Speech and Text Processing

- Dom Jurafsky James Hartin

Chapter 2 : Regular Enpressions, Tent Normalization, Edit Distance · Tent Normalization tokenizing

lammatization

Stemming

Sentence segmentation

Exercises (92.1) (22.2) (a) (·+) 1 (a) 16 [a-z A-z] + 16 (b) \b[a-z]*b\b (b) 1[0-9]+.*[A-Za-z]*\. (c) \b b + (ab+) + \b (c) bgrotto b. * braven b 15 raven 16 * 15 grotto 16 (Q2.4) # deal # 0 1 2 3 l 1 1 2 3 4 e 2 2 1 2 3 232223 043333 (Q2.5) # b r i e f # d i v c 8 s #012 3 # 0 1 2 3 4 5 6 5 d 1012345 0 1 2 3 4 5 6 7 2 1 2 3 4 5 6 Y 2 3 2 3 4 5 i 3 2 1 2 3 4 5 3 4 3 2 3 4 v 4 5 4 3 4 0 4 3 2 1 2 3 4 e 5 4 3 2 1 2 3 e 5 6 5 4 5 6

Chapter 3: N-gram language Models Exercises $(\omega_{n-2}\omega_{n-1}\omega_n)$ (93.1) P(wn | wn-2 wn-1) = C (WN-2 WN-1) (5) (5) I am Sam </5> <5><5> Sam I am <15> <5><5> I do not like green eggs and ham <15> p(I|<5><5>) = 2/3 $P(am) \leq S = 1/2$ (83.2) P(i want chinese food) = P(il<s>) P(want Ii) P(Chinese | want) P(food | chinese) b (<12>/ feog) = 0.25 x .33 x 0 0065 x .52 x 0.68 = 0.0001896 P(i want chinese food) = P(i <<>>) P(want | i) P(dinese | want) P(food | chinese) P(<18> | food) = .19 x 0.21 x 0.0029 x 0.052x .4 = 0.00000 2406 (82.3) The unsmoothed probability is higher because the bigrams used in the sentences are very common and has probablities. nowever, in the smoothed case, their probablities are distributed among net - so-common bigrans which are not used in our test statement.

(03.4)	<5) I	am	Sam	do	not	0.0	green		anel	<15>
(\$3 1)	1 4	1	2	1	1	1	green 1	388	anux 1	1
I	1 1	4	エ	2	1	1	1	1	1	1
am	1 1	1	3	1	ュ	1	1	1	ュ	2_
Sam	1 2	1	ュ	1	1	1	1	ᅱ	3	4
do	" 1	٠,	١,	"	2	۳	"	` \	17	1
not	е "	14	1.	41	7	2	11		' -	(1)
üke	/1 \	(,	١,	"	**	1	2_	,	'n	7
green	^ ~	11	11	"	.,	11	1	2_	,	11
ब्रुष्ट	n 4	11	17	"	<i>\</i> \	12	"	1	2	"
and	^ "	^	2	y	"	**	"	į	1	4
<15>	" "	1,	1	\ 	,,	11	"	"	11	~
P (Sam	n lam)	٤	C (our		1) =	3	=	.214	1	
(Q 3.5) <s< th=""><th>a</th><th>ط</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></s<>	a	ط								
<s> 0</s>	2_	2								
a 0	1	1								
ЪО	1	1								
	-	<u></u>								
• P(a			a <5	>) f	>(a)a	·) =	0 · 5 ×	: 0.5	= 0.	25
• P(a	a) =	P (_ al <s< td=""><td>>)</td><td>PLbia</td><td>L) =</td><td>0.5×</td><td>0.5</td><td>= 0</td><td>25</td></s<>	>)	PLbia	L) =	0.5×	0.5	= 0	25
P (al	a) =	P (_ al <s< td=""><td>>)</td><td>PLbia</td><td>L) =</td><td>0.5×</td><td>0.5</td><td>= 0</td><td>25</td></s<>	>)	PLbia	L) =	0.5×	0.5	= 0	25
p (a b	a) =	P (P (_ al <s b \ < s</s 	>) >)	P (6 1 1	(a) =	0.5	x 0.5	= 0	25 ·25
P (b b	a) = 5) = 5) =	P (P (P (al <s b < s b < s</s 	>) >)	P (6 1 1	(a) =	0.5	x 0.5	= 0	25 ·25

$$(Q_3 \cdot 7) = P(sam \mid am) = d_1 P(sam) + d_2 (sam \mid am)$$

$$= \frac{1}{2} \times \frac{42}{25} + \frac{1}{2} \times \frac{2}{3}$$

$$= \frac{2}{25} + \frac{1}{3} = 0.41$$

 $\rho(0) = \frac{91}{400}$

P(1) = P(2) P(9) = 1

(03.6) $P(\omega_3|\omega_1\omega_2) = C(\omega_1\omega_2\omega_3) + 1$

(93.12) $PP(\omega) = \sqrt{\frac{N}{11}} \frac{1}{P(\omega_i)}$

= / (100) to / (100)

