Exam 2 review

William Hendrix

Exam topics

- Stacks and queues
- Dictionaries
 - Sorted/unsorted arrays and lists
 - Binary search trees (including balanced BSTs)
 - Hash tables
 - Expected case analysis
- Priority Queues/Heaps
- Union-Find
- Divide-and-conquer algorithms
- Master Theorem

Question types

- List operations and/or complexity for data structure
- Compare and contrast data structures
 - Complexity, space, cache coherency
- Definitions of expected case or amortized complexity
 - Will not need to derive amortized complexity
- Describe data structure after some operations
- Describe algorithm output based on data structure
- Algorithm design
- Divide-and-conquer algorithms
- Master Theorem

Exam topics

- Stacks and queues
- Dictionaries
 - Sorted/unsorted arrays and lists
 - Binary search trees (including balanced BSTs)
 - Hash tables
 - Expected case analysis
- Priority Queues/Heaps
- <u>Union-Find</u>
- <u>Divide-and-conquer algorithms</u>
- Master Theorem

Master Theorem

Powerful theorem for proving complexity of divide-and-conquer algorithms

Four steps to solve:

- 1. Identify a, b, and f(n)
- 2. Calculate $c = \log_b(a)$
- 3. Decide case: f(n) vs. n^c : $O(n^{c-\varepsilon})$, $\Theta(n^c)$, $\Omega(n^{c+\varepsilon})$
- 4. Apply Master Theorem (test regularity if case 3)

Master Theorem exercises

- What is *c* for the following recurrences?
- What case does f(n) fall under?
- What is the asymptotic complexity for the following recurrences?
 Write "n/a" if the Master Theorem does not apply.

1.
$$T(n) = 2T(n/2) + \Theta(n^2)$$

2.
$$U(n) = 4U(n/2) + \Theta(n^2)$$

3.
$$V(n) = 9V(n/9) + \Theta(n)$$

4.
$$W(n) = 3W(n/3) + \Theta(n^2)$$

$$5. \quad X(n) = 2X(n/4) + \Theta(n)$$

6.
$$Y(n) = 3Y(n/9) + \Theta(1)$$

7.
$$Z(n) = Z(n/2) + \Theta(1)$$

	c	Case	Complexity
T(n)			
U(n)			
V(n)			
W(n)			
X(n)			
Y(n)			
Z(n)			

Master Theorem exercises

- What is *c* for the following recurrences?
- What case does f(n) fall under?
- What is the asymptotic complexity for the following recurrences?
 Write "n/a" if the Master Theorem does not apply.

1.
$$T(n) = 2T(n/2) + \Theta(n^2)$$

2.
$$U(n) = 4U(n/2) + \Theta(n^2)$$

3.
$$V(n) = 9V(n/9) + \Theta(n)$$

4.
$$W(n) = 3W(n/3) + \Theta(n^2)$$

$$5. \quad X(n) = 2X(n/4) + \Theta(n)$$

6.
$$Y(n) = 3Y(n/9) + \Theta(1)$$

7.
$$Z(n) = Z(n/2) + \Theta(1)$$

	c	Case	Complexity
T(n)	1		
U(n)	2		
V(n)	1		
W(n)	1		
X(n)	0.5		
Y(n)	0.5		
Z(n)	0		

Master Theorem exercises

- What is *c* for the following recurrences?
- What case does f(n) fall under?
- What is the asymptotic complexity for the following recurrences? Write "n/a" if the Master Theorem does not apply.

1.
$$T(n) = 2T(n/2) + \Theta(n^2)$$

2.
$$U(n) = 4U(n/2) + \Theta(n^2)$$

3.
$$V(n) = 9V(n/9) + \Theta(n)$$

4.
$$W(n) = 3W(n/3) + \Theta(n^2)$$

$$5. \quad X(n) = 2X(n/4) + \Theta(n)$$

6.
$$Y(n) = 3Y(n/9) + \Theta(1)$$

7.
$$Z(n) = Z(n/2) + \Theta(1)$$

		110	
	c	Case	Complexity
T(n)	1	$\Omega(n^{c+\epsilon})$	
U(n)	2	$\Theta(n^c)$	
V(n)	1	$\Theta(n^c)$	
W(n)	1	$\Omega(n^{c-\epsilon})$	
X(n)	0.5	$\Omega(n^{c+\epsilon})$	
Y(n)	0.5	$O(n^{c-\epsilon})$	
Z(n)	0	$\Theta(n^c)$	

Master Theorem exercise solutions

- What is *c* for the following recurrences?
- What case does f(n) fall under?
- What is the asymptotic complexity for the following recurrences?
 Write "n/a" if the Master Theorem does not apply.

