Algunas distribuciones continuas de probabilidad

1.1. La distribución normal

Definición 1.1. se dice que una variable aleatoria *X* se encuentra normalmente distribuida si su función de densidad de probabilidad está dada por

$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, \quad -\infty < x < \infty \\ -\infty < \mu < \infty, \ \sigma > 0$$

Si se obtienen las dos primeras derivadas de $f(x; \mu, \sigma)$ con respecto a x y se igualan a cero, se tiene que el valor máximo de $f(x; \mu, \sigma)$ ocurre cuando $x = \mu$, y los valores $x = \mu \pm \sigma$ son las abcisas de los dos puntos de inflexión de la curva.

Demostrar que la definición 5.1 es una función de densidad de probabilidad.

Demostración.- El que la función sea no negativa se satisface, ya que $f(x; \mu, \sigma) > 0$ para $-\infty < x < \infty$, $-\infty < \mu < \infty$ y $\sigma > 0$. Para demostrar que:

$$\int_{-\infty}^{\infty} f(x; \mu, \sigma) \ dx = 1.$$

Sea

$$I = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

el valor de la integral y aplíquese la transformación lineal $y=(x-\mu)/\sigma$ de manera tal que $x=\sigma y+\mu$ y $dx=\sigma dy$. Esto da como resultado:

$$I = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-y^2/2} dy.$$

Si puede demostrarse que $I^2=1$, puede deducirse que I=1 puesto que $f(x;\mu,\sigma)$ tiene un valor positivo. De acuerdo con lo anterior:

$$I^{2} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-y^{2}/2} dy \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-z^{2}/2} dz = \frac{1}{\sqrt{2\pi}} \int_{\infty}^{\infty} \int_{-\infty}^{\infty} e^{\frac{(y^{2}+z^{2})}{2}} dy dz,$$

en donde se ha escrito el producto de las dos integrales como una doble integral ya que las funciones de z son contantes con respecto a y como también de manera viceversa. Al cambiar de coordenadas rectangulares representadas por x e y, a coordenadas polares r y θ , en donde $y = r\cos\theta$ y $z = r\sin\theta$. Esto

es:

$$y^2 + z^2 = r^2 \cos^2 \theta + r^2 \sin^2 \theta = r^2$$

y el elemento de área dydz, en coordenadas rectangulares se reemplaza por $rdrd\theta$ en coordenadas polares. Dado que los límites $(-\infty,\infty)$ tanto para y como para z generan el plano completo yz, el plano correspondiente a r y a θ se genera mediante el empleo de los límites $(0,2\pi)$ para θ y $(0,\infty)$ para r. De esta forma se tiene:

$$I^{2} = \frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{x} e^{-r^{2}/2} r dr d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} d\theta \int_{0}^{x} e^{-r^{2}/2} r dr = \frac{\theta}{2\pi} \bigg|_{0}^{2\pi} \cdot \left[-e^{-r^{2}/2} \right] \bigg|_{0}^{x} = 1.$$

La media de una variable aleatoria distribuida normalmente se encuentra definida por:

$$E(X) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} x e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx.$$

Se pretende demostrar que $E(X)=\mu$. Supóngase que a $E(X)=\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^{x}xe^{-\frac{(x-\mu)^2}{2\sigma^2}}\,dx$ se suma y se resta

$$\frac{\mu}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

La identidad se mantiene, pero después de reacomodar términos se tiene

$$E(X) = \int_{-\infty}^{\infty} (x - \mu) e^{-\frac{(x - \mu)^2}{2\sigma^2}} dx + \frac{\mu}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-\frac{(x - \mu)^2}{2\sigma^2}} dx$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} (x - \mu) e^{-\frac{(x - \mu)^2}{2\sigma^2}} dx + \mu$$

dado que el valor de la segunda integral es uno. Al afectar un cambio de variable de integración de manera tal que $y=\frac{x-\mu}{\sigma}$, $x=\sigma y+\mu$ y $dx=\sigma dy$, se tiene:

$$E(X) = \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y e^{-y^2/2} \, dy + \mu = -\frac{\sigma}{\sqrt{2\pi}} e^{-y^2/2} \bigg|_{-\infty}^{\infty} + \mu = \mu.$$

El lector recordará de sus cursos de cálculo que la última integral es cero porque el integrando es una función impar y la integración se lleva a cabo sobre un intervalo simétrico alrededor de cero.

