CHAPTER 6. ANALYSIS OF VARIANCE (ONE-WAY)

6.1. What is "Analysis of variance" (ANOVA)? 6.2.

One-Way Analysis of Variance

- 6.3. The Least significant difference intervals
- 6.4. The p-value

Chapter 6: Assignments

1. We want to investigate if there is an effect of the type of fertilizer applied to apple trees and the production of apples. We randomly select 15 trees and randomly assign them to one of three groups (5 trees per group). We perform a test in which we apply one type of fertilizer (fertilizer 1, 2 or 3) to each group. The data are shown. At a α =0.05, can it be concluded that there is a significant difference in the production of apples depending on which fertilizer is used? Which fertilizer/fertilizers causes a higher/lower production than the other/others?

Fertilizer 1	Fertilizer 2	Fertilizer 3
10	6	5
12	8	9
9	3	12
15	0	8
13	2	4

- Vi starter allerførst med at udregne Middelværdi for hver kolonne af Kunstgødning.

Summen á Fertilizer 1	10 + 12 + 9 + 15 + 13 = 59
Middelværdi	$\frac{59}{5} = 11.8$

Summen á Fertilizer 2	6 + 8 + 3 + 0 + 2 = 19
Middelværdi	$\frac{19}{5} = 3.8$

Summen á Fertilizer 3	5+9+12+8+4=38
Middelværdi	$\frac{38}{5} = 7,6$

- Nu skal vi til at udregne selve den totale middelværdi, som er vores "sum of mean" og det betyder at vi lægger alle middelværdierne sammen til en.

Summen af Kunstgødernes Middelværdi	$11,8+3,8+7,6\approx 23,2$
Totale Middelværdi af Kunstgøderne	$\frac{23,2}{3} \approx 7,733333$

- Nu skal vi udregne summen af kvadraterne for alle kunstgøderne.
- Dette betyder, at vi tager den enkelte dataværdi og trækker det fra den totale middelværdi af kunstgøderne. Vi viser den enkelte eksempel herhenne.

Sum of Square Total	$(10-7,73)^2 + (12-7,73)^2 + (9-7,73)^2$
	$+(15-7,73)^2+(13-7,73)^2$
	$+(6-7,73)^2+(8-7,73)^2$
	$+(3-7,73)^2+(0-7,73)^2$
	$+(2-7,73)^2+(5-7,73)^2$
	$+(9-7,73)^2+(12-7,73)^2$
	$+(8-7,73)^2+(4-7,73)^2$
	= 264,9335
Sum of Square Between	$5 \cdot (11,8 - 7,73)^2 = 82,8245$
Sum of Square Between	$5 \cdot (3.8 - 7.73)^2 \approx 77,2245$
Sum of Square Between	$5 \cdot (7,6 - 7,73)^2 \approx 0,0845$
Sum of Total Square Between	82,8245 + 77,2245 + 0,0845 = 160,1335

- Nu skal vi udregne Sum Square Residual og dette er muligt ved at trække Summen af Square-Total fra Summen af Sum of Total Square Between

SS-Total - SS-Between	$264,9335 - 160,1335 \approx 104,8$
00 10141 00 001110011	201,7000 100,1000 101,0

- Nu skal vi udregne de adskillige ting som er vist i tabellen på Præsentationen.

X	Sum of Squares	d.f.	Mean	F-Ratio
Factor	SS-Between =	Antal gruppe - 1	Dividere Total	Dividere Mean
	160,1335	=> 3-1 = 2	Square Between	Faktor med Mean
			med 2	Residual
			160,1335	80,06675
			2	8,733333
			= 80,06675	≈ 9,167949
Residual	264,9335	14 - 2 = 12	Dividere SS-	
	– 160, 1335		Between Residual	
	≈ 104 , 8		med df-Residual	
			104,8	
			12	
			≈ 8,733333	
Total	SS-Total =	Antal dataværdier		
	264,9335	=> 15-1 = 14		

