Pumas NCA Tutorial - Single dose ORAL administration 2 analytes

Beatriz Guglieri Lopez, Shamir Kalaria, Vijay Ivaturi

July 19, 2019

using Pumas, PumasTutorials, CSV

1 Introduction

In this tutorial, we will cover the fundamentals of performing an NCA analysis with Pumas of an example dataset in which a single oral dose was administered and the concentration of two analytes (parent and metabolite) was measured.

2 The dataset

- Single oral dose of 2000 mg administered to 24 different subjects.
- Samples were collected every 30 minutes.

Let's start reading the dataset. By using the missingstring option we are specifying how the missing values are labeled in our dataset.

```
data = PumasTutorials.tutorial_data("data/nca", "SD_oral_2analytes")
data = CSV.read(data, missingstring="NA")
first(data, 10)
```

	ID	$_{ m time}$	DV	Analyte	BLQ	DOSE	Formulation
	Int64	Float64	Float64	String	Int64	Int64	String
1	1	0.0	0.0	Metabolite	0	2000	ev
2	1	0.5	0.677881	Metabolite	0	0	ev
3	1	1.0	2.13233	Metabolite	0	0	ev
4	1	1.5	3.56769	Metabolite	0	0	ev
5	1	2.0	4.77554	Metabolite	0	0	ev
6	1	2.5	5.94978	Metabolite	0	0	ev
7	1	3.0	7.13593	Metabolite	0	0	ev
8	1	3.5	6.94463	Metabolite	0	0	ev
9	1	4.0	7.32453	Metabolite	0	0	ev
10	1	4.5	7.6625	Metabolite	0	0	ev

This will be an abbreviated tutorial as the main difference is in the specification of the read_nca function. For a complete listing of all NCA options, please check the first tutorial on single oral dose administration

3 Defining the units

```
timeu = u"hr"
concu = u"mg/L"
amtu = u"mg"
```

4 Defining the population object

The standard requirements of read_nca as specified in other tutorials exist. In this example since parent and metabolite concentrations were measured, we need to specify the grouping variable so that the PK parameters are calculated for both analytes (group=).

```
pop = read_nca(data, id=:ID, time=:time, conc=:DV, amt=:DOSE, ii=24timeu, group=:Analyte,
    route=:Formulation, timeu=timeu, concu=concu, amtu=amtu,lloq=0.4concu)

NCAPopulation (24 subjects):
    ID: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2

0, 21, 22, 23, 24]
    Group: Pair{String,String}["Analyte"=>"Metabolite", "Analyte"=>"Parent"]
    concentration: mg L^-1
    time: hr
    auc: mg hr L^-1
    aumc: mg hr^2 L^-1
    λz: hr^-1
    dose: mg
```

Key features of the syntax above:

- route= is mapped to the Formulation column that should specify ev
- LLOQ was set to 0.4 by llq=0.4concu
- group=: Analyte provides a way to peform NCA on two different analytes

To check if the grouping works, lets calculate the AUC

```
NCA.auc(pop,auctype=:last,method=:linear)
```

