The Random Intercept Model

PSYC 575

August 6, 2020 (updated: 29 August 2020)

Week Learning Objectives

- Explain the components of a random intercept model
- Interpret intraclass correlations
- Use the design effect to decide whether MLM is needed
- Explain why ignoring clustering (e.g., regression) leads to inflated chances of Type I errors
- Describe how MLM pools information to obtain more stable inferences of groups

Data 1982 High School and Beyond Survey¹

- 7,185 students (10-12th graders) from 160 schools (90 public and 70 Catholic)
- Level 1: Student
 - id: group identifier
 - minority: (1 = minority, 0 = not)
 - female: 1 = female, 0 = male
 - ses
 - mathach: Mathematics achievement

- Level 2: School
 - size: school size
 - sector (1 = Catholic, 0 = Public)
 - pracad: proportion in academic track
 - disclim: disciplinary climate
 - himnty: 1 = > 40% minority, 0 = <
 40% minority
 - meanses: mean of Lv-1 SES

	ID ÷	MINORITÝ	FEMALÉ	SES ‡	MATHACH	SIZE ‡	SECTOR	PRACAD	DISCLIM	HIMINTÝ	MEANSES
1	1224	0	1	-1.528	5.876	842	0	0.35	1.597	0	-0.428
2	1224	0	1	-0.588	19.708	842	0	0.35	1.597	0	-0.428
3	1224	0	0	-0.528	20.349	842	0	0.35	1.597	0	-0.428
4	1224	0	0	-0.668	8.781	842	0	0.35	1.597	0	-0.428
5	1224	0	0	-0.158	17.898	842	0	0.35	1.597	0	-0.428
6	1224	0	0	0.022	4.583	842	0	0.35	1.597	0	-0.428
7	1224	0	1	-0.618	-2.832	842	0	0.35	1.597	0	-0.428
8	1224	0	0	-0.998	0.523	842	0	0.35	1.597	0	-0.428
9	1224	0	1	-0.888	1.527	842	0	0.35	1.597	0	-0.428
10	1224	0	0	-0.458	21.521	842	0	0.35	1.597	0	-0.428

Student-level variables

School-level variables

	ID ‡	MINORITÝ	FEMALÉ	SES ‡	MATHACH	SIZE [‡]	SECTOR	PRACAD	DISCLIM	HIMINTÝ	MEANSES	
996	2458	1	1	0.852	22.743	545	1	0.89	-1.484	1	0.234	
997	2458	1	1	0.262	17.205	545	1	0.89	-1.484	1	0.234	
998	2458	1	1	0.052	12.071	545	1	0.89	-1.484	1	0.234	
999	2458	1	1	-0.468	19.161	545	1	0.89	-1.484	1	0.234	
1000	2458	1	1	-0.268	12.332	545	1	0.89	-1.484	1	0.234	
1001	2458	0	1	1.512	22.681	545	1	0.89	-1.484	1	0.234	
1002	2458	1	1	0.182	4.928	545	1	0.89	-1.484	1	0.234	
1003	2458	1	1	0.242	9.142	545	1	0.89	-1.484	1	0.234	
1004	2458	0	1	1.072	24.488	545	1	0.89	-1.484	1	0.234	
1005	2458	1	1	1.172	13.666	545	1	0.89	-1.484	1	0.234	

Research Questions

- Does math achievement vary across schools? How much is the variation?
- Do schools with higher mean SES have students with higher math achievement?

Random Intercept Model

(Unconditional) Random Intercept Model

- Student level (Lv 1)
 - mathach_{ij} = $\beta_{0j} + e_{ij}$

(Unconditional) Random Intercept Model

- School level (Lv 2)
 - $\bullet \ \beta_{0j} = \gamma_{00} + u_{0j}$

(Unconditional) Random Intercept Model

- Student level (Lv 1)
 - mathach_{ij} = $\beta_{0j} + e_{ij}$
- School level (Lv 2)
 - $\bullet \ \beta_{0j} = \gamma_{00} + u_{0j}$

Combined:

$$mathach_{ij} = \gamma_{00} + u_{0j} + e_{ij}$$

Score of student *i* in school *j*

```
= Grand mean (\gamma_{00}) + school deviation (u_{0j}) + student deviation (e_{ij})
```

Model Diagram

- Student level (Lv 1)
 - mathach_{ij} = $\beta_{0j} + e_{ij}$, $e_{ij} \sim N(0, \sigma)$
- School level (Lv 2)
 - $\beta_{0j} = \gamma_{00} + u_{0j}$, $u_{0j} \sim N(0, \tau_0)$
- Combined:
 - mathach_{ij} = $\gamma_{00} + u_{0j} + e_{ij}$

