2.2 Probabilités conditionnelles

Étant donné un univers $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$ muni d'une loi de probabilité P, et un événement A $(P(A) \neq 0)$.

Démonstration. Pour une issue élémentaire $\omega \in \Omega$ on définit sa probablité sachant A:

$$P_A(\omega) = \begin{cases} \frac{1}{P(A)} \times P(\omega) & \text{Si } \omega \text{ r\'ealise } A \ (\omega \in A) \\ 0 & \text{Si } \omega \text{ ne r\'ealise pas } A \ (\omega \notin A) \end{cases}$$

Pour un événement E:

$$P_{A}(E) = \sum_{\omega \in E} P_{A}(\omega)$$

$$= \sum_{\omega \in A \cap E} P_{A}(\omega) + \sum_{\omega \in \overline{A} \cap E} P_{A}(\omega)$$

$$= \sum_{\omega \in A \cap E} \frac{1}{P(A)} \times P(\omega) + 0$$

$$= \frac{1}{P(A)} \sum_{\omega \in A \cap E} P(\omega)$$

$$= \frac{1}{P(A)} \times P(A \cap E) \leqslant 1$$

En particulier:

$$P_A(\Omega) = \sum_{\omega \in \Omega} P_A(\omega) = \frac{1}{P(A)} \times P(A \cap \Omega) = \frac{P(A)}{P(A)} = 1$$

Définition 2.3 Soit un événement A avec $P(A) \neq 0$.

La probabilité conditionnelle sachant A d'un événement E est :

$$P_A(E) = \frac{P(A \cap E)}{P(A)}$$

Définition 2.4 Si $P_A(E) = P(E)$ alors l'événement E est dit indépendant de A.

L'événement A n'a pas d'influence statistique sur E.

Théorème 2.3 P_A est une (autre) loi de probabilité sur l'univers Ω . On parle de loi conditionnelle sachant A.

En particulier:

- $P_A(\Omega) = 1$ $P_A(\overline{E}) = 1 P_A(E)$.
- pour E et F disjoints : $P_A(E \cup F) = P_A(E) + P_A(F)$

On parle de « zoom sur A » lorsqu'on prend des probabilités condtionnelles sachant A. Les issues qui ne réalisent par A sont négligée, et celles réalisant A sont amplifiées d'un facteur $\frac{1}{P(A)} > 1$.

Si $P_A(E) > P(E)$, l'événement A est favorable à E.

2.2.1 Exercices : Probabilités conditionnelles

■ Exemple 2.1 Une population de 100 individus est décrite par le diagramme de Venn ci-dessous.

Grands Hommes

22 38 10

30

	Н	\overline{H}	Total
G	38		
\overline{G}			
Total			100

- 1) Soit les événements : H =« l'individu choisi est un homme » et G =« l'individu choisi est grand ». Complétez le tableau croisé des effectifs ci-dessus.
- 2) On choisit au hasard un individu et on note son sexe et sa taille.
 - a) L'univers des issues est $\Omega = \{GH, \dots, \dots\}$
 - b) La probabilité que l'individu choisi soit grand est P() =
 - c) La probabilité que l'individu choisi soit un homme est P() =
- 3) Complétez le tableau de la loi de probabilité P:

ω	GH	$G\overline{H}$	$\overline{G}H$	$\overline{G}\overline{H}$	Total
$P(\omega)$					1

- 4) a) Si l'on sait à l'avance que l'individu choisi est un homme alors la probabilité que l'individu soit grand se note $P_H(G) =$
 - b) Si l'on sait à l'avance que l'individu choisi est un homme alors la probabilité que l'individu soit petit se note $P_H($) =
 - c) $P_H(G) \dots P(G)$, on dit que le sexe d'un individu **a une influence statistique** sur
- 5) Complétez le tableau de la loi de probabilité P_H conditionnelle à l'événement H.

			L	11	
ω	GH	$G\overline{H}$	$\overline{G}H$	$\overline{G}\overline{H}$	Total
$P_H(\omega)$					1

- 6) a) Si l'on sait à l'avance que l'individu choisi est grand alors la probabilité que l'individu soit un homme se note $P_G(H)$ =
 - b) Si l'on sait à l'avance que l'individu choisi est grand alors la probabilité que l'individu soit une femme se note $P_G($)=
 - c) $P_G(H) \dots P(H)$, on dit que la taille d'un individusur le sexe
- 7) Complétez le tableau de la loi de probabilité P_G conditionnelle à l'événement G.

ω	GH	$G\overline{H}$	$\overline{G}H$	$\overline{G}\overline{H}$	Total
$P_G(\omega)$					1

■ Exemple 2.2 On lance deux pièces de monnaie numérotées et équilibrées et on relève les faces obtenues.

- 1) L'univers est $\Omega=\{pp,\ldots,\ldots\}$, où la 1^{re} lettre désigne la première pièce.
- 2) La loi de probabilité de l'expérience aléatoire vérifie :

ω	pp	pf	fp	ff	Total
$P(\omega)$					1

- 4) B =« la première pièce est pile ». $P(B) = \dots$
- 5) C =« les faces sont différentes ». $P(C) = \dots$
- 6) La probabilité sachant A de l'événement pp est $P_A(pp) = \frac{P(\ldots \cap \ldots)}{P(\ldots)} = \ldots$

Sachant que, il y a 1 chance sur ...que l'autre pièce est aussi pile.

