Informing forest carbon inventories under the Paris Agreement using the Global Forest Carbon Database (ForC v4.0)

Kristina J. Anderson-Teixeira^{1,2}*, Valentine Herrmann¹, Madison Williams¹, Teagan Rogers¹, Rebecca Banbury Morgan^{1,3}, Ben Bond-Lamberty⁴, and Susan Cook-Patton⁵

Correspondence: Kristina J. Anderson-Teixeira (teixeirak@si.edu)

Abstract. Forests are critical for climate change mitigation and constitute a substantial portion of planned net emissions reductions under the 2015 Paris Agreement. However, the efficacy of greenhouse gas mitigation planning and reporting is dependent upon the quality of available emission factors data, including forest carbon (C) stocks and changes therein. Tens of thousands of relevant forest C estimates have been published, yet are not readily accessible to the practitioners compiling national greenhouse gas inventories. Many of these data have, however, been compiled in the Global Forest C database (ForC; https://forc-db.github.io/) and stand to be of value to greenhouse gas inventories if made available through the Emission Factor Database (EFDB) of the International Panel on Climate Change (IPCC). Here, we develop and document a process for semi-automated submission of data from ForC into the EFDB, assess the data available and submitted to date, and provide recommendations for improving forest data collection, analysis, and reporting to improve inventories of forest-sector greenhouse gas emissions and removals. We begin by reconciling terminology and mapping ForC fields into EFDB. This process required some updates to the ForC database structure, leading to the release of a new version of ForC (v4.0; described here). As of June 09, 2023, ForC contained ~19316 independent records relevant to EFDB, 1438 of which have undergone necessary review and been submitted to date. Among the data in ForC, there is disproportionate representation of biomass (particularly aboveground) stocks, with far fewer records for dead organic matter and soil C, and relatively few or no records for net annual increments or C fluxes into or out of the IPCC-defined C pools. Geographic representation is also quite uneven, with the highest densities of relevant records in temperate forests, and with relatively scant representation of tropical forests in Africa and Asia. In the future, forest C estimates in EFDB can be improved through targeted research to fill critical gaps, reporting of information required by IPCC, and continued submission of data from scientific publications to the EFDB. Given that climate change is rapidly impacting the world's forests, timely reporting of recent estimates will be especially critical to accurate forest C inventories.

¹Center for Conservation Ecology, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, United States

²Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama, Republic of Panama

³School of Geography, University of Leeds, Leeds, UK

⁴Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, United States

⁵The Nature Conservancy; Arlington VA 22203, USA

1 Introduction

30

Forests are critical to management of the atmospheric concentration of the greenhouse gas carbon dioxide (CO₂), and thereby climate change. In recent decades, CO₂ uptake by forests, woodlands, and savannas has exceeded releases from deforestation and other severe disturbances, resulting in a net carbon CO₂ sink of ~0.88 Gt C yr⁻¹ (all biomes with trees, Xu et al., 2021) to ~1.6 Gt C yr⁻¹ (forests only, Harris et al., 2021). This has offset an estimated 10% to 18% of anthropogenic CO₂ emissions from fossil fuels and cement (Xu et al., 2021; Harris et al., 2021), dramatically slowing the pace of atmospheric CO₂ accumulation and associated climate change. The future of this important CO₂ sink is highly uncertain, and depends upon both forest responses to climate change, which are likely to reduce the sink strength (McDowell et al., 2020; Hammond et al., 2022), and human conservation, restoration, and management of forests (IPCC, 2019b, 2022a).

Forests play a substantial role in international plans for climate change mitigation under the Paris Agreement (UNFCCC, 2015). Forest conservation, reforestation, and improved sustainable management all have significant – and relatively cost-effective – potential as climate change mitigation options (Roe et al., 2021), with conservation and reforestation having the fourth and fifth largest net emission reduction potentials or all mitigation options (IPCC, 2022b). As of 2016, forest-based mitigation accounted for 26% of total planned greenhouse gas mitigation within Nationally Determined Contributions under the Paris Agreement (Grassi et al., 2017). Yet, envisioned forest-based climate change mitigation initiatives do not always correspond to actual emission reductions through on-the-ground implementation (e.g., Badgley et al., 2022). One critical need for ensuring that forest-based climate change mitigation initiatives are effective is realistic planning and reporting, underlain by solid scientific data (Anderson-Teixeira and Belair, 2022; Deng et al., 2021).

The International Panel on Climate Change (IPCC) provides guidance for national greenhouse gas inventories for reporting to the United Nations Framework Convention on Climate Change (UNFCCC, IPCC, 2006, 2019a). Under this guidance, greenhouse gas inventories include all managed land, including most of the world's forest land (Ogle et al., 2018). The IPCC inventory guidelines include specific instructions for inventories for greenhouse gas (mainly CO₂) exchanges between forest land and the atmosphere (IPCC, 2006, 2019a). A tiered approach is employed, where the lowest tier (Tier 1) represents the simplest approach and relies on default parameter values – for example, forest carbon (C) stocks values by ecozone (FAO, 2012) and forest age class derived as the average of published estimates (IPCC, 2019a; Rozendaal et al., 2022). Tier 1 values have improved over the years as more of the relevant underlying data has become available (Requena Suarez et al., 2019; Rozendaal et al., 2022), but there remains room for improvement as datasets grow and become more widely accessible. For example, the year following the release of the latest IPCC guidelines, a more thorough analysis of C accumulation in regrowth forests found that IPCC's Tier 1 default failed to capture eight-fold variation within ecozones (Cook-Patton et al., 2020). In addition, it was revealed that C stocks in mature African tropical montane forests were two-thirds higher than the IPCC Tier 1 values for these forests (Cuni-Sanchez et al., 2021). This rapid evolution of scientific information on C cycling in forests is valuable for informing climate change mitigation efforts but requires improved mechanisms for communicating the latest information from scientific researchers to the practitioners who need reliable estimates for greenhouse gas mitigation planning. Moreover,

high variability of forest C cycling within ecozones (e.g., Cook-Patton et al., 2020; Cuni-Sanchez et al., 2021) implies that it is useful for practitioners to have access to locally-specific information, when available.

To improve data accessibility for preparing greenhouse gas estimates, the IPCC created the Emission Factor Database (EFDB; https://www.ipcc-nggip.iges.or.jp/EFDB/main.php), which is intended as a recognized library of emission factors and other parameters that can be used for estimating greenhouse gas emissions and removals. The EFDB can be used both for efforts to tally a nation's intended or accomplished greenhouse gas reductions, or as a basis of comparison for external parties to evaluate these inventories. The EFDB encourages researchers to submit estimates of emission factors or other related parameters from peer-reviewed journal papers or other accepted sources for inclusion in the database. In the case of forests, emission factors include C stocks, net annual increments, and annual fluxes for various pools (IPCC, 2006, 2019a).

The Global Forest Carbon Database, ForC (https://forc-db.github.io/), is the largest collection of published estimates of forest C stocks, increments, and annual fluxes (Anderson-Teixeira et al., 2018, 2021). ForC includes data ingested from individual publications and relevant databases, including the Global Reforestation Opportunity Assessment (GROA) database (Cook-Patton et al., 2020, database doi: 10.5281/zenodo.3983644), and the global soil respiration database (SRDB-V5, Bond-Lamberty and Thomson, 2010; Jian et al., 2021). As of June 09, 2023, ForC contained 39848 records from 10589 plots in 1535 distinct geographical areas, along with records of stand age and disturbance history. As such, ForC is positioned to improve forest-related estimates of CO₂ emissions and removals through the submission of data to the EFDB. The purpose of this publication is to document that process and provide recommendations for future improvements.

Here, we (1) review IPCC methods and definitions applied to estimate CO₂ emissions and removals from forest in the context of typical forest C estimation methodologies; (2) describe mapping of ForC to IPCC's EFDB; (3) describe updates to ForC (ForC v4.0), most of which were implemented to facilitate data submission to EFDB; (4) summarize the data in ForC relevant to EFDB and records that have been submitted to date; and (5) provide recommendations as to how the scientific community can better provide useful data for forest C inventories under the Paris Agreement.

2 IPCC methods and definitions

The end goal of IPCC greenhouse gas inventories is to quantify greenhouse gas emissions to, or withdrawals from, the atmosphere on an annual basis, most commonly on a national level (IPCC, 2006, 2019a). For each stratum of subdivision within a land-use category, annual stock changes (ΔC ; t C yr⁻¹) are calculated as the sum of changes in various pools (described in section 2.1), plus any harvested wood products. Thus, C cycle variables relevant to the IPCC methodology and to EFDB include C stocks, net annual increments, and fluxes in the IPCC-defined pools.

2.1 Carbon pools

Forest ecosystem C pools may be parsed in various ways, and while certain definitions and thresholds are more common than others, there is no single standard for measuring or reporting that is adhered to by all – or even most – scientific studies. IPCC parses forest C pools into biomass (aboveground and belowground), dead organic matter (dead wood and litter), and soil

Table 1. IPCC-defined forest carbon pools with definitions and measurement methods. Definitions from IPCC Table 1.1. (See Table 1.1 in IPCC guidance).

pool	definition	important sources of estimate	IPCC guidance
		variation	
aboveground biomass	all biomass of living vegetation	minimum size censused	may exclude understory if
			minor component
		include non-dicot trees?	yes
		include dead standing?	no
		biomass allometry	Tier 1 defaults draw on a
			variety of allometric models
belowground biomass	all biomass of live roots	all factors relevant to	see above
		aboveground biomass	
		allometry or assumed ratio of	can estimate based on R
		below- to above-ground	
		biomass (R)	
		minimum root diameter	may exclude fine roots;
			suggested diameter cutoff of 2
			mm for fine roots
dead wood	all non-living woody biomass	minimum diameter	10 cm default, but may be
	above a specified diameter,		chosen by country
	aboveground or belowground		
		include belowground?	yes
litter	all non-living biomass smaller	maximum diameter (=	10 cm default, but may be
	than dead wood but larger than	minimum diameter for	chosen by country
	soil organic matter, in various	deadwood)	
	states of decomposition both		
	above or within the mineral or		
	organic soil		
	-	minimum size (= size limit for	suggested 2 mm
		soil organic matter)	
		layers included	entire O horizon: litter (OL),
			fumic (OF), and humic (OH)
			layers
		include belowground?	yes
soil organic matter	organic carbon in mineral soils	sampling depth	30 cm default, but may be
	to a specified depth		chosen by country

organic matter (Table 1). While there is some flexibility around the components included in each pool, each national inventory must apply these in a consistent manner.

2.1.1 Biomass

100

105

110

115

Biomass includes living vegetation, above- and below-ground, both woody and herbaceous, but with a focus on woody plants and trees given their much greater potential to sequester large amounts of C (IPCC, 2006).

