class 8 mini project

Cameron Jones

In today's mini-project we will explore a complete analysis using the unsupervised learning techniques covered in class (clustering and PCA for now).

The data itself comes from the Wisconsin Breast Cancer Diagnostic Data Set FNA breast biopsy data.

```
wisc.df <- read.csv("WisconsinCancer.csv", row.names=1)
head(wisc.df)</pre>
```

	diagnosis	radius_mean	${\tt texture_mean}$	<pre>perimeter_mean</pre>	area_mean	L
842302	M	17.99	10.38	122.80	1001.0)
842517	M	20.57	17.77	132.90	1326.0)
84300903	M	19.69	21.25	130.00	1203.0)
84348301	M	11.42	20.38	77.58	386.1	
84358402	M	20.29	14.34	135.10	1297.0)
843786	M	12.45	15.70	82.57	477.1	
	smoothness	s_mean compa	ctness_mean co	ncavity_mean co	oncave.poi	nts_mean
842302	0	.11840	0.27760	0.3001		0.14710
842517	0	.08474	0.07864	0.0869		0.07017
84300903	0	.10960	0.15990	0.1974		0.12790
84348301	0	.14250	0.28390	0.2414	0.10520	
84358402	0	.10030	0.13280	0.1980	0.10430	
843786	0	.12780	0.17000	0.1578		0.08089
	symmetry_r	nean fractal	_dimension_mea	n radius_se te	kture_se p	erimeter_se
842302	0.2	2419	0.0787	1.0950	0.9053	8.589
842517	0.3	1812	0.0566	0.5435	0.7339	3.398
84300903	0.2	2069	0.0599	0.7456	0.7869	4.585
84348301	0.2	2597	0.0974	4 0.4956	1.1560	3.445
84358402	0.3	1809	0.0588	0.7572	0.7813	5.438
843786	0.2	2087	0.0761	.3 0.3345	0.8902	2.217
	area_se sr	noothness_se	compactness_s	se concavity_se	concave.p	oints_se
842302	153.40	0.006399	0.0490	0.05373		0.01587

842517	74.08	0.005225		0.01308	0.	01860		0.01340
84300903	94.03	0.006150		0.04006	0.	03832		0.02058
84348301	27.23	0.009110		0.07458	0.	05661		0.01867
84358402	94.44	0.011490		0.02461	0.	05688		0.01885
843786	27.19	0.007510		0.03345	0.	03672		0.01137
	symmetry_se	fractal_di	mension	_se radi	ius_wors	t texture	_worst	;
842302	0.03003		0.006	3193	25.3	8	17.33	3
842517	0.01389		0.003	3532	24.9	9	23.41	
84300903	0.02250		0.004	1571	23.5	7	25.53	3
84348301	0.05963		0.009	208	14.9	1	26.50)
84358402	0.01756		0.005	5115	22.5	4	16.67	•
843786	0.02165		0.005	5082	15.4	.7	23.75	,
	perimeter_wor	rst area_w	orst sm	noothness	s_worst	compactne	ss_wor	st
842302	184	.60 20	19.0		0.1622		0.66	556
842517	158	.80 19	56.0		0.1238		0.18	866
84300903	152	.50 17	09.0		0.1444		0.42	245
84348301	98	.87 5	67.7		0.2098		0.86	63
84358402	152	.20 15	75.0		0.1374		0.20	50
843786	103	.40 7	41.6		0.1791		0.52	249
	concavity_wor	rst concav	e.point	s_worst	symmetr	y_worst		
842302	0.7	119		0.2654		0.4601		
842517	0.24	416		0.1860		0.2750		
84300903	0.49	504		0.2430		0.3613		
84348301	0.68	869		0.2575		0.6638		
84358402	0.40	000		0.1625		0.2364		
843786	0.53	355		0.1741		0.3985		
	fractal_dimen	nsion_wors	st					
842302		0.1189	90					
842517		0.0890)2					
84300903		0.0875	8					
84348301		0.1730	00					
84358402		0.0767	'8					
843786		0.1244	10					

