IPD

GUIOL

MARTINGALES

CARACTÉRISATIONS DU MBS INÉGALITÉS

MAXIMALES DES MARTINGALES

INÉGALITÉS DE DO

Markov For

Pérrevion

TEMPS D'ATTEINT

INTRODUCTION AUX PRODUITS DÉRIVÉS PAGE DU COURS SUR CHAMILO

Hervé Guiol (IPS-LJK), 8 mars 2022

Nicole El Karoui

Monique Jean Blanc

Sylvie Méléard

PLAN DU COURS D'IPD

IPD

GUIOL

MARTINGALES

CARACTÉRISATIONS DU MBS INÉGALITÉS MAXIMALES DES

INÉGALITÉS DE DOO TH D'ARRÊT MARKOV FORT

MARKOV FORT RÉFLEXION

- Vecteurs Gaussiens.
- 2. Généralités sur les processus. Mouvement Brownien Standard.
- 3. Premières propriétés du MBS.
- 4. Martingales à temps continu : filtrations, temps d'arrêt.
- 5. Martingales (suite) : martingales du Mouvement Brownien, théorème d'arrêt et applications au Mouvement Brownien.
- 6. Intégrale de Wiener.
- 7. Intégrale d'Itô 1 : définitions.
- 8. Intégrale d'Itô 2 : formule d'Itô. Processus d'Itô. Variations.
- Représentation des martingales Browniennes. Formule d'Itô multi-d. Formule de Cameron-Martin.
- 10. Equation Différentielle Stochastique. Théorèmes d'Itô.
- Modèle de Black-Scholes-Merton : stratégies, prix et portefeuille de couverture.

OUTLINE

IPD

GUIOL

MARTINGALES

DU MBS
INÉGALITÉS
MAXIMALES DES
MARTINGALES
INÉGALITÉS DE DI

TH D'ARRÊT

MARKOV FORT

RÉFLEXION

TEMPS D'ATTEIN

- MARTINGALES CONTINUES
 - Caractérisations du MBS
 - Inégalités maximales des martingales
 - Inégalités de Doob
 - Théorème d'arrêt

CARACTÉRISATIONS DU MBS

IPD

GUIOL

Martingale

CARACTÉRISATIONS DU MBS

INÉGALITÉS
MAXIMALES DES
MARTINGALES

INÉGALITÉS DE DOO

TH D'ARRÊT

MARKOV FORT

MARKOV FORT RÉFLEXION

REFLEXION TEMPS D'ATTEINTE

Théorème 4.15

Soit $X=(X_t)_{t\in I}$ un processus $(\mathcal{F}_t)_{t\in I}$ -adapté, à trajectoires continues et tel que $X_0=0$ \mathbb{P} -p.s. Alors X est un $(\mathcal{F}_t)_{t\in I}$ -MBS si et seulement si $\forall u\in\mathbb{R}$ le processus $(M^u_t)_{t\in I}$ défini par

$$M_t^u = \exp\left(iuX_t + \frac{u^2t}{2}\right), \ \forall t \in I$$

est une $(\mathcal{F}_t)_{t\in I}$ -martingale.

THÉORÈME DE LÉVY 4.17

Soit X une $(\mathcal{F}_t)_{t\in l}$ -martingale à trajectoires continue telle que $X_0=0$ p.s. Alors X est un $(\mathcal{F}_t)_{t\in l}$ -M.B.S. si et seulement si le processus $(X_t^2-t)_{t\in l}$ est une $(\mathcal{F}_t)_{t\in l}$ -martingale.