	id	Analyte	auc
	Int64	String	Unitful
1	1	Metabolite	$81.6192 \text{ mg hr L}^2$
2	2	Metabolite	$81.9052 \text{ mg hr L}^2$
3	3	Metabolite	$83.3829 \text{ mg hr L} \hat{1}$
4	4	Metabolite	$82.0563 \text{ mg hr L} \hat{1}$
5	5	Metabolite	81.0593 mg hr L -1
6	6	Metabolite	83.0437 mg hr L -1
7	7	Metabolite	$84.1976~\mathrm{mg}~\mathrm{hr}~\mathrm{L^21}$
8	8	Metabolite	82.6067 mg hr L -1
9	9	Metabolite	$82.4071 \text{ mg hr L} \hat{1}$
10	10	Metabolite	$82.3146 \text{ mg hr L} \hat{1}$
11	11	Metabolite	$81.1287~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
12	12	Metabolite	81.8532 mg hr L -1
13	13	Metabolite	82.7287 mg hr L -1
14	14	Metabolite	83.6679 mg hr L -1
15	15	Metabolite	82.162 mg hr L
16	16	Metabolite	$81.5886~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
17	17	Metabolite	81.3252 mg hr L-1
18	18	Metabolite	82.517 mg hr L-1
19	19	Metabolite	$83.5749~\mathrm{mg}$ hr L -1
20	20	Metabolite	$83.0247~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
21	21	Metabolite	82.418 mg hr L -1
22	22	Metabolite	81.514 mg hr L
23	23	Metabolite	83.5594 mg hr L -1
24	24	Metabolite	79.7166 mg hr L-1
25	1	Parent	$101.678~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
26	2	Parent	$101.841~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
27	3	Parent	$103.924~\mathrm{mg}$ hr L -1
28	4	Parent	101.85 mg hr L
29	5	Parent	$100.914~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
30	6	Parent	$103.36 \text{ mg hr L} \hat{1}$
31	7	Parent	104.645 mg hr L-1
32	8	Parent	$102.618~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
33	9	Parent	102.766 mg hr L - 1
34	10	Parent	$102.224~\mathrm{mg}$ hr L - 1
35	11	Parent	100.61 mg hr L-1
36	12	Parent	$101.917~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
37	13	Parent	$102.827~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
38	14	Parent	$103.845~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
39	15	Parent	102.082 mg hr L -1
40	16	Parent	$101.73~\mathrm{mg}~\mathrm{hr}~\mathrm{L}$ 2
41	17	Parent	$101.307~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
42	18	Parent	102.803 mg hr L-1
43	19	Parent	$103.963~\mathrm{mg}$ hr L -1
44	20	Parent	103.336 mg hr L-1
45	21	Parent	102.498 mg hr L-1
46	22	Parent	101.161 mg hr L-1
47	23	Parent	104.269 mg hr L-1
48	24	Parent	99.3001 mg hr L-1

All other NCA function work on this grouped variable. Let's directly print the NCA report.

```
report = NCAReport(pop)
report = NCA.to_dataframe(report)
```

