

INSTITUTE OF INFORMATION TECHNOLOGY JAHANGIRNAGAR UNIVERSITY

Number of Assignment: 03

Submission Date : 22/09/2020

Course Tittle : Numerical Analysis

Course Code : ICT - 2105

Submitted To

Dr M Shamim Kaiser

Professor

IIT - JU

Submitted By

MD. Shakil Hossain

Roll - 2023

2nd year 1st Semester

IIT - JU

3.1 From a table of difference for the function $f(n) = n^3 + 6n - 7$ for n = -1, 0, 1, 2, 3, 4, 5 continue the table to obtain f(6) and f(7).

Solution:

Criven $f(n) = n^3 + 5n - 7$

fin)
$(1)^{3} + 5(-1) - 7 = -13$
$0^3 + 5(0) - 7 = -7$
3 + 5(1) - 7 = -1
$2^3 + 5(2) - 7 = 11$
$3^3 + 5(3) - 7 = 35$
3+5(4)-7=77
53+5(5)-7=143
3+5(6)-7=239
3+5(7)-7=371
-

From the table

$$f(6) = 239$$

 $f(7) = 371$ Ans.

3.5

Solution: let y member of students obtained less than n marks. So that the given table will become

λ	1 - X - + W = (N)	C
40	250	No
60	250 + 120 = 370	
80	370 + 100 = 470	
100	470 + 70 = 540	9
120	B40 + 50 = 590	

Our task is to find out n(70) that is mumber of Students who obtained less than 70 manks.

Using Newton forward difference law:

γ	8	BD	Tay 1	4 ³ 4
60	370	IFS.	K-(F)-4	1 4
80	470	100	-30	
100	570	70	-20	10
120	490	50		

here n= 70, no= 60, h= 20

$$P = \frac{n - n_0}{h} = \frac{70 - 60}{20} = \frac{1}{2}$$

Using Newton Forward Difference tormula.
We obtain

$$m(70) = \frac{1}{3} + P + Q + \frac{P(P-1)}{2!} + \frac{P(P-1)(P-2)}{3!} + \frac{Q}{3!} = 370 + \frac{1}{2} \cdot 100 + \frac{1}{2} \cdot \frac{1}{2}$$

.. n (70) ≈ 424 Students.

Therefor We can say there are 424 students who got under 70 marks, and we already know that 370 students got under 60 marks.

: (424-370) on 54 Students who got marks between 60 and 70.

2 (2-10) (2-10) (2-10) (2-10) (2-10) (2-10) (2-10) (2-10)

	3.6	olum	not 20	Henen	1 ber	W OF	rot wor	1 Phis	
	Solu	tion:						1-de 9	
	N	K	4	4	43	44	45	46	
	3	13	0	OKA T	10-11	. BP9	103	007/	
10	4 5	21	8	2	0	0	000		
. 4	5	31	12	2	1-00	0	0		
	6	43	14	2	0	3 03 .73	27 3	0	
	7	57	16	2	0	o	0	01/100	
	8	73	7	2	. 0	110	S 42		
lut	9.1	91				Con S			
01	Hene	h=1	no = 3	and w	.3 No	form of	der	hur to	F
	ρ.	= 2-no	= n-	3 = 7	1-3	top s	Freshu	40 84	8
	Using	New-to	n's Fo	pward	1tia	enence	Form	inla	
					.01	bas	03 a	DD01+ 9	9
	4=	7. + P.	17,+P	(P-1) 4	£ + -	P(P-1)(1 3!	1-2) 43	+	
	2	13+(N-3)8	+ (n-3)	(n-4) 2	+ (n-3	3)(n-4)	(n-s)x0	
				+ (2-3)			6		
	=	= 13+	(n-3)	(8+n-	4)				

The Value of the First term = 171+1 = 3 Ans.

