Patent Number:

JP6234318

Publication date:

1994-08-23

Inventor(s):

SHIROTA YUICHI; others: 03

Applicant(s):

NIPPONDENSO CO LTD; others: 01

Requested Patent:

☐ JP6234318

Application Number: JP19930009649 19930125

Priority Number(s): IPC Classification:

B60H1/00

EC Classification:

Equivalents:

JP3395229B2

Abstract

PURPOSE:To perform agreeable air-conditioning corresponding to the temperature sensitive level desired by an occupant even at the time of using a temperature sensitive auxiliary machine and aim at energy saving.

CONSTITUTION:An air conditioner for an automobile is provided with a temperature sensitive level setting means for setting the target value of air-conditioning control manually to a temperature sensitive level S on the basis of the temperature sensitivity felt by an occupant, and a temperature sensitive auxiliary machine action level setting means for setting the action level of a temperature sensitive auxiliary machine manually to a temperature sensitive level Sseat. A control means reads the set temperature sensitive levels S, Sseat and the like (step 201) and computes the vehicle interior set temperature Tset and the heating value of a seat heater so that the temperature sensitivity felt by the occupant becomes the set temperature sensitive levels S, Sseat while taking account of heating or cooling performed by the temperature sensitive auxiliary machine (step 202). The control means then computes the target blowoff temperature TAO from the vehicle interior set temperature Tset, internal air temperature, outside air temperature, the quality of solar radiation as the data (step 203), and controls an air-conditioning unit and the seat heater (step 204).

Data supplied from the esp@cenet database - 12

(19)日本国特許庁(JP)

(12) 公 開 特 許 公 報 (A)

(11)特許出願公開番号

特開平6-234318

(43)公開日 平成6年(1994)8月23日

(51)Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

最終頁に続く

B 6 0 H 1/00

102 Q 101 H

審査請求 未請求 請求項の数5 OL (全 17 頁)

(74)代理人 弁理士 佐藤 強

(71)出願人 000004260 (21)出願番号 特願平5-9649 日本電装株式会社 愛知県刈谷市昭和町1丁目1番地 平成5年(1993)1月25日 (22)出願日 (71)出願人 000003207 トヨタ自動車株式会社 愛知県豊田市トヨタ町1番地 (72)発明者 城田 雄一 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会补内 (72) 発明者 田中 尚 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内

(54)【発明の名称】 自動車用空調装置

(57) 【要約】

【目的】 温感補機の使用時にも乗員が望む温感レベル に合わせた快適な空調を行い、且つ、省エネルギ化を図 る。

【構成】 乗員の感じる温感を基準にして空調制御の目標値を温感レベルSで手動設定する温感レベル設定手段を設けると共に、温感補機の動作レベルを温感レベルS seatで手動設定する温感補機動作レベル設定手段を設ける。制御手段は、設定された温感レベルS, S seat等を読み込み(ステップ201)、温感補機による加温又は冷却を考慮して、乗員の感じる温感が設定された温感レベルS, S seatとなるように車室内設定温度T set とシートヒータ発熱量を計算する(ステップ202)。次いで、車室内設定温度T set , 内気温度, 外気温度, 日射量をデータにして目標吹出温度T AOを計算し(ステップ203)、空調ユニットとシートヒータを制御する(ステップ204)。

【特許請求の範囲】

【請求項1】 送風ダクト内に送風手段,吹出風温度調節手段を配設して構成され、温度調節された風を車室内に吹き出す空調ユニットと、

前記車室内の乗員を輻射熱又は熱伝導により直接的に加 温又は冷却して前記空調ユニットによる空調を補助する 温感補機と、

乗員の感じる温感を基準にして空調制御の目標値を温感 レベルで手動設定する温感レベル設定手段と、

前記温感補機による加温又は冷却を考慮して乗員の感じる温感が前記温感レベル設定手段により設定された温感レベルとなるように前記空調ユニットの動作を前記温感補機の動作と関連付けて制御する制御手段とを備えた自動車用空調装置。

【請求項2】 前記温感補機は、乗員の座るシートの表面温度を調節するシート温度調節手段であることを特徴とする請求項1記載の自動車用空調装置。

【請求項3】 前記温感補機は、乗員に向かって輻射熱 を放散する輻射熱発生手段であることを特徴とする請求 項1記載の自動車用空調装置。

【請求項4】 前記温感補機の動作レベルを温感レベル 又は温度で手動設定する温感補機動作レベル設定手段を 備え、前記制御手段は、前記温感補機を前記温感補機動 作レベル設定手段により設定された動作レベルで動作さ せると共に、乗員の感じる温感が前記温感レベル設定手 段により設定された温感レベルとなるように前記空調ユニットの動作を前記温感補機の動作と関連付けて制御す ることを特徴とする請求項1乃至3のいずれかに記載の 自動車用空調装置。

【請求項5】 前記制御手段は、前記空調ユニットの消費エネルギと前記温感補機の消費エネルギとの合計値を最小にするように前記空調ユニット及び温感補機の動作レベルを自動的に設定することを特徴とする請求項1乃至3のいずれかに記載の自動車用空調装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、温度調節された風を車室内に吹き出す空調ユニットに加え、シートヒータ、輻射ヒータ等の温感補機を備えた自動車用空調装置に関する。

[0.002]

【従来の技術】近年の自動車においては、空調ユニット (エアコン)による冷暖房を、シートヒータ、輻射ヒータ等の温感補機によって補助するようにしたものがあり、例えば、実開平4-62206号公報に記載されているように、ドアの内側面に沿ってヒートパイプを配設したり、或は、実開平4-38817号公報に記載されているように、乗員の座るシートや仮眠用ベッドの下部に通気路を設け、この通気路に空調ユニットから吹き出される風の一部を導入して、シートや仮眠用ベッドの温

度を調節するようにしたものがある。これらのものは、いずれも、空調ユニットによる冷暖房を、車室内の温度が乗員の設定した温度となるように制御しながら、温感補機からの輻射熱又は熱伝導により乗員を直接的に加温 又は冷却するものである。

