1/6

FIGURE 1

FIGURE 2

Figure 3A

Figure 3B

BEST AVAILABLE COPY

4/6.

Sequence of dimeric rop

(psp7 amplification upstream sequence)

GGGAAATTAA TAGGACTCAC TATAGGGGAA TTGTGAGCGG ATAACAATTC

CCCTCTAGCT AGAAATAATT TTGTTTAACT TTAAGAAGGA GATATACC

1									0									2	20 . Į
M	_	·r	W.	0	B	ĸ	T	A	L	N	M	A	R	F	I	R	S	Q	T
M ATG	G				C	2 2 2 2.	200	CCC	Cutur	אאכ	בעדע	CCC	CGC	datah	ATC	DCD	AGC	CAG	ACA
ATG	GGT	ACC	AAA	CAA	GAA	MAM	MCC	GCC	CII	AAC	AIG								

	-									30	}	. [4	40
1		т	T.	L	B.	ĸ	L	N	B	L	D	A	D	E	.Ω	A	D	I	C	E
	MJ137	ACG.	الىلىك 	CTG	GAG	AAA	CTC	AAC	GAG	CTG	GAC	GCG	GAT	GAA	CAG	GCA	GAC	ATC	TGT	GAA
1,3	TW	ACG	C11																	

_	X 1									50									-	50
-	5 7	т.	Ħ	D	H	A	D.	E	L	Y	R	S	C	L	A	R	F	G	D	D
	TCG	CTT	CAC	GAC	CAC	GCT	GAT	GAG	CTT	TAC	CGC	AGC	TGC	CTT	GCC	CGT	TTC	GGC	GAC	GAC

61 G E N L - stop GGT GAA AAC CTG TAG

GGATCCGGCT GCTAACAAAG CCCGAAAGGA AGCTGAGTTG GCTGCTGCCA CCGCTGAGC (asp4 amplification downstream sequence)

Figure 4

5/6

Sequence of monomeric S55 rop

(psp7 amplification upstream sequence)

GGGAAAUTAA TRACGACTICAC TATAGGGGAA TTGTGAGCGG ATAACAATTC

CCCTCTAGCT AGAAATAATT TTGTTTAACT TTAAGAAGGA GATATACC

•		10															•		20
1 M	G	T	ĸ	Q	E	ĸ	T	A	L	N	M	A	R	P	I	R	S	Q	T
ATG	GGT	ACC	AAA	CAA	GAA	AAA	ACC	GCC	CTT	AAC	ATG	GCC	CGC	TTT	ATC	AGA	AGC	CAG	ACA
		نا																	
21	30																	10	
L	T .	L	L	E	ĸ	L	И	E	L	G.				G	T	K	Q	E	R
TTA	ACG	CTT	CTG	GAG	AAA	CTC	AAC	GAG	CTG	GGT	GGC	GGT	GGC	GGT	ACC	AAA	CAA	GAG	AAG
TTA ACG CTT CTG GAG AAA CTC AAC GAG CTG GGT GGC GGT GCC AAA CAA GAG AAC													60						
41										_		ī.		L	т.	R	ĸ	L	
T	A	L	и .	M	A	R	F	I	R	S	Q Q	T	_	T	_	-	_		_
ACC	GCC	CTT	AAC	ATG	GCC	CGC	TTT	ATC	AGA	TCT	CAG	ACA	IIM	ACG	CII	CIA	GAG	AAG	CII
70											••	80 -							
61		_	_		Ь	r.	Q ·	A	D	I	C	B	s	L	н.	D	H	A	D
	B	L	G	A										_		_		GCT	_
AAC	GAG	CTC	GGG	GCG	GAI	GAA	CAG	GCA	- GAC	71211									
									90	1							-		100
81	L	Y	R	s	C	L	A	R	F	G	G	G	G	G	A	D	B	Q	A
E	Calada Ta	TAC	CGC	AGC	TGC	CTT	GCC	CGT	TTC	GGT	GGC	GGT	GGC	GGT	GCG	GAT	GAA	CAG	GCA
GAG										'								•	
101									Ļ 1 0									. :	120
D	I	С	E					H	A	D	B	L	Y	R	S	C	L	A.	R
_	ATC	TGT	GAA	TCG.	CTT	CAC	GAC	CAC	GCT	GAT	GAG	CTT	TAC	CGC	AGC	TGC	CTT	SCC	CGT
																		•	
121																			
F		D	D				-	Bto	_										
TTC	GGC	GAC	GAC	GGT	GAA	AAC	CTG	TAC	}										

GGATCCGGCT GCTAACAAG CCCGAAAGGA AGCTGAGTTG GCTGCCCA CCGCTGAGC (asp4 amplification downstream sequence)

Figure 5

6/6

Figure 6