Appunti di Topologia Algebrica

Simone Riccio

1 giugno 2025

Indice

1	Gru	ppo Fondamentale	1
	1.1	Omotopia	1
	1.2	Definizione del gruppo fondamentale	2
	1.3	Primi gruppi fondamentali	6
	1.4	Teorema di Seifert-Van Kampen e richiami di teoria dei gruppi	9
2	Rive	estimenti	12

1 Gruppo Fondamentale

1.1 Omotopia

Una delle motivazioni che porta a definire il gruppo fondamentale è la necessità di distinguere due spazi topologici a meno di omeomorfismo.

Esempio 1.1.

Si consideri il disco

$$D^n := \{ x \in \mathbb{R}^n \mid ||x|| \le 1 \}$$

Al variare di n naturale i D^n non sono intuitivamente omeomorfi, tuttavia dimostrarlo usando solo la topologia generale è difficile.

È semplice mostrare che $D^1 \ncong D^n$ per $n \ge 2$, usando l'insieme delle componenti connesse. Infatti, per ogni $x \in D^n$ lo spazio topologico $D^n \setminus \{x\}$ è connesso per ogni $n \ge 2$, mentre $D^1 \setminus \{x\}$, essendo il segmento [-1,1] senza un punto, ha due componenti connesse.

Tale argomentazione non funziona già per provare a distinguere D^2 dai D^n con $n \geq 3$. Introduciamo quindi il gruppo fondamentale, che permetterà in futuro di distinguerli tutti.

Definizione 1.1 (Omotopia).

Date due funzioni continue $f, g: X \to Y$ tra spazi topologici, si dice che f e g sono **omotope** se esiste una funzione

$$H:I\times X\to Y$$

continua e tale che:

- H(0,x) = f(x) per ogni $x \in X$;
- H(1,x) = g(x) per ogni $x \in X$;
- H(s,y) = H(s,x) per ogni $s \in I$ e per ogni $x,y \in X$ tali che f(x) = f(y).

Si dice che H è un'omotopia tra f e g e si scrive

$$f \sim q$$
.

Inoltre si può vedere un'omotopia come una famiglia di funzioni contiune:

$$\{f_s: X \to Y\}_{s \in I}$$
 con $f_s(x) = H(s, x)$.

Che rappresentano una deformazione continua di f in g.

Definizione 1.2 (Omotopia di cammini a estremi fissi).

Due cammini $\gamma_0, \gamma_1: I \to X$ si dicono omotopi (a estremi fissi) se esiste una funzione

$$H:I\times I\to X$$

continua e tale che:

- $H(0,t) = \gamma_0(t)$ per ogni $t \in I$;
- $H(1,t) = \gamma_1(t)$ per ogni $t \in I$;
- H(s,0) = H(s,1) per ogni $s \in I$.

Si dice che H è un'omotopia di cammini a estremi fissi e si scrive

$$\gamma_0 \sim \gamma_1$$
.

Infatti è facile verificare che l'essere omotopi a estremi fissi induce una relazione di equivalenza sull'insieme dei cammini in X.

Definizione 1.3 (Giunzione di cammini).

Siano $f, g: I \to X$ due cammini in X con f(1) = g(0), allora la **giunzione** di f e g è il cammino

$$f*g:I\to X:t\mapsto \begin{cases} f(2t) & \textit{se }0\leq t\leq \frac{1}{2},\\ g(2t-1) & \textit{se }\frac{1}{2}< t\leq 1. \end{cases}$$

Lemma 1.1 (Giunzione di cammini e omotopia).

Se $f \sim f'$ e $g \sim g'$, allora $f * g \sim f' * g'$.

Dimostrazione. Sia $H_f: I \times I \to X$ un'omotopia di f e f' e $H_g: I \times I \to X$ un'omotopia di g e g'. Definiamo l'omotopia

$$H: I \times I \to X: (s,t) \mapsto \begin{cases} H_f(2s,t) & \text{se } 0 \le s \le \frac{1}{2}, \\ H_g(2s-1,t) & \text{se } \frac{1}{2} < s \le 1. \end{cases}$$

che risulta continua. Infatti la continuità di H_f e H_g implica la continuità di H, essendo le due funzioni definite su due intervalli disgiunti. Inoltre si verifica facilmente che H soddisfa le condizioni richieste. \square

Osservazione 1.1.

Si noti che la giunzione di cammini non è definita su ogni coppia di cammini, ma solo su quelle che hanno il punto finale del primo uguale al punto iniziale del secondo. Tuttavia, se si considerano solo i cammini chiusi che partono da uno stesso punto iniziale, la giunzione è chiaramente sempre definita.

1.2 Definizione del gruppo fondamentale

Da ora in poi gli spazi topologici considerati saranno sempre localmente connessi.

Teorema 1.1 (Poincaré).

Se X uno spazio topologico e $x_0 \in X$ un punto fisso.

Il prodotto dato dalla giunzione di cammini induce una struttura di gruppo sulle classi di omotopia dei cammini chiusi in X aventi punto iniziale x_0 .

