Harmonic Functions (real-valued functions)

Pef ACR open. F. A+R is harmonic

if
$$\Delta f = \frac{\lambda^2 f}{\lambda x^2} + \frac{\lambda^2 f}{\lambda y^2} = 0$$
Laplacian

Remark V = gractienc $\nabla f = (\partial f/\partial x, \partial f/\partial y)$

 $dv = divergence \vec{X}$ is a vector field $\vec{x}(x,y) = (\alpha(x,y), b(x,y))$

dir x = 20/2x + 26/24

Suppose fox+iy) = U(x,y) + iv(x,y) is holomorphic.

U. V are thice countably differentiable

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) \frac{CR}{\partial x} \left(\frac{\partial}{\partial y} \right) = \frac{\partial^2 v}{\partial x \partial y}$$

$$\frac{\partial^2 y}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial y}{\partial y} \right) \frac{\partial R}{\partial y} \left(\frac{\partial r}{\partial x} \right) = \frac{\partial^2 r}{\partial y \partial x}$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \Leftrightarrow \quad \Delta u = 0$$

Call us conjugage Harmonic functions

Basic Property: A C C open. fig: A > C harmonic

Basic Functions' Holomogoline Text h.f. A +> B h C is holomorphic Lecture 4 h(f(z1)' = h'(f(z)).f'(z) Basic Functions Prop exp: (-> (is holomorphic (exp)'(2)= exp(2) PE Z= X+iy. et = ex (os + ismy) = excosy + iex cosy verify ch. $\frac{\partial y}{\partial x} = e^{x} \cos y = \frac{\partial v}{\partial y}$ dy = exsiny = -dar f'(x+iy) = du/dx + idv/dx = excay + iexsiny = 62 Cor Sin'7 = cos7. cos'7 = -sin7 5m2 = 1 (e12 - e-12) $(\sin z)' = \frac{1}{2i} ((e^{iz})' - (e^{-iz})') = \frac{1}{2i} (ie^{iz} + ie^{-iz}) = \frac{1}{2} (e^{iz} + e^{-iz}) = \cos z$ $(\cos z)' = \frac{1}{2} (e^{iz})' + (e^{iz})' = \frac{1}{2} (ie^{iz} - ie^{iz}) = \frac{-1}{2i} (e^{iz} - e^{iz}) = -\sin z$ RAMINA

Inverse Function $f: A \to C$ is holomorphic $f'(z_0) \neq 0$.

Then \exists a neighborhood \cup of \exists_0 \vee of $f(z_0)$ S.t $f: \cup \cup \vee$ is a bijection $f': \vee \cup \cup$ is holomorphic $(f')'(f(z_0)) = 1/f(z_0) \neq 0$.

Holomorphic, log

Remark U.V could be Small

Take a bronch of log. Say log: $(150) \rightarrow A_0 = \{2 0 \le \text{Im} 2 < 271\}$ log 15 not Continuous on the positive real axis $\int_{0,10}^{0} \log \left(e^{x}(\cos y + i \sin y)\right) = P + 2\theta \quad (0 \le \theta \le 271)$

Torter > log is not cone on {z: Imz=0, ReZZO}

Lecture 4

Generally, log: C \ E0 ? -> Ayo = {Z: Yo \(\) Im \(\) \(\) \(\) is not cont. On the ray \(\) \(\) \(\) \(\) \(\) \(\)

log with branch Ao

log: $C \setminus \{2: \text{ Im } 2=0, \text{ Re } 2 \geq 0\} \rightarrow A_0$ is holo morphic and is a bijection (the inverse of exp)

log'(w) = $\frac{1}{\exp'(\exp'(w))} = \frac{1}{\exp(\exp'(w))}$

Remark On any choice of branch of log $log'(z) = \frac{1}{z}$

VE STAR

VE STAR

THE STATE OF THE S

VE STAR

Lecture 4

Recall line integrals in \mathbb{R}^2 u(x,y) $v(x,y): A \rightarrow \mathbb{R}$ Continuous $V[a,b] \rightarrow A$ C' curve

Parameterize $V[a,b] \rightarrow A$ V[a,b] $V[a,b] \rightarrow A$ $V[a,b] \rightarrow$

Write $f(x_1) = u(x,y) + iv(x,y)$ Thun formally $\int_{\delta} f(x)dx = \int_{\delta} (u_1)v(dx_1)dy$

