SDOF energetics

E. Savi

oscillator

Notations Energetic

Stationar

Stationary

forced response Equipartit

Stationary evolutionary response

Summary

Energetics of the single DOF oscillator MG3416-Advanced Structural Acoustics - Lecture #1 part B

É. Savin^{1,2} eric.savin@{centralesupelec,onera}.fr

¹Information Processing and Systems Dept. ONERA, France

²Mechanical and Environmental Engineering Dept. CentraleSupélec, France

September 29, 2021

Outline

SDOF energetics

É. Saviı

SDOF oscillator (reminder

Notations Energetic quantities

Stationary excitation

forced response Equipartition Stationary evolutionary response

Summary

1 SDOF oscillator (reminder)

- Notations
- Energetic quantities

2 Stationary excitation

- Stationary forced response
- Equipartition
- Stationary evolutionary response

Outline

SDOF energetics

É. Savii

SDOF oscillator (reminder)

Notations (

Energetic quantities

Stationary excitation

forced response Equipartition Stationary evolutionary

Summary

- 1 SDOF oscillator (reminder)
 - Notations
 - Energetic quantities
- 2 Stationary excitation
 - Stationary forced response
 - Equipartition
 - Stationary evolutionary response

Single DOF oscillator Notations

SDOF energetics

Notations

■ The single degree-of-freedom (DOF) oscillator:

$$\begin{cases} M\ddot{u}(t) + D\dot{u}(t) + Ku(t) = f(t), & t \in \mathbb{R}, \\ u(0) = u_0, \\ \dot{u}(0) = v_0; \end{cases}$$

M > 0: mass, $D \ge 0$: damping, and K > 0: stiffness.

- Fundamental parameters:
 - $\omega_p = \sqrt{\frac{K}{D}}$: the undamped natural (angular) frequency, $\xi_p = \frac{1}{2\sqrt{KM}}$: the critical damping rate, $\eta_p = 2\xi_p$: the loss factor.

$\begin{array}{c} {\rm SDOF} \\ {\rm energetics} \end{array}$

E. Savin

SDOF oscillator

Notations Energetic

Stationary

excitation

response Equipartitie Stationary

Summar

Definition

The free response $t \mapsto u^{\ell}(t)$ is the solution of:

$$\begin{cases} M\ddot{u}(t) + D\dot{u}(t) + Ku(t) = 0, & t \ge 0, \\ u(0) = u_0, & \\ \dot{u}(0) = v_0. & \end{cases}$$

• Let $\omega_D = \omega_p \sqrt{1 - \xi_p^2}$, then:

$$u^{\ell}(t) = e^{-\xi_p \omega_p t} \left(u_0 \cos \omega_D t + \frac{\xi_p \omega_p u_0 + v_0}{\omega_D} \sin \omega_D t \right).$$

■ Property: if D > 0, $\lim_{t \to +\infty} u^{\ell}(t) = \lim_{t \to +\infty} \dot{u}^{\ell}(t) = 0$.

response Equipartitio Stationary evolutionary response

Summary

Definition

The forced response $t \mapsto u^f(t)$ is the solution of:

$$M\ddot{u}(t) + D\dot{u}(t) + Ku(t) = f(t), \quad t \in \mathbb{R}.$$

■ Then:

$$u^{f}(t) = \int_{-\infty}^{t} \mathbb{h}(t-\tau)f(\tau) d\tau = \int_{0}^{+\infty} \mathbb{h}(\tau)f(t-\tau) d\tau,$$

where $h: \mathbb{R} \to \mathbb{R}$ is the impulse response function of the SDOF oscillator:

$$\mathbb{h}(t) = \mathbb{1}_{[0,+\infty[}(t) \times \frac{1}{M\omega_D} e^{-\xi_p \omega_p t} \sin \omega_D t.$$

Single DOF oscillator

Frequency response function

SDOF energetics

SDOF oscillator (reminder)

Notations Energetic quantities

Stationary excitation

excitation

response
Equipartitie

response

Summary

■ $t \mapsto h(t)$ is integrable and square integrable on \mathbb{R} , and its Fourier transform is:

$$\widehat{\mathbf{h}}(\omega) = \int_{\mathbb{R}} e^{-\mathrm{i}\omega t} \, \mathbf{h}(t) \, \mathrm{d}t = \frac{1}{M(\omega_p^2 - \omega^2 + 2\mathrm{i}\xi_p \omega_p \omega)} \,.$$

