Lecture 1: Intro, ERM Framework

CS1420: Machine Learning

Stephen Bach Spring 2020

Meet the Instructor

- Stephen Bach (Steve)
- He / him / his
- Email: <u>stephen_bach@brown.edu</u>
- Office: CIT 335
- Office hours by appointment. Just send a quick email! :)

Meet the TAs

Head TAs:

Angie Kim <jkim162> Jessica Dai <jdai6> Dylan Sam <dsam>

TAs:

Andrew Canino <acanino>
Andrew Wei <awei6>
Fabrice Guyot-Sionnest <fguyotsi>
Jacob Migneault <jmignea1>
Kelvin Yang <kyang35>
Shibei Guo <sguo16>
Snigdha Sinha <ssinha5>
Tyler Jiang <tjiang12>
Zsozso Biegl <zbiegl>

Andrew Peterson <apeter10>
Daniel Ben-Isvy <dbenisvy>
Irene Rhee <irhee>
Ken Noh <knoh1>
Rudra Srivastava <rsrivas2>
Seneca Meeks <smeeks>

Siyao Wang <swang181> Yiming Zhang <yzhan281>

Ethics TAs:

Karen Tu <ktu2>

Kelvin Yang < kyang 35>

Course Communications

- Our course website: <u>http://cs.brown.edu/courses/csci1420/index.html</u>
- We will be doing questions and announcements via Piazza: https://piazza.com/brown/spring2020/csci1420

Action Item: Visit the Piazza site to sign up

Waitlist

- Unfortunately, we are constrained by the capacity of the classroom
- See the <u>Waitlist FAQ</u> for all the info

Required Textbook

Using http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/.
 (PDF is downloadable!)

- Chapters 1, 2.0, 2.1, 2.2 today.
- Parts of chapter 9 for next class (see schedule on course website)
- 1-page summary of notation on page 28!

Action Item: Get the textbook and start reading

Grading Breakdown

- 12 homeworks, written and programming (60%)
 - 4 late days, up to 3 on any assignment
- Midterm (15%)
 - March 19th (in-class)
- Final Exam (20%)
 - May 8th
- TopHat (5%)
 - Can miss 15 votes. After those 15, each missed vote reduces grade. Number of votes per class will vary! Instructions <u>here</u>.

Action Item: Set Up TopHat before next class

Collaboration and Other Policies

- Everyone is required to be familiar with the full missive:
 http://cs.brown.edu/courses/csci1420/docs/cs1420-missive.pdf
- The missive incorporates the full collaboration policy: http://cs.brown.edu/courses/csci1420/docs/cs1420collaborationpolicy.pdf
 - Students must turn in their own homeworks
 - Students may discuss the assignments
 - Students may not look at any other's work in progress
- To submit homeworks, you must agree to policies and set up GradeScope with <u>this form</u>

Action Item: Read missive, collaboration policy, and complete form

Homework 1

- Due Jan. 30 (1 week!)
- Exercises related to prerequisite topics
- Also some Python environment setup and programming
- Good test of appropriate preparation for this course

Action Item: Homework 1 due Jan. 30

Action Items

- 1. Visit the Piazza site to sign up
- 2. Get the textbook and start reading
- 3. Set up TopHat before next class
- 4. Read missive, collaboration policy, and complete GradeScope form
- 5. Homework 1 due Jan. 30

Course Philosophy vs. Other Courses in Brown CS

- (my biased take)
- This course's approach: blend of practical and theoretical machine learning
- Some things are necessarily left out because of this choice
- Other classes at Brown that are more applied: Artificial Intelligence, Data Science, Computer Vision, Computational Linguistics
- Other classes at Brown that are more theory-based: Advanced Probabilistic Methods in Computer Science

What is Machine Learning?

Machine Learning as Program Generation

- Want to create programs based on data without explicitly programming them
- **Representation**: Define a space of possible programs
 - Tradeoffs: Expressiveness, simplicity, convenience...
- Loss function: Decide how to score a program
 - The data usually comes into play here
- Optimizer: Search the space of programs for one with a high score
 - The best scoring program is the one returned

Three Kinds of Programs

Function

- Maps input to output
- Query/response, transformations

Generator

- Takes no input, produces output
- Content or random number generator

Interactive

- Takes some input, produces some output, expects more input
- Operating systems, games, Uls

Three Kinds of Machine Learning

Supervised

- Given input/output examples, finds mapping
- Predictive: What will happen? What's missing?

Unsupervised

- Given data, finds a representation
- Descriptive: What happened?

Reinforcement

- Translate state to action to maximize reward
- Prescriptive: What should we do?

This Course

Supervised

Main focus

Unsupervised

Some in April

Reinforcement

- Not in this course
- See CSCI 1410, CSCI 1470, etc.

Organizing Principle

ML algorithm = representation + loss function + optimizer

Note:

- Optimizer might not be perfect (computationally intractable).
- Loss/error function is with respect to data.

Does this animal have cute babies?

Example of Supervised Learning:

Problem: Is this baby cute? Want to go viral!

ADORABLY

31 Pictures Of Baby Animals To Remind You The World Is Wonderful

We have a planet full of baby animals, so you should never be TOO sad.

Representation

- 1. Domain Set: How do we represent the objects we want to label?
- 2. Label Set: How do we represent the labels we want to predict?
- 3. Training Data: What labeled objects do we have access to?
- 4. Learner's Output: How do we represent what is learned?

Example Domain Set: Animals

	Num. Eyes	Num. Legs	Num. Fins
Tiger	2	4	0
Spider	8	8	0
Shark	2	0	2
Snake	2	0	0

Example Domain Set: Animals

Tiger

$$\mathbf{x}_1 = (2, 4, 0)$$

Spider

$$\mathbf{x}_2 = (8, 8, 0)$$

Shark

$$\mathbf{x}_3 = (2, 0, 2)$$

Representation

Domain Set: How do we represent the objects we want to label?