Tale gruppo è chiamato gruppo fondamentale di X in x_0 e si denota con $\pi_1(X,x_0)$.

In tale gruppo l'elemento neutro è rappresentato dal cammino costante in x_0 e l'inverso di un cammino γ è il cammino

$$\gamma^{-1}(t) = \gamma(1-t)$$

che è l'inverso rispetto alla giunzione di cammini.

Per la dimostrazione del teorema di Poincaré ci basta dimostrare prima un lemma.

Lemma 1.2. (Riparametrizzazione di un cammino e omotopia)

Sia $\gamma:I \to X$ un cammino in X e sia $\varphi:I \to I$ una funzione continua tale che $\phi(0)=0$ e $\phi(1)=1$. Allora $\gamma\circ\varphi:I \to X$ è un cammino in X e $\gamma\sim\gamma\circ\varphi$.

Dimostrazione. Basta mostrare che la funzione φ è omotopa all'identitaà id_I . L'omotopia è data dalla famiglia di funzioni

$$\varphi_s: I \to I: t \mapsto (1-s)t + s\varphi(t).$$

E poi boh.. buco.

Teorema di Poincarè.

• (Associatività) Siano $\gamma_1, \gamma_2, \gamma_3 : I \to X$ tre cammini chiusi in X con punto iniziale x_0 . Si ha che

$$(\gamma_1 * \gamma_2) * \gamma_3 \sim \gamma_1 * (\gamma_2 * \gamma_3).$$

Poiché $\gamma_1 * (\gamma_2 * \gamma_3)$ si può vedere come una Riparametrizzazione del cammino $(\gamma_1 * \gamma_2) * \gamma_3$ e quinid usare il lemma.

• (Unità) L'elemento neutro del gruppo fondamentale è il cammino costante in x_0 , che si denota con $e: I \to x_0$.

Infatti, per ogni cammino $\gamma:I\to X$ si ha che $\gamma*e$ è la Riparametrizzazione di γ secondo la mappa

$$\varphi: I \to I: t \mapsto \begin{cases} 2t & \text{se } 0 \le t \le \frac{1}{2}, \\ 1 & \text{se } \frac{1}{2} < t \le 1 \end{cases}.$$

• (Inverso) Sia

$$\gamma_s: I \to X: t \mapsto \begin{cases} \gamma(t) & \text{se } 0 \le t \le s, \\ \gamma(s) & \text{se } s < t \le 1. \end{cases}$$

La famiglia di cammini $\{\gamma_s\}_{s\in I}$, che non sono lacci, rappresenta un'omotopia tra il cammino costante in x_0 e il cammino γ , tuttavia **non rappresenta un'omotopia ad estremi fissi** poiché $\gamma_s(1) \neq \gamma(1)$. Vale peroche $\gamma_s(0) = \gamma(0)$ cioè il punto iniziale è fisso.

In modo analogo la famiglia di cammini data da

$$\gamma_s^{-1}(t) := gamma_s(1-t)$$

rappresenta un'omotopia tra il cammino costante in x_0 e il cammino γ^{-1} , ma non ad estremi fissi. A questo punto si verifica che la famiglia di **cammini chiusi** $\{\gamma_s * \gamma_s^{-1}\}_{s \in I}$ rappresenta un'omotopia **ad estremi fissi** tra il cammino costante in x_0 e il cammino $\gamma * \gamma^{-1}$.

Si fa in maniera analoga per mostrare che $\gamma^{-1} * \gamma \sim e_{x_0}$

Esempio 1.2.

$$\pi_1(\mathbb{R}^n, x_0) = \{e_{x_0}\} \quad \forall x_0 \in \mathbb{R}^n.$$

Siano $\alpha, \beta: I \to \mathbb{R}^n$ due cammini chiusi in \mathbb{R}^n con punto iniziale x_0 . La famiglia di cammini chiusi definita da

$$f_s: I \to \mathbb{R}^n: t \mapsto (1-s)\alpha(t) + s\beta(t)$$

definisce un'omotopia ad estremi fissi tra α e β .

Piuin generale, l'omotopia definita equella che per ogni punto dei cammini percorre al variare di s il segmento che unisce i due cammini in quell'istante t, e dunque la stessa argomentazione vale per dimostrare che:

$$\forall X \subset \mathbb{R}^n \ convesso,$$

 $\pi_1(X, x_0) = \{e_{x_0}\} \quad \forall x_0 \in \mathbb{R}^n.$

Proposizione 1.1 (Gruppo fondamentale di un connesso per archi).

Sia X uno spazio topologico connesso per archi, allora

$$\pi_1(X, x_0) \cong \pi_1(X, x_1) \quad \forall x_0, x_1 \in X.$$

In altre parole, il gruppo fondamentale di uno spazio topologico connesso per archi non dipende dal punto iniziale scelto.

