Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL COEF*FGI COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

Strategies: none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 1000146.56

Figure 1: Outline of path 1

2.1.1 Synthesis of O-substituted N-substituted hydroxamic acids

Substrates:

- 1. 1-methyl-1,1-dithiooxalsaeure
- 2. n-methoxymethylamine available at Sigma-Aldrich

Products:

1. CON(C)C(=O)C(=S)SC

Typical conditions: DCC.DMAP or CDI.TEA.DCM

Protections: none

Reference: Patent: WO2007/67333A2, 2007 & 10.1016/j.bmcl.2008.09.100

Retrosynthesis ID: 1152

2.1.2 Synthesis of ketones from Weinreb amides

Substrates:

1. Allyl bromide - available at Sigma-Aldrich

2. CON(C)C(=O)C(=S)SC

Products:

1. C=CCC(=O)C(=S)SC

Typical conditions: 1.RmgBr.THF 2.TFA.DCM

Protections: none

Reference: 10.1021/jm051185t and 10.1021/ol101021v (supporting info)

Retrosynthesis ID: 6837

2.1.3 Synthesis of aryl Grignard reagents

Substrates:

1. 3-Iodobenzonitrile - available at Sigma-Aldrich

2. Magnesium - available at Sigma-Aldrich

Products:

1. C7H4BrMgN

Typical conditions: iPrMgCl.LiCl.THF or other conditions Mg.THF or tBuLi.MgBr2

Protections: none

Reference: DOI: 10.1016/S0040-4039(99)01404-5 and 10.1021/jo0000574 and

WO2014123793 p.137 and 10.1021/jm400491x and 10.3762/bjoc.12.36

Retrosynthesis ID: 10011460

2.1.4 Olefination of ketones followed by hydrolysis

Substrates:

 $1. \ triphenylphosphonium \ methoxymethylide$

2. C=CCC(=O)C(=S)SC

Products:

1. C=CCC(C=O)C(=S)SC

Typical conditions: KHMDS.THF hydrolysis: pTsOH.water.acetone

Protections: none

Reference: 10.1002/anie.201811403 and 10.1002/anie.201809130 and 10.1002/anie.201705809 and 10.1002/anie.201409038 and 10.1021/ol3028994 (SI)

2.1.5 Grignard-Type Reaction

Substrates:

- 1. C=CCC(C=O)C(=S)SC
- 2. C7H4BrMgN

Products:

1. C=CCC(C(=S)SC)C(O)c1cccc(C#N)c1

 $\textbf{Typical conditions:} \ \operatorname{Mg} \ \mathrm{or} \ \operatorname{Li.ether}$

Protections: none

Reference: 10.1055/s-0030-1260809 or 10.1021/jm061429p or 10.1021/jo0621423

or 10.1021/ja00373a036 or 10.1016/S0040-4020(01)00457-4

Retrosynthesis ID: 25123

2.1.6 Condensation of ketones with dithioesters

Substrates:

1. C=CCC(C(=S)SC)C(O)c1cccc(C#N)c1

2. Methyl p-tolyl ketone - available at Sigma-Aldrich

Products:

 $1. \ C = CCC(C(=S)CC(=O)c1ccc(C)cc1)C(O)c1cccc(C\#N)c1$

 ${\bf Typical\ conditions:}\ {\bf NaH.DMF}$

Protections:

Functional group SMARTS	Classification	Protecting groups
[#6][CH]([#6])[OH]	alcohols	Methoxymethyl Ether (MOM)
		2-Methoxyethoxymethyl Ether (MEM)
		Tetrahydropyranyl Ether (THP)
		Benzyl Ether (PMB)
		t-Butyldimethylsilyl Ether (TB-DMS)
		Methyl Ether

Reference: 10.1021/jo400599e and 10.1002/ejoc.201301667

Retrosynthesis ID: 9996413

2.2 Path 2

Score: 1000151.35

Figure 2: Outline of path 2

2.2.1 Synthesis of Carboxylic Acids via Haloform Reaction

Substrates:

1. 4-(methylsulfanyl)-4-sulfanylidenebutan-2-one - available at Sigma-Aldrich

Products:

1. CSC(=S)CC(=O)O

Typical conditions: I2.KI.KOH.H2O.dioxane

Protections: none

Reference: 10.1021/jacs.8b12242 SI p. S25 and 10.1021/ol5025025 SI p. S27

Retrosynthesis ID: 10366

2.2.2 Synthesis of O-substituted N-substituted hydroxamic acids

Substrates:

1. n-methoxymethylamine - available at Sigma-Aldrich

2. CSC(=S)CC(=O)O

Products:

1. CON(C)C(=O)CC(=S)SC

Typical conditions: DCC.DMAP or CDI.TEA.DCM

Protections: none

Reference: Patent: WO2007/67333A2, 2007 & 10.1016/j.bmcl.2008.09.100

2.2.3 Condensation of amides with aldehydes

Substrates:

- 1. Acrolein
- $2. \ \mathrm{CON(C)C(=O)CC(=S)SC}$

Products:

1. C=CC=C(C(=O)N(C)OC)C(=S)SC

Typical conditions: piperidine.EtOH

Protections: none

Reference: 10.1021/ja075335w (Si) AND 10.1016/j.bmcl.2012.10.016 AND 10.1016/j.tetlet.2013.12.097 AND 10.1021/ol303097j

Retrosynthesis ID: 14975

2.2.4 Synthesis of ketones from Weinreb amides

Substrates:

- 1. C=CC=C(C(=O)N(C)OC)C(=S)SC
- 2. 3-Iodobenzonitrile available at Sigma-Aldrich

Products:

1. C=CC=C(C(=O)c1cccc(C#N)c1)C(=S)SC

Typical conditions: 1.RmgBr.THF 2.TFA.DCM

Protections: none

Reference: 10.1021/jm051185t and 10.1021/ol101021v (supporting info)

Retrosynthesis ID: 5060

2.2.5 Reduction of enones to saturated alcohols

Substrates:

1. C=CC=C(C(=O)c1cccc(C#N)c1)C(=S)SC

Products:

1. C=CCC(C(=S)SC)C(O)c1cccc(C#N)c1

Typical conditions: NaBH4.transition.metal.salt.(eg.Pd(OAc)2.or.CeCl3)

Protections: none

2.2.6 Condensation of ketones with dithioesters

Substrates:

- 1. C=CCC(C(=S)SC)C(O)c1cccc(C#N)c1
- 2. Methyl p-tolyl ketone available at Sigma-Aldrich

Products:

1. C=CCC(C(=S)CC(=O)c1ccc(C)cc1)C(O)c1cccc(C#N)c1

 ${\bf Typical\ conditions:}\ {\rm NaH.DMF}$

Protections:

Functional group SMARTS	Classification	Protecting groups
[#6][CH]([#6])[OH]	alcohols	Methoxymethyl Ether (MOM)
		2-Methoxyethoxymethyl Ether (MEM)
		Tetrahydropyranyl Ether (THP)
		Benzyl Ether (PMB)
		t-Butyldimethylsilyl Ether (TB-DMS)
		Methyl Ether

Reference: 10.1021/jo400599e and 10.1002/ejoc.201301667

2.3 Path 3

Score: 1000161.11

Figure 3: Outline of path 3

2.3.1 Bromination of aromatic compounds

Substrates:

1. methyl b-benzoyldithioacetate

Products:

1. CSC(=S)CC(=O)c1cccc(Br)c1

Typical conditions: Br2.Fe

Protections: none

Reference: 10.1021/acs.accounts.6b00120

2.3.2 Aldol Condensation

Substrates:

1. Acrolein

2. CSC(=S)CC(=O)c1cccc(Br)c1

Products:

 $1. \ C{=}CC{=}C(C({=}O)c1cccc(Br)c1)C({=}S)SC$

Typical conditions: NaOEt.base

Protections: none

Reference: 10.1080/00397911.2016.1206938

Retrosynthesis ID: 10049

2.3.3 Pd-catalyzed formylation of aryl halides

Substrates:

1. tert-Butyl isocyanide - available at Sigma-Aldrich

2. C=CC=C(C(=O)c1cccc(Br)c1)C(=S)SC

Products:

 $1. \ C=CC=C(C(=O)c1cccc(C=O)c1)C(=S)SC$

Typical conditions: Pd(OAc)2.JohnPhos.Na2CO3.H2O.Et3SiH.DMF.65C

Protections: none

Reference: DOI: 10.1021/ol5014262

Retrosynthesis ID: 3103

2.3.4 Synthesis nitriles from aldehydes using DPPH

Substrates:

