Memoria Practica 0 FISE

Daniel Vilardell

$\mathbf{\acute{I}ndex}$

1	Pols rectangular	1
2	Varies frequencies diferents	2
3	Amplitud en funció de la frequencia	3
4	Exercici 4	3
	4.1 Pols rectangular	4
	4.2 Varies frequencies diferents	4

1 Pols rectangular

El resultat V_0 de simular el circuit amb la entrada d'un pols periodic es la següent.

Figura 1: Simulació 1

2 Varies frequencies diferents

Podem veure, tal i com esperavem ja que el circuit es passa-baixos, que al augmentar la frequencia la amplitud va disminuint.

Figura 2: Simulació 2

3 Amplitud en funció de la frequencia

Podem veure aquí com disminueix l'amplitud en funció de la frequencia, confirmant-nos altre cop de que el filtre es passa-baixos.

Figura 3: Simulació 3

4 Exercici 4

Repetim el mateix procediment amb un filtre passa alts com es el següent.

Figura 4: Circuit passa alts

4.1 Pols rectangular

La sortida d'aquest circuit amb el pols rectangular proposat al exercici anterior es gairebe nula, ja que es un filtre passa altes i la frequencia del pols es molt baixa, així que he augmentat la frequencia i hem pogut obtenir la següent senyal, encara una mica atenuada.

Figura 5: Circuit passa alts

4.2 Varies frequencies diferents

Podem veure clarament que la frequencia mes elevada es la que conserva millor l'amplitud.

Figura 6: Circuit passa alts

4.3 Amplitud en funció de la frequencia

Finalment grafiquem la amplitud en funció de la frequencia cosa que ens confirma un altre cop que el filtre es passa altes.

Figura 7: Circuit passa alts