Тренировочная работа по МАТЕМАТИКЕ 11 класс

21 сентября 2017 года Вариант МА10109 (без логарифмов)

Выполнена: ФИО	класс
----------------	-------

Инструкция по выполнению работы

На выполнение работы по математике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 19 заданий.

Часть 1 содержит 8 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 4 задания повышенного уровня сложности с кратким ответом и 7 заданий повышенного и высокого уровней сложности с развёрнутым ответом.

Ответы к заданиям 1-12 записываются в виде целого числа или конечной десятичной дроби.

При выполнении заданий 13–19 требуется записать полное решение на отдельном листе бумаги.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

T T	r	-
ч	SCTL	. 1

Ответом к каждому из заданий 1–12 является конечная десятичная дробь, целое число или последовательность цифр. Запишите ответы к заданиям в поле ответа в тексте работы.

Оптовая цена учебника 100 рублей. Розничная цена на 20 % выше оптовой. Какое наибольшее число таких учебников можно купить по розничной цене на 4000 рублей?

Ответ: . .

На диаграмме показана среднемесячная температура воздуха в Симферополе за каждый месяц 1988 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия. Определите по диаграмме, сколько было месяцев в 1988 году, когда среднемесячная температура превышала 12 градусов Цельсия.

Ответ:			
OIBCI.			

3 На клетчатой бумаге с размером клетки 1×1 изображён четырёхугольник. Найдите его площадь. Ответ дайте в квадратных сантиметрах.

Ответ: ______.

4 Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 19 пассажиров, равна 0,88. Вероятность того, что окажется меньше 9 пассажиров, равна 0,49. Найдите вероятность того, что число пассажиров будет от 9 до 18.

Ответ: ______.

5 Найдите корень уравнения $\sqrt{\frac{5}{8-4x}} = \frac{1}{12}$.

Ответ: ______.

6 Через концы *A* и *B* дуги окружности с центром *O* проведены касательные *AC* и *BC*. Меньшая дуга *AB* равна 62°. Найдите угол *ACB*. Ответ дайте в градусах.

Ответ: ______.

7 На рисунке изображён график функции y = f'(x) — производной функции f(x), определённой на интервале (-9;4). Найдите точку экстремума функции f(x), принадлежащую отрезку [-7;1].

Ответ: ______.

8 Объём куба равен 343. Найдите площадь его поверхности.

Ответ: _____

Часть 2

9 Найдите $9\cos 2\alpha$, если $\cos \alpha = \frac{5}{6}$.

Ответ: ______.

10 К источнику с ЭДС ε = 60 В и внутренним сопротивлением r = 2 Ом хотят подключить нагрузку с сопротивлением R Ом. Напряжение на этой нагрузке, выражаемое в вольтах, задаётся формулой $U = \frac{\varepsilon R}{R+r}$. При каком сопротивлении нагрузки напряжение на ней будет 50 В? Ответ выразите в омах.

Ответ: ______.

Два велосипедиста одновременно отправились в 130-километровый пробег. Первый ехал со скоростью, на 3 км/ч большей, чем скорость второго, и прибыл к финишу на 3 часа раньше второго. Найти скорость велосипедиста, пришедшего к финишу первым. Ответ дайте в км/ч.

Ответ: _____

12 Найдите точку минимума функции $y = (x+12)e^{x-12}$.

Ответ: ______.

Для записи решений и ответов на задания 13–19 используйте отдельный лист. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- 13 а) Решите уравнение $\frac{1}{\sin^2 x} + \frac{3}{\cos(\frac{15\pi}{2} + x)} = -2$.
 - б) Укажите корни этого уравнения, принадлежащие отрезку $\left[\frac{5\pi}{2}; 4\pi\right]$.
- **14** Квадрат ABCD и цилиндр расположены таким образом, что AB диаметр верхнего основания цилиндра, а CD лежит в плоскости нижнего основания и касается его окружности.
 - а) Докажите, что плоскость квадрата наклонена к плоскости основания цилиндра под углом 60° .
 - б) Найдите длину той части отрезка BD, которая находится внутри цилиндра, если образующая цилиндра равна $\sqrt{6}$.
- **15** Решите неравенство $(3^{x+1} + 3^{2-x})x \ge 28x$.
- **16** Точка I центр окружности S_1 , вписанной в треугольник ABC, точка O центр окружности S_2 , описанной около треугольника BIC.
 - а) Докажите, что точка O лежит на окружности, описанной около треугольника ABC .
 - б) Найдите косинус угла BAC, если радиус описанной окружности треугольника ABC относится к радиусу окружности S_2 как 3:4.

