A számítástudomány alapjai

Síkgráfok

2022. október 11.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A *G* gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A *G* gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Megj: (1) A fentieket nem csak egyszerű gráfokra definiáltuk.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A G gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Megj: (1) A fentieket nem csak egyszerű gráfokra definiáltuk.

(2) A SRt gráf nem csupán egy gráf, hanem egy konkrét diagram.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A G gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Megj: (1) A fentieket nem csak egyszerű gráfokra definiáltuk.

- (2) A SRt gráf nem csupán egy gráf, hanem egy konkrét diagram.
- (3) Ugyanannak a SRható gráfnak nagyon sok lényegesen különböző síkbarajzolt diagramja (lerajzolása) lehet.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A G gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Megj: (1) A fentieket nem csak egyszerű gráfokra definiáltuk.

- (2) A SRt gráf nem csupán egy gráf, hanem egy konkrét diagram.
- (3) Ugyanannak a SRható gráfnak nagyon sok lényegesen különböző síkbarajzolt diagramja (lerajzolása) lehet.
- (4) A gömbre (tóruszra) rajzolhatóság hasonlóan definiálható.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A *G* gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A G gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Állítás: (A G gráf SRható) \iff (G gömbre rajzolható)

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A G gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Állítás: (A G gráf SRható) \iff (G gömbre rajzolható)

Biz: A sztereografikus projekcióban az északi-sarkból történő vetítés kölcsönösen egyértelmű megfeleltetés a sík pontjai és a síkot a déli-sarkon érintő gömbfelszín pontjai (mínusz északi-sark) között. A síkbarajzolt diagram vetülete gömbre rajzolt lesz ($\Rightarrow \checkmark$), és az É-t nem tartalmazó gömbre rajzolt diagram pedig síkbarajzolttá válik. A \Leftarrow irány igazolásához csupán annyi kell, hogy úgy rajzoljuk G-t a gömbre, hogy az É-n ne menjen át él.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A G gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány. Állítás: (A G gráf SRható) \iff (G gömbre rajzolható)

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A *G* gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Köv: SRt gráf külső tartománynak nincs kitüntetett szerepe.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A *G* gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Állítás: (A G gráf SRható) \iff (G gömbre rajzolható)

Köv: SRt gráf külső tartománynak nincs kitüntetett szerepe.

Biz: Bármely lerajzolás "kifordítható": a diagram átrajzolható úgy, hogy a kiválasztott tartomány legyen a külső tartomány.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A *G* gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Köv: SRt gráf külső tartománynak nincs kitüntetett szerepe.

Biz: Bármely lerajzolás "kifordítható": a diagram átrajzolható úgy, hogy a kiválasztott tartomány legyen a külső tartomány.

- 1. Vetítsük fel a diagramot a gömbre.
- 2. Állítsuk az \acute{E} -t a kiválasztott tartománynak megfelelő gömbi tartomány belsejébe.
- 3. Vetítsük vissza a gömbre rajzolt gráfot a síkra.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A *G* gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Köv: SRt gráf külső tartománynak nincs kitüntetett szerepe.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A *G* gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Állítás: (A G gráf SRható) \iff (G gömbre rajzolható)

Köv: SRt gráf külső tartománynak nincs kitüntetett szerepe.

Köv: Bármely konvex poliéder élhálója SRható gráf.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A G gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Köv: SRt gráf külső tartománynak nincs kitüntetett szerepe.

Köv: Bármely konvex poliéder élhálója SRható gráf.

Biz: A kx poliéder belső pontjából az élháló kivetíthető egy, a poliédert tartalmazó gömbre. Így az élhálóból gömbre rajzolt gráf lesz. Láttuk, hogy minden gömbre rajzolható gráf SRható.

Megj: A kx poliéder élgráfjának tartományai a poliéder lapjainak felelnek meg.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A *G* gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Állítás: (A G gráf SRható) \iff (G gömbre rajzolható)

Köv: SRt gráf külső tartománynak nincs kitüntetett szerepe.

Köv: Bármely konvex poliéder élhálója SRható gráf.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A *G* gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Állítás: (A G gráf SRható) \iff (G gömbre rajzolható)

Köv: SRt gráf külső tartománynak nincs kitüntetett szerepe.

Köv: Bármely konvex poliéder élhálója SRható gráf.

Terminológia: SRt G gráf esetén n, e, t ill. k jelöli rendre a G csúcsai, élei, tartományai és komponensei számát.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A G gráf síkbarajzolható (SRható), ha van SRt diagramja.

Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Köv: SRt gráf külső tartománynak nincs kitüntetett szerepe.

Köv: Bármely konvex poliéder élhálója SRható gráf.

Terminológia: SRt G gráf esetén n, e, t ill. k jelöli rendre a G

csúcsai, élei, tartományai és komponensei számát.

Duális kézfogáslemma (DKFL): Ha G SRt gráf, akkor $\sum_{i=1}^{t} \ell_i = 2e$ ahol ℓ_i az i-dik lapot határoló élek számát jelöli.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A *G* gráf síkbarajzolható (SRható), ha van SRt diagramja. Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének

összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Állítás: (A G gráf SRható) \iff (G gömbre rajzolható)

Köv: SRt gráf külső tartománynak nincs kitüntetett szerepe.

Köv: Bármely konvex poliéder élhálója SRható gráf.

Terminológia: SRt G gráf esetén n, e, t ill. k jelöli rendre a G csúcsai, élei, tartományai és komponensei számát.

Duális kézfogáslemma (DKFL): Ha G SRt gráf, akkor

 $\sum_{i=1}^{t} \ell_i = 2e$ ahol ℓ_i az *i*-dik lapot határoló élek számát jelöli.

Biz: Minden él vagy két különböző lapot határol, vagy ugyanazt a lapot 2-szer. Így minden él 2-vel járul a BO-hoz és a JO-hoz is.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A G gráf síkbarajzolható (SRható), ha van SRt diagramja.

Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Köv: SRt gráf külső tartománynak nincs kitüntetett szerepe.

Köv: Bármely konvex poliéder élhálója SRható gráf.

Terminológia: SRt G gráf esetén n, e, t ill. k jelöli rendre a G

csúcsai, élei, tartományai és komponensei számát.

Duális kézfogáslemma (DKFL): Ha G SRt gráf, akkor $\sum_{i=1}^{t} \ell_i = 2e$ ahol ℓ_i az i-dik lapot határoló élek számát jelöli.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A G gráf síkbarajzolható (SRható), ha van SRt diagramja.

Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Köv: SRt gráf külső tartománynak nincs kitüntetett szerepe.

Köv: Bármely konvex poliéder élhálója SRható gráf.

Terminológia: SRt G gráf esetén n, e, t ill. k jelöli rendre a G csúcsai, élei, tartományai és komponensei számát.

csúcsai, élei, tartományai és komponensei számát

Duális kézfogáslemma (DKFL): Ha G SRt gráf, akkor

 $\sum_{i=1}^{t} \ell_i = 2e$ ahol ℓ_i az *i*-dik lapot határoló élek számát jelöli. **Megj:** A DKFL akkor hasznos, ha a SRt gráf lapjairól, a KFL

pedig akkor, ha a fokszámairól van információnk.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A G gráf síkbarajzolható (SRható), ha van SRt diagramja.

Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Köv: SRt gráf külső tartománynak nincs kitüntetett szerepe.

Köv: Bármely konvex poliéder élhálója SRható gráf.

Terminológia: SRt G gráf esetén n, e, t ill. k jelöli rendre a G

csúcsai, élei, tartományai és komponensei számát.

Duális kézfogáslemma (DKFL): Ha G SRt gráf, akkor $\sum_{i=1}^{t} \ell_i = 2e$ ahol ℓ_i az i-dik lapot határoló élek számát jelöli.

Def: Síkbarajzolt (SRt) gráf alatt olyan gráfdiagramot értünk, amiben az élek nem keresztezik egymást.

A G gráf síkbarajzolható (SRható), ha van SRt diagramja.

Síkbarajzolt gráf tartománya (lapja): a diagram komplementerének összefüggő tartománya. A nem korlátos rész neve külső tartomány.

Állítás: (A G gráf SRható) \iff (G gömbre rajzolható)

Köv: SRt gráf külső tartománynak nincs kitüntetett szerepe.

Köv: Bármely konvex poliéder élhálója SRható gráf.

Terminológia: SRt G gráf esetén n, e, t ill. k jelöli rendre a G

csúcsai, élei, tartományai és komponensei számát.

