Computer Graphics (L04) EG678EX

2-D Algorithms

Bresenham's Line Algorithm

- Uses only incremental integer 13 calculations
- Which pixel to draw ?
 - (11,11) or (11,12)?
 - (51,50) or (51,49)?
 - Answered by Bresenham

□ For |m|<1</p>

- Start from left end point (x_0,y_0) step to each successive column (x samples) and plot the pixel whose scan line y value is closest to the line path.
- After (x_k, y_k) the choice could be (x_k+1, y_k) or (x_k+1, y_k+1)

$$y = m(x_k + 1) + b$$

Then

$$d_1 = y - y_k = m(x_k + 1) + b - y_k$$

And

$$d_2 = (y_k + 1) - y$$

= $y_k + 1 - m(x_k + 1) - b$

Difference between separations

$$d_1 - d_2 = 2m(x_k + 1) - 2y_k + 2b - 1$$

Constant= $2\Delta y + \Delta x(2b-1)$ Which is independent of pixel position

Defining decision parameter

$$p_k = \Delta x (d_1 - d_2) \quad \begin{bmatrix} \mathbf{1} \end{bmatrix}$$
$$= 2\Delta y \cdot x_k - 2\Delta x \cdot y_k + c$$

Sign of p_k **is same as that of** d_1 **-** d_2 **for** $\Delta x > 0$ **(left to right sampling)**

$$p_{k+1} = 2\Delta y.x_{k+1} - 2\Delta x.y_{k+1} + c$$

$$p_{k+1} - p_k = 2\Delta y(x_{k+1} - x_k) - 2\Delta x(y_{k+1} - y_k)$$

because $x_{k+1} = x_k + 1$

$$p_{k+1} = p_k + 2\Delta y - 2\Delta x (y_{k+1} - y_k)^{-1}$$

For Recursive calculation, initially

$$y_{k+1}-y_k = 0 \text{ if } p_k < 0$$

 $y_{k+1}-y_k = 1 \text{ if } p_k \ge 0$

c eliminated here

$$p_0 = 2\Delta y - \Delta x$$

Substitute $b = y_0 - m.x_0$ and $m = \Delta y/\Delta x$ in [1]

Algorithm Steps (|m|<1)

- 1. Input the two line endpoints and store the left endpoint in (x_0,y_0)
- 2. Plot first point (x_0, y_0)
- 3. Calculate constants Δx , Δy , $2\Delta y$ and $2\Delta y$ $2\Delta x$, and obtain $p_0 = 2\Delta y \Delta x$
- 4. At each x_k along the line, starting at k=0, perform the following test:

If $p_k < 0$, the next point plot is $(x_k + 1, y_k)$ and $P_{k+1} = p_k + 2\Delta y$

Otherwise, the next point to plot is $(x_k + 1, y_k+1)$ and

$$P_{k+1} = p_k + 2\Delta y - 2\Delta x$$

5. Repeat step 4 Δx times

What's the advantage?

Answer: involves only the calculation of constants Δx, Δy, 2Δy and 2Δy- 2Δx once and integer addition and subtraction in each steps

Example

Endpoints (20,10) and (30,18)

Slope
$$m = 0.8$$

$$\Delta x = 10$$
, $\Delta y = 8$

$$P_0 = 2\Delta y - \Delta x = 6$$

$$2\Delta y = 16$$
, $2\Delta y - 2\Delta x = -4$

Plot $(x_0, y_0) = (20, 10)$

k	p_k	(\times_{k+1}, y_{k+1})	k	p_k	(\times_{k+1}, y_{k+1})
0	6	(21,11)	5	6	(26,15)
1	2	(22,12)	6	2	(27,16)
2	-2	(23,12)	7	-2	(28,16)
3	14	(24,13)	8	14	(29,17)
4	10	(25,14)	9	10	(30,18)