Dimostrazione. Sia $f: I \to X$ un cammino tale che $f(0) = x_0$ e $f(1) = x_1$, che esiste poiché X è connesso per archi. Tale cammino induce un isomorfismo tra i gruppi fondamentali in x_0 e x_1 :

$$\pi_1(X, x_0) \xrightarrow{\sim} \pi_1(X, x_1)$$

$$[\gamma] \mapsto [f * \gamma * f^{-1}]$$

con inversa data da

$$\pi_1(X, x_1) \xrightarrow{\sim} \pi_1(X, x_0)$$

 $[\gamma] \mapsto [f^{-1} * \gamma * f].$

Infatti, si verifica prima di tutto la buona definizione:

Se $\gamma_1 \sim \gamma_2$ sono due cammini chiusi in X, per il lemma della Riparametrizzazione, si ha che

$$f * \gamma_1 * f^{-1} \sim f * \gamma_2 * f^{-1}$$
.

Inoltre, si verifica che l'immagine di un cammino chiuso in x_0 è un cammino chiuso in x_1 e viceversa. Si si veririfica che le funzioni appena definite sono effettivamente degli omomorfismi di gruppo poichesi ha che:

$$f * \gamma_1 * \gamma_2 * f^{-1} \sim (f * \gamma_1 * f^{-1}) * (f * \gamma_2 * f^{-1})$$

usando l'associatività che anche se non dimostrata vale anche per cammini chiusi.

Infine, si verifica facilmente che le due mappe sono una l'inversa dell'altra.

Osservazione 1.2.

L'isomorfismo tra i due gruppi fondamentali non è canonico, poiché dipende dalla scelta del cammino f tra i due punti x_0 e x_1 .

Definizione 1.4 (Spazio semplicemente connesso).

Uno spazio topologico X si dice **semplicemente connesso** se è connesso per archi e il suo gruppo fondamentale è banale, cioè

$$\pi_1(X, x_0) = \{e_{x_0}\} \quad \forall x_0 \in X.$$

Osservazione 1.3.

Se X è semplicemente connesso e $\alpha, \beta: I \to X$ sono due cammini allora

$$\alpha(0) = \beta(0), \quad \alpha(1) = \beta(1) \implies \alpha \sim \beta$$

Dato che il cammino $\alpha * \beta^{-1}$ è chiuso e il gruppo fondamentale è banale, quindi

$$\alpha * \beta^{-1} \sim e_{x_0} \implies \alpha \sim \beta.$$

Osservazione 1.4 (La funtorialità del gruppo fondamentale).

Siano X, Y due spazi topologici $e \varphi : X \to Y$ una mappa continua tale che $\varphi(x_0) = y_0$ per due punti fissi $x_0 \in X$ e $y_0 \in Y$.

Allora φ induce un omomorfismo di gruppi

$$\varphi_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

definito da

$$\varphi_*([\gamma]) = [\varphi \circ \gamma]$$

Si verifica facilmente che la mappa è ben definita ed è un omomorifsmo di gruppi. Inoltre, vale che, se $\varphi = \mathrm{id}_X$ allora $\varphi_* = id_{\pi_1(X,x_0)}$ e se $(\psi \circ \varphi)_* = \psi_* \circ \varphi_*$.

Nel linguaggio delle categorie quindi si dice che

$$\pi_1: \mathbf{Top} \to \mathbf{Grp}: X \mapsto \pi_1(X, x_0)$$

è un funtore da Top, la categoria degli spazi topologici, a Grp, la categoria dei gruppi.

Proposizione 1.2.

Se $\varphi: X \to Y$ è un omeomorfismo tra spazi topologici, allora

$$\varphi_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

è un isomorfismo di gruppi, dove $x_0 \in X$ e $y_0 = \varphi(x_0) \in Y$.

Dimostrazione.

Poiché φ è un omeomorfismo, essa è continua e ha un'inversa continua $\varphi^{-1}: Y \to X$. Cioè $\varphi^{-1} \circ \varphi = \mathrm{id}_X$ e $\varphi \circ \varphi^{-1} = \mathrm{id}_Y$, quindi segue dalla funtorialitá che

$$\varphi_* \circ \varphi_*^{-1} = id_{\pi_1(X,x_0)} \quad \text{e} \quad \varphi_*^{-1} \circ \varphi_* = id_{\pi_1(Y,y_0)}.$$

Quindi φ_* è un isomorfismo di gruppi, poiché ha un'inversa data da φ_*^{-1} .

Definizione 1.5 (Spazi omotopicamente equivalenti).

Due spazi topologici X e Y si dicono omotopicamente equivalenti se esistono due funzioni continue

$$f: X \to Y$$
 $e \ q: Y \to X$

tali che:

- $g \circ f$ è omotopa all'identità su X;
- $f \circ g$ è omotopa all'identità su Y.

Si denota con $X \simeq Y$ se X e Y sono omotopicamente equivalenti.

Esempio 1.3.

1. \mathbb{R}^n è omotopicamente equivalente ad un punto, cioè si dice che \mathbb{R}^n è **contraibile**. Infatti sia $\varphi: \mathbb{R}^n \to \{0\} \subset \mathbb{R}^n$ la funzione costante in 0, che è continua. e sia $\psi: \{0\} \to \mathbb{R}^n$ anch'essa continua.

