Bayesian model selection for informative hypotheses: A comparison of data-based versus default encompassing priors

Thomas J. Faulkenberry & Bryanna Scheuler

Tarleton State University

Consider the test scores from students in three different treatment conditions:

- Treatment 1 read and reread
- Treatment 2 read, then answer prepared questions
- Treatment 3 read, then create and answer questions

Treatment 1	Treatment 2	Treatment 3
2	5	8
3	9	6
8	10	12
6	13	11
5	8	11
6	9	12
M=5	M=9	M = 10

Typical question – are there differences among these condition means?

Standard approach - analysis of variance (ANOVA)

- model $Y_{ij} = \mu + \alpha_j + \varepsilon_{ij}$, where $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$
- assume "null hypothesis" $\mathcal{H}_0: \alpha_j = 0$
- ullet compute probability of observing data Y_{ij} under \mathcal{H}_0
- if data is rare under \mathcal{H}_0 , reject \mathcal{H}_0

source	SS	df	MS	F
between treatments				
within treatments				
total	172			

$$SS_{\text{total}} = \sum Y^2 - \frac{(\sum Y)^2}{N}$$

$$= 1324 - \frac{144^2}{18}$$

$$= 172$$

source	SS	$d\!f$	MS	F
between treatments	84			
within treatments				
total	172			

$$\begin{split} SS_{\text{bet tmts}} &= n \sum_{j=1}^{3} (\overline{Y}_{j} - \overline{Y})^{2} \\ &= 6 \Big[(5-8)^{2} + (9-8)^{2} + (10-8)^{2} \Big] \\ &= 84 \end{split}$$

source	SS	$d\!f$	MS	F
between treatments	84	2	42	7.16
within treatments	88	15	5.87	
total	172	17		

source	SS	df	MS	F
between treatments	84	2	42	7.16
within treatments	88	15	5.87	
total	172	17		

source	SS	df	MS	F
between treatments	84	2	42	7.16
within treatments	88	15	5.87	
total	172	17		

Since our data Y_{ij} is rare under \mathcal{H}_0 , we reject \mathcal{H}_0 as an implausible model restriction.

What does this tell us?

If we reject $\mathcal{H}_0: \alpha_j = 0$, this tells us that $\alpha_j \neq 0$ for some j.

- which values of j?
- are they positive / negative?
- the alternative is rather uninformative

Informative hypotheses

Consider instead defining competing *informative* models:

•
$$\mathcal{M}_1: \mu_1 < \mu_2 < \mu_3$$

•
$$\mathcal{M}_2: \mu_2 < \mu_1 < \mu_3$$

•
$$\mathcal{M}_3: \mu_1 < \mu_3 < \mu_2$$

Informative hypotheses

Consider instead defining competing *informative* models:

•
$$\mathcal{M}_1: \mu_1 < \mu_2 < \mu_3$$

•
$$\mathcal{M}_2: \mu_2 < \mu_1 < \mu_3$$

•
$$\mathcal{M}_3: \mu_1 < \mu_3 < \mu_2$$

Note:

- 1. each model tells a different story about effective study methods
- 2. typical ANOVA cannot differentiate between \mathcal{M}_1 , \mathcal{M}_2 , \mathcal{M}_3

Goal - evaluate relative evidence for each model \mathcal{M}_j , in light of observed data $oldsymbol{y}$

Bayes Theorem:

$$\underbrace{p(\mathcal{M}_j \mid \boldsymbol{y})}_{\text{Posterior belief about model}} = \underbrace{p(\mathcal{M}_j)}_{\text{Prior belief about model}} \times \underbrace{\frac{p(\boldsymbol{y} \mid \mathcal{M}_j)}{p(\boldsymbol{y})}}_{\text{predictive updating factor}}$$

