Reachability in Pushdown Register Automata

Andrzej Murawski Steven Ramsay Nikos Tzevelekos
University of Warwick Queen Mary University of London

Highlights, Paris, September 2014

What this talk is about

This talk is about automata over infinite alphabets

In particular, we examine automata with two store mechanisms:

finitely many registers and a pushdown stack

We examine their reachability properties and establish complexity bounds

Why automata over infinite alphabets?

```
public void foo() {
  // Create new list
  List x = new ArrayList();
  x.add(1); x.add(2);
  Iterator i = x.iterator();
  Iterator j = x.iterator();
  i.next(); i.remove(); j.next();
}
```

finite alphabet is not a satisfactory abstraction here

Let $\Sigma = \{a_1, a_2, \dots, a_n, \dots\}$ be an infinite alphabet of names

can only be compared for equality

Pushdown Register Automata (PDRA)

Let $\Sigma = \{a_1, a_2, \dots, a_n, \dots\}$ be an infinite alphabet of names

registers & stack store names

Pushdown Register Automata (PDRA)

Let $\Sigma = \{a_1, a_2, ..., a_n, ...\}$ be an infinite alphabet of names

$$L = \{ a_1 a_2 ... a_n b \in \Sigma^* \mid n \ge 0, \forall i \le n. \ a_i \ne b \}$$

$$L = \{ a_1 a_2 ... a_n b \in \Sigma^* \mid n \ge 0, \forall i \le n. \ a_i \ne b \}$$

$$L = \{ a_1 a_2 ... a_n b \in \Sigma^* \mid n \ge 0, \forall i \le n. \ a_i \ne b \}$$

$$L = \{ a_1 a_2 ... a_n b \in \Sigma^* \mid n \ge 0, \forall i \le n. \ a_i \ne b \}$$

(all strings where last name is distinct from all previous ones)

 a_0

$$L = \{ a_1 a_2 ... a_n b \in \Sigma^* \mid n \ge 0, \forall i \le n. \ a_i \ne b \}$$

(all strings where last name is distinct from all previous ones)

 $a_0 a_0$

$$L = \{ a_1 a_2 ... a_n b \in \Sigma^* \mid n \ge 0, \forall i \le n. \ a_i \ne b \}$$

(all strings where last name is distinct from all previous ones)

 $a_0 a_0$

$$L = \{ a_1 a_2 ... a_n b \in \Sigma^* \mid n \ge 0, \forall i \le n. \ a_i \ne b \}$$

$$a_0 a_0 a_1$$

$$L = \{ a_1 a_2 ... a_n b \in \Sigma^* \mid n \ge 0, \forall i \le n. \ a_i \ne b \}$$

$$a_0 a_0 a_1 a_1 a_1$$

$$L = \{ a_1 a_2 ... a_n b \in \Sigma^* \mid n \ge 0, \forall i \le n. \ a_i \ne b \}$$

$$a_0 a_0 a_1 a_1 a_1$$

$$L = \{ a_1 a_2 ... a_n b \in \Sigma^* \mid n \ge 0, \forall i \le n. \ a_i \ne b \}$$

$$a_0 a_0 a_1 a_1 a_1 a_2$$

$$L = \{ a_1 a_2 ... a_n b \in \Sigma^* \mid n \ge 0, \forall i \le n. \ a_i \ne b \}$$

$$a_0 a_0 a_1 a_1 a_1 a_2 a_2 a_2 a_2 a_2$$

$$L = \{ a_1 a_2 ... a_n b \in \Sigma^* \mid n \ge 0, \forall i \le n. \ a_i \ne b \}$$

(all strings where last name is distinct from all previous ones)

 $a_0 a_0 a_1 a_1 a_1 a_2 a_2 a_2 a_2 a_2 a_2 a_3 a_3 a_4 a_4 a_5 a_5 a_5 a_5 a_5 a_5$

$$L = \{ a_1 a_2 ... a_n b \in \Sigma^* \mid n \ge 0, \forall i \le n. \ a_i \ne b \}$$

(all strings where last name is distinct from all previous ones)

