REPORT ON DRILLED SHAFT LOAD TESTING (OSTERBERG METHOD)

TS-1 - US 52 over ICE & Mill Creek Jackson Co., IA (LT-9466)

Prepared for:

Longfellow Drilling

1260 County Highway J23

Clearfield, IA 50840

Attention:

Mr. Mike Kemery

PROJECT NUMBER: LT-9466, November 25, 2008

2631-D NW 41st Street, Gainesville, FL, USA 32606 Phone: 352-378-3717 • 800-368-1138 Fax: 352-378-3934 Regional Offices:

Dubai • London Seoul • Singapore

TS-1 - US 52 over ICE & Mill Creek Jackson Co., IA (LT-9466)

November 25, 2008

Longfellow Drilling 1260 County Highway J23 Clearfield, IA 50840

Attention: Mr. Mike Kemery

Load Test Report: TS-1 - US 52 over ICE & Mill Creek

Location: Jackson Co., IA (LT-9466)

Dear Mr. Kemery,

The enclosed report contains the data and analysis summary for the O-cell test performed on TS-1 - US 52 over ICE & Mill Creek on November 18, 2008. For your convenience, we have included an executive summary of the test results in addition to our standard detailed data report. Preliminary results were issued on November 21, 2008.

We would like to express our gratitude for the on-site and off-site assistance provided by your team and we look forward to working with you on future projects.

We trust that the information contained herein will suit your current project needs. If you have any questions or require further technical assistance, please do not hesitate to contact us at 800-368-1138.

Best Regards,

William G. Ryan, B.S.C.M.

Regional Manager, LOADTEST, Inc.

EXECUTIVE SUMMARY

On November 18, 2008, we tested a nominal 36-inch (914-mm) diameter dedicated test shaft constructed by Longfellow Drilling. Mr. Michael D. Ahrens and Mr. Andy Skiffington of LOADTEST, Inc. carried out the test. Longfellow Drilling constructed the 26.3-foot (8.01-meter) deep shaft under polymer slurry on November 5, 2008. Sub-surface conditions at the test shaft location consist primarily of lean to fat clay overburden underlain by moderately weathered to fresh dolomitic rock. Representatives of lowa Department of Transportation and others observed construction and testing of the shaft.

The maximum sustained bi-directional load applied to the shaft was 4,853 kips (21.59 MN). At the maximum load, the displacements above and below the O-cell were 2.544 inches (64.62 mm) and 0.185 inches (4.71 mm), respectively. The average net unit shear in the rock above the O-cell is calculated to be 51.0 ksf (2443 kPa). The maximum applied end bearing pressure is calculated to be 594 ksf (28,420 kPa). Unit capacity values correspond to the above noted displacements.

Using the procedures described in the report text and in <u>Appendix C</u>, we constructed an equivalent top load curve for the test shaft. For a top loading of 6,432 kips (28.6 MN), the adjusted test data indicate this shaft would settle approximately 0.25 inches (6.4 mm) of which 0.13 inches (3.2 mm) is estimated elastic compression.

LIMITATIONS OF EXECUTIVE SUMMARY

We include this executive summary to provide a very brief presentation of some of the key elements of this O-cell test. It is by no means intended to be a comprehensive or stand-alone representation of the test results. The full text of the report and the attached appendices contain important information which the engineer can use to come to more informed conclusions about the data presented herein.

TABLE OF CONTENTS

Site Conditions and Shaft Construction	1
Site Sub-surface Conditions	1 1
Osterberg Cell Testing	1
Shaft Instrumentation Test Arrangement	2
Data Acquisition Testing Procedures	
Test Results and Analyses	3
General Upper Side Shear Resistance Combined End Bearing and Lower Side Shear Resistance	3 4
Equivalent Top Load	4 4
Limitations and Standard of Care	6

- Average Net Unit Side Shear Values, <u>Table A</u>.
- Summary of Dimensions, Elevations & Shaft Properties, Table B.
- Schematic Section of Test Shaft, <u>Figure A</u>.
- Osterberg Cell Load-Movement, <u>Figure 1</u>.
- Strain Gage Load Distribution, <u>Figure 2</u>.
- Mobilized Net Unit Side Shear, <u>Figure 3</u>.
- Mobilized Unit End Bearing, <u>Figure 4</u>.
- Equivalent Top Load, <u>Figure 5</u>.
- Field Data & Data Reduction, Appendix A.
- O-cell and Instrumentation Calibration Sheets, <u>Appendix B</u>.
- Construction of the Equivalent Top-Loaded Load-Settlement Curve, <u>Appendix C</u>.
- O-cell Method for Determining Creep Limit Loading, Appendix D.
- Soil Boring Log, <u>Appendix E</u>.

SITE CONDITIONS AND SHAFT CONSTRUCTION

Site Sub-surface Conditions: The sub-surface stratigraphy at the general location of the test shaft is reported to consist of lean to fat clay overburden underlain by moderately weathered to fresh dolomitic rock. The generalized subsurface profile is included in <u>Figure A</u> and a boring log indicating conditions near the shaft is presented in <u>Appendix E</u>. More detailed geologic information can be obtained from lowa Department of Transportation.

Test Shaft Construction: Longfellow Drilling began and completed construction of the dedicated test shaft on November 5, 2008. We understand that the nominal 36-inch (914-mm) test shaft (estimated to be 37 inches diameter based on core barrel dimensions) was excavated to a tip elevation of +573.0 feet (+174.65 meters) under polymer slurry utilizing a 42-inch (1,067-mm) O.D. temporary surface casing. A core barrel was used for drilling the rock socket which was then cleaned with a bucket and air-lift. After placing a seating layer of concrete in the base of the shaft with a pump line, the reinforcing cage with attached O-cell assembly was inserted into the excavation and allowed to come to rest on the freshly placed concrete. The pump line was then reinserted and the remainder of the concrete was placed. No unusual problems occurred during construction of the shaft. Representatives of lowa Department of Transportation observed construction of the shaft.

OSTERBERG CELL TESTING

Shaft Instrumentation: Test shaft instrumentation and assembly was carried out under the direction of Mr. Michael D. Ahrens and Mr. Andy Skiffington of LOADTEST, Inc. between November 4, 2008 and November 5, 2008. The loading assembly consisted of one 34-inch (870-mm) O-cell located 1.7 feet (0.53 meters) above the tip of shaft. Calibrations of the O-cell and instrumentation used for this test are included in Appendix B.

O-cell testing instrumentation included three Linear Vibrating Wire Displacement Transducers (LVWDTs - Geokon Model 4450 series) positioned between the lower and upper plates of the O-cell assembly to measure expansion (Appendix A, Page 2). Two telltale casings (nominal ½-inch steel pipe) were attached to the reinforcing cage, diametrically opposed, extending from the top of the O-cell assembly to beyond the top of concrete. Compression of the shaft in the rock socket was measured by one section of Embedded Compression Telltales (ECT), consisting of telltale rods in nominal ½-inch steel pipe casings with an LVWDT attached (Appendix A, Page 3). Two additional lengths of steel pipe were also installed, extending from the top of the shaft to base of the O-cell to vent the break in the shaft formed by the expansion of the O-cell.

Strain gages were used to assess the side shear load transfer of the shaft above the Osterberg cell assembly. Three levels of two diametrically-opposed sister bar vibrating wire strain gages (Geokon Model 4911 Series) were installed in the shaft above the base of the O-cell assembly. Details concerning the strain gage placement appear in <u>Table B</u> and <u>Figure A</u>. The strain gages were positioned as specified by the lowa Department of Transportation.

Test Arrangement: Throughout the load test, key elements of shaft response were monitored using the equipment and instruments described herein. Shaft compression was measured using the ECTs. The full length telltale casings (described under Shaft Instrumentation) were not used. Two automated digital survey levels (Leica NA 3000 Series) were used to monitor the top of shaft movement from a distance of approximately 29 feet (8.8 meters) (Appendix A, Page 1).

A Bourdon pressure gage and electronic pressure transducers were used to measure the pressure applied to the O-cell at each load interval. We used the transducers for automatically setting and maintaining loads and for data analysis and real time plotting. The Bourdon gage was used as a check on the transducers. There was close agreement between the Bourdon gage and the pressure transducers.

Data Acquisition: All instrumentation were connected through a data logger (Data Electronics - DT500/600 Series Geologger) to a laptop computer allowing data to be recorded and stored automatically at 30-second intervals and displayed in real time. The same laptop computer synchronized to the data logging system was used to acquire the Leica NA3000 data sets.

Testing Procedures: As with all of our tests, we begin by pressurizing the O-cell in order to break the tack welds that hold it closed (for handling and for placement in the shaft) and to form the fracture plane in the concrete surrounding the base of the O-cell. After the break occurs, we immediately release the pressure and then begin the loading procedure. Zero readings for all instrumentation are taken prior to the preliminary weld-breaking load-unload cycle, which in this case involved a maximum applied load of 1,938 kips (8.6 MN) to the O-cell.

The Osterberg cell load test was conducted as follows: We pressurized the 34-inch (870-mm) diameter O-cell, with its base located 1.7 feet (0.53 meters) above the base of shaft to assess the combined end bearing and lower side shear below the O-cell and the upper side shear above. We loaded the shaft in 8 loading increments to a bi-directional gross O-cell load of 4,853 kips (21.59 MN). The loading was halted after load interval 1L-8 because the shaft above the O-cell had displaced significantly and was approaching ultimate capacity. The shaft was then unloaded in five decrements and the test was concluded.

We applied the load increments using the Quick Load Test Method for Individual Piles (ASTM D1143 Standard Test Method for Piles Under Static Axial Load), holding each successive load increment constant for eight minutes by manually adjusting the O-cell pressure. The data logger automatically recorded the instrument readings every 30 seconds, but herein we report only the 1, 2, 4 and 8-minute readings (where applicable) during each increment of maintained load.

TEST RESULTS AND ANALYSES

General: The loads applied by the O-cell act in two opposing directions, resisted by the capacity of the shaft above and below. Theoretically, the O-cell does not impose an additional upward load until its expansion force exceeds the buoyant weight of the shaft above the O-cell. Therefore, *net load*, which is defined as gross O-cell load minus the buoyant weight of the shaft above, is used to determine side shear resistance above the O-cell and to construct the equivalent top-loaded load-settlement curve. For this test we calculated a buoyant weight of shaft of 8 kips (0.04 MN) above the O-cell.

For the purposes of analyses herein, we use the 8-minute hold at increment 1L-8. This increment was maintained for a total of 16 minutes at which point the displacements above and below the O-cell were 2.625 inches (66.68 mm) and 0.189 inches (4.80 mm), respectively.

Upper Side Shear Resistance: The maximum upward applied *net load* to the upper side shear was 4,845 kips (21.55 MN) which occurred at load interval 1L-8. At this loading, the upward movement of the O-cell top was 2.544 inches (64.62 mm) and the average net unit side shear is calculated to be 51.0 ksf (2443 kPa).

In order to assess the side shear resistance of the test shaft, loads are calculated based on the strain gage data (Appendix A, Page 4) and an estimate of shaft stiffness (AE) which is presented below. We used the ACI formula ($E_c=57000\sqrt{f'_c}$) to calculate an elastic modulus for the concrete, where f'_c was reported to be 5,860 psi (40.40 MPa) on the day of the test. This, combined with the area of reinforcing steel and estimated shaft diameter, yields an average shaft stiffness (AE) of 4,940,000 kips (22,000 MN). Net unit shear curves are presented in Figure 3. Net unit shear values for loading increment 1L-8 follow in Table A:

TABLE A: Average Net Unit Side Shear Values for 1L-8

Load Transfer Zone	Displacement 1	Net Unit Side Shear 2		
Average Rock Socket	↑ 2.515 "	51.0 ksf (2443 kPa)		
Strain Gage Level 3 to Top of Concrete	↑ 2.489"	41.3 ksf (1978 kPa)		
Strain Gage Level 2 to Strain Gage Level 3	↑ 2.497"	99.9 ksf (4781 kPa)		
Strain Gage Level 1 to Strain Gage Level 2	1 2.511"	65.1 ksf (3116 kPa)		
Top of O-cell to Strain Gage Level 1	↑ 2.532"	23.2 ksf (1109 kPa)		

¹ Average displacement of load transfer zone. ² For upward-loaded shear, the buoyant weight of shaft in each zone has been subtracted from the load shed in the respective zone above the O-cell.

NOTE: Net unit shear values derived from the strain gages above the O-cell assembly may not be ultimate values. See <u>Figure 3</u> for mobilized net unit shear vs. average shear zone displacement plots.

Combined End Bearing and Lower Side Shear Resistance: The maximum O-cell load applied to the combined end bearing and lower side shear was 4,853 kips (21.59 MN) which occurred at load interval 1L-8 (Appendix A, Page 3, Figure 1). At this loading, the average downward movement of the O-cell base was 0.185 inches (4.71 mm). The load taken in shear by the 1.7 feet (0.53 meters) of shaft section below the O-cell is calculated to be 421 kips (1.87 MN) using an interpolated average unit side shear value of 25.2 ksf (1207 kPa) and a 37-inch (940-mm) shaft diameter. The applied load to end bearing is then 4,432 kips (19.71 MN) and the unit end bearing at the base of the shaft is calculated to be 594 ksf (28,420 kPa) at the above noted displacement. A unit end bearing curve is presented in Figure 4.

Equivalent Top Load: Figure 5 presents the equivalent top-loaded load-settlement curves. The lighter curve, described in Procedure Part I of Appendix C, was generated by using the measured upward top of O-cell and downward base of O-cell data. Because it is often an important component of the settlements involved, the equivalent top load curve requires an adjustment for the additional elastic compression that would occur in a top-load test. The darker curve as described in Procedure Part II of Appendix C includes this adjustment.

