Package 'geofluidprop'

January 26, 2023

· ·
Version 1.3
Type Package
Title R wrapper for the geofluidprop library
Date 2023-01-26
Maintainer Norihiro Watanabe <norihiro.watanabe@aist.go.jp></norihiro.watanabe@aist.go.jp>
Description An R wrapper for the geofluidprop library for computing physical properties of geological fluids.
License GPL (>= 3)
URL https://github.com/aist-rerc-geothermal/geofluidprop-R
Depends R (>= $3.0.0$)
Imports dplyr, ggplot2, rlang
RoxygenNote 7.2.2
Encoding UTF-8
Suggests testthat, knitr, rmarkdown,
VignetteBuilder knitr
B topics documented: bulk_ec_Archie bulk_ec_HSupper bulk_ec_ModifiedArchie driesner07_H2O_NaCl_estimate_density_from_M0 driesner07_H2O_NaCl_get_phase_relation_on_Tp_space driesner07_H2O_NaCl_get_properties_TpX
driesner07_H2O_NaCl_get_Tp_curve_on_F_VL_boundary

2 R topics documented:

driesner07_H2O_NaCl_pc_T	. 8
driesner07_H2O_NaCl_pc_T2	. 8
driesner07_H2O_NaCl_phase_Tpx	
driesner07_H2O_NaCl_plot_phase_relation_on_Tp_space	. 9
driesner07_H2O_NaCl_rho_pTx	
driesner07_H2O_NaCl_rho_singlephase_pTx	10
driesner07_H2O_NaCl_singlephase_h_Tpx	
driesner07_H2O_NaCl_singlephase_p_rhoTx	
driesner07_H2O_NaCl_Tc_x	
driesner07_H2O_NaCl_VH_vol_frac_h	
driesner07_H2O_NaCl_VH_xv_Tp	
driesner07_H2O_NaCl_VLH_p_T	
driesner07_H2O_NaCl_VLH_T_xv	
driesner07_H2O_NaCl_VLH_xl_T	
driesner07_H2O_NaCl_VLH_xv_T	
driesner07_H2O_NaCl_VL_mass_frac_l	
driesner07_H2O_NaCl_VL_mass_frac_v	
driesner07_H2O_NaCl_VL_pl_Tx	
driesner07_H2O_NaCl_VL_pv_Tx	
driesner07_H2O_NaCl_VL_rhol_Tp	
driesner07_H2O_NaCl_VL_rhov_Tp	
driesner07_H2O_NaCl_VL_vol_frac_l	
driesner07_H2O_NaCl_VL_vol_frac_v	
driesner07_H2O_NaCl_VL_xl_Tp	
driesner07_H2O_NaCl_VL_xv_Tp	. 20
driesner07_H2O_NaCl_write_phase_relation_on_Tp_space	. 20
driesner07_H2O_NaCl_xc_T	. 21
geofluidprop	. 21
granite_ec_Olhoeft1981_T	. 21
H2ONaCl_b_to_M	
H2ONaCl_b_to_massfrac	
H2ONaCl_b_to_x	
H2ONaCl_ec_SakumaIchiki2016_highP	
H2ONaCl_ec_SakumaIchiki2016_lowP	
H2ONaCl ec SenGoode1992	
H2ONaCl_ec_SinmyoKeppler2017	
H2ONaCl ec WatanabeEtAl2021 Tpm	
H2ONaCl_ec_WatanabeEtAl2022_density_model_Tpm	
H2ONaCl_massfrac_to_b	
H2ONaCl massfrac to M	
H2ONaCl_massfrac_to_x	
H2ONaCl_molar_ec_WatanabeEtAl2021_vism	
H2ONaCl_M_to_b	
H2ONaCl_M_to_massfrac	
H2ONaCl_M_to_x	
H2ONaCl_x_to_massfrac	
iapws95_rho_pT	
klyukinetal2017_H2O_NaCl_viscosity_rhoTx	. 31

bulk_ec_Archie 3

bulk	_ec_Archie	Bulk	electi	rica	al c	ona	luc	tiv	ity	of	flı	uid-	-sc	olid	! m	ixi	tur	es	bo	ıse	 on		·ch	ie'	
Index																									30
	toK					•			•		•		•		•	•		•	•		 •	•		•	35
	toC																								
	printf																								
	phi_HSupper_ec																								33
	phi_Archie_ec																								33
	melt_ec_rhyolite_0	GuoEtA	2016	_T	pw																				32
	melt_ec_rhyolite_0	Gaillard2	2004_	_Tp	w .																				32

Description

Bulk electrical conductivity of fluid-solid mixtures based on Archie's law

Usage

```
bulk_ec_Archie(phi, sigma_f, m, a = 1)
```

Arguments

```
phi porosity [-]
sigma_f fluid electrical conductivity [S/m]
m cementation exponent [-]
a tortuosity factor [-]
```

