جبر خطی

دانشكده مهندسي كامپيوتر

حمیدرضا ربیعی، مریم رمضانی پاییز ۱۴۰۳

تمرین تئوری ششم تاریخ انتشار: ۱۳ دی ۱۴۰۳

دستگاه مختصات، فضای برداری و زیرفضاها

۱. پرسشهای خود درمورد این تمرین را در سامانه کوئرا مطرح کنید.

۲. سیاست ارسال با تاخیر: شما در مجموع در طول نیمسال میتوانید از ۴ روز تاخیر استفاده کنید. این مقدار برای تمارین تئوری و عملی بهصورت جداگانه حساب میشود. تاخیرها با مقیاس ساعت محاسبه شده و به بالا گرد میشوند.

۳. سیاست مشارکت دانشجویان در حل کردن تمارین: دانشجویان میتوانند در حل تمارین برای رفع ابهام و یا بهدست آوردن ایده ی کلی با یک دیگر مشورت و همفکری کنند. این کار مورد تایید و تشویق تیم ارائه ی درس می باشد؛ چرا که همفکری و کار گروهی می تواند موجب تقویت یادگیری شود. اما به دست آوردن جزئیات راه حل و نگارش پاسخ باید تماما توسط خود دانشجو انجام شود. حتما در انتهای پاسخ های ارسالی خود نام افرادی که با آن ها همفکری کردید را ذکر کنید.

سوالات (۱۰۰ نمره)

پرسش ۱ (۱۵ نمره) در این مسئله تمامی متغیرهایی که با حرف بزرگ لاتین مشخص شدهاند، نشاندهنده ماتریس هستند. همچنین منظور از $\|\cdot\|_F$ نرم فروبنیوس میباشد.

(آ) مشتق تابع زیر را بهدست بیاورید:

$$f(X) = ||AX - B||_F^{\mathsf{Y}}$$
$$\frac{\partial f(X)}{\partial X} = ?$$

(ب) درستی عبارات زیر را نشان دهید:

:

ii.

 $||AB||_F \le ||A||_F ||B||_F$

 $||A||_F \le \sqrt{n} ||A||_{\mathsf{Y}}$

دقت کنید که داریم:

$$\|A\|_{\mathbf{Y}} = \sup_{\|x\|_{\mathbf{Y}} = \mathbf{1}} \|Ax\|_{\mathbf{Y}} = \sqrt{\lambda_{\max}(A^TA)} = \sigma_{\max}(A)$$

پاسخ

:مشتق تابع $f(X) = \|AX - B\|_F^{\Upsilon}$ را محاسبه میکنیم

ابتدا تابع را بازنویسی میکنیم:

$$f(X) = \operatorname{tr}((AX - B)^T (AX - B)).$$

$$f(X) = \operatorname{tr}(X^T A^T AX - \mathbf{Y} B^T AX + B^T B).$$

اکنون مشتق $\frac{\partial f(X)}{\partial X}$ را محاسبه میکنیم:

$$\begin{split} \frac{\partial}{\partial X} \mathrm{tr}(X^T A^T A X) &= \mathbf{Y} A^T A X, \\ \frac{\partial}{\partial X} \mathrm{tr}(-\mathbf{Y} B^T A X) &= -\mathbf{Y} A^T B, \\ \frac{\partial}{\partial X} \mathrm{tr}(B^T B) &= \mathbf{Y} A^T B + \mathbf{Y} A \mathbf{Y} B + \mathbf{$$

بنابراين:

$$\frac{\partial f(X)}{\partial X} = \mathbf{Y}A^T A X - \mathbf{Y}A^T B.$$

i. (ب)

$$||AB||_F^{\mathsf{Y}} \le ||A||_F^{\mathsf{Y}} ||B||_F^{\mathsf{Y}}$$
$$||M||_F^{\mathsf{Y}} = \operatorname{tr}(M^T M).$$

برای حاصل ضرب AB داریم:

 $||AB||_F^{\mathsf{Y}} = \operatorname{tr}((AB)^T(AB)) = \operatorname{tr}(B^T A^T AB).$

 $\operatorname{tr}(XY) \le \sqrt{\operatorname{tr}(X^{\mathsf{Y}})} \cdot \sqrt{\operatorname{tr}(Y^{\mathsf{Y}})}.$

 $Y=BB^T$ و $X=A^TA$ با قرار دادن

$$||AB||_F^{\mathsf{Y}} \le \sqrt{\operatorname{tr}((A^T A)^{\mathsf{Y}})} \cdot \sqrt{\operatorname{tr}((BB^T)^{\mathsf{Y}})}.$$

از تعریف نرم فروبینیوس:

$$\|A\|_F^{\mathbf{Y}} = \operatorname{tr}(A^TA), \quad \|B\|_F^{\mathbf{Y}} = \operatorname{tr}(B^TB).$$

بنابراين داريم:

$$\sqrt{\operatorname{tr}((A^TA)^{\mathbf{Y}})} \leq \|A\|_F^{\mathbf{Y}}, \quad \sqrt{\operatorname{tr}((BB^T)^{\mathbf{Y}})} \leq \|B\|_F^{\mathbf{Y}}.$$

در نتيجه:

$$||AB||_F^{\mathsf{Y}} \le ||A||_F^{\mathsf{Y}} ||B||_F^{\mathsf{Y}}.$$

بنابراين:

$$||AB||_F \le ||A||_F ||B||_F.$$

ii.

$$||A||_F^{\mathsf{Y}} = \operatorname{tr}(A^T A).$$

از اینجا داریم:

$$||A||_F^{\mathsf{Y}} = \sum_{i=1}^n \sigma_i^{\mathsf{Y}} \le n \max_i \sigma_i^{\mathsf{Y}} = n ||A||_{\mathsf{Y}}^{\mathsf{Y}},$$

که در نتیجه:

$$||A||_F \leq \sqrt{n}||A||_{\Upsilon}.$$

پرسش ۲ (۱۷ نمره) یکی از کاربرد های تجزیه مقدار تکین ، محاسبه تقریب رتبه پایین یک ماتریس است. ماتریس $A\in\mathbb{R}^{m\times n}$ با رتبه r را با تجزیه مقادیر تکین r با رتبه با رتبه r با رتبه با رتبه r با رتبه با رتبه r با رتبه r با رتبه با رتبه r با رتبه با ر

الف) نشان دهید A_k پاسخ مسئله بهینه سازی زیر است.

$$\min_{X, rank(X) \le k} ||A - X||_F$$

ب) نشان دهید A_k پاسخ مسئله بهینه سازی زیر نیز می باشد.

$$\min_{X \text{ , } rank(X) \leq k} ||A - X||_{\texttt{Y}}$$

راهنمایی : در هر دو مسئله باید نشان دهید

$$\forall X, rank(X) \le k : ||A - A_k|| \le ||A - X||$$

ياسخ

الف) قضيه:

$$\forall i, j : \sigma_i(X) + \sigma_j(Y) \ge \sigma_{i+j-1}(X+Y)$$

ابتدا قضیه ذکر شده را اثبات می کنیم.

$$\forall X, Y: ||X||_{Y} + ||Y||_{Y} \ge ||X + Y||_{Y} \Longrightarrow \sigma_{Y}(X) + \sigma_{Y}(Y) \ge \sigma_{Y}(X + Y)$$

$$\sigma_i(X) + \sigma_j(Y) = \sigma_1(X - X_{i-1}) + \sigma_1(Y - Y_{j-1}) \geq \sigma_1(X + Y - X_{i-1} - Y_{j-1})$$

$$rank(X_{i-1} + Y_{j-1}) \le rank(X_{i-1}) + rank(Y_{j-1}) = i + j - Y$$

$$\implies \sigma_1(X + Y - X_{i-1} - Y_{i-1}) \ge \sigma_1(X + Y - (X + Y)_{i+j-1}) = \sigma_{i+j-1}(X + Y)$$

$$\Longrightarrow \sigma_i(X) + \sigma_i(Y) \ge \sigma_{i+j-1}(X+Y)$$

حال با قرار دادن $X=A_k$ می توان نتیجه گرفت که Y=Z می توان نتیجه گرفت که حال با قرار دادن

$$\forall i : \sigma_i(A - Z) + \underbrace{\sigma_{k+1}(Z)}_{:} \ge \sigma_{i+k}(A)$$

