From wide to long data

RESHAPING DATA WITH TIDYR

Jeroen BoeyeHead of Machine Learning, Faktion

separate()

title	type	duration

title	type	value	unit

separate_rows()

drink	ingredients			ents
Α	1 2 3		3	
В	1			2

drink	ingredients
Α	1
Α	2
Α	3
В	1
В	2

Values in column headers

nuke_df

Values in column headers

country	1945	1946
USA	3	2
USSR	NA	NA

country	year	n_bombs
USA	1945	3
USA	1946	2
USSR	1945	NA
USSR	1946	NA

The pivot_longer() function

```
nuke_df %>%
  pivot_longer(`1945`:`1951`)
```

```
# A tibble: 10 x 3
          name value
  country
  <chr>
        <chr> <int>
1 United States
                          3
                  1945
2 United States
              1946
              1948
3 United States
              1949
4 United States
              1951
5 United States
                          16
6 Russian Federation 1945
# ... with 4 more rows
```

The pivot_longer() function

```
nuke_df %>%
pivot_longer(c(`1945`, `1946`, `1948`, `1949`, `1951`))
```

```
# A tibble: 10 x 3
         name value
  country
  <chr>
       <chr> <int>
1 United States 1945
                         3
2 United States 1946 2
3 United States
             1948
             1949
4 United States
5 United States 1951
                        16
6 Russian Federation 1945
# ... with 4 more rows
```

The pivot_longer() function

```
nuke_df %>%
pivot_longer(-country)
```

```
# A tibble: 10 x 3
          name value
  country
  <chr>
        <chr> <int>
1 United States
                           3
                  1945
2 United States
              1946
3 United States
              1948
              1949
4 United States
              1951
5 United States
                          16
6 Russian Federation 1945
# ... with 4 more rows
```

pivot_longer() arguments

```
nuke_df %>%
pivot_longer(-country, names_to = "year", values_to = "n_bombs")
```

```
# A tibble: 10 x 3
  country
         year n_bombs
  <chr> <chr> <chr> <chr> <
1 United States 1945 3
2 United States 1946 2
3 United States
             1948
4 United States 1949
5 United States 1951
                         16
6 Russian Federation 1945
# ... with 4 more rows
```

pivot_longer() arguments

```
nuke_df %>%
  pivot_longer(
    -country,
    names_to = "year",
    values_to = "n_bombs",
    values_drop_na = TRUE
)
```

```
# A tibble: 6 x 3
 country
                   year n_bombs
  <chr>
                   <chr>
                          <int>
1 United States
                   1945
                              3
2 United States
                   1946
3 United States
                              3
                   1948
4 United States
                   1951
                             16
5 Russian Federation 1949
6 Russian Federation 1951
```

pivot_longer() arguments

```
nuke_df %>%
  pivot_longer(
    -country,
    names_to = "year",
    values_to = "n_bombs",
    values_drop_na = TRUE,
    names_transform = list(year = as.integer)
)
```

```
# A tibble: 6 x 3
 country
         year n_bombs
               <int> <int>
 <chr>
1 United States
                1945
                        3
                1946
2 United States
3 United States
                1948
                        3
4 United States
                1951
                        16
5 Russian Federation 1949
6 Russian Federation 1951
```

Let's practice!

RESHAPING DATA WITH TIDYR

Deriving variables from column headers

RESHAPING DATA WITH TIDYR

Jeroen Boeye Head of Machine Learning, Faktion

Soviet space dogs

```
space_dogs_df
```

```
# A tibble: 42 x 4
                                result
   date
             name_1
                       name_2
   <date>
          <chr>
                                <chr>
                       <chr>
 1 1951-06-26 Lisa-2
                       Ryzhik-2 recovered safely
 2 1951-07-22 Dezik
                       Tsygan
                                recovered safely
 3 1951-07-29 Dezik
                       Lisa
                                parachute failed, both dogs died
 4 1951-08-15 Chizhik
                       Mishka
                                recovered safely
 5 1951-08-19 Ryzhik
                       Smeliy
                                recovered safely
 # ... with 37 more rows
```

