Juegos bayesianos

Microeconomía III

Facultad de Ciencias Económicas y Administración

Licenciatura en Economía

Objetivos

- 1. Definir juegos bayesianos
- 2. Presentar el equilibrio de Nash bayesiano
- 3. Presentar el principio de revelación
- 4. Dar ejemplos de juegos bayesianos

Índice

Juegos bayesianos

Ejemplos

El amigo del fiscal

Cournot con información privada de costos

Entrada al mercado

Grupo de estudio

Intercambio insuficiente

Principio de revelación

Presentación

- Información incompleta: al menos un jugador no está seguro de la función de utilidad de otro jugador
- ⇒ algún jugador tiene información privada
 - Cada tipo para un jugador tiene asociada una función de utilidad

Notación

- Luego es estático ⇒ S_i = A_i (espacio de estrategias = espacio de acciones)
- Utilidad: u_i (a_i, a_{-i}; t_i), t_i es el tipo del jugador i; t_i ∈ T_i, T_i espacio de tipos del jugador i
- Por cada $t_i \in T_i$ existe $u_i(a_i, a_{-i}; t_i)$ (Nota: $t_i = \theta_i$)
- i conoce su tipo (función de utilidad), pero no conoce la de las restantes -i jugadores
- p_i (t_{-i}|t_i) es la conjetura del jugador i -que es de tipo t_i-sobre los tipos de los demás jugadores
- Nota: las conjeturas pueden estar correlacionadas entre los jugadores $p_i(t_{-i}|t_i)$, o ser independientes $p_i(t_{-i})$

Definición

Definición

Un juego **bayesiano en forma normal** se representa por $G = \langle I; \{A_i\}_{i=1}^n; \{T_i\}_{i=1}^n; \{p_i\}_{i=1}^n; \{u_i(a_i, a_{-i}; t_i)\}_{i=1}^n \rangle$ donde se cumple que:

- $I = \{1, 2, ..., n\}$ es el conjunto de jugadores
- A_i es el espacio de acciones para el jugador i
- T_i es el espacio de tipos del jugador i
- p_i es el espacio de conjeturas del jugador i
- $u_i(a_i, a_{-i}; t_i)$ es la utilidad del jugador i cuando es de tipo t_i

Desarrollo del juego

- Harsanyi (1967) supone que un juego bayesiano tiene la siguiente estructura:
- 1. el azar (o la naturaleza) determina un vector posible de tipos $t=(t_1,...,t_n)$, con $t_i\in\mathcal{T}_i$
- 2. el azar revela t_i al jugador i pero **no** a los demás jugadores
- 3. los jugadores toman sus decisiones en forma simultánea: i elije $a_i \in A_i$
- 4. se realizan los pagos $u_i(a_i, a_{-i}; t_i)$

Harsanyi

- Harsanyi (1967) ⇒ con 1. y 2. se transforma un juego con información incompleta en un juego con información imperfecta
- En alguna ronda del juego el jugador que tiene que decidir no sabe la historia completa del juego, en particular que jugó "el azar" o "la naturaleza"

Problema

se supone que la distribución de probabilidades es de conocimiento común

Información privada (propia y ajena)

- Hay juegos donde el jugador i tiene información privada no sólo sobre su función de ganancia, sino también sobre la de los demás (por ej. las empresas conocen sus costos, pero una conoce la demanda y la otra no)
- \Rightarrow el tipo de la empresa informada aparece también en el de la no informada: $u_i(a_i, a_{-i}; t_i, t_{-i})$

Bayes

- Cuando el azar revela el tipo t_i al jugador i ⇒ puede calcular sus conjeturas usando la regla de Bayes
- Bayes: sean dos eventos A, B, \Rightarrow
 - P(A) es la probabilidad de que ocurra el evento A
 - P(B) es la probabilidad de que ocurra el evento B
 - P(A, B) es la probabilidad de que ocurran los dos evento A y B
- La regla de Bayes es $P(A|B) = \frac{P(A,B)}{P(B)}$; esto es, la probabilidad de que ocurra A dado que ocurrió B es el cociente entre la probabilidad de que ambos ocurran sobre la probabilidad de que ocurra B

Bayes (cont.)

