Exercise 3.1 Represent the following tree as an XML document: 42 13 55 99 <a>> 42 <a> 55 <c> 99 </c> <a> 13 Exercise 3.2 – obligatory (4 points) à) Are the following XML documents well-formed? If not, indicate all errors. b) Represent the structure of the well-formed XML documents as trees. a) No, has two XML elements, missing end tags, <a> w <d> <e> x ⟨e> ⟨/e> . → <f></f> => F has no closing tag </d> There can only to one voot element <c> < <d><e> y </e> <f> </d> </d> </d> d ends before f <e> z </e> </f> </c> <s> Ż, <a> w <d>> a <e> x </e> <f></f> </d> . <C> <d>> <e> y </e> </d> <†> <e> z </e>

</f>

```
</c>
</s>.
a) Yes, the XML document is well-formed on a single horizontal line.
<a><b>w</b><d><e>x</e></d><d><e>y</e></d><f>z</f></a>
<a>>
    <b>w</b>
    <d>>
         <e>x</e>
    </d>
    <d>>
         <e>y</e>
    </d>
    <f>z</f>
</a> .
a) Yes, no missing nested XML elements
   <b>xx</b>
   <a>
      <c>yy</c>
     ZZ
   </a>
   <a>
     (XX)
   </a>
</a>
<a>>
    <b>xx</b>
    <a>>
         <c>yy</c>
         <d>zz</d>
    </a>
    <a>>
         <e>xx</e>
    </a> .
</a>
```

Exercise 3.3

Specify regular expressions for the following languages:

å) La = {w $\[mathbb{N}\]$ {0,1}* | w contains 01 as a substring}

(0 | 1)*(01)(0 | 1)*

b) Lb = {w with ac }	∥ {a,k	o,c}*	.w e	ither	start	s with	n a a	nd en	ds wi	th bo	or cl	o,.or :	starts	with	b an	d.end	S
(a)(a b c	c)*(bc	al cb), (b)(a b	o] c)*	t(ac)											
	7 (7-1 (7 1	1 /	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		•	·	·	Ü	Ů		·	•		Ů
c) Lc = {w	° ∏ {a h	· . c}*	· I lwlŀ	· n is Al	ven) (° ′N is a	· Jeo d	· consid	Hered	as b	ven)	٠	•	•	•	•	٠
C) LC - (W	μ (a,c),, C }	• •	12 6	v Çi i j	(U, 13 U	1130 (JOH 310	açıcu	ųs c	v Çi i)	۰	٠	٠	٠	•	٠
(a c bb)*	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	۰
Exercise 3	3 <u>.4 – (</u>	<mark>oblic</mark>	<mark>lator</mark> v	v (6 p	<mark>oints</mark>	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠
Specify re			_			•	wing	g lang	ıủage	s.	٠	٠	•	٠	٠	•	٠
a) La = {w	∥ {a,t	0}*	w is	odd}		•	٠	•	٠	•	٠	•	•	•	٠	•	٠
(a b)(aa a	b bb k	ia)*	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	٠
b) Lb = {x\	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	M S	。 w ⊠ ⊆	:* } w	Ihere	S = {:	ah	c}	٠	٠	٠	٠	•	٠	٠	•	٠
i.e. all stri									mbol	•	•	٠	•	٠	•	•	٠
(a)(albla)*	·	'b)(a	الماماء	k/h) l	(0)(0	, h a*;	(0)	•	٠	•	٠		•		٠	•	٠
(a)(a b c)*	·(a) (•	inic).	.(n)	(C)(a	·	(0)	•	٠	•		٠		٠	٠		
c) Lc = {w	🛚 {a,	b}*	w do	es co	ontair	n neitl	her a	a.nor	bb a	s _. a s	ub-stı	riņg}			•		٠
(ab)*1 (a)	(ba)	* (t	י(ס			•	٠	•	•	•	٠		٠			٠	٠
	•		•			•	•	•	•							•	۰
Exercise 3	3 <mark>.5</mark>		٠	٠		٠	•	•	٠		٠				٠		
There exis		-							of the	m is	as fo	iwoʻll	ng, w	here	group	O\$	٠
of three d	igits a	are s	epara	ated I	by ap	ostro	pnes	S: •	٠						٠		٠
42						٠			•			٠					٠
486 9'386																	٠
719′528						•			•								٠
83'748'69					414	ال	.: lb	-11 · · ·	ا مان ماند	l =*				la 8 a	- 2 -		٠
Indicate a	regu	iar e	xpres	ssion	tnat	descr	ibes	all po	OSSID	ie nu	mber	s wri	tten t	nis w	ay.		
• •	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	۰
((1 2 9)	(0 1	: 9){	0,2}')	* ((1	2 9){0, 2	}(0 1	9)	+)	•	٠	٠	٠	•	•	•	۰
	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	۰
Exercise 3						•		٠	•	٠	٠			٠	٠ .	٠	٠
Define the are allowed				•					gular	expr	essio	nş. T	eleph	one r	numb	ers	٠
	٠	٠	٠	٠		٠	٠	•	٠	٠	٠	٠	•	٠	٠	•	٠
Format Ex Local num	-			rķ	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠

```
-Does not start with 0
(1|2|...|9)(0|1|...|9)*
National number with area code
01234-123450
01234/123450
    -Starts with a single zero.
    -Characters - or / are used as separator between area code and local number
(0)(1|2|...|9)(0|1|...|9)*([-]|[/])(1|2|...|9)(0|1|...|9)*
International number with country code.
(0049)1234-123450
(00500)800/9080
    -Starts with 00 and one to three digits as country indication.
    -National area code is without leading 0.
    -Area code and local number may consist of one or more digits.
[(](00)(1|2|...|9)(0|1|...|9)\{0,2\}[)](1|2|...|9)+(0|1|...|9)*([-]|[/])(1|2|...|9)(0|1|...|9)*
Exercise 3.7
Simplify the following regular expressions.
a) aa | a(be | ea)
= aa | a(be | ea) =
= aa | a(b | a) = * // 8*
= aa | ab | aa = // left distributivity
= aa | ab
b) a(a | b) | (aa | ab)* e
a(a | b) | (aa | ab)* e =
= a(a | b) | (aa | ab)* =
                          // 8
= aa | ab | (aa | ab)* =
= (aa | ab)*
Exercise 3.8 - obligatory (5 points).
Simplify the following regular expressions. Show the intermediate steps of your
transformations.
a) a((a | bb) a) | aaa .
a((a | bb) a) | aaa =
= a(aa | bba) | aaa = //right distributivity
= (aaa | abba) | aaa = //left distributivity
= aaa | abba | aaa = //associativity
= aaa | abba
b) ( e | a(bd|cd) ( (ac|ab)d )* )*
```