Value

bulk electrical conductivity [S/m]

bulk_ec_HSupper	Bulk electrical conductivity of fluid-solid mixtures from Hashin-
	Shtrikman upper bound

Description

Bulk electrical conductivity of fluid-solid mixtures from Hashin-Shtrikman upper bound

Usage

```
bulk_ec_HSupper(phi, sigma_f, sigma_s)
```

Arguments

phi porosity [-]

sigma_f fluid electrical conductivity [S/m]
sigma_s Solid electrical conductivity [S/m]

Value

bulk electrical conductivity [S/m]

bulk_ec_ModifiedArchie

Bulk electrical conductivity of fluid-solid mixtures based on modified Archie's law

Description

Bulk electrical conductivity of fluid-solid mixtures based on modified Archie's law

Usage

```
bulk_ec_ModifiedArchie(phi, sigma_f, sigma_s, m)
```

Arguments

phi porosity [-]

sigma_f fluid electrical conductivity [S/m]
sigma_s Solid electrical conductivity [S/m]

m cementation exponent [-]

Value

bulk electrical conductivity [S/m]

Description

Estimate density from concentration

Usage

```
driesner07_H20_NaCl_estimate_density_from_M0(M0)
```

Arguments

M0

Molar concentration at room temperature [mol/L]

Value

density [kg/m3]

```
driesner07_H20_NaCl_get_phase_relation_on_Tp_space

get information about H2O-NaCl phase relation at the given NaCl

mass fraction, based on Driesner & Heinrich (2007)
```

Description

get information about H2O-NaCl phase relation at the given NaCl mass fraction, based on Driesner & Heinrich (2007)

Usage

```
driesner07_H20_NaCl_get_phase_relation_on_Tp_space(massfrac_NaCl, TC_max = 800)
```

Arguments

massfrac_NaCl NaCl mass fraction (bulk) [kg/kg]

TC_max Maximum temperature to be calculated [K]

Value

a list object including all the phase relation information

driesner07_H20_NaCl_get_properties_TpX

Get H2O-NaCl fluid properties at the given temperature, pressure, and NaCl mass fraction

Description

Get H2O-NaCl fluid properties at the given temperature, pressure, and NaCl mass fraction

Usage

```
driesner07_H20_NaCl_get_properties_TpX(TK, p, X, print = FALSE)
```

Arguments

TK Temeprature [K]
p Pressure [Pa]

X Bulk NaCl mass fraction [kg/kg]

print TRUE for printing the calculated properties

Value

a nested list object including the fluid properties

```
driesner07_H20_NaCl_get_Tp_curve_on_F_VL_boundary
```

get an array of T and p values along a phase boundary between F and VL regions

Description

get an array of T and p values along a phase boundary between F and VL regions

Usage

```
driesner07_H20_NaCl_get_Tp_curve_on_F_VL_boundary(massfrac_NaCl, TCmax)
```

Arguments

 ${\tt massfrac_NaCl} \quad NaCl \ mass \ fraction \ (bulk) \ [kg/kg]$

TCmax Maximum temperature to be calculated [K]

Value

dataframe object including calculated TK and p values

driesner07_H20_NaCl_get_Tp_curve_on_VL_VH_boundary

get an array of T and p values along a phase boundary between VL

and VH regions

Description

get an array of T and p values along a phase boundary between VL and VH regions

Usage

```
driesner07_H2O_NaCl_get_Tp_curve_on_VL_VH_boundary(TCmax, n = 50)
```

Arguments

TCmax Maximum temperature to be calculated [K]
n the number of sampling temperatures

Value

dataframe object including calculated TK and p values

```
driesner07_H2O_NaCl_LH_xl_Tp
```

Saturated liquid composition at L+H coexisting, Function of Temperature and Pressure

Description

The function returns the saturated liquid composition at L+Halite coexisting surface for given temperature and pressure.

Usage

```
driesner07_H20_NaCl_LH_xl_Tp(TK, p)
```

Arguments

TK Temperature [K]
p Pressure [Pa]

Value

Mole fraction [-]

```
driesner07_H2O_NaCl_pc_T
```

Critical pressuer of H2O-NaCl fluid as a function of temperature

Description

Returns critical pressure of H2O-NaCl fluid at the given temperature

Usage

```
driesner07_H20_NaCl_pc_T(TK)
```

Arguments

ΤK

Temperature [K]

Value

Critical pressure [Pa]

```
driesner07_H20_NaCl_pc_T2
```

 $\label{lem:continuous} Critical\ pressuer\ of\ H2O-NaCl\ fluid\ as\ a\ function\ of\ temperature\ using\ saturation\ pressure\ of\ water\ below\ critical\ temperature$