- Nu, hvor frihedsgraden er blevet fundet, skal vi derfor finde den kritiske værdi som er markeret med blå.

k-1, N-k	(3,89)

- Vi kan se, at selve F-Ratio er større end den Kritiske Værdi og derfor kan vi sige at det er følgende:
- F-Ratio > F-Tabel
- Fordi F-Ratio er Større end F-Tabel, kan vi afvise Null-Hypotesen, hvilket betyder at der er en forskel mellem middelværdier af de 3 Kunstgødninger.
- Derfor skal vi nu anvende LSD-Testen for at kunne finde ud af "specifikt", hvilken Kunstgødning adskiller sig fra den ene og om der er andre som ligner det samme.

F-Ratio > F-Tabel		LSD-Intervaller	
Kunstgødningerne	Middelværdi	Nedre Grænse	Øvre Grænse
Type 1	11,8	9,76	13,83
Type 2	3,8	1,76	5,83
Type 3	7,6	5,56	9,63
(95%,12)			

- Vi kan her til sidst konkludere, at der er en signifikant forskel mellem de 3 forskellige kunstgødningstyper. Vi kunne eksempelvis gennem LSD-Testen se, at Type 1 var den som adskilte sig mest fra Type 2 og 3, da den producerede flest æbler end Type og 3 i forhold til dets LSD-Interval.
- 2. We want to evaluate three different methods to lower the blood pressure of individuals that have been diagnosed with high blood pressure. Eighteen subjects are randomly assigned to three groups (6 per group): the first group takes medication, the second group exercises, and the third one follows a specific diet. After four weeks, the reduction in each person's blood pressure is recorded. Is there a significant difference among the reduction obtained from each of the three methods? If yes, which method was more effective?

Medication	Exercise	Diet
12	5	6
8	9	10
11	2	5
17	0	9
16	1	8
15	3	6

- Vi starter allerførst med at udregne Middelværdi for hver kolonne af Forsøg på Reducering af Blodtryk.

Summen á Medikament	12 + 8 + 11 + 17 + 16 + 15 = 79
Medikament	
Middelværdi	$\frac{79}{6}\approx 13,16667$

Summen á Træning	5+9+2+0+1+3=20
Middelværdi	$\frac{20}{6} = \frac{10}{3} \approx 3,333333$

Summen á Kost	6+10+5+9+8+0=38
Middelværdi	$\frac{38}{6} = \frac{19}{3} \approx 6,3333333$

- Nu skal vi til at udregne selve den totale middelværdi, som er vores "sum of mean" og det betyder at vi lægger alle middelværdierne sammen til en.

Summen af Forsøgernes Middelværdi	13, 16 + 3, 33 + 6, 33 = 22, 82
Totale Middelværdi af Forsøgerne	$\frac{22,82}{3} \approx 7,606667$

- Nu skal vi udregne summen af kvadraterne for alle Forsøg.
- Dette betyder, at vi tager den enkelte dataværdi og trækker det fra den totale middelværdi af kunstgøderne. Vi viser den enkelte eksempel herhenne.

Sum of Square Total	$(12-7,61)^2 + (8-7,61)^2 + (11-7,61)^2$
Sum of Square Total	
	$+(17-7,61)^2+(16-7,61)^2$
	$+(15-7,61)^2+(5-7,61)^2$
	$+(9-7.61)^2+(2-7.61)^2$
	$+(0-7,61)^2+(1-7,61)^2$
	$+(3-7,61)^2+(6-7,61)^2$
	$+(10-7,61)^2+(5-7,61)^2$
	$+(9-7.61)^2+(8-7.61)^2$
	$+(6-7,61)^2 = 426,9578$
Sum of Square Between	$6 \cdot (13,16 - 7,61)^2 = 184,815$
Sum of Square Between	$6 \cdot (3,33 - 7,61)^2 \approx 109,9104$
Sum of Square Between	$6 \cdot (7,33 - 7,61)^2 \approx 0,4704$
Sum of Total Square Between	$184,815 + 109,9104 + 0,4704 \approx 295,1958$

- Nu skal vi udregne Sum Square Residual og dette er muligt ved at trække Summen af Square-Total fra Summen af Sum of Total Square Between

SS-Total - SS-Between	426,9578 - 295,1958 = 131,762

- Nu skal vi udregne de adskillige ting som er vist i tabellen på Præsentationen.

