TSMC 90nm CLN90G Process RVT 1.0-Volt AdvantageTM v1.0 Standard Cell Library Databook

May 2006, Revision 1.0

Copyright 1997-2006 ARM Physical IP, Inc. All Rights Reserved. Confidential

Copyright © 1997-2006 ARM Physical IP, Inc.2004 - 2005 ARM Physical IP (San Diego), Inc., 1997 - 2004 Artisan Components Incorporated, 1997 - 2003 NurLogic Design Incorporated. All rights reserved.

Printed in the United States of America.

Artisan and Process-Perfect are registered trademarks of ARM Physical IP, Inc. Accelerated Retention Test, Advantage, ArtiGrid, ArtNuvo, Capstone, ElectroArt, Extra Margin Adjustment, Flex-Repair, Integral-I/O, Metro, SAGE, SAGE-HS, SAGE-X, and Velocity are trademarks of ARM Physical IP, Inc. ARM acknowledges the trademarks of other organizations for their respective products or services mentioned in this document.

ARM reserves the right to make changes to any products and services described herein, at any time without notice in order to make improvements in design, performance, or presentation and to provide the best possible products and services. Customers should obtain the latest specifications before referencing any information, product, or service described herein, except as expressly agreed in writing by an officer of ARM.

ARM does not assume any responsibility or liability arising out of the application or use of any products or services described herein, except as expressly agreed to in writing by an officer of ARM; nor does the purchase, lease, or use of a product or service from ARM convey a license under any patent rights, copy rights, trademark rights, or any other of the intellectual property rights of ARM or of third parties except as expressly agreed to in writing by an officer of ARM.

ARM Physical IP, Inc. 141 Caspian Court, Sunnyvale, CA 94089, USA

Unpublished - rights reserved under the copyright laws of the United States.

Confidentiality Status

This document is Confidential. This document may only be used and distributed in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Contents

Prefac	se																									Х
Introd	uction																									1
	How This Book Is Organized																									1
	Global Parameters																									1
	Physical Specification	ıs																								2
	Propagation Delay an	d Tr	ans	itio	n Tii	me																				3
	Derating Factors																									4
	Delay Calculation																									4
	Timing Constraints																									5
	Setup Time																									5
	Hold Time																									6
	Recovery Time																									6
	Removal Time																									7
	Minimum Pulse Width																									7
	Electromigration																									8
	Power Dissipation																									9
	Power Calculation																									9
	Power-Rail Strapping																									11
	Adding Routing Chan	nels	;																							13
	Special Cells																									14
	Antenna-Fix Cell																									14
	Delay Cells																									14
	FILL Cells																									14
	511 1 0 A B O 11																									15
	Low-Power (XL) Cells																									15
	NWELL and Substrate			ell																						15
	Register File Cells																									16
	TIFLU/LOO-U-																									18
	Advantage Naming Conventi																									18
	Reading the Datasheet																									18
	1. Base Cell Name											••		••							••	•			•	19
	2. Cell Description		••	•		••	••	••		•	•				•	•	•	•	•			•	•		•	19
	3. Functions							••								•	•	•	•			•	•		•	19
	4. Logic Symbol																		•			•	•		•	19
	5. Cell Size																		••	••		••	•	••	••	19
	6. Functional Schema	tic	••																	••		••	•	••	••	19
	7. Drive Strength			••		••	••	••	••	••					••	••		••		••			••	••	••	19
	8. AC Power		••	••		••	••	••	••	••	••				••	••		••	••	••		••	••	••	••	20
			••	••			••	••		••					••	••		••	••	••		••	••	••	••	20
	9. Delay 10. Timing Constraints			••						••										••	••		••	••	••	20
	ro. riming Constraints	5	••		••	••	••	••	••	••	••	••	••	••	••	••	••	••	••	••	••	••	••	••	••	20

	11	. Piı	n Ca	apac	citar	nce		 ••	 	••	 ••	 	 ••	 	 	••	••	••	 	 	20
ACCSHCIN							 	 	 		 	 	 	 	 				 	 	23
ACCSHCON							 	 	 		 	 	 	 	 				 	 	26
ACCSIHCON	1						 	 	 		 	 	 	 	 				 	 	29
ACHCIN							 	 	 		 	 	 	 	 				 	 	31
ACHCON							 	 	 		 	 	 	 	 				 	 	33
ADDF							 	 	 		 	 	 	 	 				 	 	35
ADDFH							 	 	 		 	 	 	 	 				 	 	37
ADDH							 	 	 		 	 	 	 	 				 	 	39
AFCSHCIN							 	 	 		 	 	 	 	 				 	 	41
AFCSHCON							 	 	 		 	 	 	 	 				 	 	44
AFCSIHCON	1						 	 	 		 	 	 	 	 				 	 	47
AFHCIN							 	 	 		 	 	 	 	 				 	 	49
AFHCON							 	 	 		 	 	 	 	 				 	 	51
AHCSHCIN							 	 	 		 	 	 	 	 				 	 	53
AHCSHCON	l						 	 	 		 	 	 	 	 				 	 	55
AHHCIN							 	 	 		 	 	 	 	 				 	 	57
AHHCON							 	 	 		 	 	 	 	 				 	 	59
AND2							 	 	 		 	 	 	 	 				 	 	61
AND3							 	 	 		 	 	 	 	 				 	 	63
AND4							 	 	 		 	 	 	 	 				 	 	65
AO21							 	 	 		 	 	 	 	 				 	 	68
AO22							 	 	 		 	 	 	 	 				 	 	70
AO2B2							 	 	 		 	 	 	 	 				 	 	72
AO2B2B							 	 	 		 	 	 	 	 				 	 	74

| AOI21 | |
 |
•• |
 | 76 |
|---------|----|------|------|------|------|------|------|------|------|------|------|------|------|------|--------|------|-----|
| AOI211 | |
 |
 | 78 |
| AOI21B | |
 |
 | 80 |
| AOI22 | |
 |
 | 82 |
| AOI221 | |
 |
 | 84 |
| AOI222 | |
 |
 | 86 |
| AOI2B1 | |
 |
 | 89 |
| AOI2BB1 | |
 |
 | 91 |
| AOI2BB2 | |
 |
 | 93 |
| AOI31 | |
 |
 | 95 |
| AOI32 | |
 |
 | 97 |
| AOI33 | |
 |
 | 99 |
| BENC | |
 |
 | 101 |
| ВМХ | |
 |
 | 103 |
| BMXI | |
 |
 | 106 |
| BUF | |
 |
 | 109 |
| CLKAND | 2 |
 |
 | 112 |
| CLKBUF | |
 |
 | 114 |
| CLKINV | |
 |
 | 117 |
| CLKMX2 | |
 |
 | 120 |
| CLKNANI | D2 | |
 |
 | 122 |
| CLKXOR | 2 |
 |
 | 124 |
| CMPR42 | |
 |
 | 126 |
| DFF | |
 |
 | 130 |
| DFFH | |
 |
 | 132 |

DFFHQ		 	 	 	 	 	 	 	 	 	 	 	 		 	••		 134
DFFNH	••	 	 	 	 	 	 	 ••	 	 	 	 	 	••	 			 136
DFFNSR	RH	 	 	 	 	 	 	 	 	 	 	 	 		 			 138
DFFQ		 	 	 	 	 	 	 	 	 	 	 	 		 			 141
DFFR		 	 	 	 	 	 	 	 	 	 	 	 		 			 143
DFFRHG	Q	 	 	 	 	 	 	 	 	 	 	 	 		 			 145
DFFRQ		 	 	 	 	 	 	 	 	 	 	 	 		 			 147
DFFS		 	 	 	 	 	 	 	 	 	 	 	 		 			 149
DFFSHG)	 	 	 	 	 	 	 	 	 	 	 	 		 			 151
DFFSQ		 	 	 	 	 	 	 	 	 	 	 	 		 			 153
DFFSR		 	 	 	 	 	 	 	 	 	 	 	 		 			 155
DFFSRH	IQ	 	 	 	 	 	 	 	 	 	 	 	 		 			 158
DFFTR		 	 	 	 	 	 ••	 ••	 	 	 	 	 	••	 			 160
DFFYQ		 	 	 	 	 	 ••	 ••	 	 	 	 	 	••	 			 162
DLY1		 	 	 	 	 	 	 	 	 	 	 	 		 			 164
DLY2		 	 	 	 	 	 	 	 	 	 	 	 		 			 166
DLY3		 	 	 	 	 	 	 	 	 	 	 	 		 			 168
DLY4		 	 	 	 	 	 	 	 	 	 	 	 		 			 170
EDFF		 	 	 	 	 	 ••	 	 	 	 	 	 		 			 172
EDFFHG)	 	 	 	 	 	 ••	 ••	 	 	 	 	 		 			 174
EDFFTR		 	 	 	 	 	 ••	 ••	 	 	 	 	 		 			 176
INV		 	 	 	 	 	 ••	 ••	 	 	 	 	 		 			 179
MDFFHO	2	 	 	 	 	 	 ••	 ••	 	 	 	 	 		 			 182
MX2		 	 	 	 	 	 	 	 	 	 	 	 		 			 184
MX3		 	 	 	 	 ••	 	 	 	 	 	 	 		 		••	 186

| MX4 | |
 | 188 |
|---------|---|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|
| MXI2 | |
 | 190 |
| MXI2D | |
 | 192 |
| MXI3 | |
 | 195 |
| MXI4 | |
 | 197 |
| NAND2 | |
 | 199 |
| NAND2B | |
 | 201 |
| NAND3 | |
 | 203 |
| NAND3B | |
 | 205 |
| NAND4 | |
 | 207 |
| NAND4B | |
 | 210 |
| NAND4BI | 3 |
 | 212 |
| NOR2 | |
 | 214 |
| NOR2B | |
 | 216 |
| NOR3 | |
 | 218 |
| NOR3B | |
 | 220 |
| NOR4 | |
 | 222 |
| NOR4B | |
 | 225 |
| NOR4BB | |
 | 227 |
| OA21 | |
 | 229 |
| OA22 | |
 | 231 |
| OAI21 | |
 | 233 |
| OAI211 | |
 | 235 |
| OAI21B | |
 | 237 |
| OAI22 | |
 | 239 |

OAI221		 	 	 	 	 ••	 	 	 	 	 	 	 	••	 	 ••	 241
OAI222		 	 	 	 	 	 	 	 	 	 	 	 		 	 	 243
OAI2B1		 	 	 	 	 	 	 	 	 	 	 	 		 	 	 246
OAI2B11		 	 	 	 	 	 	 	 	 	 	 	 		 	 	 248
OAI2B2		 	 	 	 	 	 	 	 	 	 	 	 		 	 	 250
OAI2BB1		 	 	 	 	 	 	 	 	 	 	 	 		 ••	 	 252
OAI2BB2		 	 	 	 	 	 	 	 	 	 	 	 		 	 	 254
OAI31		 	 	 	 	 	 	 	 	 	 	 	 		 	 	 256
OAI32		 	 	 	 	 	 	 	 	 	 	 	 		 	 	 258
OAI33		 	 	 	 	 	 	 	 	 	 	 	 		 	 	 260
OR2		 	 	 	 	 	 	 	 	 	 	 	 		 	 	 262
OR3		 	 	 	 	 	 	 	 	 	 	 	 		 	 	 264
OR4		 	 	 	 	 	 	 ••	 	 	 ••	 	 		 	 	 266
RF1R1W		 	 	 	 	 	 	 	 	 	 	 	 		 ••	 	 269
RF2R1W		 	 	 	 	 	 	 	 	 	 	 	 		 	 	 272
SDFF		 	 	 	 	 	 	 	 	 	 	 	 		 	 	 275
SDFFH		 	 	 	 	 	 	 	 	 	 	 	 		 ••	 	 278
SDFFHQ		 	 	 	 	 	 	 	 	 	 	 	 		 	 	 281
SDFFNH		 	 	 	 	 	 	 	 	 	 	 	 		 	 	 283
SDFFNSF	RH		 	 	 	 	 	 	 	 	 	 	 		 	 	 286
SDFFQ		 	 	 	 	 	 	 	 	 	 	 	 		 	 	 290
SDFFR		 	 	 	 	 	 	 	 	 	 	 	 		 	 	 292
SDFFRHO	2	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 295
SDFFRQ		 	 	 	 	 	 	 	 	 	 	 	 		 	 	 298
SDFFS		 	 	 	 	 	 	 	 	 	 	 	 		 	 	 301

SDFFSHO	2																	 												 304
SDFFSQ																		 												 307
SDFFSR																		 												 310
SDFFSRH	НQ																	 												 314
SDFFTR																		 												 318
SDFFYQ																		 												 321
SEDFF																		 												 323
SEDFFHO	2																	 												 326
SEDFFTR	2																	 												 329
SMDFFH	Q																	 												 333
TBUF																		 												 337
TIEHI																		 												 340
TIELO																		 												 341
TLAT																		 												 342
TLATN																		 												 344
TLATNCA	١																	 												 346
TLATNSR	2																	 												 349
TLATNTS	CA																	 												 353
TLATSR																		 												 356
XNOR2																		 												 359
XNOR3																														 361
XOR2	••	••	••	••	••	••	••	••	••	••		••	••	••	••	••	••	 ••	••		••	••	••	••		••	••	••	••	 363
XOR3	••	••	••			••	••		••	••	••		••	••	••			 ••	••	••	••		••	••	••		••	••	••	 365
VOICO	••								••		••			••		••		 											••	 505

Preface

Revision History

This document contains the release history for the TSMC 90nm CLN90G Process RVT 1.0-Volt AdvantageTM v1.0 Standard Cell Library Databook.

Part Number	Release Number	Date of Release	Updates
DB-Advantage-TSM055-1.0/90@1.0-1.0	1.0	May 2006	Initial Release

Customer Support

For general questions related to ARM's Physical IP product availability and their licensing requirements, customers can go to www.artisan.com. Log in and click on the New Business Requst link to enter a request.

Customers with active Support contracts can obtain support for ARM's Physical IP products by going to www.artisan.com and clicking on New Technical Request. Support contract options are available for review at www.artisan.com/support/programs.html.

You may also contact ARM Physical IP by telephone or email, using the following information:

• United States and North America 877-ARTILIB (877-278-4542)

• International 408-548-3298

• Email support-artisan@arm.com

Introduction

ARM's Artisan Physical IP AdvantageTM standard cell library builds upon the SAGE architecture, producing the optimum combination of high-density with high-performance. The cell line-up is derived from extensive customer design, synthesis, and place-and-route benchmark analysis. Library optimization is achieved by carefully matching the library functions and drive strengths to leading synthesis and place-and-route tools, producing superior RTL-to-GDSII results.

How This Book Is Organized

This introduction is organized into three sections:

- Global Parameters provides an overview of parameters specific to your Advantage library.
- Special Cells details the types of special cells included in the library.
- Reading the Datasheet describes the components of each datasheet.

Datasheets for each cell in this library are provided after the introduction. The datasheets are included in alphabetical order.

Global Parameters

This section specifies global parameters for the TSMC 90nm CLN90G Process RVT Advantage v1.0 Standard Cell Library. Some of the following sections may be covered: physical specifications, electrical specifications, derating factors, propagation delay calculation, timing constraints, power calculation, and power-rail strapping.

Process Technology: Introduction
TSMC CLN90G

Physical Specifications

Table 1 shows the physical design specifications of this library.

Table 1. Physical Specifications

Drawn Gate Length (um)	0.1
Layers of Metal	4, 5, 6, 7, 8 and 9
Layout Grid (um)	0.005
Vertical Pin Grid (um)	0.28
Horizontal Pin Grid (um)	0.28
Cell Power and Ground Rail Width (um)	0.42
Cell Height (um)	2.52

In the Advantage library, all pins are located on the vertical and horizontal pin grids. Most place-and-route tools work more efficiently with all pins on grids, and some tools even require it.

The Advantage library also supports designs with four, five, six, seven, eight or nine layers of metal. You may need to change the design rules in the technology file, because the top-level metal has a greater minimum width and greater minimum spacing requirement. See "TSMC 90nm CMOS Logic Design Rule (G/GT/LP)" design rule manual. You must define these rules correctly for the place-and-route tool.

Table 2 describes the electrical specifications for this library.

Table 2. Electrical Specifications

Parameter	Minimum	Typical	Maximum
DC Supply Voltage (Vdd)	0.9V	1.0V	1.1V
Junction Temperature	-40°C	25°C	125°C

Table 3 shows the derating factors for this library.

Table 3. Derating Factors

K _{Process} (slow)	1.319
K _{Process} (typical)	1.000 (by definition)
K _{Process} (fast)	0.759
K _{Volt} (1.0V to 0.9V)	-1.837/V
K _{Volt} (1.0V to 1.1V)	-1.213/V
K_{Temp} (25°C to -40°C)	0.00089/°C
K _{Temp} (25°C to 125°C)	0.00098/°C

Propagation Delay and Transition Time

10% Vdd

Rising TIme

The propagation delay through a cell is the sum of the intrinsic delay, the load-dependent delay, and the input-slew dependent delay. Delays are defined as the time interval between the input stimulus crossing 50% of Vdd and the output crossing 50% of Vdd. Figure 1 illustrates the propagation delay.

Figure 1. Propagation Delay

The transition times (slews) on input and output pins are defined as the time interval between the signal crossing 10% of Vdd and 90% of Vdd. Figure 2 illustrates transition time measurements for rising and falling signals.

Figure 2. Transition Time

90% Vdd 10%Vdd

Falling TIme

TSMC CLN90G

Factors that affect propagation delays and transition time include: temperature, supply voltage, process variations, fanout loading, interconnect loading, input-transition time, input-signal polarity, and timing constraints. The timing models provided with this library include the effects of input-transition time on propagation delays. Also, all timing models use a table lookup method to calculate accurate timing. To simplify calculations, the standard cell datasheets provide all timing numbers for an input slew of 0.018ns and a linearized load factor, K load, which is not as accurate as the timing models. All cells have been characterized with a fully populated metal2 (0.28um horizontal pitch) and metal3 (0.28um vertical pitch) routing grid across the entire cell layout.

The Advantage library may contain negative propagation delays. Although most third-party verification tools can handle negative propagation delays, some tools will turn negative delays into a zero value.

Derating Factors

Derating factors are coefficients that the typical process characterization data is multiplied by to arrive at timing data that reflects appropriate operating conditions. The deratings table provides derating factors for variations in process case, temperature, and voltage.

Derating factors are derived by averaging the performance of many different cells in the library. A particular combination of cells may perform better or worse than indicated by these derating factors.

Delay Calculation

Using the delay data in the datasheets ($t_{intrinsic}$, K_{load} , and C_{load}) and the delay derating factors, the estimated total propagation delay is calculated as such:

$$\begin{split} t_{TPD} &= (K_{Process}) * [1 + (K_{Volt} * \Delta Vdd)] * [1 + (K_{Temp} * \Delta T)] * t_{typical} \\ t_{typical} &= t_{intrinsic} + (K_{load} * C_{load}) \end{split}$$

where:

 t_{TPD} = total propagation delay (ns);

t_{typical} = delay at typical corner-1.0V, 25°C, typical process (ns);

t_{intrinsic} = delay through the cell when there is no output load (ns);

 $K_{load} = load delay multiplier (ns/pF);$

C_{load} = total output load capacitance (pF);

 $K_{Process}$ = process derating factor, where process is slow, typical, or fast;

 K_{Volt} = voltage derating factor (/V);

TSMC CLN90G

 $\Delta Vdd = Vdd - 1.0V;$

 K_{Temp} = temperature derating factor (/°C);

 ΔT = junction temperature - 25°C.

Timing Constraints

Timing constraints define minimum time intervals during which specific signals must be held steady in order to ensure the correct functioning of any given cell. Timing constraints include: setup time, hold time, recovery time, and minimum pulse width.

The sequential-cell timing models provided with this library include the effects of input-transition time and data-signal and clock-signal polarity on timing constraints. To simplify calculations, the datasheets specify timing constraint values for 0.018ns data slew and 0.018ns clock slew. Other factors that affect timing constraints include temperature, supply voltage, and process case variations. All cells have been characterized with a fully populated metal2 (0.28um horizontal pitch) and metal3 (0.28um vertical pitch) routing grid across the entire cell layout.

Timing constraints can affect propagation delays. The intrinsic delays given in the datasheets are measured with relaxed timing constraints (longer than necessary setup times, hold times, recovery times, and pulse widths). The use of shorter timing constraint intervals may increase delay. Each cell is considered functional as long as the actual delay does not exceed the delay given in the datasheets by more than 10%.

Setup Time

The setup time for a sequential cell is the minimum length of time the data-input signal must remain stable before the active edge of the clock (or other specified signal) to ensure correct functioning of the cell. The cell is considered functional as long as the delay for the output reaching its expected value does not exceed the reference delay (measured with a large setup time) by more than 10%. Setup-constraint values are measured as the interval between the data signal crossing 50% of Vdd for rising data (or 50% of Vdd for falling data) and the clock signal crossing 50% of Vdd for rising clocks (or 50% of Vdd for falling clocks). For the measurement of setup time, the data input signal is kept stable after the active clock edge for an infinite hold time. Figure 3 illustrates setup time for a positive-edge-triggered sequential cell.

Process Technology: Introduction
TSMC CLN90G

Hold Time

The hold time for a sequential cell is the minimum length of time the data-input signal must remain stable after the active edge of the clock (or other specified signal) to ensure correct functioning of the cell. The cell is considered functional as long as the delay for the output reaching its expected value does not exceed the reference delay (measured with a large hold time) by more than 10%. Hold-constraint values are measured as the interval between the data signal crossing 50% of Vdd for rising data (or 50% of Vdd for falling data) and the clock signal crossing 50% of Vdd for rising clocks (or 50% of Vdd for falling clocks). For the measurement of hold time, the data input signal is held stable before the active clock edge for an infinite setup time. Figure 4 illustrates hold time for a positive-edge-triggered sequential cell.

NOTE: ARM does not incorporate any hold time margins in the Synopsys, TLF, StarDC, or any other timing models. Chip designers should develop a timing methodology to account for chip-level timing inaccuracies inherent to extraction and timing analysis tools.

Recovery Time

Recovery time for sequential cells is the minimum length of time that the active-low set or reset signal must remain high before the active edge of the clock to ensure correct functioning of the cell. The cell is considered functional as long as the delay for the output reaching its expected value does not exceed the reference delay (measured with a large recovery time) by more than 10%. Recovery constraint values are measured as the interval between the set or reset signal crossing 50% of Vdd and the clock signal crossing 50% of Vdd for rising clocks (or 50% of Vdd for falling clocks). For the measurement of recovery time, the set or reset signal is held stable after the active clock edge for an infinite hold time. Figure 5 illustrates recovery time.

TSMC CLN90G

Figure 5. Recovery Time

Removal Time

Removal time for sequential cells is the minimum length of time that the active low set or reset signal must remain low after the active edge of the clock to ensure correct functioning of the cell. The cell is considered functional as long as the active clock edge does not latch in a new data value from that programmed by the asynchronous set or reset signal. Removal constraint values are measured as the interval between the set or reset signal crossing 50% of Vdd and the clock signal crossing 50% of Vdd for rising clocks (or 50% of Vdd for falling clocks). For the measurement of removal time, the set or reset signal is held stable before the active clock edge for an infinite setup time. Figure 6 illustrates removal time.

Minimum Pulse Width

Minimum pulse width is the minimum length of time between the leading and trailing edges of a pulse waveform. Minimum pulse width high (minpwh) is measured as the interval between the rising edge of the signal crossing 50% of Vdd and the falling edge of the signal crossing 50% of Vdd. Minimum pulse width low (minpwl) is measured as the interval between the falling edge of the signal crossing 50% of Vdd and the rising edge of the signal crossing 50% of Vdd. Figure 7 illustrates minimum pulse width.

Figure 7. Minimum Pulse Width

Minimum pulse width is defined as 0.83325ns for all set/reset pins (SN, RN) and 0.83325ns for all clock pins (G, GN, CK, CKN). These are the largest minimum pulse widths measured from all the cells in the library. An input pulse of shorter duration will produce unpredictable results.

Electromigration

min_period Property

All sequential cells in the .lib file have this clock pin property set:

min_period: 1.000000;

This property has the effect of limiting a design's clock frequency to 1.0GHz. Commonly used design flows may not be able to support the required accuracy for designs targeted for clock frequencies higher than this limit. Contact ARM technical support for designs targeting higher clock frequencies.

Electromigration Guideline Compliance

Artisan standard cell libraries are designed to meet foundry electromigration guidelines for normal chip design usage; however, it is the chip designer's responsibility to ensure that electromigration guidelines are met at the chip level with regard to foundry guidelines as well as ARM's guidelines for how the library will be used. The following three Electromigration guidelines must be met in order to ensure safe use of the standard cell library within the electromigration guidelines of the foundry.

- 1. The width of the Metal1 VDD and VSS power buses in the standard cells has been sized to provide adequate current to the cells. Vertical power straps must be placed with sufficient frequency to provide adequate current distribution to the standard cell power buses. For more details, see the section entitled Power-Rail Strapping in the standard cell user guide.
- 2. The output pin metal for each standard cell has been sized to accommodate multiple vias necessary (for worst case electromigration conditions) to meet via electromigration guidelines, although oversized Metal1 output pins do not necessarily require multiple vias. The number of vias required to meet electromigration guidelines is design dependent, and the chip designer must use an appropriate number of vias and wire width when routing from an output pin.
- 3. The internal layouts of the standard cells have been designed and verified to comply with the manufacturer's electromigration guidelines under normal usage. Normal usage is defined as follows:
- The current required by the cell does not exceed the maximum current that can be supplied by the Metal1 power buses.

TSMC CLN90G

• The output transition times (measured using 10% and 90% thresholds), for a cell outside the clock tree network, must be no greater than 20% of the total cycle time, or must be no greater than 10% of the cycle time for any of the output pins of that particular cell. Limiting the output transition time has the effect of limiting the load driven by the cell which will reduce the cell's current draw, making it comply with electromigration guidelines. Ratios larger than 20% are not appropriate for commonly used design flows and are unlikely to be encountered in normal designs.

• For a cell in the clock tree network, transition times must not exceed 10% of the total cycle time for that cell.

Power Dissipation

The Advantage library is designed to dissipate only AC power, except for the small reverse-bias leakage currents which are normally present in all CMOS circuits.

The power dissipation internal to a cell when a given input switches is primarily dependent upon the cell design itself. The power dissipation of a complete design, or part of a design, using cells from the library is primarily a function of the switching frequency of the design's internal nets. These nets include the inputs and outputs of each cell and the capacitive load associated with the outputs of each cell.

The Advantage library datasheets contain both an AC power table which documents the internal energy consumption of each cell and a pin capacitance table which gives input-pin capacitance data used to compute output loading. This information, coupled with design-specific information, can be used to estimate the total power dissipation of a cell within a design.

The AC power tables specify the amount of energy consumed within a cell (uW/MHz) when the corresponding pin changes state at 25°C, 1.0V, and typical process. The energy data in the tables were measured for an input slew of 0.018ns and no loading at the outputs.

For combinatorial cells, energy values are provided for only input pins. The energy value for each input pin is the average of energies associated with the input transitions which result in an output transition.

For sequential cells, the energy associated with each input pin is the average energy of those input transitions which *do not* result in an output transition. The energy associated with the output pin of a sequential cell is the average energy of all cases where an output transition is the result of a clock-input transition, minus the energy associated with the clock input pin. In the event that a sequential cell has multiple outputs, all output energy data will be associated with only one output pin.

Power Calculation

Power dissipation is dependent upon the power-supply voltage, frequency of operation, internal capacitance, and output load. The power dissipated by each cell is:

$$P_{avg} = \sum_{n=1}^{x} (E_{in} * f_{in}) + \sum_{n=1}^{y} (C_{on} * Vdd^{2} * \frac{1}{2} f_{on}) + E_{os} * f_{01}$$

where:

 P_{avg} = average power (uW);

x = number of input pins;

 E_{in} = energy associated with the nth input pin (uW/MHz);

 f_{in} = frequency at which the nth input pin changes state during the normal operation of the design (MHz);

y = number of output pins;

 C_{on} = external capacitive loading on the nth output pin, including the capacitance of each input pin connected to the output driver, plus the route wire capacitance, actual or estimated (pF);

Vdd =operating voltage = 1.0V;

 f_{on} = frequency at which the nth output pin changes state during the normal operation of the design (MHz);

 E_{os} = energy associated with the output pin for sequential cells only (uW/MHz).

The switching frequency of inputs and outputs of a particular cell in a design can be obtained from a gate-level logic simulator (e.g. Verilog) by applying typical input stimuli and measuring the activity on each node of interest. The total average power for the design can be computed by adding the average power for each cell.

EXAMPLE: Calculating Power for a DFFXL Cell

For this exercise, assume that a DFFXL cell has clock switching at 133MHz (clock frequency = 66.5MHz), input and output pins switching at 20MHz, and an external capacitive loading on the output pin of 0.02pF. Using the AC Power table provided in the **sample** DFF datasheet at the end of the introduction, the power dissipated by the DFFXL can be calculated by using the following equation:

$$P_{avg} = \sum_{n=1}^{x} (E_{in} * f_{in}) + \sum_{n=1}^{y} (C_{on} * Vdd^{2} * \frac{1}{2} f_{on}) + E_{os} * f_{01}$$

Given:

$$x = 2;$$

$$E_{i1} = 0.0056 < uW/MHz;$$

$$E_{i2} = 0.0063 \text{ uW/MHz};$$

$$f_{i1} = 20 \text{ MHz};$$

$$f_{i2} = 133 \text{ MHz};$$

$$y = 2;$$

$$C_{o1} = 0.02 \text{ pF};$$

$$C_{o2} = 0.02 \text{ pF};$$

$$Vdd = 1.0V$$
;

$$f_{01} = 20 \text{ MHz};$$

$$f_{o2} = 20 \text{ MHz};$$

$$E_{os} = 0.0060 \text{ uW/MHz},$$

we have:

$$\begin{split} P_{avg} &= \sum_{n=1}^{2} (E_{in} * f_{in}) + \sum_{n=1}^{2} (C_{on} * Vdd^{2} * \frac{1}{2} f_{on}) + E_{os} * f_{01} \\ P_{avg} &= (E_{i1} * f_{i1}) + (E_{i2} * f_{i2}) + (C_{o1} * VDD^{2} * \frac{1}{2} f_{o1}) \\ &+ (C_{o2} * VDD^{2} * \frac{1}{2} f_{o2}) + (E_{os} * f_{01}) \\ P_{avg} &= (0.0056 * 20) + (0.0063 * 133) + \left(0.02 * 1.0 * \frac{1}{2} (20)\right) \\ &+ \left(0.02 * 1.0 * \frac{1}{2} (20)\right) + (0.0060 * 20) \end{split}$$

Power-Rail Strapping

 $P_{avg} = 1.46 \text{ uW}$

You must determine the required amount of vertical power-rail strapping to satisfy all requirements imposed by the design methodology for a given design. Power-rail strapping should be sized small enough to optimize standard cell height and maximize router efficiency, yet it must be large enough to provide sufficient power to the cells.

The guidelines below provide a rough estimate with many simplifying assumptions. For a given module design, you can estimate the amount of vertical power-rail strapping that is required to fulfill electromigration requirements.

Given:

 I_{avg} = total average current for the module, calculated from previous section (mA);

 $w_{m1} = VSS/VDD$ metal 1 wire width (um), see Physical Specifications;

r = number of rows in module:

 d_{m1} = maximum metal1 current density allowed for the process (mA/um);

 d_{m2} = maximum metal2 current density allowed for the process (mA/um);

 I_{m1} = maximum current that can be supported by all horizontal metal1 wires (mA);

 I_{strap} = total current that must be supported by the vertical metal2 strapping (mA);

 w_{m2} = metal2 wire width required for vertical strapping (um);

c = minimum number of metal2 straps;

we have:

$$I_{m1} = w_{m1} * r * 2 * d_{m1},$$

where multiplying by 2 assumes metal1 wires are supplied from both ends;

$$I_{strap} = \frac{(I_{avg} - I_{m1})}{2},$$

where dividing by 2 assumes the metal2 vertical strap wires are supplied from both ends;

$$w_{m2} = \frac{I_{strap}}{d_{m2}},$$

It is recommended that the metal 2 wire width, w_{m2} , be divided into c equal portions which are spaced equidistant across the module, where

$$c = \frac{I_{avg}}{I_{m1}}$$
, rounded up to the next integer.

The same consideration must be given to the number of vias used to connect the metal1 and metal2 straps.

Process Technology: Introduction
TSMC CLN90G

Adding Routing Channels

In the Advantage library, each cell is designed with a uniform cell height of 2.52um (i.e., 9 tracks tall with 0.28um per track). The cell layouts allow neighboring rows of cells to share common power or ground rails when cells abut each other at the top and bottom edges of the cell bounding box. The sea-of-cells layout with no channels between rows will usually yield the minimum area. In case of extremely congested areas, you may want to separate some rows of cells to increase the number of routing channels within a particular layout region. Because geometries must overlap cell boundaries, a particular spacing between the rows may result in DRC violations for layer spacing. It is recommended that you do not use spacings that cause DRC violations. If these spacings must be used, the DRC violations must be fixed manually by filling the void between the rows with the appropriate layer(s).

Process Technology: Introduction
TSMC CLN90G

Table 4 indicates which DRC violations to expect and how to correct them for a separation between rows of cells.

Table 4. Correcting DRC Violations

Row Separation in Number of Grids	Expected DRC Violations	Action to Correct DRC Violations
0 (Rows Abut)	None	None
1	NP/PP space < 0.24um	Draw NP/PP layer between rows to merge implant regions above and below row separation
2	NWELL space < 0.62 depending on the well bias up to 1.2um M1 space < 0.12 depending on the width of Metal up to 1.5um	Draw NWELL layer between rows to merge NWELL regions above and below row separation Draw Metal1 layer between rows to merge Metal1 regions above and below row separation
3	NWELL space < 0.62 depending on the well bias up to 1.2um	Draw NWELL layer between rows to merge NWELL regions above and below row separation
4	None	None
5 or more	None	None

Special Cells

This section discusses special cells in the Advantage library.

Antenna-Fix Cell

The library contains an antenna-fix cell which must be inserted manually. However, most place and route tools will indicate which nets require the antenna-fix cell. The TSMC antenna effect prevention guideline, "TSMC 90nm CMOS Logic Design Rule", specifies a maximum wire length. During place and route, the router may connect wires to the input gates of cells that are longer than the maximum length allowable by the guideline. The antenna cell can be used in this case to add an optional diode on the net close to the input gates which do not meet the guideline. Pin A on the antenna cell connects to a diode, reverse biased to ground. A diode can be added to either P or N.

Delay Cells

The library contains delay cells that have the same width. These delay cells allow you to adjust a given delay path with a simple cell substitution after place and route.

FILL Cells

The library contains several FILL cells: FILL1, FILL2, FILL4, FILL8, FILL16, FILL32, FILL64. The number appended to FILL in the cell name denotes the width of the cell in tracks.

TSMC CLN90G

During place and route, the FILL cells are used to connect power and ground rails across an area containing no cells. The FILL cells are also used to ensure gaps do not occur between well or implant layers which could cause design rule violations. Using wider cells where appropriate reduces the size of the layout database.

FILLCAP Cells

FILLCAPs function as FILL cells. Inside the FILLCAP, PMOS and NMOS devices form decoupling capacitors between the VDD and VSS rails, reducing ground bounce in the power grids. Figure 8 illustrates the FILLCAP functional schematic.

Figure 8. FILLCAP Functional Schematic

Low-Power (XL) Cells

The library contains a wide variety of cells, denoted by an "XL" suffix in the cell name, that are designed specifically for low-power applications. Input capacitance for the XL cells is much lower than that for corresponding X1 (1x drive strength) cells. Because XL cells have been designed for the sole purpose of reducing power consumption, output rise and fall times for these cells may not be equal, and due to the low-drive capability of the XL cells, these cells are not intended for use in critical timing paths, or to drive heavily loaded nets.

NWELL and Substrate Tie Cell

The library does not have well or substrate ties inside the cells. You are required to tie the NWELLS to Vdd and the substrate to Vss before place-and-route using the FILLTIE cell. Before place-and-route, pre-place the FILLTIE cell periodically in every placement row. You must place the FILLTIE cell as frequently as the design requires.

TSMC CLN90G

For example, if the design rules require a well or substrate connection every 20um, then the FILLTIE cell must be pre-placed every 20um. See Figure 9.

Figure 9. Sample Placement of FILLTIE Cells for 20um NWELL and Substrate Tie Design Rule

Note: The letter "F" indicates a FILLTIE cell placed in normal orientation, and the letter "F" flipped upside down indicates a FILLTIE cell placed in MY orientation.

In all rows except for the top and bottom rows, the NWELL and substrate are shared by two adjacent placement rows. This allows you to place the FILLTIE cell only half as frequently as the design rules require. But don't forget to stagger the placement in the adjacent rows by an amount equal to the design row.

Assuming that the rule is every 20um, you will need to place FILLTIE cells every 20um in the top and bottom rows. If you stagger the placement by 20um between adjacent rows, you can place FILLTIE cells every 40um for all rows between the top and bottom rows. This method will allow every row to have well and substrate ties every 20um.

Register File Cells

Register file cells (RF*) are provided to support creating very small memories from standard cells. The register file bit cells (RF1R1W, RF2R1W) have tri-state outputs. Users must tie these tri-state outputs together on a bit line and have this bit line drive function as an output buffer. The library contains a number of inverting and non-inverting buffers (INV*, BUF*, TRI*) that can buffer the bit lines.

It is possible to make a memory that has a non-power-of-two word depth. If this is employed, it is possible to input an address to the memory such that none of the bit cells are addressed and nothing is driving the bit line. A floating bit line can cause the logic following it to go into a high power state, therefore, users must take special care when designing a memory with a non-power-of-two word depth. Users must guarantee that the bit line is never allowed to float by ensuring that at least one bit cell is always driving the bit line, or that a floating bit line does not cause subsequent logic to go into a high power state. One way to achieve the latter is to use an output buffer with an enable. NAND or AND gates or tri-state output buffers (NAND*, AND*, TRI*) can be used for this purpose. Whichever is used, be sure to generate an enable signal that only enables the output buffer when the bit line is not floating.

Figure 10 shows a sample circuit for generating an enable signal when the bit line is not floating in a register file of up to 64 words.

TSMC CLN90G

The circuit in Figure 10 assumes the address lines are pre-decoded in pairs. The circuit is a comparator. Program it with the number of words in the memory. The circuit compares the address input of the memory to the pre-programmed number of words. When the address is less than or equal to the size of the memory, it generates an enable signal for the output buffers. When the address input is higher than the number of words in the memory, the output of the comparator is false and the outputs are disabled, which prevents them from going into a high power state.

To program the example comparator, connect predecoded address lines to gates I1, I2 and I3 if the address should be larger than the size of the memory when those signals are active, and more significant address bits have not resolved the comparison. If, when those signals are active, the address should not be larger than the size of the memory, either ground that pin or reduce the number of inputs to the gate. To enable the comparison of lower address bits, connect to gates I4 and I5 signals that signify that the higher address bits have not been able to resolve the comparison. To I4, connect the signal that is true when the most significant two address bits are exactly equal to what they are in the highest address that exists in the memory. To I5, connect the signals that are true when the most significant for bits are exactly equal to what they are in the highest address that exists in the memory.

Figure 11 shows an example for a memory that has 21 words.

TSMC CLN90G

Figure 11. 21-Word Memory Example **I**1 16 ra54[3] **I2** enable ra32[3] ra32[2] 14 ra54[2] ra10[3] 13 ra10[2] **I**5 ra10[1] ra32[1]

In binary mode, the highest address that exists in the memory is 100100. The read address RA[5:0] is pre-decoded into RA54[3:0] which are the four possible combinations of the two most significant address bits. RA32[3:0] is the four possible combinations of address bits 3 and 2. RA10[3:0] is the four possible combinations of address bits 1 and 0. If RA54[3] is true, we are accessing address 11XXXX in the memory. This address does not exist, so the comparison does not need to continue to the remaining address bits. Gate I1 needs only RA54[3] as an input because this is the only combination of these 2 address bits which is never in the memory. We connect RA54[2] to gate I4 because if this signal is true we don't know if the address exists and we have to continue the comparison to the next pair of addresses. To gate I2 we connect RA32[3] and RA32[2] because if RA54[2] is true and either of RA32[3] or RA32[2] are true, the address doesn't exist and we are done. If RA54[2] and RA32[1] are true, we are addressing word 1001XX which might be in the memory so we connect these two signals to I5 and check RA10. We connect RA10[3], RA10[2] and RA10[1] to I3 because of the memory addresses 1001XX, only 100100 exists in the memory. I6 generates the enable signal based on the results of all of the comparisons.

TIEHI/LO Cells

The library contains a TIEHI cell and a TIELO cell. The outputs of the TIEHI and TIELO cells are driven through diffusion to provide isolation from the power and ground rails for better ESD protection. The standard cell abstract methodology assumes that the TIEHI and TIELO cells are used to tie off any inputs to power and ground. If these cells are not used and the router is allowed to drop vias on the power rail, DRC errors or shorts may result.

Advantage Naming Convention

Reading the Datasheet

Please refer to the **sample** datasheet for DFF at the end of the introduction for the arrangement of each of the following datasheet sections. Datasheet titles reference standard Artisan cell names. Cell names for your specific library are reflected in the cell size table on each datasheet.

TSMC CLN90G

NOTE: This datasheet contains **sample** characterization values.

1. Base Cell Name

The cell name field contains the cell name. The datasheets are presented alphabetically by cell name. The cell name presented here is the base cell name. The Cell Size table displays cell names for your specific library.

2. Cell Description

The cell description gives the function of the cell. When applicable, the equation(s) for the output pins are provided.

3. Functions

The function table gives all possible combinations of input and output signals for the cell. Table 5 defines the symbols used in datasheet function tables.

Symbol Description

O Logic Low

1 Logic High

Low to High Transition

X Don't Care

IL Illegal/Undefined

Z High Impedance

Table 5. Functions Key

4. Logic Symbol

The logic symbol is a graphical representation of the cell, similar to the view in the schematic editor when the cell is instantiated. The symbol shows the name and location of the input and output pins.

5. Cell Size

This cell size table gives the height and width (µm) for each drive strength of the cell.

6. Functional Schematic

The functional schematic provides a functional representation of the cell.

7. Drive Strength

The drive strength of each cell is indicated by an "X" followed by the unit strength.

Process Technology: Introduction
TSMC CLN90G

8. AC Power

The AC power table shows the amount of energy consumed (μ W/MHz) within the cell when the corresponding pin changes state. The energy data for each drive strength of the cell in the **sample** DFF datasheet are calculated at 25°C, 1.0V, typical process, input slew of 0.018ns, and no external load at the output pins.

9. Delay

The delay table shows the intrinsic delay (ns) which is the delay through the cell when there is no load on the output, and the load multiplier for load dependent delay, K_{load} (ns/pF). The delays and load multiplier for each drive strength of the cell in the sample DFF datasheet are calculated at 25°C, 1.0V, typical process, and input slew of 0.018ns.

10. Timing Constraints

The timing constraints table in the **sample** DFF datasheet shows the timing conditions (ns) required at 25°C, 1.0V, and typical process to maintain proper functionality. Setup constraint values are measured for 0.018ns data slew and 0.018ns clock slew. Hold constraint values are measured for 0.018ns data slew and 0.018ns clock slew. Minimum pulse width is defined to be 0.83325ns for all set/reset pins and 0.83325ns for all clock pins. These are the largest minimum pulse widths measured from all the cells in the library.

11. Pin Capacitance

The pin capacitance table shows the typical loading at the input pins of the cell (pF) for each drive strength of the cell.

▼ This datasheet contains sample characterization values. ▼

Process Technology: CustomerName & Code

DFF

(II)

_	De.	Power (µW/MHz)					
(Z)—	Pin	×	X1	Χ2	X4		
	D	1.000	1.000	1.000	1,000		
	CK	2.000	2.000	2.000	2,000		
	Q	3.000	3.000	3.000	3,000		

Pi	n Capa	citance

De	Capacitance (pF)					
Pin	ЖL	X1	X2	X4		
D	1.000	1.000	1.000	1,000		
CK	2.000	2.000	2.000	2,000		

Delays at TypTemp°C, TypVoltV, Typical Process

Description	Intrinsic Delay (ns)				K _{koad} (ns/pF)			
Description	ЖL	X1	X2	X4	ХL	X1	X2	X4
CK → Q↑	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000
CK → Q↓	2.000	2.000	2.000	2,000	2.000	2.000	2.000	2.000
CK → QN↑	3.000	3.000	3.000	3,000	3.000	3.000	3.000	3.000
CK → QN↓	4.000	4.000	4.000	4,000	4.000	4.000	4.000	4.000

Timing Constraints at TypTemp*C, TypVoltV, Typical Process

Pin	Do surissem out	Interval (ns)			
	Requirement	ЖL	X1	X2	X4
	se t up↑ → CK	1.000	1.000	1.000	1,000
l _D	se t up↓ → CK	2.000	2.000	2.000	2,000
	hold↑ → CK	3.000	3.000	3.000	3,000
	hold↓ → CK	4.000	4.000	4.000	4,000
CK	minpwh	5.000	5.000	5.000	5,000
СК	minpwh	6.000	6.000	6.000	6,000

ARM Sample Standard Cell Library Databook, p. **85** Copyright 1993-2005 ARM Limited. A**I** Rights Reserved.

Cell Description

The ACCSHCIN cell provides a carry-select addercarry generation function with active-low carry inputs. The function produces the carryouts (CO0,CO1) of the operands (A,B) with active-low carry-ins (CI0N,CI1N). The outputs (CO0,CO1) are represented by the logic equations:

$$CO0 = (A \bullet B) + (A \bullet \overline{CI0N}) + (B \bullet CI0N)$$
$$CO1 = (A \bullet B) + (A \bullet \overline{CI1N}) + (B \bullet \overline{CI1N})$$

Function Table

Α	В	CION	CI1N	CO0	CO1
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	0	0
0	1	0	0	1	1
0	1	0	1	1	0
0	1	1	0	0	1
0	1	1	1	0	0
1	0	0	0	1	1
1	0	0	1	1	0
1	0	1	0	0	1
1	0	1	1	0	0
1	1	0	0	1	1
1	1	0	1	1	1
1	1	1	0	1	1
1	1	1	1	1	1

Logic Symbol

Cell Size

Drive Strength	Height (um)	Width (um)
ACCSHCINX2AD	2.52	9.52
ACCSHCINX4AD	2.52	9.52

Functional Schematic

AC Power

Pin	Power (uW/MHz)			
PIII	X2	X4		
Α	0.0256	0.0248		
В	0.0211	0.0204		
CION	0.0057	0.0055		
CI1N	0.0069	0.0067		

Pin Capacitance

Pin	Capacitance (pF)			
FIII	X2	Х4		
Α	0.0026	0.0026		
В	0.0061	0.0059		
CION	0.0025	0.0026		
CI1N	0.0026	0.0026		

Delays at 25°C,1.0V, Typical Process

Description			Intrinsic Delay (ns)		K _{load} (ns/pF)		
				X2	Х4	X2	X4
Α	\rightarrow	CO0	\uparrow	0.0869	0.0911	3.6849	3.6437
Α	\rightarrow	CO0	\downarrow	0.1058	0.1079	2.3553	2.3232
В	\rightarrow	CO0	\uparrow	0.0670	0.0675	3.5463	3.6034
В	\rightarrow	CO0	\downarrow	0.0734	0.0752	2.3148	2.3149
CION	\rightarrow	CO0	\uparrow	0.0258	0.0254	3.5162	3.5768
CION	\rightarrow	CO0	\downarrow	0.0176	0.0176	2.1170	2.1564
Α	\rightarrow	CO1	\uparrow	0.0959	0.0983	3.5792	3.5777
Α	\rightarrow	CO1	\downarrow	0.1114	0.1130	2.2461	2.2324
В	\rightarrow	CO1	\uparrow	0.0567	0.0597	3.5308	3.5604
В	\rightarrow	CO1	\downarrow	0.0704	0.0731	2.2281	2.2283
CI1N	\rightarrow	CO1	\uparrow	0.0312	0.0307	3.4730	3.5480
CI1N	\rightarrow	CO1	\downarrow	0.0214	0.0213	2.1531	2.1969

Cell Description

The ACCSHCON cell provides a carry-select addercarry generation function that produces active-low carryouts (CO0N,CO1N) of the operands (A,B) with carry-ins (CI0,CI1). The outputs (CO0N,CO1N) are represented by the logic equations:

$$CO0N = (\overline{A \bullet B}) + (A \bullet CI0) + (B \bullet CI0)$$

 $CO1N = (\overline{A \cdot B}) + (A \cdot C/1) + (B \cdot C/1)$

Function Table

Α	В	CI0	CI1	CO0N	CO1N
0	0	0	0	1	1
0	0	0	1	1	1
0	0	1	0	1	1
0	0	1	1	1	1
0	1	0	0	1	1
0	1	0	1	1	0
0	1	1	0	0	1
0	1	1	1	0	0
1	0	0	0	1	1
1	0	0	1	1	0
1	0	1	0	0	1
1	0	1	1	0	0
1	1	0	0	0	0
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	0	0

Logic Symbol

Cell Size

Drive Strength	Height (um)	Width (um)
ACCSHCONX2AD	2.52	8.68
ACCSHCONX4AD	2.52	10.36

Pin	Power (uW/MHz)			
F 1111	X2	X4		
Α	0.0238	0.0279		
В	0.0225	0.0263		
CI0	0.0060	0.0103		
CI1	0.0070	0.0110		

Pin Capacitance

Pin	Capacitance (pF)			
F III	X2	X4		
Α	0.0054	0.0055		
В	0.0079	0.0078		
CI0	0.0028	0.0054		
CI1	0.0028	0.0054		

Description			Intrinsic [Delay (ns)	K _{load} (ns/pF)	
				X2	Х4	X2	Х4
Α	\rightarrow	CO0N	\uparrow	0.1041	0.1240	3.0770	3.0841
Α	\rightarrow	CO0N	\downarrow	0.1013	0.1253	2.1918	2.0847
В	\rightarrow	CO0N	\uparrow	0.0817	0.1025	3.1345	3.0876
В	\rightarrow	CO0N	\downarrow	0.0808	0.1040	2.1952	2.0875
CI0	\rightarrow	CO0N	\uparrow	0.0255	0.0232	3.1922	1.5971
CI0	\rightarrow	CO0N	\downarrow	0.0172	0.0162	1.9279	0.9879
Α	\rightarrow	CO1N	\uparrow	0.1049	0.1238	3.0777	3.0331
Α	\rightarrow	CO1N	\downarrow	0.1010	0.1231	2.0916	2.0199
В	\rightarrow	CO1N	\uparrow	0.0835	0.1023	3.0501	3.0325
В	\rightarrow	CO1N	\downarrow	0.0798	0.1014	2.0915	2.0181
CI1	\rightarrow	CO1N	\uparrow	0.0309	0.0251	3.2016	1.6498
CI1	\rightarrow	CO1N	\downarrow	0.0210	0.0173	2.0071	1.0335

Cell Description

The ACCSIHCON cell provides a carry-select addercarry generation function for the first stage of a carry-select adder block (i.e., there are no carry-inputs). The function produces active-low carryouts (CO0N,CO1N) of the operands (A,B). The outputs (CO0N,CO1N) are represented by the logic equations:

 $CO0N = \overline{A \cdot B}$ $CO1N = \overline{A + B}$

Logic Symbol

Function Table

Α	В	CO0N	CO1N
0	0	1	1
0	1	1	0
1	0	1	0
1	1	0	0

Cell Size

Drive Strength	Height (um)	Width (um)
ACCSIHCONX2AD	2.52	1.96
ACCSIHCONX4AD	2.52	3.36

ACCSIHCON

Process Technology: TSMC CLN90G

AC Power

Pin	Power (uW/MH		
• •••	X2	X4	
Α	0.0046	0.0091	
В	0.0055	0.0109	

Pin Capacitance

Pin	Capacitance (pF		
F 1111	X2	X4	
Α	0.0044	0.0088	
В	0.0051	0.0098	

	Description			Intrinsic Delay (ns)		K _{load} (ns/pF)	
				X2	X4	X2	X4
Α	\rightarrow	CO0N	↑	0.0161	0.0159	2.4300	1.2174
Α	\rightarrow	CO0N	\downarrow	0.0136	0.0134	2.1881	1.0745
В	\rightarrow	CO0N	\uparrow	0.0135	0.0130	2.3673	1.2430
В	\rightarrow	CO0N	\downarrow	0.0126	0.0116	2.1891	1.0734
Α	\rightarrow	CO1N	↑	0.0201	0.0193	4.6923	2.4020
Α	\rightarrow	CO1N	\downarrow	0.0092	0.0087	1.2520	0.6188
В	\rightarrow	CO1N	\uparrow	0.0240	0.0247	4.6856	2.4016
В	\rightarrow	CO1N	\downarrow	0.0100	0.0101	1.2338	0.6178

Cell Description

The ACHCIN cell is a full adder carry-generator that provides the arithmetic carryout (CO) of two operands (A,B) with active low carry-in (CIN). The output (CO) is represented by the logic equation:

$$CO = (A \bullet B) + (A \bullet \overline{CIN}) + (B \bullet \overline{CIN})$$

Logic Symbol

Function Table

Α	В	CIN	СО
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Cell Size

Drive Strength	Height (um)	Width (um)
ACHCINX2AD	2.52	5.88
ACHCINX4AD	2.52	7.28

AC Power

Pin	Power (uW/MHz)			
F 1111	X2	X4		
Α	0.0165	0.0207		
В	0.0180	0.0212		
CIN	0.0062	0.0101		

Pin Capacitance

Pin	Capacitance (pF)			
F 1111	X2	X4		
Α	0.0028	0.0028		
В	0.0062	0.0068		
CIN	0.0028	0.0054		

Description				Intrinsic Delay (ns)		K _{load} (ns/pF)	
				X2	X4	X2	X4
Α	\rightarrow	СО	\uparrow	0.0710	0.0828	3.2741	3.2066
Α	\rightarrow	СО	\downarrow	0.0780	0.0933	2.0211	1.9436
В	\rightarrow	СО	\uparrow	0.0577	0.0653	3.1672	3.1676
В	\rightarrow	СО	\downarrow	0.0655	0.0721	1.9716	1.9347
CIN	\rightarrow	CO	\uparrow	0.0264	0.0222	3.0539	1.5608
CIN	\rightarrow	СО	\downarrow	0.0193	0.0168	1.9508	0.9932

Cell Description

The ACHCON cell is a full adder carry-generator that provides the arithmetic activelow carry-out (CON) of two operands (A,B) with carryin (CI). The output (CON) is represented by the logic equation:

$$CON = (\overline{A \cdot B}) + (A \cdot CI) + (B \cdot CI)$$

Function Table

Α	В	CI	CON
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Logic Symbol

Cell Size

Drive Strength	Height (um)	Width (um)
ACHCONX2AD	2.52	5.88
ACHCONX4AD	2.52	7.28

Pin	Power (uW/MHz)					
FIII	X2	X4				
Α	0.0183	0.0225				
В	0.0178	0.0206				
CI	0.0060	0.0099				

Pin Capacitance

Pin	Capacitance (pF)					
F 1111	X2	X4				
Α	0.0028	0.0028				
В	0.0085	0.0087				
CI	0.0028	0.0054				

Description				Intrinsic I	Delay (ns)	ay (ns) K _{load} (ns/p	
				X2	X4	X2	X4
Α	\rightarrow	CON	\uparrow	0.0922	0.1016	2.9962	3.0961
Α	\rightarrow	CON	\downarrow	0.0880	0.0961	1.9193	1.8771
В	\rightarrow	CON	\uparrow	0.0607	0.0651	3.0827	3.1401
В	\rightarrow	CON	\downarrow	0.0525	0.0602	1.9582	1.9104
CI	\rightarrow	CON	\uparrow	0.0263	0.0221	3.0541	1.5610
CI	\rightarrow	CON	\downarrow	0.0193	0.0169	1.9509	0.9938

ADDF

TSMC CLN90G

Cell Description

The ADDF cell provides the arithmetic sum (S) and carry out (CO) of two operands (A,B) with carry in (CI). The two outputs (S,CO) are represented by the logic equations:

$$S=(A\oplus B\oplus CI)$$

$$CO = (A \oplus B) \bullet CI + (A \bullet B)$$

Logic Symbol

Function Table

CI	Α	В	S	СО
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Cell Size

Drive Strength	Height (um)	Width (um)
ADDFXLAD	2.52	7.00
ADDFX1AD	2.52	7.00
ADDFX2AD	2.52	7.00
ADDFX4AD	2.52	7.84

Pin	Power (uW/MHz)					
F 1111	XL	X1	X2	X4		
Α	0.0157	0.0167	0.0203	0.0289		
В	0.0191	0.0204	0.0254	0.0342		
CI	0.0088	0.0099	0.0134	0.0228		

Pin Capacitance

Pin	Capacitance (pF)							
' '''	XL	X1	X2	X4				
Α	0.0026	0.0026	0.0029	0.0029				
В	0.0026	0.0026	0.0029	0.0028				
CI	0.0028	0.0028	0.0030	0.0030				

	Description Intrinsic Delay (ns) K _{load} (ns/pF)						ns/pF)				
				XL	X1	X2	Х4	XL	X1	X2	Х4
Α	\rightarrow	S	1	0.1087	0.1109	0.1117	0.1303	5.8192	3.9351	2.4221	1.2631
Α	\rightarrow	S	\downarrow	0.1440	0.1508	0.1443	0.1665	5.3573	3.5559	1.6019	0.8551
В	\rightarrow	S	\uparrow	0.1280	0.1302	0.1295	0.1447	5.8237	3.9358	2.4269	1.2704
В	\rightarrow	S	\downarrow	0.1617	0.1684	0.1621	0.1835	5.3596	3.5572	1.6024	0.8555
CI	\rightarrow	S	\uparrow	0.0836	0.0869	0.0896	0.1132	5.7551	3.9072	2.4174	1.2682
CI	\rightarrow	S	\downarrow	0.0722	0.0785	0.0776	0.0984	5.3400	3.5643	1.6142	0.8737
Α	\rightarrow	CO	1	0.1370	0.1412	0.1410	0.1664	5.6723	3.6599	2.3796	1.2338
Α	\rightarrow	CO	\downarrow	0.1290	0.1359	0.1335	0.1564	4.8817	3.3301	1.5020	0.8066
В	\rightarrow	CO	\uparrow	0.1546	0.1588	0.1586	0.1833	5.6726	3.6600	2.3795	1.2338
В	\rightarrow	CO	\downarrow	0.1482	0.1548	0.1513	0.1731	4.7228	3.2151	1.4218	0.7550
CI	\rightarrow	CO	\uparrow	0.0702	0.0742	0.0816	0.1046	5.7935	3.7254	2.4216	1.2583
CI	\rightarrow	СО	\downarrow	0.0851	0.0925	0.0923	0.1132	5.0882	3.4156	1.5334	0.8347

Cell Description

The ADDFH cell is a high-speed cell providing the arithmetic sum (S) and carry out (CO) of two operands (A,B) with carry in (CI). The two outputs (S,CO) are represented by the logic equations:

 $S = (A \oplus B \oplus CI)$

 $CO = (A \oplus B) \bullet CI + (A \bullet B)$

Logic Symbol

Function Table

CI	Α	В	S	СО
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Cell Size

Drive Strength	Height (um)	Width (um)
ADDFHXLAD	2.52	7.56
ADDFHX1AD	2.52	8.12
ADDFHX2AD	2.52	10.92
ADDFHX4AD	2.52	17.64

Pin	Power (uW/MHz)							
FIII	XL	X1	X2	X4				
Α	0.0173	0.0213	0.0356	0.0625				
В	0.0150	0.0190	0.0301	0.0554				
CI	0.0094	0.0114	0.0175	0.0347				

Pin Capacitance

Pin	Capacitance (pF)						
' '''	XL	X1	X2	X4			
Α	0.0026	0.0031	0.0051	0.0096			
В	0.0045	0.0062	0.0098	0.0176			
CI	0.0017	0.0020	0.0028	0.0053			

Description Intrinsic Delay					Delay (ns)			K _{load} (ns/pF)		
				XL	X1	X2	X4	XL	X1	X2	Х4
Α	\rightarrow	S	\uparrow	0.1310	0.1124	0.1064	0.0966	5.7388	3.7718	2.3602	1.2133
Α	\rightarrow	S	\downarrow	0.1353	0.1223	0.1145	0.1038	5.0258	3.2274	1.3672	0.6716
В	\rightarrow	S	\uparrow	0.0991	0.0841	0.0776	0.0781	5.7805	3.7662	2.3656	1.2161
В	\rightarrow	S	\downarrow	0.1168	0.1001	0.0892	0.0842	5.0320	3.2286	1.3766	0.6754
CI	\rightarrow	S	\uparrow	0.1061	0.0897	0.0817	0.0825	5.7712	3.7824	2.3663	1.2162
CI	\rightarrow	S	\downarrow	0.1125	0.0946	0.0813	0.0794	5.0784	3.2452	1.3837	0.6792
Α	\rightarrow	СО	\uparrow	0.1316	0.1127	0.1085	0.0966	5.7199	3.6483	2.4086	1.2205
Α	\rightarrow	СО	\downarrow	0.1361	0.1233	0.1146	0.1049	4.6623	3.1690	1.3926	0.6796
В	\rightarrow	CO	\uparrow	0.0888	0.0757	0.0702	0.0644	5.7318	3.6538	2.4076	1.2214
В	\rightarrow	СО	\downarrow	0.1109	0.0973	0.0876	0.0843	4.6668	3.1507	1.3622	0.6665
CI	\rightarrow	CO	\uparrow	0.0595	0.0506	0.0474	0.0453	5.7679	3.6675	2.4178	1.2245
CI	\rightarrow	СО	\downarrow	0.0802	0.0733	0.0665	0.0642	5.1100	3.3089	1.4421	0.7078

ADDH

TSMC CLN90G

Cell Description

The ADDH cell provides the arithmetic sum (S) and carry out (CO) of two operands (A,B). The two outputs (S,CO) are represented by the logic equations:

$$S = (\overline{A} {\bullet} B) + (A {\bullet} \overline{B})$$

$$CO = A \bullet B$$

Logic Symbol

Function Table

Α	В	S	СО
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Cell Size

Drive Strength	Height (um)	Width (um)
ADDHXLAD	2.52	4.20
ADDHX1AD	2.52	4.20
ADDHX2AD	2.52	4.48
ADDHX4AD	2.52	6.44

AC Power

Pin	Power (uW/MHz)							
	XL	X1	X2	X4				
Α	0.0076	0.0097	0.0159	0.0292				
В	0.0053	0.0062	0.0092	0.0169				

Pin Capacitance

Pin	Capacitance (pF)						
' '''	XL	X1	X2	X4			
Α	0.0020	0.0029	0.0049	0.0090			
В	0.0025	0.0026	0.0030	0.0050			

)esc	ription	on Intrinsic Delay (ns) K _{load} (ns/pl				ns/pF)				
				XL	X1	X2	Х4	XL	X1	X2	Х4
Α	\rightarrow	S	\uparrow	0.0587	0.0437	0.0397	0.0361	8.2875	5.9218	3.1220	1.6145
Α	\rightarrow	S	\downarrow	0.0693	0.0608	0.0451	0.0401	6.4560	4.7887	2.0006	1.0026
В	\rightarrow	S	\uparrow	0.0277	0.0257	0.0248	0.0242	8.3511	5.8995	3.1338	1.6168
В	\rightarrow	S	\downarrow	0.0315	0.0333	0.0358	0.0337	6.1078	4.5966	1.9011	0.9589
Α	\rightarrow	СО	\uparrow	0.0375	0.0426	0.0373	0.0366	5.4699	3.6088	2.3732	1.1819
Α	\rightarrow	СО	\downarrow	0.0501	0.0591	0.0478	0.0448	4.5946	3.1095	1.3138	0.6615
В	\rightarrow	СО	\uparrow	0.0375	0.0416	0.0367	0.0359	5.4858	3.6102	2.3732	1.1818
В	\rightarrow	СО	\downarrow	0.0463	0.0538	0.0434	0.0402	4.5853	3.0958	1.3068	0.6567

Cell Description

The AFCSHCIN cell provides a carry-select adder function that produces the arithmetic sum (S) and carryouts (CO0,CO1) of the operands (A,B) with active-low carry-ins (CI0N,CI1N). The three outputs (S,CO0,CO1) are represented by the logic equations:

$$S = CS \bullet (A \oplus B \oplus \overline{CI1N}) + \overline{CS} \bullet (A \oplus B \oplus \overline{CI0N})$$

$$CO0 = (A \bullet B) + (A \bullet \overline{CI0N}) + (B \bullet \overline{CI0N})$$

$$CO1 = (A \bullet B) + (A \bullet \overline{CI1N}) + (B \bullet \overline{CI1N})$$

Logic Symbol

Cell Size

Drive Strength	Height (um)	Width (um)
AFCSHCINX2AD	2.52	15.96
AFCSHCINX4AD	2.52	16.52

Function Table

Α	В	CION	CI1N	CS	S	CO0	CO1
0	0	0	0	0	1	0	0
0	0	0	0	1	1	0	0
0	0	0	1	0	1	0	0
0	0	0	1	1	0	0	0
0	0	1	0	0	0	0	0
0	0	1	0	1	1	0	0
0	0	1	1	0	0	0	0
0	0	1	1	1	0	0	0
0	1	0	0	0	0	1	1
0	1	0	0	1	0	1	1
0	1	0	1	0	0	1	0
0	1	0	1	1	1	1	0
0	1	1	0	0	1	0	1
0	1	1	0	1	0	0	1
0	1	1	1	0	1	0	0
0	1	1	1	1	1	0	0

Function Table (Cont'd.)

