Advances in Dynamic Programming Theory and Applications

Thomas J. Sargent and John Stachurski

2023

Plan

- 1. Review traditional dynamic programs (MDPs)
- 2. Generalize to recursive decision problems (RDPs)
- 3. Discuss RDP optimality
- 4. Identify types of RDPs
- 5. Consider some applications

RDPs are a generalization of MDPs that can handle

- recursive preferences
- robust control
- ambiguity
- state-dependent discounting
- adversarial agents
- negative discount rates
- jump processes (continuous time)
- etc., etc.

Aims

Provide conditions under which

- the value function satisfies Bellman's equation
- Bellman's principle of optimality holds
- at least one optimal policy exists
- standard algorithms converge
 - value function iteration (VFI)
 - optimistic policy iteration (OPI)
 - Howard policy iteration (HPI)

The RDP framework builds on work by

- Eric Denardo
- Dimitri Bertsekas
- Takashi Kamihigashi
- etc.

Further references

- Dynamic Programming (Vol 1)
- Completely Abstract Dynamic Programming

Terminology

Let T be a self-map on metric space $U=(U,\rho)$

We call T globally stable on U when

- 1. T has a unique fixed point \bar{v} in V and
- 2. $T^k v \to \bar{v}$ as $k \to \infty$ for all $v \in V$

Let T be a self-map on partially ordered space $U=(U,\leqslant)$

We call T order preserving on U when

1. $u, v \in U$ and $u \leqslant v$ implies $Tu \leqslant Tv$

Fixed point theory: quick reminders

Our old friend Banach

Theorem. If

- 1. (U,d) is a complete metric space
- 2. T is a contraction of modulus λ on U

then T has a unique fixed point u^{\ast} in U and

$$d(T^ku,u^*)\leqslant \lambda^kd(u,u^*)\quad\text{for all }k\in\mathbb{N}\text{ and }u\in U$$

In particular, T is globally stable on U

An "eventual contraction" result:

- X is finite and T is a self-map on $V \subset \mathbb{R}^X$
- ullet V is closed

Thm. T is globally stable on $V \subset \mathbb{R}^X$ whenever there exists a positive linear operator L on \mathbb{R}^X such that

- 1. $\rho(L) < 1$ and
- 2. for all $u, v \in V$, we have

$$|Tu - Tv| \leqslant L|u - v|$$

(For a proof see Ch. 6)

Du's Theorem

Let

- X be a finite set
- $I := [v_1, v_2]$ be a nonempty order interval in $(\mathbb{R}^X, \leqslant)$
- ullet T be an order-preserving self-map on I

Thm. T is globally stable on I if either

- 1. T is concave and $Tv_1 \gg v_1$ or
- 2. T is convex and $Tv_2 \ll v_2$

Figure: Concave case (one-dimensional)

Figure: Convex case (one-dimensional)

Review

Let's quickly review Markov decision processes (MDPs)

- the most standard framework for dynamic programming
- includes many standard economic applications
- useful for intuition
- but limited in some ways

Aims:

- Recall basic concepts
- Lay groundwork for discussing RDPs

States and Actions

We take as given

- 1. a finite set X called the **state space** and
- 2. a finite set A called the action space

Actions are restricted by a **feasible correspondence** Γ from X to A

• $\Gamma(x) = \text{actions available in state } x \text{ (nonempty)}$

Given Γ , we define the **feasible state-action pairs**

$$\mathsf{G} := \{(x, a) \in \mathsf{X} \times \mathsf{A} : a \in \Gamma(x)\}\$$

Dynamics

A stochastic kernel from G to X is a map

$$P \colon \mathsf{G} \times \mathsf{X} \to [0,1]$$

satisfying

$$\sum_{x'} P(x,a,x') = 1 \quad \text{ for all } (x,a) \text{ in } \mathsf{G}$$

• next period state x' is drawn from $P(x, a, \cdot)$

Rewards

Flow reward r(x,a) is received at $(x,a) \in \mathsf{G}$

Lifetime rewards are

$$\mathbb{E}\sum_{t\geqslant 0}\beta^t r(X_t,A_t)$$

where $\beta \in (0,1)$

- β is called the **discount factor**
- r is called the **reward function**

The Bellman equation is

$$v(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \sum_{x'} v(x') P(x, a, x') \right\}$$