Aboveground biomass, which is typically <200 t C ha⁻¹ but can exceed 700 t C ha⁻¹ (Anderson-Teixeira et al., 2021), is defined by the IPCC as "all biomass of living vegetation above the soil including stems, stumps, branches, bark, seeds, and foliage" (IPCC, 2003, 2006). IPCC's guidance is that the understory may be excluded if it constitutes a "minor" component (defined as < 25 - 30 % of emissions/removals for the overall category, IPCC, 2006), and where a commonly applied minimum size sampling threshold for mature forests would be 10 cm stem diameter at breast height (DBH). A recent study characterizing the contributions of trees in different DBH classes to ecosystem C stocks and fluxes found that trees 1 - 10 cm DBH contributed up to $\sim 8\%$ aboveground biomass, $\sim 17\%$ aboveground woody net primary productivity $(ANPP_{woody\ stem})$, and $\sim 20\%$ woody mortality (M_{woody}) of mature closed-canopy forests worldwide (Piponiot et al., 2022), and therefore stems < 10 cm DBH can usually be considered a minor component of aboveground biomass for these forests. In regrowth forests, woodlands, or savannas, small trees and shrubs contribute a much larger proportion of C stocks and fluxes (Lutz et al., 2018; Piponiot et al., 2022; Hughes et al., 1999), and, correspondingly, biomass estimates for these ecosystems tend include smaller size classes. While IPCC guidance specifies that all living vegetation should be included in biomass estimates, forest censuses and biomass estimates do not consistently include life forms other than dicot trees (e.g., lianas, ferns, palms, bamboo), although these do tend to be censused when they constitute a large proportion of the biomass (e.g., Fukushima et al., 2007). Further, it is important to note that the IPCC definition of aboveground biomass excludes standing dead wood, which is included in remote sensing biomass estimates (Duncanson et al., 2021).

A universal challenge in estimating biomass (living or dead) from forest census data is applying appropriate allometric models to convert DBH measurements to biomass, and such selection has an enormous influence on estimates of biomass stocks, increments, and fluxes (Clark and Clark, 2000; Clark et al., 2001; Calders et al., 2022). While trusted and standardized allometric models are becoming increasingly available (Chave et al., 2014; Réjou-Méchain et al., 2017; Gonzalez-Akre et al., 2022), large uncertainties remain. IPCC Tier 1 values currently draw on studies applying a variety of allometric models (e.g., Requena Suarez et al., 2019; Rozendaal et al., 2022).

Belowground biomass is defined as "all biomass of live roots" (IPCC, 2003, 2006), a definition including both coarse roots, whose biomass is typically estimated based on stem censuses and allometries or belowground to aboveground biomass ratios, and fine roots, whose biomass is typically estimated via extraction of roots from soil samples. The former, which is typically <40 t C ha⁻¹ (Anderson-Teixeira et al., 2021), is methodologically linked to aboveground biomass estimates, sharing the same methodological sources of variation, and tending to be very uncertain (e.g., Keller et al., 2001). Fine root biomass generally constitutes a much smaller C pool (typically <5 t C ha⁻¹, Anderson-Teixeira et al., 2021), and IPCC guidance is that it can be excluded when fine roots cannot be distinguished empirically from soil organic matter or litter (IPCC, 2006), which can be a painstaking process. Field methods for estimating root biomass are highly variable (Freschet et al., 2021). IPCC's default

method for Tier 1 estimates is to apply a ratio of belowground to aboveground biomass, with default factors defined based on ecological zone, continent, and forest age (IPCC, 2006, 2019a).

2.1.2 Dead Organic Matter

130

140

150

Dead organic matter includes all non-living biomass larger than the litter size threshold. Its inclusion in inventories is not required under Tier 1 methodology for Forest Land remaining Forest Land (see section 2.2), but is required for land that has transitioned to or from forest within the past 20 years (IPCC, 2006).

Dead wood, which is typically <50 t C ha⁻¹ but can exceed 150 t C ha⁻¹ (Anderson-Teixeira et al., 2021), is defined by IPCC as "all non-living woody biomass not contained in the litter, either standing, lying on the ground, or in the soil" (IPCC, 2003, 2006). This pool includes standing and fallen dead wood, stumps, and dead roots of diameter ≥10 cm (or a diameter specified by the country). Dead wood stocks and fluxes can be quite variable across forests (Anderson-Teixeira et al., 2021), and can at times be the dominant pool in a forest ecosystem (e.g., following a severe natural disturbance, Carmona et al., 2002). However, aboveground dead wood remains relatively poorly characterized at a global scale (Anderson-Teixeira et al., 2021), and belowground dead wood is rarely studied (Merganičová et al., 2012). In turn, dead wood pools are poorly characterized in large-scale forest C budgets (Pan et al., 2011; Harris et al., 2021), and IPCC's latest Tier 1 default values are based on just 1-31 references per climate zone (Table 2.2 in IPCC, 2019a).

Litter, which is typically <40 t C ha⁻¹ but can exceed 100 t C ha⁻¹ (Anderson-Teixeira et al., 2021), is defined by IPCC as including "all non-living biomass with a diameter less than a minimum diameter chosen by the country (for example 10 cm), lying dead, in various states of decomposition above the mineral or organic soil" (IPCC, 2003, 2006). As noted above, live fine roots may be included in litter when difficult to separate empirically. The definition includes the entire O horizon, including litter (OL), fumic (OF), and humic (OH) layers, in addition to litter embedded within the soil. This definition contrasts with empirical studies that focus on aboveground litter, often including only the OL layer in the definition of litter, and do not always specify the components included. Similar to dead wood, litter is poorly characterized in large-scale forest C budgets (Pan et al., 2011; Harris et al., 2021), and IPCC's latest Tier 1 default values are based on just 1-7 references per climate zone (Table 2.2 in IPCC, 2019a).

145 2.1.3 Soil Organic Matter/ Carbon

Soil organic matter/ carbon (SOM/ SOC), which is typically >100 t C and can exceed 300 t C in the top two meters of soil (Sanderman et al., 2017), is defined by IPCC as "organic carbon in mineral and organic soils (including peat) to a specified depth chosen by the country and applied consistently through the time series" (IPCC, 2003, 2006). Live fine roots may be included with soil organic matter when it is not feasible to distinguish them empirically. The greatest source of methodological variation in measuring SOM/ SOC is sampling depth, which has a suggested default of 30 cm but may vary by country provided that consistent criteria are applied.

2.2 Land classification

155

160

165

170

IPCC defines land-use categories to include six categories – Forest Land, Grassland, Wetlands, Cropland, Settlements, and Other Land (IPCC, 2006). Sub-divisions include land that has remained in a particular category for >20 years (e.g., Forest Land remaining Forest Land) and land that has been converted from one category to another in the past 20 years (e.g., Cropland converted to Forest Land). Forest Land is defined as at least 10-30% crown cover of trees with potential to reach a minimum height of 2-5 m *in situ*, and shorter-stature natural vegetation would be classified as Grassland (IPCC, 2003). Definitions of forest are allowed to vary by country, but must be applied consistently. Forest Land includes land where vegetation temporarily falls below the threshold values for forest (e.g., due to disturbance), but is expected to exceed those thresholds in the future (IPCC, 2003).

The UNFCCC requires greenhouse gas reporting for all managed lands in a country, where management is defined as "human interventions and practices have been applied to perform production, ecological or social functions" (IPCC, 2006). This expansive definition of managed land implies that the majority of Forest Land in most countries is managed. However, the definition is applied differently across countries, and the majority of governments have yet to report their approach for defining managed land or provide maps of managed land (Ogle et al., 2018; Deng et al., 2021).

3 Updates to ForC (ForC v4.0)

This section describes changes relative to ForC v3.0 (Anderson-Teixeira et al., 2021). Previous versions of ForC (Anderson-Teixeira et al., 2016, 2018, 2021) contained most of the information required by EFDB, and, more broadly, to inform C stock change calculations under the Paris Agreement. However, modest changes to the structure and contents of ForC were needed in order to provide all information required by EFDB and to improve ForC's capacity to serve as a repository of valuable information for forest C inventories under IPCC guidelines. To support export of data to EFDB, and to improve the overall quality of the ForC database, we added or modified 18 fields (Appendix A), defined 15 new variables, implemented enhanced quality control, manually reviewed >1963 records to obtain additional required information, and added 329 new records.

3.1 New or modified fields

We added or modified a total of 18 fields (Appendix A). Most notably, these included improvement of the representation of uncertainty, recording of original units and organic matter to C conversion factors, and expanding the information recorded in the citations table. For the latter, we used an R script to automatically harvest (scrape) the URL, citation, abstract and language of the publications, based on their DOI, using R package rvest(Wickham and RStudio, 2022). That information was manually retrieved when the web scraping failed.

180 3.2 New variables

185

190

195

200

To create structure for EFDB-relevant records, we added a total of 15 new variables to the set of named and defined variables (Fig. 1), counting each pair of variables with units in C (ending in _C) or organic matter (ending in _OM) as one. The majority of these were increment variables (n=11), adding to only one previously defined increment variable (aboveground biomass increment, *delta.agb*). These are directly related to C stocks as previously defined in ForC, with "*delta*." added in front of the variable name. Further, we added variables capturing the belowground component of woody mortality (*woody.mortality_root*) and the combined aboveground and belowground components of woody mortality (*woody.mortality*). Although most of these variables lacked records in ForC as of June 09, 2023, their addition gave the structure such that records can be populated over time. Finally, to provide better definition of the previously existing variable *organic.layer*, which has a nebulous definition that reflects the varied definitions adopted by original studies, we added two clearly defined variables: *litter* (relatively undecomposed plant material/ OL horizon), and *O.horizon* (entire O-horizon, including OL).

3.3 Quality control measures

Prior to releasing ForC v4.0, we executed several quality control measures. First, we implemented a system of continuous integration using GitHub Actions (*sensu* Kim et al., 2022) to run some automatic checks any time the master data files are updated, including outlier tests and checks for completeness and naming consistency of records across data files. Second, to improve information on geographic coordinates, we created a field to record coordinate precision (Appendix A), and flagged and reviewed records with suspected low precision. Third, to identify erroneous climate data, we compared ForC climate values to those extracted from WorldClim version 2.1 (van de Pol et al., 2016; Bailey and van de Pol, 2016) based on site coordinates. Records deviating from WorldClim values by more variable-specific thresholds (>5°C for mean annual temperature, >7.5°C for mean temperatures of the warmest and coldest months, or >1 for log(mean annual precipitation in mm)) were flagged as requiring review prior to use in analysis or submission to EFDB.

Because ForC v4.0 contained known duplicate records, we used R scripts to identify likely duplicates, as detailed in Anderson-Teixeira et al. (2021). Henceforth, we refer to the set of records with likely duplicates removed as "independent records". All records sent to EFDB were ensured to be independent and original through manual review, as detailed below.

3.4 Manual review of records to be sent to EFDB

EFDB data submissions required information that was not recorded in previous versions of ForC, but for which new fields were created for EFDB compatibility (Appendix A). It was therefore necessary to return to original publications to retrieve relevant information, including (1) estimates in original units, (2) confidence intervals (when not already in ForC), (3) whether records of interest were presented in tables or text or digitized from figures (EFDB will not accept digitized data), (4) whether records of interest were presented directly, as opposed to having been calculated from related variables (for example, if a study presents aboveground biomass and root biomass but not total biomass, EFDB would not accept the sum of these as a valid record of total biomass) We also checked that existing ForC records were complete and correct.