Si el valor máximo de la función de densidad de probabilidad normal ocurre cuando $x = \mu$ este es la media, la mediana y la moda de cualquier variable aleatoria distribuida aleatoriamente. Para encontrar los demás momentos, se determinará la función generadora de momentos. Por definición:

$$m_{X-\mu}(t) = E\left[e^{t(X-\mu)}\right] = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{t(x-\mu)} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-\frac{1}{2\sigma^2}\left[(x-\mu)^2 - 2\sigma^2 t(x-\mu)\right]} dx.$$

de donde se completa el cuadrado en el interior del paréntesis rectangular y se tiene:

$$(x-\mu)^2 - 2\sigma^2 t(x-\mu) = (x-\mu)^2 - 2\sigma^2 t(x-\mu) + \sigma^4 t^2 - \sigma^4 t^2 = (x-\mu-\sigma^2 t)^2 - \sigma^4 t^2.$$

Por lo que,

$$m_{X-\mu}(t) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{\frac{\sigma^2 t^2}{2}} e^{-\frac{x-(\mu+\sigma^2 t)^2}{2\sigma^2}} dx = e^{\frac{\sigma^2 t^2}{2}},$$

dado que el integrando junto con el factor $\frac{1}{\sqrt{2\pi}\sigma}$ es una función de densidad de probabilidad normal con parámetros $\mu + \sigma^2 t$ y σ .

Al desarrollar $e^{\frac{\sigma^2 i^2}{2}}$ en serie de potencias se tiene:

$$m_{X-\mu}(t) = 1 + \frac{(\sigma t)^2}{2} + \frac{(\sigma t)^4}{4 \cdot 2!} + \frac{(\sigma t)^6}{8 \cdot 3!} + \frac{(\sigma t)^8}{16 \cdot 4!} + \dots$$

Cuando las potencias impares de *t* no se encuentran presentes, todos los momentos centrales de *X* de orden impar son cero, de esta forma se asegura la simetría de la curva.

La segunda derivada de $m_{X-\mu}(t)$ evaluada en t=0 es **la varianza** y está dada por:

$$Var(X) = \frac{d^2 m_{X-\mu}(t)}{dt^2}\bigg|_{t=0} = \sigma^2 + \frac{12t^2\sigma^4}{4\cdot 2!} + \frac{30t^4\sigma^6}{8\cdot 3!} + \dots \bigg|_{t=0} = \sigma^2;$$

De esta manera **la desviación estándar es** σ . De manera similar, la cuarta derivada de $m_{X-\mu}(t)$ evaluada en t=0 es el cuarto momento central, el cual es:

$$\mu_4 = \frac{d^4 m_{X-\mu}(t)}{dt^4} \bigg|_{t=0} = 3\sigma^4 + \frac{360t^2\sigma^6}{8 \cdot 3!} + \dots \bigg|_{t=0} = 3\sigma^4$$

De acuerdo con lo anterior, para cualquier distribución normal el coeficiente de asimetría es $\alpha_3(X)=0$, mientras que la curtosis relativa es $\alpha_4(X)=\frac{3\sigma^4}{\sigma^4}=3$. Para momentos alrededor del cero, puede determinarse la función generadora de momentos centrales o viceversa. Dado que

$$m_{X-\mu}(t) = E\left[e^{t(X-\mu)}\right] = e^{-\mu t}E\left[e^{tX}\right] = e^{-\mu t}m_X(t),$$

para una distribución normal

$$e^{-\mu t}m_X(t) = e^{\frac{\sigma^2 t^2}{2}}$$

y

$$m_{\rm X}(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}$$

La probabilidad de que una variable aleatoria normalmente distribuida X sea menor o igual a un valor específico, x está dada por **función de distribución acumulativa**

$$P(X \le x) = F(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{\frac{-(t-\mu)^2}{2\sigma^2}} dt.$$

Sea Z una variable aleatoria definida por la siguiente relación:

$$Z = \frac{(X - \mu)}{\sigma}$$

en donde μ y σ son la media y la desviación estándar de X, respectivamente. De acuerdo con lo anterior, Z es una variable aleatoria estandarizada con media cero y desviación estándar uno. Así,

$$P(X \le x) = P[X \le (x - \mu)/\sigma] = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{(x - \mu)/\sigma} e^{\frac{-z^2}{2}} \sigma \, dz = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{(x - \mu)/\sigma} e^{\frac{-z^2}{2}} \, dz.$$

