《高等数学》试题解答

- 一、填空题: (3×5=15分)
- 2. 积分 $\iint_D xydxdy = \underline{16}$, 其中 D 为 $0 \le x \le 2$, $0 \le y \le 4$.
- 3. L 为 $y = x^2$ 点(0,0)到(1,1)的一段弧,则 $\int \sqrt{y} ds = \frac{1}{12} \left[5\sqrt{5} 1 \right]$.
- 4. 级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ 当 p 满足 0 时条件收敛.
- 5. 方程 $ye^x dx (1+e^x) dy = 0$ 的通解为 $y = C(1+e^x)$.
- 二、选择题: (3×5=15分)
- 1. 方程 $(3x^2 + y\cos x)dx + (\sin x 4y^3)dy = 0$ 是 (C).
 - (A) 可分离变量微分方程 (B) 一阶线性方程

- (C) 全微分方程
- (D) (A)、(B)、(C) 均不对
- 2. z = f(x, y) 在 (x_0, y_0) 可微,则 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 在 (x_0, y_0) (D).
 - (A) 连续
- (B) 不连续 (C) 不一定存在 (D) 一定存在
- 3. 级数 $\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n-1}} \frac{1}{\sqrt{n+1}} \right) \mathbb{E} \left(A \right)$.
 - (A) 发散

(B) 收敛

(C) 条件收敛

- (D) 绝对收敛
- 4. 曲面 $z = \sqrt{x^2 + y^2}$ 与平面 z = 1所围立体的体积为(B).
 - (A) $\iiint_{\Omega} (x^2 + y^2) dv$; (B) $\int_{0}^{2\pi} d\theta \int_{0}^{1} r dr \int_{r}^{1} dz$;
 - (C) $\int_{1}^{1} dx \int_{\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{0}^{x^2+y^2} dz$; (D) $\int_{0}^{2\pi} d\theta \int_{0}^{1} r dr \int_{0}^{1} dz$
- 5. 方程 $y'' 3y' + 2y = 3x e^x$ 的特解形式为(B).
 - (A) $(ax+b)e^x$

(B) $ax + b + cxe^x$

- (C) $ax + b + ce^x$
- (D) $(ax+b)xe^x$

三、
$$z = f(y^2 - x^2)$$
, 其中 $f(u)$ 有连续的二阶偏导数,求 $\frac{\partial^2 z}{\partial x^2}$. (8分)

解:
$$z_x = f'(y^2 - x^2) \cdot (-2x)$$

$$z_{xx} = f'(y^2 - x^2) \cdot (-2) - 2xf''(y^2 - x^2) \cdot (-2x)$$

$$= -2f'(y^2 - x^2) + 4x^2 f''(y^2 - x^2)$$

四、计算 $\int_{L} (e^{x} \sin y - 2y) dx + (e^{x} \cos y - 2) dy$, L 为由点 A(1,0) 到 B(0,1), 再到 C(-1,0) 的有向折线. (8 分)

五、计算 $\iint_\Sigma xy^2 dydz + yz^2 dzdx + zx^2 dxdy$, 其中 Σ 为球体 $x^2 + y^2 + z^2 \le 4$ 及锥体 $z = \sqrt{x^2 + y^2}$ 的公共部分的外表面.(8 分)

解:
$$I = \iiint_{\Omega} (y^2 + z^2 + x^2) dx dy dz$$
$$= \int_0^{2\pi} d\theta \int_0^{\frac{\pi}{4}} \sin \varphi d\varphi \int_0^2 r^4 dr$$
$$= \frac{64\pi}{5} \left(1 - \frac{\sqrt{2}}{2} \right)$$

六、求级数 $\sum_{n=2}^{\infty} 2nx^n$ 的收敛域及和函数. (8 分)

解: 收敛域为: (-1, 1)

$$S(x) = \sum_{n=2}^{\infty} 2nx^n = 2x \sum_{n=2}^{\infty} nx^{n-1} = 2x \left(\sum_{n=2}^{\infty} x^n\right)' = 2x \left(\frac{1}{1-x} - 1 - x\right)'$$
$$= 2x \left[\frac{1}{(1-x)^2} - 1\right]$$

七、计算曲面积分 $\iint_{\Sigma} (x^2+y^2) dS$,其中 Σ 为锥面 $z=\sqrt{3(x^2+y^2)}$ 被平面 z=3 截下的带锥顶的部分.(8 分)

解:
$$I = \iint_{D_{xy}} (x^2 + y^2) \sqrt{1 + \frac{3x^2}{x^2 + y^2} + \frac{3y^2}{x^2 + y^2}} dxdy$$

 $= 2 \iint_{D_{xy}} (x^2 + y^2) dxdy$
 $= 2 \int_0^{2\pi} d\theta \int_0^{\sqrt{3}} r^3 dr$
 $= 9\pi$

八、求函数 $z = x^2 + y^2$ 在适合条件 $\frac{x}{2} + \frac{y}{3} = 1$ 下的极小值. (7分)

解: 作
$$f(x, y, \lambda) = x^2 + y^2 + \lambda \left(\frac{x}{2} + \frac{y}{3} - 1 \right)$$

$$\begin{cases} f_x = 2x + \frac{\lambda}{2} = 0 \\ f_y = 2xy + \frac{\lambda}{3} = 0 \\ f_\lambda = \frac{x}{2} + \frac{y}{3} - 1 = 0 \end{cases}$$
$$\lambda = -\frac{72}{13}, \quad \therefore x = \frac{18}{13}, y = \frac{12}{13}$$
$$\min z = \frac{36}{13}$$

九、求方程 $y'' - 3y' + 2y = 3e^x$ 的通解. (8分)

解:特征方程: $r^2 - 3r + 2 = 0$

特征根: $r_1 = 1, r_2 = 2$

对应齐次方程的通解为: $Y = C_1 e^x + C_2 e^{2x}$

 $\lambda = 1$ 是单根,可设非齐次方程的特解为 $y^* = Axe^x$

代入原方程得: A = -3, $\therefore y^* = -3xe^x$

原方程的通解为: $y = C_1 e^x + C_2 e^{2x} - 3xe^x$

十、把 f(x) = x, $(0 < x < \pi)$ 展开为余弦级数. (7分)

解:
$$a_0 = \frac{2}{\pi} \int_0^{\pi} x dx = \pi$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} x \cos nx dx = \begin{cases} -\frac{4}{n^2 \pi} & n \text{ 为奇数} \\ 0 & n \text{ 为偶数} \end{cases}$$

$$x = \frac{\pi}{2} - \sum_{n=1}^{\infty} \frac{4}{(2n-1)^2 \pi} \cos(2n-1)x, \quad 0 < x < \pi$$

十一、已知曲线积分
$$\int_{(0,0)}^{(x,y)} \left[e^x (x+1)^n + \frac{n}{x+1} f(x) \right] y dx + f(x) dy$$
 与路径无关,

其中 f(x) 可微, f(0) = 0 , 试确定 f(x) , 并计算曲线积分的值. (8分)

解: 依题意有:
$$e^{x}(x+1)^{n} + \frac{n}{x+1}f(x) = f'(x)$$

讨论
$$\frac{n}{x+1}f(x) = f'(x)$$

$$f(x) = C(1+x)^n$$

令C = C(x), 利用常数变易法得: $C(x) = e^x + C$

$$f(x) = C(1+x)^n + e^x(1+x)^n$$

$$\therefore f(x) = (1+x)^n (e^x - 1)$$

$$I = \int_0^y f(x)dy = yf(x)$$