Applied Analytics and Predictive Modeling

Spring 2020

Lecture-3

Lydia Manikonda

manikl@rpi.edu

Today's agenda

- Data Preprocessing
- Dimensionality Reduction
- Including class exercises
- Case study-1

Overview

What is data?

- Collection of data objects and their attributes
- According to Tan et al.,
- An attribute is a property or characteristic of an object
 - Also known as variable, field, characteristic, dimension, or feature
- A collection of attributes describe an object
 - Also known as tuple, record, point, case, sample, etc.

Attributes

More views of data

- Data may have parts
- The different parts of data may have relationships
- More generally, data may have structure
- Data can be incomplete

Attribute values

- Attribute values are numbers or symbols assigned to an attribute for a particular object
- Distinction between attributes and attribute values
 - Same attribute can be mapped to different attribute values
 - Example: Height can be measured in feet or meters
 - Different attributes can be mapped to the same set of values
 - Example: Attribute values for ID and age are integers
 - But properties of attribute values can be different

Types of Attributes

Nominal

Examples: ID numbers, zip codes, eye color

Ordinal

• Examples: Rankings (expertise level on a scale of 1-10), grades, height {tall, medium, short}

Interval

Examples: Calendar dates, temperature in Celsius or Fahrenheit

Ratio

• Examples: Temperature in Kelvin, length, time, counts

Discrete and Continuous attributes

Discrete Attribute:

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Continuous Attribute:

- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Types of datasets

- Record
 - Data Matrix
 - Document Data
 - Transaction Data
- Graph
 - World Wide Web
 - Molecular Structures
- Ordered
 - Spatial Data
 - Temporal Data
 - Sequential Data
 - Genetic Sequence Data

Important characteristics of data

- Dimensionality (number of attributes)
 - High dimensional data brings a number of challenges
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale
- Size
 - Type of analysis may depend on size of data

Record data

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Document data

- Each document becomes a 'term' vector
 - Each term is a component (attribute) of the vector
 - The value of each component is the number of times the corresponding term occurs in the document.

	team	coach	play	ball	score	game	win	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Transaction data

- A special type of record data, where
 - Each record (transaction) involves a set of items.
 - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Graph Data

• Examples: Generic graph, a molecule, and webpages

Benzene Molecule: C6H6

Useful Links:

- Bibliography
- Other Useful Web sites
 - ACM SIGKDD
 - o KDnuggets
 - o The Data Mine

Knowledge Discovery and Data Mining Bibliography

(Gets updated frequently, so visit often!)

- Books
- General Data Mining

Book References in Data Mining and Knowledge Discovery

Usama Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy uthurasamy, "Advances in Knowledge Discovery and Data Mining", AAAI Press/the MIT Press, 1996.

J. Ross Quinlan, "C4.5: Programs for Machine Learning", Morgan Kaufmann Publishers, 1993. Michael Berry and Gordon Linoff, "Data Mining Techniques (For Marketing, Sales, and Customer Support), John Wiley & Sons, 1997.

General Data Mining

Usama Fayyad, "Mining Databases: Towards Algorithms for Knowledge Discovery", Bulletin of the IEEE Computer Society Technical Committee on data Engineering, vol. 21, no. 1, March 1998.

Christopher Matheus, Philip Chan, and Gregory Piatetsky-Shapiro, "Systems for knowledge Discovery in databases", IEEE Transactions on Knowledge and Data Engineering, 5(6):903-913, December 1993.

Ordered Data

Sequences of transactions

the sequence

Ordered Data

Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCC CGCAGGGCCCGCCCCGCGCCGTC GAGAAGGCCCGCCTGGCGGCG GGGGGAGGCGGGCCCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC TGGGCTGCCTGCGACCAGGG

Ordered Data

• Spatio-temporal data

Average Monthly Temperature of land and ocean

Examples

- ID numbers
 - Nominal, ordinal, or interval?

- Number of cylinders in an automobile engine
 - Nominal, ordinal, or ratio?

- Biased Scale
 - Interval or Ratio

Data Preprocessing

- Aggregation
- Sampling
- Dimensionality Reduction
- Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation

Aggregation

- Combining two or more attributes (or objects) into a single attribute (or object)
- Purpose
 - Data reduction
 - Reduce the number of attributes or objects
 - Change of scale
 - Cities aggregated into regions, states, countries, etc.
 - Days aggregated into weeks, months, or years
 - More "stable" data
 - Aggregated data tends to have less variability

Example: Precipitation in Australia

- This example is based on precipitation in Australia from the period 1982 to 1993.
- The next slide shows
 - A histogram for the standard deviation of average monthly precipitation for 3,030 0.5° by 0.5° grid cells in Australia, and
 - A histogram for the standard deviation of the average yearly precipitation for the same locations.
- The average yearly precipitation has less variability than the average monthly precipitation.
- All precipitation measurements (and their standard deviations) are in centimeters.