Remove the Diagnosis column and keep it in a separate vector for later.

```
diagnosis <- as.factor(wisc.df[,1])
wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>
```

radius_mean texture_mean perimeter_mean area_mean smoothness_mean 842302 17.99 10.38 122.80 1001.0 0.11840

842517	20.57	17.77		326.0	0.08474
84300903	19.69	21.25		203.0	0.10960
84348301	11.42	20.38		386.1	0.14250
84358402	20.29	14.34		297.0	0.10030
843786	12.45	15.70	82.57	477.1	0.12780
	compactness_mean	concavity_mean	concave.poin	ts_mean symme	etry_mean
842302	0.27760	0.3001		0.14710	0.2419
842517	0.07864	0.0869		0.07017	0.1812
84300903	0.15990	0.1974		0.12790	0.2069
84348301	0.28390	0.2414		0.10520	0.2597
84358402	0.13280	0.1980		0.10430	0.1809
843786	0.17000	0.1578		0.08089	0.2087
	fractal_dimensio	n_mean radius_se	texture_se	perimeter_se	area_se
842302	0	.07871 1.0950	0.9053	8.589	153.40
842517	0	.05667 0.5435	0.7339	3.398	74.08
84300903	0	.05999 0.7456	0.7869	4.585	94.03
84348301	0	.09744 0.4956	1.1560	3.445	27.23
84358402	0	.05883 0.7572	0.7813	5.438	94.44
843786	0	.07613 0.3345	0.8902	2.217	27.19
	smoothness_se co	mpactness_se con	cavity_se co	ncave.points_	_se
842302	0.006399	0.04904	0.05373	0.015	587
842517	0.005225	0.01308	0.01860	0.013	340
84300903	0.006150	0.04006	0.03832	0.020)58
84348301	0.009110	0.07458	0.05661	0.018	367
84358402	0.011490	0.02461	0.05688	0.018	385
843786	0.007510	0.03345	0.03672	0.011	137
	symmetry_se frac	tal_dimension_se	radius_wors	t texture_wor	rst
842302	0.03003	0.006193	25.3	8 17.	. 33
842517	0.01389	0.003532	24.9	9 23.	.41
84300903	0.02250	0.004571	23.5	7 25.	. 53
84348301	0.05963	0.009208	14.9	1 26.	. 50
84358402	0.01756	0.005115	22.5	4 16.	. 67
843786	0.02165	0.005082	15.4	7 23.	.75
	perimeter_worst	area_worst smoot	hness_worst	compactness_v	vorst
842302	184.60	2019.0	0.1622	0.	6656
842517	158.80	1956.0	0.1238	0.	1866
84300903	152.50	1709.0	0.1444	0.	4245
84348301	98.87	567.7	0.2098	0.	.8663
84358402	152.20	1575.0	0.1374	0.	2050
843786	103.40	741.6	0.1791	0.	5249
	concavity_worst	concave.points_w	orst symmetr	y_worst	
842302	0.7119	0.	2654	0.4601	
842517	0.2416	0.	1860	0.2750	

84300903	0.4504	0.2430	0.3613
84348301	0.6869	0.2575	0.6638
84358402	0.4000	0.1625	0.2364
843786	0.5355	0.1741	0.3985
fr	cactal_dimension_worst		
842302	0.11890		
842517	0.08902		
84300903	0.08758		
84348301	0.17300		
84358402	0.07678		
843786	0.12440		

##Exploratory data analysis The first step of any data analysis, unsupervised or supervised, is to familiarize yourself with the data.

Q1. How many observations are in this dataset?

```
nrow(wisc.data)
```

[1] 569

Q2. How many of the observations have a malignant diagnosis?

```
table(wisc.df$diagnosis)
```

```
B M
357 212
```

Q3. How many variables/features in the data are suffixed with _mean?

First find the column names

```
colnames(wisc.data)
```

```
[1] "radius_mean" "texture_mean"
[3] "perimeter_mean" "area_mean"
[5] "smoothness_mean" "compactness_mean"
[7] "concavity_mean" "concave.points_mean"
[9] "symmetry_mean" "fractal_dimension_mean"
[11] "radius_se" "texture_se"
```

```
[13] "perimeter_se"
                                "area_se"
[15] "smoothness_se"
                                "compactness_se"
[17] "concavity_se"
                                "concave.points_se"
[19] "symmetry_se"
                                "fractal_dimension_se"
[21] "radius_worst"
                                "texture_worst"
[23] "perimeter_worst"
                                "area_worst"
[25] "smoothness_worst"
                                "compactness_worst"
[27] "concavity_worst"
                                "concave.points_worst"
[29] "symmetry_worst"
                                "fractal_dimension_worst"
```

Next I need to search within the column names for "_mean" pattern. The 'grep()' function might help here.

```
inds <- grep("_mean", colnames(wisc.data))
length(inds)</pre>
```

Q How many dimensions are in this dataset?

```
ncol(wisc.data)
```

[1] 30

[1] 10

Principal Component Analysis

First do we need to scale the data before PCA or not

```
round(apply(wisc.data, 2, sd), 2)
```

radius_mean	texture_mean	perimeter_mean
3.52	4.30	24.30
area_mean	smoothness_mean	compactness_mean
351.91	0.01	0.05
concavity_mean	concave.points_mean	symmetry_mean
0.08	0.04	0.03
fractal_dimension_mean	radius_se	texture_se
0.01	0.28	0.55
perimeter_se	area_se	smoothness_se

2.02	45.49	0.00
compactness_se	concavity_se	concave.points_se
0.02	0.03	0.01
symmetry_se	fractal_dimension_se	radius_worst
0.01	0.00	4.83
texture_worst	perimeter_worst	area_worst
6.15	33.60	569.36
smoothness_worst	${\tt compactness_worst}$	concavity_worst
0.02	0.16	0.21
concave.points_worst	symmetry_worst	${\tt fractal_dimension_worst}$
0.07	0.06	0.02

Looks like we need to scale.

```
#Perform PCA on wisc.data by completing the following code
wisc.pr <- prcomp(wisc.data, scale=TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                          PC19
                                                                   PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
Cumulative Proportion
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                          PC26
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
                       0.02736 0.01153
Standard deviation
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

44.27%

Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

3 PCs capture 72.64%

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

7 PCs capture 91.01%

PC plot

We need to make our plot of PC1 vs PC2 (aka score plot, PC-plot, etc). The main result of PCA:

```
plot(wisc.pr$x[,1], wisc.pr$x[,2], col=diagnosis)
```



```
library(ggplot2)
pc <- as.data.frame(wisc.pr$x)</pre>
```

```
pc$diagnosis <- diagnosis
ggplot(pc) + aes(PC1, PC2, col=diagnosis) +geom_point()</pre>
```


Repeat for PC1 and PC3

plot(wisc.pr\$x[,1], wisc.pr\$x[,3], col=diagnosis)

Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

These plots are strikingly similar in terms of the location of the two clusters of data in relation to one another.

Variance Explained

We can get this from the output of the 'summary()' function.