Si ha che $\varphi \circ \psi = \mathrm{id}_{\{0\}}$, mentre $\psi \circ \varphi$ è omotopa all'identità su \mathbb{R}^n tramite l'omotopia definita da

$$H: I \times \mathbb{R}^n \to \mathbb{R}^n : (s, x) \mapsto sx.$$

2. S^n è omotopicamente equivalente a $\mathbb{R}^{n+1} \setminus \{0\}$ Infatti se $i: S^n \hookrightarrow \mathbb{R}^n$ è l'inclusione di S^n in $\mathbb{R}^{n+1} \setminus \{0\}$ e

$$\psi: \mathbb{R}^{n+1} \setminus \{0\} \to S^n: x \mapsto \frac{x}{\|x\|}.$$

Si ha che $i \circ \psi = \mathrm{id}_{S^n}$ e $\psi \circ i \sim \mathrm{id}_{\mathbb{R}^{n+1} \setminus \{0\}}$ tramite l'omotopia

$$H: I \times \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}^{n+1} \setminus \{0\} : (s,x) \mapsto (1-s)x + s\frac{x}{\|x\|}.$$

3. Il Nastro di Möbius è omotopicamente equivalente al cerchio S^1 .

Infatti, sia M il Nastro di Möbius e sia $\varphi: M \to S^1$ la proiezione che manda ogni punto del nastro sul suo bordo. Si ha che φ è continua e suriettiva.

Infatti se consideriamo il quadrato $Q = [-1,1] \times [-1,1]$, tale spazio è omotopicamente equivalente al segmento [-1,1] tramite l'inlcusione del segmento nel quadrato e la proiezione naturale del quadrato sul segmento. Identificando i lati opposti del quadrato in modo da ottenere il Nastro di Möbius, si ha che la proiezione del quadrato sul segmento induce una mappa continua e suriettiva dal Nastro di Möbius al cerchio, con omotopie che passano al quoziente.

Teorema 1.2. (Spazi omotopicaamente equivalenti hanno gruppo fondamentale isomorfo) Siano X e Y spazi topologici **connessi per archi** omotopicamente equivalenti, allora i loro gruppi fondamentali sono isomorfi:

$$\pi_1(X, x_0) \cong \pi_1(Y, y_0)$$

per ogni coppia di punti fissi $x_0 \in X$ e $y_0 \in Y$.

Lemma 1.3.

Siano $\varphi_0, \varphi_1 : X \to Y$ due funzioni continue **omotope** tra spazi topologici e siano $x_0 \in X$. Il seguente diagramma commuta:

dove $\tau_f: \pi_1(Y, \varphi_0(x_0)) \to \pi_1(Y, \varphi_1(x_0))$ è l'isomorfismo indotto dal cammino $f: I \to Y: s \mapsto \varphi_s(x_0)$ e $\{\varphi_s \mid s \in I\}$ è l'omotopia tra φ_0 e φ_1 .

Dimostrazione.

Si consideri la mappa

$$\tau_{f}^{-1}:=\tau_{f^{-1}}:\pi_{1}\left(Y,\varphi_{1}\left(x_{0}\right)\right)\rightarrow\pi_{1}\left(Y,\varphi_{0}\left(x_{0}\right)\right):g_{Y}\mapsto f\ast g_{Y}\ast f^{-1}.$$

Al variare di $s \in I$ si ha che

$$f_s: I \to Y: t \mapsto f(st)$$

rappresenta un'omotopia tra il cammino $f_0: I \to \{\varphi_0(x_0)\}$ e il cammino f. Quindi, se ora si considera g_X un cammino chiuso in $x_0 \in X$, allora la mappa

$$I \to \pi_1(Y, \varphi_0(x_0)) : s \mapsto f_s * \varphi_0(g_X) * f_s^{-1}$$

induce un'omotopia tra il cammino chiuso $\varphi_0(g_X)$ e il cammino chiuso $f(\varphi_1(g_X))$, dunque vale che

$$\varphi_{0*}\left(g_X\right) = \tau_f\left(\varphi_{1*}\left(g_X\right)\right).$$

 $del\ teorema.$

Siano $\varphi: X \to Y$ e $\psi: Y \to X$ le funzioni continue che definiscono l'equivalenza omotopica tra X e Y. Grazie al lemma precedenta, dato che vale $\psi \circ \varphi \sim$ id si ha che il seguente diagramma commuta:

$$\pi_{1}\left(X,x_{0}\right) \xrightarrow{\varphi_{*}} \pi_{1}\left(Y,\varphi\left(x_{0}\right)\right) \xrightarrow{\psi_{*}} \pi_{1}\left(X,\left(\psi\circ\varphi\right)\left(x_{0}\right)\right)$$

$$\stackrel{\supseteq}{\underset{\text{id}}{\longrightarrow}} \pi_{1}\left(X,x_{0}\right)$$

Cioè vale che $\tau_f \circ \psi_* \circ \varphi_* = \mathrm{id}$, quindi $\psi_* \circ \varphi_* = \tau_f^{-1}$, ma se la composizione di due mappe è bigettiva allora la prima φ_* è iniettiva e la seconda ψ_* è suriettiva, ragionando in maniera analoga per il verso opposto si ha che $\varphi_* \circ \psi_* = \tau_f$ e quindi ψ_* è iniettiva e φ_* è surgettiva.

