

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of

Docket No: Q79274

Toshiki TAGUCHI, et al.

Appln. No.: 10/750,863

Group Art Unit: 1755

Confirmation No.: 3223

Examiner: Not yet assigned

Filed: January 05, 2004

For:

INKJET INK, PRODUCTION METHOD OF INKJET INK, INKJET INK SET AND

INKJET RECORDING METHOD

SUBMISSION OF PRIORITY DOCUMENTS

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

Submitted herewith are certified copies of the priority documents on which a claim to priority was made under 35 U.S.C. § 119. The Examiner is respectfully requested to acknowledge receipt of said priority documents.

Respectfully submitted,

Registration No. 32,197

SUGHRUE MION, PLLC

Telephone: (202) 293-7060

Facsimile: (202) 293-7860

WASHINGTON OFFICE

CUSTOMER NUMBER

Enclosures:

Japan 2003-002311

Japan 2003-002407

Date: April 16, 2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 1月 8日

出 願 番 号 Application Number:

特願2003-002311

[ST. 10/C]:

[J P 2 0 0 3 - 0 0 2 3 1 1]

出 願 人
Applicant(s):

富士写真フイルム株式会社

2004年 1月23日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】

特許願

【整理番号】

P-43421

【提出日】

平成15年 1月 8日

【あて先】

特許庁長官殿

【国際特許分類】

CO9D 11/00

B41J 2/01

【発明者】

【住所又は居所】

静岡県富士宮市大中里200番地 富士写真フイルム株

式会社内

【氏名】

田口 敏樹

【発明者】

【住所又は居所】

静岡県富士宮市大中里200番地 富士写真フイルム株

式会社内

【氏名】

小川 学

【発明者】

【住所又は居所】

神奈川県南足柄市中沼210番地 富士写真フイルム株

式会社内

【氏名】

塚田 芳久

【特許出願人】

【識別番号】

000005201

【氏名又は名称】

富士写真フイルム株式会社

【代理人】

【識別番号】

100105647

【弁理士】

【氏名又は名称】 小栗 昌平

【電話番号】

03-5561-3990

【選任した代理人】

【識別番号】 100105474

【弁理士】

【氏名又は名称】 本多 弘徳

【電話番号】 03-5561-3990

【選任した代理人】

【識別番号】 100108589

【弁理士】

【氏名又は名称】 市川 利光

【電話番号】 03-5561-3990

【選任した代理人】

【識別番号】 100115107

【弁理士】

【氏名又は名称】 高松 猛

【電話番号】 03-5561-3990

【選任した代理人】

【識別番号】 100090343

【弁理士】

【氏名又は名称】 栗宇 百合子

【電話番号】 03-5561-3990

【手数料の表示】

【予納台帳番号】 092740

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【包括委任状番号】 0003489

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 インクジェット用インク、インクジェット用インクの製造方法 、インクジェット用インクセットならびにインクジェット記録方法

【特許請求の範囲】

【請求項1】少なくとも染料、水、水混和性有機溶媒、ならびに炭素数6以上の油溶性基を有するアミノ酸誘導体を少なくとも1種含有することを特徴とする、インクジェット用インク。

【請求項2】少なくとも染料、水、水混和性有機溶媒、ならびに炭素数6以上の油溶性基を有するアミノ酸誘導体を少なくとも1種含有することを特徴とするインクジェット(記録)用濃厚インク。

【請求項3】請求項2記載の濃厚インクを用いて請求項1記載のインクを作製することを特徴とするインクジェット用インクの製造方法。

【請求項4】請求項1及び/または2記載のインクを少なくとも1種含むことを特徴とするインクジェット用インクセット。

【請求項5】請求項1及び/または請求項2記載のインク及び/または請求項4記載のインクセットを使用して、インクジェットプリンターにより画像記録を行うことを特徴とするインクジェット記録方法。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、高湿条件下における画像の耐久性に優れたインクジェット用インク 、インクセットならびにインクジェット記録方法に関する。

[0002]

【従来の技術】

近年、コンピューターの普及に伴い、インクジェットプリンターがオフィスだけでなく家庭で紙、フィルム、布等に印字するために広く利用されている。

インクジェット記録方法には、ピエゾ素子により圧力を加えて液滴を吐出させる方式、熱によりインク中に気泡を発生させて液滴を吐出させる方式、超音波を 用いた方式、あるいは静電力により液滴を吸引吐出させる方式がある。これらの インクジェット記録用インク組成物としては、水性インク、油性インク、あるいは固体(溶融型)インクが用いられる。これらのインクのうち、製造、取り扱い性・臭気・安全性等の点から水性インクが主流となっている。

[0003]

これらのインクジェット記録用インクに用いられる着色剤に対しては、溶剤に 対する溶解性が高いこと、高濃度記録が可能であること、色相が良好であること 、光、熱、空気、水や薬品に対する堅牢性に優れていること、受像材料に対して 定着性が良く滲みにくいこと、インクとしての保存性に優れていること、毒性が ないこと、純度が高いこと、さらには、安価に入手できることが要求されている 。しかしながら、これらの要求を高いレベルで満たす着色剤を捜し求めることは 、極めて難しい。 既にインクジェット用として様々な染料や顔料が提案され、 実際に使用されているが、未だに全ての要求を満足する着色剤は、発見されてい ないのが現状である。カラーインデックス(C. I.)番号が付与されているよ うな、従来からよく知られている染料や顔料では、インクジェット記録用インク に要求される色相や堅牢性とを両立させることは難しい。これまで、良好な色相 を有し、堅牢な染料について検討を進め、インクジェット用着色剤として優れた ものの開発を進めてきた。しかしながら水溶性染料という化合物には必ず水溶性 基が置換している。インクの安定性を向上させるためにこの水溶性基の数を増加 させると、形成された画像が高湿条件下でにじみやすいという問題があることが わかった。

$[0\ 0\ 0\ 4]$

【発明が解決しようとする課題】

本発明が解決しようとする課題は、高湿条件下でも画像のにじみを起こしにくいインクジェット用インク、インクジェットインクの製造方法、インクセットならびにインクジェット記録方法を提供することである。

[0005]

【課題を解決するための手段】

本発明の課題は、下記の手段によって達成された。

1) 少なくとも染料、水、水混和性有機溶媒、ならびに炭素数6以上の油溶性基

を有するアミノ酸誘導体を少なくとも1種含有することを特徴とする、インクジ ェット(記録)用インク(組成物)。該染料は好ましくは水溶性染料である。

- 2) 少なくとも染料、水、水混和性有機溶媒、ならびに炭素数6以上の油溶性基 を有するアミノ酸誘導体を少なくとも1種含有することを特徴とするインクジェ ット(記録)用濃厚インク。該染料は好ましくは水溶性染料である。
- 3) 該アミノ酸誘導体が後記の一般式(A) で表される化合物であることを特徴 とする第1)項のインクまたは第2)項記載の濃厚インク。
- 4)第2)項または第3)項記載の濃厚インクを用いて第1)項記載のインクを 作製することを特徴とするインクジェット(記録)用インクの製造方法。
- 5) 第1) 項および/または第2) 項記載のインクジェット(記録) 用インクを 少なくとも1種含むことを特徴とするインクジェット(記録)用インクセット。
- 6) 第1) 項および/または第2) 項記載のインクジェット(記録) 用インクお よび/または第5)項記載のインクセットを使用して、インクジェットプリンタ ーにより画像記録を行うことを特徴とするインクジェット記録方法。

[0006]

【発明の実施の形態】

以下、本発明について詳細に説明する。

本発明のインクジェット用インクは、油溶性基を有するアミノ酸誘導体を含有 するという特徴を有する。

$[0\ 0\ 0\ 7]$

ここでいうアミノ酸とは、生体分子の構成単位として分類される狭義のアミノ 酸のみならず、分子内に塩基性の窒素原子とプロトン解離性の置換基を有する化 合物を総称して表す。

基本骨格として、前者の例としては例えば、グリシン、リシン、トリシン、バ イシン、アラニン、バリン、ロイシン、イソロイシン、ベータアラニン、セリン 、イソセリン、スレオニン、プロリン、オルニチン、グルタミン酸、アスパラギ ン酸、イノシン酸、システイン、メチオニン、タウリン、シスチン等を挙げるこ とができる。

また、後者の例としては、アミノ酢酸、イミノジ酢酸、ニトリロトリ酢酸、ア

ミノアジピン酸、ピペコリン酸、ピコリン酸、ニコチン酸、キノリン酸、フェニルグリシン、アミノ安息香酸、アミノフタル酸、ジメチルアミノ安息香酸、ジエチルアミノ安息香酸等、幅広い化合物を上げることができる。

[0008]

