

- N190422 P.BUJJI
- N190897 B.SRUTHI
- N190201 B.NAGARANI
- N190396 B.PRAVALLIKA
- N191106 R.UMADEVI
- N190392 G.SIDDARDHA

TABLE OF CONTENTS =

- Abstract
- Introduction
- Theoretical Framework for Document Classification
- Proposed Methodology
- Model selection
- Results and Discussions
- Observations
- **Challenges And Limitations**
- Conclusion
- Future work
- References

ABSTRACT

Bank Document Classification using Machine Learning Techniques

Bank Document Classification using ML is a process of automatically categorizing financial documents such as bank statements, invoices, credit card statements, and tax returns using machine learning algorithms. ML Techniques used for bank document classification can improve the accuracy and speed of document categorization, helping organizations to save time, resources, and money. This can help banks to automate the process of document classification, reducing manual effort and improving accuracy. The Project uses Machine Learning to classify bank documents into four categories: bank statements, invoices, credit card statements, and tax returns. It combines text and image analysis to achieve this. Key techniques include Computer Vision for image data, Natural Language Processing for text data. These technologies work together to automate the document classification process.

INTRODUCTION

Classification of the bank documents/images such as bank statements, credit card statements, invoices and tax returns using ensemble Machine Learning algorithms. The most effective and efficient way to determine the best models to classify the bank documents using machine learning algorithms. The collected data sets are pre-processed and convert into machine readable format using Natural Language Processing (NLP) and Optical Character Recognition (OCR) techniques. Extract relevant features from preprocessed using techniques such as TF-IDF and word embeddings. An appropriate machine learning models are used to classify the documents, Random Forest, Cat Boost, XG Boost and Voting Classifier to achieve better accuracy. The model performance is evaluated by using the evaluation metrics such as Accuracy, Recall, Precision, and F1 score.

THEORETICAL FRAMEWORK FOR CONCUMENT CLASSIFICATION

The purpose of document classification in banking is to organize and categorize documents such as bank statements, invoices, credit card statements, and tax returns, available in various formats (PDFs, Docs, Images), to improve processing efficiency, accuracy, compliance, and data security. Documents contain structured and unstructured data requiring preprocessing to remove unwanted elements. The text extraction process involves preparing and scanning documents, converting them to digital formats using OCR, preprocessing the text to clean and normalize it, and classifying it using machine learning algorithms. Online classification uses ML and NLP for quick, automated handling of digital documents, while offline classification involves manual processing of physical documents, essential for non-digital records.

PROPOSED METHODOLOGY:

The document classification process involves determining document types, collecting and preprocessing data, extracting features using TF-IDF vectorization, training and evaluating the model, and predicting the best-performing model.

WORD CLOUD REPRESENTATION OF KEYWORDS

DATA ACQUISITION AND PREPROCESSING:

Optical Character Recognition (OCR):

Utilize OCR technology to extract text from scanned or photographed bank documents, converting images into machine-readable data.

Text Extraction:

Apply advanced text extraction techniques to parse and isolate relevant information from the OCR output, preparing the data for classification.

Data Cleaning:

Implement robust data cleaning and normalization processes to address any inconsistencies, typos, or formatting issues in the extracted text.

MODEL SELECTION AND TRAINING

Random Forest Robust algorithm that creates multiple decision trees to classify documents. Handles both numerical XGBoost and categorical features well. Highly optimized gradient boosting method known for its speed and accuracy on a wide range of CatBoost document classification tasks. 3 Gradient boosting framework that can handle categorical variables effectively, making it well-suited for Voting Classifier mixed data types in bank documents. Ensemble method that combines predictions from multiple models to improve overall classification performance and robustness.

EVALUATION PARAMETERS

Confusion Matrix:

A confusion matrix, also known as an error matrix, is a table that provides a summary of the performance of a classification model on a set of test data. It allows us to visualize the performance of a model by showing the number of correct and incorrect predictions made for each class. The confusion matrix is particularly useful when dealing with multi-class classification problems.