Description

Returns critical pressure of H2O-NaCl fluid at the given temperature

Usage

```
driesner07_H20_NaCl_pc_T2(TK)
```

Arguments

ΤK

Temperature [K]

Value

Critical pressure [Pa]

```
driesner07_H2O_NaCl_phase_Tpx
```

Phase id of H2O-NaCl fluid as a function of temperature, pressure, and NaCl composition

Description

Returns phase id of H2O-NaCl fluid at the given temperature, pressure, and bulk salinity

Usage

```
driesner07_H20_NaCl_phase_Tpx(TK, p, x)
```

Arguments

TK Temeprature [K]
p Pressure [Pa]

x Bulk composition (mole fraction) of NaCl [mol/mol]

Value

phase id

```
driesner07_H20_NaCl_plot_phase_relation_on_Tp_space

plot H2O-NaCl phase diagram on T-p space
```

Description

plot H2O-NaCl phase diagram on T-p space

Usage

```
driesner07_H20_NaCl_plot_phase_relation_on_Tp_space(dat, TC_range_max = 800)
```

Arguments

dat H2O-NaCl phase relation information

TC_range_max Maximum temperature to be plotted [K]

```
driesner07_H20_NaCl_rho_pTx
```

Salinewater density, Function of Temperature, Pressure, and composition

Description

The function returns the saline water density for given temperature, pressure, and composition.

Usage

```
driesner07_H20_NaCl_rho_pTx(p, TK, x)
```

Arguments

р	Pressure [Pa]
TK	Temperature [K]
Х	Mole fraction [-]

Value

Density [kg/m3]

```
driesner07_H20_NaCl_rho_singlephase_pTx

Salinewater density, Function of Temperature, Pressure, and composition
```

Description

The function returns the saline water density for given temperature, pressure, and composition.

Usage

```
driesner07_H20_NaCl_rho_singlephase_pTx(p, TK, x)
```

Arguments

р	Pressure [Pa]
TK	Temperature [K]
X	Mole fraction [-]

Value

Density [kg/m3]

```
driesner07_H20_NaCl_singlephase_h_Tpx
```

Salinewater Specific Enthalphy, Function of Temperature, Pressure, and composition

Description

The function returns the saline water specific enthalpy for given temperature, pressure, and composition.

Usage

```
driesner07_H20_NaCl_singlephase_h_Tpx(TK, p, x)
```

Arguments

TK	Temperature [K]
p	Pressure [Pa]
X	Mole fraction [-]

Value

Specific Enthalpy [J/kg]

```
driesner07_H20_NaCl_singlephase_p_rhoTx

calculate pressure from salinewater density and salinity
```

Description

calculate pressure from salinewater density and salinity

Usage

```
driesner07_H20_NaCl_singlephase_p_rhoTx(rho, TK, x, pVL, pmax = 5e+08)
```

Arguments

rho	Density [kg/m ³]
TK	Temperature [K]
X	Mole fraction [-]

pVL V-L pressure used as lower bound [Pa]

pmax upper bound of pressure [Pa]

Value

pressure [Pa]

driesner07_H2O_NaCl_Tc_x

Critical temperature of H2O-NaCl fluid as a function of NaCl composition

Description

Returns critical temperature of H2O-NaCl fluid at the given composition

Usage

```
driesner07_H20_NaCl_Tc_x(x)
```

Arguments

Х

Composition (mole fraction) of NaCl [mol/mol]

Value

Temperature [K]

```
driesner07_H2O_NaCl_VH_vol_frac_h
```

 $Halite\ volume\ fraction\ in\ V+H\ phase$

Description

The function returns the solid volume fraction in V+H phase for given temperature, pressure, and composition.

Usage

```
driesner07_H20_NaCl_VH_vol_frac_h(TK, p, x)
```

Arguments

TK Temperature [K]
p Pressure [Pa]

x NaCl composition [mol/mol]

Value

Volume fraction [m3/m3]

```
driesner07_H2O_NaCl_VH_xv_Tp
```

Saturated vapor composition at V+H coexisting, Function of Temperature and Pressure

Description

The function returns the saturated vapor composition at V+Halite coexisting surface for given temperature and pressure.

Usage

```
driesner07_H20_NaCl_VH_xv_Tp(TK, p)
```

Arguments

TK Temperature [K]
p Pressure [Pa]

Value

Mole fraction [-]

```
driesner07_H20_NaCl_VLH_p_T
```

Saturation pressure at V+L+H surface, Function of Temperature

Description

The function returns the saturation pressure at V+L+Halite coexisting surface for given temperature.