■ $\omega \mapsto \hat{h}(\omega)$ is integrable and square integrable on \mathbb{R} , and its inverse Fourier transform is:

$$h(t) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\omega t} \, \hat{h}(\omega) \, d\omega.$$

Usual quadratures:

$$\int_0^{+\infty} |\widehat{\mathbf{h}}(\omega)|^2 d\omega = \frac{\pi}{2DK},$$
$$\int_0^{+\infty} \omega^2 |\widehat{\mathbf{h}}(\omega)|^2 d\omega = \frac{\pi}{2DM}.$$

$\begin{array}{c} \textbf{Single DOF oscillator} \\ \textbf{Impedance} \end{array}$

SDOF energetics

E. Savir

SDOF oscillator

Notations Energetic

Stationary excitation Stationary forced

response
Equipartition
Stationary
evolutionary
response

Summar

■ The impedance $\omega \mapsto Z(\omega)$ of the SDOF oscillator:

$$i\omega Z(\omega) = M(\omega_p^2 - \omega^2 + 2i\xi_p\omega_p\omega).$$

- $\omega'_p = \omega_p \sqrt{1 2\xi_p^2}$: the natural resonance frequency (for $0 < \xi_p < \frac{1}{\sqrt{2}}$);
- $b_e = \pi \xi_p \omega_p (1 \xi_p^2)$: the equivalent bandwidth, s.t.

$$b_{\rm e}|\hat{\mathbf{h}}(\omega_p')|^2 = \int_0^{+\infty} |\hat{\mathbf{h}}(\omega)|^2 d\omega;$$

■ $b_p \simeq \pi \xi_p \omega_p = \frac{\pi}{2} \Delta_p$, where $\Delta_p = \eta_p \omega_p$ is the half-power bandwidth.

$\begin{array}{c} {\rm SDOF} \\ {\rm energetics} \end{array}$

SDOF oscillator (reminder

Notations Energetic quantities

Stationary

excitation

response

Stationary evolutionary

Summary

Definition

The evolutionary response $t \mapsto u(t)$ is the solution of:

$$M\ddot{u}(t) + D\dot{u}(t) + Ku(t) = f(t), \quad t \ge 0,$$

 $u(0) = u_0,$
 $\dot{u}(0) = v_0.$

■ Then:

$$u(t) = u_0 e^{-\xi_p \omega_p t} \left(\cos \omega_D t + \frac{\xi_p}{\sqrt{1 - \xi_p^2}} \sin \omega_D t \right)$$
$$+ \frac{v_0}{\omega_D} e^{-\xi_p \omega_p t} \sin \omega_D t + \int_0^t h(t - \tau) f(\tau) d\tau.$$

■ **Property**: if D > 0, $\lim_{t \to +\infty} |u(t) - u^f(t)| = 0$.

Energetic quantities Definitions

SDOF energetics

E. Savir

oscillator (reminder Notations

Notations Energetic quantities

Stationary excitation Stationary forced response Equipartitic Stationary evolutionary

Summary

Definition

- The kinetic energy: $\mathcal{E}_{c}(t) = \frac{1}{2}M\dot{u}(t)^{2}$,
- The potential energy: $\mathcal{E}_{p}(t) = \frac{1}{2}Ku(t)^{2}$,
- The mechanical energy: $\mathcal{E}(t) = \mathcal{E}_{c}(t) + \mathcal{E}_{p}(t)$,
- The dissipated power: $\Pi_{\rm d}(t) = D\dot{u}(t)^2$,
- The input power: $\Pi_{IN}(t) = f(t)\dot{u}(t)$.
- The instantaneous power balance reads:

$$\dot{\mathcal{E}}(t) = \Pi_{\rm IN}(t) - \Pi_{\rm d}(t) .$$

■ It is subsequently specialized to the free, forced and evolutionary responses of the single DOF oscillator.

SDOF energetics

É. Savi

SDOF oscillator

Notations Energetic quantities

Stationary excitation

forced response Equipartition Stationary evolutionary

Summary

■ The free response mechanical energy when $\xi_p \ll 1$:

$$\mathcal{E}^{\ell}(t) \simeq \mathcal{E}_0 e^{-\eta_p \omega_p t}$$
,

where
$$\mathcal{E}_0 = \frac{1}{2}Mv_0^2 + \frac{1}{2}Ku_0^2$$
.

