

Penetration Testing

- Studying penetration testing involves:
 - Defining what it is and why such a test should be conducted
 - Examining who should perform the tests and the rules for engagement
 - Knowing how to perform a penetration test

3

Defining Penetration Testing

- Penetration testing attempts to exploit vulnerabilities in order to help:
 - Uncover new vulnerabilities
 - Provide a clearer picture of their nature
 - Determine how they could be used against the organization

■Planning:

- The first step- Most important element in a "pen test
- A lack of planning can result in
 - Scope creep,
 - Create unnecessary legal issues

Why Conduct a Test?

- A scan of network defenses usually finds only surface problems to be addressed
 - Many network scans are automated and provide only limited verification of vulnerabilities

A penetration test

 Find deep vulnerabilities and attempts to exploit vulnerabilities using manual techniques

■The attacks:

- Must be the same as those used by a threat actor
- Should follow the thinking of threat actors

5

Who Should Perform the Test?

Internal Security Personnel

- Advantages:
 - Little or no additional cost
 - The test can be conducted much more quickly
 - Can be used to enhance the training of employees and raise the awareness of security risks

Disadvantages:

- Inside knowledge
- Lack of expertise
- Reluctance to reveal

Who Should Perform the Test? (contd.)

External Pen Tester Consultants

- Advantages:
 - Expertise
 - Credentials
 - Experience
 - Focus

Disadvantages:

- A contractor may learn all about an organization's network
- May receive extremely sensitive information about systems and how to access them
- Knowledge could be sold to a competitor

Table 2-2 Penetration Testing Levels

Level Name	Description	Main Task	Advantages	Disadvantages
Black box	Testers have no knowledge of the network and no special privileges	Attempt to penetrate the network	Emulate exactly what a threat actor would do and see	If testers cannot penetrate the network, then no test can occur
Gray box	Testers are given limited knowledge of the network and some elevated privileges	Focus on systems with the greatest risk and value to the organization	More efficiently assess security instead of spending time trying to compromise the network and then determining which systems to attack	This head start does not allow testers to truly emulate what a threat actor may do
White box	Testers are given full knowledge of the network and the source code of applications	Identify potential points of weakness	Focus directly on systems to test for penetration	This approach does not provide a full picture of the network's vulnerabilities

9

Who Should Perform the Test? (contd.)

Crowdsourced Pen Testers

- Advantages:
 - Faster testing, resulting in quicker remediation of vulnerabilities
 - Ability to rotate teams so different individuals test the system
 - Option of conducting multiple pen tests simultaneously

Bug bounty

- A monetary reward given for uncovering a software vulnerability
- Take advantage of crowdsourcing, which involves obtaining input into a project by enlisting the services of many people through the internet
- Facebook
 - https://www.facebook.com/whitehat
- Google
 - https://www.google.com/about/appsecurity/reward-program/
- Amazon
 - https://hackerone.com/amazonvrp?type=team

- Rules of engagement in a penetration test:
 - Its limitations / parameters

Timing

- Sets when the testing will occur
- Some considerations include:
 - The start and stop dates of the test
 - Should the active portions of the pen test be conducted during normal business hours

Scope

- Involves several elements that define the relevant test boundaries:
 - Environment
 - Internal targets
 - External targets
 - Target locations
 - Other boundaries

Categories for rules of engagement:

- Timing
- Scope
- Authorization
- Exploitation
- Communication
- Cleanup
- Reporting

:11

Rules of Engagement (contd.)

Authorization

- The receipt of prior written approval to conduct the pen test
 - A formal written document, signed by all parties before a pen test begins

Exploitation Level

 Part of the scope that is discussed in the planning stages

Communication

- The pen tester should communicate with the organization during the following occasions:
 - Initiation
 - Incident response
 - Status
 - Emergency

Categories for rules of engagement:

- Timing
- Scope
- Authorization
- Exploitation
- Communication
- Cleanup
- Reporting

Rules of Engagement (contd.)

Cleanup

- The pen tester must ensure that everything related to the pen test has been removed
- Involves removing all software agents, scripts, executable binaries, temporary files, and backdoors from all affected systems
- Any credentials that were changed should be restored
- Any usernames created should be removed

Reporting

- Once the pen test is completed, a report should be generated to document its objectives, methods used, and results
- The report should be divided into two parts:
 - An executive summary designed for a less technical audience
 - A more technical summary written for security professionals

Categories for rules of engagement:

- Timing
- Scope
- Authorization
- Exploitation
- Communication
- Cleanup
- Reporting

3

Performing a Penetration Test

■ Performing a successful pen test involves

- Determination
- Resolve
- Perseverance

■Two phases:

- Reconnaissance
- Penetration

Performing a Penetration Test (contd.)

■ Phase 1: Reconnaissance

- Footprinting:
 - Preliminary information gathering from outside the organization
 - Information can be gathered using two methods
 - Active reconnaissance
 - Passive reconnaissance

Active reconnaissance

- Involves directly probing for vulnerabilities and useful information
- War driving
 - Searching for wireless signals from an automobile or on foot while using a portable device
- War flying
 - Uses drones, which are officially known as unmanned aerial vehicles (UAVs)
- A disadvantage of active reconnaissance is that the probes are likely to alert security professionals that something unusual is occurring

Performing a Penetration Test (contd.)