また、分子内にアミノ基ならびにカルボキシル基もしくはスルホ基を有するポリマー化合物も本発明に好ましく使用できる。ポリマー化合物の主鎖の構造から分類した場合、ビニル重合ポリマー、ポリエーテル型ポリマー、ポリエステル型ポリマー、ポリアロマティックス(ヘテロ環も含む)、ポリアミン型ポリマーなど種々のポリマーから選択可能であるが、本発明ではビニル重合ポリマー、ポリエーテル型ポリマー、ポリアミン型ポリマーが好ましく使用できる。中でも、10質量%以上の水溶液として存在しうる水溶性ポリマーや、水に分散した微粒子分散ポリマー、乳化重合により形成されたラテックスポリマーなどを好ましく使用できる。また、先述のキレート剤として作用する基をその部分構造として有するポリマーは特に好ましく使用可能である。

ポリマーの具体例としては、ポリアクリル酸、ポリメタクリル酸、ポリビニルアミン、ポリアリルアミン、ポリイミン、ポリビニルアルコール、ポリヒドロキシエチルアクリレート、ポリヒドロキシエチルメタクリレート、ポリエチレングリコール、ポリビニルピリジン、4級アンモニウム基を置換基として有するポリスチレン誘導体など種々のものが使用可能であり、さらにこの共重合体やアミノ酸構造を有するモノマーとの共重合体、種々の公知モノマーとの共重合体を好ましく使用可能である。

[0009]

本発明で使用するアミノ酸には、炭素数6以上の油溶性基が置換しているという特徴を有する。油溶性基の種類としては、アルキル基、アリール基などを挙げることができ、これらを部分構造に有する基を挙げることができる。好ましい炭素数としては、6以上40以下、さらに好ましくは8以上20以下である。

低分子化合物の場合、この油溶性基を分子内に1以上有するものが好ましい化合物である。高分子化合物の場合、この油溶性基はアミノ酸モノマー単位に含まれていてもよく、アミノ酸モノマー単位に対して共重合するモノマー単位に含ま

れていてもよい。共重合の場合、油溶性基を有するモノマー単位は全体を100% としたときに、重合モル比で0.01~99%、好ましくは0.1~90%である。

[0010]

本発明のアミノ酸には、上述の油溶性基の他に種々の置換基が置換可能である 。これらの置換基は、油溶性基とは別に置換していてもよいし、油溶性基にさら に置換していてもよい。その例としては、例えばアルキル基(好ましくは炭素数 $1 \sim 20$ 、より好ましくは炭素数 $1 \sim 12$ 、特に好ましくは炭素数 $1 \sim 8$ であり 、例えばメチル、エチル、isoープロピル、tertーブチル、nーオクチル 、n-デシル、n-ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘ キシル等が挙げられる。)、アルケニル基(好ましくは炭素数2~20、より好 ましくは炭素数2~12、特に好ましくは炭素数2~8であり、例えばビニル、 アリル、2-ブテニル、3-ペンテニル等が挙げられる。)、アルキニル基(好 ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素 数2~8であり、例えばプロパルギル、3-ペンチニル等が挙げられる。)、ア リール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好 ましくは炭素数6~12であり、例えばフェニル、pーメチルフェニル、ナフチ ル等が挙げられる。)、アミノ基(好ましくは炭素数0~20、より好ましくは 炭素数0~12、特に好ましくは炭素数0~6であり、例えばアミノ、メチルア ミノ、ジメチルアミノ、ジエチルアミノ、ジフェニルアミノ、ジベンジルアミノ 等が挙げられる。)、アルコキシ基(好ましくは炭素数1~20、より好ましく は炭素数1~12、特に好ましくは炭素数1~8であり、例えばメトキシ、エト キシ、ブトキシ等が挙げられる。)、アリールオキシ基(好ましくは炭素数6~ 20、より好ましくは炭素数 $6\sim16$ 、特に好ましくは炭素数 $6\sim12$ であり、 例えばフェニルオキシ、2-ナフチルオキシ等が挙げられる。)、アシル基(好 ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素 数1~12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイル等が挙 げられる。)、アルコキシカルボニル基(好ましくは炭素数2~20、より好ま しくは炭素数2~16、特に好ましくは炭素数2~12であり、例えばメトキシ カルボニル、エトキシカルボニル等が挙げられる。)、アリールオキシカルボニ

ル基(好ましくは炭素数7~20、より好ましくは炭素数7~16、特に好まし くは炭素数7~10であり、例えばフェニルオキシカルボニルなどが挙げられる 。)、アシルオキシ基(好ましくは炭素数2~20、より好ましくは炭素数2~ 16、特に好ましくは炭素数2~10であり、例えばアセトキシ、ベンゾイルオ キシ等が挙げられる。)、アシルアミノ基(好ましくは炭素数2~20、より好 ましくは炭素数2~16、特に好ましくは炭素数2~10であり、例えばアセチ ルアミノ、ベンゾイルアミノ等が挙げられる。)、アルコキシカルボニルアミノ 基(好ましくは炭素数2~20、より好ましくは炭素数2~16、特に好ましく は炭素数2~12であり、例えばメトキシカルボニルアミノ等が挙げられる。) 、アリールオキシカルボニルアミノ基(好ましくは炭素数7~20、より好まし くは炭素数7~16、特に好ましくは炭素数7~12であり、例えばフェニルオ キシカルボニルアミノ等が挙げられる。)、スルホニルアミノ基(好ましくは炭 素数 $1 \sim 20$ 、より好ましくは炭素数 $1 \sim 16$ 、特に好ましくは炭素数 $1 \sim 12$ であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノ等が挙げら れる。)、スルファモイル基(好ましくは炭素数0~20、より好ましくは炭素 数0~16、特に好ましくは炭素数0~12であり、例えばスルファモイル、メ チルスルファモイル、ジメチルスルファモイル、フェニルスルファモイル等が挙 げられる。)、カルバモイル基(好ましくは炭素数1~20、より好ましくは炭 素数1~16、特に好ましくは炭素数1~12であり、例えばカルバモイル、メ チルカルバモイル、ジエチルカルバモイル、フェニルカルバモイル等が挙げられ る。)、アルキルチオ基(好ましくは炭素数1~20、より好ましくは炭素数1 ~16、特に好ましくは炭素数1~12であり、例えばメチルチオ、エチルチオ 等が挙げられる。)、アリールチオ基(好ましくは炭素数6~20、より好まし くは炭素数6~16、特に好ましくは炭素数6~12であり、例えばフェニルチ オ等が挙げられる。)、スルホニル基(好ましくは炭素数1~20、より好まし くは炭素数1~16、特に好ましくは炭素数1~12であり、例えばメシル、ト シル等が挙げられる。)、スルフィニル基(好ましくは炭素数1~20、より好 ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えばメタン スルフィニル、ベンゼンスルフィニル等が挙げられる。)、ウレイド基(好まし

くは炭素数 $1 \sim 20$ 、より好ましくは炭素数 $1 \sim 16$ 、特に好ましくは炭素数1~ 1 2 であり、例えばウレイド、メチルウレイド、フェニルウレイド等が挙げら れる。)、リン酸アミド基(好ましくは炭素数1~20、より好ましくは炭素数 1~16、特に好ましくは炭素数1~12であり、例えばジエチルリン酸アミド 、フェニルリン酸アミド等が挙げられる。)、ヒドロキシ基、メルカプト基、ハ ロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基 、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒ ドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1~30、より好ましく は炭素数1~12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫 黄原子を含むものであり具体的には例えばイミダゾリル、ピリジル、キノリル、 フリル、チエニル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンゾイミ ダゾリル、ベンゾチアゾリル、カルバゾリル、アゼピニル等が挙げられる。)、 シリル基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好 ましくは炭素数3~24であり、例えばトリメチルシリル、トリフェニルシリル 等が挙げられる。)等が挙げられる。これらの置換基は更に置換されても良い。 また置換基が二つ以上ある場合は、同一でも異なっていても良い。また、可能な 場合には互いに連結して環を形成していても良い。

$[0\ 0\ 1\ 1]$

本発明のアミノ酸誘導体としては下記一般式(A)で表される化合物及び下記 一般式(B)で表される化合物が好ましく用いられる。

 $[0\ 0\ 1\ 2]$

【化1】

一般式(A)

$$R_{A1}-N$$
 R_{A2}

[0013]

式中、 R_{A1} は炭素数 6 以上(好ましくは炭素数 6 以上 4 0 以下)のアルキル基を表す。 R_{A2} 、 R_{A3} はそれぞれ、アルキル基(好ましくは炭素数 1 以上 2 以下)、カルボキシアルキル基(好ましくは炭素数 1 以上 4 以下)またはスルホアルキル基(好ましくは炭素数 1 以上 4 以下)を表し、 R_{A2} 、 R_{A3} の少なくとも 1 つはカルボキシアルキル基またはスルホアルキル基である。カルボキシアルキル基及びスルホアルキル基中のカルボキシ基及びスルホ基はそれぞれの塩の形でもよい(下記の R_{A5} 、 R_{A6} についても同様である)。

 R_{A1} が炭素数 8 以上 2 0 以下のアルキル基であり、 R_{A2} 、 R_{A3} がそれぞれ、炭素数 1 以上 1 2 以下のアルキル基、炭素数 1 以上 4 以下のカルボキシアルキル基であることが、より好ましい。

[0014]

【化2】

一般式(B)

[0015]