Χ	Sum of Squares	d.f.	Mean	F-Ratio

Factor	SS-Between =	Antal gruppe - 1	Dividere Total	Dividere Mean
	295,1958	=> 3-1 = 2	Square Between	Faktor med Mean
			med 2	Residual
			295,1958	147,5979
			2	8,235
			= 147,5979	≈ 17,92324
Residual	426,9578	18 - 2 = 16	Dividere SS-	
	- 295, 1958		Between Residual	
	= 131, 762		med df-Residual	
			131,76	
			$\frac{131,76}{16} = 8,235$	
Total	SS-Total =	Antal dataværdier		
	426,9589	=> 18-1 = 17		

- Nu, hvor frihedsgraden er blevet fundet, skal vi derfor finde den kritiske værdi som er markeret med blå.

- Vi kan se, at selve F-Ratio er større end den Kritiske Værdi og derfor kan vi sige at det er følgende:
- F-Ratio > F-Tabel
- Fordi F-Ratio er Større end F-Tabel, kan vi afvise Null-Hypotesen, hvilket betyder at der er en forskel mellem middelværdier af de 3 Kunstgødninger.
- Derfor skal vi nu anvende LSD-Testen for at kunne finde ud af "specifikt", hvilken Forsøg adskiller sig fra den ene og om der er andre som ligner det samme.

F-Ratio > F-Tabel			LSD-Intervaller
Forsøg	Middelværdi	Middelværdi Nedre Grænse	
Medikament	13,16	11,00	15,31
Træning	3,33	1,17	5,48
Kost 6,33 4,17 8,48			
(95%,12)			

Vi kan her til sidst konkludere, at der er en signifikant forskel mellem de 3 forsøger til at reducere blodtrykket. I tilfældet, kan det ses at Medicin/Medikamentet er det mest effektive, da det har det højeste middelværdi sammenlignet med de andre metoder. Vi kan se, at der er ingen effektivitet i brug af metoder som Træning og Kost, da de resulterer den samme effektivitet. Derfor kan det siges, at Medikament er noget anderledes.

3. In the table below, there are randomly selected scores for eight amateur basketball teams in each of five Danish regions, for a particular weekend. Is there sufficient evidence to support that there is a difference in mean scores by region? If yes, which region/s got the highest scores and which one the lowest?

Region	Region	Region	Region	Region
Hovedstad	den Sjælland S	Syddanmark N	1idtjylland Nor	djylland
68	78	89	62	57
75	79	87	74	65
95	65	75	71	78
85	67	65	70	88
84	60	84	72	67
88	79	92	72	77
85	57	84	64	72
75	74	72	75	69

- Vi starter allerførst med at udregne Middelværdi for hver kolonne af de danske regioner.

Summen á Hovedstad	68 + 75 + 95 + 85 + 84 + 88 + 85 + 75 = 655
Middelværdi	$\frac{655}{8} = 81,875$

Summen á Sjælland	78 + 79 + 65 + 67 + 60 + 79 + 57 + 74 = 559
Middelværdi	$\frac{559}{8} = 69,875$

Summen á	89 + 87 + 75 + 65 + 84 + 92 + 84 + 72 = 648
Syddanmark	
Middelværdi	$\frac{648}{3} = 81$
	$\frac{8}{8} = 81$

Summen á Midtjylland	62 + 74 + 71 + 70 + 72 + 72 + 64 + 75 = 560
Middelværdi	$\frac{560}{8} = 70$

Summen á Nordjylland	57 + 65 + 78 + 88 + 67 + 77 + 72 + 69 = 573
Middelværdi	$\frac{573}{8} = 71,625$

- Nu skal vi til at udregne selve den totale middelværdi, som er vores "sum of mean" og det betyder at vi lægger alle middelværdierne sammen til en.