Formal definition

Let's summarize the primitives:

Given X and A, an **MDP** is a tuple (Γ, β, r, P) where

- 1. Γ is a nonempty correspondence from $X \to A$
- 2. β is a constant in (0,1)
- 3. r is a function from G to \mathbb{R}
- 4. P is a stochastic kernel from G to X

Policies

A **feasible policy** is a $\sigma \in A^X$ such that

$$\sigma(x) \in \Gamma(x)$$
 for all $x \in X$

Choose $\sigma \iff$

respond to state X_t with action $\sigma(X_t)$ at all $t \ge 0$

Notation:

 $\Sigma :=$ the set of all feasible policies

Closed loop dynamics

Choosing
$$\sigma \in \Sigma \implies$$

1. flow rewards at x are

$$r_{\sigma}(x) := r(x, \sigma(x))$$

2. the state process $(X_t)_{t\geqslant 0}$ follows

$$P_{\sigma}(x, x') := P(x, \sigma(x), x')$$

(We say that $(X_t)_{t\geq 0}$ is P_{σ} -Markov)

$$(X_t)_{t\geqslant 0}$$
 is P_{σ} -Markov with $X_0=x$

then the **lifetime value of** σ starting from x is

$$v_{\sigma}(x) := \mathbb{E}_{x} \sum_{t \geqslant 0} \beta^{t} r(X_{t}, \sigma(X_{t}))$$

$$= \mathbb{E}_{x} \sum_{t \geqslant 0} \beta^{t} r_{\sigma}(X_{t})$$

$$= \sum_{t \geqslant 0} \beta^{t} \mathbb{E}_{x} r_{\sigma}(X_{t})$$

$$= \sum_{t \geqslant 0} \beta^{t} (P_{\sigma}^{t} r_{\sigma})(x)$$

In vector notation,

$$v_{\sigma} = \sum_{t \geqslant 0} (\beta P_{\sigma})^t \, r_{\sigma}$$

Since
$$\beta < 1$$
,

$$v_{\sigma} = (I - \beta P_{\sigma})^{-1} r_{\sigma}$$

Policy Operators

Given $\sigma \in \Sigma$, the **policy operator** T_{σ} is defined by

$$(T_{\sigma} v)(x) = r(x, \sigma(x)) + \beta \sum_{x'} v(x') P(x, \sigma(x), x')$$

In vector notation,

$$T_{\sigma} v = r_{\sigma} + \beta P_{\sigma} v$$

Lemma. T_{σ} is order-preserving on \mathbb{R}^{X}

Proof: $v \leqslant w \implies P_{\sigma}v \leqslant P_{\sigma}w \implies T_{\sigma}v \leqslant T_{\sigma}w$

Lemma. T_{σ} is a contraction of modulus β on \mathbb{R}^{X}

Proof: Let $|v| := v \vee (-v)$ and fix v, w in \mathbb{R}^X

We have

$$|T_{\sigma}v - T_{\sigma}w| = \beta |P_{\sigma}v - P_{\sigma}w|$$

$$\leq \beta P_{\sigma} |v - w|$$

$$\leq \beta P_{\sigma} ||v - w||_{\infty} \mathbb{1}$$

$$= \beta ||v - w||_{\infty} \mathbb{1}$$

Finally, $|a| \leqslant |b|$ implies $||a||_{\infty} \leqslant ||b||_{\infty}$

Lemma. T_{σ} is a contraction of modulus β on \mathbb{R}^{X}

Proof: Let $|v| := v \vee (-v)$ and fix v, w in \mathbb{R}^X

We have

$$|T_{\sigma}v - T_{\sigma}w| = \beta |P_{\sigma}v - P_{\sigma}w|$$

$$\leq \beta P_{\sigma} |v - w|$$

$$\leq \beta P_{\sigma} ||v - w||_{\infty} \mathbb{1}$$

$$= \beta ||v - w||_{\infty} \mathbb{1}$$

Finally, $|a| \leqslant |b|$ implies $||a||_{\infty} \leqslant ||b||_{\infty}$

Indeed,

$$v = T_{\sigma} v \iff v = r_{\sigma} + \beta P_{\sigma} v$$

 $\iff v = (I - \beta P_{\sigma})^{-1} r_{\sigma}$
 $\iff v = v_{\sigma}$

Greedy Policies

Fix $v \in \mathbb{R}^X$

A policy σ is called v-greedy if

$$\sigma(x) \in \operatorname*{argmax}_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \sum_{x'} v(x') P(x, a, x') \right\}$$

for all $x \in X$

Note: at least one v-greedy policy exists in Σ

The Bellman Operator

The **Bellman operator** is the self-map on \mathbb{R}^X defined by

$$(Tv)(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \sum_{x'} v(x') P(x, a, x') \right\}$$