Soviet space dogs: a basic pivot operation

```
dog_df %>%
  pivot_longer(
    c(name_1, name_2),
    names_to = "id",
    values_to = "name",
    values_drop_na = TRUE
) %>%
  select(-result)
```

```
# A tibble: 81 x 3
  date id
                    name
  <date> <chr> <chr>
 1 1951-06-26 name_1 Lisa-2
 2 1951-06-26 name_2 Ryzhik-2
 3 1951-07-22 name_1 Dezik
 4 1951-07-22 name_2 Tsygan
 5 1951-07-29 name_1 Dezik
 6 1951-07-29 name_2 Lisa
 7 1951-08-15 name_1 Chizhik
 8 1951-08-15 name_2 Mishka
 9 1951-08-19 name_1 Ryzhik
# ... with 72 more rows
```

Soviet space dogs: removing a prefix

```
dog_df %>%
  pivot_longer(
    c(name_1, name_2),
    names_to = "id",
    values_to = "name",
    values_drop_na = TRUE,
    names_prefix = "name_"
) %>%
  select(-result)
```

```
# A tibble: 81 x 3
  date id
                  name
  <date> <chr> <chr>
1 1951-06-26 1
                  Lisa-2
2 1951-06-26 2
                  Ryzhik-2
3 1951-07-22 1
                  Dezik
4 1951-07-22 2
                  Tsygan
5 1951-07-29 1
                  Dezik
6 1951-07-29 2
                  Lisa
7 1951-08-15 1
                  Chizhik
8 1951-08-15 2
                  Mishka
9 1951-08-19 1
                  Ryzhik
# ... with 72 more rows
```

Soviet space dogs: transforming data types

```
dog_df %>%
  pivot_longer(
    c(name_1, name_2),
    names_to = "id",
    values_to = "name",
    values_drop_na = TRUE,
    names_prefix = "name_",
    names_transform = list(id = as.integer)
  ) %>%
  select(-result)
```

```
# A tibble: 81 x 3
  date id name
  <date> <int> <chr>
2 1951-06-26 2 Ryzhik-2
              1 Dezik
3 1951-07-22
4 1951-07-22
              2 Tsygan
              1 Dezik
5 1951-07-29
6 1951-07-29
              2 Lisa
7 1951-08-15
              1 Chizhik
8 1951-08-15
              2 Mishka
9 1951-08-19
              1 Ryzhik
# ... with 72 more rows
```

Soviet space dogs: the starts_with() function

```
dog_df %>%
  pivot_longer(
    starts_with("name_"),
    names_to = "id",
    values_to = "name",
    values_drop_na = TRUE,
    names_prefix = "name_",
    names_transform = list(id = as.integer)
  ) %>%
  select(-result)
```

```
# A tibble: 81 x 3
             id name
  date
  <date> <int> <chr>
2 1951-06-26
              2 Ryzhik-2
              1 Dezik
3 1951-07-22
4 1951-07-22
              2 Tsygan
              1 Dezik
5 1951-07-29
              2 Lisa
6 1951-07-29
              1 Chizhik
7 1951-08-15
8 1951-08-15
              2 Mishka
9 1951-08-19
              1 Ryzhik
# ... with 72 more rows
```

Apple revenue: two variables per column name

apple_revenue_df

```
# A tibble: 4 x 5
 segment `2019_Q1` `2019_Q2` `2019_Q3` `2019_Q4`
            <dbl>
                    <dbl>
                             <dbl>
 <chr>
                                      <dbl>
1 iPhone
                 31.0
            52.0
                             26.0
                                      33.4
2 Mac
         7.42
                 5.51
                          5.82
                                       6.99
                          5.02
3 iPad
            6.73
                 4.87
                                      4.66
                                      19.0
4 Other
            18.2
                    16.6
                             17.0
```

