Symbol Timing Synchronization

Symbol Timing Synchronization in Analog Systems

Symbol Timing Synchronization in Analog Systems

clock edges occur too late so loop increases frequency of VCC

clock edges are aligned with optimum sampling instants

Timing Error Detectors

optimum sampling time corresponds to point where slope of eye = 0 $-T_s/2 \qquad 0 \qquad T_s/2$

matched filter output sampled too early:

- ⇒the slope is positive
- ⇒the timing should be delayed (i.e. sample clock period increased) so that the next sample taken a little later.

matched filter output sampled too late:

- ⇒the slope is negative
- ⇒the timing should be advanced (i.e. sample clock period decreased) so that the next sample taken a little sooner.

Timing Error Detectors

matched filter output sampled too early:

- ⇒the slope is negative (but should be positive)
- ⇒the timing should be delayed (i.e. sample clock period increased).
- ⇒need to qualify the slope by the sign of the matched filter output.

matched filter output sampled too late:

- ⇒the slope is positive (but should be negative)
- ⇒the timing should be advanced (i.e. sample clock period decreased).
- ⇒need to qualify the slope by the sign of the matched filter output.

optimum sampling time corresponds to point where slope of eye = 0

Maximum Likelihood TED

ML Symbol Timing Synchronization

Approximate ML Timing Error Detector: The Early-Late Gate Detector

derivative at this point is approximated by the straight line defined by the early and late matched filter outputs

$$\operatorname{error}(\hat{\tau}) = |x(kT_s + \hat{\tau} + \Delta)| - |x(kT_s + \hat{\tau} - \Delta)|$$

Note: abs included to qualify the sign of the slope

How the Early-Late Gate Detector Works

matched filter output sampled too early:

- ⇒ the timing should be delayed
- \Rightarrow slope of line is positive
- ⇒ slope used to control VCC

matched filter output sampled just right:

- ⇒ the timing should remained unchanged
- ⇒ slope of line is zero
- ⇒ slope used to control VCC

matched filter output sampled too late:

- ⇒ the timing should be advanced
- ⇒ slope of line is negative
- ⇒ slope used to control VCC

Early-Late Gate Symbol Timing Synchronization

BPSK Example

Non Derivative Based Technique

variance of projection error is minimum when sampling the eye at the optimum sampling time

variance of projection error

Dither Loop: "dithers" (i.e. changes) the sampling instant, computes the variance of the projection error, and moves in direction of smallest projection error variance.

Dither Loop for Symbol Timing Synchronization

BPSK Example

Data Transition Tracking Loop (DTTL) (for BPSK or QPSK)

zero crossings occur nominally midway between the optimum sampling time

Basic Idea: if the loop knows where the zero crossings are, then it knows where the optimum sampling instants are!

DTTL Timing Error Detector =

error
$$(\hat{\tau}) = x(kT_s + \hat{\tau} + T_s / 2)[|x(kT_s + \hat{\tau})| - |x(kT_s + \hat{\tau} + T_s)|]$$

= $x(kT_s + \hat{\tau} + T_s / 2)[\hat{a}(k) - \hat{a}(k+1)]$

DTTL Detector requires the matched filter output sampled at 2 samples/symbol.

error $> 0 \Rightarrow$ timing needs to be advanced

error $> 0 \Rightarrow$ timing needs to be advanced

DTTL Timing Error Detector

error
$$(\hat{\tau}) = x(kT_s + \hat{\tau} + T_s / 2)[x(kT_s + \hat{\tau}) - |x(kT_s + \hat{\tau} + T_s)|]$$

= $x(kT_s + \hat{\tau} + T_s / 2)[\hat{a}(k) - \hat{a}(k+1)]$

DTTL for QPSK[₱]

Summary and Comparison

Maximum Likelihood: find the point where the derivative of the eye is zero. $ext{error}(\hat{\tau}) = |x|$

 $\operatorname{error}(\hat{\tau}) = |x(kT_s + \hat{\tau})|\dot{x}(kT_s + \hat{\tau} - \Delta)$

Early-Late Gate:

approximates the ML detector by finding the point where the approximate derivative of the eye is zero.

 $\operatorname{error}(\hat{\tau}) = |x(kT_s + \hat{\tau} + \Delta)| - |x(kT_s + \hat{\tau} - \Delta)|$

Dither: find the point where the projection error variance is a minimum.

$$\operatorname{error}(\hat{\tau}) = \sum_{k} |x(kT_s + \hat{\tau}) - \hat{a}(k)|^2$$

DTTL: find the point where the zero crossings occur. Data decisions determine the sign of the timing error. (Must operate at 2 samples/symbol.)

error
$$(\hat{\tau}) = x(kT_s + \hat{\tau} + T_s / 2)[\hat{a}(k) - \hat{a}(k+1)]$$