Learning & Decision Trees

Announcements

- A2 due November 7
- A3 and optional A4 to follow (A4 will have a deadline during the last week of classes)
- Midterm grade distribution:

Fun example of Bayes' theorem application in decoding of brain recordings

Actual stimulus

i got up from the air mattress and pressed my face against the glass of the bedroom window expecting to see eyes staring back at me but instead finding only darkness

Decoded stimulus

i just continued to walk up to the window and open the glass i stood on my toes and peered out i didn't see anything and looked up again i saw nothing

Self-supervised models of audio effectively explain human cortical responses to speech

Aditya R Vaidya, Shailee Jain, Alexander G Huth https://arxiv.org/pdf/2205.14252

Fun example of Bayes' theorem application in decoding of brain recordings

C **Actual stimulus Decoded stimulus**

i got up from the air mattress and pressed my face against the glass of the bedroom window expecting to see eyes

glass i stood on my toes and peered out i didn't see staring back at me but instead finding only darkness anything and looked up again i saw nothing started to scream and cry and then she just said i told you

i didn't know whether to scream cry or run away instead i said leave me alone i don't need your help adam disappeared and i cleaned up alone crying

to leave me alone you can't hurt me i'm sorry and then he stormed off i thought he had left i started to cry

i just continued to walk up to the window and open the

Exact

that night i went upstairs to what had been our bedroom and not knowing what else to do i turned out the lights and lay down on the floor

we got back to my dorm room i had no idea where my bed was i just assumed i would sleep on it but instead i lay down on the floor

Gist

Error

i don't have my driver's license yet and i just jumped out right when i needed to and she savs well why don't you come back to my house and i'll give you a ride i say ok

she is not ready she has not even started to learn to drive yet i had to push her out of the car i said we will take her home now and she agreed

Learning

Generalization from experience

"Our experience of the world is specific, yet we are able to formulate general theories that account for the past and predict the future."

--M.R. Genesereth and N.J. Nilsson, Logical Foundations of AI, 1987

- Agent has made observations (data)
- Now must make sense of it (hypotheses)

Tasks & settings

Classification
Ranking
Clustering
Regression
Decision-making

Supervised
Unsupervised
Semi-supervised
Active
Reinforcement

Techniques

Bayesian learning
Decision trees
Neural networks

Support vector machines

Boosting

Case-based reasoning

Dimensionality reduction

. .

Applications

Document retrieval

Document classification

Data mining

Computer vision

Scientific discovery

Robotics

. . .

Supervised

Given pairs (x,y) with y=f(x), agent builds model to predict f(x) for new x

Unsupervised

Given data points *x*, agent learns patterns in the data (e.g. clusters)

Reinforcement

Agent performs

actions a₁ ... a_n,

receives reward R;

decides which actions

Semi-supervised

Some labels are missing in the training set, or some labels are erroneous

Active

Learner asks an oracle for correct output y=f(x) for some input points x

Supervised learning

- Construct/adjust h to agree with f on training set
- *h* is consistent if it agrees with *f* on all examples
- E.g., curve fitting:

Supervised learning

- Construct/adjust h to agree with f on training set
- *h* is consistent if it agrees with *f* on all examples
- E.g., curve fitting:

Tasks

- Depending on the task, the goal is to produce values for f(x) of different forms:
 - Regression: Predict continuous values
 - Classification: Predict one of a discrete set of labels
 - Binary Classification: Predict positive or negative
 - Structured: Predict complex structure (e.g. tree, sequence, etc.)

Logic-Based Inductive Learning

• Here, examples (x, f(x)) take on discrete values

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Learning a Logical Predicate (Concept Classifier)

Given set E of objects, and predicates A(x), B(x), ... for x ∈ E, the goal is to predict CONCEPT(x) ∈ {T,F}, where CONCEPT is a sentence of predicates, e.g.:

CONCEPT(x)
$$\Leftrightarrow$$
 A(x) \land (\neg B(x) v C(x))
CONCEPT(x) \Leftrightarrow A(x) and (not B(x) or C(x))

- Training set: values of CONCEPT for subset of predicate values
- A **hypothesis** is a possible model, CONCEPT(x) \Leftrightarrow S(A,B, ...)
- The set of all hypotheses is called the hypothesis space
- A hypothesis agrees with an example if it gives the correct value of CONCEPT
- https://www.rapidtables.com/math/symbols/Logic Symbols.html

