Un exemple par jour 4.1. the complex torus of form C^{\times}/Z_{\times}

$$C:=\mathbb{C}^{\times}/\mathbb{Z}_{Y}\stackrel{\text{topo}}{=}\mathbb{T}^{-1}$$
 is a cpt Riemannian surface of genus 1. $Y \in \text{Aut}(\mathbb{C}^{\times}) \ Y(\mathbb{Z}) = \alpha \mathbb{Z} \ \alpha \in \mathbb{C}^{\times} \ |\alpha| > 1$

Today: a=2

1. fundamental set:

=> only need 2 local chart

2.
$$0 \rightarrow \mathbb{Z} \longleftrightarrow \mathbb{C} \xrightarrow{f: z \mapsto e^{2\pi i z}} \mathbb{C}^{\times} \longrightarrow 1$$

$$\downarrow + \frac{1}{2\pi i} \ln 2 \qquad \downarrow + \frac{1}{2\pi i} \ln 2 \qquad \downarrow \times 2$$

$$0 \rightarrow \mathbb{Z} + \frac{1}{2\pi i} \ln 2 \rightarrow \mathbb{C} \longrightarrow \mathbb{C}^{\times} \longrightarrow 1$$

$$\mathbb{C}^{\times} = \mathbb{C}/_{\mathbb{Z}} \Rightarrow \mathbb{C}^{\times}/_{\mathbb{Z}\gamma} = \mathbb{C}/_{(\mathbb{Z}' \oplus \frac{1}{2\pi i} \ln 2\mathbb{Z}')}$$

better:
$$a = e^{2\pi} \approx 535.49$$

$$a = e^{-2\pi i w} \approx -230.765$$

3. line bundle on C

$$bec^{\times} \mathcal{L}_{b} = \mathbb{C}^{\times} \times \mathbb{C} /_{(2,\S)} \sim (22,b\S) \Rightarrow 0 \quad \mathcal{L}_{b} \in Pic_{o}(\mathbb{C}); \quad (\mathcal{L}_{b} \sim \mathcal{L}_{1} \cong \mathcal{O}_{\mathbb{C}})$$

$$\downarrow \qquad \qquad \qquad (naive, base pt 1ec^{\times}/2\chi)$$

$$C = \mathbb{C}^{\times}/2 \sim 22$$

$$\mathcal{L}_{b} \longrightarrow b$$

Reduced to: find a section s on L_b st div $s = \lfloor b \rfloor - \lfloor 1 \rfloor$ Reduced to: find a meromorphic functions g on \mathbb{C}^* s.t $\mathcal{O} g(zz) = bg(z) \qquad b \in \mathbb{C}^*, \ b \neq z^k; \ e.g. \ b=3$ $\mathcal{O} g \text{ has simple poles on } 2^n, \text{ and simple zeros on } 2^nb \ n \in \mathbb{Z}$ $b = e^{2\pi i c}, ce \mathbb{C}$ $t := \frac{1}{2\pi i} \ln 2$ $g(z) = \frac{G[1-2c](\omega(z), \tau)}{G[1](\omega(z), \tau)}$ is the required one. Blue — example
Orange — more than this example
Red — important results
Purple — I don't know the answer/proof
Green — sketsch of proof: in a minimal way
Grey — some supplementary explanation. Unimportant assumptions.
Hell grey — explanation on well-known notations.

Brown - small title in subsections.

My symbol collection set

1		Mathbb	Mathrsf/Mathcal	Greek	
A abelian variety	Q	Aadèles	A apartment		۵
В	Ь	IB	B building	0.0	β
С	c ce	C cplx number	e chamber category	Γgraph Γ	8
D	d constant d	ID	D Poincare disk	△ diag embedding	8
E elliptic curve	e ramification index	Œ	3		3
F field fiber F formal gp law	f	IF finite field	9 sheaf		ζ
a group	9	G gp scheme	G g: Lie alg upper half plane		n
Н	h	H	Hecke alg	Θ	θ
I ideal	1	1	I ideal of sheaf		1 injection
J	j	Ji	J		k
K cos/base field	$k \leftarrow k$	lK	$ \mathcal{X} $	1 lattice 1	λ
L	l	<u>u</u>	1		M
M module	m	M	Mmoduli space		voot of unity (5/w)
Ν	n	N natural number	√		Sconstant
0	o	O	O structure sheaf O)	TI multi	π uniformizer Projection
P	P	IP proj space	P 8: ell fet		P ← P
Q	9	Q rational number	Q	Σ sum	o
Rring	r	IR real number	$ \mathcal{R} $		τ
S base scheme	2	\$	S	Φ	ا ا
T tangent space translation	t	T torus	9		X character
U←U	и	U	-	$ar{arPsi}$	4
V _{v.s.}	ν	₩	v 19	Ω Ω	w ₩≈ ₩ω
Wwitt vector	w	W	-		
X	x	X	X		
Y = Y	y	Y	y	hebrew	Russian
Z center	2	Z integer	*	N cardinal	III sha gp
	ı	۱ '	.		•

```
Green: number / basic stuffs in senior high school

Orange: scheme - related

Darkyellow: advanced algebra

Don't use them simultaneously! (usually)

Don't mix: w/w, \zeta/\xi, k/k/k/k

1/(lv, \times/\alpha/\pi/\chi),

\varphi/\psi, e/e, \chi/\chi

strarpitoldsymbolftomegals (need amsbsy package)
```