Goal - evaluate relative evidence for each model \mathcal{M}_j , in light of observed data $oldsymbol{y}$

taking quotients:

$$\underbrace{\frac{p(\mathcal{M}_{j} \mid \boldsymbol{y})}{p(\mathcal{M}_{k} \mid \boldsymbol{y})}}_{\text{posterior odds}} = \underbrace{\frac{p(\mathcal{M}_{j})}{p(\mathcal{M}_{k})}}_{\text{prior odds}} \times \underbrace{\frac{p(\boldsymbol{y} \mid \mathcal{M}_{j})}{p(\boldsymbol{y} \mid \mathcal{M}_{k})}}_{\text{predictive updating factor}}$$

The predictive updating factor, or Bayes factor,

$$B_{jk} = \frac{p(\boldsymbol{y} \mid \mathcal{M}_j)}{p(\boldsymbol{y} \mid \mathcal{M}_k)}$$

tells us how much better \mathcal{M}_j predicts our observed data compared to \mathcal{M}_k .

The predictive updating factor, or **Bayes factor**,

$$B_{jk} = \frac{p(\boldsymbol{y} \mid \mathcal{M}_j)}{p(\boldsymbol{y} \mid \mathcal{M}_k)}$$

tells us how much better \mathcal{M}_j predicts our observed data compared to \mathcal{M}_k .

Example: suppose $B_{12} = 5$.

Interpretation: the observed data are 5 times more likely under \mathcal{M}_1 than \mathcal{M}_2 .

Computing Bayes factors for informative hypotheses

Klugkist et al. (2005) proved the following:

Theorem 1. Consider two models \mathcal{M}_1 and \mathcal{M}_e , where \mathcal{M}_1 is nested within an encompassing model \mathcal{M}_e via an inequality constraint on some parameter δ that is unconstrained under \mathcal{M}_e . Then

$$B_{1e} = \frac{F}{C}$$

where F and C represent the proportions of the posterior and prior of the encompassing model, respectively, that are in agreement with the inequality constraint imposed by the nested model \mathcal{M}_1 .

Sample from prior:

	Prior					
Iteration	$\overline{\mu_1}$	μ_2	μ_3	$\overline{\mathcal{M}_1}$	$\overline{\mathcal{M}_2}$	$\overline{\mathcal{M}_3}$
1	6.54	10.15	-1.78	0	0	0
2	22.60	-0.28	8.03	0	0	0
3	3.37	3.01	-0.63	0	0	0
4	-6.13	11.54	12.33	1	0	0
5	13.68	-0.61	1.50	0	0	0
6	27.83	7.43	6.79	0	0	0
:	÷	÷	i	i	i	÷
5000	11.00	13.07	23.91	1	0	0
Sum				847	876	807
Proportion (C)				0.169	0.175	0.161

Sample from posterior:

	Posterior					
Iteration	$\overline{\mu_1}$	μ_2	μ_3	$\overline{\mathcal{M}_1}$	$\overline{\mathcal{M}_2}$	$\overline{\mathcal{M}_3}$
1	5.59	9.90	12.83	1	0	0
2	2.90	8.86	8.35	0	0	1
3	2.63	10.43	10.44	1	0	0
4	5.55	10.17	9.61	0	0	1
5	4.61	7.24	10.24	1	0	0
6	4.72	8.95	9.78	1	0	0
:	:	ŧ	÷	ŧ	÷	:
5000	5.61	8.72	9.99	1	0	0
Sum				3674	29	1286
Proportion (F)				0.735	0.006	0.257
Proportion (C)				0.169	0.175	0.161
B_{je}				4.43	0.03	1.59

From these Bayes factors, we can compute $posterior\ model\ probabilities$ (PMPs).

First, assume \mathcal{M}_1 , \mathcal{M}_2 , and \mathcal{M}_3 are equally likely, $a\ priori$.

