DM547 øvelsestimer 27-09-19

Jonas Eriksen

28. september 2019

Antal fremmødte:

Forklar eksempel 10 på s. 344

Eksemplet viser, hvordan man kan bruge et induktionsbevis til at vise, at en mængde S med |S| = n har 2^n delmængder.

I basistrinnet vises det, hvor mange delmængder den tomme mængde \emptyset har, fordi den tomme mængde er mængden med den mindst mulige kardinalitet, nemlig 0. Den har 1 delmængde (definition), hvorfor det er sandt at en mængde med 0 elementer har $2^0 = 1$ delmængder.

Induktionsantagelsen er, at en mængde $S \mod |S| = k$ har 2^k delmængder.

I induktionstrinnet bliver det vist, at det følger af induktionsantagelsen, at en mængde med k+1 elementer har 2^{k+1} delmængder. Dette bliver gjort ved at definere en ny mængde $T=S\cup\{a\}$, hvor $S=T-\{a\}$. D.v.s. at den eneste forskel på T og S er at T har ét ekstra element, nemlig a (så $S\subset T$). Så |T|=|S|+1=k+1.

Derefter bliver induktionsantagelsen taget i brug til at afgøre, hvor mange delmængder T har. Her bemærkes det, at for enhver delmængde X af S, har T præcis to delmængder, nemlig X og $X \cup \{a\}$ – altså én delmængde som er den samme som for S og én delmængde der er delmængden for S forenet med elementet a. Og da vi ved at S har S0 delmængder fra induktionsantagelsen, så må S1 have S2 delmængder.

Opgave 2.1.2

Brug mængdebyggernotation til at beskrive nedenstående mængder.

a) {0, 3, 6, 9, 12}

Fx $\{3x | x \in \mathbb{N}, x \le 4\}$.

b) $\{-3, -2, -1, 0, 1, 2, 3\}$

 $\operatorname{Fx} \{ x \in \mathbb{Z} | |x| \le 3 \}.$

Opgave 2.1.7

Afgør hvorvidt de følgende mængde-par er lig med hinanden.

a) $\{1, 3, 3, 3, 5, 5, 5, 5, 5\}$ og $\{5, 3, 1\}$

Lig med hinanden.

b) $\{\{1\}\}\$ og $\{1,\{1\}\}.$

Ikke lig med hinanden.

c) \emptyset og $\{\emptyset\}$

Ikke lig med hinanden.

Opgave 2.1.9

Er 2 et element i mængden?

a) $\{x \in \mathbb{R} | x \text{ er et heltal større end } 1\}.$

Ja.

b) $\{x \in \mathbb{R} | x \text{ er kvadratet af et heltal} \}.$

Nej.

c) $\{2,\{2\}\}.$

Ja.

d) {{2}, {{2}}}.

Nej.

Nej.

Nej.

Opgave 2.1.13

Afgør om hvert af de nedenstående udsagn er sandt eller falsk.

a)
$$x \in \{x\}.$$

Sandt.

b)
$$\{x\} \subseteq \{x\}$$
.

Sandt. (Se sætning 2.1.1, s. 126).

c)
$$\{x\} \in \{x\}$$
.

Falsk.

d)
$$\{x\} \in \{\{x\}\}.$$

Sandt.

e)
$$\emptyset \subseteq \{x\}$$
.

Sandt. (Se sætning 2.1.1, s. 126).

f)
$$\emptyset \in \{x\}$$
.

Falsk.

Opgave 2.1.21

Hvad er kardinaliteten af hvert af de følgende mængder?

- a) $\{a\}$.
- 1.
- **b)** $\{\{a\}\}.$
- 1.
- **c)** $\{a, \{a\}\}.$
- 2.
- **d)** $\{a, \{a\}, \{a, \{a\}\}\}\$.
- 3.

Opgave 2.1.23

Find potensmængden af hver af de nedenstående mængder, hvor a og b er distinkte elementer.

