Feature Engineering

"Sense" of Human

- Definition of "sense":
 - "A system that consists of a group of sensory cell types that responds to a specific physical phenomenon, and that corresponds to a particular group of regions within the brain where the signals are received and interpreted."
 - "A physiological capacity of organisms that provides data for perception."

By Arsi Warrior - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=68328908

Five "Traditional" Senses of a Human

- Sight
- Hearing
- Taste
- Smell
- Touch

What is the Perception of Machines?

- How to represent the world to a machine?
 - How can you interpret "hot"/"soft"?
 - How can you represent the chair looked from different directions?
 - =>Mapping raw data to features.
- How to select the sensory information to be sent to a machine?
 - How to decide which information is more important?
 - How to extract this information and transform the data correctly?
- How to learn from experience/examples?
 - Again, generalization: the ability to categorize correctly new examples that differ from those used for training.

Why Feature Engineering?

- Help the model to understand the data set as the same or similar way the human beings do.
- If the quality and size of the data are terrible, training longer or using a deeper network won't help.
- The pre-processing of data and feature engineering are the foundation of the pyramid.
- Preparing a better dataset can be more important than tuning the parameters for your model.

Representation of The Real World

- Al provides human with powerful tools for 'better' decision making.
- To accomplish a task, AI needs human to:
 - Formulate the real-world problem to those that can be read by computers.
 - Choose a model of the task & choose learning algorithms for the model.
 - Find useful raw data of the task.
 - Convert raw data to the formats that the computer can read → e.g. features.

Outline

- Features and Feature Engineering
- Tackling Feature Explosion

Features and Feature Engineering

Introduction

Transforming Data

Examples

Feature

 Feature: information that describes a problem at hand and is potentially useful for prediction / problem-solving.

Feature Engineering

- Feature engineering: the process of determining which features might be useful in training a model, then creating these features by transforming raw data.
- In short: design and process features for AI applications.
 - An informal terminology, but is considered essential in applied AI.

Feature Learning / Extraction

- Feature learning process
 - understand the properties of the task and how they may interact with the strengths and limitations of the chosen model
 - 2) design a set of features
 - 3) run experiments and analyze the results on a validation dataset
 - 4) change the feature set
 - 5) go to 2).
- Difficult and expensive.
- Automated feature learning is preferred.

Features and Feature Engineering

Introduction

Transforming Data

Examples

Feature Types

- Numerical features
 - Floats
 - Integers
- Categorical features
 - Discrete set of possible values (e.g., names of students of AAI): One-/Multi-hot encoding to map the categorical data to binary vectors.
- Image features.

• ...

Need to transform data!

Reasons for Data Transformation [8]

- Mandatory transformations for data compatibility.
 - Converting non-numeric features into numeric.
 - Resize inputs to a fixed size.

- Optional quality transformations: may help the model perform better.
 - Tokenization or lower-casing of text features.
 - Normalized numeric features.
 - Allowing linear models to introduce non-linearities into the feature space.

Why Normalize Numeric Features?

- Normalization is necessary
 - If you have very different values within the same feature.
 - Without normalization, your training could blow up with *NaNs* if the gradient update is too large..
 - If you have two different features with widely different ranges.
 - This may cause the gradient descent to "bounce" and slow down convergence.
 - A possible solution: using heterogeneous learning rate.

Normalization Techniques

Normalization Technique	Formula	When to Use
Linear Scaling	$x^\prime = (x-x_{min})/(x_{max}-x_{min})$	When the feature is more-or-less uniformly distributed across a fixed range.
Clipping	if x > max, then x' = max. if x < min, then x' = min	When the feature contains some extreme outliers.
Log Scaling	x' = log(x)	When the feature conforms to the power law.
Z-score	$x' = (x - \mu) / \sigma$	When the feature distribution does not contain extreme outliers.

Table source: https://developers.google.com/machine-learning/data-prep/transform/normalization

Bucketing

• Sometimes, you need to transform numeric features into categorical features, using a set of thresholds.