بنابراین خواهیم داشت:

$$||A - Z||_F^{\mathsf{Y}} = \sum_{i=1}^{\min(m,n)} \sigma_i^{\mathsf{Y}}(A - Z) \ge \sum_{i=k+1}^{\min(m,n)} \sigma_i^{\mathsf{Y}}(A)$$

$$||A - A_k||_F^{\mathbf{Y}} = ||\sum_{i=k+1}^{\min(m,n)} \sigma_i u_i v_i^T||_F^{\mathbf{Y}} = tr \left\{ (\sum_{i=k+1}^{\min(m,n)} \sigma_i u_i v_i^T)^T (\sum_{i=k+1}^{\min(m,n)} \sigma_i u_i v_i^T) \right\}$$

$$=tr\bigg\{\sum_{i=k+1}^{\min(m,n)}\sigma_i^{\mathbf{Y}}v_i\underbrace{u_i^Tu_i}v_i^T\bigg\} ==tr\bigg\{\sum_{i=k+1}^{\min(m,n)}\sigma_i^{\mathbf{Y}}v_iv_i^T\bigg\} = \sum_{i=k+1}^{\min(m,n)}\sigma_i^{\mathbf{Y}}tr\{v_iv_i^T\} = \sum_{i=k+1}^{\min(m,n)}\sigma_i^{\mathbf{Y}}tr\{v_i^Tv_i\} = \sum_{i=k+1}^{\min(m,n)}\sigma_i^{\mathbf{Y}}tr\{v_i^Tv_i\} = \sum_{i=k+1}^{\min(m,n)}\sigma_i^{\mathbf{Y}}tr\{v_i^Tv_i^T\} = \sum_{i=k+1}^{\min(m,n)}\sigma_i^Tv_i^Tv_i^T\} = \sum_{i=k+1}^{\min(m,n)}\sigma_i^Tv_i^Tv_i^T$$

$$\Longrightarrow \forall Z, rank(Z) \leq k : ||A - Z||_F^{\mathsf{Y}} \geq ||A - A_k||_F^{\mathsf{Y}}$$

$$rank(X) = k \Longrightarrow \dim \mathcal{N}(X) = n - k$$
, $\dim \mathcal{R}(V_{k+1}) = k + 1$

 $\dim \mathcal{N}(X) + \dim \mathcal{R}(V_{k+1}) = n + 1 \Longrightarrow \exists x \in \mathcal{N}(X) \cap \mathcal{R}(V_{k+1}) : ||x||_{Y} = 1$

$$x = \sum_{i=1}^{k+1} \alpha_i v_i , \sum_{i=1}^{k+1} \alpha_i^{\Upsilon} = 1$$

$$||A - X||_{\mathsf{Y}} = \sup_{||x||_{\mathsf{Y}} = \mathsf{Y}} ||(A - X)x||_{\mathsf{Y}} \Longrightarrow ||A - X||_{\mathsf{Y}} \ge ||(A - X)x||_{\mathsf{Y}} = ||Ax||_{\mathsf{Y}}$$

$$A = U\Sigma V^T \Longrightarrow Ax = U\Sigma V^T x = \sum_{i=1}^{k+1} \sigma_i \alpha_i u_i \Longrightarrow ||Ax||_{\Upsilon}^{\Upsilon} = \sum_{i=1}^{k+1} \sigma_i^{\Upsilon} \alpha_i^{\Upsilon} \ge \sigma_{k+1}^{\Upsilon} \sum_{i=1}^{k+1} \alpha_i^{\Upsilon} = \sigma_{k+1}^{\Upsilon}$$

$$||A - X||_{\Upsilon} \ge \sigma_{k+1}$$

$$\begin{aligned} ||A - A_k||_{\mathbf{Y}} &= ||\sum_{i=1}^{\min(m,n)} \sigma_i u_i v_i^T - \sum_{i=1}^k \sigma_i u_i v_i^T ||_{\mathbf{Y}} = ||\sum_{i=k+1}^{\min(m,n)} \sigma_i u_i v_i^T ||_{\mathbf{Y}} = \sigma_{k+1} \\ &\Longrightarrow \forall X, rank(X) \leq k : ||A - X||_{\mathbf{Y}} \geq ||A - A_k||_{\mathbf{Y}} \end{aligned}$$

پرسش ۳ (۱۶ نمره) فرض کنید A یک ماتریس مربعی n imes n و x برداری از \mathbb{R}^n باشد. مقادیر زیر را بیابید:

$$\frac{\partial(x^T A x)}{\partial x}$$

(ب) اگر درایههای ماتریس A تابعی از یک اسکالر β باشند، مقدار زیر را محاسبه کنید:

$$\frac{\partial A^{-1}}{\partial \beta}$$
.