A total shaft resistance of 9,698 kips (43.1 MN) was mobilized during the test. For an equivalent top loading of 6,432 kips (28.6 MN), the adjusted test data indicate this shaft would settle approximately 0.25 inches (6.4 mm) of which 0.13 inches (3.2 mm) is estimated elastic compression.

Note that, as explained previously, the equivalent top load curve applies to incremental loading durations of eight minutes. Creep effects will reduce the ultimate resistance of both components and increase shaft top movement for a given loading over longer times. The Engineer can estimate such additional creep effects by suitable extrapolation of time effects using the creep data presented herein.

Creep Limit: See <u>Appendix D</u> for our O-cell method for determining creep limit. The combined end bearing and lower side shear creep data (<u>Appendix A, Page 3</u>)

indicate that no apparent creep limit was reached at a downward displacement of 0.19 inches (4.7 mm) (Appendix D, Figure 1). The upper side shear creep data (Appendix A, Page 3) indicate that a creep limit of 3,750 kips (16.7 MN) was reached at an upward displacement of 0.82 inches (20.7 mm) (Appendix D, Figure 2). The creep limit for a top-loaded shaft will not be reached until both shaft components reach their respective creep limits. The engineer should come to his own conclusions with regard to the suitability of the creep limit analysis to address long term creep which may be an important design consideration.

LIMITATIONS AND STANDARD OF CARE

The instrumentation, testing services and data analysis provided by LOADTEST, Inc., outlined in this report, were performed in accordance with the accepted standards of care recognized by professionals in the drilled shaft and foundation engineering industry.

Please note that some of the information contained in this report is based on data (i.e. shaft diameter, elevations and concrete strength) provided by others. The engineer, therefore, should come to his or her own conclusions with regard to the analyses as they depend on this information. In particular, LOADTEST, Inc. typically does not observe and record drilled shaft construction details to the level of precision that the project engineer may require. In many cases, we may not be present for the entire duration of shaft construction. Since construction technique can play a significant role in determining the load bearing capacity of a drilled shaft, the engineer should pay close attention to the drilled shaft construction details that were recorded elsewhere.

We trust that this information will meet your current project needs. If you have any questions, please do not hesitate to contact us at 800-368-1138.

Prepared for LOADTEST, Inc. by

Michael D. Ahrens, M.Eng, P.E.

Geotechnical Engineer

Reviewed for LOADTEST, Inc. by

David J. Jakstis, P.E. Geotechnical Engineer

TABLE B: SUMMARY OF DIMENSIONS, ELEVATIONS & SHAFT PROPERTIES

Shaft:			
Estimated shaft diameter (EL +585.7 ft to +573.0 ft)	=	37 in	940 mm
O-cell: 34-6-00048	=	34 in	860 mm
Bouyant weight of pile above base of O-cell	=	8.1 kips	0.036 MN
Estimated shaft stiffness, AE (EL +585.7 ft to +573.0 ft)	=	4,940,000 kips	22,000 MN
Elevation of ground surface	=	+599.3 ft	+182.66 m
Elevation of water table	=	+590.0 ft	+179.83 m
Elevation of top of shaft concrete (measured on test day)	=	+585.7 ft	+178.52 m
Elevation of top of O-cell (Assumed elevation of upward applied load.)	=	+575.9 ft	+175.53 m
Elevation of base of O-cell (Elevation of downward applied load.)	=	+574.7 ft	+175.18 m
Elevation of shaft tip	=	+573.0 ft	+174.65 m
Casings:			
Elevation of top of inner temporary casing (42.0 in O.D.)	=	+600.1 ft	+182.91 m
Elevation of bottom of inner temporary casing (42.0 in O.D.)	=	+590.1 ft	+179.86 m
Compression Sections:			
Elevation of top of ECTs	=	+581.3 ft	+177.17 m
Elevation of bottom of ECTs	=	+575.9 ft	+175.53 m
Strain Gages:			
Elevation of strain gage Level 3	=	+581.6 ft	+177.27 m
Elevation of strain gage Level 2	=	+580.1 ft	+176.81 m
Elevation of strain gage Level 1	=	+578.1 ft	+176.20 m
Miscellaneous:			
Top plate diameter (1-inch thickness)	=	34.25 in	870 mm
ReBar size (8 No.)	=	# 10	M 32
Spiral size (12 inch spacing)	=	# 5	M 16
ReBar cage diameter	=	30 in	762 mm
Unconfirted compressive concrete strength	=	5860 psi	40.4 MPa
O-cell LVWDTs @ 0°, 180° and 270° with radius	=	17.5 in	445 mm

Figure 1 of 5

LOADTEST, Inc. Project No. LT-9466

LOADTEST, Inc. Project No. LT-9466

Mobilized Net Unit Side Shear

TS-1 - US 52 over ICE Mill Creek - Jackson Co., IA

LOADTEST, Inc. Project No. LT-9466

Figure 3 of 5

Mobilized Unit End Bearing

TS-1 - US 52 over ICE Mill Creek - Jackson Co., IA

LOADTEST, Inc. Project No. LT-9466

Equivalent Top Load-Displacement

TS-1 - US 52 over ICE & Mill Creek Jackson Co., IA (LT-9466)

APPENDIX A

FIELD DATA & DATA REDUCTION

Upward Top of Shaft Movement and Shaft Compression TS-1 - US 52 over ICE & Mill Creek - Jackson Co., IA

Load	Hold	Time	O-cell		-	Top of Shaft ECTs		ECTs		
Test	Time		Pressure	Load	Α	В	Average	A - 20341	B - 20342	Average
Increment		(h:m:s)	(psi)	(kips)	(in)	(in)	(in)	(in)	(in)	(in)
1 L - 0	` -	11:01:30	, 0	, 0	0.000	0.000	0.000	0.000	0.000	0.000
1 L - 1	1	11:20:30	1,750	1,061	0.066	0.067	0.066	0.017	0.010	0.014
1 L - 1	2	11:21:30	1,750	1,061	0.068	0.065	0.067	0.017	0.010	0.014
1 L - 1	4	11:23:30	1,750	1,061	0.069	0.066	0.067	0.018	0.010	0.014
1 L - 1	8	11:27:30	1,750	1,061	0.071	0.066	0.069	0.018	0.010	0.014
1 L - 2	1	11:29:00	2,460	1,491	0.073	0.070	0.072	0.022	0.014	0.018
1L-2	2	11:30:00	2,460	1,491	0.074		0.071	0.022	0.014	0.018
1L-2	4	11:32:00	2,460	1,491	0.076	0.068	0.072	0.022	0.014	0.018
1L-2	8	11:36:00	2,460	1,491	0.075	0.069	0.072	0.022	0.014	0.018
1L-3	1	11:50:00	3,050	1,847	0.085	0.075	0.080	0.025	0.017	0.021
1L-3	2	11:51:00	3,050	1,847	0.086	0.074	0.080	0.026	0.017	0.021
1L-3	4	11:53:00	3,050	1,847	0.089	0.076	0.083	0.026	0.017	0.021
1L-3	8	11:57:00	3,050	1,847	0.087	0.077	0.082	0.026	0.017	0.021
1 L - 4	1	12:00:00	4,100	2,482	0.164	0.152	0.158	0.034	0.021	0.027
1 L - 4	2	12:01:00	4,100	2,482	0.173	0.160	0.167	0.034	0.021	0.027
1L-4	4	12:03:00	4,100	2,482	0.182	0.169	0.175	0.034	0.021	0.028
1 L - 4	8	12:07:00	4,100	2,482	0.194	0.178	0.186	0.035	0.021	0.028
1 L - 5	1	12:11:00	5,200	3,148	0.388	0.379	0.384	0.045	0.024	0.035
1 L - 5	2	12:12:00	5,200	3,148	0.397	0.394	0.396	0.046	0.024	0.035
1 L - 5	4	12:14:00	5,200	3,148	0.416	0.407	0.412	0.046	0.024	0.035
1L-5	8	12:18:00	5,200	3,148	0.433	0.424	0.428	0.047	0.025	0.036
1 L - 6	1	12:21:30	6,070	3,674	0.650	0.642	0.646	0.056	0.027	0.041
1L-6	2	12:22:30	6,070	3,674	0.666	0.657	0.662	0.056	0.027	0.042
1L-6	4	12:24:30	6,070	3,674	0.680	0.676	0.678	0.057	0.027	0.042
1L-6	8	12:28:30	6,070	3,674	0.700	0.696	0.698	0.058	0.027	0.043
1L-7	1	12:36:30	7,040	4,260	1.112	1.107	1.110	0.071	0.030	0.051
1 L - 7	2	12:37:30	7,040	4,260	1.136	1.131	1.133	0.072	0.031	0.051
1L-7	4	12:39:30	7,040	4,260	1.172	1.167	1.169	0.073	0.031	0.052
1 L - 7	8	12:43:30	7,040	4,260	1.214	1.206	1.210	0.074	0.031	0.052
1L-8	1	13:02:00	8,020	4,853	2.342	2.333	2.337	0.102	0.033	0.067
1L-8	2	13:03:00	8,020	4,853	2.364	2.356	2.360	0.102	0.033	0.067
1 L - 8	4	13:05:00	8,020	4,853	2.410	2.402	2.406	0.104	0.033	0.068
1L-8	8	13:09:00	8,020	4,853	2.480	2.470	2.475	0.106	0.033	0.069
1 L - 8	16	13:17:00	8,020	4,853	2.559	2.550	2.555	0.108	0.033	0.071
1U-1	1	13:21:00	6,500	3,934	2.564	2.556	2.560	0.106	0.028	0.067
1 U - 1	2	13:22:00	6,500	3,934	2.565	2.555	2.560	0.106	0.027	0.067
1 U - 1	4	13:24:00	6,500	3,934	2.564	2.555	2.560	0.106	0.027	0.067
1 U - 2	1	13:26:30	4,930	2,984	2.555	2.546	2.551	0.099	0.019	0.059
1U-2	2	13:27:30	4,930	2,984	2.554	2.546	2.550	0.099	0.019	0.059
1U-2	4	13:29:30	4,930	2,984	2.554	2.545	2.549	0.099	0.019	0.059
1 U - 3	1	13:32:00	3,280	1,986	2.536	2.528	2.532	0.088	0.009	0.049
1 U - 3	2	13:33:00	3,280	1,986	2.534	2.526	2.530	0.088	0.009	0.048
1 U - 3	4	13:35:00	3,280	1,986	2.534	2.524	2.529	0.087	0.009	0.048
1 U - 4	1	13:39:30	1,550	940	2.501	2.493	2.497	0.073	0.000	0.036
1 U - 4	2	13:40:30	1,550	940	2.499	2.491	2.495	0.072	0.000	0.036
1 U - 4	4	13:42:30	1,550	940	2.487	2.479	2.483	0.060	-0.007	0.027
1 U - 5	1	13:47:30	0	0	2.459	2.450	2.455	0.044	-0.009	0.017
1 U - 5	2	13:48:30	o	o	2.458	2.450	2.454	0.044	-0.009	0.017
1 U - 5	4	13:50:30	0	0	2.456	2.449	2.452	0.043	-0.009	0.017
1 U - 5	8	13:54:30	0	0	2.455	2.447	2.451	0.043	-0.009	0.017