El integrando junto con el factor $1/\sqrt{2\pi}$ es la función de densidad de probabilidad de la variable aleatoria normal estandarizada Z. De donde

$$F_X(x; \mu, \sigma) = F_Z(z; 0, 1)$$

Para cualquier valor específico de *z*, el correspondiente valor en la tabla es la probabilidad de que la variable aleatoria normal estándar *Z* sea menor o igual a *z*; esto es

$$P(Z \le z) = F_Z(z;0,1) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{\frac{-t^2}{2}} dt.$$

La notación $X \sim N(\mu, \sigma)$ denotará que la variable X se encuentra distribuida normalmente con media μ y desviación estándar σ .

Determinaremos la probabilidad de que un valor de X se encuentre entre a y b, si $X \sim N(\mu, \sigma)$. Por definición:

$$P(a \le X \le b) = \frac{1}{\sqrt{2\pi}\sigma} \int_a^b e^{\frac{-(x-\mu)^2}{2\sigma^2}} dx,$$

pero, mediante el empleo de $E(X) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} (x-\mu)e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx + \mu$ se tiene:

$$P(a \le X \le b) = P\left(\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}\right) = \frac{1}{\sqrt{2\pi}} \int_{\frac{a-\mu}{\sigma}}^{\frac{b-\mu}{\sigma}} e^{\frac{-z^2}{2}} dz = F_Z\left(\frac{b-\mu}{\sigma};0,1\right) - F_Z\left(\frac{a-\mu}{\sigma};0.1\right)$$

Teorema 1.1. Sea X una variable aleatoria binomial con media np y desviación estándar $\sqrt{np(1-p)}$. La distribución de la variable aleatoria tiende a la normal

$$Y = \frac{X - np}{\sqrt{np(1 - p)}}$$

estándar conforme el número de ensayos independientes $n \to \infty$.

Demostración.- La demostración que aquí se presenta se basa en el hecho de que una función generadora de momentos define, de manera única, a una distribución. Se demostrará que la función generadora de momentos de Y tiende a una distribución normal conforme $n \to \infty$. X es una variable aleatoria binomial:

$$m_X(t) = [(1-p) + pe^t]^n$$

Entonces:

$$m_Y(t) = E(e^{tY}) = E\left[e^{\frac{t(X-np)}{\sqrt{np(1-p)}}}\right] = e^{\frac{npt}{\sqrt{np(1-p)}}} \cdot E\left[e^{\frac{tX}{\sqrt{np(1-p)}}}\right]$$

donde $E\left[e^{\frac{tX}{\sqrt{np(1-p)}}}\right]$ es la función generadora de momentos de X con argumento $\frac{t}{\sqrt{np(1-p)}}$. De esta forma se tiene:

$$m_y(t) = e^{\frac{-npt}{\sqrt{np(1-p)}}} \left[(1-p) + pe^{\frac{t}{\sqrt{np(1-p)}}} \right]^n;$$

pero:

$$e^{-\frac{npt}{\sqrt{np(1-p)}}} = \left(e^{-\frac{pt}{\sqrt{np(1-p)}}}\right)^n$$

y:

$$m_{y}(t) = \left[(1-p)e^{-\frac{pt}{\sqrt{np(1-p)}}} + pe^{\frac{t}{\sqrt{np(1-p)}} - \frac{pt}{\sqrt{np(1-p)}}} \right]^{n} = \left[(1-p)e^{-\frac{pt}{\sqrt{np(1-p)}}} + pe^{\frac{(1-p)t}{\sqrt{np(1-p)}}} \right]^{n}.$$

En la última expresión, al expander ambas funciones exponenciales en una serie de potencias, se tiene:

$$(1-p)e^{-\frac{pt}{\sqrt{np(1-p)}}} = (1-p) - \frac{(1-p)pt}{\sqrt{np(1-p)}} + \frac{(1-p)p^2t^2}{2np(1-p)} + \text{términos en } (-1)^k \left(\frac{1}{n}\right)^{k/2}, \ k = 3, 4, \dots$$

$$= (1-p) - \frac{(1-p)pt}{\sqrt{np(1-p)}} + \frac{pt^2}{2n} + \text{términos en } (-1)^k \left(\frac{1}{n}\right)^{k/2}, \ k = 3, 4, \dots$$