Duális kézfogáslemma (DKFL): Ha G SRt gráf, akkor

 $\sum_{i=1}^{t} \ell_i = 2e$ ahol ℓ_i az *i*-dik lapot határoló élek számát jelöli. **Fáry-Wagner-tétel:** Ha G egyszerű SRható gráf, akkor olyan

síkbarajzolása is van, amiben minden él egyenes szakasz

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Biz: Rajzoljuk meg G-t az n csúcsból kiindulva, az élek egyenkénti behúzásával. Kezdetben $t=1,\ e=0$ és k=n, így a bizonyítandó összefüggés fennáll. Tfh már néhány élt berajzoltunk, még mindig fennáll az összefüggés, és egy éppen az uv élt rajzoljuk meg.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Biz: Rajzoljuk meg G-t az n csúcsból kiindulva, az élek egyenkénti behúzásával. Kezdetben t=1, e=0 és k=n, így a bizonyítandó összefüggés fennáll. Tfh már néhány élt berajzoltunk, még mindig fennáll az összefüggés, és egy éppen az uv élt rajzoljuk meg.

1. u és v különböző komponenshez tartoznak. Ekkor k értéke 1-gyel csökken, e-é pedig 1-gyel nő. Az ÉHL miatt nem keletkezik kör, tehát nem zárunk körül új tartományt, vagyis t nem változik. Az összefüggés fennmarad.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Biz: Rajzoljuk meg G-t az n csúcsból kiindulva, az élek egyenkénti behúzásával. Kezdetben t=1, e=0 és k=n, így a bizonyítandó összefüggés fennáll. Tfh már néhány élt berajzoltunk, még mindig fennáll az összefüggés, és egy éppen az uv élt rajzoljuk meg.

1. u és v különböző komponenshez tartoznak. Ekkor k értéke 1-gyel csökken, e-é pedig 1-gyel nő. Az ÉHL miatt nem keletkezik kör, tehát nem zárunk körül új tartományt, vagyis t nem változik. Az összefüggés fennmarad.

2. *u* és *v* ugyanahhoz a komponenshez tartoznak. Ekkor *k* nem változik, *e* viszont 1-gyel nő. Az ÉHL miatt keletkezik kör, tehát kettévágjuk az *uv* élt tartalmazó korábbi tartományt. Ezért *t* is 1-gyel nő, az összefüggés ismét fennmarad.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

Biz: t = e + k + 1 - n, és a JO nem függ a síkbarajzolástól.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1. **Köv:** (1) Ha G SRható, akkor t nem függ a síkbarajzolástól. (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

(2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.

Biz: Mivel G öf, ezért a fenti Tételben k = 1.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1. **Köv:** (1) Ha G SRható, akkor t nem függ a síkbarajzolástól. (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (Euler-formula) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (Euler-formula) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.

Biz: Ilyenkor G minden lapját legalább 3 él határolja, így a DKFL miatt $2e = \sum_{i=1}^t \ell_i \geq 3t$. A Tétel alapján

$$3n + 2e \ge 3n + 3t = 3e + 3k + 3 \ge 3e + 3 + 3 = 3e + 6$$
,

amit rendezve $e \le 3n - 6$ adódik.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

- (2) (Euler-formula) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

- (2) (Euler-formula) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \geq 3 \Rightarrow e \leq 2n-4$.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (Euler-formula) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \geq 3 \Rightarrow e \leq 2n-4$.

Biz: Ilyenkor G minden lapját legalább 4 él határolja. A DKFL miatt $2e = \sum_{i=1}^{t} \ell_i \ge 4t$, így $e \ge 2t$. A Tétel miatt

$$2n + e \ge 2n + 2t = 2e + 2k + 2 \ge 2e + 2 + 2 = 2e + 4$$

Ezt rendezve $e \le 2n - 4$ adódik.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

- (2) (Euler-formula) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \geq 3 \Rightarrow e \leq 2n-4$.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

- (2) (Euler-formula) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \ge 3 \Rightarrow e \le 2n-4$.
- (5) Ha G egyszerű, SRható, akkor $\delta(G) \leq 5$ (azaz $\exists v : d(v) \leq 5$).

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \ge 3 \Rightarrow e \le 2n 4$.
- (5) Ha G egyszerű, SRható, akkor $\delta(G) \leq 5$ (azaz $\exists v : d(v) \leq 5$).

Biz: A KFL és (3) miatt $\sum_{v \in V(G)} d(v) = 2e \le 6n - 12$. Ezért van olyan csúcs, amire $d(v) \le \frac{6n-12}{n} < 6$.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

- (2) (Euler-formula) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \ge 3 \Rightarrow e \le 2n-4$.
- (5) Ha G egyszerű, SRható, akkor $\delta(G) \leq 5$ (azaz $\exists v : d(v) \leq 5$).

