

复变函数与积分变换

张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.gitee.io

第二章 解析函数

1 函数解析的充要条件

函数解析的充要条件

通过对一些简单函数的分析,我们会发现可导的函数往往可以直接表达为 z 的函数的形式,而不解析的往往包含 x,y,\overline{z} 等内容.

通过对一些简单函数的分析,我们会发现可导的函数往往可以直接表达为 z 的函数的形式,而不解析的往往包含 x, y, \overline{z} 等内容. 这种现象并不是孤立的.

通过对一些简单函数的分析,我们会发现可导的函数往往可以直接表达为 z 的函数的形式,而不解析的往往包含 x, y, \overline{z} 等内容. 这种现象并不是孤立的. 我们来研究二元实变量函数的可微性与复变函数可导的关系.

通过对一些简单函数的分析,我们会发现可导的函数往往可以直接表达为 z 的函数的形式,而不解析的往往包含 x, y, \overline{z} 等内容。这种现象并不是孤立的。我们来研究二元实变量函数的可微性与复变函数可导的关系。

为了简便我们用 u_x, u_y, v_x, v_y 等记号表示偏导数.

设 f 在 z 处可导, f'(z) = a + bi,

设
$$f$$
 在 z 处可导, $f'(z) = a + bi$, 则

$$\Delta u + i\Delta v = \Delta f = (a + bi)(\Delta x + i\Delta y) + o(\Delta z).$$

设
$$f$$
 在 z 处可导, $f'(z) = a + bi$, 则

$$\Delta u + i\Delta v = \Delta f = (a + bi)(\Delta x + i\Delta y) + o(\Delta z).$$

展开可知

$$\Delta u = a\Delta x - b\Delta y + o(\Delta z),$$

$$\Delta v = b\Delta x + a\Delta y + o(\Delta z).$$

设
$$f$$
 在 z 处可导, $f'(z) = a + bi$, 则

$$\Delta u + i\Delta v = \Delta f = (a + bi)(\Delta x + i\Delta y) + o(\Delta z).$$

展开可知

$$\Delta u = a\Delta x - b\Delta y + o(\Delta z),$$

$$\Delta v = b\Delta x + a\Delta y + o(\Delta z).$$

由于
$$o(\Delta z) = o(|\Delta z|) = o(\sqrt{x^2 + y^2})$$
,

设
$$f$$
 在 z 处可导, $f'(z) = a + bi$, 则

$$\Delta u + i\Delta v = \Delta f = (a+bi)(\Delta x + i\Delta y) + o(\Delta z).$$

展开可知

$$\Delta u = a\Delta x - b\Delta y + o(\Delta z),$$

$$\Delta v = b\Delta x + a\Delta y + o(\Delta z).$$

由于
$$o(\Delta z) = o(|\Delta z|) = o(\sqrt{x^2 + y^2})$$
, 因此

$$u, v$$
 可微且 $u_x = v_y = a, v_x = -u_y = b$.

