999
   edu_income_range_2018[i,7] = sum(as.numeric(Education_2018[i,31:35])) # 75000- 87499
   edu_income_range_2018[i,8] = sum(as.numeric(Education_2018[i,36:40])) # 87500 - 99999
   edu_income_range_2018[i,9] = sum(as.numeric(Education_2018[i,41])) # >= 100000
}
edu_income_range_2018 = as.data.frame(edu_income_range_2018)
rownames(edu_income_range_2018) = c('9th_Grade', '12th_Grade', 'High_School', 'College', 'Associate', 'B
colnames(edu_income_range_2018) = seq(0,100000, 12500)
```

```
# After divide the total income range data, I tried to divide it into low, medium and high level
income_edu_2018 = matrix(0, 9, 3)
for (i in 1:9){
   income_edu_2018[i,1] = sum(edu_income_range_2018[i,1:4]) # 0 - 49999 Low Level
   income_edu_2018[i,2] = sum(edu_income_range_2018[i,5:8]) # 49999- 99999 Medium Level
     income_edu_2018[i,3] = sum(edu_income_range_2018[i,9]) # >= 199999 High Level
}
income_edu_2018= as.data.frame(income_edu_2018)
colnames(income_edu_2018) = c('Low', 'Medium', 'High')
rownames(income_edu_2018) =c('9th_Grade', '12th_Grade', 'High_School', 'College', 'Associate', 'Bachelor
income_edu_2018_mod = matrix(0, 3, 3)
for (i in 1:dim(income_edu_2018_mod)[2]){
income_edu_2018_mod[1,i] = sum(income_edu_2018[1:3,i])
income_edu_2018_mod[2,i] = sum(income_edu_2018[4:5,i])
income_edu_2018_mod[3,i] = sum(income_edu_2018[6:9,i])
}
income_edu_2018_mod = as.data.frame(income_edu_2018_mod)
colnames(income_edu_2018_mod) = c('Low', 'Medium', "High")
rownames(income_edu_2018_mod) = c('HighSchool', 'College', 'Bachelor Above')
# Education 2019
Education_2019 <- read.csv("~/Desktop/VTCourse/STAT 5014/Group Project/Total work experience-both sexes
Education_2019 <- Education_2019[-c(1,2,8),]
Education_2019[,1] <- c('9th_Grade', '12th_Grade', 'High_School', 'College', 'Associate', 'Bachelor', 'M
rowname_edu = Education_2019[,1]
Education_2019 <- as.data.frame(Education_2019[,-(1:3)])
rownames(Education_2019) <- rowname_edu</pre>
colnames(Education_2019) = c('$2499', '$2500-$4999', '$5000-$7499', '$7500-$9999',
                                      '$10000-$12499', '$12500-$14999', '$15000-$17499', '$17500-$19999', '$20000-$224
                                      '$22500-$24999', '$25000-$27499', '$27500-$29999', '$30000-$32499', '$32500-$374
                                      '$42500-$44999', '$45000-$47499', '$47999-$49999', '$50000-$52499', '$52500-$5499
                                      '$100000-')
edu_income_range_2019 = matrix(0, 9, 9)
for (i in 1:dim(Education_2019)[1]){
   for (j in 1:dim(Education_2019)[2]){
Education_2019[i,j] = as.numeric(gsub(",","", Education_2019[i,j]))
   }
}
for (i in 1:dim(edu_income_range_2019)[1]){
   edu_income_range_2019[i,1] = sum(as.numeric(Education_2019[i,1:5])) # 0 - 12499
   edu_income_range_2019[i,2] = sum(as.numeric(Education_2019[i,6:10])) #12500 - 24999
     edu_income_range_2019[i,3] = sum(as.numeric(Education_2019[i,11:15])) # 25000 - 37499
     edu_income_range_2019[i,4] = sum(as.numeric(Education_2019[i,16:20])) # 37500 - 49999
     edu_income_range_2019[i,5] = sum(as.numeric(Education_2019[i,21:25])) # 50000 - 62499
     edu_income_range_2019[i,6] = sum(as.numeric(Education_2019[i,26:30])) # 62500 - 74999
     edu_income_range_2019[i,7] = sum(as.numeric(Education_2019[i,31:35])) # 75000- 87499
     edu_income_range_2019[i,8] = sum(as.numeric(Education_2019[i,36:40])) # 87500 - 99999
     edu_income_range_2019[i,9] = sum(as.numeric(Education_2019[i,41])) # >= 100000
edu_income_range_2019 = as.data.frame(edu_income_range_2019)
rownames(edu_income_range_2019) = c('9th_Grade', '12th_Grade', 'High_School', 'College', 'Associate','B
\#colnames(range\_combine\_allr) = c('0to12499', '12500to24999', '25000to37499', '37500to49999', '50000to62to12499', '12500to24999', '25000to37499', '37500to49999', '50000to62to12499', '12500to24999', '12500to2499', '12500to2499', '12500to2499', '12500to249', '12
colnames(edu_income_range_2019) = seq(0,100000, 12500)
# After divide the total income range data, I tried to divide it into low, medium and high level
```