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \ge 3 \Rightarrow e \le 2n 4$.
- (5) Ha G egyszerű, SRható, akkor $\delta(G) \leq 5$ (azaz $\exists v : d(v) \leq 5$).
- (6) A K_5 és $K_{3,3}$ gráfok egyike sem SRható.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \ge 3 \Rightarrow e \le 2n-4$.
- (5) Ha G egyszerű, SRható, akkor $\delta(G) \leq 5$ (azaz $\exists v : d(v) \leq 5$).
- (6) A K_5 és $K_{3,3}$ gráfok egyike sem SRható.

Biz: A K_5 gráf egyszerű, de nem teljesül (3), hiszen

 $|E(K_5)| = {5 \choose 2} = 10 \le 9 = 3 \cdot 5 - 6$. Ezért K_5 nem SRható.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \ge 3 \Rightarrow e \le 2n-4$.
- (5) Ha G egyszerű, SRható, akkor $\delta(G) \leq 5$ (azaz $\exists v : d(v) \leq 5$).
- (6) A K_5 és $K_{3,3}$ gráfok egyike sem SRható.

Biz: A K_5 gráf egyszerű, de nem teljesül (3), hiszen

$$|E(K_5)| = {5 \choose 2} = 10 \le 9 = 3 \cdot 5 - 6$$
. Ezért K_5 nem SRható.

A $K_{3,3}$ gráf egyszerű és C_3 -mentes, de nem teljesül rá (4), u.i.

$$|E(K_{3,3})| = 9 \le 8 = 2 \cdot 6 - 4$$
. Ezért $K_{3,3}$ nem SRható.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \ge 3 \Rightarrow e \le 2n 4$.
- (5) Ha G egyszerű, SRható, akkor $\delta(G) \leq 5$ (azaz $\exists v : d(v) \leq 5$).
- (6) A K_5 és $K_{3,3}$ gráfok egyike sem SRható.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \ge 3 \Rightarrow e \le 2n 4$.
- (5) Ha G egyszerű, SRható, akkor $\delta(G) \leq 5$ (azaz $\exists v : d(v) \leq 5$).
- (6) A K_5 és $K_{3,3}$ gráfok egyike sem SRható.

Megj: Könnyen látható, hogy ha G SRható, akkor G+e tóruszra rajzolható bármely e él behúzása esetén. Nem nehéz látni, hogy K_6 is tóruszra rajzolható. Sőt: még K_7 is az, de K_8 már nem.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \ge 3 \Rightarrow e \le 2n 4$.
- (5) Ha G egyszerű, SRható, akkor $\delta(G) \leq 5$ (azaz $\exists v : d(v) \leq 5$).
- (6) A K_5 és $K_{3,3}$ gráfok egyike sem SRható.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \ge 3 \Rightarrow e \le 2n 4$.
- (5) Ha G egyszerű, SRható, akkor $\delta(G) \leq 5$ (azaz $\exists v : d(v) \leq 5$).
- (6) A K_5 és $K_{3,3}$ gráfok egyike sem SRható.

Def: Élfelosztás: az élre egy új, másodfokú csúcs ültetése.

Élösszehúzás: az él törlése és két végpontjának azonosítása.

Topologikus G (soros bővítés): G-ből élfelosztásokkal képzett gráf.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \ge 3 \Rightarrow e \le 2n 4$.
- (5) Ha G egyszerű, SRható, akkor $\delta(G) \leq 5$ (azaz $\exists v : d(v) \leq 5$).
- (6) A K_5 és $K_{3,3}$ gráfok egyike sem SRható.

Def: Élfelosztás: az élre egy új, másodfokú csúcs ültetése.

Élösszehúzás: az él törlése és két végpontjának azonosítása.

Topologikus *G* (soros bővítés): *G*-ből élfelosztásokkal képzett gráf. Megf: Az éltörlés, csúcstörlés, élfelosztás, élösszehúzás operációk

mindegyike megőrzi a gráf SRható tulajdonságát.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \ge 3 \Rightarrow e \le 2n 4$.
- (5) Ha G egyszerű, SRható, akkor $\delta(G) \leq 5$ (azaz $\exists v : d(v) \leq 5$).
- (6) A K_5 és $K_{3,3}$ gráfok egyike sem SRható.