Decomposing School- and Student-Level Information

mathach = School info + Student info (Relative to School)

Terminology

- Fixed effects (γ): constant for everyone
- Random effects (e_{ij}, u_{0j}) : varies for different observations/clusters
 - Describe by some probability distributions (e.g., normal)
 - Variance components: variance of random effects

Fixed Effects (R Output)

```
># Fixed effects:
># Estimate Std. Error t value
># (Intercept) 12.6370 0.2444 51.71
```

The estimated grand mean of MATHACH for all students is $\gamma_{00} = 12.64$, SE = 0.24

Intraclass Correlation

Intraclass Correlations (ICC; ρ)

 Independent Student A Student B • ICC = 0

- ICC =
 - 1. Proportion of variance due to the higher (school-) level
 - 2. <u>Average correlation</u> between observations (students) in the <u>same</u> <u>cluster (school)</u>

Variance Components

- $Var(u_{0i}) = \tau_0^2 = between-school variance$
- $Var(e_{ij}) = \sigma^2$ = within-school variance
- ICC:

$$\rho = \frac{\tau_0^2}{\tau_0^2 + \sigma^2}$$

- Typical ICC = .1 to .25 for educational performance¹
- Higher ICCs for repeated measures and longitudinal studies

R Output

```
># Random effects:
># Groups Name Variance Std.Dev.
># id (Intercept) 8.614 2.935
># Residual 39.148 6.257
># Number of obs: 7185, groups: id, 160
```

```
Variance of school means = 8.61
Variance of individual scores
within a school = 39.15
ICC = 8.61 / (8.61 + 39.15) = <math>0.18
```

Question: Does math achievement varies across schools? How much is the variation?

- Yes, there is evidence that student's math achievement varies across schools.
- Variability at the school level accounts for 18% of the total variability of math achievement

Empirical Bayes Estimates

MLM Borrows Information

- β_{0j} = (population) mean math achievement of school j
- Most straightforward way to estimate β_{0i} :
 - Take the average of everyone in the sample in school j
- It may be unstable in small samples
- Instead, MLM borrows information from other schools

Also called *Shrinkage estimates*, *Best unbiased linear predictor* (BLUP), *Posterior modes*

Also called *Shrinkage estimates*, *Best unbiased linear predictor* (BLUP), *Posterior modes*

Empirical Bayes Estimates

$$\widehat{\beta}_{0j}^{\text{EB}} = \lambda_j \widehat{\beta}_{0j}^{\text{OLS}} + (1 - \lambda_j) \gamma_{00},$$

where

- $\lambda_j = \tau_0^2/(\tau_0^2 + \sigma^2/n_j) = \underline{\text{reliability of group means}}$
- Think: what happens when ICC = 0 (i.e., τ_0^2 = 0)? Or ICC = 1 (i.e., σ^2 = 0)?
- Read more on Snijders & Bosker, 4.8

Do schools with higher mean SES have students with higher math achievement?

Adding Predictors

 Why some schools have higher mean math achievement than others?

Why Not Simple Regression?

- mathach and meanses are at different levels
- Two (problematic) approaches:
 - <u>Disaggregation</u> (both variables as lv 1)
 - Aggregation (both variables as lv 2)

Problem of Disaggregation

"Miraculous multiplication of the number of units" (Snijders & Bosker, p. 16)

• Only 160 schools, but regression uses N = 7,185

Dependent Observations

• Regression assumes *independent* observations

Design Effect

Design Effect (*Deff*)

- Dependent observations → reduces information
 - Depends on overlap (ICC)
- Deff = 1 + (average cluster size 1) × ICC
- $N_{\rm eff} = N / Deff$

population

Information you think you have

Information you really have

Underestimated Standard Error

• OLS on 7,185 students

• MLM

Fixed effects:

```
Estimate Std. Error t value

(Intercept) 12.6494 0.1493 84.74

meanses 5.8635 0.3615 16.22
```


(Optional) Approximate Standard Errors

- N = 7,185 students; J = 160 schools
- $s^2_{\text{meanses}} = .170 = \text{variance of MEANSES}$

```
Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 2.639 1.624

Residual 39.157 6.258

Number of obs: 7185, groups: id, 160
```

Approximate Standard Errors

•
$$SE_{OLS} \approx \sqrt{\frac{1}{S^2_{MEANSES}} \left(\frac{\tau_0^2 + \sigma^2}{N}\right)} = \sqrt{\frac{1}{.170} \left(\frac{2.639 + 39.157}{7185}\right)} = .185$$

