MATH 7343 Applied Statistics

Prof. (Aidong) Adam Ding

Review

- Last time, we learned about probability distributions, particularly Binomial, Poisson and normal distributions. Briefly mentioned chisquare, t and F distributions. We also started on the Mean and Variance.
- Today we will finish the topic on probability.
- Project teams are assigned. Preliminary proposal due on March10

Property of the Mean: R.V.s X and Y, constants a and b.

$$E(aX+bY) = a E(X) + b E(Y)$$

Example:

X ~monthly income of husband in a two-incomes family Y ~monthly income of wife in a two-incomes family If we know E(X) and E(Y), what is the mean annual income of a two-incomes family?

Solution: E() = +

Let X and Y be R.V.s, a and b be constants.

Property of the Mean:

$$E(aX+bY) = a E(X) + b E(Y);$$

Property of the Variance:

$$Var(aX) = a^2 Var(X)$$
 always,
 $Var(X+Y) = Var(X) + Var(Y)$ IF X and Y are independent

• Example: Support for legal abortion in males is 55%;

Support for legal abortion in females is 65%. We sample 150 males and 162 females in a survey about abortion attitude.

X ~ number of legal abortion supporters in the sample What is the mean and variance of X?

• Solution: Let $X_m \sim \#$ of male supporters in the sample, and $X_f \sim \#$ of female supporters in the sample;

so
$$X = X_m + X_f$$

 $X_m \sim Bin(n=150, p=0.55), X_f \sim Bin(n=162, p=0.65)$

Survey Example Solution (continued):

X ~ # of legal abortion supporters in the sample.

$$X = X_m + X_f$$

$$X_m \sim Bin(n=150, p=0.55), X_f \sim Bin(n=162, p=0.65)$$

Hence
$$E(X) = E(X_m + X_f) = E(X_m) + E(X_f) = + = 187.8$$

$$Var(X) = Var(X_m) + Var(X_f) = + = 73.98$$

$$Sd(X) = \sqrt{73.98} = 8.60$$

Notice that the variance calculation used the independence between X_m and X_f . (The mean calculation do not need this assumption.)

Survey Example Discussion:

```
X ~ # of legal abortion supporters in the sample.
For our solution, we used that X = X_m + X_f with
```

```
X_m \sim Bin(n=150, p=0.55), X_f \sim Bin(n=162, p=0.65)
```

Another way to look at this: In population, 60% support. Sampled 312 persons, so # of supporters \sim Bin(n=312, p=0.60).

Can we just find mean and variance of Bin(n=312, p=0.60)?

When should we use Bin(n=150, p=0.55)+Bin(n=162, p=0.65)and when should we use Bin(n=312, p=0.60)?

2. Properties of Normal Random Variables

- Property: Linear combination of normal R.V.s is still normal.
- Say, X ~ $N(\mu_X, \sigma_X^2)$ is independent of Y ~ $N(\mu_Y, \sigma_Y^2)$, then what is the distribution of aX+bY?

Solution:

Using the mean property $E(aX+bY) = aE(X) + bE(Y) = a\mu_X + b\mu_Y$ Using the variance property

$$Var(aX+bY) = a^2 Var(X) + b^2 Var(Y) = a^2 \sigma_X^2 + b^2 \sigma_Y^2$$

Then use the normal R.V.s property

aX+bY
$$\sim$$
 N(a μ_X + b μ_Y , a² σ_X^2 + b² σ_Y^2)

2. Properties of Normal Random Variables

• Example: A nutrition diet is tried on mice for a week. Mice group A eats this nutrition diet; group B eats normal diet.

Let X_A = average weight gain in group A $\sim N(\mu_A, \sigma^2 = 1)$

 X_B = average weight gain in group B \sim N(μ_B , $\sigma^2 = 1$)

How do we check if the diet is working?

$$E(X_A - X_B) = E(X_A) - E(X_B) = \mu_A - \mu_B$$

$$Var(X_A - X_B) = Var(X_A) + Var(-X_B) = 1 + (-1)^2 1 = 2$$

Hence $X_A - X_B \sim N(\mu_A - \mu_B, 2)$. If diet has no effect, $\sim N(0, 2)$

Say, we observe $X_A - X_B = 20$, $P(N(0, 2) \ge 20) = ?0.000$

Can this happen by chance?

Before, we used Table A.3 in textbook to find p=P(Z>z)

for N(0,1). We can also reverse this process to find z for given p value.

Or use R:

given P(Z ≤z) find corresponding quantile z value.

Example: SAT math scores are normally distributed with mean 550 and standard deviation 100. What is the score needed to be in the 80-th percentile?

Solution: Table A.3 look for p=P(Z > z)=1-0.8=0.2, we get z=0.84.