Si conclude quindi che φ_* e ψ_* sono isomorfismi di gruppi.

1.3 Primi gruppi fondamentali

Da questo momento in poi, se X è uno spazio topologico connesso per archi, si denota con $\pi_1(X)$ il gruppo fondamentale di uno spazio topologico X in un punto fissato.

Teorema 1.3 (Gruppo fondamentale del cerchio).

$$\pi_1(S^1) \cong \mathbb{Z}.$$

Ed il cammino chiuso $t \mapsto e^{2\pi i t}$ rappresenta il generatore del gruppo fondamentale $\pi_1(S^1,1)$.

Definizione 1.6 (Mappa esponenziale).

Si definisce la mappa

$$\rho: \mathbb{R} \to S^1: t \mapsto e^{2\pi i t}$$

Lemma 1.4 (Sollevamento di un cammino di S^1 in \mathbb{R}).

1. Per ogni cammino chiuso $f: I \to S^1$ con f(0) = f(1), esiste ed unico un cammino(in generale non chiuso) $\tilde{f}: I \to \mathbb{R}$ detto sollevamento di f in \mathbb{R} tale che

$$\tilde{f}(0) = 0$$
 e $\rho \circ \tilde{f} = f$.

Il terminale mi dice di aver committato, ma su github la repository non sembra essere commi Ovvero il seguente diagramma commuta:

$$I \xrightarrow{\tilde{f}} \mathbb{R}$$

$$\downarrow^{\rho}$$

$$S^1$$

2. Inoltre se f_0, f_1 sono due cammini chiusi omotopi allora

$$\tilde{f}_0(1) = \tilde{f}_1(1) \in \mathbb{Z}$$

Dimostrazione. (Lemma \Longrightarrow Teorema)

Dal lemma segue che la mappa:

$$\Phi: \pi_1\left(S^1,1\right) \to \mathbb{Z}: [f] \mapsto \tilde{f}(1)$$

Il terminale mi dice di aver committato, ma su github la repository non sembra essere commi è ben definita, ed inoltre induce un omomorfismo di gruppi, poiché

$$\Phi\left(\left[\gamma_{1} * \gamma_{2}\right]\right) = \tilde{\gamma}_{1}(1) + \tilde{\gamma}_{2}(1) = \Phi\left(\left[\gamma_{1}\right]\right) + \Phi\left(\left[\gamma_{2}\right]\right).$$

. Si dimostra ora la surgettività di Φ , infatti dato il cammino chiuso $f_1: I \to S^1: t \mapsto e^{2\pi i t}$, si ha che

$$\Phi([f_1^n]) = n\tilde{f}_1(1) = n.$$

Infine, si verifica che il nucleo di Φ è l'insieme dei cammini chiusi omotopi al cammino costante in 1, dato che se $f:I\to S^1$ è un cammino chiuso tale che $\tilde{f}(1)=0$, si ha che \tilde{f} è un cammino chiuso in $\mathbb R$ che parte da 0 e torna a 0, quindi poiché $\mathbb R$ è semplicemente connesso, esiste un'omotopia $H:I\times I\to \mathbb R$ da \tilde{f} al camminio costante in 0. Ma a questo punto si ha che $\rho\circ H$ è un'omotopia da f al cammino costante in 1, quindi f è omotopo al cammino costante in 1.

Dimostrazione. (del teorema)

OK LA DIMOSTRAZIONE DI QUESTO FATTO FATTA DA TAMAS È RIDICOLA, MEGLIO FARE QUELLA PIUGENERALE DI FRIGERIO QUANDO SARÀ POI

1. si consideri il ricoprimento di aperti di S^1 dato da due aperti U_0, U_1 , archi che si intersecano in due componenti connesse per archi di S^1 , una che contiene 1 e l'altra che contiene -1.

DISEGNO DA FARE

Considero le componenti connesse per archi di $\rho^{-1}(U_1)$, che formano un ricorpimento di aperti per $\rho^{-1}(U_1)$. La mappa ρ induce un omeomorfismo $\rho|_{\rho^{-1}(U_1)}: \rho^{-1}(U_1) \to U_1$ (si vedrà che è un rivestimento di U_1)).

Inoltre, le componenti connesse per archi di $f^{-1}(U_0)$, $f^{-1}(U_1)$ formano un ricoprimento di aperti per I.

L'intervallo I è uno spazio metrico compatto, e dunque ammette un numero di Lebesgue.

