Package 'MetChem'

July 6, 2023

Version 0.4
Date 2023-07-05
Maintainer Stefano Cacciatore <tkcaccia@gmail.com></tkcaccia@gmail.com>
Title Chemical Structural Similarity Analysis
Description A new pipeline to explore chemical structural similarity across metabolite. It allows to classify metabolites in structurally-related modules and identify common shared functional groups. KODAMA algorithm is used to highlight structural similarity between metabolites. See Cacciatore S, Tenori L, Luchinat C, Bennett PR, MacIntyre DA. (2017) Bioinformatics <doi:10.1093 bioinformatics="" btw705="">, Cacciatore S, Luchinat C, Tenori L. (2014) Proc Natl Acad Sci USA <doi:10.1073 pnas.1220873111="">, and Abdel-Shafy EA, Melak T, MacIntyre DA, Zadra G, Zerbini LF, Piazza S, Cacciatore S. (2023) Bioinformatics Advances <doi:10.1093 bioadv="" vbad053="">.</doi:10.1093></doi:10.1073></doi:10.1093>
Depends R (>= 3.5.0), stats, KODAMA (>= 2.3), httr, XML, fingerprint, rcdk (>= 3.4.3)
Suggests knitr, rmarkdown, readxl, impute, pheatmap, RColorBrewer
VignetteBuilder knitr
SuggestsNote No suggestions
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Author Ebtesam Abdel-Shafy [aut], Tadele Melak [aut], David A. MacIntyre [aut], Giorgia Zadra [aut], Luiz F. Zerbini [aut], Silvano Piazza [aut], Stefano Cacciatore [aut, cre]
Date/Publication 2023-07-06 07:43:05 UTC
R topics documented: allbranches

2 allbranches

	20
write.gmt	18
write.gct	18
write.cls	17
WMCSA	16
tree.cutting	15
taxonomyMet	15
substituentsMet	14
selectionMet	13
readMet	13
propertiesMet	
pathwaysMet	11
nameMet	
Metabolites	
KODAMA.chem.sim	9
HFD	. 8
features	7
enzymesMet	6
diseasesMet	6
clusters.detection	4
ChemRICH	4
chemical.dissimilarity	

allbranches

Cut a Tree into Groups of Data

Description

Cuts a tree as resulting from hclust function, into groups (a.k.a. modules).

Usage

```
allbranches(hh,minlen=5)
```

Arguments

hh a tree as produced by hclust function.

minlen The minimum number of elements in each module.

Value

A list contains vectors of module memberships.

```
cutree, hclust, clusters.detection
```

chemical.dissimilarity 3

Examples

```
data(Metabolites)

data=Metabolites$readMet$concentration
hh=hclust(dist(data),method="ward.D")
res=allbranches(hh)
```

chemical.dissimilarity

Chemical dissimilarity.

Description

This function calculates the structural dissimilarity between different metabolites using the simplified molecular-input line-entry system (SMILE) of each metabolite as input.

Usage

```
chemical.dissimilarity (smiles,method="tanimoto",type="extended")
```

Arguments

smiles A vector of smile notations.

method The method used to calculated the distance between molecular fingerprint ("tan-

imoto" as default). For more information see fp.sim.matrix function.

type The type of fingerprint applied to the SMILEs ("extended" as default). For more

information see get.fingerprint function.

Value

A list contains distance between fingerprints .

See Also

```
fp.sim.matrix, get.fingerprint,
```

Examples

```
data(Metabolites)
d=chemical.dissimilarity(Metabolites$SMILES[1:50])
```

4 clusters.detection

ChemRICH ChemRICH Dataset

Description

This dataset consists of a list of the metabolites names download from https://chemrich.fiehnlab.ucdavis.edu/.
HMDB IDs were retrieved from PubChem Identifier Exchange Service (https://pubchem.ncbi.nlm.nih.gov/idexchange/idexchand manually curated.

Usage

```
data(ChemRICH)
```

Value

A list with the following elements in the variable ChemRICH:

name A vector of metabolite's names.

SMILES A vector of SMILES representaion of each metabolite.

HMDB A vector containing HMDB IDs of each metabolite.

Examples

data(ChemRICH)

clusters.detection D_{i}

Detection of clusters.

Description

This function calculates the structural similarity between different metabolites and perform hierarchical clustering using the KODAMA algorithm and detect the optimal number of clusters. The procedure is repeated to ensure the robustness of the detection.