■ The power balance integrated between 0 and t > 0:

$$\mathcal{E}_0 = \mathcal{E}_d^{\ell}(t) + \mathcal{E}^{\ell}(t) ,$$

hence
$$\mathcal{E}_d^{\ell}(\infty) = \mathcal{E}_0 = \int_0^{+\infty} \Pi_d^{\ell}(t) dt$$
.

Energetic quantities Forced response

SDOF energetics

É. Savir

oscillator (reminder) Notations

Notations Energetic quantities

Stationary excitation

Stationary forced response Equipartitio Stationary evolutionary response

Summary

■ **Data**: square integrable (finite energy) excitation with limited bandwidth,

$$|\widehat{f}(\omega)| \leq C \ \forall \omega \in \mathbb{R}; \ \widehat{f}(\omega) = 0 \ \forall \omega \notin [-\omega_f, \omega_f].$$

■ Then $\lim_{|t|\to+\infty} f(t) = 0$, and consequently if D > 0:

$$\lim_{|t| \to +\infty} u^f(t) = \lim_{|t| \to +\infty} \dot{u}^f(t) = 0.$$

■ The power balance integrated between $-\infty$ and t:

$$\mathcal{E}^{f}(t) = \int_{-\infty}^{t} \Pi_{IN}(\tau) d\tau - \int_{-\infty}^{t} \Pi_{d}^{f}(\tau) d\tau$$
$$= \mathcal{E}_{IN}(t) - \mathcal{E}_{d}^{f}(t)$$

since $\mathcal{E}^f(-\infty) = 0$. But $\mathcal{E}^f(+\infty) = 0$ as well, hence:

$$\mathcal{E}_{\mathrm{IN}}(+\infty) = \mathcal{E}_{\mathrm{d}}^f(+\infty)$$
.

Energetic quantities Equipartition in the forced response

SDOF energetics

E. Savir

SDOF oscillator (reminder) Notations Energetic quantities

Stationary excitation Stationary forced response Equipartition Stationary evolutionary response

Summary

- **Hypotheses** (wideband excitation):
 - $\xi_p \ll 1;$
 - iii $\omega \mapsto \hat{f}(\omega)$ varies slowly on $[-\omega_f, \omega_f]$ and $\omega_f \gg \omega_p$.
- Then:

$$\int_{\mathbb{R}} \mathcal{E}_{c}^{f}(t) dt = \frac{M}{4\pi} \int_{\mathbb{R}} \omega^{2} |\hat{\mathbb{h}}(\omega)|^{2} |\hat{f}(\omega)|^{2} d\omega \qquad \text{(Plancherel)}$$

$$\simeq \frac{M}{4\pi} |\hat{f}(\omega_{p})|^{2} \int_{-\omega_{f}}^{\omega_{f}} \omega^{2} |\hat{\mathbb{h}}(\omega)|^{2} d\omega \qquad \text{(using (ii))}$$

$$\simeq \frac{M}{2\pi} |\hat{f}(\omega_{p})|^{2} \int_{0}^{+\infty} \omega^{2} |\hat{\mathbb{h}}(\omega)|^{2} d\omega \qquad \text{(using (i))}$$

$$= \frac{|\hat{f}(\omega_{p})|^{2}}{4D}$$

■ Likewise $\int_{\mathbb{R}} \mathcal{E}_{p}^{f}(t) dt \simeq \frac{|\hat{f}(\omega_{p})|^{2}}{4D}$, independently of the mass or the stiffness.

Energetic quantities

Equipartition in the forced response (extended proof)

SDOF energetics

É. Savi

SDOF oscillator (reminder)

