

高级计量经济学及Stata应用

分位数回归:横截面、面板与IV估计

陈强

山东大学经济学院

qiang2chen2@126.com

公众号/网站: econometrics-stata

网易云课堂: <u>http://study.163.com/u/metrics</u>

本讲内容

1. 分位数回归(横截面)

2. 分位数处理效应(工具变量法)

3. 面板分位数回归

创新科研

智慧教育

1. 分位数回归

• 在迄今为止的回归模型中,我们着重考察解释变 量x 对被解释变量y 的条件期望E(y|x) 的影响, 实际上是均值回归。

• 但真正关心的是x对整个条件分布y|x的影响, 而条件期望只是刻画条件分布的一个指标而已。

• 使用OLS的"均值回归",由于最小化的目标函 数为残差平方和,故易受极端值(outliers)的影响

2019-8-24

陈强,(c) 2019

智慧教育 创新科研

为何需要分位数回归

- Koenker and Bassett(1978)提出"分位数回归"(Quantile Regression,简记QR)
- 使用残差绝对值的加权平均 (比如, $\sum_{i=1}^{n} |e_i|$)作为最小化的目标函数,不易受极端值影响,更稳健
- 分位数回归还能提供关于条件分布 y|x 的全面信息。比如,估计出条件分布的若干重要的条件分位数(conditional quantiles),比如中位数(median)、1/4分位数(lower quartile)、3/4分位数(upper quartile)

2019-8-24

友万科技

总体分位数

总体q分位数与累积分布函数

2019-8-24

总体分位数的定义

• 假设Y为连续型随机变量,其累积分布函数为 $F_y(\cdot)$,则Y的"总体q分位数" (population q^{th} quantile,0 < q < 1),记为 y_q ,满足以下定义式:

$$q = P(Y \le y_q) = F_y(y_q)$$

- 总体q分位数 y_q 正好将总体分布分为两部分,小于或等于 y_q 的概率为q,而大于 y_q 的概率为 1-q
- 如果 $F_y(\cdot)$ 严格单调递增,则有 $y_q = F_y^{-1}(q)$

2019-8-24

陈强,(c) 2019

智慧教育 创新科研

总体分位数的应用

- 显著性水平为0.05的F检验之临界值
 - = 此F分布的0.95分位数

- 显著性水平为0.05的双边t检验之临界值
 - = 此t分布的0.975分位数
- 金融资产的Value at Risk (VaR)

创新科研

智慧教育

条件分布的总体分位数

- 条件分布 $y \mid \mathbf{x}$ 的总体 q 分位数,记为 y_q ,满足以下定义式: $q = F_{y \mid \mathbf{x}}(y_q)$
- 由于条件累积分布函数 $F_{y|x}(\cdot)$ 依赖于x,故条件分布y|x 的总体 q 分位数也依赖于x,可写为 $y_q(x)$,称为"条件分位数函数" (conditional quantile function)。
- 对于线性回归模型,如扰动项为同方差,或异方差为乘积形式,则 $y_q(x)$ 是 x 的线性函数(见下页)

2019-8-24

Age[years]

样本分位数

- 对于随机变量 Y,如果总体的q分位数 y_q 未知,则可以使用样本q分位数 \hat{y}_q 来估计
- 首先将样本数据 $\{y_1, y_2, L, y_n\}$ 按照从小到大的顺序排列为 $\{y_{(1)}, y_{(2)}, L, y_{(n)}\}$,则 \hat{y}_q 等于第[nq] 个最小观测值,其中n为样本容量,[nq]表示大于 或等于ng而离ng最近的正整数。
- 比如 *n*=97,*q*=0.25,则[*nq*]=[97x0.25]=25

2019-8-24

例: Engle (1857)

- 使用Engle(1857)的经典数据集,包括两个变量: income (家庭收入), food (食物开支)
- 计算 income 的经验累积分布函数(empirical cdf) ,并记为cdf income,然后画图
- use engle1857.dta
- cumul income, gen(cdf income)
- line cdf income income, sort

2019-8-24

画分位数函数图

quantile income

2019-8-24

回归模型的样本分位数

• 通过排序计算样本分位数的方法不易推广到回归模型。

一种等价方法是,将样本分位数看成是某个最小 化问题的解。

事实上,样本均值也可看成是最小化残差平方和 问题的最优解

$$\min_{\mu} \sum_{i=1}^{n} (y_i - \mu)^2 \quad \Rightarrow \quad \mu = \overline{y} \equiv \frac{1}{n} \sum_{i=1}^{n} y_i$$

2019-8-24

陈强,(c) 2019

回归模型的样本分位数 (续)

• 样本中位数可视为是"最小化残差绝对值之和" 问题的最优解,即

$$\min_{\mu} \sum_{i=1}^{n} |y_i - \mu| \implies \mu = \operatorname{median} \{y_1, y_2, L, y_n\}$$

• 因为只要上式中 μ 的取值偏离中位数,就会使 得残差绝对值之和上升

2019-8-24

陈强,(c) 2019

创新科研

智慧教育

回归模型的样本分位数(续2)

• 可将样本q分位数视为以下最小化残差绝对值的加 权平均问题的最优解

$$\min_{\mu} \sum_{y_i \ge \mu} q |y_i - \mu| + \sum_{y_i < \mu} (1 - q) |y_i - \mu| \implies \mu = \hat{y}_q$$

• 如果q = 1/4 ,则满足" $y_i \ge \mu$ "条件的观测值只 得到1/4 的权重,而满足 " $y_i < \mu$ "条件的其余 观测值则得到 3/4 的权重。因为估计的是1/4分位 数(位于总体底部), 故较大观测值得到较小权重, 而较小观测值得到较大权重。