- 2. Label Set: How do we represent the labels we want to predict?
- 3. Training Data: What labeled objects do we have access to?
- 4. Learner's Output: How do we represent what is learned?

Example Label Set: "Cute" or "Not Cute"

$$\mathcal{Y} = \{1, -1\}$$

Representation

- Domain Set: How do we represent the objects we want to label?
- Label Set: How do we represent the labels we want to predict?
 - Training Data: What labeled objects do we have access to?
 - Learner's Output: How do we represent what is learned?

Training Data

Examples paired with labels determine what our learned program does

$$S = ((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m))$$

$$Z = \mathcal{X} \times \mathcal{Y}$$

Example Training Data: Animals

	Num. Eyes	Num. Legs	Num. Fins	Cute?
Tiger	2	4	0	
Spider	8	8	0	
Shark	2	0	2	
Snake	2	0	0	

Representation

- 1. Domain Set: How do we represent the objects we want to label?
- Label Set: How do we represent the labels we want to predict?
- Training Data: What labeled objects do we have access to?
- 4. Learner's Output: How do we represent what is learned?

Example Learner's Output: Rules

$$h: \mathcal{X} \to \mathcal{Y} \qquad \mathcal{H} = \{h_1, h_2, \dots\}$$

Ideas?

 h_1 =

 $h_2 =$

 h_3 =

Representation

- 1. Domain Set: How do we represent the objects we want to label?
- Label Set: How do we represent the labels we want to predict?
- Training Data: What labeled objects do we have access to?
- 4. Learner's Output: How do we represent what is learned?

ML algorithm = representation

+ loss function + optimizer

Example Loss Function: 0-1 Loss

• Empirical risk:

$$L_S(h) \stackrel{\text{def}}{=} \frac{1}{m} \sum_{i=1}^m \ell_{0-1}(h, \mathbf{z}_i)$$

ullet $L_S(h)$ is average of loss computed over each example:

$$\ell_{0-1}(h, (\mathbf{x}, y)) \stackrel{\text{def}}{=} \begin{cases} 0 & \text{if } h(\mathbf{x}) = y \\ 1 & \text{if } h(\mathbf{x}) \neq y \end{cases}$$

ML algorithm = representation

+ loss function + optimizer

Optimization in this course: empirical risk minimization

$$h_S \stackrel{\text{def}}{=} \operatorname{ERM}_{\mathcal{H}}(S) \in \arg\min_{h \in \mathcal{H}} L_S(h)$$

Example Optimizer: Brute Force Search

Which output has the lowest loss (empirical risk)?

$$\underset{h \in \mathcal{H}}{\operatorname{arg\,min}} L_S(h) = ?$$

Just like in this course, there will be a test...

- ullet We assume S was *sampled* from some distribution $\, {\cal D}$, i.e. $\, \, S \sim {\cal D}^m \,$
- ullet After learning, we will get more samples from ${\mathcal D}$, and want to do well on them
 - Sometimes called the "test data"
- We do not know what the test data will be, but we want low expected loss:

$$L_{\mathcal{D}}(h) \stackrel{\mathrm{def}}{=} \underset{\mathbf{z} \sim \mathcal{D}}{\mathbb{E}} [\ell(h, \mathbf{z})]$$

The Fundamental Challenge in Machine Learning

$$L_S(h) \neq L_{\mathcal{D}}(h)$$

- The training data is a finite sample of the test data
- Even if we find an empirical risk minimizer, will it do well at test time?

Potential Pitfall: Overfitting

What will happen at test time if...?

- What if we include this hypothesis in \mathcal{H} ?
 - To classify an example, look in the training data. If there's an identical example, return its label.
 Otherwise, return -1.
 - o Formally:

$$h(\mathbf{x}) = \begin{cases} y_i & \text{if } \exists i \in [m] \text{ s.t. } \mathbf{x}_i = \mathbf{x} \\ -1 & \text{otherwise} \end{cases}$$

ullet $L_S(h)$ is 0, but $L_{\mathcal{D}}(h)$ can be arbitrarily large (depends on unknown ${\mathcal{D}}$)

Conclusions

- The hypothesis class ${\cal H}$ cannot include all possible hypotheses, or learning is doomed to failure!
- We must choose a subset of all possible hypotheses to use as \mathcal{H} , capturing our prior knowledge about the domain
- Finding a hypothesis that does "too well" on the training data, but poorly on the test data is called *overfitting*

Example: Fukushima Nuclear Disaster

- Fukushima nuclear power plant was hit with a 9.1 earthquake in March 2011
- Most severe nuclear accident since Chernobyl
- The plant was designed to withstand an earthquake of up to 8.6
- What does this have to do with overfitting?

Fukushima Nuclear Disaster

Model learned by Fukushima's data scientists

Alternative model using a Gutenberg-Richter model (linear regression)

The Most Important Things

- We focus on supervised machine learning, with some unsupervised in April
- We use empirical risk minimization (ERM)
 - ERM = pick a hypothesis that minimizes the loss (i.e. empirical risk) on a set of training data
- Naively applying ERM can lead to the pitfall of overfitting
 - Overfitting = picking a hypothesis that is great on training data but very bad on new test data
- Textbook: chapter 1, sections 2.0, 2.1, 2.2

Next Class

- What is a practically useful class of hypotheses?
- How to select an ERM hypothesis from that class computationally efficiently?
- Textbook: sections 9.0, 9.1.0, 9.1.2