1. O-(Diphenylphosphinyl)hydroxylamine - available at Sigma-Aldrich

 $2. \ C{=}CC{=}C(C({=}O)c1cccc(C{=}O)c1)C({=}S)SC$

Products:

1. C=CC=C(C(=O)c1cccc(C#N)c1)C(=S)SC

Typical conditions: DPPH.toluene.80C

Protections: none

Reference: DOI: 10.1021/jo301133y

2.3.5 Reduction of enones to saturated alcohols

Substrates:

1. C=CC=C(C(=O)c1cccc(C#N)c1)C(=S)SC

Products:

 $1. \ C{=}CCC(C({=}S)SC)C(O)c1cccc(C{\#}N)c1$

Typical conditions: NaBH4.transition.metal.salt.(eg.Pd(OAc)2.or.CeCl3)

Protections: none

Retrosynthesis ID: 15304

2.3.6 Condensation of ketones with dithioesters

Substrates:

- 1. C=CCC(C(=S)SC)C(O)c1cccc(C#N)c1
- 2. Methyl p-tolyl ketone available at Sigma-Aldrich

Products:

 $1. \ C{=}CCC(C({=}S)CC({=}O)c1ccc(C)cc1)C(O)c1cccc(C\#N)c1$

 ${\bf Typical\ conditions:}\ {\rm NaH.DMF}$

Protections:

Functional group SMARTS	Classification	Protecting groups
[#6][CH]([#6])[OH]	alcohols	Methoxymethyl Ether (MOM)
		2-Methoxyethoxymethyl Ether (MEM)
		Tetrahydropyranyl Ether (THP)
		Benzyl Ether (PMB)
		t-Butyldimethylsilyl Ether (TB-DMS)
		Methyl Ether

Reference: 10.1021/jo400599e and 10.1002/ejoc.201301667

Retrosynthesis ID: 9996413

2.4 Path 4

Score: 1000161.11

Figure 4: Outline of path 4

2.4.1 Aldol Condensation

Substrates:

- 1. Acrolein
- 2. 4-(methylsulfanyl)-4-sulfanylidenebutan-2-one available at Sigma-Aldrich

Products:

1. C=CC=C(C(C)=O)C(=S)SC

Typical conditions: NaOEt.base

Protections: none

Reference: 10.1080/00397911.2016.1206938

Retrosynthesis ID: 10049

2.4.2 Synthesis of Carboxylic Acids via Haloform Reaction

Substrates:

$$1. \ C{=}CC{=}C(C(C){=}O)C({=}S)SC$$

Products:

 $1. \ \mathrm{C=CC=C(C(=O)O)C(=S)SC}$

Typical conditions: NaClO.EtOH.0-20 C or Br2.NaOH.H2O.dioxane.0 C

Protections: none

3265-1 p. 726, 728

Retrosynthesis ID: 10367

2.4.3 Synthesis of O-substituted N-substituted hydroxamic acids

Substrates:

1. C=CC=C(C(=O)O)C(=S)SC

 $2. \ \ \text{n-methoxymethylamine} \ \ - \ \ \ \textit{available at Sigma-Aldrich}$

Products:

1. C=CC=C(C(=O)N(C)OC)C(=S)SC

Typical conditions: DCC.DMAP or CDI.TEA.DCM

Protections: none

Reference: Patent: WO2007/67333A2, 2007 & 10.1016/j.bmcl.2008.09.100

Retrosynthesis ID: 1152

2.4.4 Synthesis of ketones from Weinreb amides

Substrates:

1. C=CC=C(C(=O)N(C)OC)C(=S)SC

2. 3-Iodobenzonitrile - available at Sigma-Aldrich

Products:

1. C=CC=C(C(=O)c1cccc(C#N)c1)C(=S)SC

Typical conditions: 1.RmgBr.THF 2.TFA.DCM

Protections: none

Reference: 10.1021/jm051185t and 10.1021/ol101021v (supporting info)

Retrosynthesis ID: 5060

2.4.5 Reduction of enones to saturated alcohols

Substrates:

1. C=CC=C(C(=O)c1cccc(C#N)c1)C(=S)SC

Products:

1. C=CCC(C(=S)SC)C(O)c1cccc(C#N)c1

Typical conditions: NaBH4.transition.metal.salt.(eg.Pd(OAc)2.or.CeCl3)

Protections: none

Reference: 10.1080/00397910902788117 AND 10.1021/jo00235a009 AND 10.1016/0040-4020(95)00125-R AND 10.1021/ja01327a041 AND 10.1021/jo00302a056 AND 10.1002/adsc.200900628