Figure 1. Schematic illustrating the carbon pools defined under IPCC Guidelines for national greenhouse gas inventories; corresponding ForC variables, and relationships among them. For each C pool, we show ForC variables corresponding to the stock, net annual increment, influx, and outflux. Most, but not all, EFDB-relevant ForC variables are shown here. Correspondence of ForC variables to IPCC criteria often depends upon measurement protocols (e.g., minimum stem diameter censused). Additional caveats are as follows: (a,b) branch fall and mortality of stems below the minimum stem diameter censused, which are necessary for a full accounting of dead organic matter production but typically assumed negligible for calculations of biomass change, are excluded by common measurement practice (a) or ForC variable definition (b); (c) assumes that leaf production equals leaf fall, or that changes in foliage biomass are negligble; (d,e) belowground components excluded by common measurement practice (d) or ForC variable definition (e); (f) excludes movement of dead wood into litter through breakage or size reduction; (g) measurements often limited to litter horizon (OL) and may exclude larger branches and stems classified as litter and/or the more decomposed layers of the O horizon. **This variable is techically EFDB-relevant but not selected for submission because their is no corresponding influx variable.

Manual review of records was the limiting step for data submission to EFDB. We prioritized review of (1) records from the Forest Global Earth Observatory (ForestGEO, Anderson-Teixeira et al., 2015; Davies et al., 2021), (2) studies with confidence intervals recorded in ForC (because uncertainty estimates are important to the IPCC), (3) original publications containing large numbers of EFDB-relevant records, and (4) records from tropical regions. The latter criteria was motivated by the fact that although tropical forest is the single most important biome for climate change mitigation (Griscom et al., 2017, 2020), ground-based data on tropical forest C cycling tends to be more scarce due to a variety of challenges (Anderson-Teixeira et al., 2021; de Lima et al., 2022), and tropical countries are more likely to apply Tier 1 methodology that bases forest C budgets on internationally defined IPCC default values (Romijn et al., 2015).

220 3.5 Addition of new records

215

In addition to reviewing existing records, we added a total of 329 new records to ForC. These included 104 records from two studies (Piponiot et al., 2022; Lutz et al., 2021) that were not previously included in ForC. In addition, we created new records for 225 EFDB-relevant estimates presented in the original publication that were not yet present in ForC.

4 Submission of ForC data to EFDB

To submit complete, reviewed ForC records into EFDB, we created R scripts to restructure ForC records and populate EFDB's bulk import form ("EFDB bulk import.xlsx"). Criteria for data submission were that (1) records had been checked against the original study and determined to be complete and correct, and as originally presented, (2) the original study presented values in tables or text, as opposed to the values having been digitized from graphs or calculated based on related variables, and (3) the records had not previously been submitted to EFDB. Once converted into EFDB format, the records were reviewed and then sent to the IPCC's Technical Support Unit for submission to EFDB. Complete records needed to be reviewed by the EFDB editorial board and then posted in the database – a process that lags behind submission of records and had not yet been completed for all records sent as of June 09, 2023.

4.1 Mapping ForC to EFDB

The mapping of ForC fields into EFDB fields is summarized in Appendix B. For the majority of fields, contents of the field in ForC was copied directly into an EFDB field, either as the only contents of that field or as part of a composite record. For example, ten ForC fields describing site location, climate, and edaphic properties all mapped into the EFDB field *Region/Regional conditions* (Appendix B). In cases where original studies did not present 95% confidence intervals (required by IPCC when available) but did present information required to calculate these (standard error or n and standard deviation), we calculated the 95% confidence intervals and populated the EFDB field with this information (noting the calculation in the EFDB field *Comments from Data Provider*). For some fields, simple conditional logic was used to populate EFDB fields based on ForC records. For example, for stock variables presented in the original publication in units of dry organic matter mass (as opposed to C), several greenhouse gasses (CO₂, CO, CH₄, NO, NO₂, N₂O) were entered in the EFDB field indicating the greenhouse

gases to which the record could be pertinent (*Gases* field) because these values could be used in calculations of greenhouse gas emissions from biomass burning (IPCC, 2006); otherwise, the only pertinent greenhouse gas would be CO_2 . There were two cases in which more complex mapping was required: (1) mapping of C cycle variables (section 4.1.1) and (2) land classification (section 4.1.2).

4.1.1 Carbon cycle variables

245

250

255

265

275

With input from the IPCC's Technical Support Unit, we reviewed the list of ForC variables to identify those that were relevant to EFDB and to appropriately map them into EFDB (Fig. 1). For each C pool (Table 1), we identified variables representing organic matter or C stocks, net annual increments, influxes (a.k.a. "gross annual increments" by IPCC), and outfluxes. As described in section 3.2, we also defined 15 new EFDB-relevant variables that were not previously represented in ForC. It is important to note that the correspondence of ForC variables to IPCC criteria often depends upon measurement protocols ("important sources of estimate variation" in Table 1). For example, ForC records of biomass and dead wood vary in the minimum stem diameter censused, such that some records would match the IPCC criteria whereas others would not. Information on minimum diameters censused and other important sources of methodological variation are recorded as covariates in ForC and mapped into the EFDB field *Other Properties* (Appendix B). Details on the mapping of ForC variables to EFDB – including associated covariates, IPCC pools (Table 1) and relevant equations (IPCC, 2006) – are documented in the file ForC_variables_mapping.csv in the GitHub repository associated with this publication IPCC-EFDB-integration repository in ForC-db organization (https://github.com/forc-db/IPCC-EFDB-integration).

260 4.1.2 Land classification

Determination of the IPCC land-use category (i.e., Forest Land, Grassland, Wetlands, Cropland, Settlements, or Other Land; section 2.2) was made based on the categorical ForC field *dominant.life.form*, sometimes drawing upon stand age. Records with "woody" *dominant.life.form* were classified as Forest Land. Those with *dominant.life.form* of "woody+grass", which in ForC is indicative of anything from a shrub-encroached grassland to a tree-dominated savanna, were given dual classification of Forest Land and Grassland. This dual classification indicates that records may be relevant to either category depending on the definition of forest applied (varies by country). For (rare) cases where *dominant.life.form* was grass and stand age was greater than zero, indicative of early successional vegetation, we assigned a classification of Forest Land, consistent with the IPCC definition that Forest Land includes land expected to succeed to forest. Cases where *dominant.life.form* was grass or crop and stand age was zero were indicative of a control for studies of forest regrowth following agricultural abandonment, and were classified as Grassland and Cropland, respectively.

Classification into sub-categories was dependent upon stand age and site history (section 2.2). For Forest Land \geq 20 years old or of unknown (relatively mature) age, or Forest Land < 20 years old that was forest prior to a stand-clearing disturbance, the past land-use category was Forest Land, making the sub-category "Forest Land Remaining Forest land". For forests <20 years old with history including cultivation/ tillage or grazing, past land-use categories were Cropland and Grassland, respectively, making land-use subcategories were "Cropland converted to Forest Land" and "Grassland converted to Forest Land", respec-

tively. For forests <20 years old with unspecified previous agricultural use, we assigned the sub-category "Land Converted to Forest land". Forests <20 years old with unknown land use prior to the study date were simply classified as "Forest Land". The same logic was applied for savannas, but including both Forest Land and Grassland as potentially relevant categories.

Given the lack of public information needed to determine whether lands are classified as managed (Ogle et al., 2018; Deng et al., 2021), and because the IPCC's definition of managed land is more expansive than is commonly applied in the scientific literature and hence in ForC, we did not include any classification of land management status from ForC in the records submitted to EFDB. However, we did provide auxiliary information that should be useful in making this determination, including geographical location and notable disturbance events.

5 Results

280

290

285 **5.1** ForC v4.0 contents

As of June 09, 2023, ForC (v4.0) contained 32686 independent records (39848 total), 19316 of which were for the 42 variables relevant to EFDB (Fig. 1). These records were distributed across all forested continents and ecozones, albeit unevenly (Fig. 2). The largest number of records came from Asia, followed by North America, South America, and Europe, with relatively few records from Africa, Australia, and Oceania (Fig. 3c). Categorized by FAO ecozone, the greatest numbers of records came from subtropical humid forests, temperate mountain systems, and tropical rain forests, each with >2,000 independent records (Fig. 3b). Boreal coniferous forests, temperate continental forests, subtropical mountain systems, and tropical moist deciduous forests had >1,000 independent records each, while other ecozones all had <1,000 records. The most widely represented forest type was needleleaf evergreen, followed by broadleaf deciduous and broadleaf evergreen (Fig. 3a). In terms of stand age, the most represented age class was 20-100 years, followed by <20 years and then >100 years (Fig. 3d).

Figure 2. Map of sites in ForC shaded by number of independent records relevant to (circles) and submitted to (triangles) EFDB. Symbols are colored according to the number of records at each site. Underlying map shows FAO ecozones, which are coded as follows: Ba-Boreal coniferous forest, Bb-Boreal tundra woodland, BM-Boreal mountain systems, P-Polar, SBSh-Subtropical steppe, SBWh-Subtropical desert, SCf-Subtropical humid forest, SCs-Subtropical dry forest, SM-Subtropical mountain systems, TAr-Tropical rain forest, TAwa-Tropical moist deciduous forest, TAwb-Tropical dry forest, TBSh-Tropical shrubland, TBWh-Tropical desert, TeBSk-Temperate steppe, TeBWk-Temperate desert, TeDc-Temperate continental forest, TeDo-Temperate oceanic forest, TeM-Temperate mountain systems, TM-Tropical mountain systems.

For C contained records for 29 of the 42 variables (or closely-related variable groups) relevant to EFDB (Table 2, Fig. 1). The records were very unevenly distributed across variables. The variable with most records was aboveground biomass, representing 42% of all independent records relevant to EFDB, and aboveground biomass components (woody biomass or foliage) representing an additional 5%. A total of 27% of relevant records were for root biomass (including fine and coarse root components), while 4% described total biomass. The non-living pools were less represented, with 4% of relevant were for dead wood (including standing and fallen components), 0.4% for litter, 0.3% for total ecosystem C excluding soils, and 2.1% for soil carbon.

Increment and flux variables were poorly represented (Table 2). The increment variable with most records was the above-ground biomass increment, representing 0.8% of all independent records relevant to EFDB. The only other relevant increment variable with any records was the O horizon (litter) increment, with just 4 records. Relevant flux variable records (n=2751) together constituted 14% of ForC's independent records relevant to EFDB.

Figure 3. Histograms of number of independent records in ForC relevant to (grey) and submitted to (black) EFDB, organized by (a) dominant vegetation type, (b) FAO ecozone, (c) continent, and (d) stand age. For dominant vegetation (a), 'Other' includes deciduous needleleaf, mixed broadleaf- needleleaf, non-woody vegetation (e.g., early successional), and incompletely classified or mixed forest types. For FAO ecozones (b), codes are as listed in the caption of Figure 2.