$$du = u_x dx + u_y dy$$

$$du = u_x dx + u_y dy = u_x dx - v_x dy,$$

$$du = u_x dx + u_y dy = u_x dx - v_x dy,$$

$$dv = v_x dx + v_y dy$$

$$du = u_x dx + u_y dy = u_x dx - v_x dy,$$

$$dv = v_x dx + v_y dy = v_x dx + u_x dy,$$

$$du = u_x dx + u_y dy = u_x dx - v_x dy,$$

$$dv = v_x dx + v_y dy = v_x dx + u_x dy,$$

$$df = d(u + iv) = (u_x + iv_x) dx + (-v_x + iu_x) dy$$

$$du = u_x dx + u_y dy = u_x dx - v_x dy,$$

$$dv = v_x dx + v_y dy = v_x dx + u_x dy,$$

$$df = d(u + iv) = (u_x + iv_x) dx + (-v_x + iu_x) dy$$

$$= (u_x + iv_x) d(x + iy)$$

$$du = u_x dx + u_y dy = u_x dx - v_x dy,$$

$$dv = v_x dx + v_y dy = v_x dx + u_x dy,$$

$$df = d(u + iv) = (u_x + iv_x) dx + (-v_x + iu_x) dy$$

$$= (u_x + iv_x) d(x + iy)$$

$$= (u_x + iv_x) dz = (v_y - iu_y) dz.$$

反过来, 假设 u, v 可微且 $u_x = v_y, v_x = -u_y$. 由全微分公式

$$du = u_x dx + u_y dy = u_x dx - v_x dy,$$

$$dv = v_x dx + v_y dy = v_x dx + u_x dy,$$

$$df = d(u + iv) = (u_x + iv_x) dx + (-v_x + iu_x) dy$$

$$= (u_x + iv_x) d(x + iy)$$

$$= (u_x + iv_x) dz = (v_y - iu_y) dz.$$

故

$$f(z)$$
 在 z 处可导,且 $f'(z) = u_x + iv_x = v_y - iu_y$.

由此我们得到

由此我们得到

柯西-黎曼方程 (C-R 方程)

f(z) 在 z 可导当且仅当在 z 点 u,v 可微且满足 C-R 方程:

$$u_x = v_y, \quad u_y = -v_x.$$

此时

$$f'(z) = u_x + iv_x = v_y - iu_y.$$

由此我们得到

柯西-黎曼方程 (C-R 方程)

f(z) 在 z 可导当且仅当在 z 点 u,v 可微且满足 C-R 方程:

$$u_x = v_y, \quad u_y = -v_x.$$

此时

$$f'(z) = u_x + iv_x = v_y - iu_y.$$

由于有时判断可微性不太方便,因此我们常常用如下定理来判断.

由于有时判断可微性不太方便,因此我们常常用如下定理来判断.

由于有时判断可微性不太方便, 因此我们常常用如下定理来判

定理

断.

• 如果 u_x, u_y, v_x, v_y 在 z 处连续, 且满足 C-R 方程, 则 f(z) 在 z 可导.

由于有时判断可微性不太方便,因此我们常常用如下定理来判断.

定理

- 如果 u_x, u_y, v_x, v_y 在 z 处连续, 且满足 C-R 方程, 则 f(z) 在 z 可导.
- 如果 u_x, u_y, v_x, v_y 在区域 D 上处处连续, 且满足 C-R 方程, 则 f(z) 在 D 上可导 (从而解析).

柯西-黎曼方程的 z, z 形式 *

注意到
$$x = \frac{1}{2}z + \frac{1}{2}\overline{z}, y = -\frac{i}{2}z + \frac{i}{2}\overline{z}.$$

注意到 $x=\frac{1}{2}z+\frac{1}{2}\overline{z},y=-\frac{i}{2}z+\frac{i}{2}\overline{z}.$ 如果我们定义 f 对 z 和 \overline{z} 的偏导数为

$$\begin{cases} \frac{\partial f}{\partial z} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y}, \\ \frac{\partial f}{\partial \overline{z}} = \frac{\partial x}{\partial \overline{z}} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial \overline{z}} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y}. \end{cases}$$

注意到
$$x=\frac{1}{2}z+\frac{1}{2}\overline{z}, y=-\frac{i}{2}z+\frac{i}{2}\overline{z}.$$
 如果我们定义 f 对 z 和 \overline{z} 的偏导数为

$$\begin{cases} \frac{\partial f}{\partial z} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y}, \\ \frac{\partial f}{\partial \overline{z}} = \frac{\partial x}{\partial \overline{z}} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial \overline{z}} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y}. \end{cases}$$

那么 C-R 方程等价于

$$\frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} = \frac{u_x + iv_x + iu_y - v_y}{2} = 0.$$