 El jugador i puede calcular su conjetura siguiendo la regla de Bayes

$$p_i(t_{-i}|t_i) = \frac{p(t_{-i},t_i)}{p(t_i)}$$

- La probabilidad de que los jugadores -i sean de tipo t_{-i} , dado que yo ahora se que soy de tipo t_i , es la probabilidad de que se den ambos eventos sobre la probabilidad de ser de tipo t_i
- $p_i(t_{-i}|t_i)$ es la probabilidad *a posteriori*, una vez que aprendo que soy t_i , y $p(t_{-i}, t_i)$ y $p(t_i)$ son las probabilidades a *piori*

Bayes: ejemplo

- Sean dos jugadores: 1, 2, con $t_1 = \{a, b\}$ y $t_2 = \{c, d\}$
- El azar elige los tipos con las siguientes probabilidades (cada celda es la probabilidad de observar los dos tipos)

Tipo jugador 2 c d

ipo jugador 1 $\frac{1}{6}$ $\frac{1}{3}$ $\frac{1}{6}$

•
$$p(t_2 = c | t_1 = a) = \frac{p(t_1 = a \cap t_2 = c)}{p(t_1 = a)} = \frac{1/6}{1/6 + 1/3} = \frac{1}{3}$$

• $p(t_2 = d | t_1 = a) = \frac{p(t_1 = a \cap t_2 = d)}{p(t_1 = a)} = \frac{1/3}{1/6 + 1/3} = \frac{2}{3}$

- Sean dos jugadores: 1, 2, con $t_1 = \{a, b\}$ y $t_2 = \{c, d\}$
- El azar elige los tipos con las siguientes probabilidades (cada celda es la probabilidad de observar los dos tipos)

 $\begin{array}{c|cccc} & & \text{Tipo jugador 2} \\ & & c & d \\ \hline \text{Tipo jugador 1} & & \frac{1}{6} & \frac{1}{3} \\ & & \frac{1}{3} & \frac{1}{6} \end{array}$

•
$$p(t_2 = c | t_1 = a) = \frac{p(t_1 = a \cap t_2 = c)}{p(t_1 = a)} = \frac{1/6}{1/6 + 1/3} = \frac{1}{3}$$

• $p(t_2 = d | t_1 = a) = \frac{p(t_1 = a \cap t_2 = d)}{p(t_1 = a)} = \frac{1/3}{1/6 + 1/3} = \frac{2}{3}$

Estrategia

Definición

En un juego bayesiano

 $G = \langle I; \{A_i\}_{i=1}^n; \{T_i\}_{i=1}^n; \{p_i\}_{i=1}^n; \{u_i(a_i, a_{-i}; t_i)\}_{i=1}^n \rangle$, una **estrategia** para el jugador i es una función $s_i(t_i)$ donde, para cada $t_i \in T_i$, $s_i(t_i)$ determina la acción del conjunto factible A_i que el tipo t_i elegiría si el azar determinaría que es de ese tipo

- En un juego bayesiano, los espacios de estrategias se construyen a partir de los espacios de tipos y acciones
- S_i el conjunto de las posibles estrategias puras del jugador i es el conjunto de todas las funciones posibles con dominio T_i y codominio A_i

Tipos de estrategia

Definición

una estrategia de **separación** implica que cada tipo $t_i \in T_i$ elige una acción $a_i \in A_i$ diferente

Definición

una estrategia de **agrupación** (pooling) implica que cada tipo $t_i \in T_i$ elige la misma acción $a_i \in A_i$

EBN

 Un equilibrio bayesiano de Nash (EBN) es un equilibrio de Nash en un juego bayesiano

Definición

en el juego bayesiano estático

$$G = \langle I; \{A_i\}_{i=1}^n; \{T_i\}_{i=1}^n; \{p_i\}_{i=1}^n; \{u_i(a_i, a_{-i}; t_i)\}_{i=1}^n \rangle$$
 las estrategias $s^* = (s_i^*, s_{-i}^*)$ forman un **EBN** si para cada jugador i y para cada uno de sus tipo $t_i \in T_i$, $s_i^*(t_i)$ es una solución de

$$\max_{a_{i} \in A_{i}} \sum_{t_{-i} \in T_{-i}} p_{i}\left(t_{-i}|t_{i}\right)\left[u_{i}\left(s_{i}^{*}\left(t_{i}\right), s_{-i}^{*}\left(t_{-i}\right); t\right)\right]$$