1.
$$T(n) = 2T(n/2) + \Theta(n^2)$$

2.
$$U(n) = 4U(n/2) + \Theta(n^2)$$

3.
$$V(n) = 9V(n/9) + \Theta(n)$$

4.
$$W(n) = 3W(n/3) + \Theta(n^2)$$

$$5. \quad X(n) = 2X(n/4) + \Theta(n)$$

6.
$$Y(n) = 3Y(n/9) + \Theta(1)$$

7.
$$Z(n) = Z(n/2) + \Theta(1)$$

moordin doos not apply t						
	c	Case	Complexity			
T(n)	1	$\Omega(n^{c+\epsilon})$	$\Theta(n^2)$			
U(n)	2	$\Theta(n^c)$	$\Theta(n^2 \lg n)$			
V(n)	1	$\Theta(n^c)$	$\Theta(n \lg n)$			
W(n)	1	$O(n^{c-\epsilon})$	$\Theta(n^2)$			
X(n)	0.5	$\Omega(n^{c+\epsilon})$	$\Theta(n)$			
Y(n)	0.5	$O(n^{c-\epsilon})$	$\Theta(\sqrt{n})$			
Z(n)	0	$\Theta(n^c)$	$\Theta(\lg n)$			

Stacks and queues

Stacks

- Support push() and pop() operations
- Last-In, First-Out (LIFO) order

Queues

- Support enqueue() and dequeue() operations
- First-In, First-Out (FIFO) order

Support all 4 operations

- All three implemented using dynamic arrays
- All operations O(1)
 - enqueue() and push() O(1) amortized time

Stack/queue exercise

• Consider the following algorithm for iterating through the elements of a Binary Search Tree:

```
Input: tree: a BST

1 Algorithm: Iterate

2 nodes = {};

3 Add tree.root to nodes;

4 while nodes \neq \emptyset do

5 | Print all the elements of nodes;

6 | t = \text{next element of nodes};

7 | Add t.left to nodes, unless it's NIL;

8 | Add t.right to nodes, unless it's NIL;

9 end
```


- Assume that Line 5 prints the node values in the order they would be removed
 - I.e., first value is next node to be popped/dequeued
- 1. What is printed by Iterate(T) if nodes is a stack?
- 2. What is printed by Iterate(T) if nodes is a queue?

Stack/queue exercise solution

Iteration	Stack	Queue
1	95	95
2	100, 83	83, 100
3	83	100, 15, 25
4	27, 15	15, 25
5	15	25

Dictionaries

- 3 main operations: Insert(x), Delete(x), Search(x)
- 4/5 secondary operations: Max(), Min(), Successor(x), Predecessor(x), Build
- Seven main implementations with various pros/cons
 - Unsorted array
 - Sorted array
 - Unsorted doubly-linked list
 - Sorted doubly-linked list
 - Balanced binary search tree
 - Hash table (expected case)
 - Bit vector
 - Time complexity, time coefficient (e.g., caching), space (e.g., links vs. no links, empty cells)
- No singly-linked lists or unbalanced BSTs
- Hash tables: separate chaining vs. open addressing

Dictionary complexity

Operation	Unsorted array	Unsorted DLL	Sorted array	Sorted DLL	BBST	Hash table	Bit vector
Search(x)	O(n)	O(n)	O(lg n)	O(n)	O(lg n)	O(1)†	O(1)
Delete(x)	O(1)	O(1)	O(n)	O(1)	O(lg n)	O(1)†	O(1)
Insert(x)	O(1)*	O(1)	O(n)	O(n)	O(lg n)	<i>O</i> (1)†	O(1)
Build	n/a	n/a	O(n lg n)	O(n lg n)	O(n lg n)	<i>O</i> (<i>n</i>)†	O(n+r)
Min()	O(n)	O(n)	O(1)	O(1)	O(lg n)	$O(n)^{\dagger}$	O(r)
Max()	O(n)	O(n)	O(1)	O(1)	O(lg n)	$O(n)^{\dagger}$	O(r)
Pred(x)	O(n)	O(n)	O(1)	O(1)	O(lg n)	$O(n)^{\dagger}$	O(r)
Succ(x)	<i>O</i> (<i>n</i>)	O(n)	O(1)	O(1)	O(lg n)	$O(n)^{\dagger}$	O(r)

