

Química **Nivel medio** Prueba 1

Lunes 14 de noviembre de 2016 (mañana)

45 minutos

Instrucciones para los alumnos

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [30 puntos].

8816-6128

	8	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,90	54 Xe 131,29	86 Rn (222)	118 Uuo (294)		
	17		9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At (210)	117 Uus (294)	71 Lu 174,97	103 Lr (262)
	16		8 O 16,00	16 S 32,07	34 Se 78,96	52 Te 127,60	84 Po (209)	116 Uuh (293)	70 Yb 173,05	102 No (259)
	15		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,76	83 Bi 208,98	115 Uup (288)	69 Tm 168,93	101 Md (258)
	4		6 C 12,01	14 Si 28,09	32 Ge 72,63	50 Sn 118,71	82 Pb 207,2	114 Uug (289)	68 Er 167,26	100 Fm (257)
	5		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,38	113 Unt (286)	67 Ho 164,93	99 Es (252)
	12				30 Zn 65,38	48 Cd 112,41	80 Hg 200,59	112 Cn (285)	66 Dy 162,50	98 Cf (251)
ğ	7				29 Cu 63,55	47 Ag 107,87	79 Au 196,97	111 Rg (281)	65 Tb 158,93	97 Bk (247)
riódic	9				28 Ni 58,69	46 Pd 106,42	78 Pt 195,08	110 Ds (281)	64 Gd 157,25	96 Cm (247)
Tabla periódica	6				27 Co 58,93	45 Rh 102,91	77 Ir 192,22	109 Mt (278)	63 Eu 151,96	95 Am (243)
	œ				26 Fe 55,85	44 Ru 101,07	76 0s 190,23	108 Hs (269)	62 Sm 150,36	94 Pu (244)
	^				25 Mn 54,94	43 Tc (98)	75 Re 186,21	107 Bh (270)	61 Pm (145)	93 Np (237)
	9	00	lativa		24 Cr 52,00	42 Mo 95,96	74 W 183,84	106 Sg (269)	60 Nd 144,24	92 U 238,03
	ro.	Número atómico Elemento Masa atómica relativa		23 V 50,94	41 Nb 92,91	73 Ta 180,95	105 Db (268)	59 Pr 140,91	91 Pa 231,04	
	4	Núr.		22 Ti 47,87	40 Zr 91,22	72 Hf 178,49	104 Rf (267)	58 Ce 140,12	90 Th 232,04	
	ო				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	+	#
	7		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,33	88 Ra (226)		
	-	1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		
			7	က	4	S.	9	7		

- 1. ¿Cuál cambio de estado es exotérmico?
 - A. $CO_2(s) \rightarrow CO_2(g)$
 - B. $H_2O(l) \rightarrow H_2O(g)$
 - C. $NH_3(g) \rightarrow NH_3(l)$
 - D. $Fe(s) \rightarrow Fe(l)$
- 2. ¿Cuál volumen, en cm³, de NaOH (aq) $0.20 \, \text{mol dm}^{-3}$ se requiere para neutralizar $0.050 \, \text{mol}$ de $H_2S(g)$?

$$H_2S(g) + 2NaOH(aq) \rightarrow Na_2S(aq) + 2H_2O(l)$$

- A. 0,25
- B. 0,50
- C. 250
- D. 500
- 3. La combustión completa de 15,0 cm³ de un hidrocarburo gaseoso **X** produce 60,0 cm³ de dióxido de carbono gaseoso y 75,0 cm³ de vapor de agua. ¿Cuál es la fórmula molecular de **X**? (Todos los volúmenes se miden a la misma temperatura y presión.)
 - A. C_4H_6
 - B. C₄H₈
 - C. C₄H₁₀
 - D. C₆H₁₀

4. $5,0 \,\text{mol}$ de $\text{Fe}_2\text{O}_3(s)$ y $6,0 \,\text{mol}$ de CO(g) reaccionan de acuerdo con la ecuación de abajo. ¿Cuál es el reactivo limitante y cuántos moles del reactivo en exceso permanecen sin reaccionar?

$$\mathsf{Fe_2O_3}(\mathsf{s}) + \mathsf{3CO}(\mathsf{g}) \to \mathsf{2Fe}(\mathsf{s}) + \mathsf{3CO_2}(\mathsf{g})$$

	Reactivo limitante	Moles del reactivo en exceso permanecen sin reaccionar
A.	со	2,0
B.	СО	3,0
C.	Fe ₂ O ₃	1,0
D.	Fe ₂ O ₃	2,0

5. ¿Cuál es correcto para la línea de emisión del espectro del hidrógeno?