```
income_edu_2019 = matrix(0, 9, 3)
for (i in 1:9){
  income_edu_2019[i,1] = sum(edu_income_range_2019[i,1:4]) # 0 - 49999 Low Level
  income_edu_2019[i,2] = sum(edu_income_range_2019[i,5:8]) # 49999- 99999 Medium Level
   income_edu_2019[i,3] = sum(edu_income_range_2019[i,9]) # >= 199999 High Level
income_edu_2019 = as.data.frame(income_edu_2019)
colnames(income edu 2019) = c('Low', 'Medium', 'High')
rownames(income_edu_2019) =c('9th_Grade', '12th_Grade', 'High_School', 'College', 'Associate', 'Bachelor
income_edu_2019_mod = matrix(0, 3, 3)
for (i in 1:dim(income_edu_2019_mod)[2]){
income_edu_2019_mod[1,i] = sum(income_edu_2019[1:3,i])
income_edu_2019_mod[2,i] = sum(income_edu_2019[4:5,i])
income_edu_2019_mod[3,i] = sum(income_edu_2019[6:9,i])}
income_edu_2019_mod = as.data.frame(income_edu_2019_mod)
colnames(income_edu_2019_mod) = c('Low', 'Medium', "High")
rownames(income_edu_2019_mod) = c('HighSchool', 'College', 'Bachelor Above')
income_edu_2017_mod = as.matrix(income_edu_2017_mod)
prop_income_edu_2017 = matrix(0, 3, 3)
for (i in 1:dim(income_edu_2017_mod)[1]){
  prop_income_edu_2017[i,1] = income_edu_2017_mod[i,1]/sum(income_edu_2017_mod[i,])
  prop_income_edu_2017[i,2] = income_edu_2017_mod[i,2]/sum(income_edu_2017_mod[i,])
  prop_income_edu_2017[i,3] = income_edu_2017_mod[i,3]/sum(income_edu_2017_mod[i,])
labels = rownames(income_edu_2017_mod)
color.names = terrain.colors(3)
barplot(prop_income_edu_2017,beside=T,ylim=c(0,0.95), col= color.names,xlab='Education',ylab="Proportion")
```

Income Level Versus Education of Year 2017


```
income_edu_2018_mod = as.matrix(income_edu_2018_mod)
prop_income_edu_2018 = matrix(0, 3, 3)
for (i in 1:dim(income_edu_2018_mod)[1]){
    prop_income_edu_2018[i,1] = income_edu_2018_mod[i,1]/sum(income_edu_2018_mod[i,])
    prop_income_edu_2018[i,2] = income_edu_2018_mod[i,2]/sum(income_edu_2018_mod[i,])
    prop_income_edu_2018[i,3] = income_edu_2018_mod[i,3]/sum(income_edu_2018_mod[i,])
}
labels = rownames(income_edu_2018_mod)
color.names = terrain.colors(3)
barplot(prop_income_edu_2018,beside=T,ylim=c(0,0.95), col= color.names,xlab='Education',ylab="Proportion"
```

Income Level Versus Education of Year 2018


```
income_edu_2019_mod = as.matrix(income_edu_2019_mod)
prop_income_edu_2019 = matrix(0, 3, 3)
for (i in 1:dim(income_edu_2019_mod)[1]){
    prop_income_edu_2019[i,1] = income_edu_2019_mod[i,1]/sum(income_edu_2019_mod[i,])
    prop_income_edu_2019[i,2] = income_edu_2019_mod[i,2]/sum(income_edu_2019_mod[i,])
    prop_income_edu_2019[i,3] = income_edu_2019_mod[i,3]/sum(income_edu_2019_mod[i,])
}
labels = rownames(income_edu_2019_mod)
color.names = terrain.colors(3)
barplot(prop_income_edu_2019,beside=T,ylim=c(0,0.95), col= color.names,xlab='Education',ylab="Proportion"
```

Income Level Versus Education of Year 2019