O-cell Expansion TS-1 - US 52 over ICE & Mill Creek - Jackson Co., IA

Load	Hold	Time	O-cell O-cell Expansion					
Test	Time		Pressure	Load	A - 19360	B - 19361	C - 19362 *	Average
Increment		(h:m:s)	(psi)	(kips)	(in)	(in)	(in)	(in)
1 L - 0		11:01:30	0	0	0.000	0.000	0.000	0.000
1 L - 1	1	11:20:30	1,750	1,061	0.104	0.135	0.163	0.120
16-1	2	11:21:30	1,750	1,061	0.105	0.136	0.165	0.120
1 L - 1	4	11:23:30	1,750	1,061	0.105	0.137	0.166	0.121
1L-1	8	11:27:30	1,750	1,061	0.106	0.138	0.167	0.122
1 L - 2	1	11:29:00	2,460	1,491	0.118	0.152	0.183	0.135
1 L - 2	2	11:30:00	2,460	1,491	0.119	0.153	0.184	0.136
1L-2	4	11:32:00	2,460	1,491	0.120	0.154	0.185	0.137
1 L - 2	8	11:36:00	2,460	1,491	0.120	0.155	0.186	0.138
1 L - 3	1	11:50:00	3,050	1,847	0.134	0.171	0.202	0.153
1L-3	2	11:51:00	3,050	1,847	0.136	0.173	0.204	0.154
1 L - 3	4	11:53:00	3,050	1,847	0.137	0.174	0.205	0.156
1 L - 3	8	11:57:00	3,050	1,847	0.139	0.175	0.206	0.157
1 L - 4	1	12:00:00	4,100	2,482	0.233	0.253	0.257	0.243
1 L - 4	2	12:01:00	4,100	2,482	0.242	0.262	0.260	0.252
1 L - 4	4	12:03:00	4,100	2,482	0.251	0.271	0.264	0.261
1 L - 4	8	12:07:00	4,100	2,482	0.262	0.282	0.269	0.272
1 L - 5	1	12:11:00	5,200	3,148	0.482	0.505	0.381	0.494
1 L - 5	2	12:12:00	5,200	3,148	0.499	0.523	0.391	0.511
1 L - 5	4	12:14:00	5,200	3,148	0.516	0.541	0.402	0.529
1 L - 5	8	12:18:00	5,200	3,148	0.533	0.559	0.421	0.546
1L-6	1	12:21:30	6,070	3,674	0.766	0.805	0.675	0.785
1L-6	2	12:22:30	6,070	3,674	0.782	0.824	0.696	0.803
1L-6	4	12:24:30	6,070	3,674	0.802	0.846	0.720	0.824
1L-6	8	12:28:30	6,070	3,674	0.823	0.870	0.744	0.847
1 L - 7	1	12:36:30	7,040	4,2 6 0	1.259	1.339	1.216	1.299
1 L - 7	2	12:37:30	7,040	4,260	1.283	1.365	1.242	1.324
1 L - 7	4	12:39:30	7,040	4,260	1.319	1.403	1.279	1.361
1 L - 7	8	12:43:30	7,040	4,260	1.361	1.449	1.327	1.405
1 L - 8	1	13:02:00	8,020	4,853	2.518	2.651	2.565	2.584
1 L - 8	2	13:03:00	8,020	4,853	2.542	2.676	2.593	2.609
1 L - 8	4	13:05:00	8,020	4,853	2.589	2.726	2.642	2.658
1L-8	8	13:09:00	8,020	4,853	2.659	2.800	2.723	2.730
1L-8	16	13:17:00	8,020	4,853	2.742	2.887	2.811	2.814
1 U - 1	1	13:21:00	6,500	3,934	2.739	2.886	2.814	2.812
10-1	2	13:22:00	6,500	3,934	2.739	2.885	2.814	2.812
10-1	4	13:24:00	6,500	3,934	2.739	2.885	2.814	2.812
10-2	1	13:26:30	4,930	2,984	2.714	2.859	2.788	2.786
10-2	2	13:27:30	4,930	2,984	2.713	2.858	2.788	2.786
1U-2 1U-3	4	13:29:30	4,930 3,280	2,984	2.713	2.858 2.815	2.787 2.738	2.785 2.744
	2	13:32:00		1,986	2.673		2.738	2.744
1U-3 1U-3	4	13:33:00	3,280	1,986 1,986	2.671 2.669	2.813 2.810	2.737	2.742
1U-3	1	13:35:00 13:39:30	3,280 1,550	940	2.607	2.743	2.733	2.740
1U-4	2			940	2.607	2.743	2.655	2.674
10-4	4	13:40:30 13:42:30	1,550 1,550	940 940	2.607 2.574	2.742	2.655	2.638
1U-5	1	13:42:30	1,550	940	2.574	2.703	2.497	2.567
1U-5	2	13:47:30	0	0	2.515 2.514	2.617	2.494	2.567
			0	0		,	2.494	2.563 2.563
1 U - 5 1 U - 5	4 8	13:50:30 13:54:30	0	0	2.511 2.509	2.614 2.611	2.490	2.563
					اوں دے۔ Jue to its oriental		2,400	۷.500

* LVWDT C is not included in the average due to its orientation. LVWDTs A and B are oriented 180° opposed.

Upward and Downward O-cell Plate Movement and Creep (calculated) TS-1 - US 52 over ICE & Mill Creek - Jackson Co., IA

