04/20 plots for individual enodeb

plots of individual enodebs

For below plots, we focus on enodebs of a submarket: NYCNJ/NYCW

one day data of domain_id of streaming category

For one day data of streaming category, separate them by domain_id and calculate the portion of each domain_id:

Domain_id	Domain name	Portion (%)
0	All other domains	44. 4443
3	Not in appendix C	28. 59307
1	Apple.com	9. 106398
8560	Not in appendix C	7. 05265
193	Not in appendix C	2. 200852
8946	Not in appendix C	2. 099416
12	Youtube.com	1.812234
140	Xvideos.com	1. 529882
341	Not in appendix C	0. 616959
258	Nflximg.com	0. 427699

Most of the domain_id are not shown in Appendix C, but the doc says "available in mobref.top_domain_list", I guess there are full mappings.

Discussion

- 1. to-do: need method to locate enodebs and then plot nearby enodebs to check correlation (Ajay, can you send me information for this?)
- 2. need some high-level knowledge input of radio network
 - a) capacity model?
 - i. in Magus, all connected devices get fair share, so enodeb is always fully loaded (unless there is 0 device connected)
 - b) within same enodeb, different capacity/service for different user/traffic category?
 - i. in Magus, all connected devices get fair share, and we assume all devices have infinite data to download (there is no "required capacity/enough capacity" for devices, enodeb can't satisfy devices)
 - c) how does nearby enodeb help each other by taking traffics flexibly?
 - i. in Magus, devices are always connecting to enodeb with best signal strength, so enodeb can't select devices, it's already determined by locations of devices.