[0003]

【発明が解決しようとする課題】ところで、空調ユニットによる冷暖房の設定温度が同じであっても、温感補機を使用する場合と使用しない場合とでは乗員の感じる温感も当然異なってくる。しかしながら、多くの場合、乗員は、温感補機の使用の有無とは関係なく、空調ユニットによる冷暖房の設定温度を習慣的に決めてしまうため、温感補機の使用時に冷暖房が過剰となってしまい、乗員に不快感を感じさせてしまうばかりか、エネルギの無駄使いにもなり、近年の重要な技術的課題である省エネルギ化の要請にも反する。

【0004】本発明はこのような事情を考慮したもので、その目的は、温感補機の使用時にも乗員が望む温感レベルに合わせた快適な空調を実現できると共に、省エネルギ化も達成できる自動車用空調装置を提供することにある。

[0005]

【課題を解決するための手段】上記目的を達成するために、本発明の自動車用空調装置は、送風ダクト内に送風手段,吹出風温度調節手段を配設して構成され、温度調節された風を車室内に吹き出す空調ユニットと、前記車室内の乗員を輻射熱又は熱伝導により直接的に加温又は冷却して前記空調ユニットによる空調を補助する温感補機と、乗員の感じる温感を基準にして空調制御の目標値を温感レベルで手動設定する温感レベル設定手段と、前記温感補機による加温又は冷却を考慮して乗員の感じる温感が前記温感レベル設定手段により設定された温感レベルとなるように前記空調ユニットの動作を前記温感補機の動作と関連付けて制御する制御手段とを備えた構成となっている(請求項1)。

【0006】この場合、前記温感補機として、乗員の座るシートの表面温度を調節するシート温度調節手段を採用したり(請求項2)、乗員に向かって輻射熱を放散する輻射熱発生手段を採用しても良い(請求項3)。

【0007】更に、前記温感補機の動作レベルを温感レベル又は温度で手動設定する温感補機動作レベル設定手段を設け、前記制御手段は、前記温感補機を前記温感補機動作レベル設定手段により設定された動作レベルで動作させると共に、乗員の感じる温感が前記温感レベル設定手段により設定された温感レベルとなるように前記空調ユニットの動作を前記温感補機の動作と関連付けて制御するようにしても良い(請求項4)

或は、温感補機動作レベル設定手段を設けずに、前記制 御手段によって、前記空調ユニットの消費エネルギと前 記温感補機の消費エネルギとの合計値を最小にするよう に前記空調ユニット及び温感補機の動作レベルを自動的 に設定するようにしても良い(請求項5)。

[0008]

【作用】請求項1の構成によれば、空調を開始するに際して、乗員が温感レベル設定手段を操作して空調制御の目標値を温感レベルで設定する。ここで、温感レベルとは、図3に示すように、乗員の感じる温感を数値等の量で表すものである。

【0009】この後、空調運転を開始すると、制御手段は、温感補機(請求項2ではシート温度調節手段,請求項3では輻射熱発生手段)による加温又は冷却を考慮して乗員の感じる温感が前記温感レベル設定手段により設定された温感レベルとなるように空調ユニットの動作を温感補機の動作と関連付けて制御する。

【0010】この制御原理を図1を用いて説明する。図1において、例えば、現時点の車室内の空調状態がN点(車室内設定温度Tset = $23 \, \mathbb{C}$,シート温度調節能力 = 0,シート表面温度Tseat = $34 \, \mathbb{C}$)であるときに、例えば $10 \, \mathbb{W}$ のシート暖房能力を加えると、シート表面温度Tseatが約 $38 \, \mathbb{C}$ にまで上昇する。この際、空調ユニットによる暖房能力を変えなければ、車室内の空調状態がN点からA・点へと移行して、温感レベルSが

"0"から"1"へと変化し、暖房が過剰になってしまう。そこで、本発明では、温感レベルSをN点と同じ状態"0"に維持するために、シート暖房能力を考慮して空調ユニットによる暖房能力(車室内設定温度 T set)を少し低下させて、A点へ移行させる。この際、シート表面温度 T seat (温感補機による冷暖房温度)は、乗員に不快感を感じさせない範囲(図1のシート温度調節可能領域)内で設定することになる。

【0011】尚、図1は温感補機としてシートヒータ等のシート温度調節手段を採用した構成(請求項2)についての制御例であるが、ドア内面等に輻射熱発生手段を設けた構成(請求項3)についても制御原理は同じである。

【0012】一方、請求項4のように、温感補機動作レベル設定手段を設けた構成のものでは、乗員がこの温感補機動作レベル設定手段を操作して、温感補機の動作レベルを温感レベル又は温度で手動設定すると共に、温感レベル設定手段を操作して空調制御の目標値を温感レベルで設定する。この後、制御手段は、温感補機を設定された動作レベルで動作させると共に、乗員の感じる温感が前記温感レベル設定手段により設定された温感レベルとなるように前記空調ユニットの動作を前記温感補機の動作と関連付けて制御する。

【0013】また、請求項5では、乗員が温感補機の動作レベルを手動設定するのではなく、制御手段が、空調ユニットの消費エネルギと温感補機の消費エネルギとの合計値を最小にするように空調ユニット及び温感補機の動作レベルを自動的に設定する。この制御原理を図2を

用いて説明する。図2は温感レベルを一定に維持するときのシート表面温度Tseatと空調ユニットの消費エネルギQair,シート温度調節手段の消費エネルギQseat,全消費エネルギQtotal (=Qair +Qseat)の関係を示したものである。Qseat=0の場合に、Qair,Qtotalが最大になり、エネルギ効率が最も悪くなるが、シート温度調節手段を動作させてシート表面温度Tseatを上げるに従って、車室内設定温度Tset (空調ユニットの消費エネルギQair)を低下させることができる。

