Übungen zu Funktionentheorie 1

Prof. Dr. R. Weissauer Dr. Mirko Rösner Sommersemester 2020

Blatt 8 Musterlösung Abgabe auf Moodle bis zum 19. Juni

Bearbeiten Sie bitte nur vier Aufgaben. Jede Aufgabe ist vier Punkte wert. Für jedes Gebiet D bezeichne $\mathcal{O}(D)$ die Menge der holomorphen Funktionen $f:D\to\mathbb{C}$.

- **32. Aufgabe:** Seien V und U Gebiete mit $V \subseteq U$. Die Einschränkungsabbildung $\mathcal{O}(U) \to \mathcal{O}(V)$, $f \mapsto f|_V$ ist definiert durch $f|_V(z) = f(z)$ für $z \in V$. Zeigen Sie:
 - (a) Die Einschränkungsabbildung ist injektiv.
 - (b) Wenn $U \neq V$, dann ist die Einschränkungsabbildung nicht surjektiv.

Lösung:

- (a) Die Einschränkungsabbildung ist linear, also genügt es zu zeigt, dass ihr Kern der Null-Vektorraum ist. Sei $f \in \mathcal{O}(U)$ mit $f|_V = 0$, dann ist f(z) = 0 für alle $z \in V$. Wähle ein beliebiges $z_0 \in V$, dann ist z_0 Häufungspunkt in V, weil V offen ist und insbesondere eine Umgebung von z_0 enthält. Mit anderen Worten, es gibt eine Teilmenge $N \subseteq V$ mit $z_0 \notin N$ aber $z_0 \in \overline{N}$. Nach Identitätssatz ist damit f = 0.
- (b) Sei $U \neq V$. Wähle $z_0 \in U$ mit $z_0 \notin V$ und setze $g(z) = (z z_0)^{-1}$ für $z \in V$. Angenommen, es gäbe $f \in \mathcal{O}(U)$ mit $f|_V = g$. Nach Transitivität der Einschränkung gibt es dann $h \in \mathcal{O}(U')$ für $U' = U \setminus \{z_0\}$ definiert durch $h = f|_{U'}$ und $h|_V = g$. Wegen a) ist h das eindeutige Urbild von g in $\mathcal{O}(U')$ unter der Einschränkung und damit explizit gegeben durch $h(z) = (z z_0)^{-1}$. Nun ist aber h in jeder Umgebung von z_0 unbeschränkt. Das ist ein Widerspruch zur angenommenen Stetigkeit von f.
- **33.** Aufgabe: Sei $E = \{z \in \mathbb{C} \mid |z| < 1\}$. Bestimmen Sie Aut(E), also die Gruppe der Bijektionen $f: E \to E$, sodass f und f^{-1} holomorph sind. Hinweis: Schwarz'sches Lemma und Aufgabe 8.

Lösung: Sei $f \in Aut(E)$ beliebig und setze $z_0 = f(0)$.

- (a) Schritt 1: Wenn $z_0=0$, dann besagt das Schwarz'sche Lemma $|f(z)| \leq |z|$ für alle $z \in E$. Das gleiche Argument angewendet auf f^{-1} liefert $f(z) \geq |z|$, also |f(z)| = |z|. Nach dem Korollar zum Schwarzschen Lemma folgt dann $f(z) = c \cdot z$ für eine Konstante $c \in \mathbb{C}$ mit |c|=1.
- (b) Schritt 2: Sei nun $z_0 \in E$ beliebig. Wir konstruieren eine Matrix $M \in GL(2,\mathbb{C})$, sodass die Möbiustransformation $f_M(z) = M \langle z \rangle$ in Aut(E) liegt und $f_M(0) = z_0$. Dann ist $f^{-1} \circ f_M \in Aut(E)$ und erfüllt die Bedingung von Fall 1.

Behauptung: $M = \left(\frac{1}{z_0} \frac{z_0}{1}\right)$ erfüllt diese Eigenschaften. Es ist klar, dass $M\langle 0 \rangle = z_0$ nach Konstruktion. Invertierbar ist M, weil $\det(M) = 1 - |z_0|^2 > 0$ und die Inverse ist $M^{-1} = \frac{1}{1-|z_0|^2} \left(\frac{1}{z_0} \frac{-z_0}{1}\right)$. Beachte, dass der Vorfaktor bei der Möbiustransformation $f_{M^{-1}}$ ignoriert werden kann. Es bleibt zu zeigen, dass $f_M(E) \subseteq E$ und das folgt aus dem Satz von der Gebietstreue sobald man weiß dass $f_M(S^1) = S^1$. Beachte: Für alle $z \in S^1$ mit |z| = 1 gilt

$$|f_M(z)| = \frac{|z+z_0|}{|1+z\overline{z_0}|} = \frac{|z+z_0|}{|(\overline{z}+\overline{z_0})z|} = \frac{|z+z_0|}{|\overline{z}+\overline{z_0}|\cdot|z|} = |z|^{-1} = 1.$$

(c) Schritt 3: Jetzt erfüllt $f^{-1} \circ f_M$ die Voraussetzungen von Fall 1 und ist damit eine Konstante. Also ist $f = c \cdot f_M$ und damit ist jedes $f \in \operatorname{Aut}(E)$ von dieser Gestalt. Wir erhalten

$$\operatorname{Aut}(E) = \{ E \to E , z \mapsto c \cdot \frac{z + z_0}{z\overline{z_0} + 1} \mid c \in S^1, z_0 \in E \}.$$

Wie findet man M?

