4

Bellman equations for deterministic policy totalistion

General

$$\mathcal{O}_{\pi}(s) = \sum_{\alpha} \overline{\pi}(a|s) \sum_{s'} p(s'|s_{,\alpha}) \left[\overline{\tau}(s,a,s') + \gamma \overline{\nu}_{\pi}(s') \right]
q_{\pi}(s,a) = \sum_{s'} p(s'|s,a) \left[\overline{\tau}(s,a,s') + \gamma \sum_{\alpha'} \overline{\pi}(a'|s') q_{\pi}(s',a') \right]$$

1 Deterministic policy

Under the policy π , each state is mapped to unique aching π : $s \longrightarrow a_s$

Hence, summation ever action collapses in singleton.

$$C_{\overline{H}}(s) = \sum_{S'} p(s'|S,a_S) \Big[\overline{\chi}(S,a_S,s') + \gamma \overline{\psi}(s') \Big]$$

97 (s,a) = value when taking action a in state s
(action a is arbitrary, but recomming dictated by policy!) and THEN following policy IT!

$$= \sum_{s'} p(s'|s,\alpha) \left[\gamma(s,q,s') + \gamma q(s',a_{s'}) \right]$$

Nonu: $V_{\pi}(s) = \sum_{\alpha} \pi(a|s) q(s, \alpha) = q_{\pi}(s, a_s)$

2 Dekrainshi policy and Transition.

We now have the following deterministic mappings.

$$S \xrightarrow{\pi} a_S$$
 unque

 $S \xrightarrow{\pi} a_S$ unque

 $S \xrightarrow{\pi} S_{a_S}$ unque

$$V_{\pi}(s) = 2(s, a_s, s_{a_s}) + \gamma \tau(s_{a_s})$$

$$q(s,a) = 7(s,a,s_a) + \frac{1}{2}q(s_a,a_{s_a})$$

MDP 1 Circular State Space

 $\frac{7}{2} = 10$ $\frac{1}{2} = 10$ $\frac{1}$

Non-termihal transitions yield reward $z_{NT} = 0$

n = wen

y
integer.

Node $0 = absorbing : transition yields <math>\xi = 10$. y = 1 (no discounting)

TT = equiprobable policy; each action has prob 1/2 two actions in each node move clockwise (R) move counterclockwise (L)

A Since transitions bow non-terminal states were no cost and the agent will eventually and up in absorbing state 0 we conclude to \(V_{11}(S) = 10 \)

\[
\begin{array}{c}
\text{\$\sigma_1(S,a) = 10} & \text{\$\text{\$\sigma_5}\$} \end{array}

(2) Optimal policy: any policy that ensures eventual absorption in state 0.

 $9^*(s,a) = 10$ $U^*(s) = 10$.

Not unique. (policy).

① If ZNT =-1: optimal → go to terminal state asap.

TX: if s = 1/2: action: go L will prob=1

Unique optimal policy.

- (Schular to 3).
- (3) If u=odd (Two = -1, Y=1)

Optimal policy is NO LONGER Sungue!

if: s≤ n-1 -> go L

if s> nti - go R

if S= ht1 one can choose both L and R.

HW5, question 4: MDP3

@ State value for VF(S) under given policy II

Since the transitions are deterministic we can sumplify the Bellman eq:

$$V_{\pi}(s) = \sum_{\alpha} \pi(\alpha|s) \sum_{s'} p(s'|s,\alpha) \left[z|s,a,s') + \gamma v_{\pi}(s') \right]$$
$$= \sum_{\alpha} \pi(\alpha|s) \left[z(s,a,s_{\alpha}) + \gamma v(s_{\alpha}) \right]$$