Apple revenue: visualizing issue and solution

segment	2019_Q1	2019_Q2
iPhone	52.0	31.0
Mac	7.42	5.51

segment	year	quarter	revenue
iPhone	2019	1	52.0
iPhone	2019	2	31.0
Mac	2019	1	7.42
Mac	2019	2	5.51

Apple revenue: Advanced pivoting

```
apple_df %>%
  pivot_longer(
    -segment,
    names_to = c("year", "quarter"),
    values_to = "revenue",
    names_sep = "_Q",
    names_transform = list(
      year = as.integer,
      quarter = as.integer
```

```
# A tibble: 16 x 4
  segment year quarter revenue
         <int> <int> <dbl>
  <chr>
          2019
                   1 52.0
1 iPhone
2 iPhone
          2019
                   2 31.0
3 iPhone
                      26.0
         2019
4 iPhone
          2019
                   4 33.4
5 Mac
          2019
                       7.42
          2019
                       5.51
6 Mac
                       5.82
          2019
7 Mac
8 Mac
          2019
                       6.99
# ... with 8 more rows
```

Let's practice!

RESHAPING DATA WITH TIDYR

Deriving variables from complex column headers

RESHAPING DATA WITH TIDYR

Jeroen Boeye Head of Machine Learning, Faktion

Separating column headers into variables

segment	2019_Q1	2019_Q2
iPhone	52.0	31.0
Mac	7.42	5.51

segment	year	quarter	revenue
iPhone	2019	1	52.0
iPhone	2019	2	31.0
Mac	2019	1	7.42
Mac	2019	2	5.51

Multiple variable combinations in column headers

who_df

country	<pre>female_pct.obese</pre>	<pre>male_pct.obese</pre>	<pre>female_life.exp</pre>	<pre>male_life.exp</pre>
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1 Afghanistan	7.6	3.2	64.5	61
2 Albania	21.8	21.6	78.6	74.3
3 Algeria	34.9	19.9	77.4	75.4
4 Angola	12.1	4	64.9	60.3
5 Antigua and Barbuda	25.9	11.6	77.5	72.5
6 Argentina	29	27.3	80.3	73.5
7 Armenia	23	17.1	78.1	71.2
8 Australia	28.4	29.6	84.8	81

Multiple variable combinations in column headers

country	female_pct.obese	male_pct.obese	female_life.exp	male_life.exp
Afghanistan	7.6	3.2	64.5	61
Albania	21.8	21.6	78.6	74.3

country	sex	pct.obese	life.exp
Afghanistan	female	7.6	52.0
Afghanistan	male	3.2	31.0
Albania	female	21.8	7.42
Albania	male	21.6	5.51

The special .value name

```
# A tibble: 362 x 4
  country
                    sex pct.obese life.exp
  <chr>
                             <dbl>
                                     <dbl>
                    <chr>
1 Afghanistan
                   female
                               7.6 64.5
 2 Afghanistan
                           3.2
                   male
                                      61
3 Albania
                    female
                              21.8
                                    78.6
```

pivot_longer() recap

country	1945	1946
USA	3	2
USSR	NA	NA

segment	2019_Q1	2019_Q2
iPhone	52.0	31.0
Mac	7.42	5.51

country	female_pct.obese	male_pct.obese	female_life.exp	male_life.exp
Afghanistan	7.6	3.2	64.5	61
Albania	21.8	21.6	78.6	74.3

country	year	n_bombs
USA	1945	3
USA	1946	2
USSR	1945	NA
USSR	1946	NA

segment	year	quarter	revenue
iPhone	2019	1	52.0
iPhone	2019	2	31.0
Mac	2019	1	7.42
Mac	2019	2	5.51

country	sex	pct.obese	life.exp
Afghanistan	female	7.6	52.0
Afghanistan	male	3.2	31.0
Albania	female	21.8	7.42
Albania	male	21.6	5.51

