

GENERAL SEMICONDUCTOR INDUSTRIES INC. DIODE AND TRANSISTOR PRODUCT CATALOG

This catalog contains a complete listing of discrete devices manufactured by General Semiconductor Industries, Inc.

A product listing of both JEDEC and General Semiconductor type numbers are shown in the front of each product section. This catalog is designed to supply the user with pertinent data on zener and reference diodes and power switching transistors. Complete device characterization is also supplied on General Semiconductor's TransZorb® (silicon transient voltage suppressor) and C²R® (high speed, high voltage switching transistor).

HOW TO USE THIS CATALOG:

Devices are listed numerically within specific categories enumerated in the Table of Contents.

TransZorbs are listed by the JEDEC types first followed by power capability then specific applications, and diodes by steady state power ratings. Transistors are categorized by continuous collector current rating.

If a JEDEC device type is not shown in the catalog, check the JEDEC Recommended Replacement Index.

HOW TO ORDER:

All devices in this catalog are available through your local distributor. For special device selection, consult your General Semiconductor sales representative,

OF

General Semiconductor Industries, Inc.

P.O. Box 3078

2001 West Tenth Place

Tempe, Arizona 85281

Phone (602) 968-3101 TWX 910 — 950-1942

TABLE OF CONTENTS

HUNTER ELECTRONIC
COMPONENTS LTD.
95 High Street
Pum mm
Buchs, SL1 7JZ
Tel. Burnham 65421
Telex. 818946

Numerical Index — Diodes Numerical Index — Transistors Available JEDEC Types or Suggested	xii
Replacements Index — Diodes	
Section 1 — TransZorbs®	
TransZorb Definition & Specifications	. 1-1
1.5KW, Metal	. 1-3
1.5KW, Molded	. 1-11
1.5KW, Leadless 5KW, Molded	. 1-13
15KW, Assembly	1-15
500W, Low Voltage	1-23
1.5KW, IC	1-25
Low Capacitance, Metal	1-33
Low Capacitance, Molded	1-35
1.5KW, Microprocessor	1-37
600W Molded	1-45
500W, Molded	1-47
Signal line Surge Suppressor	1-49
Low Capacitance Signal line Surge Suppressor	1-53
Section 2 — Zener Diodes	
1 Watt, Metal	2-1
2 Watt, Molded	2-4 2-6
2.5 Watt, Molded	2-7
5 Watt, Molded	2-8
10 Watt, Metal	2-9
50 Watt, Metal	2.15
	- 10
Section 3 — Temperature Compensated Diodes	2.0
Olodes (All voltage types available from 6.2V	2.10
Diodes (All voltage types available from 6.2V through 200V)	
Olodes (All voltage types available from 6.2V through 200V) 250 mW, Glass	3-1
Diodes (All voltage types available from 6.2V through 200V) 250 mW, Glass 400 mW & 500 mW, Glass 1 Watt, Metal	3-1 3-3
Diodes (All voltage types available from 6.2V through 200V) 250 mW, Glass 400 mW & 500 mW, Glass 1 Watt, Metal 10 Watt. Metal	3-1 3-3 3-5 3-7
Diodes (All voltage types available from 6.2V through 200V) 250 mW, Glass 400 mW & 500 mW, Glass 1 Watt, Metal 10 Watt, Metal 50 Watt, Metal	3-1 3-3 3-5 3-7 3-8
Diodes (All voltage types available from 6.2V through 200V) 250 mW, Glass 400 mW & 500 mW, Glass 1 Watt, Metal 10 Watt. Metal	3-1 3-3 3-5 3-7 3-8
Diodes (All voltage types available from 6.2V through 200V) 250 mW, Glass 400 mW & 500 mW, Glass 1 Watt, Metal 10 Watt, Metal 50 Watt, Metal	3-1 3-3 3-5 3-7 3-8
Olodes (All voltage types available from 6.2V through 200V) 250 mW, Glass 400 mW & 500 mW, Glass 1 Watt, Metal 10 Watt, Metal 50 Watt, Metal Molded Assemblies Section 4 — NPN Switching Transistors C ² R ³ Definition and Specification	3-1 3-3 3-5 3-7 3-8
Olodes (All voltage types available from 6.2V through 200V) 250 mW, Glass 400 mW & 500 mW, Glass 1 Watt, Metal 10 Watt, Metal 50 Watt, Metal Molded Assemblies Section 4 — NPN Switching Transistors C ² R [®] Definition and Specification Transistor Selected by Collector Current	3-1 3-3 3-5 3-7 3-8 3-9
Olodes (All voltage types available from 6.2V through 200V) 250 mW, Glass 400 mW & 500 mW, Glass 1 Watt, Metal 10 Watt, Metal 50 Watt, Metal Molded Assemblies Section 4 — NPN Switching Transistors C²R® Definition and Specification Transistor Selected by Collector Current I _C <3 amps	3-1 3-3 3-5 3-7 3-8 3-9 4-1
Olodes (All voltage types available from 6.2V through 200V) 250 mW, Glass 400 mW & 500 mW, Glass 1 Watt, Metal 10 Watt, Metal 50 Watt, Metal Molded Assemblies Section 4 — NPN Switching Transistors C²R® Definition and Specification Transistor Selected by Collector Current I _C <3 amps I _C <5 amps	3-1 3-3 3-5 3-7 3-8 3-9 4-1 4-3 4-6
Olodes (All voltage types available from 6.2V through 200V) 250 mW, Glass 400 mW & 500 mW, Glass 1 Watt, Metal 10 Watt, Metal 50 Watt, Metal Molded Assemblies Section 4 — NPN Switching Transistors C²R² Definition and Specification Transistor Selected by Collector Current Ic<3 amps Ic<5 amps Ic<7 amps	3-1 3-3 3-5 3-7 3-8 3-9 4-1 4-3 4-6 4-8
Call voltage types available from 6.2V through 200V) 250 mW, Glass 400 mW & 500 mW, Glass 1 Watt, Metal 10 Watt, Metal 50 Watt, Metal Molded Assemblies Section 4 — NPN Switching Transistors Call and Description and Specification Transistor Selected by Collector Current Ic 3 amps Ic 5 amps Ic 7 amps Ic 7 amps	3-1 3-3 3-5 3-7 3-8 3-9 4-1 4-3 4-6 4-8 4-9
Class (All voltage types available from 6.2V through 200V) 250 mW, Glass 400 mW & 500 mW, Glass 1 Watt, Metal 10 Watt, Metal 50 Watt, Metal Molded Assemblies Section 4 — NPN Switching Transistors C2R3 Definition and Specification Transistor Selected by Collector Current Ic<3 amps Ic<5 amps Ic<10 amps Ic<25 amps Ic<25 amps Ic<25 amps Ic<25 amps Ic<50 amps	3-1 3-3 3-5 3-7 3-8 3-9 4-1 4-3 4-6 4-8 4-9 4-10
Class (All voltage types available from 6.2V through 200V) 250 mW, Glass 400 mW & 500 mW, Glass 1 Watt, Metal 10 Watt, Metal 50 Watt, Metal Molded Assemblies Section 4 — NPN Switching Transistors C2R3 Definition and Specification Transistor Selected by Collector Current Ic<3 amps Ic<5 amps Ic<10 amps Ic<25 amps Ic<25 amps Ic<25 amps Ic<25 amps Ic<50 amps	3-1 3-3 3-5 3-7 3-8 3-9 4-1 4-3 4-6 4-8 4-9 4-10
Olodes (All voltage types available from 6.2V through 200V) 250 mW, Glass 400 mW & 500 mW, Glass 1 Watt, Metal 10 Watt, Metal 50 Watt, Metal Molded Assemblies Section 4 — NPN Switching Transistors C²P³ Definition and Specification Transistor Selected by Collector Current Ic<3 amps Ic<5 amps Ic<7 amps Ic<50 amps Ic<10 amps Ic<25 amps Specification Sheets Section 5 — Military Qualified Types and	3-1 3-3 3-5 3-7 3-8 3-9 4-1 4-3 4-6 4-8 4-9 4-10 4-11 4-13
Olodes (All voltage types available from 6.2V through 200V) 250 mW, Glass 400 mW & 500 mW, Glass 1 Watt, Metal 10 Watt, Metal 50 Watt, Metal Molded Assemblies Section 4 — NPN Switching Transistors C²R³ Definition and Specification Transistor Selected by Collector Current Ic<3 amps Ic<5 amps Ic<10 amps Ic<25 amps Ic<50 amps Specification Sheets Section 5 — Military Qualified Types and High-Rel Facilities JANJANTX(V) Types Available	3-1 3-3 3-5 3-7 3-8 3-9 4-1 4-3 4-6 4-8 4-9 4-10 4-11 4-13
Olodes (All voltage types available from 6.2V through 200V) 250 mW, Glass 400 mW & 500 mW, Glass 1 Watt, Metal 10 Watt, Metal 50 Watt, Metal Molded Assemblies Section 4 — NPN Switching Transistors C²P³ Definition and Specification Transistor Selected by Collector Current Ic<3 amps Ic<5 amps Ic<7 amps Ic<50 amps Ic<10 amps Ic<25 amps Specification Sheets Section 5 — Military Qualified Types and	3-1 3-3 3-5 3-7 3-8 3-9 4-1 4-3 4-6 4-8 4-9 4-10 4-11 4-13
(All voltage types available from 6.2V through 200V) 250 mW, Glass 400 mW & 500 mW, Glass 1 Watt, Metal 10 Watt, Metal 50 Watt, Metal Molded Assemblies Section 4 — NPN Switching Transistors C²R² Definition and Specification Transistor Selected by Collector Current Ic<3 amps Ic<5 amps Ic<10 amps Ic<25 amps Ic<50 amps Ic<50 amps Specification Sheets Section 5 — Military Qualified Types and High-Rel Facilities JAN/JANTX(V) Types Available Facilities and Equipment Capabilities	3-1 3-3 3-5 3-7 3-8 3-9 4-1 4-3 4-6 4-8 4-9 4-10 4-11 4-13
(All voltage types available from 6.2V through 200V) 250 mW, Glass 400 mW & 500 mW, Glass 1 Watt, Metal 10 Watt, Metal 50 Watt, Metal Molded Assemblies Section 4 — NPN Switching Transistors C²P³ Definition and Specification Transistor Selected by Collector Current Ic<3 amps Ic<5 amps Ic<7 amps Ic<50 amps Ic<50 amps Ic<50 amps Specification Sheets Section 5 — Military Qualified Types and High-Rel Facilities JAN/JANTX(V) Types Available Facilities and Equipment Capabilities Section 5 — Case Outlines Diodes	3-1 3-3 3-5 3-7 3-8 3-9 4-1 4-3 4-6 4-8 4-10 4-11 4-13
(All voltage types available from 6.2V through 200V) 250 mW, Glass 400 mW & 500 mW, Glass 1 Watt, Metal 10 Watt, Metal 50 Watt, Metal Molded Assemblies Section 4 — NPN Switching Transistors C²P³ Definition and Specification Transistor Selected by Collector Current Ic<3 amps Ic<5 amps Ic<7 amps Ic<50 amps Ic<50 amps Ic<50 amps Specification Sheets Section 5 — Military Qualified Types and High-Rel Facilities JAN/JANTX(V) Types Available Facilities and Equipment Capabilities Section 5 — Case Outlines Diodes	3-1 3-3 3-5 3-7 3-8 3-9 4-1 4-3 4-6 4-8 4-10 4-11 4-13
Care to the control of the control o	3-1 3-3 3-5 3-7 3-8 3-9 4-1 4-3 4-6 4-8 4-10 4-11 4-13

1

2

3

4

7

NUMERICAL INDEX — DIODES

	TYPE	P	AGE	TYPE	PAGE	TYPE	PAGE
	1N429		3-9	1N1510	2-1	1N1738	3-9
ı	1N821			1N1511	2-1	1N1739	
ı	1N823				2-1	1N1740	
l			_	1N1512	2-1	1N1740	3-9
				1N1512	2-1	1N1741	3-9
ı			٠.	1N1514	2-1	IN1/42	3-9
ł	1N827		3.1	1N1515	2-1	484705	
					2-1	1N1765	2-1
ı				1111510	2-1	1N1766	2-1
				1N1517	2-1	1N1767	2-1
ı				1N1517	2-1	1N1768	2-1
l			0.0		2-1	1N1769	2-1
Ė	1N937		3-3		2-1	414770	
İ					2-1	1N1770	2-1
1				1141320	2-1	1N1771	2-1
1				1N1520	2-1	1N1772	2-1
J					2-1	1N1773	2-1
l		***************************************	J-3		2-1	1N1774	2-1
	1N942		3-3		2-1	4814775	
l					2-1	1N1775	2-1
l				1111524	Z-1	1N1776	2-1
				1N1525	0.4	1N1777	2-1
					2-1	1N1778	2-1
ĺ	114040		3-3		2-1	1N1779	2-1
l	1N1351		2-0		2-1	4 1 1 7 0 0	
	1N1352				3-9	1N1780	<u>2</u> -1
	1N1353			1111330	3-9		2-1
	1N1354			1N1588	0.40	1N1782	2-1
	1N1355			1N1589	2-10	1N1783	2-1
l	1141000	••••••	2-9		2-10	1N1784	2-1
	1N1356		2-0		2-10	414705	
	1N1357				2-10	1N1785	2-1
	1N1358			1111592	2-10	1N1786	2-1
	1N1359			1N1593	2-10		2-1
	1N1360					1N1788	2-1
	1141000		2-9		2-10	1N1789	2-1
	1N1361		2-0		2-10	414700	
					2-10 2-10	1N1790	2-1
	1N1363			1111397	2-10		2-1
	1N1364			1N1598	2-10		2-1
					2-10		2-1
			3		2-10	111/94	2-1
	1N1366		2.0		2-10	1 N 1 70 F	•
	1N1367				2-10		2-1
	1N1368			1111002	2-10		2-1
				1N1603	2-10		2-1
	1N1370				2-10		2-1
			5		2-10	1N1799	2-1
	1N1371		2-9		2-10	1N1800	0.1
					2-10		2-1
				1141007	2-10		2-1
	1N1374			1N1608	2-10	1N1802	2-1
					2-10		2-10
					3-9	1111104	2-10
	1N1507		2-1		3-9	1111005	2.45
					3-9		2-10
				111/3/	3-9		2-10
•	114 1509	•••••••	۲۰۱			1N1807	2-10

								\
/	TYPE	PAGE	TYPE	PAGE	TYPE		AGE	1
ı	1N1808	2-10	1N2010	2-11	≈ 1N2807			
ı		2-10	1N2011	2-11	∴ 1N2808		2-15	
1					≈ 1N2809		2-15	
1	1111010	2-10	1N2012	2-11	≈ 1N2810		2-15	
1		2-10		1-2 2-2	≈ 1N2811			
1				I-2 2-2	1142011			
1		2-10			1N2812		2.15	
1		2-10	1N2034-1	I-2-3 2-2				
1	1N1814	2-10	1N2035-1	1-2-3-4 2-2				
1					🐃 1N2814			
ı	1N1815	2-10	1N2036-1	ı-2 2-2	1N2815		2-15	
1		2-11	1N2037-1	I-2-3 2-2	≈1N2816		2-15	
ı		2-11						
ı		2-11	1N2038-	1-2-3 2-2	1N2817		2-15	
1			1112000	1-2-3 2-2	≈ 1N2818			
1	101819	2-11			≈ 1N2819			
i			1N2040-1	1-2-3 2-2				
1	1N1820	2-11			≈ 1N2820			
1	1N1821	2-11	1N2041-	1-2 2-12	1N2821		2-15	
1		2-11	1N2042-	1-2 2-12				
	1N1823	2-11		1-2-3 2-12	≈ 1N2822		2-15	
1		2-11		1-2-3-4 2-12	× 1N2823		2-15	
1	1141024	Z-11		1-2 2-12	≈ 1N2824			
1		0.44	1142045-	1-2 2 12	≈ 1N2825			
l	1N1825	2-11	1110010					
1	1N1826	2-11	1N2046-	1-2-3 2-12	≈ 1N2826		2-15	
	1N1827	2-11		1-2-3 2-12				
1	1N1828	2-11	1N2048-	1-2-3 2-12	≈ 1N2827			
1	1N1829	2-11	1N2049-	1-2-3 2-12	³⁴ 1N2828		2-15	
	1111020			3-5	₩1N2829		2-15	
	1N1830	2-11			1N2830		2-15	
			1N2164	3-5	≈1N2831			
1	1N1831	2-11			, NZ00		0	
1	1N1832	2-11		3-5	≈ 1N2832		2-15	
1	1N1833	2-11		3-5				
	1N1834	2-11		3-5	₩ 1N2833		2-15	
1			1N2168	3-5				
	1N1835	2-11			≈ 1N2835			
1	1N1836	2-11	1N2169		≈ 1N2836		2-15	
1	1N1875	2-2	1N2170	3-5				
1	1N1876	2-2	1N2171	3-5	≈ 1N2837		2-15	
1	1N1877			2-11	1N2838			
1	11410//	2-2		2-11	1N2839			
1			1112499	Z-11	1N2840			
1	1N1878	2-2	4510202	0.11				
1	1N1879	2-2		2-11	1N2841		2-13	
1	1N1880	2-2		3-5				
1	1N1881	2-2		3-5				
1	1N1882	2-2	1N2622	3-5	1N2843			
1			1N2623	3-5	1N2844		2-15	
1	1N1883	2-2			1N2845		2-15	
ı	1N1884		1N2624	3-5	1N2846	***************************************		
			1N2765	3-9	1112010	•••••		
	1N1885			3-9	≈1N2970		2-13	
	1N1886		1N2766			***************************************	_	
1	1N1887	2-2	1N2767	3-9		••••••		
			1N2768	3-9	≈1N2972	•••••		
	1N1888	2-2			≈ 1N2973		2-13	
1	1N1889		1N2769	3-9				
1		2-2	1N2770	3-9	≈41N2974		2-13	
1	.141000	= =	1N2804	2-15	≈ 1N2975			
1	1N2008	2-11	≈1N2805	2-15	≈ 1N2976			
1		***************************************		2-15				
1	1N2009	2-11	114Z000	2-10	· · ·		0	
_/								/

TYPE	PAGE	TYPE	PAGE	TYPE	PAGE
1N2978	2-13	1N3025	2-3	1N3318	3-9
		1N3026	2-3		
≈ 1N2979	2-13	1N3027	2-3	# 1N3319	3-9
₩ 1N2980	2-13	1N3028	2-3	≈ 1N3320	3-9
1N2981	2-13			≈ 1N3321	3-9
1N2982	2-13	1N3029	2-3	1N3322	3-9
1N2983	2-13	1N3030	2-3	# 1N3323	3-9
		1N3031	2-3		
≈ 1N2984	2-13	1N3032	2-3	A 1N3324	3-9
≈ 1N2985	2-13	1N3033	2-3	≈ 1N3325	3-9
# 1N2986	2-13			≈ 1N3326	3-9
1N2987	2-13	1N3034	2-3	≈ 1N3327	3-9
≈ 1N2988	2-13	1N3035	2-3	2 1N3328	3-9
		1N3036	2-3		
≈1N2989	2-13	1N3037	2-3	1N3329	3-9
≈ 1N2990	2-13	1N3038	2-3	≈ 1N3330	3-9
** 1N2991	2-13			1N3331	3-9
** 1N2992	2-13	1N3039	2-3	24 1N3332	3-9
34 1N2993 A	2-13	1N3040	2-3	1N3333	3-9
		1N3041	2-3		
≈ 1N2994	2-13	1N3042	2-3	≈ 1N3334	2-16
₩ 1N2995	2-13	1N3043	2-3	≈ 1N3335	2-16
	2-13			≈ 1N3336	2-16
≈ 1N2997	2-13	1N3044	2-3	≈ 1N3337	2-16
≈ 1N2998	2-13	1N3045	2-3	₩ 1N3338	2-16
		1N3046	2-3		2 10
≈ 1N2999	2-13	1N3047	2-3	≈1N3339	2-16
	2-13	1N3048	2-3	≈ 1N3340	
	2-13			1N3341	2-16
	2-13	1N3049	2-3	1N3342	2-16
₩ 1N3003	2-13	1N3050	2-3		2-16
		1N3051	2-3		
	2-13	1N3154	3-3	1N3344	2-16
	2-13	1N3155	3-3	1N3345	2-16
	2-13				2-16
	2-13	1N3156	3-3	1N3347	2-16
1N3008	2-13	1N3157	3-3	1N3348	2-16
		1N3199	3-9		
	2-13	1N3200	3-9	1N3349	2-16
	2-13	1N3201	3-9	1N3350	2-16
	2-13			1N3496	3-1
	2-13	1N3202	3-9	1N3497	3-1
1N3013	2-13	≈ 1N3305	3-9		3-1
		жа 1N3306	3-9		• • • • • • • • • • • • • • • • • • • •
	2-13	4 1N3307	3-9	1N3499	3-1
	2-13	≈ 1N3308	3-9	1N3500	3-1
	2-3			1N3580	3-6
	2-3	≈1N3309	3-9	1N3581	3-6
1N3018	2-3		3-9	1N3582	3-6
		#41N3311	3-9		*
	2-3	24 1N3312	3-9	1N3583	3-6
	2-3	1N3313	3-9		3-6
	2-3				2-4
	2-3	≈ 1N3314	3-9		
1N3023	2-3	≈ 1N3315	3-9		2-4
1110020					· · · · · · · · · · · · · · · · · · ·
	2-3	1N3316 1N3317	3-9		

			0405	TVDE	PAGE
TYPE	PAGE	TYPE	PAGE	TYPE	
1N3679	2-4	1N3949	2-11	1N4301	3-8
1N3680	2-4	1N3984	2-11		3-8
1N3681	2-4	1N3985	2-11	1N4303	3-8
	2-4	1N3986	2-11		
			2-14	1N4304	3-8
1N3683	2-4			1N4565	3-4
1N3684	2-4	1N3994	2-14	1N4566	3-4
	2-4	1N3995	2-14	1N4567	3-4
1N3685			2-14	1N4568	
1N3686	2-4	1N3990 1N3997	2-14		
1N3687	2-4		2-14	1N4569	3-4
		1N3998	2-14	1N4509	
1N3688	2-4		0.11	1N4570 1N4571	3-4
1N3689	2-4	1N3999	2-14		3-4
1N3690	2-4		2-14	1N4572	
1N3691	2-4	1N4057	3-10	1N4573	3-4
1N3692	2-4	1N4058	3-10		
		1N4059	3-10	1N4574	3-4
1N3693	2-4			1N4575	3-4
1N3694	2-4	1N4060	3-10	1N4576	3-4
1N3695	2-4	1N4061	3-10	1N4577	3-4
1N3696	2-4	1N4062	3-10	1N4578	3-4
1N3697	2-4	1N4063	3-10		
114309/	2-4	1N4064	3-10	1N4579	3-4
1 100000	2-4	1144004		1N4580	3-4
1N3698		1N4065	3-10	1N4581	3-4
1N3699	2-4		3-10	1N4582	3-4
1N3700	2-4	1N4066	3-10	1N4583	3-4
1N3701	2-4	1N4067		1144000	5-4
1N3702	2-4	1N4068	3-10	1N4584	3-4
		1N4069	3-10	1N4564 1N4728	2-5
1N3703	2-4		0.10		2-5
1N3704	2-4	1N4070	3-10	1N4729	
1N3705	2-4	1N4071	3-10	1N4730	2-5
1N3706	2-4	1N4072	3-10	1N4731	2-5
1N3707	2-4	1N4073	3-10		
1		1N4074	3-10	1N4732	2-5
1N3708	2-4			1N4733	
1N3709	2-4	1N4075	3-10	1N4734	2-5
1N3710	2-4	1N4076	3-10	1N4735	2-5
1N3779	3-4	1N4077	3-10	1N4736	2-5
1N3780		1N4078	3-10		
1.10,50		1N4079		1N4737	2-5
1N3781	3-4			1N4738	2-5
1N3782	3-4	1N4080	3-10	1N4739	
1N3782	3-4	1N4080		1N4740	
1N3784	3-4	1N4082		1N4741	2-5
1193/84	3-4	1N4082		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
4110004	3-4	1N4083		1N4742	2-5
1N3821		1114084	3-10	1N4742	
1N3822	3-4	4514665	3-10	1N4743	
1N3823	3-4	1N4085		1N4744 1N4745	
1N3824	3-4	1N4295			
1N3825	3-4	1N4296		1N4746	
	•	1N4297		4514=:-	
1N3826	3-4	1N4298	3-7	1N4747	
1N3827	3-4			1N4748	
1N3828	3-4	1N4299		1N4749	
1N3829	3-4	1N4300	3-7	1N4750	
1N3830				1N4751	2-5
\					

/ TYPE	P	AGE	TYPE	PA	GE	TYPE	P	AGE `
1N475	2	2-5	1N5023		2-7	1N5351		2-9
1N475						1N5352		
			1115024		2-1			
1N475						1N5353		
1N475	5	2-5	1N5025		2-7	1N5354		2-8
1 N475	6	2-5	1N5026		2-7	1N5355		2-8
			1N5027					
1N475	7	2 5	1N5027			1N5356		0.0
1N475			1N5029		2-7	1N5357		
1N475	9	2-5				1N5358		2-8
1N476	D	2-5	1N5030		2-7	1N5359		2-8
1N476	1	2-5	1N5031		2-7	1N5360		2-8
					_		•••••	
1N476	2	0.5	1N5032		_	1N5361		
1					_			
1N476			1N5034		2-7	1N5362		
1N476	4	2-5				1N5363		2-8
I 1N476	5	3-1	1N5035		2-7	1N5364		2-8
1N476			1N5036		2.7	1N5365		
1	•	5 -1	1N5037			1145505		2-0
4,1,4=0.	_			***************************************				
1N476			1N5038			1N5366		
1N4768	3	3-1	1N5039		2-7	1N5367		2-8
1N4769	9	3-1				1N5368		2-8
1N4770	O	3-1	1N5040		2-7	1N5369		2-8
1N477			1N5041			1N5370		
1194//	· ······	3-1				1145570	•••••	2-0
	_		1N5042		_			
1N477			1N5043		_	1N5371		2-8
1N477	3	3-1	1N5044		2-7	1N5372		2-8
1N4774	4	3-1				1N5373		2-8
1N477		-	1N5045		2-7	1N5374	***************************************	
1N477						1N5375		
1144//		3-2				1145575	•••••	2-0
	_		1N5047		_			_
1N477			1N5048			1N5376		2-8
1N4778	3	3-2	1N5049		2-7	1N5377		2-8
1N4779	9	3-2				1N5378		2-8
1N478			1N5050		2-7	1N5379		
1N478		-	1N5050			1N5380		
1114/0	l	3-2				UOSCHII		2-8
ì			1N5333					
1N478	2	3-2	1N5334		2-8	1N5381		2-8
N478	3	3-2	1N5335		2-8	1N5382		2-8
1N478						1N5383		
1N5008			1N5336		2 0	1N5384		
1N5009	9	2-7	1N5337			110385		2-8
i .			1N5338					
1N5010	D	2-7	1N5339		2-8	1N5386		2-8
1N501	1	2-7	1N5340		2-8	1N5387		2-8
1N5012	2	2-7				1N5388		2-8
1N501			1N5341		2 0	≈ 1N5555		
	•							
1N5014	4	2-7	1N5342			₩ 1N5556		1-3
			1N5343					
1N501	5	2-7	1N5344		2-8	≈1N5557		1-3
1N501	6	2-7	1N5345		2-8	≈ 1N5558		1-3
1N501		_				≈ 1N5629		
			1 NEO 46		2.0			
1N5018			1N5346			≈ 1N5630		
1N5019	9	2-7	1N5347			≈ 1N5631		1-5
			1N5348					
1N5020	0	2-7	1N5349		2-8			1-5
1N502		2-7	1N5350					
1N502			. 1 10000	***************************************		≈ 1N5634		_
114502	<u> </u>					1140004	•••••	1-3

TYPE	PAGE	TYPE	PAGE	TYPE	PAGE
in 1N5635	1-5	≈ 1N6051	1-9	1N6280	1-12
₩ 1N5636	1-5	≈ 1N6052	1-9	1N6280A	1-12
		≈ 1N6053	1-9		
₩ 1N5637	1-5	≈ 1N6054	1-9	1N6281	1-12
≈ 1N5638	1-5	≈ 1N6055	1-9	1N6281A	1-12
≈ 1N5639	1-5				1-12
≈ 1N5640	1-5	≈ 1N6056	1-9		1-12
₱ 1N5641	1-5	≈ 1N6057	1-9		1-12
1		₩ 1N6058	1-9		
≈ 1N5642	1-5	≈ 1N6059	1-9	1N6283A	1-12
≈ 1N5643	1-5	≈ 1N6060	1-9		1-12
≈ 1N5644	1-5				1-12
≈ 1N5645	1-5	≭ 1N6061	1-9		1-12
₩ 1N5646	1-5	≈ 1N6062	1-9		1-12
		≈ 1N6063	1-9		
≈ 1N5647	1-5	₩ 1N6064	1-9	1N6286	1-12
≈ 1N5648		≈ 1N6065	1-9		1-12
≈ 1N5649	1-5	1140000			1-12
≈ 1N5650	1-5	≈ 1N6066	1-9		1-12
≈ 1N5651	1-5	≈ 1N6067	1-9		1-12
1	1-3	× 1N6067	1-9	1140200	
≈ 1N5652	1-5	≈ 1N6069	1-9	1 N62884	1-12
≈ 1N5653	1-5	≈ 1N6009 ≈ 1N6070	1-9		1-12
1N5654	1-5	1140070	1-9		1-12
a 1N5655	1-5	≈ 1N6071	1-9		1-12
M 1N5656	1-5	≈ 1N6071	1-9		1-12
IM 1145050	1-5		1-12	11102907	1-12
≈ 1N5658	1-5		\ 1-12	1N6291	1-12
# 1N5659	1-5		1-12		1-12
1N5660	1-5	1140200	1-12		1-12
™ 1N5661	1-5	1 NECEO	\ 1-12		1-12
≈ 1N5662	1-5		1-12		1-12
1143002	1-5		\ 1-12	1140293	1-12
i 1N5663	1-5		1-12	1 N 6 2 0 2 A	1-12
≈ 1N5664	1-5		\ 1-12		1-12
™ 1N5665	1-5	11402707	· 1-12		1-12
≈ 1N5905		1N6271	1-12		1-12
1N5907	1-7		\ 1-12		1-12
1115906	1-7		1-12	1110295A	1-12
≈ 1N6036	1-9		1-12 1-12	1N6296	1-12
≈ 1N6036 ≈ 1N6037	1-9		1-12		1-12
≈ 1N6037	1-9	11402/3	1-12	HOZSOA	1-12
≈ 1N6039	1-9	1N62724	· 1-12	1 N6207	1-12
≈ 1N6039 ≈ 1N6040	1-9		1-12		1-12
	1-9		1-12		1-12
≈ 1N6041	1-9		1-12	1140290	1-12
≈ 1N6041	1-9		1-12	1N62004	1-12
≈ 1N6042 ≈ 1N6043	1-9	11102/34	1-12		1-12
≈ 1N6043		1 NEO76	1-12		1-12
≈ 1N6044 ≈ 1N6045			1-12		1-12
- 1140045	1-9		1-12		1-12
≈ 1N6046	1-9		1-12	HUOSOUA	1-12
≈ 1N6046 ≈ 1N6047	1-9		1-12	1 N 6201	1-12
≈ 1N6047 ≈ 1N6048	1-9	11102/8	1-12		1-12
≈ 1N6048 ≈ 1N6049	1-9	1 N 6 2 7 0 A	1-12		
≈ 1N6049 ≈ 1N6050					1-12
(~ 114003U	1-9		1-12 1-12 1-12	IN03UZA	1-12
\		11102/98	· 1-12		
•					

	TYPE	PAGE	TYPE	F	PAGE	TYPE	P	AGE
		1-12						
1	1N6303A	· 1-12	1.5KC18		1-13	1.5KE91		1-12
ı	1.5K6.8	1-6				1.5KE100)	1-12
1		1-6	1.5KC20		1-13)	
1		1-6)	
l	1.500.2	1-0				1.5KE 120	,	1-12
1		1-6				1.5KE130	***************************************	
ı	1.5K10	1-6	1.5KC30		1-13	1.5KE150)	1-12
ı	1.5K11	1-6				1.5KE160)	1-12
ĺ		1-6	1.5KC33		1-13	1.5KE170		
l		1-6				1.5KE180		
ł	1.5K13	1-0				1.5KE TO	,	1-12
1								
ı	1.5K15	1-6	1.5KC43		1-13	1.5KE200)	1-12
ı	1.5K16	1-6	1.5KC47		1-13	1.5KE220)	1-12
1	1.5K18	1-6				1.5KE250)	1-12
ı		1-6	1.5KC51		1-13	1.5KE300		
I								
l	1.5K22	1-6				1.3八匹35)	1-12
i								
ı	1.5K24	1-6	1.5KC68		1-13	1.5KE400)	1-12
	1.5K27	1-6	1.5KC75		1-13	5KP5.0		1-15
1		1-6						
1		1-6	1 EKC92		1-12			
l								
i	1.5K36	1-6				5KP7.0		1-15
			1.5KC100		1-13			
	1.5K39	1-6	1.5KC110		1-13	5KP7.5		1-15
ı	1.5K43	1-6	1.5KF6.8		1-12	5KP8.0		1-15
ı				***************************************	–			
l		1-6	1 FVE7 F		4 40			
l								
ı	1.5K56	1-6				5KP10 .		1-15
1			1.5KE9.1		1-12			
	1.5K62	1-6	1.5KE10		1-12	5KP11 .		1-15
	1.5K68	1-6	1.5KE11		1-12	5KP12 .		1-15
		1-6						
ŀ			4 EVE10		1 10			
•								
ı	1.5K91	1-6				5KP15 .		1-15
			1.5KE15		1-12			
ı	1.5K100	1-6	1.5KE16		1-12	5KP16 .		1-15
•	1.5K110	1-6	1.5KE18		1-12	5KP17 .		1-15
ı		1-6				5KP18		1-15
		1-6	1 54500		1-12	• • • • • •		–
l								
	1.5K150	1-6				5KP22 .		1-10
i								
	1.5K160	1-6	1.5KE27		1-12	5KP24 .		1-15
l		1-6				5KP26 .		1-15
		1-6						
			1 54500		1-12	•		
		1-6						
	1.5KC6.8	3 1-13				5KP33 .		1-15
ı	1.5KC7.5	i 1-13	1.5KE43		1-12	5KP36 .		1-15
ı	1.5KC8.2	2 1-13	1.5KE47		1-12	5KP40 .		1-15
		1-13						
			1 EVEF1		1-12			
ĺ		1-13						
	1.5KC11	1-13				5KP48 .		1-15
			1.5KE62		1-12			
1	1.5KC12	1-13	1.5KE68		1-12	5KP51 .		1-15
1		1-13	1.5KE75		1-12	5KP54		1-15
•		1-13			-			
\	1.50015	1-13				JN 30 .	••••••	
1								

TYPE	PAGE	TYPE	PAGE	TYPE	PAG
5KP60	1-15	704-34	1-4	LC7.0A	1-3
	1-15		1-4		1-3
			1-4		
5KP70	1-15		1-4	I C7 5A	1-3
	1-15		1-21		1-3
		/U4-13N30	1-21		
	1-15				1-3
	1-15		1-53		1-3
5KP90	1-15	GHV-3	1-53		1-3
		GHV-4	1-53	LC8.5A	1-3
5KP100	1-15	GHV-5	1-53	LC9.0	1-3
	1-15		1-53		1-3
	1-17	G111 0			1-3
	1-17	CHV 7	1-53	LO 10	
				1.0404	1-3
15KP20	1-17		1-53		
			1-53		1-3
	1-17		1-53		1-3
15KP24	1-17	GHV-11	1-53		1-3
15KP26	1-17			LC12A	1-3
	1-17	GHV-12	1-53		
	1-17		1-53	LC13	1-3
J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1-17		1-53		1-3
EKDOO	-د د				
	1-17		1-53		1-3
	1-17	GHV-16	1-53		1-3
15KP40	1-17			LC15	1-3
15KP43	1-17	GSV-101	1-51		
	1-17	GSV-102	1-51	LC15A	1-3
		GSV-103			1-3
I5KP48	1-17		1-24		1-3
	• • • • • • • • • • • • • • • • • • • •		1-24		1-3
	1-17	GMP-5A	1-24		
	1-17			LG1/A	1-3
	1-17		1-24		
I5KP60	1-17	ICT-5	1-25	LC18	1-3
		ICT-8	1-25	LC18A	1-3
15KP64	1-17	ICT-10	1-25	LC20	1-3
	1-17		1-25		1-3
	1-17	101 12	1 20		1-3
		IOT 45	1 OF	LUZZ	
	1-17	ICT-15		1.0004	4.0
3KP85	1-17		1-25		1-3
			1-25		1-3
	1-17	ICT-36			1-3
5KP100 .	1-17	ICT-45	1-25	LC26	1-3
5KP110 .	1-17			LC26A	1-3
	1-17	ICTE-5	1-29		
	1-17	ICTE-8		LC28	1-3
JKI 130 .	1-17	ICTE-10			1-3
EKD450					
	1-17	ICTE-12			1-3
	1-17	ICTE-15	1-29		1-3
5KP170 .	1-17			LC33	1-3
5KP180 .	1-17	ICTE-18	1-29		
	1-17	ICTE-22		LC33A	1-3
		ICTE-36			1-3
EKD220	1-17	ICTE-45			1-3
		ICIE-43	1-29		
	1-17	1.00.5			1-3
	1-17		1-34	LC40A	1-3
	1-17		1-34		
0KS200C	1-19	LC7.0	1-34	LC43	1-3

TYPE	PAGE	TYPE	PAGE	TYPE	PAGI
LC43A	1-34	LCE9.0	1-36	LCE54A	1-3
	1-34	LCE9.0A		LCE58	
		LOLD.UA		LCE58A	
	1-34				
LC48	1-34	LCE10		LCE60	
		LCE10A	1-36	LCE60A	1-3
C48A	1-34	LCE11	1-36		
	1-34	LCE11A		LCE64	1-2
	1-34	LCE12	1-36	LCE64A	
LC54	1-34			LCE70	1-3
C54A	1-34	LCE12A	1-36	LCE70A	1-3
		LCE13		LCE75	
CEO	1 4 04			LOL/3	
	1-34	LCE13A			
LC58A .	1-34	LCE14	1-36	LCE75A	1-3
LC60	1-34	LCE14A	1-36	LCE80	1-3
	1-34			LCE80A	
		LOE4E	4.00		
LU04	1-34	LCE15		LCE90	
		LCE15A	1-36	LCE90A	1-3
LC64A	1-34	LCE16	1-36		
	1-34	LCE16A		LCE100	1.2
	1-34	LCE17	1-36	LCE100A	
	1-34			LCE110	
LC75A .	1-34	LCE17A	1-36	LCE110A	1-3
		LCE18	1-36	LCE120	1-3
Coo	1-34	LCE18A		LOL 120	
LC80A .	1-34	LCE20	1-36	LCE120A	1-3
LC90	1-34	LCE20A	1-36	LCE130	1-3
COOA	1-34			LCE130A	1-3
		LCE22	1.00		
LC 100 .	1-34			LCE150	
-		LCE22A	1-36	LCE150A	1-3
LC100A	1-34	LCE24	1-36		
C110	1-34	LCE24A		LCE160	1-3
	1-34			LCE160A	
		LCE26	1-30		
	1-34			LCE170	
LC120A	1-34	LCE26A	1-36	LCE170A	1-3
		LCE28	1-36	LMZ3.3	2-
C120	1-34	LCE28A		211120:0	
	1-34	LCE30		LMZ3.6	
LC150 .	1-34	LCE30A	1-36	LMZ3.9	2-
C150A	1-34			LMZ4.3	2-
	1-34	LCE33	1.36	LMZ4.7	
	1-34				
		LCE33A		LMZ5.1	2-
	1-34	LCE36			
LC170 .	1-34	LCE36A	1-36	LMZ5.6	2-
	1-34	LCE40		LMZ6.2	_
		LOLTO	1-00		
	1-36			LMZ6.8	
LCE6.5A	1-36	LCE40A		LMZ7.5	
		LCE43	1-36	LMZ8.2	2-
CE7.0	1-36	LCE43A			
	1-36	LCE45		LMZ9.1	o.
	1-36	LCE45A	1-36	LMZ10	
LCE7.5A	1-36			LMZ11	2-
LCE8.0	1-36	LCE48	1-36	LMZ12	2-
		LCE48A		LMZ13	
050.04	4.00			FINE 10	2 -
	1-36	LCE51			
LCE8.5	1-36	LCE51A	1-36	LMZ14	2-
CEOEA	1-36	LCE54	1-36	LM715	2-
LUED.DA					

TYPE	PAC	GE TYPE		PAGE	TYPE	Р	AGE
LMZ16		2-6 PIP24		1-47	SA1002		1-50
		· · · · · · · · · · · · · · · · · · ·					
					O/ (TOOL)		
					SA1003		1-50
I M722				1-4/			
		-		1 47			
			• • • • • • • • • • • • • • • • • • • •				
					SA1005		1-50
LMZ33	2						
111700				1-45			
	2	-					
	2						
	2			1-45	SA1007		1-50
	2			1-45			
LMZ51	2	-6 P6KE10		1-45	SA1007A		1-50
		P6KE11		1-45	SA1008	***************************************	1-50
LMZ56	2	:-6					
		-		1-45			
I MZ69	2				OA I UUSA	•••••	1-30
					044040		4.50
	2			1-45			
	2						
LMZ100) 2						
) 2				SA1012A		1-50
LMZ120)2	-6 P6KE27		1-41			
LMZ130)	-6 P6KE30		1-41	SA1013		1-50
LMZ150)2	:-6			SA1013A	***************************************	1-50
LMZ160) 2	-6 P6KE33		1-41	SA1014		1-50
LM7180) 2						
) 2				0,110.0	•••••	
	,				SA1015A		1-50
				1-71		•••••••••	
		DEVES		1 41		••••••	
IMP 1-10	/ 15						
MDT 40							
					SATUTA		1-50
	1-						
	1-5			1-41			
	! 1-6						
MPT-36	1-6						
	F 1-0				SA1020		1-50
MPTE-5	5 1-4	41 P6KE110		1-41			
MPTE-8	3 1-4	41 P6KE120		1-41	SA1020A		1-50
	0 1-4					•••••	
	2 1-4			1-41		••••••	
	6					••••••	
	Z 1-4	P6KF150		1-41	5A 1022		
MPTF-1							
	5 1-4	41 P6KE160		1-41		***************************************	
MPTE-1	5 1-4 8 1-4	41 P6KE160 41 P6KE170		1-41 1-41	SA1022A		1-50
MPTE-1 MPTE-2	5 1-4 8 1-4 1-2 1-4	P6KE160 P6KE170 P6KE180		1-41 1-41	SA1022A SA1023		1-50 1-50
MPTE-1 MPTE-2 MPTE-3	5 1-4 8 1-4 122 1-4 16 1-4	41 P6KE160 41 P6KE170 41 P6KE180 41		1-41 1-41 1-41	SA1022A SA1023 SA1023A		1-50 1-50 1-50
MPTE-1 MPTE-2 MPTE-3	5 1-4 8 1-4 1-2 1-4	41 P6KE160 41 P6KE170 41 P6KE180 41 41 P6KE200		1-41 1-41 1-41	SA1022A SA1023 SA1023A SA1024		1-50 1-50 1-50 1-50
MPTE-1 MPTE-2 MPTE-3 MPTE-4	5	41 P6KE160 41 P6KE170 41 P6KE180 41 41 P6KE200 SA1001		1-41 1-41 1-41 1-41 1-50	SA1022A SA1023 SA1023A SA1024 SA1024A		1-50 1-50 1-50 1-50 1-50
MPTE-1 MPTE-2 MPTE-3 MPTE-4	5 1-4 8 1-4 122 1-4 16 1-4	41 P6KE160 41 P6KE170 41 P6KE180 41 41 P6KE200 SA1001		1-41 1-41 1-41 1-41 1-50	SA1022A SA1023 SA1023A SA1024 SA1024A		1-50 1-50 1-50 1-50 1-50

TYPE	PAGE	TYPE	PAGE	TYPE	PAGE
		SA1030	1-50	SA1034	1-50
SA1026	1-50			SA1034A	1-50
SA1026A	1-50	SA1030A	1-50	SA1035	1-50
SA1027	1-50	SA1031	1-50		
SA1027A	1-50			SA1035A	1-50
		SA1032	1-50	SA1036	1-50
SA1028	1-50	SA1032A	1-50	SA1036A	1-50
SA1028A	1-50			SA1037	1-50
SA1029	1-50	SA1033	1-50		
SA1029A	1-50	SA1033A	1-50		
	SA1025A	SA1025A 1-50 SA1026 1-50 SA1026A 1-50 SA1027 1-50 SA1027A 1-50 SA1028 1-50 SA1028A 1-50 SA1029 1-50	SA1025A 1-50 SA1030 SA1026 1-50 SA1026A 1-50 SA1030A SA1027 1-50 SA1031 SA1027A 1-50 SA1031A SA1028 1-50 SA1032A SA1028A 1-50 SA1032A SA1029 1-50 SA1033	SA1025A 1-50 SA1030 1-50 SA1026 1-50 SA1030A 1-50 SA1026A 1-50 SA1030A 1-50 SA1027 1-50 SA1031 1-50 SA1027A 1-50 SA1031A 1-50 SA1032 1-50 SA1028 1-50 SA1032A 1-50 SA1028A 1-50	SA1025A 1-50 SA1030 1-50 SA1034 SA1026 1-50 SA1034A SA1026A 1-50 SA1030A 1-50 SA1035 SA1027 1-50 SA1031 1-50 SA1027A 1-50 SA1031A 1-50 SA1035A SA1032 1-50 SA1036 SA1028 1-50 SA1032A 1-50 SA1036A SA1028A 1-50 SA1033 1-50 SA1037 SA1029 1-50 SA1033 1-50 SA1037A

NUMERICAL INDEX-TRANSISTORS

					$\overline{}$
TYPE	PAGE	TYPE	PAGE	TYPE	PAGE
2N545	4-3	2N2658	4-6	2N2893	4-6
2N546	4-3	2N2811	4-9	2N2983	4-5
2N547		3		2N2984	4-5
2N548	4-3	2N2812	4-9	2N2985	4-5
2N549	4-3	2N2813	4-9	2N2986	4-5
		2N2814	4-9		
2N550	4-3	2N2815	4-10	2N2987	4-3
	4-3		4-10	2N2988	4-3
	4-0			2N2989	4-3
2N1055	4-0		4-13	2N2990	4-3
	4-4		4-13	2N3226	4-6
2141110		2N2819	4-10		
2N1117	4-3		4-10	2N3262	4-3
	4-6		4-15	2N3265	4-10
2N1209	4-6			2N3266	4-10
	4-6		4-10	≈ 2N3418	4-21
	4-0		4-11	≈ 2N3419	4-21
ZIN 1252	4-1	2N2824	4-11	EI 10-113	
011050	4-3		4-17	≈ 2N3420	4-21
2N1253			4-17	≈ 2N3421	4-21
	4-3		4-5	2N3469	4-6
	4-6		4.5		4-23
	4-{	2N2849-		≈ 2N3506	
2N1617	4-6		2 4-5	² 2N3507	4-23
		2N2850	4-5	0110507	4-10
	<u> </u>		1 4-5	2N3597	
	4-6		·2 4-5	2N3598	4-10
	4-۱			2N3599	4-10
	4-!	2N2851	4-5	2N3675	4-5
2N1648	4-9		·1 4-5	2N3676	4-5
			-2 4-5		
2N1649	4-9	2N2852	4-5	2N3738	4-25
2N1650	4-	2N2852-	·1 4-5	2N3739	4-25
2N1700	4-3			2N3744	4-6
2N1702	4-(S 2N2852-	2 4-5	2N3745	4-6
2N1714	4-:		4-5	2N3746	4-6
		2N2853-	·1 4-5		
2N1715	4-:	3 2N2853-	2 4-5	2N3747	4-6
2N1716	4-3	2N2854	4-5	2N3748	4-6
2N1717	4-:			2N3749	· 4-6
2N1724	4-0		-1 4-5	2N3750	4-6
	٠ 4-0		-2 4-5	2N3751	4-6
		2N2855	4-5		
2N1725	4-0	2N2855-	-1 4-5	2N3752	4-6
2N1983	4-4		-2 4-5	2N3766	4-5
2N1984	4-4			2N3767	4-5
2N1985	4-4		4-5	2N3852	4-6
2N2018	4-4		·1 4-5	2N3853	4-6
2142010	т		-2 4-5		
2N2019	4-:			2N3878	4-8
2N2101	4-4		4-19	2N3879	4-8
2N2150	4-4		4 10	2N3996	4-27
2N2151	4-4		4-19	2N3997	4-27
2N2131 2N2632	4-(4-19	2N3998	4-27
2142032	4-1	2N2890		40000	
2N2633	4-0		4-6	2N3999	4-27
2N2633 2N2634				2N4000	4-3
	4-0		4-0	2N4001	4-3
2N2657	4-0	,		₹14#00 J	4-3

NUMERICAL INDEX-TRANSISTORS (Cont'd)

TYPE	PAGE	TYPE	PAGE	TYPE	PAG
2N4002	4-29	2N5218	4-49	2N5610	4-
2N4003	4-29	2N5237	4-51	2N5612	4-
		2N5239	4-7	2N5658	4-
2N4070	4-31	2N5288	4-9	2110000	
2N4071	4-33	2110200	4-3	2N5659	4-
2N4075		2N5289	4.0		
	4-5		4-9	2N5660	4-5
2N4076	4-5	2N5313	4-9	2N5661	4-5
2N4111	4-6	2N5315	4-9	2N5662	4-6
		2N5317	4-9	2N5663	4-6
2N4112	4-6	2N5319	4-9		
2N4113	4-6			2N5664	4-6
2N4114	4-6	2N5320	4-4	2N5665	4-6
2N4115	4-6	2N5321	4-4	2N5666	
					4-6
2N4116	4-6	2N5334	4-5	2N5667	4-6
		2N5335	4-5	2N5681	4-
2N4150	4-35	2N5336	4-7		
2N4210	4-10			2N5682	4-
2N4211	4-10	2N5337	4-7	2N5729	4-
2N4231	4-5	2N5338	4-7	2N5730	4-
2N4232	4-5	2N5339			
2114232	4-5		4-7	2N5731	4-1
		2N5346	4-8	2N5732	4-6
2N4233	4-5	2N5347	4-8		
2N4237	4-3			2N5733	4-1
2N4238	4-3	2N5348	4-8	2N5734	4-1
2N4239	4-3	2N5349	4-8	2N5854	4-
2N4240	4-37	2N5387	4-53	2N6032	
2144240	4-3/				4-6
		2N5388	4-53	2N6033	4-7
2N4300	4-4	2N5389	4-55		
2N4301	4-9			2N6077	4-7
2N4395	4-7	2N5412	4-9	2N6078	4-7
2N4396	4-7	2N5427	4-8	2N6079	4-7
2N4863	4-39	2N5428	4-8	2N6215	4-1
	4 00	2N5429	4-8	2N6232	4-7
2N4864	4-39	2N5430		2110232	4-7
			4-8	0110000	
2N4877	4-5	2N5477	4-8	2N6233	4-7
2N4910	4-3			2N6234	4-7
2N4911	4-3	2N5478	4-8	2N6235	4-79
2N4912	4-3	2N5479	4-8	2N6274	4-8
		2N5480	4-8	2N6275	4-8
2N4913	4-7	2N5487	4-7		
2N4914	4-7		1 4-7	2N6276	4-8
2N4915	4-7	2145467	1 4-7		
		011= 400		2N6277	4-8
2N5050	4-41	2N5488	4-7	2N6278	4-8
2N5051	4-41	2N5488-	1 4-7	2N6279	4-8
		2N5541	4-57	2N6280	4-8
2N5052	4-41	2N5542	4-57		
2N5074	4-43	2N5552	4-9	2N6281	4-89
2N5075	4-45			2N6338	4-9
2N5076	4-45	ONEEEO	1 4-9	2N6339	4-9
L1430/0	4-45				_
DA 150==	.=	2N5598	4-4	2N6340	4-9
2N5077	4-45	2N5600	4-4	2N6341	4-9
2N5148	4-47	2N5602	4-4		
2N5150	4-47	2N5604	4-4	2N6653	4-9
2N5152	4-7				4-9
2N5154	4-7	2N5606	4-7		4-9
10 10-1	4-7	2N5608	4-7		
2N5202		Z110000	4-/		0020 4-10
	4-5			GSDH 1	0025 4-10!

NUMERICAL INDEX-TRANSISTORS (Cont'd)

_	TYPE	PAGE	TYPE	PAGE	TYPE	PAGE
	GSDR 15020	4-107	XGSA1035	4-127	XGSQ5035	4-141
	GSDR 15025	4-107	XGSA1040	4-127	XGSQ5040	4-141
	GSDS 50020		XGSA1530	4-129	XGSQ7530	4-143
ŀ	GSTU 4030		XGSA1535	4-129		
	GSTU 4035		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		XGSQ7535	4-143
l			XGSA1540	4-129	XGSQ7540	4-143
	GSTU 4040	4-115	XGSA3030	4-131	XGSR3030	4-146
	GSTU 6030		XGSA3035	4-131	XGSR3035	4-146
	GSTU 6035		XGSA3040	4-131	XGSR3040	4-146
	GSTU 6040		XGSA5030	4-133		
	GSTU 8030	4-119			XGSR5030	4-148
			XGSA5035	4-133	XGSR5035	4-148
	GSTU 8035	. 4-119	XGSA5040	4-133	XGSR5040	4-148
	GSTU 8040		XGSQ1030	4-135	XGSR7530	4-150
	GSTU 12030		XGSQ1035	4-135	XGSR7535	4-150
	GSTU 12035	. 4-121	XGSQ1040	4-135		
l	GSTU 12040	. 4-121			XGSR7540	4-150
l			XGSQ1530	4-137	XGSR1003) 4-153
	XDAR10025	. 4-123	XGSQ1535	4-137	XGSR1003	5 4-153
	XDAR10030	. 4-123	XGSQ1540	4-137	XGSR1004) 4-153
	XDAR10035	. 4-123	XGSQ3030	4-139		
	XGS7001	. 4-125	XGSQ3035	4-139	XGSR1503	D 4-153
	XGS7002	. 4-125			XGSR1503	5 4-153
			XGSQ3040	4-139	XGSR1504) 4-153
	XGSA1030	. 4-127	XGSQ5030	4-141	XGSR5002	O 4-157
	-					

JEDEC	RECOMMENDED GENERAL		JEDEC	RECOMMENDED GENERAL	
TYPE NUMBER	SEMICONDUCTOR REPLACEMENT	PAGE	TYPE NUMBER	SEMICONDUCTOR REPLACEMENT	PAGE
1N429		3-9	1N946B		3-3
	1N3156				
	1N3157		1N1416	1N2972B	2-13
	1N3157A			1N2976B	
114-000	1143 137 A	3-3			
411004				1N2979B	
			1N1419	1N2982B	2-13
			1N1420	1N2985B	2-13
1N823A		3-1	1N1421	1N2988B	2-13
			1N1422	1N3001B	2- 3
≈ 1N825		3-1	1N1423	1N3005B	2-13
1N825A		3-1	1N1424	1N3011B	2-13
1N826		3-1			
			1N1425	1N4738A	2-5
				1N4742A	
11102/7	•••••	J-1		1N4742A	
111000		0.4			
				1N4746A	
	••••••		1N1429	1N4748A	2-5
	••••••				
				1N4750A	
1N935A		3-3		1N4760A	
			1N1432	1N4764A	2-5
¥ 1N935B	•••	3-3	1N1433	1N3707B	2-4
1N936		3-3	1N1482	1N3995A	2-14
					=
			1N1/83	1N3998A	2-14
	•••••			1N4732A	
114337	•••••	J-J		1N4735A	
4110074					
			1N1508		2-1
			1N1509		2-1
≈ 1N938B		3-3	1N1510		2-1
			1N1511		2-1
1N939		3-3	1N1512		2-1
1N939A		3-3			
			1N1514		2-1
					— .
11134UA	••••••	J-J			
410400					
			1N1518		2-1
1N942		3-3	1N1520		2-1
			1N1521		2-1
1N942A		3-3			
					= 1
			181524		9.4
- INSHUD	•••••	ა-ა			
411044					
			1N1528		2-1
1N945		3-3	1N1530		3-9
1N945A		3-3			
1N945B		3-3			

			1141090	••••••	2-10
INMANA		3-3			

JEDEC TYPE NUMBE	SEMICONDUCTOR	PAGE	JEDE TYPE NUMB	C E S	RECOMMENDED GENERAL EMICONDUCTOR REPLACEMENT	PAGE
1N1591						
1N1593						
1N1594			1N1783			2-1
1N1595		2-10	1N1784			2-1
1N1596		2-10				2-1
1N1598						
1N1599		2-10				2-1
			1N1789			2-1
1N1601		2-10	1N1790			2-1
1N1603						
1N1604						
1141000		2 10	1N1794			2-1
1N1606		2-10				
			1141730	••••••	***************************************	
1141733	••••••	0-3	1N1799			2-1
111726		3-0				
	\					
	`					
	\					
	`					
1111738	•••••	3-9	1111004	•••••	•••••	2-10
48147007	\	2.0	1N1805			2-10
	`					
	٠					
1N1/40#	٠	3- 9	1141009	•••••	••••••	2-10
1N1741		3-9	1N1810			2-10
	٠		1N1811			2-10
			1N1812			2-10
	٠					
	1N2974A		1N1814			2-10
	1N4740					
1N1766						
1N1767						
1N1768		2-1	1N1819			2-11
1N1769		2-1	1N1820			2-11
1N1770						
1N1770					••••••	
1N1772						
1N1774						
1N1775						
1N1776		2-1				
1N1777		2-1	1N1828			2-11
1N1778		2-1	1N1829			2-11
1N1779		2-1	1N1830			2-11
1141779		2-1	1141000	•••••••••	•••••••••••	4-11

JEDEC TYPE NUMBER	RECOMMENDED GENERAL SEMICONDUCTOR REPLACEMENT	PAGE	JEDEC TYPE NUMBER	RECOMMENDED GENERAL SEMICONDUCTOR REPLACEMENT	PAGE
	•				
1N1834		2-11			
1N1835		2-11	1112100A		3-3
			1N2167		3-5
1141077	••••	= =			
			-		
1N1879		2-2	1N2169A		3-5
			1N2170		3-5
		2-2	1N2171		3-5
			1N2171A		3-5
1N1883		2-2			
1N1884		2-2	1N2214	1N3827	2-3
1N1885		2-2	1N2498		2-11
					_

1N1890		2-2			
1N1905	1N3008A	2-13	1N2621		3-5
1N1906	1N3011A	2-13			
			1N2621B		3-5
1N2009		2-11			
1N2032		2-2			
1N2033		2-2	1N2623B	·	3-5
				1N937	
		_			
1N2038		2-2		1N937A	
1N2039		2-2		1N937B	
				1N938	
				1N938A	
1N2042		2-12	1N2626B	1N938B	3-3
1N2047		2-12	1N2767		3-9
1N2048		2-12			
1N2163		3-5			
	٠١	3-5	1N2769		

JEDEC TYPE NUMBER	RECOMMENDED GENERAL SEMICONDUCTOR REPLACEMENT	PAGE	JEDEC Type Number	RECOMMENDED GENERAL SEMICONDUCTOR REPLACEMENT	PAGE
1N2770		3-9	₩ 1N2971B		2-13
1N2770A		3-9	1N2972		2-13
1N2790 .	1N3156	3-3	¥1N2972B		2-13
-		-			
		2-15	1N2974		2-13
		2-15	₩1N2974B		2-13
▲1N2811 .		2-15	₩ 1N2976B		2-13
1N2816 .		2-15	₩1N2979R		2-11
				•••••	
1N2821 .		0.15	1N2002D		2-1
	••••••				
		=			
1N2826 .		0.45	** 4 NOODOD		0.44
				•••••	
111/2030 .		2-15			
1N2831 .		2-15			
1N2832 .	•••••	2-15	≈ 1N2994B	***************************************	2-13
1N2833 .	•••••	2-15	→ 1N2995B		2-13
			≈ 1N2996B		2-13
			4NO0000		
	••••••				
				• • • • • • • • • • • • • • • • • • • •	
1N2840 .		2-15			
	••••••				
				•••••	
					—
1 N2845 .		2-17			
	1N2996A				
1N2970					
					0.40
		2-13			

JEDEC TYPE	RECOMMENDED GENERAL SEMICONDUCTOR		JEDEC TYPE	RECOMMENDED GENERAL SEMICONDUCTOR	
NUMBER	REPLACEMENT	PAGE	NUMBER	R REPLACEMENT	PAGE
1N3014B		2-13	1N3157A		3-3
			1N3199		3-9
1N3015B		2-13	1N3200		3-9
			1N3201		3-9
1N3017		2-3	1N3202		3-9
1N3018		2-3			
1N3019		2-3	≈ 1N3305B .		. 2-16
					_
			≈ 1N3309B .		. 2-16
1N3024		2-3			

			# 1N3314B		. 2-16
			69 4 NOO4 ED		0 16
1N3029		2-3			
1N3030		2.2			
			A INSSIBE		. 2-10
			44 1N2220B		2-16
1113034		2-0			
1N3035		2-3			
			THOOZED .		. 2 10
			≈ 1N3325B		2-16
1140003		20			
1N3040		2-3			
1N3043		2-3			_
1N3044		2-3	≈ 1N3330B .		. 2-16
			1N3331B		. 2-16
1N3045		2-3	₩ 1N3332B		. 2-16
1N3046		2-3	1N3333B		. 2-16
			≈1N3334B		. 2-16
1N3049		2-3			
	1N3046A		🕮 1N3339B		. 2-16
	1N3048A				0.45
1N3100	1N3050A	2-3			
41104.04	4 N 10 0 5 4 A	0.0			
	1N3051A				
	1N3008A				
IN3103	1N3011A	2-13	1N3344B		. 2-16
			1 NIOO 4 E D		2.16
IN3105	1N3015A	2-13			
11/2110	1N3155A	2-2			
	1N3155A				
	INJ 199A				
			11400430		. 2-10
			1N3350B		2-16
					. 2-10

	RECOMMENDED			RECOMMENDED	
JEDEC	GENERAL		JEDEC	GENERAL	
TYPE	SEMICONDUCTOR		TYPE	SEMICONDUCTOR	
NUMBE		PAGE	NUMBER	REPLACEMENT	PAGE
HOMBE	n REPEACEMENT	FAGE	NOMBEN	REPLACEMENT	PAGE
1N3433	1N4738	2-5	1N3688		2-4
	1N4740				
	1N4742				— .
			1N3690		2-4
1N3436	1N4744	2-5			
1 N 34 3 7	1N4746	2-5	1N3692		2-4
1N3438	1N4748	2-5	1N3693		2-4
	1N4750				
	1N4752			• • • • • • • • • • • • • • • • • • • •	— .
			1143095		2-4
1 N344 I	1N4754	2-5			
					2-4
1N3442	1N4756	2-5	1N3697		2-4
1N3443	1N4735	2 -5	1N3698		2-4
1N3444	1N4736	2-5	1N3699		2-4
	1N4738				
			1143700	• • • • • • • • • • • • • • • • • • • •	2-4
1113446	1N4740	2-5			
	1N4742	2-5	1N3702		2-4
1N3448	1N4744	2-5	1N3703		2-4
1N3449	1N4746	2-5	1N3704		2-4
	1N4748				2-4
	1N4750		1140703		E-7
1143431		2-3	4110700		
	1N4751				
1 N34 53	1N4752	2-5	1N3708		2-4
1N3454	1N4754	2-5	1N3709		2-4
1N3455	1N4756	2-5	1N3710		2-4
	1N4758		***************************************		
1140450		2-3	4110700	1N4733A	0.5
4110455	4114700				
	1N4760			1N2767A	
	1N4762		1N3779		3-4
1N3459	1N4764	2-5	1N3780		3-4
1N3496	1N823	3-1	1N3781		3-4
	1N825				
1110-107			1N3782		2.4
1112400	1N827	0.1			
	1N829				
	1N821		1N3821		2 -3
1N3553	1N821	3-1	1N3822		2-3
			1N3823		2-3
1N3581		3-6			
1N3582					
1N3583					
1N3584		3-6	1N3827		2- 3
1 N3 675	***************************************	2-4			
_			1N3828		2-3
1N3676		2-4			= 0
1N3677					
				1N3998	
1N3679			1N3949		2-11
1N3680		2-4			
			1N3984		2-11
1N3681		2-4			2-11
1N3682					
1N3683					
1N3684			1N3994		2-14
1 N368 5		2-4			
1N3686		2-4	1N3996		2-14
			1N3997		2-14
		 – .			

JEDEC TYPE	RECOMMENDED GENERAL SEMICONDUCTOR		JEDEC TYPE	RECOMMENDED GENERAL SEMICONDUCTOR	
NUMBER	REPLACEMENT	PAGE	NUMBER	REPLACEMENT	PAG
N3998		2-14	1N4080		3-1
N3999		2-14	1N4081		3-1
	1N829				
	INO29		1144002	•••••	
1144057		0 10	1N4082A		3-1
11140574		2.10			
			1N4084A		3-1
IN4059A		3-10			
			1N4085		3-1
IN4060		3-10	1N4085A		3-1
				1N2624B	
				1N4763A	
				1N4764A	
			11409/	1144/04/4	2-
IN4062		3-10		********	_
				1N3707	
			1N4158		
1N4063		3-10	1N4159		2-
			1N4160	1N4738	2-
			1N4161		2-
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1144004W		J-10	1N4162	1N4740	2
4114005		0.40			
			1N4163		
			1N4164		
			1N4165		
1N4066A		3-10	1N4166	1N4744	2-
			1N4167	1N4745	2-
1 NA0674		3-10	1N4168		
			1N4169		
			1N4170		
			1N4170		
			11941/1	1194/49	2.
1N4069A		3-10		4444	_
			1N4172		
1N4070		3-10	1N4173		
1N4070A		3-10	1N4174		2
			1N4175	1N4753	2
			1N4176		
IN4U/2		3-10	1N4177	1N4755	^
		0.40			
1N4072A		3-10	1N4178		
			1N4179		
			1N4180		
1N4074		3-10	1N4181	1N4759	2·
			1N4182	1N4760	2
1 N/407E		3-10	1N4183		
			1N4184	1N4762	
				1N4763	
			1N4186	1N4764	2
1N4077		3-10			
			1N4187	1N3704	2
1N4077 ∆		3-10	1N4188		2·
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3-10		1N3706	
				1N3700	
			1N4191	1N3708	2
		2 10			

	MMENDED NERAL	JEDEC	RECOMMENDED
			GENERAL
	ONDUCTOR	TYPE	SEMICONDUCTOR
NUMBER REPLA	ACEMENT PAGE	NUMBER	REPLACEMENT PAGE
1N4192 1N3709	2-4	1N4260	. 1N2972 2-13
1N4193 1N3710			. 1N2973 2-13
1N4194 1N2970			. 1N2974 2-13
1N4195 1N2970	2-13	114202	. 1142974 2-13
1N41961N2972		1814060	. 1N2975 2-13
1114190 1112972	2-13		. 1N2976 2-13
1N4197 1N2973	2-13		. 1N2977 2-13
1N4198 1N2974			. 1N2979 2-13
1N4199 1N2975	2-13	1N4267	. 1N2980 2-13
1N4200 1N2976	2-13	4114000	1110000
1N4201 1N2977	2-13		. 1N2982 2-13
			. 1N2984 2-13
1N4202 1N2978	2-13		. 1N2985 2-13
1N4203 1N2979			. 1N2986 2-13
1N4204 1N2980		1N42/2	. 1N2988 2-13
1N4205 1N2981	2-13	44140==	1110000
1N4206 1N2982	2-13		. 1N2989 2-13
			. 1N2990 2-13
1N4207 1N2983	2-13	1N4275	
1N4208 1N2984	2-13		. 1N2992 2-13
1N4209 1N2985	2-13	1N4p77	. 1N2993 2-13
1N4210 1N2986	2-13		
1N42111N2987	2-13		. 1N2995 2-13
			. 1N2997 2-13
1N4212 1N2988	2-13	1N4280	
1N4213 1N2989	2-13	1N4281	
1N4214 1N2990	2-13	1N4282	. 1N3001 2-13
1N4215 1N2991	2-13		A
1N4216 1N2992	2-13		. 1N3002 2-13
			. 1N3003 2-13
1N4217 1N2993	2-13		. 1N3004 2-13
1N4218 1N2994	2-13		. 1N3005 2-13
1N4219 1N2995	2-13	1N4287	. 1N3007 2-13
1N4220 1N2996	2-13		
1N4221 1N2997	2-13		. 1N3008 2-13
			. 1N3009 2-13
1N4222 1N2998	2-13		. 1N3011 2-13
1N4223 1N2999	2-13		. 1N3012 2-13
1N4224 1N3000	2-13	1N4292	. 1N3014 2-13
1N4225 1N3001	2-13		
1N4226 1N3002	2-13		. 1N3015 2-13
			3-4
1N4227 1N3003	2-13		3-4
1N4228 1N3004	2-13		3-6
1N4229 1N3005	2-13	1N4296A	3-6
1N4230 1N3006	2-13	4114007	0.7
1N4231 1N3007	2-13		3-7
411000			3-7
1N4232 1N3008	2-13		3-7
	2-13	1N4298	3-7
1N4234 1N3010		1N4298A	3-7
1N4235 1N3011		41140000	0.7
1N4236 1N3012	2-13		
4814000 4810011	• • •		3-7
1N4238 1N3014	2-13		3-7
1N4239 1N3015	2-13		3-7
1N4240 1N3996	2-14	1N4300	3-7
1N4241 1N3998	2-14	1N4200 A	3-7
1814050 4810070	0.40		3-7
1N4258 1N2970 1N4259 1N2971	2-13		3-7
114239 11429/1	2-13	1144301	3-8
			/

JEDEC	RECOMMENDED GENERAL		JEDEC	RECOMMENDED GENERAL	
TYPE NUMBER	SEMICONDUCTOR REPLACEMENT	PAGE	TYPE NUMBER	SEMICONDUCTOR REPLACEMENT	PAGE
	•••••		1N4403	. 1N4739	2-5
1N4301B		3-8	1N4404	. 1N4740	2.5
1N4302		3-8	1N4404		
			1N4406		
			1N4407		
1N4303		3-8	1N4408		
1N4303A	•••••	3-8			
41140000			1N4409		
			1N4410		
			1N4411 1N4412		
	•••••		1N4413		
	LMZ5.1A		1117710	. 1147 40	2-3
			1N4414	. 1N4750	2-5
1N4323	1N4736	2-5	1N4415	. 1N4751	2-5
1N4324	1N4737	2-5	1N4416	. 1N4752	2-5
1N4325			1N4417		2-5
	1N4739		1N4418	. 1N4754	2-5
1N4327	1N4740	2-5	*****		
4114000	4814744		1N4419		
	1N4741 1N4742		1N4420 1N4421		
1N43291			1N4421		
	1N4743		1N4423		
	1N4745		1144420	1144735	2-3
1144002		2-3	1N4424	. 1N4760	2-5
1N4333	1N4746	2-5	1N4425		
	1N4747		1N4426		2-5
1N4335	1N4748	2-5	1N4427	1N4763	2-5
1N4336		2-5	1N4428	. 1N4764	2-5
1N4337	1N4750	2-5			
			1N4429		
1N4338			1N4430		
1N4339 1N4340	1N4752 1N4753		1N4431 1N4432		
1N4340			1N4432		
	1N4755		11 144 33	1143706	2-4
1114042	11447.55	2-3	1N4434	1N3709	2-4
1N4343	1N4756	2-5		1N3710	
	1N4757			1N4735A	
1N4345	1N4758		1N4499	1N4735A	2-5
1N4346			1N4503	1N4752	2-5
1N4347	1N4760	2-5			
				1N5388A	
		2-5			
	1N4762 1N4763				
1N4350 1N4351					
1N4351	1N3704		114900A	•••••	3-4
1144002	1140/04	2-4	1N4567		3-4
1N4353	1N3705	2-4			
	1N3706				
	1N3707		1N4568A	•••••	3-4
1N4356			1N4569		3-4
1N4357	1N3709	2-4			
	4110740				
	1N3710				
1N4400	1N4736			••••••	
	4 1 1 4 7 0 7				
1N4401	1N4737 1N4738				

JEDEC TYPE	RECOMM GENI SEMICON	ERAL IDUCTOR		JEDEC TYPE	GEI SEMICO	MENDED NERAL NDUCTOR	
NUMBER	REPLAC	EMENT	PAGE	NUMBER	R REPLA	CEMENT	PAGE
1N4572			3-4	1N4641	1N4749A		2-5
1N4572A			3-4		1N4750A		
1N4573			3-4		1N4751A		
				1N4644	1N4752A		2-5
1N4574			3-4	1N4645	1N4753A		2-5
1N4574A			3-4	1N4646	1N4754A		2-5
				1N4647	1N4755A		2-5
1N4575A			3-4	1N4648	1N4756A		2-5
1N4576			3-4	1N4649	1N4728A		2-5
1N4576A			3-4				
					1N4729A		
					1N4730A		
					1N4731A		
					1N4732A		
				1N4654	1N4733A		2-5
1N45/9	•••••	•••••	3-4	18/4655	1N4734A		2-5
18145704			2-4		1N4734A		
					1N4737A		
					1N4738A		
114-5017	•••••			1N4660	1N4739A		2-5
1N4582			3-4		1N4740A		
					1N4741A		
					1N4742A		
				1N4664	1N4743A		2-5
1N4584			3-4				
					1N4744A		
					1N4745A		
	1N4576A				1N4746A		
	1N4577A				1N4747A		
	1N4578A			1N4669	1N4748A		2-5
1N4611C	1N4579A		3-4	4114070	48147404		0.5
4114040	4814504.4		0.4		1N4749A 1N4750A		
	1N4581A				1N4750A		
	1N4582A 1N4583A				1N4751A		
	1N4583A						
	1N4584A			11140/4		••••••	2-3
114-010	114-3017			1N4675	1N4754A		2-5
1N4613A	1N4582A		3-4		1N4755A		
	1N4583A				1N4756A		
1N4613C	1N4584A		3-4				
	1N4736A			1N4729			2-5
1N4629	1N4737A		2-5				
	1N4738A						
1N4631	1N4739A		2-5				
	1N4740A						
	1N4741A			1N4734		••••••	2-5
1N4634	1N4742A		2-5	1814705			0.5
1814605	48147404		2.5				
	1N4743A						
	1N4744A 1N4745A						
	1N4745A						
	1N4746A			1144700	••••••••	••••••	2-3
				1N4740			2-5
1N4640	1N4748A		2-5				

JEDEC TYPE	RECOMMENDED GENERAL SEMICONDUCTOR		JEDEC TYPE	RECOMMENDED GENERAL SEMICONDUCTOR	
NUMBER	REPLACEMENT	PAGE	NUMBER	REPLACEMENT	PAGE
1N4742		2-5	1 NA 770		3-2
	••••••				
			11447737	••••••	3-2
1144/44	••••••••••••••••••	2-5	1N4780		2-2
1N4745		2-5			
		··········· — •	1114702		3-2
1147743	••••••	2-3	1Ν//782Δ		2-2
1N4750		2-5			
			114470474		3-2
1144704	•••••••••••	20	1N4831	LMZ9.1CA	2-6
1N4755		2-5		LMZ10CA	
				LMZ11CA	
				LMZ11CA	
				LMZ12CA	
			1144000		2-0
	•••••	20	1N4836	LMZ15CA	2-6
1N4760		2-5		LMZ16CA	
				LMZ18CA	
				LMZ20CA	
				LMZ22CA	
			114040	LIVIZZZOA	2-0
1144704	•••••••••••••••••••••••••••••••	20	1N4841	LMZ24CA	2-6
1N4765		3-1		LMZ27CA	
				LMZ30CA	
				LMZ33CA	
				LMZ36CA	
				בווובטססור	20
			1N4846	LMZ39CA	2-6
1N4767A		3-1		LMZ43CA	
1N4768		3-1		LMZ47CA	
				LMZ51CA	
				LMZ56CA	
1N4769A	***************************************	3-1			
			1N4851	LMZ62CA	2-6
1N4770		3-1		LMZ68CA	
1N4770A	***************************************	3-1	1N4853	LMZ75CA	2-6
1N4771	•••••	3-1		LMZ82CA	
1N4771A		3-1	1N4855	LMZ91CA	2-6
1N4772		3-1			-
			1N4856	LMZ100CA	2-6
			1N4857	LMZ110CA	2-6
				LMZ120CA	
1N4773A		3-1		LMZ130CA	
1N4774		3-1	1N4860	LMZ150CA	2-6
1N4774A		3-1			
				1N4747A	
				1N4753A	
				1N4742A	
				1N4747A	
			1N4954	1N5342B	2-8
1N4777		3-2		7	
				1N5343B	
				1N5344B	
				1N5346B	
1N4778A		3-2	1N4958	1N5347B	2-8

JEDE TYP		AL	JEDE TYP	C GE	MMENDED NERAL ONDUCTOR	
NUMB			NUMB	ER REPL	ACEMENT	PAGE
1N495	91N5348B	2-8	1N5028			
451400	41150405	0.0				
) 1N5349B					
	11N5350B					
	2 1N5352B		1115032		•••••	2-1
	3 1N5353B 4 1N5355B		1N5033			2-7
111490	4 1ND3DDB					
1N496	51N5357B	2-8				
	51N5358B		1N5036			2-7
	7 1N5359B		1N5037			2-7
	31N5361B					
	9 1N5363B		1N5038			2-7
			1N5039			2-7
1N497) 1N5364B	2-8	1N5040			2-7
1N497	1 1N5365B	2-8	1N5041			2-7
1N497	2 1N5366B	2-8	1N5042			2-7
1N497	3 1N5367B	2-8				
1N497	4 1N5368B	2-8				
1N497	5 1N5369B	2-8				
1N497	6 1N5370B	2-8				
1N497	7 1N5372B	2-8	1N5047			2-7
	3 1N5373B					
1N497	9 1N5374B	2-8				
	01N5375B					
	11N5377B					
	2 1N5378B		1N5063	1N4736A		2-5
	31N5379B					
1N498	41N5380B	2-8		1N4737A		
				1N4738A		
1N498				1N4739A		
	61N5383B			1N4740A		
	71N5384B		1105068	IN4/41A		2-3
	81N5386B 91N5388B		1115060	1N4743A		2.5
1N498	91N5388B	<i>2</i> -0		1N4743A		
4NE00	8	2-7		1N4745A		
1N500				1N4746A		
1N500 1N501	•			1N4748A		
1N501			1143074			20
1N501			1N5075	1N4749A		2-5
114001		······································		1N4750A		
1N501	3	2-7		1N4751A		
1N501	•			1N4752A		
1N501				1N4753A		
1N501	6	2-7				
1N501			1N5080	1N4754A		2-5
			1N5082	1N4755A		2-5
1N501			1N5084	1N4756A		2-5
1N501				1N4757A		
1N502			1N5087	1N4758A		2-5
1N502						
1N502	2	2-7		1N4759A		
			1N5090	1N4760A		2-5
1N502		=	1N5092	1N4761A		2-5
1N502				1N4762A		
1N502			1145095	1N4/03A		2-3
1N502			1 NEO06	1N3704B		2-4
1N502	<i>'</i>	2-1	1149090	11437040		2-7

JEDEC TYPE	RECOMMENDED GENERAL SEMICONDUCTOR		JEDEO TYPE		
NUMBER	REPLACEMENT	PAGE	NUMBE	R REPLACEMENT	PAGE
1N5097	1N3705B	2-4	1N5365		2-8
	1N3706B				
	1N3707B		1145500 .	••••••	2-0
			41,5007		
1N5100	1N3708B	2-4			
	1N3708B		1N5369 .	***************************************	2-8
1N5102	1N3709B	2-4	1N5370 .		2-8
1N5103	1N3709B	2-4	1N5371 .		2-8
1N5104	1N3710B	2-4			
	1N5341B		1N5372 .		2-9
		0			
1NE110	1N5367B	2.0			
	1N5368B				· · · · · · · · · · · · · · · · · · ·
	1N5369B		1N5376 .		2-8
	1N5371B				
1N5123	1N5373B	2-8	1N5377 .		2-8
			1N5378 .		2-8
1N5124	1N5375B	2-8			
	1N5377B				
1N5126					
	1N5385B		1110001 .	***************************************	2-0
	1N5387B		1NE200		
1149120	11453676	2-0			
1N5334		2-8	1N5385 .	***************************************	2-8
1N5335		2-8	1N5386 .		2-8
1N5336		2-8			
1N5337		2-8	1N5387 .		2-8
1N5338		2-8			
			TINDOD/ .		1-3
1N5342		2-8			
				1N4736	
1N5343		2-8	1N5560	1N4737	2-5
1N5344		2-8	1N5561	1N4738	2-5
1N5345		2-8	1N5562	1N4739	2-5
			1N5563	1N4740	2.5
	•••••	2-0			
1N5348		20			
				1N4742	
				1N4743	
			1N5567	1N4744	2-5
1N5352		2-8		1N4745	2-5
			1N5569	1N4746	2-5
1N5353		2-8	1N5570	1N4747	2-5
1N5354		2-8	1N5571	1N4748	2-5
				1N4749	
					2-0
	-		1N5572	1N4750	2 5
	••••••	2-0			
4 NE2E0		0.0			
				1N4752	
	••••			1N4753	
			1N5577	1N4754	2-5
1N5361		2-8			
1N5362		2-8	1N5578	1N4755	2-5
				1N4756	
1N5363		2-8		1N4757	
				1N4758	
		·····	1140001		∠• Ð

JEDEC TYPE	RECOMMENDED GENERAL SEMICONDUCTOR		JEDEC TYPE	RECOMMENDED GENERAL SEMICONDUCTOR	
TYPE NUMBER	REPLACEMENT	PAGE	NUMBER	REPLACEMENT	PAGE
1N5582	. 1N4759	2-5			
1N5583	. 1N4760	2-5			
	. 1N4761		≈ 1N5907		1-7
	. 1N4762		1N5908		1-7
	. 1N4763				
	. 1N4764		1N5913	LMZ3.3	2-6
				LMZ3.6	
1N5588	. 1N3704	2-4	1N5915	LMZ3.9	2-6
	. 1N3705		1N5916	LMZ4.3	2-6
	. 1N3706		1N5917	LMZ4.7	2-6
	. 1N3707		41/5040	LMZ5.1	26
1N5592	. 1N3708	2-4		LMZ5.1	
4115500	. 1N3709	0.4		LMZ6.2	
	. 1N3709 . 1N3710			LMZ6.8	
	. 1N3710 . 1N5555			LMZ7.5	
	. 1N5556		1110022		
	. 1N5557		1N5923	LMZ8.2	2-6
1110012			1N5924	LMZ9.1	2-6
1N5613	. 1N5558	1-3	1N5925	LMZ10	2-6
			1N5926	LMZ11	2-6
			1N5927	LMZ12	2-6
≈ 1N5631A		1-5			
₩ 1N5632B		1-5		LMZ13	
				LMZ15	
				LMZ16	
				LMZ18	
			1N5932	LMZ20	2-6
			41/5000	LMZ22	2-6
i № 1N5637A		1-5		LMZ22	
41150004		4.5	1N5954	LMZ27	2-6
				LMZ30	
				LMZ33	
				LMZ36	
			1N5939	LMZ39	2-6
111001271			1N5940	LMZ43	2-6
≈ 1N5643A		1-5		LMZ47	
₩ 1N5644A		1-5	1N5942	LMZ51	2-6
				LMZ56	
≈ 1N5647A		1-5		LMZ62	
				LMZ68 LMZ75	
				LMZ/5	
			IN594/	LIVIZOZ	2-0
			1N5049	LMZ91	2-6
			1N5040	LMZ100	2-6
- INSOSZA		1-3	1N5950	LMZ110	2-6
# 1N5653A	•••••	1-5	1N5951	LMZ120	2-6
			1N5952	LMZ130	2-6
				LMZ150	
				LMZ160	
			1N5955	LMZ180	2-6
			1N5956	LMZ200	2-6
					4.0
		1.5			

JEDEC TYPE	RECOMMENDED GENERAL SEMICONDUCTOR		JEDEC TYPE	RECOMMENDED GENERAL SEMICONDUCTOR	
NUMBER	REPLACEMENT	PAGE	NUMBER	REPLACEMENT PA	\GE
		4.0	41104.40	4110044	
				1N6044	
1N6040A		1-9	1N6146A	1N6044A	1-1
41100444		1.0	4 NC 4 4 7	1NC04E	
				1N60451N6045A	
				1N6045A	
				1N6046	
				1N6046A	
1 N6045A	•••••	1-9	1140149	1110047	1-3
1000464		1_0	1N6140A	1N6047A	1.0
				1N6048	
				1N6048A	
				1N6049	
				1N6049A	
HINDUSUA	••••••	1-9	11401317	1140043A	1-0
1N60514		1-9	1N6152	1N6050	1-0
				1N6050A	
				1N6051	
				1N6051A	
				1N6052	
1N6056A		1-9	1N6154A	1N6052A	1-9
1N6057A		1-9	1N6155	1N6053	1-9
1N6058A		1-9	1N6155A	1N6053A	1-9
1N6059A		1-9	1N6156	1N6054	1-9
1N6060A		1-9	1N6156A	1N6054A	1-9
1N6061A	***************************************	1-9	1N6157	1N6055	1-9
1N6062A	•••••	1-9	1N6157A	1N6055A	1-9
1N6063A		1-9		1N6056	
				1N6056A	
1N6065A		1-9	1N6159	1N6057	1-9
				1N6057A	
				1N6058	
				1N6058A	
				1N60591N6059A	
1N60/0A		1-9	INDIDIA	IN6059A	1-3
1 NEO71 A		1.0	1N6162	1N6060	4.4
				1N6060	
	1N6036			1N6060A	
	1N6036			1N6061	
	1N6036A			1N6061A	
			111010T		
1N6139A	1N6037A	1-9	1N6164A	1N6062A	1-9
	1N6038			1N6063	
	1N6038A			1N6063A	
	1N6039		1N6166	1N6064	
	1N6039A		1N6166A	1N6064A	1-9
1N6142	1N6040	1-9		1N6065	
1110172	1N6040A			1N6065A	
1N6142A	1N6041	1-9		1N6066	
1N6142A	1140041		1N6168A	1N6066A	
1N6142A 1N6143 1N6143A	1N6041A				
1N6142A 1N6143 1N6143A				1N6067	1-5
1N6142A 1N6143 1N6143A 1N6144	1N6041A	1-9	1N6169		
1N6142A 1N6143 1N6143A 1N6144	1N6041A	1-9	1N6169	1N6067A	1-9
1N6142A 1N6143 1N6143A 1N6144 1N6144A 1N6145	1N6041A	1-9 1-9 1-9	1N6169 1N6169A 1N6170		1-9

