Számításelmélet defek, tételek

1. Church-Turing tézis

A kiszámíthatóság küönböző matematikai modelljei mind az effektíven kiszámítható függvények osztályát definiálják.

2. Tétel (Church, 1936)

Két λ -kalkulusbeli kifejezés ekvivalenciája algoritmikusan eldönthetetlen.

3. Tétel (Turing, 1936)

Turing-gépek megállási problémája algoritmikusan eldönthetetlen.

4. Turing gép

Turing gépnek nevezünk egy

 $M = \langle \, Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendezett hetest, ahol

- $\bullet \;\; Q$ az állapotok véges, nemüres halmaza,
- $q_0, q_i, q_n \in Q$ rendre a kezdő-, el
tosadó-, elutasító
állapotok,
- Σ és Γ ábécék, a bemenő jelek, illetve szalagszimbólumok ábécéi, melyekre $\Sigma \subseteq \Gamma$ és $\sqcup \in \Gamma \setminus \Sigma$,
- $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$ az átmeneti függvény.

5 Konfiguráció

- Adott TG egy konfigurációja egy uqv szó, ahol $q \in Q$ és $u, v \in \Gamma^*, v \neq \varepsilon$
- A gép egy $u \in \Sigma^*$ szóhoz tartozó **kezdőkonfigurációja** a $q_0u \sqcup$ szó. Azaz q_0u , ha $u \neq \varepsilon$ és $q_0 \sqcup$ egyébként.
- elfogadó konfigurációi azon konfigurációk, melyekre $q=q_i$
- elutasító konfiguráció
i azon konfigurációk, melyekre $q=q_n$
- megállási konfigurációk az elfogadó és elutasító konfigurációk

6. Egylépéses konfigurációátmenet

Jelölje C_M egy M TG-hez tartozó lehetséges konfigurációk halmazát.

Ekkor az M-nek $\vdash \subseteq C_M \times C_M$ konfigurációátmenet-relációját az alábbiak szerint definiáljuk egy adott uqav konfiguráció ($a \in \Gamma$ $u, v \in \Gamma^*$) esetén:

• Ha $\delta(q, a) = (r, b, R)$ akkor $uqav \vdash ubrv'$, ahol

- ha $v \neq \varepsilon$, akkor v' = v
- ha $v = \varepsilon$, akkor $v' = \sqcup$
- Ha $\delta(q, a) = (r, b, S)$, akkor $uqav \vdash urbv$
- Ha $\delta(q, a) = (r, b, L)$, akkor $uqav \vdash u'rcbv$, ahol
 - $-c \in \Gamma$
 - ha $u \neq \varepsilon$, akkor u'c = u,
 - ha $u = \varepsilon$, akkor u' = u és $c = \sqcup$

7. Többlépéses konfigurációátmenet

A többlépéses konfiguráció
átmenet a \vdash reflexív, tranzitív, lezártja, aza
z $\vdash^* \subseteq C_M \times C_M$, és $C \vdash^* C' \iff$

- C = C', vagy
- $\exists 0 < n \in \mathbb{N}, \exists C_1, C_2, \dots, C_n \in C_M : i = 1, \dots, n-1 : C_i \vdash C_{i+1}, C_1 = C, C_n = C'$

8. Turing gép által felismert nyelv

Az M TG által felismert L(M) nyelv:

$$L(M) = \{ u \in \Sigma^* | q_0 u \sqcup \vdash^* x q_i y, x, y \in \Gamma^*, y \neq \varepsilon \}$$

9. Felismerhetőség, eldönthetőség

- Amh.: egy $L \subseteq \Sigma^*$ nyelv **Turing-felismerhető**, ha létezik M TG, melyre: L = L(M)
- Amh.: egy $L \subseteq \Sigma^*$ nyelv **eldönthető**, ha létezik olyan M TG, mely minden bemeneten megállási konfigurációba jut, és L = L(M)

A Turng-felismerhető nyelveket szokás **rekurzívan felsorolható**nak (RE), az eldönthető nyelveket pedig **rekurzív**nak (R) is nevezni.

