Indian Institute of Information Technology, Sri City, Chittoor

Name o	of the	Exam: Database Management Systems	Duration: 1.5hr	Max. Marks: 20
Roll No	.: <u></u>		Room No.:	Seat No.:
Name:			nvigilator's Signature:	
Instruct	ions:	All questions have to be answered in You have to do rough work in the questions.		
	wer t	Choice Questions. Write the answer for one obe selected. (5 marks) wen a relational schema R	the following question	s in the space provided. Only
X 1 1 1 3	Y 4 5 6 2	Z 2 3 3 3 2 2		
Ans:	a. b. c.	hich of the following functional dependence XY->Z and Z->Y YZ->X and Y->Z YZ->X and X->Z XZ->Y and Y->Z	encies is valid?	
ii)	A- Fir a. b. c.	onsider the relation schema R(ABCDEFGH >BC, CD->E, E->C, D->AEH, ABH->BD, DH nd closure (BCD)+? ABCDEH AEFGH AEH BCDEFH	,	ional dependencies:
Ans:				
iii)	Clu a. b. c. e.	Unordered, Distinct		
Ans:				

IIITS/S-2019/Mid Sem-2 Exams Date: 19 March 2019 Which of the following is the syntax for views where v is view name? iv) a. Create view v as "table name"; b. Create "query expression" as view; c. Create view v as "query expression"; d. Create view "query expression"; Ans:

115.	

- Which of the following is a physical storage media? v)
 - a. Tape Storage
 - b. Optical Storage
 - c. Flash memory
 - d. All of the mentioned

Date: 19 March 2019

Q2. S	ubjective Questions. An	swer the following	questions in	the space pro	ovided only	. (3 marks)
i)	Consider the bank	k database as below	<i>i</i> :			

branch(<u>branch_name</u>, branch_city, assets)
customer (<u>customer_name</u>, customer_street, cust omer_city)
loan (<u>loan_number</u>, branch_name, amount)
borrower (<u>customer_name</u>, <u>loan_number</u>)
account (<u>account_number</u>, branch_name, balance)
depositor (<u>customer_name</u>, <u>account_number</u>)

Let us define a view branch_cust as follows:

create view branch_cust as
 select branch_name, customer_name
 from depositor, account
 where depositor.account_number = account.account_number

Suppose that the view is materialized; that is, the view is computed and stored. Write triggers to maintain the view, that is, to keep it up-to-date on insertions to depositor or account. Do not bother about updates.

IIITS/S-20	19/Mid Sem-2 Exams	Date:	19 March 2019
ii)	Explain the different types of Single-Level Ordered Indexes givin		
iii)	Give 2 differences between SRAM and DRAM.		

Q.3: Indexing (3 marks) Construct a B+ tree for the following set of key values:
(2, 3, 5, 7, 11, 17, 19, 23, 29, 31)
Assume that the tree is initially empty and values are added in ascending order. Construct B+ trees for
the cases where the number of pointers that will fit in one node (Order of the tree) is as follows:
a. Four
b. Six
c. Eight
For only B+ tree as above (a) part i.e. number of pointers that will fit in one node=4, show the form of
the tree after each of the following series of operations:
a. Insert 9.
b. Insert 10.
c. Insert 8.
d. Delete 23.
e. Delete 19.

IIITS/S-2019/Mid Sem-2 Exams

IIITS/S-2019/Mid Sem-2 Exams

Q. 4: Hashing (3 marks) Suppose that we are using extendable hashing on a file that contains records with the following search key values: 2, 3, 5, 7, 11, 17, 19, 23, 29, 31 Show the extendable hash structure for this file if the hash function is $h(x) = x \mod 8$ and buckets can hold three records. Show how the extendable hash structure as above changes as the result of each of the following steps a. Delete 11. b. Delete 31. c. Insert 1. d. Insert 15.	

Q5. Normalization	(2+1+3=6 marks)
-------------------	-----------------

L	
	Relation R has eight attributes ABCDEFGH. Fields of R contain only atomic values. F={CH-A \rightarrow BC, B \rightarrow CFH, E \rightarrow A, F \rightarrow EG} is a set of functional dependencies (FDs) so that F ⁺ is exactly the set of FDs that hold for R. How many candidate keys does the relation R have? Explain the steps in detail.

iii) Find the normal forms in the following. Find candidate keys in each and explain the intermediate steps in detail.
a) R(ABCDEF): A->BCDEF, BC->ADEF, DEF->ABC
b) R(ABCDE): A-> B,BC->E,DE->A

c) R(ABCDEF): A->B, C->F,E->A,EC->D

ROUGH WORK