

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ INFORMATYKI, ELEKTRONIKI, I TELEKOMUNIKACJI

KATEDRA ELEKTRONIKI

Praca dyplomowa inżynierska

Opracowanie urządzenia wykrywającego wypadek rowerowy z powiadamianiem GSM Development of a bicycle accident detection device with GSM notification

Autor: Radosław Sajdak

Kierunek studiów: Elektronika i Telekomunikacja

Opiekun pracy: dr inż. Łukasz Krzak

Uprzedzony o odpowiedzialności karnej na podstawie art. 115 ust. 1 i 2 ustawy z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (t.j. Dz.U. z 2006 r. Nr 90, poz. 631 z późn. zm.): "Kto przywłaszcza sobie autorstwo albo wprowadza w błąd co do autorstwa całości lub części cudzego utworu albo artystycznego wykonania, podlega grzywnie, karze ograniczenia wolności albo pozbawienia wolności do lat 3. Tej samej karze podlega, kto rozpowszechnia bez podania nazwiska lub pseudonimu twórcy cudzy utwór w wersji oryginalnej albo w postaci opracowania, artystycznego wykonania albo publicznie zniekształca taki utwór, artystyczne wykonanie, fonogram, wideogram lub nadanie.", a także uprzedzony o odpowiedzialności dyscyplinarnej na podstawie art. 211 ust. 1 ustawy z dnia 27 lipca 2005 r. Prawo o szkolnictwie wyższym (t.j. Dz. U. z 2012 r. poz. 572, z późn. zm.): "Za naruszenie przepisów obowiązujących w uczelni oraz za czyny uchybiające godności studenta student ponosi odpowiedzialność dyscyplinarną przed komisją dyscyplinarną albo przed sądem koleżeńskim samorządu studenckiego, zwanym dalej «sądem koleżeńskim».", oświadczam, że niniejszą pracę dyplomową wykonałem(-am) osobiście i samodzielnie i że nie korzystałem(-am) ze źródeł innych niż wymienione w pracy.

Spis treści

1.	Wst	ę p		7
	1.1.	Cele p	pracy	7
	1.2.	Anali	za wymagań technicznych i dobór komponentów	7
		1.2.1.	Akcelerometr	8
		1.2.2.	Mikrokontroler	9
	1.3.	Podoł	one rozwiązania obecne na rynku	11

6 SPIS TREŚCI

1. Wstęp

Obecny rozwój mikroprocesorów, pozwala na tworzenie coraz bardziej złożonych urządzeń. Rozwój układów o niskim zużyciu energii, popycha elektronikę w kierunku małych, wielofunkcyjnych urządzeń. Połączenie tych dwóch procesów pozwala na stworzenie elastycznych urządzeń, których zastosowanie może zmieniać się jedynie dzięki oprogramowaniu.

1.1. Cele pracy

Rowerzyści górscy, podczas samotnych wypraw rowerowych, wielokrotnie zastanawiają się, co w sytuacji, gdy ulegną wypadkowi podczas samotnej wyprawy? Jak długo nikt nie wezwie pomocy? W ten sposób, powstał pomysł stworzenia urządzenia asystującego.

Celem pracy było stworzenie innowacyjnego urządzenia wykrywającego upadek na rowerze. Urządzenie miało być przymocowane do ramy roweru. Urządzenie, informację o wypadku wysyła przy użyciu modemu LTE-M opartego o interfejs szeregowy UART. Za lokalizowanie urządzenia, odpowiadać będzie moduł GPS oparty o magistrale I^2C . Całość, sterowana bedzie przy użyciu mikrokontrolera.

1.2. Analiza wymagań technicznych i dobór komponentów

Docelowo, urządzenie miało zwiększać bezpieczeństwo podczas wypraw rowerowych. Musiało więc być bardzo energooszczędne. Minimalne wymaganie, to 24 godziny pracy na jednym ładowaniu baterii. Jednocześnie, nie może być zbyt duże, aby w łatwy sposób można było zamontować je na rowerze. Pobierana lokalizacja, miała mieć dokładność około 100m. Jest to dokładność wystarczająca, aby zobaczyć ranną osobę, leżący rower, lub usłyszeć wołanie o pomoc. Ważnym było, aby urządzenie, było w pełni niezależne od innych układów, jak np. telefon.

