

Platform ve Faydalı Yük Elektroniği Tasarım Departmanı Güneş Takip Sisteminin Geliştirilmesi

Sefa SAYRACI

Stajyer

12 Eylül 2023

Tübitak UZAY

YAPILACAKLAR

Resim ve tablo numaraları ekle.

USART EKLE

Söyleyeceklerini deftere not al.

RS Haberleşme ve Uzaydaki kamera modülleri kaldı.

İçindekiler

•	Ben Kimim
•	Proje Detay
•	Proje Bölümleri
•	Teknik Araştırmalar
•	Aviyonik Yazılım Alt Tasarımı
•	Kontrol Arayüz Yazılım Alt Tasarımı
•	Donanım Alt Tasarımı
•	Kullanılan Elektronik Komponentleri
•	Elektronik Kart Tasarımı
•	IMU 3D Kontrol Yazılım Alt Tasarımı
•	Hedef Takip Sistemi (ESP CAM Modülü)
•	Hedef Takip Sistemi (Harici Kamera Modülü)
•	Kaynakça
•	İnternet Kaynakçaları
•	Teşekkürler

Ben Kimim?

Ben Kimim?

Ben Sefa SAYRACI

Gazi Üniversitesi Elektrik Elektronik Mühendisliği 4. sınıf

- 1. zorunlu staj: Baykar Teknoloji Yapay Zeka Yazılım Departmanı
- 2. gönüllü staj: Group R & D and Energy Control Systems Gömülü Yazılım Departmanı
- 3. zorunlu staj: TÜBİTAK Uzay Platform ve Faydalı Yük Elektroniği Tasarım Departmanı

Yaptığım Projeler

- TÜBİTAK 2209-A: Güneş Takip Sisteminde Derin Öğrenme ile Hedef Tespiti ve Fpga ile Sistem Kontrolünün Geliştirilmesi
- Real Time sistemlerde Integrity, GIS, VXWorks ile teoriksel araştırma yaptım. Bunun doğrultusunda RTOS'un mikrodenetleyiciye iplemente oluşu hakkında yazılımsal giriş ve atanan taskları gerçekleştirmesi üzerinedir.
- SimpleFOC Kütüphanesi ile Manyetik Motor Üzerinden Hedef Takip Sistemi-BLDC Motor
- Projemde motoru step motor şeklinde kullanacağımdan dolayı yazılımsal olarak SimpleFOC kütüphanesi ile yazılımsal üzerinde geliştirdim. Bu sisteme PID ekleyerek motorun istediğim açısal hareketini gerçekleştirdim.

Proje Detay

Proje kapsamında «Güneş Takip Sistemi» hedefinde geliştirme yapılmıştır. Bu süreçte güneş takip sistemi üzerinde mevcut olacak telemetri sensörleri için oluşturulmuş olan C tabanlı yazılım ile verilerin anlık olarak gösterileceği bilgisayar üzerine iletilip, C# üzerinden geliştirilmiş olan arayüz uygulamasında verilerin anlık olarak text ve grafik şeklinde yansıtılması hedeflenmiştir. Ayrıca bu verilerin hepsi Excell üzerine kaydedilmektedir. Telemetri sensöründen gelen anlık açı verileri ile Python üzerinde poly3D kütüphanesi import edilerek anlık eksenel görünümü de gösterilmiştir. Bu sensörlerin daha kolay kontrolünün sağlanması için Altium Designer 23.0.1 üzerinden elektronik kart tasarımı gerçekleşmiştir.

Resim 1. Tübitak UZAY İMECE ve GÖKTÜRK-2 Resmi

Proje Bölümleri

Tablo 1. Proje Bölümleri

Uzayda Kullanılan Kamera Sistemleri:

Haberleşme Protokolleri:

UART: UART açılımı Universal Asynchronous Receiver Transmitter olarak isminden de Asenkron haberleşme olduğu anlaşılmaktadır. Asenkron olması sonucunda da ortak bir clock sinyali yoktur. Amacı verileri seri şekilde iletmektir. İki cihaz arasında her seferinde bir bit veri göndermenin bir yoludur. İki adet Tx (Gönderici) ve Rx (Alıcı) olarak pine sahiptir. UART'lar genellikle mikrodenetleyicileri bilgisayarlar, sensörler ve aktüatörler gibi diğer cihazlara bağlamak için kullanılır.

RS-232 ara yüzleri ve harici modemler ve bunlara benzer kullanan cihazlar da UART kullanılan yerlerin çok sık örnekleri olmaktadır.

Düşük voltaj seviyelerinde kullanılır.

Parite bit opsiyonel kullanılır. Veri bitlerin toplamının çift veya tek olmasını anlamak için kullanılır. Alıcı tarafında orijinal verilerde hata tespiti ve verilerin düzeltilmesi amacıyla kullanılır.

8

SPI: SPI açılımı Serial Peripheral Interface olarak bilinmektedir. Seri çevresel arayüz (SPI), yüksek hızlı bir seri iletişim protokolüdür. SPI genellikle mikrodenetleyicileri flash bellek ve SD kartlar gibi bellek aygıtlarına bağlamak için kullanılır.

Senkron haberleşme yapar.

Yüksek hızlarda veri iletimini destekler ve tam çift yönlü iletişim sağlar, yani aynı anda hem veri gönderme hem de almayı mümkün kılar.

Full Duplex modda çalışır.

SPI ile bir master cihaz birden fazla slave cihazı kontrol edebilir. Ana cihaz, iletişim kurmak istediği slave cihazı seçer.

SCLK: Serial Clock

MOSI: Master out Slave in MISO: Master in Slave out

SS/CS: Slave Select/Chip Select

I^2C: I2C açılımı Inter-Integrated Circuit, Entegre devreler arası (I2C) düşük hızlı bir seri iletişim protokolüdür. I2C genellikle mikrodenetleyicileri sensörlere ve aktüatörlere bağlamak için kullanılır.

Senkron haberleşmedir.

Kısa mesafelerde iyidir.

Çok master destekler.

Uzun mesafelerde iyiler.

1 adet data 1 adet clock sinyali vardır.

Veri yolu üzerinde çoklu Master ve çoklu Slave'leri işleme kabiliyetine sahiptir.

Clock senkronizasyonu gibi önemli durumları mevcuttur.

SDA
SCL
GND

Master
(RasPi)
(DAC)

Slave
(Arduino)

LCD

LCD

LCD

LCD

Resim 1.3 I2C Protokolü Örnek Master Slave Dağılımı

Master tarafından start ve stop koşullarıyla haberleşme başlar ve biter.

SCL: Serial Clock Line SDA: Serial Data Line

I^2C ve SPI Arasındaki Farklar:

İkisi de senkron haberleşmedir. Arasındaki farkları inceleyelim;

- I²C half duplex, SPI full duplex
- I²C 2 tele ihtiyaç duyar, SPI 3 ya da 4.
- I²C SPI'ya göre yavaştır.
- I²C SPI'ya göre daha fazla güç çeker.
- I²C gürülteye SPI'ya göre daha az duyarlıdır.
- I²C SPI'dan daha ucuzdur.
- I²C tel ve logic üzerinde çalışır ve pull-up direnci vardır. SPI'da pull-up direncine gerek yoktur.
- I²C haberleşmesinde her bytetan sonra onay biti alırız. Bunu SPI desteklemez.
- I²C verinin karşıdan alındığını garantiler. SPI bunu doğrulamaz.
- I²C çok master destekler. SPI sadece 1 master.
- I²C aynı bus üzerinde aygıt adresleri sayesinde çok aygıtı destekler. SPI chip select pinine ihtiyaç duyar.
- I²C arbitration destekler, SPI desteklemez
- I²C clock stretching destekler, SPI desteklemez.
- I²C start-stop bitleri ile fazla yüke sahiptir.
- I²C uzun mesafe, SPI kısa mesafe için daha iyidir.