Summen af Regionernes Middelværdi	81,875 + 69,875 + 81 + 70 + 71,625
	= 374, 375
Totale Middelværdi af Regionerne	374,375
	$\frac{3.1373}{5} = 74,875$

- Nu skal vi udregne summen af kvadraterne for alle Forsøg.
- Dette betyder, at vi tager den enkelte dataværdi og trækker det fra den totale middelværdi af kunstgøderne. Vi viser den enkelte eksempel herhenne. 74,875

Sum of Square Total	$(68 - 74,875)^2 + (75 - 74,875)^2$
	$+(95-74,875)^2$
	$+(85-74,875)^2$
	$+(84-74,875)^2$
	$+(88-74,875)^2$
	$+(85-74,875)^2$
	$+(75-74,875)^2$
	$+(78-74,875)^2$
	$+(79-74,875)^2$
	$+(65-74,875)^{2}$
	$+(67-74,875)^2$
	$+(60-74,875)^2$
	$+(79-74,875)^2$
	$+(57-74,875)^2$
	$+(74-74,875)^2$
	$+(89-74,875)^2$
	$+(87-74,875)^2$
	$+(75-74,875)^2$
	$+(65-74,875)^2$
	$+(84-74,875)^2$
	$+ (92 - 74,875)^2 + (84 - 74,875)^2$
	$+(34-74,875)^2$
	$+(62-74,875)^2$
	$+(74-74,875)^2$
	$+(71-74,875)^2$
	$+(70-74,875)^2$
	$+(72-74,875)^2$
	$+(72-74,875)^2$
	$+(64-74,875)^2$
	$+(75-74,875)^2$
	$+(57-74,875)^2$
	$+(65-74,875)^2$
	$+(78-74,875)^2$
	$+(88-74,875)^2$
	$+(67-74,875)^2$
	$+(77-74,875)^2$
	$+(72-74,875)^2$
Curry of Courses Batus and	$+ (69 - 74,875)^2 = 3618,375$
Sum of Square Between	$8 \cdot (81,875 - 74,875)^2 = 392$
Sum of Square Between	$8 \cdot (74,875 - 69,875)^2 = 200$
Sum of Square Between	$8 \cdot (81 - 74,875)^2 = 300,125$

Sum of Square Between	$8 \cdot (70 - 74,875)^2 = 190,125$	
Sum of Square Between	$8 \cdot (71,625 - 74,875)^2 = 84,5$	
Sum of Total Square Between	392 + 200 + 300,125 + 190,125 + 84,5	
	= 1166,75	

- Nu skal vi udregne Sum Square Residual og dette er muligt ved at trække Summen af Square-Total fra Summen af Sum of Total Square Between

SS-Total - SS-Between	3618,375 - 1166,75 = 2451,625
33-10tal - 33-between	3010,373 - 1100,73 - 2431,023

- Nu skal vi udregne de adskillige ting som er vist i tabellen på Præsentationen.

X	Sum of Squares	d.f.	Mean	F-Ratio
Factor	SS-Between =	Antal gruppe - 1	Dividere Total	Dividere Mean
	1166,75	=> 5-1 = 4	Square Between	Faktor med Mean
			med 2	Residual
			1166,75	291,68
			4	70
			= 291,6875	≈ 4,166857
Residual	3618,375	40 - 4 = 36	Dividere SS-	
	– 1166, 75		Between Residual	
	= 2451,625		med df-Residual	
			2451,625	
			35	
			≈ 70,04643	
Total	SS-Total =	Antal dataværdier		
	3618,375	=> 40-1 = 39		

- Nu, hvor frihedsgraden er blevet fundet, skal vi derfor finde den kritiske værdi som er markeret med blå.

