Relatório de Análise VIII

Identificando e Removendo Outliers

Representação Box-Plot

Usando o Boxplot

```
In [3]: dados.boxplot('Valor')

Out[3]: <AxesSubplot:>

1e6

4

3

2

1

0

Horizontal Automatical Street Control of the Contr
```

• visualização é comprometida por haver dados muitos discrepantes

Fazendo uma seleção para verificar alguns dados discrepantes

	Tipo	Bairro	Quartos	Vagas	Suites	Area	Valor	Condominio	IPTU
7629	Apartamento	Barra da Tijuca	1	1	0	65	600000.0	980.0	120.0
10636	Casa de Condomínio	Freguesia (Jacarepaguá)	4	2	3	163	800000.0	900.0	0.0
12661	Apartamento	Freguesia (Jacarepaguá)	2	2	1	150	550000.0	850.0	150.0
13846	Apartamento	Recreio dos Bandeirantes	3	2	1	167	1250000.0	1186.0	320.0
15520	Apartamento	Botafogo	4	1	1	300	4500000.0	1100.0	0.0
4									•

Criando uma Series

```
In [5]: valor = dados['Valor']
```

Removendo Outliers

Observando o Modelo do Boxplot e Calculando os quartis

```
In [6]: Q1 = valor.quantile(.25)
   Q3 = valor.quantile(.75)
   IIQ = Q3 - Q1
   limite_inferior = Q1 - 1.5 * IIQ
   limite_superior = Q3 + 1.5 * IIQ
```

Remeovendo os Outliers através de uma seleção

Out[7]: <AxesSubplot:>

· O Boxplot ficou muito mais visível com a remoção dos outliers

Comparando com histogramas

- o histograma mostra a distribuição da frequência dos dados
- observando as duas variáveis, é possível ver um comportamento melhor da segunda, após o tratamento, com a remoção dos outliers

```
In [8]: dados.hist('Valor')
  dados_new.hist('Valor')
```

Out[8]: array([[<AxesSubplot:title={'center':'Valor'}>]], dtype=object)

Exercício

Obtenha o conjunto de estatísticas representado na figura acima.

Para isso, utilize o arquivo aluguel_amostra.csv, e realize suas análises utilizando como variável alvo o Valor m2 (valor do metro quadrado).

Lembrando que Q1 representa o 1º quartil e Q3 o 3º quartil, selecione o item com a resposta correta (considere somente duas casas decimais):

```
In [9]: | data = pd.read_csv('../dados/aluguel_amostra.csv', sep=';')
          Q1 = data['Valor m2'].quantile(.25)
         Q3 = data['Valor m2'].quantile(.75)
         IIQ = Q3 - Q1
          limite_inferior = Q1 - 1.5 * IIQ
         limite_superior = Q3 + 1.5 * IIQ
In [10]: data['Valor m2'].describe().round(2)
Out[10]: count
                   10000.00
         mean
                     37.08
                     175.30
         std
         min
                      2.78
         25%
                      21.25
         50%
                      30.00
         75%
                      42.31
         max
                   15000.00
         Name: Valor m2, dtype: float64
```

Resposta

```
In [11]: print(f'[Q1] -> {Q1}')
    print(f'[Q3] -> {Q3}')
    print(f'[IIQ] -> {IIQ:.2f}')
    print(f'[Q1 - 1.5 * IIQ] -> {limite_inferior:.2f}')
    print(f'[Q3 + 1.5 * IIQ] -> {limite_superior:.2f}')

[Q1] -> 21.25
[Q3] -> 42.31
[IIQ] -> 21.06
[Q1 - 1.5 * IIQ] -> -10.34
[Q3 + 1.5 * IIQ] -> 73.90
```

Observando o Boxplot

```
In [12]: data.boxplot('Valor m2')
Out[12]: <AxesSubplot:>

14000
12000
10000
8000
4000
2000
0
Valor m2
```

Excluindo os outliers e observando o boxplot

```
In [13]: selecao = (data['Valor m2'] >= limite_inferior) & (data['Valor m2'] <= limite_superior)
data = data[selecao]

In [14]: data.boxplot('Valor m2')

Out[14]: <AxesSubplot:>
```

Comparando a visualização com o Seaborn

```
In [15]: import seaborn as sns
```

```
In [16]: sns.boxplot(x=data['Valor m2'])
```

Out[16]: <AxesSubplot:xlabel='Valor m2'>

