Formas normales de gramáticas libres de contexto

Teresa Becerril Torres terebece1508@ciencias.unam.mx

13 de abril de 2023

Definamos una gramática $G=(\Sigma,\Delta,S,R)$, donde $\Sigma=\{a,\,b,\,d\}$, $\Delta=\{S,\,A,\,B,\,C,\,D\}$, S es el símbolo inicial y las reglas R están dadas por:

$$S \rightarrow AB \mid AC \mid CD$$

 $A \rightarrow BB$
 $B \rightarrow AC \mid ab$
 $C \rightarrow Ca \mid CC$

 $D \rightarrow BC \mid b \mid d$

Eliminación de símbolos que no generan:

- 1. Los símbolos a, b y d generan por la base del algoritmo.
- 2. Como D \rightarrow b y D \rightarrow d, D genera.
- 3. Ya que B \rightarrow ab, b genera.
- 4. Como A \rightarrow BB, A genera.
- 5. Ya que $S \rightarrow AB$, S genera.

Los símbolos que generan son: {S, A, B, D, a, b, d}

Al considerar sólo estos símbolos en la gramática obtenemos la gramática con sólo símbolos generadores:

$$\mathsf{S}\to\mathsf{AB}$$

$$\mathsf{A}\to\mathsf{BB}$$

$$\mathsf{B} \to \mathsf{ab}$$

$$D \to p \,|\; q$$

Eliminación de símbolos no alcanzables:

- 1. El símbolo S es alcanzable.
- 2. Como S \rightarrow AB, A y B son alcanzables.
- 3. Ya que B \rightarrow ab, a y b son alcanzables.

Los símbolos que alcanzables son: {S, A, B, a, b}

Obtenemos la siguiente gramática:

$$\mathsf{S}\to\mathsf{AB}$$

$$\mathsf{A} \to \mathsf{BB}$$

$$\mathsf{B} \to \mathsf{ab}$$

Eliminación de símbolos anulables

Definamos una gramática $G=(\Sigma,\Delta,S,R)$, donde $\Sigma=\{a,\,b\}$, $\Delta=\{S,\,A,\,B,\,C\}$, S es el símbolo inicial y las reglas R están dadas por:

$$\begin{split} \mathsf{S} &\to \mathsf{ABC} \,|\; \mathsf{BCB} \\ \mathsf{A} &\to \mathsf{aB} \,|\; \mathsf{a} \\ \mathsf{B} &\to \mathsf{CC} \,|\; \mathsf{b} \\ \mathsf{C} &\to \mathsf{S} \,|\; \varepsilon \end{split}$$

Eliminación de símbolos anulables

Detectar símbolos anulables

- 1. Como C $\rightarrow \varepsilon$, C es anulable.
- 2. Ya que $S \rightarrow ABC$ y $S \rightarrow BCB$, S es anulable.
- 3. Como B \rightarrow CC, B es anulable.

Construir producciones sin transiciones ε

- 1. De S \rightarrow ABC obtenemos S \rightarrow ABC | AB | AC | A
- 2. De S \rightarrow BCB obtenemos S \rightarrow BCB | CB | BB | BC | B | C
- 3. De B \rightarrow CC obtenemos B \rightarrow CC | C | b
- 4. De $C \rightarrow \varepsilon$ obtenemos $C \rightarrow S$

Eliminación de símbolos anulables

Gramática obtenida

$$S \rightarrow ABC \mid AB \mid AC \mid A \mid BCB \mid CB \mid BB \mid BC \mid B \mid C$$

$$A \rightarrow aB \mid a$$

$$B \rightarrow CC \mid C \mid b$$

$$C \rightarrow S$$

Demostrar que el algoritmo para encontrar producciones anulables, que se resume como:

- a) Si A $\rightarrow \varepsilon$, A es anulable.
- b) Si $\forall i = 1, ..., k, C_i$ ya han sido encontrados y $A \rightarrow C_1C_2...C_k \in R$, entonces A es anulable.

encuentra un símbolo si y sólo si el símbolo es anulable.

 \rightarrow] Si el algoritmo encuentra un símbolo entonces el símbolo es anulable. Inducción sobre el número de pasos.

Base

Se encuentra en el primer paso, por lo que $A \to \varepsilon$, lo que implica $A \Rightarrow \varepsilon$. Por lo tanto A es anulable.

Hipótesis de Inducción

Supongamos que cada C_i es encontrada en menos de n pasos y es anulable, para $\forall i=1,...,k$.

Paso inductivo

Como A se encuentra en n pasos, $A \to C_1C_2...C_k$ lo que implica $A \Rightarrow C_1C_2...C_k$, por H.I. sabemos que cada C_i ha sido encontrado en menos de n pasos y que es anulable, es decir, $C_i \Rightarrow^* \varepsilon$. Por lo que $C_1C_2...C_k \Rightarrow^* \varepsilon$ por lo cual $A \to^* \varepsilon$. Por lo tanto A es anulable.

... Si el algoritmo encuentra un símbolo entonces el símbolo es anulable.

←] Si el símbolo es anulable entonces el algoritmo encuentra un símbolo. Inducción sobre el número de producciones.

Base

Producción en un paso $A\Rightarrow \varepsilon$, entonces $A\to \varepsilon\in R$ y es encontrado en el primer paso.

Hipótesis de Inducción

Supongamos que cada C_i es anulable y ha sido encontrada en menos de n pasos, para $\forall i=1,...,k$.

Paso inductivo

Sea A anulable en n pasos, esto es $A\Rightarrow^*\varepsilon$ y sea $A\Rightarrow C_1C_2...C_k\Rightarrow^*\varepsilon$, donde para toda i, C_i es anulable. Por H.I. sabemos que cada C_i ha sido encontrada por el algoritmo, por lo que $A\to C_1C_2...C_k\in R$. Por lo tanto A es encontrado por el algoritmo.

.: Si el símbolo es anulable entonces el algoritmo encuentra un símbolo