EBN (alternativa)

• Una definición alternativa es la siguiente

Definición

en el juego bayesiano estático

$$G = \langle I; \{A_i\}_{i=1}^n; \{T_i\}_{i=1}^n; \{p_i\}_{i=1}^n; \{u_i(a_i, a_{-i}; t_i)\}_{i=1}^n \rangle \text{ las}$$
 estrategias $s^* = (s_i^*, s_{-i}^*)$ forman un **EBN** si para cada jugador i , para cada tipo $t_i \in T_i$, y para cada $s_i'(t_i) \in S_i$; $s_i^*(t_i)$ cumple

$$\sum_{t_{-i} \in \mathcal{T}_{-i}} p_i\left(t_{-i}|t_i\right) \left[u_i\left(s_i^*\left(t_i\right), s_{-i}^*\left(t_{-i}\right); t_i\right)\right] \geq$$

$$\sum_{t_{-i} \in \mathcal{T}_{-i}} p_{i}(t_{-i}|t_{i}) \left[u_{i}\left(s_{i}^{'}(t_{i}), s_{-i}^{*}(t_{-i}); t_{i}\right) \right]$$

EBN (explicación)

- Cada tipo del jugador i es como un jugador diferente que maximiza su utilidad, dado su distribución de probabilidad condicional sobre las elecciones de estrategias de sus rivales
- En un EBN cada jugador elige la estrategia $s_i^*(.)$ de forma que, para cualquiera de sus tipos $t_i \in T_i$ y sus creencias sobre los otros jugadores $p_i(t_{-i}|t_i)$, su pago esperado por jugar esa estrategia es al menos tan grande a cualquier alternativa $s_i^{'}(.)$
- Implica una elección para todo tipo del jugador i, aún cuando él sepa que tipo es (¿recuerdan?)
- Ello porque, aún cuando él sabe, los demás jugadores no

Nota técnica

- Los tipos pueden ser discretos o continuos
- Ej: $T_i = [\underline{t_i}, \overline{t_i}]$ con función de distribución acumulada $F_i(t_i)$ y densidad $f_i(t_i) = F_i'(t_i)$
- Ej: $F_i(t_i)$ se distribuye uniforme o normal
- En este caso se sustituye $\sum_{t_{-i} \in \mathcal{T}_{-i}}$ por $\underbrace{\int \int ... \int}_{n-1}$ para cada uno de los n-1 jugadores

Estrategias mixtas (nuevamente)

- Las estrategias mixtas eran situaciones donde los jugadores jugaban estrategias condicionales a señales que recibían de los demás jugadores
- ⇒ en un juego con información completa los jugadores aleatorizaban
 - Si cambiamos el juego e introducimos tipos
 - La realización de cada tipo es independiente de las restantes y los tipos tienen idénticas preferencias
- ⇒ un EBN en estrategias puras en este juego bayesiano es equivalente al EN en estrategias mixtas del juego original

Conjunto de información

Definición

el **conjunto de información** de un jugador es una colección de nodos que satisface:

- 1. al jugador le corresponde jugar en cada nodo del conjunto de información y
- cuando se llega a un nodo del conjunto de información, el jugador que tiene que decidir, no sabe a qué nodo dentro del conjunto de información se ha (o no) llegado
- ⇒ en un conjunto de información el jugador debe tener el mismo conjunto de acciones factibles en cada nodo de decisión

Ej. dilema del prisionero

Figura: Dilema del prisionero en forma extensiva.

Índice

Juegos bayesianos

Ejemplos

El amigo del fiscal

Cournot con información privada de costos

Entrada al mercado

Grupo de estudio

Intercambio insuficiente

Principio de revelación

Índice

Juegos bayesianos

Ejemplos

El amigo del fiscal

Cournot con información privada de costos

Entrada al mercado

Grupo de estudio

Intercambio insuficiente

Principio de revelación

Presentación

- Versión modificada del "Dilema del Prisionero"
- El Prisionero 1 es amigo del fiscal: pagos iguales al "Dilema del Prisionero", excepto que si ninguno confiesa el Prisionero 1 sale libre mientras que el Prisionero 2 va preso 2 años
- Prisionero 2 puede ser de dos tipos:
 - Versión 1: el mismo del dilema del prisionero
 - Versión 2: odia delatar ⇒ si delata a la pena física se suma una psicológica equivalente a 6 años mas
- Juego bayesiano: el Prisionero 2 puede ser "normal" (t_1) con $p(t_1) = \mu$ u odiar confesar (t_2) con $p(t_2) = 1 \mu$

Presentación

P. 2

NC C

P. 1
$$C = \begin{bmatrix} 0, -2 & -10, -1 \\ -1, -10 & -5, -5 \end{bmatrix}$$
 $C = \begin{bmatrix} t_1 & \mu \end{bmatrix}$

 t_2

 $1-\mu$

P. 2

En forma extensiva

Explicación

- Cada línea punteada representa un conjunto de información
- El jugador tiene que tomar una decisión sin saber en qué nodo se encuentra
- Estrategias:
 - Prisionero 1: {C, NC}
 - Prisionero 2: {*C*, *C*; *C*, *NC*; *NC*, *C*; *CN*, *NC*}
- El Prisionero 2 tiene dos nodos de decisión, uno para cada tipo
- Ex ante no lo conoce; cuando le toca mover sí

Solución

- Inducción hacia atrás:
 - Prisionero 2 (t_1): C estrategia dominante
 - Prisionero 2 (t₂): NC estrategia dominante
- Prisionero 1:

•
$$v_1(C, \cdot) = \mu(-5) + (1 - \mu) \cdot (-1) = -1 - 4\mu$$

•
$$v_1(NC, \cdot) = \mu(-10) + (1 - \mu)0 = -10\mu$$

•
$$\Rightarrow v_1(C, \cdot) > v_1(NC, \cdot) \Longleftrightarrow \mu > 1/6 \Rightarrow \text{Prisionero 1 juega } \{C\}$$

•
$$\Rightarrow v_1(NC, \cdot) > v_1(C, \cdot) \Longleftrightarrow \mu < 1/6 \Rightarrow \text{Prisionero 1 juega}$$
 $\{NC\}$

EBN

- Existen dos EBN: $\{C; C, NC; \mu > 1/6\}$ y $\{NC; C, NC; \mu < 1/6\}$
- Otra forma de escribir:

•
$$s_1^*$$
 (:) =
$$\begin{cases} C & \text{si } \mu > 1/6 \\ NC & \text{si } \mu < 1/6 \end{cases}$$

•
$$s_2^*(:) = \begin{cases} C & \text{si } t_1 \\ NC & \text{si } t_2 \end{cases}$$

Índice

Juegos bayesianos

Ejemplos

El amigo del fiscal

Cournot con información privada de costos

Entrada al mercado

Grupo de estudio

Intercambio insuficiente

Principio de revelación

Presentación

- Mercado con demanda p(q) = a Q; $Q = q_1 + q_2$
- Empresa 1: $C_1(q_1) = cq_1$
- Empresa 2:
 - $C_2(q_2) = c_A q_2$, con $P(c = c_A) = \theta$
 - $C_2(q_2) = c_B q_2$, con $P(c = c_B) = 1 \theta$
- Las creencias son de conocimiento común
- Se cumple que $c_B < c_A$
- Empresa 1 no conoce el tipo de la empresa 2

Programa de maximización

- La empresa 2 sabe que la 1 tiene costo c
- $\Rightarrow \max_{q_2} \Pi_2$; $\Pi_2 = [(a q_1^* q_2) c_A] q_2$, si es tipo c_A
- $\Rightarrow \max_{q_2} \Pi_2$; $\Pi_2 = [(a q_1^* q_2) c_B] q_2$, si es tipo c_B
- Empresa 1 no sabe a que empresa 2 se enfrenta
- $\Rightarrow \max_{q_1} \Pi_1$; $\Pi_1 = \theta [(a q_1 q_2^*(c_A)) c] q_1 + (1 \theta) [(a q_1 q_2^*(c_B)) c] q_1$