=>Bucketing.

• Quantization.

Transforming Categorical Data

- One-/Multi-hot encoding
- Hashing
- Embeddings: A categorical feature represented as a continuous-valued feature (high-dimensional vector -> low-dimensional space).

One-/Multi-hot encoding: Example

One-hot encoding

1. "I have a cat."

2. "Cats have fur."

	I	cat	а	have	fur
I	1	0	0	0	0
have	0	0	0	1	0
а	0	0	1	0	0
cat	0	1	0	0	0

	I	cat	a	have	fur
cat	0	1	0	0	0
have	0	0	0	1	0
fur	0	0	0	0	1

	I	cat	а	have	fur
1	1	1	1	1	0
2	0	1	0	1	1

← Multi-hot encoding

Features and Feature Engineering

Introduction

Transforming Data

Examples

(1) Numerical Features

What you see

What a computer see (raw data)

```
StateObservation{
gameScore=0,
gameTick=0,
gameWinner=NO_WINNER,
isGameOver=false,
worldDimension=[250.0, 200.0],
blockSize=10,
noOfPlayers=1,
...
}
```

[0.0,0.0,0.0,-1.0,250.0,...]

Feature vector

Feature Engineering

(2) Text Features

(2) Text Features (*Continued*)

(3) Image Features

(3) Image Features

(4) Signal Features

Tackling Feature Explosion

- Introduction to Feature Explosion
- Feature Selection
- * Regularization (more detailed)

Feature Explosion

- Initial features are always an expression of prior knowledge.
 - text: words, grammatical classes and relations, etc.
 - image: pixels, contours, textures, etc.
 - signal: samples, spectrograms, etc.
- Feature combinations might work better.
- Both lead to (extremely) large number of features.
- Too many features become a problem given the limited size of training data. → overfitting.

Problems of Feature Explosion

- Storage cost
- Irrelevant, redundant or even harmful features
- Large number of required training samples
 - Adding another feature need exponential increase in training samples.
- Dysfunctional distance functions
 - When a measure such as Euclidean distance is used, there is little difference in distance between different pairs of samples.

Benefits of Small Feature Set

- Lead to simpler models.
- Easier to interpret by researchers/users.
- Shorter training times.
- Less computational burden.
- Enhanced generalization by reducing overfitting.
- Reduced feature measurement cost.

•

Dealing with Feature Explosion

- Feature selection: could use a greedy method.
 - Select some of the features that can reach some best 'criterion'.

Regularization:

- Include all possible features.
- Penalize 'complex' hypothesis.

Tackling Feature Explosion

- Introduction to Feature Explosion
- Feature Selection
- * Regularization (more detailed)

Selecting Feature Subset

- Reduce the original feature space by throwing out some features.
- Assumption: features are redundant or irrelevant.
- Motivation: Training data are limited.
 - Restricting #features is a feasible control mechanism.
 - Compact and representative explanation of the task follows Occam's razor.
- Research Question: How to select 'good' features from the feature space?
- Feature selection is a search problem.

Feature Selection is a Search Problem

• The state-space formulation:

- states: all possible feature subset
- initial state: ?
- actions: ?
- next state: updated feature subset
- goal test: ?
- cost: computational cost

Technical question:

- How to search?
- How to evaluate selected features?
- When to stop?

Search Space of Feature Selection

- Question: How large is the search space?
- Answer: 2^d , d is #features.
- The search space of the illustration is $2^4 = 16$ and is feasible to search.
- When d gets larger and larger, it will become infeasible to search in practice.
- We need heuristics to guide our search
 heuristic search.

Heuristic Search for Feature Selection

- Question: How to do heuristic search in the entire 2^d space?
- One possible idea: Greedy heuristic search.

Initial State

- Empty feature set: one starts with an empty set and progressively add features yielding to the improvement of a performance index.
 - → forward selection.
- Full feature set: one starts with all the features and progressively eliminate the least useful ones.
 - → backward elimination.

