Regression with Kernels +

Why Another Method?

- Linear regression: Pick a global model, best fit globally.
- Kernel method: Pick a local model, best fit locally.
- In kernel method, instead of picking a line / a quadratic equation, we pick a kernel.
- A kernel is a measure of distance between training samples.
- Kernel method buys us the ability to handle nonlinearity.
- Ordinary regression is based on the columns (features) of A.
- Kernel method is based on the rows (samples) of A.

Pictorial Illustration

Overview of the Method

Model Parameter:

• We want the model parameter $\widehat{\theta}$ to look like: (How? Question 1)

$$\widehat{\boldsymbol{\theta}} = \sum_{n=1}^{N} \alpha_n \mathbf{x}^n.$$

- This model expresses $\widehat{\theta}$ as a combination of the samples.
- The trainable parameters are α_n , where $n=1,\ldots,N$.
- If we can make α_n local, i.e., non-zero for only a few of them, then we can achieve our goal: localized, sample-dependent.

Predicted Value

• The predicted value of a new sample x is

$$\widehat{y} = \widehat{\boldsymbol{\theta}}^T \mathbf{x} = \sum_{n=1}^N \alpha_n \langle \mathbf{x}, \mathbf{x}^n \rangle.$$

• We want this model to encapsulate nonlinearity. (How? Question 2)

Dual Form of Linear Regression

Goal: Addresses Question 1: Express $\widehat{\theta}$ as

$$\widehat{\boldsymbol{\theta}} = \sum_{n=1}^{N} \alpha_n \boldsymbol{x}^n.$$

We start by listing out a technical lemma:

Lemma

For any $\mathbf{A} \in \mathbb{R}^{N \times d}$, $\mathbf{y} \in \mathbb{R}^d$, and $\lambda > 0$,

$$(\mathbf{A}^{T}\mathbf{A} + \lambda \mathbf{I})^{-1}\mathbf{A}^{T}\mathbf{y} = \mathbf{A}^{T}(\mathbf{A}\mathbf{A}^{T} + \lambda \mathbf{I})^{-1}\mathbf{y}. \tag{1}$$

Proof: See Appendix.

Remark:

- The dimensions of I on the left is $d \times d$, on the right is $N \times N$.
- If $\lambda = 0$, then the above is true only when **A** is invertible.

Dual Form of Linear Regression

Using the Lemma, we can show that

Using the Lemma, we can show that
$$\widehat{\boldsymbol{\theta}} = (\boldsymbol{A}^T \boldsymbol{A} + \lambda \boldsymbol{I})^{-1} \boldsymbol{A}^T \boldsymbol{y} \qquad \text{(Primal Form)}$$

$$= \boldsymbol{A}^T \underbrace{(\boldsymbol{A} \boldsymbol{A}^T + \lambda \boldsymbol{I})^{-1} \boldsymbol{y}}_{\text{def} \alpha} \qquad \text{(Dual Form)}$$

$$\begin{bmatrix} - & (\boldsymbol{x}^1)^T & - \\ - & (\boldsymbol{x}^2)^T & - \end{bmatrix}^T \begin{bmatrix} \alpha_1 \end{bmatrix} \qquad N$$

$$= \begin{bmatrix} - & (\mathbf{x}^1)^T & - \\ - & (\mathbf{x}^2)^T & - \\ \vdots & \vdots & \\ - & (\mathbf{x}^N)^T & - \end{bmatrix}^T \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_N \end{bmatrix} = \sum_{n=1}^N \alpha_n \mathbf{x}^n, \quad \alpha_n \stackrel{\text{def}}{=} [(\mathbf{A}\mathbf{A}^T + \lambda \mathbf{I})^{-1} \mathbf{y}].$$

The Kernel Trick

Goal: Addresses Question 2: Introduce nonlinearity to

$$\widehat{y} = \widehat{\boldsymbol{\theta}}^T \mathbf{x} = \sum_{n=1}^N \alpha_n \langle \mathbf{x}, \mathbf{x}^n \rangle.$$

