

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/000167

International filing date: 11 January 2005 (11.01.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP
Number: 2004-088232
Filing date: 25 March 2004 (25.03.2004)

Date of receipt at the International Bureau: 03 March 2005 (03.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

日本国特許庁
JAPAN PATENT OFFICE

13.01.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 2004年 3月25日
Date of Application:

出願番号 特願2004-088232
Application Number:
[ST. 10/C]: [JP2004-088232]

出願人 第一工業製薬株式会社
Applicant(s):

2005年 2月17日

特許庁長官
Commissioner,
Japan Patent Office

小川

出証番号 出証特2005-3011590

【書類名】 特許願
【整理番号】 DP-3386
【提出日】 平成16年 3月25日
【あて先】 特許庁長官殿
【発明者】
 【住所又は居所】 滋賀県大津市湖城が丘12-1-705
 【氏名】 大西 英明
【発明者】
 【住所又は居所】 京都府京都市右京区西院久田町69
 【氏名】 寺本 誠
【特許出願人】
 【識別番号】 000003506
 【氏名又は名称】 第一工業製薬株式会社
【代理人】
 【識別番号】 100060368
 【弁理士】
 【氏名又は名称】 赤岡 迪夫
【選任した代理人】
 【識別番号】 100124648
 【弁理士】
 【氏名又は名称】 赤岡 和夫
【先の出願に基づく優先権主張】
 【出願番号】 特願2004- 50844
 【出願日】 平成16年 2月26日
【手数料の表示】
 【予納台帳番号】 066914
 【納付金額】 21,000円
【提出物件の目録】
 【物件名】 特許請求の範囲 1
 【物件名】 明細書 1
 【物件名】 要約書 1
 【包括委任状番号】 9721612
 【包括委任状番号】 0301287

【書類名】特許請求の範囲

【請求項 1】

- (A) スチレン系樹脂 100重量部に対し、
- (B) 臭素含有量 50 wt %以上の臭素系難燃剤 0.1～30重量部、および
- (C) 鉄、マンガン、コバルト、ニッケル、白金またはパラジウムより選ばれた金属フタロシアニン 0.01～0.2重量部を配合してなる難燃性スチレン系樹脂組成物。

【請求項 2】

スチレン系樹脂 100重量部あたり、さらにリン含有量 6 wt %以上のリン系難燃剤 0.1～20重量部を配合してなる請求項 1 の難燃性スチレン系樹脂組成物。

【請求項 3】

請求項 1 または 2 の難燃性スチレン系樹脂組成物の成形体。

【請求項 4】

発泡剤をさらに含んでいる請求項 1 または 2 の難燃性樹脂組成物。

【請求項 5】

請求項 4 の難燃性樹脂組成物の発泡成形体。

【書類名】明細書

【発明の名称】難燃性スチレン系樹脂組成物

【技術分野】

【0001】

本発明は、難燃化が要求される分野で使用されるプラスチック成形体を製造するための難燃性スチレン系樹脂組成物に関する。詳しくは、比較的少ない添加量で高い難燃効果が得られるように、臭素系難燃剤の難燃効果を増強する微量の金属フタロシアニンを配合した難燃性スチレン系樹脂組成物に関する。

【背景技術】

【0002】

スチレン系樹脂は耐水性、機械強度に優れ、しかも、成形加工も容易なことから、家電製品、OA・電気機器、建材用途など多くの用途に使用されている。これらの材料に対して、それぞれの分野での難燃規格が決められている。しかも、近年はさらに火災に対する安全性の要求が強くなり、例えば、家電製品、OA機器等では米国UL（アンダーライターズ・ラボラトリー）燃焼試験の規制が年とともに厳しくなってきており、より高度の難燃化が要求されている。

【0003】

こういう状況下で、燃えやすいスチレン系樹脂は難燃化する必要があり、種々の難燃化が行われている。その中でも、難燃効果に優れ、最も実用的に広く行われているのが、臭素系難燃剤を添加する方法である。

【0004】

また、近年の高度な難燃規制に対応するためには、難燃剤を增量する方法が考えられるが、難燃剤を大量に使用することは経済的でないだけでなく有毒ガスの発生や機械的性質の低下にも影響する。このため、できる限り少量の難燃剤を用いて樹脂を難燃化することが望まれている。