	id	Analyte	doseamt	$lambda_z$	half_life	tmax	tlag	cmax
	Int64	String	Unitful	Unitful	Unitful	Unitful	Unitful	Unitful
1	1	Metabolite	2000 mg	0.375321 hr ² 1	1.84681 hr	5.0 hr	0.0 hr	8.37565 mg L-1
2	2	Metabolite	2000 mg	$0.289601 \text{ hr} \hat{-} 1$	2.39345 hr	5.5 hr	0.0 hr	$8.17628~\mathrm{mg}~\mathrm{L}\hat{\mathtt{-}}1$
3	3	Metabolite	2000 mg	0.193229 hr^2	$3.58718~\mathrm{hr}$	5.0 hr	0.0 hr	$8.46302~\mathrm{mg}~\mathrm{L}\hat{\mathtt{-}}1$
4	4	Metabolite	2000 mg	$0.397353~\mathrm{hr}\hat{-}1$	$1.74441 \; \mathrm{hr}$	5.5 hr	0.0 hr	$8.00777~\mathrm{mg}~\mathrm{L}\hat{\ }1$
5	5	Metabolite	2000 mg	-0.253963 hr ₂ 1	-2.72932 hr	6.0 hr	0.0 hr	$8.44586~\mathrm{mg}~\mathrm{L}\hat{\mathtt{-}}1$
6	6	Metabolite	2000 mg	$0.245656~\mathrm{hr}\hat{-}1$	$2.82162~\mathrm{hr}$	4.0 hr	0.0 hr	$8.35883~\mathrm{mg}~\mathrm{L}\hat{-}1$
7	7	Metabolite	2000 mg	$0.207358~\mathrm{hr}\hat{-}1$	$3.34276~\mathrm{hr}$	4.0 hr	0.0 hr	$8.66713~\mathrm{mg}~\mathrm{L}\hat{\mathtt{-}}1$
8	8	Metabolite	2000 mg	$0.369532~\mathrm{hr}\mathring{-}1$	$1.87574~\mathrm{hr}$	6.0 hr	0.0 hr	$8.03436~\mathrm{mg}~\mathrm{L}\hat{\mathtt{-}}1$
9	9	Metabolite	2000 mg	$0.313687~\mathrm{hr} 1$	$2.20968~\mathrm{hr}$	5.5 hr	0.0 hr	$7.94585~\mathrm{mg}~\mathrm{L}\hat{-}1$
10	10	Metabolite	2000 mg	$0.278758~\mathrm{hr}\hat{-}1$	$2.48655~\mathrm{hr}$	5.5 hr	0.0 hr	$8.10679~\mathrm{mg}~\mathrm{L}\hat{\mathtt{-}}1$
11	11	Metabolite	2000 mg	-0.796943 hr21	-0.869758 hr	4.0 hr	0.0 hr	$7.8671~\mathrm{mg}~\mathrm{L}\hat{\ }1$
12	12	Metabolite	2000 mg	$0.282085~\mathrm{hr}\hat{-}1$	$2.45722~\mathrm{hr}$	4.0 hr	0.0 hr	$8.27367~\mathrm{mg}~\mathrm{L}\hat{\mathtt{-}}1$
13	13	Metabolite	2000 mg	$0.22053~\mathrm{hr}\hat{-}1$	$3.1431~\mathrm{hr}$	4.5 hr	0.0 hr	$8.52225~\mathrm{mg}~\mathrm{L}\hat{-}1$
14	14	Metabolite	2000 mg	0.179082 hr^2	$3.87057~\mathrm{hr}$	4.0 hr	0.0 hr	$7.93562~\mathrm{mg}~\mathrm{L}\hat{-}1$
