Zastosowania i perspektywy interfejsu mózg-komputer

Filip Chudy

7 grudnia 2014

Gwiezdne Wojny

Transcendencja

Realne możliwości

Elektroencefalografia (EEG)

Naturalnym pomysłem na nieinwazyjny odczyt sygnałów mózgowych jest EEG.

Realne możliwości

Elektroencefalografia (EEG)

Dane są sygnałem zbieranym przez elektrody rozmieszczone na głowie.

Realne możliwości

Emotiv

Wykorzystane zostało (zhakowane) urządzenie Emotiv.

Analiza Hjortha

Wyliczanie z sygnału trzech wskaźników: Activity, Mobility, Complexity. Skutecznie wykrywa anomalie, ale słabo się spisuje w klasyfikacji odczytów z osoby zdrowej.

Podział fal mózgowych

Delta	-	up	to	3Hz
Theta	-	3	to	6Hz
Alpha	-	. 6	to	12Hz
Beta	-	12	to	30Hz
Gamma	-	30	to	60Hz
Lambda	_	60	to	200Hz

Filtry

Fig. 3

Przetwarzanie sygnałów

FFT

Regresja

Prosty model, ale wrażliwość na pojedyncze dane z dużym odchyleniem utrudnia jego użycie.

Sieci neuronowe

- ► model nieliniowy, więc silniejszy od regresji
- ▶ trzeba ustalić strukturę sieci
- ► duży wektor parametrów trudniejsza optymalizacja

Sieci neuronowe

- model nieliniowy, więc silniejszy od regresji
- trzeba ustalić strukturę sieci
- duży wektor parametrów trudniejsza optymalizacja

Sieci neuronowe

- model nieliniowy, więc silniejszy od regresji
- trzeba ustalić strukturę sieci
- duży wektor parametrów trudniejsza optymalizacja

Klasyczne metody

Sieci neuronowe

Nie mamy gwarancji, że parametry zostaną zoptymalizowane do ekstremum globalnego. ∟ Klasyczne metody

Support Vector Machines

Programowanie kwadratowe pozwala osiągnąć minimum globalne. Zarówno w wariancie bezbłędnym...

Programowanie kwadratowe pozwala osiągnąć minimum globalne. ...jak i pozwalającym na błędy.

Bardziej elastyczne od regresji, wygodniejsze od sieci neuronowych.

Parametr C został dobrany przy pomocy algorytmu ewolucyjnego...

... czyli kilkunastu godzin obliczeń na 16 rdzeniach.

Parametr C został dobrany przy pomocy algorytmu ewolucyjnego... czyli kilkunastu godzin obliczeń na 16 rdzeniach.

Jakość działania

3 grupy 8 sekund danych treningowych dla każdej z grupy Skuteczność: ok. 90%

Jakość działania

Pomyłki między L a R występują bardzo rzadko. System jest sceptyczny – nie produkuje zbyt wielu fałszywych alarmów.

Jakość działania

Pomyłki między L a R występują bardzo rzadko. System jest sceptyczny – nie produkuje zbyt wielu fałszywych alarmów.

Perspektywy

System sprawuje się dobrze przy zastosowaniach nie wymagających szybkiej reakcji i klasyfikacji.

Ograniczenia – urządzenie

Elektrody muszą być regularnie nawilżane.

Fryzura.

Po 45 minutach boli głowa.

Ograniczenia – człowiek

WARNING THIS SIGN ONLY DISTRACTIO