Sei $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ die gesuchte Matrix. Die Cayley-Transformation ist gegeben durch

$$C = \begin{pmatrix} -i & 1 \\ 1 & -i \end{pmatrix}$$
 , $C^{-1} = \frac{1}{2} \begin{pmatrix} i & 1 \\ 1 & i \end{pmatrix}$.

Wir müssen a, b, c, d so finden, dass $f_M \in \operatorname{Aut}(E)$, also $N \langle \mathbb{H} \rangle = \mathbb{H}$ für $N = CMC^{-1}$. Insbesondere wird der Rand der oberen Halbebene erhalten $N \langle \mathbb{R} \cup \infty \rangle \subseteq \mathbb{R} \cup \infty$. Nach dem Satz¹ unten auf Seite 10 im Skript sollte N reelle Einträge haben. Eine Rechnung liefert

$$N = CMC^{-1} = \frac{1}{2} \begin{pmatrix} -i & 1 \\ 1 & -i \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} i & 1 \\ 1 & i \end{pmatrix} = \frac{1}{2} \begin{pmatrix} a+ic-ib+d & -ia+b+c+id \\ ai+b+c-id & a+ib-ic+d \end{pmatrix} \ .$$

Alle Einträge liegen in \mathbb{R} . Durch Linearkombination folgt

$$a+d \in \mathbb{R}$$
, $b+c \in \mathbb{R}$, $i(a-d) \in \mathbb{R}$, $i(b-c) \in \mathbb{R}$

Daraus folgt $a=\overline{d}$ und $b=\overline{c}$. Die Eigenschaft $M\langle 0\rangle=z_0$ impliziert $b/d=z_0$. Setzen wir jetzt zum Beispiel d=1, erhalten wir die gesuchte Matrix $M=\left(\frac{1}{z_0}\frac{z_0}{1}\right)$. Die Eigenschaft $|z_0|<1$ impliziert sofort die positive Determinante $\det(N)=\det(M)=1-|z_0|^2>0$. Nach der Behauptung auf Seite 12 im Skript ist damit f_N ein Automorphismus von $\mathbb H$ und damit f_M ein Automorphismus von E.

Anmerkung: Das Argument auf Seite 82/83 im Skript ist natürlich viel zu knapp und wird nicht als Lösung akzeptiert.

34. Aufgabe: Sei $f \in \mathcal{O}(D)$ nicht konstant, sodass |f| in $z_0 \in D$ ein Minimum annimmt, also $|f(z)| \ge |f(z_0)|$ für alle $z \in D$. Zeigen Sie $f(z_0) = 0$. Hinweis: Maximumsprinzip.

Lösung: Angenommen $f(z_0) \neq 0$. Dann ist $|f(z)| > |f(z_0)| > 0$, also ist $f(z) \neq 0$ für alle $z \in D$. Damit ist $z \mapsto \frac{1}{f(z)}$ holomorph und $|\frac{1}{f(z)}|$ nimmt in z_0 ein Maximum an. Nach dem Maximumsprinzip ist damit $z \mapsto \frac{1}{f(z)}$ konstant, also ist f konstant. Widerspruch.

35. Aufgabe: Konstruieren Sie eine nichtkonstante holomorphe Funktion $f: \mathbb{C}^{\times} \to \mathbb{C}$ mit f(1/n) = 0 für alle $0 \neq n \in \mathbb{Z}$. Warum ist das kein Widerspruch zum Identitätssatz?

Lösung: Sei $f(z) = \sin(\pi/z)$. Dann ist f als Verkettung holomorpher Funktionen holomorph. Die Nullstellen des Sinus sind bekannt, damit ist f(1/n) = 0 für alle ganzen $n \neq 0$. Der Identitätssatz ist hier nicht anwendbar: Die Nullstellenmenge $\{1/n \mid 0 \neq n \in \mathbb{Z}\}$ hat zwar einen Häufungspunkt in Null, aber dieser Häufungspunkt liegt nicht im Definitionsbereich der Funktion f.

 $^{^{1}}$ Der Satz erlaubt einen Skalar λ , dieser beeinflusst aber nicht die Möbiustransformation.

36. Aufgabe: Seien $f, g \in \mathcal{O}(\mathbb{C})$ holomorph. Zeigen Sie: Wenn $|g(z)| \leq |f(z)|$ für alle $z \in \mathbb{C}$, dann gibt es eine Konstante $c \in \mathbb{C}$ mit

$$g = c \cdot f$$
.

Hinweis: Modifizieren Sie den Beweis von Aufgabe 24(c).