Asenkron ve Senkron Haberleşme:

Asenkron	Senkron
Alıcı verici arasında ortak bir saat sinyali yoktur.	İletişim paylaşılan bir saat ile yapılır.
Bir sefer 1 byte gönderir.	Veriyi bloklar halinde gönderir.
Senkrona göre yavaştır.	Asenkrona göre hızlıdır.
Start stop biti nedeniyle ek yük.	Daha az ek yük.
Uzak mesafeler.	Asenkrona göre daha kısa mesafeler.
Veri senkronizasyonu için start stop biti.	Veri senkronizasyonu için ortak saat kullanımı.
Ekonomik	Pahalı
RS232, RS485	I2C, SPI

 Tablo 1.1 Asenkron ve Senkron Haberleşme

RS232: Veri iletimi için kullanılan seri iletişim protokolüdür.

Maksimum 15 metre civarı haberleşme gerçekleştirir.

Sinyalizasyonu dengesizdir.

Tek katlı hat yapısına sahiptir.

Simplex ya da Full Duplex modda çalışır.

RS422: Bu standart, RS-232C'deki kısa iletim mesafesi ve yavaş iletim hızı gibi sorunları düzeltir. "EIA-422A" olarak da adlandırılır. Sinyal hatlarının amacı ve zamanlaması tanımlanır, ancak konektörler tanımlanmaz. öncelikle D-sub 25-pin ve D-sub 9-pin konnektörleri benimser. RS-422 diferansiyel sinyaller kullanır ve RS-232 dengesiz toprak referanslı sinyaller kullanır. Diferansiyel iletim, sinyal göndermek ve almak için iki kablo kullanır RS-232 ile karşılaştırıldığında, gürültüye daha iyi direnebilir ve daha uzun iletim mesafesine sahip olabilir. Daha iyi gürültü bağışıklığı ve endüstriyel ortamlarda daha uzun iletim mesafeleri büyük bir artıdır.

RS485: RS-485 (EIA-485 standardı) RS-422'nin bir gelişmesidir, çünkü cihaz sayısını 10'dan 32'ye çıkarır ve yeterli sağlamak için maksimum cihaz sayısındaki elektriksel karakteristikleri tanımlar. Birden fazla cihazın yeteneği sayesinde, bir cihaz ağı kurmak için tek bir RS-422 portu kullanabilirsiniz. Mükemmel gürültü önleme ve çoklu cihaz özellikleri endüstriyel uygulamalarda, diğer veri toplama kontrol cihazlarında, HMI'larda veya diğer işlemlerde PC'lere dağıtılmış bir cihaz ağı kurarken, RS-485 seri bağlantıdır.

RS-485 dezavantajı, programlamak daha zor olmasıdır, çünkü veri göndermek ve almak için aynı 2 kabloyu kullanır. Ve herhangi bir ağda, yalnızca bir düğüm veri iletebilir, diğer düğümler yalnızca o anda alabilir. On avantajları tarafında, herhangi bir sorun ile uzun mesafe iletişimi destekler. Ayrıca, arayüz devresinin zarar görmesini zorlaştıran RS-232'den daha düşük arayüz sinyal seviyeleri kullanır.

RS-485, RS-422'nin bir üst kümesidir, bu nedenle tüm RS-422 cihazları RS-485 tarafından kontrol edilebilir. RS-485, 1200 metre telin üzerindeki seri trafik için kullanılabilir. NOTLARIMDAN YAZI EKLENECEK ve RESİM EKLENECEK

RS232 ve RS485 Arasındaki Farklar:

	RS232	RS485
Hat Yapısı	Tek katlı	Diferansiyel
Aygıt Sayısı	1 alıcı, 1 gönderici	32 alıcı, 32 gönderici
Çalışma Şekli	Simplex ya da full duplex	Simplex ya da half duplex
Max. Kablo Uzunluğu	15 m	1200 m
Max. Veri Hızı	20 Kbits/s	10 Kbits/s
Sinyalizasyon	Dengesiz	Dengeli
Tipi Logic Seviyeleri	+-5 ~ +-15V	+-1.5 ~ +-6V
Min. Alıcı Giriş Empedansı	3 ~ 7 K-ohm	12 K-ohm
Alıcı Duyarlılığı	+-3V	+-200mV

```
____________UZAY
```

```
#include <Wire.h>
#include <Adafruit BMP085.h> // Adafruit BMP085 Library
#include "I2Cdev.h" //I2C kütüphanesi
#include "MPU6050.h" //Mpu6050 kütüphanesi
#include "Wire.h"
#define Magnetometer mX0 0x03
#define Magnetometer mX1 0x04
#define Magnetometer mZ0 0x05
#define Magnetometer mZ1 0x06
#define Magnetometer mY0 0x07
#define Magnetometer mY1 0x08
#define Magnetometer 0x1E //I2C 7bit address of HMC5883
Adafruit BMP085 bmp;
MPU6050 accelgyro; // Mpu6050 sensör tanımlama
int16_t ax, ay, az; //ivme tanımlama
int16_t gx, gy, gz; //gyro tanımlama
int mX0, mX1, mX out;
int mY0, mY1, mY out;
int mZ0, mZ1, mZ out;
float heading, headingDegrees, headingFiltered, declination;
float Xm,Ym,Zm;
void setup(){
 Wire.begin();
   delay(100);
 Serial.begin(9600);
 accelgyro.initialize();
```

```
if (!bmp.begin()) {
 while (true) {}
 Wire.beginTransmission(Magnetometer);
 Wire.write(0x02); // Select mode register
 Wire.write(0x00); // Continuous measurement mode
 Wire.endTransmission();
void Loop(){
accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);
 //---- X-Axis
 Wire.beginTransmission(Magnetometer); // transmit to
device
 Wire.write(Magnetometer_mX1);
 Wire.endTransmission();
 Wire.requestFrom(Magnetometer, 1);
 if(Wire.available()<=1)</pre>
   mX0 = Wire.read();
```

```
UZAY
```

```
Wire.beginTransmission(Magnetometer); // transmit to device
  Wire.write(Magnetometer mX0);
  Wire.endTransmission();
  Wire.requestFrom(Magnetometer, 1);
  if(Wire.available()<=1)</pre>
    mX1 = Wire.read();
  //---- Y-Axis
  Wire.beginTransmission(Magnetometer); // transmit to device
  Wire.write(Magnetometer mY1);
  Wire.endTransmission();
  Wire.requestFrom(Magnetometer, 1);
  if(Wire.available()<=1)</pre>
    mY0 = Wire.read();
  Wire.beginTransmission(Magnetometer); // transmit to device
  Wire.write(Magnetometer mY0);
  Wire.endTransmission();
  Wire.requestFrom(Magnetometer, 1);
  if(Wire.available()<=1)</pre>
    mY1 = Wire.read();
```

```
//---- Z-Axis
 Wire.beginTransmission(Magnetometer); // transmit to device
 Wire.write(Magnetometer mZ1);
 Wire.endTransmission();
 Wire.requestFrom(Magnetometer, 1);
 if(Wire.available()<=1)</pre>
   mZ0 = Wire.read();
 Wire.beginTransmission(Magnetometer); // transmit to device
 Wire.write(Magnetometer mZ0);
 Wire.endTransmission();
 Wire.requestFrom(Magnetometer, 1);
 if(Wire.available()<=1)</pre>
   mZ1 = Wire.read();
 //---- X-Axis
 mX1=mX1<<8;
 mX out =mX0+mX1; // Raw data
 // From the datasheet: 0.92 mG/digit
 Xm = mX out*0.00092; // Gauss unit
 //* Earth magnetic field ranges from 0.25 to 0.65 Gauss,
so these are the values that we need to get approximately.
 //---- Y-Axis
 mY1=mY1<<8;
 mY out =mY0+mY1;
 Ym = mY out*0.00092;
```

```
____TÜBİTAK___
UZAY
```

```
//---- Z-Axis
 mZ1=mZ1<<8;
 mZ out =mZ0+mZ1;
  Zm = mZ out*0.00092;
  // ==============
 //Calculating Heading
 heading = atan2(Ym, Xm);
  // Correcting the heading with the declination angle
depending on your location
 // You can find your declination angle at:
https://www.ngdc.noaa.gov/geomag-web/
 // At my Location it's 4.2 degrees => 0.073 rad
  declination = 0.073;
  heading += declination;
 // Correcting when signs are reveresed
  if(heading <0) heading += 2*PI;
 // Correcting due to the addition of the declination
angle
  if(heading > 2*PI)heading -= 2*PI;
  headingDegrees = heading * 180/PI; // The heading in
Degrees unit
 // Smoothing the output angle / Low pass filter
```

```
headingFiltered = headingFiltered*0.85 + headingDegrees*0.15;
 //Sending the heading value through the Serial Port to
Processing IDE
//Serial.println(headingFiltered);
 delay(50);
 Serial.print(bmp.readTemperature());Serial.print("/");
Serial.print(bmp.readPressure()); Serial.print("/");
 Serial.print(bmp.readAltitude());Serial.print("/");
 Serial.print(ax); Serial.print("/");
 Serial.print(ay); Serial.print("/");
Serial.print(az); Serial.print("/");
Serial.print(gx); Serial.print("/");
 Serial.print(gy); Serial.print("/");
 Serial.print(gz); Serial.print("/");
Serial.println(headingFiltered);
 delay(1000);
```