Uncounting data

nuke_df

```
# A tibble: 8 x 2
  country
                   n_bombs
  <chr>
                     <int>
1 Pakistan
2 India
3 North Korea
4 United Kingdom
                        21
5 China
                        45
6 France
                       200
7 Russian Federation
                       726
8 United States
                      1150
```

The uncount() function

```
nuke_df %>%
  uncount(n_bombs)
```

```
# A tibble: 2,156 x 1
   country
   <chr>
 1 Pakistan
 2 Pakistan
 3 India
 4 India
 5 India
 6 India
# ... with 2,150 more rows
```

The uncount() function

```
nuke_df %>%
  uncount(2)
```

```
# A tibble: 16 x 2
  country
          n_bombs
                     <int>
  <chr>
1 Pakistan
2 Pakistan
3 India
4 India
5 North Korea
6 North Korea
# ... with 10 more rows
```

The uncount() function

```
nuke_df %>%
  uncount(n_bombs, .id = "bomb_id")
```

```
# A tibble: 2,156 x 2
            bomb_id
  country
  <chr> <int>
1 Pakistan
2 Pakistan
3 India
4 India
5 India
6 India
# ... with 2,150 more rows
```

Let's practice!

RESHAPING DATA WITH TIDYR

From long to wide data

RESHAPING DATA WITH TIDYR

Jeroen Boeye Head of Machine Learning, Faktion

Variable names in a column

```
who_df
```

```
# A tibble: 362 x 3
                      metric
                                value
  country
                                <dbl>
   <chr>
                      <chr>
 1 Afghanistan
                      life_exp
                                 62.7
 2 Afghanistan
                                5.5
                      pct_obese
                      life_exp
 3 Albania
                               76.4
 4 Albania
                      pct_obese 21.7
 ... with 358 more rows
```

Variable names in a column

country	metric	value
Afghanistan	life_exp	62.7
Afghanistan	pct_obese	5.5
Albania	life_exp	76.4
Albania	pct_obese	21.7

country	pct_obese	life_exp
Afghanistan	5.5	62.7
Albania	21.7	76.4

The pivot_wider() function

```
who_df %>%
pivot_wider(names_from = metric, values_from = value)
```

The pivot_wider() function

```
who_long_df %>%
  pivot_wider(names_from = metric, values_from = value, names_prefix = "national_")
```

```
# A tibble: 181 x 3
                       national_life_exp national_pct_obese
   country
   <chr>
                                    <dbl>
                                                       <dbl>
 1 Afghanistan
                                    62.7
                                                         5.5
                                    76.4
 2 Albania
                                                        21.7
 3 Algeria
                                    76.4
                                                        27.4
                                    62.6
 4 Angola
                                                         8.2
 ... with 177 more rows
```

Transposing a data frame

```
sideways_df
```

Transposing a data frame

variable	`1969`	`1970`	`1971`	`1972`
people_on_moon	4	0	4	4
nuclear_bombs	82	85	59	62

year	people_on_moon	nuclear_bombs
1969	4	82
1970	0	85
1971	4	59
1972	4	62

Transposing a data frame: step 1

```
sideways_df %>%
pivot_longer(-variable, names_to = "year", names_transform = list(year = as.integer))
```

```
# A tibble: 8 x 3
 variable year value
 <chr> <int> <int>
1 people_on_moon 1969
2 people_on_moon 1970
3 people_on_moon 1971
4 people_on_moon 1972
5 nuclear_bombs 1969
                        82
6 nuclear_bombs 1970
                        85
7 nuclear_bombs 1971
                       59
8 nuclear_bombs 1972
                        62
```

Transposing a data frame: step 2

```
sideways_df %>%
  pivot_longer(-variable, names_to = "year", names_transform = list(year = as.integer)) %>%
  pivot_wider(names_from = variable, values_from = value)
```

Let's practice!

RESHAPING DATA WITH TIDYR

