MLS	Dataset I	RBST(AIC) F	RBST(AICc) I	RBST(BIC) R	BST(HQIC) R	BST(GMDL)
	automobile	18.74(1)	18.89(3)	18.89(3)	18.89(3)	19.69(5)
	fertility	106.37(3)	106.37(3)	106.37(3)	106.37(3)	106.37(3)
	flow	64.26 (3)				
	forest	102.12(3)	102.12(3)	102.12(3)	102.12(3)	102.12(3)
Ridge	servo	61.49(3)	61.49(3)	61.49(3)	61.49(3)	61.49(3)
	slump	86.94(3)	86.94(3)	86.94(3)	86.94(3)	86.94(3)
	traffic	44.92(3)	44.92 (3)	44.92 (3)	44.92 (3)	44.92(3)
	wine_red	65.09(3)	65.09(3)	65.09(3)	65.09(3)	65.09(3)
	wine_white	72.80(3)	72.80(3)	72.80(3)	72.80(3)	72.80(3)
Avg. Rar	ık	(2.78)	(3.00)	(3.00)	(3.00)	(3.22)
SVR	automobile	20.90(3)	20.90(3)	20.90(3)	20.90(3)	20.90(3)
	fertility	106.85(3)	106.85(3)	106.85(3)	106.85(3)	106.85(3)
	flow	74.07(3)	74.07(3)	74.07(3)	74.07(3)	74.07(3)
	forest	122.11(3)	122.11(3)	122.11(3)	122.11(3)	122.11(3)
	servo	16.38(2)	16.38(2)	16.44(4)	16.44(4)	15.84(1)
	slump	76.31 (2)	76.31 (2)	91.21(4)	76.31(2)	99.12(5)
	traffic	44.80(4)	44.80(4)	43.39(2)	43.39(2)	43.39(2)
	wine_red	65.73 (3)				
	wine_white	56.04 (2)	56.04 (2)	64.15(4)	56.04 (2)	71.62(5)
Avg. Rar	ık	(2.89)	(2.89)	(3.28)	(2.83)	(3.11)
RF	automobile	12.49(3)	12.49(3)	12.49(3)	12.49(3)	12.49(3)
	fertility	103.55(3)	103.55(3)	103.55(3)	103.55(3)	103.55(3)
	flow	71.35(3)	71.35(3)	71.35 (3)	71.35 (3)	71.35 (3)
	forest	117.49(3)	117.49(3)	117.49(3)	117.49(3)	117.49 (3)
	servo	17.39(3)	17.39(3)	17.39(3)	17.39(3)	17.39(3)
	slump	77.36(3)	77.36(3)	77.36 (3)	77.36 (3)	77.36(3)
	traffic	53.98(3)	53.98(3)	53.98(3)	53.98(3)	53.98(3)
	wine_red	59.18 (3)				
	wine_white	60.65(3)	60.65(3)	60.65(3)	60.65(3)	60.65(3)
Avg. Rank		(3.00)	(3.00)	(3.00)	(3.00)	(3.00)
Mean Rank		(2.89)	(2.96)	(3.09)	(2.94)	(3.11)

Table 5: The 3-fold cross validation relative mean squared error and Friedman ranks for all the datasets when RBST, using several stop criteria (AIC, AICc, BIC, HQIC and GMDL), taking into account some baseline systems (Ridge, SVR and RF) and the GS sampling strategy.