Usage

clusters.detection 5

```
kodama.visualization.parameters=list(),
hclust.parameters=list(method="ward.D"),
verbose = TRUE)
```

Arguments

smiles A list of smile notations for the study metabolites dataset.

repetition The number of time the KODAMA analysis is repeated.

k A number of components of multidimensional scaling.

seed Seed for the generation of random numbers.

max_nc Maximum number of clusters.

dissimilarity.parameters

Optional parameters for chemical.dissimilarity function.

kodama.matrix.parameters

Optional parameters for KODAMA.matrix function.

kodama.visualization.parameters

Optional parameters for KODAMA.visualization function.

hclust.parameters

Optional parameters for hclust function.

verbose If verbose is TRUE, it displays the progress for each iteration.

Value

A list contains all results of KODAMA chemical similarity analysis and hierarchical clustering.

See Also

```
KODAMA.matrix
```

Examples

```
data(Metabolites)
```

 ${\tt res=clusters.detection(Metabolites\$SMILES)}$

6 enzymesMet

diseasesMet

Metabolite-associated Diseases

Description

This function correlates metabolites to associated diseases.

Usage

```
diseasesMet(doc)
```

Arguments

doc

A list of metabolites information produced by readMet function.

Value

A data frame contains the diseases associated with each metabolite.

See Also

```
pathwaysMet, taxonomyMet, enzymesMet
```

Examples

```
data(Metabolites)
dis=diseasesMet(Metabolites$readMet)
```

enzymesMet

Metabolite-associated Enzymes

Description

This function finds the metabolite related enzymes.

Usage

```
enzymesMet(doc)
```

Arguments

doc

A list of metabolites information produced by readMet function.

features 7

Value

A data frame contains the enzymes associated with each metabolite.

See Also

```
pathwaysMet, taxonomyMet, diseasesMet
```

Examples

```
data(Metabolites)
enz=enzymesMet(Metabolites$readMet)
```

fea	atur	es
1 00	a cui	-

Cluster features extraction

Description

This function finds features associated with each cluster.

Usage

```
features(doc,cla,cl,HMDB_ID)
```

Arguments

doc	The output of the readMet function.
cla	$The \ output \ of \ diseases \texttt{Met}, \ enzy \texttt{mesMet}, \ pathways \texttt{Met}, \ properties \texttt{Met}, \ substituent \texttt{sMet}, \ or \ taxonomy \texttt{Met} \ functions.$
cl	The output of the allbranches function containing the module memberships.
HMDB_ID	A vector of HMDB IDs associated with their chemical name.

Value

A list of p-value calculated using Fisher test for cluster associted features.

```
KODAMA.chem.sim, tree.cutting, substituentsMet
```

8 HFD

Examples

data(Metabolites)
SMILES=Metabolites\$SMILES
names(SMILES)=Metabolites\$name
HMDB=Metabolites\$HMDB
names(HMDB)=Metabolites\$name
res=KODAMA.chem.sim(SMILES)
cl=allbranches(res\$hclust)
cla=substituentsMet(Metabolites\$readMet)
f=features(Metabolites\$readMet,cla,cl,HMDB)

HFD HFD Dataset

Description

This dataset is dataframe of metabolite dataset contains only chemical information.

Usage

data(HFD)

Value

A list with the following elements in the variable HFD:

SMILES A vector of SMILES representaion of each metabolite.

CHEMICAL_ID A vector of chemical ID number or each metabolite.

PUBCHEM A vector of identifier ID number from PUBCHEM database for chemical molecules

and their activities in biological assays.

CHEMSPIDER A vector of a unique identifier from CHEMSPIDER database each molecule.

HMDB A vector containing HMDB IDs of each metabolite.

Examples

data(HFD)

KODAMA.chem.sim

KODAMA.chem.sim

KODAMA chemical similarity.

Description

This function calculates the structural similarity between different metabolites and perform hierarchical clustering using the KODAMA algorithm.

Usage

Arguments

smiles A list of smile notations for the study metabolites dataset.

d

A distance structure such as that returned by dist or a full symmetric matrix containing the dissimilarities. If NULL (default), then the dissimilarity matrix will be generated by chemical.dissimilarity function. Otherwise, d will be considered as the dissimilarity matrix.

k A number of components of multidimensional scaling.

dissimilarity.parameters

Optional parameters for chemical.dissimilarity function.

kodama.matrix.parameters

Optional parameters for KODAMA.matrix function.

