Unidad IV: Diferenciación e Integración Numérica

Prof. José Luis Ramírez

March 16, 2025

Unidad IV: Diferenciación e Integración Numérica

Prof. José Luis Ramírez

March 16, 2025

Contenido

Introducción

- 2 Diferenciación Numérica
 - Extrapolación de Richardson
 - Integración Numérica

El flujo de calor en la interfaz suelo-aire puede calcularse con la ley de Faraday

$$q = -k\rho C \frac{dT}{dz}$$

Donde q= flujo de calor, k= coeficiente de difusividad térmica, $\rho=$ la densidad del suelo, C= calor específico del suelo.

• Las situaciones en las cuales se requiere el uso de la diferenciación numérica, ocurren cuando el conjunto de datos está dado en la forma discreta y cuando la función que se va a derivar es complicada, por lo que la derivación analítica es difícil, cuando no imposible.

- Las situaciones en las cuales se requiere el uso de la diferenciación numérica, ocurren cuando el conjunto de datos está dado en la forma discreta y cuando la función que se va a derivar es complicada, por lo que la derivación analítica es difícil, cuando no imposible.
- Entonces, las soluciones numéricas son preferibles a las analíticas, siempre que la función sea fácil de evaluar.

- Las situaciones en las cuales se requiere el uso de la diferenciación numérica, ocurren cuando el conjunto de datos está dado en la forma discreta y cuando la función que se va a derivar es complicada, por lo que la derivación analítica es difícil, cuando no imposible.
- Entonces, las soluciones numéricas son preferibles a las analíticas, siempre que la función sea fácil de evaluar.
- Problemas que han sido estudiados, involucran en cierto modo el cálculo de la derivada de una función evaluada en un punto, como por ejemplo:

- Las situaciones en las cuales se requiere el uso de la diferenciación numérica, ocurren cuando el conjunto de datos está dado en la forma discreta y cuando la función que se va a derivar es complicada, por lo que la derivación analítica es difícil, cuando no imposible.
- Entonces, las soluciones numéricas son preferibles a las analíticas, siempre que la función sea fácil de evaluar.
- Problemas que han sido estudiados, involucran en cierto modo el cálculo de la derivada de una función evaluada en un punto, como por ejemplo:
 - 1 Interpolación Cúbica de Trazador Sujeto.

- Las situaciones en las cuales se requiere el uso de la diferenciación numérica, ocurren cuando el conjunto de datos está dado en la forma discreta y cuando la función que se va a derivar es complicada, por lo que la derivación analítica es difícil, cuando no imposible.
- Entonces, las soluciones numéricas son preferibles a las analíticas, siempre que la función sea fácil de evaluar.
- Problemas que han sido estudiados, involucran en cierto modo el cálculo de la derivada de una función evaluada en un punto, como por ejemplo:
 - 1 Interpolación Cúbica de Trazador Sujeto.
 - 2 Método de Newton-Raphson.

- Las situaciones en las cuales se requiere el uso de la diferenciación numérica, ocurren cuando el conjunto de datos está dado en la forma discreta y cuando la función que se va a derivar es complicada, por lo que la derivación analítica es difícil, cuando no imposible.
- Entonces, las soluciones numéricas son preferibles a las analíticas, siempre que la función sea fácil de evaluar.
- Problemas que han sido estudiados, involucran en cierto modo el cálculo de la derivada de una función evaluada en un punto, como por ejemplo:
 - 1 Interpolación Cúbica de Trazador Sujeto.
 - 2 Método de Newton-Raphson.
 - 3 Ecuaciones Diferenciales.

Hay distintas razones por la que la integración numérica se realiza.

Hay distintas razones por la que la integración numérica se realiza.

• El integrando f(x) puede ser conocido solamente en ciertos puntos, tales como: obtenidos por muestreo. Algunos sistemas encajados y otras aplicaciones informáticas pueden necesitar la integración numérica por esta razón.

Hay distintas razones por la que la integración numérica se realiza.

- El integrando f(x) puede ser conocido solamente en ciertos puntos, tales como: obtenidos por muestreo. Algunos sistemas encajados y otras aplicaciones informáticas pueden necesitar la integración numérica por esta razón.
- Un fórmula para el integrando puede ser conocido, pero puede ser difícil o imposible de encontrar su antiderivada. Un ejemplo de tal integrando es $f(x) = e^{-x^2}$, cuya antiderivada no se puede escribir en forma elemental.

Hay distintas razones por la que la integración numérica se realiza.

- El integrando f(x) puede ser conocido solamente en ciertos puntos, tales como: obtenidos por muestreo. Algunos sistemas encajados y otras aplicaciones informáticas pueden necesitar la integración numérica por esta razón.
- Un fórmula para el integrando puede ser conocido, pero puede ser difícil o imposible de encontrar su antiderivada. Un ejemplo de tal integrando es $f(x) = e^{-x^2}$, cuya antiderivada no se puede escribir en forma elemental.
- Puede ser posible encontrar una antiderivada simbólicamente, pero puede ser más fácil computar una aproximación numérica que computar la antiderivada. Ése puede ser el caso si la antiderivada se da como una serie o producto infinita, o si su evaluación requiere una función especial la cuál no está disponible.

