AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Previously Presented) A compound of the formula

$$R^{1} \xrightarrow{(CH_{2})_{m}} N \xrightarrow{R^{2}} H O \xrightarrow{R^{4}} O \xrightarrow{N-R^{3}} (I),$$

in which

R¹ is heteroaryl,

where heteroaryl can be substituted by 0, 1, 2 or 3 substituents R¹⁻¹, the substituents R¹⁻¹ being selected independently of one another from the group consisting of halogen, alkyl, nitro, amino, alkylamino, cyano, trifluoromethyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, hydroxyl, alkoxy, aryloxy, benzyloxy, carboxyl, alkoxycarbonyl, aminocarbonyl, alkylcarbonylamino, alkylaminocarbonyl and aminosulfonyl,

or

R¹ is aryl,

where aryl is substituted by 1, 2 or 3 substituents R¹⁻², the substituents R¹⁻² being selected independently of one another from the group consisting of halogen, alkyl, nitro, amino, alkylamino, cyano, trifluoromethyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, hydroxyl, alkoxy, aryloxy, benzyloxy, carboxyl, alkoxycarbonyl, aminocarbonyl, alkylcarbonylamino, arylcarbonylamino, alkylaminocarbonyl and aminosulfonyl,

or

two substituents R^{1-2} , together with the carbon atoms to which they are attached, form a cycloalkyl or heterocyclyl which can be substituted by 0, 1 or 2 substituents R^{1-2-1} , the substituents R^{1-2-1} being selected independently of one another from the group consisting of halogen, nitro, amino, trifluoromethyl, hydroxyl, alkyl and alkoxy,

- R² is hydrogen or methyl,
- R³ is hydrogen, hydroxyl, amino, C₁–C₃ alkyl, benzyl, C₁–C₃ alkoxy, benzyloxy, C₁–C₃ alkylamino, C₁–C₃ alkylcarbonylamino, phenylcarbonylamino or benzylcarbonylamino,
- R⁴ is hydrogen or C₁-C₃ alkyl,
- R⁵ is halogen, trifluoromethyl, trifluoromethoxy, nitro, amino, alkylamino, hydroxyl, alkyl, alkoxy, carboxyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, aryl or heteroaryl,

or

two substituents R⁵ together with the carbon atoms to which they are attached form a cycloalkyl or heterocyclyl each of which may be substituted by 0, 1 or 2 substituents R⁵⁻¹, the substituents R⁵⁻¹ being selected independently of one another from the group consisting of halogen, nitro, amino, trifluoromethyl, hydroxyl, alkyl and alkoxy,

R⁶ is alkyl, cycloalkyl, cycloalkenyl or heterocyclyl,

it being possible for R⁶ to be substituted by 0, 1 or 2 substituents R⁶⁻¹, the substituents R⁶⁻¹ being selected independently of one another from the group consisting of halogen, nitro, amino, trifluoromethyl, hydroxyl, alkyl and alkoxy,

n is a number 0, 1, 2 or 3,

it being possible for the radicals R⁵ to be identical or different when n is 2 or 3,

- m is a number 0, 1, 2, 3 or 4,
- A is arvl or heteroarvl,

or a salt thereof, a solvate thereof or a solvate of a salt thereof.

Brunner et al. Application No. 10/524,080 Docket Number: LeA 36 294 [54716/69023]

2. (Previously Presented) A compound according to claim 1, characterized in that it corresponds to the formula

$$R^{1}$$
 $(CH_{2})_{m}$
 R^{2}
 $(CH_{2})_{m}$
 $(CH$

in which R¹ to R⁶, A, m and n have the same definition as in formula (I).

- 3. (Previously Presented) A compound according to claim 1, characterized in that
 - R¹ is pyridyl, imidazolyl, thienyl, furyl, oxadiazolyl, pyrazolyl, pyrazinyl, pyridazinyl, pyrimidinyl, quinolinyl or isoquinolinyl,

where R^1 can be substituted by 0, 1 or 2 substituents R^{1-1} , the substituents R^{1-1} being selected independently of one another from the group consisting of halogen, alkyl, amino, trifluoromethyl, phenyl and alkoxy,

or

R¹ is phenyl or naphthyl,

where phenyl or naphthyl are substituted by 1, 2 or 3 substituents R^{1-2} , the substituents R^{1-2} being selected independently of one another from the group consisting of halogen, C_1 - C_4 alkyl, dimethylamino, cyano, trifluoromethyl, 3- to 7-membered cycloalkyl, 5- or 6-membered heterocyclyl, phenyl, 5- or 6-membered heteroaryl, C_1 - C_3 alkoxy, phenyloxy, benzyloxy, phenylcarbonylamino and aminosulfonyl,

or

two substituents R¹⁻², together with the carbon atoms to which they are attached, form a 1,3-benzodioxole or a 1,4-benzodioxane,

- R² is hydrogen,
- R³ is hydrogen, amino, methyl, methoxy, ethoxy, methylamino or dimethylamino,
- R⁴ is methyl,
- R⁵ is fluoro, chloro, trifluoromethyl, C₁-C₄ alkoxy, methoxycarbonyl, C₁-C₄ alkyl, phenyl or pyridyl,

or

two substituents R⁵, together with the phenyl ring to which they are attached, form a 1,3-benzodioxole or a 1,4-benzodioxane,

