Shi-Yuan Wang

+1 (470) 351 7699 http://sywang1007.github.io/ <shi-yuan.wang@gatech.edu>

EDUCATION

Georgia Institute of Technology

Aug. 2018 - PRESENT

Ph.D. candidate in School of Electrical and Computer Engineering

Advisor: Prof. Matthieu R. Bloch

Proposed Dissertation Topic: Information-Theoretically Covert Communications under Variational Dis-

tance Constraint: Limits and Algorithms

Georgia Institute of Technology

Aug. 2022 - PRESENT

M.Sc. student in School of Mathematics

National Taiwan University (NTU), Taipei, Taiwan

Sept. 2013 - Jan. 2018

B.S.E in Electrical EngineeringOverall GPA: 4.22/4.3 (top 3%)

RESEARCH EXPERIENCE

Georgia Tech - Adaptive Communication Decision and Information Sys- *Jan. 2019 - PRESENT* **tems Research Group**

Advisor: Prof. Matthieu R. Bloch

Research Project: Joint Quantum Communication and Sensing

- Investigate the fundamental limits of a joint communication and sensing strategy over a quantum channel with unknown channel parameter.
- Characterize an explicit communication rate/sensing-error exponent region for non-adaptive strategy.
- Accepted to Proc. of 2022 IEEE Information Theory Workshop.

Research Project: Towards a Characterization of the Covert Capacity of Bosonic Channels under Trace Distance

- Investigate fundamental limits of covert communications over a lossy thermal-noise bosonic channel.
- Develop information-theoretic analysis of covertness based on quantum fidelity and quantum trace distance.
- Accepted to Proc. of 2022 IEEE International Symposium on Information Theory.

Research Project: Explicit Design of Provably Covert Channel Codes

- Design and implement covert channel codes with MLCPPM, polar codes, and invertible extractors
- Analyze the covert channel code in terms of *variational distance*.
- Our scheme is efficient in terms of secret key usage and requires **2 orders of magnitude fewer secret key bits** than previous work.
- Accepted to Proc. of 2021 IEEE International Symposium on Information Theory.

Research Project: Covert MIMO Communications under Variational Distance Constraint

- Studied fundamental limit of communication without detecting by malicious adversary.
- Developed information-theoretic analysis and characterize covert capacity of MIMO-AWGN channels.
- Accepted to Proc. of 2020 IEEE International Symposium on Information Theory and IEEE TRANS-ACTIONS ON INFORMATION FORENSICS AND SECURITY.

Research Project: Online Learning for Dynamic Spectrum Access

• Minimized coordination overhead between users and learning access policy in a distributed manner.

• Proposed an online bandit learning framework to estimate the channel availability and user behaviors.

NTU - Speech Processing and Machine Learning Laboratory

Sept. 2016 - Jan. 2018

Advisor: Prof. Hung-Yi Lee

Research Project: Learning Asking via Interacting with Insufficient Labeled Data

- Addressed the problem of **insufficient labeled data** in **Question Answering** task of Natural Language Processing.
- Proposed a learner-expert interaction Reinforcement Learning framework to generate training data. and pretrained expert model gives an answer and a reward signal.
- Improved baseline with 32.6% gain on accuracy under limited labeled data on bAbI dataset.
- Utilized the Attention-based Seq2seq model with copy mechanism to study **Question Generation** in SQuAD dataset.

NTU - MicroSystem Research Laboratory

June 2016 - July 2017

Advisor: Prof. Tzi-Dar Chiueh

Research Project: Low-density Parity-check (LDPC) Decoder Implemented on OpenCL

- Utilized the parallelism of **Sum-product algorithm (SPA)** for GPU programming with OpenCL.
- Speed up 1000x in comparison with the baseline sequential decoder.
- The work has been documented as a technical reference by MediaTek Inc.

