FRG Analysis

April 10, 2023

Figure 1: Figure.1-(b) Numerical solution of flow equations. μ_{10} at $\alpha=0.5$ analysis condition :

① Using functional ansatz, (retaining the most relevant Fourier mode.)

(2) Renormalized wavefunction.

flow equations:
$$d_J \ln \epsilon_J = 1 - \int_0^\infty \frac{dy}{\pi} g(y) \dots \text{ (a)}$$
$$d_C \ln \epsilon_C^{-1} = -1 + \epsilon_J^2 \int_0^\infty \frac{dy}{\pi} h(y) \dots \text{ (b)}$$

Equation (a) $\rightarrow \epsilon_J \ll 1$, separate to two parts,

$$1 - \frac{1 - \sqrt{2\epsilon_C}8}{>} 0 \quad \epsilon_C^{-1} \gg 1 \tag{1}$$

$$1 - \frac{1}{\alpha} \quad \epsilon_C^{-1} \to 1 \tag{2}$$

- (2): Presence of DQPT at $\alpha_C=1$, previous perturbative result. (1): dangerously irrelevant term $\nu \propto \epsilon_C^{-1}$.

Because of the dangerously ν , when $\frac{E_J}{E_C}$ is larger than a critical value, Theory flows into the SC fixed point $\alpha < 1$,

= Absence of DQPT in transmon regimes