Problem 1

Problem: Determine whether each of the following statements is true or false. Prove your answers.

- (a) If A is a limit ordinal, then A + B is a limit ordinal.
- (b) If B is a limit ordinal, then A + B is a limit ordinal.
- (c) If A + B is a limit ordinal, then A is a limit ordinal.
- (d) If A + B is a limit ordinal, then B is a limit ordinal.

Solution:

- (a) False the ordinal $\omega + 1$ is a successor ordinal to ω , but ω is a limit ordinal.
- (b) True we consider $A + B \cong \{0\} \times A \cup \{1\} \times B = S$ with the lexicographical ordering. By a previous result, we know that B is a limit ordinal if and only if B has no maximal element. By the lexicographical ordering, we know that for all $x \in \{0\} \times A$ and $y \in \{1\} \times B$, x < y.

Thus, since
$$\{1\} \times B \cong B$$
, we know that $\{1\} \times B$ has no maximal element. (*)

Let $t \in S$. If $t \in \{0\} \times A$, then we know that $0 \in B$, so t < (1,0). If $t \in \{1\} \times B$, then by (*), there is $t' \in \{1\} \times B$ with t < t', so $t' \in S$ and t < t'. Thus, t is not a maximal element.

Thus, A + B has no maximal element, so A + B is a limit ordinal.

- (c) False the limit ordinal ω is equal to $2 + \omega$, but 2 is not a limit ordinal.
- (d) True by similar reasoning to (b), we see that there is no maximal element in A + B, and by the lexicographical ordering, this means there is no maximal element in $\{1\} \times B$, so there is no maximal element in B. Thus, B is a limit ordinal.

Problem 2

Problem: Let A, B, and C be nonzero ordinals. Determine whether each of the following is true or false. Prove your answers.

- (a) A < A + B;
- (b) B < A + B;
- (c) if A < B, then A + C < B + C;
- (d) if A < B, then C + A < C + B.

Solution:

(a) We know $A \cong \{0\} \times A$ are order isomorphic, and $\{0\} \times A \subsetneq \{0\} \times A \cup \{1\} \times B \cong A + B$. We wish to show that $\{0\} \times A$ is an "initial segment" of $\{0\} \times A \cup \{1\} \times B$.

Definition. Let S be a totally ordered set, $x \in S$. We define the initial segment S_x to be

$$S_x = \{ y \in S \mid y \leq x \}.$$

We say S_x is the initial segment of S less than or equal to x.

For any $t \in \{0\} \times A$ and $s \in \{0\} \times A \cup \{1\} \times B$, it is either the case that $s \in \{1\} \times \{B\}$, in which case t < s, or $s \in \{0\} \times A$, in which case there exists t_s such that $t_s = s$. In particular, this means $\{0\} \times A$ is an initial segment of $\{0\} \times A \cup \{1\} \times B$.

Since $\{0\} \times A$ is an initial segment of $\{0\} \times A \cup \{1\} \times B$, and we know that $\{0\} \times A \subset \{0\} \times A \cup \{1\} \times B$, and $\{0\} \times A \cong A$ is well-ordered, \in -transitive subset of $\{0\} \times A \cup \{1\} \times B$, it is the case that A < A + B.

- (b) Since $\omega \not< 2 + \omega$, this is false.
- (c) If A = 1 and B = 2, then 1 < 2, but $1 + \omega = \omega \nleq 2 + \omega = \omega$.
- (d) We know that $\{0\} \times C \cup \{1\} \times A \subsetneq \{0\} \times C \cup \{1\} \times B$. We want to show there exists a sequence

$$C + A \xrightarrow{f} \{0\} \times C \cup \{1\} \times A = \text{initial segment of } \{0\} \times C \cup \{1\} \times B \xrightarrow{g} C + B.$$

Problem 3

Problem: Prove that for all ordinals A, B, C, if C + A = C + B, then A = B.

Solution: Let A, B, C be ordinals, and let C + A = C + B. By trichotomy, we have either A < B, A = B, or A > B. We have C + A < C + B (as established earlier) if A < B, and C + B < C + A if B < A. Thus, since C + A = C + B, we must have A = B.

Question: True or false? If α and β are ordinals, and if $f: \alpha \hookrightarrow \beta$ is injective and preserves order, then $\alpha \leq \beta$.

Problem 4

Problem: Prove that for every infinite ordinal A, there exists a limit ordinal B and a natural number n such that A = B + n

Solution: For infinite ordinals, the principle of induction says that $P(\alpha)$ holds if $P(\omega)$ holds and, we show that if P(k) holds for all $k < \alpha$, then $P(\alpha)$ holds. We will use strong induction to prove this.

The induction hypothesis states that if B < A and B is infinite, then B = C + n for some limit ordinal C and natural number n.

If $A = \omega$, then A = A + 0.

If A is a limit ordinal, then A = A + 0.

If A is a successor ordinal, then there exists α such that $A = \alpha \cup \{\alpha\}$ for some ordinal α , meaning $A = \alpha + 1$. Since α is an infinite ordinal and $\alpha < A$, $\alpha = C + n$ for some limit ordinal C and natural number n. Thus, $A = \alpha + 1 = (C + n) + 1 = C + (n + 1)$.