1. Двухслойные итерационные методы. Погрешность. Невязка. Матрица перехода. Асимптотическая скорость сходимости.

Итерационные методы

Методы, задающие последовательность векторов $x^{(k)}:\lim_{k o\infty}\|x^{(k)}-x^*\|=0$

 x^* - решение

Канонический вид двухслойного итерационного метода

$$Brac{x^{(k+1)}-x^{(k)}}{ au_{k+1}} + Ax^{(k)} = f$$
 $f = Ax^*$

Другая запись

$$Bx^{(k+1)}=(B- au_kA)x^{(k)}+ au f$$

Замечание

При $au_k = au \ orall k$ метод называется **стационарным**

Двухслойность

Означает, что функция зависит только от $x^{(k)}$ и не зависит от остальных приближений к решению.

Погрешность

Разница между k-ой итерацией и точным решением

$$z^{(k)} = x^{(k)} - x^{\ast}$$

Невязка

$$r^{(k)} = Ax^{(k)} - f$$

Матрица перехода

$$S = E - \tau B^{-1}A$$

Вывод

$$egin{aligned} Brac{x^{(k+1)}-x^{(k)}}{ au} + Ax^{(k)} &= f \ Brac{x^{(k+1)}-x^*-(x^{(k)}-x^*)}{ au} + Ax^{(k)} - Ax^* &= 0 \ Brac{z^{(k+1)}-z^{(k)}}{ au} + Az^{(k)} &= 0 \ Bz^{(k+1)} - Bz^{(k)} &= - au Az^{(k)} \ z^{(k+1)} &= (E- au B^{-1}A)z^{(k)} \ z^{(k+1)} &= Sz^{(k)} \end{aligned}$$

Асимптотическая скорость сходимости

$$R = -\ln \|S\|$$

Вывод

Найдем k удовлетворяющий неравенству $\|x^{(k)}\| \leq \frac{1}{e}\|x^{(0)}\|$ Так как $z^{(k)}=S^kz^{(0)}$, то для этого достаточно $\|S\|^k \leq \frac{1}{e} \iff k\ln\|S\| \leq -1$ Так как $\|S\|<1 \implies k \geq \frac{1}{-\ln\|S\|}$

2. Критерий сходимости двухслойного итерационного процесса.

Критерий сходимости

Итерационный процесс сходится при любом начальном приближении $\iff |\lambda_i(S)| < 1 \ \forall i$ Доказательство

$$(\Longrightarrow)$$

Итерационный процесс сходится при любом начальном приближении

Предположим, что $\exists \lambda_i(S): |\lambda_i| \geq 1$

Пусть этому сз соответствует собственный вектор u

Тогда возьмем
$$x^{(0)} = x^* + u$$

$$egin{aligned} z^{(0)} &= u \ z^{(k)} &= S^k z^{(0)} = S^k u = \lambda_i^k u \ \|z^{(k)}\| &= \|\lambda_i^k u\| = |\lambda_i|^k \|u\| \quad u
eq heta \ \lim_{k o \infty} \|z^{(k)}\|
eq 0 \end{aligned}$$

Получили противоречие

Чтобы получить доказательство необходимости позвоните на номер 8 423 439 85 47 и попросите там

На номер так никто не позвонил...

3. Достаточное условие сходимости двухслойного итерационного процесса.

Достаточное условие сходимости

Итерационный процесс сходится при любом начальном приближении $\ \ \, = \ \ \, \exists$ матричная норма, согласованная с некоторой векторной: $\|S\| < 1$

Доказательство

Пусть
$$\|S\| < 1$$
 $u-$ собственный вектор для λ $|\lambda|\cdot\|u\| = \|\lambda\cdot u\| = \|S\cdot u\|$

$$|\lambda| \leq \|S\| < 1$$

Тогда выполняется критерий сходимости двухслойного итерационного процесса

4. Метод простой итерации. (Для симметрической, положительно определенной матрицы). Оптимальный шаг.