Notations Energetic quantities

Stationary excitation

Stationary

response Equipartiti

Stationary evolutionary response

Summary

$$\begin{split} \int_{\mathbb{R}} \mathcal{E}_{c}^{f}(t) \, \mathrm{d}t &= \frac{M}{2} \int_{\mathbb{R}} (\dot{u}^{f}(t))^{2} \mathrm{d}t \\ &= \frac{M}{4\pi} \int_{\mathbb{R}} |\hat{u}^{f}(\omega)|^{2} \mathrm{d}\omega \quad \text{(Plancherel } \int_{\mathbb{R}} |u(t)|^{2} \mathrm{d}t = \frac{1}{2\pi} \int_{\mathbb{R}} |\hat{u}(\omega)|^{2} \mathrm{d}\omega \text{)} \\ &= \frac{M}{4\pi} \int_{\mathbb{R}} |\mathrm{i}\omega \hat{u}^{f}(\omega)|^{2} \mathrm{d}\omega \quad \text{(Fourier transform } \hat{u}(\omega) = \mathrm{i}\omega \hat{u}(\omega) \text{)} \\ &= \frac{M}{4\pi} \int_{\mathbb{R}} \omega^{2} |\hat{\mathbf{h}}(\omega)|^{2} |\hat{f}(\omega)|^{2} \, \mathrm{d}\omega \quad (u^{f}(t) = \int_{-\infty}^{t} \mathbf{h}(t-\tau) f(\tau) \, \mathrm{d}\tau \\ &\qquad \qquad \qquad \Rightarrow \hat{u}^{f}(\omega) = \hat{\mathbf{h}}(\omega) \hat{f}(\omega) \text{)} \\ &\simeq \frac{M}{4\pi} |\hat{f}(\omega_{p})|^{2} \int_{-\omega_{f}}^{\omega_{f}} \omega^{2} |\hat{\mathbf{h}}(\omega)|^{2} \, \mathrm{d}\omega \quad \text{(using (ii))} \\ &\simeq \frac{M}{2\pi} |\hat{f}(\omega_{p})|^{2} \int_{0}^{+\infty} \omega^{2} |\hat{\mathbf{h}}(\omega)|^{2} \, \mathrm{d}\omega \quad \text{(using (ii))} \\ &= \frac{|\hat{f}(\omega_{p})|^{2}}{4D} \quad (\int_{0}^{+\infty} \omega^{2} |\hat{\mathbf{h}}(\omega)|^{2} \, \mathrm{d}\omega = \frac{\pi}{2DM} \text{)} \end{split}$$

Energetic quantities Energy loss in the forced response

$\begin{array}{c} {\rm SDOF} \\ {\rm energetics} \end{array}$

oscillator (reminder) Notations Energetic

Stationary excitation

forced response Equipartition Stationary

Summary

■ Then:

$$\begin{split} \mathcal{E}_{\mathrm{d}}^f(+\infty) &= \int_{\mathbb{R}} D(\dot{u}^f(t))^2 \, \mathrm{d}t \\ &= \frac{D}{2\pi} \int_{\mathbb{R}} \omega^2 |\hat{\mathbf{h}}(\omega)|^2 |\hat{f}(\omega)|^2 \, \mathrm{d}\omega \qquad \text{(Plancherel)} \\ &\simeq \frac{D}{2\pi} |\hat{f}(\omega_p)|^2 \int_{\mathbb{R}} \omega^2 |\hat{\mathbf{h}}(\omega)|^2 \, \mathrm{d}\omega \quad \text{(using (i)-(ii))} \\ &= \frac{|\hat{f}(\omega_p)|^2}{2M} \,, \end{split}$$

and the overall dissipated energy is independent of the damping.

■ It is related to the overall mechanical energy by:

$$\mathcal{E}_{\mathrm{d}}^{f}(+\infty) \simeq \int_{\mathbb{D}} \eta_{p} \omega_{p} \mathcal{E}^{f}(t) \, \mathrm{d}t.$$

Energetic quantities Evolutionary response

SDOF energetics

É. Savi

SDOF

Notations Energetic quantities

Stationary

excitation

forced

Equipartition Stationary evolutionary

Summary

■ The power balance integrated between t = 0 and $t = +\infty$:

$$\mathcal{E}_{\mathrm{d}}(+\infty) = \mathcal{E}_{\mathrm{0}} + \mathcal{E}_{\mathrm{IN}}(+\infty) \,. \label{eq:epsilon}$$

Outline

SDOF energetics

É. Savi

SDOF oscillator (reminder

Notations Energetic quantities

Stationary excitation

forced response Equipartition Stationary evolutionary response

Summary

1 SDOF oscillator (reminder)

- Notations
- Energetic quantities

2 Stationary excitation

- Stationary forced response
- Equipartition
- \blacksquare Stationary evolutionary response

Stationary excitation

Forced response of the SDOF oscillator

SDOF energetics

E. Savi

oscillator (reminder

Notations Energetic quantities

Stationary excitation Stationary

forced
response
Equipartition
Stationary
evolutionary
response

Summary

- **Data**: $(F_t, t \in \mathbb{R})$ is a \mathbb{R} -valued second order, centered stochastic process defined on (Ω, \mathcal{F}, P) , indexed on \mathbb{R} , and mean-square stationary.
- **Hypothesis**: $\exists \omega \mapsto S_F(\omega) : \mathbb{R} \to \mathbb{R}_+$ even, integrable.

