Fundamentos Matemáticos

Daniel Capanema

Preâmbulo

- A análise de algoritmos ou programas utiliza técnicas de matemática discreta;
- Essas técnicas utilizam a manipulação de somas, produtos, permutações, fatoriais, coeficientes binomiais, solução de equações de recorrência, entre outras;

Preâmbulo

- Qual o valor de cont?
- $F(n) = F(n-1)+F(n-2); n \ge 3$
- F(1) = 1
- F(2) = 1

```
#include<stdio.h>
int main(){
    int n= 9, cont = 0;
    for (int i=1;i<=n;i++){
        for (int j=1; j \leftarrow i; j++){
            cont++;
    printf("Valor do contador %d \n", cont);
    return 0;
```

Preâmbulo

N	10	20	40
Chamada de função	109	13.529	204.668.309

Máquina	N=10	N=100
4 bilhões de instruções por segundo	< 1 segundo	?

```
int fibo (int n) {
   if (n <= 2)
     return 1;
   else
     return fibo(n-1)+fibo(n-2);
}</pre>
```

Potenciação

 Definição: seja a um número real
 Propriedades e x um número inteiro.

$$a^{x} = \begin{cases} a \times a \times a \times \cdots \times a & (x \text{ vezes}) & \text{se } x > 0 \\ \frac{1}{a^{-x}} & \text{se } x < 0 \text{ e } a \neq 0 \\ 1 & \text{se } x = 0 \text{ e } a \neq 0 \end{cases}$$

• Se a é um número real e x = n/m é um número racional com n sendo inteiro e m sendo inteiro positivo

•
$$a^{x}=a^{\frac{n}{m}}=(a^{\frac{1}{m}})^n$$

$$a^{x}a^{y} = a^{x+y}$$

$$\frac{a^{x}}{a^{y}} = a^{x-y}$$

$$(a^{x})^{y} = a^{xy}$$

$$(ab)^{x} = a^{x}b^{x}$$

$$\left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}}$$

Somatório

• https://pt.khanacademy.org/math/ap-calculus-ab/ab-integration-new/ab-6-3/v/sigma-notation-sum

Definição 1.1: Logaritmo

O logaritmo de n na base a, denotado $\log_a n$, é o valor x tal que x é o expoente a que a deve ser elevado para produzir n ($a^x = n$).

$$\log_a n = b$$
 se e somente se $a^b = n$

$$\log_2 8 = x \Rightarrow 2^x = 8 \Rightarrow x = 3$$

Dados números reais $a, b, c \ge 1$, as seguintes igualdades são válidas:

(i)
$$\log_a 1 = 0$$

(ii)
$$\log_a a = 1$$

(iii)
$$a^{\log_a b} = b$$

(iv)
$$\log_c(ab) = \log_c a + \log_c b$$

(v)
$$\log_c(a/b) = \log_c a - \log_c b$$

(vi)
$$\log_c(a^b) = b \log_c a$$

(vii)
$$\log_b a = \frac{\log_c a}{\log_c b}$$

(viii)
$$\log_b a = \frac{1}{\log_a b}$$

(ix)
$$a^{\log_c b} = b^{\log_c a}$$

- for (int i = n; i > 0; i /= 2) • a *= 2;
- Quantas multiplicações serão executadas?

N	Número de multiplicações
7	
8	
15	
16	
32	
33	

- for (int i = n; i > 0; i /= 2)a *= 2;
- Quantas multiplicações serão executadas?

N	Valor de i	Número de multiplicações
7	7,3,1	3
8	8,4,2,1	4
15	15,7,3,1	4
16	16,8,4,2,1	5
32	32,16,8,4,2,1	6
33	33,16,8,4,2,1	6

$$\lfloor \log_2 n \rfloor + 1$$