Лабораторная работа № 1

Элементы электрических цепей

Цель работы: исследование активного и пассивного двухполюсника и их эквивалентные преобразования. Изучение режимов работы источника напряжения. Изучение *RLC* - элементов в электрических цепях при воздействии источников постоянного тока.

Продолжительность работы: 4 ч.

Программное обеспечение: Multisim NI.

Оглавление

1.	Порядок выполнения лабораторной работы	3
2.	Теоретическая часть	4
	2.1 Источники электрической энергии в электрических цепях	4
	2.2 Активные и пассивные двухполюсники	4
	2.3 Теорема Тевенина - Гельмгольца	4
	2.4 Теорема Нортона	4
	2.5 Эквивалентные преобразования источников	
	2.6 Режимы работы источников в цепях постоянного тока	
3.	Расчётная часть и моделирование	8
	Ключевые слова	

1. Порядок выполнения лабораторной работы

Перед началом выполнения лабораторной работы каждому студенту необходимо получить допуск у преподавателя. Для получения допуска необходимо ответить на все вопросы преподавателя по темам, освещённым на лекциях и практических занятиях, а также в разделе «Теоретическая часть».

Студент, получивший допуск может приступить к разделу «Расчётная часть и моделирование». В лабораторной работе предусмотрены индивидуальные варианты схем, а также их параметры. Для получения номера варианта необходимо обратиться к преподавателю.

После выполнения моделирования и выполнения расчётов, необходимо предоставить отчёт о выполнении лабораторной работы преподавателю. Отчёт должен быть выполнен в тетради и содержать следующие пункты:

- 1. Цель работы;
- 2. Схему и её параметры из индивидуального задания;
- 3. Эквивалентные схемы, графики, расчёты, таблицы;
- 4. Вывод.

2. Теоретическая часть

2.1 Источники электрической энергии в электрических цепях

Элементы электрических цепей в отчете необходимо изображать в соответствии ГОСТ 2.750-68 и ГОСТ 2.751-73 (рис.5), а в программном приложении Multisim эти элементы изображены с использованием стандарта ISO.

Рис.2.1 – Условные графические обозначения в соответствии с ГОСТ2.750 – 68, ГОСТ 2.751 – 73

Рис. 2.2 – Условные графические обозначения по ISO (Multisim)

2.2 Активные и пассивные двухполюсники

Активный двухполюсник содержит источники, резисторы, индуктивности и конденсаторы, а пассивный — только резисторы, индуктивности и конденсаторы. Двухполюсник — это часть электрической цепи, имеющий два свободных вывода. С помощью этих выводов один двухполюсник может быть соединен с любым другим двухполюсником.

2.3 Теорема Тевенина - Гельмгольца

Теорема Тевенина - Гельмгольца об эквивалентном источнике напряжения. Активный двухполюсник (сложную электрическую схему) можно заменить эквивалентным источником напряжения и последовательно включенным сопротивлением. Напряжению холостого хода равна ЭДС на этих выводах, а внутреннее сопротивление равно эквивалентному сопротивлению двухполюсника.

2.4 Теорема Нортона

Теорема Нортона об эквивалентном источнике тока. Активный двухполюсник можно заменить эквивалентным источником тока с параллельно включенным

сопротивлением. Источник тока равен току короткого замыкания на этих выводах, а внутреннее сопротивление равно эквивалентному сопротивлению двухполюсника относительно этих выводов.

2.5 Эквивалентные преобразования источников

Если известна ЭДС и внутреннее сопротивление реального источника напряжения, тогда его можно заменить реальным источником тока, который равен: $J = E/r_0$. Внутреннее сопротивление сохраняет свое значение и включают его параллельно источнику тока. Реальный источник тока с параллельно включенным сопротивлением также можно заменить источником напряжения с последовательно включенным таким же сопротивлением. При этом ЭДС источника напряжения равна: $E = J \cdot r_0$.

Примечание. Идеальный источник напряжения, имеющий внутреннее сопротивление равное нулю, нельзя преобразовать в идеальный источник тока, внутреннее сопротивление которого равно бесконечности. Идеальный источник тока также нельзя преобразовать в идеальный источник напряжения.

2.6 Режимы работы источников в цепях постоянного тока

Электрическая схема, изображенная на Puc.3(a), состоит из реального источника напряжения и резистора с сопротивлением R. Величину электрического тока можно регулировать от нуля в режиме холостого хода, когда ключ разомкнут, до тока короткого замыкания (ключ замкнут, а ползун резистора находится в крайнем верхнем положении).

