What is claimed is:

1. A compound of Formula I

or a pharmaceutically acceptable salt thereof, wherein:

Z is selected from COOH, $C(O)N(H)R^9$, and Z^1 ;

Z¹ is selected from:

and

10

20

$$\begin{cases} N-N & N-O \\ N-N & N-O \\ N-N & N-S \\ N-$$

Each Y^4 , Y^5 , Y^6 , and Y^7 is $C(R^{10})R^{10w}$; or

One of Y^4 , Y^5 , Y^6 , and Y^7 is selected from O, S, S(O), S(O)₂, and NR⁵, and the other three of Y^4 , Y^5 , Y^6 , and Y^7 are each $C(R^{10})R^{10w}$; or

Two nonadjacent Y^4 , Y^5 , Y^6 , and Y^7 are independently selected from O, S, S(O), S(O)₂, and NR⁵, and the other two of Y^4 , Y^5 , Y^6 , and Y^7 are each $C(R^{10})R^{10w}$;

Each R^2 , R^3 , R^{3w} , R^{3a} , R^{7a} , R^{10} , and R^{10w} is independently selected from: H, HO, H_2N , $H_2NS(O)_2$ -(G)_m, HS, Halo, CN, CF₃, FC(H)₂O, F₂C(H)O, CF₃O,

a group, which may be unsubstituted or substituted, independently selected from:

 C_1 - C_6 alkyl- $(G)_m$ -,

C₂-C₆ alkenyl-(G)_m-,

5 C_2 - C_6 alkynyl- $(G)_m$ -,

2- to 6-membered heteroalkyl-(G)_m-,

2- to 6-membered heteroalkenyl-(G)_m-,

C₃-C₇ cycloalkyl-(G)_m-,

C₃-C₇ cycloalkenyl-(G)_m-,

10 C_7 - C_{10} bicycloalkyl- $(G)_m$ -,

3- to 7-membered heterocycloalkyl-(G)_m-,

7- to 10-membered heterobicycloalkyl-(G)_m-,

Phenyl-(G)_m-,

Naphthyl- $(G)_{m}$ -,

5- and 6-membered heteroaryl-(G)_m-,

8- to 10-membered heterobiaryl- $(G)_m$ -, and any of the above R^2 , R^3 , R^{3w} , R^{3a} , R^{7a} , R^{10} , and R^{10w} groups each independently substituted on carbon or nitrogen atoms with from 1 to 6 substituents R^X ;

- wherein R^3 and R^{3w} , and any geminal pair of R^{10} and R^{10w} , and any two R^X substituents geminally substituted on a carbon atom in substituted R^2 , R^3 , R^{3w} , R^{3a} , R^{7a} , R^{10} , and R^{10w} groups further may independently be taken together with a carbon atom to which they are both bonded to form the group C(=O);
- Each R⁵ and R⁹ is independently H, HO, or a group, which may be unsubstituted or substituted, independently selected from:

 C_1 - C_6 alkyl- $(L)_m$ -,

C2-C6 alkenyl-(L)_m-,

C2-C6 alkynyl-(L)_m-,

30 2- to 6-membered heteroalkyl-(L)_m-,

2- to 6-membered heteroalkenyl-(L)_m-,

```
C<sub>3</sub>-C<sub>7</sub> cycloalkyl-(L)<sub>m</sub>-,
                       C<sub>3</sub>-C<sub>7</sub> cycloalkenyl-(L)<sub>m</sub>-,
                       C7-C10 bicycloalkyl-(L)<sub>m</sub>-,
                       3- to 7-membered heterocycloalkyl-(L)<sub>m</sub>-,
 5
                       7- to 10-membered heterobicycloalkyl-(L)<sub>m</sub>-,
                       Phenyl-(L)<sub>m</sub>-,
                       Naphthyl-(L)<sub>m</sub>-,
                        5- and 6-membered heteroaryl-(L)<sub>m</sub>-,
                        8- to 10-membered heterobiaryl-(L)<sub>m</sub>-, and
                        any of the above R<sup>5</sup> and R<sup>9</sup> groups independently substituted, on carbon or
10
                        nitrogen atoms, with from 1 to 6 substituents R<sup>X</sup>;
             R<sup>1</sup> is HO or a group that may be unsubstituted or substituted, independently
                        selected from:
                        C_1-C_6 alkyl-(T)_m-,
15
                        C<sub>2</sub>-C<sub>6</sub> alkenyl-(T)<sub>m</sub>-,
                        C<sub>2</sub>-C<sub>6</sub> alkynyl-(T)<sub>m</sub>-,
                        2- to 6-membered heteroalkyl-(T)<sub>m</sub>-,
                        2- to 6-membered heteroalkenyl-(T)<sub>m</sub>-,
                        C<sub>3</sub>-C<sub>7</sub> cycloalkyl-(T)<sub>m</sub>-,
20
                        C<sub>3</sub>-C<sub>7</sub> cycloalkenyl-(T)<sub>m</sub>-,
                        C7-C10 bicycloalkyl-(T)m-,
                        3- to 7-membered heterocycloalkyl-(T)<sub>m</sub>-,
                        7- to 10-membered heterobicycloalkyl-(T)<sub>m</sub>-,
                        Phenyl-(T)<sub>m</sub>-,
25
                        Naphthyl-(T)_m-,
                        5- and 6-membered heteroaryl-(T)<sub>m</sub>-,
                        8- to 10-membered heterobiaryl-(T)<sub>m</sub>-, and
                        any of the above R<sup>1</sup> groups independently substituted on a carbon or
                        nitrogen atom, with from 1 to 6 substituents RX;
             R<sup>1</sup> may further be H when: (i) at least one of R<sup>2</sup>, R<sup>3</sup>, R<sup>3w</sup>, R<sup>3a</sup>, R<sup>7a</sup>, R<sup>10</sup>, and R<sup>10w</sup> is
30
                        not H, or (ii) Z is C(O)N(H)R9 wherein R9 is as defined above wherein m
```

is 1 and L is $S(O)_2$, or (iv) Z is Z^1 ;

wherein any 2 groups each selected from R⁵, R¹⁰, and R^{10w} that are bonded to contiguous carbon or nitrogen atoms in Formula I may be taken together with the contiguous atoms in Formula I to which they are bonded to form C=C or C=N;

wherein any 2 groups selected from R¹, R², R³, R^{3w}, R^{3a}, R⁵, R^{7a}, R¹⁰, and R^{10w} that are bonded to contiguous carbon or nitrogen atoms in Formula I may be taken together to form (i) a CH₂ diradical, (ii) a 3-membered diradical selected from:

(iii) a 4-membered diradical selected from:

wherein any two groups R³ and R^{3w}, and R¹⁰ and R^{10w}, that are geminally bonded to a single carbon atom in Formula I may be taken together to form a 4-membered diradical as defined above or a 5-membered diradical selected from:

X is O, S, S(O), S(O)₂, or N-R;

 X^1 is O or N-R;

10

15

Each G is independently selected from C(=O), S(O), S(O)₂, OC(O), N(R⁴)C(O),

(C₁-C₈ alkylenyl)_m, (2- to 8-membered heteroalkylenyl)_m, and (C₁-C₈

alkylenyl)_m and (2- to 8-membered heteroalkylenyl)_m independently substituted on carbon or nitrogen atoms with from 1 to 4 substituents R^x;

	Each T is independently selected from S(O), S(O) ₂ , N(R ⁴)C(O), (C ₁ -C ₈
	alkylenyl) _m , (2- to 8-membered heteroalkylenyl) _m , and (C_1-C_8)
	alkylenyl) $_{\rm m}$ and (2- to 8-membered heteroalkylenyl) $_{\rm m}$ independently
	substituted on carbon or nitrogen atoms with from 1 to 4 substituents R ^X ;
5	Each L is independently selected from O, N(R ⁴), S(O), S(O) ₂ , C(=O), C(O)O,
	$OC(O), C(O)N(R^4), N(R^4)C(O), OC(O)N(R^4), N(R^4)C(O)O,$
	$N(R^4)C(O)N(R^{4w})$, $(C_1-C_8 \text{ alkylenyl})_m$, (2- to 8-membered
	heteroalkylenyl) $_{m}$, and $(C_1-C_8 \text{ alkylenyl})_{m}$ and $(2-\text{ to }8-\text{membered})$
	heteroalkylenyl) _m independently substituted on carbon or nitrogen atoms
10	with from 1 to 4 substituents R ^X ;
	Each R, R ⁴ , and R ^{4w} is independently H or C ₁ -C ₆ alkyl, which C ₁ -C ₆ alkyl may be
	unsubstituted or substituted with from 1 to 3 substituents R ^X ;
	Each R ^X is independently selected from: HO, H ₂ N, H ₂ NS(O) ₂ , CN, CF ₃ , FCH ₂ O,
	$F_2C(H)O$, CF_3O , O_2N , C_1 - C_6 alkyl- $(Q)_m$ -, 2- to 6-membered heteroalkyl-
15	$(Q)_{m-}$, C_3 - C_7 cycloalkyl- $(Q)_{m-}$, 3- to 7-membered heterocycloalkyl- $(Q)_{m-}$
	, Phenyl- $(Q)_m$, and 5-membered heteroaryl- $(Q)_m$,
	wherein phenyl and 5-membered heteroaryl- $(Q)_m$ each is unsubstituted or
	independently substituted with from 1 to 3 substituents selected
	from halo, HO, HOC(O), CH ₃ OC(O), CH ₃ C(O), H ₂ N, CF ₃ , CN,
20	and C ₁ -C ₆ alkyl;
	wherein each R ^X substituent on a carbon atom may further be independently
	selected from: HS, (C ₁ -C ₆ alkyl)-S, halo, and HO ₂ C; and
	Each Q independently is O, N(R ⁶), S(O), S(O) ₂ , C(=O), C(O)O, OC(O),
	$C(O)N(R^6)$, $N(R^6)C(O)$, $OC(O)N(R^6)$, $N(R^6)C(O)O$, or $N(R^6)C(O)N(R^{6w})$;
25	Each R ⁶ and R ^{6w} independently is H or unsubstituted C ₁ -C ₆ alkyl;
	Each m independently is an integer of 0 or 1; and
	Each n independently is an integer of from 0 to 2.