• $Tv = v \iff v$ satisfies the Bellman equation

Note

$$(Tv)(x) = \max_{\sigma \in \Sigma} \left\{ r(x, \sigma(x)) + \beta \sum_{x'} v(x') P(x, \sigma(x), x') \right\}$$

Equivalently, $Tv = \bigvee_{\sigma} T_{\sigma} v$

Figure: Visualization in one dimension

Theorem. T is globally stable on \mathbb{R}^X

 $\underline{\mathsf{Proof}}$: Easy to check that T is a contraction of modulus β

Optimality

The value function $v^* \in \mathbb{R}^X$ is defined by

$$v^*(x) := \max_{\sigma \in \Sigma} v_{\sigma}(x) \qquad (x \in \mathsf{X})$$

= max lifetime value from state x

A policy $\sigma \in \Sigma$ is called **optimal** if

$$v_{\sigma} = v^*$$

Howard policy iteration (HPI)

input
$$\sigma_0 \in \Sigma$$

$$k \leftarrow 0$$

repeat

$$v_k \leftarrow (I - \beta P_{\sigma_k})^{-1} r_{\sigma_k}$$

$$\sigma_{k+1} \leftarrow \text{a } v_k \text{ greedy policy}$$

$$k \leftarrow k+1$$

until
$$\sigma_k = \sigma_{k-1}$$

return σ_k

Theorem. For any MDP with value function v^* ,

- 1. v^* is the unique solution to the Bellman equation in \mathbb{R}^X
- 2. A feasible policy is optimal if and only it is v^* -greedy
- 3. At least one optimal policy exists
- 4. HPI returns an exact optimal policy in finitely many steps

Remark: Point (2) is called Bellman's principle of optimality

Where to now?

Researchers are pushing past the boundaries of MDPs

Problems that do not fit the MDP framework include

- 1. models with nonlinear recursive preferences
- 2. models with stochastic discounting
- 3. recursive equilibria in economic geography, production, etc.
- 4. problems with ambiguity, adversarial agents
- 5. various combinations of the above, etc

Where to now?

Researchers are pushing past the boundaries of MDPs

Problems that do not fit the MDP framework include

- 1. models with nonlinear recursive preferences
- 2. models with stochastic discounting
- 3. recursive equilibria in economic geography, production, etc.
- 4. problems with ambiguity, adversarial agents
- 5. various combinations of the above, etc.

Our plan

- Construct an abstract DP framework that includes MDPs as a special case
- 2. State optimality results in this framework
- 3. Provide sufficient conditions for several important cases
- 4. Connect with applications

Recursive Decision Problems

We begin with a generic version of Bellman's equation:

$$v(x) = \max_{a \in \Gamma(x)} B(x, a, v)$$

- $x \in a$ finite set X (the **state space**)
- $a \in a$ finite set A (the action space)
- v is a candidate value function
- B(x, a, v) = total lifetime rewards given x, a, v

More formally...

A recursive decision process (RDP) is a triple (Γ, V, B) , where

- **1.** Γ is a nonempty correspondence from X to A
 - called the feasible correspondence
 - generates the feasible state-action pairs

$$\mathsf{G} := \{(x, a) \in \mathsf{X} \times \mathsf{A} : a \in \Gamma(x)\}$$

- **2.** V is a nonempty subset of \mathbb{R}^{X}
 - called the value space
 - A set of candidates for the value function

3. B is a map from $G \times V$ to $\mathbb R$ satisfying

(a) monotonicity:

$$v, w \in V \text{ and } v \leqslant w \implies B(x, a, v) \leqslant B(x, a, w)$$

for all $(x, a) \in G$

(b) consistency:

$$w(x) := B(x, \sigma(x), v)$$
 is in V whenever $\sigma \in \Sigma$ and $v \in V$

