Algoritmos y Estrucutras de Datos Practica 2

2.1. Funciones Auxiliares

Ejercicio 1

```
a) pred raizCuadrada (x : \mathbb{Z}){
(\exists c : \mathbb{Z})(c > 0 \land (c * c = x))
}
b) pred esPrimo (x : \mathbb{Z}){
(\forall n : \mathbb{Z})((1 < n < x) \rightarrow_L (x \mod n \neq 0))
}
```

Ejercicio 2

```
a) pred sonCoprimos (x, y : \mathbb{Z}) {
((\forall n : \mathbb{Z})(((n > 1) \land_L (x \mod n = 0)) \rightarrow_L (y \mod n \neq 0))) \land_L
((\forall m : \mathbb{Z})(((m > 1) \land_L (x \mod m = 0)) \rightarrow_L (y \mod m \neq 0)))
}
```

```
b) pred mayorPrimoQueDivide (x, y : \mathbb{Z}){
(esPrimo(y) \land_L(x \mod y = 0) \land (\forall c : \mathbb{Z})(((esPrimo(c)) \land_L(x \mod c = 0)) \rightarrow_L (c \leq y))
}
```

Ejercicio 3

a) pred todosElementosPositivos $(s : seq\langle Z \rangle)$ {

```
(\forall i : \mathbb{Z})((0 \le i < |s|) \rightarrow_L s[i] \ge 0)
 b) pred todosDistintos (s : seq\langle Z \rangle) {
       (\forall i : \mathbb{Z})((0 \le i < |s|) \to_L (\forall j : \mathbb{Z})((0 \le j < |s| \land i \ne j) \to_L (s[i] \ne s[j])))
       }
Ejercicio 4
 a) pred esPrefijo (s, t : seq\langle Z \rangle){
       (\forall i : \mathbb{Z})(0 \le i < |s| \to_L (s[i] = t[i]))
       Falta aclarar que |s| \le |t|
  b) pred estaOrdenada (s: seq\langle Z \rangle){
       (\forall i, j : \mathbb{Z})(i \leq j \rightarrow_L (s[i] \leq s[j]))
       }
  c) pred hay Uno Par Que Divide Al Resto (s: seq\langle Z \rangle) {
       (\exists i : \mathbb{Z})((0 \le i < |s|) \land_L (s[i] \mod 2 = 0) \land_L (\forall j : \mathbb{Z})(0 \le j < |s| \rightarrow_L (s[j]))
       \mod s[i] = 0)))
       }
  d) pred iguales
En<br/>El
Rango (t : seq\langle z \rangle, i, j, n : \mathbb{Z}){
       (\forall m : \mathbb{Z})(i \leq m \leq j \rightarrow_L (s[m] = n))
       pred enTresPartes (s : seq\langle Z \rangle){
       (\exists i, j : \mathbb{Z})(0 < i < j < |s| - 1) \wedge_L
       igualesEnELRango(s, 0, i, 0) \land_L
       iqualesEnELRango(s, i + 1, j, 1) \land_L
       igualesEnELRango(s, j + 1, |s| - 1, 2)
       }
```

Extra: Cambiaria los \wedge_L por \vee_L

a) cantApariciones
$$(s: seq\langle \mathbb{Z} \rangle, e: \mathbb{Z}) = \sum_{i=0}^{|s|-1} IfThenElseFi(s[i] = e, 1, 0)$$

b) $pred \text{ esPar } (x : \mathbb{Z})\{(x \mod 2 = 0)\}$

posImp
$$(s: seq\langle \mathbb{Z} \rangle) = \sum_{i=0}^{|s|-1} IfThenElseFi(\neg esPar(i), s[i], 0)$$

c) positivos
$$(s: seq\langle \mathbb{Z} \rangle) = \sum_{i=0}^{|s|-1} IfThenElseFi(s[i] > 0, s[i], 0)$$

d) positivos
$$(s: seq\langle \mathbb{Z} \rangle) = \sum_{i=0}^{|s|-1} IfThenElseFi(s[i] \neq 0, \frac{1}{s[i]}, 0)$$

2.2. Analisis de especificacion

Ejercicio 6

a) No es correcta debido a que si se toma el caso i=0 se cumple la precondicion del implica $(0 \le i < |l|)$ pero la postcondicion es falsa ya que $l[i-1] = i[0-1] = i[-1] = \bot$. Para que no se indetermine propongo la siguiente especificiacion:

proc progresionGeometricaFactor2 (in
$$l: seq\langle \mathbb{Z} \rangle$$
): Bool
requiere {True}
asegura { $res = True \leftrightarrow ((\forall i: \mathbb{Z})(0 \leq i < |l|-1 \rightarrow_L l[i+1] = 2*l[i]))$ }

b) No es correcta dado que no hay relacion entre antecedente y consecuente y la lista deberia tener al menos un elemento. Propongo:

```
proc minimo (in\ l: seq\langle \mathbb{Z} \rangle): \mathbb{Z}
requiere \{|l| > 0\}
asegura \{res = y \leftrightarrow (\exists y: \mathbb{Z})(y \in l \land (\forall x: \mathbb{Z})(x \in l \rightarrow_L y \leq x))\}
```

- a) I) $l = \langle 1, 2, 3, 4 \rangle \implies indiceDelMaximo(l) = 3$ II) $l = \langle 15.5, -18, 4.215, 15.5, -1 \rangle \implies indiceDelMaximo(l) = 0 \lor indiceDelMaximo(l) = 3$ III) $l = \langle 0, 0, 0, 0, 0, 0 \rangle \implies indiceDelMaximo(l) = 0 \lor 1 \lor 2 \lor 3 \lor 4 \lor 5$
- b) I) $l = \langle 1, 2, 3, 4 \rangle \implies indiceDelPrimerMaximo(l) = 3$ II) $l = \langle 15.5, -18, 4.215, 15.5, -1 \rangle \implies indiceDelPrimerMaximo(l) = 0$ III) $l = \langle 0, 0, 0, 0, 0, 0, 0 \rangle \implies indiceDelPrimerMaximo(l) = 0$
- c) indiceDelMaximo e indiceDelPrimerMaximo tienen necesariamente la misma salida para las listas que tengan un unico maximo, ya que en caso contrario la primer funcion podria tener mas de una respuesta posible

- a) La especificación no es correcta ya que es contradictorio que la portcondición sea correcta cuando a<0 y cuando $a\geq0$
- b) Correcta
- c) La especificación no es correcta ya que por tabla de verdad de la implicación, podria darse que el antecedente es falso y el consecuente correcto. Esto daria lugar a absurdos tales como que si parto de a=1 $(a \ge 0)$, b=2 entonces serian validos f(a,b) = 1 y f(a,b) = 4 al mismo tiempo, cosa que es absurda.
- d) Correcta

Ejercicio 9

- a) unoMasGrande(3)=9 ∴ se cumple la postcondicion
- b) unoMasGrande(0.5)=0.25 pero $0.25 \ge 0.5$ unoMasGrande(1)=1 pero $1 \ge 1$ unoMasGrande(-0.2)=0.4 y 0.4 > -0.2unoMasGrande(-7)=49 y 49 > -7
- c) requiere $\{x < 0 \ \lor x > 1\}$

2.3. Relacion de fuerza

a)
$$P1: \{x \le 0\} \ P2: \{x \le 10\} \ P3: \{x \le -10\}$$

 $P1 \rightarrow P2$ True $\forall x$ por lo tanto P1 > P2

 $P2 \to P1$ False por ejemplo con x=2 se cumple P2 pero no P1 por lo tanto $P2 \not > P1$

 $P1 \rightarrow P3$ False por ejemplo con x=-2 se cumple P1 pero no P3 por lo tanto $P1 \not> P3$