پاسح

<u>(</u> ب

فرض کنید A یک ماتریس مربعی $n \times n$ و x برداری از \mathbb{R}^n باشد. مقادیر زیر را بیابید:

$$\frac{\partial (x^T A x)}{\partial x}$$

مقدار عبارت فوق برابر است با:

$$\frac{\partial (x^T A x)}{\partial x} = (A + A^T) x.$$

اگر A متقارن باشد $(A=A^T)$ ، نتیجه به صورت زیر ساده می شود:

$$\frac{\partial (x^T A x)}{\partial x} = \mathbf{Y} A x.$$

(ب) اگر درایههای ماتریس A تابعی از یک اسکالر β باشند، مقدار زیر را محاسبه کنید:

$$\frac{\partial A^{-1}}{\partial \beta}$$
.

ابتدا از رابطه اساسی ماتریسی شروع میکنیم:

$$AA^{-1} = I$$
,

که I ماتریس همانی است. دو طرف معادله را نسبت به eta مشتق می گیریم:

$$\frac{\partial}{\partial\beta} \big(AA^{-1}\big) = \frac{\partial I}{\partial\beta}.$$

از آنجا که I نسبت به β ثابت است، مشتق آن صفر می شود:

$$\frac{\partial}{\partial \beta} (AA^{-1}) = \cdot.$$

حال از قاعده زنجیرهای برای مشتقگیری ضرب ماتریسی استفاده میکنیم:

$$\frac{\partial A}{\partial \beta} A^{-1} + A \frac{\partial A^{-1}}{\partial \beta} = {}^{\bullet}.$$

برای پیدا کردن $\frac{\partial A^{-1}}{\partial \beta}$ ، عبارت A^{-1} را به طرف دیگر معادله منتقل میکنیم:

$$A\frac{\partial A^{-1}}{\partial \beta} = -\frac{\partial A}{\partial \beta}A^{-1}.$$

سپس دو طرف معادله را در A^{-1} از سمت چپ ضرب می کنیم:

$$\frac{\partial A^{-1}}{\partial \beta} = -A^{-1} \frac{\partial A}{\partial \beta} A^{-1}.$$

بناد ادن نتیجه نهایی به صورت زیر است:

$$\frac{\partial A^{-1}}{\partial \beta} = -A^{-1} \frac{\partial A}{\partial \beta} A^{-1}.$$

پرسش ۴ (۱۶ نمره) در بسیاری از مسائل حداقل مربعات غیر خطی تابع باقیمانده به این صورت است:

$$f_i(x) = \Phi_i(a_i^T x - b_i), \quad i = 1, \cdots, m$$

 $a_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$, $\Phi_i : \mathbb{R} \longrightarrow \mathbb{R}$

در این حالت تابع هدف حداقل مربعات غیر خطی به این فرم است:

$$||f(x)||^{r} = \sum_{i=1}^{m} (\Phi_{i}(a_{i}^{T}x - b_{i}))^{r}$$

یک ماتریس $A\in\mathbb{R}^m$ تعریف می کنیم که سطر های آن a_1^T,\cdots,a_m^T را داشته باشد. همچنین یک بردار $b\in\mathbb{R}^m$ تعریف می کنیم. نشان دهید مشتق تابع به فرم زیر است :

$$Df(x) = diag(d)A$$

$$d_i = \Phi'_i(r_i) \ , \ r = Ax - b$$

پاسخ

$$Df(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x} \\ \vdots \\ \frac{\partial f_m}{\partial x} \end{bmatrix}$$

$$r = Ax - b \Longrightarrow r_i = a_i^T x - b_i \Longrightarrow \frac{\partial r_i}{\partial x} = a_i^T$$

$$\frac{\partial f_i}{\partial x} = \frac{\partial f_i}{\partial r_i} \frac{\partial r_i}{\partial x} = \Phi_i'(r_i) a_i^T = d_i a_i^T$$

$$Df(x) = \begin{bmatrix} d_{1}a_{1}^{T} \\ \vdots \\ \vdots \\ d_{m}a_{m}^{T} \end{bmatrix} = \begin{bmatrix} d_{1} & \bullet & \cdots & \bullet \\ \bullet & d_{7} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \bullet \\ \bullet & \cdots & \bullet & d_{m} \end{bmatrix} \begin{bmatrix} a_{1}^{T} \\ \vdots \\ \vdots \\ a_{m}^{T} \end{bmatrix} = diag(d)A$$