Phase 1: Reconnaissance (continued)

- Passive reconnaissance
 - Tester uses tools that do not raise any alarms
 - Include searching online for publicly accessible information called open source intelligence (OSINT) that can reveal valuable insight about the system

■ Phase 2: Penetration

- Intended to simulate the actions of a threat actor
- The initial system compromised usually does not contain the data that is the goal of the attack
 - Usually serves as a gateway for entry into an organization network
- Once inside the network, threat actors turn to other systems to be compromised until they reach the ultimate target

Steps in an actual attack

17

- The threat actors first conduct reconnaissance against the systems, looking for vulnerabilities.
- 2. When a path to a vulnerability is exposed, they gain access to the system through the vulnerability.
- 3. Privilege escalation: Once initial access is gained, the threat actors attempt to escalate to more advanced resources that are normally protected from an application or user.
- 4. Lateral movement: With the advanced privileges, the threat actors tunnel through the network looking for additional systems they can access from their elevated position
- Threat actors install tools on the compromised systems to gain even deeper access to the network.
- Threat actors may install a backdoor that allows them repeated and long-term access to the system in the future.
 - The backdoors are not related to the initial vulnerability, so access remains even if the initial vulnerability is corrected.
- Once the backdoor is installed, threat actors can continue to probe until they find their ultimate target and perform their intended malicious action.

Performing a Penetration Test (contd.)

■ Phase 2: Penetration (continued)

- When a vulnerability is discovered, the pen tester must determine how to pivot (turn) to another system using another vulnerability to continue moving toward the target
- Vulnerabilities that are not part of the ultimate target can still provide a gateway to the target
- Pen tester needs to design attacks carefully
- Pen testers must be patent and persistent, just like the threat actors

Vulnerability Scanning

Vulnerability scanning

- A frequent and ongoing process that continuously identifies vulnerabilities and monitors cybersecurity progress
- Complements pen testing
- Studying vulnerability scanning involves understanding:
 - What it is
 - How to conduct a scan
 - How to use data management tools
 - How threat hunting can enhance scanning

119

Conducting a Vulnerability Scan

Conducting a vulnerability scan involves:

- Knowing what to scan and how often
 - Selecting a type of scan
- Interpreting vulnerability information

■When and What to Scan

- Two primary reasons for not conducting around-the-clock vulnerability scans:
 - Workflow interruptions
 - Technical constraints
- A more focused approach is to know the location of data so that specific systems with high-value data can be scanned more frequently

Conducting a Vulnerability Scan (contdo

■What to Scan

- Because a vulnerability scan should be limited, a configuration review of software settings should be conducted
 - Define the group of target devices to be scanned
 - Ensure that a scan should be designed to meet its intended goals
 - Determine the sensitivity level or the depth of a scan
 - Specify the data types to be scanned

221

Conducting a Vulnerability Scan (contd

Types of Scans

- Credentialed scans
 - Valid authentication credentials are supplied to the vulnerability scanner to mimic the work of a threat actor who possesses these credentials
 - A non-credentialed scan provides no such authentication information
- Intrusive scan
 - Attempts to employ any vulnerabilities that it finds
 - A nonintrusive scan does not attempt to exploit the vulnerability but only records that it was discovered

Conducting a Vulnerability Scan (contde

Examining Results

- Assess the importance of vulnerability as well as its accuracy
- Questions that may help identify which vulnerability needs early attention:
 - Can the vulnerability be addressed in a reasonable amount of time?
 - Can the vulnerability be exploited by an external threat actor?
 - If the vulnerability led to threat actors infiltrating the system, would they be able to pivot to more important systems?
 - Is the data on the affected device sensitive or is it public?
 - Is the vulnerability on a critical system that runs a core business process?
- Another part of prioritizing is making sure that the difficulty and time for implementing the correction is reasonable

2**23**

Conducting a Vulnerability Scan (contd

- Examining Results (continued)
 - Another consideration when examining results is accuracy
 - Be sure to identify false positives, which is an alarm raised when there is no problem
 - A means to identify false positives
 - correlate the vulnerability scan data with several internal data points
 - Most common are related to log files
 - Log reviews, or an analysis of log data, can be used to identify false positives

le 2-4 Vulnerability Scan vs. Penetration Test

		·
	Vulnerability Scan	Penetration Test
Purpose	Reduces the attack surface	Identifies deep vulnerabilities
Procedure	Scans to find weaknesses and then	Acts like a threat agent to find
	mitigate them	vulnerabilities to exploit
Frequency	Usually includes ongoing scanning	Tests when required by regulatory
	and continuous monitoring	body or on a predetermined schedule
Personnel	Uses internal security personnel	Uses external third parties or internal
		security personnel
Process	Usually is automated, with a handful	Uses an entirely manual process
	of manual processes	
Goal	Aims to identify risks by scanning	Aims to gain unauthorized access and
	systems and networks	exploit vulnerabilities
Final report	Includes an executive summary for	Includes several different audiences
audience	less technical audiences and technical	
	details for security professionals	
		·

Data Management Tools

- Two data management tools are used for collecting and analyzing vulnerability scan data:
 - Security Information and Event Management (SIEM)
 - Security Orchestration, Automation, and Response (SOAR)
- Security Information and Event Management (SIEM)
 - A SIEM typically has the following features:
 - Aggregation
 - Correlation
 - Automated alerting and triggers
 - Time synchronization
 - Event duplication
 - Logs

Data Management Tools (contd.)

