CMPE 320: Probability, Statistics, and Random Processes

Lecture 3: Conditional probability

Spring 2018

Seung-Jun Kim

Conditional probability

- Conditional probability characterizes the likelihood of an outcome based on related partial information
- For example, in an experiment with two rolls of a die given that the sum of two rolls is 9, how likely is it that the first roll is 6?

partial information outcome of interest

 More generally, given that the outcome is within event B what is the likelihood that the outcome also belongs to event A?

Pertiel into P(A|B) outcome of interest

Motivating example

- For an experiment of rolling a die
- Given that the outcome is even $\beta = \{2, 4, 6\}$
- A= 127 • What is the likelihood that the outcome is 2? Equally likely outcome > 3 P(A(B) = non her of elements in A (B) nombers of elements in B

Definition of conditional probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{1}{6}$$

Is it a valid probability law? (That is, does it satisfy the axioms?)

1) Honnegativity:
$$P(A|B) = \frac{P(A|B)}{P(B)} \ge 0$$

2) Hormalization: $P(\Omega|B) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$

1) Nonnegativity:
$$P(A|B) = \frac{P(A \cap B)}{P(B)} \ge 0$$

2) Normalization: $P(\Omega|B) = \frac{P(\Omega \cap B)}{P(\Omega \cap B)} = \frac{P(B)}{P(B)} = 1$

3) Additivity: For disjoint A_1 and A_2 disjoint A_2 disjoint A_1 and A_2 disjoint A_2 A_3 A_4 A_4 A_5 A_5 A_5 A_6 A_6 A_7 A_8 A_8

Another interpretation

•
$$P(B|B) = \frac{P(B)}{P(B)} = 1 \Leftrightarrow P(\Omega) = 1$$

4-sided die

- A 4-sided die was rolled twice
- A = {max(X,Y) = m}, B = {min(X,Y) = 2} (m=1,2,3,4) Egnely likely outcomes > P(AIB) = # (ANB) # (B)

$$m=1$$
; An $B=\emptyset$

$$M = 1$$
: An $B = \emptyset$ $\Rightarrow P(A(B) = 0)$
 $M = 2$: An $B = \{(2, 2)\} \Rightarrow P(A(B) = \frac{1}{5}$
 $M = 3$: An $B = \{(2, 3), (3, 2)\} \Rightarrow P(A(B) = \frac{2}{5}$

Using conditional probability for modeling

•
$$P(A \cap B) = P(B) P(A|B)$$
 \Leftarrow $P(A|B) = P(B)$

Example 1.9. Radar Detection. If an aircraft is present in a certain area, a radar detects it and generates an alarm signal with probability 0.99. If an aircraft is not present, the radar generates a (false) alarm, with probability 0.10. We assume that an aircraft is present with probability 0.05. What is the probability of no aircraft presence and a false alarm? What is the probability of aircraft presence and no detection?

A={direrast is presenty B=[radar generates an alarmy

Generalization

$$P(A_{1} \cap A_{2}) = P(A_{1}) P(A_{2} | A_{1}) = P(A_{2}) P(A_{1} | A_{2})$$

$$P(A_{1} \cap A_{2} \cap A_{3}) = P(A_{1}) P(A_{2} \cap A_{3} | A_{1})$$

$$= P(A_{1}) P(A_{2} | A_{1}) P(A_{3} | A_{2} \cap A_{3})$$

$$P(\bigcap_{i=1}^{n} A_{i}) = P(A_{1}) P(A_{2} | A_{1}) P(A_{3} | A_{1} \cap A_{2})$$

$$P(A_{4} | A_{1} \cap A_{2} \cap A_{3})$$

$$P(A_{n} | A_{n} \cap A_{n-2} \cap \cdots \cap A_{n})$$

Example 1.11. A class consisting of 4 graduate and 12 undergraduate students is randomly divided into 4 groups of 4. What is the probability that each group includes a graduate student?

1		