A simple embedding method for the evaluation of fitness in a noisy environment

JUSTE RAIMBAULT^{1,2}

¹ UPS CNRS 3611 ISC-PIF

² UMR CNRS 8504 Géographie-cités

1 Context

Fitness with additive noise:

$$\vec{f}(\vec{x}) = \vec{f}_d(\vec{x}) + b(\vec{x})$$

Fitness with multiplicative noise : equivalent to additive noise if $\vec{f} > 0$

2 Proposed method

Embedding approach taking n_{evals} as a supplementary objective in the optimization. \rightarrow take in practice $\frac{1}{n_{evals}}$ in the case of a minimization.

Idea

- \bullet Adaptive in sigma ? size of the confidence interval proportional to σ/\sqrt{n}
- Use bootstrap to get local confidence intervals?