Question #1 of 11

The estimated slope coefficient in a simple linear regression is:

- the predicted value of the dependent variable, given the actual value of the **A)** independent variable.
- the change in the independent variable, given a one-unit change in the dependent **B)** variable.

Question ID: 1456690

Question ID: 1456696

the ratio of the covariance of the regression variables to the variance of the **C)** independent variable.

Question #2 of 11

Use the following *t*-table for this question:

Probability in Right Tail							
df	5.0%	2.5%	1.0%				
196	1.653	1.972	2.346				
197	1.653	1.972	2.345				
198	1.653	1.972	2.345				
199	1.653	1.972	2.345				
200	1.653	1.972	2.345				
201	1.652	1.972	2.345				
202	1.652	1.972	2.345				

A sample of 200 monthly observations is used for a simple linear regression of returns versus leverage. The resulting equation is:

returns =
$$0.04 + 0.894$$
(Leverage) + ϵ

If the standard error of the estimated slope variable is 0.06, a test of the hypothesis that the slope coefficient is greater than or equal to 1.0 with a significance of 5% should:

- **A)** be rejected because the test statistic of –1.77 is less than the critical value.
- **B)** be rejected because the test statistic of –1.77 is greater than the critical value.
- **C)** not be rejected because the test statistic of –1.58 is not less than the critical value.

Question #3 of 11

The coefficient of determination for a linear regression is *best* described as the:

- percentage of the variation in the dependent variable explained by the variation of the independent variable.
- **B)** covariance of the independent and dependent variables.
- percentage of the variation in the independent variable explained by the variation of **C)** the dependent variable.

Question #4 of 11

When there is a linear relationship between an independent variable and the relative change in the dependent variable, the *most appropriate* model for a simple regression is:

- **A)** the lin-log model.
- **B)** the log-log model.
- **C)** the log-lin model.

Question #5 of 11

Question ID: 1456694

Question ID: 1456698

Question ID: 1456692

Consider the following analysis of variance (ANOVA) table:

Source	Sum of squares	Degrees of freedom	Mean sum of squares
Regression	550	1	550.000
Error	750	38	19.737
Total	1,300	39	

The *F*-statistic for the test of the fit of the model is *closest* to:

- **A)** 0.97.
- **B)** 27.87.
- **C)** 0.42.

Question #6 of 11

Which of the following is *least likely* an assumption of linear regression?

- **A)** Values of the independent variable are not correlated with the error term.
- **B)** The error terms from a regression are positively correlated.
- **C)** The variance of the error terms each period remains the same.

Question #7 of 11

Consider the following analysis of variance (ANOVA) table:

Source	Sum of squares	Degrees of freedom	Mean sum of squares
Regression	556	1	556
Error	679	50	13.5
Total	1,235	51	

The R^2 for this regression is *closest* to:

- **A)** 0.55.
- **B)** 0.45.

Question ID: 1456691

Question ID: 1456695

Question #8 of 11

Question ID: 1456689

In a simple regression model, the least squares criterion is to minimize the sum of squared differences between:

- **A)** the estimated and actual slope coefficient.
- **B)** the predicted and actual values of the dependent variable.
- **C)** the intercept term and the residual term.

Question #9 of 11

Question ID: 1456697

Given the relationship: Y = 2.83 + 1.5X

What is the predicted value of the dependent variable when the value of the independent variable equals 2?

- **A)** -0.55.
- **B)** 5.83.
- **C)** 2.83.

Question #10 of 11

Question ID: 1456688

A simple linear regression is a model of the relationship between:

- **A)** one or more dependent variables and one or more independent variables.
- **B)** one dependent variable and one or more independent variables.
- **C)** one dependent variable and one independent variable.

A simple linear regression is performed to quantify the relationship between the return on the common stocks of medium-sized companies (mid-caps) and the return on the S&P 500 index, using the monthly return on mid-cap stocks as the dependent variable and the monthly return on the S&P 500 as the independent variable. The results of the regression are shown below:

	Coefficient	Standard Error of Coefficient	<i>t</i> -Value		
Intercept	1.71	2.950	0.58		
S&P 500	1.52	0.130	11.69		
Coefficient of determination = 0.599					

The strength of the relationship, as measured by the correlation coefficient, between the return on mid-cap stocks and the return on the S&P 500 for the period under study was:

- **A)** 0.774.
- **B)** 0.599.
- **C)** 0.130.