```
Age_2019 <- read.csv("~/Desktop/VTCourse/STAT 5014/Group Project/Total work experience-both sexes/2019/
ind = c(1, 2, 3, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 20, 21)
Age_{2019} = Age_{2019}[-ind,]
Age_2019_mod = as.data.frame(Age_2019[,-c(1,2,3)])
rownames(Age_2019_mod) = c('15 to 24', '25 to 35', '35 to 44', '45 to 54', '55 to 64', 'above 65')
colnames(Age_2019_mod) = c('$2499', '$2500-$4999', '$5000-$7499', '$7500-$9999',
                       '$10000-$12499', '$12500-$14999', '$15000-$17499', '$17500-$19999', '$20000-$224
                       '$22500-$24999', '$25000-$27499', '$27500-$29999', '$30000-$32499', '$32500-$374
                       '$42500-$44999', '$45000-$47499', '$47999-$49999', '$50000-$52499','$52500-$5499
                       '$100000-')
age_{2019} = matrix(0, 6, 9)
for (i in 1:dim(Age_2019_mod)[1]){
  for (j in 1:dim(Age_2019_mod)[2]){
Age_2019_mod[i,j] = as.numeric(gsub(",","", Age_2019_mod[i,j]))
  }
}
for (i in 1:dim(age_2019)[1]){
  age_2019[i,1] = sum(as.numeric(Age_2019_mod[i,1:5])) # 0 - 12499
  age_2019[i,2] = sum(as.numeric(Age_2019_mod[i,6:10])) #12500 - 24999
  age_2019[i,3] = sum(as.numeric(Age_2019_mod[i,11:15])) # 25000 - 37499
  age_2019[i,4] = sum(as.numeric(Age_2019_mod[i,16:20])) # 37500 - 49999
   age_2019[i,5] = sum(as.numeric(Age_2019_mod[i,21:25])) # 50000 - 62499
  age_2019[i,6] = sum(as.numeric(Age_2019_mod[i,26:30])) # 62500 - 74999
   age_2019[i,7] = sum(as.numeric(Age_2019_mod[i,31:35])) # 75000- 87499
  age_2019[i,8] = sum(as.numeric(Age_2019_mod[i,36:40])) # 87500 - 999999
   age_2019[i,9] = sum(as.numeric(Age_2019_mod[i,41])) # >= 100000
}
age_2019 = as.data.frame(age_2019)
rownames(age_2019) =c('15 to 24', '25 to 35', '35 to 44', '45 to 54', '55 to 64', 'above 65')
Age_{2019} = matrix(0, 6, 3)
```

```
for (i in 1:dim(Age_2019)[1]){
Age_{2019}[i,1] = sum(age_{2019}[i,1:3])
Age_{2019}[i,2] = sum(age_{2019}[i,4:6])
Age_{2019[i,3]} = sum(age_{2019[i,6:9]})
}
Age_2019 = as.data.frame(Age_2019)
colnames(Age_2019) = c('Low', 'Medium', "High")
rownames(Age_2019) =c('15 to 24', '25 to 35', '35 to 44', '45 to 54', '55 to 64', 'above 65')
Age_2018 <- read.csv("~/Desktop/VTCourse/STAT 5014/Group Project/Total work experience-both sexes/2018/
ind = c(1, 2, 3, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 20, 21)
Age_{2018} = Age_{2018}[-ind,]
Age_{2018} = as.data.frame(Age_{2018}, -c(1,2,3))
rownames(Age_2018_mod) = c('15 to 24', '25 to 35', '35 to 44', '45 to 54', '55 to 64', 'above 65')
colnames(Age_2018_mod) = c('$2499', '$2500-$4999', '$5000-$7499', '$7500-$9999',
                       '$10000-$12499', '$12500-$14999', '$15000-$17499', '$17500-$19999', '$20000-$224
                       '$22500-$24999', '$25000-$27499', '$27500-$29999', '$30000-$32499', '$32500-$374
                        '$42500-$44999', '$45000-$47499', '$47999-$49999', '$50000-$52499','$52500-$5499
age_{2018} = matrix(0, 6, 9)
for (i in 1:dim(Age_2018_mod)[1]){
 for (j in 1:dim(Age_2018_mod)[2]){
Age_2018_mod[i,j] = as.numeric(gsub(",","", Age_2018_mod[i,j]))
 }
}
for (i in 1:dim(age_2018)[1]){
  age_2018[i,1] = sum(as.numeric(Age_2018_mod[i,1:5])) # 0 - 12499
  age 2018[i,2] = sum(as.numeric(Age 2018 mod[i,6:10])) #12500 - 24999
  age_2018[i,3] = sum(as.numeric(Age_2018_mod[i,11:15])) # 25000 - 37499
  age_2018[i,4] = sum(as.numeric(Age_2018_mod[i,16:20])) # 37500 - 49999
  age_2018[i,5] = sum(as.numeric(Age_2018_mod[i,21:25])) # 50000 - 62499
  age_2018[i,6] = sum(as.numeric(Age_2018_mod[i,26:30])) # 62500 - 74999
  age_2018[i,7] = sum(as.numeric(Age_2018_mod[i,31:35])) # 75000- 87499
  age_2018[i,8] = sum(as.numeric(Age_2018_mod[i,36:40])) # 87500 - 999999
  age_2018[i,9] = sum(as.numeric(Age_2018_mod[i,41])) # >= 100000
age_2018 = as.data.frame(age_2018)
rownames(age_2018) =c('15 to 24', '25 to 35', '35 to 44', '45 to 54', '55 to 64', 'above 65')
Age_{2018} = matrix(0, 6, 3)
for (i in 1:dim(Age_2018)[1]){
Age_{2018[i,1]} = sum(age_{2018[i,1:3]})
Age_{2018[i,2]} = sum(age_{2018[i,4:6]})
Age_{2018[i,3]} = sum(age_{2018[i,6:9]})
Age 2018 = as.data.frame(Age 2018)
colnames(Age_2018) = c('Low', 'Medium', "High")
rownames(Age_2018) =c('15 to 24', '25 to 35', '35 to 44', '45 to 54', '55 to 64', 'above 65')
# Age 2017
Age_2017 <- read.csv("~/Desktop/VTCourse/STAT 5014/Group Project/Total work experience-both sexes/2017/
ind = c(1, 2, 3, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 20, 21)
Age_{2017} = Age_{2017}[-ind,]
Age_2017_mod = as.data.frame(Age_2017[,-c(1,2,3)])
```