【0005】

本発明者らはある種の金属フタロシアニン化合物が臭素系難燃剤（臭素含有量が少なくとも50wt%の臭素含有有機化合物）の難燃性を増強する効果があることを発見した。これまで別の目的で金属フタロシアニンを難燃剤と併用して可燃性樹脂に配合する提案がされている。

【0006】

例えば、特開2000-239461公報では、難燃化したプロピレン系樹脂を青色に着色する目的で β 型に富むフタロシアニンブルー（銅フタロシアニン）を配合することを提案している。米国特許第3,825,520号はオクタブロモビフェニルで難燃化したポリスチレンおよびABSに金属（鉄、銅、マンガン、バナジウム、コバルト）フタロシアニンを配合することにより、燃焼時の発煙を抑制できるとしている。特開平9-255879号は、スチレン系樹脂を含む熱可塑性樹脂の難燃化に当って金属錯体の超微粒子を配合することによって少量の難燃剤の配合で効果的な難燃性を与えることを教示している。ただし金属錯体のリガンドとしてフタロシアニンは開示されていない。

【発明の開示】

【0007】

高レベルの難燃性を実現するため、樹脂へ添加する難燃剤を增量するのではなく、微量の添加によって難燃剤自体の難燃効果を高めることができる添加剤を併用するのが望ましい。難燃剤の增量は、先に述べたように発生する有毒ガスの増加や樹脂本来の物性を添加量に比例して損うからである。本発明の課題は、臭素系難燃剤と併用してそのような難燃効果を高めることができる添加剤を探究することである。

【0008】

本発明は、

(A) スチレン系樹脂100重量部に対し、

(B) 臭素含有量50wt%以上の臭素系難燃剤0.1~30重量部、および

(C) 鉄、マンガン、コバルト、ニッケル、白金またはパラジウムより選ばれた金属フタロシアニン0.01～0.2重量部を配合してなる難燃性スチレン系樹脂組成物を提供する。

【0009】

この組成物は、リン含有量が6wt%以上のリン系難燃剤をさらに含むことができる。その量はスチレン系樹脂100重量部あたり0.1～20重量部である。

【発明を実施するための最良の形態】

【0010】

(1) スチレン系樹脂：

本発明に使用するスチレン系樹脂は、スチレン、またはビニルトルエン、 α -メチルスチレンのようなスチレン誘導体の単独もしくは共重合体である。少割合のブタジエン、アクリロニトリル、メチルメタクリレート、無水マレイン酸、イタコン酸などのスチレンと共重合し得るモノマーを含んだスチレン系樹脂も含まれる。また、HIPSとして広く知られる耐衝撃性ポリスチレンもスチレン系樹脂に含まれる。ポリスチレンおよびHIPSが一般的である。スチレン系樹脂は全体の30重量%までのポリエチレン、ポリプロピレン、エチレンープロピレン共重合体のようなオレフィン系樹脂を含んでいても良い。

【0011】

(2) 臭素系難燃剤：

多数の臭素含有率50wt%以上の臭素系難燃剤が知られている。その例は次のものを含む。ヘキサブロモシクロドデカン、テトラブロモシクロオクタン、ビス(ペンタブロモフェニル)エタン、ビス(2,4,6-トリブロモフェノキシ)エタン、エチレンビスステトラブロモタルイミド、ヘキサブロモベンゼン、ペンタブロモトルエン、ポリ(ジブロモフェニレン)エーテル、トリス(2,3-ジブロモプロピル)イソシアヌレート、トリブロモフェノール、トリブロモフェニルアリルエーテル、トリブロモネオペンチルアルコール、テトラブロモビスフェノールA、テトラブロモビスフェノールS、テトラブロモビスフェノールA-カーボネートオリゴマー、テトラブロモビスフェノールA-ビス(2-ヒドロキシエチルエーテル)、テトラブロモビスフェノールA-ビス(2,3-ジブロモイソブチルエーテル)、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)、テトラブロモビスフェノールA-ジアリルエーテル、テトラブロモビスフェノールS-ビス(2,3-ジブロモプロピルエーテル)、テトラブロモビスフェノールA-ジメタアリルエーテル、オクタブロモトリメチルフェニルインダン、ポリ(ペンタブロモベンジルアクリレート)、ブロム化ポリスチレン、ブロム化ポリエチレン、ブロム化ポリカーボネート、ペルブロモシクロペンタデカン、トリス(2,3-ジブロモプロピル)ホスフェート、トリス(2,3-ブロモクロロプロピル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート、ビス(2,3-ジブロモプロピル)-2,3-ジクロロプロピルホスフェートなど。