Elektronik donanım kısmında seçilmiş olan elektronik komponentlerden verileri alabilmemiz için tanımlamış olduğumuz sensör kütüphanelerinden istediğimiz fonksiyonları çağırarak kullanmamızı sağlamaktadır. Bu yazılım dili ise C tabanlı yazılım dilidir.

Resim 1.5 Kontrol Arayüzü Giriş Ekranı

Telemetri kontrol arayüzüne erişim sağlayabilmek için şifreli giriş yöntemi ekledim. Burada aktif olarak kayıtlı kullanıcı adı ve şifresi;

Kullanıcı Adı: tubitakuzay

Şifre: 123456789


```
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Ling;
using System.Text;
using System. Threading. Tasks;
using System.Windows.Forms;
namespace interface_code
    public partial class Form1 : Form
        public Form1()
            InitializeComponent();
        private void Form1_Load(object sender, EventArgs e)
        private void login_Click(object sender, EventArgs e)
            telemetry form = new telemetry();
            form.Show();
            this.Hide();
            */
            if (textBox1.Text=="tubitakuzay" &&
textBox2.Text=="123456789")
                telemetry form = new telemetry();
                form.Show();
                this.Hide();
```

```
{
    MessageBox.Show("Error","Error");
    textBox1.Clear();
    textBox2.Clear();
}

private void cancel_Click(object sender, EventArgs e)
{
    textBox1.Clear();
    textBox2.Text = "";
}

private void exit_Click(object sender, EventArgs e)
{
    Application.Exit();
}
```

else

Video 1.1 Kontrol Arayüzü Sensör Test Videosu (MPU6050)

Video 1.2 Kontrol Arayüzü Tüm Sistem Testleri

Telemetri verilerin serial porttan okunması için UART ile birlikte bağlı olan portun bulunması ve ayarlanan baudrate ile birlikte verilerin alınmasını sağlamak için oluşturulmuş olan kısımdır.

Resim 1.7 Baudrate Seçim Alanı

Resim 1.8 Kontrol Arayüzü Telemetri Alanı

Telemetri verilerin gelmesi sonucunda verilerin sıralı formatta kaydedilmesi için Excel yöntemine başvurdum. Burada Excel formatına gelen veriler anlık olarak eklenmekte ve kaydedilmektedir.