2019-8-24

陈强, (c) 2019

智慧教育 创新科研

分位数回归模型

• 假设条件分布 $y \mid \mathbf{x}$ 的总体 \mathbf{q} 分位数 $y_a(\mathbf{x})$ 是 \mathbf{x} 的线 性函数:

$$y_q(\mathbf{x}_i) = \mathbf{x}_i' \boldsymbol{\beta}_q$$

• 其中, β_q 称为"q分位数回归系数",其估计量 可以由以下最小化问题来定义:

$$\min_{\boldsymbol{\beta}_q} \sum_{y_i \geq \boldsymbol{x}_i' \boldsymbol{\beta}_q} q \left| y_i - \boldsymbol{x}_i' \boldsymbol{\beta}_q \right| + \sum_{y_i < \boldsymbol{x}_i' \boldsymbol{\beta}_q} (1 - q) \left| y_i - \boldsymbol{x}_i' \boldsymbol{\beta}_q \right|$$

2019-8-24

陈强,(c) 2019

010-56451128

创新科研

打钩函数 (Check Function)

• 可将最小化问题写为

$$\min_{\boldsymbol{\beta}_q} \quad \sum_{i=1}^n \rho_q(y_i - \boldsymbol{x}_i' \boldsymbol{\beta}_q)$$

• 其中,打钩函数为

$$\rho_q(u) = u(q - \mathbf{1}(u < 0)) = \begin{cases} qu & \text{if } u \ge 0\\ (q - 1)u & \text{if } u < 0 \end{cases}$$

2019-8-24

中位数回归

• 如果 q =1/2,则为"中位数回归"(median regression)。此时,目标函数简化为

$$\min_{\boldsymbol{\beta}_q} \quad \sum_{i=1}^n \left| y_i - \boldsymbol{x}_i' \boldsymbol{\beta}_q \right|$$

• 故中位数回归也被称为"最小绝对离差估计量 " (Least Absolute Deviation Estimator, 简记 LAD)。它比均值回归(OLS)更不易受到极端值的 影响, 故更加稳健

2019-8-24

计算方法及性质

- 由于分位数回归的目标函数带绝对值,不可微, 故常使用线性规划(linear programming)来计算
- 样本分位数回归系数 $\hat{\beta}_q$ 是一致估计,且服从渐近正态分布:

$$\sqrt{n}(\hat{\boldsymbol{\beta}}_q - \boldsymbol{\beta}_q) \xrightarrow{d} N(\boldsymbol{0}, \operatorname{Avar}(\hat{\boldsymbol{\beta}}_q))$$

• 可用公式计算标准误(默认),或使用自助标准误(推荐)

2019-8-24

QR的应用: Extremal Quantile 表页科技

- Conditional Value-at-Risk: Forecast or explain low quantiles of future portfolio returns of an institution, Y, using current information, X
- Determinants of Birthweights: How smoking, absence of prenatal care etc. during pregnancy affect low birthweights.
- Stochastic Production Frontiers Given production cost , we are interested in the highest production levels that only a small fraction of most efficient firms can attain.

分位数回归的Stata命令

(1) 只作一个分位数回归,使用默认的标准误

(默认为中位数回归) qreg y x1 x2 x3 (#分位数回归) qreq y x1 x2 x3, q(#)

(2) 只作一个分位数回归,使用自助标准误

(指定随机数的种子) set seed # bsgreg y x1 x2 x3, reps(#) g(#) (自助法重复#次,#分位数回归)

2019-8-24

分位数回归的Stata命令(续)

(3) 同时作多个分位数回归 (simultaneous quantile regressions),使用自助法计算协方差矩阵

sqreg y x1 x2 x3,q(.25.5.75) reps(#)

(同时计算0.25, 0.5与0.75分位数回归, 自助法重复 #次)

test [q25=q50=q75]: x1

(检验这三个分位数回归x1的系数是否相等)

2019-8-24

分位数回归的Stata命令(续2)

(4) 将不同分位数回归的系数及其置信区间进行画图比较 下载非官方命令

net install grqreg.pkg (下载安装命令grqreg)

set seed #

bsgreg y x1 x2 x3, reps(#) g(.5)

(为得到自助标准误而先作中位数回归)

grqreg, cons ci ols olsci

选择项 "cons"表示也比较常数项, "ci"表示包括估计系 数的95%置信区间,"ols"表示提供OLS估计系数作为 参照系,"olsci"表示提供OLS系数的95%置信区间。

2019-8-24

陈强,(c) 2019

案例 1、Engle(1857)

• use engle1857.dta,clear

• 先看散点图与OLS回归

scatter food income || lfit food income

• set seed 123456

• sqreq food income, q(.1 .5 .9) reps (500)

2019-8-24

Simultaneous quantile regression bootstrap(500) SEs

Number of obs = 235

.10 Pseudo R2 = 0.4948

0.6206 .50 Pseudo R2 =

.90 Pseudo R2 = 0.7647

	food	Coef.	Bootstrap Std. Err.	t	P> t	[95% Conf.	Interval]
q10							
	income	.4017658	.0466956	8.60	0.000	.3097662	.4937653
	_cons	110.1416	33.06357	3.33	0.001	44.99981	175.2833
q50							
	income	.5601806	.0331924	16.88	0.000	.4947849	.6255762
	_cons	81.48225	26.18517	3.11	0.002	29.89228	133.0722
							
	income	.6862995	.025075	27.37	0.000	.6368968	.7357022
	_cons	67.35087	20.44164	3.29	0.001	27.0768	107.6249

2019-8-24

分位数回归系数的跨方程检验

- test [q10=q50=q90]: income
 - . test [q10=q50=q90]: income
 - (1) [q10]income [q50]income = 0
 - (2) [q10]income [q90]income = 0

$$F(2, 233) = 16.97$$

 $Prob > F = 0.0000$

2019-8-24 陈强,(c) 2019 32

- predict q10 h,equ(q10)
- label variable q10 h "0.1 Quantile"
- predict q50 h, equ(q50)
- label variable q50 h "0.5 Quantile"
- predict q90 h, equ(q90)
- label variable q90 h "0.9 Quantile"
- qui reg food income
- predict ols h
- label variable ols h "OLS"
- scatter food income||line ols h income, lp(dash) | line q10 h income | line q50 h income || line q90 h income

