#### Nussinov: Problem Definition

Definition (Problem of RNA non-crossing Secondary Structure Prediction by Base Pair Maximization)

IN: RNA sequence S

OUT: a non-crossing RNA structure P of S that maximizes |P| (= number of base pairs in P).

#### Remarks:

- We defined two variants of the problem. One with the addiditional requirement that structures are non-crossing and one without. Without this restriction the problem is NP-hard (at least for interesting scoring schemes) — with the restriction there will be an efficient algorithm for solving the problem.
- Maximizing base pairs will help to understand the more realistic case of minimizing energy.
- RNA structure prediction is often called RNA folding also we do not model the folding process but only predict the result.



# Nussinov Algorithm — Matrix definition

Let S be an RNA sequence of length n.

The Nussinov Algorithm solves the problem of RNA non-crossing secondary structure prediction by base pair maximization with input S.

#### Definition (Nussinov Matrix)

The *Nussinov matrix*  $N = (N_{ij})_{\substack{1 \leq i \leq n \\ i-1 \leq j \leq n}}$  of S is defined by

$$N_{ij} := \max\{|P| \mid P \text{ is non-crossing RNA } ij\text{-substructure of } S\}$$

where we use:

#### Definition (RNA Substructure)

An RNA structure P of S is called *ij-substructure of* S iff  $P \subseteq \{i, \dots, j\}^2$ .



#### Nussinov

Nussinov algorithm: determines the maximal number of bonds that a structure P for a sequence S can have

#### **Definition (Nussinov matrix)**

Let S be an RNA sequence.

The Nussinov matrix 
$$(N_{i,j})$$
  $1 \le i \le |S|$  is defined by  $i-1 \le j \le |S| \land j > 1$ 

$$N_{i,j} = \max \left\{ |P| \mid \begin{array}{c} P \text{ is a nested structure} \\ \text{of the subsequence } S_i \dots S_j \end{array} \right\}$$



# Nussinov Algorithm — Recursive computation of $N_{i,j}$

Init: (for  $1 \le i \le n$ )

$$N_{ii} = 0$$
 and  $N_{ii-1} = 0$ 

Recursion: (for  $1 \le i < j \le n$ )

$$N_{ij} = \max \left\{ egin{aligned} N_{ij-1} \ \max_{\substack{i \leq k < j \ S_k, S_j complementary}} N_{ik-1} + N_{k+1j-1} \ + 1 \end{aligned} 
ight.$$

#### Remarks:

- case 2 of recursion covers base pair (i,j) for k=i; then:  $N_{ik-1}$  (initialized with 0!) is max. number of base pairs in empty sequence.
- $S_{1,n}$  is the maximal |P| of any P of S.
- Recursion furnishs a DP-Algorithm for computing the Nussinov matrix (including  $S_{1,n}$ ) in  $O(n^3)$  time and  $O(n^2)$  space.
- How to restrict loop length?
- What happens without restriction non-crossing?



### Nussinov Algorithm — Example

1 2 3 4 5 6 7 8

GCACGACG



B

### Nussinov Algorithm — Example

1 2 3 4 5 6 7 8

GCACGACG

| 0 | 0 |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|
|   | 0 | 0 |   |   |   |   |   |   |
|   |   | 0 | 0 |   |   |   |   |   |
|   |   |   | 0 | 0 |   |   |   |   |
|   |   |   |   | 0 | 0 |   |   |   |
|   |   |   |   |   | 0 | 0 |   |   |
|   |   |   |   |   |   | 0 | 0 |   |
|   |   |   |   |   |   |   | 0 | 0 |

G 1

C Z

**A** 3

C 4

G 5

**A** 6

C 7

G 8



### Nussinov Algorithm — Example

1 2 3 4 5 6 7 8

GCACGACG

|   |   | _ | _ |   | _ | _ |   | _ | _ |   |
|---|---|---|---|---|---|---|---|---|---|---|
|   | G |   |   |   |   |   |   |   |   | 0 |
| 2 | С | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |   |
| 3 | A | 2 | 1 | 1 | 1 | 0 | 0 | 0 |   |   |
| 4 | С | 2 | 1 | 1 | 1 | 0 | 0 |   |   |   |
| 5 | G | 1 | 1 | 0 | 0 | 0 |   |   |   |   |
| 6 | A | 1 | 0 | 0 | 0 |   |   |   |   |   |
| 7 | С | 1 | 0 | 0 |   |   |   |   |   |   |
| 0 |   | Λ | Λ |   |   |   |   |   |   |   |



### Nussinov Algorithm — Traceback

Determine one nc RNA structure P with maximal |P|.

pre: Nussinov matrix N of S:

```
1 2 3 4 5 6 7 8

G C A C G A C G

0 0 1 1 1 1 2 2 2 3 G 1

0 0 0 0 0 1 1 1 2 C 2

0 0 0 1 1 1 2 C 4

0 0 0 1 1 1 2 C 4

0 0 0 1 1 1 G 5

0 0 0 1 A 6

0 0 0 1 C 7

0 0 G 8
```

#### Idea:

- start with entry at upper right corner  $N_{1n}$
- determine recursion case (and the entries in N) that yield maximum for this entry
- trace back the entries where we recursed to



# Nussinov Algorithm — Traceback Example

1 2 3 4 5 6 7 8 GCACGACG 1 1 1 2 2 2 3 2 1 1 1 2 **A** 3 0 1 1 1 2 1 1 1 **A** 6



# Nussinov Algorithm — Traceback Example





# Nussinov Algorithm — Traceback Pseudo-Code

```
CALL: traceback(1, n)
Procedure traceback(i, j)
  if i < i then
     return
  else if N_{ii} = N_{ii-1} then
    traceback(i, i-1);
     return
  else
    for all k : i \le k < j, S_k and S_i complementary do
       if N_{ii} = N_{i,k-1} + N_{k+1,i-1} + 1 then
          print (k,j);
         traceback(i, k-1); traceback(k+1, i-1);
          return
       end if
     end for
  end if
```

#### Remarks

- Complexity of trace-back  $O(n^2)$  time
- How to get all optimal nc structures?
- How to trace-back non-recursively?
- How to output / represent structures?
  - Dot-bracket
  - 2D-layout
  - Tree-like
- Why doesn't it work for crossing structure?





# Limitations of the Nussinov Algorithm

- Base pair maximization does not yield biologically relevant structures:
  - · no stacking of base pairs considered
  - loop sizes not distinguished
  - no special scoring of multi-loops
- only one structure predicted
  - base pair maximization can not differnciate structures sufficiently well: possibly many optima
  - no sub-optimal solutions
- crossing structures cannot be predicted

#### However:

- shows pattern of RNA structure prediction by DP (simple+instructive)
- energy minimization (Zuker) will have similar algorithmic structure
- "only one solution"-problem can be overcome (suboptimal: Wuchty)
- prediction of (restricted) crossing structure can be seen as extension



# Disadvantages of Nussinov

Nussinov doesn't determine biological relevant structures since:

 there are several possibilities to form base pairs, where Nussinov finds only one:

 $\bullet$  Stacking of base pairs not considered  $\Rightarrow$  difference in structure and stability of helices

size of intern loops not considered

instable

stable









