WEEK 9

Ilaya Daccache

<u>Task 1</u>

Use a weather forecast website, and utilize the psychometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapor in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Humidity: Relative humidity, Atmospheric Pressure: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

к. ч.у, тотпр	emperatora enemita.				icinperatore to be on			
	17:00	18:00	19:00	20:00	21:00	22:00	23:00	
	<u>a</u>	8	_	2	<u>@</u>	<u></u>	@	
	Cloud	Cloud	Cloud	Cloud	Drizzle	∆ ∆ LightRain	LightRain	
Temperatura effettiva	7°C	7°C	6°C	6°C	6°C	6°C	7°C	
Temperatura percepita	7°C	7°C	6°C	5°C	6°C	6°C	7°C	
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	
Umidità	95 %	95 %	97 %	98 %	96 %	96 %	95 %	
Pressione atmosferica	1021 hPa	1021 hPa	1021 hPa	1021 hPa	1021 hPa	1021 hPa	1020 hPa	
Intensità del vento	3 km/h	3 km/h	4 km/h	5 km/h	4 km/h	3 km/h	2 km/h	
Direzione del vento	<	└ →	\hookrightarrow	□	\hookrightarrow	\hookrightarrow	\hookrightarrow	
	NO	0	0	0	0	0	0	
Probabilità di nebbia	0 %	0 %	0 %	0 %	0 %	0 %	0 %	
Punto di rugiada	6°C	6°C	6°C	5°C	6°C	6°C	6°C	
Nuvole	100 %	95 %	98 %	99 %	100 %	100 %	100 %	
Nuvole basse	99 %	67 %	73 %	89 %	100 %	100 %	100 %	
Nuvole medie	75 %	53 %	19 %	19 %	99 %	99 %	92 %	
Nuvole alte	91 %	88 %	89 %	95 %	95 %	95 %	100 %	

Chosen time: 19:00

Relative humidity Φ = 97%

Total air pressure = 1021hPa = 102.1kPa Temperature =6°C

Aula $A = 10m \times 5m \times 4m = 200 \text{ m}$

From the chart with the weather data : The absolute humidity $\,\omega$ = 0.0175 Wet bulb temp Twb: 22.5

$$w = \frac{0.622 \, pv}{Pa} = \frac{0.622 \, pv}{p - pv} = 0.0175$$

So
$$0.0175 = \frac{0.622 \, pv}{102.2 - pv}$$

So in conclusion Pv=2.8 Kpa

$$mv = \frac{pv}{RSpT} = \frac{(2.8)(200)}{0.4615(273+6)} = 4.35$$

$$\Phi = \frac{mv}{mg} = \frac{pv}{pg} = 97\%$$

$$mg = \frac{4.35}{0.97} = 4.48 \, kg$$

Task2

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a *good* construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

$$\begin{array}{ll} Q_{ig_{sensible}} = 136 + 2.2 \times A_{cf} + 22N_{oc} & Q_{ig_{tatent}} = 20 + 0.22 \times A_{cf} + 12N_{oc} & A_{es} = 200 + 144 = 344 \ m^2 \\ Q_{ig_{sensible}} = 136 + 2.2 \times 200 + 22 \times 2 & Q_{ig_{tatent}} = 20 + 0.22 \times 200 + 12 \times 2 & A_{L} = 344 \times 1.4 = 481.6 \ cm^2 \\ Q_{ig_{sensible}} = 620 \ W & Q_{ig_{sensible}} = 88 \ W \end{array}$$

BRINDISI, Italy WMO#: 163200 Lat: 40.65N Long: 17.95E Elev: 10 StdP: 101.2 Time Zone: 1.00 (EUW) Period: 86-10 WBAN: 99999 2.9 -5.1 2.5 7.2 -3.0 10.2 250 4.1 3.0 7.4 13.4 12.4 10.6 3.4 MCWS/PCWD MCWB MCDB 24.3 180 2% HR (c) 29.2 (o) 28.3 25.4 28.5 20.7 26.3 21.8 24.7 19.7 27.9 86.0 30.1 82.2 29.1 78.5 1236 Mao Mao Mao Max (g) 0.4 37.3 11.3 9.9 1.4 3.0 -0.6 39.4 -1.4 41.1 -2.2 42.8 -3.2 44.9 $IDF_{heating} = 0.06369 \frac{L}{s \times cm^2}$ $IDF_{cooling} = 0.03188 \frac{L}{s \times cm^2}$ $V_{infiltration_{heating}} = A_L \times IDF = 481.6 \text{ cm}^2 \times 0.06369 \frac{L}{\text{s} \times \text{cm}^2} = 30.6731 \frac{L}{\text{s}}$ $V_{infiltration_{cooling}} = A_L \times IDF = 481.6 \ cm^2 \times 0.03188 \frac{L}{s \times cm^2} = 15.3534 \frac{L}{s}$ $V_{ventilation} = 0.05 A_{cf} + 3.5(N_{br} + 1) = 0.05 \times 200 m^2 + 3.5 \times 2 = 17 \frac{L}{c}$ $V_{inf-ventilation_{heating}} = 30.67 \frac{L}{s} + 17 \frac{L}{s} = 47.67 \frac{L}{s}$ $V_{inf-ventilation_{cooling}} = 15.35 \frac{L}{s} + 17 \frac{L}{s} = 32.35 \frac{L}{s}$ $Qinf - ventilation_{cooling}_{sensible} = C_{sensible} V \Delta T_{cooling} = 1.23 \times 32.35 \frac{L}{s} \times 7.1 = 282.51 W$ $Qinf-ventilation_{cooling}{}_{latent} = C_{latent} V \Delta \omega_{cooling} = 3010 \times 32.35 \frac{L}{s} \times 0.0039 = 379.75 W$ $Qinf-ventilation_{heating}{}_{sensible} = C_{sensible} V \Delta T_{heating} = 1.23 \times 47.67 \frac{L}{c} \times 15.9 = 932.28 W$ $Qinf-ventilation_{heating}_{latent} = C_{latent} V \Delta \omega_{heating} = 3010 \times 47.67 \frac{L}{s} \times 0.0065 = 932.66 W$