```
rownames(Age_2017_mod) = c('15 to 24', '25 to 35', '35 to 44', '45 to 54', '55 to 64', 'above 65')
colnames(Age_2017_mod) = c('$2499', '$2500-$4999', '$5000-$7499', '$7500-$9999',
                       '$10000-$12499', '$12500-$14999', '$15000-$17499', '$17500-$19999', '$20000-$224
                       '$22500-$24999', '$25000-$27499', '$27500-$29999', '$30000-$32499', '$32500-$374
                       '$42500-$44999', '$45000-$47499', '$47999-$49999', '$50000-$52499','$52500-$5499
age_{2017} = matrix(0, 6, 9)
for (i in 1:dim(Age_2017_mod)[1]){
 for (j in 1:dim(Age_2017_mod)[2]){
Age_2017_mod[i,j] = as.numeric(gsub(",","", Age_2017_mod[i,j]))
}
for (i in 1:dim(age_2017)[1]){
  age_2017[i,1] = sum(as.numeric(Age_2017_mod[i,1:5])) # 0 - 12499
  age_2017[i,2] = sum(as.numeric(Age_2017_mod[i,6:10])) #12500 - 24999
  age_2017[i,3] = sum(as.numeric(Age_2017_mod[i,11:15])) # 25000 - 37499
  age_2017[i,4] = sum(as.numeric(Age_2017_mod[i,16:20])) # 37500 - 49999
  age_2017[i,5] = sum(as.numeric(Age_2017_mod[i,21:25])) # 50000 - 62499
  age_2017[i,6] = sum(as.numeric(Age_2017_mod[i,26:30])) # 62500 - 74999
  age_2017[i,7] = sum(as.numeric(Age_2017_mod[i,31:35])) # 75000- 87499
  age_2017[i,8] = sum(as.numeric(Age_2017_mod[i,36:40])) # 87500 - 99999
   age_2017[i,9] = sum(as.numeric(Age_2017_mod[i,41])) # >= 100000
age_2017 = as.data.frame(age_2017)
rownames(age 2017) =c('15 to 24', '25 to 35', '35 to 44', '45 to 54', '55 to 64', 'above 65')
Age_{2017} = matrix(0, 6, 3)
for (i in 1:dim(Age_2017)[1]){
Age_{2017}[i,1] = sum(age_{2017}[i,1:3])
Age_{2017[i,2]} = sum(age_{2017[i,4:6]})
Age_{2017[i,3]} = sum(age_{2017[i,6:9]})
Age_2017 = as.data.frame(Age_2017)
colnames(Age_2017) = c('Low', 'Medium', "High")
rownames(Age_2017) =c('15 to 24', '25 to 35', '35 to 44', '45 to 54', '55 to 64', 'above 65')
Age_2017 = as.matrix(Age_2017)
prop_age_2017 = matrix(0, 6, 3)
for (i in 1:dim(prop_age_2017)[1]){
 prop_age_2017[i,1] = Age_2017[i,1]/sum(Age_2017[i,])
 prop_age_2017[i,2] = Age_2017[i,2]/sum(Age_2017[i,])
 prop_age_2017[i,3] = Age_2017[i,3]/sum(Age_2017[i,])
labels = colnames(Age_2017)
color.names = terrain.colors(6)
barplot(prop_age_2017, beside=T,ylim=c(0,1), col= color.names,
        xlab='Education', ylab="Proportion", axis.lty="solid", legend = rownames(Age 2017), names.arg=lab
```

Income Level Versus Age of Year 2017

Income Level Versus Age of Year 2018

Income Level Versus Age of Year 2019


```
# 2016 region
allraces_2016 <- read.csv("~/Desktop/VTCourse/STAT 5014/Group Project/Total work experience-both sexes/
allraces_2016 = as.data.frame(allraces_2016[-1,])
colnames(allraces_2016) = c('Region','Total', 'Total with Income', '$2499', '$2500-$4999', '$5000-$7499
                       '$10000-$12499', '$12500-$14999', '$15000-$17499', '$17500-$19999', '$20000-$224
                       '$22500-$24999', '$25000-$27499', '$27500-$29999', '$30000-$32499', '$32500-$374
                       '$42500-$44999', '$45000-$47499', '$47500-$49999', '$50000-$52499', '$52500-$5499
                       '$100000-'
all_race_income_range_2016 = allraces_2016[,4:44]
colnames(all_race_income_range_2016) = c('$2499', '$2500-$4999', '$5000-$7499', '$7500-$9999',
                       '$10000-$12499', '$12500-$14999', '$15000-$17499', '$17500-$19999', '$20000-$224
                       '$22500-$24999', '$25000-$27499', '$27500-$29999', '$30000-$32499', '$32500-$374
                       '$42500-$44999', '$45000-$47499', '$47999-$49999', '$50000-$52499', '$52500-$5499
                       '$100000-')
range_combine_allr_2016 = matrix(0, 4, 9)
for (i in 1:dim(all_race_income_range_2016)[1]){
  for (j in 1:dim(all_race_income_range_2016)[2]){
all_race_income_range_2016[i,j] = as.numeric(gsub(",","", all_race_income_range_2016[i,j]))
  }
}
for (i in 1:dim(all_race_income_range_2016)[1]){
  range_combine_allr_2016[i,1] = sum(as.numeric(all_race_income_range_2016[i,1:5])) # 0 - 12499
  range_combine_allr_2016[i,2] = sum(as.numeric(all_race_income_range_2016[i,6:10])) #12500 - 24999
   range_combine_allr_2016[i,3] = sum(as.numeric(all_race_income_range_2016[i,11:15])) # 25000 - 37499
   range_combine_allr_2016[i,4] = sum(as.numeric(all_race_income_range_2016[i,16:20])) # 37500 - 49999
   range_combine_allr_2016[i,5] = sum(as.numeric(all_race_income_range_2016[i,21:25])) # 50000 - 62499
   range_combine_allr_2016[i,6] = sum(as.numeric(all_race_income_range_2016[i,26:30])) # 62500 - 74999
   range_combine_allr_2016[i,7] = sum(as.numeric(all_race_income_range_2016[i,31:35])) # 75000- 87499
   range_combine_allr_2016[i,8] = sum(as.numeric(all_race_income_range_2016[i,36:40])) # 87500 - 99999
```

```
range_combine_allr_2016[i,9] = sum(as.numeric(all_race_income_range_2016[i,41])) # >= 100000
}
range_combine_allr_2016 = as.data.frame(range_combine_allr_2016)
rownames(range_combine_allr_2016) = c('Northeast', 'Midwest', 'South', 'West')
\#colnames(range\_combine\_allr) = c('0to12499', '12500to24999', '25000to37499', '37500to49999', '50000to62to62to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to12500to125000to125000to125000to125000to125000to125000to125
colnames(range\_combine\_allr\_2016) = seq(0,100000, 12500)
# After divide the total income range data, I tried to divide it into low, medium and high level
income level all 2016 = matrix(0, 4, 3)
for (i in 1:4){
    income_level_all_2016[i,1] = sum(range_combine_allr_2016[i,1:4]) # 0 - 49999 Low Level
    income_level_all_2016[i,2] = sum(range_combine_allr_2016[i,5:8]) # 49999- 99999 Medium Level
       income_level_all_2016[i,3] = sum(range_combine_allr_2016[i,9]) # >= 199999 High Level
income_level_all_2016= as.data.frame(income_level_all_2016)
colnames(income_level_all_2016) = c('Low', 'Medium', 'High')
rownames(income_level_all_2016) = c('Northeast', 'Midwest', 'South', 'West')
# 2015 region
allraces_2015 <- read.csv("~/Desktop/VTCourse/STAT 5014/Group Project/Total work experience-both sexes/
allraces_2015 = as.data.frame(allraces_2015[-1,])
colnames(allraces_2015) = c('Region','Total', 'Total with Income', '$2499', '$2500-$4999', '$5000-$7499
                                                 '$10000-$12499', '$12500-$14999', '$15000-$17499', '$17500-$19999', '$20000-$224
                                                 '$22500-$24999', '$25000-$27499', '$27500-$29999', '$30000-$32499', '$32500-$374
                                                 '$42500-$44999', '$45000-$47499', '$47500-$49999', '$50000-$52499', '$52500-$5499
                                                 '$100000-'
all_race_income_range_2015 = allraces_2015[,4:44]
colnames(all_race_income_range_2015) = c('$2499', '$2500-$4999', '$5000-$7499', '$7500-$9999',
                                                 '$10000-$12499', '$12500-$14999', '$15000-$17499', '$17500-$19999', '$20000-$224
                                                 '$22500-$24999', '$25000-$27499', '$27500-$29999', '$30000-$32499', '$32500-$374
                                                 '$42500-$44999', '$45000-$47499', '$47999-$49999', '$50000-$52499', '$52500-$5499
                                                 '$100000-')
range_combine_allr_2015 = matrix(0, 4, 9)
for (i in 1:dim(all_race_income_range_2015)[1]){
    for (j in 1:dim(all_race_income_range_2015)[2]){
all_race_income_range_2015[i,j] = as.numeric(gsub(",","", all_race_income_range_2015[i,j]))
    }
}
for (i in 1:dim(all_race_income_range_2015)[1]){
    range_combine_allr_2015[i,1] = sum(as.numeric(all_race_income_range_2015[i,1:5])) # 0 - 12499
    range_combine_allr_2015[i,2] = sum(as.numeric(all_race_income_range_2015[i,6:10])) #12500 - 24999
      range_combine_allr_2015[i,3] = sum(as.numeric(all_race_income_range_2015[i,11:15])) # 25000 - 37499
      range_combine_allr_2015[i,4] = sum(as.numeric(all_race_income_range_2015[i,16:20])) # 37500 - 49999
      range_combine_allr_2015[i,5] = sum(as.numeric(all_race_income_range_2015[i,21:25])) # 50000 - 62499
      range_combine_allr_2015[i,6] = sum(as.numeric(all_race_income_range_2015[i,26:30])) # 62500 - 74999
      range_combine_allr_2015[i,7] = sum(as.numeric(all_race_income_range_2015[i,31:35])) # 75000- 87499
      range_combine_allr_2015[i,8] = sum(as.numeric(all_race_income_range_2015[i,36:40])) # 87500 - 99999
      range_combine_allr_2015[i,9] = sum(as.numeric(all_race_income_range_2015[i,41])) # >= 100000
range_combine_allr_2015 = as.data.frame(range_combine_allr_2015)
rownames(range_combine_allr_2015) = c('Northeast', 'Midwest', 'South', 'West')
\#colnames(range\_combine\_allr) = c('0to12499', '12500to24999', '25000to37499', '37500to49999', '50000to62', '12500to24999', '25000to37499', '37500to49999', '50000to62', '12500to24999', '12500to37499', '37500to49999', '50000to62', '12500to24999', '12500to37499', '37500to49999', '37500to4999', '37500to490', '37500to499', '37500to4999', '37500to490', '37500to490', '37500to490', '37500to490', '37500to490', '37500to490', '37500to490', '37500to490', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '37500', '3
colnames(range\_combine\_allr\_2015) = seq(0,100000, 12500)
# After divide the total income range data, I tried to divide it into low, medium and high level
```

