## § Derived Functor Porspective

· Hocolin as derived colim

Top has model structure

Fibrations Object wise

Weak eq

Cofb: have LLP wit trivial fibrations

Objectuise colib are not cofib in Top Tor any objectuise colib D < Top Twe can choose a coffbruit reflecement  $Q\mathcal{B}\longrightarrow \mathcal{D}$  and  $\mathrm{colon}_{\pm}Q\times\cong\mathrm{hocolon}_{\pm}\times$ 

 $((i)) \leftarrow ((i))$ 

Lemma (cofinality) Given  $X: \mathbb{I} \to \mathcal{I}$ ,  $X: \mathcal{I} \to \mathcal{I}_{\mathcal{F}}$  if  $\forall j$ , the category  $i \lor d$  is non-empty and contractible then hocolin \_ d X = → hocolin \_ X

Cor If  $t \in T$  is Leavinal and  $X: T \longrightarrow Top$  then  $X(t) \stackrel{\cong}{\longrightarrow} hocolim_{\underline{T}} X$ 

Def Let  $X \in \mathsf{Top}^{\mathsf{T}}$ , define  $Q \times$  to be the diagram

i → haolin u;\*(X)

uį: ⊥vi —→ ⊥ (j ,j→i) **→** j

Tem: There is a natural weak equivalence  $Q \longrightarrow id_{\overline{b}p}^{\pm}$ 

Proof Factor the identity may for each i,

 $X_{\xi} = u_{\xi}^{*}(x) \left[ c_{j} i = \xi \right] \xrightarrow{\cong} QX_{\xi} \xrightarrow{} \text{olim} u_{\xi}^{*}(x) \cong X_{\xi}$ 

2 out of 3  $\Rightarrow$  QX;  $\longrightarrow$  colon  $u_i^* \times \cong \times_i$  is a weak equivalence

· Homolopy coherent maps:

given  $X, Y \in Top^{\pm}$  a homotopy coherent map consists of

. collection of maps  $X: \longrightarrow Y:$ 

. For every  $i_0 \rightarrow i$ , we have a homotopy  $\times_{i_0} \times \triangle \longrightarrow Y_{i_1}$  between  $X_{i_0} \longrightarrow Y_{i_1}$ 



. More generally for i,  $\rightarrow$  :  $\rightarrow$  in a map  $\times$  i,  $\times$   $\triangle$ ^-  $\rightarrow$  Yin

Note This is a point in Tot ( T Map (Xi, , Vi)) = TI Map (Xi, , Vi) = )

The (univ property of hocolin\_X) June  $X \in Top^{\perp}$ ,  $Z \in Top$ 

 $hc(X,cZ) \cong Top(hocolin_{\pm}X,Z)$ 

here  $c: \mathsf{Top} \longrightarrow \mathsf{Top}^\mathsf{T}$  is the constant functor

Q Is this true for holin?

$$\begin{array}{ll} \text{Prof} & \text{xolim}_{\bot} \mathbb{Q} \times \cong \text{hocolim}_{\bot} \times \\ \text{Prof} & \text{Top} \left( \text{colim}_{\bot} \mathbb{Q} \times, \mathbb{Z} \right) \cong \text{Top}^{\mp} \left( \mathbb{Q} \times, \mathbb{CZ} \right) \cong \text{hc} \left( \times, \mathbb{CZ} \right) \cong \text{Top} \left( \text{hocolim}_{\bot} \times, \mathbb{Z} \right) \end{array}$$

den. Let  $E \to E'$  be object wise trivial fibration. Let D be objectivise combrant then  $hc(D,E) \longrightarrow hc(D,E')$  is surjective Ref. Let levelseise maps:  $\phi \longrightarrow E_i$ 

Jiven 
$$i \rightarrow i$$
,  $D_{i, \times} \partial \Delta \rightarrow E_{i, \cdot}$ 

$$D_{i, \times} \Delta \rightarrow E_{i, \cdot}$$

More generally 
$$i_0 \rightarrow \cdots \rightarrow i_n$$

$$D_{i_0} \times \partial \triangle^n \longrightarrow E_{i_n}$$

$$D_{i_0} \times \triangle^n \longrightarrow E_{i_n}$$

(bz: If  $D \in \mathsf{Top}^{\perp}$  is objective cofibrant then QD is cofibrant.

Roof Let 
$$Z \rightarrow W$$
 be drived fibration in  $Top^{T}$ 

$$Top^{T}(QD,Z) \longrightarrow Top^{T}(QD,W)$$

$$SII \downarrow \qquad \qquad \downarrow IIS$$

$$hc(D,Z) \longrightarrow hc(D,W)$$

The surjection of the John arrow is simpled by the Juy surjection of the bottom arrow.

Alternative construction of the homotopy coling hocoling 
$$X = \cos q \left( \coprod_{i \to j} X_i \times B(j \downarrow I) \right)$$

$$\mathcal{Q}_{i} = \frac{1}{2} \left( \hat{Q}_{i}^{\prime} \times \hat{Q}_{i}^{\prime} \right) = \frac{1}{2} \left( \frac{1}{2} \hat{Q}_{i}^{\prime} \right) \left( \frac{1}{2}$$

One can show these two also give rise to homotopy eq. hocolims

Tensors of diagrams.

Of June F: 
$$C^{op} \times C \longrightarrow \mathcal{O}$$
, the cound  $\int F(c,c)$  is the  $cocg \left( \coprod_{c \to c'} F(c',c) \rightrightarrows \bigsqcup_{c} F(c,c) \right)$ 

If Jiven 
$$F: \mathcal{C}^{0} \longrightarrow \mathcal{D}$$
,  $G: \mathcal{C} \longrightarrow \mathcal{D}$  the tensor fixeduct  $F \otimes_{\mathcal{C}} G := \int_{\mathcal{C}} F_{\mathcal{C}} \times G_{\mathcal{C}}$ 

· This satisfies all the usual tensor identities.

g: i) Let 
$$\triangle$$
:  $\triangle$ —Top, and  $\times$ :  $\triangle$  Top then  $|\times| = \times \otimes_{\triangle} = \int_{-\infty}^{\infty} \times_{n} \times \triangle$  standard simplex

eg: s)  $X: \mathbb{I} \to \mathbb{Z}_p$ , then  $X \otimes_{\mathbb{I}} \mathbb{B}(-1 \mathbb{I})^{op} \cong \operatorname{hocolim}_{\mathbb{I}} X$   $\mathbb{Q}(*)$ 

This shows by properties of Jensor products that for any co-fibrant replacement of a pt  $\widetilde{\mathbb{Q}}(*)$  we have  $\times \otimes \widetilde{\mathbb{Q}}(*) \cong \operatorname{hocolim}_{\pm}(\times)$