- SIEMS can also perform sentiment analysis
 - The process of computationally identifying and categorizing opinions to determine the writer's attitude toward a particular topic
 - Used when tracking postings threat actors make in discussion forums with other attackers to better determine the behavior and mindset of threat actors
- Security Orchestration, Automation, and Response (SOAR)
 - Similar to a SIEM in that it is designed to help security teams manage and respond to security warnings and alarms
 - Combine more comprehensive data gathering and analytics to automate incident responses

2**27**

Threat Hunting

Threat hunting

- Proactively searching for cyber threats that thus far have gone undetected in a network
- Begins with a critical premise: threat actors have already infiltrated our network
 - Proceeds to find unusual behavior that may indicate malicious activity

■Threat hunting investigations often use crowdsourced attack data:

- Advisories and bulletins
- Cybersecurity threat feeds
 - Data feeds of information on the latest threats
- Information from a fusion center
 - A formal repository of information from enterprises and the government used to share information on the latest attacks

Cybersecurity Resources

- External cybersecurity resources available to organizations:
 - Frameworks
 - Regulations
 - Legislation
 - Standards
 - Benchmarks/secure configuration guides
 - Information sources

2**29**

Frameworks

■ A cybersecurity framework

 A series of documented processes used to define policies and procedures for implementing and managing security controls in an enterprise environment

Table 2-5 Cybersecurity Framework Core Elements

Element Name	Description	Example
Functions The most basic cybersecurity tasks		Identify, protect, detect, respond, and recover
Categories	Tasks to be carried out for each of the five functions	To protect a function, organizations must implement software updates, install antivirus and antimalware programs, and have access control policies in place
Subcategories	Tasks or challenges associated with each category	To implement software updates (a category), organizations must be sure that Windows computers have auto-updates turned on
Information The documents or manuals that detail specific tasks for users and explain how to accomplish the tasks		A document is required that details how auto- updates are enabled on Windows computers

Frameworks

■ The most common frameworks:

- National Institute of Standards and Technology (NIST)
- International Organization for Standardization (ISO)
- American Institute of Certified Public Accountants (AICPA)
- Center for Internet Security (CIS)
- Cloud Security Alliance (CSA)

3**3**1

Regulations

Regulatory compliance

• The process of adhering to regulations

Industry regulations

- Developed by established professional organizations or government agencies using the expertise of seasoned security professionals
- Sample cybersecurity regulations categories:
 - Broadly applicable regulations
 - Industry-specific regulations
 - U.S. state regulations
 - International regulations

Legislation

- Specific legislation enacted by governing bodies
 - National
 - State laws
 - No two state laws are the same

333

Standards

Standard

- A document approved through consensus by a recognized standardization body
- Provides for framework, rules, guidance, or characteristics for products or related processes and production methods
- One cybersecurity standard is the Payment Card Industry Data Security Standard (PCI DSS)

Benchmarks/Secure Configuration Guides

■ Benchmark/secure configuration guides

- Usually distributed by hardware manufacturers and software developers
- Serve as guidelines for configuring a device or software so that it is resilient to attacks
- Usually platform/vendor-specific guides that only apply to specific products

• Guides are available for:

- Network infrastructure devices
- OSs
- Web servers
- Application servers

.35

Information Sources

- Variety of information sources including:
 - Vendor websites
 - Conferences
 - Academic journals
 - Local industry groups
 - Social media

Request for comments (RFC)

- A specialized research source
- White papers documents that are authored by technology bodies employing specialists, engineers, and scientists who are experts in their field

₃36

Summary

- Penetration testing attempts to exploit vulnerabilities just as a threat actor would
- Using internal employees to conduct a penetration test has advantages in some cases
- The first phase of a penetration test is reconnaissance, also called footprinting
- A penetration test is a single event using a manual process that is usually performed only after a specific amount of time has passed
- Vulnerability information is available to provided updated information to scanning software about the latest vulnerabilities
- ■Two data management tools are used for collecting and analyzing data
 - The Security Information and Event Management (SIEM) tool
 - Security Orchestration, Automation, and Response (SOAR) tool

3**37**

Summary (contd.)

- A cybersecurity framework is a series of documented processes used to define policies and procedures for implementation and management of security controls in an enterprise environment
- A standard is a document approved through consensus by a recognized standardization body
- Deep vulnerabilities can only be exposed through actual attacks that use the mindset of a threat actor