PUBLICATION

Submitted

1. M.-C. Chang, S.-Y. Wang, T. Erdoğan, and M. R. Bloch, "Rate and Detection-Error Exponent Tradeoff for Joint Communication and Sensing of Fixed Channel States," *arxiv preprint*, vol. 2210.07963, 2022, submitted to *IEEE Journal on Selected Areas in Information Theory*

Articles

1. S.-Y. Wang and M. R. Bloch, "Covert MIMO Communications Under Variational Distance Constraint," *IEEE Transactions on Information Forensics and Security*, vol. 16, 2021

Conference Proceedings

- 1. S.-Y. Wang, T. Erdoğan, U. Pereg, and M. R. Bloch, "Joint Quantum Communication and Sensing," in *Proc. of IEEE Information Theory Workshop (ITW)*, Mumbai, India, 2022
- 2. M.-C. Chang, S.-Y. Wang, and M. R. Bloch, "Controlled Sensing with Corrupted Commands," in *Proc. of 58th Allerton Conference on Communication, Control, and Computing*, Monticello, IL, 2022
- 3. S.-Y. Wang, T. Erdoğan, and M. R. Bloch, "Towards a Characterization of the Covert Capacity of Bosonic Channels under Trace Distance," in *Proc. of 2022 IEEE International Symposium on Information Theory (ISIT)*, Espoo, Finland, Jun. 2022
- 4. M.-C. Chang, T. Erdoğan, S.-Y. Wang, and M. R. Bloch, "Rate and detection error-exponent tradeoffs of joint communication and sensing," in *proc. of IEEE International Hybrid Symposium on Joint Communications & Sensing*, Seefeld (Tirol), Austria, Mar. 2022
- 5. S.-Y. Wang and M. R. Bloch, "Explicit Design of Provably Covert Channel Codes," in *Proc. of IEEE International Symposium on Information Theory*, Melbourne, Australia, Jul. 2021
- 6. —, "Covert MIMO Communications under Variational Distance Constraint," in *Proc. of IEEE International Symposium on Information Theory*, Los Angeles, CA, Jun. 2020

AWARDS & HONORS

Ministry of Education, Taiwan (R.O.C)

Jun. 2022-PRESENT

Government Scholarship to Study Abroad

Department of Electrical Engineering, National Taiwan University

- Dean's List Award (5 times)
- 3rd place, Undergraduate Innovation Award
- Cadence EE3011 (Data Structure & Programming) Competition Award

WORKING EXPERIENCE

Qualcomm, San Diego

May 2022 - Aug. 2022

Interim Engineering Intern at Modem Tech System Group, Wireless Research & Development

- Designed adaptive filtering algorithms to solve **frequency-dependent** I-/Q-branch mismatch problem at receiver.
- Achieved significant gain in terms of Image-Rejection Ratio compared to frequency-independent compensators, while increasing the hardware complexity moderately.

MediaTek, Taiwan July 2017 - Aug. 2017

Summer Intern in Department of Wireless Communication Technology

- Designed an Inter-Processor Communication mechanism in hardware using Verilog.
- Verified the datapath and interface protocol of a **Vector Operation Engine**.
- Developed a **simulation tool** for vector operation engine in C++.

TEACHING EXPERIENCE

Graduate Teaching Assistant, Georgia Tech ECE

Fall 2021

ECE7750 Mathematical Foundations of Machine Learning

SELECTED COURSEWORKS AND PROJECTS

Sparse MIMO Channel Estimation with Compressed Sensing and Learning Schemes Fall 2018 Final Project of ECE6604 (Personal & Mobile Communications)

• Implemented several *compressed sensing* algorithms for MIMO channel estimation, including orthogonal matching pursuit, compressed sampling matching pursuit, and expectation maximization.

User Coexistence via Online Learning

Spring 2019

Final Project of ECE6254 (Statistical Machine Learning)

- Investigated the problem of *user coexistence* in multi-user communication networks.
- Formulated the problem into online learning scheme and solved with *online mirror descent* and *bandit convex optimization*.

RELATED SKILLS

- Standardized Test
 - TOEFL score: 105/120 (R:28/30, L:28/30, S:22/30, W:27/30)

Oct. 2017

- GRE score: 330/340 (V:161/170, Q: 169/170), AW: 3.5

Sept. 2017

- Programming: C++, Python, Matlab, Verilog
- Libraries&Tools: PyTorch, Tensorflow, OpenCV, OpenCL, LATEX