^{*} Amortized time

[†] Expected case

Dictionary exercise

- Create a table with the worst-case complexity of the algorithm below using 7 different dictionary implementations:
 - Sorted and unsorted array, sorted and unsorted doubly-linked list, balanced BST, hash table (expected), bit vector

```
Input: data: array of positive integers
  Input: n: number of integers in data
  Output: set of unique elements in data
1 Algorithm: Unique
\mathbf{2} \operatorname{dict} = \operatorname{Dictionary}();
3 for i = 1 to n do
4 if dict.Search(data[i]) = NIL then
\mathbf{5} \mid \operatorname{dict.Insert}(data[i]);
    \mathbf{end}
7 end
s return dict;
```

2. How long would it take to print out all of the elements in these dictionaries?

Dictionary exercise solution

- 1. Unique will perform:
 - *n* calls to Search()
 - Up to *n* calls to Insert()
 - O(n) other operations

Implementation	n Searches	≤ n Inserts	Total time
Unsorted array	$O(n^2)$	O(n)	$O(n^2)$
Sorted array	O(nlg n)	$O(n^2)$	$O(n^2)$
Unsorted DLL	$O(n^2)$	O(n)	$O(n^2)$
Sorted DLL	$O(n^2)$	$O(n^2)$	$O(n^2)$
Balanced BST	O(nlg n)	O(nlg n)	O(nlg n)
Hash table	$O(n)^{\dagger}$	$O(n)^{\dagger}$	O(n)†
Bit vector	O(n)	O(n)	O(n)

2. Arrays or DLLs: O(n)

• BSTs: O(n)

• Hash table: O(m), or O(n) expected

• Bit vector: O(r), where r is data range

Priority queues and heaps

Priority Queue

- Abstract data structure that supports extracting max/min element
- Main operations (max): Max(), DeleteMax(), Insert(x)
- **Heap:** primary implementation for Priority Queue
 - Array-based complete BST
 - Heap property: all children are smaller (larger) than their parent
 - Parent of i is at i/2, children are at 2i and 2i+1
 - Helper operations: PercolateUp(i), PercolateDown(i)
 - Shift a value up or down in the tree to satisfy heap property
 - Both: $O(\lg n)$

Operation	Heap
Insert(x)	O(lg n)
Max()	O(1)
DeleteMax()	O(lg n)
Build	<i>O</i> (<i>n</i>)

No Fibonacci heaps on exam!

Heap exercise

• Consider the following greedy algorithm for optimizing workshop attendance at a conference:

```
Input: ws: set of workshops, with start and end times
   Input: n: number of workshops in W
   Output: W: largest set of workshops that do not overlap
1 Algorithm: GreedyWorkshops
\mathbf{2} \ W = \text{Queue}();
\mathbf{3} \ heap = \text{MinHeap}(n);
   // heap compares workshops according to end time
4 for i = 1 to n do
      heap.Insert(ws[i]);
6 end
7 last = 0;
s for i = 1 to n do
      w = heap.DeleteMin();
      if w.start > last then
10
          W.Enqueue(w);
11
          last = w.end;
12
13 end
14 return W;
```

Workshop	Start	End
$w_{_{1}}$	7	10
w_{2}	1	8
w_3	4	7
w_4	3	5
w_{5}	2	4

- 1. Draw the contents of *heap* on the set of workshops above:
 - a) after each iteration of the for loop in lines 4-6.
 - b) after each iteration of the for loop in lines 8-13.