```
income_level_all_2015 = matrix(0, 4, 3)
for (i in 1:4){
    income_level_all_2015[i,1] = sum(range_combine_allr_2015[i,1:4]) # 0 - 49999 Low Level
    income_level_all_2015[i,2] = sum(range_combine_allr_2015[i,5:8]) # 49999- 99999 Medium Level
      income_level_all_2015[i,3] = sum(range_combine_allr_2015[i,9]) # >= 199999 High Level
income_level_all_2015= as.data.frame(income_level_all_2015)
colnames(income level all 2015) = c('Low', 'Medium', 'High')
rownames(income_level_all_2015) = c('Northeast', 'Midwest', 'South', 'West')
For one region, time series data analysis:
# Northeast Region Past five years
Northeast = rbind(income_level_all_2015[1,],income_level_all_2016[1,],income_level_all_2017[1,],income_
rownames(Northeast) = c('2015', '2016', '2017', '2018', '2019')
# Midwest Region Past five years
Midwest = rbind(income_level_all_2015[2,],income_level_all_2016[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],income_level_all_2017[2,],in
rownames(Midwest) = c('2015', '2016', '2017', '2018', '2019')
# South Region Past five years
South = rbind(income_level_all_2015[3,],income_level_all_2016[3,],income_level_all_2017[3,],income_leve
rownames(South) = c('2015', '2016', '2017', '2018', '2019')
# West Region Past Five years
West = rbind(income_level_all_2015[4,],income_level_all_2016[4,],income_level_all_2017[4,],income_level
rownames(West) = c('2015', '2016', '2017', '2018', '2019')
prop <- function(data){</pre>
   dat_prop = matrix(0, 5, 3)
   for (i in 1:dim(data)[1]){
       dat_prop[i,1] = data[i,1]/sum(data[i,])
       dat_prop[i,2] = data[i,2]/sum(data[i,])
       dat prop[i,3] = data[i,3]/sum(data[i,])
   }
   return(dat prop)
}
# West
west_prop = as.data.frame(prop(West))
rownames(west_prop) = c('2015', '2016', '2017', '2018', '2019')
colnames(west_prop) = c('Low', 'Medium', 'High')
# Northeast
northeast_prop = as.data.frame(prop(Northeast))
rownames(northeast_prop) = c('2015', '2016', '2017', '2018', '2019')
colnames(northeast_prop) = c('Low', 'Medium', 'High')
south_prop = as.data.frame(prop(South))
rownames(south_prop) = c('2015', '2016', '2017', '2018', '2019')
colnames(south_prop) = c('Low', 'Medium', 'High')
# Midwest
midwest_prop = as.data.frame(prop(Midwest))
rownames(midwest_prop) = c('2015', '2016', '2017', '2018', '2019')
colnames(midwest_prop) = c('Low', 'Medium', 'High')
par(mfrow=c(2,2))
# Midwest
Year = seq(2015, 2019, 1)
# plot the first curve by calling plot() function
```

