2014 TALWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-2 tasks

holiday Language: en-IDN

Holiday

Jian-Jia sedang merencanakan liburan berikutnya di Taiwan. Selama liburannya, Jian-Jia berpindah dari satu kota ke kota lainnya, dan menyaksikan hal-hal menarik (*attractions*) di kota tersebut.

Ada n kota di Taiwan, semua kota lokasinya pada satu jalan tol. Kota-kota tersebut dinomori secara berurutan dari 0 sampai dengan n-1. Untuk kota i, dengan 0 < i < n-1, kota-kota bertetangga langsung adalah kota i-1 dan kota i+1. Satu-satunya kota yang bertetangga dengan kota 0 adalah kota 0 adalah

Pada setiap kota, ada beberapa hal yang menarik. Jian-Jia memiliki *d* hari libur dan berencana mengunjungi hal menarik sebanyak mungkin. Jian-Jia sudah memilih kota di mana ia memulai liburannya. Setiap hari dalam liburannya, Jian-Jia dapat berpindah dari satu kota ke kota yang bertetangga lainnya, atau mengunjungi hal-hal menarik di kota di mana ia berada, tapi tak mungkin melakukan kedua hal tersebut. Jian-Jia tidak akan *pernah mengunjungi hal menarik di kota yang sama dua kali* walaupun ia berada pada kota tersebut lebih dari satu kali. Bantulah Jian-Jia merencanakan liburannya sehingga ia dapat mengunjungi sebanyak mungkin hal menarik.

Example

Misalnya Jian-Jia mempunyai 7 hari libur, ada 5 kota (seperti ditunjukkan pada tabel di bawah), dan ia mulai dari kota 2. Pada hari pertama, Jian-Jia mengunjungi 20 hal-hal menarik di kota 2. Pada hari kedua, Jian-Jia berpindah dari kota 2 ke kota 3, dan pada hari ketiga ia mengunjungi 30 hal-hal menarik di kota 3. Kemudian, Jian-jia menghabiskan tiga hari berikutnya untuk berpindah secara berturut-turut dari kota 3 ke kota 0, dan mengunjungi 10 hal-hal menarik di kota 0 pada hari ketujuh. Banyaknya hal-hal menarik yang dikunjungi oleh Jian-Jia adalah 20 + 30 + 10 = 60, yaitu banyaknya maksimal hal-hal menarik yang dapat dilakukannya dalam 7 hari jika ia mulai berangkat dari kota 2.

city	number of attractions	
0	10	
1	2	
2	20	
3	30	
4	1	

day	action		
1	visit the attractions in city 2		
2	move from city 2 to city 3		
3	visit the attractions in city 3		
4	move from city 3 to city 2		
5	move from city 2 to city 1		
6	move from city 1 to city 0		

day	action	day
7	visit the attractions in city 0	7

Task

Anda diminta untuk mengimplementasi sebuah function findMaxAttraction yang menghitung maksimal hal-hal menarik yang dapat dikunjungi Jian-Jia.

- findMaxAttraction(n, start, d, attraction)
 - n: the number of cities.
 - start: the index of the starting city.
 - d: the number of days.
 - attraction: array of length n; attraction[i] is the number of attractions in city i, for $0 \le i \le n-1$.
 - The function should return the maximum number of attractions Jian-Jia can visit.

Subtasks

In all subtasks $0 \le d \le 2n + \lfloor n/2 \rfloor$.

Additional constraints:

subtask	points	n	maximum number of attractions in a city	starting city
1	7	$2 \le n \le 20$	1,000,000,000	no constraints
2	23	$2 \leq n \leq 100,000$	100	city 0
3	17	$2 \leq n \leq 3,000$	1,000,000,000	no constraints
4	53	$2 \leq n \leq 100,000$	1,000,000,000	no constraints

Implementation details

Anda harus mensubmisi sebuah file holiday.c, holiday.cpp or holiday.pas. File ini adalah implementasi dari subprogram yang dijelaskan di atas dengan *signature* sebagai berikut. Anda juga perlu melakukan *include* sebuah header file holiday.h untuk implementasi dalam C/C+++.

Perhatikanlah bahwa hasilnya mungkin besar, dan tipe dari nilai yang di *return* oleh findMaxAttraction adalah 64-bit integer.

C/C++ program

long long int findMaxAttraction(int n, int start, int d,
int attraction[]);

Pascal program

```
function findMaxAttraction(n, start, d : longint;
attraction : array of longint): int64;
```

Sample grader

The sample grader reads the input in the following format:

- line 1:n, start, d.
- line 2: attraction[0], ..., attraction[n-1].

The sample grader will print the return value of findMaxAttraction.