Department of Mathematics School of Advanced Sciences

MAT 1011 – Calculus for Engineers (MATLAB)

Experiment 5–A

Divergence, Curl and Gradient and visualization of vector field

Aim:

- To write Matlab codes to visualize the vector field of 2-Dimensions as well as 3-Dimensions.
- To find the gradient, divergence and curl of a vector field and visualize it with contour curves.

Mathematical form:

- Draw the two dimensional vector field for the vector $\vec{F} = \vec{f_1}(x, y) + \vec{f_2}(x, y)$
- Draw the three dimensional vector field for the vector $\vec{F} = \vec{f_1}(x,y,z) + \vec{f_2}(x,y,z) + \vec{f_3}(x,y,z)$
- Gradient vector of a scalar function f(x, y)

The vector function ∇f is defined as the gradient of the scalar function f and is written as grad f.

grad
$$f = \nabla f = (\partial f/\partial x)\vec{i} + (\partial f/\partial y)\vec{j} + (\partial f/\partial z)\vec{k}$$
.

• Divergence of a vector \vec{F}

Divergence of a continuously differentiable vector point function \vec{F} is denoted by $div \vec{F}$ and is defined as

div
$$\vec{F} = \nabla \cdot \vec{F} = \vec{\iota} \cdot (\partial \vec{F} / \partial x) + \vec{\jmath} \cdot (\partial \vec{F} / \partial y) + \vec{k} \cdot (\partial \vec{F} / \partial z)$$

• Curl of a vector \vec{F}

Curl of a continuously differentiable vector point function \vec{F} is denoted by $curl \vec{F}$ and is defined as

curl
$$\vec{F} = \nabla \times \vec{F} = \vec{i} \times (\partial \vec{F} / \partial x) + \vec{j} \times (\partial \vec{F} / \partial y) + \vec{k} \times (\partial \vec{F} / \partial z)$$

MATLAB Syntax used:

inline(expr)	Constructs an inline function object from the MATLAB
mme(expr)	· ·
	expression contained in the string expr.
vectorize(fun)	Inserts a . before any ^, * or / in s. The result is a character string
quiver(x,y,u,v)	Displays velocity vectors as arrows with components (u,v) at the
	points (x,y)
quiver3(x,y,z,u,v,w)	Plots vectors with components (u,v,w) at the points (x,y,z)
<pre>gradient(f, v)</pre>	Finds the gradient vector of the scalar function f with respect
	to vector v in Cartesian coordinates.
div =	Computes the divergence of a 3-D vector field having vector
<pre>divergence(X,Y,Z,U,V,W)</pre>	components U, V, W.
	The arrays X, Y, and Z, which define the coordinates for the
	vector components U, V, and W, must be monotonic, but do not
	need to be uniformly spaced. X, Y, and Z must have the same
	number of elements.
curl(V,X)	Returns the curl of the vector field V with respect to the
	vector X. The vector field V and the vector X are both three-
	dimensional.
pcolor(x,y,C)	When x,y and C are matrices of the same size, pcolor(x,y,C)
	plots the colored patches of vertices $(x(i,j), y(i,j))$ and color
	C(i,j).

MATLAB Code:

```
syms x y
F=input( 'enter the vector as i,j order in vector form:');
P = inline(vectorize(F(1)), 'x', 'y');
Q = inline(vectorize(F(2)), 'x', 'y');
x = linspace(0, 1, 10); y = x;
[X,Y] = meshgrid(x,y);
U = P(X,Y);
V = Q(X,Y);
quiver(X,Y,U,V)
axis on
xlabel('x'); ylabel('y');
Input:
```

Enter the vector as i, j order in vector form: [x y]

Output:

Example 2: Draw the three dimensional vector field for the vector $x\vec{i} + y\vec{j} + z\vec{k}$