Then we have

$$B_{11} + B_{21} + B_{31} = \frac{p(\mathcal{M}_1 \mid \boldsymbol{y})}{p(\mathcal{M}_1 \mid \boldsymbol{y})} + \frac{p(\mathcal{M}_2 \mid \boldsymbol{y})}{p(\mathcal{M}_1 \mid \boldsymbol{y})} + \frac{p(\mathcal{M}_3 \mid \boldsymbol{y})}{p(\mathcal{M}_1 \mid \boldsymbol{y})}$$
$$= \frac{p(\mathcal{M}_1 \mid \boldsymbol{y}) + p(\mathcal{M}_2 \mid \boldsymbol{y}) + p(\mathcal{M}_3 \mid \boldsymbol{y})}{p(\mathcal{M}_1 \mid \boldsymbol{y})}$$
$$= \frac{1}{p(\mathcal{M}_1 \mid \boldsymbol{y})}$$

So we have

$$p(\mathcal{M}_1 \mid \mathbf{y}) = \frac{1}{B_{11} + B_{21} + B_{31}}$$

Multiplying top and bottom by B_{1e} , we have

$$p(\mathcal{M}_1 \mid \mathbf{y}) = \frac{B_{1e}}{B_{11} \cdot B_{1e} + B_{21} \cdot B_{1e} + B_{31} \cdot B_{1e}}$$
$$= \frac{B_{1e}}{B_{1e} + B_{2e} + B_{3e}}$$

Thus, we can compute our posterior model probabilities for each \mathcal{M}_j :

Model	F	C	B_{je}	PMP
$\mathcal{M}_1: \mu_1 < \mu_2 < \mu_3$	0.735	0.169	4.43	0.731
$\mathcal{M}_2: \mu_2 < \mu_1 < \mu_3$	0.006	0.175	0.03	0.005
$\mathcal{M}_3: \mu_1 < \mu_3 < \mu_2$	0.257	0.161	1.59	0.263

Sensitivity to prior?

• in the Klugkist et al. (2005) formulation, priors are data-based

$$\pi(\boldsymbol{\mu}, \sigma^2 \mid \mathcal{M}_e) = \pi(\boldsymbol{\mu} \mid \mathcal{M}_e)\pi(\sigma^2)$$

with

$$oldsymbol{\mu} \sim \mathcal{N}(oldsymbol{\mu}_0, oldsymbol{T}_0)$$

and

$$\sigma^2 \sim \mathsf{Inv-}\chi^2(v_0,\sigma_0^2)$$

Rouder et al. (2012) instead model such problems as "effects"-driven

- ullet parameter of interest is "effect size" $\delta = \frac{\mu_1 \mu_2}{\sigma}$
- assume $\delta \sim \mathsf{Cauchy}(r)$

Modeling results are similar:

Model	F	C	B_{je}	PMP (Rouder)	PMP (Klugkist)
$\mathcal{M}_1: \mu_1 < \mu_2 < \mu_3$	0.732	0.165	4.44	0.739	0.731
$\mathcal{M}_2: \mu_2 < \mu_1 < \mu_3$	0.009	0.167	0.05	0.009	0.005
$\mathcal{M}_3: \mu_1 < \mu_3 < \mu_2$	0.256	0.169	1.52	0.252	0.263

Simulation:

- two populations: $\mathcal{N}(0,1)$ and $\mathcal{N}(\alpha,1)$, where $\alpha \sim \mathsf{Uniform}(-1,1)$
- ullet random samples of size N=20,50,80
- Three competing models:
 - $-\mathcal{M}_1:\mu_1\approx\mu_2$
 - $\mathcal{M}_2 : \mu_1 < \mu_2$
 - $-\mathcal{M}_3: \mu_1 > \mu_2$
- computed PMPs using (1) Klugkist method and (2) Rouder method

Results: N=20

Results: N=50

Results: N=80

Thank you!

- Thanks to Tarleton Office of Research and Innovation for funding!
- slides available at github.com/tomfaulkenberry/talks
- more details in Faulkenberry, T. J. (2019). A tutorial on generalizing the default Bayesian t-test via posterior sampling and encompassing priors. Communications for Statistical Applications and Methods, 26(2), 1-22.
- Twitter: @tomfaulkenberry
- Email: faulkenberry@tarleton.edu