		^	\"A_{d_1}				
		Actual	Values				
		Positive (1)	/alues Negative (0) FP				
d Values	Positive (1)	TP	FP				
Predicted Value	Negative (0)	FN	TN				

Evaluation Parameters:

A confusion matrix typically has four cells representing different outcomes:

- True Positives (TP): The number of samples that are correctly predicted as positive (belonging to the positive class).
- True Negatives (TN): The number of samples that are correctly predicted as negative (not belonging to the positive class).
- False Positives (FP): The number of samples that are incorrectly predicted as positive (misclassified as belonging to the positive class when they actually don't).
- False Negatives (FN): The number of samples that are incorrectly predicted as negative (misclassified as not belonging to the positive class when they actually do).

VARIOUS PERFORMANCE METRICS

From this confusion matrix, various performance metrics can be calculated, including:

- Accuracy: The overall accuracy of the model, calculated as (TP + TN) / (TP + TN + FP + FN).
- **Precision**: Also known as the positive predictive value, it measures the proportion of correctly predicted positive samples out of all samples predicted as positive, calculated as TP / (TP + FP).
- **Recall**: Also known as sensitivity or true positive rate, it measures the proportion of correctly predicted positive samples out of all actual positive samples, calculated as TP / (TP + FN).
- **F1-score**: The harmonic mean of precision and recall, providing a balanced measure of a model's performance, calculated as 2 * (Precision * Recall) / (Precision + Recall).

RANDOM FOREST ALGORITHM

Random Forest algorithm is highly beneficial for bank document classification projects due to its capability to effectively manage large and varied datasets. By utilizing ensemble learning, Random Forest combines multiple decision trees, thereby improving classification accuracy while mitigating overfitting. It identifies influential features within documents, such as words, phrases, and metadata, essential for precise classification in banking contexts. Moreover, its robustness against noise and scalability to handle extensive datasets make it particularly suitable for real-world applications within banking environments.

CLASSIFIER-1 RANDOM FOREST

```
[[401
                01
               15]]
Accuracy: 0.96
Micro Precision: 0.96
Micro Recall: 0.96
Micro F1-score: 0.96
Macro Precision: 0.99
Macro Recall: 0.85
Macro F1-score: 0.90
Weighted Precision: 0.97
Weighted Recall: 0.96
Weighted F1-score: 0.96
Classification Report
              precision
                            recall f1-score
                                                support
     Class 1
                   0.96
                              1.00
                                        0.98
                                                    401
     Class 2
                   1.00
                              0.86
                                        0.93
                                                     44
     class 3
                   1.00
                              0.93
                                        0.96
                                                     14
     class 4
                   1.00
                              0.60
                                         0.75
                                                     25
                                         0.96
                                                    484
    accuracy
                                        0.90
                    0.99
                              0.85
                                                    484
   macro avg
weighted avg
                    0.97
                              0.96
                                         0.96
                                                    484
```


1.a Classifier-1 Evaluation Metrics values

1.b Classifier -1 Heat Map

The Random Forest gives Accuracy (0.96), Precision(0.97), Recall(0.96),F1-Score(0.96)

XGBOOST ALGORITHM(GRADIENT BOOSTING)

XGBoost, known as Extreme Gradient Boosting, is a powerful machine learning method specifically designed for handling structured data tasks efficiently. It works by building a series of simple predictive models, often decision trees, in a step-by-step manner. Each new model corrects errors made by the previous ones, leading to improved accuracy. What sets XGBoost apart is its ability to manage large datasets swiftly, handle missing data effectively, and deal with complex relationships between features. In our bank document classification project, XGBoost played a crucial role in achieving high accuracy by integrating with customized data preprocessing and feature engineering steps.