Def: Élfelosztás: az élre egy új, másodfokú csúcs ültetése.

Élösszehúzás: az él törlése és két végpontjának azonosítása.

Topologikus G (soros bővítés): G-ből élfelosztásokkal képzett gráf.

Megf: Az éltörlés, csúcstörlés, élfelosztás, élösszehúzás operációk mindegyike megőrzi a gráf SRható tulajdonságát.

Köv: (1) Top. K_5 , top. $K_{3,3}$ nem SRható.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \ge 3 \Rightarrow e \le 2n 4$.
- (5) Ha G egyszerű, SRható, akkor $\delta(G) \leq 5$ (azaz $\exists v : d(v) \leq 5$).
- (6) A K_5 és $K_{3,3}$ gráfok egyike sem SRható.

Def: Élfelosztás: az élre egy új, másodfokú csúcs ültetése.

Élösszehúzás: az él törlése és két végpontjának azonosítása.

Topologikus G (soros bővítés): G-ből élfelosztásokkal képzett gráf.

Megf: Az éltörlés, csúcstörlés, élfelosztás, élösszehúzás operációk mindegyike megőrzi a gráf SRható tulajdonságát.

Köv: (1) Top. K_5 , top. $K_{3,3}$ nem SRható. (2) Ha G SRható, akkor G-nek nincs se topologikus K_5 , se topologikus K_3 3-részgráfja.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \ge 3 \Rightarrow e \le 2n 4$.
- (5) Ha G egyszerű, SRható, akkor $\delta(G) \leq 5$ (azaz $\exists v : d(v) \leq 5$).
- (6) A K_5 és $K_{3,3}$ gráfok egyike sem SRható.

Def: Élfelosztás: az élre egy új, másodfokú csúcs ültetése.

Élösszehúzás: az él törlése és két végpontjának azonosítása.

Topologikus G (soros bővítés): G-ből élfelosztásokkal képzett gráf.

Köv: (1) Top. K_5 , top. $K_{3,3}$ nem SRható. (2) Ha G SRható, akkor G-nek nincs se topologikus K_5 , se topologikus $K_{3,3}$ részgráfja.

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \ge 3 \Rightarrow e \le 2n 4$.
- (5) Ha G egyszerű, SRható, akkor $\delta(G) \leq 5$ (azaz $\exists v : d(v) \leq 5$).
- (6) A K_5 és $K_{3,3}$ gráfok egyike sem SRható.

Def: Élfelosztás: az élre egy új, másodfokú csúcs ültetése.

Élösszehúzás: az él törlése és két végpontjának azonosítása.

Topologikus G (soros bővítés): G-ből élfelosztásokkal képzett gráf.

Köv: (1) Top. K_5 , top. $K_{3,3}$ nem SRható. (2) Ha G SRható, akkor G-nek nincs se topologikus K_5 , se topologikus $K_{3,3}$ részgráfja.

Kuratowski tétele: (G SRható) \iff (G-nek nincs se topologikus

 K_5 , se topologikus $K_{3,3}$ részgráfja)

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \ge 3 \Rightarrow e \le 2n 4$.
- (5) Ha G egyszerű, SRható, akkor $\delta(G) \leq 5$ (azaz $\exists v : d(v) \leq 5$).
- (6) A K_5 és $K_{3,3}$ gráfok egyike sem SRható.

Def: Élfelosztás: az élre egy új, másodfokú csúcs ültetése.

Élösszehúzás: az él törlése és két végpontjának azonosítása.

Topologikus G (soros bővítés): G-ből élfelosztásokkal képzett gráf.

Köv: (1) Top. K_5 , top. $K_{3,3}$ nem SRható. (2) Ha G SRható, akkor G-nek nincs se topologikus K_5 , se topologikus $K_{3,3}$ részgráfja.

Kuratowski tétele: (G SRható) \iff (G-nek nincs se topologikus K_5 , se topologikus K_3 3 részgráfja)

Példa: Petersen-gráf

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \ge 3 \Rightarrow e \le 2n 4$.
- (5) Ha G egyszerű, SRható, akkor $\delta(G) \leq 5$ (azaz $\exists v : d(v) \leq 5$).
- (6) A K_5 és $K_{3,3}$ gráfok egyike sem SRható.

Def: Élfelosztás: az élre egy új, másodfokú csúcs ültetése.

Élösszehúzás: az él törlése és két végpontjának azonosítása.

