Deep Image Deblurring: A Survey

https://arxiv.org/pdf/2201.10700

Problem Formulation

• 元画像を I_s , blurred imageを I_b の関係はパラメータ $heta_\eta$ を用いて

$$I_b = \Phi\left(I_s; heta_\eta
ight)$$

• 解きたいタスクはこの逆写像を求めることである

$$I_{db}=\Phi^{-1}\left(I_b; heta_\eta
ight)$$

• I_{db} はdeblurred imageであり I_s を推定したもの

Blur

- 4種類ある
 - Motion Blur
 - o Out-of-focus Blur
 - Gaussian Blur
 - Mixed Blur
- 一般的に以下の式でかける

$$I_b = K * I_s + heta_\mu$$

- Kはblur kaernel
- θ_{μ} l \sharp gaussian noise
- deblurの際にkernelが事前にわかっているものをNon-Blind Deblurringという
- 逆にkernelがわからないものをBlind Deblurringという

IQA(Image Quality Assessment)

- Full-Reference Metrics(正解画像gtが与えられている場合の評価方法)
 - PSNR
 - SSIM

- WSNR
- MS-SSIM
- o IFC
- NQM
- UIQI
- VIF
- LPIPS
- No-Reference Metrics
 - BIQI
 - BLINDS2
 - BRISQUE
 - CORNIA
 - DIIVINE
 - NIQE
 - SSEQ

network

• CNN, RNN, ResNet, ViTベースの手法がある

		DI			
Method	Category	Blur type	Dataset	Architecture	Key idea
Learning-to- Deblur [109]		Motion		Cascade	The first stage uses a CNN to estimate blur kernels and latent images. The second stage operates on the blurry images and latent image for kernel estimation.
$\begin{array}{c} \text{TextDBN} \\ \underline{[40]} \end{array}$	Uniform	Motion & defocus	Convolution	CNN	Trains a CNN for blind deblurring and denoising.
SelfDeblur [100]		Gaussian & motion		DAE	Two generative networks capture the blur kernel and a latent sharp image, respectively, which is trained on blurry images.
MRFCNN [125]			Convolution	CNN	Estimate motion kernels from local patches via CNN. An MRF model predicts the motion blur field.
NDEBLUR [11]			Convolution	CNN	Train a network to generate the complex Fourier coefficients of a deconvolution filter, which is applied to the input patch.
MSCNN [86]			Averaging	MS-CNN	A multi-scale CNN generates a low-resolution deblurred image and a deblurred version at the original resolution.
BIDN <u>[91]</u>			Convolution	DAE	The network regresses over encoder-features to obtain a blur invariant representation, which is fed into a decoder to generate the sharp image.
MBKEN [146]			Convolution	Cascade	A two-stage CNN extracts sharp edges from blurry images for kernel estimation.
RNN_Deblur [152]			Convolution	RNN MS-	Deblurring via a spatially variant RNN, whose weights are learned via a CNN. Deblurring via a scale-recurrent network that shares
SRN_[131]			Averaging	LSTM	network weights across scales.
DeblurGAN [59]	Non- uniform	Motion	Averaging	GAN	A conditional GAN-based network generates realistic deblurred images.
UCSDBN [75]			Convolution	Cycle- GAN	An unsupervised GAN performs class-specific deblurring using unpaired images as training data.
DMPHN [150]			Convolution	DAE	A DAE network recovers sharp images based on different patches.
DeepGyro CNN [84]			Convolution	DAE	A motion deblurring CNN makes use of the camera's gyroscope readings.
PSS_SRN [28]			Averaging	MS- LSTM	A selective parameter sharing scheme is applied to the SRN architecture and ResBlocks are replaced by nested skip connections.
DR_UCSDBN [72]			Convolution	Cycle- GAN	Unsupervised domain-specific deblurring method by disentangling the content and blur features from input images.
Dr-Net [3]			Averaging	CNN	A network to learn both the image prior and data fidelity terms via Douglas-Rachford iterations.
DeblurGAN- $v2$ $[60]$			Averaging	GAN	An extension of DeblurGAN using a feature pyramid network and wide range of backbone networks for better speed and accuracy.
RADN_[98]			Averaging	DAE	Region-adaptive dense deformable module to discover spatially varying shifts.
DBRBGAN [154]			Averaging	Reblur	Two networks, BGAN and DBGAN, which learn to blur and to deblur, respectively.
SAPHN [123]			Averaging	DAE	Content-adaptive architecture to remove spatially-varying image blur.
ASNet [52]			Convolution	DAE	DAE framework, which first estimates the blur kernel in order to recover sharp images.
EBMD_[46]			Averaging	DAE	An event-based motion deblurring network, introducing a new dataset, DAVIS240C.

(論文より引用)

英語

• taxonomy:分類学