Α	В	CION	CI1N	CS	S	CO0	CO1
1	0	0	0	0	0	1	1
1	0	0	0	1	0	1	1
1	0	0	1	0	0	1	0
1	0	0	1	1	1	1	0
1	0	1	0	0	1	0	1
1	0	1	0	1	0	0	1
1	0	1	1	0	1	0	0
1	0	1	1	1	1	0	0
1	1	0	0	0	1	1	1
1	1	0	0	1	1	1	1
1	1	0	1	0	1	1	1
1	1	0	1	1	0	1	1
1	1	1	0	0	0	1	1
1	1	1	0	1	1	1	1
1	1	1	1	0	0	1	1
1	1	1	1	1	0	1	1

Pin	Power (uW/MHz)			
FIII	X2	X4		
CS	0.0102	0.0103		
Α	0.0427	0.0431		
В	0.0383	0.0385		
CION	0.0202	0.0228		
CI1N	0.0210	0.0226		

Pin Capacitance

Pin	Capacitance (pF)				
FIII	X2	X4			
CS	0.0019	0.0019			
Α	0.0029	0.0029			
В	0.0061	0.0061			
CION	0.0048	0.0077			
CI1N	0.0052	0.0070			

Description			Intrinsic Delay (ns)		K _{load} (ns/pF)		
				X2	X4	X2	X4
CS	\rightarrow	S	\uparrow	0.0854	0.0859	2.3430	2.3160
CS	\rightarrow	S	\downarrow	0.0783	0.0818	1.3896	1.3149
Α	\rightarrow	S	\uparrow	0.2243	0.2268	2.3470	2.3171
Α	\rightarrow	S	\downarrow	0.2196	0.2209	1.3981	1.3156
В	\rightarrow	S	\uparrow	0.1870	0.1888	2.3469	2.3171
В	\rightarrow	S	\downarrow	0.1874	0.1892	1.3983	1.3157
CION	\rightarrow	S	\uparrow	0.1412	0.1400	2.3471	2.3173
CION	\rightarrow	S	\downarrow	0.1410	0.1364	1.3978	1.3155
CI1N	\rightarrow	S	\uparrow	0.1179	0.1190	2.3318	2.3115
CI1N	\rightarrow	S	\downarrow	0.1190	0.1235	1.3895	1.3149
Α	\rightarrow	CO0	\uparrow	0.1021	0.1062	3.5675	3.4651
Α	\rightarrow	CO0	\downarrow	0.1223	0.1275	2.4040	2.2991
В	\rightarrow	CO0	\uparrow	0.0794	0.0837	3.4953	3.4306
В	\rightarrow	CO0	\downarrow	0.0866	0.0905	2.3759	2.2922
CION	\rightarrow	CO0	\uparrow	0.0290	0.0234	3.1579	2.2844
CION	\rightarrow	CO0	\downarrow	0.0193	0.0176	1.8740	1.5127
Α	\rightarrow	CO1	\uparrow	0.0994	0.1048	3.6272	3.5137
Α	\rightarrow	CO1	\downarrow	0.1283	0.1328	2.4449	2.3482
В	\rightarrow	CO1	\uparrow	0.0680	0.0716	3.5735	3.4958
В	\rightarrow	CO1	\downarrow	0.0870	0.0911	2.4313	2.3428
CI1N	\rightarrow	CO1	\uparrow	0.0282	0.0229	3.1809	2.3947
CI1N	\rightarrow	CO1	\downarrow	0.0191	0.0147	1.9345	1.4635

Cell Description

The AFCSHCON cell provides a carry-select adder function that produces the arithmetic sum (S) and active-low carryouts (CO0N,CO1N) of two operands (A,B) with carry-ins (Cl0,Cl1). The three outputs (S,CO0N,CO1N) are represented by the logic equations:

$$S = CS \bullet (A \oplus B \oplus C/1) + \overline{CS} \bullet (A \oplus B \oplus C/0)$$

$$CO0N = \overline{(A \bullet B) + (A \bullet C/0) + (B \bullet C/0)}$$

$$CO1N = \overline{(A \bullet B) + (A \bullet C/1) + (B \bullet C/1)}$$

Logic Symbol

Cell Size

Drive Strength	Height (um)	Width (um)
AFCSHCONX2AD	2.52	15.12
AFCSHCONX4AD	2.52	16.24

Function Table

Α	В	CI0	CI1	CS	S	CO0N	CO1N
0	0	0	0	0	0	1	1
0	0	0	0	1	0	1	1
0	0	0	1	0	0	1	1
0	0	0	1	1	1	1	1
0	0	1	0	0	1	1	1
0	0	1	0	1	0	1	1
0	0	1	1	0	1	1	1
0	0	1	1	1	1	1	1
0	1	0	0	0	1	1	1
0	1	0	0	1	1	1	1
0	1	0	1	0	1	1	0
0	1	0	1	1	0	1	0
0	1	1	0	0	0	0	1
0	1	1	0	1	1	0	1
0	1	1	1	0	0	0	0
0	1	1	1	1	0	0	0

Function Table (Cont'd.)

Α	В	CI0	CI1	CS	S	CO0N	CO1N
1	0	0	0	0	1	1	1
1	0	0	0	1	1	1	1
1	0	0	1	0	1	1	0
1	0	0	1	1	0	1	0
1	0	1	0	0	0	0	1
1	0	1	0	1	1	0	1
1	0	1	1	0	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	0	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	0	0	0	0
1	1	0	1	1	1	0	0
1	1	1	0	0	1	0	0
1	1	1	0	1	0	0	0
1	1	1	1	0	1	0	0
1	1	1	1	1	1	0	0

Pin	Power (uW/MHz)				
F III	X2	X4			
CS	0.0101	0.0105			
Α	0.0402	0.0415			
В	0.0400	0.0413			
CI0	0.0182	0.0240			
CI1	0.0192	0.0227			

Pin Capacitance

Pin	Capacitance (pF)				
FIII	X2	X4			
CS	0.0040	0.0039			
Α	0.0052	0.0052			
В	0.0066	0.0066			
CI0	0.0048	0.0106			
CI1	0.0055	0.0094			

Description			Intrinsic [Delay (ns)	K _{load} (ns/pF)	
				X2	X4	X2	X4
CS	\rightarrow	S	\uparrow	0.0823	0.0815	2.3398	2.3166
CS	\rightarrow	S	\downarrow	0.0797	0.0825	1.3929	1.3153
Α	\rightarrow	S	\uparrow	0.2525	0.2571	2.3432	2.3178
Α	\rightarrow	S	\downarrow	0.2403	0.2447	1.4028	1.3177
В	\rightarrow	S	\uparrow	0.2399	0.2444	2.3436	2.3177
В	\rightarrow	S	\downarrow	0.2279	0.2321	1.4028	1.3177
CI0	\rightarrow	S	\uparrow	0.1369	0.1353	2.3435	2.3181
CI0	\rightarrow	S	\downarrow	0.1375	0.1302	1.4012	1.3167
CI1	\rightarrow	S	\uparrow	0.1161	0.1136	2.3326	2.3141
CI1	\rightarrow	S	\downarrow	0.1202	0.1177	1.3930	1.3153
Α	\rightarrow	CO0N	\uparrow	0.1061	0.1106	3.1739	2.9343
Α	\rightarrow	CO0N	\downarrow	0.1356	0.1436	2.1610	1.9994
В	\rightarrow	CO0N	\uparrow	0.0981	0.0991	3.5831	2.9286
В	\rightarrow	CO0N	\downarrow	0.1229	0.1308	2.1594	1.9986
CI0	\rightarrow	CO0N	\uparrow	0.0266	0.0188	3.6054	2.6694
CI0	\rightarrow	CO0N	\downarrow	0.0195	0.0173	2.1792	1.7381
Α	\rightarrow	CO1N	\uparrow	0.1197	0.1259	3.7483	3.0819
Α	\rightarrow	CO1N	\downarrow	0.1389	0.1467	2.1118	1.9548
В	\rightarrow	CO1N	\uparrow	0.0928	0.0986	3.3079	2.9564
В	\rightarrow	CO1N	\downarrow	0.1262	0.1339	2.1095	1.9534
CI1	\rightarrow	CO1N	\uparrow	0.0259	0.0217	3.6559	3.0457
CI1	\rightarrow	CO1N	\downarrow	0.0196	0.0168	2.3472	1.9635

Process Technology: TSMC CLN90G

Cell Description

The AFCSIHCON cell provides a carry-select adder function for the initial stage of carry-select adder block. The function produces the arithmetic sum (S) and activelow carryouts (CO0N,CO1N) of two operands (A,B). The three outputs (S,CO0N,CO1N) are represented by the logic equations:

 $S = A \oplus B \oplus CS$

 $CO0N = \overline{A \bullet B}$

 $CO1N = \overline{A + B}$

Function Table

Α	В	CS	S	CO0N	CO1N
0	0	0	0	1	1
0	0	1	1	1	1
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	1	0	0

Logic Symbol

Cell Size

Drive Strength	Height (um)	Width (um)
AFCSIHCONX2AD	2.52	6.16
AFCSIHCONX4AD	2.52	7.56

Pin	Power (uW/MHz)				
F 111	X2	X4			
Α	0.0188	0.0230			
В	0.0186	0.0234			
CS	0.0091	0.0094			

Pin Capacitance

Pin	Capacitance (pF)			
F 1111	X2	X4		
Α	0.0065	0.0107		
В	0.0081	0.0123		
CS	0.0040	0.0039		

	Desc	ription		Intrinsic Delay (ns)		K _{load} (ns/pF)
			X2	Х4	X2	X4	
Α	\rightarrow	S	\uparrow	0.1339	0.1356	2.3414	2.3176
Α	\rightarrow	S	\downarrow	0.1468	0.1565	1.6762	1.4740
В	\rightarrow	S	\uparrow	0.1245	0.1263	2.4169	2.3473
В	\rightarrow	S	\downarrow	0.1442	0.1464	1.4149	1.3716
CS	\rightarrow	S	\uparrow	0.0754	0.0760	2.3357	2.3159
CS	\rightarrow	S	\downarrow	0.0656	0.0739	1.6414	1.4583
Α	\rightarrow	CO0N	\uparrow	0.0154	0.0143	3.1323	1.5846
Α	\rightarrow	CO0N	\downarrow	0.0129	0.0113	2.4264	1.1604
В	\rightarrow	CO0N	\uparrow	0.0190	0.0175	3.2209	1.5729
В	\rightarrow	CO0N	\downarrow	0.0139	0.0126	2.4251	1.1603
Α	\rightarrow	CO1N	\uparrow	0.0195	0.0200	4.8953	2.3665
Α	\rightarrow	CO1N	\downarrow	0.0102	0.0115	1.6107	0.7781
В	\rightarrow	CO1N	\uparrow	0.0249	0.0234	4.8949	2.3641
В	\rightarrow	CO1N	\downarrow	0.0120	0.0114	1.6080	0.7856

Cell Description

The AFHCIN cell is a full adder that provides the arithmetic sum (S) and carry-out (CO) of two operands (A,B) with active-low carry-in (CIN). The outputs (S,CO) are represented by the logic equations:

$$S = A \oplus B \oplus \overline{CIN}$$

$$CO = (A \bullet B) + (A \bullet \overline{CIN}) + (B \bullet \overline{CIN})$$

Function Table

Α	В	CIN	S	СО
0	0	0	1	0
0	0	1	0	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	1
1	1	1	0	1

Logic Symbol

Cell Size

Drive Strength	Height (um)	Width (um)
AFHCINX2AD	2.52	8.96
AFHCINX4AD	2.52	11.48

Pin	Power (uW/MHz)				
FIII	X2	X4			
Α	0.0252	0.0331			
В	0.0260	0.0365			
CIN	0.0177	0.0273			

Pin Capacitance

Pin	Capacitance (pF)			
F	X2	X4		
Α	0.0028	0.0028		
В	0.0068	0.0071		
CIN	0.0053	0.0104		

Description				Intrinsic Delay (ns)		K _{load} (ns/pF)	
				X2	X4	X2	X4
Α	\rightarrow	S	\uparrow	0.1234	0.1509	2.4852	2.5184
Α	\rightarrow	S	\downarrow	0.1344	0.1592	1.4496	1.3383
В	\rightarrow	S	\uparrow	0.0977	0.1299	2.4904	2.5212
В	\rightarrow	S	\downarrow	0.1065	0.1218	1.4504	1.3359
CIN	\rightarrow	S	\uparrow	0.0679	0.0677	2.4789	2.5149
CIN	\rightarrow	S	\downarrow	0.0744	0.0801	1.4528	1.3402
Α	\rightarrow	CO	\uparrow	0.0761	0.0879	3.3926	2.5526
Α	\rightarrow	CO	\downarrow	0.0931	0.1094	2.1475	1.5223
В	\rightarrow	CO	\uparrow	0.0622	0.0720	3.2532	2.5060
В	\rightarrow	CO	\downarrow	0.0783	0.0910	2.1064	1.4865
CIN	\rightarrow	СО	\uparrow	0.0264	0.0245	2.9965	1.5609
CIN	\rightarrow	СО	\downarrow	0.0209	0.0194	1.9644	0.9502

Cell Description

The AFHCON cell is a full adder that provides the arithmetic sum (S) and active-low carry-out (CON) of two operands (A,B) with carry-in (CI). The outputs (S,CON) are represented by the logic equations:

$$S = A \oplus B \oplus CI$$

$$CON = \overline{(A \cdot B) + (A \cdot CI) + (B \cdot CI)}$$

Function Table

Α	В	CI	S	CON
0	0	0	0	1
0	0	1	1	1
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	0

Logic Symbol

Cell Size

Drive Strength	Height (um)	Width (um)
AFHCONX2AD	2.52	8.96
AFHCONX4AD	2.52	9.52

Pin	Power (uW/MHz)				
F 1111	X2	X4			
Α	0.0252	0.0276			
В	0.0236	0.0254			
CI	0.0175	0.0214			

Pin Capacitance

Pin	Capacit	ance (pF)
F 1111	X2	X4
Α	0.0028	0.0028
В	0.0082	0.0082
CI	0.0052	0.0077

Description				Intrinsic Delay (ns)		K _{load} (ns/pF)
				X2	X4	X2	X4
Α	\rightarrow	S	\uparrow	0.1143	0.1199	2.4767	2.5004
Α	\rightarrow	S	\downarrow	0.1289	0.1364	1.4393	1.3512
В	\rightarrow	S	\uparrow	0.0842	0.0888	2.4781	2.5011
В	\rightarrow	S	\downarrow	0.0981	0.1052	1.4395	1.3496
CI	\rightarrow	S	\uparrow	0.0660	0.0684	2.4695	2.4959
CI	\rightarrow	S	\downarrow	0.0744	0.0780	1.4424	1.3514
Α	\rightarrow	CON	\uparrow	0.1018	0.1107	3.1498	3.2007
Α	\rightarrow	CON	\downarrow	0.0889	0.1011	2.0319	2.0226
В	\rightarrow	CON	\uparrow	0.0731	0.0823	3.2075	3.2312
В	\rightarrow	CON	\downarrow	0.0588	0.0701	2.0674	2.0471
CI	\rightarrow	CON	\uparrow	0.0285	0.0233	3.1658	1.6292
CI	\rightarrow	CON	\downarrow	0.0211	0.0176	2.0701	1.0041

Cell Description

The AHCSHCIN cell provides a carry-select halfadder function that produces the arithmetic sum (S) and carryout (CO) of a single operand (A) with activelow carry-in (CIN). The outputs (S,CO) are represented by the following equations:

$$S = CS \bullet (A \oplus \overline{CIN}) + (\overline{CS} \bullet (A)$$
$$CO = A \bullet \overline{CIN}$$

Function Table

Α	CIN	CS	S	СО
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	1	0
1	1	1	1	0

Logic Symbol

Cell Size

Drive Strength	Height (um)	Width (um)
AHCSHCINX2AD	2.52	5.32
AHCSHCINX4AD	2.52	6.16

Pin	Power (uW/MHz)			
F 1111	X2	X4		
CS	0.0091	0.0095		
Α	0.0177	0.0211		
CIN	0.0164	0.0192		

Pin Capacitance

Pin	Capacitance (pF)			
F 1111	X2	X4		
CS	0.0039	0.0039		
Α	0.0029	0.0029		
CIN	0.0073	0.0095		

Description				Intrinsic Delay (ns)		K _{load} (ns/pF)
				X2	X4	X2	X4
CS	\rightarrow	S	\uparrow	0.0592	0.0611	2.3290	2.2994
CS	\rightarrow	S	\downarrow	0.0633	0.0697	1.5527	1.3871
Α	\rightarrow	S	\uparrow	0.1052	0.1160	2.3672	2.3135
Α	\rightarrow	S	\downarrow	0.1282	0.1383	1.5728	1.3957
CIN	\rightarrow	S	\uparrow	0.0976	0.0989	2.3662	2.3128
CIN	\rightarrow	S	\downarrow	0.0955	0.1016	1.5718	1.3953
Α	\rightarrow	CO	\uparrow	0.0470	0.0508	4.7435	2.4135
Α	\rightarrow	CO	\downarrow	0.0640	0.0717	1.7134	0.8732
CIN	\rightarrow	СО	\uparrow	0.0188	0.0177	4.7483	2.4116
CIN	\rightarrow	СО	\downarrow	0.0102	0.0096	1.5874	0.7827

Cell Description

The AHCSHCON cell provides a carry-select halfadder function that produces the arithmetic sum (S) and active-low carryout (CON) of a single operand (A) with carry-in (CI). The outputs (S,CON) are represented by the following equations:

$$S = CS \bullet (A \oplus CI) + \overline{CS} \bullet (A)$$
$$CON = \overline{A \bullet CI}$$

Function Table

Α	C	cs	Ø	CON
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	0
1	1	1	0	0

Logic Symbol

Cell Size

Drive Strength	Height (um)	Width (um)
AHCSHCONX2AD	2.52	5.32
AHCSHCONX4AD	2.52	6.16

Pin	Power (uW/MHz)				
F 1111	X2	X4			
CS	0.0088	0.0089			
Α	0.0173	0.0208			
CI	0.0130	0.0147			

Pin Capacitance

Pin	Capacitance (pF)			
• •••	X2	X4		
CS	0.0040	0.0039		
Α	0.0048	0.0075		
CI	0.0061	0.0074		

Description				Intrinsic Delay (ns)		K _{load} (ns/pF)	
				X2	X4	X2	X4
CS	\rightarrow	S	\uparrow	0.0593	0.0600	2.3269	2.3229
CS	\rightarrow	S	\downarrow	0.0637	0.0692	1.5677	1.3989
Α	\rightarrow	S	\uparrow	0.0947	0.0969	2.3670	2.3376
Α	\rightarrow	S	\downarrow	0.1286	0.1348	1.5883	1.4083
CI	\rightarrow	S	\uparrow	0.0778	0.0791	2.3540	2.3322
CI	\rightarrow	S	\downarrow	0.1238	0.1298	1.5880	1.4082
Α	\rightarrow	CON	\uparrow	0.0190	0.0185	3.2460	1.6097
Α	\rightarrow	CON	\downarrow	0.0126	0.0125	2.0815	1.0775
CI	\rightarrow	CON	\uparrow	0.0152	0.0146	3.1436	1.6470
CI	\rightarrow	CON	\downarrow	0.0112	0.0107	2.0797	1.0767

Cell Description

The AHHCIN cell is a half adder that provides the arithmetic sum (S) and carry-out (CO) of the input operand (A) with an active-low carry-in (CIN). The outputs (S,CO) are represented by the logic equations:

 $S=A\oplus \overline{CIN}$

 $CO = A \bullet \overline{CIN}$

Logic Symbol

Function Table

Α	CIN	S	СО
0	0	1	0
0	1	0	0
1	0	0	1
1	1	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
AHHCINX2AD	2.52	4.20
AHHCINX4AD	2.52	5.04

Pin	Power (uW/MHz)	
' '''	X2 X4		
Α	0.0134	0.0167	
CIN	0.0119	0.0159	

Pin Capacitance

Pin	Capacitance (pF)				
• •••	X2 X4				
Α	0.0050				
CIN	0.0069	0.0091			

Description				Intrinsic Delay (ns)		K _{load} (ns/pF)	
				X2	X4	X2	X4
Α	\rightarrow	S	\uparrow	0.0423	0.0419	3.1028	3.1697
Α	\rightarrow	S	\downarrow	0.0457	0.0464	1.8556	1.8478
CIN	\rightarrow	S	\uparrow	0.0278	0.0272	3.1190	3.1770
CIN	\rightarrow	S	\downarrow	0.0395	0.0385	1.7044	1.7435
Α	\rightarrow	CO	\uparrow	0.0356	0.0331	4.5661	2.3632
Α	\rightarrow	CO	\downarrow	0.0392	0.0348	1.3007	0.6406
CIN	\rightarrow	СО	\uparrow	0.0244	0.0245	4.5601	2.3619
CIN	\rightarrow	СО	\downarrow	0.0101	0.0100	1.2518	0.6303

Cell Description

The AHHCON cell is a half adder that provides the arithmetic sum (S) and active-low carry-out (CON) of the input operand (A) with carry-in (CI). The outputs (S,CON) are represented by the logic equations:

 $S = A \oplus CI$ $CON = \overline{A \bullet CI}$

Function Table

Α	CI	S	CON
0	0	0	1
0	1	1	1
1	0	1	1
1	1	0	0

Logic Symbol

Cell Size

Drive Strength	Height (um)	Width (um)	
AHHCONX2AD	2.52	3.64	
AHHCONX4AD	2.52	6.16	

Pin	Power (uW/MHz)			
' '''	X2	X4		
Α	0.0134	0.0263		
CI	0.0083	0.0156		

Pin Capacitance

Pin	Capacitance (pl				
' '''	X2 X4				
Α	0.0051	0.0107			
CI	0.0071	0.0134			

Description				Intrinsic Delay (ns)		K _{load} (ns/pF)	
				X2	X4	X2	X4
Α	\rightarrow	S	\uparrow	0.0386	0.0381	3.2182	1.6287
Α	\rightarrow	S	\downarrow	0.0465	0.0441	1.9975	1.0149
CI	\rightarrow	S	\uparrow	0.0267	0.0259	3.1247	1.6316
CI	\rightarrow	S	\downarrow	0.0379	0.0356	1.8962	0.9696
Α	\rightarrow	CON	\uparrow	0.0164	0.0167	2.4630	1.2388
Α	\rightarrow	CON	\downarrow	0.0138	0.0141	2.1839	1.1040
CI	\rightarrow	CON	\uparrow	0.0136	0.0140	2.3883	1.2184
CI	\rightarrow	CON	\downarrow	0.0127	0.0129	2.1836	1.1046

Cell Description

The AND2 cell provides the logical AND of two inputs (A,B). The output (Y) is represented by the logic equation:

$$Y = (A \bullet B)$$

Logic Symbol

Function Table

Α	В	Υ
0	Х	0
Х	0	0
1	1	1

Cell Size

Drive Strength	Height (um)	Width (um)
AND2XLAD	2.52	1.40
AND2X1AD	2.52	1.40
AND2X2AD	2.52	1.40
AND2X4AD	2.52	2.24
AND2X6AD	2.52	2.80
AND2X8AD	2.52	3.92

AC Power

Pin	Power (uW/MHz)							
F 1111	XL	X1	X2	X4	Х6	X8		
Α	0.0025	0.0030	0.0045	0.0081	0.0120	0.0161		
В	0.0029	0.0034	0.0052	0.0093	0.0139	0.0185		

Pin Capacitance

Pin	Capacitance (pF)							
	XL X1 X2 X4 X6							
Α	0.0011	0.0011	0.0015	0.0028	0.0038	0.0054		
В	0.0012	0.0012	0.0016	0.0029	0.0042	0.0053		

Delays at 25°C,1.0V, Typical Process

Description	Intrinsic Delay (ns)							
	XL	X1	X2	X4	X6	X8		
$A \rightarrow Y \uparrow$	0.0385	0.0410	0.0363	0.0343	0.0321	0.0337		
$A \rightarrow Y \downarrow$	0.0453	0.0518	0.0434	0.0403	0.0409	0.0401		
$B \to Y \uparrow$	0.0410	0.0434	0.0384	0.0359	0.0342	0.0353		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0516	0.0583	0.0494	0.0447	0.0453	0.0459		

Delays at 25°C,1.0V, Typical Process (Cont'd.)

Description		K _{load} (ns/pF)							
				XL	X1	X2	X4	Х6	X8
Α	\rightarrow	Υ	\uparrow	5.5692	3.5431	2.3392	1.1785	0.8130	0.6063
Α	\rightarrow	Υ	\downarrow	4.0904	3.0837	1.3115	0.6491	0.4338	0.3225
В	\rightarrow	Υ	\uparrow	5.5705	3.5432	2.3391	1.1784	0.8131	0.6064
В	\rightarrow	Υ	\downarrow	4.1269	3.1015	1.3208	0.6523	0.4354	0.3254

Cell Description

The AND3 cell provides the logical AND of three inputs (A,B,C). The output (Y) is represented by the logic equation:

 $Y = (A \bullet B \bullet C)$

Logic Symbol

Function Table

Α	В	С	Υ
0	Х	Х	0
Х	0	Х	0
Х	Х	0	0
1	1	1	1

Cell Size

Drive Strength	Height (um)	Width (um)
AND3XLAD	2.52	1.68
AND3X1AD	2.52	1.68
AND3X2AD	2.52	1.68
AND3X4AD	2.52	3.08
AND3X6AD	2.52	3.64
AND3X8AD	2.52	5.04

AC Power

Pin	Power (uW/MHz)							
PIII	XL	X1	X2	X4	X6	X8		
Α	0.0028	0.0034	0.0051	0.0091	0.0131	0.0180		
В	0.0032	0.0038	0.0058	0.0106	0.0154	0.0209		
С	0.0036	0.0043	0.0066	0.0122	0.0179	0.0239		

Pin Capacitance

Pin	Capacitance (pF)							
F 1111	XL	X1	X2	X4	X6	X8		
Α	0.0010	0.0011	0.0016	0.0029	0.0041	0.0064		
В	0.0011	0.0012	0.0016	0.0031	0.0044	0.0060		
С	0.0012	0.0013	0.0017	0.0037	0.0048	0.0060		

Delays at 25°C,1.0V, Typical Process

Description		Intrinsic Delay (ns)						
	ΧI	L X1	X2	X4	X6	X8		
$A \rightarrow Y$	0.05	553 0.051°	0.0445	0.0407	0.0378	0.0390		
$A \rightarrow Y$	0.05	558 0.0620	0.0495	0.0462	0.0449	0.0445		
$B \rightarrow Y$	0.05	0.0545	0.0479	0.0442	0.0416	0.0422		
$B \to Y$.	0.05	0.0678	0.0568	0.0517	0.0511	0.0507		
$C \rightarrow Y$	0.06	0.0575	0.0503	0.0470	0.0439	0.0440		
$C \rightarrow Y$	0.06	641 0.0744	0.0627	0.0565	0.0563	0.0561		

Delays at 25°C,1.0V, Typical Process (Cont'd.)

D	escri	iptio	n	K _{load} (ns/pF)					
				XL	X1	X2	Х4	Х6	X8
Α	\rightarrow	Υ	\uparrow	5.7379	3.5973	2.3571	1.2143	0.8231	0.6163
Α	\rightarrow	Υ	\downarrow	4.2338	3.1332	1.3282	0.6571	0.4324	0.3252
В	\rightarrow	Υ	\uparrow	5.7379	3.5974	2.3567	1.2147	0.8231	0.6161
В	\rightarrow	Υ	\downarrow	4.2429	3.1525	1.3443	0.6616	0.4353	0.3283
С	\rightarrow	Υ	\uparrow	5.7392	3.5976	2.3569	1.2146	0.8228	0.6160
С	\rightarrow	Υ	\downarrow	4.2789	3.1712	1.3544	0.6639	0.4380	0.3315

Cell Description

The AND4 cell provides the logical AND of four inputs (A,B,C,D). The output (Y) is represented by the logic equation:

 $Y = (A \bullet B \bullet C \bullet D)$

Logic Symbol

Function Table

Α	В	С	D	Υ
0	Х	Х	Х	0
Х	0	Х	Х	0
Х	Х	0	Х	0
Х	Х	Х	0	0
1	1	1	1	1

Cell Size

Drive Strength	Height (um)	Width (um)
AND4XLAD	2.52	2.24
AND4X1AD	2.52	2.24
AND4X2AD	2.52	2.24
AND4X4AD	2.52	3.64
AND4X6AD	2.52	5.04
AND4X8AD	2.52	6.44

AC Power

Pin		Power (uW/MHz)							
	XL	X1	X2	X4	Х6	X8			
Α	0.0030	0.0036	0.0054	0.0094	0.0149	0.0195			
В	0.0034	0.0042	0.0064	0.0113	0.0174	0.0228			
С	0.0038	0.0048	0.0074	0.0130	0.0200	0.0264			
D	0.0042	0.0053	0.0083	0.0149	0.0229	0.0303			

Pin Capacitance

Pin	Capacitance (pF)							
F 111	XL	X1	X2	X4	X6	X8		
Α	0.0010	0.0011	0.0017	0.0031	0.0056	0.0068		
В	0.0011	0.0012	0.0017	0.0035	0.0054	0.0069		
С	0.0010	0.0012	0.0017	0.0035	0.0052	0.0072		
D	0.0013	0.0014	0.0019	0.0039	0.0057	0.0079		

Description		Intrinsic Delay (ns)						
	XL	X1	X2	X4	Х6	X8		
$A \rightarrow Y \uparrow$	0.0677	0.0559	0.0495	0.0439	0.0474	0.0468		
$A \rightarrow Y \downarrow$	0.0550	0.0629	0.0528	0.0468	0.0515	0.0498		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0729	0.0612	0.0546	0.0498	0.0525	0.0520		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0596	0.0698	0.0613	0.0556	0.0571	0.0551		
$C \rightarrow Y \uparrow$	0.0760	0.0644	0.0579	0.0530	0.0560	0.0556		
$C \rightarrow Y \downarrow$	0.0636	0.0759	0.0676	0.0617	0.0647	0.0631		
$D \rightarrow Y \uparrow$	0.0821	0.0694	0.0615	0.0557	0.0589	0.0586		
$D \rightarrow Y \downarrow$	0.0718	0.0863	0.0739	0.0680	0.0706	0.0688		

AND4

TSMC CLN90G

Delays at 25°C,1.0V, Typical Process (Cont'd.)

De	escri	ptic	n		K _{load} (ns/pF)							
				XL	X1	X2	Х4	Х6	X8			
Α	\rightarrow	Υ	\uparrow	6.0336	3.7468	2.3770	1.2254	0.8311	0.6287			
Α	\rightarrow	Υ	\downarrow	4.2179	3.1227	1.3356	0.6567	0.4461	0.3313			
В	\rightarrow	Υ	\uparrow	6.0338	3.7466	2.3768	1.2254	0.8309	0.6287			
В	\rightarrow	Υ	\downarrow	4.2529	3.1447	1.3540	0.6651	0.4483	0.3329			
С	\rightarrow	Υ	↑	6.0332	3.7461	2.3764	1.2255	0.8309	0.6286			
С	\rightarrow	Υ	\downarrow	4.2921	3.1695	1.3680	0.6721	0.4544	0.3376			
D	\rightarrow	Υ	↑	6.0351	3.7467	2.3760	1.2256	0.8310	0.6288			
D	\rightarrow	Υ	\downarrow	4.3471	3.2024	1.3786	0.6790	0.4582	0.3404			

Cell Description

The AO21 cell provides the logical OR of one AND group and an additional input. The output (Y) is represented by the logic equation:

$$\mathsf{Y} = (A0 \bullet A1) + \overline{B0}$$

Logic Symbol

Function Table

A0	A 1	В0	Υ
0	Х	0	0
Х	0	0	0
Х	х	1	1
1	1	Х	1

Cell Size

Drive Strength	Height (um)	Width (um)
AO21XLAD	2.52	1.96
AO21X1AD	2.52	1.96
AO21X2AD	2.52	1.96
AO21X4AD	2.52	2.52

Pin	Power (uW/MHz)					
F	XL	X1	X2	X4		
A0	0.0031	0.0037	0.0056	0.0106		
A1	0.0034	0.0040	0.0062	0.0117		
В0	0.0031	0.0037	0.0057	0.0104		

Pin Capacitance

Pin	Capacitance (pF)				
' '''	XL	X1	X2	X4	
A0	0.0010	0.0011	0.0016	0.0027	
A1	0.0009	0.0010	0.0015	0.0026	
В0	0.0011	0.0012	0.0016	0.0026	

Description	Intrinsic Delay (ns)				K _{load} (ns/pF)		
	XL	X1	X2	Х4	XL	X1	X2	Х4
$A0 \rightarrow Y \uparrow$	0.0438	0.0483	0.0431	0.0422	5.5962	3.6085	2.3198	1.1862
A0 \rightarrow Y \downarrow	0.0930	0.0886	0.0717	0.0662	4.9181	3.2536	1.3976	0.6804
A1 \rightarrow Y \uparrow	0.0449	0.0494	0.0445	0.0436	5.5979	3.6090	2.3200	1.1864
A1 \rightarrow Y \downarrow	0.0991	0.0930	0.0766	0.0715	4.9467	3.2620	1.4029	0.6843
$B0 \rightarrow Y \uparrow$	0.0291	0.0301	0.0329	0.0308	5.4545	3.5237	2.2978	1.1758
$B0 \rightarrow Y \downarrow$	0.0871	0.0816	0.0674	0.0626	4.9484	3.2624	1.4031	0.6842

Cell Description

The AO22 cell provides the logical OR of two AND groups. The output (Y) is represented by the logic equation:

$$\mathsf{Y} = (A0 {\bullet} A1) + (B0 {\bullet} B1)$$

Logic Symbol

Function Table

A0	A 1	В0	B1	Υ
0	Х	0	Х	0
0	х	Х	0	0
Х	0	0	х	0
Х	0	Х	0	0
х	Х	1	1	1
1	1	Х	Х	1

Cell Size

Drive Strength	Height (um)	Width (um)
AO22XLAD	2.52	2.24
AO22X1AD	2.52	2.24
AO22X2AD	2.52	2.52
AO22X4AD	2.52	2.80

Pin	Power (uW/MHz)					
• •••	XL	X1	X2	X4		
A0	0.0035	0.0040	0.0063	0.0112		
A1	0.0039	0.0045	0.0070	0.0124		
В0	0.0040	0.0044	0.0073	0.0129		
B1	0.0043	0.0048	0.0079	0.0140		

Pin Capacitance

Pin	Capacitance (pF)					
' '''	XL	X1	X2	X4		
A0	0.0011	0.0011	0.0017	0.0028		
A1	0.0012	0.0011	0.0017	0.0028		
В0	0.0010	0.0011	0.0017	0.0027		
B1	0.0009	0.0009	0.0015	0.0026		

Description		Intrinsic Delay (ns)			K _{load} (ns/pF)			
	XL	X1	X2	X4	XL	X1	X2	Х4
A0 → Y ↑	0.0442	0.0446	0.0410	0.0403	5.6054	3.5536	2.3125	1.1807
A0 \rightarrow Y \downarrow	0.0980	0.1029	0.0774	0.0670	5.1417	3.4369	1.4479	0.6984
A1 \rightarrow Y \uparrow	0.0467	0.0469	0.0432	0.0420	5.6063	3.5539	2.3117	1.1806
A1 \rightarrow Y \downarrow	0.1084	0.1121	0.0847	0.0730	5.1899	3.4541	1.4572	0.7027
B0 \rightarrow Y \uparrow	0.0507	0.0531	0.0485	0.0483	5.6948	3.6080	2.3282	1.1884
B0 \rightarrow Y \downarrow	0.1150	0.1263	0.0928	0.0805	5.1503	3.4449	1.4510	0.6995
B1 → Y ↑	0.0519	0.0541	0.0502	0.0499	5.6958	3.6084	2.3284	1.1884
$B1 \rightarrow Y \downarrow$	0.1212	0.1307	0.0977	0.0852	5.1915	3.4553	1.4572	0.7025

Cell Description

The AO2B2 cell provides the logical OR of two AND groups consisting of two inputs each: (A0,A1N) and (B0,B1). The output (Y) is represented by the logic equation:

$$\mathsf{Y} = (A0 \bullet \overline{A1N}) + (B0 \bullet B1)$$

Logic Symbol

Function Table

A0	A1N	B0	B1	Υ
1	0	Х	Х	1
Х	Х	1	1	1
0	Х	0	Х	0
Х	1	0	Х	0
0	Х	Х	0	0
Х	1	Х	0	0

Cell Size

Drive Strength	Height (um)	Width (um)
AO2B2XLAD	2.52	2.80
AO2B2X1AD	2.52	2.80
AO2B2X2AD	2.52	2.80
AO2B2X4AD	2.52	3.08

AC Power

Pin	Power (uW/MHz)						
F	XL	X1	X2	X4			
A0	0.0035	0.0043	0.0063	0.0113			
A1N	0.0041	0.0048	0.0072	0.0128			
В0	0.0041	0.0048	0.0073	0.0133			
B1	0.0044	0.0052	0.0078	0.0144			

Pin Capacitance

Pin	Capacitance (pF)						
	XL	X1	X2	X4			
A0	0.0008	0.0007	0.0011	0.0018			
A1N	0.0009	0.0009	0.0012	0.0014			
В0	0.0010	0.0010	0.0016	0.0028			
B1	0.0009	0.0009	0.0015	0.0026			

De	scrip	tion)		Intrinsic [Delay (ns)		K _{load} (ns/pF)			
				XL	X1	X2	Х4	XL	X1	X2	Х4
A0	\rightarrow	Υ	\uparrow	0.0466	0.0484	0.0436	0.0426	5.7152	3.6390	2.3326	1.1949
A0	\rightarrow	Υ	\downarrow	0.0989	0.1122	0.0772	0.0692	5.2846	3.5529	1.4664	0.7110
A1N	\rightarrow	Υ	\uparrow	0.0774	0.0795	0.0744	0.0770	5.7191	3.6405	2.3330	1.1952
A1N	\rightarrow	Υ	\downarrow	0.1193	0.1328	0.0959	0.0925	5.3279	3.5721	1.4748	0.7149
В0	\rightarrow	Υ	\uparrow	0.0543	0.0575	0.0522	0.0506	5.8194	3.6987	2.3515	1.2018
В0	\rightarrow	Υ	\downarrow	0.1245	0.1383	0.0945	0.0843	5.3073	3.5667	1.4720	0.7121
B1	\rightarrow	Υ	\uparrow	0.0554	0.0586	0.0536	0.0521	5.8195	3.6988	2.3519	1.2017
B1	\rightarrow	Υ	\downarrow	0.1287	0.1422	0.0984	0.0886	5.3257	3.5725	1.4748	0.7150

Cell Description

The AO2B2B cell provides the logical OR of two AND groups consisting of two inputs each: (A0,A1N) and (B0,B1N). The output (Y) is represented by the logic equation:

$$Y = (A0 \bullet \overline{A1N}) + (B0 \bullet \overline{B1N})$$

Logic Symbol

Function Table

A0	A1N	В0	B1N	Υ
0	Х	0	Х	0
0	Х	Х	1	0
Х	1	0	Х	0
Х	1	Х	1	0
Х	Х	1	0	1
1	0	Х	Х	1

Cell Size

Drive Strength	Height (um)	Width (um)
AO2B2BXLAD	2.52	3.36
AO2B2BX1AD	2.52	3.36
AO2B2BX2AD	2.52	3.36
AO2B2BX4AD	2.52	3.92

Pin	Power (uW/MHz)						
F 1111	XL	X1	X2	X4			
A0	0.0035	0.0043	0.0064	0.0113			
A1N	0.0040	0.0048	0.0073	0.0128			
B0	0.0041	0.0049	0.0074	0.0132			
B1N	0.0046	0.0051	0.0079	0.0144			

Pin Capacitance

Pin	Capacitance (pF)						
	XL	X1	X2	X4			
A0	0.0012	0.0012	0.0017	0.0028			
A1N	0.0009	0.0009	0.0012	0.0014			
В0	0.0010	0.0011	0.0016	0.0027			
B1N	0.0011	0.0011	0.0014	0.0014			

De	scrip	tion)		Intrinsic Delay (ns)			Delay (ns) K _{load} (ns/pF)			
				XL	X1	X2	X4	XL	X1	X2	Х4
A0	\rightarrow	Υ	\uparrow	0.0462	0.0495	0.0449	0.0427	5.7121	3.6468	2.3300	1.1989
A0	\rightarrow	Υ	\downarrow	0.0978	0.1122	0.0780	0.0693	5.2752	3.5489	1.4682	0.7105
A1N	\rightarrow	Υ	\uparrow	0.0770	0.0804	0.0754	0.0764	5.7164	3.6487	2.3303	1.1995
A1N	\rightarrow	Υ	\downarrow	0.1182	0.1321	0.0962	0.0923	5.3132	3.5669	1.4753	0.7153
В0	\rightarrow	Υ	\uparrow	0.0531	0.0562	0.0519	0.0501	5.8102	3.6928	2.3460	1.2055
В0	\rightarrow	Υ	\downarrow	0.1234	0.1367	0.0947	0.0847	5.2869	3.5582	1.4710	0.7127
B1N	\rightarrow	Υ	\uparrow	0.0833	0.0866	0.0812	0.0815	5.8084	3.6927	2.3457	1.2053
B1N	\rightarrow	Υ	\downarrow	0.1405	0.1535	0.1105	0.1059	5.3115	3.5656	1.4750	0.7152

Cell Description

The AOI21 cell provides the logical inverted OR of one AND group and an additional input. The output (Y) is represented by the logic equation:

$$\mathsf{Y} = \overline{(A0 \bullet A1) + B0}$$

Logic Symbol

Function Table

A0	A 1	В0	Υ
0	х	0	1
Х	0	0	1
Х	х	1	0
1	1	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
AOI21XLAD	2.52	1.40
AOI21X1AD	2.52	1.40
AOI21X2AD	2.52	1.68
AOI21X3AD	2.52	2.52
AOI21X4AD	2.52	2.52
AOI21X6AD	2.52	3.64
AOI21X8AD	2.52	4.76

AC Power

Pin	Power (uW/MHz)							
F III	XL	X1	X2	Х3	X4	X6	X8	
A0	0.0021	0.0029	0.0048	0.0076	0.0097	0.0143	0.0186	
A1	0.0024	0.0033	0.0058	0.0090	0.0116	0.0173	0.0227	
В0	0.0019	0.0025	0.0045	0.0070	0.0091	0.0134	0.0175	

Pin Capacitance

Pin	Capacitance (pF)							
F	XL	X1	X2	Х3	X4	X6	X8	
A0	0.0013	0.0017	0.0028	0.0045	0.0057	0.0082	0.0107	
A1	0.0012	0.0016	0.0026	0.0039	0.0051	0.0079	0.0108	
В0	0.0014	0.0018	0.0029	0.0042	0.0054	0.0080	0.0106	

Delays at 25°C,1.0V, Typical Process

Description			n	Intrinsic Delay (ns)							
				XL	X1	X2	Х3	Х4	X6	X8	
A0	\rightarrow	Υ	\uparrow	0.0327	0.0280	0.0299	0.0313	0.0302	0.0302	0.0298	
A0	\rightarrow	Υ	\downarrow	0.0246	0.0234	0.0168	0.0171	0.0167	0.0163	0.0158	
A1	\rightarrow	Υ	\uparrow	0.0355	0.0316	0.0348	0.0369	0.0357	0.0362	0.0356	
A1	\rightarrow	Υ	\downarrow	0.0257	0.0249	0.0183	0.0181	0.0179	0.0177	0.0173	
В0	\rightarrow	Υ	\uparrow	0.0247	0.0232	0.0263	0.0278	0.0267	0.0271	0.0263	
В0	\rightarrow	Υ	\downarrow	0.0121	0.0118	0.0094	0.0096	0.0094	0.0092	0.0090	

Delays at 25°C,1.0V, Typical Process (Cont'd.)

