

How to Build Valid and Credible Simulation Models

by

Averill M. Law, Ph.D.

Averill M. Law & Associates

CONSULTANTS IN SIMULATION MODELING • TUCSON, AZ

Outline:

- 1. Introduction and Definitions**
- 2. Seven-Step Approach for Conducting a Successful Simulation Study**
- 3. Techniques for Developing Valid and Credible Models**
- 4. Statistical Techniques for Comparing Model and System Output Data**

1. Introduction and Definitions

Use of a simulation model is a

surrogate for actual system

experimentation.

If the model is not a “close”

approximation to the system,

then any conclusions derived

from the model are likely to be

erroneous

Basic Premise:

Model building and validation go hand-in-hand.

Verification (or debugging) is determining whether the conceptual simulation model has been correctly translated into a computer program.

Validation is the process of determining whether a simulation model is an accurate representation of the system, for the particular objectives of the

General perspectives on validation:

- A “valid” model can be used to make decisions similar to those that would be made if it were feasible and cost-effective to experiment with the system itself.
- The ease or difficulty of the validation

- A simulation model of a complex system can only be an approximation to the actual system. There is no such thing as absolute model validity, nor is it even desired.
- A simulation model should

- Validation is not something to be attempted after the model has already been developed, and only if there is time and money still remaining.

Example 1: Misunderstanding of

A military organization paid a

consulting company \$500,000

for a six-month “simulation

study.” At the end of the study,

a person called us and asked,

“Can you tell me in five minutes

how to validate our model?”

A simulation model and its results have *credibility* if the “manager” and other key project personnel accept them as “correct.”

necessarily credible, and vice versa.

Things that help establish credibility:

- Manager's understanding of and
 - agreement with the model's assumptions
- Demonstration that the model has
 - been validated and verified
- Manager's ownership of and involvement with the project

Accreditation, which is primarily of interest in DOD, is an official determination that a simulation model is acceptable for a particular purpose.

Reasons for accreditation:

- **Someone must take responsibility for the decision to use a simulation model for a particular application.**

- **Most military analyses are done with legacy simulation models, which may**

The following contribute to the accreditation decision:

- **Validation and verification that have been done**
- **Credibility of the model**
- **Quality of the data that are available**
- **Simulation development and use history**
- **Configuration management including quality of documentation**

2. Seven-Step Approach for Conducting a Successful Simulation Study

**See the diagram on the next
slide.**

Step 1. Formulate the Problem

- **Problem of interest is stated by the manager.**
- **Conduct a kickoff meeting for the project, with project manager, simulation analysts, and subject-**

The following are discussed:

- Overall objectives for the study**
- Specific questions to be answered**
- Performance measures of interest**
- Scope of the model**
- System configurations to be modeled**
- Time frame for the project**

Step 2. Collect Information/Data and

Construct a Conceptual Model

- **Collect information on the system**

structure and operating procedures.

- **Collect data to specify model parameters and probability distributions.**

★ Pitfall: Replacing a distribution by its

- **Mean interarrival time = 1 minute**
- **Mean service time = 0.99 minute**

Case 1 -- exponential interarrival and service

times (actual system)

Long-run average number in queue ≈ 98

Case 2 -- constant interarrival and service

times

Number in queue = 0

Conclusion: One must also capture the variability in the input processes.

- Document the model's assumptions, algorithms, and data summaries in a written *conceptual model.*
- Collect performance data from the existing system (if any) to use for

- Choosing the level of model detail,

which is an art, should depend on the following:

- Project objectives
- Performance measures
- Data availability
- Credibility concerns

- Computer constraints
- Opinions of SMEs
- Time and money constraints

- There should not be a one to one correspondence between each model element and each system element.
- Interact with the manager (and other key project personnel) on a regular basis.

Start with a “simple” model and embellish it as needed.

Modeling

**each aspect of the system
might**

result in:

- Excessive execution times**
- Missing important deadlines**
- Obscuring important system**

Step 3. Is the Conceptual Model

Valid?

- Perform a structured walk-

through

of the conceptual model before
an
audience that includes the
project

manager, analysts, and

- **Correct the (many) errors and omissions discovered in the conceptual model.**

Step 4. Program the Model

- Decide whether to use a general-purpose programming language or a simulation package.

general-purpose programming language:

C, C++, Java

Advantages: May already be known, more program control, and lower purchase cost.

General-purpose

simulation package:

Arena

Application-oriented

simulation package:

OPNET Modeler

Extend

ProModel

SIMUL8

SIMPROCESS

Advantages: Reduced "programming"

time and lower project cost

- **Verify simulation program.**

Step 5. Is the Programmed Model

★ ~~Valid?~~

• If there is an existing system,

★ then

compare the model

performance

measures for this system to

the

comparable ones from the

- Regardless of whether there is an

existing system, analysts and SMEs

should review the simulation results

for reasonableness. If results are

- Perform *sensitivity analyses* on the programmed model to see which model factors most impact the performance measures and, thus,

Example 2: Subjective probability estimate

Run the simulation with probabilities of kill of 0.70 and 0.80, in addition to the best guess of 0.75.

Step 6. Design, Conduct, and Analyze

- For each system configuration,
decide on tactical issues such
as
run length and the number of
independent replications.
- Analyze the results and decide
if

Step 7. Document and Brief the Simulation Results

- The documentation for the model and study should include the conceptual model, a detailed program description, and the results/conclusions for the

- Final briefing should include animation and a discussion of model building/validation process.