 $P3 \rightarrow P1$ True $\forall x$ por lo tanto P3 > P1

 $P3 \rightarrow P2$ **True** $\forall x$ por lo tanto P3 > P2

 $P2 \to P3$ False por ejemplo con x=-2 se cumple P2 pero no P3 por lo tanto $P1 \not > P3$

b)
$$Q1: \{r \ge x^2\} \ Q2: \{r \ge 0\} \ Q3: \{r = x^2\}$$

 $Q1 \rightarrow Q2$ True ya que $x^2 \geq 0 \ \forall x$ por lo tanto Q1 > Q2

 $Q2 \to Q1$ False depende del valor de x^2 , por lo tanto no vale siempre la implicación $Q1 \to Q3$ False la primer condición permite que $r > x^2$ lo cual implicaria $r \neq x^2$ y $True \to False = False$; por lo tanto $P1 \not> P3$

 $Q3 \rightarrow Q1$ True $\forall r, x$ por lo tanto P3 > P1

 $Q3 \rightarrow Q2$ True $\forall r, x$ por lo tanto P3 > P2

 $Q2 \rightarrow Q3$ False depende del valor de x^2 , por lo tanto no vale siempre

la implicacion

- d) i) Cumple ambas condiciones
 - ii) No cumple la **precondicion**
 - iii) Cumple ambas condiciones
 - iv) No cumple la **postcondicion**
 - v) Cumple ambas condiciones
 - vi) No asegura la **ninguna**
- e) Las precondiciones y postcondiciones deben ser **mas fuertes** que las anteriores para poder reemplazar una especificacion de manera segura Esta mal el e), la postcondicion debe ser mas debil

- a) Como el requiere de p1 se cumple entonces vale que $x \neq 0$. Luego si $n \leq 0$ entonces $(n \leq 0 \rightarrow x \neq 0)$ =True pues $True \rightarrow True = True$. En cambio si n > 0 entonces tambien $(n \leq 0 \rightarrow x \neq 0)$ =True pues $False \rightarrow True = True$
- b) $\lfloor x^n \rfloor$ implica que siendo a y b los enteros mas cercanos x^n entonces $\lfloor x^n \rfloor = a$, es decir el 'piso', por lo tanto sera como mucho 0.999... menor a x^n . Esto implica que $x^n 1 < \lfloor x^n \rfloor < x^n$ y por lo tanto el resultado cumple tanto p1 como p2.
- c) a no satisface p1 dado que por ejemplo podria satisfacer la precondicion de p2 con un n>0 y un x=0 ya que $False \to False = True$

pero no la de p1. Sin embargo como se vio en b) si satisface la postcondicion

2.4. Especificación de problemas

```
a) proc \, esPar \, (in \, x : \mathbb{Z}) : Bool\{
requiere\{True\}
asegura\{res = True \leftrightarrow (x \, mod \, 2) = 0\}
```