=
$$\int_{\delta} (udx - vdy) + i \int_{\delta} (vdx + udy)$$

petine Sx fizidz in 2 steps

Step 1) Integrals on interval fix: $u(x) + v(x) + \varepsilon [a,b] \in \mathbb{R}$ Define $\int_{a}^{b} f(x) dx = \int_{a}^{b} u dx + i \int_{a}^{b} v dx$

propercies So fronte + So fronte = So fronte

+ XEC Shafecide = A Shefecide

(Conc. Proporties)

Triangle Inequality | Sofraide | 4 Solfanide.

Step 2) V = piecewise differentiable curve parameterize V(t). Let V: Z = Z(t) for $a \le t \le b$ $\exists a = a_0 < a_1 < ... < a_n = b < t < t > 1s differentiable$ $on <math>[a_j, a_{j+1}]$. Then Z(t) is continuous on [a, b]

For f(z) Convinuous on f. Define $\int_{F} f(z) dz = \int_{j=0}^{n_{H}} \int_{a_{j}}^{a_{j}n} f(z_{cej}) \left(\frac{dz}{de}\right) dz$

Prop S_{t} field: is independent of the parametrization.

Pt Assume K is differentiable. Parameterized by Z_{t} -Z (Z_{t}) Suppose Z_{t} : Z_{t} :

$$= \int_{a}^{\beta} f(t(t(t))) \frac{dt(t)}{dt} \cdot t'(t) dt$$

Parameter Zacion.

Parameterization

Basic Properties

Let I be parameterized by Z=Z(t), t ∈ [a,b]

Define -8 by a parameterization: -8 7=7(-t), t ∈ [-b,-a]

Then $\int_{\mathcal{F}} f(z) dz = - \int_{\mathcal{F}} f(z) dz$

Pf $\int_{-8}^{\infty} f(z) dz = \int_{-b}^{\infty} f(z(-z)) \frac{dz(-z)}{dz} dz$ Set s = -t

$$= \int_{b}^{a} f(z(s)) \frac{dz(s)}{d(-s)} (-ds) = -\int_{a}^{b} f(z(s)) \frac{dz}{ds} ds$$

Lineary on f ((of +bg) dz = a f dz + b f g dz

Linearity on d $\begin{cases} f dz = \int_{t_1}^{t_1} f dz + \int_{t_2}^{t_2} f dz \\ f = \int_{t_1}^{t_2} f dz + \int_{t_2}^{t_2} f dz \end{cases}$

Ex Simple and fundamental $\alpha \in \mathbb{C}$. $\delta = closed$ circle w/ radius RCentered are α , counterclockwise $\int_{\lambda} \frac{1}{2-\alpha} dz$ (farametrize δ)

$$\int_0^{2\pi} \frac{1}{Z(\theta) - \alpha} Z'(\theta) d\theta. \qquad Z'(\theta) = Ri e^{i\theta}$$

$$= \int_{0}^{\infty} \frac{1}{Re^{i\theta}} Rie^{i\theta} d\theta = 2\pi i$$

STAR

8 = line segment from 0 to Hi Parameterize & by Z(t) = (Hi)t, 0 = t \lambda 1 Sy Zdz = ((1+2) +2. (1+2) dt = (1+2)3 (+2 dc = -2(Hi))

Fundamental Thin of Contour Integral Thm: Let A S C open I=[a,b] *: I -> A precense C' $f:A\to \mathbb{C}$ is continuous, $F:B\to \mathbb{C}$ holomorphic B open. $B \supseteq Y(I) \quad F'(Z) = f(Z)$ Then $\left(f(z)dz = F(\xi(b)) - F(\xi(a))\right)$

In Parcicular, if I is closed It f dz =0

Pt (f(z)dz = (f(z|t)) z'(e) de

= F(Z(b)) - F(Z(a))

$$\frac{Ex}{2} = \left(\frac{3}{3}z^{3}\right)' \qquad \left(\frac{3}{3}z^{3}\right)' = \left(\frac{3}{3}z^{3$$

$$\frac{\text{Ex}}{\int_{\mathcal{F}} \frac{1}{2} dz} \left(\log 2 \right)' = \frac{1}{2}$$

log is not defined in a of of