2019-8-24

陈强,(c) 2019

创新科研

分位数回归系数作为分位数的函数

• qui bsqreq food income, q(.5) reps (500)

• grqreg, cons ci ols olsci seed(123456)

2019-8-24

010-56451128

- 随着分位数的增加,收入(income)的分位数回归 系数单调上升
- 增加收入对于食物支出(food)之条件分布的高分位 数影响更大

- 异方差: 食物支出的条件方差随着收入而增大
- **备注**: 分位数回归系数仅度量x对条件分布y|x的作用,不能解读为对个体的影响

2019-8-24

陈强,(c) 2019

010-56451128

2. 分位数处理效应(QTE)

• 处理变量D对于结果变量y在不同分位数上的作用

$$\Delta_{\tau} = Q_{y(1)}(\tau) - Q_{y(0)}(\tau)$$

- y(1): Outcome with treatment (D=1)
- y(0): Outcome without treatment (D=0)

分位数处理效应(QTE)

2019-8-24

陈强,(c) 2019

QTE under Exogeneity

• 如果处理变量**D**为外生,可直接对以下方程 进行分位数回归

$$y_i = \alpha + D_i' \gamma + \mathbf{x}_i' \mathbf{\beta} + \varepsilon_i$$

• 其中, $\hat{\gamma}(\tau)$ 即为 τ 分位数的处理效应。

2019-8-24 陈强,(c) 2019 40

QTE under Endogeneity

- 如果处理变量D为内生,应进行工具变量法的分位数回归(IVQTE)
- 方法1: Abadie, A., J. Angrist, and G. Imbens. 2002. Instrumental variables estimates of the effect of subsidized training on the quantiles of trainee earnings. *Econometrica* 70: 91–117. 简称"AAI法"
- 允许异质性处理效应,但要求处理变量与工具变量均为虚拟变量

异质性工具变量法

• 传统的工具变量法假设同质的处理效应 (homogeneous or constant treatment effects)

$$y_i = \alpha + \beta D_i + \varepsilon_i$$

 但异质性处理效应(heterogeneous treatment effects)可能更接近于现实。比如,不同个体的 教育回报率不同。

$$y_i = \alpha + \beta_i D_i + \varepsilon_i$$

• 假设处理变量 D 与工具变量 Z 皆为虚拟变量

2019-8-24

陈强,(c) 2019

Motivation: Experiments with Imperfect Compliance

Imperfect compliance in a randomized evaluation of a training program

	Enrolled in training	Not enrolled in training	Total
Assigned to training	4804	2683	7487
Assigned to control	<mark>54</mark>	3663	3717
Total	4858	6346	11204

- Consider the JTPA experiment, an experimental evaluation of a training program where many experimental subjects did not comply with the randomized assignment
- Units receiving training may differ from units that do not receive training
- Still, randomized assignment has an effect on the probability of receiving training
- Instrumental variables use the variation in receipt of training induced by the experiment to estimate of the effect of training

Randomized Experiments with Imperfect Compliance

Assignment

$$Z = \begin{cases} 1 & \text{if assigned to treatment group} \\ 0 & \text{if assigned to control group} \end{cases}$$

Potential Treatments

- D_1 : treatment status if assigned to treatment group
- D_0 : treatment status if assigned to control group

Observed Treatment

$$D = \begin{cases} D_1 & \text{if } Z = 1 \\ D_0 & \text{if } Z = 0 \end{cases}$$

or, in a more compact notation:

$$D = ZD_1 + (1 - Z)D_0.$$

2019-8-24

陈强,(c) 2019

Randomized Experiments with Imperfect Compliance

- Angrist, Imbens and Rubin (1996) define:
 - Compliers: $D_1 > D_0$ ($D_0 = 0$ and $D_1 = 1$)
 - Always-takers: $D_1 = D_0 = 1$
 - Never-takers: $D_1 = D_0 = 0$
 - **Defiers**: $D_1 < D_0$ ($D_0 = 1$ and $D_1 = 0$)
- Notice that for compliers, we still have a perfect experiment.
- However, only one of the potential treatment indicators, (D_0, D_1) , is observed, so we cannot identify which group any particular individual belongs to.

• 如果存在抗拒者(defiers),则无法识别因果 关系

• **原因**: 在存在异质性处理效应的情况下,即使所有个体的处理效应均为正,但当**Z**从 0变到1时,依从者(compliers)的正效应可能为抗拒者(defiers)的反向变动所抵消。

2019-8-24

陈强,(c) 2019

创新科研

识别方法

• 假设不存在defiers,则 $D_{ii} \geq D_{0i}$, $\forall i$

• 这被称为"单调性假设"(monotonicity), 即Z对于D的作用方向对所有人都一样

• 理论上,如果 $D_{ii} \leq D_{0i}$, $\forall i$ 也可以(作用方 向也一致),但很少见。故假设 $D_{ii} \geq D_{0i}$, $\forall i$

2019-8-24

陈强,(c) 2019

识别条件

The assumptions underlying the potential outcomes framework for IV are given below:

Assumption 2.1: For almost all values of X:

- (i) Independence: (Y_1, Y_0, D_1, D_0) is jointly independent of Z given X.
- (ii) Nontrivial Assignment: $P(Z = 1|X) \in (0, 1)$.
- (iii) FIRST-STAGE: $E[D_1|X] \neq E[D_0|X]$.
- (iv) Monotonicity: $P(D_1 \ge D_0|X) = 1$.
- (i): IV的外生性
- (ii)与 (iii): IV的相关性
- (iv): 单调性

2019-8-24

An Infeasible Approach

• For compliers $(D_1 > D_0)$, we still have a perfect experiment

$$(\alpha_{\tau}, \boldsymbol{\beta}_{\tau}) = \underset{\alpha, \boldsymbol{\beta}}{\operatorname{arg\,min}} \, \mathrm{E} \left[\rho_{\tau} (y - \alpha D - \mathbf{x}' \boldsymbol{\beta}) \, | \, D_{1} > D_{0} \right]$$

