

N-channel 650 V, 36 m Ω typ., 58 A, MDmesh M9 Power MOSFET in a PowerFLAT 8x8 HV package

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D	
ST8L65N044M9	650 V	44 mΩ	58 A	

- Very low FOM (R_{DS(on)}·Q_q)
- Higher dv/dt capability
- Excellent switching performance
- Easy to drive
- 100% avalanche tested
- Excellent switching performance thanks to the extra driving source pin

Application

- AC-DC converters
- DC-DC converters

This N-channel Power MOSFET is based on the most innovative super-junction MDmesh M9 technology, suitable for medium/high voltage MOSFETs featuring very low $R_{DS(on)}$ per area. The silicon based M9 technology benefits from a multi-drain manufacturing process which allows an enhanced device structure. The resulting product has one of the lower on-resistance and reduced gate charge values, among all silicon based fast switching super-junction Power MOSFETs, making it particularly suitable for applications that require superior power density and outstanding efficiency.

Product status link ST8L65N044M9

Product summary			
Order code ST8L65N044M9			
Marking 65N044M9			
Package	PowerFLAT 8x8 HV		
Packing	Tape and reel		

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	±30	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	58	Α
ID(*)	Drain current (continuous) at T _C = 100 °C	37	
I _{DM} ⁽²⁾	Drain current (pulsed)	241	Α
P _{TOT}	Total power dissipation at T _C = 25 °C	166	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	50	V/ns
di/dt ⁽³⁾	Peak diode recovery current slope	900	A/µs
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	120	V/ns
T _{stg}	Storage temperature range	-55 to 150	°C
TJ	Operating junction temperature range	-55 (0 150	°C

- 1. Referred to TO-247 long leads package.
- 2. Pulse width limited by safe operating area.
- 3. $I_{SD} \le 29 \text{ A}$, V_{DS} (peak) $< V_{(BR)DSS}$, $V_{DD} = 400 \text{ V}$.
- 4. V_{DS} (peak) < $V_{(BR)DSS}$, V_{DD} = 400 V.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance, junction-to-case	0.75	°C/W
R _{thJA} ⁽¹⁾	Thermal resistance, junction-to-ambient	45	°C/W

1. When mounted on a standard 1 inch² area of FR-4 PCB with 2-oz copper.

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T _J max.)	6	Α
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	521	mJ

DS15002 - Rev 1 page 2/14

2 Electrical characteristics

 T_C = 25 °C unless otherwise specified.

Table 4. On/off-states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	650			V
I	I _{DSS} Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 650 V			1	
IDSS		V_{GS} = 0 V, V_{DS} = 650 V, T_{C} = 125 °C ⁽¹⁾			200	μΑ
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	3.2	3.7	4.2	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 29 A		36	44	mΩ

^{1.} Specified by design, not tested in production.

Table 5. Dynamic characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance	V _{DS} = 400 V, f = 250 kHz, V _{GS} = 0 V	-	4800	-	pF
C _{oss}	Output capacitance	V _{DS} = 400 V, I = 250 KHz, V _{GS} = 0 V	-	85	-	pF
Coss eq. (1)	Equivalent output capacitance	V _{DS} = 0 to 400 V, V _{GS} = 0 V	-	1112	-	pF
Rg	Intrinsic gate resistance	f = 250 kHz, open drain	-	0.8	-	Ω
Qg	Total gate charge	V _{DD} = 400 V, I _D = 29 A, V _{GS} = 0 to 10 V	-	110	-	nC
Q _{gs}	Gate-source charge	(see Figure 14. Test circuit for gate	-	26	-	nC
Q _{gd}	Gate-drain charge	charge behavior)	-	43	-	nC

^{1.} $C_{\text{oss eq}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to stated value.

