-- Models that assign probabilities to sequences of words are called language models or LMs

-- We'll see how to use n-gram models to estimate the probability of the last word of an n-gram given the previous words, and also to assign probabilities to entire sequences.

N-gram Language Model (short: n-gram)

- Use n-1 words from the past to approximate probability of nth word
- E.g. bi-gram: approximate probability of proceeding word given one previous word

Probability of a sentence from bi-gram

- Figure 3.1:

Column: 1st word of bi-gram

Row: 2nd word of bi-gram

Numbers: count of frequency

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Figure 3.1 Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restaurant Project corpus of 9332 sentences. Zero counts are in gray.

- Figure 3.2:

Normalized probability (frequency divided by total freq of row)

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Figure 3.2 Bigram probabilities for eight words in the Berkeley Restaurant Project corpus of 9332 sentences. Zero probabilities are in gray.

- Probability of a sentence:

$$P(~~i want english food~~)$$

$$= P(i|~~)P(want|i)P(english|want)~~$$

$$P(food|english)P(|food)$$

$$= .25 \times .33 \times .0011 \times 0.5 \times 0.68$$

$$= .000031$$

Evaluating Language Model

- Extrinsic evaluation: end-to-end; embed model in application and measure completely
- Intrinsic evaluation:
 - o Training set, development set (validation), test set
 - Better model: fit the test set better (prediction is more accurate in details for test set)

Perplexity (PP)

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\frac{1}{P(w_1 w_2 ... w_N)}}$$

- Intuition: "weighted average branching factor of a language"
 - If each word order appears equally, the perplexity is maximized (multiplication of probabilities is smallest possible) -- This case, harder to predict -> larger perplexity
 - the more information the n-gram gives us about the word sequence, the lower the perplexity
 - o Example: different trainings on same corpus

	Unigram	Bigram	Trigram
Perplexity	962	170	109

Generalization

0

- A case for bigram generalization:
 - Generate a random bigram that starts with <s> (according to bigram probability)
 - Suppose the next word is w, then generate a random bigram starting with w
 - Continue this generation, until we get bigram ending with </s>
- Training and test corpus should be from same genre of text

Unknown words (2 ways to train <UNK>)

- 1st: convert to closed vocabulary by choosing fixed vocabulary in advance
 - o Choose vocabulary list
 - Convert in training set any OOV (out of vocabulary) words to <UNK>
 Estimate probability of <UNK> just like estimating for other words
 - Estimate probability of <UNK> just like estimating for other words
- 2nd: No fixed vocab list but create on implicitly
 - Convert in training set words appear under certain frequencies to <UNK>

Smoothing

Motivation: words appear in training and test, but context never shows up in training. - Zero probability Smoothing makes zero probabilities not exact zero, but small probability

Laplace smoothing

$$P_{\text{Laplace}}(w_i) = \frac{c_i + 1}{N + V}$$

C_i: count of word w_i; N: number of tokens (include repetitions), V: number of vocabulary (tokens without repetitions)

Add-k smoothing

$$P^*_{ ext{Add-k}}(w_n|w_{n-1})=rac{C(w_{n-1}w_n)+k}{C(w_{n-1})+kV}$$
 Usually k is a small number like 0.01, 0.05, 0.1,. Etc

Osdany k is a small namber like 0.01, 0.05, 0.1,. La

Back-off and Interpolation Sometimes less context is better, helping to generalize more for contexts that the model hasn't learned much

about.

- Back-off: start with trigram is context is sufficient, otherwise reduce to bigram, then unigram

- <u>Interpolation</u>: always mix the probability estimates from all the n-gram estimators, weighing and
- $\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1})$

$$+\lambda_2 P(w_n|w_{n-1}) \\ +\lambda_3 P(w_n)$$
• Lambda's are weights, which should add up to 1

Lambda's are weights, w A more sophisticated version:

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1(w_{n-2}^{n-1})P(w_n|w_{n-2}w_{n-1})
+ \lambda_2(w_{n-2}^{n-1})P(w_n|w_{n-1})
+ \lambda_3(w_{n-2}^{n-1})P(w_n)$$

+ $\lambda_3(w_{n-2}^{n-1})P(w_n)$ • Lambda is conditioned on the context