Usage

```
driesner07_H20_NaCl_VLH_p_T(TK)
```

Arguments

TK Temperature [K]

Value

Pressure [Pa]

```
driesner07_H2O_NaCl_VLH_T_xv
```

get temperature of VLH curve at the given vapor x

Description

get temperature of VLH curve at the given vapor x

Usage

```
driesner07_H20_NaCl_VLH_T_xv(xv)
```

Arguments

χV

NaCl composition (mole fraction) of vapor [mol/mol]

Value

Temperature [K]

```
driesner07_H2O_NaCl_VLH_xl_T
```

Saturated liquid composition at V+L+H surface, Function of Temperature

Description

The function returns the saturated liquid composition at V+L+Halite coexisting surface for given temperature.

Usage

```
driesner07_H20_NaCl_VLH_xl_T(TK)
```

Arguments

ΤK

Temperature [K]

Value

Mole fraction [-]

```
driesner07_H2O_NaCl_VLH_xv_T
```

Saturated vapor composition at V+L+H surface, Function of Temperature

Description

The function returns the saturated vapor composition at V+L+Halite coexisting surface for given temperature.

Usage

```
driesner07_H20_NaCl_VLH_xv_T(TK)
```

Arguments

TK Temperature [K]

Value

Mole fraction [-]

```
\label{lem:continuous} {\it Liquid mass frac_1} \\ {\it Liquid mass fraction in V+L phase}
```

Description

The function returns the liquid mass fraction in V+L phase for given temperature, pressure, and composition.

Usage

```
driesner07_H20_NaCl_VL_mass_frac_l(TK, p, x)
```

Arguments

TK Temperature [K]
p Pressure [Pa]

x NaCl composition [mol/mol]

Value

Mass fraction [kg/kg]

```
\label{lem:continuous} {\it Vapor mass frac_v} Vapor \textit{mass fraction in $V$+$L phase}
```

Description

The function returns the vapor mass fraction in V+L phase for given temperature, pressure, and composition.

Usage

```
driesner07_H20_NaCl_VL_mass_frac_v(TK, p, x)
```

Arguments

TK Temperature [K]
p Pressure [Pa]

x NaCl composition [mol/mol]

Value

Mass fraction [kg/kg]

```
driesner07_H20_NaCl_VL_pl_Tx

get liquid phase pressure in V+L region at the given T and x
```

Description

get liquid phase pressure in V+L region at the given T and x

Usage

```
driesner07_H20_NaCl_VL_pl_Tx(TK, x)
```

Arguments

TK Temperature [K]

x Bulk composition (mole fraction) of NaCl [mol/mol]

Value

a list of liquid pressures [Pa]

```
driesner07_H2O_NaCl_VL_pv_Tx
```

get vapor phase pressure(s) in V+L region at the given T and x

Description

get vapor phase pressure(s) in V+L region at the given T and x

Usage

```
driesner07_H20_NaCl_VL_pv_Tx(TK, x)
```

Arguments

TK Temperature [K]

x Bulk composition (mole fraction) of NaCl [mol/mol]

Value

a list of vapor pressures [Pa]

```
driesner07_H2O_NaCl_VL_rhol_Tp
```

Saturated liquid density at V+L surface, Function of Temperature and Pressure

Description

The function returns the saturated liquid density at V+L surface for given temperature and pressure.

Usage

```
driesner07_H20_NaCl_VL_rhol_Tp(TK, p)
```

Arguments

TK Temperature [K]
p Pressure [Pa]

Value

Density [kg/m3]

driesner07_H2O_NaCl_VL_rhov_Tp

Saturated vapor density at V+L surface, Function of Temperature and Pressure

Description

The function returns the saturated vapor density at V+L surface for given temperature and pressure.

Usage

```
driesner07_H20_NaCl_VL_rhov_Tp(TK, p)
```

Arguments

TK Temperature [K]
p Pressure [Pa]

Value

Density [kg/m3]

driesner07_H20_NaCl_VL_vol_frac_l

Liquid volume fraction in V+L phase

Description

The function returns the liquid volume fraction in V+L phase for given temperature, pressure, and composition.

Usage

```
driesner07_H20_NaCl_VL_vol_frac_l(TK, p, x)
```

Arguments

TK Temperature [K]
p Pressure [Pa]

x NaCl composition [mol/mol]

Value

Volume fraction [m3/m3]

```
driesner07_H2O_NaCl_VL_vol_frac_v
```

Vapor volume fraction in V+L phase

Description

The function returns the vapor volume fraction in V+L phase for given temperature, pressure, and composition.

Usage

```
driesner07_H20_NaCl_VL_vol_frac_v(TK, p, x)
```

Arguments

TK Temperature [K] p Pressure [Pa]

x NaCl composition [mol/mol]

Value

Volume fraction [m3/m3]

```
driesner07_H2O_NaCl_VL_xl_Tp
```

Saturated liquid composition at V+L surface, Function of Temperature and Pressure

Description

The function returns the saturated liquid composition at V+L surface for given temperature and pressure.