• La diferenciación numérica puede calcularse usando la definición de derivada

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

• La diferenciación numérica puede calcularse usando la definición de derivada

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

• Tomando una h pequeña. Si h>0 se llama fórmula de diferencia progresiva, si h<0 se llama fórmula de diferencia regresiva.

• Para calcular la aproximación numérica de la derivada en un punto, se puede generar una sucesión $\{h_k\}$, tal que $h_k \to 0$ y se calcula el cociente

$$D_k = \frac{f(x_0 + h_k) - f(x_0)}{h_k} = \frac{f_k - f_0}{h_k}$$

• Si se toma un valor muy grande de h_k la aproximación no es aceptable y si h_k es muy pequeño la diferencia $f(x+h_k)-f(x)\approx 0$ ocurre una pérdida de dígitos significativos

• Para calcular la aproximación numérica de la derivada en un punto, se puede generar una sucesión $\{h_k\}$, tal que $h_k \to 0$ y se calcula el cociente

$$D_k = \frac{f(x_0 + h_k) - f(x_0)}{h_k} = \frac{f_k - f_0}{h_k}$$

- Generando entonces una sucesión $D_1, D_2, D_3, \ldots, D_n$ y tomando a D_n como la aproximación deseada, el problema está en conocer cual valor de h_k garantiza una buena aproximación
- Si se toma un valor muy grande de h_k la aproximación no es aceptable y si h_k es muy pequeño la diferencia $f(x+h_k) f(x) \approx 0$ ocurre una pérdida de dígitos significativos

• La siguiente tabla muestra los cocientes D_k para aproximar la derivada de $f(x) = \sin(x)$ en x = 2 cuyo valor con nueve cifras significativas es f'(2) = -0.416146837.

h_k	f_k	$f_k - f$	$rac{f_k - f}{h_k}$
10^{-1}	0.8632093666	-0.0460880602	-0.4608806018
10^{-2}	0.9050905633	-0.0042068635	-0.4206863500
10^{-3}	0.9088808254	-0.0004166014	-0.4166014159
10^{-4}	0.9092558076	-0.0000416192	-0.4161923007
10^{-5}	0.9092932653	-0.0000041615	-0.4161513830
10^{-6}	0.9092970107	-0.0000004161	-0.4161472913
10^{-7}	0.9092973852	-0.0000000416	-0.4161468814
10^{-8}	0.9092974227	-0.0000000042	-0.4161468392
10^{-9}	0.9092974264	-0.0000000004	-0.4161468947
10^{-10}	0.9092974268	-0.0000000000	-0.4161471168

Table: Aproximación del $(\sin(2))' = \cos(2)$.

• ¿Cuán buena es esta aproximación de la derivada? Por el Teorema de Taylor se sabe que:

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(\xi_h)h^2}{2}$$

donde ξ_h está entre x_0 y $x_0 + h$.

• Despejando ahora a $f'(x_0)$ en esta fórmula se tiene que:

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{hf''(\xi_h)}{2}$$

• Esta fórmula nos dice que se aproxima a $f'(x_0)$ con un error proporcional a h, es decir, $f'(x_0) \approx O(h)$.

Ejemplo:

Tomando $f(x) = x^9$ se desea aproximar f'(1) cuyo valor exacto es nueve. En la siguiente figura se ilustran los errores absolutos como función de h en escala logarítmica.

Figure: Aproximación de f'(1) para $f(x) = x^9$.

Se puede ver que los errores disminuyen hasta un cierto valor crítico h_{min} luego del cual los errores aumentan según la h disminuye. ¿Contradice esto el resultado de arriba de O(h) del error?

Se puede ver que los errores disminuyen hasta un cierto valor crítico h_{min} luego del cual los errores aumentan según la h disminuye. ¿Contradice esto el resultado de arriba de O(h) del error?

• El resultado anterior es sobre la convergencia si la aritmética es exacta y se dice que es un resultado asintótico.

Se puede ver que los errores disminuyen hasta un cierto valor crítico h_{min} luego del cual los errores aumentan según la h disminuye. ¿Contradice esto el resultado de arriba de O(h) del error?

- El resultado anterior es sobre la convergencia si la aritmética es exacta y se dice que es un resultado asintótico.
- La figura ilustra los efectos de redondeo debido a la aritmética finita, los cuales se hacen significativos para h pequeño y pueden afectar cualquier fórmula numérica para aproximar la derivada.

Definición:

El error de truncamiento se define como:

$$E = |Du(x) - u'(x)|$$

donde u'(x) es la derivada y Du(x) es su aproximación. Además, si $E \leq Ch^p$, se dice que el esquema Du(x) tiene un orden de precisión p, $O(h^p)$, siempre que C sea una constante, la cual usualmente depende de la regularidad de u(x).

• Una fórmula con un grado de aproximación digamos $O(h^2)$ es preferible a una de O(h)

- Una fórmula con un grado de aproximación digamos $O(h^2)$ es preferible a una de O(h)
- ya que los errores (teóricos) tienden a cero más rápido y así la h no se tiene que hacerse tan pequeña reduciendo así los efectos de los errores por la aritmética finita.

- Una fórmula con un grado de aproximación digamos $O(h^2)$ es preferible a una de O(h)
- ya que los errores (teóricos) tienden a cero más rápido y así la h no se tiene que hacerse tan pequeña reduciendo así los efectos de los errores por la aritmética finita.
- Es posible, mejorar la precisión de la siguiente manera: Sean los polinomios de Taylor de las funciones $f(x_0 + h)$ y $f(x_0 h)$, suponiendo que la función es al menos tres veces derivable:

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2}h^2 + \frac{f'''(\xi_1)}{6}h^3$$
$$f(x_0 - h) = f(x_0) - f'(x_0)h + \frac{f''(x_0)}{2}h^2 - \frac{f'''(\xi_2)}{6}h^3$$

• Restando ambas ecuaciones y resolviendo para $f'(x_0)$:

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} - \frac{h^2}{12} (f'''(\xi_1) + f'''(\xi_2))$$

• Restando ambas ecuaciones y resolviendo para $f'(x_0)$:

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} - \frac{h^2}{12} (f'''(\xi_1) + f'''(\xi_2))$$

• Como $f \in C^3[x_0 - h, x_0 + h]$, entonces por el teorema del valor intermedio existe $\xi \in [x_0 - h, x_0 + h]$ tal que,

$$f'''(\xi) = \frac{f'''(\xi_1) + f'''(\xi_2)}{2}$$

• Por lo anterior queda entonces que:

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} - \frac{f'''(\xi)}{6}h^2$$

• Por lo anterior queda entonces que:

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} - \frac{f'''(\xi)}{6}h^2$$

• A esta expresión se le llama fórmula de diferencia centrada, el orden de precisión es 2, mientras que el error de truncamiento es $O(h^2)$.

Figure: Aproximación de f'(1) para $f(x) = x^9$.

Fórmula de los n puntos.

El siguiente teorema utiliza el polinomio interpolador de una función f para obtener fórmulas de aproximación a la derivada de una función f.

Fórmula de los n puntos.

El siguiente teorema utiliza el polinomio interpolador de una función f para obtener fórmulas de aproximación a la derivada de una función f.

Teorema 1 (fórmula de n puntos)

Sea f una función de clase $C^{n+1}[a,b]$ y $\{x_1, x_2, \ldots, x_n\}$ n puntos distintos de dicho intervalo. Si llamamos $L_i(x)$ a los correspondientes polinomios elementales de Lagrange de grado n-1, entonces existe un punto $\xi \in [a,b]$ tal que

$$f'(x_k) = \sum_{i=1}^n f(x_i) L'_i(x_k) + \frac{f^{(n)}(\xi)}{n!} \prod_{i=1, i \neq k}^n (x_k - x_i)$$

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \Rightarrow L'_0(x) = \frac{(x - x_2) + (x - x_1)}{(x_0 - x_1)(x_0 - x_2)}$$

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \Rightarrow L'_0(x) = \frac{(x - x_2) + (x - x_1)}{(x_0 - x_1)(x_0 - x_2)}$$
$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} \Rightarrow L'_1(x) = \frac{(x - x_2) + (x - x_0)}{(x_1 - x_0)(x_1 - x_2)}$$

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \Rightarrow L'_0(x) = \frac{(x - x_2) + (x - x_1)}{(x_0 - x_1)(x_0 - x_2)}$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} \Rightarrow L'_1(x) = \frac{(x - x_2) + (x - x_0)}{(x_1 - x_0)(x_1 - x_2)}$$

$$L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} \Rightarrow L'_2(x) = \frac{(x - x_1) + (x - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

• De esta manera, siguiendo el teorema anterior, se tendría que:

$$f'(x_k) = \frac{f(x_0)[(x_k - x_2) + (x_k - x_1)]}{(x_0 - x_1)(x_0 - x_2)} + \frac{f(x_1)[(x_k - x_2) + (x_k - x_0)]}{(x_1 - x_0)(x_1 - x_2)} + \frac{f(x_2)[(x_k - x_1) + (x_k - x_0)]}{(x_2 - x_0)(x_2 - x_1)} + \frac{f'''(\xi)}{3!} \prod_{i=0, i \neq k}^{2} (x_k - x_i)$$

$$\forall k = 0, 1, 2$$

Fórmula centrada de tres puntos.

Si tomamos $x_0 = x_1 - h$, $x_1 = x_1$ y $x_2 = x_1 + h$ para aproximar $f'(x_1)$, nos queda que:

$$f'(x_1) = \frac{f(x_0)(x_1 - x_2)}{(x_0 - x_1)(x_0 - x_2)} + \frac{f(x_1)[(x_1 - x_2) + (x_1 - x_0)]}{(x_1 - x_0)(x_1 - x_2)} + \frac{f(x_2)(x_1 - x_0)}{(x_2 - x_0)(x_2 - x_1)} + \frac{f'''(\xi)}{3!} \prod_{i=0, i \neq 1}^{2} (x_1 - x_i)$$

Fórmula centrada de tres puntos.