【0014】この場合、空調ユニットによる暖房は車室 内全体を暖房しなければならないので、シート温度調節 手段による局所的な暖房効果によって車室内設定温度T setを低下させることができれば、この温度低下に伴う 空調ユニットの消費エネルギQair の節約量がシート温 度調節手段の消費エネルギQseatよりも大きくなり、結 果的に全消費エネルギQtotal を低減させることができ る。ちなみに、図2に斜線で示された部分が省エネルギ 効果であり、請求項5では、この省エネルギ効果が最大 となるように空調ユニット及びシート温度調節手段(温 感補機)の動作レベルが自動的に設定される。実際に は、シート表面温度Tseat(温感補機による冷暖房温 度)は、乗員に不快感を感じさせない範囲(図2のシー ト温度調節可能領域)内で設定する必要があり、この範 囲(図2の二重斜線領域)内で省エネルギ効果が最大と なるように制御されることになる。

[0015]

【実施例】以下、本発明の第1実施例を図3乃至図11 に基づいて説明する。まず、図4に基づいて空調ユニッ ト21の構成を説明する。送風ダクト22の上流側に は、車室外の空気(外気)を吸入する外気吸入口23 a, 23bと、車室内の空気(内気)を吸入する内気吸 入口24a、24bとが設けられ、これら各吸入口23 a, 23b, 24a, 24bから吸入する内外気の混合 割合が内外気ダンパ25a,25bによって切り替えら れるようになっている。上記送風ダクト22内には、送 風手段たるプロワ26が設けられ、このプロワ26の下 流側に、吹出風温度調節手段を構成する冷凍サイクル2 7のエバポレータ28、エアミックスダンパ29及びエ ンジン冷却水が循環するヒータコア30が設けられてい る。上記エアミックスダンパ29の開度を調節すること によって、ヒータコア30を通過する風と通過しない風 の混合割合を調節して、吹出風の温度を調節するように なっている。そして、送風ダクト22の下流側には、自 動車の前面ガラスに向けて風を吹き出すDEF吹出口3 1と、乗員の上半身に向けて風を吹き出すFACE吹出 口32と、乗員の足元に向けて風を吹き出すF〇〇T吹 出口33が設けられ、これら各吹出口31~33にそれ ぞれダンパ34~36が設けられている。

【0016】一方、冷凍サイクル27は、コンプレッサ37の吐出口37aから吐出した高温ガス冷媒をコンデ

ンサ38で放熱させて凝縮・液化させ、この液冷媒をレシーバ39と膨張弁40を介してエバポレータ28に供給し、このエバポレータ28を通過する風を冷却する。このエバポレータ28を通過する風を冷却する。このエバポレータ28内でガス化した冷媒は吸入口37bからコンプレッサ37の内部に吸入され、再び、圧縮されてコンデンサ38へ吐出される。上記膨張弁40の開度は、エバポレータ28の出口側の冷媒温度を検出する感温筒41により、冷房負荷に応じてエバポレータ28への冷媒供給量が適正となるように、自動調節される。尚、コンプレッサ37は、エンジン(図示せず)を駆動源とし、その駆動力が電磁クラッチ42を介して伝達されるようになっている。

【0017】以上のように構成された空調ユニット21 は、電子制御ユニット(以下「ECU」という)43に よって制御される。このECU43には、環境条件を検 出するために、内気温度センサ44,外気温度センサ4 5及び日射量を検出する日射センサ46からそれぞれ検 出信号Tr, Tam, Ts が入力されると共に、インスト ルメントパネル57(図5参照)の中央部に設けられた エアコン操作パネル47から操作信号が入力される。こ のエアコン操作パネル47には、図6に示すように、空 調運転をオン/オフするA/Cスイッチ48と、運転モ ードを自動/手動に切り替えるAUTOスイッチ49 と、吹出モードを「FACE」, 「B/L」, 「FOO T」、「DEF」に切り替える4つの吹出モード切替ス イッチ50~53と、吸気モードを外気吸入/内気循環 に切り替える吸気モード切替スイッチ54と、空調制御 の目標値となる温感レベルSを手動設定する温感レベル 設定手段たる温感レベル設定スイッチ55と、設定され た温感レベルSを表示する温感レベル表示部56とが設 けられている。

【0018】上記温感レベル設定スイッチ55により設定する温感レベルSは、図3に示すように、乗員の感じる温感を例えば11段階にランク付けしたものであり、例えば、乗員が「暖かい」と感じる場合には温感レベルSを"2"に設定し、「寒い」と感じる場合には温感レベルSを"-4"に設定することになる。本実施例では、温感レベル設定スイッチ55は、シーソー式のプッシュスイッチにより構成され、左側の「冷」部分を1回プッシュ操作するごとに温感レベルSが1段階ずつ上昇するようになっている。この温感レベル設定スイッチ55を操作する前の初期状態では、温感レベルSが"0"に自動的に設定される。

【0019】また、温感レベル表示部56は、11段階の温感レベルSに対応して11個の発光素子56aを横一列に配列して構成され、点灯する発光素子56aの位置によって温感レベルSの設定状態を表示する。更に、温感レベル設定スイッチ55を1回プッシュ操作するご

とに、例えば「ピィ」という操作音を発生するようになっている。

【0020】一方、図7に示すように、乗員の座るシート60のクッション材61の内部には、温感補機としてシート温度調節手段たるシートヒータ62が埋設されている。このシートヒータ62は、フレキシブルな面状と一夕により構成され、図8に示すように、面状発熱体63の両端に電極64,65を設け、これら全体を絶縁樹脂66で被覆すると共に、各電極64,65からリード線67,68を導出した構成となっている。このシートとータ62は、前席の左右2つのシート60と後席のシート69(図5参照)の左右両側にそれぞれ埋設され、各席の乗員が自席のシートヒータ62の動作レベルを任意に調節できるように、前席のドア70の内側部と後席のシート69の中央部に、シートヒータ操作パネル74が合計4個設けられている。

