변수	통계/시각화	검정	특이사항
숫자 1	min,max,mean,std, median,사분위수	<정규분포(정규성) 검정> stats.shapire(df.v) # 5000 미만	<이상치 판단/처리> ①사분위수 이용 ITQ=Q3-Q1
	sns.histplot(data=df, x='v', kde=True) sns.boxplot(data=df, x='v') sns.kdeplot(data=df, x='v') sns.displot(data=df, x='v')	stats.anderson(df.v) # 5000 이상 stats.kstest(df.v, 'nomal') 귀무가설: 정규분포이다.	low=Q1-1.5*ITQ, //high=Q3+1.5ITQ df2=df[(df.v < high) & (df.v > low)] ② <u>zscore</u> z=np.abs(df.v -df.v.mean()/df.v.std() df2=df[z < 2.5]
범주 1	범주별 빈도수(value_counts)/ 범주별 비율 sns.barplot(data=df, x='V') sns.countplot(data=df, x='V')	* 통계, 시각화 추가 p=df.V.value_counts() plt.pie(p.values, label=p.index, autopc='%.2f%%')	
	V_1=df[df.V ==0] V_2=df[df.V ==1] sns.kdeplot(x='v', data=V_1) sns.kdeplot(x='v', data=V_2) sns.histplot(x='v', data=df, hue=V)	<로지스틱 회귀모형을 통한 검정> 회귀계수 0인가import statsmodels.api as smmodel=sm.Logit(df.V, df.v)result=model.fit()귀무: 해당 변수의 회귀계수가 0이다독립과 종속이 관련이 없다.	* 로지스틱 회귀모형: 모집단에 대한 가설 아님 그러므로 범주(숫자), 독립(종속) 일때와 같은 검정을 하고 결과를 뒤집어서 적용 : A~B는 !B~!A
숫자2	plt.scatter('v1', 'v2', data=df) sns.regplot(data=df, x='v1', y='v2') sns.relplot(data=df, x='v1', y='v2', hue='V') sns.lmplot(data=df, x='v1', y='v2') g=sns.FacetGrid(df, row=v1, col=v2, size=) g.map(sns.scatterplot,'v3', 'v4') sns.pairplot(df)	< 상관분석> 상관계수를 통한 분석 stats.pearson(df.x1, df.x2) 종류 spearman(), kendalltau() 기무: 상관계수는 0이다. 통계량: 상관계수	상관계수: 데이터가 얼마나 직선으로 모여있는지 수치화한 값 (-1~1 : 양의 상관관계/ 음의 상관관계, 0에 가까우면 관련이 없음) # 정규분포 아닐 경우 비모수분석: spearman
숫자 1,2,3	sns.heatmap(df, vmin=-1, vmax=1, annot=True)	<상관관계> df.corr(numeric_only=True) 판다스의 .corr() 함수	

범주2	: normalize='index' /'columns'/'all' cr.plot.bar(stacked=True)	<독립성 검정 x2(카이제곱)> cr=pd.crosstab(df.V1, df.V2) #교차표 stats.ch2_contingency(cr) 귀무: 두 변수가 독립적이다(연관성 없음)	카이제곱 검정: 예측값과 관측값의 차이 측정 ①적합도(선호도) 검정: 변수1 ②독립성 검정: 하나의 모집단에 범주형 2개 :범주변수들 간 어떤 관계가 있는지 ③동질성 검정: 2개 이상 모집단 2개 이상
범주(독립) 숫자(종속)	sns.countplot(data=df, x=v, hue='X') <정규성 검정> V_1=df[df.V ==0]['v'] V_2=df[df.V ==1]['v'] sns.histplot(V_1, kde=True) sns.histplot(V_2, kde=True)	<만일표본 T검정(one-sample T test)> 하나의 집단평균이 모평균과 동일한지 검정(신뢰구간) stats.ttest_1samp(V_1, df.1.mean()) stats.ttest_1samp(V_2, df.V.mean()) #귀무: 모평균과 동일 <정규성 검정>표준정규분포를 갖는지 stats.shapiro(V_1) stats.shapiro(V_2) # 귀무: 정규분포을 가진다 <등분산 검정>같은 분산을 갖는지 #귀무: 갖는다 stats.bartett(V_1,V_2) # 표본크기 크고 정규성 가진 데이터 stats.levene(V_1,V_2) # 정규분포에 영향 안받음(중앙값) stats.fligner(V_1,V_2) # 정규분포 안따르는 데이터/중앙값	<신뢰구간 구하기> n=len(v)-1 #자유도 mn=np.mean(v) #표준편차 sm=stats.sem(v) #표준오차 stats.t.interval(0.95, n, mn, sm) : 95% 신뢰구간 -1.96~1.96 ==>정규성 검정에서 정규성이 아닐때 <mann-whitney test="" u="" 검정=""> 중앙값 차이표본수가 적을때 비모수적인 분석 // 평균비교X, 순위합검정 stats.mannwhitneyu(V_1,V_2) 귀무: 두 집단의 중앙값 차이가 없다.</mann-whitney>
범주2(독립) 숫자1(종속) :종속변수 독립적	sns.barplot(x=V, y=v, data=df) # V 범주들 모두 그래프에 표시됨	<독립표본 T검정> 모집단이 서로 다를때 두 평균의 차이 stats.ttest_ind(V_1,V_2, equal_var=False) 귀무: 유의미한 평균 차이가 없다. t통계량 결과 -2> 또는 >2이면 '차이가 크다'.	비모수검정: 독립적 집단 2, 기간1 <mann-whitney test="" u="" 검정=""></mann-whitney>
入り(0つ)	(예) happy1 = happy['점수_2019'] - happy['점수_2018'] plt.bar(happy['나라명'], happy1.values) # 증가,감소 보기	<대응표본 T검정> 집단 1, 두 기간에서의 변화 stats.ttest_rel(V_1,V_2, alternative='greater') 귀무:증가한다 ==> alternative='less' 귀무: 감소한다 V_1(before), V_2(after)	<비모수검정> 집단 1, 두 기간에서의 변화 stats.wilcoxon(V_1, V_2, alternative='greater'

범주3 이상 (독립) 숫자1(종속) **Statts.f_oneway('V_1','V_2','V_3') 기무: 차이가 없다 등계량 결과 2-3이상의 값을 가지면 차이가 있다	<pre><welchis anova=""> 3개 십단 능분산 아닐때 pg.welch_anova(data=df,dv=v,between=v) 비모수검정 <kruskal-walis test=""> : 집단1,두 기간 stats.kruskal(V_1,V_2,V_3) <friedman test=""> : 집단1, 3개 이상 기간 stats.friedmanchisquare()</friedman></kruskal-walis></welchis></pre>
--	---