- **a**) {*a*}
- $\mathcal{P}(\{a\}) = \{\{a\}, \emptyset\}.$
- **b)** $\{a, b\}$
- $\mathcal{P}(\{a,b\}) = \{\{a\}, \{b\}, \{a,b\}, \emptyset\}.$
- c) $\{\emptyset, \{\emptyset\}\}$
- $\mathcal{P}(\{\emptyset,\{\emptyset\}\})=\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\},\{\{\emptyset\}\}\}.$

Opgave 2.1.29

Lad $A = \{a, b, c, d\}$ og $B = \{y, z\}$. Find:

- a) $A \times B$.
- $A \times B = \{(a, y), (a, z), (b, y), (b, z), (c, y), (c, z)(d, y), (d, z)\}.$
- **b)** $B \times A$

$$B\times A=\{(y,a),(y,b),(y,c),(y,d),(z,a),(z,b),(z,c),(z,d)\}.$$

Eksamen februar 2015, opgave 1

I det følgende lader vi $U=\{1,2,3,\dots,15\}$ være universet. Betragt de to mængder

$$A = \{2n | n \in S\}$$
$$B = \{3n + 2 | n \in S\}$$

hvor $S = \{1, 2, 3, 4\}$. Angiv samtlige elementer i hver af følgende mængder.

a) *A*

$$2 \cdot 1 = 2$$

$$2 \cdot 2 = 4$$

$$2 \cdot 3 = 6$$

$$2 \cdot 4 = 8$$

Derfor er svaret $\{2,4,6,8\}$.

b) *B*

$$3 \cdot 1 + 2 = 5$$

$$3 \cdot 2 + 2 = 8$$

$$3 \cdot 3 + 2 = 11$$

$$3 \cdot 4 + 2 = 14$$

Derfor er svaret $\{5, 8, 11, 14\}$.

c) $A \cap B$

 $\{8\}.$

d)
$$A \cup B$$

$${2,4,6,8,5,11,14}.$$

e)
$$A - B$$

$$\{2,4,6\}.$$

f)
$$\overline{A}$$

$$\{1, 3, 5, 7, 9, 10, 11, 12, 13, 14, 15\}.$$

Eksamen DM547 januar 2015, opgave 4

Betragt mængden $A = \{2n+1 | n \in \mathbb{Z}\}$. Hvilke af nedenstående mængder er lig med A?

$$S_{1} = \{1, 2, 4, 8, \dots\}$$

$$S_{2} = \{2, 3, 5, 9, \dots\}$$

$$S_{3} = \{1, 3, 5, 7, \dots\}$$

$$S_{4} = \{\dots, -3, -1, 1, 3, \dots\}$$

$$S_{5} = \{n \in \mathbb{Z} | \exists k \in \mathbb{Z} : n = 2k + 1\}$$

$$S_{6} = \{n \in \mathbb{Z} | \exists ! k \in \mathbb{Z} : n = 2k + 1\}$$

$$S_{7} = \{n \in \mathbb{Z} | \forall k \in \mathbb{Z} : n \neq 2k\}$$

$$S_{8} = \{n \in \mathbb{Z} | \exists k \in \mathbb{Z} : 2n + 1 = k\}$$

Vi starter med at bemærke, at A er mængden af alle ulige heltal (husk tilbage på definitionen af ulige heltal, d.v.s. Def. 1.7.1, s. 86).

 $S_1 \neq A$, fordi S_1 indeholder lige heltal, som fx 2, 4, 5, 8.

 $S_2 \neq A$, fordi S_2 inderholder et lige tal, nemlig 2.

 $S_3 \neq A$, fordi S_3 kun indeholder de positive ulige, positive heltal, mens A inderholder alle ulige heltal.

 $S_4 = A$, fordi S_4 er mængden af alle ulige heltal og A er mængden af alle ulige heltal.

 $S_5 = A$, fordi S_5 er mængden af alle ulige heltal (husk igen tilbage på Def 1.7.1).

 $S_6=A,$ fordi S_6 er mængden af alle ulige heltal – også selvom der bruges en unikheds-kvantor.

 $S_7 = A$, fordi S_7 er mængden af alle heltal der ikke er lige, d.v.s. mængden af heltal, der er ulige.

 $S_8 \neq A$, fordi S_8 er mængden af alle heltal.