Usage

```
driesner07_H20_NaCl_VL_xl_Tp(TK, p)
```

Arguments

TK Temperature [K]
p Pressure [Pa]

Value

Mole fraction [-]

```
driesner07_H2O_NaCl_VL_xv_Tp
```

Saturated vapor composition at V+L surface, Function of Temperature and Pressure

Description

The function returns the saturated vapor composition at V+L surface for given temperature and pressure.

Usage

```
driesner07_H20_NaCl_VL_xv_Tp(TK, p)
```

Arguments

TK Temperature [K]
p Pressure [Pa]

Value

Mole fraction [-]

```
driesner07_H20_NaCl_write_phase_relation_on_Tp_space 
 save H2O-NaCl phase relations on T-p space to a text file
```

Description

save H2O-NaCl phase relations on T-p space to a text file

Usage

```
driesner07_H20_NaCl_write_phase_relation_on_Tp_space(dat, filename)
```

Arguments

dat H2O-NaCl phase relation information

filename Output file name

```
driesner07_H2O_NaCl_xc_T
```

Critical NaCl composition of H2O-NaCl fluid as a function of temperature

Description

Returns critical composition of H2O-NaCl fluid at the given temperature

Usage

```
driesner07_H20_NaCl_xc_T(TK)
```

Arguments

ΤK

Temperature [K]

Value

Critical composition (mole fraction) of NaCl [mol/mol]

geofluidprop

geofluidprop

Description

A library for computing physical properties of geological fluids

```
granite_ec_Olhoeft1981_T
```

Electrical conductivity model for dry granite based on Olhoeft (1981, JGR) figure

Description

Electrical conductivity model for dry granite based on Olhoeft (1981, JGR) figure

Usage

```
granite_ec_Olhoeft1981_T(TK)
```

Arguments

ΤK

Temperature [K]

Value

electrical conductivity of dry granite [S/m]

H2ONaCl_b_to_M

Convert H2O-NaCl concentration unit from molality to mole fraction

Description

Convert concentration unit of saline water

Usage

```
H2ONaCl_b_to_M(m, rho = 998.2)
```

Arguments

m molality [mol/kg-H2O]

rho density [kg/m3]

Value

Molar concentration [mol/L]

H20NaCl_b_to_massfrac Convert H2O-NaCl concentration unit from molality to mass fraction

Description

Convert H2O-NaCl concentration unit from molality to mass fraction

Usage

```
H20NaCl_b_to_massfrac(b)
```

Arguments

b molality [mol/kg-H2O]

Value

mass fraction of NaCl [kg/kg]

H2ONaCl_b_to_x

H20NaCl_b_to_x

Convert H2O-NaCl concentration unit from molality to mole fraction

Description

Convert concentration unit of saline water

Usage

```
H2ONaCl_b_to_x(molality)
```

Arguments

molality

molality [mol/kg-H2O]

Value

Mole fraction [-]

H2ONaCl_ec_SakumaIchiki2016_highP

H2O-NaCl fluid electrical conductivity model in Sakuma and Ichiki (2016) for high pressures

Description

The model is valid for 0.2-2 GPa, 673-2000K, 0.6-9.6wt%.

Usage

```
H2ONaCl_ec_SakumaIchiki2016_highP(p, T, c)
```

Arguments

p Pressure [MPa]
T Temperature [K]
c Salinity [wt%]

Value

Electrical conductivity [ohm^-1 m^-1]

References

Sakuma, H., Ichiki, M. (2016) Electrical conductivity of NaCl-H2O fluid in the crust. JGR Solid Earth.

H2ONaCl_ec_SakumaIchiki2016_lowP

H2O-NaCl fluid electrical conductivity model in Sakuma and Ichiki (2016) for low pressures

Description

The model is valid for <0.2 GPa, <600K, 0.6-9.6wt% NaCl

Usage

```
H2ONaCl_ec_SakumaIchiki2016_lowP(p, TK, c)
```

Arguments

p Pressure [MPa]

TK Temperature [K]

c Salinity [wt%]

Value

Electrical conductivity [ohm^-1 m^-1]

References

Sakuma, H., Ichiki, M. (2016) Electrical conductivity of NaCl-H2O fluid in the crust. JGR Solid Earth.

```
H2ONaCl_ec_SenGoode1992
```

H2O-NaCl fluid electrical conductivity model by Sen & Goode (1992)

Description

The model is valid for 20-200 C.

Usage

```
H2ONaCl_ec_SenGoode1992(m, TC)
```

Arguments

m NaCl molality [mol/kg]
TC Temperature [deg C]

25

Value

Electrical conductivity [S/m]

References

Sen, P.N., Goode, P.A. (1992) Influence of temperature on electrical conductivity of shaly sands, Geophysics 57 (1), 89–96.