【0021】各席のシートヒータ操作パネル74には、図9に示すように、シートヒータ62の動作レベルを温感レベルSseatで手動設定するための温感補機動作レベル設定手段たるシート温感レベル設定スイッチ71が設けられている。このシート温感レベル設定スイッチ71は、前述したエアコン操作パネル47の温感レベル設定スイッチ55と同じ構成であり、操作方法も同じである。このシート温感レベル設定スイッチ71の近傍には、設定されたシート温感レベルSseatを表示するシート温感レベル表示部72と、シートヒータ62をオン/オフする電源スイッチ73とが設けられている。

【0022】本第1実施例では、運転席のシート温感レベル設定スイッチ71のみがECU43と接続されて、空調ユニット21の動作が運転席のシートヒータ62の動作と関連付けて制御されるようになっている。従って、運転席以外の座席のシート温感レベル設定スイッチ71はECU43とは接続されておらず、運転席以外の座席のシートヒータ62は空調ユニット21の制御とは切り離されて独立して動作するようになっている。このようにした理由は、運転者が他の乗員を乗せずに1人だけで乗る場合が多いので、運転者を中心にした空調制御を行うことにより、運転者にとって最も快適な空調状態を作り出すためである。

【0023】前述したECU43は、マイクロコンピュータを主体として構成され、内蔵のROM(図示せず)には、図10に示す制御プログラムが記憶されている。このECU43は、図10の制御プログラムを実行することにより、運転席のシートヒータ62による暖房効果を考慮して、運転者の感じる温感が温感レベル設定スイッチ55により設定された温感レベルSとなるように、空調ユニット21の動作を運転席のシートヒータ62の動作と関連付けて制御する制御手段として機能する。

【0024】以下、このECU43による制御内容を図10のフローチャートに従って説明する。まず、エアコ

ン操作パネル47の温感レベル設定スイッチ55と運転 席のシート温感レベル設定スイッチ71により設定され た温感レベルS、Sseatを読み込むと共に、内気温度セ ンサ44により検出した車室内の空気(内気)の温度T r と、外気温度センサ45により検出した車室外の空気 (外気) の温度Tamと、日射センサ46により検出した 日射量Ts とを読み込む(ステップ201)。次いで、 シートヒータ62による暖房効果を考慮して、運転者の 感じる温感が温感レベル設定スイッチ55により設定さ れた温感レベルS、Sseatとなるように、車室内設定温 度Tset と運転席のシートヒータ62の発熱量を、図1 1の関係から次のようにして求める(ステップ20 2)。

【0025】例えば、エアコン操作パネル47の温感レ ベル設定スイッチ55により設定された温感レベルSが "0"である場合には、S=0とシート表面温度Tseat の上限値40℃との交点Momaxと、S=0とシート温度 調節能力=0との交点Mominとの範囲内で、S=0の線 上でシート温感レベルSseatに応じて車室内設定温度T set が設定される。この際、シート温感レベルS seat も "0"に設定されている場合には、運転席のシートヒー タ62の発熱量をMominとMomaxとの中点Moにて定ま る12Wに設定すると共に、車室内設定温度をTrlに設 定する。一方、運転席のシート温感レベル設定スイッチ

ここで、Tr は内気温度センサイイにより検出した内気 温度、Tamは外気温度センサ45により検出した外気温 度、Ts は日射センサ46により検出した日射量、Kse t, Kr, Kam, Ks は係数、Cは定数である。

【0030】この後、空調ユニット21から車室内に吹 き出す風の温度が、上記(1)式により計算した目標吹 出温度TAOとなるように空調ユニット21を制御すると 共に、シートヒータ62の発熱量がステップ202で求。 めた値となるように制御し(ステップ204)、以後、 ステップ201に戻って上述した処理を繰り返すことに より、運転席のシートヒータ62による暖房効果を考慮 して、運転者の感じる温感が温感レベル設定スイッチ5 5により設定された温感レベルSとなるように、空調ユ ニット21の動作を運転席のシートヒータ62の動作と 関連付けて制御する。このため、シートヒータ62の使 用時でも空調ユニット21による暖房が過剰になるよう なことはなく、運転者が望む温感レベルSに合わせた快 適な空調を実現できると共に、省エネルギ化も達成でき る。

【0031】尚、上記第1実施例では、シートヒータ6 2は、面状発熱体63を絶縁樹脂66で被覆した構成と なっているが、図12に示すように、布材77の内部 に、絶縁被覆された柔軟なヒータ線78を蛇行状に設け た構成としても良く、或は、電気ヒータ以外の温水ヒー 夕やヒートパイプを用いる構成としても良い。

71が操作されて、シート温感レベルSseatが変更され れば、S=0の線上をMominとMomaxの範囲内で設定点 が段階的に変更され、例えば、設定点がMominに移った 場合には、運転席のシートヒータ62をオフして、シー ト表面温度Tseatを下げる一方、車室内設定温度をTr2 に上げることにより、温感レベルSを"0"に維持す

【0026】尚、図11において、S=2の場合には、 Sseat=0のときに設定点がM2となり、運転席のシー トヒータ62の発熱量を7Wに設定する。また、S=-2の場合には、Sseat=0のときに設定点がM-2とな り、運転席のシートヒータ62の発熱量を16Wに設定 する。

【0027】この場合、温感レベルSがいずれの値であ っても、シート表面温度Tseatの上限値は40℃とな り、40℃以下の範囲内でシートヒータ62の発熱量が 設定される。この理由は、シート表面温度Tseatが40 ℃以上になると、乗員が熱く感じるようになるからであ る。

【0028】以上のようにして、車室内設定温度Tset と運転席のシートヒータ62の発熱量を求めた後、空調 ユニット21から車室内に吹き出す風の目標吹出温度T AOを次の(1)式により計算する(ステップ203)。 [0029]

TAO=Kset · Tset - Kr · Tr - Kam · Tam-Ks · Ts - C · · · (1)

