

Mark Scheme (Results) Summer 2008

GCE

GCE Mathematics (6665/01)

June 2008 6665 Core Mathematics C3 Mark Scheme

Question Number	Scheme	Marks	
1.	(a) $e^{2x+1} = 2 \\ 2x+1 = \ln 2$	M1	
	$2x + 1 = \ln 2$ $x = \frac{1}{2} \left(\ln 2 - 1 \right)$		
	$x = \frac{1}{2} (\ln 2 - 1)$	A1 (2)	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 8\mathrm{e}^{2x+1}$	B1	
	$x = \frac{1}{2} \left(\ln 2 - 1 \right) \implies \frac{\mathrm{d}y}{\mathrm{d}x} = 16$	B1	
	$y-8=16\left(x-\frac{1}{2}(\ln 2-1)\right)$	M1	
	$y = 16x + 16 - 8\ln 2$	A1 (4)	
		[6]	

Question Number	Scheme	Marks
2.	(a) $R^{2} = 5^{2} + 12^{2}$ $R = 13$ $\tan \alpha = \frac{12}{5}$ $\alpha \approx 1.176$ $\cos(x - \alpha) = \frac{6}{13}$ $x - \alpha = \arccos \frac{6}{13} = 1.091 \dots$	M1 A1 M1 A1 (4) M1 A1
	$x = 1.091 \dots + 1.176 \dots \approx 2.267 \dots$ awrt 2.3 $x - \alpha = -1.091 \dots$ accept $\dots = 5.19 \dots$ for M $x = -1.091 \dots + 1.176 \dots \approx 0.0849 \dots$ awrt 0.084 or 0.085 (c)(i) $R_{\text{max}} = 13$ ft their R (ii) At the maximum, $\cos(x - \alpha) = 1$ or $x - \alpha = 0$ $x = \alpha = 1.176 \dots$ awrt 1.2, ft their α	A1 M1 A1 (5) B1 ft M1 A1ft (3) [12]

Question Number	Scheme	Marks
3.	(a) y Shape Vertices correctly placed	B1 B1 (2)
	(b) $y \wedge A = A + A + A + A + A + A + A + A + A +$	B1 (2) B1 B1 B1 (3)
	(d) $x > -1$; $2-x-1 = \frac{1}{2}x$ Leading to $x = \frac{2}{3}$ $x < -1$; $2+x+1 = \frac{1}{2}x$ Leading to $x = -6$	M1 A1 A1 M1 A1 (5) [12]

Question Number	Scheme	Marks
4.	(a) $x^{2}-2x-3=(x-3)(x+1)$ $f(x) = \frac{2(x-1)-(x+1)}{(x-3)(x+1)} \left(or \frac{2(x-1)}{(x-3)(x+1)} - \frac{x+1}{(x-3)(x+1)}\right)$	B1 M1 A1
	$= \frac{x-3}{(x-3)(x+1)} = \frac{1}{x+1} *$ cso	A1 (4)
	(b) $\left(0, \frac{1}{4}\right)$ Accept $0 < y < \frac{1}{4}$, $0 < f(x) < \frac{1}{4}$ etc.	B1 B1 (2)
	(c) Let $y = f(x)$ $y = \frac{1}{x+1}$ $x = \frac{1}{y+1}$ $yx + x = 1$	
	$y = \frac{1-x}{x}$ or $\frac{1}{x} - 1$ $f^{-1}(x) = \frac{1-x}{x}$	M1 A1
	Domain of f^{-1} is $\left(0, \frac{1}{4}\right)$ ft their part (b)	B1 ft (3)
	(d) $fg(x) = \frac{1}{2x^2 - 3 + 1}$ $\frac{1}{2x^2 - 2} = \frac{1}{8}$ $x^2 = 5$ $x = \pm \sqrt{5}$ both	M1 A1 A1 (3)
		[12]