XGBOOST ALGORITHM

```
Confusion Matrix
[[399
                0]
        0 13
            0 17]]
Accuracy: 0.98
Micro Precision: 0.98
Micro Recall: 0.98
Micro F1-score: 0.98
Macro Precision: 0.98
Macro Recall: 0.90
Macro F1-score: 0.93
Weighted Precision: 0.98
Weighted Recall: 0.98
Weighted F1-score: 0.97
Classification Report
              precision
                            recall f1-score
                                               support
     Class 1
                   0.98
                              1.00
                                        0.99
                                                   401
     Class 2
                   0.96
                              0.98
                                        0.97
                                                    44
     class 3
                   1.00
                              0.93
                                        0.96
                                                    14
     class 4
                   1.00
                              0.68
                                        0.81
                                                    25
                                        0.98
                                                   484
    accuracy
   macro avg
                   0.98
                              0.90
                                        0.93
                                                   484
weighted avg
                   0.98
                              0.98
                                        0.97
                                                   484
```


2.b.Heat Map

CATEGORICAL BOOSTING ALGORITHM

CatBoost, short for Categorical Boosting, is a state-of-the-art machine learning algorithm specifically designed to handle categorical data efficiently. It uses gradient boosting on decision trees, similar to other boosting algorithms, but stands out due to its ability to directly process categorical features without extensive preprocessing. This results in more accurate and faster models. In our bank document classification project, CatBoost excelled by automatically handling the categorical nature of the data, leading to improved accuracy and efficiency. This made it an ideal choice for categorizing various bank documents, enhancing the overall performance and decision-making process within the financial institution.

CLASSIFIER-3: CATBOOST

```
Confusion Matrix
[[401
                01
                0]
            0 17]]
Accuracy: 0.98
Micro Precision: 0.98
Micro Recall: 0.98
Micro F1-score: 0.98
Macro Precision: 0.99
Macro Recall: 0.89
Macro F1-score: 0.93
Weighted Precision: 0.98
Weighted Recall: 0.98
Weighted F1-score: 0.98
Classification Report
              precision
                            recall f1-score
                                                support
     Class 1
                   0.97
                              1.00
                                        0.99
                                                    401
     Class 2
                   1.00
                              0.95
                                        0.98
     Class 3
                   1.00
                              0.93
                                        0.96
                                                     14
     Class 4
                   1.00
                              0.68
                                        0.81
                                                     25
                                        0.98
                                                    484
    accuracy
   macro avg
                    0.99
                                        0.93
                                                    484
                              0.89
weighted avg
                    0.98
                              0.98
                                        0.98
                                                    484
```


3.a. Classifier-3 Evaluation Metrics values

3.b Heat Map

CatBoost gives the Accuracy (0.98), Precision(0.98), Recall(0.98),F1-Score (0.98)

CLASSIFIER: 4-VOTING CLASSIFIER

A Voting Classifier is an ensemble method that combines the predictions of multiple models, such as XGBoost, CatBoost, and Random Forests, to improve accuracy. By leveraging the strengths of each algorithm, it enhances robustness and performance. In our bank document classification project, the Voting Classifier significantly boosted accuracy and reliability, improving document categorization efficiency within the financial institution.

TECHNOLOGIES AND LIBRARIES USED

Jupyter Notebook:

Jupyter Notebook is an open-source web-based application that allows you to create and share documents containing live code, visualizations, explanatory text, and more. Jupyter Notebook provides an interactive environment where you can write and execute code in cells, view the output, and document your work.

Python Libraries:

Numpy:

NumPy is a popular Python library for numerical computations. It stands for "Numerical Python." NumPy provides a powerful and efficient way to work with arrays, matrices, and multi-dimensional data in Python. It is a fundamental library for scientific computing and data analysis in Python.

TECHNOLOGIES AND LIBRARIES USED

Pandas:

Pandas is a powerful and popular open-source Python library for data manipulation and analysis. It provides data structures and functions that make it easier to work with structured data, such as CSV files and more. Pandas is built on top of NumPy and is widely used in data science, machine learning, and data analysis workflows.

