Ingeniería en electrónica Propagación y sistemas irradiantes 66.82 - 86.29 Primer cuatrimestre del 2020

Guía de ejercicios 2: Antenas lineales Dipolo y monopolo

1. Dipolo

Considerar un dipolo de longitud L = 1 m, radio a = 1 mm, y conductividad $\sigma = 5.8 \cdot 10^7$ S/m.

• Ejercicio 1:

Determinar si se trata de un dipolo delgado. ¿Qué puede asumirse en dicha condición?

• Ejercicio 2:

Para cada uno de los siguientes puntos, indicar la expresión utilizada y realizar las simulaciones con Matlab/Octave:

- a) Graficar la resistencia de radiación y la resistencia de pérdidas en función de $0.01 \le L/\lambda \le 1$.
- b) Graficar el rendimiento del dipolo en función de $0.01 \le L/\lambda \le 1$.
- c) Graficar la directividad y la ganancia del dipolo en función de $0.01 \le L/\lambda \le 1$ (en veces y en dBi).
- d) Graficar el diagrama de radiación del dipolo para $L/\lambda = 0.1$; 0.5; 1; 1.25; 1.5. Explicar en qué casos aparecen lóbulos secundarios.
- e) Graficar la distribución de corriente I(z) en el dipolo para $L/\lambda = 0.01; 0.1; 0.5; 1.$
- f) Indicar los valores obtenidos de resistencia de radiación, resistencia de pérdidas, rendimiento, directividad (en veces y dBi) y ganancia (en veces y dBi) para los siguientes casos:
 - Dipolo de Hertz (L $\leq \lambda/100$).
 - Dipolo corto $(\lambda/100 \le L \le \lambda/10)$.
 - Dipolo de media onda ($L \le \lambda/2$).

2. Monopolo

Repetir los puntos 2 a), b), c) y d) para un monopolo de altura H=0.5 m y mismo radio y conductividad que el dipolo. Graficar en función de L/λ , donde L=2.H.