(1) Select columns: Goal, students_reached, and funding_status and create a new data-frame. (1 point)

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read excel("Crowdfunding data 1000 projects (5).xlsx")
FileNotFoundError
                                          Traceback (most recent call last)
<ipython-input-7-1e545c3baae7> in <module>()
----> 1 df = pd.read excel("Crowdfunding data 1000 projects (5).xlsx")
                                     6 frames
/usr/local/lib/python3.7/dist-packages/xlrd/__init__.py in open_workbook(filename,
logfile, verbosity, use mmap, file contents, encoding override, formatting info,
on demand, ragged rows)
                peek = file contents[:peeksz]
    114
    115
            else:
                with open(filename, "rb") as f:
--> 116
    117
                    peek = f.read(peeksz)
            if peek == b"PK\x03\x04": # a ZIP file
    118
FileNotFoundError: [Errno 2] No such file or directory:
'Crowdfunding data 1000 projects (5).xlsx'
```

1 df.head()

	Project_ID	school_latitude	school_longitude	school_city	school_state	school_zip
0	1	45.310140	-93.807736	Monticello	MN	55362
1	2	29.795216	-95.358101	Houston	TX	77009
2	3	37.754852	-122.426160	San Francisco	CA	94114
3	4	36.297083	-119.789619	Lemoore	CA	93245
4	5	33.946010	-118.223360	South Gate	CA	90280
4						•

```
1 df1 = df.loc[:,["Goal","students_reached","funding_status"]]
```

1 df1.head()

funding_status	students_reached	Goal	
completed	12	887.15	0
NotCompleted	63	761.52	1
completed	88	266.55	2
NotCompleted	30	808.15	3
NotCompleted	92	1296.65	4

```
1 a = {"completed":1,"NotCompleted":0}
2 df1.funding_status=df1.funding_status.map(a)
3 df1.head()
```

	Goal	students_reached	funding_status
0	887.15	12	1
1	761.52	63	0
2	266.55	88	1
3	808.15	30	0
4	1296.65	92	0

(2) Create random train and test data-frames in 75:25 ratio.(1 point)

```
1 x = df1.iloc[:,[0,1]]
2 y = df1.iloc[:,[-1]]

1 from sklearn.model_selection import train_test_split

1 xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.25)
```

(3) Using K-means, cluster the train data-frame into two clusters. Use Goal and students_reached columns (only

independent variables) for clustering (4 points)

(4) Plot the scatter plots before and after clustering. (2 points)

```
1 ykm = km.predict(xtrain)

1 plt.scatter(xtrain.iloc[:,0],xtrain.iloc[:,1],c="g")
2 plt.title("Before Clustering")
3 plt.xlabel("Goal")
4 plt.ylabel("Students_reached")
```

Text(0, 0.5, 'Students_reached')


```
1 plt.scatter(xtrain.iloc[:,0],xtrain.iloc[:,1],c=ykm)
2 plt.title("After Clustering")
```

```
3 plt.xlabel("Goal")
4 plt.ylabel("Students_reached")
```

Text(0, 0.5, 'Students_reached')

(5) Use predict() function and predict cluster labels for test data-frame. (2 points)

```
1 y_pred = km.predict(xtest)
```

1 y pred#cluster labels for test dataframe

1

Colab paid products - Cancel contracts here

