Graphics & Visualizing Data

STAT 330 - Iowa State University

Graphics & Visualizing Data

STAT 330 - Iowa State University

Graphics & Visualizing Data

STAT 330 - Iowa State University

#### **Outline**

In this lecture students will be introduced to graphical statistics. We look at three important graphics in particular:

- 1. the histogram
- 2. the boxplot
- 3. the scatterplot

## **Graphics**

## Visualizing Data

- Besides reporting numerical summaries to describe data, we can also provide graphical descriptions.
- Some very common visualizations for *numerical* data are:
  - Histograms
    Boxplots
    Scatterplots



# Histograms

### **Histograms**

#### Histograms:

- 76, -- 764
- Most common visualization for one numerical variable
- Can be used to identify potential <u>outliers</u> and anomalies by looking for major "gaps" in histogram

#### **Construction:**

- 1. Start with a data set  $x_1, x_2, \dots, x_n$
- 2. Divide the data into m intervals (usually of the same width) called "bins":  $B_1, B_2, \ldots, B_m$
- 3. Count how many x's fall into each bin.
- 4. Draw bars up to the above counts for each bin interval.

#### **Number of Bins**



## Histograms Cont.



• In the inferential setting, histograms can help us learn about the shape of the probability distribution that generated the data

 $X_1 \cdots X_n \stackrel{\text{iid}}{\sim} f_{X/x}$ 

Ki -- Xn - Histograms

1 mmm uniform

Exponential

La Maria

### Histogram Cont.

- To understand the shape of the probability distribution, it's useful to use scaled/probability histogram
  - total area under histogram = 1
  - obtained by scaling the height of the histogram
- The Area of the  $i^{th}$  Bin  $(B_i)$  is . . .
  - Area<sub>i</sub> = height · width of  $B_i$
  - Area<sub>i</sub> =  $\frac{\# \text{ of } x \text{'s in } B_i}{n}$

Then, height of  $B_i = \frac{\# \text{ of } x \text{'s in } B_i}{n \cdot \text{width of } B_i}$ 

This height gives estimate of probability of your x being in the particular bin.

## **Boxplots**

## **Boxplots**

#### Boxplots:

- Useful for comparing the same numerical variable between multiple groups
- Gives a systematic way to identify outliers

#### Construction:

- 1. 5-point summary: Calculate Min,  $Q_1$ , Median,  $Q_3$ , Max
- 2. Box: draw a box between  $Q_1$  and  $Q_3$ , and line at median
- 3. Obtain "fences" at  $Q_1 1.5(IQR)$  and  $Q_3 + 1.5(IQR)$ .
  - ightarrow box and all non-outlier values are in-between the fences.
- 4. Whiskers: draw a line from each end of the box out to the closest data value inside the "fence"
- 5. Outliers: data values outside of the "fences" are represented by dots these are outliers

## **Boxplots Cont.**



## **Boxplots Cont.**



# **Scatterplots**

## **Scatterplots**

## Scatterplots:

- Used to visualize relationship between 2 numerical variables plotted on (x, y)-plane
  - $X = \exp[\operatorname{anatory/predictor variable}(x-\operatorname{axis})]$
  - Y = response/dependent variable (y-axis)
- When the x-axis is time, this is called a time plot (time series)

#### **Construction:**

- 1. Obtain  $x_i$  and  $y_i$  values for each  $i^{th}$  subject
- 2. Arrange into (x, y) pairs:  $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$
- 3. Plot each (x, y) pair as a point

## **Scatterplots Cont.**



## **Scatterplots Cont.**

- In the descriptive setting, use scatterplots to understand the general relationship between 2 variables
- In the inferential setting, we develop a model for the relationship between 2 variables of the form:

$$Y = g(X) + \epsilon$$
 where  $g(\cdot)$  is some function, and  $\epsilon$  is random error/noise

ullet Use scatterplots to help learn about the form of  $g(\cdot)$ 





#### Recap

Students should now be familiar with histograms, boxplots, and scatterplots. They should know how to interpret the plots and describe, visually, what is going on with the data.