 τ_0^2 (lv-2) is divided by an incorrect sample size (lv-1)

•
$$SE_{\text{MLM}} \approx \sqrt{\frac{1}{S^2_{\text{MEANSES}}} \left(\frac{\tau_0^2}{J} + \frac{\sigma^2}{N}\right)}$$

$$= \sqrt{\frac{1}{.170} \left(\frac{2.639}{160} + \frac{39.157}{7185}\right)} = .359$$

Type I Error Inflation¹

Cluster size	ICC	Deff	Type I Error	Cluster size	ICC	Deff	Type I Error
10	0	1.00	.05	10	.20	2.80	.28
25	0	1.00	.05	25	.20	5.80	.46
100	0	1.00	.05	100	.20	20.80	.70
10	.05	1.45	.11	10	.40	5.50	.46
25	.05	2.20	.19	25	.40	13.00	.63
100	.05	5.95	.43	100	For the F	ISB data,	Deff=
					??		

• Lai & Kwok (2015):² MLM needed when *Deff* > 1.1

Exercise

- $Deff = 1 + (average cluster size 1) \times ICC$
- Average cluster size = 7,185 / 160 ≈ 44.91
- ICC = 0.18

• Bonus Challenge: What is the design effect for a longitudinal study of 5 waves with 30 individuals, and the ICC for the outcome is 0.5?

Overconfidence (Disaggregation)

Problem of Aggregation

- Student-level information is ignored
- OLS on 160 schools

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.6219 0.1533 82.35 <2e-16 ***

MEANSES 5.9093 0.3714 15.91 <2e-16 ***
```

MLM

Fixed effects:

```
Estimate Std. Error t value
(Intercept) 12.6494 0.1493 84.74
MEANSES 5.8635 0.3615 16.22
```

SE is slightly overestimated

Model Equations

• Lv 1: $mathach_{ij} = \beta_{0j} + e_{ij}$

• Lv 2: $\beta_{0j} = \gamma_{00} + \gamma_{01}$ meanses_j + u_{0j}

• Combined: mathach_{ij} = $\gamma_{00} + \gamma_{01}$ meanses_j + $u_{0j} + e_{ij}$

Model Equations

• Lv 1:
$$\underset{e_{ij}}{\text{mathach}_{ij}} = \beta_{0j} + e_{ij}$$

 $e_{ij} \sim N(0, \sigma)$

• Lv 2: $\beta_{0j} = \gamma_{00} + \gamma_{01}$ meanses_j + u_{0j} $u_{0j} \sim N(0, \tau_0)$

Combined:

$$\frac{\text{mathach}_{ij}}{u_{0j} + e_{ij}} = \gamma_{00} + \gamma_{01} \text{ meanses}_j + u_{0j} + e_{ij}$$

Lv 1: $mathach_{ij} = \beta_{0j} + e_{ij}$

Run the Model in R

Fixed effects:

```
Estimate Std. Error t value (Intercept) 12.6494 0.1493 84.74 meanses 5.8635 0.3615 16.22
```

The estimated school mean of mathach when meanses = 0 is γ_{00} = 12.65 (SE = 0.15)

The model predicts that students from two schools with 1 unit difference in meanses will have an average difference of $\gamma_{01} = 5.86$ (SE = 0.36) units in mathach

Run the Model in R

```
Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 2.639 1.624

Residual 39.157 6.258

Number of obs: 7185, groups: id, 160
```

```
Variance of deviations of school means from the regression line = Var(u_{0j}) = 2.64
Variance of individual scores within a school = Var(e_{ij}) = 39.16
```

Statistical Inferences

- It's important to understand that the coefficients you obtained in software are merely <u>estimates</u>, which involves <u>uncertainty</u>
- Confidence intervals
 - Wald intervals
 - Likelihood-based intervals
- Hypothesis testing (to be discussed later)

Confidence Intervals (Wald)

- 95% CI for $\gamma_{01} = 5.86 \pm 2 \times 0.36 = [5.16, 6.57]$
 - Can be obtained in most software

At 95% confidence level, one unit difference in school-level MEANSES is associated with an average difference in MATHACH of **5.16** to **6.57** units

Confidence Intervals (Likelihood-Based)

- Easily obtained in the R package 1me4
- Usually <u>more accurate than Wald intervals</u>, especially with <u>smaller sample sizes</u>
- With a large sample size, the difference is minimal