 R_{A4} が炭素数 8 以上 2 0 以下のアルキル基であり、 R_{A5} 、 R_{A6} はそれぞれ、炭素数 1 以上 1 2 以下のアルキル基、 R_{A7} がC O O - 含有アルキル基(好ましくは炭素数 1 \sim 2)であることが、より好ましい。

[0016]

以下に本発明のアミノ酸誘導体として好ましい例を列挙するが、本発明はもち ろんこれによって限定されるものではない。

[0017]

【化3】

$$\begin{array}{c} \mathrm{CH_{2}COONa} \\ \text{(n)C}_{12}\mathrm{H}_{25}\mathrm{-N} \\ \mathrm{CH}_{2}\mathrm{COOH} \end{array}$$

W-4

W-5

$$\begin{array}{c} \mathrm{CH_{2}COONa} \\ \mathrm{(n)C_{12}H_{25}-N} \\ \mathrm{CH_{2}COONa} \end{array}$$

W-6

$$\begin{array}{c} \mathrm{CH_{2}CH_{2}COONa} \\ \text{(n)C}_{12}\mathrm{H}_{25}\mathrm{-N} \\ \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{COOH} \end{array}$$

W-7

$$\begin{array}{c} \mathrm{CH_2CH_2CH_2COONa} \\ \text{(n)C}_{12}\mathrm{H}_{25}\mathrm{-N} \\ \mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{COOH} \end{array}$$

W-8

[0018]

【化4】

W-9

$${
m C_8H_{17}} \\ {
m N-CH_2 COOH} \\ {
m C_8H_{17}} \\$$

W-10

W-11

W-12

W-13

W-14

W-15

W-16

[0019]

【化5】

W-17

W-18

[0020]

本発明のアミノ酸誘導体はインク中に0.01~20質量パーセント、好ましくは0.1~10質量パーセント、さらに好ましくは0.5~5質量パーセント含有される。

[0021]

本発明のインクジェット用インクは、インク100質量部中、染料である着色 剤を0.2質量部以上(好ましくは20質量部以下)含有することが好ましい。

本発明の濃厚インクは、インク100質量部中、着色剤である染料を2質量部以上(好ましくは20質量部以下)、含有するものと定義する。好ましくは該濃厚インクは、インク100質量部中、染料を2.5質量部以上15質量部以下、含有する。

[0022]

第2)項記載の濃厚インクを用いて第1)項記載のインクを作製することを特徴とするインクジェット用インクの製造方法の一態様としては、濃厚インクの処方中の染料を除いた処方の組成物を作製し、その組成物で濃厚インクを希釈する方法があり、又比較的低い濃度の別のインクと濃厚インクとを混合する方法等がある。

[0023]

本発明のインクセットに使用するインクは、染料を水及び/または有機溶媒に溶解してなるインクである。中でも水溶性染料による水溶液タイプのインクであることが好ましい。本発明では、「水溶性染料」は20℃の蒸留水に2質量%以

上溶解する染料をいう。

[0024]

本発明で用いられるインクには、種々の染料が着色剤として用いられる。以下 にその例を挙げる。

イエロー染料としては、例えばカップリング成分としてフェノール類、ナフトール類、アニリン類、ピラゾロン類、ピリドン類、開鎖型活性メチレン化合物類を有するアリールもしくはヘテリルアゾ染料;例えばカップリング成分として開鎖型活性メチレン化合物類を有するアゾメチン染料;例えばベンジリデン染料やモノメチンオキソノール染料等のようなメチン染料;例えばナフトキノン染料、アントラキノン染料等のようなキノン系染料などがあり、これ以外の染料種としてはキノフタロン染料、ニトロ・ニトロソ染料、アクリジン染料、アクリジノン染料等を挙げることができる。これらの染料は、クロモフォアの一部が解離して初めてイエローを呈するものであってもよく、その場合のカウンターカチオンはアルカリ金属や、アンモニウムのような無機のカチオンであってもよいし、ピリジニウム、4級アンモニウム塩のような有機のカチオンであってもよく、さらにはそれらを部分構造に有するポリマーカチオンであってもよい。

[0025]

マゼンタ染料としては、例えばカップリング成分としてフェノール類、ナフトール類、アニリン類を有するアリールもしくはヘテリルアゾ染料;例えばカップリング成分としてピラゾロン類、ピラゾロトリアゾール類を有するアゾメチン染料;例えばアリーリデン染料、スチリル染料、メロシアニン染料、オキソノール染料のようなメチン染料;ジフェニルメタン染料、トリフェニルメタン染料、キサンテン染料のようなカルボニウム染料、例えばナフトキノン、アントラピリドンなどのようなキノン系染料、例えばジオキサジン染料等のような縮合多環系色素等を挙げることができる。これらの染料は、クロモフォアの一部が解離して初めてマゼンタを呈するものであってもよく、その場合のカウンターカチオンはアルカリ金属や、アンモニウムのような無機のカチオンであってもよいし、ピリジニウム、4級アンモニウム塩のような有機のカチオンであってもよく、さらにはそれらを部分構造に有するポリマーカチオンであってもよい。

[0026]

シアン染料としては、例えばインドアニリン染料、インドフェノール染料のようなアゾメチン染料;シアニン染料、オキソノール染料、メロシアニン染料のようなポリメチン染料;ジフェニルメタン染料、トリフェニルメタン染料、キサンテン染料のようなカルボニウム染料;フタロシアニン染料;アントラキノン染料;例えばカップリング成分としてフェノール類、ナフトール類、アニリン類を有するアリールもしくはヘテリルアゾ染料、インジゴ・チオインジゴ染料を挙げることができる。これらの染料は、クロモフォアの一部が解離して初めてシアンを呈するものであってもよく、その場合のカウンターカチオンはアルカリ金属や、アンモニウムのような無機のカチオンであってもよいし、ピリジニウム、4級アンモニウム塩のような有機のカチオンであってもよく、さらにはそれらを部分構造に有するポリマーカチオンであってもよい。

また、ポリアゾ染料などのブッラク染料も使用することができる。

[0027]

また、直接染料、酸性染料、食用染料、塩基性染料、反応性染料等の水溶性染料を併用することもできる。なかでも好ましいものとしては、

- C. I. ダイレクトレッド2、4、9、23、26、31、39、62、63、72、75、76、79、80、81、83、84、89、92、95、111、173、184、207、211、212、214、218、21、223、224、225、226、227、232、233、240、241、242、243、247
- C. I. ダイレクトバイオレット 7、 9、47、48、51、66、90、93、94、95、98、10 0、101
- C. I. ダイレクトイエロー8、9、11、12、27、28、29、33、35、39、41、44、50、53、58、59、68、86、87、93、95、96、98、100、106、108、109、110、130、132、142、144、161、163
- C. I. ダイレクトブルー 1、10、15、22、25、55、67、68、71、76、77、78、80、84、86、87、90、98、106、108、109、151、156、158、159、160、168、189、192、193、194、199、200、201、202、203、207、211、213、214、218、225、229、236、237、244、248、249、251、252、264

- 、270、280、288、289、291
- C. I. ダイレクトブラック 9、17、19、22、32、51、56、62、69、77、80、91、94、97、108、112、113、114、117、118、121、122、125、132、146、154、166、168、173、199
- C. I. アシッドレッド35、42、52、57、62、80、82、111 、114 、118 、119 、12
- 7、128、131、143、151、154、158、249、254、257、261、263、26
- 6、289、299、301、305、336、337、361、396、397
- C. I. アシッドバイオレット5、34、43、47、48、90、103、126
- C.I. アシッドイエロー17、19、23、25、39、40、42、44、49、50、61、64、76、
- 79、110、127、135、143、151、159、169、174、190、195、196、19
- 7 、199 、218 、219 、222 、227
- C.I.アシッドブルー9、25、40、41、62、72、76、78、80、82、92、106、112、113、120、127 : 1、129、138、143、175、181、205、207、220、
- 221 、230 、232 、247 、258 、260 、264 、271 、277 、278 、279 、280 、
- 288 、290 、326
- C. I. アシッドブラック7 、24、29、48、52:1、172
- C. I. リアクティブレッド3 、13、17、19、21、22、23、24、29、35、37、40、41 、43、45、49、55
- C. I. UPDF + TMT + TMT
- 23, 24, 26, 27, 33, 34
- C. I. リアクティブイエロー2、3、13、14、15、17、18、23、24、25、26、27、
- 29, 35, 37, 41, 42
- C. I. リアクティブブルー2 、3 、5 、8 、10、13、14、15、17、18、19、21、25 、26、27、28、29、38
- C. I. ベーシックレッド12、13、14、15、18、22、23、24、25、27、29、35、36、
- 38, 39, 45, 46
- C. I. ベーシックバイオレット1、2、3、7、10、15、16、20、21、25、27、28、35、37、39、40、48

- C. I. ベーシックイエロー1 、2 、4 、11、13、14、15、19、21、23、24、25、28 、29、32、36、39、40
- C. I. ベーシックブルー1 、3 、5 、7 、9 、22、26、41、45、46、47、54、57、60、62、65、66、69、71
- C.I.ベーシックブラック8、等が挙げられる。

[0028]