15	15	Metabolite	2000 mg	$0.147145~\mathrm{hr}\hat{-}1$	$4.71066~\mathrm{hr}$	5.0 hr	0.0 hr	$8.25264~\mathrm{mg}~\mathrm{L}\hat{\mathtt{-}}1$
16	16	Metabolite	2000 mg	0.888041 hr21	0.780535 hr	5.5 hr	0.0 hr	$8.00715~\mathrm{mg}~\mathrm{L}\hat{\ }1$
17	17	Metabolite	2000 mg	$0.377237~\mathrm{hr}1$	1.83743 hr	6.0 hr	0.0 hr	$8.08663~\mathrm{mg}~\mathrm{L}\hat{\mathtt{-}}1$
18	18	Metabolite	2000 mg	$0.16821~\mathrm{hr}\hat{-}1$	$4.12072~\mathrm{hr}$	4.5 hr	0.0 hr	$7.88359~\mathrm{mg}~\mathrm{L}\hat{-}1$
19	19	Metabolite	2000 mg	$0.333248~\mathrm{hr}\hat{-}1$	$2.07998~\mathrm{hr}$	5.0 hr	0.0 hr	$8.73993~\mathrm{mg}~\mathrm{L}\hat{\ }1$
20	20	Metabolite	2000 mg	0.36101 hr - 1	$1.92002~\mathrm{hr}$	4.0 hr	0.0 hr	$7.79501~\mathrm{mg}~\mathrm{L} \hat{=} 1$
21	21	Metabolite	2000 mg	$0.221688~\mathrm{hr}\hat{-}1$	$3.12667~\mathrm{hr}$	4.5 hr	0.0 hr	$7.9931~\mathrm{mg}~\mathrm{L}\hat{\ }1$
22	22	Metabolite	2000 mg	1.11474 hr	0.621802 hr	6.0 hr	0.0 hr	$7.57312~\mathrm{mg}~\mathrm{L}\hat{-}1$
23	23	Metabolite	2000 mg	0.800884 hr21	$0.865478~\mathrm{hr}$	5.0 hr	0.0 hr	$8.16937~\mathrm{mg}~\mathrm{L}\hat{\mathtt{-}}1$
24	24	Metabolite	2000 mg	-0.890666 hr ₂ 1	-0.778235 hr	4.5 hr	0.0 hr	$7.7859~\mathrm{mg}~\mathrm{L}\hat{}1$
25	1	Parent	2000 mg	$0.376974~\mathrm{hr}\hat{-}1$	$1.83871~\mathrm{hr}$	3.0 hr	0.0 hr	$10.3017~\mathrm{mg}~\mathrm{L}\hat{-}1$
26	2	Parent	2000 mg	0.287911 hr^2	2.4075 hr	3.5 hr	0.0 hr	$10.0397~\mathrm{mg}~\mathrm{L}\hat{-}1$
27	3	Parent	2000 mg	0.195978 hr^2	$3.53686~\mathrm{hr}$	3.0 hr	0.0 hr	$10.8176~\mathrm{mg}~\mathrm{L}\hat{-}1$
28	4	Parent	2000 mg	$0.394215 \text{ hr} \hat{-} 1$	$1.7583~\mathrm{hr}$	3.5 hr	0.0 hr	$9.85971~\mathrm{mg}~\mathrm{L}\hat{-}1$
29	5	Parent	2000 mg	0.133014 hr^2	5.21108 hr	5.0 hr	0.0 hr	$10.0102~\mathrm{mg}~\mathrm{L}\hat{-}1$
30	6	Parent	2000 mg	0.245908 hr^2	2.81873 hr	$4.0 \ \mathrm{hr}$	0.0 hr	$10.7972~\mathrm{mg}~\mathrm{L}\hat{~}1$
31	7	Parent	2000 mg	0.208447 hr21	3.32529 hr	4.0 hr	0.0 hr	11.29 mg L-1
