

Quantitative Methoden

Prof. Dr. Rainer Stollhoff

Portfolioanalyse und -optimierung

Übersicht

Hochschule
Wildau
Technical University
of Applied Sciences

Einführung

- Historische Renditen verschiedener Assetklassen
- Rendite und Risiko
- Portfolios mit zwei Assets
 - Rendite und Risiko des Portfolios
 - Optimales Portfolio, Effizienter Rand
- Portfolios mit n Assets
 - Rendite und Risiko des Portfolios
 - Optimales Portfolio, Effizienter Rand
- Diskussion

Historische Renditen

Cumulative returns on US asset classes in nominal terms (left-hand side) and real terms (right-hand side), 1900-2017

Source: Elroy Dimson, Paul Marsh, and Mike Staunton, Triumph of the Optimists, Princeton University Press, 2002, and subsequent research

Quellen: Credit Suisse Global Investment Returns Yearbook 2018

Rendite messen

Realisierte Rendite

- Rendite = (Ertrag Aufwand) / Aufwand
- Rendite = (Verkaufspreis Einkaufspreis) / Einkaufspreis
- Rendite von s nach t = (Preis in t Preis in s) / Preis in s
 = (Preis in t / Preis in s) 1

Annualisierte Rendite

- Jahresrendite= (Preis in (t+365) / Preis in t) -1
- Jahresrendite = $(\prod_{s=1}^{364} (Tagesrendite in (t + s)) + 1) 1$
- Jahresrendite = $\sqrt[n]{1 + \text{Rendite "uber } n \text{ Jahre}} 1$
- Durchschnittliche Rendite
 Jahresrenditen = (r₂₀₁₇,r₂₀₁₆,r₂₀₁₅,...)
 - Arithmetischer Mittelwert: $\bar{r} = \frac{1}{T} \sum_t r_t$
 - Geometrisches Mittel: $\bar{r}_{geom} = \sqrt[T]{\prod_t (r_t + 1)} 1$

Geschäftsvorfall van & nach t

$$\frac{700}{\sqrt{100}} = \frac{1000}{\sqrt{100}} = \frac{100}{\sqrt{100}} = \frac{$$

Risiko messen

- Risikoprämie / Überrendite
 - Risikofreier Zinssatz \tilde{r}
 - Risikoprämie

$$\mathbf{d}_{2017} = \mathbf{r}_{2017} - \tilde{r}_{2017}$$

– Mittlere Risikoprämie $\bar{d} = \frac{1}{T} \sum_{t} (r_t - \tilde{r}_t) = \frac{1}{T} \sum_{t} d_t$

Standardabweichung der Rendite

$$\sigma_r = \sqrt{\frac{1}{T-1} \sum_t (r_t - \bar{r})^2}$$

Standardabweichung der Risikoprämie

$$\sigma_d = \sqrt{\frac{1}{T-1} \sum_t (d_t - \bar{d})^2}$$

- Für einen konstanten risikofreien Zinssatz gilt: $\sigma_r = \sigma_d$

gernes Risko

Moher Risko

Rendite und Risiko vergleichen

Sharpe-Quotient

$$S = \frac{\bar{d}}{\sigma} = \frac{\bar{r} - \tilde{r}}{\sigma}$$

Sharpe, W. F. (1966). Mutual Fund Performance. *The Journal of Business*, *39*(1), 119–138.

Übersicht

- Einführung
 - Historische Renditen verschiedener Assetklassen
 - Rendite und Risiko
- Portfolios mit zwei Assets
 - Rendite und Risiko des Portfolios
 - Optimales Portfolio, Effizienter Rand
- Portfolios mit n Assets
 - Rendite und Risiko des Portfolios
 - Optimales Portfolio, Effizienter Rand
- Diskussion

Portfoliotheorie – zwei Assets

- Für zwei verschiedenen Wertpapiere x und y z.B. Aktien von Infineon und Unilever mit
 - Erwarteter Rendite r_x , $bzw.r_y$ und
 - Volatilität / Standardabweichung der Rendite σ_x , bzw. σ_y wobei $r_x > r_y$ und $\sigma_x > \sigma_y$
- Bilde ein Portfolio $w = (w_x, w_y)$ mit $w_x + w_y = 1$ und
 - $-w_x$ der Anteil des Wertpapiers x sowie
 - $-w_{v}$ der Anteil des Wertpapiers y
- Dann gilt für das Portfolio
 - Erwartete Rendite:

$$\int r_w = w_x \cdot r_x + w_y \cdot r_y$$

Volatilität / Standardabweichung der Rendite bzw. Überrendite:

$$\sigma_{w} = \sqrt{(w_{x} \cdot \sigma_{x})^{2} + (w_{y} \cdot \sigma_{y})^{2} + 2 \cdot w_{x} \cdot \sigma_{x} \cdot w_{y} \cdot \sigma_{y}} \left(\rho_{x,y}\right)$$

wobei $ho_{x,y}$ die Korrelation der Renditen ist

J(V, d, H V, d,)2 7 Sxy=1

	Aktie-A	Aktie-B	Korrelation	
Rendite - MW	5,0%	20,0%		
Rendite - Volat	1,5%	2,5%	-0,5	