 $kodama. \ visualization. parameters$

Optional parameters for KODAMA.visualization function.

hclust.parameters

Optional parameters for hclust function.

Value

A list contains all results of KODAMA chemical similarity analysis and hierarchical clustering for the KODAMA dimensions.

```
KODAMA.matrix
```

10 Metabolites

Examples

```
data(Metabolites)
res=KODAMA.chem.sim(Metabolites$SMILES)
plot(res$kodama$visualization)
```

Metabolites

Metabolomic Dataset

Description

This dataset consists of a list of the metabolites as returned by the function readMet and concentration value of each metabolites.

Usage

```
data(Metabolites)
```

Value

A list with the following elements in the variable Metabolites:

concentration A matrix containing the concentration of each metabolites.

name A vector of metabolite's names.

SMILES A vector of SMILES representaion of each metabolite.

HMDB A vector containing HMDB IDs of each metabolite.

readMet A list of metabolites information produced by readMet function.

Examples

data(Metabolites)

nameMet 11

nameMet

Name of metabolites

Description

This function extracts the metabolite's names from the list generated by readMet function.

Usage

```
nameMet(doc)
```

Arguments

doc

A list of metabolites information produced by readMet function.

Value

A data frame contains the names of each metabolite.

See Also

readMet

Examples

```
data(Metabolites)
nam=nameMet(Metabolites$readMet)
```

pathwaysMet

Metabolic Pathways

Description

This function finds the metabolite related pathways.

Usage

```
pathwaysMet(doc)
```

Arguments

doc

A list of metabolites information produced by readMetfunction.

12 propertiesMet

Value

A data frame contains the pathways associated with each metabolite.

See Also

```
readMet, taxonomyMet, enzymesMet, diseasesMet
```

Examples

```
data(Metabolites)
pat=pathwaysMet(Metabolites$readMet)
```

propertiesMet

Physical Proprieties of metabolites

Description

This function finds the Physical Proprieties of metabolites.

Usage

```
propertiesMet(doc)
```

Arguments

doc

A list of metabolites information produced by readMet function.

Value

A data frame contains the properties associated with each metabolite.

See Also

```
\verb"readMet", taxonomyMet", \verb"substituentsMet", \verb"propertiesMet"
```

Examples

```
data(Metabolites)
pro=propertiesMet(Metabolites$readMet)
```

readMet 13

readMet Metabolite Cards Reading

Description

This function extract metabocards of your metabolites dataset from http://www.hmdb.ca/metabolites/database and store all of this information in a list.

Usage

```
readMet(ID, address = c("http://www.hmdb.ca/metabolites/"),remove=TRUE)
```

Arguments

ID A vector containg the HMDBcodes (i.e., metabolite IDs) of metabolites dataset.

address Optional address where the MetaboCards are located. The default address is

http://www.hmdb.ca/metabolites/.

remove A logic value. If true, missing and wrong HMDB IDs are removed.

Value

A list containing all the information related to the metabocards.

See Also

nameMet

Examples

```
ID=c("HMDB0000122","HMDB0000124","HMDB0000243","HMDB0000263")
doc=readMet(ID)
```

selectionMet	Metabolites selection

Description

This function select metabolites from the list generated by readMet function.

Usage

```
selectionMet(doc, sel)
```

14 substituentsMet

Arguments

doc A list of metabolites information produced by readMet function.

sel A vector of metabolite's HMDBcode that will be selected

Value

doc A doc list contains only the selcted metabolites.

See Also

```
readMet, nameMet
```

Examples

```
data(Metabolites)
doc=selectionMet(Metabolites$readMet,c("HMDB0000299","HMDB0000881"))
nameMet(doc)
```

substituentsMet

Metabolite substituents

Description

This function finds the metabolite related substituents.

Usage

```
substituentsMet(doc)
```

Arguments

doc

A list of metabolites information produced by readMet function

Value

A data frame contains the substituents of each metabolite.

See Also

```
readMet, nameMet, propertiesMet
```

Examples

```
data(Metabolites)
sub=substituentsMet(Metabolites$readMet)
```

taxonomyMet 15

taxonomyMet

Metabolite Taxonomy

Description

This function finds the metabolite related taxonomy.