```
# First curve is plotted
plot(Year, midwest_prop[,1], type="o", col="blue", pch="o", lty=1, ylim=c(0,0.7), main = 'Proportion of
# Add second curve to the same plot by calling points() and lines()
# Use symbol '*' for points.
points(Year,midwest_prop[,2], col="orange")
lines(Year,midwest_prop[,2], col="orange",lty=2)
# Add Third curve to the same plot by calling points() and lines()
# Use symbol '+' for points.
points(Year, midwest_prop[,3], col="black")
lines(Year, midwest_prop[,3], col="black", lty=3)
legend(2015, 0.6, legend=c("Low Level", "Medium Level", 'High Level'),
       col=c("blue", "orange", 'black'),lty= 1:3, cex=0.6)
# Northeast
Year = seq(2015, 2019, 1)
# plot the first curve by calling plot() function
# First curve is plotted
plot(Year, northeast_prop[,1], type="o", col="purple", pch="o", lty=1, ylim=c(0,0.7), main = 'Proportion'
# Add second curve to the same plot by calling points() and lines()
# Use symbol '*' for points.
points(Year,northeast_prop[,2], col="darkgreen")
lines(Year,northeast_prop[,2], col="darkgreen",lty=2)
# Add Third curve to the same plot by calling points() and lines()
# Use symbol '+' for points.
points(Year, northeast_prop[,3], col="black")
 lines(Year, northeast_prop[,3], col='black', lty=3)
legend(2015, 0.6, legend=c("Low Level", "Medium Level", 'High Level'),
       col=c("purple", "darkgreen", 'black'),lty= 1:3, cex=0.6)
# West
Year = seq(2015, 2019, 1)
# plot the first curve by calling plot() function
# First curve is plotted
plot(Year, west_prop[,1], type="o", col="green", pch="o", lty=1, ylim=c(0,0.7), main = 'Proportion of D
# Add second curve to the same plot by calling points() and lines()
# Use symbol '*' for points.
points(Year, west_prop[,2], col="gray")
lines(Year, west_prop[,2], col="gray",lty=2)
# Add Third curve to the same plot by calling points() and lines()
# Use symbol '+' for points.
points(Year, west_prop[,3], col="black")
lines(Year, west_prop[,3], col="black", lty=3)
legend(2015, 0.6, legend=c("Low Level", "Medium Level", 'High Level'),
       col=c("green", "gray", 'black'), lty= 1:3, cex=0.6)
# South
Year = seq(2015, 2019, 1)
# plot the first curve by calling plot() function
# First curve is plotted
plot(Year, south_prop[,1], type="o", col="pink", pch="o", lty=1, ylim=c(0,0.7), main = 'Proportion of D
# Add second curve to the same plot by calling points() and lines()
# Use symbol '*' for points.
points(Year, south_prop[,2], col="brown")
lines(Year, south_prop[,2], col="brown",lty=2)
# Add Third curve to the same plot by calling points() and lines()
```

Proportion of Different Income Levels in Midwest Versus Year

Proportion of Different Income Levels in Northeast Versus Year

Proportion of Different Income Levels in West Versus Year

Proportion of Different Income Levels in South Versus Year


```
# part regression versus time
# Northeast eg.
dat_noreast_low =as.data.frame(cbind(Year, northeast_prop[,1]))
colnames(dat_noreast_low) = c('Year', 'Prop_low')
fit_low = lm(Prop_low ~ Year, data = dat_noreast_low)
summary(fit_low)
```

```
##
## Call:
## lm(formula = Prop_low ~ Year, data = dat_noreast_low)
##
## Residuals:
##
                     2
                               3
   -0.007286
             0.005938 0.004114 0.003102 -0.005868
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 36.861015
                          4.500148
                                      8.191 0.00381 **
## Year
               -0.017961
                          0.002231
                                    -8.050 0.00400 **
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.007055 on 3 degrees of freedom
```

