S520 Final Exam: Takehome

Upload your typed answers as a PDF file or Word document through the Assignments tab on Canvas by 11:59pm, Tuesday, April 30th, 2019

Instructions and warnings:

- You may consult books and use computers, but may not discuss the problems with anyone.
- Write explanations for all your answers. Answers alone will not get credit. For questions where you use R, you must give R code, but the code alone is not a sufficient explanation. You can use lm directly if you want, just make sure you understand what the outputs tell you.
- Conclusions should not just be reject or do not reject; they should be substantive conclusions about the issues under study.

Example:

- "We reject the null hypothesis": **NOT MANY POINTS**
- "The *P*-value is 0.005. This means the data gives strong evidence that three-toed sloths have more toes than two-toed sloths.: **LOTS OF POINTS**

1. (6 points) The number of misprints on 200 randomly selected pages from a newspaper within a year were recorded:

Number of misprints per page	0	1	2	3	4	5	6	7	8	9	10
Frequency	9	23	40	30	31	26	19	10	5	4	3

Does the number of misprints per page follow a Poisson distribution? Show your steps to perform an appropriate test of the null hypothesis that the data follow a Poisson distribution. Report the test statistic, *P*-value and state your conclusion.

- 2. The file examanxiety.txt on Canvas contains information on a number of variables measured on a sample of 103 students taking a math exam:
 - Code: a label for the individual in the sample (not scientically interesting.)
 - Revise: hours spent revising for the math exam.
 - Exam: score on a math exam on a scale from 0 to 100.
 - Anxiety: "math anxiety" on a scale from 0 to 100 (100 is most anxious.)
 - Gender: female or male.

Say your data examanxiety.txt is saved in D drive, then you can read and define the data in R as follows:

exam = read.table("D:/examanxiety.txt", header=TRUE)

Assume the data is a random sample from a larger population of students.

- (a) (3 points) Let anxiety be your x-variable and exam score be your y-variable. Assume a simple linear regression is valid. Find the regression line to predict exam score from anxiety.
- (b) (3 points) Carefully explain what your regression line means (interpretation for the intercept, slope, and the \hat{y}), do not just paste R output.