Description			n	K _{load} (ns/pF)							
				XL	X1	X2	Х3	X4	Х6	X8	
A0	\rightarrow	Υ	\uparrow	11.1263	7.1799	4.6694	3.1927	2.3786	1.6267	1.2442	
A0	\rightarrow	Υ	\downarrow	7.5210	5.2208	2.1937	1.4543	1.1001	0.7254	0.5407	
A1	\rightarrow	Υ	\uparrow	10.8644	7.2361	4.6068	3.2411	2.4092	1.6306	1.2298	
A1	\rightarrow	Υ	\downarrow	7.5198	5.2199	2.1940	1.4536	1.1000	0.7257	0.5407	
В0	\rightarrow	Υ	\uparrow	10.9815	7.2592	4.6199	3.2498	2.4157	1.6341	1.2329	
В0	\rightarrow	Υ	\downarrow	4.2469	2.9573	1.2333	0.8275	0.6287	0.4106	0.3088	

Cell Description

The AOI211 cell provides the logical inverted OR of one AND group and two additional inputs. The output (Y) is represented by the logic equation:

$$Y = \overline{(A0 \bullet A1) + B0 + C0}$$

Logic Symbol

Function Table

A0	A1	В0	C0	Υ
0	Х	0	0	1
Х	0	0	0	1
Х	х	х	1	0
Х	х	1	х	0
1	1	Х	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
AOI211XLAD	2.52	1.68
AOI211X1AD	2.52	1.68
AOI211X2AD	2.52	1.68
AOI211X4AD	2.52	3.08

Pin	Power (uW/MHz)							
FIII	XL	X1	X2	X4				
A0	0.0031	0.0042	0.0065	0.0131				
A1	0.0034	0.0045	0.0074	0.0150				
В0	0.0024	0.0031	0.0053	0.0106				
C0	0.0028	0.0037	0.0062	0.0126				

Pin Capacitance

Pin	Capacitance (pF)							
F III	XL	X1	X2	X4				
A0	0.0015	0.0018	0.0028	0.0057				
A1	0.0013	0.0016	0.0026	0.0050				
В0	0.0014	0.0018	0.0028	0.0053				
C0	0.0014	0.0018	0.0028	0.0056				

Description	Intrinsic Delay (ns)				K _{load} (ns/pF)			
	XL	X1	X2	X4	XL	X1	X2	Х4
A0 \rightarrow Y \uparrow	0.0590	0.0512	0.0524	0.0531	16.9944	10.9478	7.0691	3.6022
A0 \rightarrow Y \downarrow	0.0273	0.0290	0.0194	0.0191	6.9768	5.2699	2.2168	1.1106
A1 \rightarrow Y \uparrow	0.0637	0.0553	0.0597	0.0612	16.7753	10.8096	6.9850	3.6323
A1 \rightarrow Y \downarrow	0.0283	0.0302	0.0208	0.0202	6.9772	5.2678	2.2169	1.1103
$B0 \rightarrow Y \uparrow$	0.0458	0.0372	0.0421	0.0413	16.8713	10.8451	7.0059	3.6410
$B0 \rightarrow Y \downarrow$	0.0147	0.0135	0.0106	0.0101	4.2229	2.9449	1.2547	0.6120
$C0 \rightarrow Y \uparrow$	0.0561	0.0474	0.0528	0.0539	16.8159	10.8342	6.9995	3.6397
$C0 \rightarrow Y \downarrow$	0.0163	0.0154	0.0118	0.0116	4.1679	2.9055	1.2381	0.6195

Cell Description

The AOI21B cell provides the logical inverted OR of one AND group and an additional input. The output (Y) is represented by the logic equation:

$$Y = \overline{(A0 \bullet A1) + \overline{B0N}}$$

Logic Symbol

Function Table

A0	A 1	B0N	Υ
Х	х	0	0
Х	0	1	1
0	х	1	1
1	1	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
AOI21BXLAD	2.52	2.24
AOI21BX1AD	2.52	2.24
AOI21BX2AD	2.52	2.24
AOI21BX4AD	2.52	2.52

AC Power

Pin	Power (uW/MHz)							
	XL	X1	X2	X4				
A0	0.0041	0.0045	0.0063	0.0101				
A1	0.0038	0.0042	0.0059	0.0096				
B0N	0.0024	0.0029	0.0045	0.0082				

Pin Capacitance

Pin	Capacitance (pF)						
	XL	X1	X2	X4			
A0	0.0011	0.0011	0.0013	0.0014			
A1	0.0011	0.0011	0.0014	0.0014			
B0N	0.0010	0.0011	0.0015	0.0024			

Description			l	Intrinsic Delay (ns)				K _{load} (ns/pF)			
				XL	X1	X2	X4	XL	X1	X2	Х4
A0	\rightarrow	Υ	\uparrow	0.0825	0.0847	0.0764	0.0790	5.7390	3.6257	2.3488	1.2113
A0	\rightarrow	Υ	\downarrow	0.0791	0.0835	0.0698	0.0707	4.6533	3.1920	1.3552	0.6613
A1	\rightarrow	Υ	\uparrow	0.0761	0.0782	0.0704	0.0732	5.7370	3.6250	2.3491	1.2115
A1	\rightarrow	Υ	\downarrow	0.0778	0.0822	0.0685	0.0697	4.6543	3.1923	1.3550	0.6612
B0N	\rightarrow	Υ	1	0.0396	0.0416	0.0393	0.0391	5.7316	3.6231	2.3487	1.2117
B0N	\rightarrow	Υ	\downarrow	0.0538	0.0574	0.0478	0.0440	4.6732	3.1993	1.3583	0.6610

Cell Description

The AOI22 cell provides the logical inverted OR of two AND groups. The output (Y) is represented by the logic equation:

$$\mathsf{Y} = (\overline{A0 \bullet A1) + (B0 \bullet B1)}$$

Logic Symbol

Function Table

A0	A 1	В0	B1	Υ
0	Х	0	Х	1
0	х	Х	0	1
Х	0	0	Х	1
Х	0	Х	0	1
Х	х	1	1	0
1	1	Х	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
AOI22XLAD	2.52	1.68
AOI22X1AD	2.52	1.96
AOI22X2AD	2.52	1.96
AOI22X4AD	2.52	3.36

Pin	Power (uW/MHz)						
FIII	XL	X1	X2	X4			
A0	0.0021	0.0029	0.0049	0.0097			
A1	0.0025	0.0034	0.0059	0.0118			
В0	0.0028	0.0041	0.0066	0.0130			
B1	0.0031	0.0045	0.0075	0.0151			

Pin Capacitance

Pin		nce (pF)			
' '''	XL	X1	X2	X4	
A0	0.0013	0.0018	0.0028	0.0054	
A1	0.0014	0.0019	0.0029	0.0057	
В0	0.0013	0.0017	0.0027	0.0053	
B1	0.0012	0.0016	0.0026	0.0055	

Description		Intrinsic Delay (ns)			K _{load} (ns/pF)			
	XL	X1	X2	Х4	XL	X1	X2	Х4
A0 → Y ↑	0.0272	0.0263	0.0293	0.0298	11.1903	7.3190	4.7210	2.4224
$A0 \rightarrow Y \downarrow$	0.0200	0.0200	0.0145	0.0142	7.4150	5.1712	2.1957	1.0821
A1 \rightarrow Y \uparrow	0.0317	0.0302	0.0346	0.0355	11.0075	7.2376	4.6679	2.3965
A1 \rightarrow Y \downarrow	0.0223	0.0224	0.0165	0.0160	7.4227	5.1740	2.1964	1.0823
$B0 \rightarrow Y \uparrow$	0.0458	0.0403	0.0425	0.0426	11.1856	7.3171	4.7301	2.4281
$B0 \rightarrow Y \downarrow$	0.0340	0.0326	0.0217	0.0211	7.4898	5.1882	2.1930	1.0835
B1 → Y ↑	0.0481	0.0428	0.0468	0.0480	10.8696	7.1858	4.6433	2.3915
$B1 \rightarrow Y \downarrow$	0.0354	0.0341	0.0233	0.0228	7.4905	5.1885	2.1923	1.0840

Cell Description

The AOI221 cell provides the logical inverted OR of two AND groups and a third input. The output (Y) is represented by the logic equation:

$$Y = \overline{(A0 \bullet A1) + (B0 \bullet B1) + C0}$$

Logic Symbol

Function Table

A0	A 1	В0	B1	C0	Υ
0	х	0	х	0	1
0	х	Х	0	0	1
Х	0	0	х	0	1
Х	0	Х	0	0	1
Х	х	Х	х	1	0
Х	Х	1	1	Х	0
1	1	Х	Х	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
AOI221XLAD	2.52	2.24
AOI221X1AD	2.52	2.52
AOI221X2AD	2.52	2.52
AOI221X4AD	2.52	4.48

Pin		ıW/MHz)		
F 1111	XL	X1	X2	X4
A0	0.0030	0.0042	0.0070	0.0130
A1	0.0032	0.0046	0.0079	0.0151
В0	0.0037	0.0053	0.0085	0.0160
B1	0.0040	0.0057	0.0095	0.0181
C0	0.0027	0.0037	0.0068	0.0126

Pin Capacitance

Pin	Capacitance (pF)					
' '''	XL	X1	X2	X4		
A0	0.0014	0.0017	0.0027	0.0051		
A1	0.0013	0.0017	0.0027	0.0052		
В0	0.0013	0.0017	0.0026	0.0051		
B1	0.0012	0.0016	0.0026	0.0054		
C0	0.0015	0.0018	0.0029	0.0054		

Description		Intrinsic Delay (ns)			K _{load} (ns/pF)			
	XL	X1	X2	Х4	XL	X1	X2	Х4
A0 \rightarrow Y \uparrow	0.0618	0.0557	0.0613	0.0578	16.0378	10.6465	6.8794	3.5894
A0 \rightarrow Y \downarrow	0.0292	0.0283	0.0200	0.0181	7.3567	5.1072	2.1702	1.0731
A1 \rightarrow Y \uparrow	0.0681	0.0618	0.0699	0.0655	16.2762	10.7286	6.9288	3.5455
A1 \rightarrow Y \downarrow	0.0304	0.0300	0.0214	0.0195	7.3554	5.1069	2.1701	1.0732
$B0 \rightarrow Y \uparrow$	0.0738	0.0672	0.0716	0.0688	16.2973	10.7517	6.9419	3.5954
$B0 \rightarrow Y \downarrow$	0.0339	0.0343	0.0222	0.0203	7.7062	5.2994	2.2356	1.1111
$B1 \ \to \ Y \ \uparrow$	0.0793	0.0719	0.0796	0.0767	16.2673	10.7266	6.9287	3.5351
$ B1 \rightarrow Y \downarrow $	0.0352	0.0354	0.0237	0.0220	7.7092	5.2992	2.2358	1.1113
$C0 \rightarrow Y \uparrow$	0.0448	0.0411	0.0509	0.0468	16.3506	10.7574	6.9454	3.5515
$C0 \rightarrow Y \downarrow$	0.0143	0.0138	0.0111	0.0102	4.2477	2.9411	1.2561	0.6196

Cell Description

The AOI222 cell provides the logical inverted OR of three AND groups. The output (Y) is represented by the logic equation:

$$\mathsf{Y} = (\overline{A0 {\bullet} A1) + (B0 {\bullet} B1) + (C0 {\bullet} C1)}$$

Logic Symbol

Function Table

A0	A 1	В0	B1	C0	C1	Υ
0	х	0	х	0	Х	1
0	Х	0	Х	Х	0	1
0	х	х	0	0	Х	1
0	х	х	0	х	0	1
Х	0	0	Х	0	Х	1
Х	0	0	х	х	0	1
Х	0	х	0	0	Х	1
Х	0	Х	0	Х	0	1
Х	х	х	х	1	1	0
Х	Х	1	1	х	Х	0
1	1	Х	Х	Х	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
AOI222XLAD	2.52	2.52
AOI222X1AD	2.52	2.80
AOI222X2AD	2.52	2.80
AOI222X4AD	2.52	5.04

Pin	Power (uW/MHz)					
F	XL	X1	X2	X4		
A0	0.0030	0.0041	0.0072	0.0137		
A1	0.0034	0.0046	0.0081	0.0157		
В0	0.0037	0.0052	0.0087	0.0167		
B1	0.0040	0.0057	0.0096	0.0188		
C0	0.0045	0.0064	0.0103	0.0198		
C1	0.0048	0.0068	0.0112	0.0218		

Pin Capacitance

Pin	Capacitance (pF)					
FIII	XL	X1	X2	X4		
A0	0.0013	0.0018	0.0028	0.0053		
A1	0.0014	0.0018	0.0028	0.0057		
В0	0.0013	0.0017	0.0028	0.0053		
B1	0.0013	0.0018	0.0026	0.0055		
C0	0.0013	0.0017	0.0027	0.0052		
C1	0.0013	0.0017	0.0027	0.0055		

Description		Intrinsic Delay (ns)			K _{load} (ns/pF)			
	XL	X1	X2	X4	XL	X1	X2	Х4
$A0 \rightarrow Y \uparrow$	0.0468	0.0446	0.0531	0.0524	16.3026	10.7263	6.9614	3.5936
$A0 \rightarrow Y \downarrow$	0.0246	0.0242	0.0171	0.0164	7.3999	5.1599	2.1825	1.0846
A1 \rightarrow Y \uparrow	0.0539	0.0501	0.0610	0.0610	16.0661	10.6454	6.9067	3.5605
A1 \rightarrow Y \downarrow	0.0273	0.0264	0.0190	0.0182	7.4088	5.1619	2.1830	1.0847
$B0 \rightarrow Y \uparrow$	0.0840	0.0739	0.0802	0.0782	16.3114	10.7604	6.9986	3.5963
$B0 \rightarrow Y \downarrow$	0.0392	0.0372	0.0245	0.0234	7.3363	5.0958	2.1520	1.0729
$B1 \rightarrow Y \uparrow$	0.0878	0.0780	0.0868	0.0861	15.9723	10.5898	6.8937	3.5607
$B1 \rightarrow Y \downarrow$	0.0406	0.0386	0.0258	0.0249	7.3350	5.0954	2.1519	1.0729
$C0 \rightarrow Y \uparrow$	0.0943	0.0834	0.0891	0.0894	16.0862	10.6839	6.9150	3.6070
$C0 \rightarrow Y \downarrow$	0.0477	0.0459	0.0289	0.0274	7.6339	5.2745	2.2229	1.1044
C1 → Y ↑	0.0998	0.0884	0.0972	0.0969	16.0773	10.6406	6.9047	3.5486
$C1 \rightarrow Y \downarrow$	0.0491	0.0475	0.0304	0.0292	7.6366	5.2740	2.2228	1.1045

Cell Description

The AOI2B1 cell provides the logical inverted OR of one AND group and an additional input. The output (Y) is represented by the logic equation:

$$Y = \overline{(A0 \bullet \overline{A1N}) + B0}$$

Logic Symbol

Function Table

A0	A1N	В0	Υ
0	Х	0	1
Х	1	0	1
Х	Х	1	0
1	0	х	0

Cell Size

Drive Strength	Height (um)	Width (um)
AOI2B1XLAD	2.52	1.96
AOI2B1X1AD	2.52	1.96
AOI2B1X2AD	2.52	2.24
AOI2B1X4AD	2.52	3.36

Pin	Power (uW/MHz)					
F	XL	X1	X2	X4		
A0	0.0022	0.0030	0.0047	0.0095		
A1N	0.0027	0.0033	0.0057	0.0119		
В0	0.0019	0.0025	0.0045	0.0092		

Pin Capacitance

Pin	Capacitance (pF)				
' '''	XL	X1	X2	X4	
A0	0.0013	0.0017	0.0028	0.0056	
A1N	0.0011	0.0011	0.0014	0.0023	
В0	0.0014	0.0018	0.0029	0.0054	

De	scrip	tion	l	Intrinsic Delay (ns)			K _{load} (ns/pF)				
			•	XL	X1	X2	X4	XL	X1	X2	X4
A0	\rightarrow	Υ	\uparrow	0.0317	0.0282	0.0298	0.0304	11.1242	7.1688	4.6700	2.3797
A0	\rightarrow	Υ	\downarrow	0.0235	0.0232	0.0165	0.0166	7.3574	5.1431	2.1734	1.1014
A1N	\rightarrow	Υ	\uparrow	0.0481	0.0468	0.0522	0.0542	10.9068	7.1698	4.6061	2.4163
A1N	\rightarrow	Υ	\downarrow	0.0565	0.0597	0.0488	0.0475	7.3752	5.1567	2.1817	1.1050
В0	\rightarrow	Υ	\uparrow	0.0258	0.0230	0.0260	0.0266	10.9859	7.1972	4.6226	2.4239
В0	\rightarrow	Υ	\downarrow	0.0122	0.0117	0.0095	0.0093	4.2112	2.9402	1.2561	0.6285

Cell Description

The AOI2BB1 cell provides the logical inverted OR of one AND group of two inverted inputs (A0N,A1N) and an additional non-inverted input (B0). The output (Y) is represented by the logic equation:

$$Y = (\overline{A0N} \bullet \overline{A1N}) + B0$$

Logic Symbol

Function Table

A0N	A1N	В0	Υ
1	Х	0	1
Х	1	0	1
Х	Х	1	0
0	0	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
AOI2BB1XLAD	2.52	1.68
AOI2BB1X1AD	2.52	1.68
AOI2BB1X2AD	2.52	1.68
AOI2BB1X4AD	2.52	2.52

Pin		ıW/MHz)		
' '''	XL	X1	X2	X4
AON	0.0029	0.0035	0.0051	0.0091
A1N	0.0033	0.0038	0.0055	0.0100
В0	0.0018	0.0025	0.0041	0.0085

Pin Capacitance

Pin	Capacitance (pF)					
' ""	XL	X1	X2	X4		
A0N	0.0012	0.0012	0.0015	0.0026		
A1N	0.0013	0.0013	0.0015	0.0025		
B0	0.0012	0.0016	0.0027	0.0056		

Description		Intrinsic Delay (ns)			K _{load} (ns/pF)						
				XL	X1	X2	Х4	XL	X1	X2	Х4
A0N	\rightarrow	Υ	\uparrow	0.0396	0.0387	0.0407	0.0380	11.3306	7.2055	4.6340	2.3900
A0N	\rightarrow	Υ	\downarrow	0.0601	0.0673	0.0643	0.0586	4.6658	3.2091	1.3881	0.6793
A1N	\rightarrow	Υ	\uparrow	0.0412	0.0405	0.0424	0.0398	11.3410	7.2058	4.6359	2.3895
A1N	\rightarrow	Υ	\downarrow	0.0650	0.0724	0.0690	0.0633	4.6652	3.2088	1.3880	0.6794
В0	\rightarrow	Υ	1	0.0259	0.0238	0.0255	0.0259	11.2924	7.1856	4.6275	2.3865
В0	\rightarrow	Υ	\downarrow	0.0128	0.0129	0.0103	0.0101	4.1554	2.9334	1.2543	0.6215

Cell Description

The AOI2BB2 cell provides the logical inverted OR of one AND group of two inverted inputs (A0N,A1N) and one AND group of two non-inverted inputs (B0,B1). The output (Y) is represented by the logic equation:

$$Y = (\overline{A0N} \bullet \overline{A1N}) + (B0 \bullet B1)$$

Logic Symbol

Function Table

A0N	A1N	B0	B1	Υ
1	Х	0	Х	1
1	Х	Х	0	1
Х	1	0	х	1
Х	1	Х	0	1
Х	Х	1	1	0
0	0	Х	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
AOI2BB2XLAD	2.52	2.24
AOI2BB2X1AD	2.52	2.24
AOI2BB2X2AD	2.52	2.24
AOI2BB2X4AD	2.52	3.64

Pin	Power (uW/MHz)							
F 1111	XL	X1	X2	X4				
A0N	0.0031	0.0035	0.0051	0.0090				
A1N	0.0033	0.0038	0.0055	0.0099				
B0	0.0022	0.0030	0.0047	0.0093				
B1	0.0025	0.0034	0.0057	0.0115				

Pin Capacitance

Pin		Capacitance (pF)							
	XL	X1	X2	X4					
A0N	0.0014	0.0014	0.0017	0.0026					
A1N	0.0011	0.0011	0.0014	0.0026					
В0	0.0014	0.0017	0.0027	0.0053					
B1	0.0013	0.0016	0.0027	0.0054					

De	Description			Intrinsic Delay (ns)				K _{load} (ns/pF)			
				XL	X1	X2	X4	XL	X1	X2	Х4
A0N	\rightarrow	Υ	\uparrow	0.0445	0.0426	0.0460	0.0433	11.0512	7.1439	4.6437	2.3875
A0N	\rightarrow	Υ	\downarrow	0.0617	0.0677	0.0645	0.0569	4.6162	3.1572	1.3812	0.6622
A1N	\rightarrow	Υ	\uparrow	0.0463	0.0445	0.0483	0.0450	11.0623	7.1495	4.6463	2.3880
A1N	\rightarrow	Υ	\downarrow	0.0641	0.0702	0.0675	0.0619	4.6148	3.1563	1.3808	0.6622
В0	\rightarrow	Υ	\uparrow	0.0333	0.0301	0.0312	0.0307	11.2129	7.2202	4.7007	2.4172
В0	\rightarrow	Υ	\downarrow	0.0239	0.0235	0.0165	0.0158	7.3955	5.1415	2.1860	1.0813
B1	\rightarrow	Υ	\uparrow	0.0360	0.0326	0.0360	0.0362	10.9860	7.0729	4.6142	2.3776
B1	\rightarrow	Υ	\downarrow	0.0248	0.0245	0.0178	0.0174	7.3935	5.1415	2.1854	1.0818

Cell Description

The AOI31 cell provides the logical inverted OR of one AND group and an additional input. The output (Y) is represented by the logic equation:

$$\mathsf{Y} = \overline{(A0 \bullet A1 \bullet A2) + B0}$$

Logic Symbol

Function Table

A0	A 1	A2	В0	Υ
0	х	х	0	1
Х	0	Х	0	1
х	х	0	0	1
х	х	х	1	0
1	1	1	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
AOI31XLAD	2.52	1.68
AOI31X1AD	2.52	1.68
AOI31X2AD	2.52	1.96
AOI31X4AD	2.52	3.36

Pin	Power (uW/MHz)							
	XL	X1	X2	X4				
A0	0.0023	0.0032	0.0051	0.0105				
A1	0.0026	0.0036	0.0061	0.0125				
A2	0.0030	0.0041	0.0072	0.0144				
В0	0.0022	0.0030	0.0056	0.0114				

Pin Capacitance

Pin	Capacitance (pF)							
F	XL	X1	X2	X4				
A0	0.0013	0.0017	0.0028	0.0058				
A1	0.0013	0.0017	0.0027	0.0055				
A2	0.0012	0.0016	0.0026	0.0050				
В0	0.0013	0.0018	0.0029	0.0054				

Description		Intrinsic I	Delay (ns)		K _{load} (ns/pF)			
	XL	X1	X2	Х4	XL	X1	X2	Х4
A0 → Y ↑	0.0333	0.0303	0.0327	0.0333	11.2155	7.2256	4.7093	2.3919
A0 \rightarrow Y \downarrow	0.0329	0.0330	0.0226	0.0229	10.2520	7.1556	2.9746	1.5042
A1 \rightarrow Y \uparrow	0.0375	0.0348	0.0383	0.0398	11.2228	7.3768	4.7156	2.4248
A1 \rightarrow Y \downarrow	0.0364	0.0365	0.0258	0.0261	10.2551	7.1570	2.9753	1.5047
A2 \rightarrow Y \uparrow	0.0398	0.0371	0.0427	0.0449	10.9545	7.1927	4.6247	2.4467
$A2 \rightarrow Y \downarrow$	0.0377	0.0380	0.0275	0.0273	10.2560	7.1566	2.9756	1.5047
$B0 \rightarrow Y \uparrow$	0.0286	0.0256	0.0316	0.0328	11.1275	7.3310	4.6735	2.4531
$B0 \rightarrow Y \downarrow$	0.0119	0.0116	0.0096	0.0093	4.2440	2.9539	1.2577	0.6185

Cell Description

The AOI32 cell provides the logical inverted OR of two AND groups. The output (Y) is represented by the logic equation:

$$\mathsf{Y} = \overline{(A0 \bullet A1 \bullet A2) + (B0 \bullet B1)}$$

Logic Symbol

Function Table

A0	A 1	A2	B0	B1	Υ
0	х	х	0	Х	1
0	х	Х	х	0	1
Х	0	Х	0	Х	1
Х	0	х	х	0	1
Х	х	0	0	Х	1
Х	х	0	х	0	1
Х	Х	х	1	1	0
1	1	1	Х	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
AOI32XLAD	2.52	1.96
AOI32X1AD	2.52	2.24
AOI32X2AD	2.52	2.24
AOI32X4AD	2.52	4.20

Pin	Power (uW/MHz)					
	XL	X1	X2	X4		
A0	0.0029	0.0042	0.0068	0.0136		
A1	0.0032	0.0046	0.0078	0.0158		
A2	0.0035	0.0051	0.0088	0.0179		
В0	0.0025	0.0034	0.0061	0.0122		
B1	0.0028	0.0038	0.0070	0.0142		

Pin Capacitance

Pin	Capacitance (pF)					
F III	XL	X1	X2	X4		
Α0	0.0013	0.0017	0.0027	0.0051		
A1	0.0013	0.0017	0.0026	0.0056		
A2	0.0012	0.0016	0.0026	0.0056		
В0	0.0013	0.0018	0.0028	0.0054		
B1	0.0014	0.0019	0.0028	0.0057		

Description	Intrinsic Delay (ns)			K _{load} (ns/pF)				
	XL	X1	X2	X4	XL	X1	X2	Х4
$A0 \rightarrow Y \uparrow$	0.0475	0.0421	0.0445	0.0458	11.2648	7.4313	4.7771	2.4635
$A0 \rightarrow Y \downarrow$	0.0476	0.0454	0.0292	0.0288	10.2182	7.0750	2.9969	1.4793
A1 \rightarrow Y \uparrow	0.0508	0.0456	0.0502	0.0522	11.2031	7.4189	4.7598	2.4430
A1 \rightarrow Y \downarrow	0.0505	0.0488	0.0327	0.0327	10.2133	7.0724	2.9962	1.4793
A2 \rightarrow Y \uparrow	0.0529	0.0479	0.0543	0.0569	10.9477	7.2640	4.6643	2.4160
A2 \rightarrow Y \downarrow	0.0521	0.0504	0.0343	0.0345	10.2159	7.0739	2.9970	1.4792
$B0 \rightarrow Y \uparrow$	0.0317	0.0299	0.0348	0.0365	11.2428	7.4403	4.7728	2.4517
$B0 \rightarrow Y \downarrow$	0.0199	0.0199	0.0145	0.0143	7.4257	5.1813	2.1970	1.0810
$B1 \rightarrow Y \uparrow$	0.0362	0.0335	0.0403	0.0421	10.9872	7.2858	4.7066	2.4172
$B1 \ \to \ Y \ \downarrow$	0.0226	0.0222	0.0164	0.0161	7.4361	5.1841	2.1976	1.0812

Cell Description

The AOI33 cell provides the logical inverted OR of two AND groups. The output (Y) is represented by the logic equation:

$$\mathsf{Y} = (\overline{A0 {\bullet} A1 {\bullet} A2) + (B0 {\bullet} B1 {\bullet} B2)}$$

Logic Symbol

Function Table

A0	A 1	A2	B0	B1	B2	Υ
0	Х	Х	0	Х	Х	1
0	х	х	х	0	Х	1
0	х	х	х	Х	0	1
Х	0	Х	0	Х	Х	1
Х	0	х	Х	0	Х	1
Х	0	х	х	Х	0	1
Х	х	0	0	Х	Х	1
Х	х	0	х	0	Х	1
Х	х	0	х	Х	0	1
Х	Х	х	1	1	1	0
1	1	1	Х	Х	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
AOI33XLAD	2.52	2.52
AOI33X1AD	2.52	2.52
AOI33X2AD	2.52	2.52
AOI33X4AD	2.52	4.76

Pin	Power (uW/MHz)						
F	XL	X1	X2	X4			
A0	0.0028	0.0038	0.0066	0.0131			
A1	0.0031	0.0042	0.0076	0.0152			
A2	0.0035	0.0047	0.0086	0.0173			
В0	0.0039	0.0053	0.0087	0.0173			
B1	0.0041	0.0057	0.0096	0.0193			
B2	0.0045	0.0061	0.0106	0.0215			

Pin Capacitance

Pin		Capacitance (pF)					
' '''	XL	X1	X2	X4			
A0	0.0014	0.0018	0.0029	0.0052			
A1	0.0014	0.0018	0.0028	0.0057			
A2	0.0014	0.0018	0.0029	0.0059			
В0	0.0013	0.0017	0.0027	0.0051			
B1	0.0013	0.0017	0.0027	0.0055			
B2	0.0012	0.0016	0.0026	0.0056			

Delays at 25°C,1.0V, Typical Process

Description	Intrinsic Delay (ns)			K _{load} (ns/pF)				
	XL	X1	X2	Х4	XL	X1	X2	X4
$A0 \rightarrow Y \uparrow$	0.0393	0.0346	0.0400	0.0393	11.5081	7.4431	4.8051	2.4506
A0 \rightarrow Y \downarrow	0.0309	0.0299	0.0211	0.0197	9.8970	6.9194	3.0032	1.4867
A1 \rightarrow Y \uparrow	0.0441	0.0388	0.0459	0.0462	11.4592	7.4214	4.7841	2.4427
A1 \rightarrow Y \downarrow	0.0352	0.0339	0.0248	0.0236	9.9002	6.9201	3.0032	1.4870
$A2 \rightarrow Y \uparrow$	0.0484	0.0422	0.0509	0.0518	11.2859	7.3097	4.7102	2.4196
$A2 \rightarrow Y \downarrow$	0.0380	0.0364	0.0269	0.0256	9.9075	6.9226	3.0038	1.4873
$B0 \rightarrow Y \uparrow$	0.0597	0.0533	0.0571	0.0581	11.5268	7.4573	4.8118	2.4613
$B0 \rightarrow Y \downarrow$	0.0572	0.0569	0.0364	0.0356	10.1111	7.0654	2.9885	1.4802
$B1 \rightarrow Y \uparrow$	0.0633	0.0569	0.0628	0.0645	11.4588	7.4166	4.7845	2.4470
$B1 \rightarrow Y \downarrow$	0.0605	0.0604	0.0399	0.0394	10.1094	7.0685	2.9882	1.4802
B2 \rightarrow Y \uparrow	0.0657	0.0589	0.0666	0.0693	11.2192	7.2521	4.6892	2.4160
B2 \rightarrow Y \downarrow	0.0621	0.0620	0.0416	0.0413	10.1112	7.0652	2.9883	1.4801

Cell Description

The booth encoder block, BENC, cell performs a 2bit multiplier recoding per a modified Booth's algorithm. Each BENC cell examines 3 bits of the multiplier (M0,M1,M2) and generates the appropriate control signals to adjust the multiplicand for subsequent partial product reduction. The outputs (S,A,X2) are represented by the logic equations:

$$A = M2 + (\overline{M0} \bullet \overline{M1})$$

 $S = \overline{M2} + (M0 \bullet M1)$

 $X2 = \overline{M1 \oplus M0}$

Logic Symbol

Function Table

M2	M1	МО	X2	Α	S
0	0	0	1	1	1
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	1	0	1
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	1	1	1

Cell Size

Drive Strength	Height (um)	Width (um)
BENCX1AD	2.52	11.20
BENCX2AD	2.52	14.00
BENCX4AD	2.52	21.84

Pin	Pow	/er (uW/N	IHz)
F	X1	X2	X4
M2	0.0196	0.0359	0.0690
M1	0.0206	0.0397	0.0751
MO	0.0214	0.0419	0.0782

Pin Capacitance

Pin	Сар	(pF)	
F 1111	X1	X2	X4
M2	0.0033	0.0041	0.0059
M1	0.0044	0.0064	0.0109
M0	0.0040	0.0064	0.0094

Delays at 25°C,1.0V, Typical Process

Description			Intri	Intrinsic Delay (ns)			K _{load} (ns/pF)		
			•	X1	X2	X4	X1	X2	X4
M2	\rightarrow	Α	\uparrow	0.1071	0.1050	0.1021	1.4040	0.6322	0.3235
M2	\rightarrow	Α	\downarrow	0.1121	0.1041	0.1170	0.9323	0.3965	0.1998
M1	\rightarrow	Α	\uparrow	0.1043	0.0965	0.0894	1.4029	0.6310	0.3232
M1	\rightarrow	Α	\downarrow	0.0936	0.0801	0.0872	0.9329	0.3966	0.1999
MO	\rightarrow	Α	\uparrow	0.1023	0.0935	0.0844	1.4021	0.6309	0.3230
MO	\rightarrow	Α	\downarrow	0.0900	0.0759	0.0821	0.9307	0.3955	0.1995
M2	\rightarrow	S	\uparrow	0.0977	0.0887	0.0816	1.3993	0.6338	0.3232
M2	\rightarrow	S	\downarrow	0.0873	0.0714	0.0748	0.9327	0.3986	0.1988
M1	\rightarrow	S	\uparrow	0.1368	0.1217	0.1130	1.3985	0.6329	0.3231
M1	\rightarrow	S	\downarrow	0.1471	0.1260	0.1174	0.9361	0.4000	0.1994
MO	\rightarrow	S	\uparrow	0.1289	0.1064	0.0994	1.3977	0.6326	0.3230
MO	\rightarrow	S	\downarrow	0.1287	0.0999	0.1074	0.9329	0.3984	0.1993
M1	\rightarrow	X2	\uparrow	0.0936	0.0865	0.0878	1.4005	0.6458	0.3301
M1	\rightarrow	X2	\downarrow	0.1066	0.1006	0.0913	0.9271	0.3982	0.2057
MO	\rightarrow	X2	\uparrow	0.1182	0.1039	0.0997	1.4002	0.6457	0.3301
MO	\rightarrow	X2	\downarrow	0.1187	0.1059	0.1090	0.9268	0.3985	0.2062

Cell Description

The BMX cell performs the shifting and 2's complement inversion of the multiplicand bits (M1,M0) based on the recode control signals (X2,A,S) from the booth encoder block cell. The partial product output (PP) is represented by the logic equation:

$$PP = X2 \bullet ((M0 \bullet \overline{A}) + (\overline{M0} \bullet \overline{S})) + \overline{X2} \bullet ((M1 \bullet \overline{A}) + (\overline{M1} \bullet \overline{S}))$$

Function Table

X2	Α	S	МО	M1	PP
0	0	0	Х	Х	Х
0	0	1	Х	0	0
0	0	1	х	1	1
0	1	0	х	0	1
0	1	0	Х	1	0
0	1	1	Х	Х	0
1	0	0	х	х	Х
1	0	1	0	Х	0
1	0	1	1	Х	1
1	1	0	0	Х	1
1	1	0	1	Х	0
1	1	1	Х	Х	0

Logic Symbol

Cell Size

Drive Strength	Height (um)	Width (um)
BMXX2AD	2.52	7.56
BMXX4AD	2.52	9.80

Pin	Power (uW/MHz)				
FIII	X2	X4			
X2	0.0091	0.0173			
M0	0.0139	0.0239			
Α	0.0185	0.0328			
S	0.0167	0.0297			
M1	0.0118	0.0214			

Pin Capacitance

Pin	Capacitance (pF)				
FIII	X2	Х4			
X2	0.0023	0.0037			
MO	0 0.0034 0.00	0.0037			
Α	0.0024	0.0048			
S	0.0025	0.0047			
M1	0.0028	0.0038			

Delays at 25°C,1.0V, Typical Process

Description)	Intrinsic Delay (ns)		K _{load} (ns/pF)	
				X2	X4	X2	X4
X2	\rightarrow	PP	\uparrow	0.0612	0.0593	2.3169	1.1911
X2	\rightarrow	PP	\downarrow	0.0534	0.0510	1.4079	0.6977
MO	\rightarrow	PP	\uparrow	0.0925	0.0866	2.3225	1.1921
MO	\rightarrow	PP	\downarrow	0.1102	0.1080	1.4110	0.6988
Α	\rightarrow	PP	\uparrow	0.1116	0.0998	2.3241	1.1930
Α	\rightarrow	PP	\downarrow	0.1000	0.0901	1.4121	0.6994
S	\rightarrow	PP	\uparrow	0.1065	0.0969	2.3242	1.1931
S	\rightarrow	PP	\downarrow	0.1009	0.0910	1.4126	0.6994
M1	\rightarrow	PP	\uparrow	0.0867	0.0866	2.3202	1.1927
M1	\rightarrow	PP	\downarrow	0.1026	0.1035	1.4117	0.6969

Cell Description

The BMXI cell performs the shifting and 2's complement inversion of the multiplicand bits (M1,M0) based on the recode control signals (X2,A,S) from the booth encoder block cell. The inverted partial product output (PPN) is represented by the logic equation:

$$PPN = X2 \bullet ((M0 \bullet \overline{A}) + (\overline{M0} \bullet \overline{S})) + \overline{X2} \bullet ((M1 \bullet \overline{A}) + (\overline{M1} \bullet \overline{S}))$$

Function Table

X2	Α	S	МО	M1	PPN
0	0	0	Х	Х	Х
0	0	1	Х	0	1
0	0	1	х	1	0
0	1	0	х	0	0
0	1	0	Х	1	1
0	1	1	Х	Х	1
1	0	0	х	х	Х
1	0	1	0	Х	1
1	0	1	1	Х	0
1	1	0	0	Х	0
1	1	0	1	Х	1
1	1	1	Х	Х	1

Logic Symbol

Cell Size

Drive Strength	Height (um)	Width (um)	
BMXIX2AD	2.52	6.72	
BMXIX4AD	2.52	10.08	

Pin	Power (uW/MHz)				
' '''	X2	X4			
X2	0.0080	0.0150			
MO	0.0111	0.0205			
Α	0.0169	0.0308			
S	0.0146	0.0266			
M1	0.0097	0.0182			

Pin Capacitance

Pin	Capacitance (pF				
F 1111	X2	Х4			
X2	0.0032	0.0054			
MO	0.0039	0.0062			
Α	0.0026	0.0052			
S	0.0028	0.0052			
M1	0.0033	0.0056			

Delays at 25°C,1.0V, Typical Process

Description				Intrinsic I	Delay (ns)	K _{load} (ns/pF)	
				X2	X4	X2	X4
X2	\rightarrow	PPN	\uparrow	0.0669	0.0682	2.3470	1.2054
X2	\rightarrow	PPN	\downarrow	0.0621	0.0648	1.5513	0.7698
MO	\rightarrow	PPN	\uparrow	0.0850	0.0846	2.3509	1.2069
MO	\rightarrow	PPN	\downarrow	0.0865	0.0840	1.5443	0.7719
Α	\rightarrow	PPN	\uparrow	0.0731	0.0697	2.3514	1.2075
Α	\rightarrow	PPN	\downarrow	0.1026	0.0947	1.5955	0.7836
S	\rightarrow	PPN	\uparrow	0.0757	0.0718	2.3527	1.2078
S	\rightarrow	PPN	\downarrow	0.0964	0.0889	1.5721	0.7840
M1	\rightarrow	PPN	\uparrow	0.0832	0.0837	2.3497	1.2067
M1	\rightarrow	PPN	\downarrow	0.0796	0.0772	1.5508	0.7740

Cell Description

The BUF cell provides the logical buffer of a single input (A). The output (Y) is represented by the logic equation:

Y = A

Logic Symbol

Function Table

Α	Υ
0	0
1	1

Cell Size

Drive Strength	Height (um)	Width (um)
BUFX2AD	2.52	1.12
BUFX3AD	2.52	1.40
BUFX4AD	2.52	1.68
BUFX5AD	2.52	1.96
BUFX6AD	2.52	2.24
BUFX8AD	2.52	2.52
BUFX10AD	2.52	3.08
BUFX12AD	2.52	3.64
BUFX14AD	2.52	4.20
BUFX16AD	2.52	4.48
BUFX18AD	2.52	5.04
BUFX20AD	2.52	5.60

AC Power

Pin	Power (uW/MHz)							
F 1111	X2	Х3	X4	X5	Х6	X8	X10	X12
Α	0.0041	0.0059	0.0076	0.0099	0.0114	0.0147	0.0182	0.0221

AC Power (Cont'd.)

Pin		Power (u	ıW/MHz)	
' '''	X14	X16	X18	X20
Α	0.0257	0.0290	0.0329	0.0362

Pin Capacitance

Pin		Capacitance (pF)									
F 111	X2 X3 X4 X5 X6 X8 X10 X12										
Α	0.0014	0.0019	0.0024	0.0029	0.0037	0.0046	0.0055	0.0067			

Pin Capacitance (Cont'd.)

Pin	Capacitance (pF)							
	X14	X16	X18	X20				
Α	0.0077	0.0083	0.0099	0.0108				

Delays at 25°C,1.0V, Typical Process

D	escri	iptio	n	Intrinsic Delay (ns)								
				X2	Х3	Х4	X5	Х6	X8	X10	X12	
Α	\rightarrow	Υ	\uparrow	0.0291	0.0280	0.0273	0.0286	0.0268	0.0263	0.0261	0.0266	
Α	\rightarrow	Υ	\downarrow	0.0405	0.0385	0.0376	0.0387	0.0370	0.0366	0.0363	0.0372	

Description				Intrinsic Delay (ns)					
				X14	X16	X18	X20		
Α	\rightarrow	Υ	↑	0.0267	0.0270	0.0264	0.0260		
Α	\rightarrow	Υ	\downarrow	0.0368	0.0384	0.0366	0.0368		

Delays at 25°C,1.0V, Typical Process (Cont'd.)

Description		K _{load} (ns/pF)									
	X2	Х3	X4	X5	Х6	X8	X10	X12			
$A \rightarrow Y \uparrow$	2.3102	1.5956	1.1931	0.9787	0.8068	0.6107	0.4961	0.4129			
$A \rightarrow Y \downarrow$	1.3198	0.8570	0.6412	0.5167	0.4296	0.3206	0.2559	0.2132			

D	escri	ptic	n	K _{load} (ns/pF)					
				X14	X16	X18	X20		
Α	\rightarrow	Υ	\uparrow	0.3591	0.3150	0.2810	0.2534		
Α	\rightarrow	Υ	\downarrow	0.1828	0.1600	0.1419	0.1275		

Process Technology: CLKAND2

TSMC CLN90G

Cell Description

The CLKAND2 cell provides the logical AND of two inputs (A,B). The output (Y) is represented by the logic equation:

 $Y = A \bullet B$

Logic Symbol

Function Table

Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

Cell Size

Drive Strength	Height (um)	Width (um)
CLKAND2X2AD	2.52	1.40
CLKAND2X3AD	2.52	1.68
CLKAND2X4AD	2.52	1.96
CLKAND2X6AD	2.52	2.24
CLKAND2X8AD	2.52	3.36
CLKAND2X12AD	2.52	4.20

AC Power

Pin	Power (uW/MHz)								
	X2	Х3	X4	Х6	X8	X12			
Α	0.0036	0.0051	0.0064	0.0094	0.0123	0.0177			
В	0.0040	0.0056	0.0070	0.0102	0.0134	0.0194			

Pin Capacitance

Pin	Capacitance (pF)								
	X2	Х3	X4	Х6	X8	X12			
Α	0.0013	0.0017	0.0020	0.0027	0.0039	0.0052			
В	0.0014	0.0018	0.0021	0.0028	0.0041	0.0054			

Delays at 25°C,1.0V, Typical Process

D	Description			Intrinsic Delay (ns)							
				X2	Х3	Х4	Х6	X8	X12		
Α	\rightarrow	Υ	\uparrow	0.0465	0.0479	0.0455	0.0441	0.0472	0.0422		
Α	\rightarrow	Υ	\downarrow	0.0430	0.0423	0.0399	0.0438	0.0407	0.0439		
В	\rightarrow	Υ	\uparrow	0.0475	0.0498	0.0475	0.0458	0.0489	0.0439		
В	\rightarrow	Υ	\downarrow	0.0464	0.0466	0.0433	0.0478	0.0422	0.0461		

Description	K _{load} (ns/pF)								
	X2	Х3	X4	Х6	X8	X12			
$A \ \rightarrow \ Y \ \uparrow$	2.3398	1.6106	1.2130	0.8230	0.6260	0.4194			
$A \ \rightarrow \ Y \ \downarrow$	2.6349	1.7968	1.2940	0.8612	0.6423	0.4276			
$B \to Y \uparrow$	2.3401	1.6109	1.2134	0.8229	0.6262	0.4193			
$B \ \to \ Y \ \downarrow$	2.6396	1.8004	1.2959	0.8632	0.6422	0.4278			

Cell Description

The CLKBUF cell provides the logical buffer of a single input (A), with balanced delays for clock signals. The output (Y) is represented by the logic equation:

Y = A

Logic Symbol

Function Table

Α	Υ
0	0
1	1

Cell Size

Drive Strength	Height (um)	Width (um)
CLKBUFX1AD	2.52	1.12
CLKBUFX2AD	2.52	1.12
CLKBUFX3AD	2.52	1.40
CLKBUFX4AD	2.52	1.40
CLKBUFX6AD	2.52	1.96
CLKBUFX8AD	2.52	2.52
CLKBUFX12AD	2.52	3.36
CLKBUFX16AD	2.52	3.92
CLKBUFX20AD	2.52	5.04
CLKBUFX24AD	2.52	5.60
CLKBUFX32AD	2.52	6.72
CLKBUFX40AD	2.52	8.12

AC Power

Pin		Power (uW/MHz)								
F III	X1	X1 X2 X3 X4 X6 X8 X12 X16								
Α	0.0031	0.0038	0.0046	0.0056	0.0082	0.0106	0.0154	0.0202		

AC Power (Cont'd.)

Pin		Power (uW/MHz)						
F	X20 X24 X32 X40							
Α	0.0257	0.0307	0.0404	0.0506				

Pin Capacitance

Pin		Capacitance (pF)								
-	X1	X1 X2 X3 X4 X6 X8 X12 X16								
Α	0.0017	0.0017	0.0016	0.0017	0.0022	0.0031	0.0042	0.0054		

Pin Capacitance (Cont'd.)

Pin						
' "''	X20 X24 X32 X40					
Α	0.0068	0.0081	0.0102	0.0128		

Delays at 25°C,1.0V, Typical Process

D	escri	ptic	n	Intrinsic Delay (ns)							
				X1	X2	Х3	X4	Х6	X8	X12	X16
Α	\rightarrow	Υ	\uparrow	0.0301	0.0319	0.0376	0.0405	0.0403	0.0396	0.0386	0.0376
Α	\rightarrow	Υ	\downarrow	0.0308	0.0333	0.0381	0.0422	0.0410	0.0401	0.0394	0.0388

Description	n	Intrinsic Delay (ns)				
		X20	X24	X32	X40	
$A \rightarrow Y$	\uparrow	0.0383	0.0377	0.0374	0.0376	
$A \rightarrow Y$	\downarrow	0.0396	0.0396	0.0393	0.0394	

Process Technology: CLKBUF
TSMC CLN90G

Delays at 25°C,1.0V, Typical Process (Cont'd.)

Description	K _{load} (ns/pF)							
	X1	X2	Х3	X4	Х6	X8	X12	X16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.8755	2.3206	1.6003	1.1938	0.8119	0.6181	0.4147	0.3088
$A \rightarrow Y \downarrow$	4.2374	2.6284	1.7107	1.3086	0.8812	0.6468	0.4362	0.3267

D	escri	ptic	n		K _{load} (ns/pF)	
				X20	X24	X32	X40
Α	\rightarrow	Υ	\uparrow	0.2523	0.2035	0.1533	0.1230
Α	\rightarrow	Υ	\downarrow	0.2583	0.2167	0.1625	0.1294

Cell Description

The CLKINV cell provides the logical inversion of a single input (A), with balanced delays for clock signals. The output (Y) is represented by the logic equation:

 $Y = \overline{A}$

Logic Symbol

Function Table

Α	Υ
0	1
1	0

Cell Size

Drive Strength	Height (um)	Width (um)
CLKINVX1AD	2.52	0.84
CLKINVX2AD	2.52	0.84
CLKINVX3AD	2.52	1.12
CLKINVX4AD	2.52	1.12
CLKINVX6AD	2.52	1.68
CLKINVX8AD	2.52	1.96
CLKINVX12AD	2.52	2.52
CLKINVX16AD	2.52	3.36
CLKINVX20AD	2.52	3.64
CLKINVX24AD	2.52	4.48
CLKINVX32AD	2.52	5.60
CLKINVX40AD	2.52	7.00

AC Power

Pin	Power (uW/MHz) X1							
Α	0.0015	0.0022	0.0031	0.0040	0.0059	0.0081	0.0118	0.0161

AC Power (Cont'd.)

Pin	Power (uW/MHz)						
FIII	X20	X24	X32	X40			
Α	0.0200	0.0243	0.0322	0.0401			

Pin Capacitance

Pin				Capacita	nce (pF)			
-	X1 X2 X3 X4 X6 X8 X12 X16							X16
Α	0.0015	0.0023	0.0033	0.0043	0.0063	0.0085	0.0124	0.0169

Pin Capacitance (Cont'd.)

Pin		Capacitance (pF)						
	X20	X24	X32	X40				
Α	0.0207	0.0250	0.0330	0.0414				

Delays at 25°C,1.0V, Typical Process

Description							Intrinsic I	Delay (ns)			
				X1	X2	Х3	X4	Х6	X8	X12	X16
Α	\rightarrow	Υ	\uparrow	0.0107	0.0102	0.0096	0.0095	0.0096	0.0097	0.0099	0.0100
Α	\rightarrow	Υ	\downarrow	0.0118	0.0115	0.0107	0.0103	0.0105	0.0105	0.0106	0.0106

Description				Intrinsic Delay (ns)				
				X20	X24	X32	X40	
Α	\rightarrow	Υ	\uparrow	0.0100	0.0105	0.0110	0.0112	
$A \rightarrow Y \downarrow$			\downarrow	0.0106	0.0110	0.0116	0.0117	

Process Technology: CLKINV
TSMC CLN90G

Delays at 25°C,1.0V, Typical Process (Cont'd.)

Description				K _{load} (ı	ns/pF)			
	X1	X2	Х3	X4	Х6	X8	X12	X16
$A \ \rightarrow \ Y \ \uparrow$	3.7578	2.2808	1.5619	1.1681	0.7934	0.6007	0.4065	0.3075
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.2911	2.6591	1.7895	1.3010	0.8770	0.6555	0.4354	0.3257

Description					K _{load} (ns/pF)	
				X20	X24	X32	X40
Α	\rightarrow	Υ	\uparrow	0.2420	0.2043	0.1531	0.1238
Α	\rightarrow	Υ	\leftarrow	0.2573	0.2156	0.1610	0.1285

Cell Description

The CLKMX2 cell is a non-inverting 2 to 1 multiplexer with balanced delays for clock signals. The state of the select input (S0) determines which data input (A,B) is presented to the output (Y). The output (Y) is represented by the logic equation:

$$Y = (S0 \bullet B) + (\overline{S0} \bullet A)$$

Function Table

S0	Α	В	Υ
0	0	Х	0
0	1	Х	1
1	Х	0	0
1	Х	1	1

Logic Symbol

CLKMX2

Cell Size

Drive Strength	Height (um)	Width (um)
CLKMX2X2AD	2.52	2.80
CLKMX2X3AD	2.52	3.36
CLKMX2X4AD	2.52	3.36
CLKMX2X6AD	2.52	3.92
CLKMX2X8AD	2.52	4.20
CLKMX2X12AD	2.52	5.04

Pin	Power (uW/MHz)								
FIII	X2	Х3	X4	Х6	X8	X12			
S0	0.0073	0.0094	0.0105	0.0131	0.0163	0.0233			
В	0.0067	0.0084	0.0096	0.0124	0.0157	0.0232			
Α	0.0061	0.0075	0.0086	0.0115	0.0148	0.0223			

Pin Capacitance

Pin	Capacitance (pF)								
F 111	X2	Х3	X4	X6	X8	X12			
S0	0.0037	0.0042	0.0042	0.0042	0.0042	0.0041			
В	0.0019	0.0022	0.0022	0.0022	0.0022	0.0022			
Α	0.0020	0.0023	0.0023	0.0023	0.0023	0.0023			

Delays at 25°C,1.0V, Typical Process

Description				Intrinsic Delay (ns)					
				X2	Х3	Х4	Х6	X8	X12
S0	\rightarrow	Υ	1	0.0557	0.0585	0.0614	0.0692	0.0768	0.0886
S0	\rightarrow	Υ	\downarrow	0.0596	0.0628	0.0667	0.0752	0.0836	0.0995
В	\rightarrow	Υ	\uparrow	0.0529	0.0544	0.0580	0.0666	0.0751	0.0886
В	\rightarrow	Υ	\downarrow	0.0569	0.0601	0.0645	0.0742	0.0836	0.1003
Α	\rightarrow	Υ	\uparrow	0.0541	0.0555	0.0587	0.0674	0.0759	0.0891
Α	\rightarrow	Υ	\downarrow	0.0558	0.0580	0.0629	0.0730	0.0828	0.0999

Description					K _{load} (ns/pF)					
				X2	Х3	X4	Х6	X8	X12	
S0	\rightarrow	Υ	↑	2.3823	1.6546	1.2404	0.8454	0.6444	0.4428	
S0	\rightarrow	Υ	\downarrow	2.6667	1.8225	1.3765	0.9142	0.6859	0.4700	
В	\rightarrow	Υ	↑	2.3840	1.6548	1.2410	0.8458	0.6447	0.4439	
В	\rightarrow	Υ	\downarrow	2.6666	1.8222	1.3764	0.9142	0.6859	0.4701	
Α	\rightarrow	Υ	\uparrow	2.3814	1.6540	1.2405	0.8455	0.6447	0.4430	
Α	\rightarrow	Υ	\downarrow	2.6642	1.8199	1.3758	0.9145	0.6864	0.4706	

Cell Description

TSMC CLN90G

The CLKNAND2 cell provides the logical NAND of two inputs (A,B), with balanced delays for clock signals. The output (Y) is represented by the logic equation:

$$\mathsf{Y}=\overline{(A{\bullet}B)}$$

Logic Symbol

Function Table

Α	В	Υ
0	Х	1
Х	0	1
1	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
CLKNAND2X2AD	2.52	1.12
CLKNAND2X4AD	2.52	1.96
CLKNAND2X8AD	2.52	3.36
CLKNAND2X12AD	2.52	4.76

Pin	Power (uW/MHz)							
	X2	X4	X8	X12				
Α	0.0027	0.0053	0.0108	0.0157				
В	0.0034	0.0068	0.0136	0.0198				

Pin Capacitance

Pin		Capacitance (pF)							
F 111	X2	X4 X8 X12							
Α	0.0025	0.0047	0.0096	0.0141					
В	0.0023	0.0050	0.0098	0.0143					

Delays at 25°C,1.0V, Typical Process

D	escri	ptic	n	Intrinsic Delay (ns)				K _{load} (ns/pF)			
				X2	Х4	X8	X12	X2	X4	X8	X12
Α	\rightarrow	Υ	\uparrow	0.0122	0.0125	0.0128	0.0126	2.3375	1.2223	0.6267	0.4220
Α	\rightarrow	Υ	\downarrow	0.0145	0.0148	0.0147	0.0146	3.0557	1.5708	0.7745	0.5258
В	\rightarrow	Υ	\uparrow	0.0137	0.0142	0.0145	0.0144	2.3372	1.1815	0.6131	0.4150
В	\rightarrow	Υ	\downarrow	0.0159	0.0166	0.0163	0.0163	3.0540	1.5717	0.7747	0.5260

Cell Description

The CLKXOR2 cell provides a logical EXCLUSIVE OR of two inputs (A,B) with balanced delays for clock signals. The output (Y) is represented by the logic equation:

$$\mathsf{Y} = (A {\bullet} \overline{B}) + (\overline{A} {\bullet} B)$$

Logic Symbol

Function Table

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
CLKXOR2X1AD	2.52	2.80
CLKXOR2X2AD	2.52	2.80
CLKXOR2X4AD	2.52	4.20
CLKXOR2X8AD	2.52	6.72
CLKXOR2X12AD	2.52	10.08

AC Power

Pin		Power (uW/MHz)								
	X1	X2	X4	X8	X12					
Α	0.0063	0.0069	0.0116	0.0220	0.0326					
В	0.0068	0.0077	0.0145	0.0283	0.0433					

Pin Capacitance

Pin		Capacitance (pF)								
F	X1	X2	X4	X8	X12					
Α	0.0032	0.0032	0.0043	0.0072	0.0099					
В	0.0017	0.0020	0.0037	0.0070	0.0106					

Delays at 25°C,1.0V, Typical Process

D	escr	iptic	n	Intrinsic Delay (ns)					
				X1	X2	Х4	X8	X12	
Α	\rightarrow	Υ	1	0.0565	0.0556	0.0568	0.0625	0.0652	
Α	\rightarrow	Υ	\downarrow	0.0606	0.0642	0.0615	0.0684	0.0695	
В	\rightarrow	Υ	1	0.0802	0.0771	0.0739	0.0721	0.0726	
В	\rightarrow	Υ	\downarrow	0.0834	0.0837	0.0766	0.0784	0.0788	

Description			n	K _{load} (ns/pF)					
				X1	X2	Х4	X8	X12	
Α	\rightarrow	Υ	\uparrow	4.0050	2.3909	1.2134	0.6281	0.4148	
Α	\rightarrow	Υ	\downarrow	4.3534	2.6924	1.3094	0.6573	0.4474	
В	\rightarrow	Υ	\uparrow	3.9852	2.3918	1.2148	0.6300	0.4162	
В	\rightarrow	Υ	\downarrow	4.3510	2.6915	1.3091	0.6572	0.4473	

Cell Description

The CMPR42 cell takes in 4 bits of the partial product (A,B,C,D) and compresses them into 2-bits of partial product (S,CO). The cell requires an intermediate carry-in input (ICI) from the n-1 compressor and an intermediate carry-out output (CO) to the n+1 compressor. The CMPR42 cell also contains an internal sum IS. The internal sum IS, carry-in output (ICO), and the two outputs (S,CO) are represented by the logic equations:

$$\begin{split} IS &= A \oplus B \oplus C \\ ICO &= (A \bullet B) + (A \bullet C) + (B \bullet C) \\ S &= IS \oplus D \oplus ICI \\ CO &= (IS \bullet D) + (IS \bullet ICI) + (D \bullet ICI) \end{split}$$

Logic Symbol

Cell Size

Drive Strength	Height (um)	Width (um)
CMPR42X1AD	2.52	12.88
CMPR42X2AD	2.52	12.88
CMPR42X4AD	2.52	18.48

Function Table

Α	В	С	IS	ICO
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Function Table (Cont'd.)

IS	D	ICI	S	СО
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Pin	Power (uW/MHz)					
	X1	X2	X4			
Α	0.0300	0.0409	0.0653			
В	0.0294	0.0399	0.0638			
С	0.0280	0.0376	0.0606			
D	0.0229	0.0310	0.0544			
ICI	0.0117	0.0163	0.0306			

Pin Capacitance

Pin	Capacitance (pF)						
F 111	X1	X2	X4				
Α	0.0047	0.0065	0.0102				
В	0.0055	0.0073	0.0114				
С	0.0044	0.0054	0.0066				
D	0.0029	0.0036	0.0038				
ICI	0.0018	0.0023	0.0026				

Delays at 25°C,1.0V, Typical Process

Description				Intrinsic Delay (ns)			K _{load} (ns/pF)		
				X1	X2	X4	X1	X2	Х4
Α	\rightarrow	S	\uparrow	0.2504	0.2501	0.2866	3.7800	2.4353	1.2188
Α	\rightarrow	S	\downarrow	0.3057	0.2894	0.3218	3.2953	1.4225	0.6973
В	\rightarrow	S	\uparrow	0.2131	0.1984	0.2313	3.7795	2.4341	1.2172
В	\rightarrow	S	\downarrow	0.2684	0.2376	0.2671	3.2954	1.4227	0.6974
С	\rightarrow	S	\uparrow	0.1871	0.1923	0.2132	3.7788	2.4345	1.2181
С	\rightarrow	S	\downarrow	0.2429	0.2324	0.2503	3.2955	1.4227	0.6974
D	\rightarrow	S	\uparrow	0.1712	0.1603	0.1889	3.7201	2.4213	1.2157
D	\rightarrow	S	\downarrow	0.2058	0.1848	0.2135	3.2954	1.4223	0.6957
ICI	\rightarrow	S	\uparrow	0.0891	0.0832	0.1057	3.7482	2.4240	1.2111
ICI	\rightarrow	S	\downarrow	0.1059	0.0964	0.1072	3.3016	1.4254	0.6986
Α	\rightarrow	ICO	\uparrow	0.0471	0.0421	0.0417	3.6825	2.3651	1.2086
Α	\rightarrow	ICO	\downarrow	0.0880	0.0718	0.0743	3.2162	1.3868	0.6913
В	\rightarrow	ICO	\uparrow	0.0481	0.0428	0.0426	3.6844	2.3662	1.2092
В	\rightarrow	ICO	\downarrow	0.0832	0.0689	0.0679	3.2177	1.3875	0.7143
С	\rightarrow	ICO	\uparrow	0.0400	0.0375	0.0370	3.6612	2.3614	1.2049
С	\rightarrow	ICO	\downarrow	0.0686	0.0586	0.0646	3.2280	1.3990	0.6965
Α	\rightarrow	СО	\uparrow	0.2392	0.2380	0.2826	3.5720	2.4823	1.2363
Α	\rightarrow	CO	\downarrow	0.2835	0.2760	0.3213	3.1666	1.9315	0.7360
В	\rightarrow	СО	\uparrow	0.2080	0.2088	0.2525	3.5722	2.4823	1.2363
В	\rightarrow	СО	\downarrow	0.2525	0.2469	0.2912	3.1669	1.9315	0.7360
С	\rightarrow	CO	\uparrow	0.1908	0.1831	0.2263	3.5711	2.4818	1.2362
С	\rightarrow	СО	\downarrow	0.2087	0.1983	0.2417	3.1674	1.9319	0.7359

Process Technology: CMPR42
TSMC CLN90G

	Description			Intrinsic Delay (ns)			K _{load} (ns/pF)		
				X1	X2	X4	X1	X2	Х4
D	\rightarrow	СО	1	0.1567	0.1378	0.1622	3.5457	2.4662	1.2207
D	\rightarrow	CO	\downarrow	0.1513	0.1416	0.1740	3.1517	1.9189	0.7317
ICI	\rightarrow	СО	1	0.0481	0.0521	0.0631	3.5804	2.4853	1.2345
ICI	\rightarrow	СО	\downarrow	0.0703	0.0640	0.0859	3.2549	1.9655	0.7793

Cell Description

The DFF cell is a positive-edge triggered, static D-type flipflop.

Logic Symbol

Function Table

D	CK	Q[n+1]	QN[n+1]
0		0	1
1		1	0
Х	_	Q[n]	QN[n]

Cell Size

Drive Strength	Height (um)	Width (um)
DFFXLAD	2.52	6.16
DFFX1AD	2.52	6.16
DFFX2AD	2.52	6.16
DFFX4AD	2.52	7.84

Pin	Power (uW/MHz)						
	XL	X1	X2	X4			
D	0.0050	0.0051	0.0054	0.0067			
CK	0.0103	0.0105	0.0110	0.0131			
Q	0.0052	0.0062	0.0087	0.0154			

Pin Capacitance

Pin	Capacitance (pF)						
' '''	XL	X1	X2	X4			
D	0.0011	0.0011	0.0011	0.0011			
CK	0.0015	0.0015	0.0016	0.0018			

Delays at 25°C,1.0V, Typical Process

Description		Intrinsic I	Delay (ns)		K _{load} (ns/pF)			
	XL	X1	X2	Х4	XL	X1	X2	Х4
$CK \to Q \uparrow$	0.1090	0.1060	0.1057	0.1042	5.8382	3.7181	2.3809	1.2240
$CK \ o \ Q \ \downarrow$	0.1205	0.1174	0.1052	0.1018	5.3376	3.4176	1.4590	0.7205
$CK \to QN \uparrow$	0.1523	0.1488	0.1515	0.1501	5.6912	3.6608	2.3660	1.2114
$CK \to QN \downarrow$	0.1498	0.1528	0.1603	0.1537	4.5376	3.1101	1.3818	0.6680

Timing Constraints at 25°C,1.0V, Typical Process

Pin	Requirement			Interval (ns)				
-	Requirement -		XL	X1	X2	X4		
	setup	1	\rightarrow	CK	0.0312	0.0352	0.0352	0.0391
D	setup	\downarrow	\rightarrow	CK	0.0469	0.0469	0.0508	0.0625
	hold	\uparrow	\rightarrow	CK	-0.0195	-0.0234	-0.0195	-0.0234
	hold	\downarrow	\rightarrow	CK	-0.0078	-0.0078	-0.0078	-0.0117
СК	minpwh			0.8332	0.8332	0.8332	0.8332	
CK		min	owl		0.8332	0.8332	0.8332	0.8332

Cell Description

The DFFH cell is a positive-edge triggered, static D-type flipflop and fast clock-to-Q-path.

Logic Symbol

Function Table

D	CK	Q[n+1]	QN[n+1]
0		0	1
1		1	0
Х	_	Q[n]	QN[n]

Cell Size

Drive Strength	Height (um)	Width (um)
DFFHX1AD	2.52	7.28
DFFHX2AD	2.52	7.56
DFFHX4AD	2.52	8.96
DFFHX8AD	2.52	14.28

Pin				
F 1111	X1	X2	X4	X8
D	0.0071	0.0094	0.0131	0.0236
CK	0.0148	0.0190	0.0247	0.0466
Q	0.0052	0.0070	0.0095	0.0158

Pin Capacitance

Pin	Capacitance (pF)								
' '''	X1	X2	X4	X8					
D	0.0012	0.0012	0.0016	0.0025					
CK	0.0023	0.0025	0.0032	0.0054					

Delays at 25°C,1.0V, Typical Process

Description	on Intrinsic Delay (ns) K _{load} (ns/pF)							
	X1	X2	Х4	X8	X1	X2	X4	X8
$CK \to Q \uparrow$	0.0742	0.0742	0.0669	0.0634	3.6477	2.3762	1.2041	0.6071
$CK \to Q \downarrow$	0.0801	0.0796	0.0738	0.0665	3.1945	1.4176	0.7014	0.3285
$CK \ \to \ QN \ \uparrow$	0.1056	0.1112	0.1101	0.1015	5.5881	5.5137	5.4381	5.4081
$CK \ \to \ QN \ \downarrow$	0.1140	0.1168	0.1199	0.1186	4.3123	4.2316	4.2173	4.2091

Timing Constraints at 25°C,1.0V, Typical Process

Pin	Requirement			Interval (ns)				
FIII	Requirement		X1	X2	Х4	X8		
	setup	1	\rightarrow	CK	0.0469	0.0430	0.0391	0.0391
D	setup	\downarrow	\rightarrow	CK	0.0508	0.0508	0.0508	0.0430
	hold	\uparrow	\rightarrow	CK	-0.0117	-0.0117	-0.0078	-0.0039
	hold	\downarrow	\rightarrow	CK	-0.0234	-0.0234	-0.0273	-0.0156
СК	minpwh			0.8332	0.8332	0.8332	0.8332	
CIC		min	owl		0.8332	0.8332	0.8332	0.8332

Cell Description

The DFFHQ cell is a high-speed, positive-edge triggered, static D-type flip-flop. The cell has a single output (Q) and fast clock-to-out path.

Logic Symbol

Function Table

D	CK	Q[n+1]
0		0
1		1
Х		Q[n]

Cell Size

Drive Strength	Height (um)	Width (um)
DFFHQX1AD	2.52	6.72
DFFHQX2AD	2.52	7.00
DFFHQX4AD	2.52	8.40
DFFHQX8AD	2.52	14.00

AC Power

Pin	Power (uW/MHz)							
• •••	X1	X2	X4	X8				
D	0.0070	0.0086	0.0135	0.0244				
CK	0.0139	0.0173	0.0244	0.0465				
Q	0.0038	0.0052	0.0084	0.0140				

Pin Capacitance

Pin	Capacitance (pF)							
' '''	X1	X1 X2 X4		X8				
D	0.0016	0.0016	0.0021	0.0036				
CK	0.0023	0.0024	0.0032	0.0054				

Delays at 25°C,1.0V, Typical Process

Description	Intrinsic Delay (ns) K _{load} (ns/pF)							
	X1	X2	X4	X8	X1	X2	Х4	X8
$CK \ \to \ Q \ \uparrow$	0.0764	0.0740	0.0671	0.0630	3.5531	2.3566	1.2056	0.6070
$CK \ \to \ Q \ \downarrow$	0.0838	0.0774	0.0742	0.0662	3.2685	1.4310	0.7043	0.3292

Pin	Requirement			Interval (ns)				
FIII	I.e.	quii	emei	11.	X1	X2	X4	X8
	setup	↑	\rightarrow	CK	0.0547	0.0469	0.0430	0.0391
D	setup	\downarrow	\rightarrow	CK	0.0391	0.0312	0.0352	0.0312
	hold	\uparrow	\rightarrow	CK	-0.0156	-0.0117	-0.0078	-0.0039
	hold	\downarrow	\rightarrow	CK	-0.0117	-0.0078	-0.0117	-0.0078
СК	minpwh			0.8332	0.8332	0.8332	0.8332	
		min	owl		0.8332	0.8332	0.8332	0.8332

Cell Description

The DFFNH cell is a negative-edge triggered, static D-type flip-flop and fast clock-to-Q-path.

Logic Symbol

Function Table

D	CKN	Q[n+1]	QN[n+1]
0	_	0	1
1	1		0
Х		Q[n]	QN[n]

Cell Size

Drive Strength	Height (um)	Width (um)
DFFNHX1AD	2.52	7.00
DFFNHX2AD	2.52	7.00
DFFNHX4AD	2.52	9.24
DFFNHX8AD	2.52	13.72

Pin	Power (uW/MHz)							
	X1	X2	X4	X8				
D	0.0069	0.0088	0.0135	0.0222				
CKN	0.0113	0.0136	0.0200	0.0314				
Q	0.0057	0.0072	0.0108	0.0183				

Pin Capacitance

Pin	Capacitance (pF)						
' '''	X1	X2	X4	X8			
D	0.0014	0.0018	0.0025	0.0046			
CKN	0.0021	0.0022	0.0026	0.0042			

Delays at 25°C,1.0V, Typical Process

Description		Intrinsic I	Delay (ns)		K _{load} (ns/pF)			
	X1	X2	X4	X8	X1	X2	X4	X8
$CKN \ \to \ Q \ \uparrow$	0.1476	0.1440	0.1437	0.1292	3.6408	2.3150	1.1842	0.6052
$CKN \to Q \downarrow$	0.1290	0.1169	0.1126	0.0982	3.2760	1.3937	0.6737	0.3316
CKN → QN ↑	0.1574	0.1480	0.1487	0.1347	5.4432	5.4145	5.4506	5.4486
$CKN \ o \ QN \ \downarrow$	0.1895	0.1851	0.1978	0.1787	4.3450	4.2955	4.2183	4.2058

Pin	Requirement			Interval (ns)				
FIII	Requirement		X1	X2	Х4	X8		
	setup	\uparrow	\rightarrow	CKN	-0.0156	-0.0273	-0.0312	-0.0156
D	setup	\downarrow	\rightarrow	CKN	0.0117	0.0039	0.0078	0.0195
	hold	\uparrow	\rightarrow	CKN	0.0469	0.0508	0.0508	0.0430
	hold	\downarrow	\rightarrow	CKN	0.0117	0.0156	0.0117	0.0078
CKN	minpwl			0.8332	0.8332	0.8332	0.8332	
CIXIV		min	pwh		0.8332	0.8332	0.8332	0.8332

Cell Description

The DFFNSRH cell is a negative-edge triggered, static D-type flip-flop with asynchronous active-low reset (RN) and set (SN), and set dominating reset, and fast clock-to-Q-path.

Logic Symbol

Function Table

RN	SN	D	CKN	Q[n+1]	QN[n+1]
0	1	Х	Х	0	1
1	0	Х	Х	1	0
0	0	Х	Х	1	0
1	1	0	_	0	1
1	1	1		1	0
1	1	Х		Q[n]	QN[n]

Cell Size

Drive Strength	Height (um)	Width (um)
DFFNSRHX1AD	2.52	9.80
DFFNSRHX2AD	2.52	9.80
DFFNSRHX4AD	2.52	12.88
DFFNSRHX8AD	2.52	14.00

Pin	Power (uW/MHz)								
' '''	X1	X2	X4	X8					
D	0.0079	0.0097	0.0158	0.0185					
CKN	0.0122	0.0144	0.0223	0.0242					
SN	0.0043	0.0046	0.0059	0.0071					
RN	0.0015	0.0018	0.0029	0.0036					
Q	0.0073	0.0088	0.0138	0.0205					

Pin Capacitance

Pin		Capacita	nce (pF)	e (pF)		
' '''	X1	X2	X4	X8		
D	0.0014	0.0017	0.0026	0.0045		
CKN	0.0021	0.0023	0.0028	0.0041		
SN	0.0022	0.0026	0.0035	0.0040		
RN	0.0021	0.0024	0.0037	0.0040		

Delays at 25°C,1.0V, Typical Process

De	escri	otion			Intrinsic [Delay (ns)		K _{load} (ns/pF)				
				X1	X2	X4	Х8	X1	X2	X4	X8	
CKN	\rightarrow	Q	\uparrow	0.1678	0.1587	0.1618	0.1535	3.7533	2.4301	1.2057	0.6240	
CKN	\rightarrow	Q	\downarrow	0.1410	0.1199	0.1174	0.1178	3.4125	1.4421	0.7012	0.3602	
SN	\rightarrow	Q	\uparrow	0.1136	0.1349	0.1667	0.1177	3.6497	2.4261	1.2111	0.6181	
SN	\rightarrow	Q	\downarrow	0.2046	0.1971	0.1723	0.1715	3.8908	1.7425	0.8487	0.4205	
RN	\rightarrow	Q	\downarrow	0.1781	0.1656	0.1357	0.1425	3.9095	1.7441	0.8497	0.4206	
CKN	\rightarrow	QN	\uparrow	0.1751	0.1577	0.1565	0.1623	5.4326	5.4346	5.4411	5.5887	
CKN	\rightarrow	QN	\downarrow	0.2213	0.2118	0.2174	0.2129	4.4988	4.4194	4.3307	4.3821	
SN	\rightarrow	QN	\uparrow	0.2439	0.2445	0.2197	0.2245	5.4630	5.4448	5.4438	5.5892	
SN	\rightarrow	QN	\downarrow	0.1636	0.1877	0.2225	0.1761	4.4785	4.4133	4.3298	4.3817	
RN	\rightarrow	QN	\uparrow	0.2178	0.2128	0.1829	0.1954	5.4632	5.4433	5.4430	5.5890	

DFFNSRH

TSMC CLN90G

Pin	Po	Requirement				Interv	al (ns)	
F III	Ne	quii	eme	111	X1	X2	X4	X8
	setup	\uparrow	\rightarrow	CKN	-0.0039	-0.0156	-0.0156	-0.0156
D	setup	\downarrow	\rightarrow	CKN	0.0156	0.0117	0.0078	0.0195
	hold	\uparrow	\rightarrow	CKN	0.0508	0.0508	0.0508	0.0508
	hold	\downarrow	\rightarrow	CKN	0.0156	0.0156	0.0195	0.0117
CKN	minpwl			0.8332	0.8332	0.8332	0.8332	
CINI		min	pwh		0.8332	0.8332	0.8332	0.8332
		min	pwl		0.8332	0.8332	0.8332	0.8332
SN	ı	reco	very		-0.0078	-0.0078	-0.0078	0.0039
		rem	oval		0.0273	0.0273	0.0273	0.0156
	minpwl			0.8332	0.8332	0.8332	0.8332	
RN	ı	reco	very		-0.0898	-0.0859	-0.0898	-0.0742
		rem	oval		0.1250	0.1328	0.1641	0.1406

Cell Description

The DFFQ cell is a positive-edge triggered, static D-type flip-flop. The cell has a single output (\mathbf{Q}) .

Logic Symbol

Function Table

D	CK	Q[n+1]
0		0
1		1
Х		Q[n]

Cell Size

Drive Strength	Height (um)	Width (um)
DFFQXLAD	2.52	5.32
DFFQX1AD	2.52	5.60
DFFQX2AD	2.52	5.60
DFFQX4AD	2.52	7.00

AC Power

Pin	Power (uW/MHz)							
F 1111	XL	X1	X2	X4				
D	0.0046	0.0047	0.0049	0.0063				
CK	0.0098	0.0099	0.0101	0.0127				
Q	0.0040	0.0046	0.0058	0.0097				

Pin Capacitance

Pin	Capacitance (pF)							
F	XL	X1	X2	X4				
D	0.0011	0.0011	0.0011	0.0011				
CK	0.0017	0.0017	0.0016	0.0017				

Delays at 25°C,1.0V, Typical Process

Description		Intrinsic Delay (ns)				K _{load} (ns/pF)	
	XL	X1	X2	X4	XL	X1	X2	Х4
$CK \ \to \ Q \ \uparrow$	0.1039	0.1016	0.1014	0.1074	5.7059	3.6257	2.3146	1.1857
$CK \ \to \ Q \ \downarrow$	0.1238	0.1210	0.1061	0.1027	5.3877	3.4654	1.4806	0.7205

Pin	Po	auir	omor		Interval (ns)				
F III	Requirement			XL	X1	X2	X4		
	setup	↑	\rightarrow	CK	0.0312	0.0312	0.0312	0.0391	
D	setup	\downarrow	\rightarrow	CK	0.0469	0.0469	0.0469	0.0586	
	hold	\uparrow	\rightarrow	CK	-0.0156	-0.0195	-0.0156	-0.0234	
	hold	\downarrow	\rightarrow	CK	-0.0117	-0.0117	-0.0117	-0.0078	
СК	minpwh			0.8332	0.8332	0.8332	0.8332		
OR		min	owl		0.8332	0.8332	0.8332	0.8332	

Cell Description

The DFFR cell is a positive-edge triggered, static D-type flip-flop with asynchronous active-low reset (RN).

Logic Symbol

Function Table

RN	D	CK	Q[n+1]	QN[n+1]
0	Х	Х	0	1
1	0		0	1
1	1		1	0
1	Х	_	Q[n]	QN[n]

Cell Size

Drive Strength	Height (um)	Width (um)
DFFRXLAD	2.52	6.72
DFFRX1AD	2.52	6.72
DFFRX2AD	2.52	7.00
DFFRX4AD	2.52	7.84

Pin	Power (uW/MHz)								
FIII	XL	X1	X2	X4					
D	0.0055	0.0056	0.0072	0.0080					
CK	0.0109	0.0109	0.0127	0.0141					
RN	0.0013	0.0013	0.0015	0.0019					
Q	0.0049	0.0058	0.0087	0.0152					

Pin Capacitance

Pin	Capacitance (pF)							
' '''	XL	X1	X2	X4				
D	0.0011	0.0011	0.0013	0.0014				
CK	0.0017	0.0017	0.0018	0.0023				
RN	0.0031	0.0031	0.0033	0.0040				

Delays at 25°C,1.0V, Typical Process

Descri	iption			Intrinsic Delay (ns)				K _{load} (ns/pF)			
			XL	X1	X2	Х4	XL	X1	X2	Х4	
CK →	Q	\uparrow	0.1334	0.1417	0.1312	0.1400	5.7554	3.8106	2.3833	1.2229	
CK →	Q	\downarrow	0.1562	0.1670	0.1639	0.1650	4.4130	3.2251	1.4422	0.7166	
RN →	Q	\downarrow	0.0725	0.0804	0.0900	0.0847	4.4854	3.2403	1.4621	0.7251	
CK →	QN	\uparrow	0.0991	0.1001	0.0910	0.0879	5.7897	3.8348	2.3586	1.2464	
CK →	QN	\downarrow	0.0891	0.0958	0.0799	0.0869	4.6783	3.3907	1.4024	0.7411	
$RN \ \ o$	QN	\uparrow	0.1497	0.1510	0.1689	0.1947	5.7290	3.7924	2.4019	1.2845	

Pin	Requirement			Interval (ns)				
F 111	1/60	quii	CIIICI	11.	XL	X1	X2	X4
	setup	\uparrow	\rightarrow	CK	0.0820	0.0820	0.0742	0.0664
D	setup	\downarrow	\rightarrow	CK	0.0352	0.0352	0.0234	0.0312
	hold	\uparrow	\rightarrow	CK	-0.0469	-0.0469	-0.0430	-0.0312
	hold	\downarrow	\rightarrow	CK	0.0078	0.0078	0.0117	0.0078
СК	1	minp	wh		0.8332	0.8332	0.8332	0.8332
CIC		min	owl		0.8332	0.8332	0.8332	0.8332
	minpwl		0.8332	0.8332	0.8332	0.8332		
RN	r	ecov	ery/		0.0820	0.0781	0.0742	0.0664
	r	emo	oval		-0.0586	-0.0586	-0.0547	-0.0469

Cell Description

The DFFRHQ cell is a high-speed, positive-edge triggered, static D-type flip-flop with asynchronous active-low reset (RN). The cell has a single output (Q) and fast clock-to-out path.

Logic Symbol

Function Table

RN	D	CK	Q[n+1]
0	Х	Х	0
1	0		0
1	1		1
1	Х		Q[n]

Cell Size

Drive Strength	Height (um)	Width (um)
DFFRHQX1AD	2.52	7.56
DFFRHQX2AD	2.52	7.56
DFFRHQX4AD	2.52	9.24
DFFRHQX8AD	2.52	10.64

Pin	Power (uW/MHz)								
FIII	X1	X2	X4	X8					
D	0.0076	0.0095	0.0145	0.0173					
CK	0.0133	0.0165	0.0257	0.0309					
RN	0.0014	0.0018	0.0028	0.0036					
Q	0.0039	0.0054	0.0090	0.0160					

Pin Capacitance

Pin		nce (pF)		
' '''	X1	X2	X4	X8
D	0.0016	0.0016	0.0022	0.0038
CK	0.0021	0.0023	0.0031	0.0054
RN	0.0019	0.0024	0.0037	0.0042

Delays at 25°C,1.0V, Typical Process

Description		Intrinsic I	Delay (ns)	K _{load} (ns/pF)				
	X1	X2	X4	X8	X1	X2	X4	X8
CK → Q ↑	0.0820	0.0782	0.0743	0.0780	3.6882	2.3544	1.1954	0.6182
$CK \ \to \ Q \ \downarrow$	0.0817	0.0746	0.0742	0.0784	3.2858	1.3905	0.6846	0.3554
$RN \ o \ Q \ \downarrow$	0.0852	0.0829	0.0699	0.0651	3.3869	1.4866	0.7175	0.3476

Pin	Requirement			Interval (ns)			
	Requi	Cilici		X1	X2	X4	X8
	setup ↑	\rightarrow	CK	0.0625	0.0547	0.0508	0.0469
D	setup ↓	\rightarrow	CK	0.0469	0.0391	0.0312	0.0312
	hold ↑	\rightarrow	CK	-0.0156	-0.0117	-0.0117	-0.0039
	hold ↓	\rightarrow	CK	-0.0117	-0.0117	-0.0078	-0.0039
СК	min	pwh		0.8332	0.8332	0.8332	0.8332
Cit	mir	pwl		0.8332	0.8332	0.8332	0.8332
	mir	pwl		0.8332	0.8332	0.8332	0.8332
RN	reco	very		-0.0117	-0.0156	-0.0195	-0.0117
	rem	oval		0.0391	0.0469	0.0625	0.0547

Cell Description

The DFFRQ cell is a high-speed, positive-edge triggered, static D-type flip-flop with asynchronous active-low reset (RN). The cell has a single output (Q).

Logic Symbol

Function Table

RN	D	CK	Q[n+1]
0	Х	Х	0
1	0		0
1	1		1
1	Х		Q[n]

Cell Size

Drive Strength	Height (um)	Width (um)
DFFRQXLAD	2.52	6.16
DFFRQX1AD	2.52	6.16
DFFRQX2AD	2.52	6.16
DFFRQX4AD	2.52	6.44

Pin	Power (uW/MHz)								
F	XL	X1	X2	X4					
D	0.0044	0.0044	0.0044	0.0046					
CK	0.0084	0.0084	0.0084	0.0086					
RN	0.0010	0.0010	0.0010	0.0013					
Q	0.0037	0.0043	0.0059	0.0096					

Pin Capacitance

Pin	Capacitance (pF)							
' '''	XL	KL X1 X		X4				
D	0.0010	0.0010	0.0010	0.0010				
CK	0.0013	0.0013	0.0013	0.0013				
RN	0.0028	0.0028	0.0029	0.0034				

Delays at 25°C,1.0V, Typical Process

Description		Intrinsic I	Delay (ns)			K _{load} (ns/pF)	
	XL	X1	X2	X4	XL	X1	X2	Х4
CK → Q ↑	0.1253	0.1292	0.1310	0.1305	5.7701	3.6859	2.3519	1.2068
$CK \ \to \ Q \ \downarrow$	0.1552	0.1630	0.1733	0.1722	4.7979	3.2730	1.4712	0.7220
$RN \ o \ Q \ \downarrow$	0.0683	0.0764	0.0874	0.0823	4.8397	3.2604	1.4480	0.7103

Pin	Requirement		Interval (ns)				
	Requir	CITICI		XL	X1	X2	X4
	setup ↑	\rightarrow	CK	0.0742	0.0742	0.0742	0.0742
D	setup ↓	\rightarrow	CK	0.0156	0.0156	0.0156	0.0156
	hold ↑	\rightarrow	CK	-0.0391	-0.0391	-0.0391	-0.0391
	hold ↓	\rightarrow	CK	0.0156	0.0117	0.0117	0.0156
СК	minp	owh		0.8332	0.8332	0.8332	0.8332
CIX	min	pwl		0.8332	0.8332	0.8332	0.8332
	minpwl		0.8332	0.8332	0.8332	0.8332	
RN	recovery			0.0742	0.0742	0.0742	0.0781
	remo	oval		-0.0508	-0.0508	-0.0508	-0.0508

Cell Description

The DFFS cell is a positive-edge triggered, static D-type flip-flop with asynchronous active-low set (SN).

Logic Symbol

Function Table

SN	D	CK	Q[n+1]	QN[n+1]
0	Х	Х	1	0
1	0		0	1
1	1		1	0
1	Х		Q[n]	QN[n]

Cell Size

Drive Strength	Height (um)	Width (um)
DFFSXLAD	2.52	6.16
DFFSX1AD	2.52	6.16
DFFSX2AD	2.52	6.16
DFFSX4AD	2.52	7.28

Pin		Power (u	ıW/MHz)	W/MHz)		
F	XL	X1	X2	X4		
D	0.0054	0.0054	0.0059	0.0078		
CK	0.0108	0.0108	0.0114	0.0135		
SN	0.0013	0.0013	0.0014	0.0019		
Q	0.0054	0.0064	0.0091	0.0152		

Pin Capacitance

Pin	Capacitance (pF)							
' '''	XL	X1	X2	X4				
D	0.0015	0.0015	0.0014	0.0016				
CK	0.0019	0.0019	0.0020	0.0022				
SN	0.0020	0.0020	0.0022	0.0029				

Delays at 25°C,1.0V, Typical Process

Descr	iption			Intrinsic Delay (ns)				K _{load} (ns/pF)			
		•	XL	X1	X2	X4	XL	X1	X2	Х4	
CK →	Q	\uparrow	0.1427	0.1512	0.1574	0.1520	5.6768	3.7787	2.3670	1.2192	
CK →	Q	\downarrow	0.1472	0.1553	0.1571	0.1576	4.5634	3.1224	1.3863	0.7023	
SN →	Q	\uparrow	0.1274	0.1351	0.1666	0.2332	5.6411	3.7599	2.3629	1.2192	
CK →	QN	\uparrow	0.1050	0.1066	0.0992	0.0880	5.9516	3.9199	2.4006	1.2438	
CK →	QN	\downarrow	0.1076	0.1154	0.1030	0.0897	5.6937	3.7666	1.6185	0.7528	
SN →	QN	\downarrow	0.0951	0.1018	0.1116	0.1532	4.9626	3.3303	1.5464	0.8339	

Pin	Poquir	Requirement		Interval (ns)			
F 1111	Nequii	CIIICI	IL	XL	X1	X2	X4
	setup ↑	\rightarrow	CK	0.0625	0.0625	0.0547	0.0625
D	setup ↓	\rightarrow	CK	0.0156	0.0156	0.0156	0.0273
	hold ↑	\rightarrow	CK	-0.0273	-0.0273	-0.0273	-0.0312
	hold ↓	\rightarrow	CK	0.0117	0.0117	0.0117	0.0039
СК	minį	owh		0.8332	0.8332	0.8332	0.8332
OIX	min	pwl		0.8332	0.8332	0.8332	0.8332
	minpwl		0.8332	0.8332	0.8332	0.8332	
SN	reco	very		-0.0312	-0.0312	-0.0352	-0.0352
	rem	oval		0.0508	0.0508	0.0547	0.0547

Cell Description

The DFFSHQ cell is a high-speed, positive-edge triggered, static D-type flip-flop with asynchronous active-low set (SN). The cell has a single output (Q) and fast clock-to-out path.

Logic Symbol

Function Table

SN	D	CK	Q[n+1]
0	Х	Х	1
1	0		0
1	1		1
1	Х		Q[n]

Cell Size

Drive Strength	Height (um)	Width (um)
DFFSHQX1AD	2.52	7.84
DFFSHQX2AD	2.52	7.84
DFFSHQX4AD	2.52	9.24
DFFSHQX8AD	2.52	10.64

Pin		Power (uW/MHz)					
F			X2 X4				
D	0.0070	0.0079	0.0114	0.0128			
CK	0.0136	0.0157	0.0214	0.0237			
SN	0.0037	0.0038	0.0047	0.0053			
Q	0.0046	0.0058	0.0094	0.0159			

Pin Capacitance

Pin	Capacitance (pF)						
F	X1	X2	X4	X8			
D	0.0012	0.0012	0.0016	0.0025			
CK	0.0021	0.0022	0.0032	0.0045			
SN	0.0023	0.0027	0.0030	0.0030			

Delays at 25°C,1.0V, Typical Process

Description	Intrinsic Delay (ns)					ntrinsic Delay (ns) K _{load} (ns/pF)		
	X1	X2	X4	X8	X1	X2	X4	X8
CK → Q ↑	0.0782	0.0749	0.0678	0.0708	3.6537	2.3367	1.1908	0.6170
$CK \ \to \ Q \ \downarrow$	0.0853	0.0826	0.0725	0.0738	3.2358	1.4247	0.6910	0.3547
$SN \ o \ Q \ \uparrow$	0.1306	0.1442	0.1151	0.1169	3.9594	2.3832	1.1844	0.6103

Pin	Requirement				Interv	al (ns)	
F 1111	Nequire	HIIC	ıı	X1	X2	X4	X8
	setup ↑	\rightarrow	CK	0.0625	0.0469	0.0508	0.0508
D	setup ↓	\rightarrow	CK	0.0547	0.0547	0.0547	0.0586
	hold ↑	\rightarrow	CK	-0.0234	-0.0117	-0.0117	-0.0039
	hold ↓	\rightarrow	CK	-0.0234	-0.0195	-0.0195	-0.0195
СК	minp	wh		0.8332	0.8332	0.8332	0.8332
CIX	minp	wl		0.8332	0.8332	0.8332	0.8332
	minpwl		0.8332	0.8332	0.8332	0.8332	
SN	recov	ery		0.0273	0.0234	0.0312	0.0469
	remo	val		-0.0117	-0.0078	-0.0156	-0.0234

Cell Description

The DFFSQ cell is a high-speed, positive-edge triggered, static D-type flip-flop with asynchronous active-low set (SN). The cell has a single output (Q).

Logic Symbol

Function Table

SN	D	CK	Q[n+1]
0	Х	Х	1
1	0		0
1	1		1
1	Х		Q[n]

Cell Size

Drive Strength	Height (um)	Width (um)
DFFSQXLAD	2.52	5.60
DFFSQX1AD	2.52	5.88
DFFSQX2AD	2.52	5.88
DFFSQX4AD	2.52	6.16

Pin	Power (uW/MHz)							
F	XL	X1	X2	X4				
D	0.0048	0.0048	0.0048	0.0050				
CK	0.0102	0.0103	0.0103	0.0105				
SN	0.0012	0.0012	0.0013	0.0015				
Q	0.0040	0.0046	0.0059	0.0097				

Pin Capacitance

Pin	Capacitance (pF)							
' '''	XL	XL X1		X4				
D	0.0010	0.0010	0.0010	0.0010				
CK	0.0020	0.0020	0.0020	0.0020				
SN	0.0019	0.0020	0.0019	0.0020				

Delays at 25°C,1.0V, Typical Process

Description	Intrinsic Delay (ns)					cription Intrinsic Delay (ns) K _{load} (ns/pF)				
	XL	X1	X2	X4	XL	X1	X2	X4		
CK → Q ↑	0.1186	0.1217	0.1304	0.1441	5.4954	3.6351	2.3485	1.1991		
$CK \ \to \ Q \ \downarrow$	0.1311	0.1385	0.1455	0.1579	4.5873	3.1763	1.4022	0.7115		
$SN \ o \ Q \ \uparrow$	0.1086	0.1147	0.1206	0.1332	5.4762	3.6251	2.3446	1.1968		

Pin	Requirement				Interv	al (ns)	
F 1111	Require	CIIICI	11.	XL	X1	X2	X4
	setup ↑	\rightarrow	CK	0.0625	0.0625	0.0586	0.0547
D	setup ↓	\rightarrow	CK	0.0586	0.0586	0.0547	0.0547
	hold ↑	\rightarrow	CK	-0.0195	-0.0195	-0.0195	-0.0195
	hold ↓	\rightarrow	CK	-0.0078	-0.0117	-0.0078	-0.0117
СК	minp	wh		0.8332	0.8332	0.8332	0.8332
CIX	min	owl		0.8332	0.8332	0.8332	0.8332
	minpwl		0.8332	0.8332	0.8332	0.8332	
SN	recov	ery/		-0.0234	-0.0234	-0.0234	-0.0273
	remo	oval		0.0430	0.0391	0.0430	0.0430

Cell Description

The DFFSR cell is a positive-edge triggered, static D-type flip-flop with asynchronous active-low reset (RN) and set (SN), and set dominating reset.

Logic Symbol

Function Table

RN	SN	D	СК	Q[n+1]	QN[n+1]
0	1	Х	Х	0	1
1	0	Х	Х	1	0
0	0	Х	Х	1	0
1	1	0		0	1
1	1	1		1	0
1	1	Х		Q[n]	QN[n]

Cell Size

Drive Strength	Height (um)	Width (um)
DFFSRXLAD	2.52	7.84
DFFSRX1AD	2.52	8.12
DFFSRX2AD	2.52	8.40
DFFSRX4AD	2.52	10.36

AC Power

Pin	Power (uW/MHz)								
F 1111	XL	X1	X2	X4					
D	0.0054	0.0054	0.0063	0.0097					
CK	0.0110	0.0110	0.0123	0.0166					
SN	0.0013	0.0014	0.0016	0.0020					
RN	0.0026	0.0026	0.0029	0.0034					
Q	0.0062	0.0074	0.0102	0.0152					

Pin Capacitance

Pin	Capacitance (pF)							
' '''	XL	XL X1		X4				
D	0.0010	0.0010	0.0010	0.0013				
CK	0.0017	0.0017	0.0019	0.0022				
SN	0.0021	0.0020	0.0023	0.0030				
RN	0.0012	0.0012	0.0012	0.0012				

Delays at 25°C,1.0V, Typical Process

Descr	iption			Intrinsic [Delay (ns)		K _{load} (ns/pF)			
			XL	X1	X2	Х4	XL	X1	X2	Х4
CK →	Q	\uparrow	0.1528	0.1615	0.1663	0.1561	5.7268	3.6918	2.3773	1.2205
CK →	Q	\downarrow	0.1561	0.1658	0.1636	0.1677	4.2568	3.1347	1.3772	0.7019
SN →	Q	\uparrow	0.1436	0.1515	0.1834	0.2480	5.6730	3.6602	2.3708	1.2195
SN →	Q	\downarrow	0.1246	0.1334	0.1456	0.1669	4.2184	3.1175	1.3729	0.7024
$RN \to$	Q	\downarrow	0.1474	0.1561	0.1744	0.2116	4.2300	3.1224	1.3743	0.7025
CK →	QN	\uparrow	0.1117	0.1122	0.1074	0.0984	6.1474	3.9298	2.4480	1.2504
CK →	QN	\downarrow	0.1151	0.1242	0.1131	0.0931	5.7408	4.0143	1.6811	0.7653
SN →	QN	\uparrow	0.0814	0.0816	0.0874	0.0897	5.9224	3.7989	2.4390	1.2711
SN →	QN	\downarrow	0.1095	0.1175	0.1298	0.1667	4.7902	3.4112	1.5704	0.8440
$RN \to$	QN	\uparrow	0.1032	0.1035	0.1158	0.1373	5.9964	3.8320	2.4478	1.2782

Pin	Pog	ir	emer	\ +		Interv	al (ns)	
F 1111	Neq	uiit	5111 C 1	ıı	XL	X1	X2	X4
	setup	\uparrow	\rightarrow	CK	0.0781	0.0781	0.0625	0.0625
D	setup	\downarrow	\rightarrow	CK	0.0664	0.0664	0.0703	0.0664
	hold	\uparrow	\rightarrow	CK	-0.0195	-0.0195	-0.0234	-0.0234
	hold	\downarrow	\rightarrow	CK	-0.0156	-0.0156	-0.0195	-0.0156
СК	n	ninp	wh		0.8332	0.8332	0.8332	0.8332
CIX	n	ninp	owl		0.8332	0.8332	0.8332	0.8332
	n	ninp	owl		0.8332	0.8332	0.8332	0.8332
SN	re	cov	ery		-0.0234	-0.0234	-0.0312	-0.0391
	removal				0.0430	0.0391	0.0508	0.0625
	minpwl			0.8332	0.8332	0.8332	0.8332	
RN	RN recovery		0.0742	0.0703	0.0469	0.0508		
	re	emo	oval		-0.0234	-0.0234	-0.0156	-0.0117

Cell Description

The DFFSRHQ cell is a high-speed, positive-edge triggered, static D-type flip-flop with asynchronous active-low reset (RN) and set (SN), and set dominating reset. The cell has a single output (Q) and fast clock-to-out path.

Logic Symbol

Function Table

RN	SN	D	CK	Q[n+1]
0	1	Х	Х	0
1	0	Х	Х	1
0	0	Х	Х	1
1	1	0		0
1	1	1		1
1	1	Х		Q[n]

Cell Size

Drive Strength	Height (um)	Width (um)
DFFSRHQX1AD	2.52	9.24
DFFSRHQX2AD	2.52	9.24
DFFSRHQX4AD	2.52	11.76
DFFSRHQX8AD	2.52	13.16

Pin	Power (uW/MHz)									
F	X1	X2	X4	X8						
D	0.0076	0.0090	0.0137	0.0172						
CK	0.0141	0.0162	0.0238	0.0301						
SN	0.0044	0.0045	0.0058	0.0073						
RN	0.0015	0.0017	0.0027	0.0037						
Q	0.0052	0.0067	0.0102	0.0176						

Pin Capacitance

Pin	Capacitance (pF)								
' '''	X1	X2	X4	X8					
D	0.0012	0.0012	0.0015	0.0024					
CK	0.0022	0.0021	0.0028	0.0041					
SN	0.0023	0.0026	0.0033	0.0043					
RN	0.0019	0.0023	0.0035	0.0041					

Delays at 25°C,1.0V, Typical Process

Description		Intrinsic [Delay (ns)		K _{load} (ns/pF)			
	X1	X2	X4	X8	X1	X2	Х4	X8
$CK \to Q \uparrow$	0.0931	0.0877	0.0824	0.0793	3.7892	2.3854	1.2077	0.6258
$CK \ \to \ Q \ \downarrow$	0.0970	0.0877	0.0832	0.0766	3.4546	1.4714	0.7122	0.3614
$SN \ o \ Q \ \uparrow$	0.1085	0.1273	0.1676	0.1201	3.6597	2.3663	1.2011	0.6160
$SN \ o \ Q \ \downarrow$	0.2076	0.1893	0.1742	0.1746	3.7239	1.7158	0.8404	0.4235
$RN \ o \ Q \ \downarrow$	0.1834	0.1580	0.1352	0.1441	3.7350	1.7166	0.8419	0.4237

Pin	Requirement				Interv	al (ns)		
F 111	1/6	quii	CIIICI	11.	X1	X2	Х4	X8
	setup	\uparrow	\rightarrow	CK	0.0781	0.0625	0.0703	0.0586
D	setup	\downarrow	\rightarrow	CK	0.0625	0.0508	0.0508	0.0547
	hold	\uparrow	\rightarrow	CK	-0.0234	-0.0195	-0.0195	-0.0078
	hold	\downarrow	\rightarrow	CK	-0.0234	-0.0195	-0.0156	-0.0156
СК		minp	wh		0.8332	0.8332	0.8332	0.8332
CIX		min	owl		0.8332	0.8332	0.8332	0.8332
		min	owl		0.8332	0.8332	0.8332	0.8332
SN	ı	recov	ery/		0.0352	0.0234	0.0234	0.0312
	removal				-0.0156	-0.0117	-0.0078	-0.0156
	minpwl			0.8332	0.8332	0.8332	0.8332	
RN	recovery			-0.0117	-0.0156	-0.0156	-0.0078	
		remo	oval		0.0352	0.0430	0.0547	0.0469

Cell Description

The DFFTR cell is a positive-edge triggered, static D-type flip-flop with synchronous active-low reset (RN).

Logic Symbol

Function Table

RN	D	CK	Q[n+1]	QN[n+1]
0	Х		0	1
Х	Х		Q[n]	QN[n]
1	0		0	1
1	1		1	0

Cell Size

Drive Strength	Height (um)	Width (um)
DFFTRXLAD	2.52	5.88
DFFTRX1AD	2.52	6.16
DFFTRX2AD	2.52	6.16
DFFTRX4AD	2.52	8.12

Pin	Power (uW/MHz)					
F III	XL	X1	X2	X4		
D	0.0052	0.0058	0.0070	0.0112		
CK	0.0107	0.0112	0.0131	0.0192		
RN	0.0056	0.0061	0.0077	0.0129		
Q	0.0053	0.0061	0.0085	0.0143		

Pin Capacitance

Pin		Capacita	nce (pF)	
' '''	XL	XL X1 X2		X4
D	0.0011	0.0011	0.0013	0.0020
CK	0.0016	0.0016	0.0017	0.0022
RN	0.0010	0.0010	0.0011	0.0016

Delays at 25°C,1.0V, Typical Process

Description		Intrinsic Delay (ns)		K _{load} (ns/pF)				
	XL	X1	X2	X4	XL	X1	X2	X4
$CK \to Q \uparrow$	0.1225	0.1183	0.1218	0.1117	5.6563	3.6469	2.3622	1.2105
$CK \to Q \downarrow$	0.1358	0.1399	0.1433	0.1353	4.1846	3.1102	1.3651	0.6642
$CK \to QN \uparrow$	0.0958	0.0909	0.0913	0.0877	5.8263	3.6787	2.3567	1.2234
$CK \ \to \ QN \ \downarrow$	0.0890	0.0870	0.0809	0.0728	4.6853	3.2762	1.3842	0.6696

Pin	n Requirement		Interval (ns)					
FIII	Requirement			XL	X1	X2	X4	
	setup	\uparrow	\rightarrow	CK	0.0703	0.0703	0.0547	0.0508
D	setup	\downarrow	\rightarrow	CK	0.0977	0.1016	0.0820	0.0547
	hold	\uparrow	\rightarrow	CK	-0.0312	-0.0312	-0.0234	-0.0195
	hold	\downarrow	\rightarrow	CK	-0.0312	-0.0352	-0.0234	-0.0078
СК	1	minp	wh		0.8332	0.8332	0.8332	0.8332
Cit		minp	owl		0.8332	0.8332	0.8332	0.8332
	setup	\uparrow	\rightarrow	CK	0.0703	0.0742	0.0586	0.0508
RN	setup	\downarrow	\rightarrow	CK	0.1016	0.1055	0.1211	0.1133
IXIN	hold	\uparrow	\rightarrow	CK	-0.0312	-0.0352	-0.0273	-0.0234
	hold	\downarrow	\rightarrow	CK	-0.0312	-0.0352	-0.0469	-0.0391

Cell Description

The DFFYQ cell is a positive-edge triggered, static D-type flip-flop to be used in synchronizing circuitry between asynchronous systems. The cell has a single output (Q) and overdriven feedback loops to increase MTBF due to metastability.

Logic Symbol

Function Table

D	CK	Q[n+1]
0		0
1		1
Х		Q[n]

Cell Size

Drive Strength	Height (um)	Width (um)
DFFYQX2AD	2.52	6.16

Pin	Power (uW/MHz)
	X2
D	0.0094
CK	0.0167
Q	0.0059

Pin Capacitance

Pin	Capacitance (pF)
	X2
D	0.0023
CK	0.0026

Delays at 25°C,1.0V, Typical Process

Description	Intrinsic Delay (ns)	K _{load} (ns/pF)
	X2	X2
CK → Q ↑	0.0913	2.3195
$CK \ \to \ Q \ \downarrow$	0.0984	1.4689

Pin	Requirement	Interval (ns)
PIII	Requirement	X2
	setup \uparrow \rightarrow CK	0.0195
D	setup \downarrow \rightarrow CK	0.0391
	hold \uparrow \rightarrow CK	-0.0117
	hold \downarrow \rightarrow CK	-0.0117
СК	minpwh	0.8332
OR	minpwl	0.8332

Cell Description

The DLY1 cell provides the logical delay of a single input (A). The output (Y) is represented by the logic equation:

Y = A

Logic Symbol

Function Table

Α	Υ
0	0
1	1

Cell Size

Drive Strength	Height (um)	Width (um)
DLY1X1AD	2.52	2.52
DLY1X4AD	2.52	3.08

AC Power

Pin	Power (uW/MHz)	
' ""	X1	X4
Α	0.0057	0.0097

Pin Capacitance

Pin	Capacitance (pF)	
' '''	X1	X4
Α	0.0014	0.0020

Delays at 25°C,1.0V, Typical Process

Description		Intrinsic Delay (ns)		K _{load} (ns/pF)			
				X1	X4	X1	X4
Α	\rightarrow	Υ	\uparrow	0.0644	0.0601	3.7698	1.1966
Α	\rightarrow	Υ	\downarrow	0.0818	0.0773	3.0173	1.3534

Cell Description

The DLY2 cell provides the logical delay of a single input (A). The output (Y) is represented by the logic equation:

Y = A

Logic Symbol

Function Table

Α	Υ
0	0
1	1

Cell Size

Drive Strength	Height (um)	Width (um)
DLY2X1AD	2.52	2.52
DLY2X4AD	2.52	3.08

AC Power

Pin	Power (uW/MHz)	
' '''	X1	X4
Α	0.0067	0.0116

Pin Capacitance

Pin	Capacitance (pF)	
		X4
Α	0.0014	0.0020

Delays at 25°C,1.0V, Typical Process

Description	Intrinsic Delay (ns)		K _{load} (ns/pF)
	X1	X4	X1	X4
$A \rightarrow Y \uparrow$	0.1108	0.1056	3.8088	1.2080
$A \rightarrow Y \downarrow$	0.1266	0.1260	3.1711	1.3894

Cell Description

The DLY3 cell provides the logical delay of a single input (A). The output (Y) is represented by the logic equation:

Y = A

Logic Symbol

Function Table

Α	Υ
0	0
1	1

Cell Size

Drive Strength	Height (um)	Width (um)
DLY3X1AD	2.52	2.52
DLY3X4AD	2.52	3.08

AC Power

Pin	Power (uW/MHz	
' '''	X1	X4
Α	0.0079	0.0139

Pin Capacitance

Pin	Capacitance (pF)	
' '''	X1	X4
Α	0.0014	0.0020

Delays at 25°C,1.0V, Typical Process

Description			n	Intrinsic Delay (ns)		K _{load} (ns/pF)	
				X1	X4	X1	X4
Α	\rightarrow	Υ	1	0.1681	0.1595	3.8707	1.2240
Α	\rightarrow	Υ	\downarrow	0.1754	0.1767	3.3620	1.4380

Cell Description

The DLY4 cell provides the logical delay of a single input (A). The output (Y) is represented by the logic equation:

Y = A

Logic Symbol

Function Table

Α	Υ	
0	0	
1	1	

Cell Size

Drive Strength	Height (um)	Width (um)
DLY4X1AD	2.52	2.52
DLY4X4AD	2.52	3.08

AC Power

Pin	Power (uW/MHz)
' '''	X1	X4
Α	0.0092	0.0163

Pin Capacitance

Pin	Capacit	ance (pF)
FIII	X1	X4
Α	0.0014	0.0020

Description	Intrinsic I	Delay (ns)	K _{load} (ns/pF)
	X1	X4	X1	X4
$A \ \rightarrow \ Y \ \uparrow$	0.2390	0.2264	3.9675	1.2524
$A \rightarrow Y \downarrow$	0.2325	0.2357	3.5815	1.4963

Cell Description

The EDFF cell is a positive-edge triggered, static D-type flip-flop with synchronous active-high enable (E).

Logic Symbol

Function Table

E	D	CK	Q[n+1]	QN[n+1]
0	Х	Х	Q[n]	QN[n]
1	0		0	1
1	1		1	0
1	Х		Q[n]	QN[n]

Cell Size

Drive Strength	Height (um)	Width (um)
EDFFXLAD	2.52	7.56
EDFFX1AD	2.52	7.56
EDFFX2AD	2.52	7.56
EDFFX4AD	2.52	10.08

AC Power

Pin	Power (uW/MHz)						
' ""	XL	X1	X2	X4			
D	0.0060	0.0061	0.0065	0.0077			
CK	0.0104	0.0106	0.0110	0.0141			
Е	0.0087	0.0089	0.0093	0.0106			
Q	0.0067	0.0076	0.0102	0.0176			

Pin Capacitance

Pin	Capacitance (pF)					
' '''	XL	X1	X2	X4		
D	0.0015	0.0015	0.0015	0.0014		
CK	0.0015	0.0015	0.0015	0.0018		
Е	0.0027	0.0027	0.0027	0.0027		

Delays at 25°C,1.0V, Typical Process

Description		Intrinsic Delay (ns)				K _{load} (ns/pF)	
	XL	X1	X2	X4	XL	X1	X2	X4
$CK \to Q \uparrow$	0.1053	0.1008	0.1027	0.1107	5.7264	3.5988	2.3783	1.2192
$CK \to Q \downarrow$	0.1195	0.1143	0.1002	0.1011	5.3331	3.4119	1.4381	0.7224
$CK \to QN \uparrow$	0.1708	0.1641	0.1510	0.1515	5.7518	3.6585	2.3446	1.2129
$CK \ \to \ QN \ \downarrow$	0.1645	0.1669	0.1597	0.1626	4.8282	3.2533	1.3958	0.6748

Timing Constraints at 25°C,1.0V, Typical Process

Pin	Requirement			Interval (ns)				
F 1111				XL	X1	X2	X4	
	setup	\uparrow	\rightarrow	CK	0.0859	0.0859	0.0898	0.0898
D	setup	\downarrow	\rightarrow	CK	0.0820	0.0820	0.0898	0.1016
	hold	\uparrow	\rightarrow	CK	-0.0625	-0.0625	-0.0625	-0.0625
	hold	\downarrow	\rightarrow	CK	-0.0469	-0.0469	-0.0469	-0.0430
СК	ı	minp	wh		0.8332	0.8332	0.8332	0.8332
CIX		min	owl		0.8332	0.8332	0.8332	0.8332
	setup	\uparrow	\rightarrow	CK	0.1055	0.1055	0.1094	0.1211
E	setup	\downarrow	\rightarrow	CK	0.1133	0.1133	0.1133	0.1133
	hold	\uparrow	\rightarrow	CK	-0.0703	-0.0703	-0.0703	-0.0703
	hold	\downarrow	\rightarrow	CK	-0.0430	-0.0430	-0.0391	-0.0352

Cell Description

The EDFFHQ cell is a high-speed, positive-edge triggered, static D-type flip-flop with a synchronous, active-high enable (E). The cell has a single output (Q) and fast clock-to-out path.

Logic Symbol

Function Table

Е	D	CK	Q[n+1]
0	Х	Х	Q[n]
1	0		0
1	1		1
Х	Х		Q[n]

Cell Size

Drive Strength	Height (um)	Width (um)
EDFFHQX1AD	2.52	8.68
EDFFHQX2AD	2.52	8.96
EDFFHQX4AD	2.52	11.76
EDFFHQX8AD	2.52	15.40

Pin		Power (u	ıW/MHz)	
' '''	X1	X2	X4	X8
D	0.0094	0.0123	0.0184	0.0327
CK	0.0151	0.0182	0.0271	0.0408
E	0.0107	0.0124	0.0183	0.0295
Q	0.0047	0.0065	0.0097	0.0166

Pin Capacitance

Pin	Capacitance (pF)								
' '''	X1	X2	X4	X8					
D	0.0018	0.0023	0.0038	0.0077					
CK	0.0022	0.0025	0.0034	0.0044					
Е	0.0035	0.0036	0.0039	0.0060					

Delays at 25°C,1.0V, Typical Process

Description		Intrinsic I	Delay (ns)		K _{load} (ns/pF)			
	X1	X2	X4	X8	X1	X2	X4	X8
CK → Q ↑	0.0800	0.0768	0.0679	0.0608	3.6438	2.3479	1.1902	0.6087
$CK \ \to \ Q \ \downarrow$	0.0877	0.0816	0.0700	0.0639	3.2481	1.3981	0.6785	0.3319

Timing Constraints at 25°C,1.0V, Typical Process

Pin	Requirement				Interval (ns)					
	Requirement			X1	X2	X4	X8			
	setup	\uparrow	\rightarrow	CK	0.0664	0.0547	0.0508	0.0586		
D	setup	\downarrow	\rightarrow	CK	0.0625	0.0469	0.0469	0.0586		
	hold	\uparrow	\rightarrow	CK	-0.0312	-0.0195	-0.0156	-0.0195		
	hold \downarrow \rightarrow CK		-0.0312	-0.0195	-0.0195	-0.0273				
СК	minpwh			0.8332	0.8332	0.8332	0.8332			
CK		minp	owl		0.8332	0.8332	0.8332	0.8332		
	setup	\uparrow	\rightarrow	CK	0.0625	0.0508	0.0508	0.0664		
E	setup	\downarrow	\rightarrow	CK	0.0820	0.0859	0.0977	0.1016		
	hold	\uparrow	\rightarrow	CK	-0.0430	-0.0312	-0.0234	-0.0312		
	hold	\downarrow	\rightarrow	CK	-0.0625	-0.0703	-0.0703	-0.0625		

Cell Description

The EDFFTR cell is a positive-edge triggered, static D-type flip-flop with synchronous active-high enable (E) and synchronous active-low reset (RN).

Logic Symbol

Function Table

RN	Ε	D	CK	Q[n+1]	QN[n+1]
0	Х	Х		0	1
Х	Х	Х		Q[n]	QN[n]
1	0	Х		Q[n]	QN[n]
1	1	0		0	1
1	1	1		1	0

Cell Size

Drive Strength	Height (um)	Width (um)
EDFFTRXLAD	2.52	8.68
EDFFTRX1AD	2.52	8.68
EDFFTRX2AD	2.52	8.68
EDFFTRX4AD	2.52	10.08

Pin		Power (uW/MHz)								
	XL	X1	X2	X4						
D	0.0057	0.0058	0.0061	0.0074						
CK	K 0.0111 0.0		0.0117	0.0139						
Е	0.0084	0.0085	0.0088	0.0101						
RN	0.0061	0.0063	0.0066	0.0079						
Q	0.0060	0.0069	0.0096	0.0163						

Pin Capacitance

Pin	Capacitance (pF)								
	XL	X1	X2	X4					
D	0.0011	0.0011	0.0011	0.0011					
CK	0.0016	0.0016	0.0016	0.0019					
E	0.0030	0.0030	0.0030	0.0030					
RN	0.0011	0.0010	0.0011	0.0011					

Description		Intrinsic [Delay (ns)		K _{load} (ns/pF)			
	XL	X1	X2	X4	XL	X1	X2	X4
$CK \to Q \uparrow$	0.1085	0.1049	0.1083	0.1017	5.7820	3.6990	2.3879	1.2259
$CK \ o \ Q \ \downarrow$	0.1173	0.1151	0.1036	0.0946	4.9382	3.3905	1.4362	0.7067
CK → QN ↑	0.1644	0.1596	0.1549	0.1443	5.7543	3.6922	2.3744	1.2136
$CK \to QN \downarrow$	0.1642	0.1685	0.1704	0.1560	4.4379	3.2280	1.4092	0.6794

Timing Constraints at 25°C,1.0V, Typical Process

Din	Box			.4		Interv	al (ns)	
Pin	Requirement -			XL	X1	X2	X4	
	setup	\uparrow	\rightarrow	CK	0.0781	0.0781	0.0820	0.0898
D	setup	\downarrow	\rightarrow	CK	0.2070	0.2070	0.2109	0.2305
	hold	\uparrow	\rightarrow	CK	-0.0625	-0.0664	-0.0664	-0.0703
	hold	\downarrow	\rightarrow	CK	-0.1680	-0.1680	-0.1641	-0.1758
CK	minpwh				0.8332	0.8332	0.8332	0.8332
CK	minpwl			0.8332	0.8332	0.8332	0.8332	
	setup	\uparrow	\rightarrow	CK	0.2305	0.2305	0.2344	0.2539
Е	setup	\downarrow	\rightarrow	CK	0.1758	0.1758	0.1758	0.1875
_	hold	\uparrow	\rightarrow	CK	-0.0625	-0.0625	-0.0625	-0.0703
	hold	\downarrow	\rightarrow	CK	-0.0977	-0.0977	-0.0977	-0.1055
	setup	\uparrow	\rightarrow	CK	0.0859	0.0898	0.0898	0.0977
RN	setup	\downarrow	\rightarrow	CK	0.1562	0.1562	0.1602	0.1758
KIN	hold	\uparrow	\rightarrow	CK	-0.0742	-0.0742	-0.0742	-0.0781
	hold	\downarrow	\rightarrow	CK	-0.1094	-0.1094	-0.1055	-0.1172

Cell Description

The INV cell provides the logical inversion of a single input (A). The output (Y) is represented by the logic equation:

 $Y = \overline{A}$

Logic Symbol

Function Table

Α	Υ
0	1
1	0

Cell Size

Drive Strength	Height (um)	Width (um)
INVXLAD	2.52	0.84
INVX1AD	2.52	0.84
INVX2AD	2.52	0.84
INVX3AD	2.52	1.12
INVX4AD	2.52	1.12
INVX5AD	2.52	1.40
INVX6AD	2.52	1.68
INVX8AD	2.52	1.96
INVX10AD	2.52	2.24
INVX12AD	2.52	2.52
INVX14AD	2.52	3.08
INVX16AD	2.52	3.36
INVX18AD	2.52	3.64
INVX20AD	2.52	4.20

AC Power

Pin				Power (u	ıW/MHz)			
FIII	XL	X1	X2	Х3	X4	X5	X6	X8
Α	0.0012	0.0016	0.0027	0.0039	0.0049	0.0062	0.0076	0.0098

AC Power (Cont'd.)

Pin		Power (uW/MHz)								
' '''	X10 X12 X14 X16 X18 X20									
Α	0.0126	0.0149	0.0177	0.0199	0.0226	0.0251				

Pin Capacitance

Pin		Capacitance (pF)							
F 111	XL X1 X2 X3 X4 X5 X6 X8							X8	
Α	0.0012	0.0017	0.0028	0.0043	0.0054	0.0066	0.0079	0.0106	

Pin Capacitance (Cont'd.)

Pin	Capacitance (pF)							
F 1111	X10 X12 X14 X16 X18 X20							
Α	0.0133	0.0159	0.0186	0.0212	0.0239	0.0266		

Delays at 25°C,1.0V, Typical Process

Descri	ptio	n				Intrinsic I	Delay (ns)			
			XL	X1	X2	Х3	Х4	X5	Х6	X8
$A \rightarrow $	Υ	1	0.0115	0.0108	0.0112	0.0111	0.0107	0.0109	0.0110	0.0109
$A \rightarrow $	Υ	\downarrow	0.0102	0.0101	0.0084	0.0080	0.0078	0.0080	0.0079	0.0079

Delays at 25°C,1.0V, Typical Process (Cont'd.)

Description		Intrinsic Delay (ns)							
	X10	X12	X14	X16	X18	X20			
$A \rightarrow Y \uparrow$	0.0111	0.0111	0.0114	0.0115	0.0116	0.0116			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0080	0.0079	0.0081	0.0082	0.0082	0.0083			

Delays at 25°C,1.0V, Typical Process (Cont'd.)

Description				K _{load} (ns/pF)			
	XL	X1	X2	Х3	X4	X5	Х6	X8
$A \rightarrow Y \uparrow$	5.4375	3.5081	2.2794	1.5668	1.1774	0.9404	0.7958	0.6022
$A \rightarrow Y \downarrow$	4.3018	3.0042	1.2750	0.8256	0.6249	0.5088	0.4140	0.3088

Delays at 25°C,1.0V, Typical Process (Cont'd.)

Description	K _{load} (ns/pF)					
	X10	X12	X14	X16	X18	X20
$A \rightarrow Y \uparrow$	0.4860	0.4084	0.3513	0.3082	0.2751	0.2482
$A \rightarrow Y \downarrow$	0.2494	0.2068	0.1766	0.1535	0.1367	0.1229

Cell Description

The MDFFHQ cell is a high-speed, positive-edge triggered, static D-type flip-flop with a 2-to-1data select control (S0) for the data inputs (D1,D0). The cell has a single output (Q) and fast clock-to-out path.

Logic Symbol

Function Table

S0	D1	D0	CK	Q[n+1]
0	Х	0		0
0	Х	1		1
1	0	Х		0
1	1	Х		1
Х	Х	Х		Q[n]

Cell Size

Drive Strength	Height (um)	Width (um)
MDFFHQX1AD	2.52	8.12
MDFFHQX2AD	2.52	8.40
MDFFHQX4AD	2.52	11.48
MDFFHQX8AD	2.52	16.80

Pin	Power (uW/MHz)								
	X1	X2	X4	X8					
D0	0.0076	0.0103	0.0171	0.0293					
D1	0.0081	0.0111	0.0187	0.0318					
S0	0.0093	0.0122	0.0199	0.0343					
CK	0.0136	0.0167	0.0269	0.0440					
Q	0.0042	0.0057	0.0089	0.0144					

Pin Capacitance

Pin	Capacitance (pF)								
' '''	X1	X2	X4	X8					
D0	0.0012	0.0016	0.0026	0.0046					
D1	0.0012	0.0016	0.0026	0.0047					
S0	0.0022	0.0025	0.0030	0.0048					
CK	0.0024	0.0024	0.0033	0.0053					

Delays at 25°C,1.0V, Typical Process

Description Intrinsic Delay (ns)				K _{load} (ns/pF)				
	X1	X2	X4	X8	X1	X2	X4	X8
$CK \to Q \uparrow$	0.0777	0.0739	0.0683	0.0620	3.6227	2.3150	1.1810	0.6062
$CK \ \to \ Q \ \downarrow$	0.0871	0.0818	0.0732	0.0647	3.2639	1.3886	0.6717	0.3268

Timing Constraints at 25°C,1.0V, Typical Process

Pin	Requirement				Interv	al (ns)		
FIII	Nec	₄ um	emei	ıı	X1	X2	Х4	X8
	setup	\uparrow	\rightarrow	CK	0.0820	0.0664	0.0586	0.0547
D0	setup	\downarrow	\rightarrow	CK	0.0898	0.0742	0.0586	0.0742
00	hold	\uparrow	\rightarrow	CK	-0.0430	-0.0352	-0.0234	-0.0195
	hold	\downarrow	\rightarrow	CK	-0.0586	-0.0430	-0.0312	-0.0391
	setup	\uparrow	\rightarrow	CK	0.0820	0.0625	0.0586	0.0508
D1	setup	\downarrow	\rightarrow	CK	0.0938	0.0742	0.0664	0.0781
וטו	hold	\uparrow	\rightarrow	CK	-0.0430	-0.0312	-0.0234	-0.0156
	hold	\downarrow	\rightarrow	CK	-0.0625	-0.0469	-0.0352	-0.0430
	setup	\uparrow	\rightarrow	CK	0.0859	0.0703	0.0625	0.0781
S0	setup	\downarrow	\rightarrow	CK	0.0938	0.0859	0.0898	0.0859
30	hold	\uparrow	\rightarrow	CK	-0.0352	-0.0234	-0.0156	-0.0117
	hold \downarrow \rightarrow CK		-0.0508	-0.0391	-0.0312	-0.0391		
СК	minpwh			0.8332	0.8332	0.8332	0.8332	
		min	owl		0.8332	0.8332	0.8332	0.8332

Cell Description

The MX2 cell is a 2-to-1 multiplexer. The state of the select input (S0) determines which data input (A,B) is presented to the output (Y). The output (Y) is represented by the logic equation:

$$\mathsf{Y} = (\overline{\mathsf{S}0} {\bullet} \mathsf{A}) + (\mathsf{S}0 {\bullet} \mathsf{B})$$

Logic Symbol

Function Table

S0	Α	В	Υ
0	0	Х	0
0	1	Х	1
1	Х	0	0
1	Х	1	1

Cell Size

Drive Strength	Height (um)	Width (um)
MX2XLAD	2.52	2.52
MX2X1AD	2.52	2.52
MX2X2AD	2.52	3.08
MX2X3AD	2.52	3.36
MX2X4AD	2.52	3.36
MX2X6AD	2.52	3.92
MX2X8AD	2.52	4.20

AC Power

Pin	Power (uW/MHz)								
	XL	X1	X2	Х3	X4	X6	X8		
S0	0.0046	0.0058	0.0098	0.0118	0.0129	0.0164	0.0210		
Α	0.0038	0.0047	0.0078	0.0102	0.0117	0.0160	0.0205		
В	0.0042	0.0053	0.0085	0.0114	0.0128	0.0172	0.0218		

Pin Capacitance

Pin		Capacitance (pF)								
	XL	X1	X2	Х3	X4	Х6	X8			
S0	0.0026	0.0029	0.0042	0.0047	0.0047	0.0048	0.0048			
Α	0.0014	0.0017	0.0025	0.0029	0.0029	0.0029	0.0029			
В	0.0013	0.0015	0.0022	0.0026	0.0026	0.0026	0.0026			

Delays at 25°C,1.0V, Typical Process

Description			n	Intrinsic Delay (ns)							
				XL	X1	X2	Х3	X4	X6	X8	
S0	\rightarrow	Υ	\uparrow	0.0604	0.0584	0.0675	0.0654	0.0668	0.0710	0.0759	
S0	\rightarrow	Υ	\downarrow	0.0620	0.0581	0.0559	0.0549	0.0593	0.0680	0.0778	
Α	\rightarrow	Υ	\uparrow	0.0480	0.0425	0.0420	0.0430	0.0444	0.0507	0.0561	
Α	\rightarrow	Υ	\downarrow	0.0688	0.0616	0.0546	0.0552	0.0589	0.0678	0.0759	
В	\rightarrow	Υ	\uparrow	0.0465	0.0409	0.0392	0.0400	0.0415	0.0478	0.0532	
В	\rightarrow	Υ	\downarrow	0.0700	0.0622	0.0554	0.0568	0.0599	0.0693	0.0774	

Delays at 25°C,1.0V, Typical Process (Cont'd.)

Description			n	K _{load} (ns/pF)							
				XL	X1	X2	Х3	Х4	Х6	X8	
S0	\rightarrow	Υ	1	5.6796	3.6186	2.3757	1.6340	1.2174	0.8229	0.6237	
S0	\rightarrow	Υ	\downarrow	4.9082	3.0915	1.3752	0.9091	0.6984	0.4781	0.3709	
Α	\rightarrow	Υ	\uparrow	5.6808	3.6175	2.3776	1.6352	1.2186	0.8240	0.6245	
Α	\rightarrow	Υ	\downarrow	4.8852	3.0940	1.3816	0.9178	0.7044	0.4815	0.3727	
В	\rightarrow	Υ	\uparrow	5.6859	3.6193	2.3777	1.6360	1.2186	0.8244	0.6251	
В	\rightarrow	Υ	\downarrow	4.9115	3.0926	1.3747	0.9091	0.6953	0.4806	0.3721	

Cell Description

The MX3 cell is a 3-to-1 multiplexer. The state of the select inputs (S1,S0) determines which data input (A,B,C) is presented to the output (Y). The output (Y) is represented by the logic equation:

$$Y = (\overline{S0} \bullet \overline{S1} \bullet A) + (S0 \bullet \overline{S1} \bullet B) + (S1 \bullet C)$$

Logic Symbol

Function Table

S1	S0	Α	В	С	Υ
0	0	0	Х	Х	0
0	0	1	Х	Х	1
0	1	Х	0	Х	0
0	1	Х	1	Х	1
1	х	Х	Х	0	0
1	Х	Х	Х	1	1

Cell Size

Drive Strength	Height (um)	Width (um)
MX3XLAD	2.52	5.04
MX3X1AD	2.52	5.04
MX3X2AD	2.52	5.60
MX3X4AD	2.52	6.16

Pin	Power (uW/MHz)						
	XL	X1	X2	X4			
S0	0.0072	0.0092	0.0132	0.0170			
S1	0.0056	0.0069	0.0093	0.0125			
Α	0.0065	0.0084	0.0120	0.0165			
В	0.0071	0.0091	0.0133	0.0179			
С	0.0052	0.0065	0.0104	0.0144			

Pin Capacitance

Pin	Capacitance (pF)							
	XL	X1	X2	Х4				
S0	0.0029	0.0034	0.0055	0.0055				
S1	0.0029	0.0032	0.0041	0.0044				
Α	0.0015	0.0020	0.0028	0.0028				
В	0.0015	0.0019	0.0027	0.0027				
С	0.0011	0.0014	0.0024	0.0028				

Description	Intrinsic Delay (ns)					K _{load} (ns/pF)	
	XL	X1	X2	X4	XL	X1	X2	Х4
$SO \rightarrow Y \uparrow$	0.0835	0.0824	0.0808	0.0888	5.7220	3.6259	2.3264	1.1995
$SO \rightarrow Y \downarrow$	0.0921	0.0889	0.0807	0.0929	5.1167	3.5266	1.5578	0.7995
S1 \rightarrow Y \uparrow	0.0639	0.0627	0.0597	0.0669	5.7088	3.6234	2.3246	1.1997
S1 \rightarrow Y \downarrow	0.0629	0.0627	0.0522	0.0628	4.6078	3.2942	1.4407	0.7816
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0707	0.0657	0.0625	0.0709	5.7253	3.6268	2.3274	1.2003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0933	0.0878	0.0789	0.0900	5.1203	3.5294	1.5608	0.8002
$B \to Y \uparrow$	0.0695	0.0657	0.0612	0.0697	5.7233	3.6314	2.3282	1.2012
$B \to Y \downarrow$	0.0962	0.0911	0.0831	0.0942	5.1410	3.5373	1.5647	0.8019
$C \rightarrow Y \uparrow$	0.0539	0.0497	0.0451	0.0460	5.6009	3.5764	2.3076	1.1822
$C \rightarrow Y \downarrow$	0.0786	0.0722	0.0626	0.0647	4.6270	3.2980	1.4242	0.7060

Cell Description

The MX4 cell is a 4-to-1 multiplexer. The state of the select inputs (S1,S0) determines which data input (A,B,C,D) is presented to the output (Y). The output (Y) is represented by the logic equation:

$$\mathsf{Y} = (\overline{S0} \bullet \overline{S1} \bullet A) + (S0 \bullet \overline{S1} \bullet B) + (\overline{S0} \bullet S1 \bullet C) + (S0 \bullet S1 \bullet D)$$

Logic Symbol

Function Table

S1	S0	Α	В	С	D	Υ
0	0	0	Х	Х	Х	0
0	0	1	Х	Х	Х	1
0	1	Х	0	Х	Х	0
0	1	Х	1	Х	Х	1
1	0	Х	Х	0	Х	0
1	0	Х	Х	1	Х	1
1	1	Х	Х	Х	0	0
1	1	Х	Х	Х	1	1

Cell Size

Drive Strength	Height (um)	Width (um)
MX4XLAD	2.52	6.72
MX4X1AD	2.52	7.00
MX4X2AD	2.52	7.28
MX4X4AD	2.52	7.84

Pin	Power (uW/MHz)								
FIII	XL	X1	X2	X4					
S0	0.0130	0.0154	0.0220	0.0268					
S1	0.0057	0.0069	0.0101	0.0130					
Α	0.0067	0.0082	0.0124	0.0170					
В	0.0072	0.0090	0.0136	0.0182					
С	0.0083	0.0099	0.0147	0.0194					
D	0.0086	0.0103	0.0155	0.0203					

Pin Capacitance

Pin	Capacitance (pF)								
' '''	XL	X1	X2	X4					
S0	0.0066	0.0075	0.0103	0.0103					
S1	0.0033	0.0034	0.0045	0.0045					
Α	0.0015	0.0019	0.0027	0.0027					
В	0.0015	0.0018	0.0026	0.0026					
С	0.0015	0.0019	0.0028	0.0028					
D	0.0014	0.0019	0.0027	0.0027					

Description			Intrinsic [Delay (ns)			K _{load} (ns/pF)	
		XL	X1	X2	X4	XL	X1	X2	Х4
S0 → Y	\uparrow	0.0979	0.0839	0.0786	0.0870	5.7390	4.0171	2.3607	1.2013
S0 → Y	\downarrow	0.1176	0.1003	0.0922	0.1046	5.6968	3.5695	1.5737	0.8049
S1 → Y	\uparrow	0.0601	0.0627	0.0594	0.0669	5.6618	4.0443	2.3565	1.2010
S1 → Y	\downarrow	0.0553	0.0580	0.0548	0.0658	5.5292	3.5649	1.5588	0.8034
$A \rightarrow Y$	\uparrow	0.0683	0.0627	0.0610	0.0697	5.6730	4.0041	2.3571	1.2012
$A \rightarrow Y$	\downarrow	0.0931	0.0894	0.0798	0.0913	5.5417	3.5853	1.5641	0.8000
$B \to Y$	\uparrow	0.0683	0.0727	0.0613	0.0701	5.6733	4.0516	2.3588	1.2025
$B \to Y$	\downarrow	0.0959	0.0876	0.0821	0.0936	5.5428	3.5238	1.5642	0.7997
$C \rightarrow Y$	\uparrow	0.0742	0.0647	0.0622	0.0706	5.7334	4.0153	2.3608	1.2031
$C \rightarrow Y$	\downarrow	0.1046	0.0914	0.0862	0.0978	5.7089	3.5747	1.5760	0.8056
$D \rightarrow Y$	\uparrow	0.0713	0.0658	0.0616	0.0702	5.7167	4.0311	2.3624	1.2045
$D \to Y$	\downarrow	0.1052	0.0993	0.0888	0.1007	5.7065	3.6168	1.5817	0.8085

Cell Description

The MXI2 cell is a 2-to-1 multiplexer with inverted output. The state of the select input (S0) determines which data input (A,B) is presented to the output (Y). The output (Y) is represented by the logic equation:

$$Y = (\overline{\overline{S0} \bullet A}) + (S0 \bullet B)$$

Logic Symbol

Function Table

S0	Α	В	Υ
0	0	Х	1
0	1	Х	0
1	Х	0	1
1	Х	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
MXI2XLAD	2.52	2.24
MXI2X1AD	2.52	2.24
MXI2X2AD	2.52	3.08
MXI2X3AD	2.52	4.48
MXI2X4AD	2.52	4.48
MXI2X6AD	2.52	6.16
MXI2X8AD	2.52	8.68

AC Power

Pin	Power (uW/MHz)									
FIII	XL	X1	X2	Х3	X4	X6	X8			
S0	0.0037	0.0047	0.0072	0.0111	0.0139	0.0179	0.0254			
Α	0.0026	0.0034	0.0061	0.0094	0.0111	0.0162	0.0222			
В	0.0031	0.0041	0.0072	0.0106	0.0127	0.0191	0.0273			

Pin Capacitance

Pin	Capacitance (pF)								
F	XL	X1	X2	Х3	X4	Х6	X8		
S0	0.0027	0.0032	0.0045	0.0070	0.0080	0.0114	0.0160		
Α	0.0013	0.0017	0.0027	0.0044	0.0053	0.0077	0.0103		
В	0.0014	0.0018	0.0027	0.0041	0.0051	0.0078	0.0104		

Delays at 25°C,1.0V, Typical Process

De	escri	ptio	n	Intrinsic Delay (ns)						
				XL	X1	X2	Х3	X4	X6	X8
S0	\rightarrow	Υ	\uparrow	0.0268	0.0261	0.0275	0.0283	0.0288	0.0231	0.0239
S0	\rightarrow	Υ	\downarrow	0.0346	0.0360	0.0361	0.0376	0.0418	0.0313	0.0323
Α	\rightarrow	Υ	\uparrow	0.0282	0.0245	0.0266	0.0279	0.0262	0.0256	0.0262
Α	\rightarrow	Υ	\downarrow	0.0252	0.0240	0.0200	0.0218	0.0209	0.0195	0.0198
В	\rightarrow	Υ	\uparrow	0.0298	0.0269	0.0293	0.0291	0.0270	0.0280	0.0292
В	\rightarrow	Υ	\downarrow	0.0245	0.0229	0.0183	0.0182	0.0171	0.0167	0.0176

Delays at 25°C,1.0V, Typical Process (Cont'd.)

De	escri	ptio	n	K _{load} (ns/pF)								
				XL	X1	X2	Х3	Х4	Х6	X8		
S0	\rightarrow	Υ	\uparrow	7.6837	5.0565	2.9484	1.9751	1.5738	1.0581	0.7750		
S0	\rightarrow	Υ	\downarrow	5.4897	3.8021	1.7019	1.1637	0.9050	0.6125	0.4398		
Α	\rightarrow	Υ	\uparrow	7.6358	5.0264	2.9563	1.9801	1.5699	1.0642	0.7817		
Α	\rightarrow	Υ	\downarrow	5.8943	4.0670	1.7858	1.2241	0.9513	0.6359	0.4591		
В	\rightarrow	Υ	\uparrow	7.5558	5.0664	2.9383	2.0071	1.5368	1.0756	0.7751		
В	\rightarrow	Υ	\downarrow	5.9001	4.0801	1.7761	1.2166	0.9402	0.6199	0.4504		

Cell Description

The MXI2D cell is a 2-to-1 multiplexer with inverted output. The state of the select input (S0) determines which data input (A, B) is presented to the output (Y). The output (Y) is represented by the logic equation:

$$Y = \overline{(S0 \bullet A) + (S0 \bullet B)}$$

Note: The MXI2D cell architecture uses transmission gate inputs for the data input pins and a double-buffered select signal to minimize the risk associated with transmission gate inputs. Do not drive MXI2D inputs from MXI2, ACCSHCIN, ACCSHCON, ACHCIN, ACHCON, ADDH, AFHCIN, AFHCON, AHHCIN, and AHHCON cells. Furthermore, special care should be taken in designs that use multiple voltage domains for standard cell regions. Do not allow high voltage signals to be coupled into the input pins, A and B, when the cell is used in a low voltage domain; otherwise, it may be possible for the cell to latch. If your design methodology does not permit cells with transmission gate inputs, the MXI2 cell may be used as an alternative.

Function Table

S0	Α	В	Υ
0	0	Х	1
0	1	Х	0
1	Х	0	1
1	Х	1	0

Logic Symbol

Cell Size

Drive Strength	Height (um)	Width (um)
MXI2DXLAD	2.52	2.80
MXI2DX1AD	2.52	2.80
MXI2DX2AD	2.52	2.80
MXI2DX4AD	2.52	4.20

Pin	Power (uW/MHz)						
F	XL	X1	X2	X4			
S0	0.0054	0.0063	0.0088	0.0157			
Α	0.0023	0.0030	0.0047	0.0089			
В	0.0023	0.0031	0.0048	0.0092			

Pin Capacitance

Pin	Capacitance (pF)					
' '''	XL	XL X1 X2		X4		
S0	0.0012	0.0013	0.0016	0.0026		
Α	0.0035	0.0046	0.0071	0.0138		
В	0.0041	0.0051	0.0076	0.0145		

Description	Intrinsic Delay (ns)			Delay (ns) K _{load} (ns/pF)				
	XL	X1	X2	X4	XL	X1	X2	Х4
$SO \rightarrow Y \uparrow$	0.0852	0.0871	0.0780	0.0688	5.4683	3.5578	2.2885	1.1681
$SO \rightarrow Y \downarrow$	0.0996	0.0898	0.0774	0.0683	4.5761	3.0995	1.3165	0.6445
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0265	0.0236	0.0220	0.0215	5.4680	3.5576	2.2897	1.1684
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0275	0.0256	0.0211	0.0203	4.5776	3.0999	1.3155	0.6441
$B \to Y \uparrow$	0.0280	0.0250	0.0235	0.0224	5.4698	3.5587	2.2903	1.1686
$B \to Y \downarrow$	0.0282	0.0257	0.0209	0.0194	4.5798	3.1031	1.3214	0.6449

Cell Description

The MXI3 cell is a 3-to-1 multiplexer with inverted output. The state of the select inputs (S1,S0) determines which data input (A,B,C) is presented to the output (Y). The output (Y) is represented by the logic equation:

$$Y = (S0 \bullet S1 \bullet \overline{A}) + (\overline{S0} \bullet S1 \bullet \overline{B}) + (\overline{S1} \bullet \overline{C})$$

Logic Symbol

Function Table

S1	S0	A	В	O	Y
0	0	0	Х	Х	1
0	0	1	Х	Х	0
0	1	Х	0	Х	1
0	1	Х	1	Х	0
1	0	Х	Х	0	1
1	0	Х	Х	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
MXI3XLAD	2.52	5.32
MXI3X1AD	2.52	5.32
MXI3X2AD	2.52	5.60
MXI3X4AD	2.52	6.44

Pin		Power (u	ıW/MHz)	
FIII	XL	X1	X2	X4
S0	0.0078	0.0091	0.0131	0.0190
S1	0.0050	0.0061	0.0090	0.0121
Α	0.0066	0.0080	0.0118	0.0165
В	0.0067	0.0082	0.0123	0.0180
С	0.0047	0.0060	0.0090	0.0132

Pin Capacitance

Pin		nce (pF)		
F	XL	X1	X2	X4
S0	0.0025	0.0026	0.0032	0.0039
S1	0.0019	0.0021	0.0025	0.0025
Α	0.0013	0.0015	0.0021	0.0023
В	0.0012	0.0014	0.0020	0.0022
С	0.0013	0.0013	0.0013	0.0015

Description	Intrinsic Delay (ns)			ption Intrinsic Delay (ns) K _{load} (ns/pF)				
	XL	X1	X2	X4	XL	X1	X2	Х4
$SO \rightarrow Y \uparrow$	0.1129	0.1064	0.0941	0.1069	5.7095	3.6059	2.3544	1.1845
$SO \rightarrow Y \downarrow$	0.1261	0.1178	0.1064	0.1193	5.0584	3.2621	1.4310	0.7139
$S1 \rightarrow Y \uparrow$	0.0615	0.0603	0.0634	0.0624	5.6852	3.5946	2.3511	1.1822
S1 \rightarrow Y \downarrow	0.0651	0.0596	0.0532	0.0599	5.0240	3.2481	1.4260	0.7275
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1251	0.1151	0.0979	0.1029	5.6997	3.6013	2.3528	1.1843
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1184	0.1074	0.0878	0.0958	5.0463	3.2564	1.4293	0.7140
$B \to Y \uparrow$	0.1201	0.1129	0.0981	0.1086	5.7077	3.6055	2.3542	1.1844
$B \to Y \downarrow$	0.1129	0.1038	0.0851	0.0939	5.0564	3.2608	1.4305	0.7138
$C \rightarrow Y \uparrow$	0.0783	0.0749	0.0772	0.0767	5.6745	3.5907	2.3503	1.1802
$C \rightarrow Y \downarrow$	0.0898	0.0823	0.0743	0.0845	5.0396	3.2458	1.4259	0.7279

Cell Description

The MXI4 cell is a 4-to-1 multiplexer with inverted output. The state of the select inputs (S1,S0) determines which data input (A,B,C,D) is presented to the output (Y). The output (Y) is represented by the logic equation:

$$Y = \overline{(\overline{S0} \bullet \overline{S1} \bullet A) + (S0 \bullet \overline{S1} \bullet B) + (\overline{S0} \bullet S1 \bullet C) + (S0 \bullet S1 \bullet D)}$$

Logic Symbol

Function Table

S1	S0	Α	В	С	D	Υ
0	0	0	Х	Х	Х	1
0	0	1	Х	Х	Х	0
0	1	Х	0	Х	Х	1
0	1	Х	1	Х	Х	0
1	0	Х	Х	0	Х	1
1	0	Х	Х	1	Х	0
1	1	Х	Х	Х	0	1
1	1	Х	Х	Х	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
MXI4XLAD	2.52	7.00
MXI4X1AD	2.52	7.00
MXI4X2AD	2.52	7.00
MXI4X4AD	2.52	7.56

Pin	Power (uW/MHz)						
FIII	XL	X1	X2	X4			
S0	0.0124	0.0146	0.0211	0.0275			
S1	0.0053	0.0064	0.0097	0.0124			
Α	0.0068	0.0081	0.0121	0.0171			
В	0.0073	0.0086	0.0129	0.0179			
С	0.0060	0.0073	0.0111	0.0154			
D	0.0064	0.0077	0.0117	0.0154			

Pin Capacitance

Pin	Capacitance (pF)							
F 1111	XL	X1	X2	X4				
S0	0.0041	0.0043	0.0059	0.0069				
S1	0.0020	0.0021	0.0024	0.0024				
Α	0.0012	0.0013	0.0020	0.0022				
В	0.0012	0.0013	0.0019	0.0020				
С	0.0013	0.0015	0.0021	0.0024				
D	0.0012	0.0013	0.0019	0.0020				

Description		Intrinsic I	Delay (ns)		K _{load} (ns/pF)			
	XL	X1	X2	X4	XL	X1	X2	X4
$S0 \rightarrow Y \uparrow$	0.1233	0.1163	0.0987	0.1083	5.6350	3.5813	2.3043	1.2109
$SO \rightarrow Y \downarrow$	0.1436	0.1388	0.1161	0.1133	5.1866	3.3613	1.4510	0.7233
$S1 \rightarrow Y \uparrow$	0.0637	0.0621	0.0667	0.0628	5.6035	3.5694	2.3003	1.2090
$S1 \rightarrow Y \downarrow$	0.0674	0.0638	0.0561	0.0607	5.1994	3.3506	1.4270	0.7230
$A \rightarrow Y \uparrow$	0.1205	0.1129	0.0974	0.1074	5.6367	3.5825	2.3044	1.2106
$A \rightarrow Y \downarrow$	0.1181	0.1110	0.0950	0.0956	5.1855	3.3598	1.4498	0.7090
$B \rightarrow Y \uparrow$	0.1256	0.1176	0.1002	0.1122	5.6390	3.5833	2.3042	1.2109
$B \to Y \downarrow$	0.1176	0.1102	0.0936	0.0963	5.1858	3.3596	1.4497	0.7091
$C \rightarrow Y \uparrow$	0.1135	0.1063	0.0925	0.0903	5.6278	3.5774	2.3002	1.2078
$C \rightarrow Y \downarrow$	0.1136	0.1059	0.0882	0.0950	5.2055	3.3537	1.4284	0.7239
$D \rightarrow Y \uparrow$	0.1138	0.1059	0.0915	0.0951	5.6281	3.5772	2.2996	1.2077
$D \rightarrow Y \downarrow$	0.1127	0.1049	0.0881	0.0974	5.2060	3.3542	1.4284	0.7240

Cell Description

The NAND2 cell provides the logical NAND of two inputs (A,B). The output (Y) is represented by the logic equation:

$$Y = \overline{(A \bullet B)}$$

Logic Symbol

Function Table

Α	В	Υ
0	Х	1
Х	0	1
1	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
NAND2XLAD	2.52	1.12
NAND2X1AD	2.52	1.12
NAND2X2AD	2.52	1.12
NAND2X3AD	2.52	1.96
NAND2X4AD	2.52	1.96
NAND2X5AD	2.52	2.52
NAND2X6AD	2.52	2.52
NAND2X8AD	2.52	3.36

AC Power

Pin	Power (uW/MHz)								
FIII	XL	XL X1 X2 X3 X4 X5 X6 X8							
Α	0.0015	0.0020	0.0032	0.0048	0.0059	0.0077	0.0088	0.0117	
В	0.0017	0.0024	0.0041	0.0064	0.0080	0.0102	0.0117	0.0157	

Pin Capacitance

Pin	Capacitance (pF)							
	XL	X1	X2	Х3	X4	X5	X6	X8
Α	0.0014	0.0018	0.0029	0.0045	0.0055	0.0073	0.0084	0.0108
В	0.0012	0.0016	0.0027	0.0047	0.0057	0.0070	0.0080	0.0109

Delays at 25°C,1.0V, Typical Process

Descrip	otion	Intrinsic Delay (ns)							
		XL	X1	X2	Х3	Х4	X5	Х6	X8
$A \rightarrow $	Y ↑	0.0148	0.0135	0.0137	0.0140	0.0132	0.0136	0.0133	0.0135
$A \rightarrow $	Y ↓	0.0176	0.0177	0.0130	0.0122	0.0116	0.0119	0.0121	0.0119
$B \to$	Y ↑	0.0156	0.0145	0.0158	0.0167	0.0160	0.0164	0.0159	0.0161
$B \to$	Y ↓	0.0177	0.0182	0.0141	0.0142	0.0136	0.0135	0.0134	0.0135

Delays at 25°C,1.0V, Typical Process (Cont'd.)

Descript	tion	K _{load} (ns/pF)							
		XL	X1	X2	Х3	X4	X5	Х6	X8
$A \rightarrow Y$	Y ↑	5.5852	3.6091	2.3407	1.6322	1.2239	0.9729	0.8147	0.6303
$A \rightarrow Y$	Y \	7.1685	5.2670	2.2261	1.3769	1.0390	0.8223	0.7264	0.5403
B → Y	Y ↑	5.5675	3.6035	2.3379	1.5800	1.1908	0.9723	0.8138	0.6156
B → Y	Y \	7.1527	5.2621	2.2246	1.3767	1.0390	0.8224	0.7261	0.5402

Cell Description

The NAND2B cell provides the logical NAND of one inverted input (AN) and one non-inverted input (B). The output (Y) is represented by the logic equation:

$$Y = \overline{(\overline{AN} \bullet B)}$$

Logic Symbol

Function Table

AN	В	Υ
1	Х	1
Х	0	1
0	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
NAND2BXLAD	2.52	1.40
NAND2BX1AD	2.52	1.40
NAND2BX2AD	2.52	1.40
NAND2BX4AD	2.52	2.24
NAND2BX8AD	2.52	3.92

Pin	Power (uW/MHz) XL						
F 1111							
AN	0.0026	0.0031	0.0045	0.0086	0.0163		
В	0.0014	0.0019	0.0031	0.0063	0.0124		

Pin Capacitance

Pin	Capacitance (pF)						
	XL X1 X2 X4 X						
AN	0.0011	0.0011	0.0014	0.0025	0.0045		
В	0.0013	0.0017	0.0027	0.0057	0.0109		

Delays at 25°C,1.0V, Typical Process

Description				Intrinsic Delay (ns)					
				XL	X1	X2	Х4	X8	
AN	\rightarrow	Υ	\uparrow	0.0291	0.0294	0.0314	0.0304	0.0290	
AN	\rightarrow	Υ	\downarrow	0.0537	0.0571	0.0448	0.0424	0.0401	
В	\rightarrow	Υ	\uparrow	0.0151	0.0140	0.0152	0.0156	0.0158	
В	\rightarrow	Υ	\downarrow	0.0178	0.0183	0.0149	0.0147	0.0147	

Delays at 25°C,1.0V, Typical Process (Cont'd.)

Description K					์ _{load} (ns/pF	")		
				XL	X1	X2	X4	X8
AN	\rightarrow	Υ	1	5.6181	3.6270	2.3509	1.2333	0.6319
AN	\rightarrow	Υ	\downarrow	7.1939	5.0253	2.1864	1.0428	0.5291
В	\rightarrow	Υ	\uparrow	5.5833	3.5808	2.3673	1.2070	0.6223
В	\rightarrow	Υ	\downarrow	7.1171	4.9971	2.1753	1.0381	0.5274

Cell Description

The NAND3 cell provides the logical NAND of three inputs (A,B,C). The output (Y) is represented by the logic equation:

 $Y = \overline{(A \bullet B \bullet C)}$

Logic Symbol

Function Table

Α	В	С	Υ
0	Х	Х	1
Х	0	Х	1
Х	Х	0	1
1	1	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
NAND3XLAD	2.52	1.40
NAND3X1AD	2.52	1.40
NAND3X2AD	2.52	1.68
NAND3X3AD	2.52	2.52
NAND3X4AD	2.52	2.52
NAND3X6AD	2.52	3.64
NAND3X8AD	2.52	4.76

AC Power

Pin			Pow	er (uW/N	1Hz)		
FIII	XL	X1	X2	Х3	X4	X6	X8
Α	0.0017	0.0023	0.0036	0.0052	0.0065	0.0101	0.0133
В	0.0019	0.0027	0.0046	0.0069	0.0086	0.0130	0.0174
С	0.0023	0.0031	0.0055	0.0087	0.0108	0.0163	0.0219

Pin Capacitance

Pin		Capacitance (pF)									
F 1111	XL	X1	X2	Х3	X4	Х6	X8				
Α	0.0014	0.0019	0.0029	0.0043	0.0053	0.0085	0.0109				
В	0.0013	0.0017	0.0028	0.0046	0.0056	0.0082	0.0110				
С	0.0012	0.0016	0.0026	0.0048	0.0057	0.0081	0.0114				

Delays at 25°C,1.0V, Typical Process

Description	Intrinsic Delay (ns)							
	XL	X1	X2	Х3	Х4	Х6	X8	
$A \rightarrow Y \uparrow$	0.0170	0.0158	0.0158	0.0154	0.0148	0.0153	0.0153	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0264	0.0261	0.0179	0.0163	0.0155	0.0163	0.0159	
$B \to Y \uparrow$	0.0187	0.0175	0.0189	0.0185	0.0178	0.0183	0.0183	
$B \ \to \ Y \ \downarrow$	0.0286	0.0288	0.0212	0.0201	0.0192	0.0195	0.0193	
$C \rightarrow Y \uparrow$	0.0198	0.0185	0.0206	0.0206	0.0199	0.0209	0.0211	
$C \rightarrow Y \downarrow$	0.0304	0.0306	0.0225	0.0221	0.0211	0.0215	0.0216	

Delays at 25°C,1.0V, Typical Process (Cont'd.)

Description	K _{load} (ns/pF)							
	XL	X1	X2	Х3	X4	Х6	X8	
$A \ \rightarrow \ Y \ \uparrow$	5.6185	3.6316	2.3565	1.6364	1.2457	0.8240	0.6300	
$A \ \rightarrow \ Y \ \downarrow$	10.0089	7.0072	2.9606	1.9230	1.4497	0.9684	0.7208	
$B \to Y \uparrow$	5.7400	3.7128	2.4103	1.6212	1.2340	0.8301	0.6267	
$B \to Y \downarrow$	9.9918	7.0006	2.9599	1.9240	1.4499	0.9679	0.7208	
$C \rightarrow Y \uparrow$	5.5609	3.6052	2.3628	1.5738	1.1981	0.8278	0.6205	
$C \rightarrow Y \downarrow$	9.9976	7.0031	2.9605	1.9246	1.4502	0.9684	0.7211	

Cell Description

The NAND3B cell provides the logical NAND of one inverted input (AN) and two non-inverted inputs (B,C). The output (Y) is represented by the logic equation:

$$Y = \overline{(\overline{AN} \bullet B \bullet C)}$$

Logic Symbol

Function Table

AN	В	С	Υ
1	Х	Х	1
Х	0	Х	1
Х	Х	0	1
0	1	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
NAND3BXLAD	2.52	1.68
NAND3BX1AD	2.52	1.68
NAND3BX2AD	2.52	1.96
NAND3BX4AD	2.52	3.08

Pin	Power (uW/MHz)								
F	XL	X1	X2	X4					
AN	0.0029	0.0036	0.0053	0.0092					
В	0.0017	0.0023	0.0036	0.0071					
С	0.0019	0.0026	0.0045	0.0093					

Pin Capacitance

Pin		Capacitance (pF)							
F	XL	X1	X2	X4					
AN	0.0012	0.0012	0.0014	0.0024					
В	0.0013	0.0018	0.0027	0.0055					
С	0.0013	0.0017	0.0026	0.0059					

Description			n	Intrinsic Delay (ns)				K _{load} (ns/pF)			
				XL	X1	X2	X4	XL	X1	X2	Х4
AN	\rightarrow	Υ	\uparrow	0.0318	0.0329	0.0347	0.0321	5.5789	3.6013	2.3655	1.2526
AN	\rightarrow	Υ	\downarrow	0.0635	0.0677	0.0517	0.0459	9.9428	6.9973	2.9544	1.4464
В	\rightarrow	Υ	\uparrow	0.0181	0.0168	0.0182	0.0178	5.7048	3.6787	2.4254	1.2437
В	\rightarrow	Υ	\downarrow	0.0285	0.0291	0.0221	0.0206	9.9028	6.9856	2.9506	1.4460
С	\rightarrow	Υ	\uparrow	0.0194	0.0180	0.0205	0.0204	5.6108	3.5955	2.3940	1.2169
С	\rightarrow	Υ	\downarrow	0.0307	0.0315	0.0239	0.0231	9.9064	6.9840	2.9500	1.4464

Cell Description

The NAND4 cell provides a logical NAND of four inputs (A,B,C,D). The output (Y) is represented by the logic equation:

 $Y = \overline{(A \bullet B \bullet C \bullet D)}$

Logic Symbol

Function Table

Α	В	С	D	Υ
0	Х	Х	Х	1
Х	0	Х	Х	1
Х	Х	0	Х	1
Х	Х	Х	0	1
1	1	1	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
NAND4XLAD	2.52	1.68
NAND4X1AD	2.52	1.68
NAND4X2AD	2.52	1.96
NAND4X4AD	2.52	3.36
NAND4X6AD	2.52	5.04
NAND4X8AD	2.52	6.72

Pin	Power (uW/MHz)									
FIII	XL	X1	X2	X4	X6	X8				
Α	0.0019	0.0026	0.0039	0.0074	0.0114	0.0151				
В	0.0021	0.0030	0.0049	0.0096	0.0145	0.0193				
С	0.0025	0.0035	0.0060	0.0117	0.0178	0.0237				
D	0.0028	0.0039	0.0070	0.0140	0.0213	0.0284				

Pin Capacitance

Pin	Capacitance (pF)									
F 111	XL	XL X1		XL X1 X2 X4		X6	X8			
Α	0.0014	0.0018	0.0029	0.0051	0.0087	0.0111				
В	0.0013	0.0017	0.0027	0.0055	0.0085	0.0113				
С	0.0013	0.0017	0.0027	0.0055	0.0085	0.0115				
D	0.0012	0.0016	0.0026	0.0061	0.0088	0.0123				

Description	n		Intrinsic Delay (ns)						
		XL	X1	X2	X4	Х6	X8		
$A \rightarrow Y$	↑	0.0181	0.0168	0.0173	0.0170	0.0176	0.0177		
$A \rightarrow Y$	\downarrow	0.0352	0.0349	0.0232	0.0208	0.0216	0.0212		
$B \rightarrow Y$	\rightarrow	0.0202	0.0189	0.0205	0.0204	0.0208	0.0209		
$B \rightarrow Y$	\downarrow	0.0390	0.0393	0.0280	0.0266	0.0267	0.0266		
$C \rightarrow Y$	↑	0.0221	0.0207	0.0232	0.0228	0.0238	0.0238		
$C \rightarrow Y$	\downarrow	0.0430	0.0432	0.0316	0.0300	0.0305	0.0303		
$D \rightarrow Y$	↑	0.0221	0.0208	0.0244	0.0248	0.0266	0.0266		
$D \rightarrow Y$	\downarrow	0.0441	0.0445	0.0333	0.0329	0.0333	0.0334		

Process Technology: NAND4
TSMC CLN90G

Delays at 25°C,1.0V, Typical Process (Cont'd.)

Description	K _{load} (ns/pF)							
	XL	X1	X2	X4	Х6	X8		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.4899	3.5599	2.3685	1.2647	0.8468	0.6504		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.8129	8.9885	3.7933	1.8554	1.2401	0.9249		
$B \to Y \uparrow$	5.7160	3.7087	2.4351	1.2494	0.8508	0.6436		
$B \to Y \downarrow$	12.8004	8.9844	3.7904	1.8551	1.2402	0.9246		
$C \rightarrow Y \uparrow$	5.7377	3.7189	2.4429	1.2401	0.8531	0.6417		
$C \rightarrow Y \downarrow$	12.8033	8.9855	3.7913	1.8555	1.2403	0.9248		
$D \rightarrow Y \uparrow$	5.5382	3.5864	2.3786	1.2026	0.8536	0.6370		
$D \rightarrow Y \downarrow$	12.7922	8.9798	3.7915	1.8565	1.2407	0.9251		

Cell Description

The NAND4B cell provides a logical NAND of one inverted input (AN) and three non-inverted inputs (B,C,D). The output (Y) is represented by the logic equation:

$$Y = (\overline{AN} \bullet B \bullet C \bullet D)$$

Logic Symbol

Function Table

AN	В	С	D	Υ
1	Х	Х	Х	1
Х	0	Х	Х	1
Х	Х	0	Х	1
Х	Х	Х	0	1
0	1	1	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
NAND4BXLAD	2.52	2.24
NAND4BX1AD	2.52	2.24
NAND4BX2AD	2.52	2.24
NAND4BX4AD	2.52	3.92

Pin	Power (uW/MHz)								
' '''	XL	X1	X2	X4					
AN	0.0032	0.0040	0.0057	0.0103					
В	0.0018	0.0025	0.0039	0.0080					
С	0.0021	0.0029	0.0049	0.0099					
D	0.0025	0.0034	0.0059	0.0123					

Pin Capacitance

Pin	Capacitance (pF)								
' '''	XL	X1	X2	X4					
AN	0.0012	0.0012	0.0015	0.0024					
В	0.0013	0.0017	0.0027	0.0053					
С	0.0013	0.0017	0.0027	0.0056					
D	0.0013	0.0017	0.0026	0.0063					

Descrip	tion			Intrinsic I	Delay (ns)			K _{load} (ns/pF)	
			XL	X1	X2	Х4	XL	X1	X2	Х4
$AN \rightarrow$	Y 1	`	0.0350	0.0360	0.0362	0.0343	5.6588	3.6589	2.3730	1.2802
AN →	Y 1	,	0.0754	0.0779	0.0568	0.0513	12.6868	8.9174	3.7928	1.8573
$B \to$	Y 1	`	0.0207	0.0191	0.0196	0.0202	5.8278	3.7661	2.4431	1.2668
$B \rightarrow $	Y 1	,	0.0404	0.0407	0.0286	0.0278	12.6591	8.9072	3.7907	1.8577
$C \rightarrow$	Y ↑	`	0.0227	0.0210	0.0226	0.0231	5.8595	3.7814	2.4522	1.2583
$C \rightarrow$	Y 1	,	0.0444	0.0449	0.0325	0.0318	12.6600	8.9079	3.7913	1.8577
$D \rightarrow $	Y 1	`	0.0234	0.0216	0.0242	0.0261	5.7895	3.7174	2.4130	1.2584
$D \rightarrow$	Y 1	,	0.0454	0.0460	0.0341	0.0349	12.6623	8.9087	3.7903	1.8578

Cell Description

The NAND4BB cell provides a logical NAND of two inverted inputs (AN,BN) and two non-inverted inputs (C,D). The output (Y) is represented by the logic equation:

$$Y = (\overline{\overline{AN} \bullet \overline{BN} \bullet C \bullet D})$$

Logic Symbol

Function Table

AN	BN	С	D	Υ
1	Х	Х	Х	1
Х	1	Х	Х	1
Х	Х	0	Х	1
Х	Х	Х	0	1
0	0	1	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
NAND4BBXLAD	2.52	2.80
NAND4BBX1AD	2.52	2.80
NAND4BBX2AD	2.52	2.80
NAND4BBX4AD	2.52	4.48

Pin	Power (uW/MHz)							
' '''	XL	X1	X2	X4				
AN	0.0034	0.0043	0.0060	0.0109				
BN	0.0033	0.0042	0.0063	0.0120				
С	0.0018	0.0025	0.0042	0.0084				
D	0.0021	0.0029	0.0051	0.0105				

Pin Capacitance

Pin	Capacitance (pF)							
F	XL	X1	X2	X4				
AN	0.0011	0.0011	0.0014	0.0023				
BN	0.0010	0.0010	0.0014	0.0023				
С	0.0013	0.0017	0.0027	0.0056				
D	0.0013	0.0017	0.0027	0.0063				

Description		Intrinsic I	Delay (ns)		K _{load} (ns/pF)			
	XL	X1	X2	X4	XL	X1	X2	X4
$AN \rightarrow Y \uparrow$	0.0365	0.0379	0.0380	0.0355	5.6551	3.6466	2.3722	1.2786
$AN \rightarrow Y \downarrow$	0.0777	0.0825	0.0584	0.0517	12.8833	9.0186	3.8036	1.8635
$BN \to Y \uparrow$	0.0355	0.0369	0.0387	0.0380	5.8113	3.7491	2.4382	1.2650
$BN \ \to \ Y \ \downarrow$	0.0747	0.0804	0.0602	0.0573	12.8847	9.0299	3.8104	1.8674
$C \rightarrow Y \uparrow$	0.0219	0.0206	0.0222	0.0226	5.8317	3.7586	2.4434	1.2545
$C \rightarrow Y \downarrow$	0.0444	0.0461	0.0336	0.0327	12.8569	9.0075	3.8040	1.8648
$D \to Y \uparrow$	0.0227	0.0214	0.0239	0.0253	5.6821	3.6764	2.3885	1.2279
$D \rightarrow Y \downarrow$	0.0465	0.0482	0.0357	0.0362	12.8549	9.0105	3.8044	1.8662

Cell Description

The NOR2 cell provides a logical NOR of two inputs (A,B). The output (Y) is represented by the logic equation:

$$\mathsf{Y}=\overline{(A+B)}$$

Logic Symbol

Function Table

Α	В	Υ
0	0	1
Х	1	0
1	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
NOR2XLAD	2.52	1.12
NOR2X1AD	2.52	1.12
NOR2X2AD	2.52	1.12
NOR2X3AD	2.52	1.96
NOR2X4AD	2.52	1.96
NOR2X5AD	2.52	2.52
NOR2X6AD	2.52	2.52
NOR2X8AD	2.52	3.36

AC Power

Pin	Power (uW/MHz)								
	XL	XL X1 X2 X3 X4 X5 X6 X8							
Α	0.0015	0.0020	0.0034	0.0050	0.0065	0.0085	0.0098	0.0130	
В	0.0019	0.0019 0.0026 0.0042 0.0064 0.0083 0.0106 0.0123 0.0166							

Pin Capacitance

Pin	Capacitance (pF)							
-	XL	X1	X2	Х3	X4	X5	Х6	X8
Α	0.0014	0.0018	0.0029	0.0042	0.0054	0.0072	0.0084	0.0108
В	0.0013	0.0017	0.0026	0.0045	0.0055	0.0069	0.0078	0.0110

Delays at 25°C,1.0V, Typical Process

D	escr	iptio	n	Intrinsic Delay (ns)							
				XL	X1	X2	Х3	X4	Х5	Х6	X8
Α	\rightarrow	Υ	\uparrow	0.0220	0.0193	0.0204	0.0197	0.0194	0.0208	0.0201	0.0199
Α	\rightarrow	Υ	\downarrow	0.0121	0.0116	0.0095	0.0088	0.0089	0.0092	0.0090	0.0089
В	\rightarrow	Υ	\uparrow	0.0255	0.0230	0.0242	0.0251	0.0242	0.0255	0.0246	0.0250
В	\rightarrow	Υ	\downarrow	0.0135	0.0133	0.0104	0.0104	0.0102	0.0103	0.0102	0.0102

Delays at 25°C,1.0V, Typical Process (Cont'd.)

D	escri	iptic	n	K _{load} (ns/pF)							
				XL	X1	X2	Х3	X4	X5	X6	X8
Α	\rightarrow	Υ	\uparrow	10.9023	7.0359	4.5274	3.1285	2.3411	1.9287	1.5941	1.2067
Α	\rightarrow	Υ	\downarrow	4.2448	2.9610	1.2601	0.8116	0.6229	0.4982	0.4139	0.3092
В	\rightarrow	Υ	\uparrow	10.8713	7.0197	4.5209	3.1271	2.3412	1.9262	1.5924	1.2060
В	\rightarrow	Υ	\downarrow	4.2560	2.9695	1.2542	0.8239	0.6224	0.4990	0.4145	0.3106

Cell Description

The NOR2B cell provides a logical NOR of one inverted input (AN) and one non-inverted input (B). The output (Y) is represented by the logic equation:

$$Y = \overline{(\overline{AN} + B)}$$

Logic Symbol

Function Table

AN	В	Υ
1	0	1
х	1	0
0	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
NOR2BXLAD	2.52	1.40
NOR2BX1AD	2.52	1.40
NOR2BX2AD	2.52	1.68
NOR2BX4AD	2.52	2.24
NOR2BX8AD	2.52	4.20

AC Power

Pin	Power (uW/MHz)						
' '''	XL	X1	X2	X4	X8		
AN	0.0022	0.0028	0.0044	0.0079	0.0155		
В	0.0018	0.0025	0.0042	0.0084	0.0168		

Pin Capacitance

Pin	Capacitance (pF)						
F	XL	X1	X2	X4	X8		
AN	0.0011	0.0011	0.0014	0.0024	0.0045		
В	0.0013	0.0017	0.0027	0.0057	0.0109		

Delays at 25°C,1.0V, Typical Process

De	escri	otio	n	Intrinsic Delay (ns)				
				XL	X1	X2	X4	X8
AN	\rightarrow	Υ	\uparrow	0.0335	0.0345	0.0381	0.0359	0.0355
AN	\rightarrow	Υ	\downarrow	0.0461	0.0510	0.0428	0.0395	0.0384
В	\rightarrow	Υ	\uparrow	0.0251	0.0236	0.0257	0.0259	0.0265
В	\rightarrow	Υ	\downarrow	0.0127	0.0129	0.0102	0.0101	0.0100

Delays at 25°C,1.0V, Typical Process (Cont'd.)

De	escri	otio	n	K _{load} (ns/pF)				
				XL	X1	X2	X4	X8
AN	\rightarrow	Υ	\uparrow	11.0116	7.0964	4.5990	2.3641	1.2229
AN	\rightarrow	Υ	\downarrow	4.4161	3.0569	1.3049	0.6425	0.3188
В	\rightarrow	Υ	\uparrow	10.9982	7.0827	4.5939	2.3633	1.2224
В	\rightarrow	Υ	\downarrow	4.1890	2.9363	1.2438	0.6182	0.3094

Cell Description

The NOR3 cell provides a logical NOR of three inputs (A,B,C). The output (Y) is represented by the logic equation:

$$Y = \overline{(A + B + C)}$$

Logic Symbol

Function Table

Α	В	С	Υ
0	0	0	1
Х	Х	1	0
Х	1	Х	0
1	Х	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
NOR3XLAD	2.52	1.40
NOR3X1AD	2.52	1.40
NOR3X2AD	2.52	1.68
NOR3X4AD	2.52	2.52
NOR3X6AD	2.52	3.92
NOR3X8AD	2.52	5.32

AC Power

Pin	Power (uW/MHz)						
F 1111	XL	X1	X2	X4	X6	X8	
Α	0.0019	0.0025	0.0042	0.0082	0.0121	0.0162	
В	0.0022	0.0030	0.0050	0.0100	0.0145	0.0195	
С	0.0027	0.0036	0.0059	0.0118	0.0171	0.0232	

Pin Capacitance

Pin	Capacitance (pF)						
F 111	XL	X1	X2	X4	X6	X8	
Α	0.0014	0.0018	0.0029	0.0052	0.0087	0.0110	
В	0.0013	0.0017	0.0027	0.0055	0.0081	0.0109	
С	0.0012	0.0016	0.0026	0.0057	0.0080	0.0113	

Delays at 25°C,1.0V, Typical Process

D	escr	iptic	n	n Intrinsic Delay (ns)					
				XL	X1	X2	X4	X6	X8
Α	\rightarrow	Υ	1	0.0342	0.0291	0.0315	0.0298	0.0309	0.0306
Α	\rightarrow	Υ	\downarrow	0.0135	0.0128	0.0103	0.0097	0.0099	0.0097
В	\rightarrow	Υ	\uparrow	0.0440	0.0387	0.0415	0.0421	0.0414	0.0420
В	\rightarrow	Υ	\downarrow	0.0150	0.0147	0.0114	0.0112	0.0110	0.0110
С	\rightarrow	Υ	\uparrow	0.0486	0.0430	0.0454	0.0471	0.0463	0.0478
С	\rightarrow	Υ	\downarrow	0.0160	0.0158	0.0119	0.0118	0.0116	0.0116

Delays at 25°C,1.0V, Typical Process (Cont'd.)

D	escri	iptic	n		K _{load} (ns/pF)				
				XL	X1	X2	X4	Х6	X8
Α	\rightarrow	Υ	↑	16.7581	10.6999	6.9045	3.5685	2.4342	1.8488
Α	\rightarrow	Υ	\downarrow	4.2327	2.9479	1.2497	0.6090	0.4143	0.3084
В	\rightarrow	Υ	↑	16.7140	10.6803	6.8959	3.5669	2.4307	1.8467
В	\rightarrow	Υ	\downarrow	4.1857	2.9113	1.2379	0.6139	0.4137	0.3101
С	\rightarrow	Υ	1	16.7124	10.6783	6.8948	3.5669	2.4313	1.8476
С	\rightarrow	Υ	\downarrow	4.3212	2.9926	1.2613	0.6314	0.4244	0.3172

Cell Description

The NOR3B cell provides a logical NOR of one inverted input (AN) and two non-inverted inputs (B,C). The output (Y) is represented by the logic equation:

$$Y = (\overline{\overline{AN} + B + C})$$

Logic Symbol

Function Table

AN	В	С	Υ
1	0	0	1
Х	Х	1	0
Х	1	Х	0
0	Х	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
NOR3BXLAD	2.52	1.68
NOR3BX1AD	2.52	1.68
NOR3BX2AD	2.52	1.96
NOR3BX4AD	2.52	3.08

AC Power

Pin	Power (uW/MHz)							
F 1111	XL	X1	X2	X4				
AN	0.0029	0.0033	0.0045	0.0083				
В	0.0022	0.0029	0.0051	0.0100				
С	0.0025	0.0035	0.0059	0.0118				

Pin Capacitance

Pin		Capacitance (pF)							
' '''	XL	X1	X2	X4					
AN	0.0011	0.0011	0.0014	0.0024					
В	0.0012	0.0016	0.0026	0.0054					
С	0.0012	0.0016	0.0026	0.0058					

Description	Intrinsic Delay (ns)					K _{load} (ns/pF)	
	XL	X1	X2	Х4	XL	X1	X2	Х4
$AN \rightarrow Y \uparrow$	0.0499	0.0465	0.0494	0.0473	16.7955	10.7773	6.9894	3.6235
$AN \rightarrow Y \downarrow$	0.0526	0.0578	0.0440	0.0412	4.4073	3.0516	1.2931	0.6295
$B \to Y \uparrow$	0.0430	0.0387	0.0434	0.0430	16.7409	10.7555	6.9804	3.6202
$B \to Y \downarrow$	0.0143	0.0141	0.0114	0.0109	4.1599	2.9026	1.2365	0.6128
$C \rightarrow Y \uparrow$	0.0475	0.0430	0.0476	0.0485	16.7328	10.7521	6.9784	3.6220
$C \rightarrow Y \downarrow$	0.0151	0.0152	0.0118	0.0117	4.2343	2.9608	1.2510	0.6258

Cell Description

The NOR4 cell provides a logical NOR of four inputs (A,B,C,D). The output (Y) is represented by the logic equation:

$$\mathsf{Y} = \overline{(A+B+C+D)}$$

Logic Symbol

Function Table

Α	В	С	D	Υ
0	0	0	0	1
Х	Х	Х	1	0
Х	Х	1	Х	0
Х	1	Х	Х	0
1	Х	Х	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
NOR4XLAD	2.52	1.68
NOR4X1AD	2.52	1.68
NOR4X2AD	2.52	2.80
NOR4X4AD	2.52	5.60
NOR4X6AD	2.52	8.68
NOR4X8AD	2.52	11.48

AC Power

Pin	Power (uW/MHz)									
- 111	XL	X1	X2	X4	X6	X8				
Α	0.0023	0.0029	0.0061	0.0126	0.0211	0.0290				
В	0.0027	0.0034	0.0078	0.0161	0.0279	0.0384				
С	0.0031	0.0040	0.0096	0.0196	0.0341	0.0470				
D	0.0035	0.0045	0.0114	0.0229	0.0402	0.0556				

Pin Capacitance

Pin	Capacitance (pF)								
	XL	XL X1		X4	X6	X8			
Α	0.0014	0.0018	0.0040	0.0086	0.0134	0.0184			
В	0.0014	0.0017	0.0043	0.0088	0.0129	0.0178			
С	0.0014	0.0017	0.0047	0.0094	0.0128	0.0177			
D	0.0013	0.0017	0.0048	0.0094	0.0127	0.0176			

Description					Intrinsic Delay (ns)					
				XL	X1	X2	X4	X6	X8	
Α	\rightarrow	Υ	\uparrow	0.0432	0.0386	0.0243	0.0267	0.0240	0.0237	
Α	\rightarrow	Υ	\downarrow	0.0150	0.0138	0.0127	0.0131	0.0136	0.0136	
В	\rightarrow	Υ	\rightarrow	0.0612	0.0563	0.0421	0.0453	0.0450	0.0450	
В	\rightarrow	Υ	\downarrow	0.0171	0.0159	0.0157	0.0161	0.0175	0.0176	
С	\rightarrow	Υ	\rightarrow	0.0707	0.0658	0.0534	0.0579	0.0570	0.0570	
С	\rightarrow	Υ	\downarrow	0.0180	0.0169	0.0175	0.0181	0.0193	0.0194	
D	\rightarrow	Υ	1	0.0749	0.0698	0.0583	0.0625	0.0617	0.0618	
D	\rightarrow	Υ	\downarrow	0.0184	0.0174	0.0181	0.0185	0.0194	0.0195	

NOR4

TSMC CLN90G

Delays at 25°C,1.0V, Typical Process (Cont'd.)