Inégalités maximales des Martingales

IPD

GUIOL

MARTINGALES

Canacrénicarione

INÉGALITÉS MAXIMALES DES

MAXIMALES DES MARTINGALES

TH D'ARRÊT

MARKOV FO

RÉFLEXION

TEMPS D'ATTEINTI

Proposition 4.18

Soient $X=(X_t)_{t\in\mathbb{R}^+}$ et $Y=(Y_t)_{t\in\mathbb{R}^+}$ respectivement $(\mathcal{F}_t)_{t\in\mathbb{R}^+}$ -sous martingale et $(\mathcal{F}_t)_{t\in\mathbb{R}^+}$ -sur martingale, positives alors $\forall a>0$ et $\forall T>0$

$$\mathbb{P}\left(\max_{0\leq t\leq T}X_t\geq a\right)\quad \leq\quad \frac{1}{a}\mathbb{E}(X_T)$$

$$\mathbb{P}\left(\max_{0\leq t\leq T}Y_t\geq a\right)\quad \leq\quad \frac{1}{a}\mathbb{E}(Y_0)$$

EXEMPLES

- 1. On rappelle qu'une martingale étant à la fois une sous martingale et une sur martingale on peut utiliser les deux égalités ci dessus.
- 2. On rappelle que si $(X_t)_t$ est une martingale et si φ est une fonction convexe de $\mathbb{R} \to \mathbb{R}^+$ et telle que $\varphi(X_t)$ est intégrable pour tout t alors $(\varphi(X_t))_t$ est une sous-martingale positive.

INÉGALITÉS MAXIMALES L^p DE DOOB

IPD

GUIOL

MARTINGALE

INÉGALITÉS

MAXIMALES DES MARTINGALES

INÉGALITÉS DE DOOB

TH D'ARRÊT

MARKOV FOR

TEMPS D'ATTEINT

Proposition 4.19 : Inégalités maximales L^p de Doob.

Soit $X=(X_t)_{t\in\mathbb{R}^+}$ une $(\mathcal{F}_t)_{t\in\mathbb{R}^+}$ -sous martingale positive; alors $\forall p>1$

$$\mathbb{E}\left((\sup_{t\geq 0}X_t)^p\right)\leq \left(\frac{p}{p-1}\right)^p\sup_{t\geq 0}\mathbb{E}(X_t^p)$$

De plus si pour T>0 on a $\mathbb{E}(X_T^p)<+\infty$ alors

A) la v.a. $\max_{0 \le t \le T} X_t$ est dans L^p et

$$\mathbb{B}) \ \mathbb{E}\left((\max_{0 \le t \le T} X_t)^p\right) \le \left(\frac{p}{p-1}\right)^p \mathbb{E}(X_T^p)$$

EXEMPLES

On rappelle en particulier que pour le Brownien $(|W_t|)_{t\geq 0}$ est une sous martingale positive et on a $\mathbb{E}(|W_T|^p) < +\infty$ pour tous $T\geq 0$ et p>0.

THÉORÈME D'ARRÊT

IPD

GUIOL

MARTINGALE

INÉGALITÉS MAXIMALES DES

MAXIMALES DES MARTINGALES INÉGALITÉS DE DO

TH D'ARRÊT

MARKOV FOR

TEMPS D'ATTEINT

Théorème 4.24: Théorème d'arrêt

Soit X une une $(\mathcal{F}_t)_{t\in I}$ -martingale à trajectoires continues. Pour tout $(\mathcal{F}_t)_{t\in I}$ -T.A. borné (p.s.) la v.a. X_τ est intégrable et si σ est un $(\mathcal{F}_t)_{t\in I}$ -T.A vérifiant $\sigma \leq \tau$, \mathbb{P} -p.s. alors

$$\mathbb{E}[X_{\tau}|\mathcal{F}_{\sigma}] = X_{\sigma}, \ \mathbb{P} - p.s.$$

Proposition 4.21: Martingale arrêtée.

Soit X une $(\mathcal{F}_t)_{t\in l}$ -martingale à trajectoires continues alors pour tout τ $(\mathcal{F}_t)_{t\in l}$ -T.A. le **processus arrêté** $X^{\tau}=(X_{\tau\wedge t})_{t\in l}$ est une $(\mathcal{F}_t)_{t\in l}$ -martingale.

COROLLAIRE 4.22 : CARACTÉRISATION DES MARTINGALES.