Resim 1.9 Veri Export Alanı

Resim 2. Export Sonuç Alanı

Packet No T	īme	Date	Temperat F	Pressure	Altitude	aX	aY	aZ	gX	gY	gZ	Magnome		
1	15:09:32	9/8/2023	26	91190	880.65	-776	-416	20568	-248	227	-53	309.39	Telemet	ri ve
2	15:09:33	9/8/2023	26	91193	880.2	-772	-436	20592	-243	230	-75	309.41		
3	15:09:34	9/8/2023	26	91189	880.2	-728	-492	20444	-239	197	-34	309.41	veriler	son
4	15:09:35	9/8/2023	26	91182	879.92	-832	-440	20392	-251	235	-54	309.44	VCITICI	boli
5	15:09:36	9/8/2023	26	91188	880.11	-796	-404	20524	-246	246	-53	309.41	gösterilr	nekte
6	15:09:37	9/8/2023	26	91188	880.47	-824	-376	20576	-235	210	-38	309.41	gosterm	IICKU
7	15:09:38	9/8/2023	26	91186	880.29	-796	-444	20552	-240	229	-22	309.38		
8	15:09:39	9/8/2023	26	91188	880.2	-848	-444	20604	-262	225	-51	309.31		
9	15:09:41	9/8/2023	26	91188	880.11	-792	-384	20492	-247	222	-55	309.28		
10	15:09:42	9/8/2023	26	91192	880.2	-840	-484	20504	-253	220	-33	309.39		
11	15:09:43	9/8/2023	26	91185	880.02	-796	-396	20564	-280	240	-51	309.37		
12	15:09:44	9/8/2023	26	91188	880.29	-768	-540	20572	-237	234	-45	309.45		
13	15:09:45	9/8/2023	26	91187	880.11	-856	-496	20528	-237	217	-36	309.46		
14	15:09:46	9/8/2023	26	91195	880.29	-840	-544	20576	-268	223	-52	309.42	D0 - 1 V	
15	15:09:47	9/8/2023	26	91188	880.29	-824	-512	20560	-256	224	-50	309.45	D3 ▼ × √	f _w 26.4
16	15:09:49	9/8/2023	26	91190	880.2	-800	-540	20512	-263	240	-63	309.44	1 Packet No Time Date 2 1 14:38:55 9/8/2	Temperat
17	15:09:50	9/8/2023	26	91188	880.29	-800	-424	20416	-261	230	-36	309.55	3 2 14:38:57 9/8/2 4 3 14:38:59 9/8/2	023 26.4
18	15:09:51	9/8/2023	26	91187	880.47	-848	-504	20620	-226	216	-32	309.55	5 4 14:39:01 9/8/2 6 5 14:39:03 9/8/2	023 26.4
19	15:09:52	9/8/2023	26	91186	880.74	-804	-532	20612	-265	224	-54	309.52	7 6 14:39:05 9/8/2 8 7 14:39:07 9/8/2	023 26.4
20	15:09:53	9/8/2023	26	91186	880.56	-852	-408	20480	-238	213	-26		9 8 14:39:09 9/8/2 10 9 14:39:11 9/8/2	023 26.4
21	15:09:54	9/8/2023	26	91188	880.2	-900	-424	20560	-259	224	-55	200.40	11 10 14:39:13 9/8/2 12 11 14:39:15 9/8/2	023 26.4
22	15:09:55	9/8/2023	26	91188	880.11	-784	-444	20452	-249	213	-37	200.46	13 12 14:39:17 9/8/2 14 13 14:39:19 9/8/2	023 26.3
23	15:09:57	9/8/2023	26	91184	880.11	-728	-380	20508	-233	204	-43	200.46	15 14 14:39:21 9/8/2 16 15 14:39:23 9/8/2	023 26.3
24	15:09:58	9/8/2023	26	91183	880.2	-728	-508	20548	-233	220	-41	200 51	17 16 14:39:25 9/8/2 18 17 14:39:27 9/8/2	023 26.3
25	15:09:59	9/8/2023	26	91190	880.65	-732	-452	20476	-284	246	-50	200 50	19 18 14:39:29 9/8/2 20 19 14:39:31 9/8/2	023 26.3
26	15:10:00	9/8/2023	26	91186	880.2	-872	-452	20504	-249	224	-40	200 61	21 20 14:39:33 9/8/2 22 21 14:39:35 9/8/2	023 26.3
27	15:10:01	9/8/2023	26	91187	880.29	-720	-352	20592	-264	237	-23	300 63	23 22 14:39:37 9/8/2 24 23 14:39:40 9/8/2	023 26.3
		9/8/2023	26	91182	880.11	-796	-508	20584	-260	213	-70	200 67	25 24 14:39:42 9/8/2 26 25 14:39:44 9/8/2	023 26.4
		9/8/2023	26	91188	880.11	-784	-424	20444	-261	257	-41	200.76	27 26 14:39:46 9/8/2 28 27 14:39:48 9/8/2	023 26.3
		9/8/2023	26	91186	880.56	-744	-392	20516				200.70	29 28 14:39:51 9/8/2 30 29 14:39:53 9/8/2	023 26.3
		9/8/2023	26	91188	880.38	-812	-504	20460				200.70	31 30 14:39:55 9/8/2 32 31 14:39:57 9/8/2	023 26.3
		9/8/2023	26	91184	880.74	-788	-496	20680				200.72	33 32 14:39:59 9/8/2 34 33 14:40:01 9/8/2	023 26.4
		9/8/2023	26	91188	880.74	-728	-456	20620				200.60	35 34 14:40:03 9/8/2 36 35 14:40:05 9/8/2	023 26.3
		9/8/2023	26	91191	880.2	-752	-476	20520				200.70	37 36 14:40:08 9/8/2 38 37 14:40:10 9/8/2	023 26.4

verilerin gelmesi sonucunda nuçlarım yandaki tabloda tedir.

880.38

879.92

879.92

879.83

880.02

879.65

91192 879.56 -11132

20540

20552

20464

16108

20508

20544

20512

20424 -360

20564

Tablo 1.3 Kontrol Arayüzü Data Sonuçları

Magnomet -22 50.47 -43 93.46 -61 129.90 -40 160.75 -15 186.86 -50 209.08

-42 228.00 -44 244.18 -37 257.86

-41 279.54 -49 287.97 -44 295.12

-19 301.24 -33 306.45 -49 310.91 -46 314.69 -43 320,47

-31 324.82 -42 326.53 -35 329.03 -40 329.99 1481 331.65

-2755 328.79 -448 325,72

-32 329.12

-35 330.50 -42 331.65

-36 332.51

-37 333.86

-56 334.43


```
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.IO.Ports;
using System.Ling:
using System.Reflection.Emit;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using static System.Windows.Forms.VisualStyles.VisualStyleElement;
using System.IO;
using System.IO.Ports;
using System.Drawing.Drawing2D:
using System.Runtime.ConstrainedExecution:
namespace interface_code
    public partial class telemetry: Form
        DateTime yeni = DateTime.Now;
        long maximum = 30;
        long minimum = 0;
        int zaman = 0;
        int satir = 1;
        int sutun = 1;
        int satirNo = 1;
        int k = 0;
```

```
string[] portlar = SerialPort.GetPortNames();
 public telemetry()
            InitializeComponent():
        private void telemetry_FormClosing(object sender,
FormClosingEventArgs e)
            Application.Exit();
        private void telemetry_Load(object sender, EventArgs e)
            foreach (string port in portlar) // Veriler string
geldi.
                comboBox1.Items.Add(port);
                comboBox1.SelectedIndex = 0;
            comboBox2.Items.Add("2400");
            comboBox2.Items.Add("4800");
            comboBox2.Items.Add("9600");
            comboBox2.Items.Add("14400");
            comboBox2.Items.Add("57600");
            comboBox2.Items.Add("115200");
            comboBox2.SelectedIndex = 1;
            label2.Text = "Disconnect";
```

```
____TÜBİTAK___
UZAY
```

```
Task ExcellKayit()
            return Task.Run(() =>
                Microsoft.Office.Interop.Excel.Application excel =
new Microsoft.Office.Interop.Excel.Application();
                excel.Visible = true;
                Microsoft.Office.Interop.Excel.Workbook workbook =
excel.Workbooks.Add(System.Reflection.Missing.Value);
                Microsoft.Office.Interop.Excel.Worksheet sheet1 =
(Microsoft.Office.Interop.Excel.Worksheet)workbook.Sheets[1];
                int StartCol = 1;
                int StartRow = 1;
                for (int j = 0; j < dataGridView1.Columns.Count;</pre>
j++)
                    Microsoft.Office.Interop.Excel.Range myRange =
(Microsoft.Office.Interop.Excel.Range)sheet1.Cells[StartRow,
StartCol + j];
                    myRange.Value2 =
dataGridView1.Columns[j].HeaderText;
                StartRow++;
```

```
for (int i = 0: i < dataGridView1.Rows.Count: i++)</pre>
                     for (int j = 0; j < dataGridView1.Columns.Count;</pre>
j++)
                         try
                             Microsoft.Office.Interop.Excel.Range
myRange =
(Microsoft.Office.Interop.Excel.Range)sheet1.Cells[StartRow + i,
StartCol + j];
                             myRange.Value2 = dataGridView1[j,
i].Value == null ? "" : dataGridView1[j, i].Value;
                         catch
            });
```

```
private void connect_Click(object sender, EventArgs e)
            connect.Enabled = false;
            disconnect.Enabled = true;
            timer1.Start();
            if (serialPort1.IsOpen == false)
                if (comboBox1.Text == "")
                    return:
                serialPort1.PortName = comboBox1.Text;
                serialPort1.BaudRate =
Convert.ToInt16(comboBox2.Text);
                try
                    serialPort1.Open();
                    label2.Text = "Connect";
                catch (Exception syntax)
                    MessageBox.Show("Error:" + syntax.Message);
               // serialPort1.DiscardInBuffer();
            else
                label2.Text = "Connected";
        private void serialPort1_DataReceived(object sender,
SerialDataReceivedEventArgs e)
```

```
private void timer1_Tick(object sender, EventArgs e)
           // X ekseni değer etiketlerini görünür yapma
           chart1.ChartAreas[0].AxisX.LabelStyle.Enabled = true;
           // X ekseni değer rengini değiştirme
           chart1.ChartAreas[0].AxisX.LabelStyle.ForeColor =
Color.Red:
///////////Kontrol Edilecek.
           // Y ekseni değer etiketlerini görünür yapma
           chart1.ChartAreas[0].AxisY.LabelStyle.Enabled = true;
           // Y ekseni değer rengini değiştirme
           chart1.ChartAreas[0].AxisY.LabelStyle.ForeColor =
Color.Red:
           // X ekseni değer etiketlerini görünür yapma
           chart2.ChartAreas[0].AxisX.LabelStyle.Enabled = true;
           // X ekseni değer rengini değiştirme
           chart2.ChartAreas[0].AxisX.LabelStyle.ForeColor =
Color.Red;
////////////Kontrol Edilecek.
           // Y ekseni değer etiketlerini görünür yapma
           chart2.ChartAreas[0].AxisY.LabelStyle.Enabled = true;
           // Y ekseni değer rengini değiştirme
           chart2.ChartAreas[0].AxisY.LabelStyle.ForeColor =
Color.Red;
```



```
// X ekseni değer etiketlerini görünür yapma
          chart3.ChartAreas[0].AxisX.LabelStyle.Enabled = true;
          // X ekseni değer rengini değiştirme
          chart3.ChartAreas[0].AxisX.LabelStyle.ForeColor =
Color.Red;
/Kontrol Edilecek.
          // Y ekseni değer etiketlerini görünür yapma
          chart3.ChartAreas[0].AxisY.LabelStyle.Enabled = true;
          // Y ekseni değer rengini değiştirme
          chart3.ChartAreas[0].AxisY.LabelStyle.ForeColor =
Color.Red;
          // X ekseni değer etiketlerini görünür yapma
          chart4.ChartAreas[0].AxisX.LabelStyle.Enabled = true;
          // X ekseni değer rengini değiştirme
          chart4.ChartAreas[0].AxisX.LabelStyle.ForeColor =
Color.Red;
//////////////Kontrol Edilecek.
          // Y ekseni değer etiketlerini görünür yapma
          chart4.ChartAreas[0].AxisY.LabelStyle.Enabled = true;
          // Y ekseni değer rengini değiştirme
          chart4.ChartAreas[0].AxisY.LabelStyle.ForeColor =
Color.Red;
```

```
//Chart1
            chart1.ChartAreas[0].AxisX.Minimum = minimum;
            chart1.ChartAreas[0].AxisX.Maximum = maximum;
            chart1.ChartAreas[0].AxisY.Minimum = 0:
            chart1.ChartAreas[0].AxisY.Maximum = 100;
            chart1.ChartAreas[0].AxisX.ScaleView.Zoom(minimum,
maximum):
            //Chart2
            chart2.ChartAreas[0].AxisX.Minimum = minimum;
            chart2.ChartAreas[0].AxisX.Maximum = maximum;
            chart2.ChartAreas[0].AxisY.Minimum = 0;
            chart2.ChartAreas[0].AxisY.Maximum = 100;
            chart2.ChartAreas[0].AxisX.ScaleView.Zoom(minimum,
maximum):
            //Chart3
            chart3.ChartAreas[0].AxisX.Minimum = minimum;
            chart3.ChartAreas[0].AxisX.Maximum = maximum;
            chart3.ChartAreas[0].AxisY.Minimum = 0;
            chart3.ChartAreas[0].AxisY.Maximum = 100;
            chart3.ChartAreas[0].AxisX.ScaleView.Zoom(minimum,
maximum):
            //Chart4
            chart4.ChartAreas[0].AxisX.Minimum = minimum;
            chart4.ChartAreas[0].AxisX.Maximum = maximum;
            chart4.ChartAreas[0].AxisY.Minimum = 0;
            chart4.ChartAreas[0].AxisY.Maximum = 100;
            chart4.ChartAreas[0].AxisX.ScaleView.Zoom(minimum,
maximum):
```

```
UZAY
```

```
try
                string data = serialPort1.ReadLine();
                string[] series = data.Split('/');
                //label1.Text = data + "";
                textBox1.Text = series[0]:
                textBox2.Text = series[1];
                textBox3.Text = series[2];
                textBox4.Text = series[3];
                textBox5.Text = series[4];
                textBox6.Text = series[5];/*
                textBox7.Text = series[6];
                textBox8.Text = series[7];
                textBox9.Text = series[8];
                textBox10.Text = series[9];
                textBox11.Text = series[10];
                textBox12.Text = series[11];*/
                this.chart1.Series[0].Points.AddXY((minimum +
maximum) / 2. series[0]):
                this.chart2.Series[0].Points.AddXY((minimum +
maximum) / 2, series[1]);
                this.chart3.Series[0].Points.AddXY((minimum +
maximum) / 2, series[2]);
                this.chart4.Series[0].Points.AddXY((minimum +
maximum) / 2, series[3]);
                maximum++;
                minimum++:
```

```
dataGridView1.Invoke(new Action(() =>
                    satir = dataGridView1.Rows.Add(data);
                dataGridView1.Rows[satir].Cells[0].Value = satirNo;
                dataGridView1.Rows[satir].Cells[3].Value =
series[0];
                dataGridView1.Rows[satir].Cells[4].Value =
series[1];
                dataGridView1.Rows[satir].Cells[5].Value =
series[2];
                dataGridView1.Rows[satir].Cells[6].Value =
series[3];
                dataGridView1.Rows[satir].Cells[7].Value =
series[4]:
                dataGridView1.Rows[satir].Cells[8].Value =
series[5];
                dataGridView1.Rows[satir].Cells[9].Value =
series[0]:
                dataGridView1.Rows[satir].Cells[10].Value =
series[1];
                dataGridView1.Rows[satir].Cells[11].Value =
series[2];
                dataGridView1.Rows[satir].Cells[12].Value =
series[3];
                dataGridView1.Rows[satir].Cells[1].Value =
DateTime.Now.ToLongTimeString();
                                   // EN BAŞA STRİNG OLARAK
EKLEDİĞİMİZ KOD KISMINDA SÜRE İLERLEMEDİĞİ İÇİN UZUN ZAMAN ZARFI
OLARAK DATATİME I BURAYA EKLEDİM
                dataGridView1.Rows[satir].Cells[2].Value =
veni.ToShortDateString();
                satir++:
                satirNo++;
                                                                 31
```

}));

```
____JÜBİTAK___
UZAY
```

```
/*Thread is process with background because deleting data.*/
             System. Threading. Thread. Sleep(1000);
/////////Buraya bakılacak
             Application.DoEvents();
              serialPort1.DiscardInBuffer();
          catch (Exception ex)
             MessageBox.Show(ex.Message);
             timer1.Stop();
       private void disconnect_Click(object sender, EventArgs e)
          disconnect.Enabled = false;
          connect.Enabled = true;
          timer1.Stop();
          System. Threading. Thread. Sleep (1000);
          //System.Threading.Thread.Sleep(1500);
          Application.DoEvents();
          serialPort1.DiscardInBuffer();
          if (serialPort1.IsOpen == true)
              serialPort1.Close();
             label2.Text = "Disconnect";
```

```
private void telemetry_FormClosed(object sender,
FormClosedEventArgs e)
         if (serialPort1.IsOpen == true)
            serialPort1.Close():
      private void exit_Click(object sender, EventArgs e)
         if (serialPort1.IsOpen == true)
            serialPort1.Close();
         Application.Exit();
private async void excellsaved_Click(object sender,
EventArgs e)
         await ExcellKayit();
          private void excell_clear_Click(object sender, EventArgs e)
         dataGridView1.Rows.Clear();
```


Oluşturmuş olduğum kontrol arayüzü kodunu özgün bir şekilde geliştirdim.

