Algoritmos de pesquisa informada

Capítulo 4, Secções 1–2

Sumário

- Pesquisa o melhor primeiro (Best-first search)
- ♦ Pesquisa A* (A* search)
- Heurísticas

Pesquisa em árvores

```
function Tree-Search (problem, fringe) returns a solution, or failure
   fringe \leftarrow Insert(Make-Node(Initial-State[problem]), fringe)
   loop do
       if fringe is empty then return failure
       node \leftarrow \text{Remove-Front}(fringe)
       if GOAL-TEST[problem] applied to STATE(node) succeeds return node
       fringe \leftarrow InsertAll(Expand(node, problem), fringe)
```

Define-se uma estratégia escolhendo a ordem de expansão dos nós

Pesquisa o melhor primeiro (Best-first search)

```
Ideia: usar um função de avaliação para cada nó – estimando a "adequação" ( "desirability")
```

⇒ Expandir o nó mais adequado

Implementação:

fringe é uma fila ordenada por ordem decrescente de adequação dos nós

Casos especiais:

```
pesquisa ansiosa ou gananciosa (greedy search) pesquisa A* (A* search)
```

Roménia com custo em km

Strangin-fine distance	
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Pesquisa ansiosa — Greedy search

Função de avaliação h(n) (heurística) = estimativa do custo de n ao objectivo mais próximo

E.g., $h_{\rm SLD}(n) = {\sf distancia\ em\ linha\ recta\ de\ } n$ a Bucharest

A pesquisa ansiosa expande o nó que aparenta estar mais próximo do objectivo

Completo??

<u>Completo</u>?? Não— pode ficar preso em ciclos, e.g., com Oradea como objectivo,

 $\mathsf{lasi} \to \mathsf{Neamt} \to \mathsf{lasi} \to \mathsf{Neamt} \to$

Completo em espaços finitos com verificação de repetição de estados

Tempo??

<u>Completo</u>?? Não— pode ficar preso em ciclos, e.g., com Oradea como objectivo,

 $\mathsf{lasi} \to \mathsf{Neamt} \to \mathsf{lasi} \to \mathsf{Neamt} \to$

Completo em espaços finitos com verificação de repetição de estados

Tempo?? $O(b^m)$, mas uma boa heurística pode melhorar bastante o tempo

Espaço??

<u>Completo</u>?? Não— pode ficar preso em ciclos, e.g., com Oradea como objectivo,

 $\mathsf{lasi} \to \mathsf{Neamt} \to \mathsf{lasi} \to \mathsf{Neamt} \to$

Completo em espaços finitos com verificação de repetição de estados

Tempo?? $O(b^m)$, mas uma boa heurística pode melhorar bastante o tempo

Espaço?? $O(b^m)$ — guarda todos os nós em memória

Óptima??

<u>Completo</u>?? Não— pode ficar preso em ciclos, e.g., com Oradea como objectivo,

 $\mathsf{lasi} \to \mathsf{Neamt} \to \mathsf{lasi} \to \mathsf{Neamt} \to$

Completo em espaços finitos com verificação de repetição de estados

Tempo?? $O(b^m)$, mas uma boa heurística pode melhorar bastante o tempo

Espaço?? $O(b^m)$ — guarda todos os nós em memória

Óptima?? Não

Pesquisa A*

Ideia: evitar expandir os caminhos caros

Função de avaliação f(n) = g(n) + h(n)

g(n) = custo at'e atingir n

h(n) = custo estimado para atingir o objectivo a partir de n

f(n) = custo total estimado do caminho que passa por n até ao objectivo

A pesquisa A* usa uma heurística admissível

i.e., $h(n) \leq h^*(n)$ onde $h^*(n)$ é o **verdadeiro** custo de n.

(Também é necessário que $h(n) \ge 0$, com h(G) = 0 para qualquer objectivo G.)

E.g., $h_{\rm SLD}(n)$ nunca sobre-estima a distância da estrada.

Teorema: a pesquisa A^* é óptima.

Optimalidade do A* (prova)

Suponha que algum objectivo sub-óptimo G_2 foi gerado e está na fila. Seja n um nó não expandido num caminho mais curto para o objectivo óptimo G_1 .

$$f(G_2) = g(G_2)$$
 pois $h(G_2) = 0$
> $g(G_1)$ pois G_2 e' subo'ptimo
 $\geq f(n)$ pois h e' admissivel

Como $f(G_2) > f(n)$, A* nunca selecciona G_2 para expandir

Optimalidade do A* (mais útil)

Lema: A^* expande os nós por ordem crescente de f valor *

Gradualmente adiciona "f-contornos" de nós (cf. a pesquisa em largura adiciona camadas)

O contorno i tem todos os nós com $f = f_i$, onde $f_i < f_{i+1}$

Completo??

