The integers modulo n

The integers modulo n

Formal definition of integers mod n

Definition: Let n be a natural number greater than 1. The set of integers modulo n, written \mathbb{Z}_n , is the set of equivalence classes [a] for the equivalence relation defined by congruence modulo n.

Remark: The book gives a careful walkthrough of an example in the case where n = 5.

Properties of \mathbb{Z}_n

Proposition: \mathbb{Z}_n has n elements $\{[0], [1], \ldots, [n-1]\}$.

Arithmetic in \mathbb{Z}_n

Proposition: Define [a] + [b] = [a+b] and [a][b] = [ab]. Then these are *well-defined* operations, meaning that if [a] = [a'] and [b] = [b'] then [a] + [b] = [a'] + [b'], and similarly for multiplication.