Analyzing and Modeling for Predicting Stroke

T8: Yang Liu

04/28/2022

Background and Motivation

About Stroke

- Stroke is the 2nd leading cause of death and a major cause of disability worldwide
- Low- and middle-income countries endure an 80% mortality rate with hemorrhagic stroke
- Western countries spend 3 to 4% of total health care expenditures on stroke
- Prediction of stroke can help disease
 treatment and reduce burden of society

Motivation

- My research interest lies on data analysis and machine learning of materials and biomedical science
- I like Kaggle projects because they provide very good practical exercises
- As a beginner of AI, I want to learn some fundamental but useful ML skills by studying other's projects

Methods

ELI5

Results – Data Exploration

Results – Model training

■ Train/test split = 8/2

■ 10-fold cross validation

F1 Score	Random Forest	Support Vector Machine	Logistic Regression
Training	0.937	0.833	0.799
Test	0.206	0.272	0.259

Results – Hyperparameter Tuning

Results – Model Evaluation

Support Vector Machine

Logistic Regression

Results – Model Evaluation

F1	20.6%	27.2%	25.9%
Accuracy	87.2%	77.5%	75.9%
Recall	27.4%	69.4%	69.4%
Precision	16.5%	16.9%	15.9%
ROC AUC Score	59.2%	73.7%	72.9%
	Random Forest	Support Vector Machine	Logistic Regression

Results – Model Interpretation

Conclusions and Lessons

- I replicated a Kaggle project of analyzing and modeling stroke data.
- Three models were built to predict stroke. Random forest has a good accuracy, but its recall is quite bad. Support vector machine and logistic regression have more balanced performance.
- Through this project I learned some useful techniques. One is using SMOTE to balance dataset, another is to interpret models with SHAP, LIME, and ELI5.

References

- G. J. Hankey, "Stroke," (in English), Lancet, Review vol. 389, no. 10069, pp. 641-654, Feb 2017, doi: 10.1016/s0140-6736(16)30962-x.
- M. Katan and A. Luft, "Global Burden of Stroke," (in English), Semin. Neurol., Review vol. 38, no. 2, pp. 208-211, Apr 2018, doi: 10.1055/s-0038-1649503.
- https://www.kaggle.com/code/joshuaswords/predicting-a-stroke-shap-lime-explainereli5/notebook

Thank you!

Q & A