Table 2: Numbers of records of ForC variables (or closely related variable groups) relevant to, and sent to, EFDB.

variable	n in ForC	n independent records in ForC	n reviewed	n submitted to EFDB
Biomass				
biomass	1094	850	95	50
delta.biomass	0	0	0	0
NPP_woody	136	93	0	0
woody.mortality	0	0	0	0
Aboveground biomass				
biomass_ag	9449	8148	1357	764
biomass_ag_woody	460	366	10	10
biomass_ag_foliage	601	520	73	45
delta.agb	166	150	145	123
ANPP_woody	299	242	0	0
ANPP_woody_stem	949	622	60	61
ANPP_woody_branch	243	200	4	4
woody.mortality_ag	112	75	47	50
stem_pC	9	0	0	0
Belowground biomass				
biomass_root	4629	4185	125	57
biomass_root_fine	930	595	18	18
biomass_root_coarse	599	413	12	7
delta.biomass_root	0	0	0	0
delta.biomass_root_coarse	0	0	0	0
delta.biomass_root_fine	0	0	0	0
woody.mortality_root	0	0	0	0
BNPP_root	577	416	0	0
BNPP_root_fine	488	331	0	0
BNPP_root.turnover_fine	91	56	0	0
BNPP_root_coarse	329	250	0	0
Dead wood				
deadwood	438	304	104	70
deadwood_standing	153	121	18	17
deadwood_down	425	369	52	28
delta.deadwood	0	0	0	0
delta.deadwood_standing	0	0	0	0
delta.deadwood_down	0	0	0	0
R_het_deadwood	0	0	0	0
Litter				
O.horizon	45	45	45	40
delta.O.horizon	4	4	4	4

Table 2: Numbers of records of ForC variables (or closely related variable groups) relevant to, and sent to, EFDB. (continued)

variable	n in ForC	n independent records in ForC	n reviewed	n submitted to EFDB
litter	30	30	23	23
delta.litter	0	0	0	0
ANPP_litterfall	294	253	11	11
NPP_litter	94	70	0	0
R_het_litter	167	143	0	0
Total Ecosystem C (excl. soils)				
total.ecosystem_2	64	64	0	0
delta.total.ecosystem_2	0	0	0	0
Soil organic matter				
SOM / SOC	693	401	89	56
delta.SOM / delta.SOC	0	0	0	0
TOTAL	23568	19316	2292	1438

5.2 Data submissions to EFDB

310

315

320

325

As of June 09, 2023, we had reviewed or added 2292 EFDB-relevant records, 1438 records of which were submitted to EFDB, and 376 of which have been reviewed, accepted, and posted (Figs. 2-3, Table 2). The 37% attenuation between records reviewed and those sent to EFDB was attributable to the presence of digitized records and records where a variable's value had been calculated as the sum or difference of related variables rather than presented directly in the text. The discrepancy between the number of records sent and that posted to EFDB is primarily attributable to the time required for the IPCC to review and post the records, and also because a minority of records were deemed not applicable to EFDB by the review panel.

The ForC records submitted to EFDB were broadly distributed across Earth's forests (Fig. 2). However, the density of these records was very unevenly distributed across continents, biomes, and forest types and was not proportional to the numbers of relevant records in ForC (Fig. 3). Rather, the largest number of records came from North America, followed by Asia, South America, and Africa (Fig. 3c), with the most represented FAO ecozones being boreal coniferous forest, temperate continental forest, and temperate mountain systems, followed by tropical rain forests and moist deciduous forests (Fig. 3b). In terms of dominant vegetation, by far the most records came from needleleaf evergreen forests, followed by broadleaf deciduous and broadleaf evergreen (Fig. 3b). The largest records came from mature forests (>100 years), followed by young and intermediate-aged stands (Fig. 3d).

In terms of variables, records were submitted for 19 variables (or closely-related variable groups), including variables from each C pool (Table 2). The majority (82%) of records sent were for C stocks, including 3% for total biomass, 53% for above-ground biomass, 4% for components of aboveground biomass (wood or foliage), 4% for root biomass, 2% for components of root biomass (coarse or fine roots), 5% for dead wood, 3% for components of dead wood (standing or fallen), 4% for litter (entire O horizon or OL layer component), and 4% for SOM/ SOC. Increment records totaled 9% of records sent, virtually all

for aboveground biomass (excepting 4 records for delta.O.horizon). The remaining 9% of records sent described fluxes, all of which were either inputs or outputs to the aboveground biomass pool, a subset of which also described inputs to the dead wood or litter pool (Table 2, Fig. 1).

6 Recommendations

Based on our experience contributing forest C data to EFDB via ForC, we make several recommendations as to how scientists can improve forest C records in EFDB through database work (section 6.1), new data collection and analysis (section 6.2), and reporting (section 6.3).

6.1 Database needs

335

340

345

There is vast potential to expand forest C data in EFDB by completing the process of reviewing and submitting data that are already in ForC (Figs. 2-3). So far, only ~7% of the EFDB-relevant data in ForC have been submitted to EFDB. Although this process requires manual review of records, the submission of new records to EFDB is hugely facilitated by the fact that most pertinent information for each record is already entered in ForC and can be easily prepared for submission to EFDB using the system developed here. Future efforts to review studies for submission should optimize for representation across geographic regions, forest types, and variables, giving priority to those from currently under-represented regions and forest types (Figs. 2-3, Table 2), to records from countries relying on existing data for their greenhouse gas inventories (Tier 1 or 2 methodology), to the variables most needed by EFDB users, and to the more contemporary records.

In addition to the large potential to expand EFDB using records already in ForC, there are innumerous published EFDB-relevant forest C data that are not currently included in ForC, with more being published on a nearly daily basis. Coverage of particular variables or regions could be vastly improved through systematic review of the literature. Indeed, recent efforts have compiled large databases of relevant data from monoculture plantation forests (Bukoski et al., 2022) and mixed species plantation forests (Feng et al., 2022; Warner et al., 2022), and such a compilation is in works for agroforestry (Susan Cook-Patton, unpublished data). Beyond expanding collections of relevant forest C records, such reviews are valuable for assessing the availability of published records and identifying variables and regions that require additional data collection and analysis.

6.2 Data collection and analysis needs

New data collection and analysis is needed to fill notable knowledge gaps. While aboveground biomass stocks in particular have received – and continue to receive – by far the most research attention (Table 2, Anderson-Teixeira et al., 2021; Dubayah et al., 2020; Quegan et al., 2019; NISAR, 2018), production of an accurate global map of forest C stocks remains an ongoing challenge (Araza et al., 2023). Other pools and variables remain very poorly quantified (Table 2, Anderson-Teixeira et al., 2021), introducing substantive uncertainties into global forest C budgets (Pan et al., 2011; Harris et al., 2021). Furthermore, data distribution is uneven across forest types and geographical regions (Figs. 2-3). For instance, data on C cycling of tropical forests – particularly in Africa – remains relatively sparse, in large part due to substantial barriers to data collection and

distribution (de Lima et al., 2022). Significant investment in research and researchers focused on ground-based measurement of forest C in such regions will be important to filling knowledge gaps in forest C cycling (de Lima et al., 2022; Araza et al., 2023; Labrière et al., 2023).

Several EFDB-relevant variables have not been calculated and presented as frequently as would be possible given existing forest census data and minimal extra research effort. For example, aboveground woody mortality (woody.mortality_ag) and aboveground biomass increment (delta.agb) can be calculated from the same census data as aboveground woody productivity (ANPP_woody), yet the latter has received far more research attention, and correspondingly has far more records in ForC (Table 2, Anderson-Teixeira et al., 2021; but see Piponiot et al., 2022). Similarly, live coarse root biomass, total biomass, and changes in both of these pools could in theory be estimated in parallel with aboveground biomass, with the greatest barrier being that allometric models for estimating root biomass are not as reliable or easily available as are those for aboveground biomass (Chave et al., 2014; Réjou-Méchain et al., 2017; Gonzalez-Akre et al., 2022). However, while equations for estimating root (and thereby total) biomass require improvement, they do exist for many forest types (e.g., Brassard et al., 2011; Chojnacky et al., 2014; Waring and Powers, 2017; Mokany et al., 2006). In addition, standing dead trees are captured in most forest censuses and could be used to estimate standing dead wood, although additional data on breakage would be needed for accurate estimates. We recommend that, when possible, researchers calculate and report these variables, following the reporting guidelines specified in section 6.3.

Filling knowledge gaps in other EFDB-relevant variables will require more effort, but this effort is warranted given their importance for estimating forest C stock chnages. Although aboveground biomass is the most studied variable considered here (Table 2) and is the target of satellite missions (Dubayah et al., 2020; Quegan et al., 2019; NISAR, 2018), significant ground-based research effort is required to create accurate global maps of forest biomass and changes therein (Duncanson et al., 2019; Labrière et al., 2023; Calders et al., 2022). Given observations of increasing tree mortality in some forested regions (McDowell et al., 2020), better characterization of forest dead wood will be critical. Additionally, C stocks in forest organic horizons and soils can be quite substantial and highly uncertain in many parts of the world (Tifafi et al., 2018). Significant investment in ground-based forest research will be critical to filling these gaps.

6.3 Data reporting needs

We recommend that, in order to make research valuable to estimate C stock changes according to methods provided in the IPCC guidelines, researchers calculate and report results according to IPCC good practice (Table 3). It is particularly noteworthy that simple decisions on the presentation of results will determine whether the records meet the criteria for inclusion in EFDB. Some examples are as follows: (1) presenting data only in a figure makes them ineligible for inclusion in EFDB, whereas presentation in a table or supplementary data file allows inclusion while supporting FAIR (http://dx.doi.org/10.1038/d41586-019-01720-7) goals; (2) direct presentation of all relevant variables allows inclusion, whereas presenting only components of variables of interest (e.g., parsing litter into fine woody debris, OL, OF, and OH layers) or requiring simple mathematical operations to obtain a variable of interest (e.g., delta.agb = ANPP_woody - woody.mortality.agb) disqualifies records from inclusion; (3) matching IPCC-defined thresholds for defining C pools (Table 1), which may vary by country, can make the data far more

Table 3. Recommended best practices for reporting forest C estimates of value to national greenhouse gas inventories under IPCC guidance.

criteria	recommendation	rationale
variables to include	When possible, calculate and present	Estimates of relevant variables are not
	all relevant variables that can be	always calcualted.
	readily estimated based on available	
	data.	
forest census methods	Adopt IPCC guidelines	IPCC biomass pool definition includes
	(country-specific) for minimum stem	all living vegetation, but understory
	size in censues in census and	may be excluded when contribution is
	reporting. Ideally, census stem down	minor.
	to the smallest diameter feasible.	
	Census all taxa crontributing	IPCC biomass pool definition includes
	signficantly to biomass	all living vegetation.
dead organic matter sampling	Adopt IPCC recommendations for	Diameter cutoff must be applied
	minimum diameter of deadwood	consistently by each country.
	(country-specific, default 10 cm).	
belowground sampling	Select and report soil sampling	Diameter cutoff must be applied
	increments to include a cutoff at 30 cm	consistently by each country.
	depth (or country-specific depth).	
reporting variables	Present each EFDB- relevant variable	EFDB requires that values in the
	individually, as opposed to requiring	database be presented in the original
	summation of related variables.	article, and cannot accept subsequent
		calculations.
reporting estimates	Report all relevant values in tables,	EFDB does not accept values digitized
	text, or supplementary tables/ data	from figures.
	files, as opposed to in figures only.	
reporting confidence intervals	Report 95% confidence intervals,	EFDB requires confidence invervals
	standard error, or standard deviation	whenever possible.
	and sample size.	

relevant estimating forest C stock changes according to IPCC guidelines (e.g., using a 10 cm cutoff between dead wood and litter, presenting soil C to a depth of 30 cm). It should also be emphasized that reporting of 95% confidence intervals (or other metrics of error), when applicable, is highly desirable and makes the data more relevant to IPCC.