Siano quindi $t_0 = 0 < t_1 < t_2 < \ldots < t_n = 1$ i punti di I tali che ciascun intervallo della $[t_i, t_{i+1}]$ è interamente contenuto in uno ed uno solo tra $f^{-1}(U_0)$ e $f^{-1}(U_1)$ e inoltre $t_i \in f^{-1}(U_0) \cap f^{-1}(U_1)$ $\forall i$.

Corollario 1.1.

$$\pi_1(\mathbb{R}^n \setminus \{0\}) \cong \pi_1(D^n \setminus \{0\}) \cong \mathbb{Z}$$

In particolare $D^2 \setminus \{0\}$ non è omotopicamente equivalente D^2 (e quindi nemmeno omeomorfo).

Definizione 1.7 (Retrazione).

Sia $Y \subset X$ un sottospazio topologico. Si dice che una mappa continua $r: X \to Y$ è una retraazione se vale

$$r \circ i = \mathrm{id}_Y$$

dove $i: Y \hookrightarrow X$ è l'inclusione di Y in X.

In altre parole, r è una retrazione se è continua e manda ogni punto di Y su se stesso. Si dice che Y è **retratto** in X se esiste una retrazione da X a Y.

Esempio 1.4. 1. In ogni spazio topologico X ogni punto $x_0 \subset X$ è un retratto di X.

2. Il segmento I = [-1, 1] è un retratto di $\bar{D}^2 = \bar{B}(0, 1)$, infatti la mappa

$$r: \bar{D^2} \to I: (x,y) \mapsto x$$

è una retrazione, poiché r manda ogni punto del segmento su se stesso.

Lemma 1.5 (Retrazione e gruppo fondamentale).

Sia $Y \subset X$ un retratto di X e sia $x_0 \in Y$. Allora la mappa indotta dall'inclusione naturale

$$i_*: \pi_1(Y, x_0) \to \pi_1(X, x_0)$$

è un omomorfismo di gruppi iniettivo

Dimostrazione.

$$\pi_1(Y, x_0) \xrightarrow{i_*} \pi_1(X, x_0) \xrightarrow{r_*} \pi_1(Y, x_0)$$

Dunque $r_* \circ i_* = \mathrm{id}_{\pi_1(Y,x_0)}$, quindi i_* è iniettiva perché ha inversa sinistra.

Corollario 1.2.

 S^1 non è un retratto di $\bar{D^2}$.

Dimostrazione.

$$\mathbb{Z} \cong \pi_1\left(S^1,1\right) \xrightarrow{i_*} \pi_1\left(\bar{D^1},1\right) \cong \{1\}$$

e quindi i_* non è iniettiva, perché è forzata ad essere banale.

Teorema 1.4 (Brouwer).

Ogni applicazione continua $f: D^2 \to D^2$ ammette un punto fisso.

Dimostrazione. La dimostrazione è per assurdo.

Si supponga che per ogni punto $x \in D^2$ si ha che $f(x) \neq x$.

Consideriamo la mappa continua

$$r: D^2 \to S^1: x \mapsto \frac{f(x) - x}{\|f(x) - x\|}.$$

Questa mappa associa ad ogni punto $x \in D^2$ un punto sulla circonferenza unitaria S^1 , che rappresenta la direzione del vettore che punta da x a f(x).

Una tale mappa sarebbe una retrazione del disco unitario D^2 su S^1 , poiché ogni punto di S^1 sarebbe raggiunto da un punto di D^2 che non si mappa su se stesso. **Vorrei metterci il fulmine**

Teorema 1.5 (Fondamentale dell'algebra).

Ogni $f(x) \in \mathbb{C}[x]$ polinomio di grado $n \geq 1$ ammette almeno una radice complessa.

Dimostrazione.

Si supponga $f(z) \neq 0 \quad \forall z \in \mathbb{C}$, allora $\forall r > 0$ la mappa

$$f_r(t) := \frac{f\left(r\cos(2\pi t) + ir\sin(2\pi t)\right)}{\left|f\left(r\cos(2\pi t) + ir\sin(2\pi t)\right)\right|}$$

definisce un cammino chiuso in $I \to S^1$ che parte da 1.

La famiglia di cammini chiusi $\{f_r|r\in I\}$ rappresenta un'omotopia tra il cammino costante $f_0:I\to\{1\}$ e il cammino chiuso f_1 .

Componendo inoltre con la mappa $I \to [0, r] : s \to sr$ otteniamo un'omotopia ad estremi fissi tra il cammino costante e il cammino chiuso f_r .

Quindi $[f_r^0] = 0 \in \mathbb{Z}$. Vogliamo ora dimostrare che $[f_r^1] \neq 0 \in \mathbb{Z}$ per ogni r > 0 e raggiungere una contraddizione.