Solución

•
$$CPO_{2A} \Rightarrow q_2^*(c_A) = \frac{a - q_1 - c_A}{2}$$

•
$$CPO_{2B} \Rightarrow q_2^*(c_B) = \frac{a - q_1 - c_B}{2}$$

•
$$CPO_1 \Rightarrow q_1^* = rac{ heta[a - q_2(c_A) - c] - (1 - heta)[a - q_2(c_B) - c]}{2}$$

Soluciones:

$$q_1^* = \frac{a - 2c + \theta c_A + (1 - \theta) c_B}{3}$$

$$q_2^*(c_A) = \frac{a - 2c_A + c}{3} + \frac{1 - \theta}{6} (c_A + c_B)$$

$$q_2^*(c_B) = \frac{a - 2c_B + c}{3} + \frac{\theta}{6} (c_A + c_B)$$

Comentarios

- En equilibrio tengo 3 reacciones óptimas para cada valor de $\theta \in [0, 1]$, esto es de las creencias de 1 respecto a la empresa 2
- La empresa 1 juega una estrategia que es el promedio ponderado de encontrar a cada tipo
- La empresa 2 reacciona a la cantidad de promedio ponderado
- Notar que si $\theta=0$ (seguro encuentro la ineficiente) \Rightarrow la empresa 1 no toma en cuenta el costo bajo para fijar la cantidad
- A la inversa si $\theta = 1$

Índice

Juegos bayesianos

Ejemplos

El amigo del fiscal

Cournot con información privada de costos

Entrada al mercado

Grupo de estudio

Intercambio insuficiente

Principio de revelación

Presentación

- Sea un juego de entrada al mercado con información incompleta
- El entrante E no conoce el tipo del instalado I
- I puede ser "racional" y preferir no pelear la entrada
- I puede ser un "loco" y disfrutar haciendo la guerra a sus rivales
- P(I = "racional") = p; P(I = "loco") = 1 p
- E elige entrar e o no entrar \overline{e}
- I elige ser violento v o acomodarse a la entrada a

Figura

Figura: Entrada al mercado con información incompleta.

Estrategias

- El instalado conoce su tipo y tiene dos nodos de decisión
- $E_I = \{a, a; a, v; v, a; v, v\}$
- El entrante no conoce el tipo, sólo las probabilidades
- $E_E = \{e, \overline{e}\}$
- Podemos representar el juego en forma normal
- A diferencia de los juegos con información completa, cada resultado será estocástico ex ante

Previo

 Podemos calcular la utilidad esperada de cada jugador en cada posible resultado

•
$$v_E(\overline{e}, aa) = v_E(\overline{e}, av) = v_E(\overline{e}, va) = v_E(\overline{e}, vv) = 0$$

•
$$v_I(aa, \overline{e}) = v_I(av, \overline{e}) = v_I(va, \overline{e}) = v_I(vv, \overline{e}) = 2$$

•
$$v_E(e, aa) = v_I(aa, e) = p.1 + (1-p).1 = 1$$

•
$$v_E(e, v_a) = v_I(v_a, e) = p.(-1) + (1-p).1 = 1-2p$$

•
$$v_E(e, av) = p.1 + (1-p).(-1) = 2p-1$$

•
$$v_I(av, e) = p.1 + (1-p).2 = 2-p$$

•
$$v_E(e, vv) = p.(-1) + (1-p).(-1) = -1$$

•
$$v_I(vv, e) = p.(-1) + (1-p).2 = 2-3p$$

Juego en forma normal

• Los resultados son los siguientes

				1	
		aa	av	va	VV
Ε	ē	0, 2	0, 2	0, 2	0, 2
	e	1, 1	2p-1, 2-p	$1-2p, \ 1-2p$	-1, 2 – 3 <i>p</i>

Solución: EBN

- Si Jugador E juega $\overline{e} \Rightarrow I$ juega cualquier estrategia (gana 2 seguro $\forall p$)
 - 1. Si I juega $aa \Rightarrow E$ nunca juega \overline{e} , le conviene jugar $e \Rightarrow EBN$
 - 2. Si *I* juega $av \Rightarrow E$ juega $\overline{e} \iff p < 1/2 \Rightarrow \mathsf{EBN}(1)$ (no entro si sospecho que es violento)
 - 3. Si I juega $va \Rightarrow E$ juega $\overline{e} \iff p > 1/2 \Rightarrow \mathsf{EBN}(2)$ (¿tiene sentido esta conjetura? ¿no entro si sospecho que **no** es violento?)
 - 4. Si *I* juega $vv \Rightarrow E$ juega $\overline{e} \forall p \Rightarrow EBN(3)$ (no entro para cualquier conjetura)

Solución: EBN (cont.)

