《第二次习题作业》

12 考虑 10 个信号 $x_i(t)$, $i=1,2,\cdots,10$ 。假定每个 $x_i(t)$ 的傅里叶变换 $X_i(j\omega)=0$, $|\omega| \geq 2000\pi$,全部这 10 个信号在每一个都乘以下图所示的载波 c(t) 以后要被时分多路复用。如果 c(t) 的周期 T 已选成最大可容许的值,问这 10 路信号要能时分多路复用,最大的 Δ 值是什么?

- 24 下图示出一个用于正弦幅度调制的系统,其中 x(t) 是带限的,其最高频率为 $\omega_{\scriptscriptstyle M}$,即 $X(j\omega)=0$, $|\omega|>\omega_{\scriptscriptstyle M}$ 。如图所指出,信号 s(t) 是一个周期为的 T 周期冲激串,不过对于 t=0 有一个偏移 Δ 。系统 $H(j\omega)$ 是一个带通滤波器。
 - (a) 若 Δ = 0, $\omega_{\!\!{}_M}=\pi/2\mathrm{T}$, $\omega_{\!\!{}_l}=\pi/\mathrm{T}$, $\omega_{\!\!{}_h}=3\pi/\mathrm{T}$, 证明: y(t) 正比于 $x(t)\cos\omega_{\!\!{}_c}t$, $\omega_{\!\!{}_c}=2\pi/\mathrm{T}$ 。
 - (b) 如果 ω_M , ω_l , ω_h 与 (a) 中所给出的相同,但 Δ 不一定为零,证明: y(t) 正比于 $x(t)\cos(\omega_c t + \theta_c)$,并用 Δ 和 T 来确定 ω_c , θ_c 。
 - (c) 在 y(t) 仍正比于 $x(t)\cos(\omega_c t + \theta_c)$ 的前提下,确定与 T 有关的最大容许的 $\omega_{\!_M}$.

28 在 8.4 节讨论了利用 **90°** 相移网格来实现单边带调制,并在图 8.21 (见教材 P.432) 和图 8.22 (见教材 P.433) 中 具体画出了这个系统,以及为保留下边带所要求的有关频谱。下图(a)示出了一个为保留上边带所对应的系统。

- (a) 若 $X(j\omega)$ 与图 8.22(见教材 P.433, 示于下图)中相同,试画出该系统 $Y_1(j\omega)$, $Y_2(j\omega)$ 和 $Y(j\omega)$,并说明仅仅保留了上边带。
 - (b) 若 $X(j\omega)$ 为纯虚数,如图(b)所示,试画出该系统的 $Y_1(j\omega)$, $Y_2(j\omega)$ 和 $Y(j\omega)$,并说明这种情况下也是

36 无线电与电视信号的准确解复用——解调通常是利用一种称为超外差接收机的系统来实现的,这是等效于一种可变调谐滤波器。下图(a)示出它的基本组成系统。

(a) 输入信号 y(t) 由已经频分多路复用过的众多幅度已调信号叠加而成,所以每一路信号都占有一个不同频率的信道。现在来考虑一个这样的信道,它包括幅度已调信号 $y_1(t)=x_1(t)\cos\omega_c t$,其频谱 $Y_1(j\omega)$ 如图 (b) 所示。现在想要利用图 (a) 所示的系统对 $y_1(t)$ 先解复用,再解调以便恢复调制信号 $x_1(t)$ 。粗调谐滤波器有一个示于图 (b)

的频率响应 $H_1(\mathbf{j}\omega)$ 。确定输入至固定选频滤波器 $H_2(\mathbf{j}\omega)$ 的输入信号 Z(t) 的频谱 $Z(\mathbf{j}\omega)$,并对 $\omega>0$ 画出 $Z(\mathbf{j}\omega)$ 和加以标注。

- (b) 固定选频滤波器是一个以频率 ω_f 为中心的带通滤波器,如图 (c) 所示。希望该滤波器 $H_2(\mathbf{j}\omega)$ 的输出是 $r(t) = x_1(t) \cos \omega_f t \text{ 时,依据 } \omega_c \text{ 和 } \omega_M \text{ ,为了保证 } x_1(t) \text{ 的一个不失真的频谱集中于 } \omega = \omega_f \text{ 周围,} \omega_T \text{ 必须 满足什么约束?}$
- (c) 图(c)中,G, α 和 β 必须等于什么,才能使 $r(t)=x_1(t)\cos\omega_t t$?

40 在 8.3 节曾讨论利用正弦幅度调制实现频分多路复用,借以把几个信号搬移到不同的频带上,然后把它们加起来同时发送出去。在本题将研究另一种称为**正交多路复用**的概念。按此多路复用方法,如果两个载波信号的相位相差 **90°**,那么这两个信号可以同时在同一频带内传送,该多路复用系统如图(a)所示,其解复用系统如图(b)所示。

假定 $x_1(t)$ 和 $x_2(t)$ 都是带限的,其最高频率为 ω_M 即有 $X_1(\mathbf{j}\omega)=X_2(\mathbf{j}\omega)=0$, $|\omega|>\omega_M$ 。 假定载波频率 ω_c 大于 ω_M ,证明: $y_1(t)=x_1(t)$ 和 $y_2(t)=x_2(t)$ 。