

LISA Technology Development at NASA/GSFC

J.I. Thorpe

37th COSPAR Scientific Assembly Montréal, Québec July 16th, 2008

- Laser Frequency Stabilization
 - Optical Cavities with frequency tuning
 - Molecular Iodine
- Stable Environments
 - Stable test-bed for formation flying
 - Fused-silica fibers for torsion pendula
- Surface Effects
 - Kelvin Probe
- Study

- Laser Frequency Stabilization
 - Optical Cavities with frequency tuning
 - Molecular Iodine
- Stable Environments
 - Stable test-bed for formation flying
 - Fused-silica fibers for torsion pendula
- Surface Effects
 - Kelvin Probe
- Study

Laser Frequency Noise in LISA

Beyond Einstein: From the Big Bang to Black Holes

Laser frequency noise is a major potential noise source for LISA

- Three-stage system (two active one passive) to achieve overall suppression of ~10¹³
- Running pre-stabilization and arm-locking in series reduces gain (bandwidth) requirements on arm-locking.
- Serial arrangement requires frequency-tunable prestabilization

Offset Sideband Locking

Beyond Einstein: From the Big Bang to Black Holes

Concept: Lock phase-modulation sidebands to cavity resonance and tune central frequency by adjusting modulation frequency.

Normal Pound-Drever-Hall Lock

Sideband Lock

Thorpe, Numata, Livas

Offset Sideband Locking with Optical Cavity

Beyond Einstein: From the Big Bang to Black Holes

- Standard PDH and sideband locking have identical noise performance
- Common technical noises limit both systems.
- Adding modulation tone does not disturb the broadband noise floor.

Thorpe, Numata, Livas

Combining with Arm-Locking

Beyond Einstein: From the Big Bang to Black Holes

- Simulate 1-s long arm using EPD technique
- Pre-stabilize laser using offset sideband locking technique
- Arm-Lock using sideband offset as frequency actuator

Thorpe, Mitryk, Wand

Arm-Locking Results

Beyond Einstein: From the Big Bang to Black Holes

- Free-running and prestabilized lasers *meet LISA requirements in band*.
- Arm-locking system behaves as predicted. (noise spikes at n/τ frequencies)
- Progress towards demonstration of 2/3 of LISA frequency mitigation plan.

Thorpe, Mitryk, Wand

Iodine stabilization

Beyond Einstein: From the Big Bang to Black Holes

- Spectroscopic reference provides Absolute reference frequency
- Laboratory study of frequency stability using two independent Nd:YAG lasers stabilized to hyperfine transition in I₂
- Slightly worse than cavities for f > 1mHz
- Better performance below 0.1 mHz

Leonhart & Camp

Outline

- Laser Frequency Stabilization
 - Optical Cavities with frequency tuning
 - Molecular Iodine
- Stable Environments
 - Stable test-bed for formation flying
 - Fused-silica fibers for torsion pendula
- Surface Effects
 - Kelvin Probe
- Study

Interferometer Testbed

Beyond Einstein: From the Big Bang to Black Holes

Testing LISA's inter-spacecraft interferometer on stable platforms

Numata & Camp

- 2 optical benches with 2 independent pre-stabilized lasers
 - · Silicate bonded optical bench, heterodyne interferometer with phasemeter
- 2 degree-of-freedom active control
 - Intended to kill unwanted ground & thermal motion.
 - PZT-based hexapod provides actuation capability.
 - Noise suppression factor: 100~500
 - Performance limited by mechanical coupling from uncontrolled other 4 DoFs.

Silica Fiber for Force Noise Test

Beyond Einstein: From the Big Bang to Black Holes

- For lowering fundamental noise limit of torsion pendulum
 - Our methodology
 - Fiber puller, coater, pendulum for loss measurement
 - Thin coating technique development
- Significant advantages confirmed
 - LISA requirement should be reachable with silical

Fiber puller

Test started in LISA torsion pendula in Univ. of Trento & Univ. of Washington

Fiber coater

Numata & Camp

Suspended mass [kg]

12

Outline

- Laser Frequency Stabilization
 - Optical Cavities with frequency tuning
 - Molecular Iodine
- Stable Environments
 - Stable test-bed for formation flying
 - Fused-silica fibers for torsion pendula
- Surface Effects
 - Kelvin Probe
- Study

KP measurements of LISA gold surface

Beyond Einstein: From the Big Bang to Black Holes

- Vibrating probe induces current proportional to surface potential
- KP limited by ADC quantization noise (recently upgraded)
- Excess low frequency voltage noise of gold surface measured with KP
- Magnitude barely OK for LISA, but cause unknown
- LISA Advantages for patch-effect problem
 - Gold coatings are non-reactive
 - Test mass kept at room temperature

ST-7 sample under test

Outline

- Laser Frequency Stabilization
 - Optical Cavities with frequency tuning
 - Molecular Iodine
- Stable Environments
 - Stable test-bed for formation flying
 - Fused-silica fibers for torsion pendula
- Surface Effects
 - Kelvin Probe
- Study

LGS Cost/Design Study of LISA laser

Input signal from NASAprovided power

Beyond Einstein: From the Big Bang to Black Holes

Testing of pump combiner

- optical characterization (insertion loss and PER stability) from 5 - 70 C
- thermal screening under high power in vacuum
- temperature cycling in air

Questions?

Beyond Einstein: From the Big Bang to Black Holes

Contributors

Jordan Camp
Volker Leonhart
Jeff Livas
Shawn Mitryk (GSFC/UF)
Kenji Numata
Ira Thorpe
Vinzenz Wand (UF)

Backup Slides

Three Flavors of Sideband Locking

Beyond Einstein: From the Big Bang to Black Holes

Electronic Sideband (ESB) Dual Sideband (DSB) Single Sideband (SSB) PM Ω Ω_1 Ω_1 **EOM** EOM₁ EOM₂ **EOM** $\omega_c + \Omega_2$ tune tune $\omega_1 + \Omega_1 - \Omega_2$

- Simplest to implement
- Some noise coupling due to asymmetry
- Restores PDH symmetry
- Complex modulation pattern
- Simple, symmetric modulation pattern
- Requires phase modulation capability on LO

Preliminary Noise Model

Beyond Einstein: From the Big Bang to Black Holes

Fundamental Noise

- Shot noise
- Cavity thermal noise

Technical Noise

- Temperature Fluctuations
- Servo Noise
- Photoreceiver noise
- RIN
 - via RFAM
 - · via absorption
- Vibration Noise/Acoustic
- Pointing
- _ ???

Arm-Locking Transfer Function

- Measured noise suppression matches expectations
- ~40dB at 100mHz