Portfoliotheorie – zwei Assets - Optimum

- Für zwei verschiedenen Wertpapiere $x\ und\ y$ mit
 - Erwarteter Rendite r_x , bzw. r_y und
 - Volatilität / Standardabweichung der Rendite σ_x , $bzw.\sigma_y$ wobei $r_x>r_y$ und $\sigma_x>\sigma_y$
- Und Portfolio $w = (w_x, w_y)$ mit
 - Erwartete Rendite:

$$r_w = w_x \cdot r_x + w_y \cdot r_y$$

– Volatilität / Standardabweichung σ_w der Überrendite mit:

$$\sigma_w^2 = (w_x \cdot \sigma_x)^2 + (w_y \cdot \sigma_y)^2 + 2 \cdot w_x \cdot \sigma_x \cdot w_y \cdot \sigma_y \cdot \rho_{x,y}$$

wobei $\rho_{x,y}$ die Korrelation der Überrenditen ist

- Wähle ein optimales Portfolio $w = (w_x, w_y)$ so, dass
 - a) für gegebene Rendite $\underline{r_w}$ des Portfolios die Volatilität σ_w^2 (bzw. das Risiko) minimal ist oder
 - b) die Volatilität ${\sigma_w}^2$ (bzw. Risiko) global minimal ist oder
 - c) der Sharpe-Quotient, d.h. das Verhältnis von Überrendite zu Risiko maximal ist

	Aktie-A	Aktie-B	Korrelation	
Rendite - MW	5,0%	20,0%		
Rendite - Volat	1,5%	2,5%	-0,5	

Technische

	Aktie-A	Aktie-B	Korrelation	
Rendite - MW	5,0%	20,0%		
Rendite - Volat	1,5%	2,5%	-0,5	

	Aktie-A	Aktie-B	Korrelation	
Rendite - MW	5,0%	20,0%		
Rendite - Volat	1,5%	2,5%	-0,5	

Übersicht

- Einführung
 - Historische Renditen verschiedener Assetklassen
 - Rendite und Risiko
- Portfolios mit zwei Assets
 - Rendite und Risiko des Portfolios
 - Optimales Portfolio, Effizienter Rand
- Portfolios mit n Assets
 - Rendite und Risiko des Portfolios
 - Optimales Portfolio, Effizienter Rand
- Diskussion

Portfoliotheorie – n Assets - Optimum

- Für n verschiedene Wertpapiere $(x_i)_{i=1,\dots,n}$ mit
 - erwarteten Überrenditen $d_i = E[r_i r_0]$ und
 - Volatilitäten / Standardabweichungen der Überrenditen σ_i
- und ein Portfolio mit $w = (w_1, ..., w_n)$ mit $\sum_{i=1}^n w_i = 1$ gilt
 - Erwartete Überrendite:

$$d_w = w_1 \cdot d_1 + \dots + w_n \cdot d_n$$

- Volatilität / Standardabweichung
$$\sigma_w$$
 der Überrendite mit:
$$\sigma_w^2 = \sum_{i,j=1,\dots,n} w_i \cdot w_j \cdot Cov(d_i,d_j) = \sum_{i=1}^n w_i \cdot w_i \cdot w_j \cdot Cov(d_i,d_j) = \sum_{i=1}^n w_i \cdot w_i \cdot w_j \cdot Cov(d_i,d_j) = \sum_{i=1}^n w_i \cdot w_i \cdot w_j \cdot Cov(d_i,d_j) = \sum_{i=1}^n w_i \cdot w_i \cdot w_j \cdot Cov(d_i,d_j) = \sum_{i=1}^n w_i \cdot w_i \cdot w_j \cdot Cov(d_i,d_i,d_i) = \sum_{i=1}^n w_i \cdot w_i \cdot w_i \cdot w_i \cdot w_j \cdot Cov(d_i,d_i,d_i) = \sum_{i=1}^n w_i \cdot w_$$

wobei $Cov(d_i,d_j)$ die Kovarianz der Überrenditen ist

- Wähle ein optimales Portfolio $w = (w_1, ..., w_n)$ so, dass
 - für gegebene Rendite r_w des Portfolios die Volatilität σ_w^2 (bzw. das Risiko) minimal ist oder
 - die Volatilität σ_w^2 (bzw. Risiko) global minimal ist oder
 - der Sharpe-Quotient, d.h. das Verhältnis von Überrendite zu Risiko maximal ist

Markowitz, H. (1952). Portfolio Selection. *The Journal of* Finance, 7(1), 77–91. https://doi.org/10.2307/2975974

Efficient Frontier Portfoliogewichte

Efficient Frontier Renditebeiträge

Diskussion

Statistische Bestimmung optimaler Portfolios hat zwei Schwächen:

- 1. Aus Daten in der Vergangenheit wird auf die zukünftige Entwicklung geschlossen.
- 2. Die Vorhersagen von Finanzmarktdaten betreffen ein soziales, reflexives System.

Zusammen genommen führen die beiden Schwächen dazu, dass die optimalen Portfolios in der Regel nicht so gut abschneiden, wie dies theoretisch (mathematisch-statistisch) zu erwarten wäre.

Entsprechend werden

- am Markt in der Regel robustere Portfolioansätze verfolgt z.B. eine Gleichgewichtung
- in der Wissenschaft Portfoliomodelle weiterentwickelt, z.B. im CAPM Capital Asset Pricing Model Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk*. *The Journal of Finance*, 19(3) wobei auch diese Modelle weiterhin fehlerbehaftet sind

Fama, E. F., & French, K. R. (2004). The Capital Asset Pricing Model: Theory and Evidence. *Journal of Economic Perspectives*, 18(3), 25–46.