

Efficient Hand Pose Estimation from Single Depth Images

Chi Xu, Ashwin Nanjappa, Li Cheng Bioinformatics Institute, A*STAR, Singapore

Overview

Our approach estimates 3D hand poses from single depth images.

Difficulties

Difficulty 1: Large sample space vs. limited real data

- A hand has about 27 joints, if each discretized into 10 bins, the sample space is 10^{27} . Difficult for motion capture to cover the space
- Alternative: Simulate many depth images from synthetic 3D hands

Difficulty 2: Depth noise

- Non-negligible noise comparing to ideal (synthetic) depth images
- Not the typical types of image noise (Gaussian, salt or pepper)

Kinematic hand model

A) Hand anatomy B) Kinematic model

C) Skinned mesh model

Depth Noise Modeling

Proposed Method

A dedicated **three-step pipeline** is proposed:

- Initial estimation
- Candidate generation
- Verification step

Features

A feature at pixel x of input image I:

$$f_I(x) = d_I\left(x + \frac{u}{d_I(x)}\right) - d_I\left(x + \frac{v}{d_I(x)}\right)$$

where $d_1(x)$ is the depth value at pixel x, and u, v are two 2D-offsets

Experimental Results

Evaluations				
	depth sensor only	depth noise modeling	large vocabulary (size ≥10)	work with real data
Ours [1]	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Oikonomidis et al. [2]	×	×	$\sqrt{}$	\checkmark
Keskin et al. [3]	\checkmark	×	\checkmark	×
3Gear [4]	$\sqrt{}$	×	×	$\sqrt{}$

Evaluations

[1] Chi Xu, Li Cheng. Efficient Hand Pose Estimation from a Single Depth Image. International Conference on Computer Vision, 2013. [1] I. Oikonomidis, N. Kyriazis, and A. Argyros. "Efficient model-based 3d tracking of hand articulations using kinect". BMVC, 2011 [2] C. Keskin, F. Kirac, Y. Kara, and L. Akarun. "Hand pose estimation and hand shape classification using multi-layered randomized decision

A key event of:

[3] 3Gear systems. http://www.threegear.com, Oct. 2012.