Метод простой итерации

Двухслойный итерационный стационарный метод при B=E

$$x^{(k+1)} = x^{(k)} - au(Ax^{(k)} - f)$$

Матрица перехода:

$$S = E - \tau A$$

Оптимальный шаг

$$au_0 = rac{2}{lpha + eta}$$

Доказательство

Найдем оптимальный $au_0 = argmax(R) = argmax(-\ln \|S\|) = argmin(\|S\|)$

Пусть $A=A^T>0$ тогда все $\lambda_i>0\in\mathbb{R}$

$$lpha = \min(\lambda_i) \quad eta = \max(\lambda_i)$$

Будем использовать $\|S\|_2 = \max \lambda_i(S)$

$$\lambda_i(S) = 1 - au \lambda_i(A)$$

Рассмотрим функцию $f(au,\lambda) = |1- au\lambda|$

$$\max_{lpha \leq \lambda \leq eta} f(au, \lambda) = \max(f(au, lpha), f(au, eta))$$

Очевидно, что

$$\max_{1 \leq i \leq n} f(au, \lambda_i) \leq \max_{lpha \leq \lambda \leq eta} f(au, \lambda)$$
 и

$$\max_{1 \leq i \leq n} f(au, \lambda_i) \geq \max(f(au, lpha), f(au, eta))$$

$$\implies \|S\|_2 = \max_{1 \leq i \leq n} f(au, \lambda_i) = \max(f(au, lpha), f(au, eta))$$

Покажем, что
$$au_0 = \dfrac{2}{lpha + eta}$$

$$1- au_0lpha=rac{eta-lpha}{lpha+eta}>0$$

$$1- au_0eta=rac{lpha-eta}{lpha+eta}<0$$

$$\|S\|_2 = rac{eta - lpha}{lpha + eta}$$

Пусть
$$au < au_0$$

$$1 - \tau \alpha > 1 - \tau_0 \alpha = \frac{\beta - \alpha}{\alpha + \beta}$$

$$\max(f(au,lpha),f(au,eta))\geq f(au,lpha)=|1- aulpha|>rac{eta-lpha}{lpha+eta}$$

$$\|S\|_2 > rac{eta-lpha}{lpha+eta}$$

Следовательно, по асимптотической скорости сходимости, это не оптимальный шаг Аналогично для $au> au_0$

Асимптотическая скорость сходимости

$$R = -\ln\frac{\beta - \alpha}{\alpha + \beta}$$

5. Метод Якоби. Теорема Адамара.

Метод Якоби

Двухслойный итерационный стационарный метод при B=D

$$egin{aligned} A &= A_L + D + A_U \quad D = diag(a_{11}, a_{22}, \ldots, a_{nn}) \ au &= 1 \ Dx^{(k+1)} - Dx^{(k)} + (A_L + D + A_U)x^{(k)} = f \ Dx^{(k+1)} &= f - (A_L + A_U)x^{(k)} \end{aligned}$$

Скалярный вид:

$$a_{ii}x_{i}^{(k+1)} = f_{i} - \sum_{j=1}^{n} a_{ij}x_{j}^{(k)}$$

Матрица перехода:

$$S = E - D^{-1}A = E - D^{-1}(A_L + D + A_U) = -D^{-1}(A_L + A_U)$$

Строгое условие Адамара

$$|a_{ii}| > \sum\limits_{j
eq i}^n |a_{ij}|$$

Теорема Адамара

Матрица со строгим условием Адамара не вырождена

Доказательство

Пусть
$$\det A = 0$$

Тогда
$$Ax=0$$
 - имеет ненулевое решение

Пусть
$$|x_k| = \max x_i > 0$$

Возьмём k-е уравнение системы Ax=0

$$egin{aligned} a_{kk}x_k + \sum_{j=1, j
eq k}^n a_{kj}x_j &= 0 \ a_{kk}x_k = -\sum_{j=1, j
eq k}^n a_{kj}x_j \ |a_{kk}||x_k| &\leq \sum_{j=1, j
eq k}^n |a_{kj}||x_j| &\leq |x_k| \sum_{j=1, j
eq k}^n |a_{kj}| \ |a_{kk}| &\leq \sum_{j=1
eq k}^n |a_{kj}| \end{aligned}$$

Получили противоречие.

Ч. Т. Д.

6. Метод Якоби. Теорема Гершгорина.