D	escr	iptic	n	K _{load} (ns/pF)					
				XL	X1	X2	X4	X6	X8
Α	\rightarrow	Υ	\uparrow	20.4708	14.5708	4.8154	2.5057	1.4819	1.0785
Α	\rightarrow	Υ	\downarrow	4.2535	2.9661	1.2614	0.6252	0.4109	0.3001
В	\rightarrow	Υ	\uparrow	20.4265	14.5550	4.8082	2.5014	1.4787	1.0762
В	\rightarrow	Υ	\downarrow	4.1483	2.8952	1.2393	0.6187	0.4105	0.3005
С	\rightarrow	Υ	\uparrow	20.4083	14.5448	4.8078	2.5051	1.4796	1.0760
С	\rightarrow	Υ	\downarrow	4.2244	2.9333	1.2629	0.6309	0.4203	0.3081
D	\rightarrow	Υ	\uparrow	20.4045	14.5433	4.8105	2.5044	1.4793	1.0767
D	\rightarrow	Υ	\downarrow	4.4501	3.0674	1.3166	0.6580	0.4365	0.3197

Cell Description

The NOR4B cell provides a logical NOR of one inverted input (AN) and three non-inverted inputs (B,C,D). The output (Y) is represented by the logic equation:

$$Y = (\overline{AN + B + C + D})$$

Logic Symbol

Function Table

AN	В	С	D	Υ
1	0	0	0	1
Х	Х	Х	1	0
Х	Х	1	Х	0
Х	1	Х	Х	0
0	Х	Х	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
NOR4BXLAD	2.52	2.24
NOR4BX1AD	2.52	2.24
NOR4BX2AD	2.52	3.36
NOR4BX4AD	2.52	3.36

Pin	Power (uW/MHz)							
F 1111	XL	X1	X2	X4				
AN	0.0027	0.0031	0.0064	0.0081				
В	0.0026	0.0034	0.0079	0.0098				
С	0.0030	0.0039	0.0095	0.0114				
D	0.0034	0.0045	0.0115	0.0133				

Pin Capacitance

Pin	Capacitance (pF)							
	XL	X1	X2	X4				
AN	N 0.0011 0.0012 0		0.0021	0.0028				
В	0.0013	0.0017	0.0042	0.0052				
С	0.0013	0.0016	0.0044	0.0048				
D	0.0013	0.0016	0.0049	0.0053				

Description			n		Intrinsic Delay (ns)			K _{load} (ns/pF)			
				XL	X1	X2	X4	XL	X1	X2	Х4
AN	\rightarrow	Υ	\uparrow	0.0583	0.0546	0.0397	0.0485	20.7112	14.6615	4.8812	4.8851
AN	\rightarrow	Υ	\downarrow	0.0549	0.0493	0.0429	0.0377	4.4012	3.0034	1.2828	0.7936
В	\rightarrow	Υ	\uparrow	0.0593	0.0550	0.0433	0.0534	20.6522	14.6368	4.8726	4.8833
В	\rightarrow	Υ	\downarrow	0.0163	0.0153	0.0155	0.0111	4.1508	2.8891	1.2400	0.6369
С	\rightarrow	Υ	\uparrow	0.0706	0.0657	0.0542	0.0631	20.6442	14.6301	4.8744	4.8778
С	\rightarrow	Υ	\downarrow	0.0174	0.0164	0.0172	0.0165	4.2131	2.9204	1.2622	1.0017
D	\rightarrow	Υ	\uparrow	0.0747	0.0697	0.0605	0.0696	20.6365	14.6285	4.8806	4.8812
D	\rightarrow	Υ	\downarrow	0.0172	0.0166	0.0183	0.0174	4.3030	2.9996	1.3163	1.0311

Cell Description

The NOR4BB cell provides a logical NOR of two inverted inputs (AN,BN) and two non-inverted inputs (C,D). The output (Y) is represented by the logic equation:

$$Y = (\overline{\overline{AN} + \overline{BN} + C + D})$$

Logic Symbol

Function Table

AN	BN	С	D	Υ
1	1	0	0	1
Х	Х	Х	1	0
Х	Х	1	Х	0
Х	0	Х	Х	0
0	Х	Х	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
NOR4BBXLAD	2.52	2.80
NOR4BBX1AD	2.52	2.80
NOR4BBX2AD	2.52	3.92
NOR4BBX4AD	2.52	3.92

Pin	Power (uW/MHz)							
F III	XL	X1	X2	X4				
AN	0.0029 0.0035 0.0		0.0067	0.0077				
BN	0.0029	0.0035	0.0082	0.0094				
С	0.0030	0.0039	0.0098	0.0111				
D	0.0034	0.0044	0.0117	0.0130				

Pin Capacitance

Pin	Capacitance (pF)							
F 1111	XL	X1	X2	X4				
AN	0.0011	0.0012	0.0021	0.0023				
BN	0.0011	0.0012	0.0020	0.0023				
С	0.0013	0.0017	0.0044	0.0047				
D	0.0013	0.0017	0.0049	0.0052				

De	Description				Intrinsic I	Delay (ns)	K _{load} (ns/pF)				
				XL	X1	X2	X4	XL	X1	X2	Х4
AN	\rightarrow	Υ	\uparrow	0.0586	0.0571	0.0411	0.0554	20.3263	14.6133	4.8758	4.9140
AN	\rightarrow	Υ	\downarrow	0.0595	0.0537	0.0431	0.0359	4.4364	3.0111	1.2791	0.8232
BN	\rightarrow	Υ	\uparrow	0.0726	0.0714	0.0600	0.0651	20.2554	14.5802	4.8708	4.9031
BN	\rightarrow	Υ	\downarrow	0.0566	0.0515	0.0498	0.0540	4.3082	2.9484	1.2624	1.1907
С	\rightarrow	Υ	\uparrow	0.0689	0.0659	0.0563	0.0634	20.2554	14.5776	4.8706	4.9052
С	\rightarrow	Υ	\downarrow	0.0173	0.0164	0.0174	0.0162	4.2476	2.9365	1.2620	1.0057
D	\rightarrow	Υ	\uparrow	0.0730	0.0700	0.0628	0.0697	20.2491	14.5744	4.8756	4.9068
D	\rightarrow	Υ	\downarrow	0.0176	0.0169	0.0186	0.0169	4.4410	3.0566	1.3153	1.0213

Cell Description

The OA21 cell provides the logical AND of one OR group and an additional input. The output (Y) is represented by the logic equation:

$$Y = (A0 + A1) \bullet B0$$

Logic Symbol

Function Table

A0	A 1	В0	Υ
Х	Х	0	0
0	0	х	0
Х	1	1	1
1	х	1	1

Cell Size

Drive Strength	Height (um)	Width (um)
OA21XLAD	2.52	1.68
OA21X1AD	2.52	1.68
OA21X2AD	2.52	2.24
OA21X4AD	2.52	2.52

Pin	Power (uW/MHz)							
	XL	X1	X2	X4				
A0	0.0036	0.0043	0.0064	0.0116				
A1	0.0038	0.0045	0.0068	0.0123				
В0	0.0027	0.0032	0.0050	0.0090				

Pin Capacitance

Pin	Capacitance (pF)							
	XL	X1	X2	X4				
A0	0.0010 0.0010 0.00		0.0015	0.0025				
A1	0.0009	0.0009	0.0014	0.0024				
В0	0.0012	0.0012	0.0016	0.0027				

Description	Intrinsic Delay (ns)			K _{load} (ns/pF)				
	XL	X1	X2	X4	XL	X1	X2	Х4
$A0 \rightarrow Y \uparrow$	0.0437	0.0462	0.0397	0.0387	5.5546	3.5395	2.3300	1.2078
$A0 \rightarrow Y \downarrow$	0.1072	0.1163	0.0913	0.0822	5.2254	3.4976	1.4863	0.7197
A1 \rightarrow Y \uparrow	0.0464	0.0492	0.0426	0.0419	5.5762	3.5512	2.3353	1.2102
A1 \rightarrow Y \downarrow	0.1113	0.1204	0.0958	0.0868	5.2251	3.4977	1.4865	0.7198
B0 \rightarrow Y \uparrow	0.0426	0.0454	0.0394	0.0386	5.5758	3.5507	2.3352	1.2102
$B0 \rightarrow Y \downarrow$	0.0552	0.0604	0.0488	0.0439	4.7291	3.2265	1.3810	0.6702

Cell Description

The OA22 cell provides the logical AND of two OR groups. The output (Y) is represented by the logic equation:

$$\mathsf{Y} = (\mathsf{A}0 + \mathsf{A}1) \bullet (\mathsf{B}0 + \mathsf{B}1)$$

Logic Symbol

Function Table

A0	A 1	В0	B1	Υ
х	х	0	0	0
0	0	х	х	0
Х	1	Х	1	1
х	1	1	х	1
1	х	х	1	1
1	х	1	Х	1

Cell Size

Drive Strength	Height (um)	Width (um)
OA22XLAD	2.52	2.24
OA22X1AD	2.52	2.24
OA22X2AD	2.52	2.52
OA22X4AD	2.52	3.08

AC Power

Pin	Power (uW/MHz)							
	XL	X1	X2	X4				
A0	0.0032	0.0039	0.0062	0.0111				
A1	0.0034	0.0042	0.0067	0.0120				
В0	0.0044	0.0051	0.0080	0.0142				
B1	0.0046	0.0054	0.0085	0.0151				

Pin Capacitance

Pin	Capacitance (pF)							
' '''	XL	X1	X2	X4				
A0	0.0011	0.0012	0.0017	0.0028				
A1	0.0010	0.0011	0.0016	0.0027				
В0	0.0012	0.0013	0.0017	0.0028				
B1	0.0011	0.0011	0.0017	0.0027				

Description		Intrinsic I	Delay (ns)	(ns) K _{load} (ns/pF)				
	XL	X1	X2	X4	XL	X1	X2	Х4
A0 → Y ↑	0.0433	0.0479	0.0443	0.0431	5.6772	3.6453	2.3673	1.2252
A0 → Y ↓	0.0940	0.0915	0.0749	0.0674	5.3263	3.4675	1.4938	0.7255
A1 \rightarrow Y \uparrow	0.0455	0.0509	0.0476	0.0464	5.6941	3.6562	2.3713	1.2275
A1 \rightarrow Y \downarrow	0.0981	0.0957	0.0795	0.0719	5.3261	3.4677	1.4937	0.7255
B0 → Y ↑	0.0508	0.0557	0.0507	0.0488	5.6832	3.6498	2.3690	1.2258
$B0 \rightarrow Y \downarrow$	0.1269	0.1175	0.0962	0.0854	5.5339	3.5622	1.5369	0.7450
B1 → Y ↑	0.0526	0.0578	0.0538	0.0520	5.6868	3.6533	2.3714	1.2272
$B1 \rightarrow Y \downarrow$	0.1310	0.1218	0.1019	0.0908	5.5321	3.5608	1.5368	0.7450

Cell Description

The OAI21 cell provides the logical inverted AND of one OR group and an additional input. The output (Y) is represented by the logic equation:

 $Y = \overline{(A0 + A1) \bullet B0}$

Logic Symbol

Function Table

A0	A 1	В0	Υ
0	0	Х	1
Х	Х	0	1
Х	1	1	0
1	Х	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
OAI21XLAD	2.52	1.40
OAI21X1AD	2.52	1.40
OAI21X2AD	2.52	1.68
OAI21X3AD	2.52	2.52
OAI21X4AD	2.52	2.52
OAI21X6AD	2.52	3.64
OAI21X8AD	2.52	4.76

AC Power

Pin	Power (uW/MHz)								
F	XL	X1	X2	Х3	X4	X6	X8		
A0	0.0021	0.0028	0.0050	0.0076	0.0095	0.0144	0.0189		
A1	0.0025	0.0034	0.0059	0.0091	0.0114	0.0170	0.0225		
В0	0.0018	0.0025	0.0039	0.0058	0.0073	0.0114	0.0146		

Pin Capacitance

Pin	Capacitance (pF)								
F	XL	X1	X2	Х3	X4	X6	X8		
A0	0.0013	0.0017	0.0027	0.0042	0.0052	0.0081	0.0106		
A1	0.0012	0.0016	0.0026	0.0043	0.0054	0.0079	0.0106		
В0	0.0014	0.0018	0.0029	0.0043	0.0053	0.0078	0.0104		

Delays at 25°C,1.0V, Typical Process

De	escri	ptio	n		Intrinsic Delay (ns)					
				XL	X1	X2	Х3	X4	X6	X8
A0	\rightarrow	Υ	1	0.0309	0.0273	0.0314	0.0328	0.0305	0.0319	0.0310
A0	\rightarrow	Υ	\downarrow	0.0209	0.0203	0.0157	0.0159	0.0151	0.0156	0.0150
A1	\rightarrow	Υ	\uparrow	0.0357	0.0318	0.0361	0.0379	0.0357	0.0369	0.0362
A1	\rightarrow	Υ	\downarrow	0.0251	0.0248	0.0186	0.0185	0.0178	0.0180	0.0176
В0	\rightarrow	Υ	\uparrow	0.0147	0.0137	0.0139	0.0140	0.0133	0.0139	0.0135
В0	\rightarrow	Υ	\downarrow	0.0216	0.0217	0.0151	0.0147	0.0142	0.0147	0.0142

Delays at 25°C,1.0V, Typical Process (Cont'd.)

De	escri	ptio	n		K _{load} (ns/pF)					
				XL	X1	X2	Х3	Х4	Х6	X8
A0	\rightarrow	Υ	1	11.2214	7.1778	4.7042	3.2212	2.3946	1.6291	1.2294
A0	\rightarrow	Υ	\downarrow	7.0819	4.9557	2.0843	1.3794	1.0459	0.6991	0.5214
A1	\rightarrow	Υ	\uparrow	11.2064	7.1692	4.7038	3.2193	2.3932	1.6278	1.2285
A1	\rightarrow	Υ	\downarrow	7.1984	5.0403	2.1248	1.3822	1.0465	0.6968	0.5221
В0	\rightarrow	Υ	\uparrow	5.6250	3.6543	2.3992	1.6280	1.2176	0.8228	0.6248
В0	\rightarrow	Υ	\downarrow	7.2223	5.0493	2.1274	1.3839	1.0471	0.6974	0.5225

Cell Description

The OAI211 cell provides the logical inverted OR of one OR group and two additional inputs. The output (Y) is represented by the logic equation:

 $Y = \overline{(A0 + A1) \bullet B0 \bullet C0}$

Logic Symbol

Function Table

A0	A 1	В0	C0	Υ
0	0	х	х	1
Х	Х	0	Х	1
Х	х	х	0	1
Х	1	1	1	0
1	Х	1	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
OAI211XLAD	2.52	1.68
OAI211X1AD	2.52	1.68
OAI211X2AD	2.52	1.96
OAI211X4AD	2.52	3.36

Pin	Power (uW/MHz)						
FIII	XL	X1	X2	X4			
A0	0.0027	0.0037	0.0065	0.0126			
A1	0.0031	0.0042	0.0074	0.0144			
В0	0.0021	0.0029	0.0044	0.0084			
C0	0.0023	0.0032	0.0054	0.0106			

Pin Capacitance

Pin	Capacitance (pF)						
' '''	XL	X1	X2	X4			
A0	0.0013	0.0018	0.0028	0.0056			
A1	0.0012	0.0016	0.0026	0.0050			
В0	0.0015	0.0020	0.0029	0.0053			
C0	0.0013	0.0017	0.0027	0.0057			

Description	Description Intrinsic Delay (ns)				K _{load} (ns/pF)			
	XL	X1	X2	X4	XL	X1	X2	Х4
A0 → Y ↑	0.0399	0.0355	0.0413	0.0418	11.2691	7.2375	4.6910	2.4226
A0 → Y ↓	0.0347	0.0338	0.0250	0.0246	10.1873	7.1428	2.9220	1.4587
A1 \rightarrow Y \uparrow	0.0442	0.0396	0.0458	0.0463	11.2596	7.2327	4.6889	2.4217
A1 \rightarrow Y \downarrow	0.0408	0.0403	0.0291	0.0283	10.3100	7.2356	2.9667	1.4657
$B0 \rightarrow Y \uparrow$	0.0176	0.0166	0.0162	0.0161	5.6168	3.7660	2.3772	1.2440
$B0 \rightarrow Y \downarrow$	0.0348	0.0346	0.0225	0.0212	10.3493	7.2499	2.9714	1.4677
$C0 \rightarrow Y \uparrow$	0.0191	0.0182	0.0194	0.0193	5.7639	3.8680	2.4480	1.2235
$C0 \rightarrow Y \downarrow$	0.0364	0.0367	0.0256	0.0253	10.3328	7.2471	2.9711	1.4681

Cell Description

The OAI21B cell provides the logical inverted AND of one OR group and an additional input. The output (Y) is represented by the logic equation:

$$Y = \overline{(A0 + A1) \bullet \overline{B0N}}$$

Logic Symbol

Function Table

A0	A 1	B0N	Υ
0	0	Х	1
Х	х	1	1
Х	1	0	0
1	Х	0	0

Cell Size

Drive Strength	Height (um)	Width (um)
OAI21BXLAD	2.52	1.96
OAI21BX1AD	2.52	1.96
OAI21BX2AD	2.52	2.24
OAI21BX4AD	2.52	3.36

I SIVIC CLIVE

AC Power

Pin	Power (uW/MHz)						
F III	XL	X1	X2	X4			
A0	0.0020	0.0026	0.0039	0.0075			
A1	0.0024	0.0031	0.0048	0.0093			
B0N	0.0027	0.0034	0.0050	0.0093			

Pin Capacitance

Pin	Capacitance (pF)					
' '''	XL	X1	X2	X4		
A0	0.0013	0.0017	0.0027	0.0052		
A1	0.0011	0.0015	0.0026	0.0053		
B0N	0.0012	0.0012	0.0014	0.0025		

De	scrip	tion)	Intrinsic Delay (ns)			K _{load} (ns/pF)				
				XL	X1	X2	X4	XL	X1	X2	Х4
A0	\rightarrow	Υ	\uparrow	0.0350	0.0297	0.0309	0.0303	11.3763	7.2278	4.6960	2.4022
A0	\rightarrow	Υ	\downarrow	0.0249	0.0242	0.0179	0.0174	7.2390	5.0508	2.1097	1.0524
A1	\rightarrow	Υ	\uparrow	0.0389	0.0335	0.0354	0.0354	11.3551	7.2181	4.6885	2.4009
A1	\rightarrow	Υ	\downarrow	0.0291	0.0287	0.0209	0.0202	7.3448	5.1215	2.1473	1.0517
B0N	\rightarrow	Υ	\uparrow	0.0313	0.0322	0.0325	0.0300	5.8117	3.7382	2.4120	1.2370
B0N	\rightarrow	Υ	\downarrow	0.0604	0.0648	0.0482	0.0442	7.3853	5.1401	2.1531	1.0540

Cell Description

The OAI22 cell provides the logical inverted AND of two OR groups. The output (Y) is represented by the logic equation:

$$\mathsf{Y} = \overline{(A0 + A1) \bullet (B0 + B1)}$$

Logic Symbol

Function Table

A0	A 1	В0	B1	Υ
0	0	х	Х	1
х	х	0	0	1
Х	1	Х	1	0
х	1	1	х	0
1	х	х	1	0
1	х	1	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
OAI22XLAD	2.52	1.68
OAI22X1AD	2.52	1.68
OAI22X2AD	2.52	1.96
OAI22X4AD	2.52	3.36

Pin	Power (uW/MHz)						
F	XL	X1	X2	X4			
A0	0.0023	0.0030	0.0046	0.0090			
A1	0.0027	0.0036	0.0055	0.0109			
В0	0.0034	0.0043	0.0070	0.0136			
B1	0.0038	0.0049	0.0079	0.0155			

Pin Capacitance

Pin	Capacitance (pF)						
	XL	X1	X2	X4			
A0	0.0014	0.0018	0.0027	0.0053			
A1	0.0013	0.0017	0.0026	0.0057			
В0	0.0014	0.0018	0.0029	0.0053			
B1	0.0013	0.0017	0.0027	0.0055			

Description	Intrinsic Delay (ns)			K _{load} (ns/pF)				
	XL	X1	X2	X4	XL	X1	X2	Х4
A0 → Y ↑	0.0293	0.0249	0.0251	0.0253	11.3428	7.2812	4.7329	2.4343
A0 → Y ↓	0.0241	0.0231	0.0161	0.0159	7.1288	4.9856	2.1139	1.0456
A1 \rightarrow Y \uparrow	0.0342	0.0295	0.0298	0.0309	11.3268	7.2742	4.7289	2.4337
A1 \rightarrow Y \downarrow	0.0289	0.0280	0.0189	0.0188	7.2642	5.0768	2.1370	1.0405
$B0 \rightarrow Y \uparrow$	0.0449	0.0372	0.0402	0.0399	11.3776	7.3327	4.7406	2.4237
$B0 \rightarrow Y \downarrow$	0.0329	0.0304	0.0215	0.0206	7.1791	4.9998	2.1190	1.0413
B1 → Y ↑	0.0490	0.0416	0.0448	0.0452	11.3599	7.3258	4.7363	2.4225
$B1 \rightarrow Y \downarrow$	0.0371	0.0351	0.0244	0.0235	7.2673	5.0765	2.1379	1.0406

Cell Description

The OAI221 cell provides the logical inverted AND of two OR groups and an additional input. The output (Y) is represented by the logic equation:

 $Y = \overline{(A0 + A1) \bullet (B0 + B1) \bullet C0}$

Logic Symbol

Function Table

A0	A 1	В0	B1	C0	Υ
0	0	х	Х	Х	1
Х	х	0	0	Х	1
Х	Х	Х	Х	0	1
Х	1	х	1	1	0
Х	1	1	Х	1	0
1	Х	Х	1	1	0
1	Х	1	Х	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
OAI221XLAD	2.52	2.52
OAI221X1AD	2.52	2.52
OAI221X2AD	2.52	2.52
OAI221X4AD	2.52	4.48

Pin	Power (uW/MHz)						
	XL	X1	X2	X4			
A0	0.0030	0.0039	0.0063	0.0124			
A1	0.0034 0.004		0.0073	0.0140			
В0	0.0039	0.0051	0.0084	0.0168			
B1	0.0043 0.005		0.0093	0.0185			
C0	0.0025	0.0034	0.0053	0.0102			

Pin Capacitance

Pin	Capacitance (pF)						
	XL	X1	X2	X4			
Α0	0.0013	0.0017	0.0028	0.0057			
A1	0.0013	0.0017	0.0027	0.0049			
В0	0.0013	0.0016	0.0027	0.0055			
B1	0.0012	0.0016	0.0026	0.0050			
C0	0.0013	0.0018	0.0029	0.0053			

Description	Intrinsic Delay (ns)			K _{load} (ns/pF)				
	XL	X1	X2	X4	XL	X1	X2	Х4
A0 \rightarrow Y \uparrow	0.0447	0.0383	0.0403	0.0401	11.7695	7.5553	4.8626	2.4912
A0 \rightarrow Y \downarrow	0.0460	0.0441	0.0303	0.0290	10.2049	7.1478	3.0407	1.4925
A1 \rightarrow Y \uparrow	0.0498	0.0434	0.0453	0.0443	11.7622	7.5525	4.8607	2.4893
A1 \rightarrow Y \downarrow	0.0521	0.0506	0.0341	0.0327	10.1389	7.1020	3.0020	1.4997
$B0 \rightarrow Y \uparrow$	0.0533	0.0451	0.0497	0.0511	11.5741	7.3742	4.7479	2.4496
$B0 \rightarrow Y \downarrow$	0.0517	0.0489	0.0342	0.0337	10.1350	7.0915	3.0099	1.5033
$B1 \ \to \ Y \ \uparrow$	0.0575	0.0494	0.0542	0.0555	11.5687	7.3719	4.7462	2.4487
$ B1 \rightarrow Y \downarrow $	0.0575	0.0555	0.0381	0.0375	10.1381	7.1008	3.0039	1.5000
$C0 \rightarrow Y \uparrow$	0.0192	0.0174	0.0174	0.0169	5.6755	3.7011	2.3981	1.2314
$C0 \rightarrow Y \downarrow$	0.0421	0.0420	0.0277	0.0266	10.1581	7.1129	3.0065	1.5019

Cell Description

The OAI222 cell provides the logical inverted AND of three OR groups. The output (Y) is represented by the logic equation:

$$\mathsf{Y} = (\overline{\mathsf{A}0 + \mathsf{A}1}) \bullet (B0 + B1) \bullet (C0 + C1)$$

Logic Symbol

Function Table

A0	A 1	В0	B1	C0	C1	Υ
0	0	Х	Х	Х	Х	1
Х	х	0	0	Х	Х	1
Х	х	х	Х	0	0	1
Х	1	Х	1	1	Х	0
Х	1	х	1	Х	1	0
Х	1	1	х	1	Х	0
Х	1	1	Х	Х	1	0
1	х	х	1	1	Х	0
1	Х	х	1	х	1	0
1	Х	1	Х	1	Х	0
1	х	1	Х	Х	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
OAI222XLAD	2.52	2.80
OAI222X1AD	2.52	2.80
OAI222X2AD	2.52	3.08
OAI222X4AD	2.52	5.04

Pin	Power (uW/MHz)					
F 1111	XL	X1	X2	X4		
A0	0.0043	0.0054	0.0084	0.0163		
A1	0.0046	0.0060	0.0093	0.0181		
В0	0.0051	0.0064	0.0105	0.0208		
B1	0.0055	0.0071	0.0114	0.0225		
C0	0.0028	0.0038	0.0060	0.0119		
C1	0.0032	0.0044	0.0068	0.0136		

Pin Capacitance

Pin				
FIII	XL	X1	X2	X4
A0	0.0014	0.0018	0.0028	0.0056
A1	0.0013	0.0017	0.0027	0.0050
В0	0.0012	0.0017	0.0027	0.0056
B1	0.0012	0.0016	0.0026	0.0051
C0	0.0014	0.0018	0.0028	0.0058
C1	0.0013	0.0017	0.0027	0.0051

Description	Intrinsic Delay (ns)			K _{load} (ns/pF)				
	XL	X1	X2	X4	XL	X1	X2	X4
$A0 \rightarrow Y \uparrow$	0.0582	0.0477	0.0500	0.0489	11.9108	7.6383	4.9388	2.5129
$A0 \rightarrow Y \downarrow$	0.0619	0.0580	0.0387	0.0372	10.1701	7.1027	3.0109	1.4960
A1 \rightarrow Y \uparrow	0.0627	0.0522	0.0552	0.0537	11.9026	7.6345	4.9370	2.5118
A1 \rightarrow Y \downarrow	0.0671	0.0637	0.0423	0.0412	10.0633	7.0309	2.9726	1.4982
$B0 \rightarrow Y \uparrow$	0.0660	0.0540	0.0599	0.0612	11.5933	7.4213	4.7708	2.4642
$B0 \rightarrow Y \downarrow$	0.0667	0.0622	0.0426	0.0422	10.0960	7.0466	2.9804	1.5023
B1 → Y ↑	0.0704	0.0584	0.0643	0.0656	11.5889	7.4192	4.7689	2.4634
$ B1 \rightarrow Y \downarrow $	0.0727	0.0686	0.0464	0.0459	10.0529	7.0298	2.9709	1.4975
$C0 \rightarrow Y \uparrow$	0.0373	0.0325	0.0333	0.0336	11.6482	7.4256	4.8027	2.4679
$C0 \rightarrow Y \downarrow$	0.0435	0.0437	0.0294	0.0290	10.1297	7.0771	3.0165	1.4978
C1 → Y ↑	0.0415	0.0368	0.0378	0.0378	11.6286	7.4181	4.7992	2.4655
$C1 \rightarrow Y \downarrow$	0.0486	0.0494	0.0327	0.0326	10.0619	7.0314	2.9683	1.4980

Cell Description

The OAI2B1 cell provides the logical inverted AND of one OR group and an additional input. The output (Y) is represented by the logic equation:

$$\mathsf{Y} = \overline{(A0 + \overline{A1N}) \bullet B0}$$

Logic Symbol

Function Table

A0	A1N	В0	Υ
0	1	х	1
Х	Х	0	1
Х	0	1	0
1	Х	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
OAI2B1XLAD	2.52	1.96
OAI2B1X1AD	2.52	1.96
OAI2B1X2AD	2.52	2.24
OAI2B1X4AD	2.52	3.36

AC Power

Pin	Power (uW/MHz)					
F 1111	XL	X1	X2	X4		
A0	0.0022	0.0029	0.0050	0.0096		
A1N	0.0026	0.0035	0.0060	0.0116		
В0	0.0018	0.0025	0.0038	0.0071		

Pin Capacitance

Pin	Capacitance (pF)					
' '''	XL	X1	X2	X4		
A0	0.0013	0.0018	0.0028	0.0052		
A1N	0.0012	0.0012	0.0014	0.0024		
В0	0.0014	0.0018	0.0029	0.0053		

De	scrip	tion		Intrinsic Delay (ns)			K _{load} (ns/pF)				
				XL	X1	X2	X4	XL	X1	X2	X4
A0	\rightarrow	Υ	\uparrow	0.0323	0.0287	0.0314	0.0311	11.1863	7.2600	4.7114	2.4398
A0	\rightarrow	Υ	\downarrow	0.0219	0.0211	0.0157	0.0153	7.0767	4.9469	2.0860	1.0489
A1N	\rightarrow	Υ	\uparrow	0.0509	0.0491	0.0541	0.0542	11.1524	7.2473	4.7082	2.4371
A1N	\rightarrow	Υ	\downarrow	0.0615	0.0656	0.0516	0.0498	7.2379	5.0591	2.1381	1.0555
В0	\rightarrow	Υ	\uparrow	0.0151	0.0140	0.0138	0.0133	5.6433	3.6619	2.4040	1.2175
В0	\rightarrow	Υ	\downarrow	0.0220	0.0221	0.0150	0.0142	7.2259	5.0493	2.1298	1.0512

Cell Description

The OAI2B11 cell provides the logical inverted OR of one OR group and two additional inputs. The output (Y) is represented by the logic equation:

$$\mathsf{Y} = (\overline{\mathsf{A}0 + \overline{\mathsf{A}1N}}) \bullet B0 \bullet C0$$

Logic Symbol

Function Table

A0	A1N	В0	C0	Υ
0	1	х	х	1
Х	Х	0	х	1
Х	Х	Х	0	1
Х	0	1	1	0
1	Х	1	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
OAI2B11XLAD	2.52	2.24
OAI2B11X1AD	2.52	2.24
OAI2B11X2AD	2.52	2.24
OAI2B11X4AD	2.52	3.92

Pin	Power (uW/MHz)					
F 1111	XL	X1	X2	X4		
A0	0.0028	0.0037	0.0065	0.0128		
A1N	0.0032	0.0042	0.0073	0.0146		
В0	0.0019	0.0026	0.0043	0.0080		
C0	0.0022	0.0031	0.0053	0.0103		

Pin Capacitance

Pin		Capacita	ance (pF)		
	XL	X1	X2	X4	
A0	0.0013	0.0017	0.0028	0.0056	
A1N	0.0011	0.0012	0.0014	0.0023	
В0	0.0013	0.0017	0.0029	0.0052	
C0	0.0013	0.0017	0.0028	0.0057	

De	Description				Intrinsic Delay (ns)			K _{load} (ns/pF)			
				XL	X1	X2	Х4	XL	X1	X2	Х4
A0	\rightarrow	Υ	\uparrow	0.0412	0.0364	0.0416	0.0421	11.3480	7.3727	4.7447	2.4232
A0	\rightarrow	Υ	\downarrow	0.0357	0.0344	0.0255	0.0247	10.2612	7.1719	3.0129	1.4594
A1N	\rightarrow	Υ	\uparrow	0.0606	0.0577	0.0639	0.0641	11.3387	7.3691	4.7426	2.4226
A1N	\rightarrow	Υ	\downarrow	0.0778	0.0799	0.0604	0.0572	10.3948	7.2588	3.0793	1.4690
В0	\rightarrow	Υ	\uparrow	0.0170	0.0157	0.0164	0.0162	5.6790	3.6675	2.3789	1.2439
В0	\rightarrow	Υ	\downarrow	0.0335	0.0337	0.0235	0.0213	10.4086	7.2630	3.0804	1.4682
C0	\rightarrow	Υ	\uparrow	0.0193	0.0179	0.0195	0.0194	5.8550	3.7793	2.4495	1.2235
C0	\rightarrow	Υ	\downarrow	0.0367	0.0370	0.0266	0.0254	10.4065	7.2643	3.0800	1.4687

Cell Description

The OAI2B2 cell provides the logical inverted AND of two OR groups. The output (Y) is represented by the logic equation:

$$Y = (\overline{A0 + \overline{A1N}}) \bullet (B0 + B1)$$

Logic Symbol

Function Table

A0	A1N	В0	B1	Υ
0	1	Х	Х	1
Х	Х	0	0	1
Х	0	х	1	0
Х	0	1	Х	0
1	Х	х	1	0
1	Х	1	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
OAI2B2XLAD	2.52	2.24
OAI2B2X1AD	2.52	2.24
OAI2B2X2AD	2.52	2.52
OAI2B2X4AD	2.52	3.92

Pin	Power (uW/MHz)					
' "''	XL	X1	X2	X4		
A0	0.0022	0.0028	0.0045	0.0089		
A1N	0.0030	0.0036	0.0055	0.0107		
B0	0.0030	0.0037	0.0061	0.0118		
B1	0.0034	0.0043	0.0070	0.0137		

Pin Capacitance

Pin	Capacitance (pF)				
	XL	X1	X2	X4	
A0	0.0016	0.0018	0.0029	0.0052	
A1N	0.0011	0.0011	0.0015	0.0024	
В0	0.0014	0.0017	0.0028	0.0053	
B1	0.0012	0.0015	0.0026	0.0055	

De	scrip	tion)	Intrinsic Delay (ns)				K _{load} (ns/pF)			
				XL	X1	X2	X4	XL	X1	X2	Х4
A0	\rightarrow	Υ	\uparrow	0.0299	0.0246	0.0249	0.0248	11.6129	7.4150	4.7660	2.4664
A0	\rightarrow	Υ	\downarrow	0.0244	0.0228	0.0159	0.0156	7.1854	5.0030	2.0991	1.0510
A1N	\rightarrow	Υ	\uparrow	0.0488	0.0460	0.0480	0.0478	11.5772	7.4054	4.7630	2.4654
A1N	\rightarrow	Υ	\downarrow	0.0668	0.0701	0.0528	0.0501	7.3518	5.1162	2.1505	1.0492
В0	\rightarrow	Υ	\uparrow	0.0444	0.0358	0.0393	0.0390	11.4068	7.2850	4.7025	2.4205
В0	\rightarrow	Υ	\downarrow	0.0339	0.0319	0.0235	0.0226	7.2272	5.0348	2.1251	1.0520
B1	\rightarrow	Υ	\uparrow	0.0487	0.0400	0.0441	0.0444	11.3931	7.2784	4.6993	2.4195
B1	\rightarrow	Υ	\downarrow	0.0386	0.0367	0.0266	0.0256	7.3437	5.1120	2.1487	1.0485

Cell Description

The OAI2BB1 cell provides the logical inverted AND of one OR group of two inverted inputs (A0N,A1N) and an additional non-inverted input (B0). The output (Y) is represented by the logic equation:

 $Y = (\overline{A0N} + \overline{A1N}) \bullet B0$

Logic Symbol

Function Table

A0N	A1N	В0	Υ
1	1	х	1
Х	Х	0	1
Х	0	1	0
0	Х	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
OAI2BB1XLAD	2.52	1.68
OAI2BB1X1AD	2.52	1.68
OAI2BB1X2AD	2.52	1.96
OAI2BB1X4AD	2.52	2.52

Pin	Power (uW/MHz)					
' "''	XL	X1	X2	X4		
A0N	0.0031	0.0036	0.0056	0.0101		
A1N	0.0028	0.0033	0.0051	0.0091		
B0	0.0014	0.0019	0.0031	0.0063		

Pin Capacitance

Pin	Capacitance (pF)				
' '''	XL	X1	X2	X4	
A0N	0.0009	0.0009	0.0012	0.0020	
A1N	0.0007	0.0007	0.0010	0.0016	
В0	0.0011	0.0014	0.0022	0.0045	

Description		Intrinsic Delay (ns)				K _{load} (ns/pF)					
				XL	X1	X2	Х4	XL	X1	X2	Х4
AON	\rightarrow	Υ	\uparrow	0.0441	0.0454	0.0411	0.0394	5.7043	3.6831	2.3702	1.2531
AON	\rightarrow	Υ	\downarrow	0.0625	0.0666	0.0553	0.0489	7.5248	5.2570	2.2086	1.0409
A1N	\rightarrow	Υ	\uparrow	0.0432	0.0444	0.0396	0.0378	5.7033	3.6841	2.3707	1.2531
A1N	\rightarrow	Υ	\downarrow	0.0571	0.0608	0.0500	0.0438	7.4951	5.2430	2.2024	1.0374
В0	\rightarrow	Υ	\uparrow	0.0152	0.0141	0.0154	0.0158	5.5680	3.5922	2.3782	1.2095
В0	\rightarrow	Υ	\downarrow	0.0181	0.0186	0.0147	0.0145	7.4085	5.2072	2.1848	1.0321

Cell Description

The OAI2BB2 cell provides the logical inverted AND of one OR group of two inverted inputs (A0N,A1N) and one OR group of two non-inverted inputs (B0,B1). The output (Y) is represented by the logic equation:

$$Y = (\overline{A0N} + \overline{A1N}) \bullet (B0 + B1)$$

Logic Symbol

Function Table

A0N	A1N	В0	B1	Υ
1	1	Х	Х	1
Х	Х	0	0	1
Х	0	х	1	0
Х	0	1	Х	0
0	Х	х	1	0
0	Х	1	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
OAI2BB2XLAD	2.52	2.24
OAI2BB2X1AD	2.52	2.24
OAI2BB2X2AD	2.52	2.24
OAI2BB2X4AD	2.52	3.64

Pin	Power (uW/MHz)							
' ""	XL	X1	X2	X4				
AON	0.0033	0.0039	0.0062	0.0114				
A1N	0.0030	0.0037	0.0057	0.0104				
B0	0.0019	0.0024	0.0040	0.0074				
B1	0.0023	0.0030	0.0048	0.0094				

Pin Capacitance

Pin	Capacitance (pF)							
F	XL	X1	X2	X4				
A0N	0.0010	0.0010	0.0014	0.0024				
A1N	0.0011	0.0011	0.0016	0.0027				
В0	0.0013	0.0017	0.0027	0.0052				
B1	0.0012	0.0016	0.0026	0.0054				

De	Description		Intrinsic Delay (ns)				K _{load} (ns/pF)				
				XL	X1	X2	Х4	XL	X1	X2	Х4
A0N	\rightarrow	Υ	1	0.0446	0.0474	0.0437	0.0420	5.7333	3.7172	2.4069	1.2295
A0N	\rightarrow	Υ	\downarrow	0.0649	0.0709	0.0575	0.0534	7.3449	5.1091	2.1692	1.0593
A1N	\rightarrow	Υ	\uparrow	0.0437	0.0465	0.0425	0.0407	5.7334	3.7171	2.4066	1.2294
A1N	\rightarrow	Υ	\downarrow	0.0633	0.0696	0.0557	0.0508	7.3419	5.1098	2.1690	1.0586
В0	\rightarrow	Υ	\uparrow	0.0321	0.0281	0.0311	0.0311	11.3557	7.2670	4.7156	2.4487
В0	\rightarrow	Υ	\downarrow	0.0223	0.0221	0.0175	0.0174	7.1654	5.0065	2.1051	1.0545
B1	\rightarrow	Υ	\uparrow	0.0364	0.0322	0.0358	0.0363	11.3407	7.2597	4.7133	2.4489
B1	\rightarrow	Υ	\downarrow	0.0268	0.0270	0.0209	0.0202	7.2760	5.0790	2.1564	1.0536

Cell Description

The OAI31 cell provides the logical inverted AND of one OR group and an additional input. The output (Y) is represented by the logic equation:

$$Y = \overline{(A0 + A1 + A2) \bullet B0}$$

Logic Symbol

Function Table

A0	A 1	A2	В0	Υ
0	0	0	х	1
Х	Х	Х	0	1
х	х	1	1	0
х	1	х	1	0
1	Х	Х	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
OAI31XLAD	2.52	1.68
OAI31X1AD	2.52	1.68
OAI31X2AD	2.52	1.96
OAI31X4AD	2.52	3.36

Pin	Power (uW/MHz)							
' '''	XL	X1	X1 X2	X4				
A0	0.0023	0.0030	0.0054	0.0108				
A1	0.0027	0.0036	0.0063	0.0127				
A2	0.0030	0.0042	0.0072	0.0145				
В0	0.0021	0.0030	0.0048	0.0091				

Pin Capacitance

Pin	Capacitance (pF)								
	XL	X1	X2	X4					
A0	0.0013	0.0017	0.0028	0.0052					
A1	0.0012	0.0016	0.0026	0.0054					
A2	0.0012	0.0015	0.0026	0.0056					
В0	0.0014	0.0018	0.0029	0.0053					

Description	Intrinsic Delay (ns)				K _{load} (ns/pF)			
	XL	X1	X2	X4	XL	X1	X2	Х4
A0 → Y ↑	0.0452	0.0392	0.0462	0.0469	16.9479	10.9000	7.0479	3.6274
A0 \rightarrow Y \downarrow	0.0218	0.0210	0.0165	0.0164	7.0405	4.9223	2.0769	1.0492
A1 \rightarrow Y \uparrow	0.0560	0.0496	0.0566	0.0586	16.9368	10.8898	7.0425	3.6263
A1 \rightarrow Y \downarrow	0.0260	0.0255	0.0192	0.0192	7.1027	4.9686	2.0981	1.0433
A2 \rightarrow Y \uparrow	0.0601	0.0537	0.0607	0.0635	16.9216	10.8862	7.0418	3.6267
$A2 \rightarrow Y \downarrow$	0.0286	0.0286	0.0207	0.0206	7.3146	5.0930	2.1407	1.0557
$B0 \rightarrow Y \uparrow$	0.0146	0.0136	0.0138	0.0134	5.6775	3.6672	2.3790	1.2177
$B0 \rightarrow Y \downarrow$	0.0241	0.0247	0.0167	0.0158	7.3429	5.1071	2.1436	1.0570

Cell Description

The OAl32 cell provides the logical inverted AND of two OR groups. The output (Y) is represented by the logic equation:

$$\mathsf{Y} = (\overline{\mathsf{A}0 + \mathsf{A}1 + \mathsf{A}2) \bullet (\mathsf{B}0 + \mathsf{B}1)}$$

Logic Symbol

Function Table

A0	A1	A2	В0	B1	Υ
0	0	0	х	Х	1
Х	х	х	0	0	1
Х	х	1	х	1	0
Х	Х	1	1	Х	0
Х	1	х	1	Х	0
Х	1	х	х	1	0
1	Х	Х	1	Х	0
1	Х	Х	Х	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
OAI32XLAD	2.52	1.96
OAI32X1AD	2.52	2.24
OAI32X2AD	2.52	2.24
OAI32X4AD	2.52	4.20

AC Power

Pin	Power (uW/MHz)							
F	XL	X1	X2	X4				
A0	0.0036	0.0043	0.0074	0.0149				
A1	0.0039	0.0049	0.0083	0.0167				
A2	0.0043	0.0055	0.0091	0.0185				
В0	0.0025	0.0035	0.0053	0.0108				
B1	0.0029	0.0040	0.0062	0.0126				

Pin Capacitance

Pin	Capacitance (pF)						
' '''	XL	X1	X2	X4			
A0	0.0013	0.0018	0.0028	0.0052			
A1	0.0012	0.0016	0.0026	0.0055			
A2	0.0011	0.0016	0.0026	0.0056			
В0	0.0013	0.0018	0.0028	0.0052			
B1	0.0014	0.0017	0.0027	0.0055			

Description	Intrinsic Delay (ns) K _{load} (ns/pF)							
	XL	X1	X2	Х4	XL	X1	X2	Х4
A0 \rightarrow Y \uparrow	0.0656	0.0515	0.0594	0.0610	17.3039	11.0637	7.1203	3.6547
A0 \rightarrow Y \downarrow	0.0325	0.0297	0.0217	0.0218	7.1592	4.9491	2.0927	1.0483
A1 \rightarrow Y \uparrow	0.0769	0.0616	0.0699	0.0730	17.2831	11.0523	7.1148	3.6529
A1 \rightarrow Y \downarrow	0.0370	0.0342	0.0246	0.0248	7.1835	4.9637	2.0995	1.0417
A2 \rightarrow Y \uparrow	0.0813	0.0659	0.0741	0.0778	17.2823	11.0519	7.1146	3.6525
A2 \rightarrow Y \downarrow	0.0405	0.0377	0.0265	0.0264	7.3748	5.0585	2.1407	1.0499
$B0 \rightarrow Y \uparrow$	0.0270	0.0246	0.0244	0.0253	11.4191	7.3373	4.7327	2.4314
B0 \rightarrow Y \downarrow	0.0254	0.0262	0.0174	0.0176	7.2512	4.9974	2.1134	1.0609
$B1 \ \to \ Y \ \uparrow$	0.0331	0.0291	0.0291	0.0307	11.4199	7.3289	4.7287	2.4307
$ B1 \rightarrow Y \downarrow $	0.0316	0.0313	0.0206	0.0205	7.3882	5.0583	2.1412	1.0502

Cell Description

The OAl33 cell provides the logical inverted AND of two OR groups. The output (Y) is represented by the logic equation:

$$\mathsf{Y} = (\overline{\mathsf{A}0 + \mathsf{A}1 + \mathsf{A}2}) \bullet (B0 + B1 + B2)$$

Logic Symbol

Function Table

A0	A 1	A2	B0	B1	B2	Υ
0	0	0	Х	х	х	1
Х	х	Х	0	0	0	1
Х	х	1	Х	х	1	0
Х	х	1	х	1	х	0
Х	х	1	1	х	Х	0
Х	1	х	х	Х	1	0
Х	1	х	х	1	х	0
Х	1	х	1	Х	х	0
1	х	х	х	Х	1	0
1	х	х	х	1	х	0
1	Х	х	1	Х	х	0

Cell Size

Drive Strength	Height (um)	Width (um)
OAI33XLAD	2.52	2.52
OAI33X1AD	2.52	2.52
OAI33X2AD	2.52	2.52
OAI33X4AD	2.52	4.76

Pin	Power (uW/MHz)						
F 1111	XL	X1	X2	X4			
A0	0.0030	0.0041	0.0063	0.0124			
A1	0.0034	0.0046	0.0071	0.0141			
A2	0.0038	0.0052	0.0080	0.0159			
В0	0.0041	0.0055	0.0093	0.0186			
B1	0.0045	0.0061	0.0103	0.0204			
B2	0.0049	0.0066	0.0111	0.0222			

Pin Capacitance

Pin	Capacitance (pF)						
F	XL	X1	X2	X4			
A0	0.0013	0.0018	0.0028	0.0052			
A1	0.0013	0.0017	0.0027	0.0055			
A2	0.0013	0.0017	0.0027	0.0058			
В0	0.0013	0.0017	0.0027	0.0051			
B1	0.0013	0.0017	0.0027	0.0054			
B2	0.0012	0.0016	0.0026	0.0056			

Description	Intrinsic Delay (ns)				K _{load} (ns/pF)			
	XL	X1	X2	Х4	XL	X1	X2	Х4
$A0 \rightarrow Y \uparrow$	0.0451	0.0389	0.0388	0.0389	17.3600	11.2024	7.1904	3.6950
A0 \rightarrow Y \downarrow	0.0290	0.0289	0.0190	0.0186	7.1514	5.0099	2.1030	1.0491
A1 \rightarrow Y \uparrow	0.0569	0.0500	0.0499	0.0511	17.3402	11.1917	7.1849	3.6936
A1 \rightarrow Y \downarrow	0.0341	0.0341	0.0223	0.0220	7.1715	5.0140	2.1184	1.0503
$A2 \rightarrow Y \uparrow$	0.0631	0.0556	0.0549	0.0565	17.3515	11.1945	7.1866	3.6947
$A2 \rightarrow Y \downarrow$	0.0387	0.0386	0.0247	0.0242	7.3211	5.0991	2.1570	1.0578
$B0 \rightarrow Y \uparrow$	0.0724	0.0619	0.0722	0.0734	17.3550	11.1460	7.1526	3.6724
$B0 \rightarrow Y \downarrow$	0.0369	0.0359	0.0257	0.0257	7.1469	4.9565	2.1133	1.0625
$B1 \rightarrow Y \uparrow$	0.0836	0.0730	0.0833	0.0851	17.3368	11.1378	7.1481	3.6706
$B1 \rightarrow Y \downarrow$	0.0418	0.0416	0.0290	0.0288	7.1653	5.0230	2.1196	1.0536
B2 \rightarrow Y \uparrow	0.0885	0.0772	0.0876	0.0904	17.3365	11.1365	7.1478	3.6708
B2 \rightarrow Y \downarrow	0.0459	0.0455	0.0313	0.0307	7.3205	5.0969	2.1574	1.0580

Cell Description

The OR2 cell provides the logical OR of two inputs (A,B). The output (Y) is represented by the logic equation:

$$Y = (A + B)$$

Logic Symbol

Function Table

Α	В	Υ
0	0	0
Х	1	1
1	Х	1

Cell Size

Drive Strength	Height (um)	Width (um)
OR2XLAD	2.52	1.40
OR2X1AD	2.52	1.40
OR2X2AD	2.52	1.40
OR2X4AD	2.52	2.52
OR2X6AD	2.52	2.80
OR2X8AD	2.52	3.64

AC Power

Pin	Power (uW/MHz)							
	XL	X1	X2	X4	X6	X8		
Α	0.0027	0.0032	0.0049	0.0091	0.0136	0.0184		
В	0.0030	0.0037	0.0056	0.0105	0.0155	0.0210		

Pin Capacitance

Pin	Capacitance (pF)								
FIII	XL X1 X2 X4 X6 X8								
Α	0.0011	0.0012	0.0018	0.0033	0.0045	0.0066			
В	0.0011 0.0013 0.0018 0.0035 0.0048 0.0065								

Delays at 25°C,1.0V, Typical Process

Description	Intrinsic Delay (ns)						
	XL	XL X1 X2 X4 X6					
$A \rightarrow Y \uparrow$	0.0273	0.0299	0.0326	0.0300	0.0298	0.0302	
$A \rightarrow Y \downarrow$	0.0696	0.0611	0.0493	0.0460	0.0467	0.0465	
$B \to Y \uparrow$	0.0288	0.0322	0.0359	0.0336	0.0331	0.0335	
$B \to Y \downarrow$	0.0759	0.0669	0.0548	0.0516	0.0523	0.0517	

Delays at 25°C,1.0V, Typical Process (Cont'd.)

Description	K _{load} (ns/pF)						
	XL	XL X1 X2 X4 X6 X8					
$A \ \rightarrow \ Y \ \uparrow$	5.5749	3.5922	2.3385	1.2024	0.8188	0.6168	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.7791	3.1756	1.3596	0.6671	0.4447	0.3314	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.5822	3.5978	2.3407	1.2033	0.8197	0.6175	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.7791	3.1756	1.3596	0.6670	0.4447	0.3314	

Cell Description

The OR3 cell provides the logical OR of three inputs (A,B,C). The output (Y) is represented by the logic equation:

$$Y = (A + B + C)$$

Logic Symbol

Function Table

Α	В	С	Υ
0	0	0	0
Х	Х	1	1
Х	1	Х	1
1	Х	Х	1

Cell Size

Drive Strength	Height (um)	Width (um)
OR3XLAD	2.52	1.68
OR3X1AD	2.52	1.68
OR3X2AD	2.52	1.68
OR3X4AD	2.52	2.80
OR3X6AD	2.52	4.20
OR3X8AD	2.52	5.60

AC Power

Pin		Power (uW/MHz)								
F 111	XL X1 X2 X4 X6									
Α	0.0034	0.0041	0.0060	0.0110	0.0168	0.0220				
В	0.0037	0.0045	0.0068	0.0128	0.0196	0.0253				
С	0.0041	0.0050	0.0077	0.0147	0.0222	0.0291				

Pin Capacitance

Pin		Capacitance (pF)								
F 111	XL	X1	X2	X4	Х6	X8				
Α	0.0013	0.0015	0.0022	0.0039	0.0061	0.0083				
В	0.0013	0.0015	0.0022	0.0041	0.0064	0.0082				
С	0.0013	0.0015	0.0021	0.0043	0.0062	0.0086				

Delays at 25°C,1.0V, Typical Process

Descri	ption		Intrinsic Delay (ns)				
		XL	X1	X2	X4	Х6	X8
$A \rightarrow $	Y ↑	0.0310	0.0340	0.0367	0.0339	0.0344	0.0337
$A \rightarrow $	Y ↓	0.0804	0.0704	0.0562	0.0519	0.0533	0.0522
$B \rightarrow $	Y ↑	0.0332	0.0376	0.0417	0.0392	0.0394	0.0387
$B \rightarrow $	Υ ↓	0.0916	0.0816	0.0671	0.0634	0.0655	0.0632
$C \rightarrow$	Y ↑	0.0345	0.0400	0.0452	0.0427	0.0429	0.0425
$C \rightarrow$	Y \	0.0963	0.0862	0.0716	0.0682	0.0702	0.0688

Delays at 25°C,1.0V, Typical Process (Cont'd.)

D	escri	iptic	n	K _{load} (ns/pF)					
				XL	X1	X2	X4	Х6	X8
Α	\rightarrow	Υ	↑	5.6404	3.6393	2.3732	1.2182	0.8229	0.6213
Α	\rightarrow	Υ	\downarrow	5.0676	3.3064	1.4198	0.6921	0.4655	0.3432
В	\rightarrow	Υ	↑	5.6541	3.6492	2.3788	1.2208	0.8248	0.6226
В	\rightarrow	Υ	\downarrow	5.0662	3.3058	1.4196	0.6920	0.4655	0.3432
С	\rightarrow	Υ	\rightarrow	5.6826	3.6665	2.3864	1.2248	0.8279	0.6250
С	\rightarrow	Υ	\downarrow	5.0663	3.3054	1.4194	0.6920	0.4655	0.3432

Cell Description

The OR4 cell provides the logical OR of four inputs (A,B,C,D). The output (Y) is represented by the logic equation:

$$Y = (A + B + C + D)$$

Logic Symbol

Function Table

Α	В	С	D	Υ
0	0	0	0	0
Х	Х	Х	1	1
Х	Х	1	Х	1
Х	1	Х	Х	1
1	Х	Х	Х	1

Cell Size

Drive Strength	Height (um)	Width (um)
OR4XLAD	2.52	2.24
OR4X1AD	2.52	2.24
OR4X2AD	2.52	2.24
OR4X4AD	2.52	3.64
OR4X6AD	2.52	5.32
OR4X8AD	2.52	7.00

AC Power

Pin		Power (uW/MHz)								
	XL	X1	X2	X4	Х6	X8				
Α	0.0038	0.0045	0.0067	0.0122	0.0193	0.0246				
В	0.0041	0.0049	0.0074	0.0139	0.0215	0.0277				
С	0.0044	0.0053	0.0081	0.0153	0.0237	0.0307				
D	0.0047	0.0058	0.0090	0.0170	0.0263	0.0342				

Pin Capacitance

Pin	Capacitance (pF)									
F III	XL	X1	X2	X4	X6	X8				
Α	0.0012	0.0014	0.0021	0.0036	0.0063	0.0079				
В	0.0011	0.0013	0.0019	0.0038	0.0060	0.0078				
С	0.0011	0.0013	0.0019	0.0040	0.0060	0.0082				
D	0.0012	0.0014	0.0020	0.0044	0.0063	0.0093				

Description	1	Intrinsic Delay (ns)						
		XL	X1	X2	X4	Х6	Х8	
$A \rightarrow Y$	\uparrow	0.0313	0.0340	0.0372	0.0343	0.0353	0.0343	
$A \rightarrow Y$	\downarrow	0.1181	0.0991	0.0754	0.0694	0.0724	0.0696	
$B \rightarrow Y$	\uparrow	0.0328	0.0366	0.0413	0.0388	0.0398	0.0388	
$B \rightarrow Y$	\downarrow	0.1354	0.1166	0.0922	0.0879	0.0907	0.0879	
$C \rightarrow Y$	\uparrow	0.0340	0.0387	0.0446	0.0418	0.0432	0.0423	
$C \rightarrow Y$	\downarrow	0.1475	0.1277	0.1029	0.0981	0.1019	0.0993	
$D \rightarrow Y$	\uparrow	0.0347	0.0399	0.0466	0.0439	0.0453	0.0449	
$D \rightarrow Y$	\downarrow	0.1552	0.1344	0.1086	0.1047	0.1084	0.1061	

Delays at 25°C,1.0V, Typical Process (Cont'd.)

D	escr	iptic	n			K _{load} (ı	ns/pF)		
				XL	X1	X2	Х4	Х6	X8
Α	\rightarrow	Υ	\uparrow	5.6552	3.6411	2.3699	1.2130	0.8242	0.6195
Α	\rightarrow	Υ	\downarrow	5.7872	3.6121	1.5488	0.7552	0.5110	0.3756
В	\rightarrow	Υ	\uparrow	5.6675	3.6488	2.3751	1.2154	0.8260	0.6209
В	\rightarrow	Υ	\downarrow	5.7871	3.6102	1.5486	0.7553	0.5110	0.3757
С	\rightarrow	Υ	\uparrow	5.6952	3.6661	2.3842	1.2202	0.8293	0.6234
С	\rightarrow	Υ	\downarrow	5.7871	3.6109	1.5486	0.7550	0.5110	0.3756
D	\rightarrow	Υ	↑	5.7324	3.6910	2.3970	1.2267	0.8340	0.6272
D	\rightarrow	Υ	\downarrow	5.7893	3.6101	1.5485	0.7553	0.5109	0.3756

Cell Description

The RF1R1W register file cell is an active-high D-type transparent latch with an active-high tristate output. The output (RB) is inverted.

Logic Symbol

Cell Size

Drive Strength	Height (um)	Width (um)	
RF1R1WX1AD	2.52	3.36	

Function Table

ww	WB	q[n+1]
0	Х	q[n]
1	0	0
1	1	1

⁻ Functions for Write Operations

Function Table (Cont'd.)

RW	RWN	q	RB
0	0	0	1
0	0	1	Hi-Z
0	1	0	Hi-Z
0	1	1	Hi-Z
1	0	0	1
1	0	1	0
1	1	0	Hi-Z
1	1	1	0

- Functions for Read Operations Shaded areas represent operations that are legal only during RW/RWN transitions.

RF1R1W

Process Technology:

TSMC CLN90G

Pin	Power (uW/MHz)
' '''	X1
WW	0.0043
WB	0.0046
RW	0.0003
RB	0.0014

Pin Capacitance

Pin	Capacitance (pF)
' '''	X 1
WW	0.0023
WB	0.0012
RW	0.0007
RWN	0.0003
RB	0.3064

Delays at 25°C,1.0V, Typical Process

De	escri	ption		Intrinsic Delay (ns)	K _{load} (ns/pF)
				X1	X1
WW	\rightarrow	RB	\uparrow	0.1270	12.7388
WW	\rightarrow	RB	\downarrow	0.0733	6.2495
WB	\rightarrow	RB	\uparrow	0.1101	12.7393
WB	\rightarrow	RB	\downarrow	0.0838	6.2504
RW	\rightarrow	RB	\uparrow	0.0162	12.7289
RW	\rightarrow	RB	\downarrow	0.0099	6.2289

Timing Constraints at 25°C,1.0V, Typical Process

Pin	Bo.	~ir	omo	nt	Interval (ns)
FIII	Ke	quii	eme	iit.	X1
WW		min	pwh		0.8332
	setup	\uparrow	\rightarrow	WW	0.0508
WB	setup	\downarrow	\rightarrow	WW	0.0508
WD	hold	\uparrow	\rightarrow	WW	-0.0430
	hold	\downarrow	\rightarrow	WW	-0.0430

Cell Description

The RF2R1W register file cell is an active-high D-type transparent latch with two independently controlled, active-high tri-state outputs. The cell has two read ports and one write port. The outputs (R1B,R2B) are inverted.