JEDEC TYPE	RECOMMENDED GENERAL SEMICONDUCTOR		JEDEC TYPE	RECOMMENDED GENERAL SEMICONDUCTOR
NUMBER	REPLACEMENT	PAGE	NUMBER	REPLACEMENT PAGE
1N6171	1N6069	1-9	1N6286A	1.5KE43A 1-12
1N6171A	1N6069A	1-9		
4110470	4110070	4.6		1.5KE47 1-12
	1N6070			1.5KE47A 1-12
	1N6070A			1.5KE51 1-12 1.5KE51A 1-12
	1N6071			1.5KE56 1-12
IN61/3A	1N6071A	1-9	1110289	1.5KE36 1-12
1N6267	1.5KE6.8	1-12		1.5KE56A 1-12
	1.5KE6.8A		1N6290	1.5KE62 1-12
	1.5KE7.5		1N6290A	1.5KE62A 1-12
	1.5KE7.5A		1N6291	1.5KE68 1-12
	1.5KE8.2		1N6291A	1.5KE68A 1-12
			4110000	4 EVERE
	1.5KE8.2A		1N6292	1.5KE75 1-12
	1.5KE9.1			1.5KE75A 1-12
	1.5KE9.1A			1.5KE82 1-12
	1.5KE10			1.5KE82A 1-12
1N6271A	1.5KE10A	1-12	1N6294	1.5KE91 1-12
1N6272	1.5KE11	1-12	1N6294A	1.5KE91A 1-12
1N6272A	1.5KE11A	1-12	1N6295	1.5KE100 1-12
	1.5KE12		1N6295A	1.5KE100A 1-12
	1.5KE12A			1.5KE110 1-12
	1.5KE13		1N6296A	1.5KE110A 1-12
	1.5KE13A			1.5KE120 1-12
1N6275	1.5KE15	1-12		1.5KE120A 1-12
1N6275A	1.5KE15A	1-12		1.5KE130 1-12
1N6276	1.5KE16	1-12		1.5KE130A 1-12
1N6276A	1.5KE16A	1-12	1N6299	1.5KE150 1-12
1N6277	1.5KE18	1-12	1N6299A	1.5KE150A 1-12
	1.5KE18A			1.5KE160 1-12
	1.5KE20			1.5KE160A 1-12
	1.5KE20A		1N6301	1.5KE170 1-12
	1.5KE22			1.5KE170A 1-12
11402/3	1.01\LEE	1-12		
1N6279A	1.5KE22A	1-12		1.5KE180 1-12
	1.5KE24		1N6302A	1.5KE180A 1-12
	1.5KE24A			1.5KE200 1-12
	1.5KE27		1N6303A	1.5KE200A 1-12
	1.5KE27A			1.5KE220 1-12
1116000	1 5/520	4 40		1.5KE220A 1-12
	1.5KE30			1.5KE250* 1-12
	1.5KE30A			1.5KE250A* 1-12
	1.5KE33			1.5KE300* 1-12
	1.5KE33A		••••••••••	1.5KE300 [*] 1-12
1 N6284	1.5KE36	1-12		1.3NE300A 1-12
	1.5KE36A			1.5KE350* 1-12
1N6285	1.5KE39	1-12		1.5KE350A* 1-12
1N6285A	1.5KE39A	1-12		1.5KE400* 1-12 1.5KE400A* 1-12
	1.5KE43			1.5KE400A* 1-12

JEDEC	RECOMMENDED GENERAL		JEDEC	RECOMMENDED GENERAL	
TYPE	SEMICONDUCTOR		TYPE	SEMICONDUCTOR	
NUMBER	REPLACEMENT	PAGE	NUMBER	REPLACEMENT	PAGE
2N497				2N4913	
2N497A	2N4238	4-3	2N1512	2N4914	4-7
2N498	2N4239	4-3	2N1513	2N4913	4-7
	2N5681			2N4914	
			ZN 1514	2114914	4-7
ZIN045	•••••	4-3			
			2N1616A		4-8
2N547	***************************************	4-3	2N1617		4-6
2N548		4-3	2N1617A		4-8
2N549		4-3			
211000	***************************************	4-0	ON1610A		40
ONICEC	2N4238	4.0			
	2N4238				
	2N5681				
	2N5681		2N1650	***************************************	4-5
	2N4912				
			2N1679	2N5335	4-5
2N1047A	2N4912	4-2	2N1680	2N5334	A_E
	2N4912			2110004	
			ZN1700	014040	4-3
	2N4912			2N4910	
	2N4912		2N1702		4-3
2N1049B	2N4912	4-3			
			2N1714		4-3
2N1049C	2N4912	4-3	2N1715		4-3
2N1055		4-3	2N1/18	2N3420	4-21
2N1067	2N4237	4-3			
				2N3767	4-5
2N1068	2N4237	4-3	2N1720	2N3420	4-21
2N1072	2N3766	4-5	2N1721	2N3767	4-5
2N1080	2N4914	4-7	2N1722		
2N1092	2N4237	4-3		2N5428	
			2141720	2140-20	4-0
2141110		4-3	014704		4.0
0114447		4.0			
		· · · · · · · · · · · · · · · · · · ·			
2N1209		4-6		2N5334	
2N1212	•••••	4-6	2N1886	2N2892	4-6
	2N4914				
			2N1894	2N4238	4.3
2N1252		A-3	2N1895		
	•••••		2N1896		
	2N5479		2N1897		
	2N5477		2N1898	2N5338	4-7
2N1422	2N5477	4-8			
			2N1899	2N4002	4-29
	2N5477	4-8	2N1901	2N4002	4-29
2N1423					
2N1423 2N1424	2N5477	4-8	2N1983		4-3
2N1423 2N1424 2N1445	2N5477	4-8 4-3	2N1983 2N1984		4-3 4-3
2N1423 2N1424 2N1445 2N1479	2N5477	4-8 4-3 4-3	2N1983 2N1984		4-3 4-3
2N1423 2N1424 2N1445 2N1479	2N5477	4-8 4-3 4-3	2N1983 2N1984 2N1985		4-3 4-3 4-3
2N1423 2N1424 2N1445 2N1479 2N1480	2N5477	4-8 4-3 4-3 4-3	2N1983 2N1984 2N1985 2N2008	2N2987	4-3 4-3 4-3 4-3
2N1423 2N1424 2N1445 2N1479 2N1480	2N42372N4238	4-8 4-3 4-3 4-3 4-3	2N1983 2N1984 2N1985 2N2008 2N2017	2N2987 2N2989	4-3 4-3 4-3 4-3 4-3
2N1423 2N1424 2N1445 2N1479 2N1480	2N5477	4-8 4-3 4-3 4-3 4-3	2N1983 2N1984 2N1985 2N2008 2N2017	2N2987	4-3 4-3 4-3 4-3 4-3
2N1423 2N1424 2N1445 2N1479 2N1480 2N1481	2N42372N4238	4-8 4-3 4-3 4-3 4-3 4-3	2N1983 2N1984 2N1985 2N2008 2N2017	2N2987 2N2989	4-3 4-3 4-3 4-3 4-3 4-3
2N1423 2N1424 2N1445 2N1479 2N1480 2N1481 2N1482	2N4237 2N4238 2N4237 2N4237 2N4238 2N4238 2N4913	4-8 4-3 4-3 4-3 4-3 4-3 4-3 4-7	2N1983 2N1984 2N1985 2N2008 2N2017 2N2018 2N2019	2N2987 2N2989	4-3 4-3 4-3 4-3 4-3 4-3 4-3
2N1423	2N4237 2N4238 2N4238 2N4237 2N4238 2N4913 2N4914	4-8 4-3 4-3 4-3 4-3 4-3 4-3 4-7 4-7	2N1983 2N1984 2N1985 2N2008 2N2017 2N2018 2N2019	2N2987 2N2989	4-3 4-3 4-3 4-3 4-3 4-3 4-3
2N1423	2N4237 2N4238 2N4237 2N4237 2N4238 2N4238 2N4913	4-8 4-3 4-3 4-3 4-3 4-3 4-3 4-7 4-7	2N1983	2N2987 2N2989 2N4238	4-3 4-3 4-3 4-3 4-3 4-3 4-3
2N1423	2N4237 2N4238 2N4238 2N4237 2N4238 2N4913 2N4914	4-8 4-3 4-3 4-3 4-3 4-3 4-7 4-7 4-7	2N1983	2N2987 2N2989	4-3 4-3 4-3 4-3 4-3 4-3 4-3 4-3 4-3

	RECOMMENDED	RECOMMENDED
JEDEC	GENERAL	JEDEC GENERAL
TYPE	SEMICONDUCTOR	TYPE SEMICONDUCTOR
NUMBE	R REPLACEMENT PAGE	NUMBER REPLACEMENT PAGE
2N2123	2N4002 4-29	2N2849-2 4-5
2N2124	2N4002 4-29	2N2850 4-5
	2N4002 4-29	
	2N4002 4-29	
2112131	2114002 4-28	2N2850-2 4-5
	4-3	
2N2151	4-3	3 2N2851-1 4-5
2N2196	2N2987 4-3	2N2851-2 4-5
	2N2987 4-3	
	2N5681 4-3	
2112201		2N2852-1 4-5
-110000	01/5004	
	2N5681 4-3	
	2N5681 4-3	
2N2204	2N5681 4-3	3 2N2853-1 4-5
	2N4910 4-3	3 2N2853-2 4-5
	2N4912 4-3	
2142300		2N2854 4-5
	011010	
	2N49104-3	
2N2340	2N4237 4-3	3 2N2854-2 4-5
2N2341	2N5334 4-5	2N2855 4-5
	2N5334 4-5	
	2N4914 4-7	
2142303	2144514	2N2855-2 4-5
	4.5	
	2N4914 4-7	
	2N2987 4-3	
2N2472	2N2987 4-3	3 2N2856-2 4-5
2N2594	2N5336 4-7	2N2858 2N5335 4-5
	2N3766 4-	;
211/2011	2N3/00	2N2859 2N5338 4-7
	4.4	
2N2632	4-0	
2N2633	4-1	
2N2634	4-0	6 2N2877 4-19
2N2655	2N5681 4-9	3 2N2878 4-19
	4-0	3
2142037		2N2879 4-19
0110050	4-0	5 2N2880 4-19
2N2658	4-1	
2N2697	2N5478 4-	
2N2698	2N5478 4-1	
2N2811	4-	9 2N2892 4-6
2N2812	4-	9
2142012		2N2893 4-6
0810010	4-1	
	4-	
2N2816	4-1	2N2986 4-5
2N2817	4-1:	3
		2N2987 4-3
2012010	4-1:	3 2N2988 4-3
2N2819		
2N2820	4-1	
	4-1	0 2N2991 2N3420 4-21
2N2822	4-1	0
	••••	2N2992 2N3767 4-5
ONIDEDO	4-1	
		2142000
2N2824	4-1	
2N2825	4-1	
	2N3998 4-2	
2N2829	2N3998 4-2	7
		2N3142 2N5477 4-8
OVIGENC	4-	5 2N3144 2N5477 4-8
2112043	-1 4-	2 2.101.1
ZNZ049	-1 4-	J

JEDEC	RECOMMENDED GENERAL		JEDEC TYPE	RECOMMENDED GENERAL SEMICONDUCTOR
TYPE NUMBER	SEMICONDUCTOR REPLACEMENT	PAGE	NUMBE	
2N3221	2N5477	4-8	2N4002	4-
	2N5477			4-
ONIOGOG	ONE 470		0114070	
	2N5479			4-
				4-
				4
				4
4 2N3418		4-21	2N4112	4
				4
_ ,		— .		4
		······································		4
	2N5334			4
2N3469		4-6	≈ 2N4150	4-
	2N5313		2N4210	4-
	2N5315		2N4211	4-
	2N5313			2N5334 4
2N3491	2N5315	4-9	2N4226 .	2N5334 4
2N3506		4-23	2N4231	4
2N3507		4-23	2N4232	4
2N3583 .	2N5660	4-59	2N4233 .	4
2N3585 .	2N4240	4-37	2N4237	4
2N3597		4-10	2N4238	4
2N3598		4-10	2N4239	4
2N3599		4-10	2N4240	4-3
2N3665	2N5335	4-5	2N4271 .	2N5682 4
				2N5682
2143070	••••••	4-3	2114300	
				4
				4
				4
				2N4863 4-3
2N3746	·	4-6	2N4863 .	4- -
_;				4-5
				4
				4
				4
			2N4912	4
			2N4913	4
0110-00				-
			2N4914	4
2N3767		4-5	2N4914 2N4915	4
2N3767 2N3852		4-5 4-6	2N4914 2N4915 2N4932	
2N3767 2N3852 2N3853		4-5 4-6 4-6	2N4914 2N4915 2N4932	4
2N3767 2N3852 2N3853 2N3878			2N4914 2N4915 2N4932 2N4933 2N5038	
2N3767 2N3852 2N3853 2N3878			2N4914 2N4915 2N4932 2N4933 2N5038	
2N3767 2N3852 2N3853 2N3878			2N4914 2N4915 2N4932 2N4933 2N5038 2N5039 2N5048	2N5477 4 2N5477 4 2N6340 4-9 2N6338 4-9 2N5542 4-9
2N3767 2N3852 2N3853 2N3878 2N3879 2N3945 2N3996	2N5334	4-5 4-6 4-8 4-8 4-8 4-5 4-5	2N4914 2N4915 2N4932 2N4933 2N5038 2N5039 2N5048	2N5477 4 2N5477 4 2N6340 4- 2N6338 4-6
2N3767 2N3852 2N3853 2N3878 2N3879 2N3945 2N3996 2N3997	2N5334		2N4914 2N4915 2N4932 2N4933 2N5038 2N5039 2N5048 2N5049	2N5477 4 2N5477 4 2N6340 4-9 2N6338 4-9 2N5542 4-9
2N3767 2N3852 2N3853 2N3878 2N3879 2N3945 2N3996 2N3997 2N3998	2N5334	4-5 4-6 4-8 4-8 4-8 4-5 4-27 4-27	2N4914 2N4915 2N4932 2N4933 2N5038 2N5039 2N5048 2N5049 2N5050	2N5477 4 2N5477 4 2N6340 4-9 2N6338 4-9 2N5542 4-9 2N5313 4
2N3767 2N3852 2N3853 2N3878 2N3879 2N3945 2N3996 2N3997 2N3998	2N5334	4-5 4-6 4-8 4-8 4-8 4-5 4-27 4-27	2N4914 2N4915 2N4932 2N4933 2N5038 2N5039 2N5048 2N5049 2N5050	2N5477 4 2N5477 4 2N5477 4 2N6340 4-5 2N6338 4-5 2N5542 4-5 2N5313 4
2N3767 2N3852 2N3853 2N3878 2N3879 2N3945 2N3996 2N3997 2N3998 2N3999	2N5334	4-5 4-6 4-8 4-8 4-8 4-5 4-27 4-27 4-27	2N4914 2N4915 2N4932 2N4933 2N5038 2N5039 2N5049 2N5049 2N5050 2N5051 2N5052	2N5477 4 2N5477 4 2N6340 4- 2N6338 4- 2N5542 4- 2N5313 4 4- 4- 4-4

AVAILABLE JEDEC TYPES OR SUGGESTED REPLACEMENTS TRANSISTORS

JEDEC	RECOMMENDED GENERAL	JEDEC TYPE	
TYPE NUMBER	SEMICONDUCTOR REPLACEMENT PAGE	NUMBE	
2N5076	4-45		4-4
0115077	4-45	2N5604	4-4
_,,,,,,		01/5000	4-7
	4-47		
2N5150	4-47		4-7
2N5152	4-7		4-7
2N5154	4-7	2N5612	4-7
		2N5658	4-9
	4-5		
2N5218	4-49		4-9
2N5237	4-51		4-59
	4-7	2N5661	4-59
	4-9	2N5662	4-61
2110200			4-61
2N5289	4-9		
	4-9	2N5664	4-63
	4-9		4-63
2N5317	4-9		4-65
	4-9	2N5667	4-65
			4-3
2N5320	4-4		
	4-4	2N5682	4-3
	4-5		4-7
	4-5		4-9
			4-10
2N5336	4-7		4-67
0115007	4-7	2110702	
		2N5733	4-11
	4-7		
	4-7		4-11
2N5346	4-8		4-9
2N5347	4-8		4-69
		2N6033	4-71
2N5348	4-8	_	
2N5349	4-8		4-73
2N5387	4-53	2N6078	4-73
2N5388	4-53	2N6079	4-75
	4-55		4-1 1
2110000	4 00		4-77
2N5412	4-9		
2N5427	4-8	2N6233	4-79
	4-8		4-79
2N5429	4-8		4-79
	4-8		4-81
2N5430			4-83
2N5477	4-8	ZN02/3	4-00
2N5478	4-8	2N6276	4-83
2N5479	4-8	2N6277	4-85
	4-8	2N6278	4-87
_		2N6278	4-89
2N5487	4-7	2N6279 2N6280	4-89
2N5487-1	1 4-7	ZINOZOU	4-08
2N5488	4-7	2N6281	4-89
	1		4-91
	4-57	2N6339	4-91
		2N6340	4-93
	4-57		
2N5552	4-9	2N6341	4-93
2N5552-1	1 4-9	2N6653	4-95
	4-4		4-95
	4-4		4-95
ZNOOUU	4-4	2140093	4-00

TRANSZORB DEFINITIONS AND SPECIFICATIONS

TransZorbs are PN Silicon transient voltage suppressors that are characterized by their phenomenal surge handling capabilities, extremely fast response time $(1\times10^{-12}\ \text{seconds})$, and low series resistance (R_{on}) . Unlike the zener diode whose function is voltage regulation, the TransZorb is designed, manufactured, specified and tested for transient suppression.

When selecting a TransZorb, first determine the transient condition or the source of the pulse for each application. Specify maximum DC or AC peak voltage with tolerance. This maximum voltage level should be equal to or less than the reverse standoff voltage of the TransZorb.

Consider what is the minimum and maximum voltage for a given circuit.

Because of the temperature coefficient, the minimum clamping voltage ($V_{\rm C}$) should be considered as the reverse standoff voltage ($V_{\rm R}$) when operating at the extreme temperature of $-65^{\circ}{\rm C}$.

The maximum clamping voltage (V_C) is a desired voltage to provide adequate protection for a circuit or component.

Determine the proper device according to the peak pulse power. This can be accomplished in knowing the source impedance and the maximum transient voltage. Once the maximum peak pulse current (Ipp) is known (and if its value is less than the maximum Ipp), use the maximum clamping voltage (V_C) to calculate power for worst case design for most applications.

The TransZorb can be used in applications where induced lightning on rural or remote transmission lines present a hazard to the electronic circuitry. (Reference: REA Specification P.E. 60)

TransZorbs have proven to be effective in Airborne Avionics and Controls, Mobile Communications equipment, Computer power supplies, Numerically Controlled Machinery, and in many other applications where inductive and switching transients are present.

factors, TransZorbs can protect Integrated Circuits, MOS devices, Hybrids, and other voltage-sensitive components. TransZorbs can also be used in series or parallel to increase the peak power ratings.

TransZorbs have been evaluated for susceptibility to

With their fast response times and low clamping

TransZorbs have been evaluated for susceptibility to neutron and gamma radiation. Neutron flux irradiation of 1.4 \times 10^{13} neutrons/cm and cumulative gamma dosage of 2 \times 10^7 rad(Si) have been applied to the TransZorb without causing appreciable parameter changes.

They have also been proven effective for EMP suppression. For actual test results and applications send for the EMP report #AD 909267L, at the Defense Documentation Center, Alexandria, Virginia 22314.

Because of the unpredictable nature of transients and the variation of the impedance with respect to these transients, impedance is not specified as a parametric value. However, a minimum voltage (BV) at low current conditions and a maximum clamping voltage (V_C) at a maximum peak pulse current is specified.

The maximum observed clamping voltage (V_C) is approximately the same for all pulses shown within the limits of the curve in Figure 1. In some instances, the thermal effect may be responsible for 50 to 70% of the observed change in voltage when subjected to high current pulses or severe duty cycles. The maximum reverse leakage current must be doubled for voltage types up to 11 volts for bipolar devices.

Figure 3 shows a typical power derating curve for TransZorbs when derated above 25°C. Clamping voltage vs. varying peak pulse current curves at one millisecond, extended power curves vs. time, and detailed technical data sheets are available.

ABBREVIATIONS AND SYMBOLS -

VR Stand Off Voltage: Applied Reverse Voltage to assure a nonconductive condition. (See Note 1)

BV(min) This is the minimum Breakdown
Voltage the device will exhibit and
is used to assure that conduction
does not occur prior to this voltage
level at 25°C.

VC(max) Maximum Clamping Voltage.
The maximum peak voltage appearing across the TransZorb when subjected to the peak pulse current in a one millisecond time interval. The peak pulse voltages are the combination of voltage rise due to both the series resistance and thermal rise.

IPP Peak Pulse Current — See Figure 2

PP Peak Pulse Power IR Reverse Leakage

N. INCVEISE

Note 1:

A TransZorb is normally selected according to the reverse "Stand Off Voltage" (VR) which should be equal to or greater than the DC or continuous peak operating voltage level.

FIGURE 1 - Peak Pulse Power vs. Pulse Time

FIGURE 2 — Pulse Wave Form (10 x 1000)

FIGURE 3 — Power or Current vs. Temperature
Derating Curve

TRANSZORB APPLICATION CURVES FOR 1.5K AND 1.5KE SERIES

Peak Pulse Power vs. Pulse Time

Peak Pulse Power vs Pulse Time (Extended)

FIGURE 4 — Capacitor Discharge Circuit for Testing TransZorbs

TYPICAL TRANSZORB APPLICATIONS

TRANSZORB
TRANSIENT VOLTAGE
SUPPRESSORS
1N5555
THRU
1N5558

DESCRIPTION

... a series of Silicon Transient Suppressors for use primarily in Airborne Equipment where large voltage transients endanger voltage sensitive components. The TransZorb meets all requirements of MIL-S-19500/434. JAN & JANTX units are available.

These devices were designed with MIL-STD-704A (Characteristics and Utilization of Aircraft Electric Power) as the controlling specification. In most cases the source impedance is not specified and can vary from .2 ohm to 150 ohms. The TransZorb will operate with a minimum of 1 ohm source impedance. If the source impedance is known to be less, either an inductive or resistive load should be added in series to limit the current flow.

The reasonable assumption must be made, that the energy level of the voltage transient is not infinite and thus will decay when shunted by the TransZorb at a rate equal to or greater than that which is specified in Figure 2, Page 1-1. In case of a severe, abnormal transient beyond the maximum ratings, the TransZorb will initially fail "short" thus tripping the system's circuit breaker or fuse while protecting the entire circuit.

Because the response time of the TransZorb's clamping action is effectively instantaneous (better than 1×10^{-12} sec), they can protect Integrated Circuits, MOS Fets, Hybrids and other voltage sensitive semiconductors and components. The TransZorbs are available in a complete voltage range from 5.0 volts to 200 volts. They can also be used in series or parallel to increase the peak power ratings. Due to the high surge capability and fast response, they have been proven effective EMP suppressors.

- MIL qualified per MIL-S-19500/434
- Designed for DC applications

MAXIMUM RATINGS

- 1500 Watts of Peak Pulse Power dissipation at 25°C
- t_{clamping} (0 volts to BV min): Less than 1 x 10⁻¹² seconds
- Operating and Storage temperatures: -65° to +175°C
- Forward surge rating: 200 amps, 1/120 second at 25°C
- Steady State power dissipation: 1.0 watt
- Duty cycle: .01%

MECHANICAL CHARACTERISTICS

- Standard DO-13 package glass and metal hermetically sealed
- Weight: 1.5 grams (approximate)
- · Positive terminal marked with band
- Body marked with Logo * and type number
- Standard polarity cathode to case

Peak Pulse Power vs Pulse Time	Figure 1, Page 1-1	i
Pulse Wave Form	Figure 2, Page 1-1	i
Power-Temperature Derating Curve	Figure 3, Page 1-1	1

ELECTRICAL CHARACTERISTICS @ 25°C

GENERAL SEMICONDUCTOR PART NUMBER	JEDEC TYPE NUMBER **	HEVERSE STAND-OFF VOLTAGE (Note 1) VR VOLTS	MAXIMUM REVERSE LEAKAGE @ V _R I _R	MINIMUM BREAKDOWN VOLTAGE @ 1 mA BV VOLTS	MAXIMUM CLAMPING VOLTARS @ Inp VC VOLTS	MAXIMUM- PEAK PILSE CUMMENT: (Fig. 2) Ipp A	MAXIMUM TEMPERATURE COEFFICIENT %/°C
704-34A	22 1 N5555	30.5	5	33.0	47.5	32	+ .093
704-45A	24 1 N5556	40.3	5	43.7	63.5	24	+ .094
704-56A	24 1 N5557	49.0	5	54.0	78.5	19	+ .096
704-190A	24 1 N5558	175.0	5	191.0	265.0	5.7	+ .100

Available in JAN & JANTX per MIL-S-19500/434

TYPICAL TEST CIRCUITS FOR SYSTEM CAPABILITY

V_f @ 100 amps peak, 8.3 msec sine wave = 3.5 volts maximum.

^{**}Bipolar TransZorbs are available for certain applications.

Note 1: A TransZorb is normally selected according to the reverse "Stand Off Voltage" (V_R) which should be equal to or greater than the DC or continuous peak operating voltage level.

TRANSZORB TRANSIENT VOLTAGE SUPPRESSORS 1N5629 THRU 1N5665A

DESCRIPTION

This specification sheet defines a series of Silicon Transient Suppressors used in applications where large voltage transients can permanently damage voltage-sensitive components. The TransZorb is packaged in a hermetically sealed, glass-to-metal package. JAN and JANTX TransZorbs qualified to MILS-915900/500 are also available.

TransZorbs are characterized by their high surge capability, extremely fast response time, and low impedance, (R_m). Because of the unpredictable nature of transients and the variation of the impedance with respect to these transients, impedance per se is not specified as a parametric value. However, a minimum voltage at low current conditions (Ry) and a maximum clamping eV_o) at a maximum peaking eV_o) at a maximum peaking current is specified. In addition, a maximum clamping ratio is indicated. In some instances the thermal effect (see V_c Clamping Voltage) may be responsible for 50% to 70% of the observed voltage differential when subjected to high current pulses or severe duty cycles thus making a maximum impedance specification insignificant. In case of a severe current overload or abnormal transient beyond the maximum ratings, the TransZorb will initially fall "short" thus tripping the systems' circuit breaker or fuse while protecting the entire circuit. Curves depicting clamping voltage vs. various current pulses are available from the factory. Extended power curvers vs. quites time are also available.

current pulses are available from the factory. Extended power curves vs. pulse time are also available.

The Trans2 orb has a peak pulse power rating of 1500 wats for one millisecond and therefore can be used in applications where induced lightning in rural or remote transmission lines presents a hazard to electronic circuitry (ref. R.C.A. specification P.E.60). The response time of Trans2orb clamping action is theoretically instantaneous (1 x 10 – 12sec): therefore, they can protect Integrated Circuits. MOS devices, Hybrids, and other voltage-sensitive semiconductors and components. Trans2orb contains the protection of the protection

ovilage-sensitive semiconductors and components. Transforts can also be used in series or parallel to increase the peak power ratings.

This series of devices has been proven very effective as EMP Suppressors. For the actual test results and application send for report number AD9092661. This specification sheet is only one of many series of Transient Voltage Suppressors available from General Semiconductor Industries.

- 1500 watts peak power dissipation
- Available in ranges from 6.8V to 200V.
- DO-13 hermetically sealed package

MAXIMUM RATINGS

- 1500 Watts of Peak Pulse Power dissipation at 25°C
- $t_{clamping}$ (0 volts to BV min): Less than 1 x 10 $^{-12}$ seconds
- Operating and Storage Temperatures: -65° to +175° C
- Forward surge rating: 200 amps, 1/120 second at 25° C
- Steady State power dissipation: 1 watt
- · Repetition rate (duty cycle): .01%

MECHANICAL CHARACTERISTICS

- Standard DO-13 package glass and metal hermetically sealed
- Weight: 1.5 grams (approximate)
- · Positive terminal marked with band
- Standard Polarity Cathode to Case
- Body marked with Logo * and type number

ELECTRICAL CHARACTERISTICS

• Clamping Factor: 1.33 @ Full rated power 1.20 @ 50% rated power

Clamping Factor: The ratio of the actual V_C (Clamping Voltage) to the &V (Breakdown Voltage) as measured on a specific device. (See Figure 3 for test pulse wave shape.)

FIGURE 1 — Peak Pulse Power vs Pulse Time

FIGURE 2 Derating Curve

JEDEC TYPE	GENERAL SEMICONDUCTOR PART	REVERSE STAND-OFF YOLTAGE (Note 1) Va	BREAKDOW Voltage BV @		MAXIMUM CLAMPING VOLTAGE @ Inp 11 msec) Vc	MAXIMUM REVERSE LEAKAGE @ V _R I _R	MAXIMUM PEAK PELSE CURRENT (Fig. 2)	MAXIMUM TEMPERATURE COEFFICIENT OF BV
NUMBER	NUMBER	VOLTS	VOLTS	mA	VOLTS	μÅ	A	%/°C
1N5629	1.5 K 6.8	5.50	6.12 - 7.48	10	10.8 10.5	1000 1000	139 143	.057 .057
1N5629A 1N5630	1.5K6.8A 1.5K7.5	5.80 5.05	6.45 - 7.14 6.75 - 8.25	10 10	147 St. 11.7	500	128	.061
₩1N5630A	1.5 K7.5 A	6.40	7.13 - 7.88	10	11.3	500	32	.061 .065
1N5631 ₩1N5631A	1.5 K8.2 1.5 K8.2 A	6.63 7.02	7.38 - 9.02 7.79 - 8. 61	10 10	12.5 12.1	200 200	120 124	.065
1N5632	1.5K9.1	7.37	8.19 - 10.0	1	13.8	50 50	109 112	.068
₩1N5632A	1.5K9.1A	7.78	8.65 - 9.55 9.00 - 11.0	1	13.4 15.0	10	100	.073
1N5633 ₩1N5633A	1.5 K10 1.5 K10A	8.10 8.55	9.5 - 10.5	1	14.5	10	103 93	.073 .075
1N5634 ₩1N5634A	1.5 K11 1.5 K11 A	8.92 9.40	9.9 - 12.1 10.5 - 11.6	1	16.2 15.6	5 5	95 96	.075
1N5635	1.5K11A	9.72	10.8 13.2	1	17.3	5	87	.078
244 1N5635A	1.5 K12A	10.2	11.4 - 12.6 11.7 - 14.3	1	16.7 19.0	5 5	90 79	.078
1N5636 ₩ 1N5636A	1.5 K13 1.5 K13A	10.5 11.1	12.4 - 13.7	1	18.2	5	82	.081
1N5637	1.5K15	12.1	13.5 - 16.5	1	22.0	5	68	.084
1N5637A 1N5638	1.5K15A 1.5K16	12.8 12.9	14.3 - 15.8 14.4 - 17.6	1	21.2 23.5	5 5	71 64	.086
₩1N5638A	1.5K16A	13.6	15.2 - 16.8	1	22.5	5	67	.086
1N5639	1.5K18	14.5	16.2 - 19.8 17.1 - 18.9	1	26.5 25.2	5 5	56.5 59.5	.088 .088
™1N5639A 1N5640	1.5 K18A 1.5 K20	15.3 16.2	18.0 - 22.0	1	29.1	5	51.5	.090
₩ 1N5640A	1.5K20A	16.2 17.1	19.0 - 21.0	1	8.377	5	54 47	.090
1N5641 ₩ 1N5641A	1.5K22 1.5K22A	17.8 18.8	19.8 - 24.2 20.9 - 23.1	1	31.9 30.6	5	47 29	.092
1N5642	1.5 K24	19.4	21.6 - 26.4	1	34.7 33.2	5	43	.094 .094
₩ 1N5642A	1.5K24A	20.5	22.8 - 25.2	1	39.1	5	38.5	.096
1N5643 ₩1N5643A	1.5K27 1.5K27A	21.8 23.1	24.3 - 29.7 25.7 - 28.4	i	37.5	5	40	.096
1N5644	1.5 K30	24.3 25.6	27.0 - 33.0 28.5 - 31.5	1	43.5 41.4	5	34.5 36	.097 .097
1N5644A 1N5645	1.5K30A 1.5K33	26.8	29.7 - 36.3	1	47.7	5	31.5	.098
₩1N5645A	1.5K33A	28.2	31.4 - 34.7	1	45.7	5 5	33 29	.098 .099
1N5646 ₩ 1N5646A	1.5K36 1.5K36A	29.1 30.8	32.4 - 39.6 34.2 - 37.8	1	52.0 49.9	5	30	.099
1N5647	1.5 K39	31.6	35.1 - 42.9	1	56.4	5	26.5	.100
₩ 1N5647A	1.5K39A 1.5K43	33.3 34.8	37.1 - 41.0 38.7 - 47.3	1	53.9 61.9	5 5	28 24	.100 .101
1N5648 24 1N5648 A	1.5K43A	36.8	40.9 - 45.2	i	59.3	5	25.3	.101
1N5649	1.5K47	38.1	42.3 - 51.7 44.7 - 49.4	1		5 5	22.2 23.2	.101 .101
₩1N5649A 1N5650	1.5 K47 A 1.5 K51	40.2 41.3	45.9 - 56.1	1	73.5	5	20.4	.102
₩1N5650A	1.5K51A	43,6	48.5 - 53.6	1	の 都会を記さる。 A Main A Main D Main 中 34	5	21.4 18.6	.102 .103
1N5651 ₩1N5651A	1.5 K56 1.5 K56A	45.4 47.8	50.4 - 61.6 53.2 - 58.8	1	80.5 77.0	5	19,5	.103
1N5652	1.5 K62	50.2	55.8 - 68.2	!	89.0	5 5	16.9 17.7	.104 .104
₩1N5652A	1.5K62A	53.0 55.1	58.9 - 65.1 61.2 - 74.8	1	98.0	5	15.3	.104
1N5653 ₩41N5653A	1.5K68 1.5K68A	58.1	64.6 - 71.4	1	92.0	5	16.3	.004 .105
1N5654 ₩ 1N5654A	1.5K75 1.5K75A	60.7 64.1	67.5 - 82. 5 71.3 - 78.8	1	ACRES (1997) 1985 1985 1985 A. B. S.	5 5	13.9 14.6	.105
1N5655	1.5K82	66.4	73.8 - 90.2	1	118.0	5	12.7	.105
₩1N5655A	1.5 K82A	70.1 73.7	77.9 - 86.1 81.9 - 100.0	1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5	19.3 11.4	.105 .106
1N5656 ₩1N5656A	1.5K91 1.5K91A	17.8	86.5 - 95.5	i	125.0	5	12.0	.106
1N5657	1.5K100	81.0	90.0 - 110.0	!		5	10.4 11.0	.106 .106
₩1N5657A 1N5658	1.5K100A 1.5K110	85.5 89.2	95.0 - 105.0 99.0 - 121.0	1	158.0	5	9.5	.107
₩1N5658A	1.5K110A	89.2 94.0	105.0 - 116.0	1	18 14 Mad 95 MC 35 25 1	5	9.9	.107 .107
1N5659 ₩1N5659A	1.5 K120 1.5 K120 A	97.2 102.0	108.0 - 132.0 114.0 - 126.0	1	165.0	5 5	8.7 9.1	.107
1N5660	1.5 K 130	105.0	117.0 - 143.0	1	187.0	5 5	8.0 8.4	.107 .107
34 1N5660A	1.5K130A	111.0 121.0	124.0 - 137.0 135.0 - 165.0		200 St. 100 St	5	7.0	.108
1N5661 ₩1N5661A	1.5 K150 1.5 K150A	128.0	143.0 - 158.0	1	207.0	5	7.2 6.5	.108 .108
1N5662 341N5662A	1.5K160 1.5K160A	130.0 136.0	144.0 - 176.0 152.0 - 168.0		AM A 2017 A DAMEST OF THE RESIDENCE OF T	5 5	6.8	.108
1N5663	1.5K170	138.0	153.0 - 187.0		244.0	5	6.2	.108
₩ 1N5663A	1.5K170A	145.0	162.0 - 179.0 162.0 - 198.0	1		5 5	6.4 5.8	.108 .108
1N5664 ₩1N5664A	1.5K180 1.5K180A	146.0 154.0	171.0 - 189.0			5	6.1	.108
1N5665	1.5 K200	162.0 171.0	180.0 - 220.0		287.0 274.0	5 5	5.2 5.5	.108 .108
2441N5665A	1.5K200A	271.0	190.0 - 210.0		274.0	,	191011	11.00

 V_{f} at 100 amps peak, 8.3 msec sine wave equals 3.5 volts maximum

Note 1: A TransZorb is normally selected according to the reverse "Stand Off Voltage" (V_R) which should be equal to or greater than the DC or continuous peak operating voltage level.

[₩] JAN & JANTXV available per MIL-S-19500/500

DESCRIPTION

. . . Silicon Transient Suppressors introduced and registered by General Semiconductor for the protection of 5.0 volt logic circuits. The 1N5907 and 1N5908 protect TTL, ECL, DTL, MOS and MSI integrated circuits requiring 5.0 volt or lower power supplies. These devices are rated for a peak pulse power of 1500 watts for 1 millisecond.

The 1N5907 TransZorb, packaged in a hermetically sealed glass-to-metal package, is available in JAN, JANTX & JANTXV qualified to MIL-STD 19500/500.

- Designed for protection of T² L Logic
- 5.0 Volt reverse standoff

MAXIMUM RATINGS

- 1500 Watts of Peak Pulse Power dissipation at 25°C
- $t_{clamping}$ (0 volts to BV min): Less than 1 x 10⁻¹² seconds
- Operating and Storage Temperatures: —65° to +175°C
- Forward surge rating: 200 amps, 1/120 second at 25°C
- Steady State power dissipation: 1N5907 1.0 watt

 $1N5908 - 5.0 \text{ W} @ T_L = 75^{\circ}\text{C}$, Lead Length = 3/8''

Repetition rate (duty cycle): 1N5907 - .01%
 1N5908 - .05%

MECHANICAL CHARACTERISTICS

- 1N5907 Standard DO-13 package, glass and hermetically sealed
- 1N5908 Molded Case
- Weight: 1.5 grams (approximate)
- · Positive terminal marked with band
- Body marked with Logo * and type number

CAPACITANCE

• 15,000 pF at 0 Volts (typical)

ELECTRICAL CHARACTERISTICS

Clamping Factor: 1.33 @ Full rated power
 1.20 @ 50% rated power

Clamping Factor: The ratio of the actual V_C (Clamping Voltage) to the actual BV (Breakdown Voltage) as measured on a specific device. (See Figure 2, Page 1-1 for Test Pulse Wave Shape.)

Peak Pulse Power vs Pulse Time Figure 1, Page 1	1-1
Pulse Wave Form Figure 2, Page 1	
Power-Temperature Derating Curve Figure 3, Page 1	
Capacitor Discharge Test Circuit Figure 4, Page 1	1-2

Typical Characteristic Clamping Voltage (V_C) vs Peak Pulse Current (pp)

ELECTRICAL CHARACTERISTICS @ 25°C

JEDEC TYPE NUMBER >= 1N5907 1N5908	REVERSE STANDORF VOLTAGE (Bato I) Va VOLTS	MAXIMUM REVERSE LEAKAGE @ V R I R µ A 300	MINIMUM BREAKDOWN VOLTAGE @ 1 mA BV VOLTS 6.0 6.0	PRESENTING CLAMPING VALUE VALUE VALUE VC VOLIT 7.6 7.6	PEAK PIRSE COMMENT (Fig. 2) (Fr) A 30 30	MAXIMUM CLAMPING VOLTABE @ 1rrz VQ VOLTS B.9 5.0	PEAK PULSE CURRENT (Fig. 2) IPP2 A 60 60	MAXIMUM CLAMPING VOLTAGE @ IPP3 VC VOLTS 8.5 8.5	PEAK PULSE CURRENT (Fig. 2) IPP3 A 120 120
--	---	---	--	---	--	---	--	---	--

Available in JAN & JANTXV per MIL-S-19500/500

Note 1: A TransZorb is normally selected according to the reverse "Stand Off Voltage" (V_R) which should be equal to or greater than the DC or continuous peak operating voltage level.

APPLICATION NOTES

The 1N5907 and 1N5908 TransZorbs are characterized by the reverse stand-off voltage (V_R) . They are synonymous with the integrated circuit power supply voltage. The breakdown voltage (BV) is that point at which the TransZorb is in avalanche breakdown. This point is temperature dependent and

has a positive temperature coefficient. Allowance has been made in establishing the minimum breakdown voltage at 25°C to provide safe operation over the full military temperature range.

DC LINE APPLICATIONS .

The TransZorb on the power line prevents IC failures caused by transients (electrostatic charge), power supply reversals or during switching of the power supply to on or off.

with a protection circuit such as a crowbar circuit. It may also be required to protect the bypass transistor from voltage spikes across the collector to emitter terminals.

Typical power sources employing the TransZorb for Voltage Transient Protection.

The TransZorb is chosen in which the reverse stand-off voltage is equal to or greater than the DC output voltage. For certain applications it may be more desirable to replace the series resistor (R.) with an inductor. In most applications, a fuse in the line is desirable. Elimination of a transformer will require an LC filter on the line for most industrial applications, when the TransZorb is placed on the input to the power supply and with an input voltage greater than 40 volts.

BIDIRECTIONAL TRANSZORB TRANSIENT VOLTAGE SUPPRESORS 1N6036 THRU 1N6072A

DESCRIPTION

. . . a series of Bidirectional Silicon Transient Suppressors used in AC applications where large voltage transients can permanently damage voltage-sensitive components.

These devices are manufactured using two silicon PN, low voltage junction in a back to back configuration. They are characterized by their high surge capability, extremely fast response time, and low impedance, (R_m).

The TransZorb has a peak pulse power rating of 1500 watts for one millisecond and therefore can be used in applications where induced lightning on rural or remote transmission lines presents a hazard to electronic circuitry (ref: R.E.A. specification P.E. 60). The response time of TransZorb clamping action is less than (5×10^{-9}) sec; therefore, they can protect integrated Circuits, MOS devices, Hybrids, and other voltage-sensitive semiconductors and components.

This series of devices has been proven very effective as EMP Suppressors. Also available as JAN, JANTX, JANTXV devices per MIL-S-19500/507.

- 1500 watts peak power dissipation
- Available in standoff voltages from 5.5V to 185V
- DO-13 hermetically sealed package
- MIL qualified per MIL-S-19500/507
- BIDIRECTIONAL
- UL Recognized (% IN6070A)

MAXIMUM RATINGS

- 1500 Watts of Peak Pulse Power dissipation at 25°C
- t_{clamping} (0 volts to BV min): Less than 5 x 10⁻⁹ seconds
- Operating and Storage Temperatures: -65° to +175°C
- Steady State power dissipation: 1.0 watt
- Repetition rate (duty cycle): .01%

MECHANICAL CHARACTERISTICS

- Standard DO-13 package, glass and metal hermetically sealed
- Weight: 1.5 grams (approximate)
- Body marked with Logo ★ and type number

ELECTRICAL CHARACTERISTICS

Clamping Factor: 1.33 @ Full rated power
 1.20 @ 50% rated power

Clamping Factor: The ratio of the actual V_C (Clamping Voltage) to the actual BV (Breakdown Voltage) as measured on a specific device. (See Figure 2, Page 1-1 for Test Pulse Wave Shape.)

Peak Pulse Power vs Pulse Time	Figure 1, Page 1-1
Pulse Wave Form	Figure 2, Page 1-1
Power-Temperature Derating Curve	Figure 3, Page 1-1
Capacitor Discharge Test Circuit	Figure 4. Page 1-2

Typical Capacitance vs Breakdown Voltage

JEOEC	REVERSE STAND-OFF VOLTAGE (Meta 1)	BREAKDOWN Vocationee BV @ I _T	MAXIMUM GLAMPING VOLTAGE @ Ipp (1 msec) Vo	MAXIMUM REVERSE LEAKAGE @ Vr I _R	MAXIMUM PEAK PULSE CURRENT (Fig. 2)	MAXIMUM TEMPERATURE COEFFICIENT OF BV
TYPE NUMBER	VOLTS	VOLTS mA	AOL12	μ A		%/°C
1N6036 ₩ 1N6036A	5.3	6.75 - 8.25 10 7.13 - 7.88 10	1417 11:3	1000 1000	128 132	.061 .061
1N6037 3M 1N6037A	6.0 6.5 7.0	7.38 - 9.02 10 7.79 - 8.61 10	12.5 12.1	500 500	192 120 124	.065 .065
1N6038	7,0	8.19 - 10.0 10	13.8	200 200	109 112	.068 .068
¼ 1N6038A 1N6039 ¼ 1N6039A	7.5 8.0 8.5	8.65 - 9.55 10 9.00 - 11.0 1 9.5 - 10.5 1	13.4 15.0 14.5	50 50	112 100 103	.073 .073
1N6040	8:5	9.9 - 12.1 1	16.2 13.6	10 10	93 96	.075 .075
¼Å 1N6040A 1N6041 ¼Å 1N6041A	9.0 9.0 10.0	10.5 - 11.6 1 10.8 - 13.2 1 11.4 - 12.6 1	17.3 16.7	5	96 87 90	.078 .078
1N6042	10,0	11.7 - 14.3 1	19.0 18.2	5 5	79 82	.081 .081
;i& 1N6042A 1N6043 ;i& 1N6043A	11.0 11.0 12.0	12.4 - 13.7 1 13.5 - 16.5 1 14.3 - 15.8 1	22.0 21.2	5	68 71	.084 .084
1N6044	12:0	14.4 - 17.6 1	23.5 22.5	5 5	64 67	.086 .086
۱N6044A 1N6045 ۱N6045A	13.0 14.0 15.0	15.2 - 16.8 1 16.2 - 19.8 1 17.1 - 18.9 1	26.5 25.2	5	56.5 59.5	.088 .088
1N6046	16.0	18.0 - 22.0 1	29.1 27.7	5 5	\$1.5 54	.090 .090
≨41N6046A 1N6047 ≨41N6047A	17.0 17.0 18.0	19.0 - 21.0 1 19.8 - 24.2 1 20.9 - 23.1 1	31.9 30.6	5	47 49	.092 .092
1N6048	19.0	21.6 - 26.4 1	34.7 33.2	5 5	43 45	.094 .094
1N6048A 1N6049 341N6049A	20.0 21.0 22.0	22.8 - 25.2 1 24.3 - 29.7 1 25.7 - 28.4 1	39.1 37.5	5	38.5 40	.096 .096
1N6050	24.0	27.0 - 33.0 1	43.5	5 5	34.5 36	.097 .097
1N6050A 1N6051	25.0 26.0	28.5 - 31.5 1 29.7 - 36.3 1 31.4 - 34.7 1	41.4 47.7 45.7	5	31.5	.098
1N6051A 1N6052	28.0 29.0	32.4 - 39.6 1	52.0	5	29 30	.099 .099
1N6052A 1N6053	30.0 31.0	34.2 - 37.8 1 35.1 - 42.9 1	49.9 56.4 53.9	5 5	26.5 28	.100
1N6053A 1N6054	33.0 34.0	37.1 - 41.0 1 38.7 - 47.3 1	61.9	5	24 25.3	.101 .101
1N6054A 1N6055	34.0 36.0 38.0	40.9 · 45.2 1 42.3 · 51.7 1	59.3 67.8	5 5 5	22.2 23.2	.101
₩ 1N6055A 1N6056	40.0 41.0	44.7 - 49.4 1 45.9 - 56.1 1	73.5	5	20.4 21.4	.102 .102
1N6056A 1N6057	43.0 45.0	48.5 - 53.6 1 50.4 - 61.6 1	70.1 80.5 77.0	5	18.6 19.5	.103
1N6057A 1N6058	47.0 48.0	53.2 - 58.8 1 55.8 - 68.2 1	89.0	5	16.9 17.7	.104 .104
1N6058A 1N6059	53.0 55.0	58.9 - 65.1 1 61.2 - 74.8 1	85.0 98.0 92.0	5 5 . 5	15.3 16.3	.104
1N6059A 1N6060	58.0 60.0	64.6 · 71.4 1 67.5 · 82.5 1	108.0	5	13.9 14.6	.105 .105
1N6060A 1N6061	64.0 66.0	71.3 - 78.8 1 73.8 - 90.2 1	103.0 118.0 113.0	5	12.7 13.3	.105
₩ 1N6061A 1N6062	70.0 73.0	77.9 - 86.1 1 81.9 - 100.0 1	131.0	5	11.4 12.0	.106 .106
1N6062A 1N6063	75.0 81.0	86.5 - 95.5 1 90.0 - 110.0 1	125.0 144.0 137.0	5 5 5	10.4 11.0	.106 .106
1N6063A 1N6064	82.0 90.0	95.0 - 105.0 1 99.0 - 121.0 1	158,0 152,0	5	9.5 9.9	.107
1N6064A 1N6065	94.0 95.0	105.0 - 116.0 1 108.0 - 132.0 1 114.0 - 126.0 1	176.0 168.0	5 5	8.5	.107 .107
1N6065A 1N6066	100.0 105.0	117.0 - 143.0 1	191.0	5	7.8	.107 .107
1N6066A 1N6067	110.0 121.0	124.0 - 137.0 1 135.0 - 165.0 1 143.0 - 158.0 1	182.0 223.0 213.0	5 5	8.2 6.7 7.0	.108 .108
1N6067A 1N6068	128.0 137.0	153.0 - 187.0 1	258.0	5	5.8	.108 .108
1N6068A 1N6069	145.0 145.0	162.0 - 179.0 1 162.0 - 198.0 1	245.0 274.0 261.0	5 5	\$3	.108
34 1N6069A 1N6070	150.0 155.0	171.0 - 189.0 1 171.0 - 210.0 1	292.0	5	\$1	.108
34 1N6070A 1N6071	160.0 165.0	181.0 - 200.0 1 180.0 - 220.0 1	278.0 308.0	5 5 5	4.9 5.1	.108
1N6071A 1N6072	, 170.0 175.0	190.0 - 210.0 1 198.0 - 242.0 1	294.0 344.0	5	4.3	.108
₩ 1N6072A	185.0	209.0 - 231.0 1	328.0	5		.108

Available in JAN, JANTX & JANTXV per MIL-S-19500/507

Note 1: A TransZorb is normally selected according to the reverse "Stand Off Voltage" (V_R) which should be equal to or greater than the DC or continuous peak operating voltage level.

DESCRIPTION

This specification sheet defines a series of Silicon Transient Suppressors used in applications where large voltage transients can permanently damage voltage-sensitive components.

TransZorbs are characterized by their high surge capability, extremely fast response time, and low impedance, (Ron). Because of the unpredictable nature of transients and the variation of the impedance with respect to these transients, impedance per se is not specified as a parametric value. However, a minimum voltage at low current conditions (BV) and a maximum clamping voltage (VC) at a maximum peak pulse current is specified. In addition, a maximum clamping ratio is indicated. In some instances the thermal effect (see V_C Clamping Voltage) may be responsible for 50% to 70% of the observed voltage differential when subjected to high-current pulses or severe duty cycles thus making a maximum impedance specification insignificant. Curves depicting clamping voltage vs. various current pulses are available from the factory. Extended power curves vs. pulse time are also available.

The TransZorb has a peak pulse power rating of 1500 watts for one millisecond and therefore can be used in applications where induced lightning on rural or remote transmission lines presents a hazard to electronic circuitry (ref: R.E.A. specification P.E. 60). The response time of TransZorb clamping action is theoretically instantaneous (1 \times 10^{-12} sec); therefore, they can protect integrated Circuits, MOS device, Hybrids, and other voltage-sensitive semiconductors and components. TransZorbs can also be used in series or parallel to increase the peak power ratings.

This series of devices been proven very effective as EMP Suppressors. For the actual test results and application send for report number AD909267L, at the Defense Documentation Center, Alexandria, Virginia 22314. This specification sheet is only one of many series of Transient Voltage Suppressors available from General Semiconductor Industries.

In case of a severe current overload or abnormal transient beyond the maximum ratings, the Trans-Zorb will initially fail "short" thus tripping the systems' circuit breaker or fuse while protecting the entire circuit. However, if current is sustained in the shorted mode, the device may exhibit an open condition. If the shorted mode is a desirable designed characteristic, we recommend the 1N5629 series of TransZorbs.

1500 watts peak power dissipation

- Available in ranges from 6.8V to 200V.
- UL Recognized (% 1.5KE200CA)

MAXIMUM RATINGS

- 1500 Watts of Peak Pulse Power dissipation at 25°C*
- t_{clamping} (0 volts to BV min): Less than 1 x 10⁻¹² seconds (theoretical)
- Operating and Storage Temperature: -65° to +175°C*
- Forward surge rating: 200 amps, 1/20 second at 25°C*
- Steady State power dissipation: 5.0 W @ T_L = 75°C,*
- Lead Length = 3/8" Bipolar Devices – Applies to GSI part numbers only

*Indicates JEDEC Registered Data

MECHANICAL CHARACTERISTICS

- Molded Case
- Weight: 1.5 grams (approximate)
- Positive terminal marked with band
- Body marked with Logo * and type number

ELECTRICAL CHARACTERISTICS

 Clamping Factor: 1.33 @ Full rated power 1.20 @ 50% rated power

Clamping Factor: The retio of the ectual V_C (Clamping Voltage) to the actual BV (Breakdown Voltage) as meesured on a specific device. (See Figure 3 for test pulse wave shape.)

FIGURE 1 -**Peak Pulse Power** vs Pulse Time **Derating Curve**

GENERAL SEMICONDUCTOR INDUSTRIES, INC.

ELECTRICAL CHARACTERISTICS at 25° C JEDEC Registered Data

JEDEC Type Number	GSI Part Number	REVERSE STAND-OFF VOLTAGE (Note 1) VR VOLTS	BREAKDOWN VOLTAGE BV I _T VOLTS mA Min. Max	MAXIBUM CLAMPING VOLTAGE P 100 (Fig. 3) VC VOLTS	MAXIMUM REVERSE LEAKAGE @ VR IR #A	MAXIMUM PEAK PULSE CURRENT (Fig. 3) (Moto 2)	MAX. TEMP. CDEF. DF BV %/°C
1N8267 1N6267A	1.5KE8.6 1.5KE8.8A 1.5KE7.5	5.50 5.80	6.12 7.48 10 6.45 7.14 10	10.8 10.5 11.7	1000 1000 500	139.0 143.0 128.0	.057 .057 .061
1N6266 1N6268A	1.5KE7.5A	5.80 6.05 6.40	6.75 6.25 10 7.13 7.86 10	11.3	500 500 200	132.0	.061
1N6289 1N6269A 1N6270	1.5KE6.2 1.6KE6.2A 1.5KE9.1	6.63 7.02 7.37	7,38 9.02 10 7,79 6,61 10 6,19 10.00 1	12.5 12.1 13.8	200 50	120.0 124.0 109.0 112.0	.065 .068
1N6270A	1.5KE9.1A 1.5KE10	737 278 8 10	6.65 9.55 1 9.00 11.00 1	13:4%6 Y	50 10	100.0	.068
1N8271A 1N6272	1.6KE10A 1.5KE11	8.10 8.56 8.92	9.50 10.50 1 9.90 12.10 1	15.0 14.5 16.2	10 5 5	103.0 93.0 96.0	.073 .075 .075
1N6272A 1N8273	1.5KE11A 1.5KE12	9.40 9.72	10.50 11.60 1 10.80 13.20 1	15.6 17.3 16.7	5	87.0 90.0	.078 .078
1N6273A 1N6274 1N6274A	1.5KE12A 1.5KE13 1.5KE13A	10.20 10.50 11.10	11.40 12.60 1 11.70 14.30 1 12.40 13.70 1	16.7 19.0 18.2	5 5 5	79.0 82.0	.081
1N6275 1N6276A	1.5KE15 1.5KE15A	12.10 12.80 12.90	13.50 16.50 1	22.0 21.2	5 5	68.0 71.0	.084
1N6276 1N6276A	1.5KE16 1.5KE16A	13.60	14.30 15.60 1 14.40 17.60 1 15.20 16.80 1	23.5 22.5	5 5	67.0	.086
1N6277 1N6277A	1.5KE16 1.5KE16A	14.50 16.30	16.20 19.80 1 17.10 18.90 1	26.5 25.2	5	56.5 59.5 61.6 54.0	.088 .088 .090
1N6276 1N6276A	1.6KE20 1.5KE20A	16.20 17.10	18.00 22.00 1 19.00 21.00 1	29,1 27.7	5 5		.090
1N6279 1N6279A 1N6280	1.5KE22 1.6KE22A 1.5KE24	17.80 18.80 19.40	19.80 24.20 1 20.90 23.10 1 21.60 26.40 1	31.9 30.6 34.7	5	47.0 49.0 43.0	.092
1N6280A 1N6261	1.5KE24A 1.5KE27	20.50 21.80	22.60 25.20 1 24.30 29.70 1	34.7 33,2 39.1	5	45.0 38.6	.094
1N6261A 1N6282	1.5KE27A 1.5KE30	23.10 24.30	25.70 26.40 1 27.00 33.00 1	37.5 43.5 41.4	5 5 5	40.0 34.5 36.0	.096 .097 .097
1N6282A 1N6283	1.5KE30A 1.5KE33	26.80 26.80	28.50 31.50 1 29.70 36.30 1	47.7	5 5	2.01.60	.096
1N6283A 1N6284 1N6284A	1.5KE33A 1.5KE36 1.5KE36A	26.80 28.20 29.10 30.80	31.40 34.70 1 32.40 39.60 1 34.20 37.80 1	45.7 52.0 49.9	5 5	33.0 29.0 30.0	.099
1N6285 1N6285A	1.5KE39 1.5KE39A	31.60	35.10 42.90 1	56.4 53.9	5 5	26.6 28.0	.100 .100
1N8286 1N6286A	1.5KE43 1.5KE43A	34.80 36.80	37.10 41.00 1 38.70 47.30 1 40.90 45.20 1	51.9 59.3	5 5	24.0 25.3	.101 .101
1N6267 1N6267A	1.5KE47 1.5KE47A 1.5KE61	38.10 40.20 41.30	42.30 51.70 1 44.70 49.40 1 45.90 56.10 1	67.8 64.8 73.5 70.1	5 5 5	22.2 23.2 20.4	.101 .101 .102
1N6288 1N6288A	1.6KE61A	43.50	46.50 53.60 1		5	21.6	.102
1N6289 1N6289A 1N6290	1.5KE56 1.5KE56A 1.5KE62	45 40 47.80 50.20	50.40 61.60 1 53.20 56.60 1 55.80 68.20 1	80.5 77.0 89.0	5 5	18.6 19.5 16.9	103
1N6290A 1N6291	1.5KE82A 1.5KE66	53.00	58.90 65.10 1 61.20 74.60 1	89.0 85.0 98.0	5	36.3	.104
1N6291A 1N6292	1.5KE68A 1.5KE75	55.10 56.10 60.70 64.10	64.60 71.40 1 67.50 82.50 1	98.0 92.0 108.0 103.0	5 5 5	16.3 13.9 14.6	.104 .105 .106
1N6292A 1N6293	1.5KE75A 1.5KE62	64.10 66.40	71.30 78.60 1 73.60 90.20 1	103.0 118.0 113.0	5 5	H	105 105
1N6293A 1N8294 1N6294A	1.5KE82A 1.5KE91 1.5KE91A	66.40 70.10 73.70 77.80	77.90 86.10 1 61.90 100.00 1 86.50 95.50 1	131.0 125.0	5 5	12.0	.106 .106
1N6295 1N6295A	1.5KE100 1.5KE100A	81.00 85.50 89.20	90.00 110.00 1 95.00 105.00 1 99.00 121.00 1	144.0 137.0 158.0	5 5	10.4	.106 .106
1N6296A 1N6296A	1.5KE110 1.5KE110A	94.00	105.00 118.00 1	162.0	5 5	9.1	.107 .107
1N6297 1N6297A	1.5KE120 1.5KE120A	97.20 102.00 105.00	108.00 132.00 1 114.00 126.00 1 117.00 143.00 1	**************************************	5 5 5	8.7 8.2	.107 .107
1N8298 1N8298A	1.5KE130 1.5KE130A	111,00	124.00 137.00 1	187.0 179.0	5	53.84 38.94	.107
1N6299 1N6299A 1N6300	1.5KE150 1.5KE150A 1.5KE160	121.00 128.00 130.00 136.00	136.00 165.00 1 143.00 158.00 1 144.00 176.00 1	215.0 207.0 230.0	5 5	70 72 66 63	.106
1N6300A 1N6301	1.5KE160A 1.6KE170	136.00	152.00 168.00 1 153.00 167.00 1	219.0	5 5	6.8 6.2 6.4	.108
1N6301A 1N6302	1.5KE170A 1.5KE160	138.00 145.00 146.00 154.00	162.00 179.00 1 162.00 198.00 1	258.0	5 5 5	6.4 5.8 8.1	.108 .108
1N6302A 1N8303	1.6KE180A 1.5KE200	164.00 162.00 171.00	160.00 220.00	287.0	5 5		.106
1N6303A	1.5KE200A 1.6KE220 1.5KE220A	175.00	190.00 210.00 1 196.00 242.00 1 209.00 231.00	328.0	5 5	13 13 46	.108
	1 EK E 2500	202.00	225.00 275.00 237.00 263.00	344.0	5 5	5.0 5.0 5.0 5.0	.110
	1.5KE250A 1.5KE300* 1.5KE300A	243.00 256.00	270.00 330.00 265.00 315.00	414.0	5	5.0 5.0	.110
	1.5KE350* 1.6KE350A	284.00 300.00	315.00 365.00 333.00 368.00 360.00 440.00	504.0 482.0 574.6	5 5	4.0 4.0 4.0	.110
	1.5KE400* 1.6KE400A	324.00 342.00	380.00 420.00	648.0	5 5	4.0	.110

^{*}For Bipolar types 1.5KE7.5C thru 1.5KE11CA, IR max. must be doubled that shown for single polarity types. RIPOLAR APPLICATIONS Electrical characteristics apply in both directions. For Bipolar use C or CA Suffix for types 1.5KE7.5 through types 1.5KE200.

Example: 1.5KE7.5CA - 1.5KE200CA

TRANSZORB TRANSIENT VOLTAGE SUPPRESSORS 1.5KC6.8 THRU 1.5KC110A

DESCRIPTION

... a leadless TransZorb designed for direct retro-fit or replacement of a gas-discharge suppressor when lower voltages are needed to protect voltage sensitive circuitry.

TransZorbs have proven to be effective in Airborne Avionics and Controls, Mobile Communication Equipment, Computer Power Supplies, Numerically Controlled Machinery, and in many other applications where inductive and switching transients are present.

- 1500 watts peak power dissipation
- Available in ranges from 6.8V to 110V
- Leadless TransZorb

MAXIMUM RATINGS

- 1500 Watts of Peak Pulse Power dissipation at 25°C
- t_{clamping} (0 volts to BV min): Less than 1 x 10⁻¹² seconds
- Operating and Storage Temperatures: -65° to +175°C
- Forward surge rating: 200 amps, 1/120 second at 25°C
- Steady State power dissipation: 1.0 watt
- Repetition rate (duty cycle): .01%

MECHANICAL CHARACTERISTICS

- Ceramic Case with Metal Caps
- · Weight: 1.25 grams (approximate)
- · Polarity marked with polarity symbol
- Body marked with Logo * and type number

ELECTRICAL CHARACTERISTICS

Clamping Factor: 1.33 @ Full rated power
 1.15 @ 50% rated power

Clamping Factor: The ratio of the actual V_C (Clamping Voltage) to the actual BV (Breakdown Voltage) as measured on a specific device. (See Figure 2, Page 1-1 for Test Pulse Wave Shape.)

DEVICES FOR BIPOLAR APPLICATIONS

For Bidirectional types use C or CA Suffix for types 1.5KC7.5 through 1.5KC110. Electrical characteristics apply in both polarities. The maximum reverse leakage current must be doubled for types up through 11 volts for bipolar devices.

Peak Pulse Power vs Pulse Time	Figure 1, Page	1-1
Pulse Wave Form		
Power-Temperature Derating Curve		
Capacitor Discharge Test Circuit	Figure 4 Page	

Typical Capacitance vs Breakdown Voltage

ELECTRICAL CHARACTERISTICS @ 25°C

GENERAL SEMICONDUCTOR	REVERSE STAND-OFF VOLTAGE (Note 1) VR	BREAKDO' VOLTAG BY @		MAXIMUM CLAMPING VOLTAGE @ lep It msec) Ve	MAXIMUM REVERSE LEAKAGE @ V _R I _{R †}	MAXIMUM PEAK PULSE CURRENT - (Fig. 2)	MAXIMUM TEMPERATURE COEFFICIENT OF BV
PART NUMBER	VOLTS	VOLTS	mA	VOLTS	μÅ	A -11-11	%/°C
* 1.5KC6.8 * 1.5KC6.8A 1.5KC7.5 1.5KC7.5A	\$,50 \$,80 6,05 6,40	6.12 · 7.48 6.45 · 7.14 6.75 · 8.25 7.13 · 7.88	10 10 10 10	10.8 10.5 11.7 11.3	1000 1000 500 500	139 143 128 132	.057 .057 .061 .061
1.5KC8.2 1.5KC8.2A 1.5KC9.1 1.5KC9.1A	6.63 7.02 7.37 7.78	7.38 · 9.02 7.79 · 8.61 8.19 · 10.0 8.65 · 9.55	10 10 1	12.5 12.1 13.8 13.4	200 200 50 50	120 124 109 112	.065 .065 .068 .068
1.5KC10 1.5KC10A 1.5KC11 1.5KC11A	8.10 8.55 8.92 5.40	9.00 · 11.0 9.5 · 10.5 9.9 · 12.1 10.5 · 11.6	1 1 1	15.0 14.5 16.2 15.6	10 10 5 5	100 103 93 96	.073 .073 .075 .075
1.5KC12 1.5KC12A 1.5KC13 1.5KC13A	9.72 10.2 10.5 11.1	10.8 · 13.2 11.4 · 12.6 11.7 · 14.3 12.4 · 13.7	1 1 1	17.3 16.7 19.0 18.2	5 5 5 5	87 90 79 82	.078 .078 .081 .081
1.5KC15 1.5KC15A 1.5KC16 1.5KC16A	12.1 12.8 12.9 13.6	13.5 - 16.5 14.3 - 15.8 14.4 - 17.6 15.2 - 16.8	1 1 1	22.0 21.2 23.5 22.5	5 5 5 5	68 71 64 67	.084 .084 .086 .086
1.5KC18 1.5KC18A 1.5KC20 1.5KC20A	14.5 15.3 16.2 17.1	16.2 · 19.8 17.1 · 18.9 18.0 · 22.0 19.0 · 21.0	1 1 1	26.5 25.2 29.1 27.7	5 5 5 5	\$6.5 59.5 51.5 54	.0 8 8 .0 8 8 .090 .090
1.5KC22 1.5KC22A 1.5KC24 1.5KC24A	17.8 18.8 19.4 20.5	19.8 - 24.2 20.9 - 23.1 21.6 - 26.4 22.8 - 25.2	1 1 1	31.9 30.6 34.7 33.2	5 5 5 5	47 49 43 43	.092 .092 .094 .094
1.5KC27 1.5KC27A 1.5KC30 1.5KC30A	21.8 23.1 24.3 25.6	24.3 - 29.7 25.7 - 28.4 27.0 - 33.0 28.5 - 31.5	1 1 1	30 1 37 5 43.5 41.4	5 5 5 5	38.5 40 34.5 36	.096 .096 .097 .097
1.5KC33 1.5KC33A 1.5KC36 1.5KC36A	26.8 28.2 29.1 30.8	29.7 - 36.3 31.4 - 34.7 32.4 - 39.6 34.2 - 37.8	1 1 1	47.7 45.7 52.0 49.9	5 5 5 5	31.5 33 29 30	.09 8 .098 .099 .099
1.5KC39 1.5KC39A 1.5KC43 1.5KC43A	31.6 33.3 34.8 16.8	35.1 - 42.9 37.1 - 41.0 38.7 - 47.3 40.9 - 45.2	1 1 1	56.4 53.9 61.9 59.3	5 5 5 5	26.5 28 24 25.3	.100 .1 0 0 .101 .101
1.5KC47 1.5KC47A 1.5KC51 1.5KC51A	38 40.2 41.3 43.6	42.3 · 51.7 44.7 · 49.4 45.9 · 56.1 48.5 · 53.6	1 1 1	67.8 64.8 73.5 70.1	5 5 5 5	22.2 23.2 20.4 21.4	.101 .101 .102 .102
1.5KC56 1.5KC56A 1.5KC62 1.5KC62A	45.4 47.8 50.2 53.0	50.4 - 61.6 53.2 - 58.8 55.8 - 68.2 58.9 - 65.1	1 1 1	80.5 77.0 89.0 85.0	5 5 5 5	18.6 19.5 16.9 17.7	.103 .103 .104 .104
1.5KC68 1.5KC68A 1.5KC75 1.5KC75A	SS 1 58.1 60.7 64.1	61.2 - 74.8 64.6 - 71.4 67.5 - 82.5 71.3 - 78.8	1 1 1	98.0 92.0 108.0 103.0	5 5 5 5	15.3 16.3 13.9 14.6	.104 .104 .105 .105
1.5KC82 1.5KC82A 1.5KC91 1.5KC91A	66.4 70.1 73.7 77.8	73.8 - 90.2 77.9 - 86.1 81.9 - 100.0 86.5 - 95.5	1 1 1 1	118.0 1137 1311 1957	5 5 5 5	12.7 13.3 11.4 12.0	.105 .105 .106 .106
1.5KC100 1.5KC100A 1.5KC110 1.5KC110A	81.0 85.5 89.2 94.0	90.0 - 110.0 95.0 - 105.0 99.0 - 121.0 105.0 - 116.0	1 1 1	144.0 137.0 158.0 152.0	5 5 5 5	10.4 11.0 9.5 9.9	.106 .106 .107 .107

V_f at 100 amps peak, 8.3 msec sine wave equals 3.5 volts maximum *Not available as Bidirectional

Note 1: A TransZorb is normally selected according to the reverse "Stand Off Voltage" (V_R) which should be equal to or greater than the DC or continuous peak operating voltage level.

[†] For bipolar types 1.5KC7.5CA thru 1.5KC11CA, IB MAX must be double that specified for single polarity types.

TRANSZORB
TRANSIENT VOLTAGE
SUPPRESSORS
5KP5.0
THRU
5KP110A

DESCRIPTION

... a series of high power transient voltage suppressors designed to be used on the output of switching power supplies. These devices may be used to replace crowbar circuits. Both the 5 and 10 percent voltage tolerances are referenced to the power supply output voltage level.

TransZorbs are Silicon PN Junction devices designed for absorbtion of high voltage transients associated with power disturbances, switching and induced lightning effects. This series is available from 5.0 volts thru 110 volts.

- Designed for DC power supply applications
- Available in ranges from 5.0 to 110 volts

MAXIMUM RATINGS

- 5,000 watts of Peak Pulse Power dissipation at 25°C
- t_{clamping} (0 volts to BV min): Less than 1 x 10⁻¹² seconds
- Operating and Storage temperature: -55° to +150°C
- Steady State power dissipation: 5.0 watts @ T₁ = 25°C
- Repetition rate (duty cycle): .05%

MECHANICAL CHARACTERISTICS

- Molded (Plastic) Case
- Weight: 4 grams (approximate)
- · Positive terminal marked with band
- Body marked with Logo * and type number

Figure 1 - Peak Power vs Pulse Time

Figure 2 - Typical Cepacitance vs Breakdown Voltage

GENERAL SEMICONOUCTOR PART NUMBER	REYERSE STAND-OFF VOLTAGE (Note 1) VK VOLTS	BREAKOOV Voltagi BV @ Volts		MAXIMUM CLAMPING VOLTAGE @ lep (1 mSEC) VC VOLTS	MAXIMUM REVERSE LEAKAGE @ V _R I _R µ A	MAXIMUM PEAK PULSE CURRENT (Fig. 3) Lipe	MAXIMUM VOLTAGE TEMPERATURE VARIATION OF BY mV/°C
5KP5.0	5.0	6.40 - 7.30	50	9.6 9.2	2000 2000	520 643	4.0 4.0
5KP5.0A 5KP6.0 5KP6.0A	5.0 6.0 6.0	6.40 7.00 6.67 8.15 6.67 7.37	50 50 50	11.4 10.3	5000 5000	543 439 485	4.0 4.0
5KP6.5 5KP6.5A	6.5 6.5 7.0	7.22 - 8.8 2 7.22 - 7.98	50 50	12.3 11.2	2000 2000	407 447	4.0 4.0 5.0
5KP7.0 5KP7.0A	7.0	7.78 · 9.51 7.78 · 8.60	50 50	13.3 12.0	1000 1000 250	978 417 350	5.0 5.0 6.0
5KP7.5 5KP7.5A 5KP8.0	7.5 7.5 8.0	8.33 - 10.2 8.33 - 9.21 8.89 - 10.9	5 5 5	14.3 12.9 15.0	250 150	388 333	6.0 6.0
5KP8.0A 5KP8.5	8.0 8.5	8.89 - 9.83 9.44 - 11.5	5 5	13.6 15.9	150 50	367 314	6.0 7.0
5KP8.5A 5KP9.0	8.5 9.0	9.44 10.4 10.0 12.2	5 5 5	14.4 16.9 15.4	50 20 20	347 295 325	7.0 8.0 8.0
5KP9.0A 5KP10 5KP10A	9,0 10	10.0 - 11.1 11.1 - 13.6 11.1 - 12.3	5 5	18.8 17.0	15 15	266 294	9.0 9.0
5KP11 5KP11A	10 11 11	12.2 14.9 12.2 13.5	5	20 1 18 2	10 10	249 274	10 10
5KP12 5KP12A	12 12	13.3 16.3 13.3 14.7	5 5	22.0 19.9	10 10 10	227 251 210	11 11 12
5KP13 5KP13A	13 13	14.4 - 17.6 14.4 - 15.9	5 5	23.8 21.5	10 10	232 194	12 13
5KP14 5KP14A 5KP15	14 14 15	15.6 - 19.1 15.6 - 17.2 16.7 - 20.4	5 5 5	25.8 23.2 26.9	10 10	215 188 206	13 15 15
5KP15A 5KP16	15 15 16	16.7 · 18.5 17.8 · 21.8	5 5	24.4 28.8	10 10	176	18 16
5KP16A 5KP17 5KP17A	16 17 17	17.8 - 19.7 18.9 - 23.1 18.9 - 20.9	5 5 5	26.0 30.5 27.6	10 10 10	192 164 181	19 18
5KP18 5KP18A	18 18	20.0 - 24.4 20.0 - 22.1	5	32.2 29.2	10 10	155 172	20 19
5KP20 5KP20A	20 20	22.2 27.1 22.2 24.5	5 5	30.8 32.4	10 10	139 154	24 22
5KP22 5KP22A	22 22	24.4 · 29.8 24.4 · 26.9	5 5 5	39.4 35.5 43.0	10 10 10	127 141 116	27 24 30
5KP24 5KP24A	24 24	26.7 - 32.6 26.7 - 29.5 28.9 - 35.3	5	38.9 46.6	10 10	128 107	27 33
5KP26 5KP26A 5KP28	26 26 28 28 28	28.9 31.9 31.1 38.0	5 5	42.1 50.1	10 10	119 99 110	29 34 30
5KP28A 5KP30	28 30 30	31.1 · 34.4 33.3 · 40.7	5 5	45.4 53.5	10 10 10	93 103	38 35
5KP30A 5KP33 5KP33A	30 33 33	33.3 · 36.8 36.7 · 44.9 36.7 · 40.6	5 5 5	48.4 59.0 53.3	10 10	85 94	41 38
5KP36 5KP36A	36 36	40.0 - 48.9 40.0 - 44.2	5 5	64.3 58.1	10 10	78 86 70	45 40
5KP40 5KP40A	40 40	44.4 - 54.3 44.4 - 49.1	5 5	71.4 64.5	10 10	78	50 45
5KP43 5KP43A 5KP45	43 43	47.8 - 58.4 47.8 - 52.8 50.0 - 61.1	5 5 5	76.7 69.4 80.3	10 10 10	65 72 62	54 49 57
5KP45 5KP45A 5KP48	45 45 48	50.0 55.3 53.3 65.1	5 5	72.7 85.5	10 10	69 58	51 62
5KP48A 5KP51	48 51	53.3 - 58.9 56.7 - 69.3	5 5	77.4 91.1	10 10 10	65 55 61	55 65 60
5KP51A 5KP54	51 54	56.7 · 62.7 60.0 · 73.3 60.0 · 66.3	5 5 5	92.4 96.3 87.1	10 10	52 57	70 64
5KP54A 5KP58 5KP58A	54 54 58 58	60.0 · 66.3 64.4 · 78.7 64.4 · 71.2	5 5	103.0 93.6	10 10	49 53	77 69
5KP60 5KP60A	60 60	66.7 - 81.5 66.7 - 73.7	5 5	107.0 96.8 114.0	10 10	47 52	79 70 8 5
5KP64 5KP64A	64 64	71.1 86.9 71.1 78.6	5 5	103.0 125	10 10 10	49 40	75 93
5KP70 5KP70A 5KP75	70 70 75	77.8 - 95.1 77.8 - 86.0 83.3 - 102.0	5 5 5	125 113 134 121	10 10	44 47 47	84 100
5KP75A 5KP78	75 78	83.3 · 92.1 86.7 · 106.0	5 5	121 139 126	10 10	36 46	90 104 94
5KP78A 5KP85	78 85 8 5	86.7 95.8 94.4 115.0 94.4 104.0	5 5 5	126 181 137	10 10 10	33 36	113 102
5KP85A 5KP90 5KP90A	90 90	100 · 122 100 · 111	5 5	160 146 179	10 10	31	120 109
5KP100 5KP100A	100 100	111 - 136 111 - 123	5 5	182	10 10	34 28 31	134 122
5KP110 5KP110A	110 110	122 - 149 122 - 135	5 5	196 177	10 10	26 28	147 132

 V_{f} at 100 amps peak, 8.3 msec sine wave equals 3.5 volts maximum

Note 1: A TransZorb is normally selected according to the reverse "Stand Off Voltage" (V_R) which should be equal to or greater than the DC or continuous peak operating voltage level.

TRANSZORB
TRANSIENT VOLTAGE
SUPPRESSORS
15KP17
THRU
15KP280A

DESCRIPTION

. . . a series of high power, medium voltage TransZorbs, Transient Voltage Suppressors, designed for the protection of Precision Industrial Electronic Equipment. These devices are rated for a peak pulse power of 15,000 watts for 1 millisecond.

TransZorbs are Silicon PN Junction devices designed for absorbtion of high voltage transients associated with power disturbances, switching, and induced lightning effects. This series is available from 17 volts through 280 volts. Special voltages are available from the factory.

- Designed for 15,000 watts
- Easy mounting to printed circuit board
- Available in ranges from 17 to 280 volts

MAXIMUM RATINGS

- 15,000 watts of Peak Pulse Power dissipation at 25°C
- t_{clamping} (0 volts to BV min): Less than 1 x 10⁻¹²
- Operating and Storage temperature: -55°C to +150°C
- Steady State power dissipation: 7.0 watts @ T_△ = 25°C
- Repetition rate (duty cycle): .05%

MECHANICAL CHARACTERISTICS

- Molded (Plastic) Case
- Weight: 13 grams (approximate)
- · Positive Terminal marked with dot
- Body marked with Logo and type number

Pulse Wave Form	Figure 2, Page 1-1	ı
Power-Temperature Derating Curve	Figure 3, Page 1-1	i
Capacitor Discharge Test Circuit	Figure 4. Page 1-2	,

Peak Pulse Power vs Pulse Time

GENERAL SEMICONDUCTOR PART NUMBER	REVERSE STAND-OFF VOLTAGE (Note-1) VA VOLTS	BREAKDO' VOLTAG BV @ VOLTS		MAXIMUM CLAMPING VOLTAGE @ lep (1 msec) Vo Volts	MAXIMUM REVERSE LEAKAGE @ V _R I _R	MAXIMUM PEAK PULSE CURRENT (Fig. 2) A	MAXIMUM VOLTAGE TEMPERATURE VARIATION OF BV mV/°C
15KP17	17	18.9 - 23.1	50 50	32.3 29.3	5000 5000	464 512	19 17
15KP17A 15KP18 15KP18A	17 18 18	18.9 - 20.9 20.0 - 24.4 20.0 - 22.1	50 50 50	34.2 30.9	5000 5000	439 485	20 18
15KP20	20	22.2 · 27.1 22.2 · 24.5	20 20	37.9	1500 1500	396 437	24 21
15KP20A 15KP22 15KP22A	20 22 22	24.4 - 29.8 24.4 - 26.9	10 10	34.3 41.1 37.1	500 500	365 404	27 24
15KP24 15KP24A	24 24	26.7 · 32.6 26.7 · 29.5	5 5	45.0 40.7	150 150	333 369	30 27
15KP26 15KP26A	26 26	28.9 - 35.3 28.9 - 31.9	5 5	48.7 44.0	50 50	308 341	32 29
15KP28 15KP28A		31.1 - 38.0 31.1 - 34.4	5 5	52.4 47.5	25 25	286 316	35 31
15KP30 15KP30A	28 28 30 30	33.3 - 40.7 33.3 - 36.8	5 5	56.2 50.7	15 15	267 296	27 34
15KP33 15KP33A	33 33	36.7 - 44.9 36.7 - 40.6	5 5	60.6 54.8	10 10	248 274	42 38
15KP36 15KP36A	36 36	40.0 - 48.9 40.0 - 44.2	5 5	66.0 59.7	10 10	227 251	46 41
15KP40 15KP40A	40 40	44.4 - 54.3 44.4 - 49.1	5 5	72.8 65.8	10 10	206 228	51 46 55
15KP43 15KP43A	43 43	47.8 - 58.4 47.8 - 52.8	5 5	77.1 69.7	10 10	195 215	50
15KP45 15KP45A	45 45	50.0 · 61.1 50.0 · 55.3	5 5	80.7 73.0	10 10 10	186 205 175	57 52 62
15KP48 15KP48A	48 48	53.3 · 65.1 53.3 · 58.9	5 5	85.9 77.7	10	193	56 66
15KP51 15KP51A	51 51	56.7 · 69.3 56.7 · 62.7	5 5 5	91.5 82.8 96.8	10 10 10	164 181 156	60 70
15KP54 15KP54A	54 54	60.0 · 73.3 60.0 · 66.3	5	87.5 104.0	10	171 144	63 76
15KP58 15KP58A 15KP60	58 58 60	64.4 · 78.7 64.4 · 71.2 66.7 · 81.5	5 5 5	94.0 107.0	10 10	160 140	68 78
15KP60A 15KP64	60 64	66.7 · 73.7 71.1 · 86.9	5 5	97.3 115	10 10	154 130	71 84
15KP64A 15KP70	64 70	71.1 - 78.6 71.1 - 78.6 77.8 - 95.1	5 5	104 126	10 10	144	76 92
15KP70A 15KP75	70 75	77.8 - 86.0 83.3 - 102.0	5 5	114 135	10 10	132 111	83 100
15KP75A 15KP78	75 78	83.3 - 92.1 86.7 - 106.0	5 5	122 140	10 10 10	123 107 119	89 104 93
15KP78A 15KP85	78 85	86.7 - 95.8 94.4 - 115	5 5	126 152	10	99	113 102
15KP85A 15KP90	95 90 90	94.4 - 104 100.0 - 122 100.0 - 111	5 5 5	137 160 146	10 10 10	109 94 103	120 109
15KP90A 15KP100	100	111 - 136	5 5	179 162	10 10	84 93	134 121
15KP100A 15KP110 15KP110A	100 110 110	111 - 123 122 - 149 122 - 135	5 5	196 178	10 10	77 84	147 133
15KP120 15KP120A	120 120	133 - 163 133 - 147	5 5	214 193	10 10	70 78	161 145
15KP130 15KP130A	130 130	144 - 176 144 - 159	5 5	231 209	10 10	65 72	174 157
15KP150 15KP150A	150 150	167 - 204 167 - 185	5 5	268 243	10 10	56 62	202 183
15KP160 15KP160A	160 160	178 - 218 178 - 197	5 5	287 259	10 10	52 58	216 195
15KP170 15KP170A	170 170	189 - 231 189 - 209	5 5	304 275	10 10	49 56	229 207 242
15KP180 15KP180A	180 180	200 - 244 200 - 221	5 5	321 291	10 10	52	219
15KP200 15KP200A	200 200	222 · 271 222 · 245	5 5	356 322 393	10 10 10	47 52 42 47 38 42	269 243 297
15KP220 15KP220A	220 220	245 · 299 245 · 271	5 5	356	10	42 35	269 324
15KP240 15KP240A	240 240 260	267 - 326 267 - 295 289 - 353	5 5 5	428 388 464	10 10 10	39 32	293 352
15KP260 15KP260A	260	289 - 319 311 - 380	5 5	419 500	10 10	36	317 378
15KP280 15KP280A	280 280	311 - 344	5	452	10	30 33	342

 $V_f = 7.5 \text{ V } @ 200\text{A}, 8.3 \text{ msec}/\frac{1}{2} \text{ sine wave}$

Note 1: A TransZorb is normally selected according to the reverse "Stand Off Voltage" (V_R) which should be equal to or greater than the DC or continuous peak operating voltage level.

