

Conditional Probability

Conditional Probability—Definition

- $P(A|B) = \text{probability of } A, \text{ given that } \underline{B} \text{ occurred.}$
- B is our new universe:
- Meaning that P(A|B) measures $A \cap B$ as a fraction of B
- Assuming that $P(B) \neq 0$,

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- P(A|B) is undefined if P(B) = 0.
- Sample space, Ω is the rectangle.

Flip a coin 3 times. The sample space is

$$S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$$

• Events: $A = \{\text{"First flip is heads"}\} = \{HHH, HHT, HTH, HTT\}$ $B = \{\text{"Two flips are heads"}\} = \{HHT, HTH, THH\}$

- First solution: $P(A \cap B) = \frac{2}{8}$, $P(B) = \frac{3}{8} \Rightarrow P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{2}{3}$
- Second solution: *B* is the new universe, therefore:

$$P(A|B) = \frac{|\{HHT, HTH\}|}{|\{HHT, HTH, THH\}|} = \frac{2}{3}$$

Conditional Probability

- $P(B|B) = \frac{P(B \cap B)}{P(B)} = 1$, immediate response:
 - if B is given, then B is the new universe, so P(B|B) = 1.
- $P(A|B) = \frac{P(A \cap B)}{P(B)} \Rightarrow P(A \cap B) = P(A|B)P(B)$

•
$$P(B|A) = \frac{P(A \cap B)}{P(A)} \Rightarrow P(A \cap B) = P(B|A)P(A)$$

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

Rolling a four-sided dice:

- Let B be the event: min(X, Y) = 2
- Let A be the event: max(X, Y) = 2
- What is P(A|B)?

• Event $B : \min(X, Y) = 2$

• Event $A : \max(X, Y) = 2$

• Event $A \cap B$:

$$Y = Second$$

$$1$$

$$1$$

$$1$$

$$2$$

$$1$$

$$1$$

$$2$$

$$3$$

$$4$$

$$4$$

$$2$$

$$1$$

$$1$$

$$2$$

$$3$$

$$4$$

$$X = First roll$$

•
$$P(A \cap B) = \frac{1}{16}, P(B) = \frac{5}{16} \Rightarrow P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{1}{5}$$

- Event A: Airplane is flying above
- Event B: Something registers on radar screen

• a)
$$P(A \cap B)$$
?

$$P(A \cap B) = P(A)P(B|A) = 0.05 \times 0.99 = 0.0495$$

- Event A: Airplane is flying above
- Event B: Something registers on radar screen

• **b)** P(B) = ?

• Claim: $P(B) = P(B \cap A) + P(B \cap A^c)$

Picturing:

• Claim: $P(B) = P(B \cap A) + P(B \cap A^c)$

Mathematical Proof:

Denote the "Sample Space" by Ω.
 Remind: A^c is complement of set A, meaning that:

$$A^c \cup A = \Omega$$

$$A^c \cap A = \emptyset$$

•
$$B \cap \Omega = B \Rightarrow B \cap (A^c \cup A) = B \Rightarrow (B \cap A) \cup (B \cap A^c) = B$$

• $(B \cap A)$ and $(B \cap A^c)$ are disjoint. Therefore, based on "Addivity" rule:

$$P((B \cap A) \cup (B \cap A^c)) = P(B \cap A) + P(B \cap A^c)$$

$$\bullet \Rightarrow P(B \cap A) + P(B \cap A^c) = P(B)$$

Back to the exmaple:

•
$$P(B) = P(B \cap A) + P(B \cap A^c)$$

We know: $P(B \cap A) = P(A)P(B|A)$ and $P(B \cap A^c) = P(A^c)P(B|A^c)$
Therefore, $P(B) = P(A)P(B|A) + P(A^c)P(B|A^c)$
 $\Rightarrow P(B) = 0.05 \times 0.99 + 0.95 \times 0.1 = 0.1445$

- Event A: Airplane is flying above
- Event B: Something registers on radar screen

• **c)**
$$P(A|B) = ?$$

 $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.0495}{0.1445} \approx 0.34$

- What does this number, 0.34, represent?
- If the radar detects something, the probability that there has been an actual

radar!

airplane is 0.34! With probability 0.66, there is no airplane \Rightarrow Not a reliable