【0012】

臭素系難燃剤の配合量は、特定の難燃剤の臭素含有量、所望の難燃レベル、スチレン系樹脂のタイプなどによって変動するが、スチレン系樹脂100重量部あたり一般に0.1～30重量部、好ましくは0.5～20重量部、特に好ましくは1～15重量部である。当然のことであるが、難燃剤の配合量に難燃性レベルは正比例し、樹脂の機械的物性は反比例するので、両者のバランスが重要である。

【0013】

(3) 金属フタロシアニン

本発明においては中心金属種が鉄、マンガン、コバルト、ニッケル、白金またはパラジウムである金属フタロシアニンを使用する。それ以外の金属フタロシアニン、例えば銅フタロシアニンは難燃性増強効果が有意義でなく、例えばクロムまたはカドミウムフタロシアニンは環境汚染の源となる。鉄、コバルトおよびニッケルフタロシアニンが入手しやすい。また、これら金属フタロシアニンのハロゲン化物も同様に使用することが出来る。

【0014】

金属フタロシアニンの添加量は、一般にスチレン系樹脂100重量部あたり0.01～0.2重量部、好ましくは0.05～0.15重量部である。

【0015】

(4) リン系難燃剤

必須ではないが、臭素系難燃剤にリン系難燃剤を併用することができる。リン系難燃剤の併用は所望の難燃レベルを実現するために必要な臭素系難燃剤の添加量を減らす効果がある。またその種類によってはスチレン系樹脂を適度に可塑化する効果がある。ここでいうリン系難燃剤とは、リン含有量が6wt%以上で、かつハロゲンを含まない有機リン化合物を意味する。芳香族リン酸エステルおよびホスファゼン化合物が好ましい。それらの例は、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、ジフェニルクレジールホスフェート、レゾルシノールービス(ジフェニル)ホスフェート、ビスフェノールAービス(ジフェニル)ホスフェート、レゾルシノールービス(ジクレジル)ホスフェート、ビスフェノールAービス(ジクレジル)ホスフェート、レゾルシノールービス(ジ-2,6-キシレニル)ホスフェート、フェノキシホスファゼン、メチルフェノキシホスファゼン、クレジルホスファゼン、キシレノキシホスファゼン、メトキシホスファゼン、エトキシホスファゼン、プロポキシホスファゼンなどである。

【0016】

併用する場合、リン系難燃剤はスチレン系樹脂100重量部あたり0.1～2.0重量部の割合で配合される。

【0017】

(5) 難燃助剤：

三酸化アンチモンに代表される難燃助剤はハロゲン系難燃剤の効果を増強することが良く知られている。本発明の難燃性樹脂組成物も勿論それを含むことができる。その例は、三酸化アンチモン、五酸化アンチモン、酸化スズ、水酸化スズ、スズ酸亜鉛、ヒドロキシスズ酸亜鉛、酸化モリブデン、モリブデン酸アンモニウム、酸化ジルコニウム、水酸化ジルコニウム、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウムなどである。三酸化アンチモンが代表的である。

【0018】

(6) スズ系、ホスファイト系、ヒンダードフェノール系安定剤

安定剤を用いると、難燃性スチレン系樹脂組成物の熱安定性が向上し、成形体および発泡体の変色を防ぐことができる。安定剤については市販の化合物を用いることができる。スズ系安定剤としては例えばジブチルスズマレート系化合物、ジブチルスズラウレート系化合物、ジオクチルスズマレート系化合物、ジオクチルスズズラウレート系化合物、ジオクチルスズマレートポリマーなどが上げられる。

ホスファイト系安定剤としては例えばトリフェニルホスファイト、トリス(2,4-tert-*t*-ブチルフェニル)ホスファイト、ビス(2,4-ジ-*t*-tert-*t*-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-*t*-tert-*t*-ブチルフェニル)ペンタエリスリトールジホスファイト、テトラキス(2,4-ジ-*t*-tert-*t*-ブチルフェニル)[1,1-ビフェニル]-4,4-ジイルビスホスホナイト、ビス[2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル]エチルホスファイト等が上げられる。