Example: Precipitation in Australia...

Variation of precipitation in Australia

Standard Deviation of Average Monthly Precipitation

Standard Deviation of Average Yearly Precipitation

Sampling

- Sampling is the main technique employed for data reduction.
 - It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians often sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Sampling is typically used in data mining because processing the entire set of data of interest is too expensive or time consuming.

Sampling

- The key principle for effective sampling is the following:
 - Using a sample will work almost as well as using the entire data set, if the sample is representative
 - A sample is representative if it has approximately the same properties (of interest) as the original set of data

Sample size

Types of Sampling

- Simple Random Sampling
 - There is an equal probability of selecting any particular item
 - Sampling without replacement
 - As each item is selected, it is removed from the population
 - Sampling with replacement
 - Objects are not removed from the population as they are selected for the sample.
 - In sampling with replacement, the same object can be picked up more than once
- Stratified sampling
 - Split the data into several partitions; then draw random samples from each partition

Curse of dimensionality

When dimensionality increases, data becomes increasingly sparse in the space that it occupies

Dimensionality Reduction

• Purpose:

- Avoid curse of dimensionality
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

Techniques

- Principal Components Analysis (PCA)
- Singular Value Decomposition
- Others: supervised and non-linear techniques

Feature subset Selection

- Another way to reduce dimensionality of data
- Redundant features
 - Duplicate much or all of the information contained in one or more other attributes
 - Example: purchase price of a product and the amount of sales tax paid
- Irrelevant features
 - Contain no information that is useful for the data mining task at hand
 - Example: students' ID is often irrelevant to the task of predicting students'
 GPA
- Many techniques developed, especially for classification

Feature Creation

- Create new attributes that can capture the important information in a data set much more efficiently than the original attributes
- Three general methodologies:
 - Feature extraction
 - Example: extracting edges from images
 - Feature construction
 - Example: dividing mass by volume to get density
 - Mapping data to new space
 - Example: Fourier and wavelet analysis

Discretization

- Discretization is the process of converting a continuous attribute into an ordinal attribute
 - A potentially infinite number of values are mapped into a small number of categories
 - Discretization is commonly used in classification
 - Many classification algorithms work best if both the independent and dependent variables have only a few values

Binarization

- Binarization maps a continuous or categorical attribute into one or more binary variables
- Typically used for association analysis
- Often convert a continuous attribute to a categorical attribute and then convert a categorical attribute to a set of binary attributes
 - Association analysis needs asymmetric binary attributes
 - Examples: eye color and height measured as {low, medium, high}

Attribute Transformation

- An attribute transform is a function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values
 - Simple functions: x^k, log(x), e^x, |x|
 - Normalization
 - Refers to various techniques to adjust to differences among attributes in terms of frequency of occurrence, mean, variance, range
 - Take out unwanted, common signal, e.g., seasonality
 - In statistics, standardization refers to subtracting off the means and dividing by the standard deviation

Exercises-1

Principal Component Analysis

Dimensionality Reduction

Eigenvalues and Eigenvectors

- The eigenvector is a vector whose direction will not be affected by a linear transformation.
- Hence eigenvectors represents the direction of largest variance of data while the eigenvalue decides the magnitude of this variance in those directions.

Computing eigenvalues and eigenvectors

- Let A be a linear transformation represented by a matrix A
 - If there is a vector $X \in R \neq 0$ such that $AX = \lambda X$

LDA

- Step-1: Standardize the data
 - To normalize the variances of data attributes
 - Avoids biased results
 - For any attribute, one way to do is to subtract the mean and divide by standard deviation
- Step-2: Covariance matrix computation
 - How are the attributes related to each other
 - Matrix is symmetric with diagonal values are variances
- Step-3: Compute Eigenvalues and Eigenvectors (that are principal components)
 - principal components represent the directions of the data that explain a maximal amount of variance
 - 10-dimensional data gives you 10 principal components
 - 1st component has the maximum information followed by 2nd component and so on.

Using linear combinations to redistribute the variability

- Z1 and Z2 are two linear combinations
- Z1 has the highest variation or spread of values
- Z2 has the lowest variation

Exercises-2

Case Study-1