 $pe^{-\frac{(1-p)t}{\sqrt{np(1-p)}}} = p + \frac{(1-p)pt}{\sqrt{np(1-p)}} + \frac{(1-p)pt^2}{2np(1-p)} + \text{términos en } \left(\frac{1}{n}\right)^{k/2}, \ k = 3, 4, \dots$ $= p + \frac{(1-p)pt}{\sqrt{np(1-p)}} + \frac{(1-p)t^2}{2n} + \text{términos en } \left(\frac{1}{n}\right)^{k/2}, \ k = 3, 4, \dots$

Al sustituir los resultados anteriores en $m_Y(t)$ y agrupar términos,

$$m_Y(t) = \left[1 + \frac{t^2}{2n} + \text{ términos en } \left(\frac{1}{n}\right)^{k/2}\right]^n$$
, $k = 3, 4, \dots$

Dado que todos los términos que contiene a $(1/n)^{k/2}$, k = 3, 4, ..., tienen exponentes mayores que uno, puede factorizarse el término 1/n. De esta forma se tiene que:

$$m_Y(t) = \left[1 + \frac{1}{n} \left(\frac{t^2}{2} + \text{ términos en } \left(\frac{1}{n}\right)^{(k-2)/2}\right)\right]^n, \ k = 3, 4, \dots$$

Por definición:

$$\lim_{n\to\infty} \left(1 + \frac{u}{n}\right)^n = e^u$$

entonces, conforme $n \to \infty$, la última expresión para $m_Y(t)$ es idéntica a esta forma, con u representando a todo lo que se encuentra entre paréntesis de esta expresión. Pero conforme $n \to \infty$, todos los términos de u, excepto el primero, tienen un valor de cero, dado que todos tienen potencias positivas de n en sus denominadores. De acuerdo con lo anterior.

$$\lim_{n\to\infty} m_Y(t) = e^{t^2/2},$$

que es la función generadora de momentos de la distribución normal estándar.

La aproximación del teorema anterior es adecuada tanto como np > 5 cuando $p \le 1/2$, o cuando n(1-p) > 5 para p > 1/2. Esto es

$$P(a \le X_B \le b) = P\left(\frac{a - np}{\sqrt{np(1 - p)}} \le Z_N \le \frac{b - np}{\sqrt{np(1 - p)}}\right)$$

en donde Z_N es N(0,1). Como también

$$P(X_B = x) \approx P\left(\frac{x - np - 1/2}{\sqrt{no(1-p)}} \le Z_N \le \frac{x - np + 1/2}{\sqrt{np(1-p)}}\right)$$

por lo que se puede modificar la expresión de desigualdad de la siguiente manera:

$$P(a \le X_B \le b) = P\left(\frac{a - np - 0.5}{\sqrt{np(1 - p)}} \le Z_N \le \frac{b - np + 0.5}{\sqrt{np(1 - p)}}\right)$$

1.2. La distribución uniforme

Definición 1.2. Se dice que una variable aleatoria X está distribuida uniformemente sobre el intervalo (a, b) si su función de densidad de probabilidad está dada por:

$$f(x;a,b) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{para cualquier otro valor.} \end{cases}$$

La función de distribución acumulativa se determina de manera fácil y está dada por

$$P(X \le x) = F_{x;a,b} = \frac{1}{b-a} \int_{a}^{x} dt = \begin{cases} 0 & x < a, \\ \frac{x-a}{b-a} & a \le x \le b, \\ 1 & x > b. \end{cases}$$

Se sigue entonces que para cualquier subintervalo (a_1, b_1) interior a (a, b):

$$P(a_1 \le X \le b_1) = F(b_1; a, b) - F(a_1; a, b) = \frac{b_1 - a_1}{b - a}.$$

Este resultado ilustra que la probabilidad de que X tome valores del subintervalo (a_1, b_1) , es $\frac{1}{b-a}$ por la longitud del subintervalo y de esta forma, igual a la probabilidad de que X tome un valor en cualquier otro subintervalo de la misma longitud.