ヒンダードフェノール系安定剤としては例えば、1,6-ヘキサンジオールービス[3-(3,5-ジ-*t*-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリエチレングリコールービス[3-(3-*t*-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、グリセリントリス[3-(3,5-ジ-*t*-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペントエリスリトールテトラキス[3-(3,5-ジ-*t*-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-*t*-ブチル-4-ヒドロキシフェニル)プロピオネートなどが上げられる。

これら安定剤は単独または2種以上を併用して用いることができる。

【0019】

(7) 発泡剤および発泡核剤：

本発明の難燃性樹脂組成物から発泡体を製造する場合は、組成物が発泡剤および発泡核剤（気泡調整剤）を含まなければならない。いずれも公知のものであるが、発泡剤の例は、プロパン、ブタン、ペンタン、ヘキサン、1-クロロ-1,1-ジフルオロエタン、モノクロロジフルオロメタン、モノクロロ-1,2,2,2-テトラフルオロエタン、1,1-ジフルオロエタン、1,1,1,2-テトラフルオロエタン、1,1,3,3,3-ペンタフルオロプロパンなどの脂肪族炭化水素およびハロゲン化炭化水素、水、窒素、またはアゾ系の化学発泡剤である。発泡核剤（気泡調整剤）の例は、タルク、ベントナイト等である。

【0020】

(8) その他の慣用の添加剤：

本発明の難燃性樹脂組成物は、スチレン系樹脂に使用される慣用の添加剤を含むことができる。それらの例は、酸化防止剤、熱安定剤、紫外線吸収剤、紫外線安定化剤、耐衝撃改良剤、着色顔料、充填剤、滑剤、滴下防止剤、結晶核剤、帶電防止剤、ラジカル発生剤、相溶化剤などである。これらの慣用の添加剤は市販されており、具体的な化学名はメーカーのカタログおよびプラスチック加工に関するハンドブックに記載されている。

【0021】

本発明の樹脂組成物は公知の方法によって製造することができる。非発泡成形品の場合は、スチレン系樹脂、難燃剤、金属フタロシアニン、その他の添加剤を二軸押出機、バンパリーミキサー、ラボプラストミル、熱ロールなどを使用して加熱下混練し、射出成形機や熱プレスによって成形することができる。樹脂への添加成分の添加順序は任意であり、同時又は順次に添加成分を混合することができる。

【0022】

発泡成形の場合は、押出機において樹脂の溶融が完了した時点で発泡剤（ペンタン等）を圧入する押出し発泡法、またはあらかじめ難燃剤等の添加成分を添加した樹脂ビーズに発泡剤を含浸した発泡性ビーズを経由する方法を採用することができる。

【0023】

以下に実施例および比較例によって本発明を例証する。これらにおいて「部」および「%」は特記しない限り重量基準による。使用した原材料は以下のとおりである。

【0024】

(A) スチレン系樹脂

A 1：一般用ポリスチレン、トーヨースチロールG 2 2 0（東洋スチレン（株））

A 2：ゴム変性耐衝撃性ポリスチレン（HIPS）、トーヨースチロールH 6 5 0（東洋スチレン（株））

(B) 臭素系難燃剤

B 1：ヘキサブロモシクロドデカン

B 2：テトラブロモビスフェノールA-ビス（2,3-ジブロモイソブチルエーテル）

B 3：テトラブロモビスフェノールA-ビス（2,3-ジブロモプロピルエーテル）

B 4：テトラブロモビスフェノールA-ジアリルエーテル

B 5：トリス（トリブロモネオペンチル）ホスフェート

B 6：トリス（2,3-ジブロモプロピル）イソシアヌレート

B 7：2,4,6-トリス（2,4,6-トリブロモフェノキシ）-1,3,5-トリアジン

B 8：デカブロモジフェニルエーテル

(C) 金属フタロシアニン

C 1：鉄フタロシアニン

C 2：コバルトフタロシアニン

C 3：塩素化フタロシアニン鉄

C 4：銅フタロシアニン（比較例に用いる）

(D) 熱安定剤

D 1：スズ系熱安定剤：ジオクチルスズマレートポリマー

D 2：ホスファイト系熱安定剤：ビス（2，6-ジ-tert-ブチルフェニル）ペンタエリスリトールジホスファイト

D 3：ヒンダードフェノール系酸化防止剤：ペンタエリスリトールテトラキス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕

(E) 発泡剤：ペンタン

(F) 難燃助剤：三酸化アンチモン

(G) 発泡核剤（気泡調整剤）：タルク

(H) リン系難燃剤：トリフェニルホスフェート

【0025】

[実施例1-10および比較例1-10]

試験片の作成方法：

発泡剤を除いて表1～2に示した配合物を、口径6.5mmの第1の加熱筒と口径9.0mmの第2の加熱筒を直列に連結した二段押出機へ投入し、第1の加熱筒で200℃に加熱して溶融、可塑化、混練する。第1の加熱筒の先端（第2の加熱筒との連結端）から別ラインで所定量の発泡剤を圧入し、第2の加熱筒において樹脂温度を120℃に冷却し、第2の加熱筒の先端に取付けた断面2.5mm×4.5mmのダイリップから大気中へ押し出し、板状の押出発泡体を得た。

【0026】

発泡体の目視評価：

目視により下記基準に従って発泡体を評価した。

○：ワレ、亀裂、ボイドなどがなく、良好な発泡体が安定して得られた。

×：ダイからのガス噴出があり、良好な発泡体が安定して得られなかつた。また発泡体にワレ、亀裂、ボイドなどが見られた。

難燃性試験：

JIS K 7201に準拠して酸素指数を求めた。

【0027】

自消性：

難燃性試験において酸素指数2.6以上のものを有り：○とし、2.6未満のものをなし：×とした。

結果：得られた試験結果を表1および表2に示す。

【0028】

【表1】

表1

		実施例									
		1	2	3	4	5	6	7	8	9	10
ステレン系樹脂	A1(部)	100	100	100	100	100	100	100	100	100	100
臭素系難燃剤	B1(部)	2.0							2.0		2.0
"	B2(部)		3.0					2.0		2.0	
"	B3(部)			5.0							
"	B4(部)				0.5						
"	B5(部)					5.0					
"	B6(部)						5.0				
金属フタロシアニン	C1(部)	0.05	0.15	0.05		0.1	0.05	0.05		0.1	
"	C2(部)				0.05				0.05		
"	C3(部)									0.1	
熱安定剤	D1(部)									0.6	
"	D2(部)									0.01	
"	D3(部)								0.2		
発泡剤(モル)		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
タルク(部)		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
リン系難燃剤(部)									1.0		
発泡体の形状		○	○	○	○	○	○	○	○	○	○
難燃性(酸素指数)		26.0	27.1	26.2	26.6	26.1	26.3	26.1	26.4	26.2	26.5
自消性		○	○	○	○	○	○	○	○	○	○

【0029】

【表2】

表2

		比較例									
		1	2	3	4	5	6	7	8	9	10
ステレン系樹脂	A1(部)	100	100	100	100	100	100	100	100	100	100
臭素系難燃剤	B1(部)	2.0							2.0	5.0	2.0
"	B2(部)		3.0					2.0			
"	B3(部)			5.0							
"	B4(部)				0.5						
"	B5(部)					5.0					
"	B6(部)						5.0				
金属フタロシアニン	C4(部)									0.05	
熱安定剤	D1(部)										
"	D2(部)										
"	D3(部)							0.2			
発泡剤(モル)		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
タルク(部)		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
リン系難燃剤(部)								1.0			
発泡体の形状		○	○	○	○	○	○	○	○	×	○
難燃性(酸素指数)		23.0	24.5	20.0	23.4	19.8	19.9	23.8	23.8	25.8	23.1
自消性		×	×	×	×	×	×	×	×	×	×

【0030】

〔考察〕

本発明の樹脂組成物の発泡体（実施例1～10）は、すべて発泡成形体の状態が良く、満足な難燃性を保持している。これを金属フタロシアニンを添加しなかった対応する比較例1～8の発泡体と比較すると、添加した金属フタロシアニンは微量にもかかわらず難燃性を増強する効果があることがわかる。比較例9は臭素系難燃剤B1を5.0重量部に增量した例であるが、酸素指数、したがって自消性が対応する実施例1の発泡体に及ばず、かつこの臭素系難燃剤は熱安定性が悪いため発泡体にワレを生じた。比較例10は銅フタロシアニン（C4）には難燃性を増強する効果がないことを示している。

【0031】

〔実施例11-22および比較例11-22〕

試験片の作成方法：

表3-4に示した配合物を熱ロールで200℃において5分間混練し、熱プレスで200℃において3分間プレスして得た板状成形体をカッターで所定の寸法の試験片に切り出した。