The Idea:

• Replace the inner product $\langle \mathbf{x}, \mathbf{x}^n \rangle$ by $k(\mathbf{x}, \mathbf{x}^n)$:

$$\widehat{y} = \widehat{\boldsymbol{\theta}}^T \mathbf{x} = \sum_{n=1}^N \alpha_n k(\mathbf{x}, \mathbf{x}^n).$$

- $k(\cdot, \cdot)$ is called a **kernel**.
- ullet A kernel is a measure of the **distance** between two samples $oldsymbol{x}^i$ and $oldsymbol{x}^j$.
- $\langle \mathbf{x}^i, \mathbf{x}^j \rangle$ measure distance in the ambient space, $k(\mathbf{x}^i, \mathbf{x}^j)$ measure distance in a **transformed** space.
- In particular, a valid kernel takes the form $k(\mathbf{x}^i, \mathbf{x}^j) = \langle \phi(\mathbf{x}^i), \phi(\mathbf{x}^j) \rangle$ for some nonlinear transforms ϕ .

Kernels Illustrated

- A kernel typically lifts the ambient dimension to a higher one.
- For example, mapping from \mathbb{R}^2 to \mathbb{R}^3

$$\mathbf{x}^n = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 and $\phi(\mathbf{x}_n) = \begin{bmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{bmatrix}$

Relationship between Kernel and Transform

Consider the following kernel $k(\boldsymbol{u}, \boldsymbol{v}) = (\boldsymbol{u}^T \boldsymbol{v})^2$. What is the transform?

• Suppose \boldsymbol{u} and \boldsymbol{v} are in \mathbb{R}^2 . Then $(\boldsymbol{u}^T\boldsymbol{v})^2$ is

$$(\mathbf{u}^{T}\mathbf{v})^{2} = \left(\sum_{i=1}^{2} u_{i}v_{i}\right) \left(\sum_{j=1}^{2} u_{j}v_{j}\right)$$

$$= \sum_{i=1}^{2} \sum_{j=1}^{2} (u_{i}u_{j})(v_{i}v_{j}) = \begin{bmatrix} u_{1}^{2} & u_{1}u_{2} & u_{2}u_{1} & u_{2}^{2} \end{bmatrix} \begin{bmatrix} v_{1}^{2} \\ v_{1}v_{2} \\ v_{2}v_{1} \\ v_{2}^{2} \end{bmatrix}.$$

• So if we define ϕ as

$$m{u} = egin{bmatrix} u_1 \ u_2 \end{bmatrix} \quad \mapsto \quad \phi(m{u}) = egin{bmatrix} u_1 \ u_1 \ u_2 \ u_2 \ u_1 \ u_2^2 \end{bmatrix}$$

then $(\boldsymbol{u}^T\boldsymbol{v})^2 = \langle \phi(\boldsymbol{u}), \phi(\boldsymbol{v}) \rangle$.

Radial Basis Function

A useful kernel is the radial basis kernel (RBF):

$$k(\mathbf{u}, \mathbf{v}) = \exp\left\{-\frac{\|\mathbf{u} - \mathbf{v}\|^2}{2\sigma^2}\right\}.$$

- The corresponding nonlinear transform of RBF is infinite dimensional. See Appendix.
- $\| \boldsymbol{u} \boldsymbol{v} \|^2$ measures the distance between two data points \boldsymbol{u} and \boldsymbol{v} .
- ullet σ is the std dev, defining "far" and "close".
- RBF enforces **local** structure; Only a few samples are used.

Kernel Method

Given the choice of the kernel function, we can write down the algorithm as follows.

- **1** Pick a kernel function $k(\cdot, \cdot)$.
- ② Construct a kernel matrix $K \in \mathbb{R}^{N \times N}$, where $[K]_{ij} = k(x^i, x^j)$, for i = 1, ..., N and j = 1, ..., N.
- **3** Compute the coefficients $\alpha \in \mathbb{R}^N$, with

$$\alpha_n = [(\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}]_n.$$

Estimate the predicted value for a new sample x:

$$g_{\theta}(\mathbf{x}) = \sum_{n=1}^{N} \alpha_n k(\mathbf{x}, \mathbf{x}^n).$$

Therefore, the choice of the regression function is shifted to the choice of the kernel.

