Notes on Topological Data Analysis

Zhang Liu

February 10, 2021

Abstract

This document is to serve as a set of notes to fill the gaps in my understanding of Topological Data Analysis relevant to the project. The reference book for this set of notes is Algebraic Topology [2], Topology and Data [1], and Topology for Computing [3].

1 Motivation

First of all, there are four major advantages for using topological methods to deal with point clouds in data analysis.

- 1. Topology provides qualitative information which is required for data analysis.
- 2. Metrics are not theoretically justified. Compared to straightforward geometric methods, Topology is less sensitive to the actual choice of metrics.
- 3. Studying geometric objects using Topology does not depend on the coordinates.
- 4. Functoriality. This is the most important advantage.

Definition 1. For any topological space X, abelian group A, and integer $k \ge 0$, there is assigned a group $H_k(X, A)$.

For any A and k, and any continuous map $f: X \to Y$, there is an induced homomorphism $H_k(f,A): H_k(X,A) \to H_k(Y,A)$. Then functoriality refers to the following conditions:

- $H_k(f \circ g, A) : H_k(f, A) \circ H_k(g, A)$
- $H_k(Id_X; A) = Id_{H_k(X,A)}$.

Functoriality addresses the ambiguities in statistical clustering methods - in particular the arbitrariness of various threshold choices. We now illustrate how exactly functoriality could be used in questions related to clustering.

Let X be the full data set and X_1, X_2 are the subsamples from the data set. If the set of clusterings $C(X_1), C(X_2), C(X_1 \cup X_2)$ correspond well (this notion will be defined formally in later section), then we can conclude that the subsample clusterings correspond to clusterings in the full data set X.

2 Homotopy

Definition 2. Homotopy is a family of maps $f_t: X \to Y$ where $t \in I$ such that $F: X \times I \to Y$ defined by $F(x,t) \mapsto f_t(x)$ is continuous.

Definition 3. Two maps f_0, f_1 are homotopic if \exists a homotopy f_t between f_0 and f_1 .

A special case of homotopy is the deformation retraction.

Definition 4. A deformation retraction of X onto a subspace A is a homotopy from the identity map of X to a retraction of X onto A, $r: X \to X$ such that r(X) = A and $r|_A = 1$ (or equivalently, retraction is the map $r: X \to X$, $r^2 = r$).

Retraction is the topological analog of projection. To visualize this analogy, we give an example of how some deformation retractions arise from the mapping cylinder.

Definition 5. For a map $f: X \to Y$, the mapping cylinder M_f is the quotient space of the disjoint union $(X \times I) \sqcup Y$.

Definition 6. A map $f: X \to Y$ is a homotopy equivalence if there is a map $g: Y \to X$ such that

- $f \circ g$ is homotopic to the identity map on Y, and
- $g \circ f$ is homotopic to f.

Two spaces X, Y are homotopy equivalent if there exist a homotopy equivalence $f: X \to Y$.

Definition 7. If f and g are homotopic, then $H_k(f,A) = H_k(g,A)$. Then it follows that if X and Y are homotopy equivalent, then $H_k(X,A) \cong H_k(Y,A)$.

Definition 8. For any field F, $H_k(X, F)$ will be a vector space over F. Then if F is finite dimensional, its dimension is referred to as the k-th Betti number with coefficients in F, denoted as $\beta_k(X, F)$.

The k-th Betti number corresponds to an informal notion of the number of independent k-dimensional surfaces. If two spaces are homotopy equivalent, then all their Betti numbers are equal.

Note that the Betti numbers can vary with the choice of the coefficients in F.

3 Simplicial Complexes

Definition 9. An abstract simplicial complex is a pair (V, Σ) , where V is a finite set, and Σ is a family of non-empty subsets of V such that

$$\sigma \in \Sigma, \tau \subseteq \sigma \implies \tau \in \Sigma.$$

Associated to a simplicial complex is a topological space $|(V, \Sigma)|$. $|(V, \Sigma)|$ may be defined using a bijection $\phi: V \to \{1, 2, ..., N\}$ as the subspace of \mathbb{R}^N given by the union

$$\bigcup_{\sigma \in \Sigma} c(\sigma)$$
,

where $c(\sigma)$ is the convex hull of the set $\{e_{\phi(s)}\}_{s\in\sigma}$, where e_i denotes the *i*th standard basis vector.