Usage

```
taxonomyMet(doc)
```

Arguments

doc

A list of metabolites information produced by readMet function.

Value

A data frame contains the taxonomy of each metabolite.

See Also

```
readMet, propertiesMet, enzymesMet, diseasesMet
```

Examples

```
data(Metabolites)
tax=taxonomyMet(Metabolites$readMet)
```

tree.cutting

Optimal cluster number calculation.

Description

This function helps to estimate the optimal cluster number that fit the metabolites dataset. It applies different optimal cluster number calculating algorithms to cut clutering tree of hclust function. and return a list contains index corresponding to each cluster number.

Usage

```
tree.cutting (res,max_nc=20)
```

Arguments

res A list produced by KODAMA. chem. sim function. max_nc The maximum number of cluster (default = 20).

16 WMCSA

Value

A list contains the calculation for each clustering of Rousseeuw's Silhouette index.

See Also

```
KODAMA.chem.sim, WMCSA
```

Examples

```
data(Metabolites)
res=KODAMA.chem.sim(Metabolites$SMILES)
clu=tree.cutting(res,max_nc = 30)
plot(clu$min_nc:clu$max_nc,clu$res.S)
```

WMCSA

Weighted Metabolite Chemical Structural Analysis

Description

Summarize metabolites concetration in each of identified clusters using the module eigenvalue (eigen-metabolite) for calculating module membership measures.

Usage

```
WMCSA(data,cl)
```

Arguments

dataset of different metabolite concentration in differnt samples.

cl The output of the allbranches function containing the module memberships.

Value

This function returns a matrix as output represent similarity score of metabolites within the same module among different samples.

```
KODAMA.chem.sim, tree.cutting
```

write.cls 17

Examples

```
data(Metabolites)
```

SMILES=Metabolites\$SMILES
names(SMILES)=Metabolites\$name
res=KODAMA.chem.sim(SMILES)
cl=allbranches(res\$hclust)
ww=WMCSA(Metabolites\$concentration,cl)

write.cls

Write a CLS file

Description

This function write a file in the format CLS defined by GenePattern.

Usage

```
write.cls(es, address)
```

Arguments

es A matrix.

address The address of the file should be saved.

Value

No return value. If an invalid address is inserted, the function will generate an error.

```
write.gmt, write.gct
```

18 write.gmt

write.gct	wri	te.	gct	
-----------	-----	-----	-----	--

Write a GCT file

Description

This function write a file in the format GCT defined by GenePattern.

Usage

```
write.gct(es, address)
```

Arguments

es A matrix.

address The address of the file should be saved.

Value

No return value. If an invalid address is inserted, the function will generate an error.

See Also

```
write.gmt, write.cls
```

write.gmt

Write a GMT file

Description

This function write a file containing the Metabolite Set information in the format GMT defined by GenePattern.

Usage

```
write.gmt(sub,address,min_entry=2,max_entry=50)
```

Arguments

sub A matrix.

address The address of the file should be saved.

min_entry The minimum number of metabolites for each metabolite set.

max_entry The maximum number of metabolites for each metabolite set.

Value

No return value. If an invalid address is inserted, the function will generate an error.

write.gmt 19

See Also

write.gct, write.cls

Index

```
* datasets
                                                  WMCSA, 16, 16
    ChemRICH, 4
                                                  write.cls, 17, 18, 19
    HFD, 8
                                                  write.gct, 17, 18, 19
    Metabolites, 10
                                                  write.gmt, 17, 18, 18
allbranches, 2, 7, 16
chemical.dissimilarity, 3, 5, 9
ChemRICH, 4
clusters.detection, 2, 4
cutree, 2
diseasesMet, 6, 7, 12, 15
enzymesMet, 6, 6, 7, 12, 15
features, 7
fp.sim.matrix, 3
hclust, 2, 5, 9, 15
HFD, 8
KODAMA.chem.sim, 7, 9, 15, 16
KODAMA.matrix, 5, 9
KODAMA. visualization, 5, 9
Metabolites, 10
nameMet, 11, 13, 14
pathwaysMet, 6, 7, 11
propertiesMet, 7, 12, 12, 14, 15
readMet, 6, 7, 10–13, 13, 14, 15
selectionMet, 13
substituentsMet, 7, 12, 14
taxonomyMet, 6, 7, 12, 15
tree.cutting, 7, 15, 16
```