Example

Goal: Use the kernel method to fit the data points shown as follows.

- What is the input feature vector \mathbf{x}^n ? $\mathbf{x}^n = t_n$: The time stamps.
- What is the output y_n ? y^n is the height.
- Which kernel to choose? Let us consider the RBF.

Example (using RBF)

- Define the fitted function as $g_{\theta}(t)$. [Here, θ refers to α .]
- The RBF is defined as $k(t_i, t_j) = \exp\{-(t_i t_j)^2/2\sigma^2\}$, for some σ .
- ullet The matrix $oldsymbol{K}$ looks something below

$$[\mathbf{K}]_{ij} = \exp\{-(t_i - t_j)^2/2\sigma^2\}.$$

- K is a banded diagonal matrix. (Why?)
- The coefficient vector is $\alpha_n = [(\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}]_n$.

Example (using RBF)

• Using the RBF, the predicted value is given by

$$g_{\theta}(t^{\text{new}}) = \sum_{n=1}^{N} \alpha_n k(t^{\text{new}}, t_n) = \sum_{n=1}^{N} \alpha_n e^{-\frac{(t^{\text{new}} - t_n)^2}{2\sigma^2}}.$$

• Pictorially, the predicted function g_{θ} can be viewed as the linear combination of the Gaussian kernels.

Effect of σ

- Large σ : Flat kernel. Over-smoothing.
- Small σ : Narrow kernel. Under-smoothing.
- ullet Below shows an example of the fitting and the kernel matrix $oldsymbol{\mathit{K}}$.

Any Improvement?

- We can improve the above kernel by considering $\mathbf{x}^n = [y_n, t_n]^T$.
- Define the kernel as

$$k(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left\{-\left(\frac{(y_i - y_j)^2}{2\sigma_r^2} + \frac{(t_i - t_j)^2}{2\sigma_s^2}\right)\right\}.$$

This new kernel is adaptive (edge-aware).

Any Improvement?

Here is a comparison.

- This idea is known as **bilateral filter** in the computer vision literature.
- Can be further extended to 2D image where $\mathbf{x}^n = [y_n, \mathbf{s}_n]$, for some spatial coordinate \mathbf{s}_n .

a

Kernel Methods in Classification

 The concept of lifting the data to higher dimension is useful for classification.

¹Image source:

Kernels in Support Vector Machines

Example. RBF for SVM (We will discuss SVM later in the semester.)

- Radial Basis Function is often used in support vector machine.
- Poor choice of parameter can lead to low training loss, but with the risk of over-fit
- Under-fitted data can sometimes give better generalization.

Appendix

Proof of Lemma

Lemma

For any matrix $\mathbf{A} \in \mathbb{R}^{N \times d}$, $\mathbf{y} \in \mathbb{R}^d$, and $\lambda > 0$,

$$(\mathbf{A}^{T}\mathbf{A} + \lambda \mathbf{I})^{-1}\mathbf{A}^{T}\mathbf{y} = \mathbf{A}^{T}(\mathbf{A}\mathbf{A}^{T} + \lambda \mathbf{I})^{-1}\mathbf{y}.$$
 (2)

- The left hand side is solution to normal equation, which means $\mathbf{A}^T \mathbf{A} \mathbf{\theta} + \lambda \mathbf{\theta} = \mathbf{A}^T \mathbf{v}$.
- Rearrange terms gives $\theta = \mathbf{A}^T \left[\frac{1}{\lambda} (\mathbf{y} \mathbf{A}\theta) \right]$.
- Define $\alpha = \frac{1}{1}(\mathbf{y} \mathbf{A}\theta)$, then $\theta = \mathbf{A}^T \alpha$.
- Substitute $\theta = \mathbf{A}^T \alpha$ into $\alpha = \frac{1}{\lambda} (\mathbf{y} \mathbf{A} \theta)$, we have