```
summary(wisc.pr)
```

Importance of components:

	PC1	PC2	PC3	PC4	PC5	PC6	PC7
Standard deviation	3.6444	2.3857	1.67867	1.40735	1.28403	1.09880	0.82172
Proportion of Variance	0.4427	0.1897	0.09393	0.06602	0.05496	0.04025	0.02251
Cumulative Proportion	0.4427	0.6324	0.72636	0.79239	0.84734	0.88759	0.91010
	PC8	PCS	PC10	PC11	PC12	PC13	PC14
Standard deviation	0.69037	0.6457	0.59219	0.5421	0.51104	0.49128	0.39624
Proportion of Variance	0.01589	0.0139	0.01169	0.0098	0.00871	0.00805	0.00523
Cumulative Proportion	0.92598	0.9399	0.95157	0.9614	0.97007	0.97812	0.98335
	PC15	PC1	L6 PC1	.7 PC:	18 PC:	19 PC2	20 PC21

```
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                         PC26
                                                                 PC27
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Standard deviation
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Calculate the variance of each principal component by squaring the sdev component of wisc.pr (i.e. wisc.pr\$sdev^2). Save the result as an object called pr.var.

```
#Calculate Variance of each component
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

```
[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357
```

Calculate the variance explained by each principal component by dividing by the total variance explained of all principal components. Assign this to a variable called pve and create a plot of variance explained for each principal component.

```
pve <- (wisc.pr$sdev^2)/sum(wisc.pr$sdev^2)

plot(pve, xlab = "Principal Component", ylab= "Proportion of Variance Explained", type = "</pre>
```


Examine the PC loadings

How much do the original variables contribute to the new PCs that we have calculated? To get this data we can look at the '\$rotation' component of the returned PCA object.

```
head(wisc.pr$rotation[,1:3])
```

```
PC1
                                PC2
                                           PC3
radius_mean
               -0.2189024
                         0.23385713 -0.008531243
texture_mean
               -0.1037246
                         0.05970609 0.064549903
perimeter_mean
               -0.2209950
area_mean
                         0.23107671 0.028699526
              -0.1425897 -0.18611302 -0.104291904
smoothness mean
compactness_mean -0.2392854 -0.15189161 -0.074091571
```

Focus in on PC1

```
head(wisc.pr$rotation[,1])
```

```
radius_mean texture_mean perimeter_mean area_mean
-0.2189024 -0.1037246 -0.2275373 -0.2209950
smoothness_mean compactness_mean
-0.1425897 -0.2392854
```

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
wisc.pr$rotation["concave.points_mean", 1]
```

[1] -0.2608538

There is a complicated mix of variables that go together to make up PC1- ie there are many of the original variables that together contribute highly to PC1/

```
loadings <- as.data.frame(wisc.pr$rotation)
ggplot(loadings) + aes(PC1, rownames(loadings)) +geom_col()</pre>
```


#3 Hierarchical Clustering

The goal of this section is to do hierarchical clustering of the original data.

First we will scale the data

```
wisc.hclust <- hclust(dist(scale(wisc.data)))
plot(wisc.hclust)</pre>
```

Cluster Dendrogram

dist(scale(wisc.data))
hclust (*, "complete")

Cut this tree to yield cluster membership vector with 'cutree()' function

```
grps <- (cutree(wisc.hclust, h=19))
table(grps)

grps
    1    2    3    4
177    7   383    2

table(grps, diagnosis)

    diagnosis
grps    B    M</pre>
```

```
1 12 165
2 2 5
3 343 40
4 0 2
```

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

19

Combine methods: PCA and HCLUST

My PCA results were interesting as they showed a separation of M and B samples along PC1.

I want to cluster my PCA results- that is use 'wisc.pr\$x' as input to 'hclust()'. Try clustering 3 PCs, that is PC1, PC2 and PC3 as input.

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d, method="ward.D2")
And the tree result figure:
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

Let's cut the tree into 2 groups:

How well do the two clusters separate the M and B diagnoses

```
table(grps, diagnosis)
```

diagnosis grps B M 1 24 179 2 333 33

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

No the way we did it yielded the best results.

```
(179+333)/nrow(wisc.data)
```

[1] 0.8998243

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

The ward.d2 method is my favorite as it gives the cleanest looking data in my opinion.

Q15. How well does the newly created model with four clusters separate out the two diagnoses?

It separates malignant into group 1 and benign into group 2, although there is some overlap from one group to another.