- 17
- 15 января планируется взять кредит в банке на 14 месяцев. Условия его возврата таковы:
- 1-го числа каждого месяца долг возрастает на 4 % по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Какую сумму следует взять в кредит, чтобы общая сумма выплат после полного погашения равнялась 1,3 млн рублей?

18

Найдите все значения x, каждое из которых является решением уравнения $\frac{a\sqrt{3}\sin x + (\sqrt{3} - a)\cos x}{6\sin x - \sqrt{3}\cos x} = 1$ при любом значении a из отрезка $[-1; 3\sqrt{2}]$.

19

На доске написали несколько не обязательно различных двузначных натуральных чисел без нулей в десятичной записи. Сумма этих чисел оказалась равной 462. Затем в каждом числе поменяли местами первую и вторую цифры (например, число 17 заменили на число 71).

- а) Приведите пример исходных чисел, для которых сумма получившихся чисел ровно в 4 раза больше, чем сумма исходных чисел.
- б) Могла ли сумма получившихся чисел быть ровно в 2 раза больше, чем сумма исходных чисел?
- в) Найдите наибольшее возможное значение суммы получившихся чисел.

Ответы на тренировочные варианты 10109-10112 (профильный уровень) от 21.09.2017

	1	2	3	4	5	6	7	8	9	10	11	12
10109	33	5	30	0,39	- 178	118	- 5	294	3,5	10	13	- 13
10110	17	4	21	0,29	- 2	26	- 2	384	- 7	5	16	- 23
10111	1900	4	18	0,392	- 31	151	0	2	319	13	52	23
10112	1700	12	28	0,244	- 26	156	9	3	573	2	71	- 10

Критерии оценивания заданий с развёрнутым ответом

- a) Решите уравнение $\frac{1}{\sin^2 x} + \frac{3}{\cos\left(\frac{15\pi}{2} + x\right)} = -2$.
- б) Укажите корни этого уравнения, принадлежащие отрезку $\left[\frac{5\pi}{2};\,4\pi\right]$.

Решение.

- а) Поскольку $\cos\left(\frac{15\pi}{2} + x\right) = \sin x$, уравнение примет вид $\frac{1}{\sin^2 x} + \frac{3}{\sin x} = -2$. Пусть $\sin x = t$, тогда $\frac{1}{t^2} + \frac{3}{t} = -2$; $2t^2 + 3t + 1 = 0$, откуда t = -1 или $t = -\frac{1}{2}$. При t = -1 имеем $\sin x = -1$; $x = -\frac{\pi}{2} + 2\pi n$, $n \in \mathbb{Z}$. При $t = -\frac{1}{2}$ имеем $\sin x = -\frac{1}{2}$; $x = \left(-1\right)^{n+1} \frac{\pi}{6} + \pi k$, $k \in \mathbb{Z}$.
- б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left[\frac{5\pi}{2}; 4\pi\right]$. Получим числа $\frac{19\pi}{6}; \frac{7\pi}{2}; \frac{23\pi}{6}$.

Otbet: a) $x = -\frac{\pi}{2} + 2\pi n, \ n \in \mathbb{Z};$ $x = (-1)^{k+1} \frac{\pi}{6} + \pi k, \ k \in \mathbb{Z}; 6) \frac{19\pi}{6}; \frac{7\pi}{2}; \frac{23\pi}{6}.$

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте a или в пункте δ .	1
ИЛИ	
Получен неверный ответ из-за вычислительной ошибки, но при этом	
имеется верная последовательность всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- **14** Квадрат ABCD и цилиндр расположены таким образом, что AB диаметр верхнего основания цилиндра, а CD лежит в плоскости нижнего основания и касается его окружности.
 - а) Докажите, что плоскость квадрата наклонена к плоскости основания цилиндра под углом 60° .
 - б) Найдите длину той части отрезка BD, которая находится внутри цилиндра, если образующая цилиндра равна $\sqrt{6}$.

Решение.