柯西-黎曼方程的 z, \overline{z} 形式 *

注意到 $x=\frac{1}{2}z+\frac{1}{2}\overline{z}, y=-\frac{i}{2}z+\frac{i}{2}\overline{z}.$ 如果我们定义 f 对 z 和 \overline{z} 的偏导数为

$$\begin{cases} \frac{\partial f}{\partial z} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y}, \\ \frac{\partial f}{\partial \overline{z}} = \frac{\partial x}{\partial \overline{z}} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial \overline{z}} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y}. \end{cases}$$

那么 C-R 方程等价于

$$\frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} = \frac{u_x + iv_x + iu_y - v_y}{2} = 0.$$

所以我们也可以把 $\frac{\partial f}{\partial z} = 0$ 叫做 C-R 方程.

例

(1) 函数 $f(z) = \overline{z}$ 在何处可导, 在何处解析?

例

(1) 函数 $f(z) = \overline{z}$ 在何处可导, 在何处解析?

解

由 u = x, v = -y 可知

$$u_x = 1$$
,

$$u_y = 0,$$

$$v_x = 0$$
,

$$v_y = -1$$
.

函数 $f(z) = \overline{z}$ 在何处可导, 在何处解析?

由 u=x, v=-y 可知

$$u_x = 1, u_y = 0,$$

$$v_y = 0, v_y = -1$$

$$v_x = 0, v_y = -1.$$

因为 $u_x = 1 \neq v_y = -1$, 所以该函数处处不可导, 处处不解析.

191

 $\overline{(1)}$ 函数 $f(z) = \overline{z}$ 在何处可导, 在何处解析?

解

由 u=x,v=-y 可知

$$u_x = 1,$$
 $u_y = 0,$ $v_x = 0,$ $v_y = -1.$

因为 $u_x = 1 \neq v_y = -1$, 所以该函数处处不可导, 处处不解析.

也可以从 $\frac{\partial f}{\partial \overline{z}} = 1 \neq 0$ 看出.

例

(1) 函数 $f(z) = \overline{z}$ 在何处可导, 在何处解析?

解

由 u=x,v=-y 可知

$$u_x = 1,$$
 $u_y = 0,$ $v_x = 0,$ $v_y = -1.$

因为 $u_x = 1 \neq v_y = -1$, 所以该函数处处不可导, 处处不解析.

也可以从 $\frac{\partial f}{\partial \overline{z}}=1\neq 0$ 看出. 不过这种方法由于课本上没有, 所以考试的时候最好只把它作为一种验算手段.

例 (续)

 $\overline{(2)}$ 函数 $\overline{f(z)} = z \operatorname{Re} z$ 在何处可导, 在何处解析?

例 (续)

(2) 函数 $f(z) = z \operatorname{Re} z$ 在何处可导, 在何处解析?

解

例 (续)

2) 函数 $f(z) = z \operatorname{Re} z$ 在何处可导, 在何处解析?

解

由
$$f(z) = x^2 + ixy, u = x^2, v = xy$$
 可知

$$u_x = 2x,$$
 $u_y = 0,$ $v_x = y,$ $v_y = x.$

$$v_y = 0$$

例 (续)

[2] 函数 $f(z) = z \operatorname{Re} z$ 在何处可导, 在何处解析?

由
$$f(z) = x^2 + ixy, u = x^2, v = xy$$
 可知

$$u_x = 2x, u_y = 0,$$

$$v_x = y, v_y = x.$$

$$v_y = x$$

由 2x = x, 0 = -y 可知只有 x = y = 0, z = 0 满足 C-R 方程.

例 (续)

(2) 函数 $f(z) = z \operatorname{Re} z$ 在何处可导, 在何处解析?

解

由 $f(z) = x^2 + ixy, u = x^2, v = xy$ 可知

$$u_x = 2x, u_y = 0,$$

$$v_x = y, v_y = x.$$

由 2x = x, 0 = -y 可知只有 x = y = 0, z = 0 满足 **C-R** 方程. 因此该函数只在 0 可导. 处处不解析目

$$f'(0) = (u_x + iv_x)\Big|_{z=0} = \frac{1}{0}.$$

例 (续)

(2) 函数 $f(z) = z \operatorname{Re} z$ 在何处可导, 在何处解析?

