Digital circuits laboratory class	Year 2024, exercise 4
Author: Jakub Turkowski	Title of the exercise: Analysis of synchronous
	circuit
Laboratory group number: 2	Week day: Tuesday
	Realization date: 09.04.2024
	Hours of the lab: 15:15-16:55

Х	D1	D1 NEXT	D2	D2 NEXT	Υ
0	0	0	0	0	0
0	0	0	1	0	0
0	1	0	0	0	0
0	1	0	1	0	0
1	0	1	0	0	0
1	0	1	1	1	1
1	1	0	0	1	0
1	1	1	1	1	1

As the first row of NAND gate of a JK flipflop additionally takes in the output (regular and negated) it kind makes the gates of the circuit with D flipflop obsolete. For it to reset however we need to take into account the change of clock and value of X, which will be inserted using the and gate.

time	t1	t2	t3	t4	t5	t6
Х	1	1	1	1	0	0
y1y2	10	0 1	11	11	0 0	0 0
Z	0	0	1	1	0	0

For the NAND version:

D1: (y1'x)+(y2x) = ((y1'x)'(y2x)')'

D2: (y1x)+(y2x) = ((y1x)'(y2x)')'

O: (y2y1) = ((y2y1)')'