 $a_0 a_0 a_1 a_1 a_1 a_2 a_2 a_2 a_2 a_2 a_2 a_3 a_3 a_4 a_4 a_5 a_5 a_5 a_5 a_5 a_5 b$

$$L = \{ a_1 a_2 ... a_n \in \Sigma^* \mid n \ge 0, \forall i \ne j. \ a_i \ne a_j \}$$
 (all strings of distinct names)

$$L = \{ a_1 a_2 ... a_n \in \Sigma^* \mid n \ge 0, \forall i \ne j. \ a_i \ne a_j \}$$

$$(all strings of distinct names)$$

A PDRS (PDR System) is a PDRA without read transitions

Lemma: Let S be a PDRS with R-many registers. For any pair of states q_1 and q_2 , if there is a run between them (from empty stack to empty stack) then there is one involving at most 3R names.

$$L = \{ a_1 a_2 ... a_n \in \Sigma^* \mid n \ge 0, \forall i \ne j. \ a_i \ne a_j \}$$
 (all strings of distinct names)

A PDRS (PDR System) is a PDRA without read transitions

Lemma: Let S be a PDRS with R-many registers. For any pair of states q_1 and q_2 , if there is a run between them (from empty stack to empty stack) then there is one involving at most 3R names.

$$L = \{ a_1 a_2 ... a_n \in \Sigma^* \mid n \ge 0, \forall i \ne j. \ a_i \ne a_j \}$$
 (all strings of distinct names)

A PDRS (PDR System) is a PDRA without read transitions

Lemma: Let S be a PDRS with R-many registers. For any pair of states q_1 and q_2 , if there is a run between them (from empty stack to empty stack) then there is one involving at most 3R names.

Conversely, there is a PDRS with R registers whose runs to a designated state involve exactly 3R names.

Reachability

R-PRDS Reach: Given a PDRS S with R registers and a state q, is there a run of S to q?

Reachability

R-PRDS Reach: Given a PDRS S with R registers and a state q, is there a run of S to q?

Theorem: *R*-PRDS Reach is EXPTIME-complete.

For EXPTIME solvability:

- By previous Lemma, 3R names suffice: $\Sigma' = \{a_1, ..., a_{3R}\}$
- so, registers can be encoded inside states: $Q' = Q \times R^{3R}$
- and we reduce to PDA reachability (PTIME)

For hardness, the argument is harder...

- We reduce from PSPACE Turing machines with stack
- crux of the reduction is the simulation of the tape
 - if we allowed name repetitions in registers then easy:

For hardness, the argument is harder...

- We reduce from PSPACE Turing machines with stack
- crux of the reduction is the simulation of the tape
 - if we allowed name repetitions in registers then easy:

now, instead, we use mask encodings + the stack:

For hardness, the argument is harder...

- We reduce from PSPACE Turing machines with stack
- crux of the reduction is the simulation of the tape
 - if we allowed name repetitions in registers then easy:

now, instead, we use mask encodings + the stack:

hygiene to ensure that the masks are soundly applied and the stack is not messed up...

without the stack, repetitions give a huge complexity gap!

For hardness, the argument is harder...

- We reduce from PSPACE Turing machines with stack
- crux of the reduction is the simulation of the tape
 - if we allowed <u>name repetitions</u> in registers then easy:

now, instead, we use mask encodings + the stack:

hygiene to ensure that the masks are soundly applied and the stack is not messed up...

More results!

Global reachability: For a PDRS S, capture all configurations from which S can reach a specified set of configurations

Theorem: Register automata (i.e. PDRA but no stack) capture configurations that can reach "regular" sets.

• cf. "saturation" technique of Bouajjani, Esparza and Maler

<u>Higher-order PDRS:</u> Extensions with stacks of stacks

Theorem: Reachability is undecidable at order 2.

reduce from Pebble automata language emptiness

Concluding

Reachability analysis for infinite-alphabet systems with:

finitely many registers & a pushdown stack

paper appears at MFCS 2014

Further directions include:

- Implementation & use in automata-base verification
 - e.g algorithmic game semantics
- Bisimulation analysis
- dPDRA equivalence

Concluding

thanks

Reachability analysis for infinite-alphabet systems with:

finitely many registers & a pushdown stack

paper appears at MFCS 2014

Further directions include:

- Implementation & use in automata-base verification
 - e.g algorithmic game semantics
- Bisimulation analysis
- dPDRA equivalence