

Unicyclic components

Submit solution

All submissions
Best submissions

✓ Points: 100 (partial)② Time limit: 1.0s

■ Memory limit: 256M

→ Allowed languages

C, C++

You are given an undirected graph with n vertices numbered 1 to n and m edges numbered 1 to m. Edge i connects vertex u_i and vertex v_i .

Determine whether every connected component in this graph satisfies the following condition:

• The connected component has the same number of vertices and edges

Input Format

The first line of input contains two integers n and m denoting the number of vertices and edges respectively.

The following m lines have two integers u and v each, denoting an edge between these nodes.

Constraints

$$1 \le n \le 200,000$$

$$0 \leq m \leq 200,000$$

$$1 \leq u_i \leq v_i \leq n$$

NOTE: The input graph need **not** be a *simple graph*. Therefore, there can be multi-edges (more than one edge between two nodes) and self-loops (edges from a node to itself).

Output Format

If every connected component satisfies the condition, print Yes. Otherwise, print No. (Case sensitive)

Cample Toot Coce O.

proudly powered by **DMOJ** | English (en)

1 of 3 3/30/25, 18:19

Hello, 2024101067 .	
3 3 2 3 1 1 2 3	Сору
Output:	
Yes	Сору
Explanation:	
The graph has a connected component formed from just vertex 1, and another formed from vertices 2 at	nd 3.
The former has one edge (edge number 2), and the latter has two edges (edge numbers 1 and 3), satisf the condition.	ying
Sample Test Case 1:	
Input:	
5 5	Сору
1 2	
2 3 3 4	
3 5 1 5	
Output:	
	Сору
Yes	193
Sample Test Case 2:	
Input:	

2 of 3 3/30/25, 18:19

Output:

No

Clarifications

Request clarification

No clarifications have been made at this time.

3 of 3 3/30/25, 18:19