а) Пусть сторона CD квадрата касается окружности нижнего основания в точке K, O_1 — центр верхнего основания, а O — центр нижнего. Тогда O_1O — перпендикуляр к плоскости основания, отрезок OK перпендикулярен отрезку CD и по теореме о трёх перпендикулярах отрезок O_1K перпендикулярен CD. Поэтому K — середина CD. Тогда упомянутый угол наклона — угол OKO_1 и $COS \angle OKO_1 = \frac{OK}{O_1K} = \frac{r}{O_1K}$, где r — радиус

цилиндра. При этом $O_1K = AD = AB = 2r$, поэтому $\cos \angle OKO_1 = \frac{1}{2}$ и $\angle OKO_1 = 60^\circ$.

б) Пусть отрезок *BD* пересекает поверхность цилиндра в точке T; E и F — проекции точек D и T соответственно на плоскость верхнего основания. Тогда FT лежит на образующей, и поэтому отрезок FT параллелен отрезку DE. Значит, $\frac{DT}{TR} = \frac{EF}{FR}$. Поскольку $\angle AFB = 90^\circ$ как угол, опирающийся на

диаметр,
$$\frac{EF}{FB} = \frac{EF}{FA} \cdot \frac{FA}{FB} = \text{tg} \angle EAF \cdot \text{tg} \angle ABF = \text{tg}^2 \angle ABF = \left(\frac{EA}{AB}\right)^2 = \frac{1}{4}$$
.

Поэтому и
$$\frac{DT}{TB} = \frac{1}{4}$$
, т. е. $BT = \frac{4}{5}BD = \frac{4}{5}AD\sqrt{2} = \frac{4}{5}DE \cdot \frac{2}{\sqrt{3}}\sqrt{2} = \frac{16}{5} = 3,2$.

Ответ: 3,2.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и	2
обоснованно получен верный ответ в пункте δ	
Верно доказан пункт а.	1
ИЛИ	
Верно решён пункт δ при отсутствии обоснований в пункте a	
Решение не соответствует ни одному из критериев, перечис-	0
ленных выше	
Максимальный балл	2

15 Решите неравенство $(3^{x+1} + 3^{2-x})x \ge 28x$.

Решение.

Преобразуем неравенство
$$(3^{x+1} + 3^{2-x})x \ge 28x$$
; $\frac{(3 \cdot 3^{2x} - 28 \cdot 3^x + 9)x}{3^x} \ge 0$; $\frac{(3^x - 9)(3 \cdot 3^x - 1)x}{3^x} \ge 0$.

Отсюда находим множество решений данного неравенства: [-1; 0]; $[2; +\infty)$.

Ответ: $[-1; 0]; [2; +\infty).$

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Решение содержит вычислительную ошибку, возможно, приведшую	1
к неверному ответу, но при этом имеется верная последовательность	
всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- 16 Точка I центр окружности S_1 , вписанной в треугольник ABC, точка O центр окружности S_2 , описанной около треугольника BIC.
 - а) Докажите, что точка O лежит на окружности, описанной около треугольника ABC .
 - б) Найдите косинус угла BAC, если радиус описанной окружности треугольника ABC относится к радиусу окружности S_2 как 3:4.

Решение.

а) Обозначим $\angle BAC = \alpha$. Поскольку I — точка пересечения биссектрис треугольника ABC, получаем, что $\angle BIC = 90^{\circ} + \frac{\alpha}{2}$. Дуга BC окружности S_2 , не содержащая точки I, вдвое больше вписанного в эту окружность угла BIC, т. е. равна $180^{\circ} + \alpha$. Значит, дуга BIC окружности S_2 равна

$$360^{\circ} - (180^{\circ} + \alpha) = 180^{\circ} - \alpha$$
.

Сумма углов при вершинах A и O четырёхугольника ABOC равна 180° , значит, этот четырёхугольник вписанный. Следовательно, точка O лежит на окружности, описанной около треугольника ABC.

б) Пусть r и R — радиусы описанной окружности треугольника ABC и окружности S_2 соответственно. По теореме синусов

$$r = \frac{BC}{2\sin\alpha}$$
, $R = \frac{BC}{2\sin\left(90^\circ + \frac{\alpha}{2}\right)} = \frac{BC}{2\cos\frac{\alpha}{2}}$.