Logic Symbol

Cell Size

Drive Strength	Height (um)	Width (um)
RF2R1WX1AD	2.52	5.32

Function Table

WW	WB	q[n+1]
0	0	q[n]
0	1	q[n]
1	0	0
1	1	1

⁻ Functions for Write Operations

Function Table (Cont'd.)

R1W/R2W	q	R1B/R2B
0	0	Hi-Z
0	1	Hi-Z
1	0	1
1	1	0

⁻ Functions for Read Operations

Pin	Power (uW/MHz)
	X1
WB	0.0052
WW	0.0029
R1W	0.0015
R2W	0.0015
R1B	0.0075

Pin Capacitance

Pin	Capacitance (pF)
' '''	X 1
WB	0.0010
WW	0.0019
R1W	0.0014
R2W	0.0016
R1B	0.0009
R2B	0.0009

Delays at 25°C,1.0V, Typical Process

D	escri	ption		Intrinsic Delay (ns)	K _{load} (ns/pF)
				X1	X1
WB	\rightarrow	R1B	\uparrow	0.1380	12.7239
WB	\rightarrow	R1B	\downarrow	0.1000	6.2574
WW	\rightarrow	R1B	\uparrow	0.1574	12.7240
WW	\rightarrow	R1B	\downarrow	0.0914	6.2571
R1W	\rightarrow	R1B	\uparrow	0.0343	12.6970
R1W	\rightarrow	R1B	\downarrow	0.0089	6.2014
WB	\rightarrow	R2B	\uparrow	0.1355	12.6430
WB	\rightarrow	R2B	\downarrow	0.0992	6.2942
WW	\rightarrow	R2B	\uparrow	0.1550	12.6444
WW	\rightarrow	R2B	\downarrow	0.0906	6.2941
R2W	\rightarrow	R2B	\uparrow	0.0325	12.6237
R2W	\rightarrow	R2B	\downarrow	0.0085	6.2349

Timing Constraints at 25°C,1.0V, Typical Process

Pin	Po	auir	eme	nt	Interval (ns)		
	N.e	quii	eme	111	X1		
WB	setup	\uparrow	\rightarrow	WW	0.0547		
	setup	\downarrow	\rightarrow	WW	0.0703		
	hold	\uparrow	\rightarrow	WW	-0.0430		
	hold	\downarrow	\rightarrow	WW	-0.0586		
WW	minpwh				0.8332		

SMC CLN90G					
This pag	ge inten	tionally	left blan	K	

RF2R1W

Process Technology:

Cell Description

The SDFF cell is a positive-edge triggered, static D-type flip-flop with scan input (SI) and active-high scan enable (SE).

Logic Symbol

Function Table

D	SI	SE	CK	Q[n+1]	QN[n+1]
1	Х	0		1	0
0	Х	0		0	1
Х	Х	Х		Q[n]	QN[n]
Х	1	1		1	0
Х	0	1		0	1

Cell Size

Drive Strength	Height (um)	Width (um)
SDFFXLAD	2.52	7.56
SDFFX1AD	2.52	7.56
SDFFX2AD	2.52	7.56
SDFFX4AD	2.52	9.52

Pin	Power (uW/MHz)							
FIII	XL	X1	X2	X4				
SI	0.0069	0.0071	0.0072	0.0084				
SE	0.0083	0.0086	0.0086	0.0098				
D	0.0060	0.0062	0.0063	0.0075				
CK	0.0113	0.0115	0.0117	0.0135				
Q	0.0054	0.0064	0.0085	0.0150				

Pin Capacitance

Pin	Capacitance (pF)							
' '''	XL	X1	X2	X4				
SI	0.0010	0.0010	0.0010	0.0010				
SE	0.0030	0.0031	0.0030	0.0031				
D	D 0.0014 0.0014		0.0014	0.0014				
CK	0.0017	0.0017	0.0016	0.0019				

Description		Intrinsic [Delay (ns)		K _{load} (ns/pF)			
	XL	X1	X2	X4	XL	X1	X2	Х4
$CK \to Q \uparrow$	0.1114	0.1077	0.1022	0.0990	5.8650	3.7328	2.3802	1.2169
$CK \to Q \downarrow$	0.1303	0.1254	0.1030	0.0970	5.5121	3.4921	1.4335	0.7148
$CK \to QN \uparrow$	0.1579	0.1535	0.1461	0.1428	5.7134	3.6694	2.3633	1.2098
$CK \ \to \ QN \ \downarrow$	0.1499	0.1528	0.1534	0.1475	4.6460	3.1619	1.3591	0.6655

Timing Constraints at 25°C,1.0V, Typical Process

Pin	Requirement			Interval (ns)				
FIII	Ket	Nequilement			XL	X1	X2	X4
	setup	\uparrow	\rightarrow	CK	0.0820	0.0859	0.0820	0.0938
SI	setup	\downarrow	\rightarrow	CK	0.1992	0.1992	0.2070	0.2227
Si	hold	\uparrow	\rightarrow	CK	-0.0664	-0.0664	-0.0664	-0.0664
	hold	\downarrow	\rightarrow	CK	-0.1641	-0.1641	-0.1641	-0.1758
	setup	\uparrow	\rightarrow	CK	0.1992	0.1992	0.2070	0.2227
SE	setup	\downarrow	\rightarrow	CK	0.0977	0.0977	0.0938	0.1016
hold	hold	\uparrow	\rightarrow	CK	-0.0625	-0.0625	-0.0625	-0.0664
	hold	\downarrow	\rightarrow	CK	-0.0391	-0.0391	-0.0430	-0.0469
	setup	\uparrow	\rightarrow	CK	0.0703	0.0742	0.0703	0.0781
D	setup	\downarrow	\rightarrow	CK	0.0742	0.0781	0.0820	0.0977
	hold	\uparrow	\rightarrow	CK	-0.0547	-0.0586	-0.0547	-0.0586
	hold	\downarrow	\rightarrow	CK	-0.0391	-0.0391	-0.0391	-0.0469
CK	ı	minp	wh		0.8332	0.8332	0.8332	0.8332
CIC		minp	owl		0.8332	0.8332	0.8332	0.8332

Cell Description

The SDFFH cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and fast clock-to-Q-path.

Logic Symbol

Function Table

D	SI	SE	CK	Q[n+1]	QN[n+1]
1	Х	0		1	0
0	Х	0		0	1
Х	Х	Х		Q[n]	QN[n]
Х	1	1		1	0
Х	0	1		0	1

Cell Size

Drive Strength	Height (um)	Width (um)
SDFFHX1AD	2.52	8.40
SDFFHX2AD	2.52	9.24
SDFFHX4AD	2.52	10.64
SDFFHX8AD	2.52	18.20

AC Power

Pin	Power (uW/MHz)								
F	X1	X2	X4	X8					
SI	0.0077	0.0100	0.0144	0.0273					
SE	0.0107	0.0131	0.0169	0.0340					
D	0.0087	0.0113	0.0161	0.0315					
CK	0.0152	0.0190	0.0255	0.0484					
Q	0.0054	0.0068	0.0095	0.0159					

Pin Capacitance

Pin	Capacitance (pF)						
' '''	X1	X2	X4	X8			
SI	0.0014	0.0014	0.0018	0.0027			
SE	0.0032	0.0035	0.0033	0.0063			
D	0.0013	0.0017	0.0021	0.0051			
CK	0.0023	0.0022	0.0032	0.0054			

Description	Description Intrinsic Delay (ns) K _{load} (ns/pF					ns/pF)		
	X1	X2	X4	X8	X1	X2	X4	X8
$CK \to Q \uparrow$	0.0808	0.0778	0.0682	0.0651	3.6032	2.3747	1.2027	0.6067
$CK \to Q \downarrow$	0.0842	0.0808	0.0754	0.0685	3.2702	1.4088	0.7009	0.3287
$CK \to QN \uparrow$	0.1161	0.1138	0.1112	0.1040	5.5271	5.4454	5.4605	5.4097
$CK \ o \ QN \ \downarrow$	0.1397	0.1360	0.1283	0.1288	4.3796	4.2536	4.2213	4.2096

Pin	Requirement				Interval (ns)			
PIII	Ket	quire	emer	ıı	X1	X2	X4	X8
	setup	\uparrow	\rightarrow	CK	0.0742	0.0703	0.0586	0.0586
SI	setup	\downarrow	\rightarrow	CK	0.1094	0.1094	0.1016	0.0977
SI	hold	\uparrow	\rightarrow	CK	-0.0312	-0.0312	-0.0273	-0.0234
	hold	\downarrow	\rightarrow	CK	-0.0742	-0.0781	-0.0703	-0.0625
	setup	\uparrow	\rightarrow	CK	0.1367	0.1406	0.1289	0.1406
SE	setup	\downarrow	\rightarrow	CK	0.1016	0.0820	0.0781	0.0938
SE	hold	\uparrow	\rightarrow	CK	-0.0312	-0.0312	-0.0273	-0.0273
	hold	\downarrow	\rightarrow	CK	-0.0547	-0.0312	-0.0391	-0.0273
	setup	\uparrow	\rightarrow	CK	0.0781	0.0625	0.0586	0.0508
	setup	\downarrow	\rightarrow	CK	0.0938	0.0703	0.0703	0.0586
D	hold	\uparrow	\rightarrow	CK	-0.0391	-0.0234	-0.0234	-0.0195
	hold	\downarrow	\rightarrow	CK	-0.0625	-0.0391	-0.0430	-0.0273
СК	ı	minp	wh		0.8332	0.8332	0.8332	0.8332
CIC		minp	owl		0.8332	0.8332	0.8332	0.8332

Cell Description

The SDFFHQ cell is a high-speed, positive-edge triggered, static D-type flip-flop with scan input (SI) and active-high scan enable (SE). The cell has a single output (Q) and fast clock-to-out path.

Logic Symbol

Function Table

D	SI	SE	CK	Q[n+1]
1	Х	0		1
0	Х	0		0
Х	Х	Х		Q[n]
Х	1	1		1
Х	0	1		0

Cell Size

Drive Strength	Height (um)	Width (um)
SDFFHQX1AD	2.52	8.12
SDFFHQX2AD	2.52	8.96
SDFFHQX4AD	2.52	10.08
SDFFHQX8AD	2.52	10.92

Pin		Power (uW/MHz)							
F	X1	X2	X4	X8					
SI	0.0074	0.0096	0.0144	0.0148					
SE	0.0103	0.0127	0.0167	0.0166					
D	0.0086	0.0113	0.0160	0.0151					
CK	0.0146	0.0183	0.0252	0.0245					
Q	0.0037	0.0052	0.0084	0.0145					

Pin Capacitance

Pin		nce (pF)			
F	X1	X2	X4	X8	
SI	0.0014	0.0014	0.0018	0.0014	
SE	0.0032	0.0035	0.0033	0.0036	
D	0.0016	0.0022	0.0021	0.0021	
CK	0.0023	0.0022	0.0032	0.0032	

Delays at 25°C,1.0V, Typical Process

Description	Description Intrinsic Delay (ns) K _{load} (ns/pF)							
	X1	X2	Х4	X8	X1	X2	X4	X8
CK → Q ↑	0.0836	0.0785	0.0684	0.0759	3.6211	2.3775	1.2057	0.6171
$CK \ \to \ Q \ \downarrow$	0.0847	0.0816	0.0759	0.0808	3.2521	1.4072	0.7044	0.3431

Pin	Requirement				Interv	al (ns)		
F 1111	ive.	₄ uii (5111 C 1	ıı	X1	X2	X4	X8
	setup	\uparrow	\rightarrow	CK	0.0742	0.0703	0.0586	0.0781
SI	setup	\downarrow	\rightarrow	CK	0.1094	0.1094	0.1016	0.1367
Si	hold	\uparrow	\rightarrow	CK	-0.0312	-0.0312	-0.0273	-0.0352
	hold	\downarrow	\rightarrow	CK	-0.0742	-0.0781	-0.0703	-0.0977
	setup	\uparrow	\rightarrow	CK	0.1406	0.1406	0.1289	0.1562
SE	setup	\downarrow	\rightarrow	CK	0.1055	0.0859	0.0781	0.0859
SE	hold	\uparrow	\rightarrow	CK	-0.0273	-0.0312	-0.0273	-0.0273
	hold	\downarrow	\rightarrow	CK	-0.0469	-0.0234	-0.0391	-0.0312
	setup	\uparrow	\rightarrow	CK	0.0859	0.0664	0.0586	0.0625
D	setup	\downarrow	\rightarrow	CK	0.0820	0.0547	0.0703	0.0703
	hold	\uparrow	\rightarrow	CK	-0.0430	-0.0312	-0.0234	-0.0234
	hold	\downarrow	\rightarrow	CK	-0.0469	-0.0234	-0.0430	-0.0391
СК	r	ninp	wh		0.8332	0.8332	0.8332	0.8332
		min	owl		0.8332	0.8332	0.8332	0.8332

Cell Description

The SDFFNH cell is a negative-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and fast clock-to-Q-path.

Logic Symbol

Function Table

D	SI	SE	CKN	Q[n+1]	QN[n+1]
1	Х	0	_	1	0
0	Х	0	_	0	1
Х	Х	Х		Q[n]	QN[n]
Х	1	1	_	1	0
Х	0	1		0	1

Cell Size

Drive Strength	Height (um)	Width (um)
SDFFNHX1AD	2.52	8.12
SDFFNHX2AD	2.52	8.40
SDFFNHX4AD	2.52	11.20
SDFFNHX8AD	2.52	15.12

AC Power

Pin	Power (uW/MHz)								
F	X1	X2	X4	X8					
SI	0.0072	0.0089	0.0137	0.0210					
SE	0.0098	0.0113	0.0165	0.0253					
D	0.0083	0.0101	0.0157	0.0252					
CKN	0.0119	0.0141	0.0205	0.0322					
Q	0.0062	0.0072	0.0108	0.0187					

Pin Capacitance

Pin	Capacitance (pF)								
' '''	X1	X2	X4	X8					
SI	0.0013	0.0013	0.0017	0.0021					
SE	0.0027	0.0028	0.0031	0.0038					
D	0.0014	0.0017	0.0024	0.0046					
CKN	0.0021	0.0022	0.0027	0.0042					

Description		Intrinsic I	Delay (ns)		K _{load} (ns/pF)			
	X1	X2	X4	X8	X1	X2	X4	X8
$CKN \to Q \uparrow$	0.1562	0.1475	0.1436	0.1317	3.6205	2.3151	1.1832	0.6051
$CKN \ o \ Q \ \downarrow$	0.1345	0.1180	0.1115	0.0989	3.3219	1.3928	0.6736	0.3315
CKN → QN ↑	0.1668	0.1495	0.1475	0.1351	5.5010	5.4296	5.4507	5.4487
$CKN \ o \ QN \ \downarrow$	0.2016	0.1893	0.1979	0.1811	4.2843	4.2956	4.2183	4.2056

D:	D.					Interv	al (ns)	
Pin	Re	quii	eme	nt	X1	X2	X4	X8
	setup	\uparrow	\rightarrow	CKN	0.0000	-0.0039	-0.0078	0.0117
CI	setup	\downarrow	\rightarrow	CKN	0.0625	0.0703	0.0625	0.0625
SI	hold	\uparrow	\rightarrow	CKN	0.0352	0.0312	0.0273	0.0195
	hold	\downarrow	\rightarrow	CKN	-0.0352	-0.0430	-0.0391	-0.0352
	setup	\uparrow	\rightarrow	CKN	0.0859	0.0938	0.0898	0.0938
SE	setup	\downarrow	\rightarrow	CKN	0.0430	0.0391	0.0469	0.0469
SE	hold	\uparrow	\rightarrow	CKN	0.0391	0.0352	0.0312	0.0195
	hold	\downarrow	\rightarrow	CKN	0.0117	0.0117	0.0039	-0.0078
	setup	\uparrow	\rightarrow	CKN	0.0039	-0.0039	-0.0039	0.0117
D	setup	\downarrow	\rightarrow	CKN	0.0469	0.0391	0.0430	0.0469
D	hold	1	\rightarrow	CKN	0.0273	0.0273	0.0273	0.0195
	hold	\downarrow	\rightarrow	CKN	-0.0195	-0.0117	-0.0195	-0.0195
CKN		min	pwl		0.8332	0.8332	0.8332	0.8332
CINI		min	pwh		0.8332	0.8332	0.8332	0.8332

Cell Description

The SDFFNSRH cell is a negative-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous active-low reset (RN) and set (SN). Set (SN) dominates reset (RN). This cell has a fast clock-to-Q path.

Logic Symbol

Function Table

RN	SN	D	SI	SE	CKN	Q[n+1]	QN[n+1]
1	1	1	Х	0	_	1	0
1	1	0	Х	0	_	0	1
1	1	Х	Х	Х		Q[n]	QN[n]
1	1	Х	1	1	_	1	0
1	1	Х	0	1	_	0	1
0	1	Х	Х	Х	Х	0	1
1	0	Х	Х	Х	Х	1	0
0	0	Х	Х	Х	Х	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
SDFFNSRHX1AD	2.52	11.76
SDFFNSRHX2AD	2.52	11.76
SDFFNSRHX4AD	2.52	14.84
SDFFNSRHX8AD	2.52	15.68

Process Technology: SDFFNSRH
TSMC CLN90G

Pin	Power (uW/MHz)								
Pin	X1	X2	X4	X8					
SI	0.0090	0.0107	0.0169	0.0189					
SE	0.0103	0.0119	0.0180	0.0201					
D	0.0099	0.0117	0.0184	0.0202					
CKN	0.0128	0.0150	0.0228	0.0249					
SN	0.0044	0.0047	0.0060	0.0069					
RN	0.0016	0.0019	0.0030	0.0033					
Q	0.0074	0.0091	0.0140	0.0205					

Pin Capacitance

Pin		nce (pF)	F)		
FIII	X1	X2	X4	X8	
SI	0.0013	0.0012	0.0015	0.0019	
SE	0.0026	0.0026	0.0029	0.0033	
D	0.0014	0.0017	0.0025	0.0025	
CKN	0.0021	0.0023	0.0028	0.0041	
SN	0.0022	0.0026	0.0035	0.0040	
RN	0.0021	0.0025	0.0038	0.0039	

De	escri	ption			Intrinsic I	Delay (ns)		K _{load} (ns/pF)			
				X1	X2	Х4	X8	X1	X2	X4	X8
CKN	\rightarrow	Q	\uparrow	0.1742	0.1649	0.1658	0.1565	3.7559	2.4306	1.2056	0.6226
CKN	\rightarrow	Q	\downarrow	0.1441	0.1225	0.1187	0.1190	3.4085	1.4453	0.7008	0.3587
SN	\rightarrow	Q	\uparrow	0.1146	0.1369	0.1673	0.1384	3.6503	2.4257	1.2106	0.6132
SN	\rightarrow	Q	\downarrow	0.2049	0.1865	0.1722	0.1830	3.8914	1.7219	0.8482	0.4306
RN	\rightarrow	Q	\downarrow	0.1782	0.1549	0.1356	0.1550	3.9102	1.7235	0.8491	0.4308
CKN	\rightarrow	QN	\uparrow	0.1781	0.1604	0.1577	0.1634	5.4334	5.4350	5.4419	5.4401
CKN	\rightarrow	QN	\downarrow	0.2281	0.2183	0.2217	0.2177	4.4992	4.4201	4.3308	4.3232
SN	\rightarrow	QN	\uparrow	0.2442	0.2329	0.2196	0.2388	5.4639	5.4452	5.4437	5.4414
SN	\rightarrow	QN	\downarrow	0.1647	0.1896	0.2230	0.1979	4.4785	4.4132	4.3298	4.3224
RN	\rightarrow	QN	↑	0.2179	0.2012	0.1828	0.2137	5.4640	5.4436	5.4433	5.4406

Pin	De		romo	nt		Interv	al (ns)	
PIII	Requirement				X1	X2	X4	X8
	setup	\uparrow	\rightarrow	CKN	0.0156	0.0156	0.0117	0.0039
SI	setup	\downarrow	\rightarrow	CKN	0.0742	0.0820	0.0859	0.1094
SI	hold	1	\rightarrow	CKN	0.0352	0.0273	0.0273	0.0352
	hold	\downarrow	\rightarrow	CKN	-0.0391	-0.0469	-0.0508	-0.0664
	setup	\uparrow	\rightarrow	CKN	0.1016	0.1094	0.1133	0.1406
SE	setup	\downarrow	\rightarrow	CKN	0.0547	0.0547	0.0547	0.0703
SE	hold	\uparrow	\rightarrow	CKN	0.0352	0.0273	0.0312	0.0352
	hold	\downarrow	\rightarrow	CKN	0.0117	0.0078	0.0078	0.0078
	setup	\uparrow	\rightarrow	CKN	0.0234	0.0156	0.0117	0.0117
_	setup	\downarrow	\rightarrow	CKN	0.0586	0.0508	0.0469	0.0586
D	hold	\uparrow	\rightarrow	CKN	0.0273	0.0234	0.0273	0.0312
	hold	\downarrow	\rightarrow	CKN	-0.0234	-0.0156	-0.0117	-0.0195
CKN		min	pwl		0.8332	0.8332	0.8332	0.8332
CKIN		min	pwh		0.8332	0.8332	0.8332	0.8332
	minpwl				0.8332	0.8332	0.8332	0.8332
SN		reco	very		-0.0078	-0.0117	-0.0117	0.0000
	removal				0.0273	0.0273	0.0273	0.0195
		min	pwl		0.8332	0.8332	0.8332	0.8332
RN		reco	very		-0.0977	-0.0898	-0.0938	-0.0781
		rem	oval		0.1328	0.1406	0.1719	0.1445

Cell Description

The SDFFQ cell is a positive-edge triggered, static D-type flip-flop with scan input (SI) and active-high scan enable (SE). The cell has a single output (Q).

Logic Symbol

Function Table

D	SI	SE	CK	Q[n+1]
1	Х	0		1
0	Х	0		0
Х	Х	Х		Q[n]
Х	1	1		1
Х	0	1		0

Cell Size

Drive Strength	Height (um)	Width (um)
SDFFQXLAD	2.52	7.00
SDFFQX1AD	2.52	7.00
SDFFQX2AD	2.52	7.00
SDFFQX4AD	2.52	8.68

AC Power

Pin	Power (uW/MHz)								
F 1111	XL	X1	X2	X4					
SI	0.0069	0.0070	0.0073	0.0081					
SE	0.0083	0.0084	0.0087	0.0094					
D	0.0060	0.0061	0.0064	0.0072					
CK	0.0113	0.0114	0.0117	0.0133					
Q	0.0041	0.0046	0.0060	0.0101					

Pin Capacitance

Pin	Capacitance (pF)							
' '''	XL	XL X1 X		X4				
SI	0.0010	0.0010	0.0011	0.0010				
SE	0.0030	0.0030	0.0030	0.0030				
D	0.0014	0.0014	0.0016	0.0015				
CK	0.0017	0.0017	0.0017	0.0018				

Delays at 25°C,1.0V, Typical Process

Description		Intrinsic I	Delay (ns)		K _{load} (ns/pF)			
	XL	X1	X2	X4	XL	X1	X2	X4
CK → Q ↑	0.1083	0.1057	0.1041	0.1039	5.6900	3.6060	2.3127	1.1867
$CK \to Q \downarrow$	0.1279	0.1235	0.1117	0.1051	5.4381	3.4675	1.5005	0.7227

Pin	Roc	vi iir	emer	\ f		Interv	al (ns)	
	ixec	₄ un (SIIIGI		XL	X1	X2	X4
	setup	\uparrow	\rightarrow	CK	0.0820	0.0820	0.0859	0.0938
SI	setup	\downarrow	\rightarrow	CK	0.1992	0.1992	0.2031	0.2188
Si	hold	\uparrow	\rightarrow	CK	-0.0664	-0.0664	-0.0664	-0.0703
	hold	\downarrow	\rightarrow	CK	-0.1641	-0.1641	-0.1641	-0.1680
	setup	\uparrow	\rightarrow	CK	0.1992	0.2031	0.2070	0.2148
SE	setup	\downarrow	\rightarrow	CK	0.0977	0.0977	0.0977	0.1055
36	hold	\uparrow	\rightarrow	CK	-0.0625	-0.0625	-0.0625	-0.0664
	hold	\downarrow	\rightarrow	CK	-0.0391	-0.0391	-0.0391	-0.0430
	setup	\uparrow	\rightarrow	CK	0.0703	0.0742	0.0742	0.0820
D	setup	\downarrow	\rightarrow	CK	0.0742	0.0781	0.0820	0.0898
	hold	\uparrow	\rightarrow	CK	-0.0586	-0.0586	-0.0586	-0.0586
	hold	\downarrow	\rightarrow	CK	-0.0391	-0.0391	-0.0391	-0.0430
СК	r	ninp	wh		0.8332	0.8332	0.8332	0.8332
		min	owl		0.8332	0.8332	0.8332	0.8332

Cell Description

The SDFFR cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous active-low reset (RN).

Logic Symbol

Function Table

RN	D	SI	SE	CK	Q[n+1]	QN[n+1]
1	1	Х	0		1	0
1	0	Х	0		0	1
1	Х	Х	х	_	Q[n]	QN[n]
1	Х	1	1		1	0
1	Х	0	1		0	1
0	Х	Х	Х	Х	0	1

Cell Size

Drive Strength	Height (um)	Width (um)
SDFFRXLAD	2.52	8.40
SDFFRX1AD	2.52	8.40
SDFFRX2AD	2.52	8.40
SDFFRX4AD	2.52	8.96

Pin	Power (uW/MHz)								
' '''	XL	X1	X2	X4					
SI	0.0065	0.0067	0.0083	0.0094					
SE	0.0074	0.0076	0.0090	0.0100					
D	0.0063	0.0065	0.0080	0.0092					
CK	0.0097	0.0099	0.0116	0.0130					
RN	0.0013	0.0014	0.0016	0.0022					
Q	0.0050	0.0061	0.0089	0.0155					

Pin Capacitance

Pin	Capacitance (pF)								
F	XL X1		X2	X4					
SI	0.0009	0.0009	0.0008	0.0009					
SE	0.0022	0.0022	0.0022	0.0026					
D	0.0010	0.0010	0.0010	0.0014					
CK	0.0017	0.0017	0.0018	0.0022					
RN	0.0037	0.0037	0.0038	0.0046					

Descri	iption			Intrinsic Delay (ns) K _{load} (ns/pF)						
			XL	X1	X2	X4	XL	X1	X2	X4
CK →	Q	\uparrow	0.1360	0.1460	0.1324	0.1479	5.7951	3.7251	2.3869	1.2285
CK →	Q	\downarrow	0.1509	0.1555	0.1653	0.1677	4.7198	3.2088	1.4499	0.7159
RN →	Q	\downarrow	0.0709	0.0792	0.0907	0.0832	4.7896	3.2251	1.4656	0.7230
CK →	QN	1	0.0936	0.0904	0.0898	0.0902	5.8728	3.7207	2.3856	1.2620
CK →	QN	\downarrow	0.0892	0.0957	0.0806	0.0884	5.0279	3.3903	1.3960	0.7398
RN →	QN	1	0.1348	0.1315	0.1686	0.1900	5.7950	3.7189	2.4187	1.2954

Pin	Por	ir	omor	.4		Interv	al (ns)	
PIII	Requirement		XL	X1	X2	X4		
	setup	\uparrow	\rightarrow	CK	0.0859	0.0859	0.0938	0.0859
SI	setup	\downarrow	\rightarrow	CK	0.1328	0.1289	0.1445	0.1445
Si	hold	\uparrow	\rightarrow	CK	-0.0469	-0.0508	-0.0547	-0.0391
	hold	\downarrow	\rightarrow	CK	-0.0703	-0.0703	-0.0742	-0.0703
	setup	\uparrow	\rightarrow	CK	0.1406	0.1328	0.1484	0.1523
SE.	setup	\downarrow	\rightarrow	CK	0.0977	0.0977	0.1016	0.0938
SE	hold	\uparrow	\rightarrow	CK	-0.0391	-0.0430	-0.0430	-0.0312
	hold	\downarrow	\rightarrow	CK	-0.0312	-0.0312	-0.0352	-0.0156
	setup	\uparrow	\rightarrow	CK	0.0742	0.0742	0.0820	0.0703
D	setup	\downarrow	\rightarrow	CK	0.0977	0.0938	0.1094	0.0742
D	hold	1	\rightarrow	CK	-0.0430	-0.0430	-0.0469	-0.0312
	hold	\downarrow	\rightarrow	CK	-0.0469	-0.0469	-0.0508	-0.0273
СК	ı	minp	wh		0.8332	0.8332	0.8332	0.8332
CIX		minp	owl		0.8332	0.8332	0.8332	0.8332
		minp	owl	_	0.8332	0.8332	0.8332	0.8332
RN	r	ecov	ery/		0.0820	0.0820	0.0898	0.0742
	1	emo	oval		-0.0625	-0.0664	-0.0664	-0.0586

Cell Description

The SDFFRHQ cell is a high-speed, positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous active-low reset (RN). The cell has a single output (Q) and fast clock-to-out path.

Logic Symbol

Function Table

RN	D	SI	SE	CK	Q[n+1]
1	1	Х	0		1
1	0	Х	0		0
1	Х	Х	Х	_	Q[n]
1	Х	1	1		1
1	Х	0	1		0
0	Х	Х	Х	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
SDFFRHQX1AD	2.52	9.52
SDFFRHQX2AD	2.52	9.52
SDFFRHQX4AD	2.52	11.20
SDFFRHQX8AD	2.52	12.32

Pin	Power (uW/MHz)									
F III	X1	X2	X4	X8						
SI	0.0088	0.0107	0.0167	0.0184						
SE	0.0100	0.0118	0.0181	0.0195						
D	0.0093	0.0116	0.0172	0.0185						
CK	0.0145	0.0175	0.0270	0.0315						
RN	0.0016	0.0019	0.0030	0.0037						
Q	0.0043	0.0055	0.0090	0.0160						

Pin Capacitance

Pin		nce (pF)		
F	X1	X2	X4	X8
SI	0.0012	0.0012	0.0017	0.0021
SE	0.0030	0.0032	0.0041	0.0044
D	0.0017	0.0023	0.0027	0.0027
CK	0.0021	0.0023	0.0031	0.0054
RN	0.0024	0.0029	0.0045	0.0051

Description		Intrinsic I	Delay (ns)		K _{load} (ns/pF)			
	X1	X2	X4	X8	X1	X2	X4	X8
CK → Q ↑	0.0874	0.0815	0.0772	0.0813	3.7027	2.3542	1.1954	0.6182
$CK \ \to \ Q \ \downarrow$	0.0863	0.0782	0.0774	0.0811	3.2703	1.3907	0.6853	0.3552
$RN \ o \ Q \ \downarrow$	0.0926	0.0828	0.0699	0.0650	3.3291	1.4864	0.7176	0.3476

Pin	Por	anir.	emer			Interv	al (ns)	
PIII	Ket	quire	emei	ıı	X1	X2	X4	X8
	setup	\uparrow	\rightarrow	CK	0.0820	0.0742	0.0781	0.0625
SI	setup	\downarrow	\rightarrow	CK	0.1172	0.1211	0.1172	0.1016
Si	hold	\uparrow	\rightarrow	CK	-0.0312	-0.0352	-0.0352	-0.0156
	hold	\downarrow	\rightarrow	CK	-0.0781	-0.0820	-0.0820	-0.0664
	setup	\uparrow	\rightarrow	CK	0.1289	0.1328	0.1406	0.1250
SE	setup	\downarrow	\rightarrow	CK	0.1016	0.0820	0.0859	0.0938
36	hold	\uparrow	\rightarrow	CK	-0.0234	-0.0273	-0.0273	-0.0117
	hold	\downarrow	\rightarrow	CK	-0.0352	-0.0195	-0.0195	-0.0273
	setup	\uparrow	\rightarrow	CK	0.0859	0.0625	0.0586	0.0625
D	setup	\downarrow	\rightarrow	CK	0.0742	0.0508	0.0508	0.0586
	hold	\uparrow	\rightarrow	CK	-0.0391	-0.0234	-0.0195	-0.0195
	hold	\downarrow	\rightarrow	CK	-0.0352	-0.0195	-0.0234	-0.0273
СК	ı	minp	wh		0.8332	0.8332	0.8332	0.8332
CIX		min	owl		0.8332	0.8332	0.8332	0.8332
		min	lwc		0.8332	0.8332	0.8332	0.8332
RN	r	ecov	/ery		-0.0156	-0.0195	-0.0234	-0.0156
	r	emo	oval		0.0391	0.0469	0.0664	0.0586

Cell Description

The SDFFRQ cell is a high-speed, positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous active-low reset (RN). The cell has a single output (Q).

Logic Symbol

Function Table

RN	D	SI	SE	CK	Q[n+1]
1	1	Х	0		1
1	0	Х	0		0
1	Х	Х	Х	_	Q[n]
1	Х	1	1		1
1	Х	0	1		0
0	Х	Х	Х	Х	0

Cell Size

Drive Strength	Height (um)	Width (um)
SDFFRQXLAD	2.52	7.84
SDFFRQX1AD	2.52	7.84
SDFFRQX2AD	2.52	7.84
SDFFRQX4AD	2.52	8.40

Pin	Power (uW/MHz)									
F	XL	X1	X2	X4						
SI	0.0065	0.0065	0.0065	0.0067						
SE	0.0074	0.0074	0.0074	0.0076						
D	0.0063	0.0063	0.0063	0.0065						
CK	0.0096	0.0096	0.0097	0.0097						
RN	0.0014	0.0014	0.0013	0.0017						
Q	0.0038	0.0042	0.0057	0.0094						

Pin Capacitance

Pin		Capacita	nce (pF)	
	XL	X1	X2	X4
SI	0.0009	0.0009	0.0008	0.0008
SE	0.0022	0.0022	0.0022	0.0022
D	0.0010	0.0010	0.0010	0.0010
CK	0.0017	0.0017	0.0018	0.0017
RN	0.0038	0.0038	0.0037	0.0044

Description		Intrinsic I	Delay (ns)		K _{load} (ns/pF)			
	XL	X1	X2	X4	XL	X1	X2	Х4
CK → Q ↑	0.1191	0.1220	0.1172	0.1202	5.7405	3.6613	2.3361	1.1993
$CK \ \to \ Q \ \downarrow$	0.1426	0.1505	0.1575	0.1561	4.4545	3.2727	1.4780	0.7230
$RN \ o \ Q \ \downarrow$	0.0700	0.0785	0.0870	0.0810	4.5277	3.2722	1.4584	0.7120

Pin	Por	anir.	emer	.		Interv	al (ns)	
FIII	Vec	quiit	emei	11.	XL	X1	X2	Х4
	setup	\uparrow	\rightarrow	CK	0.0898	0.0898	0.0898	0.0859
SI	setup	\downarrow	\rightarrow	CK	0.1328	0.1328	0.1289	0.1328
Si	hold	\uparrow	\rightarrow	CK	-0.0508	-0.0508	-0.0508	-0.0508
	hold	\downarrow	\rightarrow	CK	-0.0703	-0.0703	-0.0703	-0.0703
	setup	\uparrow	\rightarrow	CK	0.1406	0.1406	0.1367	0.1367
SE	setup	\downarrow	\rightarrow	CK	0.0977	0.0977	0.0977	0.0977
SE	hold	\uparrow	\rightarrow	CK	-0.0391	-0.0430	-0.0430	-0.0391
	hold	\downarrow	\rightarrow	CK	-0.0312	-0.0312	-0.0352	-0.0312
	setup	\uparrow	\rightarrow	CK	0.0781	0.0781	0.0781	0.0742
D	setup	\downarrow	\rightarrow	CK	0.0977	0.0977	0.0977	0.1016
	hold	\uparrow	\rightarrow	CK	-0.0430	-0.0430	-0.0430	-0.0430
	hold	\downarrow	\rightarrow	CK	-0.0469	-0.0469	-0.0508	-0.0469
СК	i	minp	wh		0.8332	0.8332	0.8332	0.8332
CIX		minp	owl		0.8332	0.8332	0.8332	0.8332
		minp	owl		0.8332	0.8332	0.8332	0.8332
RN	r	ecov	/ery		0.0820	0.0820	0.0820	0.0820
	r	emo	oval		-0.0625	-0.0625	-0.0625	-0.0625

Cell Description

The SDFFS cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous active-low set (SN).

Logic Symbol

Function Table

SN	D	SI	SE	CK	Q[n+1]	QN[n+1]
1	1	Х	0		1	0
1	0	Х	0		0	1
1	Х	Х	Х	_	Q[n]	QN[n]
1	Х	1	1		1	0
1	Х	0	1		0	1
0	Х	Х	Х	Х	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
SDFFSXLAD	2.52	7.56
SDFFSX1AD	2.52	7.56
SDFFSX2AD	2.52	7.56
SDFFSX4AD	2.52	8.68

Pin	Power (uW/MHz)							
• •••	XL	X1	X2	X4				
SI	0.0068	0.0068	0.0076	0.0108				
SE	0.0077	0.0077	0.0082	0.0110				
D	0.0063	0.0063	0.0070	0.0099				
CK	0.0110	0.0110	0.0118	0.0149				
SN	0.0013	0.0014	0.0015	0.0019				
Q	0.0056	0.0065	0.0090	0.0153				

Pin Capacitance

Pin	Capacitance (pF)							
	XL	X1	X2	X4				
SI	0.0015	0.0015	0.0015	0.0015				
SE	0.0024	0.0024	0.0023	0.0023				
D	0.0013	0.0013	0.0013	0.0013				
CK	0.0019	0.0019	0.0020	0.0021				
SN	0.0019	0.0019	0.0022	0.0029				

Descr	iption			Intrinsic I	Delay (ns)	y (ns) K _{load} (ns/pF)				
			XL	X1	X2	Х4	XL	X1	X2	Х4
CK →	Q	\uparrow	0.1433	0.1517	0.1548	0.1529	5.6726	3.7750	2.3658	1.2196
CK →	Q	\downarrow	0.1460	0.1553	0.1549	0.1585	4.2245	3.1250	1.3842	0.7025
SN →	Q	\uparrow	0.1283	0.1359	0.1648	0.2338	5.6378	3.7566	2.3622	1.2196
CK →	QN	\uparrow	0.1045	0.1058	0.0983	0.0889	5.9530	3.9208	2.4012	1.2491
CK →	QN	\downarrow	0.1065	0.1151	0.1027	0.0905	5.3564	3.7679	1.6149	0.7536
SN →	QN	\downarrow	0.0944	0.1019	0.1116	0.1537	4.6405	3.3314	1.5420	0.8343

Pin	Por	anir.	emer	.		Interv	al (ns)	
FIII	Vec	quiit	emei	11.	XL	X1	X2	X4
	setup	\uparrow	\rightarrow	CK	0.0977	0.0938	0.0898	0.1016
SI	setup	\downarrow	\rightarrow	CK	0.1289	0.1289	0.1289	0.1562
Si	hold	\uparrow	\rightarrow	CK	-0.0508	-0.0508	-0.0547	-0.0625
	hold	\downarrow	\rightarrow	CK	-0.0703	-0.0703	-0.0742	-0.0898
	setup	\uparrow	\rightarrow	CK	0.1445	0.1406	0.1445	0.1680
SE	setup	\downarrow	\rightarrow	CK	0.1250	0.1211	0.1172	0.1250
SE	hold	\uparrow	\rightarrow	CK	-0.0391	-0.0391	-0.0430	-0.0508
	hold	\downarrow	\rightarrow	CK	-0.0312	-0.0312	-0.0312	-0.0469
	setup	\uparrow	\rightarrow	CK	0.0977	0.0938	0.0898	0.0977
D	setup	\downarrow	\rightarrow	CK	0.0977	0.0977	0.1016	0.1211
D	hold	\uparrow	\rightarrow	CK	-0.0508	-0.0508	-0.0547	-0.0586
	hold	\downarrow	\rightarrow	CK	-0.0469	-0.0508	-0.0508	-0.0664
СК	ı	minp	wh		0.8332	0.8332	0.8332	0.8332
CIX		minp	owl		0.8332	0.8332	0.8332	0.8332
		minp	lwc		0.8332	0.8332	0.8332	0.8332
SN	r	ecov	/ery		-0.0273	-0.0273	-0.0312	-0.0312
	-	emo	oval		0.0469	0.0469	0.0508	0.0508

Cell Description

The SDFFSHQ cell is a high-speed, positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous active-low set (SN). The cell has a single output (Q) and fast clock-to-out path.

Logic Symbol

Function Table

SN	D	SI	SE	CK	Q[n+1]
1	1	Х	0		1
1	0	Х	0		0
1	Х	Х	Х	_	Q[n]
1	Х	1	1		1
1	Х	0	1		0
0	Х	Х	Х	Х	1

Cell Size

Drive Strength	Height (um)	Width (um)
SDFFSHQX1AD	2.52	9.52
SDFFSHQX2AD	2.52	9.52
SDFFSHQX4AD	2.52	11.48
SDFFSHQX8AD	2.52	12.32

Pin		Power (u	ıW/MHz)	
F	X1	X2	X4	X8
SI	0.0083	0.0098	0.0132	0.0146
SE	0.0097	0.0113	0.0150	0.0164
D	0.0083	0.0101	0.0141	0.0148
CK	0.0139	0.0163	0.0223	0.0239
SN	0.0037	0.0039	0.0048	0.0054
Q	0.0044	0.0058	0.0093	0.0160

Pin Capacitance

Pin	Capacitance (pF)							
F 1111	X1	X2	X4	X8				
SI	0.0012	0.0012	0.0014	0.0020				
SE	0.0028	0.0031	0.0036	0.0040				
D	0.0013	0.0017	0.0023	0.0023				
CK	0.0021	0.0022	0.0031	0.0040				
SN	0.0024	0.0027	0.0030	0.0031				

Description	escription Intrinsic Delay (r			Intrinsic Delay (ns) K _{load} (ns/pF)					
	X1	X2	X4	X8	X1	X2	X4	X8	
$CK \to Q \uparrow$	0.0805	0.0761	0.0703	0.0746	3.6529	2.3497	1.2020	0.6187	
$CK \ \to \ Q \ \downarrow$	0.0873	0.0840	0.0745	0.0808	3.2289	1.4193	0.6879	0.3551	
$SN \ o \ Q \ \uparrow$	0.1317	0.1497	0.1154	0.1204	3.9621	2.3958	1.1956	0.6117	

Pin	Por	ir	emer	.4		Interv	al (ns)	
PIII	Ked	quire	emer	ıı	X1	X2	X4	X8
	setup	\uparrow	\rightarrow	CK	0.0859	0.0742	0.0859	0.0703
SI	setup	\downarrow	\rightarrow	CK	0.1133	0.1211	0.1367	0.1016
Si	hold	\uparrow	\rightarrow	CK	-0.0430	-0.0391	-0.0430	-0.0273
	hold	\downarrow	\rightarrow	CK	-0.0781	-0.0820	-0.0898	-0.0586
	setup	\uparrow	\rightarrow	CK	0.1289	0.1406	0.1602	0.1211
SE	setup	\downarrow	\rightarrow	CK	0.1016	0.0781	0.0820	0.0938
SE	hold	\uparrow	\rightarrow	CK	-0.0352	-0.0312	-0.0352	-0.0195
	hold	\downarrow	\rightarrow	CK	-0.0352	-0.0195	-0.0234	-0.0273
	setup	\uparrow	\rightarrow	CK	0.0820	0.0586	0.0625	0.0664
D	setup	\downarrow	\rightarrow	CK	0.0859	0.0664	0.0703	0.0742
D	hold	\uparrow	\rightarrow	CK	-0.0430	-0.0273	-0.0195	-0.0234
	hold	\downarrow	\rightarrow	CK	-0.0508	-0.0312	-0.0312	-0.0352
СК	ı	minp	wh		0.8332	0.8332	0.8332	0.8332
CIX		minp	owl		0.8332	0.8332	0.8332	0.8332
		minp	owl		0.8332	0.8332	0.8332	0.8332
SN	r	ecov	ery		0.0234	0.0195	0.0312	0.0352
	1	emo	oval		-0.0117	-0.0078	-0.0156	-0.0195

Cell Description

The SDFFSQ cell is a high-speed, positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous active-low set (SN). The cell has a single output (Q).

Logic Symbol

Function Table

SN	D	SI	SE	CK	Q[n+1]
1	1	Х	0		1
1	0	Х	0		0
1	Х	Х	Х	_	Q[n]
1	Х	1	1		1
1	Х	0	1		0
0	Х	Х	Х	Х	1

Cell Size

Drive Strength	Height (um)	Width (um)
SDFFSQXLAD	2.52	7.00
SDFFSQX1AD	2.52	7.28
SDFFSQX2AD	2.52	7.28
SDFFSQX4AD	2.52	7.56

Pin	Power (uW/MHz)							
F	XL	X1	X2	X4				
SI	0.0070	0.0070	0.0070	0.0072				
SE	0.0076	0.0076	0.0077	0.0078				
D	0.0064	0.0064	0.0065	0.0066				
CK	0.0108	0.0108	0.0108	0.0110				
SN	0.0012	0.0013	0.0014	0.0015				
Q	0.0040	0.0046	0.0059	0.0097				

Pin Capacitance

Pin		Capacitance (pF)						
F 111	XL	X1	X2	X4				
SI	0.0015	0.0015	0.0015	0.0015				
SE	0.0023	0.0023	0.0023	0.0023				
D	0.0013	0.0013	0.0013	0.0013				
CK	0.0020	0.0020	0.0020	0.0020				
SN	0.0019	0.0020	0.0019	0.0020				

Description		Intrinsic I	Delay (ns)	K _{load} (ns/pF)				
	XL	X1	X2	X4	XL	X1	X2	X4
CK → Q ↑	0.1185	0.1221	0.1305	0.1441	5.4738	3.6354	2.3520	1.2002
$CK \ \to \ Q \ \downarrow$	0.1310	0.1392	0.1454	0.1588	4.5829	3.1774	1.4017	0.7120
$SN \ o \ Q \ \uparrow$	0.1084	0.1150	0.1214	0.1332	5.4546	3.6256	2.3479	1.1979

Pin	Por	anir.	omor			Interv	al (ns)	
PIII	Requirement		XL	X1	X2	X4		
	setup	\uparrow	\rightarrow	CK	0.1094	0.1094	0.1016	0.1016
SI	setup	\downarrow	\rightarrow	CK	0.1328	0.1367	0.1328	0.1328
Si	hold	\uparrow	\rightarrow	CK	-0.0547	-0.0547	-0.0547	-0.0547
	hold	\downarrow	\rightarrow	CK	-0.0703	-0.0742	-0.0703	-0.0742
	setup	\uparrow	\rightarrow	CK	0.1445	0.1484	0.1445	0.1445
SE	setup	\downarrow	\rightarrow	CK	0.1367	0.1367	0.1328	0.1289
36	hold	\uparrow	\rightarrow	CK	-0.0430	-0.0430	-0.0430	-0.0430
	hold	\downarrow	\rightarrow	CK	-0.0312	-0.0312	-0.0312	-0.0352
	setup	\uparrow	\rightarrow	CK	0.1094	0.1094	0.1055	0.1016
D	setup	\downarrow	\rightarrow	CK	0.1016	0.1055	0.1016	0.1016
	hold	\uparrow	\rightarrow	CK	-0.0547	-0.0547	-0.0547	-0.0547
	hold	\downarrow	\rightarrow	CK	-0.0508	-0.0508	-0.0508	-0.0508
СК	ı	minp	wh		0.8332	0.8332	0.8332	0.8332
CIX		min	owl		0.8332	0.8332	0.8332	0.8332
		min	owl		0.8332	0.8332	0.8332	0.8332
SN	r	ecov	ery/		-0.0234	-0.0234	-0.0273	-0.0273
	r	emo	oval		0.0430	0.0430	0.0430	0.0430

Cell Description

The SDFFSR cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous active-low reset (RN) and set (SN). Set (SN) dominates reset (RN).

Logic Symbol

Function Table

RN	SN	D	SI	SE	CK	Q[n+1]	QN[n+1]
1	1	1	Х	0		1	0
1	1	0	Х	0		0	1
1	1	Х	Х	Х		Q[n]	QN[n]
1	1	Х	1	1		1	0
1	1	Х	0	1		0	1
0	1	Х	Х	Х	Х	0	1
1	0	Х	Х	Х	Х	1	0
0	0	Х	Х	Х	Х	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
SDFFSRXLAD	2.52	9.24
SDFFSRX1AD	2.52	9.52
SDFFSRX2AD	2.52	9.80
SDFFSRX4AD	2.52	11.76

Pin	Power (uW/MHz)							
	XL	X1	X2	X4				
SI	0.0075	0.0075	0.0086	0.0132				
SE	0.0086	0.0086	0.0095	0.0133				
D	0.0070	0.0071	0.0081	0.0121				
CK	0.0116	0.0117	0.0132	0.0188				
SN	0.0014	0.0014	0.0016	0.0020				
RN	0.0027	0.0027	0.0029	0.0035				
Q	0.0061	0.0073	0.0102	0.0154				

Pin Capacitance

Pin	Capacitance (pF)							
FIII	XL	X1	X2	X4				
SI	0.0013	0.0013	0.0013	0.0013				
SE	0.0024	0.0024	0.0024	0.0024				
D	0.0013	0.0013	0.0013	0.0014				
CK	0.0017	0.0017	0.0019	0.0022				
SN	0.0021	0.0020	0.0023	0.0031				
RN	0.0012	0.0012	0.0012	0.0012				

Descr	iption			Intrinsic [Delay (ns)		K _{load} (ns/pF)			
		•	XL	X1	X2	X4	XL	X1	X2	X4
CK →	Q	\uparrow	0.1525	0.1611	0.1662	0.1568	5.7263	3.6909	2.3772	1.2206
CK →	Q	\downarrow	0.1563	0.1660	0.1637	0.1681	4.2554	3.1336	1.3767	0.7023
SN →	Q	\uparrow	0.1432	0.1510	0.1833	0.2489	5.6721	3.6597	2.3708	1.2196
SN →	Q	\downarrow	0.1246	0.1333	0.1455	0.1672	4.2160	3.1168	1.3730	0.7024
$RN \to$	Q	\downarrow	0.1470	0.1556	0.1743	0.2122	4.2284	3.1212	1.3739	0.7027
CK →	QN	\uparrow	0.1123	0.1126	0.1076	0.0988	6.1459	3.9296	2.4483	1.2506
CK →	QN	\downarrow	0.1153	0.1241	0.1131	0.0936	5.7254	4.0087	1.6808	0.7655
SN →	QN	\uparrow	0.0818	0.0817	0.0874	0.0901	5.9211	3.7985	2.4390	1.2712
SN →	QN	\downarrow	0.1095	0.1171	0.1297	0.1674	4.7769	3.4068	1.5702	0.8446
$RN \to$	QN	1	0.1031	0.1031	0.1158	0.1377	6.0026	3.8351	2.4479	1.2781

Pin	Por	ir	amar	.4		Interv	al (ns)	
PIII	Requirement		XL	X1	X2	X4		
	setup	\uparrow	\rightarrow	CK	0.1250	0.1211	0.1055	0.1250
SI	setup	\downarrow	\rightarrow	CK	0.1445	0.1406	0.1445	0.1758
Si	hold	\uparrow	\rightarrow	CK	-0.0547	-0.0547	-0.0586	-0.0703
	hold	\downarrow	\rightarrow	CK	-0.0781	-0.0781	-0.0820	-0.0977
	setup	\uparrow	\rightarrow	CK	0.1562	0.1562	0.1602	0.1953
SE	setup	\downarrow	\rightarrow	CK	0.1562	0.1523	0.1367	0.1328
SE	hold	\uparrow	\rightarrow	CK	-0.0430	-0.0430	-0.0469	-0.0586
	hold	\downarrow	\rightarrow	CK	-0.0352	-0.0391	-0.0391	-0.0469
	setup	\uparrow	\rightarrow	CK	0.1250	0.1250	0.1094	0.1055
D	setup	\downarrow	\rightarrow	CK	0.1133	0.1133	0.1133	0.1289
D	hold	\uparrow	\rightarrow	CK	-0.0547	-0.0547	-0.0586	-0.0547
	hold	\downarrow	\rightarrow	CK	-0.0547	-0.0586	-0.0586	-0.0664
СК	ı	minp	wh		0.8332	0.8332	0.8332	0.8332
CIX		minp	owl		0.8332	0.8332	0.8332	0.8332
		minp	owl		0.8332	0.8332	0.8332	0.8332
SN	r	ecov	ery		-0.0234	-0.0234	-0.0312	-0.0352
	r	emo	oval		0.0430	0.0430	0.0508	0.0625
		minp	owl		0.8332	0.8332	0.8332	0.8332
RN	r	ecov	ery		0.0781	0.0742	0.0508	0.0547
	r	emo	oval		-0.0234	-0.0234	-0.0156	-0.0117

Cell Description

The SDFFSRHQ cell is a high-speed, positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and asynchronous active-low reset (RN) and set (SN), and set dominating reset. The cell has a single output (Q) and fast clock-to-out path.

Logic Symbol

Function Table

RN	SN	D	SI	SE	CK	Q[n+1]
1	1	1	Х	0		1
1	1	0	Х	0		0
1	1	Х	Х	Х		Q[n]
1	1	Х	1	1		1
1	1	Х	0	1		0
0	1	Х	Х	Х	Х	0
1	0	Х	Х	х	Х	1
0	0	Х	Х	Х	Х	1

Cell Size

Drive Strength	Height (um)	Width (um)
SDFFSRHQX1AD	2.52	11.48
SDFFSRHQX2AD	2.52	11.48
SDFFSRHQX4AD	2.52	13.72
SDFFSRHQX8AD	2.52	14.56

Pin		Power (uW/MHz)									
' "''	X1	X2	X4	X8							
SI	0.0089	0.0104	0.0156	0.0178							
SE	0.0101	0.0116	0.0165	0.0188							
D	0.0089	0.0107	0.0162	0.0181							
CK	0.0149	0.0172	0.0248	0.0288							
SN	0.0045	0.0047	0.0061	0.0073							
RN	0.0015	0.0018	0.0028	0.0036							
Q	0.0052	0.0067	0.0101	0.0176							

Pin Capacitance

Pin	Capacitance (pF)									
F III	X1	X2	X4	X8						
SI	0.0013	0.0013	0.0016	0.0021						
SE	0.0030	0.0030	0.0034	0.0041						
D	0.0012	0.0016	0.0024	0.0027						
CK	0.0022	0.0021	0.0028	0.0041						
SN	0.0023	0.0026	0.0033	0.0037						
RN	0.0019	0.0023	0.0035	0.0040						

Description		Intrinsic I	Delay (ns)		K _{load} (ns/pF)			
	X1	X2	Х4	X8	X1	X2	Х4	X8
CK → Q ↑	0.0983	0.0923	0.0855	0.0839	3.7899	2.3849	1.2074	0.6276
$CK \ \to \ Q \ \downarrow$	0.1022	0.0918	0.0863	0.0806	3.4691	1.4659	0.7114	0.3658
$SN \ o \ Q \ \uparrow$	0.1090	0.1286	0.1682	0.1487	3.6654	2.3658	1.2009	0.6149
$SN \ o \ Q \ \downarrow$	0.2105	0.1883	0.1743	0.1926	3.7265	1.7091	0.8403	0.4311
$RN \ o \ Q \ \downarrow$	0.1837	0.1566	0.1353	0.1620	3.7366	1.7099	0.8418	0.4318

Pin	Por	anir.	amar	.		Interv	al (ns)	
FIII	Requirement		X1	X2	X4	X8		
	setup	\uparrow	\rightarrow	CK	0.0938	0.0859	0.0938	0.0938
SI	setup	\downarrow	\rightarrow	CK	0.1211	0.1133	0.1055	0.1250
Si	hold	\uparrow	\rightarrow	CK	-0.0430	-0.0391	-0.0430	-0.0312
	hold	\downarrow	\rightarrow	CK	-0.0781	-0.0742	-0.0625	-0.0703
	setup	\uparrow	\rightarrow	CK	0.1406	0.1328	0.1250	0.1484
SE	setup	\downarrow	\rightarrow	CK	0.1211	0.1016	0.1172	0.1289
SE	hold	\uparrow	\rightarrow	CK	-0.0352	-0.0312	-0.0352	-0.0273
	hold	\downarrow	\rightarrow	CK	-0.0430	-0.0312	-0.0273	-0.0273
	setup	\uparrow	\rightarrow	CK	0.0977	0.0781	0.0859	0.0977
D	setup	\downarrow	\rightarrow	CK	0.0938	0.0703	0.0625	0.0742
	hold	\uparrow	\rightarrow	CK	-0.0430	-0.0312	-0.0352	-0.0312
	hold	\downarrow	\rightarrow	CK	-0.0547	-0.0352	-0.0234	-0.0273
СК	ı	minp	wh		0.8332	0.8332	0.8332	0.8332
CIX		minp	owl		0.8332	0.8332	0.8332	0.8332
		minp	owl		0.8332	0.8332	0.8332	0.8332
SN	r	ecov	ery/		0.0312	0.0195	0.0195	0.0391
	r	emo	oval		-0.0156	-0.0078	-0.0078	-0.0156
		minp	owl		0.8332	0.8332	0.8332	0.8332
RN	r	ecov	ery		-0.0156	-0.0234	-0.0195	-0.0039
	r	emo	oval		0.0391	0.0469	0.0586	0.0391

Cell Description

The SDFFTR cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and synchronous active-low reset (RN). Scan enable (SE) dominates reset (RN).