Sia ora il polinomio

$$f(z) = z^{n} + a_{n-1}z^{n-1} + \ldots + a_0$$

e per $s \in I$ si consideri

$$f_r^s(z) = z^n + s \left(a_{n-1} z^{n-1} + \ldots + a_0 \right).$$

Se $r > \max\{1, \sum |a_i|\}$ e |z| = r, allora

$$|z^n| = r^n > s\left(\sum |a_i|\right) |z^{n-1}| \ge |s\left(a_{n-1}z^{n-1} + \dots + a_0\right)|$$

e quindi poiché vi è il maggiore stretto se $|z|=r,\,f_r^s(z)\neq 0$ per ogni $s\in I.$ In particolare vale

$$f_r^s(r\cos 2\pi t + ir\sin(2\pi t) \neq 0$$

E quindi è ben definita la famiglia di cammini chiusi

$$f_r^s: I \to S^1: t \mapsto \frac{f_r^s \left(r\cos 2\pi t + ir\sin(2\pi t)\right)}{\left|f_r^s \left(r\cos 2\pi t + ir\sin(2\pi t)\right)\right|}.$$

che da un'omotopia tra f_r^0 e f_r^1 .

 $f^0=z^n$ e quindi $f_r^0(t)=\cos(2n\pi t)+i\sin(2n\pi t)$ ma si avrebbe quindi che la classe di omotopia di f_r^0 è $n\in\mathbb{Z}$, ma ciò contraddice il fatto che $[f_r^0]=0\in\mathbb{Z}$.

1.4 Teorema di Seifert-Van Kampen e richiami di teoria dei gruppi

Teorema 1.6 (debole di Seifert-van Kampen).

Siano $X=X_1\cup X_2$ dove $X_1,X_2\subset X$ sono aperti. Siano $i_1:X_1\hookrightarrow X$ e $i_2:X_2\hookrightarrow X$ le inclusioni naturali

Si suppongano $X, X_1, X_2, X_1 \cap X_2$ connessi per archi allora:

$$\pi_1(X, x_0)$$
è generato da $i_{1*}(\pi_1(X_1, x_0))$ e $i_{2*}(\pi_1(X_2, x_0))$ dove $x_0 \in X_1 \cap X_2$.

Dimostrazione.

Corollario 1.3.

 S^n è semplicemente connesso per ogni $n \geq 1$.

Corollario 1.4.

 $\mathbb{R}^n \setminus \{0\}$ è omotopicamente equivalente a S^{n-1} per ogni $n \geq 2$. Quindi $\pi_1(\mathbb{R}^2 \setminus \{0\}) \cong \mathbb{Z}$ e $\pi_1(\mathbb{R}^n \setminus \{0\}) \cong \{1\}$ per ogni $n \geq 2$

Corollario 1.5.

 \mathbb{R}^2 non è omeomorfo a \mathbb{R}^n per ogni $n \geq 3$.

Teorema 1.7. (di Seifert-van Kampen)

Siano $X = X_1 \cup X_2$ dove $X_1, X_2 \subset X$ sono aperti.

Siano $j_1: X_1 \cap X_2 \hookrightarrow X_1, j_2, X_1 \cap X_2 \hookrightarrow X_2, i_1: X_1 \hookrightarrow X, i_2: X_2 \hookrightarrow X$ le inclusioni naturali.

Si suppongano $X, X_1, X_2, X_1 \cap X_2$ connessi per archi allora

 $\forall G \ gruppo, \ e \ mappe \ \varphi_1: \pi_1(X_1 \cap X_2, x_0) \to G \ e \ \varphi_2: \pi_1(X_2, x_0) \to G \ esiste \ un \ unica \ mappa$

$$\varphi: \pi_1(X, x_0) \to G$$

tale che il seguente diagramma commuta:

Il teorema di Van-Kampen necessità di un richiamo di teoria dei gruppi, che non è stato ancora fatto.

Definizione 1.8 (Gruppo libero generato da un insieme).

Dato un insieme X si indica F(X) il **gruppo libero generato da** X il dato di un gruppo F(X) ed una mappa iniettiva $s: X \hookrightarrow F(X)$ tale che la seguente propriet 'a universale sia soddisfatta:

Per ogni gruppo G e per ogni mappa iniettiva $f: X \hookrightarrow G$ esiste un unico omomorfismo di gruppi

$$\bar{f}: F(X) \to G$$

tale che il seguente diagramma commuta:

Proposizione 1.3 (Unicità del gruppo libero).

Dalla definizione di gruppo libero via proprietà universale ne segue l'unicità a meno di isomorfismo di gruppi.

Dimostrazione. Facile provaci un attimo

Proposizione 1.4 (Costruzione del gruppo libero generato da un insieme).

Si costruisce ora F(X) nel seguente modo:

Sull'insieme

$$F(X) = \{w \in X^* \mid w \text{ parola su } X\} / \sim$$

dove una parola $w \in X$ è una sequenza un prodotto formale tra simboli della fomra

$$w = x_{i_1}^{\epsilon_1} x_{i_2}^{\epsilon_2} \dots x_{i_n}^{\epsilon_n}$$

con $x_i \in X$ e $\epsilon_i \in \{1, -1\}$, e la relazione di equivalenza \sim identifica due parole se e solo se sono uguali a meno di semplificare i fattori di forma $x_i^{\epsilon_i} x_i^{-\epsilon_i}$.