Heap exercise solution

Workshop	$w_{\scriptscriptstyle 1}$	w_{2}	w_3	$w_{_4}$	w_{5}
Start	7	1	4	3	2
End	10	8	7	5	4

	<i>i</i> =1:	$w_{\scriptscriptstyle 1}$				
Lines	2:	$w_{\scriptscriptstyle 2}$	$w_{\scriptscriptstyle 1}$			
4-6	3:	$w_{_3}$	$w_{\scriptscriptstyle 1}$	$w_{\scriptscriptstyle 2}$		
	4:	$w_{_4}$	$w_{_3}$	$w_{\scriptscriptstyle 2}$	$w_{\scriptscriptstyle 1}$	
	5:	$w_{\scriptscriptstyle 5}$	$w_{_4}$	w_{2}	$w_{\scriptscriptstyle 1}$	w_3
	<i>i</i> =1:	$w_{\scriptscriptstyle 4}$	$w_{_3}$	$w_{\scriptscriptstyle 2}$	$w_{\scriptscriptstyle 1}$	
Lines	2:	$w_{_3}$	$w_{\scriptscriptstyle 1}$	w_{2}		
8-13	3:	$w_{\scriptscriptstyle 2}$	$w_{\scriptscriptstyle 1}$			
	4:	$w_{\scriptscriptstyle 1}$				
	5:					

Union-Find operations

Initialize

- Assigns every element to its own partition
- -O(n)

Find(x)

- Follow links to partition ID (root)
- Recursively point to root
- $O(\alpha(n))$
- Generally less than 5 for conceivable n

Union(a, b)

- Find root of both sides
- Point to max root to min
- $-O(\alpha(n))$

```
1 Algorithm: UnionFind(n)
```

- $\mathbf{2}$ unionfind = Array(n);
- 3 for i=1 to n do
- 4 | unionfind[i] = i;
- 5 end
- 6 return unionfind;

```
1 Algorithm: Find(x)
```

- 2 if unionfind[x] $\neq x$ then
- $\mathbf{3} \mid id = \operatorname{Find}(\operatorname{unionfind}[x]);$
- 4 | unionfind[x] = id;
- 5 end
- 6 return unionfind[x];

```
1 Algorithm: Union(a, b)
```

- $\mathbf{z} ra = \operatorname{Find}(a);$
- rb = Find(b);
- 4 if ra > rb then
- $\mathbf{5}$ | Swap ra and rb;
- 6 end
- 7 unionfind[ra] = rb;

Union-Find exercise

- **Problem:** blob counting
- **Input:** an *n* by *n* matrix of integers 1-4
- Output: number of contiguous regions of the same integer
 - Contiguous: cells adjacent horizontally or vertically
- **Example:** n = 5, 4 blobs

1	1	3	3	3
1	2	1	3	3
2	2	1	1	3
2	2	1	3	3
2	1	1	1	3

- 1. Design an algorithm to count blobs
- 2. Analyze its complexity
- *Hint:* number your "pixels":
 - A[r, c] -> rn + c

0	1	2		n-1
n	n+1	n+2		2n - 1
:	:	:	٠	:
				$n^2 - 1$

Union-Find exercise solution

- **Main idea:** use Union-Find to keep track of blobs
- Pseudocode
 - Initialize Union-Find
 - Iterate through all n^2 cells
 - Union with cells above, below, left, and right if they have same color
 - More clever: just check right and down (or up and left)
 - Afterwards, count number of distinct partition IDs
 - More clever: if they were distinct before, Union reduces the number of blobs by 1
 - Count backwards from n^2

Analysis

- Initialize: $O(n^2)$
- First loop: n^2 iterations, $O(\alpha(n^2))$ time -> $O(n^2\alpha(n^2))$
- Second loop: $O(n^2\alpha(n^2))$, if using bitmap
- Total: $O(n^2\alpha(n^2)) = O(n^2\alpha(n))$

Union-Find algorithm

```
Input: n: size of input matrix
Input: A: n \times n matrix in which to count blobs
Output: the number of blobs in A
Algorithm: CleverBlobCount
uf = UnionFind(n^2);
blobs = n^2;
for r=0 to n-1 do
   for c = 0 to n - 1 do
      x = rn + c;
      if r < n - 1 then
         right = rn + c + 1;
        if A[r,c] = A[r,c+1] and uf.Find(x) \neq uf.Find(right) then
            uf.Union(x, right);
           blobs = blobs - 1;
      if c < n-1 then
         down = (r+1)n + c;
         if A[r,c] = A[r+1,c] and uf.Find(x) \neq uf.Find(down) then
          uf.Union(x, down);
          blobs = blobs - 1;
   end
end
return blobs;
```