- R⁶ is C₃–C₆ alkyl or 3- to 6-membered cycloalkyl,
- n is a number 0, 1 or 2, and, if n is 2, the radicals R⁵ can be identical or different,
- m is a number 0, 1, 2 or 3,

and

- A is phenyl, naphthyl, pyridyl, thienyl, furanyl, quinolinyl or isoquinolinyl.
- 4. (Previously Presented) A compound according to claim 1, characterized in that
 - R¹ is pyridyl, thienyl, furyl, quinolinyl or isoquinolinyl,

where R^1 can be substituted by 0, 1 or 2 substituents R^{1-1} , the substituents R^{1-1} being selected independently of one another from the group consisting of halogen, C_1 - C_4 alkyl, trifluoromethyl, phenyl and C_1 - C_3 -alkoxy,

or

R¹ is phenyl or naphthyl,

where phenyl or naphthyl are substituted by 1, 2 or 3 substituents R^{1-2} , the substituents R^{1-2} being selected independently of one another

from the group consisting of halogen, C_1 - C_4 alkyl, dimethylamino, cyano, trifluoromethyl, 5- or 6-membered heterocyclyl, 5- or 6-membered heteroaryl, C_1 - C_3 alkoxy, phenyloxy or benzyloxy,

or

two substituents R¹⁻², together with the carbon atoms to which they are attached, form a 1,3-benzodioxole or a 1,4-benzodioxane,

- R² is hydrogen,
- R³ is hydrogen, amino, methylamino or dimethylamino,
- R⁴ is methyl,
- R⁵ is fluoro, chloro, trifluoromethyl, C₁-C₃ alkoxy, C₁-C₄ alkyl, phenyl or pyridyl,
- R⁶ is isopropyl, tert-butyl, isopentyl, cyclopentyl or cyclohexyl,
- n is a number 0, 1 or 2, and, if n is 2, the radicals R⁵ can be identical or different,
- m is a number 0, 1 or 2,

and

- A is phenyl, naphthyl, pyridyl, thienyl, quinolinyl or isoquinolinyl.
- 5. (Previously Presented) A compound according to claim 1, characterized in that
 - R¹ is pyridyl, thienyl, furyl, quinolinyl or isoquinolinyl,
 where R¹ can be substituted by 0, 1 or 2 substituents R¹⁻¹, the
 substituents R¹⁻¹ being selected independently of one another from
 the group consisting of fluoro, chloro, trifluoromethyl, C₁-C₄ alkyl,
 phenyl and methoxy.
- 6. (Previously Presented) A compound according to claim 1, characterized in that

R¹ is phenyl or naphthyl,

where phenyl or naphthyl are substituted by 1, 2 or 3 substituents R¹⁻², the substituents R¹⁻² being selected independently of one another from the group consisting of halogen, C₁-C₄ alkyl, dimethylamino, cyano, trifluoromethyl, 5- or 6-membered heterocyclyl, 5- or 6-membered heteroaryl, C₁-C₃ alkoxy, phenyloxy or benzyloxy,

or

two substituents R¹⁻², together with the carbon atoms to which they are attached, form a 1,3-benzodioxole or a 1,4-benzodioxane.

- 7. (Previously Presented) A compound according to claim 1, characterized in that R² is hydrogen.
- 8. (Previously Presented) A compound according to claim 1, characterized in that R³ is hydrogen or amino.
- 9. (Previously Presented) A compound according to claim 1, characterized in that R⁴ is methyl.
- 10. (Previously Presented) A compound according to claim 1, characterized in that n is the number zero.
- 11. (Previously Presented) A compound according to claim 1, characterized in that n is the number 1, A is phenyl and R⁵ is fluoro, chloro, trifluoromethyl, alkoxy, C₁-C₄-alkyl, phenyl or pyridyl, R⁵ being positioned meta or para to the linkage site of the phenyl ring.
- 12. (Previously Presented) A compound according to claim 1, characterized in that R⁶ is C₃-C₆-alkyl or 3- to 6-membered cycloalkyl.
- 13. (Previously Presented) A compound according to claim 1, characterized in that m is the number zero.
- 14. (Previously Presented) A compound according to claim 1, characterized in that A is phenyl, naphthyl, pyridyl, thienyl, quinolinyl or isoquinolinyl.
- 15. (Previously Presented) A process for preparing a compound of formula (I) according to claim 1, characterized in that
 - [A] a compound of the formula

Brunner et al. Application No. 10/524,080 Docket Number: LeA 36 294 [54716/69023]

in which R^2 to R^6 , A and n are as defined in claim 1, is reacted with a compound of the formula

$$R^1$$
 (CH₂)_m OH (III),

in which R¹ and m are as defined in claim 1,

or

[B] a compound of the formula

$$R^6$$
 $N-R^3$ (IV),

in which R^3 , R^4 and R^6 are as defined in claim 1, is reacted with a compound of the formula

$$(R^5)_n$$
 A
 O
 $CH_2)_m$
 N
 CH_2
 $CH_$

in which R^1 , R^2 , R^5 , A, m and n are as defined in claim 1.

16. (Canceled)

Brunner et al. Application No. 10/524,080 Docket Number: LeA 36 294 [54716/69023]

- 17. (Currently Amended) A medicinal product pharmaceutical composition comprising at least one compound of claim 1 in combination with at least one pharmaceutically compatible, pharmaceutically acceptable carrier or other excipients excipient.
- 18. (Canceled)
- 19. (Canceled)
- 20. (Currently Amended) A method of controlling bacterial infections in people and animals by a person or an animal comprising administering to a person or animal, in need thereof, an antibacterially effective amount of at least one compound of claim 1.
- 21. (New) A method of controlling bacterial infections in a person or an animal comprising administering to a person or animal, in need thereof, an antibacterially effective amount of at least one composition of claim 17.