TD1. Propriétés de \mathbb{C} , Fonctions holomorphes.

Quelques propriétés de $\mathbb C$

Rappels: limite des un espace topologique, dans un evn, dans \mathbb{R} , dans \mathbb{C} .

Exercice 1. Démonstration du théorème de d'Alembert-Gauss

a) Justifier que pour tout polyntôme Q non constant, il existe un entier $p \geq 1$ et un nombre $u \in \mathbb{C}^*$ tels que

$$Q(z) = Q(0) + uz^p + |z|^p \epsilon(z)$$
 avec $\lim_{z \to 0} \epsilon(z) = 0$

- b) Soit P un polynôme non constant tel que $P(a) \neq 0$. Montrer qu'il existe $(r_0, \theta_0) \in \mathbb{R}^2$ tels que $|P(a + r_0 e^{i\theta_0})| < |P(a)|$
- c) En déduire le lemme suivant : Un polynôme non constant tel que |P(z)| admet un minimum local en a vérifie P(a)=0.
- d) Soit P un polynôme non constant, K > 0 quelconque. Montrer qu'il existe A tel que $|z| \ge A \Rightarrow |P(z)| \ge K$. Conclure en regardant ce qui se passe sur le compact $\overline{B(0,A)}$.

Fonctions holomorphes

Rappels : Un fonction $f: \mathbb{C} \to \mathbb{C}$ peut-être vue comme une fonction $f: \mathbb{R}^2 \to \mathbb{C}$ souvent notée f(x,y) = P(x,y) + iQ(x,y). Elle est \mathbb{C} -dérivable ssi la différentielle associée, de matrice $\begin{pmatrix} \frac{\partial P}{\partial x} & \frac{\partial P}{\partial y} \\ \frac{\partial Q}{\partial x} & \frac{\partial Q}{\partial y} \end{pmatrix}$ est une similitude directe. Les matrices de similitude directe sont de la forme $\begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$ d'où les équations

de Cauchy-Riemann **Exercice 2.** Les fonctions suivantes sont-elles holomorphes sur \mathbb{C} ?

$$z \mapsto \bar{z} \ z \mapsto Re(z) \ z \mapsto \operatorname{Im}(z) \ z \mapsto |z|^2 \ z \mapsto \frac{z}{z^2 + 1}$$

Exercice 3. Soit f = P + iQ une fonction holomorphe dans un ouvert **connexe** non vide Ω de \mathbb{C} . Montrer que les assertions suivantes sont équivalentes :

- a) f est constante
- b) P est constante
- c) Q est constante
- d) \bar{f} est holomorphe dans Ω
- e) |f| est constant
- f) $f'(z) = 0 \operatorname{sur} \Omega$

L'image d'une fonction holomorphe peut-elle être contenue dans un cercle? Dans un axe de coordonnées?

Exercice 4. On pose pour z = x + iy avec x, y réels $f(z) = x + iy^2$. Montrer que f est \mathbb{R} -différentiable sur \mathbb{C} et calculer sa différentielle. Existe-t-il un ouvert U de \mathbb{C} tel que $f_{|U} \in \mathcal{O}(U)$?

Exercice 5. Soit $U = \{z = x + iy \in \mathbb{C} : -\pi < x < \pi, y \in \mathbb{R}\}$. Soit pour $z \in \mathbb{C}$:

$$P(x,y) = \frac{\sin(x)}{\cos(x) + \cosh(y)}$$

Montrer qu'il existe une unique fonction $f \in \mathcal{O}(U)$ telle que f(0) = 0 et P = Re(f)

Exercice 6. Soit Ω un ouvert connexe de $\mathbb C$ et f une fonction holomorphe sur Ω , de partie réelle notée P et de partie imaginaire notée Q. On suppose qu'il existe (a,b,c) rééls non tous nuls tels que aP+bQ+c soit identiquement nulle sur Ω . Montrer que f est constante sur Ω . Interprétation géométrique?

Exercice 7. Soit U un ouvert connexe de \mathbb{C} , $f \in \mathcal{O}(U)$, $F \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$, telles que

$$\operatorname{Re}(f(z)) = F(\operatorname{Im}(f(z)) \ \forall \ z \in U$$

Que peut-on dire de f?

Exercice 8. Soit U une ouvert connexe de \mathbb{C} et $f, g \in \mathcal{O}(U)$

- a) On suppose que $\forall x \in U \ f(z) + \overline{g(z)} \in \mathbb{R}$. Pourver qu'il existe $c \in \mathbb{R}$ tel que f(z) = c + g(z)
- b) On suppose maintenant que g ne s'annule pas sur U et que $\forall x \in U, f(z)\overline{g(z)} \in \mathbb{R}$. Prouver qu'il existe $c \in \mathbb{R}$ tel que f = cg.

Exercice 9. Soit U un ouvert invariant par rapport à la symétrie relativement à l'axe réel et $f \in \mathcal{O}(U)$. Pour tout $z \in U$, on pose $g(z) = \overline{f(\overline{z})}$. Montrer que $g \in \mathcal{O}(U)$

Autour des fonctions harmoniques

Définition Une fonction $u: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^2 est dite harmonique si elle est vérifie

$$\frac{\partial^2 u}{\partial^2 x} + \frac{\partial^2 u}{\partial^2 y} = 0$$

Exercice 10. Soit $u(x,y): \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 . Montrer que u est harmonique ssi u est la partie réelle d'une fonction holomorphe.

Exercice 11. Soient $a, b, c \in \mathbb{R}$. on pose $P(x, y) = ax^2 + 2bxy + cy^2$ pour $x, y \in \mathbb{R}$. Donner une conditions nécessaire et suffisante pour qu'il existe $f \in \mathcal{O}(\mathbb{C})$ telle que P = Re(f). Sous cette condition, trouver alors toutes les applications $f \in \mathcal{O}(\mathbb{C})$ telles que P = Re(f).

Exercice 12. Conjuguées harmoniques Des fonctions u(x,y) et v(x,y) de classe C^2 sont dites conjuguées harmoniques si elles vérifient les équations de Cauchy-Riemann :

- a) Montrer que si u et v sont conjuguées harmoniques, alors u et v sont harmoniques.
- b) Trouver les conjuguées harmoniques des fonctions suivantes dans les ouverts indiqués :
 - i) $u(x,y) = x^2 y^2 + x \text{ sur } \mathbb{C}$.
 - ii) $u(x,y) = \frac{x}{x^2 + y^2} \operatorname{sur} \mathbb{C} \setminus \{0\}$
 - iii) $u(x,y) = \frac{1}{2} \ln(x^2 + y^2) \text{ sur } \mathbb{C} \setminus \{x + iy, y = 0, x \le 0\}$
 - iv) $u(x,y) = \frac{1}{2} \ln(x^2 + y^2) \operatorname{sur} \mathbb{C} \setminus \{0\}$