

Claims

1. A method for determining fluctuating fuel properties (H_u , ?) during the operation of a power plant,

5 characterized in that

an efficiency factor (η) for the power plant is determined on the basis of current operating parameters (P , m , V , p , T) of the power plant and a change in the fuel properties (H_u , ?) is concluded as a result of a change over time in the efficiency 10 factor (η) thus determined.

2. The method as claimed in claim 1,

characterized in that

one or more elements from the group power rating (P) of the 15 power plant, mass flow (m) of the fuel, volume flow (V) of the fuel, pressure (p) of the fuel, and temperature (T) of the fuel are determined as the current operating parameters (P , m , V , p , T).

20 3. The method as claimed in claim 2,

characterized in that

the efficiency (η) is determined by direct recording of the mass flow (m) of the fuel.

25 4. The method as claimed in claim 2,

characterized in that

the efficiency is determined by recording the volume flow (V), the pressure (p) and the temperature (T) of the fuel, in particular while leaving out of consideration the real gas

30 factor (z).

5. The method as claimed in claim 2,

characterized in that

the efficiency is determined by measuring differential pressure (Δp), pressure (p) and temperature (T) of the fuel, in particular while ignoring the real gas factor (z).

- 5 6. The method as claimed in one of the claims 1 to 5,
characterized in that
a change in the mass-related heating value (H_{u_m}) of the fuel is
concluded as the change in the fuel property (H_u , ?).
- 10 7. The method as claimed in one of the claims 1 to 6,
characterized in that
a change in the volume-related heating value (H_{u_v}) of the fuel
is concluded as the change in the fuel property (H_u , ?).
- 15 8. The method as claimed in one of the claims 1 to 7,
characterized in that
a change in the Wobbe index () is concluded as the
change in the fuel property (H_u , ?).
- 20 9. The method as claimed in one of the claims 1 to 8,
characterized in that the change over time in the efficiency
factor (η) relative to a reference operating state (0) is
determined, in addition to which the heating value (H_{u_0}) and/or
the standard density (ρ_0) of the fuel are determined as
25 reference variables, the reference variables (H_{u_0} ; ρ_0) being
determined in particular by means of a rolling averaging during
the operation of the power plant.
- 30 10. The method as claimed in one of the claims 1 to 9,
characterized in that
the change in the fuel properties (H_u , ?) is quantified using
mathematical methods.