- b) $proc \text{ esMult } (in \ n, m : \mathbb{Z}) : Bool\{$ $requiere\{True\}$ $asegura\{res = True \leftrightarrow (\exists k : \mathbb{Z})(n * k = m)\}$
- c) $proc ext{ listDiv } (n : \mathbb{Z}) : seq\langle \mathbb{Z} \rangle \{$ $requiere\{True\}$ $asegura\{(\forall i : \mathbb{Z})(0 \le i < |res| \to_L ((n \mod res[i] = 0) \land res[i] > 0))\}$
- d) $proc \operatorname{descomPrimos} (in \ x : \mathbb{Z}) : seq\langle(\mathbb{Z}, \mathbb{Z})\rangle\{$ $requiere\{x > 0\}$ $asegura\{(p, e) \in res \to_L (x \mod p = 0) \land_L esPrimo(p) \land_L p * e = x\}$ $asegura\{(\forall i, p : \mathbb{Z})(0 \le i, p < |s| \land i \ne p \to_L res[i] \ne res[p])\}$ $asegura\{(\forall i, p : \mathbb{Z})(0 \le i$

```
a) proc contenidoEn (s, t : seq\langle \mathbb{Z} \rangle) : Bool\{
      requiere\{True\}
      asegura\{(\forall i: \mathbb{Z})(0 \leq i < |s| \rightarrow_L (\exists j: \mathbb{Z})(0 \leq j < |t| \land_L s[i] = t[j]))\}
      }
b) proc intersection (s, t : seq\langle \mathbb{Z} \rangle) : seq\langle \mathbb{Z} \rangle \{
      requiere\{True\}
      asegura\{(\forall e: \mathbb{Z})((e \in s \land e \in t) \rightarrow_L
      \#apariciones(e, res) = min(\#apariciones(e, s), \#apariciones(e, t)))
      }
      aux #apariciones (e: \mathbb{Z}, s: seq\langle \mathbb{Z} \rangle) = \sum_{i=0}^{|s|-1} IfThenElseFi(s[i] = e, 1, 0)
c) aux divideNElementos (s: seq\langle \mathbb{Z} \rangle, n: \mathbb{Z}) = \sum_{i=0}^{|s|-1} IfThenElse(s[i] \mod n = 0, 1, 0)
      proc divideMasElementos (s: seq\langle \mathbb{Z} \rangle) : \mathbb{Z}
      requiere\{True\}
      asegura\{res \in s \land (\forall i : \mathbb{Z})(0 \leq i < |s| \rightarrow_L divideNElementos(s, res) \geq
      divideNElementos(s, s[i])
d) aux \max Valor (s : seq\langle \mathbb{Z} \rangle) : \mathbb{Z} = res \in s \land (\forall i : \mathbb{Z}) (0 \le i < |s| \rightarrow_L (res \ge s[i]))
      proc \operatorname{seqMaxValor} (l : seq\langle seq\langle \mathbb{Z} \rangle \rangle) : seq\langle \mathbb{Z} \rangle \{
      requiere\{True\}
      asegura\{res \in l \land (\forall i : \mathbb{Z})(0 \le i < |s| \rightarrow_L maxValor(res) \ge maxValor(l[i]))\}
e) pred noHayRepes (s : seq\langle Z \rangle){
      (\forall i : \mathbb{Z})((0 \le i < |s|) \to_L (\forall j : \mathbb{Z})((0 \le j < |s| \land i \ne j) \to_L (s[i] \ne s[j])))
      aux \text{ cantSeqNelem } (t:seq\langle seq\langle \mathbb{Z}\rangle\rangle, n:\mathbb{Z}): \mathbb{Z} = \sum_{i=0}^{|s|-1} IfThenElse(|s[i]|=n,1,0)
```

```
\begin{aligned} & pred \text{ respetaOrden } (s,t:seq\langle Z\rangle)\{(\forall i,j:\mathbb{Z})(0\leq i< j< |t|\rightarrow_L ((t[i]\in s\wedge_L t[j]\in s)))\}\\ & s)\rightarrow_L \neg(\exists n,m:\mathbb{Z})(0\leq n< m< |s|\rightarrow_L s[n]=s[i]\wedge_L s[m]=t[i]))\}\\ & proc \text{ partes } (s:seq\langle \mathbb{Z}\rangle):seq\langle seq\langle \mathbb{Z}\rangle\rangle\{\\ & requiere\{True\}\\ & asegura\{|res|=2^{|s|}\wedge_L nohayRepes(res)\wedge_L (\forall i:\mathbb{Z})(0\leq i\leq |s|\rightarrow_L cantSeqNelem(res,i)=(\frac{|s|}{i})\wedge_L (\forall j:\mathbb{Z})(0\leq j< |res|\rightarrow_L respetaOrden(res[i],s))\} \end{aligned}
```

Nota: luego de ver rtas agregue la cond. respeta orden

2.5. Especificacion de problemas usando inout

Ejercicio 14

a) La especificacion esta mal dado que las variables a y b deben ser de tipo in, ya que no es necesario que se modifiquen para calcular su suma, solo se accede a su valor.

Nota: Falto mencionar estados previos, etc.

