Engineering Mechanics

Introduction

- Engineering mechanics involves the study of both statics and dynamics.
- Statics is concerned with the equilibrium bodies at rest.
- Dynamics is concerned with analysis of bodies in motion.

Dynamics

Kinematics

 It deals with study of the geometry of motion. It is used to relate the displacement, velocity, acceleration and time without reference to the cause of motion.

Kinetics

 It deals with study of the relation existing between the forces acting on the body, the mass of the body and the motion of the body.

Module 2: Kinematics of Particles and Rigid Bodies

2.1 Kinematics of Particle

Particle

 A body with negligible dimensions is described as a particle. Physically a body can be considered as a particle.

Rigid body

 A body comprising infinite number of particles, whose relative positions remain unchanged under the action of the force is called rigid body.

Types of motion

- Rectilinear motion
- Curvilinear motion

Position

 The location of a particle along a straight line w.r.t. reference point or datum represents the position of the particle.

Distance

 Distance is the actual path length covered by a moving particle or a body in a given interval of time.

Displacement

 It is the shortest distance between initial position and final position of the particle.

Average speed and velocity

- Average speed = $V_{avg} = \frac{\Delta s}{\Delta t}$
- Average velocity = $\overline{V} = \frac{\Delta \overline{x}}{\Delta t}$

Instantaneous speed and velocity

- Instantaneous speed = $\lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}$
- Instantaneous velocity = $\lim_{\Delta t \to 0} \frac{\Delta \bar{x}}{\Delta t} = \frac{d\bar{x}}{dt}$

Average and Instantaneous acceleration

- Average acceleration = $\bar{a}_{avg} = \frac{\Delta \bar{v}}{\Delta t}$
- Instantaneous acceleration = $\bar{a} = \lim_{\Delta t \to 0} \frac{\Delta \bar{v}}{\Delta t} = \frac{d\bar{v}}{dt}$

Uniform motion or constant velocity motion in 1 - dimension

- When particle undergoes same amount of displacement in equal intervals of time, then the particle is said to be moving with uniform velocity or constant velocity.
- s = vt or x = vt or y = vt

Uniform acceleration motion

Variable acceleration motion

1)
$$V = \frac{ds}{dt} or \frac{dx}{dt} or \frac{dy}{dt}$$
 $\therefore ds \ or \ dx \ or \ dy = Vdt$

2)
$$a = \frac{dv}{dt}$$
 $\therefore dv = adt$

$$dv = adt$$

3)
$$a = v \frac{dv}{ds}$$
 or $v \frac{dv}{dx}$ or $v \frac{dv}{dy}$ $\therefore v dv = ads$ or adx or ady