Q	T	Q(t+1)		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

Q	D	Q(t+1)		
0	0 0			
0	1	1		
1	0 0			
1	1	1		

	_	Q _{n+1}	Qn	R	S
Qn		0	0	0	0
(same as i		1	1	0	0
0		0	0	1	0
		0	1	1	0
1	=	1	0	0	1
	930	1	1	0	1
Invalid		×	0	1	1
mivand		×	1	1	1

J	K	Q _N	Q,,,,
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1.
1	1	0	1
1	1	1	0

Truth Table for 2x1 MUX :-

S	Α	В	Y
0	0	x	0
0	1	×	1
1	×	0	0
1	×	1	1

NOR Gate

MOD-13 ASYNCHRONOUS UP COUNTER USING JK-F/F

$$sum = A (xor) B$$

 $carry = A (and) B$

$$sum = A (xor) B (xor) C$$
$$Carry = A.B + B.C + A.C$$

$$D = A (xor) B$$

Bout = $\sim A (and) B$

$$D = A (xor) B (xor) C$$

Bout = $\sim A.B + B.C + \sim A.C$

dnae	Initial values	M 0111	Q ₋₁	Q 0011	A 0000
lucs	Illitial values	0111	U	0011	0000
M \ First	A←A – M	0111	0	0011	1001
∫ cycle	Shift	0111	1	1001	1100
} Secon cycle	Shift	0111	1	0100	1110
M 7 Third	$A \leftarrow A + M$	0111	1	0100	0101
∫ cycle	Shift	0111	0	1010	0010
Fourt cycle	Shift	0111	0	0101	0001

Booth's Algorithm

Ref: "Computer Organization and Architecture Designing for Performance" By William Stallings

Qn+1 = Qn +T

CIL	5	R	A A
0	X	X	Henry
1	0	٥	Hemoy
1	0	1_	0 1
1	L	0	1 0
1	_ 1	L	6010+ used