

Yareli Gonzalez | yareligonzalez.github.io

Metallurgical and Materials Engineering Student University of Texas at El Paso

(915) 224 1861 | yareli.inbox@gmail.com
U.S. Citizen

EDUCATION -----

University of Texas at El Paso | El Paso, TX

Expected May 2027

Bachelor of Science, Metallurgical and Materials Engineering

Relevant Coursework: Computation/Graphing in Materials Science, Material & Energy Balance, Applied Chemical Thermodynamics, Nanofunctional Physical Metallurgy, Materials Characterization, Polymer Engineering, Non-Destructive Examination

INDUSTRY WORK EXPERIENCE ------

Quality Metallurgy Co-Op, Nucor Steel | Jewett, TX

Jan 2025 – Aug 2025

At Nucor's bar mill, I conducted failure analysis and quality improvement initiatives impacting production efficiency and customer satisfaction. Using SEM/EDS, I analyzed 22 failed steel heats to trace inclusion sources, preventing over \$900,000 in customer claims. I developed Python automation tools to reduce weekly scrap data processing from 2 hours to 20 minutes while improving accuracy. My tensile test failure investigations correlated mechanical properties with upstream processing conditions (rolling mill data, weight distributions, heat variations) to identify root causes. I performed microstructural analysis interpreting grain structures, inclusion morphologies, and phase distributions to diagnose failure mechanisms. I also maintained SEM calibration protocols and equipment per ISO quality standards.

Intern, National Mining Association | Washington, D.C.

June 2024 – Aug 2024

At the National Mining Association, I supported advocacy efforts on critical minerals and environmental regulations. I analyzed 15+ critical minerals patents and legislation to identify technical and policy implications for domestic supply chain security, directly supporting congressional testimony preparation. I compiled regulatory compliance cost estimates totaling \$2.3 million across 8 member companies to quantify EPA regulation impacts on the mining sector. I researched environmental fate and toxicity data for the 6PPD tire additive to inform regulatory strategy. I created fact sheets translating complex mining processes and technologies for policymakers and congressional staff. I monitored federal rulemaking,

distilling stakeholder comments into concise summaries for leadership decision-making, and attended Congressional hearings to provide technical support on environmental and minerals policy issues.

RESEARCH EXPERIENCE ------

Research Assistant, UTEP Polymer Extrusion Lab | El Paso, TX

Feb 2023 - June 2024

I developed shape memory polymer blends for 3D printing applications with biomedical potential. I optimized thermoplastic polyurethane and polycaprolactone blend compositions achieving 10% tensile strength increase and 99.9% shape recovery rate. Operating twin-screw extruders, I produced consistent filaments by controlling temperature profiles, screw speed, and feed rates to ensure reliable printability. I characterized material properties using SEM, DMA, and XRD to verify thermal transitions, mechanical performance, and crystalline structure critical for shape memory behavior. I developed Python automation workflows to extract mechanical properties from tensile test data, reducing processing time and eliminating manual errors. I engaged K-12 students through Polymer Pathways Program demonstrations with hands-on materials science activities. This work resulted in a co-authored paper published in the Journal of Materials Science.

Summer Research Student, SMU BAST Lab | Dallas, TX

July 2019 - Aug 2019

I explored magnetically actuated millirobots for minimally invasive medical procedures, designing 3Dprinted PLA structures with embedded permanent magnets for controlled millimeter-scale locomotion. Through systematic testing of three locomotion modes (pivot walking, tumbling, rolling), I determined pivot walking achieved 40% faster speeds with better navigation control. Fabricating prototypes using fused deposition modeling required maintaining 0.1mm dimensional tolerances for precise magnet placement and consistent magnetic response. I validated navigation capabilities by guiding robots through maze environments using electromagnetic coil control systems, demonstrating feasibility for applications like targeted drug delivery. I collaborated with graduate students to integrate experimental findings into the lab's medical robotics research program.

PUBLICATIONS	 	 	

Published Carrillo, L.E.L., Gonzalez, Y.O., Parga, M. et al. Development of binary and ternary polyester shape memory blends for additive manufacturing. Journal of Materials Science 59, 8040-8057 (2024). https://doi.org/10.1007/s10853-024-09657-7

LICENSES & CERTIFICATIONS -----

SKILLS ------

OSHA 10-Hour General Industry | CareerSafe (ID 14-702040932)

Issued Aug 2020

Materials

Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Characterization metallography, dynamic mechanical analysis (DMA), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), tensile testing, hardness testing; Microstructural analysis and interpretation; Failure analysis methodologies

Software Python (data analysis, automation, visualization), MATLAB (numerical analysis),

SolidWorks (CAD modeling), ANSYS Workbench (finite element analysis), Git

(version control), Power BI (data visualization and reporting)

Manufacturing & Processing

Twin-screw extrusion (temperature control, screw speed optimization, feed rate management), heat treatment protocols, fused deposition modeling (FDM) 3D printing, injection molding processes; Process optimization and quality control

Laboratory ISO quality standards compliance, equipment calibration and maintenance,

experimental design and data collection, technical documentation

OUTREACH & ENGAGEMENT ------

Polymer Pathways Program Demonstrator | El Paso, TX

I conducted hands-on demonstrations of polymer science and materials engineering concepts for K-12 students, designing interactive activities to inspire interest in STEM fields and materials science careers.