Retrosynthesis ID: 15304

2.4.6 Condensation of ketones with dithioesters

Substrates:

1. C=CCC(C(=S)SC)C(O)c1cccc(C#N)c1

2. Methyl p-tolyl ketone - available at Sigma-Aldrich

Products:

 $1. \ C{=}CCC(C({=}S)CC({=}O)c1ccc(C)cc1)C(O)c1cccc(C{\#}N)c1$

 ${\bf Typical\ conditions:}\ {\bf NaH.DMF}$

Protections:

Functional group SMARTS	Classification	Protecting groups
[#6][CH]([#6])[OH]	alcohols	Methoxymethyl Ether (MOM)
		2-Methoxyethoxymethyl Ether (MEM)
		Tetrahydropyranyl Ether (THP)
		Benzyl Ether (PMB)
		t-Butyldimethylsilyl Ether (TB-DMS)
		Methyl Ether

Reference: 10.1021/jo400599e and 10.1002/ejoc.201301667

2.5 Path 5

Score: 1000164.14

Figure 5: Outline of path 5

2.5.1 Eschenmoser methenylation

Substrates:

- 1. 4-(methylsulfanyl)-4-sulfanylidenebutan-2-one available at Sigma-Aldrich
- 2. Formalin available at Sigma-Aldrich

Products:

1. C=C(C(C)=O)C(=S)SC

 $\textbf{Typical conditions:} \ iPr2NH.TFA.HCHO.or.organocatalyst$

Protections: none

Reference: DOI: 10.1016/S0040-4039(00)82176-0 AND DOI: 10.1021/jo052529q

AND DOI: 10.1039/b924577d

2.5.2 Alkenylation-Aldol reaction of enones and enoate esters

Substrates:

 $1. \ \mathrm{C=C(C(C)=O)C(=S)SC}$

2. 3-Cyanobenzaldehyde - available at Sigma-Aldrich

3. Bromoethylene - available at Sigma-Aldrich

Products:

1. C=CCC(C(C)=O)(C(=S)SC)C(O)c1cccc(C#N)c1

Typical conditions: 1.RCuLi.2.RCHO

Protections: none

Reference: 10.1021/jo2010186 AND 10.1021/jo101439h AND 10.1021/ja906241w AND 10.1016/S0040-4039(01)80891-1 AND 10.1016/S0040-4020(01)82115-3

Retrosynthesis ID: 13048

2.5.3 Synthesis of Carboxylic Acids via Haloform Reaction

Substrates:

1. C=CCC(C(C)=O)(C(=S)SC)C(O)c1cccc(C#N)c1

Products:

1. C=CCC(C(=O)O)(C(=S)SC)C(O)c1cccc(C#N)c1

Typical conditions: I2.KI.KOH.H2O.dioxane

Protections: none

Reference: 10.1021/jacs.8b12242 SI p. S25 and 10.1021/ol5025025 SI p. S27

Retrosynthesis ID: 10366

2.5.4 Decarboxylation of tertiary carboxylic acids

Substrates:

1. C=CCC(C(=O)O)(C(=S)SC)C(O)c1cccc(C#N)c1

Products:

1. C=CCC(C(=S)SC)C(O)c1cccc(C#N)c1

Typical conditions: DMSO.135C

Protections: none

Reference: DOI: 10.1021/jm990630f AND 10.1016/S0040-4039(99)02191-7

2.5.5 Condensation of ketones with dithioesters

Substrates:

- 1. C=CCC(C(=S)SC)C(O)c1cccc(C#N)c1
- 2. Methyl p-tolyl ketone available at Sigma-Aldrich

Products:

1. C=CCC(C(=S)CC(=O)c1ccc(C)cc1)C(O)c1cccc(C#N)c1

 $\textbf{Typical conditions:} \ \mathrm{NaH.DMF}$

Protections:

Functional group SMARTS	Classification	Protecting groups
[#6][CH]([#6])[OH]	alcohols	Methoxymethyl Ether (MOM)
		2-Methoxyethoxymethyl Ether (MEM)
		Tetrahydropyranyl Ether (THP)
		Benzyl Ether (PMB)
		t-Butyldimethylsilyl Ether (TB-DMS)
		Methyl Ether

Reference: 10.1021/jo400599e and 10.1002/ejoc.201301667