さらに、顔料を併用することもできる。

本発明のインクに用いることのできる顔料としては、市販のものの他、各種文 献に記載されている公知のものが利用できる。文献に関してはカラーインデック ス(The Society of Dyers and Colourists編) 、「改訂新版顔料便覧」日本顔料 技術協会編(1989 年刊)、「最新顔料応用技術」CMC 出版(1986 年刊)、「印刷 インキ技術」CMC 出版(1984 年刊) 、W. Herbst, K. Hunger共著によるIndustri al Organic Pigments (VCH Verlagsgesellschaft、1993年刊) 等がある。具体的 には、有機顔料ではアゾ顔料(アゾレーキ顔料、不溶性アゾ顔料、縮合アゾ顔料 、キレートアゾ顔料)、多環式顔料(フタロシアニン系顔料、アントラキノン系 顔料、ペリレン及びペリノン系顔料、インジゴ系顔料、キナクリドン系顔料、ジ オキサジン系顔料、イソインドリノン系顔料、キノフタロン系顔料、ジケトピロ ロピロール系顔料等)、染付けレーキ顔料(酸性または塩基性染料のレーキ顔料)、アジン顔料等があり、無機顔料では、黄色顔料のC. I. Pigment Yellow 34, 37, 42, 53 など、赤系顔料のC. I. Pigment Red 101, 108など、青系顔料のC. I. Pigment Blue 27, 29,17:1など、黒系顔料のC. I. Pigment Black 7,マグネ タイトなど、白系顔料のC. I. Pigment White 4,6,18,21 などを挙げることがで きる。

[0029]

画像形成用に好ましい色調を持つ顔料としては、青ないしシアン顔料ではフタロシアニン顔料、アントラキノン系のインダントロン顔料(たとえばC. I. Pigm ent Blue 60 など)、染め付けレーキ顔料系のトリアリールカルボニウム顔料が好ましく、特にフタロシアニン顔料(好ましい例としては、C. I. Pigment Blue 15:1、同15:2、同15:3、同15:4、同15:6などの銅フタロシアニン、モノクロロ

ないし低塩素化銅フタロシアニン、アルニウムフタロシアニンでは欧州特許8604 75号に記載の顔料、C. I. Pigment Blue 16 である無金属フタロシアニン、中心 金属がZn、Ni、Tiであるフタロシアニンなど、中でも好ましいものはC. I. Pigment Blue 15:3 、同15:4、アルミニウムフタロシアニン)が最も好ましい。

[0030]

赤ないし紫色の顔料では、アゾ顔料(好ましい例としては、C. I. Pigment Red 3、同5、同11、同22、同38、同48:1、同48:2、同48:3、同48:4、同49:1、同52:1、同53:1、同57:1、同63:2、同144 、同146 、同184)など、中でも好ましいものはC. I. Pigment Red 57:1、同146 、同184)、キナクリドン系顔料(好ましい例としてはC. I. Pigment Red 122 、同192 、同202 、同207 、同209 、C. I. Pigment Violet 19 、同42、なかでも好ましいものはC. I. Pigment Red 122)、染め付けレーキ顔料系のトリアリールカルボニウム顔料(好ましい例としてはキサンテン系のC. I. Pigment Red 81:1、C. I. Pigment Violet 1、同2、同3、同27、同39)、ジオキサジン系顔料(例えばC. I. Pigment Violet 23、同37)、ジケトピロロピロール系顔料(例えばC. I. Pigment Red 254)、ペリレン顔料(例えばC. I. Pigment Violet 29)、アントラキノン系顔料(例えばC. I. Pigment Red 254)、ペリレン顔料(例えばC. I. Pigment Violet 5:1、同31、同33)、チオインジゴ系(例えばC. I. Pigment Red 38、同88)が好ましく用いられる。

[0031]

黄色顔料としては、アゾ顔料(好ましい例としてはモノアゾ顔料系のC. I. Pigment Yellow 1, 3, 74, 98、ジスアゾ顔料系のC. I. Pigment Yellow 12, 13, 14, 16, 17, 83、総合アゾ系のC. I. Pigment Yellow 93, 94, 95, 128, 155、ベンズイミダゾロン系のC. I. Pigment Yellow 120, 151, 154, 156, 180など、なかでも好ましいものはベンジジン系化合物を原料に使用しなもの)、イソインドリン・イソインドリノン系顔料(好ましい例としてはC. I. Pigment Yellow 109, 110, 137, 139 など)、キノフタロン顔料(好ましい例としてはC. I. Pigment Yellow 2 4 など)が好ましく用いられる。

[0032]

黒顔料としては、無機顔料(好ましくは例としてはカーボンブラック、マグネタイト)やアニリンブラックを好ましいものとして挙げることができる。

この他、オレンジ顔料 (C. I. Pigment Orange 13, 16など) や緑顔料 (C. I. Pigment Green 7など) を使用してもよい。

[0033]

本発明のインクに使用できる顔料は、上述の裸の顔料であってもよいし、表面 処理を施された顔料でもよい。表面処理の方法には、樹脂やワックスを表面コートする方法、界面活性剤を付着させる方法、反応性物質(例えば、シランカップリング剤やエポキシ化合物、ポリイソシアネート、ジアゾニウム塩から生じるラジカルなど)を顔料表面に結合させる方法などが考えられ、次の文献や特許に記載されている。

- (1) 金属石鹸の性質と応用(幸書房)
- (2) 印刷インキ印刷 (CMC 出版 1984)
- (3) 最新顔料応用技術 (CMC 出版 1986)
- (4) 米国特許5,554,739 号、同5,571,311 号
- (5) 特開平9-151342号、同10-140065 号、同10-292143 号、同11-166145 号特に、上記(4) の米国特許に記載されたジアゾニウム塩をカーボンブラックに作用させて調製された自己分散性顔料や、上記(5) の日本特許に記載された方法で調製されたカプセル化顔料は、インク中に余分な分散剤を使用することなく分散安定性が得られるため特に有効である。

[0034]

本発明のインクおいては、顔料はさらに分散剤を用いて分散されていてもよい。分散剤は、用いる顔料に合わせて公知の種々のもの、例えば界面活性剤型の低分子分散剤や高分子型分散剤を用いることができる。分散剤の例としては特開平3-69949 号、欧州特許549486号等に記載のものを挙げることができる。また、分散剤を使用する際に分散剤の顔料への吸着を促進するためにシナジストと呼ばれる顔料誘導体を添加してもよい。

本発明のインクに使用できる顔料の粒径は、分散後で $0.01\sim10~\mu$ mの範囲であることが好ましく、 $0.05\sim1~\mu$ mであることが更に好ましい。

顔料を分散する方法としては、インク製造やトナー製造時に用いられる公知の分散技術が使用できる。分散機としては、縦型あるいは横型のアジテーターミル、アトライター、コロイドミル、ボールミル、3本ロールミル、パールミル、スーパーミル、インペラー、デスパーサー、KDミル、ダイナトロン、加圧ニーダー等が挙げられる。詳細は「最新顔料応用技術」(CMC 出版、1986)に記載がある。

[0035]

次に、本発明のインクジェット記録用インク組成物が含有する界面活性剤について説明する。

本発明のインクジェット記録用インク組成物に界面活性剤を含有させ、インク の液物性を調整することで、インクの吐出安定性を向上させ、画像の耐水性の向 上や印字したインクの滲みの防止などに優れた効果を持たせることができる。

本発明のアミノ酸誘導体と併用される界面活性剤としては、好ましくはノニオン系界面活性剤を挙げることができる。

[0036]

界面活性剤の含有量はインクに対して $0.01 \sim 15$ 質量%、好ましくは $0.005 \sim 10$ 質量%、更に好ましくは $0.01 \sim 5$ 質量である。

[0037]

本発明のインクジェット記録用インクは、水性媒体中に前記の染料、アミノ酸 誘導体を溶解および/または分散させることによって作製することができる。本 発明における「水性媒体」とは、水又は水と少量の水混和性有機溶剤との混合物 に、必要に応じて湿潤剤(好ましくは界面活性剤)、安定剤、防腐剤等の添加剤 を添加したものを意味する。本発明の染料は上記の水性媒体に溶解しているもの が好ましい。

[0038]

本発明において用いることができる水混和性有機溶剤の例には、アルコール(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、secーブタノール、tーブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール)、多価アルコール類(

例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール 、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、 ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタン ジオール、グリセリン、ヘキサントリオール、チオジグリコール)、グリコール 誘導体(例えば、エチレングリコールモノメチルエーテル、エチレングリコール モノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングル コールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピ レングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル 、ジプロピレングリコールモノメチルエーテル、トリエチレングルコールモノメ チルエーテル、エチレングリコールジアセテート、エチレングルコールモノメチ ルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチ レングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル)、アミン(例えば、エタノールアミン、ジエタノールアミン、トリエタノール アミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、モル ホリン、N-エチルモルホリン、エチレンジアミンン、ジエチレントリアミン、 トリエチレンテトラミン、ポリエチレンイミン、テトラメチルプロピレンジアミ ン)およびその他の極性溶媒(例えば、ホルムアミド、N, N-ジメチルホルム アミド、N.N-ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、 2-ピロリドン、N-メチル-2-ピロリドン、N-ビニル-2-ピロリドン、 2-オキサゾリドン、1,3-ジメチル-2-イミダゾリジノン、アセトニトリ ル、アセトン)が挙げられる。尚、前記水混和性有機溶剤は、2種類以上を併用 してもよい。

[0039]

本発明に用いられる高沸点有機溶媒の沸点は150℃以上であるが、好ましくは170℃以上である。

例えば、フタール酸エステル類(例えば、ジブチルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジー2-エチルヘキシルフタレート、

デシルフタレート、ビス(2.4ージーtert-アミルフェニル)イソフタレ ート、ビス(1,1-ジエチルプロピル)フタレート)、リン酸又はホスホンの エステル類(例えば、ジフェニルホスフェート、トリフェニルホスフェート、ト リクレジルホスフェート、2-エチルヘキシルジフェニルホスフェート、ジオク チルブチルホスフェート、トリシクロヘキシルホスフェート、トリー2-エチル ヘキシルホスフェート、トリドデシルホスフェート、ジー2-エチルヘキシルフ ェニルホスフェート)、安息香酸エステル酸(例えば、2-エチルヘキシルベン ゾエート、2.4-ジクロロベンゾエート、ドデシルベンゾエート、2-エチル ヘキシル-p-ヒドロキシベンゾエート)、アミド類(例えば、N, Nージエチ ルドデカンアミド、N.N-ジエチルラウリルアミド)、アルコール類またはフ ェノール類 (イソステアリルアルコール、2, 4-ジーtert-アミルフェノ ールなど)、脂肪族エステル類(例えば、コハク酸ジブトキシエチル、コハク酸 ジー2-エチルヘキシル、テトラデカン酸2-ヘキシルデシル、クエン酸トリブ チル、ジエチルアゼレート、イソステアリルラクテート、トリオクチルシトレー ト)、アニリン誘導体(N、N-ジブチル-2-ブトキシ-5-tert-オク チルアニリンなど)、塩素化パラフィン類(塩素含有量10%~80%のパラフ ィン類)、トリメシン酸エステル類(例えば、トリメシン酸トリブチル)、ドデ シルベンゼン、ジイソプロピルナフタレン、フェノール類(例えば、2,4-ジ - t e r t - アミルフェノール、4 - ドデシルオキシフェノール、4 - ドデシル オキシカルボニルフェノール、4-(4-ドデシルオキシフェニルスルホニル) フェノール)、カルボン酸類(例えば、2-(2,4-ジーtert-アミルフ ェノキシ酪酸、2-エトキシオクタンデカン酸)、アルキルリン酸類(例えば、 ジー2 (エチルヘキシル) リン酸、ジフェニルリン酸) などが挙げられる。高沸 点有機溶媒は油溶性染料に対して質量比で0.01~3倍量、好ましくは0.0 1~1.0倍量で使用できる。

これらの高沸点有機溶媒は単独で使用しても、数種の混合〔例えばトリクレジルホスフェートとジブチルフタレート、トリオクチルホスフェートとジ(2ーエチルヘキシル)セバケート、ジブチルフタレートとポリ(Nーtーブチルアクリルアミド)〕で使用してもよい。

[0040]

本発明において用いられる高沸点有機溶媒の前記以外の化合物例及び/または これら高沸点有機溶媒の合成方法は例えば米国特許第2,322,027号、同第2,533,5 14号、同第2,772,163号、同第2,835,579号、同第3,594,171号、同第3,676,137号 、同第3,689,271号、同第3,700,454号、同第3,748,141号、同第3,764,336号、同 第3,765,897号、同第3,912,515号、同第3,936,303号、同第4,004,928号、同第4, 080, 209号、同第4, 127, 413号、同第4, 193, 802号、同第4, 207, 393号、同第4, 220, 711号、同第4,239,851号、同第4,278,757号、同第4,353,979号、同第4,363,873 号、同第4,430,421号、同第4,430,422号、同第4,464,464号、同第4,483,918号、 同第4,540,657号、同第4,684,606号、同第4,728,599号、同第4,745,049号、同第 4,935,321号、同第5,013,639号、欧州特許第276,319A号、同第286,253A号、同第 289.820A号、同第309.158A号、同第309.159A号、同第309.160A号、同第509.311A 号、同第510,576A号、東独特許第147,009号、同第157,147号、同第159,573号、 同第225,240A号、英国特許第2,091,124A号、特開昭48-47335号、同50-26530号、 同51-25133号、同51-26036号、同51-27921号、同51-27922号、同51-149028号、 同52-46816号、同53-1520号、同53-1521 号、同53-15127号、同53-146622号、同 54-91325号、同54-106228号、同54-118246号、同55-59464号、同56-64333号、同 56-81836号、同59-204041号、同61-84641号、同62-118345号、同62-247364号、 同63-167357号、同63-214744号、同63-301941号、同64-9452号、同64-9454号、 同64-68745号、特開平1-101543号、同1-102454号、同2-792号、同2-4239号、同2 -43541号、同4-29237号、同4-30165 号、同4-232946号、同4-346338号等に記載 されている。

上記高沸点有機溶媒は、油溶性染料に対し、質量比で 0.01~3.0倍量、 好ましくは 0.01~1.0倍量で使用する。

[0041]

本発明では油溶性染料や高沸点有機溶媒は、水性媒体中に乳化分散して用いられる。乳化分散の際、乳化性の観点から場合によっては低沸点有機溶媒を用いることができる。低沸点有機溶媒としては、常圧で沸点約30℃以上150℃以下の有機溶媒である。例えばエステル類(例えばエチルアセテート、ブチルアセテ

ート、エチルプロピオネート、β-エトキシエチルアセテート、メチルセロソルブアセテート)、アルコール類(例えばイソプロピルアルコール、n-ブチルアルコール、セカンダリーブチルアルコール)、ケトン類(例えばメチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン)、アミド類(例えばジメチルホルムアミド、N-メチルピロリドン)、エーテル類(例えばテトラヒドロフラン、ジオキサン)等が好ましく用いられるが、これに限定されるものではない

[0042]

乳化分散は、高沸点有機溶媒と場合によっては低沸点有機溶媒の混合溶媒に染料を溶かした油相を、水を主体とした水相中に分散し、油相の微小油滴を作るために行われる。この際、水相、油相のいずれか又は両方に、後述する界面活性剤、湿潤剤、染料安定化剤、乳化安定剤、防腐剤、防黴剤等の添加剤を必要に応じて添加することができる。

乳化法としては水相中に油相を添加する方法が一般的であるが、油相中に水相 を滴下して行く、いわゆる転相乳化法も好ましく用いることができる。

$[0\ 0\ 4\ 3]$

本発明の乳化分散する際には、種々の界面活性剤を用いることができる。例えば脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルで酸エステル塩等のアニオン系界面活性剤や、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンアルキルアリルエーテル、パリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンフルキルアミン、グリセリン脂肪酸エステル、オキシエチレンオキシプロピレンブロックコポリマー等のノニオン系界面活性剤が好ましい。また、アセチレン系ポリオキシエチレンオキシド界面活性剤であるSURFYNOLS(AirProducts&Chemicals社)も好ましく用いられる。また、N,NージメチルーNーアルキルアミンオキシドのようなアミンオキシド型の両性界面活性剤等も好ましい。更に、特開昭59-157,6

3 6号の第(37)~(38)頁、リサーチ・ディスクロージャーNo. 3 0 8 1 1 9 (1 9 8 9 年)記載の界面活性剤として挙げたものも使うことができる。

[0044]

また、乳化直後の安定化を図る目的で、上記界面活性剤と併用して水溶性ポリマーを添加することもできる。水溶性ポリマーとしては、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド、ポリアクリル酸、ポリアクリルアミドやこれらの共重合体が好ましく用いられる。また多糖類、カゼイン、ゼラチン等の天然水溶性ポリマーを用いるのも好ましい。さらに染料分散物の安定化のためには実質的に水性媒体中に溶解しないアクリル酸エステル類、メタクリル酸エステル類、ビニルエステル類、アクリルアミド類、メタクリルアミド類、オレフィン類、スチレン類、ビニルエーテル類、アクリロニトリル類の重合により得られるポリビニルやポリウレタン、ポリエステル、ポリアミド、ポリウレア、ポリカーボネート等も併用することができる。これらのポリマーは一S〇²-、一C〇〇-を含有していること好ましい。これらの実質的に水性媒体中に溶解しないポリマーを併用する場合、高沸点有機溶媒の20質量%以下用いられることが好ましく、10質量%以下で用いられることがより好ましい。

[0045]

乳化分散により油溶性染料や高沸点有機溶媒を分散させて水性インクとする場合、特に重要なのはその粒子サイズのコントーロールである。インクジェットにより画像を形成した際の、色純度や濃度を高めるには平均粒子サイズを小さくすることが必須である。体積平均粒子サイズで好ましくは $1~\mu$ m以下、より好ましくは $5\sim1~0~0~n$ mである。

前記分散粒子の体積平均粒径および粒度分布の測定方法には静的光散乱法、動的光散乱法、遠心沈降法のほか、実験化学講座第4版の417~418ページに記載されている方法を用いるなど、公知の方法で容易に測定することができる。例えば、インク中の粒子濃度が0.1~1質量%になるように蒸留水で希釈して、市販の体積平均粒子サイズ測定機(例えば、マイクロトラックUPA(日機装(株)製))で容易に測定できる。更に、レーザードップラー効果を利用した動的光散乱法は、小サイズまで粒径測定が可能であり特に好ましい。

体積平均粒径とは粒子体積で重み付けした平均粒径であり、粒子の集合において、個々の粒子の直径にその粒子の体積を乗じたものの総和を粒子の総体積で割ったものである。体積平均粒径については「高分子ラテックスの化学」(室井宗一著 高分子刊行会) | 119ページに記載がある。

[0046]

また、粗大粒子の存在も印刷性能に非常に大きな役割を示すことが明らかになった。即ち、粗大粒子がヘッドのノズルを詰まらせる、あるいは詰まらないまでも汚れを形成することによってインクの不吐出や吐出のヨレを生じ、印刷性能に重大な影響を与えることが分かった。これを防止するためには、インクにした時にインク 1μ 1 中で 5μ m以上の粒子を 10 個以下、 1μ m以上の粒子を 10 0 個以下に抑えることが重要である。

これらの粗大粒子を除去する方法としては、公知の遠心分離法、精密濾過法等を用いることができる。これらの分離手段は乳化分散直後に行ってもよいし、乳化分散物に湿潤剤や界面活性剤等の各種添加剤を加えた後、インクカートリッジに充填する直前でもよい。

平均粒子サイズを小さくし、且つ粗大粒子を無くす有効な手段として、機械的 な乳化装置を用いることができる。

[0047]

乳化装置としては、簡単なスターラーやインペラー撹拌方式、インライン撹拌 方式、コロイドミル等のミル方式、超音波方式など公知の装置を用いることがで きるが、高圧ホモジナイザーの使用は特に好ましいものである。

高圧ホモジナイザーは、US-4533254号、特開平6-47264号等 に詳細な機構が記載されているが、市販の装置としては、ゴーリンホモジナイザー (A. P. V GAULIN INC.)、マイクロフルイダイザー (MIC ROFLUIDEX INC.)、アルティマイザー (株式会社スギノマシン) 等がある。

また、近年になってUS-5720551号に記載されているような、超高圧 ジェット流内で微粒子化する機構を備えた高圧ホモジナイザーは本発明の乳化分 散に特に有効である。この超高圧ジェット流を用いた乳化装置の例として、De BEE 2000 (BEE INTERNATIONAL LTD.) があげられる。

[0048]

高圧乳化分散装置で乳化する際の圧力は50MPa以上であり、好ましくは60MPa以上、更に好ましくは180MPa以上である。

例えば、撹拌乳化機で乳化した後、高圧ホモジナイザーを通す等の方法で2種以上の乳化装置を併用するのは特に好ましい方法である。また、一度これらの乳化装置で乳化分散した後、湿潤剤や界面活性剤等の添加剤を添加した後、カートリッジにインクを充填する間に再度高圧ホモジナイザーを通過させる方法も好ましい方法である。

高沸点有機溶媒に加えて低沸点有機溶媒を含む場合、乳化物の安定性及び安全衛生上の観点から低沸点溶媒を除去するのが好ましい。低沸点溶媒を除去する方法は溶媒の種類に応じて各種の公知の方法を用いることができる。即ち、蒸発法、真空蒸発法、限外濾過法等である。この低沸点有機溶剤の除去工程は乳化直後、できるだけ速やかに行うのが好ましい。

[0049]

本発明で得られたインクジェット記録用インク組成物には、インクの噴射口での乾操による目詰まりを防止するための乾燥防止剤、インクを紙によりよく浸透させるための浸透促進剤、紫外線吸収剤、酸化防止剤、粘度調整剤、表面張力調整剤、分散剤、分散安定剤、防黴剤、防錆剤、pH調整剤、消泡剤、キレート剤等の添加剤を適宜選択して適量使用することができる。

[0050]

本発明に使用される乾燥防止剤としては水より蒸気圧の低い水溶性有機溶剤が好ましい。具体的な例としてはエチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、チオジグリコール、ジチオジグリコール、2ーメチルー1,3ープロパンジオール、1,2,6ーへキサントリオール、アセチレングリコール誘導体、グリセリン、トリメチロールプロパン等に代表される多価アルコール類、エチレングリコールモノメチル(又はエチル)エーテル、ジエチレングリコールモノメチル(又はエチル)エーテル、ジエチレングリコールモノメチル(又はエチル)

レングリコールモノエチル(又はブチル)エーテル等の多価アルコールの低級アルキルエーテル類、2ーピロリドン、Nーメチルー2ーピロリドン、1,3ージメチルー2ーイミダゾリジノン、Nーエチルモルホリン等の複素環類、スルホラン、ジメチルスルホキシド、3ースルホレン等の含硫黄化合物、ジアセトンアルコール、ジエタノールアミン等の多官能化合物、尿素誘導体が挙げられる。これらのうちグリセリン、ジエチレングリコール等の多価アルコールがより好ましい。また上記の乾燥防止剤は単独で用いてもよいし2種以上併用してもよい。これらの乾燥防止剤はインク中に10~50質量%含有することが好ましい。

[0051]

本発明に使用される浸透促進剤としてはエタノール、イソプロパノール、ブタノール、ジ(トリ)エチレングリコールモノブチルエーテル、1,2ーヘキサンジオール等のアルコール類やラウリル硫酸ナトリウム、オレイン酸ナトリウムやノニオン性界面活性剤等を用いることができる。これらはインク中に10~30質量%含有すれば充分な効果があり、印字の滲み、紙抜け(プリントスルー)を起こさない添加量の範囲で使用するのが好ましい。

[0052]

本発明で画像の保存性を向上させるために使用される紫外線吸収剤としては特開昭58-185677号公報、同61-190537号公報、特開平2-782号公報、同5-197075号公報、同9-34057号公報等に記載されたベンゾトリアゾール系化合物、特開昭46-2784号公報、特開平5-194483号公報、米国特許第3214463号等に記載されたベンゾフェノン系化合物、特公昭48-30492号公報、同56-21141号公報、特開平10-88106号公報等に記載された桂皮酸系化合物、特開平4-298503号公報、同8-53427号公報、同8-239368号公報、同10-182621号公報、特表平8-501291号公報等に記載されたトリアジン系化合物、リサーチディスクロージャーNo.24239号に記載された化合物やスチルベン系、ベンズオキサゾール系化合物に代表される紫外線を吸収して蛍光を発する化合物、いわゆる蛍光増白剤も用いることができる。

[0053]

本発明では、画像の保存性を向上させるために使用される酸化防止剤としては、各種の有機系及び金属錯体系の褪色防止剤を使用することができる。有機の褪色防止剤としてはハイドロキノン類、アルコキシフェノール類、クロマン類、アニリン類、アミン類、インダン類、クロマン類、アルコキシアニリン類、ヘテロ環類などがあり、金属錯体としてはニッケル錯体、亜鉛錯体などがある。より具体的にはリサーチディスクロージャーNo.17643の第VIIのIないしJ項、同No.15162、同No.18716の650頁左欄、同No.36544の527頁、同No.307105の872頁、同No.15162に引用された特許に記載された化合物や特開昭62-215272号公報の127頁~137頁に記載された代表的化合物の一般式及び化合物例に含まれる化合物を使用することができる。

[0054]

本発明に使用される防黴剤としてはデヒドロ酢酸ナトリウム、安息香酸ナトリウム、ナトリウムピリジンチオン-1-オキシド、p-ヒドロキシ安息香酸エチルエステル、1, 2-ベンズイソチアゾリン-3-オンおよびその塩等が挙げられる。これらはインク中に0. 0 $2\sim5$. 0 0 質量%使用するのが好ましい。

尚、これらの詳細については「防菌防黴剤事典」(日本防菌防黴学会事典編集 委員会編)等に記載されている。

また、防錆剤としては、例えば、酸性亜硫酸塩、チオ硫酸ナトリウム、チオグリコール酸アンモン、ジイソプロピルアンモニウムニトライト、四硝酸ペンタエリスリトール、ジシクロヘキシルアンモニウムニトライト、ベンゾトリアゾール等が挙げられる。これらは、インク中に0.02~5.00質量%使用するのが好ましい。

[0055]

本発明では前記した界面活性剤とは別に表面張力調整剤として、ノニオン、カチオンあるいはアニオン界面活性剤が挙げられる。例えばアニオン系界面活性剤としては脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンア

ルキル硫酸エステル塩等を挙げることができ、ノニオン系界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレンオキシプロピレンブロックコポリマー等を挙げることができる。アセチレン系ポリオキシエチレンオキシド界面活性剤であるSURFYNOLS(AirProducts&Chemicals社)も好ましく用いられる。また、N,N-ジメチル-N-アルキルアミンオキシドのようなアミンオキシド型の両性界面活性剤等も好ましい。更に、特開昭59-157,636号の第(37)~(38)頁、リサーチ・ディスクロージャーNo.308119(1989年)記載の界面活性剤として挙げたものも使うことができる。

本発明のインクの表面張力は、これらを使用してあるいは使用しないで20~60 mN/mが好ましい。さらに25~45 mN/mが好ましい。

[0056]

本発明に用いられるインクの粘度は30mPa・s以下が好ましい。更に20mPa・s以下に調整することがより好ましいので、粘度を調製する目的で、粘度調整剤が使用されることがある。粘度調整剤としては、例えば、セルロース類、ポリビニルアルコールなどの水溶性ポリマーやノニオン系界面活性剤等が挙げられる。更に詳しくは、「粘度調製技術」(技術情報協会、1999年)第9章、及び「インクジェットプリンタ用ケミカルズ(98増補)ー材料の開発動向・展望調査ー」(シーエムシー、1997年)162~174頁に記載されている。

[0057]

また本発明では分散剤、分散安定剤として上述のカチオン、アニオン、ノニオン系の各種界面活性剤、消泡剤としてフッソ系、シリコーン系化合物やEDTAに代表されるれるキレート剤等も必要に応じて使用することができる。

[0058]

本発明の画像記録方法に用いられる記録紙及び記録フィルムについて説明する。記録紙及び記録フィルムおける支持体はLBKP、NBKP等の化学パルプ、

GP、PGW、RMP、TMP、CTMP、CMP、CGP等の機械パルプ、DIP等の古紙パルプ等をからなり、必要に応じて従来の公知の顔料、バインダー、サイズ剤、定着剤、カチオン剤、紙力増強剤等の添加剤を混合し、長網抄紙機、円網抄紙機等の各種装置で製造されたもの等が使用可能である。これらの支持体の他に合成紙、プラスチックフィルムシートのいずれであってもよく、支持体の厚み $10\sim250$ μ m、坪量は $10\sim250$ g/m2が望ましい。

支持体にそのまま受像層及びバックコート層を設けて受像材料としてもよいし、デンプン、ポリビニルアルコール等でサイズプレスやアンカーコート層を設けた後、受像層及びバックコート層を設けて受像材料としてもよい。さらに支持体には、マシンカレンダー、TGカレンダー、ソフトカレンダー等のカレンダー装置により平坦化処理を行ってもよい。

本発明では支持体としては、両面をポリオレフィン(例、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリブテンおよびそれらのコポリマー)でラミネートした紙およびプラスチックフイルムがより好ましく用いられる。 ポリオレフィンポリオレフィン中に、白色顔料(例、酸化チタン、酸化亜鉛)または色味付け染料(例、コバルトブルー、群青、酸化ネオジウム)を添加することが好ましい。

[0059]

支持体上に設けられる受像層には、多孔質材料や水性バインダーが含有される。また、受像層には顔料を含むのが好ましく、顔料としては、白色顔料が好ましい。白色顔料としては、炭酸カルシウム、カオリン、タルク、クレー、珪藻土、合成非晶質シリカ、珪酸アルミニウム、珪酸マグネシウム、珪酸カルシウム、水酸化アルミニウム、アルミナ、リトポン、ゼオライト、硫酸バリウム、硫酸カルシウム、二酸化チタン、硫化亜鉛、炭酸亜鉛等の無機白色顔料、スチレン系ピグメント、アクリル系ピグメント、尿素樹脂、メラミン樹脂等の有機顔料等が挙げられる。特に好ましくは、多孔性の白色無機顔料がよく、特に細孔面積が大きい合成非晶質シリカ等が好適である。合成非晶質シリカは、乾式製造法によって得られる無水珪酸及び湿式製造法によって得られる含水珪酸のいずれも使用可能であるが、特に含水珪酸を使用することが望ましい。これらの顔料は2種以上を併

用してもよい。

[0060]

受像層に含有される水性バインダーとしては、ポリビニルアルコール、シラノール変性ポリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン、ポリアルキレンオキサイド、ポリアルキレンオキサイド誘導体等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。これらの水性バインダーは単独または2種以上併用して用いることができる。本発明においては、これらの中でも特にポリビニルアルコール、シラノール変性ポリビニルアルコールが顔料に対する付着性、インク受容層の耐剥離性の点で好適である。

[0061]

受像層は、顔料及び水性バインダーの他に媒染剤、耐水化剤、耐光性向上剤、 界面活性剤、硬膜剤その他の添加剤を含有することができる。

$[0\ 0\ 6\ 2]$

受像層中に添加する媒染剤は、不動化されていることが好ましい。そのためには、ポリマー媒染剤が好ましく用いられる。

ポリマー媒染剤については、特開昭48-28325号、同54-74430号、同54-124726号、同55-22766号、同55-142339号、同60-23850号、同60-23852号、同60-23852号、同60-23853号、同60-23852号、同60-23853号、同60-57836号、同60-60643号、同60-1188334号、同60-122940号、同60-122941号、同60-122942号、同60-122942号、同60-122942号、同60-122942号、同60-122942号、同60-1334号、特開平1-161236号の各公報、米国特許2484430号、同2548564号、同3148061号、同3309690号、同4115124号、同4124386号、同4193800号、同4273853号、同4282305号、同4450224号の各明細書に記載がある。特開平1-161236号公報の212~215頁に記載のポリマー媒染剤を含有する受像材料が特に好ましい。同公報記載のポリマー媒染剤を用いると、優れた画質の画像が得られ、かつ画像の耐光性が改善される

[0063]

耐水化剤は、画像の耐水化に有効であり、これらの耐水化剤としては、特にカチオン樹脂が望ましい。このようなカチオン樹脂としては、ポリアミドポリアミンエピクロルヒドリン、ポリエチレンイミン、ポリアミンスルホン、ジメチルジアリルアンモニウムクロライド重合物、カチオンポリアクリルアミド、コロイダルシリカ等が挙げられ、これらのカチオン樹脂の中で特にポリアミドポリアミンエピクロルヒドリンが好適である。これらのカチオン樹脂の含有量は、インク受容層の全固形分に対して1~15質量%が好ましく、特に3~10質量%であることが好ましい。

[0064]

耐光性向上剤としては、硫酸亜鉛、酸化亜鉛、ヒンダーアミン系酸化防止剤、ベンゾフェノン等のベンゾトリアゾール系の紫外線吸収剤等が挙げられる。これらの中で特に硫酸亜鉛が好適である。

[0065]

界面活性剤は、塗布助剤、剥離性改良剤、スベリ性改良剤あるいは帯電防止剤として機能する。界面活性剤については、特開昭62-173463号、同62-183457号の各公報に記載がある。

界面活性剤の代わりに有機フルオロ化合物を用いてもよい。有機フルオロ化合物は、疎水性であることが好ましい。有機フルオロ化合物の例には、フッ素系界面活性剤、オイル状フッ素系化合物(例、フッ素油)および固体状フッ素化合物樹脂(例、四フッ化エチレン樹脂)が含まれる。有機フルオロ化合物については、特公昭57-9053号(第8~17欄)、特開昭61-20994号、同62-135826号の各公報に記載がある。

[0066]

硬膜剤としては特開平1-161236号公報の222頁に記載されている材料等を用いることが出来る。

[0067]

その他の受像層に添加される添加剤としては、顔料分散剤、増粘剤、消泡剤、 染料、蛍光増白剤、防腐剤、pH調整剤、マット剤、硬膜剤等が挙げられる。尚 、インク受容層は1層でも2層でもよい。

[0068]

記録紙及び記録フィルムには、バックコート層を設けることもでき、この層に添加可能な成分としては、白色顔料、水性バインダー、その他の成分が挙げられる。

バックコート層に含有される白色顔料としては、例えば、軽質炭酸カルシウム、重質炭酸カルシウム、カオリン、タルク、硫酸カルシウム、硫酸バリウム、二酸化チタン、酸化亜鉛、硫化亜鉛、炭酸亜鉛、サチンホワイト、珪酸アルミニウム、珪藻土、珪酸カルシウム、珪酸マグネシウム、合成非晶質シリカ、コロイダルシリカ、コロイダルアルミナ、擬ベーマイト、水酸化アルミニウム、アルミナ、リトポン、ゼオライト、加水ハロイサイト、炭酸マグネシウム、水酸化マグネシウム等の白色無機顔料、スチレン系プラスチックピグメント、アクリル系プラスチックピグメント、ポリエチレン、マイクロカプセル、尿素樹脂、メラミン樹脂等の有機顔料等が挙げられる。

[0069]

バックコート層に含有される水性バインダーとしては、スチレン/マレイン酸塩共重合体、スチレン/アクリル酸塩共重合体、ポリビニルアルコール、シラノール変性ポリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。バックコート層に含有されるその他の成分としては、消泡剤、抑泡剤、染料、蛍光増白剤、防腐剤、耐水化剤等が挙げられる。

[0070]

インクジェット記録紙及び記録フィルムの構成層(バック層を含む)には、ポリマー微粒子分散物を添加してもよい。ポリマー微粒子分散物は、寸度安定化、カール防止、接着防止、膜のひび割れ防止のような膜物性改良の目的で使用される。ポリマー微粒子分散物については、特開昭62-245258号、同62-1316648号、同62-110066号の各公報に記載がある。ガラス転移

温度が低い(40℃以下の)ポリマー微粒子分散物を媒染剤を含む層に添加すると、層のひび割れやカールを防止することができる。また、ガラス転移温度が高いポリマー微粒子分散物をバック層に添加しても、カールを防止できる。

[0071]

本発明では、インクジェットの記録方式に制限はなく、公知の方式例えば静電誘引力を利用してインクを吐出させる電荷制御方式、ピエゾ素子の振動圧力を利用するドロップオンデマンド方式(圧力パルス方式)、電気信号を音響ビームに変えインクに照射して放射圧を利用してインクを吐出させる音響インクジェット方式、及びインクを加熱して気泡を形成し、生じた圧力を利用するサーマルインクジェット(バブルジェット)方式等に用いられる。

インクジェット記録方式には、フォトインクと称する濃度の低いインクを小さい体積で多数射出する方式、実質的に同じ色相で濃度の異なる複数のインクを用いて画質を改良する方式や無色透明のインクを用いる方式が含まれる。

[0072]

【実施例】

以下、本発明を実施例によって説明するが、本発明はこれに限定されるものではない。

[0073]

(実施例1)

〔ライトマゼンタインク LM-101処方〕

(固形分)

マゼンタ色素 (MD-1)7.5g/1尿素37g/1

ジエチレングリコール (DEG) 140g/l

グリセリン(GR) 120g/l

トリエチレンク゛リコールモノフ゛チルエーテル(TGB)

120g/l

トリエタノールアミン(TEA)

6.9g/l

サーフィノールSTG(SW)

10g/l

さらに上記処方でマゼンタ色素 (MD-1) を23gに増量したマゼンタ用インク液 M-101を調製した。

[マゼンタインク M-101処方]

(固形分)

マゼンタ色素 (MD-1)

23g/l

尿素

37g/l

(液体成分)

ジエチレングリコール(DEG)

140g/l

グリセリン(GR)

120g/1

トリエチレンク゛リコールモノフ゛チルエーテル (TGB)

120g/l

トリエタノールアミン

6.9g/1

サーフィノールSTG

10g/l

[0074]

【化6】

MD-1

[0075]

LM-101とM-101に対して、下記の通りに添加物を加えた以外は全く同じ組成のインクLM-102~108、M-102~108をそれぞれ作製した。

(表1)

[0076]

【表1】

	添加物
LM-101,M-101 (比較例)	なし
LM-102,M-102(比較例)	LM-101,M-101に対して、POEP-1 10g/l
LM-103,M-103 (比較例)	LM-101,M-101に対して、POEN-1 10g/l
LM-104,M-104 (本発明)	LM-101,M-101に対して、W-2 10g/I
LM-105,M-105 (本発明)	LM-101,M-101に対して、W-3 10g/l
LM-106,M-106 (本発明)	LM-101,M-101に対して、W-8 10g/l
LM-107,M-107(本発明)	LM-101,M-101に対して、W-10 10g/l
LM-108,M-108 (本発明)	LM-101,M-101に対して、W-12 10g/l

POEP-1:ポリオキシエチレンノニルフェニルエーテル (PEO鎖平均30)

POEN-1:ポリオキシエチレンナフチルエーテル (PEO鎖平均50)

[0077]

これらのインクをEPSON社製インクジェットプリンターPM-950Cのマゼンタインク・ライトマゼンタインクのカートリッジに装填し、その他の色のインクはPM-950Cのインクを用いて、マゼンタの単色画像を印字させた。受像シートは富士写真フイルム(株)製インクジェットペーパーフォト光沢紙EXに画像を印刷し、高湿条件下における画像堅牢性の評価を行った。

(評価実験)

高湿条件下での画像のにじみについては、マゼンタの $3cm \times 3cm$ の正方形パターンが4つそれぞれ1mmの白地隙間を形成するように「田」の字型に並んだ印字パターンを作製し、この画像サンプルを25 $\mathbb{C}90\%RH$ の条件下、72時間保存後に白地隙間におけるマゼンタ染料のにじみを観察し、印字直後に対する白地のマゼンタ濃度増加がステータスAのマゼンタフィルターにおいて、0.01以下の場合をA、0.01~0.050場合をB、0.05以上の場合をCとした。

得られた結果を下表に示す。

(表2)

[0078]

【表2】

	Mにじみ
EPSON社純正インク(PM-950C)	В
LM-101,M-101 (比較例)	C
LM-102,M-102 (比較例)	С
LM-103,M-103 (比較例)	С
LM-104,M-104 (本発明)	Α
LM-105,M-105 (本発明)	A
LM-106,M-106 (本発明)	A
LM-107,M-107 (本発明)	A
LM-108,M-108 (本発明)	A

[0079]

表の結果から、本発明のインクセットを使用した系ではMにじみの面ですべての比較例に対して勝っていることがわかった。

(実施例2)

下記の成分に脱イオン水を加え 1 リッターとした後、 3 0 \sim 4 0 $\mathbb C$ $\mathbb C$ $\mathbb C$ $\mathbb C$ がら 1 時間撹拌した。その後、平均孔径 $0.25\,\mu$ mの $\mathfrak C$ $\mathfrak C$

[ライトシアンインク LC-101処方]

(固形分)

シアン色素 (CD-1)	17.5g/l
プロキセル	3.5g/l
(液体成分)	
ジエチレングリコール	150g/l
グリセリン	130g/l
トリエチレンク゛リコールモノフ゛チルエーテル	130g/l
トリエタノールアミン	6.9g/l
サーフィノールSTG(SW:ノニオン系界面活性剤)	10g/l

さらに上記処方でシアン色素 (CD-1) を68gに増量したシアン用インク液 C-10 1を調製した。

〔シアンインク C-101処方〕

(固形分)

シアン色素 (CD-1) 68g/l

プロキセル 3.5g/l

(液体成分)

ジエチレングリコール 150g/l

グリセリン 130g/l

・トリエチレンク゛リコールモノフ゛チルエーテル 130g/l

トリエタノールアミン 6.9g/l

サーフィノールSTG 10g/l

[0080]

【化7】

CD-1

[0081]

LC-101とC-101に対して、下記の通りに添加物を加えた以外は全く同じ組成の インクLC-102~108、C-102~108をそれぞれ作製した。

(表3)

[0082]

【表3】

	添加物
LC-101,C-101 (比較例)	なし
LC-102,C-102(比較例)	LC-101,C-101に対して、POEP-1 10g/l
LC-103,C-103(比較例)	LC-101,C-101に対して、POEN-1 10g/l
LC-104,C-104(本発明)	LC-101,C-101に対して、W-2 10g/l
LC-105,C-105(本発明)	LC-101,C-101に対して、W-3 10g/l
LC-106,C-106(本発明)	LC-101,C-101に対して、W-7 10g/l
LC-107,C-107(本発明)	LC-101,C-101に対して、W-11 10g/l
LC-108,C-108 (本発明)	LC-101,C-101に対して、W-14 10g/l

POEP-1:ポリオキシエチレンノニルフェニルエーテル (PEO鎖平均30)

POEN-1:ポリオキシエチレンナフチルエーテル (PEO鎖平均50)

[0083]

これらのインクをEPSON社製インクジェットプリンターPM-950Cのシアンインク・ライトシアンインクのカートリッジに装填し、実施例1と同様の評価を行った

得られた結果を下表に示す。

(表4)

[0084]

【表4】

	Cにじみ
EPSON社純正インク(PM-950C)	В
LC-101,C-101 (比較例)	С
LC-102,C-102 (比較例)	C
LC-103,C-103 (比較例)	С
LC-104,C-104 (本発明)	Α
LC-105,C-105 (本発明)	Α
LC-106,C-106 (本発明)	A
LC-107,C-107 (本発明)	A
LC-108,C-108 (本発明)	A

[0085]

表の結果から、本発明のインクセットを使用した系ではシアンのにじみの面で

すべての比較例に対して勝っていることがわかった。

[0086]

【発明の効果】

本発明により、高湿条件下でも画像のにじみを起こしにくい、インクジェット 用インク、インクジェットインクの製造方法、インクセットならびにインクジェット記録方法が得られた。 【書類名】

要約書

【要約】

【課題】高湿条件下でも画像のにじみを起こしにくい、インクジェット用インク、インクジェットインクの製造方法、インクセットならびにインクジェット記録方法を提供する。

【解決手段】少なくとも染料、水、水混和性有機溶媒、および炭素数 6 以上の油溶性基を有するアミノ酸誘導体を少なくとも 1 種含有する、インクジェット記録用インク。

【選択図】 なし

特願2003-002311

出願人履歴情報

識別番号

[000005201]

1. 変更年月日

1990年 8月14日

[変更理由]

新規登録

住 所

神奈川県南足柄市中沼210番地

氏 名

富士写真フイルム株式会社