Soit X un processus $(\mathcal{F}_t)_{t\in I}$ -adapté à trajectoires continues. Alors X est une $(\mathcal{F}_t)_{t\in I}$ -martingale si et seulement si $\forall \tau \ (\mathcal{F}_t)_{t\in I}$ -T.A. borné la v.a. X_τ est intégrable et

$$\mathbb{E}(X_{\tau}) = \mathbb{E}(X_0).$$

Propriété de Markov Forte

IPD

GUIOL

MARTINGALES

DU MBS INÉGALITÉS

MAXIMALES DES MARTINGALES

TH D'ARRÊT

MARKOV FORT

MARKOT FOR

TELENION

Théorème 4.23: Propriété de Markov Forte

Soit W un $(\mathcal{F}_t)_{t\in I}$ -M.B.S. et τ un $(\mathcal{F}_t)_{t\in I}$ -T.A. fini \mathbb{P} -p.s. Alors le processus B définit par $\forall t\geq 0$

$$B_t = W_{\tau+t} - W_{\tau}$$

est un $(\mathcal{F}_{\tau+t})_{t\in I}$ -M.B.S. indépendant de \mathcal{F}_{τ} .

PRINCIPE DE RÉFLEXION

IPD

GUIOL

MARTINGALE

CARACTÉRISATION

INÉGALITÉS

MAXIMALES DES MARTINGALES

THE DALLES DE D

Markov For

RÉFLEXION

TEMPS D'ATTEIN

THÉORÈME 4.24

(a) Pour tout $y \ge 0$ et tout $x \le y$ on a :

$$\mathbb{P}\left(\max_{0\leq t\leq T}W_t\geq y;W_T\leq x\right) = \mathbb{P}(W_T\geq 2y-x); \tag{1}$$

$$\mathbb{P}\left(\max_{0\leq t\leq T}W_t\geq y\right) = \mathbb{P}(|W_T|\geq y). \tag{2}$$

(b) La loi conditionnelle de $\max_{0 \le t \le T} W_t$ sachant W_T est donnée pour $y \ge \max(x,0)$ par

$$\mathbb{P}\left(\max_{0\leq t\leq T}W_{t}\geq y|W_{T}=x\right)=\exp\left(-2\frac{y(y-x)}{T}\right).$$

REMARQUE

Bien observer que les v.a. $\max_{0 \le s \le t} W_s$ et $|W_t|$ ont même loi. Attention toutefois ces deux processus sont différents.

PRINCIPE DE RÉFLEXION

IPD

GUIOL

MARTINGALE

INEGALITÉS

MAXIMALES D

INÉGALITÉS DE DO

TH D'ARRÊT

RÉFLEXION

TEMPS D'ATTEINT

EXEMPLES

Illustration principe de réflexion.

TEMPS D'ATTEINTE DU BROWNIEN

IPD

GUIOL

MARTINGALE

INÉGALITÉS MAXIMALES DES MARTINGALES

MARTINGALES
INÉGALITÉS DE DOO

MARKOV FORT

RÉFLEXION

TEMPS D'ATTEINTE

Pour $a \in \mathbb{R}$ la v.a. $T_a = \inf\{t \geq 0 : W_t = a\}$ représente le temps d'atteinte du niveau a par le Brownien standart W.

Théorème 4.25.

Pour tout $u \ge 0$ on a

$$M_{\tau_a}(u) = \mathbb{E}(e^{-uT_a}) = e^{-|a|\sqrt{u}}$$

De plus pour $a \neq 0$, T_a est une v.a. de densité

$$h_a(t) = rac{|a|}{\sqrt{2\pi t^3}} \exp\left(-rac{a^2}{2t}
ight) \mathbf{1}_{\mathbb{R}^+}(t).$$

REMARQUE

En particulier on a $\mathbb{P}(T_a<+\infty)=1$ mais $\mathbb{E}(T_a)=+\infty$. En revanche on verra en TD que si $a\cdot b<0$ alors $\mathbb{E}(T_a\wedge T_b)=-ab$.