Tost Time Important Time Important Comp.		TS-1 - US 52 over ICE & Mill Creek - Jackson Co., IA											
Increment minutes (mm.s) (mm.s) (ms) (m	Load	Hold	Time	0-	cell			Top Plate					
11-0	Test	Time		Pressure	Load			Movement		Movement	Per Hold		
11-1	Increment	(minutes)	(h:m:s)	(psi)	(kips)	(in)	(in)	(in)	(in)	(in)	(in)	(in)	
111	1 L - 0	-	11:01:30				0.000	0.000	0.000	0.000			
111	1 L - 1	1	11:20:30	1,750	1,061	0.066	0.014	0.080	0.120	-0.040			
1	1 L - 1	2	11:21:30			0.067	0.014	0.080	0.120	-0.040		0.000	
1 1 2 1 11 2900	1 L - 1	4	11:23:30	1,750	1,061				0.121	-0.040	0.001	0.000	
11	1 L - 1	8	11:27:30	1,750	1,061	0.069	0.014	0.082	0.122	-0.039	0.001	-0.001	
112	1 L - 2	1	11:29:00	2,460	1,491	0.072	0.018	0.089	0.135	-0.046			
1 L - 2	1 L - 2	2	11:30:00	2,460	1,491	0.071	0.018	0.088	0.136	-0.047	-0.001	0.001	
1	1 L - 2	4	11:32:00	2,460	1,491	0.072	0.018	0.090	0.137	-0.047	0.002	-0.001	
1 L - 3	1 L - 2	8	11:36:00	2,460	1,491	0.072	0.018	0.090	0.138	-0.048	0.000	0.001	
1 L - 3	1 L - 3	1	11:50:00	3,050	1,847	0.080	0.021	0.101	0.153	-0.052			
1 L - 3	1 L - 3	2	11:51:00		1,847	0.080	0.021	0.101	0.154	-0.053	0.000	0.002	
1 L - 3	1L-3	4	11:53:00	3,050	1,847	0.083		0.104		-0.052	0.003	-0.001	
1 -4	1 L - 3	8	11:57:00	3,050	1,847	0.082	0.021	0.103	0.157	-0.054	-0.001	0.002	
1 -4 2 12.01:00													
1 -4								0.194			0.009	0.000	
1 L - 4	1 L - 4	4	12:03:00		2,482		0.028	0.203	0.261		0.009	0.001	
1 -6		8	12:07:00				0.028	0.214	0.272		0.011	-0.001	
1 L - 5 2 12:12:00 5,200 3,148 0.396 0.035 0.431 0.511 -0.080 0.012 0.006 1 L - 5 4 12:14:00 5,200 3,148 0.412 0.036 0.447 0.529 -0.082 0.016 0.001 1 L - 6 1 12:21:30 6,070 3,674 0.646 0.041 0.687 0.082 0.100 0.016 0.001 1 L - 6 2 12:22:30 6,070 3,674 0.662 0.042 0.703 0.803 -0.100 0.016 0.001 1 L - 6 4 12:24:30 6,070 3,674 0.678 0.042 0.720 0.824 -0.104 0.017 0.002 1 L - 7 1 12:36:30 7,040 4,260 1.110 0.051 1.161 1.299 -0.139 1 L - 7 4 12:39:30 7,040 4,260 1.169 0.052 1.262 1.405 -0.140 0.024 0.001	1 L - 5	1			3,148	0.384			0.494				
1 -5	1 L - 5	2					0.035	0.431	0.511	-0.080	0.012	0.005	
1 L - 5					3,148	0.412		0.447	0.529	-0.082	0.016	0.001	
1 L - 6 1 12:21:30 6,070 3,674 0.642 0.041 0.687 0.785 -0.098 1 L - 6 2 12:22:30 6,070 3,674 0.662 0.042 0.703 0.803 -0.100 0.016 0.001 1 L - 6 4 12:24:30 6,070 3,674 0.698 0.043 0.740 0.824 -0.107 0.020 1 L - 7 1 12:36:30 7,040 4,260 1.110 0.051 1.161 1.299 -0.139 1 L - 7 2 12:37:30 7,040 4,260 1.110 0.051 1.184 1.324 -0.140 0.024 1 L - 7 4 12:39:30 7,040 4,260 1.169 0.052 1.221 1.361 -0.140 0.037 0.000 1 L - 8 1 13:02:00 8,020 4,853 2.337 0.067 2.404 2.584 -0.180 0.023 0.001 1 L - 8 1 13:02:00 8,020				5,200					0.546		0.017	0.000	
1 L - 6				6.070									
1 L - 6 4 12:24:30 6,070 3,674 0.678 0.042 •0.720 0.824 -0.104 0.017 0.005 1 L - 6 8 12:28:30 6,070 3,674 0.698 0.043 0.740 0.847 -0.107 0.020 0.002 1 L - 7 1 12:36:30 7,040 4,260 1.110 0.051 1.161 1.299 -0.139 1 L - 7 2 12:37:30 7,040 4,260 1.153 0.051 1.184 1.324 -0.140 0.024 0.001 1 L - 7 4 12:39:30 7,040 4,260 1.159 0.052 1.221 1.361 -0.140 0.037 0.000 1 L - 8 1 13:02:00 8,020 4,853 2.357 0.067 2.427 2.609 -0.182 0.023 0.001 1 L - 8 4 13:03:00 8,020 4,853 2.406 0.068 2.475 2.658 -0.183 0.047 0.002											0.016	0.001	
1 L - 6 8 12:28:30 6,070 3,674 0.698 0.043 0.740 0.847 -0.107 0.020 0.002 1 L - 7 1 12:36:30 7,040 4,260 1.110 0.051 1.161 1.299 -0.139 0.001 1 L - 7 2 12:37:30 7,040 4,260 1.169 0.052 1.221 1.361 -0.140 0.037 0.000 1 L - 7 4 12:39:30 7,040 4,260 1.210 0.052 1.221 1.361 -0.140 0.037 0.000 1 L - 8 1 13:02:00 8,020 4,853 2.337 0.067 2.404 2.584 -0.182 0.023 0.001 1 L - 8 1 13:05:00 8,020 4,853 2.360 0.067 2.427 2.609 -0.182 0.023 0.001 1 L - 8 1 13:05:00 8,020 4,853 2.475 0.069 2.544 2.730 -0.185 0.077 0.022 <td>1 L - 6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.042</td> <td></td> <td></td> <td>-0.104</td> <td>0.017</td> <td>0.005</td>	1 L - 6						0.042			-0.104	0.017	0.005	
1 L - 7 1 12:36:30 7,040 4,260 1.110 0.051 1.161 1.299 -0.139 1 L - 7 2 12:37:30 7,040 4,260 1.133 0.051 1.184 1.324 -0.140 0.024 0.001 1 L - 7 4 12:39:30 7,040 4,260 1.169 0.052 1.262 1.405 -0.142 0.041 0.002 1 L - 8 1 13:02:00 8,020 4,853 2.337 0.067 2.404 2.584 -0.180 0.023 0.001 1 L - 8 1 13:05:00 8,020 4,853 2.360 0.067 2.427 2.609 -0.182 0.023 0.001 1 L - 8 4 13:05:00 8,020 4,853 2.406 0.068 2.6475 2.668 -0.183 0.047 0.002 1 L - 8 8 13:09:00 8,020 4,853 2.555 0.071 2.625 2.814 -0.183 0.047 0.002							0.043			-0.107	0.020	0.002	
1 L - 7 2 12:37:30 7,040 4,260 1.133 0.051 1.184 1.324 -0.140 0.024 0.001 1 L - 7 4 12:39:30 7,040 4,260 1.169 0.052 1.221 1.361 -0.140 0.037 0.000 1 L - 8 1 13:02:00 8,020 4,853 2.337 0.067 2.404 2.584 -0.180 1 L - 8 2 13:03:00 8,020 4,853 2.360 0.067 2.427 2.609 -0.182 0.023 0.001 1 L - 8 4 13:05:00 8,020 4,853 2.406 0.068 2.475 2.658 -0.182 0.023 0.001 1 L - 8 8 13:09:00 8,020 4,853 2.475 0.069 2.544 2.730 -0.185 0.070 0.002 1 L - 8 16 13:17:00 8,020 4,853 2.555 0.071 2.625 2.814 -0.185 0.070 0.002							0.051	1.161	1.299	-0.139			
1 L - 7 4 12:39:30 7,040 4,260 1.169 0.052 1.221 1.361 -0.140 0.037 0.000 1 L - 7 8 12:43:30 7,040 4,260 1.210 0.052 1.262 1.405 -0.142 0.041 0.002 1 L - 8 1 13:02:00 8,020 4,853 2.380 0.067 2.427 2.609 -0.182 0.023 0.001 1 L - 8 4 13:05:00 8,020 4,853 2.406 0.068 2.475 2.658 -0.183 0.047 0.002 1 L - 8 8 13:09:00 8,020 4,853 2.475 0.069 2.544 2.730 -0.185 0.070 0.002 1 L - 8 16 13:17:00 8,020 4,853 2.555 0.071 2.625 2.814 -0.189 0.007 1 U - 1 1 13:21:00 6,500 3,934 2.560 0.067 2.627 2.812 -0.186 1 U - 1									1.324	-0.140	0.024	0.001	
1 L - 7 8 12:43:30 7,040 4,260 1.210 0.052 1.262 1.405 -0.142 0.041 0.002 1 L - 8 1 13:02:00 8,020 4,853 2.337 0.067 2.404 2.584 -0.180 1 L - 8 2 13:03:00 8,020 4,853 2.360 0.067 2.427 2.609 -0.182 0.023 0.001 1 L - 8 4 13:05:00 8,020 4,853 2.406 0.068 2.475 2.658 -0.183 0.047 0.002 1 L - 8 16 13:17:00 8,020 4,853 2.555 0.071 2.625 2.814 -0.189 0.081 0.004 1 U - 1 1 13:21:00 6,500 3,934 2.560 0.067 2.627 2.812 -0.186 0.004 1 U - 1 2 13:22:00 6,500 3,934 2.560 0.067 2.626 2.812 -0.186 0.067 0.067 2.626 2.812 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.361</td> <td>-0.140</td> <td>0.037</td> <td>0.000</td>									1.361	-0.140	0.037	0.000	
1 L - 8 1 13:02:00 8,020 4,853 2:337 0.067 2.404 2.584 -0.180 1 L - 8 2 13:03:00 8,020 4,853 2.360 0.067 2.427 2.609 -0.182 0.023 0.001 1 L - 8 4 13:05:00 8,020 4,853 2.475 0.069 2.544 2.730 -0.185 0.070 0.002 1 L - 8 16 13:17:00 8,020 4,853 2.555 0.071 2.625 2.814 -0.185 0.070 0.002 1 U - 1 1 13:21:00 6,500 3,934 2.560 0.067 2.627 2.812 -0.186 1 U - 1 2 13:22:00 6,500 3,934 2.560 0.067 2.627 2.812 -0.186 1 U - 2 1 13:26:30 4,930 2,984 2.551 0.059 2.609 2.786 -0.177 1 U - 2 2 13:27:30 4,930 2,984 2.551							0.052		1.405	-0.142	0.041	0.002	
1 L - 8 2 13:03:00 8,020 4,853 2.360 0.067 2.427 2.609 -0.182 0.023 0.001 1 L - 8 4 13:05:00 8,020 4,853 2.405 0.069 2.544 2.730 -0.185 0.070 0.002 1 L - 8 16 13:17:00 8,020 4,853 2.555 0.071 2.625 2.814 -0.185 0.070 0.002 1 L - 8 16 13:17:00 8,020 4,853 2.555 0.071 2.625 2.814 -0.185 0.070 0.002 1 U - 1 1 13:21:00 6,500 3,934 2.560 0.067 2.627 2.812 -0.186 1 U - 1 2 13:24:00 6,500 3,934 2.560 0.067 2.626 2.812 -0.186 1 U - 2 1 13:26:30 4,930 2,984 2.551 0.059 2.609 2.786 -0.177 1 U - 2 4 13:29:30 4,930 2,984 2.549 0.059 2.608 2.786 -0.177 <	1 L - 8		13:02:00	8,020	4,853			2.404	2.584	-0.180			
1 L - 8 4 13:05:00 8,020 4,853 2.406 0.068 2.475 2.658 -0.183 0.047 0.002 1 L - 8 8 13:09:00 8,020 4,853 2.475 0.069 2.544 2.730 -0.185 0.070 0.002 1 L - 8 16 13:17:00 8,020 4,853 2.555 0.071 2.625 2.814 -0.189 0.081 0.004 1 U - 1 1 13:21:00 6,500 3,934 2.560 0.067 2.627 2.812 -0.186 0.081 0.004 1 U - 1 4 13:22:00 6,500 3,934 2.560 0.067 2.6267 2.812 -0.186 0.086 0.086 0.087 2.627 2.812 -0.186 0.086 0.086 0.087 2.626 2.812 -0.186 0.088	1 L - 8	2	13:03:00		4,853				2.609	-0.182	0.023	0.001	
1 L - 8 8 13:09:00 8,020 4,853 2.475 0.069 2.544 2.730 -0.185 0.070 0.002 1 L - 8 16 13:17:00 8,020 4,853 2.555 0.071 2.625 2.814 -0.189 0.081 0.004 1 U - 1 1 13:21:00 6,500 3,934 2.560 0.067 2.627 2.812 -0.186 0.081 1 U - 1 2 13:22:00 6,500 3,934 2.560 0.067 2.626 2.812 -0.186 1 U - 1 4 13:24:00 6,500 3,934 2.560 0.067 2.626 2.812 -0.186 1 U - 2 1 13:26:30 4,930 2,984 2.551 0.059 2.609 2.786 -0.177 1 U - 2 2 13:27:30 4,930 2,984 2.549 0.059 2.609 2.786 -0.177 1 U - 3 1 13:32:00 3,280 1,986 2.532 0.048							0.068	2.475	2.658	-0.183	0.047	0.002	
1 U - 1 1 13:21:00 6,500 3,934 2.560 0.067 2.627 2.812 -0.186 1 U - 1 2 13:22:00 6,500 3,934 2.560 0.067 2.627 2.812 -0.186 1 U - 1 4 13:26:30 4,930 2,984 2.551 0.059 2.609 2.786 -0.177 1 U - 2 2 13:27:30 4,930 2,984 2.550 0.059 2.609 2.786 -0.177 1 U - 2 4 13:29:30 4,930 2,984 2.550 0.059 2.608 2.786 -0.177 1 U - 3 1 13:32:00 3,280 1,986 2.532 0.049 2.581 2.744 -0.163 1 U - 3 2 13:33:00 3,280 1,986 2.530 0.048 2.578 2.742 -0.164 1 U - 3 4 13:36:00 3,280 1,986 2.529 0.048 2.577 2.740 -0.162 1 U - 4 1 13:39:30 1,550 940 2.497 0.036 2.531										-0.185	0.070	0.002	
1 U - 1 1 13:21:00 6,500 3,934 2.560 0.067 2.627 2.812 -0.186 1 U - 1 2 13:22:00 6,500 3,934 2.560 0.067 2.627 2.812 -0.186 1 U - 1 4 13:26:30 4,930 2,984 2.551 0.059 2.609 2.786 -0.177 1 U - 2 2 13:27:30 4,930 2,984 2.550 0.059 2.609 2.786 -0.177 1 U - 2 4 13:29:30 4,930 2,984 2.550 0.059 2.608 2.786 -0.177 1 U - 3 1 13:32:00 3,280 1,986 2.532 0.049 2.581 2.744 -0.163 1 U - 3 2 13:33:00 3,280 1,986 2.530 0.048 2.578 2.742 -0.164 1 U - 3 4 13:36:00 3,280 1,986 2.529 0.048 2.577 2.740 -0.162 1 U - 4 1 13:39:30 1,550 940 2.497 0.036 2.531	1 L - 8	16	13:17:00	8,020	4,853	2.555	0.071	2.625	2.814	-0.189	0.081	0.004	
1 U - 1 2 13:22:00 6,500 3,934 2.560 0.067 2.627 2.812 -0.186 1 U - 1 4 13:24:00 6,500 3,934 2.560 0.067 2.626 2.812 -0.186 1 U - 2 1 13:26:30 4,930 2,984 2.551 0.059 2.609 2.786 -0.177 1 U - 2 2 13:27:30 4,930 2,984 2.550 0.059 2.609 2.786 -0.177 1 U - 2 4 13:29:30 4,930 2,984 2.550 0.059 2.608 2.786 -0.177 1 U - 3 1 13:32:00 3,280 1,986 2.532 0.049 2.581 2.744 -0.163 1 U - 3 2 13:33:00 3,280 1,986 2.530 0.048 2.578 2.742 -0.164 1 U - 3 4 13:35:00 3,280 1,986 2.529 0.048 2.577 2.740 -0.162 1 U - 4 1 13:39:30 1,550 940 2.497 0.036 2.531	1 U - 1	1						2.627	2.812	-0.186			
1 U - 1 4 13:24:00 6,500 3,934 2.560 0.067 2.626 2.812 -0.186 1 U - 2 1 13:26:30 4,930 2,984 2.551 0.059 2.609 2.786 -0.177 1 U - 2 2 13:27:30 4,930 2,984 2.550 0.059 2.609 2.786 -0.177 1 U - 2 4 13:29:30 4,930 2,984 2.549 0.059 2.608 2.785 -0.177 1 U - 3 1 13:32:00 3,280 1,986 2.532 0.049 2.581 2.744 -0.163 1 U - 3 2 13:33:00 3,280 1,986 2.532 0.048 2.578 2.742 -0.164 1 U - 3 4 13:35:00 3,280 1,986 2.529 0.048 2.577 2.740 -0.162 1 U - 4 1 13:39:30 1,550 940 2.497 0.036 2.531 2.674 -0.142 1 U - 4													
1 U - 2 1 13:26:30 4,930 2,984 2.551 0.059 2.609 2.786 -0.177 1 U - 2 2 13:27:30 4,930 2,984 2.550 0.059 2.609 2.786 -0.177 1 U - 2 4 13:29:30 4,930 2,984 2.549 0.059 2.608 2.785 -0.177 1 U - 3 1 13:32:00 3,280 1,986 2.532 0.049 2.581 2.744 -0.163 1 U - 3 2 13:35:00 3,280 1,986 2.529 0.048 2.578 2.742 -0.164 1 U - 3 4 13:35:00 3,280 1,986 2.529 0.048 2.577 2.740 -0.162 1 U - 4 1 13:39:30 1,650 940 2.497 0.036 2.533 2.675 -0.142 1 U - 4 2 13:40:30 1,550 940 2.495 0.036 2.531 2.674 -0.143 1 U - 5 1 13:47:30 0 0 2.455 0.017 2.472 2.567													
1 U - 2 2 13:27:30 4,930 2,984 2.550 0.059 2.609 2.786 -0.177 1 U - 2 4 13:29:30 4,930 2,984 2.549 0.059 2.608 2.785 -0.177 1 U - 3 1 13:32:00 3,280 1,986 2.532 0.049 2.581 2.744 -0.163 1 U - 3 2 13:33:00 3,280 1,986 2.530 0.048 2.578 2.742 -0.164 1 U - 3 4 13:35:00 3,280 1,986 2.529 0.048 2.577 2.740 -0.162 1 U - 4 1 13:39:30 1,550 940 2.497 0.036 2.533 2.675 -0.142 1 U - 4 2 13:40:30 1,550 940 2.495 0.036 2.531 2.674 -0.143 1 U - 4 4 13:42:30 1,550 940 2.483 0.027 2.509 2.638 -0.129 1 U - 5 1 13:47:30 0 0 2.455 0.017 2.472 2.567 -0.096 1 U - 5 2 13:48:30 0 0 2.455 0.017 2.471 2.565 -0.095 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.551</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						2.551							
1 U - 2 4 13:29:30 4,930 2,984 2.549 0.059 2.608 2.785 -0.177 1 U - 3 1 13:32:00 3,280 1,986 2.532 0.049 2.581 2.744 -0.163 1 U - 3 2 13:33:00 3,280 1,986 2.530 0.048 2.578 2.742 -0.164 1 U - 3 4 13:39:30 1,550 940 2.497 0.036 2.533 2.675 -0.142 1 U - 4 1 13:39:30 1,550 940 2.497 0.036 2.531 2.674 -0.142 1 U - 4 2 13:40:30 1,550 940 2.485 0.036 2.531 2.674 -0.143 1 U - 4 4 13:42:30 1,550 940 2.483 0.027 2.509 2.638 -0.129 1 U - 5 1 13:47:30 0 0 2.455 0.017 2.472 2.567 -0.096 1 U - 5 2 13:48:30 0 0 2.454 0.017 2.471 2.565 -0.095 1 U - 5 4 13:50:30 0 0 2.452 0.017 2.469 2.563 -0.093 <td></td>													
1 U - 3 1 13:32:00 3,280 1,986 2.532 0.049 2.581 2.744 -0.163 1 U - 3 2 13:33:00 3,280 1,986 2.530 0.048 2.578 2.742 -0.164 1 U - 3 4 13:35:00 3,280 1,986 2.529 0.048 2.577 2.740 -0.162 1 U - 4 1 13:39:30 1,550 940 2.497 0.036 2.533 2.675 -0.142 1 U - 4 2 13:40:30 1,550 940 2.495 0.036 2.531 2.674 -0.143 1 U - 4 4 13:42:30 1,550 940 2.483 0.027 2.509 2.638 -0.129 1 U - 5 1 13:47:30 0 0 2.455 0.017 2.472 2.567 -0.096 1 U - 5 2 13:48:30 0 0 2.455 0.017 2.471 2.565 -0.095 1 U - 5 4 13:50:30 0 0 2.452 0.017 2.469 2.563 -0.093													
1 U - 3 2 13:33:00 3,280 1,986 2.530 0.048 2.578 2.742 -0.164 1 U - 3 4 13:36:00 3,280 1,986 2.529 0.048 2.577 2.740 -0.162 1 U - 4 1 13:39:30 1,550 940 2.497 0.036 2.533 2.675 -0.142 1 U - 4 2 13:40:30 1,550 940 2.495 0.036 2.531 2.674 -0.143 1 U - 4 4 13:42:30 1,550 940 2.483 0.027 2.509 2.638 -0.129 1 U - 5 1 13:47:30 0 0 2.455 0.017 2.472 2.567 -0.096 1 U - 5 2 13:48:30 0 0 2.455 0.017 2.471 2.565 -0.095 1 U - 5 4 13:50:30 0 0 2.452 0.017 2.469 2.563 -0.093													
1 U - 3 4 13:35:00 3,280 1,986 2.529 0.048 2.577 2.740 -0.162 1 U - 4 1 13:39:30 1,550 940 2.497 0.036 2.533 2.675 -0.142 1 U - 4 2 13:40:30 1,550 940 2.495 0.036 2.531 2.674 -0.143 1 U - 4 4 13:42:30 1,550 940 2.483 0.027 2.509 2.638 -0.129 1 U - 5 1 13:47:30 0 0 2.455 0.017 2.472 2.567 -0.096 1 U - 5 2 13:48:30 0 0 2.454 0.017 2.471 2.565 -0.095 1 U - 5 4 13:50:30 0 0 2.452 0.017 2.469 2.563 -0.093													
1 U - 4 1 13:39:30 1,550 940 2.497 0.036 2.533 2.675 -0.142 1 U - 4 2 13:40:30 1,550 940 2.495 0.036 2.531 2.674 -0.143 1 U - 4 4 13:42:30 1,550 940 2.483 0.027 2.509 2.638 -0.129 1 U - 5 1 13:47:30 0 0 2.455 0.017 2.472 2.567 -0.096 1 U - 5 2 13:48:30 0 0 2.454 0.017 2.471 2.565 -0.095 1 U - 5 4 13:50:30 0 0 2.452 0.017 2.469 2.563 -0.093													
1 U - 4 2 13:40:30 1,550 940 2.495 0.036 2.531 2.674 -0.143 1 U - 4 4 13:42:30 1,550 940 2.483 0.027 2.509 2.638 -0.129 1 U - 5 1 13:47:30 0 0 2.455 0.017 2.472 2.567 -0.096 1 U - 5 2 13:48:30 0 0 2.454 0.017 2.471 2.565 -0.095 1 U - 5 4 13:50:30 0 0 2.452 0.017 2.469 2.563 -0.093													
1 U - 4 4 13:42:30 1,550 940 2.483 0.027 2.509 2.638 -0.129 1 U - 5 1 13:47:30 0 0 2.455 0.017 2.472 2.567 -0.096 1 U - 5 2 13:48:30 0 0 2.454 0.017 2.471 2.565 -0.095 1 U - 5 4 13:50:30 0 0 2.452 0.017 2.469 2.563 -0.093													
1 U - 5 1 13:47:30 0 0 2.455 0.017 2.472 2.567 -0.096 1 U - 5 2 13:48:30 0 0 2.454 0.017 2.471 2.565 -0.095 1 U - 5 4 13:50:30 0 0 2.452 0.017 2.469 2.563 -0.093													
1 U - 5 2 13:48:30 0 0 2.454 0.017 2.471 2.565 -0.095 1 U - 5 4 13:50:30 0 0 2.452 0.017 2.469 2.563 -0.093													
1 U - 5 4 13:50:30 0 0 2.452 0.017 2.469 2.563 -0.093					_								
			13:54:30						2.560	-0.092			

