Real Analysis I: Final Exam Review

Chris Hayduk

December 17, 2019

1 Definitions

• σ -algebra:

A collection \mathscr{A} of subsets of X is called an **algebra** of sets or a **Boolean algebra** if (i) $A \cup B$ is in \mathscr{A} whenever A and B are, and (ii) \tilde{A} is in \mathscr{A} whenever A is.

 \mathscr{A} is called a σ -algebra, or a Borel field, if it has the above properties and every union of a countable collection of sets in \mathscr{A} is again in \mathscr{A}

• Uniform convergence of a sequence of functions:

A sequence $\langle f_n \rangle$ of functions defined on a set E is said to converge **uniformly** on E if given $\epsilon > 0$, there is an N such that for all $x \in E$ and all $n \geq N$, we have $|f(x) - f_n(x)| < \epsilon$.

• Borel sets:

The collection \mathcal{B} of Borel sets is the smallest σ -algebra which contains all of the open sets.

• F_{σ} set:

An F_{σ} set is a countable union of closed sets.

• G_{δ} set:

A G_{δ} set is a countable intersection of open sets.

• Outer measure:

 $m^*A = \inf_{A \subset \cup I_n} \Sigma \ell(I_n)$, where $\{I_n\}$ represents a countable collections of open intervals that cover A.

• Measurable set:

A set E is said to be **measurable** if for each set A we have $m^*A = m^*(A \cap E) + m^*(A \cap \tilde{E})$

• Measurable function:

Let f be an extended real-valued function whose domain is measurable. Then the following statements are equivalent:

- 1. For each real number α , the set $\{x: f(x) > \alpha\}$ is measurable.
- 2. For each real number α , the set $\{x: f(x) \geq \alpha\}$ is measurable.
- 3. For each real number α , the set $\{x: f(x) < \alpha\}$ is measurable.
- 4. For each real number α , the set $\{x: f(x) \leq \alpha\}$ is measurable.

These statements imply that, for each extended real number α , the set $\{x: f(x) = \alpha\}$ is measurable.

An extended real-valued function f is said to be (Lebesgue) measurable if its domain is measurable and if it satisfies one of the first four statements above.

• Almost everywhere:

A property is said to hold **almost everywhere** (abbreviated a.e.) if the set of points where it fails to hold is a set of measure zero.

• Lebesgue integral of simple functions: