#### Fall 2021 MATH 5720 Homework 6

- (\*) When submitting on GradeScope, please indicates pages for each question.
  - 1. Suppose data points in  $\mathbb{R}^2$  are given by

Use least squares approach to fit the data by

- (a) A quadratic function.
- (b) A polynomial of degree 8 (which will pass all the data points).

Provide a graph for each case. Which model is a better choice for this particular data set? Why? *Note:* You may use the operations A\b in Matlab/Julia. You are NOT allowed to use the function polyfit(). Provide sufficient details of your work.

**2.** Find the quadratic curve in  $\mathbb{R}^2$  of the form

(E): 
$$ax^2 + bxy + cy^2 + dx + ey + f = 1$$
  
(a, b, c, d, e,  $f \in \mathbb{R}$  are parameters to be determined).

that best fits (in least squares sense) the points

Sketch the quadratic curve (E). You may find the implicit plot example (enclosed) to be useful.

#### 3. (A denoising problem)

Create random vectors  $t = (t_1, \ldots, t_n)$  and  $b = (b_1, \ldots, b_n)$  by using the following codes

### Julia:

### Matlab:

Use the regularized least squares model

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{x} - \mathbf{b}\|^2 + \lambda R(\mathbf{x})$$
where  $R(\mathbf{x}) = \sum_{i=1}^{n-1} (x_i - x_{i+1})^2$ ,  $\mathbf{b} = (b_1, \dots, b_n)$ ,  $\mathbf{x} = (x_1, \dots, x_n)$ .

to find an approximate smooth signal  $\mathbf{x}$  with different values  $\lambda \in \{5, 100, 500\}$ . Provide your answers with some graphs.

4. (Circle fitting) Use Julia/Matlab to generate m = 50 points of the form

$$(u_i, v_i) = (\alpha_i + \eta_i \cos \theta_i, \beta_i + \eta_i \sin \theta_i) \in \mathbb{R}^2, \quad i = 1, 2, \dots, m.$$

where  $\alpha_1, \ldots, \alpha_m$  are uniformly distributed on [-1, 0],  $\beta_1, \ldots, \beta_m$  are uniformly distributed on [1, 2],  $\eta_1, \ldots, \eta_m$  are uniformly distributed on [3, 5],  $\theta_1, \ldots, \theta_m$  are uniformly distributed on  $[0, 2\pi]$ .

Find the circle that best fits these points using least squares approach, then create a figure that contains the circle and all the points.

Hint: Some useful commands

| Julia        | Matlab        | vector of $n$ random numbers that are:                |
|--------------|---------------|-------------------------------------------------------|
| rand(m)      | rand(m,1)     | uniformly distributed on [0, 1].                      |
| rand(m)*0.5  | rand(m,1)*0.5 | uniformly distributed on $[0, 0.5]$ (scaling effect). |
| rand(m) .+ 1 | rand(m,1)+1   | uniformly distributed on [1,2] (translating effect).  |

For example, the parameters can be generated by

```
Julia:

m = 50;
alpha = rand(m) .- 1;
beta = rand(m) .+ 1;
eta = 2*rand(m) .+ 3;
theta = 2pi*rand(m);
```

```
Matlab:

m = 50;
alpha = rand(m,1) - 1;
beta = rand(m,1) + 1;
eta = 2*rand(m,1) + 3;
theta = 2*pi*rand(m,1);
```

# Implicit Plot

Hung Phan, UMass Lowell September 17, 2020

## 1 An Example

Plot a curve in  $\mathbb{R}^2$  given by an equation

$$C := \{(x, y) \in \mathbb{R}^2 , f(x, y) = c\}$$

For example, in  $\mathbb{R}^2$ , sketch the curve

$$x^2 + y^2 - xy - 2x + 4y = 5$$

within the region  $[-5, 5] \times [-6, 2] \subset \mathbb{R}^2$ .

## 2 Matlab code

Matlab already has the function fimplicit that plots the curve g(x,y) = 0:

$$g = @(x,y) x.^2 + y.^2 - x.*y - 2x + 4y - 5;$$
  
fimplicit(g, [-5 5 -6 2])

For more details: https://www.mathworks.com/help/matlab/ref/fimplicit.html#d122e395345

# 3 Define fimplicit in Julia

Since Julia does not have the function fimplicit, we will define one.

```
[1]: using PyPlot;

function fimplicit(f,c,xrge,yrge)
    n = 101;
    xs = range(xrge[1], stop=xrge[2], length=n);
    ys = range(yrge[1], stop=yrge[2], length=n);
    xgrid = repeat(xs,1,n);
    ygrid = repeat(ys',n,1);
    z = f(xgrid,ygrid);
    contour(xgrid, ygrid, z, levels=c);
end
```

```
[3]: f = (x,y) \rightarrow x.^2 + y.^2 - x.*y - 2x + 4y;
```

```
[4]: figure(figsize=(4,4));
    axis("equal");
    grid(linestyle="dotted");
    fimplicit(f,[5], [-5;5], [-6;2]);
```



[]: