VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ Ústav elektrotechnologie

LABORATORNÍ CVIČENÍ Z PŘEDMĚTU ELEKTROTECHNICKÉ MATERIÁLY A VÝROBNÍ PROCESY

Číslo úlohy: 6

Název úlohy: Počítačové vytváření pásových modelů polovodičových materiálů

l	Jméno a příjmení, ID:	Atmosférický tlak:	Teplota okolí:	Relativní vlhkost:
l	Tomáš Vavrinec, 240893	102.6 hPa	25.1°C	37.2%
ı				
	Měřeno dne:	Odevzdáno dne:	Ročník, stud. skupina:	Kontrola:
	14.10.2022		2	
ı			•	

Spolupracovali:

Daniel Poisl

Zadání

- 1. Nakreslete a porovnejte pásové modely křemíku, germania a arzenidu galia. Ve skupině polovodičů $A^{III}B^V$ vyhledejte polovodič s nejmenší a největší šířkou zakázaného pásu.
- 2. U vlastního polovodiče křemíku Si (germania Ge) vypočtěte polohu Fermiho hladiny v rozsahu teplot 0[K] až 600[K]. Teplotní závislost polohy Fermiho energetické hladiny vyneste do grafické závislosti. Vypočtenou křivku srovnejte s průběhem teplotní závislosti v programu Pásový model.exe
- 3. Sledujte vliv změny koncentrace donorů a akceptorů v příměsovém polovodiči Si na polohu Fermiho energetické hladiny při teplotě 300 K. Graficky zpracujte závislost polohy

 Fermiho energetické úrovně na koncentraci příměsí. Vypočtenou křivku srovnejte s průběhem teplotní závislosti v programu Pásový model.exe

Teoretický úvod

Uvnitř krystalu se elektrony mohou vyskytovat jen uvnitř energetických pásech (vodivostní a valenční). Může se stát, že se tyto pásy překrývají (vodiče), nebo že se mezi nimi vytvoří mezera tzv. zakázaný pás (izolanty a polovodiče). Rozdíl mezi polovodičem a vodičem je v šířce zakázaného pásu. Polovodiče mají šířku zakázaného pásu do 3[eV], (tato hranice není úplně fixní jde spíš o orientační hranici). Aby mohl být valenční elektron ve vodivostním páse, musí mít energii alespoň o hodnotě šířky zakázaného pásu navíc oproti výchozí poloze.

Polovodič může být vlastní a nevlastní, vlastní polovodič se skládá jen z atomů jednoho prvku, nevlastní polovodič pak obsahuje příměsi typu P (Pozitiv) nebo typu N (Negativ). Příměsi mají o elektron víc (N) nebo mín (P) a tak doplňují volné nosiče, buď volné elektrony nebo díry. Atomu, který doplní elektron, se říká donor a atomu, který akceptuje elektron (doplní díru), se říká akceptor.

U polovodičů také mluvíme o Fermiho energetické hladině což je energetická hladina, na které se nachází elektrony s pravděpodobností 50%. U vlastní polovodičů je Fermiho hladina uprostřed zakázaného pásu a u nevlastních polovodičů se vzdaluje od prostředka v závislosti na množství příměsí podle vztahu.

$$E_f = \frac{W_v + W_c}{2} + \frac{1}{2}kT \cdot \ln\left(\frac{N_v}{N_c}\right) \tag{1}$$

nebo

$$E_f = W_v + \frac{W_g}{2} + \frac{3}{4}kT \cdot \ln\left(\frac{m_p}{m_n}\right) \tag{2}$$

Kde k je Boltzmannova konstanta, T je teplota, W_v je energie valenčního pásu, W_c je energie vodivostního pásu, W_g je hladina zakázaného pásu, m_p je hmotnost elektronů a m_n je hmotnost děr.

Efektivní hustota stavů ve valenčním pásu

$$N_v = 2\left(\frac{2\pi m_p kT}{h^2}\right)^{\frac{3}{2}} \tag{3}$$

Efektivní hustota stavů ve vodivostním pásu

$$N_c = 2\left(\frac{2\pi m_n kT}{h^2}\right)^{\frac{3}{2}} \tag{4}$$

Pro příměsové polovodiče se dá Fermiho hladina při dostatečné koncentraci určit podle vztahu:

$$W_F = W_i + kT \cdot \ln\left(\frac{n}{n_i}\right) \qquad W_F = W_i - kT \cdot \ln\left(\frac{p}{n_i}\right)$$
 (5)

Kde W_i je Fermiho hladina bez příměsí, n je koncentrace donorů, p je koncentrace akceptoru a n_i je koncentrace elektronů a děr ve vlastním polovodiči.

Podmínky měření

Nejtenší zakázaný pás ze skupiny $A^{III}B^V$ má Indium antimonide $InSb,\,W_g=0.17[eV]$ a naopak nejširší má Nitrid boru $BN,\,W_g=6.36$ (příklad polovodiče, který by podle šířky zakázaného pásu měl být izolant a přesto se řadí mezi polovodiče). Graf zároveň zobrazuje i závislost polohy Fermiho hladiny na Teplotě a je vidět, že se s měnící teplotou mění jen velmi málo.

Závislost polohy Fermiho hladiny na množství příměsí pro Ge

Závislost polohy Fermiho hladiny na množství příměsí pro Si

Závěr

Teoretické vztahy velmi dobře odpovídají simulaci. Pro výpočet Fermiho hladiny u příměsového polovodiče však uvedený vztah platí jen pro velké koncentrace příměsí. Ze vztahu částečně i z grafů je vidět, že při dosazení koncentrace nižší než je hodnota n_i , by příměs ovlivňovala Fermiho hladinu opačným směrem a při dosazení nulové koncentrace by měla být dokonce nekonečně velká resp. malá.