• B is called the value aggregator

Example. Consider an MDP with Bellman equation

$$v(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \sum_{x'} v(x') P(x, a, x') \right\}$$
 (1)

Proof: Take Γ as is, $V:=\mathbb{R}^{\mathsf{X}}$ and

$$B(x,a,v) := r(x,a) + \beta \sum_{x'} v(x') P(x,a,x')$$

Now (Γ, V, B) is an RDP

- monotonicity and consistency conditions are trivial to check
- setting $v(x) = \max_{a \in \Gamma(x)} B(x, a, v)$ recovers (1)

Example. Optimal stopping

$$v(x) = \max \left\{ e(x), c(x) + \beta \sum_{x'} v(x') P(x, x') \right\}$$
 (2)

Set $V:=\mathbb{R}^X$, $\Gamma(x):=\{0,1\}$ and

$$B(x, a, v) := ae(x) + (1 - a) \left[c(x) + \beta \sum_{x'} v(x') P(x, x') \right]$$

Then (Γ, V, B) is an RDP — checking conditions is trivial

• Setting $v(x) = \max_{a \in \Gamma(x)} B(x, a, v)$ recovers (2)

Example. State-dependent discounting

$$v(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \sum_{x'} v(x') \beta(x, a, x') P(x, a, x') \right\}$$
 (3)

Take Γ as is, $V:=\mathbb{R}^{\mathsf{X}}$ and

$$B(x, a, v) := r(x, a) + \sum_{x'} v(x')\beta(x, a, x')P(x, a, x')$$

- (Γ, V, B) is an RDP
- Setting $v(x) = \max_{a \in \Gamma(x)} B(x, a, v)$ recovers (2)

Example. Risk-sensitive preferences

$$v(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \frac{1}{\theta} \ln \left(\sum_{x'} \exp(\theta v(x')) P(x, a, x') \right) \right\}$$

for nonzero θ

Take Γ as is, $V:=\mathbb{R}^{\mathsf{X}}$ and

$$B(x, a, v) := r(x, a) + \beta \frac{1}{\theta} \ln \left(\sum_{x'} \exp(\theta v(x')) P(x, a, x') \right)$$

• an RDP with Bellman equation $v(x) = \max_{a \in \Gamma(x)} B(x, a, v)$

Example. Quantile preferences

$$v(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta(R_{\tau}^{a} v)(x) \right\}$$

where

$$(R^a_\tau v)(x) := \tau\text{-th quantile of } v(X') \text{ when } X' \sim P(x,a,\cdot)$$

Take Γ as is, $V:=\mathbb{R}^{\mathsf{X}}$ and

$$B(x,a,v) := r(x,a) + \beta(R_{\tau}^{a}v)(x)$$

• an RDP with Bellman equation $v(x) = \max_{a \in \Gamma(x)} B(x, a, v)$

Example. Epstein-Zin preferences

$$v(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a)^{\alpha} + \beta \left(\sum_{x'} v(x')^{\gamma} P(x, a, x') \right)^{\alpha/\gamma} \right\}^{1/\alpha}$$

for nonzero α, γ and $r\geqslant 0$

Take Γ as is, $V:=(0,\infty)^{\mathsf{X}}$ and

$$B(x, a, v) := \left\{ r(x, a)^{\alpha} + \beta \left(\sum_{x'} v(x')^{\gamma} P(x, a, x') \right)^{\alpha/\gamma} \right\}^{1/\alpha}$$

• an RDP with Bellman equation $v(x) = \max_{a \in \Gamma(x)} B(x, a, v)$

Example. Shortest path problem on digraph $\mathscr{G} = (X, E)$

- $c(x, x') = \text{cost of traversing edge } (x, x') \in E$
- the direct successors of x denoted by

$$\mathscr{O}(x) := \{ x' \in \mathsf{X} : (x, x') \in E \}$$

Aim:

find minimum cost path from x to destination $d \in X$

No discounting — not an MDP

The Bellman equation is

$$v(x) = \min_{x' \in \mathcal{O}(x)} \{ c(x, x') + v(x') \}$$
 (4)