Question Number	Scheme	Marks
5.	(a) $\sin^{2}\theta + \cos^{2}\theta = 1$ $\div \sin^{2}\theta \qquad \frac{\sin^{2}\theta}{\sin^{2}\theta} + \frac{\cos^{2}\theta}{\sin^{2}\theta} = \frac{1}{\sin^{2}\theta}$ $1 + \cot^{2}\theta = \csc^{2}\theta + (\cos^{2}\theta) = \frac{1}{\sin^{2}\theta}$ $1 + \cot^{2}\theta = 1 + \frac{\cos^{2}\theta}{\sin^{2}\theta} = \frac{\sin^{2}\theta + \cos^{2}\theta}{\sin^{2}\theta} = \frac{1}{\sin^{2}\theta}$ $= \csc^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta$ $= \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta$ $= \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta$ $= \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta$ $= \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta$ $= \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta$ $= \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta$ $= \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta$ $= \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta$ $= \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta$ $= \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta$ $= \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta$ $= \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta$ $= \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta$ $= \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta$ $= \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta$ $= \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta + (\cos^{2}\theta) = \cos^{2}\theta$	M1 A1 (2) M1 A1
	(b) $2(\csc^2 \theta - 1) - 9\csc \theta = 3$ $2\csc^2 \theta - 9\csc \theta - 5 = 0$ or $5\sin^2 \theta + 9\sin \theta - 2 = 0$ $(2\csc \theta + 1)(\csc \theta - 5) = 0$ or $(5\sin \theta - 1)(\sin \theta + 2) = 0$ $\csc \theta = 5$ or $\sin \theta = \frac{1}{5}$ $\theta = 11.5^\circ, 168.5^\circ$	M1 M1 M1 A1 A1 A1 (6) [8]

Question Number	Scheme	Marks
6.	(a)(i) $\frac{d}{dx} \left(e^{3x} \left(\sin x + 2\cos x \right) \right) = 3e^{3x} \left(\sin x + 2\cos x \right) + e^{3x} \left(\cos x - 2\sin x \right)$ $\left(= e^{3x} \left(\sin x + 7\cos x \right) \right)$	M1 A1 A1 (3)
	(ii) $\frac{d}{dx} (x^3 \ln(5x+2)) = 3x^2 \ln(5x+2) + \frac{5x^3}{5x+2}$	M1 A1 A1 (3)
	(b) $\frac{dy}{dx} = \frac{(x+1)^2 (6x+6) - 2(x+1)(3x^2 + 6x - 7)}{(x+1)^4}$	M1 $\frac{A1}{A1}$
	$=\frac{(x+1)(6x^2+12x+6-6x^2-12x+14)}{(x+1)^4}$	M1
	$=\frac{20}{\left(x+1\right)^3} \bigstar $ cso	A1 (5)
	(c) $\frac{d^2 y}{dx^2} = -\frac{60}{(x+1)^4} = -\frac{15}{4}$	M1
	$(x+1)^4 = 16$	M1
	x=1,-3 both	A1 (3) [14]
	Note: The simplification in part (b) can be carried out as follows $ \frac{(x+1)^2 (6x+6) - 2(x+1)(3x^2 + 6x - 7)}{(x+1)^4} $ $ = \frac{(6x^3 + 18x^2 + 18x + 6) - (6x^3 + 18x^2 - 2x - 14)}{(x+1)^4} $	
	$= \frac{(x+1)^4}{(x+1)^4}$ $= \frac{20x+20}{(x+1)^4} = \frac{20(x+1)}{(x+1)^4} = \frac{20}{(x+1)^3}$	M1 A1

Question Number	Scheme	Mark	S
7.	(a) $f(1.4) = -0.568 \dots < 0$ $f(1.45) = 0.245 \dots > 0$ Change of sign (and continuity) $\Rightarrow \alpha \in (1.4, 1.45)$	M1 A1	(2)
	(b) $3x^{3} = 2x + 6$ $x^{3} = \frac{2x}{3} + 2$ $x^{2} = \frac{2}{3} + \frac{2}{x}$ $x = \sqrt{\left(\frac{2}{x} + \frac{2}{3}\right)} *$ cso	M1 A1	(3)
	(c) $x_1 = 1.4371$ $x_2 = 1.4347$ $x_3 = 1.4355$	B1 B1 B1	(3)
	(d) Choosing the interval $(1.4345, 1.4355)$ or appropriate tighter interval. $f(1.4345) = -0.01 \dots$ $f(1.4355) = 0.003 \dots$ Change of sign (and continuity) $\Rightarrow \alpha \in (1.4345, 1.4355)$ $\Rightarrow \alpha = 1.435$, correct to 3 decimal places \star cso	M1 M1 A1	(3)
	<i>Note</i> : $\alpha = 1.435304553$		[11]