Реальный источник напряжения имеет ЭДС и внутреннее сопротивление R_0 .

Рис.2.3 – Схема для исследования реального источника (a) и графики (б): вольт-амперная характеристика и зависимость мощности от тока

График напряжения идеального источника напряжения в режиме холостого хода является прямой горизонтальной линией, а график идеального источника тока в данном режиме равен току короткого замыкания и направлен вертикально.

Характерные точки работы реального источника:

- режим холостого хода: $U_{xx} = E$; I=0;
- номинальный режим: $U_{\text{ном}} = (0.8 0.9) \cdot E$;
- согласованный режим: $U_{cor} = E/2$; $I_{cor} = I_{K3}/2$; P_{max} ; $\eta = 50\%$;
- режим короткого замыкания: $U=0,\ I_{\kappa 3}.=E/R_0.$

Линейное уравнение вольт – амперной характеристики (ВАХ):

$$E = U + I \cdot R_0$$
;

Условие *номинального режима* работы источника напряжения — это когда коэффициент полезного действия источника (КПД) находится в пределах 80 - 90%. КПД источника напряжения определяют как отношение мощности, переданной потребителю, к мощности, вырабатываемой источником:

$$\eta = \frac{P_{nomp}}{P_{ucm}} \cdot 100\% = \frac{U \cdot I}{E \cdot I} \cdot 100\%,$$

где $P_{nomp.} = U \cdot I$ – мощность, отдаваемая источником потребителю;

 $P_{ucm} = E I -$ мощность, вырабатываемая источником.

Основной признак наличия *согласованного режима* в электрической цепи заключается в том, что источник отдает потребителю максимальную мощность, а в это время сопротивление нагрузки равно внутреннему сопротивлению источника $R_{\text{нагр}} = R_o$.

Мощность, отдаваемая источником потребителю при согласованном режиме, определяется по формуле

$$P = U \cdot I = E \cdot I - I^2 R_0$$

Взяв производную и приравняв к нулю, можно получить экстремальное значение, при котором возникает максимальная мощность согласованного режима:

$$\frac{dP}{dI} = E - 2I \cdot R_0 = 0.$$

Электрический ток согласованного режима равен:

$$I_{\rm cor} = \frac{E}{2r_0} = \frac{I_{\kappa 3}}{2}.$$

Максимальную мощность при согласованном режиме рассчитывается по формуле:

$$P_{\text{max}} = \frac{E^2}{2R_0} - \frac{E^2 R_0}{4R_0^2} = \frac{E^2}{4R_0}.$$

У идеального источника напряжения внутреннее сопротивление R_0 равно нулю, а график ВАХ становится горизонтальной линией. Идеальный источник тока равен току короткого замыкания $J=I_{\kappa 3}$, а график ВАХ становится вертикальной линией, исходящей из точки короткого замыкания.

3. Расчётная часть и моделирование

- 3.1 Исследование электрической схемы активного двухполюсника:
 - 1) Собрать электрическую схему активного двухполюсника на рабочем поле Multisim. Вариант схемы приведены на рисунке 3.1, а параметры схемы в таблице 3.1;
 - 2) Измерить напряжение холостого хода Uxx на выходе активного двухполюсника. Рассчитать мощность. Результат зафиксировать в таблице в рабочей тетради (форма приведена в таблице 3.2);
 - 3) Измерить ток короткого замыкания Ікз (замкнуть выход активного двухполюсника проводником). Рассчитать мощность. Результат зафиксировать в таблице в рабочей тетради;
 - 4) Рассчитать внутреннее сопротивление активного двухполюсника по формуле R0 = Uxx/Iкз;
 - 5) Подключить резистор R (по варианту из таблицы 3.1) к выходу активного двухполюсника и измерить ток и напряжение на нем, результат зафиксировать в тетради;
 - 6) Активный двухполюсник заменить эквивалентной ЭДС, с последовательно включенным эквивалентным сопротивлением (теорема Тевенина Гельмгольца), а затем последовательно подключить сопротивление R и измерить ток и напряжение на нем, результат зафиксировать в тетради;
 - 7) Активный двухполюсник заменить эквивалентным источником тока с параллельно включенным эквивалентным сопротивлением (теорема Нортона), а затем подключить сопротивление R и измерить ток и напряжение на нём, результат зафиксировать в тетради.