Strain Gage Readings and Loads at Levels 1, 2 and 3 TS-1 - US 52 over ICE & Mill Creek - Jackson Co., IA

Load	Hold	Time	0-0	- 03 J.	Level 1 Level 2					Level 3			
Test	Time	13110	Pressure	Load	A - 22530	B - 22531	Av Load	A - 22532		Av Load	A - 22534	B - 22535	Av. Load
Increment		(h:m:s)	(psi)	(kips)	(με)	(με)	(kips)	(με)	(με)	(kips)	(με)	(με)	(kips)
1 L - 0	(1111110100)	11:01:30	0	0		0.0	000	0.0	0.0	0	0.0	0.0	0
1L-1	1	11:20:30	1,750	1,061	137.9	249.1	956	98.7	153.3	622	66.9	82.4	369
1L-1	2	11:21:30	1,750	1,061	140.2	252.3	969	100.6	155.6	633	68.4	83.8	376
1 L - 1	4	11:23:30	1,750	1,061	140.4	253.2	972	101.3	156.5	637	69.0	84.5	379
1 L-1	8	11:27:30	1,750	1,061	141.4	254.9	979	102.2	157.7	642	69.7	85.4	383
1L-2	1	11:29:00	2,460	1,491	191.5	316.8	1255	140.9	196.0	832	93.2	108.3	498
1 L - 2	2	11:30:00	2,460	1,491	192.7	318.6	1263	142.2	197.4	839	94.2	109.3	503
1 L - 2	4	11:32:00	2,460	1,491	193.5	320.3	1269	143.4	198.8	845	95.2	110.1	507
1 L - 2	8	11:36:00	2,460	1,491	194.5	322.0	1276	144.6	200.0	851	96.1	111.0	512
1 L - 3	1	11:50:00	3,050	1,847	234.2	369.9	1492	171.1	226.5	982	109.4	123.8	576
1 L - 3	2	11:51:00	3,050	1,847	236.8	373.4	1507	172.8	228.4	991	110.3	124.8	581
1 L - 3	4	11:53:00	3,050	1,847	236.1	373.7	1506	172.5	228.7	991	110.3	125.1	581
1 L - 3	8	11:57:00	3,050	1,847	235.5	374.1	1506	172.3	229.0	991	110.7	126.0	585
1 L - 4	1	12:00:00	4,100	2,482	301.2	494.4	1965	213.2	301.6	1272	133.1	169.4	747
1 L - 4	2	12:01:00	4,100	2,482		498.8	1975	213.7	303.8	1278	133.0	170.6	750
1 L - 4	4	12:03:00	4,100	2,482	300.5	503.3	1985	214.1	305.6	1284	133.0	171.7	752
1 L - 4	8	12:07:00	4,100	2,482	301.2	509.6	2003	215.4	308.2	1293	133.3	173.0	757
1 L - 5	1	12:11:00	5,200	3,148	354.6	657.6	2500	264.0	390.6	1617	152.0	225.7	933
1 L - 5	2	12:12:00	5,200	3,148		665.2	2517	265.8	393.5	1628	151.2	227.4	935
1 L - 5	4	12:14:00	5,200	3,148		672.3	2532	267.4	395.9	1638	150.4	228.6	936
1L-5	8	12:18:00	5,200	3,148	352.4	680.4	2551	269.4	398.3	1649	149.5	229.5	936
1L-6	1	12:21:30	6,070	3,674	385.6	806.2	2944	321.6	465.7	1945	165.1	276.3	1090
1L-6	2	12:22:30	6,070	3,674	385.3	813.9	2962	323.7	468.4	1956	164.8	277.9	1093
1 L - 6	4	12:24:30	6,070	3,674	385.3	823.5	2986	326.9	471.2	1971	164.7	279.4	1097
1L-6	8	12:28:30	6,070	3,674	384.1	833.5	3008	329.6	473.9	1985	164.4	281.2	1101
1 L - 7	1	12:36:30	7,040	4,260	431.7	993.4	3520	408.7	549.6	2367	183.5	345.2	1306
1 L - 7	2	12:37:30	7,040	4,260		999.4	3537	412.2	551.8	2381	183.5	347.7	1312
1L-7	4	12:39:30	7,040	4,260 4,260		1007.8 1016.8	3562 3587	417.1 421.8	554.8 556.9	2400 2417	183.3 182.3	351.0 353.9	1320 1324
1L-7 1L-8	8	12:43:30 13:02:00	7,040 8,020	4,260	499.2	1236.0	4286	553.4	676.4	3038	194.8	461.9	1622
1L-8	2	13:02:00	8,020	4,653 4,853	501.0	1238.7	4290 4297	555.8	677.5	3046	194.7	463.2	1625
1L-8	4	13:05:00	8,020	4,853		1246.4	4321	560.1	681.7	3067	194.8	466.5	1634
1 L - 8	8	13:09:00	8,020	4,853	506.4	1257.2	4356	566.7	686.0	3094	194.5	470.3	1642
1 L - 8	16	13:17:00	8,020	4,853	515.0	1274.6	4420	578.8	693.8	3143	195.9	476.1	1660
10 1	1	13:21:00	6,500	3,934	430.6	1224.4	4088	520.9	660.0	2917	168.6	453.0	1535
10-1	2	13:22:00	6,500	3,934	430.0	1223.7	4085	520.2	659.2	2913	167.9	452.3	1532
10-1	4	13:24:00	6,500	3,934	429.0	1221.9	4078	518.7	657.6	2906	167.0	451.1	1527
1U-2	1	13:26:30	4,930	2,984	308.9	1117.9	3524	425.0	595.3	2520	123.6	412.0	1323
1 U - 2	2	13:27:30	4,930	2,984	309.1	1118.3	3526	424.8	595.2	2519	123.2	411.8	1321
1U-2	4	13:29:30	4,930	2,984	309.2	1118.6	3527	424.6	594.8	2518	123.0	411.6	1320
1U-3	1	13:32:00	3,280	1,986	154.8	958.9	2751	299.1	493.4	1958	62.8	348.9	1017
1U-3	2	13:33:00	3,280	1,986	151.3	957.8	2739	296.6	491.8	1947	61.4	348.1	1011
1U-3	4	13:35:00	3,280	1,986	149.7	954.4	2727	294.2	489.8	1936	60.2	347.1	1006
1 U - 4	1	13:39:30	1,550	940	-72.6	742.2	1654	157.6	345.7	1243	-8.5	258.2	617
1U-4	2	13:40:30	1,550	940	-69.1	745.0	1670	159.3	346.9	1250	-8.6	257.5	615
1U-4	4	13:42:30	1,550	940	-187.1	576.5	962	65.7	233.7	739	-55.7	183.0	314
1U-5	1	13:47:30	0	0	-192.9	366.7	429	-3.1	128.6	310	-85.7	125.2	98
10-5	2	13:48:30	0	0	-192.4	363.0	421	-3.7	127.7	306	-85.2	125.0	98
1U-5	4	13:50:30	0	0	-191.3	357.9	412	-4.7	126.5	301	-84.0	124.7	100
1U-5	8	13:54:30	0	0	-190.0	351.6	399	-5.5	125.7	297	-84.6	125.0	100

TS-1 - US 52 over ICE & Mill Creek Jackson Co., IA (LT-9466)

APPENDIX B

O-CELL AND INSTRUMENTATION CALIBRATION SHEETS

PRESSURE	LOAD	LOAD	LOAD
PSI	KIPS	KIPS	KIPS
0	0	0	10
500	298	297	296
1000	603	600	600
1500	918	916	910
2000	1222	1217	1211
2500	1531	1522	1513
3000	1831	1827	1813
3500	2129	2123	2113
4000	2436	2421	2414
4500	2734	2721	2708
5000	3033	3013	3005

3 INCH

5 INCH

1 INCH

STROKE:

34" O-CELL, SERIAL # 34-6-00048

LOAD CONVERSION FORMULA LOAD = PRESSURE * 0.6048 + (2.70){KIPS} {PSI}

Regression Output:

Constant	2.7016 kips
X Coefficient	0.6048 kip / psi
R Square	0.9999
No. of Observations	30
Degrees of Freedom	28
Std Err of Y Est	9.47
Std Err of X Coeff	0.0012

CALIBRATION STANDARDS:

All data presented are derived from 6" dia. certified hydraulic pressure gauges and electronic load transducer, manufactured and calibrated by the University of Illinois at Champaign, Illinois. All calibrations and certifications are traceable through the Laboratory Master Deadweight Gauges directly to the National Institute of Standards and Technology. No specific guidelines exist for calibration of load test jacks and equipment but procedures comply with similar guidelines for calibration of gages, ANSI specifications B40.1.

* AE & FC CUSTOMER: LOADTEST Inc

* AE & FC JOB NO: \$Q4260

* CUSTOMER P.O. NO.: LT-9466

* CONTRACTOR .: LONGFELLOW DRILLING

* JOB LOCATION: CLEARFIELD, IA

DATED: 10/22/08

SUDATE: 10-29-08 SERVICE ENGINEER:

150 mm Range:

Calibration Date: August 26, 2008

Serial Number: 08-19360

Temperature: 24.4 °C

Calibration Instruction: CI-4400

Technician:

GK-401 Reading Position B

		· · · · · · · · · · · · · · · · · · ·		1			**
Actual	Gage	Gage	Average	Calculated	Error	Calculated	Error
Displacement	Reading	Reading	Gage	Displacement	Linear	Displacement	Polynomial
(mm)	1st Cycle	2nd Cycle	Reading	(Linear)	(%FS)	(Polynomial)	(%FS)
0.0	2563	2560	2562	-0.10	-0.07	0.08	0.06
30.0	3526	3520	3523	29.89	-0.07	29.86	-0.10
60.0	4493	4492	4493	60.13	0.09	59.99	-0.01
90.0	5457	5457	5457	90.22	0.15	90.07	0.05
120.0	6415	6414	6415	120.09	0.06	120.05	0.03
150.0	7366	7366	7366	149.77	-0.16	149.95	-0.03

(mm) Linear Gage Factor (G): ____0.03119 ___ (mm/ digit)

Regression Zero:

Polynomial Gage Factors:

A: 5.90818E-08

0.03061

C: -78.703

(inches) Linear Gage Factor (G): 0.001228 (inches/digit)

Polynomial Gage Factors:

A: 2.32606E-09

B: 0.001205

C: -3.0985

Calculated Displacement:

Linear, $D = G(R_1 - R_0)$

Polynomial, $D = AR_1^2 + BR_1 + C$

Refer to manual for temperature correction information.

Function Test at Shipment:

5001

 $Temp(T_0)$: GK-401 Pos. B:

October 28, 2008

The above instrument was found to be in tolerance in all operating ranges.

150 mm Range:

Calibration Date: August 26, 2008

Serial Number: 08-19361

Temperature: 24.4 °C

Calibration Instruction: CI-4400

Technician:

GK-401 Reading Position B

Actual	Gage	Gage	Average	Calculated	Error	Calculated	Error
Displacement	Reading	Reading	Gage	Displacement	Linear	Displacement	Polynomial
(mm)	1st Cycle	2nd Cycle	Reading	(Linear)	(%FS)	(Polynomial)	(%FS)
0.0	2627	2625	2626	-0.14	-0.09	0.06	0.04
30.0	3585	3585	3585	29.99	0.00	29.95	-0.03
60.0	4541	4540	4541	60.01	0.01	59.85	-0.10
90.0	5503	5502	5503	90.24	0.16	90.08	0.05
120.0	6455	6456	6456	120.18	0.12	120.15	0.10
150.0	7395	7395	7395	149.70	-0.20	149.90	-0.07

(mm) Linear Gage Factor (G): 0.03142 (mm/ digit)

Regression Zero: 2630

Polynomial Gage Factors:

A: 6.60885E-08

B: 0.03076

C: -81.160

(inches) Linear Gage Factor (G): 0.001237 (inches/ digit)

Polynomial Gage Factors:

A: 2.60191E-09

B: 0.001211

-3.1953

Calculated Displacement:

Linear, $D = G(R_1 - R_0)$

Polynomial, $D = AR_1^2 + BR_1 + C$

Refer to manual for temperature correction information.

Function Test at Shipment:

GK-401 Pos. B:

25.6 °C $Temp(T_0)$:

October 28, 2008

The above instrument was found to be in tolerance in all operating ranges.