BIDIRECTIONAL
TRANSZORB
TRANSIENT VOLTAGE
SUPPRESSOR
60KS200C

DESCRIPTION

. . . a Bidirectional Silicon Transient Suppressor for use in shipboard equipment and other power servicing equipment where large voltage transients endanger voltage sensitive components. The TransZorb meets all applicable environmental requirements of MIL-S-19500 and is consistent with MIL-E-16400. These devices were designed with MIL-STD-1399 Section 103 (Interface standard for shipboard systems, Electrical power, Alternating current) as the controlling specification.

- 200 Volt Bidirectional
- Exceeds MIL-STD-1399 requirements
- Can be supplied with JAN/JANTX parts

MAXIMUM RATINGS

- 15,000 watts Peak Pulse Power dissipation at 25°C
- Steady State power dissipation: 10 watts
- Operating and Storage temperatures: -65° to +150°C
- t_{clamping} (0 volts to BV): Less than 1 x 10⁻⁸ seconds

CAPACITANCE

• 170 pF @ 0 Volts (Typical)

Power-Temperature Derating Curve. Figure 3, Page 1-1

Peak Pulse Power vs Pulse Time

Pulse Wave Form (1.5 x 40 µSec)

GENERAL SEMICONDUCTOR PART NUMBER	REVERSE STARD-OFF VOLTAGE (Note 1) Vr VOLTS	MAXIMUM REVERSE LEAKAGE @ VR I _R µ A	BREAKDOWN YOLTAGE @ 1 mA BV YOLTS Min. Max.	MAXIMUM CLAMPING VOLTAGE @ lar VC VOLTS	MAXIMUM PEAN PULSE GURRENT Pulsa Wave Forte - Pg. 1-19). I pp. A.
60KS200C	180	10	200 225	335	180

^{*}Intermediate voltages available upon request. Consult factory.

Note 1: A TransZorb is normally selected according to the reverse "Stand Off Voltage" (VR) which should be equal to or greater than the DC or continuous peak operating voltage level.

FIGURE 1 - Spike Voltage (Short Time Transient) Wave Shape

MIL-STD-1399, Section 103 does not define or specify source impedance of the transient wave form depicted in Fig. 1, Page 10 (see GSI Figure 1). However, Naval Ship Engineering Center has as of 25 Nov. 1975 issued guidelines which are meaningful in determining the transient source impedance.

. a computer study had been made of shipboard electrical systems and an average of the data calculated was:

= 3.5 ohms resistance of system under transient

10 ohms @ 167 KHz - reactance of system under transient conditions

Freq,, = 165 KHz to 250 KHz - The slope of the voltage wave at these frequencies is approximately the same as the leading edge of the spike voltage wave in MIL-STD-1399 Sec 103 Fig. 1 on Page 10 = 2500 yolts — spike voltage amplitude

Additional calculations were made concerning the surge or characteristic impedance of the system.

$$Z_{\alpha} = 16\Omega$$
 to 26Ω

General Semiconductor has subjected the 60KS200C Trans-Zorb to pulses generated by a special transient simulator (schematic shown in Figure 2). Figure 3 is the current pulse wave form monitored at point A and Figure 4 is the voltage for the device under test monitored at point C;

FIGURE 2 - Test Circuit for 6DKS200C

FIGURE 3 -**Current Pulse Wave Form** 50A/cm Vertical: Horizontal: 20 µsec/cm

FIGURE 4 ~ Voltage Pulse Wave Form With TransZorb Under Test

100V/cm Vertical: Horizontal: 20 µsec/cm

DESCRIPTION

... a series of Silicon Transient Suppressors for use primarily in Airborne Equipment where large voltage transients endanger voltage sensitive components. The TransZorb meets all applicable environmental requirements of MIL-S-19500.

These devices were designed with MIL-STD-704 (Characteristics and Utilization of Aircraft Electric Power) as the controlling specification. These 15kW assemblies are designed typically to operate with a minimum source impedance of .25 Ohms for transients.

- Designed for MIL-STD-704
- 28 volt power supply protection
- Can be supplied with JAN/JANTX parts

MECHANICAL CHARACTERISTICS

- Molded Case
- · Polarity: Positive terminal indicated
- Weight: 704-15K36 38 grams 704-15K36T — 65 grams
- Body marked with Logo s
 and type number

MAXIMUM RATINGS

- Peak Pulse Power dissipation at 25°C: 15,000 watts at 1 msec
- Steady State power dissipation: 10 watts
- t_{clamping} (0 volts to BV min): Less than 1 x 10⁻¹² seconds
- Operating and Storage temperatures: -65° to +150°C
- Forward surge rating: 300 amps, 1/120 second at 25°C
- Dutý cycle: .01%

Peak Pulse Power vs Pulse Time

TRANSZORB

TRANSIENT VOLTAGE SUPPRESSORS 704-15K36 704-15K36T

ELECTRICAL CHARACTERISTICS @ 25°C

REVERSE MAXIMUM MINIMUM REVERSE BREAKDOWN GENERAL VOLTAGE LEAKAGE VOLTAGE VOLTAGE GENERAL VOLTAGE V	MAXIMUM FORWARD FORW
---	--

Note 1: A TransZorb is normally selected according to the reverse "Stand Off Voltage" (V_R) which should be equal to or greater than the DC or continuous peak operating voltage level.

LOW VOLTAGE TRANSZORB FOR 5.0V MEMORIES

The GMP-5 series is a premium 500 watt transient voltage suppressor designed for low voltage protection of MOS memories. Because of the low clamping factor, they provide a high degree of protection to VMOS, HMOS, NMOS, and CMOS circuits susceptible to 5-volt line transients. The TransZorb is desired over and above a crowbar circuit which can be false triggered and must be turned off to reset.

TransZorbs are characterized by their high surge capability, extremely fast response time and low on resistance. They are effective in providing protection against pulses generated by electromechanical switching, electromagnetic coupling, capacitive or inductive load switching, voltage reversals and electrostatic discharge. MOS circuits are more prone to damage from these pulses.

External system disturbances, such as electrostatic discharges, result in transient voltages exceeding 20,000 volts. TransZorbs having a low-series resistance (Ron) will effectively shut out unwanted transients while maintaining the circuit voltage level for continuous system operation.

Other low-cost TransZorbs are available for applications not requiring the level of protection characterized by this series, see our MPT-5 and MPT-5 data sheets. The MPT-5 series TransZorbs are designed for Military and other Aerospace requirements.

- Static memory protector
- Transient protection for CMOS, MOS

MAXIMUM RATINGS

- 500 Watts of Peak Pulse Power dissipation at 25°C
- t_{clamping} (0 volts to BV min): Less than 1 x 10⁻¹² seconds (theoretical)
- Operating and Storage Temperatures: -65°C to +175°C
- Forward surge rating: 100 amps, ¹/₁₂₀ second at 25°C
- Steady State power dissipation: 5.0 W @ T_L = 75° C, Lead Length = ³/₈"
- Repetition rate (duty cycle): .05%

MECHANICAL CHARACTERISTICS

- Molded Case
- Weight: 1.5 grams (approximate)
- · Positive terminal marked with band
- Body marked with Logo * and type number

FIGURE 1 - Peak Pulse Power vs Pulse Time

FIGURE 2 - Derating Curve

TransZorb GMP-5 SERIES

GENERAL SEMICONDUCTOR INDUSTRIES, INC.

ELECTRICAL CHARACTERISTICS @ 25°C

GENERAL SEMI- CONOUCTOR Type Number	STAND-OFF VOLTAGE Note I VA Volta	MAXIMUM REVERSE LEAKAGE @ VR IF μA	MINIMUM BREAKDOWN VOLTAGE @ ImA BV(min) Volts	MAXIMUM CLAMPING VOLTAGE 0 1 _{pp1} = 1A Nem 2 (Fig. 3) BC Volts	MAXIMUM CLAMPING VOLTAGE e Ipp2 - 10A Hote 2 (Fig. 3) E _C Volts	MAXIMUM PEAK PULSE CURRENT Note 2 (Fig. 3) Ipp3 Amps	MAXIMUM PEAK PULSE CURRENT (1.2 x 50 µsec) Amps
GMP-5	5.0	300	5.3	6.7	6.9	70	215
GMP-5A	5.0	100	5.5	6.7	6.8	70	215
GMP-5B	5.0	300	5.3	6.4	6.6	70	215

Vf at 50 AMPS PEAK, 8.3 MSEC SINE WAVE equels 3.5 VOLTS MAXIMUM.

Note 1: A TransZorb is normally selected according to the reverse "Stand Off Voltage" (V_R) which should be equal to or greater than the DC or continuous peak operating voltage level.

FIGURE 3 - Pulse Wave Form

FIGURE 4 — Typical Characteristic Clamping Voltage (V_C) vs Peak Pulse Current (I_{pp})

PRODUCT GUIDE MEMORIES

HMOS	2114 2147 2141							
NMOS		4044/4046 4244 4245	AM9114	26104 Z6132	4801 4104			
CMOS						HM6504 HM6514	MNS5114 CDP1825	
VMOS								401
64K RAMS		TMS4104			MK4164			

TRANSZORB TRANSIENT VOLTAGE SUPPRESSORS ICT-5 THRU ICT-45C

DESCRIPTION

. . . a premium series of transient voltage suppressors specifically designed and tested to protect Bipolar, MOS and Schottky improved integrated circuits from electrical disturbances. Transients and noise pulses are generated by electromechanical switching, electromagnetic coupling, capacitive or inductive load switching, voltage reversals, and electrostatic discharge. The TransZorb is desired over and above a crowbar circuit, an LC or RC network and a catch or clamping diode because of fewer components, speed of response, high power or energy absorption and low clamping ratio.

- Transient protection for CMOS, MOS, BIPOLAR, ICs, (TTL, ECL, DTL, RTL and Linear Functions)
- Voltage range of 5.0 to 45 volts
- Low clamping ratio

MAXIMUM RATINGS

- 1500 Watts of Peak Pulse Power dissipation at 25°C
- $t_{clamping}$ (0 volts to BV min): Unipolar Less than 1 x 10⁻¹² seconds

 Bidirectional Less than 5 x 10⁻⁹ seconds
- Operating and Storage temperatures: 65° to +175°C
- Forward surge rating: 200 amps, 1/120 second at 25°C
 (Applies to Unipolar or single direction only)
- Steady State power dissipation: 1.0 watt
- Repetition rate (duty cycle): .01%

MECHANICAL CHARACTERISTICS

- Standard DO-13 package, glass and metal hermetically sealed
- Weight, 1.5 grams (approximate)
- Positive terminal marked with band (except Bidirectional types)
- Body marked with Logo ♣ and type number
- Unipolar std polarity cathode to case

ELECTRICAL CHARACTERISTICS

Clamping Factor: 1.33 @ Full rated power
 1.20 @ 50% rated power

Clamping Factor: The ratio of the actual V_C (Clamping Voltage) to the actual BV (Breakdown Voltage) as measured on a specific device. (See Figure 2, Page 1-1 for Test Pulse Wave Shape.)

Peak Pulse Power vs Pulse Time	Figure 1, Page 1-1
Pulse Wave Form	Figure 2, Page 1-1
Power-Temperature Derating Curve	Figure 3, Page 1-1
Capacitor Discharge Test Circuit	Figure 4, Page 1-2

ELECTRICAL CHARACTERISTICS @ 25°C

GENERAL SEMICONDUCTOR PART NUMBER	STAND-OFF VOLYAGE (Note 1) V _R VOLTS	MAXIMUM REVERSE LEAKAGE @ Vr I R µ A	MINIMUM* BREAKDOWN VOLTAGE @ 1 mA BV(min) VOLTS	MAXIMUM CLAMPING VOLTAGE (Fig. 2) @ IPPJ == 1A VC VOLTS	MAXIMUM CLAMPIRG VOLTAGE (Fig. 2) @ IAP2 = 10A VC VOLTS	MAXIMUM PEAK PULSE CURRENT IPPS A
ICT-5	5.0	300	6.0	7.1	7.5	160
ICT-8	8.0	25	9.4	11.3	11.5	100
ICT-10	10.0	2	11.7	13.7	14.1	90
ICT-12	12.0	2	14.1	16.1	16.5	70
ICT-15	15.0	2	17.6	20.1	20.6	60
ICT-18	18.0	2	21.2	24.2	25.2	50
ICT-22	22.0	2	25.9	29.8	32.0	40
ICT-36	36.0	2	42.4	50.6	54.3	23
ICT-45	45.0	2	52. 9	63.3	70.0	19

V_f at 100 amps peak, 8.3 msec sine wave equals 3.5 volts maximum

ELECTRICAL CHARACTERISTICS @ 25°C (Test Both Polarities)

ICT-8C	8.0	25	9.4	11.4 11.6 100
ICT-10C	10.0	2	11.7	14.1 14.5 90
ICT-12C	12.0	2	14.1	16.7 17.1 70
ICT-15C	15.0	2	17.6	20.8 21.4 60
ICT-18C	18.0	2	21.2	24.8 25.5 50
ICT-22C	22.0	2	25.9	30.8 32.0 40
ICT-36C	36.0	2	42.4	50.6 54.3 23
ICT-45C	45.0	2	52.9	63.8 70.0 19

C Suffix indicates Bipolar

ICT-5 not available as Bipolar

Note 1: A TransZorb is normally selected according to the reverse "Stand Off Voltage" (V_R) which should be equal to or greater than the DC or repetitive peak operation voltage level.

*The minimum breakdown voltage as shown takes into consideration the ±1 volt tolerance normally specified for power supply regulation on most integrated circuit manufacturers data sheets. Similar TransZorb devices are available with reduced clamping voltages where tighter regulated power supply voltages are employed.

Typical Characteristic Clamping Voltage vs Peak Pulse Current

Typical Capacitance vs Breakdown Voltage (Unipolar Types)

Typical Capacitance vs Breakdown Voltage (Bipolar Types)

APPLICATION NOTES

The ICT series TransZorb is characterized by the reverse stand-off voltage (VR). It is synonymous with the integrated circuit power supply voltage. The breakdown voltage (BV) is that point at which the TransZorb is in avalanche breakdown.

This point is temperature dependent and has a positive temperature coefficient. Allowance has been made in establishing the minimum breakdown voltage at 25°C to provide safe operation over the full military temperature range.

- DC LINE APPLICATIONS -

The TransZorb on the power line prevents IC failures caused by transients (electrostatic charge), power supply reversals or during switching of the power supply to on or off.

Typical power sources employing the TransZorb for Voltage Transient Pro-

The TransZorb is chosen in which the reverse stand-off voltage is equal to or greater than the DC output voltage. For certain applications it may be more desirable to replace the series resistor (R.) with an inductor. In most applications, a fuse in the line is desirable. Elimination of a transformer will require an LC filter on the line for most industrial applications, when the TransZorb is placed on the input to the power supply and with an input voltage greater than 40 volts.

lator can often replace many components associated with a protection circuit such as a crowbar circuit. It may also be required to protect the bypass transistor from voltage spikes

across the collector to emitter terminals.

The TransZorbs protect the internal MOS FET from transients introduced on the power supply line. When interfaced with bipolar TTL circuits, the same power supply is often used. A common practice is to place a series protection diode from source to gate, but this does not offer protection from source to ground and is usually limited on peak power dissipation. A TransZorb is required on each voltage supply line to the integrated circuit.

SIGNAL LINE APPLICATION

A TransZorb on the output of an Op-amp will prevent a voltage transient, due to a short circuit or an inductive load, from being transmitted into the output stage. Fig. A is for linear circuits whereas Fig. B may be required for reducing effective capacity at the output. The TransZorb and a blocking diode is available as a single unit.

Input stages are vulnerable to low energy, high voltage static discharges or crosstalk transmitted on the signal wires. Limited protection is provided by the clamp diode or an input network within the IC substrate. The diodes, however, must have a breakdown voltage greater than the supply voltage (Vcc) and are limited in current capacity.

as motors, relay coils and solenoids. The TransZorb provides protection for the output transistor as well as the IC, eliminating a resistor/capacitor network. The ICT series TransZorb is capable of dissipating the full load current for short duration pulses (<8.3 msec). For longer pulses, the TransZorb is available in stud or press fit package.

Totem pole output circuits often generate current spikes requiring decoupling capacitors. While maintaining circuit continuity, the TransZorb is capable

of absorbing the energy pulse as well as eliminating noise spikes due to such things as crosstalk, etc. A clamp diode in the IC substrate is limited in conduction current, <100 ma, providing a minimum protection. For high frequency applications a special designed TransZorb is available upon request.

Transients generated on the line can vary from a few microseconds to several milliseconds duration and up to 10,000 volts. This thread of potential energy has given rise to high noise immunity integrated circuits. An independent study* has found that high immunity and super high immunity circuits are prone to damage by noise transients as a result of the power being dissipated by the substrate input diode. Excess current passing through the input diode can cause an open circuit condition or a slow degradation of the circuit performance. TransZorbs located on the signal line can absorb this excess energy. For some circuit applications a low capacitance unit may be required, which is available upon request.

*The Radio & Electronic Engineer, Vol. 43, No. 4, April 1973

TransZorbs can be used in series or parallel to increase their power handling capability. No precautions are required when using TransZorbs in a series string since power dissipation for two or more devices of the same type is equally shared. When using TransZorbs in parallel it is necessary for the units to be closely matched (approx. .1 volt of each other) in order for equal sharing to take place. Matched sets can be ordered from the factory for an additional

DIGITAL IC's

CMOS - MOS - BIPOLAR

The TransZorb type (s) listed under each integrated circuit manufacturer's series is the recommended transient voltage suppressor for power supply protection. Similar types may also be used for direct signal line protection. Special low capacitance TransZorbs for high frequency applications are available upon request.

		RCA	SSS	SOLITRON		
CMOS		*CD4000 A (ICT-5, -10) (ICT-15)	SCL4000 (ICT-5, -10) (ICT-15)	CM 4000 (ICT-5, -10) (ICT-15)		
	FAIRCHILD	MOTOROLA	ΤΙ	NATIONAL	SIGNETICS	INTEL
MOS				*MM421/521		*1101/1402 (ICT-5, -12, -15)
	3100 thru 3801 (ICT-36)	MC1120 (Series) (ICT-36)	*TMS Series (ICT-5, -12, -15, -22, -36)			
TTL	*9300	MC9300			8000/MSI (ICT-5)	
	9000	MC5400/7400 Series (ICT-5)	*5400/7400 (ICT-5)	*8000 DM54L/74L (Series) (ICT-5)	\$5400 (ICT- 5)	
	9н00	MC54H00	*SN54/74H	DM54H00	S54H00 (ICT-5)	
			*SN54L/74L *SN545/745	DM54L02	(101-0)	
TTμL	*9000 Series (ICT-5)	MC7400		DM9002		
HTL	*9100	MC660 Series (ICT-15)				
DTL	*9930 *9093 *930 (ICT-5)	MC930 (ICT-5)	SN15930 (ICT-5)	DM930 (ICT-5)		
ECL	9500	*MECL II MC1000/1200 Series (ICT-5)			N1004	

^{*}When using TransZorb devices for protection, the user should differentiate between the continuous voltage ratings and the maximum pulse voltage rating, as specified by various manufacturers. (For example see Motorola data sheet MDTLMC830/930.)

Recommended device types may have to be replaced with intermediate voltage levels as specific application for an IC varies.

LINEAR IC's

TransZorb protection for Linear IC devices will vary with each application. Specific device types are, however, listed for each IC manufacturer. The recommended TransZorb type corresponds to the power supply voltage, with the exception of the voltage regulator.

 	FAIRCHILD	MOTOROLA	RCA	SIGNETICS
Operational Amplifiers	A7XX Series (ICT-5, -12, -15, -22)	MC153X Series (ICT-5, -12, -18)	CA3060/80 (ICT-5, -12, -18)	SE516 (ICT-36) LM101A (ICT-18, -22)
			CA34XX CA37XX Series (ICT-15)	
				NE53X (ICT-15, -22) N5556
Voltage Regulator	SH3200 (ICT-22, -26)	MC1560/1 (iCT-18)	CA3085 (Various ICT types)	550 (ICT-4 5)
Analog Voltage Comparator				527 (ICT- 5, -1 5)
Differential Amplifier		MC1519/25/26 (ICT-12)	CA3000 (ICT-5, -12)	A733 (ICT-8)
Power Driver Amplifier		MC1554 (ICT-8, -15)		540
Sense Amplifier		MC1514/40/41 (ICT-5, -12)	CA35410 (ICT-5, -10)	

DESCRIPTION

... a premium series of transient voltage suppressors specifically designed and tested to protect Bipolar, MOS and Schottky improved integrated circuits from electrical disturbances. Transients and noise pulses are generated by electromechanical switching, electromagnetic coupling, capacitive or inductive load switching, voltage reversals, and electrostatic discharge. The TransZorb is desired over and above a crowbar circuit, an LC or RC network and a catch or clamping diode because of fewer components, speed of response, high power or energy absorption and low clamping ratio.

- Transient protection for CMOS, MOS, BIPOLAR, ICs, (TTL, ECL, DTL, RTL and Linear Functions)
- Voltage range of 5.0 to 45 volts
- Low clamping ratio

MAXIMUM RATINGS

- 1500 Watts of Peak Pulse Power dissipation at 25°C
- $t_{clamping}$ (0 volts to BV min): Unipolar Less than 1 x 10⁻¹² seconds

 Bidirectional Less than 5 x 10⁻⁹ seconds
- Operating and Storage temperatures: -65° to +175°C
- Forward surge rating: 200 amps, 1/120 second at 25° C
 (Applies to Unipolar or single direction only)
- Steady State power dissipation: 5.0 watts @ $T_L = 75^{\circ}$ C, Lead Length = 3/8"
- Repetition rate (duty cycle): .05%

MECHANICAL CHARACTERISTICS

- Molded case
- Weight: 1.5 grams (approximate)
- Positive terminal marked with band (except Bidirectional types)
- Body marked with Logo * and type number

ELECTRICAL CHARACTERISTICS

Clamping Factor: 1.33 @ Full rated power
 1.20 @ 50% rated power

Clamping Factor: The ratio of the actual V_C (Clamping Voltage) to the actual BV (Breakdown Voltage) as measured on a specific device. (See Figure 2, Page 1-1 for Test Pulse Wave Shape.)

Peak Pulse Power vs Pulse Time. Figure 1, Page 1-1
Pulse Wave Form. Figure 2, Page 1-1
Power-Temperature Derating Curve. Figure 3, Page 1-1
Capacitor Discharge Test Circuit. Figure 4, Page 1-2

ELECTRICAL CHARACTERISTICS @ 25°C

GENERAL SEMICONDUCTOR PART NUMBER	STAND-OFF VOLTAGE (Note 1) Va VOLTS	MAXIMUM REVERSE LEAKAGE @ Vr I _R	MINIMUM * BREAKOOWN VOLTAGE @ 1 mA BY(min) VOLTS	MAXIMUM CLAMPING VOLTAGE CLAMPING VOLTAGE CFIg. 21 @ lept = 14. Vc Vo Volts WAXIMUM Fig. 21 PEAR PULS CURRENT Vc Vc Vc Volts Volts A
ICTE-5	5.0	300	6.0	7.1 7.5 160
ICTE-8	8.0	25	9.4	11.3 11.5 100
ICTE-10	10.0	2	11.7	14:1
ICTE-12	12.0	2	14.1	16.1
ICTE-15	15.0	2	17.6	20.1 20.6 60
ICTE-18	18.0	2	21.2	24.2 25.2 50
ICTE-22	22.0	2	25.9	29.8 32.0 40
ICTE-36	36.0	2	42.4	50.6 54.3 23
ICTE-45	45.0	2	52.9	63.3 70.0 19

V_f at 100 amps peak, 8.3 msec sine wave equals 3.5 volts maximum

ELECTRICAL CHARACTERISTICS @ 25°C (Test Both Polarities)

ICTE-8C	8.0	25	9.4	11.4 11.6 100
ICTE-10C	10.0	2	11.7	14.1 14.5 90
ICTE-12C	12.0	2	14.1	46.7
ICTE-15C	15.0	2	17.6	20.8 21.4 60
ICTE-18C	18.0	2	21.2	24.8 25.5 50
ICTE-22C	22.0	2	25.9	30.8 32.0 40
ICTE-36C	36.0	2	42.4	50.6 54.3 23
ICTE-45C	45:0	2	52. 9	63.3 70.0

C Suffix indicates Bipolar

ICTE-5 not available as Bipolar

Note 1: A TransZorb is normally selected according to the reverse "Stand Off Voltage" (V_R) which should be equal to or greater than the DC or continuous peak operating voltage level.

*The minimum breakdown voltage as shown takes into consideration the ±1 volt tolerance normally specified for power supply regulation on most integrated circuit manufacturers data sheets. Similar TransZorb devices are available with reduced clamping voltages where tighter regulated power supply voltages are employed.

Typical Characteristic Clamping Voltage vs Peak Pulse Current

Typical Capacitance vs Breakdown Voltage (Unipolar Types)

Typical Cepacitance vs Breakdown Voltage (Bipolar Types)

APPLICATION NOTES

The ICTE series TransZorb is characterized by the reverse stand-off voltage (V_R) . It is synonymous with the integrated circuit power supply voltage. The breakdown voltage (BV) is that point at which the TransZorb is in avalanche breakdown.

This point is temperature dependent and has a positive temperature coefficient. Allowance has been made in establishing the minimum breakdown voltage at 25°C to provide safe operation over the full military temperature range.

- DC LINE APPLICATIONS -

The TransZorb on the power line prevents IC failures caused by transients (electrostatic charge), power supply reversals or during switching of the power supply to on or off.

Typical power sources employing the TransZorb for Voltage Transient Protection.

The TransZorb is chosen in which the reverse stand-off voltage is equal to or greater than the DC output voltage. For certain applications it may be more desirable to replace the series resistor (R.) with an inductor. In most applications, a fuse in the line is desirable. Elimination of a transformer will require an LC filter on the line for most industrial applications, when the TransZorb is placed on the input to the power supply and with an input voltage greater than 40 volts.

with a protection circuit such as a crowdar circuit. It = may also be required to protect the bypass transistor from voltage spikes across the collector to emitter terminals.

The TransZorbs protect the internal MOS FET from transients introduced on the power supply line. When interfaced with bipolar TTL circuits, the same power supply is often used. A common practice is to place a series protection diode from source to gate, but this does not offer protection from source to ground and is usually limited on peak power dissipation. A TransZorb is required on each voltage supply line to the integrated circuit.

SIGNAL LINE APPLICATION

A TransZorb on the output of an Op-amp will prevent a voltage transient, due to a short circuit or an inductive load, from being transmitted into the output stage. Fig. A is for linear circuits whereas Fig. B may be required for reducing effective capacity at the output. The TransZorb and a blocking diode is available as a single unit.

Input stages are vulnerable to low energy, high voltage static discharges or crosstalk transmitted on the signal wires. Limited protection is provided by the clamp diode or an input network within the IC substrate. The diodes, however, must have a breakdown voltage greater than the supply voltage $(V_{\rm CC})$ and are limited in current capacity.

as motors, relay coils and solenoids. The TransZorb provides protection for the output transistor as well as the IC, eliminating a resistor/capacitor network. The ICTE series TransZorb is capable of dissipating the full load current for short duration pulses (<8.3 msec). For longer pulses, the TransZorb is available in stud or press fit package.

Totem pole output circuits often generate current spikes requiring decoupling capacitors. While maintaining circuit continuity, the TransZorb is capable of absorbing the

energy pulse as well as eliminating noise spikes due to such things as crosstalk, etc. A clamp diode in the IC substrate is limited in conduction current, <100 ma, providing a minimum protection. For high frequency applications a special designed TransZorb is available upon request.

Transients generated on the line can vary from a few microseconds to several milliseconds duration and up to 10,000 volts. This thread of potential energy has given rise to high noise immunity integrated circuits. An independent study* has found that high immunity and super high immunity circuits are prone to damage by noise transients as a result of the power being dissipated by the substrate input diode. Excess current passing through the input diode can cause an open circuit condition or a slow degradation of the circuit performance. TransZorbs located on the signal line can absorb this excess energy. For some circuit applications a low capacitance unit may be required, which is available upon request.

*The Radio & Electronic Engineer, Vol. 43, No. 4, April 1973

TransZorbs can be used in series or parallel to increase their power handling capability. No precautions are required when using TransZorbs in a series string since power dissipation for two or more devices of the same type is equally shared. When using TransZorbs in parallel it is necessary for the units to be closely matched (approx. .1 volt of each other) in order for equal sharing to take place. Matched sets can be ordered from the factory for an additional charge.

DIGITAL IC's

CMOS - MOS - BIPOLAR

The TransZorb type (s) listed under each integrated circuit manufacturer's series is the recommended transient voltage suppressor for power supply protection. Similar types may also be used for direct signal line protection. Special low capacitance TransZorbs for high frequency applications are available upon request.

		RCA	SSS	SOLITRON		INTEL
CMOS		*CD4000 A (ICTE-5, -10) (ICTE-15)	SCL4000 (ICTE-5, -10) (ICTE-15)	CM 4000 (ICTE-5, -10) (ICTE-15)		5101 (ICTE-5)
	FAIRCHILD	MOTOROLA	TI	NATIONAL	SIGNETICS	INTEL
MOS	F-8 (ICTE-8, -15)	M6800 (ICTE-5)		*MM421/521	2650PIP (ICTE-5)	*1101/1402 (ICTE-5, -12, -15)
	3100 thru	MC1120		IMP-4/8/16 (ICTE-5, -12)		MCS4/40 (ICTE-15)
	3801 (ICTE-36)	(Series) (ICTE-36)		(1012-0, -12)		MCS8/80 (ICTE-5, -12)
			*TMS Series (ICTE-5, -12, -15, -22, -36)			(10.126) 1.6,
TTL	*9300	MC9300			8000/MSI (ICTE-5)	WF3000 (ICTE-5)
				*8000		
	9000	MC5400/7400 Series (ICTE-5)	*5400 7400 (ICTE-5)	DM54L/74L (Series) (ICTE-5)	\$5400 (ICTE-5)	
	9н00	MC54H00	*SN54/74H	DM54H00	\$54H00 (ICTE-5)	
			*SN54L/74L *SN545/745	DM54L02	(1012 0)	
TTμL	*9000 Series (ICTE-5)	MC7400		DM9002		
HTL	*9100	MC660 Series (ICTE-15)				
DTL	*9930 *9093 *930 (ICTE-5)	MC930 (ICTE-5)	SN15930 (ICTE-5)	DM930 (ICTE-5)		
ECL	9500	*MECL II MC1000/1200 Series		-		
		(ICTE-5)			N1004	

^{*}When using TransZorb devices for protection, the user should differentiate between the continuous voltage ratings and the maximum pulse voltage rating, as specified by various manufacturers. (For example see Motorola data sheet MDTLMC830. 930.)

Recommended device types may have to be replaced with intermediate voltage levels as specific application for an IC varies.

LINEAR IC's

TransZorb protection for Linear IC devices will vary with each application. Specific device types are, however, listed for each IC manufacturer. The recommended TransZorb type corresponds to the power supply voltage, with the exception of the voltage regulator.

	FAIRCHILD	MOTOROLA	RCA	SIGNETICS
Operational Amplifiers	A7XX Series (ICTE-5, -12, -15, -22)	MC153X Series (ICTE-5, -12, -18)	CA3060/80 (ICTE-5, -12, -18)	SE516 (ICTE-36) LM101A (ICTE-18, -22)
			CA34XX CA37XX Series (ICTE-15)	
			•	NE53X (ICTE-15, -22) N5556
Voltage Regulator	SH3200 (ICTE-22, -26)	MC1560/1 (ICTE-18)	CA3085 (Various ICTE types)	550 (ICTE-4 5)
Analog Voltage Comparator				527 (ICTE-5, -15)
Differential Amplifier		MC1519/25/26 (ICTE-12)	CA3000 (ICTE-5, -12)	A733 (ICTE-8)
Power Driver Amplifier		MC1554 (ICTE-8, -15)		540
Sense Amplifier		MC1514/40/41 (ICTE-5, -12)	CA35410 (ICTE-5, -10)	

LOW CAPACITANCE TRANSZORB LC7.5-LC200A

This specification sheet defines a series of low-capacitance silicon transient suppressors for the protection of AC signal line. This series employs a standard TransZorb in series with a rectifier with the same transient capabilities as the TransZorb. The rectifier is also used to reduce the effective capacitance up thru 100 MHz with a minimum amount of signal loss or deformation. The low-capacitance TransZorb may be applied directly across the signal line to prevent induced transient from lightning, power interruptions, or static discharge. If bipolar transient capability is required, two low-capacitance TransZorbs must be used in parallel, opposite in polarity for complete AC protection.

- 1500 watts of Peak Pulse Power dissipation at 25°C
- Available in Ranges from 6.5-200V
- Low capacitance AC signal protection

MAXIMUM RATINGS

- 1500 Watts of Peak Pulse Power dissipation at 25°C
- t_{clamping} (0 volts to BV min): Less than 5 x 10⁻⁹ seconds
- Operating and Storage Temperatures: -65° to +175° C
- Steady State power dissipation: 1.0W
- Repetition Rate (duty cycle): .01%

MECHANICAL CHARACTERISTICS

- Std DO-13 package, glass and metal hermetically sealed
- Weight: 1.5 grams (approximate)
- Polarity band to be on the cathode end of the TransZorb
- Body marked with Logo ★ and type number

ELECTRICAL CHARACTERISTICS

Clamping Factor: 1.4 @ Full Rated power 1.30 @ 50% Rated power

Clamping Factor: The ratio of the actual V_{C} (Clamping Voltage) to the actual BV (Breakdown Voltage) as measured on a specific device.

NOTE: When pulse testing, test in TransZorb Avalanche direction.

DO NOT pulse in forward direction.

ELECTRICAL CHARACTERISTICS @ 25°C

:	REVERSE STANDOFF VOCTAGE VOCTS	BREAK VOLT B VO Min.	AGE V	@ IT mA	MAXIMUM REVERSE LEAKAGE @ VR IR µA	MAXHMUM CLAMPHUS VOLTAGE VE VOLTS	MAXIMUM PEAK PULSE CUARENT 18 x 1095	pF @ 0 VOLTS CAPACI- TANCE	VWIB WORKING INVERSE BLOCKING VOLTAGE	IJB INVERSE BLOCKING LEAKAGE CURRENT	VPIB PEAK INVERSE BLOCKING VOLTAGE
LC6.6 LC6.5A	6.3 6.5 7.0	7.22 7.22	8.82 7.98	10 10	1000 1000	12.3 11.2	190 100 100	100 100	75 75	1	100 100
LC7.0 LC7.0A	7.0 7.0	7.78 7.78	9.51 8.60	10 10	500 500	13.3 12.0	100 100	100 100	75 75	1	100 100
LC7.5 LC7.5A	7.5 7.5	8.33 8.33	10.2 9.21	10 10	250 250	14.3 12.9	100 100	100 100	75 75	1 1	100 100
LC8.0 LC8.0A	8.0 0.8	8.89 8.89	10.9 9.83	1	100 100	15.6 13.6	180 100	100 100	75 75	1	100 100
L C8.5 L C8.5A	8.5 8.5	9.44 9.44	11.5 10.4	1	50 50	15.9	94 100	100 100	75 75	1	100 100
LC9.0 LC9.0A	9.9 9.0	10.0 10.0	12.2 11.1	i	10 10	14.4 16.9 15.4	9)	100	75 75	i	100 100
LC10	10	11.1	13.6	1	5	19.3	80	100	75	1	100
LC18A LC11	10 11	11.1	12.3 14.9	1	5	17.0 20.1 18.2	## 74	100 100	75 75		100 100 100
LC11A LC12	12	12.2 13.3	13.5 16.3	1	5 5	22.0	Ω Ω	100 100	75 75	1	100
LC12A LC13	12 13 13	13.3 14.4	14.7 17.6	1	5 5	19.8 23.8	aeze	100 100	75 75	1	100 100
LC13A LC14	13	14.4 15.6	15.9 19.1	1	5	21.5 25.8	70 58	100 100	75 75	1	100 100
LC14A LC15	14 15	15.6 16.7	17.2 20.4	i 1	5 5	23.2 26.9	56 65 56	100 100	75 75	1	100 100
LC15A	15 16	16.7 17.8	18.5	1	5	24.4 28.8	56 61 52	100 100	75 75	1	100 100
LC16 LC16A LC17		17.8 18.9	21.8 19.7 23.1	1	5 5	28.0 30.5	57 49 64	100 100	75 75	li	100 100
LC17A	;; ;;	18.9	20.9	1	5	27.6	64	100	75	i	100
LC18 LC18A	18 18 20	20.0 20.0	24.4 22.1	1	5	32.2 28.2	# 91 10 10	100 100	75 75	1	100 100
LC20 LC20A	20	22.2 22.2	27.1 24.5	1	5 5	35.8 32.4	Sales March	100 100	75 75		100 100
LC22 LC22A	22 22	24.4 24.4	29.8 26.9	1	5 5	39.4 35.5	28 42 35	100 100	75 75		100 100
LC24 LC24A	24 24	26.7 26.7	32.6 29.5	1	5 5	43.0 38.9	33	100 100	75 75		100 100
LC26 LC26A	28 26	28.9 28.9	35.3 31.9	1	5 5	48.6 42.1	32 36	100 100	75 75	1	100 100
LC28 LC28A	26 20 21	31.1 31.1	38.0 34.4	1	5 5.	50.1 45.4	30 33	100 100	75 75	1	100 100
LC30	30 30	33.3	40.7 36.8	1	5 5	53.5 48.4	29 31	100 100	75 75	1	100 100
LC30A LC33 LC33A	33 33 33	33.3 36.7 36.7	44.9 40.6	1	5	59.0 63.3	25.4 28.1	100 100	75 75	į	100 100
LC36	36	40.0	48.9	1	5	64.3	23.3	100	75	i	100
LC36A LC40	36 36 40	40.0 44.4	44.2 54.3		5	58.1 71.4 64.5	25.8 21.0	100 100	75 75 75	1	100 100
LC40A LC43	48 43	44.4 47.8	49.1 58.4	1 1	5 5	76.7	23.3 19.5	100 100	150	1	200
LC43A LC45	41 45 46	47.8 50.0	52.8 61.1	1	5 5	69.4 80.3	19.5 21.6 18.7	100 100	150 150	1	200 200
LC45A LC48	CONTRACTOR OF CO	50.0 53.3	55.3 65.1	1	5	72.7 85.5	20.6 17.5	100 100	150 150	1	200 200
LC48A LC51	44 43 61 51	53.3 56.7	58.9 69.3	1	5 5	85.5 77.4 91.1	17.5 15.4 16.5	100 100	150 150	1	200 200
LC51A	51 54	56.7 60.0	62.7 73.3	1	5 5	82.4 96.3	18,2 15,6	100 100	150 150	1	200 200
LC54 LC54A LC58	54 80	60.0 64.4	66.3 78.7	i	5	87.1 103.0	17.2 14.6	100 100	150 150		200 200
LC58A	58	64.4	71.2	1	5	93.6	16.0	100 90	150 150	1	200 200
LC60 LC60A	60 60	66.7 66.7	81.5 73.7	1	5	107.0 96.8	14.0 15.5 13.2	90 90	150 150		200 200 200
LC64 LC64A	00 64 64	71.1 71.1	86.9 78.6	1	5 5	114.0 103.0	14.0	90	150	i	200
LC70 LC70A	76 70 76	77.8 77.8	95.1 86.0	1	5 5	125 113	12.0 13.3	90 90	150 150	!	200 200
LC75 LC75A	76 76	83.3 83.3	102.0 92.1	1	5	134 121	11.2	90 90	150 150		200 200
LC80 LC80A	80 80	88.7 88.7	108 98.0	1	5 5	142 128	10.6 11.6 8.4	90 90	150 150	1 1	200 200
LC90 LC90A	90 90	100 100	122 111	1	5 5	160 146	10.3	90 90	300 300	1	200 200
LC100 LC100A	100	111	136 123	1	5	179 162	13	90 90	300 300	1	200 200
LC110 LC110A	110 110 120	122 122	149 135		5 5	196	7.7	90 90	300 300	1	400 400
LC120 LC120A	120 120	133	163 147		5	178 214 193		90 90	300 300	1	400 400
LC130 LC130A	120 130 130	144 144	176 159		5	193 231 209	8.5 7.2	90 90	300 300	1	400 400
LC150	150	167	204	1	5	268 243 287	5.6	90 90	300 300	1	400 400
LC 150A LC 160	150 150 160	167 178	185 218	1	5	287 287	5.7 5.2 5.8	90 90	300 300		400 400
LC160A	160 170	178 189	197 231	1	5 5	259 384	4.9	90	300	i	400

Note 1: A TransZorb is normally selected according to the reverse "Stand Off Voltage" (VR) which should be equal to or greater than the DC or continuous peak operating voltage level.

LOW CAPACITANCE

TRANSZORB

LCE7.5-LCE200A

DESCRIPTION

This specification sheet defines a series of low-capacitance silicon transient suppressors for the protection of AC signal line. This series employs a standard TransZorb in series with a rectifier with the same transient capabilities as the TransZorb. The rectifier is also used to reduce the effective capacitance up thru 100 MHz with a minimum amount of signal loss or deformation. The low-capacitance TransZorb may be applied directly across the signal line to prevent induced transient from lightning, power interruptions, or static discharge. If bipolar transient capability is required, two low-capacitance TransZorbs must be used in parallel, opposite in polarity for complete AC protection.

- 1500 watts of Peak Pulse Power dissipation at 25°C
- Available in Ranges from 6.5-200V
- Low capacitance AC signal protection

MAXIMUM RATINGS

- 1500 Watts of Peak Pulse Power dissipation at 25°C
- t_{clamping} (0 volts to BV min): Less than 5 x 10⁻⁹ seconds
- Operating and Storage temperatures: -65° to +175° C
- Steady State power dissipation. 5.0W @ T_L = 75° C
 Lead Length = 3/8"
- Repetition Rate (duty cycle): .05%

MECHANICAL CHARACTERISTICS

- Molded Case
- Polarity band to be on the cathode end of the TransZorb
- Body marked with Logo ★ and type number

ELECTRICAL CHARACTERISTICS

Clamping Factor: 1.4 @ Full Rated power 1.30 @ 50% Rated power

Clamping Factor: The ratio of the actual $\rm V_{C}$ (Clamping Voltage) to the actual BV (Breakdown Voltage) as measured on a specific device.

NOTE: When pulse testing, test in TransZorb Avalanche direction.

DO NOT pulse in forward direction.

	REVERSE STAND-OFF VOLTAGE VA VOLTS	BREAK VOLT B VO Min.	٧	@ IŢ	MAXIMUM REVERSE LEAKAGE @ VR IR µA	MAXIMUM CLAMPING VOLTAGE VC VC VOLTS	MAXIMUM PEAK PULSE CURRENT 18 x 1000	pF @ 0 VOLTS CAPACI- TANCE	VWIB WORKING INVERSE BLOCKING VOLTAGE	IJB INVERSE BLOCKING LEAKAGE CURRENT	VPIB PEAK INVERSE BLOCKING VOLTAGE
LCE6.5 LCE6.5A	6.5 6.5	7.22 7.22	8.82 7.98	10 10	1000 1000	12.3 11.2	100 100 100	100 100	75 75	1	100 100
LCE7.0 LCE7.0A	70	7.78 7.78	9.51 8.60	10 10	500 500	112 123 120	100 100	100 100	75 75	1	100 100
LCE7.5 LCE7.5A	7.5 7.5	8.33 8.33	10.2 9.21	10 10	250 250	14.3 12.9	100 100	100 100	75 75	1	100 100
LCE8.0 LCE8.0A	8.0 8.0	8.89 8.89	10.9 9.83	1	100 100	15.0 13.6	180 100	100 100	75 75	1	100 100
LCE8.5 LCE8.5A	8.5 8.5	9.44 9.44	11.5 10.4	1	50 50	15.9 14.4	94 100	100 100	75 75	1	100 100
LCE9.0 LCE9.0A	9.0 9.0	10.0 10.0	12.2 11.1	1	10 10	16.9 15.4	88 97	100 100	75 75	1	100 100
LCE10 LCE10A	- 18	11.1 11.1	13.6 12.3	1	5 5	18.8 17.0	10 88	100 100	75 75	1	100 100
LCE11 LCE11A	11	12.2 12.2	14.9 13.5	1	5	20.1 18.2	74 82	100 100	75 75	1	100 100
LCE12 LCE12A	12	13.3 13.3	16.3 14.7	1	5 5	22.0 19.9	68 75	100 100	75 75	1	100 100
LCE13 LCE13A	13	14.4 14.4	17.6 15.9	ļį	5	23.8 21.5	63 70	100	75 75	l i	100
LCE14 LCE14A	4 4 4 5	15.6 15.6	19.1 17.2	1	5 5	25.8 23.2	5 g	100 100	75 75	1	100 100
LCE15 LCE15A	15 16	16.7 16.7	20.4 18.5	1 1 1	5 5	26.9 24.4	56 61	100 100	75 75		100 100
LCE16	16	17.8	21.8	1	5	28.8	52	100 100	75	1	100 100
LCE16A LCE17 LCE17A	#	17.8 18.9 18.9	19.7 23.1 20.9	1	5 5 5	26.0 30.5 27.6	67 49 54	100 100	75 75 75		100 100
LCE18	18	20.0	24.4	1	5	32.2 29.2	46 51	100 100	75 75	Ì	100 100
LCE18A LCE20 LCE20A	18 20 20	20.0 22.2 22.2	22.1 27.1 24.5	1	5 5 5	35.8 32.4	42	100 100	75 75 75		100 100
LCE22	22 22	24.4	29.8	1	5	39.4	38	100 100	75	i	100 100
LCE22A LCE24	24 24 24	24.4 26.7	26.9 32.6	1	5	35.5 43.0	15 35 39	100	75 75 75		100 100
LCE24A LCE26	26	26.7 28.9	29.5 35.3	1	5 5	38,9 46.6	32	100	75	į	100
LCE26A LCE28	26 28 28	28.9 31.1	31.9 38.0	1	5	42.1 50.1		100 100	75 75		100 100
LCE28A LCE30	30	31.1 33.3	34.4 40.7	1	5 5	45.4 53.5	28 31	100 100	75 75	1	100 100
LCE30A	30 33	33.3 36.7	36.8 44.9	1	5	48.4 59.0	25.4	100 100	75 75	1	100 100
LCE33A LCE36	33 36	36.7 40.0	40.6 48.9	1 1	5 5	53,3 64,3 58,1	28.1 23.3	100 100	75 75	1	100 100
LCE36A LCE40	38 40	40.0 44.4	44.2 54.3	1	5 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25.8 21.0	100 100	75 75		100 100
LCE40A LCE43	40 43	44.4 47.8	49.1 58.4	1	5 5	64.5 76.7	23,3 19,5	100 100	75 150	1	100 200
LCE43A LCE45	43 45	47.8 50.0	52.8 61.1	1	5 5	69.4 80.3	21.6 18.7	100 100	150 150	1	200 200
LCE45A LCE48	45 18	50.0 53.3	55.3 65.1	1 1	5	72.7 85.5	20.6 17.5	100 100	150 150	1	200 200
LCE48A LCE51	48 51	53.3 56.7	58.9 69.3	1	5 5	77.4 91.1	19.4 16.5	100 100	150 150		200 200
LCE51A LCE54	51. 54	56.7 60.0	62.7 73.3	1	5 5	82.4 96.3	18.2 15.6	100 100	150 150	1 1	200 200
LCE54A LCE58	54 58	60.0 64.4	66.3 78.7	İ	5 5	87.1 103.0	17.2 14.6	100 100	150 150	1	200 200
LCE58A LCE60	58 60	64.4 66.7	71.2 81.5	1	5	93,6 107,0	16.0 14.0	100 90	150 150	1	200 200
LCE60A LCE64	60 V	66.7 71.1	73.7 86.9	ļį	5	96.8 114.0	15.5 13.2	90 90	150 150	1	200 200
LCE64A LCE70	64 64 70	71.1 77.8	78.6 95.1	1 1	5	103.0 125	14.6 12.0	90 90	150 150	1	200 200
LCE70A LCE75	79	77.8 83.3	86.0 102.0	i	5 5	13	13.3 11.2	90 90	150 150		200 200
LCE75A LCE80	75 80	83.3 88.7	92.1	i	5	121 142	12.4 10.6	90 90	150 150	1 1	200 200
LCE80A LCE90	80 90	88.7 100	98.0 122		5 5	129 160	11.6	90 90	150 300	i	200 200
LCE90A LCE100	90 100	100	111	1	5	146 179	9.4 10.3 8.4	90 90	300 300	1	200 200
LCE100 LCE100A LCE110	100	111 122	123 149	1	5	162 196	93	90 90	300 300	i	200 400
LCE110A LCE120	110 110 120	122 133	135 163	ļ	5	178	344	90 90	300 300		400 400
LCE120A LCE130	120 130	133 144	147 176	ļį	5	193 231	7.8 6.5	90 90	300 300	1	400 400
LCE130A LCE150	130 150	144 167	159 204	i	5	209 268	7.2	90 90	300 300	1	400 400
LCE150A LCE160	150 150 160	167 167 178	185 218		5 5	243 287	5.6 6.2 5.2	90 90	300 300	i	400 400
LCE160A		178	197	1	5	259 304	5.8 4.9	90 90	300 300	i	400 400
LCE170 LCE170A	170 170	189 189	231 209	1	5 5	275	5.3	90	300	i	400

Note 1: A TransZorb is normally selected according to the reverse "Stand Off Voltage" (VR) which should be equal to or greater than the DC or continuous peak operating voltage level.

TRANSZORB
TRANSIENT VOLTAGE
SUPPRESSORS
MPT-5
THRU
MPT-45C

DESCRIPTION

... a premium transient voltage suppressor specifically designed and tested to protect Bipolar and MOS microprocessor based systems from electrical disturbances. Transients and noise pulses are generated by electromechanical switching, electromagnetic coupling, capacitive or inductive load switching, voltage reversals, and electrostatic discharge. The TransZorb is desired over and above a crowbar circuit, an LC or RC network, and a catch or clamping diode because of fewer components, speed of response, high power or energy absorption and low clamping ratio.

- Transient protection for CMOS, MOS, and BIPOLAR MICROPROCESSORS
- Voltage range of 5.0 to 45 volts
- Low clamping ratio

MAXIMUM RATINGS

- 1500 Watts of Peak Pulse Power dissipation at 25°C
- $t_{clamping}$ (0 volts to BV min): Unipolar Less than 1 x 10⁻¹² seconds

 Bidirectional Less than 5 x 10⁻⁹ seconds
- Operating and Storage temperatures: 65° to +175°C
- Forward surge rating: 200 amps, 1/120 second at 25° C
 (Applies to Unipolar or single direction only)
- Steady State power dissipation: 1.0 watt
- Repetition rate (duty cycle): .01%

MECHANICAL CHARACTERISTICS

- Standard DO-13 package, glass and metal hermetically sealed
- Weight. 1.5 grams (approximate)
- · Positive terminal marked with band (except Bidirectional types)
- Body marked with Logo ★ and type number

ELECTRICAL CHARACTERISTICS

Clamping Factor: 1.33 @ Full rated power
 1.20 @ 50% rated power

Clamping Factor: The ratio of the actual $V_{\mathbb{C}}$ (Clamping Voltage) to the actual BV (Braskdown Voltage) as massured on a specific device. (See Figure 2, Page 1-1 for Test Pulse Wave Shape.)

Peak Pulse Power vs Pulse Time Figure 1, Page	1-1
Pulse Wave Form Figure 2, Page	1-1
Power-Temperature Derating Curve Figure 3, Page	1-1
Capacitor Discharge Test Circuit Figure 4, Page	1-2

ELECTRICAL CHARACTERISTICS @ 25°C

GENERAL SEMICONOUCTOR PART NUMBER	STANDOFF VOLTAGE (Note 1) Va VOLTS	MAXIMUM REVERSE LEAKAGE @ V _R I _R µA	MINIMUM* BREAKDOWN VOLTAGE @ 1 mA BV(min) VOLTS	MAXIMUM CLAMPING VOLTAGE (Fig. 2) @ Japp. = 18 Vc VOLTS	MAXIMUM CLAMPING VOLTAGE (Fig. 2) @ 1972== 10A VC VOLTS	MAXIMUM PEAK PULSE CURRENT IPP3 A
MPT-5	5.0	300	6.0	7.1	7.5	160
MPT-8	8.0	25	9.4	11.3	11.5	100
MPT-10	10.0	2	11.7	13.7	14.1	90
MPT-12	12.0	2	14.1	16.1	16.5	70
MPT-15	15.0	2	17.6	20.1	20.6	60
MPT-18	18.0	2	21.2	24.2	25.2	50
MPT-22	22.0	2	25.9	29.8	32,0	40
MPT-36	36.0	2	42.4	50.6	54.3	23
MPT-45	45.0	2	52.9	63.3	70.0	19

V_f at 100 amps peak, 8.3 msec sine wave equals 3.5 volts maximum

ELECTRICAL CHARACTERISTICS @ 25°C (Test Both Polarities)

MPT-8C	8.0	25	9.4	11.4	11.6	100
MPT-10C	10.0	2	11.7	14.1	14.5	90
MPT-12C	12.0	2	14.1	16.7	17.1	70
MPT-15C	15.0	2	17.6	20.8	21.4	60
MPT-18C	18.0	2	21.2	24.8	25.5	50
MPT-22C	22.0	2	25.9	30.8	32.0	40
MPT-36C	36.0	2	42.4	50.6	54.3	23
MPT-45C	45.0	2	52.9	63.3	70.0	19

C Suffix indicates Bipolar

MPT-5 not available as Bipolar

Note 1: A TransZorb is normally selected according to the reverse "Stand Off Voltage" (V_R) which should be equal to or greater than the DC or continuous peak operating voltage level.

*The minimum breakdown voltage as shown takes into consideration the ±1 volt tolerance normally specified for power supply regulation on most integrated circuit manufacturers data sheets. Similar TransZorb devices are available with reduced clamping voltages where tighter regulated power supply voltages are employed.

Typical Characteristic Clamping Voltage vs Peak Pulse Current

Typical Capacitance vs Braakdown Voltage (Unipolar Types)

Typical Capacitance vs Breakdown Voltage (Bipolar Types)

TRANSZORBS

APPLICATION NOTES

The µP-series TransZorb is characterized by the reverse stand-off voltage (V_R). It is synonymous with the integrated circuit power supply voltage. The breakdown voltage (BV) is that point at which the TransZorb is in avalanche breakdown.

This point is temperature dependent and has a positive temperature coefficient. Allowance has been made in establishing the minimum breakdown voltage at 25°C to provide safe operation over the full military temperature range.

MICROPROCESSOR SYSTEM APPLICATIONS

The TransZorb on the signal and input power lines prevent microprocessor system failures caused by transients (electrostatic charges), AC power surges, or during switching of the power supply to ON or OFF. A static discharge can exceed 10,000V for 10 microseconds with a 60 Amp current potential. 10V applied to a typical T²L circuit for 30

nanoseconds will cause distruction. Placing TransZorbs across the signal lines to ground will keep unwanted transients out of the Data and Control Buses. TransZorbs which are shunted across the power lines maintain a continuous operating voltage during AC line surges and switching transients.

PERIPHERAL APPLICATIONS

The TransZorbs protect the internal MOS FET from transients introduced on the power supply line. When interfaced with bipolar TTL circuits, the same power supply is often used. A common practice is to place a series protection diode from source to gate, but this does not offer protection from source to ground and is usually limited on peak power dissipation. A TransZorb is required on each voltage supply line to the integrated circuit.

as motors, relay coils and solenoids. The TransZorb provides protection for the output transistor as well as the IC, eliminating a resistor/capacitor network. The μP -series TransZorb is capable of dissipating the full load current for short duration pulses (<8.3 msec). For longer pulses, the TransZorb is available in stud or press fit package.

Typical power sources employing the TransZorb for Voltage Transient Protection.

The TransZorb is chosen in which the reverse stand-off voltage is equal to or greater than the DC output voltage. For certain applications it may be more desirable to replace the series resistor (R.) with an inductor. In most applications, a fuse in the line is desirable. Elimination of a transformer will require an LC filter on the line for most industrial applications, when the TransZorb is placed on the input to the power supply and with an input voltage greater than 40 volts.

Totem pole output circuits often generate current spikes requiring decoupling capacitors. While maintaining circuit continuity, the TransZorb is capable of absorbing the

energy pulse as well as eliminating noise spikes due to such things as crosstalk, etc. A clamp diode in the IC substrate is limited in conduction current, <100 ma, providing a minimum protection. For high frequency applications a special designed TransZorb is available upon request.

Transients generated on the line can vary from a few microseconds to several milliseconds duration and up to 10,000 volts. This thread of potential energy has given rise to high noise immunity integrated circuits. An independent study* has found that high immunity and super high immunity circuits are prone to damage by noise transients as a result of the power being dissipated by the substrate input diode. Excess current passing through the input diode can cause an open circuit condition or a slow degradation of the circuit performance. TransZorbs located on the signal line can absorb this excess energy. For some circuit applications a low capacitance unit may be required, which is available upon request.

*The Radio & Electronic Engineer, Vol. 43, No. 4, April 1973

TransZorbs can be used in series or parallel to increase their power handling capability. No precautions are required when using TransZorbs in a series string since power dissipation for two or more devices of the same type is equally shared. When using TransZorbs in parallel it is necessary for the units to be closely matched (approx. .1 volt of each other) in order for equal sharing to take place. Matched sets can be ordered from the factory for an additional charge.

PRODUCT GUIDE

MICROPROCESSORS

The recommended TransZorb (s) listed under the manufacturers type is one which has been selected to provide optimum protection for his microprocessor. Similar types may also be used for direct signal line protection. Special low capacitance TransZorbs for high frequency applications are available upon request, JAN and JANTX devices are also available.

	FAIRCHILD	MOTOROL	AG	.1.	SIGNETICS	W.O.C.	INTEL
NMOS	F-8 (MPT-8,-15)	MC6800 (MPT-5)		1600 - 5,-12)	2650 PIP (MPT-5)	MPS-1600 (MPT-5,-12)	8080 8008 (MPT-5,-12)
	ROCKWELL	MOSTEK	NATIONAL	INTERSIL	RCA	NEC	INTEL
MOS	PPS-4 PPS-8 (MPT-18)	MK5065 (MPT-5,-12)	IMP-4/8/16 (MPT-5,-12)	1M 6100 (MPT-5,-12)	CDSMAC (MPT-5,-12)	μPD753 (MPT-5,-12)	4040 4004 (MPT-15)
MONOLITHIC MEMORIES			SCIEM	ITIFIC MICRO	S.S.S.	INTEL	
TTL	570 670 (MPT -	l		MicroContro (MPT-5)		CRD-8 (MPT-5)	3000 (MPT-5)
			MEMO				
ROM	MOTOROLA	FAIRCHILD	SIGNET	ICS	T.I.	INTEL	AMI
MOS	MCM14524 (MPT-18)		2530 2580 (MPT-5,			1702 (MPT-5,-10)	\$8772 (MPT-5,-12)
TTL	MCM4064 (MPT-5)	93434 (MPT-5)	7488 8204 (MPT-5)		N74186 N74187 MPT-5)	3601 (MPT-5)	
RAM	MOTOROLA	FAIRCHILD	SIGNET	ICS	T.I.	INTEL	AMI
MOS	MCM14505 (MPT-18)		2501 2602 (MPT-5			2107B (MPT-5,-12)	\$2103 (MPT-15,-18)
TTL	M C4304 (MPT-5)	93400 (MPT-5)	7489 82 \$ 06		N74S200 (MPT-5)		

TRANSZORB TRANSIENT VOLTAGE SUPPRESSORS MPTE-5 THRU MPTE-45C

... a premium transient voltage suppressor specifically designed and tested to protect Bipolar and MOS microprocessor based systems from electrical disturbances. Transients and noise pulses are generated by electromechanical switching, electromagnetic coupling, capacitive or inductive load switching, voltage reversals, and electrostatic discharge. The TransZorb is desired over and above a crowbar circuit, an LC or RC network and a catch or clamping diode because of fewer components, speed of response, high power or energy absorption and low clamping ratio.

- Transient protection for CMOS, MOS, and BIPOLAR MICROPROCESSORS
- Voltage range of 5.0 to 45 volts
- Low clamping ratio

MAXIMUM RATINGS

- 1500 Watts of Peak Pulse Power dissipation at 25°C
- $t_{clamping}$ (0 volts to BV min): Unipolar Less than 1 x 10⁻¹² seconds Bidirectional - Less than 5 x 10-9 seconds
- Operating and Storage temperatures: 65° to +175° C
- Forward surge rating: 200 amps, 1/120 second at 25°C (Applies to Unipolar or single direction only)
- Steady State power dissipation: 5.0 watts @ T_L = 75°C, Lead Length = 3/8"
- Repetition rate (duty cycle): .05%

MECHANICAL CHARACTERISTICS

- Molded case
- Weight. 1.5 grams (approximate)
- Positive terminal marked with band (except Bidirectional types)
- Body marked with Logo * and type number

ELECTRICAL CHARACTERISTICS

 Clamping Factor: 1.33 @ Full rated power 1.20 @ 50% rated power

Clamping Factor: The ratio of the actual VC (Clamping Voltage) to the actual BV (Breakdown Voltage) as measured on a specific device. (See Figure 2, Page 1-1 for Test Pulse Wave Shape.)

Peak Pulse Power vs Pulse Time	Figure 1, Page	1-1
Pulse Wave Form	Figure 2, Page	1-1
Power-Temperature Derating Curve	Figure 3, Page	1-1
Capacitor Discharge Test Circuit	Figure 4, Page	1-2

ELECTRICAL CHARACTERISTICS @ 25°C

GENERAL SEMICONDUCTOR PART NUMBER	STAND-OFF VOLTAGE (Note 1) Va Volts	MAXIMUM REVERSE LEAKAGE @ Vr I _r µ A	MINIMUM* BREAKDOWN VOLTAGE @ 1 mA BV(min) VOLTS	MAXIMUM SLAMPING VOLTAGE (Fig. 2) @ 1ept = 1A VC VOLTS	MAXIMUM CLAMPING VOLTAGE (Fig. 2) @ IPP2= 10A V _C VOLTS	MAXIMUM PEAK PULSE CURRENT IPPS
MPTE-5		300	6.0	是铁铁铁矿	7.5	160
MPTE-8	80	25	9.4	113	11.5	100
MPTE-10	10.0	2	11.7	13.7	14.1	90
MPTE-12	12.0	2	14.1	16.1	16.5	70
MPTE-15	15.0	2	17.6	20.1	20.6	60
MPTE-18	18.0	2	21.2	24.2	25.2	50
MPTE-22	22.0	` 2	25.9	29.8	32.0	40
MPTE-36	36.0	2	42.4	50.6	54.3	23
MPTE-45	45.0	2	52.9	63.3	70.0	19

V_f at 100 amps peak, 8.3 msec sine wave equals 3.5 volts maximum

ELECTRICAL CHARACTERISTICS @ 25°C (Test Both Polarities)

MPTE-8C	8.0	25	9.4	11.4 11.6 100
MPTE-10C	10.0	2	11.7	14:1 14.5 90
MPTE-12C	12.0	2	14.1	16.7 17.1 70
MPTE-15C	15.0	2	17.6	20.8 21.4 60
MPTE-18C	18.0	2	21.2	24.8 25.5 50
MPTE-22C	22.0	2	25.9	30.8 32.0 40
MPTE-36C	36.0	2	42.4	50.6 54.3 23
MPTE-45C	45.0	2	52.9	63.3 70.0

C Suffix indicates Bipolar

MPTE-5 not available as Bipolar

Note 1: A TransZorb is normally selected according to the reverse "Stand Off Voltage" (V_R) which should be equal to or greater than the DC or continuous peak operating voltage level.

*The minimum breakdown voltage as shown takes into consideration the ±1 volt tolerance normally specified for power supply regulation on most integrated circuit manufacturers data sheets. Similar TransZorb devices are available with reduced clamping voltages where tighter regulated power supply voltages are employed.

Typical Characteristic Clamping Voltage vs Peak Pulse Current

Typical Capacitance vs Breakdown Voltage (Unipolar Types)

Typical Capacitance vs Breakdown Voltage (Bipolar Types)

APPLICATION NOTES

The μ P-series TransZorb is characterized by the reverse stand-off voltage (V_R). It is synonymous with the integrated circuit power supply voltage. The breakdown voltage (BV) is that point at which the TransZorb is in avalanche breakdown.

This point is temperature dependent and has a positive temperature coefficient. Allowance has been made in establishing the minimum breakdown voltage at 25°C to provide safe operation over the full military temperature range.

MICROPROCESSOR SYSTEM APPLICATIONS

The TransZorb on the signal and input power lines prevent microprocessor system failures caused by transients (electrostatic charges), AC power surges, or during switching of the power supply to 0N or 0FF. A static discharge can exceed 10,000V for 10 microseconds with a 60 Amp current potential. 10V applied to a typical T²L circuit for 30

nanoseconds will cause distruction. Placing TransZorbs across the signal lines to ground will keep unwanted transients out of the Data and Control Buses. TransZorbs which are shunted across the power lines maintain a continuous operating voltage during AC line surges and switching transients.

PERIPHERAL APPLICATIONS

The TransZorbs protect the internal MOS FET from transients introduced on the power supply line. When interfaced with bipolar TTL circuits, the same power supply is often used. A common practice is to place a series protection diode from source to gate, but this does not offer protection from source to ground and is usually limited on peak power dissipation. A TransZorb is required on each voltage supply line to the integrated circuit.

as motors, relay coils and solenoids. The TransZorb provides protection for the output transistor as well as the IC, eliminating a resistor/capacitor network. The μ P-series TransZorb is capable of dissipating the full load current for short duration pulses (<8.3 msec). For longer pulses, the TransZorb is available in stud or press fit package.

Typical power sources employing the TransZorb for Voltage Transient Protection.

The TransZorb is chosen in which the reverse stand-off voltage is equal to or greater than the DC output voltage. For certain applications it may be more desirable to replace the series resistor (R.) with an inductor. In most applications, a fuse in the line is desirable. Elimination of a transformer will require an LC filter on the line for most industrial applications, when the TransZorb is placed on the input to the power supply and with an input voltage greater than 40 volts.

Totem pole output circuits often generate current spikes requiring decoupling capacitors. While maintaining circuit continuity, the TransZorb is capable of absorbing the

energy pulse as well as eliminating noise spikes due to such things as crosstalk, etc. A clamp diode in the IC substrate is limited in conduction current, < 100 ma, providing a minimum protection. For high frequency applications a special designed TransZorb is available upon request.

Transients generated on the line can vary from a few microseconds to several milliseconds duration and up to 10,000 volts. This thread of potential energy has given rise to high noise immunity integrated circuits. An independent study* has found that high immunity and super high immunity circuits are prone to damage by noise transients as a result of the power being dissipated by the substrate input diode. Excess current passing through the input diode can cause an open circuit condition or a slow degradation of the circuit performance. TransZorbs located on the signal line can absorb this excess energy. For some circuit applications a low capacitance unit may be required, which is available upon request.

*The Radio & Electronic Engineer, Vol. 43, No. 4, April 1973

TransZorbs can be used in series or parallel to increase their power handling capability. No precautions are required when using TransZorbs in a series string since power dissipation for two or more devices of the same type is equally shared. When using TransZorbs in parallel it is necessary for the units to be closely matched (approx. .] volt of each other) in order for equal sharing to take place. Matched sets can be ordered from the factory for an additional charge.

PRODUCT GUIDE

MICROPROCESSORS

The recommended TransZorb (s) listed under the manufacturers type is one which has been selected to provide optimum protection for his microprocessor. Similar types may also be used for direct signal line protection. Special low capacitance TransZorbs for high frequency applications are available upon request, JAN and JANTX devices are also available.

	FAIRCHILD	MOTOROL	A G	.I. S	IGNETICS	W.O.C.	INTEL
NMOS	F-8 (MPTE-8,-15)	MC6800 (MPTE-5)			2650 PIP (MPTE-5)	MPS-1600 (MPTE-5,-12)	8080 8008 (MPTE-5,-12)
	ROCKWELL	MOSTEK	NATIONAL	INTERSIL	RCA	NEC	INTEL
MOS	PPS-4 PPS-8 (MPTE-18)	MK5065 (MPTE-5,-12)	IMP-4/8/16 (MPTE-5,-12)	1M 6100 (MPTE-5,-12)	COSMAC (MPTE-5,-12	μPD753 (MPTE-5,-12)	4040 4004 (MPTE-15)
	MONOLITHIC	MEMORIES	SCIE	NTIFIC MICRO	SYSTEMS	S.S.S.	INTEL
TTL	570 670 (MPTE	1		MicroControl (MPTE-5)	ler	CRD-8 (MPTE-5)	3000 (MPTE-5)
			MEM	ORIES			
ROM	MOTOROLA	FAIRCHILO	SIGNET	rics	T.J.	INTEL	AMI
MOS	MCM14524 (MPTE-18)		2530 2580 (MPTE-)	(1702 (MPTE-5,-10)	S8772 (MPTE-5,-12)
TTL	MCM4064 (MPTE-5)	93434 (MPTE-5)	7488 8204 (MPTE	I ZN	74186 74187 PTE-5)	3601 (MPTE-5)	
RAM	MOTOROLA	FAIRCHILD	SIGNET	rics	T.I.	INTEL	AMI
MOS	MCM14505 (MPTE-18)		2501 2602 (MPTE-	2	(2107B (MPTE-5,-12)	S2103 (MPTE-15,-18)
TTL	M C4304 (MPTE-5)	93400 (MPTE-5)	7489 82S0		74S200 IPTE-5)		

TRANSZORB

TRANSIENT VOLTAGE

SUPPRESSORS

P6KE6.8 THRU P6KE200A

Case 7

DESCRIPTION

... a low cost commercial product for use in applications where large voltage transients can permanently damage voltage sensitive components.

This TransZorb has a peak pulse power rating of 600 watts for one millisecond. The response time of TransZorb clamping action is theoretically instantaneous (1 x 10^{-12} sec); therefore, they can protect integrated Circuits, MOS devices, Hybrids, and other voltage-sensitive semiconductors and components. TransZorbs can also be used in series or parallel to increase the peak power ratings.

600 watts peak power dissipation
 Available in ranges from 6.8V to 200V

MAXIMUM RATINGS

- 600 Watts of Peak Pulse Power dissipation at 25°C (see derating curve)
- t_{clamping} (0 volts to BV min): Less than 1 x 10⁻¹² seconds
- Operating and Storage temperatures: -65° to +175°C
- Forward surge rating: 100 amps, 1/120 second at 25°C
- Steady State power dissipation: 5.0 watts T_L = 75°C, Lead Length = 3/8"
- Repetition rate (duty cycle): .01%

MECHANICAL CHARACTERISTICS

- Molded case
- Weight: 1.5 grams (approximate)
- · Positive terminal marked with band
- Body marked with Logo * and type number

DEVICES FOR BIPOLAR APPLICATIONS

For Bidirectional use C or CA Suffix for types P6KE7.5 through types P6KE200. Electrical characteristics apply in both directions. The maximum reverse leakage current must be doubled for voltage types up to 11 volts for bipolar devices.

Peak Pulse Power vs Pulse Time

GENERAL SEMICONOUCTOR PART NUMBER	REVERSE STAND-OFF VOLTAGE INOIN 11 Va VOLTS	BREAKDOW VOLTAGE BV @ VOLTS		MAXIMUM GLAMPING VOLTAGE @ In- IT HISEC! VC VOLTS	MAXIMUM MEVERSE LEARNEL Q Va. La 1	Marriagha Prak Parse Cantent Tre. 27	MAXIMUM TEMPERATURE COEFFICIENT OF BV %/°C
* P6KE6.8 * P6KE6.8A P6KE7.5 P6KE7.5A P6KE8.2 P6KE8.2A	5.50 5.89 6.05 6.40 6.63 7.02	6.12 - 7.48 6.45 - 7.14 6.75 - 8.25 7.13 - 7.88 7.38 - 9.02 7.79 - 8.61	10 10 10 10 10 10	10.8 10.6 11.7 11.3 12.5 12.1	1006 1000 600 500 200 200	56 57 51 53 48 50	.057 .057 .061 .061 .065 .065
P6KE9.1 P6KE9.1A P6KE10 P6KE10A P6KE11 P6KE11A	7.27 7.78 8.10 8.55 8.92 9.40	8.19 - 10.0 8.65 - 9.55 9.00 - 11.0 9.5 - 10.5 9.9 - 12.1 10.5 - 11.6	1 1 1 1 1	13.8 13.4 15.0 14.5 16.2 15.0	50 50 10 10, 5	44 45 40 41 37	.068 .068 .073 .073 .075
P6KE12 P6KE12A P6KE13 P6KE13A P6KE15 P6KE15A	9.72 10.2 10.5 11.1 12.1 12.8	10.8 - 13.2 11.4 - 12.6 11.7 - 14.3 12.4 - 13.7 13.5 - 16.5 14.3 - 15.8	1 1 1 1 1 1 1 1	17.3 16.7 19.0 18.2 22.0 21.2	5 5 5 5	35 36 32 33 27 28 26	.078 .078 .081 .081 .084 .084
P6KE16 P6KE16A P6KE18 P6KE18 P6KE20 P6KE20A P6KE22	12.9 13.6 14.5 15.3 16.2 17.1	14.4 · 17.6 15.2 · 16.8 16.2 · 19.8 17.1 · 18.9 18.0 · 22.0 19.0 · 21.0	1 1 1 1 1	20.5 22.5 26.5 25.2 29.1 27.3	5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 /	27 23 24 21 22 21 22	.086 .088 .088 .090 .090
P6KE22A P6KE24 P6KE24 P6KE27 P6KE27 P6KE27 P6KE30	18.8 19.4 20.5 21.8 23.1 24.3	20.9 - 23.1 21.6 - 26.4 22.8 - 25.2 24.3 - 29.7 25.7 - 28.4 27.0 - 33.0	1 1 1 1 1	38.8 34.7 33.2 36.1 37.5 43.5	5 5 8 6	26 17 18 15 16	.092 .094 .094 .096 .096
P6KE30A P6KE33 P6KE33A P6KE36 P6KE36A P6KE39	25.6 26.8 28.2 29.1 30.8 31.6	28.5 - 31.5 29.7 - 36.3 31.4 - 34.7 32.4 - 39.6 34.2 - 37.8 35.1 - 42.9	1 1 1 1 1	41.4 47.7 45.7 52.0 49.8 56.4	5 5 5 5	14.4 12.6 13.2 11.8 12.0 10.6 11.2	.097 .098 .098 .099 .099 .100
P6KE39A P6KE43 P6KE43A P6KE47 P6KE47A P6KE51 P6KE51A	33.3 34.8 36.8 38.1 40.2 41.3 43.6	37.1 - 41.0 38.7 - 47.3 40.9 - 45.2 42.3 - 51.7 44.7 - 49.4 45.9 - 56.1 48.5 - 53.6	1 1 1 1 1	63.9 61.9 89.3 67.6 64.8 73.6 70.1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	98 101 8.9 9.3 8.2 8.6	.101 .101 .101 .101 .101 .102
P6KE56 P6KE56A P6KE62 P6KE62A P6KE68 P6KE68A	48.4 47.8 50.2 53.0 55.1 58.1	50.4 - 61.6 53.2 - 58.8 55.8 - 68.2 58.9 - 65.1 61.2 - 74.8 64.6 - 71.4	1 1 1 1 1	90.5 77.0 89.0 86.0 98.6 92.0	6 5 5 5	7.4 7.8 6.8 7.1 6.1 6.5	.103 .103 .104 .104 .104
P6KE75 P6KE75A P6KE82 P6KE82A P6KE91 P6KE91A	60.7 64.1 66.4 70.1 73.7 77.8	67.5 - 82.5 71.3 - 78.8 73.8 - 90.2 77.9 - 86.1 81.9 - 100.0 86.5 - 95.5	1 1 1 1	108.0 103.0 118.0 113.0 431.0 125.0	6 0 0 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	9.5 5.8 5.1 5.3 4.5 4.8 4.8	.105 .105 .105 .105 .106 .106
P6KE100 P6KE100A P6KE110 P6KE110A P6KE120 P6KE120A P6KE130	81.0 85.5 88.2 94.0 97.2 102.0	90.0 - 110.0 95.0 - 105.0 99.0 - 121.0 105.0 - 116.0 108.0 - 132.0 114.0 - 126.0 117.0 - 143.0	1 1 1 1	137.0 138.0 152.0 173.0 165.0	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4.4 3.5 4.0 3.6 3.6 3.2	.106 .107 .107 .107 .107 .107
P6KE130 A P6KE150 P6KE150 A P6KE160 P6KE160 A P6KE170	111.0 121.0 128.0 130.0 136.0 138.0	124.0 · 137.0 135.0 · 165.0 143.0 · 158.0 144.0 · 176.0 152.0 · 168.0 153.0 · 187.0	1 1 1 1 1	215.0 207.0 230.0 219.0 244.0	5 5 5 5 5	2.5 2.5 2.7 2.5 2.5	.107 .108 .108 .108 .108
P6KE170A P6KE180 P6KE180A P6KE200 P6KE200A	145.0 146.0 154.0 162.0 171.0	162.0 - 179.0 162.0 - 198.0 171.0 - 189.0 180.0 - 220.0 190.0 - 210.0	1 1 1 1	234.0 258.0 248.0 287.0 274.0	5 5 5 5	2.6 2.3 2.4 2.1 2.2	.108 .108 .108 .108 .108

V_f at 50 amps peak, 8.3 msec sine wave equals 3.5 volts maximum

^{*}Note: Not available as bidirectional

Note 1: A TransZorb is normally selected according to the reverse "Stand Off Voltage" (V_R) which should be equal to or greater than the DC or continuous peak operating voltage level.

[†] For bipolar types P6KE7.5C thru P6KE11C,

IR MAX must be double that specified for single polarity types.

DESCRIPTION

This series is designed for industrial applications for across the line AC protection. i.e., supervisory control systems, CATV, telecommunications, and computers. These units have been tested under laboratory and actual systems environments and found to provide excellent protection.

TransZorbs are Silicon PN Junction devices designed to absorb high voltage transients associated with induced lightning effects and voltage disturbances. This series is available from 8.4 volts through 500 volts. Special voltages are available from the factory.

- High power module 7.5 & 15KW
- Designed for CATV systems
- Type designates RMS voltages
- UL Recognized (9\) PIP120)

MAXIMUM RATINGS

- 15,000 watts Peak Pulse Power dissipation at the 1 msec pulse and 25°C: See Derating Curve and Peak Power Ratings
- Steady State power dissipation at 50°C: 10 watts

(15 watts - PIP8.4, 24,30)

- Operating and Storage Temperatures: -65° to +150°C
- t_{clamping} (0 volts to BV): Less than 1 x 10⁻⁸ seconds

MECHANICAL CHARACTERISTICS

- Molded Case
- Bidirectional
- Body marked with Logo * and type number

Peak Pulse Power vs Pulse Time

BIDIRECTIONAL
TRANSZORB
TRANSIENT VOLTAGE
SUPPRESSORS
PIP8.4
THRU
PIP500

ELECTRICAL CHARACTERISTICS @ 25°C (Test Both Polarities)

General	Average RMS Voltage	Stand-Off Voltage (V _R) (Note 1)	Maximum Reverse Leakage (I _R) @ V _R	Minir Break Volt (BV) @	down age	Maximum Clamping Voltage (V-) Q bee	Peak Pulse Current (Fig. 2) (Ipp)	Maximum Pook Poles Power (1 miss) (Ps)
Semiconductor Part Number	Volts AC	Volts DC	Micro Amperes	Volts	mA	Volts DC	Amperes	Kilowatts
PIP8.4	8.4	12.0	250	14	10	22	341	7.5
PIP24	24.0	34.0	250	40	10	67	112	7.5
PIP30	30.0	42.5	250	50	1.0	84	90	7.5
PIP60	60.0	85.0	250	100	1.0	167	90	15.0
PIP120 *	120.0	170.0	250	200	1.0	319	47	15.0
PIP208	208.0	295.0	250	347	1.0	538	28	15.0
PIP250*	250.0	354.0	250	418	1.0	652	23	18.0
PIP440	440.0	623.0	250	735	1.0	1138	13.2	15.0
PIP5 00 *	500.0	708.0	250	835	1.0	1202	11.6	15.0

Note 1: A TransZorb is normally selected according to the reverse "Stand Off Voltage" (V_R) which should be equal to or greater than the DC or continuous peak operating voltage level.

Note 2: Military grade product available. Contact Factory.

^{*}Note 3: Recommended for marine applications.

APPLICATION NOTE

The typical application is for the TransZorb device to be placed across the secondary of the transformer or after a filter circuit on the AC power source and before the Cable System Power Supply. In areas of high energy transient activity, a more complete protection can be attained by using a network consisting of an arrestor, resistor and TransZorb combination across the power supply primary.

DESCRIPTION

This TransZorb series is a low-cost commercial and industrial product for use in applications where large voltage transients can permanently damage voltage-sensitive components.

TransZorbs are characterized by their high-surge capability, extremely fast response time, and low impedance, (R_{On}). Because of the unpredictable nature of transients and the variation of the impedance with respect to these transients, impedance, per se, is not specified as a parametric value. However, a minimum voltage at low-current conditions (BV) and a maximum clamping voltage (V_C) at a maximum peak pulse current is specified. In addition, a maximum clamping ratio is indicated. In some instances, the thermal effect (see V_C Clamping Voltage) may be responsible for 50% to 70% of the observed voltage differential when subjected to high-current pulses or severe duty cycles, thus making a maximum impedance specification insignificant. Curves depicting clamping voltage vs. various current pulses are available from the factory. Extended power curves vs. pulse time are also available.

This TransZorb has a peak pulse power rating of 500 watts for one millisecond. The response time of TransZorb clamping action is theoretically instantaneous (1 \times 10⁻¹² sec); therefore, they can protect integrated Circuits, MOS devices, Hybrids, and other voltage-sensitive semiconductors and components. TransZorbs can also be used in series or parallel to increase the peak power ratings. This is only one of many series of Transient Voltage Suppressors available from General Semiconductor Industries.

- Available in ranges from 6.8V to 200V.
- Small package size DO-41

MAXIMUM RATINGS

- 500 Watts of Peak Pulse Power dissipation at 25°C (see derating curve)
- tclamping (0 volts to BV min): Less than 1 x 10⁻¹² seconds (theoretical)
- Operating and Storage temperatures: -65° to +175°C
- Forward surge rating: 70 amps, 1/120 second at 25°C
- Steady State power dissipation: 2.0 watts T_L = 75°C, Lead Length = 3/8"
- Repetition rate (duty cycle): .01%

MECHANICAL CHARACTERISTICS

- Molded Case
- Weight: 1 gram (approximate)
- · Positive terminal marked with band
- Body marked with Logo strain and type number

FIGURE 1
Peak Pulse Power vs Pulse Time

FIGURE 2
Typical Capacitance vs Breakdown Voltage

Transzorb
500 Watts
SA1001
THRU
SA1037A

ELECTRICAL CHARACTERISTICS AT 25°C

GS	REVERSE STAND-OFF VOLTAGE	BREAKOOWN VOLTAGE		MAXIMUM CLAMPING VOLTAGE VOLTAGE (Fig. 2)	MAXIMUM REVERSE LEAKAGE @ V _R	MAXIMUM PEAK PULSE CURRENT (Fig. 2)	MAXIMUM TEMP. CQEF. QF BV
TYPE NO.	VR VOLTS	BV @ VOLTS	I _T mA	VC VOLTS	IR µA	I _{pp}	%/°C
SA1001 SA1001A SA1002 SA1002A	5.50 5.80 6.05 6.40	6.12 - 7.48 6.45 - 7.14 6.75 - 8.25 7.13 - 7.88	10 10 10	10.8 10.5 11.7	1000 1000 500 500	46.3 47.6 42.7 44.2	.057 .057 .061
SA1003 SA1003A SA1004	6.63 7.02 7.37 7.78	7.38 - 9.02 7.79 - 8.61 8.19 - 10.0 8.65 - 9.55	10 10 1	12.5 12.1 13.8 13.4	200 200 50 50	40.0 41.3 36.2 37.3	.065 .065 .068
SA1004A SA1005 SA1005A SA1006	8.10 8.55 8.92	9.00 · 11.0 9.5 · 10.5 9.9 · 12.1	1 1	15.0 14.5 16.2 15.6	10 10 5 5	33.3 34.5 30.9 32.0	.073 .073 .075
SA1006A SA1007 SA1007A SA1008	9,40 9,72 10,2 10,5	10.5 - 11.6 10.8 - 13.2 11.4 - 12.6 11.7 - 14.3 12.4 - 13.7	1 1 1 1 1	17.3 16.7 19.0 18.2	5 5 5 5	28.9 29.9 26.3 27.5	.078 .078 .078 .081
SA1008A SA1009 SA1009A SA1010 SA1010A	11.1 12.1 12.8 12.9 13.6	12.4 - 13.7 13.5 - 16.5 14.3 - 15.8 14.4 - 17.6 15.2 - 16.8	1 1 1	72.0 21.2 23.5 22.5	5 5 5 5	22.7 23.6 21.3 22.2	.084 .084 .086
SA1010A SA1011A SA1011A SA1012 SA1012A	14 9 16 3 16 2 17 1	16.2 - 19.8 17.1 - 18.9 18.0 - 22.0 19.0 - 21.0	1 1 1	26.6 25.2 29.1 27.7	5 5 5 5	18.9 19.8 17.2 18.0	.088 .088 .090
SA1012A SA1013 SA1013A SA1014 SA1014A	17.8 18.8 19.4 20.5	19.8 - 24.2 20.9 - 23.1 21.6 - 26.4 22.8 - 25.2	1 1	31.9 30.6 34.7 33.2	5 5 5 5	15.7 16.3 14.4 15.1	.092 .092 .094 .094
SA1015A SA1015A SA1016 SA1016A	21.8 23.1 24.3 25.6	24.3 · 29.7 25.7 · 28.4 27.0 · 33.0 28.5 · 31.5	1 1	39:1 37:5 43.5 41.4	5 5 5 5	12.8 13.3 11.5 12.1	.096 .096 .097
SA1017 SA1017A SA1018 SA1018A	26.8 28.2 29.1 30.8	29.7 · 36.3 31.4 · 34.7 32.4 · 39.6 34.2 · 37.8	1 1	47.7 45.7 52.0 49.9	5 5 5 5	10.5 10.9 9.6 10.0	.098 .098 .099
SA1019 SA1019A SA1020 SA1020A	31.6 33.3 34.8 96.8	35.1 - 42.9 37.1 - 41.0 38.7 - 47.3 40.9 - 45.2	1 1 1	56.4 53.9 61.9 59.3	5 5 5 5	8.9 9.3 8.1 8.4	.100 .100 .101 .101
SA1021 SA1021A SA1022 SA1022A	38.1 40.2 41.3 43.6	42.3 - 51.7 44.7 - 49.4 45.9 - 56.1 48.5 - 53.6	1 1 1	67.8 64.8 73.5 70.1	5 5 5 5	7.4 7.7 6.8 7.1	.101 .101 .102 .102
SA1023 SA1023A SA1024 SA1024A	45.4 47.8 50.2 53.0	50.4 - 61.6 53.2 - 58.8 55.8 - 68.2 58.9 - 65.1	1 1 1 1	80.5 77.0 89.0 85.0	5 5 5 5	6.2 6.5 5.6 5.9	.103 .103 .104 .104
SA1025 SA1025A SA1026 SA1026A	55.1 58.1 60.7 64.1	61.2 - 74.8 64.6 - 71.4 67.5 - 82.5 71.3 - 78.8	1 1 1	98.0 92.0 108.0 103.0	5 5 5 5	5.1 5.4 4.6 4.8	.104 .104 .105 .105
SA1027 SA1027A SA1028 SA1028A	66.4 70.1 73.7 77.8	73.8 - 90.2 77.9 - 86.1 81.9 - 100.0 86.5 - 95.5	1 1 1	118.0 113.0 131.0 125.0	5 5 5 5	4.2 4.4 3.8 4.0	.105 .105 .106 .106
SA1029 SA1029A SA1030 SA1030A	81.0 95.5 89.2 94.0	90.0 · 110.0 95.0 · 105.0 99.0 · 121.0 105.0 · 116.0	1 1 1	144.0 137.0 158.0 152.0	5 5 5 5	3.5 3.6 3.2 3.3	.106 .106 .107 .107
SA1031 SA1031A SA1032 SA1032A	97.2 102.0 105.0 111.0	108.0 - 132.0 114.0 - 126.0 117.0 - 143.0 124.0 - 137.0	1 1 1	173.0 165.0 187.0 179.0	5 5 5 5	2.9 3.0 2.7 2.8	.107 .107 .107 .107
SA1033 SA1033A SA1034 SA1034A	130.0	135.0 - 165.0 143.0 - 158.0 144.0 - 176.0 152.0 - 168.0	1 1 1 1	216.0 207.0 230.0 219.0	5 5 5	2.3 2.4 2.2 2.3	.108 .108 .108 .108
SA1035 SA1035A SA1036 SA1036A	138.0 145.0 146.0	153.0 - 187.0 162.0 - 179.0 162.0 - 198.0 171.0 - 189.0	1 1 1 1	244.0 234.0 258.0 246.0	5 5 5 5	2.0 2.1 1.9 2.0	.108 .108 .108 .108
SA1037 SA1037A	162.0	180.0 - 220.0 190.0 - 210.0	1	287.0 274.0	5 5	1.7 1.8	.108 .108

Vf at 35 AMPS PEAK, 8.3 MSEC SINE WAVE equals 3.5 VOLTS MAXIMUM.

