Klausur zur Vorlesung Grundbegriffe der Informatik 1. März 2011

Kla							
nu							
Name:							
Vorname:							
MatrNr.:							
Aufgabe	1	2	3	4	5	6	7
max. Punkte	6	9	4	9	5	5	9
tats. Punkte							
]			7
Gesamtpunktz	Note:						

Aufgabe 1 (1,5+1,5+1+2=6 Punkte)

- a) Geben Sie das Hasse-Diagramm einer Halbordnung auf einer dreielementigen Menge an, die genau zwei maximale und zwei minimale Elemente besitzt.
- b) Sei A ein Alphabet und $L \subseteq A^*$ eine **endliche** Menge. Geben Sie die Menge der Produktionen einer rechtslinearen Grammatik an, die L erzeugt.
- c) Geben Sie einen regulären Ausdruck R an, so dass gilt:

$$\langle \mathbf{R} \rangle = \{ vw \mid v, w \in \{\mathtt{a},\mathtt{b},\mathtt{c}\}^* \wedge \mathsf{N}_\mathtt{c}(v) = \mathsf{N}_\mathtt{b}(w) = 0 \}$$

 $(N_b(w))$ ist die Anzahl der Vorkommen des Zeichens b in w).

d) Geben Sie eine Funktion $f:\mathbb{N}_0\to\mathbb{R}_0^+$ an, für die gilt:

$$f(n)\notin O(n^2) \wedge f(n) \notin \Omega(n^2\log n)$$

Weiterer Platz für Antworten zu Aufgabe 1:

Aufgabe 2 (5+2+2 = 9 Punkte)

Für $n \in \mathbb{N}_0$, $n \ge 2$ sei ein Graph $U_n = (\mathbb{G}_{2n}, E_n)$ definiert mit Kantenmenge $E_n = \big\{\{x,y\} \mid ggT(x+y,2n) = 1\big\}.$

Zur Erinnerung: Für $\mathfrak{m} \in \mathbb{N}_0$ ist $\mathbb{G}_{\mathfrak{m}} = \{i \mid 0 \leq i < \mathfrak{m}\}$ und ggT(x,y) ist der größte gemeinsame Teiler von x und y.

- a) Zeichnen Sie die Graphen U₃, U₄ und U₅.
- b) Geben Sie für U₄ und U₅ jeweils einen Weg an, bei dem der Anfangsknoten gleich dem Endknoten ist, und jeder andere Knoten des Graphen genau einmal in dem Weg vorkommt.
- c) Geben Sie die Adjazenzmatrix für U₄ an.

Weiterer Platz für Antworten zu Aufgabe 2:

Aufgabe 3 (4 Punkte)

Die Menge $M \subseteq \mathbb{N}_0$ sei definiert durch:

- 5 und 8 liegen in M.
- Für alle m, n gilt: Wenn n und m in M liegen, dann ist auch $n^2 + m^2$ in M.
- Keine anderen Zahlen liegen in M.

Zeigen Sie durch strukturelle Induktion:

 $\forall n \in M : n \text{ mod } 3 = 2$.

Weiterer Platz für Antworten zu Aufgabe 3:

Aufgabe 4 (3+2+2+2=9 Punkte)

Gegeben sei das Alphabet $A = \{a, b\}.$

Wir betrachten die Sprache $L=\{a^kb^ma^{m-k}\mid m,k\in\mathbb{N}_0\wedge m\geq k\}$ über A.

- a) Geben Sie eine kontextfreie Grammatik G an, so dass gilt: L(G) = L.
- b) Geben Sie für Ihre Grammatik aus Teilaufgabe a) einen Ableitungsbaum für das Wort aabbba an.
- c) Geben Sie alle $n \in \mathbb{N}_0$ an, für die gilt: $L \cap A^n \neq \{\}$
- d) Sei $n \in \mathbb{N}_0$ so gewählt, dass $L \cap A^n \neq \{\}$ gilt. Wie viele Elemente enthält $L \cap A^n$?

