## 北京工业大学 2021—2022 学年第一学期 《高等数学(工)—1》期中考试试卷

考试说明: 考试日期: 21年11月14日,考试时间: 95分钟,考试方式: 闭卷本人承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,在考试过程中自觉遵守有关规定和纪律,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考,若有违反,愿接受相应处分。

| 承诺人:                    | 学号:                                     | 班号: |
|-------------------------|-----------------------------------------|-----|
|                         |                                         |     |
| 00000000000000000000000 | , , , , , , , , , , , , , , , , , , , , |     |

注:本试卷共 三 大题, 共 6 页, 满分 100 分, 考试时须使用附加的统一草稿纸。

卷 面 成 绩 汇 总 表 (阅卷教师填写)

| 题 号 | _  | 二  | 三  | 总成绩 |
|-----|----|----|----|-----|
| 满分  | 30 | 60 | 10 |     |
| 得 分 |    |    |    |     |

得 分

一、填空题:(本大题共10小题,每小题3分,共30分)

1. 
$$\lim_{x \to 0} \frac{e^x + \sin x - 1}{\ln(1+x)} =$$

2. 曲线 
$$\begin{cases} x = t^2 - 1 \\ y = t - t^3 \end{cases}$$
 在  $t = 1$  处的切线方程为\_\_\_\_\_\_

3. 设 
$$y = f(x)$$
 由方程  $2y^3 - 2y^2 + 2xy - x^2 = 1$  确定,则  $\frac{dy}{dx} =$ \_\_\_\_\_\_

4. 设函数 
$$y = \left(\frac{x}{1+x}\right)^x$$
,则  $dy|_{x=1} =$ \_\_\_\_\_\_

5. 曲线 
$$y = \frac{1 + e^{-x^2}}{1 - e^{-x^2}}$$
 的水平渐近线为\_\_\_\_\_

- 7. 若 f(u) 可导,则  $y = f(\sin \sqrt{x})$  的导数为\_\_\_\_\_
- 8. 函数  $f(x) = \arctan \frac{1-x}{1+x}$  在区间 [0,1] 上的最大值为\_\_\_\_\_\_
- 10. 抛物线  $y = \sqrt{8x}$  上曲率等于  $\frac{16}{125}$  的点为\_\_\_\_\_\_
- 二、计算题:(本大题共6小题,每小题10分,共60分)



如果有间断点请指出其类型.

得 分

12. 设  $y = \frac{x}{x^2 + 3x + 2}$ , 求 y', y'' 及  $y^{(n)}$ .

得 分

13. 已知点(1,3)为曲线  $f(x) = ax^3 + bx^2$ 的拐点. (1) 求常数 a,b;

(2) 对确定常数 a,b 的曲线, 求它的极值点和极值.

得 分

14. 计算 
$$\lim_{x\to 0} \frac{\sin^2 x - (\sin x) \cdot \sin(\sin x)}{x^4}$$
.

得 分

$$\begin{cases} x = \sin t, \\ y = t \sin t + \cos t, \end{cases} \stackrel{\text{対}}{\Rightarrow} \frac{d^2 y}{dx^2} = \frac{\pi}{4}.$$

得 分

16. 设 
$$f(x)$$
 可导且  $\lim_{x\to 0} \frac{f(x)}{x} = 0$ ,  $f''(0) = 4$ , 计算  $\lim_{x\to 0} \left[1 + \frac{f(x)}{x}\right]^{\frac{1}{x}}$ .

三、证明题:(本大题共2小题,每小题5分,共10分)

得 分

17. 当0 < x < 2时,证明 $4x \ln x \ge x^2 + 2x - 3$ .

得 分

18. 设 f(x) 在 [0,1] 上二阶可导且 f(0)=f(1),证明: 至少存在一点  $\xi \in (0,1), \ \$ 使得  $f''(\xi)=\frac{2f'(\xi)}{1-\xi}$ .