難燃性試験：

UL-94垂直難燃試験法に準拠して行った。試験片は長さ125mm、幅12.5mm、厚さ3.2mmである。V-2に合格しないものをN.R. (Not Rating)とした。

曲げ試験：

ASTM-D790に準拠して曲げ強さと曲げ弾性率を測定した。

結果：得られた結果を表3-4に示す。

【0032】

【表3】

表3

	実施例											
	11	12	13	14	15	16	17	18	19	20	21	22
スチレン系樹脂 A2(部)	100	100	100	100	100	100	100	100	100	100	100	100
臭素系難燃剤 B1(部)	2.0								2.0			2.0
" B2(部)		3.0					2.0					
" B3(部)			5.0									
" B4(部)				0.5								
" B5(部)					5.0							
" B6(部)						5.0						
" B7(部)								15.0				
" B8(部)										20.0		
金属フタロシアニン C1(部)	0.05	0.15	0.05		0.05	0.1	0.05				0.1	
" C2(部)				0.05				0.05	0.05	0.05		
" C3(部)											0.1	
熱安定剤 D1(部)											0.5	
" D2(部)												0.01
" D3(部)								0.2	0.2	0.2		
難燃助剤(部)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	4.0	5.0	4.0	5.0
リン系難燃剤(部)								1.0				
難燃性(UL-94)	V-2	V-0	V-0	V-0	V-0							
曲げ弾性率(MPa)	2050	2100	2240	2020	2200	2220	2390	2100	2100	2010	2080	2010
曲げ強さ(MPa)	38	47	42	41	43	44	32	45	43	39	39	39

【0033】

【表4】

表4

	比較例	11	12	13	14	15	16	17	18	19	20	21	22
		100	100	100	100	100	100	100	100	100	100	100	100
スチレン系樹脂	A2(部)												
臭素系難燃剤	B1(部)	2.0							3.0			5.0	2.0
"	B2(部)		3.0					2.0					
"	B3(部)			5.0									
"	B4(部)				0.5								
"	B5(部)					5.0							
"	B6(部)						5.0						
"	B7(部)									15.0			
"	B8(部)										20.0		0.05
金属フタロシアニン	C4(部)												
熱安定剤	D1(部)												
"	D2(部)												
"	D3(部)								0.2	0.2	0.2		
難燃助剤(部)		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	4.0	5.0	1.0	1.0
リン系難燃剤(部)								1.0					
難燃性(UL-94)	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	N.R.	V-2	V-2	V-2	N.R.	
曲げ弾性率(MPa)	2050	2100	2250	2050	2180	2190	2120	2050	2120	2030	1700	2000	
曲げ強さ(MPa)	39	50	41	45	40	42	48	46	44	39	20	37	

【0034】

[考察]

実施例 11-22 の成形体はすべて UL-94 V-2 を達成した。比較例 11-18 は実施例 11-22 の成形体はすべて UL-94 V-2 を達成した。比較例 11-18 は金属フタロシアニンを添加しなかったことを除き実施例 11-18 に対応しているが、UL-94 V-2 を達成しなかった。金属フタロシアニンを添加せずに臭素系難燃剤の添加量を増量した比較例 19, 20 においては、対応する実施例 19, 20 に比較して難燃性において劣っていた。比較例 21 は比較例 11 に使用した臭素系難燃剤を増量した例であるが、使用した難燃剤の熱安定性に問題があるため所望の難燃性レベルは得られるものの成形物の機械的物性が低下した。比較例 22 は銅フタロシアニンは難燃性の增强に効果がないことを示している。

【書類名】要約書

【要約】

【課題】

臭素系難燃剤によって難燃化したスチレン系樹脂成形体に微量を添加することにより難燃性を増強する添加剤を配合した難燃スチレン系樹脂組成物を提供する。

【解決手段】

- (A) スチレン系樹脂100重量部に対し、
- (B) 臭素含有量50wt%以上の臭素系難燃剤0.1～30重量部、および
- (C) 鉄、マンガン、コバルト、ニッケル、白金またはパラジウムより選ばれた金属フタロシアニン0.01～0.2重量部を配合してなる難燃性スチレン系樹脂組成物。

【選択図】 なし

特願 2004-088232

出願人履歴情報

識別番号 [000003506]

1. 変更年月日 1990年 8月 7日

[変更理由] 新規登録

住所 京都府京都市下京区西七条東久保町55番地
氏名 第一工業製薬株式会社