Значит,

$$\frac{3}{4} = \frac{r}{R} = \frac{\frac{BC}{2\sin\alpha}}{\frac{BC}{2\cos\frac{\alpha}{2}}} = \frac{\cos\frac{\alpha}{2}}{\sin\alpha} = \frac{\cos\frac{\alpha}{2}}{2\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}} = \frac{1}{2\sin\frac{\alpha}{2}},$$

откуда $\sin \frac{\alpha}{2} = \frac{2}{3}$. Следовательно, $\cos \alpha = 1 - 2\sin^2 \frac{\alpha}{2} = 1 - 2 \cdot \frac{4}{9} = \frac{1}{9}$.

Ответ: $\frac{1}{9}$.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и	3
обоснованно получен верный ответ в пункте б	
Обоснованно получен верный ответ в пункте δ .	2
ИЛИ	
Имеется верное доказательство утверждения пункта а, и при	
обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки	
Имеется верное доказательство утверждения пункта а.	1
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	3

15 января планируется взять кредит в банке на 14 месяцев. Условия его возврата таковы:

- 1-го числа каждого месяца долг возрастает на 4 % по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Какую сумму следует взять в кредит, чтобы общая сумма выплат после полного погашения равнялась 1,3 млн рублей?

Решение.

Пусть сумма кредита равна S. По условию долг перед банком по состоянию на 15-е число должен уменьшаться до нуля равномерно:

$$S; \frac{13S}{14}; ...; \frac{2S}{14}; \frac{S}{14}; 0.$$

Первого числа каждого месяца долг возрастает на 4%, значит, последовательность размеров долга по состоянию на 1-е число такова:

$$1,04S$$
; $1,04 \cdot \frac{13S}{14}$; ...; $1,04 \cdot \frac{2S}{14}$; $1,04 \cdot \frac{S}{14}$.

Таким образом, выплаты должны быть следующими:

$$0.04S + \frac{S}{14}$$
; $\frac{13 \cdot 0.04S + S}{14}$; ...; $\frac{2 \cdot 0.04S + S}{14}$; $\frac{0.04S + S}{14}$.

Всего следует выплатить

© СтатГрад 2017-2018 уч. г.

Математика. 11 класс. Вариант МА10109 (без логарифмов)

$$S + S \cdot 0.04 \left(1 + \frac{13}{14} + \dots + \frac{2}{14} + \frac{1}{14} \right) = S \left(1 + \frac{15 \cdot 0.04}{2} \right) = 1.3S.$$

Значит, сумма, взятая в кредит, равна 1 млн рублей.

Ответ: 1 млн рублей.

Содержание критерия	Баллы
Обоснованно получен верный ответ	3
Верно построена математическая модель, решение сведено	2
к исследованию этой модели, получен неверный ответ из-за	
вычислительной ошибки	
Верно построена математическая модель, и решение сведено	1
к исследованию этой модели, при этом решение не завершено	
Решение не соответствует ни одному из критериев,	0
перечисленных выше	
Максимальный балл	3

Найдите все значения x, каждое из которых является решением уравнения $\frac{a\sqrt{3}\sin x + (\sqrt{3} - a)\cos x}{6\sin x - \sqrt{3}\cos x} = 1$ при любом значении a из отрезка $[-1; 3\sqrt{2}]$.

Решение.

Искомые значения x должны быть среди решений данного уравнения при a=0, то есть среди решений уравнения

$$\frac{\sqrt{3}\cos x}{6\sin x - \sqrt{3}\cos x} = 1; \quad \sqrt{3}\cos x = 6\sin x - \sqrt{3}\cos x; \quad \operatorname{tg} x = \frac{\sqrt{3}}{3}; \quad x = \frac{\pi}{6} + m\pi, \quad \text{где}$$

$$m \in \mathbb{Z}.$$

Пусть некоторое $x = \frac{\pi}{6} + 2k\pi$ решение данного уравнения. Тогда равенство

$$\frac{a\frac{\sqrt{3}}{2} + (\sqrt{3} - a)\frac{\sqrt{3}}{2}}{6 \cdot \frac{1}{2} - \sqrt{3} \cdot \frac{\sqrt{3}}{2}} = 1$$
 при всех a из отрезка $[-1; 3\sqrt{2}]$ выполняется.