10. futási idő, időigény

- Egy M TG futási ideje az $u \in \Sigma^*$ szón $n \in \mathbb{N}$, ha az u-hoz tartozó kezdőkonfigurációból n lépésben (konfigurációátmenettel) jut el megállási konfigurációba. Ha nincs ilyen szám, akkor M futási ideje u-n végtelen.
- Legyen $f: \mathbb{N} \to \mathbb{N}$ egy fgv. Ekkor amh.: M-nek **időigénye** az f(n) (azaz M f(n) időkorlátos), ha minden $u \in \Sigma^*$ inputszóra, M futási ideje az u szón legfeljebb f(|u|).

11. k-szalagos TG

k-szalagos Turing gépnek nevezünk egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendezett hetest, ahol

- Q az állapotok véges, nemüres halmaza,
- $q_0, q_i, q_n \in Q$ rendre a kezdő-, elfogadó-, elutasítóállapotok,
- Σ és Γ ábécék, a bemenő jelek, illetve szalagszimbólumok ábécéi, melyekre $\Sigma \subseteq \Gamma$ és $\sqcup \in \Gamma \setminus \Sigma$,
- $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$ az átmeneti függvény. (csak itt van eltérés a sima TG-től)

12. k-szalagos konfiguráció

k-szalagos TG konfigurációja egy $(q, u_1, v_1, u_2, v_2, \dots, u_k, v_k)$ szó, ahol

- $q \in Q$
- $u_i, v_i \in \Gamma^*$ $(i = 1, \ldots, k)$
- $v_i \neq \varepsilon$ $(i = 1, \dots, k)$

13. k-szalagos kezdőkonfiguráció

Az u szóhoz tartozó **kezdőkonfigráció**: $(q_0, \varepsilon, u \sqcup, \varepsilon, \sqcup, \varepsilon, \sqcup, \varepsilon, \sqcup)$

14. k-szalagos elfogadó, elutasító, megállási konfiguráció

Egy $(q, u, u_1, v_1, \dots, u_k, v_k)$ konfiguráció $(q \in Q; u_i, v_i \in \Gamma^*, v_i \neq \varepsilon \quad (i = 1, \dots, k))$

- elfogadó konfiguráció, ha $q = q_i$,
- elutasítási konfiguráció, ha $q = q_n$
- megállási konfigurcáió, ha elfogadó, vagy elutasító.

15. k-szalagos TG által felismert nyelv

$$L(M) = \{ u \in \Sigma^* | (q_0, \varepsilon, u \sqcup, \varepsilon, \sqcup, \ldots, \varepsilon, \sqcup) \vdash^* (q_i, x_1, y_1, x_2, y_2, \ldots, x_k, y_k), x_i, \varepsilon \neq y_i \in \Gamma^* \quad (i = 1, \ldots, k) \}$$

16. k-szalagos futási idő

Egy k-szalagos M TG **futási ideje** egy u szóra a hozzá tartozó kezdőkonfigurációból egy megállási konfigurációba megtett $n \in \mathbb{N}$ lépésszám.

Az időigény definíciója a sima TG-ével megegyező.

17. TG-k ekvivalenciája

Amh.: két TG ekvivalens, ha ugyanazt a nyelvet ismerik fel.

18. Tétel: egy és k szalagos TG ekvivalenciája

Minden M k-szalagos TG-hez megadható egy vele ekvivalens M' egyszalagos TG. Továbbá, ha M legalább lineáris időigényű, O(f(n)) időkorlátos gép, akkor M' $O(f^2(n))$ időkorátos.

19. egy irányban végtelen szalagos TG

- Az egyirányban végtelen szalagos TG egy, a bal oldalán zárt szalaggal rendelkezik
- A fej nem tud "leesni" a bal oldalon, még ha az állapotátmeneti fgv. balra lépést ír is elő a legbaloldalibb cellán, ilyenkor a fej helyben marad.

20. Tétel: egy irányban végtelen szalagos TG

Minden egyszalagos M TG-hez van vele ekvivalens egyirányban végtelen szalagos M'' TG.