= (a(bd)cd) ((ac ab)d)** = = (a(bd)cd) (ac ab)d)** = = ((abd acd) (acd abd))* = = ((acd abd) (acd abd))* = ((acd abd) (acd abd))* Exercise 3.9 Are the following equivalences valid for all regular expression R and S? Give'a short justification. (1) R R* = R* R.//valid, R has to occur at least once on both sides (2) (RS)* = R* S* //invalid, the left side can be RRSSR while the right can't (3) (R e)* = R* for example of the right can't (3) (R e)* = R* for example of the right can't (5) (R* S*)* = (R S)* //invalid, right side can only contain empty string, R or S(but not be additional results) Additional results	•
= ((abd abd) (acd abd))* = = ((acd abd) (acd abd))* Exercise 3.9 Are the following equivalences valid for all regular expression R and S? Give'a short justification. (1) R R* = R* R* //valid, R has to occur at least once on both sides (2) (RS)* = R* S* //invalid, the left side can be RRSSR while the right can't (3) (R e)* = R* .//valid, empty string is always included in R*. (4) (R S)* = R* S* //invalid, right side can only contain empty string, R or S(but not be (5) (R* S*)* = (R S)* //valid, (fule 10) R* already includes all combinations, R** provide additional results	•
Exercise 3.9 Are the following equivalences valid for all regular expression R and S? Give'a short justification. (1) R R* = R* R //valid, R has to occur at least once on both sides (2) (RS)* = R* S* //invalid, the left side can be RRSSR while the right can't (3) (R e)* = R* //valid, empty string is always included in R*. (4) (R S)* = R* S* //invalid, right side can only contain empty string, R or S(but not be (5) (R* S*)* = (R S)* //válid, (rule 10) R* already includes all combinations; R** provide additional results	•
Exercise 3.9 Are the following equivalences valid for all regular expression R and S? Give'a short justification. (1) R R* = R* R //Valid, R has to occur at least once on both sides (2) (RS)* = R* S* //invalid, the left side can be RRSSR while the right can't (3) (R e)* = R* //valid, empty string is always included jn R*. (4) (R S)* = R* S* //invalid, right side can only contain empty string, R or S(but not both (5)) (R* S*)* = (R S)* //valid, (rule 10) R* already includes all combinations; R** provide additional results	•
Are the following equivalences valid for all regular expression R and S? Give'a short justification. (1) R R* = R* R //valid, R has to occur at least once on both sides (2) (RS)* = R* S* //invalid, the left side can be RSSR while the right can't (3) (R e)* = R* //valid, empty string is always included in R*. (4) (R S)* = R* S* //invalid, right side can only contain empty string, R or S(but not be (5) (R* S*)* = (R S)* //valid, (rule T0) R* already includes all combinations, R** provide additional results	
Are the following equivalences valid for all regular expression R and S? Give'a short justification. (1) R R* = R* R //valid, R has to occur at least once on both sides (2) (RS)* = R* S* //invalid, the left side can be RSSR while the right can't (3) (R e)* = R* //valid, empty string is always included in R*. (4) (R S)* = R* S* //invalid, right side can only contain empty string, R or S(but not be (5) (R* S*)* = (R S)* //valid, (rule T0) R* already includes all combinations, R** provide additional results	0
Are the following equivalences valid for all regular expression R and S? Give'a short justification. (1) R R* = R* R //valid, R has to occur at least once on both sides (2) (RS)* = R* S* //invalid, the left side can be RSSR while the right can't (3) (R e)* = R* //valid, empty string is always included in R*. (4) (R S)* = R* S* //invalid, right side can only contain empty string, R or S(but not be (5) (R* S*)* = (R S)* //valid, (rule T0) R* already includes all combinations, R** provide additional results	
justification. (1) R R* = R* R //valid, R has to occur at least once on both sides (2) (RS)* = R* S* //invalid, the left side cân be RRSSR while the right cân't (3) (R e)* = R* //valid, empty string is always included in R*. (4) (R S)* = R* S* //invalid, right side can only contain empty string, R or S(but not be (5) (R* S*)* = (R S)* //válid, (rule T0) R* already includes all combinations, R** provide additional results	٠
(1) R R* = R* R //valid, R has to occur at least once on both sides (2) (RS)* = R* S* //invalid, the left side cân be RRSSR while the right cân't (3) (R e)* = R* //valid, empty string is always included in R*. (4) (R S)* = R* S* //invalid, right side can only contain empty string, R or S(but not be (5) (R* S*)* = (R S)* //vâlid, (rule 10) R* already includes all combinations, R** provide additional results	
(2) (RS)* = R* S* //invalid, the left side càn be RRSSR while the right can't (3) (R e)* = R* //valid, empty string is always included in R*. (4) (R S)* = R* S* //invalid, right side can only contain empty string, R or S(but not be (5) (R* S*)* = (R S)* //válid, (rule 10) R* alreády includes all combinations, R** provide additional results	٠
(3) (R e)*.= R*.//valid, empty string is always included in R*. (4) (R S)* = R* S* //invalid, right side can only contain empty string, R or S(but not be (5) (R* S*)* = (R S)* //válid, (rule T0) R* already includes all combinations, R** provide additional results	
(4) (R S) * = R* S* //invalid, right side can only contain empty string, R or S(but not be (5) (R* S*)* = (R S)* //válid, (rule 10) R* already includes all combinations, R** provide additional results	٠
(5) (R* S*)* = (R S)* //vålid, (rule 10) R* already includes all combinations, R** provide additional results	
additional results	•
	s no
	٠
	٠
	٠
	٠
	٠
	٠
	٠
	٠
	٠
	٠
	•
	٠
	٠
	·