We often use abstract simplicial complexes to approximate topological spaces. For simplicial complexes the homology can be computed using only the linear algebra of finitely generated \mathbb{Z} -modules. In particular, for simplicial complexes, homology is algorithmically computable (unlike the standard methods for computing the Smith normal form).

Definition 10. Let X be a topological space, and let $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ be any covering of X. The *nerve* of \mathcal{U} , denoted by $N\mathcal{U}$, will be the abstract simplicial complex with vertex set A, and where a family $\{\alpha_0, \ldots, \alpha_k\}$ spans a k-simplex if and only if $U_{\alpha_0} \cap U_{\alpha_1} \cap \cdots \cap U_{\alpha_k} \neq \emptyset$.

One reason that this construction is very useful is the following "Nerve Theorem." This theorem gives the criteria for $N(\mathcal{U})$ to be homotopy equivalent to the underlying topological space X.

Theorem 11. Suppose that X and U are as above, and suppose that the covering consists of open sets and is numerable. Suppose further that for all $\emptyset \subseteq A$, we have that $\bigcap_{s \in S} U_s$ is either contractible or empty. Then $N(\mathcal{U})$ is homotopy equivalent to X.

Definition 12. For any subset $V \subseteq X$ for which $X = \bigcup_{v \in V} B_{\varepsilon}(v)$, one can construct the nerve of the covering $\{B_{\varepsilon}(v)\}_{v \in V}$. This construction is referred to as the "Čech complex" attached to V and is denoted as $\check{C}(V, \varepsilon)$.

Theorem 13. Let M be a compact Riemannian manifold. Then there is a positive number e so that $\check{\mathrm{C}}(M,\varepsilon)$ is homotopy equivalent to M whenever $\varepsilon\leqslant e$. Moreover, for every $\varepsilon\leqslant e$, there is a finite subset $V\subseteq M$ so that the subcomplex of $\check{\mathrm{C}}(V,\varepsilon)\subseteq \check{\mathrm{C}}(M,\varepsilon)$ is also homotopy equivalent to M.

However, this construction is computationally expensive. A solution is to construct a simplicial complex which can be recovered solely from the edge information, which motivates the following construction known as the "Vietoris-Rips complex."

Definition 14. Let X be a metric space with metric d. Then the *Vietoris-Rips complex* for X, attached to the parameter ε , denoted by $VR(X,\varepsilon)$, will be the simplicial complex whose vertex set is X, and where $\{x_0,\ldots,x_k\}$ spans a k-simplex if and only if $d(x_i,x_j) \leqslant \varepsilon$ for all $0 \leqslant i,j \leqslant k$.

Proposition 15. Comparing the Čech complex and the VR compelx:

$$\check{\mathrm{C}}(X,\varepsilon)\subseteq VR(X,2\varepsilon)\subseteq \check{\mathrm{C}}(X,2\varepsilon).$$

However, even the VR complex is computationally expensive. A solution, again, is to the Voronoi decomposition which studies the subspaces of Euclidean space.

Theorem 16. Let X be any metric space, and let $\mathcal{L} \subseteq X$ be a subset (called the set of landmark points). Given $\lambda \in \mathcal{L}$, we define the Voronoi cell associated to λ, V_{λ} , by

$$V_{\lambda} = \{x \in X | d(x, \lambda) \leq d(x, \lambda')\} \forall \lambda' \in \mathcal{L}.$$

Definition 17. Similar to how we define the Čech complex above, we define the Delaunay complex attached to \mathcal{L} to be the nerve of this covering.