32	8	Parent	2000 mg	$0.366268~\mathrm{hr}\hat{-}1$	1.89246 hr	4.0 hr	0.0 hr	$10.2454~\mathrm{mg}~\mathrm{L}\hat{-}1$
33	9	Parent	2000 mg	$0.312375~\mathrm{hr}1$	2.21896 hr	3.5 hr	0.0 hr	$10.6356~\mathrm{mg}~\mathrm{L}\hat{-}1$
34	10	Parent	2000 mg	0.277981 hr^2	2.4935 hr	3.0 hr	0.0 hr	$10.4033~\mathrm{mg}~\mathrm{L}\hat{-}1$
35	11	Parent	2000 mg	-0.756411 hr ₂ 1	-0.916364 hr	4.0 hr	0.0 hr	10.2241 mg L-1
36	12	Parent	2000 mg	0.280981 hr	2.46688 hr	4.0 hr	0.0 hr	10.8172 mg L^2
37	13	Parent	2000 mg	0.175111 hr^2	3.95834 hr	4.0 hr	0.0 hr	$11.1044~\mathrm{mg}~\mathrm{L}\hat{-}1$
38	14	Parent	2000 mg	$0.18069 \text{ hr} \hat{1}$	3.83611 hr	3.0 hr	0.0 hr	10.8373 mg L^{2}
39	15	Parent	2000 mg	0.150714 hr	4.59908 hr	5.0 hr	0.0 hr	10.137 mg L-1
40	16	Parent	2000 mg	$0.864551 \text{ hr} \hat{1}$	0.801742 hr	4.0 hr	0.0 hr	$10.0995~\mathrm{mg}~\mathrm{L}\hat{-}1$
41	17	Parent	2000 mg	0.375308 hr - 1	1.84688 hr	3.5 hr	0.0 hr	$10.321~\mathrm{mg}~\mathrm{L}\hat{-}1$
42	18	Parent	2000 mg	0.171226 hr21	4.04815 hr	3.5 hr	0.0 hr	$10.2012~\mathrm{mg}~\mathrm{L}\hat{-}1$
43	19	Parent	2000 mg	0.329593 hr^2	2.10304 hr	3.0 hr	0.0 hr	$11.2275~\mathrm{mg}~\mathrm{L}\hat{-}1$
44	20	Parent	2000 mg	$0.355591~\mathrm{hr}\hat{-}1$	1.94928 hr	3.0 hr	0.0 hr	$10.5528~\mathrm{mg}~\mathrm{L}\hat{-}1$
45	21	Parent	2000 mg	$0.222483~\mathrm{hr}\hat{-}1$	3.1155 hr	4.0 hr	0.0 hr	$10.1598~\mathrm{mg}~\mathrm{L}\hat{-}1$
46	22	Parent	2000 mg	$1.08696~\mathrm{hr}\hat{-}1$	0.637695 hr	3.5 hr	0.0 hr	$9.99851~\mathrm{mg}~\mathrm{L}\hat{-}1$
47	23	Parent	2000 mg	0.783621 hr21	0.884544 hr	4.0 hr	0.0 hr	$10.3031~\mathrm{mg}~\mathrm{L}\hat{-}1$
48	24	Parent	2000 mg	-0.84154 5 hr ² 1	-0.823661 hr	3.5 hr	0.0 hr	10.0945 mg L-1

```
Finally, we can save this data frame as a csv file if desired.

CSV.write("./tutorials/nca/report_SD_oral_2analytes.csv", report)

using PumasTutorials

PumasTutorials.tutorial_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file])
```