Proposition

- $(U_t^f, t \in \mathbb{R})$ is a \mathbb{R} -valued second order, centered stochastic process defined on (Ω, \mathcal{F}, P) , indexed on \mathbb{R} , and mean-square stationary s.t. $S_U(\omega) = |\hat{\mathbb{h}}(\omega)|^2 S_F(\omega)$.
- The same holds for its mean-square derivatives $(\dot{U}_t^f, t \in \mathbb{R})$ and $(\ddot{U}_t^f, t \in \mathbb{R})$, with $S_{\dot{U}}(\omega) = \omega^2 S_U(\omega)$ and $S_{\ddot{U}}(\omega) = \omega^4 S_U(\omega)$, respectively.

SDOF energetics

E. Savin

SDOF oscillator

Notations Energetic quantities

Stationary excitation

Stationary forced response

Equipartition Stationary evolutionary response

ummarv

■ The instantaneous power balance reads:

$$\dot{\mathcal{E}}_t^f = \Pi_{\mathrm{IN},t} - \Pi_{\mathrm{d},t}^f \,,$$

as an equality of second-order random variables.

• Considering the mathematical expectation with:

$$\mathbb{E}\{(U_t^f)^2\} = R_U(t=0) = \text{Constant independent of } t,$$

$$\mathbb{E}\{(\dot{U}_t^f)^2\} = -\frac{\mathrm{d}^2 R_U}{\mathrm{d}t^2}(t=0) = \text{Constant independent of } t,$$

yields $\mathbb{E}\{\mathcal{E}_t^f\}$ = Constant, and $\mathbb{E}\{\dot{\mathcal{E}}_t^f\}$ = 0. Hence:

$$\mathbb{E}\{\Pi_{\mathrm{IN},t}\} = \mathbb{E}\{\Pi_{\mathrm{d},t}^f\}.$$

$\begin{array}{c} {\rm SDOF} \\ {\rm energetics} \end{array}$

2. 54.

SDOF oscillator

Notations Energetic quantities

Stationar

Stationary forced response

Equipartition

Stationary evolutionary response

Summary

■ **Hypotheses** (wideband excitation):

- $\xi_p \ll 1;$
- ii $\omega \mapsto S_F(\omega)$ varies slowly on $\left[-\omega_p \frac{b_e}{2}, \omega_p + \frac{b_e}{2}\right]$.
- Then:

$$\mathbb{E}\{\mathcal{E}_{c,t}^f\} = \frac{M}{2} \int_{\mathbb{R}} \omega^2 |\widehat{\mathbf{h}}(\omega)|^2 S_F(\omega) d\omega$$

$$\simeq \frac{M}{2} S_F(\omega_p) \int_{\mathbb{R}} \omega^2 |\widehat{\mathbf{h}}(\omega)|^2 d\omega \quad \text{(using (i)-(ii))}$$

$$= \frac{\pi S_F(\omega_p)}{2D}$$

Likewise $\mathbb{E}\{\mathcal{E}_{\mathbf{p},t}^f\} \simeq \frac{\pi S_F(\omega_p)}{2D}$, independently of the mass or the stiffness, s.t.