However, for finite metric spaces, the Delaunay complex generically produces degenerate (i.e. discrete) complexes with no 1-simplices. To solve this, we modify the definition to accommodate pairs of points which are "almost" equidistant from a pair of landmark points. We thus have the definition below:

Definition 18. Let X be any metric space, and suppose we are given a finite set \mathcal{L} of points in X (called the landmark set), and a parameter $\varepsilon > 0$. For every point $x \in X$, we let m_x denote the distance from this point to the set \mathcal{L} , i.e., the minimum distance from x to any point in the landmark set.

Then we define the strong witness complex attached to this data to be the complex $W^s(X, \mathcal{L}, \varepsilon)$ whose vertex set is \mathcal{L} , and where a collection $\{l_0, \ldots, l_k\}$ spans a k-simplex if and only if there is a point $x \in X$ (the witness) so that $d(x, l_i) \leq m_x + \varepsilon$ for all i.

We can also consider the version of this complex in which the 1-simplices are identical to those of $W(X, \mathcal{L}, \varepsilon)$, but where the family $\{l_0, \ldots, l_k\}$ spans a k-simplex if and only if all the pairs (l_i, l_j) are 1-simplices. We will denote this by W_{VR}^s .

A modified version of the strong witness complex is also useful:

Definition 19. We construct the weak witness complex, $W^w(X, \mathcal{L}, \varepsilon)$, attached to the given data by declaring that a family $\Lambda = \{l_0, \ldots, l_k\}$ spans a k-simplex if and only if Λ and all its faces admit ε weak witnesses.

Similar to the definition for strong witness complex, we can also consider the version of the weak witness complex in which the 1-simplices are identical to those of $W(X, \mathcal{L}, \varepsilon)$, but where the family $\{l_0, \ldots, l_k\}$ spans a k-simplex if and only if all the pairs (l_i, l_j) are 1-simplices. We will denote this by W_{VR}^w .

4 Category Theory Pre-requisites

It frames a possible template for any mathematical theory: the theory should have nouns and verbs, i.e., objects, and morphisms, and there should be an explicit notion of composition related to the morphisms; the theory should, in brief, be packaged by a category.

Barry Mazur, "When is one thing equal to some other thing?"

Definition 20. A category consists of

- a collection of objects X, Y, Z, \dots
- a collection of morphisms f, g, h, \dots

so that:

- Each morphism has specified domain and codomain objects; the notation $f: X \to Y$ signifies that f is a morphism with domain X and codomain Y.
- Each object has a designated identity morphism $\mathbb{1}_X: X \to X$.
- For any pair of morphisms f, g with the codomain of f equal to the domain of g, there exists a specified composite morphism gf whose domain is equal to the domain of f and whose codomain is equal to the codomain of g, i.e.,:

$$f: X \to Y, g: Y \to Z \leadsto gf: X \to Z.$$

A natural question to ask is: what is a morphism between categories? This leads to the definition of a functor:

Definition 21. A functor $F: C \to D$, between categories C and D, consists of the following data:

- An object $F_c \in D$, for each object $c \in C$.
- A morphism $Ff: Fc \to Fc' \in D$, for each morphism $f: c \to c' \in C$, so that the domain and codomain of Ff are, respectively, equal to F applied to the domain or codomain of f.

The assignments are required to satisfy the following two functoriality axioms:

- For any composable pair $f, ginC, Fg \cdot Ff = F(g \cdot f)$.
- For each object c in C, $F(\mathbb{1}_c) = \mathbb{1}_{Fc}$.

Put concisely, a functor consists of

- 1. a mapping on objects and
- 2. a mapping on morphisms that preserves all of the structure of a category, namely domains and codomains, composition, and identities.

As already mentioned in Section 1, functoriality plays a key role in topological data analysis.