- Jugador E juega $e \Rightarrow I$ piensa...
 - 1. I nunca juega $aa \forall p \Rightarrow EBN$ (ej. av da pagos mayores)
 - 2. *I* juega $av \forall p$; pero *E* juega $e \iff p > 1/2 \Rightarrow \mathsf{EBN(4)}$ (entro si pienso que no es violento y actúa en consecuencia)
 - 3. I nunca jugaría va ni $vv \forall p$ si E juega $e \Rightarrow \mathsf{EBN}$

Soluciones

- Existen 4 EBN: $EBN = \{\overline{e}; av; p < 1/2\};$ $EBN = \{e; av; p > 1/2\}; EBN = \{\overline{e}; va; p > 1/2\};$ $EBN = \{\overline{e}; vv; \forall p\};$
- De otra forma:

•
$$s_I(t_i) = \begin{cases} a & \text{si } t_I = \text{racional} \\ v & \text{si } t_I = \text{loco} \end{cases}$$
; $s_E = \begin{cases} e & \text{si } p > 1/2 \\ \overline{e} & \text{si } p < 1/2 \end{cases}$ (este es, además el único equilibrio perfecto por subjuegos)

•
$$s_{I}(t_{i}) = \begin{cases} v & si \ t_{I} = racional \\ a & si \ t_{I} = loco \end{cases}$$
; $s_{E} = \overline{e} \ si \ p > 1/2$
• $s_{I}(t_{i}) = \begin{cases} v & si \ t_{I} = racional \\ v & si \ t_{I} = loco \end{cases}$ (estrategia de pooling); $s_{E} = \overline{e} \ \forall \ p$

Comentario

- La asimetría de información puede disuadir a E de entrar a mercado
- Si sospecha (p < 1/2) que el rival es "loco" no entrará al mercado
- El instalado puede utilizar una estrategia de generar reputación para disuadir a las empresas de entrar al mercado

Índice

Juegos bayesianos

Ejemplos

El amigo del fiscal

Cournot con información privada de costos

Entrada al mercado

Grupo de estudio

Intercambio insuficiente

Principio de revelación

Presentación

- Ejemplo de riesgo moral (más en Contratos)
- Dos estudiantes que trabajan conjuntamente en un domiciliario
- Cada estudiante puede: esforzarse $(e_i = 1)$ o vagar $(e_i = 0)$, el costo de esforzarse es c < 1. (¿que pasa si c > 1?
- Si uno o ambos se esfuerzan ⇒ el trabajo es exitoso; si ninguno se esfuerza ⇒ es un fracaso

Presentación (cont.)

- Estudiantes se diferencian respecto a la importancia que asignan al éxito educativo:
 - tipo $t_i \in [0, 1]$, $t_i \sim iid$, $F(t_i) = t_i$ y $f(t_i) = 1$ para $t_i \in [0, 1]$
- Valoración del éxito del trabajo: $t_i^2 \Rightarrow$
 - si se esfuerza: $t_i^2 c$
 - si no se esfuerza \Rightarrow pero el socio se esfuerza \Rightarrow gana t_i^2
 - si ninguno se esfuerza ⇒ gana 0
- Los estudiantes sólo conocen **su** tipo antes de esforzarse, la distribución de los tipos $t_i \in [0, 1]$, $t_i \sim iid$, y que el costo del esfuerzo es c

Desarrollo

- Juego bayesiano con tipos continuos y acciones discretas (esforzarse, no esforzarse)
- \Rightarrow hay un continuo de estrategias $s_i: [0,1] \to \{0,1\}$ que establece una elección del esfuerzo $e_i \in \{0,1\}$ para cada tipo $t_i \in [0,1]$
- **Mejor respuesta:** dada la creencia del jugador i sobre la estrategia de j, lo único que afecta el pago de i es la probabilidad de que j elija $e_j = 1$
- \Rightarrow el jugador i se esfuerza $\iff \underbrace{t_i^2 c}_{si \, e_i = 1} \ge \underbrace{t_i^2 . P\left[s_j\left(t_j\right) = 1\right]}_{si \, e_i = 0}$ $\iff t_i \ge \sqrt{\frac{c}{1 P\left[s_i\left(t_i\right) = 1\right]}}$

