Моделирование данных

А3. Физические модели данных

Московский государственный технический университет имени Н.Э. Баумана

Факультет ИБМ

сен 2024 года Москва

Артемьев Валерий Иванович © 2024

Курс «Моделирование данных»

3. Физические модели данных

- Определение физической модели данных
- Шаги создания физической модели данных
- Подготовительный шаг
- Именование таблиц и колонок ФМД
- Типы данных СУБД
- Необязательные значения NULL
- Выбор имён для таблиц, колонок примера
- Определение типов данных БД примера
- Целостность данных и бизнес-правила
- Определение процедур контроля целостности данных для примера
- Первичные и внешние ключи (РК и FK)
- Объявление ключевых атрибутов примера
- Целостность ссылок
- Определение процедур контроля целостности ссылок для примера
- Нотации физической модели данных
- Создание диаграммы «сущность-связь» для ФМД примера
- Оформление таблицы описания физической модели данных примера
- Описание данных в комментарии к таблицам и атрибутам

Физическая модель данных

Детальная модель данных отражает необходимые потребности бизнеса, ограничения выбранной абстракции и конкретной реализации в виде БД.

- Выполняется дополнительная нормализация или денормализация баз данных.
- Сущности данных представляются в виде таблиц и представлений базы данных.
- Атрибуты реализуются в виде колонок таблицы БД.
- Идентификаторы и ссылки преобразуются в первичные (primary key) и внешние ключи (foreign key) БД.
- Использование типов данных SQL.
- На основе физической модели БД формируется DDL-скрипты для генерации объектов БД .

Шаги создания физической модели данных

Анализ требований и анализ предметной области

Подготовительный шаг Дополнительная нормализация и денормализация

Определение таблиц и колонок

Определение ограничений целостности

Документирование ФМД

Создание и ведение ER-диаграммы и таблиц описания ФМД

- Заготовка диаграммы ФМД на основе ЛМД
- Дополнительная нормализация
- Денормализация
- Уточнение правил именования
- Именование таблиц и колонок
- Назначение типов данных
- Выявление ключевых атрибутов
- Разметка колонок и ключей

- Определение ограничений целостности данных
- Определение ограничений целостности ссылок
- Окончательное оформление диаграммы ФМД
- Подготовка таблицы описания ФМД.

Подготовительный шаг

Необходимо скопировать ER-диаграмму ЛДМ:

 Открыть диаграмму ЛДМ и сохранить её как диаграмму ФМД для дальнейшей работы.

Дальнейшие действия зависят от нотации ERдиаграммы ЛДМ в графических редакторах:

- Наиболее просто создать ФМД из ЛМД для упрощенной нотации в MS PowerPoint.
- Создание ФМД в других нотациях может потребовать переименования атрибутов или пересоздания блоков сущностей в худшем случае.

Именование таблиц и колонок ФМД

- Именуйте таблицы и колонки ФМД на основе имён сущностей и атрибутов ЛМД
- Сохранять выбранный порядок слов в именах
- Русские сокращения применять, но не переводить
- Формат имени змейка (snake_case): creator_role
- Есть повод поговорить о правилах именования
- Правила именования https://www.sqlstyle.guide/ru/
- Книга «Стиль программирования Джо Селко на SQL»
- Стандарт именования элементов данных ГОСТ Р ИСО/МЭК 11179-1-2010

Правила именования элементов данных имеют более широкую область применения в ИТ.

Стандарт именования данных ГОСТ Р ИСО/МЭК 11179-1-2010

Семантика имён

- Имена таблиц и колонок имеют следующие составляющие:
 - Термы классов объектов (сущностей)
 - Термы свойств объектов
 - Термы представления
 - Уточняющие термы
- Должны быть ровно один терм классов, один терм свойств и может быть один терм представления

Пример: Общая Сумма Стоимости за Бюджетный Период

Синтаксис имён

- Терм класса должен занимать 1-ое место в имени
- Уточняющие термы должны предшествовать уточняемым термам
- Терм свойства должен занимать следующую позицию
- Терм представления занимает последнее место

Пример: Стоимость_БюджетныйПериод_Общая_Сумма Cost_BudgetPeriod_Total_Amount

Преобразования имён ЛМД в имена ФМД

- Варианты правил именования
 - *по-английски*, нужно переводить и вести словарь
 - транслитерация с настройкой http://translit-online.ru/
 - *русский язык* поддерживается в некоторых БД

Кто знает, что такое транслитерация?

