LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 5: Determinant and inverses of block matrices

▶ We recall: Fix $m, n \in \mathbb{N}$. Consider a vector $z \in \mathbb{R}^{m+n}$:

$$z = \left(\begin{array}{c} z_1 \\ z_2 \\ \vdots \\ z_{m+n} \end{array}\right).$$

Lecture 5: Determinant and inverses of block matrices

▶ We recall: Fix $m, n \in \mathbb{N}$. Consider a vector $z \in \mathbb{R}^{m+n}$:

$$z = \left(\begin{array}{c} z_1 \\ z_2 \\ \vdots \\ z_{m+n} \end{array}\right).$$

Lecture 5: Determinant and inverses of block matrices

▶ We recall: Fix $m, n \in \mathbb{N}$. Consider a vector $z \in \mathbb{R}^{m+n}$:

$$z = \left(\begin{array}{c} z_1 \\ z_2 \\ \vdots \\ z_{m+n} \end{array}\right).$$

- We can view of the first m-coordinates of z as forming a vector in \mathbb{R}^m and the remaining n-coordinates as forming a vector in \mathbb{R}^n .
- ► So we write

$$z = \left(\begin{array}{c} x \\ y \end{array}\right)$$

where

$$x = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_m \end{pmatrix}, \quad y = \begin{pmatrix} z_{m+1} \\ z_{m+2} \\ \vdots \\ z_{m+n} \end{pmatrix}.$$

► Conversely, given any $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$, we get a vector $z \in \mathbb{R}^{m+n}$ as

$$z = \left(\begin{array}{c} x \\ y \end{array}\right).$$

Conversely, given any $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$, we get a vector $z \in \mathbb{R}^{m+n}$ as

$$z = \left(\begin{array}{c} x \\ y \end{array}\right).$$

So in a way, we can think of \mathbb{R}^{m+n} as constructed out of \mathbb{R}^m and \mathbb{R}^n . We say that \mathbb{R}^{m+n} is direct sum of \mathbb{R}^m and \mathbb{R}^n .

Partitioned matrices or block matrices

Now consider a matrix $P = [p_{ij}]_{1 \le i,j \le (m+n)}$ considered as a linear map on \mathbb{R}^{m+n} .

Partitioned matrices or block matrices

- Now consider a matrix $P = [p_{ij}]_{1 \le i,j \le (m+n)}$ considered as a linear map on \mathbb{R}^{m+n} .
- ▶ We partition *P* as

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right],$$

where $A_{m\times m}$, $B_{m\times n}$, $C_{n\times m}$, $D_{n\times n}$ are given by

$$A = \begin{bmatrix} p_{11} & \cdots & p_{1m} \\ \vdots & \ddots & \vdots \\ p_{m1} & \cdots & p_{mm} \end{bmatrix}, B = \begin{bmatrix} p_{1(m+1)} & \cdots & p_{1(m+n)} \\ \vdots & \ddots & \vdots \\ p_{m(m+1)} & \cdots & p_{m(m+n)} \end{bmatrix}.$$

$$C = \left[\begin{array}{ccc} P_{(m+1)1} & \cdots & P_{(m+1)m} \\ \vdots & \ddots & \vdots \\ P_{(m+n)1} & \cdots & P_{(m+n)(m)} \end{array} \right],$$

$$C = \left[\begin{array}{ccc} p_{(m+1)1} & \cdots & p_{(m+1)m} \\ \vdots & \ddots & \vdots \\ p_{(m+n)1} & \cdots & p_{(m+n)(m)} \end{array} \right],$$

$$D = \left[\begin{array}{ccc} p_{(m+1)(m+1)} & \cdots & p_{(m+1)(m+n)} \\ \vdots & \ddots & \vdots \\ p_{(m+n)(m+1)} & \cdots & p_{(m+n)(m+n)} \end{array}\right]$$

The action of partitioned matrices on vectors

Under notation as above, with

$$Pz = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right] \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} Ax + By \\ Cx + Dy \end{array} \right).$$

The action of partitioned matrices on vectors

Under notation as above, with

$$Pz = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right] \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} Ax + By \\ Cx + Dy \end{array} \right).$$

Note that $A: \mathbb{R}^m \to \mathbb{R}^m$, $B: \mathbb{R}^n \to \mathbb{R}^m$, $C: \mathbb{R}^m \to \mathbb{R}^n$ and $D: \mathbb{R}^n \to \mathbb{R}^n$.

► Theorem 4.3: Consider two partitioned matrices

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right],$$

and

► Theorem 4.3: Consider two partitioned matrices

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right],$$

and

$$Q = \left[\begin{array}{cc} E & F \\ G & H \end{array} \right],$$

with matching sizes. Then

► Theorem 4.3: Consider two partitioned matrices

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right],$$

and

$$Q = \left[\begin{array}{cc} E & F \\ G & H \end{array} \right],$$

with matching sizes. Then

$$PQ = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix},$$

► Theorem 4.3: Consider two partitioned matrices

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right],$$

and

$$Q = \left[\begin{array}{cc} E & F \\ G & H \end{array} \right],$$

with matching sizes. Then

•

$$PQ = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix},$$

► In other words, the multiplication is like the usual matrix multiplication.

► Theorem 4.3: Consider two partitioned matrices

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right],$$

and

$$Q = \left[\begin{array}{cc} E & F \\ G & H \end{array} \right],$$

with matching sizes. Then

$$PQ = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix},$$

- ► In other words, the multiplication is like the usual matrix multiplication.
- Proof. The proof is by direct multiplication.

▶ For instance, for $1 \le i, j \le m$,

$$(PQ)_{ij} = \sum_{k=1}^{m+n} p_{ik} q_{kj} = \sum_{k=1}^{m} p_{ik} q_{kj} + \sum_{k=m+1}^{m+n} p_{ik} q_{kj}$$
$$= (AE)_{ij} + (BG)_{ij}$$

▶ For instance, for $1 \le i, j \le m$,

$$(PQ)_{ij} = \sum_{k=1}^{m+n} p_{ik} q_{kj} = \sum_{k=1}^{m} p_{ik} q_{kj} + \sum_{k=m+1}^{m+n} p_{ik} q_{kj}$$
$$= (AE)_{ij} + (BG)_{ij}$$

▶ For instance, for $1 \le i, j \le m$,

$$(PQ)_{ij} = \sum_{k=1}^{m+n} p_{ik} q_{kj} = \sum_{k=1}^{m} p_{ik} q_{kj} + \sum_{k=m+1}^{m+n} p_{ik} q_{kj}$$
$$= (AE)_{ij} + (BG)_{ij}$$

Similar computations work for other coordinates.

▶ For instance, for $1 \le i, j \le m$,

$$(PQ)_{ij} = \sum_{k=1}^{m+n} p_{ik} q_{kj} = \sum_{k=1}^{m} p_{ik} q_{kj} + \sum_{k=m+1}^{m+n} p_{ik} q_{kj}$$
$$= (AE)_{ij} + (BG)_{ij}$$

- Similar computations work for other coordinates.
- More generally, if $P = [A_{ij}]$, $Q = [B_{kl}]$ are partitioned matrices, with matching orders, then PQ is a partitioned matrix $[C_{ii}]$ with

$$C_{ij} = \sum_{k} A_{ik} B_{kj}.$$

▶ For instance, for $1 \le i, j \le m$,

$$(PQ)_{ij} = \sum_{k=1}^{m+n} p_{ik} q_{kj} = \sum_{k=1}^{m} p_{ik} q_{kj} + \sum_{k=m+1}^{m+n} p_{ik} q_{kj}$$
$$= (AE)_{ij} + (BG)_{ij}$$

- Similar computations work for other coordinates.
- More generally, if $P = [A_{ij}]$, $Q = [B_{kl}]$ are partitioned matrices, with matching orders, then PQ is a partitioned matrix $[C_{ij}]$ with

$$C_{ij} = \sum_{k} A_{ik} B_{kj}.$$

▶ Here, for the matrix multiplication to be meaningful, it is necessary that for fixed i, k, j, if the order of A_{ik} is $a \times b$ then the order of B_{kj} should be $b \times c$ for some c. This is what we mean by 'matching orders'.

Determinants of block upper triangular matrices

► Theorem 4.4: Consider a block upper triangular matrix

$$P = \left[\begin{array}{cc} A & B \\ 0 & D \end{array} \right]$$

where A, D are square matrices. Then

$$\det(P) = \det(A). \det(D).$$

Inverses of 2×2 upper triangular matrices.