7) La probabilité sachant A de l'événement C est $P_A(C) = \frac{P(\ldots \cap \ldots)}{P(\ldots)} = \ldots$

Sachant que, il y a ...chance sur ...que l'autre pièce est aussi pile.

 $P_A(C) \dots P(C)$, l'événement C (est/n'est pas) indépendant de A.

8) P_A est la loi conditionnelle sachant A. Elle vérifie :

ω	pp	pf	fp	ff	Total
$P_A(\omega)$					1

9) La probabilité sachant B de l'événement pp est $P_B(pp) = \frac{P(\ldots \cap \ldots)}{P(\ldots)} = \ldots$

Sachant que, il y a 1 chance sur ...que l'autre pièce est aussi pile.

10) La probabilité sachant B de l'événement C est $P_B(C) = \frac{P(\ldots \cap \ldots)}{P(\ldots)} = \ldots$

Sachant que, il y a ...chance sur ...que l'autre pièce est aussi pile.

 $P_B(C) \dots P(C)$, l'événement C (est/n'est pas) indépendant de A.

11) P_B est la loi conditionnelle sachant B. Elle vérifie :

	ω	pp	pf	fp	ff	Total
1	$P_B(\omega)$					1

Exercice 7 Un laboratoire pharmaceutique a réalisé des essais sur 800 patients afin d'analyser l'efficacité de leurs tests de dépistage contre le sida. Le tableau présente les résultats de l'étude :

	(M) Séropositif	(\overline{M}) Séronégatif	Total
(N) Test négatif	3	441	444
(\overline{N}) Test positif	354	2	356
Total	357	443	800

On choisit au hasard un résultat et on considère les évènements M= « Le patient est séropositif. » et N= « Le test est négatif ». Complétez :

1) $P(M) = \dots$ Il y a environ ... % de chance qu'un patient choisi au hasard soit séropositif.

4)
$$P(M \cap N) = \frac{1}{800} \approx$$
 Il y a

5)
$$P(\ldots \cup \ldots) = P(M) + P(N) - P(\ldots \ldots) = \ldots$$

Il y a

6)
$$P_M(N) = \frac{P(\ldots \cap N)}{P(\ldots)} = \ldots$$

Sachant que le patient est séropositif, il y a ... % de chance d'avoir un test négatif.

7)
$$P_{\overline{N}}(M) = \dots$$

Sachant que le test est positif, il y a ... % de chance que la personne soit séropositive.

Exercice 8

Dans une rue, 10 maisons ont un chat (C), 8 ont un chien (D), 3 ont les 2, et 7 n'ont pas d'animaux.

- $\begin{array}{c|cccc} & C & \overline{C} & \textbf{Total} \\ \hline D & & & \\ \hline \overline{D} & & & \\ \hline \textbf{Total} & & & \\ \end{array}$
- 1) Complétez le tableau à double entrée des effectis.
- 2) On choisit au hasard une maison.
 - a) Quelle est la probabilité que la maison ait un chien?
 - b) Sachant que la maison a un chat, quelle est la probabilité que la maison ait un chien?
 - c) Calculer $P_D(C)$. Interprétez.
 - d) Calculer $P_C(\overline{D})$. Interprétez.
 - e) Calculer $P_{\overline{C}}(D)$. Interprétez.

Exercice 9

On étudie la possession de smartphones (S) et tablettes (T) auprès d'un groupe d'étudiants.

	S	\overline{S}	Total
T	23	8	
\overline{T}	64	3	
Total			

- 1) Complétez le tableau croisé des effectifs. 2) On choisit un élève au hasard. Calculer les probabilités de
- posséder ...
 - a) un smartphone sachant qu'on a une tablette.
 - b) un smartphone sachant qu'on n'a pas de tablette.
 - c) une tablette sachant qu'on a un smartphone.
 - d) une tablette sachant qu'on n'a pas de smartphone.

Exercice 10

Une enquête sur l'ensemble des clients d'un garage durant l'année passée, montre que 55% des acheteurs potentiels d'un modèle automobile souhaitent qu'il soit équipé d'un GPS intégré (G), 65% souhaitent la climatisation (C) et 30% souhaitent les deux.

On choisit au hasard une fiche de l'un des clients de ce garage.