Topologikus G (soros bővítés): G-ből élfelosztásokkal képzett gráf.

Köv: (1) Top. K_5 , top. $K_{3,3}$ nem SRható. (2) Ha G SRható, akkor G-nek nincs se topologikus K_5 , se topologikus $K_{3,3}$ részgráfja.

Kuratowski tétele: (G SRható) \iff (G-nek nincs se topologikus K_5 , se topologikus K_3 3 részgráfja)

Példa: Petersen-gráf

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \ge 3 \Rightarrow e \le 2n 4$.
- (5) Ha G egyszerű, SRható, akkor $\delta(G) \leq 5$ (azaz $\exists v : d(v) \leq 5$).
- (6) A K_5 és $K_{3,3}$ gráfok egyike sem SRható.

Def: Élfelosztás: az élre egy új, másodfokú csúcs ültetése.

Élösszehúzás: az él törlése és két végpontjának azonosítása.

Topologikus G (soros bővítés): G-ből élfelosztásokkal képzett gráf.

Köv: (1) Top. K_5 , top. $K_{3,3}$ nem SRható. (2) Ha G SRható, akkor G-nek nincs se topologikus K_5 , se topologikus $K_{3,3}$ részgráfja.

Kuratowski tétele: (G SRható) \iff (G-nek nincs se topologikus K_5 , se topologikus K_3 , részgráfja)

Rélda: Petersen-gráf

Tétel: Ha G SRt gráf, akkor n + t = e + k + 1.

Köv: (1) Ha G SRható, akkor t nem függ a síkbarajzolástól.

- (2) (**Euler-formula**) Ha G öf SRt gráf, akkor n + t = e + 2.
- (3) Ha G egyszerű, SRható és $n \ge 3$, akkor $e \le 3n 6$.
- (4) G egyszerű, SRható, C_3 -mentes és $n \ge 3 \Rightarrow e \le 2n 4$.
- (5) Ha G egyszerű, SRható, akkor $\delta(G) \leq 5$ (azaz $\exists v : d(v) \leq 5$).
- (6) A K_5 és $K_{3,3}$ gráfok egyike sem SRható.

Def: Élfelosztás: az élre egy új, másodfokú csúcs ültetése.

Élösszehúzás: az él törlése és két végpontjának azonosítása.

Topologikus G (soros bővítés): G-ből élfelosztásokkal képzett gráf.

Köv: (1) Top. K_5 , top. $K_{3,3}$ nem SRható. (2) Ha G SRható, akkor G-nek nincs se topologikus K_5 , se topologikus $K_{3,3}$ részgráfja.

Kuratowski tétele: (G SRható) \iff (G-nek nincs se topologikus K_5 , se topologikus K_3 a részgráfja)

Példa: Petersen-gráf

Def: A G SRt gráf duálisa a G^* gráf, ha G^* csúcsai G tartományainak, G^* élei G éleinek felelnek meg. Az $uv \in E(G)$ élnek megfelelő duális él az uv él altal határolt két tartománynak megfelelő duális csúcsokat köti össze.

Def: A G SRt gráf duálisa a G^* gráf, ha G^* csúcsai G tartományainak, G^* élei G éleinek felelnek meg. Az $uv \in E(G)$ élnek megfelelő duális él az uv él altal határolt két tartománynak megfelelő duális csúcsokat köti össze.

Megf: (1) A SRt G gráf G^* duálisa SRható. (n^*, e^*, t^*, k^*) (2) $n^* = t$, $e^* = e$, $k^* = 1$.

Def: A G SRt gráf duálisa a G^* gráf, ha G^* csúcsai G tartományainak, G^* élei G éleinek felelnek meg. Az $uv \in E(G)$ élnek megfelelő duális él az uv él altal határolt két tartománynak megfelelő duális csúcsokat köti össze.

- (2) $n^* = t$, $e^* = e$, $k^* = 1$.
- (3) Ha v az i-dik laphoz tartozó duális csúcs, akkor $d_{G^*}(v) = \ell_i$.

Def: A G SRt gráf duálisa a G^* gráf, ha G^* csúcsai G tartományainak, G^* élei G éleinek felelnek meg. Az $uv \in E(G)$ élnek megfelelő duális él az uv él altal határolt két tartománynak megfelelő duális csúcsokat köti össze.

Megf: (1) A SRt G gráf G^* duálisa SRható. (n^*, e^*, t^*, k^*)

- (2) $n^* = t$, $e^* = e$, $k^* = 1$.
- (3) Ha v az i-dik laphoz tartozó duális csúcs, akkor $d_{G^*}(v) = \ell_i$.

