MT Coursera Week 02

Erdaifu Luo

14 May 2023

§1 Implication

In mathematics, we frequently occur the expressions $\phi \implies \psi$. Implication is the means by which we prove results in mathematics, starting with observations and axioms.

We say that ϕ implies ψ is the truth of ϕ follows from the truth of ψ .

Example 1.1

Let ϕ be the statement that $\sqrt{2}$ is rational.

Let ψ be the statement that 0 < 1.

Is " ϕ implies ψ " true?

Although both statements are truth, this does not mean that $\phi \implies \psi$, but the truth of ϕ does not follow from the truth of ψ .

There is a certain complexity in this that we did not encounter previously, that being **implication involves causality**. Implication has a truth part, and a causation part. However, we only need to focus on the <u>truth part</u>, and not the causation part, as the truth part is enough for mathematics. We shall call the truth part, **the conditional** (or sometimes, the material conditional).

We will split implication into two parts: **conditional** (\Longrightarrow), and the causation (which we shall leave for the philosophers).

For example, $\phi \implies \psi$ is the truth part of " ϕ implies ψ ", where ϕ is the **antecedent**, and ψ is the **consequent**.

We will define the truth of $\phi \implies \psi$ in the terms of the truth or falsity of ψ or ϕ . When ϕ does imply ψ , $\phi \implies \psi$. The causation is always defined.

The truth table for this is going to be

ϕ	ψ	$\phi \implies \psi$
T	T	T
$\mid T \mid$	F	F
F	T	T
$\mid F \mid$	F	T

§2 Equivalence

Two statements are said to be equivalent, or **logically equivalent**, if one implies the other. We have to introduce an analogous version of the conditional for equivalence, called the **biconditional**.

Two statementes ϕ and ψ are said to be logically equivalent, if one implies the other. Biconditional is represented by $\phi \iff \psi$, which is an abbreviation of $(\phi \implies \psi) \land (\psi \implies \phi)$. The previous is true of ϕ and ψ are both true or both false. One way to show that two statements Ψ and Φ are equivalent if they have the same truth values.

Example 2.1

 $(\phi \wedge \psi) \vee (\neg)$ is equivalent to $\phi \implies \psi$, where the first sentence is Φ and the second is Ψ .

The following all means " ϕ implies ψ ",

- 1. If ϕ , then ψ .
- 2. ϕ is sufficient for ψ .
- 3. ϕ only if ψ .
- 4. ψ if ϕ .
- 5. ψ whenever ϕ .
- 6. ψ is necessary for ϕ .

To understand this, an example would be to interpret ϕ as "I have a bicycle", and ψ as "I can ride in the tour de france".

The following all means " ϕ is equivalent to ψ ",

- 1. ϕ is necessary and sufficient for ψ .
- 2. ϕ if and only if ψ (abbreviated **iff**).

Both shows how ubquious iff is, as both conditions must imply the other.