Set $V := \mathbb{R}^X$, $\Gamma(x) := \mathscr{O}(x)$ and

$$B(x, x', v) := c(x, x') + v(x')$$

Then (Γ, V, B) is an RDP and

$$v(x) = \min_{a \in \Gamma(x)} B(x, a, v)$$

recovers (4) — this is minimization, which we treat in Ch. 9

RDP setting can also handle

- ambiguity (smooth ambiguity model)
- adversarial agents
- negative discount rates
- recursive equilibria in economic geography, production, etc.
- various combinations of the above, etc.
- jump processes (continuous time)

See Ch.s 8-10 and discussion below

RDP theory

So far we have just defined RDPs — little structure

Next steps

- 1. define lifetime values
- 2. define optimality
- 3. provide conditions for optimality
- 4. discuss algorithms

Policies

Fix arbitrary RDP $\mathscr{R} = (\Gamma, V, B)$

A feasible policy is a

$$\sigma \in \mathsf{A}^\mathsf{X}$$
 such that $\sigma(x) \in \Gamma(x)$ for all $x \in \mathsf{X}$

- respond to state x with action $a := \sigma(x)$ at all $t \geqslant 0$
- $\Sigma :=$ the set of all feasible policies

Policy Operators

Fix $\sigma \in \Sigma$

The corresponding **policy operator** T_{σ} is defined at $v \in V$ by

$$(T_{\sigma} v)(x) = B(x, \sigma(x), v) \qquad (x \in X)$$

Lemma. T_{σ} is an order-preserving self-map on V

Proof: Immediate from monotonicity and consistency

Example. The EZ policy operator is

$$(T_{\sigma} v)(x) = \left\{ r(x, \sigma(x)) + \beta \left(\sum_{x'} v(x')^{\gamma} P(x, \sigma(x), x') \right)^{\alpha/\gamma} \right\}^{1/\alpha}$$

Example. The state-dependent discounting policy operator is

$$(T_{\sigma} v)(x) = r(x, \sigma(x)) + \sum_{\sigma'} v(x')\beta(x, \sigma(x), x')P(x, \sigma(x), x')$$

Lifetime value

Let $\mathscr{R} := (\Gamma, V, B)$ be an RDP and let σ be any policy

If T_σ has a unique fixed point in V we denote it by v_σ

• Interpretation: v_σ is the <u>lifetime value</u> of following σ

We call \mathcal{R} well-posed if

 T_{σ} has a unique fixed point in V for all $\sigma \in \Sigma$

A minimal condition for discussing optimality

Why is the "lifetime value" interpretation valid?

Example. Let \mathscr{R} be the RDP generated by MDP (Γ, β, r, P)

In this case

$$(T_{\sigma} v)(x) = r(x, \sigma(x)) + \beta \sum_{x'} v(x') P(x, \sigma(x), x')$$

Note \mathscr{R} is well-posed because T_{σ} has unique fixed point

$$v_{\sigma} = \sum_{t \ge 0} \beta^t P^t r_{\sigma} = (I - \beta P_{\sigma})^{-1} r_{\sigma}$$

Moreover,

$$v_{\sigma}(x) = \mathbb{E}_x \sum_{t \geq 0} \beta^t r(X_t, \sigma(X_t)) = \text{ lifetime value under } \sigma$$

Example. Consider the Epstein-Zin RDP

A fixed point of T_{σ} obeys

$$v(x) = \left\{ r(x, \sigma(x))^{\alpha} + \beta \left[\sum_{x'} v(x')^{\gamma} P(x, \sigma(x), x') \right]^{\alpha/\gamma} \right\}^{1/\alpha}$$

A fixed point of this equation is how we define lifetime value from each state under EZ preferences

• Is this RDP well-posed?

