CS 161 Computer Security

Exam Prep 9

Q1 I am Inevitable (SP22 Final Q10)

(20 points)

Recall the WPA 4-way handshake from lecture:

- 1. Client and AP derive the PSK from SSID and password.
- 3. AP randomly chooses ANonce.
- 5. Client randomly chooses SNonce and derives PTK.
- 7. AP derives PTK and verifies the MIC.
- 9. Client verifies the MIC.

For each method of client-AP authentication, select all things that the given adversary would be able to do. Assume that:

- The attacker does not know the WPA-PSK password but that they know that client's and AP's MAC addresses.
- For rogue AP attacks, there exists a client that knows the password that attempts to connect to the rogue AP attacker.
- The AMAC is the Access Point's MAC address and the SMAC is the Client's MAC address.

Q1.1 (5 poi	nts) The client and AP perform the WPA 4-way handshake with the following modifications:
•	PTK = F(ANonce, SNonce, AMAC, SMAC, PSK), where F is a secure key derivation function
•	MIC = PTK
	An on-path attacker that observes a successful handshake can decrypt subsequent WPA messages without learning the value of the PSK.
	An on-path attacker that observes a successful handshake can trick the AP into completing a new handshake without learning the value of the PSK.
	An on-path attacker that observes a successful handshake can learn the PSK without brute force.
	A rogue AP attacker can learn the PSK without brute force.
	A rogue AP attacker can only learn the PSK if they use brute force.
	None of the above
Q1.2 (5 poi	nts) The client and AP perform the WPA 4-way handshake with the following modifications:
•	PTK = F(ANonce, SNonce, AMAC, SMAC), where F is a secure key derivation function
•	MIC = HMAC(PTK, Dialogue)
	An on-path attacker that observes a successful handshake can decrypt subsequent WPA messages without learning the value of the PSK.
	An on-path attacker that observes a successful handshake can trick the AP into completing a new handshake without learning the value of the PSK.
	An on-path attacker that observes a successful handshake can learn the PSK without brute force.
	A rogue AP attacker can learn the PSK without brute force.
	A rogue AP attacker can only learn the PSK if they use brute force.
	None of the above

Q1.3 (5 points	s) The client and AP perform the WPA 4-way handshake with the following modifications:
• Aı	uthentication: Client sends $H(PSK)$ to AP, where H is a secure cryptographic hash.
• Ve	erification: AP compares $H(PSK)$ and to the value it received.
• Al	P sends: $Enc(PSK,PTK)$ to client, where Enc is an IND-CPA secure encryption algorithm.
	An on-path attacker that observes a successful handshake can decrypt subsequent WPA dessages without learning the value of the PSK.
	An on-path attacker that observes a successful handshake can trick the AP into completing new handshake without learning the value of the PSK.
	an on-path attacker that observes a successful handshake can learn the PSK without brute orce.
□ A	A rogue AP attacker can learn the PSK without brute force.
□ A	A rogue AP attacker can only learn the PSK if they use brute force.
□ N	None of the above

Q1.4	(5 points) The client and AP perform the WPA 4-way handshake with the following modifications
	- Authentication: Client conducts a Diffie-Hellman exchange with the AP to derive a shared key K .
	• Client sends: $Enc(K, PSK)$ to the AP.
	- Verification: Check if $Dec(K,Ciphertext)$ equals the PSK
	• Upon verification, AP sends: $Enc(K,PTK)$, where PTK is a random value, and sends it to the client.
	 Assume that Enc is an IND-CPA secure encryption algorithm.
	☐ An on-path attacker that observes a successful handshake can decrypt subsequent WPA messages without learning the value of the PSK.
	An on-path attacker that observes a successful handshake can trick the AP into completing a new handshake without learning the value of the PSK.
	☐ An on-path attacker that observes a successful handshake can learn the PSK without brute force.

 $\hfill \square$ A rogue AP attacker can learn the PSK without brute force.

 $\hfill \square$ A rogue AP attacker can only learn the PSK if they use offline brute force.

 \square None of the above

	_					network in the coffee shop. Dr. Yang and C. Mallory is an on-path attacker.
Q2.1	1 (5 points) Which of the following protocols are used when Dr. Yang first connects to the Wi Fi network and visits http://www.piazza.com? Assume any caches are empty. Select all that apply.					
		CSRF		HTTP		☐ None of the above
		IP		DHCP		
Q2.2	_		_			upcoming sequence number to inject the et other messages in the connection?
	0	Yes, because the malicious m	iess	age replaces	som	e legitimate message
	0	Yes, because future message	s wi	ll arrive out o	of or	rder
	0	No, because on-path attacke	rs c	annot inject լ	pack	ets into a TCP connection
	0	No, because TCP connection	ıs ar	e encrypted		
Q2.3	serve		ket	with $Seq = 6$	603;	sends a SYN packet with Seq $= 980$ to the Ack $= 981$. What packet should Dr. Yang ake?
	0	SYN-ACK packet with Seq =	= 98	1; Ack = 604	Į	
	0	SYN-ACK packet with Seq =	= 60	4; Ack = 981	-	
	0	ACK packet with Seq $= 981$; Ac	k = 604		
	0	ACK packet with $Seq = 604$; Ac	k = 981		
	0	Nothing to send, because the	e TC	CP handshake	is a	dready finished.
Q2.4	Next, respo	(3 points) Immediately after the TCP handshake, Mallory injects a valid RST packet to the server. Next, Mallory spoofs a SYN packet from Dr. Yang to the server with headers Seq $= X$. The server responds with a SYN-ACK packet with Seq $= Y$; Ack $= X + 1$. What is the destination of this packet?				
	0	Dr. Yang			0	Mallory
	0	The server			0	None of the above

(17 points)

Q2 Coffee-Shop Attacks (SU21 Final Q4)

Q2.5 (3 points) Which of the following network attackers would be able to reliably perform the sam attacks as Mallory?					
O A MITM attacker between Dr. Yang and the server	O All of the above				
O An off-path attacker	O None of the above				