- A. La energía de la línea M es mayor que la de la línea N.
- B. La frecuencia de la línea N es menor que la de la línea M.
- C. La longitud de onda de la línea M es mayor que la de la línea N.
- D. Las líneas convergen a menor energía.
- **6.** ¿Cuál es la configuración electrónica condensada del ion Fe²⁺?
 - A. [Ar]3d⁶
 - B. [Ar]3d⁴4s²
 - C. [Ar]3d⁵4s¹
 - D. $[Ar]3d^64s^2$

7. ¿Cuál ecuación representa la primera afinidad electrónica del cloro?

A.
$$Cl(g) + e^- \rightarrow Cl^-(g)$$

B.
$$\frac{1}{2} \operatorname{Cl}_2(g) + e^- \to \operatorname{Cl}^-(g)$$

C.
$$Cl^+(g) + e^- \rightarrow Cl(g)$$

D.
$$Cl(g) \rightarrow Cl^+(g) + e^-$$

8. ¿Cuál solución se forma cuando el óxido de fósforo(V), P₄O₁₀, reacciona con agua?

	Producto	pH de la solución
A.	H ₃ PO ₃	< 7
B.	H ₃ PO ₃	> 7
C.	H ₃ PO ₄	< 7
D.	H ₃ PO ₄	> 7

9. ¿Cuál par de moléculas tiene los mismos ángulos de enlace?

10. La longitud del enlace C=N es de 130 pm y la entalpía media de enlace 615 kJ mol⁻¹. ¿Cuáles valores serían más probables para el enlace C-N?

	Longitud de enlace / pm	Entalpía media de enlace / kJ mol ⁻¹
A.	147	286
B.	147	890
C.	116	286
D.	116	890

11. ¿Entre cuál par de moléculas se puede producir enlace de hidrógeno?

- A. CH₄ y H₂O
- B. CH₃OCH₃ y CF₄
- C. CH₄ y HF
- D. CH₃OH y H₂O

12. ¿Cuál sustancia tiene estructura gigante covalente?

	Punto de fusión / °C	Solubilidad en agua	Conductividad eléctrica en estado fundido
A.	186	elevada	ninguna
B.	801	elevada	buena
C.	1083	baja	buena
D.	1710	baja	ninguna

13. La hidrazina reacciona con oxígeno.

$$N_2H_4(l) + O_2(g) \to N_2(g) + 2H_2O(l)$$
 $\Delta H^{\ominus} = -623 \, kJ$

¿Cuál es la entalpía estándar de formación de la $N_2H_4(l)$ en kJ? La entalpía estándar de formación del $H_2O(l)$ es $-286\,kJ$.

- A. -623 286
- B. -623 + 572
- C. -572 + 623
- D. -286 + 623

14. ¿En cuál reacción los reactivos tienen menor energía potencial que los productos?

A.
$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

B.
$$HBr(g) \rightarrow H(g) + Br(g)$$

C.
$$Na^+(g) + Cl^-(g) \rightarrow NaCl(s)$$

D.
$$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$$

15. Se añadieron 5,35 g de cloruro de amonio sólido, $NH_4Cl(s)$, al agua para formar 25,0 g de solución. La disminución máxima de temperatura fue de 14 K. ¿Cuál es la variación de entalpía para esta reacción, en kJ mol⁻¹? (Masa molar del $NH_4Cl = 53,5$ g mol⁻¹; la capacidad calorífica específica de la solución es de 4,18 J g⁻¹ K⁻¹)

A.
$$\Delta H = +\frac{25,0 \times 4,18 \times (14 + 273)}{0,1 \times 1000}$$

B.
$$\Delta H = -\frac{25,0 \times 4,18 \times 14}{0,1 \times 1000}$$

C.
$$\Delta H = +\frac{25,0 \times 4,18 \times 14}{0,1 \times 1000}$$

D.
$$\Delta H = +\frac{25,0 \times 4,18 \times 14}{1000}$$

16. Para la reacción $\mathbf{R} \to \mathbf{P}$, ¿Cuál letra representa la energía de activación para la reacción **inversa** catalizada?

Progreso de la reacción

17. ¿Cuáles métodos experimentales se podrían usar para observar el progreso de la siguiente reacción?

$$\text{Cr}_2\text{O}_7^{\ 2^-}(\text{aq}) + 6\text{I}^-(\text{aq}) + 14\text{H}^+(\text{aq}) \rightarrow 2\text{Cr}^{3^+}(\text{aq}) + 3\text{I}_2(\text{aq}) + 7\text{H}_2\text{O}\left(\text{l}\right)$$

- I. Variación de color
- II. Variación de masa
- III. Variación de la conductividad eléctrica
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III

18. ¿Qué sucede cuando se aumenta la temperatura del siguiente sistema en equilibrio?

