Diagramas de dispersion en el análisis de datos

```
In []: import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt

#Configurando Latex
# Configuración de Matplotlib para usar LaTeX
plt.rcParams.update({
        "text.usetex": True,
            "font.family": "serif",
            "font.serif": ["Computer Modern Roman"],
            "text.latex.preamble": r"\usepackage{amsmath}"
})

iris = sns.load_dataset('iris')
#Dataset de Flores
iris.head(3)
```

Out[]:	sepal_length		sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	47	3.2	13	0.2	setosa

El data set tiene atributos que se miden en la flor Iris y entonces tenemos que dependiendo de la longitud de 2 elementos fundamentales; pétalo y sepalo podemos clasificar a que especie corresponden.

Vamos a trabajar con la gráfica scatterplot.

Relación Sepalo vs Pétalo

Esta gráfica dibuja un punto por flor y la intersección entre ambas medidas (**longitud del sepalo y longitud del pétalo**) es donde se ubica el punto. Este tipo de visualización nos muestra la relación de los datos. Aquí están combinadas todas las especies.

Hagamos una segmentación de especies.

```
In []: #Definiendo estilos
   plt.style.use('ggplot')
   fig, ax = plt.subplots(figsize=(5,5))

sns.scatterplot(data=iris,x='sepal_length',y='petal_length',hue='species')
   plt.title('Relación en flor Iris\nSepalo vs Pétalo\n\n',fontsize=23)
   plt.xlabel('\nLongitud Sepalo',fontsize=18)
   plt.ylabel('Longitud Pétalo\n',fontsize=18)
   sns.move_legend(ax, "upper left", bbox_to_anchor=(0, 1.13),ncol=3,title='Especies',frameon=False)
```

Relación en flor Iris Sepalo vs Pétalo

Longitud Sepalo

Aquí en este gráfico se percibe una relación mas clara sobre los 3 tipos de especies y el tamaño de sus parámetros, por ejemplo podemos observar que las tipo **setosa** tienen la menor *longitud en sepalo* y de igual forma la menor *longitud de pétalo*.

```
In []: #Definiendo estilos
plt.style.use('default')
plt.rcParams.update({
    "text.usetex": True,
    "font.family": "serif",
    "font.serif": ["Computer Modern Roman"],
    "text.latex.preamble": r"\usepackage{amsmath}"
})

with sns.axes_style("whitegrid"):
    sns.jointplot(data=iris,x='sepal_length',y='petal_length')
    plt.title('Relación en flor Iris\nSepalo vs Pétalo\n\n\n',fontsize=23)
    plt.xlabel('\nLongitud Sepalo',fontsize=18)
    plt.ylabel('Longitud Pétalo\n',fontsize=18)
```

Relación en flor Iris Sepalo vs Pétalo

Longitud Sepalo

Como se puede observar este tipo de visualización combina 2 gráficas, en este caso arrojó un scatterplot y 2 histogramas para cada eje.

Ahora agregaremos una segmentación de especies.

```
In []: #Definiendo estilos
plt.style.use('default')
plt.rcParams.update({
    "text.usetex": True,
    "font.family": "serif",
    "font.serif": ["Computer Modern Roman"],
    "text.latex.preamble": r"\usepackage{amsmath}"
})
with sns.axes_style("whitegrid"):
    sns.jointplot(data=iris,x='sepal_length',y='petal_length',hue='species')
    plt.title('Relación en flor Iris\nSepalo vs Pétalo\n\n\n\n',fontsize=23)
    plt.xlabel('\nLongitud Sepalo',fontsize=18)
    plt.ylabel('Longitud Pétalo\n',fontsize=18)
```

Relación en flor Iris Sepalo vs Pétalo

Como podemos observar, aquí se cambio el tipo de gráfica en los ejes y esto es debido a la segmentación. También podemos apreciar en los diferentes ejes que las distribuciones de los diversos datos, en algunos casos pueden parecer uniformes y en otros no parecen asi.

También podemos comparar las demás variables.

