Spectral Graph Drawing

Rodrigo Arias

January 21, 2018

Outline

- Background
- ► Motivation
- ▶ Ideas from the paper
- ► Methods
- Examples
- ► Conclusions

Background

The placement problem.

- Analytic solution: Minimize an **objective function** (wire, area...) via mathematical analysis.
- Global placement must be legalized afterwards (detailed placement).

Motivation

- ▶ Cells and nets can be modeled as an undirected graph
- ▶ Spectral methods can be used to draw complex graphs

Ideas from the paper

In the Koren paper [1] two methods to find the placement of the nodes are described, using the following properties.

- ightharpoonup Method 1: The Laplacian matrix L
- \triangleright Method 2: The normalized Laplacian matrix \mathcal{L}

The methods minimize the total wire-length

Method 1: Laplacian matrix L

► A graph can be represented by the adjacency matrix *A*, were

$$a_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are connected} \\ 0 & \text{otherwise} \end{cases}$$

- ▶ Also, the degree matrix D has the degree of each node in the diagonal, $d_{ii} = deg(i)$.
- ▶ Finally the Laplacian matrix is defined as L = D A

Method 1: Laplacian matrix L

► The problem is formulated as the minimization of the square wire-length

$$\min_{x} E(x) = \sum_{x} (x(i) - x(j))^{2}$$
s.t. $Var(x) = 1$ (1)

- ▶ The eigenvalues $\lambda_1 \leq \lambda_2 \cdots \lambda_m$ and eigenvectors $v_1, v_2, \cdots v_m$ of L are computed.
- ▶ The positions of the nodes are given by the coordinates of $x = v_2$ and $y = v_3$.

Method 2: Normalized Laplacian matrix

Let d_i be the degree of the node i, we define the normalized Laplacian matrix \mathcal{L} as:

$$\mathcal{L}(i,j) = \begin{cases} 1 & \text{if } i = j, \text{ and } d_i \neq 0 \\ -\frac{1}{\sqrt{d_i d_j}} & \text{if } i \text{ and } j \text{ are connected} \\ 0 & \text{otherwise} \end{cases}$$

▶ We give more weight to the nodes with higher degree, in order to cluster neighbours around centric nodes.

Method 2: Normalized Laplacian matrix

- ▶ The solution is computed as before, but now using the matrix \mathcal{L} .
- ► The eigenvalues $\lambda_1 \leq \lambda_2 \cdots \lambda_m$ and eigenvectors $v_1, v_2, \cdots v_m$ of \mathcal{L} are computed.
- ▶ The positions of the nodes are given by the coordinates of $x = v_2$ and $y = v_3$.

Examples

In order to test the methods, some graphs were generated

- ► Small graph crafted by hand with 7 nodes.
- ► Erdös-Rényi graph with 100 nodes
- ► A FPGA network from a real Verilog TX module with 345 nodes

Small graph

Using the method 1, the Laplacian matrix L. Wire-length: 8.82

Small graph

Using the method 2, the normalized Laplacian matrix \mathcal{L} . Wire-length: 12.87

Small graph

Using the directed force method (for comparison). Wire-length: 9.40

ER graph

Using the method 1, the Laplacian matrix L. Wire-length: 417.97

ER graph

Using the method 2, the normalized Laplacian matrix \mathcal{L} . Wire-length: 722.86

ER graph

Using the spring method (for comparison). Wire-length: 599.69

Generated using Yosys [2] from the Verilog file uart_trx.v.

Using the method 1, the Laplacian matrix L. Wire-length: 78.78

Using the method 2, the normalized Laplacian matrix \mathcal{L} . Wire-length: 733.78

Using the spring method (for comparison). Wire-length: 172.13

Observations

- ► The proposed model doesn't take into account the size of the cells
- ▶ Multiple cells can overlap in the same point
- ▶ The behavior is not close to reality

Conclusions

- ► The spectral methods can be used in the global placement.
- ▶ Don't produce great results in comparison with spring layout.
- ► The underlying working principle is complex to understand.
- ▶ May be suitable for larger graphs, as the matrices are usually very sparse.

References

- Yehuda Koren On Spectral Graph Drawing
 Proceedings of the 9th Annual International Conference
 on Computing and Combinatorics, p496–508, 2003.
 - Clifford Wolf, Johann Glaser. Yosys A Free Verilog Synthesis Suite. In Proceedings of Austrochip 2013