21. Nemdeterminisztikus Turing-gép (NTG)

A nemdeterminisztikus Turing-gép (NTG) egy olyan

 $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendezett hetes, ahol

- \bullet Q az állapotok véges, nemüres halmaza,
- $q_0, q_i, q_n \in Q$ rendre a kezdő-, elfogadó-, elutasítóállapotok,
- Σ és Γ ábécék, a bemenő jelek, illetve szalagszimbólumok ábécéi, melyekre $\Sigma \subseteq \Gamma$ és $\sqcup \in \Gamma \setminus \Sigma$,
- $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R, S\})$ az átmeneti függvény. (csak itt van eltérés a sima TG-től)

22. NTG egylépéses konfigurációátmenet

Jelölje C_M egy M TG-hez tartozó lehetséges konfigurációk halmazát.

Ekkor az M-nek $\vdash \subseteq C_M \times C_M$ konfigurációátmenet-relációját az alábbiak szerint definiáljuk adott uqav konfiguráció $(a \in \Gamma; u, v \in \Gamma^*)$ esetén:

- Ha $\delta(q, a) = (r, b, R)$ akkor $uqav \vdash ubrv'$, ahol
 - Ha $v \neq \varepsilon$, akkor v' = v
 - Ha $v = \varepsilon$, akkor $v' = \sqcup$
- Ha $\delta(q, a) = (r, b, S)$, akkor $uqav \vdash urbv$
- Ha $\delta(q,a)=(r,b,L),$ akkor $uqav\vdash u'rcbv,$ ahol
 - $-c \in \Gamma$
 - ha $u \neq \varepsilon$, akkor u'c = u,
 - ha $u = \varepsilon$, akkor u' = u és $c = \sqcup$

23. NTG többlépéses konfigurációátmenet

A többlépéses konfigurációátmenet a ⊢ reflexív, tranzitív, lezártja, azaz

$$\vdash^* \subseteq C_M \times C_M$$
, és $C \vdash^* C' \iff$

- C = C', vagy
- $\exists 0 < n \in \mathbb{N}, \exists C_1, C_2, \dots, C_n \in C_M : i = 1, \dots, n-1 : C_i \vdash C_{i+1}, C_1 = C, C_n = C'$

24. NTG által felismert nyelv

Az M TG által felismert L(M) nyelv:

$$L(M) = \{ u \in \Sigma^* | q_0 u \sqcup \vdash^* x q_i y, x, y \in \Gamma^*, y \neq \varepsilon \}$$

Fontos, hogy egy NTG-nek tübb számítása is lehet ugyanarra a szóra. Akkor fogad el egy szót, ha legalább egy számítása q_i -ben ér véget.

25. inputszó nemdeterminisztikus számítási fája

Adott $u \in \Sigma^*$ inputszó számítási fája olyan irányított fa, melynek:

- csúcsai konfigurációkkal címkézettek
- a gyökér címkéje a kezdőonfiguráció $q_0u \sqcup$
- Ha C egy csúcs címkéje, akkor $|\{C': C \vdash C'\}|$ számú gyermeke van és ezek címkéi éppen $\{C': C \vdash C'\}$ elemei.

26. Eldöntés (NTG)

Az M NTG **eldönti** az $L \subseteq \Sigma^*$ nyelvet

- ha felismeri, és
- minden $u \in \Sigma^*$ szóra az M számítási fája véges, és
- minden levele elfogadó vagy elutasító konfiguráció.

27. Időigény (NTG)

Az M NTG f(n) időignyű, ha minden $u \in \Sigma^*, |u| = n \in \mathbb{N}$ szóra a számítási fája legfeljebb f(n) magas.

28. Tétel: TG és NTG

Minden M f(n) idejű NTG-hez megadható egy vele ekvivalens $2^{O(f(n))}$ idejű M' determinisztikus TG

29. Halmazok számossága

- Amh.: az A és B halmazok számossága megegyezik, ha létezik $f:A\to B$ bijekció. Jel.: |A|=|B|
- Amh.: A halmaz számossága legalább annyi, mint a B halmaz számossága, ha $\exists f: B \to A$ injektív leképezés. Jel.: $|A| \geq |B|$.
- Amh.: A halmaz számossága (szigorúan) nagyobb, mint a B halmaz számossága, ha $\exists f: B \to A$ injektív leképezés, de ezek közül egyik sem bijektív. Jel.: |A| > |B|

30. Cantor-Bernstein tétel

Tétel. Ha A-ból van injektív leképezés B-be, és van B-ből A-ba is, akkor A és B között bijekció is van. Speciálisan ez azt jelenti, hogy ha $|A| \le |B|$ és $|A| \ge |B|$, akkor |A| = |B|.