= 1.726

Chapter 4: Naive Bayes and Sentiment Classification

(94.1)
$$S =$$
 "I always like foreign films"
$$P(\text{neg }|S) = \frac{P(S|\text{neg})}{P(S)}$$

$$P(pos(s) = \frac{P(s|pos)P(pos)}{P(s)}$$

The naive bayes will assign "nez" class to the sentence because
$$P(nez|S) > P(pos|S)$$

= ignow common

(94.2)
$$P(\text{camedy}) = 2/5$$
 $P(\text{action}) = 3/5$
 $P(\text{fast} | \text{camedy}) = \frac{\text{Court}(\text{fast}, \text{camedy}) + 1}{\text{E}(\text{count}(\text{w}, \text{camedy}) + 1)}$
 $= \frac{2}{3+7} = \frac{2}{16}$
 $P(\text{fast} | \text{camedy}) = \frac{3}{16} P(\text{shoot} | \text{camedy}) = \frac{1}{16}$
 $P(\text{couple} | \text{camedy}) = \frac{3}{16} P(\text{shoot} | \text{camedy}) = \frac{1}{16}$
 $P(\text{couple} | \text{action}) = \frac{1}{18} P(\text{shoot} | \text{action}) = \frac{5}{18}$
 $P(\text{fly} | \text{correcty}) = \frac{2}{16}$
 $P(\text{fly} | \text{correcty}) = \frac{2}{16}$
 $P(\text{correcty} | D) = \frac{P(D(\text{comedy})) P(\text{correcty})}{16}$
 $P(\text{correcty} | D) = \frac{2}{16} P(\text{correcty}) P(\text{correcty}) = \frac{2}{16} P(\text{action}(0)) = \frac{3}{18} P(\text{correcty}) = \frac{2}{16} P(\text{action}(0)) = \frac{3}{18} P(\text{acti$

(9 43) • Binarized maive Bayes

$$P(neg) = 0.6$$
 $P(pos) = 0.4$
 $P(grad | neg) = 3/9$
 $P(grad | pos) = 2/7$
 $P(grad | neg) = 4/9$
 $P(port | pos) = 2/7$
 $P(great | neg) = 2/3$
 $P(great | pos) = 3/7$
 $P(neg(0) = \frac{3}{3} \times \frac{1}{9} \times \frac{2}{3} \times 0.6 = 0.0197$
 $P(pos | 0) = \frac{2}{3} \times \frac{1}{7} \times \frac{3}{7} \times 0.4 = 0.0139$

(lawified as "neg" by BNB.

• Multinomial bouve Bayes

 $P(good | pos) = 4/12$
 $P(good | neg) = 3/17$
 $P(port | pos) = 2/12$
 $P(good | neg) = 11/17$
 $P(good | neg) = 11/17$
 $P(good | neg) = 11/17$
 $P(good | neg) = 3/17$
 $P(good | neg) = 3/17$

(Chapter	2 (0:																						
C	Q (0·1)		REF 14PZ													m, 10)				
			nigra																					. `	
		9,6	jr a vv	<u>.</u>	rve.t	TV		in	•	pa	ue			λi	ιτ.	EN	ne	29	3,5			ρ.,	Zvavv	' 5/	
			gran								U	igr	øvn.	R	:	11/1	8								
		Вк	gram	ı P	=	9 [D				B	gra	m	R	:	3/1	7								
			c	hr f	> =	(u/	/u +	9)	lo)	1	2.	=	•	95										
											Ů														
			d	hof	ર દ		Ċι	ı /18	+	3/1	7)	/2	=	C	9•	57									
			Ch	~f2	2, 2		5	L	ne f	·*	d	&R				5	ו	95	×ε) ·S=	-				
								ı	1 ch	r P	+	chr	R			_	4 x •	g <i>s</i>	+ 0	· 5 7	-				
															=	0.	6 l	99							