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 400 V, I _D = 29 A,	-	22	-	ns
t _r	Rise time	$R_G = 4.7 \Omega, V_{GS} = 10 V$	-	7	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 13. Switching times test circuit for resistive load and	-	70	-	ns
t _f	Fall time	Figure 18. Switching time waveform)	-	4	-	ns

DS15002 - Rev 1 page 3/14

Table 7. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		58	Α
I _{SDM} ⁽²⁾	Source-drain current (pulsed)		-		241	Α
V _{SD} ⁽³⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 58 A	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 58 A, di/dt = 100 A/µs, V _{DD} = 60 V	-	270		ns
Q _{rr}	Reverse recovery charge	(see Figure 15. Test circuit for inductive	_	0.3		μC
I _{RRM}	Reverse recovery current	load switching and diode recovery times)	-	23		Α
t _{rr}	Reverse recovery time	$I_{SD} = 58 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	-	410		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _J = 150 °C (see Figure 15. Test circuit for inductive	_	0.8		μC
I_{RRM}	Reverse recovery current	load switching and diode recovery times)	-	35		Α

- 1. Referred to TO-247 long leads package.
- 2. Pulse width is limited by safe operating area.
- 3. Pulsed: pulse duration = $300 \mu s$, duty cycle 1.5%.

DS15002 - Rev 1 page 4/14

2.1 Electrical characteristics (curves)

Figure 2. Maximum transient thermal impedance GPDP160620251503ZTH duty=0.5 0.2 10 -1 0.1 0.3 0.05 10 -2 R_{thJC} = 0.75 °C/W $duty = t_{on} / T$ Single pulse 10 -3 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 $t_p(s)$

Figure 3. Typical output characteristics

(A)

(B)

(CA)

(C

DS15002 - Rev 1 page 5/14

Figure 7. Typical capacitance characteristics

Figure 8. Typical output capacitance stored energy

Figure 9. Normalized gate threshold vs temperature

Figure 10. Normalized on-resistance vs temperature

Figure 11. Normalized breakdown voltage vs temperature

Figure 12. Typical reverse diode forward characteristics

DS15002 - Rev 1 page 6/14

3 Test circuits

Figure 13. Switching times test circuit for resistive load

RL

2200

µF

VDD

VDD

GND1

(driver signal)

AM15855v1

Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

DS15002 - Rev 1 page 7/14

4 Package information

To meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 PowerFLAT 8x8 HV type A package information

Figure 19. PowerFLAT 8x8 HV type A package outline

BOTTOM VIEW

DS15002 - Rev 1 page 8/14

Table 8. PowerFLAT 8x8 HV type A mechanical data

Ref.		Dimensions (in mm)	
Nei.	Min.	Тур.	Max.
А	0.75	0.85	0.95
A1	0.00		0.05
A3	0.10	0.20	0.30
b	0.90	1.00	1.10
D	7.90	8.00	8.10
E	7.90	8.00	8.10
D2	7.10	7.20	7.30
E1	2.65	2.75	2.85
E2	4.25	4.35	4.45
е		2.00 BSC	
L	0.40	0.50	0.60

Figure 20. PowerFLAT 8x8 HV footprint

8222871_REV_4_footprint

Note: All dimensions are in millimeters.

DS15002 - Rev 1 page 9/14

4.2 PowerFLAT 8x8 HV packing information

Figure 21. PowerFLAT 8x8 HV tape

Note: Base and Bulk quantity 3000 pcs

8229819_Tape_revA

Note: All dimensions are in millimeters.

Figure 22. PowerFLAT 8x8 HV package orientation in carrier tape

DS15002 - Rev 1 page 10/14

Figure 23. PowerFLAT 8x8 HV reel

8229819_Reel_revA

Note: All dimensions are in millimeters.

DS15002 - Rev 1 page 11/14

Revision history

Table 9. Document revision history

Date	Revision	Changes
18-Jun-2025	1	First release.

DS15002 - Rev 1 page 12/14

Contents

1	Elec	ctrical ratings	2
2		ctrical characteristics	
		Electrical characteristics (curves)	
3	Test	circuits	7
4	Pac	kage information	8
	4.1	PowerFLAT 8x8 HV type A package information	8
	4.2	PowerFLAT 8x8 HV packing information	10
Rev	ision	history	12

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved

DS15002 - Rev 1 page 14/14