Si tomamos $x_0 = x_1 - h$, $x_1 = x_1$ y $x_2 = x_1 + h$ para aproximar $f'(x_1)$, nos queda que:

$$f'(x_1) = \frac{f(x_0)(x_1 - x_2)}{(x_0 - x_1)(x_0 - x_2)} + \frac{f(x_1)[(x_1 - x_2) + (x_1 - x_0)]}{(x_1 - x_0)(x_1 - x_2)} + \frac{f(x_2)(x_1 - x_0)}{(x_2 - x_0)(x_2 - x_1)} + \frac{f'''(\xi)}{3!} \prod_{i=0, i \neq 1}^{2} (x_1 - x_i)$$

Sustituyendo x_0 y x_2 , y simplificando la expresión se obtiene:

$$f'(x_1) = \frac{f(x_1 + h) - f(x_1 - h)}{2h} - \frac{f'''(\xi)}{6}h^2$$

Fórmula progresiva de tres puntos.

Si tomamos $x_0 = x_0$, $x_1 = x_0 + h$ y $x_2 = x_0 + 2h$ para aproximar $f'(x_0)$ con h > 0, queda que:

$$f'(x_0) = \frac{f(x_0)[(x_0 - x_2) + (x_0 - x_1)]}{(x_0 - x_1)(x_0 - x_2)} + \frac{f(x_1)(x_0 - x_2)}{(x_1 - x_0)(x_1 - x_2)} + \frac{f(x_2)(x_0 - x_1)}{(x_2 - x_0)(x_2 - x_1)} + \frac{f'''(\xi)}{3!} \prod_{i=0, i \neq 0}^{2} (x_0 - x_i)$$

Fórmula progresiva de tres puntos.

Si tomamos $x_0=x_0, x_1=x_0+h$ y $x_2=x_0+2h$ para aproximar $f'(x_0)$ con h>0 , queda que:

$$f'(x_0) = \frac{f(x_0)[(x_0 - x_2) + (x_0 - x_1)]}{(x_0 - x_1)(x_0 - x_2)} + \frac{f(x_1)(x_0 - x_2)}{(x_1 - x_0)(x_1 - x_2)} + \frac{f(x_2)(x_0 - x_1)}{(x_2 - x_0)(x_2 - x_1)} + \frac{f'''(\xi)}{3!} \prod_{i=0, i \neq 0}^{2} (x_0 - x_i)$$

Sustituyendo x_1 y x_2 , y simplificando la expresión se obtiene:

$$f'(x_0) = \frac{-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)}{2h} + \frac{f'''(\xi)}{3}h^2$$

Fórmula regresiva de tres puntos.

Si tomamos $x_0 = x_2 - 2h$, $x_1 = x_2 - h$ y $x_2 = x_2$ para aproximar $f'(x_2)$ con h > 0, queda que:

$$f'(x_2) = \frac{f(x_0)(x_2 - x_1)}{(x_0 - x_1)(x_0 - x_2)} + \frac{f(x_1)(x_2 - x_0)}{(x_1 - x_0)(x_1 - x_2)} + \frac{f(x_2)[(x_2 - x_1) + (x_2 - x_0)]}{(x_2 - x_0)(x_2 - x_1)} + \frac{f'''(\xi)}{3!} \prod_{i=0, i \neq 2}^{2} (x_2 - x_i)$$

Fórmula regresiva de tres puntos.

Si tomamos $x_0=x_2-2h,\,x_1=x_2-h$ y $x_2=x_2$ para aproximar $f'(x_2)$ con h>0 , queda que:

$$f'(x_2) = \frac{f(x_0)(x_2 - x_1)}{(x_0 - x_1)(x_0 - x_2)} + \frac{f(x_1)(x_2 - x_0)}{(x_1 - x_0)(x_1 - x_2)} + \frac{f(x_2)[(x_2 - x_1) + (x_2 - x_0)]}{(x_2 - x_0)(x_2 - x_1)} + \frac{f'''(\xi)}{3!} \prod_{i=0, i \neq 2}^{2} (x_2 - x_i)$$

Sustituyendo x_0 y x_1 , y simplificando la expresión se obtiene:

$$f'(x_2) = \frac{f(x_2 - 2h) - 4f(x_2 - h) + 3f(x_2)}{2h} + \frac{f'''(\xi)}{3}h^2$$

• A partir del desarrollo de Taylor de la función evaluada en $x_0 + h$ y $x_0 - h$, se puede obtener la fórmula para la que aproxima a la segunda derivada de la función f.

- A partir del desarrollo de Taylor de la función evaluada en $x_0 + h$ y $x_0 h$, se puede obtener la fórmula para la que aproxima a la segunda derivada de la función f.
- Sea $0 < |h| < \delta$ por Taylor, suponiendo que $f^{(4)}$ existe y es continua en $(x_0 \delta, x_0 + \delta)$, ξ_1 entre x_0 y $x_0 + h$, ξ_2 entre x_0 y $x_0 h$.

- A partir del desarrollo de Taylor de la función evaluada en $x_0 + h$ y $x_0 h$, se puede obtener la fórmula para la que aproxima a la segunda derivada de la función f.
- Sea $0 < |h| < \delta$ por Taylor, suponiendo que $f^{(4)}$ existe y es continua en $(x_0 \delta, x_0 + \delta)$, ξ_1 entre x_0 y $x_0 + h$, ξ_2 entre x_0 y $x_0 h$.