Inductive Learning Scheme

Example set X {[A, B, ..., CONCEPT]}

Hypothesis space H $\{[CONCEPT(x) \Leftrightarrow S(A,B, ...)]\}$

Predicate as a Decision Tree

The predicate CONCEPT(x) \Leftrightarrow A(x) \land (\neg B(x) v C(x)) can be represented by the following decision tree:

Predicate as a Decision Tree

The predicate CONCEPT(x) \Leftrightarrow A(x) \land (\neg B(x) v C(x)) can be represented by the following decision tree:

Training Set

Ex. #	А	В	С	D	Е	CONCEPT
1	False	False	True	False	True	False
2	False	True	False	False	False	False
3	False	True	True	True	True	False
4	False	False	True	False	False	False
5	False	False	False	True	True	False
6	True	False	True	False	False	True
7	True	False	False	True	False	True
8	True	False	True	False	True	True
9	True	True	True	False	True	True
10	True	True	True	True	True	True
11	True	True	False	False	False	False
12	True	True	False	False	True	False
13	True	False	True	True	True	True

Possible Decision Tree

Possible Decision Tree

Top-down induction of decision tree

Ex. #	A	В	С	D	Е	CONCEPT
1	<u>False</u>	<u>False</u>	True	<u>False</u>	True	<u>False</u>
2	<u>False</u>	True	<u>False</u>	<u>False</u>	<u>False</u>	<u>False</u>
3	<u>False</u>	True	True	True	True	<u>False</u>
4	<u>False</u>	<u>False</u>	True	<u>False</u>	<u>False</u>	<u>False</u>
5	<u>False</u>	<u>False</u>	<u>False</u>	True	True	<u>False</u>
6	True	<u>False</u>	True	<u>False</u>	<u>False</u>	True
7	True	<u>False</u>	<u>False</u>	True	<u>False</u>	True
8	True	<u>False</u>	True	<u>False</u>	True	True
9	True	True	True	<u>False</u>	True	True
10	True	True	True	True	True	True
11	True	True	<u>False</u>	<u>False</u>	<u>False</u>	<u>False</u>
12	True	True	<u>False</u>	<u>False</u>	True	<u>False</u>
13	True	<u>False</u>	True	True	True	True

- What should the classifier do if it observes none of the predicates?
- What should it do if it can choose only one predicate?

Choice of Second Predicate

→ The number of misclassified examples from the training set is 1

Choice of Third Predicate

Final Tree

CONCEPT \Leftrightarrow A \land (C v \neg B)

CONCEPT \Leftrightarrow A \land (\neg B v C)

Top-Down Induction of a DT

DTL(D, Predicates)

- 1. If all examples in D are positive then return True
- 2. If all examples in D are negative then return False
- 3. If Predicates is empty then return failure
- 4. A ← <u>error-minimizing</u> predicate in <u>Predicates</u>
- 5. Return the tree whose:
 - root is A,
 - left branch is DTL(D^{+A}, Predicates-A),
 - right branch is DTL(D^{-A}, Predicates-A)

Capacity is Not the Only Criterion

 Accuracy on training set isn't the best measure of performance

Example set X

Hypothesis space H

Generalization Error

 A hypothesis h is said to generalize well if it achieves low error on all examples in X

Example set X

Hypothesis space H

Assessing Performance of a Learning Algorithm

- Samples from X are typically unavailable
- Take out some of the training set
 - Train on the remaining training set
 - Test on the excluded instances
 - Cross-validation

Supervised Learning Flow Chart

Split original set of examples, train

Evaluate hypothesis on testing set

Evaluate hypothesis on testing set

Compare true concept against prediction

Performance Issues

- Assessing performance:
 - Training set and test set
 - Learning curve

Typical learning curve

Performance Issues

- Assessing performance:
 - Training set and test set
 - Learning curve

Some concepts are unrealizable within a machine's capacity

Typical learning curve

Performance Issues

- Assessing performance:
 - Training set and test set
 - Learning curve
- Overfitting
 - Classifier works well on training set, poorly on test set

• Next class: more decision trees