Burada sensörlerden gelen telemetri verilerini serial port üzerinden okunması için verileri, split edebileceğim formatta string bir ifade şeklinde gönderdim. Bunun sonucunda veriler gelirken, her veri arasında '/' şeklinde ifade olmasını C yazılımı tarafında belirledim. Verileri serial port üzerinde okurken '/' bu işaretin okunması durumunda verileri split ederek C# tarafında ayırdım. Bu durumda verilerim düzgün gelmesini sağladım. Ayrıca veri kaçırma durumunda oluşmamaktadır.

Arayüz üzerinde birçok veri aynı anda belirlediğim Hz (1Hz=1 saniye) üzerinden geldiği için arayüz donmakta ve işlevsiz hale gelmektedir. Bu durumu ortadan kaldırmak ve veri güvenliğini korumak amacıyla verileri Excell üzerine aktarmasını ve daha sonra oluşturduğum thread (işlem parçacığı) ile bu verileri 1500 milisaniyede silmek istedim. Bunu sonucunda kodda saklanan verilerin bufferı şişmedi ve arayüz fonksiyonel çalışmasına devam etti.

Bunun sonucuna da yandaki resimde verilen resimde işlem hafızasını incelediğimizde çok az bir miktarda (37 mb) bellekte çalıştığı gözlemlenmiştir.

Donanım Alt Tasarım

Kullanılan Elektronik Komponentleri

Resim 2.3 MPU6050 Sensör

	
Özellik	Değer
İletişim Arabirimi	I2C / TWI
Çalışma Gerilimi	3.3V (Volt)
İletişim Gerilimi Seviyeleri	3.3V (I2C)
Gyroskop Hassasiyeti	±250, ±500, ±1000, ±2000 dps
Hızlandırmaölçer Hassasiyeti	±2g, ±4g, ±8g, ±16g
Örnekleme Hızı	8 kHz (Gyroskop), 1 kHz (Hızlandırmaölçer)
Sıcaklık Duyarlılığı	±0.5°C
İletişim Protokolleri	I2C (TWI), DMP (Digital Motion Processor) ile veri işleme özelliği
Çalışma Sıcaklık Aralığı	-40°C ila +85°C
Boyutlar	4 mm x 4 mm
Dijital Çıkış Veri Aralığı	16-bit
Power Management	Düşük güç tüketimi için enerji tasarrufu modları
Interrupt Pin	Programlanabilir interrupt pinleri
DMP (Digital Motion Processor)	6 eksenlik hareket takibi ve işleme yeteneği

Tablo 1.4 MPU6050 Sensör Özellikleri

Kullanılan Elektronik Komponentleri

Resim 2.4 BMP085 Sensörü

Özellik	Değer
İletişim Arabirimi	I2C (TWI) veya SPI
Çalışma Gerilimi	3.3V (Volt)
İletişim Gerilimi Seviyeleri	3.3V (I2C) veya 3.3V/5V (SPI)
Basınç Aralığı	300 hPa ila 1100 hPa
Sıcaklık Aralığı	-40°C ila +85°C
Basınç Hassasiyeti	0.03 hPa (yaklaşık)
Sıcaklık Hassasiyeti	0.1°C (yaklaşık)
Ölçüm Çözünürlüğü	1 hPa (Basınç), 0.1°C (Sıcaklık)
Örnekleme Hızı	1 Hz (varsayılan)
Power Management	Düşük güç tüketimi için enerji tasarrufu modları
Boyutlar	Genellikle 5 mm x 5 mm
İletişim Arabirimi	I2C (TWI) veya SPI

Tablo 1.5 BMP085 Sensör Özellikleri

Resim 2.5 HMC58831 Sensörü

Resim 2.6 HMC58831 Sensörü

		UZA
	Özellik	Değer
	İletişim Arabirimi	I2C (TWI)
	Çalışma Gerilimi	3.3V (Volt)
	İletişim Gerilimi Seviyeleri	3.3V (I2C)
	Ölçüm Aralığı	±1.3 - ±8.1 gauss (G)
	Hassasiyet	0.2 milli-gauss (mG)
	Örnekleme Hızı	15 Hz (varsayılan), 75 Hz (yüksek hız)
	Ölçüm Çözünürlüğü	12-bit
	Power Management	Düşük güç tüketimi için enerji tasarrufu modları
	Boyutlar	Genellikle 3 mm x 3 mm
	İletişim Arabirimi	I2C (TWI)
-	Özellik	Değer
	Çalışma Prensibi	lşık yoğunluğuna duyarlı direnç
	Işık Hassasiyeti	Ölçülen ışığın yoğunluğuna bağlı olarak değişir
	Işık Spektrumu	Genellikle görünür ışık spektrumu
	İletişim Arabirimi	N/A (Analog değer sağlar)
	Çalışma Gerilimi	Genellikle 5V veya 3.3V (model ve tipine bağlı)
	Direnç Değişikliği	lşık yoğunluğu arttıkça direnç azalır
	Hızlı Yanıt Zamanı	Genellikle hızlı yanıt verir

Özellik Değer Mikrodenetleyici ESP32 mikrodenetleyici Genellikle OV2640 veya OV7670 gibi kamera Kamera Modülü modülleri kullanılır Model ve kamera modülüne bağlı olarak Kamera Çözünürlüğü değişebilir (genellikle 2MP) İletişim Arabirimi SPI, I2C, UART ve GPIO pinleri Kablosuz İletişim Wi-Fi (ESP32'nin entegre Wi-Fi desteği) Depolama MicroSD kart yuvası Çalışma Gerilimi Genellikle 5V veya 3.3V (model ve tipine bağlı) Model ve çalışma koşullarına bağlı olarak Güç Tüketimi değişebilir

Tablo 1.7 ESP CAM Özellikleri

Resim 2.7 ESP CAM Modülü

Resim 2.8 Atmega 328P Mikrodenetleyicisi

	ULA
Özellik	Değer
Mikrodenetleyici	ATmega328P veya ATmega168P mikrodenetleyici (model ve üreticiye bağlı)
İşlemci Hızı	Genellikle 16 MHz (ATmega328P) veya 8 MHz (ATmega168P)
Flash Bellek Kapasitesi	Genellikle 32 KB (ATmega328P) veya 16 KB (ATmega168P)
SRAM Kapasitesi	Genellikle 2 KB (ATmega328P) veya 1 KB (ATmega168P)
EEPROM Kapasitesi	Genellikle 1 KB (ATmega328P) veya 512 byte (ATmega168P)
İletişim Arabirimleri	USB (seri iletişim) ve GPIO pinleri
Giriş/Çıkış Pinleri	Genellikle 14 dijital giriş/çıkış ve 8 analog giriş (model ve üreticiye bağlı)
Analog Giriş Hassasiyeti	10 bit (0-1023)
Dijital Giriş Hassasiyeti	Yüksek ve düşük seviye (1 veya 0)
Çalışma Gerilimi	5V (ATmega328P tabanlı) veya 3.3V (ATmega168P tabanlı)
Boyutlar	Genellikle 45 mm x 18 mm (model ve üreticiye bağlı olarak değişebilir)
Mikrodenetleyici	ATmega328P veya ATmega168P mikrodenetleyici (model ve üreticiye bağlı)