4.1 Appendix

These tutorials are part of the PumasTutorials.jl repository, found at: https://github.com/JuliaDiffEq/Di To locally run this tutorial, do the following commands:

```
using PumasTutorials
PumasTutorials.weave_file("nca","SD_ORAL_2ANALYTES.jmd")

Computer Information:

Julia Version 1.1.1
Commit 55e36cc308 (2019-05-16 04:10 UTC)
Platform Info:
    OS: Windows (x86_64-w64-mingw32)
    CPU: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz
    WORD_SIZE: 64
    LIBM: libopenlibm
    LLVM: libLLVM-6.0.1 (ORCJIT, skylake)
Environment:
    JULIA_EDITOR = "C:\Users\accou\AppData\Local\atom\app-1.38.2\atom.exe" -a
    JULIA_NUM_THREADS = 4
```

Package Information:

```
Status `C:\Users\accou\.julia\environments\v1.1\Project.toml`
[621f4979-c628-5d54-868e-fcf4e3e8185c] AbstractFFTs 0.4.1
[c52e3926-4ff0-5f6e-af25-54175e0327b1] Atom 0.8.8
[f0abef60-9ec0-11e9-27de-db6506a91768] AutoOffload 0.1.0
[6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf] BenchmarkTools 0.4.2
[4ece37e6-a012-11e8-38cd-91247efc2c34] Bioequivalence 0.1.0
[336ed68f-0bac-5ca0-87d4-7b16caf5d00b] CSV 0.5.9
[c5f51814-7f29-56b8-a69c-e4d8f6be1fde] CUDAdrv 3.0.1
[be33ccc6-a3ff-5ff2-a52e-74243cff1e17] CUDAnative 2.2.1
[49dc2e85-a5d0-5ad3-a950-438e2897f1b9] Calculus 0.5.0
[7057c7e9-c182-5462-911a-8362d720325c] Cassette 0.2.5
[34da2185-b29b-5c13-b0c7-acf172513d20] Compat 2.1.0
[3a865a2d-5b23-5a0f-bc46-62713ec82fae] CuArrays 1.1.0
[667455a9-e2ce-5579-9412-b964f529a492] Cubature 1.4.0
[a93c6f00-e57d-5684-b7b6-d8193f3e46c0] DataFrames 0.18.4
[82cc6244-b520-54b8-b5a6-8a565e85f1d0] DataInterpolations 0.2.0
```

```
[31a5f54b-26ea-5ae9-a837-f05ce5417438] Debugger 0.5.0
[bcd4f6db-9728-5f36-b5f7-82caef46ccdb] DelayDiffEq 5.9.1
[2b5f629d-d688-5b77-993f-72d75c75574e] DiffEqBase 5.16.3
[ebbdde9d-f333-5424-9be2-dbf1e9acfb5e] DiffEgBayes 1.2.0
[31c91b34-3c75-11e9-0341-95557aab0344] DiffEqBenchmarks 0.1.0
[459566f4-90b8-5000-8ac3-15dfb0a30def] DiffEqCallbacks 2.5.2+
[f3b72e0c-5b89-59e1-b016-84e28bfd966d] DiffEqDevTools 2.13.0
[01453d9d-ee7c-5054-8395-0335cb756afa] DiffEqDiffTools 0.14.0
[aae7a2af-3d4f-5e19-a356-7da93b79d9d0] DiffEqFlux 0.6.0
[071ae1c0-96b5-11e9-1965-c90190d839ea] DiffEqGPU 0.1.0
[c894b116-72e5-5b58-be3c-e6d8d4ac2b12] DiffEqJump 6.1.1+
[8f2b45d5-b17b-5532-9e92-98ae0077e2e3] DiffEqMachineLearning 0.1.0
[78ddff82-25fc-5f2b-89aa-309469cbf16f] DiffEqMonteCarlo 0.15.1
[77a26b50-5914-5dd7-bc55-306e6241c503] DiffEqNoiseProcess 3.3.1
[9fdde737-9c7f-55bf-ade8-46b3f136cc48] DiffEqOperators 3.5.0
[055956cb-9e8b-5191-98cc-73ae4a59e68a] DiffEqPhysics 3.2.0
[a077e3f3-b75c-5d7f-a0c6-6bc4c8ec64a9] DiffEqProblemLibrary 4.3.0
[41bf760c-e81c-5289-8e54-58b1f1f8abe2] DiffEqSensitivity 3.3.0
[6d1b261a-3be8-11e9-3f2f-0b112a9a8436] DiffEqTutorials 0.1.0
[0c46a032-eb83-5123-abaf-570d42b7fbaa] DifferentialEquations 6.6.0
[31c24e10-a181-5473-b8eb-7969acd0382f] Distributions 0.20.0
[e30172f5-a6a5-5a46-863b-614d45cd2de4] Documenter 0.23.0