For those compiling published records (e.g., for meta-analyses), the data set can have added value if all information required by EFDB is extracted from original publications. This includes – but is not limited to – retaining original values as presented

without modification or rounding, noting whether data were digitized, recording confidence intervals, and recording all required fields (as indicated in the EFDB's bulk import template). The significant effort required to map a database into EFDB has been accomplished here (Appendix B), and we welcome other researchers to use the ForC template.

Once EFDB-relevant data are available in peer-reviewed publications, they may be submitted directly to EFDB or may use the ForC - EFDB data pipeline developed here. For individual publications, the former option will generally be more efficient. However, data incorporated into ForC as well as EFDB will be more broadly useful; for example, these data may be used for basic science (e.g., Banbury Morgan et al., 2021; Anderson-Teixeira et al., 2021), analyses of forest-based climate change mitigation potential (e.g., Cook-Patton et al., 2020; Goldstein et al., 2020), and model benchmarking (Fer et al., 2021).

7 Conclusions

415

The ForC database contains large numbers of records that could potentially be useful for estimating C stock changes applying methodological guidance provided by the IPCC. Here we have developed a framework for submitting these records to the EFDB, thus making those data more accessible for reporting CO₂ emissions and removals from forest land consistent with good practice in the IPCC guidelines (IPCC, 2006, 2019a). As of June 09, 2023, we have submitted 1438 records to EFDB. Although this represents just 7% of relevant records in ForC, it substantially increases the number of forest land records in EFDB. The records submitted to EFDB and present in ForC are very unevenly distributed across variables, regions, and forest types (Figs. 2-3, Table 2), reflecting broader patterns in allocation of research effort.

Going forward, forest researchers can make their research more useful for forest C inventories under IPCC guidelines by calculating and reporting results in ways that are consistent with methodologies provided in the IPCC guidelines (Tables 1, 3). In addition, substantial investments in research and researchers focused on ground-based measurement of forest C will be required to fill knowledge gaps and thereby increase the accuracy of forest CO₂ inventories for forest lands under teh Paris Agreement. This challenge is heightened by the fact that forests are changing rapidly (e.g., McDowell et al., 2020), and data collected a decade or more in the past may no longer be relevant. This heightens the need for an efficient system of making forest C data accessible for national greenhouse gas inventories. We view the system developed here for submitting ForC data to the IPCC EFDB as one important step towards that goal.

- 430 Code and data availability. All code and data are openly available. The ForC database and associated code are available via the ForC repository within the ForC-db organization on GitHub (https://github.com/forc-db/ForC), and the version used here (ForC v4.0) is archived in Zenodo (DOI: TBD). The data and code associated with data submission to EFDB and preparation of this manuscript are available via the the IPCC-EFDB-integration repository within the ForC-db organization on GitHub (https://github.com/forc-db/IPCC-EFDB-integration) and archived in Zenodo (DOI: 10.5281/zenodo.8021474).
- Author contributions. KAT and VH conceived and designed the project; VH wrote the scripts for database management, data submission to EFDB, and the analyses presented here; MW, TR, and RBM added and reviewed ForC data, BBL and SCP contributed large databases to ForC (EFDB and GROA, respectively); CP provided methodological expertise; KAT, VH, and MW prepared the first draft of the manuscript; all authors reviewed the results and approved the final version of the manuscript.

Competing interests. The authors declare no competing interests.

440 Acknowledgements. We gratefully acknowledge the substantial contributions of Valentyna Slivinska and Sandro Federici for collaboration on the conception, design, and technical review of this project. Thank you to all researchers who collected and published the data contained in ForC, and to all research assistants and collaborators who have contributed to building the database. Thank you to Avni Malhotra for helpful comments on an earlier draft of this manuscript. Funding for this study was provided by the Smithsonian (Forest Global Earth Observatory, Smithsonian Working Land and Seascapes); a Bezos Earth Fund grant to the Nature Conservancy, with a sub-grant to NZCBI; and the
445 Institute for Global Environmental Strategies.

References

- Anderson-Teixeira, K. J. and Belair, E. P.: Effective Forest-Based Climate Change Mitigation Requires Our Best Science, Global Change Biology, 28, 1200–1203, https://doi.org/10.1111/gcb.16008, 2022.
- Anderson-Teixeira, K. J., Davies, S. J., Bennett, A. C., Gonzalez-Akre, E. B., Muller-Landau, H. C., Joseph Wright, S., Abu Salim, K.,
 Almeyda Zambrano, A. M., Alonso, A., Baltzer, J. L., Basset, Y., Bourg, N. A., Broadbent, E. N., Brockelman, W. Y., Bunyavejchewin,
 S., Burslem, D. F. R. P., Butt, N., Cao, M., Cardenas, D., Chuyong, G. B., Clay, K., Cordell, S., Dattaraja, H. S., Deng, X., Detto, M., Du,
 X., Duque, A., Erikson, D. L., Ewango, C. E., Fischer, G. A., Fletcher, C., Foster, R. B., Giardina, C. P., Gilbert, G. S., Gunatilleke, N.,
 Gunatilleke, S., Hao, Z., Hargrove, W. W., Hart, T. B., Hau, B. C., He, F., Hoffman, F. M., Howe, R. W., Hubbell, S. P., Inman-Narahari,
 F. M., Jansen, P. A., Jiang, M., Johnson, D. J., Kanzaki, M., Kassim, A. R., Kenfack, D., Kibet, S., Kinnaird, M. F., Korte, L., Kral, K.,
- Kumar, J., Larson, A. J., Li, Y., Li, X., Liu, S., Lum, S. K., Lutz, J. A., Ma, K., Maddalena, D. M., Makana, J.-R., Malhi, Y., Marthews, T., Mat Serudin, R., McMahon, S. M., McShea, W. J., Memiaghe, H. R., Mi, X., Mizuno, T., Morecroft, M., Myers, J. A., Novotny, V., de Oliveira, A. A., Ong, P. S., Orwig, D. A., Ostertag, R., den Ouden, J., Parker, G. G., Phillips, R. P., Sack, L., Sainge, M. N., Sang, W., Sri-ngernyuang, K., Sukumar, R., Sun, I.-F., Sungpalee, W., Suresh, H. S., Tan, S., Thomas, S. C., Thomas, D. W., Thompson, J., Turner, B. L., Uriarte, M., Valencia, R., Vallejo, M. I., Vicentini, A., Vrška, T., Wang, X., Wang, X., Weiblen, G., Wolf, A., Xu, H., Yap, S., and
- Zimmerman, J.: CTFS-ForestGEO: A Worldwide Network Monitoring Forests in an Era of Global Change, Global Change Biology, 21, 528–549, https://doi.org/10.1111/gcb.12712, 2015.
 - Anderson-Teixeira, K. J., Wang, M. M. H., McGarvey, J. C., and LeBauer, D. S.: Carbon Dynamics of Mature and Regrowth Tropical Forests Derived from a Pantropical Database (TropForC-db), Global Change Biology, 22, 1690–1709, https://doi.org/10.1111/gcb.13226, 2016.
 - Anderson-Teixeira, K. J., Wang, M. M. H., McGarvey, J. C., Herrmann, V., Tepley, A. J., Bond-Lamberty, B., and LeBauer, D. S.: For C: A Global Database of Forest Carbon Stocks and Fluxes, Ecology, 99, 1507–1507, https://doi.org/10.1002/ecy.2229, 2018.
 - Anderson-Teixeira, K. J., Herrmann, V., Morgan, R. B., Bond-Lamberty, B., Cook-Patton, S. C., Ferson, A. E., Muller-Landau, H. C., and Wang, M. M. H.: Carbon Cycling in Mature and Regrowth Forests Globally, Environmental Research Letters, 16, 053 009, https://doi.org/10.1088/1748-9326/abed01, 2021.
- Araza, A., Herold, M., de Bruin, S., Ciais, P., Gibbs, D. A., Harris, N., Santoro, M., Wigneron, J.-P., Yang, H., Málaga, N., Nesha, K.,
 Rodriguez-Veiga, P., Brovkina, O., Brown, H. C. A., Chanev, M., Dimitrov, Z., Filchev, L., Fridman, J., García, M., Gikov, A., Govaere,
 L., Dimitrov, P., Moradi, F., Muelbert, A. E., Novotný, J., Pugh, T. A. M., Schelhaas, M.-J., Schepaschenko, D., Stereńczak, K., and Hein,
 L.: Past Decade Above-Ground Biomass Change Comparisons from Four Multi-Temporal Global Maps, International Journal of Applied
 Earth Observation and Geoinformation, 118, 103 274, https://doi.org/10.1016/j.jag.2023.103274, 2023.
- Badgley, G., Freeman, J., Hamman, J. J., Haya, B., Trugman, A. T., Anderegg, W. R., and Cullenward, D.: Systematic Over-Crediting in California's Forest Carbon Offsets Program, Global Change Biology, 28, 1433–1445, https://doi.org/10.1111/gcb.15943, 2022.
 - Bailey, L. D. and van de Pol, M.: Climwin: An R Toolbox for Climate Window Analysis, PLOS ONE, 11, e0167980, https://doi.org/10.1371/journal.pone.0167980, 2016.
 - Banbury Morgan, R., Herrmann, V., Kunert, N., Bond-Lamberty, B., Muller-Landau, H. C., and Anderson-Teixeira, K. J.: Global Patterns of Forest Autotrophic Carbon Fluxes, Global Change Biology, 27, 2840–2855, https://doi.org/10.1111/gcb.15574, 2021.
- 480 Bond-Lamberty, B. and Thomson, A.: A Global Database of Soil Respiration Data, Biogeosciences, 7, 1915–1926, https://doi.org/10.5194/bg-7-1915-2010, 2010.

- Brassard, B. W., Chen, H. Y. H., Bergeron, Y., and Paré, D.: Coarse Root Biomass Allometric Equations for Abies Balsamea, Picea Mariana, Pinus Banksiana, and Populus Tremuloides in the Boreal Forest of Ontario, Canada, Biomass and Bioenergy, 35, 4189–4196, https://doi.org/10.1016/j.biombioe.2011.06.045, 2011.
- Bukoski, J. J., Cook-Patton, S. C., Melikov, C., Ban, H., Chen, J. L., Goldman, E. D., Harris, N. L., and Potts, M. D.: Rates and Drivers of Aboveground Carbon Accumulation in Global Monoculture Plantation Forests, Nature Communications, 13, 1–13, https://doi.org/10.1038/s41467-022-31380-7, 2022.