Note 1: A TransZorb is normally selected according to the reverse "Stand Off Voltage" (VR) which should be equal to or greater than the DC or continuous peak operating voltage level.

Note 2: For 8ipolar types 10 volts and under, the IR limit is doubled

BIPOLAR APPLICATIONS

For Bipolar use D or CA Suffix for types SA1002 through types SA1037A. Electrical characteristics apply in both directions. For 10 volts and under double the reverse leakage current.

BIDIRECTIONAL VARISTOR GSV SERIES

DESCRIPTION

These varistors consist of two matched silicon junctions connected in parallel and opposite in polarity. They are designed to replace copper oxide varistors in telephone equipment and for numerous applications ranging from fractional voltage regulators, negative temperature coefficient resistors, signal limiters and expanders and meter protection. The GSV varistors are packaged in a plastic encapsulated material. Higher voltage devices are also available from the factory.

MAXIMUM RATINGS

- Steady State Power: 1.0 watt at 50°C
- Operating and Storage Temperature: -65° to +175°C
- Surge: 30 Amps, 8.4 msec @ 25°C
 - 70 Amps, 1.0 msec @ 25°C
- t_{clamping} (0 volts to BV min.): Less than 1 x 10⁻⁸ seconds

MECHANICAL CHARACTERISTICS

- Molded Case
- Bidirectional
- Body marked with Logo ★ and type number

ELECTRICAL CHARACTERISTICS @ 25°C (Test Both Polarities)

SEMICONDUCTOR Part			LIM	ITS	
NUMBER	SYMBOL	CONDITIONS	Min.	Max.	UNITS
GSV101	V_{F}	10.0 μΑ	.35	.50	Vdc
004101	V _F	100.0 mA	.74	.85	Vdc
GSV102	V _F	100.0 mA	.74	.85	V dc
G3 V 102	I _E	0.2 V		.10	μΑ
G\$V103	V _F	1.0 μA	.30	.45	Vdc
G3 V 100	V _F	10.0 μΑ	.40	.50	Vdc
	V _F	100.0 μΑ	.48	.58	Vdc
	V _F	1.0 mA	.56	.66	Vdc
	V _F	10.0 mA	.65	.74	Vdc
	V _F	100.0 mA	.75	.82	Vdc

Ambient Temperature Coefficient of Voltage vs Varistor Current

Range Curve Current-Voltage for GSV Varistor

DESCRIPTION

The GHV Series devices are silicon transient voltage suppressors designed for protection against large voltage transients on signal lines. They are low capacitance, low noise devices which can be used directly across the input of analog and digital circuitry with minimum signal loss. Noise is typically 30db below zero.

Their small size and high surge current capability make them ideal suppressors for telephone and CATV repeators, replacing typical varistor series "strings" which consume much needed space. The device has been proven effective in lightning environments.

MAXIMUM RATINGS

- Surge: 30 amps, 8.4 msec
 100 amps, 1.0 msec,
 (capacitance, decay to 50%)
- Operating and Storage Temperature: -65° to +150°C
- t_{clamping} (0 volts to BV min.): Less than 1 x 10⁻⁸ seconds
- Steady State Power: 1 watt at 50°C

MECHANICAL CHARACTERISTICS

- Molded Case
- Bidirectional
- Body marked with Logo ★ and type number

BIDIRECTIONAL SURGE SUPPRESSORS GHV-2 THRU GHV-16

ELECTRICAL CHARACTERISTICS @ 25°C (Test Both Polarities)

GENERAL SEMICONDUCTOR	BREAKDOWN VOLTAGE @ 10 mA BV±5%	STAND-OFF VOLTAGE (Note 1) VR	MAXIMUM LEAKAGE CURRENT @ VR	MAXIMUM Capacitance @ 0 V, 1 MHz	TYPICAL TEMPERATURE COEFFICIENT OF BY
PART NUMBER	VOLTS	VOLTS	μ A	pf	mV/°C
GHV-2	1.33	.8	10	517	-4
GHV-3	2.0	1.2	10	319	-6
GHV-4	2.7	1.6	10	259	-8
GHV-5	3.3	2.0	10	191	-10
		2.4	10	159	-12
GHV-6	4.0		10	140	-14
GHV-7	4.7	2.8	10	130	-16
GHV-8	5.4	3.2		114	-18
GHV-9	6.0	3.6	10	114	
GHV-10	6.7	4.0	10	102	-20
GHV-10	7.3	4.4	10	93	-22
GHV-12	8.0	4.8	10	86	-24
	8.7	5.2	10	79	-26
GHV-13	0./			* *	-28
GHV-14	9.4	5.6	10	74	
GHV-15	10.0	6.0	10	67	-30
GHV-16	10.7	6.4	10	62	-32

*Note 1: A voltage supressor is normally selected according to the reverse "Stand Off Voltage" (VR) which should be equal to or greater than the DC or continuous peak operating voltage level.

Voltage Current Characteristic Curves

Typical Capacitance Curves for GHV Series Surge Suppressors

1 WATT, Metal (Case DO-13)

,	JEDEC Type Number†	NOMINAL ZENER VOLTAGE Vz Volts	TEST CURRENT I _{zt} ma	MAXIMUM ZENER IMPEDANCE Z _{zt} @ I _{zt} Dhms	MAXIMUM DC ZENER CURRENT IZM MA
	1N1507	3.9	35	15	180
	1N1508	4.7	30	13	150
	1N1509	5.6	26	11	130
	1N1510	6.8	22	3.0	110
	1N1511	8.2	18	3.0	90
	1N1512	10	15	3.2	75
	1N1513	12	12	6.5	60
	1N1514	15	18	10.5	50
	1N1515	18	8	16	40
	1N1516	22	6	40	33
	1N1517	27	5	82	26
	1N1518	3.9	50	10	250
	1N1519	4.7	40	13	200
	1N1520	5.6	35	10.2	175
	1N1521	6.8	30	4.2	150
	1N1522	8.2	25	3	120
	1N1523	10	- 20	4	100
	1N1524	12	15	6	80
	1N1525	15	13	13	65
	1N1526	18	10	25	55
	1N1527	22	9	32	45
	1N1528	27	7	45	35

 \dagger Non Suffix Vz = $\pm 10\%$

Standard Polarity - Cathode to Case

A Suffix $Vz = \pm 5\%$

1 WATT, Metal (Case DO-13)

JEDEC Type Number†	NOMINAL ZENER VOLTAGE Vz Volts	TEST CURRENT I _{ZT} ma	MAXIMUM ZENER IMPEDANCE Z _{zt} @ I _{zt} Ohms	MAXIMUM OC ZENER CURRENT IZM ma
1N1765	5.6			
1N1766	6.2	100 100	1.2	162
1N1767	6.8	100	1.5	147
1N1768	7.5	100	1.7 2.1	134
1N1769				121
1N1770	8.2	100	2.4	111
1N1771	9.1	50	3.0	100
1N1772	10	50	3.5	91
	11	50	4.2	83
1N1773	12	50	5.0	76
1N1774	13	50	5.8	70
1N1775 1N1776	15	50	7.6	61
	1 6	50	8.6	57
1N1777	18	50	11	50
1N1778	20	15	13	45
1N1779	22	15	16	41
1N1780	24	15	18	38
1N1781	27	15	23	34
1N1782	30	15	28	30
1N1783	33	15	33	27.5
1N1784	36	15	39	25.2
1N1785	39	15	45	23.3
1N1786	43	15	54	21.2
1N1787	47	15	64	19.3
1N1788	51	15	74	17.8
1N1789	56	15	88	16.2
1N1790	62	5	105	14.7
1N1791	68	5	105	13.4
1N1792	75	5	125	12.1
1N1793	82	5	175	
1N1794	91	5	220	11.1
1N1795	100	5 5 5 5	260	10.0 9.1
1N1796	110	5	320	8.3
1N1797	120	5	390	
1N1798	130	5	390 450	7.6
1N1799	150	5	600	7.0
1N1800	160	5 5	700	6.1 5.7
1N1801				
1N1802	180 200	5 5	900 1100	5.0

†Non Suffix $Vz = \pm 10\%$ A Suffix $Vz = \pm 5\%$ Standard Polarity - Cathode to Case

1 WATT, Metal (Case DO-13)

JEDEC Type	NOMINAL ZENER VOLTAGE VZ	TEST CURRENT I _{zt}	MAXIMUM ZENER IMPEDANCE Z _{ZT} @ I _{ZT}	MAXIMUM REVERSI LEAKAGE CURRENT IR @ VR @ 25°C		
NUMBER †	VOLTS	mA	Ohms	μA	VOLTS	
1N1875	8.2	25	5.0	20	4.5	
1N1876	10.0	25	6.0	20	6 8	
1N1877	12.0	25	7.0	20	8	
1N1878	15.0	25	8.0	20	10	
1N1879	18.0	25	9.0	20	12	
1N1880	22.0	8	24.0	20	15	
1N1881	27.0	8	27.0	10	18	
1N1882	33.0	8	30.0	10	21	
1N1883	39.0	8	35.0	10	25	
1N1884	47.0	8 8 8 8	50.0	10	35	
1N1885	56.0	8	75.0	10	40	
1N1886	68.0	3	250.0	10	50	
1N1887	82.0	3	325.0	10	60	
1N1888	100.0	3	400.0	10	70	
1N1889	120.0	3	350.0	10	80	
1N1890	145.0	8 3 3 3 3	700.0	10	90	

†Non Suffix Vz = ±10%

A Suffix Vz = ±5%

Standard Polarity - Cathode to Case

1 WATT, Metal (Case DO-13)

JEDEC TYPE NUMBER	Min.	ZENER VOLTAGE Vz VOLTS Nom. (± 5%)	Max.	TEST CURRENT IZT MA	MAXIMUM ZENER IMPEDANCE Zzt @ Izt Ohms
1N2032 1N2032-1 1N2032-2	4.3	4.5 5.0	5.4	10 10 10	55 55 55
1N2033 1N2033-1 1N2033-2	5.2	5.5 6.0	6.4	10 10 10	20 20 20
1N2034 1N2034-1 1N2034-2 1N2034-3	6.2	6.5 7.0 7.5	8.0	10 10 10 10	8 8 8
1N2035 1N2035-1 1N2035-2 1N2035-3 1N2035-4	7.5	8.0 8.5 9.0 9.5	10.0	10 10 10 10 10	15 15 15 15 15
1N2036 1N2036-1 1N2036-2	9.0	10.0 11.0	12.0	5 5 5	50 50 50
1N2037 1N2037-1 1N2037-2 1N2037-3	11.0	12.0 13.0 14.0	14.5	5 5 5 5	70 70 70 7 0
1N2038 1N2038-1 1N2038-2 1N2038-3	13.5	15.0 16.0 17.0	18.0	5 5 5 5	120 120 120 120
1N2039 1N2039-1 1N2039-2 1N2039-3	17.0	18.0 19.0 20.0	21.0	5 5 5 5	200 200 200 200
1N2040 1N2040-1 1N2040-2 1N2040-3	20.0	22.0 24.0 26.0	27.0	5 5 5 5	300 300 300 300

Standard Polarity - Cathode to Case

1 WATT, Metal (Case DO-13)

$\left(\right)$	JEDEC Type	NOMINAL ZENER VOLTAGE VZ	TEST CURRENT Izt	MAXIMUM Z _{zt} @ I _{zt}	ZENER IMP	EDANCE @ Izk	MAXI Ir @	MUM REVERSE @ V _{R1} * 25°C	LEAKAGE C	URRENT @ V _{R2} ** 25°C	MAXIMUM DC ZENER CURRENT IZM	TYPICAL TEMPERATURE COEFFICIENT @ Izt
l	NUMBER†	VOLTS	mA	Ohms	Ohms	mA	μA	VOLTS	μ.Α	VOLTS	mA	%/°C
	1N3016 1N3017 1N3018 1N3019 1N3020	6.8 7.5 8. 2 9.1 10	37 34 31 28 25	3.5 4.0 4.5 5.0 7	700 700 700 700 700	1.0 0.5 0.5 0.5 0.5	150 75 50 25 10	5.2 5.7 6.2 6.9 7.6	150 75 50 25 10	4.9 5.4 5.9 6.6 7.2	130 120 105 95 8 5	.040 .045 .048 .051 .055
	1N3021 1N3022 1N3023 1N3024 1N3025	11 12 13 15 16	23 21 19 17 15.5	8 9 10 14 16	700 700 700 700 700	0.25 0.25 0.25 0.25 0.25	5 5 5 5 5	8.4 9.1 9.9 11.4 12.2	5 5 5 5 5	8.0 8.6 9.4 10.8 11.5	75 70 65 56 53	.060 .065 .065 .070 .070
	1N3026 1N3027 1N3028 1N3029 1N3030	18 20 22 24 27	14 12.5 11.5 10.5 9.5	20 22 23 25 35	750 750 750 750 750	0.25 0.25 0.25 0.25 0.25	5 5 5 5 5	13.7 15.2 16.7 1 8 .2 20.6	5 5 5 5 5	13.0 14.4 15.8 17.3 19.4	46 42 38 35 30	.075 .075 .080 .080
	1N3031 1N3032 1N3033 1N3034 1N3035	30 33 36 39 43	8.5 7.5 7.0 6.5 6.0	40 45 50 60 70	1000 1000 1000 1000 1500	0.25 0.25 0.25 0.25 0.25	5 5 5 5 5	22. 8 25.1 27.4 29.7 32.7	5 5 5 5 5	21.6 23.8 25.9 28.1 31.0	28 26 24 20 19	.085 .085 .085 .090
	1N3036 1N3037 1N3038 1N3039 1N3040	47 51 56 62 6 8	5.5 5.0 4.5 4.0 3.7	80 95 110 125 150	1500 1500 2000 2000 2000	0.25 0.25 0.25 0.25 0.25	5 5 5 5	35.8 38.8 42.6 47.1 51.7	5 5 5 5 5	33.8 36.7 40.3 44.6 49.0	17 16 15 13	.090 .090 .090 .090
	1N3041 1N3042 1N3043 1N3044 1N3045	75 8 2 91 100 110	3.3 3.0 2. 8 2.5 2.3	175 200 250 350 450	2000 3000 3000 3000 4000	0.25 0.25 0.25 0.25 0.25	5 5 5 5	56.0 62.2 69.2 76.0 83.6	5 5 5 5	54.0 59.0 65.5 72.0 79.2	11 10 9 8 7.2	.090 .090 .090 .090 .095
	1N3046 1N3047 1N3048 1N3049 1N3050	120 130 150 160 1 8 0	2.0 1.9 1.7 1.6 1.4	550 700 1000 1100 1200	4500 5000 6000 6500 7000	0.25 0.25 0.25 0.25 0.25	5 5 5 5 5	91.2 98.8 114.0 121.6 136.8	5 5 5 5 5	86.4 93.6 108.0 115.2 129.6	7.0 6.0 5.5 5.2 4.6	.095 .095 .095 .095 .095
	1N3051	200	1.2	1500	8 000	0.25	5	152.0	5	144.0	4.0	.100

Derating Factor above 25°C: 6.67 mW/°C

† Non Suffix Vz = ±20%

A Suffix $Vz = \pm 10\%$

B Suffix $Vz = \pm 5\%$

Standard Polarity - Cathode to Case

*VR1 - Test Voltage for 5% Tolerance Device

**VR2 - Test Voltage for 10% Tolerance Device No Leakage Specified for 20% Tolerance Device

1 WATT, Metal (Case DO-13)

JEDEC Type	NOMINAL ZENER VOLTAGE Vz	TEST CURRENT I _{ZT}	MAXIMUM Z _{zt} @ I _{zt}	ZENER IMPEI		LEAKAGE I _R (M REVERSE CURRENT D V _{R1} * 25°C	MAXIMUM DC ZENER CURRENT IZM
NUMBER †	VOLTS	mA	Ohms	Ohms	mA	μA	VOLTS	mA
1N3821	3.3	76	10	400	1.0	100	1	276
1N3822	3.6	69	10	400	1.0	100	i	252
1N3823	3.9	64	9	400	1.0	50	i	232
1N3824	4.3	58	9	400	1.0	10	i	213
1N3825	4.7	53	8	500	1,0	10	1	194
1N3826	5.1	49	7	550	1.0	10	- 1	178
1N3827	5.6	45	5	600	1.0	10	<u> </u>	
1N3828	6.2	41	ž	700	1.0	10	2	162
1N3829	6.8	37	1.5	500	1.0	10	3	146
1N3830	7.5	34	1.5	250	1.0	10	3	133 121

Derating Factor above 25°C: 6.67 mW/°C

† Non Suffix Vz = ±10%

A Suffix $Vz = \pm 5\%$

Standard Polarity - Cathode to Case

*VR1 Test Voltage for 5% Tolerance Device

**VR2 - Test Voltage for 10% Tolerance Device No Leakage Specified for 20% Tolerance Device

1 WATT, Molded (Case DO-41)

JEDEC Type	NOMINAL ZENER VOLTAGE Vz	TEST CURRENT Izt	MAXIMUM Z _{zt} @ I _{zt}	ZENER IMPE Z _{ZK} @			EVERSE LEAK V _{R1} * @ 25°C	AGE CURRENT V _{R2} **	MAXIMUM DC ZENEF CURRENT IZM
NUMBER†	VOLTS	mA	Ohms	Ohms	mA	μA	VOLTS	VOLTS	mA
1N3675 1N3676 1N3677 1N3678 1N3679	6.8 7.5 8.2 9.1	18.5 16.5 15.0 14.0 12.5	4.5 5.5 6.5 7.5 8.5	700 700 700 700 700	1.0 0.5 0.5 0.5 0.25	150 75 50 25 10	5.2 5.7 6.2 6.9 7.6	4.9 5.4 5.9 6.6 7.2	100 90 80 70 65
1N3680 1N3681 1N3682 1N3683 1N3684	11 12 13 15 16	11.5 10.5 9.5 8.5 7.8	9.5 11.5 13.0 16.0 17.0	700 700 700 700 700	0.25 0.25 0.25 0.25 0.25	5 5 5 5 5	8.4 9.1 9.9 11.4 12.1	8.0 9.6 9.4 10.8 11.5	55 53 50 42 40
1N3685 1N3686 1N3687 1N3688 1N3689	18 20 22 24 27	7.0 6.2 5.6 5.2 4.6	21.0 25.0 29.0 33.0 41.0	750 750 750 750 750	0.25 0.25 0.25 0.25 0.25	5 5 5 5 5	13.7 15.2 16.7 18.2 20.6	13.0 14.4 15.8 17.3 19.4	35 32 29 26 23
1N3690 1N3691 1N3692 1N3693 1N3694	30 33 36 39 43	4.2 3.8 3.4 3.2 3.0	49.0 58.0 70.0 80.0 93.0	1000 1000 1000 1000 1500	0.25 0.25 0.25 0.25 0.25	5 5 5 5 5	22.8 25.1 27.4 29.7 32.7	21.6 23.8 25.9 28.1 31.0	21 20 18 15
1N3695 1N3696 1N3697 1N3698 1N3699	47 51 56 62 68	2.7 2.5 2.2 2.0 1.8	105.0 125.0 150.0 185.0 230.0	1500 1500 2000 2000 2000	0.25 0.25 0.25 0.25 0.25	5 5 5 5 5	35.8 38.8 42.6 47.1 51.7	33.8 36.7 40.3 44.6 49.0	13 12.2 11 10 9.0
1N3700 1N3701 1N3702 1N3703 1N3704	75 82 91 100 110	1.7 1.5 1.4 1.3	270.0 330.0 400.0 500.0 750.0	2000 3000 3000 3000 4000	0.25 0.25 0.25 0.25 0.25	5 5 5 5 5	56.0 62.2 69.2 76.0 83.6	54.0 59.0 65.5 72.0 79.2	8.5 7.5 7.0 6.0 5.4
1N3705 1N3706 1N3707 1N3708 1N3709 1N3710	120 130 150 160 180 200	1.0 0.95 0.85 0.80 0.68 0.65	900.0 1100.0 1500.0 1700.0 2200.0 2500.0	4500 5000 6000 6500 7000 8000	0.25 0.25 0.25 0.25 0.25 0.25	5 5 5 5 5	91.2 98.8 114.0 121.6 136.8 152.0	86.4 93.6 108.0 115.2 129.6 144.0	5.2 4.5 3.7 3.6 3.4 3.0

[†]Non Suffix Vz = ±20%

^{**}VR2 - Test Voltage for 10% Tolerance Device No Leakage Specified for 20% Tolerance Device Polarity - Banded End Positive

A Suffix $Vz = \pm 10\%$

B Suffix $Vz = \pm 5\%$

^{*}VR1 - Test Voltage for 5% Tolerance Device

JEOEC	NOMINAL ZENER VOLTAGE	TEST CURRENT		I ZENER IMPE		LEAKAGE	M REVERSE CURRENT V _R	MAXIMUM OC ZENER CURRENT	MAXIMUM SURGE CURRENT
TYPE NUMBER†	V _Z Volts	I _{ZT} mA	Z _{ZT} @ I _{ZT} Ohms	Z _{ZK} (6 Ohms	D I _{ZK}	@ 2 uA	5°C ^ VOLTS	I _{ZM} mA	ls mA
1N4728 1N4729 1N4730 1N4731 1N4732	3.3 3.6 3.9 4.3 4.7	76 69 64 58 53	10 10 9 9	400 400 400 400 500	1 1 1 1	100 100 50 10	1 1 1 1	276 252 234 217 193	1380 1260 1190 1070 970
1N4733 1N4734 1N4735 1N4736 1N4737	5.1 5.6 6.2 6.8 7.5	49 45 41 37 34	7 5 2 3.5 4	550 600 700 700 700	1 1 1 1 1	10 10 10 10	1 2 3 4 5	178 162 146 133	890 810 730 660 605
1N4738 1N4739 1N4740 1N4741 1N4742	8.2 9.1 10 11 12	31 28 25 23 21	4.5 5 7 8 9	700 700 700 700 700 700	.5 .5 .25 .25	10 10 10 5 5	6 7 7.6 8.4 9.1	110 100 91 83 76	550 500 454 414 380
1N4743 1N4744 1N4745 1N4746 1N4747	13 15 16 18 20	19 17 15.5 14 12.5	10 14 16 20 22	700 700 700 750 750	.25 .25 .25 .25	5 5 5 5	9.9 11.4 12.2 13.7 15.2	69 61 57 50 45	344 304 285 250 225
1N4748 1N4749 1N4750 1N4751 1N4752	22 24 27 30 33	11.5 10.5 9.5 8.5 7.5	23 25 35 40 45	750 750 750 1000 1000	.25 .25 .25 .25	5 5 5 5	16.7 18.2 20.6 22.8 25.1	41 38 34 30 27	205 190 170 150 135
1N4753 1N4754 1N4755 1N4756 1N4757	36 39 43 47 51	7 6.5 6 5.5 5	50 60 70 80 95	1000 1000 1500 1500 1500	.25 .25 .25 .25	5 5 5 5	27.4 29.7 32.7 35.8 38.8	25 23 22 19	125 115 110 95 90
1N4758 1N4759 1N4760 1N4761 1N4762	56 62 68 75 82	4.5 4 3.7 3.3	110 125 150 175 200	2000 2000 2000 2000 3000	.25 .25 .25 .25	5 5 5 5 5	42.6 47.1 51.1 56 62.2	16 14 13 12	80 70 65 60 55
1N4763 1N4764	91 100	2.8 2.5	250 350	3000 3000	.25	5	69.2 76	10 9	50 45

Derating Factor above 50°C: 6.67 mW/°C

†Non Suffix Vz = ±10%

A Suffix $Vz = \pm 5\%$

Polarity - Banded End Positive

2 WATT, Molded (Case DO-41)

JEDEC TYPE	NOMINAL ZENER VOLTAGE Vz	TEST CURRENT I _{ZT}	MAXIMUM ZENER IMPEDANCE Z _{ZT} @ I _{ZT}	MAXIMUM LEAKAGE I _R @ 2	CURRENT V _R 5°C	TYPICAL TEMPERATURE COEFFICIENT @ IZT
NUMBER †	VOLTS	mA	Ohms	μA	VOLTS	%/°C
LMZ3.3A LMZ3.6A LMZ3.9A LMZ4.3A LMZ4.7A	3.3 3.6 3.9 4.3 4.7	151.5 139.0 128.0 116.0 106.0	6.0 5.5 5.0 5.0 4.5	100 100 50 10 10	1 1 1 1	.075 .070 .060 .050
LMZ5.1A LMZ5.6A LMZ6.2A LMZ6.8A LMZ7.5A	5.1 5.6 6.2 6.8 7.5	98.0 89.5 80.5 73.5 66.5	4.0 4.0 4.5 5.0 5.5	10 10 10 10 10	1 2 3 3 3	.030 .040 .050 .057 .061
LMZ8.2A LMZ9.1A LMZ10A LMZ11A LMZ12A	8.2 9.1 10.0 11.0 12.0	61.0 55.0 50.0 45.5 41.5	2.3 2.5 3.5 4.0 4.5	10 10 10 10 10	4.5 5.0 6.0 7.0 8.0	.065 .068 .071 .073
LMZ13A LMZ14A LMZ15A LMZ16A LMZ18A	13.0 14.0 15.0 16.0 18.0	38.5 35.5 33.5 31.0 28.0	5.0 5.5 7.0 8.0 10.0	10 10 10 10 10	9.0 9.5 10.0 11.0 12.0	.079 .080 .082 .083
LMZ20A LMZ22A LMZ24A LMZ27A LMZ30A	20.0 22.0 24.0 27.0 30.0	25.0 22.5 21.0 18.5 16.5	11.0 11.5 12.5 17.5 20.0	10 10 10 5 5	13.0 15.0 16.0 18.0 19.0	.086 .087 .088 .090
LMZ33A LMZ36A LMZ39A LMZ43A LMZ47A	33.0 36.0 39.0 43.0 47.0	15.0 14.0 13.0 11.5 10.5	22.5 25.0 30.0 35.0 40.0	5 5 5 5	21.0 23.0 25.0 30.0 35.0	.092 .093 .094 .095
LMZ51A LMZ56A LMZ62A LMZ68A LMZ75A	51.0 56.0 62.0 68.0 75.0	10.0 9.0 8.0 7.5 6.5	45.5 55.0 60.0 75.0 87.5	5 5 5 5	38.0 40.0 45.0 50.0 55.0	.096 .096 .097 .097 .098
LMZ82A LMZ91A LMZ100A LMZ110A LMZ120A	82.0 91.0 100.0 110.0 120.0	6.0 5.0 5.0 4.5 4.0	100.0 125.0 175.0 250.0 325.0	5 5 5 5 5	60.0 65.0 70.0 75.0 80.0	.098 .099 .100 .100
LMZ130A LMZ150A LMZ160A LMZ180A LMZ200A	130.0 150.0 160.0 180.0 200.0	4.0 3.5 3.0 3.0 2.5	400.0 575.0 650.0 725.0 900.0	5 5 5 5 5	85.0 90.0 90.0 120.0 130.0	.100 .100 .100 .100 .100

LMZX Series devices with only zener voltage measured available for less critical applications.

† Non Suffix Vz = $\pm 10\%$

A Suffix $Vz = \pm 5\%$

For Double Anode use C or CA Suffix

Polarity - Banded End Positive

JEOEC TYPE NUMBER †	NOMINAL ZENER VOLTAGE VZ VOLTS	TEST CURRENT I _{ZT} mA	MAXIMUM Z _{zt} @ I _{zt} Ohms	ZENER IMPEI Z _{ZK} @ Ohms		LEAKAGE	M REVERSE E CURRENT D V _R 25°C VOLTS	MAXIMUM DC ZENER CURRENT I _{ZM} mA	TYPICAL TEMPERATURE COEFFICIENT @ Izt %/°C	MAXIMUM SURGE CURRENT Is AMPS
1N5008A 1N5009A 1N5010A 1N5011A 1N5012A	3.3 3.6 3.9 4.3 4.7	189.0 173.0 160.0 145.0 133.0	6.0 5.5 5.0 4.0 3.5	400 400 400 400 500	1.0 1.0 1.0 1.0 1.0	100 100 100 100 50	1.0 1.0 1.0 1.0 1.0	722 661 612 555 507	066 .058 .046 .033 ±.015	6.0 5.5 5.1 4.6 4.2
1N5013A 1N5014A 1N5015A 1N5016A 1N5017A 1N5018A	5.1 5.6 6.2 6.8 7.5 8.2	122.0 111.0 101.0 92.0 83.0 76.0	3.0 2.5 3.0 1.6 1.8	550 600 700 700 700	1.0 1.0 1.0 1.0 5	10 10 10 150 50	1.0 2.0 3.0 5.2 5.7	467 425 384 350 318	±.010 +.030 .049 .040	3.9 3.5 3.3 18.0 16.0
1N5019A 1N5020A 1N5021A 1N5022A 1N5023A	9.1 10.0 11.0 12.0 13.0	69.0 62.0 57.0 52.0 48.0	2.1 2.4 3.0 3.6 4.2 4.8	700 700 700 700 700 700	.5 .5 .25 .25 .25	10 10 10 10 10 10	6.2 6.9 7.6 8.4 9.1 9.9	290 262 238 216 198	.048 .050 .055 .060 .065	15.0 13.0 12.0 11.0 10.0
1N5024A 1N5025A 1N5026A 1N5027A 1N5028A 1N5029A	14.0 15.0 16.0 17.0 18.0	45.0 42.0 39.0 37.0 35.0	5.4 6.0 6.6 7.2 7.8	700 700 700 700 700	.25 .25 .25 .25	10 10 10 10 10	10.6 11.4 12.2 12.9	170 159 149 140 132	.070 .070 .070 .075	8.9 8.3 7.8 7.3
1N5029A 1N5030A 1N5031A 1N5032A 1N5033A 1N5034A	19.0 20.0 22.0 24.0 25.0 27.0	33.0 31.0 28.0 26.0 25.0 23.0	8.4 9.0 9.6 10.0 11.0 12.0	750 750 750 750 750 750	.25 .25 .25 .25 .25	10 10 10 10	14.4 15.2 16.7 18.2	125 119 108 99	.075 .075 .080 .080	6.5 6.2 5.6 5.2 5.0
1N5035A 1N5036A 1N5037A 1N5038A 1N5039A	30.0 33.0 36.0 39.0 43.0	21.0 19.0 17.0 16.0 15.0	15.0 15.0 18.0 21.0 24.0 27.0	1000 1000 1000 1000 1500	.25 .25 .25 .25 .25	10 10 10 10 10	20.5 22.8 25.1 27.4 29.6 32.7	88 79 72 66 61 55	.085 .085 .085 .085 .090	4.6 4.1 3.7 3.4 3.2
1N5040A 1N5041A 1N5042A 1N5043A 1N5044A	45.0 47.0 50.0 51.0 52.0	14.0 13.0 12.0 12.0 12.0	30.0 33.0 36.0 36.0 39.0	1500 1500 1500 1500 2000	.25 .25 .25 .25	10 10 10 10	34.2 35.7 38.0 38.8 39.5	53 50 47 46 45	.090 .090 .090 .090 .090	2.9 2.7 2.6 2.5 2.4 2.4
1N5045 A 1N5046 A 1N5047 A 1N5048 A 1N5049 A 1N5050 A	56.0 62.0 68.0 75.0 82.0	11.0 10.0 9.2 8.3 7.6	45.0 51.0 57.0 66.0 78.0	2000 2000 2000 2000 3000	.25 .25 .25 .25	10 10 10 10 10	42.6 47.1 51.7 57.0 62.3	42 38 35 31 29	.090 .090 .090 .090 .090	2.2 2.0 1.8 1.6 1.5
1N5051A	91.0 100.0	6.9 6.2	90.0 120.0	3000 3000	.25 .25	10 10	69.2 76.0	26 23	.090 .090	1.3 1.2

VF = 1.2 Volts max. @ 500 mAPolarity - Banded End Positive † Non Suffix Vz = $\pm 10\%$

5 WATT, Molded (Case 7)

JEDEC TYPE NUMBER†	NOMINAL ZENER VOLTAGE VZ VOLTS	TEST CURRENT IZT mA	MAXIMUM A & E Z _{ZT} @ I _{ZT} Ohms	ZENER IMPED SUFFIX ONL Z _{ZK} @ Ohms	Υ		EVERSE LEAKAG VR1* @ 25°C VOLTS	GE CURRENT V _{R2} **	MAXIMUM DC ZENER CURRENT IZM mA	VOLTAGE REGULATION △V***	MAXIMUM SURGE CURRENT Is A
1N5333 1N5334 1N5335 1N5336 1N5337	3.3 3.6 3.9 4.3 4.7	380 350 320 290 260	3.0 2.5 2.0 2.0 2.0	400 500 500 500 450	1.0 1.0 1.0 1.0	300.0 150.0 50.0 10.0 5.0	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	1440 1320 1220 1100 1010	0.85 0.80 0.54 0.49 0.44	20.0 18.7 17.6 16.4 15.3
1N5338 1N5339 1N5340 1N5341 1N5342	5.1 5.6 6.0 6.2 6.8	240 220 200 200 175	1.5 1.0 1.0 1.0 1.0	400 400 300 200 200	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 10.0	1.0 2.0 3.0 3.0 5.2	1.0 2.0 3.0 3.0 4.9	930 865 790 765 700	0.39 0.25 0.19 0.10 0.15	14.4 13.4 12.7 12.4 11.5
1N5343 1N5344 1N5345 1N5346 1N5347	7.5 8.2 8.7 9.1	175 150 150 150 125	1.5 1.5 2.0 2.0 2.0	200 200 200 150 125	1.0 1.0 1.0 1.0	10.0 10.0 10.0 7.5 5.0	5.7 6.2 6.6 6.9 7.6	5.4 5.9 6.3 6.6 7.2	630 580 545 520 475	0.15 0.20 0.20 0.22 0.22	10.7 10.0 9.5 9.2 8.6
1N5348 1N5349 1N5350 1N5351 1N5352	11 12 · 13 14 15	125 100 100 100 75	2.5 2.5 2.5 2.5 2.5	125 125 100 75 75	1.0 1.0 1.0 1.0	5.0 2.0 1.0 1.0	8.4 9.1 9.9 10.6 11.5	8.0 8.6 9.4 10.1 10.8	430 395 365 340 315	0.25 0.25 0.25 0.25 0.25	8.0 7.5 7.0 6.7 6.3
1N5353 1N5354 1N5355 1N5356 1N5357	16 17 18 19 20	75 70 65 65 65	2.5 2.5 2.5 3.0 3.0	75 75 75 75 75	1.0 1.0 1.0 1.0	1.0 0.5 · 0.5 0.5 0.5	12.2 12.9 13.7 14.4 15.2	11.5 12.2 13.0 13.7 14.4	295 280 264 250 237	0.30 0.35 0.40 0.40 0.40	6.0 5.8 5.5 5.3 5.1
1N5358 1N5359 1N5360 1N5361 1N5362	22 24 25 27 28	50 50 50 50 50	3.5 3.5 4.0 5.0 6.0	75 100 110 120 130	1.0 1.0 1.0 1.0	0.5 0.5 0.5 0.5 0.5	16.7 18.2 19.0 20.6 21.2	15.8 17.3 18.0 19.4 20.1	216 198 190 176 170	0.45 0.55 0.55 0.60 0.60	4.7 4.4 4.3 4.1 3.9
1N5363 1N5364 1N5365 1N5366 1N5367	30 33 36 39 43	40 40 30 30 30	8.0 10.0 11.0 14.0 20.0	140 150 160 170 190	1.0 1.0 1.0 1.0	0.5 0.5 0.5 0.5 0.5	22.8 25.1 27.4 29.7 32.7	21.6 23.8 25.9 28.1 31.0	158 144 132 122 110	0.60 0.60 0.65 0.65 0.70	3.7 3.5 3.3 3.1 2.8
1N5368 1N5369 1N5370 1N5371 1N5372	47 51 56 60 62	25 25 20 20 20	25.0 27.0 35.0 40.0 42.0	210 230 280 350 400	1.0 1.0 1.0 1.0	0.5 0.5 0.5 0.5 0.5	35.8 38.8 42.6 45.5 47.1	33.8 36.7 40.3 43.0 44.6	100 93.0 86.0 79.0 76.0	0.80 0.90 1.00 1.20 1.35	2.7 2.5 2.3 2.2 2.1
1N5373 1N5374 1N5375 1N5376 1N5377	68 75 82 87 91	20 20 15 15	44.0 45.0 65.0 75.0 75.0	500 620 720 760 760	1.0 1.0 1.0 1.0	0.5 0.5 0.5 0.5 0.5	51.7 56.0 62.2 66.0 69.2	49.0 54.0 59.0 63.0 65.5	70.0 63.0 58.0 54.5 52.5	1.50 1.60 1.80 2.00 2.20	2.0 1.9 1.8 1.7 1.6
1N5378 1N5379 1N5380 1N5381 1N5382	100 110 120 130 140	12 12 10 10 8.0	90.0 125.0 170.0 190.0 230.0	800 1000 1150 1250 1500	1.0 1.0 1.0 1.0	0.5 0.5 0.5 0.5 0.5	76.0 83.6 91.2 98.8 106.0	72.0 79.2 86.4 93.6 101.0	47.5 43.0 39.5 36.6 34.0	2.50 2.50 2.50 2.50 2.50	1.5 1.4 1.3 1.2
1N5383 1N5384 1N5385 1N5386 1N5387 1N5388	150 160 170 180 190 200	8.0 8.0 5.0 5.0 5.0	330.0 350.0 380.0 430.0 450.0 480.0	1500 1650 1750 1750 1850 1850	1.0 1.0 1.0 1.0 1.0	0.5 0.5 0.5 0.5 0.5	114.0 122.0 129.0 137.0 144.0 152.0	108.0 11.5 122.0 130.0 137.0 144.0	31.6 29.4 28.0 26.4 25.0 23.6	3.00 3.00 3.00 4.00 5.00 5.00	1.1 1.1 1.0 1.0 0.9 0.9

VF = 1.2 Volts max. @ IF = 1.OA for all types

†Non Suffix Vz = ±20%

A Suffix $Vz = \pm 10\%$

B Suffix $Vz = \pm 5\%$

Derating Factor above 75°C: 40.0 mW/°C

Polarity - Banded End Positive

*VR1 - Test Voltage for 5% Tolerance Device

**VR2 - Test Voltage for 10% and 20% Tolerance Devices

*** \(\Delta V = Vz @ 50\% | Izm - Vz @ 10\% | Izm

JEDEC Type Number†	NOMINAL ZENER VOLTAGE VZ VOLTS	TEST CURRENT I _{ZT} ma	MAXIMUM ZENER IMPEDANCE Z _{ZT} @ I _{ZT} Ohms	MAXIMUM DC ZENER CURRENT IZM mA	TYPICAL TEMPERATURE COEFFICIENT @ I _{ZT} %/°C
1N1351	10	500	2	910	+0.071
1N1352	11	500	2	830	+0.073
1N1353	12	500	5	780	+0.076
1N1354	13	500	2	700	+0.079
1N1355	15	500	2 2 2 2 2	610	+0.082
1N1356	16	500	3	570	+0.083
1N1357	18	150	3 3	500	+0.085
1N1358	20	150	3	450	+0.086
1N1359	22	150	3	410	+0.087
1N1360	24	150	ž	380	+0.088
1N1361	27	150	3	340	+0.090
1N1362	30	150	4	300	+0.091
1N1363	33	150	4	275	+0.092
1N1364	36	150	5	252	+0.093
1N1365	39	150	5 5	233	+0.094
1N1366	43	150	6	212	+0.095
1N1367	47	150	6 7	193	+0.095
1N1368	51	150	8	178	+0.096
1N1369	56	150	ğ	162	+0.096
1N1370	62	50	12	147	+0.097
1N1371	68	50	14	134	+0.097
1N1372	75	50	20	121	+0.098
1N1373	82	50	22	111	+0.098
1N1374	91	50	35	100	+0.099
1N1375	100	50	40	91	+0.100

Standard Polarity - Anode to Case

Derating Factor above 55°C case: 91 mW/°C

†Non Suffix Vz = ±10%

A Suffix Vz = ±5%

JEDEC TYPE	NOMINAL ZENER VOLTAGE VZ	TEST CURRENT I _{ZT}	MAXIMUM ZENER IMPEOANCE Zzt @ Izt	MAXIMUM OC ZENER CURRENT I _{ZM}	TYPICAL TEMPERATURE COEFFICIENT @ I _{zt} %/°C
NUMBER†	VOLTS	mA	Ohms	mA	%/°6
1N1588*	3.9	150	4.5	850	-0.04
1N1589*	4.7	125	4.0	700	±0.02
1N1590*	5.6	110	3.0	625	+0.03
1N1591*	6.8	100	.9	525	+0.05
1N1592*	8.2	80	1.5	425	+0.06
1N1593*	10.0	70	2.5	350	+0.07
1N1594*	12.0	50	3.0	275	+0.075
1N1595*	15.0	40	5.5	225	+0.080
1N1596*	18.0	35	9.0	200	+0.085
1N1597*	22.0	30	14.0	160	+0.090
1N1598*	27.0	25	24.0	125	+0.095
1N1599**	3.9	500	1.5	2500	-0.04
1N1600**	4.7	400	.9	2000	±0.02
1N1601**	5.6	350	.6	1750	+0.03
1N1602**	6.8	300	.4	1500	+0.05
1N1603**	8.2	250	.6	1200	+0.06
1N1604**	10.0	200	1.0	1000	+0.07
1N1605**	12.0	170	2.0	850	+0.075
1N1606**	15.0	140	1.90	650	+0.080
1N1607**	18.0	110	4.0	550	+0.085
1N1608**	22.0	90	6.0	450	+0.090
1N1609**	27.0	70	10	350	+0.095

Standard Polarity - Cathode to Case

* Derating Factor above 55°C case: 31.8 mW/°C

** Derating Factor above 55°C case: 91 mW/°C

† Non Suffix $Vz = \pm 10\%$

A Suffix Vz = ±5%

10 WATT, Metal (Case DO-4, 10-32)

NOMINAL ZENER VOLTAGE V _Z	TEST CURRENT I _{ZT}	MAXIMUM Zener Impedance Z _{zt} @ I _{zt}	MAXIMUM OC ZENER CURRENT I _{ZM}	TYPICAL TEMPERATURE COEFFICIENT @ I _{ZT}
VOLTS	mA	Ohms	mA	%/°C
5.6	1000	1		
6.2	1000	1		
6.8	1000	1		+0.057
7.5	1000	1		+0.061
8.2	1000	1	1110	+0.065
9.1	500	1	1000	+0.068
	50	47	83	+0.100
	50	56	76	+0.100
130	50	65	70	+0.100
150	50	82	61	+0.100
160	50	93	57	+0.100
			50	+0.100
200	50	140	45	+0.100
	ZENER VOLTAGE VZ VOLTS 5.6 6.2 6.8 7.5 8.2 9.1 110 120 130 150 160 180	ZENER VOLTAGE VZT VOLTS MA 5.6 1000 6.2 1000 6.8 1000 7.5 1000 8.2 1000 9.1 500 110 50 120 50 130 50 150 50 160 50 180 50	NOMINAL ZENER ULTEST ULTEST VICTOR V	NOMINAL ZENER VOLTAGE CURRENT IMPEDANCE CURRENT IMPEDANCE CURRENT IMPEDANCE CURRENT IZT @ IZT @ IZT @ IZT @ IZT W IZM

[†] Non Suffix Vz = ±10%

A Suffix $Vz = \pm 5\%$

B Suffix $Vz = \pm 1\%$

Standard Polarity - Anode to Case

Derating Factor above 50°C TO-80 mW/°C

JEDEC Type	NOMINAL ZENER VOLTAGE VZ	TEST CURRENT I _{ZT}	MAXIMUM ZENER IMPEOANCE Z _{ZT} @ I _{ZT}	LEAKAGI		MAXIMUM OC ZENER CURRENT I _{ZM}	TYPICAL TEMPERATURE COEFFICIENT @ I _{ZT}
NUMBER †	VOLTS	mA	Ohms	μA	VOLTS	mA	%/°C
1N1816 1N1817	13 15	500 500	2 2	25 15	5 5	700 610	+0.079 +0.082
1N1818 1N1819 1N1820 1N1821	16 18 20 22	500 500 250 250	3 3 3 3	10 10 10 10	5 5 10 10	570 500 450 410	+0.083 +0.085 +0.086 +0.087
1N1822 1N1823 1N1824 1N1825 1N1826 1N1827	24 27 30 33 36 39	250 250 250 150 150	3 4 4 5 5	10 10 10 10 10	10 10 10 10 10	380 340 300 275 252	+0.088 +0.090 +0.091 +0.092 +0.093
1N1828 1N1829 1N1830 1N1831 1N1832	43 47 51 56 62	150 150 150 150 150 50	5 6 7 8 9	10 10 10 10 10	10 10 10 10 10	233 212 193 178 162 147	+0.094 +0.095 +0.095 +0.096 +0.096 +0.097
1N1833 1N1834 1N1835 1N1836 1N2008	68 75 82 91 100	50 50 50 50 50	14 20 22 35 40	10 10 10 10	10 10 10 10 10	134 121 111 100 91	+0.097 +0.098 +0.098 +0.099 +0.100
1N2009 1N2010 1N2011 1N2012	110 120 130 150	50 50 50 50	47 56 65 82	10 10 10 10	10 10 10 10	83 76 70 61	+0.100 +0.100 +0.100 +0.100
1N2498 1N2499 1N2500	10 11 12	500 500 500	2 2 2	40 30 25	5 5 5	910 830 760	+0.070 +0.073 +0.076

[†] Non Suffix Vz = ±10%

Standard Polarity - Anode to Case

Derating Factor above 50°C TO-80 mW/°C

10 WATT, Metal (Case DO-4, 10-32)

JEOEC TYPE	NOMINAL ZENER VOLTAGE V _Z	TEST CURRENT MAXIMUM ZENER IMPEDANCE Izt Zzt@ Izt Zzk @ 1zk				LEAKAGI	M REVERSE CURRENT @ V _r 25°C	MAXIMUM OC ZENER CURRENT I _{ZM}	TYPICAL TEMPERATURE COEFFICIENT @ I _{ZT}	
NUMBER †	VOLTS	mA	Ohms	Ohms	mA	μA	VOLTS	mA	%/°C	
1N3949* 1N3984** 1N3985**	20.0 5.5 6.0	250 1000 1000	3.0 .7			10	10	480 1600	.080	
1N3986**	6.2	805	1.5	.3	350	1000	4.96	1600 1615		

[†]Non Suffix Vz = ±10%

Derating Factor above 50°C TO-80 mW/°C

A Suffix $Vz = \pm 5\%$

C Suffix Vz = Bipolar (10%)

CA Suffix Vz = Bipolar (5%)

^{*}Standard Polarity - Anode to Case

^{**}Standard Polarity - Cathode to Case

10 WATT, Metal (Case DO-4, 10-32)

JEDEC Type Number	Min.	ZENER VOLTAGE V_Z VOLTS Nom. (\pm 5%)	Max.	TEST CURRENT Izt A	MAXIMUM ZENER IMPEDANCE Z _{ZT} @ I _{ZT} Ohms	MAXIMUM DC ZENER CURRENT I _{ZM} ·
1N2041 1N2041-1 1N2041-2	4.3	4.5 5.0	5.4	1 1 1	1.0 1.0 1.0	2.0A 2.0A 2.0A
1N2042 1N2042-1 1N2042-2	5.2	5.5 6.0	6.4	1 1 1	.7 .7 .7	1.6A 1.6A 1.6A
1N2043 1N2043-1 1N2043-2 1N2043-3	6.2	6.5 7.0 7.5	8.0	1 1 1	.8 .8 .8	1.2A 1.2A 1.2A 1.2A
1N2044 1N2044-1 1N2044-2 1N2044-3 1N2044-4	7.5	8.0 8.5 9.0 9.5	10.0	1 1 1 1	.8 .8 .8 .8	1.0A 1.0A 1.0A 1.0A 1.0A
1N2045 1N2045-1 1N2045-2	9.0	10.0 11.0	12.0	.5 .5 .5	1.5 1.5 1.5	.8A .8A .8A
1N2046 1N2046-1 1N2046-2 1N2046-3	11.0	12.0 13.0 14.0	14.5	.5 .5 .5	2.0 2.0 2.0 2.0	.7A .7A .7A .7A
1N2047 1N2047-1 1N2047-2 1N2047-3	13.5	15.0 16.0 17.0	18.0	.5 .5 .5 .5	3.0 3.0 3.0 3.0	.6A .6A .6A .6A
1N2048 1N2048-1 1N2048-2 1N2048-3	17.0	18.0 19.0 20.0	21.0	.5 .5 .5	3.0 3.0 3.0 3.0	.5A .5A .5A .5A
1N2049 1N2049-1 1N2049-2 1N2049-3	20.0	22.0 24.0 26.0	27.0	.15 .15 .15 .15	8.0 8.0 8.0 8.0	.4A .4A .4A .4A

Standard Polarity — Cathode to Case
Derating Factor above 55°C: 66.7 mW/°C

	JEOEC Type	NOMINAL ZENER VOLTAGE VZ	TEST CURRENT IZT	MAXIMUM Z _{zt} @ I _{zt}	ZENER IMPE Z _{zk} (MAXIMUM I	REVERSE LEAKAGI D V _{ri*} @ 25°C	E CURRENT V _{R2} **	MAXIMUM DC ZENER CURRENT IZM	
1	NUMBER†	VOLTS	mA	Ohms	Ohms	mA	μÅ	VOLTS	VOLTS	mA	
	洋1N2970B 洋1N2971B 洋1N2972B 洋1N2973B 洋1N2974B	6.8 7.5 8. 2 9 .1 10	370 335 305 275 250	1.2 1.3 1.5 2.0 3.0	500 250 250 250 250	1.0 1.0 1.0 1.0	150 75 50 25 10	5.2 5.7 6.2 6.9 7.6	4.9 5.4 5.9 6.6 7.2	1320 1180 1040 960 860	
	★1N2975B ★1N2976B ★1N2977B 1N2978B ★1N2979B	11 12 13 14 15	230 210 1 9 0 1 8 0 170	3.0 3.0 3.0 3.0 3.0	250 250 250 250 250	1.0 1.0 1.0 1.0	5.0 5.0 5.0 5.0 5.0	8.4 9.1 9.9 10.6 11.4	8.0 8.6 9.4 10.1 10.8	780 720 660 600 560	
	※1N2980B 1N2981B ※1N2982B 1N2983B ※1N2984B	16 17 18 19 20	155 145 140 130 125	4.0 4.0 4.0 4.0 4.0	250 250 250 250 250 250	1.0 1.0 1.0 1.0	5.0 5.0 5.0 5.0 5.0	12.2 13.0 13.7 14.4 15.2	11.5 12.2 13.0 13.7 14.4	530 500 460 440 420	
	1N2985 B 1N2986 B 1N2987 B 1N2988 B 1N2989 B	22 24 25 27 30	115 105 100 95 85	5.0 5.0 6.0 7.0 8.0	250 250 250 250 250 300	1.0 1.0 1.0 1.0 1.0	5.0 5.0 5.0 5.0 5.0	16.7 18.2 19.6 20.6 22.8	15.8 17.3 18.0 19.4 21.6	380 350 336 300 280	
	/▲1N2990B /▲1N2991B /▲1N2992B /▲1N2993B /▲1N2994B	33 36 39 43 45	75 70 65 60 55	9.0 10 11 12 13	300 300 300 400 400	1.0 1.0 1.0 1.0 1.0	5.0 5.0 5.0 5.0 5.0	25.1 27.4 29.7 32.7 34.2	23.8 25.9 28.1 31.0 32.4	260 230 210 195 186	
; ;	1N2995 B 1N2996 B 1N2997 B 1N2998 B 1N2999 B	47 50 51 52 56	55 50 50 50 45	14 15 15 15 16	400 500 500 500 500	1.0 1.0 1.0 1.0 1.0	5.0 5.0 5.0 5.0 5.0	35.8 38.0 38.8 39.5 42.6	33.8 36.0 36.7 37.4 40.3	175 165 163 160 150	
3	*1N3000B *1N3001B *41N3002B *41N3003B *41N3004B	62 68 75 82 91	40 37 33 30 28	17 18 22 25 35	600 600 600 700 800	1.0 1.0 1.0 1.0 1.0	5.0 5.0 5.0 5.0 5.0	47.1 51.7 56.0 62.2 69.2	44.6 49.0 54.0 59.0 65.5	130 120 110 100 85	
,	1N3005 B 1N3006 B 1N3007 B 1N3008 B 1N3009 B	100 105 110 120 130	25 25 23 20 19	40 45 55 75 100	900 1000 1100 1200 1300	1.0 1.0 1.0 1.0 1.0	5.0 5.0 5.0 5.0 5.0	76.0 79.8 83.6 91.2 98.8	72.0 75.6 79.2 86.4 93.6	80 75 72 67 62	
	1N3010B 1N3011B 1N3012B 1N3014B 1N3015B	140 150 160 180 200	18 17 16 14 12	125 175 200 260 300	1400 1500 1600 1850 2000	1.0 1.0 1.0 1.0 1.0	5.0 5.0 5.0 5.0 5.0	106.4 114.0 121.6 136.8 152.0	100.8 108.0 115.2 129.6 144.0	58 54 50 45 40	

Vz @ Tc = 30°C

VF = 1.5 V max @ IF = 2 amp on all types.

† Non Suffix Vz = ±20%

A Suffix $Vz = \pm 10\%$

B Suffix Vz = ±5%

Standard Polarity - Anode to Case

*Reverse Polarity Available

Available in JAN and JANTX per MIL-S-19500/124

Derating Factor above 55°C: 66.6 mW/°C

*VR1 - Test Voltage for 5% Tolerance Device.

**VR2 Test Voltage for 10% Tolerance Device.

No Leakage Specified for 20% Tolerance Device

JEDEC Type	NOMINAL ZENER VOLTAGE VZ	TEST CURRENT I _{ZT}	MAXIMUM I Z _{zt} @ I _{zt}	ZENER IN Z _{zk}	MPEDANCE @ Izk	LEAKAGE I _R (M REVERSE CURRENT O V _R 25°C	MAXIMUM DC ZENER CURRENT IZM	TYPICAL TEMPERATUR COEFFICIENT @ 1 _{ZT}
NUMBER †	VOLTS	mA	Ohms	Ohms	mA	μA	VOLTS	mA	%/°C
1N3993	3.9	640	2.0	400	1	100	.5	2.38A	046
1N3994	4.3	580	1.5	400	1	100	.5	2.17	033
1N3995	4.7	530	1.2	500	1	50	1	1.94	015
1N3996	5.1	490	1.1	550	1	10	1	1.78	±.010
1N3997	5.6	445	1.0	600	1	10	1	1.62	+.030
1N3998	6.2	405	1.1	750	1	10	2	1.46	+.049
1N3999	6.8	370	1.2	500	1	10	2	1.33	+.053
1N4000	7.5	335	1.3	250	1	10	3	1.21	+.057

Standard Polarity — Cathode to Case
Derating Factor above 55°C: 83.3mW/°C
VF = 1.5v max. @ 2 amps on all types
† Non Suffix Vz = ±10%
A Suffix Vz = ±5%

JEDEC TYPE NUMBER†	NOMINAL ZENER VOLTAGE V _Z VOLTS	TEST CURRENT Izt	MAXIMUM ZI Z _{ZT} @ I _{ZT}	Zzk @) Izĸ	I _R	REVERSE LEAK V _{R1} * @ 25°C	V _{R2} **	MAXIMUM DC ZENER CURRENT IZM	TYPICAL TEMPERATURE COEFFICIENT @ IZT
		mA	Ohms	Ohms	mA	μ A	VOLTS	VOLTS	mA	%/°C
1N2804B ※1N2805B ※1N2806B ※1N2807B ※1N2808B	6.8 7.5 8.2 9.1 10	1850 1700 1500 1370 1200	0.2 0.3 0.4 0.5 0.6	70 70 70 70 80	5 5 5 5 5	150 75 50 25 10	4.5 5.0 5.4 6.1 6.7	4.3 4.7 5.2 5.7 6.3	6600 5900 5200 4800 4300	.040 .045 .048 .051 .055
灣1N2809B 灣1N2810B 灣1N2811B 1N2812B 鄉1N2813B	11 12 13 14 15	1100 1000 960 890 830	0.8 1.0 1.1 1.2 1.4	80 80 80 80 80	5 5 5 5	5 5 5 5 5	8.4 9.1 9.9 10.6 11.4	8.0 8.6 9.4 10.1 10.8	3900 3600 3300 3000 2800	.060 .065 .065 .070 .070
総1N2814B 1N2815B 総1N2816B 1N2817B 総1N2818B	16 17 18 19 20	780 740 700 660 630	1.6 1.8 2.0 2.2 2.4	80 80 80 80 80	5 5 5 5	5 5 5 5 5	12.2 13.0 13.7 14.4 15.2	11.5 12.2 13.0 13.7 14.4	2650 2500 2300 2200 2100	.070 .075 .075 .075 .075
灣1N2819B 灣1N2820B 1N2821B 灣1N2822B 灣1N2823B	22 24 25 27 30	570 520 500 460 420	2.5 2.6 2.7 2.8 3.0	80 80 90 90	5 5 5 5	5 5 5 5 5	16.7 18.2 19.0 20.6 22.8	15.8 17.3 18.0 19.4 21.6	1900 1750 1550 1500 1400	.080 .080 .080 .085
編1N2824B 編1N2825B 編1N2826B 編1N2827B 1N2828B	33 36 39 43 45	380 350 320 290 280	3.2 3.5 4.0 4.5 4.5	90 90 90 90 100	5 5 5 5	5 5 5 5 5	25.1 27.4 29.7 32.7 34.2	23.8 25.9 28.1 31.0 32.4	1300 1150 1050 975 930	.085 .085 .090 .090
総1N2829B 1N2830B 総1N2831B 総1N2832B 総1N2833B	47 50 51 56 62	270 250 245 220 200	5.0 5.0 5.2 6 7	100 100 100 110 120	5 5 5 5	5 5 5 5 5	35.8 38.0 38.8 42.6 47.1	33.8 36.0 36.7 40.3 44.6	880 830 810 740 660	.090 .090 .090 .090 .090
総1N2834B 総1N2835B 総1N2836B 総1N2837B 1N2838B	68 75 82 91 100	180 170 150 140 120	8 9 11 15 20	140 150 160 180 200	5 5 5 5	5 5 5 5 5	51.7 56.0 62.2 69.2 76.0	49.0 54.0 59.0 65.5 72.0	600 540 490 420 400	.090 .090 .090 .090 .090
1N2839B 1N2840B 1N2841B 1N2842B 1N2843B	105 110 120 130 150	120 110 100 95 85	25 30 40 50 75	210 220 240 275 400	5 5 5 5	5 5 5 5 5	79.8 83.6 91.2 98.8 114.0	75.6 79.2 86.4 93.6 108.0	380 365 335 310 270	.095 .095 .095 .095 .095
1N2844B 1N2845B 1N2846B	160 180 200	80 68 65	80 90 100	450 525 600	5 5 5	5 5 5	121.6 136.8 152.0	115.2 129.6 144.0	250 220 200	.095 .095 .100

 $Vz @ Tc = 30^{\circ}C$

VF = 1.5 max @ 10 A on all types.

Standard Polarity - Anode to Case

† Non-Suffix Vz = ±20%

A Suffix Vz = ±10%

B Suffix Vz = ±5%

*VR1 - Test Voltage for 5% Tolerance Device, Suffix B

**VR2 -- Test Voltage for 10% Tolerance Device, Suffix A

No Leakage Specified for 20% Tolerance Device, Non Suffix

Available in JAN and JANTX per MIL-S-19500/114

JEDEC Type	NOMINAL ZENER VOLTAGE Vz	TEST CURRENT IZT	MAXIMUM Z _{zt} @ I _{zt}	ZENER IMPI Z _{zk}	EDANCE @ Izk		REVERSE LEAK/ V _{R1} * 25°C	AGE CURRENT V _{R2} **	MAXIMUM DC ZENER CURRENT IZM	TYPICAL TEMPERATURE COEFFICIENT @ Izt
NUMBER†	VOLTS	mA	Ohms	Ohms	mA	μA	VOLTS	VOLTS	mA	%/°C
₩ 1N3305B ₩ 1N3306B	6.8 7.5	1850 1700	0.2 0.3	150 100	5 5	300 125	4.5 5.0	4.3 4.7	6600 5900	.040 .045
灣1N3307B 灣1N3308B 灣1N3309B 灣1N3310B 灣1N3311B	8.2 9.1 10 11 12	1500 1370 1200 1100 1000	0.4 0.5 0.6 0.8 1.0	70 70 80 80 80	5 5 5 5 5	50 25 10 5 5	5.4 6.1 6.7 8.4 9.1	5.2 5.7 6.3 8.0 8.6	5200 4800 4300 3900 3600	.048 .051 .055 .060 .065
1N3312B 1N3313B 第1N3314B 第1N3315B 1N3316B	13 14 15 16 17	960 890 830 780 740	1.1 1.2 1.4 1.6 1.8	80 80 80 80	5 5 5 5	5 5 5 5 5	9.9 10.6 11.4 12.2 13.0	9.4 10.1 10.8 11.5 12.2	3300 3000 2800 2650 2500	.065 .070 .070 .070 .075
₩1N3317B 1N3318B Ж1N3319B Ж1N3320B Ж1N3321B	18 19 20 22 24	700 660 630 570 520	2.0 2.2 2.4 2.5 2.6	80 80 80 80 80	5 5 5 5	5 5 5 5 5	13.7 14.4 15.2 16.7 18.2	13.0 13.7 14.4 15.8 17.3	2300 2200 2100 1900 1750	.075 .075 .075 .080 .080
1N3322B 1N3323B 1N3324B 1N3325B 1N3326B	25 27 30 33 36	500 460 420 380 350	2.7 2.8 3.0 3.2 3.5	90 90 90 90 90	5 5 5 5	5 5 5 5	19.0 20.6 22.8 25.1 27.4	18.0 19.4 21.6 23.8 25.9	1550- 1500 1400 1300 1150	.080 .085 .085 .085 .085
※1N3327B ※1N3328B 1N3329B ※1N3330B 1N3331B	39 43 45 47 50	320 290 280 270 250	4.0 4.5 4.5 5.0 5.0	90 90 100 100 100	5 5 5 5	5 5 5 5 5	29.7 32.7 34.2 35.8 38.0	28.1 31.0 32.4 33.8 36.0	1050 975 930 880 830	.090 .090 .090 .090
 1N3332B 1N3333B 1N3334B 1N3335B 1N3335B 1N3336B 	51 52 56 62 68	245 240 220 200 180	5.2 5.5 6 7 8	100 100 110 120 140	5 5 5 5	5 5 5 5	38.8 39.5 42.6 47.1 51.7	36.7 37.4 40.3 44.6 49.0	810 790 740 660 600	.090 .090 .090 .090 .090
編1N3337B 編1N3338B 編1N3339B 編1N3340B 1N3341B	75 82 91 100 105	170 150 140 120 120	9 11 15 20 25	150 160 180 200 210	5 5 5 5	5 5 5 5	56.0 62.2 69.2 76.0 79.8	54.0 59.0 65.5 72.0 75.6	540 490 420 400 380	.090 .090 .090 .090 .095
1N3342B 1N3343B 1N3344B 1N3345B 1N3346B	110 120 130 140 150	110 100 95 90 85	30 40 50 60 75	220 240 275 325 400	5 5 5 5	5 5 5 5	83.6 91.2 98.8 106.4 114.0	79.2 86.4 93.6 100.8 108.0	365 335 310 290 270	.095 .095 .095 .095
1N3347B 1N3348B 1N3349B 1N3350B	160 175 180 200	80 70 68 65	80 85 90 100	450 500 525 600	5 5 5 5	5 5 5 5	121.6 133.0 136.8 152.0	115.2 126.0 129.6 144.0	250 230 220 200	.095 .095 .095 .100

Vz @ Tc = 30°C

VF = 1.5V max @ 10 A on all types.

†Non Suffix Vz = ±20%

A Suffix $Vz = \pm 10\%$

B Suffix $Vz = \pm 5\%$

Standard Polarity - Anode to Case

*VR1 — Test Voltage for 5% Tolerance Device, Suffix B

**VR2 — Test Voltage for 10% Tolerance Device, Suffix A
No Leakage Specified for 20% Tolerance Device, Non Suffix
Derating Factor Linear above 75°C: 500 mW/°C

JEDEC Type	1	VOLTAGE V _z L T S	TEST CURRENT I _{ZT}	MAXIMUM ZENER IMPEDANCE Z _{ZT} @ I _{ZT}	VOLTAGE TEMPERATURE STABILITY △VZT Max.	TEMPERATURE RANGE	EFFECTIVE TEMPERATURE COEFFICIENT
NUMBER	Min.	Max.	mA	Ohms	mV	•c	%/°C
洋1N821	5.9	- 6.5	7.5	15	96	- 55 to +100	.01
1N821A	5.9	- 6.5	7.5	10	96	-55 to +100	.01
洋1N823	5.9	- 6.5	7.5	15	48	-55 to +100	.005
1N823A	5.9	- 6.5	7.5	10	48	55 to +100	.005
₩1N825	6.2	- 6.5	7.5	15	19	55 to +100	.002
1N825A		- 6.5	7.5	10	19	55 to +100	.002
1N826		- 6.9	7.5	15	20	-55 to +100	.002
₩1N827		- 6.5	7.5	15	9	55 to +100	.001
1N827A	2.2	- 6.5	7.5	10	9	55 to +100	.001
1N828		- 6.9	7.5	15	10	55 to +100	.001
₩1N829		- 6.5	7.5	15	5	55 to +100	.0005
1N829A		- 6.5	7.5	10	5	55 to +100	.0005
1N3496 1N3497 1N3498 1N3499 1N3500	5.9 5.9 5.9 5.9	6.5 6.5 6.5	7.5 7.5 7.5 7.5 7.5	15 15 15 15 15	23 9 5 2 47	0 to + 75 0 to + 75 0 to + 75 0 to + 75 0 to + 75	.005 .002 .001 .0005

Polarity - Banded End Positive

Available in JAN and JANTXV per MIL-S-19500/159

250 mW, Glass, TC (Case DO-7)

JEDEC Type Number	NOMINAL ZENER VOLTAGE Vz† VOLTS	TEST CURRENT Izt ma	MAXIMUM ZENER IMPEDANCE Z _{ZT} @ I _{ZT} Ohms	VOLTAGE TEMPERATURE STABILITY △VZT Max. mV	TEMPERATURE RANGE °C	EFFECTIVE TEMPERATURE COEFFICIENT %/°C
1N4765	9.1	0.5	350	68	0 to + 75	0.01
1N4765A	9.1	0.5	350	141	- 55 to +100	0.01
1N4766	9.1	0.5	350	34	0 to + 75	0.005
1N4766A	9.1	0.5	350	70	55 to +100	0.005
1N4767	9.1	0.5	350	14	0 to + 75	0.002
1N4767A	9.1	0.5	350	28	-55 to +100	0.002
1N4768	9.1	0.5	350	7	0 to + 75	0.001
1N4768A	9.1	0.5	350	14	55 to +100	0.001
1N4769	9.1	0.5	350	3	0 to + 75	0.0005
1N4769A	9.1	0.5	350	7	55 to +100	0.0005
1N4770	9.1	1.0	200	68	0 to + 75	0.01
1N4770A	9 .1	1.0	200	141	55 to +100	0.01
1N4771	9.1	1.0	200	34	0 to + 75	0.005
1N4771A	9.1	1.0	200	70	-55 to +100	0.005
1N4772	9.1	1.0	200	14	0 to + 75	0.002
1N4772A	9.1	1.0	200	28	-55 to +100	0.002
1N4773	9.1	1.0	200	7	0 to + 75	0.001
1N4773A	9.1	1.0	200	14	-55 to +100	0.001
1N4774	9.1	1.0	200	3	0 to + 75	0.0005
1N4774A	9.1	1.0	200	7	-55 to +100	0.0005

† Vz = ±5%

Polarity - Banded End Positive

250 mW, Glass, TC (Case DO-7)

JEDEC Type Number	NOMINAL ZENER VOLTAGE V _Z † Volts	TEST CURRENT I _{ZT} mA	MAXIMUM ZENER IMPEDANCE Z _{ZT} @ I _{ZT} Ohms	VOLTAGE TEMPERATURE STABILITY △V _{ZT} Max. mV	TEMPERATURE RANGE °C	EFFECTIVE TEMPERATURI COEFFICIENT %/°C
1N4775	8.5	0.5	200	64	0 to + 75	0.01
1N4775A	8.5	0.5	200	132	55 to +100	0.01
1N4776	8.5	0.5	200	32	0 to + 75	0.005
1N4776A	8.5	0.5	200	66	55 to +100	0.005
1N4777	8.5	0.5	200	13	0 to + 75	0.002
1N4777A	8.5	0.5	200	26	-55 to +100	0.002
1N4778	8.5	0.5	200	6	0 to + 75	0.001
1N4778A	8.5	0.5	200	13	55 to +100	0.001
1N4779	8.5	0.5	200	3	0 to + 75	0.0005
1N4779A	8.5	0.5	200	7	55 to +100	0.0005
1N4780	8.5	1.0	100	64	0 to + 75	0.01
1N4780A	8.5	1.0	100	132	55 to +100	0.01
1N4781	8.5	1.0	100	32	0 to + 75	0.005
1N4781A	8.5	1.0	100	66	-55 to +100	0.005
1N4782	8.5	1.0	100	13	0 to + 75	0.002
1N4782A	8.5	1.0	100	26	-55 to +100	0.002
1N4783	8.5	1.0	100	6	0 to + 75	0.001
1N4783A	8.5	1.0	100	13	55 to +100	0.001
1N4784	8.5	1.0	100	3	0 to + 75	0.0005
1N4784A	8.5	1.0	100	7	55 to +100	0.0005

†Vz = ±5%

Polarity - Banded End Positive

400 mW & 500 mW, Glass, TC (Case DO-7)

JEDEC Type Number	ZENER VDLTAG Vz VOLTS	CURRENT I _{ZT}	MAXIMUM ZENER IMPEOANCE Z _{ZT} @ I _{ZT}	VDLTAGE TEMPERATURE STABILITY △V _{ZT} Max. mV	TEMPÉRATURE RANGE • C	EFFECTIVE TEMPERATURE COEFFICIENT %/°C
	Min. Max		Ohms		-	
1N935	8.55 - 9.45	7.5	20	67	0 to + 75	0.01
1N935A	8.55 - 9.45		20	139	-55 to +100	0.01
⊯1N935B	8.55 - 9.45		20	184	-55 to +150	0.01
1N936	8.55 - 9.45	7.5	20	33	0 to + 75	0.005
1N936A	8.55 - 9.45		20	69	- 55 to +100	0.005
1N936B	8.55 - 9.45		20	92	55 to +150	0.005
1N937	8.55 - 9.45	7.5	20	13	0 to + 75	0.002
1N937A	8.55 - 9.45		20	27	55 to +100	0.002
₩1N937B	8.55 - 9.45		20	37	55 to +150	0.002
1N938	8.55 - 9.45	7.5	20	6	0 to + 75	0.001
1N938A	8.55 - 9.45		20	13	-55 to +100	0.001
₩1N938B	8.55 - 9.45		20	18	-55 to +150	0.001
1N939	8.55 - 9.45	7.5	20	3	0 to + 75	0.0005
1N939A	8.55 - 9.45		20	7	55 to +100	0.0005
1N939B	8.55 - 9.45		20	9	-55 to +150	0.0005
1N940	8.55 - 9.45	7.5	20	1.3	0 to + 75	0.0002
1N940A	8.55 - 9.45		20	2.7	-55 to +100	0.0002
1N940B	8.55 - 9.45		20	3.7	55 to +150	0.0002

Polarity - Banded End Positive

Available in JAN and JANTXV per MIL-S-19500/156

400 mW & 500 mW, Glass, TC (Case DO-7)

JEDEC Type	ZENER VOLTAGE V _Z Volts	TEST CURRENT Izt	MAXIMUM ZENER IMPEDANCE Z _{ZT} @ I _{ZT}	VDLTAGE TEMPERATURE STABILITY △VZT Max.	TEMPERATURE RANGE	EFFECTIVE TEMPERATURI COEFFICIENT
NUMBER	Min. Max.	mA	Ohms	mV	•C	%/°C
1N941	11.12 - 12.28	7.5	30	88	0 to + 75	.01
1N941A	11.12 - 12.28	7.5	30	181	-55 to +100	.01
74 1N941B	11.12 - 12.28	7.5	30	239	55 to +150	.01
1N942	11.12 - 12.28	7.5	30	44	0 to + 75	.005
1N942A	11.12 - 12.28	7.5	30	90	55 to +100	.005
1N942B	11.12 - 12.28	7.5	30	120	55 to +150	.005
1N943	11.12 - 12.28	7.5	30	18	0 to + 75	.002
1N943A	11.12 - 12.28	7.5	30	36	··55 to +100	.002
1N943B	11.12 - 12.28	7.5	30	47	55 to +150	.002
1N944	11.12 - 12.28	7.5	30	9	0 to + 75	.001
1N944A	11.12 - 12.28	7.5	30	18	-55 to +100	.001
i 1N944B	11.12 - 12.28	7.5	30	24	55 to +150	.001
1N945	11.12 - 12.28	7.5	30	4	0 to + 75	.0005
1N945A	11.12 - 12.28	7.5	30	9	-55 to +100	.0005
1N945B	11.12 - 12.28	7.5	30	12	55 to +150	.0005
1N946	11.12 - 12.28	7.5	30	1.8	0 to + 75	.0002
1N946A	11.12 - 12.28	7.5	30	3.6	·55 to +100	.0002
1N946B	11.12 - 12.28	7.5	30	4.7	55 to +150	.0002

Polarity - Banded End Positive

Available in JAN and JANTXV per MIL-S-19500/157

400 mW & 500 mW, Glass, TC (Case DO-7)

	JEDEC Type	YPE VOLTS		TEST CURRENT Izy	MAXIMUM ZENER IMPEDANCE 2 _{ZT} @ I _{ZT}	VOLTAGE TEMPERATURE STABILITY △VZT Max.	TEMPERATURE RANGE	EFFECTIVE TEMPERATURE COEFFICIENT
	NUMBER	Min.	Max.	mA	Ohms	m∀	•c	%/°C
	1N3154	8.0	- 8.8	10	15	130	55 to +100	.01
	1N3154A	8.0	- 8.8	10	15	172	55 to +150	.01
	1N3155	8.0	- 8.8	10	15	65	55 to +100	.005
	1N3155A	8.0	- 8.8	10	15	86	55 to +150	.005
	1N3156	8.0	- 8.8	10	15	26	55 to +100	.002
	1N3156A	8.0	- 8.8	10	15	34	55 to +150	.002
	1N3157	8.0	- 8.8	10	15	13	55 to +100	.001
	1N3157A	8.0	- 8.8	10	15	17	55 to +150	.001
-								

Polarity - Banded End Positive

400 mW & 500 mW, Glass, TC (Case DO-7)

JEDEC Type	ZENER VOLTAGE V _Z Volts		VZ CURRENT IMPEDANCE VOLTS IZT ZZT @ IZT		EFFECTIVE TEMPERATURE COEFFICIENT	TEMPERATURE RANGE	
NUMBER	Min.	Max.	mA	Ohms	%/°C	•c	
1N3779	6.3	- 6.7	7.5	10	.015	55 to +100	
1N3780	6.3	- 6.7	7.5	10	.01	-55 to +100	
1N3781	6.3	- 6.7	7.5	10	.005	55 to +100	
1N3782	6.3	- 6.7	7.5	10	.002	55 to +100	
1N3783	6.3	- 6.7	7.5	10	.001	55 to +100	
1N3784	6.3	- 6.7	7.5	10	.0005	-55 to +100	

Polarity - Banded End Positive

400 mW & 500 mW, Glass, TC (Case DO-7)

JEDEC TYPE	NOMINAL ZENER VOLTAGE Vz †	TEST CURRENT IZT	MAXIMUM ZENER IMPEOANCE Zzt @ Izt	VOLTAGE TEMPERATURE STABILITY △VZT Max.	EFFECTIVE TEMPERATURE COEFFICIENT	TEMPERATURE RANGE °C
NUMBER	VOLTS	mA	Ohms	mV	%/°C	٠,
1N4295	10.0 ±2%	10.0	20	0 to +246	0 to .012	-55 to +150
1N4295A	10.0 ±1%	10.0	20	0 to +246	0 to .012	55 to +150
1N4565	6.4	0.5	200	48	.01	0 to + 75
1N4565A	6.4	0.5	200	99	.01	-55 to +1 0 0
1N4566	6.4	0.5	200	24	.005	0 to + 75
1N4566A	6.4	0.5	200	50	.005	·-55 to +100
1N4567	6.4	0.5	200	9.6	.002	0 to + 75
1N4567A	6.4	0.5	200	20	.002	-55 to +100
1N4568	6.4	0.5	200	4.8	.001	0 to + 75
1N4568A	6.4	0.5	200	9.9	.001	55 to +100
1N4569	6.4	0.5	200	2.4	.0005	0 to + 75
1N4569A	6.4	0.5	200	5.0	.0005	55 to +100
	0.7	0.5	200	***		
1N4570	6.4	1.0	100	• 48	.01	0 to + 75
1N4570A	6.4	1.0	100	99	.01	55 to +100
1N4571	6.4	1.0	100	24	.005	0 to + 75
1N4571A	6.4	1.0	100	50	.005	· 55 to +100
1N4572	6.4	1.0	100	9.6	.002	0 to + 75
1N4572A	6.4	1.0	100	20	.002	55 to +100
1N4573	6.4	1.0	100	4.8	.001	0 to + 75
1N4573A	6.4	1.0	100	9.9	.001	55 to +100
1N4574	6.4	1.0	100	2.4	.0005	0 to + 75
1N4574A	6.4	1.0	100	5.0	.0005	-55 to +100
1N4575	6.4	2.0	50	48	.01	0 to + 75
1N4575A	6.4	2.0	50	99	.01	-55 to +100
1N4576	6.4	2.0	50	24	.005	0 to + 75
1N4576A	6.4	2.0	50	50	.005	-55 to +100
1N4577	6.4	2.0	50	9.6	.002	0 to + 75
1N4577A	6.4	2.0	50	20	.002	55 to +100
1N4577A	6.4	2.0	50	4.8	.002	0 to + 75
1N4578A	6.4	2.0	50	9.9	.001	55 to +100
1N4579	6.4	2.0	50	2.4	.0005	0 to + 75
1N4579A	6.4	2.0	50	5.0	.0005	-55 to +100
	0. -1			• • •		/ • •
1N4580	6.4	4.0	25	48	.01	0 to + 75
1N4580A	6.4	4.0	25	99	.01	55 to +100
1N4581	6.4	4.0	25	24	.005	0 to + 75
1N4581A	6.4	4.0	25	50	.005	55 to +100
1N4582	6.4	4.0	25	9.6	.002	0 to + 75
1N4582A	6.4	4.0	25	20	.002	-55 to +100
1N4583	6.4	4.0	25	4.8	.001	0 to + 75
1N4583A	6.4	4.0	25	9.9	.001	-55 to +100
1N4584	6.4	4.0	25	2.4	.0005	0 to + 75
1N4584A	6.4	4.0	25	5.0	.0005	-55 to +100

 $\dagger Vz = \pm 5\%$

Polarity - Banded End Positive

JEDEČ Type Number	ZENER VOLTAGI V _Z VOLTS Min. Max.	CURRENT I _{ZT}	MAXIMUM ZENER IMPEDANCE Z _{ZT} @ I _{ZT} Ohms	VOLTAGE TEMPERATURE STABILITY △VZT Max. mV	EFFECTIVE TEMPERATURE COEFFICIENT %/°C	TEMPERATURE RANGE °C
1N2163	9.0 - 9.8	10	15	33	.005	0 to + 70
1N2163A	9.2 - 9.6	10	15	33	.005	0 to + 70
1N2163A 1N2164	9.0 - 9.8	10	15	85	.005	55 to +125
		10	15			55 to +125
1N2164A	9.2 - 9.6	10	15	85	.005	. 33 to +123
1N2165	9.0 - 9.8	10	15	115	.005	55 to +185
1N2165A	9.2 - 9.6	10	15	115	.005	55 to +185
1N2166	9.0 - 9.8	10	15	7	.001	0 to + 70
1N2166A	9.2 - 9.6	10	15	7	.001	0 to + 70
1N2167	9.0 - 9.8	10	15	17	.001	55 to +125
1N2167A	9.2 - 9.6	10	15	17	.001	55 to +125
1N2168	9.0 - 9.8	10	15	23	.001	55 to +185
1N2168A	9.2 - 9.6	10	15	23	.001	-55 to +185
1N2169	9.0 - 9.8	10	15	4	.0005	0 to + 70
1N2169A	9.2 - 9.6	10	15	4	.0005	0 to + 70
1N2170	9.0 - 9.8	10	15	9 9	.0005	55 to +125
1N2170A	9.2 - 9.6	10	15	9	.0005	55 to +125
1N2171	9.0 - 9.8	10	15	12	.0005	55 to +185
1N2171A	9.2 - 9.6	10	15	12	.0005	55 to +185

Standard Polarity - Case Negative
Derating Factor above 25°C: 5 mW/°C

1 WATT, Metal TC (Case DO-13)

JEDEC Type	NOMINAL ZENER VOLTAGE V _Z	TEST CURRENT I _{ZT}	MAXIMUM Zener impedance Z _{zt} @ I _{zt}	VOLTAGE TEMPERATURE STABILITY △Vzt Max.	EFFECTIVE TEMPERATURE COEFFICIENT	TEMPERATURE RANGE
NUMBER	VOLTS	mA	Ohms	mV	%/°C	•C
1N2620	9.3	10	15	70	.01	0 to + 75
1N2620A	9.3	10	15	145	.01	55 to +100
1N2620B	9.3	10	15	190	.01	-55 to +150
1N2621	9.3	10	15	35	.005	0 to + 75
1N2621A	9.3	10	15	72	.005	55 to +100
1N2621B	9.3	10	15	95	.005	55 to +150
1N2622	9.3	10	15	14	.002	0 to + 75
1N2622A	9.3	10	15	29	.002	55 to +100
1N2622B	9.3	10	15	38	.002	55 to +150
1N2623	9.3	10	15	7	.001	0 to + 75
1N2623A	9.3	10	15	14	.001	55 to +100
1N2623B	9.3	10	15	19	.001	55 to +150
1N2624	9.3	10	15	3.5	.0005	0 to + 75
1N2624A	9.3	10	15	7.0	.0005	55 to +100
1N2624B	9.3	10	15	9.5	.0005	55 to +150

Standard Polarity - Case Positive
Derating Factor above 25°C = 5 mW/°C

1 WATT, Metal TC (Case DO-13)

JEDEC Type Number	NOMINAL ZENER VOLTAGE V _Z † VOLTS	TEST CURRENT I _{ZT} ma	MAXIMUM ZENER IMPEDANCE Z _{ZT} @ I _{ZT} Ohms	VOLTAGE TEMPERATURE STABILITY △VZT Max. mV	TEMPERATURE RANGE °C	EFFECTIVE TEMPERATURE COEFFICIENT %/°C
1N3580	11.7	7.5	25	88	0 to + 75	.01
1N3580A	11.7	7.5	25	180	-55 to +100	.01
1N3580B	11.7	7.5	25	240	-55 to +150	.01
1N3581	11.7	7.5	25	44	0 to + 75	.005
1N3581A	11.7	7.5	25	90	55 to +100	.005
1N3581B	11.7	7.5	25	120	55 to +150	.005
1N3582	11.7	7.5	25	18	0 to + 75	.002
1N3582A	11.7	7.5	25	36	-55 to +100	.002
1N3582B	11.7	7.5	25	48	-55 to +150	.002
1N3583	11.7	7. 5	25	9	0 to + 75	.001
1N3583A	11.7	7.5	25	1 8	-55 to +100	.001
1N3583B	11.7	7. 5	25	24	-55 to +150	.001
1N3584	11.7	7.5	25	4.4	0 to + 75	.0005
1N3584A	11.7	7.5	25	9	-55 to +100	.0005
1N3584B	11.7	7.5	25	12	-55 to +150	.0005
1N4296	10.0 ±2%	20.0	10	0 to +246	55 to +150	0 to .012
1N4296A	10.0 ±1%	20.0	10	0 to +246	55 to +150	0 to .012

 $\dagger Vz = \pm 5\%$

Standard Polarity - Case Positive

10 WATT, Metal TC (Case DO-4, 10-32)

JEDEC Type Number	ZENER VOLTAGE V _Z Volts Min. Max.	TEST CURRENT I _{zt} * ma	MAXIMUM ZENER IMPEDANCE Z _{ZT} @ I _{ZT} Ohms	EFFECTIVE TEMPERATURE COEFFICIENT %/°C	TEMPERATURE RANGE °C
1N4297	8.36 - 9.24	200.0	1.4	0.01	0 to + 75
1N4297A	8.36 - 9.24	200.0	1.4	0.01	-55 to +100
1N4297B	8.36 - 9.24	200.0	1.4	0.01	-55 to +150
1N4298	8.36 - 9.24	200.0	1.4	0.005	0 to + 75
1N4298A	8.36 - 9.24	200.0	1.4	0.005	-55 to +100
1N4298B	8.36 - 9.24	200.0	1.4	0.005	-55 to +150
1N4299	10.74 - 11.86	150.0	1.6	0.01	0 to + 75
1N4299A	10.74 - 11.86	150.0	1.6	0.01	-55 to +100
1N4299B	10.74 - 11.86	150.0	1.6	0.01	-55 to +150
1N4300	10.74 - 11.86	150.0	1.6	0.005	0 to + 75
1N4300A	10.74 - 11.86	150.0	1.6	0.005	55 to +100
1N4300B	10.74 - 11.86	150.0	1.6	0.005	55 to +150

*IZ (nominal) is shown.