Sen, P.N., Goode, P.A. (1992) Errata, to "influence of temperature on electrical conductivity of shaly sands", Geophysics 57 (12), 1658.

H2ONaCl_ec_SinmyoKeppler2017

H2O-NaCl fluid electrical conductivity model by Sinmyo and Keppler (2017)

Description

H2O-NaCl fluid electrical conductivity model by Sinmyo and Keppler (2017)

Usage

```
H20NaCl_ec_SinmyoKeppler2017(pMPa, TK, c_wtp)
```

Arguments

pMPa Pressure [MPa]

TK Temperature [K]

c_wtp Salinity [wt%]

Value

Electrical conductivity [ohm^-1 m^-1]

References

Sinmyo, R., Keppler, H. (2017) Electrical conductivity of NaCl-bearing aqueous fluids to 600C and 1GPa. Contrib Mineral Petrol 172:4

```
H2ONaCl_ec_WatanabeEtAl2021_Tpm
```

H2O-NaCl fluid electrical conductivity model in Watanabe et al (2021, FPE)

Description

H2O-NaCl fluid electrical conductivity model in Watanabe et al (2021, FPE)

Usage

```
H2ONaCl_ec_WatanabeEtAl2021_Tpm(TK, pMPa, m)
```

Arguments

TK Temperature [K] pMPa Pressure [MPa]

m NaCl molality [mol/kg-H2O]

Value

Electrical conductivity [S/m]

```
H2ONaCl_ec_WatanabeEtAl2022_density_model_Tpm
```

H2O-NaCl fluid electrical conductivity model for low density conditions in Watanabe et al (2022, Geothermics)

Description

H2O-NaCl fluid electrical conductivity model for low density conditions in Watanabe et al (2022, Geothermics)

Usage

```
H20NaCl_ec_WatanabeEtAl2022_density_model_Tpm(TK, pMPa, m)
```

Arguments

TK Temperature [K] pMPa Pressure [MPa]

m NaCl molality [mol/kg-H2O]

Value

Electrical conductivity [S/m]

H2ONaCl_massfrac_to_b Convert H2O-NaCl concentration unit from mass fraction to molality

Description

Convert H2O-NaCl concentration unit from mass fraction to molality

Usage

```
H20NaCl_massfrac_to_b(X)
```

Arguments

X Mass fraction [kg/kg]

Value

molality [mol/kg-H2O]

H2ONaCl_massfrac_to_M Convert H2O-NaCl concentration unit from mass fraction to molar concentration

Description

Convert H2O-NaCl concentration unit from mass fraction to molar concentration

Usage

```
H2ONaCl_massfrac_to_M(X, rho = 998.2)
```

Arguments

X Mass fraction [kg/kg]rho Solution density [kg/m3]

Value

Molar concentraion [mol/L]

 $\begin{tabular}{ll} H2ONaCl_massfrac_to_x & Convert \ H2O-NaCl \ concentration \ unit \ from \ mass \ fraction \ to \ mole \\ & fraction \end{tabular}$

Description

Convert concentration unit of saline water

Usage

```
H20NaCl_massfrac_to_x(mass_frac)
```

Arguments

mass_frac Mass fraction [-]

Value

Mole fraction [-]

```
H2ONaCl_molar_ec_WatanabeEtAl2021_vism

Molar electrical conductivity model of H2O-N
```

Molar electrical conductivity model of H2O-NaCl fluids in Watanabe et al (2021, FPE)

Description

Molar electrical conductivity model of H2O-NaCl fluids in Watanabe et al (2021, FPE)

Usage

```
H2ONaCl_molar_ec_WatanabeEtAl2021_vism(vis, m)
```

Arguments

vis viscosity [Pa s]

m NaCl molality [mol/kg-H2O]

Value

Molar conductivity [Sm^2/mol]

H2ONaCl_M_to_b

H2ONaCl_M_to_b

Convert H2O-NaCl concentration unit from molar concentration to mass fraction

Description

Convert concentration unit of saline water from molar concentration to mass fraction

Usage

```
H2ONaCl_M_to_b(M, rho = 998.2)
```

Arguments

Molar concentraion [mol/L] = [M]

rho Solution density [kg/m3]

Value

molality [mol/kg-H2O]

Description

Convert concentration unit of saline water from molar concentration to mass fraction

Usage

```
H2ONaCl_M_to_massfrac(M, rho = 998.2)
```

Arguments

Molar concentration [mol/L] = [M]

rho Solution density [kg/m3]

Value

Mass fraction [kg/kg]

H2ONaCl_M_to_x

Convert H2O-NaCl concentration unit from molar concentration to molar fraction

Description

Convert H2O-NaCl concentration unit from molar concentration to molar fraction

Usage

```
H2ONaCl_M_to_x(M, rho = 998.2)
```

Arguments

M Molarity [mol/L]

rho Solution density [kg/m3]