Logic Symbol

Function Table

RN	D	SI	SE	CK	Q[n+1]	QN[n+1]
Х	Х	0	1		0	1
Х	Х	1	1		1	0
0	Х	Х	0		0	1
1	0	Х	0		0	1
1	1	Х	0		1	0
Х	Х	Х	Х	_	Q[n]	QN[n]

Cell Size

Drive Strength	Height (um)	Width (um)
SDFFTRXLAD	2.52	7.84
SDFFTRX1AD	2.52	8.12
SDFFTRX2AD	2.52	8.12
SDFFTRX4AD	2.52	10.08

Pin	Power (uW/MHz)									
F	XL	X1	X2	X4						
SI	0.0072	0.0080	0.0095	0.0163						
SE	0.0087	0.0093	0.0107	0.0155						
D	0.0069	0.0075	0.0088	0.0139						
CK	0.0100	0.0106	0.0122	0.0192						
RN	0.0077	0.0084	0.0101	0.0182						
Q	0.0053	0.0061	0.0086	0.0142						

Pin Capacitance

Pin	Capacitance (pF)								
F	XL	X1	X2	X4					
SI	0.0012	0.0012	0.0012	0.0013					
SE	0.0037	0.0037	0.0037	0.0041					
D	0.0010	0.0010	0.0010	0.0013					
CK	0.0018	0.0018	0.0018	0.0023					
RN	0.0018	0.0018	0.0018	0.0022					

Description		Intrinsic [Delay (ns)			K _{load} (ns/pF)	
	XL	X1	X2	X4	XL	X1	X2	X4
$CK \to Q \uparrow$	0.1196	0.1168	0.1209	0.1115	5.6609	3.6440	2.3621	1.2097
$CK \to Q \downarrow$	0.1349	0.1380	0.1426	0.1326	4.2140	3.1077	1.3670	0.6634
$CK \to QN \uparrow$	0.0935	0.0889	0.0903	0.0850	5.8476	3.6893	2.3583	1.2146
$CK \ \to \ QN \ \downarrow$	0.0882	0.0858	0.0803	0.0722	5.0499	3.2728	1.3836	0.6715

Pin	Requirement				Interv	al (ns)		
FIII	Ket	₄ uir	eme	11.	XL	X1	X2	X4
	setup	\uparrow	\rightarrow	CK	0.0859	0.0859	0.0859	0.1055
SI	setup	\downarrow	\rightarrow	CK	0.1484	0.1523	0.1641	0.1992
Si	hold	\uparrow	\rightarrow	CK	-0.0469	-0.0508	-0.0508	-0.0586
	hold	\downarrow	\rightarrow	CK	-0.0820	-0.0859	-0.0938	-0.1094
	setup	\uparrow	\rightarrow	CK	0.1562	0.1602	0.1719	0.2109
SE	setup	\downarrow	\rightarrow	CK	0.1172	0.1172	0.1172	0.1133
SE	hold	\uparrow	\rightarrow	CK	-0.0391	-0.0430	-0.0430	-0.0508
	hold	\downarrow	\rightarrow	CK	-0.0430	-0.0469	-0.0547	-0.0391
	setup	\uparrow	\rightarrow	CK	0.0938	0.0938	0.0938	0.0859
D	setup	\downarrow	\rightarrow	CK	0.1133	0.1133	0.1250	0.1094
	hold	\uparrow	\rightarrow	CK	-0.0508	-0.0547	-0.0547	-0.0469
	hold	\downarrow	\rightarrow	CK	-0.0586	-0.0586	-0.0664	-0.0547
СК	r	minp	wh		0.8332	0.8332	0.8332	0.8332
CIX		minp	owl		0.8332	0.8332	0.8332	0.8332
	setup	\uparrow	\rightarrow	CK	0.0977	0.0977	0.0977	0.0898
RN	setup	\downarrow	\rightarrow	CK	0.1602	0.1641	0.1758	0.2227
IZIN	hold	\uparrow	\rightarrow	CK	-0.0547	-0.0586	-0.0586	-0.0508
	hold	\downarrow	\rightarrow	CK	-0.0859	-0.0898	-0.0977	-0.1211

Cell Description

The SDFFYQ cell is a positive-edge triggered, static D-type flip-flop with scan input (SI) and active-high scan enable (SE). The cell has a single output (Q) and overdriven feedback loops to increase mean time between failure (MTBF) due to metastability.

Logic Symbol

Function Table

D	SI	SE	CK	Q[n+1]
1	Х	0		1
0	Х	0		0
Х	Х	Х		Q[n]
Х	1	1		1
Х	0	1		0

Cell Size

Drive Strength	Height (um)	Width (um)
SDFFYQX2AD	2.52	8.12

Pin	Power (uW/MHz)
F	X2
SI	0.0139
SE	0.0149
D	0.0106
CK	0.0198
Q	0.0059

Pin Capacitance

Pin	Capacitance (pF)
' '''	X2
SI	0.0010
SE	0.0051
D	0.0024
CK	0.0024

Delays at 25°C,1.0V, Typical Process

Description	Intrinsic Delay (ns)	K _{load} (ns/pF)	
	X2	X2	
$CK \to Q \uparrow$	0.0981	2.3301	
$CK \ \to \ Q \ \downarrow$	0.0990	1.4614	

Pin	Por	nuir/	emer	\ +	Interval (ns)
F 111	ivec	₄ uii (-IIICI	11	X2
	setup	\uparrow	\rightarrow	CK	0.1055
SI	setup	\downarrow	\rightarrow	CK	0.3125
31	hold	\uparrow	\rightarrow	CK	-0.0938
	hold	\downarrow	\rightarrow	CK	-0.2852
	setup	\uparrow	\rightarrow	CK	0.3320
SE	setup	\downarrow	\rightarrow	CK	0.0859
SE	hold	\uparrow	\rightarrow	CK	-0.0898
	hold	\downarrow	\rightarrow	CK	-0.0391
	setup	\uparrow	\rightarrow	CK	0.0312
D	setup	\downarrow	\rightarrow	CK	0.0859
	hold	\uparrow	\rightarrow	CK	-0.0234
	hold	\downarrow	\rightarrow	CK	-0.0508
СК	i	minp	wh		0.8332
CK		minp	owl		0.8332

Cell Description

The SEDFF cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and synchronous active-high enable (E).

Logic Symbol

Function Table

D	Ε	SI	SE	CK	Q[n+1]	QN[n+1]
Х	Х	1	1		1	0
Х	Х	0	1		0	1
Х	0	Х	0		Q[n]	QN[n]
0	1	Х	0		0	1
1	1	Х	0		1	0
Х	Х	Х	Х	_	Q[n]	QN[n]

Cell Size

Drive Strength	Height (um)	Width (um)
SEDFFXLAD	2.52	8.68
SEDFFX1AD	2.52	8.96
SEDFFX2AD	2.52	9.24
SEDFFX4AD	2.52	11.48

Pin	Power (uW/MHz)							
F	XL	X1	X2	X4				
SI	0.0073	0.0074	0.0090	0.0103				
SE	0.0093	0.0094	0.0107	0.0121				
D	0.0063	0.0064	0.0070	0.0082				
CK	0.0110	0.0112	0.0119	0.0150				
Е	0.0089	0.0090	0.0101	0.0114				
Q	0.0066	0.0074	0.0104	0.0177				

Pin Capacitance

Pin		Capacita	Capacitance (pF)				
F	XL	X1	X2	X4			
SI	0.0010	0.0010	0.0010	0.0010			
SE	0.0023	0.0023	0.0027	0.0027			
D	0.0010	0.0010	0.0015	0.0014			
CK	0.0015	0.0015	0.0015	0.0017			
Е	0.0025	0.0025	0.0028	0.0028			

Description	Intrinsic Delay (ns)					Description Intrinsic Delay (ns)					K _{load} (ns/pF)	
	XL	X1	X2	X4	XL	X1	X2	X4					
$CK \to Q \uparrow$	0.1055	0.0992	0.1001	0.1107	5.8141	3.5994	2.3253	1.2193					
$CK \to Q \downarrow$	0.1197	0.1140	0.0994	0.1007	5.0051	3.4149	1.4372	0.7229					
CK → QN ↑	0.1730	0.1620	0.1493	0.1506	5.7623	3.6489	2.3438	1.2126					
$CK \to QN \downarrow$	0.1616	0.1641	0.1561	0.1613	4.4363	3.2442	1.3918	0.6725					

Pin	Por	anie.	emer		Interval (ns)			
FIII	Vec	₄ um	emei	11.	XL	X1	X2	X4
	setup	\uparrow	\rightarrow	CK	0.0703	0.0742	0.1250	0.1289
SI	setup	\downarrow	\rightarrow	CK	0.2734	0.2734	0.2734	0.2969
31	hold	\uparrow	\rightarrow	CK	-0.0625	-0.0625	-0.0898	-0.0898
	hold	\downarrow	\rightarrow	CK	-0.2188	-0.2188	-0.2227	-0.2305
	setup	\uparrow	\rightarrow	CK	0.2812	0.2812	0.2617	0.2852
SE	setup	\downarrow	\rightarrow	CK	0.3047	0.3047	0.1602	0.1680
JL.	hold	\uparrow	\rightarrow	CK	-0.0508	-0.0508	-0.0938	-0.0938
	hold	\downarrow	\rightarrow	CK	-0.1055	-0.1055	-0.0898	-0.0820
	setup	\uparrow	\rightarrow	CK	0.0820	0.0859	0.1289	0.1328
D	setup	\downarrow	\rightarrow	CK	0.2812	0.2852	0.1133	0.1211
	hold	\uparrow	\rightarrow	CK	-0.0664	-0.0664	-0.0938	-0.0977
	hold	\downarrow	\rightarrow	CK	-0.2383	-0.2383	-0.0703	-0.0625
СК	1	minp	wh		0.8332	0.8332	0.8332	0.8332
CIX		min	owl		0.8332	0.8332	0.8332	0.8332
	setup	\uparrow	\rightarrow	CK	0.3086	0.3086	0.1406	0.1523
E	setup	\downarrow	\rightarrow	CK	0.2578	0.2578	0.1484	0.1562
	hold	\uparrow	\rightarrow	CK	-0.0664	-0.0664	-0.1016	-0.0977
	hold	\downarrow	\rightarrow	CK	-0.0977	-0.0977	-0.0664	-0.0586

Cell Description

The SEDFFHQ cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), and synchronous active-high enable (E). The cell has a single output (Q) and fast clock-to-output path.

Logic Symbol

Function Table

D	Е	SI	SE	CK	Q[n+1]
Х	Х	1	1		1
Х	Х	0	1		0
Х	0	Х	0		Q[n]
0	1	Х	0		0
1	1	Х	0		1
Х	Х	Х	Х		Q[n]

Cell Size

Drive Strength	Height (um)	Width (um)
SEDFFHQX1AD	2.52	11.76
SEDFFHQX2AD	2.52	13.44
SEDFFHQX4AD	2.52	15.12
SEDFFHQX8AD	2.52	19.60

Pin		Power (u	ıW/MHz)			
F 111	X1	X2	X4	X8		
SI	0.0088	0.0120	0.0178	0.0274		
SE	0.0143	0.0175	0.0228	0.0360		
D	0.0091	0.0129	0.0183	0.0317		
CK	0.0149	0.0202	0.0275	0.0412		
Е	0.0147	0.0180	0.0225	0.0333		
Q	0.0054	0.0073	0.0097	0.0163		

Pin Capacitance

Pin		Capacitance (pF)								
F	X1	X2	X4	X8						
SI	0.0012	0.0012	0.0011	0.0014						
SE	0.0034	0.0035	0.0036	0.0047						
D	0.0017	0.0026	0.0039	0.0075						
CK	0.0025	0.0026	0.0034	0.0045						
E	0.0026	0.0026	0.0026	0.0027						

Description	Intrinsic Delay (ns) K _{load} (ns/p						ns/pF)	
	X1	X2	Х4	X8	X1	X2	Х4	X8
CK → Q ↑	0.0745	0.0738	0.0683	0.0605	3.5885	2.3134	1.1903	0.6081
$CK \to Q \downarrow$	0.0877	0.0835	0.0709	0.0633	3.3049	1.4191	0.6787	0.3316

Pin	Requirement				Interval (ns)			
FIII	Roquitomont		X1	X2	X4	X8		
	setup	\uparrow	\rightarrow	CK	0.0938	0.0938	0.1055	0.1172
SI	setup	\downarrow	\rightarrow	CK	0.1406	0.1641	0.1992	0.2031
Si	hold	\uparrow	\rightarrow	CK	-0.0586	-0.0586	-0.0664	-0.0742
	hold	\downarrow	\rightarrow	CK	-0.1094	-0.1250	-0.1562	-0.1523
	setup	\uparrow	\rightarrow	CK	0.1953	0.2227	0.2734	0.2930
SE	setup	\downarrow	\rightarrow	CK	0.1680	0.1523	0.1445	0.1602
SE	hold	\uparrow	\rightarrow	CK	-0.0742	-0.0781	-0.1016	-0.1211
	hold	\downarrow	\rightarrow	CK	-0.1172	-0.1055	-0.1016	-0.1055
	setup	\uparrow	\rightarrow	CK	0.0859	0.0703	0.0547	0.0625
D	setup	\downarrow	\rightarrow	CK	0.0742	0.0586	0.0508	0.0586
	hold	\uparrow	\rightarrow	CK	-0.0508	-0.0352	-0.0234	-0.0273
	hold	\downarrow	\rightarrow	CK	-0.0430	-0.0273	-0.0195	-0.0273
СК	r	minp	wh		0.8332	0.8332	0.8332	0.8332
CK		minp	owl		0.8332	0.8332	0.8332	0.8332
	setup	\uparrow	\rightarrow	CK	0.1289	0.1133	0.1055	0.1211
E	setup	\downarrow	\rightarrow	CK	0.1719	0.1914	0.1914	0.1875
	hold	\uparrow	\rightarrow	CK	-0.0977	-0.0859	-0.0781	-0.0859
	hold	\downarrow	\rightarrow	CK	-0.1016	-0.1055	-0.1016	-0.1016

Cell Description

The SEDFFTR cell is a positive-edge triggered, static D-type flip-flop with scan input (SI), active-high scan enable (SE), synchronous active-high enable (E) and synchronous active low reset (RN). Scan enable (SE) dominates reset (RN) and enable (E).

Logic Symbol

Function Table

RN	D	Е	SI	SE	CK	Q[n+1]	QN[n+1]
Х	Х	Х	0	1		0	1
Х	Х	Х	1	1		1	0
1	Х	0	Х	0		Q[n]	QN[n]
0	Х	Х	Х	0		0	1
1	1	1	Х	0		1	0
1	0	1	Х	0		0	1
Х	Х	Х	Х	Х	_	Q[n]	QN[n]

Cell Size

Drive Strength	Height (um)	Width (um)
SEDFFTRXLAD	2.52	12.60
SEDFFTRX1AD	2.52	12.60
SEDFFTRX2AD	2.52	12.60
SEDFFTRX4AD	2.52	14.56

Pin		Power (uW/MHz)						
F III	XL	X1	X2	X4				
SI	0.0090	0.0094	0.0104	0.0138				
SE	0.0119	0.0123	0.0133	0.0167				
D	0.0111	0.0116	0.0125	0.0160				
CK	0.0125	0.0130	0.0139	0.0184				
Е	0.0133	0.0137	0.0146	0.0178				
RN	0.0087	0.0091	0.0099	0.0131				
Q	0.0063	0.0073	0.0097	0.0164				

Pin Capacitance

Pin		Capacitance (pF)						
F	XL	X1	X2	X4				
SI	0.0011	0.0011	0.0011	0.0011				
SE	0.0023	0.0023	0.0023	0.0023				
D	0.0012	0.0012	0.0012	0.0012				
CK	0.0015	0.0015	0.0016	0.0019				
Е	0.0013	0.0013	0.0013	0.0013				
RN	0.0013	0.0013	0.0013	0.0013				

Description	Intrinsic Delay (ns)				Intrinsic Delay (ns) K _{load} (ns/pF)				
	XL	X1	X2	X4	XL	X1	X2	Х4	
$CK \to Q \uparrow$	0.1464	0.1397	0.1324	0.1299	5.6967	3.6538	2.3596	1.2090	
$CK \to Q \downarrow$	0.1393	0.1387	0.1293	0.1332	4.2516	3.1130	1.3271	0.6613	
$CK \to QN \uparrow$	0.0959	0.0925	0.0899	0.0901	5.7394	3.6551	2.3508	1.2218	
$CK \to QN \downarrow$	0.1079	0.1065	0.0958	0.0900	4.8564	3.3465	1.4201	0.6974	

Pin	Por	vi ir	emer	.	Interval (ns)				
FIII	Nec	₄ uire	eme	11.	XL	X1	X2	X4	
	setup	\uparrow	\rightarrow	CK	0.1055	0.1055	0.1172	0.1328	
SI	setup	\downarrow	\rightarrow	CK	0.1367	0.1406	0.1445	0.1484	
Si	hold	\uparrow	\rightarrow	CK	-0.0703	-0.0703	-0.0742	-0.0781	
	hold	\downarrow	\rightarrow	CK	-0.1250	-0.1250	-0.1250	-0.1250	
	setup	\uparrow	\rightarrow	CK	0.1523	0.1562	0.1602	0.1719	
SE	setup	\downarrow	\rightarrow	CK	0.1719	0.1719	0.1797	0.1875	
SE	hold	\uparrow	\rightarrow	CK	-0.1094	-0.1094	-0.1094	-0.1172	
	hold	\downarrow	\rightarrow	CK	-0.1211	-0.1211	-0.1250	-0.1289	
	setup	\uparrow	\rightarrow	CK	0.1445	0.1445	0.1562	0.1719	
_	setup	\downarrow	\rightarrow	CK	0.1680	0.1680	0.1758	0.1797	
D	hold	\uparrow	\rightarrow	CK	-0.1055	-0.1055	-0.1094	-0.1133	
	hold	\downarrow	\rightarrow	CK	-0.1523	-0.1523	-0.1523	-0.1562	
CK	r	minp	wh		0.8332	0.8332	0.8332	0.8332	
CIX		minp	owl		0.8332	0.8332	0.8332	0.8332	
	setup	\uparrow	\rightarrow	CK	0.1875	0.1875	0.1953	0.2109	
E	setup	\downarrow	\rightarrow	CK	0.1758	0.1758	0.1719	0.1719	
	hold	\uparrow	\rightarrow	CK	-0.1484	-0.1484	-0.1523	-0.1562	
	hold	\downarrow	\rightarrow	CK	-0.0820	-0.0859	-0.1016	-0.1289	
	setup	\uparrow	\rightarrow	CK	0.0898	0.0938	0.1016	0.1211	
RN	setup	\downarrow	\rightarrow	CK	0.1094	0.1133	0.1172	0.1211	
KIN	hold	\uparrow	\rightarrow	CK	-0.0547	-0.0547	-0.0586	-0.0625	
	hold	\downarrow	\rightarrow	CK	-0.0977	-0.0977	-0.0977	-0.0977	

Cell Description

The SMDFFHQ cell is a high-speed, positive-edge triggered, static D-type flip-flop with a 2to1data select control (S0) for the data inputs (D1,D0), scan input (SI), and activehigh scan enable (SE). The cell has a single output (Q) and fast clocktoout path.

Logic Symbol

Function Table

SE	SI	S0	D1	D0	CK	Q[n+1]
0	Х	0	Х	0		0
0	Х	0	х	1		1
0	Х	1	0	х		0
0	Х	1	1	Х		1
1	0	х	х	х		0
1	1	х	х	х		1
Х	Х	Х	Х	Х	_	Q[n]

Cell Size

Drive Strength	Height (um)	Width (um)
SMDFFHQX1AD	2.52	11.20
SMDFFHQX2AD	2.52	12.04
SMDFFHQX4AD	2.52	14.00
SMDFFHQX8AD	2.52	20.44

Pin		Power (u	ıW/MHz)	
	X1	X2	X4	X8
SI	0.0085	0.0111	0.0173	0.0292
SE	0.0136	0.0162	0.0232	0.0402
D0	0.0087	0.0114	0.0178	0.0308
D1	0.0086	0.0112	0.0176	0.0310
S0	0.0139	0.0165	0.0233	0.0358
CK	0.0139	0.0178	0.0271	0.0445
Q	0.0040	0.0056	0.0084	0.0144

Pin Capacitance

Pin		nce (pF)	F)		
	X1	X2	X4	X8	
SI	0.0011	0.0011	0.0014	0.0022	
SE	0.0033	0.0034	0.0033	0.0036	
D0	0.0013	0.0016	0.0025	0.0046	
D1	0.0014	0.0016	0.0025	0.0045	
S0	0.0026	0.0026	0.0027	0.0029	
CK	0.0023	0.0023	0.0032	0.0053	

Description	K _{load} (ns/pF)							
	X1	X2	Х4	X8	X1	X2	Х4	X8
CK → Q ↑	0.0784	0.0752	0.0685	0.0621	3.6191	2.3157	1.1803	0.6062
$CK \ \to \ Q \ \downarrow$	0.0881	0.0818	0.0730	0.0647	3.2312	1.3796	0.6649	0.3267

Pin	Por	air	omor		Interval (ns)					
PIII	Ket	quire	emer	ıı	X1	X2	X4	X8		
	setup	\uparrow	\rightarrow	CK	0.0977	0.0938	0.0898	0.0820		
SI	setup	\downarrow	\rightarrow	CK	0.1406	0.1523	0.1406	0.1445		
SI	hold	\uparrow	\rightarrow	CK	-0.0586	-0.0586	-0.0547	-0.0430		
	hold	\downarrow	\rightarrow	CK	-0.1055	-0.1172	-0.1055	-0.1055		
	setup	\uparrow	\rightarrow	CK	0.1523	0.1641	0.1523	0.1680		
SE	setup	\downarrow	\rightarrow	CK	0.1719	0.1484	0.1445	0.1562		
SE	hold	\uparrow	\rightarrow	CK	-0.0586	-0.0625	-0.0664	-0.0586		
	hold	\downarrow	\rightarrow	CK	-0.1055	-0.0898	-0.0781	-0.0820		
	setup	\uparrow	\rightarrow	CK	0.0938	0.0742	0.0586	0.0586		
D0	setup	\downarrow	\rightarrow	CK	0.1055	0.0781	0.0625	0.0781		
D0	hold	\uparrow	\rightarrow	CK	-0.0547	-0.0391	-0.0273	-0.0195		
	hold	\downarrow	\rightarrow	CK	-0.0742	-0.0508	-0.0352	-0.0430		
	setup	\uparrow	\rightarrow	CK	0.0977	0.0742	0.0625	0.0586		
D1	setup	\downarrow	\rightarrow	CK	0.1094	0.0820	0.0664	0.0781		
וטו	hold	\uparrow	\rightarrow	CK	-0.0586	-0.0391	-0.0273	-0.0234		
	hold	\downarrow	\rightarrow	CK	-0.0781	-0.0508	-0.0352	-0.0430		
	setup	\uparrow	\rightarrow	CK	0.1328	0.1133	0.1094	0.1094		
S0	setup	\downarrow	\rightarrow	CK	0.1484	0.1289	0.1211	0.1406		
30	hold	\uparrow	\rightarrow	CK	-0.0938	-0.0742	-0.0664	-0.0703		
	hold	\downarrow	\rightarrow	CK	-0.0977	-0.0820	-0.0742	-0.0781		
СК	ı	minp	wh		0.8332	0.8332	0.8332	0.8332		
		minp	owl		0.8332	0.8332	0.8332	0.8332		

Cell Description

The TBUF cell provides the logical buffer of a single input (A) with an active-high output enable (OE). When the enable is high, the output (Y) is represented by the logic equation:

Y = A

Logic Symbol

Function Table

OE	Α	Υ
0	Х	Ζ
1	0	0
1	1	1

Cell Size

Drive Strength	Height (um)	Width (um)
TBUFXLAD	2.52	2.52
TBUFX1AD	2.52	2.52
TBUFX2AD	2.52	2.80
TBUFX3AD	2.52	3.08
TBUFX4AD	2.52	3.08
TBUFX6AD	2.52	3.92
TBUFX8AD	2.52	4.48
TBUFX12AD	2.52	5.88
TBUFX16AD	2.52	6.72
TBUFX20AD	2.52	8.40

AC Power

Pin	Power (uW/MHz)									
· · · ·	XL	XL X1 X2 X3 X4 X6 X8 X12								
Α	0.0043	0.0047	0.0060	0.0076	0.0087	0.0126	0.0161	0.0237		
OE	0.0029	0.0033	0.0046	0.0056	0.0063	0.0093	0.0116	0.0176		

AC Power (Cont'd.)

Pin	Power (uW/MHz)					
' '''	X16	X20				
Α	0.0305	0.0390				
OE	0.0224	0.0296				

Pin Capacitance

Pin								
	XL	X8	X12					
Α	0.0013	0.0013	0.0015	0.0017	0.0021	0.0036	0.0045	0.0066
OE	0.0022	0.0022	0.0025	0.0027	0.0027	0.0027	0.0034	0.0042
Υ	0.0010	0.0012	0.0016	0.0023	0.0027	0.0043	0.0054	0.0085

Pin Capacitance (Cont'd.)

Pin	Capacitance (pF)					
• •••	X16	X20				
Α	0.0084	0.0101				
OE	0.0050	0.0062				
Υ	0.0111	0.0143				

Description				Intrinsic Delay (ns)							
				XL	X1	X2	Х3	X4	Х6	X8	X12
Α	\rightarrow	Υ	\uparrow	0.0518	0.0536	0.0514	0.0473	0.0492	0.0462	0.0446	0.0432
Α	\rightarrow	Υ	\downarrow	0.0907	0.0945	0.0745	0.0695	0.0649	0.0609	0.0586	0.0596
OE	\rightarrow	Υ	\uparrow	0.0344	0.0362	0.0332	0.0345	0.0363	0.0371	0.0364	0.0353
OE	\rightarrow	Υ	\downarrow	0.0608	0.0629	0.0558	0.0517	0.0514	0.0517	0.0470	0.0496

Process Technology:

TSMC CLN90G

Delays at 25°C,1.0V, Typical Process (Cont'd.)

Description			n	Intrinsic	Delay (ns)
				X16	X20
Α	\rightarrow	Υ	↑	0.0446	0.0456
Α	\rightarrow	Υ	\downarrow	0.0591	0.0606
OE	\rightarrow	Υ	\uparrow	0.0368	0.0370
OE	\rightarrow	Υ	\downarrow	0.0478	0.0509

Delays at 25°C,1.0V, Typical Process (Cont'd.)

Description	K _{load} (ns/pF)							
	XL	X1	X2	Х3	X4	Х6	X8	X12
$A \rightarrow Y \uparrow$	5.7125	3.7473	2.5625	1.6035	1.3382	0.8893	0.6797	0.4550
$A \rightarrow Y \downarrow$	5.1704	3.4547	1.5931	0.9743	0.7738	0.5056	0.3749	0.2511
$OE \rightarrow Y \uparrow$	5.7028	3.7386	2.5594	1.6027	1.3379	0.8890	0.6800	0.4553
$OE \rightarrow Y \downarrow$	5.1420	3.4312	1.5834	0.9673	0.7701	0.5044	0.3738	0.2504

Delays at 25°C,1.0V, Typical Process (Cont'd.)

De	escri	otio	n	K _{load} (ns/pF)
		Х			X20
Α	\rightarrow	Υ	\uparrow	0.3489	0.2780
Α	\rightarrow	Υ	\downarrow	0.1873	0.1425
OE	\rightarrow	Υ	\uparrow	0.3492	0.2780
OE	\rightarrow	Υ	\downarrow	0.1867	0.1421

Cell Description

The TIEHI cell drives the output (Y) to a logic high. The output is driven through diffusion and not tied directly to the power rail to provide some ESD protection. The output (Y) is represented by the logic equation:

Y = 1

Logic Symbol

Function Table

Υ
1

Cell Size

Drive Strength	Height (um)	Width (um)	
TIEHIAD	2.52	0.84	

Cell Description

The TIELO cell drives the output (Y) to a logic low. The output is driven through diffusion and not tied directly to the power rail to provide some ESD protection. The output (Y) is represented by the logic equation:

Y = 0

Logic Symbol

Function Table

Υ
0

Cell Size

Drive Strength	Height (um)	Width (um)	
TIELOAD	2.52	0.84	

Cell Description

The TLAT cell is an active-high D-type transparent latch. When the enable (G) is high, data is transferred to the outputs (Q,QN).

Logic Symbol

Function Table

G	D	Q[n+1]	QN[n+1]
1	0	0	1
1	1	1	0
0	Х	Q[n]	QN[n]

Cell Size

Drive Strength	Height (um)	Width (um)
TLATXLAD	2.52	3.64
TLATX1AD	2.52	3.64
TLATX2AD	2.52	3.92
TLATX4AD	2.52	5.60

Pin	Power (uW/MHz)							
	XL	X1	X2	X4				
D	0.0011	0.0013	0.0016	0.0032				
G	0.0043	0.0044	0.0046	0.0063				
Q	0.0052	0.0061	0.0085	0.0150				

Pin Capacitance

Pin	Capacitance (pF)							
	XL	X1	X2	X4				
D	0.0016	0.0019	0.0024	0.0047				
G	0.0012	0.0012	0.0015	0.0021				

Delays at 25°C,1.0V, Typical Process

Description Intrinsic Delay (ns)					Delay (ns)		K _{load} (ns/pF)				
				XL	X1	X2	X4	XL	X1	X2	Х4
D	\rightarrow	Q	\uparrow	0.0439	0.0413	0.0387	0.0393	5.6962	3.7611	2.3499	1.2277
D	\rightarrow	Q	\downarrow	0.0734	0.0687	0.0643	0.0627	4.9663	3.2559	1.4268	0.7052
G	\rightarrow	Q	\uparrow	0.0980	0.0966	0.0893	0.0866	5.6926	3.7604	2.3490	1.2272
G	\rightarrow	Q	\downarrow	0.0855	0.0818	0.0706	0.0659	4.9664	3.2598	1.4267	0.7044
D	\rightarrow	QN	\uparrow	0.1049	0.1010	0.1022	0.0989	5.6507	3.6300	2.3455	1.2080
D	\rightarrow	QN	\downarrow	0.0827	0.0862	0.0847	0.0811	4.5111	3.1000	1.3921	0.6714
G	\rightarrow	QN	\uparrow	0.1173	0.1145	0.1086	0.1021	5.6527	3.6314	2.3461	1.2082
G	\rightarrow	QN	\downarrow	0.1372	0.1419	0.1357	0.1287	4.5130	3.1012	1.3923	0.6715

Pin	Requirement				Interval (ns)				
	Kequireme		Requirement		XL	X1	X2	X4	
	setup	\uparrow	\rightarrow	G	-0.0117	-0.0117	-0.0078	-0.0039	
D	setup	\downarrow	\rightarrow	G	0.0508	0.0430	0.0469	0.0469	
	hold	\uparrow	\rightarrow	G	0.0195	0.0195	0.0156	0.0117	
	hold	\downarrow	\rightarrow	G	-0.0430	-0.0391	-0.0430	-0.0391	
G	minpwh			0.8332	0.8332	0.8332	0.8332		

Cell Description

The TLATN cell is an active-low D-type transparent latch. When the enable (GN) is low, data is transferred to the outputs (Q,QN).

Logic Symbol

Function Table

GN	D	Q[n+1]	QN[n+1]
0	0	0	1
0	1	1	0
1	Х	Q[n]	QN[n]

Cell Size

Drive Strength	Height (um)	Width (um)		
TLATNXLAD	2.52	3.92		
TLATNX1AD	2.52	3.92		
TLATNX2AD	2.52	3.92		
TLATNX4AD	2.52	5.60		

AC Power

Pin	Power (uW/MHz)								
	XL	X1	X2	X4					
D	0.0010	0.0012	0.0016	0.0033					
GN	0.0045	0.0048	0.0052	0.0087					
Q	0.0054	0.0064	0.0089	0.0156					

Pin Capacitance

Pin	Capacitance (pF)								
' '''	XL	X1	X2	X4					
D	0.0016	0.0019	0.0024	0.0049					
GN	0.0016	0.0016	0.0015	0.0022					

Delays at 25°C,1.0V, Typical Process

Description					Intrinsic I	Delay (ns)		K _{load} (ns/pF)			
				XL	X1	X2	X4	XL	X1	X2	Х4
D	\rightarrow	Q	1	0.0421	0.0404	0.0409	0.0371	5.7144	3.6507	2.3557	1.2239
D	\rightarrow	Q	\downarrow	0.0709	0.0676	0.0626	0.0627	4.9032	3.2151	1.4229	0.7026
GN	\rightarrow	Q	1	0.0686	0.0671	0.0691	0.0602	5.7338	3.6604	2.3596	1.2258
GN	\rightarrow	Q	\downarrow	0.1130	0.1111	0.1078	0.0967	4.8997	3.2140	1.4224	0.7023
D	\rightarrow	QN	1	0.0998	0.0966	0.1007	0.0990	5.6469	3.6289	2.3457	1.2075
D	\rightarrow	QN	\downarrow	0.0812	0.0852	0.0878	0.0791	4.5146	3.1027	1.3912	0.6718
GN	\rightarrow	QN	\uparrow	0.1420	0.1402	0.1459	0.1330	5.6489	3.6295	2.3458	1.2075
GN	\rightarrow	QN	\downarrow	0.1092	0.1136	0.1176	0.1031	4.5170	3.1038	1.3913	0.6720

Pin	Por	anir.	emer	. +	Interval (ns)					
•	Vec	quii	emei	11.	XL	X1	X2	X4		
	setup	\uparrow	\rightarrow	GN	0.0273	0.0273	0.0273	0.0234		
D	setup	\downarrow	\rightarrow	GN	0.0352	0.0273	0.0234	0.0273		
	hold	\uparrow	\rightarrow	GN	-0.0234	-0.0195	-0.0195	-0.0195		
	hold	\downarrow	\rightarrow	GN	-0.0273	-0.0195	-0.0156	-0.0195		
GN	minpwl			0.8332	0.8332	0.8332	0.8332			

Cell Description

The TLATNCA cell is a positive-edge triggered clock-gating latch. The positive-edge clock (CK) is qualified by the latched enable signal (E) to create the gated positive-edge clock (ECK).

Logic Symbol

Function Table

CK	Е	q[n+1]	ECK[n+1]
1	Х	q[n]	q[n]
0	0	0	0
0	1	1	0

⁻ Note: q is an internal node, and is not accessible.

Cell Size

Drive Strength	Height (um)	Width (um)
TLATNCAX2AD	2.52	3.64
TLATNCAX3AD	2.52	4.20
TLATNCAX4AD	2.52	5.60
TLATNCAX6AD	2.52	6.44
TLATNCAX8AD	2.52	7.56
TLATNCAX12AD	2.52	10.08
TLATNCAX16AD	2.52	12.60
TLATNCAX20AD	2.52	15.68

AC Power

Pin		Power (uW/MHz)										
F 1111	X2	Х3	X4	Х6	X8	X12	X16	X20				
E	0.0062	0.0075	0.0099	0.0124	0.0158	0.0219	0.0270	0.0341				
CK	0.0064	0.0073	0.0092	0.0119	0.0151	0.0235	0.0288	0.0367				
ECK	0.0064	0.0081	0.0099	0.0134	0.0166	0.0238	0.0307	0.0377				

Pin Capacitance

Pin	Capacitance (pF)									
	X2	Х3	X12	X16	X20					
Е	0.0022	0.0024	0.0042	0.0052	0.0070	0.0098	0.0119	0.0158		
CK	0.0021	0.0025	0.0027	0.0041	0.0051	0.0077	0.0100	0.0125		

Delays at 25°C,1.0V, Typical Process

Description Intrinsic Delay (ns)								
	X2 X3 X4 X6 X8 X					X12	X16	X20
CK → ECK ↑	0.0397	0.0424	0.0414	0.0417	0.0413	0.0461	0.0465	0.0482
$CK \to ECK \downarrow$	0.0546	0.0549	0.0551	0.0506	0.0507	0.0523	0.0506	0.0517

Delays at 25°C,1.0V, Typical Process (Cont'd.)

Description				K _{load} (ns/pF)			
	X2 X3 X4 X6 X8 X12 X16						X16	X20
CK → ECK ↑	4.6226	3.1691	2.3907	1.6287	1.2373	0.8530	0.6522	0.5317
$CK \to ECK \downarrow$	3.5303	2.3228	1.7689	1.1467	0.8555	0.5710	0.4277	0.3366

Pin	Requirement				Interval (ns)							
' '''					X2	Х3	X4	Х6	X8	X12	X16	X20
E	setup	\uparrow	\rightarrow	CK	0.0312	0.0312	0.0273	0.0273	0.0234	0.0234	0.0273	0.0273
	setup	\downarrow	\rightarrow	CK	0.0117	0.0156	0.0039	0.0078	0.0078	0.0039	0.0078	0.0078
	hold	\uparrow	\rightarrow	CK	-0.0156	-0.0195	-0.0156	-0.0156	-0.0156	-0.0156	-0.0195	-0.0156
	hold	\downarrow	\rightarrow	CK	0.0234	0.0234	0.0273	0.0234	0.0234	0.0234	0.0195	0.0195
CK	minpwl			0.8332	0.8332	0.8332	0.8332	0.8332	0.8332	0.8332	0.8332	

Process Technology:	TLATNCA
SMC CLN90G	
This page intentionally left blank	

Cell Description

The TLATNSR cell is an active-low D-type transparent latch with asynchronous active-low set (SN) and reset (RN), and set dominating reset. When the enable (GN) is low, data is transferred to the outputs (Q,QN).

Logic Symbol

Function Table

RN	SN	GN	D	Q[n+1]	QN[n+1]
1	1	0	0	0	1
1	1	0	1	1	0
1	1	1	Х	Q[n]	QN[n]
0	1	Х	Х	0	1
1	0	Х	Х	1	0
0	0	Х	Х	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
TLATNSRXLAD	2.52	5.60
TLATNSRX1AD	2.52	5.88
TLATNSRX2AD	2.52	6.16
TLATNSRX4AD	2.52	8.96

Pin	Power (uW/MHz)									
F III	XL	X1	X2	X4						
D	0.0012	0.0015	0.0019	0.0037						
GN	0.0056	0.0062	0.0070	0.0110						
SN	0.0031	0.0038	0.0045	0.0075						
RN	0.0012	0.0015	0.0018	0.0034						
Q	0.0089	0.0108	0.0138	0.0232						

Pin Capacitance

Pin	Capacitance (pF)								
' '''	XL	X1	X2	X4					
D	0.0015	0.0021	0.0025	0.0049					
GN	0.0015	0.0014	0.0014	0.0019					
SN	0.0012	0.0015	0.0018	0.0028					
RN	0.0019	0.0023	0.0027	0.0049					

D	escri	iption			Intrinsic [Delay (ns)		K _{load} (ns/pF)			
				XL	X1	X2	X4	XL	X1	X2	X4
D	\rightarrow	Q	1	0.0858	0.0765	0.0761	0.0699	6.0942	3.8301	2.4410	1.2497
D	\rightarrow	Q	\downarrow	0.1502	0.1363	0.1247	0.1225	6.3249	3.7021	1.6697	0.8287
GN	\rightarrow	Q	\uparrow	0.0987	0.0925	0.0927	0.0918	6.1136	3.8376	2.4479	1.2535
GN	\rightarrow	Q	\downarrow	0.1948	0.1711	0.1651	0.1579	6.3226	3.7018	1.6698	0.8285
SN	\rightarrow	Q	\uparrow	0.1087	0.0962	0.0930	0.0853	5.8556	3.7438	2.4065	1.2346
SN	\rightarrow	Q	\downarrow	0.1720	0.1533	0.1398	0.1348	6.2952	3.6878	1.6600	0.8226
RN	\rightarrow	Q	\uparrow	0.0834	0.0741	0.0738	0.0668	6.0940	3.8301	2.4410	1.2497
RN	\rightarrow	Q	\downarrow	0.1364	0.1189	0.1072	0.0949	6.7853	3.8905	1.7696	0.8537
D	\rightarrow	QN	\uparrow	0.1945	0.1702	0.1728	0.1695	5.7502	3.6658	2.3705	1.2164
D	\rightarrow	QN	\downarrow	0.1211	0.1042	0.1263	0.1134	4.6396	2.9379	1.3554	0.6592
GN	\rightarrow	QN	\uparrow	0.2396	0.2053	0.2136	0.2051	5.7550	3.6673	2.3711	1.2166
GN	\rightarrow	QN	\downarrow	0.1348	0.1207	0.1440	0.1361	4.6438	2.9392	1.3572	0.6598
SN	\rightarrow	QN	\uparrow	0.2160	0.1868	0.1874	0.1811	5.7507	3.6658	2.3708	1.2165
SN	\rightarrow	QN	\downarrow	0.1428	0.1234	0.1418	0.1277	4.6114	2.9298	1.3506	0.6574
RN	\rightarrow	QN	\uparrow	0.1833	0.1537	0.1574	0.1416	5.7875	3.6772	2.3745	1.2177
RN	\rightarrow	QN	\downarrow	0.1189	0.1019	0.1241	0.1104	4.6401	2.9380	1.3557	0.6592

Process Technology: TLATNSR
TSMC CLN90G

Timing Constraints at 25°C,1.0V, Typical Process

Pin	Res	auir	emer	1	Interval (ns)					
	110	quii	CITICI		XL	X1	X2	X4		
	setup	\uparrow	\rightarrow	GN	0.0742	0.0625	0.0664	0.0547		
D	setup	\downarrow	\rightarrow	GN	0.1133	0.0859	0.0781	0.0781		
	hold	\uparrow	\rightarrow	GN	-0.0664	-0.0547	-0.0625	-0.0508		
	hold	\downarrow	\rightarrow	GN	-0.0938	-0.0703	-0.0625	-0.0664		
GN		min	owl		0.8332	0.8332	0.8332	0.8332		
		min	owl		0.8332	0.8332	0.8332	0.8332		
SN	r	eco\	ery/		0.1328	0.1016	0.0898	0.0898		
	removal				-0.1289	-0.0977	-0.0859	-0.0859		
	minpwl				0.8332	0.8332	0.8332	0.8332		
RN	recovery		0.0703	0.0586	0.0664	0.0508				
		remo	oval	_	-0.0664	-0.0547	-0.0625	-0.0469		

Cell Description

The TLATNTSCA cell is a positive-edge triggered clock-gating latch. The positive-edge clock (CK) is qualified by the latched enable signals (SE) and (E) to create the gated positive-edge clock (ECK).

Logic Symbol

Function Table

СК	SE	E q[n+1]		ECK[n+1]
1	Х	Х	q[n]	q[n]
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0

⁻ Note: q is an internal node and is not accessible.

Cell Size

Drive Strength	Height (um)	Width (um)
TLATNTSCAX2AD	2.52	5.04
TLATNTSCAX3AD	2.52	5.60
TLATNTSCAX4AD	2.52	6.44
TLATNTSCAX6AD	2.52	8.40
TLATNTSCAX8AD	2.52	9.52
TLATNTSCAX12AD	2.52	11.48
TLATNTSCAX16AD	2.52	13.16
TLATNTSCAX20AD	2.52	16.24

AC Power

Pin	Power (uW/MHz)											
F 1111	X2	Х3	X4	X6	X8	X12	X16	X20				
E	0.0099	0.0106	0.0134	0.0172	0.0210	0.0275	0.0316	0.0377				
SE	0.0102	0.0109	0.0137	0.0175	0.0214	0.0281	0.0325	0.0386				
CK	0.0069	0.0076	0.0095	0.0132	0.0164	0.0228	0.0274	0.0331				
ECK	0.0066	0.0079	0.0097	0.0141	0.0172	0.0215	0.0277	0.0318				

Pin Capacitance

Pin		Capacitance (pF)											
' '''	X2 X3 X4 X6 X8 X12 X16												
Е	0.0013	0.0014	0.0016	0.0014	0.0016	0.0020	0.0024	0.0028					
SE	0.0014	0.0013	0.0014	0.0012	0.0015	0.0018	0.0025	0.0027					
CK	0.0022	0.0025	0.0028	0.0042	0.0052	0.0077	0.0100	0.0124					

Delays at 25°C,1.0V, Typical Process

Description	Intrinsic Delay (ns)								
	X2	Х3	Х4	Х6	X8	X12	X16	X20	
CK → ECK ↑	0.0423	0.0430	0.0427	0.0433	0.0434	0.0455	0.0464	0.0481	
$CK \to ECK \downarrow$	0.0574	0.0553	0.0558	0.0523	0.0515	0.0473	0.0472	0.0457	

Delays at 25°C,1.0V, Typical Process (Cont'd.)

Description	K _{load} (ns/pF)									
	X2	Х3	X4	X6	X8	X12	X16	X20		
CK → ECK ↑	4.6386	3.1922	2.4002	1.6360	1.2442	1.0074	0.7289	0.6429		
$CK \to ECK \downarrow$	3.6460	2.3067	1.7541	1.0765	0.8592	0.5648	0.4208	0.3364		

Process Technology: TLATNTSCA

TSMC CLN90G

Timing Constraints at 25°C,1.0V, Typical Process

Din	Pin Requireme		omor					Interv	al (ns)			
F	riii ixequirement				X2	Х3	Х4	X6	X8	X12	X16	X20
	setup	\uparrow	\rightarrow	CK	0.0898	0.0820	0.0742	0.0820	0.0781	0.0781	0.0703	0.0703
E	setup	\downarrow	\rightarrow	CK	0.0859	0.0820	0.0820	0.0859	0.0781	0.0703	0.0703	0.0781
-	hold	\uparrow	\rightarrow	CK	-0.0742	-0.0664	-0.0625	-0.0703	-0.0664	-0.0664	-0.0586	-0.0586
	hold	\downarrow	\rightarrow	CK	-0.0469	-0.0430	-0.0508	-0.0508	-0.0469	-0.0391	-0.0391	-0.0508
	setup	\uparrow	\rightarrow	CK	0.0938	0.0820	0.0781	0.0820	0.0781	0.0781	0.0742	0.0703
SE	setup	\downarrow	\rightarrow	CK	0.0938	0.0859	0.0859	0.0898	0.0820	0.0742	0.0742	0.0820
SE	hold	\uparrow	\rightarrow	CK	-0.0742	-0.0664	-0.0664	-0.0703	-0.0703	-0.0664	-0.0625	-0.0625
	hold	\downarrow	\rightarrow	CK	-0.0508	-0.0469	-0.0547	-0.0547	-0.0508	-0.0430	-0.0469	-0.0547
CK		minp	owl		0.8332	0.8332	0.8332	0.8332	0.8332	0.8332	0.8332	0.8332

Cell Description

The TLATSR cell is an active-high D-type transparent latch with asynchronous active-low set (SN) and reset (RN), and set dominating reset. When the enable (G) is high, data is transferred to the outputs (Q,QN).

Logic Symbol

Function Table

RN	SN	G	D	Q[n+1]	QN[n+1]
1	1	1	0	0	1
1	1	1	1	1	0
1	1	0	Х	Q[n]	QN[n]
0	1	Х	Х	0	1
1	0	Х	Х	1	0
0	0	Х	Х	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
TLATSRXLAD	2.52	5.60
TLATSRX1AD	2.52	5.60
TLATSRX2AD	2.52	6.16
TLATSRX4AD	2.52	8.96

Pin	Power (uW/MHz)							
F 111	XL	X1	X2	X4				
D	0.0011	0.0013	0.0017	0.0037				
G	0.0049	0.0051	0.0054	0.0092				
SN	0.0031	0.0033	0.0043	0.0072				
RN	0.0011	0.0012	0.0018	0.0033				
Q	0.0084	0.0096	0.0139	0.0222				

Pin Capacitance

Pin		Capacita	tance (pF)			
' '''	XL	X1	X2	X4		
D	0.0014	0.0017	0.0023	0.0049		
G	0.0014	0.0014	0.0015	0.0018		
SN	0.0012	0.0013	0.0018	0.0028		
RN	0.0018	0.0020	0.0027	0.0047		

D	escr	iption			Intrinsic Delay (ns)				K _{load} (ns/pF)			
			•	XL	X1	X2	X4	XL	X1	X2	Х4	
D	\rightarrow	Q	1	0.0895	0.0818	0.0756	0.0704	6.1494	3.9414	2.4309	1.2508	
D	\rightarrow	Q	\downarrow	0.1573	0.1453	0.1433	0.1217	6.4099	3.8411	1.7558	0.8246	
G	\rightarrow	Q	\uparrow	0.1284	0.1227	0.1239	0.1179	6.1443	3.9390	2.4293	1.2498	
G	\rightarrow	Q	\downarrow	0.1546	0.1420	0.1362	0.1108	6.4137	3.8431	1.7563	0.8239	
SN	\rightarrow	Q	\uparrow	0.1087	0.1028	0.0900	0.0849	5.8411	3.8406	2.3962	1.2372	
SN	\rightarrow	Q	\downarrow	0.1792	0.1642	0.1582	0.1340	6.3805	3.8287	1.7449	0.8192	
RN	\rightarrow	Q	\uparrow	0.0871	0.0793	0.0737	0.0666	6.1497	3.9416	2.4310	1.2509	
RN	\rightarrow	Q	\downarrow	0.1445	0.1382	0.1051	0.1046	6.8656	4.1488	1.7218	0.8955	
D	\rightarrow	QN	\uparrow	0.2008	0.1882	0.1953	0.1685	5.7501	3.7982	2.3680	1.2165	
D	\rightarrow	QN	\downarrow	0.1384	0.1359	0.1249	0.1138	4.6303	3.0582	1.3551	0.6601	
G	\rightarrow	QN	\uparrow	0.1988	0.1855	0.1886	0.1578	5.7550	3.8006	2.3686	1.2167	
G	\rightarrow	QN	\downarrow	0.1780	0.1775	0.1737	0.1616	4.6346	3.0604	1.3562	0.6605	
SN	\rightarrow	QN	\uparrow	0.2226	0.2069	0.2096	0.1803	5.7499	3.7983	2.3681	1.2167	
SN	\rightarrow	QN	\downarrow	0.1546	0.1548	0.1378	0.1272	4.5906	3.0467	1.3499	0.6585	
RN	\rightarrow	QN	\uparrow	0.1903	0.1837	0.1545	0.1548	5.7866	3.8175	2.3678	1.2186	
RN	\rightarrow	QN	\downarrow	0.1363	0.1337	0.1231	0.1101	4.6314	3.0588	1.3554	0.6602	

Timing Constraints at 25°C,1.0V, Typical Process

, , ,,								
Pin	Requirement		Interval (ns)					
FIII			XL	X1	X2	X4		
	setup	\uparrow	\rightarrow	G	0.0469	0.0352	0.0195	0.0117
D	setup	\downarrow	\rightarrow	G	0.1367	0.1250	0.1289	0.1055
	hold	\uparrow	\rightarrow	G	-0.0352	-0.0234	-0.0078	0.0000
	hold	\downarrow	\rightarrow	G	-0.1289	-0.1172	-0.1211	-0.0977
G	n	ninp	wh		0.8332	0.8332	0.8332	0.8332
	r	ninp	wl		0.8332	0.8332	0.8332	0.8332
SN	re	cov	ery		0.1602	0.1406	0.1406	0.1172
	removal		-0.1562	-0.1367	-0.1367	-0.1133		
	minpwl		0.8332	0.8332	0.8332	0.8332		
RN	recovery				0.0430	0.0312	0.0156	0.0000
	re	emo	val		-0.0391	-0.0273	-0.0117	0.0039

Cell Description

The XNOR2 cell provides a logical EXCLUSIVE NOR of two inputs (A,B). The output (Y) is represented by the logic equation:

$$\mathsf{Y} = (A \bullet B) + (\overline{A} \bullet \overline{B})$$

Logic Symbol

Function Table

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	1

Cell Size

Drive Strength	Height (um)	Width (um)
XNOR2XLAD	2.52	2.24
XNOR2X1AD	2.52	2.24
XNOR2X2AD	2.52	3.08
XNOR2X4AD	2.52	4.48

Pin		Power (uW/MHz)				
' '''	XL	X1	X2	X4		
Α	0.0031	0.0037	0.0063	0.0119		
В	0.0040	0.0050	0.0097	0.0170		

Pin Capacitance

Pin		nce (pF)			
' '''	XL	X1	X2	X4	
Α	0.0018	0.0019	0.0025	0.0037	
В	0.0014	0.0017	0.0027	0.0053	

Descripti	on	Intrinsic Delay (ns)				K _{load} (ns/pF)			
		XL	X1	X2	X4	XL	X1	X2	Х4
$A \rightarrow Y$	↑	0.0282	0.0255	0.0256	0.0258	8.1723	5.9989	3.0983	1.5889
$A \rightarrow Y$	\downarrow	0.0323	0.0332	0.0359	0.0346	5.9720	4.4915	1.8998	0.9508
$B \rightarrow Y$	↑	0.0500	0.0439	0.0460	0.0404	8.2186	5.8832	3.2000	1.5778
$B \rightarrow Y$	\downarrow	0.0526	0.0465	0.0468	0.0417	6.3533	4.6734	2.0634	1.0020

Cell Description

The XNOR3 cell provides a logical EXCLUSIVE NOR of three inputs (A,B,C). The output (Y) is represented by the following equation:

 $Y = \overline{A \oplus B \oplus C}$

Logic Symbol

Function Table

Α	В	С	Υ
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
XNOR3XLAD	2.52	4.76
XNOR3X1AD	2.52	5.32
XNOR3X2AD	2.52	5.32
XNOR3X4AD	2.52	6.16

Pin	Power (uW/MHz)						
F	XL	X1	X2	X4			
Α	0.0120	0.0150	0.0197	0.0290			
В	0.0108	0.0128	0.0161	0.0241			
С	0.0055	0.0064	0.0090	0.0123			

Pin Capacitance

Pin	Capacitance (pF)					
F 111	XL	X1	X2	X4		
Α	0.0020	0.0024	0.0027	0.0027		
В	0.0020	0.0022	0.0024	0.0024		
С	0.0018	0.0018	0.0022	0.0023		

Description	Intrinsic Delay (ns)				K _{load} (ns/pF)		
	XL	X1	X2	Х4	XL	X1	X2	Х4
$A \rightarrow Y \uparrow$	0.1258	0.1135	0.1081	0.1198	5.7088	3.6164	2.3214	1.2282
$A \ \rightarrow \ Y \ \downarrow$	0.1445	0.1325	0.1178	0.1341	5.0941	3.2759	1.5199	0.8501
$B \to Y \uparrow$	0.1066	0.0995	0.0989	0.1156	5.7045	3.6823	2.3704	1.2275
$B \to Y \downarrow$	0.1463	0.1349	0.1174	0.1224	5.0937	3.2762	1.4019	0.8489
$C \rightarrow Y \uparrow$	0.0614	0.0644	0.0664	0.0741	5.7529	3.6569	2.3573	1.2218
$C \rightarrow Y \downarrow$	0.0692	0.0618	0.0538	0.0603	5.0851	3.2721	1.4427	0.8003

Cell Description

The XOR2 cell provides a logical EXCLUSIVE OR of two inputs (A,B). The output (Y) is represented by the logic equation:

$$\mathsf{Y} = (A {\bullet} \overline{B}) + (\overline{A} {\bullet} B)$$

Logic Symbol

Function Table

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

Cell Size

Drive Strength	Height (um)	Width (um)
XOR2XLAD	2.52	2.24
XOR2X1AD	2.52	2.24
XOR2X2AD	2.52	2.80
XOR2X3AD	2.52	4.48
XOR2X4AD	2.52	4.48
XOR2X8AD	2.52	7.84

AC Power

Pin	Power (uW/MHz)							
	XL	X1	X2	Х3	X4	X8		
Α	0.0031	0.0037	0.0063	0.0094	0.0114	0.0217		
В	0.0043	0.0053	0.0094	0.0147	0.0182	0.0360		

Pin Capacitance

Pin	Capacitance (pF)							
F	XL	X1	X2	Х3	X4	X8		
Α	0.0018	0.0019	0.0024	0.0031	0.0037	0.0072		
В	0.0014	0.0018	0.0027	0.0042	0.0053	0.0106		

Delays at 25°C,1.0V, Typical Process

D	escr	iptic	n	Intrinsic Delay (ns)					
				XL	X1	X2	Х3	X4	X8
Α	\rightarrow	Υ	\uparrow	0.0293	0.0261	0.0255	0.0264	0.0245	0.0241
Α	\rightarrow	Υ	\downarrow	0.0328	0.0333	0.0368	0.0360	0.0328	0.0320
В	\rightarrow	Υ	\uparrow	0.0492	0.0429	0.0384	0.0394	0.0368	0.0367
В	\rightarrow	Υ	\downarrow	0.0542	0.0469	0.0441	0.0454	0.0420	0.0419

Delays at 25°C,1.0V, Typical Process (Cont'd.)

Description	K _{load} (ns/pF)					
	XL	X1	X2	Х3	X4	X8
$A \ \rightarrow \ Y \ \uparrow$	8.1224	5.9384	3.2722	2.0743	1.5744	0.8011
$A \ \rightarrow \ Y \ \downarrow$	6.0025	4.5293	2.0071	1.2570	0.9614	0.4763
$B \to Y \uparrow$	8.1142	5.8867	3.2548	2.1161	1.5937	0.8123
$B \ \to \ Y \ \downarrow$	6.2696	4.6809	2.1006	1.3182	1.0004	0.4946

XOR3

TSMC CLN90G

Cell Description

The XOR3 cell provides a logical EXCLUSIVE OR of three inputs (A,B,C). The output (Y) is represented by the following equation:

 $Y = A \oplus B \oplus C$

Logic Symbol

Function Table

Α	В	С	Υ
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Cell Size

Drive Strength	Height (um)	Width (um)
XOR3XLAD	2.52	4.76
XOR3X1AD	2.52	5.32
XOR3X2AD	2.52	5.32
XOR3X4AD	2.52	6.16

Pin	Power (uW/MHz)					
	XL	X1	X2	X4		
Α	0.0128	0.0158	0.0210	0.0300		
В	0.0108	0.0126	0.0159	0.0249		
С	0.0056	0.0067	0.0090	0.0130		

Pin Capacitance

Pin	Capacitance (pF)						
	XL	X1	X2	X4			
Α	0.0020	0.0024	0.0027	0.0027			
В	0.0021	0.0022	0.0025	0.0024			
С	0.0029	0.0030	0.0038	0.0040			

Description	Intrinsic Delay (ns)			K _{load} (ns/pF)				
	XL	X1	X2	Х4	XL	X1	X2	Х4
$A \rightarrow Y \uparrow$	0.1276	0.1152	0.1100	0.1190	5.7435	3.6231	2.3230	1.2288
$A \ \rightarrow \ Y \ \downarrow$	0.1433	0.1319	0.1165	0.1354	5.0977	3.2906	1.5632	0.8522
$B \to Y \uparrow$	0.1079	0.1010	0.0985	0.1145	5.7388	3.6222	2.3758	1.2287
$B \ \to \ Y \ \downarrow$	0.1462	0.1349	0.1151	0.1232	5.0972	3.2910	1.4246	0.8517
$C \rightarrow Y \uparrow$	0.0749	0.0720	0.0613	0.0619	5.7139	3.6126	2.3182	1.1839
$C \rightarrow Y \downarrow$	0.0669	0.0610	0.0608	0.0709	5.0532	3.2683	1.5673	0.8288