- Calders, K., Verbeeck, H., Burt, A., Origo, N., Nightingale, J., Malhi, Y., Wilkes, P., Raumonen, P., Bunce, R. G. H., and Disney, M.: Laser Scanning Reveals Potential Underestimation of Biomass Carbon in Temperate Forest, Ecological Solutions and Evidence, 3, e12 197, https://doi.org/10.1002/2688-8319.12197, 2022.
- Carmona, M. R., Armesto, J. J., Aravena, J. C., and Pérez, C. A.: Coarse Woody Debris Biomass in Successional and Primary Temperate Forests in Chiloé Island, Chile, Forest Ecology and Management, 164, 265–275, https://doi.org/10.1016/S0378-1127(01)00602-8, 2002.
- Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira,
- E. M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C. M., Saldarriaga, J. G., and Vieilledent, G.: Improved Allometric Models to Estimate the Aboveground Biomass of Tropical Trees, Global Change Biology, 20, 3177–3190, https://doi.org/10.1111/gcb.12629, 2014.
 - Chojnacky, D. C., Heath, L. S., and Jenkins, J. C.: Updated Generalized Biomass Equations for North American Tree Species, Forestry, 87, 129–151, https://doi.org/10.1093/forestry/cpt053, 2014.
- Clark, D., Brown, S., Kicklighter, D., Chambers, J., Thomlinson, J., Ni, J., and Holland, E.: Net Primary Production in Tropical Forests: An Evaluation and Synthesis of Existing Field Data, Ecological Applications, 11, 371–384, 2001.
 - Clark, D. B. and Clark, D. A.: Landscape-Scale Variation in Forest Structure and Biomass in a Tropical Rain Forest, Forest Ecology and Management, 137, 185–198, https://doi.org/10.1016/S0378-1127(99)00327-8, 2000.
 - Cook-Patton, S. C., Leavitt, S. M., Gibbs, D., Harris, N. L., Lister, K., Anderson-Teixeira, K. J., Briggs, R. D., Chazdon, R. L., Crowther, T. W., Ellis, P. W., Griscom, H. P., Herrmann, V., Holl, K. D., Houghton, R. A., Larrosa, C., Lomax, G., Lucas, R., Madsen, P., Malhi,
- Y., Paquette, A., Parker, J. D., Paul, K., Routh, D., Roxburgh, S., Saatchi, S., van den Hoogen, J., Walker, W. S., Wheeler, C. E., Wood, S. A., Xu, L., and Griscom, B. W.: Mapping Carbon Accumulation Potential from Global Natural Forest Regrowth, Nature, 585, 545–550, https://doi.org/10.1038/s41586-020-2686-x, 2020.
 - Cuni-Sanchez, A., Sullivan, M. J. P., Platts, P. J., Lewis, S. L., Marchant, R., Imani, G., Hubau, W., Abiem, I., Adhikari, H., Albrecht, T., Altman, J., Amani, C., Aneseyee, A. B., Avitabile, V., Banin, L., Batumike, R., Bauters, M., Beeckman, H., Begne, S. K., Bennett, A. C.,
- Bitariho, R., Boeckx, P., Bogaert, J., Bräuning, A., Bulonvu, F., Burgess, N. D., Calders, K., Chapman, C., Chapman, H., Comiskey, J., de Haulleville, T., Decuyper, M., DeVries, B., Dolezal, J., Droissart, V., Ewango, C., Feyera, S., Gebrekirstos, A., Gereau, R., Gilpin, M., Hakizimana, D., Hall, J., Hamilton, A., Hardy, O., Hart, T., Heiskanen, J., Hemp, A., Herold, M., Hiltner, U., Horak, D., Kamdem, M.-N., Kayijamahe, C., Kenfack, D., Kinyanjui, M. J., Klein, J., Lisingo, J., Lovett, J., Lung, M., Makana, J.-R., Malhi, Y., Marshall, A., Martin, E. H., Mitchard, E. T. A., Morel, A., Mukendi, J. T., Muller, T., Nchu, F., Nyirambangutse, B., Okello, J., Peh, K. S.-H.,
- Pellikka, P., Phillips, O. L., Plumptre, A., Qie, L., Rovero, F., Sainge, M. N., Schmitt, C. B., Sedlacek, O., Ngute, A. S. K., Sheil, D., Sheleme, D., Simegn, T. Y., Simo-Droissart, M., Sonké, B., Soromessa, T., Sunderland, T., Svoboda, M., Taedoumg, H., Taplin, J., Taylor, D., Thomas, S. C., Timberlake, J., Tuagben, D., Umunay, P., Uzabaho, E., Verbeeck, H., Vleminckx, J., Wallin, G., Wheeler, C., Willcock, S., Woods, J. T., and Zibera, E.: High Aboveground Carbon Stock of African Tropical Montane Forests, Nature, 596, 536–542, https://doi.org/10.1038/s41586-021-03728-4, 2021.

- Davies, S. J., Abiem, I., Abu Salim, K., Aguilar, S., Allen, D., Alonso, A., Anderson-Teixeira, K., Andrade, A., Arellano, G., Ashton, P. S., Baker, P. J., Baker, M. E., Baltzer, J. L., Basset, Y., Bissiengou, P., Bohlman, S., Bourg, N. A., Brockelman, W. Y., Bunyavejchewin, S., Burslem, D. F., Cao, M., Cárdenas, D., Chang, L.-W., Chang-Yang, C.-H., Chao, K.-J., Chao, W.-C., Chapman, H., Chen, Y.-Y., Chisholm, R. A., Chu, C., Chuyong, G., Clay, K., Comita, L. S., Condit, R., Cordell, S., Dattaraja, H. S., de Oliveira, A. A., den Ouden, J., Detto, M., Dick, C., Du, X., Duque, Á., Ediriweera, S., Ellis, E. C., Obiang, N. L. E., Esufali, S., Ewango, C. E., Fernando, E. S., Filip, J., Fischer,
- G. A., Foster, R., Giambelluca, T., Giardina, C., Gilbert, G. S., Gonzalez-Akre, E., Gunatilleke, I., Gunatilleke, C., Hao, Z., Hau, B. C., He, F., Ni, H., Howe, R. W., Hubbell, S. P., Huth, A., Inman-Narahari, F., Itoh, A., Janík, D., Jansen, P. A., Jiang, M., Johnson, D. J., Jones, F. A., Kanzaki, M., Kenfack, D., Kiratiprayoon, S., Král, K., Krizel, L., Lao, S., Larson, A. J., Li, Y., Li, X., Litton, C. M., Liu, Y., Liu, S., Lum, S. K., Luskin, M. S., Lutz, J. A., Luu, H. T., Ma, K., Makana, J.-R., Malhi, Y., Martin, A., McCarthy, C., McMahon, S. M., McShea, W. J., Memiaghe, H., Mi, X., Mitre, D., Mohamad, M., Monks, L., Muller-Landau, H. C., Musili, P. M., Myers, J. A.,
- Nathalang, A., Ngo, K. M., Norden, N., Novotny, V., O'Brien, M. J., Orwig, D., Ostertag, R., Papathanassiou, K., Parker, G. G., Pérez, R., Perfecto, I., Phillips, R. P., Pongpattananurak, N., Pretzsch, H., Ren, H., Reynolds, G., Rodriguez, L. J., Russo, S. E., Sack, L., Sang, W., Shue, J., Singh, A., Song, G.-Z. M., Sukumar, R., Sun, I.-F., Suresh, H. S., Swenson, N. G., Tan, S., Thomas, S. C., Thomas, D., Thompson, J., Turner, B. L., Uowolo, A., Uriarte, M., Valencia, R., Vandermeer, J., Vicentini, A., Visser, M., Vrska, T., Wang, X., Wang, X., Weiblen, G. D., Whitfeld, T. J., Wolf, A., Wright, S. J., Xu, H., Yao, T. L., Yap, S. L., Ye, W., Yu, M., Zhang, M., Zhu, D., Zhu, L.,
- Zimmerman, J. K., and Zuleta, D.: ForestGEO: Understanding Forest Diversity and Dynamics through a Global Observatory Network, Biological Conservation, 253, 108 907, https://doi.org/10.1016/j.biocon.2020.108907, 2021.

540

- de Lima, R. A. F., Phillips, O. L., Duque, A., Tello, J. S., Davies, S. J., de Oliveira, A. A., Muller, S., Honorio Coronado, E. N., Vilanova, E., Cuni-Sanchez, A., Baker, T. R., Ryan, C. M., Malizia, A., Lewis, S. L., ter Steege, H., Ferreira, J., Marimon, B. S., Luu, H. T., Imani, G., Arroyo, L., Blundo, C., Kenfack, D., Sainge, M. N., Sonké, B., and Vásquez, R.: Making Forest Data Fair and Open, Nature Ecology & Evolution. https://doi.org/10.1038/s41559-022-01738-7, 2022.
- Deng, Z., Ciais, P., Tzompa-Sosa, Z. A., Saunois, M., Qiu, C., Tan, C., Sun, T., Ke, P., Cui, Y., Tanaka, K., Lin, X., Thompson, R. L., Tian, H., Yao, Y., Huang, Y., Lauerwald, R., Jain, A. K., Xu, X., Bastos, A., Sitch, S., Palmer, P. I., Lauvaux, T., d'Aspremont, A., Giron, C., Benoit, A., Poulter, B., Chang, J., Petrescu, A. M. R., Davis, S. J., Liu, Z., Grassi, G., Albergel, C., and Chevallier, F.: Comparing National Greenhouse Gas Budgets Reported in UNFCCC Inventories against Atmospheric Inversions, Earth System Science Data Discussions, pp. 1–59, https://doi.org/10.5194/essd-2021-235, 2021.
- Dubayah, R., Blair, J. B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, S., Hofton, M., Hurtt, G., Kellner, J., Luthcke, S., Armston, J., Tang, H., Duncanson, L., Hancock, S., Jantz, P., Marselis, S., Patterson, P. L., Qi, W., and Silva, C.: The Global Ecosystem Dynamics Investigation: High-resolution Laser Ranging of the Earth's Forests and Topography, Science of Remote Sensing, 1, 100 002, https://doi.org/10.1016/j.srs.2020.100002, 2020.
- Duncanson, L., Armston, J., Disney, M., Avitabile, V., Barbier, N., Calders, K., Carter, S., Chave, J., Herold, M., Crowther, T. W., Falkowski, M., Kellner, J. R., Labrière, N., Lucas, R., MacBean, N., McRoberts, R. E., Meyer, V., Næsset, E., Nickeson, J. E., Paul, K. I., Phillips, O. L., Réjou-Méchain, M., Román, M., Roxburgh, S., Saatchi, S., Schepaschenko, D., Scipal, K., Siqueira, P. R., Whitehurst, A., and Williams, M.: The Importance of Consistent Global Forest Aboveground Biomass Product Validation, Surveys in Geophysics, 40, 979–999, https://doi.org/10.1007/s10712-019-09538-8, 2019.
- Duncanson, L., Armstron, J., Disney, M., Avitabile, V., Barbier, N., Calders, K., Carter, S., Chave, J., Herold, M., MacBean, N., McRoberts, R., Minor, D., Paul, K., Réjou-Méchain, M., Roxburgh, S., Williams, M., Albinet, C., Baker, T., Bartholomeus, H., Bastin, J. F., Coomes, D., Crowther, T., Davies, S., de Bruin, S., De Kauwe, M., Domke, G., Labriere, N., Lucas, R., Mitchard, E., Morsdorf, F., Næsset, E.,