【0032】また、上記第1実施例では、運転者が他の 乗員を乗せずに1人だけで乗る場合が多いという事情を 考慮して、空調ユニット21と関連付けて制御するシー トヒータ62を運転席だけに限定し、運転者を中心にし た空調制御を行うことにより、運転者にとって最も快適 な空調状態を作り出すようにしているが、運転席以外の 座席のシートヒータ62についても空調ユニット21と 関連付けて制御するようにしても良いことは言うまでも ない。

【0033】また、上記第1実施例では、シートヒータ 62の動作レベル (発熱量) をシート温感レベル設定ス イッチ71によりシート温感レベルSseatで設定するよ うにしたが、各席にシート表面温度Tseatを手動設定す るシート温度設定器(温感補機動作レベル設定手段)を 設け、このシート温度設定器の操作によりシートヒータ 62の動作レベルをシート表面温度Tseatで設定するよ うにしても良い。

【0034】或は、シート温感レベル設定スイッチ7 1,シート温度設定器等の温感補機動作レベル設定手段 を廃止して、シートヒータ62(シート温度調節手段) 等の温感補機の動作レベルを、エアコン操作パネル47 の温感レベル設定スイッチ55により設定された温感レ ベルSにより自動的に設定して、全体の消費エネルギを 最小 (省エネルギ効果を最大) にするようにしても良 ۲٧°

【0035】以下、これを具体化した本発明の第2実施例を図13のフローチャートに従って説明する。本第2実施例では、温感補機として、シートヒータ62に代え、冷房・暖房が可能なシート温度調節手段を採用している。このシート温度調節手段は、図示はしないが、例えば実開平4-38817号公報に記載されているように、乗員の座るシート60の下部に通気路を設け、この通気路に空調ユニット21から吹き出される風の一部を導入して、シート表面温度を調節するように構成したり、或は、シート60の内部に熱電素子を埋設し、この熱電素子に流す電流の向きを反対にすることにより冷房・暖房の切替を行うと共に、その電流値を変化させることにより熱電素子の発熱量・吸熱量を制御してシート表面温度を調節するようにしても良い。

【0036】本第2実施例の制御では、図13に示すよ うに、まず、エアコン操作パネル47の温感レベル設定 スイッチ55により設定された温感レベルSと、内気温 度センサ44により検出した内気温度Tr と、外気温度 センサ45により検出した外気温度Tamと、日射センサ 46により検出した日射量Ts とを読み込む (ステップ 301)。次いで、図11において、シート温度調節能 カ=0の線と温感レベルSとの交点から車室内設定温度 Tset を求める (ステップ302)。この後、図14の 関係式から車室内設定温度Tset に対応する空調ユニッ ト21の目標吹出熱量Qaoを求め(ステップ303)、 Qao>0であるか否かを判断する(ステップ304)。 【0037】このステップ304で「YES」の場合、 即ちQao>0である場合には、暖房モードとなり、ステ ップ305に移行し、シート表面温度Tseatを上限値で ある40℃に初期設定する。ここで、暖房時にシート表 面温度Tseatを上限値(40℃)に初期設定する理由 は、図2に示すように暖房時にはシート表面温度Tseat を高くするほど省エネルギ効果が大きくなるためであ る。この場合、シート表面温度Tseatの上限値を40℃ とする理由は、シート表面温度 T seat が 40℃以上にな ると、乗員が熱く感じるようになるからである。

【0038】シート表面温度Tseatの初期設定後、図11からシート表面温度Tseatの初期設定値(40℃)に対応する車室内設定温度Tsetを求める(ステップ306)。この後、図14の関係式から車室内設定温度Tsetに対応する空調ユニット21の目標吹出熱量Qaoを求め(ステップ307)、Qao \geq 0であるか否かを判断する(ステップ308)。この判断が「YES」、即ちQao \geq 0であれば、シート温度調節手段と空調ユニット21の双方が暖房モードとなり、ステップ315に移行する。

【0039】これに対し、ステップ308の判断が「NO」、即ちQao<0の場合には、シート温度調節手段が 暖房モードで、空調ユニット21が冷房モードとなって しまい、エネルギの無駄遣いになってしまう。そこで、 この場合には、ステップ309に移行し、ステップ305で設定したシート表面温度Tseatの初期値(40℃)から α ℃低下させて、これを新たなシート表面温度Tseatとして設定する。この後、ステップ306に移行し、図11からシート表面温度Tseatの新たな設定値に対応する車室内設定温度Tsetを計算し直し、図14の関係式から車室内設定温度Tsetに対応する空調ユニット21の目標吹出熱量Qaoを計算し直して(ステップ307)、Qao \geq 0であるか否かを判断する(ステップ308)。以上の処理をQao \geq 0になるまで繰り返すことにより、シート温度調節手段と空調ユニット21の双方の運転モードを暖房モードにして、消費エネルギを最小(省エネルギ効果を最大)にするための運転条件を導き出すものである。

【0040】一方、ステップ3040判断が「NO」、即ち $Qao \le 0$ の場合には、冷房モードとなり、ステップ310に移行し、シート表面温度Tseatを下限値である27 ℃に初期設定する。ここで、冷房時にシート表面温度Tseatを下限値(27 ℃)に初期設定する理由は、図2 に示すように冷房時にはシート表面温度Tseatを低くするほど省エネルギ効果が大きくなるためである。この場合、シート表面温度Tseatの下限値を27 ℃とする理由は、シート表面温度Tseatが27 ℃以下になると、乗員が冷たく感じるようになるからである。

【0042】これに対し、ステップ3130判断が「NO」、即ちQao>0の場合には、シート温度調節手段が、冷房モードで、空調ユニット21が暖房モードとなってしまい、エネルギの無駄遣いになってしまう。そこで、この場合には、ステップ314に移行し、ステップ310で設定したシート表面温度Tseatの初期値(27°C)から β °C上昇させて、これを新たなシート表面温度Tseatとして設定する。この後、ステップ311に移行し、図11からシート表面温度Tseatの新たな設定値に対応する車室内設定温度Tsetを計算し直し、図14の関係式から車室内設定温度Tsetに対応する空調ユニット21の目標吹出熱量Qaoを計算し直して(ステップ312)、Qao ≤ 0 であるか否かを判断する(ステップ313)。以上の処理をQao ≤ 0 になるまで繰り返すことにより、シート温度調節手段と空調ユニット210の双方の