El valor esperado de una variable aleatoria distribuida de manera uniforme es

$$E(X) = \frac{1}{b-a} \int_{a}^{b} x \, dx = \frac{a+b}{2}.$$

Para obtener los momentos superiores de X, es más fácil trabajar con la variable aleatoria $Y = X - \frac{a+b}{2}$, que desplaza la media a cero, dado que $E(Y) = E(X) - \frac{a+b}{2}$. De esta forma:

$$f(y;\theta) = \frac{1}{\theta}, \qquad -\frac{\theta}{2} \le y \le \frac{\theta}{2},$$

en donde $\theta = b - a$. De acuerdo con lo anterior, el r-ésimo momento central de Y es igual al r-ésimo momento central alrededor del cero, esto es:

$$\mu_r(Y) = \mu'_r(Y) = \theta^{-1} \int_{-\theta/2}^{\theta/2} y^r \, dy = \left(\frac{1}{\theta}\right) \frac{y^{r+1}}{r+1} \Big|_{-\theta/2}^{\theta/2} = \begin{cases} 0 & \text{si r es impar} \\ \theta^r / [(r+1)2^r] & \text{si r es par} \end{cases}$$

Dado que ni la varianza ni los factores de forma se ven afectados por el cambio de localización, la varianza, el coeficiente de asimetria y la curtosis relativa de la variable aleatoria distribuida uniformente se encuentran a partir de $\begin{cases} 0 & \text{si r es impar} \\ \theta^r/[(r+1)2^r] & \text{si r es par} \end{cases}$ y están determinadas por:

$$Var(X) = \frac{(b-a)^2}{12}$$

$$\alpha_3(X) = 0$$

$$\alpha_4(X) = \frac{\frac{(b-a)^4}{80}}{\left[\frac{(b-a)^2}{12}\right]^2} = \frac{9}{5}.$$

Puede emplearse $f(y;\theta)=\frac{1}{\theta}$, $-\frac{\theta}{2} \leq y \leq \frac{\theta}{2}$, para determinar la **desviación media** de la siguiente manera:

$$E|Y| = \theta^{-1} \int_{-\theta/2}^{\theta/2} = 2\theta^{-1} \int_{0}^{\theta/2} y \, dy = \frac{\theta}{4} = \frac{b-a}{4}.$$

No tiene moda y su **mediana** es igual a la media. Los valores cuantiles x_q , correspondientes a la proporción acumulativa q, son de manera tal que:

$$F(x_q, a, b) = q$$

Los que por
$$\begin{cases} 0 & x < a, \\ \frac{x-a}{b-a} & a \le x \le b, \text{ son:} \\ 1 & x > b. \end{cases}$$

$$x_q = a + (b - a)q.$$

1.3. La distribución beta

Definición 1.3. Se dice que una variable aleatoria *X* posee una distribución beta si su función de densidad está dada por:

$$f(x; \alpha, \beta) = \begin{cases} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} & 0 < x < 1, \quad \alpha, \beta > 0, \\ 0 & \text{para cualquier otro valor} \end{cases}$$

Recordemos que
$$\Gamma(n) = \int_0^\infty u^{n-1} e^{-u} du$$
, $n > 0$.

Si tanto α como β son menores que uno, la distribución beta tiene un perfil en forma de U. Si $\alpha < 1$ y $\beta \geq 1$, la distribución tiene un perfil de J transpuesta, y si $\beta < 1$ y $\alpha \geq 1$, el perfil es una J. Finalmente cuando $\alpha = \beta$ la distribución es simétrica. Nótese que si en la definición se reemplaza por x-1, se obtiene la siguiente relación de simetría:

$$f(1-x;\beta,\alpha) = f(x;\alpha,\beta)$$

El nombre de esta distribución proviene de su asociación con la función beta que se encuentra definida por

$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx$$

Puede demostrarse que las funciones beta y gama se encuentran relacionadas por la expresión

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}.$$

Mediante el empleo de estas últimas fórmulas, es obvio que la definición es una función de densidad de probabilidad. Esto es:

$$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\int_0^1 x^{\alpha-1}(1-x)^{\beta-1}\,dx = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}B(\alpha,\beta) = 1,$$

y puesto que $f(x; \alpha, \beta)$ es no negativa, entonces la definición es una función de densidad de probabilidad.

La función de distribución acumulativa se encuentra definida por:

Definición 1.4.

$$F(x;\alpha,\beta) = \begin{cases} 0 & x \leq 0, \\ \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_0^x t^{\alpha-1} (1-t)^{\beta-1} dt & 0 < x < 1, \\ 1 & x \geq 1. \end{cases}$$