	C	\overline{C}	Total
G			
\overline{G}			
Total			1

1) Entourez les probabilités données dans l'énoncé :

$$P(\overline{C})$$

$$P(\overline{G})$$

$$P(C \cap G$$

$$P(C)$$
 $P(\overline{C})$ $P(G)$ $P(\overline{G})$ $P(C \cap G)$ $P(C \cap \overline{G})$ $P(\overline{C} \cap G)$

$$P(\overline{C} \cap G)$$

- 2) Compléter le tableau des fréquences.
- 3) Traduire à l'aide de $C, \overline{C}, G, \overline{G}, \cap$ et \cup les événements suivants et détérminez leurs probabilités.
 - a) « Il ne souhaite pas de GPS intégré »
 - b) « Il souhaite l'un des deux équipements »
- 4) Même question avec les événements :
 - a) « Il souhaite un GPS sachant qu'il souhaite la climatisation »
 - b) « Il ne souhaite pas un GPS sachant qu'il souhaite la climatisation »

Exercice 11

Lors d'une sortie scolaire les élèves devaient choisir entre faire du kayak (K) ou de l'accrobranche. 52% des élèves sont des garçons (G). 64% des élèves ont fait de l'accrobranche. 16% des élèves sont des filles ayant fait de l'accrobranche.

On choisit au hasard un élève de ce groupe.

	K	\overline{K}	Total
G			
\overline{G}			
Total			1

- 1) Entourez les probabilités données dans l'énoncé :

- $P(K) \qquad P(\overline{K}) \qquad P(G) \qquad P(\overline{G}) \qquad P(K \cap G) \qquad P(K \cap \overline{G}) \qquad P(\overline{K} \cap G) \qquad P(\overline{K} \cap \overline{G})$

- 2) Compléter le tableau des fréquences.
- 3) Traduire à l'aide de $K, \overline{K}, G, \overline{G}, \cap$ et \cup les événements suivants et détérminez leurs probabilités.
 - a) « l'élève choisi a fait du kayak »
 - b) « l'élève choisi est un garçon qui a fait du kayak »
 - c) « l'élève choisi a fait du kayak sachant que c'est un garçon »
 - d) « l'élève choisi est un garçon sachant qu'il a fait du kayak »

2.2.2 Solutions et indications des exercices : probabilité conditionnelle

solution de l'exercice 7.

1) $P(M) = \frac{357}{800} = 0.44625$

Il y a 44, $\breve{6} \breve{2} \breve{5} \%$ de chance qu'un patient choisi au hasard soit séropositif.

2) $P(\overline{M}) = 1 - P(M) = 1 - 0.44625 = 0.55375$

Il y a 55.375% de chance qu'un patient choisi au hasard ne soit pas séropositif.

3) $P(N) = \frac{444}{800} = 0.555$ Il y a 55,5% de chance qu'un test choisi au hasard soit négatif.

4) $P(M \cap N) = \frac{3}{800} = 0.00375$

Il y a 0,375% de chance que le test d'une personne soit séronégatif.

5) $P(M \cup N) = P(M) + P(N) - P(M \cap N) = 0.44625 + 0.555 - 0.00375 = 0.9975$

Il y a 99,75% de chance que le test soit négatif ou que la personne soit séropositive.

6) On ne considère ici que les 357 patients séropositif. Sur ces personnes, 3 ont un test négatif.

 $P_M(N) = \frac{3}{357} \simeq 0,008403$. Sachant que le patient est séropositif, il y a 0,84% de chance d'avoir un

7) On ne considère ici que les 444 tests négatif. Sur ces tests, 3 sont ceux de personnes séropositives.

 $P_N(M) = \frac{3}{444} \simeq 0,00675$. Sachant que le test est négatif, il y a 0,675% de chance que la personne soit séropositive.

solution de l'exercice 8

000	accord ac	v cac	10000	<u> </u>
		C	\overline{C}	Total
1)	D	3	5	8
1)	\overline{D}	7	7	14
	Total	10	12	22

2) $P(C) = 3/22, P_C(D) = P(D \cap C)/P(C) = 3/10, P_D(C) = 3/8, P_C(\overline{D}) = 1 - P_C(D) = 7/10, \text{ et}$ $P_{\overline{C}}(D) = 5/12.$

solution de l'exercice 9

000	accord ac	v Cac	Cacrette v.			
		S	\overline{S}	Total		
1)	T	23	8	31		
	\overline{T}	64	3	67		
	Total	87	11	98		
~ \	D (0) 00 (0 D (0)					

2) $P_T(S) = 23/87$, $P_{\overline{T}}(S) = 64/67$, $P_S(T) = 23/31$ et $P_{\overline{S}}(T) = 8/11$.

solution de l'exercice 10.

Année 2022/2023

LG Jeanne d'Arc, 1èreSPE

1)

		C	\overline{C}	Total
2)	G	0.30	0.25	0.55
	\overline{G}	0.35	0.10	0.45
	Total	0.65	0.35	1

3)
$$\overline{P(\overline{G})} = 1 - 0.65 = 0.35, P(G \cap C) = 0.30$$

4)
$$P_C(G) = P(G \cap C)/P(C) = 0.30/0.65$$
 et $P_C(\overline{G}) = 1 - P_C(G) = 0.35/0.65$

solution de l'exercice 11.

1)

		K	\overline{K}	Total
2)	G			0.52
	\overline{G}		0.16	
	Total		0.64	1

3)
$$P(K) = 1 - P(\overline{K}) = 1 - 0.64 = 0.36; P(G \cap K) = P(K) + P(G) - P(K \cup G) = 0.04; P_G(K) = 0.04/0.52 = 1/13 \text{ et } P_K(G) = 0.04/0.36 = 1/9;$$