Resim 2.9 Lora E22 Haberleşme Modülü

	O L A
Özellik	Açıklama
Frekans Aralığı	433MHz veya 868MHz (seçeneklere bağlı olarak)
Modülasyon	LoRa (Uzun Menzilli)
Çıkış Gücü	433MHz versiyon için 20dBm, 868MHz versiyon için 20dBm (ayarlanabilir)
Alıcı Hassasiyeti	-148dBm (SF12, 125kHz)
Verici Gücü Tüketimi	Ortalama 30mA (transmisyon sırasında)
Alıcı Güç Tüketimi	Ortalama 10mA (bekleme modunda)
İletişim Arayüzü	UART (Serial)
Çalışma Gerilimi	3.3V (5V tolere edebilir, ancak seviye dönüştürme gerekebilir)
Veri Hızı	1200bps ila 115200bps (ayarlanabilir)
Anten Konnektörü	SMA dişi konektör (anten dahil değil)
Maksimum İletişim Mesafesi	Tipik olarak 5km ila 10km (çevresel koşullara bağlı olarak)
Çalışma Sıcaklığı Aralığı	-40°C ila 85°C

Tablo 1.9 LORA E22 Özellikleri

Resim 3.3 Elektronik Kart Tasarımı Baskı Sonucu

Resim 3.4 Elektronik Kart Tasarım Komponent Entegre Görseli

```
UZAY
```

```
#include <Wire.h>
#include <MPU6050.h>
MPU6050 mpu;
void setup() {
  Serial.begin(9600);
  Wire.begin();
  mpu.initialize();
void Loop() {
  int ax, ay, az;
  mpu.getAcceleration(&ax, &ay, &az);
  float roll = atan2(ay, az) * 180.0 / PI;
 float pitch = atan2(-ax, sqrt(ay * ay + az * az))
* 180.0 / PI;
  Serial.print(roll);
  Serial.print("/");
  Serial.println(pitch);
  delay(100);
```


Video 1.3 IMU 3D Kontrol Algoritma Test Sonuçları

Resim 3.4 Başlangıç Konumu

Resim 3.7 Roll Eksenindeki Değişim

Resim 3.5 Roll Eksenindeki Değişim

Resim 3.8 Pitch Eksenindeki Değişim

Resim 3.6 Pitch Eksenindeki Değişim

Resim 3.9 Roll, Pitch, Yaw Eksenleri

```
import serial
import time
from mpl toolkits.mplot3d.art3d import
Poly3DCollection
import matplotlib.pyplot as plt
import numpy as np
import sys
import math
# Arduino ile seri iletisim kur
ser = serial.Serial('COM9', 9600) # Port ve baud
rate'i uygun şekilde ayarlayın
# 3D plot
fig = plt.figure()
ax = fig.add subplot(111, projection='3d'
# Dikdörtgen yüzey noktaları
vertices = np.array([
    [-1, -1, -1],
    [1, -1, -1],
    [1, 1, -1],
    [-1, 1, -1],
    [-1, -1, 1],
    [1, -1, 1],
    [1, 1, 1],
    [-1, 1, 1]
```

```
____JÜBİTAK___
UZAY
```

```
# Dikdörtgen yüzeylerini çiz
ax.add collection3d(Poly3DCollection(faces,
facecolors='blue', linewidths=1,
edgecolors='black', alpha=0.6))
# Yüzeyleri farklı renklere boyamak için renkler
colors = ['red', 'black', 'red', 'black', 'red',
'black']
# Küp yüzeylerini çiz
ax.add collection3d(Poly3DCollection(faces,
facecolors=colors, linewidths=1,
edgecolors='black', alpha=0.6))
ax.set xlabel('X')
ax.set ylabel('Y')
ax.set zlabel('Z')
# Eksenlerin ölçeğini ayarla
ax.set xlim([-2, 2])
ax.set ylim([-2, 2])
ax.set zlim([-2, 2])
```

```
# Küp dönüş açıları
roll = 0
pitch = 0
# Eksenleri kaldır
ax.set axis off()
# Ana döngü
try:
    while True:
        data = ser.readline().decode().strip()
        if data:
            roll, pitch = map(float, data.split('/'))
            ax.view init(elev=pitch, azim=roll)
            plt.draw()
            plt.pause(0.01)
        if 0xFF == ord('q'):
            break
except KeyboardInterrupt:
    ser.close()
    print("Seril communication closed.")
plt.show() # Pencereyi göster
```

Hedef Takip Sistemi (ESP Kamera Modülü)

TTL dönüştürücü yardımıyla ESP CAM pin üzerinden UART (Tx, Rx) Protokolü ile haberleştirerek ESP CAM üzerinde bu bağlantılara ek olarak haberleşme sırasında IO0 pini parazitlik olmaması için GND bağlantısı gerçekleştirilir.

Yanda verilen resimde de görüleceği üzere aynı TTL Dönüştürücüye sahip olduğum için ESP CAM kablo renk eşleştirilmesi sağlanmıştır.

Resim 4. Kablolu TTL Dönüştürücü

```
#define CAMERA MODEL ESP EYE // Has PSRAM
#define CAMERA_MODEL_ESP32S3_EYE // Has PSRAM
#define CAMERA_MODEL_M5STACK_PSRAM // Has PSRAM
#define CAMERA MODEL_M5STACK_V2_PSRAM // M5Camera version B Has PSRAM
#define CAMERA MODEL M5STACK WIDE // Has PSRAM
#define CAMERA MODEL M5STACK ESP32CAM // No PSRAM
#define CAMERA MODEL M5STACK UNITCAM // No PSRAM
#define CAMERA MODEL AI THINKER // Has PSRAM
#define CAMERA MODEL TTGO T JOURNAL // No PSRAM
#define CAMERA MODEL XIAO ESP32S3 // Has PSRAM
// ** Espressif Internal Boards **
#define CAMERA MODEL ESP32 CAM BOARD
#define CAMERA MODEL ESP32S2 CAM BOARD
#define CAMERA MODEL ESP32S3 CAM LCD
#define CAMERA MODEL DFRobot FireBeetle2 ESP32S3 // Has PSRAM
#define CAMERA MODEL DFRobot Romeo ESP32S3 // Has PSRAM
#include "camera pins.h"
```

ESP Cam Server kodundan benim kullanacağım modülünün kütüphanelerini aktif hale getirdim.

Resim 4.1 ESP CAM Kütüphaneleri

```
const char* ssid = "sefa";
const char* password = "123456789";

void startCameraServer();
void setupLedFlash(int pin);

void setup() {
    Serial.begin(115200);
    Serial.setDebugOutput(true);
    Serial.println();
```

Bağlantıları tamamladıktan sonra ESP Cam Server Kodunu çalıştırdığımızda, ESP'yi herhangi bir internet ağına bağlamamız gerekmektedir. Bunun için kod üzerinde düzenleme yapılması gerekmektedir.

Kodun yüklenmesi aşamasında baudrate'i 115200 olarak seçtim. Sistem harici olarak 9600 kullandığım için çakışma durumuna dikkat ettim.

Hedef Takip Sistemi (ESP Kamera Modülü)

Resim 4.3 ESP CAM Kodun İplemente Edilmesi

Ayrıca ESP Cam üzerinde programlama için herhangi bira Atmega işlemcisini de UART pinlerini kullanarak TTL dönüştürücü olarak kullanabiliriz.

Kod yüklendikten sonra serial port ekranından ESP Cam kendi kütüphanelerini default yükledikten sonra bize yönlendireceği API adresine girerek kamera çalıştırabilir. Yan tarafta verilen görselde bu kamera sistemi için API üzerinden ayarı yapabileceğimiz gözükmektedir.