Köv: KFL a duálisra $\sum_{i=1}^t \ell_i = \sum_{v \in V(G^*)} d_{G^*}(v) = 2e^* = 2e$.

Def: A G SRt gráf duálisa a G^* gráf, ha G^* csúcsai G tartományainak, G^* élei G éleinek felelnek meg. Az $uv \in E(G)$ élnek megfelelő duális él az uv él altal határolt két tartománynak megfelelő duális csúcsokat köti össze.

- (2) $n^* = t$, $e^* = e$, $k^* = 1$.
- (3) Ha v az i-dik laphoz tartozó duális csúcs, akkor $d_{G^*}(v) = \ell_i$.

Def: A G SRt gráf duálisa a G^* gráf, ha G^* csúcsai G tartományainak, G^* élei G éleinek felelnek meg. Az $uv \in E(G)$ élnek megfelelő duális él az uv él altal határolt két tartománynak megfelelő duális csúcsokat köti össze.

- (2) $n^* = t$, $e^* = e$, $k^* = 1$.
- (3) Ha v az i-dik laphoz tartozó duális csúcs, akkor $d_{G^*}(v) = \ell_i$. **Def:** A $Q \subseteq E(G)$ élhalmaz a G gráf vágása, ha G - Q szétesik (több komponense van, mint G-nek), de $Q' \subsetneq Q$ esetén G - Q' nem esik szét.

Def: A G SRt gráf duálisa a G^* gráf, ha G^* csúcsai G tartományainak, G^* élei G éleinek felelnek meg. Az $uv \in E(G)$ élnek megfelelő duális él az uv él altal határolt két tartománynak megfelelő duális csúcsokat köti össze.

- (2) $n^* = t$, $e^* = e$, $k^* = 1$.
- (3) Ha v az i-dik laphoz tartozó duális csúcs, akkor $d_{G^*}(v) = \ell_i$. **Def:** A $Q \subseteq E(G)$ élhalmaz a G gráf vágása, ha G - Q szétesik (több komponense van, mint G-nek), de $Q' \subsetneq Q$ esetén G - Q' nem esik szét. Elvágó él: egyélű vágás. Soros élek: kétélű vágás.

Def: A G SRt gráf duálisa a G^* gráf, ha G^* csúcsai G tartományainak, G^* élei G éleinek felelnek meg. Az $uv \in E(G)$ élnek megfelelő duális él az uv él altal határolt két tartománynak megfelelő duális csúcsokat köti össze.

- (2) $n^* = t$, $e^* = e$, $k^* = 1$.
- (3) Ha v az i-dik laphoz tartozó duális csúcs, akkor $d_{G^*}(v) = \ell_i$. Def: A $Q \subseteq E(G)$ élhalmaz a G gráf vágása, ha G Q szétesik (több komponense van, mint G-nek), de $Q' \subsetneq Q$ esetén G Q' nem esik szét. Elvágó él: egyélű vágás. Soros élek: kétélű vágás. Kör-vágás dualitás: Tfh G^* a G SRt gráf duálisa. Ekkor (C a G köre) \iff (C^* a G^* vágása) ill. (Q a G vágása) \iff (Q^* a G^* köre) .

Síkgráfok duálisa

Def: A G SRt gráf duálisa a G^* gráf, ha G^* csúcsai G tartományainak, G^* élei G éleinek felelnek meg. Az $uv \in E(G)$ élnek megfelelő duális él az uv él altal határolt két tartománynak megfelelő duális csúcsokat köti össze.

Megf: (1) A SRt G gráf G^* duálisa SRható. (n^*, e^*, t^*, k^*)

- (2) $n^* = t$, $e^* = e$, $k^* = 1$.
- (3) Ha v az i-dik laphoz tartozó duális csúcs, akkor $d_{G^*}(v) = \ell_i$. **Def:** A $Q \subseteq E(G)$ élhalmaz a G gráf vágása, ha G - Q szétesik (több komponense van, mint G-nek), de $Q' \subsetneq Q$ esetén G - Q' nem esik szét. Elvágó él: egyélű vágás. Soros élek: kétélű vágás.

Kör-vágás dualitás: Tfh G^* a G SRt gráf duálisa. Ekkor (C a G köre) \iff (C^* a G^* vágása) ill.