解

由 $f(z) = x^2 + ixy, u = x^2, v = xy$ 可知

$$u_x = 2x, u_y = 0,$$

$$v_x = y, v_y = x.$$

由 2x = x, 0 = -y 可知只有 x = y = 0, z = 0 满足 **C-R** 方程. 因此该函数只在 0 可导. 处处不解析目

$$f'(0) = (u_x + iv_x)\Big|_{z=0} = \frac{1}{0}.$$

也可从
$$f(z) = \frac{z(z+\overline{z})}{2}, \frac{\partial f}{\partial \overline{z}} = \frac{z}{2}$$
 看出.

例 (续)

(3) 函数 $f(z) = e^x(\cos y + i \sin y)$ 在何处可导, 在何处解析?

例 (续)

(3) 函数 $f(z) = e^x(\cos y + i \sin y)$ 在何处可导, 在何处解析?

解

例 (续)

(3) 函数 $f(z) = e^x(\cos y + i \sin y)$ 在何处可导, 在何处解析?

解

由 $u = e^x \cos y, v = e^x \sin y$ 可知

$$u_x = e^x \cos y,$$
 $u_y = -e^x \sin y,$
 $v_x = e^x \sin y,$ $v_y = e^x \cos y.$

例 (续)

(3) 函数 $f(z) = e^x(\cos y + i \sin y)$ 在何处可导, 在何处解析?

解

由 $u = e^x \cos y, v = e^x \sin y$ 可知

$$u_x = e^x \cos y,$$
 $u_y = -e^x \sin y,$
 $v_x = e^x \sin y,$ $v_y = e^x \cos y.$

因此该函数处处可导, 处处解析, 且

$$f'(z) = u_x + iv_x = e^x(\cos y + i\sin y) = f(z).$$

例 (续)

(3) 函数 $f(z) = e^x(\cos y + i \sin y)$ 在何处可导, 在何处解析?

解

由 $u = e^x \cos y, v = e^x \sin y$ 可知

$$u_x = e^x \cos y,$$
 $u_y = -e^x \sin y,$
 $v_x = e^x \sin y,$ $v_y = e^x \cos y.$

因此该函数处处可导, 处处解析, 且

$$f'(z) = u_x + iv_x = e^x(\cos y + i\sin y) = f(z).$$

实际上, 这个函数就是复变量的指数函数 e^z .

练习

求 $f(z) = 3x^2 + y^2 - 2xyi$ 的可导点和解析点.

练习

求 $f(z) = 3x^2 + y^2 - 2xyi$ 的可导点和解析点.

答案

可导点为 $\operatorname{Re} z = 0$, 没有解析点.

例

设函数 $f(z) = (x^2 + axy + by^2) + i(cx^2 + dxy + y^2)$ 在复平面内处处解析. 求实常数 a,b,c,d 以及 f'(z).

例

设函数 $f(z) = (x^2 + axy + by^2) + i(cx^2 + dxy + y^2)$ 在复平面内处处解析. 求实常数 a,b,c,d 以及 f'(z).

解

由于

$$u_x = 2x + ay,$$
 $u_y = ax + 2by,$ $v_x = 2cx + dy,$ $v_y = dx + 2y,$

例

设函数 $f(z) = (x^2 + axy + by^2) + i(cx^2 + dxy + y^2)$ 在复平面内处处解析. 求实常数 a,b,c,d 以及 f'(z).

解

由于

$$u_x = 2x + ay,$$
 $u_y = ax + 2by,$
 $v_x = 2cx + dy,$ $v_y = dx + 2y,$

因此

$$2x + ay = dx + 2y$$
, $ax + 2by = -(2cx + dy)$,

例

设函数 $f(z) = (x^2 + axy + by^2) + i(cx^2 + dxy + y^2)$ 在复平面内处处解析. 求实常数 a, b, c, d 以及 f'(z).