Since
$$Z = \frac{X - \mu}{\sigma}$$
, so $X = \sigma Z + \mu$

Score needed is 100(0.84)+550 = 634.

TABLE A.3 Areas in the upper tail of the standard normal distribution

P(Z	>	Z	=C).2
-----	---	---	----	-----

$$z = 0.84$$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.500	0.496	0.492	0.488	0.484	0.480	0.476	0.472	0.468	0.464
0.1	0.460	0.456	0.452	0.448	0.444	0.440	0.436	0.433	0.429	0.425
0.2	0.421	0.417	0.413	0.409	0.405	0.401	0.397	0.394	0.390	0.386
0.3	0.382	0.378	0.374	0.371	0.367	0.363	0.359	0.356	0.352	0.348
0.4	0.345	0.341	0.337	0.334	0.330	0.326	0.323	0.319	0.316	0.312
0.5	0.309	0.305	0.302	0.298	0.295	0.291	0.288	0.284	0.281	0.278
0.6	0.274	0.271	0.268	0.264	0.261	0.258	0.255	0.251	0.248	0.245
0.7	0.242	0.239	0.236	0.233	0.230	0.227	0.224	0.221	0.218	0.215
0.8	0.212	0.209	0.206	0.203	(0.200)	0.198	0.195	0.192	0.189	0.187
0.9	0.184	0.181	0.179	0.176	0.174	0.171	0.169	0.166	0.164	0.161
1.0	0.159	0.156	0.154	0.152	0.149	0.147	0.145	0.142	0.140	0.138
1.1	0.136	0.133	0.131	0.129	0.127	0.125	0.123	0.121	0.119	0.117
1.2	0.115	0.113	0.111	0.109	0.107	0.106	0.104	0.102	0.100	0.099
1.3	0.097	0.095	0.093	0.092	0.090	0.089	0.087	0.085	0.084	0.082
1.4	0.081	0.079	0.078	0.076	0.075	0.074	0.072	0.071	0.069	0.068
1.5	0.067	0.066	0.064	0.063	0.062	0.061	0.059	0.058	0.057	0.056
1.6	0.055	0.054	0.053	0.052	0.051	0.049	0.048	0.047	0.046	0.046
1.7	0.045	0.044	0.043	0.042	0.041	0.040	0.039	0.038	0.038	0.037

Example: SAT math scores are normally distributed with mean 550 and standard deviation 100. What is the score needed to be in the 80-th percentile?

Solution: Table A.3 look for p=P(Z > z)=1-0.8=0.2, we get z=0.84. Since $Z = \frac{X-\mu}{\sigma}$, so $X = \sigma Z + \mu$

Score needed is 100(0.84)+550 = 634.

Easier using R: qnorm(0.8)*100+ 550 or qnorm(0.8, mean=550, sd=100)

(1) Poisson(λ) approximates Bin(n, p) when np= λ and $n \to \infty$

Example: X~ Bin(n=1000, p=0.002)

Which Poisson best approximate it?

Match mean $np=(1000)(0.002) = 2 = \lambda$.

So Poisson(λ =2) best approximates X.

So P(X=0)
$$\approx e^{-2}$$

Notice that variance not exact match here.

Var = np(1-p) = 1000(0.002)(1-0.002) = 2(0.998) $\approx \lambda$ but $\neq \lambda$

(2) Normal approximation of Bin(n, p) when $n \to \infty$, and p is not too small nor too large

Example: X~ Bin(n=100, p=0.1), better approximated with normal rather than Poisson distribution.

Which $N(\mu, \sigma^2)$ best approximate it?

```
Match mean np =(100)(0.1) = 10 = \mu.

Variance np(1-p) = 100(0.1)(1-0.1) = 9 = \sigma^2.

So X \approx N(\mu=10, \sigma^2=9)
```

(2) Normal approximation of Bin(n, p) Example(continued): $X^Bin(n=100, p=0.1) \approx N(\mu=10, \sigma^2 = 9)$

- Example: In a normal human, 60% of white blood cells (WBC) are neutrophils. In a WBC screen, 100 cells are counted. If <50 or >70 cells are neutrophils, a person is classified as abnormal. What proportion of normal person will be misclassified by this procedure? (Specificity of test)
- Solution: X^{\sim} number of neutrophils out of 100 cells $^{\sim}$ Bin(n=100, p=0.6) for a normal person.

So P(misclassify as abnormal | normal person)

```
= P(X<50 \text{ or } X>70)
```

• WBC Example: X~ Bin(n=100, p=0.6) for a normal person.

$$P(X<50 \text{ or } X>70) = 1 - \sum_{k=50}^{70} \frac{100!}{k!(100-k)!} (0.6)^k (0.4)^{100-k}$$

Hard to do by hand: involves 21 terms.