[587475ba-b771-5e3f-ad9e-33799f191a9c] Flux 0.8.3
[f6369f11-7733-5829-9624-2563aa707210] ForwardDiff 0.10.3+
[ba82f77b-6841-5d2e-bd9f-4daf811aec27] GPUifyLoops 0.2.5
[c91e804a-d5a3-530f-b6f0-dfbca275c004] Gadfly 1.1.0
[bc5e4493-9b4d-5f90-b8aa-2b2bcaad7a26] GitHub 5.1.1
[7073ff75-c697-5162-941a-fcdaad2a7d2a] IJulia 1.18.1
[42fd0dbc-a981-5370-80f2-aaf504508153] IterativeSolvers 0.8.1
[033835bb-8acc-5ee8-8aae-3f567f8a3819] JLD2 0.1.2
[e5e0dc1b-0480-54bc-9374-aad01c23163d] Juno 0.7.0
[2d691ee1-e668-5016-a719-b2531b85e0f5] LIBLINEAR 0.5.1
[7f56f5a3-f504-529b-bc02-0b1fe5e64312] LSODA 0.4.0
[6f1fad26-d15e-5dc8-ae53-837a1d7b8c9f] Libtask 0.3.0
[c7f686f2-ff18-58e9-bc7b-31028e88f75d] MCMCChains 0.3.10
[33e6dc65-8f57-5167-99aa-e5a354878fb2] MKL 0.0.0
[cc2ba9b6-d476-5e6d-8eaf-a92d5412d41d] MLDataUtils 0.5.0
[eb30cadb-4394-5ae3-aed4-317e484a6458] MLDatasets 0.3.0
[961ee093-0014-501f-94e3-6117800e7a78] ModelingToolkit 0.5.0
[4886b29c-78c9-11e9-0a6e-41e1f4161f7b] MonteCarloIntegration 0.0.1
[2774e3e8-f4cf-5e23-947b-6d7e65073b56] NLsolve 4.0.0
[872c559c-99b0-510c-b3b7-b6c96a88d5cd] NNlib 0.6.0
[8faf48c0-8b73-11e9-0e63-2155955bfa4d] NeuralNetDiffEq 0.1.0
[09606e27-ecf5-54fc-bb29-004bd9f985bf] ODEInterfaceDiffEq 3.3.1
[1dea7af3-3e70-54e6-95c3-0bf5283fa5ed] OrdinaryDiffEq 5.12.0
[65888b18-ceab-5e60-b2b9-181511a3b968] ParameterizedFunctions 4.2.0
[14b8a8f1-9102-5b29-a752-f990bacb7fe1] PkgTemplates 0.6.1
[91a5bcdd-55d7-5caf-9e0b-520d859cae80] Plots 0.25.3
[92933f4c-e287-5a05-a399-4b506db050ca] ProgressMeter 1.0.0
```

```
[d7b8c89e-ad89-52e0-b9fd-d0ed321fa021] Pumas 0.1.0
[b7b41870-aa11-11e9-048a-09266ec4a62f] PumasTutorials 0.0.1
[438e738f-606a-5dbb-bf0a-cddfbfd45ab0] PyCall 1.91.2
[d330b81b-6aea-500a-939a-2ce795aea3ee] PyPlot 2.8.1
[1fd47b50-473d-5c70-9696-f719f8f3bcdc] QuadGK 2.1.0
[612083be-0b0f-5412-89c1-4e7c75506a58] Queryverse 0.3.1
[6f49c342-dc21-5d91-9882-a32aef131414] RCall 0.13.3
[731186ca-8d62-57ce-b412-fbd966d074cd] RecursiveArrayTools 0.20.0
[37e2e3b7-166d-5795-8a7a-e32c996b4267] ReverseDiff 0.3.1
[295af30f-e4ad-537b-8983-00126c2a3abe] Revise 2.1.6
[2b6d1eac-7baa-5078-8adc-e6a3e659f14f] SingleFloats 0.1.3
[47a9eef4-7e08-11e9-0b38-333d64bd3804] SparseDiffTools 0.5.0
[90137ffa-7385-5640-81b9-e52037218182] StaticArrays 0.11.0
[4c63d2b9-4356-54db-8cca-17b64c39e42c] StatsFuns 0.8.0
[f3b207a7-027a-5e70-b257-86293d7955fd] StatsPlots 0.11.0
[9672c7b4-1e72-59bd-8a11-6ac3964bc41f] SteadyStateDiffEq 1.5.0
[789caeaf-c7a9-5a7d-9973-96adeb23e2a0] StochasticDiffEq 6.6.0
[c3572dad-4567-51f8-b174-8c6c989267f4] Sundials 3.6.1
[fd094767-a336-5f1f-9728-57cf17d0bbfb] Suppressor 0.1.1
[6fc51010-71bc-11e9-0e15-a3fcc6593c49] Surrogates 0.1.0
[9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c] Tracker 0.2.2
[fce5fe82-541a-59a6-adf8-730c64b5f9a0] Turing 0.6.18
[1986cc42-f94f-5a68-af5c-568840ba703d] Unitful 0.16.0
[44d3d7a6-8a23-5bf8-98c5-b353f8df5ec9] Weave 0.9.1
[e88e6eb3-aa80-5325-afca-941959d7151f] Zygote 0.3.2
```