TD 4 - ACTIONS DE GROUPES, ESPACES PROJECTIFS

† Actions de groupes et espaces projectifs

On travaille ici sur un corps k quelconque, en pratique on pensera à \mathbb{R} où \mathbb{C} , mais gardez en mémoire que ces exercices marchent dans le cas général.

Exercice 1. (Espaces projectifs)

- 1. Montrer que \mathbb{k}^* muni de la multiplication forme un groupe.
- 2. Soit $n \in \mathbb{N}^*$, montrer que le groupe \mathbb{k}^* agit sur l'ensemble $\mathbb{k}^{n+1} \setminus \{0\}$ par multiplication scalaire.
- 3. Montrer qu'un (n+1)-uplet $(a_0, \dots, a_n) \in \mathbb{k}^{n+1} \setminus \{0\}$ détermine une unique droite de \mathbb{k}^{n+1} et que deux (n+1)-uplets détermine la même droite si et seulement s'il existe un scalaire non nul λ tel que

$$(b_0, \cdots, b_n) = (\lambda a_0, \cdots, \lambda a_n)$$

4. En déduire que l'ensemble des orbites sous l'action de \mathbb{k}^* sur $\mathbb{k}^{n+1} \setminus \{0\}$ est en bijection avec l'ensemble des droites vectorielles de \mathbb{k}^{n+1} .

L'espace des orbites (ou espace quotient) de l'action est noté $\mathbb{k}P^n$, c'est l'espace projectif de dimension n sur \mathbb{k} , dans le cas $\mathbb{k} = \mathbb{R}$ ou \mathbb{C} , cet espace est naturellement muni d'une topologie, qui en fait un espace géométrique, par ailleurs très important

Exercice 2.

- 1. Montrer que le groupe $Gl_n(\mathbb{k})$ agit sur \mathbb{k}^n par multiplication à gauche.
- 2. Montrer que les orbites sous cette action sont $\{0\}$ et $\mathbb{k}^n \setminus \{0\}$.
- 3. Montrer que cette action est *fidèle* : l'ensemble

$$\{M \in \operatorname{Gl}_n(\mathbb{k}) \mid \forall x \in \mathbb{k}^n, Mx = x\}$$

est réduit à $\{I_n\}$.

Exercice 3. (Groupe projectif linéaire)

- 1. Montrer que l'action de $Gl_{n+1}(k)$ sur k^{n+1} de l'exercice 2 préserve la colinéarité, en déduire une action de $Gl_{n+1}(k)$ sur l'ensemble kP^n .
- 2. Montrer que $H = \{\lambda I_{n+1} \mid \lambda \in k^*\}$ est un sous-groupe de $Gl_{n+1}(\mathbb{k})$, en fait inclus dans le centre de $Gl_n(k)$ (on peut en fait montrer que H est égal au centre de $Gl_n(k)$)
- 3. Soit $M \in Gl_{n+1}(k)$, montrer que si M laisse invariantes (globalement) toutes les droites vectorielles, alors $M \in H$. Autrement dit, montrer l'implication

$$(\forall x \in \mathbb{k}^{n+1}, \exists \lambda_x \in \mathbb{k}^* \mid Mx = \lambda_x x) \Rightarrow (\exists \lambda \in \mathbb{k}^* \mid \forall x \in \mathbb{k}^{n+1}, Mx = \lambda x)$$

(Indication: prendre x et y non colinéaires, et considérer M(x+y))

4. En déduire une action fidèle de $PGl_{n+1}(\mathbb{k}) := Gl_{n+1}(\mathbb{k})/H$ sur $\mathbb{k}P^n$

† Wait it's all \mathbb{S}^2 ? Always has been!

Exercice 4. (Projection stéréographique)

On se place dans \mathbb{R}^3 , on note :

- $\bullet~\mathbb{S}^2$ la sphère unité de \mathbb{R}^3
- N = (0, 0, 1) le pôle nord de \mathbb{S}^2
- \mathcal{P} le plan d'équation t = 0 (on l'identifie à \mathbb{C})

On pose la projection stéréographique (issue de N) l'application $\pi_N : \mathbb{S}^2 \setminus \{N\} \to \mathcal{P}$ qui à P associe $(NP) \cap \mathcal{P}$. Soient $P = (x, y, t) \in \mathbb{S}^2$ et $\pi_N(P) = z = u + iv$.

- 1. Calculer $\pi_N(P)$ en fonction de x, y et t.
- 2. Exprimer (x, y, t) en fonction de z.
- 3. Montrer que la bijection π_N s'étend en une bijection entre \mathbb{S}^2 et l'ensemble $\mathbb{C} \cup \{\infty\}$ définit comme \mathbb{C} , enrichi d'un "point à l'infini"

(En fait, on peut faire de cette bijection un homéomorphisme : et donner un vrai sens à l'expression "point à l'infini")

Exercice 5. On travaille dans $\mathbb{C}P^1$, on rappelle que cet ensemble est constitué des droites vectorielles de \mathbb{C}^2 . Étant donné $(z, z') \in \mathbb{C}^2 \setminus \{(0, 0)\}$, la droite engendrée par (z, z') est notée [z : z'], on a donc par définition

$$\forall \lambda \in \mathbb{C}^*, [z:z'] = [\lambda z:\lambda z']$$

On dit que z, z' sont un couple de **coordonées homogènes** du point projectif [z:z'].

- 1. Montrer que l'application $f: \mathbb{C} \cup \{\infty\} \to \mathbb{C}P^1$ définie par $z \mapsto [1:z]$ et $\infty \mapsto [0:1]$ est une bijection.
- 2. Déduire de l'exercice précédent une bijection entre \mathbb{S}^2 et $\mathbb{C}P^1$, écrire la valeur de cette bijection pour $(x, y, t) \in \mathbb{S}^2$
- 3. Montrer que la fonction $\mathbb{C}P^1 \to \mathbb{S}^2$, réciproque de la précédente, est donnée par

$$[z:z'] \mapsto \frac{1}{|z|^2 + |z'|^2} \begin{pmatrix} z'\overline{z} + \overline{z'}z\\ i(\overline{z'}z - z'\overline{z})\\ |z'|^2 - |z|^2 \end{pmatrix}$$