

Updates in CSC Alignment

Jim Pivarski

Vadim Khotilovich

Aysen Tatarinov

Texas A&M University

27 October, 2009

▶ Alternation feature: finally found what toggles it, but not what causes it

CRAFT-2009 endcap alignment (with tracks!)

October exercises: (1) spreading the expertise (2) preparing for beam-halo

- Non-physical alternation of residuals from one chamber to the next stood in the way of alignment
- $p_T > 40 \text{ GeV cut} \rightarrow p_T > 100 \text{ GeV}$ suppresses the effect
- Not observed in RecHits (overlaps)
- Unclear what the effect is (not $\vec{B}(\vec{x})$)
- But it is now possible to perform alignment

- ► Two-step procedure:
 - 1. Z and local ϕ_x from link and endcap hardware alignment
 - 2. global X, Y, ϕ_Z of rings from tracks (combined into fits vs. ϕ)
- \blacktriangleright Tracks are very sensitive to (2) and 2009 data is sufficiently uniform in ϕ for robust alignment
- Not enough tracks to individually align chambers
 - tested machinery and it works, but so few chambers can be aligned that it doesn't make much difference
- Status:
 - ▶ SQLite from (1) should be delivered today, tested signs (\pm)
 - also waiting for tracker alignment update to start (2)
- Preliminary results follow (16 pages), final results will be similar

- Unbiased residuals from tracker tracks
- ► Color scale is 2-D plot
- Black points are a profile (averages in vertical bins)
- Red line is fit to 2-D data
- ▶ sine $\sim X$ cosine $\sim Y$ constant $\sim \phi_Z$

- Unbiased residuals from tracker tracks
- Color scale is 2-D plot
- Black points are a profile (averages in vertical bins)
- Red line is fit to 2-D data
- ▶ sine $\sim X$ cosine $\sim Y$ constant $\sim \phi_Z$

ME-3/1 after ring alignment

- Unbiased residuals from tracker tracks
- ► Color scale is 2-D plot
- Black points are a profile (averages in vertical bins)
- Red line is fit to 2-D data
- ▶ sine $\sim X$ cosine $\sim Y$ constant $\sim \phi_{7}$

- Unbiased residuals from tracker tracks
- Color scale is 2-D plot
- Black points are a profile (averages in vertical bins)
- Red line is fit to 2-D data
- ▶ sine $\sim X$ cosine $\sim Y$ constant $\sim \phi_Z$

- Unbiased residuals from tracker tracks
- Color scale is 2-D plot
- Black points are a profile (averages in vertical bins)
- Red line is fit to 2-D data
- ▶ sine $\sim X$ cosine $\sim Y$ constant $\sim \phi_Z$

- Unbiased residuals from tracker tracks
- Color scale is 2-D plot
- Black points are a profile (averages in vertical bins)
- Red line is fit to 2-D data
- ▶ sine $\sim X$ cosine $\sim Y$ constant $\sim \phi_Z$

- Unbiased residuals from tracker tracks
- Color scale is 2-D plot
- Black points are a profile (averages in vertical bins)
- Red line is fit to 2-D data
- ▶ sine $\sim X$ cosine $\sim Y$ constant $\sim \phi_Z$

- Unbiased residuals from tracker tracks
- Color scale is 2-D plot
- Black points are a profile (averages in vertical bins)
- Red line is fit to 2-D data
- ▶ sine $\sim X$ cosine $\sim Y$ constant $\sim \phi_Z$

- Unbiased residuals from tracker tracks
- Color scale is 2-D plot
- Black points are a profile (averages in vertical bins)
- Red line is fit to 2-D data
- ▶ sine $\sim X$ cosine $\sim Y$ constant $\sim \phi_Z$

- Unbiased residuals from tracker tracks
- Color scale is 2-D plot
- Black points are a profile (averages in vertical bins)
- Red line is fit to 2-D data
- ▶ sine $\sim X$ cosine $\sim Y$ constant $\sim \phi_Z$

- Unbiased residuals from tracker tracks
- Color scale is 2-D plot
- Black points are a profile (averages in vertical bins)
- Red line is fit to 2-D data
- ▶ sine $\sim X$ cosine $\sim Y$ constant $\sim \phi_Z$

- Unbiased residuals from tracker tracks
- Color scale is2-D plot
- Black points are a profile (averages in vertical bins)
- Red line is fit to 2-D data
- ▶ sine $\sim X$ cosine $\sim Y$ constant $\sim \phi_Z$

ME+2/2 after ring alignment

- Unbiased residuals from tracker tracks
- Color scale is 2-D plot
- Black points are a profile (averages in vertical bins)
- Red line is fit to 2-D data
- ▶ sine $\sim X$ cosine $\sim Y$ constant $\sim \phi_{7}$