Value

Mole fraction of NaCl [mol/mol]

 $\mbox{H2ONaCl_x_to_massfrac}$ Convert H2O-NaCl concentration unit from mole fraction to mass fraction

Description

Convert concentration unit of saline water

Usage

```
H2ONaCl_x_to_massfrac(mole_frac)
```

Arguments

```
mole_frac Mole fraction [-]
```

Value

Mass fraction [-]

iapws95_rho_pT

ia	pws95	rho	nТ
тu	PWSJJ.	_1 110_	_ 12 1

Water density using IAPWS-95

Description

Water density using IAPWS-95

Usage

```
iapws95_rho_pT(pPa, TK)
```

Arguments

pPa pressure [Pa]

TK Temperature [K]

Value

water density [kg/m³]

```
klyukinetal2017_H2O_NaCl_viscosity_rhoTx
```

Dynamic Viscosity of Salinewater, Function of Density, Temperature, and Salinity

Description

Dynamic Viscosity of Salinewater, Function of Density, Temperature, and Salinity

Usage

```
klyukinetal2017_H20_NaCl_viscosity_rhoTx(rho, TK, x)
```

Arguments

rho Fluid density [kg/m3]
TK Temperature [K]

x Salinity in mole fraction [mol/mol]

Value

Dynamic viscosity [Pa s]

References

Klyukin, Y.I., Lowell R.P., Bodnar, R.J. (2017) A revised empirical model to calculate the dynamic viscosity of H2O-NaCl fluids at elevated temperatures and pressures (<=1000 C, <=500 MPa, 0-100 wt Equilibria 433, 193-205.

```
melt_ec_rhyolite_Gaillard2004_Tpw
```

Electrical conductivity model for hydrous rhyolitic-granitic melts in Gaillard (2004, EPSL)

Description

Electrical conductivity model for hydrous rhyolitic-granitic melts in Gaillard (2004, EPSL)

Usage

```
melt_ec_rhyolite_Gaillard2004_Tpw(TK, pMPa, wtp_H20)
```

Arguments

TK Temperature [K] pMPa Pressure [MPa]

wtp_H20 Weight percent of H2O [%]

Value

electrical conductivity [S/m]

```
melt_ec_rhyolite_GuoEtAl2016_Tpw
```

Electrical conductivity model for rhyolitic melt in Guo et al (2016, EPSL)

Description

Electrical conductivity model for rhyolitic melt in Guo et al (2016, EPSL)

Usage

```
melt_ec_rhyolite_GuoEtAl2016_Tpw(TK, pGPa, wtp_H20)
```

Arguments

TK Temperature [K] pGPa Pressure [GPa]

wtp_H20 Weight percent of H2O [%]

phi_Archie_ec 33

Value

electrical conductivity [S/m]

phi_Archie_ec

 $Calculate\ porosity\ from\ bulk\ electrical\ conductivity\ using\ Archie's\ law$

Description

Calculate porosity from bulk electrical conductivity using Archie's law

Usage

```
phi_Archie_ec(sigma_bulk, sigma_f, m)
```

Arguments

sigma_bulk bulk electrical conductivity [S/m] sigma_f fluid electrical conductivity [S/m]

m cementation exponent [-]

Value

porosity [-]

phi_HSupper_ec

Calculate porosity from bulk electrical conductivity using Hashin-Shtrikman upper bound

Description

Calculate porosity from bulk electrical conductivity using Hashin-Shtrikman upper bound

Usage

```
phi_HSupper_ec(sb, sf, ss)
```

Arguments

sb	bulk electrical conductivity [S/m]
sf	fluid electrical conductivity [S/m]
SS	Solid electrical conductivity [S/m]

Value

```
porosity [-]
```

toC

Description
C-like printf

Usage
printf(...)

Arguments
... arguments

toC convert temperature in Kelvin to degree C

Description

convert temperature in Kelvin to degree C

Usage

toC(TK)

Arguments

TK

temperature in K

Value

temperature in deg C

toK 35

toK

 $convert\ temperature\ in\ degree\ C\ to\ Kelvin$

Description

convert temperature in degree C to Kelvin

Usage

toK(TC)