Greedy Policies

Given $v \in \mathbb{R}^{X}$, a policy σ is called v-greedy if

$$\sigma(x) \in \operatorname*{argmax}_{a \in \Gamma(x)} B(x,a,v) \quad \text{for all } x \in \mathsf{X}$$

• Note: at least one v-greedy policy exists in Σ

The **Bellman operator** is the self-map on \mathbb{R}^X defined by

$$(Tv)(x) = \max_{a \in \Gamma(x)} B(x, a, v)$$

• Note: $Tv = v \iff v$ satisfies the Bellman equation

Note that

$$\sigma$$
 is v -greedy \iff $T_{\sigma} v = Tv$

Proof: Fix $v \in V$

By definition, σ is v-greedy if and only if

$$\sigma(x) \in \operatorname*{argmax}_{a \in \Gamma(x)} B(x, a, v) \qquad \forall \, x \in \mathsf{X}$$

This is equivalent to

$$B(x, \sigma(x), v) = \max_{a \in \Gamma(x)} B(x, a, v) = (Tv)(x) \qquad \forall x \in X$$

Note that

$$\sigma$$
 is v -greedy \iff $T_{\sigma} v = Tv$

Proof: Fix $v \in V$

By definition, σ is v-greedy if and only if

$$\sigma(x) \in \operatorname*{argmax}_{a \in \Gamma(x)} B(x, a, v) \qquad \forall x \in \mathsf{X}$$

This is equivalent to

$$B(x,\sigma(x),v) = \max_{a \in \Gamma(x)} B(x,a,v) = (Tv)(x) \qquad \forall \, x \in \mathsf{X}$$

Optimality

Let $\mathcal R$ be a well-posed RDP

The value function v^* is defined by

$$v^*(x) := \max_{\sigma \in \Sigma} v_{\sigma}(x) \qquad (x \in \mathsf{X})$$

= max lifetime value from state x

A policy $\sigma \in \Sigma$ is called **optimal** if

$$v_{\sigma} = v^*$$

HPI for well-posed RDPs

input
$$\sigma_0 \in \Sigma$$

$$k \leftarrow 0$$

repeat

$$v_k \leftarrow$$
 the unique fixed point of T_{σ_k}

$$\begin{aligned} \sigma_{k+1} \leftarrow & \text{ a } v_k \text{ greedy policy} \\ k \leftarrow & k+1 \end{aligned}$$

$$k \leftarrow k + 1$$

until
$$\sigma_k = \sigma_{k-1}$$

return σ_k

Let \mathcal{R} be an RDP

Key question:

What assumptions to we need for optimality?

Obviously ${\mathscr R}$ must be well-posed

ullet each σ must have a uniquely defined lifetime value

This is the minimum requirement

What else do we need?

We call \mathcal{R} globally stable if

 T_{σ} is globally stable on V for all $\sigma \in \Sigma$

Let \mathcal{R} be an RDP

Key question:

What assumptions to we need for optimality?

Obviously ${\mathscr R}$ must be well-posed

ullet each σ must have a uniquely defined lifetime value

This is the minimum requirement

What else do we need?

We call \mathcal{R} globally stable if

 T_{σ} is globally stable on V for all $\sigma \in \Sigma$

Let $\mathscr R$ be a well-posed RDP with value function v^*

Theorem. If \mathcal{R} is globally stable, then

- 1. v^* is in V
- 2. v^* is the unique solution to the Bellman equation in V
- 3. A feasible policy is optimal if and only it is v^* -greedy
- 4. At least one optimal policy exists
- 5. HPI returns an exact optimal policy in finitely many steps

Proof: See Ch. 9

Types of RDPs

The key condition above is global stability

We can check this directly — show each T_{σ} is globally stable

We can also

- 1. identify classes of RDPs that are globally stable
- 2. show that a given application belongs to one of these classes

Let's discuss the second approach

Below $\mathcal{R} = (\Gamma, V, B)$ is a fixed RDP

Contracting RDPs

We call \mathscr{R} contracting if

$$\exists \ \beta < 1 \ \text{such that} \quad |B(x,a,v) - B(x,a,w)| \leqslant \beta \|v - w\|_{\infty}$$
 for all $(x,a) \in \mathsf{G}$ and $v,w \in V$

Thm. If $\mathscr R$ is contracting and V is closed, then $\mathscr R$ is globally stable

Hence all optimality results on slide 58 hold

Proof: Easy to show each T_{σ} is a mod- β contraction on $(V, \|\cdot\|_{\infty})$

(Main idea dates back to Denardo 1967)

Eventually Contracting RDPs

We call \mathscr{R} eventually contracting if \exists an $L \geqslant 0$ s.t.

