

ELEMENTI DI INFORMATICA

DOCENTE: FRANCESCO MARRA

INGEGNERIA CHIMICA
INGEGNERIA ELETTRICA
SCIENZE ED INGEGNERIA DEI MATERIALI
INGEGNERIA GESTIONALE DELLA LOGISTICA E DELLA PRODUZIIONE
INGEGNERIA NAVALE

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II SCUOLA POLITECNICA E DELLE SCIENZE DI BASE

AGENDA

- Architettura del calcolatore
 - Istruzioni
 - Logica cablata e microprogrammata
 - Evoluzioni modello di von Neumann
 - Conversione input e output
 - Interruzioni
 - Cache
- Software
 - Tipi di software
 - Allocazione in memoria

- La CPU è un automa che interpreta un prefissato linguaggio, detto linguaggio macchina, composto da un insieme di istruzioni (repertorio)
- L'istruzione in linguaggio macchina è una quadrupla:

$$\mathbf{i} = (\mathbf{C}_{\mathsf{op'}} \, \mathbf{P}_{\mathsf{di'}} \, \mathbf{P}_{\mathsf{do'}} \, \mathbf{P}_{\mathsf{is}})$$

- ullet \mathbf{C}_{op} è il codice operativo che indica alla CU l'operazione da compiere
 - L'insieme dei C_{op} è definito *repertorio di istruzioni (o instruction set)* e dipende dalla specifica CPU
- P_{di} sono i puntatori ai dati di input (se presenti) che servono per svolgere l'operazione C_{op}
- P_{do} sono i puntatori ai dati di output (se presenti) prodotti dall'operazione C_{op}
- ullet \mathbf{P}_{is} è il puntatore all'istruzione da svolgere al termine dell'esecuzione di quella corrente

ESEMPIO

Programma

Indirizzo della prima istruzione da eseguire

3000	
3001	$i_2 = (C_{op2}, P_{di2}, P_{do2}, 3006)$
3002	
3003	i ₁ = (C _{op1} , P _{di1} , P _{do1} , 3001)
3004	
3005	
3006	$i_3 = (C_{op3}, P_{di3}, P_{do3}, 3007)$
3007	i ₄ = (C _{op4} , P _{di4} , P _{do4} , 3008)
3008	$i_5 = (C_{op5}, P_{di5}, P_{do5}, XXXX)$
3009	
3010	

Programma allocato in memoria

ISTRUZIONI

- Le istruzioni di repertorio sono costituite da operazioni semplici
 - Trasferimento dati da un registro ad un altro
 - Si spostano stringhe di bit da un registro all'altro di memoria
 - Operazioni aritmetiche o logiche eseguite dall'ALU
 - somma aritmetica
 - AND o OR tra coppie di stringhe di bit
 - negazione (NOT) di una stringa di bit
 - rotazione a destra o a sinistra di una stringa di bit
 - Controllo di condizioni riportate dal registro CC o deducibili dal confronto di due registri
 - interrogazione dei bit del registro di condizione

LOGICA CABLATA E MICROPROGRAMMATA

- Per effettuare operazioni più complesse:
- Logica cablata
 - Complex Instruction Set Computer (CISC)
 - dispositivi elettronici connessi tra loro in un certo modo
 - in grado di eseguire operazioni complesse come la lettura di un dato in memoria, la sua modifica e il suo salvataggio direttamente in memoria tramite una singola istruzione
 - poco flessibile
- Logica microprogrammata
 - Reduced Instruction Set Computer (RISC)
 - un (micro)programma indica una sequenza di microistruzioni semplici
 - per effettuare un'operazione complessa ha bisogno di leggere e decodificare un programma
 - flessibile

MODELLO DI VON NEUMANN

INPUT E OUTPUT

- Stream di caratteri preso dalla codifica ASCII
 - in numero teoricamente infinito se
 - acquisito da tastiera (input standard)
 - restituito su terminale (output standard)
 - in numero finito se
 - scritto o letto in memorie di massa (file)

 Conversione da stream di caratteri in binario e viceversa

MODELLO DI VON NEUMANN

EVOLUZIONE DEL MODELLO DI VON NEUMANN: I CANALI

- Introduzione di sistemi dedicati (*canali*) il cui compito è scaricare la CPU della gestione di attività specifiche
 - Nel modello di von Neumann non era possibile sovrapporre i tempi delle operazioni di input con quelli dell'output
- I **canali** lavorano in autonomia, anche contemporaneamente alla CPU, rendendo possibile una prima forma di *parallelismo*
 - Es. canali di input ed output, processori dedicati alla grafica, alle operazioni sui numeri reali, all'acquisizione di segnali analogici
- Generano segnali detti interruzioni per richiedere attenzione alla CPU