پرسش ۵ (۱۶ نمره) کمینهسازی زیر را در نظر بگیرید:

 $\min \|\mathbf{x}\|_2$

subject to $A\mathbf{x} = \mathbf{y}$.

به وضوح عبارت زیر در شرط مسئله صدق میکند:

$$x_{\cdot} = A^T (AA^T)^{-1} \mathbf{y}.$$

(آ) اثبات کنید که هر جوابی برای $\mathbf{x} = \mathbf{y}$ به صورت زیر قابل نمایش است:

$$x = x \cdot + \mathbf{w},$$

که \mathbf{w} در N(A) قرار دارد.

- $\mathbf{w} \perp x$. به کمک بخش قبل نشان دهید
- (x) به کمک بخش قبل نشان دهید x کوچک ترین جواب و به عبارتی همان خواسته مسئله است.
 - (د) حال سعی کنید با ضرایب x گرانژ x را استخراج کنید.
 - (ه) حال مسئله را به شكل زير تغيير دهيد:

$$J(\mathbf{x}) = \|A\mathbf{x} - \mathbf{y}\|_{\mathbf{y}}^{\mathbf{y}} + \lambda \|\mathbf{x}\|_{\mathbf{y}}^{\mathbf{y}}.$$

این مسئله به Regularized Least Squares (RLS) معروف است. به طور کلی Regularization روشی است که برای جلوگیری از Regularized Least Squares و تعادل بین برازش دادهها در مسائل بهینهسازی به کار می رود. این تکنیک با اضافه کردن یک جملهی پنالتی به تابع هدف، پیچیدگی مدل را کاهش می دهد و تعادل بین برازش دادهها و ساده سازی مدل را حفظ می کند. در اینجا، مسئله ی RLS با اضافه کردن نرم ۲ متغیر هدف به تابع هزینه تعریف می شود. جواب آن را با استفاده از مشتق گیری به دست آورید و رابطه ی آن را با مسئله اولیه بنویسید.

پاسخ

(آ) از
$$\mathbf{x}=\mathbf{y}$$
 نتیجه میگیریم:

$$A(\mathbf{x} - \mathbf{x.}) = y - y = \cdot$$

بنابراین:

$$\mathbf{x} - \mathbf{x} \in N(A)$$

$$(x - x_*)^T x_* = (x - x_*)^T A^T (AA^T)^{-1} y$$

$$= (A(x - x.))^T A^T (AA^T)^{-1} y = .$$

(ج)

$$\|\mathbf{x}\|^{\Upsilon} = \|\mathbf{x}. + \mathbf{w}\|^{\Upsilon} = \|\mathbf{x}.\|^{\Upsilon} + \|\mathbf{w}\|^{\Upsilon} \ge \|\mathbf{x}.\|^{\Upsilon}$$

(د) ضرایب لاگرانژ را تعریف میکنیم:

$$L(\mathbf{x}, \lambda) = \|\mathbf{x}\|^{\mathsf{Y}} + \lambda^{T} (A\mathbf{x} - \mathbf{y})$$

ىا مشتقگىرى:

$$abla_{\mathbf{x}} L = \mathbf{Y}\mathbf{x} + A^T \lambda = \mathbf{Y}$$

$$\nabla_{\lambda}L = A\mathbf{x} - \mathbf{y} = \mathbf{\cdot}$$

$$\implies \mathbf{x}. = A^T (AA^T)^{-1} \mathbf{y}$$

(ه) تابع هزینه به صورت زیر است:

$$J(\mathbf{x}) = \|A\mathbf{x} - \mathbf{y}\|_{\Upsilon}^{\Upsilon} + \lambda \|\mathbf{x}\|_{\Upsilon}^{\Upsilon}$$

$$J(\mathbf{x}) = \mathbf{x}^T A^T A \mathbf{x} - \mathbf{Y} \mathbf{y}^T A \mathbf{x} + \mathbf{y}^T \mathbf{y} + \lambda \mathbf{x}^T \mathbf{x}$$