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2}h^2 + \frac{f'''(x_0)}{6}h^3 + \frac{f^{(4)}(\xi_1)}{24}h^4$$
$$f(x_0 - h) = f(x_0) - f'(x_0)h + \frac{f''(x_0)}{2}h^2 - \frac{f'''(x_0)}{6}h^3 + \frac{f^{(4)}(\xi_2)}{24}h^4$$

• Sumandos ambas ecuaciones:

$$f(x_0+h)+f(x_0-h)=2f(x_0)+2\frac{f''(x_0)}{2}h^2+\frac{h^4}{24}\left(f^{(4)}(\xi_1)+f^{(4)}(\xi_2)\right)$$

• y despejando $f''(x_0)$ de esta expresión se obtiene:

$$f''(x_0) = \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2} + \frac{f^{(4)}(\xi)}{12}h^2$$

$$\operatorname{con} \xi \in (x_0 - h, x_0 + h)$$

• El proceso de obtener una estimación mejorada para el valor de Integrales, Derivadas, Ecuaciones Diferenciales, etc., con base en dos o más aplicaciones de una fórmula, empleando diferentes longitudes de intervalo, se denomina Extrapolación.

- El proceso de obtener una estimación mejorada para el valor de Integrales, Derivadas, Ecuaciones Diferenciales, etc., con base en dos o más aplicaciones de una fórmula, empleando diferentes longitudes de intervalo, se denomina Extrapolación.
- Uno de los mós conocidos es el de Extrapolación de Richardson o Aproximación diferida al límite.

- El proceso de obtener una estimación mejorada para el valor de Integrales, Derivadas, Ecuaciones Diferenciales, etc., con base en dos o más aplicaciones de una fórmula, empleando diferentes longitudes de intervalo, se denomina Extrapolación.
- Uno de los mós conocidos es el de Extrapolación de Richardson o Aproximación diferida al límite.
- Supongase que G(h) es una expresión que aproxima a una cantidad G

- El proceso de obtener una estimación mejorada para el valor de Integrales, Derivadas, Ecuaciones Diferenciales, etc., con base en dos o más aplicaciones de una fórmula, empleando diferentes longitudes de intervalo, se denomina Extrapolación.
- Uno de los mós conocidos es el de Extrapolación de Richardson o Aproximación diferida al límite.
- Supongase que G(h) es una expresión que aproxima a una cantidad G
- entonces se tiene que $G G(h) = E_T$, donde E_T es el error de truncamiento que se comete al aproximar a G por G(h).

• Suponiendo:

$$E_T = c_1 h + c_2 h^2 + c_3 h^3 + c_4 h^4 + \cdots,$$

luego

$$G = G(h) + c_1 h + c_2 h^2 + c_3 h^3 + c_4 h^4 + \cdots \qquad h > 0$$

• Suponiendo:

$$E_T = c_1 h + c_2 h^2 + c_3 h^3 + c_4 h^4 + \cdots,$$

luego

$$G = G(h) + c_1 h + c_2 h^2 + c_3 h^3 + c_4 h^4 + \cdots \qquad h > 0$$

• Tomando $h = \frac{h}{2}$, entonces

$$G = G\left(\frac{h}{2}\right) + c_1\frac{h}{2} + c_2\frac{h^2}{4} + c_3\frac{h^3}{8} + c_4\frac{h^4}{16} + \dots$$
 $h > 0$

• Si se multiplica por 2 a la última ecuación se le resta G, entonces

$$2G - G = 2G\left(\frac{h}{2}\right) + c_1h + c_2\frac{h^2}{2} + c_3\frac{h^3}{4} + \dots - G(h) - c_1h - c_2h^2 - c_3h^3 - \dots$$

• Si se multiplica por 2 a la última ecuacióny se le resta G, entonces

$$2G - G = 2G\left(\frac{h}{2}\right) + c_1h + c_2\frac{h^2}{2} + c_3\frac{h^3}{4} + \dots - G(h) - c_1h - c_2h^2 - c_3h^3 - \dots$$

• o sea que:

$$G = 2G\left(\frac{h}{2}\right) - G(h) - c_2\frac{h^2}{2} - c_3\frac{3h^3}{4} - c_4\frac{7h^4}{8} - \cdots$$

• Si se multiplica por 2 a la última ecuacióny se le resta G, entonces

$$2G - G = 2G\left(\frac{h}{2}\right) + c_1h + c_2\frac{h^2}{2} + c_3\frac{h^3}{4} + \dots - G(h) - c_1h - c_2h^2 - c_3h^3 - \dots$$

• o sea que:

$$G = 2G\left(\frac{h}{2}\right) - G(h) - c_2\frac{h^2}{2} - c_3\frac{3h^3}{4} - c_4\frac{7h^4}{8} - \cdots$$

luego

$$G = \left[G\left(\frac{h}{2}\right) + \left(G\left(\frac{h}{2}\right) - G(h)\right) \right] - c_2 \frac{h^2}{2} - c_3 \frac{3h^3}{4} - c_4 \frac{7h^4}{8} - \cdots$$

