# Labview 版本: 2018 中文版

# <mark>项目名</mark>:虚拟仪器课设\_选题一.lvproj

### 1 项目内容:



### 2层级关系:



# 主 Ⅵ 名: 1. 主程序: 输入 + 显示.vi

#### 1 程序框图:



<mark>描述</mark>:首先套一个顺序结构:必须先读取文件内的数据,再进



# 一条路(<mark>上路</mark>)使用 子 VI 🥞 绘制 并 通过 图片显示控件

显示: 管道 分布

显示 管道分布 图 (配色 与 例子 相同):



另一条路(中路)会先通过 🧱 生成 管道内 的 光纤分布 二





二维 像素点分布 数组,连同 图像放大倍数











选择: 光纤 - 后段 颜色

三者 一起,传递给 子 VI 禁 绘制,并通过 图



片显示控件

### ,分 先竖 - 后横 两段,显示 管道分

#### 布 + 光纤分布 图 (配色 与 例子 相同):



最后一路(下路)则根据要求:"根据幅值-位置曲线,按<-300,-300~-120,-120~120,120~400,400~1000,>1000,将幅值分为六档,与蓝色、青色、灰色、黄色、橘色、红色对应",





纤 + 数据分布 图 (配色 与 要求 相同):



主 VI 流程图,已经很清楚了,就没有加注释。

### 2 前面板:

(1) 数据文件名:

| 数据文件名            |  |
|------------------|--|
| 1_第1个设计的data.txt |  |

该输入控件的字符串型变量内容默认值,已设定为需要读取的量1\_第1个设计的data.txt型的文件名"1\_第1个设计的data.txt",用户不用再输入。

(2) 可调整 图片 大小 和 位置

| 輸入: 放大倍数 | 輸入: 平移图像 |   |
|----------|----------|---|
| 30       | 00000    | 1 |

(3) 可调整 管道、光纤、数据点 的 颜色



#### (4) 最终显示效果



# 子 VI 名: 2. 初始化:光纤起点.vi

### 1 程序框图:



## 2 前面板:

|       | 初始偏移量: | 相对于起点(14,27) | 坐标原点 重新选定后 的 一维数组 |   |   |  |  |
|-------|--------|--------------|-------------------|---|---|--|--|
| (f) 0 | 0 2    | 0            | (T) 0             | 0 | 0 |  |  |

# 3 接线端 和 图标:



功能:通过用户输入的偏移量,确定 光纤分布 的 二维数组的 起点,这个 一维数组 的 x,y 值。

# 子 VI 名: 3. 绘制: 管道分布 图.vi

#### 1 程序框图:



# 2 前面板:



# 3 接线端 和 图标:



<mark>功能</mark>:利用 层叠式顺序结构,绘制 管道分布图。

# 子 VI 名: 4. 生成:管道内的 光纤分布 数组.vi

### 1 程序框图:



## <mark>2 前面板</mark>:



### 3 接线端 和 图标:



功能: 利用 for 循环内 嵌套 2 层 条件结构,配合 2 个 移位寄存器,生成 光纤 二维分布 数组。

# 子 VI 名: 5. 绘制: 管道内的 光纤分布 图.vi

## <mark>1 程序框图</mark>:



# <mark>2 前面板</mark>:



### <mark>3 接线端 和 图标</mark>:



功能: 分 0~140 前 141 个 像素点 的 连线, 共 140 段 单位 长度的 竖向 光纤分布,以及 序号为 140 ~ 290 的 像素点 的 横向 光纤分布,共分 两段 绘制 光纤分布 图。

# 子 VI 名: 6. 读取: 文件中的 传感数据 数组.vi

#### 1程序框图:



### 2 前面板:

| 路径拆分         | 出 文件名      |            | 正则匹      | 配出 文件  | ‡名        |          |         |          |       |
|--------------|------------|------------|----------|--------|-----------|----------|---------|----------|-------|
| 6. 读取        | : 文件中的     |            | 6. 读取    | 7: 文件  | 中的        |          |         |          |       |
| 数据文件         | 名          |            |          |        |           |          |         |          |       |
| 1_第1个        | 设计的dat     | ta.txt     |          |        |           |          |         |          |       |
| 数据内容         | 2          |            |          |        |           |          |         |          |       |
| -202.94      | 41 -355.80 | 9 -351.030 | -351.542 | -233.3 | 64 -48.68 | 7 -12.23 | 9 -60.5 | 58 11.93 | 9 62. |
|              |            | 368.603 37 |          |        |           |          |         |          |       |
| -354.63      | 31 -604.49 | 9 -648.062 | -479.680 | -202.5 | 14 -78.03 | 6 -8.219 | 12.788  | -169.69  | 8 -33 |
| -490 1       | 12 -475 92 | n -405 085 | -408 997 | -446 1 | 58 -526 1 | 89 -528  | 641 -37 | 5 833 -2 | 34 3  |
| , ,          | 解析出的 浮     | 点数据        |          |        |           |          |         | 数据点个     | 数     |
| <b>(7)</b> 0 | 0          | 0 0        |          |        | 0         | 0        |         | 0        |       |

# 3 接线端 和 图标:



功能: 查找 当前 VI (或 .exe) 所在目录 内 指定名称的 文本文件,并通过模式匹配,以 空格 为 分隔符,从文本中 提取 小数点 和 数字 构成的 双精度浮点数据,然后 拼成 一个一维数组。

# <mark>子子 VI 名</mark>:6.1. 通过匹配模式提取数字.vi

### **1 程序框图**:

**匹配模式**函数解析输入字符串,用于匹配用户指定的**正则表达式**。注意"匹配模式"和**匹配正则表达式** 函数使用的"正则表达式"语法可能不同。右键单击"匹配模式"函数并选择**帮助**,可查看"匹配模式"支持的特殊字符。



注:分数/

指**数字符串至数值转换**函数的"使用系统小数点(T)"输入端必须设为FALSE,这样范例才能在小数点分隔符为逗号的系统(法语、德语等)上正确运行。如将**字符** 串的值故为使用因系统而异的小数点分隔符,则可将"使用系统小数点(T)"的值设为TRUE。

### 2 前面板:



### 3 接线端 和 图标:



<mark>功能</mark>:该 子子 VI 的 程序框图 中的 注释,以及 上一个 子 VI

「6. 读取:文件中的 传感数据 数组.vi 」中 已经阐明了 该 子子

VI 的 功能。

# 子 VI 名: 7. 绘制:管道内的 数据点分布 图.vi

#### 1 程序框图:



### 2 前面板:



# 3 接线端 和 图标:



功能: for 循环 内嵌入一个 6 个分支的

✓ ..-300 -299..-120 -119..120 121..400 401..1000 1001.., 默认

结构,实现在 管道分布图 中,沿着 光纤分布路径,覆盖 绘制 不同取值的 一维的数据,所对应的 像素点 的 颜色分布。