- Vi kan se, at selve F-Ratio er større end den Kritiske Værdi og derfor kan vi sige at det er følgende:
- F-Ratio > F-Tabel
- Fordi F-Ratio er Større end F-Tabel, kan vi afvise Null-Hypotesen, hvilket betyder at der er en forskel mellem middelværdier af de 3 Kunstgødninger.
- Derfor skal vi nu anvende LSD-Testen for at kunne finde ud af "specifikt", hvilken Region adskiller sig fra den ene i forhold til Score.

	F-Ratio > F-Tabel		LSD-Intervaller
Score-Områder	Middelværdi	Nedre Grænse	Øvre Grænse
Hovedstaden	81,875	$81,875 - \left(\frac{\sqrt[2]{2}}{2}\right) \cdot 2,63$ $\cdot \frac{\sqrt[2]{70,04}}{18}$ $= 81,875 - \frac{2,445605}{2^{\frac{3}{2}}}$	$81,875 + \left(\frac{\sqrt[2]{2}}{2}\right) \cdot 2,63$ $\cdot \frac{\sqrt[2]{70,04}}{18}$ $= 81,875 + \frac{2,445605}{2^{\frac{3}{2}}}$
Sjælland	69,875	$\approx 81,01035$ $69,875 - \left(\frac{\sqrt[2]{2}}{2}\right) \cdot 2,63$	≈ 82.73965
		$ \begin{array}{c} \cdot \frac{\sqrt[2]{70,04}}{18} \\ = 69,875 - \frac{2,445605}{2^{\frac{3}{2}}} \\ \approx 69,01035 \end{array} $	$\frac{\sqrt[2]{70,04}}{18}$ $= 81,875 + \frac{2,445605}{2^{\frac{3}{2}}}$ $\approx 82,73965$
Syddanmark	81	$81 - \left(\frac{\sqrt[2]{2}}{2}\right) \cdot 2,63$ $\cdot \frac{\sqrt[2]{70,04}}{18}$ $= -\frac{2,445605}{2^{\frac{3}{2}}} + 81$	$81 + \left(\frac{\sqrt[2]{2}}{2}\right) \cdot 2,63$ $\cdot \frac{\sqrt[2]{70,04}}{18}$ $= \frac{2,445605}{2^{\frac{3}{2}}} + 81$
Midtjylland	70	$\approx 80,13535$ $70 - \left(\frac{\sqrt[2]{2}}{2}\right) \cdot 2,63$ $\cdot \frac{\sqrt[2]{70,04}}{18}$ $= -\frac{2,445605}{2^{\frac{3}{2}}} + 70$	$\approx 81,86465$ $70 + \left(\frac{\sqrt[2]{2}}{2}\right) \cdot 2,63$ $\cdot \frac{\sqrt[2]{70,04}}{18}$ $= \frac{2,445605}{2^{\frac{3}{2}}} + 70$
Nordjylland	71,625	$\approx 69,13\overline{5}35$ $71,625 - \left(\frac{\sqrt[2]{2}}{2}\right) \cdot 2,63$ $\cdot \frac{\sqrt[2]{70,04}}{18}$ $= 71,625 - \frac{2,445605}{2^{\frac{3}{2}}}$ $\approx 70,76035$	$\approx 70,86465$ $71,625 + \left(\frac{\sqrt[2]{2}}{2}\right) \cdot 2,63$ $\cdot \frac{\sqrt[2]{70,04}}{18}$ $= 71,625 + \frac{2,445605}{2^{\frac{3}{2}}}$ $\approx 72,48965$
(95%,12)			

Vi kan her til sidst se, at selve Region Hovedstad og Region Syddanmark er dem som har den højeste interval hvilket gør at de ligger øver i listen i forhold til Scoring. Hvorimod Region Sjælland ligger også godt øverst. Kigger man over imod Region Midtjylland og Nordjylland har de scoret mindst. Vi kan dermed se, at Middelværdierne for alle Regionerne er anderledes, som betyder at null-hypotesen er afvist men

