Stage 3

Dan Howe and Keith Funkhouser CS838: Data Science April 2, 2017

- Describe the type of entity you want to match, briefly describe the two tables (e.g., where did you obtain these tables), list the number of tuples per table.
 - We used the provided Silicon Valley dataset. We chose to match the 'songs' table (downsampled to 3038 tuples) and the 'tracks' table (downsampled to 3500 tuples).
- Describe the blocker that you use and list the number of tuple pairs in the candidate set obtained after the blocking step.
 - We used the overlap blocker on both song name and artist name, with a
 minimum overlap of one word. That successfully reduced the number of
 candidates by approximately two orders of magnitude, after which we used a rule
 based blocker based on the Jaccard similarity of the song title. This reduced the
 number of tuple pairs to 543.
- List the number of tuple pairs in the sample G that you have labeled.
 - We eliminated 10 tuple pairs due to missing data. That left us with 533 tuple pairs, all of which we labeled.
- For each of the six learning methods provided in Magellan (Decision Tree, Random Forest, SVM, Naive Bayes, Logistic Regression, Linear Regression), report the precision, recall, and F-1 that you obtain when you perform cross validation for the first time for these methods on I.

0

Method	Precision	Recall	F1
Decision Tree	0.886904	0.885568	0.884977
Random Forest	0.913180	0.942320	0.926725
SVM	0.789615	0.984525	0.875998
Linear Regression	0.920335	0.937755	0.928635
Logistic Regression	0.926929	0.948289	0.937370
Naive Bayes	0.883408	0.653312	0.748647

- Report which learning based matcher you selected after that cross validation.
 - We selected logistic regression, based on it having the highest average precision score.

- Report all debugging iterations and cross validation iterations that you performed. For each
 debugging iteration, report (a) what is the matcher that you are trying to debug, and its
 precision/recall/F-1, (b) what kind of problems you found, and what you did to fix them, (c) the
 final precision/recall/F-1 that you reached. For each cross validation iteration, report (a) what
 matchers were you trying to evaluate using the cross validation, and (b) precision/recall/F-1 of
 those.
 - No debugging iterations were performed.
- Report the final best matcher that you selected, and its precision/recall/F-1.
 - (See above)
- It is important to note that all precision/recall/F-1 numbers asked for in the aboves are supposed to be numbers obtained via CV on the set I. Do not yet use set J.
- Now report these numbers:

• For each of the six learning methods, train the matcher based on that method on I, then report its precision/recall/F-1 on J.

Method	Precision	Recall	F1
Decision Tree	90.16%	94.02%	92.05%
Random Forest	95.73%	95.73%	95.73%
SVM	81.69%	99.15%	89.58%
Linear Regression	96.64%	98.29%	97.46%
Naive Bayes	97.22%	59.83%	74.07%

For the final best matcher Y selected, train it on I, then report its precision/recall/F-1 on J.

Logistic Regression	95.76%	96.58%	96.17%	
---------------------	--------	--------	--------	--

• Report approximate time estimates: (a) to do the blocking, (b) to label the data, (c) to find the best matcher.

Blocking: 3 hoursLabel data: 1 hourBest matcher: 2 hours

- Provide a discussion on why you didn't reach higher recall, and what you can do in the future to obtain higher recall.
 - To obtain higher recall, we should reduce our false negatives. There were only 4 false negatives produced by the logistic regression model. The major causes were: misspellings in data, short artist names which caused the overlap between artist (in the song table) and list of artists (in the tracks table) to be small, and a mislabeling by us.