L'operazione di gruppo su F(X) è data dalla concatenazione formale di parole.

 $Tale\ costruzione\ verifica\ la\ proprietà\ universale\ del\ gruppo\ libero\ generato\ da\ X.$

Dimostrazione.

Per ogni mappa $f: X \hookrightarrow G$ in un gruppo G si definisce la mappa

$$\bar{f}: F(X) \to G: x_{i_1}^{\epsilon_1} x_{i_2}^{\epsilon_2} \dots x_{i_n}^{\epsilon_n} \mapsto f(x_1)^{\epsilon_1} f(x_2)^{\epsilon_2} \dots f(x_n)^{\epsilon_n}$$

Lemma 1.6.

Ogni gruppo G è il quoziente di un gruppo libero.

Dimostrazione.

Se $\{g_i \mid i \in I\}$ si considera $X = \{x_i \mid i \in I\}$ e la mappa

$$\Phi: F(X) \to G: x_i \to g_i$$
 assegnamento per generatori

se i g_i sono un insieme di generatori per G allora Φ è surgettiva e si conclude per il primo teorema di omomorfismo tra gruppi.

Definizione 1.9 (Presentazione di un gruppo).

Data Φ come sopra, sia $N := \ker \Phi$ si può considerare un sisterma di generatori per N come sottogruppo normale $\{p_j \mid j \in J\}$, la presentazione tramite generatori e relazioni di G è la sequente:

$$G := \langle g_i, i \in I \mid p_j, j \in J \rangle$$

Definizione 1.10 (Prodotto libero di gruppi).

Siano G_1, G_2 due gruppi, si definisce il **prodotto libero di gruppi** $G_1 * G_2$ il dato di un gruppo $G_1 * G_2$ e mappe $\gamma_1 : G_1 \to_1 * G_2$, $\gamma_2 : G_2 \to_1 * G_2$ che soddisfano la seguente proprietà universale:

Per ogni altro gruppo G e mappe $\phi_1:G_1\to G$ e $\phi_2:G_2\to G$ esiste un'unica mappa $\phi:G_1*G_2\to G$ tale che il seguente diagramma commuti:

In teoria delle categorie tale costruzione è detta coprodotto.

Proposizione 1.5 (Unicità del prodotto libero di gruppi).

Dalla definizione via proprietà universale segue che il prodotto libero è unico a meno di isomorfismo di gruppi.

Proposizione 1.6 (Costruzione del prodotto libero tra gruppi). Siano

$$G_1 = \langle g_i^1, i \in I_1 \mid p_i^1, j \in J_1 \rangle$$
 $G_2 = \langle g_i^2, i \in I_2 \mid p_i^2, j \in J_2 \rangle$

le due presentazioni dei gruppi, allora la presentazione del prodotto libero è data da:

$$G_1 * G_2 = \langle \{g_i^1\} \cup \{g_i^2\} \mid \{p_j^1\} \cup \{p_j^2\} \rangle$$

Osservazione 1.5.

- 1. Il gruppo libero è generato dalle immagini dei generatori dei gruppi fattori.
- 2. Gli elementi di $G_1 * G_2$ sono parole in $G_1 \cup G_2$
- 3. Se X_1, X_2 sono due insiemi allora

$$F(X_1 \cup X_2) = F(X_1) * F(X_2)$$

Definizione 1.11 (Prodotto amalgamato di gruppi).

Siano G_1, G_2 due gruppi e H un terzo gruppo, si definisce il **prodotto amalgmato di gruppi su H** $G_1 *_H G_2$ il dato di un gruppo $G_1 *_H G_2$ e mappe $\beta_1 : H \to G_1$, $\beta_2 : H \to G_2$, $\gamma_1 : G_1 \to_1 *_{G_2}$, $\gamma_2 : G_2 \to_1 *_{G_2}$ che soddisfano la seguente proprietà universale:

Per ogni altro gruppo G e mappe $\phi_1: G_1 \to G$ e $\phi_2: G_2 \to G$ esiste un'unica mappa $\phi: G_1 * G_2 \to G$ tale che il seguente diagramma commuti:

Proposizione 1.7 (Costruzione del prodotto amalgamato se H è un gruppo libero). Siano

$$\begin{split} G_1 = \left\langle g_i^1, \ i \in I_1 \mid p_j^1, \ j \in J_1 \right\rangle \quad G_2 = \left\langle g_i^2, \ i \in I_2 \mid p_j^2, \ j \in J_2 \right\rangle \\ H = \left\langle g_i^1, \ i \in I_1 \right\rangle \ che \ non \ ha \ relazioni \ perché \ libero \end{split}$$

allora

$$G_1 *_H G_2 = \langle \{g_i^1\} \cup \{g_i^2\} \mid \{p_j^1\} \cup \{p_j^2\} \cup \{\beta_1(h_i)\beta_2(h_i)^{-1}\} \rangle$$

2 Rivestimenti