■ Преобразования имён атрибутов (сущностей) в имена колонок (таблиц)

	Имя атрибута	Трансли	герация	Перевод	
Формат имени	(сущности)	Прямой порядок слов	Обратный порядок слов	Обратный порядок слов	Имя в кавычках
Прямой порядок слов	имя_издателя	imja_izdatelja			
Обратный порядок слов	издатель_имя		izdatel_imja	publisher_name	
Имя в кавычках	"имя издателя"				"имя издателя"

Стандарт транслитерации ГОСТ 7.79-2000

Основные классы типов данных

Тип данных – именованная категория множества значений и характеристик элемента данных, а также набор допустимых операций над ними.

Какие типы данных вы знаете или сталкивались на практике в программировании?

Основные классы типов данных

Тип данных – именованная категория множества значений и характеристик элемента данных, а также набор допустимых операций над ними.

- Символьные типы данных
- Числовые типы данных
- Типы данных даты и времени
- Типы больших объектов данных
- Логические типы данных
- Экзотические типы данных

ФМД содержит *типы данных в реляционных БД* ЛМД могут содержать *математические* или *прикладные типы данных*.

Числовые и логические типы данных

Тип данных	Oracle	SQL Server	MySQL	PostgreSQL
SMALLINT	Υ	Υ	Υ	Υ
INTEGER	Υ	Y	Υ	Y
INT	Υ	Y	Y	
BIGINT		Y	Y	Y
NUMERIC	Υ	Y	Y	Y
DECIMAL	ı	ı	I	ı
MONEY		Y		Υ
REAL	Υ	Y	Υ	Y
FLOAT	Υ	Y	Y	
DOUBLE PRECISION	Υ	Y	Υ	Y
BIT		Y	Y	

Символьные типы данных

Тип данных	Oracle	SQL Server	MySQL	PostgreSQL	
SMALLINT	Υ	Υ	Υ	Y	
INTEGER	Υ	Y	Υ	Y	
INT	Υ	Y	Υ		
BIGINT		Y	Υ	Y	
NUMERIC	Y	Y	Υ	Y	
DECIMAL	Y	Y	Y	Y	
MONEY		Y		Y	
REAL	Υ	Y	Υ	Y	
FLOAT	Υ	Y	Υ		
DOUBLE PRECISION	Υ	Y	Υ	Y	
BIT		Y	Y		

Типы данных даты и времени

Тип данных	Oracle	SQL Server	MySQL	PostgreSQL
SMALLINT	Υ	Υ	Υ	Y
INTEGER	Υ	Υ	Υ	Y
INT	Υ	Y	Υ	
BIGINT		Υ	Υ	Y
NUMERIC	Y	Y	Υ	Y
DECIMAL	ĭ	T	Ť	T
MONEY		Y		Υ
REAL	Υ	Υ	Υ	Υ
FLOAT	Y	Υ	Υ	
DOUBLE PRECISION	Υ	Y	Υ	Y
BIT		Y	Y	

Типы больших объектов данных

Тип данных	Oracle	SQL Server	MySQL	PostgreSQL
SMALLINT	Υ	Υ	Υ	Υ
INTEGER	Υ	Y	Υ	Υ
INT	Υ	Y	Υ	
BIGINT		Y	Υ	Y
NUMERIC	Y	Y	Υ	Y
DECIMAL	1	ı	ı	ı
MONEY		Υ		Υ
REAL	Υ	Y	Υ	Υ
FLOAT	Υ	Y	Υ	
DOUBLE PRECISION	Y	Y	Y	Y
BIT		Y	Y	