Actions

- Forward selection: add one feature each step.
- Backward elimination: remove one feature each step.
- They are called sequential feature selection (SFS) methods.
- Optimality: They do not examine all possible feature subsets, so no guarantee of finding the optimal subset.

Compare Forward Selection to Backward Elimination

- Both procedures are reasonably fast and robust against overfitting
- Both procedures provide nested feature subsets.
- However, they may lead to different subsets and one may be preferred over the other.

Goal Test

- How to evaluate selected features? e.g.,
 - information theory;
 - prediction accuracy on the training set or validation set.
- When to stop?
 - Simply use the change of a performance metric.
 - Adding or deleting a feature cannot further improves some prediction accuracy.
 - Reach the empty or full feature set.

Three Typical Methods

- 1. Wrapper methods
- 2. Filter methods
- 3. Embedded methods

1. Wrapper Methods

- Basic idea: model dependent
 - Navigate feature subsets by adding/removing features.
 - Evaluate the performance of the chosen model on the validation set.
 - Repeat until no improvement to the validation set accuracy.
- Assessment: use cross validation

1. Wrapper Methods

- Advantage: highly accurate
- Disadvantage: computationally expensive, risk of overfitting
- Examples: recursive feature elimination, sequential feature selection, genetic algorithms

2. Filter Methods

Set of all features Selecting the best subset Learning Algorithm Performance

- Basic idea: independent of learning models
 - Rank features on some heuristic score based on their relevance to the AI task
 - Choose a subset based on the sorted scores
- Heuristic score: many popular scores [4]
 - Does the individual feature seem helpful in prediction?
 - Classification with categorical features: \mathcal{X}^2 , information gain, document frequency
 - Regression: correlation, mutual information
- Assessment: use statistical tests

2. Filter Methods

Advantages

- very fast & simple to apply
- usually better generalization
- Disadvantage
 - not take into account interactions between features
 - not as accurate as Wrappers
- Suggestions:
 - use it as a pre-processing for further Wrapper feature selection
- Examples: Belief, correlation-based filters, fast correlated-based filters

Example: Correlation-based Filters

• Hypothesis: A good feature should be highly correlated to the output but not very correlated with each other.

- Technical questions: for a classification problem
 - 1. Whether a feature is relevant to the class?
 - 2. Whether a relevant feature is redundant with other relevant features?

Example: Correlation Scores

Two groups of correlation metrics between random variables X and Y:

1) Classical linear correlation: e.g. Pearson correlation

$$\rho(X,Y) = \frac{\sum_{i} (x_{i} - \bar{x}) (y_{i} - \bar{y})}{\left[\sum_{i} (x_{i} - \bar{x})^{2} \cdot \sum_{i} (y_{i} - \bar{y})^{2}\right]^{\frac{1}{2}}} \in [-1, +1]$$

- Advantage: easy and fast to compute
- Disadvantage:
 - cannot capture nonlinear correlation
 - calculation requires all features contain numerical values

Example: Information Gain

Two groups of correlation metrics between random variables X and Y:

2) Information theory: e.g. information gain [Quinlan, 1993]

$$IG(X;Y) = \mathcal{H}(X) - \mathcal{H}(X|Y)$$

- $\mathcal{H}(X) \triangleq -\sum_{k} p(x_{k}) \log_{2} p(x_{k})$ is entropy of X
- $\mathcal{H}(X|Y) \triangleq \sum_{i} p(Y = y_i) \cdot \mathcal{H}(X|Y = y_i)$ is conditional entropy
- Advantage: capture nonlinear correlation
- Disadvantage:
 - higher computational cost
 - IG is biased in favor of features with more values

Example: Symmetric Uncertainty

Two groups of correlation metrics between random variables X and Y:

2) Information theory: e.g. symmetric uncertainty [Press et al., 1988]

$$IG(X;Y) = \mathcal{H}(X) - \mathcal{H}(X|Y) = -\sum_{j} \sum_{k} p(x_k, y_j) \log_2 \frac{p(x_k, y_j)}{p(x_k)p(y_j)}$$

$$IG(Y;X) = \mathcal{H}(Y) - \mathcal{H}(Y|X) = -\sum_{k} \sum_{j} p(y_j, x_k) \log_2 \frac{p(y_j, x_k)}{p(y_j)p(x_k)}$$

$$SU(X;Y) = 2 \left[\frac{IG(X;Y)}{\mathcal{H}(X) + \mathcal{H}(Y)} \right] \in [0,1]$$

- Advantage:
 - compensate for IG's bias towards features with more values
 - normalize its values to [0,1]

Example: Correlation-based Filters

Main Procedure

- 1) C-correlation: Use some correlation score to rank features according to their correlation to the class.
- 2) Ranking cut-off is determined by the user to form the relevant feature set.
- *F*-correlation: Some relevant features are removed by redundancy detection based on the same *correlation measure*.

Read paper [6] for details.

3. Embedded Methods

Selecting the best subset Set of all features Generate a Learning Algorithm + Performance Performance

- Basic idea: Feature selection is part of model construction, and feature search is guided by the learning process.
- Assessment: use cross validation
- They use the specific structure of the model returned by the algorithm to get the set of 'relevant' features.

3. Embedded Methods

Selecting the best subset Set of all features Generate a Learning Algorithm + Performance

- Advantages:
 - similar to Wrappers, but
 - less computationally expensive & less prone to overfitting
- Examples: classification and regression trees, C4.5, random forest

3. Embedded Methods

- They are not too far away from wrapper techniques.
- They are a good inspiration to design new feature selection techniques for your own algorithms.
 - Find a function of features that represents your prior knowledge about what a good model is.

Example: Decision Tree

- Review: construct decision tree
 - Start from an empty tree.
 - Split the next best feature based on information gain.
 - Repeat.
- Tree construction is the process of feature selection.
- Not all features are used in the constructed tree.

Four features out of total 10 are used in constructing the decision tree.

Summary: Three Typical Methods

- Wrapper methods: model specific
- Filter methods: independent of model
- Embedded methods: feature selection is embedded in model learning

Tackling Feature Explosion

- Introduction to Feature Explosion
- Feature Selection
- * Regularization (more detailed)

Regularization

Basic idea:

- The more features matter in the model, the bigger complexity.
- Regularization = introducing penalty for complexity → reduce features

Interpretation:

- It bias the model toward lower complexity (fewer features).
- Application of Occam's razor: the model should be simple (fewer coefficients).
- Bayesian viewpoint: regularization = imposing prior knowledge that the world is simple on the learning model.

Regularization Formulation

• Find $f \in \mathcal{F}$ minimizing

$$\frac{1}{n}\sum_{i=1}^{n} \mathcal{L}_{tr}(y_i, f(x_i)) + \lambda \cdot \Omega(f)$$

- F: a class of candidate functions
- $\Omega(f)$: the complexity of a model f
- $\lambda > 0$: a regularization parameter
- Question: How do we pick parameter λ ?
- Answer: Cross validation.

Examples of Regularization Methods

- Ridge regression [Hoerl and Kennard 1970]
- Lasso regression [Tibshirani 1996]
- Smoothing splines [Wahba 1990]
- Support vector machines [Vapnik 1998]
- Regularized neural networks
- etc.