Метод Якоби

Двухслойный итерационный стационарный метод при B=D

$$A=A_L+D+A_U \quad D=diag(a_{11},a_{22},\ldots,a_{nn})$$

$$\tau = 1$$

$$Dx^{(k+1)} - Dx^{(k)} + (A_L + D + A_U)x^{(k)} = f$$

$$Dx^{(k+1)} = f - (A_L + A_U)x^{(k)}$$

Скалярный вид:

$$a_{ii}x_{i}^{(k+1)} = f_{i} - \sum_{j=1, i
eq j}^{n} a_{ij}x_{j}^{(k)}$$

Матрица перехода:

$$S = E - D^{-1}A = E - D^{-1}(A_L + D + A_U) = -D^{-1}(A_L + A_U)$$

Теорема Гершгорина

$$orall \lambda(A) \quad |\lambda - a_{ii}| \leq \sum\limits_{j=1, j
eq i}^n |a_{ij}|$$

Доказательство

 $A-\lambda E$ - вырожденная матрица.

Следовательно, по теореме Адамара $\exists k: |a_{kk} - \lambda| \leq \sum\limits_{j=1, j \neq k}^n |a_{kj}|$

Р. S. В модуле разницы можно переставлять местами числа

7. Метод Якоби. Достаточное условие сходимости.

Метод Якоби

Двухслойный итерационный стационарный метод при B=D

$$A=A_L+D+A_U \quad D=diag(a_{11},a_{22},\ldots,a_{nn})$$

$$\tau = 1$$

$$Dx^{(k+1)} - Dx^{(k)} + (A_L + D + A_U)x^{(k)} = f$$

$$Dx^{(k+1)} = f - (A_L + A_U)x^{(k)}$$

Скалярный вид:

$$a_{ii}x_i^{(k+1)} = f_i - \sum_{j=1, i
eq j}^n a_{ij}x_j^{(k)}$$

Матрица перехода:

$$S = E - D^{-1}A = E - D^{-1}(A_L + D + A_U) = -D^{-1}(A_L + A_U)$$

Достаточное условие сходимости

Если для матрицы A выполняется строгое условие Адамара, то метод Якоби сходится при любом начальном приближении

Доказательство

По теореме Гершгорина
$$|\lambda(S)|=|\lambda(S)-0|\leq \sum\limits_{j=1,j\neq i}^n\left|rac{a_{ij}}{a_{ii}}
ight|\leq rac{1}{|a_{ii}|}\sum\limits_{j=1,j\neq i}^n|a_{ij}|\leq rac{|a_{ii}|}{|a_{ii}|}=1$$

Выполняется критерий сходимости

8. Метод Зейделя (метод полной релаксации). Достаточное условие сходимости.

Метод Зейделя

Называется методом полной релаксации, из-за обнуления \emph{i} -й компоненты невязки.

Двухслойный итерационный стационарный метод при
$$B=A_L+D$$

$$A=A_L+D+A_U \quad D=diag(a_{11},a_{22},\ldots,a_{nn})$$

$$au = 1$$

$$(A_L+D)x^{(k+1)}-(A_L+D)x^{(k)}+(A_L+D+A_U)x^{(k)}=f \ Dx^{(k+1)}=f-A_Ux^{(k)}-A_Lx^{(k+1)}$$

Скалярный вид:

$$a_{ii}x_i^{(k+1)} = f_i - \sum\limits_{j=i+1}^n a_{ij}x_j^{(k)} - \sum\limits_{j=1}^{i-1} a_{ij}x_j^{(k+1)}$$

Матрица перехода:

$$S = E - (A_L + D)^{-1}A = E - (A_L + D)^{-1}(A_L + D + A_U) = -(A_L + D)^{-1}A_U$$

Критерий сходимости

Из критерия сходимости итерационного процесса не сложно показать, что метод сходится при любом начальном приближении $\iff |\lambda| < 1 \ \, \forall \lambda$ и $\det(\lambda(A_L + D) + A_U) = 0$