• Para simplificar los cálculos denotese $G(h) \equiv G_1(h)$, la expresión para $O(h^2)$, es entonces

$$G = G_2(h) - c_2 \frac{h^2}{2} - c_3 \frac{3h^3}{4} - c_4 \frac{7h^4}{8} - \cdots$$

donde
$$G_2(h) = G_1\left(\frac{h}{2}\right) + \left(G_1\left(\frac{h}{2}\right) - G_1(h)\right)$$

• Al igual que antes reemplazamos h por $\frac{h}{2}$, se tiene que

$$G = G_2\left(\frac{h}{2}\right) - c_2\frac{h^2}{8} - c_3\frac{3h^3}{32} - c_4\frac{7h^4}{128} - \cdots$$

• Al igual que antes reemplazamos h por $\frac{h}{2}$, se tiene que

$$G = G_2\left(\frac{h}{2}\right) - c_2\frac{h^2}{8} - c_3\frac{3h^3}{32} - c_4\frac{7h^4}{128} - \cdots$$

• Restando cuatro veces esta ecuación a la original se obtiene:

$$4G - G = 4G_2\left(\frac{h}{2}\right) - G_2(h) - c_2\frac{h^2}{2} - c_3\frac{3h^3}{8} - \dots + c_2\frac{h^2}{2} + c_3\frac{3h^3}{4} + \dots$$

• Al igual que antes reemplazamos h por $\frac{h}{2}$, se tiene que

$$G = G_2\left(\frac{h}{2}\right) - c_2\frac{h^2}{8} - c_3\frac{3h^3}{32} - c_4\frac{7h^4}{128} - \cdots$$

• Restando cuatro veces esta ecuación a la original se obtiene:

$$4G - G = 4G_2\left(\frac{h}{2}\right) - G_2(h) - c_2\frac{h^2}{2} - c_3\frac{3h^3}{8} - \dots + c_2\frac{h^2}{2} + c_3\frac{3h^3}{4} + \dots$$

• o sea que

$$3G = 4G_2\left(\frac{h}{2}\right) - G_2(h) + c_3\frac{3h^3}{8} + c_4\frac{21h^4}{32} + \cdots$$

• luego

$$G = \left[G_2 \left(\frac{h}{2} \right) + \frac{G_2 \left(\frac{h}{2} \right) - G_2(h)}{3} \right] + c_3 \frac{h^3}{8} + c_4 \frac{7h^4}{32} + \cdots$$

luego

$$G = \left[G_2 \left(\frac{h}{2} \right) + \frac{G_2 \left(\frac{h}{2} \right) - G_2(h)}{3} \right] + c_3 \frac{h^3}{8} + c_4 \frac{7h^4}{32} + \cdots$$

Denotando

$$G_3(h) = G_2\left(\frac{h}{2}\right) + \frac{G_2\left(\frac{h}{2}\right) - G_2(h)}{3}$$

se tiene la expresión para $O(h^3)$ dada por

$$G = G_3(h) + c_3 \frac{h^3}{8} + c_4 \frac{7h^4}{32} + \cdots$$

• reemplazando h por $\frac{h}{2}$, se tiene que

$$G = G_3\left(\frac{h}{2}\right) + \frac{h^3}{64}c_3 + \frac{7h^4}{512}c_4 + \cdots$$

• reemplazando h por $\frac{h}{2}$, se tiene que

$$G = G_3\left(\frac{h}{2}\right) + \frac{h^3}{64}c_3 + \frac{7h^4}{512}c_4 + \cdots$$

• Restando ocho veces esta ecuación a la ecuación original se tiene que

$$7G = 8G_3\left(\frac{h}{2}\right) - G_3(h) - c_4\frac{7h^4}{64} - \cdots$$

• reemplazando h por $\frac{h}{2}$, se tiene que

$$G = G_3\left(\frac{h}{2}\right) + \frac{h^3}{64}c_3 + \frac{7h^4}{512}c_4 + \cdots$$

• Restando ocho veces esta ecuación a la ecuación original se tiene que

$$7G = 8G_3\left(\frac{h}{2}\right) - G_3(h) - c_4\frac{7h^4}{64} - \cdots$$

• o sea que

$$7G = 7G_3\left(\frac{h}{2}\right) + G_3\left(\frac{h}{2}\right) - G_3(h) - c_4\frac{7h^4}{64} - \cdots$$

• Por lo tanto

$$G = \left[G_3 \left(\frac{h}{2} \right) + \frac{G_3 \left(\frac{h}{2} \right) - G_3(h)}{7} \right] - c_4 \frac{7h^4}{64} - \dots$$

• Por lo tanto

$$G = \left[G_3 \left(\frac{h}{2} \right) + \frac{G_3 \left(\frac{h}{2} \right) - G_3(h)}{7} \right] - c_4 \frac{7h^4}{64} - \dots$$

• Así que

$$G_4(h) = G_3\left(\frac{h}{2}\right) + \frac{G_3\left(\frac{h}{2}\right) - G_3(h)}{7}$$

genera una aproximación $O(h^4)$ dada por

$$G = G_4(h) - c_4 \frac{7h^4}{64} - \dots$$

Extrapolación de Richardson

• Continuando con este proceso, la aproximación $O(h^n)$ es

$$G = \left[G_{n-1} \left(\frac{h}{2} \right) + \frac{G_{n-1} \left(\frac{h}{2} \right) - G_{n-1}(h)}{2^{n-1} - 1} \right] + \sum_{j=1}^{n-1} c_j h^j + O(h^n)$$

