

Cycle Préparatoire Université de Bordeaux

Travaux Dirigés d'électrocinétique

1 – Circuit en régime transitoire

Exercice 1

Le condensateur du circuit ci-dessous est initialement déchargé. On ferme l'interrupteur K à un instant pris comme origine et noté t=0.

Remplir le tableau ci-dessous en justifiant les réponses :

Grandeur	t= 0 -	t= 0 +	Régime permanent
électrique			
u_C			
i			
i_1			
i_C			

Exercice 2

Dans le circuit électrique ci-dessous, les deux condensateurs sont initialement déchargés.

 1° Que va-t-il se passer à la fermeture de l'interrupteur K ?

2° Modifier le schéma du circuit en insérant une résistance R en série avec le générateur de tension et indiquer les valeurs prises par les tensions aux bornes des deux condensateurs en régime permanent.

L'interrupteur K du montage ci-dessous est considéré comme parfait; il peut être remplacé par une résistance nulle quand il est fermé et par une résistance infinie quand il est ouvert.

A l'instant t=0, le condensateur étant déchargé, on ferme l'interrupteur K.

Quelle expression relie la tension u(t) aux bornes du condensateur et le courant i(t) le traversant?

- 1. Etude en régime permanent :
 - A quel dipôle est équivalent un condensateur en régime permanent (justifier à partir de la réponse à la question précédente) ?
 - La tension E étant continue (valeur fixe), représenter en conséquence le schéma équivalent au circuit ci-dessus en régime permanent, c'est-à-dire lorsqu'on attend suffisamment longtemps après la fermeture de l'interrupteur (le temps *t* tend vers l'infini).
 - Déterminer la valeur de u_{∞} de la tension u(t) en régime permanent.
 - Déterminer de la même façon la valeur de i_{∞} du courant i(t) en régime permanent.

2. Etude à l'origine :

- Préciser les valeurs $u(0^-)$ de la tension u(t) et $i(0^-)$ du courant i(t) juste avant la fermeture de l'interrupteur.
- En déduire, en la justifiant, la valeur de $u(0^+)$ juste après la fermeture de l'interrupteur.
- Déterminer enfin la valeur de $i(0^+)$.
- 3. Synthétiser l'ensemble des résultats dans le tableau ci-dessous :

Grandeur électrique	t=0	t=0 +	Régime permanent
Circuit équivalent			
u(t)			
i(t)			

- 4. Etablir l'équation différentielle en u(t) lorsque l'interrupteur est fermé (t > 0).
- 5. Par une analyse dimensionnelle, déterminer la constante de temps τ de ce système en fonction de R et C. Donner sa valeur numérique.
- 6. Résoudre l'équation différentielle pour u(t) sous forme littérale en fonction de E et τ . En déduire i(t). Vérifier la cohérence de ces expressions avec les résultats établis précédemment et regroupés dans le tableau.
- 7. Représenter les allures de u(t) et i(t). Montrer en particulier pour u(t) que la tangente à l'origine coupe l'asymptote horizontale $(u(t) = u_{\infty})$ en $t = \tau$.
- 8. Déterminer la valeur de l'énergie W emmagasinée par le condensateur en régime permanent.

A t=0 on ferme l'interrupteur K. Donner la loi de variation de l'intensité du courant i(t) délivré par le générateur de tension continue E.

Remplir le tableau ci-dessous en justifiant les réponses

	$t=0^{-}$	$t = 0^+$	Régime permanent
i(t)			
$u_L(t)$			
$u'_L(t)$			

Exercice 5

A t=0 on ferme l'interrupteur K.

Remplir le tableau ci-dessous en justifiant les réponses, pour cela on aura besoin d'écrire les différentes équations de Kirchhoff impliquant les variables $i_I(t)$, $i_Z(t)$, $i_L(t)$, $i_R(t)$, $u_L(t)$ et les éléments du circuit E, L et R.

	t=0-	t=0+	Régime permanent
$i_1(t)$			
i ₂ (t)			
i _L (t)			
$i_{R}(t)$			
u _L (t)			

On considère le montage ci-contre où $\tau = RC = \frac{L}{R}$.

A t = 0 on ferme l'interrupteur K, le condensateur C étant initialement déchargé.

- 1. Etablir l'équation différentielle vérifiée par la charge q(t) du condensateur (les deux coefficients de cette équation seront exprimés en fonction de la constante de temps τ).
- 2. Exprimer les conditions initiales pour q(t) et $\frac{dq(t)}{dt}$, puis résoudre l'équation différentielle en q(t). Quel est le régime de fonctionnement du circuit ?
- 3. En déduire les expressions des courants transitoires $i_c(t)$, $i_L(t)$ et i(t) ainsi que celle de la tension u(t).

2 – Circuits avec Amplificateur Opérationnel

Exercice 7

L'amplificateur opérationnel de la figure ci-contre est idéal.

- 1° Quel est le domaine de variation de la tension U_e pour lequel l'amplificateur reste non saturé ?
- 2°- Calculer U_s pour les valeurs suivantes de U_e (en volts) : 0,4; 2; -0,8; -2.
- 3° Montrer que ce montage constitue une source de courant constant dans R_2 (c.à.d. que le courant est indépendant de la valeur de R_2).

 Utiliser le théorème de superposition pour calculer la tension de sortie U_S.
 L'amplificateur opérationnel de la figure est

supposé idéal.