• 但由于不知道谁是依从者,无法求此条件期望 $E[\cdot|D_1>D_0]$,故此法不可行

A Feasible Approach

使用权重κ 进行校正

$$(\alpha_{\tau}, \boldsymbol{\beta}_{\tau}) = \underset{\alpha, \boldsymbol{\beta}}{\operatorname{arg\,min}} \, \mathrm{E} \big[\kappa \rho_{\tau} (y - \alpha D - \mathbf{x}' \boldsymbol{\beta}) \big]$$

• 其中, 权重为

$$\kappa = 1 - \frac{D(1-Z)}{1 - P(Z=1|\mathbf{x})} - \frac{(1-D)Z}{P(Z=1|\mathbf{x})} = \begin{cases} 1 & \text{if } D = Z \\ 1 - \frac{1}{1 - P(Z=1|\mathbf{x})} & \text{if } D = 1, Z = 0 \\ 1 - \frac{(1-D)Z}{P(Z=1|\mathbf{x})} & \text{if } D = 0, Z = 1 \end{cases}$$

2019-8-24

Noncovexity

• 虽然打钩函数 $\rho_{\tau}(y-\alpha D-\mathbf{x}'\boldsymbol{\beta})$ 为凸函数,但 由于权重 κ 可能为负,故目标函数不再是 凸函数,不便于进行最优化

• 定义 κ 的条件期望

$$\kappa_{v} = E[\kappa | y, D, \mathbf{x}]$$

$$= 1 - \frac{D(1 - E(Z | y, D, \mathbf{x}))}{1 - P(Z = 1 | \mathbf{x})} - \frac{(1 - D)E(Z | y, D, \mathbf{x})}{P(Z = 1 | \mathbf{x})} \ge 0$$

2019-8-24

陈强, (c) 2019

两步法估计

• 第一步,使用 logit, local logit 或 nonparametric power series estimator 估 计 $P(Z_i = 1 | \mathbf{x}_i)$ 与 $E(Z_i | y_i, D_i, \mathbf{x}_i)$,得到 $\hat{\mathbf{K}}$

• 第二步, 求解最小化问题

$$(\alpha_{\tau}, \boldsymbol{\beta}_{\tau}) = \underset{\alpha, \boldsymbol{\beta}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}(\hat{\kappa}_{vi} \geq 0) \cdot \hat{\kappa}_{vi} \cdot \rho_{\tau}(y_{i} - \alpha D_{i} - \mathbf{x}_{i}' \boldsymbol{\beta})$$

· 注: 样本估计值 k, 依然可能为负 2019-8-24

IVQTE的Stata命令

• findit ivqte

```
ivqte depvar [indepvars] (treatment [= instrument]) [if] [in] [,
    quantiles(numlist) continuous(varlist) dummy(varlist) unordered(varlist)
aai linear mata_opt kernel(kernel) bandwidth(#) lambda(#) trim(#)
    positive pbandwidth(#) plambda(#) pkernel(kernel) variance
    vbandwidth(#) vlambda(#) vkernel(kernel) level(#)
    generate_p(newvarname [, replace]) generate_w(newvarname [,
    replace]) phat(varname) what(varname)]
```

 If an instrument is provided and aai is activated, the estimator proposed by Abadie, Angrist, and Imbens (2002) is used.

2019-8-24

案例 2、大学教育的投资回报

- Card, D. E. 1995. Using geographic variation in college proximity to estimate the return to schooling. In *Aspects of Labour Economics: Essays in Honour of John Vanderkamp*, ed. L. Christofides, E. K. Grant, and R. Swindinsky. Toronto, Canada: Univ. of Toronto Press.
- use card.dta,clear
- des lwage college nearc4 exper black motheduc
- Note: College proximity (nearc4) as IV for college education (college)

0.1分位数回归

variable name	storage type	display format	value label	variable label
lwage	float	%9.0g		log(wage)
college	float	%9.0g		
nearc4	byte	%9.0g		=1 if near 4 yr college, 1966
exper	byte	%9.0g		age - educ - 6
black	byte	%9.0g		=1 if black
motheduc	byte	%9.0g		mother's schooling

• greg lwage college exper black motheduc reg662 reg663 reg664 reg665 reg666 reg667 reg668 reg669, quantile(0.1) nolog

2019-8-24

陈强,(c) 2019

创新科研

智慧教育

.1 Quantile regression

Number of obs = 2,657

Raw sum of deviations 214.6026 (about 5.6801724)
Min sum of deviations 194.8344

Pseudo R2 = 0.0921

_							
	lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
•	college	.2064537	.0342966	6.02	0.000	.1392028	.2737046
	exper	.0217235	.0041486	5.24	0.000	.0135887	.0298583
	black	2316504	.0395452	-5.86	0.000	3091931	1541077
	motheduc	.0131027	.0050343	2.60	0.009	.0032311	.0229743
	reg662	.0867458	.0752728	1.15	0.249	0608537	.2343453
	reg663	.2204661	.0741461	2.97	0.003	.0750758	.3658563
	reg664	.0132414	.0867677	0.15	0.879	1568981	.1833809
	reg665	.0266135	.0757109	0.35	0.725	1218452	.1750721
	reg666	0337565	.0837077	-0.40	0.687	1978956	.1303827
	reg667	0069512	.0804102	-0.09	0.931	1646245	.1507221
	reg668	0388916	.1059618	-0.37	0.714	2466681	.1688848
	reg669	.0961543	.0814656	1.18	0.238	0635885	.255897
	_cons	5.307295	.1017405	52.17	0.000	5.107796	5.506794
		I					

异方差稳健的标准误

- ivqte Iwage exper black motheduc reg662 reg663 reg664 reg665 reg666 reg667 reg668 reg669 (college), quantiles(0.1) variance
- 也可使用自助标准误,但因样本容量大,较费时:

 bsqreg lwage college exper black motheduc reg662 reg663 reg664 reg665 reg666 reg667 reg668 reg669, quantile(0.1) reps(500)

2019-8-24 陈强,(c) 2019 57

Quantile regression

Estimator suggested in Koenker and Bassett (1978)

Quantile: .1

Dependent variable: lwage

Regressor(s): college exper black motheduc reg662 reg663 reg664 reg665 reg666 reg

Number of observations: 2657

lwage	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
college	.2064537	.0353578	5.84	0.000	.1371537	.2757536
exper	.0217235	.0038234	5.68	0.000	.0142299	.0292172
black	2316504	.0371132	-6.24	0.000	304391	1589098
motheduc	.0131027	.0050099	2.62	0.009	.0032834	.022922
reg662	.0867458	.0801968	1.08	0.279	0704369	.2439286
reg663	.2204661	.0762157	2.89	0.004	.071086	.3698461
reg664	.0132414	.0853672	0.16	0.877	1540752	.180558
reg665	.0266135	.0758597	0.35	0.726	1220688	.1752958
reg666	0337565	.083806	-0.40	0.687	1980132	.1305003
reg667	0069512	.0796822	-0.09	0.930	1631255	.1492231
reg668	0388916	.1108855	-0.35	0.726	2562233	.17844
reg669	.0961543	.0924436	1.04	0.298	0850319	.2773404
_cons	5.307295	.0992185	53.49	0.000	5.11283	5.501759

2019-8-24 58

IVQTE (AAI, 2002)

- ivqte lwage (college=nearc4),
 quantiles(0.1) variance dummy(black)
 continuous(exper motheduc)
 unordered(region) aai
- 使用logit估计 $P(Z_i = 1 | \mathbf{x}_i)$ 与 $E(Z_i | y_i, D_i, \mathbf{x}_i)$

Quantile(s): .1

Dependent variable: lwage Treatment variable: college Instrumental variable: nearc4

Control variable(s): exper motheduc black region

Number of observations: 2657 Proportion of compliers: .091

Propensity score estimated by local logit regression with h = infinity and lambda = 1 Positive weights estimated by local linear regression with h = infinity and lambda = 1 Variance estimated using local linear regression with h = infinity and lambda = 1

lwage	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
college	.7779974 .0166582	.2635231 .0756843	2.95 0.22	0.003 0.826	.2615015 1316802	1.294493 .1649967
exper motheduc	.0095984	.0655372	0.15	0.884	1188521	.1380489
black region2	1502784 0308088	.6064568 1.183632	-0.25 -0.03	0.804 0.979	-1.338912 -2.350684	1.038355 2.289067
region3	.10724	1.204884	0.09	0.929	-2.254288	2.468768
region4 region5	.0493495 0316856	1.399898 1.154963	0.04 -0.03	0.972 0.978	-2.694399 -2.295372	2.793098 2.232001
region6	0077108	1.454662	-0.03	0.996	-2.858796	2.843375
region7 region8	1112334 .1253792	1.283061 2.581608	-0.09 0.05	0.931 0.961	-2.625988 -4.93448	2.403521 5.185239
region9	.028913	1.345531	0.02	0.983	-2.60828	2.666106
_cons	5.136558	1.370468	3.75	0.000	2.450491	7.822626

2019-8-24

Nonparametric First Step

• 使用local logit估计 $P(Z_i = 1 | \mathbf{x}_i)$ 与 $E(Z_i | y_i, D_i, \mathbf{x}_i)$

• 使用留一法 (leave-one-out cross-validation) 选择最优窗口 h 与平滑参数 $0 \le \lambda \le 1$ (平衡连续变量与离散变量)

• 因计算量大, 仅随机选取500观测值

- set seed 123456
- gen ranorder = runiform()
- sort ranorder
- gen sample=(n <= 500)
- locreg nearc4 if sample, dummy(black) continuous (exper) unordered (region) bandwidth $(0.5 \ 0.8)$ lambda $(0.8 \ 1)$ generate(ps) logit
- 注: 仅考虑 h = 0.5或0.8, $\lambda = 0.8$ 或1, 将估计结果存为 ps。locreg为命令ivgte自带的子命令

2019-8-24

陈强,(c) 2019

最优带宽与平滑参数

• $\text{th} P(Z_i = 1 | \mathbf{x}_i)$

Leave-one-out cross-validation

Bandwidth Lambda		Mean Squared Error		
.5 .5 .8	.8 1 .8 1	3.3565862 3.3504882 3.0871657 3.0924464		

Among the grid of values tested, the optimal bandwidth is .8 and the optimal lambda is .8.

• 估计 κ : gen waai=1-college*(1-nearc4)/ (1-ps)-(1-college)*nearc4/ps if sample

2019-8-24

陈强,(c) 2019

通过回归计算kappa的条件期望

- 对处理组与控制组分别估计 $\hat{\kappa}_{vi}$, 建议选择最小的带宽与平滑参数
- locreg waai if college==1 & sample==1, dummy(black) continuous(exper motheduc lwage) unordered(region) bandwidth(0.5 0.8) lambda(0.8 1)

Leave-one-out cross-validation

Bandwidth	Lambda	Mean Squared Error
.5 .5 .8	.8 1 .8	3.5375789 3.5190053 3.4005234 3.4031062

Among the grid of values tested, the optimal bandwidth is .8 and the optimal lambda is .8.

2019-8-24

通过回归计算kappa的条件期望(2)

• locreg waai if college==0 & sample==1, dummy(black) continuous(exper motheduc lwage) unordered(region) bandwidth(0.5 0.8) lambda(0.8 1)

Leave-one-out cross-validation

Bandwidth	Lambda	Mean Squared Error
.5 .5 .8	.8 1 .8	.84530862 .84479758 .87549462
.8	1	.87395397

Among the grid of values tested, the optimal bandwidth is .5 and the optimal lambda is 1.