مشتق آن نسبت به x:

$$\nabla J(\mathbf{x}) = \mathbf{Y}A^TA\mathbf{x} - \mathbf{Y}A^T\mathbf{y} + \mathbf{Y}\lambda\mathbf{x}$$

برای کمینه کردن، مشتق برابر صفر قرار میگیرد:

$$(A^T A + \lambda I)\mathbf{x} = A^T \mathbf{y}$$

و در نهایت:

$$\mathbf{x}_{\lambda} = (A^T A + \lambda I)^{-1} A^T \mathbf{y}$$

وقتی که ${f y}$ در R(A) قرار دارد و لاندا برابر با ۱ است معادل با مسئله قبل است

يرسش ۶ (۲۰ نمره)

فرض کنید مسئله کمترین مربعات به فرم زیر داده شده است:

$$\min_{\mathbf{x}} \left(\|Ax - b\|_{\mathbf{Y}}^{\mathbf{Y}} + c^T x + d \right),\,$$

که در آن:

- $m \times n$ يک ماتريس $A \bullet$
 - \mathbb{R}^m برداری در b
 - ${\mathbb R}^n$ برداری در c
 - $e \ b \$ $\downarrow 2$ اسكالر است.
- (آ) این مسئله را به فرم استاندارد کمترین مربعات ($\min_x \|Tx v\|$) تبدیل کنید.
 - $(m{\psi})$ مسئله تبدیل شده را حل کرده و مقدار بهینه x را به دست آورید.

پاسخ

(آ) تبدیل به فرم استاندارد کمترین مربعات:

ابتدا عبارت $\|Ax-b\|^{\gamma}$ را بازنویسی میکنیم:

$$||Ax - b||_{Y}^{Y} = (Ax - b)^{T}(Ax - b) = x^{T}A^{T}Ax - Yb^{T}Ax + b^{T}b.$$

حال كل تابع هدف را بازنويسي ميكنيم:

$$||Ax - b||_{Y}^{Y} + c^{T}x + d = x^{T}A^{T}Ax - Yb^{T}Ax + b^{T}b + c^{T}x + d.$$

ترمهای خطی و ثابت را دستهبندی میکنیم:

$$= \boldsymbol{x}^T \boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} + (-\mathbf{Y} \boldsymbol{A}^T \boldsymbol{b} + \boldsymbol{c})^T \boldsymbol{x} + (\boldsymbol{b}^T \boldsymbol{b} + \boldsymbol{d}).$$

بنابراین، مسئله به فرم استاندارد کمترین مربعات تبدیل میشود:

$$\min_{x} \frac{1}{7} x^T Q x + q^T x + r,$$

که در آن:

- ، (ماتریس ضرایب درجه دوم) $Q = \mathbf{Y} A^T A$
- ربردار ضرایب خطی)، $q = -\mathbf{Y}A^Tb + c$
 - رمقدار ثانت). $r = b^T b + d$

x حل مسئله و یافتن مقدار بهینه x

برای پیدا کردن مقدار بهینه x، گرادیان تابع هدف را نسبت به x محاسبه کرده و برابر صفر قرار می دهیم:

$$f(x) = x^T A^T A x - \mathbf{Y} b^T A x + c^T x + b^T b + d.$$

است با: x نسبت به x برابر است با:

$$\nabla f(x) = \mathbf{Y}A^T A x - \mathbf{Y}A^T b + c.$$

شرط ایستایی
$$(\mathbf{v} = \mathbf{v}) = \mathbf{v}$$
) به صورت زیر است:

$$\mathbf{Y}A^TAx - \mathbf{Y}A^Tb + c = \mathbf{\cdot}.$$

$$\mathbf{Y}A^TAx = \mathbf{Y}A^Tb - c.$$

$$A^T A x = A^T b - \frac{1}{7} c.$$

اگر
$$A^TA$$
 معکوسپذیر باشد، مقدار x بهینه برابر است با:

$$x^* = (A^TA)^{-1} \left(A^Tb - \frac{1}{7}c\right).$$