 ${\color{red} \underline{\bf Completo}??} \ {\rm Sim, \ a \ n\~ao \ ser \ infinitos \ n\'os \ com} \ f \leq f(G)$

Tempo??

Propriedades do A*

 $\underline{\text{Completo}??} \text{ Sim, a n\~ao ser que existam infinitos n\'os com } f \leq f(G)$

<u>Tempo</u>?? Exponencial Exponencial em [erro relativo $h \times \text{comprimento de soln.}]$

Espaço??

Propriedades do A^*

 ${\color{red} \underline{\bf Completo}??} \ {\rm Sim, \ a \ n\~ao \ ser \ que \ existam \ infinitos \ n\'os \ com \ } f \leq f(G)$

<u>Tempo</u>?? Exponencial Exponencial em [erro relativo $h \times \text{comprimento de soln.}]$

Espaço?? mantém todos os nós em memória

Óptima??

Propriedades do A^*

 $\underline{\text{Completo}??} \text{ Sim, a n\~ao ser que existam infinitos n\'os com } f \leq f(G)$

<u>Tempo??</u> Exponencial Exponencial em [erro relativo $h \times comprimento de soln.]$

Espaço?? mantém todos os nós em memória

Óptima?? Sim—não expande f_{i+1} até f_i terminar

 A^* expande todos os nós com $f(n) < C^*$

 A^* expande alguns nós com $f(n) = C^*$

 A^* não expande nós com $f(n) > C^*$

Prova do lema: Consistência

Uma heurística é consistente se

$$h(n) \le c(n, a, n') + h(n')$$

Se h é consistente, temos

$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n, a, n') + h(n')$$

$$\geq g(n) + h(n)$$

$$= f(n)$$

I.e., f(n) é não decrescente ao longo do caminho.

Heurística Admissível

E.g., para o 8-puzzle:

 $h_1(n) =$ numero de peças mal colocadas

 $h_2(n) = \text{total da distância de Manhattan}$

(i.e., numero de quadrados até ao local certo de cada peça)

$$\frac{h_1(S) = ??}{h_2(S) = ??}$$

Heurística Admissível

E.g., para o 8-puzzle:

 $h_1(n) =$ numero de peças mal colocadas

 $h_2(n) = \text{total da distância de Manhattan}$

(i.e., numero de quadrados até ao local certo de cada peça)

$$\frac{h_1(S)}{h_2(S)}$$
 = ?? 6 $\frac{h_2(S)}{h_2(S)}$ = ?? 4+0+3+3+1+0+2+1 = 14

Dominância

Se $h_2(n) \ge h_1(n)$ para todo o n (ambas são admissíveis) então h_2 domina h_1 e é melhor para a pesquisa

Custos de pesquisas:

$$d=14$$
 IDS $=$ 3,473,941 nós
$$\mathsf{A}^*(h_1)=539 \text{ nós}$$

$$\mathsf{A}^*(h_2)=113 \text{ nós}$$

$$d=24$$
 IDS \approx 54,000,000,000 nós
$$\mathsf{A}^*(h_1)=39,135 \text{ nós}$$

$$\mathsf{A}^*(h_2)=1,641 \text{ nós}$$

Dadas duas heurísticas admissíveis h_a , h_b ,

$$h(n) = \max(h_a(n), h_b(n))$$

também admissível e domina h_a , h_b

Problemas simplificados

Podem-se derivar heurísticas admissíveis do custo de soluções exactas de versões simplificadas do problema

Se as regras do 8-puzzle fossem simplificadas de forma a que uma peça se possa mover para **qualquer lugar**, então $h_1(n)$ é o custo da solução mais curta desta simplificação

Se as regras forem simplificadas de forma a que uma peça se possa mover para \mathbf{qq} casa adjacente, então $h_2(n)$ é o custo da solução mais curta desta simplificação

Importante: O custo da solução óptima de um problema simplificado não é maior que o custo da solução óptima do problema real.

Problemas simplificados cont.

O problema do caixeiro viajante (travelling salesperson problem, TSP) Encontrar o caminho mais curto que passa por todas as cidades uma só vez

Árvore mínima que cobre todos os pontos Minimum spanning tree pode ser calculada em ${\cal O}(n^2)$

e é um limite inferior da menor volta (aberta)

Resumo

As funções heurísticas estimam o custo dos caminhos mais curtos

Uma boa heurística pode reduzir bastante o custo da pesquisa.

O algoritmo Ansioso melhor primeiro (Greedy best-first search) expande o menor h

– é incompleto e nem sempre óptimo

A pesquisa A^* expande o menor g+h

– é completo e óptimo

Heurísticas admissíveis podem ser obtidas a partir de soluções exactas para o problema simplificado