Amendments to the Claims:

Please amend claims 1, 4-7, 11-14, 18, 21, 22, 31 and 32 as follows:

- 1. (Twice Amended) A method for the amplification of RNA, in a sample, comprising:
- a) obtaining a starting solution by adding to a container [comprising] the sample, a buffer, a first primer, a second primer, a plurality of nucleotide triphosphates, a sufficient amount of an enzyme system having reverse transcriptase activity and a heat stable enzyme system having DNA polymerase activity, [and closing the container,] wherein said sufficient amount is an amount which, after the heat treatment of step b) below, will retain sufficient reverse transcriptase activity to permit performance of step c) hereafter;
- b) heating the solution obtained in a) to a temperature sufficient to permit denaturation, said temperature not to exceed 75° C., and maintaining said temperature for a sufficient time to provide denaturation of said RNA without inactivating the enzyme system having reverse transcriptase activity;
- c) bringing the solution obtained in b) to a predetermined temperature and maintaining said temperature for sufficient time whereby the first primer hybridizes with the RNA strand;
- d) bringing the solution obtained in c) to a predetermined temperature from 45° to 75° C and maintaining said temperature for sufficient time whereby a first cDNA strand is synthesized and a RNA-cDNA heteroduplex is formed;
- [d)] e) heating the solution obtained in [c)] d) to a predetermined temperature whereby said RNA-cDNA heteroduplex is denatured to form an RNA single strand and a first cDNA single strand;
- [e)] <u>f)</u> bringing the solution obtained in [d)] <u>e)</u> to a predetermined temperature and maintaining said temperature for a sufficient time whereby the second primer hybridizes with the first cDNA strand;

- [f)] g) bringing the solution obtained in [e)] f) to a predetermined temperature and maintaining said temperature for a sufficient time whereby a second cDNA strand is synthesized to form a double-stranded cDNA; and
- [g)] h) denaturing the double-stranded cDNA and subjecting the cDNA strands to a sufficient number of amplification cycles to obtain a desired amount of amplified product;

wherein after step a), all steps are performed without subsequent addition of any ingredients.

- 4. (Amended) The method as claimed in claim 1, wherein [prior to] <u>in step c</u>) said solution obtained in b) is brought to a temperature which permits the hybridization of the first primer to an RNA sequence which is not absolutely complementary, said temperature being at least 40° C. and lower than 50° C.
- 5. (Amended) The method as claimed in claim 1, wherein in step [c)] d) said predetermined temperature is between 50° and 65° C.
- 6. (Amended) The method as claimed in claim 5, wherein in step [c)] d) said predetermined temperature is between 50° C. and 60° C.
- 7. (Amended) The method as claimed in claim 1, wherein in step [c)] <u>d</u>) said sufficient time is less than about 15 minutes.
- 11. (Amended) The method as claimed in claim 1, wherein in step [d)] e) said predetermined temperature is above 90° C.
- 12. (Amended) The method as claimed in claim 1, wherein in step [e)] <u>f</u>) said predetermined temperature permits the hybridization of the second primer without permitting hybridization of the second primer to a DNA sequence that is not absolutely complementary.
- 13. (Amended) The method as claimed in claim 1, wherein in step [e)] <u>f</u>) said predetermined temperature permits the hybridization of the second primer to a DNA sequence

which is not absolutely complementary, said temperature being at least 40° C. and lower than 50° C.

- 14. (Amended) The method as claimed in claim 1, wherein in step [f)] g) said predetermined temperature maintains the hybridization of the second primer.
- 18. (Amended) The method as claimed in claim 14, wherein in step [f)] g), said predetermined temperature is at least 50° C.
- 21. (Amended) The method as claimed in claim 1, wherein in step [c)] d) said predetermined temperature is at least 45° C.

<u>22.</u>	(Twice Amended) A method for the amplification of RNA in a sample,
comprising:	
	a) obtaining a starting solution by placing, in a container, the sample, a buffer,
a first primer, a	second primer, a plurality of nucleoside triphosphates, and an enzyme system
having reverse	transcriptase activity and DNA polymerase activity;
	b) heat treating said solution at a temperature sufficient to permit denaturation
of secondary st	ructures that may be present in said RNA but not above 75° C, for a time
sufficient to pe	rmit denaturation of secondary structures without completely inactivating the
reverse transcri	ptase and DNA polymerase activities of said enzyme system;
	c) permitting the first primer to hybridize with the RNA in said solution,
followed by syr	nthesis, at a temperature from 45° to 75° C, of a first cDNA strand, thus
forming an RN	A-cDNA heteroduplex;
	d) heat treating the solution containing said RNA-cDNA heteroduplex at a
temperature at	which said heteroduplex is denatured to form an RNA single strand and a first
cDNA single st	rand without completely inactivating the DNA polymerase activity of said
enzyme system	
	e) permitting the second primer to hybridize with the first cDNA strand,
followed by syr	athesis of a second cDNA strand to form a double-stranded cDNA; and

f) denaturing the double-stranded cDNA and subjecting the cDNA strands to a
sufficient number of amplification cycles to obtain a desired amount of amplified product;
wherein after step a), all steps are performed without subsequent addition of
any ingredients.
31. (Amended) The method of claim 22, wherein, after step a), the container is
closed and the container remains closed until the desired amount of amplified product is
obtained.
32. (Amended) The method of claim 22, wherein said first cDNA strand is
synthesized and said RNA-cDNA heteroduplex is formed at a temperature from about 50° C
to about 65° C.
Please add new claims 35-48 as follows:
New) The method of claim 22, wherein said RNA to be amplified contains
or is capable of containing secondary structure.
36. (New) The method of claim 1, wherein, after step a), the container is closed
and the container remains closed until the desired amount of amplified product is obtained.
37. (New) A method for the amplification of RNA in a sample, comprising:
a) obtaining a starting solution by placing, in a container, the sample, a buffer,
a first primer, a second primer, a plurality of nucleoside triphosphates, and an enzyme system
having reverse transcriptase activity and DNA polymerase activity;
b) heat treating said solution at a temperature of from 60° to 75° C, for a time
sufficient to permit denaturation of secondary structures without completely inactivating the
reverse transcriptase and DNA polymerase activities of said enzyme system;
c) permitting a first cDNA strand to be synthesized and an RNA-cDNA
heteroduplex to be formed;
d) heat treating the solution containing said RNA-cDNA heteroduplex at a
temperature at which said heteroduplex is denatured to form an RNA single strand and a first

44. (New) The method of claim 37, wherein said temperature at which said heteroduplex is denatured is above 90° C.

- 45. (New) The method of claim 37, wherein the second primer is permitted to hybridize with the first cDNA strand at a temperature from about 50° C to about 80° C.
- 46. (New) The method of claim 37, wherein said synthesis of said second cDNA occurs at a temperature from about 50° C to about 80° C.
- 47. (New) The method of claim 37, wherein said first cDNA strand is synthesized and said RNA-cDNA heteroduplex is formed at a temperature from about 45° C to about 75° C.
- 48. (New) The method of claim 47, wherein said first cDNA strand is synthesized and said RNA-cDNA heteroduplex is formed at a temperature from about 50° C to about 65° C.