66

ANALIZA WIDMOWA ZA POMOCĄ SPEKTROSKOPU

1. ZAGADNIENIA TEORETYCZNE

- Emisja światła;
- budowa atomu;
- rodzaje widm;
- serie widmowe;
- budowa i zasada działania spektroskopu; rozszczepienie światła przez pryzmat (dyspersja), analiza widmowa za pomocą spektroskopu.

2. POMIARY

Do badania widm używamy spektroskopu, który składa się ze stolika wyposażonego w pryzmat P, kolimator K, lunetę L i tubus M (rysunek poniżej).

Kolimator K służy do przekształcenia rozbieżnej wiązki badanego światła na wiązkę równoległą (posiada soczewkę skupiającą i pionową szczelinę o regulowanej szerokości w ognisku soczewki).

Skala spektroskopu znajduje się w płaszczyźnie ogniskowej soczewki osadzonej w dodatkowym tubusie M.

Lunetka L służy do obserwacji widma na tle skali.

Uwaga! Ponieważ w układzie mamy do czynienia z transformatorem dającym wysokie napięcie nie wolno samodzielnie dokonywać żadnych przełączeń w "czarnej skrzynce".

- 1. W obecności prowadzącego włączyć wzorcowe źródło światła hel.
- **2.** Ustawić spektroskop tak, aby otrzymać "ostre" prążki widma helu na tle skali spektroskopu. W tym celu należy:
- kolimator ustawić pod kątem ok. 30° do ścianki pryzmatu; szczelinę kolimatora oświetlić światłem helu;
- oświetlić skalę umieszczoną w tubusie, a tubus ustawić w ten sposób aby światło po odbiciu od ścianki pryzmatu było widoczne w okularze lunety wraz ze skala;
- zamocować tubus (dokręcić jego śruby).
- **3.** Zapisać położenia "s" linii widmowych charakterystycznych dla helu, opisać ich barwę oraz intensywność.
- 4. Nie zmieniając ustawienia tubus-kolimator wykonać pomiar położenia linii widmowych

dla trzech nieznanych pierwiastków oznaczonych jako 1, 2, 3.

Za każdym razem włączenie nowego źródła dokonuje prowadzący zajęcia.

Uwaga! Podczas przerw w obserwacji widm źródło zasilania powinno być wyłączone. Specjalnie do tego celu zamontowano wyłącznik na zewnątrz tzw. "czarnej skrzynki".

3. OPRACOWANIE WYNIKÓW POMIARÓW

- 1. Dla źródła wzorcowego (helu) wyznaczyć długości fali dla zaobserwowanych linii widmowych. W tym celu należy skorzystać z tabelki "Długości fal linii widmowych" dołączonych na końcu instrukcji.
- 2. Wykreślić krzywą dyspersji dla helu (wzorcowego źródła światła), czyli zależność położenia linii widmowych na skali lunetki spektroskopu s od odpowiadających im długości fal λ z uwzględnieniem niepewności standardowej u(s) (Instrukcja ONP rozdział 4.2).
- 3. Korzystając z krzywej dyspersji określić długości fal linii dla źródeł 1, 2, i 3. W tym celu należy przyporządkować każdej zarejestrowanej na pozycji s_i linii jej długość λ_i .
- 4. <u>Zidentyfikować poszczególne źródła porównując długości linii widmowych odczytanych z krzywej dyspersji wraz z opisem barwy każdej linii z wartościami podanymi w tabeli.</u>
- 5. Przedyskutować otrzymane wyniki.

4. LITERATURA

H. Szydłowski - "Pracownia fizyczna"

T. Dryński - "Ćwiczenia laboratoryjne z fizyki"

Podręczniki kursowe

Długości fal linii widmowych niektórych pierwiastków

pierwiastek	długość fali [nm]	barwa linii	intensywność
HEL	438,8	fioletowa	bardzo słaba
	447,2	fioletowa	słaba
	471,3	niebieska	silna
	492,2	niebiesko - zielona	średnia
	501,6	zielona	średnia
	587,6	żółta	bardzo silna
	667,8	czerwona	średnia
	706,5	czerwona	średnia
RTĘĆ	253,7	ultrafiolet	bardzo silna
	313,2	ultrafiolet	słaba
	366,3	ultrafiolet	średnia
	404,7	fioletowa	bardzo słaba
	407,8	fioletowa	słaba
	435,8	niebieska	średnia
	491,6	niebiesko - zielona	średnia
	546,1	zielona	silna
	577,0	żółta	bardzo silna
	579,1	żółta	bardzo silna
	623,4	czerwona	słaba
NEON	453,7	fiolet	słaba
	482,7	niebieska	średnia
	534,1	zielona	średnia
	540,0	zielona	średnia
	585,2	żółta	bardzo silna
	594,5	żółta	bardzo silna
	614,3	pomarańczowa	silna
	640,2	czerwona	silna
	659,9	ciemno-czerwona	średnia
	724,5	ciemno - czerwona	słaba
ARGON	415,8	fioletowa	średnia
	470,2	niebieska	silna
	549,5	zielona	średnia
	565,0	zielona	słaba
	591,2	żółta	średnia
	641,6	czerwona	słaba
	696,5	czerwona	średnia