宇宙线 μ 子平均寿命测量

赵宇航

摘要: 本实验测量了宇宙线μ子的平均寿命,以及其随角度的变化关系。

1 实验目的

- 1. 加深宇宙线μ子性质的认识;
- 2. 掌握宇宙线μ子平均寿命的测量原理;

2 实验原理

宇宙线中的 μ 子主要是由宇宙线中的 π 介子衰变($\pi^- \to \mu^- + \overline{\nu_\mu}$, $\pi^+ \to \mu^+ + \nu_\mu$)产生的.大部分的子产生在约 15 km 的高空,由于 μ 子不参与强相互作用,因而具有较强的穿透力.海平面上 μ 子的通量近似为1 $\sim 2cm^{-2}min^{-1}$,平均能量约为4GeV 。 μ 子带有 1 个单位的电荷,其质量:105.658 MeV/c^2 ,平均寿命约 2.197us 。

宇宙线中的 μ 子通过塑料闪烁体时,主要的能量损失方式是电离能损,并伴随库仑散射.高能量 μ 子可直接从闪烁体中穿出,并在径迹周围产生电子及荧光光子等次级粒子;一些较低能量 μ 子在闪烁体中停止后,可以自由衰变,也可能与物质的原子核发生作用被俘获而消失.其发生衰变如下:

$$\mu^- \to e + \overline{V_e} + V_\mu \tag{1}$$

衰变中产生的电子(e)继续与闪烁体发生作用损失能量,并使闪烁体分子激发,而电子反中微子 $\overline{V_e}$ 和 μ 子中微子 V_μ 直接穿出.塑料闪烁体中受激发的分子在极短的时间内(约10 ^{-10}s)退激发并发射荧光(荧光波长在350 \sim 500nm之间),荧光通过光电倍增管光电转换放大而输出电信号,这个信号将作为 μ 子的"到达"信号. 当停止在闪烁体内的 μ 子发生衰变,产生的电子被闪烁探测器探测,形成 μ 子"衰变"的信号。"到达"探测器的信号与 μ 子"衰变"的信号的时间间隔, 即为 μ 子 1 次衰变的寿命.由于微观粒子的衰变具有一定的统计性,因此实验上是通过测量时间差的分布,进而计算得到 μ 子的平均寿命。

宇宙线中 μ 子的通量很低,每次击中探测器的事例可以看成单 μ 子事例. 设 μ 子的平均寿命为 τ ,第i 个 μ 子的产生时间为 t_i ,则相对公共的时间零点, μ 子在时刻t 衰变概率为

$$D_i(t) = \frac{e^{-(t-t_i)/\tau}}{\tau} \tag{2}$$

如果第i 个 μ 子到达闪烁探测器的时刻为 T_i ,那么时间间隔 $\triangle T$ 内,这个 μ 子衰变的概率是:

$$P = \int_{T}^{T+\Delta T} D_i(t)dt = \int_{T}^{T+\Delta T} \frac{e^{-(t-t_i)/\tau}}{\tau} dt = K - Ke^{-\Delta T/\tau}$$
(3)

式中 $K=e^{-(T-t_i)/\tau}$ 。 如果实验共测量到M 个 μ 子衰变事例,则在时间差 ΔT 以内, 衰变的总 μ 子数 N 为

$$N = \sum_{i=1}^{M} K_i (1 - e^{-\Delta T/\tau}) = K(1 - e^{-\Delta T/\tau})$$
(4)

式中 $K = \sum_{i=1}^{M}$ °

可见在 $\triangle T$ 时间内 μ 子衰变数随时间同样服从指数规律. 实验上通过记录确定时间间隔内的 μ 子衰变事例数,利用指数函数拟合方法,可以求得 μ 子衰变的平均寿命 τ 。

3 实验结果

根据实验所测的数据,知 μ 子衰变的平均寿命为 $2.2014\pm0.0191\mu s$ 。

我们只需要研究一个分布规律,所以以单位时间通过粒子数代替单位时间通量,其随探测器角度 改变分布如下表所示

	探测器角度	0	1	2	3	4	5	6	7	8	9
	单位时间粒子数	2.910	0.089	0.196	0.335	0.431	0.475	0.497	0.712	0.848	0.781
	探测器角度	10	20	25	30	35	40	45	50	55	60
ĺ	单位时间粒子数	0.962	1.453	1.199	1.632	1.176	1.210	0.962	1.175	0.806	0.757

在探测器角度比较小的时候, μ 子单位时间通量和探测器角度成正比;在探测器角度比较大的时候, μ 子单位时间通量大致先增加后减小,在30°达到最大值。。

4 讨论

所有的 μ 子全同,它们以同样地概率衰变,所以大量 μ 子绘出的寿命曲线从统计上看就有确定的分布。

实验中所取的单位时间内,只有不到2个粒子发生了衰变。可见,如果我们选取一定的时间间,只以到达信号与衰变信号小于这个间隔的取例,那么在间隔时间内连续两个粒子衰变的概率会达到二次小量(大约10⁻⁴),可以忽略不计。