- Unbiased residuals from tracker tracks
- ► Color scale is 2-D plot
- Black points are a profile (averages in vertical bins)
- Red line is fit to 2-D data
- ▶ sine $\sim X$ cosine $\sim Y$ constant $\sim \phi_{7}$

- Unbiased residuals from tracker tracks
- ► Color scale is 2-D plot
- Black points are a profile (averages in vertical bins)
- Red line is fit to 2-D data
- ▶ sine $\sim X$ cosine $\sim Y$ constant $\sim \phi_Z$

- Unbiased residuals from tracker tracks
- Color scale is 2-D plot
- Black points are a profile (averages in vertical bins)
- Red line is fit to 2-D data
- ▶ sine $\sim X$ cosine $\sim Y$ constant $\sim \phi_Z$

Table of ring corrections

Jim Pivarski 21/24

- ► Grouped items are physically connected to the same disk; values are correlated but not exactly equal within fitting errors
- ▶ Large χ^2 /ndf expected from incomplete chamber alignment

ring	δ_x (mm)	δ_y (mm)	$\delta_{\phi_{z}}$ (mrad)	χ^2/ndf
ME-4/1	5.00 ± 0.14	-1.30 ± 0.22	1.57 ± 0.05	79.8998
ME-3/2	2.25 ± 0.04	-0.62 ± 0.06	1.85 ± 0.01	60.1288
ME - 3/1	4.16 ± 0.12	0.06 ± 0.18	2.12 ± 0.04	63.914
ME-2/2	1.66 ± 0.04	1.29 ± 0.05	1.68 ± 0.01	52.9565
ME-2/1	3.77 ± 0.09	-1.96 ± 0.13	2.18 ± 0.03	37.8555
ME-1/3	2.41 ± 0.06	1.43 ± 0.09	0.26 ± 0.01	45.2275
ME-1/2	3.52 ± 0.05	-1.56 ± 0.07	0.85 ± 0.01	23.7824
$ME{-1/1}$	2.93 ± 0.09	-2.90 ± 0.13	0.66 ± 0.04	5.31818
ME+1/1	4.95 ± 0.08	-1.93 ± 0.11	0.17 ± 0.04	11.9906
ME+1/2	5.05 ± 0.05	0.81 ± 0.07	0.13 ± 0.01	22.0969
ME+1/3	4.36 ± 0.06	3.22 ± 0.08	0.02 ± 0.01	38.1421
ME+2/1	4.56 ± 0.08	2.30 ± 0.12	0.18 ± 0.03	28.5622
ME+2/2	4.28 ± 0.04	3.86 ± 0.05	-0.11 ± 0.01	47.6725
ME + 3/1	5.06 ± 0.10	4.42 ± 0.17	-0.05 ± 0.03	25.2588
ME+3/2	4.01 ± 0.04	4.88 ± 0.06	-0.37 ± 0.01	60.8494
ME+4/1	5.58 ± 0.15	8.24 ± 0.24	0.40 ± 0.05	31.3307

October Exercise (1)

Jim Pivarski 22/24

- ► Simulated alignment exercise with 3_2_X collisions/cosmics MC
- ▶ Done in 2_2_X: https://hypernews.cern.ch/HyperNews/CMS/get/muon-alignment/342.html
- Workflow performed by a new grad student, Aysen Tatarinov, from documentation and with help from Vadim Khotilovich and me

 $\verb|https://twiki.cern.ch/twiki//bin/view/CMS/SWGuideMuonAlignReferenceTarget| | the continuous con$

 \blacktriangleright Prelim. CSC resolution: 320 μ m $\delta_{\rm x}$, 290 μ rad $\delta_{\phi_{\rm y}}$, 590 μ rad $\delta_{\phi_{\rm y}}$

Note: I had encountered problems with ME1/3 in 2_2_X which appear to have been fixed!

- ► CSC Overlaps alignment was very successful in 2008 (2_1_X)
- ► Software has not been updated since, might need small corrections to work in the new environment
- Second October exercise: test CSC Overlaps in 3_2_X
 - requested and recieved 3_2_X beam-halo sample
 - checked samples: everything is ready and in the right format
 - still need to work through exercise
- ▶ Boundary condition: real beam-halo expected in ~2 weeks, algorithm must be fully vetted in Monte Carlo before then

- ▶ Alternation feature strangely depends on p_T
 - what could cause that?
- ► CRAFT-09 alignment includes new corrections for large transverse disk displacement
- Alignment machinery is being documented, has successfully been run by a new user
- ▶ 2009 beam-halo is imminent: need to make sure tools are ready