運転モードを冷房モードにして、消費エネルギを最小

(省エネルギ効果を最大) にするための運転条件を導き 出すものである。

【0043】上述したステップ308,313の判断が 「YES」となれば、ステップ315に移行して、シー ト温度調節手段をオンし、ステップ305、309、3 10、314のいずれかで設定したシート表面温度Tse atとなるようにシート温度調節手段を制御する。次い で、空調ユニット21から車室内に吹き出す風の目標吹 出温度TAOを前述した(1)式により計算し(ステップ 316)、空調ユニット21から車室内に吹き出す風の 温度が、上記目標吹出温度TAOとなるように空調ユニッ ト21を制御する(ステップ317)。以後、ステップ 301に戻って上述した処理を繰り返すことにより、シ ート温度調節手段による冷暖房効果を考慮して、乗員の 感じる温感が温感レベル設定スイッチ55により設定さ れた温感レベルSとなるように、且つ消費エネルギが最 小となるように、空調ユニット21とシート温度調節手 段の動作レベルを自動的に設定する。このため、第2実 施例では、前述した第1実施例よりも省エネルギ効果が 大きくなる(最大になる)と共に、シート温度調節手段 の動作レベルを乗員が手動設定する必要がなく、使い勝 手が良いという利点もある。

【0044】尚、上記第2実施例におけるシート温度調節手段の制御は、第1実施例と同じく、運転席についてのみ行うようにしても良く、勿論、シート温度調節手段の電源スイッチ(図示せず)がオンされている全ての席について同様の制御を行うようにしても良い。この場合、シート温度調節手段をオン/オフする電源スイッチに代えて、各席に乗員が乗っているか否かを検知する乗員センサを設け、この乗員センサにより乗員が検知された全ての席についてシート温度調節手段の制御を同様に行うようにしても良い。

【0045】以上説明した第1及び第2の各実施例は、いずれも、温感補機として、シートヒータ62等のシート温度調節手段を採用したものであるが、乗員に向かって輻射熱を放散する輻射熱発生手段を採用しても良い。これを具体化した本発明の第3実施例を図15乃至図18に基づいて説明する。

【0046】本第3実施例では、図15に示すように、自動車の4枚のドア70の内側に、それぞれ輻射熱発生手段として輻射パネル81が設けられている。この輻射パネル81は、ドア70の内パネル70aの裏面に面状ヒータ82を接合し、この面状ヒータ82の裏側を断熱材83で覆った構成となっている。本第3実施例では、各席の乗員が自席の輻射パネル81をオン/オフできるように、各ドア70の内側に電源スイッチ(図示せず)が設けられている。更に、各ドア70の輻射パネル81の輻射面(内パネル70a)には、輻射面温度Twを検出する輻射面温度センサ84が設けられている。

【0047】次に、第3実施例の制御原理を図16及び

図17により説明する。図16において、輻射パネル81の輻射面温度Tw が例えば5℃のときに、乗員の感じる温感レベルSを"0"にするには、車室内設定温度T set を28.5℃とする必要がある(A点)。この状態から、輻射パネル81をオンして、輻射面温度Tw をT max ℃まで上昇させた場合、車室内設定温度T set を変えなければ、温感レベルSが"0"を外れて"暑い"と感じるB点へ移行してしまう。そこで、温感レベルSを"0"に保つために、車室内設定温度T set を23℃まで低下させて、S=0の線上のC点へ移行させるものである。

【0048】また、乗員が温感レベル設定スイッチ55を操作して温感レベルSを"0"から例えば"+2"に変更する場合、図17に示すように、車室内設定温度T setを上昇させてB1点に移したり、輻射面温度Twを上昇させてB2点に移したり、或は、車室内設定温度T set と輻射面温度Twの双方を変更して温感レベルSを"+2"に変更することも可能である。この場合、車室内設定温度Tset と輻射面温度Twのいずれを変更するかは、省エネルギ効果によって判断することになる。

【0049】一般に、輻射パネル81の輻射面温度Twを高くするほど、省エネルギ効果が大きくなるが(図2と同じ特性)、輻射面温度Twを高くし過ぎると、乗員の顔がほてってきて、却って不快感を感じるようになるので、輻射面温度Twの上限値Tmax C(図16及び図17参照)を例えば $40\sim50$ Cに設定する。

【0050】以下、本第3実施例の制御内容を図18のフローチャートに従って説明する。まず、温感レベル設定スイッチ55により設定された温感レベルSと、各輻射パネル81の電源スイッチのオン/オフ信号(輻射部位)と、輻射面温度センサ84により検出した輻射面温度Twと、内気温度センサ45により検出した内気温度Trと、外気温度センサ45により検出した外気温度Tamと、日射センサ46により検出した日射量Tsとを読み込む(ステップ401)。次いで、図16又は図17の特性から、輻射暖房能力=0のときの輻射面温度Tw(輻射面温度センサ84の検出値)と温感レベルSに対

(輻射面温度センサ84の検出値)と温感レベルSに対応する車室内設定温度Tsetを求め(ステップ402)、この車室内設定温度TsetをTsetlに設定する

(ステップ403)。そして、T set 1 に対応する空間ユニット21 の目標吹出熱量Q ao を第2 実施例と同じ方法で求めて(ステップ404)、Q ao ≥ 0 であるか否かを判断する(ステップ405)。

【0051】このステップ4050判断が「YES」、 即ち $Qao \ge 0$ である場合には、暖房モードとなり、ステップ406に移行し、輻射面温度Twを上限値Tmax