Range: 150 mm

Calibration Date: August 26, 2008

Serial Number: 08-19362

Temperature: 24.4 °C

Calibration Instruction: CI-4400

Technician:

GK-401 Reading Position B

Actual	Gage	Gage	Average	Calculated	Error	Calculated	Error
Displacement	Reading	Reading	Gage	Displacement	Linear	Displacement	Polynomial
(mm)	1st Cycle	2nd Cycle	Reading	(Linear)	(%FS)	(Polynomial)	(%FS)
0.0	2577	2577	2577	-0.26	-0.18	0.00	0.00
30.0	3551	3549	3550	30.04	0.03	29.99	-0.01
60.0	4520	4519	4520	60.24	0.16	60.03	0.02
90.0	5481	5481	5481	90.19	0.13	89.98	-0.01
120.0	6440	6439	6440	120.04	0.03	119.99	0.00
150.0	7393	7393	7393	149.74	-0.17	150.01	0.00

(mm) Linear Gage Factor (G): 0.03115 (mm/ digit)

Regression Zero: 2585

Polynomial Gage Factors:

A: 8.48418<u>E-08</u>

B: 0.03030

C: -78.651

(inches) Linear Gage Factor (G): 0.001226 (inches/ digit)

Polynomial Gage Factors: A: 3.34023E-09

B: 0.001193

C: -3.0965

Calculated Displacement:

Linear, $D = G(R_1 - R_0)$

Polynomial, $D = AR_1^2 + BR_1 + C$

Refer to manual for temperature correction information.

Function Test at Shipment:

5018 GK-401 Pos. B : _

 $Temp(T_0)$:

October 28, 2008

The above instrument was found to be in tolerance in all operating ranges.

25 mm Range:

Calibration Date: September 25, 2008

Serial Number: 08-20341

Temperature: 23.9 °C

Calibration Instruction: CI-4400

Technician:

GK-401 Reading Position B

				,	·		
Actual	Gage	Gage	Average	Calculated	Error	Calculated	Error
Displacement	Reading	Reading	Gage	Displacement	Linear	Displacement	Polynomial
(mm)	1st Cycle	2nd Cycle	Reading	(Linear)	(%FS)	(Polynomial)	(%FS)
0.0	2144	2141	2143	-0.06	-0.24	-0.01	-0.03
5.0	3320	3318	3319	5.02	0.09	5.01	0.05
10.0	4484	4479	4482	10.04	0.18	10.00	0.01
15.0	5638	5636	5637	15.04	0.14	14.99	-0.02
20.0	6788	6785	6787	20.00	0.00	19.99	-0.04
25.0	7934	7933	7934	24.96	-0.18	25.01	0.03

(mm) Linear Gage Factor (G): 0.004320 (mm/ digit)

Regression Zero: 2156

Polynomial Gage Factors:

A: 1.1486E-08

B: 0.004204

C: -9.0668

(inches) Linear Gage Factor (G): 0.0001701 (inches/ digit)

Polynomial Gage Factors:

A: 4.52203E-10

B: 0.0001655

C: -0.35696

Calculated Displacement:

Linear, $D = G(R_1 - R_0)$

Polynomial, $D = AR_1^2 + BR_1 + C$

Refer to manual for temperature correction information.

Function Test at Shipment:

GK-401 Pos. B: 4805

Temp(T_0): 25.3 °C

Date: October 28, 2008

The above instrument was found to be in tolerance in all operating ranges.

25 mm Range:

Calibration Date: September 25, 2008

Temperature: 23.9 °C

Calibration Instruction: CI-4400

Technician:

GK-401 Reading Position B

Serial Number: 08-20342

Gage	Gage	Average	Calculated	Error	Calculated	Error
Reading	Reading	Gage	Displacement	Linear	Displacement	Polynomial
1st Cycle	2nd Cycle	Reading	(Linear)	(%FS)	(Polynomial)	(%FS)
	2089	2090	-0.06	-0.25	-0.01	-0.03
	3249	3250	5.02	0.09	5.01	0.05
	4394	4395	10.04	0.18	10.00	0.01
·	5533	5534	15.04	0.14	14.99	-0.03
	1	6668	20.01	0.02	20.00	-0.02
	1	7796	24.95	-0.20	25.00	0.02
	_	Reading Reading 1st Cycle 2nd Cycle 2090 2089 3250 3249 4396 4394 5534 5533 6668 6667	Reading Reading Gage 1st Cycle 2nd Cycle Reading 2090 2089 2090 3250 3249 3250 4396 4394 4395 5534 5533 5534 6668 6667 6668	Reading 1st Cycle Reading 2nd Cycle Gage Reading Reading Displacement (Linear) 2090 2089 2090 -0.06 3250 3249 3250 5.02 4396 4394 4395 10.04 5534 5533 5534 15.04 6668 6667 6668 20.01	Reading Reading Gage Displacement (Linear) Linear 1st Cycle 2nd Cycle Reading (Linear) (%FS) 2090 2089 2090 -0.06 -0.25 3250 3249 3250 5.02 0.09 4396 4394 4395 10.04 0.18 5534 5533 5534 15.04 0.14 6668 6667 6668 20.01 0.02	Reading 1st Cycle Reading 2nd Cycle Gage Reading Reading Displacement (Linear) Linear (%FS) Displacement (Polynomial) 2090 2089 2090 -0.06 -0.25 -0.01 3250 3249 3250 5.02 0.09 5.01 4396 4394 4395 10.04 0.18 10.00 5534 5533 5534 15.04 0.14 14.99 6668 6667 6668 20.01 0.02 20.00

(mm) Linear Gage Factor (G): 0.004383 (mm/ digit)

2103 Regression Zero:

Polynomial Gage Factors:

A: 1.23953E-08

B: 0.004261

C: -8.9642

(inches) Linear Gage Factor (G): __0.0001726__ (inches/ digit)

Polynomial Gage Factors:

A: 4.88003E-10

B: 0.0001677

-0.35292

Calculated Displacement:

Linear, $D = G(R_1 - R_0)$

Polynomial, $D = AR_1^2 + BR_1 + C$

Refer to manual for temperature correction information.

Function Test at Shipment:

GK-401 Pos. B: 4576

Temp (T_0) : 25.4 °C

Date: October 28, 2008

The above instrument was found to be in tolerance in all operating ranges.

Model Number : 4911-4

Date of Calibration: October 3, 2008

Serial Number: 08-22530

Cable Length: 36 ft.

Prestress: 35,000 psi

Factory Zero Reading: 6882

Temperature: 23.1 °C

Regression Zero: 6911

Calibration Instruction: CI-VW Rebar

Technician:

Applied Load:		Linearity			
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	6964	6961	6963		
1,500	7632	7632	7632	670	-0.13
3,000	8365	8361	8363	731	0.08
4,500	9088	9091	9090	727	0.14
6,000	9811	9808	9810	720	-0.03
100	6962				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.349 microstrain/ digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max. Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Model Number: 4911-4

Date of Calibration: October 3, 2008

Serial Number: 08-22531

Cable Length: 36 ft.

Prestress: 35,000 psi

Factory Zero Reading: 6980

Temperature: 23.4 °C

Regression Zero: 7012

Calibration Instruction: CI-VW Rebar

Technician:

Applied Load:		Linearity			
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100 1,500 3,000 4,500 6,000 100	7068 7727 8450 9179 9901 7068	7067 7729 8448 9177 9898	7068 7728 8449 9178 9900	661 721 729 722	-0.18 -0.18 0.10 0.11

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.350 microstrain/ digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max.Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Model Number: 4911-4

Date of Calibration: October 3, 2008

Serial Number: 08-22532

Cable Length: 34 ft.

Prestress: 35,000 psi

Factory Zero Reading: 7041

Temperature: 23.1 °C

Regression Zero: 7074

Calibration Instruction: CI-VW Rebar

Technician:

Applied Load:		Linearity			
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	7134	7125	7130		
1,500	7785	7782	7784	654	-0.14
3,000	8493	8496	8495	711	-0.23
4,500	9220	9214	9217	723	0.08
6,000	9932	9933	9933	716	0.15
100	7127				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.353 microstrain/ digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max. Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Model Number: 4911-4

Date of Calibration: October 3, 2008

Serial Number: 08-22533

Cable Length: 34 ft.

Prestress: 35,000 psi

Factory Zero Reading: 6737

Temperature: 23.2 °C

Regression Zero: 6772

Calibration Instruction: CI-VW Rebar

Technician:

···	Linearity			
Cycle #1	Cycle #2	Average	Change	% Max.Load
6821	6824	6823		
	7475	7473	650	-0.14
	8179	8179	707	-0.07
	8888	8889	710	0.11
9590	9589	9590	701	-0.01
6825			ļ	
	6821 7470 8179 8889 9590	Cycle #1 Cycle #2 6821 6824 7470 7475 8179 8179 8889 8888 9590 9589	6821 6824 6823 7470 7475 7473 8179 8179 8179 8889 8888 8889 9590 9589 9590	Cycle #1 Cycle #2 Average Change 6821 6824 6823 7470 7475 7473 650 8179 8179 707 8889 8888 8889 710 9590 9589 9590 701

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.356_microstrain/ digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max.Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

Model Number: 4911-4

Date of Calibration: October 3, 2008

Serial Number: 08-22534

Cable Length: 32 ft.

Prestress: 35,000 psi

Factory Zero Reading: 7031

Temperature: 23.0 °C

Regression Zero: 7065

Calibration Instruction: CI-VW Rebar

Technician: Elica

Applied Load:		Linearity			
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100 1,500 3,000 4,500 6,000 100	7117 7784 8512 9234 9954 7114	7113 7785 8507 9229 9950	7115 7785 8510 9232 9952	670 725 722 721	-0.08 0.04 0.04 0.00

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: <u>0.350</u> microstrain/ digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max.Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Model Number:	4911-4	Date of Calibration:	October 3, 2008
_			

Serial Number: 08-22535 Cable Length: 32 ft.

Prestress: 35,000 psi Factory Zero Reading: 6752

Temperature: 23.3 °C Regression Zero: 6782

Calibration Instruction: CI-VW Rebar Technician: Elica

Applied Load:		Linearity			
(pounds)	Cycle #1	Cycle #2	Average	Change	% Max.Load
100	6838	6834	6836		ı
1,500	7484	7484	7484	648	-0.24
3,000	8198	8198	8198	714	-0.06
4,500	8913	8909	8911	713	0.09
6,000	9622	9616	9619	708	0.06
100	6835				

For conversion factor, load to strain, refer to table C-2 of the Installation Manual.

Gage Factor: 0.354 microstrain/ digit (GK-401 Pos."B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load-Applied Load)/ Max.Applied Load) X 100 percent The above instrument was found to be In Tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

TS-1 - US 52 over ICE & Mill Creek Jackson Co., IA (LT-9466)

APPENDIX C

CONSTRUCTION OF THE EQUIVALENT TOP-LOADED LOAD-SETTLEMENT CURVE

CONSTRUCTION OF THE EQUIVALENT TOP-LOADED LOAD-SETTLEMENT CURVE FROM THE RESULTS OF AN O-CELL TEST (August, 2000)

<u>Introduction</u>: Some engineers find it useful to see the results of an O-cell load test in the form of a curve showing the load versus settlement of a top-loaded driven or bored pile (drilled shaft). We believe that an O-cell test can provide a good estimate of this curve when using the method described herein.

Assumptions: We make the following assumptions, which we consider both reasonable and usually conservative:

- 1. The end bearing load-movement curve in a top-loaded shaft has the same loads for a given movement as the net (subtract buoyant weight of pile above O-cell) end bearing load-movement curve developed by the bottom of the O-cell when placed at or near the bottom of the shaft.
- 2. The side shear load-movement curve in a top-loaded shaft has the same net shear, multiplied by an adjustment factor 'F', for a given downward movement as occurred in the O-cell test for that same movement at the top of the cell in the upward direction. The same applies to the upward movement in a top-loaded tension test. Unless noted otherwise, we use the following adjustment factors:
 - (a) F = 1.00 in all rock sockets and for primarily cohesive soils in compression
 - (b) F = 0.95 in primarily cohesionless soils
 - (c) F = 0.80 for all soils in top load tension tests.
- 3. We initially assume the pile behaves as a rigid body, but include the elastic compressions that are part of the movement data obtained from an O-cell test (OLT). Using this assumption, we construct an equivalent top-load test (TLT) movement curve by the method described below in Procedure Part II. We then use the following Procedure Part II to correct for the effects of the additional elastic compressions in a TLT.
- 4. Consider the case with the O-cell, or the bottom O-cell of more than one level of cells, placed some distance above the bottom of the shaft. We assume the part of the shaft below the cell, now top-loaded, has the same load-movement behavior as when top-loading the entire shaft. For this case the subsequent "end bearing movement curve" refers to the movement of the entire length of shaft below the cell.

<u>Procedure Part I</u>: Please refer to the attached <u>Figure A</u> showing O-cell test results and to <u>Figure B</u>, the constructed equivalent top loaded settlement curve. Note that each of the curves shown has points numbered from 1 to 12 such that the same point number on each curve has the same magnitude of movement. For example, point 4 has an upward and downward movement of 0.40 inches in <u>Figure A</u> and the same 0.40 inches downward in Figure B.

Note: This report shows the O-cell movement data in a Figure similar to Fig. A, but uses the gross loads as obtained in the field. Fig. A uses net loads to make it easier for the reader to convert Fig. A into Fig. B without the complication of first converting gross to net loads. For conservative reconstruction of the top loaded

settlement curve we first convert both of the O-cell components to net load.

Using the above assumptions, construct the equivalent curve as follows: Select an arbitrary movement such as the 0.40 inches to give point 4 on the shaft side shear load movement curve in Figure A and record the 2,090 ton load in shear at that movement. Because we have initially assumed a rigid pile, the top of pile moves downward the same as the bottom. Therefore, find point 4 with 0.40 inches of upward movement on the end bearing load movement curve and record the corresponding load of 1,060 tons. Adding these two loads will give the total load of 3,150 tons due to side shear plus end bearing at the same movement and thus gives point 4 on the Figure B load settlement curve for an equivalent top-loaded test.