MATLAB Code:

```
syms x y z
F=input( 'Enter the vector as i, j and k order in vector form:')
P = inline(vectorize(F(1)), 'x', 'y', 'z');
Q = inline(vectorize(F(2)), 'x', 'y', 'z');
R = inline(vectorize(F(3)), 'x', 'y', 'z');
x = linspace(-1, 1, 5); y = x;
z=x;
[X,Y,Z] = meshgrid(x,y,z);
U = P(X, Y, Z);
V = Q(X, Y, Z);
W = R(X, Y, Z);
quiver3 (X,Y,Z,U,V,W)
axis on
xlabel('x');
ylabel('y');
zlabel('z');
```

Input:

```
Enter the vector as i, j and k order in vector form: [x \ y \ z] F = [x, y, z]
```

Output:

Example 3: Find the Gradient of the function f = 2xy

MATLAB Code:

```
syms x y
f=input('Enter the function f(x,y):');
grad=gradient(f,[x,y])
f1=diff(f,x);
f2=diff(f,y);
P = inline(vectorize(f1), 'x', 'y');
Q = inline(vectorize(f2), 'x', 'y');
x = linspace(-2, 2, 10);
y = x;
[X,Y] = meshgrid(x,y);
U = P(X, Y);
V = Q(X, Y);
quiver (X,Y,U,V,1)
axis on
xlabel('x')
ylabel('y')
hold on
ezcontour(f, [-2 2])
```

Input:

Enter the function f(x,y):2*x*y

Output:

```
grad = 2*y 2*x
```


Inference:

The gradient vectors are orthogonal to the contours. It will be lengthier if the level curves are close to each other.

Example 4: Find the divergence of the vector field $\vec{F} = xy^2\vec{\imath} + x^2\vec{\jmath}$ and visualize it.

MATLAB Code:

```
x=-4:0.5:4;
y=x;
[X Y]=meshgrid (x,y);
Div=divergence(X,Y,X.*Y.^2, X.^2);
figure
pcolor(X,Y,Div);
shading interp
hold on;
quiver(X,Y, X.*Y.^2, X.^2,'Y');
hold off;
colormap copper
title('Vector field of F(x,y)=[xy^2,x^2]');
```

Output:

Example 5:

Find the curl of the vector field $\vec{F} = -yx^2\vec{\imath} + (x+y^3)\vec{\jmath}$ and visualize it.

MATLAB Code:

```
x=-4:4;
y=x; z=x;
[X, Y, Z] = meshgrid(x, y, z);
[Cx, Cy, Cz] = curl(X, Y, Z, -Y.*X.^2, X+Y.^3, zeros(size(X)));
% Note that as there are no z-values in our field, we supplied
zeros for z
figure
quiver3 (X, Y, zeros (size(X)), Cx, Cy, Cz, 0);
hold on;
[X Y] = meshgrid (x, y);
quiver (X,Y, -Y.*X.^2, X+Y.^3);
figure
[X Y] = meshgrid (-4:.3:4);
crl=curl(X,Y,-Y.*X.^2,X+Y.^3);
pcolor(X,Y,crl);
shading interp
hold on;
quiver (X,Y, -Y.*X.^2, X+Y.^3, 'y');
hold off;
colormap copper
```

Output:

Example-8. To visualize the curl of a vector function F=[-y, x]

MATLAB Code

```
clear all
close all
clc
X=-4:4; Y=X; Z=X;
[x,y,z]=meshgrid(X,Y,Z);
[cx,cy,cz]=curl(x,y,z,-y,x,zeros(size(x)));
figure;
subplot(1,2,1);
quiver3(x,y,zeros(size(x)),cx,cy,cz,0);
```

```
title('3-d view of curl');
subplot(1,2,2);
quiver(x,y,-y,x);
title('2-d view of curl');
```

Output in the Figure Window

Exercise:

- 1. Draw the two dimensional vector field for the vector 2xi + 3yj.
- 2. Find the Gradient of the function $f = x^2y^3 4y$.
- 3. Find the divergence of a vector field $f = [xy, x^2]$.
- 4. Visualize the curl of a vector function f = [yz, 3zx, z].