$$lpha = rac{1}{\lambda} (oldsymbol{y} - oldsymbol{A} oldsymbol{A}^T lpha).$$

- Rearrange terms gives $(\mathbf{A}\mathbf{A}^T + \lambda \mathbf{I})\alpha = \mathbf{y}$, which yields $\alpha = (\mathbf{A}\mathbf{A}^T + \lambda \mathbf{I})^{-1}\mathbf{v}$.
- Substitute into $\hat{\boldsymbol{\theta}} = \boldsymbol{A}^T \alpha$ gives $\boldsymbol{\theta} = \boldsymbol{A}^T (\boldsymbol{A} \boldsymbol{A}^T + \lambda \boldsymbol{I})^{-1} \boldsymbol{y}$.

Non-Linear Transform for RBF

• Let us consider scalar $u \in \mathbb{R}$.

$$k(u, v) = \exp\{-(u - v)^2\}$$

$$= \exp\{-u^2\} \exp\{2uv\} \exp\{-v^2\}$$

$$= \exp\{-u^2\} \left(\sum_{k=0}^{\infty} \frac{2^k u^k v^k}{k!}\right) \exp\{-v^2\}$$

$$= \exp\{-u^2\} \left(1, \sqrt{\frac{2^1}{1!}} u, \sqrt{\frac{2^2}{2!}} u^2, \sqrt{\frac{2^3}{3!}} u^3, \dots, \right)^T$$

$$\times \left(1, \sqrt{\frac{2^1}{1!}} v, \sqrt{\frac{2^2}{2!}} v^2, \sqrt{\frac{2^3}{3!}} v^3, \dots, \right) \exp\{-v^2\}$$

So Φ is

$$\phi(x) = \exp\{-x^2\} \left(1, \sqrt{\frac{2^1}{1!}}x, \sqrt{\frac{2^2}{2!}}x^2, \sqrt{\frac{2^3}{3!}}x^3, \dots, \right)$$

Kernels are Positive Semi-Definite

Given $\{x_j\}_{j=1}^N$, construct a $N \times N$ matrix K such that

$$[\mathbf{K}]_{ij} = K(\mathbf{x}_i, \mathbf{x}_j) = \Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_j).$$

Claim: K is positive semi-definite.

Let z be an arbitrary vector. Then,

$$\mathbf{z}^{T} \mathbf{K} \mathbf{z} = \sum_{i=1}^{n} \sum_{j=1}^{N} z_{i} K_{ij} z_{j} = \sum_{i=1}^{N} \sum_{j=1}^{N} z_{i} \Phi(\mathbf{x}_{i})^{T} \Phi(\mathbf{x}_{j}) z_{j}$$

$$= \sum_{i=1}^{N} \sum_{i=1}^{N} z_{i} \left(\sum_{k=1}^{N} [\Phi(\mathbf{x}_{i})]_{k} [\Phi(\mathbf{x}_{j})]_{k} \right) z_{j} \stackrel{\text{(a)}}{=} \sum_{k=1}^{N} \left(\sum_{i=1}^{N} [\Phi(\mathbf{x}_{i})]_{k} z_{i} \right)^{2} \ge 0$$

where $[\Phi(\mathbf{x}_i)]_k$ denotes the k-th element of the vector $\Phi(\mathbf{x}_i)$.

Existence of Nonlinear Transform

- We just showed that: If $K(\mathbf{x}_i, \mathbf{x}_j) = \Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_j)$ for any $\mathbf{x}_1, \dots, \mathbf{x}_N$, then K is symmetric positive semi-definite.
- The converse also holds: If K is symmetric positive semi-definite for any x_1, \ldots, x_N , then there exist Φ such that $K(x_i, x_i) = \Phi(x_i)^T \Phi(x_i)$.
- This converse is difficult to prove.
- It is called the Mercer Condition.
- Kernels satisfying Mercer's condition have Φ.
- You can use the condition to rule out invalid kernels.
- But proving a valid kernel is still hard.