ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ ПРЕПОДАВАТЕЛЬ									
доц., канд. техн. наук, доц. должность, уч. степень, звание	подпись, дата	О.О.Жаринов инициалы, фамилия							
ОТЧЕТ (О ЛАБОРАТОРНОЙ РА	БОТЕ							
РАЗРАБОТКА ФОРМИРОВАТЕЛЯ ИМПУЛЬСОВ, УПРАВЛЯЕМОГО ЦИФРОВЫМ КОДОМ									
по курсу: СХЕМОТЕХНИКА									
РАБОТУ ВЫПОЛНИЛ									
СТУДЕНТ ГР. № 4143	подпись, дата	А.М.Гридин инициалы, фамилия							

1. Цель работы

Разработать проект формирователя импульсов, параметры которых задаются внешним двоичным параллельным кодом, в среде программирования Ouartus.

2. Вариант задания

Вариант № 16, выделен синим цветом.

	Таблица вариантов заданий														
Bap.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
K_1	N	1	N	N	2	N	3	N	4	N	5	N	6	N	7
$-K_0$	N	N	1	2	N	3	N	4	N	5	N	6	N	7	N
Bap.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
K_1	8	N	N	9	N	10	N	11	N	12	N	13	N	14	N
K_0	N	8	9	N	10	N	11	N	12	N	13	N	14	N	15

Рисунок 1 – Варианты

3. Обобщенная структурная схема формирователя и описание концепции проектирования.

Идею подсказали вы на лабораторной работе.

Устройство имеет 1 выход и 8 входов: 1 для тактовых импульсов, 1 для импульсов загрузки и 6 для кода. Остальные выходы на схеме использовались для отслеживания импульсов и проверки работы схемы во время её проектирования.

Для запоминания 6 - разрядного двоичного кода в схеме предусмотрен регистр памяти. Чтобы посчитать 8+N, нужен сумматор. Также в схеме нужен счётчик, который будет считать до 8+N. Результат счётчика будет выводиться в два компаратора и будет сравниваться с значением 8 и значением 8+N. Импульс от компаратора с 8+N будет использоваться для синхронного сброса счётчика. Импульс загрузки будет использоваться для загрузки числа N в регистр памяти и для асинхронного сброса счётчика.

Чтобы счётчик не считал, пока ничего не загружено, добавим ему Count Enable, а туда подсоединим через «ИЛИ» все регистры N.

Всё это должно работать на выходной триггер, который надо сбрасывать и устанавливать соответственно в двух случаях. Задумка установки показана на рисунке 2. Пока у нас есть импульс загрузки, он меняет своё значение через инвертор, соответственно начинается установка триггера в момент окончания импульса. Логический элемент «И-НЕ» помогает нам получить фронт в момент, когда мы досчитаем до конца. Досчитываем до 8+N, получаем 1, инвертируем в 0, и с1 соответственно тоже 0.

Рисунок 2 – Схема установки триггера

Задумка в сбросе аналогична, как и с установкой (рисунок 3). Без global reset'а в схемах никуда не деться. Count enable нужен, чтобы, когда не считал счётчик, здесь не был сброс.

Рисунок 3 – Схема сброса триггера

4. Схема устройства в графическом формате в среде Quartus

Рисунок 4 – Схема формирователя импульсов, часть 1

Рисунок 5 – Схема формирователя импульсов, часть 2

Рисунок 6 – Назначение выводов ПЛИС

5. Временная диаграмма работы схемы в среде Quartus.

Рисунок 7 (а, б, в, г) — Временная диаграмма работы счётчика

6. Перечисление ошибок, творческих идей, приводящих в тупик, если таковые появлялись в процессе работы, и методов, применённых для их устранения.

Весь процесс разработки происходил с вами на паре, соответственно все ошибки и идеи с тупиками остались там.

7. Выводы.

Был разработан проект формирователя импульсов, управляемого цифровым кодом в среде программирования Quartus на основе ПЛИС EP2S15F484C3.

8. Список используемых источников.

1. Лекция от 23 октября 2023г. [Электронный доступ], URL - https://bbb2.guap.ru/playback/presentation/2.3/3e98d1056a471ad0e5a857fa537d2155 77792a51-1698062133779