Spatial Analysis of Train Demand in Greater Melbourne

For GEOM90006 Assignment 4

Lang Chen, Yihan Bao

Research Question and Motivation

Research Question

- What is the quantitative impact of weather, demographic and non-residential buildings on train demand in Greater Melbourne
- 2. What locations in Greater Melbourne currently do not have a train station but have high predicted demand?

Motivation: Better public transport promotes sustainability and liveability

- Both team members frequent train travellers, who are curious about what impacts demand at different stations
- Curious about priority of City Tunnel over other potential stations in Melbourne

Data Source

<u>Dataset</u>	<u>Source</u>	
Train stop location data and passenger count data	https://discover.data.vic.gov.au/dataset/train-service-passenger-counts	
Census Data	https://www.abs.gov.au/census/	
Non-residential Facilities Data	- Shopping Centres: https://www.australia-shoppings.com/malls-centres/victoria - Hospitals: https://springernature.figshare.com - Sports Facilities: https://discover.data.vic.gov.au - Schools: https://www.education.vic.gov.au	
Rainfall Data	Bureau of Meteorology	
SA2 / Greater Capital City Boundary Data	https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun 2026/access-and-downloads/digital-boundary-files	

Feature Hypothesis and Representation

<u>Feature</u>	Impact hypothesis	Feature Representation
Mean Rainfall in SA2	Neg - travellers less inclined to use public transport in rain	(Self explained)
Census Attributes - Median/Mean	Neg [Wealth related] - those in economically better off would prefer private transport	$V_{ m Station} = \sum_{ m SA2s} \left(rac{A_{overlap}}{A_{ m station \; ANN-radius \; proximity}} imes V_{ m SA2} ight)$
Census Attributes - Total	Pos [Total Population] - more potential customers	$V_{ m Station} = \sum_{ m SA2s} \left(rac{A_{overlap}}{A_{ m SA2}} imes V_{ m SA2} ight)$
Existence of Non-Residential Buildings	Pos or insignificant - these buildings may draw people to travel to region	$I_{ m Building} = egin{cases} 1 & ext{if building(s) exist in } rac{1}{2} ext{ station ANN-radius proximity} \ 0 & ext{otherwise} $
Weekday	Pos - more travellers for work related purposes	$I_{ m Weekday} = egin{cases} 1 & ext{if weekday} \ 0 & ext{otherwise} \end{cases}$
Weighted Station Demand	Inconclusive - positive as it should correlate with population but nearby stations could take demand away from each other	$w_{ij} = egin{cases} 0 & ext{if same station} \ \exp\left(-rac{d_{ij}^2}{2\sigma^2} ight) & ext{otherwise} $

Model (½): Regression with Weighted Geospatial Features

 Through pre-weighting data, transforms spatial data into *Tabular Data*

 Allows use of Machine Learning models such as Linear Regression, Random Forests and Boosting Machines for accurate prediction

Using weighted geospatial features (demand) with regular regression serves similar effect to Geographically Weighted Regression

 One model instead of one model per location better sharing of parameters

Non-spatial features (e.g.

Census data, Rainfall, Weekday)

at each station):

with Distance Matrix

- Graph Neural Network natural for spatial data
- Better encoder to non-linearly represent spatial information
- **Attention Mechanism** in graph automatically mines for relationships between points (stations)

- More sophisticated than Linear Regression at factor analysis
- Not good for inference on new points (Exogenous prediction)

Evaluation (%): Model Performance

<u>Model</u>	Out-of-Sample R2
Linear Regression	0.3495
Support Vector Machine	0.5697
Random Forest	0.7901
Light Gradient Boosting (LGB)	0.8624
Graph Neural Network (GNN)	0.9952

Note: LGB is used for forecasting as GNN is only applicable for feature inference

Evaluation (%): Feature Analysis

<u>Feature</u>	<u>Linear Interpretation</u>	GNN Interpretation
Weighted sum demand of other stations	N/A	1% increase in factor=> 0.3% demand inc of this station
Weekday	Weekday has 3.9% less demand than weekends	Weekday has 0.85% more demand than weekends
School	Stations with schools nearby has 70% demand increase	Stations with schools nearby has 0.03% demand increase
Hospital	Stations with hospitals nearby has 41% demand increase	Stations with hospitals nearby has 0.25% demand increase
Sports Facilities	Stations with sports facilities nearby has 6% demand decrease	Stations with sports facilities nearby has 0.2% demand increase
Shopping Centres	Stations with shopping centres nearby has 49% demand increase	Stations with shopping centres nearby has 1.21% demand increase

Evaluation (%): Feature Analysis cont.

<u>Feature</u>	Linear Regression	<u>GNN</u>
Mean Rainfall	1 standard deviation (sd) increase in median annual rainfall => 57% decrease in demand	1sd increase => 0.23% demand decrease
Total Population	1sd increase of total nearby population => 48.6% increase in demand	1sd increase => 2.18% demand increase
Median weekly rent	1sd increase of median nearby weekly rent => 41% decrease in demand	1sd increase => 0.27% demand decrease
Median weekly mortgage	1sd increase of median nearby weekly mortgage => 41% increase in demand	1sd increase of median nearby weekly mortgage => 0.74% demand decrease
Median weekly income	1sd increase of median nearby weekly income => 57% increase in demand	1sd increase of median nearby weekly income => 0.47% demand decrease
Median weekly household income	1sd increase of median nearby weekly household income => 77% decrease in demand	1sd increase of median nearby weekly household income => 1.09% demand increase

Evaluation (%): Point Estimates

Easting

<u>Ranking</u>	SA2	Predicted Daily Demand
1	Balwyn North	9331
2	Carlton	5717
3	Fitzroy	5452
4	West Melbourne	4673
5	Heidelberg West	4519

- East of Melbourne City needs additional train stations
- Some train lines should extend further

Evaluation (5/5): Future Directions

- Research GNN's encoding ability for prediction
- Spatial-temporal forecasting of daily train demand
- Empirical factors when recommending new stations

References

- 1. Fotheringham, A. S., Oshan, T. M., & Li, Z. (2023). *Multiscale geographically weighted regression: Theory and practice* (1st ed.). CRC Press.
- 2. Selby, B., & Kockelman, K. M. (2013). Spatial prediction of traffic levels in unmeasured locations: applications of universal kriging and geographically weighted regression. *Journal of Transport Geography*, 29, 24–32.
- 3. Song, T., Pu, H., Schonfeld, P., Zhang, H., Li, W., Peng, X., . . . Liu, W. (2021). Gis-based multi-criteria railway design with spatial environmental considerations. *Applied Geography*, 131, 102449.