Задача 1

Записать каноническое уравнение линии второго порядка, найти координаты её вершин и фокусов, записать (если возможно) уравнения асимптот, если известно, что:

- 1) уравнения директрис линии $D_1: x = -2$, $D_2: x = 2$ и эксцентриситет e = 1/2;
- 2) уравнения директрис линии $D_1: x = -4$, $D_2: x = 4$ и межфокусное расстояние 10;
- 3) расстояние от точки M(4,4), принадлежащей линии, до её фокуса равно расстоянию до её директрисы и равно 5.

Ответы:

- 1) уравнение линии $\frac{x^2}{1} + \frac{y^2}{3/4} = 1$, т.е. линия представляет собой эллипс; вершины $A_1(-1,0)$, $A_2(1,0)$, $B_1(0,-\sqrt{3}/2)$ и $B_2(0,\sqrt{3}/2)$; фокусы $F_1(-1/2,0)$ и $F_2(1/2,0)$;
- 2) уравнение линии $\frac{x^2}{20}-\frac{y^2}{5}=1$, т.е. линия представляет собой гиперболу; вершины $A_1(-2\sqrt{5},0)$ и $A_2(2\sqrt{5},0)$; фокусы $F_1(-5,0)$ и $F_2(5,0)$; асимптоты L_1 : y=-x/2 и L_2 : y=x/2;
- 3) уравнение линии $y^2 = 4x$, т.е. линия представляет собой параболу; вершина (0,0); фокус F(1,0).

Пояснение к задачам 2 и 3.

Каноническое уравнение гиперболы было получено из уравнения $r_1-r_2=2a$, т.е. является его следствием. Так как уравнение $r_1-r_2=2a$ по сути является определением гиперболы, то получается, что координаты всякой точки гиперболы удовлетворяют каноническому уравнению. Но в процессе вывода канонического уравнения применялась операция возведения в квадрат, поэтому уравнение могло "зацепить" лишние корни, в связи с чем возникает вопрос: верно ли обратное утверждение, т.е, если координаты точки удовлетворяют каноническому уравнению, то принадлежит ли эта точка гиперболе? В задаче 2 требуется доказать, что в каноническом уравнении гиперболы лишних корней нет, а в задаче 3 доказать аналогичное утверждение относительно канонического уравнения параболы.

Задача 2 (*)

Доказать, что уравнение $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ является уравнением гиперболы.

Задача 3 (*)

Доказать, что уравнение $y^2 = 2px$ является уравнением параболы.

Задача 4 (*)

Доказать, что для любой точки M(x,y), принадлежащей гиперболе, имеет место равенство

$$\frac{r_1}{d_1} = \frac{r_2}{d_2} = e \; ,$$

где

 $r_1,\ r_2$ — расстояния от точки M до фокусов гиперболы $F_1(-c,0)$ и $F_2(c,0)$; $d_1,\ d_2$ — расстояния от точки M до её директрис $D_1: x=-\frac{a}{e}$ и $D_2: x=\frac{a}{e}$.

02.10.2014 12:14:17 ctb. 1 из 1