USN:

21ECE142

B.N.M. Institute of Technology

An Autonomous Institution under VTU

Fourth Semester B.E. Degree Examination Model Question Paper Digital Signal Processing

Duration: 3 Hours **Max. Marks:** 100

Note: 1. Answer any one full question from Module 1,2,3,4,5 ($5Q \times 20M = 100 \text{ Marks}$)

	Module 1				
Q. No	Questions	Marks	со	РО	Cognitive Level
1(a)	Sketch signals $x[n]$, $x[4-n]$ and $x[2n-3]$ for the given $x[n] = (6-n)\{u[n] - u[n-6]\}$.	8	1	1	Apply
1(b)	Sketch the even and odd components of the following signals. i. $x[n] = 1 + u(n)$ ii. $x[n] = 8(0.5)^n u(n)$	8	1	1	Apply
1(c)	Determine whether the discrete time signal is periodic or not. If periodic, find the fundamental period. $x[n] = cos(\frac{\pi n}{5}) + sin(\frac{\pi n}{3})$	4	1	1	Apply
	OR				
2(a)	Find and sketch the following signals and their first derivatives: (i) $x(t) = u(t) - u(t-a); a > 0$ (ii) $y(t) = t[u(t) - u(t-a)]; a > 0$	8	1	1	Apply
2(b)	Classify the following signals as Energy signals, power signals or neither. i. $x[n] = (0.5)^n u(-n)$ ii. $x[n] = e^{j\pi n}$	8	1	1	Apply
2(c)	Determine whether the following signal is periodic or not. If periodic, find the fundamental period $x(t) = e^{j[(\pi/2)t-1]}$	4	1	1	Apply
	Module 2				l
3(a)	Determine whether the following system is stable, memory less, causal, linear and time invariant? $y(t) = 10x(t) + 5$	10	2	1,2	Apply
3(b)	Perform convolution operation on the following signals & sketch the resulting signal. $x_1(n) = (1/2)^n u(n)$ and $x_2(n) = u(n)$	10	2	1,2	Apply
	OR		•		
4(a)	Determine whether the following system is stable, memory less, causal, linear and time invariant? $y[n] = nx[n]$	10	2	1,2	Apply

USN:

21ECE142

		21ECE142			
4(b)	Perform convolution operation on the following signals and sketch the resulting signal. $x_1(t) = e^{- t-2 }$ and $x_2(t) = e^{-2t} u(t+4)$	10	2	1,2	Apply
	Module 3				
5(a)	Find the z-transform of $x(n) = a^{ n }$ for $0 < a < 1$.	6	3	1,2	Apply
5(b)	Find the DTFT of the signal $\mathbf{x}(\mathbf{n}) = -(a)^n \mathbf{u}(-n-1)$.	6	3	1,2	Apply
5(c)	Compute the 8-point DFT of the sequence $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$ using the in-place radix-2 DIT FFT algorithm.	8	3	1,2	Apply
	OR		1	1	
6(a)	Find z-transform of $x(n) = \sin(\Omega n) u(n)$.	6	3	1,2	Apply
	Find the DTFT of the signal.				
6(b)	$x(n) = \left(\frac{1}{2}\right)^n u(n) - \left(\frac{1}{3}\right)^n u(n-3)$	6	3	1,2	Apply
6(c)	Compute the 8-point DFT of the sequence $x(n) = \{1, 2, -1, 2, 4, 2, -1, 2\}$ using the in-place radix-2 DIF FFT algorithm.	8	3	1,2	Apply
	Module 4		•		
7(a)	Design a Butterworth analog high pass filter meeting the following specifications. (i) Maximum passband attenuation = 2dB (ii) Passband edge frequency = 200 rad/sec (iii) Minimum stopband attenuation = 20 dB (iv) Stopband edge frequency = 100 rad/sec	8	4	1,2,3	Apply
7(b)	Derive the Direct form I & II realization of the system function: $H(z) = \frac{(1+z^{-1})^3}{\left(1-\frac{1}{4}z^{-1}\right)(1-z^{-1}+\frac{1}{2}z^{-2})}$	8	4	1,2,3	Apply
7(c)	Find the third order normalized Butterworth polynomial.	4	4	1,2,3	Understand
	OR				
8(a)	Determine the transfer function of the analog Butterworth low-pass filter that must meet the following specifications: (i) Kp = -1 dB at 4 rad/sec (ii) Stop band attenuation greater than or equal to 20dB at 8 rad/sec.	8	4	1,2,3	Apply
8(b)	Obtain the Direct form $-I$ & II realization for the following system: $y(n) = 0.75 \ y(n-1) - 0.125 \ y(n-2) + 6 \ x(n) + 7 \ x(n-1) + x(n-2)$	8	4	1,2,3	Apply
8(c)	Explain analog-to-analog transformation for IIR filters. Write the transformation used for lowpass and high pass filters.	4	4	1,2,3	Understand
	ı		1	1	l

USN:

21ECE142

				CE14Z	
	Module 5				
9(a)	Explain any three different types of windows used in the FIR filter design using mathematical equations and diagrams.	6	5	1,2,3	Understand
9(b)	Determine the FIR filter coefficients using Hamming window with N=7. The desired frequency response of a low pass filter is given by $\mathbf{H}(\boldsymbol{\omega}) = \begin{cases} e^{-j3\omega}, & \boldsymbol{\omega} < \frac{3\pi}{4} \\ 0, & \frac{3\pi}{4} < \boldsymbol{\omega} < \pi \end{cases}$ Also find the frequency response of the FIR filter.	8	5	1,2,3	Apply
9(c)	Show that FIR filters provide linear phase response when the impulse response of the filter is symmetric for the order being odd.	6	5	1,2,3	Understand
OR					
10(a)	List the steps in the design procedure of a FIR filter using window technique.	6	5	1,2,3	Understand
10(b)	Determine the frequency response of the FIR filter designed using rectangular window as given below and the following desired frequency response. $H_{\text{d}}(\omega) = \begin{cases} 0 \ , & \frac{-\pi}{4} < \omega < \frac{\pi}{4} \\ e^{-j2\omega}, & \frac{\pi}{4} < \omega < \pi \end{cases}$ $w_{R}(n) = \begin{cases} 1, 0 \leq n \leq 4 \\ 0, \text{ otherwise} \end{cases}$	8	5	1,2,3	Apply
10(c)	Explain the effect of using a rectangular window function to design an FIR filter.	6	5	1,2,3	Understand