Project 2: Stock Portfolio Forecasting and Optimization Using Machine Learning

Applying Predictive Modeling to the S&P 500 Index

Moisés Santos and Hélder Oliveira

Overview of the Project

- Main goals:
 - Predict S&P 500 stock prices
 - Optimize a portfolio for daily investments
- Outline the approach using machine learning and optimization techniques

Context and Motivation

- Challenges in predicting and managing portfolios
 - Market Volatility: Financial markets are highly sensitive to both internal factors (like earnings reports) and external factors (such as geopolitical events).
 - Overfitting: Especially when using historical data, there is a risk of overfitting, where a model performs well on past data but poorly on new, unseen data.
 - Non-Stationarity: Financial time series data is often non-stationary, meaning statistical properties like mean and variance change over time.
 - Unexpected Events (Black Swan Events):
 Events like the 2008 financial crisis or the COVID 19 pandemic are highly unpredictable but can
 have dramatic impacts on portfolios.

Project Objectives

- Forecasting: Use machine learning to predict daily stock prices
- Optimization: Select the best stocks for a portfolio to maximize returns or minimize risks
- Implementation: Apply models from 2010-2023 data and evaluate in January 2024

Related Works

- Some key studies on machine learning in finance:
 - Patel et al. (2015) Random Forest & SVM for market predictions
 - Bao et al. (2017) LSTM for financial time series
 - Glasserman (2003) Monte Carlo for portfolio optimization

Dataset - S&P 500

- Data source: Yahoo Finance API, etc.
- Overview of data structure (Open, High, Low, Close, Volume)
 - Close to Close: Open position on close price today and close position on close price tomorrow
 - Day ahead: Open position on close price today and close position on open price tomorrow
 - Intraday: Open position on open price tomorrow and close position on close price tomorrow
- **Time Frame**: Train on 2010-2023, simulate January 2024

Machine Learning Models for Forecasting

Algorithms:

- Classical: Random Forest, Decision Trees, SVM
- Deep Learning: LSTM, MLP

Forecasting Workflow

Data Preprocessing:

Cleaning, normalization, feature engineering

Model Training: Cross-validation, tuning hyperparameters

Evaluation Metrics: Use MAE, RMSE, and MAPE

Portfolio Optimization

Optimization Goals:

- MinMax: Minimize maximum risk
- MaxMin: Maximize minimum return

Techniques:

- Monte Carlo Simulation
- Genetic Algorithms
- Etc.

Portfolio Optimization Process

Define Objective: Maximize

return, minimize risk

Simulate Scenarios: Apply

Monte Carlo, genetic algorithms, etc

Evaluate Performance:

Check the cummulative return

Negotiation Constraints

- Initial Amount: 10000 USD
- Maximum volume to buy: 100 stocks per day
- Operation cost: 1 USD

Project Workflow

Submission Requirements

Notebook with well-documented code

Video (up to 5 minutes) summarizing problem, solution, and results

One-page document on ethical considerations

Evaluation Criteria

Product Fit: 15%

Business Impact: 20%

Technical Proficiency: 40%

Soft Skills: 15%

Ethics and Legal Awareness: 10%

Challenges & Solutions

Handling Large Datasets

Model Selection and Tuning

Risk Management

Practical Tips

- **Start Simple**: Test with classical models first
- Visualize Results: Use EDA and charts to understand data trends
- Collaborate Effectively: Assign roles within the team

Questions?