Normal approximation: np=60 = μ , np(1-p) = 24 = σ^2 .

$$P(X<50 \text{ or } X>70) = 1 - P(50 \le X \le 70) = 1 - P(49.5 < X < 70.5)$$

$$= 1 - P\left(\frac{49.5 - 60}{\sqrt{24}} < Z < \frac{70.5 - 60}{\sqrt{24}}\right)$$

= 1 - P(-2.14
$$<$$
Z $<$ 2.14) = 2 P(Z \ge 2.14) = 2(0.016) = 0.032 Table A.3.

Do we really need normal approximation for Binomial?
 In R, normal approximation

```
pnorm((70.5-60)/sqrt(24)) - pnorm((49.5-60)/sqrt(24))
```

Exact Binomial:

```
pbinom(70.5,size=100,prob=0.6) - pbinom(49.5,size=100,prob=0.6)
```

- With R, we do not need normal approximation for calculation.
- Why do we still teach this? You should know that, when n big, Binomial can be approximated by normal distribution.
 And you should know how to choose the distribution for best approximation: match mean and variance.

- R commands on Homework2 handout:
- We want to see how close the CDFs P(X≤x) are for the Binomial approximations by Poisson and normal.

```
To do this, we calculate P(X \le x) for x = 0, 1, ..., 20
```

Assign x values by x=(0:20), can calculate Bin(1000,0.01) CDF at those 21 values together by pbinom(x, size=1000, p=0.01)

Poisson approximation using $\lambda=1000(0.01)=10$, get CDF by

ppois(x, lambda=10); Normal approximation using μ =10, σ^2 =1000(0.01)(1-0.01)=9.9, get CDF by

pnorm((x+0.5-10)/sqrt(9.9))

• Homework2 handout: we then get a table

```
x binprob posprob normprob
   0 0.00004 0.00005 0.00127
   1 0.00048 0.00050 0.00345
   2 0.00268 0.00277 0.00857
   3 0.01007 0.01034 0.01942
19 18 0.99310 0.99281 0.99655
20 19 0.99671 0.99655 0.99873
21 20 0.99850 0.99841 0.9995
```

We can see Poisson approximation is better than normal approximation here.

- R commands on Homework2 handout:
- To produce the table, we put all four variable in one data.frame probTable

And display the table, rounding to 5 digits

round(probTable, digits=5)

- R commands on Homework2 handout:
- To calculate CDF P(X≤x) we used pbinom(x, size=1000, p=0.01)

What if we want to calculate the PDF P(X=x) instead?

For the Binomial distribution, it is discrete and

$$P(X=x) = P(X \le x) - P(X \le x-1) = P(X \le x+0.5) - P(X \le x-0.5)$$

So we can calculate the PDF using

```
pbinom(x, size=1000, p=0.01)-pbinom(x-1, size=1000, p=0.01)
```

5. Properties for Mean and Variance of R.V.s

• R.V.s X and Y, constants a and b.

$$E(aX+bY) = a E(X) + b E(Y) \qquad \text{always,}$$

$$E(X-Y) = E(X) - E(Y) \qquad \text{always,}$$

$$E(XY) \neq E(X) E(Y) \qquad \text{usually,}$$

$$E(XY) = E(X) E(Y) \qquad \qquad when X \text{ and } Y \text{ are independent}$$

$$Var(X+Y) \neq Var(X) + Var(Y) \qquad \text{usually,}$$

$$Var(aX+bY) = a^2 Var(X) + b^2 Var(Y) \qquad when X \text{ and } Y \text{ are independent}$$

$$Var(X-Y) = Var(X) + (-1)^2 Var(Y) \qquad when X \text{ and } Y \text{ are independent}$$

5. Properties for Mean and Variance of R.V.s

Example:

If the income of husbands has mean \$47,000 and variance (\$20,000)² the income of wives has mean \$44,000 and variance (\$20,000)²

Then the incomes of married couples have

mean = 47,000 + 44,000 = \$91,000

variance = $2 (\$20,000)^2$ if the incomes are independent between husband and wife

The mean difference between incomes of husband and wife is

Summary

- We finished probability review You should know how to
- (1) recognize when to use Binomial/Poisson
- (2) calculate normal probability
- (3) Calculate Binomial probability
 - (a) use exact formulas
 - (b) approximation by normal distribution
- (4) Use R to find probability and quantile
- (5) Properties of Mean and Variance

Summary

• We finished probability review

• Next time, we use the probability theory to study how reliable the sample mean is as an estimator.

Homework 2 is due in One week

Get together with your project teams.