- 1. $\rho(L) < 1$ and
- 2. for all $(x, a) \in G$ and $v, w \in V$,

$$|B(x, a, v) - B(x, a, w)| \le \sum_{x'} |v(x') - w(x')| L(x, x')$$

Thm. If $\mathscr R$ is eventually contracting and V is closed, then $\mathscr R$ is globally stable

• Hence all optimality results on slide 58 hold

<u>Proof</u>: Let \mathcal{R} be eventually contracting

Fixing $\sigma \in \Sigma$ and $v, w \in V$,

$$|(T_{\sigma} v)(x) - (T_{\sigma} w)(x)| = |B(x, \sigma(x), v) - B(x, \sigma(x), w)|$$

$$\leq \sum_{x'} |v(x') - w(x')| L(x, x')$$

In other words,

$$|T_{\sigma} v - T_{\sigma} w| \leqslant L|v - w|$$

The claim now follows from the result on slide 8

Concave RDPs

We call \mathscr{R} concave if

- 1. $V = [v_1, v_2]$
- 2. $B(x, a, v_1) > v_1(x)$ for all $(x, a) \in \mathsf{G}$ and
- 3. $v \mapsto B(x, a, v)$ is concave for all $(x, a) \in G$

Thm. If $\mathscr R$ is concave, then $\mathscr R$ is globally stable

Hence all optimality results on slide 58 hold

<u>Proof</u>: Let \mathscr{R} be concave and fix $\sigma \in \Sigma$

Recall that T_{σ} is an order-preserving self-map on V

Also, $v \mapsto B(x, \sigma(x), v) = (T_{\sigma} v)(x)$ is concave for all $x \in X$

Hence T_{σ} is a concave operator

Also, $T_{\sigma} v_2 \leqslant v_2$ because T_{σ} is a self-map on $V = [v_1, v_2]$

Finally, for any $x \in X$,

$$(T_{\sigma} v_1)(x) = B(x, \sigma(x), v_1) > v_1(x)$$

Now apply Du's theorem on slide 9

Applications

We have just listed three classes of globally stable RDPs

- 1. contracting RDPS
- 2. eventually contracting RDPS
- 3. concave RDPS

Now let's look at some applications and how they fit in

Application 1: job search with quantile preferences

Set up:

- wage offer process $(W_t)_{t \ge 0}$ is P-Markov on finite set W
- discount factor $\beta \in (0,1)$

The Bellman equation is

$$v(w) = \max \left\{ \frac{w}{1-\beta}, c + \beta(R_{\tau}v)(w) \right\}$$

Here

$$(R_{\tau}v)(w) := \tau$$
-th quantile of $v(W')$ when $W' \sim P(w,\cdot)$

This problem studied in

- de Castro and Galvao (2019)
- de Castro, Galvao and Nunes (2022)
- de Castro and Galvao (2022)

We can embed the into the RDP framework by taking

- $\Gamma(w) := \{0, 1\}$
- $V := \mathbb{R}^{\mathsf{W}}$
- ullet B given by

$$B(w, a, v) := a \frac{w}{1 - \beta} + (1 - a)[c + \beta(R_{\tau}v)(w)]$$

Now $\mathscr{R}:=(\Gamma,V,B)$ is an RDP with Bellman equation

$$v(w) = \max_{a \in \Gamma(x)} B(x, a, v) = \max \left\{ \frac{w}{1 - \beta}, c + \beta(R_{\tau}v)(w) \right\}$$

Proposition. \mathscr{R} is a contracting RDP

<u>Proof</u>: The quantile map R_{τ} obeys (see Ch. 7)

$$R_{\tau}(v + \lambda) = R_{\tau} v + \lambda$$
 for all $v \in \mathbb{R}^{X}$ and $\lambda \in \mathbb{R}$

Hence

$$B(x, a, v + \lambda) = a \frac{w}{1 - \beta} + (1 - a)[c + \beta(R_{\tau}(v + \lambda))(w)]$$
$$= a \frac{w}{1 - \beta} + (1 - a)[c + \beta(R_{\tau}v)(w)] + (1 - a)\beta\lambda$$
$$\leq B(x, a, v) + \beta\lambda$$