Definition 22. Let A be a ring. A *left module* M over A consists of an abelian group (also denoted M) and a law of composition $A \times M \to M$ (denoted $(a, x) \mapsto ax$) such that

$$a(bx) = (ab)x \text{ for } a, b \in A, x \in M,$$
(1)

$$1x = x \text{ for } x \in M, \tag{2}$$

$$(a+b)x = ax + bx \text{ for } a, b \in A, x \in M,$$
(3)

$$a(x+y) = ax + ay \text{ for } a \in A, x, y \in M.$$

$$\tag{4}$$

(4) asserts that $\rho(a): M \to M$ defined by $\rho(a)(x) = ax$ is an endomorphism of the underlying abelian group of the module, while the first three statements assert that $\rho: A \to End(M)$ is a ring homomorphism. Conversely, given such a homomorphism, we may define a module structure on M by setting $ax = \rho(a)(x)$.

Analogically, we can define the right module over A.

Note that the concept of module is a generalization of the concept of vector space. The condition that "a vector space is finite dimensional" generalizes to the condition that "a module is finitely generated". A basis of a module is a generating set that is linearly independent over the ring. Unfortunately, such sets rarely exist: only free modules have bases. Usually, we have to consider a (minimal) system of generators instead of a basis.

Definition 23. A ring R is called *graded* (or more precisely, \mathbb{Z} -graded) if there exists a family of subgroups $Rn_{n\in\mathbb{Z}}$ of R such that

- 1. $R = \bigoplus_n R_n$ (as abelian groups), and
- 2. $R_n \cdot R_m \subseteq R_{n+m} \forall n, m$.

Definition 24. Let R be a graded ring and M an R-module. We say that M is a graded R-module (or has an R-grading) if there $M_n n \in \mathbb{Z}$ of M such that

- 1. $M = \bigoplus_n M_n$ (as abelian groups), and
- 2. $R_n \cdot M_m \subseteq M_{n+m} \forall n, m$.

If $u \in M \setminus \{0\}$ and $u = u_{i_1} + \cdots + u_{i_k}$ where $u_{i_j} \in R_{i_j} \setminus \{0\}$, then u_{i_1}, \dots, u_{i_k} are called the homogeneous components of u.

5 Persistence

The main idea of *persistence* is that instead of selecting a fixed value of the threshhold ε , we would like to obtain a useful summary of the homological information for all the different values of ε at once.

Definition 25. Let \underline{C} be any category, and \mathcal{P} a partially ordered set. We regard \mathcal{P} as a category $\underline{\mathcal{P}}$ in the usual way, i.e. with object set \mathcal{P} , and with a unique morphism from x to y whenever $x \leq y$. Then by a \mathcal{P} -persistence object in C we mean a functor $\phi: \mathcal{P} \to C$.

More concretely, it means a family $\{c_x\}x \in \mathcal{P}$ of objects of C together with morphisms $\phi: xy: cx \to cy$ whenever $x \leqslant y$, such that $\phi_{yz} \circ \phi_{xy} = \phi_{xz}$ whenever $x \leqslant y \leqslant z$. Note that the \mathcal{P} -persistence objects in C form a category in their own right, where a morphism F from ϕ to Φ is a natural transformation. Again, in more concrete terms, a morphism from a family $\{c_x, \phi_{xy}\}$ to a family $\{d_x, \Phi_{xy}\}$ is a family of morphisms $\{f_x\}$, with $f_x: c_x \to d_x$, and where the diagrams commute:

Although we do not have a classification theorem for \mathbb{R} -persistence abelian groups, which would then provide a summary of the behavior of the homology of all the complexes $\check{\mathbf{C}}(X,\varepsilon)$, we do have a classification theorem for a subcategory of the category of \mathbb{N} -persistence F-vector spaces, where F is a field.

From the \mathbb{R} -persistence simplicial complexes, we just need any partial order preserving map $\mathbb{N} \to \mathbb{R}$ to obtain an \mathbb{N} -persistence simplicial complex. Then we can use the classification theorem.

There are at least two useful ways to construct such maps.

References

- [1] Gunnar Carlsson, *Topology and data*, BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY **46** (2009), 255–308.
- [2] Allen Hatcher, Algebraic topology, Cambridge University Press, 2002.
- [3] Afra J. Zomorodian, Topology for computing, Cambridge University Press, 2005.