- Park, T., Phillips, O. L., Ploton, P., Puliti, S., Quegan, S., Saatchi, S., Schaaf, C., Schepaschenko, D., Scipal, K., Stovall, A., Thiel, C., Wulder, M., Camacho, F., Nickeson, J., Román, M., and Margolis, H.: Aboveground Woody Biomass Product Validation Good Practices Protocol, in: Good Practices for Satellite-Derived Land Product Validation, edited by Duncanson, L., Disney, M., Armston, J., Nickeson, J., Minor, D., and Camacho, F., p. 236, Land Product Validation Subgroup (Working Group on Calibration and Validation, Committee on Earth Observation Satellites), https://doi.org/10.5067/doc/ceoswgcv/lpv/agb.001, 2021.
 - FAO: Global Ecological Zones for FAO Forest Reporting: 2010 Update, Tech. Rep. Forest Resources Assessment Working Paper 179, FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS, Rome, 2012.
- Feng, Y., Schmid, B., Loreau, M., Forrester, D. I., Fei, S., Zhu, J., Tang, Z., Zhu, J., Hong, P., Ji, C., Shi, Y., Su, H., Xiong, X., Xiao, J., Wang, S., and Fang, J.: Multispecies Forest Plantations Outyield Monocultures across a Broad Range of Conditions, Science, 376, 865–868, https://doi.org/10.1126/science.abm6363, 2022.
 - Fer, I., Gardella, A. K., Shiklomanov, A. N., Campbell, E. E., Cowdery, E. M., Kauwe, M. G. D., Desai, A., Duveneck, M. J., Fisher, J. B., Haynes, K. D., Hoffman, F. M., Johnston, M. R., Kooper, R., LeBauer, D. S., Mantooth, J., Parton, W. J., Poulter, B., Quaife, T., Raiho, A.,
- Schaefer, K., Serbin, S. P., Simkins, J., Wilcox, K. R., Viskari, T., and Dietze, M. C.: Beyond Ecosystem Modeling: A Roadmap to Community Cyberinfrastructure for Ecological Data-Model Integration, Global Change Biology, 27, 13–26, https://doi.org/10.1111/gcb.15409, 2021.
 - Freschet, G. T., Pagès, L., Iversen, C. M., Comas, L. H., Rewald, B., Roumet, C., Klimešová, J., Zadworny, M., Poorter, H., Postma, J. A., Adams, T. S., Bagniewska-Zadworna, A., Bengough, A. G., Blancaflor, E. B., Brunner, I., Cornelissen, J. H. C., Garnier, E., Gessler, A.,
- Hobbie, S. E., Meier, I. C., Mommer, L., Picon-Cochard, C., Rose, L., Ryser, P., Scherer-Lorenzen, M., Soudzilovskaia, N. A., Stokes, A., Sun, T., Valverde-Barrantes, O. J., Weemstra, M., Weigelt, A., Wurzburger, N., York, L. M., Batterman, S. A., Gomes de Moraes, M., Janeček, Š., Lambers, H., Salmon, V., Tharayil, N., and McCormack, M. L.: A Starting Guide to Root Ecology: Strengthening Ecological Concepts and Standardising Root Classification, Sampling, Processing and Trait Measurements, New Phytologist, 232, 973–1122, https://doi.org/10.1111/nph.17572, 2021.
- Fukushima, M., Kanzaki, M., Maung, T., and Minn, Y.: Recovery Process of Fallow Vegetation in the Traditional Karen Swidden Cultivation System in the Bago Mountain Range, Myanmar, Southeast Asian Studies, 45, 317–333, 2007.
 - Goldstein, A., Turner, W. R., Spawn, S. A., Anderson-Teixeira, K. J., Cook-Patton, S., Fargione, J., Gibbs, H. K., Griscom, B., Hewson, J. H., Howard, J. F., Ledezma, J. C., Page, S., Koh, L. P., Rockström, J., Sanderman, J., and Hole, D. G.: Protecting Irrecoverable Carbon in Earth's Ecosystems, Nature Climate Change, 10, 287–295, https://doi.org/10.1038/s41558-020-0738-8, 2020.
- Gonzalez-Akre, E., Piponiot, C., Lepore, M., Herrmann, V., Lutz, J. A., Baltzer, J. L., Dick, C. W., Gilbert, G. S., He, F., Heym, M., Huerta, A. I., Jansen, P. A., Johnson, D. J., Knapp, N., Král, K., Lin, D., Malhi, Y., McMahon, S. M., Myers, J. A., Orwig, D., Rodríguez-Hernández, D. I., Russo, S. E., Shue, J., Wang, X., Wolf, A., Yang, T., Davies, S. J., and Anderson-Teixeira, K. J.: Allodb: An R Package for Biomass Estimation at Globally Distributed Extratropical Forest Plots, Methods in Ecology and Evolution, 13, 330–338, https://doi.org/10.1111/2041-210X.13756, 2022.
- 590 Grassi, G., House, J., Dentener, F., Federici, S., den Elzen, M., and Penman, J.: The Key Role of Forests in Meeting Climate Targets Requires Science for Credible Mitigation, Nature Climate Change, 7, 220–226, https://doi.org/10.1038/nclimate3227, 2017.
 - Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., Herrero, M., Kiesecker, J., Landis, E., Laestadius, L., Leavitt, S. M., Minnemeyer, S., Polasky, S., Potapov, P., Putz, F. E., Sanderman, J., Silvius,

595 M., Wollenberg, E., and Fargione, J.: Natural Climate Solutions, Proceedings of the National Academy of Sciences, 114, 11 645–11 650, https://doi.org/10.1073/pnas.1710465114, 2017.

600

- Griscom, B. W., Busch, J., Cook-Patton, S. C., Ellis, P. W., Funk, J., Leavitt, S. M., Lomax, G., Turner, W. R., Chapman, M., Engelmann, J.,
 Gurwick, N. P., Landis, E., Lawrence, D., Malhi, Y., Schindler Murray, L., Navarrete, D., Roe, S., Scull, S., Smith, P., Streck, C., Walker,
 W. S., and Worthington, T.: National Mitigation Potential from Natural Climate Solutions in the Tropics, Philosophical Transactions of
 the Royal Society B: Biological Sciences, 375, 20190 126, https://doi.org/10.1098/rstb.2019.0126, 2020.
- Hammond, W. M., Williams, A. P., Abatzoglou, J. T., Adams, H. D., Klein, T., López, R., Sáenz-Romero, C., Hartmann, H., Breshears, D. D., and Allen, C. D.: Global Field Observations of Tree Die-off Reveal Hotter-Drought Fingerprint for Earth's Forests, Nature Communications, 13, 1761, https://doi.org/10.1038/s41467-022-29289-2, 2022.
- Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., de Bruin, S., Farina, M., Fatoyinbo, L., Hansen, M. C., Herold, M., Houghton, R. A.,
 Potapov, P. V., Suarez, D. R., Roman-Cuesta, R. M., Saatchi, S. S., Slay, C. M., Turubanova, S. A., and Tyukavina, A.: Global Maps of Twenty-First Century Forest Carbon Fluxes, Nature Climate Change, pp. 1–7, https://doi.org/10.1038/s41558-020-00976-6, 2021.
 - Hughes, R., Kauffman, J., and Jaramillo, V.: Biomass, Carbon, and Nutrient Dynamics of Secondary Forests in a Humid Tropical Region of Mexico, Ecology, 80, 1892–1907, 1999.
 - IPCC: Good Practice Guidance for Land Use, Land-Use Change and Forestry, Institute for Global Environmental Strategies, Hayama, Japan, 2003.
 - IPCC: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (Eds)., IGES, Japan, 2006.
 - IPCC: Agriculture, Forestry, and Other Land Use, in: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, edited by Eggleston, S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K., Institute for Global Environmental Strategies, Hayama, Japan, 2006.
- 615 IPCC: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, IPCC, Switzerland, 2019a.
 - IPCC: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.- O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (Eds.)], Tech. rep., 2019b.
- IPCC: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (Eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA., https://doi.org/10.1017/9781009157926.001, 2022a.
- IPCC: Summary for Policymakers. Policymakers [P.R. Shukla, J. Skea, A. Reisinger, R. Slade, R. Fradera, M. Pathak, A. Al Khourdajie,
 M. Belkacemi, R. van Diemen, A. Hasija, G. Lisboa, S. Luz, J. Malley, D. McCollum, S. Some, P. Vyas, (Eds.)]. In: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (Eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. Doi: 10.1017/9781009157926.001, 2022b.
- 630 Jian, J., Vargas, R., Anderson-Teixeira, K., Stell, E., Herrmann, V., Horn, M., Kholod, N., Manzon, J., Marchesi, R., Paredes, D., and Bond-Lamberty, B.: A Restructured and Updated Global Soil Respiration Database (SRDB-V5), Earth System Science Data, 13, 255–267, https://doi.org/10.5194/essd-13-255-2021, 2021.

- Keller, M., Palace, M., and Hurtt, G.: Biomass Estimation in the Tapajos National Forest, Brazil: Examination of Sampling and Allometric Uncertainties, Forest Ecology and Management, 154, 371–382, https://doi.org/10.1016/S0378-1127(01)00509-6, 2001.
- Kim, A. Y., Herrmann, V., Bareto, R., Calkins, B., Gonzalez-Akre, E., Johnson, D. J., Jordan, J. A., Magee, L., McGregor, I. R., Montero, N., Novak, K., Rogers, T., Shue, J., and Anderson-Teixeira, K. J.: Implementing GitHub Actions Continuous Integration to Reduce Error Rates in Ecological Data Collection, Methods in Ecology and Evolution, 13, 2572–2585, https://doi.org/10.1111/2041-210X.13982, 2022.

