Sets, elements & cardinality

Methods: Logic, Part 1a

Michael Franke

Content covered

- basics notions of naïve set theory:
 - universe
 - element
 - set
 - membership
 - cardinality
- ways of describing or defining sets

Universe

All the stuff we care about

Set

A collection of elements

Set

A collection of elements

Set

A collection of elements

Notation

 $X = \{a, b\}$ $a \in X$ $c \notin X$

Convention

 $\{a,b\} = \{b,a\}$

- 1 by listing elements
- 2 by characteristic property
- 3 by recursive definition

- by listing elements
- 2 by characteristic property
- 3 by recursive definition

$$X = \{0, 1, 2, 3, \dots\}$$

$$Y = \{5, 7, 9, 11, \dots, 21\}$$

- 1 by listing elements
- by characteristic property
- 3 by recursive definition

$$X = \{x \in U \mid x \text{ is a game controler}\}\$$
$$= \{a, b\}$$

$$Y = \{x \in X \mid x \text{ is retro}\}\$$
$$= \{b\}$$

- by listing elements
- 2 by characteristic property
- **3 by recursive definition**

Definition:

 \mathfrak{L} is a set of strings (symbols), such that

- anchor: all natural numbers $\{0, 1, 2, ...\}$ are part of \mathfrak{L}
- step: if $x, y \in \mathcal{L}$, then so are the strings "(x + y)" and "(x * y)"
- $_3$ **exhaustion:** nothing else is in $\mathfrak L$

Examples:

$$5 \in \mathfrak{L}$$
$$3.5 \notin \mathfrak{L}$$
$$((4*2)+3) \in \mathfrak{L}$$
$$(3+2*3)*3 \notin \mathfrak{L}$$

Cardinality

Number of elements of a set

$$X = \{a, b, c, d\}$$
$$|X| = 4$$

$$Y = \{0, 1, 2, 3, \dots\}$$

$$|Y| = \infty$$

11 / 11

[finite set]

[infinite set]