Mejor respuesta

Hecho

La mejor respuesta del jugador i a cualquier estrategia $s_j(t_j)$ del jugador j es una regla de umbral: existe algún \hat{t}_i tal que la mejor respuesta de i es elegir e=1 si $t_i \geq \hat{t}_i$ y elegir e=0 si $t_i \leq \hat{t}_i$

- Intuición:
 - si creo que el otro no se esfuerza $P[s_j(t_j) = 0] \Rightarrow$ me esfuerzo si valoro el éxito lo suficiente: $t_i^2 > c$ o $t_i > \sqrt{c}$
 - si creo que el otro se esfuerza seguro $P[s_j(t_j) = 1] \Rightarrow \mathsf{hago}$ "free riding": gano t_i^2 seguro

Mejor respuesta (cont.)

Los estudiantes juegan:

$$s_i(t_i) = e_i = \begin{cases} 0 & \text{si } t_i < \hat{t}_i \\ 1 & \text{si } t_i \ge \hat{t}_i \end{cases} \quad i = 1, 2$$

- Regla que vincula los umbrales de los tipos de estudiantes que se puede usar para resolver el modelo
- $t_i \geq \widehat{t_i} = \sqrt{\frac{c}{1 P[s_j(t_j) = 1]}} \Rightarrow P[s_j(t_j) = 1] = 1 \widehat{t_j}$ (por lo anterior)

$$\Rightarrow t_i \geq \widehat{t_i} = \sqrt{\frac{c}{\widehat{t_j}}}$$

Mejor respuesta (cont.)

- Se cumple que si $\hat{t_j} < c \Rightarrow$ el umbral es $\hat{t_i} > 1 \Rightarrow \hat{t_i} = 1$
- Sustituyendo, se puede calcular los **umbrales** mejor respuesta:

$$s_{i}^{MR}\left(\widehat{t_{j}}\right) = egin{cases} \sqrt{rac{c}{\widehat{t_{j}}}} & si \ \widehat{t_{j}} \geq c \ 1 & si \ \widehat{t_{j}} < c \end{cases}$$

• Se cumple el siguiente EBN

EBN

Hecho

En el único EBN los agentes eligen el mismo umbral $t_i = t^*$, con $0 < t^* < 1$.

- 1. No puede haber equilibrio con ambos jugando $t_i < c$ (ninguno se esforzará)
- 2. Si umbrales $\neq \Rightarrow \hat{t_1} = \sqrt{\frac{c}{\hat{t_2}}} \text{ y } \hat{t_2} = \sqrt{\frac{c}{\hat{t_1}}}, \Rightarrow \hat{t_1^2} \hat{t_2} = c \text{ y } \hat{t_2^2} \hat{t_1} = c$ $\Rightarrow \hat{t_1} = \hat{t_2} = t^* \Rightarrow t^* = \sqrt{\frac{c}{t^*}} \Rightarrow t^3 = c \iff t^* = c^{1/3}$

$$s_i(t_i) = e_i = \begin{cases} 0 & si \, t_i < c^{1/3} \\ 1 & si \, t_i \ge c^{1/3} \end{cases} \quad i = 1, 2$$

Índice

Juegos bayesianos

Ejemplos

El amigo del fiscal

Cournot con información privada de costos

Entrada al mercado

Grupo de estudio

Intercambio insuficiente

Principio de revelación

Presentación

- Ejemplo de selección adversa (más en Contratos)
- Teoría supone que los mercados asignan los productos a quienes más los valoran
- Supuesto: existe información perfecta respecto del valor del bien
- ¿Qué pasa si no hay información perfecta?

