Analyse avancée I Mathématiques 1^{ère} année Prof. Cl. Hongler

Corrigé 8 du jeudi 10 novembre 2016

Exercice 1.

Soient $a \in \mathbb{R}$ et $f : \mathbb{R} \to \mathbb{R}$ continue en $a \in \mathbb{R}$ et

$$f(x+y) = f(x) + f(y), \ \forall x, y \in \mathbb{R}.$$

- 1.) On a f(0) = f(0+0) = f(0) + f(0), ce qui implique f(0) = 0.
- 2.) Si $(x_n)_{n=0}^{\infty}$ est telle que $\lim_{n\to\infty} x_n = 0$, on a

$$f(x_n + a) = f(x_n) + f(a) \Rightarrow f(x_n) = f(x_n + a) - f(a).$$

On pose $a_n = x_n + a$ et puisque $\lim_{n \to \infty} x_n = 0$, on a $\lim_{n \to \infty} a_n = a$. Comme f est continue en a, on a

$$\lim_{n \to \infty} f(a_n) = f(a) \Rightarrow \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \left(f(a_n) - f(a) \right) = 0 = f(0).$$

Ainsi f est continue en x = 0.

3.) Si $(b_n)_{n=0}^{\infty} \subset \mathbb{R}$ converge vers $b \in \mathbb{R}$, on a

$$f(b_n) = f(b_n - b + b) = f(b_n - b) + f(b) \Rightarrow f(b_n) - f(b) = f(b_n - b).$$

Puisque $\lim_{n\to\infty} (b_n-b)=0$ et f est continue en x=0, on conclut que

$$\lim_{n \to \infty} (f(b_n) - f(b)) = 0.$$

4.) Si $n \in \mathbb{N}^*$ on a

$$f(n) = f(n-1) + f(1) = f(n-2) + 2 f(1) = \dots = f(0) + n f(1) = n f(1).$$

De même on a f(-n) = -n f(1). Ainsi $\forall z \in \mathbb{Z}$ on a f(z) = z f(1). Si $x \in \mathbb{Q}$ on a $x = \frac{p}{q}, p, q \in \mathbb{Z}, q \neq 0$ et

$$pf(1) = f(p) = f\left(q\frac{p}{q}\right) = f\left(\underbrace{\frac{p}{q} + \frac{p}{q} + \ldots + \frac{p}{q}}_{q \text{ fois}}\right) = q f\left(\frac{p}{q}\right) = q f(x).$$

Ainsi f(x) = x f(1), $\forall x \in \mathbb{Q}$. La fonction g définie par g(x) = x f(1) est trivialement continue et de f(x) = g(x), $\forall x \in \mathbb{Q}$, on a f(x) = g(x), $\forall x \in \mathbb{R}$. Ainsi

$$f(x) = x f(1), \ \forall x \in \mathbb{R}.$$

Exercice 2 (rendre).

Soit $P_{n+1}(x) = P_n(x) + \frac{1}{2}(x - P_n^2(x)), n = 0, 1, 2, ..., x \in [0, 1], P_0(x) = 0.$

- 1.) Montrons que $0 \le P_n(x) \le P_{n+1}(x) \le \sqrt{x}$, $\forall x \in [0,1]$.
 - Commençons par montrer par récurrence que $0 \le P_n(x) \le \sqrt{x}$, $\forall x \in [0,1]$.

Démonstration : Puisque $P_0(x) = 0$, $\forall x \in [0,1]$, on a $0 \le P_0(x) \le \sqrt{x}$, $\forall x \in [0,1]$. Supposons donc que pour $n \ge 0$ on ait

$$0 \le P_j(x) \le \sqrt{x}, \quad \forall x \in [0, 1], \quad j = 0, 1, 2, \dots, n$$

et montrons que

$$0 \le P_{n+1}(x) \le \sqrt{x}, \ \forall x \in [0,1].$$

En utilisant la définition de P_{n+1} on a $\sqrt{x} - P_{n+1}(x) = \left(\sqrt{x} - P_n(x)\right) \left(1 - \frac{1}{2}\left(\sqrt{x} + P_n(x)\right)\right)$.

Puisque par hypothèse de récurrence on a $0 \le P_n(x) \le \sqrt{x}, \ \forall x \in [0,1],$ les facteurs

$$\sqrt{x} - P_n(x)$$
 et $\left(1 - \frac{1}{2}\left(\sqrt{x} + P_n(x)\right)\right)$,

sont non négatifs pour tout $x \in [0,1]$. Ainsi $\sqrt{x} - P_{n+1}(x) \ge 0$, $\forall x \in [0,1]$, ce qui montre que $P_{n+1}(x) \le \sqrt{x}$. De façon évidente, puisque $0 \le P_n(x) \le \sqrt{x}$, on a $P_{n+1}(x) \ge 0$, $\forall x \in [0,1]$ qui découle de la définition de P_{n+1} .