LE INTERRUZIONI

• Consentono alla CPU di attivare un processore periferico e disinteressarsi delle sue attività a meno che non sia indispensabile quanto richiesto

• Al termine del suo compito, il processore periferico avanza una richiesta di interruzione alla CPU per ricevere attenzione

- La CU si accorge di una interruzione interrogando un bit del registro di condizione CC al termine di ogni istruzione
 - $CC = 0 \rightarrow si$ preleva l'istruzione successiva
 - $CC = 1 \rightarrow si$ esegue un programma del sistema operativo
 - Il programma è detto ISR (Interrupt Service Routine)

- L'ISR identifica la causa della interruzione, ossia quale dispositivo ha avanzato la richiesta
 - Nel caso di più richieste stabilisce quale servire per prima
 - Criteri di importanza o priorità di intervento

EVOLUZIONE DEL MODELLO DI VON NEUMANN: LE CACHE

- Memoria molto veloce posta tra memoria centrale e CPU
- Funge da buffer per il prelievo di informazioni dalla memoria centrale ai registri interni della CPU per ridurne i tempi di trasferimento
- Con operazioni particolari, istruzioni e dati vengono trasferiti dalla memoria centrale nella cache secondo la capacità di quest'ultima
 - La CU procede nelle tre fasi del suo ciclo al prelievo di istruzioni e operandi dalla cache
 - Quando la CU si accorge che il prelievo non può avvenire scatta un nuovo travaso dalla memoria centrale

EVOLUZIONE DEL MODELLO DI VON NEUMANN: LE CACHE

- Due livelli possibili di cache
 - di primo livello (**L1**) se è interna alla CPU
 - di secondo livello (L2) se è esterna
- Solitamente le cache L2 sono più lente di quelle L1, ma sempre più veloci della memoria centrale
 - La cache L2 risulta 4 o 5 volte più lenta della cache L1 mentre la RAM lo è addirittura 20 o 30 volte
- I due livelli possono coesistere

GERARCHIA DI MEMORIA

- Consente di offrire ai programmi l'illusione di avere una memoria grande e veloce
 - I livelli più prossimi alla CPU sono più veloci, ma hanno dimensioni più piccole visto il loro elevato costo
 - I livelli più lontani mostrano una capacità massima ed anche tempi di accesso maggiori
- Partendo dalla CPU ogni livello fa da buffer al livello successivo

ALLOCAZIONE IN MEMORIA

- Comporta un'associazione precisa tra istruzioni e dati e registri
 - Memorie a voce \rightarrow un solo registro di memoria per ogni istruzione o dato
 - Memorie a byte → istruzioni o dati possono occupare più registri di memoria
- Può essere statica o dinamica
 - Statica → prima dell'esecuzione di un programma
 - Dinamica → durante l'esecuzione di un programma
- Il riferimento ad una istruzione o ad un dato avviene specificando l'indirizzo di memoria occupato
 - ullet Puntatore a dato o indirizzo del registro di memoria in cui è collocato un dato
 - ullet Puntatore a istruzione o indirizzo del registro di memoria in cui è collocata una istruzione

SISTEMA OPERATIVO E PROGRAMMI UTENTE IN MEMORIA

 Nella memoria di un elaboratore moderno si possono individuare in ogni istante cinque aree distinte

- I programmi e i dati del sistema operativo sono sempre presenti in memoria
- I programmi e i dati delle applicazioni sono caricati in memoria dal sistema operativo su richiesta dell'utente prima che ne venga attivata la esecuzione

MODELLO DI VON NEUMANN EVOLUTO

HARDWARE, FIRMWARE E SOFTWARE

- Hardware
 - Componenti fisici del calcolatore
- Firmware
 - Microprogrammi composti dalle microistruzioni memorizzate nella memoria interna alla CU
- Software
 - Programmi che vengono eseguiti dal calcolatore

- Software applicativo
 - Insieme di programmi che risolvono problemi specifici
- Software di base
 - Insieme di programmi che servono a tutti gli utenti del sistema
 - Sistemi operativi e traduttori dei linguaggi di programmazione

SISTEMA OPERATIVO

- Insieme di programmi per garantire la gestione semplice ed efficiente delle risorse hardware a tutti gli utenti del sistema
- I primi calcolatori non avevano il sistema operativo
 - Caricamento di un programma in memoria e successiva attivazione a carico del programmatore o dell'operatore del sistema
- Il sistema operativo automatizza il passaggio da una applicazione ad un'altra
 - La CPU esegue i programmi del sistema operativo in alternanza con quelli applicativi

- Fornisce un'astrazione di programmazione che maschera l'eterogeneità di elementi sottostanti
 - Reti, hardware, sistemi operativi, linguaggi di programmazione
- Definisce una macchina generalizzata fissandone modalità di interazione con le applicazioni