One can use the above procedure to obtain all the points in <u>Figure B</u> up to the component that moved the least at the end of the test, in this case point 5 in side shear. To take advantage of the fact that the test produced end bearing movement data up to point 12, we need to make an extrapolation of the side shear curve. We usually use a convenient and suitable hyperbolic curve fitting technique for this extrapolation. Deciding on the maximum number of data points to provide a good fit (a high r^2 correlation coefficient) requires some judgment. In this case we omitted point 1 to give an $r^2 = 0.999$ (including point 1 gave an $r^2 = 0.966$) with the result shown as points 6 to 12 on the dotted extension of the measured side shear curve. Using the same movement matching procedure described earlier we can then extend the equivalent curve to points 6 to 12. The results, shown in <u>Figure B</u> as a dashed line, signify that this part of the equivalent curve depends partly on extrapolated data.

Sometimes, if the data warrants, we will use extrapolations of both side shear and end bearing to extend the equivalent curve to a greater movement than the maximum measured (point 12). An appendix in this report gives the details of the extrapolation(s) used with the present O-cell test and shows the fit with the actual data.

Procedure Part II: The elastic compression in the equivalent top load test always exceeds that in the O-cell test. It not only produces more top movement, but also additional side shear movement, which then generates more side shear, which produces more compression, etc... An exact solution of this load transfer problem requires knowing the side shear vs. vertical movement (t-y) curves for a large number of pile length increments and solving the resulting set of simultaneous equations or using finite element or finite difference simulations to obtain an approximate solution for these equations. We usually do not have the data to obtain the many accurate t-y curves required. Fortunately, the approximate solution described below usually suffices.

The attached analysis p. 6 gives the equations for the elastic compressions that occur in the OLT with one or two levels of O-cells. Analysis p. 7 gives the equations for the elastic compressions that occur in the equivalent TLT. Both sets of equations do not include the elastic compression below the O-cell because the same compression takes place in both the OLT and the TLT. This is equivalent to taking $\rm L_3$ = 0. Subtracting the OLT from the TLT compression gives the desired additional elastic compression at the top of the TLT. We then add the additional elastic compression to the 'rigid' equivalent curve obtained from Part I to obtain the final, corrected equivalent load-settlement curve for the TLT on the same pile as the actual OLT.

Note that the above pp. 6 and 7 give equations for each of three assumed patterns of developed side shear stress along the pile. The pattern shown in the center of the three applies to any approximately determined side shear distribution. Experience has shown the initial solution for the additional elastic compression, as described above, gives an adequate and slightly conservative (high) estimate of the additional compression versus more sophisticated load-transfer analyses as described in the first paragraph of this Part II

The analysis p. 8 provides an example of calculated results in English units on a hypothetical 1-stage, single level OLT using the simplified method in Part II with the centroid of the side shear distribution 44.1% above the base of the O-cell. <u>Figure C</u> compares the corrected with the rigid curve of <u>Figure B</u>. Page 9 contains an example equivalent to that above in SI units.

The final analysis p. 10 provides an example of calculated results in English units on a hypothetical 3-stage, multi level OLT using the simplified method in Part II with the centroid of the combined upper and middle side shear distribution 44.1% above the base of the bottom O-cell. The individual centroids of the upper and middle side shear distributions lie 39.6% and 57.9% above and below the middle O-cell, respectively. Figure E compares the corrected with the rigid curve. Page 11 contains an example equivalent to that above in SI units.

<u>Other Tests</u>: The example illustrated in <u>Figure A</u> has the maximum component movement in end bearing. The procedures remain the same if the maximum test movement occurred in side shear. Then we would have extrapolated end bearing to produce the dashed-line part of the reconstructed top-load settlement curve.

The example illustrated also assumes a pile top-loaded in compression. For a pile top-loaded in tension we would, based on Assumptions 2. and 3., use the upward side shear load curve in <u>Figure A</u>, multiplied by the F = 0.80 noted in Assumption 2., for the equivalent top-loaded displacement curve.

Expected Accuracy: We know of only five series of tests that provide the data needed to make a direct comparison between actual, full scale, top-loaded pile movement behavior and the equivalent behavior obtained from an O-cell test by the method described herein. These involve three sites in Japan and one in Singapore, in a variety of soils, with three compression tests on bored piles (drilled shafts), one compression test on a driven pile and one tension test on a bored pile. The largest bored pile had a 1.2-m diameter and a 37-m length. The driven pile had a 1-m increment modular construction and a 9-m length. The largest top loading = 28 MN (3,150 tons).

The following references detail the aforementioned Japanese tests and the results therefrom:

Kishida H. et al., 1992, "Pile Loading Tests at Osaka Amenity Park Project," Paper by Mitsubishi Co., also briefly described in Schmertmann (1993, see bibliography). Compares one drilled shaft in tension and another in compression.

Ogura, H. et al., 1995, "Application of Pile Toe Load Test to Cast-in-place

Concrete Pile and Precast Pile," special volume 'Tsuchi-to-Kiso' on Pile Loading Test, Japanese Geotechnical Society, Vol. 3, No. 5, Ser. No. 448. Original in Japanese. Translated by M. B. Karkee, GEOTOP Corporation. Compares one drilled shaft and one driven pile, both in compression.

We compared the predicted equivalent and measured top load at three top movements in each of the above four Japanese comparisons. The top movements ranged from ¼ inch (6 mm) to 40 mm, depending on the data available. The (equiv./meas.) ratios of the top load averaged 1.03 in the 15 comparisons with a coefficient of variation of less than 10%. We believe that these available comparisons help support the practical validity of the equivalent top load method described herein.

- L. S. Peng, A. M. Koon, R. Page and C. W. Lee report the results of a class-A prediction by others of the TLT curve from an Osterberg cell test on a 1.2 m diameter, 37.2 m long bored pile in Singapore, compared to an adjacent pile with the same dimensions actually top-loaded by kentledge. They report about a 4% difference in ultimate capacity and less than 8% difference in settlements over the 1.0 to 1.5 times working load range -- comparable to the accuracy noted above. Their paper has the title "OSTERBERG CELL TESTING OF PILES", and was published in March 1999 in the Proceedings of the International Conference on Rail Transit, held in Singapore and published by the Association of Consulting Engineers Singapore.
- B. H. Fellenius has made several finite element method (FEM) studies of an OLT in which he adjusted the parameters to produce good load-deflection matches with the OLT up and down load-deflection curves. He then used the same parameters to predict the TLT deflection curve. We compared the FEM-predicted curve with the equivalent load-deflection predicted by the previously described Part I and II procedures, with the results again comparable to the accuracy noted above. The ASCE has published a paper by Fellenius et. al. titled "O-Cell Testing and FE Analysis of 28-m-Deep Barrette in Manila, Philippines" in the Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 7, July 1999, p. 566. It details one of his comparison studies.

<u>Limitations</u>: The engineer using these results should judge the conservatism, or lack thereof, of the aforementioned assumptions and extrapolation(s) before utilizing the results for design purposes. For example, brittle failure behavior may produce movement curves with abrupt changes in curvature (not hyperbolic). However, we believe the hyperbolic fit method and our assumptions used usually produce reasonable equivalent top load settlement curves.

August, 2000

Example of the Construction of an Equivalent Top-Loaded Settlement Curve (<u>Figure B</u>) From Osterberg Cell Test Results (<u>Figure A</u>)

Theoretical Elastic Compression in O-cell Test Based on Pattern of Developed Side Shear Stress

1-Stage Single Level Test (Q'A only):

 $\delta_{\text{OLT}} = \delta_{\uparrow(\downarrow_1+\downarrow_2)}$

$C_1 = \frac{1}{3}$	Centroid Factor = C ₁	$C_1 = \frac{1}{2}$
$\delta_{\uparrow(l_1+l_2)} = \frac{1}{3} \frac{Q'_{\uparrow A}(l_1+l_2)}{AE}$	$\delta_{\uparrow(l_1+l_2)} = C_1 \frac{Q'_{\uparrow A}(l_1+l_2)}{AE}$	$\delta_{\uparrow(I_1+I_2)} = \frac{1}{2} \frac{Q'_{\uparrowA}(I_1+I_2)}{AE}$

3-Stage Multi Level Test (Q'_A and Q'_B): $\delta_{\text{OLT}} = \delta_{\uparrow \text{I}_1} + \delta_{\downarrow \text{I}_2}$

$C_3 = \frac{1}{3}$	Centroid Factor = C ₃	$C_3 = \frac{1}{2}$
$\delta_{\uparrow I_1} = \frac{1}{3} \frac{Q'_{\uparrow B} I_1}{AE}$	$\delta_{\uparrow I_1} = C_3 \frac{Q'_{\uparrow B} I_1}{AE}$	$\delta_{\uparrow I_1} = \frac{1}{3} \frac{Q'_{\uparrow B} I_1}{AE}$
$C_2 = \frac{1}{3} \left(\frac{3I_1 + 2I_2}{2I_1 + I_2} \right)$	Centroid Factor = C ₂	$C_2 = \frac{1}{2}$
$\delta_{\downarrow I_{2}} = \frac{1}{3} \left(\frac{3I_{1} + 2I_{2}}{2I_{1} + I_{2}} \right) \frac{Q'_{\downarrow B}I_{2}}{AE}$	$\delta_{\downarrow I_2} = C_2 \frac{Q'_{\downarrow B} I_2}{AE}$	$\delta_{\downarrow I_2} = \frac{1}{2} \frac{Q'_{\downarrow B} I_2}{AE}$

Net Loads:

$$\mathbf{Q}_{\uparrow A} = \mathbf{Q}_{\uparrow A} - \mathbf{w}_{I_0 + I_1 + I_2}$$

$$Q'_{\uparrow_B} = Q_{\uparrow_B} - w'_{i_0 + i_1}$$

$$Q'_{\downarrow B} = Q'_{\downarrow B} + W'_{\downarrow B}$$

w' = pile weight, buoyant where below water table

Theoretical Elastic Compression in Top Loaded Test Based on Pattern of Developed Side Shear Stress

Top Loaded Test: $\delta_{\text{TLT}} = \delta_{\downarrow I_0} + \delta_{\downarrow I_1 + I_2}$

$\delta_{\downarrow I_0} = \frac{PI_0}{AE}$	$\delta_{\downarrow I_0} = \frac{PI_0}{AE}$	$\delta_{\downarrow I_0} = \frac{PI_0}{AE}$
$C_1 = \frac{1}{3}$	Centroid Factor = C₁	$C_1 = \frac{1}{2}$
$\delta_{\downarrow l_1 + l_2} = \frac{(Q'_{\downarrow A} + 2P)(l_2 + l_2)}{3}$ AE	$\delta_{\downarrow_{I_1+I_2}} = [(C_1)Q'_{\downarrow_A} + (1-C_1)P] \frac{(i_1+I_2)}{AE}$	$\delta_{\downarrow I_1 + I_2} = \frac{(Q'_{\downarrow A} + P)(I_1 + I_2)}{2 AE}$

Net and Equivalent Loads:

$$\mathbf{Q'}_{\downarrow A} = \mathbf{Q}_{\downarrow A} - \mathbf{w'}_{\mathsf{I_0} + \mathsf{I_1} + \mathsf{I_2}}$$

$$P_{\text{single}} = Q'_{\downarrow A} + Q'_{\uparrow A}$$

$$P_{\text{multi}} = Q'_{\downarrow A} + Q'_{\uparrow B} + Q'_{\downarrow B}$$

Component loads Q selected at the same (\pm) Δ_{OLT} .

Example Calculation for the Additional Elastic Compression Correction For Single Level Test (English Units)

Given: $C_1 = 0.441$

AE = 3.820,000 kips (assumed constant throughout test)

 $I_0 = 5.9 ft$

 I_1 = 30.0 ft (embedded length of shaft above O-cell)

 $I_2 = 0.00 \text{ ft}$ $I_3 = 0.0 \text{ ft}$

Shear reduction factor = 1.00 (cohesive soil)

Δ _{OLT} (in)	Q' _{↓A} (kips)	Q'↑A (kips)	P (kips)	δ _{TLT} (in)	δ _{OLT} (in)	Δ_δ (in)	$\Delta_{OLT} + \Delta_{\delta}$ (in)
0.000	0	0	0	0.000	0.000	0.000	0.000
0.100	352	706	1058	0.133	0.047	0.086	0.186
0.200	635	1445	2080	0.257	0.096	0.160	0.360
0.300	867	1858	2725	0.339	0.124	0.215	0.515
0.400	1061	2088	3149	0.396	0.139	0.256	0.656
0.600	1367	2382	3749	0.478	0.159	0.319	0.919
0.800	1597	2563	4160	0.536	0.171	0.365	1.165
1.000	1777	2685	4462	0.579	0.179	0.400	1.400
1.200	1921	2773	4694	0.613	0.185	0.427	1.627
1.500	2091	2867	4958	0.651	0.191	0.460	1.960
1.800	2221	2933	5155	0.680	0.196	0.484	2.284
2.100	2325	2983	5308	0.703	0.199	0.504	2.604
2.500	2434	3032	5466	0.726	0.202	0.524	3.024

Figure C

Example Calculation for the Additional Elastic Compression Correction For Single Level Test (SI Units)

Given: $C_1 = 0.441$

 $\overrightarrow{AE} = 17,000 \text{ MN (assumed constant throughout test)}$

 $I_0 = 1.80 m$

 I_1 = 14.69 m (embedded length of shaft above mid-cell)

 $I_2 = 0.00 \text{ m}$ $I_3 = 0.0 \text{ m}$

Shear reduction factor = 1.00 (cohesive soil)