```
## Multiple R-squared: 0.9558, Adjusted R-squared: 0.941
## F-statistic: 64.81 on 1 and 3 DF, p-value: 0.004003
dat_noreast_medium =as.data.frame(cbind(Year, northeast_prop[,2]))
colnames(dat_noreast_medium) = c('Year', 'Prop_medium')
fit_medium = lm(Prop_medium ~ Year, data = dat_noreast_medium)
summary(fit_medium)
##
## Call:
## lm(formula = Prop_medium ~ Year, data = dat_noreast_medium)
## Residuals:
##
                     2
                               3
    0.004764 -0.004946 -0.002829 0.001441 0.001571
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -13.330106
                            2.845577 -4.685
                                             0.0184 *
## Year
                 0.006728
                           0.001411
                                      4.769
                                             0.0175 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.004461 on 3 degrees of freedom
## Multiple R-squared: 0.8834, Adjusted R-squared: 0.8446
## F-statistic: 22.74 on 1 and 3 DF, p-value: 0.01752
dat_noreast_high =as.data.frame(cbind(Year, northeast_prop[,3]))
colnames(dat_noreast_high) = c('Year', 'Prop_high')
fit high = lm(Prop high ~ Year, data = dat noreast high)
summary(fit_high)
##
## Call:
## lm(formula = Prop_high ~ Year, data = dat_noreast_high)
## Residuals:
##
                       2
                                  3
   0.0025221 -0.0009919 -0.0012851 -0.0045427 0.0042976
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -22.530909
                           2.554028 -8.822 0.00307 **
                                      8.872 0.00302 **
## Year
                 0.011234
                           0.001266
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.004004 on 3 degrees of freedom
## Multiple R-squared: 0.9633, Adjusted R-squared: 0.951
## F-statistic: 78.71 on 1 and 3 DF, p-value: 0.00302
Low =as.data.frame(cbind(northeast_prop[,1], south_prop[,1], west_prop[,1], midwest_prop[,1]))
colnames(Low) = c('Northeast', 'South', 'West', 'Midwest')
rownames(Low) = c('2015', '2016', '2017', '2018', '2019')
t = as.data.frame(melt(Low))
```

```
## No id variables; using all as measure variables
fit_low = lm(value~variable, data=t)
summary(fit_low)
##
## Call:
## lm(formula = value ~ variable, data = t)
## Residuals:
##
        Min
                   1Q
                         Median
                                       3Q
## -0.043739 -0.014959 0.000823 0.022421 0.037841
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   0.63311
                              0.01293 48.959 < 2e-16 ***
## variableSouth
                   0.05886
                              0.01829
                                        3.218 0.00537 **
## variableWest
                   0.02603
                              0.01829
                                        1.423 0.17390
## variableMidwest 0.03900
                              0.01829
                                        2.133 0.04878 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.02892 on 16 degrees of freedom
## Multiple R-squared: 0.4056, Adjusted R-squared: 0.2942
## F-statistic: 3.639 on 3 and 16 DF, p-value: 0.03566
Medium =as.data.frame( cbind(northeast_prop[,2], south_prop[,2], west_prop[,2], midwest_prop[,2]))
colnames(Medium) = c('Northeast', 'South', 'West', 'Midwest')
rownames (Medium) = c('2015', '2016', '2017', '2018', '2019')
m = as.data.frame(melt(Medium))
## No id variables; using all as measure variables
fit_medium = lm(value~variable, data=m)
summary(fit medium)
##
## lm(formula = value ~ variable, data = m)
## Residuals:
                         Median
        Min
                   1Q
                                        30
                                                Max
## -0.021369 -0.010960 -0.001403 0.010777 0.024083
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   0.239449
                              0.006494 36.873 < 2e-16 ***
                  -0.028985
                              0.009184 -3.156 0.00612 **
## variableSouth
## variableWest
                   -0.018078
                              0.009184 -1.968 0.06659 .
## variableMidwest -0.007283
                              0.009184 -0.793 0.43938
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.01452 on 16 degrees of freedom
## Multiple R-squared: 0.4165, Adjusted R-squared: 0.3071
```

```
## F-statistic: 3.807 on 3 and 16 DF, p-value: 0.03107
# High
High =as.data.frame( cbind(northeast_prop[,3], south_prop[,3], west_prop[,3], midwest_prop[,3]))
colnames(High) = c('Northeast', 'South', 'West', 'Midwest')
rownames(High) = c('2015', '2016', '2017', '2018', '2019')
h = as.data.frame(melt(High))
## No id variables; using all as measure variables
fit_high = lm(value~variable, data=h)
summary(fit_high)
##
## Call:
## lm(formula = value ~ variable, data = h)
## Residuals:
##
                            Median
                      1Q
                                           3Q
                                                     Max
## -0.0199453 -0.0098606 0.0003246 0.0051092 0.0267649
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   0.127442
                              0.006756 18.862 2.36e-12 ***
## variableSouth
                   -0.029870
                              0.009555 -3.126 0.00651 **
## variableWest
                   -0.007948
                              0.009555 -0.832 0.41773
## variableMidwest -0.031721
                              0.009555 -3.320 0.00433 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01511 on 16 degrees of freedom
## Multiple R-squared: 0.5075, Adjusted R-squared: 0.4152
## F-statistic: 5.496 on 3 and 16 DF, p-value: 0.008654
```