Partiel 1 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

> QCM(4 points)

Entourer la bonne réponse

1- La valeur algébrique du moment du poids \vec{P} de la poutre par rapport au point d'appui du triangle

- a) -PL/2
- b) P.L/4
- c) nulle
- d) -P.L/4

2- La valeur algébrique du moment de la force \vec{F}_2 par rapport à l'axe de rotation (Δ) passant par O et perpendiculaire à la feuille (figure 1) est

- a) $-F_2 \cdot L/2$ b) $-F_2 \cdot \frac{L}{2} \cos(\alpha)$ c) $-F_2 \cdot \frac{L}{2} \sin(\alpha)$

3- La valeur algébrique du moment du poids par rapport à l'axe (Δ) (schéma de la question 2) est

- a) -PL/2
- b) P.L/2
- c) nulle

4- Le travail d'une force \vec{f} variable qui fait un angle α avec le vecteur déplacement $d\vec{l}$ sur le trajet AB est:

- a) $W_{AB}(\vec{f}) = \int_A^B f . dl. \sin(\alpha)$ b) $W_{AB}(\vec{f}) = f. AB. \cos(\alpha)$ c) $W_{AB}(\vec{f}) = \int_A^B f . dl. \cos(\alpha)$

5- Le théorème d'énergie cinétique est donné par :

- a) $\Delta E_c = W(\vec{P})$ Où \vec{P} est le poids.
- b) $\Delta E_c = W(\vec{f})$ Où \vec{f} est la force de frottement.
- c) $\Delta E_c = \sum W(\vec{F}_{ext})$

6- En présence des frottements (seule force non conservative), le théorème d'énergie mécanique s'écrit

a)
$$\Delta E_m = 0$$

a)
$$\Delta E_m = 0$$
 b) $\Delta E_m = W(\vec{f}_{frotts})$ c) $\Delta E_m = \Delta E_c$

c)
$$\Delta E_m = \Delta E_c$$

7- Le travail d'une force \vec{F} perpendiculaire au déplacement est :

- a) strictement positif
- b) nul
- c) strictement négatif
- c) dépendant de la vitesse

8- Une masse m glisse sur la piste AB représentée sur le schéma ci-dessous :

$$(OA = OB = R)$$

Le travail du poids sur le trajet AB est

a)
$$W(\vec{P}) = -mgR(1 - \cos(\theta))$$

b)
$$W(\vec{P}) = mgR.\cos(\theta)$$

a)
$$W(\vec{P}) = -mgR(1 - \cos(\theta))$$
 b) $W(\vec{P}) = mgR.\cos(\theta)$ c) $W(\vec{P}) = mgR(1 - \cos(\theta))$

Exercice 1 (6 points)

Une poutre dont le poids est P = 100 N et dont la longueur est L = 1m supporte une charge dont le poids est $P_1 = 300 \text{ N}$ à son extrémité droite. Un câble relié à un mur maintient la poutre en équilibre. (figure 2)

1- Représenter les forces extérieures qui s'exercent sur la poutre.

ılculer la tensior	ruu cable pour a	1	ne de la poulle.		
	74 (04)	,			
e.				-	
	ılculer les comp	alculer les composantes (horizone.	alculer les composantes (horizontale R _x et vert	alculer les composantes (horizontale $R_{\rm x}$ et verticale $R_{\rm y}$) de la rése.	alculer les composantes (horizontale $R_{\rm x}$ et verticale $R_{\rm y}$) de la réaction exercée par e.

Exercice 2 (5 points)

Une bille de masse m est lâchée sans vitesse initiale du point A d'une sphère de rayon OM= r et de centre O. Les frottements sont négligés. On étudic le mouvement pendant que la bille est encore en contact avec la sphère.

1- Donner les composantes du vecteur accélération de la bille dans la base de Frenet (\vec{t}, \vec{n}) , en fonction de (θ, θ, r) .

ſ			
L			

2- a) Ecrire la deuxième loi de Newton dans la base de Frenet (\vec{t}, \vec{n}) .

b) En déduire l'équation différentielle du mouvement ainsi que la norme de la réaction R.
Exercice 3 (5 points)
Un objet ponctuel de masse m = 10 g est lâché du point A sans vitesse initiale. Le guide
hémicylindrique de rayon R est immobile dans le référentiel terrestre. Lorsque l'objet passe pour la première fois par le point B le plus bas du guide, sa vitesse est $V_B = 4 \text{ m/s}$.
On note $ec{f}:$ la force de frottement agissant sur m et qui est de norme constante.
↑ ^z
R
B(z=0)
l-Représenter les forces extérieures exercées sur la masse en un point ${f M}$ quelconque entre ${f A}$ et ${f B}$. 2-Calculer la variation d'énergie cinétique ΔE_c et la variation d'énergie potentielle de pesanteur
ΔE_p entre les points A et B. En déduire la variation d'énergie mécanique ΔE_m .
On donne $R = 1$ m et $g=10$ m/s ² .

<u>/</u>	
3- Déterminer le travail de la force de frotten mécanique. En déduire la norme de cette force s	nent entre A et B en utilisant le théorème d'énergiesupposée constante.