2. The compound according to Claim 1 of Formula II

$$\stackrel{\stackrel{\scriptstyle R^1}{ \nearrow}}{ }$$
 COOH II

or a pharmaceutically acceptable salt thereof,

5

10

15

20

25

wherein R¹ is HO or a group that may be unsubstituted or substituted, independently selected from:

 C_1 - C_6 alkyl- $(T)_m$ -, C_2 - C_6 alkenyl- $(T)_m$ -, C_2 - C_6 alkynyl- $(T)_m$ -, 2- to 6-membered heteroalkyl- $(T)_m$ -, 2- to 6-membered heteroalkyl- $(T)_m$ -, C_3 - C_7 cycloalkyl- $(T)_m$ -, C_3 - C_7 cycloalkenyl- $(T)_m$ -, C_7 - C_{10} bicycloalkyl- $(T)_m$ -, 3- to 7-membered heterocycloalkyl- $(T)_m$ -, 7- to 10-membered heterobicycloalkyl- $(T)_m$ -, Phenyl- $(T)_m$ -, Naphthyl- $(T)_m$ -, 5- and 6-membered heteroaryl- $(T)_m$ -, 8- to 10-membered heterobiaryl- $(T)_m$ -, and any of the above R^1 groups independently substituted on a carbon or nitrogen atom, with from 1 to 6 substituents R^X :

Each T is independently selected from S(O), $S(O)_2$, $N(R^4)C(O)$, $(C_1-C_8$ alkylenyl)_m, (2- to 8-membered heteroalkylenyl)_m, and $(C_1-C_8$ alkylenyl)_m and (2- to 8-membered heteroalkylenyl)_m independently substituted on carbon or nitrogen atoms with from 1 to 4 substituents R^X ;

Each R^4 is independently H or C_1 - C_6 alkyl, which C_1 - C_6 alkyl may be unsubstituted or substituted with from 1 to 3 substituents R^X ;

Each R^X is independently selected from: HO, H_2N , $H_2NS(O)_2$, CN, CF_3 , FCH_2O , $F_2C(H)O$, CF_3O , O_2N , C_1 - C_6 alkyl- $(Q)_m$ -, 2- to 6-membered heteroalkyl- $(Q)_m$ -, C_3 - C_7 cycloalkyl- $(Q)_m$ -, 3- to 7-membered heterocycloalkyl- $(Q)_m$ -, Phenyl- $(Q)_m$, and 5-membered heteroaryl- $(Q)_m$,

wherein phenyl and 5-membered heteroaryl-(Q)_m each is unsubstituted or independently substituted with from 1 to 3 substituents selected from halo, HO, HOC(O), CH₃OC(O), CH₃C(O), H₂N, CF₃, CN, and C₁-C₆ alkyl;

wherein each R^X substituent on a carbon atom may further be independently selected from: HS, (C₁-C₆ alkyl)-S, halo, and HO₂C; and

	Each	Q independently is O, N(R ⁶), S(O), S(O) ₂ , C(=O), C(O)O, OC(O),	
		C(O)N(R ⁶), N(R ⁶)C(O), OC(O)N(R ⁶), N(R ⁶)C(O)O, or N(R ⁶)C(O)N(R ^{6w});	
	Each	R^6 and R^{6w} independently is H or unsubstituted C_1 - C_6 alkyl; and	
	Each m independently is an integer of 0 or 1.		
5			
	3.	The compound according to Claim 2, wherein R ¹ is unsubstituted or	
		substituted C_1 - C_6 alkyl- $(L)_m$.	
	4.	The compound according to Claim 1 selected from:	
10		1-methyl-octahydroindole-2-carboxylic acid;	
		[2(S), 3a(S), 7a(S)]-1-methyl-octahydro-indole-2-carboxylic acid	
		hydrochloride;	
		[2(S), 3a(S), 7a(S)]-1-methyl-octahydro-indole-2-carboxylic acid hemi	
		tartaric acid salt;	
15		[2(S), 3a(S), 7a(S)]-1-methyl-octahydro-indole-2-carboxylic acid;	
		1-(2-amino-1-oxopropyl)-octahydro-indole-2-carboxylic acid;	
		[2(S), 3a(S), 7a(S)]-1-ethyl-octahydro-indole-2-carboxylic acid;	
		[2(R), 3a(R), 7a(R)]-1-methyl-octahydro-indole-2-carboxylic acid.	
20	5.	The compound according to Claim 1, selected from:	
		(2R,3aS,7aS)-2-methyl-octahydroindole-2-carboxylic acid hydrochloride; and	
		(2S,3aS,7aS)-2-methyl-octahydroindole-2-carboxylic acid hydrochloride.	
25	6.	The compound according to Claim 1, selected from:	
		6-Ethyl-octahydro-indole-2-carboxylic acid hydrochloride;	
		(2S, 3aR, 6R/S, 7aR)-6-Phenyl-octahydro-indole-2-carboxylic acid;	
		6-Methoxy-octahydro-indole-2-carboxylic acid hydrochloride;	
		5-Ethyl-octahydro-indole-2-carboxylic acid hydrochloride;	
30		5-Methyl-octahydro-indole-2-carboxylic acid hydrochloride;	

 $5-Cyclohexylcarbonylamino-octahydro-indole-2-carboxylic\ acid$

hydrochloride;

- 5-Amino-octahydro-indole-2-carboxylic acid hydrochloride; 5-(1,1-Dimethylethyl)-octahydro-indole-2-carboxylic acid hydrochloride; 7-Methyl-octahydro-indole-2-carboxylic acid hydrochloride; and 5 4-Trifluoromethyl-octahydro-indole-2-carboxylic acid hydrochloride. 7. The compound according to Claim 1, selected from: (2S, 3aS, 7aS)-N-(Octahydroindole-2-carbonyl)-methanesulfonamide; (2S, 3aS, 7aS)-N-(1-Methyl-octahydroindole-2-carbonyl)-10 methanesulfonamide; (2S, 3aS, 7aS)-N-(Octahydroindole-2-carbonyl)trifluoromethanesulfonamide; and (2S, 3aS, 7aS)-N-(1-Methyl-octahydroindole-2-carbonyl)trifluoromethanesulfonamide; or 15 a pharmaceutically acceptable salt thereof. 8. The compound according to Claim 1, selected from: (S,S,S)-3-(Octahydroindol-2-yl)-4H-[1,2,4]oxadiazol-5-one hydrochloride; (S,S,S)-5-(Octahydroindol-2-yl)-1H-tetrazole. 20 (1aS,1bS,5aS,6aS)-octahydro-6-aza-cyclopropa[a]indene-6a-carboxylic acid; or a pharmaceutically acceptable salt thereof. 9. A pharmaceutical composition, comprising a compound according to 25 Claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier, diluent, or excipient. 10. A pharmaceutical composition, comprising a compound according to Claim 2, or a pharmaceutically acceptable salt thereof, and a 30 pharmaceutically acceptable carrier, diluent, or excipient.
 - 11. A method of treating joint cartilage damage, osteoarthritis, rheumatoid arthritis, or joint inflammation, or alleviating joint pain, in a mammal

suffering from joint cartilage damage, osteoarthritis, rheumatoid arthritis, joint inflammation, or joint pain, respectively, comprising administering to the mammal a compound according to Claim 1, or a pharmaceutically acceptable salt thereof.

5

12. A method of treating joint cartilage damage, osteoarthritis, rheumatoid arthritis, or joint inflammation, or alleviating joint pain, in a mammal suffering from joint cartilage damage, osteoarthritis, rheumatoid arthritis, joint inflammation, or joint pain, respectively, comprising administering to the mammal a compound according to Claim 2, or a pharmaceutically acceptable salt thereof.

10