ML-As-4

Problem 1: Neural Networks (20 pts)

Consider a 3-layer fully connected neural network with the following architecture:

- Input layer: n = 4 neurons
- Hidden layer: m = 3 neurons using a custom activation function f(x) = ReLU(x) + sin(x)
- Output layer: k = 2 neurons using a softmax activation function $\sigma(z_i) = \frac{e_i^z}{\sum_j e^{ij}}$

The network parameters (weights and biases) are given as:

- $\circ \ \ W_1 \in \mathbb{R}^{3 imes 4}$ and $b_1 \in \mathbb{R}^3$ for the hidden layer.
- $w_2 \in \mathbb{R}^{2 \times 3}$ and $b_2 \in \mathbb{R}^2$ for the output layer.

Given the input vector $x\in\mathbb{R}^4$ and target output $y\in\mathbb{R}^2$. Define the loss function as cross-entropy loss:

$$Loss = -\sum_{i=1}^k y_i \log(\hat{y}_i)$$

where \hat{y} is the output after the softmax activation.

Q1

1. Derive the equations for the forward pass through the network, including both the hidden and output layers. (3 pts)

Forward pass through the network:

o Hidden layer:

$$z^{(1)} = W_1 x + b_1 \ h = f(z^{(1)}) = ReLU(z^{(1)}) + sin(z^{(1)})$$

Output layer:

$$z^{(2)} = W_2 h + b_2 \ \hat{y} = \sigma(z^{(2)}) = rac{e^{z^{(2)}}}{\sum_j e^{z_j^{(2)}}}$$

o Loss:

$$\hat{y}i = rac{e^{z_i^{(2)}}}{\sum_j i = 1^2 e^{z_j^{(2)}}}$$

2. Calculate the outputs $\mathbf{Z_1}$, \mathbf{H} , $\mathbf{Z_2}$, and $\hat{\mathbf{y}}$ explicitly for a given input $\mathbf{x} = [1, -1, 0.5, 2]^T$ and the following initial weights and biases:

$$\mathbf{W}_1 = \begin{pmatrix} 0.1 & -0.2 & 0.3 & 0.4 \\ 0.5 & -0.3 & 0.1 & -0.2 \\ 0.4 & 0.2 & -0.5 & 0.3 \end{pmatrix}, \quad \mathbf{b}_1 = \begin{pmatrix} 0.1 \\ -0.1 \\ 0.05 \end{pmatrix}$$
$$\mathbf{W}_2 = \begin{pmatrix} -0.3 & 0.2 & 0.1 \\ 0.4 & -0.5 & 0.3 \end{pmatrix}, \quad \mathbf{b}_2 = \begin{pmatrix} 0.05 \\ -0.05 \end{pmatrix}$$

• Note that Z_1 is the net input to the hidden layer, H is the activation output of the hidden layer, and Z_2 is the net input to the output layer. (3 pts)

$$Z_1 = W_1 x + b_1 = egin{pmatrix} 0.1 & -0.2 & 0.3 & 0.4 \ 0.5 & -0.3 & 0.1 & -0.2 \ 0.4 & 0.2 & -0.5 & 0.3 \end{pmatrix} egin{pmatrix} 1 \ -1 \ 0.5 \ 2 \end{pmatrix} + egin{pmatrix} 0.1 \ -0.1 \ 0.05 \end{pmatrix} = egin{pmatrix} 1.35 \ 0.35 \ 0.6 \end{pmatrix}$$

$$H = ReLU(Z_1) + sin(Z_1) = \begin{pmatrix} 2.325 \\ 0.692 \\ 1.164 \end{pmatrix}$$
 $Z_2 = W_2H + b_2 = \begin{pmatrix} -0.3 & 0.2 & 0.1 \\ 0.4 & -0.5 & 0.3 \end{pmatrix} \begin{pmatrix} 2.33 \\ 0.69 \\ 1.64 \end{pmatrix} + \begin{pmatrix} 0.05 \\ -0.05 \end{pmatrix} = \begin{pmatrix} -0.3927 \\ 0.8832 \end{pmatrix}$ $\hat{y} = \sigma(Z_2) = \begin{pmatrix} 0.2181 \\ 0.7819 \end{pmatrix}$

Q2

Derive the gradient of the loss with respect to each parameter (W_1, b_1, W_2, b_2) in the network and obtain the gradient values using results from the first question. Use matrix calculus to express the gradients.

Hint: You can first calculate the error terms δ_2 and δ_1 for each layer and use them to express the gradients. (10 pts)

Error term δ_2

$$\delta_2 = \hat{y} - y$$

Gradient of the loss with respect to W_2

$$rac{\partial Loss}{\partial W_2} = rac{\partial Loss}{\partial \hat{y}} rac{\partial \hat{y}}{\partial Z_2} rac{\partial Z_2}{\partial W_2} = \delta_2 H^T$$

Gradient of the loss with respect to b_2

$$rac{\partial Loss}{\partial b_2} = rac{\partial Loss}{\partial \hat{y}} rac{\partial \hat{y}}{\partial Z_2} rac{\partial Z_2}{\partial b_2} = \delta_2$$

Error term δ_1

$$\delta_1 = rac{\partial Loss}{\partial H}rac{\partial H}{\partial Z_1} = W_2^T\delta_2\odotrac{\partial H}{\partial Z_1}$$

Gradient of the loss with respect to W_1

$$rac{\partial Loss}{\partial W_1} = rac{\partial Loss}{\partial H} rac{\partial H}{\partial Z_1} rac{\partial Z_1}{\partial W_1} = \delta_1 x^T$$

Gradient of the loss with respect to b_1

$$rac{\partial Loss}{\partial b_1} = rac{\partial Loss}{\partial H} rac{\partial H}{\partial Z_1} rac{\partial Z_1}{\partial b_1} = \delta_1$$

Q3

Suppose the learning rate $\alpha = 0.001$. Please calculate the updated parameter values after one back propagation process. (4 pts)

The general update rule for each parameter θ with gradient descent is:

$$\theta = \theta - \alpha \frac{\partial \text{Loss}}{\partial \theta}$$

where α is the learning rate.

Updating W_2 :

$$W_2^{ ext{new}} = W_2 - lpha rac{\partial ext{Loss}}{\partial W_2} = W_2 - 0.001 \delta_2 H^T$$

Updating b_2 :

$$b_2^{ ext{new}} = b_2 - lpha rac{\partial ext{Loss}}{\partial b_2} = b_2 - 0.001 \delta_2$$

Updating W_1 :

$$W_1^{ ext{new}} = W_1 - lpha rac{\partial ext{Loss}}{\partial W_1} = W_1 - 0.001 \delta_1 x^T$$

Updating b_1 :

$$b_1^{ ext{new}} = b_1 - lpha rac{\partial ext{Loss}}{\partial b_1} = b_1 - 0.001 \delta_1$$