The 1D Ising Model on a Quantum Computer

Hackathon Cuántico Madrid Octubre 2021

Manuel Eduardo González Lastre Francisco Jesús Matute Fernández-Cañadas Jorge Vega Martín Jaume Zuriaga Puig Omar Bouzid Mambrilla

Background: Metropolis sampling of the Ising model

- Prepare initial system configuration with energy Econf
- Generate test configuration with energy Etest
- If Etest < Econf the test configuration becomes the new system configuration
- If not, the test configuration becomes the new configuration with probability p = exp(-(Etest-Econf)/T)
- Repeat

Image from

https://personal.math.ubc.ca/~a ndrewr/research/intro_html/node 14.html

Background: Metropolis sampling of the Ising model

 $P = \exp(-\beta \cdot \Delta E)$ Image from https://personal.math.ubc.ca/~a ndrewr/research/intro html/node 14.html

1D Ising Model at H=0: the algorithm

Table from: https://arxiv.org/abs/quant-ph/0404143

ASB	S' angle	S'_{cl}	p_{cl}
$\downarrow\downarrow\downarrow\downarrow$	$ \sqrt{P} \uparrow\rangle + \sqrt{1-P} \downarrow\rangle$	\downarrow	1 - P
		\uparrow	P
$\downarrow\downarrow\uparrow\uparrow$	1>	1	1
$\downarrow\uparrow\downarrow$	$ \downarrow\rangle$	\downarrow	1
$\downarrow \uparrow \uparrow$	$ \downarrow\rangle$	\downarrow	1
$\uparrow\downarrow\downarrow$	1>	\uparrow	1
$\uparrow\downarrow\uparrow$	1>	1	1
$\uparrow \uparrow \downarrow$	$ \downarrow\rangle$	\downarrow	1
$\uparrow \uparrow \uparrow$	$ \sqrt{P} \downarrow\rangle + \sqrt{1-P} \uparrow\rangle $	1	1 - P
		\downarrow	P

Note: $\overline{P = e^{-\frac{4J}{T}}}$

1D Ising Model at H=0: magnetization vs. temperature

Extending 1D Ising Model for H≠0: the algorithm

q ₀	<u> </u>
q_1	<u> </u>
q ₂	_
q ₃ x x x x x x	
q ₄	
q ₅	
q 6	
<i>q</i> ₇	
<i>q</i> ₈	

ASB	S'}
$\downarrow\downarrow\downarrow$	$\sqrt{P_1} \!\uparrow\rangle + \sqrt{1-P_1} \!\downarrow\rangle$
$\downarrow \downarrow \uparrow$	↑⟩
$\downarrow\uparrow\downarrow$	$\sqrt{P_2} \!\downarrow\rangle + \sqrt{1 - P_2} \!\uparrow\rangle$
$\downarrow\uparrow\uparrow$	$\sqrt{P_3} \downarrow\rangle + \sqrt{1-P_3} \uparrow\rangle$
$\uparrow\downarrow\downarrow$	↑⟩
$\uparrow\downarrow\uparrow$	↑⟩
$\uparrow\uparrow\downarrow$	$\sqrt{P_3} \downarrow\rangle + \sqrt{1-P_3} \uparrow\rangle$
$\uparrow\uparrow\uparrow$	$\sqrt{P_4} \!\downarrow angle + \sqrt{1-P_4} \mid\uparrow angle$

$$P_1 = \min \{1, \exp ((-4J + 2h)/T)\}$$

$$P_2 = \min \{1, \exp ((+4J - 2h)/T)\}$$

$$P_3 = \exp (-2h/T)$$

$$P_4 = \exp (-4J - 2h)/T)$$

Extending 1D Ising Model for H≠0: the results

Introducing entanglement: the algorithm

- - -

Introducing entanglement: the results

