Alignment of Language Models – Contrastive Learning

Large Language Models: Introduction and Recent Advances

ELL881 · AlL821

Gaurav Pandey
Research Scientist, IBM Research

Policy Gradient/PPO for LLM alignment

- Collect human preferences (x, y_+, y_-) outputs can come from any LM
- Learn a reward model

d model
$$\phi^* = \underset{\phi}{\operatorname{argmax}} \sum_{(x,y_+,y_-) \in D} \log \sigma(r_{\phi}(x,y_+) - r_{\phi}(x,y_-)) \rightarrow \underset{\text{for freelerences}}{\operatorname{brad ley}} \operatorname{brad ley} - \operatorname{Texry}$$

Train the policy

$$\theta^* = \operatorname{argmax}_{\theta} E_{\pi_{\theta}(y|x)} r_{\phi^*}(x, y) - \beta . KL(\pi_{\theta}(y|x) || \pi_{ref}(y|x))$$

- Optionally
 - Also learn the value function
- Question: Why do we need this intermediate step of learning reward model?

Direct Preference Optimization on preferences

Credit: https://arxiv.org/pdf/2305.18290

The non-parametric case

Assume that the policy & reward model can be arbitrary

Learn a reward model

model
$$r^* = \operatorname*{argmax}_r \sum_{(x,y_+,y_-) \in D} \log \sigma(r(x,y_+) - r(x,y_-)) \qquad \text{evently}$$

$$= \operatorname*{argmax}_r E_{\pi(y|x)} r^*(x,y) - \beta. KL(\pi(y|x)||\pi_{ref}(y|x))$$

Train the policy

$$\pi^* = \underset{\pi}{\operatorname{argmax}} E_{\pi(y|x)} r^*(x, y) - \beta . KL(\pi(y|x)||\pi_{ref}(y|x))$$

Primary idea of DPO: Cut out the middle-man r^*

• Question: What does the optimal policy look like?

what does the optimal policy look like?
$$\pi^* = \operatorname*{argmax}_{\pi} E_{\pi(y|x)} r^*(x,y) - \beta. KL(\pi(y|x)||\pi_{ref}(y|x)) \rightarrow \operatorname*{reward-mani}_{\pi} \operatorname{reward-mani}_{\pi} \operatorname{reward-mani$$

$$\begin{cases}
(\pi_{i}A) = \sum_{y \in Y} \pi(y|x) Y^{*}(\pi_{i}Y) - \sum_{y \in Y} \pi(y|x) \log_{\frac{\pi}{2}} \frac{\pi(y|x)}{\pi_{ny}(y|x)} + \lambda \left(\sum_{y \in Y} \pi(y|x) - 1\right) \\
\nabla_{\pi(y_{0}|x)} f(x|A) = Y^{*}(\pi_{i}Y_{0}) - \left[1 + \log_{\frac{\pi}{2}} \frac{\pi(y_{0}|x)}{\pi_{ny}(y_{0}|x)}\right] + \lambda
\end{cases}$$
We know
$$\nabla_{\pi^{*}(y_{0}|x)} = 0$$

$$= \int Y^{*}(\pi_{i}Y_{0}) - \left[1 + \log_{\frac{\pi}{2}} \frac{\pi^{*}(y_{0}|x)}{\pi_{ny}(y_{0}|x)}\right] + \lambda = 0$$

$$T^{*}(y|x) = \pi_{reg}(y|x) \exp(r^{*}(x_{i}y_{i}))$$

$$T^{*}(x_{i}y_{o}) + \overline{\lambda} = \log \frac{\pi^{*}(y_{o}|x_{i})}{\pi_{reg}(y_{o}|x_{i})}$$

$$T^{*}(x_{i}y_{o}) = \log \frac{\pi^{*}(y_{o}|x_{i})}{\pi_{reg}(y_{o}|x_{i})} - \overline{\lambda}$$

$$T^{*}(x_{i}y_{o}) = \log \frac{\pi^{*}(y_{o}|x_{i})}{\pi_{reg}(y_{o}|x_{i})} - \log \overline{\lambda}$$

The parametric policy & reward $(\pi_{\theta}, r_{\theta})$

- In reality, the policy will be parametrized as a language model $\pi_{ heta}$
- Idea: Let's parameterize the reward function in terms of the policy parameters.

$$r_{\theta}(x,y) = \beta \cdot \log \frac{\pi_{\theta}(y|x)}{\pi_{ref}(y|x)} - \log Z_{x}(\theta)$$

• Next, train these parameterized reward function directly on human-preferences.