Extrapolación de Richardson

• Continuando con este proceso, la aproximación $O(h^n)$ es

$$G = \left[G_{n-1} \left(\frac{h}{2} \right) + \frac{G_{n-1} \left(\frac{h}{2} \right) - G_{n-1}(h)}{2^{n-1} - 1} \right] + \sum_{j=1}^{n-1} c_j h^j + O(h^n)$$

donde

$$G = G_n(h) + \sum_{j=1}^{n-1} c_j h^j + O(h^n)$$

siendo

$$G_n(h) = \left[G_{n-1}\left(\frac{h}{2}\right) + \frac{G_{n-1}\left(\frac{h}{2}\right) - G_{n-1}(h)}{2^{n-1} - 1} \right]$$

Extrapolación de Richardson

• La siguiente tabla muestra el uso de la Extrapolación de Richardson obtener una aproximación de orden 5, empleando 5 aproximaciones de orden 1

O(h)	$O(h^2)$	$O(h^3)$	$O(h^4)$	$O(h^5)$
$G_1(h)$				
$G_1(h/2)$	$G_2(h)$			
$G_1(h/4)$	$G_2(h/2)$	$G_3(h)$		
$G_1(h/8)$	$G_2(h/4)$	$G_3(h/2)$	$G_4(h)$	
$G_1(h/16)$	$G_2(h/8)$	$G_3(h/4)$	$G_4(h/2)$	$G_5(h)$
↑ Medidas	†	Extrapolaciones		\uparrow

• Con este procedimiento se busca mejorar las ecuaciones obtenidas anteriormente para conseguir más precisión en la estimación de la derivada de f en un punto x.

- Con este procedimiento se busca mejorar las ecuaciones obtenidas anteriormente para conseguir más precisión en la estimación de la derivada de f en un punto x.
- Supongase que f(x) es de clase C^n en [x, x + h]. En tal caso, su desarrollo en serie de Taylor alrededor de x para los puntos x + h y x h será de la forma

$$f(x+h) = \sum_{k=0}^{\infty} \frac{h^k}{k!} f^{(k)}(x)$$
$$f(x-h) = \sum_{k=0}^{\infty} \frac{(-1)^k h^k}{k!} f^{(k)}(x)$$

• Restando ambas ecuaciones, todos los términos de orden par se cancelan, resultando

$$f(x+h) - f(x-h) = 2hf'(x) + \frac{2}{3!}h^3f'''(x) + \frac{2}{5!}h^5f^{(5)}(x) + \cdots$$
de donde, despejando $f'(x)$,

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \left[\frac{1}{3!}h^2f^{(3)}(x) + \frac{1}{5!}h^4f^{(5)}(x) + \cdots\right]$$

• Lo que se puede escribir como:

$$G = G_1(h) + a_2h^2 + a_4h^4 + a_6h^6 + \cdots$$

en la que G = f'(x), la función $G_1(h)$ se define como $\frac{f(x+h)-f(x-h)}{2h} \text{ y } a_k = \frac{-1}{(k+1)!} f^{(k+1)}(x).$

• Lo que se puede escribir como:

$$G = G_1(h) + a_2h^2 + a_4h^4 + a_6h^6 + \cdots$$

en la que G = f'(x), la función $G_1(h)$ se define como $\frac{f(x+h)-f(x-h)}{2h}$ y $a_k = \frac{-1}{(k+1)!}f^{(k+1)}(x)$.

• Dado que $G_1(h)$ es el valor para la derivada, el error depende de términos en potencias de h, siendo el término dominante el correspondiente a h^2 .

• Usando el método de Richardson para conseguir que el término dominante del error sea aún más pequeño. Escribiendo la ecuación evaluándola en h/2, lo que da:

$$G = G_1\left(\frac{h}{2}\right) + a_2\frac{h^2}{4} + a_4\frac{h^4}{16} + a_6\frac{h^6}{64} + \cdots$$

• Usando el método de Richardson para conseguir que el término dominante del error sea aún más pequeño. Escribiendo la ecuación evaluándola en h/2, lo que da:

$$G = G_1\left(\frac{h}{2}\right) + a_2\frac{h^2}{4} + a_4\frac{h^4}{16} + a_6\frac{h^6}{64} + \cdots$$

• Restando esta ecuación multiplicada por 4 a la ecuación original, queda:

$$3G = 4G_1\left(\frac{h}{2}\right) - G_1(h) - 3a_4\frac{h^4}{4} - 15a_6\frac{h^6}{16} - \cdots$$

• Usando el método de Richardson para conseguir que el término dominante del error sea aún más pequeño. Escribiendo la ecuación evaluándola en h/2, lo que da:

$$G = G_1\left(\frac{h}{2}\right) + a_2\frac{h^2}{4} + a_4\frac{h^4}{16} + a_6\frac{h^6}{64} + \cdots$$

• Restando esta ecuación multiplicada por 4 a la ecuación original, queda:

$$3G = 4G_1\left(\frac{h}{2}\right) - G_1(h) - 3a_4\frac{h^4}{4} - 15a_6\frac{h^6}{16} - \dots$$

 \bullet despejando la derivada G queda como:

$$G = \frac{4G_1\left(\frac{h}{2}\right) - G_1(h)}{3} - a_4 \frac{h^4}{4} - 5a_6 \frac{h^6}{16} - \dots$$

• Usando una simple combinación de $G_1(h)$ y $G_1(h/2)$, se obtiene una precisión del orden de h^4 , frente al orden h^2 que presenta $G_1(h)$.