31. Megszámlálhatóan végtelen számosság

A(z) N számosságát **megszámlálhatóan végtelennek** nevezzük.

Egy halmazt pedig, **megszámlálható**nak nevezünk, ha véges vagy megszámlálhatóan végtelen

32. Megszámlálható halmazok úniója

Tétel. Megszámlálhatóan sok megszámlálható halmaz úniója is megszámlálható.

33. Continuum számosság

 $A(z) \mathbb{R}$ számosságát **continuum**nak nevezzük (megszámlálhatatlanul végtelen).

34. Continuum számosságra von. állítások

Tétel. A continuum számosság nagyobb, mint a megszámlálhatóan végtelen számosság. **Következmény.** Több $\{0,1\}$ feletti nyelv van mint $\{0,1\}$ feletti szó (számosság értelemben).

35. Halmaz hatványhalmazának számossága

Tétel. Tetszőleges H halmazra: $|\mathcal{P}(H)| > |H|$.

36. Szófüggvényt kiszámító TG

Amh.: az $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ TG kiszámítja az $f : \Sigma^* \to \Delta^*$ szófüggvényt, ha $\forall u \in \Sigma^*$ szóra megáll, és ekkor utolsó szalagján az $f(u) \in \Delta^*$ szó olvasható.

37. Eldöntési, kiszámítási probléma

Ha I egy bemenet melynek kódját az $\langle I \rangle$ jelöli, akkor

- Eldöntési problémának nevezzük annak eldöntését, hogy: $L = \{\langle I \rangle : I \text{ a probléma igen példánya} \}$ eldönthető-e TG-el.
- Kiszámítási problémának nevezzük annak eldöntését, hogy: Van-e olyan TG, ami f-t, ill. $\langle I \rangle \mapsto \langle f(I) \rangle$ függvényt kiszámítja.

38. TG-k elkódolása

Tfh.: $\Sigma = \{0, 1\}$. Ekkor egy M TG **kódját** (jel.: $\langle M \rangle$) a következőképpen definiáljuk: Legyen $M = \langle Q, \{0, 1\}, \Gamma, \delta, q_0, q_i, q_n \rangle$, ahol

- $Q = \{p_1, \ldots, p_k\}, \Gamma = \{X_1, \ldots, X_m\}, D_1 = R, D_2 = S, D_3 = L;$
- $k \ge 3$, $p_1 = q_0, p_{k-1} = q_i, p_k = q_n$;
- $m \ge 3$, $X_1 = 0, X_2 = 1, X_3 = \sqcup$.
- \Rightarrow Egy $\delta(p_i, X_i) = (p_r, X_s, D_t)$ átmenet kódja: $0^i 10^j 10^r 10^s 10^t$
- \Rightarrow Az $\langle M \rangle$ az átmenetek kódjainak felsorolása 11-el elválasztva.

Ha pedig w egy $\{0,1\}$ feletti szó, akkor $\langle M, w \rangle := \langle M \rangle 111w$

39. Spec nyelvek felismerhetősége, eldönthetősége

- 1. $L_{\text{átló}} = \{\langle M \rangle | \langle M \rangle \notin L(M)\} \notin RE$
- 2. $L_u = \{\langle M, w \rangle | w \in L(M)\} \in RE$, de $L_u \notin R$
- 3. $L_h = \{\langle M, w \rangle | M \text{ megáll a } w \text{ bemeneten} \} \in RE, \text{ de } L_h \notin R$

40. Komplementer

- Definíció. Ha $L \subseteq \Sigma^*$, akkor $\bar{L} := \{u \in \Sigma^* | u \notin L\}$
- **Tétel.** Ha $L \in RE$ és $\bar{L} \in RE$, akkor $L \in R$.
- Következmény. RE nem zárt a komplementerképzésre.
- **Tétel.** R zárt a komplementerképzésre.