640

- Labrière, N., Davies, S. J., Disney, M. I., Duncanson, L. I., Herold, M., Lewis, S. L., Phillips, O. L., Quegan, S., Saatchi, S. S., Schepaschenko, D. G., Scipal, K., Sist, P., and Chave, J.: Toward a Forest Biomass Reference Measurement System for Remote Sensing Applications, Global Change Biology, n/a, https://doi.org/10.1111/gcb.16497, 2023.
- Lutz, J. A., Furniss, T. J., Johnson, D. J., Davies, S. J., Allen, D., Alonso, A., Anderson-Teixeira, K. J., Andrade, A., Baltzer, J., Becker, K. M. L., Blomdahl, E. M., Bourg, N. A., Bunyavejchewin, S., Burslem, D. F. R. P., Cansler, C. A., Cao, K., Cao, M., Cárdenas, D., Chang, L.-W., Chao, K.-J., Chao, W.-C., Chiang, J.-M., Chu, C., Chuyong, G. B., Clay, K., Condit, R., Cordell, S., Dattaraja, H. S., Duque, A., Ewango, C. E. N., Fischer, G. A., Fletcher, C., Freund, J. A., Giardina, C., Germain, S. J., Gilbert, G. S., Hao, Z., Hart, T., Hau, B. C. H.,
- He, F., Hector, A., Howe, R. W., Hsieh, C.-F., Hu, Y.-H., Hubbell, S. P., Inman-Narahari, F. M., Itoh, A., Janík, D., Kassim, A. R., Kenfack, D., Korte, L., Král, K., Larson, A. J., Li, Y., Liu, S., Lum, S., Ma, K., Makana, J.-R., Malhi, Y., McMahon, S. M., McShea, W. J., Memiaghe, H. R., Mi, X., Morecroft, M., Musili, P. M., Myers, J. A., Novotny, V., de Oliveira, A., Ong, P., Orwig, D. A., Ostertag, R., Parker, G. G., Patankar, R., Phillips, R. P., Reynolds, G., Sack, L., Song, G.-Z. M., Su, S.-H., Sukumar, R., Sun, I.-F., Suresh, H. S., Swanson, M. E., Tan, S., Thomas, D. W., Thompson, J., Uriarte, M., Valencia, R., Vicentini, A., Vrška, T., Wang, X., Weiblen, G. D.,
- Wolf, A., Wu, S.-H., Xu, H., Yamakura, T., Yap, S., and Zimmerman, J. K.: Global Importance of Large-Diameter Trees, Global Ecology and Biogeography, 27, 849–864, https://doi.org/10.1111/geb.12747, 2018.
 - Lutz, J. A., Struckman, S., Furniss, T. J., Birch, J. D., Yocom, L. L., and McAvoy, D. J.: Large-Diameter Trees, Snags, and Deadwood in Southern Utah, USA, Ecological Processes, 10, 9, https://doi.org/10.1186/s13717-020-00275-0, 2021.
- McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H., Bond-Lamberty, B., Chini, L., Clark, J. S., Dietze, M., Grossiord,
 C., Hanbury-Brown, A., Hurtt, G. C., Jackson, R. B., Johnson, D. J., Kueppers, L., Lichstein, J. W., Ogle, K., Poulter, B., Pugh, T. A. M.,
 Seidl, R., Turner, M. G., Uriarte, M., Walker, A. P., and Xu, C.: Pervasive Shifts in Forest Dynamics in a Changing World, Science, 368,
 https://doi.org/10.1126/science.aaz9463, 2020.
 - Merganičová, K., Merganič, J., Svoboda, M., Bače, R., and Šebeň, VV.: Dadwood in Forest Ecosystems, BoD Books on Demand, 2012.
 - Mokany, K., Raison, R. J., and Prokushkin, A. S.: Critical Analysis of Root: Shoot Ratios in Terrestrial Biomes, Global Change Biology, 12, 84–96, https://doi.org/10.1111/j.1365-2486.2005.001043.x, 2006.
 - NISAR: NASA-ISRO SAR (NISAR) Mission Science Users' Handbook, Tech. rep., NASA Jet Propulsion Laboratory, 2018.
 - Ogle, S. M., Domke, G., Kurz, W. A., Rocha, M. T., Huffman, T., Swan, A., Smith, J. E., Woodall, C., and Krug, T.: Delineating Managed Land for Reporting National Greenhouse Gas Emissions and Removals to the United Nations Framework Convention on Climate Change, Carbon Balance and Management, 13, 9, https://doi.org/10.1186/s13021-018-0095-3, 2018.
- Pan, Y., Birdsey, R., Fang, J., Houghton, R., Kauppi, P., Kurz, W., Phillips, O., Shvidenko, A., Lewis, S., Canadell, J., Ciais, P., Jackson, R., Pacala, S., McGuire, A., Piao, S., Rautiainen, A., Sitch, S., and Hayes, D.: A Large and Persistent Carbon Sink in the World's Forests, Science, 333, 988–993, 2011.
 - Piponiot, C., Anderson-Teixeira, K. J., Davies, S. J., Allen, D., Bourg, N. A., Burslem, D. F. R. P., Cárdenas, D., Chang-Yang, C.-H., Chuyong, G., Cordell, S., Dattaraja, H. S., Duque, Á., Ediriweera, S., Ewango, C., Ezedin, Z., Filip, J., Giardina, C. P., Howe, R., Hsieh,
- 670 C.-F., Hubbell, S. P., Inman-Narahari, F. M., Itoh, A., Janík, D., Kenfack, D., Král, K., Lutz, J. A., Makana, J.-R., McMahon, S. M.,

- McShea, W., Mi, X., Bt. Mohamad, M., Novotný, V., O'Brien, M. J., Ostertag, R., Parker, G., Pérez, R., Ren, H., Reynolds, G., Md Sabri, M. D., Sack, L., Shringi, A., Su, S.-H., Sukumar, R., Sun, I.-F., Suresh, H. S., Thomas, D. W., Thompson, J., Uriarte, M., Vandermeer, J., Wang, Y., Ware, I. M., Weiblen, G. D., Whitfeld, T. J. S., Wolf, A., Yao, T. L., Yu, M., Yuan, Z., Zimmerman, J. K., Zuleta, D., and Muller-Landau, H. C.: Distribution of Biomass Dynamics in Relation to Tree Size in Forests across the World, New Phytologist, n/a, https://doi.org/10.1111/nph.17995, 2022.
- Quegan, S., Le Toan, T., Chave, J., Dall, J., Exbrayat, J.-F., Minh, D. H. T., Lomas, M., D'Alessandro, M. M., Paillou, P., Papathanassiou, K., Rocca, F., Saatchi, S., Scipal, K., Shugart, H., Smallman, T. L., Soja, M. J., Tebaldini, S., Ulander, L., Villard, L., and Williams, M.: The European Space Agency BIOMASS Mission: Measuring Forest above-Ground Biomass from Space, Remote Sensing of Environment, 227, 44–60, https://doi.org/10.1016/j.rse.2019.03.032, 2019.
- Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J., and Hérault, B.: Biomass: An r Package for Estimating above-Ground Biomass and Its Uncertainty in Tropical Forests, Methods in Ecology and Evolution, 8, 1163–1167, https://doi.org/10.1111/2041-210X.12753, 2017.

675

- Requena Suarez, D., Rozendaal, D. M. A., Sy, V. D., Phillips, O. L., Alvarez-Dávila, E., Anderson-Teixeira, K., Araujo-Murakami, A., Arroyo, L., Baker, T. R., Bongers, F., Brienen, R. J. W., Carter, S., Cook-Patton, S. C., Feldpausch, T. R., Griscom, B. W., Harris, N., Hérault, B., Coronado, E. N. H., Leavitt, S. M., Lewis, S. L., Marimon, B. S., Mendoza, A. M., N'dja, J. K., N'Guessan, A. E., Poorter,
- 685 L., Qie, L., Rutishauser, E., Sist, P., Sonké, B., Sullivan, M. J. P., Vilanova, E., Wang, M. M. H., Martius, C., and Herold, M.: Estimating Aboveground Net Biomass Change for Tropical and Subtropical Forests: Refinement of IPCC Default Rates Using Forest Plot Data, Global Change Biology, 25, 3609–3624, https://doi.org/10.1111/gcb.14767, 2019.
 - Roe, S., Streck, C., Beach, R., Busch, J., Chapman, M., Daioglou, V., Deppermann, A., Doelman, J., Emmet-Booth, J., Engelmann, J., Fricko, O., Frischmann, C., Funk, J., Grassi, G., Griscom, B., Havlik, P., Hanssen, S., Humpenöder, F., Landholm, D., Lomax, G., Lehmann, J.,
- Mesnildrey, L., Nabuurs, G.-J., Popp, A., Rivard, C., Sanderman, J., Sohngen, B., Smith, P., Stehfest, E., Woolf, D., and Lawrence, D.: Land-Based Measures to Mitigate Climate Change: Potential and Feasibility by Country, Global Change Biology, 27, 6025–6058, https://doi.org/10.1111/gcb.15873, 2021.
 - Romijn, E., Lantican, C. B., Herold, M., Lindquist, E., Ochieng, R., Wijaya, A., Murdiyarso, D., and Verchot, L.: Assessing Change in National Forest Monitoring Capacities of 99 Tropical Countries, Forest Ecology and Management, 352, 109–123, https://doi.org/10.1016/j.foreco.2015.06.003, 2015.
 - Rozendaal, D. M. A., Suarez, D. R., Sy, V. D., Avitabile, V., Carter, S., Yao, C. Y. A., Alvarez-Davila, E., Anderson-Teixeira, K., Araujo-Murakami, A., Arroyo, L., Barca, B., Baker, T. R., Birigazzi, L., Bongers, F., Branthomme, A., Brienen, R. J. W., Carreiras, J. M. B., Gatti, R. C., Cook-Patton, S. C., Decuyper, M., DeVries, B., Espejo, A. B., Feldpausch, T. R., Fox, J., Gamarra, J. G. P., Griscom, B. W., Harris, N., Hérault, B., Coronado, E. N. H., Jonckheere, I., Konan, E., Leavitt, S. M., Lewis, S. L., Lindsell, J. A., N'Dja, J. K., N'Guessan,
- A. E., Marimon, B., Mitchard, E. T. A., Monteagudo, A., Morel, A., Pekkarinen, A., Phillips, O. L., Poorter, L., Qie, L., Rutishauser, E., Ryan, C. M., Santoro, M., Silayo, D. S., Sist, P., Slik, J. W. F., Sonké, B., Sullivan, M. J. P., Laurin, G. V., Vilanova, E., Wang, M. M. H., Zahabu, E., and Herold, M.: Aboveground Forest Biomass Varies across Continents, Ecological Zones and Successional Stages: Refined IPCC Default Values for Tropical and Subtropical Forests, Environmental Research Letters, 17, 014 047, https://doi.org/10.1088/1748-9326/ac45b3, 2022.
- Sanderman, J., Hengl, T., and Fiske, G. J.: Soil Carbon Debt of 12,000 Years of Human Land Use, Proceedings of the National Academy of Sciences, 114, 9575–9580, https://doi.org/10.1073/pnas.1706103114, 2017.

- Tifafi, M., Guenet, B., and Hatté, C.: Large Differences in Global and Regional Total Soil Carbon Stock Estimates Based on SoilGrids, HWSD, and NCSCD: Intercomparison and Evaluation Based on Field Data From USA, England, Wales, and France, Global Biogeochemical Cycles, 32, 42–56, https://doi.org/10.1002/2017GB005678, 2018.
- 710 UNFCCC: Adoption of the Paris Agreement, 2015.
 - van de Pol, M., Bailey, L. D., McLean, N., Rijsdijk, L., Lawson, C. R., and Brouwer, L.: Identifying the Best Climatic Predictors in Ecology and Evolution, Methods in Ecology and Evolution, 7, 1246–1257, https://doi.org/10.1111/2041-210X.12590, 2016.
 - Waring, B. G. and Powers, J. S.: Overlooking What Is Underground: Root:Shoot Ratios and Coarse Root Allometric Equations for Tropical Forests, Forest Ecology and Management, 385, 10–15, https://doi.org/10.1016/j.foreco.2016.11.007, 2017.
- Warner, E., Cook-Patton, S. C., Lewis, O. T., Brown, N., Koricheva, J., Eisenhauer, N., Ferlian, O., Gravel, D., Hall, J. S., Jactel, H., Mayoral, C., Meredieu, C., Messier, C., Paquette, A., Parker, W. C., Potvin, C., Reich, P. B., and Hector, A.: Higher Aboveground Carbon Stocks in Mixed-Species Planted Forests than Monocultures a Meta-Analysis, https://doi.org/10.1101/2022.01.17.476441, 2022.
 - Wickham, H. and RStudio: Rvest: Easily Harvest (Scrape) Web Pages, 2022.
- Xu, L., Saatchi, S. S., Yang, Y., Yu, Y., Pongratz, J., Bloom, A. A., Bowman, K., Worden, J., Liu, J., Yin, Y., Domke, G., McRoberts, R. E.,
 Woodall, C., Nabuurs, G.-J., de-Miguel, S., Keller, M., Harris, N., Maxwell, S., and Schimel, D.: Changes in Global Terrestrial Live
- Biomass over the 21st Century, Science Advances, 7, eabe9829, https://doi.org/10.1126/sciadv.abe9829, 2021.