T.C. is guaranteed over current ranges: 150-250 mA for 1N4297, 8;

110-190 mA for 1N4299, 300

Standard Polarity - Case Negative

50 WATT, Metal TC (Case DO-5, 1/4-28)

JEDEC VZ Type Volts		VOLTS IZT*		EFFECTIVE TEMPERATURE COEFFICIENT	TEMPERATURE RANGE	
NUMBER	Min. Max	. mA	Ohms	%/°C	°C	
1N4301	8.36 - 9.2	4 1000.0	.6	0.01	0 to + 75	
1N4301A	8.36 - 9.2		.6	0.01	-55 to +100	
1N4301B	8.36 - 9.2		.6	0.01	-55 to +150	
1N4302	8.36 - 9.2	4 1000.0	.6	0.005	0 to + 75	
1N4302A	8.36 - 9.2		.6	0.005	-55 to +100	
1N4302B	8.36 - 9.2		.6	0.005	-55 to +150	
1N4303	10.74 - 11.8	5 750.0	.8	0.01	0 to + 75	
1N4303A	10.74 - 11.8		.8	0.01	-55 to +100	
1N4303B	10.74 - 11.8		.8	0.01	-55 to +150	
1N4304	10.74 - 11.8	5 750.0	.8	0.005	0 to + 75	
1N4304A	10.74 - 11.8		.8	0.005	-55 to +100	
1N4304B	10.74 - 11.8		.8	0.005	-55 to +150	

*IZ (nominal) is shown.

T.C. is guaranteed over current ranges: 750-1250 for 1N4301, 2; 550-950 mA for 1N4303,4

Standard Polarity - Case Negative

3

JEDEC Type Number	NOMINAL ZENER VOLTAGE VZ† VOLTS	TEST CURRENT IZT mA	MAXIMUM ZENER IMPEDANCE Z _{ZT} @ I _{ZT} Ohms	VOLTAGE TEMPERATURE STABILITY	VOLTAGE TEMPERATURE STABILITY + 25°C TO + 100°C △ V _{ZT} Max. mV	EFFECTIVE TEMPERATURE COEFFICIENT %/°C	MAXIMUM POWER DISSIPATION WATTS	CASE NUMBER
1N429	6.2	7.5	20	50	50	.01	.200	5
1N1735	6.2	7.5	20	50	50	.01	.200	9
1N1530	8.4	10.0	14	14	14	.002	.250	10
1N1530A	8.4	10.0	14	7	7	.001	.250	10
1N2765	6.8	7.5	20	50	50	.01	1.0	14
1N2765A	6.8	7.5	20	25	25	.005	1.0	14
1N2766	13.6	7.5	40	100	100	.01	1.0	14
1N2766A	13.6	7.5	40	50	50	.005	1.0	14
1N1736	12.4	7.5	40	100	100	.01	.40	11
1N1736A	12.4	7.5	40	50	50	.005	.40	11
1N1737	18.6	7.5	60	150	150	.01	.60	12
1N1737A	18.6	7.5	60	75	75	.005	.60	12
1N2767	20.4	7.5	60	150	150	.01	1.0	15
1N2767A	20.4	7.5	60	75	75	.005	1.0	15
1N1738	24.8	7.5	80	200	200	.01	.80	18
1N1738A	24.8	7.5	80	100	100	.005	.80	18
1N2768	27.2	7.5	80	200	200	.01	1.0	15
1N2768A	27.2	7.5	80	100	100	.005	1.0	15
1N1739	31.0	7.5	100	250	250	.01	1.0	18
1N1739A	31.0	7.5	100	125	125	.005	1.0	18
1N2769	34.0	7.5	100	250	250	.01	1.0	16
1N2769A	34.0	7.5	100	125	125	.005	1.0	16
1N1740	37.2	7.5	120	300	300	.01	1.2	18
1N1740A	37.2	7.5	120	150	150	.005	1.2	18
1N2770	40.8	7.5	120	300	300	.01	1.0	16
1N2770A	40.8	7.5	120	150	150	.005	1.0	16
1N1741	43.4	7.5	140	350	350	.01	1.4	18
1N1741A	43.4	7.5	140	175	175	.005	1.4	18
1N1742	49.6	7.5	160	400	400	.01	1.6	18
1N1742A	49.6	7.5	160	200	200	.005	1.6	18
1N3199	8.4	10.0	15	34.0	32.0	.005	.27	17
1N3200	8.4	10.0	15	20.0	19.0	.003	.27	17
1N3201	8.4	10.0	15	13.4	12.9	.002	.27	17
1N3202	8.4	10.0	15	6.7	6.3	.001	.27	17

 $\dagger V_z = \pm 5\%$

Polarity - Positive Terminal Indicated

MOLDED TC ASSEMBLIES

JEDEC Type Number	NOMINAL ZENER VOLTAGE VZ† VOLTS	TEST CURRENT I _{ZT} ma	MAXIMUM ZENER IMPEDANCE Z _{ZT} @ I _{ZT} Ohms	VOLTAGE TEMPERATURE STABILITY -55°C TO +25°C △V _{ZT} Max. mV	VOLTAGE TEMPERATURE STABILITY + 25°C TO + 100°C △ Y _{ZT} Max. my	EFFECTIVE TEMPERATURE COEFFICIENT %/°C	MAXIMUM POWER Dissipation Watts	CASE NUMBER
1N4057	12.4	10	25	50	46	.005	1.5	18
1N4057A	12.4	10	25	20	19	.002	1.5	18
1N4058	14.6	10	30	58	55	.005	1.5	18
1N4058A	14.6	10	30	23	22	.002	1.5	18
1N4059	16.8	10	30	67	63	.005	1.5	18
1N4059A	16.8	10	30	27	25	.002	1.5	18
1N4060	18.5	10	30	74	69	.005	1.5	18
1N4060A	18.5	10	30	30	28	.002	1.5	18
1N4061	21	10	35	84	79	.005	1.5	18
1N4061A	21	10	35	34	31	.002	1.5	18
1N4062	23	10	40	92	86	.005	1.5	18
1N4062A	23	10	40	37	35	.002	1.5	18
1N4063	27	10	45	108	101	.005	1.5	18
1N4063A	27	10	45	48	41	.002	1.5	18
1N4064	30	10	50	120	113	.005	1.5	18
1N4064A	30	10	50	48	45	.002	1.5	18
1N4065	33	10	55	132	124	.005	1.5	18
1N4065 A	33	10	55	53	50	.002	1.5	18
1N4066	37	7.5	80	148	139	.005	1.5	18
1N4066 A	37	7.5	80	59	56	.002	1.5	18
1N4067	43	7.5	90	172	161	.005	1.5	18
1N4067A	43	7.5	90	69	65	.002	1.5	18
1N4068	47	7.5	100	188	176	.005	1.5	18
1N4068A	47	7.5	100	75	71	.002	1.5	18
1N4069	51	7.5	110	204	191	.005	2.0	19
1N4069A	51	7.5	110	82	77	.002	2.0	19
1N4070	56	7.5	120	224	210	.005	2.0	19
1N4070A	56	7.5	120	90	84	.002	2.0	19
1N4071	62	7.5	135	248	233	.005	2.0	19
1N4071A	62	7.5	135	99	93	.002	2.0	19
1N4072	68	5.0	230	272	255	.005	2.0	19
1N4072A	68	5.0	230	109	102	.002	2.0	19
1N4073	75	5.0	250	300	281	.005	2.0	19
1N4073A	75	5.0	250	120	113	.002	2.0	19
1N4074	82	5.0	270	328	308	.005	2.0	19
1N4074A	82	5.0	270	131	123	.002	2.0	19
1N4075	87	5.0	290	348	326	.005	2.0	19
1N4075A	87	5.0	290	139	131	.002	2.0	19
1N4076	91	5.0	310	364	341	.005	2.0	19
1N4076A	91	5.0	310	146	137	.002	2.0	19
1N4077	100	5.0	340	400	375	.005	2.0	19
1N4077A	100	5.0	340	160	150	.002	2.0	19
1N4078	105	2.5	700	420	394	.005	2.0	19
1N4078A	105	2.5	700	168	158	.002	2.0	19
1N4079	110	2.5	740	440	413	.005	2.0	19
1N4079A	110	2,5	740	176	165	.002	2.0	19
1N4080	120	2.5	800	480	450	.005	2.0	19
1N4080A	120	2.5	800	192	180	.002	2.0	19
1N4081	130	2.5	840	520	488	.005	2.5	20
1N4081A	130	2.5	840	208	195	.002	2.5	20
1N4082	140	2.5	960	560	525	.005	2.5	20
1N4082A	140	2.5	960	224	210	.002	2.5	20
1N4083	150	2.5	1020	600	563	.005	2.5	20
1N4083A	150	2.5	1020	240	225	.002	2.5	20
1N4084	175	2.5	1150	700	656	.005	2.5	20
1N4084A	175	2.5	1150	280	263	.002	2.5	20
1N4085	200	2.5	1350	800	750	.005	2.5	20
1N4085A	200	2.5	1350	320	300	.002	2.5	20

 $†Vz = \pm 5\%$

Polarity - Banded End Positive

Derating Factor above 25°C - Case 18 - 12mW/°C

Case 19 - 16mW/°C

Case 20 - 20mW/°C

C2R DEFINITIONS AND SPECIFICATIONS

C²R transistors are the latest in new technology for extremely fast NPN power switching transistors. These are designed using a structure called charge-control rings (C²R) that give a voltage rating up to 450 volts at high currents. Forced gain is a minimum of 10 to 20 at up to 15A collector current, a figure most other manufacturers require Darlington configurations to get, and then at only slower speeds. Saturation (V_{CE}(sat) remains below 1.0V at 15A.

C²R provides reliable high-voltage operation with a stable planar epitaxial device.

Another unusual feature of the devices is the great emitter periphery length. This periphery gives high current-carrying capacity with the low saturation voltage and resulting high gain.

The relatively small emitter area for the currenthandling capacity results in low output capacitance, and, consequently, high speed. Turn-on time is under 100 nsec.

Switching fundamentals

Because a working knowledge of the switching cycle holds the key to understanding safe operating area (SOA) data, a basic review may prove useful.

We'll start with the switch open, a state that relates to V_{CEO} , V_{CER} and V_{CEX} , then show (Figure 1) what happens when it closes in a resistive circuit. Peak power equals 1/4 maximum voltage times maximum current. These conditions relate to the forward-bias SOA (for example, if you use a transistor rated to switch 400V at 15A, the peak power will be 1500W).

Transistor data sheets graph forward-bias SOA for

FIGURE 1 — Closing the switch in a resistive circuit creates peak power of $1/4 E_{MAX} XI_{MAX}$.

FIGURE 2 — Transistor switching produces the transistor operating conditions depicted here.

time periods such as 1 msec or 10 µsec. What is actually shown are characteristics that depict the device's energy-handling capabilities for simultaneous voltage and current. For most designs this information serves to define how much energy the transistor can handle under abnormal conditions (such as a short circuit). Usually, transistors can handle significantly more energy in their forward-bias SOA condition than would be demanded under normal switching conditions.

At equilibrium with the switch closed, there is dissipation that depends on $V_{CE}(sat)$, the drop across the conducting transistor at saturation. For most switching transistors the saturation region is not destructive but does contribute to total device dissipation so that it can't be ignored. Figure 2 shows transistor conditions during and after the transition from open to closed circuit.

Now we come to the operating condition that causes the great majority of catastrophic failures in switching transistors - opening the circuit carrying current. Referring to Figure 3 (for resistive switching) we see that this is the reverse of the transition depicted in Figure 1. As in Figure 1, peak power is 1/4 of peak voltage times peak current, but only for resistive switching. If the circuit is inductive, current does not fall until the voltage has reached its peak value, so maximum dissipation will be peak voltage times peak current. In this turn-off region a switching transistor has its lowest energy-handling capability. Reverse biasing of its baseemitter junction causes severe current constriction in the base-emitter region and creates extraordinarily high current density. Simultaneously, as the collector voltage increases, the collector-emitter junction is subjected to an extremely high voltage stress. We now have conditions that permit the destructive avalanche mode or second breakdown (S/B) to occur.

It all sounds bad, but there is a ready remedy. If we use load-line shaping ("snubbing"), we can alleviate this second-breakdown failure state. Figure 4a depicts the principle, using a capacitor to deliberately retard the voltage rise until current has dropped. The effect can be dramatic, with peak power reduced by as much as 100:1.

The slightly more complicated snubbing scheme of Figure 4b gets around the undesirable lengthening of switching-on time that Figure 4a causes. The diode permits the desired retarding of voltage during switching off but allows only a slight lengthening of the switching-on time.

FIGURE 3 — Switching from closed to open in a resistive circuit reverses the action we saw on closing (Figure 1).

FIGURE 4 — Simple load-line shaping by a capacitor (a) holds back the inductive-circuit voltage rise until current has become low, thereby greatly reducing the peak power. If a diode is added (b), the undesirable retarding of voltage during the switching-ON time is largely avoided.

CHIP 23

CHIP 25

Ic = 1.0 AMPS

DEVICE TYPE	PACKAGE	BV _{CEO} VOLTS	BV _{CBO} VOLTS	BV _{EBO} VOLTS	P _D @ 100°C Watts	h _{re} @ Min. Max	I _c . AMPS	V _{CE} VOLTS	V _{CE(sa}	@ I _c AMPS	I _e AMPS	f _r MHz		@ V _{CB} VOLTS	DATA SHEET Pg. No.
2N545 2N546 2N547 2N548 2N549	TO-5 TO-5 TO-5 TO-5 TO-5	50 30 60 30 60	60 30 60 30 60	6.0 6.0 6.0 6.0 6.0	5.0 5.0 5.0 5.0 5.0	15 - 80 15 - 80 20 - 80 20 - 80 20 - 80	0.5 0.5 0.5 0.5 0.2	6.0 6.0 6.0 6.0	1.0 1.0 1.0 1.0 0.6	0.5 0.5 0.5 0.5 0.2	0.05 0.05 0.05 0.05 0.02	4.0 4.0 4.0	15 15 15 15 15	60 30 60 30 60	
2N550 2N1052 2N1054 2N1055 2N1116	TO-5 TO-5 TO-5 TO-5 TO-5	30 155 115 100 60	30 200 125 100 60	6.0 6.0 6.0 6.0	5.0 5.0 5.0 3.0 5.0	20 - 80 20 - 80 20 - 80 40 - 150	0.2 0.2 0.2 0.05 0.5	6.0 6.0 6.0 6.0 6.0	0.6 0.6 0.6 0.6 1.0	0.2 0.2 0.2 50mA 0.5	0.02 0.02 0.02 5mA 0.05	4.0 8.0 3.0 6.0	15 10 5 15	30 200 125 100 60	
2N1117 2N1252 2N1253 2N1445 2N1700	TO-5 TO-5 TO-5 TO-5 TO-5	60 20 20 120 40	60 30 30 120 60	6.0 5.0 5.0 8.0 6.0	5.0 4.0 4.0 4.0 5.0	40 - 150 35 45 20 - 80 20	0.2 0.15 0.15 0.2 0.1	6.0 10.0 10.0 10.0 4.0	0.6 0.5 0.5 0.6 1.0	0.2 0.15 0.15 0.2 0.1	0.02 0.015 0.015 0.04 0.01	4.0 80.0 110.0 0.07 0.4	15 10 10 5 10 75	60 20 20 120 60	
2N1714 2N1715 2N1716 2N1717 2N1983 2N1984	TO-5 TO-5 TO-5 TO-5 TO-5 TO-5	60 100 60 100 25 25	90 150 90 150 30	6.0 6.0 6.0 5.0 5.0	6.0 6.0 6.0 6.0 1.0	20 - 60 20 - 60 40 - 120 40 - 120 80 - 240 40 - 120	0.2 0.2 0.2 0.2 5mA 5mA	5.0 5.0 5.0 5.0 5.0 5.0	2.0 2.0 2.0 2.0 0.25 0.25	0.2 0.2 0.2 0.2 5mA 5mA	0.02 0.02 0.02 0.02 0.5mA 0.5mA	16.0 16.0 16.0 16.0 40.0 40.0	1.0 1.0 1.0 1.0 5.0 5.0	30 30 30 30 30 30	
2N1985 2N2018 2N2019 2N2150 2N2151	TO-5 TO-111 TO-111 TO-111 TO-111	25 125 140 80 80	30 150 200 125 125	5.0 6.0 6.0 8.0 8.0	1.0 20.0 20.0 30.0 30.0	20 - 80 20 - 60 20 - 60 20 - 60 40 - 120	5mA 0.5 0.5 1.0 1.0	5.0 10.0 10.0 5.0 5.0	0.25 6.0 6.0 5.0 5.0	5mA 1.0 1.0 1.0 1.0	0.5mA 0.1 0.1 1.0 1.0	40.0 2.0 2.0 0.1 0.1	0.025 100 100 15 15	30 100 100	
2N2987 2N2988 2N2989 2N2990 2N3262 2N3739	TO-5 TO-5 TO-5 TO-5 TO-39 TO-66	80 100 80 100 80 300	95 155 95 155 100 325	7.0 7.0 7.0 7.0 4.0 6.0	15.0 15.0 15.0 15.0 5.0 10.0	25 - 75 25 - 75 60 - 120 60 - 120 40 40 - 200	0.2 0.2 0.2 0.2 0.5 0.1	5.0 5.0 5.0 5.0 4.0 10.0	3.0 3.0 3.0 3.0 0.6 2.5	0.5 0.5 0.5 0.5 1.0 0.250	0.05 0.05 0.05 0.05 0.1 0.025	30.0 30.0 30.0 30.0 100.0 10.0	0.025 0.025 0.025 0.025 0.1 100.0	90 150 90 150 30 325	4-27
2N4000 2N4001 2N4237	TO-5 TO-5 TO-5	80 100 40	100 120 50	8.0 8.0 6.0	15.0 15.0 6.0*	30 - 120 40 - 120 15	0.5 0.5 1.0	2.0 2.0 1.0	0.5 0.5 0.6	1.0 1.0 1.0	0.1 0.1 0.1	40.0 40.0 2.0	2.0 2.0 0.2mA	90 110 50	
2N4238 2N4239 2N4910 2N4911 2N4912	TO-5 TO-5 TO-66 TO-66 TO-66	60 80 40 60 80	80 100 40 60 80	6.0 6.0 5.0 5.0 5.0	6.0* 6.0* 25.0* 25.0* 25.0*	15 15 10 10 10	1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	0.6 0.6 0.6 0.6 0.6	1.0 1.0 1.0 1.0 1.0	0.1 0.1 0.1 0.1 0.1	2.0 2.0 3.0 3.0 3.0	0.1m/ 0.1m/ 0.1m/ 0.1m/ 0.1m/	100 40 60	
2N5660 2N5661 2N5662 2N5663 2N5681 2N5682	TO-66 TO-66 TO-5 TO-5 TO-5 TO-5	200 300 200 300 100 120	250 400 250 400 100 120	6.0 6.0 6.0 6.0 4.0 4.0	20.0 20.0 20.0 20.0 10.0* 10.0*	40 - 120 25 - 75 40 - 120 25 - 75 40 - 150 40 - 150	0.5 0.5 0.5 0.5 0.25 0.25	5.0 5.0 5.0 5.0 2.0 2.0	0.4 0.4 0.4 0.4 0.6 0.6	1.0 1.0 1.0 1.0 0.25 0.25	0.1 0.1 0.1 0.1 0.025 0.025	20.0 20.0 20.0 20.0 30.0 30.0	1.0 1.0 1.0 1.0 1.0	250 400 250 400	4-61 4-63

^{*}PD @ Tc = 25°C

Ic = 2.0 AMPS

DEVICE TYPE	PACKAGE	BV _{CEO} VOLTS	BV _{CBO} VOLTS	BV _{EBO}	P. @ 100°C Watts	h _{fe} @ Min. Max.	I _c	V _{CE} VOLTS	V _{CE(S2}	,, @ I _c	I _B	f _T MHz	І _{сво} @ µАМР V		DATA SHEET PG. NO.
2N4300 2N4863 2N4864 2N5050	TO-5 TO-5 TO-66 TO-66	80 120 120 125	100 140 140 125	8.0 8.0 8.0 6.0	15.0 4.0 16.0 20.0	30 - 120 50 - 150 50 - 150 25 - 100	1.0 0.5 0.5 0.75	2.0 5.0 5.0 5.0	0.3 1.5 1.5 0.3	1.0 2.0 2.0 1.0	0.1 0.2 0.2 0.1	30 50 50 10	10.0 0.1 0.1 5.0mA	90 60 60 125	4-41 4-41 4-43
2N5051 2N5052 2N5148 2N5150 2N5320 2N5321	TO-66 TO-66 TO-39 TO-39 TO-5 TO-5	150 200 80 80 75 50	150 200 100 100 100 75	6.0 6.0 6.0 6.0 7.0 5.0	20.0 20.0 40.0 4.0 5.7 5.7	25 - 100 25 - 100 30 - 90 70 - 200 30 - 130 40 - 250	0.75 0.75 1.0 1.0 0.5 0.5	5.0 5.0 5.0 5.0 4.0 4.0	0.3 1.0 0.46 0.46 0.5 0.8	1.0 0.75 1.0 1.0 0.5 0.5	0.1 0.1 0.1 0.1 0.05 0.05	10 10 50 60 50 50	5.0mA 1.0 1.0 100.0 100.0	150 60 60 100 75	4-43 4-43 4-49 4-49
2N5598 2N5600 2N5602 2N5604	TO-66 TO-66 TO-66 TO-66	60 80 80 100	80 100 100 120	6.0 6.0 6.0 6.0	12.5 13.0 13.0 13.0	70 - 200 30 - 90 70 - 200 30 - 90	1.0 1.0 1.0 1.0	5.0 5.0 5.0 5.0	0.85 0.85 0.85 0.85	2.0 2.0 2.0 2.0	0.2 0.2 0.2 0.2	60 50 60 50	1.0mA 1.0mA 1.0mA	80 100 100	
XGSA1030	TO-5	300	350	7.0	7.5	10	1.0	5.0	0.4	1.0	0.2	30	10.0	280	4-127
XGSA1035	TO-5	350	400	7.0	7.5	10	1.0	5.0	0.4	1.0	0.2	30	10.0	320	4-127
XGSA1040	TO-5	400	450	7.0	7.5	10	1.0	5.0	0.4	1.0	0.2	30	10.0	360	4-127
XGSA1530	TO-5	300	350	7.0	7.5	10	1.5	5.0	0.4	1.5	0.3	30	10.0	280	4-129
XGSA1535	TO-5	350	400	7.0	7.5	10	1.5	5.0	0.4	1.5	0.3	30	10.0	320	4-129
XGSA1540	TO-5	400	450	7.0	7.5	10	1.5	5.0	0.4	1.5	0.3	30	10.0	360	4-129
XGSQ1030	TO-66	300	350	7.0	10.0	10	1.0	5.0	0.4	1.0	0.2	30	10.0	280	4-135
XGSQ1035	TO-66	350	400	7.0	10.0	10	1.0	5.0	0.4	1.0	0.2	30	10.0	320	4-135
XGSQ1040	TO-66	400	450	7.0	10.0	10	1.0	5.0	0.4	1.0	0.2	30	10.0	360	4-135
XGSQ1530	TO-66	300	350	7.0	10.0	10	1.5	5.0	0.4	1.5	0.3	30	10.0	280	4-137
XGSQ1535	TO-66	350	400	7.0	10.0	10	1.5	5.0	0.4	1.5	0.3	30	10.0	320	4-137
XGSQ1540	TO-66	400	450	7.0	10.0	10	1.5	5.0	0.4	1.5	0.3	30	10.0	360	4-137

Ic = 3.0 AMPS

DEVICE Type	PACKAGE	BV _{CEO} VOLTS	BV _{CBO} VOLTS	BV _{EBO} VOLTS	P _d @ 100°C Watts	h _{FE} @ I _C Min. Max. AMPS	V _{CE} VOLTS	V _{CE(sat)} @ ! VDLTS AMI		f _T MHz	I _{сво} (µАМР	D V _{CB} VOLTS	DATA SHEET PG. NO.
2N1647 2N1648 2N1649 2N1650	TO-111 TO-111 TO-111 TO-111	80 80 80 80	80 120 80 120	6.0 6.0 6.0 6.0	20.0 20.0 20.0 20.0	15 - 45 0.5 15 - 45 0.5 30 - 90 0.5 30 - 90 0.5	10.0 10.0 10.0 10.0	1.2 1.0 1.2 1.0 1.2 1.0 1.2 1.0	0.1 0.1 0.1 0.1	3.0 3.0 3.0 2.0	100 100 100 100	60 60 60	
2N2101 2N2849 2N2849-1 2N2849-2	TO-61 TO-5/S TO-5 TO-59	40 80 80 80	60 100 100 100	10.0 5.0 5.0 5.0	41.0 6.7 6.7 30.0	15 - 60 1.0 100 - 300 1.0 100 - 300 1.0 100 - 300 1.0	15.0 1.0 1.0 1.0	1.2 1.0 0.4 1.0 0.4 1.0 0.4 1.0	0.1 0.02 0.02 0.02	30.0 30.0 30.0	30 0.1 0.1 0.1	60 80 80 80	
2N2850 2N2850-1 2N2850-2 2N2851 2N2851-1 2N2851-2	TO-5/S TO-5 TO-59 TO-5/S TO-5 TO-59	80 80 80 80 80 80	100 100 100 100 100 100	5.0 5.0 5.0 5.0 5.0 5.0	6.7 6.7 30.0 6.7 6.7 30.0	40 - 120 1.0 40 - 120 1.0	1.0 1.0 1.0 1.0 1.0	0.25 1.0 0.25 1.0 0.25 1.0 0.4 1.0 0.4 1.0 0.4 1.0	0.05 0.05 0.05 0.5 0.5 0.5	30.0 30.0 30.0 30.0 30.0 30.0	0.1 0.1 0.1 0.1 0.1 0.1	80 80 80 80 80	
2N2852 2N2852-1 2N2852-2 2N2853 2N2853-1 2N2853-2	TO-5/S TO-5 TO-59 TO-5/S TO-5 TO-59	80 80 80 40 40	100 100 100 60 60	5.0 5.0 5.0 5.0 5.0 5.0	6.7 6.7 30.0 6.7 6.7 30.0	20 - 60 1.0 20 - 60 1.0 20 - 60 1.0 40 1.0 40 1.0 40 1.0	1.0 1.0 1.0 1.0 1.0	0.4 1.0 0.4 1.0 0.4 1.0 1.5 5.0 1.5 5.0 1.5 5.0	0.1 0.1 0.1 0.5 0.5	30.0 30.0 30.0 30.0 30.0 30.0	0.1 0.1 0.1 0.1 0.1 0.1	80 80 40 40 40 40	
2N2854 2N2854-1 2N2854-2 2N2855 2N2855-1 2N2855-2	TO-5/S TO-5 TO-59 TO-5/S TO-5 TO-59	40 40 40 40 40 40	60 60 60 60 60	5.0 5.0 5.0 5.0 5.0 5.0	6.7 6.7 30.0 6.7 6.7 30.0	100 - 300 1.0 100 - 300 1.0 100 - 300 1.0 40 - 120 1.0 40 - 120 1.0 40 - 120 1.0	1.0 1.0 1.0 1.0 1.0	0.4 1.0 0.4 1.0 0.4 1.0 0.4 1.0 0.4 1.0 0.4 1.0	0.02 0.02 0.02 0.05 0.05 0.05	30.0 30.0 30.0 30.0 30.0 30.0	0.1 0.1 0.1 0.1 0.1	40 40 40 40 40 40	
2N2856 2N2856-1 2N2856-2 2N2983 2N2984	TO-5/\$ TO-5 TO-59 TO-5 TO-5	40 40 40 80 120	60 60 60 155 185	5.0 5.0 5.0 8.0 8.0	6.7 6.7 30.0 15.0 15.0	20 - 60 1.0 20 - 60 1.0 20 - 60 1.0 20 - 60 1.0 20 - 60 1.0	1.0 1.0 1.0 5.0 5.0	0.4 1.0 0.4 1.0 0.4 1.0 0.6 1.0 0.6 1.0	0.1 0.1 0.1 0.1 0.1	30.0 30.0 30.0 30.0 30.0	0.1 0.1 0.1 10	40 40 40 150 180	
2N2985 2N2986 2N3418 2N3419	TO-5 TO-5 TO-5 TO-5	80 120 60 80	155 185 85 125	8.0 8.0 8.0 8.0	15.0 15.0 15.0 15.0	40 - 120 1.0 40 - 120 1.0 20 - 60 1.0 20 - 60 1.0	5.0 5.0 2.0 2.0	0.6 1.0 0.6 1.0 0.25 1.0 0.25 1.0	0.1 0.1 0.1 0.1	30.0 30.0 40.0 40.0	10 10 0.5 0.5	150 180 80 120	4-23
2N3420 2N3421 2N3506 2N3507 2N3675	TO-5 TO-5 TO-39 TO-39 TO-5	60 80 40 50 55	85 125 60 80 90	8.0 8.0 5.0 5.0 7.0	15.0 15.0 2.6 2.6 5.0	40 - 120 1.0 40 - 120 1.0 40 - 200 1.5 30 - 150 1.5 12 - 60 1.0	2.0 2.0 2.0 2.0 1.0	0.25 1.0 0.25 1.0 1.0 1.5 1.0 1.5 0.8 1.0	0.1 0.1 0.15 0.15 0.1	40.0 40.0 60.0 60.0 1.0	0.5 0.5 5.0m	80 120 A 90	4-23 4-25 4-25
2N3676 2N3738 2N3766 2N3767	TO-5 TO-66 TO-66 TO-66	90 225 60 80	90 250 80 100	7.0 6.0 6.0 6.0	5.0 10.0 20.0* 20.0*	12 - 60 1.0 40 - 200 0.1 20 1.0 20 1.0	1.0 1.0 10.0 10.0	0.8 1.0 25.0 0.25 1.0 0.5 1.0 0.5	0.1 0.025 0.05 0.05	1.0 10.0 10.0 10.0	5.0m 100 0.1m 0.1m	250 A 80	4-27
2N4075 2N4076 2N4231	TO-59/Ise TO-59/Ise TO-66		100 100 40	5.0 5.0 5.0	17.0 17.0 20.0	30 - 90 1.0 50 - 150 1.0 25 - 100 1.5	2.0 2.0 2.0	0.5 1.0 0.5 1.0 0.6 1.5	0.1 0.1 0.15	30.0 30.0 4.0	100 100 50	100 100 30)
2N4232 2N4233 2N4877	TO-66 TO-66 TO-5	60 80 60	60 80 70	5.0 5.0 5.0	20.0 20.0 5.7	25 - 100 1.5 25 - 100 1.5 20 - 100 2.0	2.0 2.0 1.0	0.6 1.5 0.6 1.5 1.0 0.4	0.15 0.15 0.4	4.0 4.0 30.0	50 50 100	40 60 70)
2N5074 2N5075 2N5076	TO-59/Is TO-59/Is TO-59/Is	o 200 o 200	200 200 250	6.0 6.0 6.0	40.0 40.0 40.0	30 - 110 0.5 90 - 250 0.5 30 - 110 0.5	5.0 5.0 5.0	2.0 3.0 2.0 3.0 2.0 3.0	0.3 0.3 0.3	40.0 40.0 40.0		200 200 200	4-47
2N5077 2N5202 2N5334 2N5335	TO-59/Is TO-66 TO-39 TO-39	0 250 75 60 80	250 100 60 80	6.0 6.0 8.0 8.0	40.0 2.0 3.4 3.4	90 - 250 0.5 10 - 100 4.0 30 - 150 1.0 15 2.0	5.0 1.2 2.0 2.0	2.0 3.0 1.2 4.0 0.7 2.0 0.7 2.0	0.3 0.4 0.2 0.2	40.0 60.0 40.0 40.0	10.0m 5.0	200 nA 100 60 80)
2N5664 2N5665 2N5666 2N5667 XGS7001 XGS7002	TO-66 TO-66 TO-5 TO-5 TO-39 TO-39	200 300 200 300 30 60	250 400 250 400 50 70	6.0 6.0 6.0 6.0 5.0 5.0	30.0 30.0 15.0 15.0 2.9 2.9	40 - 120 1.0 25 - 75 1.0 40 - 120 1.0 25 - 75 1.0 20 2.0 15 2.0	5.0 5.0 5.0 5.0 2.0 2.0	0.4 3.0 0.4 3.0 0.4 3.0 0.4 3.0 1.0 1.0 1.0 1.0	0.3 0.6 0.3 0.6 0.1 0.1	20.0 20.0 20.0 20.0 120.0 120.0	1000 1000 1000 10	200 300 250 400 30 400	4-65 4-67 4-67 4-125

^{*}PD @ Tc = 25° C Available in JAN and JANTX (V)

Ic = 5.0 AMPS

DEVICE Type	PACKAGE	BV _{CEO} VOLTS	BV _{CBO} VOLTS	BV _{EBO} VOLTS	P _D @ 100°C Watts	h _{fe} @ i Min. Max./	c AMPS	V _{ce} VOLTS	V _{CE(sa}	@ I _c	I _B	f _† MHz	I _{cso} (μ ΑΜΡ	O V _{CB}	DATA SHEET PG. NO
2N1208 2N1209 2N1212 2N1616 2N1617	TO-61 TO-61 TO-61 TO-61 TO-61	60 45 60 60 80	60 45 60 60 80	10.0 5.0 10.0 8.0 8.0	49.0 49.0 49.0 30.0 30.0	20 - 80 2 12 - 36 1 15 - 75 2	2.0 2.0 1.0 2.0 2.0	12.0 12.0 15.0 12.0 12.0	1.4 1.4 1.2 1.4 2.0	2.0 2.0 1.0 2.0 2.0	0.25 0.25 0.20 0.25 0.25	3.0 3.0 3.0 3.0 3.0	10.0mA 20.0mA 10.0mA 1.0mA 1.0mA	60 45 60 60 80	
2N1618 2N1702 2N1724 2N1724A 2N1725	TO-61 TO-3 TO-61 TO-61 TO-61	100 40 80 120 80	100 60 120 180 120	8.0 6.0 10.0 10.0 10.0	30.0 43.0 50.0 50.0 50.0	15 - 60 (20 - 90 2 30 - 90 2	2.0 0.8 2.0 2.0 2.0	12.0 4.0 15.0 15.0 15.0	2.0 1.0 1.0 0.6 1.0	2.0 0.8 2.0 2.0 2.0	0.25 0.015 0.2 0.2 0.2	3.0 0.3 10 10	1.0mA 200 0.5mA 0.5mA 0.5mA	100 60 30 30 30	
2N2632 2N2633 2N2634 2N2657 2N2658	TO-59 TO-59 TO-59 TO-5 TO-5	60 80 100 60 80	90 120 150 80 100	8.0 8.0 8.0 7.0 7.0	20.0 20.0 20.0 4.0 4.0	40 - 120 40 - 120 40 - 120	1.0 1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0	0.25 0.25 0.25 0.5 0.5	1.0 1.0 1.0 1.0	0.1 0.1 0.1 0.1 0.1	20 20 20 20 20	0.1 0.1 0.1 0.1 0.1	60 60 60 60	
2N2877 2N2878 2N2879 2N2880 2N2890	TO-111 TO-111 TO-111 TO-111 TO-5	60 60 80 80 80	80 80 100 100 100	8.0 8.0 8.0 8.0 5.0	30.0 30.0 30.0 30.0 3.0	40 - 120 20 - 60 40 - 120	1.0 1.0 1.0 1.0 1.0	2.0 2.0 2.0 2.0 2.0	0.25 0.25 0.25 0.25 0.5	1.0 1.0 1.0 1.0 1.0	0.1 0.1 0.1 0.1 0.1	30 50 30 50 30	0.1 0.1 0.1 0.1 0.1	60 60 60 60	4-21 4-21 4-21 4-21
2N2891 2N2892 2N2893 2N3226 2N3469	TO-5 TO-59 TO-59 TO-3 TO-5	80 80 80 35 25	100 100 100 35 35	5.0 5.0 5.0 6.0 7.0	3.0 17.0 17.0 43.0 4.0	30 - 90 1 50 - 150 20 - 50 2	1.0 1.0 1.0 2.0 1.0	2.0 2.0 2.0 3.0 1.0	0.5 0.5 0.5 1.0 0.5	1.0 1.0 1.0 2.0 1.0	0.1 0.1 0.1 0.2 0.1	30 30 30 0.03 40	0.1 0.1 0.1 0.2 0.1	60 60 60 35 35	
2N3744 2N3745 2N3746	TO-111/ls TO-111/ls TO-111/ls	0 60	60 80 100	7.0 8.0 8.0	30.0 30.0 30.0	20 - 60	1.0 1.0 1.0	5.0 5.0 5.0	0.25 0.25 0.25	1.0 1.0 1.0	0.1 0.1 0.1	30 30 30	0.1 0.1 0.1	30 60 60	
2N3747 2N3748 2N3749 2N3750 2N3751	TO-111/Is TO-111/Is TO-111/Is TO-111/Is TO-111/Is	0 60 0 80 0 40	60 80 100 60 80	7.0 8.0 8.0 7.0 8.0	30.0 30.0 30.0 30.0 30.0	40 - 120 1 40 - 120 1 100 - 300 1	1.0 1.0 1.0 1.0 1.0	5.0 5.0 5.0 5.0 5.0	0.25 0.25 0.25 0.25 0.25	1.0 1.0 1.0 1.0 1.0	0.1 0.1 0.1 0.1 0.1	40 40 40 50 50	0.1 0.1 0.1 0.1 0.1	30 60 60 30 60	
N3752 N3852 N3853	TO-111/Is TO-59 TO-59	0 80 40 40	100 60 60	8.0 5.0 5.0	30.0 30.0 30.0	50 - 150	1.0 1.0 1.0	5.0 1.0 1.0	0.25 0.25 0.25	1.0 1.0 1.0	0.1 0.05 0.1	50 20 20	0.1 0.1 0.1	60 40 40	
2N3996 2N3997 2N3998 2N3999 2N4111	TO-111/Is TO-111/Is TO-111 TO-111 TO-3		100 100 100 100 100	8.0 8.0 8.0 8.0	30.0 30.0 30.0 30.0 30.0	40 - 120 80 - 240	1.0 1.0 1.0 1.0 2.0	2.0 2.0 2.0 2.0 5.0	0.25 0.25 0.25 0.25 1.5	1.0 1.0 1.0 1.0 5.0	0.1 0.1 0.1 0.1 0.5	40 40 40 40 50	5.0 5.0 5.0 5.0	90 90 90 90 90	4-29 4-29 4-29 4-29
2N4112 2N4113 2N4114 2N4115 2N4116	TO-3 TO-3 TO-3 TO-59/Isc TO-59/Isc		100 120 120 120 120	8.0 8.0 8.0 8.0	30.0 30.0 30.0 37.0 37.0	40 - 120 100 - 300	2.0 2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0 5.0	1.5 1.5 1.5 1.5 1.5	5.0 5.0 5.0 5.0 5.0	0.5 0.5 0.5 0.5 0.5	60 50 60 50 70	10 10 10 10 10	50 60 60 120 120	

Ic = 5.0 AMPS CONTINUED

DEVICE Type	PACKAGE	BV _{CEO} VOLTS	BV _{CBO} VOLTS	BV _{EBO} VOLTS	P _D @ 100°C Watts	h _{fe} @ Min. Max.	I _c	V _{ce} VOLTS	V _{CE(S}	@ I _c AMPS	I _B	f _T MHz	І _{сво} @ µ АМР V		DATA SHEET PG. NO.
2N4150 2N4240 2N4395 2N4396	TO-5 TO-66 TO-3 TO-3	80 300 40 60	100 500 60 80	5.0 6.0 4.0 4.0	5.0 20.0 50.0 50.0		5.0 0.75 2.0 2.0	5.0 2.0 1.0 1.0	0.6 1.0 0.8 0.8	5.0 0.75 4.5 4.5	0.5 0.075 0.8 0.8	15 15 4.0 4.0	0.1 2.0mA 100 100	60 45 0 60 80	4-37 4-39
2N4913 2N4914 2N4915	TO-3 TO-3 TO-3	40 60 80	40 60 80	5.0 5.0 5.0	87.5* 87.5* 87.5*	25 - 100	2.5 2.5 2.5	2.0 2.0 2.0	1.0 1.0 1.0	2.5 2.5 2.5	0.25 0.25 0.25	4.0 4.0 4.0	1.0mA 1.0mA 1.0mA	40 60 8 0	
2N5152 2N5154 2N5237 2N5239	TO-39 TO-39 TO-5 TO-3	80 80 120 225	100 100 150 300	6.0 6.0 5.0 6.0	6.0 6.0 5.0 57.0	70 - 200	2.5 2.5 5.0 2.0	5.0 5.0 5.0 10.0	1.5 1.5 0.6 0.9	5.0 5.0 5.0 5.0	0.5 0.5 0.5 0.5	60 70 25 5.0	1.0 1.0 1.0 4.0mA	60 60 3 00	4-53
2N5336 2N5337 2N5338 2N5339 2N5487	TO-39 TO-39 TO-39 TO-39 TO-5/S	80 80 100 100 80	80 80 100 100 120	6.0 6.0 6.0 6.0 8.0	3.4 3.4 3.4 3.4 15.0	30 - 120 60 - 240 30 - 120 60 - 240 100 - 300	2.0 2.0 2.0 2.0 1.0	2.0 2.0 2.0 2.0 2.0	0.7 0.7 0.7 0.7 0.25	2.0 2.0 2.0 2.0 1.0	0.2 0.2 0.2 0.2 0.1	30 30 30 30 40	10 10 10 10	80 80 100 100	
2N5487-1 2N5488 2N5488-1 2N5541 2N5606	TO-5 TO-5/S TO-5 TO-5 TO-66	80 100 100 130 60	120 150 150 175 80	8.0 8.0 8.0 8.0 6.0	15.0 15.0 15.0 5.0 14.0		1.0 1.0 1.0 5.0 2.5	2.0 2.0 2.0 5.0 5.0	0.25 0.25 0.25 1.5 1.5	1.0 1.0 1.0 5.0 5.0	0.1 0.1 0.1 0.5 0.5	40 40 40 20 70	0.5 1.0m A	17 5 80	4-59
2N5608 2N5610 2N5612	TO-66 TO-66 TO-66	80 80 100	100 100 120	6.0 6.0 6.0	14.0 14.0 14.0	30 - 90 70 - 200 30 - 90	2.5 2.5 2.5	5.0 5.0 5.0	1.5 1.5 1.5	5.0 5.0 5.0	0.5 0.5 0.5	60 70 60	1,0mA 1,0mA 1,0mA	100	
2N5729 2N6233 2N6234 2N6235	TO-5 TO-66 TO-66 TO-66	80 225 275 325	100 250 300 350	5.0 6.0 6.0 6.0	6.7 28.6 28.6 28.6	30 - 300 25 - 125 25 - 125 25 - 125	2.0 1.0 1.0 1.0	2.0 5.0 5.0 5.0	1.5 0.5 0.5 0.5	5.0 1.0 1.0 1.0	0.5 0.1 0.1 0.1	30 20 20 20	1.0mA 0.1mA 0.1mA 0.1mA	250 300	4-81 4-81 4-81
GSTU4030 GSTU4035 GSTU4040	TO-3 TO-3 TO-3	300 350 400	350 400 450	7.0 7.0 7.0	62.5 62.5 62.5	10 10 10	4.0 4.0 4.0	5.0 5.0 5.0	0.8 0.8 0.8	4.0 4.0 4.0	0.8 0.8 0.8	25 25 25	1000 1000 1 000	280 320 360	4-11: 4-11: 4-1 1:
XGSA3030 XGSA3035 XGSA3040	TO-5 TO-5 TO-5	300 350 400	350 400 450	8.0 8.0 8.0	10.0 10.0 10.0	10 10 10	3.0 3.0 3.0	5.0 5.0 5.0	1.0 1.0 1.0	3.0 3.0 3.0	0.6 0.6 0.6	25 25 25	250 250 250	280 320 360	4-13 4-13 4-13
XGSQ3030 XGSQ3035 XGSQ3040	TO-66 TO-66 TO-66	300 350 400	350 400 450	8.0 8.0 8.0	15.0 15.0 15.0	10 10 10	3.0 3.0 3.0	5.0 5.0 5.0	0.8 0.8 0.8	3.0 3.0 3.0	0.6 0.6 0.6	25 25 25	250 250 250	280 320 360	4-139 4-139 4-139
XGSR3030 XGSR3035 XGSR3040	TO-3 TO-3 TO-3	300 350 400	350 400 450	8.0 8.0 7.0	75.0 75.0 75.0	10 10 10	3.0 3.0 3.0	5.0 5.0 5.0	0.8 0.8 0.8	3.0 3.0 3.0	0.6 0.6 0.6	25 25 25	250 250 250	280 320 360	4-146 4-146 4-146

*PD @ TC = 25°C

Available in JAN and JANTX(V) per MIL-S-19500/394.

				1	[c = 7.	0 A	MPS							
PACKAGE	BV _{CEO} VOLTS	BV _{cso} VOLTS	BV _{EBO} VOLTS	P₀ @ 100°C Watts	h _{re} @ Min. Max.	I _c . AMPS	V _{CE} VOLTS	V _{CE(sa}	@ I _c AMPS	I _s	f _T MHz	I _{сво} µАМР	@ V _{cs} VOLTS	DATA SHEET Pg. N
TO-59/Iso	80	120 120 80 80 100	7.0 7.0 6.0 6.0 6.0	20.0 20.0 34.0 34.0 34.0	8 12 - 100 30 - 120 60 - 240 30 - 120	4.0 4.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0	2.0 1.2 0.7 0.7 0.7	4.0 4.0 2.0 2.0 2.0	0.5 0.4 0.2 0.2 0.2	40.0 40.0 30.0 30.0 30.0	10 10 10	80 80 100	
TO-59/Iso TO-66 TO-66 TO-66 TO-66	100 80 80 100 100	100 80 80 100 100	6.0 6.0 6.0 6.0 6.0	23.0 23.0 23.0 23.0 23.0 23.0	60 - 240 30 - 120 60 - 240 30 - 120 60 - 240	2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0	0.7 0.7 0.7 0.7 0.7	2.0 2.0 2.0 2.0 2.0 2.0	0.2 0.2 0.2 0.2 0.2	30.0 30.0 30.0 30.0 30.0	10 10 10 10 10	100 80 80 100 100	
TO-59	80	80	6.0	35.0	30 - 120	2.0	2.0	0.7	2.0	0.2	30.0	10	80	4-7.
TO-59	80	80	6.0	35.0	60 - 240	2.0	2.0	0.7	2.0	0.2	30.0	10	80	
TO-59	100	100	6.0	35.0	30 - 120	2.0	2.0	1.2	7.0	0.7	30.0	10	100	
TO-59	100	100	6.0	35.0	60 - 240	2.0	2.0	1.2	7.0	0.7	30.0	10	100	
TO-66	275	300	6.0	25.0	12 - 70	1.2	1.0	0.5	1.2	0.2	1.0	5.0m	4 250	
TO-66	250	275	6.0	25.0	12 - 70	1.2	1.0	0.5	1.2	0.2	1.0	50	250	4-7
TO-66	350	375	9.0	25.0	12 - 50	1.2	1.0	0.5	1.2	0.2	1.0	500	350	4-7
TO-3	300	350	7.0	62.5	10	6.0	5.0	0.8	6.0	1.2	25.0	500	280	4-1
TO-3	350	400	7.0	62.5	10	6.0	5.0	0.8	6.0	1.2	25.0	500	320	4-1
TO-3	400	450	7.0	62.5	10	6.0	5.0	0.8	6.0	1.2	25.0	500	360	4-1
TO-5	300	350	8.0	10.0	10	5.0	5.0	1.0	1.0	5.0	25.0	250	280	4-1
TO-5	350	400	8.0	10.0	10	5.0	5.0	1.0	1.0	5.0	25.0	250	320	4-1
TO-5	400	450	8.0	10.0	10	5.0	5.0	0.8	1.0	5.0	25.0	250	360	4-1
TO-66	300	350	8.0	15.0	10	5.0	5.0	0.8	5.0	1.0	25.0	250	280	4-1
TO-66	350	400	8.0	15.0	10	5.0	5.0	0.8	5.0	1.0	25.0	250	320	4-1
TO-66	400	450	8.0	15.0	10	5.0	5.0	0.8	5.0	1.0	25.0	250	360	4-1
TO-3	300	350	8.0	75.0	10	5.0	5.0	0.8	5.0	1.0	25.0	250	280	4-
TO-3	350	400	8.0	75.0	10	5.0	5.0	0.8	5.0	1.0	25.0	250	320	4-
TO-3	400	450	8.0	75.0	10	5.0	5.0	0.8	5.0	1.0	25.0	250	360	4-
	TO-66 TO-66 TO-59/Iso TO-59/Iso TO-59/Iso TO-66 TO-66 TO-66 TO-66 TO-66 TO-66 TO-66 TO-66 TO-66 TO-59 TO-59 TO-59 TO-59 TO-59 TO-59 TO-59 TO-59 TO-66 TO-66 TO-66 TO-66 TO-66 TO-66 TO-60 TO-5	PACKAGE VOLTS TO-66 50 TO-66 75 TO-59 / Iso 80 TO-59 / Iso 100 TO-59 / Iso 100 TO-66 80 TO-66 80 TO-66 100 TO-59 / Iso 80 TO-59 / So 80 TO-59 / So 100 TO-66 / 275 250 TO-66 / 350 350 TO-3 / 300 300 TO-5 / 300 300 TO-5 / 300 300 TO-6 / 350 300 TO-6 / 300 300 TO-6 / 300 300 TO-6 / 400 300 TO-3 / 300 300 TO-6 / 300 300 TO-6 / 300 300 TO-7 / 300 300 TO-8 / 300 300 TO-6 / 300	PACKAGE VOLTS VOLTS TO-66 50 120 TO-66 75 120 TO-69/Iso 80 80 TO-59/Iso 80 80 TO-59/Iso 100 100 TO-66 80 80 TO-66 80 80 TO-66 100 100 TO-66 100 100 TO-59 80 80 TO-59 80 80 TO-59 100 100 TO-59 100 100 TO-59 100 100 TO-59 100 100 TO-66 275 300 TO-66 350 275 TO-3 350 400 TO-3 350 400 TO-5 300 350 TO-5 400 450 TO-66 300 350 TO-66 300 400 TO-66 </td <td>PACKAGE VOLTS VOLTS VOLTS TO-66 50 120 7.0 TO-66 75 120 7.0 TO-59/Iso 80 80 6.0 TO-59/Iso 100 80 6.0 TO-59/Iso 100 100 6.0 TO-66 80 80 6.0 TO-66 80 80 6.0 TO-66 100 100 6.0 TO-66 100 100 6.0 TO-59 80 80 6.0 TO-59 100 100 6.0 TO-66 275 300 6.0 TO-63</td> <td>PACKAGE VOLTS VOLTS VOLTS WATTS TO-66 50 120 7.0 20.0 TO-59 100 100 6.0 23.0 TO-66 80 80 6.0 23.0 TO-66 100 100 6.0 23.0 TO-66 100 100 6.0 23.0 TO-59 80 80 6.0 23.0 TO-59 80 80 6.0 23.0 TO-66 100 100 6.0 23.0 TO-59 80 80 6.0 23.0 TO-66 100 100 6.0 23.0 TO-59 80 80 6.0 23.0 TO-59 80 80 6.0 23.0 TO-66 100 100 6.0 23.0 TO-59 100 100 6.0 23.0 TO-59 100 100 6.0 23.0 TO-59 100 100 6.0 23.0 TO-59 100 100 6.0 23.0 TO-59 100 100 6.0 23.0 TO-59 100 100 6.0 23.0 TO-59 100 100 6.0 25.0 TO-66 250 275 6.0 25.0 TO-66 350 375 9.0 25.0 TO-3 300 350 7.0 62.5 TO-3 300 350 7.0 62.5 TO-5 300 350 8.0 10.0 TO-5 400 450 8.0 15.0 TO-66 350 400 8.0 15.0 TO-66 350 350 8.0 15.0 TO-66 350 400 8.0 15.0 TO-66 350 400 8.0 15.0 TO-66 350 400 8.0 75.0</td> <td>PACKAGE VOLTS VOLTS VOLTS WATTS Min. Max. TO-66 50 120 7.0 20.0 8. TO-566 75 120 7.0 20.0 12 - 100 TO-597 Iso 100 100 6.0 34.0 30 - 120 TO-66 80 80 6.0 34.0 30 - 120 TO-66 80 80 6.0 23.0 30 - 120 TO-66 100 100 6.0 23.0 30 - 120 TO-66 100 100 6.0 23.0 30 - 120 TO-599 80 80 6.0 23.0 30 - 120 TO-599 100 100 6.0 23.0 60 - 240 TO-599 100 100 6.0 23.0 60 - 240 TO-599 80 80 6.0 35.0 30 - 120 TO-66 100 100 6.0 25.0 50 12 - 70 TO-66 250 275 300 6.0 25.0 12 - 70 TO-66 250 275 6.0 25.0 12 - 70 TO-66 250 275 6.0 25.0 12 - 70 TO-3 300 350 8.0 10.0 10 TO-5 300 350 8.0 10.0 10 TO-5 300 350 8.0 10.0 10 TO-66 350 30 350 8.0 15.0 10 TO-66 350 30 350 8.0 15.0 10 TO-66 350 30 350 8.0 15.0 10 TO-66 350 400 8.0 15.0 10</td> <td>PACKAGE VOLTS VOLTS VOLTS WATTS Min. Max. AMPS TO-66 50 120 7.0 20.0 8 4.0 TO-59 Iso 100 100 6.0 23.0 60 - 240 2.0 TO-66 80 80 6.0 23.0 30 - 120 2.0 TO-66 80 80 6.0 23.0 30 - 120 2.0 TO-66 100 100 6.0 23.0 60 - 240 2.0 TO-66 100 100 6.0 23.0 30 - 120 2.0 TO-59 80 80 6.0 23.0 30 - 120 2.0 TO-66 80 80 6.0 23.0 30 - 120 2.0 TO-66 100 100 6.0 23.0 30 - 120 2.0 TO-59 80 80 6.0 23.0 30 - 120 2.0 TO-59 80 80 6.0 23.0 30 - 120 2.0 TO-59 80 80 6.0 23.0 30 - 120 2.0 TO-66 100 100 6.0 23.0 60 - 240 2.0 TO-59 80 80 6.0 23.0 30 - 120 2.0 TO-66 100 100 6.0 23.0 30 - 120 2.0 TO-59 80 80 6.0 23.0 30 - 120 2.0 TO-59 100 100 6.0 23.0 60 - 240 2.0 TO-59 100 100 6.0 23.0 60 - 240 2.0 TO-59 100 100 6.0 25.0 12 - 70 1.2 TO-66 275 300 6.0 25.0 12 - 70 1.2 TO-66 250 275 6.0 25.0 12 - 70 1.2 TO-66 250 275 6.0 25.0 12 - 70 1.2 TO-66 350 375 9.0 25.0 12 - 70 1.2 TO-3 300 350 7.0 62.5 10 6.0 TO-5 300 350 8.0 10.0 10 5.0 TO-5 400 450 8.0 15.0 10 5.0 TO-66 350 350 8.0 15.0 10 5.0 TO-66 350 400 8.0 15.0 10 5.0</td> <td>PACKAGE VOLTS VOLTS WATTS Min. Max. AMPS VOLTS TO-66 50 120 7.0 20.0 8 4.0 2.0 TO-66 75 120 7.0 20.0 12 - 100 4.0 2.0 TO-59/Iso 80 80 6.0 34.0 30 - 120 2.0 2.0 TO-59/Iso 100 100 6.0 34.0 30 - 120 2.0 2.0 TO-59/Iso 100 100 6.0 23.0 60 - 240 2.0 2.0 TO-66 80 80 6.0 23.0 60 - 240 2.0 2.0 TO-66 80 80 6.0 23.0 60 - 240 2.0 2.0 TO-66 100 100 6.0 23.0 60 - 240 2.0 2.0 TO-59 80 80 6.0 23.0 30 - 120 2.0 2.0 TO-59 80 80 6.0<td>PACKAGE VOLTS VOLTS VOLTS WATTS Min. Max. AMPS VOLTS VOLTS TO-66 50 120 7.0 20.0 12 - 100 4.0 2.0 2.0 0.7 TO-59/lso 80 80 6.0 34.0 30 - 120 2.0 2.0 0.7 TO-59/lso 80 80 6.0 34.0 30 - 120 2.0 2.0 0.7 TO-59/lso 100 100 6.0 34.0 30 - 120 2.0 2.0 0.7 TO-66 80 80 6.0 34.0 60 - 240 2.0 2.0 0.7 TO-66 80 80 6.0 23.0 30 - 120 2.0 2.0 0.7 TO-66 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 TO-66 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 TO-66 100 100 6.0 33.0 30 - 120 2.0 2.0 0.7 TO-66 100 100 6.0 33.0 30 - 120 2.0 2.0 0.7 TO-59 80 80 6.0 33.0 30 - 120 2.0 2.0 0.7 TO-66 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 TO-66 100 100 6.0 33.0 30 - 120 2.0 2.0 0.7 TO-59 80 80 6.0 35.0 30 - 120 2.0 2.0 0.7 TO-59 80 80 6.0 35.0 30 - 120 2.0 2.0 0.7 TO-59 100 100 6.0 35.0 30 - 120 2.0 2.0 0.7 TO-59 100 100 6.0 35.0 60 - 240 2.0 2.0 0.7 TO-59 100 100 6.0 35.0 60 - 240 2.0 2.0 0.7 TO-66 275 300 6.0 25.0 12 - 70 1.2 1.0 0.5 TO-66 350 375 9.0 25.0 12 - 70 1.2 1.0 0.5 TO-66 350 375 9.0 25.0 12 - 70 1.2 1.0 0.5 TO-66 350 350 30 350 30 30 350 350 375 9.0 25.0 12 - 70 1.2 1.0 0.5 TO-59 350 400 450 8.0 10.0 10 5.0 5.0 0.8 TO-5 350 400 450 8.0 10.0 10 5.0 5.0 0.8 TO-5 350 400 450 8.0 10.0 10 5.0 5.0 0.8 TO-5 350 400 450 8.0 10.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 5.0 0.8 TO-66 350 350 350 350 8.0</td><td>PACKAGE VOLTS VOLTS VOLTS WATTS Min. Max. AMPS VOLTS VOLTS AMPS TO-66 50 120 7.0 20.0 12 100 4.0 2.0 1.2 4.0 170-59/lso 80 80 6.0 34.0 30 -120 2.0 2.0 0.7 2.0 170-59/lso 80 80 6.0 34.0 30 -120 2.0 2.0 0.7 2.0 170-59/lso 80 80 6.0 34.0 30 -120 2.0 2.0 0.7 2.0 170-59/lso 80 80 6.0 34.0 30 -120 2.0 2.0 0.7 2.0 170-59/lso 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-66 80 80 6.0 23.0 30 -120 2.0 2.0 0.7 2.0 170-66 80 80 6.0 23.0 30 -120 2.0 2.0 0.7 2.0 170-66 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-66 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-66 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-66 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-66 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-66 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-59 80 80 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 80 80 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 60 -240 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 2.0 1.2 7.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 2.0 1.2 7.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 2.0 1.2 7.0 170-59 100 100 6.0 35.0 35.0 35.0 30 -120 2.0 2.0 2.0 1.2 7.0 170-59 100 100 6.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35</td><td>PACKAGE VOLTS VOLTS VOLTS WATTS Min. Max. AMPS VOLTS VOLTS AMPS AMPS AMPS TO-66 50 120 7.0 20.0 12 -100 4.0 2.0 1.2 4.0 0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0</td><td>PACKAGE VOLTS VOLTS VOLTS VOLTS WATTS Min. Max. AMPS VOLTS VOLTS VOLTS AMPS AMPS MHZ TO-66 50 120 7.0 20.0 12 - 100 4.0 2.0 2.0 1.2 4.0 0.4 40.0 10.559/Iso 80 80 6.0 34.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.559/Iso 80 80 6.0 34.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.559/Iso 80 80 6.0 34.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.566 80 80 6.0 33.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.666 80 80 6.0 23.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.666 80 80 6.0 23.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.666 80 80 6.0 23.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 35.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 0.7 2.0 0.2 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 0.7 2.0 0.2 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 2.0 2.2 1.0 10.550 10.0 10.0 5.0 5.0 10.0 10.0</td><td> PACKAGE VOLTS V</td><td>PACKAGE VOLTS VOLTS VOLTS VOLTS WATTS Min. Max. AMPS VOLTS VOLTS AMPS AMPS AMPS AMP VOLTS WATTS Min. Max. AMPS VOLTS VOLTS AMPS AMPS AMPS AMPS AMP VOLTS WATTS Min. Max. AMPS VOLTS VOLTS AMPS AMPS AMPS AMPS AMP VOLTS VOLTS AMPS AMPS AMPS AMPS AMPS AMPS AMPS AMP</td></td>	PACKAGE VOLTS VOLTS VOLTS TO-66 50 120 7.0 TO-66 75 120 7.0 TO-59/Iso 80 80 6.0 TO-59/Iso 100 80 6.0 TO-59/Iso 100 100 6.0 TO-66 80 80 6.0 TO-66 80 80 6.0 TO-66 100 100 6.0 TO-66 100 100 6.0 TO-59 80 80 6.0 TO-59 100 100 6.0 TO-66 275 300 6.0 TO-63	PACKAGE VOLTS VOLTS VOLTS WATTS TO-66 50 120 7.0 20.0 TO-59 100 100 6.0 23.0 TO-66 80 80 6.0 23.0 TO-66 100 100 6.0 23.0 TO-66 100 100 6.0 23.0 TO-59 80 80 6.0 23.0 TO-59 80 80 6.0 23.0 TO-66 100 100 6.0 23.0 TO-59 80 80 6.0 23.0 TO-66 100 100 6.0 23.0 TO-59 80 80 6.0 23.0 TO-59 80 80 6.0 23.0 TO-66 100 100 6.0 23.0 TO-59 100 100 6.0 23.0 TO-59 100 100 6.0 23.0 TO-59 100 100 6.0 23.0 TO-59 100 100 6.0 23.0 TO-59 100 100 6.0 23.0 TO-59 100 100 6.0 23.0 TO-59 100 100 6.0 25.0 TO-66 250 275 6.0 25.0 TO-66 350 375 9.0 25.0 TO-3 300 350 7.0 62.5 TO-3 300 350 7.0 62.5 TO-5 300 350 8.0 10.0 TO-5 400 450 8.0 15.0 TO-66 350 400 8.0 15.0 TO-66 350 350 8.0 15.0 TO-66 350 400 8.0 15.0 TO-66 350 400 8.0 15.0 TO-66 350 400 8.0 75.0	PACKAGE VOLTS VOLTS VOLTS WATTS Min. Max. TO-66 50 120 7.0 20.0 8. TO-566 75 120 7.0 20.0 12 - 100 TO-597 Iso 100 100 6.0 34.0 30 - 120 TO-66 80 80 6.0 34.0 30 - 120 TO-66 80 80 6.0 23.0 30 - 120 TO-66 100 100 6.0 23.0 30 - 120 TO-66 100 100 6.0 23.0 30 - 120 TO-599 80 80 6.0 23.0 30 - 120 TO-599 100 100 6.0 23.0 60 - 240 TO-599 100 100 6.0 23.0 60 - 240 TO-599 80 80 6.0 35.0 30 - 120 TO-66 100 100 6.0 25.0 50 12 - 70 TO-66 250 275 300 6.0 25.0 12 - 70 TO-66 250 275 6.0 25.0 12 - 70 TO-66 250 275 6.0 25.0 12 - 70 TO-3 300 350 8.0 10.0 10 TO-5 300 350 8.0 10.0 10 TO-5 300 350 8.0 10.0 10 TO-66 350 30 350 8.0 15.0 10 TO-66 350 30 350 8.0 15.0 10 TO-66 350 30 350 8.0 15.0 10 TO-66 350 400 8.0 15.0 10	PACKAGE VOLTS VOLTS VOLTS WATTS Min. Max. AMPS TO-66 50 120 7.0 20.0 8 4.0 TO-59 Iso 100 100 6.0 23.0 60 - 240 2.0 TO-66 80 80 6.0 23.0 30 - 120 2.0 TO-66 80 80 6.0 23.0 30 - 120 2.0 TO-66 100 100 6.0 23.0 60 - 240 2.0 TO-66 100 100 6.0 23.0 30 - 120 2.0 TO-59 80 80 6.0 23.0 30 - 120 2.0 TO-66 80 80 6.0 23.0 30 - 120 2.0 TO-66 100 100 6.0 23.0 30 - 120 2.0 TO-59 80 80 6.0 23.0 30 - 120 2.0 TO-59 80 80 6.0 23.0 30 - 120 2.0 TO-59 80 80 6.0 23.0 30 - 120 2.0 TO-66 100 100 6.0 23.0 60 - 240 2.0 TO-59 80 80 6.0 23.0 30 - 120 2.0 TO-66 100 100 6.0 23.0 30 - 120 2.0 TO-59 80 80 6.0 23.0 30 - 120 2.0 TO-59 100 100 6.0 23.0 60 - 240 2.0 TO-59 100 100 6.0 23.0 60 - 240 2.0 TO-59 100 100 6.0 25.0 12 - 70 1.2 TO-66 275 300 6.0 25.0 12 - 70 1.2 TO-66 250 275 6.0 25.0 12 - 70 1.2 TO-66 250 275 6.0 25.0 12 - 70 1.2 TO-66 350 375 9.0 25.0 12 - 70 1.2 TO-3 300 350 7.0 62.5 10 6.0 TO-5 300 350 8.0 10.0 10 5.0 TO-5 400 450 8.0 15.0 10 5.0 TO-66 350 350 8.0 15.0 10 5.0 TO-66 350 400 8.0 15.0 10 5.0	PACKAGE VOLTS VOLTS WATTS Min. Max. AMPS VOLTS TO-66 50 120 7.0 20.0 8 4.0 2.0 TO-66 75 120 7.0 20.0 12 - 100 4.0 2.0 TO-59/Iso 80 80 6.0 34.0 30 - 120 2.0 2.0 TO-59/Iso 100 100 6.0 34.0 30 - 120 2.0 2.0 TO-59/Iso 100 100 6.0 23.0 60 - 240 2.0 2.0 TO-66 80 80 6.0 23.0 60 - 240 2.0 2.0 TO-66 80 80 6.0 23.0 60 - 240 2.0 2.0 TO-66 100 100 6.0 23.0 60 - 240 2.0 2.0 TO-59 80 80 6.0 23.0 30 - 120 2.0 2.0 TO-59 80 80 6.0 <td>PACKAGE VOLTS VOLTS VOLTS WATTS Min. Max. AMPS VOLTS VOLTS TO-66 50 120 7.0 20.0 12 - 100 4.0 2.0 2.0 0.7 TO-59/lso 80 80 6.0 34.0 30 - 120 2.0 2.0 0.7 TO-59/lso 80 80 6.0 34.0 30 - 120 2.0 2.0 0.7 TO-59/lso 100 100 6.0 34.0 30 - 120 2.0 2.0 0.7 TO-66 80 80 6.0 34.0 60 - 240 2.0 2.0 0.7 TO-66 80 80 6.0 23.0 30 - 120 2.0 2.0 0.7 TO-66 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 TO-66 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 TO-66 100 100 6.0 33.0 30 - 120 2.0 2.0 0.7 TO-66 100 100 6.0 33.0 30 - 120 2.0 2.0 0.7 TO-59 80 80 6.0 33.0 30 - 120 2.0 2.0 0.7 TO-66 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 TO-66 100 100 6.0 33.0 30 - 120 2.0 2.0 0.7 TO-59 80 80 6.0 35.0 30 - 120 2.0 2.0 0.7 TO-59 80 80 6.0 35.0 30 - 120 2.0 2.0 0.7 TO-59 100 100 6.0 35.0 30 - 120 2.0 2.0 0.7 TO-59 100 100 6.0 35.0 60 - 240 2.0 2.0 0.7 TO-59 100 100 6.0 35.0 60 - 240 2.0 2.0 0.7 TO-66 275 300 6.0 25.0 12 - 70 1.2 1.0 0.5 TO-66 350 375 9.0 25.0 12 - 70 1.2 1.0 0.5 TO-66 350 375 9.0 25.0 12 - 70 1.2 1.0 0.5 TO-66 350 350 30 350 30 30 350 350 375 9.0 25.0 12 - 70 1.2 1.0 0.5 TO-59 350 400 450 8.0 10.0 10 5.0 5.0 0.8 TO-5 350 400 450 8.0 10.0 10 5.0 5.0 0.8 TO-5 350 400 450 8.0 10.0 10 5.0 5.0 0.8 TO-5 350 400 450 8.0 10.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 5.0 0.8 TO-66 350 350 350 350 8.0</td> <td>PACKAGE VOLTS VOLTS VOLTS WATTS Min. Max. AMPS VOLTS VOLTS AMPS TO-66 50 120 7.0 20.0 12 100 4.0 2.0 1.2 4.0 170-59/lso 80 80 6.0 34.0 30 -120 2.0 2.0 0.7 2.0 170-59/lso 80 80 6.0 34.0 30 -120 2.0 2.0 0.7 2.0 170-59/lso 80 80 6.0 34.0 30 -120 2.0 2.0 0.7 2.0 170-59/lso 80 80 6.0 34.0 30 -120 2.0 2.0 0.7 2.0 170-59/lso 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-66 80 80 6.0 23.0 30 -120 2.0 2.0 0.7 2.0 170-66 80 80 6.0 23.0 30 -120 2.0 2.0 0.7 2.0 170-66 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-66 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-66 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-66 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-66 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-66 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-59 80 80 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 80 80 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 60 -240 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 2.0 1.2 7.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 2.0 1.2 7.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 2.0 1.2 7.0 170-59 100 100 6.0 35.0 35.0 35.0 30 -120 2.0 2.0 2.0 1.2 7.0 170-59 100 100 6.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35</td> <td>PACKAGE VOLTS VOLTS VOLTS WATTS Min. Max. AMPS VOLTS VOLTS AMPS AMPS AMPS TO-66 50 120 7.0 20.0 12 -100 4.0 2.0 1.2 4.0 0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0</td> <td>PACKAGE VOLTS VOLTS VOLTS VOLTS WATTS Min. Max. AMPS VOLTS VOLTS VOLTS AMPS AMPS MHZ TO-66 50 120 7.0 20.0 12 - 100 4.0 2.0 2.0 1.2 4.0 0.4 40.0 10.559/Iso 80 80 6.0 34.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.559/Iso 80 80 6.0 34.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.559/Iso 80 80 6.0 34.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.566 80 80 6.0 33.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.666 80 80 6.0 23.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.666 80 80 6.0 23.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.666 80 80 6.0 23.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 35.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 0.7 2.0 0.2 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 0.7 2.0 0.2 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 2.0 2.2 1.0 10.550 10.0 10.0 5.0 5.0 10.0 10.0</td> <td> PACKAGE VOLTS V</td> <td>PACKAGE VOLTS VOLTS VOLTS VOLTS WATTS Min. Max. AMPS VOLTS VOLTS AMPS AMPS AMPS AMP VOLTS WATTS Min. Max. AMPS VOLTS VOLTS AMPS AMPS AMPS AMPS AMP VOLTS WATTS Min. Max. AMPS VOLTS VOLTS AMPS AMPS AMPS AMPS AMP VOLTS VOLTS AMPS AMPS AMPS AMPS AMPS AMPS AMPS AMP</td>	PACKAGE VOLTS VOLTS VOLTS WATTS Min. Max. AMPS VOLTS VOLTS TO-66 50 120 7.0 20.0 12 - 100 4.0 2.0 2.0 0.7 TO-59/lso 80 80 6.0 34.0 30 - 120 2.0 2.0 0.7 TO-59/lso 80 80 6.0 34.0 30 - 120 2.0 2.0 0.7 TO-59/lso 100 100 6.0 34.0 30 - 120 2.0 2.0 0.7 TO-66 80 80 6.0 34.0 60 - 240 2.0 2.0 0.7 TO-66 80 80 6.0 23.0 30 - 120 2.0 2.0 0.7 TO-66 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 TO-66 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 TO-66 100 100 6.0 33.0 30 - 120 2.0 2.0 0.7 TO-66 100 100 6.0 33.0 30 - 120 2.0 2.0 0.7 TO-59 80 80 6.0 33.0 30 - 120 2.0 2.0 0.7 TO-66 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 TO-66 100 100 6.0 33.0 30 - 120 2.0 2.0 0.7 TO-59 80 80 6.0 35.0 30 - 120 2.0 2.0 0.7 TO-59 80 80 6.0 35.0 30 - 120 2.0 2.0 0.7 TO-59 100 100 6.0 35.0 30 - 120 2.0 2.0 0.7 TO-59 100 100 6.0 35.0 60 - 240 2.0 2.0 0.7 TO-59 100 100 6.0 35.0 60 - 240 2.0 2.0 0.7 TO-66 275 300 6.0 25.0 12 - 70 1.2 1.0 0.5 TO-66 350 375 9.0 25.0 12 - 70 1.2 1.0 0.5 TO-66 350 375 9.0 25.0 12 - 70 1.2 1.0 0.5 TO-66 350 350 30 350 30 30 350 350 375 9.0 25.0 12 - 70 1.2 1.0 0.5 TO-59 350 400 450 8.0 10.0 10 5.0 5.0 0.8 TO-5 350 400 450 8.0 10.0 10 5.0 5.0 0.8 TO-5 350 400 450 8.0 10.0 10 5.0 5.0 0.8 TO-5 350 400 450 8.0 10.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 5.0 0.8 TO-66 350 350 350 8.0 15.0 10 5.0 5.0 5.0 0.8 TO-66 350 350 350 350 8.0	PACKAGE VOLTS VOLTS VOLTS WATTS Min. Max. AMPS VOLTS VOLTS AMPS TO-66 50 120 7.0 20.0 12 100 4.0 2.0 1.2 4.0 170-59/lso 80 80 6.0 34.0 30 -120 2.0 2.0 0.7 2.0 170-59/lso 80 80 6.0 34.0 30 -120 2.0 2.0 0.7 2.0 170-59/lso 80 80 6.0 34.0 30 -120 2.0 2.0 0.7 2.0 170-59/lso 80 80 6.0 34.0 30 -120 2.0 2.0 0.7 2.0 170-59/lso 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-66 80 80 6.0 23.0 30 -120 2.0 2.0 0.7 2.0 170-66 80 80 6.0 23.0 30 -120 2.0 2.0 0.7 2.0 170-66 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-66 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-66 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-66 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-66 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-66 100 100 6.0 23.0 60 -240 2.0 2.0 0.7 2.0 170-59 80 80 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 80 80 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 60 -240 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 0.7 2.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 2.0 1.2 7.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 2.0 1.2 7.0 170-59 100 100 6.0 35.0 35.0 30 -120 2.0 2.0 2.0 1.2 7.0 170-59 100 100 6.0 35.0 35.0 35.0 30 -120 2.0 2.0 2.0 1.2 7.0 170-59 100 100 6.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35	PACKAGE VOLTS VOLTS VOLTS WATTS Min. Max. AMPS VOLTS VOLTS AMPS AMPS AMPS TO-66 50 120 7.0 20.0 12 -100 4.0 2.0 1.2 4.0 0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	PACKAGE VOLTS VOLTS VOLTS VOLTS WATTS Min. Max. AMPS VOLTS VOLTS VOLTS AMPS AMPS MHZ TO-66 50 120 7.0 20.0 12 - 100 4.0 2.0 2.0 1.2 4.0 0.4 40.0 10.559/Iso 80 80 6.0 34.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.559/Iso 80 80 6.0 34.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.559/Iso 80 80 6.0 34.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.566 80 80 6.0 33.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.666 80 80 6.0 23.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.666 80 80 6.0 23.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.666 80 80 6.0 23.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 30 - 120 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 23.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.666 100 100 6.0 35.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 0.7 2.0 0.2 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 0.7 2.0 0.2 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 0.7 2.0 0.2 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 30.0 10.559 100 100 6.0 35.0 60 - 240 2.0 2.0 2.0 1.2 7.0 0.7 2.0 2.2 1.0 10.550 10.0 10.0 5.0 5.0 10.0 10.0	PACKAGE VOLTS V	PACKAGE VOLTS VOLTS VOLTS VOLTS WATTS Min. Max. AMPS VOLTS VOLTS AMPS AMPS AMPS AMP VOLTS WATTS Min. Max. AMPS VOLTS VOLTS AMPS AMPS AMPS AMPS AMP VOLTS WATTS Min. Max. AMPS VOLTS VOLTS AMPS AMPS AMPS AMPS AMP VOLTS VOLTS AMPS AMPS AMPS AMPS AMPS AMPS AMPS AMP

					1	c =	· 7.	5 AM	MPS							
DEVICE TYPE	PACKAGE	BV _{CEO} VOLTS	BV _{cso} VOLTS	BV _{EBO} VOLTS	P _o @ 100°C Watts	h _{FE} (I _c	V _{CE} VOLTS	V _{CE(sa}	,, @ I _c	I _s	f _T MHz		D V _{CB} VOLTS	DATA SHEET PG. NO
2N1616A 2N1617A 2N1618A	TO-61 TO-61 TO-61	60 70 80	60 80 100	8.0 8.0 8.0	53 53 53	20 - 20 - 20 -	60	2.0 2.0 2.0	4.0 4.0 4.0	1.0 1.0 1.0	2.0 2.0 2.0	0.2 0.2 0.2	3.0 3.0 3.0	200 200 200	60 80 100	
2N5387 2N5388 2N5389	TO-61 TO-61 TO-61	200 250 300	200 250 300	10.0 10.0 10.0	100 100 100	25 - 25 - 25 -	100	2.0 2.0 2.0	5.0 5.0 5.0	2.2 2.2 2.2	7.0 7.0 7.0	1.4 1.4 1.4	15 15 15	1.0mA 1.0mA 1.0mA	180 225 270	4-55 4-55 4-5 <i>7</i>

Ic = 10 AMPS

DEVICE Type	PACKAGE	BV _{CEO} VOLTS	BV _{CBO} VOLTS	BV _{EBO}	P. @ 100°C Watts	h _{re} @ Min. Max	I _c	V _{CE} VOLTS	V _{CE(sa}	at) @ I _C	I _B	f _T MHz		@ V _{св} VOLTS	DATA SHEET PG. NO.
2N2811 2N2812 2N2813 2N2814	TO-61 TO-61 TO-61 TO-61	60 60 80 80	80 80 120 120	8.0 8.0 8.0 8.0	40.0 40.0 40.0 40.0	20 - 60 40 - 120 20 - 60 40 - 120	5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0	0.5 0.5 0.5 0.5	5.0 5.0 5.0 5.0	0.5 0.5 0.5 0.5	15 15 15 15	0.1 0.1 0.1 0.1	60 60 60	
N4070 N4071 N4301 N5218 N5288 N5289	TO-3 TO-3 TO-61 TO-61 TO-61/Iso TO-61/Iso		120 200 100 220 120 120	8.0 8.0 8.0 8.0 6.0 6.0	65.0 65.0 50.0 50.0 66.7 66.7	40 - 120 40 - 120 30 - 120 15 - 120 30 - 90 70 - 200	5.0 5.0 5.0 5.0 5.5 5.5	5.0 5.0 4.0 5.0 5.0 5.0	1.5 1.5 0.4 0.6 1.5 1.5	10.0 10.0 5.0 5.0 10.0 10.0	1.0 1.0 0.5 0.5 1.0	20 20 40 40 30 40	0.1 0.1 10.0 0.5 1.0	60 100 90 100 80 80	4-33 4-35 4-51
N5313 N5315 N5317 N5319 N5412	TO-61 TO-61 TO-61/Iso TO-61/Iso TO-61		80 100 80 100 80	6.0 6.0 6.0 6.0 7.0	50.0 50.0 50.0 50.0 50.0	30 - 90 30 - 90 30 - 90 30 - 90 10 - 160	10.0 10.0 10.0 10.0 2.0	5.0 5.0 5.0 5.0 1.5	1.5 1.5 1.5 1.5 1.5	10.0 10.0 10.0 10.0 15.0	1.0 1.0 1.0 1.0 3.0	30 30 30 30 60	10 10 10 10	80 80 80 80	
N5542 N5552 N5552-1 N5658	TO-61 TO-5/S TO-5 TO-59	130 80 80 80	175 120 120 120	8.0 7.0 7.0 7.0	50.0 15.0 15.0 30.0	20 - 60 50 - 150 50 - 150 50 - 150	5.0 5.0 5.0 5.0	5.0 2.0 2.0 5.0	1.0 0.5 0.5 1.0	5.0 5.0 5.0 10.0	0.5 0.5 0.5 1.0	20 30 30 30	0.5	175 120	4-59
N5659 N5730 N5854 N6232 SD B 10008	TO-111/lso TO-59/lso TO-61/lso TO-5 TO-5	80	120 100 100 140 100	7.0 5.0 6.0 7.0 7.0	30.0 30.0 66.0 15.0 1.5	50 - 150 30 - 300 30 - 90 25 - 100 20	5.0 2.0 5.0 5.0 10	5.0 2.0 5.0 2.0 5.0	1.0 1.2 1.5 1.4 1.0	10.0 5.0 10.0 10.0 10.0	1.0 0.5 1.0 1.0	30 30 20 30 50	0.2 1.0mA 500 0.2 1.0	120 100 100 140 80	4-79 4- 10
STU8035 STU8040 STU8045	TO-3 TO-3 TO-3	350 400 450	400 450 500	7.0 7.0 7.0	94.0 94.0 94.0	10 10 10	8.0 8.0 8.0	5.0 5.0 5.0	0.8 0.8 0.8	8.0 8.0 8.0	1.6 1.6 1.6	25 25 25	320 360 400	500 500 500	4-11 4-11 4-11
GSQ7530 GSQ7535 GSQ7540	TO-66 TO-66 TO-66	300 350 400	350 400 450	7.0 7.0 7.0	25.0 25.0 25.0	10 10 10	7.5 7.5 7.5	5.0 5.0 5.0	0.7 0.7 0.7	7.5 7.5 7.5	1.5 1.5 1.5	30 30 30	200 200 200	280 320 360	4-14 4-14 4-14
GSR7530 GSR7535 GSR7540	TO-3 TO-3 TO-3	300 350 400	350 400 450	7.0 7.0 7.0	50.0 50.0 50.0	10 10 10	7.5 7.5 7.5	5.0 5.0 5.0	0.6 0.6 0.6	7.5 7.5 7.5	1.5 1.5 1.5	30 30 30	200 200 200	280 320 360	4-15 4-15 4-15

DEVICE TYPE	PACKAGE	BV _{CEO} VOLTS	BV _{CBO} VOLTS	BV _{EBO}	P. @ 100°C Watts	h _{re} @ Min. Max	I _c	V _{CE} VOLTS	V _{CE(sa}	an @ Ic AMPS	I _B	f _T MHz	I _{сво} µАМР	@ V _{св} VOLTS	OATA SHEET PG. NO.
GSDR10020 GSDR10025 GSTR12030 GSTR12035 GSTR12040	TO-3 TO-3 TO-3	200 250 300 350 400	250 300 350 400 450	7.0 7.0 7.0 7.0 7.0	80.0 80.0 94.0 94.0 94.0	10 10 10 10 10	10 10 12 12 12	5.0 5.0 5.0 5.0 5.0	0.6 0.6 0.8 0.8 0.8	10 10 12 12 12	2.0 2.0 2.4 2.4 2.4	25 25 25 25 25 25	500 500 500 500 500	200 240 280 320 360	4-105 4-105 4-121 4-121 4-121
XDAR10030 XDAR10035		300 350	350 400	8.0 8.0	75.0 75.0	30 25	10 10	5.0 5.0	0.8 0.8	10 10	2.0 2.0	25 25	500 500	280 320	4-123 4-123

280 4-153 320 4-153 360 4-153

500 500 500

Ic = 15 AMPS

OEVICE TYPE	PACKAGE	BV _{CEO} VOLTS	BV _{CBO} VOLTS	BV _{EBO} VOLTS	P _D @ 100°C Watts	h _{re} @ Min. Max	I _c . AMPS	V _{ce} VOLTS	V _{CE(S}	at) @ I _c	I _B	1 _T MHz	I _{сво} @ µAMP V	V _{CB}	DATA SHEET PG. NO
2N2815 2N2816 2N2817	TO-63 TO-63 TO-63	80 100 150	80 100 150	6.0 6.0 6.0	118.0 118.0 118.0	10 - 50 10 - 50 10 - 50	10.0 10.0 10.0	3.0 3.0 3.0	1.5 1.5 1.5	10 10 10	1.0 1.0 1.0	20 20 20	2.0mA 2.0mA 2.0mA	80 100 150	4-15 4-15
2N2818	TO-63	200	200	6.0	118.0	10 - 50	10.0	3.0	1.5	10	1.0	20	2.0mA	200	4-15
2N3265	TO-63	90	150	7.0	100.0	20 - 55	15.0	2.0	1.0	15	1.5	20	20.0mA	150	
2N3266	TO-63	60	120	7.0	100.0	20 - 80	15.0	3.0	1.0	15	1.5	20	20.0mA	120	
2N3597	TO-63	40	40	8.0	100.0	40 - 120	10.0	2.0	0.5	10	1.0	30	0.1	60	
2N3598	TO-63	60	60	8.0	100.0	40 - 120	10.0	2.0	0.5	10	1.0	30	0.1	60	
2N3599 2N4210 2N4211 2N5731 2N5732	TO-63 TO-63 TO-61/Iso TO-3	80 60 80 80 80	80 60 80 100 80	8.0 10.0 10.0 5.0 5.0	100.0 100.0 100.0 37.5 50.0	40 - 120 20 - 100 20 - 100 30 - 300 30 - 300	10.0 10.0 10.0 5.0 5.0	2.0 6.0 6.0 2.0 2.0	0.5 3.0 3.0 1.2 1.2	10 20 20 10 10	1.0 2.0 2.0 1.0 1.0	30 10 10 30 30	0.1 500 500 1.0mA	60 80 100	4-69
2N6653	TO-3	300	350	7.0	75.0	10	15.0	2.0	0.6	15	3.0	25	100	280	4-97
2N6654	TO-3	350	400	7.0	75.0	10	15.0	2.0	0.6	15	3.0	25	100	320	4-97
2N6655	TO-3	400	450	7.0	75.0	10	15.0	2.0	0.8	15	3.0	25	100	360	4-97
GSDR15020		200	250	7.0	80.0	10	15.0	5.0	0.8	15	3.0	25	500	200	4-10
GSDR15025		250	300	7.0	80.0	10	15.0	5.0	0.8	15	3.0	25	500	240	4-10
XGSR15030	TO-3	300	350	7.0	75.0	10	15.0	5.0	0.6	15	3.0	25	500	280	4-97
XGSR15035		350	400	7.0	75.0	10	15.0	5.0	0.6	15	3.0	25	500	320	4-97
XGSR15040		400	450	7.0	75.0	10	15.0	5.0	0.8	15	3.0	25	500	360	4-97

					I	c = 2	5 AM	IPS							
DEVICE TYPE	PACKAGE	BV _{CEO} VOLTS	BV _{CBO} VOLTS	BV _{∈BO} VOLTS	P. @ 100°C Watts	h _{re} @ Min. Max	I _c	V _{CE} VOLTS	V _{CE(sat)} (@ I _c	I _B	f _T MHz	I _{сво} @ µАМР	V _{CB} VOLTS	DATA SHEET PG. NO
2N2819 2N2820 2N2821 2N2822	TO-63 TO-63 TO-63 TO-63	80 100 150 200	90 100 150 200	6.0 6.0 6.0	118.0 118.0 118.0 118.0	10 - 50 10 - 50 10 - 50 10 - 50	15 15 15 15	3.0 3.0 3.0 3.0	1.0 1.0 1.0 1.0	10 10 10 10	1.0 1.0 1.0 1.0	20 20 20 20 20			4 -1 <i>7</i>
2N6338 2N6339 2N6340 2N6341	TO-3 TO-3 TO-3 TO-3	100 120 140 150	120 140 160 180	6.0 6.0 6.0 6.0	114.0 114.0 114.0 114.0	30 - 120 30 - 120 30 - 120 30 - 120	10 10 10 10	2.0 2.0 2.0 2.0	1.8 1.8 1.8 1.8	25 25 25 25	2.5 2.5 2.5 2.5	40 40 40 40	10 10 10 10	100 120 140 150	4-93 4-93 4-95 4-95

XGSR10030 TO-3 XGSR10035 TO-3 XGSR10040 TO-3 300 350 400

350 400 450 7.0 7.0 7.0

Ic = 30 AMPS

OEVICE TYPE	PACKAGE	BV _{CEO} VOLTS	BV _{CBO} VOLTS	BV _{EBO} VOLTS	P. @ 100°C Watts	h _{re} @ Min. N	l _c Max. A		CE VOLTS	V _{CE(sat)} (@ I _c AMPS	I _B AMPS	f _T MHz	I _{сво} @ ' µАМР		DATA SHEET PG. NO.
2N2823	TO-63	80	80	6.0	118	10 - 4	0 2	0.0	3.0	0.6	10	1.0	20			
2N2824	TO-63	100	100	6.0	118	10 - 4	0 2	0.0	3.0	0.6	10	1.0	20			
2N2825	TO-63	150	150	6.0	118	10 - 4	0 2	0.0	3.0	0.6	10	1.0	20			4-19
2N4002	TO-63	80	80	8.0	100	20 - 8	0	4.0	4.0	1.2	30	4.0	30	1.0mA	90	4-31
2N4003	TO-63	100	100	8.0	100	20 - 8	0	4.0	4.0	1.2	30	4.0	30	1.0mA	110	4-31
2N5733	TO-63	80	80	5.0	100	30 - 30	0	2.0	2.0	1.2	20	2.0	30	1.0mA	100	
2N5734	TO-3	80	80	5.0	100	30 - 30	0	2.0	2.0	1.2	20	2.0	30	1.0mA	100	
XG\$R50020	TO-3	200	250	8.0	100.0	8	3	30	5.0	2.0	50	10.0	30	500	200	4-157

Ic = 40 AMPS

DEVICE TYPE	PACKAGE	BV _{CEO} VOLTS	BV _{CBO} VOLTS		P _o @ 100°C Watts				V _{CE} VOLTS		@ I _c		f _T	I _{сво} @ \ µ АМР		OATA SHEET Pg. No.
2N6033	TO-3(Mod)120	150	7.0	80	10 -	50	40	2.0	1.0	40	4.0	50	10mA	135	4-73

Ic = 50 AMPS

OEVICE Type		BV _{CEO} VOLTS	BV _{ceo} VOLTS	BV _{EBO} VOLTS	P _o @ 100°C Watts	h _{fe} @ Min.		c AMPS	V _{ce} VOLTS	V _{CE(sat)} (VOLTS	@ I _c Amps	I _B	f _T MHz	I _{сво} @ V µ АМР		DATA SHEET PG. NO.
2N6032	TO-3(Mod)	90	120	7.0	80.0	10 - 5	50 5	50	2.6	1.3	50	5.0	50	12mA	110	4-71
2N6215	TO-63	80	100	8.0	125.0	25 - 12		25	2.0	1.0	20	2.0	20	200	100	
2N6274	TO-3(Mod)	100	120	6.0	143.0	30 - 12	20 2	20	4.0	1.0	20	2.0	30	10	120	4-83
2N6275	TO-3(Mod)		140	6.0	143.0	30 - 12	20 2	20	4.0	1.0	20	2.0	30	10	140	4-85
2N6276	TO-3(Mod)	140	160	6.0	143.0	30 - 12	20 2	20	4.0	1.0	20	2.0	30	10	140	4-85
2N6277	TO-3(Mod)	150	180	6.0	143.0	30 - 12	20 2	20	4.0	1.0	20	2.0	30	10	180	4-87
2N6278	TO-63	100	120	6.0	143.0	30 - 12	20 2	20	4.0	1.0	20	2.0	30	10	120	4-89
2N6279	TO-63	120	140	6.0	143.0	30 - 12	20 2	20	4.0	1.0	20	2.0	30	10	140	4-91
2N6280	TO-63	140	160	6.0	143.0	30 - 12	20 2	20	4.0	1.0	20	2.0	30	10	160	4-91
2N6281	TO-63	150	180	6.0	143.0	30 - 12	20 2	20	4.0	1.0	20	2.0	30	10	180	4-91
GSDS50020	TO-3(Mod)	200	200	7.0	100.0	8	5	50	4.0	1.0	50	10.0	30	10	200	4-109

NPN SWITCHING POWER TRANSISTORS

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

MAXIMUM RATINGS

RATINGS	SYMBOL	2N2817	2N2818	UNIT
Collector-Base Voltage	V _{CBO}	150V	200	Vdc
Collector-Emitter Voltage	V _{CEO}	150	200	Vdc
Emitter-Base Voltage	V _{EBO}	10		Vdc
Collector Current - Continuous	I _C	20		Adc
Base Current - Continuous	I _B	4.5		Adc
Total Power Dissipation @ T _C =25°C	P _D	200		Watt
Storage Temperature	T _{stg}	-65 to +2	00	°C

ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise specified)

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNIT
FF CHARACTERISTICS						
Collector-Emitter Sustaining Voltage (I _C =100mA)	2N2817 2N2818	BV _{CEO} (sus)	150 200			Vdc
Emitter Cutoff Current (V _{EB} =10V)		I _{EBO}			250	μА
Collector Cutoff Current $(V_{CE}^{=150V}, V_{BE}^{=-1.5V}, T_{C}^{=150^{\circ}C})$ $(V_{CE}^{=150V}, V_{BE}^{=-1.5V})$	2N2817 2N2817	I _{CEX}			20 2	mA
Collector Cutoff Current $(V_{CE}=200V, V_{BE}=-1.5V, T_{C}=150^{\circ}C)$ $(V_{CE}=200V, V_{BE}=-1.5V)$	2N2818 2N2818	ICEX			20 2	mA
N CHARACTERISTICS						
DC Current Gain (V _{CE} =3V, I _C =10A)		h _{FE} *	10		50	
Collector Saturation Voltage (I _C =10A, I _B =1.5A)		V _{CE} (sat)*			1.5	Vdc
Base Emitter Voltage (I _C =10A, I _B =1.5A)		V _{BE} *			2.5	Vdc
DYNAMIC CHARACTERISTICS					-	
Small Signal Current Gain (V _{CE} =3V, I _C =10A, f=1MHz)		h _{fe}	.6			
Turn-on Time (V _{CC} =30V, I _C =10A, I _{B1} =1.5A, I _{B2} =1.5A)		ton			3.5	μS
Turn-off Time (V _{CC} =30V, I _C =10A, I _{B1} =1.5A, I _{B2} =-1.5A)		toff			12.0	μS
Rise Time $(V_{CC}^{=30V}, I_{C}^{=10A}, I_{B1}^{=1.5A}, I_{B2}^{=1.5A})$		t _r			3.5	μS
Storage Time (V _{CC} =30V, I _C =10A, I _{B1} =1.5A, I _{B2} =1.5A)		t _s			6.0	μs
Fall Time (V _{CC} =30V, I _C =10A, I _{B1} =1.5A, I _{B2} =1.5A)		t _f			6.0	μS

^{*}Pulse measurement conditions: Length = 300 μ s, Duty Cycle \leq 2%.

NPN SWITCHING POWER TRANSISTORS

This unique device utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

MAXIMUM RATINGS

RATINGS	SYMBOL	2N2821	UNIT
Collector-Base Voltage	V _{CBO}	150	Vdc
Collector-Emitter Voltage	V _{CEO}	150	Vdc
Emitter-Base Voltage	V _{EBO}	10	Vdc
Collector Current - Continuous	I _C	25	Adc
Base Current - Continuous	I _B	4.5	Adc
Total Power Dissipation @ T _C =25°C	P _D	200	Watt
Storage Temperature	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise specified)

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (I _C =100mA)	BV _{CEO} (sus)	159			Vdc
Emitter Cutoff Current (V_{EB}^{-10V})	I _{EBO}			250	μ A
Collector Cutoff Current (V _{CE} =150V, V _{BE} = -1.5V, T _C =150°C)	ICEX			20	mA
Collector Cutoff Current (V _{CE} =150V, V _{BE} = -1.5V)	ICEX			2	mA
N CHARACTERISTICS	•				
DC Current Gain (V _{CE} =3V, I _C =15A)	h _{FE} *	10		50	
Collector Saturation Voltage $(I_C=15A, I_B=2.2A)$	V _{CE} (sat)*			1.5	Vdc
Base Emitter Voltage (I _C =15A, I _B =2.2A)	V _{BE} *			2.5	Vdc
YNAMIC CHARACTERISTICS			,		
Small Signal Current Gain (V _{CE} =3V, I _C =15A, f=1MHz	h _{fe}	0.6			
Turn-on Time (V _{CC} =30V, I _C =15A, I _{B1} =2.2A, I _{B2} =2.2A)	ton			3.5	μs
Turn-off Time $(V_{CC}^{=30V}, I_{C}^{=15A}, I_{B1}^{=2.2A}, I_{B2}^{=2.2A})$	t _{off}			12.0	μs
Rise Time $(V_{CC}=30V, I_{C}=15A, I_{B1}=2.2A, I_{B2}=2.2A)$	t _r			3.5	μs
Storage Time $(V_{CC}^{=30V}, I_{C}^{=15A}, I_{B1}^{=2.2A}, I_{B2}^{=2.2A})$	t _s			6.0	μs
Fall Time (V _{CC} =30V, I _C =15A, I _{B1} =2.2A, I _{B2} =2.2A)	t _f			6.0	μs

^{*}Pulse measurement conditions: Length = $300\mu s$, Duty Cycle \leq 2%.

NPN SWITCHING POWER TRANSISTORS

This unique device utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

MAXIMUM RATINGS

RATINGS	SYMBOL	2N2825	UNIT
Collector-Base Voltage	V _{CBO}	150	Vdc
Collector-Emitter Voltage	V _{CEO}	150	Vdc
Emitter-Base Voltage	V _{EBO}	10	Vdc
Collector Current - Continuous	I _C	30	Adc
Base Current - Continuous	I _B	4.5	Adc
Total Power Dissipation @T _C =25°C	P _D	200	Watt
Storage Temperature	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise specified) CHARACTERISTIC

FF CHARACTERISTICS				
Collector-Emitter Voltage (I _C =100mA)	BV _{CEO}	150		Vdc
Emitter Cutoff Current (V _{EB} =10V)	I _{EBO}		250	μA
Collector Cutoff Current (V _{CE} =150V, V _{BE} = -1.5V, T _C =150°C)	I _{CEX}		20	mA
Collector Cutoff Current $(V_{CE}^{=150}, V_{BE}^{=-1.5V})$	I _{CEX}		2	mA
ON CHARACTERISTICS				
DC Current Gain (V _{CE} =2V, I _C =20A)	h _{FE} *	10	40	
Collector Saturation Voltage (I _C =20A, I _B =3A)	V _{CE} (sat)*		1.1	Vdc
Base Emitter Voltage (I _C =20A, I _B =3A)	v _{BE} *		2.1	Vdc
DYNAMIC CHARACTERISTICS				
Small Signal Current Gain (V _{CE} =3V, I _C =20A, f=1MHz)	h _{fe}	0.6		
Turn-on Time (V _{CC} =30V, I _C =20A, I _{B1} =3A, I _{B2} =3A)	t _{on}		3.5	μs
				1

UNIT

MAX

12.0

3.5

6.0

6.0

μs

μs

μs

TYP

MIN

SYMBOL

toff

 t_s

 t_f

Turn-off Time (V_{CC}=30V, I_C=20A, I_{B1}=3A, I_{B2}=3A)

Rise Time (V_{CC}=30V, I_C=20A, I_{B1}=3A, I_{B2}=3A)

Storage Time $(V_{CC}=30V, I_C=20A, I_{B1}=3A, I_{B2}=3A)$

Fall Time $(V_{CC}^{-30V}, I_{C}^{-20A}, I_{B1}^{-3A}, I_{B2}^{-3A})$ *Pulse measurement conditions: Length = $300\mu s$, Duty Cycle \leq 2%.

DIFFUSED SILICON EPITAXIAL PASSIVATED TRANSISTOR

These devices ore designed for use in power omplifiers and switching applications. The latest technologies are used to offer the highest degree of reliability.

FEATURES

- · Low Saturation Voltage
- · High Frequency Response
- · Fast Switching
- · Low Leakage Current
- Low Drive Requirement

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures Storage Temperatures

Operating Junction Temperature Lead Temperature (soldering, 60 second time limit)

Maximum Power Dissipation

Total Dissipation at 100°C Case Temperature
(1) See Safe Operating Curves for derating
Linear derating factor

Maximum Voltages and Current

VCEO Collector to Emitter Voltage
VCBO Collector to Base Voltage
VEBO Emitter to Base Voltage
IC Collector Current

MECHANICAL CHARACTERISTICS

Case: TO-111 Package
Weight: 6.5 grams (Maximum)
Leads: Tin Plated Kovar
1. Emitter 2. Base 3. Collector
Body marked with Logo ** and type number

APPLICATIONS

- · High Frequency Inverters
- Converters
- Linear Amplifiers
- High Speed Switching Regulated Power Supplies
- RF Power Amplifiers

-65°C to +200°C +200°C +300°C

30 Watts

.3W	∕°C
2N2877 2N2878	2N2879 2N2880
60 Volts	80 Volts
80 Volts	100 Volts
8 Volts	8 Volts
5 Amps	5 Amps

NPN SILICON HIGH-POWER TRANSISTORS

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

CHANACTERISTIC	SYMBOL	CONDITIONS	ATTENDED MINE	MAX MIN	MAX MIN		WAX	UNITS
Collector to Base Breakdown Voltage Collector to Emitter Sustaining Voltage Collector to Emitter Breakdown Voltage Emitter to Base Breakdown Voltage	BVCBO VCEO (suit) BVCEO BVEBO	ic = 10µA, ic = 0 ic = 100mA, i ₀ = 0 ic = 10mA, i ₀ = 0 ic = 10µA, i ₀ = 0	80 50 60 8	80 50 60	100 70 80 8	100 70 80 8		Volts Volts Volts Volts
DC Pulse Current Gain "DC Pulse Current Bain "DC Pulse Current Gain "Pulsen Collector Saturgion	hee hee hee VCE (mt)	1c = 1A, VcE = 2V 1c = 5A, VcE = 5V 1c = 1A, VcE = 2V @ 1c = 1A, 1s = 0.1A			120 20 10 10 10 0.25	60 / 40 15 10 0.25	120 0.25	Volte
"Pulsed Base Emitter Voltage "Pulsed Base Saturation Voltage	VBE VBE (set)	lc = 5A, ls = 0.5A lc = 1A, VcE = 2V lc = 1A, ls = 0.1A		2.0 1.2 1.2	20 12 %	2.0 1.2 1.2	2.0 1.2 1.2	Volts Volts Volts
Collector Cutoff Current Collector Cutoff Current Collector Cutoff Current	ICBO ICEO IEBO	V _{CB} = 80 V, 1 _E = 0 V _{CE} = 50 V, 1 _B = 0 V _{CB} = 5 V, 1 _C = 0		100	0.1 100 0.1	0.1 100	0.1 100	μAmp μAmp
Collector Cutoff Current Collector Cutoff Current	leso les	VEB = 8V, IC = 0 VEB = 0.5V, VCE = 601		10	10 50	0.1 10 50	0.1 10 50	μAmp μAmp μAmp

^{*}Pulse measurement conditions = length \leq 300 μ sec; duty cycle \leq 2%.

GENERAL SEMICONDUCTOR INDUSTRIES, INC.

DYNAMIC CHARACTERISTICS

CHARACTERISTIC	SYMBOL	TEST CONDITIONS		2N2878 2N2880 I MAX UNITS
Pulse Rise Time Pulse Storage Time	lr L	See Circuit ≠1 See Circuit ≠1	120 60	80 nsec
Pulse Fall Time Collector Base Capacitance (f = 1.0 MHz)	t _f C _{OB}	See Circuit =1 VCB = 10V, IE = 0, f = 1 MHz	150	80 nsec 150 pF
High Frequency Current Gain (f = 10 MHz) High Frequency Small Signal (f = 1kHz)	ih _{fe} i h _{fe}	V _{CE} = 10V, I _C = 1A, f = 10 MHz V _{CE} = 5V, I _C = 50mA, f = 1 KHz	3 5 20 70 40	

 V_{CE} - Collector to Emitter Voltage - Volts

COLLECTOR TO EMITTER VOLTAGE VS. COLLECTOR CURRENT

NORMALIZED CURRENT GAIN VS. COLLECTOR CURRENT

★ GENERAL SEMICONDUCTOR INDUSTRIES, INC.

2001 West Tenth Place, Tempe, Arrzona 85281 + 602 968 3101 + TWX910 950 1942 Mailing Address P O Box 3078

DIFFUSED SILICON EPITAXIAL PASSIVATED TRANSISTOR

These NPN devices are designed for use in high speed switching and medium power amplifier applications. JAN, JANTX, and JANTXV devices to MIL-S-19500/393 are available. The latest technologies are used to offer the highest degree of reliability.

FEATURES

- Fast Switching
- High Power Dissipation
- Low Leakage Current
- Low Saturation Voltage

APPLICATIONS

- Switching Regulators
- High Frequency Inverters
- Converters
- DC-RF Amplifiers

-65°C to +200°C

+200°C

+300°C

15 Watts

2N 3418 2N 3420

60 Volts

85 Volts

8 Volts

3 Amps

0.15 W/°C

2N3419

2N 3421

80 Volts

125 Volts

8 Volts

3 Amps

NPN SILICON POWER TRANSISTORS

2N3418

2N3419 2N3420 2N3421

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures
Storage Temperature
Operating Junction Temperature
Lead Temperature (Soldering, 60 second time limit)

Maximum Power Dissipation
Total Dissipation at 100°C Case Temperature
Linear Derating Factor

Maximum Voltages and Current
V_{CEO} Collector to Emitter Voltage
V_{CBO} Collector to Base Voltage
V_{EBO} Emitter to Base Voltage
I_C Collector Current

MECHANICAL CHARACTERISTICS

Case: TO-5 Package

Weight: 1.8 grams (maximum) Leads: Gold Plated Kovar 1. Emitter 2, Base 3, Collector

Body marked with Logo * and type number

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

Collector to Emitter Sustaining Voltage	VCEOISUS	1 _C = 50mA, 1 _E = 0	60	80	第三 金利	Volts
Collector Cutoff Current	Icex	V _{CE} = 80V, V _{BE} = -0.5V	D.6			ρ Amps
		VCE = 120V, VBE = -0.5V			0.5	μ Amps
Emitter Cutoff Current	1EBO	VEB = 6V, IC = 0	0.5		0.5	μAmps
		V _{E8} = 8V, I _C = 0	10		10	μ Amps
Collector Saturation Voltage	V _{CE} (set)	Ic = 1A, 1a = 100mA	0.25		0.25	Volts
		I _C = 2A, I _B = 200mA	0.5	37	0.5	Volts
Base Saturation Voltage	Vac(set)	Ic = 1A, In = 100mA	0.6 1.2	0.6	1.2	Volts
		1c = 2A, In = 200mA	0.7 1.4	0.7	1.4	Volts

Pulse Measurement Conditions: Length = 300 µ sec; Duty cycle ≤ 2%. Measured 1/8" from body using separate current carrying and voltage sensing contacts for each lead.

GENERAL SEMICONDUCTOR INDUSTRIES, INC.

2001 West Tenth Place, Tempe, Anzona 85281 • 602-968-3101 • TWX910--950-1942 Mailing Address, P. O. Box 3078

GENERAL SEMICONDUCTOR INDUSTRIES, INC.

DYNAMIC CHARACTERISTICS

and to well \$ \$000 m
203419 203419 203419 203419 203419 203419 203419 203419 203419 203419 203419 203419 203419 203419 203419 203419
CHARACTERISTIC SYMBOL CONDITIONS MIN. MAX. MIN. MAX. UNITS
是是一个大型的,我们就是一个大型的,我们就是一个大型的,我们就是一个大型的,我们就是一个大型的,我们就是一个大型的,我们就是一个大型的。这个一个大型的,我们就是 第一个大型的,我们就是一个大型的,我们就是一个大型的,我们就是一个大型的,我们就是一个大型的,我们就是一个大型的,我们就是一个大型的,我们就是一个大型的,我们就
升度的对象的表现实。1000年的表现,1000年的对象的现在分词,就是一个人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的
Turn-On Time ton See Figure 2 0.3 0.3 µSec
Turn-Off Time toff See Figure 2. 1.2 L2 ASEC
A CALL OF THE PARTY OF THE PART
Collector Base Capacitance Cob V _{CE} =10V, f=1MHz 150 pF
Collector Gain-Bandwidth Product fT tc=1A, Vc=TOV, f=20MH z 40 MH z
用的多数。在一种,还是是一种格别的,这是是是一种的最后,只是这些是一种的表面是一个是一个,我们的自己是是是我们的,只要是一种的,是是是我们的一种是一种的。我们就

Figure 1 MAXIMUM SAFE **OPERATING** REGION

> Figure 2 SWITCHING CIRCUIT

Figure 3 TYPICAL DC **CURRENT GAIN** (2N3418 - 2N3419)

(2N3420 - 2N3421)

GENERAL SEMICONDUCTOR INDUSTRIES. INC

2001 West Tenth Place, Tempe, Arizona 85281 + 602-968-3101 + TWX910--950-1942 Mailing Address P O Box 3078

2N3506 NPN SILICON **SWITCHING TRANSISTORS**

These devices are designed for use in high-current, high-speed, saturated switching and core driver applications. The latest technologies are used to offer the highest degree of reliability. JAN, JANTX, & JANTXV to MIL-S-19500/349 are available.

FEATURES

- · Fast Switching
- Low Saturation Voltage
- Minimum f_T of 60 MHz
- · Low Leakage Current

APPLICATIONS

- · High speed Switching Regulated Power Supplies
- Converters
- Inverters
- Core Drivers

ABSOLUTE MAXIMUM RATINGS

Storage Operatir	Temperatures Temperatureg Junction Temperature mperature (soldering, 60 second time limit		+200°C
Total Di	Power Dissipation ssipation at 25°C Case Temperature Derating Factor		5 Watts 8.6 mW/°C
Maximum V _{CEO} V _{CBO} V _{EBO} I _C	Voltages and Current Collector to Emitter Voltage Collector to Base Voltage Emitter to Base Voltage Collector Current	2N3506 40 Volts 60 Volts 5 Volts 3 Amps	2N3507 50 Volts 80 Volts 5 Volts 3 Amps

MECHANICAL CHARACTERISTICS

TO-39 Package

Weight: 1.8 grams (approximate) Lead material: Covar with Gold Plating Pin 1. Emitter 2. Base 3. Collector Body marked with Logo 💠 and part number

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

		TEST	2N3506		2N3507			
CHARACTERISTIC	SYMBOL	CONDITIONS	MIN.	MAX.	MIN.	MAX.	UNITS	
Collector to Base Breakdown Voltage	BVCBO	Ic =100 ,A, I ==0	60	Market 1	80	通ぎ付きる	Volts	
*Collector to Emitter Breakdown Voltage	BVCEO	Ic = 10mA, In = 0	40		50		Volts	
Emitter to Base Breakdown Voltage	BVEBO	ι _Ε =10μΑ, ι _C =0	5		5		Volts	
*DC Current Gain	hee	Ic=500mA, Vc==IV	50	II Sur a Con	35		T. 7515	
*DC Current Gain	hee	Ic=1.5A, Vc==2V	40	200	30	150		
*DC Current Gain	hee	Ic=2.5A, Vc=3V	30		25			
*DC Current Gain	h _{FE}	Ic=3A, V _{CE} =5V	25		20			
*Collector Saturation Voltage	VCE (SAT)	I _C =1.5A, I _B =150mA		1.0	AT SULTER	1.0	Volts	
	73	1c=2.5A, 1p=250mA		1.5	5 - 3 - 4	1.5	Volts	
*Base Saturation Voltage	VRE (SAT)	Ic=1.5A, In=150mA	0.9	1.4	0.9	1.4	Volts	
		Ic=2.5A, I = 250mA		2.0		2.0	Volts	
Collector Cutoff Current	Icex	V _{CE} = 40V, V _{ER} = 4V		1.0	A 17 18 16	Paris Carlo	μ Amp	
		VCE = 60V, VER = 4V	124 5 85	湿/宣告/1		1.0	μ Amp	
Base Cutoff Current	I BL	V _{CE} = 40V, V _{ER} = 4V		1.0			# Amp	
	MAN TO PLAN TO THE PARTY OF THE	VCE = 60V, VER = 4V		TO THE SECOND	ALL STATES	1.0	# Amp	

[•]Pulse Measurement Conditions=length ≤ 300µsec; duty cycle ≤ 2%.

★ GENERAL SEMICONDUCTOR INDUSTRIES, INC.

2001 West Tenth Place, Tempe, Arizona 85281 • 602 968 3101 • TWX910-950-1942 Mailing Address P O Box 3078

GENERAL SEMICONDUCTOR INDUSTRIES, INC.

DYNAMIC CHARACTERISTICS

CHARACTERISTIC	SYMBOL	TEST CONDITIONS MIN. MAX. UNITS See Figure 2 15 nSec
Delay Time Rise Time Storage Time	t ₀ t ₁ t ₁	See Figure 2 30 nSec
Fall Time Collector Base Capacitance (f=1.0MH ₂) Current Gain - Bandwidth Product (f=20MH ₂)	t, C _{OB}	V _{CE} =10V, I _E =0 40 pF I _C =100mA, V _{CE} =5V 60 MH _Z

Figure 1 MAXIMUM SAFE OPERATION REGION

V_{CE} - COLLECTOR EMITTER VOLTAGE (VOLTS)

→ 🏞 General Semiconductor Industries, Inc.

2001 West Tenth Place, Tempe, Arizona 85281 • 602 968 3101 • TWX910 950 1942 Mailing Address P O Box 3078

NPN SWITCHING POWER TRANSISTORS

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

MAXIMUM RATINGS

RATINGS	SYMBOL	2N3738	2N3739	UNIT		
Collector-Base Voltage	V _{CBO}	250	325	Vdc		
Collector-Emitter Voltage	V _{CEO}	225	300	Vdc		
Emitter-Base Voltage	V _{EBO}	6.	6.0			
Collector Current - Continuous	I _C	1.0		Adc		
Base Current - Continuous	I _B	0.50		Adc		
Total Power Dissipation @T _C =25°C	P _D	20		Watt		
Junction Temperature	ТЈ	-65 to +175		-65 to +175		°C
Storage Temperature	T _{stg}	-65 to +175		°C		

ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise specified)

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNIT
FF CHARACTERISTICS						
Collector-Emitter Sustaining Voltage $(I_C=5.0mA)$	2N3738 2N3739	BV _{CEO} (sus)	225 300			Vdc
Collector Cutoff Current (V _{CB} =250V) (V _{CB} =325V)	2N3738 2N3739	ICBO			0.1	mA
Emitter Cutoff Current (V _{EB} =6.0V)		I _{EBO}			0.1	μА
Collector Cutoff Current (V _{CE} =125V) (V _{CE} =200V)	2N3738 2N3739	I _{CEO}			0.25	mA
Collector Cutoff Current $(V_{CE}=250V, V_{EB}=1.5V)$ $(V_{CE}=300V, V_{EB}=1.5V)$	2N3738 2N3739	I _{CEV}			0.5	mA
Collector Cutoff Current $(V_{CE}=125V, V_{EB}=1.5V, T_{C}=100^{\circ}C)$ $(V_{CE}=200V, V_{EB}=1.5V, T_{C}=100^{\circ}C)$	2N3738 2N3739	ICEV			1.0	mA
N CHARACTERISTICS				<u> </u>		
DC Current Gain (V _{CE} =10V, I _C =50mA)		h _{FE} *	30			
DC Current Gain (V _{CE} =10V, I _C =100mA)		h _{FE} *	40		200	
DC Current Gain (V _{CE} =10V, I _C =250mA)		h _{FE} *	25			
Collector Saturation Voltage (I _C =250mA, I _B =25mA)		V _{CE} (sat)*			2.5	Vdc
Base Emitter On Voltage (I _C =100mA, V _{CE} =10V)		V _{BE} (on)*			1.0	Vdc
DYNAMIC CHARACTERISTICS						
Current-Gain - Bandwidth Product (I _C =100mA, V _{CE} =10V, f=10MHz)		f _T	10			MHz
Small Signal Current Gain (V _{CE} =20V, I _C =100mA, f=1.0KHz)		h _{fe}	35			
Collector Base Capacitance (V _{CB} =100V, f=100KHz)		C _{ob}			20	pF

^{*}Pulse measurement conditions: Length = $300\mu s$, Duty Cycle $\leq 2\%$.

2N3996 2N3997 2N3998 2N3999

DIFFUSED SILICON EPITAXIAL PASSIVATED TRANSISTOR

These devices are designed for use in power amplifiers and high speed switching applications. The latest technologies are used to offer the highest degree of reliability.

FEATURES

- Low Saturation Voltage
- Minimum f_T of 40 MHz
- Fast Switching
- Low Leakage Current
- Isolated Collector (2N3996, 2N3997)

APPLICATIONS

- High Frequency Inverters
- Converters
- Linear Amplifiers
- High Speed Switching Regulated Power Supplies
- RF Power Amplifiers

ABSOLUTE MAXIMUM RATINGS

Collector to Emitter Voltage	VCEO	80 Volts
Collector to Base Voltage	VCBO	100 Volts
Emitter to Base Voltage	VERO	8 Volts
Collector Current — Continuous	Ic	5 Amps
- Peak	IC (Peak)	10 Amps
Base Current — Continuous	I _B	1 Amp
Total Device Dissipation, @ T _C = 100 °C	₽n	30 Watts
Linear Derating Factor	-0	.3W/ C
Operating Junction and Storage Temperature Range	T _J . T _{sta}	-65 C to +200 C
Thermal Resistance – Junction to Case	61C	3.33 C/W
 Junction to Ambient 	θ _{JA}	87.5°C/W

MECHANICAL CHARACTERISTICS

Case: TO-111/I (2N3996/7); TD-111 (2N3998/9)
1. Emitter 2. Base 3. Collector 4. Case
Body marked with Logo ** and type number

Weight: 5.3 grams (Approx.)

NPN SILICON HIGH POWER TRANSISTORS

ELECTRICAL CHARACTERISTICS (25° Case Temperature unless otherwise noted)

CHARACTERISTIC Collector to Emitter Breakdown Voltage	SYMBOL	CONDITIONS	MIN 20399	MAX	MIN	1997 1999 Max	UNITS
	BVCEO	*Ic = 50 mA, I _B = 0	80		80		Volts
Collector Cutoff Current	CEO	VCE = 60V, I _B = 0		10		10	Amp
	ces	Vce = 90V, Vge = 0V Vce = 90V, Vge = 0V @ T _C , 150 °C		5.0 50		5.0 50	Amp Amp
Emitter Cutoff Current	TEBO	V _{EB} = 5V, I _C = 0 V _{EB} < 8V, I _C = 0		0.5		0.5 10	Amp
OC Current Gain	bre	Ic = 50mA, Vce = 2V	30		60		and the
		1C = 1A, VCE = 2V. 1C = 5A, VCE = 5V	40	120	80 20	240	
		1c =1A. Vce = 2V@ To -55 C	10		20		
Collector Saturation Voltage	VCE (tat)	*IC = 1A. IB = 0.1A		0.25		0.25	Volts
Base Emitter Saturation Voltage	VBE (sai)	"Ic =5A is =0.5A	0.6	2.0		2.0	Volts
	ADE (SBI)	"IC = 1A, IB = 0.1A "IC = 5A, IB = 0.5A	0.0	1.6	0,6	1.2	Volts Volts
OYNAMIC CHARACTERISTICS	Control of the State of the				SEAR THE SECOND		THE PARKETS
Turn on Time	lon	See Figure 1		0.3	0. 单元	0.3	#Sec
Turn-aff Time	tatt 1	See Figure 1		1.5		2.0	"sec
Collector Base Capacitance	Cob	Vce = 10V, fe = 0, f = 1MHz		150	Y 2 8 3	150	pF

*Pulse measurement conditions = length \cdot 300 a sec: duty cycle 2°_{\circ} .

GENERAL SEMICONDUCTOR INDUSTRIES, INC.

Figure 1 SWITCHING CIRCUIT

Figure 2

MAXIMUM
SAFE OPERATING
REGION

TYPICAL CHARACTERISTICS

Figure 3 STATIC FORWARD CURRENT TRANSFER RATIO (2N3996, 2N3998)

Figure 5
COLLECTOR
TO EMITTER
VOLTAGE

Figure 6 CAPACITANCE versus VOLTAGE

DIFFUSED SILICON EPITAXIAL PASSIVATED TRANSISTORS

These NPN devices are designed for use in high power switching and untuned amplifier applications. The latest technologies are used to offer the highest degree of reliability.

FEATURES

- · Fast Switching
- **High Power Dissipation**
- Low Leakage Current
- Low Saturation Voltage

APPLICATIONS

- Switching Regulators
- Inverters
- Converters
- Power Amplifiers

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures	
Storage Temperature	-65°C to +200°C
Operating Junction Temperature	+200°C
Lead Temperature (1/16 inch from case for 10 seconds)	+230°C
Maximum Power Dissipation	
Total Dissipation at 100°C Case Temperature	100 Watts
Linear Derating Factor	1.0 W/°C

Maximum Voltages and Current		2N4002	2N4003
VCEO	Collector to Emitter Voltage	80 Volts	100 Volts
VCBO	Collector to Base Voltage	100 Volts	120 Volts
VEBO	Emitter to Base Voltage	8 Volts	8 Volts
Ic	Continuous Collector Current	30 Amps	30 Amp

MECHANICAL CHARACTERISTICS

Case: TO-63 Package

Weight: 24 grams (Approximate) 1. Emitter 2. Base 3. Collector Body marked with Logo * and type number

2N4003

2N4002

NPN SILICON POWER TRANSISTORS

ELECTRICAL CHARACTERISTICS (25°C Case Temperature unless otherwise noted)

CHARACTERISTIC	SYMBOL	TÉST CONDITIONS	ZN4002 ZN4003 MIN MAX MIN MAX	UNITS
*Collector to Emitter Breakdown Voltage	BVCEO	I _C = 30mA, I _B = 0	80	Volts
Collector Cutoff Current	ICEO	V _{CE} = 40V, I _B = 0 V _{CF} = 50V, I _B = 0	2 1 1 2	mAmps
Emitter Cutoff Current	leso	V _{EB} = 5V, I _C = 0 V _{EB} = 8V, I _C = 0	100 100 50 50	mAmps µAmps mAmps
10C Current Gain	hpe	V _{CE} = 4V, I _C = 30A V _{CE} = 4V, I _C = 15A	10 10 20 80 20 80	
*Collector Saturation Voltage *Base - Emitter Voltage	V _{CE} (sat) V _{BE} (an)	I _B = 4A, I _C = 30A V _{CE} = 4V, I _C = 30A	12 1.2 1.8 1.8	Volts Volts

^{*}Pulse Measurement Conditions: Length = 300 μ sec; duty cycle \leq 2%.

GENERAL SEMICONDUCTOR INDUSTRIES, INC.

DYNAMIC CHARACTERISTICS

A CONTRACTOR OF THE PROPERTY O
《数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数
CHARACTERISTICS SYMBOL CONDITIONS MIN MAX UNITS
Con Figure 9
Turn-on Time ton See Figure 2 1.0 µ sec
200 No. 200 No
Turn-off Time toff See Figure 2. 3.0 4 sec
The state of the s
Constitution of the contract o
High Frequency Small Signal He VCE = 10V, IC = 1A, I = 10 MHz 3
The state of the s
Common Emitter Small Signal M ₉ Vot = 4V _x I _C = 1A _x I = 1, KHz 30
Control Current Street
。据说:"我们是我们的人们,我们是没有的。""我们就是这些的是我们的,我们就是这种的,我们就是这个的人,我们就是这个的人,我们就是这个人的人,我们就是这个人的人

Figure 1 - MAXIMUM SAFE OPERATING REGION

Figure 2 - SWITCHING CIRCUIT

Figure 3 - TYPICAL DC CURRENT GAIN

Figure 4 - SATURATION VOLTAGE VS. TEMPERATURE

SILICON NPN TRANSISTORS

These double diffused, epitaxial collector devices are oxide passivated. They are designed for use in switching and many amplifier applications. The latest technologies are used to provide optimum performance and the highest degree of reliability.

ABSOLUTE MAXIMUM RATINGS

RATINGS	SYMBOL	2N4070	UNIT
Collector-Base Voltage	V _{CBO}	120	Vdc
Collector-Emitter Voltage	V _{CEO}	100	Vdc
Emitter-Base Voltage	V _{EBO}	8.0	Vdc
Collector Current — Continuous	Ic	10	Adc
Base Current — Continuous	I _B	5.0	Adc
Total Power Dissipation @ T _C =100°C	P _D	65	Watt
Thermal Resistance (Junction to Case)	θ _{J-C}	1.53	°C/W
Junction Temperature	TJ	-65 to +200	°C
Storage Temperature	T _{stg}	-65 to +200	°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS					
Collector-Base Voltage (I _C =10mA)	BV _{CBO}	120			Vdc
Collector-Emitter Voltage (I _C =100mA)	BV _{CEO}	100			Vdc
Emitter-Base Voltage (I _E =10mA)		8.0			Vdc
Collector Cutoff Current (V _{CB} =120V)	І _{сво}			10	μΑ
Emitter Cutoff Current (V _{EB} = 8.0V)	I _{EBO}			10	μΑ
Collector Cutoff Current (V _{CE} =50V)	I _{CEO}			0.1	μΑ
Current Gain (V _{CE} =5.0V, I _C =5.0A)	h _{FE} *	40		120	
ON CHARACTERISTICS					
Current Gain (V _{CE} =5.0V, I _C =10A)	h _{FE} *	10			
Collector Saturation Voltage (I _C =5.0A, I _B =0.5A)	V _{CE} (sat)*			0.6	Vdc
Collector Saturation Voltage (I _C =10A I _B =1.0A)	V _{CE} (sat)*			1.5	Vdc
Base Saturation Voltage (I _C =5.0A, I _B =0.5A)	V _{BE} (sat)*			1.2	Vdc
DYNAMIC CHARACTERISTICS					
Small Signal Current Gain (V _{CE} =10V, I _C =.05A, f=.001 MHz)	h _{fe}	40			
Collector Base Capacitance (V _{CB} =10V, I _C = , f=1.0MHz)	Сов			200	pF
Turn-on Time (V _{CC} =20V, I _C =5.0A, I _{B1} =0.5A, I _{B2} =0.5A)	t _{on}			0.5	μs
Storage Time $(V_{CC}=20V, I_{C}=5.0A, I_{B1}=0.5A, I_{B2}=0.5A)$	ts			1.2	μs
Fall Time (V _{CC} =20V, I _C =5.0A, I _{B1} =0.5A, I _{B2} =0.5A	t _f			0.45	μS

This unique device utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

RATINGS	SYMBOL	2N4071	UNIT
Collector-Base Voltage	v _{CBO}	200	Vdc
Collector-Emitter Voltage	v _{CEO}	150	Vdc
Emitter-Base Voltage	V _{EBO}	8.0	Vdc
Collector Current - Continuous	^I C	10	Adc
Base Current - Continuous	I _B	5.0	Adc
Total Power Dissipation @ T _C =100°C	P_{D}	65	Watt
Thermal Resistance (Junction to Case)	θ _{J-C}	1.53	°C/W
Junction Temperature	$^{\mathrm{T}}_{\mathrm{J}}$	-65 to +200	°C
Storage Temperature	T _{stg}	-65 to +200	°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS					
Collector-Base Voltage (I _C =10mA)	BV _{CBO}	200			Vdc
Collector-Emitter Voltage (I _C =100mA)	BV _{CEO}	150			Vdc
Emitter-Base Voltage (I _E =10mA)	BV _{EBO}	8.0			Vdc
Collector Cutoff Current (V _{CB} =120V)	I _{CBO}			10	μA
Emitter Cutoff Current (V _{EB} =8.0V)	I _{EBO}			10	μА
Collector Cutoff Current (V _{CE} =50V)	I _{CEO}			0.1	μА
ON CHARACTERISTICS	•		-		
DC Current Gain (V _{CE} =5V, I _C =5A)	h _{FE} *	40		120	
DC Current Gain (V _{CE} =5V, I _C =10A)	h _{FE} *	10			
Collector Saturation Voltage (I _C =5A, I _B =0.5A)	V _{CE} (sat)*			0.6	Vdc
Collector Saturation Voltage (I _C =10A, I _B =1.0A)	V _{CE} (sat)*			1.5	Vdc
Base Saturation Voltage $(I_C=5A, I_B=0.5A)$	V _{BE} (sat)*			1.2	Vdc
DYNAMIC CHARACTERISTICS					
Small Signal Current Gain (V _{CE} =10V, I _C = .05A, f= .001MHz)	h _{fe}	40			
Collector Base Capacitance (V _{CB} =10V, f=1MHz)	Cop			200	pF
Turn-on Time $(V_{CC}^{=20V}, I_{C}^{=5A}, I_{B1}^{=0.5A}, I_{B2}^{=0.5A})$	ton			0.5	μs
Storage Time $(V_{CC}=20V, I_C=5A, I_{B1}=0.5A, I_{B2}=0.5A)$	t _s			1.2	μS
Fall Time (V _{CC} =20V, I _C =5A, I _{B1} =0.5A, I _{B2} =0.5A)	t _f			0.45	μs

^{*}Pulse measurement conditions: Length = $300\mu s$, Duty Cycle \leq 2%.

2N4150

NPN SILICON HIGH POWER TRANSISTORS

DIFFUSED SILICON PLANAR PASSIVATED TRANSISTORS

These devices are designed for use in high current switching applications. The latest technologies are used to offer the highest degree of reliability. JAN/JAN TX 2N4150 transistors to MIL-S-19500/394 are also available.

FEATURES

- . Low Saturation Voltage
- Fast Switching
- Collector Current: 10 Amps Peak
- . Low Leakage Current
- Low Drive Requirement

APPLICATIONS

- High Speed Switching Regulated Power Supplies
- Converters
- Inverters
- Wide Band Amplifiers

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures
Storage Temperature
Operating Junction Temperature
Lead Temperature (soldering, 60 second time limit)

Maximum Power Dissipation
Total Dissipation at 100°C Case Temperature
(1) See Safe Operating Curves for derating
Linear derating factor

Maximum Voltages and Current V_{CEO} Collector to Emitter Voltage V_{CBO} Collector to Base Voltage V_{EBO} Emitter to Base Voltage I_C Continuous Collector Current

-65°C to 200°C
+ 200°C
+ 300°C

5 Watts

•
JAN 2N4150
70 Volts
100 Volts
7 Volts
10 Amps

MECHANICAL CHARACTERISTICS

Case: TO-5 Package Weight: 1.8 grams (maximum) Leads: Gold Plated Kovar

ELECTRICAL CHARACTERISTICS (25° Case Temperature unless otherwise noted)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	ZN4150 MIN MAX	JAN2N4150 MIN MAX	UNITS
Collector Cutoff Current Collector Cutoff Current Collector Cutoff Curent Emitter Cutoff Current	CEO CEX CBO EBO	$\begin{aligned} & V_{CE} = 60V, I_B = 0 \\ & V_{CE} = 100V, V_{EB} = 0.5V \\ & V_{CB} = 60V, V_{BE} = 0V \\ & V_{BE} = 5V, V_{CE} = 0V \end{aligned}$	10 10 0.1 10	10 10 0.1 0.1	μAmp μAmp μAmp μAmp
*DC Current Gain	h _{FE} hpe hre	1 _C = 5A, V _{CE} = 5V 1 _C = 10A, V _{CE} = 5V 1 _C = 1A, V _{CE} = 5V	40 120 10 50	40 .120 10 50	
Collector to Base Breakdown Voltage Collector to Emitter Breakdown Voltage Emitter to Base Breakdown Voltage	BV _{CBO} BV _{EBO}	$I_{C} = 10 \text{ A}, I_{E} = 0$ $I_{C} = 0.1A, I_{B} = 0$ $I_{E} = 10 \text{ A}, I_{C} = 0$	100 70 7	100 70 7	Volts Volts Volts
*Collector Saturation Voltage	V _{CE(set)}	I _C = 5A, I _B = 0.5A I _C = 10A, I _B = 1A	0.6 2.6	0.6 2.5	Volts Volts
*Base Saturation Voltage	V _{BE(set)}	I _C = 5A, I _B = 0.5A I _C = 10A, I _B = 1A	15 25	1.6 2.5	Volts Volts

*Measurement Conditions = length \leq 300 μ sec; duty cycle \leq 2%.

GENERAL SEMICONDUCTOR INDUSTRIES, INC

2001 West Tenth Place Tempe, Arizona 85281 + 602 968 3101 + TWX910 - 950 1942 Mailing Address P O Box 3078

GENERAL SEMICONDUCTOR INDUSTRIES, INC.

DYNAMIC CHARACTERISTICS

CHARACTERISTIC	YMBOL	CONDITIONS	2N4150 JA MIN MAX MIN	N 2N4150 MAX UNITS
Pulse Delay Time	t _d	See Circuit #1		50 nSec
Pulse Rise Time	以 給 提供法定的	See Circuit #1	200	500 nSec
Pulse Storage Time		See Circuit #1	2.0	1.5 "Sec
Pulse Fall Time		See Circuit #1	200	500 nSec
Collector Base Capacitance	Cobo Vgs=10	V, I = 0, f = 1 MHz	350	350 pF
High Frequency Small Signal	Ih _{fe} I I _C = 200	mA, V CE = 10V, f = 10MH	2 1.5	7.5

Figure 1 - Maximum Safe Operation Region

Figure 2 — Pulse Response Measurement Circuit

TYPICAL CHARACTERISTICS

Figure 3 — Static Forward Current Transfer Ratio

Figure 4 — Collector Saturation Region

2001 West Tenth Place, Tempe. Arrzuna 85281 + 602 968 3101 + TWX910. 950 1942 Milling Address. P.O. Box 3078

2N4150 Copyright General Semiconductor Industries, Inc., 5-76

Printed in USA

 $\mathbb{C}^{2}\mathbb{R}$

2N4240

NPN SWITCHING POWER TRANSISTORS

This unique device utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

RATINGS	SYMBOL	2N4240	UNIT
Collector-Base Voltage	V _{CBO}	500	Vdc
Collector-Emitter Voltage	V _{CEO}	300	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current - Continuous	I _C	2.0	Adc
Base Current - Continuous	I _B	1.0	Adc
Total Power Dissipation @T _C =25°C	PD	35	Watt
Junction Temperature	т	-65 to +200	°C
Storage Temperature	T _{stg}	-65 to +200	°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
F CHARACTERISTICS	4				
Collector-Emitter Sustaining Voltage $(I_C^{=200 mA})$	BV _{CEO} (sus)	300			Vdc
Emitter Cutoff Current (V _{EB} =6.0V)	I _{EBO}			0.5	mA
Collector Cutoff Current (V _{CE} =150V)	I _{CEO}			5.0	mA
Collector Cutoff Current $(V_{CE}^{=450V}, V_{BE}^{=1.5V})$ $(V_{CE}^{=300V}, V_{BE}^{=1.5V}, T_{C}^{=150°C})$	I _{CEX}			2.0	mA
N CHARACTERISTICS					
DC Current Gain (V _{CE} =2.0V, I _C =0.75A)	h _{FE} *	10		100	
Collector Saturation Voltage (I _C =0.75A, I _B =75mA)	V _{CE} (sat)*			1.0	Vdc
Base Saturation Voltage (I _C =0.75A, I _B =75mA)	V _{BE} (sat)*			1.8	Vdc
YNAMIC CHARACTERISTICS					
Current-Gain - Bandwidth Product (I _C =200mA, V _{CE} =10V, f=5.0MHz)	\mathbf{f}_{T}	15			MHz
Rise Time $(V_{CC}^{=200V}, I_{C}^{=0.75A}, I_{B1}^{=75mA}, I_{B2}^{=75mA})$	t _r			0.5	μs
Storage Time (V _{CC} =200V, I _C =0.75A, I _{R1} =75mA, I _{R2} =75mA)	t _s			6.0	μs

 t_{f}

3.0

μs

Fall Time $(V_{CC}^{=200V}, I_{C}^{=0.75A}, I_{B1}^{=75mA}, I_{B2}^{=75mA})$

^{*}Pulse measurement conditions: Length = 300 μ s, Duty Cycle \leq 2%.

SILICON NPN TRANSISTORS

These double diffused, epitaxial collector devices are oxide passivated. They are designed for use in switching and many amplifier applications. The latest technologies are used to provide optimum performance and the highest degree of reliability.

2N4863 2N4864

ABSOLUTE MAXIMUM RATINGS

RATINGS	SYMBOL	2N4863	2N4864	UNIT
Collector-Base Voltage	V _{CBO}	140	140	Vdc
Collector-Emitter Voltage	V _{CEO}	120	120	Vdc
Emitter-Base Voltage	V _{EBO}	8.0	8.0	Vdc
Collector Current — Continuous	Ic	2.0	2.0	Adc
Base Current — Continuous	I _B	0.5	0.5	Adc
Total Power Dissipation @ T _C =100°C	P _D	4.0	16	Watt
Thermal Resistance (Junction to Case)	θ _{J-C}	25	6.25	°C/W
Junction Temperature	TJ	-65 to +200	-65 to +200	°C
Storage Temperature	T _{stg}	-65 to +200	-65 to +200	°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS					
Collector-Base Voltage (I _C =1.0 mA)	BV _{CBO}	140			Vdc
Collector-Emitter Voltage (I _C =10 mA)	BV _{CEO}	120			Vdc
Emitter-Base Voltage (I _E =10 ua)	BV _{EBO}	8.0			Vdc
Collector Cutoff Current (V _{CB} = 60V)	Ісво			0.1	μΑ
Emitter Cutoff Current (V _{EB} = 8.0V)	I _{EBO}			10	μΑ
Collector Cutoff Current (V _{CE} = 60V)	I _{CEO}			10	μΑ
Collector Cutoff Current (V _{CE} =140V, V _{EB} =0.5V)	I _{CEX}			10	μΑ
ON CHARACTERISTICS					
DC Current Gain (V _{CE} =5.0V, I _C =0.5A)	h _{FE} *	50		150	
DC Current Gain (V _{CE} = 5.0V, I _C = 2.0A)	H _{FE} *	15			
Collector Saturation Voltage (I _C =2.0A, I _B =0.2A)	V _{CE} (sat)*			1.5	Vdc
Collector Saturation Voltage (I _C = 500mA, I _B = 50mA)	V _{CE} (sat)*			0.2	Vdc
Base Saturation Voltage (I _C = 500mA, V _{CE} = 5.0V)	V _{BE} (on)*			1.2	Vdc
DYNAMIC CHARACTERISTICS					
Small Signal Current Gain (V _{CE} =10V, I _C =0.1A, f=10MHz)	h _{fe}	5.0			
Collector Base Capacitance (V _{CB} =10V, I _C =0, f=1.0MHz)	C _{ob}			50	pF
Rise Time (V _{CC} =30V, I _C =1.0A, I _{B1} =0.1A, I _{B2} =0.1A)	t _r			.15	μs
Storage Time (V _{CC} =30V, I _C =1.0A, I _{B1} =0.1A, I _{B2} =0.1A)	t _s			1.5	μs
Fall Time $(V_{CC}=30V, I_{C}=1.0A, I_{B1}=0.1A, I_{B2}=0.1A)$	t _f			.20	μs

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

RATINGS	SYMBOL	2N5050	2N5051	2N5052	UNIT			
Collector-Base Voltage	v _{CBO}	125	150	200	Vdc			
Collector-Emitter Voltage	V _{CEO}	125	150	200	Vdc			
Emitter-Base Voltage	V _{EBO}	6.0			6.0			Vdc
Collector Current - Continuous	I _C	2.0			Adc			
Base Current - Continuous	I _B	1.0			Adc			
Total Power Dissipation @T _C =25°C	PD	40			Watt			
Thermal Resistance (Junction to Case)	θ _{J-C}	3.76 MAX			°C/W			
Junction Temperature	т _Ј	-65 to +175			°C			
Storage Temperature	T _{stg}	-65 to +200			°C			

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
FF CHARACTERISTICS					
	BV _{CEO} (sus)	125 150 200			Vdc
Emitter Cutoff Current (V _{EB} =6.0V dc, I _C =0)	I _{EBO}			0.1	mA
Collector Cutoff Current $(V_{CE}^{=}62.5V)$ 2N5050 $(V_{CE}^{=}75V)$ 2N5051 $(V_{CE}^{=}100V)$ 2N5052	I _{CEO}			0.1 0.1 0.1	mA
Collector Cutoff Current (V_{CE} =Rated V_{CEO} , V_{EB} (off)=1.5V dc) (V_{CE} =Rated V_{CEO} , V_{EB} (off)=1.5V dc, T_{C} =150°C)	I _{CEX}			0.5	mA
N CHARACTERISTICS					
DC Current Gain (V _{CE} =5.0V, I _C =0.75A dc)	h _{FE} *	25		100	
DC Current Gain (V _{CE} =5.0V, I _C =1.0A dc)	h _{FE} *	25			
DC Current Gain (V _{CE} =5.0V, I _C =2.0A dc)	h _{FE} *	5.0			
Collector Saturation Voltage (I _C =0.75A, I _B =0.1A dc)	V _{CE} (sat)*			1.0	Vdc
Collector Saturation Voltage (I _C =2.0A, I _B =0.4A dc)	V _{CE} (sat)*			5.0	Vdc
Base-Emitter On Voltage (I _C =0.75A, I _B =5.0V dc)	V _{BE} (on)*			1.2	Vdc
DYNAMIC CHARACTERISTICS					
Current-Gain - Bandwidth Product (I _C =250mA, V _{CE} =10V, f=5.0MHz)	f _T	10			MHz
Small Signal Current Gain (V _{CE} =10V, I _C =250mA, f=1.0KHz)	h _{fe}	25			
Collector Base Capacitance (V _{CB} =10V, I _E =0, f=100KHz)	C _{ob}			250	pF
Rise Time $(V_{CC}^{=120V}, I_{C}^{=750mA}, I_{B1}^{=100mA}, I_{B2}^{=100mA}, R_{L}^{=150 \text{ ohms}})$	t _r			300	ns
Storage Time $(V_{CC}=120V, I_{C}=750\text{mA}, I_{B1}=100\text{mA}, I_{B2}=100\text{mA}, R_L=150 \text{ ohms})$	ts			3.5	μs
Fall Time $(V_{CC}^{=120V}, I_{C}^{=750mA}, I_{B1}^{=100mA}, I_{B2}^{=100mA}, R_{T}^{=150 \text{ ohms}})$	^t f			1.2	μS

^{*}Pulse measurement conditions: Length = $300\mu s$, Duty Cycle $\leq 2\%$.

This unique device utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

RATINGS	SYMBOL	2N5074	UNIT
Collector-Base Voltage	V _{CBO}	200	Vdc
Collector-Emitter Voltage	V _{CEO}	200	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current - Continuous	IC	3.0	Adc
Base Current - Continuous	IB	0.3	Adc
Junction Temperature	T _J	-65 to +200	°C
Storage Temperature	T _{stg}	-65 to +200	°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (I _C =25mA)	BV _{CEO} (sus)	200			Vdc
Emitter Cutoff Current $(V_{EB}^{-6.0V}, I_{C}^{-9})$	I _{EBO}			1.0	mA
Emitter Cutoff Current $(V_{EB}=5.0V, I_C=0)$	I _{EBO}			0.01	mA
Collector Cutoff Current (V _{CE} =150V)	I _{CEO}			0.01	mA
Collector Cutoff Current (V _{CE} =200V, V _{BE} =0, T _C =150°C)	I _{CEX}			1.0	mA
$(V_{CE}^{=200V}, V_{BE}^{=0})$				0.25	μА
N CHARACTERISTICS					
DC Current Gain (V _{CE} =5.0V, I _C =3.0A)	h _{FE} *	10			
DC Current Gain (V _{CE} =5.0V, I _C =0.5A)	h _{FE} *	30		110	
DC Current Gain (V _{CE} =5.0V, I _C =0.5A, T _C = -55°C)	h _{FE} *	12			
Collector Saturation Voltage (I _C =3.0A, I _B =0.3A)	V _{CE} (sat)*			2.0	Vdc
Base-Emitter Voltage (I _C =3.0A, V _{CE} =5.0V)	V _{BE} *			2.2	Vdc
Base Saturation Voltage (I _C =3.0A, I _B =0.3A)	V _{BE} (sat)*			2.2	Vdc
YNAMIC CHARACTERISTICS					
Small Signal Current Gain (V _{CE} =10V, I _C =100mA, f=20MHz)	h _{fe}	2.0			
Small Signal Current Gain (V _{CE} =10V, I _C =250mA, f=1.0KHz)	h _{fe}	30			
Collector Base Capacitance (V _{CB} =10V, I _C =0, f=1.0MHz)	Cop			100	pF

^{*}Pulse measurement conditions: Length = 300µs, Duty Cycle ≤ 2%.

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

RATINGS	SYMBOL	2N5075	2N5076	2N5077	UNIT
Collector-Base Voltage	V _{CBO}	200	250	250	Vdc
Collector-Emitter Voltage	V _{CEO}	200	250	250	Vdc
Emitter-Base Voltage	V _{EBO}	6.0			Vdc
Collector Current - Continuous	^I C	3.0			Adc
Base Current - Continuous	I _B	0.3			Adc
Total Power Dissipation @ T _C =100°C	PD	40			Watt
Thermal Resistance (Junction to Case)	θ _{J-C}	2.5			°C/W
Junction Temperature	T_{J}	-65 to +200			°C
Storage Temperature	T _{stg}		-65 to +20	00	°C

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNI.
F CHARACTERISTICS		•				
Collector-Emitter Voltage (I _C =25mA)	2N5075 2N5076 2N5077	BV _{CEO}	200 250 250			Vdc
Collector Cutoff Current (V _{EB} =5V)		I _{EBO}			10	μA
Emitter Cutoff Current (V _{EB} =6V)		I _{EBO}			1000	μΑ
Collector Cutoff Current (V _{CE} =200V) (V _{CE} =250V) (V _{CE} =250V)	2N5075 2N5076 2N5077	I _{CEX}			0.25	μА
Collector Cutoff Current (V _{CE} =150V)		ICEO			10	μА
CHARACTERISTICS						
DC Current Gain (V _{CE} =5V, I _C =500mA)	2N5075 2N5077	h _{FE} *	90		250	
DC Current Gain (V _{CE} =5V, I _C =3A)	2N5075 2N5076 2N5077	h _{FE} *	15 10 15			
DC Current Gain (V _{CE} =5V, I _C =500mA)		h _{FE} *	30		110	
Collector Saturation Voltage (I _C =3A, I _B = .3A)		V _{CE} (sat)*			2.0	Vd
Base Saturation Voltage (I _C =3A, I _B = .3A)		V _{BE} (sat)*			2.2	Vd
Base Emitter Voltage (I _C =3A, V _{CE} =5V)	· · · · · · · · · · · · · · · · · · ·	V _{BE} (on)*			2.2	Vd
DYNAMIC CHARACTERISTICS						
Small Signal Current Gain (V _{CE} =10V, I _C =100mA, f=20MHz)		h _{fe}	2.0			
Collector Base Capacitance (V _{CB} =10V, I _C =0, f=1.0MHz)		C _{ob}			100	pF

^{*}Pulse measurement conditions: Length = $300\mu s$, Duty Cycle \leq 2%.

2N5148 2N5150

DIFFUSED SILICON EPITAXIAL PASSIVATED TRANSISTOR

These devices are designed for use in power amplifiers and high speed switching applications. The latest technologies are used to offer the highest degree of reliability.

FEATURES

- Low Saturation Voltage
- Fast Switching
- Low Leakage Current
- Isolated Collector

APPLICATIONS

- High Frequency Inverters
- Converters
- Linear Amplifiers
- High Speed Switching **Regulated Power Supplies**
- RF Power Amplifiers

NPN SILICON HIGH POWER TRANSISTORS

ABSOLUTE MAXIMUM RATINGS	2	N5148	2N5150
Collector to Emitter Voltage	V_{CEO}	80 V	/olts
Collector to Base Voltage	V _{CBO}	100 V	olts .
Emitter to Base Voltage	V_{EBO}	6 V	'olts
Collector Current — Continuous	l _C	2 A	mps
— Pe a k	IC (Peak)	5 <i>F</i>	lmps
Base Current — Continuous	I _B	1 /	lmp
Total Device Dissipation, @ T _C = 50 °C	P_D	30 Watts	6 Watts
Linear Derating Factor		.2W/°C	.04W/°C
Operating Junction and Storage Temperature Range	TJ, T _{stq}	-65°C to	+200°C
Storage remperature name	'J' 'Stg	00 0 10	1 200 0

MECHANICAL CHARACTERISTICS

Case: 2N5148, 2N5150 - TO-39

1. Emitter 3. Collector 2. Base Body marked with Logo * and type number

ELECTRICAL CHARACTERISTICS (25° Case Temperature unless otherwise noted)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	2N5148 MIN. MAX	2N5150 MIN MAX	UNITS
Collector to Emitter Breakdown Voltage Collector Cutoff Carrent	BV _{CEO} ICEO ICES	*IC = 100 mA, IB = 0 VCE = 40V, IB = 0 VCE = 60V, VBE = 0V VCE = 100V, VBE = 0V	80 , 50 1.0 1.0	. 80 50 1.0 1.0	Volts µAmp µAmp mA
Emitter Cutoff Curtent	, Teeo.	V _{EB} = 5V, I _C = 0 V _{EB} = 6V, I _C = 0	10	1.0 1.0	μAmp mA
BC-Current Gain	hee	"IC = \$0mA, VCE = 5V "IC = 1A, VCE = 5V "IC = 2A, VCE = 5V "IC = 1A, VCE = 5V @ TC - 55*C	20 30 90 15	50 70 200 30 35	
Collector Saturation Voltage Base Emitter Saturation Voltage	VCE (sat) VBE (sat)	*1c = 1A, la = 0.1A *1c = 3A, la = 0.6A *1c = 1A, la = 0.1A *1c = 2A, la = 0.2A	0.46 5.0 1.2 1.5	0.48 5.0 1.2 1.5	Volts Volts Volts Volts
Furn on Time Turn of Time	Son Soft	See Figure 1 See Figure 1	0.1 0.8	0.1 1.2	hzec.
Collector Base Capacitance High Frequency Current Gain	Cob (hyel	V _{CB} = 10V, I _E = 0, f = 1MHz V _{CE} = 5V, I _C = 0.2A, f = 20MHz	2.5	*70 ·	pF

^{*} Pulse Test: Pulse length ≤ 300 u sec. duty cycle ≤ 2%. Measured 1/8" from body using separate current carrying and voltage sensing contacts for each lead.

★ GENERAL SEMICONDUCTOR INDUSTRIES, INC.

2001 West Tenth Place, Tempe, Arizona 85281 • 602 968 3101 • TWX910-950 1942 Mailing Address P.O. Box 3078

GENERAL SEMICONDUCTOR INDUSTRIES, INC.

FIGURE 1 - Switching Circuit

FIGURE 2 — Maximum Safe Operating Region

FIGURE 3 — Dissipation Derating Curve (2N5148, 2N5150)

TYPICAL CHARACTERISTICS

2N5148, 5150 © Copyright General Semiconductor Industries, Inc., 4-76-A

Printed in USA

This unique device utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

RATINGS	SYMBOL	2N5218	UNIT
Collector-Base Voltage	V _{CBO}	220V	Vdc
Collector-Emitter Voltage	v _{ceo}	200V	Vdc
Emitter-Base Voltage	V _{EBO}	8V	Vdc
Collector Current - Continuous	I _C	10	Adc
Base Current - Continuous	I _B	1.0	Adc
Total Power Dissipation @ T _C =100°C	P _D	50	Watt
Thermal Resistance (Junction to Case)	θЈ-С	2.0	°C/W
Storage Temperature	T _{stg}	-65 to +200	°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNI
FCHARACTERISTICS					
Collector-Base Voltage (I _C =10μA)	BV _{CBO}	220			Vdc
Collector-Emitter Sustaining Voltage (I _C =200mA)	BV _{CEO} (sus)	200			Vd
Emitter-Base Voltage (I _E =10µA)	BV _{EBO}	8			Vd
Collector Cutoff Current (V _{CB} =100V)	I _{CBO}			0.5	μА
Emitter Cutoff Current (V _{EB} =8V)	I _{EBO}			10	μА
Collector Cutoff Current (V _{CE} =200V)	ICEO			100	μΑ
Collector-Emitter Cutoff Current (V_{CE} =220V, V_{BE} = -1.5V, T_{C} =150°C) (V_{CE} =220V, V_{BE} = -1.5V)	I _{CEX}			2.0	mA μA
N CHARACTERISTICS				L	
DC Current Gain (V _{CE} =5V, I _C =5A)	h _{FE} *	15		120	
DC Current Gain (V _{CE} =5V, I _C =5A, T _C = -55°C)	h _{FE} *	10			
DC Current Gain (V _{CE} =5.0V, I _C =0.5A)	h _{FE} *	75		300	
DC Current Gain (V _{CE} =5.0V, I _C =10A)	h _{FE} *	5			
Collector Saturation Voltage $(I_C=5A, I_B=0.5A)$	V _{CE} (sat)*			0.6	Vd
Collector Saturation Voltage (I _C =10A, I _B =2.0A)	V _{CE} (sat)*			5.0	Vd
Base-Emitter Voltage $(I_C=SA, V_{CE}=SV)$	v _{BE} *			1.2	Vd
Base Saturation Voltage $(I_C=5.0A, I_B=0.5A)$	V _{BE} (sat)*			1.5	Vċ
YNAMIC CHARACTERISTICS					
Small Signal Current Gain (V _{CE} =10V, I _C =1.0A, f=10MHz	h _{fe}	4			
Small Signal Current Gain (V _{CE} =10V, I _C =50mA, f=1.0KHz)	h _{fe}	40			
Collector Base Capacitance $(V_{CB}=10V, I_E=0, f=1.0MHz)$	C _{ob}			200	pl
Turn-on Time (V _{CC} =20V, I _C =1.0A, I _{B1} =0.1A, I _{B2} =0.1A)	ton			0.6	μs
Turn-off Time (V _{CC} =20V, I _C =1.0A, I _{B1} =0.1A, I _{B2} =0.1A)	toff			5.5	με
Rise Time (V _{CC} =20V, I _C =1.0A, I _{B1} =0.1A, I _{B2} =0.1A)	t _r			0.6	μs
Storage Time (V _{CC} =20V, I _C =1.0A, I _{B1} =0.1A, I _{B2} =0.1A)	t _s			4.5	μ:
Fall Time (V _{CC} =20V, I _C =1.0A, I _{B1} =0.1A, I _{B2} =0.1A)	t _f			1.0	μs

^{*}Pulse measurement conditions: Length = 300 μ s, Duty Cycle \leq 2%.

This unique device utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

RATINGS	SYMBOL	2N5237	UNIT
Collector-Base Voltage	V _{CBO}	150	Vdc
Collector-Emitter Voltage	V _{CEO}	120	Vdc
Emitter-Base Voltage	V _{EBO}	7	Vdc
Collector Current - Continuous	^I C	10	Adc
Base Current - Continuous	I _B	3	Adc
Total Power Dissipation @ T _C =100°C	P _D	5	Watt
Junction Temperature	T_{J}	-65 to +200	°C
Storage Temperature	T _{stg}	-65 to +200	°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNI
FF CHARACTERISTICS			•		
Collector-Base Voltage (I _C =10µA)	BV _{CBO}	150			Vdc
Collector-Emitter Voltage (I _C =0.1A)	BV _{CEO}	120			Vdc
Emitter-Base Voltage (I _E =10μA)	BV _{EBO}	7			Vdc
Collector Cutoff Current (V _{CB} =80V)	I _{CBO}			0.1	μА
Emitter Cutoff Current (V _{EB} =5V)	I _{EBO}			0.1	μA
Collector Cutoff Current (V _{CE} =110V)	I _{CEO}			10	μА
Collector-Emitter Cutoff Current (V _{CE} =150V, V _{BE} = -0.5V)	I _{CEX}			10	μА
$(V_{CE}^{-130V}, V_{BE}^{-150°C})$				100	
N CHARACTERISTICS					
DC Current Gain (V _{CE} =5V, I _C =5A)	h _{FE} *	40		120	
DC Current Gain (V _{CE} =5V, I _C =10A)	h _{FE} *	10			
DC Current Gain (V _{CE} =5V, I _C =1A)	h _{FE} *	50			
Collector Saturation Voltage (I _C =5A, I _B =0.5A)	V _{CE} (sat)*			0.6	Vdc
Collector Saturation Voltage (I _C =10A, I _B =1A)	V _{CE} (sat)*			2.5	Vdc
Base Saturation Voltage $(I_C^{=5A}, I_B^{=0.5A})$	V _{BE} (sat)*			1.5	Vdc
Base Saturation Voltage $(I_C=10A, I_B=1A)$	V _{BE} (sat)*			2.5	Vdc
YNAMIC CHARACTERISTICS					
Small Signal Current Gain (V _{CE} =5V, I _C =50mA, f=1KHz)	h _{fe}	40		160	
Small Signal Current Gain (V _{CE} =10V, I _C =0.2A, f=10MHz)	h _{fe}	1.5		7.5	
Collector Base Capacitance (V _{CE} =10V, I _C =0, f=1MH _z)	C _{ob}			350	pF
Delay Time $(V_{CC}^{-20V}, I_{C}^{-5A}, I_{B1}^{-0.5A}, I_{B2}^{-0.5A})$	t _d			50	ns
Rise Time $(V_{CC}^{=20V}, I_{C}^{=5A}, I_{B1}^{=0.5A}, I_{B2}^{=0.5A})$	t _r			500	ns
Storage Time $(V_{CC}^{=20V}, I_{C}^{=5A}, I_{B1}^{=0.5A}, I_{B2}^{=0.5A})$	t _s			1.5	μs
Fall Time (V _{CC} =20V, I _C =5A, I _{B1} =0.5A, I _{B2} =0.5A)	^t f			500	ns

^{*}Pulse measurement conditions: Length = $300\mu s$, Duty Cycle $\leq 2\%$.

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

RATINGS	SYMBOL	2N5387	2N5388	UNIT
Collector-Base Voltage	V _{CBO}	200	250	Vdc
Collector-Emitter Voltage	V _{CEO}	200	250	Vdc
Emitter-Base Voltage	V _{EBO}	10)	Vdc
Collector Current - Continuous	^I C	7.	5	Adc
Base Current - Continuous	IB	3	Adc	
Total Power Dissipation @ T _C =100°C	PD	10	00	Watt
Total Power Dissipation @TA=25°C	P _D	3.	5	Watt
Thermal Resistance (Junction to Case)	θ _{J-C}	1.	1.0	
Thermal Resistance (Junction to Ambient)	θЈ-А	50	°C/W	
Junction Temperature	T_{J}	-65 t	°C	
Storage Temperature	Tstg	-65 t	co +200	°C

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNI
F CHARACTERISTICS						
Collector-Emitter Voltage (I _C =30mA)	2N5387 2N5388	BV _{CEO}	200 250			Vdc
Emitter Cutoff Current (V _{EB} =10V)		I _{EBO}			1	mA
Emitter Cutoff Current (V _{EB} =8V)		IEBO			100	μА
Collector Cutoff Current (V _{CE} =180V) (V _{CE} =225V)	2N5387 2N5388	ICEO			30 30	mA
Collector Cutoff Current $(V_{CE}=100V, V_{BE}=0, T_{C}=150$ °C) $(V_{CE}=125V, V_{BE}=0, T_{C}=150$ °C)	2N5387 2N5388	ICES			10 10	mA
Collector Cutoff Current $(V_{CE}^{-180V}, V_{BE}^{-0})$ $(V_{CE}^{-225V}, V_{BE}^{-0})$	2N5387 2N5388	ICES			1.0	mA
N CHARACTERISTICS						
DC Current Gain (V _{CE} =5V, I _C =7A)		h _{FE} *	5			
DC Current Gain (V _{CE} =5V, I _C =5A)		h _{FE} *	15			
DC Current Gain (V _{CE} =5V, I _C =2A)		h _{FE} *	25		100	
Collector Saturation Voltage (I _C =7A, I _B =1.4A)		V _{CE} (sat)*			2.2	Vdc
Collector Saturation Voltage (I _C =5A, I _B =1A)		V _{CE} (sat)*			2	Vdc
Base Emitter Voltage (I _C =7A, V _{CE} =5V)		V _{BE} *			2.5	Vdc
NAMIC CHARACTERISTICS					+	
Small Signal Current Gain (V _{CE} =10V, I _C =1A, f=10MHz)		h _{fe}	1.5			
Common-Emitter Small Signal Current Gain (V _{CE} =10V, I _C =1A, f=1KHz)		h _{fe}	20			

^{*}Pulse measurement conditions: Length = $300\mu s$, Duty Cycle $\leq 2\%$.

This unique device utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

RATINGS	SYMBOL	2N5389	UNIT
Collector-Base Voltage	V _{CBO}	300	Vdc
Collector-Emitter Voltage	V _{CEO}	300	Vdc
Emitter-Base Voltage	V _{EBO}	10	Vdc
Collector Current - Continuous	I _C	7.5	Adc
Base Current - Continuous	I _B	3	Adc
Total Power Dissipation @ T _C =100°C	P _D	100	Watt
Total Power Dissipation @TA=25°C	P _D	3.5	Watt
Thermal Resistance (Junction to Case)	θЈ-С	1.0	°C/W
Thermal Resistance (Junction to Ambient)	θ _{J-A}	50	°C/W
Junction Temperature	$^{\mathrm{T}}_{\mathrm{J}}$	-65 to +200	°C
Storage Temperature	Tstg	-65 to +200	°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNI
OFF CHARACTERISTICS					
Collector-Emitter Voltage (I _C =30mA)	BV _{CEO}	300			Vdc
Emitter Cutoff Current (V _{EB} =10V)	I _{EBO}			1.0	mA
Emitter Cutoff Current (V _{CE} =8V)	I _{EBO}			100	μА
Collector Cutoff Current (V _{CE} =270V)	I _{CEO}			30	mA
Collector Cutoff Current (V _{CE} =150V, V _{BE} =0, T _C =150°C)	ICES			10	mA
Collector Cutoff Current (V _{CE} =270V, V _{BE} =0)	I _{CES}			1.0	mA
ON CHARACTERISTICS			.	I	1
DC Current Gain (V _{CE} =5V, I _C =7A)	h _{FE} *	5			
DC Current Gain (V _{CE} =5V, I _C =5A)	h _{FE} *	15			
DC Current Gain (V _{CE} =5V, I _C =2A)	h _{FE} *	25		100	
Collector Saturation Voltage (I _C =7A, I _B =1.4A)	V _{CE} (sat)*			2.2	Vdc
Collector Saturation Voltage (I _C =5A, I _B =1A)	V _{CE} (sat)*			2	Vdc
Base Emitter Voltage (I _C =7A, V _{CE} =5V)	V _{BE} *			2.5	Vdc
YNAMIC CHARACTERISTICS			-		
Small Signal Current Gain (V _{CE} =10V, I _C =1A, f=10MHz)	h _{fe}	1.5			

^{*}Pulse measurement conditions: Length = 300 μ s, Duty Cycle \leq 2%.

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

RATINGS	SYMBOL	2N5541	2N5542	UNIT
Collector-Base Voltage	V _{CBO}	175	175	Vdc
Collector-Emitter Voltage	V _{CEO}	130	130	Vdc
Emitter-Base Voltage	V _{EBO}	8.0	8.0	Vdc
Collector Current - Continuous	I _C	5.0	10A	Adc
Base Current - Continuous	I _B	1.0	2.0A	Adc
Total Power Dissipation @ T _C =100°C	P _D	5.0	50	Watt
Junction Temperature	T _J	-65 to +200		°C
Storage Temperature	T _{stg}	-65 to +200		°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
FF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (I _C =100mA)	BV _{CEO} (sus)	130			Vdc
Collector Cutoff Current (V _{CB} =100V)	I _{CBO}			0.5	μА
Emitter Cutoff Current (V _{EB} =8.0V)	I _{EBO}			10	μА
Emitter Cutoff Current (V _{EB} =5.0V)	I _{EBO}			0.5	μА
Collector Cutoff Current $(V_{CE}=100V, V_{BE}=-0.5V, T_{C}=150^{\circ}C)$ $(V_{CE}=175V, V_{BE}=-0.5V)$	I _{CEX}			100 10	μА
N CHARACTERISTICS		· · · · · · · · · · · · · · · · · · ·		1	
DC Current Gain (V _{CE} =5.0V, I _C =5.0A)	h _{FE} *	30	· · · · · · · · ·	90	
Collector Saturation Voltage (I _C =10A, I _B =1.0A)	V _{CE} (sat)*			2.5	Vdc
	V _{CE} (sat)*			0.6 0.5	Vdc
Base Saturation Voltage (I _C =10A, I _B =1.0A)	V _{BE} (sat)*			2.5	Vdc
Base Saturation Voltage $(I_C=5.0A, I_B=0.5A)$ $2N5542$	V _{BE} (sat)*			1.5 1.2	Vdc
YNAMIC CHARACTERISTICS					
	h _{fe}	2.0			
Rise Time $(V_{CC}^{-20V}, I_{C}^{-5.0A}, I_{B1}^{-0.5A}, I_{B2}^{-0.5A})$	t _r			0.5	μs
Storage Time $(V_{CC}^{=20V}, I_{C}^{=5.0A}, I_{B1}^{=0.5A}, I_{B2}^{=0.5A})$	t _s			1.5	μs
Fall Time (V _{CC} =20V, I _C =5.0A, I _{B1} =0.5A, I _{B2} =0.5A)	^t f			0.5	μS

^{*}Pulse measurement conditions: Length = $300\mu s$, Duty Cycle $\leq 2\%$.

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

RATINGS	SYMBOL	2N5660	2N5661	UNIT		
Collector-Base Voltage	v _{CBO}	250	400	Vdc		
Collector-Emitter Voltage	v _{CEO}	200	300	Vdc		
Emitter-Base Voltage	V _{EBO}	6.0		Vdc		
Collector Current - Continuous	I _C _	1.0		Adc		
Base Current - Continuous	I _B	0.2		Adc		
Total Power Dissipation @ T _C =100°C	P _D	20		Watt		
Thermal Resistance (Junction to Case)	^θ J-C	5.0		5.0		°C/W
Junction Temperature	$T_{\mathbf{J}}$	-65 to +200		°C		
Storage Temperature	T _{stg}	-65 t	o +200	°C		

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
FF CHARACTERISTICS					
Collector-Base Voltage 2N5660 (I _C =1.0mA) 2N5661	BV _{CBO}	250 400			Vdc
Collector-Emitter Voltage 2N5660 (I _C =20mA) 2N5661	BV _{CEO}	200 300			Vdc
Collector-Emitter Breakdown Voltage 2N5660 (I_C =10mA, R_{BE} =100 Ω) 2N5661	BV _{CE}	250 400			Vdc
Emitter Cutoff Current (V _{EB} =6.0V)	I _{EBO}	-		10	μA
Collector Cutoff Current (V _{CE} =400V)	I _{CEO}			1.0	μA
Collector Cutoff Current (V _{CE} =250V)	ICES			1.0	μА
N CHARACTERISTICS					
DC Current Gain 2N5660 $(V_{CE}=5.0V, I_{C}=1.0A)$	h _{FE} *	15			
DC Current Gain 2N5661 $(V_{CE}^{=5.0V}, I_{C}^{=1.0A})$	h _{FE} *	15			
DC Current Gain 2N5660 (V _{CE} =5.0V, I _C =500mA) 2N5661	h _{FE} *	40 25		120 75	
Collector Saturation Voltage (I _C =1.0A, I _B =0.1A)	V _{CE} (sat)*			0.4	Vdc
Base Saturation Voltage $(I_C=1.0A, I_B=0.1A)$	V _{BE} (sat)*			1.2	Vdc
YNAMIC CHARACTERISTICS					
Small Signal Current Gain (V _{CE} =5.0V, I _C =0.1A, f=10MHz)	h _{fe}	2.0			
Collector Base Capacitance (V _{CB} =10V, f=1MHz)	C _{ob}			60	pF
Turn-on Time 2N5660 $(V_{CC}^{-100V}, I_{C}^{-500mA}, I_{B1}^{-15mA}, I_{B2}^{-15mA})$	t _{on}			0.25	μs
Turn-off Time $(V_{CC}^{-100V}, I_C^{-500mA}, I_{B1}^{-15mA}, I_{B2}^{-15mA})$ 2N5660	t _{off}			0.85	μs
Turn-on Time $(V_{CC} = 100V, I_{C} = 500mA, I_{B1} = 25mA, I_{B2} = 25mA)$ 2N5661	ton			0.25	μs
Turn-off Time 2N5661 $(V_{CC}=100V, I_{C}=500mA, I_{R1}=25mA, I_{R2}=25mA)$	toff			1.20	μs

^{*}Pulse measurement conditions: Length = 300 μs , Duty Cycle \leq 2%.