$$\boxed{\mathbb{E}\{\mathcal{E}_t^f\} \simeq \frac{\pi S_F(\omega_p)}{D}}.$$

SDOF energetics

E. Savi

SDOF oscillator

Notations Energetic quantities

Stational excitation

forced response Equipartition

Stationary evolutionary

lummary

$$\begin{split} \mathbb{E}\{\mathcal{E}_{\mathrm{c},t}^f\} &= \frac{M}{2}\mathbb{E}\{(\dot{U}_t^f)^2\} \\ &= \frac{M}{2}R_{\dot{U}}(0) \quad (\mathbb{E}\{\dot{U}_t\dot{U}_{t'}\} = R_{\dot{U}}(t-t') \implies \mathbb{E}\{(\dot{U}_t)^2\} = R_{\dot{U}}(t-t) = R_{\dot{U}}(0)) \\ &= \frac{M}{2}\int_{\mathbb{R}}S_{\dot{U}}(\omega)\mathrm{d}\omega \quad (R_{\dot{U}}(t) = \int_{\mathbb{R}}\mathrm{e}^{\mathrm{i}\omega t}\,S_{\dot{U}}(\omega)\mathrm{d}\omega \implies R_{\dot{U}}(0) = \int_{\mathbb{R}}S_{\dot{U}}(\omega)\mathrm{d}\omega) \\ &= \frac{M}{2}\int_{\mathbb{R}}\omega^2|\hat{\mathbf{h}}(\omega)|^2S_F(\omega)\,\mathrm{d}\omega \quad (S_{\dot{U}}(\omega) = \omega^2S_U(\omega) = \omega^2|\hat{\mathbf{h}}(\omega)|^2S_F(\omega)) \\ &\simeq \frac{M}{2}S_F(\omega_p)\int_{\mathbb{R}}\omega^2|\hat{\mathbf{h}}(\omega)|^2\,\mathrm{d}\omega \quad (\mathrm{using}\;(\mathrm{i})\text{-}(\mathrm{i}\mathrm{i})) \\ &= \frac{\pi S_F(\omega_p)}{2D} \quad (\int_0^{+\infty}\omega^2|\hat{\mathbf{h}}(\omega)|^2\mathrm{d}\omega = \frac{\pi}{2DM} = \frac{1}{2}\int_{\mathbb{R}}\omega^2|\hat{\mathbf{h}}(\omega)|^2\mathrm{d}\omega) \end{split}$$

$\begin{array}{c} {\rm SDOF} \\ {\rm energetics} \end{array}$

E. Savi

SDOF oscillator

Notations Energetic quantities

Stationar

Stationar forced

Equipartition Stationary

evolutionary response

Summary

■ Then:

$$\begin{split} \mathbb{E}\{\Pi_{\mathrm{d},t}^f\} &= D \int_{\mathbb{R}} \omega^2 |\widehat{\mathbf{h}}(\omega)|^2 S_F(\omega) \, \mathrm{d}\omega \\ &\simeq D S_F(\omega_p) \int_{\mathbb{R}} \omega^2 |\widehat{\mathbf{h}}(\omega)|^2 \, \mathrm{d}\omega \quad \text{(using (i)-(ii))} \\ &= \frac{\pi S_F(\omega_p)}{M} \,, \end{split}$$

and the average dissipated power is independent of the damping.

■ It is related to the average mechanical energy by:

$$\boxed{\mathbb{E}\{\Pi_{\mathrm{d},t}^f\} \simeq \eta_p \omega_p \mathbb{E}\{\mathcal{E}_t^f\}}.$$

Stationary excitation Stationary evolutionary response

SDOF energetics

É. Savi

SDOF oscillator (reminder Notations

Notations Energetic quantities

Stationary excitation Stationary

response Equipartitio

Stationary evolutionary response

Summary

Assuming null initial conditions to simplify, the evolutionary response $(U_t, t \ge 0)$ is a \mathbb{R} -valued second-order, centered stochastic process defined on (Ω, \mathcal{F}, P) , indexed on \mathbb{R}_+ , which is non stationary:

$$U_t = \int_0^t \mathbb{h}(t-\tau) F_\tau \,\mathrm{d}\tau.$$

■ Property: if D > 0, $\lim_{t \to +\infty} ||U_t - U_t^f|| = 0$.

Summary

SDOF energetics

É. Savii

oscillator (reminder Notations Energetic

excitation
Stationary
forced
response
Equipartitio
Stationary
evolutionary

Summary

- "Equivalence" between:
 - 1 The overall energetic quantities for the forced response to a deterministic, wideband excitation;
 - 2 The average energetic quantities for the stationary forced response to a random, wideband (m.s.) stationary excitation;
 - 3 The time average energetic quantities for the forced response of the randomized SDOF oscillator to an harmonic excitation.
- These different cases are often (unduly) merged in the structural-acoustics literature.
- Outlook: multiple DOF systems.