Hence

$$B(x, a, v) = B(x, a, v' + v - v')$$

$$\leq B(x, a, v' + ||v - v'||_{\infty}) \leq B(x, a, v') + \beta ||v - v'||_{\infty}$$

$$\therefore B(x, a, v) - B(x, a, v') \leqslant \beta ||v - v'||_{\infty}$$

Reversing the roles of v and v' gives

$$|B(x, a, v) - B(x, a, v')| \leqslant \beta ||v - v'||_{\infty}$$

Hence $\mathcal R$ is contracting and, since V is closed, globally stable

Hence all optimality properties apply

Application 2: adversarial agents

Consider

$$v(x) = \max_{a \in \Gamma(x)} \inf_{d \in D} \left\{ r(x, a, d) + \beta \sum_{x'} v(x') P(x, a, d, x') \right\}$$

Choice $d \in D$ is made by the adversary

 $P(x,a,d,\cdot)$ is a distribution over X for each feasible (x,a,d)

We assume that

- ullet Γ is a nonempty correspondence from X to A
- D is nonempty

Set

$$B(x, a, v) := \min_{d \in D} \left\{ r(x, a, d) + \beta \sum_{x'} v(x') P(x, a, d, x') \right\}$$

Fix $\varepsilon > 0$, set

$$V = [v_1, v_2]$$
 where $v_1 := \dfrac{\min r - arepsilon}{1 - eta}$ and $v_2 := \dfrac{\max r}{1 - eta}$

Then (Γ, V, B) is an RDP and

$$v(x) = \max_{a \in \Gamma(x)} B(x, a, v)$$

recovers the adversarial agent Bellman equation

Prop. \mathcal{R} is a concave RDP

Proof Fixing $(x,a) \in \mathsf{G}$ and $v,w \in V$, we have

$$B(x, a, \lambda v + (1 - \lambda)w) = \min_{d} \left\{ r + \beta \sum_{d} (\lambda v + (1 - \lambda)w)P \right\}$$
$$= \min_{d} \left\{ \lambda [r + \beta \sum_{d} vP] + (1 - \lambda)[r + \beta \sum_{d} wP] \right\}$$

Since $\min(f+g) \geqslant \min f + \min g$, we have

$$B(x, a, \lambda v + (1 - \lambda)w) \geqslant \lambda B(x, a, v) + (1 - \lambda)B(x, a, w)$$

For remaining minor details see Ch. 8

Application 3: inventory management

Consider an inventory problem with

$$v(y,z) = \max_{a \in \Gamma(x)} \left\{ r(y,a) + \beta(z) \sum_{z',y'} v(y',z') R(y,a,y') Q(z,z') \right\}$$

where

- ullet y is inventory, a is current order
- r(y,a) is current profits
- $X := \{0, \dots, K\}$
- $\beta(z) = 1/(1 + r(z))$ time-varying interest rates

This is an RDP $\mathscr{R} = (\Gamma, B, V)$ with

- $V := \mathbb{R}^{\mathsf{X}}$ for $\mathsf{X} := \mathsf{Y} \times \mathsf{Z}$
- $\Gamma(y,z) := \{0,\ldots,K-y\}$ and

$$B((y,z),a,v) := r(y,a) + \beta(z) \sum_{z',y'} v(y',z') Q(z,z') R(y,a,y')$$

Proposition. If $L(z,z'):=\beta(z)Q(z,z')$ obeys $\rho(L)<1$, then $\mathscr R$ is eventually contracting

<u>Proof</u>: It suffices to show that, for all $(x,a) \in \mathsf{G}$ and $v,w \in V$,

$$|B(x, a, v) - B(x, a, w)| \le \sum_{x'} |v(x') - w(x')| L(x, x')$$

This holds because

$$\begin{split} |B((y,z),a,v) - B((y,z),a,w)| \\ \leqslant & \beta(z) \sum_{y',z'} \left| v(y',z') - w(y',z') \right| Q(z,z') R(y,a,y') \\ \leqslant & \beta(z) \sum_{y',z'} \left| v(y',z') - w(y',z') \right| Q(z,z') \\ = & \sum_{y',z'} \left| v(y',z') - w(y',z') \right| L(z,z') \end{split}$$

Since $\rho(L) < 1$, we are done

Further applications

Other applications covered in the book:

- Epstein-Zin details
- Robust control
- Smooth ambiguity, etc.
- Equilibria in production models
- Jump processes (continuous time)
- etc.