Introduction

Antimicrobial resistance (AMR) is a global health concern. Improved sequencing technology offers a solution, but maximizing its utility requires the Comprehensive Antibiotic Resistance Database^a (CARD; card.mcmaster.ca) and the Resistance Gene Identifier software (RGI; card.mcmaster.ca/analyze/rgi or github.com/arpcard/rgi)

Methods

CARD is organized based on the Antibiotic Resistance Ontology and its primary classes are: AMR Gene Family, Drug Class, and Resistance Mechanism. RGI was used to mine Genbank, and the results were used to produce a catalog of predicted AMR alleles called in silico variants.

RGI analyzes genomes under three Figure 1. paradigms: Perfect, Strict, and Loose. Perfect hits match the curated reference sequences in CARD. The **Strict** algorithm identifies previously unknown variants of known AMR genes, and it conducts a secondary screen for mutations using detection models with CARD's curated bitscore cut-offs. The **Loose** hits fall below the detection model cut-offs. The Loose algorithm detects putative emergent AMR genes.

Figure 2. In metagenomic analyses, RGI uses both CARD's canonical and in silico variants for resistome prediction.

bicyclomycin -benzalkonium chloride -antibacterial free fatty acids -aminoglycoside -aminocoumarin -

Resistance Gene Identifier (RGI) - Prediction of antimicrobial resistance genes and mutations for genomic and metagenomic sequencing data

Amogelang R. Raphenya¹, Tammy T. Y. Lau², Brian Alcock¹, Kara K. Tsang¹, Finlay Maguire³, Fiona S. Brinkman⁴, Robert G. Beiko³, Andrew G. McArthur¹

¹The Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada

²B.C. Cancer Agency, Vancouver, British Columbia, Canada

³Faculty of Computer Science, Dalhousie University, Halifax, Canada

⁴Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada

RGI predicts AMR genes in genomes with high confidence.

In silico variants are needed to predict AMR genes in

metagenomes.

Read counts to drug classes using CARD's canonical & full length in silico variants

^aFigure 3. Predicted AMR genes in *Escherichia coli* strain HK-01 plasmid pNDM-HK, HQ451074.1 using RGI for genomes. All hits are confirmed from NCBI annotations.

Future directions

- Add Perfect, Strict and Loose paradigms for RGI metagenomic analyses
- Include a screen to detect AMR single nucleotide polymorphisms (SNPs)
- Develop a feature to distinguish Gram-positive and Gram-negative AMR genes

Acknowledgements

I would like to thank Allison Guitor, Bhavya Singh, and the McArthur lab for their continued support.

References

^aJia, B., et al. CARD 2017: expansion and modelcentric curation of the Comprehensive Antibiotic Resistance Database.

bHendriksen, R.S., et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage.

https://github.com/arpcard/rgi