- Usando una simple combinación de $G_1(h)$ y $G_1(h/2)$, se obtiene una precisión del orden de h^4 , frente al orden h^2 que presenta $G_1(h)$.
- Análogamente se puede repetir el proceso tantas veces como se quiera; el siguente paso definir $G_2(h) = \frac{4G_1\left(\frac{h}{2}\right) G_1(h)}{3}$ con lo que la ecuación evaluada en h y en h/2 queda

$$G = G_2(h) + b_4 h^4 + b_6 h^6 + \cdots$$

$$G = G_2\left(\frac{h}{2}\right) + b_4 \frac{h^4}{16} + b_6 \frac{h^6}{64} + \cdots$$

 Se puede despejar G, multiplicando la segunda ecuación por 16 y restándole la primera:

$$L = \frac{16G_2(\frac{h}{2}) - G(h)}{15} - b_6 \frac{h^6}{20} - \cdots$$

que es una estimación de f'(x) con precisión de orden h^6 .

• Si denotamos $G_k(h)$ una aproximación de orden $O(h^{2k})$ a f'(x) entonces se tendría:

$$f'(x) = G_k(h) + c_1 h^{2k} + c_2 h^{2k+2} + \cdots$$
, para $k = 1, 2, 3, \dots$

• Si denotamos $G_k(h)$ una aproximación de orden $O(h^{2k})$ a f'(x) entonces se tendría:

$$f'(x) = G_k(h) + c_1 h^{2k} + c_2 h^{2k+2} + \cdots$$
, para $k = 1, 2, 3, \dots$

• Considerando ahora h/2 en lugar de h se tiene:

$$f'(x) = G_k\left(\frac{h}{2}\right) + \frac{c_1}{4^k}h^{2k} + \frac{c_2}{4^{k+1}}h^{2k+2} + \cdots$$

• Si denotamos $G_k(h)$ una aproximación de orden $O(h^{2k})$ a f'(x) entonces se tendría:

$$f'(x) = G_k(h) + c_1 h^{2k} + c_2 h^{2k+2} + \cdots$$
, para $k = 1, 2, 3, \dots$

• Considerando ahora h/2 en lugar de h se tiene:

$$f'(x) = G_k\left(\frac{h}{2}\right) + \frac{c_1}{4^k}h^{2k} + \frac{c_2}{4^{k+1}}h^{2k+2} + \cdots$$

• Multiplicando esta última ecuación por 4^k y restando la ecuación inicial resulta:

$$f'(x) = \frac{4^k G_k(h/2) - G_k(h)}{4^k - 1} + O(h^{2k+2})$$

• Por tanto, si denotamos

$$G_{k+1} = \frac{4^k G_k(h/2) - G_k(h)}{4^k - 1}$$

• Por tanto, si denotamos

$$G_{k+1} = \frac{4^k G_k(h/2) - G_k(h)}{4^k - 1}$$

• entonces se tiene que se cumple:

$$f'(x) = D_{k+1}(h) + O(h^{2k+2})$$

Ejemplo

• La fórmula en diferencias centrada para aproximar $f'(x_0)$ viene dada por:

$$f'(x_0) = \underbrace{\frac{f(x+h) - f(x-h)}{2h}}_{G_1(h)} - \underbrace{\frac{h^2}{6} f'''(\xi) + O(h^4)}_{\text{termino del error}}$$

Ejemplo

• La fórmula en diferencias centrada para aproximar $f'(x_0)$ viene dada por:

$$f'(x_0) = \underbrace{\frac{f(x+h) - f(x-h)}{2h}}_{G_1(h)} - \underbrace{\frac{h^2}{6}f'''(\xi) + O(h^4)}_{\text{termino del error}}$$

• Con el objetivo de generar una fórmula que elimine el término cuadrático

$$G_2(h) = G_1\left(\frac{h}{2}\right) + \frac{G_1\left(\frac{h}{2}\right) - G_1(h)}{3}$$

$$G_2(2h) = \frac{f(x+h) - f(x-h)}{2h} + \frac{\frac{f(x+h) - f(x-h)}{2h} - \frac{f(x+2h) - f(x-2h)}{4h}}{3}$$

$$= \frac{8f(x+h) - 8f(x-h)}{12h} + \frac{f(x+2h) - f(x-2h)}{12h}$$

$$= \frac{1}{12h} \left[f(x-2h) - 8f(x-h) + 8f(x+h) - f(x+2h) \right]$$

Tema 2

- Contenido del tema 2
- \bullet Explicación a