Notation used

m_e	electron rest mass
h	Planck's constant
\hbar	$h/2\pi$
e	electron charge
ϵ_0	permittivity of free space
a_0	Bohr radius
ψ	wavefunction (lower case often used for time independant)
Ψ	wavefunction (upper case often used for time dependent)
σ	spin part of the wavefunction
T	time part of the wavefunction
*	indicates the complex conjugate of a quantity
^	indicates that the quantity is an operator
r, r	position coordinate
x, y, z	Cartesian coordinates
θ	spherical polar coordinate (polar angle)
ϕ	spherical polar coordinate (azimuthal angle)
t	time
∇	vector differential operator (3D)
$ abla^2$	Laplacian differential operator (3D)
R, R_{∞}, R_{M}	Rydberg constant in various forms
Е	(total) energy
V	potential energy
Z	atomic number / nuclear charge (in units of +e)
m	particle mass
M	mass of nucleus
τ	volume
μ	reduced mass of electron/nucleus system
ν	frequency of radiation
λ	wavelength of radiation
n	principle quantum number
L	orbital angular momentum (Bohr model)
l, L	orbital angular momentum quantum number (Schrödinger QM)
v	speed
Ĥ	Hamiltonian operator
p, ĝ	momentum, momentum operator
L	orbital angular momentum vector
L_x, L_y, L_z	component of the orbital angular momentum vector
$\hat{L}_x, \hat{L}_y, \hat{L}_z$	operators corresponding to components of the orbital angular momentum vector
\mathbf{L}^2 , $\hat{\mathbf{L}}^2$	square of the magnitude of the orbital angular momentum vector, associated operator
m_l	quantum number giving L_z in units of \hbar

S spin vector s, Sspin quantum number m_s , M_S quantum number giving S_z in units of \hbar total angular momentum vector J j, J total angular momentum quantum number quantum number giving J_z in units of \hbar m_i, M_I fine-structure constant < ... > indicates an expectation value I, KCoulomb and Exchange Integrals for two-electron atoms labels used as sub-scripts to distinguish orbitals in multi-electron atoms α, β ... s, p, d, f ... spectroscopic notation designating *l*-values for electrons in configuration S, P, D, F ... spectroscopic notation designating L-values in terms magnetic dipole moment spin g-factor g_s Bohr magneton μ_B **B**, B Magnetic flux density; its magnitude Ι electric current μ_0 permittivity of free space Einstein coefficients A_{ul}, B_{lu}, B_{ul} photon energy density d electric dipole moment N_u , N_l numbers of atoms in upper and lower states of a transition 8u, 81 degeneracies of upper and lower states of a transition *g*-factors for spin and orbital angular momenta ($g_S \approx 2$, $g_L = 1$) 85,8L Landé g-factor

Nuclear spin angular momentum; its quantum number

Total angular momentum (including nuclear spin); its quantum number

81 **I**; I

F; *F*