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$
 $\Delta H^{\ominus} = -91 \text{ kJ}$

	Posición de equilibrio	Velocidades de las reacciones directa e inversa
A.	se desplaza a la izquierda	aumentan
B.	se desplaza a la izquierda	disminuyen
C.	se desplaza a la derecha	disminuyen
D.	se desplaza a la derecha	aumentan

19. ¿Cuáles especies se comportan como bases de Brønsted-Lowry en la siguiente reacción?

$$H_2SO_4 + HNO_3 \rightleftharpoons H_2NO_3^+ + HSO_4^-$$

- A. HNO₃ y HSO₄
- B. HNO₃ y H₂NO₃⁺
- C. H₂SO₄ y HSO₄
- D. $H_2NO_3^+$ y HSO_4^-
- 20. ¿Qué ocurre cuando el hidrógeno carbonato de sodio sólido reacciona con ácido sulfúrico acuoso?
 - A. Se forman burbujas de dióxido de azufre.
 - B. Se forman burbujas de hidrógeno y de dióxido de carbono.
 - C. Se forman burbujas de hidrógeno.
 - D. Se forman burbujas de dióxido de carbono.
- 21. ¿Cuál afirmación es correcta sobre la reacción de abajo?

$$2MnO_4^-(aq) + 6H^+(aq) + 5NO_2^-(aq) \rightarrow 2Mn^{2+}(aq) + 5NO_3^-(aq) + 3H_2O(l)$$

- A. El MnO₄ es el agente reductor y el número de oxidación del Mn aumenta.
- B. El $\mathrm{MnO_4}^-$ es el agente oxidante y el número de oxidación del Mn disminuye.
- C. El NO₂ es el agente reductor y el número de oxidación del N disminuye.
- D. El NO₂ es el agente oxidante y el número de oxidación del N aumenta.

22. Se construyó una pila voltaica a partir de semiceldas de cinc y cobre. El cinc es más reactivo que el cobre. ¿Cuál afirmación es correcta cuando la pila genera electricidad?

- A. Los electrones circulan desde la semicelda de cobre hacia la semicelda de cinc.
- B. La concentración de Cu²⁺ (aq) aumenta.
- C. Los electrones circulan a través del puente salino.
- D. Los iones negativos circulan a través del puente salino desde la semicelda de cobre hacia la semicelda de cinc.
- **23.** A continuación se muestra la estructura de una droga que se usa para el tratamiento de los síntomas del Alzheimer. ¿Cuáles grupos funcionales están presentes en esta molécula?

$$CH_3O$$
 CH_3O
 CH_3

- A. Hidroxilo y éster
- B. Hidróxido y éter
- C. Hidroxilo y éter
- D. Hidróxido y éster

24. ¿Cuáles alcoholes se oxidan cuando se calientan con solución ácida de dicromato(VI) de potasio?

- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III

25. ¿Cuál monómero se usa para formar el polímero en el que se repite la siguiente unidad?

$$\begin{bmatrix} H & H \\ -C & C \\ -C & -C \end{bmatrix}$$

- A. CH₃CH=CHCH₃
- B. CH₃CH₂CH=CH₂
- C. CH₃CH₂CH₂CH₃
- D. (CH₃)₂C=CH₂

- **26.** ¿Cuál tipo de reacción se produce cuando reaccionan el metanol con el ácido propanoico en presencia de un catalizador?
 - A. Adición
 - B. Condensación
 - C. Rédox
 - D. Neutralización
- **27.** Un estudiante llevó a cabo una titulación para determinar la concentración de un ácido y halló que su valor tenía una buena precisión pero mala exactitud. ¿Cuál proceso explica este resultado?
 - A. Repetidamente midió en exceso el volumen de solución desde la bureta al matraz.
 - B. Obtuvo insuficientes datos de la titulación.
 - C. Leyó el menisco de la bureta desde diferentes ángulos cada vez.
 - D. Olvidó lavar el matraz después de una de las titulaciones.
- 28. ¿Cuál es el índice de déficit de hidrógeno (IDH) para esta molécula?

$$H$$
 O CH_3

- A. 3
- B. 4
- C. 5
- D. 6
- **29.** ¿Cuál es siempre correcto sobre el ion molecular, M⁺, en un espectro de masas de un compuesto?
 - A. La menor relación m/z del espectro de masas corresponde al pico del ion M^+ .
 - B. La relación m/z del pico del ion M^+ da la masa molecular relativa de la molécula.
 - C. El ion M⁺ es el fragmento más estable que se forma durante el bombardeo con electrones.
 - D. El pico del ion M⁺ es el que tiene mayor intensidad en el espectro de masas.

30. Un estudiante midió la variación de masa al calentar una muestra de carbonato de calcio, $CaCO_3(s)$. ¿Cuál es la pérdida de masa?

Masa antes del calentamiento: $2,347 g \pm 0,001$ Masa después del calentamiento: $2,001 g \pm 0,001$

- A. $0,346 g \pm 0,001$
- B. $0,346 g \pm 0,002$
- C. $0,35g \pm 0,002$
- D. $0,35g \pm 0,001$