

Universidade do Minho Escola de Ciências Departamento de Matemática e Aplicações

Cálculo I Exame de Recurso

Eng. Informática 9/2/2010 [2h 00m]

Nome		Número

Exercício 1. [2 valores] Calcule $\lim_{x \to +\infty} x e^{1-x^2}$.

Exercício 2. [3 valores] Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ uma função derivável e sejam $F, G: \mathbb{R} \longrightarrow \mathbb{R}$ funções definidas por $F(x) = \int_0^x f(t) dt$ e $G(x) = \int_0^{2x-3} f(t) dt$.

- a) Justifique que F e G são funções deriváveis e determine F' e G'.
- b) Seja $P_{2,1}(x) = x^2 + 2x 2$ o polinómio de Taylor de ordem 2 em torno de 1 da função F.
 - 1. Indique, justificando, F(1), F'(1) e F''(1).
 - 2. Determine o polipómio de Taylor de ordem 2 em torno de 2 da função G.

Exercício 3. [2 valores] Calcule
$$\int \left(\sqrt{x+1} + xe^{x^2} + \frac{1}{\sqrt{1-x^2}}\right) dx$$
.

Exercício 4. [2 valores] Calcule apenas uma das seguintes primitivas:

a)
$$\int (x+1)e^{-x}\,dx$$
;

b)
$$\int \frac{x+5}{(x-1)(x^2+x-2)} \, dx.$$

Exercício 5. [2 valores] Calcule $\int_{-5}^{0} 2x\sqrt{4-x} \, dx$, usando a substituição $t=\sqrt{4-x}$.

Exercício 6. [3 valores] Determine a área da região sombreada na figura.

Responda aos exercícios 7 e 8 nesta folha.

Exercício 7. [3 valores] Indique, justificando, se cada uma das proposições seguintes é verdadeira ou falsa:

- a) O conjunto $A=\left\{x\in\mathbb{R}:|x-2|<|x+1|\right\}$ é um conjunto minorado mas não majorado cujo mínimo é $\frac{1}{2}.$
- b) Se $f: \mathbb{R} \longrightarrow \mathbb{R}$ é uma função par, então $\int_{-1}^{1} f(x) dx = 0$;
- c) Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ tal que $f(x) = \begin{cases} x^2, & \text{se } x < 1, \\ \sqrt{x}, & \text{se } x \geq 1. \end{cases}$ O valor da expressão $\int_0^1 \sqrt{1 + 4x^2} \, dx + \int_1^2 \sqrt{1 + \frac{1}{4x}} \, dx$ corresponde ao comprimento da curva que constitui o gráfico da função f entre os pontos de abcissa 0 e 2.

Exercício 8. [3 valores] Apresente um exemplo de, ou justifique porque não existe:

- a) um conjunto $A \subset \mathbb{R}$ que seja aberto e não limitado;
- b) uma função $f: \mathbb{R} \longrightarrow \mathbb{R}$, derivável, tal que f(1) = f(2) = 0 e $f'(x) \neq 0$, $\forall x \in \mathbb{R}$;
- c)uma função $f:[0,1] \longrightarrow \mathbb{R}$ que seja derivável mas não primitivável.