Planując pracę, zdecydowano się wykorzystać trzy moduły:

- Akcelerometr
- GPS
- LTE

Dodatkowo, ze względu na łatwy w użyciu stos Bluetooth, wykorzystano również Bluetooth Low Energy, celem stworzenia bezprzewodowego interfejsu sterowania urządzeniem.

Ponieważna rynku dostępnych było wiele różnych modułów, poniżej dokonano ich porównania oraz wyboru układów, najbardziej pasujących do stworzonego rozwiązania.

1.2.1. Akcelerometr

Akcelerometry to układy, mierzące przyspieszenie. Mogą dokonać pomiaru przyspieszenia statycznego (np. Ziemskiego), lub dynamicznego, działającego z sił, działających na układ. W przypadku dostępnych na rynku akcelerometrów należy pamiętać, że w stanie spoczynku wskazują one przyspieszenie około $9.81\frac{m}{c^2}$. Można więc było, wykorzystać ten fakt, do implementacji algorytmu.

Obecnie, większość układów to układy integrujące akcelerometr i żyroskop w jednym układzie scalonym. Coraz częściej, można też spotkać magnetometr. Dla obecnych na rynku układów, wyróżniamy dwa najważniejsze parametry:

- Zakres pracy akcelerometru określany jako $\pm X_g$, a więc przyspieszenie w trzech kierunkach, podane jako wielokrotność przyspieszenia Ziemskiego. Zazwyczaj, wartość ta, mieści się w przedziale od kilku, do kilkunastu g.
- Zakres pomiarów żyroskopu określony jako dps (degrees per second). Jeśli prędkość kątowa będzie większa, niż wybrany zakres, układ ulegnie nasyceniu

Głównym wymaganiem dotyczącym akcelerometru, była jego energooszczędność. Był to jedyny układ, który działa przez cały czas. Z tego powodu, akcelerometr powinien był nie tylko zużywać mało prądu, ale również posiadać różne tryby pracy. Dodatkowym atutem, była wbudowana pamięć, pozwalająca na buforowanie danych.

Spośród dostępnych na rynku układów, wybrane zostały trzy, dostępne w trakcie tworzenia pracy.

1.2.1.1. MPU-6050

Wybrany układ, jest 3-osiowym akcelerometem i żyroskopem. Korzysta on z magistrali I^2C . Zgodnie z dokumentacją układu, w normalnym trybie pracy, można spodziewać się ok. 3.8mA prądu, pobieranego przez układ.[1] Wartość tę, można zredukować do nawet 10μ A, ograniczając częstotliwość próbkowania akcelerometru do 1.25Hz i wyłączając żyroskop. Ponadto, układ posiada tryb niskiego zużycia energii, pozwalający uśpić nieaktywny układ. Sam akcelerometr, pracuje w zakresie ± 2 g, ± 4 g, ± 8 g oraz ± 1 6g. Dodatkowo, układ posiada tzw. Digital Motion Pocessor (DMP), czyli układ wspomagający przetwarzanie danych w kierunku wykrywania gestów. Wbudowane FIFO, pozwala na buforowanie danych. Zaletą akcelerometru, są programowalne przerwania oraz przerwanie "High-G", wyzwalane w momencie przekroczenia zdefiniowanego przyspieszenia.

1.2.1.2. LSM9DS1

Układ ten, nie różni się znacząco od MPU-6050. Zgodnie z dokumentacją, jest on dodatkowo wyposażony w magnetometr. Największą z różnic, jest pobierany przez niego prąd. W przypadku LSM9DS1, akcelerometr w trybie normalnym, pobiera około 600μA.[2] Niestety, wykorzystanie żyroskopu, dodaje kolejne 4mA. Żyroskop, posiada tryb niskiego zużycia energii, pozwalający ograniczyć zużycie energii do 1.9mA. Tym samym, układ nie jest w stanie zejść poniżej 1.96mA, co znacząco przekraczało domniemany pobór prądu.