41. Kiszámítható szófüggvény

Az $f: \Sigma^* \to \Delta^*$ szófüggvényt **kiszámítható**, ha van olyan TG, ami kiszámítja.

42. Visszavezetés

Amh.: $L_1 \subseteq \Sigma^*$ visszavezethető az $L_2 \subseteq \Delta^*$ -ra, ha van olyan $f: \Sigma^* \to \Delta^*$ kiszámítható szófüggvény, melyre: $w \in L_1 \Leftrightarrow f(w) \in L_2$. Jel.: $L_1 \leq L_2$

43. Visszavezetés és felismerhetőség/eldönthetőség kapcsolata

- Ha $L_1 \leq L_2$ és $L_1 \notin RE$, akkor $L_2 \notin RE$.
- Ha $L_1 \leq L_2$ és $L_1 \notin R$, akkor $L_2 \notin R$.

44. Rekurzíve felsorolható nyelvek tulajdonságai

Tetszőleges $\mathcal{P} \subseteq RE$ halmazt a rekurzívan felsorolható nyelvek egy **tulajdonságának** nevezzük. A \mathcal{P} triviális, ha $\mathcal{P} = \emptyset$ vagy $\mathcal{P} = RE$

45. Rice tétel, és következményei

- Definíció. $L_{\mathcal{P}} = \{ \langle M \rangle | L(M) \in \mathcal{P} \}$
- Tétel(Rice). Ha $\mathcal{P} \subseteq RE$ egy nem triviális tulajdonság, akkor $L_{\mathcal{P}} \notin R$
- Következmény. Eldönthetetlen, hogy egy M TG
 - az üres nyelvet ismeri-e fel $(\mathcal{P} = \{\emptyset\}),$
 - véges nyelvet ismer-e fel ($\mathcal{P} = \{L : L \text{ véges}\}\)$,
 - környezetfüggetlen nyelvet ismer-e fel ($\mathcal{P} = \{L : L \text{ környezetfüggetlen}\}$),
 - elfogadja-e az üres szót ($\mathcal{P} = \{L \in RE : \varepsilon \in L\}$).

46. Post megfelelkezési probléma

- Legyenek $u_1, \ldots, u_n, v_1, \ldots, v_n \in \Sigma^+ \quad (1 \leq n \in \mathbb{N}).$ A $D = \{d_1, \ldots, d_n\}$ halmazt **dominókészlet**nek nevezzük, ha $d_i = \left[\frac{u_i}{v_i}\right] \quad (i = 1, \ldots, n).$ A $d_{i_1}, \ldots, d_{i_m} \quad (1 \leq m \in \mathbb{N})$ a D egy **megoldása**, ha $d_{i_j} \in D \quad (j = 1, \ldots, m)$ és $u_{i_1}, \ldots, u_{i_m} = v_{i_1}, \ldots, v_{i_m}.$
- **Definíció.** $L_{PMP} = \{\langle D \rangle : D\text{-nek van megoldása} \}$ (Post Megfelelkezési Probléma).
- Tétel. $L_{PMP} \in RE$
- Tétel. $L_{\text{PMP}} \notin R$

47. CF nyelvtanokkal kapcsolatos problémák

- Egy G környezetfüggetlen (CF, 2-es típusú) nyelvtan **egyértelmű**, ha minden L(G)-beli szónak pontosan egy baloldali levezetése van G-ben. (Baloldali levezetés: mindig a legbaloldalibb nemterminálist írjuk át a mondatformában.)
- **Definíció.** $L_{\text{ECF}} = \{ \langle G \rangle : G \text{ egy egyértelmű CF nyelvtan} \}.$
- Tétel. $L_{\text{ECF}} \notin R$
- **Tétel.** Eldönthetetlenek az alábbi CF nyelvtanokkal kapcsolatos kérdések: Ha G_1 , G_2 két CF nyelvtan, akkor
 - $-L(G_1) \cap L(G_2) \neq \emptyset$
 - $-L(G_1) = \Gamma^*$, valamely Γ ábécére
 - $L(G_1) = L(G_2)$
 - $-L(G_1)\subseteq L(G_2)$

48. Elsőrendű logikával kapcsolatos problámák

- **Tétel.** Eldönthetetlen, hogy az A elsőrendű logikai formulára $\models A$ teljesül-e (logikailag igaz-e).
- Következmény. Legyen \mathcal{F} egy elsőrendű formulahalmaz, és A egy elsőrendű formula. Ekkor eldönthetetlen, hogy:
 - 1. A kielégíthetetlen-e,
 - 2. A kielégíthető-e,
 - 3. $\mathcal{F} \models A$ teljesül-e.

49. Bonyolultságelméleti alapfogalmak

- TIME $(f(n)) = \{L : L \text{ eldönthető } O(f(n)) \text{ időigényű determinisztikus TG-el} \}$
- NTIME $(f(n)) = \{L : L \text{ eldönthető } O(f(n)) \text{ időigényű NTG-el}\}$
- $P = \bigcup_{k \le 1} TIME(n^k)$
- NP = $\bigcup_{k \le 1} \text{NTIME}(n^k)$.
- Észrevétel: $P \subseteq NP$.
- Sejtés: $P \neq NP$

50. Polinom időben kiszámítható szófüggvény

Az $f: \Sigma^* \to \Delta^*$ szófüggvény **polinom időben kiszámítható**, ha van olyan polinom időigényű TG, mely kiszámítja.

51. Visszavezetés polinom időben

Az $L_1 \subseteq \Sigma^*$ nyelv **polinom időben visszavezethető** valamely $L_2 \subseteq \Delta^*$ nyelvre (jel.: $L_1 \leq_p L_2$), ha van olyan $f: \Sigma^* \to \Delta^*$ polinom időben kiszámítható szófüggvény, hogy:

$$w \in L_1 \iff f(w) \in L_2$$

52. Tétel: Visszavezetés kapcsolata a P, és NP osztályokkal

- Ha $L_1 \leq_p L_2$ és $L_2 \in P$, akkor $L_1 \in P$
- Ha $L_1 \leq_p L_2$ és $L_2 \in NP$, akkor $L_1 \in NP$

53. Adott problémaosztályra nehéz nyelv

Legyen \mathcal{C} (cé) egy problémaosztály. Egy L problémát \mathcal{C} -nehéznek nevezünk (a polinom idejű visszavezetésre nézve), ha

$$\forall L' \in \mathfrak{C} : L' \leq_n L$$

54. Adott problémaosztályban teljes nyelv

Amh.: egy L probléma (nyelv) \mathcal{C} -teljes, ha

- \bullet L C-nehéz, és
- $L \in \mathcal{C}$

55. Tétel: P=NP egy elégséges feltétele

Legyen L egy NP-teljes probléma. Ha $L \in \mathcal{P}$, akkor $\mathcal{P} = \mathcal{N}\mathcal{P}$

56. SAT probléma

- **Definíció.** SAT = $\{\langle \varphi \rangle : \varphi \text{ kielégíthető nulladrendű KNF} \}$
- Tétel(Cook). SAT NP-teljes.

57. NP-teljes problémák

Tétel. Ha L NP-teljes, $L \leq_p L'$ és $L' \in NP$, akkor L' NP-teljes.

- **Definíció.** $kSAT = \{ \langle \varphi \rangle : \varphi \text{ kielégíthető KNF, és minden tagban } k \text{ különböző literál van} \}$
- Tétel. 3SAT NP-teljes.
- **Tétel.** 3Szinezes = $\{\langle G \rangle : G \text{ 3-színezhető gráf}\}$ NP-teljes.

58. 3 irányítatlan gráfokkal kapcsolatos probléma

Az alábbi nyelvek esetén G egyszerű, irányítatlan grág k pedig egy nemnegatív egész. G egy teljes részgráfját **klikk**nek, egy üres részgráfját **független ponthalmaz**nak nevezzük.

- Klikk = $\{\langle G, k \rangle : G\text{-nek van } k \text{ méretű klikkje}\}$
- FUGGETLENPONTHALMAZ = $\{\langle G, k \rangle : G\text{-nek van } k \text{ méretű független ponthalmaza}\}$

Legyen $S \subseteq V(G)$ és $E \in E(G)$.

Ha $S \cap E \neq \emptyset$, akkor amh. a csúcshalmaz **lefogja** E-t.

Ha S minden $E \in E(G)$ élt lefog, akkor S egy **lefogó ponthalmaz**

- LefogoPonthalmaz = $\{\langle G, k \rangle : G\text{-nek van } k \text{ méretű lefogó ponthalmaza}\}$
- Tétel. Klikk, FuggetlenPonthalmaz, LefogoPonthalmaz NP-teljes.

59. Hipergráf

 \mathcal{S} egy **hipergráf** (másnéven halmazrendszer), ha $\mathcal{S} = \{A_1, \dots, A_n\}$, ahol $A_i \subseteq U \quad (i = 1, \dots, n)$, valamely U alaphalmazra.

Amh.: valamely $H \subseteq U$ egy **lefogó ponthalmaz**, ha $H \cap A_i \neq \emptyset$ (i = 1, ..., n).

- HIPERGRAFLEFOGOPONTHALMAZ = $\{\langle \mathcal{S}, k \rangle : \mathcal{S} \text{ hipergráfhoz, van } k \text{ elemű lefogó ponthalmaz}\}$
- Tétel. HipergrafLefogoPonthalmaz NP-teljes.

60. Hamilton út/kör

Legyen adott egy G = (V, E) irányítatlan [irányított] gráf, melyre |V| = n. Egy $P = v_{i_1}, \dots, v_{i_n}$ felsorolását a csúcsoknak **Hamilton út**nak nevezzük, ha

- $\{v_{i_1}, \ldots, v_{i_n}\} = V$, és
- $\{v_{i_k}, v_{i_{k+1}}\} \in E \ [(v_{i_k}, v_{i_{k+1}}) \in E] \ (k = 1, \dots, n-1).$

Ha még $\{v_{i_n}, v_{i_1}\} \in E \ [(v_{i_n}, v_{i_1}) \in E]$ is teljesül, akkor P Hamilton kör.

61. HÚ, IHÚ, IHK

- HU = {
 $\langle G,s,t\rangle:G$ irányított gráfban, van s-ből t-be H-út}
- IHU = { $\langle G, s, t \rangle$: G irányítatlan gráfban, van s-ből t-be H-út}
- IHK = $\{\langle G, s, t \rangle : G \text{ irányítatlan gráfban, van H-kör} \}$
- Tétel. HU, IHU, IHK NP-teljes.

62. Utazóügynök probléma

- Számítási (optimalizálási) verzó: Adott egy G élsúlyozott irányítatla gráf, nemnegatív élsúlyokkal. Határozzuk meg a legkisebb összsúlyú H-kört (ha van).
- Eldöntési verzió: TSP = $\{\langle G, K \rangle : G$ -ben van legfeljebb K súlyú H-kör $\}$
- **Tétel.** TSP NP-teljes.

63. NP-köztes nyelvek

- **Definíció.** L egy NP-köztes nyelv, ha $L \in \text{NP}, L \notin P$ és L nem NP-teljes.
- **Tétel(Ladner).** Ha $P \neq NP$, akkor létezik NP-köztes nyelv.

Ha P \neq NP, akkor a következő nyelvek lehetnek NP-köztes nyelvek:

- Grafizomorfizmus = $\{\langle G_1, G_2 \rangle : G_1, G_2 \text{ irányítatlan izomorf gráfok}\}$
- Primfaktorizacio: adjuk meg egy egész szám prímtényezőz felbontását [számítási feladat].

64. coC

Ha \mathcal{C} egy bonyolultsági osztály, akkor $co\mathcal{C} = \{L : \overline{L} \in \mathcal{C}\}.$

65. Bonyolultsági osztály és polinom idejű visszavezetés

Amh.: C zárt a polinom idejű visszavezetésre nézve, ha minden esetben:

$$L_2 \in \mathcal{C} \text{ és } L_1 \leq_p L_2 \implies L_1 \in \mathcal{C}$$

66. coC tételek

- **Tétel.** Ha C zárt a polinom idejű visszavezetésre nézve, akkor coC is.
- Következmény. coNP zárt a polinomidejű visszavezetésre nézve.
- **Tétel.** L C-teljes $\iff \bar{L}$ coC-teljes.

67. Példák coNP-teljes nyelvekre

- UNSAT := $\{\langle \varphi \rangle : \varphi \text{ kielégíthetetlen nulladrendű formula} \}$
- TAUT := $\{\langle \varphi \rangle : \varphi \text{ nulladrendű formula tautológia} \}$
- **Tétel.** UNSAT és TAUT coNP-teljesek.

Informálisan: coNP tartalmazza a polinom időben cáfolható problémákat.

68. Off-line TG

Az off-line TG egy legalább 3 szalagos gép, melynek:

- első szalagja csak olvasható,
- utolsó szalagja csak írható,
- a további szalagok(at) munkaszalagok(nak nevezzük).

69. Off-line TG-ek tárigénye

Az off-line TG **tárigénye** egy adott inputra a munkaszalagjain felhasznált cellák száma. Egy TG f(n) **tárkorlátos**, ha bármely $u \in \Sigma^*$ inputra legfeljebb f(|u|) tárat használ.

70. Tárbonyolultsági osztályok

- SPACE $(f(n)) = \{L : L \text{ eldönthető } O(f(n)) \text{ tárkorlátos, determinisztikus off-line TG-el} \}$
- NSPACE $(f(n)) = \{L : L \text{ eldönthető } O(f(n)) \text{ tárkorlátos, nemdeterminisztikus off-line TG-el} \}$
- PSPACE = $\bigcup_{k>1}$ SPACE (n^k)
- NPSPACE = $\bigcup_{k>1}$ NSPACE (n^k)
- $L = SPACE(\log(n))$.
- NL = NSPACE(log(n)).

71. Az ELÉR probléma

- ELER = $\{\langle G, s, t \rangle : A \ G \text{ irányított gráfban van } s\text{-től } t\text{-be út}\}$
- **Tétel.** ELER \in SPACE($\log^2(n)$).

72. Konfigurációs gráf

Egy M TG-hez tartozó G_M konfigurációs gráf olyan gráf, hogy:

- ullet csúcsai M konfigurációi, és
- $(C_1, C_2) \in \mathcal{E}(G_M) \iff C_1 \vdash C_2$

73. Savitch tétele

- Tétel(Savitch). Ha $f(n) \ge \log(n)$, akkor NSPACE $(f(n)) \subseteq SPACE(f^2(n))$.
- Következmény. PSPACE = NPSPACE
- Tétel. $NL \subseteq P$

74. ELÉR NL-beli

Tétel. ELER \in NL

75. Log táras visszavezetés

Egy $L_1 \subseteq \Sigma^*$ nyelv logaritmikus tárral visszavezethető egy $L_2 \subseteq \Delta^*$ nyelvre $(L_1 \leq_{\ell} L_2)$, ha:

- $L_1 \leq L_2$, és
- a visszavezetéshez használt függvény kiszámítható logaritmikus tárigényű determinisztikus (off-line) TG-el.

76. NL-nehéz, NL-teljes nyelv

Egy L nyelvet \mathbf{NL} -nehéznek mondunk (a log. táras visszavezetésre nézve), ha

$$\forall L' \in \text{NL} : L' <_{\ell} L$$

Ha még $L \in NL$, akkor L **NL-teljes** (a log. táras visszavezetésre nézve).

77. Log tárral való visszavezetésre von. tételek

- Tétel. Az L tárbonyolultsági osztály zárt a logaritmikus tárral való visszavezetésre nézve.
- Következmény. Ha az L nyelv NL teljes, akkor L = NL

78. ELER NL-teljessége

Tétel. ELER NL-teljes a logaritmikus tárral történő visszavezetésre nézve.

79. Immerman-Szelepcsényi tétel

Tétel. NL = coNL

80. Hierarchia tételek

- Definíció. EXPTIME := $\bigcup_{k \in \mathbb{N}} \text{TIME}(2^{n^k})$
- **Tétel.** $NL \subset PSPACE$ és $P \subset EXPTIME$.
- Tétel. $L \subseteq coNL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME$.