Вывод

$$\det\left(S-\lambda E
ight)=0$$
 $\det\left(-(A_L+D)^{-1}A_U-\lambda E
ight)=0$ $\det\left(-(A_L+D)^{-1}\left(A_U+\lambda\left(A_L+D
ight)
ight)
ight)=0$ $\det\left(-(A_L+D)^{-1}
ight)\cdot\det\left(A_U+\lambda\left(A_L+D
ight)
ight)=0$ Так как $\det\left(-(A_L+D)^{-1}
ight)
eq 0$, то: $\det\left(A_U+\lambda\left(A_L+D\right)
ight)=0$

Достаточное условие сходимости

Если для матрицы A выполняется строгое условие Адамара, то метод Зейделя сходится при любом начальном приближении

Доказательство

Если матрица вырожденная, то существует строка k, в которой условие Адамара не выполняется.

$$\det(\lambda(A_L+D)+A_U)=0 \implies \exists k: |\lambda||a_{kk}|=|\lambda a_{kk}| \leq \sum\limits_{i=1}^{k-1}|\lambda||a_{kj}|+\sum\limits_{i=k+1}^n|a_{kj}|$$

$$|\lambda|\left(|a_{kk}|-\sum\limits_{j=1}^{k-1}|a_{kj}|
ight)\leq\sum\limits_{j=k+1}^{n}|a_{kj}|$$

Также по условию знаем, что $|a_{kk}|>\sum\limits_{j=1}^{k-1}|a_{kj}|+\sum\limits_{j=k+1}^n|a_{kj}|\implies |a_{kk}|-\sum\limits_{j=1}^{k-1}|a_{kj}|>\sum\limits_{j=k+1}^n|a_{kj}|$

Получаем оценку $|\lambda| < 1$

Выполняется критерий сходимости

9. Метод последовательной верхней релаксации. Матрица перехода.

Метод последовательной верхней релаксации

В отличие от метода Зейделя, будет проводиться не обнуление невязки r_i , а лишь уменьшения $|r_i|$, по сравнению с $|t_i|$

$$t_z$$
 $z=\left(x_1^{(k+1)},\ldots,x_{i-1}^{(k+1)},x_i^{(k+1)},x_{i+1}^{(k+1)},\ldots,x_n^{(k)}
ight)$ r_y $y=\left(x_1^{(k+1)},\ldots,x_{i-1}^{(k+1)},x_i^{(k)},\ldots,x_n^{(k)}
ight)$ Пусть $|r_i|=|t_i-lpha a_{ii}|<|t_i|$, где $lpha=x_i^{(k)}-x_i^{(k+1)}$ $\left|lpha-rac{t_i}{a_{ii}}
ight|<rac{t_i}{a_{ii}}>0$, то $0.$

ЕСЛИ
$$\dfrac{a_{ii}}{a_{ii}}>0$$
, то $0 ЕСЛИ $\dfrac{t_i}{a_{ii}}<0$, то $0>lpha>2\dfrac{t_i}{a_{ii}}$$

Выразим
$$lpha=\omegarac{t_i}{a_{ii}}$$
, где $\omega\in(0,2)$

Тогда
$$r_i = t_i - a_{ii}\omega rac{t_i}{a_{ii}} = t_i \left(1 - \omega
ight)$$

Как видим, будет происходить уменьшение компоненты невязки $|r_i| < |t_i|$

При
$$\omega=1,\; r_i=0$$

При $0<\omega<1$ - верхний метод

При $1<\omega<2$ - нижний метод

При подстановке в расчётные формулы для r_i получаем: $B=D+\omega A_L \quad au=\omega$

Скалярный вид:

$$x_i^{(k+1)} = \left[\omega f_i - \omega \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \omega \sum_{j=i+1}^n a_{ij} x_j^{(k)} + (1-\omega) x_i^{(k)} a_{ii}
ight] rac{1}{a_{ii}}$$

Каноническая форма:

$$(D+\omega A_L)rac{x^{(k+1)}-x^{(k)}}{\omega}+Ax^{(k)}=f$$

Матрица перехода:

$$S = E - \omega \left(D + \omega A_L\right)$$

Достаточное условие сходимости

Для симметричных, положительно определённых матриц метод сходится, если $\omega \in (0,2)$

10. Метод наискорейшего градиентного спуска.