Training the reward function

Given a pair of human preferences (x, y_+, y_-)

Reward of the positive output

preferences
$$(x, y_+, y_-)$$
 for x we output
$$r_{\theta}(x, y_+) = \beta . \log \frac{\pi_{\theta}(y_+|x)}{\pi_{ref}(y_+|x)} - \log Z_x(\theta)$$

Reward of the negative output

ve output
$$r_{\theta}(x, y_{-}) = \beta . \log \frac{\pi_{\theta}(y_{-}|x)}{\pi_{ref}(y_{-}|x)} - \log Z_{x}(\theta)$$
 Bradley-likelihood

Training objective

$$\underset{\theta}{\operatorname{argmax}} \sum_{(x,y_{+},y_{-})\in D} \log \sigma(r_{\theta}(x,y_{+}) - r_{\theta}(x,y_{-}))$$

The training objective

The DPO objective

Human Preferences

AI

Interpreting the objective

- For a positive output, $\frac{\pi_{\theta}(y_{+}|x)}{\pi_{ref}(y_{+}|x)}$ should be high
- If the reference model already assigned high probability to y_+ (say, 0.8)
 - $\pi_{\theta}(y_{+}|x)$ will have to be relatively higher (say 0.9) \rightarrow
- If the reference model assigned low probability to y_+ (say, 0.1)

 $\frac{0.9}{5.8}$ \approx $\frac{0.11}{5.1}$

- $\pi_{\theta}(y_{+}|x)$ will be relatively higher that $\pi_{ref}(y_{+}|x)$ (say, 0.11)
- In absolute terms, it might still be low

Interpreting
$$\beta$$

$$\log \sigma \left(\beta \left[\log \frac{\pi_{\theta}(y_{+}|x)}{\pi_{ref}(y_{+}|x)} - \log \frac{\pi_{\theta}(y_{-}|x)}{\pi_{ref}(y_{-}|x)}\right]\right)$$

• Higher the value of β , more the model attempts to increase the gap between the reward of +ve and -ve outputs.

PPO vs DPO

- Ongoing debate about the efficacy of the two algorithms
- DPO is simpler no reward function or value functions are required
- DPO is prone to generating a biased-policy that favors out-of-distribution responses.
- PPO can capture spurious correlations in the reward function.
 - Many reward functions have a length bias Higher length outputs have higher rewards.
 - PPO training with these reward functions results in longer outputs from the policy.

$$\log \sigma \left(\beta \left[\log \frac{\pi_{\theta}(y_{+}|x)}{\pi_{ref}(y_{+}|x)} - \log \frac{\pi_{\theta}(y_{-}|x)}{\pi_{ref}(y_{-}|x)} \right] \right)$$

$$\log \sigma \left(\beta \left[\log \frac{\pi_{\theta}(y_{+}|x)}{\pi_{ref}(y_{+}|x)} - \log \frac{\pi_{\theta}(y_{-}|x)}{\pi_{ref}(y_{-}|x)}\right]\right) \qquad \pi_{ref}(y_{0}|x) = 0$$

$$0.5 \qquad 0.5 \qquad \text{Say } y_{0} = (the, the, the)$$

At the beginning of training

After few steps of training, either $\pi_{\theta}(y_{+}|x)$ will increase or $\pi_{\theta}(y_{-}|x)$ will decrease

- If $\pi_{\theta}(y_{+}|x)$ increases, there is no issue
- If $\pi_{\theta}(y_{-}|x)$ decreases, where does the probability go?
 - Ideally, it should go to y_+
 - Most often it goes to y_+ & others (y_o)
- After training, you might end up with

$$\log \sigma \left(\beta \left[\log \frac{\pi_{\theta}(y_{+}|x)}{\pi_{ref}(y_{+}|x)} - \log \frac{\pi_{\theta}(y_{-}|x)}{\pi_{ref}(y_{-}|x)}\right]\right)$$

Unfortunately, this is quite common

Say $y_0 = (the, the, the)$

How to deal with out-of-distribution bias in DPO?

Possible Solution: Online DPO

- If the probability of a certain OOD output increases
 - It gets sampled in online DPO
 - Gets a low reward
 - Its probability decreases
- Resampling should be done frequently to prevent OOD bias

• Open Problem: How to deal with out-of-distribution bias in offline DPO?

Credit: Direct Language Model Alignment from Online AI Feedback

Performance Comparison: Offline vs Online DPO

Method	Win	Tie	Loss	Quality
TL;DR				
Online DPO Offline DPO	63.74% 7.69%	28.57%	7.69% $63.74%$	3.95 3.46
Helpfulness				
Online DPO Offline DPO	58.60% 20.20%	21.20%	20.20% $58.60%$	4.08 3.44
Harmlessness				
Online DPO Offline DPO	60.26% 3.84%	35.90%	3.84% $60.26%$	4.41 3.57

Table 2: Win/tie/loss rate of DPO with OAIF (online DPO) against vanilla DPO (offline DPO) on the TL; DR, Helpfulness, Harmlessness tasks, along with the quality score of their generations, judged by *human raters*.

J Anthorpic

Credit: Direct Language Model Alignment from Online AI Feedback

Main Takeaways

- DPO can learn the policy directly from human/AI preferences
 - No reward model or value function needed
- Can be biased towards OOD samples
- To prevent bias
 - A reward model can be trained
 - Outputs can be sampled frequently from the policy and ranked using the reward model