Resim 4.4 ESP CAM Sunucusu 51

Servo Motor Bağlantı Devresi:

Servo motorların çalışma mantığı, kontrol sinyali ile geri besleme sistemi arasındaki hata sinyalini kullanarak istenen konuma veya açıya hassas bir şekilde ulaşma yeteneğine dayanır. Kontrol sinyali, motorun hedef konumu veya açısını belirtirken, geri besleme sistemi mevcut konumu sürekli olarak izler. Denetleyici, hata sinyalini işler ve motorun güç kaynağına uygun komutları iletir, böylece motor istenen konumu veya açıyı elde eder.

Resim 4.5 Hedef Takip Sistem Koordinatları

Resim 4.6 Hedef Takip Sistem Sonuçları

Video 1.3 Hedef Takip Sistemi Sonuçları

```
____JÜBİTAK___
UZAY
```

```
import cv2
import numpy as np
import serial
# Harici kamera cihaz numarasını belirtin
(genellikle 0, 1, 2 gibi)
camera device = 1
# Kamerayı başlatın
cap = cv2.VideoCapture(camera device)
# Ekranın genişlik ve yükseklik bilgilerini alın
screen width = int(cap.get(3))
screen height = int(cap.get(4))
# Bölge sınırlarını hesaplayın
center x = screen width // 2
center y = screen height // 2
quarter width = screen width // 2
quarter height = screen height // 2
# Seri portu açın (Arduino'nun bağlı olduğu porta
göre değiştirin)
ser = serial.Serial('COM9', 9600) # COM3 ve 9600
hızınızı ve port numaranızı ayarlayın
```

```
while True:
   ret, frame = cap.read()
   if not ret:
        break
   # Görüntüyü HSV renk uzayına dönüştürün
   hsv = cv2.cvtColor(frame, cv2.COLOR BGR2HSV)
   # Siyah rengin HSV değerlerini belirleyin
   lower black = np.array([0, 0, 0]) # Alt sinir HSV
değerleri
   upper black = np.array([180, 255, 30]) # Üst sınır HSV
değerleri
   # Belirlenen siyah renk aralığını maskeleme yapın
   mask = cv2.inRange(hsv, lower black, upper black)
   # Maskeyi kullanarak nesne takibini gerçekleştirin
   result = cv2.bitwise and(frame, frame, mask=mask)
   # Siyah nesne konturlarını bulun
   contours, = cv2.findContours(mask, cv2.RETR EXTERNAL,
cv2.CHAIN APPROX SIMPLE)
```

```
# En büyük konturu bulun
    if contours:
        largest contour = max(contours,
key=cv2.contourArea)
        # Konturun merkez koordinatlarını bulun
        M = cv2.moments(largest contour)
        if M["m00"] != 0:
            cX = int(M["m10"] / M["m00"])
            cY = int(M["m01"] / M["m00"])
        else:
            cX, cY = 0, 0
        # Nesnenin hangi bölgede olduğunu kontrol
edin
        if cX < center x and cY < center y:</pre>
            # Sol üst bölge
            servo acisi = 0
        elif cX >= center_x and cY < center_y:</pre>
            # Sağ üst bölge
            servo acisi = 0
        elif cX < center x and cY >= center y:
            # Sol alt bölge
            servo acisi = 180
        else:
            # Sağ alt bölge
            servo acisi = 180
```

```
# Nesneyi kutu içine alın
        x, y, w, h = cv2.boundingRect(largest_contour)
        cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255)
0), 2)
        # Merkezden geçen iki çizgi çizin
        cv2.line(frame, (center_x, 0), (center_x,
screen height), (0, 0, 255), 2)
        cv2.line(frame, (0, center_y), (screen_width,
center_y), (0, 0, 255), 2)
        # Servo açısını Arduino'ya gönderin
        ser.write(str(servo acisi).encode())
    # Sonuçları gösterin
    cv2.imshow('Original', frame)
    cv2.imshow('Mask', mask)
    cv2.imshow('Result', result)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
# Seri bağlantıyı kapatın
ser.close()
# Video yakalama işlemini serbest bırakın ve pencereleri
kapatın
cap.release()
cv2.destroyAllWindows()
```



```
#include <Servo.h>
Servo servoMotor;
int servoPin = 9; // Servo sinyal pini (başka bir
pin kullanabilirsiniz)
int servoAcisi = 0; // Servo acisi
void setup() {
  servoMotor.attach(servoPin);
  Serial.begin(9600);
void Loop() {
 if (Serial.available() > 0) {
    servoAcisi = Serial.parseInt(); // Python
kodundan servo acısını alın
   // Servo açısını sınırlayın (örneğin, 0 ile 180
arasında)
    servoAcisi = constrain(servoAcisi, 0, 180);
   // Servo motorunu belirtilen açıya hareket
ettirin
    servoMotor.write(servoAcisi);
```

Kaynakça

- [1] Yılmaz, M., İki Eksenli Güneş Takip Sistemlerinde Takip Verimliliğin Arttırılması. Batman Üniversitesi Yaşam Bilimleri Dergisi Cilt 7, Sayı 1/2 (2017).
- [2] Oral, G., Nuri U., O.(2012). Güneş Takip Sistemleri ve Prototip Gerçekleştirme. İstanbul Aydın Üniversitesi Dergisi, 4(15), 1 14.
- [3] Boyacı, Ö., Kocaman, Ç.(2017). Matlab / Simulink Üzerinden Gerçek Zamanlı Gömülü Sistem Tabanlı Güneş Takip Sisteminin Tasarımı ve Uygulaması. ANKA e-DERGİ Journal of Phoenix (Tekniik ve Sosyal Bilimler Dergisi) Cilt 3/Sayı 1 ISNN- 2148-7138
- [4] Pakfiliz, A.G.(2019). Uçan Nesnelerin Otomatik Tespit ve Takibi İçin Yeni Bir Yaklaşım. Pamukkale Üniversitesi Mühendislik Bilim Dergisi, 25(5),553-559.
- [5] Gökçe, B., Sonugür, G.(2016). GPS Destekli İmge Çakıştırma Yöntemi İle Hareketli Nesnelerin Tespiti. Pamukkale Üniversitesi Mühendislik Bilim Dergisi, 22(5), 353-360.
- [6] Mengi Ö., O., Altaş, İ. H.(2006). Hareketli Nesneler İçin Konum Tespiti ve İzleme Denetimi. Elektrik Elektronik Makina Bilgisayar Dergisi, 74-76.

Kaynakça

İnternet Kaynakçaları:

- https://www.megaplc.com.tr/uart-usart-haberlesme-protokolu-nedir/
- https://ozdenercin.com/2019/01/25/i2c-seri-haberlesme-protokolu/

Teşekkürler

Bu çalışma, Tübitak UZAY için verilmekte olan stajyer projesi için hazırlanmıştır. Yazar 4. Sınıfa geçmiş olup stajyer öğrencisidir. Çalışma APA formatını baz alarak hazırlanmış ve düzenlenmiştir. Bu ödevin konusu önemi hakkında araştırma, öğrenme ve kendimizi geliştirme fırsatı sağlayan Platform ve Faydalı Yük Elektroniği Tasarım Grubu Baş Araştırmacısı ve Grup Lideri Mustafa CEYLAN' a teşekkürü borç bilir ve saygılarımı sunarım.

Teşekkürler