解

由于

$$u_x = 2x + ay,$$
 $u_y = ax + 2by,$
 $v_x = 2cx + dy,$ $v_y = dx + 2y,$

因此

$$2x + ay = dx + 2y$$
, $ax + 2by = -(2cx + dy)$,
 $a = d = 2$, $b = c = -1$,

例

设函数 $f(z) = (x^2 + axy + by^2) + i(cx^2 + dxy + y^2)$ 在复平面内处处解析. 求实常数 a,b,c,d 以及 f'(z).

解

由于

$$u_x = 2x + ay,$$
 $u_y = ax + 2by,$
 $v_x = 2cx + dy,$ $v_y = dx + 2y,$

因此

$$2x + ay = dx + 2y$$
, $ax + 2by = -(2cx + dy)$,
 $a = d = 2$, $b = c = -1$,
 $f'(z) = u_x + iv_x = 2x + 2y + i(-2x + 2y) = (2 - 2i)z$.

例

如果 f'(z) 在区域 D 内处处为零, 则 f(z) 在 D 内是一常数.

例

如果 f'(z) 在区域 D 内处处为零, 则 f(z) 在 D 内是一常数.

证明

由于

$$f'(z) = u_x + iv_x = v_y - iu_y = 0,$$

例

如果 f'(z) 在区域 D 内处处为零, 则 f(z) 在 D 内是一常数.

证明

$$f'(z) = u_x + iv_x = v_y - iu_y = 0,$$

因此 $u_x = v_x = u_y = v_y = 0$, u, v 均为常数,

例

如果 f'(z) 在区域 D 内处处为零, 则 f(z) 在 D 内是一常数.

证明

$$f'(z) = u_x + iv_x = v_y - iu_y = 0,$$

因此 $u_x = v_x = u_y = v_y = 0$, u, v 均为常数,从而 f(z) = u + iv是常数.

例

如果 f'(z) 在区域 D 内处处为零, 则 f(z) 在 D 内是一常数.

证明

由于

$$f'(z) = u_x + iv_x = v_y - iu_y = 0,$$

因此 $u_x=v_x=u_y=v_y=0$, u,v 均为常数,从而 f(z)=u+iv是常数.

类似地可以证明, 若 f(z) 在 D 内解析, 则下述条件等价:

例

如果 f'(z) 在区域 D 内处处为零, 则 f(z) 在 D 内是一常数.

证明

由于

$$f'(z) = u_x + iv_x = v_y - iu_y = 0,$$

因此 $u_x=v_x=u_y=v_y=0$, u,v 均为常数,从而 f(z)=u+iv是常数.

类似地可以证明, 若 f(z) 在 D 内解析, 则下述条件等价:

- f(z) 是一常数,
- | f(z)| 是一常数,
- Re f(z) 是一常数,
- $v = u^2$.

例

如果 f'(z) 在区域 D 内处处为零, 则 f(z) 在 D 内是一常数.

证明

由于

$$f'(z) = u_x + iv_x = v_y - iu_y = 0,$$

因此 $u_x=v_x=u_y=v_y=0$, u,v 均为常数,从而 f(z)=u+iv是常数.

类似地可以证明, 若 f(z) 在 D 内解析, 则下述条件等价:

- f(z) 是一常数,
- | f(z)| 是一常数,
- Re f(z) 是一常数,
- $v = u^2$.

- f'(z) = 0,
- arg f(z) 是一常数,
- Im f(z) 是一常数,
- $u = v^2$.

例

如果 f(z) 解析且 f'(z) 处处非零, 则曲线族 $u(x,y)=c_1$ 和曲线族 $v(x,y)=c_2$ 互相正交.

例

如果 f(z) 解析且 f'(z) 处处非零, 则曲线族 $u(x,y)=c_1$ 和曲线族 $v(x,y)=c_2$ 互相正交.

证明

由于 $f'(z) = u_x - iu_y$, 因此 u_x, u_y 不全为零.

例

如果 f(z) 解析且 f'(z) 处处非零, 则曲线族 $u(x,y)=c_1$ 和曲线族 $v(x,y)=c_2$ 互相正交.

证明

由于 $f'(z) = u_x - iu_y$, 因此 u_x, u_y 不全为零. 对 $u(x,y) = c_1$ 使用隐函数求导法则得

$$u_x \, \mathrm{d}x + u_y \, \mathrm{d}y = 0,$$

例

如果 f(z) 解析且 f'(z) 处处非零, 则曲线族 $u(x,y)=c_1$ 和曲线族 $v(x,y)=c_2$ 互相正交.

证明

由于 $f'(z) = u_x - iu_y$, 因此 u_x, u_y 不全为零. 对 $u(x,y) = c_1$ 使用隐函数求导法则得

$$u_x \, \mathrm{d}x + u_y \, \mathrm{d}y = 0,$$

从而 $(u_x, -u_y)$ 是该曲线在 z 处的非零切向量.

例

如果 f(z) 解析且 f'(z) 处处非零, 则曲线族 $u(x,y)=c_1$ 和曲线族 $v(x,y)=c_2$ 互相正交.

证明

由于 $f'(z) = u_x - iu_y$, 因此 u_x, u_y 不全为零. 对 $u(x,y) = c_1$ 使用隐函数求导法则得

$$u_x \, \mathrm{d}x + u_y \, \mathrm{d}y = 0,$$

从而 $(u_x, -u_y)$ 是该曲线在 z 处的非零切向量.

同理 $(v_x, -v_y)$ 是 $v(x, y) = c_2$ 在 z 处的非零切向量.

例

如果 f(z) 解析且 f'(z) 处处非零, 则曲线族 $u(x,y)=c_1$ 和曲线族 $v(x,y)=c_2$ 互相正交.

证明

由于 $f'(z) = u_x - iu_y$, 因此 u_x, u_y 不全为零. 对 $u(x,y) = c_1$ 使用隐函数求导法则得

$$u_x \, \mathrm{d}x + u_y \, \mathrm{d}y = 0,$$

从而 $(u_x, -u_y)$ 是该曲线在 z 处的非零切向量.

同理 $(v_x, -v_y)$ 是 $v(x,y) = c_2$ 在 z 处的非零切向量. 由于

$$u_x v_x + u_y v_y = -u_x u_y + u_y u_x = 0,$$

例

如果 f(z) 解析且 f'(z) 处处非零, 则曲线族 $u(x,y)=c_1$ 和曲线族 $v(x,y)=c_2$ 互相正交.

证明

由于 $f'(z) = u_x - iu_y$, 因此 u_x, u_y 不全为零. 对 $u(x,y) = c_1$ 使用隐函数求导法则得

$$u_x \, \mathrm{d}x + u_y \, \mathrm{d}y = 0,$$

从而 $(u_x, -u_y)$ 是该曲线在 z 处的非零切向量.

同理 $(v_x, -v_y)$ 是 $v(x,y) = c_2$ 在 z 处的非零切向量. 由于

$$u_x v_x + u_y v_y = -u_x u_y + u_y u_x = 0,$$

因此二者正交.

当 $f'(z_0) \neq 0$ 时,

这是因为 $\mathrm{d}f = f'(z_0)\,\mathrm{d}z$.

解析函数的保角性*

当 $f'(z_0) \neq 0$ 时, 经过 z_0 的两条曲线 C_1, C_2 的夹角和它们的像 $f(C_1), f(C_2)$ 在 $f(z_0)$ 处的夹角总是相同的. 这种性质被称为保角性.

这是因为 $df = f'(z_0) dz$. 局部来看 f 把 z_0 附近的点以 z_0 为中心放缩 $f'(z_0)$ 倍并逆时针旋转 $\arg f'(z_0)$.