Divide-and-conquer

- *Intuition:* combining solutions is sometimes easier than solving directly
- Solve small problems directly (base case)
- Divide large problem into one or more subproblems
 - E.g., split array into 2 halves, 3 thirds, etc.
- Solve subproblems recursively
- Combine solutions to subproblems into solution for full problem
- Easy to prove correctness via strong induction
- Good for parallel algorithms
- Doesn't work if you can't solve problem by combining partial solutions

Divide-and-conquer exercise

- **Problem:** matrix multiplication (square matrices)
 - Naïve algorithm: $O(n^3)$
- Divide-and-conquer algorithm: Strassen's algorithm
 - Split both matrices into 4 quarters:

A_1	B_1	
C_1	D_1	,

40	R_{\circ}
$\overline{\alpha}$	D_2
$\mid C_2 \mid$	$\mid D_2 \mid$

- Calculate the following matrices:
 - 7 multiplications
 - 6 additions
 - 4 subtractions

$$M_1 = (A_1 + D_1)(A_2 + D_2)$$

$$M_2 = (C_1 + D_1)A_2$$

$$M_3 = A_1(B_2 - D_2)$$

$$M_4 = D_1(C_2 - A_2)$$

$$M_5 = (A_1 + B_1)D_2$$

$$M_6 = (C_1 - A_1)(A_2 + B_2)$$

$$M_7 = (B_1 - D_1)(C_2 + D_2)$$

- Calculate the 4 quarters of the result: $A_3 = M_1 + M_4 M_5 + M_7$
 - 6 additions
 - 2 subtractions

$$A_3 = M_1 + M_4 - M_5 + M_7$$

$$B_3 = M_3 + M_5$$

$$C_3 = M_2 + M_4$$

$$D_3 = M_1 - M_2 + M_3 + M_6^2$$

Divide-and-conquer exercise

- S(n): time to multiply two n by n matrices
- 1. Write a recurrence for S(n)
 - Split matrices into 4 quarters
 - Calculate 7 intermediate products
 - 7 multiplications
 - 10 addition/subtraction
 - Calculate 4 quarters of result
 - 8 addition/subtraction
- 2. Solve the recurrence for S(n)
 - a) Identify a, b, and f(n)
 - b) Calculate $c = \log_b(a)$
 - c) Compare f(n) to n^c
 - d) Apply Master Theorem

Divide-and-conquer exercise solution

- S(n): time to multiply two n by n matrices
- 1. Write a recurrence for S(n)
 - Split matrices into 4 quarters
 - Calculate 7 intermediate products
 - 7 multiplications
 - 10 addition/subtraction
 - Calculate 4 quarters of result
 - 8 addition/subtraction
- 2. Solve the recurrence for S(n)
 - a) Identify a, b, and f(n)
 - b) Calculate $c = \log_b(a)$
 - c) Compare f(n) to n^c
 - d) Apply Master Theorem

$$\Theta(n^2)$$
 (copy) OR $\Theta(1)$ (offsets)

$$7S(n/2)$$

$$\Theta(n^2)$$

$$\Theta(n^2)$$

$$S(n) = 7S(n/2) + \Theta(n^2)$$

$$a = 7, b = 2, f(n) = \Theta(n^2)$$

 $c = \log_b(a) = \lg(7) \approx 2.81$
 $f(n) = O(n^{\lg 7 - 0.8})$
 $S(n) = \Theta(n^{\lg 7}) \approx \Theta(n^{2.81})$

Coming up

- Exam 2 will be Tuesday
 - Practice Exam 2 sample solution posted on Canvas
- Exam review: Monday at 5 (CHE 100)
- After exam: sorting algorithms
- **Project 1** will be due Oct. 18
- **Practice problems:** 3-26, 3-29 (p 102), 4-43 (p. 144)
- Recommended readings (Thursday): Sections 4.9, 4.6, and 4.7