Building Semantic Parsers

Matt Gardner, Allen Institute for Artificial Intelligence

So you want to build a parser...

where do you start?

what should you be thinking about?

Lots of code available

- · Pre-neural frameworks
 - SEMPRE (Stanford) https://github.com/percyliang/sempre
 - SPF (Cornell / UW) https://github.com/clic-lab/spf
 - WASP (UT Austin) http://www.cs.utexas.edu/~ml/wasp/
- Neural frameworks
 - OpenNMT (Harvard) (needs hacking to do constrained decoding) http://opennmt.net/
 - AllenNLP (AI2) (coming soon) https://github.com/allenai/allennlp
- Code for single papers
 - https://github.com/donglixp/coarse2fine
 - https://github.com/clic-lab/atis
 - https://github.com/udiNaveh/nlvr tau nlp final proj
 - https://github.com/sriniiyer/nl2sql
 - https://github.com/allenai/pnp/tree/wikitables2
 - ... (just look for papers, most have code these days)

An open source neural machine translation system.

 Problem: you really want to do some kind of constrained decoding

- Problem: you really want to do some kind of constrained decoding
- Dong and Lapata have done a lot of work using OpenNMT, with seq2seq and seq2tree models, so check out their code if you want to go this route

1. Convert programs to action sequences

((reverse athlete) (and (nation south_korea) (year ((reverse date) (>= 2010-mm-dd)))

2. What actions are valid at every timestep?

3. Convert action sequences back to programs

Generated Actions

```
<c,d>→date
                                                           d \rightarrow (>= d)
c \rightarrow (\langle r, c \rangle r)
\langle r,c \rangle \rightarrow (\langle \langle c,r \rangle, \langle r,c \rangle \rangle \langle c,r \rangle) d\rightarrow2010.mm.dd
<<c,r>,<r,c>> → reverse
<c,r>→athlete
r \rightarrow (\langle r, \langle r, r \rangle > r r)
<r,<r,r>>→and
                                                                                                         Logical Form
r \rightarrow (\langle c, r \rangle c)
                                                                                                         ((reverse athlete)
<c,r>→nation
                                                                                                          (and (nation south_korea)
c→south korea
                                                                                                               (year ((reverse date)
r \rightarrow (\langle c, r \rangle c)
                                                                                                                       (>= 2010-mm-dd)))
<c,r>→year
c \rightarrow (\langle d, c \rangle d)
\langle d,c \rangle \rightarrow (\langle c,d \rangle,\langle d,c \rangle \rangle \langle c,d \rangle)
<<c,d>,<d,c>>→reverse
```

4. (sometimes) A way to execute programs

Logical Form

Athlete	Nation	Olympics	Medals
Gillis Grafström	Sweden (SWE)	1920–1932	4
Evgeni Plushenko	Russia (RUS)	2002–2014	4
Karl Schäfer	Austria (AUT)	1928–1936	2
Katarina Witt	East Germany (GDR)	1984–1988	2
Tenley Albright	United States (USA)	1952-1956	2
Kim Yu-na	South Korea (KOR)	2010–2014	2
Patrick Chan	Canada (CAN)	2014	2

5. If you don't have labeled logical forms: a different way to train

- 1. Convert programs to action sequences
- 2. What actions are valid at every timestep?
- 3. Convert action sequences back to programs
- 4. (sometimes) A way to execute programs
- 5. If you don't have labeled logical forms: a different way to train

A few additional considerations

Token-based or grammar-based?

	Token-based	Grammar-based
Programs to actions	Trivial	Harder
What actions are valid?	Harder	Trivial
Actions to programs	Trivial	Harder

This decision also has modeling implications - one might be easier on the model than the other

Programs to actions

- This can be surprisingly difficult to get right don't underestimate how much work it is to get a good grammar!
- The way that you define the action space can have a large impact on your model performance
 - If you write the language, the closer it is to your utterances, the better
 - If you're using a programming language, you still might want to simplify / collapse parts of the grammar
- Particularly important: which parts of your grammar are specific to individual instances?
 - In WikiTableQuestions: table cells, numbers
 - In source code: the other classes and methods in the current scope, the allowed methods on an object

An open-source NLP research library, built on PyTorch

- The only neural framework for semantic parsing
- Still in progress, but early version is available now, official release in the next month or two
- You get all of the benefits of AllenNLP (configurability, easy ELMo, easy demos, ...), plus...

An open-source NLP research library, built on PyTorch

Grammars

- An easy way to define lisp-like languages, if you are writing your own (can be bypassed if you're not)
- Handles going from programs to actions and back again, and getting the valid actions at each grammar state

An open-source NLP research library, built on PyTorch

Model

- Semantic parsing model is a state machine
- Start in the initial grammar state; model ranks valid transitions between states
- Transition function and state representation are re-usable across models
- State machines are more general than semantic parsers you can use this for other tasks, too

An open-source NLP research library, built on PyTorch

Training

- Allows for many ways of training the state machine
 - Fully-supervised (e.g., maximum likelihood)
 - Weakly supervised (e.g., maximum marginal likelihood, or answer-only)
 - Reinforcement learning (with a reward function)

An open-source NLP research library, built on PyTorch

Datasets

- WikiTableQuestions
- Cornell NLVR
- ATIS
- Kushman open algebra questions
- CONCODE
- Other text-to-SQL datasets

• ...

Tutorial Summary

- Seq2Seq-based models have taken over semantic parsing research
- Datasets
- Constrained Decoding
- Language to Code
- Language in Context
- Building semantic parsers

Slides will be at https://github.com/allenai/acl2018-semantic-parsing-tutorial

Happy semantic parsing!