The Value of the tenth term = 10+10+1

Alternative Solution:

From the above table

as + a13 + a2(3) = 13

> a0 + 3 a1 + 9 a2 = 13

20 + 214 + 22 (4) = 21

> a0+4a1+16a2=21

 $a_0 + a_1 + a_2(5)^2 = 31$

=> a0+ 5a1 + 25a2 = 31

Solving rusing calculation

 $a_0 = 1$, $a_1 = 1$, $a_2 = 1$

 $-7(1) = a_0 + a_1(1) + a_2(1)^2 = 1 + 1 + 1 = 3$

 $\delta(10) = \alpha_0 + \alpha_1(10) + \alpha_2(10)^2 = 1 + 10 + 10^2 = 111$

1						112
3.7	11111	- Mari	of Heart	the .	to enter is	
Solu	tion:					
1	fin	4	ar .	43	4411	
0.20	1.6596	0.0102				
0.22	1.6698	0.0106	0.0004	-0.0002	0.0004	-IA
0.24	1.6804	0.0103	0.0002			
0.26	1.6912	0.0112	0.0004	0,0005	-0.0003	d
0.28	1.7024	0.0112	0.0003	-0.0001	00+0,0+0	
0.30	1.7139			302 = 13	+ 10 HOA <	
$\lambda = 0$ $\lambda = 0$ $\lambda = 0$	0.24	76 = 0.0	804	47-1=	0.0004 0.000000000000000000000000000000	
			11 10	holmalan	Evina Bris	541.
-: P=	$\frac{n-n_0}{h}$	$=\frac{0.23}{0}$	-0.24	0.5	Oc= 1 Oc= 1	
Using	Stoling	form.	ula	0 + (0) 1	1400 = (1)5	
J (0.23	+ of = (P (440.	+4/0)+	pr x dy	1 + 50 - (1) P	
	* (43 + + 2	434+2)+			
					2020/9/22	11:07

$$= 1.6804 + (-0.5) \times \left(\frac{0.0108 + 0.0106}{2}\right) + (-0.5)^{2} \times 0.0004 + \cdots$$

(ii) for
$$n = 0.29$$
 using Bessus formula

$$N_0 = 0.28$$
 $y_0 = 1.7024$ $4y_0 - 1 = 0.0112$

$$n = 0.29$$
 $47. = 0.0115$ $47-1 = 0.0004$

h=0.02

$$P = \frac{n - n_0}{h} = \frac{0.29 - 0.28}{0.02} = 0.5$$
Using Bessus tormula we get

$$= 1.7024 + 0.5 \times (0.0112 + 0.0115) + (0.5) \times \frac{1}{2} \times 0.0004 +$$

$$f(0.29) = 1.708125$$
 Ans.

3.9							
n	y=22	4	4	43	4	45	46
6·1 6·2 6·3 6·9 6·5 6·6	226.981 238.328 250.047 262.144 274.625 287.426 300.763	11.347 11.719 12.097 12.481 12.871 13.267	0.372	0.006	0 0 0 0	(e/2·0)	
(i) for $n = 6.36$ Using stoling formula $n_0 = 6.9$ $y_0 = 262.144$ $4y_{-1} = 12.097$ $h = 0.1$ $4y_0 = 12.481$ $4y_{-1} = 0.378$ $P = \frac{n - n_0}{h} = \frac{6.36 - 6.9}{0.1} = -0.4$							
$ \frac{1}{2}(6.86) = \frac{1}{4} + P\left(\frac{1}{2} + \frac{1}{4} + \frac{1}$							
· 7 (6.3	6) = 257	7.71649			2020)/9/22	11:0

$$\chi_0 = 6.6$$
 $\chi_0 = 287.496$ $4\chi_{-1} = 12.871$

$$h = 0.1$$
 $44. = 13.267$ $44. = 0.39$

$$b = \frac{N}{N-N^{\circ}} = \frac{0.1}{6.61-6.6} = 0.1$$

$$= 287.496 + 0.1 \times \left(\frac{12.871 + 13.267}{2}\right) + (0.1) \times \frac{1}{2} \times 0.39 + \dots$$

$$= 288.80845$$

(12-) x 8 x (16 20 9) (20 -) P 3 x (3.0 -) \$ 101 -1

(1-) 2 2 (3 6 0 -) (1 +) (-) (3 3 3 7 6 3

3.12	· slum	rit mig	CAR P	nied 10	
Soluti	ion:	1 - 10	1911	FOR H	
n	7	44	47	13y	44
1921	46	11-1517		1	
1931	66	20	-5	0.2	010-00
1941	81	A SHOW SHE	-3	Pare	-3
1951	93	12	-4	-1	A
1961	101	18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-) 35 96	1
Henn		Total Control			