2N5662 2N5663

NPN SWITCHING POWER TRANSISTORS

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

RATINGS	SYMBOL	2N5662	2N5663	UNIT
Collector-Base Voltage	V _{CBO}	250	400	Vdc
Collector-Emitter Voltage	v _{ceo}	200	300	Vdc
Emitter-Base Voltage	V _{EBO}	6.	Vdc	
Collector Current - Continuous	I _C	1.0		Adc
Base Current - Continuous	I _B	0.2		Adc
Total Power Dissipation @ T _C =100°C	P _D	15	15	
Thermal Resistance (Junction to Case)	θ _{J-C}	6.67		°C/W
Junction Temperature	Т _Ј	-65 to +200		°C
Storage Temperature	T _{stg}	-65 to +200		°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
FF CHARACTERISTICS					
Collector-Base Voltage 2N5662 (I _C =1.0mA) 2N5663	BV _{CBO}	250 400			Vdc
Collector-Emitter Voltage 2N5662 (I _C =20mA) 2N5663	BV _{CEO}	200 300			Vdc
Collector-Emitter Breakdown Voltage $(I_C=10mA, R_{BE}=100\Omega)$ 2N5662 2N5663	BV CER	250 400			Vdc
Emitter Cutoff Current (V _{EB} =6.0V)	I _{EBO}			10	μA
Collector Cutoff Current (V _{CE} =400V)	I _{CEO}			1.0	μΑ
Collector Cutoff Current (V _{CB} =250V)	I _{CES}			1.0	μА
N CHARACTERISTICS					
DC Current Gain (V _{CE} =5.0V, I _C =1.0A)	h _{FE} *	15			
DC Current Gain 2N5662 (V _{CE} =5.0V, I _C =500mA) 2N5663	h _{FE} *	40 25		120 75	
Collector Saturation Voltage (I _C =1.0A, I _B =0.1A)	V _{CE} (sat)*			0.4	Vdc
Base Saturation Voltage (I _C =1.0A, I _B =0.1A)	V _{BE} (sat)*			1.2	Vdc
YNAMIC CHARACTERISTICS	-				
Small Signal Current Gain (V _{CE} =5.0V, I _C =0.1A, f=10MHz)	h _{fe}	2.0			
Collector Base Capacitance (V _{CB} =10V, f=1MHz)	C _{ob}			60	pF
Turn-on Time 2N5662 $(V_{CC}^{-30V}, I_C^{-500mA}, I_{B1}^{-15mA}, I_{B2}^{-15mA})$	t _{on}			0.25	μs
Turn-off Time 2N5662 $(V_{CC}^{-30V}, I_C^{-500mA}, I_{B1}^{-15mA}, I_{B2}^{-15mA})$	t _{off}			0.85	μs
Turn-on Time $(V_{CC}=30V, I_{C}=500mA, I_{B1}=25mA, I_{B2}=25mA)$ 2N5663	ton			0.25	μs
Turn-off Time 2N5663 $(V_{CC}=30V, I_C=500mA, I_{R1}=25mA, I_{B2}=25mA)$	t _{off}			1.20	μs

^{*}Pulse measurement conditions: Length = 300 μ s, Duty Cycle \leq 2%.

SILICON NPN TRANSISTORS

These double diffused, epitaxial collector devices are oxide passivated. They are designed for use in switching and many amplifier applications. The latest technologies are used to provide optimum performance and the highest degree of reliability.

ABSOLUTE MAXIMUM RATINGS

RATINGS	SYMBOL	2N5664	2N5665	UNIT
Collector-Base Voltage	V _{CBO}	250	400	Vdc
Collector-Emitter Voltage	V _{CEO}	200	300	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	6.0	Vdc
Collector Current — Continuous	Ic	3.0	3.0	Adc
Base Current — Continuous	I _B	0.6	0.6	Adc
Total Power Dissipation @ T _C =100°C	P _D	30	30	Watt
Thermal Resistance (Junction to Case)	Ө _{Ј-С}	3.3	3.3	°C/W
Junction Temperature	Т	+200	+200	°C
Storage Temperature	T _{stg}	-65 to +200	-65 to +200	°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS						
Collector-Base Voltage (I _C =1.0mA)	2N5664 2N5665	BV _{CBO}	250 400			Vdc
Collector-Emitter Voltage (I _C =20mA)	2N5664 2N5665	BV _{CEO}	200 300			Vdc
Collector-Emitter Breakdown Voltage (I_C =10mA, R_{BE} =100 Ω)	2N5664 2N5665	BV _{CER}	250 400			Vdc
Collector Cutoff Current (V _{CB} =250V)	2N5664	I _{CES}			1.0	μΑ
Emitter Cutoff Current (V _{EB} = 6.0V)		I _{EBO}			10	μΑ
Collector Cutoff Current (V _{CE} =400V)	2N5665	I _{CES}			1.0	μΑ
ON CHARACTERISTICS						
Collector Saturation Voltage (I _C =3.0A, I _B =0.3A)		V _{CE} (sat)*			0.4	Vdc
Case Saturation Voltage (I _C =3.0A, I _B =0.3A)		V _{BE} (sat)*			1.2	Vdc
DYNAMIC CHARACTERISTICS						
Small Signal Current Gain (V _{CE} =5.0V, I _C =0.5A, f=10MHz)		h _{fe}	2.0			
Collector Base Capacitance (V _{CB} =10V, I _C = , f=1.0MHz)		C _{ob}			125	pF
Turn-on Time (V _{CC} =100V, I _C =1.0A, I _{B1} =30mA, I _{B2} =	2N5664 =30mA)	t _{on}			0.25	μs
Turn-off Time (V _{CC} =100V, I _C =1.0A, I _{B1} =30mA, I _{B2} =	2N5664 =30mA)	t _{off}			1.50	μS
Turn-on Time (V _{CC} =100V, I _C =1.0A, I _{B1} =50mA, I _{B2} =	2N5665 = 50mA)	t _{on}			0.25	μS
Turn-off Time (V _{CC} =100V, I _C =1.0A, I _{B1} =50mA, I _{B2} =	2N5665 = 50mA)	t _{off}			2.0	μs

^{*}Pulse Measurement Conditions: Length = 300μ s, Duty Cycle $\leq 2\%$

SILICON NPN TRANSISTORS

These double diffused, epitaxial collector devices are oxide passivated. They are designed for use in switching and many amplifier applications. The latest technologies are used to provide optimum performance and the highest degree of reliability.

RATINGS	SYMBOL	2N5666	2N5667	UNIT
Collector-Base Voltage	V _{CBO}	250	400	Vdc
Collector-Emitter Voltage	V _{CEO}	200	300	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	6.0	Vdc
Collector Current — Continuous	I _C	3.0	3.0	Adc
Base Current — Continuous	I _B	0.6	0.6	Adc
Total Power Dissipation @ T _C =100°C	P _D	15	15	Watt
Thermal Resistance (Junction to Case)	Ө _{Ј-С}	6.67	6.67	°C/W
Junction Temperature	T _J	+ 200	+ 200	°C
Storage Temperature	T _{stg}	-65 to +200	-65 to +200	°C

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Collector-Base Voltage (I _C =1.0mA)	2N5666 2N5667	BV _{CBO}	250 400			Vdc
Collector-Emitter Voltage (I _C =20mA)	2N5666 2N5667	BV _{CEO}	200 300			Vdc
Collector-Emitter Breakdown Voltage ($I_C=10$ mA, $R_{BE}=100\Omega$)	2N5666 2N5667	BV _{CER}	250 400			Vdc
Collector Cutoff Current (V _{CB} = 250V)	2N5666	I _{CES}			1.0	μΑ
Emitter Cutoff Current (V _{EB} = 6.0V)		I _{EBO}			10	μΑ
Collector Cutoff Current (V _{CE} = 400V)		I _{CEO}			1.0	μΑ
ON CHARACTERISTICS						
DC Current Gain (V _{CE} =5.0V, I _C =3.0A)		h _{FE} *	15			
DC Current Gain (V _{CE} = 5.0V, I _C = 1.0A)	2N5666	h _{FE} *	40		120	
DC Current Gain (V _{CE} =5.0V, I _C =1.0A)	2N5667	h _{FE} *	25		75	
Collector Saturation Voltage (I _C =3.0A, I _B =0.6A)		V _{CE} (sat)*			0.4	Vdo
Base Saturation Voltage (I _C =3.0A, I _B =0.6A)		V _{BE} (sat)*			1.2	Vdo
DYNAMIC CHARACTERISTICS						
Small Signal Current Gain (V _{CE} =5.0V, I _C =0.1A, f=10MHz)		h _{fe}	2.0			
Collector Base Capacitance (V _{CB} =10V, I _C = , f=1.0MHz)		C _{ob}			125	pF
Turn-on Time (V _{CC} =100V, I _C =1.0A, I _{B1} =30mA, I _{B2} =3	2N5666 30mA)	t _{on}			0.25	μs
Turn-off Time (V _{CC} =100V, I _C =1.0A, I _{B1} =30mA, I _{B2} =3	2N5666 30mA)	t _{off}			1.50	μs
Turn-on Time (V _{CC} =100V, I _C =1.0A, I _{B1} =50mA, I _{B2} =5	2N5667 50mA)	t _{on}			0.25	μs
Turn-off Time (V _{CC} =100V, I _C =1.0A, I _{B1} =50mA, I _{B2} =5	2N5667 50mA)	t _{off}			2.00	μs

SILICON NPN TRANSISTORS

These double diffused, epitaxial collector devices are oxide passivated. They are designed for use in switching and many amplifier applications. The latest technologies are used to provide optimum performance and the highest degree of reliability.

ABSOLUTE MAXIMUM RATINGS

XR13

RATINGS	SYMBOL	2N5732	UNIT
Collector-Base Voltage	V _{СВО}	100	Vdc
Collector-Emitter Voltage	V _{CEO}	80	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current — Continuous	Ic	20	Adc
Base Current — Continuous	IB	4.0	Adc
Total Power Dissipation @ T _C = 50°C	P _D	75	Watt
Thermal Resistance (Junction to Case)	θ _{J-C}	2.0	°C/w
Junction Temperature	TJ	-65 to +200	°C
Storage Temperature	T _{stg}	-65 to +200	°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS					
Collector-Base Voltage (I _C = 1.0mA)	BV _{CBO}	100	150		Vdc
Collector-Emitter Voltage (I _C =100mA)	BV _{CEO}	80	100		Vdc
Emitter-Base Voltage (I _E =1.0mA)	BV _{EBO}	6.0	8.0	Vdc	
Emitter Cutoff Current (V _{EB} =5.0V)	I _{EBO}		1.0ua	10	μΑ
Collector Cutoff Current (V _{CE} =100V)	I _{CES}		100	1.0	mA
Collector Cutoff Current (V _{CE} =80V @ TC=150°C)	I _{CES}		250	1.0	mA
ON CHARACTERISTICS					
DC Current Gain (V _{CE} =2.0V, I _C =5.0A)	h _{FE} *	30	80	300	
DC Current Gain (V _{CE} =5.0V, I _C =20A)	h _{FE} *	5.0	20		
Collector Saturation Voltage (I _C =10A, I _B =1.0A)	V _{CE} (sat)*		0.6	1.2	Vdd
Base Saturation Voltage (I _C =10A, I _B =1.0A)	V _{BE} (sat)*		1.0	1.5	Vdd
DYNAMIC CHARACTERISTICS					
Small Signal Current Gain (V _{CE} =5.0V, I _C =0.5A, f=20MHz)	h _{fe}	1.5	2.0		
Collector Base Capacitance (V _{CB} = 10V, I _C = , f=1MHz)	Cob		175	350	pF
Delay Time (V _{CC} =40V, I _C =5.0A, I _{B1} =0.5A, I _{B2} =0.5A)	t _d		0.03	0.1	μs
Rise Time (V _{CC} = 40V, I _C = 5.0A, I _{B1} = 0.5A, I _{B2} = 0.5A)	t _r		0.20	0.3	μs
Storage Time (V _{CC} =40V, I _C =5.0A, I _{B1} =0.5A, I _{B2} =0.5A)	ts		1.50	3.0	μs
Fall Time (V _{CC} =40V, I _C =5.0A, I _{B1} =0.5A, I _{B2} =0.5A	t _f		0.40	0.6	μS

^{*}Pulse Measurement Conditions: Length = 300 μ s, Duty Cycle \leq 2%

SILICON NPN TRANSISTORS

These double diffused, epitaxial collector devices are oxide passivated. They are designed for use in switching and many amplifier applications. The latest technologies are used to provide optimum performance and the highest degree of reliability.

RATINGS	SYMBOL	2N6032	UNIT
Collector-Base Voltage	V _{CBO}	120	Vdc
Collector-Emitter Voltage	V _{CEO}	90	Vdc
Emitter-Base Voltage	V _{EBO}	7.0	Vdc
Collector Current — Continuous	Ic	50	Adc
Base Current — Continuous	l _B	10	Adc
Total Power Dissipation @ T _C =100°C	P _D	80	Watt
Thermal Resistance (Junction to Case)	9 -с	1.25	°C/W
Junction Temperature	TJ	-65 to +200	°C
Storage Temperature	T _{stg}	-65 to +200	°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS					
Collector-Base Voltage (I _C =10mA)	ВУСВО	120			Vdc
Collector-Emitter Voltage (I _C = 0.2A)	BV _{CEO}	90			Vdc
Emitter-Base Voltage (I _E =10mA)	BV _{EBO}	7.0			Vdo
Collector-Emitter Breakdown Voltage (I _C =200mA, V _{EB} =1.5V)	BV _{CEX}	120			Vdo
Emitter Cutoff Current (V _{EB} = 7.0 V)	I _{EBO}			10	MA
Collector Emitter Cutoff Current (V _{CE} = 110V, V _{EB} = 1.5V)	I _{CEX}			12	МА
ON CHARACTERISTICS					
DC Current Gain (V _{CE} =2.6V, I _C =50A)	h _{FE} *	10		50	
Collector Saturation Voltage (I _C = 50A, I _B = 5.0A)	V _{CE} (sat)*			1.3	Vd
Base Saturation Voltage (I _C = 50A, I _B = 5.0A)	V _{BE} (sat)*			2.0	Vd
DYNAMIC CHARACTERISTICS					
Small Signal Current Gain (V _{CE} =10V, I _C =2.0A, f=5.0MHz)	h _{fe}	10			
Collector Base Capacitance (V _{CB} =10V, I _C =0, f=1.0MHz)	C _{ob}			800	pF
Rise Time (V _{CC} =30V, I _C =50A, I _{B1} =5.0A, I _{B2} =5.0A)	t _r			1.0	μs
Storage Time $(V_{CC}=30V, I_{C}=50A, I_{B1}=5.0A, I_{B2}=5.0A)$	ts			1.5	μs
Fall Time $(V_{CC}=30V, I_C=50A, I_{B1}=5.0A, I_{B2}=5.0A)$	t _f			0.5	μs

^{*}Pulse Measurement Conditions: Length = $300\mu s$, Duty Cycle $\leq 2\%$

SILICON NPN TRANSISTORS

These double diffused, epitaxial collector devices are oxide passivated. They are designed for use in switching and many amplifier applications. The latest technologies are used to provide optimum performance and the highest degree of reliability.

RATINGS	SYMBOL	2N6033	UNIT
Collector-Base Voltage	V _{CBO}	150	Vdc
Collector-Emitter Voltage	V _{CEO}	120	Vdc
Emitter-Base Voltage	V _{EBO}	7.0	Vdc
Collector Current — Continuous	Ic	40	Adc
Base Current — Continuous	I _B	10	Adc
Total Power Dissipation @ T _C =100°C	P _D	80	Watt
Thermal Resistance (Junction to Case)	9-с	1.25	°C/W
Junction Temperature	TJ	-65 to +200	°C
Storage Temperature	T _{STG}	-65 to +200	°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS					
Collector-Base Voltage (I _C =10mA)	ву _{сво}	150			Vdc
Collector-Emitter Voltage (I _C = 0.2A)	BV _{CEO}	120			Vdc
Emitter-Base Voltage (I _E =10mA)	BV _{EBO}	7.0			Vdc
Collector-Emitter Breakdown Voltage (I _C =200mA, V _{EB} =1.5V)	BV _{CEX}	150			Vdc
Emitter Cutoff Current (V _{EB} = 7.0V)	I _{EBO}			10	MA
Collector Cutoff Current (V _{CE} =135, V _{BE} =-1.5V)	I _{CEX}			10	mA
ON CHARACTERISTICS	_				
DC Current Gain (V _{CE} =2.0V, I _C =40A)	h _{FE} *	10		50	
Collector Saturation Voltage (I _C =40A, I _B =4.0A)	V _{CE} (sat)*			1.0	Vdc
Base Saturation Voltage (I _C =40A, I _B =4.0A)	V _{BE} (sat)*			2.0	Vdc
DYNAMIC CHARACTERISTICS					
Small Signal Current Gain (V _{CE} =10V, I _C =2.0A, f=5.0MHz)	h _{fe}	10			
Collector Base Capacitance (V _{CB} =10V, f=1.0MHz)	Сов			800	pF
Rise Time $(V_{CC}=30V, I_{C}=40A, I_{B1}=4.0A, I_{B2}=4.0A)$	t _r			1.0	μs
Storage Time (V _{CC} =30V, I _C =40A, I _{B1} =4.0A, I _{B2} =4.0A)	t _s			1.5	μs
Fall Time (V _{CC} =30V, I _C =40A, I _{B1} =4.0A, I _{B2} =4.0A)	t _f	7.10		0.5	μs

^{*}Pulse Measurement Conditions: Length = 300 μ s, Duty Cycle \leq 2%

NPN SWITCHING POWER TRANSISTORS

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

MAXIMUM RATINGS

RATINGS	SYMBOL	2N6077	2N6078	UNIT
Collector-Base Voltage	V _{CBO}	300	275	Vdc
Collector-Emitter Voltage	V _{CEX}	300	275	Vdc
Emitter-Base Voltage	V _{EBO}	6	6	Vdc
Collector Current - Continuous	^I C	7.0	7.0	Adc
Base Current - Continuous	I _B	4.0	4.0	Adc
Total Power Dissipation @ T _C =100°C	P _D	25.7	25.7	Watt
Junction Temperature	T _J (MAX)	200	200	°C
Storage Temperature	T _{stg}	-65 to +200	-65 to +200	°C

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNIT
FF CHARACTERISTICS						
Collector-Emitter Voltage (I _C =0,2A)	2N6077 2N6078	BVCEO	275 250			Vdc
Emitter Cutoff Current (V _{EB} =6V)		I _{EBO}			1.0	mA
Collector Cutoff Current (V _{CE} =250V, I _B =0)	2N6077	I _{CEO}			2.0	mA
Collector Cutoff Current $(V_{CE}=250V, V_{BE}=-1.5V, T_{C}=125^{\circ}C)$ $(V_{CE}=250V, V_{BE}=-1.5V)$	2N6077 2N6077	I _{CEV}			8.0	mA
Collector Cutoff Current $(V_{CE}=250V, V_{BE}=-1.5V, T_{C}=125^{\circ}C)$ $(V_{CE}=250V, V_{BE}=-1.5V)$	2N6078 2N6078	I _{CEV}			0.2	mA
N CHARACTERISTICS						T
DC Current Gain (V _{CE} =1.0V, I _C =1.2A)		h _{FE} *	12		70	
Collector Saturation Voltage (I _C =3A, I _B =0.6A)	2N6077	V _{CE} (sat)*			1.0	Vdc
Collector Saturation Voltage (I _C =5A, I _B =1.0A)	2N6078	V _{CE} (sat)*			3.0	Vdc
Base Saturation Voltage (I _C =3A, I _B =0.6A)	2N6077	V _{BE} (sat)*			1.9	Vdc
Base Saturation Voltage (I _C =5A, I _B =1.0A)	2N6078	V _{BE} (sat)*			2.0	Vdc
YNAMIC CHARACTERISTICS						
Small Signal Current Gain (V _{CE} =10V, I _C =0.2A, f=1.0MHz)		h _{fe}	1.0			
Rise Time (V _{CC} =250V, I _C =1.2A, I _{B1} =0.2A, I _{B2} =	-0.2A)	t _r			0.75	μs
Storage Time $(V_{CC}^{=250V}, I_{C}^{=1.2A}, I_{B1}^{=0.2A}, I_{B2}^{=0.2A})$	=0.2A)	t _s			5.0	μS
Fall Time (V _{CC} =250V, I _C =1.2A, I _{B1} =0.2A, I _{B2} =	=0.2A)	t _f			0.75	μS

^{*}Pulse measurement conditions: Length = $300\mu s$, Duty Cycle $\leq 2\%$.

NPN SWITCHING POWER TRANSISTORS

This unique device utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

MAXIMUM RATINGS

RATINGS	SYMBOL	2N6079	UNIT
Collector-Base Voltage	V _{CBO}	375	Vdc
Collector-Emitter Voltage	v _{CEX}	375	Vdc
Emitter-Base Voltage	V _{EBO}	9	Vdc
Collector Current - Continuous	I _C	7.0	Adc
Base Current - Continuous	I _B	4.0	Adc
Total Power Dissipation @ T _C =100°C	P _D	25.7	Watt
Junction Temperature	T _J (MAX)	200	°C
Storage Temperature	T _{stg}	-65 to +200	°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
F CHARACTERISTICS					
Collector-Emitter Voltage (I _C =0.2A)	BV _{CEO}	350			Vdc
Emitter Cutoff Current (V _{EB} =9V)	I _{EBO}			1.0	mA
Collector Cutoff Current (V _{CE} =450V, V _{BE} = -1.5V, T _C =125°C)	I _{CEV}			5	mA
Collector Cutoff Current (V _{CE} =450V, V _{BE} = -1.5V)	I _{CEV}			0.5	mA
N CHARACTERISTICS					
DC Current Gain (V _{CE} =1.0V, I _C =1.2A)	h _{FE} *	12		50	
Collector Saturation Voltage (I _C =4A, I _B =0.8A)	V _{CE} (sat)*			3.0	Vdc
Collector Saturation Voltage (I _C =1.2A, I _B =0.2A)	V _{CE} (sat)*			0.5	Vdc
Base Saturation Voltage (I _C =4A, I _B =0.8A)	V _{BE} (sat)*			2.0	Vdc
Base Saturation Voltage (I _C =1.2A, I _B =0.2A)	V _{BE} (sat)*			1.6	Vdc
YNAMIC CHARACTERISTICS					
Small Signal Current Gain (V _{CE} =10V, I _C =0.2A, f=1.0MHz)	h _{fe}	1.0			
Rise Time (V _{CC} =250V, I _C =1.2A, I _{B1} =0.2A, I _{B2} =0.2A)	t _r			0.75	μs
Storage Time $(v_{CC}^{=250V}, I_{C}^{=1.2A}, I_{B1}^{=0.2A}, I_{B2}^{=0.2A})$	t _s			5.0	μs
Fall Time (V _{CC} =250V, I _C =1.2A, I _{B1} =0.2A, I _{B2} =0.2A)	^t f			0.75	μs

^{*}Pulse measurement conditions: Length = $300\mu s$, Duty Cycle $\leq 2\%$.

SILICON NPN TRANSISTORS

These double diffused, epitaxial collector devices are oxide passivated. They are designed for use in switching and many amplifier applications. The latest technologies are used to provide optimum performance and the highest degree of reliability.

RATINGS	SYMBOL	2N6232	UNIT
Collector-Base Voltage	V _{CBO}	140	Vdc
Collector-Emitter Voltage	V _{CEO}	100	Vdc
Emitter-Base Voltage	V _{EBO}	7.0	Vdc
Collector Current — Continuous	Ic	10	Adc
Base Current — Continuous	l _B	2.0	Adc
Total Power Dissipation @ T _C =100°C	P _D	15	Watt
Thermal Resistance (Junction to Case)	9 -с	6.67	°C/W
Junction Temperature	Tj	-65 to +200	°C
Storage Temperature	T _{stg}	+200	°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS					
Collector-Base Voltage (I _C =1.0mA)	BV _{CBO}	140			Vdc
Collector-Emitter Voltage (I _C =100mA)	BV _{CEO}	100			Vdc
Emitter-Base Voltage (I _E =10 ua)	BV _{EBO}	7.0		,	Vdc
Collector-Emitter Breakdown Voltage ($I_C=10\text{mA},\ R_{BE}=10\Omega$)	BV _{CER}	140			Vdc
Collector Cutoff Current (V _{CB} =140V)	Ісво			0.2	μΑ
Collector Cutoff Current (V _{CE} =140V)	I _{CES}			0.2	μΑ
ON CHARACTERISTICS					
DC Current Gain (V _{CE} =2.0V, I _C =0.5A)	h _{FE} *	40		250	
DC Current Gain (V _{CE} =2.0V, I _C =5.0A)	h _{FE} *	25		100	
DC Current Gain (V _{CE} = 5.0V, I _C = 10A)	h _{FE} *	20			
Collector Saturation Voltage (I _C = 5.0A, I _B = 0.5A)	V _{CE} (sat)*			0.7	Vdc
Collector Saturation Voltage (I _C =10A, I _B =1.0A)	V _{CE} (sat)*			1.4	Vdc
Base Saturation Voltage (I _C = 5.0A, I _B =0.5A)	V _{BE} (sat)*			1.4	Vdc
Base Saturation Voltage (I _C =10A, I _B =1.0A)	V _{BE} (sat)*			1.8	Vdc
DYNAMIC CHARACTERISTICS					
Small Signal Current Gain (V _{CE} =10V, I _C =0.2A, f=10MHz)	h _{fe}	3.0			
Collector Base Capacitance (V _{CB} =10V, I _C = , f=1.0MHz)	Сов			150	pF
Turn-on Time $(V_{CC}=30V, I_{C}=5.0A, I_{B1}=0.5A, I_{B2}=0.5A)$	t _{on}			0.25	μs
Turn-off Time $(V_{CC}=30V, I_{C}=5.0A, I_{B1}=0.5A, I_{B2}=0.5A)$	t _{off}			1.2	μs

NPN SWITCHING POWER TRANSISTORS

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

MAXIMUM RATINGS

RATINGS	SYMBOL	2N6233	2N6234	2N6235	UNIT
Collector-Base Voltage	V _{CBO}	250	350	Vdc	
Collector-Emitter Voltage	V _{CEO}	225	325	Vdc	
Emitter-Base Voltage	V _{EBO}			Vdc	
Collector Current - Continuous	I _C			Adc	
Base Current - Continuous	I _B			Adc	
Total Power Dissipation@ T _C =25°C	PD			Watt	
Thermal Resistance (Junction to Case)	θ _{J-C}		°C/W		
Junction Temperature	Т _Ј		°C		
Storage Temperature	T _{stg}		-65 to +200		°C

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNIT
F CHARACTERISTICS						
Collector-Base Voltage (I _C =100μA)	2N6233 2N6234 2N6235	BV _{CBO}	250 300 350			Vdc
Collector-Emitter Voltage (I _C =20mA)	2N6233 2N6234 2N6235	BV _{CEO}	225 275 325			Vdc
Emitter-Base Voltage $(I_E^{-100\mu A})$		BV _{EBO}	6.0			Vdc
Collector Cutoff Current $(V_{CB}^{-Rated} V_{CB})$		ІСВО			100	μA
Emitter Cutoff Current (V _{EB} =6.0V)		I _{EBO}			100	μA
CHARACTERISTICS						
DC Current Gain (V _{CE} =5.0V, I _C =100mA)		h _{FE} *	25			
DC Current Gain (V _{CE} =5.0V, I _C =1.0A)		h _{FE} *	25		125	
Collector Saturation Voltage (I _C =1.0A, I _B =100mA)		V _{CE} (sat)*			0.5	Vd
Base Saturation Voltage (I _C =1.0A, I _B =100mA)		V _{BE} (sat)*			1.0	Vd
DYNAMIC CHARACTERISTICS						
Small Signal Current Gain (V _{CE} =10V, I _C =0.25A, f=10MHz)		h _{fe}	2.0			
Collector Base Capacitance (V _{CB} =10V, f=1MHz)		C _{ob}			250	pI
Delay Time $(V_{CC}^{=200V}, I_{C}^{=1.0A}, I_{B1}^{=100mA}, I_{B2}^{=100mA})$	=100mA)	t _d			0.05	με
Rise Time $(V_{CC}^{=200V}, I_{C}^{=1.0A}, I_{B1}^{=100mA}, I_{B2}^{=100mA})$	=100mA)	t _r			0.5	με
Storage Time $(V_{CC}^{=200V}, I_{C}^{=1.0A}, I_{B1}^{=100mA}, I_{B2}^{}$		t _s			3.5	μ
Fall Time (V _{CC} =200V, I _C =1.0A, I _{B1} =100mA, I _{B2}	=100mA)	t _f			0.5	μ

^{*}Pulse measurement conditions: Length = $300\mu s$, Duty Cycle \leq 2%.

NPN 2N6274

SILICON NPN TRANSISTORS

These double diffused, epitaxial collector devices are oxide passivated. They are designed for use in switching and many amplifier applications. The latest technologies are used to provide optimum performance and the highest degree of reliability.

RATINGS	SYMBOL	2N6274	UNIT
Collector-Base Voltage	V _{CBO}	120	Vdc
Collector-Emitter Voltage	V _{CEO}	100	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current — Continuous	Ic	50	Adc
Base Current — Continuous	IB	20	Adc
Total Power Dissipation @ T _C =25°C	P _D	250	Watt
Thermal Resistance (Junction to Case)	9 -с	0.7	°C/W
Junction Temperature	TJ	-65 to +200	°C
Storage Temperature	T _{stg}	-65 to +200	°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (I _C = 50mA)	BV _{CEO (sus)}	100			Vdc
Emitter Cutoff Current (V _{EB} = 6.0V)	I _{EBO}			100	μ A
Collector Cutoff Current (Vc=Rated VcB) VEB=1.5V)	I _{CEX}			10	μΑ
Collector Cutoff Current (VcE=Rated VcB) VEB=1.5V) @ Tc=150°C	I _{CEX}			1.0	mA
ON CHARACTERISTICS					
DC Current Gain (V _{CE} =4.0V, I _C =1.0A)	h _{FE} *	50			
DC Current Gain (V _{CE} = 4.0V, I _C = 20A)	h _{FE} *	30		120	
DC Current Gain (V _{CE} = 4.0V, I _C = 50A)	h _{FE} *	10			
Collector Saturation Voltage (I _C =20A, I _B =2.0A)	V _{CE} (sat)*			1.0	Vdc
Collector Saturation Voltage (I _C =50A, I _B =10A)	V _{CE} (sat)*			3.0	Vdc
Base Saturation Voltage (I _C =20A, I _B =2.0A)	V _{BE} (sat)*			1.8	Vdc
Base Saturation Voltage (I _C =50A, I _B =10A)	V _{BE} (sat)*			3.5	Vdc
DYNAMIC CHARACTERISTICS					
Small Signal Current Gain (V _{CE} =10V, I _C =1.0A, f=10MHz)	h _{fe}	3.0			
Collector Base Capacitance (V _{CB} = 10V, f = 0.1 MHZ)	Сов			600	pF
Rise Time (V _{CC} = 80V, I _C = 20A, I _{B1} = 2.0A, I _{B2} = 2.0A)				0.35	μs
Storage Time (V _{CC} = 80V, I _C = 20A, I _{B1} = 2.0A, I _{B2} = 2.0A)	t _s			0.80	μs
Fall Time (V _{CC} =80V, I _C =20A, I _{B1} =2.0A, I _{B2} =2.0A)	t _f			0.25	μs

^{*}Pulse Measurement Conditions: Length = $300\mu s$, Duty Cycle $\leq 2\%$

NPN SWITCHING POWER TRANSISTORS

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

MAXIMUM RATINGS

RATINGS	SYMBOL	2N6275	2N6276	UNIT
Collector-Base Voltage	V _{CBO}	140	160	Vdc
Emitter-Base Voltage	V _{EBO}		Vdc	
Collector Current - Continuous	I _C		Adc	
Base Current - Continuous	I _B	2	20	Adc
Total Power Dissipation @T _C =25°C	P _D	25	50	Watt
Junction Temperature	$^{\mathrm{T}}\mathrm{_{J}}$	-65 t	°C	
Storage Temperature	T _{stg}	-65 t	°C	

1.0 1.0 1.0	Vdc μA mA
1.0	μ Α
1.0	
1.0	mA
10	
	μΑ
120	
1.8	v
3.0	Vdc
1.0	Vdc
3.5	Vdc
1.8	Vdc
600	pF
0.35	μs
0.80	μs
0.25	μs
	3.0 1.0 3.5 1.8 600 0.35

^{*}Pulse measurement conditions: Length = $300\mu s$, Duty Cycle $\leq 2\%$.

CR 2N6277

NPN SWITCHING POWER TRANSISTORS

This unique device utilizes General Semiconductor Industries' ${\it C}^2{\it R}$ process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

MAXIMUM RATINGS

RATINGS	SYMBOL	2N6277	UNIT
Collector-Base Voltage	V _{CBO}	180	Vdc
Collector-Emitter Voltage	V _{CEO}	150	Vdc
Emitter-Base Voltage	V _{EBO}	6	Vdc
Collector Current - Continuous	I _C	50	Adc
Base Current - Continuous	I _B	20	Adc
Total Power Dissipation @T _C =25°C	P _D	250	Watt
Thermal Resistance (Junction to Case)	θЈС	0.7	°C/W
Junction Temperature	$^{\mathrm{T}}_{\mathrm{J}}$	-65 to +200	°C
Storage Temperature	T _{stg}	-65 to +200	°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNI
F CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (I _C =50mA)	BV _{CEO} (sus)	150			Vdc
Emitter Cutoff Current $(V_{EB}=6V)$	I _{EBO}			100	μА
Collector Cutoff Current (V _{CE} =180V, V _{BE} =1.5V, T _C =150°C)	ICEX			1.0	mA
Collector Cutoff Current (V _{CE} =180V, V _{BE} =1.5V)	¹ CEX			10	μA
CHARACTERISTICS					
DC Current Gain (V _{CE} =4V, I _C =50A)	h _{FE} *	10			
DC Current Gain (V _{CE} =4V, I _C =20A)	h _{FE} *	30		120	
DC Current Gain (V _{CE} =4V, I _C =1A)	h _{FE} *	50			
Base Emitter On Voltage (V _{CE} =4V, I _C =20A)	V _{BE} (on)			1.8	v
Collector Saturation Voltage (I _C =50A, I _B =10A)	V _{CE} (sat)*			3.0	Vdo
Collector Saturation Voltage $(I_C=20A, I_B=2A)$	V _{CE} (sat)*			1.0	Vdo
Base Saturation Voltage (I _C =50A, I _B =10A)	V _{BE} (sat)*			3.5	Vdo
Base Saturation Voltage (I _C =20A, I _B =2A)	V _{BE} (sat)*			1.8	Vde
YNAMIC CHARACTERISTICS					
Small Signal Current Gain (V _{CE} =10V, I _C =1A, f=10MHz)	h _{fe}	3			
Collector Base Capacitance (V _{CB} =10V, I _C =0, f=0.1MHz)	C _{ob}			600	pF
Rise Time $(V_{CC}=80V, I_C=20A, I_{B1}=2A, I_{B2}=2A)$	t _r			0.35	μs
Storage Time $(V_{CC}^{=80V}, I_{C}^{=20A}, I_{B1}^{=2A}, I_{B2}^{=2A})$	t _s			0.80	μs
Fall Time (V _{CC} =80V, I _C =20A, I _{B1} =2A, I _{B2} =2A)	^t f			0.25	μS

^{*}Pulse measurement conditions: Length = $300\mu s$, Duty Cycle $\leq 2\%$.

SILICON NPN TRANSISTORS

These double diffused, epitaxial collector devices are oxide passivated. They are designed for use in switching and many amplifier applications. The latest technologies are used to provide optimum performance and the highest degree of reliability.

RATINGS	SYMBOL	2N6278	UNIT
Collector-Base Voltage	V _{CBO}	120	Vdc
Collector-Emitter Voltage	V _{CEO}	100	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current — Continuous	Ic	50	Adc
Base Current — Continuous	I _B	20	Adc
Total Power Dissipation @ T _C = 25°C	P _D	250	Watt
Thermal Resistance (Junction to Case)	9 -с	0.7	°C/W
Junction Temperature	TJ	-65 to +200	°C
Storage Temperature	T _{stg}	-65 to +200	°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (I _C = 50mA)	BV _{CEO (SUS)}	100			Vdc
Emitter-Base Voltage (I _E =100 ua)	BV _{EBO}	6.0			Vdc
Emitter Cutoff Current (V _{EB} =6.0V)	I _{EBO}			100	μΑ
Collector Cutoff Current (V _{CE} =Rated V _{CB} , V _{EB} =1.5V)	I _{CEX}			10	μΑ
Collector Cutoff Current (V _{CE} =Rated V _{CB} , V _{EB} =1.5V @ Tc=150°C)	, I _{CEX}			1.0	mA
ON CHARACTERISTICS					
DC Current Gain (V _{CE} = 4.0V, I _C = 1.0A)	h _{FE} *	50			
DC Current Gain (V _{CE} =4.0V, I _C =20A)	h _{FE} *	30		120	
DC Current Gain (V _{CE} = 4.0V, I _C = 50A)	h _{fe} *	10			
Collector Saturation Voltage (I _C =20A, I _B =2.0A)	V _{CE} (sat)*			1.2	Vdc
Collector Saturation Voltage (I _C =50A, I _B =10A)	V _{CE} (sat)*			3.0	Vdc
Case Saturation Voltage (I _C =20A, I _B =2.0A)	V _{BE} (sat)*			1.8	Vdd
Base Saturation Voltage (I _C =50A, I _B =10A)	V _{BE} (sat)*			3.5	Vdo
DYNAMIC CHARACTERISTICS					<u> </u>
Small Signal Current Gain (V _{CE} = 10V, I _C = 1.0A, f= 10MHz)	h _{fe}	3.0			
Collector Base Capacitance (V _{CB} = 10V, f = 0.1 MHZ)	Cob			600	pF
Rise Time (V _{CC} =80V, I _C =20A, I _{B1} =2.0A, I _{B2} =2.0A)	t _r			0.35	μs
Storage Time (V _{CC} =80V, I _C =20A, I _{B1} =2.0A, I _{B2} =2.0A)	t _s			0.80	μs
Fall Time (V _{CC} =80V, I _C =20A, I _{B1} =2.0A, I _{B2} =2.0A)	t _f			0.2	5 μs

^{*}Pulse Measurement Conditions: Length = 300 μ s, Duty Cycle $\leq 2\%$

NPN SWITCHING POWER TRANSISTORS

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

MAXIMUM RATINGS

RATINGS	SYMBOL	2N6279	2N6280	2N6281	UNIT
Collector-Base Voltage	V _{CBO}	140	160	180	Vdc
Collector-Emitter Voltage	v _{ceo}	120	140	150	Vdc
Emitter-Base Voltage	V _{EBO}		Vdc		
Collector Current - Continuous	I _C		Adc		
Base Current - Continuous	I _B		Adc		
Total Power Dissipation @T _C =25°C	P _D		Watt		
Thermal Resistance (Junction to Case)	θ _{J-C}		°C/W		
Junction Temperature	$^{\mathrm{T}}\mathrm{_{J}}$	-65 to +200			
Storage Temperature	T _{stg}		°C		

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Collector-Emitter Voltage (I _C =50mA)	2N6279 2N6280 2N6281	BV _{CEO}	120 140 150			Vdc
Emitter Cutoff Current (V _{EB} =6.0V)		I _{EBO}			100	μА
Collector Cutoff Current $(V_{CE}^{-Rated}, V_{EB}^{-1.5V})$	2N6279 2N6280 2N6281	ICEX		-	10 10 10	μА
Collector Cutoff Current $(V_{CE}^{=Rated} V_{CB}, V_{EB}^{=1.5V}, T_{C}^{=150^{\circ}C})$	2N6279 2N6280 2N6281	ICEX			1.0 1.0 1.0	mA
N CHARACTERISTICS						
DC Current Gain (V _{CE} =4.0V, I _C =1.0A)		h _{FE} *	50			
DC Current Gain (V _{CE} =4.0V, I _C =20A)		h _{FE} *	30	,	120	
Collector Saturation Voltage $(I_C=20A, I_B=2.0A)$		V _{CE} (sat)*			1.2	Vdc
Collector Saturation Voltage (I _C =50A, I _B =10A)		V _{CE} (sat)*			3.0	Vdc
Base Saturation Voltage (I _C =20A, I _B =2.0)		V _{BE} (sat)*			1.8	Vdc
Base Saturation Voltage (I _C =50A, I _B =10A)		V _{BE} (sat)*			3.5	Vdc
DYNAMIC CHARACTERISTICS						
Small Signal Current Gain (V _{CE} =10V, I _C =1.0A, f=10MHz)		h _{fe}	3.0			
Collector Base Capacitance (V _{CB} =10V, I _E =0, f=0.1MHz)		C _{ob}			600	pF
Rise Time $(V_{CC}=80V, I_{C}=20A, I_{B1}=2.0A, I_{B2}=2.0A)$		t _r			0.35	μs
Storage Time (V _{CC} =80V, I _C =20A, I _{B1} =2.0A, I _{B2} =2.0A)		ts			0.80	μs
Fall Time (V _{CC} =80V, I _C =20A, I _{B1} =2.0A, I _{B2} =2.0A)		t _f			0.25	μs

^{*}Pulse measurement conditions: Length = 300 μ s, Duty Cycle \leq 2%.

NPN 2N6338 2N6339

SILICON NPN TRANSISTORS

These double diffused, epitaxial collector devices are oxide passivated. They are designed for use in switching and many amplifier applications. The latest technologies are used to provide optimum performance and the highest degree of reliability.

RATINGS	SYMBOL	2N6338	2N6339	UNIT
Collector-Base Voltage	V _{CBO}	120	140	Vdc
Collector-Emitter Voltage	V _{CEO}	100	120	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	6.0	Vdc
Collector Current — Continuous	lc	25	25	Adc
Base Current — Continuous	I _B	10	10	Adc
Total Power Dissipation @ T _C = 25°C	PD	200	200	Watt
Thermal Resistance (Junction to Case)	9 -с	.875	.875	°C/W
Junction Temperature	TJ	-65 to +200	-65 to +200	°C
Storage Temperature	T _{stg}	-65 to +200	-65 to +200	°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage 2N6338 (I _C = 50 MA) 2N6339	BV _{CEO (SUS)}	100 120			Vdc
Collector-Emitter Cutoff Current (V _{CE} = Rated V _{CEO})	I _{CEX}			10	μΑ
Emitter Cutoff Current (V _{EB} = 6.0V)	I _{EBO}			100	μΑ
Collector Cutoff Current (V _{CB} = Rated V _{CBO})	I _{CBO}			10	μΑ
ON CHARACTERISTICS					
DC Current Gain (V _{CE} =2.0V, I _C =0.5A)	h _{FE} *	50			
DC Current Gain (V _{CE} = 2.0V, I _C = 10A)	h _{FE} *	30		120	
DC Current Gain (V _{CE} = 2.0V, I _C = 25A)	h _{FE} *	12			
Collector Saturation Voltage (I _C =10A, I _B =1.0A)	V _{CE} (sat)*			1.0	Vdc
Collector Saturation Voltage (I _C =25A, I _B =2.5A)	V _{CE} (sat)*			1.8	Vdc
Base Saturation Voltage (I _C =10A, I _B =1.0A)	V _{BE} (sat)*			1.8	Vdc
Base Saturation Voltage (I _C =25A, I _B =2.5A)	V _{BE} (sat)*			2.5	Vdc
DYNAMIC CHARACTERISTICS					
Small Signal Current Gain (V _{CE} =10V, I _C =1.0A, f=10MHz)	h _{fe}	4.0			
Collector Base Capacitance (V _{CB} = 10V, I _C = , f = 0.1MHZ)	C _{ob}			300	pF
Rise Time (V _{CC} = 80V, I _C = 10A, I _{B1} = 1.0A, I _{B2} = 1.0A)	t _r			0.3	μS
Storage Time (V _{CC} = 80V, I _C = 10A, I _{B1} = 1.0A, I _{B2} = 1.0A)	ts			1.0	μS
Fall Time (V _{CC} =80V, I _C =10A, I _{B1} =1.0A, I _{B2} =1.0A)	t _f			0.25	μs

^{*}Pulse Measurement Conditions: Length = $300\mu s$, Duty Cycle $\leq 2\%$

NPN 2N6340 2N6341

SILICON NPN TRANSISTORS

These double diffused, epitaxial collector devices are oxide passivated. They are designed for use in switching and many amplifier applications. The latest technologies are used to provide optimum performance and the highest degree of reliability.

RATINGS	SYMBOL	2N6340	2N6341	UNIT
Collector-Base Voltage	V _{CBO}	160	180	Vdc
Collector-Emitter Voltage	V _{CEO}	140	150	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	6.0	Vdc
Collector Current — Continuous	Ic	25	25	Adc
Base Current — Continuous	IB	10	10	Adc
Total Power Dissipation @ T _C = 25°C	PD	200	200	Watt
Thermal Resistance (Junction to Case)	θ _{J-C}	.875	.875	°C/W
Junction Temperature	TJ	-65 to +200		°C
Storage Temperature	T _{stg}	-65 to +200		°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS					
Collector-Emitting Sustaining Voltage 2N6340 (Ic = 50 ma) 2N6341	BV _{CEO (SUS)}	140 150			Vdc
Collector Cutoff Current (V _{CE} = Rated V _{CB})	I _{CEX}	10			μА
Emitter Cutoff Current (V _{EB} =6.0V)	I _{EBO}			100	μΑ
Collector Cutoff Current $(V_{CB} = Rated V_{CE})$	Ісво			10	μΑ
ON CHARACTERISTICS					
DC Current Gain (V _{CE} =2.0V, I _C =0.5A)	h _{FE} *	50			
DC Current Gain (V _{CE} =2.0V, I _C =10A)	h _{FE} *	30		120	
DC Current Gain (V _{CE} =2.0V, I _C =25A)	h _{FE} *	12			
Collector Saturation Voltage (I _C =10A, I _B =1.0A)	V _{CE} (sat)*			1.0	Vdc
Collector Saturation Voltage (I _C =25A, I _B =2.5A)	V _{CE} (sat)*			1.8	Vdc
Base Saturation Voltage (I _C =10A, I _B =1.0A)	V _{BE} (sat)*			1.8	Vdc
Base Saturation Voltage (I _C =25A, I _B =2.5A)	V _{BE} (sat)*			2.5	Vdc
DYNAMIC CHARACTERISTICS					
Small Signal Current Gain (V _{CE} =10V, I _C =1.0A, f=10MHz)	h _{fe}	4.0			
Collector Base Capacitance ($V_{CB} = 10V$, $I_{C} = 0.1$ MHZ)	C _{ob}			300	pF
Rise Time $(V_{CC}=80V, I_{C}=10A, I_{B1}=1.0A, I_{B2}=1.0A)$	t _r			0.3	μs
Storage Time $(V_{CC}=80V, I_{C}=10A, I_{B1}=1.0A, I_{B2}=1.0A)$	t _s	-15		1.0	μs
Fall Time (V _{CC} =80V, I _C =10A, I _{B1} =1.0A, I _{B2} =1.0A)	t _f			0.25	μs

^{*}Pulse Measurement Conditions: Length = 300µs, Duty Cycle ≤ 2%

15 Amp NPN 300, 350, 400V 2N6653, 54, 55 XGSR15030, 35, 40

C²R HIGH SPEED/HIGH POWER SWITCHING TRANSISTORS

The XGSR series is an NPN double diffused epitaxial transistor designed for high speed switching systems. This unique series utilizes General Semiconductor Industries' C²R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability. Another design feature is the use of an interdigitated emitter providing a periphery greater than 7.0 inches (18 cm) which improves both the gain characteristics and current handling capability.

These transistors have been specifically designed and engineered for high speed/high voltage switching applications where the designer is concerned with optimizing power conversion efficiency.

In order to supply the user with a more complete definition of the C²R switching transistor capability, General Semiconductor Industries has attempted to furnish a data sheet with a thorough and meaningful technical dialogue.

FEATURES:

- HIGH VOLTAGE
- HIGH GAIN
- HIGH CURRENT
- LOW SATURATION VOLTAGES
- FAST SWITCHING
- LOW LEAKAGE CURRENT

APPLICATIONS:

- HIGH SPEED SWITCHING
- POWER CONVERSION
- CONVERTERS
- INVERTERS
- CLASS D AMPLIFIERS
- CLASS C AMPLIFIERS

MAXIMUM RATINGS (T _J = 25°C unless o	therwise noted)	2N6653	2N6654	2N6655	7
RATING	SYMBOL	XGSR15030	XGSR15035	XGSR15040	UNIT
Collector-Base Voltage	V _{CBO}	350	400	450	Volts
Collector-Emitter Voltage	V _{CEO}	300	350	400	Volts
Emitter-Base Voltage	V _{EBO}	7.0	7.0	7.0	Volts
Collector Current - Continuous	I _C	20	20	20	Amp
Peak	I _{CM}	30	30	30	Amp
Base Current-Continuous	IB	10	10	10	Amp
Emitter Current - Continuous	l _E	30	30	30	Amp
Peak	EM	40	40	40	Amps
Total Power Dissipation @T _C = 100°C	P _D	75	75	75	Watt
Total Power Dissipation @T _C = 25°C	PD	150	150	150	Watt
Junction to Case Thermal Resistance	R _{euc}	1.0	1.0	1.0	°C/W
Operating and Storage Junction	T _{J (oper)}	-65 to +175	-65 to +175	-65 to +1/5	°c
Temperature Range	T _{stg}	-65 to +200	-65 to +200	-65 to +200	°c

2001 West Tenth Place, Tempe. Arizona 85281 + 602 968 3101 + TWX910 950 1942 Mailing Address P.O. Box 30#8

GENERAL SEMICONDUCTOR INDUSTRIES, INC

					2N6654 XGSR 15035		2N6655 XGSR15040	
SYMBOL	CONDITIONS	Min	Max	Min	Max	Min	Max	UNIT
V _{СВО}	I _C = 1.0mA	350	_	400	-	450	-	Volts
V _{CEO}	I _C = 50mA	300	_	350	_	400	-	Volt
V _{EBO}	I _E = 1.0mA	7.0	-	7.0	-	7.0		Volt
V _{CEX} (SUS)	I _C = 50mA, V _{BE} = -1.5V	350	_	400	_	450		Volt
V _{CER} (SUS)	$I_C = 50 \text{mA}, R = 47\Omega$	325	-	375	_	425	_	Volt
I _{CBO} (1)	V _{CB} = 80% V _{cb} Rated		500	_	500		500	μΑ
I _{CEX} (2)	V _{CB} = 100% V _{cb} Rated, V _{BE} = -1.5V	_	100	-	100	-	100	μΑ
I _{EBO} (1)	V _{EB} = 5.0V	_	100	_	100	_	100	μΑ
I _{EBO} (2)	V _{EB} = 7.0V	_	50	_	50	_	50	μΑ
I _{CEO}	V _{CE} = 80% V _{CE} Rated	_	1.0	_	1.0	_	1.0	mΑ
CEX	$V_{CE} = V_{CEO}$ Rated, $V_{BE} = -1.5V$, $T_J = 150^{\circ}$ C	_	3.0	_	3.0	_	3.0	mA
			+	r			,	
h _{FE*} (1)	V _{CE} = 5.0V, I _C = 15A	10		10	<u> </u>	10		
h _{FE*} (2)	V _{CE} = 2.0V, I _C = 15A	10	<u> </u>	10		10	<u> </u>	_
V _{CE (sat)*}	I _C = 15A, I _B = 3A		0.6	_	0.6		0.8	Vol
V _{BE (sat)} .	I _C = 15A, I _B = 3A		1.3	-	1.3	_	1.3	Vol
f _T	V _{CE} = 10V, I _C = 1.0A, 10MHz	25	75	25	75	25	75	МН
C _{obo}	V _{CB} = 10V, f = 1MHz	100	300	100	300	100	300	pF
						•		
t _d			0.05	-	0.05		0.05	μse
t _r	$\begin{cases} V_{CC} = 200V, I_{C} = 15A, \\ I_{B1} = I_{B2} = 3.0A, t_{p} = 10\mu_{s}, \\ Duty Cycle < 2.0\%, Resistive \end{cases}$	-	0.2	-	0.2	-	0.2	μse
t _s	$\{ $		1.5	-	1.5	_	1.5	μse
t _f	1 (===, =,== ====,,		0.35		0.35	 	0.35	μse

^{*}Pulse measurement conditions: Length = 300 µsec, Duty Cycle < 2% (measured using separate current carrying and voltage sensing leads).

⁽¹⁾ Test conditions and limits for XGSR15030, 15035, 15040

⁽²⁾ Test conditions and limits for 2N6653, 2N6654, 2N6655

DC CHARACTERISTICS

★ GENERAL SEMICONDUCTOR INDUSTRIES, INC. 2001 West Fenth Place, Tempe: Arizona 85281 • 602 968 3101 • TWX910 950 1942 Mailing Address - P.O. Box 3078

GENERAL SEMICONDUCTOR INDUSTRIES, INC.

★ GENERAL SEMICONDUCTOR INDUSTRIES, INC.

IBI/IBE RATIO

2001 West Tenth Place, Tempe, Arizona 85281 + 602 968 3101 + TWX910 950 1942 Mailing Address... P.O. Box 3078

GENERAL SEMICONDUCTOR INDUSTRIES, INC.

SAFE OPERATING AREA CHARACTERISTICS

APPLICATION NOTES "Snubber" Networks

High speed switching transistors are quite often characterized by their very low ${\sf E_{S/B}}$ and SOA values. In order to take advantage of the high speed performance of the XGSR series transistors it may be necessary to use load line shaping techniques. This is especially true in high energy switching regulators, converters, switching amplifiers and large inductive loads. The "turn-off" network or current "snubber" will prevent transistor degradation or failure by eliminating simultaneous occurance of high current and high voltage at "turn-off".

Unilateral switching applications (such as flyback or series switching regulators) can be effectively snubbed with the R-C-diode snubber depicted in figure (a).

Multilateral switching applications (such as bridge and "push-pull" inverters) can be adequately snubbed by using R-C snubbers across the transformer primary as shown in figure (b).

Proper snubber design will minimize dissipative losses at turn-off while affording the transistor a considerably "safer" turn-off load line (figure c).

Further information on load line shaping including design aids are included in General Semiconductor Industries" Application Note titled Methods For Utilizing High Speed Switching Transistors In High Energy Switching Environments by William Skanadore.

2001 West Tenth Place Tempe, Arizona 85281 + 602 968 3101 + TWX910 950 1942 **★**束 GENERAL SEMICONDUCTOR INDUSTRIES, INC Mailing Address P.O. Box 3078

GENERAL SEMICONDUCTOR INDUSTRIES, INC.

GENERAL SEMICONDUCTOR INDUSTRIES, INC

2001 West Tenth Place, Tempe. Arizona 85281 • 602 968 3101 • TWX910 - 950 1942 Mailing Address. P.O. Box 3078

GSDB10008

SILICON NPN TRANSISTORS

These double diffused, epitaxial collector devices are oxide passivated. They are designed for use in switching and many amplifier applications. The latest technologies are used to provide optimum performance and the highest degree of reliability.

ABSOLUTE MAXIMUM RATINGS

RATINGS	SYMBOL	GSDB10008	UNIT
Collector-Base Voltage	V _{CBO}	100	Vdc
Collector-Emitter Voltage	V _{CEO}	80	Vdc
Emitter-Base Voltage	V _{EBO}	7.0	Vdc
Collector Current — Continuous	Ic	10	Adc
Base Current — Continuous	I _B	2.0	Adc
Total Power Dissipation @ 100°C	P _D	15	Watt
Thermal Resistance (Junction to Case)	Θ_{J-C}	6.67	°C/W
Junction Temperature	Т	-65 to +200	°C
Storage Temperature	T _{stg}	-65 to +200	°C

CHARACTERISTIC	SYMBOL	MIN	MAX	UNIT
OFF CHARACTERISTICS				
Collector-Base Voltage $(I_C = 10 \mu A)$	BV _{CBO}	100		Vdc
Collector-Emitter Voltage (I _C = 50 MA)	BV _{CEO}	80		Vdc
Emitter-Base Voltage $(I_E = 10 \mu A)$	BV _{EBO}	7.0		Vdc
Collector Cutoff Current (V _{CB} = 80 V)	I _{CBO}		1.0	μΑ
Emitter Cutoff Current (V _{EB} = 5.0 V)	I _{EBO}	-	1.0	μА
ON CHARACTERISTICS		•		
DC Current Gain (V _{CE} = 5 V, I _C = 5 A)	h _{FE} *	40	160	
DC Current Gain (V _{CE} = 5 V, I _C = 10 A)	h _{FE} *	20		
Collector Saturation Voltage (I _C = 5 A, I _B = 0.5 A)	V _{CE} (sat)*		0.6	Vdc
Collector Saturation Voltage (I _C = 10 A, I _B = 1.0 A)	V _{CE} (sat)*		1.0	Vdc
Base Saturation Voltage (I _C = 10 A, I _B = 1.0 A)	V _{BE} (sat)*		1.5	Vdc
DYNAMIC CHARACTERISTICS				
Current-Gain — Bandwidth Product (I _C = 0.5 A, V _{CE} = 10 V, f = 10 MHz)	f _T	50		MHz
Small Signal Current Gain $(V_{CE} = 10 \text{ V}, I_{C} = 0.5 \text{ A}, f = 10 \text{ MHz})$	h _{fe}	5.0		
Collector Base Capacitance (V _{CB} = 10 V, f = 1 MHz)	C _{ob}		150	pF
Delay Time $(V_{CC} = 25 \text{ V}, I_C = 5 \text{ A}, I_{B1} = 0.5 \text{ A}, I_{B2} = 0.5 \text{ A})$	t _d		0.05	μs
Rise Time $(V_{CC} = 25 \text{ V}, I_C = 5 \text{ A}, I_{B1} = 0.5 \text{ A}, I_{B2} = 0.5 \text{ A})$	t _r		0.10	μs
Storage Time $(V_{CC} = 25 \text{ V}, I_C = 5 \text{ A}, I_{B1} = 0.5 \text{ A}, I_{B2} = 0.5 \text{ A})$	t _s		0.75	μs
Fall Time $(V_{CC} = 25 \text{ V}, I_C = 5 \text{ A}, I_{B1} = 0.5 \text{ A}, I_{B2} = 0.5 \text{ A})$	t _f		0.10	μs

^{*}Pulse measurement conditions: Length = $300\mu s$, Duty Cycle $\leq 2\%$.

GSDR10020 GSDR10025

NPN SWITCHING POWER TRANSISTORS

This unique device utilizes General Semiconductor Industries' C²R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

ABSOLUTE MAXIMUM RATINGS

RATINGS	SYMBOL	GSDR10020	GSDR10025	UNIT
Collector-Base Voltage	V _{CBO}	250	300	Vdc
Collector-Emitter Voltage	V _{CEO}	200	250	Vdc
Emitter-Base Voltage	V _{EBO}	7.0	7.0	Vdc
Collector Current — Continuous	Ic	15	15	Adc
Base Current — Continuous	I _B	5.0	5.0	Adc
Total Power Dissipation @ T _C = 100°C	P _D	80	80	Watt
Thermal Resistance (Junction to Case)	θ _{J-C}	1.25	1.25	°C/W
Junction Temperature	TJ	-65 to +200	-65 to +200	°C
Storage Temperature	T _{stg}	-65 to +200	-65 to +200	°C

HARACTERISTIC	SYMBOL	MIN	MAX	UNIT
OFF CHARACTERISTICS	·	т	,	
Collector-Base Voltage GSDR10020 (I _C = 1.0mA) GSDR10025	BV _{CBO}	250 300		Vdc
Collector-Emitter Voltage GSDR10020 GSDR10025	BV _{CEO}	200 250		Vdc
Emitter-Base Voltage (I _E = 1.0mA)	BV _{EBO}	7.0		Vdc
Collector-Emitter Breakdown Voltage GSDR10020 (I _C = 50mA, V _{EB} = 1.5V) GSDR10025	BV _{CEX}	250 300		Vdc
Collector-Emitter Breakdown Voltage GSDR10020 (I _C = 50mA, R = 100Ω) GSDR10025	BV _{CER}	225 275		Vdc
Collector Cutoff Current (V _{CB} = 80% Rated V _{CB})	Ісво		500	μΑ
Emitter Cutoff Current (V _{EB} = 5.0V)	I _{EBO}		100	μΑ
Collector Cutoff Current (V _{CE} = 80% Rated V _{CC})	I _{CEO}		1.0	mA
N CHARACTERISTICS				
DC Current Gain (V _{CE} = 5.0V, I _C = 10A)	h _{FE} *	10		
Collector Saturation Voltage (I _C = 10A, I _B = 2A)	V _{CE} (sat)*		0.6	Vdc
Base Saturation Voltage (I _C = 10A, I _B = 2A)	V _{BE} (sat)*		1.5	Vdc
YNAMIC CHARACTERISTICS				
Current Gain — Bandwidth Product (I _C = 1.0A, V _{CE} = 10V, f = 10 MHz)	f _T	25		MHz
Collector Base Capacitance (V _{CB} = 10V, f = 1 MHz)	C _{ob}		200	pF
Turn-on Time $(V_{CC} = 100V, I_C = 10A, I_{B1} = 2A, I_{B2} = 2A)$	t _{on}		0.15	μs
Turn-off Time $(V_{CC} = 100V, I_C = 10A, I_{B1} = 2A, I_{B2} = 2A)$	t _{off}		1.6	μs
Storage Time $(V_{CC} = 100V, I_C = 10A, I_{B1} = 2A, I_{B2} = 2A)$	t _s		1.3	μs
Fall Time $(V_{CC} = 100V, I_C = 10A, I_{B1} = 2A, I_{B2} = 2A)$	t _f		0.3	μs

^{*}Pulse measurement conditions: Length = $300\mu s$, Duty Cycle \leq 2%.

GSDR15020 GSDR15025

NPN SWITCHING POWER TRANSISTORS

This unique device utilizes General Semiconductor Industries' C²R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

ABSOLUTE MAXIMUM RATINGS

RATINGS	SYMBOL	GSDR15020	GSDR15025	UNIT
Collector-Base Voltage	V _{CBO}	250	300	Vdc
Collector-Emitter Voltage	V _{CEO}	200	250	Vdc
Emitter-Base Voltage	V _{EBO}	7.0	7.0	Vdc
Collector Current — Continuous	Ic	20	20	Adc
Base Current — Continuous	l _B	5.0	5.0	Adc
Total Power Dissipation @ T _C = 100°C	PD	80	80	Watt
Thermal Resistance (Junction to Case)	θ _{J-C}	1.25	1.25	°C/W
Junction Temperature	T _J	-65 to +200	-65 to +200	°C
Storage Temperature	T _{stg}	-65 to +200	-65 to +200	°C

CHARACTERISTIC	SYMBOL	MIN	MAX	UNIT
OFF CHARACTERISTICS				
Collector-Base Voltage GSDR15020 (I _C = 1.0mA) GSDR15025	BV _{CBO}	250 300		Vdc
Collector-Emitter Voltage GSDR15020 (I _C = 50mA) GSDR15025	BV _{CEO}	200 250		Vdc
Emitter-Base Voltage (I _E = 1.0mA)	BV _{EBO}	7.0		Vdc
Collector-Emitter Breakdown Voltage I _C = 50mA, V _{BB} = 1.5V) GSDR15025	BV _{CEX}	250 300		Vdc
Collector-Emitter Breakdown Voltage (I _C = 50mA, R = 100Ω) GSDR15025	BV _{CER}	225 275		Vdc
Collector Cutoff Current (V _{CB} = 80% Rated V _{CB})	І _{СВО}		500	μΑ
Emitter Cutoff Current (V _{EB} = 5.0V)	I _{EBO}		100	μΑ
Collector Cutoff Current (V _{CE} = 80% Rated V _{CC})	I _{CEO}		1.0	μ A
ON CHARACTERISTICS				
DC Current Gain (V _{CE} = 5.0V, I _C = 15A)	h _{FE} *	10		
Collector Saturation Voltage (I _C = 15A, I _B = 3A)	V _{CE} (sat)*		1.0	Vdc
Base Saturation Voltage (I _C = 15A, I _B = 3A)	V _{BE} (sat)*		1.5	Vdc
DYNAMIC CHARACTERISTICS				
Current Gain — Bandwidth Product (I _C = 1.0A, V _{CE} = 10V, f = 10 MHz)	f _T	25		MHz
Collector Base Capacitance (V _{CB} = 10V, f = 1 MHz)	C _{ob}		200	pF
Turn-on Time (V _{CC} = 100V, I _C = 15A, I _{B1} = 3.0A, I _{B2} = 3.0A)	t _{on}		0.15	μs
Turn-off Time $(V_{CC} = 100V, I_C = 15A, I_{B1} = 3.0A, I_{B2} = 3.0A)$	t _{off}		1.2	μs
Storage Time $(V_{CC} = 100V, I_C = 15A, I_{B1} = 3.0A, I_{B2} = 3.0A)$	ts		0.9	μs
Fall Time ($V_{CC} = 100V$, $I_{C} = 15A$, $I_{B1} = 3.0A$, $I_{B2} = 3.0A$)	t _f		0.3	μS

^{*}Pulse measurement conditions: Length = $300\mu s$, Duty Cycle $\leq 2\%$.

C2R™ HIGH SPEED/ HIGH POWER SWITCHING TRANSISTORS

The GSD series is a reliable NPN double diffused epitaxial transistor designed for high speed switching systems. This unique series utilizes General Semiconductor Industries' C²R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability. Another design feature is the use of an interdigitated emitter providing a periphery greater than 7.0 inches (18cm) which improves both the gain characteristics and current handling capability.

These transistors have been specifically designed and engineered for high speed/high voltage switching applications where the designer is concerned with optimizing power conversion efficiency.

In order to supply the user with a more complete definition of the ${\rm C}^2{\rm R}$ switching transistor capability, General Semiconductor Industries has attempted to furnish a data sheet with a thorough and meaningful technical dialogue.

FEATURES:

- HIGH VOLTAGE
- HIGH GAIN
- HIGH CURRENT
- LOW SATURATION VOLTAGES
- FAST SWITCHING
- RADIATION RESISTANT

APPLICATIONS:

- HIGH SPEED SWITCHING
- POWER CONVERSION
- CONVERTERS
- INVERTERS
- CLASS D AMPLIFIERS
- CLASS C AMPLIFIERS

NPN 50 AMP — 200 VOLT GSDS50020 C²R *

GLOSSARY OF TERMS

IC: CONTINUOUS COLLECTOR CURRENT: No industry standard for selection of this parameter exists. General Semiconductor Industries specifies a level which is based on practical, useable values of current gain & collector-emitter saturation voltage.

DOUBLE DIFFUSED EPITAXIAL: Defines the structure of the Silicon die. The Collector is deposited epitaxially on low resistivity silicon, followed by a base diffusion and an emitter diffusion.

INTERDIGITATED EMITTER: This is a Geometric method for achieving long emitter peripheries in limited base areas.

C²R_{TM}: A trademark of General Semiconductor Industries for Charge Control Rings, a structure which enhances breakdown and provides surface stabilization in shallow diffused oxide passivated structures.

(Continued on Page 2)

VCE(set) at 50 AMPS typically 0.6V

RATING	SYMBOL	GSDS 50020	UNIT
Collector-Base Voltage	VCBO	200	Volts
Collector-Emitter Voltage	VCEO (SUS)	200	Volts
Emitter-Base Voltage	VEBO	7.0	Volts
Collector Current - Continuous	ar lice.	50	Amps
Peak	ICM	100	Amp
Base Current — Continuous	a 不正知 B 基本	20	Amps
Total Power Dissipation @ TC = 100°C	Po	100	Watts
Oj.c, Junction to Case Thermal Resistance	Rejc	1.0	oc/w
Operating and Storage Junction Temperature Range	TJ (oper) & T _{sto}	-65 to +200	oC.

GENERAL SEMICONDUCTOR INDUSTRIES, INC

2001 West Tenth Place, Tempe, Arizona 85281 + 602 968 3101 + TWX910 950 1942 Mailing Address - P.O. Box 3078

GENERAL SEMICONDUCTOR INDUSTRIES, INC.

		GSDS	50020	
SYMBOL	CONDITIONS	Min	Max	UNIT
Vcво	I _C = 1.0mA	200	1	Volts
VCEO (SUS)	Ic = 50mA	200	-	Volts
VEBO	IE = 1.0mA	7.0	48	Volts

IEBO	VEB = 6.0V		100	μА
ICEO	V _{CE} = 150V	-	50	μΑ
ICEX	V _{CE} = 200V, V _{BE} = -1.5V		10.0	μΑ
Es/B	$L = 50\mu H$, $V_{BE}(OFF) = -1V$, $R_{BB} = 47\Omega$	750		μJ

pEE*	VCE = 4.0V, IC = 50A	8		7
VCE (sat)*	IC = 50A, IB = 10A		1.0	Volts
VBE (sat)*	IC = 50A, IB = 10A		2.0	Volts

Ihfe I	VCE = 10V, IC = 1.0A, f = 10MHz 3.0		
Cobo	V _{CB} = 10V, f = 1MHz -	350	pF

td			0.04	μsec
t _r	V _{CC} = 100V, I _C = 50A.	100	0.2	μsec
ts	1 _{B1} = 1 _{B2} = 10A, t _p = 10μs, Duty		0.75	μsec
t _f	Cycle <2.0%, Resistive Load.		0.175	µsec

^{*}Pulse measurement conditions: Length = 300µsec, Duty Cycle < 2% (measured using separate current carrying and voltage sensing leads).

GLOSSARY OF TERMS - cont'd.

SECOND BREAKDOWN LIMIT: Is/B, Es/B, & Turn-off S/B. These terms describe the voltage-current stress limits which cause device failure whereby the collector-bese voltage collapses to an extremely low velue and ellows an uncontrolled high current flow.

SAFE OPERATING AREA: This term specifies operating boundaries beyond which device damage, or destruction, can occur.

FORWARD BIASED SAFE OPERAT-ING AREA: The maximum simultaneous voltage & current that the transistor can withstand in its "on" condition, for the specified time duration. IS/B is included in this region.

Es/B: The limit of energy the transistor can withstand when the collectorto-emitter is forced to draw current at its avalanche breakdown voltage, with some specified value of reverse base drive.

TURN-OFF SAFE OPERATING AREA: A coined term, used to describe the dynamic stress limits that can be safely handled during device turn-off. The boundaries of this area are established by IC(cont), VCEO (SUS), and the peak instantaneous power that the transistor can safely withstand during the "turn-off" transition (turn-off S/B). Increased IB2 usually causes a decrease in the "safe" value of peak instantaneous power.

IB1: Forward base current during transistor "on" time.

IB2: Reverse base current during the transition from the "on" state to the "off" state.

SNUBBING: Circuit techniques, used to retard the voltage rise in respect to the current fall during "turn-off," thereby reducing the peak instantaneous power, protecting the transistor & reducing device power dissipation. Similarly, the current rise time can be retarded in respect to the voltage fall during "turn-on," further reducing transistor dissipation.

MEDIAN: 50% of the test sample will exceed this value & 50% will be less than this value.

90TH PERCENTILE: As used in this document, 90% of the test sample will have values "better than" the specified value

tp: Pulse time/pulse duration.

he le Magnitude of common emitter, small signal, short circuit, forward current transfer ratio.

hpe: Static, forward current transfer ratio, common emitter.

Cibo: Input capacitance, common base, collector open circuit.

Cobo: Output capacitance, common base, emitter open circuit.

Vcc: Collector supply voltage.

GENERAL SEMICONDUCTOR INDUSTRIES, INC. CONTINUED INTUSTRIES, INC. CONTINUED INTUSTRIES, INC. CONTINUED

GENERAL SEMICONDUCTOR INDUSTRIES, INC.

GENERAL SEMICONDUCTOR INDUSTRIES, INC 2001 West Tenth Place Tempe, Arizona 85281 • 602 968 3101 • TWX910 950 1942

GENERAL SEMICONDUCTOR INDUSTRIES, INC.

APPLICATION NOTES "Snubber" Networks

High speed switching transistors are quite often characterized by their very low ES/B and SOA values. In order to take advantage of the high speed performance of the GSD series transistors it may be necessary to use load line shaping techniques. This is especially true in high energy switching regulators, converters, switching amplifiers and large inductive loads. The "turn-off" network or current "snubber" will prevent transistor degradation or failure by eliminating simultaneous occurrance of high current and high voltage at "turn-off".

Unilateral switching applications (such as flyback or series switching regulators) can be effectively snubbed with the R-C-diode snubber depicted in figure (a),

Multilateral switching applications (such as bridge and "pushpull" inverters) can be adequately snubbed by using R-C snubbers across the transformer primary as shown in fibure (b).

Proper snubber design will minimize dissipative losses at turnoff while affording the transistor a considerably "safer" turn-off load line (figure c).

Further information on load line shaping including design aids are included in General Semiconductor Industries' Application Note titled Methods For Utilizing High Speed Switching Transistors In High Energy Switching Environments by William Skanadore.

GENERAL SEMICONDUCTOR INDUSTRIES, INC

2001 West Tenth Place, Tempe, Arizona 85281 + 602 968 3101 + TWX910 950 1942 Mailing Address P O Box 3078

Copyright General Semiconductor Industries, Inc.,

Printed in USA

GSTU 4030 GSTU 4035 GSTU 4040

C²R HIGH SPEED/HIGH POWER SWITCHING TRANSISTORS

The GST series is a NPN triple diffused transistor designed for high speed switching systems. This unique series utilizes General Semiconductor Industries' C²R process which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

ABSOLUTE MAXIMUM RATINGS

RATINGS	SYMBOL	GSTU4030	GSTU4035	GSTU4040	UNIT
Collector-Base Voltage	V _{CBO}	350	400	450	Vdc
Collector-Emitter Voltage	V _{CEO}	300	350	400	Vdc
Emitter-Base Voltage	V _{EBO}	7.0	7.0	7.0	Vdc
Collector Current — Continuous	Ic	6.0	6.0	6.0	Adc
Base Current — Continuous	l _B	3.0	3.0	3.0	Adc
Total Power Dissipation @ T _C = 25°C	PD	125	125	125	Watt
Thermal Resistance (Junction to Ambient)	θ _{J-C}	1.2	1.2	1.2	°C/W
Junction Temperature	TJ	-65 to +175	-65 to +175	-65 to +175	°C
Storage Temperature	T _{stg}	-65 to +175	-65 to +175	-65 to +175	ç

CHARACTERISTIC	SYMBOL	MIN	MAX	UNIT
		1	<u> </u>	
Collector-Emitter Voltage GSTU403 (I _C = 50mA) GSTU404	35	300 350 400		Vdc
Collector Cutoff Current (V _{CB} = 80% Rated V _{CB})	Ісво		1000	μΑ
Emitter Cutoff Current (V _{EB} = 7.0V)	I _{EBO}		1000	μΑ
Collector Cutoff Current	I _{CEO}		100	μΑ
(V _{CE} = Rated V _{CE}) Collector Cutoff Current (V _{CB} = Rated V _{CB})	I _{CBO}		500	μΑ
Emitter Cutoff Current (V _{EB} = 5.0V)	I _{EBO}		100	μΑ
ON CHARACTERISTICS				
DC Current Gain (V _{CE} = 5.0V, I _C = 4A)	h _{FE} *	10		
Collector Saturation Voltage (I _C = 4A, I _B = 0.8A)	V _{CE} (sat)*		0.8	Vdc
Base Saturation Voltage (I _C = 4A, I _B = 0.8A)	V _{BE} (sat)*		1.3	Vdc
DYNAMIC CHARACTERISTICS				
Small Signal Current Gain (V _{CE} = 10V, I _C = 500mA, f = 10 MHz)	lh _{fe} l	2.5		MHz
Collector Base Capacitance (V _{CB} = 10V)	Сов		150	pF
Delay Time $(V_{CC} = 200V, I_C = 4A, I_{B1} = 0.8A, I_{B2} = 0.8A)$	t _d		0.07	μS
Rise Time $(V_{CC} = 200V, I_C = 4A, I_{B1} = 0.8A, I_{B2} = 0.8A)$	t _r		0.300	μs
Storage Time $(V_{CC} = 200V, I_C = 4A, I_{B1} = 0.8A, I_{B2} = 0.8A)$) t _s		3.0	μs
Fall Time (V _{CC} = 200V, I _C = 4A, I _{B1} = 0.8A, I _{B2} = 0.8A	t _f		0.700	μs

^{*}Pulse measurement conditions: Length = $300\,\mu\text{s}$, Duty Cycle $\leq 2\%$.

GSTU 6030 GSTU 6035 GSTU 6040

SILICON NPN TRANSISTORS

These double diffused, epitaxial collector devices are oxide passivated. They are designed for use in switching and many amplifier applications. The latest technologies are used to provide optimum performance and the highest degree of reliability.

ABSOLUTE MAXIMUM RATINGS

RATINGS	SYMBOL	GSTU6030	GSTU6035	GSTU6040	UNIT
Collector-Base Voltage	V _{CBO}	350	400	450	Vdc
Collector-Emitter Voltage	V _{CEO}	300	350	400	Vdc
Emitter-Base Voltage	V _{EBO}	7.0	7.0	7.0	Vdc
Collector Current — Continuous	Ic	10	10	10	Adc
Base Current — Continuous	I _B	5.0	5.0	5.0	Adc
Total Power Dissipation @ T _C = 25°C	PD	125	125	125	Watt
Thermal Resistance (Junction to Case)	θ _{J-C}	1.2	1.2	1.2	°C/W
Junction Temperature	TJ	-65 to +175	-65 to +175	-65 to +175	°C
Storage Temperature	T _{stg}	-65 to +175	-65 to +175	-65 to +175	°C

CHARACTERISTIC		SYMBOL	MIN	MAX	UNIT
OFF CHARACTERISTICS			•		
Collector-Base Voltage (I _C = 1.0mA)	GSTU6030 GSTU6035 GSTU6040	BV _{CBO}	350 400 450		Vdc
Collector-Emitter Voltage (I _C = 50mA)	GSTU6030 GSTU6035 GSTU6040	BV _{CEO}	300 350 400		Vdc
Emitter-Base Voltage (I _E = 1.0mA)		BV _{EBO}	7.0		Vdc
Collector Cutoff Current (V _{CB} = 80% Rated V _{CB})		Ісво		500	μΑ
Emitter Cutoff Current (V _{EB} = 5.0V)		I _{EBO}		100	μΑ
ON CHARACTERISTICS					
DC Current Gain (V _{CE} = 5.0V, I _C = 6A)		h _{FE} *	10		
Collector Saturation Voltage (I _C = 6A, I _B = 1.2A)		V _{CE} (sat)*		0.8	Vdo
Base Saturation Voltage (I _C = 6A, I _B = 1.2A)		V _{BE} (sat)*		1.3	Vdo
DYNAMIC CHARACTERISTICS					
Current Gain — Bandwidth Produ (I _C = 500mA, V _{CE} = 10V, f =		f _T	25		МН
Collector Base Capacitance (V _{CB} = 10V, f = 1 MHz)		Соь		150	pF
Delay Time (V _{CC} = 200V, I _C = 6A, I _{B1} =	1.2A, I _{B2} = 1.2A)	t _d		0.05	μs
Rise Time (V _{CC} = 200V, I _C = 6A, I _{B1} =	1.2A, I _{B2} = 1.2A)	t _r		.2	μs
Storage Time (V _{CC} = 200V, I _C = 6A, I _{B1} =	1.2A, I _{B2} = 1.2A)	t _s		2.0	μs
Fall Time $(V_{CC} = 200V, I_C = 6A, I_{B1} =$	1.2A, I _{B2} = 1.2A)	t _f		.5	μs

^{*}Pulse measurement conditions: Length = 300 μ s, Duty Cycle \leq 2%.

NPN 350, 400, 450V 8 Amp GSTU8035, 40, 45 C2R_{TM}

C²R HIGH SPEED/HIGH POWER SWITCHING TRANSISTORS

The GST series is a NPN triple diffused transistor designed for high speed switching systems. This unique series utilizes General Semiconductor Industries' C²R process which describes a manu facturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

MAXIMUM RATINGS (T _J = 25°C unless other	herwise noted)				
RATING	SYMBOL	GSTU8035	GSTU8040	GSTU8045	UNIT
Collector-Base Voltage	V _{CBO}	400	450	500	Volts
Collector-Emitter Voltage	V _{CEO}	350	400	450	Volts
Emitter-Base Voltage	V _{EBO}	7.0	7.0	7.0	Volts
Collector Current - Continuous	l _c	12	12	12	Amp
Peak	Ісм	20	20	20	Amp
Base Current-Continuous	I _B	6	6	6	Amp
Total Power Dissipation @ $T_C = 25^{\circ}C$	P _D	188	188	188	Watt
Θ_{i-c} , Junction to Case Thermal Resistance	Reuc	0.8	0.8	0.8	°C/W
Operating and Storage Junction	T _J (oper)	-65 to +175	-65 to +175	-65 to +175	°c
Temperature Range	T _{stq}	-65 to +200	-65 to +200	-65 to +200	°c

		GST	U8035	GST	U8040	GST	U 80 45	Ì
SYMBOL	CONDITIONS	Min	Max	Min	Max	Min	Max	UNIT
V _{CBO}	I _C = 1.0mA	400	-	450		500	-	Volts
V _{CEO}	I _C = 50mA	350	_	400	-	450		Volts
V _{EBO}	I _E = 1.0mA	7.0	-	7.0	-	7.0	-	Volts
ГСВО	V _{CB} = 80% V _{cb} Rated	-	500		500	-	500	μΑ
I _{EBO}	V _{EB} = 5.0V	T -	100		100	-	100	μΑ
h _{FE} .	V _{CE} = 5.0V, I _C = 8.0A	10	_	10	-	10	-	-
V _{CE (sat)} .	I _C = 8A, I _B = 1.6A	-	0.8	-	0.8	_	8.0	Volts
V _{BE (sat)*}	I _C = 8A, I _B = 1.6A	-	1.3	-	1.3	-	1.3	Volts
f _T	V _{CE} = 10V, I _C = 1.0A	25	_	25	_	25	_	MHz
C _{obo}	V _{CB} = 10V, f = 1MHz		300		300	_	300	pF
^t d		_	0.050	_	0.050	-	0.050	μsec
t _r	$V_{CC} = 200V, I_{C} = 8A,$ $I_{B1} = I_{B2} = 1.6A, t_{p} = 10\mu s,$ Duty Cycle <2.0%, Resistive	_	0.100	-	0.100	_	0.100	μsec
t _s		_	2.7	-	2.7	-	2.7	μsec
t _f	7 ` '	_	0.470	-	0.35	_	0.470	μsec

^{*}Pulse measurement conditions: Length = 300 µsec, Duty Cycle < 2% (measured using separate current carrying and voltage sensing leads).

GENERAL SEMICONDUCTOR INDUSTRIES. INC

2001 West Fenth Place Tempe Anzona 85281 + 602 968 3101 - TWX910 - 950 1942 Mailing Address - P.O. Box 3078

NPN 300, 350, 400V 12 Amp GSTU12030, 35, 40 C2R R

C²R HIGH SPEED/HIGH POWER SWITCHING TRANSISTORS

The GST series is a NPN triple diffused transistor designed for high speed switching systems. This unique series utilizes General Semiconductor Industries' C²R process which describes a manu facturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

RATING	SYMBOL	GSTU12030	GSTU12035	GSTU12040	UNIT
Collector-Base Voltage	V _{CBO}	350	400	450	Volt
Collector-Emitter Voltage	V _{CEO}	300	350	400	Volt
Emitter-Base Voltage	V _{EBO}	7.0	7.0	7.0	Volt
Collector Current - Continuous Peak	I _C	16 25	16 25	16 25	Amp Amp
Base Current-Continuous	I _B	8	8	8	Ámp
Total Power Dissipation @T _C = 25°C	P _D	188	188	188	Watt
Θ_{j-c} , Junction to Case Thermal Resistance	Reuc	0.8	0.8	0.8	°C/W
Operating and Storage Junction Temperature Range	T _{J (oper)} T _{stg}	-65 to +175 -65 to +200	-65 to +175 -65 to +209	-65 to +175 -65 to +200	°c °c

ELECTRICAL	CHARACTERISTICS (T _J = 25°C unles	s otherwise	e noted)					
		GST	U12030	GST	GSTU12040 GSTU12035		J12035	
SYMBOL	CONDITIONS	Min	Max	Min	Max	Min	Max	UNIT
V _{CBO}	I _C = 1.0mA	350	_	400	_	450	_	Volts
V _{CEO}	I _C = 50mA	300	-	350	_	400		Volts
V _{EBO}	I _E = 1.0mA	7.0	-	7.0	-	7.0		Volts
I _{СВО}	V _{CB} = 80% V _{cb} Rated	-	500	_	500	-	500	μΑ
I _{EBO}	V _{EB} = 5.0V		100		100		100	μΑ
h _{FE*}	V _{CE} = 5.0V, I _C = 12A	10	_	10	_	10	_	_
V _{CE (sat)*}	I _C = 12A, I _B = 2.4 A	_	0.8	-	0.8	-	0.8	Volts
V _{BE (sat)*}	I _{C.} = 12A, I _B = 2.4 A	_	1.3	_	1.3		1.3	Volts
f _T	V _{CE} = 10V, I _C = 1.0 A	25	-	25	_	25	_	MHz
C _{obo}	V _{CB} = 10V, f = 1MHz	_	300	_	300		300	pF
t _d			0.050	_	0.050		0.050	μsec
t _r	$\begin{cases} V_{CC} = 200V, I_C = 12A, \\ I_{B1} = I_{B2} = 2.4A, t_p = 10\mu s \\ Duty Cycle < 2.0\%, Resistive \end{cases}$	_	0.200	_	0.200	_	0.200	μsec
t _s			1.8	-	1.8	_	1.8	μsec
t _f	,	_	0.470	_	0.470		0.470	μsec

^{*}Pulse measurement conditions: Length = 300 µsec, Duty Cycle < 2% (measured using separate current carrying and voltage sensing leads).