- b) Correcta
- c) Correcta. Cabe aclarar que no es necesario que a y b sean de tipo inout. Sin embargo al asegurar que no se modifica su valor gracias a la pre y postcondicion, no genera problemas

- a) *Incorrecta*. No menciona los cambios de estado ni tampoco saca el primer elemento de l por lo tanto no cumple lo pedido.
- b) *Incorrecta*. Habla de cambios de estado pero no saca el primer elemento de l, solo lo devuelve, por lo tanto no cumple lo pedido.
- c) Incorrecta. En la precondicion no se menciona el estado de origen de l (L_0) y en la postcondicion no se elimina al primer elemento de l, solo se asegura que su largo es una unidad menor, por lo tanto, no cumple lo pedido.
- d) Correcta. Respeta los cambios de estado y devuelve el primer elemento de l y a la lista l sin su cabeza.

- a) La especificacion es incorrecta porque en una implicacion si el antedente es falso y el consecuente es verdadero, el predicado es verdadero.

 De esta manera si un numero esta en el rango de la secuencia, no es
 par y se duplica el valor de esa posicion en la lista, tendriamos un antecedente falso y un consecuente verdadero, por lo tanto la afirmacion
 seria verdadera. Sin embargo estariamos duplicando un elemento en
 una posicion impar, violando el enunciado.
- b) La especificacion es incorrecta por la misma razon que en el punto a), para ambos disyuntos se puede plantear un contraejemplo que haga

correcta la especificación pero no cumpla la consigna.

Nota: Falto poner que no se asegura que se mantenga el tamaño de la secuencia

- c) La especificación no es correcta dado que no considera los cambios de estado de la secuencia.
 - Propongo la siguiente especificacion:

```
proc duplicarPares (inout s: seq\langle \mathbb{Z} \rangle): seq\langle \mathbb{Z} \rangle {
requiere\{l = L_0\}
asegura\{|l| = |L_0|\}
asegura\{(\forall i: \mathbb{Z})((0 \le i < |s| \land i \mod 2 = 0) \rightarrow_L l[i] = 2 * L_0)\}
asegura\{(\forall i: \mathbb{Z})((0 \le i < |s| \land i \mod 2 \neq 0) \rightarrow_L l[i] = L_0)\}
```

Ejercicio 17

a) proc primosHermanos $(inout\ l: seq\langle \mathbb{Z} \rangle)$

```
\operatorname{requiere}\{l = L_0\}
\operatorname{asegura}\{(\forall i : \mathbb{Z})(0 \leq i < |L_0| \to_L
(l[i] = res[i] \land_L esPrimo(res[i]) \land_L
(\forall j : \mathbb{Z})((esPrimo(j) \land_L j \neq res[i]) \to_L dist(res[i], l[i]) \leq dist(j, l[i]) \land_L
res[i] < j))\}
aux \operatorname{dist}(a, b : \mathbb{Z}) : \mathbb{Z} = |a - b|
```

b) proc reemplazar $(inout\ l: seq\langle Char\rangle, in\ a, b: Char): seq\langle Char\rangle\{$

```
requiere \{l = L_0\}
asegura \{(\forall i : \mathbb{Z})(0 \le i < |L_0| \to_L (L_0[i] =' a' \land l[i] =' b'))\}
asegura \{(\forall i : \mathbb{Z})(0 \le i < |L_0| \to_L (L_0[i] \neq' a' \land l[i] = L_0[i]))\}
asegura\{|L_0| = |l|\}
```

Nota: los ' \rightarrow_L ' estaban mal y los cambie por los ' \wedge '

c) $proc \text{ limpiarDuplicados } (s: seq\langle Char \rangle) : seq\langle Char \rangle$

requiere
$$\{l = L_0\}$$

asegura $\{noHayRepes(l) \land (|l| \leq |L_0|) \land (|l| + |res| = |L_0|) \land (\forall i: \mathbb{Z})(0 \leq i < |l| \rightarrow_L \#apariciones(l[i], res) = \#apariciones(l[i], L_0) - 1\}$