 $https://en.wikipedia.org/wiki/Greek_letters_used_in_mathematics,_science,_and_engineering \\ https://mathoverflow.net/questions/8295/origins-of-mathematical-symbols-names$

Japanese mathematicions and their Chiese translations.

	Matsumoto	松本	Hideya Matsumoto	松本英野	
1860	Sawayama	沢山	Yuzaburo Sawayama	沢山勇三郎	
1875.4	•		Teiji Takagi	高木贞治	高木 貞治
901.4	Oka	冈	Kiyoshi Oka	冈洁	岡潔
1902.8	Akizuki	私人月	Yasuo Akizuki	秋月康夫	秋月 康夫
1904.01	·		Hidetaka Teresaka	寺阪英孝	寺阪 英孝
1908.12	Tannakian	淡中的	Tadao Tannaka	淡中忠郎	
1912.7	Nakayama	中山	Tadashi Nakayama	中山正	
1915.3	Kodaira	小平	Kunihiko Kodaira	小平邦彦	
1917.11	Iwas awa	岩泽	Kenkichi Imasawa	岩泽健吉	岩浑健吉
1924.1	Igusa	井草	Jun-Ichi Igusa	井草准一	井草 準一
1924.2	Tomita	富田	Minoru Tomita	富田稔	冨田 稔
1925.1			Toichiro Kinoshita	木下东-即	木下 東一郎
1925.11	Tamagawa	玉河	Tsuneo Tanagawa	玉河恒夫	
1926	Iwahori	岩堀	Nagayoshi Iwahori	岩堀长庆	岩堀 長慶
1927.11	Taniyama	谷山	Yutaka Taniyama	谷山丰	谷山 豊
1927.12	Satake	佐武	Ichirō Satake	佐武-即	
1928,12	Fujita	藤田	Hiroshi Fujita	藤田宏	藤田 宏
1928	Toda	戸田	Hiroshi Toda	户田宏	戸田 宏
1928.4	Sato	佐藤	Mikio Sato	佐藤干夫	佐藤 斡夫
1930.2	Shimura	志村	Gorō Shimura	志村五郎	
1930.3	Yoneda	米田	Nobuo Yoneda	米田信夫	
1930	Matsumura	松村	Hideyuki Matsumura	松村英之	
1931.4	Hironaka	广中	Heisuke Hironaka	广中平祐	広中 平祐
1932.1			Shoshichi Kobayashi	小林昭七	小林 昭七
1933.7	Takesaki	竹崎	Masamichi Takesaki	竹崎 正道	竹崎 正道
1944.3			Toshitsune Miyake	三宅敏恒	
1947.1	Kashiwara	正树	Masaki Kashiwara	柏原正树	柏原 正樹

1951.2	Mori	森	Shigefumi Mori	森重文	
1952.1	Kato	加藤	Kazuya Kato	加藤和也	
1952.8	Hida	肥田	Haruzo Hida	肥田晴三	肥田 晴三
1953,12.8	Mukai	向井	Shigeru Mukai	向井茂	
1959.3	Fukaya	深谷	Kenji Fukaya	深谷贤治	
1961.9	Saito	斋藤	Takeshi Saito	斋藤毅	斎藤毅
1962.11	Nakajima	中岛	Hiraku Nakajima	中岛启	中島啓
1969.3	•		Shinichi Mochizuki	望月新一	

Confusion list:

1. Ring has unit. Don't consider 0-Ring.

Read the diagram from top to bottom.
 countable = finite + inf countable (at most countable)

4 g fix set A. $\forall a \in A$, ga = a (use "stabilized" instead)
5 c. only mean a subset, or an injective map (uncompatible structures are allowed, e.g. $L^{\infty}([0,1]) \subset L^{1}([0,1])$)

6. definition of norm/seminorms
 7. HK ≠ H×K HK = Ig∈G | g=hk for some h∈H, k∈K]