Метод наискорейшего градиентного спуска

Есть метод градиентного спуска, где $x^{(k+1)} = x^{(k)} - \delta_k \nabla F(x^{(k)})$

Условия:

Возьмём δ_k из условия минимума:

$$F\left(x^{(k+1)}
ight) = F\left(x^{(k)} - \delta_k
abla F(x^{(k)})
ight)$$

Пусть функция F(y) = (Ay, y) - 2(f, y)

где $A=A^T>0$ и A - вещественная.

$$F(y) = (A(y - x^*), y - x^*) - (Ax^*, x^*)$$

$$F(y) = (A(y-x^*), y-x^*) - (Ax^*, x^*) =$$

$$=(Ay,y)-(Ax^{st},y)-(Ay,x^{st})+(Ax^{st},x^{st})-(Ax^{st},x^{st})=(Ay,y)-2\,(Ax^{st},y)$$

Если $y = x^*$:

$$F(x^*) = -\left(Ax^*, x^*\right)$$

Если $y \neq x^*$:

$$F(y) > F(x^*)$$

Распишем ∇F :

$$F = \sum\limits_{i=1}^n {(Ay_i)y_i} - 2\sum\limits_{i = 1}^n {{f_i}{y_i}}$$

$$\sum\limits_{j=1}^n\sum\limits_{i=1}^na_{ij}y_iy_j-2\sum\limits_{i=1}^nf_iy_i$$

$$\nabla F = 2 (Ay - f)$$

$$y^{(k+1)}=y^{(k)}-2\delta_k\left(Ay^{(k)}-f
ight)$$

Пусть
$$\Delta_k = 2\delta_k$$

$$y^{(k+1)}=y^{(k)}-\Delta_k\left(Ay^{(k)}-f
ight)$$

Пусть
$$\phi(\Delta_k) = F(y^{(k+1)})$$

Вычислим $\phi'(\Delta_k)=0$

$$\phi'(\Delta_k) = \left[\left(Ay^{(k+1)}, y^{(k+1)}
ight) - 2\left(f, x^{(k+1)}
ight)
ight]' = 0$$

$$\left(Arac{dy^{(k+1)}}{d\Delta_k},y^{(k+1)}
ight)+\left(Ay^{(k+1)},rac{dy^{(k+1)}}{d\Delta_k}
ight)-2\left(f,rac{dy^{(k+1)}}{d\Delta_k}
ight)=2\left(Ay^{(k+1)}-f,rac{dy^{(k+1)}}{d\Delta_k}
ight)=0$$

$$rac{dy^{(k+1)}}{d\Delta_k} = -\left(Ay^{(k)} - f
ight)$$

По
$$y^{(k+1)}=y^{(k)}-\Delta_k\left(Ay^{(k)}-f
ight)$$

$$-2\left(Ay^{(k+1)}-f,Ay^{(k)}-f
ight)=0$$

$$\left(Ay^{(k)}-f-\Delta_k A\left(Ay^{(k)}-f
ight),Ay^{(k)}-f
ight)=0$$

$$\left(Ay^{(k)}-f,Ay^{(k)}-f
ight)-\left(Ay^{(k)}-f,\Delta_k A\left(Ay^{(k)}-f
ight)
ight)=0$$

Вытаскиваем Δ_k , откуда получаем:

$$\Delta_k = rac{\left(Ay^{(k)}-f,Ay^{(k)}-f
ight)}{\left(A\left(Ay^{(k)}-f
ight),Ay^{(k)}-f
ight)}$$

Вопросы, связанные со сходимостью. Теорема такая:

$$F_0(y) \coloneqq F(y) + (Ax^*, x^*) = (A(y - x^*), y - x^*)$$

$$z^{(k)} = x^{(k)} - x^*$$

$$F_0(x^{(k)}) = (Ax^{(k)}, z^{(k)})$$

Теорема:

$$\begin{split} F_0\big(x^{(k)}\big) & \leq \bigg(\frac{\beta-\alpha}{\beta+\alpha}\bigg)^{2n} F_0\big(x^{(0)}\big) \\ \alpha & = \min_i \lambda_i(A) \qquad \beta = \max_i \lambda_i(A) \end{split}$$

Р. S. На картинке ошибка, но мне лень всё перепечатывать xD