Hene n=1955 no=1961 h= 10 y=101

$$\delta = \frac{n - n_0}{n} = \frac{1955 - 1961}{10} = -0.6$$

Using Newton Backwood difference formula

$$= 101 + (-0.6) \times 8 + (-0.6) (-0.6 + 1) \times \frac{1}{2} \times (-4)$$

$$+ (-0.6) (-0.6 + 1) (-0.6 + 2) \times \frac{1}{2} \times (-1)$$

$$= 36.736$$

· + (1955) = 96.736 Thousands Ams.

3.13

Solution: As four Points are given the given data

Can be appriximated by a third degree Polynomial
in n.

Hene dy = 0 Substituting A = E - 1 and simplify. We get

E' 7. - 4 E 7. + 6 E 7. - 4 E 7. + 7. = 0

Since Ey = In the above equation will become

Substituting for to to to and ty in the above we obtain the above we obtain

The tabulated function is 3ⁿ and the exact Value of Y(3) is 27. The enror is due to the fact that the exponential function 3ⁿ is approximated by means of a Polynomical in n of degree 3.

Solution:

From Lagranges formula we know

$$f(n) = \frac{(n-n_2)(n-n_3)\cdots(n-n_n)}{(n_1-n_2)(n_1-n_3)\cdots(n_1-n_n)} + \frac{(n-n_1)(n-n_3)\cdots(n-n_n)}{(n_2-n_1)(n_2-n_3)\cdots(n_2-n_n)} + 2$$

$$\frac{(n-n_1)(n-n_2)-\cdots(n-n_{n-1})}{(n_n-n_2)(n_1-n_2)}$$

for the given table using lagrages Formula

$$f(n) = \frac{(n+1)(n-2)(n-3)}{(-2+1)(-2-2)(-2-3)} \times (-12) + \frac{(n+2)(n-2)(n-3)}{(-1+2)(-1-2)(-1-3)} \times (-8)$$

$$+\frac{(n+2)(n+1)(n-3)}{(2-3)(2+1)(2+2)}\times 3+\frac{(n-2)(n+1)(n+2)}{(3-2)(3+1)(3+2)}\times 5$$

$$=\frac{3}{5}(n+1)(n-2)(n-3)-\frac{2}{3}(n+2)(n-2)(n-3)-\frac{1}{4}(n+n)$$

$$(n+1)(n-3)+\frac{1}{4}(n-2)(n+1)(n+2)$$

$$= (n-2)(n-3)(\frac{3}{5}n+\frac{3}{5}-\frac{2}{3}n-\frac{4}{3})+\frac{1}{4}(n+2)(n+1)$$

$$(n-2-n+3)$$

=
$$(n^{2}-5n+6)(-\frac{1}{15}n-\frac{11}{15})+\frac{1}{4}(n^{2}+3n+2)$$

$$= -\frac{n^3}{15} - \frac{11n^2}{15} + \frac{n^2}{3} + \frac{11n}{3} - \frac{2n}{5n} - \frac{22}{5} + \frac{n^2}{4} + \frac{3n}{4} + \frac{1}{2}$$

$$= -\frac{n^3}{15} + n^2 \left(\frac{1}{4} + \frac{1}{3} - \frac{11}{15} \right) + n \left(\frac{11}{3} - \frac{2}{5} + \frac{3}{4} \right) - \frac{39}{10}$$

:
$$f(n) = -\frac{n^3}{15} - \frac{3}{20}n^2 + \frac{241}{60}n - \frac{39}{10}$$
 Ans.

The End