Predicción de patogenicidad en SNPs

Martín Ezequiel Langberg

Introducción: ¿Qué son los SNPs?

Single Nucleotide Polymorphism (SNP)

Introducción: Del ADN a las proteínas

Dogma central de la biología

¿Cómo se expresan los SNPs en el organismo?

Tabla de codones de ARN

Introducción: Tipos de SNPs

Sustitución sinónima o silent

El cambio en el nucleótido no modifica el aminoácido

Sustitución silent

Introducción: Tipos de SNPs

Sustituciones no sinónimas

Nonsense: Generan un codón de terminación o stop

Sustitución nonsense

Introducción: Tipos de SNPs

Sustituciones no sinónimas

Missense: Generan un cambio de aminoácido en la proteína

Sustitución missense

Foco de estudio: Variantes missense

Sustitución sinónima o silent

• El cambio en el nucleótido no modifica el aminoácido

Sustituciones no sinónimas

- Nonsense: Generan un codón de terminación o stop
- Missense: Generan un cambio de aminoácido en la proteína

Tipos de SNPs

Problema biológico: detectar la patogenicidad de SNPs

- La mayoría de las variantes no sinónimas son raras (AF < .05 %)
- Los estudios realizados con secuenciación tienen baja significación estadística
- Existen bases de datos biológicas que registran patogenicidad de variantes: Clinvar, Humsavar y otras

Main gene name	AA change	Type of variant	dbSNP
A4GALT	p.Pro251Leu	Polymorphism	rs28940571
A4GALT	p.Gln163Arg	Polymorphism	rs28915383
A4GNT	p.Ala218Asp	Polymorphism	rs2246945
AAAS	p.His160Arg	Disease	_
AAAS	p.Ser263Pro	Disease	rs121918550

Selección de columnas de tabla Humsavar (extracto)

Enfoque computacional: un problema de clasificación

- Objetivo: Predecir patogenicidad de SNPs missense humanos
- Trabajos previos:
 - ▶ VEST (Carter et al., 2013)
 - ► FATHMM-MKL (Shihab et al., 2015)
 - REVEL (Ioannidis et al., 2016)
- Aprendizaje automático supervisado
- Dimensiones estructurales, físico-químicas de las proteínas, genómicas
- Análisis de importancia de las variables

Qué tan difícil es este problema?

Primer modelo: Propiedades estructurales usando VarQ

Pipeline de extracción de datos de VarQ

Variables extraídas (cobertura)

- Variación de la energía
- SASA
- Porcentaje de SASA
- B-Factor
- Switchbility

- Aggregability
- Conservación
- Interfaz 3DID
- Interfaz PDB
- Active Site

Filtrado de variantes del dataset VarQ

- Removimos variantes sin un status confirmado (risk factor, likely benign, uncertain significance)
- Priorizamos con el reporte de Humsavar (Pathogenic, Disease)
- Aproximadamente 7,500 variables: 72 % patogénicas, 28 % benignas

Intersección del dataset VarQ usando Humsavar y Clinvar

Generación de modelos de aprendizaje automático

- Modelos clásicos usando scikit-learn
 - Support Vector Classifier (kernel radial)
 - Random Forest
 - Regresión logística
- Imputación de variables nulas
- Búsqueda de hiperparámetros usando 3-fold Cross Validation

Comparación de modelos usando VarQ: Random Forest tiene el mejor AUC

	SVC	LR	RF
Precisión	0.72	0.75	0.77
Recall	1.00	0.94	0.93
AUC	0.70	0.71	0.74
T_{fit}	2m 39s	1.17s	9.82s
T_{pred}	0.77s	0.01s	0.11s

Resultados del modelo VarQ (Random Forest): La variable más importante es la Variación de la Energía

Importancia de variables usando método estándar de scikit-learn

Cuál es el valor predictivo de las variables fisico-químicas de la proteína?

Modelo: Propiedades Físico-Químicas de la proteína

- Uniprot: Proteoma humano completo
- Nuevas fuentes de variables:
 - ProtParam (Biopython)
 - SNVBox
- Usando únicamente la tabla Humsavar:
 - ► Más de 68 mil variantes (aprox. x10 Varq!)
 - Status aportado por Humsavar

Extracción de secuencia proteica (ciclofilina) en formato FASTA usando Uniprot

Generación de nuevas variables usando ProtParam

Parámetros calculados

- Punto isoeléctrico
- Aromaticidad
- Índice de inestabilidad
- Flexibilidad
- Promedio de hidrofobicidad

Cambio en la variante

- Diferencia
- Log-ratio

Variables físico-químicas extraídas de SNVBox

Variables a nivel de aminoácido (considerando sustitución)

- Score BLOSUM, EX, GRANTHAM, PAM250, VB, JM
- Carga
- Volumen
- Polaridad
- Hidrofobia
- Transición

Variables a nivel de proteína (sin considerar sustitución)

- BINDING: Sitio de unión
- ACTIVE_SITE: Sitio activo
- LIPID: Unión con un lípido
- METAL: Unión con un metal
- otras

Las matrices fueron las más relevantes

Importancia de variables clusterizada usando rfpimp

Cuál es el valor predictivo de las variables genómicas?

Modelo: Variables genómicas

- Identificador rsID: aproximadamente 55,000 variantes en Humsavar
 - ▶ 68 % variantes benignas
 - ▶ 32 % variantes patogénicas
- Fuentes de variables:
 - SNVBox
 - dbSNP
 - Genome Browser (UCSC)

Explorador de variantes de dbSNP (https://www.ncbi.nlm.nih.gov/snp)

Variables del modelo Genómico

Variables de conservación genómica

- PhastCons a 46 vías (vertebrados)
- PhyloP a 46 vías (vertebrados)

Variables extraídas de SNVBox

- Conservación a nivel de exón
- Densidad de SNPs en HapMap
- Densidad de SNPs a nivel de exón

Variables relativas a la clase funcional

- Missense
- Nonsense
- Intrón
- y otras

La conservación genómica es importantísima!

Importancia de variables clusterizada usando rfpimp

Curva ROC (0.85!)

Podemos mejorar el modelo genómico integrando las variables físico-químicas?

Integrando las variables físico-químicas y genómicas

- Dataset Humsavar: 68 mil variantes
- Cobertura variables genómicas: aprox. 80 %
- Cobertura variable físico-químicas: misma que el dataset físico-químico
- Evaluamos un nuevo método de aprendizaje automático: XGBoost

Unión de los datasets Físico-Químico y Genómico

XGBoost supera a Random Forest

AUC: 0.90

Modelo Integral + VarQ

Unión de los datasets Integral y VarQ

Resultados del modelo Integral + VarQ (XGBoost)

AUC: 0.88

Comparación entre los distintos modelos

Dataset Humsavar

Dataset VarQ (Curado)

Conclusión general:

- La combinación de distintas dimensiones del problema aportó buenos resultados, consiguiendo un AUC de 0.90
- El método estándar de cálculo de importancia de variables usado por scikit-learn puede ser engañoso en el caso de variables altamente correlacionadas
- Los mejores resultados fueron obtenidos por algoritmos de Boosting

Trabajo futuro

- Aumentar la cobertura de las variables más importantes: La variación de la energía y las variables de conservación genómica
- Mejorar la búsqueda de hiperparámetros en XGBoost
- Evaluar SNPs nonsense o no codificantes
- Mejoras metodológicas

Preguntas?

Muchas gracias!