• Puisque $0 \le P_n(x) \le \sqrt{x}$, $\forall x \in [0,1]$, on a $(x-P_n^2(x)) \ge 0$ et donc

$$P_{n+1}(x) = P_n(x) + \frac{1}{2}(x - P_n^2(x)) \ge P_n(x), \ \forall x \in [0, 1].$$

Ainsi, la suite $(P_n)_{n=0}^{\infty}$ est croissante.

2.) Si $x \in [0,1]$ est fixé, la suite $(P_n(x))_{n=0}^{\infty}$ est une suite numérique croissante et bornée par \sqrt{x} . Elle est donc convergente et on pose

$$f(x) = \lim_{n \to \infty} P_n(x).$$

On obtient ainsi $f(x) = f(x) + \frac{1}{2}(x - f^2(x))$, ce qui implique $f^2(x) = x$ et donc $f(x) = \sqrt{x}$ (le signe – est à exclure car $P_n \ge 0$).

Ainsi $(P_n)_{n=0}^{\infty}$ est une suite croissante de fonctions continues sur [0,1] qui converge ponctuellement vers la fonction continue $f:[0,1]\to\mathbb{R}$ définie par $f(x)=\sqrt{x}$. Le théorème de Dini permet de conclure que $\lim_{n\to\infty}P_n=f$ uniformément sur [0,1].

3.) La fonction $g:[-1,1]\to\mathbb{R}$ est définie par g(x)=|x| (fonction paire). Puisque $\lim_{n\to\infty}P_n(x)=\sqrt{x}$ uniformément sur [0,1], on a $\lim_{n\to\infty}P_n(x^2)=|x|$ uniformément sur [-1,1] et $P_n(x^2)$ est un polynôme.

Exercice 3.

On a:

1°)
$$f'(x) = \frac{1 + x^4 - x 4x^3}{(1 + x^4)^2} = \frac{1 - 3x^4}{(1 + x^4)^2},$$

 2^{o}) • Si $x \in \mathbb{R} \setminus \mathbb{Z}$, alors il existe $z \in \mathbb{Z}$ tel que $x \in]z, z+1[$. Ainsi $f(x) = x^{2}z$ et

$$f'(x) = 2zx = 2[x] x$$
 pour tout $x \in]z, z + 1[$.

- Si x = 0 on a f(0) = 0. De plus, pour toute suite $(a_n)_{n \ge 0}$ telle que $a_n \ne 0$ et $\lim_{n \to \infty} a_n = 0$, on a $\lim_{n \to \infty} \frac{f(a_n)}{a_n} = 0$, ce qui signifie que f'(0) = 0.
- Si $z \in \mathbb{Z}^*$ alors $\lim_{\substack{x \to z \\ x < z}} f(x) = z^2 (z 1)$ et $\lim_{\substack{x \to z \\ x > z}} f(x) = z^3$.

Ainsi f n'est pas continue en z et donc f'(z) n'existe pas.

En résumé: f'(x) = 2[x]x si $x \in \mathbb{R} \setminus \mathbb{Z}^*$ et f'(x) n'existe pas si $x \in \mathbb{Z}^*$, f'(0) = 0.

Exercice 4.

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \begin{cases} x^3 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \notin \mathbb{Q} \end{cases}$

- f est dérivable en zéro car $f'(0) = \lim_{x \to 0} \frac{f(x) f(0)}{x 0} = \lim_{x \to 0} \frac{f(x)}{x} = 0$.
- f n'est pas dérivable sur \mathbb{R}^* . On montre pour cela que f n'est pas continue \mathbb{R}^* . En effet, pour tout $x_0 \in \mathbb{R}^*$, on peut construire une suite $(a_n)_{n\geq 0} \subseteq \mathbb{R} \setminus \mathbb{Q}$ et une suite $(b_n)_{n\geq 0} \subseteq \mathbb{Q}$ telles que

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = x_0 \in \mathbb{R}^*.$$

Puisque

$$\lim_{n \to \infty} f(a_n) = x_0^3 \neq 0 = \lim_{n \to \infty} f(b_n),$$

on en déduit que la fonction f n'est pas continue en x_0 .