#### Marco Antonio Flores Coronado



#### Education

**Bachelor in Hispanic Language and Literature**, National Autonomous University of Mexico

Master in Science (Cogntive Robotics) Autonomous University of Morelos State
Predoctoral researcher Basque Center on Congnition Bran and Language

### Research Experience:

Signal Processing in Neuroimaging(2022-), Basque Center on Congnition Bran and Language

Data analyst, MhGAP (2021) PAHO

Cognitive Robotics Lab (2019-2022), Center for Science Investigation, UAEM

Cognitive and Language Development Lab (2018-2022), Psychology School, UNAM

Psycholinguistics Lab (2016-2022), Psychology School, UNAM

#### Research Interests:

Neuroimaging

Multisensory integration -language-

Embodied cognition -meaning-

Language Processing

Cognitive Robotics

Language Aquisition -word and meaning- (typical and atypical)

Lexical networks -semantic and grammar interaction-

Which is the relevance of multisensory integration in meaning and syntax emergence?

Which are the neural correlates of affordance based meaning? (i.e., tools Vs. food)

How do multisensory integration explain non-referential meaning?

How can we model language development/processing?



[Barsalou et al., 2003, Barsalou et al., 2018, Kuhnke et al., 2020, Twomey and Cangelosi, 2020]

Which is the relevance of multisensory integration in meaning and syntax emergence?

Which are the neural correlates of affordance based meaning? (i.e., tools Vs. food)

How do multisensory integration explain non-referential meaning?

How can we model language development/processing?









[Barsalou et al., 2003, Barsalou et al., 2018, Kuhnke et al., 2020, Twomey and Cangelosi, 2020]

Which is the relevance of multisensory integration in meaning and syntax emergence?

Which are the neural correlates of affordance based meaning? (i.e., tools Vs. food)

# How do multisensory integration explain non-referential meaning?

How can we model language development/processing?



[Barsalou et al., 2003, Barsalou et al., 2018, Kuhnke et al., 2020, Twomey and Cangelosi, 2020]

Which is the relevance of multisensory integration in meaning and syntax emergence?

Which are the neural correlates of affordance based meaning? (i.e., tools Vs. food)

How do multisensory integration explain non-referential meaning?

How can we model language development/processing?





# Modelling of the McGurk effect, a multisensory integration illusion

visual /ga/
audition /ba/
perception [da]

# Modelling of the McGurk effect, a multisensory integration illusion



# Modelling of the McGurk effect, a multisensory integration illusion



[Mcgurk and Macdonald, 1976, Van Engen et al., 2019, Mitchel et al., 2014]

# Self-Organized Internal Model Architecture (SOIMA)



Note. Computer Achitecture. Multysensory integration happens in the Multimodal Representation Map (MMR).

[Escobar-Juárez et al., 2016, Morse and Cangelosi, 2017]

# Self-Organized Internal Model Architecture (SOIMA)



Note. Computer Achitecture. Multysensory integration happens in the Multimodal Representation Map (MMR).

[Escobar-Juárez et al., 2016, Morse and Cangelosi, 2017]

# Feature extraction/model training

#### Vision

Oriented Histograms of Regional Optic Flow

#### Audition

Mel-frequency cepstral coefficients



#### Model validation

Psychopy -online-Lipreading experiment



[Basu Mallick et al., 2015, Viola and Jones, 2001, Kazemi and Sullivan, 2014, Liu et al., 2016, Gold et al., 2011, Hoffman and Gelman, 2014]

# Feature extraction/model training

#### Vision

Oriented Histograms of Regional Optic Flow

#### Audition

Mel-frequency cepstral coefficients



# Model validation

Lipreading experiment



[Basu Mallick et al., 2015, Viola and Jones, 2001, Kazemi and Sullivan, 2014, Liu et al., 2016, Gold et al., 2011, Hoffman and Gelman, 2014]

#### Results

Congruent and Incongruent stimuli activation



Mutual Information: incongruent - congruent

#### stimuli



#### Linear Mixed Effects analysis

#### ....



#### Predicted Mutual Information scores





# References

- Barsalou, L. W., Dutriaux, L., and Scheepers, C. (2018). Moving beyond the distinction between concrete and abstract concepts. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 373(1752).
- Barsalou, L. W., Simmons, W. K., Barbey, A. K., and Wilson, C. D. (2003). Grounding conceptual knowledge in modality-specific systems. *Trends in Cognitive Sciences*, 7(2):84–91.
- Basu Mallick, D., F. Magnotti, J., and S. Beauchamp, M. (2015). Variability and stability in the McGurk effect: contributions of participants, stimuli, time, and response type. *Psychonomic Bulletin Review*, 22(5):1299–1307.
- Escobar-Juárez, E., Schillaci, G., Hermosillo-Valadez, J., and Lara-Guzmán, B. (2016). A Self-Organized Internal Models Architecture for Coding Sensory–Motor Schemes. *Frontiers*

- in Robotics and AI, 3.
- Gold, B., Morgan, N., and Ellis, D. (2011). *Speech and Audio Signal Processing*. John Wiley Sons, Inc., Hoboken, NJ, USA, second edi edition.
- Hoffman, M. D. and Gelman, A. (2014). The No-U-Turn Sampler: Adaptively Setting Path Lengthsin Hamiltonian Monte Carlo. *Journal of Machine Learning Research*, 15.
- Kazemi, V. and Sullivan, J. (2014). One millisecond face alignment with an ensemble of regression trees. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages 1867–1874. IEEE.
- Kuhnke, P., Kiefer, M., and Hartwigsen, G. (2020).
  Task-Dependent Recruitment of Modality-Specific and Multimodal Regions during Conceptual Processing. *Cerebral cortex (New York, N.Y.: 1991)*, 30(7):3938–3959.

- Liu, X., Cheung, Y.-m., and Tang, Y. Y. (2016). Lip event detection using oriented histograms of regional optical flow and low rank affinity pursuit. Computer Vision and Image Understanding, 148:153–163.
- Mcgurk, H. and Macdonald, J. (1976). Hearing lips and seeing voices. *Nature*, 264(5588):746–748.
- Mitchel, A. D., Christiansen, M. H., and Weiss, D. J. (2014).

  Multimodal integration in statistical learning: evidence from the McGurk illusion. *Frontiers in Psychology*, 5.
- Morse, A. F. and Cangelosi, A. (2017). Why Are There
   Developmental Stages in Language Learning? A
   Developmental Robotics Model of Language Development.
   Cognitive Science, 41:32–51.
- Twomey, K. E. and Cangelosi, A. (2020). Heads, shoulders, knees and toes. In *Monographs of the Society for Research in Child*

- Development, volume 59, pages 39-64. John Benjamins.
- Van Engen, K. J., Dey, A., Sommers, M., and Peelle, J. (2019). Audiovisual Speech perception: Moving beyond McGurk.
- Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In *Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001*, volume 1, pages I—511—I—518. IEEE Comput. Soc.