Convex Quadrangles

Your task is very simple. You will get the coordinates of **n** points in a plane. It is guaranteed that there are no three points on a straight line. You can choose any four points from these points to construct a quadrangle. Now, please tell me how many convex quadrangles you can construct.

Non-convex quadrangle

Input

The first line of input contains an integer \mathbf{z} ($z \le 20$), indicating the number of test cases. For each test case, the first line contains an integer \mathbf{n} ($4 \le n \le 700$), indicating the number of points. Each of the next \mathbf{n} lines contains two integers \mathbf{x} and \mathbf{y} (- $1000000 \le x$, $y \le 1000000$), indicating the coordinate of corresponding point.

Output

For each test case, output a single integer, the number of convex quadrangles you can construct, in a separate line.

Sample Input	Sample Output
2	1
4	0
0 0	
0 1	
10	
11	
4	
0 0	
10	
0 1	
-1 -1	