Δ _{OLT} (mm)	Q'↓ _A (MN)	Q' _{↑A} (mm)	P (MN)	δ _{TLT} (mm)	δ _{OLT} (mm)	Δ _δ (mm)	$\Delta_{\rm OLT} + \Delta_{\delta}$ (mm)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.54	1.57	3.14	4.71	3.37	1.20	2.17	4.71
5.08	2.82	6.43	9.25	6.52	2.45	4.07	9.15
7.62	3.86	8.27	12.12	8.61	3.15	5.46	13.08
10.16	4.72	9.29	14.01	10.05	3.54	6.51	16.67
15.24	6.08	10.60	16.68	12.14	4.04	8.10	23.34
20.32	7.11	11.40	18.50	13.60	4.34	9.26	29.58
25.40	7.90	11.94	19.85	14.70	4.55	10.15	35.55
30.48	8.55	12.33	20.88	15.55	4.70	10.85	41.33
38.10	9.30	12.75	22.05	16.53	4.86	11.67	49.77
45.72	9.88	13.05	22.93	17.27	4.97	12.29	58.01
53.34	10.34	13.27	23.61	17.84	5.06	12.79	66.13
63.50	10.83	13.48	24.31	18.44	5.14	13.30	76.80

Figure D

Example Calculation for the Additional Elastic Compression Correction For Multi Level Test (English Units)

Given: $C_1 = 0.441$ $C_2 = 0.579$ $C_3 = 0.396$

AE = 3,820,000 kips (assumed constant throughout test)

 $I_0 = 5.9 ft$

 I_1 = 30.0 ft (embedded length of shaft above mid-cell)

 I_2 = 18.2 ft (embedded length of shaft between O-cells)

 $I_3 = 0.0 \text{ ft}$

Shear reduction factor = 1.00 (cohesive soil)

Δ _{OLT} (in)	Q'↓ _A (kips)	Q'↓ _B (kips)	Q' _{↑A} (kips)	P (kips)	δ _{TLT} (in)	δ _{OLT} (in)	Δ_{δ} (in)	$\Delta_{\rm OLT}$ + Δ_{δ} (in)
0.000	0	0	0	0	0.000	0.000	0.000	0.000
0.100	352	247	459	1058	0.133	0.025	0.107	0.207
0.200	635	506	939	2080	0.257	0.052	0.205	0.405
0.300	867	650	1208	2725	0.339	0.067	0.272	0.572
0.400	1061	731	1357	3149	0.396	0.075	0.321	0.721
0.600	1367	834	1548	3749	0.478	0.085	0.393	0.993
0.800	1597	897	1666	4160	0.536	0.092	0.444	1.244
1.000	1777	940	1745	4462	0.579	0.096	0.483	1.483
1.200	1921	971	1802	4694	0.613	0.099	0.513	1.713
1.500	2091	1003	1864	4958	0.651	0.103	0.548	2.048
1.800	2221	1027	1907	5155	0.680	0.105	0.575	2,375
2.100	2325	1044	1939	5308	0.703	0.107	0.596	2.696
2.500	2434	1061	1971	5466	0.726	0.109	0.618	3.118

Figure E

Example Calculation for the Additional Elastic Compression Correction For Multi Level Test (SI Units)

Given: $C_1 = 0.441$ $C_2 = 0.579$ $C_3 = 0.396$

AE = 17,000 MN (assumed constant throughout test)

 $I_0 = 1.80 \text{ m}$

 I_1 = 9.14 m (embedded length of shaft above mid-cell) I_2 = 5.55 m (embedded length of shaft between O-cells)

 $I_3 = 0.00 \text{ n}$

Shear reduction factor = 1.00 (cohesive soil)

Δ _{OLT} (mm)	Q'↓ _A (MN)	Q'↓ _B (MN)	Q'↑B (mm)	P (MN)	δ _{TLT} (mm)	δ _{OLT} (mm)	Δ _δ (mm)	$\Delta_{OLT} + \Delta_{\delta}$ (mm)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.54	1.57	1.10	2.04	4.71	3.37	0.64	2.73	5.27
5.08	2.82	2.25	4.18	9.25	6.52	1.31	5.21	10.29
7.62	3.86	2.89	5.37	12.12	8.61	1.69	6.92	14.54
10.16	4.72	3.25	6.04	14.01	10.05	1.90	8.15	18.31
15.24	6.08	3.71	6.89	16.68	12.14	2.17	9.97	25,21
20.32	7.11	3.99	7.41	18.50	13.60	2.33	11.27	31.59
25.40	7.90	4.18	7.76	19.85	14.70	2.44	12.26	37.66
30.48	8.55	4.32	8.02	20.88	15.55	2.52	13.03	43.51
38.10	9.30	4.46	8.29	22.05	16.53	2.61	13.92	52.02
45.72	9.88	4.57	8.48	22.93	17.27	2.67	14.60	60.32
53.34	10.34	4.64	8.62	23.61	17.84	2.71	15.13	68.47
63.50	10.83	4.72	8.76	24.31	18.44	2.76	15.68	79.18

Figure F

TS-1 - US 52 over ICE & Mill Creek Jackson Co., IA (LT-9466)

APPENDIX D

O-CELL METHOD FOR DETERMINING CREEP LIMIT LOADING

LOADTEST, Inc. Project No. LT-9466

Upper Side Shear Creep Limit

TS-1 - US 52 over ICE Mill Creek - Jackson Co., IA

Appendix D, Figure 2

LOADTEST, Inc. Project No. LT-9466

O-CELL METHOD FOR DETERMINING A CREEP LIMIT LOADING ON THE EQUIVALENT TOP-LOADED SHAFT (September, 2000)

Background: O-cell testing provides a sometimes useful method for evaluating that load beyond which a top-loaded drilled shaft might experience significant unwanted creep behavior. We refer to this load as the "creep limit," also sometimes known as the "yield limit" or "yield load".

To our knowledge, Housel (1959) first proposed the method described below for determining the creep limit. Stoll (1961), Bourges and Levillian (1988), and Fellenius (1996) provide additional references. This method also follows from long experience with the pressuremeter test (PMT). Figure 8 and section 9.4 from ASTM D4719-94, reproduced below, show and describe the creep curve routinely determined from the PMT. The creep curve shows how the movement or strain obtained over a fixed time interval, 30 to 60 seconds, changes versus the applied pressure. One can often detect a distinct break in the curve at the pressure $P_{\rm e}$ in Figure 8. Plastic deformations may become significant beyond this break loading and progressively more severe creep can occur.

<u>Definition</u>: Similarly with O-cell testing using the ASTM Quick Method, one can conveniently measure the additional movement occurring over the final time interval at each constant load step, typically 4 to 8 minutes. A break in the curve of load vs. movement (as at P_e with the PMT) indicates the creep limit.

We usually indicate such a creep limit in the O-cell test for either one, or both, of the side shear and end bearing components, and herein designate the corresponding movements as M_{CL1} and M_{CL2} . We then combine the creep limit data to predict a creep limit load for the equivalent top loaded shaft.

<u>Procedure if both M_{CL1} and M_{CL2} available</u>: Creep cannot begin until the shaft movement exceeds the M_{CL} values. A conservative approach would assume that creep begins when movements exceed the lesser of the M_{CL} values. However, creep can occur freely only when the shaft has moved the greater of the two M_{CL} values. Although less conservative, we believe the latter to match behavior better and therefore set the creep limit as that load on the equivalent top-loaded movement curve that matches the greater M_{CL} .

Procedure if only M_{CL1} available: If we cannot determine a creep limit in the second component before it reaches its maximum movement M_x , we treat M_x as M_{CL2} . From the above method one can say that the creep limit load exceeds, by some unknown amount, that obtained when using $M_{CL2} = M_x$.

Procedure if no creep limit observed: Then, according to the above, the creep limit for the equivalent top-loaded shaft will exceed, again by some unknown amount, that load on the equivalent curve that matches the movement of the component with the maximum movement.

Limitations: The accuracy in estimating creep limits depends, in part, on the scatter of the data in the creep limit plots. The more scatter, the more difficult to define a limit. The user should make his or her own interpretation if he or she intends to make important use of the creep limit interpretations. Sometimes we obtain excessive scatter of the data and do not attempt an interpretation for a creep limit and will indicate this in the report.

Excerpts from ASTM D4719 "Standard Test Method for Pressuremeter Testing in Soils"

9.4 For Procedure A, plot the volume increase readings (V_{60}) between the 30 s and 60 s reading on a separate graph. Generally, a part of the same graph is used, see Fig. 8. For Procedure B, plot the pressure decrease reading between the 30 s and 60 s reading on a separate graph. The test curve shows an almost straight line section within the range of either low volume increase readings (V_{60}) for Procedure A or low pressure decrease for Procedure B. In this range, a constant soil deformation modulus can be measured. Past the so-called creep pressure, plastic deformations become prevalent.

FIG. 8 Pressuremeter Test Curves for Procedure A

References

Housel, W.S. (1959), "Dynamic & Static Resistance of Cohesive Soils", <u>ASTM STP 254</u>, pp. 22-23. Stoll, M.U.W. (1961, Discussion, Proc. 5th ICSMFE, Paris, Vol. III, pp. 279-281.

Bourges, F. and Levillian, J-P (1988), "force portante des rideaux plans metalliques charges verticalmement," Bull. No. 158, Nov.-Dec., des laboratoires des ponts et chaussees, p. 24.

Fellenius, Bengt H. (1996), Basics of Foundation Design, BiTech Publishers Ltd., p.79.

TS-1 - US 52 over ICE & Mill Creek Jackson Co., IA (LT-9466)

APPENDIX E

SOIL BORING LOG

Television Communication Commu		r (1904) and the second of the		OG No. TB 1	e nde prime de procesión de l'endes de la constantidad de la constantidad de la constantidad de la constantidad del constantidad de la constantid	STATE COMMISSION TO A STATE OF THE STATE OF
BORIN	BORING NO. LOCATION OF BORING T8 1 Tool Sheet		NO. LOCATION OF BORING ELEVATION DATUM		DRILLER	LOGGER
18			597.82 leet	IDOT Site Plan	DAH	JLW
	FAW	TER LEVEL CESERVATIONS		TYPE OF S	URFACE	DRILL RIG
WHILE	END OF	24 HOURS		් ල	23	Mobile 8-57
DRILLING	DRILLING	AFTER DRILLING		DRILLING	METHOD	TOTAL DEPTH
e faet	N/A	N/A		3-1/4" HSA and	1 NO2 Coring	44.8 feet

	i I	N/A		N/A 3-1/6" HSA and NO	iz Coring			Mag Telet	
1	SA	MPLE DAYA		SOIL DESCRIPTION		LAB	ORATORY	DATA	
Ρ.	SAMPLE	"N"	%	COLOR, MOISTURE, CONSISTENCY	USCS	%	DRY	Qu	ELEV
₹.	NO. & TYPE	BLOWS /RQD	REC.	GEOLOGIC DESCRIPTION & OTHER REMARKS	CLASS.	MC	DENS, pcf	psi	FT,
		- XX		XXX Brown and dark prown. Molet					1
	1			LEAN TO FAT CLAY With grave!					
									1
ģ				KXX		1			
	- 551	19	95			18,6			- 496
1			*	Increased fractured rook content with depth	CUCH				
				The second of th					
		,							
السا				XX		non-paris			
									T
	82	0	95	OVERBURDEN		49.7			152
1	23	50/4"	50	Ught gray to gray. Moist, hard MODERATELY WEATHERED COLOMITE GRIDDYICIAN BEDROCK	10.0				Cont.
2_].	MCW E	O(HQD)	4.3	MODERATELY WEATHERED DOLOMITE GEDOVICIAN REPROCE	11:		ř		
-gree	4			- Light stey to gray, Moist, Kerd		7.2	181	5,170	1
				SLIGHTLY WEATHERED TO FRESH DOLOMITE 3/4" and 1" Policietts Pyrite news 12 and 12.6 feet	1				
	M023	0,60	100	374 area t voic man cythe from 12 area 12 area	- 3				
				indicate L			9		
				3" Shale seam near 15.2 feet		1.3	164	1,480	
1				1" void with Pyrite near 17 feet	3				1
									-
	NO2-8	1.00	400			4.0	187	2,950	1
	TEMANO.	1.00	100			4,2	1975	6,3793	
1									
				April plants					1
3					1	(1)(0)	183	3,040	
5									
- Contains	NO2-4	0.78	95	7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					
				The state of the s		7.5	965	4,830	
1144									
1									570
			ì			4.7	165	6,360	
	NG2-5	0.90	100						į
1	A3000-944								
1				4_β_4_6, 4.2 g+cγ-g-1-g-1	3			1	The state of the s
						(1.96)	196	7,320	
-	1				ļ				73
	CARSE W	o ex	485	4. 1. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.					56
	NOS-6	0.96	100	to the party of th	2	1.0	188	6,550	
				ptyAphygi Burgingan					
-				Citie Brown between 36.6 and 40.8 feet					
				MODERATELY WEATHERED DOLOMITE between 37.7 and 39.1	A. Barriera				_
	(Carrer -			feet feet		10.00	# 35 G		
	NG2-7	0.63	86			3.9	153	2,200	65
				երմայլ հրանակ Ա Տ Ա Ա.					
. J.				CREQUISTAN BEDROCK	· • • • • • • • • • • • • • • • • • • •	2.6	160	2,820	
-				Bolium of Boring (§ 41.5)	(1.6)		e - new energy e		-
2									·
					and the second				55)
1								a constant	
1									-
V									

Geotechnical Sarvices, Inc. 2659 89th Street, Dec Michae, in \$1322 (\$15) 270-6842 FAX (\$15) 270-7511 PROJECT: Test Shaft Confirmation Bering

LOCATION: US 52 Over ICE & Mill Creek, Jackson Co, IA

JOB NO.: 086187 DATE: 10-9-2008