► Theorem 4.5: Consider a block upper triangular matrix

$$P = \left[\begin{array}{cc} A & B \\ 0 & D \end{array} \right]$$

where A, D are square matrices. Then P is invertible if and only if A and D are invertible and in such a case,

$$P^{-1} = \left[\begin{array}{cc} A^{-1} & -A^{-1}BD^{-1} \\ 0 & D^{-1} \end{array} \right].$$

Inverses of 2×2 upper triangular matrices.

► Theorem 4.5: Consider a block upper triangular matrix

$$P = \left[\begin{array}{cc} A & B \\ 0 & D \end{array} \right]$$

where A, D are square matrices. Then P is invertible if and only if A and D are invertible and in such a case,

$$P^{-1} = \left[\begin{array}{cc} A^{-1} & -A^{-1}BD^{-1} \\ 0 & D^{-1} \end{array} \right].$$

From the formula det(P) = det(A).det(D), we know that if P is invertible, then det(A) and det(D) are non-zero and hence A, D are invertible.

Inverses of 2×2 upper triangular matrices.

► Theorem 4.5: Consider a block upper triangular matrix

$$P = \left[\begin{array}{cc} A & B \\ 0 & D \end{array} \right]$$

where A, D are square matrices. Then P is invertible if and only if A and D are invertible and in such a case,

$$P^{-1} = \left[\begin{array}{cc} A^{-1} & -A^{-1}BD^{-1} \\ 0 & D^{-1} \end{array} \right].$$

- From the formula det(P) = det(A). det(D), we know that if P is invertible, then det(A) and det(D) are non-zero and hence A, D are invertible.
- The formula for the inverse can be confirmed by verifying:

$$\left[\begin{array}{cc} A & B \\ C & D \end{array}\right] \cdot \left[\begin{array}{cc} A^{-1} & -A^{-1}BD^{-1} \\ 0 & D^{-1} \end{array}\right] = \left[\begin{array}{cc} I & 0 \\ 0 & I \end{array}\right].$$

A special case

► Corollary 4.6: For any matrix *B*,

$$\left[\begin{array}{cc} I & B \\ 0 & I \end{array}\right]^n = \left[\begin{array}{cc} I & nB \\ 0 & I \end{array}\right]$$

for every $n \in \mathbb{Z}$.

A special case

► Corollary 4.6: For any matrix *B*,

$$\left[\begin{array}{cc} I & B \\ 0 & I \end{array}\right]^n = \left[\begin{array}{cc} I & nB \\ 0 & I \end{array}\right]$$

for every $n \in \mathbb{Z}$.

▶ Proof: The result is clear for n = 0, 1. Now verify the formula for $n \in \mathbb{N}$ by induction. Taking inverses we have the result for all $n \in \mathbb{Z}$.

A special case

► Corollary 4.6: For any matrix *B*,

$$\left[\begin{array}{cc} I & B \\ 0 & I \end{array}\right]^n = \left[\begin{array}{cc} I & nB \\ 0 & I \end{array}\right]$$

for every $n \in \mathbb{Z}$.

- ▶ Proof: The result is clear for n = 0, 1. Now verify the formula for $n \in \mathbb{N}$ by induction. Taking inverses we have the result for all $n \in \mathbb{Z}$.
- ► This is actually a consequence of

$$\left[\begin{array}{cc} I & B \\ 0 & I \end{array}\right] \cdot \left[\begin{array}{cc} I & C \\ 0 & I \end{array}\right] = \left[\begin{array}{cc} I & B+C \\ 0 & I \end{array}\right].$$

The matrix product becomes simple addition here.

► Theorem 5.1: Consider a block matrix

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices.

► Theorem 5.1: Consider a block matrix

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices.

▶ (i) If *D* is invertible, then

$$P = \left[\begin{array}{cc} I & BD^{-1} \\ 0 & I \end{array} \right] \left[\begin{array}{cc} A - BD^{-1}C & 0 \\ 0 & D \end{array} \right] \left[\begin{array}{cc} I & 0 \\ D^{-1}C & I \end{array} \right].$$

► Theorem 5.1: Consider a block matrix

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices.

▶ (i) If *D* is invertible, then

$$P = \left[\begin{array}{cc} I & BD^{-1} \\ 0 & I \end{array} \right] \left[\begin{array}{cc} A - BD^{-1}C & 0 \\ 0 & D \end{array} \right] \left[\begin{array}{cc} I & 0 \\ D^{-1}C & I \end{array} \right].$$

► (ii) If A is invertible, then

$$P = \left[\begin{array}{cc} I & 0 \\ CA^{-1} & I \end{array} \right] \left[\begin{array}{cc} A & 0 \\ 0 & D - CA^{-1}B \end{array} \right] \left[\begin{array}{cc} I & A^{-1}B \\ 0 & I \end{array} \right].$$

► Theorem 5.1: Consider a block matrix

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices.

▶ (i) If *D* is invertible, then

$$P = \begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} I & 0 \\ D^{-1}C & I \end{bmatrix}.$$

▶ (ii) If *A* is invertible, then

$$P = \begin{bmatrix} I & 0 \\ CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & D - CA^{-1}B \end{bmatrix} \begin{bmatrix} I & A^{-1}B \\ 0 & I \end{bmatrix}.$$

▶ Remark The terms $A - BD^{-1}C$ and $D - CA^{-1}B$ appearing above are known as Schur Complements and they appear in various block matrix computations.

► Theorem 5.1: Consider a block matrix

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices.

► (i) If *D* is invertible, then

$$P = \left[\begin{array}{cc} I & BD^{-1} \\ 0 & I \end{array} \right] \left[\begin{array}{cc} A - BD^{-1}C & 0 \\ 0 & D \end{array} \right] \left[\begin{array}{cc} I & 0 \\ D^{-1}C & I \end{array} \right].$$

(ii) If A is invertible, then

$$P = \begin{bmatrix} I & 0 \\ CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & D - CA^{-1}B \end{bmatrix} \begin{bmatrix} I & A^{-1}B \\ 0 & I \end{bmatrix}.$$

- ightharpoonup Remark The terms $A BD^{-1}C$ and $D CA^{-1}B$ appearing above are known as Schur Complements and they appear in various block matrix computations.
- ▶ Here A and D need not be of same order.

▶ Proof. By direct computation:

$$\begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} I & 0 \\ D^{-1}C & I \end{bmatrix}$$

$$= \begin{bmatrix} A - BD^{-1}C & B \\ 0 & D \end{bmatrix} \begin{bmatrix} I & 0 \\ D^{-1}C & I \end{bmatrix}$$

$$= \begin{bmatrix} A & B \\ C & D \end{bmatrix}.$$

▶ Proof. By direct computation:

$$\begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} I & 0 \\ D^{-1}C & I \end{bmatrix}$$

$$= \begin{bmatrix} A - BD^{-1}C & B \\ 0 & D \end{bmatrix} \begin{bmatrix} I & 0 \\ D^{-1}C & I \end{bmatrix}$$

$$= \begin{bmatrix} A & B \\ C & D \end{bmatrix}.$$

► This proves (i). Similarly (ii) follows by multiplication. ■

► Theorem 5.2: Consider a block matrix

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices.

► Theorem 5.2: Consider a block matrix

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices.

▶ (i) If *D* is invertible, then

$$\det(P) = \det(A - BD^{-1}C).\det(D).$$

► Theorem 5.2: Consider a block matrix

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices.

▶ (i) If *D* is invertible, then

$$\det(P) = \det(A - BD^{-1}C).\det(D).$$

▶ (ii) If *A* is invertible, then

$$\det(P) = \det(A).\det(D - CA^{-1}B).$$

► Theorem 5.2: Consider a block matrix

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices.

▶ (i) If *D* is invertible, then

$$\det(P) = \det(A - BD^{-1}C).\det(D).$$

(ii) If A is invertible, then

$$\det(P) = \det(A).\det(D - CA^{-1}B).$$

▶ Proof. Clear from the factorization result and the fact that the determinant of a triangular block matrix is the product of determinants of diagonal blocks.

Inverses of 2×2 block matrices

► Theorem 5.3: Consider a block matrix

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices.

Inverses of 2×2 block matrices

► Theorem 5.3: Consider a block matrix

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices.

▶ (i) Assume D is invertible and $S := (A - BD^{-1}C)$ is invertible. Then P is invertible and

$$P^{-1} = \left[\begin{array}{ccc} S^{-1} & -S^{-1}BD^{-1} \\ -D^{-1}CS^{-1} & D^{-1} + D^{-1}CS^{-1}BD^{-1} \end{array} \right]$$

Inverses of 2×2 block matrices

► Theorem 5.3: Consider a block matrix

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices.

▶ (i) Assume D is invertible and $S := (A - BD^{-1}C)$ is invertible. Then P is invertible and

$$P^{-1} = \begin{bmatrix} S^{-1} & -S^{-1}BD^{-1} \\ -D^{-1}CS^{-1} & D^{-1} + D^{-1}CS^{-1}BD^{-1} \end{bmatrix}$$

• (ii) If A is invertible, and $T := D - CA^{-1}B$ is invertible, then P is invertible and

$$P^{-1} = \begin{bmatrix} A^{-1} + A^{-1}BT^{-1}CA^{-1} & -A^{-1}BT^{-1} \\ -T^{-1}CA^{-1} & T^{-1} \end{bmatrix}.$$

Some special cases

► Theorem 5.4: Suppose

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, B, C, D are square matrices of same sizes and C, D commute (CD = DC). Then

$$\det(P) = \det(AD - BC).$$

Some special cases

► Theorem 5.4: Suppose

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, B, C, D are square matrices of same sizes and C, D commute (CD = DC). Then

$$\det(P) = \det(AD - BC).$$

► Theorem 5.5: Suppose

$$P = \left[\begin{array}{cc} A & B \\ B & A \end{array} \right]$$

where A, B, are square matrices. Then

$$\det(P) = \det(A - B).\det(A + B).$$

Some special cases

► Theorem 5.4: Suppose

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, B, C, D are square matrices of same sizes and C, D commute (CD = DC). Then

$$\det(P) = \det(AD - BC).$$

► Theorem 5.5: Suppose

$$P = \left[\begin{array}{cc} A & B \\ B & A \end{array} \right]$$

where A, B, are square matrices. Then

$$\det(P) = \det(A - B).\det(A + B).$$

Exercise: Prove these theorems.

▶ How to compute the determinant of

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where B, C are $n \times n$ square matrices and either B or C is invertible.

▶ How to compute the determinant of

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where B, C are $n \times n$ square matrices and either B or C is invertible.

▶ Take

$$J = \left[\begin{array}{cc} 0 & I \\ I & 0 \end{array} \right]$$

of same order.

▶ How to compute the determinant of

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where B, C are $n \times n$ square matrices and either B or C is invertible.

▶ Take

$$J = \left[\begin{array}{cc} 0 & I \\ I & 0 \end{array} \right]$$

of same order.

▶ Then $det(J) = (-1)^n$. (Prove this!.)

How to compute the determinant of

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where B, C are $n \times n$ square matrices and either B or C is invertible.

▶ Take

$$J = \left[\begin{array}{cc} 0 & I \\ I & 0 \end{array} \right]$$

of same order.

- ▶ Then $det(J) = (-1)^n$. (Prove this!.)
- Now

$$\left[\begin{array}{cc} A & B \\ C & D \end{array}\right] = \left[\begin{array}{cc} 0 & I \\ I & 0 \end{array}\right] \cdot \left[\begin{array}{cc} C & D \\ A & B \end{array}\right]$$

Continuation

► Therefore,

$$\det(P) = (-1)^n \cdot \det\left(\begin{bmatrix} C & D \\ A & B \end{bmatrix} \right)$$

which can be computed using the formulae derived earlier.

▶ Suppose we want to compute the determinant of

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices, but not invertible.

Suppose we want to compute the determinant of

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices, but not invertible.

$$P_t = P + tI = \left[\begin{array}{cc} A + tI & B \\ C & D + tI \end{array} \right]$$

Suppose we want to compute the determinant of

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices, but not invertible.

▶ For $t \in \mathbb{R}$ consider

$$P_t = P + tI = \begin{bmatrix} A + tI & B \\ C & D + tI \end{bmatrix}$$

▶ Consider $f(t) = \det(A + tI)$ for $t \in \mathbb{R}$.

Suppose we want to compute the determinant of

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices, but not invertible.

$$P_t = P + tI = \begin{bmatrix} A + tI & B \\ C & D + tI \end{bmatrix}$$

- ▶ Consider $f(t) = \det(A + tI)$ for $t \in \mathbb{R}$.
- ▶ Then *f* is a polynomial in *t*. So it has finite number of zeros.

Suppose we want to compute the determinant of

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices, but not invertible.

$$P_t = P + tI = \begin{bmatrix} A + tI & B \\ C & D + tI \end{bmatrix}$$

- ▶ Consider $f(t) = \det(A + tI)$ for $t \in \mathbb{R}$.
- ▶ Then *f* is a polynomial in *t*. So it has finite number of zeros.
- ▶ Hence there exists $\epsilon > 0$ such that $f(t) \neq 0$ for $t \in (-\epsilon, \epsilon) \setminus \{0\}$.

Suppose we want to compute the determinant of

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices, but not invertible.

$$P_t = P + tI = \begin{bmatrix} A + tI & B \\ C & D + tI \end{bmatrix}$$

- ▶ Consider $f(t) = \det(A + tI)$ for $t \in \mathbb{R}$.
- ▶ Then *f* is a polynomial in *t*. So it has finite number of zeros.
- ▶ Hence there exists $\epsilon > 0$ such that $f(t) \neq 0$ for $t \in (-\epsilon, \epsilon) \setminus \{0\}$.
- ▶ Therefore A + tI is invertible for $t \in (-\epsilon, \epsilon) \setminus \{0\}$.

Suppose we want to compute the determinant of

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices, but not invertible.

$$P_t = P + tI = \begin{bmatrix} A + tI & B \\ C & D + tI \end{bmatrix}$$

- ▶ Consider $f(t) = \det(A + tI)$ for $t \in \mathbb{R}$.
- ▶ Then *f* is a polynomial in *t*. So it has finite number of zeros.
- ▶ Hence there exists $\epsilon > 0$ such that $f(t) \neq 0$ for $t \in (-\epsilon, \epsilon) \setminus \{0\}$.
- ▶ Therefore A + tI is invertible for $t \in (-\epsilon, \epsilon) \setminus \{0\}$.
- So using results proved earlier we can compute the determinant of P_t for $t \in (-\epsilon, +\epsilon) \setminus \{0\}$.

Suppose we want to compute the determinant of

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices, but not invertible.

$$P_t = P + tI = \begin{bmatrix} A + tI & B \\ C & D + tI \end{bmatrix}$$

- ▶ Consider $f(t) = \det(A + tI)$ for $t \in \mathbb{R}$.
- ▶ Then *f* is a polynomial in *t*. So it has finite number of zeros.
- ▶ Hence there exists $\epsilon > 0$ such that $f(t) \neq 0$ for $t \in (-\epsilon, \epsilon) \setminus \{0\}$.
- ► Therefore A + tI is invertible for $t \in (-\epsilon, \epsilon) \setminus \{0\}$.
- So using results proved earlier we can compute the determinant of P_t for $t \in (-\epsilon, +\epsilon) \setminus \{0\}$.
- ▶ Taking the limit as t tends to 0, we get the determinant of P.

Suppose we want to compute the determinant of

$$P = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where A, D are square matrices, but not invertible.

$$P_t = P + tI = \begin{bmatrix} A + tI & B \\ C & D + tI \end{bmatrix}$$

- ▶ Consider $f(t) = \det(A + tI)$ for $t \in \mathbb{R}$.
- ▶ Then *f* is a polynomial in *t*. So it has finite number of zeros.
- ▶ Hence there exists $\epsilon > 0$ such that $f(t) \neq 0$ for $t \in (-\epsilon, \epsilon) \setminus \{0\}$.
- ► Therefore A + tI is invertible for $t \in (-\epsilon, \epsilon) \setminus \{0\}$.
- So using results proved earlier we can compute the determinant of P_t for $t \in (-\epsilon, +\epsilon) \setminus \{0\}$.
- ▶ Taking the limit as t tends to 0, we get the determinant of P.
- END OF LECTURE 5.