Weiterer Platz für Antworten zu Aufgabe 4:

Aufgabe 5 (1+2+2 = 5 Punkte)

Für eine Relation $R \subseteq M \times M$ auf einer Menge M definieren wir die Relation R^{-1} wie folgt:

$$R^{-1} = \{(x,y) \mid (y,x) \in R\}.$$

Außerdem hatten wir in der Vorlesung festgelegt:

$$R^0 = \{(x, x) \mid x \in M\}.$$

Widerlegen Sie durch Gegenbeispiel oder beweisen Sie:

- a) Wenn $R \cap R^{-1} = R^0$ gilt, ist R reflexiv.
- b) Wenn $R \cap R^{-1} = R^0$ gilt, ist R symmetrisch.
- c) Wenn $R \cap R^{-1} = R^0$ gilt, ist R antisymmetrisch.

Weiterer Platz für Antworten zu Aufgabe 5:

Aufgabe 6 (1+2+2 = 5 Punkte)

Die Sprache $L \subseteq \{a,b\}^*$ sei definiert als die Menge aller Wörter w, die folgende Bedingungen erfüllen:

- $N_b(w) > N_a(w)$ und
- $\forall v_1, v_2 \in \{a,b\}^* : w \neq v_1bbv_2$
- a) Geben Sie alle Wörter aus L an, die genau 4 mal das Zeichen b enthalten.
- b) Geben Sie einen regulären Ausdruck R an, so dass gilt: $\langle R \rangle = L.$
- c) Geben sie einen endlichen Akzeptor an, der L erkennt.

Hinweis: Es muss sich um einen vollständigen deterministischen endlichen Akzeptor handeln wie er in der Vorlesung definiert wurde.

Weiterer Platz für Antworten zu Aufgabe 6:

Aufgabe 7 (4+2+1+2 = 9 Punkte)

Gegeben sei die folgende Turingmaschine T:

- Zustandsmenge ist $Z = \{r, s, u, d_b, d_a\}$.
- Anfangszustand ist r.
- Bandalphabet ist $X = \{\Box, a, b, 0, 1\}$.
- Die Arbeitsweise ist wie folgt festgelegt:

	r	S	u	d_b	d_a
	(r, 0, 1)			_	_
	(r, 1, 1)				
a	(s, b, -1)	_	_	_	$(d_a, \square, 1)$
b	(r,b,1)	(s,b,-1)	(u, a, -1)	$(d_a, \square, 1)$	$(d_a, b, 1)$
	$(\mathfrak{u},\square,-1)$	$(d_b, \square, 1)$	_	_	_

Die Turingmaschine wird im folgenden benutzt für Bandbeschriftungen, bei denen zu Beginn der Berechnung auf dem Band ein Wort $v \in \{0,1\}^+ \cdot \{a\}^+$ steht, das von Blanksymbolen umgeben ist.

Der Kopf der Turingmaschine stehe anfangs auf dem ersten Symbol des Eingabewortes.

- a) Geben Sie für die Eingabe 0100aaa folgende Konfigurationen an:
 - die Anfangskonfiguration;
 - die Endkonfiguration;
 - jede Konfiguration, die in einem Zeitschritt vorliegt, nachdem die Turingmaschine von einem Zustand ungleich r in den Zustand r wechselt.
- b) Am Anfang stehe ein Wort wa^k mit $w \in \{0,1\}^+$ und $k \in \mathbb{N}_+$ auf dem Band, für das gelte, dass die Turingmaschine während der Berechnung mindestens einmal in den Zustand u übergehen wird.
 - Welches Wort steht auf dem Band, nachdem T zum ersten Mal vom Zustand u in den Zustand r übergegangen ist?
- c) Am Anfang stehe ein Wort wa^k mit $w \in \{0,1\}^+$ und $k \in \mathbb{N}_+$ auf dem Band.
 - Was muss für w und k gelten, damit T niemals in den Zustand u übergeht?
- d) Am Anfang stehe ein Wort wa^k mit $w \in \{0,1\}^+$ und $k \in \mathbb{N}_+$ auf dem Band.

Welches Wort steht am Ende der Berechnung auf dem Band?

Weiterer Platz für Antworten zu Aufgabe 7: