8.1 Náhodné vektory

- ▶ Příklad 8.1. Určete konstantu c tak, aby funkce f byla sdruženým rozdělením pravděpodobností náhodných veličin X a Y.
 - 1. f(x,y) = cxy pro x = 1, 2, 3, y = 1, 2, 3 [1/36]
 - 2. f(x,y) = c|x-y| pro x = -2, 0, 2, y = -2, 3 [1/15]
- ▶ **Příklad 8.1.** V krabici s pralinkami zbylo posledních 8 kusů, z toho 3 s hořkou čokoládou, 2 s mléčnou a 3 s bílou. Náhodně vybereme 2 pralinky. Nechť X je počet vybraných pralinek s hořkou čokoládou a Y je počet pralinek s mléčnou čokoládou. Najděte sdružené rozdělení pravděpodobnosti f(x,y). Počet všech možných dvojic, jak můžeme pralinky vybrat je $\binom{8}{2}$. Proto napřiklad:

$$f(1,0) = P({X = 1} \cap {Y = 0}) = \frac{\binom{3}{1}\binom{3}{1}}{\binom{8}{2}}.$$

A obecně tedy:

$$f(x,y) = P({X = x} \cap {Y = y}) = \frac{\binom{3}{x}\binom{2}{y}\binom{3}{2-x-y}}{\binom{8}{2}}.$$

Určete f(x,y) pomocí R. Výsledky uložte do data.framu, který bude obsahovat tři sloupce: X, Y, probs.

> S probs 1 0 0 0.10714286 2 0 1 0.21428571 3 0 2 0.03571429

4 1 0 0.32142857 5 1 1 0.21428571

6 2 0 0.10714286

Určete marginální rozdělení pravděpodobnosti pro náhodnou veličinu X a Y. Pro náhodnou veličinu X dostáváme

$$P_X(0) = \sum_{y=0}^{2} f(0,y) = f(0,0) + f(0,1) + f(0,2) = \frac{5}{14}.$$

Obdobně bychom dostali $P_X(1)=\frac{15}{28}$ a $P_X(2)=\frac{3}{28}$. Marginální rozdělení pravděpodobnosti pro náhodnou veličinu Y se určí obdobně. V R je určení marginálních rozdělení jednoduché:

> marginal(S,vars="X")

probs

1 0 0.3571429

2 1 0.5357143

3 2 0.1071429

> marginal(S,vars="Y")

probs

1 0 0.53571429

2 1 0.42857143

3 2 0.03571429

Výsledky můžeme přehledně shrnout do tabulky 8.1.

$f_{X,Y}(x,y)$	y = 0	y = 1	y = 2	$f_X(x)$
x = 0	$\frac{3}{28}$	$\frac{3}{14}$	$\frac{1}{28}$	$\frac{5}{14}$
x = 1	$\begin{array}{c} \overline{28} \\ \underline{9} \\ \overline{28} \end{array}$	$\frac{3}{14}$		$\frac{15}{28}$
x = 2	$\frac{3}{28}$			$\frac{3}{28}$
$f_Y(y)$	$\frac{15}{28}$	$\frac{3}{7}$	$\frac{1}{28}$	1

Tabulka 1: Sdružené a marginální rozdělení pro náhodné veličiny X a Y

Určete podmíněnou distribuci náhodné veličiny X při Y=1. Chceme určit

$$f_{X|\{Y=1\}}(x) = P(\{X=x\}|\{Y=1\}) = \frac{f_{X,Y}(x,1)}{f_Y(1)}.$$

Nejprve určíme $f_Y(1)$:

$$f_Y(1) = \sum_{x=0}^{2} f_{X,Y}(x,1) = \frac{3}{14} + \frac{3}{14} = \frac{3}{7}$$

Tedy dostáváme $f_{X|\{Y=1\}}(x) = \frac{7}{3}f_{X,Y}(x,1)$. Po dosazení:

$$f_{X|\{Y=1\}}(0) = P(\{X=0\}|\{Y=1\}) = \frac{7}{3} \frac{3}{14} = \frac{1}{2}$$

$$f_{X|\{Y=1\}}(1) = P(\{X=1\}|\{Y=1\}) = \frac{7}{3} \frac{3}{14} = \frac{1}{2}$$

$$f_{X|\{Y=1\}}(2) = P(\{X=2\}|\{Y=1\}) = \frac{7}{3} \cdot 0 = 0$$

Jsou náhodné veličiny X a Y nezávislé? Aby tomu tak bylo, musí platit pro každé $x \in \{0,1,2\}$ a $y \in \{0,1,2\}: f_{X,Y}(x,y) = f_X(x)f_Y(y)$. Ověřte, že například pro x=0, y=1 rovnost neplatí.

- ▶ Příklad 8.2. Uvažujte náhodné veličiny X, Y z předchozího příkladu a náhodnou veličnu Z = XY. Určete střední hodnotu náhodných veličin X, Y, Z. [3/4; 1/2; 3/14]
- \blacktriangleright Příklad $\bf 8.3.$ Za použití výsledků z předchozího příkladu určete kovarianci náhodných veličin X a Y. [-9/56]
- ▶ Příklad 8.4. Nechť náhodná veličina X určuje změnu teploty a náhodná veličina Y je relativní posunutí spektra, kterou vyzařuje určitá elementární částice. Sdružené rozdělení pravděpodobnosti je dáno následovně:

$$f_{X,Y}(x,y) = \begin{cases} 10xy^2 & 0 < x < y < 1 \\ 0 & \text{jinak} \end{cases}$$

- 1. Určete marginální hustoty pro náhodné veličiny X, Y.
- 2. Určete podmíněnou hustotu $f_{Y|\{X=x\}}(y).$ $[\frac{3y^2}{(1-x^3)}]$
- 3. Určete pravděpodobnost, že se spektrum posune o více než $\frac{1}{2}$ za podmínky, že teplota vzrostla o 0.25 jednotek. [8/9]
- ▶ Příklad 8.5. Nechť X_1 a X_2 jsou nezávislé náhodné veličiny s Poissonovým rozdělením s parametry μ_1 , μ_2 . Najděte rozdělení pravděpodobnosti pro náhodnou veličinu $Y = X_1 + X_2$. $[Y \sim Po(\mu_1 + \mu_2)]$

8.2 Generování (pseudo)náhodných čísel - pokračování

- ▶ Příklad 8.6. Pomocí věty o inverzní transformaci vygenerujte (pseudo)náhodná čísla z Cauchyho distribuce s parametry location=1, scale=1, tj. z Cauchy(0,1), která je dána hustotou $f_X(x) = \frac{1}{\pi(1+x^2)}$. Nakreslete histogram vygenerovaných bodů a srovnejte s Cauchyho rozdělením.
- ▶ Příklad 8.7. Implementujte generátor, který bude generovat (pseudo)náhodná čísla z Binomického rozdělení s parametry n=10, p=0.3. Vykreslete histogram pro N=1000. Srovnejte relativní frekvence výskytů hodnot s pravděpodobnostní funkcí pro dané rozdělení. Určete výběrový průměr a výběrový rozptyl a srovnejte se střední hodnotou a rozptylem.
- ▶ Příklad 8.8. Implementujte genrátor, který bude generovat (pseudo)náhodná čísla z Beta rozdělení s parametry shape1=2 a shape2=5.

Reference

- [1] Kerns G. J.: Elementary Probability on Finite Sample Spaces, 2009, reference manual package prob, available from: http://CRAN.R-project.org/package=prob
- [2] Kerns G. J.: Introduction to Probability and Statistics Using R, First Edition http://cran.r-project.org/web/packages/IPSUR/vignettes/IPSUR.pdf
- [3] Kenneth Baclawski: Introduction to Probability with R Chapman and Hall/CRC, ISBN 978-1420065213.
- [4] Maria L. Rizzo: Statistical Computing with R Chapman and Hall/CRC, ISBN: 978-1584885450
- [5] Walpole R. E, Myers R., Myers S, Ye K. : Probability & Statistics for Engineers & Scientists Prentice Hall, ISBN:0-13-098469-8