2) Si on a $R_1R_4 = R_2R_3$ alors que devient la tension de sortie U_S ?Quel est le rôle de ce montage ?

On considère le circuit ci-contre où l'Amplificateur

Opérationnel est supposé idéal et fonctionne dans son régime Linéaire. La tension appliquée U_e est une tension continue.

- 1° Déterminer le coefficient d'amplification en tension $A = \frac{U_s}{U_o}$ de ce montage.
- 2° Quelles sont les fonctions possibles si R > R' et si R < R'?

2 R

3 – Circuit en régime variable sinusoïdale

Exercice 10

Soient les tensions sinusoïdales suivantes :

a)
$$u_1(t) = 11.2 \sqrt{2} \cos \left(5t + \frac{\pi}{2}\right) V$$
 b) $u_2(t) = 15 \cos \left(5t - \frac{3\pi}{2}\right) V$ c) $u_3(t) = 1.2 \sin \left(5t - \frac{\pi}{3}\right) V$

- 1° Déterminer pour chacune des tensions mentionnées ci-dessus : la valeur efficace U, l'amplitude maximale U_m et la phase φ associée.
- 2° Donner l'expression de la tension en représentation complexe et préciser l'Amplitude Efficace Complexe (A.E.C) dans chaque cas.
- 3° donner l'expression temporelle de la tension ayant pour AEC : $U = 2.23V \angle 15^{\circ}$

Exercice 11

Donner les expressions des **impédances complexes élémentaires** de **R**, **L** et **C**. En déduire les impédances complexes et les diagrammes de Fresnel des **circuits série** (**R**,**L**), (**R**,**C**) et (**R**,**L**,**C**).

Exercice 12

Un circuit comprend une résistance de valeur $R=25\Omega$ entre A et B, une bobine de résistance négligeable et d'inductance L entre B et D et un condensateur de capacité $C=10\mu F$ entre D et E. On branche entre A et E un générateur de tension sinusoïdale d'impédance interne nulle de fem efficace 100V et de fréquence 50Hz.

- Calculer L, sachant que la valeur efficace du courant est I=2A. Expliquer qualitativement, à l'aide de la méthode de Fresnel, l'existence de deux valeurs « convenables » pour L. On adoptera dans la suite pour L la plus grande de ces deux valeurs.
- 2) L'expression temporelle de la ddp entre A et E étant $u_{AE} = U\sqrt{2}\cos(\omega t)$ écrire celles de l'intensité i du courant et des 3 tensions u_{AB} , u_{BD} et u_{DE} .
- 3) Calculer la puissance électrique consommée dans chacune des trois parties du circuit.

Exercice 13

Exprimer les **admittances complexes** et tracer les diagrammes de Fresnel des **circuits parallèles** (R/L), (R/C) et (R/L/C).

Dans le réseau ci-dessous, la source de tension, sans résistance interne, a une force électromotrice $e(t) = \sqrt{2\cos(4t)}$ et L = 0.05 H, $R_1 = R_2 = 2$ Ω , $C_1 = C_2 = 0.125$ F.

- 1) Calculer les modules des impédances des éléments réactifs.
- 2) Calculer l'admittance complexe du circuit (R_2 , C_2).
- 3) Calculer l'impédance complexe du circuit (R_1 , C_1).
- 4) Calculer l'admittance complexe équivalente dans laquelle débite la source. Détailler les calculs intermédiaires.
- 5) En déduire l'expression complexe du courant débité par la source et son expression temporelle.

Exercice 15

Soit le "pont" ci-contre alimenté par une tension sinusoïdale. (T) est un détecteur de courant. Le courant circulant dans T est nul pour:

$$\begin{split} P=5,&6K\Omega~;~C_0=0,&01\mu F~Q=100K\Omega~;~R_0=470K\Omega\\ D\acute{e}terminer~la~r\acute{e}sistance~\textbf{R}~et~l'inductance~\textbf{L}. \end{split}$$

Exercice 16

En utilisant la méthode des mailles, puis la méthode des nœuds, calculer la d.d.p. $\underline{\mathbf{U}}_{AB}$ dans le réseau ci-dessous. En déduire l'écriture temporelle $\mathbf{u}_{AB}(\mathbf{t})$.

Exercice 17

Déterminer:

- le générateur équivalent de Thévenin,
- le générateur équivalent de Norton, correspondants au réseau ci-dessous entre les points A et B:
 On branche entre A et B un condensateur d'impédance -2j Ω..

Calculer le courant traversant ce condensateur.

Exercice 18

On considère le circuit ci-dessous où R est une rés

- 1) Calculer l'impédance complexe du dipôle PB.
- La mettre sous la forme $\mathbf{a}+\mathbf{j}\mathbf{b}$.
- Calculer la tension complexe entre A et B en fonction des données et de R. On la présentera sous

la forme la plus simple – par exemple ne pas essayer dans cette question de réduire au même dénominateur.

- 3) Pour quelle valeur de **R** cette tension s'annule-t-elle ?
- 4) Avec R=0, calculer l'expression complexe de u_{AB} . Donner son module et son argument. En déduire son expression temporelle.
- 5) Toujours avec **R=0**, rechercher le générateur de tension équivalent entre A et B. De quelle nature est son impédance interne ?

- FIN -