EXPONENCIÁLNE ROVNICE

Exponenciálne rovnice sú rovnice obsahujúce neznámu v exponente, napr.: $3^x + 9 = 3^{x+1}$ **Metódy riešenia:**

1) <u>úpravou na tvar $a^{x_1} = a^{x_2}$ a následne riešime rovnosť $x_1 = x_2$:</u>

príklad:

$$5^x = 25$$
 / upravíme na rovnaký základ, $25 = 5^2$

$$5^x = 5^2$$
 / máme rovnaký základ, porovnáme exponenty

$$x = 2 \implies K = \{2\}$$

2) substitúciou – úpravou na kvadratickú rovnicu:

príklad:

$$9^x - 25.3^x - 54 = 0$$
 /9^x upravíme tak, aby bol základ 3

$$3^{2x} - 25.3^x - 54 = 0$$
 / subs. $3^x = y$

$$y^2 - 25y - 54 = 0$$
 / riešime kvadratickú rovnicu cez diskriminat D

$$D = b^2 - 4ac$$

$$a = 1$$

$$b = -25$$

$$c = -54$$

$$D = b^2 - 4ac$$

$$D = (-25)^2 - 4.1.(-54)$$

$$D = 625 + 216$$

$$D = 841$$

/ Diskriminat je väčší ako nula, počítame dva korene

$$y_1 = \frac{-b + \sqrt{D}}{2.a} = \frac{25 + \sqrt{841}}{2.1} = \frac{25 + 29}{2} = \frac{54}{2} = 27$$

$$y_2 = \frac{-b - \sqrt{D}}{2 \cdot a} = \frac{25 - \sqrt{841}}{2 \cdot 1} = \frac{25 - 29}{2} = \frac{-4}{2} = -2$$

Dosadíme za y obidva korene

$$3^x = y$$

$$3^{x} = y$$

$$3^x = 27$$

$$3^x = -2$$
 /nedokážeme upraviť na spoločný základ

$$3^x = 3^3$$

$$x = \emptyset$$

$$x = 3 = K = \{3\}$$

EXPONENCIÁLNE ROVNICE

Samostatné úlohy

1. Riešte v množine R:

a)
$$2^{2x-1} = 8$$
 (D.ú)

b)
$$9^{x-7} = 27^x$$
 (D.ú)

c)
$$2^{2x+3} \cdot 7^{2x+3} = \frac{1}{14}$$
 (D.D.ú)
d) $7^{2x+1} \cdot 7^{x-5} = 7^{3x+2} \cdot 7^{x-2}$

d)
$$7^{2x+1}$$
, $7^{x-5} = 7^{3x+2}$, 7^{x-2}

e)
$$5^{x^2+6x+11} = 25$$

2. Riešte v R použitím vhodnej substitúcie:

a)
$$3^{2x} - 3^x = 6$$
 (D.ú)

b)
$$-36.3^x + 9^x + 243 = 0$$
 (D.ú.)

c)
$$4^x + 2^{x+1} = 24$$
 (D.D.ú)

d)
$$10^{2x-1} + 10^x = -2.5$$

e)
$$2.4^x - 5.2^x + 2.4^{x-1} = 0$$