1.2.1.3. LSM6DSOX

Ostatni z wybranych układów, był układem producenta ST. Jest on dedykowany do rozwiązań, o niskim zużyciu energii. Według dokumentacji, jego zużycie energii to 550μ A.[3] Wartość ta, jest kilkukrotnie niższa, niż w przypadku MPU-6050. Co więcej, układ posiada tryb LowPower, w którym zużycie energii można ograniczyć do nawet 4μ A. LSM6DSOX, posiada również 9kB FIFO, po którego napełnieniu, wystawiane jest przerwanie. Dodatkową zaletą, jest szesnaście programowalnych maszyn stanów. Pozwalają one na maksymalne ograniczanie zużycia energii, dzięki możliwości wyłączenia mikrokontrolera w trybie analizy danych. LSM6DSOX, do komunikacji wykorzystuje I^2C . Pozostałe jego parametry, są zbliżone do opisywanych wcześniej.

1.2.1.4. Wybór akcelerometru

Spośród trzech dostępnych układów, wybrany został LSM6DSOX. Jak pokazuje tabela 1.1, układy te, są stosunkowo podobne. Decydującym elementem, okazały się być maszyny stanów, wbudowane w akcelerometr. Pozwoliły one znacząco ograniczyć zużycie energii całego układu oraz przyspieszyć proces tworzenia aplikacji.

	MPU-6050	LSM9DS1	LSM6DSOX
FIFO	1kB	128B	9kB
Prąd pracy	3.8 mA	600 μΑ	550 μA
Low Power	10-110 μΑ	1.9-3.1 mA	4-20 μA
Zakres pracy	2-16g	2-16g	2-16g

Tabela 1.1. Porównanie dostępnych akcelerometrów

1.2.2. Mikrokontroler

Mikrokontroler, jest mózgiem układu. z tego powodu, wybrany układ musiał być bardzo wydajny, ale Jednocześnie energooszczędny. Kolejnym z wymagań, była obsługa interfejsu I²C oraj UART. Ponieważ wybrany akcelerometr posiada dwa piny przerwań zewnętrznych, mikrokontroler musiał być gotowy je obsłużyć.

1.2.2.1. ATmega328p

Mikrokontroler ATmega328p, to jeden z najpopularniejszych układów na rynku. Jego niska cena i łatwość użycia, pozwala budować najróżniejsze aplikacje. Układ wspiera zewnętrzny zegar o częstotliwości do 16MHz. Posiada on UART, I^2C oraz SPI, co pozwoliło rozważyć go w pracy. Dodatkowo, w dokumentacji, można znaleźć informację o dwóch przerwaniach zewnętrznych, obsługiwanych przez układ.[4] Dla najwyższej częstotliwości, podczas pracy układ pobiera 9-14mA. Wartość ta, może zostać ograniczona do 2.8mA w trybie czuwania. W trybie zupełnego uśpienia, mikrokontroler pobiera pomiędzy 44, a 66μ A.

1.2.2.2. STM32F303K8

Układ STM32F303K8 oparty jest na rdzeniu ARM Cortex M4. Posiada on wbudowany układ czasu rzeczywistego z funkcją wybudzania z kalendarzem. 11 wbudowanych liczników, pozwala na budowanie wyjątkowo złożonych aplikacji. Mikrokontroler wyposażono w SPI, I²C, SPI, oraz 3 UARTy. W przypadku rdzeni Cortex, każdy z pinów może być skonfigurowany jako przerwanie, co daje nam aż 60 przerwań. [5] Układ, może być taktowany zewnętrznym zegarem o częstotliwości do 32MHz, a więc dwukrotnie większym, niż w przypadku kontrolera ATmega. STM32F303K8 pobiera (w zależności od konfiguracji) 12.9 - 34mA w trybie pracy oraz 0.93-18.57µA w trybie głębokiego uśpienia. Warto zaznaczyć, że wartości maksymalneukład osiąga, gdy wszystkie peryferia są uruchomione. W przypadku tej pracy, dążono do minimalizacji ilości działających podzespołów.