 $(Q \text{ a } G \text{ vágása}) \Longleftrightarrow (Q^* \text{ a } G^* \text{ köre})$.

Köv: Hurokél duálisa elvágó él, soros élpáré párhuzamos élpár.

Whitney

Whitney tétele: Tfh G^* a G SRt gráf duálisa. Ekkor H pontosan akkor duálisa a G egy alkalmas síkbarajzolásának, ha H előáll G^* -ból a fenti Whitney-operációk alkalmas egymásutánjával.

Whitney

Whitney tétele: Tfh G^* a G SRt gráf duálisa. Ekkor H pontosan akkor duálisa a G egy alkalmas síkbarajzolásának, ha H előáll G^* -ból a fenti Whitney-operációk alkalmas egymásutánjával. Def: A $\varphi: E(G) \to E(H)$ kölcs. egyért. lekép. kör-vágás dualitás G és H között, ha G pontosan akkor G köre, ha G0 H1 vágása. Whitney másik tétele: Tfh G1 és H2 között kör-vágás dualitás van. Ekkor G3 SRható, és H3 H4 egy alkalmas síkbarajzolásának duálisa.

Whitney

Whitney tétele: Tfh G^* a G SRt gráf duálisa. Ekkor H pontosan akkor duálisa a G egy alkalmas síkbarajzolásának, ha H előáll G^* -ból a fenti Whitney-operációk alkalmas egymásutánjával. **Def:** A $\varphi: E(G) \to E(H)$ kölcs. egyért. lekép. kör-vágás dualitás G és H között, ha C pontosan akkor G köre, ha $\varphi(C)$ H vágása. Whitney másik tétele: Tfh G és H között kör-vágás dualitás van. Ekkor G SRható, és H a G egy alkalmas síkbarajzolásának duálisa. Megi: Egy G gráf által leírt villamos hálózat viselkedését az Ohmél Kirchhoff-törvények írják le. Ezek a G gráf éleire, köreire és vágásaira vonatkoznak. Ha G és H közt kör-vágás dualitás van, akkor H-n elkészíthető az előző hálózat duálisa. Az eredeti hálózat megoldásában ha az I és U értékeket felcseréljük, az utóbbi hálózat megoldását kapjuk. Whitney másik tétele miatt ez a különös szimmetria csak SRható gráfok által leírt hálózatokon lehetséges.

► Síkba és gömbre rajzolható gráfok kapcsolata

- Síkba és gömbre rajzolható gráfok kapcsolata
- ▶ DKFL, Euler-formula, soros bővítés, tiltott részgráfok

- Síkba és gömbre rajzolható gráfok kapcsolata
- ▶ DKFL, Euler-formula, soros bővítés, tiltott részgráfok
- ► SRható gráfok jellemzése tiltott részgráfokkal

- Síkba és gömbre rajzolható gráfok kapcsolata
- ▶ DKFL, Euler-formula, soros bővítés, tiltott részgráfok
- SRható gráfok jellemzése tiltott részgráfokkal
- Négyszíntétel

- Síkba és gömbre rajzolható gráfok kapcsolata
- ▶ DKFL, Euler-formula, soros bővítés, tiltott részgráfok
- SRható gráfok jellemzése tiltott részgráfokkal
- Négyszíntétel
- Síkgráfok duálisa

- Síkba és gömbre rajzolható gráfok kapcsolata
- ▶ DKFL, Euler-formula, soros bővítés, tiltott részgráfok
- SRható gráfok jellemzése tiltott részgráfokkal
- Négyszíntétel
- Síkgráfok duálisa
- Vágás, elvágó él, soros élek, kör-vágás dualitás

- Síkba és gömbre rajzolható gráfok kapcsolata
- ▶ DKFL, Euler-formula, soros bővítés, tiltott részgráfok
- SRható gráfok jellemzése tiltott részgráfokkal
- Négyszíntétel
- Síkgráfok duálisa
- Vágás, elvágó él, soros élek, kör-vágás dualitás
- SRható gráf duálisainak kapcsolata

- Síkba és gömbre rajzolható gráfok kapcsolata
- DKFL, Euler-formula, soros bővítés, tiltott részgráfok
- SRható gráfok jellemzése tiltott részgráfokkal
- Négyszíntétel
- Síkgráfok duálisa
- Vágás, elvágó él, soros élek, kör-vágás dualitás
- SRható gráf duálisainak kapcsolata

Köszönöm a figyelmet!

