安徽大学 2011—2012 学年第二学期

《 高等数学 A(二)、B(二) 》考试试卷(A卷) (闭卷 时间 120 分钟)

考场登记表序号

题 号	 11	=	四	五	总分
得 分					
阅卷人					

·、填空题(每小题 2 分,共 10 分)

得分

- 1. 点 (1,1,1) 到平面 x+2y+3z-6=0 的距离为
- 3. 若函数 $z = 2x^2 + 2y^2 + 3xy + ax + by + c$ 在点 (-2,3) 处取得极小值 -3,则常数 $a \ b \ c$ 之 积 abc =
- 4. 梯度 $grad\left(xy+\frac{z^2}{y}\right)_{(2+1)}=\underline{\hspace{1cm}}$.
- 5. 设 f(x) 是以 2π 为周期的周期函数,它在 $[-\pi,\pi)$ 上的表达式为

$$f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 2, & 0 \le x < \pi, \end{cases}$$

则 f(x) 的 Fourier 级数在 $x = 9\pi$ 处收敛于

二、选择题(每小题2分,共10分)

得 分

- 6. 直线 $\frac{x-2}{3} = \frac{y+2}{1} = \frac{z-3}{-4}$ 和平面 x + y + z = 3 的位置关系是(
 - (A) 平行且直线不在平面内:
- (B) 垂直;

(C) 相交且夹角为 $\pi/3$;

- (D) 直线在平面内.
- 7. 向量场 $A = y^2 \vec{i} + xy \vec{j} + xz \vec{k}$ 的旋度为().
- (A) $z\vec{j} y\vec{k}$; (B) $x\vec{j} + x\vec{k}$; (C) $-z\vec{j} y\vec{k}$; (D) 2x.

第1页 共6页

8. 将累次积分 $\int_{1}^{e} dx \int_{0}^{\ln x} f(x,y) dy$ 交换积分次序后为 ().

(A)
$$\int_{0}^{1} dy \int_{1}^{e} f(x, y) dx$$
;

(A)
$$\int_{0}^{1} dy \int_{1}^{e} f(x, y) dx$$
; (B) $\int_{0}^{1} dy \int_{e^{y}}^{e} f(x, y) dx$;

(C)
$$\int_0^e dy \int_{e^y}^e f(x,y) dx;$$

(C)
$$\int_0^e dy \int_{e^y}^e f(x, y) dx$$
; (D) $\int_0^1 dy \int_1^{e^y} f(x, y) dx$.

9. 设S 为球面 $x^2 + y^2 + z^2 = 1$,方向取外侧, S_1 为其上半球面,方向取上侧,则下列式子 正确的是(

(A)
$$\iint_{S} z dx dy = 2 \iint_{S_{1}} z dx dy;$$

(B)
$$\iint_{S} z dx dy = 4 \iint_{S} z dx dy$$

可是 () .

(A)
$$\iint_{S} z dx dy = 2\iint_{S_{1}} z dx dy$$
;

(B) $\iint_{S} z dx dy = 4\iint_{S_{1}} z dx dy$;

(C) $\iint_{S} z^{2} dx dy = 2\iint_{S_{1}} z^{2} dx dy$;

(D) $\iint_{S} z dx dy = 0$.

(D)
$$\iint_{S} z dx dy = 0.$$

10. 已知正项级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则下列级数必然收敛的是().

(A)
$$\sum_{n=1}^{\infty} \frac{1}{u_n}$$

(B)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{u_n}}$$

(A)
$$\sum_{n=1}^{\infty} \frac{1}{u_n}$$
; (B) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{u_n}}$; (C) $\sum_{n=1}^{\infty} (-1)^n u_n$; (D) $\sum_{n=1}^{\infty} n u_n$.

(D)
$$\sum_{n=1}^{\infty} nu_n$$

三、计算题(每小题9分,共63分)

得分

11. 设空间曲面 S 的方程为 $z = x^2 + y^2 - 1$,求 S 在点 (2,1,4) 处的切平面与法线方程.

12. 设
$$e^z - xyz = 0$$
, 求 $\frac{\partial^2 z}{\partial x^2}$.

13. 计算三重积分 $\iint_V z^2 dx dy dz$, 其中 V 是球体 $x^2 + y^2 + z^2 \le 1$.

14. 已知 L 是第一象限中从点 (0,0) 沿圆周 $x^2+y^2=2x$ 到点 (2,0), 再沿圆周 $x^2+y^2=4$ 到点 (0,2) 的曲线段,计算曲线积分 $I=\int_L ydx+(2x+y)dy$.

15. 计算第一类曲面积分 $\iint_S x^2 dS$, 其中 S 为曲面 $z = x^2 + y^2$ $(0 \le z \le 1)$.

16. 计算第二类曲面积分 $\iint_S x dy dz + y dz dx + z dx dy$,其中 S 为半球面 $z = \sqrt{1-x^2-y^2}$,方向取上侧.

题勿超装订线

17. 将 $f(x) = \sin^2 x$ 展开成 x 的幂级数,并求 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^{2n-1}}{(2n)!}$ 的和.

四、应用题(每小题 6 分, 共 12 分)

得分

18. 设u = xyz, 求其在条件 $\frac{1}{x} + \frac{2}{y} + \frac{3}{z} = \frac{1}{a}$ (x > 0, y > 0, z > 0) 下的极值, 其中 a 为正常数.

19. 已知曲线 $L: x = \cos t$, $y = \sin t$, $(0 \le t \le 2\pi)$ 在点 (x, y) 处的线密度是 $\rho(x, y) = |y|$,求该曲线的质量.

五、证明题(每小题5分,共5分)

得 分

20. 设正项数列 $\{u_n\}$ 单调递减,且级数 $\sum_{n=1}^{\infty} (-1)^n u_n$ 发散,证明级数 $\sum_{n=1}^{\infty} \left(\frac{1}{u_n+1}\right)^n$ 收敛.