Review: Multivariate Linear Regression

- Given: data $X \in \mathbb{R}^{N \times D}$, and output $y \in \mathbb{R}^{N \times 1}$.
 - N: #samples, D: #features
- Aim: find $\boldsymbol{\theta} \in \mathbb{R}^{D \times 1}$ to minimize $\frac{1}{2} ||\boldsymbol{X}\boldsymbol{\theta} \boldsymbol{y}||_2^2$.
- Solution: $\theta = (X^T X)^{-1} X^T y$

Feature Selection in MLR Model

- In a MLR model, each θ_i corresponds to one feature.
- Feature selection can be treated as the penalty on θ :

$$\Omega(f) := ||\boldsymbol{\theta}||_p$$

- $\theta_i = 0$: remove the i^{th} feature from the model
- ℓ_p norm of $oldsymbol{ heta}$

Penalty ℓ_p

- Euclidean p = 2, $||\theta||_2 = \sqrt{(\theta_1^2) + \dots + \theta_D^2}$
- ℓ_2 can be viewed as a Gaussian prior on model paramete

• ℓ_1 can be viewed as a Laplace prior on model parameters

• Generally
$$0 , $||\boldsymbol{\theta}||_p = \sqrt[p]{|\theta_1|^p + \dots + |\theta_D|^p}$$$

Ridge Regression

- Ridge regression model: $\min_{\boldsymbol{\theta}} \frac{1}{2} ||\boldsymbol{X}\boldsymbol{\theta} \boldsymbol{y}||_2^2 + \lambda ||\boldsymbol{\theta}||_2^2$
- Solution: $\boldsymbol{\theta} = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^T \boldsymbol{y}$

- Lead to a solution with many small θ .
 - ℓ_2 does not strongly zero parameters (remove features), but still limits model complexity and get fewer features.
 - It also solves the problem that X^TX is not invertible

Lasso Regression

- Lasso regression model: $\min_{\boldsymbol{\theta}} \frac{1}{2} ||\boldsymbol{X}\boldsymbol{\theta} \boldsymbol{y}||_{2}^{2} + \lambda ||\boldsymbol{\theta}||_{1}$
- Solution: no analytical solution
 - Need sub-gradient of ℓ_1 norm
- Lead to a sparse solution, i.e., θ has many zero elements.
 - Remove many features and preferable for high-dimensional problems

Regression with Penalty $\ell_{1/2}$

- Penalty $\ell_{1/2}$ model: $\min_{\boldsymbol{\theta}} \frac{1}{2} ||\boldsymbol{X}\boldsymbol{\theta} \boldsymbol{y}||_2^2 + \lambda ||\boldsymbol{\theta}||_{\frac{1}{2}}$
- Solution: non-convex and thus hard to optimize
 - Initialize with ℓ_1 penalty solution
 - Further perform gradient steps
 - Not optimal but give sparser solutions than ℓ_1 .
- Lead to an even sparser solution, and often better performance.

Remarks on ℓ_1

Two types of ℓ_1 penalty used in regression:

Lasso for sparsity

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{2} ||\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y}||_{2}^{2} + \lambda ||\boldsymbol{\theta}||_{1}$$

• ℓ_1 loss for robustness

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} ||\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y}||_1 + \lambda ||\boldsymbol{\theta}||_p$$

Remarks on ℓ_1 Continue

Summary

- Feature engineering is often crucial to get good results.
- Manual feature learning requires knowledge for the task.
- Automated feature learning is much more preferred.
- Strategies for tackling feature explosion:
 - Feature selection is a heuristic search problem.
 - Use regularization on all possible features to prevent overfitting.

Reading Materials For This Lecture

- [1] Online course: http://clopinet.com/isabelle/Projects/ETH/
- [2] A. Zheng. and A. Casari. 2017. *Mastering Feature Engineering for Machine Learning Models*. Chapter 3.
- [3] Curse of dimensionality: https://en.wikipedia.org/wiki/Curse of dimensionality
- [4] Y. Yang and J. O. Pedersen. 1997. A Comparative Study on Feature Selection in Text Categorization. ICML. pp:412-420.
- [5] Blog: https://machinelearningmastery.com/an-introduction-to-feature-selection/
- [6] L. Yu and H. Liu. 2003. Feature Selection for High-dimensional Data: A Fast Correlation-based Filter Solution. ICML. pp: 856-863
- [7] An Introduction to Feature Extraction. Isabelle Guyon and André Elisseeff.
- [8] https://developers.google.com/machine-learning/data-prep