Relación en flor Iris Sepalo

Longitud Sepalo

```
In []: #Definiendo estilos
   plt.style.use('ggplot')
   fig, ax = plt.subplots(figsize=(5,5))

sns.scatterplot(data=iris,x='sepal_width',y='petal_width',hue='species')
   plt.title('Relación en flor Iris\nSepalo vs Pétalo\n\n',fontsize=23)
   plt.xlabel('\nAncho Sepalo',fontsize=18)
   plt.ylabel('Ancho Pétalo\n',fontsize=18)
   sns.move_legend(ax, "upper left", bbox_to_anchor=(0, 1.13),ncol=3,title='Especies',frameon=False)
```

Relación en flor Iris Sepalo vs Pétalo

Ancho Sepalo

```
In []: #Definiendo estilos
  plt.style.use('default')
  plt.rcParams.update({
    "text.usetex": True,
        "font.family": "serif",
        "font.serif": ["Computer Modern Roman"],
```

```
"text.latex.preamble": r"\usepackage{amsmath}"
})
with sns.axes_style("whitegrid"):
    sns.jointplot(data=iris,x='sepal_width',y='petal_width',hue='species')
    plt.title('Relación en flor Iris\nSepalo vs Pétalo\n\n\n',fontsize=23)
    plt.xlabel('\nAncho Sepalo',fontsize=18)
    plt.ylabel('Ancho Pétalo\n',fontsize=18)
```

Relación en flor Iris Sepalo vs Pétalo

Ancho Sepalo

sns.boxplot(x='species',y='sepal_length',data=iris,palette=['blue','red','green'])

ue` and set `legend=False` for the same effect.

Longitud promedio de sepalo

Recordemos el uso de cuartiles Q2=mediana, entonces podemos decir que, la mediana de la longitud del sepalo en:

- Setosa es 5.0
- Versicolor es 5.9
- Virginica es 6.4

```
In [ ]: Species_averages_sl = iris.groupby(by='species')['sepal_length'].mean().reset_index()
    Species_averages_sw = iris.groupby(by='species')['sepal_width'].mean().reset_index()
    Species_averages_pl = iris.groupby(by='species')['petal_length'].mean().reset_index()
    Species_averages_pw = iris.groupby(by='species')['petal_width'].mean().reset_index()
    iris.groupby(by='species').mean()
```

$\verb"Out[]: sepal_length sepal_width petal_length petal_width"$

species				
setosa	5.006	3.428	1.462	0.246
versicolor	5.936	2.770	4.260	1.326
virginica	6.588	2.974	5.552	2.026

En la tabla anterior podemos afirmar nuestra hipótesis que teníamos sobre los promedios en longitud del sepalo de cada especie

Longitud promedio de pétalo

Especies

```
In [ ]: #Ancho promedio de pétalo
with sns.axes_style("whitegrid"):
    sns.barplot(x='species',y='petal_width',data=iris,hue='species')
    plt.title('\nAncho promedio de pétalo\n',fontsize=23)
    plt.xlabel('\nEspecies',fontsize=18)
    plt.ylabel('Ancho de pétalo\n',fontsize=18)
    for index, row in Species_averages_pw.iterrows():
        plt.text(index, row['petal_width'] + .1, f'{row["petal_width"]:.2f}', color='black', ha="center",fontsize=10]
```

Ancho promedio de pétalo

Especies

```
In []: #Ancho promedio de sepalo
with sns.axes_style("whitegrid"):
    sns.barplot(x='species',y='sepal_width',data=iris,hue='species')
    plt.title('\nAncho promedio de sepalo\n',fontsize=23)
    plt.xlabel('\nEspecies',fontsize=18)
    plt.ylabel('Ancho de sepalo\n',fontsize=18)

for index, row in Species_averages_sw.iterrows():
    plt.text(index, row['sepal_width'] + .13, f'{row["sepal_width"]:.2f}', color='black', ha="center",fontsize=16")
```

Ancho promedio de sepalo

Extras

https://seaborn.pydata.org/tutorial/properties.html#text