Ejemplo

- Jugador 1: dueño de un naranjal: producción depende de la calidad del suelo (información privada de J1)
- Calidad del suelo (tipo de J1): Baja (L); Media (M) o Alta (H) con probabilidad 1/3 en cada caso
- Jugador 2: sojero que piensa comprar la tierra del Jugador 1,
 la productividad depende del tipo de tierra
- Valoraciones

$$v_{1}(t_{1}) = \begin{cases} 10 & si t_{1} = L \\ 20 & si t_{1} = M \\ 30 & si t_{1} = H \end{cases} \qquad v_{2}(t_{1}) = \begin{cases} 14 & si t_{1} = L \\ 24 & si t_{1} = M \\ 34 & si t_{1} = H \end{cases}$$

Juego

- Jugador 2 hace una oferta "tómela o déjela" al Jugador 1
- Jugador 1 puede aceptar A o rechazar R la oferta y el juego termina
- Estrategia Jugador 2: $p \ge 0$
- Estrategia Jugador 1: función de los tipos y precio ofrecido a las respuestas (A o R)

Eficiencia

- Es eficiente que el Jugador 2 compre la tierra
- Si se conoce la calidad \Rightarrow J2 puede ofrecer el mínimo precio tal que J1 vende
- Ej: si la calidad es $L \Rightarrow p = 10$ es un EN
- Pero la calidad es información privada que el J1 conoce a la hora de tomar la decisión de venta

Mejor respuesta

- Dado que cada calidad vale 1/3 la valoración promedio de la tierra para el comprador (J2) es $\frac{14+24+34}{3}=24 \Rightarrow$ puede ofrecer p=20 para que J1 acepte
- Pero si $p=20 \Rightarrow$ como J1 conoce la tierra sólo vende las calidades L o $M \Rightarrow$ J2 **actualiza las creencias** y el valor esperado es ahora $\frac{14+24}{2}=19<20 \Rightarrow$ no le conviene comprar
- Para cualquier $p \in [20, 30)$ J1 acepta sólo si la tierra es L o M
- Sólo vende si p=30 pero **espera recibir** 24 de utilidad \Rightarrow no puede haber equilibrio para p>20
- \Rightarrow el equilibrio implica que p < 20, pero \Rightarrow J1 vende si la tierra es de calidad L

Resultado

Teorema

El comercio ocurre en un EBN sólo si involucra al tipo más bajo del J1. Más aún, cualquier precio $p^* \in [10, 14]$ puede sostenerse como un EBN.

- Si la oferta del J2 es $p^* \in [10, 14]$
- La estrategia de J1 es

$$s_1\left(t_1
ight) = egin{cases} A &\iff p \geq p^* \ R \ en \ caso \ contrario \ si \ t_1 = L \ A &\iff p \geq 20 \ R \ en \ caso \ contrario \ si \ t_1 = M \ A &\iff p \geq 30 \ R \ en \ caso \ contrario \ si \ t_1 = H \end{cases}$$

Conclusión

- Sólo se comercia la peor calidad de tierra
- Problema: selección adversa
- Comprador: paga precio promedio; Vendedor: vende a precio menor al promedio (los mejores tipos no venden a precio promedio) ⇒ se selecciona en forma adversa a los peores que el promedio
- Nota: vendedor y comprador estarían mejor si el vendedor pudiera revelar el tipo
- Sin embargo, esto no es creíble

Índice

Juegos bayesianos

Ejemplos

El amigo del fiscal

Cournot con información privada de costos

Entrada al mercado

Grupo de estudio

Intercambio insuficiente

Principio de revelación

- Myerson (1979) propone un mecanismo para diseñar juegos con información privada
- Procede en tres partes:
 - 1. determinar los mecanismos directos
 - establecer cuáles permiten decir la verdad; esto es, es incentivo compatible

Mecanismos directos y honestidad

 En un juego bayesiano existen múltiples mecanismos para llegar a un equilibrio

Definición

un juego bayesiano en el cuál la única acción del jugador es hacer una declaración sobre su tipo se llama **mecanismo directo**

 De todos los mecanismos directos, algunos implican que el agente es honesto respecto a sus tipos y en otros no

Definición

un mecanismo directo en el cual decir la verdad es un EBN es compatible en incentivos

Principio de revelación

Teorema

Cualquier EBN en un juego bayesiano puede representarse mediante un mecanismo directo de incentivos compatibles.

- Implica que si los agentes cumplen las restricciones de compatibilidad de incentivos ⇒ revelarán su tipo
- Permite restringir los posibles equilibrios y centrarse sólo en aquellos compatibles de incentivos