Nota:Falto asegurar que contengan los mismos elementos (sin contar repes)

2.6. Ejercicios de parcial

Ejercicio 18

a) aux sumaDivisores $(n:\mathbb{Z}):\mathbb{Z}=\sum_{i=1}^{n-1}ifThenElse((n \mod i)=0,i,0)$ $proc \text{ reemplazarNumerosPerfectos } (inout\ s:seq\langle\mathbb{Z}\rangle)$ $\text{requiere}\{s=S_0\}$ $\text{asegura}\{(\forall i:\mathbb{Z})((0\leq i<|S_0|\wedge_L sumaDivisores(S_0[i])=S_0[i]\ \land\ s\neq0)\rightarrow_L s[i]=i)\}$

```
asegura\{(\forall i : \mathbb{Z})((0 \le i < |S_0| \land_L sumaDivisores(S_0[i]) \ne S_0[i]) \rightarrow_L s[i] =
            S_0[i])
            asegura\{|s| = |S_0|\}
b) pred esMayorATodos (in s: seq\langle \mathbb{Z} \rangle, n: \mathbb{Z}) \{(\forall i: \mathbb{Z})(0 \leq i < |s| \rightarrow_L s[i] \leq n)\}
      pred estaOrdenada (in \ s : seq\langle \mathbb{Z} \rangle) \{ (\forall i : \mathbb{Z}) (0 < i < |s| \rightarrow_L |s[i-1]| \le |s[i]|) \}
      proc ordenarYBuscarMayor (inout\ s: seq\langle \mathbb{Z} \rangle): \mathbb{Z}
            requiere\{s = S_0\}
            asegura{estaOrdenada(s)}
            asegura{res \in S_0 \land esMayorATodos(S_0, res)}
            asegura\{|s| = |S_0|\}
      Nota: Falto asegurar que los elementos de sy S_0 sean los mismos
c) pred esPrimo (n : \mathbb{Z})\{2 = \sum_{i=1}^{n} ifThenElse(n \mod i = 0, 1, 0)\}
      proc primosEnCero (inout\ s: seq\langle \mathbb{Z} \rangle)
            requiere\{s = S_0\}
            asegura\{|s| = |S_0|\}
            asegura\{(\forall i : \mathbb{Z})((0 \le i < |s| \land_L esPrimo(i) \rightarrow_L s[i] = 0)\}
            asegura\{(\forall i : \mathbb{Z})((0 \le i < |s| \land_L \neg esPrimo(i) \rightarrow_L s[i] = S_0[i])\}
d) proc positivos Aumentados (inout s : seq\langle \mathbb{Z} \rangle)
            requiere\{s = S_0\}
            asegura\{(\forall i : \mathbb{Z})((0 \le i < |s| \land_L S_0[i] \ge 0) \to_L s[i] = S_0[i] * i)\}
            asegura\{(\forall i : \mathbb{Z})((0 \le i < |s| \land_L S_0[i] < 0) \to_L s[i] = S_0[i])\}
            asegura\{|s| = |S_0|\}
e) pred palabraMasLarga (s: seq\langle string\rangle, pal: string)\{(\forall i: \mathbb{Z})((0 \leq i < |s| \land_L pal \in S_L)\}\}
      |s\rangle \rightarrow_L |pal| \ge |s[i]|
     pred \text{ esPrefijo } (pal, pre: string) \{ (\forall i: \mathbb{Z}) (0 \leq i < |pre| \rightarrow_{L} pre[i] = pal[i]) \}
```

```
proc procesar
Prefijos (inout s: seq\langle string\rangle, in \ p: string): \mathbb{Z} requiere\{s=S_0\} asegura\{(\forall i: \mathbb{Z})(0 \leq i < |s| \rightarrow_L (s[i] \in S_0 \land esPrefijo(s[i], p)))\} asegura\{(\exists j: \mathbb{Z})(0 \leq j < |s| \land_L res = |s[j]| \land_L palabraMasLarga(s, s[j]))\}
```