

Midterm Presentation: Image Classification based on CNN

T11 PangCloud: Tianyang Liu, Yicheng Wang, Su Pu

Outline

- Architecture
- CNN Algorithm
- Experiments
- Team Coordiation
- Furture work

Progress

- Learn the neural network model.
- Learn the TensorFlow structure.
- Train CIFAR-10 example in TensorFlow.
- Change different CPU / GPU combinations to find the best arrangement.
- Adjust structure and parameters of CNN for CIFAR-10

Basic Component

TensorFlow: An open source machine learning framework.

GPU / CPU: Parallelized computing platform.

CIFAR10: A smaller dataset compare to ImageNet.

Consists of 60000 32x32 colour images in 10 classes.

Multiple GPUs Architecture

Core algorithm: CNN

The full connection algorithm of ordinary Neural Network would lead to tremendous computation.

Input image 200*200*3

1. Convolutional layer

1,	1,0	1,	0	0	
0,0	1,	1,0	1	0	
0,,1	0,0	1,1	1	1	
0	0	1	1	0	
0	1	1	0	0	

Image

Convolved Feature

4

activation map

2. Pooling layer

Down sample to make the representations smaller and more manageable

6

3

Convolved feature

Pooled feature

3. ReLU

- non-saturating nonlinearity
- Faster learning
- preventing overfitting

4. Fully-Connected layer

Just like the connection method in ordinary NN, the neurons of one layer connect all the neurons in the previous layer, which means there are N*M parameters (N the number of neurons in present layer and M for the previous layer)

Input:

Training images: 50000 (10000 for validation)
Test images: 10000

Class: 10

batch size: 128

Code:

Training:

Code: Generate several Convolutional layers

```
# conv1
with tf.variable_scope('conv1') as scope:
 kernel = _variable_with_weight_decay('weights',
                                       shape=[5, 5, 3, 64],
                                       stddev=5e-2,
                                       wd = 0.0)
  conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
 biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0))
 bias = tf.nn.bias add(conv, biases)
 conv1 = tf.nn.relu(bias, name=scope.name)
 activation summary(conv1)
# pool1
pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
                       padding='SAME', name='pool1')
# norm1
norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
                  name='norm1'
```

Training:

Code:

The convolution result go through SoftMax first, and then go through fully connected neuron network

```
softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
_activation_summary(softmax_linear)
```

Calculate the loss and gradient and modify the weight and bias.

```
# Compute the moving average of all individual losses and the total loss.
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
# Compute gradients.
with tf.control_dependencies([loss_averages_op]):
    opt = tf.train.GradientDescentOptimizer(lr)
    grads = opt.compute_gradients(total_loss)
# Apply gradients.
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
```

Evaluation:

The evaluation runs after evey max_step's steps.

```
tf.app.flags.DEFINE_integer('max_steps', 1000000, """Number of batches to run.""")
```

Track the neuron network information from the check point.

```
saver.restore(sess, ckpt.model_checkpoint_path)
# Assuming model_checkpoint_path looks something like:
# /my-favorite-path/cifar10_train/model.ckpt-0,
# extract global_step from it.
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
```

Run the evaluation

```
while True:
    eval_once(saver, summary_writer, top_k_op, summary_op)
    if FLAGS.run_once:
        break
    time.sleep(FLAGS.eval_interval_secs)
```

Tests on CPUs:

Additional dieke (Ontional)

We choose google cloud platform to do the expriment on multiple CPUs. (Yes, It is cheaper!)

We changed the CPU number to test difference of the training speed.

Tests on GPUs:

GPU is mostly design for calculation of graphics, it can be paralleled and calculates faster than CPUs.

Experiment setup

Hardware: AWS GPU instances / gcloud virtual CPUs / Nvidia Tesla K80 GPUs in UF HiperGator 2.0

Software: Ubuntu 14.04 LTS / CUDA 7.5 / cuDNN v5 / TensorFlow 0.11

Metrics: speed / error rate / parameter count / epoch

Experiment 1

Speed of different platforms: CPU vs GPU

Type of compute engines

Experiment 2

Model error rate of overlapping versus nonoverlapping stride of pooling layer scheme.

Change the strides of the pooling function and test on both overlapping and nonoverlapping pooling scheme.

Fast 10 epochs Validation Error Rate												
Epoch/Model	1	2	3	4	5	6	7	8	9	10		
Overlapping	44%	37%	34%	30%	30%	30%	30%	30%	25%	25%		
Not Overlapping	52%	44%	39%	37%	35%	34%	33%	32%	29%	29%		

Team Coordination

- 1. Tianyang the coordinator will continue working on CIFAR-10 with IEEE CNN papers to research on possible ways to increase model performance.
- 2. Yicheng will work on the ILSVRC2012 dataset and will implement results from Tianyang to train optimized deep CNN models.
- 3. Su will learn CUDA programming to utilize GPU to train models and also assist Yicheng in model training.
- 4. All three of us will work on the remaining part like result analyzing and thesis composing.

Future Experiments

- Repeat experiment results from other papers and rethink advantages of these methods and techniques.
- 2. Choose then combine stacks of technology into our models through modifying TensorFlow CNN layers.
- Boost training with CUDA parallelization with reasonable assignment of tasks among kernels and multiple GPUs.
- Compare overall aspects of the models that we will have trained and optimize one as the final result then compose the final report.

Thank you!

T11 PangCloud
Image classification based on CNN