Denote: $V_{\pi}(1) = V_{1}$, $V_{\pi}(2) = V_{1}$, $V_{\pi}(3) = V_{3}$ Thus: $V_{\pi}(A) = 0 = V_{\pi}(B)$, $V_{1} = \frac{1}{4}(0+0) + \frac{3}{4}(-2+V_{2}) = -\frac{3}{2} + \frac{3}{4}V_{2}$ $V_{2} = \frac{1}{2}(-2+V_{1}) + \frac{1}{2}(-2+V_{3}) = \frac{V_{1}+V_{3}}{2} - 2$

$$\frac{\sqrt{3}}{3} = \frac{3}{4}(-2+\sqrt{2}) + \frac{1}{4}(20+0) = \frac{3}{4}\sqrt{2} + 5 - \frac{3}{2}$$
$$= \frac{3}{4}\sqrt{2} + \frac{7}{2}$$

Summing V_1 and V_3 : $V_1 + V_3 = \left(-\frac{3}{2} + \frac{3}{4} V_2\right) + \left(\frac{3}{4} V_2 + \frac{7}{2}\right)$ $= \frac{3}{2} V_2 + 2$

Substituting this into eq. for v2:

$$v_{2} = \frac{1}{2}(v_{1} + v_{3}) - 2 = \frac{1}{2}(\frac{3}{2}v_{2} + 2) - 2$$

$$= \frac{3}{4}v_{2} - 1$$

$$\Rightarrow v_{2} = -4$$

$$\Rightarrow \sqrt{\sqrt{1 - \frac{3}{2} + \frac{3}{4}\sqrt{2}} = -\frac{3}{2} + \frac{3}{4}(-4) = -\frac{9}{2}}$$

- Compute state-action value $q_{\pi}(2,R)$ and $q_{\pi}(3,L)$ $q(2,R) = -2 + v_{\pi}(3) = -2 + \frac{1}{2} = -\frac{3}{2}$ $q_{\pi}(3,L) = -2 + v_{\pi}(2) = -2 + \left(-\frac{q}{2}\right) = -\frac{13}{2}$
- 3 Optimal policy: go R in each state.

Solution 1: all permutations

(1) If form =
$$\frac{1}{B}$$
 B in position $2,3,24$

$$\delta_B = 1$$

2 If perm =
$$\frac{B_1}{B}$$
 #= 4!

 $\frac{B_1}{B} = 0$

Hence
$$Q_{B} = Q_{A} = \frac{2.4!0 + 3.4!1}{5!} = \frac{3.4!}{5!} = \frac{3}{5}$$

Because of symmetry the small players howe the same value:

$$\sum_{i=2}^{5} \varphi_{i} = 0(N) = 1$$

$$\Rightarrow \sum_{i=2}^{5} \varphi_{i} = 1 - \frac{3}{5} = \frac{2}{5} \Rightarrow \varphi_{i} = \frac{1}{4} \cdot \frac{2}{5} = \frac{1}{10}$$

$$(i=2,...5).$$

Solution 2

$$\varphi_i = \frac{1}{n} \sum_{S \in N(i)} {\binom{n-1}{\#S}}^{-1} \delta_i(S)$$

(i=1) Big player.

$$S = 0 \implies S' = \emptyset \qquad \int_{i} (S) = 0$$

$$\binom{n-1}{s} = \binom{4}{0} = 4$$

Solution 2

$$\varphi_i = \frac{1}{n} \sum_{g \in N(i)} {\binom{n-1}{\#g}}^{-1} \delta_i(g)$$

(i=1) Big player.

$$S = 0 \implies S' = \phi \qquad \int_{i} (S) = 0$$

$$\binom{n-1}{s} = \binom{4}{0} = 4$$

S=2:
$$S = \{2,3\}, \{2,4\}, \{2,5\}, \{3,4\}, \{3,5\}$$

 $\{4,3\}$
Number of Sets $(\#S = 2)$
 $L_{>}6. = \binom{n-1}{2} = \binom{4}{2} = \frac{4,3}{2\cdot 1} = 6$

etc,

Conclusion:

relusion:
$$5 \pm 8ts (n-1)$$

 $\varphi_1 = \varphi_B = \frac{1}{5} \left[0.1. \frac{1}{1} + 1.4. \frac{1}{4} + 1.6 \frac{1}{6} + 1.4. \frac{1}{4} + 0.1. \frac{1}{1} \right]$
 $= \frac{1}{5} \left[3 \right] = \frac{3}{5}$