

RV COLLEGE OF ENGINEERING (An autonomous institution affiliated to VTU, Belgaum) DEPARTMENT OF MATHEMATICS

FUNDAMENTS OF LINEAR ALGEBRA, CALCULUS AND NUMERICAL METHODS (MAT211AT) **Multiple Integrals**

1.
$$\int_{1}^{4} \int_{0}^{\sqrt{4-x}} xy \, dy \, dx =$$

1.
$$\int_{1}^{4} \int_{0}^{\sqrt{4-x}} xy \, dy \, dx =$$
2.
$$\int_{0}^{2} \int_{0}^{x} (x+y) \, dy \, dx =$$
3.
$$\int_{0}^{1} \int_{0}^{1} \frac{dx \, dy}{\sqrt{1-x^{2}}\sqrt{1-y^{2}}} =$$

3.
$$\int_0^1 \int_0^1 \frac{dx \, dy}{\sqrt{1-x^2}\sqrt{1-y^2}} =$$

- 4. Find the area bounded between the parabola $y^2 = 4ax$ and $x^2 = 4ay$.
- 5. Show that the area of one loop of the lemniscates $r^2 = a^2 \cos 2\theta$ is $a^2/2$.
- 6. Find the area of one petal of the rose $r = a \sin 3\theta$.
- 7. Find the area of the circle $r = a \sin\theta$ outside the cardioid $r = a (1 \cos\theta)$.
- 8. Find the volume of the paraboloid of revolution $x^2 + y^2 = 4z$ cut off by the plane z = 4.
- 9. Find the volume of the region bounded by the paraboloid $az = x^2 + y^2$ and the cylinder $x^2 + y^2 = r^2$.
- 10. Find the volume of the portion of the sphere $x^2 + y^2 + z^2 = a^2$ lying inside the cylinder $x^2 + y^2 = ax$.
- 11. Find the volume cut off the sphere $x^2 + y^2 + z^2 = a^2$ by the cone $x^2 + y^2 = z^2$.
- 12. Change the order of the integration in the integrals:

a)
$$\int_0^a \int_0^x \frac{\cos y}{\sqrt{(a-x)(a-y)}} dy dx$$

b)
$$\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} \, dy \, dx$$

c)
$$\int_0^a \int_y^a \frac{y}{x^2 + y^2} \, dx \, dy$$

d)
$$\int_0^3 \int_1^{\sqrt{4-y}} (x+y) \, dx \, dy$$

3 is

RV COLLEGE OF ENGINEERING (An autonomous institution affiliated to VTU, Belgaum) DEPARTMENT OF MATHEMATICS

FUNDAMENTS OF LINEAR ALGEBRA, CALCULUS AND NUMERICAL METHODS (MAT211AT) Multiple Integrals

TUTORIAL SHEET-2

1.	Given $\int_0^1 \int_0^1 dx dy$, the region of integration is	and the integral value
	is	
2.	The value of the integral $\int_0^{\pi} \int_0^{a \sin \theta} r dr d\theta$ is	
	The value of the integral $\iint_{\mathcal{D}} x^2 y^3 dx dy$ over the rectangle $0 \le x$	≤ 1 and $0 \leq y \leq$

4. Area of the plane region R in the Cartesian coordinates using double integral is _____.

5. Prove that
$$\int_0^a \frac{dx}{\sqrt{\ln(\frac{a}{x})}} = a\sqrt{\pi} \quad \text{8. Evaluate} \quad \int_0^{\pi/2} \sqrt{\tan\theta \ d\theta}$$

6. Evaluate (i) $\int_0^3 \int_1^2 x(1+x+y) dx dy$ (ii) $\int_0^{\pi/2} \int_0^a r^2 \sin\theta dr d\theta$

7. Evaluate (i)
$$\int_0^1 \int_x^{\sqrt{x}} (x^2 + y^2) dy dx$$
 (ii) $\int_1^a \int_1^b \frac{1}{xy} dy dx$.

8. Evaluate
$$\int_{1}^{3} \int_{\frac{1}{x}}^{1} \int_{0}^{\sqrt{xy}} xyz \, dz \, dy \, dx.$$

9. Evaluate
$$\int_0^{\frac{\pi}{2a}} \int_0^{\cos\theta} \int_0^{\sqrt{a^2-r^2}} r dz dr d\theta$$

10. Evaluate
$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} \frac{dzdydx}{\sqrt{1-x^2-y^2-z^2}}.$$

11. Evaluate
$$\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$$
.

RV COLLEGE OF ENGINEERING (An autonomous institution affiliated to VTU, Belgaum)

DEPARTMENT OF MATHEMATICS

FUNDAMENTS OF LINEAR ALGEBRA, CALCULUS AND NUMERICAL METHODS (MAT211AT) **Multiple Integrals**

TUTORIAL SHEET-3

- 1. Change the order of integration $\int_0^a \int_0^x f(x, y) dx dy$
- 2. Change the variables in the polar coordinates in the integrals $\int_0^a \int_{\gamma}^a \frac{x}{(x^2+\gamma^2)} dx dy$
- 3. Area of the plane region R in the Polar coordinates using double integral is ____
- 4. Volume of the region R in Cartesian coordinates in the form of triple integral is ...
- 5. The value of the integral $\int_0^1 \int_{y^2}^1 \int_0^{1-x} dz \, dx \, dy$ is_____
- 6. Evaluate $\iint_A xy \, dx \, dy$, Where A is the domain bounded by the x-axis, ordinate x = 2a
- 7. and the curve $x^2 = 4ay$.
- 8. $\iint (x+y)^2 dy dx$ over the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 9. Change the order of integration and hence evaluate the following integral.

a.
$$\int_0^1 \int_{\sqrt{y}}^{2-y} xy dx dy$$
 b. $\int_0^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx$ c. $\int_0^a \int_0^x \frac{\cos y}{\sqrt{(a-x)(a-y)}} dy dx$

- d. $\int_0^a \int_{\underline{x^2}}^{2a-x} xy dy dx$

11. Change to polar coordinates and evaluate the following integral.

a.
$$\int_0^2 \int_0^{\sqrt{2x-x^2}} \frac{x}{\sqrt{x^2+y^2}} dy dx$$
 b. $\int_0^a \int_0^{\sqrt{a^2-x^2}} y^2 \sqrt{x^2+y^2} dy dx$ c. $\int_0^1 \int_x^{\sqrt{2x-x^2}} x^2 + \frac{1}{2} \int_0^{\sqrt{a^2-x^2}} \frac{x}{\sqrt{x^2+y^2}} dy dx$ b.

- 12. $v^2 dv dx$
- 12. Using the triple integrals, find the volume of the sphere $x^2 + y^2 + z^2 = a^2$.
- 13. Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- 14. Change the order of the integration in the integrals: a) $\int_{-a}^{a} \int_{0}^{\sqrt{a^2-y^2}} f(x,y) dx dy$

a)
$$\int_{-a}^{a} \int_{0}^{\sqrt{a^2-y^2}} f(x,y) \, dx \, dy$$

b)
$$\int_0^{2a} \int_0^{\sqrt{2ax-x^2}} f(x,y) \, dy \, dx$$

c)
$$\int_0^1 \int_{x_0}^{\sqrt{y}} xy \, dx \, dy$$

d)
$$\int_0^a \int_0^x f(x, y) \ dx \ dy$$