$\underset{\text{Angewandte Mathematik: Stochastik}}{Abgabe - \ddot{U}bungsblatt} [2]$

[Vincent Schönbach]

[Yihao Wang]

2. Mai 2020

Aufgabe 1

- a) Ein System M von Teilmengen von Ω heißt $\sigma-$ Algebra über Ω , wenn gilt: $\Omega \in M$, aber es ist nicht der Fall.
- b) $\{\emptyset, \Omega, \{r, g\}, \{b\}, \{r, g, b\}, \{r, g, a\}, \{b, a\}, \{a\}\}$

	Ererignis	Wahrscheinlichkeit P
	Ø	0
	Ω	1
	$\{r,g\}$	3/8
c)	$\{b\}$	1/4
	$\{r,g,b\}$	5/8
	$\{r,g,a\}$	3/4
	$\{b,a\}$	5/8
	$\{a\}$	3/8

Aufgabe 2

- a) $\Omega_7 = [1:6]^7 = \{(\omega_1, \dots, \omega_7) \mid \forall i : \omega_i \in [1:6]\}$
- b) $A = \{(\omega_1, \dots, \omega_7) \in \Omega \mid \forall j \in [1:6], \exists i \in [1:7] : \omega_i = j\}$ $B = \{(\omega_1, \dots, \omega_7) \in \Omega \mid \sum_{i=1}^7 \omega_i \mod 2 = 0\}$
- c) $|\Omega| = 6^7$

 $|A|=6!\times\binom{7}{1}\times 6$ Begründung: Man wählt zunächst einen freien Platz von 7 Plätze, und in diesen Platz gibt es 6 möglich Würfeln. 6 Fakultät bedeutet, der Rest darf jede Zahl genau ein mal erscheinen, und die Reihenfolge davon ist auch wichtig.

 $|B|=\frac{6^7}{2}$ Begründung: gerade+gerade = gerade, nicht gerade + nicht gerade = gerade. Die sind genau Hälfte der Fälle.

#gerade	#nicht gerade	Ergebnis
0	7	gerade
1	6	nicht gerade
2	5	gerade
3	4	nicht gerade
4	3	gerade
5	2	nicht gerade
6	1	gerade
7	0	nicht gerade

Aufgabe 3

z.zg:
$$A_1, A_2, \ldots \in A \Rightarrow \bigcap_{i \geq 1} A_i \in A$$

$$Bew : Sei \quad A_1, A_2, \ldots \in A$$

$$\stackrel{Def(b)}{\Rightarrow} A_1^c, A_2^c, \ldots \in A$$

$$\stackrel{Def(c)}{\Rightarrow} \bigcup_{i \geq 1} A_i^c \in A$$

$$\Rightarrow (\bigcap_{i \geq 1} A_i)^c \in A(De - morgansche \ Gesetz)$$

$$\stackrel{Def(b)}{\Rightarrow} \bigcap_{i \geq 1} A_i \in A$$

Aufgabe 4

IA:
$$n = 0$$

$$P(\mathcal{A}_1) - 0 \le P(\mathcal{A}_1)$$

IS:
$$n \to n+1$$

$$\sum_{i=1}^{n+1} P(\mathcal{A}_i) - \sum_{i < j} P(\mathcal{A}_i \cap \mathcal{A}_j)$$

$$= \sum_{i=1}^{n} P(\mathcal{A}_i) - \sum_{i < j} P(\mathcal{A}_i \cap \mathcal{A}_j) + P(\mathcal{A}_{n+1}) - \sum_{i < n+1} \mathcal{A}_i \cap \mathcal{A}_{n+1}$$

$$\stackrel{IV}{\leq} P(\bigcup_{i=1}^{n} \mathcal{A}_i) + P(\mathcal{A}_{n+1}) - \sum_{i < n+1} \mathcal{A}_i \cap \mathcal{A}_{n+1}$$

$$\stackrel{1.4(4)}{\leq} \sum_{i=1}^{n} P(\mathcal{A}_i) + P(\mathcal{A}_{n+1}) - P(\bigcap_{i=1}^{n+1} \mathcal{A}_i)$$

$$\leq \sum_{i=1}^{n+1} P(\mathcal{A}_i) - P(\bigcap_{i=1}^{n+1} \mathcal{A}_i)$$

$$\stackrel{1.4(2)}{\leq} P(\bigcup_{i=1}^{n+1} \mathcal{A}_i)$$