这是因为 $df = f'(z_0) dz$. 局部来看 f 把 z_0 附近的点以 z_0 为中心放缩 $f'(z_0)$ 倍并逆时针旋转 $\arg f'(z_0)$. 上述例子是该结论关于w 复平面上曲线族 $u = c_1, v = c_2$ 的一个特殊情形.

这是因为 $\mathrm{d}f=f'(z_0)\,\mathrm{d}z$. 局部来看 f 把 z_0 附近的点以 z_0 为中心放缩 $f'(z_0)$ 倍并逆时针旋转 $\mathrm{arg}\,f'(z_0)$. 上述例子是该结论关于 w 复平面上曲线族 $u=c_1,v=c_2$ 的一个特殊情形.

最后我们来看复数在求导中的一个应用.

这是因为 $\mathrm{d}f=f'(z_0)\,\mathrm{d}z$. 局部来看 f 把 z_0 附近的点以 z_0 为中心放缩 $f'(z_0)$ 倍并逆时针旋转 $\mathrm{arg}\,f'(z_0)$. 上述例子是该结论关于 w 复平面上曲线族 $u=c_1,v=c_2$ 的一个特殊情形.

最后我们来看复数在求导中的一个应用.

例

求
$$f(x) = \frac{1}{1+x^2}$$
 的各阶导数.

复变函数在实变函数导数的应用*

解

设 $f(z) = \frac{1}{1+z^2}$, 则它在除 $z = \pm i$ 外处处解析.

复变函数在实变函数导数的应用*

解

设
$$f(z) = \frac{1}{1+z^2}$$
, 则它在除 $z = \pm i$ 外处处解析. 当 $z = x$ 为实数时,

解

设
$$f(z)=\frac{1}{1+z^2}$$
, 则它在除 $z=\pm i$ 外处处解析. 当 $z=x$ 为实数时,

$$f^{(n)}(x) = \frac{i}{2} \left[\frac{1}{x+i} - \frac{1}{x-i} \right]^{(n)}$$

复变函数在实变函数导数的应用*

解

设 $f(z)=\frac{1}{1+z^2}$, 则它在除 $z=\pm i$ 外处处解析. 当 z=x 为实数时,

$$f^{(n)}(x) = \frac{i}{2} \left[\frac{1}{x+i} - \frac{1}{x-i} \right]^{(n)}$$
$$= \frac{i}{2} \cdot (-1)^n n! \left[\frac{1}{(x+i)^{n+1}} - \frac{1}{(x-i)^{n+1}} \right]$$

解

设 $f(z)=\frac{1}{1+z^2}$,则它在除 $z=\pm i$ 外处处解析. 当 z=x 为实数时,

$$f^{(n)}(x) = \frac{i}{2} \left[\frac{1}{x+i} - \frac{1}{x-i} \right]^{(n)}$$

$$= \frac{i}{2} \cdot (-1)^n n! \left[\frac{1}{(x+i)^{n+1}} - \frac{1}{(x-i)^{n+1}} \right]$$

$$= (-1)^{n+1} n! \operatorname{Im} \frac{1}{(x+i)^{n+1}}$$

解

设 $f(z)=\frac{1}{1+z^2}$, 则它在除 $z=\pm i$ 外处处解析. 当 z=x 为实数时,

$$f^{(n)}(x) = \frac{i}{2} \left[\frac{1}{x+i} - \frac{1}{x-i} \right]^{(n)}$$

$$= \frac{i}{2} \cdot (-1)^n n! \left[\frac{1}{(x+i)^{n+1}} - \frac{1}{(x-i)^{n+1}} \right]$$

$$= (-1)^{n+1} n! \operatorname{Im} \frac{1}{(x+i)^{n+1}}$$

$$= \frac{(-1)^n n! \sin[(n+1) \operatorname{arccot} x]}{(x^2+1)^{\frac{n+1}{2}}}.$$