Exercises §13

Colton Kinstley

July 2, 2017

Question 1

Let X be a topological space; let A be a subset of X. Suppose the for each $x \in A$ there is an open set U containing x such that $U \subset A$. Show that A is open in X.

Solution

To show that A is an open set in X we will show that it is the union of open sets of X. Given $x \in A$ let U_x be an open set containing X such that $U \subset A$. Then

$$\bigcup_{x \in A} U_x = A$$

thus A is a union of open sets.

Question 2

Consider the nine topologies on the set $X = \{a, b, c\}$ indicated in Example 1 of §12. Compare them; that is, for each pair of topologies, determine whether they are comparable, and if so, which is the finer.

Solution

We shall label the topologies as elements in a matrix and give a sample of comparisons.

- 1. \mathcal{T}_{11} is comparable to and coarser than all others.
- 2. \mathcal{T}_{33} is comparable to and finer than all others.
- 3. $T_{12},\,T_{31}$ and T_{32} are comparable with $T_{31}\subset T_{12}\subset T_{32}$

Question 3

Show that the collection \mathcal{T}_c given in Example 4 of §12 is a topology on the set X. Is the collection

$$\mathfrak{I}_{\infty} = \{U|X \setminus U \text{ is infinite or empty or all of } X\}$$

a topology on X?

Solution (part 1)

Let \mathcal{T}_c be the collection of subsets, U of X such that $X \setminus U = X$ or $X \setminus U$ is countable. First we see that $X \setminus X = \emptyset$ which is countable and $X \setminus \emptyset = X$ so $X, \emptyset \in \mathcal{T}_c$.

Next we will show that \mathcal{T}_c is closed under unions. Given any union of open sets $\bigcup U_{\alpha}$ we have that

$$X\setminus\bigcup U_{\alpha}=\bigcap(X\setminus U_{\alpha}).$$

Because $X \setminus U_{\alpha}$ is countable for all α and the intersection of countable sets is countable we have that $\bigcup U_{\alpha} \in \mathfrak{I}_{c}$.

Finally, given any finite intersection $\bigcup_{i=1}^n U_i$ of open sets of X we have that

$$X \setminus \bigcup_{i=1}^{n} U_i = \bigcap_{i=1}^{n} (U_i \setminus X).$$

For each $i, X \setminus U_i$ is countable and the finite union of countable sets is countable.

Solution (part 2)

 \mathcal{T}_{∞} is not a topology as it is not closed under finite intersections. For a counterexample consider $X = \mathbb{Z}$ and the two subsets $U_{-1} = \{-1, 0, \dots\}$ and $U_1 = \{\dots, 0, 1\}$. Though both U_1 and U_{-1} are clearly in \mathcal{T}_{∞} their intersection,

$$U_{-1} \cap U_1 = \{-1, 0, 1\}$$

is finite.

Question 4a

If $\{\mathcal{T}_{\alpha}\}$ is a family of topologies on X, show that $\bigcap \mathcal{T}_{\alpha}$ is a topology on X. Is $\bigcup \mathcal{T}_{\alpha}$ a topology on X?

Solution (part 1)

We have that \emptyset and X are in $\{\mathcal{T}_{\alpha}\}$ for all α so \emptyset , $X \in \bigcap \mathcal{T}_{\alpha}$. Let $\{U_i\}_{i \in I}$ be a collection of sets in $\bigcap \mathcal{T}_{\alpha}$. Since each U_i is an element of \mathcal{T}_{α} for all α and \mathcal{T}_{α} is closed under unions for each α we must have that

$$\bigcup_{i\in I} U_i \in \bigcap \mathfrak{T}_{\alpha}.$$

Likewise if $\{U_i\}$ is a finite collection

$$\bigcap_{i=1}^{n} U_i \in \mathfrak{T}_{\alpha}$$

as each $U_i \in \mathcal{T}_{\alpha}$ for some α and \mathcal{T}_{α} is closed under finite unions.

Solution (part 2)

No, $\bigcup \mathcal{T}_{\alpha}$ is not a topology in general. For a counterexample examine the topologies in Example 1 of §12. Observe that $\mathcal{T}_{12} \bigcup \mathcal{T}_{21}$ is not a topology; for one $\{b\}$ is not in the union but can be obtained from intersection of elements in $\mathcal{T}_{12} \bigcup \mathcal{T}_{21}$.

Question 4b

Let $\{\mathcal{T}_{\alpha}\}$ be a family of topologies on X. Show that there is a unique smallest topology on X containing all the collections \mathcal{T}_{α} , and a unique largest topology contained in all \mathcal{T}_{α} .

Solution

Let $\{\mathcal{T}_{\alpha}\}$ be a family of topologies on X and let \mathcal{A} be the collection of all unions and finite intersections of elements in $\bigcup \mathcal{T}_{\alpha}$. By definition \mathcal{A} is closed under unions and finite intersections and because each topology \mathcal{T}_{α} contains X and \emptyset so will \mathcal{A} ; thus \mathcal{A} is a topology.

Clearly for each α , we have $\mathfrak{T}_{\alpha} \subset \mathcal{A}$. Suppose there is some other topoogy \mathcal{A}' for which $\mathfrak{T}_{\alpha} \subset \mathcal{A}'$ for all α . Given any $U \in \mathcal{A}$ either $U = \bigcup U_{\alpha}$ or $\bigcap_{i=1}^{n} U_{i}$ with $U_{\alpha}, U_{i} \in \bigcup \mathfrak{T}_{\alpha}$. However, because \mathcal{A}' is a topology that contains each \mathfrak{T}_{α} , we must then have that $U \in \mathcal{A}'$. So $\mathcal{A} \subset \mathcal{A}'$.

Now, let $\mathfrak{T} = \bigcap \mathfrak{T}_{\alpha}$. By 4a \mathfrak{T} is a topology. Suppose there is some other topology \mathfrak{T}' such that $\mathfrak{T}' \subset \mathfrak{T}_{\alpha}$ for all α . Given $U \in \mathfrak{T}$ we have that $U \in \mathfrak{T}'_{\alpha}$ for all alpha. Thus $\mathfrak{T}' \subset \mathfrak{T}$.

Question 4c

If $X = \{a, b, c\}$, let

$$\mathfrak{I}_1 = \{\emptyset, X, \{a\}, \{a,b\}\} \text{ and } \mathfrak{I}_2 = \{\emptyset, X, \{a\}, \{b,c\}\}.$$

Find the smallest topology containing \mathcal{T}_1 and \mathcal{T}_2 , and the largest topology contained in \mathcal{T}_1 and \mathcal{T}_2 .

Solution

The smallest topology containing \mathcal{T}_1 and \mathcal{T}_2 is

$$\mathfrak{T}_3 = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}.$$

The largest topology contained in \mathcal{T}_1 and \mathcal{T}_2 is

$$\mathfrak{T}_4 = \{\varnothing, X, \{a\}\}.$$

Question 5

Show that if \mathcal{A} is a basis for a topology on X, then the topology generated by \mathcal{A} equals the intersection of all topologies on X that contain \mathcal{A} . Prove the same if \mathcal{A} is a subbasis.

Proof