3. Techniques for Developing Valid and

 Credible Models

3.1. Formulating the Problem Precisely [1]

Step

- When the manager first initiates the study, the exact problem of interest is sometimes not completely

- **Without a definitive statement of the specific questions of interest, it is impossible to decide on an appropriate level of model detail.**

3.2. Interviewing Subject-Matter

- ~~Experts [1-2]~~ There will never be a single person who knows all of the required information.
- Some of the information supplied

3.3. Interacting with the Manager on a Regular Basis [1-7]

- Helps ensure that the correct problem is solved
- Maintains manager's interest and involvement
- Model is more credible because manager understands and agrees with model's

Example 3: Solving the wrong problem

A military analyst worked on a project for months without interacting with the requesting general. At final briefing, the general walked out after five minutes stating, "That's not the problem I'm interested in."

3.4. Using Quantitative Techniques to Validate Model Components [2]

Analyst should use quantitative techniques whenever possible to test the validity of components of the model.

Example 4: Input probability distributions

How well a theoretical probability distribution represents an observed set of data can be assessed by using goodness-of-fit tests and graphical plots.

Comment: Task times will rarely be normally distributed.

3.5. Documenting the Conceptual Model [2]

Components of the conceptual model:

- **Overview section with overall project goals, specific issues, and performance measures**
- **Process-flow/system-layout diagram**
- **Detailed descriptions of each**

- **Simplifying assumptions that were made and justification**
- **Sources of important or controversial information**
- **Detailed mathematical analyses should be in appendices.**

**Conceptual model should be a
“blueprint” for creating the
simulation program, and it
should be readable by analysts,
SMEs, and managers.**

3.6. Performing a Structured Walk-Through [3]

- Helps ensure that the model's assumptions are correct and complete
 - Interaction among SMEs is critical
 - Promotes ownership of the model
 - Takes place before

Example 5: Transportation of crude oil

At a structured walk-through of a transportation system, many important model assumptions were incorrect or missing -- problem was lack of critical SMEs at kickoff meeting.

3.7. Validating the Output from the

Overall Simulation Model [5]

- ★ Compare model and system performance measures for the existing system.

Comments:

- This is the most definitive true validation technique.
- In general, it is impossible to validate completely a model of a proposed system.
- If this comparison is successful,

Example 6: U.S. Air Force test agency

Data were available from

operations

of a bomb wing over a 9-month

period, and included component

failure data and a wing

availability

of 0.9.

**For the same time period and
logistics policy, model produced
an
availability of 0.873 -- a 3%
difference.**

Example 7: Validation of Army models

**Field-test results for a prototype system
are compared to simulation results for
certain scenarios.**

**If the model is "valid" for these
scenarios, it is used to extrapolate to
scenarios that are infeasible to field test
(sometimes called *model-test-model*).**

Another validation idea is to compare model results with those from another model known to be “valid.”

Example 8: Defense supply center

A new inventory model is to replace an existing one.

- To validate old model, model orders

- To validate new model, the predicted 1998 orders for the two models were compared -- **6% difference.**

4. Statistical Techniques for Comparing Model and System Output Data

It is not easy to use formal statistical techniques such as confidence intervals to compare model and system output data, since these data are each not independent.

Example 9: End-to-end delays for a communications network

System: $E_1^S, E_2^S, \dots, E_k^S$

Model: $E_1^M, E_2^M, \dots, E_l^M$

The observations in each data set are not independent.

**If we can collect “many” sets
of data from the real system,
then the following approach
could be taken:**

**Let X_j = random variable
based on
 j th set of system data**

**Y_j = random variable based on
 i th replication of model**

Let $\mu_x = E(X_j)$ and $\mu_y = E(Y_j)$.

We will try to determine if the model is a “valid” representation of the system by constructing a confidence interval $Z_j = X_j - Y_j$ for $j = 1, 2, \dots, n.$ for

Then an (approximate) $100(1 - \alpha)$ percent confidence interval for ξ is given by

$$\bar{Z}(n) \pm t_{n-1, 1-\alpha/2} \sqrt{s^2(n)/n}$$

If the interval is centered near 0 and has a “small” length, this suggests that the model is a “valid” representation.

Example 10: Communications network (continued)

Let X_j = average of s in j th

set of

system data

Y_j = average of s in j th

set of

model data

5. Ten Pitfalls in Simulation

1. Failure to have a well-defined set of objectives at the beginning

2. Misunderstanding of simulation by management

3. Failure to communicate with management on a regular basis

**4. Treating a simulation study
as if**

**it were primarily an
exercise in
computer programming**

simulation

**methodology, operations
research, probability, and
statistics**

**6. Failure to collect good
system
data**

**7. Inappropriate level of
model
detail**

8. Misuse of animation

**9. Failure to model system
randomness appropriately**

10. Failure to perform a proper output-data analysis

Reference:

Law, A. M. and W. D. Kelton, *Simulation Modeling and Analysis*, Third Edition, McGraw-Hill, New York (2000).

Contact information:

Averill M. Law, Ph.D.

Averill M. Law & Associates, Inc.

P.O. Box 40996

Tucson, AZ 85717

520-795-6265

averill@simulation.ws

www.averill-law.com

Density Function Plot

Return