2019-8-24

陈强,(c) 2019

第二步: IVQTE估计

• ivqte lwage (college=nearc4) if sample, aai quantiles(0.1) variance continuous(exper motheduc) unordered(region) dummy(black) bandwidth(0.8) lambda(0.8) pbandwidth(0.5) plambda(0.8)

方 Fi 彩 技

IV quantile regression Estimator suggested in Abadie, Angrist and Imbens (2002)

Quantile(s): .1

Dependent variable: lwage Treatment variable: college Instrumental variable: nearc4

Control variable(s): exper motheduc black region

Number of observations: 442 Proportion of compliers: .228

Propensity score estimated by local logit regression with h=0.8 and lambda = .8 Positive weights estimated by local linear regression with h=0.5 and lambda = 0.8 Variance estimated using local linear regression with h=0.8 and lambda = .8

lwage	Coef.	Std. Err.	Z	P> z	[95% Conf.	. Interval]
college	.7036065	.2162667	3.25	0.001	.2797317	1.127481
exper	.0531363	.0202505	2.62	0.009	.013446	.0928267
motheduc	0392274	.0112194	-3.50	0.000	061217	0172377
black	2131487	.1151599	-1.85	0.064	4388579	.0125605
region2	.0793567	.1235338	0.64	0.521	1627651	.3214784
region3	.1849337	.3096847	0.60	0.550	4220371	.7919045
region4	0200778	.1353394	-0.15	0.882	2853382	.2451826
region5	.082572	.1599221	0.52	0.606	2308697	.3960136
region6	.2847685	.452841	0.63	0.529	6027835	1.172321
region7	.0596625	.1468184	0.41	0.684	2280963	.3474213
region8	.8587742	.062021	13.85	0.000	.7372153	.9803331
region9	0426573	.1331519	-0.32	0.749	3036302	.2183157
_cons	5.162572	.3884685	13.29	0.000	4.401188	5.923956

中位数 IVQTE

• ivqte lwage (college=nearc4) if sample, aai quantiles(0.5) variance continuous(exper motheduc) unordered(region) dummy(black) bandwidth(0.8) lambda(0.8) pbandwidth(0.5) plambda(0.8)

IV quantile regression Estimator suggested in Abadie, Angrist and Imbens (2002) 方万科技

Quantile(s): .5

Dependent variable: lwage Treatment variable: college Instrumental variable: nearc4

Control variable(s): exper motheduc black region

Number of observations: 451 Proportion of compliers: .282

Propensity score estimated by local logit regression with h=0.8 and lambda = .8 Positive weights estimated by local linear regression with h=0.5 and lambda = 0.8 Variance estimated using local linear regression with h=0.8 and lambda = .8

lwage	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
college	.2523874	.084603	2.98	0.003	.0865685	.4182063
exper	.0120726	.0139396	0.87	0.386	0152486	.0393937
motheduc	0042144	.0189828	-0.22	0.824	0414201	.0329912
black	3016094	.1950533	-1.55	0.122	6839067	.080688
region2	.0428996	.2150836	0.20	0.842	3786566	.4644558
region3	0425843	.2102968	-0.20	0.840	4547583	.3695898
region4	4544888	.2181627	-2.08	0.037	8820798	0268977
region5	2643078	.4299554	-0.61	0.539	-1.107005	.5783893
region6	518493	.2838161	-1.83	0.068	-1.074762	.0377763
region7	1227452	.2504194	-0.49	0.624	6135581	.3680677
region8	548141	.2510207	-2.18	0.029	-1.040133	0561495
region9	0368156	.1975456	-0.19	0.852	4239978	.3503666
_cons	6.253284	.33502	18.67	0.000	5.596657	6.909911
	i					

命令ivqte的更多细节

 Frölich, M., and B. Melly. 2010. Estimation of quantile treatment effects with Stata. Stata Journal 10: 423-457.

• 该命令还可进行"无条件分位数回归" (unconditional quantile regression),即考察x变动对y的无条件(边际)分布的影响

010-56451128

AAI法的缺点

• 要求处理变量D与工具变量Z均为虚拟变量

• 仅能识别依从者(compliers)的平均处理 效应

QTE under Endogeneity (2)

• 方法 2: Chernozhukov and Hansen (2005, 2006, 2008), 简称 "CH法"

 优点:不要求处理变量或工具变量为虚拟变量; 可识别整个样本的平均处理效应

• 缺点:须额外假设"排名不变性"(rank invariance)或"排名相似性"(rank similarity)

- [1] Chernozhukov, V. and Hansen, C. 2005. An IV model of quantile treatment effects. Econometrica 73 (1) p.379-398. 模型与识别条件
- [2] Chernozhukov, V. and Hansen, C. 2006. Instrumental quantile regression inference for structural and treatment effect models. Journal of Econometrics 132 (2) p.491-525. 恰好识别情形下的估计
- [3] Chernozhukov, V. and Hansen, C. 2008. Instrumental variable quantile regression: A robust inference approach. Journal of Econometrics 142 (1) p.379-398. 过度识别情形下的估计
- [4] Chernozhukov, V., C. Hansen and Jansson M. 2007. Inference approaches for instrumental variable quantile regression. *Economics* Letters 95, 272-277. 应用与比较,弱工具变量问题

2019-8-24

陈强,(c) 2019

010-56451128

排名不变性或相似性

 "排名不变性" (rank invariance): 在D=0 的世界里,给定协变量x,如果个体的结果 变量y排在第 τ 分位数,则在D=1世界里也 排在第 τ 分位数

• "排名相似性" (rank similarity): 不要求排 在完全相同的分位数,但二者排位的分布 相同

2019-8-24

识别条件

• 记 $q(D, \mathbf{x}, \tau)$ 为quantile treatment response function。如果D为外生:

$$P[y \le q(D, \mathbf{x}, \tau) | \mathbf{x}] = \tau$$

• 如果D为内生,而Z为工具变量:

$$P[y \le q(D, \mathbf{x}, \tau) | \mathbf{x}, Z] = \tau$$

• 利用此条件进行两阶段回归。也可将此条件视为 矩条件

2019-8-24

CH法的Stata命令

• Stata命令 ivqreg 下载地址:

http://faculty.chicagobooth.edu/christian.hansen/research/ivqrstata.zip (用命令sysdir找到并存入 plus文件夹)