Объявление необязательных значений

NULL NOT NULL Примеры

Объявление ключей

Первичный ключ РК PRIMARY KEY

Альтернативные ключи UN UNIQUE

Внешние ключи FK FOREIGN KEY

Процедуры проверки уникальности и целостности ссылок

Описание данных – комментарии

Комментарии к таблицам

Комментарии к колонкам

Описание данных – комментарии

Комментарии к таблицам

Комментарии к колонкам

Нотация ER-диаграммы физической модели данных

Нотация Р. Баркера

- Имя таблицы/ представления существительное латиницей в единственном числе на полочке или подчёркнуто.
- В блоке задаются имена колонок латиницей без пробелов, без повторения или с повтором имени сущности.
- Следует указывать (РК)
 для идентификатора и (FK)
 для ссылки.
- Указывать (null) для необязательных атрибутов.
- Допустимо указывать прикладные типы данных для колонки через «:».

Состав таблицы описания физической модели данных

- Имя базы данных (имя предметной области)
- Вид набора данных: таблица/ представление
- Имя таблицы (сущности)
- Имя колонки (атрибута)
- Описание колонки (атрибута)
- Обязательность значения: NULL или NOT NULL
- Имя домена данных и его описание
- Тип данных и длина/ разрядность
- Процедуры целостности данных и ссылок (допустимые ограничения типа, правила целостности, первичные и внешние ключи)
- [Примеры значения данных]

Пример: Домашняя библиотека

Создать каталог домашней библиотеки

- Атрибуты поиска книги:
 - Тематика, вид издания
 - Название издания и/ или ключевые слова
 - Фамилию, имя (инициалы) автора, редактора, составителя, переводчика или художника
 - Название и место издательства
 - Год выпуска.
- Результаты поиска:
 - Хранимые атрибуты книги (включая аннотацию, описание приложения и сведения об оригинале перевода)
 - Место хранения издания (шкаф, полка)
 - Текущий держатель (читатель) издания, его контакты
- В библиотеке каждая книга присутствует в одном экземпляре
- Расширения видов изданий: электронные книги и аудиокниги, хранимые на компьютерах, ноутбуках, планшетах и смартфонах
- Расширение мест хранения: дача, офис

Преобразование блоков ER-диаграммы

СОЗДАТЕЛЬ

создатель_ID создатель_ФИО создатель_инициалы

CREATOR

(PK) creator_ID: integer creator_FIO: varchar creator_initials: varchar PowerPoint Замена и редактирование названий атрибутов

СОЗДАТЕЛЬ

создатель_ID создатель_ФИО создатель_иниц

Creator

PK creator_ID: integer

creator_FIO: varchar

creator_initials: varchar

Draw.io Замена и редактирование названий атрибутов

СОЗДАТЕЛЬ

создатель_ID создатель_ФИО создатель_иниц

CREATOR

PK <u>creator ID: integer</u>

creator FIO: varchar

creator_initials: varchar

Draw.io Замена блоков, ввод и копирование названий атрибутов

Типы и домены данных

- Что такое домен данных?
 - Именованная область допустимых значений однотипных атрибутов – прикладной тип данных, задаёт ограничения для значений
 - Тип данных
 - Диапазон значений
 - Список допустимых значений
 - Условие
- Примеры доменов
 - Тип_ИНН_юрлиц или Цифры(10)
 - Деньги(20,4)
 - Список: "малый"; "средний"; "большой"

Домен данных – тип данных и его ограничения, задает область допустимых значений в виде длины/ разрядности, диапазона или списка значений, формата (шаблона)

Логическая модель данных «Домашняя библиотека»

Физическая модель данных «Домашняя библиотека» (draw.io)

Описание физической модели данных «Домашняя библиотека»

Терпения и удачи всем, кто связан с моделированием данных

Спасибо за внимание!

Валерий Иванович Артемьев

Департамент данных, проектов и процессов Банк России

Тел.: +7(495) 753-96-25

e-mail: avi@cbr.ru