13. Learning

The Distance Criterion for Parameter Choice. Given two model distributions within the same family of probabilistic models, choose the model distribution whose *distance* from the empirical distribution of the data is smaller.

13.1. A first look at likelihood-based learning objectives

Theorem 13.1 (Equivalent learning objectives for the univariate Bernoulli model)

Let $x_1, x_2, \ldots, x_m \in \{0, 1\}$ be an observed dataset corresponding to a Bernoulli random variable $X \sim \mathcal{B}er(\theta)$ with unknown θ . Let P_{θ} be the model distribution of X and let \hat{P} be the empirical distribution of the dataset. The following optimization objectives are equivalent:

- 1. Minimize the KL divergence $D(\hat{P} \parallel P_{ heta})$ with respect to heta.
- 2. Minimize the cross entropy $H_{\hat{\mathcal{P}}}(P_{\theta})$ with respect to θ .
- 3. Minimize the data surprisal function $\mathcal{I}(\theta; x_1, \dots, x_m)$ with respect to θ .
- 4. Maximize the data likelihood function $\mathcal{L}(\theta; x_1, \ldots, x_m)$ with respect to θ .

- 1. Minimizing the KL divergence between the empirical and model distributions has an immediate and concrete interpretation as minimizing the "distance" between these two distributions.
- 2. As a function of θ , the cross entropy $J(\theta)=H_{\hat{P}}(P_{\theta})$ may be viewed as a stochastic objective function, since it is exactly the mean of the model surprisal function. This opens the door for applications of the stochastic gradient descent algorithm studied in Section 11.4.
- 3. The third optimization objective seeks the model probability distribution according to which the data is *least surprising*.
- 4. The fourth optimization objective seeks the model probability distribution according to which the data is *most likely*.

Theorem 13.2 (MLE for the univariate Bernoulli model)

Let $x_1, x_2, \ldots, x_m \in \{0,1\}$ be an observed dataset corresponding to a Bernoulli random variable $X\sim \mathcal{B}er(heta)$ with unknown heta. Then the (unique) maximum likelihood estimate $heta_{
m MLE}^{\star}$ is the ratio $\Sigma x/m$.

stochastic gradient descent for univariate Bernoulli model k=8 , $\alpha=0.01,~\beta=0$, N=10

Problem Prompt

Do problem 1 on the worksheet.

13.3. MLE for linear regression

Theorem 13.8 (MLEs for linear regression models with known variance)

Consider a linear regression model with *fixed* variance σ^2 , and let

$$(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\ldots,(\mathbf{x}_m,y_m)\in\mathbb{R}^n imes\mathbb{R}$$

be an observed dataset. Supposing

$$\mathbf{x}_i^\intercal = (x_{0i}, x_{i1}, \ldots, x_{in}) = (1, x_{i1}, \ldots, x_{in})$$

for each $i=1,\ldots,m$, let

Provided that the $(n+1) \times (n+1)$ square matrix $\mathcal{X}^{\intercal}\mathcal{X}$ is invertible, maximum likelihood estimates for the parameters β_0 and $\boldsymbol{\beta}$ are given by

$$oldsymbol{ heta}_{ ext{MLE}}^{\star} = (oldsymbol{\mathcal{X}}^{\intercal} oldsymbol{\mathcal{X}})^{-1} oldsymbol{\mathcal{X}}^{\intercal} \mathbf{y}.$$

Corollary 13.1 (MLEs for simple linear regression models with known variance)

Let the notation be as in Theorem 13.8, but assume that X is 1-dimensional, equal to a random variable X. Then MLEs for the parameters β_0 and β_1 are given by

$$egin{aligned} (eta_1)_{ ext{MLE}}^{\star} &= rac{\sum_{i=1}^m \left(x_i - ar{x}
ight) \left(y_i - ar{y}
ight)}{\sum_{i=1}^m \left(x_i - ar{x}
ight)^2}, \ (eta_0)_{ ext{MLE}}^{\star} &= ar{y} - (eta_1)_{ ext{MLE}}^{\star} ar{x}, \end{aligned}$$

where $\bar{x} = \frac{1}{m} \sum_{i=1}^m x_i$ and $\bar{y} = \frac{1}{m} \sum_{i=1}^m y_i$ are the empirical means.

Problem Prompt

Do problem 2 on the worksheet.

Subjutification regression $\alpha = 0.1$, $\beta = 0$, k = 256, N = 5

stochastic gradient descent for linear regression $\alpha=0.1,\ \beta=0,\ k=256,\ N=5$