• 另一实现方法 (矩估计): ssc install ivgreg2

例: Card (1995)

- ivqreg lwage exper black motheduc reg662reg669 (college = nearc4),q(0.1)
- ivqreg lwage exper black motheduc reg662reg669 (college = nearc4),q(0.5)

.1th Instrumental Variable Quantile Regression	Number of	f obs = 2657
--	-----------	--------------

lwage	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
college	.7135388	.0342818	20.81	0.000	.6463477	.7807299
exper	.0474708	.0039292	12.08	0.000	.0397697	.055172
black	1224297	.0421702	-2.90	0.004	2050817	0397777
motheduc	0050838	.0052409	-0.97	0.332	0153557	.0051882
reg662-reg669	.2035439	.0802568	2.54	0.011	.0462435	.3608443
_cons	.229825	.0791339	2.90	0.004	.0747255	.3849245
_cons	.0950028	.0928706	1.02	0.306	0870202	.2770258
_cons	.0898886	.0811548	1.11	0.268	0691719	.2489491
_cons	0568914	.0910342	-0.62	0.532	2353152	.1215324
_cons	.0379809	.0862706	0.44	0.660	1311062	.2070681
_cons	0054157	.1129133	-0.05	0.962	2267217	.2158903
_cons	.1096704	.0867055	1.26	0.206	0602694	.2796101
_cons	4.855065	.1096594	44.27	0.000	4.640137	5.069994

.5th Instrumental Variable Quantile Regression

Number of obs = 2657

lwage	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
college	1.23566	.0321919	38.38	0.000	1.172565	1.298755
exper	.0934182	.0036897	25.32	0.000	.0861865	.1006498
black	1447192	.0395993	-3.65	0.000	2223325	067106
motheduc	0172861	.0049214	-3.51	0.000	0269318	0076404
reg662-reg669	0576607	.0753641	-0.77	0.444	2053715	.0900501
_cons	0271864	.0743096	-0.37	0.714	1728305	.1184577
_cons	214984	.0872089	-2.47	0.014	3859103	0440577
_cons	2737779	.0762074	-3.59	0.000	4231415	1244142
_cons	2609591	.0854845	-3.05	0.002	4285056	0934126
_cons	1957343	.0810112	-2.42	0.016	3545134	0369552
_cons	3929353	.1060297	-3.71	0.000	6007497	1851208
_cons	1901273	.0814197	-2.34	0.020	3497069	0305476
_cons	5.163871	.1029742	50.15	0.000	4.962045	5.365696

Implementation by ivqreg2

- 使用 Machado and Silva (2019)的矩估计 (MM-QR)
- ivqreg2 lwage college exper black motheduc reg662-reg669, inst(nearc4 exper black motheduc reg662-reg669) quantile(0.1)
- ivqreg2 lwage college exper black motheduc reg662-reg669, inst(nearc4 exper black motheduc reg662-reg669) quantile(0.5)

MM-QR regression results

Number of obs = 2657
.1 Structural quantile function

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
college	.620435	1.487187	0.42	0.677	-2.294398	3.535268
exper	.0588703	.0201836	2.92	0.004	.0193111	.0984294
black	161785	.1128107	-1.43	0.152	3828899	.0593199
motheduc	0054225	.0151216	-0.36	0.720	0350603	.0242153
reg662	.0485315	.1531046	0.32	0.751	2515481	.3486111
reg663	.046059	.0863041	0.53	0.594	123094	.215212
reg664	1232738	.1682646	-0.73	0.464	4530663	.2065187
reg665	1172158	.2063293	-0.57	0.570	5216138	.2871821
reg666	1881112	.2277591	-0.83	0.409	6345108	.2582884
reg667	0848297	.1875891	-0.45	0.651	4524977	.2828382
reg668	2302179	.3586201	-0.64	0.521	9331004	.4726647
reg669	0625742	.2818079	-0.22	0.824	6149075	.4897591
_cons	4.994454	.3864103	12.93	0.000	4.237103	5.751804

Number of obs = 2657
.5 Structural quantile function

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
college	1.179498	.9975035	1.18	0.237	7755726	3.134569
exper	.0754614	.0241462	3.13	0.002	.0281356	.1227871
black	1514182	.0814075	-1.86	0.063	310974	.0081376
motheduc	0143331	.0194185	-0.74	0.460	0523927	.0237265
reg662	.0396527	.1319009	0.30	0.764	2188683	.2981737
reg663	.0651144	.0740624	0.88	0.379	0800453	.2102741
reg664	0934962	.1295218	-0.72	0.470	3473542	.1603619
reg665	1530219	.1730391	-0.88	0.377	4921723	.1861286
reg666	1784179	.1871285	-0.95	0.340	545183	.1883473
reg667	123381	.1629336	-0.76	0.449	442725	.195963
reg668	281804	.2981869	-0.95	0.345	8662395	.3026315
reg669	0641362	.2296811	-0.28	0.780	5143028	.3860305
_cons	5.209834	.2700064	19.30	0.000	4.680631	5.739036
	1					

面板分位数回归

• 方法1: Powell (2016) (still unpublished)

ssc install moremata ssc install gregpd 注: 命令 gregpd 须调用 moremata

• 方法2: MM-QR by Machado and Silva (2019, JOE)

ssc install xtgreg

MM-QR的识别条件:

• 假设协变量 x 仅影响 y 的一阶矩(location)与二阶 矩(scale):

$$y = \alpha + \mathbf{x}'\mathbf{\beta} + \sigma(\delta + \mathbf{z}'\mathbf{y})u$$

- 其中, \mathbf{z} 为 \mathbf{x} 的函数(比如 $\mathbf{z} = \mathbf{x}$),而 $\sigma(\cdot)$ 为已 知函数(比如 $\sigma(\cdot) \equiv 1$)。
- 由此 Location-scale Model 得到矩条件,进行矩 估计 (Method of Moments)

2019-8-24

面板固定效应 MM-QR

考虑如下 location-scale panel model

$$y_{it} = \alpha_i + \mathbf{x}_{it}' \mathbf{\beta} + (\delta_i + \mathbf{z}_{it}' \mathbf{\gamma}) u_{it}$$

• 其条件分位数函数为

$$Q_{y}(\tau \mid \mathbf{x}_{it}) = \alpha_{i} + \delta_{i}q(\tau) + \mathbf{x}'_{it}\mathbf{\beta} + \mathbf{z}'_{it}\mathbf{\gamma}q(\tau)$$

• 进行相应的矩估计

2019-8-24

例:交通死亡率

• use traffic.dta.clear

- xtset state year
- 作为参照系, 先进行常规的固定效应估计

 xtreg fatal beertax spircons unrate perinck, fe r

2019-8-24

Fixed-effects (within) regression

Group variable: state

Number of obs 336 Number of groups = 48

友万科技

R-sq:

within = 0.3526

between = 0.1146

overall = 0.0863

 $corr(u_i, Xb) = -0.8804$

Obs per group:

min =

7.0 avg =

max =

F(4,47)

21.27

7

Prob > F 0.0000

(Std. Err. adjusted for 48 clusters in state)

fatal	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
beertax spircons unrate perinck _cons	4840728 .8169652 0290499 .1047103 383783	.2218754 .1272627 .0094581 .0341455 .7091738	-2.18 6.42 -3.07 3.07 -0.54	0.034 0.000 0.004 0.004 0.591	9304285 .5609456 0480772 .0360184 -1.810457	037717 1.072985 0100227 .1734022 1.042891
sigma_u sigma_e rho	1.1181913 .15678965 .98071823	(fraction	of varia	nce due 1	co u_i)	

2019-8-24

陈强,(c) 2019

面板固定效应中位数回归

 xtqreg fatal beertax spircons unrate perinck, i (state) quantile (0.5)

MM-QR regression results

Number of obs = 336.5 Quantile regression

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
beertax	4844695	.1525989	-3.17	0.001	7835578	1853812
spircons	.8169576	.0940864	8.68	0.000	.6325516	1.001364
unrate	0290526	.0080348	-3.62	0.000	0448005	0133047
perinck	.1046758	.0210479	4.97	0.000	.0634226	.1459289

2019-8-24 陈强,(c) 2019

创新科研

智慧教育

面板固定效应分位数回归

• 同时进行多个分位数回归

 xtqreg fatal beertax spircons unrate perinck, i(state) quantile(.1(0.1)0.9)

Number of obs = 336

.1 Quantile regression

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
beertax	3846008	.2777339	-1.38	0.166	9289493	.1597477
spircons	.8188633	.1713929	4.78	0.000	.4829394	1.154787
unrate	0283849	.0146363	-1.94	0.052	0570716	.0003019
perinck	.1133645	.0383275	2.96	0.003	.0382441	.188485

.2 Quantile regression

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
beertax	4115626	.2275472	-1.81	0.070	8575469	.0344217
spircons	.8183488	.140398	5.83	0.000	.5431738	1.093524
unrate	0285651	.0119895	-2.38	0.017	0520642	0050661
perinck	.1110188	.0313986	3.54	0.000	.0494786	.172559

.3 Quantile regression

		Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
_	beertax	4397066	.1839801	-2.39	0.017	8003009	0791122
	spircons	.8178117	.1134772	7.21	0.000	.5954006	1.040223
	unrate	0287533	.0096907	-2.97	0.003	0477466	00976
2019-8-24	perinck	.1085702	.0253818	4.28	0.000	.0588228	.1583177

.4 Quantile regression

	Coef.	Std. Err.	z	P> z	[95% Conf.	. Interval]
beertax	4612572	.1612469	-2.86	0.004	7772954	1452191
spircons	.8174005	.0994488	8.22	0.000	.6224845	1.012317
unrate	0288974	.0084927	-3.40	0.001	0455427	012252
perinck	.1066953	.0222447	4.80	0.000	.0630965	.1502941

.5 Quantile regression

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
beertax	4844695	.1525989	-3.17	0.001	7835578	1853812
spircons	.8169576	.0940864	8.68	0.000	.6325516	1.001364
unrate	0290526	.0080348	-3.62	0.000	0448005	0133047
perinck	.1046758	.0210479	4.97	0.000	.0634226	.1459289

.6 Quantile regression

	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
beertax spircons unrate perinck	5067528 .8165324 0292016 .1027371	.1620036 .0999123 .0085323	-3.13 8.17 -3.42 4.60	0.002 0.000 0.001 0.000	8242741 .6207078 0459245 .0589345	1892315 1.012357 0124786 .1465397

2019-8-24

.7 Quantile regression

	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
beertax	5243853	.1801553	-2.91	0.004	8774833	1712874
spircons	.8161959	.1111446	7.34	0.000	.5983566	1.034035
unrate	0293195	.0094914	-3.09	0.002	0479223	0107166
perinck	.101203	.0248576	4.07	0.000	.052483	.149923

.8 Quantile regression

	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
beertax	5520676	.2216929	-2.49	0.013	9865776	1175575
spircons	.8156677	.1367705	5.96	0.000	.5476024	1.083733
unrate	0295045	.0116798	-2.53	0.012	0523965	0066126
perinck	.0987946	.0305888	3.23	0.001	.0388416	.1587476

.9 Quantile regression

	,					
	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
beertax	5859877	.284722	-2.06	0.040	-1.144033	0279428
spircons	.8150204	.1757094	4.64	0.000	.4706364	1.159404
unrate	0297313	.015005	-1.98	0.048	0591405	0003222
perinck	.0958435	.0392924	2.44	0.015	.0188319	.1728551
	l .					

2019-8-24

MM-QR的缺点

须假设 location-scale model

• 目前只能估计单向固定效应,不能估计双向固定效应(无法放入时间固定效应)