Matplotlib:

Matplotlib is a widely used Python library for creating static, animated, and interactive visualizations. It provides a flexible and comprehensive set of tools for generating various types of plots, charts, and graphs. Matplotlib is often used in data analysis, scientific research, and data visualization tasks.

Seaborn:

Seaborn is a Python data visualization library built on top of Matplotlib. It provides a high-level interface for creating attractive and informative statistical graphics.

TEXT PREPROCESSING TECHNIQUES

Tokenization: Tokenization is the process of separating the text into words, sentences using the NLTK library. These tokens are useful for understanding context or developing NLP models.

Stemming: Stemming is a process which reduces a word to its base or root form. It is used to normalize the text.

Lemmatization: Lemmatization is a method of normalizing text documents. The main purpose of text normalization is to keep the vocabulary small and to remove noise, which helps improve the accuracy of many language modeling tasks

Vectorization: In general, Machines can't understand or processed text data in a raw form. The text is converted into numerical format (Vector) that easily readable by the Machine. TF-IDF(**Term frequency** — **Inverse document frequency**)

HARDWARE AND SOFTWARE REQUIREMENTS

Minimum Hardware requirement:

• RAM: 4GB

• Storage: HDD or SSD with sufficient storage

• System type: 64-bit

Minimum Software requirements:

- Operating System: Windows 8 and above
- Programming Language: Python 3.9
- IDE: Jupyter-notebook

RESULTS

Accuracy Analysis:

The classification models performed well, with accuracies between 96% and 98%.

Models like Random Forest, XGBoost, CatBoost, and Voting Classifier were tested.

Individual Classifier Results:

Random Forest: 96% accuracy.

XGBoost, CatBoost, and Voting Classifier: 98% accuracy.

Model/Classifier	Accurac	Precision	Recall	F1-Score	
Random Forest	0.96	0.97	0.96	0.96	
XG Boost	0.98	0.98	0.98	0.98	
Cat Boost	0.98	0.98	0.98	0.98	
Voting Classifier	0.98	0.99	0.98	0.97	

Bank_Statements Output:

redicted Class		
bank_statements		,
	Flag	

Use via API 🖋 - Built with Gradio 🧇

Credit_card Output:

Upload your image

\$ Your Bank

Account Number: XXXX XXXX XXXX XXXX Customer Service: 1-800-XXX-XXXX

Page 2 of 2

ACCOUNT ACTIVITY

Post Date	Trans Date	Reference Number	Merchant Name or Description of Transaction	Dollar Amount
		PAYMENTS A	AND OTHER CREDITS	
MM/DD	MM/DD	XXXX	PAYMENT - THANK YOU	- \$XXX.XX
		PU	IRCHASES	
MM/DD	MM/DD	XXXX	Merchant Name	\$XX.XX
MM/DD	MM/DD	XXXX	Merchant Name	\$XXX.XX
MM/DD	MM/DD	XXXX	Merchant Name	\$X.XX
MM/DD	MM/DD	XXXX	Merchant Name	\$XX.XX
			FEES	
MM/DD	MM/DD	XXXX	Late Payment Fee	\$XX.XX
MM/DD	MM/DD	XXXX	Cash Advance Fee	\$XX.XX
MM/DD	MM/DD	XXXX	Balance Transfer Fee	\$XX.XX
		INTER	EST CHARGED	
MM/DD			Purchase Interest Charge	\$XX.XX
MM/DD			Cash Advance Interest Charge	\$XX.XX
MM/DD			Balance Transfer Interest Charge	\$XX.XX

XXXX Totals Year-to-Date			
Total fees charged in XXXX	\$XX.XX		
Total interest charged in XXXX	\$XX.XX		

INTEREST CHARGES

Your Annual Percentage Rate (APR) is the annual interest rate on your account.

