MLL 100

Introduction to Materials Science and Engineering

Lecture-18 (February 22, 2022)

Dr. Sangeeta Santra (<u>ssantra@mse.iitd.ac.in</u>)

P-Q forms an eutectic phase diagram with an eutectic composition of 41.9 wt.% Q at an eutectic temperature of 200 °C. The two terminal solid solutions, α and β have respective compositions of 6.3 wt.% Q and 96.7 wt.% Q at 200 °C. What percentage of the β phase (in %) constitutes the eutectic mixture just at a temperature below 200 °C for an alloy with a composition of 75.0 wt.% Q? Write your answer up to two decimal places and in %.

What have we learnt in Lecture-17?

- ☐ Nucleation and growth rate
- ☐ Transformation rate
- Transformation curve: Start of the curve and nose of the curve

Fri (END)
Girlfri (END)
Boyfri (END)
Bestfri (END)

Everything has an end.

Transformation rate

Transformation rate

Avrami Equation

$$f \to \frac{\text{volume fraction of } \alpha \text{ at t}}{\text{final volume of } \alpha}$$

$$L \rightarrow \alpha$$

 $f \rightarrow volume\ fraction\ of\ \alpha$

Fraction of transformed phases: y = 1

$$y = 1 - \exp(-kt^n)$$

Log (Time (t))

(Fine solid grains)

Iron (Fe)-based alloy containing C < 2.14 wt.%)

- ☐ Broad classification of steel based on the carbon content:
- Eutectoid steel (C ~ 0.8 wt.% C)
- Hypo-eutectoid steel (C < 0.8 wt.% C)
- Hyper-eutectoid steel (C > 0.8 wt.% C)

☐ What about the alloy with C > 2.14 wt.% C?

Cast iron

TTT diagram for Eutectoid steel (0.8 wt.% C)

Microstructure of Pearlite

Coarse pearlite (Slow cooling)

Fine pearlite (Fast cooling)

'Pearlite' is not a phase, rather a mixture of phases.

Coarse pearlite → Annealing → Furnace cooling

Fine pearlite → Normalizing → Air cooling

Austenite to pearlite transformation mechanism

Heterogeneous nucleation at grain boundaries of austenite

Heterogeneous nucleation of ferrite at grain boundaries of austenite and in the vicinity of cementite nucleus

Interlamellar

spacing (λ)

(iv)

Ferrite and cementite phases grow inward of the austenite grain

How does the interlamellar spacing vary with temperature?

- Interlamellar spacing is a function of temperature of transformation.
- Lower $T \rightarrow$ nucleation rate higher \rightarrow finer interlamellar spacing \rightarrow higher hardness/strength

Bainite

Short needles of Fe₃C embedded in plates of ferrite

C diffuses only to short distances

Austempering

QUENCHING

 α' : martensite (M)

Extremely rapid, no C-curves are present for this phase

M_s: Martensite start temperature

M_f: Martensite finish temperature

TTT diagram for eutectoid steel

20%

BCT unit cell of γ (austenite)

$$\frac{c}{a} = \sqrt{2} = 1.414$$

BCT unit cell of α' (martensite)

$$\frac{c}{a} = 1.00 - 1.08$$
0% C (BCC) 1.2 % C

Tempering of Martensite

The hard martensite is brittle, so what to do???

Tempering of martensite

Heating of quenched martensite to some intermediate temperature to allow the trapped C to come out and increase the toughness of steel

