Autarquia Educacional do Vale do São Francisco – AEVSF Faculdade de Ciências Aplicadas e Sociais de Petrolina – FACAPE Ciência da Computação

Processamento Digital de Imagens

Prof. Sérgio F. Ribeiro

Lista de Exercícios

- 1º) Qual a profundidade em bits de uma imagem com 8192 níveis de cinza?
- 2°) Quais as duas etapas constituintes do processo de digitalização de uma imagem? Defina cada uma delas.
- 3°) Quantos bytes são necessários para armazenas uma imagem 640×480 pixels com 128 níveis de cinza?
- 4°) Quais são os efeitos causados por uma redução espacial e por uma redução do número de tons de cinza sobre a qualidade da imagem?
- 5°) Cite as principais utilizações dos operadores aritméticos de adição e subtração em imagens digitais.
- 6°) Considere o seguinte trecho de imagem:

10	100	110	40	80
90	20	190	25	20
50	210	220	190	150
30	240	255	200	130
140	110	150	60	90

Dado o conjunto de níveis de cinza V = {190, 191,..., 254, 255}. Determine quais pixels são 8-conectados e quais são m-conectados.

- 7°) Adicione os dois trechos de imagem abaixo, informando:
 - a) o resultado sem considerar possíveis problemas relacionados à operação.
 - b) o resultado obtido com o truncamento.
 - c) o resultado obtido com a normalização.

30	50	190	200
60	20	255	220
35	10	185	210
15	5	195	205

190	180	10	0
200	210	40	90
255	205	60	80
195	185	70	50

Χ

 8°) Considere o trecho de imagem a seguir, representado por uma matriz, onde cada elemento da matriz corresponde ao nível de cinza do pixel correspondente. Seja V = {250, 251, 252, 253, 254, 255}. Calcular as distâncias D_4 , D_8 e D_m entre \mathbf{p} e \mathbf{q} .

		р	
250	253	254	253
252	253	16	54
76	255	254	65
38	16	17	255

q

 9°) Considerando como entradas as imagens (a) e (b), indique as imagens (c), (d), (e) e (f) esperadas nos pontos indicados do diagrama de blocos dado a seguir.

 10°) Considerando a imagem da questão 5, qual o novo valor do pixel central ao convoluí-lo com a seguinte máscara:

- 11°) Em relação à imagem da questão 5, binarize-a considerando o conjunto V como referência para o valor limiar T a ser usado (considere 0 para preto e 1 para branco).
- 12°) A partir da imagem binarizada da questão anterior, detecte suas bordas usando o operador laplaciano (máscara 3 x 3).
- 13°) Considerando as imagens X e Y da questão 6, reduza a imagem X pela metade e dobre o tamanho da imagem Y.
- 14°) Que efeito uma transformação de intensidade $s = r^{\gamma}$ provocará em uma imagem monocromatica com valores de níveis de cinza originais (r) normalizados na faixa de 0 a 1, caso $\gamma > 1$?
- 15°) Defina histograma de uma imagem. Para que serve um histograma?
- 16°) Como se apresenta uma imagem cujo histograma possui grande concentração de pixels em sua região inferior? O que se pode afirmar em termos de contraste desta imagem?

 17^{0}) Explique por que a técnica de equalização de histograma discreto não resulta, em geral, em um histograma uniforme.

 18°) Considere a tabela abaixo como exemplo de um histograma. Calcule as probabilidades e plote o histograma.

nível de cinza	n _k
0	155
1	4325
2	3010
3	1800
4	720
5	1525
6	995
7	300

 19°) Equalize o histograma da questão anterior e plote o histograma resultante. Que nível de cinza melhor seria usado como valor de limiar?

 20°) Apresente as características das técnicas de equalização de histograma e expansão de histograma? Em que consiste a compressão de histograma?

 21°) Considerando o histograma da questão 14, realize uma compressão de histograma para uma faixa de níveis de cinza entre 2 e 5. Plote o novo histograma.

 22°) Uma imagem com intensidades no intervalo [0,1] tem a *PDF* (função densidade de probabilidade) $p_r(r)$ mostrada no diagrama abaixo. Deseja-se transformar os níveis de intensidade dessa imagem de forma que eles tenham o $p_z(z)$ especificado mostrado na figura. Considere quantidades contínuas e encontre a transformação (em termos de r e z) que implementará isso.

 23°) Em algumas aplicações é útil modelar o histograma das imagens de entrada como funções de densidade de probabilidade gaussiana na forma:

$$p_r(r) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(r-m)^2}{2\sigma^2}}$$

onde m e σ são a média e o desvio padrão da função de densidade de probabilidade gaussiana. A metodologia é fazer com que m e σ sejam medidas de intensidade média e contraste de uma determinada imagem. Qual é a função de transformação que você utilizaria para a equalização de histograma?