1.2.2.3. nRF52840

Mikrokontroler nRF52840 jest najmocniejszym spośród wybranych do tego porównania. Oparty na rdzeniu ARM Cortex M4, taktowany zegarem 64MHz, posiada 1MB pamięci flash oraz 256kB RAM. Wspiera on I²C, 4x SPI, 2x UART i 3xRTC. Obsługuje też Bluetooth, co wyróżnia go na tle dwóch pozostałych układów. Mimo, że posiada on tak dużo peryferiów, jego zużycie energii w trybach głębokiego uśpienia mieści się pmiędzy 0.4uA, a 17.37uA. Są to wartości zbliżone do kontrolra STM32F303K8, opartego na tym samym rdzeniu. Pracujący układ, w zależności od konfiguracji, zużywa 2.8-6.3mA. Dodatkowo, nRF52840 posiada wbudowane PMU (Power Management Unit), które automatycznie zarządza zużywaną energią, bez ingerencji użytkownika. Zaletą, jest również bardzo obszerna dokumentacja, dedykowane fora wsparcia oraz powszechność stosowania tego układu w urządzeniach.

1.2.2.4. Wybór mikrokontrolera

Porównanie układów pokazało, że prosta ATmega328p znacząco odstaje od pozostałych układów. Mimo, że jest najprostszym z układów, nie mógł zostać wykorzystany w pracy, ze względu na wysokie zużycie energii. Problemem mogła okazać się również niewielka liczba liczników. W tym przypadku, najlepiej wypadł STM32F303K8. Niestety, jego wadą było wysokie zużycie energii w trakcie pracy. Z tego powodu, ostateczny wybór padł na nRF52840. Podsumowanie porównania, obrazuje poniższa tabela.1.2

	ATmega328p	STM32F303K8	nRF52840
FLASH	32kB	64kB	1MB
Prąd pracy	9.3-14 mA	12.9-34 mA	2.8-6.3 mA
Low Power	40-66 μA	0.93-18.57 μΑ	$0.4\text{-}17.37 \ \mu\text{A}$
Liczniki	2x8bit, 1x16bit	1x32bit, 2x24bit, 8x16bit	5x32bit
I ² C	✓	✓	✓
UART	1	3	2
Przerwania zewnętrzne	2	16	48
System operacyjny	Brak	Free RTOS	Zephyr RTOS

Tabela 1.2. Porównanie dostępnych akcelerometrów

1.3. Podobne rozwiązania obecne na rynku

Podobne rozwiązanie, zaproponowała firma Specialized. Inżynierowie stworzyli urządzenie o nazwie ANGI. Jest to mały układ, wyposażony w akcelerometr i żyroskop. Komunikuje się on przy użyciu Bluetooth z ich autorską aplikacją na telefon z iOS lub Androidem. Urządzenie, zamontowane na kask, wysyła powiadomienie do aplikacji, gdy rowerzysta uderza kaskiem w przeszkodę. Rozwiązanie to, ma szereg zalet, takich jak prostota budowy i bardzo niskie zużycie energii. Jest ono jednak uzależnione od telefonu, który w przypadku wycieczek górskich, czasem wygodniej zostawić w domu.

Bibliografia

- [1] *Dokumentacja układu MPU-6050*. https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf.
- [2] Dokumentacja układu LSM9DS1. https://www.st.com/resource/en/datasheet/lsm9ds1.pdf.
- [3] Dokumentacja układu LSM6DSOX. https://www.st.com/resource/en/datasheet/lsm6dsox.pdf.
- [4] Dokumentacja układu ATmega328p. http://www.elenota.pl/datasheetpdf/158353/Atmel/ATMEGA328P.
- [5] Dokumentacja układu STM32F303K8. https://www.st.com/resource/en/datasheet/stm32f303k8.pdf.