Arguments

TC

temperature in deg C

Value

temperature in K

Index

```
bulk_ec_Archie, 3
                                                                                                                                                            driesner07_H20_NaCl_VLH_p_T, 13
bulk_ec_HSupper, 3
                                                                                                                                                            driesner07_H20_NaCl_VLH_T_xv, 14
bulk_ec_ModifiedArchie, 4
                                                                                                                                                            driesner07_H20_NaCl_VLH_xl_T, 14
                                                                                                                                                             driesner07_H20_NaCl_VLH_xv_T, 15
driesner 07\_H20\_NaCl\_estimate\_density\_from\_M0, driesner 07\_H20\_NaCl\_write\_phase\_relation\_on\_Tp\_space, driesner 07\_H20\_N
driesner07_H2O_NaCl_get_phase_relation_on_Tp_&paesner07_H2O_NaCl_xc_T, 21
driesner07_H20_NaCl_get_properties_TpX,
                                                                                                                                                             geofluidprop, 21
                                                                                                                                                             granite_ec_Olhoeft1981_T, 21
driesner07_H2O_NaCl_get_Tp_curve_on_F_VL_boundary,
                                                                                                                                                            H20NaCl_b_to_M, 22
\label{eq:converse_variation} driesner 07\_H20\_NaC1\_get\_Tp\_curve\_on\_VL\_VH\_bouH20NaC1\_b\_to\_massfrac, \\ 22\_NaC1\_get\_Tp\_curve\_on\_VL\_VH\_bouH20NaC1\_b\_to\_massfrac, \\ 22\_NaC1\_get\_Tp\_curve\_on\_VL\_VH\_bouH20NaC1\_b\_to\_massfrac, \\ 22\_NaC1\_get\_Tp\_curve\_on\_VL\_VH\_bouH20NaC1\_b\_to\_massfrac, \\ 22\_NaC1\_b\_to\_massfrac, \\ 22\_NaC1\_b\_to\_massfr
                                                                                                                                                            H20NaCl_b_to_x, 23
                                                                                                                                                            H2ONaCl_ec_SakumaIchiki2016_highP, 23
driesner07_H2O_NaCl_LH_xl_Tp, 7
                                                                                                                                                            H2ONaCl_ec_SakumaIchiki2016_lowP, 24
driesner07_H20_NaCl_pc_T, 8
                                                                                                                                                            H20NaCl_ec_SenGoode1992, 24
driesner07_H20_NaCl_pc_T2,8
                                                                                                                                                            H2ONaCl_ec_SinmyoKeppler2017, 25
driesner07_H20_NaCl_phase_Tpx, 9
driesner07\_H20\_NaCl\_plot\_phase\_relation\_on\_Tp_{\underline{-Space}}^{H20NaCl\_ec\_WatanabeEtAl2021\_Tpm}, \underline{26}
                                                                                                                                                             H2ONaCl_ec_WatanabeEtAl2022_density_model_Tpm,
                                                                                                                                                                                        26
driesner07_H2O_NaCl_rho_pTx, 10
                                                                                                                                                            H20NaCl_M_to_b, 29
driesner07_H20_NaCl_rho_singlephase_pTx,
                                                                                                                                                            H20NaCl_M_to_massfrac, 29
                                                                                                                                                            H20NaCl_M_to_x, 30
driesner07_H20_NaCl_singlephase_h_Tpx,
                                                                                                                                                            H20NaCl_massfrac_to_b, 27
                            11
                                                                                                                                                            H20NaCl_massfrac_to_M, 27
driesner07_H20_NaCl_singlephase_p_rhoTx,
                                                                                                                                                            H20NaCl_massfrac_to_x, 28
                                                                                                                                                            H2ONaCl_molar_ec_WatanabeEtAl2021_vism,
driesner07_H2O_NaCl_Tc_x, 12
driesner07_H20_NaCl_VH_vol_frac_h, 12
                                                                                                                                                            H20NaCl_x_to_massfrac, 30
driesner07_H2O_NaCl_VH_xv_Tp, 13
driesner07_H20_NaCl_VL_mass_frac_1, 15
                                                                                                                                                             iapws95_rho_pT, 31
driesner07_H20_NaCl_VL_mass_frac_v, 16
driesner07_H20_NaCl_VL_pl_Tx, 16
                                                                                                                                                            klyukinetal2017_H2O_NaCl_viscosity_rhoTx,
driesner07_H20_NaCl_VL_pv_Tx, 17
                                                                                                                                                                                        31
driesner07_H20_NaCl_VL_rhol_Tp, 17
driesner07_H20_NaCl_VL_rhov_Tp, 18
                                                                                                                                                            melt_ec_rhyolite_Gaillard2004_Tpw, 32
driesner07_H20_NaCl_VL_vol_frac_1, 18
                                                                                                                                                            melt_ec_rhyolite_GuoEtAl2016_Tpw, 32
driesner07_H2O_NaCl_VL_vol_frac_v, 19
driesner07_H20_NaCl_VL_xl_Tp, 19
                                                                                                                                                            phi_Archie_ec, 33
driesner07_H20_NaCl_VL_xv_Tp, 20
                                                                                                                                                            phi_HSupper_ec, 33
```

INDEX 37

printf, 34

toC, 34

toK, 35