3.2 Исследование режимов работы активного двухполюсника:

- 1) К выходу активного двухполюсника из задания 3.1 подключить резистор R, равный по номиналу внутреннему сопротивлению R0. Измерить электрический ток и напряжение на резисторе R. Рассчитать мощность. Результаты измерений и расчётов занести таблицу в рабочей тетради;
- 2) Получить дополнительные значения токов равные $I = 0.5 I_{\text{сог.}}$ и $I = 1.5 I_{\text{сог.}}$ изменяя сопротивление нагрузки R. Заполнить таблицу для данных режимов работы;
- 3) Подобрать показание вольтметра равным $U_{\text{ном}} = 0.9 \cdot U_{\text{хx}}$, изменяя сопротивление нагрузки R. Заполнить таблицу для данного режима работы;

- 4) Заполнить таблицу;
- 5) Построить графики друг под другом:
 - вольт-амперной характеристики (BAX);
 - зависимости мощности P от тока *I*;
 - зависимости мощности Р от нагрузочного резистора.
- 3.3 Исследование поведения резистора, конденсатора и катушки индуктивности в цепи постоянного тока.
 - 1) Собрать электрическую схему приведенную на рисунке 3.2 (E =12 B; R = 20 Ом; L = 10 мГн; C = 10 мк Φ) на рабочем поле Multisim, а также перерисовать схему в тетрадь;
 - 2) Измерить токи (IR, IC, IL) и напряжения (UR, UC, UL) на всех элементах, занести в тетрадь и объяснить результаты.

Рис.3.1 – Варианты схем

Таблица 3.1 – Параметры схемы

№Bap	Вариа	E_1 ,	E_2 ,	E_3 , E_4	J, A	R_1 ,	R_2 ,	R_3 ,	R_4 ,	R,
•	HT	В	B	В		Ом	Ом	Ом	Ом	Ом
	схемы									
1	1	10	20	10	1	10	10	10	-	10
2	2	15	30	15	2	10	10	10	8	20
3	3	20	20	10	0.5	20	20	10	5	20
4	4	10	20	20	2	12	24	6	6	12
5	1	20	30	20	2.5	20	20	20	10	10
6	2	20	40	20	4	20	20	12	12	12
7	3	10	30	10	1	10	10	10	2	10
8	4	10	20	10	0.5	20	20	5	10	20
9	1	20	20	-	2	10	5	10	5	10
10	2	20	10	20	1	10	10	10	-	15
11	3	20	10	20	1	10	10	10	-	15
12	4	30	15	30	2	10	10	10	5	20
13	1	30	30	20	1	20	20	10	5	20
14	2	20	10	10	2	12	24	6	6	12
15	3	30	20	30	2.6	20	20	20	10	10
16	4	40	20	40	4	20	20	10	10	10
17	1	30	10	30	1	10	10	10	2	10
18	2	20	10	20	0.5	20	20	5	10	20
19	3	30	15	30	2	10	10	10	5	20
20	4	30	30	20	1	20	20	10	5	20
21	1	10	20	20	2	12	24	6	6	12
22	2	20	10	20	1	10	10	10	-	15
23	3	20	10	20	0.5	20	20	5	10	20
24	4	30	30	20	1	20	20	10	5	20

Таблица 3.2 – Шаблон таблицы для оформления отчёта

Поможения	Показания приборов								
Параметр	U_{xx}	$U_{\scriptscriptstyle{ ext{HOM}}}$	$0.5 \cdot I_{\text{cor}}$	$P < P_{\text{max}}$	P_{\max}	$P < P_{\text{max}}$	$1.5I_{\rm cor}$	<i>I</i> кз	
Напряжение, U									
Ток, І									
Мощность, Р									
Сопротивление, R									

Рис. 3.2 — Схема с RLC-элементами в цепи постоянного тока

4. Ключевые слова

- 1.Идеальный источник
- 2.Реальный источник
- 3.Двухполюсник
- 4. Активный двухполюсник
- 5.Пассивный двухполюсник
- 6.Вольт-амперная характеристика (ВАХ)
- 7.Теорема Тевенина Гельмгольца
- 8.Теорема Нортона
- 9. Эквивалентные преобразования источников
- 10.Режим холостого хода
- 11.Номинальный режим
- 12.Согласованный режим
- 13.Режим короткого замыкания
- 14.Конденсатор в цепи постоянного тока
- 15.Катушка индуктивности в цепи постоянного тока