

Quantum programming Lab

Leonardo Bacciottini

leonardo.bacciottini@phd.unipi.it

Part of the course in

Quantum Computing and Quantum Internet

held by Prof. Luciano Lenzini

The Network Simulator for Quantum Information using Discrete events (NetSquid)

What is NetSquid Installation guide

Installation

- 1. Register on the NetSquid official website here
- 2. Install NetSquid using pip3:

```
pip3 install --extra-index-url https://pypi.netsquid.org netsquid
```

3. Dive into NetSquid documentation

Suggestion: install NetSquid in a conda environment

NetSquid

- NetSquid is a discrete event simulator
- Available for Linux and MacOS systems
- Deployed as a Python package (C++ under the hood)
- Why NetSquid?

- ✓ Allows any abstraction level
- ✓ Extendable

.pydynaa

netsquid package

Leonardo Bacciottini

Simulation elements

- To model a system we have to define two things:
 - 1. Static elements (atomic and compound modules, ports and connections)

- 2. Dynamic elements (Behavior of components and nodes)
 - > Components come with a pre-defined, well-known behavior
 - > Protocols can be added to nodes to realize user-defined behaviors

Leonardo Bacciottini

NetSquid package

Leonardo Bacciottini

Event Queue

Pydynaa

- A few words about the simulation engine
- Simulation advances according to a discrete event scheme.
- Simulation entities can wait on a specific type of **Event**, described by an **EventExpression**:

```
my_evexpr = self.await_port_input(node.ports["q0"]) or self.await_timer(duration=500) yield my_evexpr
```


Quantum Ping Pong

Ping measures in Z basis (CBS):

$$\left\{ |0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, \ |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \right\}$$

Pong measures in X basis:

$$\begin{cases} |+\rangle = \frac{1}{\sqrt{2}} {1 \choose 1}, \\ |-\rangle = \frac{1}{\sqrt{2}} {1 \choose -1} \end{cases}$$

Figure taken from NetSquid website

Model

Figure taken from NetSquid website

PingPong Node

Exercise 1

- Open a Python IDE, import netsquid
- Implement the PingPongNode class as an extension of the Node class:
 - 1. Add the quantum memory as a subcomponent
 - 2. Connect qin/qout ports of the qmemory to the q0 port of the node
 - 3. Add the PingPongProtocol to define the node behavior.

Channels and Connections

• Channels are **components** that model a one-way link:

• Connections are **nodes** that implement arbitrary complex links:

Exercise 2

- Implement the connection from the previous slide on netsquid:
 - 1. Create a PingPongConnection class extending the class Connection
 - 2. Add the two channels as sub-components
 - 3. Forward input/output of channel ports to the connection ports
- Shortcut: Use the class DirectConnection

Avengers, Assemble!

Assemble the Ping Pong network:

Exercise 3

- Implement the network on netsquid.
- Run the simulation.

Collecting metrics

- Netsquid supports metrics collection through an emit–catch scheme:
- A class called DataCollector can be defined to catch a specific type of EventExpression when it occurs.
- Whenever the DataCollector catches the EventExpression, a handler method is called that may return a metric sample
- At the end of the simulation we can access the metrics set as a Python dataframe.