10

Annual Percentage Balance Subject to

Predicted Class	
credit_card	

Flag

Tax_Return Output:

For the year Jah. 1-De	c. 31, 2014, or other tax year beginning			.2014, ending		.20	Sec	e separate instruction	ons.
Your first name and	rita	Last name	7				Y60	ar social security nur	nber
If a joint return, spo.	se's first name and initial	Last name					Spo	use's social security n	итібег
Home address (num	ber and street). If you have a P.O. b	ox, see instru	ctions.			Apt. no.	•	Make sure the SSN(s) and on line 50 are to	
City, town or pest offic	se, state, and ZIF code. If you have a for	elgn address, i	eleo complete spaces	below (see Instructions).			Oher	esidential Election Car Khina Tyou, or your spous	fing
Foreign country ner	*		Foreign province/	state/county	Foreig	gn pastal cod		, wort \$3 to go to this tand, below will not change your \$- You	
Filing Status Check only one box.	Single Married filing jointly Married filing separal and full name here. I	tely. Enter) the ove onli	qualifying po d's name he	erson is a chi	id but i	person), (See Instructio rot your dependent, en dent child	7750
Exemptions	6a Vourself, if some	one can clai	m you as a deper	ident, do not chec	k box 6s .	111		Boxes checked on 6a and 6b No. of children	
	e Dependents: (1) Fretname Lastname		(I) Department's clair security number	(II) Dependent's readership to you	mattyng t	vid under age t or child but che outructions		on 6c who: • lived with you • did not live with	
if more than four dependents, see							=	you due to disorce or separation (see instructions) Dependents on 60 not entered above	_
instructions and check here	d Total number of exem	ptions clain	red					Add numbers on lines above	
Income	7 Wages, salaries, tips,	etc. Attach	Form(s) W-2 .			6.0	7		
moonie	Ba Taxable interest. Atta	ch Scheduk	Bif required .				8a		
12001220000	b Tax-exempt interest.	Do not incl	ude on line 8a .	8b					
Attach Form(s) W-2 here, Also	9a Ordinary dividends. At	tach Sched	tule B if required		0000	5.45%	9a		
ettach Forms	 b Qualified dividends 			. 9b					
W-2G and	10 Taxable refunds, credi	ts, or offset	is of state and loc	si income taxes ,			10		
1099-R if tax	11 Alimony received .						11		
was withheld.	12 Business income or do	rea). Attach	Schedule C or C	6Z			12		
archive and a second	13 Capital gain or (loss).	Attach Schu	edule D if required	. If not required, ch	eck here I	• 🗆	13		
If you did not get a W-2.	14 Other gains or (losses)	Attach Fo	rm 4797		10000		14		
get a W-2, see instructions.	15a IFIA distributions .	15a	Walker Co., Inc.	b Taxable of	mount .		15b		
	16a Pensions and annuities	16a		b Taxable a	mount .		16b		
	17 Flental real estate, roy	alties, party	erships, 5 corpor	ations, trusts, etc.	Attach Sch	edule E	17		
	18 Farm income or (loss).	Attach Sch	redule F				18		
	19 Unemployment comp	ensation .					19		
	20a Social security benefits	20a		b Taxable a		100	20b		
	21 Other income. List typ	e and amo	int				21		

tax_return		
		11

Flag

Bank Invoice Output:

COMPARATIVE ANALYSIS OF CLASSIFIER'S RESULTS

XGBoost, CatBoost, and Voting Classifier achieved the highest accuracy of 91%, outperforming Random Forest.

The Voting Classifier combined predictions from multiple models, making it the most reliable and robust.

Model/Classifer	Classification	Accuracy	Precision	Recall	F1-Score
	bank_invoice		0.96	1.00	0.98
Dandan Farrat	bank_statements	0.06	1.00	0.86	0.93
Random Forest	credit_card	0.96	1.00	0.93	0.96
	tax_return		1.00	0.6	0.75
	bank_invoice		0.98	1.00	0.99
VC Poost	bank_statements	0.00	0.96	0.98	0.97
XG Boost	credit_card	0.98	1.00	0.93	0.96
3	tax_return		1.00	0.68	0.81
	bank_invoice		0.97	1.00	0.99
Cat Basat	bank_statements	0.00	1.00	0.95	0.98
Cat Boost	credit_card	0.98	1.00	0.93	0.96
1	tax_return		1.00	0.68	0.81
3	bank_invoice		0.97	1.00	0.99
Vetice Classifier	bank_statements	1 000	1.00	0.95	0.98
Voting Classifier	credit_card	0.98	1.00	0.93	0.96
3	tax_return		1.00	0.64	0.78

OBSERVATION

- 1. It is observed that the classification of the bank documents achieved better results with different ensemble Machine Learning Models (i.e Random Forest, XG Boost and Cat Boost as model and Voting Classifier is bench mark model
- 2. The performance of the individual classifier is measured based on the output values of evaluation metrics (Accuracy, Precision, Recall and F1-Score)
 - i. The Random Forest gives Accuracy (0.96), Precision(0.96), Recall(0.96),F1-Score (0.96)
 - ii. XGBoost gives the Accuracy (0.98), Precision (0.98), Recall(0.91),F1-Score (0.98)
 - iii. CatBoost gives the Accuracy (0.98), Precision(0.98), Recall(0.98),F1-Score (0.98)
 - iv. Voting Classifier gives the Accuracy (0.98), Precision (0.98), Recall(0.98),F1- Score (0.98)

Based the results obtained from the above mentioned 4 classifiers, It is observed that Voting Classifier, XGBoost and CatBoost algorithms gives highest accuracy(98%) among all four classifiers and equally performed.

CHALLENGES:

- Cleaning the datasets (Scanned documents)
- Bank documents can come in a variety of formats, including PDF files, scanned images, and handwritten notes, making it difficult to extract useful information. Some files may contain information belonging to more than one category, making it difficult to categorize them correctly.
- Banks may update their document formats, which requires retraining of classification patterns to recognize new patterns.

LIMITATIONS:

- Extracting handwritten signatures and converting to computer generated text
- While converting PDF documents(text and images) into text only text information is retrieved.

FUTURE WORK:

 As part of future work, finance and Banking sectors are tremendously developed globally integrating the Deep Learning and Natural Language Processing techniques into document classification can enhance accuracy and efficiency by reducing errors.

CONCLUSION:

- The proposed system uses advanced ensemble machine learning algorithms and natural language processing techniques, which helps to automatically categorize and classify the bank documents that contains both structured and unstructured data. The salient features extracted from the ensemble machine learning model are fed into output classification.
- The proposed ensemble machine learning models XGBoost(98%) and Voting Classifier(98%) achieved highest accuracy in comparison with Random Forest (96%) and CatBoost(98%).

REFERENCES

- 1. Sarosh Dandoti,(2022), Text Document Classification System,International Research Journal of Engineering and Technology (IRJET), 9(6),2847-2850
- 2. Arslan, Ö., & Uymaz, S. A. (2022). Classification of Invoice Images by Using Convolutional Neural Networks. Journal of Advanced Research in Natural and Applied Sciences, 8(1), 8-25.
- Sheth, V., Tripathi, U., & Sharma, A. (2022). A Comparative Analysis of Machine Learning Algorithms for Classification Purpose. Procedia Computer Science, 215, 422-431.
- 4. Ghumade, T. G., & Deshmukh, R. A. (2019). A document classification using NLP and recurrent neural network. Int. J. Eng. Adv. Technol, 8(6), 632-636.
- 5. Engin, D., Emekligil, E., Oral, B., Arslan, S., & Akpınar, M. (2019). Multimodal deep neural networks for banking document classification. In International Conference on Advances in Information Mining and Management (pp. 21-25).

THANK YOU