

FAKULTAS TEKNOLOGI INFORMASI

STATISTIK PROBABILITAS [MI113 / 2 SKS]

Pertemuan 04

UKURAN DALAM STATISTIK

Part 2

Tujuan Pembelajaran

- Mahasiswa dapat memahami dan menghitung ukuran variabilitas
- Mahasiswa dapat memahami dan menghitung percentile
- Mahasiswa dapat memahami dan menghitung deviation

Topik Pembahasan

- **□Ukuran Variabilitas**
 - **□** Range
 - **□** *Quartile*
 - □ Inter-Quartile Range
- □ Percentile
- □ **Deviation**
 - Variance
 - ☐ Standard Deviation

- □ Ukuran variabilitas atau ukuran penyebaran merupakan ukuran yang menunjukkan seberapa jauh suatu data menyebar dari rata-rata, meliputi :
 - □ Range
 - Quartile
 - ☐ Inter-Quartile Range

□ *Range*

Selisih antara nilai data terbesar dan nilai data terkecil.

Data Tunggal

$$R = x_{max} - x_{min}$$

- \square R = range
- $\square x_{max} = data \ terbesar$
- $\square x_{min} = data \ terkecil$

□ Contoh

Midtest statistik probabilitas yang telah dilaksanakan adalah 88, 93, 50, 42 dan 74. Maka tentukan range-nya!

$$R = x_{max} - x_{min}$$

= 93 - 42
= 51

■ Data Kelompok

 $R = Me x_{max} - Me x_{min}$

- \square R = range
- \square Me x_{max} = median kelas terbesar
- \square Me x_{min} = median kelas terkecil

□ Contoh

Tentukan range dari tabel dibawah ini!

Nilai	Frekuensi
41 - 60	5
61 - 80	7
81 - 100	11

$$Me x_{min} = \frac{41 + 60}{2} = 50,5$$

$$Me \ x_{min} = \frac{41 + 60}{2}$$
 $Me \ x_{max} = \frac{81 + 100}{2}$
= 50,5 = 90,5

$$R = Me x_{max} - Me x_{min}$$

= 90,5 - 50,5
= 40

□ *Quartile*

Pembagian sejumlah data terurut menjadi sama jumlahnya untuk setiap bagian. Setiap bagiannya dipisahkan oleh :

 \square Lower Quartile (Q_1)

Angka tengah antara angka terkecil dan *median* kumpulan data, dikenal juga sebagai kuartil empiris yang lebih rendah karena 25% data berada di bawah titik ini.

$$Q_1 = \frac{1}{4}(n+1)$$

 \square Middle Quartile (Q_2)

Median kumpulan data, 50% data berada di bawah titik ini.

$$Q_2 = \frac{1}{2}(n+1)$$

 \square Upper Quartile (Q_3)

Nilai tengah antara *median* dan nilai terbesar dari kumpulan data, dikenal juga sebagai kuartil empiris atas karena 75% data berada di bawah titik ini.

$$Q_3 = \frac{3}{4}(n+1)$$

■ Inter-Quartile Range

Jarak antara upper quartile dan lower quartile.

$$IQR = Q_3 - Q_1$$

□ Contoh

Tentukan Q_1 , Q_2 , Q_3 dan IQR dari 74, 88, 93, 55, 41, 69, 59!

□ Jawab Q_1 Q_2 Q_3 Urutan data : 41, 55, 59, 69, 74, 88, 93

$$Q_1 = \frac{1}{4}(7+1)$$
 $Q_3 = \frac{3}{4}(7+1)$
= 2 = 6

$$Q_2 = \frac{1}{2}(7+1)$$
 $IQR = 88 - 55$
= 33

Percentile

□ Data dibagi menjadi 100 sama banyak, sehingga terdapat 99 buah nilai persentil.

$$P_i = data \ ke \ \frac{i(n+1)}{100}$$

- \square $P_i = persentil data ke i$
- \Box i = bilangan bulat kurang dari 100 (1, 2, 3, ..., 99)
- \square n = banyak data

Percentile

□ Contoh

Tentukan persentil ke 45 dari 74, 88, 93, 55, 41, 69, 59!

□ Jawab

Urutan data: 41, 55, 59, 69, 74, 88, 93

$$P_{45} = \frac{45(7+1)}{100}$$

$$= 3,6 \rightarrow letak \ nilai$$

$$P_{45} = x_3 + 0,6 (x_4 - x_3)$$

$$= 59 + 0,6 (69 - 59)$$

$$= 59 + 0,6 (10)$$

$$= 59 + 6$$

$$= 65$$

Perbedaan antara nilai observasi data penelitian denga nilai rata-ratanya.

□ Variance

Ukuran seberapa penting kumpulan data tersebar. Singkatnya, *variance* didefinisikan sebagai rata-rata jarak kuadrat dari setiap titik ke *mean*.

☐ Standard Deviation

Ukuran variabilitas (dispersi atau penyebaran) dari setiap set nilai numerik tentang rata-rata aritmatika mereka (rata-rata yang dilambangkan dengan μ)

☐ Variance & Standart Deviation (Sample)

$$s^{2} = \frac{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{1})^{2}}{n(n-1)}$$

$$s = \sqrt{s^2}$$

- \square $s^2 = variance$
- $\square x_i = nilai x ke i$
- \square n = ukuran sampel
- \Box $s = standard\ deviation$

☐ Variance & Standart Deviation (Population)

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n - 1}$$

$$\sigma = \sqrt{\sigma^2}$$

- \Box $\sigma^2 = variance$
- \Box $x_i = nilai \ x \ ke i$
- \square n = ukuran sampel
- \square $\mu = rata rata$
- \Box $\sigma = standard\ deviation$

TERIMA KASIH