2001 West Tenth Place, Tempe, Arizona 85281 • 602 968 3101 • TWX910 950 1942 Mailing Address P O Box 3078

NPN SWITCHING POWER TRANSISTORS

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

MAXIMUM RATINGS

RATINGS	SYMBOL	XDAR10025	XDAR10030	XDAR10035	UNIT
Collector-Base Voltage	V _{CBO}	300	350	400	Vdc
Collector-Emitter Voltage	V _{CEO}	250	300	350	Vdc
Emitter-Base Voltage	V _{EBO}		8.0		Vdc
Collector Current - Continuous	I _C		Adc		
Base Current - Continuous	I _B			Adc	
Total Power Dissipation @ T _C =100°C	PD		75		Watt
Thermal Resistance (Junction to Case)	θ _{J-C}			°C/W	
Junction Temperature	T _J		°C		
Storage Temperature	T _{stg}		-65 to +200		°C

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNIT
F CHARACTERISTICS						
Collector-Base Voltage (I _C =10mA)	XDAR10025 XDAR10030 XDAR10035	BV _{CBO}	300 350 400			Vdc
Collector-Emitter Voltage (I _C =50mA)	XDAR10025 XDAR10030 XDAR10035	BV _{CEO}	250 300 350			Vdc
Emitter-Base Voltage (I _E =1.0mA)		BV _{EBO}	8.0			Vdc
Collector Cutoff Current (V _{CB} =80% Rated V _{CB})	XDAR10025 XDAR10030 XDAR10035	I _{CBO}			500 500 500	μΑ
Emitter Cutoff Current (V _{EB} =5.0V)		I _{EBO}			100	μА
Collector Cutoff Current $(V_{CE}^{=80\%} \text{ Rated } V_{CE})$	XDAR10025 XDAR10030 XDAR10035	ICEO			1.0 1.0 1.0	μА
I CHARACTERISTICS						
DC Current Gain (V _{CE} =5.0V, I _C =10A)	XDAR10025 XDAR10030 XDAR10035	h _{FE} *	25 25 20			
DC Current Gain (V _{CE} =5.0V, I _C =3.0A)		h _{FE} *	65			
Collector Saturation Voltage (I _C =10A, I _B =2.0A)		V _{CE} (sat)*			0.8	Vdo
Base Saturation Voltage $(I_C=10A, I_B=2.0A)$		V _{BE} (sat)*			1.3	Vdo
DYNAMIC CHARACTERISTICS						
Small Signal Current Gain (V _{CE} =10V, I _C =1.0A, f=10MHz)		h _{fe}	25			
Collector Base Capacitance (V _{CB} =10V, I _C =0, f=1MHz)		C _{ob}			350	pF
Turn-on Time (V _{CC} =100V, I _C =10A, I _{B1} =1.0A, I _{B2} =	1.0A)	ton			0.2	μS
Storage Time $(V_{CC}^{=100V}, I_{C}^{=10A}, I_{B1}^{=1.0A}, I_{B2}^{=10A})$	=1.0A)	t _s			1.5	μs
Fall Time (V _{CC} =100V, I _C =10A, I _{B1} =1.0A, I _{B2} =	=1.0A)	t _f			0.5	μs

^{*}Pulse measurement conditions: Length = $300\mu s\,\text{,}$ Duty Cycle \leq 2%.

NPN XGS7001 XGS7002

SILICON NPN TRANSISTORS

These double diffused, epitaxial collector devices are oxide passivated. They are designed for use in switching and many amplifier applications. The latest technologies are used to provide optimum performance and the highest degree of reliability.

ABSOLUTE MAXIMUM RATINGS

RATINGS	SYMBOL	XGS7001	XGS7002	UNIT
Collector-Base Voltage	V _{CBO}	50	70	Vdc
Collector-Emitter Voltage	V _{CEO}	30	60	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	5.0	Vdc
Collector Current — Continuous	Ic	3.0	3.0	Adc
Base Current — Continuous	l _B	1.0	1.0	Adc
Total Power Dissipation @ T _C =100°C	P _D	5.0	5.0	Watt
Thermal Resistance (Junction to Case)	9 -c	35	35	°C/W
Junction Temperature	Tj	-65 to +200	-65 to +200	°C
Storage Temperature	T _{stg}	-65 to +200	-65 to +200	°C

CHARACTERIST	ric	SYMBOL	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Collector-Base Voltage (I _C =100 ua)	XGS7001 XGS7002	ВV _{СВО}	50 70			Vdc
Collector-Emitter Voltage (I _C =10mA)	XGS7001 XGS7002	BV _{CEO}	30 60			Vdc
Emitter-Base Voltage (I _E = 10 ua)		BV _{EBO}	5.0			Vdc
Collector Cutoff Current (V _{CB} =30V for 7001; 40V for 7002)		I _{CBO}			10	μΑ
ON CHARACTERISTICS						
DC Current Gain (V _{CE} =2.0V, I _C =2.0A)	XGS7001 XGS7002	h _{FE} *	20 15			
Collector Saturation Voltage (I _C =1.0A, I _B =0.1A)		V _{CE} (sat)*			1.0	Vdc
Base Saturation Voltage (I _C =1.0A, I _B =0.1A)		V _{BE} (sat)*			1.5	Vdc
DYNAMIC CHARACTERISTICS						
Small Signal Current Gain (V _{CE} =5.0V, I _C =0.1A, f=20MHz)		h _{fe}	6.0			
Collector Base Capacitance (V _{CB} =10V, I _C = , f=1.0MHz)		C _{ob}			40	pF
Turn-on Time (V _{CC} =30V, I _C =1.5A, I _{B1} =0.15A, I _{B2}	= 0.15A)	t _{on}			40	NS
Turn-off Time (V _{CC} =30V, I _C =1.5A, I _{B1} =0.15A, I _{B2} :	=0.15A)	t _{off}			100	NS

^{*}Pulse Measurement Conditions: Length = 300μ s, Duty Cycle $\leq 2\%$

NPN SWITCHING POWER TRANSISTORS

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

MAXIMUM RATINGS

RATINGS	SYMBOL	XGSA1030	XGSA1035	XGSA1040	UNIT
Collector-Base Voltage	v _{CBO}	350	400	450	Vdc
Collector-Emitter Voltage	V _{CEO}	300	350	400	Vdc
Emitter-Base Voltage	V _{EBO}			Vdc	
Collector Current - Continuous	I _C			Adc	
Base Current - Continuous	I _B			Adc	
Total Power Dissipation @ T _C =100°C	P _D			Watt	
Thermal Resistance (Junction to Case)	θ _{J-C}			°C/W	
Junction Temperature	$^{\mathrm{T}}_{\mathrm{J}}$		°C		
Storage Temperature	T _{stg}		-65 to +20	0	°C

CHARACTERISTIC	:	SYMBOL	MIN	TYP	MAX	UNI
F CHARACTERISTICS						
Collector-Base Voltage (I _C =0.5mA)	XGSA1030 XGSA1035 XGSA1040	BV _{CBO}	350 400 450			Vdc
Collector-Emitter Voltage (I _C =10mA)	XGSA1030 XGSA1035 XGSA1040	BV _{CEO}	300 350 400			Vdc
Emitter-Base Voltage $(I_E=0.1mA)$		BV _{EBO}	7.0			Vdc
Collector Cutoff Current (V _{CB} =280V) (V _{CB} =320V)	XGSA1030 XGSA1035	I _{CBO}			10 10	μA
$(V_{CB}^{=360V})$	XGSA1040				10	
Emitter Cutoff Current (V _{EB} =5.0V)		I _{EBO}			10	μA
Collector Cutoff Current (V _{CE} =240V)	XGSA1030	I _{CEO}			50	μA
(V _{CE} =280V) (V _{CE} =320V)	XGSA1035 XGSA1040				50 50	
CHARACTERISTICS						
DC Current Gain (V _{CE} =5.0V, I _C =1.0A)		h _{FE} *	10			
Collector Saturation Voltage (I _C =1.0A, I _B =0.2A)		V _{CE} (sat)*			0.4	Vd
Base Saturation Voltage (I _C =1.0A, I _B =0.2A)		V _{BE} (sat)*			1.2	Vd
DYNAMIC CHARACTERISTICS						
Small Signal Current Gain (V _{CE} =10V, I _C = .25A, f=10MHz)		h _{fe}	3			
Collector Base Capacitance (V _{CB} =10V, f=1MHz)		C _{ob}			50	рF
Delay Time (V _{CC} =200V, I _C =1.0A, I _{B1} =0.2A,	, I _{B2} =0.2A)	t _d			0.04	μS
Rise Time (V _{CC} =200V, I _C =1.0A, I _{B1} =0.2A,	I _{B2} =0.2A)	t _r			0.20	μS
Storage Time (V _{CC} =200V, I _C =1.0A, I _{B1} =0.2A,	, I _{B2} =0.2A)	t _s			1.5	μS
Fall Time (V _{CC} =200V, I _C =1.0A, I _{B1} =0.2A,	I _{R2} =0.2A)	t _f			0.30	μS

^{*}Pulse measurement conditions: Length = 300 μs , Duty Cycle \leq 2%.

NPN SWITCHING POWER TRANSISTORS

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

MAXIMUM RATINGS

RATINGS	SYMBOL	XGSA1530	XGSA1535	XGSA1540	UNIT
Collector-Base Voltage	v _{CBO}	350	400	450	Vdc
Collector-Emitter Voltage	v _{CEO}	300	350	400	Vdc
Emitter-Base Voltage	V _{EBO}		7.0		Vdc
Collector Current - Continuous	I _C		2		Adc
Collector Current - Peak	I _C			Adc	
Base Current - Continuous	I _B			Adc	
Total Power Dissipation @ T _C =100°C	P _D			Watt	
Total Power Dissipation @T _A =25°C	P _D		1.0		Watt
Thermal Resistance (Junction to Case)	θ _{J-C}			°C/W	
Thermal Resistance (Junction to Ambient)	θ _{J-A}		°C/W		
Junction Temperature	T_{J}		°C		
Storage Temperature	T _{stg}		-65 to +200		°C

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Collector-Base Voltage (I _C =0.5mA)	XGSA1530 XGSA1535 XGSA1540	BV _{CBO}	350 - 400 4 50			Vdc
Collector-Emitter Voltage (I _C =10mA)	XGSA1530 XGSA1535 XGSA1540	BV _{CEO}	300 350 4 00			Vdc
Emitter-Base Voltage (I _E =.lmA)		BV _{EBO}	7.0			Vdc
Collector Cutoff Current (V _{CB} =80% V _{CB} Rated)	XGSA1530 XGSA1535 XGSA1540	I _{CBO}			10 10 10	μА
Emitter Cutoff Current (V _{EB} =5.0V)		I _{EBO}			10	μА
Collector Cutoff Current (V _{CE} =80% V _{CE} Rated)	XGSA1530 XGSA1535 XGSA1540	ICEO			50 50 50	μА
N CHARACTERISTICS						
DC Current Gain (V _{CE} =2V, I _C =1A)		h _{FE} *	10			
DC Current Gain (V _{CE} =5V, I _C =1.5A)		h _{FE} *	10			
Collector Saturation Voltage (I _C =1A, I _B =0.2A)		V _{CE} (sat)*			0.3	Vdc
Collector Saturation Voltage (I _C =1.5A, I _B =0.3A)		V _{CE} (sat)*			0.4	Vdc
Base Saturation Voltage (I _C =1.5A, I _B =0.3A)		V _{BE} (sat)*			1.2	Vdc
DYNAMIC CHARACTERISTICS						
Small Signal Current Gain (V _{CE} =10V, I _C = .25A, f=10MHz)		h _{fe}	3			
Collector Base Capacitance (V _{CB} =10V, f=1MHz)		C _{ob}			50	pF
Delay Time (V _{CC} =200V, I _C =1.5A, I _{B1} =0.75A/0.30	A, I _{B2} =0.5A)	t _d			0.1	μS
Rise Time $(V_{CC}^{-2}50V, I_{C}^{-1.5A}, I_{B1}^{-0.3A}, I_{B2}^{-1.5A})$	0.3A)	t _r			0.2	μS
Storage Time $(V_{CC}^{-2}50V, I_{C}^{-1.5A}, I_{B1}^{-0.3A}, I_{B2}^{-1})$	0.3A)	t _s			1.0	μs
Fall Time (V _{CC} =250V, I _C =1.5A, I _{B1} =0.3A, I _{B2} =	0.3A)	t _f			.25	μs

^{*}Pulse measurement conditions: Length = 300 μ s, Duty Cycle \leq 2%.

NPN SWITCHING POWER TRANSISTORS

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

100 100 1000 1000 Voc - Collector to Emitter Voltage - Vols

DC Forward Biased Safe Operating Area

Pulsed Forward Biased Safe Operating Area

MAXIMUM RATINGS

RATINGS	SYMBOL		XGSA3030	XGSA3035	XGSA3040	UNIT
Collector-Base Voltage	V _{CBO}		350	400	450	Vdc
Collector-Emitter Voltage	V _{CEO}		300	350	400	Vdc
Emitter-Base Voltage	V _{EBO}		.,.	Vdc		
Collector Current - Continuous	^I C			Adc		
Base Current - Continuous	I _B			Adc		
Total Power Dissipation @ T _C =100°C	P _D			Watt		
Thermal Resistance (Junction to Case)	θ _{J-C}		°C/W			
Junction Temperature	T _J		°C			
Storage Temperature	T _{stg}		-65 1	to +200		°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	דומט
FF CHARACTERISTICS					
Collector-Base Voltage (I _C =1.0mA) XGSA3030 XGSA3035 XGSA3040	BV _{CBO}	350 400 450			Vdc
Collector-Emitter Voltage XGSA3030 (I _C =50mA) XGSA3035 XGSA3040 XGSA3040	BV _{CEO}	300 350 400			Vdc
Emitter-Base Voltage (I _E =1.0mA)	BV _{EBO}	7.0			Vdc
	I _{CBO}			250 250 250	μA
Emitter Cutoff Current (V _{EB} =5.0V)	I _{EBO}			50	μA
Collector Cutoff Current (V _{CE} =80% Rated V _{CE}) XGSA3030 XGSA3035 XGSA3040	ICEO			500 500 500	μA
N CHARACTERISTICS					
DC Current Gain (V _{CE} =5.0V, I _C =3.0A)	h _{FE} *	10			
Collector Saturation Voltage (I _C =3.0A, I _B =0.6A)	V _{CE} (sat)*			1.0	Vdc
Base Saturation Voltage (I _C =3.0A, I _B =0.6A)	V _{BE} (sat)*			1.5	Vdc
DYNAMIC CHARACTERISTICS					
Small Signal Current Gain (V _{CE} =10V, I _C =0.5A, f=10MHz)	h _{fe}	2.5			
Collector Base Capacitance (V _{CB} =10V, f=1MHz)	C _{ob}			250	pF
Turn-on Time $(V_{CC}^{-2.5} 0.6A)$, $I_{C}^{-3.0A}$, $I_{B1}^{-3.0A} = 0.6A$, $I_{B2}^{-3.0A} = 0.6A$	ton			0.2	μS
Storage Time $(V_{CC}^{-250V}, I_{C}^{-3.0A}, I_{B1}^{-0.6A}, I_{B2}^{-0.6A})$	t _s			2.0	μs
Fall Time $(V_{CC}^{=250V}, I_{C}^{=3.0A}, I_{B1}^{=0.6A}, I_{B2}^{=0.6A})$	t _f			0.35	μs

^{*}Pulse measurement conditions: Length = 300 μs , Duty Cycle \leq 2%.

NPN SWITCHING POWER TRANSISTORS

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

DC Forward Biased Safe Operating Area

Pulsed Forward Biased Safe Operating Area

MAXIMUM RATINGS

RATINGS	SYMBOL	XGSA5030	XGSA5035	XGSA5040	UNIT
Collector-Base Voltage	V _{CBO}	350	400	450	Vdc
Collector-Emitter Voltage	V _{CEO}	300	350	400	Vdc
Emitter-Base Voltage	V _{EBO}			Vdc	
Collector Current - Continuous	I _C			Adc	
Base Current - Continuous	I _B			Adc	
Total Power Dissipation @ T _C =100°C	PD			Watt	
Thermal Resistance (Junction to Case)	θ _{J-C}			°C/W	
Junction Temperature	T _J		°C		
Storage Temperature	Tstg		-65 to +200		°C

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	רומט
F CHARACTERISTICS						
Collector-Base Voltage (I _C =1.0mA)	XGSA5030 XGSA5035 XGSA5040	BV _{CBO}	350 400 4 50			Vdc
Collector-Emitter Voltage (I _C =50mA)	XGSA5030 XGSA5035 XGSA5040	BV _{CEO}	300 350 4 00			Vdc
Emitter-Base Voltage (I _E =1.0mA)		BV _{EBO}	7.0			Vdc
Collector Cutoff Current (V _{CB} =80% Rated V _{CB})	XGSA5030 XGSA5035 XGSA5040	I _{CBO}			250 250 250	μA
Emitter Cutoff Current (V _{EB} =5.0V)		I _{EBO}			50	μA
Collector Cutoff Current (V _{CE} =80% Rated V _{CE})	XGSA5030 XGSA5035 XGSA5040	ICEO			500 500 500	μA
CHARACTERISTICS						
DC Current Gain (V _{CE} =5.0V, I _C =5.0A)		h _{FE} *	10			
Collector Saturation Voltage (I _C =5.0A, I _B =1.0A)		V _{CE} (sat)*			0.8	Vdc
Base Saturation Voltage (I _C =5.0A, I _B =1.0A)		V _{BE} (sat)*			1.3	Vdc
DYNAMIC CHARACTERISTICS						
Small Signal Current Gain (V _{CE} =10V, I _C =0.5A, f=10MHz)		h _{fe}	2.5			
Collector Base Capacitance (V _{CB} =10V, f=1MHz)		C _{ob}			250	pF
Turn-on Time $(V_{CC}^{-250V}, I_{C}^{-5.0A}, I_{B1}^{-1.0A}, I_{B2}^{-1.0A})$	₂ =1.0A)	ton			0.5	μS
Storage Time (V _{CC} =250V, I _C =5.0A, I _{B1} =1.0A, I _{B2}	₂ =1.0A)	t _s			1.25	μs
Fall Time (V _{CC} =250V, I _C =5.0A, I _{B1} =1.0A, I _{B2}	2=1.0A)	t _f			0.4	μs

^{*}Pulse measurement conditions: Length = 300 μs , Duty Cycle \leq 2%.

NPN SWITCHING POWER TRANSISTORS

This unique series utilizes General Semiconductor Industries' ${\tt C^2R}$ process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

MAXIMUM RATINGS

RATINGS	SYMBOL	XGSQ1030	XGSQ1035	XGSQ1040	UNIT
Collector-Base Voltage	V _{CBO}	350	400	450	Vdc
Collector-Emitter Voltage	V _{CEO}	300	350	400	Vdc
Emitter-Base Voltage	V _{EBO}			Vdc	
Collector Current - Continuous	I _C			Adc	
Base Current - Continuous	I _B			Adc	
Total Power Dissipation @ T _C =100°C	P _D			Watt	
Thermal Resistance (Junction to Case)	θ _J -C			°C/W	
Junction Temperature	Т _Ј		°C		
Storage Temperature	T _{stg}		-65 to +200		°C

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNI
FF CHARACTERISTICS			·····			·
Collector-Base Voltage (I _C =0.5mA)	XGSQ1030 XGSQ1035 XGSQ1040	BV _{CBO}	350 400 450			Vdc
Collector-Emitter Voltage (I _C =10mA)	XGSQ1030 XGSQ1035 XGSQ1040	BV _{CEO}	300 350 400			Vdc
Emitter-Base Voltage (I _E =0.1mA)		BV _{EBO}	7.0			Vdc
Collector Cutoff Current (V _{CB} =280V) (V _{CB} =320V)	XGSQ1030 XGSQ1035	I _{CBO}			10 10	μА
(V _{CB} =360V)	XGSQ1040				10	
Emitter Cutoff Current (V _{EB} =5.0V)		I _{EBO}			10	μА
Collector Cutoff Current (V _{CE} =240V) (V _{CE} =280V) (V _{CE} =320V)	XGSQ1030 XGSQ1035 XGSQ1040	I _{CEO}			50 50 50	μА
N CHARACTERISTICS					r	
DC Current Gain (V _{CE} =5V, I _C =1.0A)		h _{FE} *	10			
Collector Saturation Voltage (I _C =1.0A, I _B =0.2A)		V _{CE} (sat)*			0.4	Vdc
Base Saturation Voltage (I _C =1.0A, I _B =0.2A)		V _{BE} (sat)*			1.2	Vdc
DYNAMIC CHARACTERISTICS						
Small Signal Current Gain (V _{CE} =10V, I _C =.25A, f=10MHz)		h _{fe}	3			
Collector Base Capacitance (V _{CB} =10V, f=1MHz)		C _{ob}			50	pF
Delay Time $(V_{CC}^{-200V}, I_{C}^{-1.0A}, I_{B1}^{-0.2A},$	I _{B2} =0.2A)	t _d			0.04	μS
Rise Time $(V_{CC}=200V, I_{C}=1.0A, I_{B1}=0.2A,$	I _{B2} =0.2A)	t _r			0.20	μS
Storage Time $(V_{CC}=200V, I_{C}=1.0A, I_{B1}=0.2A,$	I _{B2} =0.2A)	t _s			1.5	μS
Fall Time (V _{CC} =200V, I _C =1.0A, I _{B1} =0.2A,	I _{B2} =0.2A)	t _f			0.30	μs

^{*}Pulse measurement conditions: Length = 300 μ s, Duty Cycle \leq 2%.

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

RATINGS	SYMBOL	XGSQ1530	XGSQ1535	XGSQ1540	UNIT
Collector-Base Voltage	V _{CBO}	350	400	450	Vdc
Collector-Emitter Voltage	V _{CEO}	300	350	400	Vdc
Emitter-Base Voltage	V _{EBO}		7.0		Vdc
Collector Current - Continuous	I _C			Adc	
Base Current - Continuous	I _B		1.0		Adc
Total Power Dissipation @ T _C =100°C	PD		10		Watt
Thermal Resistance (Junction to Case)	θЈ-С			°C/W	
Junction Temperature	T _J			°C	
Storage Temperature	T _{stg}		°C		

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNIT
FF CHARACTERISTICS						
Collector-Base Voltage (I _C =0.5mA)	XGSQ1530 XGSQ1535 XGSQ1540	BV _{CBO}	350 400 450			Vdc
Collector-Emitter Voltage (I _C =10mA)	XGSQ1530 XGSQ1535 XGSQ1540	BV _{CEO}	300 350 400			Vdc
Emitter-Base Voltage (I _E =0.1mA)		BV _{EBO}	7.0			Vdc
Collector Cutoff Current (V _{CB} =280V) (V _{CB} =320V) (V _{CB} =360V)	XGSQ1530 XGSQ1535 XGSQ1540	ICBO			10 10 10	μА
Emitter Cutoff Current (V _{EB} =5.0V)		I _{EBO}			10	μА
Collector Cutoff Current $(V_{CE}=240V)$ $(V_{CE}=280V)$ $(V_{CE}=320V)$	XGSQ1530 XGSQ1535 XGSQ1540	I _{CEO}			50 50 50	μA
N CHARACTERISTICS						
DC Current Gain (V _{CE} =1V, I _C =1A)		h _{FE} *	10			×
DC Current Gain (V _{CE} =5V, I _C =1.5A)		h _{FE} *	10			
Collector Saturation Voltage (I _C =1A, I _B =0.2A)		V _{CE} (sat)*			0.3	Vdc
Collector Saturation Voltage (I _C =1.5A, I _B =0.3A)		V _{CE} (sat)*			0.4	Vdc
Base Saturation Voltage (I _C =1.5A, I _B =0.3A)		V _{BE} (sat)*			1.2	Vdc
DYNAMIC CHARACTERISTICS						
Small Signal Current Gain (V _{CE} =10V, I _C =0.25A, f=10MHz)		h _{fe}	3			
Collector Base Capacitance (V _{CB} =10V, f=1MHz)		C _{ob}			50	pF
Delay Time (V _{CC} =250V, I _C =1.5A, I _{B1} =0.3A, I	B2 ^{=0.3A)}	^t d			0.1	μS
Rise Time (V _{cc} =250V, I _c =1.5A, I _{D1} =0.3A, I	n ₂ =0.3A)	t _r			0.2	μS

 t_s

 t_{f}

1.0

0.25

 $(V_{CC}^{=250V}, I_{C}^{=1.5A}, I_{B1}^{=0.3A}, I_{B2}^{=0.3A})$

 $(v_{CC}^{-2} = 0.3A, I_{C}^{-1} = 0.3A, I_{B2}^{-1} = 0.3A)$

Storage Time $(V_{CC}^{=2}50V, I_{C}^{=1.5A}, I_{B1}^{=0.3A}, I_{B2}^{=0.3A})$

Fall Time

^{*}Pulse measurement conditions: Length = 300 μ s, Duty Cycle \leq 2%.

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

DC Forward Biased Safe Operating Area

Pulsed Forward Biased Safe Operating Area

RATINGS	SYMBOL	XGSQ3030	XGSQ3035	XGSQ3040	UNIT		
Collector-Base Voltage	V _{CBO}	350	400	450	Vdc		
Collector-Emitter Voltage	V _{CEO}	300 350		300 350		400	Vdc
Emitter-Base Voltage	V _{EBO}	7	Vdc				
Collector Current - Continuous	I _C	5	Adc				
Base Current - Continuous	I _B	1		Adc			
Total Power Dissipation @ T _C =100°C	P _D	1	5	-	Watt		
Thermal Resistance (Junction to Case)	θ _{J-C}	5.0			°C/W		
Junction Temperature	$^{\mathrm{T}}_{\mathrm{J}}$	-65 to +175		°C			
Storage Temperature	Tstg	-65	to +200		°C		

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
FF CHARACTERISTICS					
Collector-Base Voltage (I _C =1.0mA) XGSQ3030 XGSQ3035 XGSQ3040	BV _{CBO}	350 400 450			Vdc
Collector-Emitter Voltage (I _C =50mA) XGSQ3030 XGSQ3035 XGSQ3040	BV _{CEO}	300 350 400			Vdc
Emitter-Base Voltage (I _E =1.0mA)	BV _{EBO}	7.0			Vdc
Collector Cutoff Current (V _{CB} =80% Rated V _{CB}) XGSQ3030 XGSQ3035 XGSQ3040	I _{CBO}			250 250 250	μА
Emitter Cutoff Current (V _{EB} =5.0V)	IEBO			50	μА
	I _{CEO}			500 500 500	μА
N CHARACTERISTICS					
DC Current Gain (V _{CE} =5.0V, I _C =3.0A)	h _{FE} *	10			
Collector Saturation Voltage (I _C =3.0A, I _B =0.6A)	V _{CE} (sat)*			0.8	Vdc
Base Saturation Voltage (I _C =3.0A, I _B =0.6A)	V _{BE} (sat)*			1.3	Vdc
DYNAMIC CHARACTERISTICS		4			•
Small Signal Current Gain (V _{CE} =10V, I _C =0.5A, f=10MHz)	h _{fe}	2.5			
Collector Base Capacitance (V _{CB} =10V, f=1MHz)	C _{ob}			250	pF
Turn-on Time $(V_{CC}=250V, I_{C}=3.0A, I_{B1}=0.6A, I_{B2}=0.6A)$	ton			0.2	μS
Storage Time $(V_{CC}^{=250V}, I_{C}^{=3.0A}, I_{B1}^{=0.6A}, I_{B2}^{=0.6A})$	t _s			2.0	μs
Fall Time (V _{CC} =250V, I _C =3.0A, I _{B1} =0.6A, I _{B2} =0.6A)	t _f			0.35	μs

^{*}Pulse measurement conditions: Length = $300\mu s$, Duty Cycle \leq 2%.

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

DC Forward Biased Safa Operating Area

Pulsed Forward Biased Safe Operating Area

TO-66

RATINGS	SYMBOL		X GS Q5030	XGSQ5035	XGSQ5040	UNIT	
Collector-Base Voltage	v _{CBO}		350	400	450	Vdc	
Collector-Emitter Voltage	v _{CEO}		300	350	400	Vdc	
Emitter-Base Voltage	V _{EBO}	7.0					
Collector Current - Continuous	I _C	7.0					
Base Current - Continuous	I _B	2.0					
Total Power Dissipation @ T _C =100°C	PD		1	.5		Watt	
Thermal Resistance (Junction to Case)	θЈ-С	5.0					
Junction Temperature	т	-65 to +175					
Storage Temperature	Tstg		-65	to +200		°C	

CHARACTERISTIC

F CHARACTERISTICS				
Collector-Base Voltage (I _C =1.0mA) XGSQ5030 XGSQ5035 XGSQ5040	BV _{CBO}	350 400 450		Vdo
Collector-Emitter Voltage (I _C =50mA) XGSQ5030 XGSQ5035 XGSQ5040	BV _{CEO}	300 350 400		Vdo
$ \begin{array}{c} {\rm Emitter\text{-}Base\ Voltage} \\ {\rm (I_E^{=1.0mA)}} \end{array} $	BV _{EBO}	7.0		Vd
	ІСВО		250 250 250	μА
Emitter Cutoff Current (V _{EB} =5.0V)	I _{EBO}		50	μA
	ICEO		500 500 500	μА
CHARACTERISTICS				
DC Current Gain (V _{CE} =5.0V, I _C =5.0A)	h _{FE} *	10		
Collector Saturation Voltage (I _C =5.0A, I _B =1.0A)	V _{CE} (sat)*		0.8	Vd
Base Saturation Voltage (I _C =5.0A, I _B =1.0A)	V _{BE} (sat)*		1.3	Vd
DYNAMIC CHARACTERISTICS				
Small Signal Current Gain (V _{CE} =10V, I _C =0.5A, f=10MHz)	h _{fe}	2.5		
Collector Base Capacitance (V _{CB} =10V, f=1.0MHz)	C _{ob}		250	pF
Turn-on Time $(V_{CC}^{=250V}, I_{C}^{=5.0A}, I_{B1}^{=1.0A}, I_{B2}^{=1.0A})$	t _{on}		0.5	μS
Storage Time (V _{CC} =250V, I _C =5.0A, I _{B1} =1.0A, I _{B2} =1.0A)	t _s		1.25	μs
Fall Time (V _{CC} =250V, I _C =5.0A, I _{B1} =1.0A, I _{B2} =1.0A)	t _f		0.4	μS

SYMBOL

MIN

TYP

MAX

UNIT

^{*}Pulse measurement conditions: Length = 300 μ s, Duty Cycle \leq 2%.

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

RATINGS	SYMBOL	X GS Q7530	X GS Q7535	XGSQ7540	UNIT
Collector-Base Voltage	V _{CBO}	350	400	450	Vdc
Collector-Emitter Voltage	V _{CEO}	300	350	400	Vdc
Emitter-Base Voltage	V _{EBO}		7		Vdc
Collector Current - Continuous	^I C		Adc		
Base Current - Continuous	I _B			Adc	
Total Power Dissipation @ T _C =100°C	P _D		25		Watt
Thermal Resistance (Junction to Case)	^θ J-C		3		°C/W
Thermal Resistance (Junction to Ambient)	θ _{J-A}			°C/W	
Junction Temperature	$^{\mathrm{T}}_{\mathrm{J}}$		°C		
Storage Temperature	T _{stg}		-65 to +200		°C

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNI
F CHARACTERISTICS						
Collector-Base Voltage (I _C =1.0mA)	XGSQ7530 XGSQ7535 XGSQ7540	BVCBO	350 400 45 0			Vdc
Collector-Emitter Voltage (I _C =50mA)	XGSQ7530 XGSQ7535 XGSQ7540	BV _{CEO}	300 350 40 0			Vdc
Emitter-Base Voltage (I _E =1.0mA)		BV _{EBO}	7.0			Vdc
Emitter Cutoff Current (V _{EB} =5V)		I _{EBO}			40	μА
Collector Cutoff Current (VCE=300V, VEB=-1.5V, Tc=150°C (VCE=350V, VEB=-1.5V, Tc=150°C (VCE=400V, VEB=-1.5V, Tc=150°C	XGSQ7535	ICEX			3 3 3	mА
Collector Cutoff Current (V _{CB} =280V) (V _{CB} =320V) (VCB=360V)	XGSQ7530 XGSQ7535 XGSQ7540	ICBO			200 200 200	μА
Collector Cutoff Current (V _{CE} =240V) (V _{CE} =280V) (VCE=320V)	XGSQ7530 XGSQ7535 XGSQ7540	I _{CEO}			500 500 500	μА
CHARACTERISTICS						
DC Current Gain (V _{CE} =5V, I _C =7.5A)		h _{FE} *	10			
DC Current Gain (V _{CE} =2V, I _C =5.0A)		h _{FE} *	10			
Collector Saturation Voltage (I _C =7.5A, I _B =1.5A)		V _{CE} (sat)*			0.7	Vdo
Base Saturation Voltage $(I_C=7.5A, I_B=1.5A)$		V _{BE} (sat)*			1.3	Vdo
DYNAMIC CHARACTERISTICS						
Small Signal Current Gain (V _{CE} =10V, I _C =1A, f=10MHz)		h _{fe}	3.0			
Collector Base Capacitance (V _{CB} =10V, f=1.0MHz)		C _{ob}			150	pF
Delay Time $(V_{CC}=100V, I_C=7.5A, I_{B1}=1.5A, I_{B2}=1.5A)$	=1.5 A)	^t d			0.05	μS
Rise Time $(V_{CC}=100V, I_{C}=7.5A, I_{B1}=1.5A, I_{B2}$	=1.5A)	t _r			0.35	μS
Storage Time $(V_{CC}^{=100V}, I_{C}^{=7.5A}, I_{B1}^{=1.5A}, I_{B2}^{=1.5A})$	=1.5A)	t _s			0.75	μS
Fall Time (V _{CC} =100V, I _C =7.5A, I _{B1} =1.5A, I _{B2}	=1.5A)	t _f			0.175	μS

^{*}Pulse measurement conditions: Length = $300\mu s$, Duty Cycle $\leq 2\%$.

GENERAL SEMICONDUCTOR INDUSTRIES, INC.

FIGURE 1 - Typical DC Current Gein

FIGURE 2 - Typical Saturation Voltage

FIGURE 3 - Pulse Measurement Circuit

FIGURE 4 - Sustaining Voltage Circuit

FIGURE 5 - Safe Operating Area

FIGURE 6 - Forward Biesed Safe Operating Area

FIGURE 7 - E_{S/8} Curve

This unique series utilizes General Semiconductor Industries' C²R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

DC Forward Biased Safe Operating Area

Pulsed Forward Biased Safe Operating Area

RATINGS	SYMBOL	XGSR3030 XGSR3035 XGSR3040				UNIT
Collector-Base Voltage	V _{CBO}	350 400 450				Vdc
Collector-Emitter Voltage	V _{CEO}		300	350	400	Vdc
Emitter-Base Voltage	V _{EBO}		Vdc			
Collector Current - Continuous	I _C		Adc			
Base Current - Continuous	IB			Adc		
Total Power Dissipation @ T _C =100°C	P _D		7	'5		Watt
Thermal Resistance (Junction to Case)	θ _{J-C}		°C/W			
Junction Temperature	$^{\mathrm{T}}_{\mathrm{J}}$		°C			
Storage Temperature	T _{stg}		°C			

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
FF CHARACTERISTICS					
Collector-Base Voltage (I _C =1.0mA) XGSR3030 XGSR3035 XGSR3040	BV _{CBO}	350 400 450			Vdc
Collector-Emitter Voltage XGSR3030 (I _C =50mA) XGSR3035 XGSR3040 XGSR3040	BV _{CEO}	300 350 400			Vdc
Emitter-Base Voltage (I _E =1.0mA)	BV _{EBO}	7.0			Vdc
	I _{CBO}			250 250 250	μА
Emitter Cutoff Current (V _{EB} =5.0V)	IEBO			50	μA
Collector Cutoff Current (V _{CE} =80% Rated V _{CE}) XGSR3030 XGSR3035 XGSR3040	I _{CEO}			500 500 500	μА
N CHARACTERISTICS					
DC Current Gain (V _{CE} =5.0V, I _C =3.0A)	h _{FE} *	10			
Collector Saturation Voltage (I _C =3.0A, I _B =0.6A)	V _{CE} (sat)*			0.8	Vdc
Base Saturation Voltage (I _C =3.0A, I _B =0.6A)	V _{BE} (sat)*			1.3	Vdc
DYNAMIC CHARACTERISTICS					_
Small Signal Current Gain (V _{CE} =10V, I _C =0.5A, f=10MHz)	h _{fe}	2.5			
Collector Base Capacitance (V _{CB} =10V, f=1.0MHz)	C _{ob}			250	pF
Turn-on Time (V _{CC} =250V, I _C =3A, I _{B1} =0.6A, I _{B2} =0.6A)	ton			0.2	μs
Storage Time (V _{CC} =250V, I _C =3A, I _{B1} =0.6A, I _{B2} =0.6A)	t _s			2.0	μs
Fall Time $(V_{CC}^{-250V}, I_{C}^{-3A}, I_{B1}^{-0.6A}, I_{B2}^{-0.6A})$	t _f			0.35	μs

^{*}Pulse measurement conditions: Length = 300 μ s, Duty Cycle \leq 2%.

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

DC Forward Biased Safe Operating Area

Pulsed Forward Biased Safe Operating Area

RATINGS	SYMBOL		XGSR5030	XGSR5035	XGSR5040	UNIT
Collector-Base Voltage	V _{CBO}		350	400	450	Vdc
Collector-Emitter Voltage	V _{CEO}		300	350	400	Vdc
Emitter-Base Voltage	V _{EBO}		8	.0		Vdc
Collector Current - Continuous	I _C			Adc		
Base Current - Continuous	I _B			Adc		
Total Power Dissipation @ T _C =100°C	P _D		7.	5		Watt
Thermal Resistance (Junction to Case)	θ _{J-C}			°C/W		
Junction Temperature	$^{\mathrm{T}}_{\mathrm{J}}$		°C			
Storage Temperature	Tstg		-65	to +200		°C

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNIT
FF CHARACTERISTICS			•			
Collector-Base Voltage (I _C =1.0mA)	XGSR5030 XGSR5035 XGSR5040	BV _{CBO}	350 400 450			Vdc
Collector-Emitter Voltage (I _C =50mA)	XGSR5030 XGSR5035 XGSR5040	BV _{CEO}	300 350 400			Vdc
Emitter-Base Voltage (I _E =1.0mA)		BV _{EBO}	7.0			Vdc
Collector Cutoff Current (V_{CB} =80% Rated V_{CB})	XGSR5030 XGSR5035 XGSR5040	ІСВО			250 250 250	μА
Emitter Cutoff Current (V_{EB}^{-5V})		I _{EBO}			50	μА
Collector Cutoff Current (V_{CE} =80% Rated V_{CE})	XGSR5030 XGSR5035 XGSR5040	I _{CEO}		100	500 500 500	μА
N CHARACTERISTICS		***	······································			
DC Current Gain (V _{CE} =5.0V, I _C =5.0A)		h _{FE} *	10			
Collector Saturation Voltage (I _C =5A, I _B =1A)		V _{CE} (sat)*			0.8	Vdc
Base Saturation Voltage (I _C =5A, I _B =1A)		V _{BE} (sat)*			1.3	Vdc
DYNAMIC CHARACTERISTICS						
Small Signal Current Gain (V _{CE} =10V, I _C =0.5A, f=10MHz)		h _{fe}	2.5			
Collector Base Capacitance (V _{CB} =10V, f=1MHz)		C _{ob}			250	pF
Turn-on Time $(V_{CC}^{=250V}, I_{C}^{=5A}, I_{B1}^{=1A}, I_{B2}^{=1A})$		t _{on}			0.5	μS
Storage Time $(V_{CC}^{-250V}, I_{C}^{-5A}, I_{B1}^{-1A}, I_{B2}^{-1A})$		t _s			1.75	μs
Fall Time $(V_{CC}^{-250V}, I_{C}^{-5A}, I_{B1}^{-1A}, I_{B2}^{-1A})$		t _f			0.45	μs

^{*}Pulse measurement conditions: Length = 300 μs , Duty Cycle \leq 2%.

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

RATINGS	SYMBOL	XGSR7530	XG\$R7535	XGSR7540	UNIT			
Collector-Base Voltage	V _{CBO}	350	400	450	Vdc			
Collector-Emitter Voltage	v _{CEO}	300	350	400	Vdc			
Emitter-Base Voltage	V _{EBO}		7.0		Vdc			
Collector Current - Continuous	^I c	10			10			Adc
Base Current - Continuous	I _B	5			Adc			
Total Power Dissipation @ T _C =100°C	P_{D}	50			Watt			
Thermal Resistance (Junction to Case)	θ _{J-C}	1.5			°C/W			
Thermal Resistance (Junction to Ambient)	θ _{J-} A	30			°C/W			
Junction Temperature	T_J	-65 to +175			°C			
Storage Temperature	T _{stg}	-65 to +200			°C			

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNI
F CHARACTERISTICS	-	,			
Collector-Base Voltage XGSR7530 (I _C =1.0mA) XGSR7535 XGSR7540	BV _{CBO}	350 400 45 0			Vdc
Collector-Emitter Voltage XGSR7530 (I _C =50mA) XGSR7535 XGSR7540	BV _{CEO}	300 350 4 00			Vdc
Emitter-Base Voltage (I _E =1.0mA)	BV _{EBO}	7.0			Vdc
Emitter Cutoff Current (V _{EB} =5.0V)	I _{EBO}			40	μA
Collector Cutoff Current (VCE=300V, VEB=-1.5V, Tc=150°C) XGSR7530	ICEX			3	mA
(VCE=350V, VEB= $-1.5V$, Tc=150°C) XGSR7535				3	mA
(VCE=400V, VEB=-1.5V, TC=150°C) XGSR7540				3	
Collector Cutoff Current (V _{CB} =280V) XGSR7530	I _{CBO}			200	μA
$(V_{CB}^{=320V})$ XGSR7535				200	
(VCB=360V) XGSR7540				200	
Collector Cutoff Current (V _{CE} =240V) XGSR7530	ICEO			500	μA
$(V_{CE} = 280V) XGSR7535$				500	
(VCE=320V) XGSR7540				500	
CHARACTERISTICS			•		
DC Current Gain (V _{CE} =5V, I _C =7.5A)	h _{FE} *	10			
DC Current Gain (V _{CE} =2V, I _C =5.0A)	h _{FE} *	10			
Collector Saturation Voltage (I _C =7.5A, I _B =1.5A)	V _{CE} (sat)*			0.6	Vdc
Base Saturation Voltage $(I_C^{=7.5A}, I_B^{=1.5A})$	V _{BE} (sat)*			1.25	Vdc
DYNAMIC CHARACTERISTICS					
Small Signal Current Gain (V _{CE} =10V, I _C =1A, f=10MHz)	h _{fe}	3			
Collector Base Capacitance (V _{CB} =10V, I _C =0, f=1MHz)	C _{ob}			150	pF
Delay Time $(V_{CC}^{=100V}, I_{C}^{=7.5A}, I_{B1}^{=1.5A}, I_{B2}^{=1.5A})$	^t d			0.05	μS
Rise Time $(V_{CC}=100V, I_C=7.5A, I_{B1}=1.5A, I_{B2}=1.5A)$	tr			0.35	μS
Storage Time $(V_{CC}=100V, I_{C}=7.5A, I_{B1}=1.5A, I_{B2}=1.5A)$	ts			0.75	μs
Fall Time (V _{CC} =100V, I _C =7.5A, I _{R1} =1.5A, I _{R2} =1.5A)	t _f			0.175	μs

^{*}Pulse measurement conditions: Length = 300 μ s, Duty Cycle \leq 2%.

GENERAL SEMICONDUCTOR INDUSTRIES, INC.

FIGURE 1 - Typical DC Current Gain

FIGURE 2 - Typical Saturation Voltage

FIGURE 3 — Pulse Measurement Circuit

FIGURE 4 - Sustaining Voltage Circuit

FIGURE 5 — Safe Operating Area

FIGURE 6 - Forward Biased Safe Operating Area

FIGURE 7 — E_{S/B} Curve

This unique series utilizes General Semiconductor Industries' C²R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

2001 West Tenth Place, Tempe, Arizona 85281 + 602 968 3101 + TWX910 950 1942 Mailing Address P O Box 3078

GENERAL SEMICONDUCTOR INDUSTRIES, INC XGSR Series, Copyright General Semiconductor Industries, Inc., 9-77

Printed in USA

This unique series utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

RATINGS	SYMBOL	XGSR10030	XGSR10035	XGSR10040	UNIT			
Collector-Base Voltage	V _{CBO}	350	400	450	Vdc			
Collector-Emitter Voltage	v _{CEO}	300	350	400	Vdc			
Emitter-Base Voltage	V _{EBO}	7.0			Vdc			
Collector Current - Continuous	I _C	15			15			Adc
Collector Current - Peak	^I C	30		30		Adc		
Base Current - Continuous	I _B	5.0		5.0		Adc		
Total Power Dissipation @ T _C =100°C	P _D	75		75			Watt	
Thermal Resistance (Junction to Case)	θ _{J-C}	1.0		1.0			°C/W	
Junction Temperature	$^{\mathrm{T}}_{\mathrm{J}}$	-65 to +175		°C				
Storage Temperature	T _{stg}	-65 to +200			°C			

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNIT
F CHARACTERISTICS						
Collector-Base Voltage (IC=1.0mA)	XGSR10030 XGSR10035 XGSR10040	BV _{CBO}	350 400 4 50			Vdc
Collector-Emitter Voltage (I _C =50mA)	XGSR10030 XGSR10035 XGSR10040	BV _{CEO}	300 350 4 00			Vdc
Emitter-Base Voltage (I _E =1.0mA)		BV _{EBO}	7.0			Vdc
Collector-Emitter Breakdown Voltage $(I_C = 50 \text{mA}, V_{BE} = -1.5 \text{V (FIG. 4)})$	XGSR10030 XGSR10035 XGSR10040	BV _{CE} X	350 400 4 50			Vdc
Collector-Emitter Breakdown Voltage (I_C =50mA, R=100 Ω (FIG. 4))	XGSR10030 XGSR10035 XGSR10040	BV _{CE R}	325 375 4 25			Vdc
Collector Cutoff Current $(V_{CB}^{-80\%} V_{CB}^{-Rated})$	XGSR10030 XGSR10035 XGSR10040	I _{CBO}			500 500 500	μΑ
Emitter Cutoff Current (V _{EB} =5.0V)		I _{EBO}			100	μA
Collector Cutoff Current (V _{CE} =80% V _{CE} Rated)	XGSR10030 XGSR10035 XGSR10040	I _{CEO}			1.0 1.0 1.0	mA
N CHARACTERISTICS						
DC Current Gain (V _{CE} =5.0V, I _C =10A)	XGSR10030 XGSR10035 XGSR10040	h _{FE} *	15 10 10			
Collector Saturation Voltage (I _C =10A, I _B =2.0A)		V _{CE} (sat)*			0.8	Vdo
Base Saturation Voltage (I _C =10A, I _B =2.UA)		V _{BE} (sat)*			1.3	Vdo
DYNAMIC CHARACTERISTICS						
Small Signal Current Gain (V _{CE} =10V, I _C =1.0A, f=10MHz)		h _{fe}	2.5			
Collector Base Capacitance (V _{CB} =10V, f=1 MH z)		C _{ob}			350	pF
Turn-on Time $(V_{CC}^{=100V}, I_{C}^{=10A}, I_{B1}^{=1.0A}, I_{B2}^{=1})$.0A)	ton			0.2	
Storage Time $(V_{CC}^{=100V}, I_{C}^{=10A}, I_{B1}^{=1.0A}, I_{B2}^{=1.0A})$	1.0A (FIG. 3))	ts			1.5	
Fall Time (V _{CC} =100V, I _C =10A, I _{B1} =1.0A, I _{B2} =	1.0A)	t _f			0.9	μs

^{*}Pulse measurement conditions: Length = 300 μ s, Duty Cycle \leq 2%.

Figure 1 - TYPICAL DC CURRENT GAIN

Figure 2-TYPICAL SATURATION VOLTAGE

Figure 3 - PULSE TEST CIRCUIT

Figure 4— SUSTAINING VOLTAGE CIRCUIT

Figure 5— SAFE OPERATING AREA

This unique device utilizes General Semiconductor Industries' C^2R process (patent applied for) which describes a manufacturing technology that provides surface stabilization for high voltage operation and enhances long term reliability.

RATINGS	SYMBOL	XGSR50020	UNIT
Collector-Base Voltage	V _{CBO}	250	Vdc
Collector-Emitter Voltage	V _{CEO}	200	Vdc
Fmitter-Base Voltage	V _{EBO}	8.0	Vdc
Collector Current - Continuous	I _C	30	Adc
Base Current - Continuous	I _B	10	Adc
Total Power Dissipation @ T _C =100°C	P _D	100	Watt
Thermal Resistance (Junction to Case)	θ _{J-C}	0.75	°C/W
Junction Temperature	T_{J}	-65 to +175	°C
Storage Temperature	T _{stg}	-65 to +200	°C

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
FF CHARACTERISTICS					
Collector-Base Voltage (I _C =1.0mA)	BV _{CBO}	250			Vdc
Collector-Emitter Voltage (I _C =50mA)	BV _{CEO}	200			Vdc
Emitter-Base Voltage $(I_E^{=1.0mA})$	BV _{EBO}	8.0			Vdc
Collector Cutoff Current (V _{CB} =200V)	ICBO			500	μА
Emitter Cutoff Current (V _{EB} =5.0V)	I _{EBO}			100	μA
Collector Cutoff Current (V _{CE} =160V)	I _{CEO}			1.0	mA
N CHARACTERISTICS	······································	<u> </u>			
DC Current Gain (V _{CE} =2V, I _C =20A)	h _{FE} *	15		50	
DC Current Gain (V _{CE} =5.0V, I _C =50A)	h _{FE} *	8			
DC Current Gain (V _{CE} =2.0V, I _C =50A)	h _{FE} *	6			
Collector Saturation Voltage (I _C =20A, I _B =2.0A)	V _{CE} (sat)*			1.0	Vdc
Collector Saturation Voltage (I _C =50A, I _B =10A)	V _{CE} (sat)*			2.0	Vdc
Base Saturation Voltage (I _C =20A, I _B =2.0A)	V _{BE} (sat)*			1.4	Vdc
Base Saturation Voltage (I _C =50A, I _B =10A)	V _{BE} (sat)*			2.5	Vdc
YNAMIC CHARACTERISTICS					
Small Signal Current Gain (V _{CE} =10V, I _C =1.0A, f=10MHz)	h _{fe}	3.0			
Collector Base Capacitance V _{CB} =10V, I _C =0, f=1MHz)	C _{ob}			350	pF
Turn-on Time (V _{CC} =100V, I _C =15A, I _{B1} =3.0A, I _{B2} =3.0A)	t _{on}			0.1	μs
Storage Time $(V_{CC}^{=100V}, I_{C}^{=15A}, I_{B1}^{=3.0A}, I_{B2}^{=3.0A})$	t _s			0.7	μs
Fall Time (V _{CC} =100V, I _C =15A, I _{B1} =3.0A, I _{B2} =3.0A)	t _f			0.2	μs

^{*}Pulse measurement conditions: Length = $300\mu s$, Duty Cycle \leq 2%.

ENVIRONMENTAL FACILITIES AND EQUIPMENT

I. Life Tests and Power-Age Capabilities

- A. General Semiconductor Industries, has complete facilities to provide life tests and powerage on all devices which they manufacture.
 - a. High temperature storage life testing up to 200°C.
 - b. Voltage temperature stress tests at both ambient and elevated conditions.
 - c. Free air operating life. Test capability in
- excess of 5000 positions for power transistors, and 15,000 positions for power diodes.
- d. Case temperature operating life test capabilities for power dissipation levels up to 200 watts.
- e. Intermittent operating life tests at various cycles and power levels.

II. Environmental Test Capabilities

Acceleration, Sustained (Centrifuge) Altitude (Barometric Pressure, Reduced)

Dew Point

Moisture Resistance

Radiographic Inspection (X-Ray)

Salt Atmosphere/Spray Seal - Gross Leak

Symbolization (Resistance to Solvents)

Shock (Mechanical)

Solderability

Temperature Cycling

Terminal Strength (Lead Integrity)

Thermal Shock Vibration, Fatigue Vibration, Variable

CAPABILITY

50 - 20,000g (Standard)

450,000 ft. Simulated Altitude with TA=25°C Capability

-65°C to 150°C

0°C to 175°C, 40% to 100% RH

Resolution to 0.001 inch, 150kV - 5mA 25°C to 71°C, up to 20% Salt Solution by Weight 1 X 10⁻⁵ atm cc/sec, Fluorocarbons, Mineral Oils,

Ethylene Glycol, Hydrostatic Pressure; 0 - 100psig

Pulse Shape - Approximately Half-sine

500 - 1500g @ 0.5 - 1.0 msec

Up to 280°C

-75°C to 200°C

Lead Fatigue, Tension, Stud Torque, Terminal Torque

-65°C to 200°C 60 Hz, 5 - 20g

5 - 2000 Hz as Limited by 1 inch DA and 60 inches/second

Velocity; 0 - 20g (Standard)

III. Military Test Standard Capabilities

TEST CATEGORY	MIL-STD-202	MIL-STD-750
Altitude	All Conditions	All Conditions
Dew Point		All Conditions
Moisture Resistance	All Conditions	All Conditions
Resistance to Solvents (Symbolization)	All Conditions	
Salt Atmosphere	All Conditions	All Conditions
Seal, Gross Leak	Method 112B, Conditions A, B, & D	
		Method 1071, Conditions C, D, E, & F
Seal, Fine Leak	Only Method 112B,	Method 1071,
	Condition C, Procedure IIIA	Condition G
Solderability	All Conditions	All Conditions
Soldering Heat	All Conditions	All Conditions
Temperature Cycling	All Conditions Except: Method 107,	
	Conditions D & E	
Terminal Strength (Lead Integrity)	All Conditions	All Conditions
Thermal Shock (Glass Strain)	All Conditions	All Conditions
Acceleration, Sustained (Centrifuge)	All Conditions	All Conditions
Shock (Mechanical)	Method 213B, Conditions D, E, & F	All Conditions
Vibration, Fatigue	All Conditions	All Conditions
Vibration, Noise		All Conditions
Vibration, Variable Frequency	All Conditions	All Conditions
X-Ray	All Conditions	All Conditions

JAN/JANTX(V) AVAILABILITY

			R DIODES S-19500		
1	114	/	124	/3	58
1N2805B 1N2806B 1N2807B 1N2808B 1N2809B 1N2810B 1N2811B 1N2813B 1N2814B 1N2814B 1N2818B 1N2818B 1N2820B 1N2822B	1N2823B 1N2824B 1N2825B 1N2826B 1N2827B 1N2829B 1N2831B 1N2832B 1N2833B 1N2834B 1N2835B 1N2836B 1N2837B	1N2970B 1N2971B 1N2972B 1N2973B 1N2974B 1N2975B 1N2976B 1N2977B 1N2989B 1N2980B 1N2982B 1N2984B 1N2985B 1N2986B 1N2988B 1N2988B 1N2989B	1N2991B 1N2992B 1N2993B 1N2995B 1N2997B 1N2999B 1N3000B 1N3001B 1N3002B 1N3003B 1N3004B 1N3005B	1N3305B 1N3306B 1N3306B 1N3308B 1N3309B 1N3310B 1N3311B 1N3312B 1N3315B 1N3315B 1N3315B 1N3319B 1N3320B 1N3321B 1N3321B 1N3321B 1N3323B 1N3324B 1N3325B	1N3327B 1N3328B 1N3330B 1N3332B 1N3334B 1N3335B 1N3336B 1N3337B 1N3339B 1N3340B 1N3340B 1N3342B 1N3343B 1N3347B 1N3347B 1N3347B 1N3347B 1N3347B

		TRANSZORBS MIL-S-19500		
/434	/5	00	/50	07
/434 1N5555 1N5556 1N5557 1N5558	1N5907 1N5629A 1N5630A 1N5631A 1N5632A 1N5633A 1N5635A 1N5635A 1N5637A 1N5637A 1N5639A 1N5640A 1N5641A 1N5642A 1N5642A	1N5647A 1N5648A 1N5650A 1N5651A 1N5651A 1N5652A 1N5652A 1N5655A 1N5656A 1N5656A 1N5656A 1N5657A 1N5659A 1N5660A 1N5661A 1N5661A	1N6036A 1N6037A 1N6038A 1N6039A 1N6041A 1N6041A 1N6042A 1N6043A 1N6045A 1N6045A 1N6046A 1N6047A 1N6048A 1N6049A 1N6050A	1N6055A 1N6056A 1N6056A 1N6057A 1N6058A 1N6069A 1N6061A 1N6061A 1N6062A 1N6063A 1N6064A 1N6065A 1N6066A 1N6067A 1N6069A 1N6069A 1N6070A
	1N5645A 1N5646A	1N5664A 1N5665A	1N6053A 1N6054A	INOU72A

TC REFERENCE DIODES MIL-S-19500					
/156	/157	/159			
1N935B	1N941B	1N821			
1N937B	1N943B	1N823			
1N938B	1N944B	1N825			
		1N827			
		1N829			

	TRANSISTORS MIL-S-19500	
/349	/393	/394
2N3506	2N3418	2N415 0
2N3507	2N3419	
	2N3420	
Ì	2N3421	
1		,

6

Case DO—7

Case DO—13

CASE OUTLINES — TRANSISTORS

CASE OUTLINES — TRANSISTORS

CASE OUTLINES — TRANSISTORS

REGIONAL SALES OFFICES

EASTERN REGIONAL OFFICE

P.O. Box A101 Wantagh, NY 11793 TEL: 516-785-6803 TWX: 510-224-6672

MID-WESTERN REGIONAL OFFICE

P.O. Box 59353 Chicago, IL 60659 TEL: 312-647-7660 TWX: 910-221-2455 WESTERN REGIONAL OFFICE

P.O. Box 3034 Granada Hills, CA 91344 TEL: 213-780-2990 TWX: 910-495-2017

REPRESENTATIVES

ALABAMA

REMCO 3322 S. Memorial Parkway S.W. Suite 65 Huntsville, AL 35801 TEL: 205-883-9260 TWX: 810-726-2123

ARIZONA

QUATRA, INC. 1801 S. Jen Tilly Suite C-14 Tempe, AZ 85281 TEL: 602-894-2808

ARKANSAS

OELER & MENELAIDES 558 South Central Expressway Suite 276 Richardson, TX 75080 TEL: 214-234-6334 TWX: 910-867-4745

CALIFORNIA — NORTHERN

KOTTMEIER ASSOCIATES, INC. P.O. Box 519 San Carlos, CA 94070 TFI: 415-592-8333 TWX: 910-376-4397

CALIFORNIA — SOUTHERN

REED ELECTRONIC MARKETING 3772 Katella Avenue P.O. Box 206 Los Alamitos, CA 90720 TEL: 714-821-9600 TWX: 910-341-7295

CALIFORNIA — SAN DIEGO

REED ELECTRONIC MARKETING P.O. Box 964 Del Mar. CA 92014 TEL: 714-452-1456 TWX: 910-322-1131

COLORADO

QUATRA, INC. 2275 E. Arapahoe Road Littleton, CO 80122 TEL: 303-795-3187 TWX: 910-935-0874

CONNECTICUT

DATCOM 1 Evergreen Avenue Hamden, CT 06518 TEL: 203-288-7005

DELAWARE

BGR ASSOCIATES 6th Floor 2500 Office Center Willow Grove, PA 19090 TEL: 215-657-3301 TWX: 510-665-5685

FLORIDA — FORT LAUDERDALE

DYNE-A-MARK CORPORATION 1001 N.W. 62nd Street Suite 107 Fort Lauderdale, FL 33309 TEL: 305-771-6501 TWX: 510-956-9872

FLORIDA — CLEARWATER

DYNE-A-MARK CORPORATION 405 South Aurora Clearwater, FL 33515 TEL: 813-441-4702 TWX: 810-866-0438

FLORIDA — ORLANDO

DYNE-A-MARK CORPORATION P.O. Box 33 Maitland, FL 32751 TEL: 305-831-2097 TWX: 810-853-5039

FLORIDA — PALM BAY

DYNE-A-MARK CORPORATION P.O. Box 339 Palm Bay, FL 32905 TEL: 305-831-2097

GEORGIA

REMCO Suite 110 3100 Proctor Square Duluth, GA 30136 TEL: 404-476-1730

IDAHO

ELECTRONIC SOURCES, INC. 1406-140th Pl. N.E. Bellevue, WA 98005 TEL: 206-643-0400 TWX: 910-443-2530

ILLINOIS - NORTHERN

BALHORN & ROESER, INC. 1758 Taft Avenue Berkeley, IL 60162 TEL: 312-449-3900 TWX: 910-234-3901

ILLINOIS — SOUTHERN

TECHNICAL SALES ASSOC., INC. P.O. Box 10907 St. Louis, MO 63135 TEL: 314-725-5361 TWX: 910-760-1629

INDIANA — INDIANAPOLIS

GIESTING & ASSOCIATES, INC. 6315 Copper Court Indianapolis, IN 46227 TEL: 317-787-0276

INDIANA - FT. WAYNE

GIESTING & ASSOCIATES, INC. 4407 DeRome Dr. Ft. Wayne, IN 46815 TEL: 219-486-1912

BALHORN & ROESER, INC. 206 Collins Road N.E. Suite P Cedar Rapids, IA 52402 TEL: 319-377-4814

KANSAS

TECHNICAL SALES ASSOC. INC. P.O. Box 5232 Shawnee Mission, KS 62215 TEL: 913-888-3330 TWX: 910-749-6657

KANSAS

TECHNICAL SALES ASSOCIATES 1445 Sierra Drive P.O. Box 12662 Wichita, KS 67277 TEL: 316-945-5501

KENTUCKY

GIESTING & ASSOCIATES, INC. 3274 Donnybrook Lane Cincinnati, OH 45239 TEL: 513-521-8800 TLX: 214-283 (GIESTING CIN.)

LOUISIANA

OELER & MENELAIDES 558 S. Central Expressway Suite 276 Richardson, TX 75080 TEL: 214-234-6334 TWX: 910-867-4745

MAINE

DATCOM 55 Moody Street Waltham, MA 02154 TEL: 617-891-4600 TLX: 92-3462 (DATCOM WHA)

MARYLAND

COULBOURN DE GREIF, INC. 5205 East Drive Baltimore, MD 21227 TEL: 301-247-4646 TWX: 710-236-9011

MASSACHUSETTS

DATCOM 55 Moody Street Waltham, MA 02154 TEL: 617-891-4600 TLX: 92-3462 (DATCOM WHA)

7-1

REPRESENTATIVES

MICHIGAN — NORTHVILLE GIESTING & ASSOCIATES, INC. 149 Mary Alexander Court Northville, MI 48167

TEL: 313-348-3811

MICHIGAN — COLOMA

GIESTING & ASSOCIATES, INC 5654 Wendzel Dr. Coloma, MI 49038 TEL: 616-468-4200

MINNESOTA

PROFESSIONAL SALES FOR INDUSTRY 720 W. 94th St. Minneapolis, MN 55420 TEL: 612-884-1777 TWX: 910-576-3483

MISSISSIPPI

REMCO 3322 S. Memorial Parkway Suite 65 Huntsville, AL 35801 TEL: 205-883-9260 TWX: 810-726-2123

MISSOURI

TECHNICAL SALES ASSOCIATES P.O. Box 10907 St. Louis, MO 63135 TEL: 314-725-5361 TWX: 910-760-1629

MONTANA

ELECTRONIC SOURCES, INC. 1406-140th Pl. N.E. Bellevue, WA 98005 TEL: 206-643-0400 TWX: 910-443-2530

NEBRASKA

TECHNICAL SALES ASSOCIATES INC. P.O. Box 5232 Shawnee Mission, KS 62215 TEL: 913-888-3330 TWX: 910-749-6657

NEVADA (RENO ONLY)

KOTTMEIER ASSOCIATES P.O. Box 519 San Carlos, CA 94070 TEL: 415-592-8333 TWX: 910-376-4397

NEVADA

GENERAL SEMICONDUCTOR INDUSTRIES, INC. 2001 W. 10th Place Tempe, AZ 85281 TEL: 602-968-3101 TWX: 910-950-1942

NEW HAMPSHIRE

DATCOM 55 Moody Street Waltham, MA 02154 TEL: 617-891-4600 TLX: 92-3462 (DATCOM WHA)

NEW JERSEY - NORTHERN

J-SQUARE MARKETING, INC. 1250 A Shames Drive Westbury, NY 11590 TEL: 516-997-6210 TWX: 510-222-1048

NEW JERSEY — SOUTHERN

BGR ASSOCIATES 6th Floor, 2500 Office Center Willow Grove, PA 19090 TEL: 215-657-3301 TWX: 510-665-5685

NEW MEXICO

RONTEK P.O. Box 14815 Albuquerque, NM 87111 TEL: 505-299-4124

NEW YORK — METROPOLITAN

J-SQUARE MARKETING, INC. 1250 A Shames Drive Westbury, NY 11590 TEL: 516-997-6210 TWX: 510-222-1048

NEW YORK - UPSTATE

BOB DEAN, INC. 710 W. Clinton Street Ithaca, NY 14850 TEL: 607-272-2187 TWX; 510-255-5876

NORTH CAROLINA

REMCO 11720 Man O' War Trail Raleigh, NC 27612 TEL: 919-787-1461

NORTH DAKOTA

PROFESSIONAL SALES FOR INDUSTRY 720 W. 94th St. Minneapolis, MN 55420 TEL: 612-884-1777 TWX: 910-576-3483

OHIO - CINCINNATI

GIESTING & ASSOCIATES, INC. 3274 Donnybrook Lane Cincinnati, OH 45239 TEL: 513-521-8800 TLX: 214-283 (GIESTING CIN.)

OHIO - DAYTON

GIESTING & ASSOCIATES, INC. 5512 Autumn Hills Dr. Apt. #9 Westbrook Village Dayton, OH 45426 TEL: 513-293-4044

OHIO - GALION

GIESTING & ASSOCIATES, INC. 570 S. State Circle Galion, OH 44833 TEL: 419-468-3737

OKLAHOMA

OELER & MENELAIDES 558 South Central Expressway Suite 276 Richardson, TX 75080 TEL: 214-234-6334 TWX: 910-867-4745

OREGON

ELECTRONIC SOURCES INC. 5319 SW Westgate Dr. Portland, OR 97221 TEL: 503-292-0701 TWX: 910-464-6105

PENNSYLVANIA — EASTERN

BGR ASSOCIATES 6th Floor, 2500 Office Center Willow Grove, PA 19090 TEL: 215-657-3301 TWX: 510-665-5685

PENNSYLVANIA — WESTERN

GIESTING & ASSOCIATES, INC. 3274 Donnybrook Lane Cincinnati, OH 45239 TEL: 513-521-8800 TLX: 214-283 (GIESTING CIN.)

RHODE ISLAND

DATCOM 55 Moody Street Waltham, MA 02154 TEL: 617-891-4600 TI X: 92-3462 (DATCOM WHA)

SOUTH CAROLINA

REMCO 11720 Man O' War Trail Raleigh, NC 27612 TEL: 919-787-1461

SOUTH DAKOTA

PROFESSIONAL SALES FOR INDUSTRY 720 W. 94th St. Minneapolis, MN 55420 TEL: 612-884-1777 TWX: 910-576-3483

TENNESSEE

REMCO 3322 S. Memorial Parkway Suite 65 Huntsville, AL 35801 TEL: 205-883-9260 TWX: 810-726-2123

TEXAS — EL PASO

RONTEK P.O. Box 14815 Albuquerque, NM 87111 TEL: 505-299-4124

TEXAS — RICHARDSON

OELER & MENELAIDES 558 South Central Expressway Suite 276 Richardson, TX 75080 TEL: 214-234-6334 TWX: 910-867-4745

TEXAS - HOUSTON

OELER & MENELAIDES 9119 S. Gessner Suite 201 Houston, TX 77074 TEL: 713-772-0730 TWX: 910-881-7032

UTAH

QUATRA, INC. 2275 E. Arapahoe Rd. Littleton, CO 80122 TEL: 303-795-3187 TWX: 910-935-0874

VERMONT

DATCOM 55 Moody Street Waltham, MA 02154 TEL: 617-891-4600 TLX: 92-3462 (DATCOM WHA)

VIRGINIA

COULBOURN DE GREIF, INC. 5205 East Drive
Baltimore, MD 21227
TEL: 301-247-4646
TWX: 710-236-9011

VIRGINIA - SOUTHERN

COULBOURN DE GREIF, INC. 1616 Inglewood Dr. Charlottesville, VA 22901 TEL: 804-977-0031

WASHINGTON

ELECTRONIC SOURCES, INC. 1406-140th Pl. N.E. Bellevue, WA 98005 TEL: 206-643-0400 TWX: 910-443-2530

WEST VIRGINIA

GIESTING & ASSOCIATES, INC. 3274 Donnybrook Lane Cincinnati, OH 45239 TEL: 513-521-8800 TLX: 214-283 (GIESTING CIN.)

WISCONSIN - NORTHERN

PROFESSIONAL SALES FOR INDUSTRY 720 W. 94th St. Minneapolis, MN 55420 TEL: 612-884-1777 TWX: 910-576-3483

WISCONSIN - SOUTHERN

BALHORN & ROESER, INC. 1758 Taft Avenue Berkeley, IL 60162 TEL: 312-449-3900 TWX: 910-234-3901

WYOMING

QUATRA, INC. 2275 E. Arapahoe Rd. Littleton, CO 80122 TEL: 303-795-3187 TWX: 910-935-0874

DISTRICT OF COLUMBIA

COULBOURN DE GREIF, INC. 5205 East Drive
Baltimore, MD 21227
TEL: 301-247-4646
TWX: 710-236-9011

DISTRIBUTORS

ARIZONA

KACHINA ELECTRONIC DISTRIBUTORS 1425 N. 27th Lane Phoenix, AZ 85009 TEL: 602-269-6201

CETEC MOLTRONICS 3617 N. 35th Avenue Phoenix, AZ 85017 TEL: 602-272-7951 TWX: 910-951-1512

CALIFORNIA -- NORTHERN

BELL INDUSTRIES 1161 N. Fairoaks Sunnyvale, CA 94086 TEL: 408-734-8570 TWX: 910-339-9378

CETEC MOLTRONICS 721 Charcot St. San Jose, CA 95131 TEL: 408-263-7373 TWX: 910-338-0288

WESTERN MICROTECHNOLOGY 10040 Bubb Rd. Cupertino, CA 95014 TEL: 408-725-1660 TWX: 910-338-0013

CALIFORNIA - SOUTHERN

BELL INDUSTRIES 306 E. Alondra Blvd. Gardena, CA 90248 TEL: 213-515-1800 TWX: 910-346-6336

CETEC MOLTRONICS 5610 E. Imperial Hwy. Southgate, Ca 90280 TEL: 213-773-6521 TWX: 910-583-1947 CETEC MOLTRONICS 4617 Ruffner St. Suite 101 San Diego, CA 92111

TEL: 714-278-5020

TWX: 910-335-2015

JACO ELECTRONICS 20600 Plummer St. Chatsworth, CA 91311 TEL: 213-998-2200 TWX: 910-494-4828

ZEUS COMPONENTS 1130 Hawk Circle Anaheim, Ca 92807 TEL: 714-632-6880 TWX: 910-591-1691

COLORADO

BELL INDUSTRIES 8155 W. 48th Ave. Wheatridge, CO 80033 TEL: 303-424-1985 TWX: 910-938-0393

CONNECTICUT

HARVEY ELECTRONICS 112 Main Street Norwalk, CT 06851 TEL: 203-853-1515 TWX: 710-468-3373

FLORIDA

DIPLOMAT / SOUTHLAND, INC. 6890 N.W. 20th Ave. Ft. Lauderdale, FL 33309 TEL: 305-971-7160

DIPLOMAT / SOUTHLAND, INC. 2120 Calumet Clearwater, FL 33515 TEL: 813-443-4514 TWX: 810-866-0436 HAMMOND ELECTRONICS INDUSTRIES

1230 W. Central Blvd. Orlando, FL 32805 TEL: 305-849-6060 TWX: 810-850-4121

ILLINOIS

BELL INDUSTRIES 3422 W. Touhy Ave. Chicago, Illinois 60645 TEL: 312-982-9210 TWX: 910-223-4519

OHM ELECTRONICS P.O. Box 368 746 Vermont Palatine, IL 60067 TEL: 312-359-5500 TWX: 910-693-4802

IOWA

DEECO, INC. 2500 16th Ave. S.W. Cedar Rapids, IA 52406 TEL: 319-365-7551 TWX: 910-525-1332

KANSAS

LCOMP 2211 Riverfront Drive Kansas City, MO 64120 TEL: 816-221-2400 TWX: 910-771-3148

LCOMP 330 Cleveland Wichita, KS 67214 TEL: 316-265-8501

MARYLAND

TECHNICO, INC. 9051 Red Branch Rd. Columbia, MD 21045 TEL: 301-995-1995 TWX: 710-862-1907

DISTRIBUTORS

MASSACHUSETTS

CAVALIER COMPONENTS, INC. 220 Reservoir Street Needham Heights, MA 02194

TEL: 617-449-3112

HARVEY ELECTRONICS 44 Hartwell Ave. Lexington, MA 02173 TEL: 617-861-9200 TWX: 710-326-6617

ZEUS COMPONENTS

16 Adams St. Burlington, MA 01803 TEL: 617-273-0750 TWX: 710-332-0716

MICHIGAN

REPTRON ELEC., INC. 34403 Glendale Rd. Livonia, MI 48150 TEL: 313-525-2700

ARROW ELECTRONICS 3810 Varsity Dr. Ann Arbor, MI 48104

TEL: 313-971-8220 TWX: 810-223-6020

MINNESOTA

STARK ELECTRONICS
401 Royalston Ave. North
Minneapolis, MN 55405
TEL: 612-332-1325
TWX: 910-576-2714

MISSOURI

LCOMP 2211 Riverfront Dr. Kansas City, MO 64120 TEL: 816-221-2400 TWX: 910-771-3148

LCOMP 2550 Harley Drive Maryland Heights, MO 63043 TEL: 314-291-6200 TWX: 910-762-0632

NEW JERSEY HARVEY ELECTRONICS 45 Route 46 Pinebrook, NJ 07058

TEL: 201-227-1262 TWX: 710-734-4382

DIPLOMAT ELECTRONICS 490 S. Riverview Dr. Totowa, N.J. 07512 TEL: 201-785-1830

NEW MEXICO

BELL INDUSTRIES 11728 Linn N.E. Albuquerque, NM 87123 TEL: 505-292-2700 TWX: 910-989-0625 **NEW YORK**

COMPONENTS PLUS 40 Oser Ave. Hauppauge, NY 11787 TEL: 516-231-9200 TWX: 510-227-9869

DIPLOMAT ELECTRONICS 110 Marcus Drive Melville, NY 11747 TEL: 516-454-6400 TLX: 645-101 Diplnt, Melv

HARVEY ELECTRONICS 60 Crossway Park West Woodbury, NY 11797 TEL: 516-921-8700

TWX: 510-221-2184

KAHGAN COMPONENTS 556 Peninsula Blvd. Hempstead, NY 11550 TEL: 516-538-2300 TWX: 510-222-4347

MONARCH COMPONENTS, INC. 66 Commack Rd. Commack, NY 11725 TEL: 516-499-1770

ZEUS COMPONENTS 500 Executive Blvd. Elmsford, NY 10523 TEL: 914-592-4120 TWX: 710-567-1248

NEW YORK — UPSTATE HARVEY ELECTRONICS P.O. Box 1208 Vestal Parkway East Binghamton, NY 13902 TEL: 607-748-8211 TWX: 510-252-0893

HARVEY ELECTRONICS (Rochester Area) 10 Riverton Way West Henrietta, NY 14568 TEL: 716-334-5920 TWX: 510-253-7001

NORTH CAROLINA HAMMOND ELECTRONICS 2923 Pacific Ave. Greensboro, NC 27406

TEL: 919-275-6391 TWX: 510-925-1094

OHIO

ARROW ELECTRONICS, INC. (Cleveland Area) 6238 Cochran Road Solon, OH 44139 TEL: 216-248-3990 TWX: 810-427-9293

ARROW ELECTRONICS, INC. 10 Knollcrest Dr. Cincinnati, OH 45237 TEL: 513-761-5432 TWX: 810-461-2670 ARROW ELECTRONICS, INC. (Dayton Area) 3100 Plainfield Rd. Kettering, OH 45432 TEL: 513-253-9176 TWX: 810-459-1611

PENNSYLVANIA
CENTURY ELECTRONICS

537 Foundry Rd. Norristown, PA 19403 TEL: 215-631-5400

SOUTH CAROLINA

HAMMOND ELECTRONICS, INC. 1035 Lowndes Hill Rd. Greenville, SC 29602 TEL: 803-233-4121 TWX: 810-281-2233

TEXAS TEXCOMP 9119 S. Gessner Suite 201 Houston, TX 77074 TEL: 713-772-0730

TEL: 713-995-5356 TWX: 910-881-7032

TREVINO ELECTRONICS 2874 Walnut Hill Lane Dallas, TX 75229

TEL: 214-358-2418 TWX: 910-861-9194

UTAH

BELL INDUSTRIES 3639 West 2150 South Salt Lake City, UT 84120 TEL: 801-972-6969 TWX: 910-925-5686

VIRGINIA (See Maryland)

WASHINGTON
ZEPHER ELECTRONIC SALES
647 Industry Drive
Seattle, WA 98188
TEL: 206-575-0922
TWX: 910-444-2264

WISCONSIN BELL INDUSTRIES 850 N. Elm Grove Rd. Elm Grove, WI 53122 TEL: 414-784-0235 TWX: 910-262-1156

TAYLOR ELECTRONICS 1000 W. Donges Bay Rd. Mequoin, WI 53092 TEL: 414-241-4321 TWX: 910-262-3414

ONTARIO

CANTEC REPRESENTATIVES, INC. 1573 La Pierriere Ave. Ottawa, Ontario K1Z 7T3 TEL: 613-725-3704 TWX: 610-562-8967

CANTEC REPRESENTATIVES, INC. 83 Galaxy Blvd., Unit 1A Toronto, Ontario M9W 5X6 TEL: 416-675-2460 TWX: 610-492-2655

QUEBEC

CANTEC REPRESENTATIVES, INC. 15737 Rue Pierrefonds St. Genevieve, P.Q. Canada H9H 1G3 TEL: 514-626-3856 TWX: 610-422-3985

CANADA

FUTURE 1050 Baxter Rd. Ottawa, Ontario Canada K2C3P2 TEL: 613-820-9471

TORONTO OFFICE

FUTURE 4800 Defferin St. Downsview, Ontario Canada M3H558 TEL: 416-663-5563

VANCOUVER OFFICE

FUTURE 3070 Kingsway

Vancouver, BC V54R557

MONTREAL OFFICE

FUTURE 5647 Ferrier St. Montreal, Canada H4P2K5 Quebec TEL: 514-735-5775 TWX: 610-421-3251 ZENTRONICS 480 A. Dutton Drive Waterloo, Ontario N2L4C6

Waterloo, Ontario N2L4C TEL: 519-884-5700

ZENTRONICS 5010 Rue Pare Montreal, Quebec M4P1P3 TEL: 514-735-5361 TLX: 05-827535 (Zentronics)

ZENTRONICS 1355 Meyerside Dr. Mississauga, Ontario L5T1C9 TEL: 416-676-9000 TLX: 06-983657 (Zentronics)

ZENTRONICS 141 Catherine St. Ottawa, Ontario K2P1C3 TEL: 613-238-6411 TLX: 053-3636 (Zentronics)

ZENTRONICS 550 Cambie Street Vancouver, B.C. V6B2N7 TEL: 604-688-2533 TLX: 04-507787 (Zentronics)

BOWTEK ELECT. 993 W. 8th Ave. Vancouver, B.C. V5Z1E4 TEL: 604-736-1141 TWX: 610-922-6016

INTERNATIONAL REPRESENTATIVES / DISTRIBUTORS

AUSTRIA

BURISCH Ges. m.b.H&Co. KG A-1215 Wien Postfach 24 Scheydgasse 31 Austria TEL: (222) 38 76 38 TLX: 113310 (BURIS A)

BELGIUM

MICROTRON INTERNATIONAL P.V.B.A. Blvd. Edmond Machtenslaan 75 B17 1080 Brussels Belgium TEL: (2) 523 22 17 TLX: 22606 (MITRON B)

BRAZIL

TELEIMPORT / ELETRONICA LTD. Rua Sta Ifigenia 402-8° A 10° and 01207 Sao Paulo Brazil TEL: (11) 221 8694 TLX: 1124888 (TLIM BR)

DENMARK

E.V. JOHANSSEN ELEKTRONIC A/S 15 Titangade DK-2200, Copenhagen N Denmark TEL: (1) 83 90 22 TLX: 18522 (EVICAS DK)

ENGLAND / UNITED KINGDOM

HUNTER ELECTRONIC COMPONENTS LTD. 55 High Street Burnham Bucks SL17JX England TEL: (6286) 63333 TLX: 848946 (HUNTER G) DISTRONIC LTD. (DIST. ONLY)

50-51 Burnt Mill Elizabeth Way, Harlow Essex CM20 2HU England TEL: (279) 32947 TLX: 81387 (DSTRNC G)

FINLAND

S-W INSTRUMENTS Karstulantie 4 00550 Helsinki 55 Finland TEL: (0) 738 265 TLX: 12 2411 (SW1 SF)

FRANCE

COMPOSANTS ET PRODUITS ELECTRONIQUES 51, Rue de la Riviere, BP1 78420 Carrieres-Sur-Seine France TEL: (1) 914 61 36 TLX: 695635 (CPELEC)

INTERNATIONAL REPRESENTATIVES / DISTRIBUTORS

GERMANY

SINUS-ELECTRONIC 7100 Heilbronn Freidrich-Durr-Str. 64 Postfach 3067 West Germany TEL: (7131) 52077 TLX: 728453 (SIEL D)

N.J. INTERNATIONAL CORPORATION 29/30 Ashok Chambers **Broach Street** Bombay 400 009

TEL: (22) 328509 TLX: 114543 (NJIC IN)

ISRAEL

RAPAC ELECTRONICS LTD. Post Office Box 18053 Tel-Aviv 61180 Israel TEL: (3) 47 71 15 TLX: 33528 (RAPAC IL)

ITALY

METROELETTRONICA Viale Cirene, 18 20135 Milano TEL: (2) 546 26 41

TLX: 312168 (METRONI I)

JAPAN

K-H ELECTRONICS CORPORATION Komatsu Bldg., 2-3-6 Akasaka Minato-Ku, Tokyo Japan TEL: (3) 584 6391 TLX: J26250 (KOMANTLS)

THE NETHERLANDS MCA-TRONIX INTERNATIONAL B.V. Delftweg 69 2289 Ba Rijswijk (ZH) The Netherlands TEL: (015) 134 940

NORWAY

HANS H. SCHIVE A/S P.O. Box 250, Skoyen Gustav Vigerlands VEI 5 Oslo 2 Norway TEL: (2) 55 76 92

TLX: 19124 (SKIVE N)

TLX: 34150 (MCA NL)

SPAIN FASTRONIX

Madrid 2

Spain

SWEDEN SVENSK TELEINDUSTRI AB Box 502 S. 16205 Vallingby 5 Sweden TEL: (8) 890435 TLX: 13033 (STAIB S+)

SWITZERLAND

SOUTH AFRICA

P.O. Box 4609

Pretoria, 0001

TEL: (12) 78 9221

TLX: 30181 (SA)

Constancia 43

TEL: (1) 415 66 54

TLX: 23606 (ELICO E)

Republic of South Africa

ELECTRONIC BUILDING ELEMENTS

ELWET LTD. CH-5430 Wettingen Bahnhofstrasse 53 Switzerland TEL: (56) 26 47 47 TLX: 53660 (ELWET CH)

I would like further information on the following devices.

i.

1 m

a a

.

NPN Switching Transistors

Silicon Transient Voltage Suppressors

Zener Diodes

Temperature Compensating Reference Diodes

Varistors

My application is:

I would like a sales representative to call

Immediately

Next Visit

I would appreciate applications assistance

I would like a Registered Binder

I would like to be placed on your regular mailing list

Name

Title

Address

Company

Telephone

GENERAL SEMICONDUCTOR INDUSTRIES, INC.

the										mailing list					
I would like further information on the following devices. NPN Switching Transistors	Silicon Transient Vollage Suppressors	Zener Diodes	Temperature Compensating Reference Diodes	Varistors	My application is:	would like a sales representative to call	Immediately Next Visit	I would appreciate applications assistance	would like a Registered Binder	I would like to be placed on your regular mailing list	Name	Title	Company	Address	Telephone

BUSINESS REPLY CARD

FIRST CLASS

PERMIT NO. 279

TEMPE, AZ

POSTAGE WILL BE PAID BY ADDRESSEE

GENERAL SEMICONDUCTOR INDUSTRIES, INC. P.O. Box 3078 Tempe, Arizona 85281

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 279 TEMPE. AZ

POSTAGE WILL BE PAID BY ADDRESSEE

GENERAL SEMICONDUCTOR INDUSTRIES, INC. P.O. Box 3078 Tempe, Arizona 85281 NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

GOM:
95 High Street
Burnham
Bucks, SL1 7JZ
Tel. Burnham 65421
Telex, 848946

. : C.

NUNTER ELECTRONIO
COMPONENTS LTD.
We High Street
Burnham
Bucks, SLI 7JZ
Tel. Burnham 65421

Telex. 818940