Следовательно, все значения $x = \frac{\pi}{6} + 2k\pi$ условию задачи удовлетворяют.

Пусть некоторое $x = \frac{7\pi}{6} + 2k\pi$ решение данного уравнения. Тогда равенство

$$\frac{-a\frac{\sqrt{3}}{2}-(\sqrt{3}-a)\frac{\sqrt{3}}{2}}{-6\cdot\frac{1}{2}+\sqrt{3}\cdot\frac{\sqrt{3}}{2}}=1 \quad \text{при всех } a \quad \text{из отрезка } [-1;3\sqrt{2}] \quad \text{выполняется.}$$

Следовательно, все значения $x = \frac{7\pi}{6} + 2k\pi$ удовлетворяют условию задачи.

Ответ:
$$x = \frac{\pi}{6} + k\pi$$
, где $k \in \mathbb{Z}$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получены все значения a , но ответ	3
содержит лишнее значение	
С помощью верного рассуждения получены все решения уравнения	2
Задача верно сведена к исследованию возможного значения корней	1
уравнения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4

19

На доске написали несколько не обязательно различных двузначных натуральных чисел без нулей в десятичной записи. Сумма этих чисел оказалась равной 462. Затем в каждом числе поменяли местами первую и вторую цифры (например, число 17 заменили на число 71).

- а) Приведите пример исходных чисел, для которых сумма получившихся чисел ровно в 4 раза больше, чем сумма исходных чисел.
- б) Могла ли сумма получившихся чисел быть ровно в 2 раза больше, чем сумма исходных чисел?
- в) Найдите наибольшее возможное значение суммы получившихся чисел.

Решение.

- а) Пусть первоначально на доске 20 раз было записано число 19 и один раз число 82. Тогда сумма этих чисел равна 462. После перестановки цифр на доске 20 раз оказалось записано число 91 и один раз число 28. Сумма этих чисел равна $1848 = 4 \cdot 462$.
- б) Пусть на доске были написаны двузначные числа $\overline{a_1b_1}$, ..., $\overline{a_nb_n}$. Обозначим $A=a_1+\ldots+a_n$, $B=b_1+\ldots+b_n$. По условию 10A+B=462 и $10B+A=2\cdot462$. Тогда разность этих чисел равна 9(B-A)=462. Но левая часть последнего равенства делится на 9, а правая не делится. Значит, такая ситуация невозможна.

© СтатГрад 2017-2018 уч. г.

Математика. 11 класс. Вариант МА10109 (без логарифмов)

в) Пусть на доске были написаны двузначные числа $\overline{a_1b_1}$, ..., $\overline{a_nb_n}$. Обозначим $A=a_1+\ldots+a_n$, $B=b_1+\ldots+b_n$. По условию 10A+B=462, и нужно найти наибольшее значение числа S=10B+A. Тогда

$$S = 10B + A = 10(462 - 10A) + A = 4620 - 99A$$
.

Таким образом, необходимо найти наименьшее возможное значение числа A . Поскольку $b_1 \le 9a_1, \ldots, b_n \le 9a_n$, получаем $B \le 9A$. Поэтому

$$462 = 10A + B \le 10A + 9A = 19A$$

откуда
$$A \ge \frac{462}{19} > 24$$
, т. е. $A \ge 25$. Значит,

$$S = 4620 - 99A \le 4620 - 99 \cdot 25 = 2145$$
.

Приведём пример, показывающий, что число S действительно может быть равным 2145. Пусть первоначально на доске 23 раза было записано число 19 и один раз число 25. Тогда сумма этих чисел равна 462. После перестановки цифр на доске 23 раза оказалось записано число 91 и один раз число 52. Сумма этих чисел равна 2145.

Ответ: а) Да, например, 20 раз число 19 и один раз число 82; б) нет; в) 2145.

Содержание критерия	Баллы
Получены верные обоснованные ответы в пунктах a , δ и ϵ	4
Получены верные обоснованные ответы в пунктах a и δ , либо	3
получены верные обоснованные ответы в пунктах а и в	
Получен верный обоснованный ответ в пункте δ , пункты a и b не	2
решены, либо получен верный обоснованный ответ в пункте ϵ ,	
пункты a и δ не решены	
Приведён пример в пункте a , пункты δ и ϵ не решены	1
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4