(例えば $40\sim50$ °C)に初期設定する。ここで、輻射面温度Twを上限値Tmaxに初期設定する理由は、図2に示す特性から類推できるように輻射面温度Twを高くするほど省エネルギ効果が大きくなるためである。この

場合、輻射面温度Tw の上限値Tmax を40~50℃とする理由は、これ以上の温度になると、乗員の額がほてってきて、却って不快感を感じるようになるからである。

【0052】輻射面温度Twの初期設定後、図16又は図17から輻射面温度Twの初期設定値Tmaxに対応する車室内設定温度Tsetを求める(ステップ407)。この後、第2実施例と同じ方法で車室内設定温度Tsetに対応する空調ユニット21の目標吹出熱量Qaoを求め(ステップ408)、Qao \geq 0であるか否かを判断する(ステップ409)。この判断が「YES」、即ちQao \geq 0であれば、輻射パネル81と空調ユニット21の双方が暖房モードとなり、ステップ410に移行して、輻射パネル81をオンし、その輻射面温度TwがTmaxとなるように輻射パネル81の入力電力を制御する。

【0053】これに対し、ステップ409の判断が「N O」、即ちQao<0の場合には、輻射パネル81が暖房 モードで、空調ユニット21が冷房モードとなってしま い、エネルギの無駄遣いになってしまう。そこで、この 場合には、ステップ411に移行し、ステップ406で 設定した輻射面温度Tw の初期値Tmax からβ℃低下さ せて、 $T \max - \beta$ を新たな輻射面温度T w として設定し た後、ステップ412に移行し、図16又は図17から 輻射面温度Tw の新たな設定値に対応する車室内設定温 度Tset を計算し直す。次いで、Tset をTsetl (ここ でTset1はステップ403で設定した輻射暖房能力=0 のときの車室内設定温度Tset)と比較して、Tset > Tset1であるか否かを判断し(ステップ413)、この 判断が「NO」、即ちTset ≦Tsetlであれば、依然と して、空調ユニット21が冷房モードとなるので、ステ ップ408に戻り、目標吹出熱量Qaoを計算し直す(ス テップ409)。これにより、Qao≥0となれば、ステ ップ409の判断が「YES」となり、ステップ410 に移行して、輻射パネル81をオンし、その輻射面温度 Tw がステップ411で設定した温度となるように輻射 パネル81の入力電力を制御する。

【0054】一方、ステップ412で、車室内設定温度 Tset を計算し直した結果、Tset>Tsetlとなれば、ステップ413の判断が「YES」となり、ステップ414に移行して、輻射パネル81をオフ状態に保つ。これは、空調ユニット21による暖房だけで事足りるからである。

【0055】上述したステップ410又は414の処理を終了した後、ステップ415に移行し、空調ユニット21から車室内に吹き出す風の目標吹出温度TA0を前述した(1)式により計算し、空調ユニット21から車室内に吹き出す風の温度が、上記目標吹出温度TA0となるように空調ユニット21を制御する(ステップ41

6)。以後、ステップ401に戻って上述した処理を繰り返すことにより、輻射パネル81による暖房効果を考

慮して、乗員の感じる温感が温感レベル設定スイッチ55により設定された温感レベルSとなるように、且つ消費エネルギが最小となるように、空調ユニット21と輻射パネル81の動作を総合的に制御する。

【0056】尚、冷房時(ステップ405の判断が「NO」)の場合も、暖房時と同じく、目標吹出温度 TA0を計算して(ステップ415)、空調ユニット21を制御する(ステップ416)。この冷房時には、輻射パネル81をオフ状態に保つ。

【0057】以上説明した第3実施例においても、第2 実施例と同じく、省エネルギ効果が最大になると共に、 輻射パネル81の動作レベルを乗員が手動設定する必要 がなく、使い勝手が良いという利点もある。

【0058】しかしながら、上記第3実施例においても、第1実施例と同じように、輻射パネル81の動作レベルを温感レベル又は温度で手動設定する温感補機動作レベル設定手段を設けて、乗員が輻射パネル81の動作レベルを任意に手動設定できるようにしても良い。

【0059】また、上記第3実施例では、電源スイッチがオンされている全ての席の輻射パネル81を空調ユニット21と関連付けて制御するようにしているが、第1実施例と同じく、運転席の輻射パネル81のみを空調ユニット21と関連付けて制御するようにしても良い。或は、各席に乗員が座っているか否かを検出する乗員センサを設け、乗員が座っている全ての席について、第3実施例のような輻射パネル81の制御を行うようにしても良い。

【0060】また、上記第3実施例では、輻射熱発生手段(輻射パネル81)をドア70の内パネル70aに設けたが、例えば車室の天井、窓ガラス、乗員の足元の近傍等に設けても良い。但し、車室の天井や窓ガラスに輻射熱発生手段を設ける場合には、輻射熱発生手段の位置が乗員の顔に近くなるので、輻射面温度の上限値を例えば30℃に設定し、30℃以下の範囲内で輻射面温度を制御する。尚、輻射熱発生手段(輻射パネル81)についても、電気ヒータに限定されず、ヒートパイプ、温水パイプ等を用いる構成としても良い。

【0061】更に、温感補機として、輻射パネル81等の輻射熱発生手段とシートヒータ62等のシート温度調節手段の双方を併用する構成としても良い。以下、これを具体化した本発明の第4実施例として、前述した第1実施例と第3実施例とを組み合わせた実施例を、図19及び図20に基づいて説明する。

【0062】まず、本第4実施例の制御原理を図20により説明する。図20において、A点は、シートヒータ62がオフで、輻射パネル81の輻射面温度Twが5℃のときに、乗員の温感レベルSが"0"になる点である。 $A \rightarrow B \rightarrow C$ 点の動きは前述した第3実施例で説明した通りである。更に、C点において、シートヒータ62をオンした場合には、温感レベルSを"0"に維持する

ために、車室内設定温度Tset を δ \mathbb{C} (例えば2.5 \mathbb{C}) だけ低下させる必要がある。従って、シートヒータ6.2 と輻射パネル8.1 の双方をオンした場合には、車室内設定温度Tset をA点の28.5 \mathbb{C} からD点の20.5 \mathbb{C} へと低下させることができる。

【0063】本第4実施例の制御の流れは、図19にフローチャートで示されており、前述した第3実施例とほぼ同じである。第3実施例と相違するステップは、401、402、410、414のみであり、これら4ステップについてのみ説明する。まず、ステップ401では、エアコン操作パネル47の温感レベル設定スイッチ55により設定された温感レベルSに加え、運転席のシート温感レベル設定スイッチ71により設定されたシート温感レベルSseatも読み込む。その他、このステップ401で、内気温度Tr,外気温度Tam,日射量Tsの検出値を読み込む点は、第3実施例と同じである。

【0064】次いで、ステップ402では、輻射暖房能力=0のときの輻射面温度Tw(輻射面温度センサ84の検出値)と温感レベルS、Sseatに対応する車室内設定温度Tset とシートヒータ62の発熱量を求める。このステップ402では、シート温感レベルSseatも考慮して車室内設定温度Tset を求める点と、シートヒータ62の発熱量を求める点が、第3実施例と異なる。ここで、シートヒータ62の発熱量は、第1実施例と同じ方法で求めれば良い。

【0065】一方、ステップ410では、輻射パネル81の制御に加え、シートヒータ62も制御する。この際、シートヒータ62の発熱量がステップ402で求めた値となるように制御する。また、ステップ414では、輻射パネル81のオフに加え、シートヒータ62もオフする。これは、空調ユニット21による暖房だけで事足りるからである。

【0066】尚、本発明は上記各実施例に限定されず、例えば温感レベル設定スイッチ55(温感レベル設定手段)をプッシュスイッチに代えてダイヤルスイッチ,タッチスイッチ等により構成したり、空調ユニット21の構成を適宜変更しても良い等、要旨を逸脱しない範囲内で種々変更して実施できることは言うまでもない。

[0067]

【発明の効果】以上の説明から明らかなように、請求項1記載の発明によれば、温感補機による加温又は冷却を考慮して、乗員の感じる温感が温感レベル設定手段により設定された温感レベルとなるように空調ユニットの動作を温感補機の動作と関連付けて制御するようにしたので、温感補機の使用時でも空調ユニットによる空調が過剰になるようなことはなく、乗員が望む温感レベルに合わせた快適な空調を実現できると共に、省エネルギ化も達成できる。

【0068】この場合、請求項2のにように、温感補機として、乗員の座るシートの表面温度を調節するシート

温度調節手段を採用すれば、シートの座りごこちの良い 空調を実現できる。

【0069】或は、請求項3のにように、温感補機として、乗員に向かって輻射熱を放散する輻射熱発生手段を採用すれば、乗員の上半身や足元をスポット的に効率良く暖房できる。

【0070】一方、請求項4のように、温感補機の動作レベルを温感レベル又は温度で手動設定する温感補機動作レベル設定手段を設ければ、乗員がこの温感補機動作レベル設定手段を操作して、温感補機の動作レベルを乗員の好みに応じて任意に設定することができる利点がある。

【0071】また、請求項5では、乗員が温感補機の動作レベルを手動設定するのではなく、制御手段が、空調ユニットの消費エネルギと温感補機の消費エネルギとの合計値を最小にするように空調ユニットとシート温度調節手段の動作レベルを自動的に設定するので、省エネルギ効果を最大にできると共に、温感補機の動作レベルを乗員が手動設定する必要がなく、使い勝手が良いという利点もある。

【図面の簡単な説明】

- 【図1】本発明の制御特性を説明する図
- 【図2】本発明による省エネルギ効果を説明する図
- 【図3】本発明の第1実施例における温感レベルSと乗員の温感との関係を示す図
- 【図4】空調装置の概略構成図
- 【図5】車室内の平面図
- 【図6】エアコン操作パネルの正面図
- 【図7】シートの斜視図(a)と部分縦断面図(b)
- 【図8】シートヒータの縦断面図(a)と横断面図
- 【図9】シートヒータ操作パネルの平面図
- 【図10】本発明の第1実施例の制御の流れを示すフロ ーチャート
- 【図11】本発明の第1実施例の制御特性を説明する図
- 【図12】シートヒータの変形例を示す図
- 【図13】本発明の第2実施例の制御の流れを示すフローチャート
- 【図14】車室内設定温度Tset と目標吹出熱量Qao,
- シートヒータ発熱量Qseatとの関係を示す図
- 【図15】自動車のドアを内側から見た図(a)と縦断 面図(b)
- 【図16】本発明の第3実施例の制御特性を説明する図(その1)
- 【図17】本発明の第3実施例の制御特性を説明する図(その2)
- 【図18】本発明の第3実施例の制御の流れを示すフロ ーチャート
- 【図19】本発明の第4実施例の制御の流れを示すフロ ーチャート

【図20】本発明の第4実施例の制御特性を説明する図 【符号の説明】

21…空調ユニット、22…送風ダクト、26…プロワ (送風手段)、27…冷凍サイクル、28…エバポレータ (吹出風温度調節手段)、29…エアミックスダンパ (吹出風温度調節手段)、30…ヒータコア (吹出風温度調節手段)、37…コンプレッサ、43…ECU (制御手段)、44…内気温度センサ、45…外気温度セン

サ、46…日射センサ、55…温感レベル設定スイッチ (温感レベル設定手段)、56…温感レベル表示部、6 0…シート、62…シートヒータ(シート温度調節手 段,温感補機)、69…シート、70…ドア、71…シ ート温感レベル設定スイッチ(温感補機動作レベル設定 手段)、81…輻射パネル(輻射熱発生手段,温感補 機)、84…輻射面温度センサ。

【図2】

【温感レベル】

[図4]

[図8]

【図7】

【図14】

(b)

フロントページの続き

(72) 発明者 杉 光

愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72) 発明者 浅川 史彦

愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内