10

EXTREMS RELATIUS DE FUNCIONS DE DIVERSES VARIABLES

(Resum teòric)

Índex									
10.1. Definicions									1

10.1. Definitions

Els extrems relatius de funcions reals de diverses variables es defineixen de manera anàloga al cas d'una variable. Considerem un conjunt U de \mathbb{R}^n , una funció real $f: U \to \mathbb{R}$ i un punt $\mathbf{a} \in U$.

La funció f té un màxim relatiu o màxim local a \mathbf{a} , si existeix un entorn V de \mathbf{a} tal que $f(\mathbf{x}) \leq f(\mathbf{a})$ per a tot $\mathbf{x} \in V$.

La funció f té un *mínim relatiu o mínim local* a \mathbf{a} , si existeix un entorn V de \mathbf{a} tal que $f(\mathbf{x}) \geq f(\mathbf{a})$ per a tot $\mathbf{x} \in V$.

Si en aquestes definicions se substitueixen les designaltats no estrictes per designaltats estrictes, s'obtenen les definicions de $m \ge m$ i $m \le m$ in $m \ge m$ in

Si f és una funció real diferenciable en \mathbf{a} i $\nabla f(\mathbf{a}) = \mathbf{0}$, es diu que \mathbf{a} és un punt *crític* o *estacionari* de f. Una condició necessària perquè hi hagi un extrem en \mathbf{a} és que un \mathbf{a} sigui un punt crític de f:

■ Si f és una funció real diferenciable en un punt \mathbf{a} i f té un extrem relatiu a \mathbf{a} , aleshores $\nabla f(\mathbf{a}) = \mathbf{0}$.

Si f té un punt crític a ${\bf a}$ però no té un extrem relatiu a ${\bf a}$, es diu que ${\bf a}$ és un punt de sella de f.

Per a funcions suficientment regulars, és possible determinar la naturalesa d'un punt crític amb l'ajuda de les segones derivades. Suposem que f admet totes les segones derivades parcials a **a**. La matriu hessiana de f a **a** és la matriu quadrada d'ordre n $\mathcal{H}f(\mathbf{a}) = (D_{ij}f(\mathbf{a}))$. Notem que, si f és de classe \mathcal{C}^2 en un entorn de **a**, aleshores $\mathcal{H}f(\mathbf{a})$

és una matriu simètrica perquè, segons el teorema de Schwarz, $D_{ij}f(\mathbf{a}) = D_{ji}f(\mathbf{a})$. Per a $k = 1, \ldots, n$, sigui $\Delta_k(f, \mathbf{a})$ el determinant de la matriu obtinguda de $\mathcal{H}f(\mathbf{a})$ suprimint les últimes n - k files i columnes, és a dir,

$$\triangle_1(f,\mathbf{a}) = D_{11}f(\mathbf{a}), \quad \triangle_2(f,\mathbf{a}) = \begin{vmatrix} D_{11}f(\mathbf{a}) & D_{12}f(\mathbf{a}) \\ D_{21}f(\mathbf{a}) & D_{22}f(\mathbf{a}) \end{vmatrix}, \dots, \quad \triangle_n(f,\mathbf{a}) = \det \mathcal{H}f(\mathbf{a}).$$

10.2. Condicions suficients

Condicions suficients d'extrem i punt de sella.

Siguin U un conjunt de \mathbb{R}^n i $f \colon U \to \mathbb{R}$ una funció de la classe $\mathcal{C}^2(U)$, i suposem que $\mathbf{a} \in U$ és un punt crític de f.

- i) Si $\triangle_k(f,\mathbf{a})>0$ per a tot $k\in\{1,\dots,n\}$, aleshores f té un mínim relatiu al punt \mathbf{a} .
- ii) Si $(-1)^k \triangle_k(f, \mathbf{a}) > 0$ per a tot $k \in \{1, \dots, n\}$, aleshores f té un màxim relatiu al punt \mathbf{a} .
- iii) Si existeix ℓ tal que $\triangle_{\ell}(f, \mathbf{a}) > 0$ i $\triangle_{k}(f, \mathbf{a}) \geq 0$ per a tot $k \neq \ell$, aleshores f té un mínim relatiu o un punt de sella al punt \mathbf{a} .
- iv) Si existeix ℓ tal que $(-1)^{\ell} \triangle_{\ell}(f, \mathbf{a}) > 0$ i $(-1)^{k} (f, \mathbf{a}) \triangle_{k} \geq 0$ per a tot $k \neq \ell$, aleshores f té un màxim relatiu o un punt de sella al punt \mathbf{a} .
- v) Si $\triangle_k(f, \mathbf{a}) = 0$ per a tot $k \in \{1, \dots, n\}$, aleshores f pot tenir un màxim, un mínim o un punt de sella al punt \mathbf{a} .
- vi) Si no es dóna cap dels casos anteriors, llavors f té un punt de sella al punt a.

En el cas de dues variables, els resultats precedents admeten més precisió.

Condicions suficients d'extrem i punt de sella (per a dues variables).

Siguin U un conjunt de \mathbb{R}^2 i $f: U \to \mathbb{R}$ una funció de la classe $\mathcal{C}^2(U)$. Suposem que $(a,b) \in U$ és un punt crític de f. Siguin $\mathcal{H}f(a,b) = (h_{ij})$ la matriu hessiana de f en (a,b) i \triangle el seu determinant. Tenim els casos següents.

- 1. $\triangle < 0$. Aleshores, f té un punt de sella al punt (a, b).
- $2. \quad \triangle > 0.$
 - i) Si $h_{11} < 0$, aleshores f té un màxim relatiu al punt (a, b).
 - ii) Si $h_{11} > 0$, aleshores f té un mínim relatiu al punt (a, b).
- 3. $\triangle = 0$.
 - i) Si $h_{11} < 0$ o $h_{22} < 0$, aleshores f té un màxim o un punt de sella al punt (a, b).
 - ii) Si $h_{11} > 0$ o $h_{22} > 0$, aleshores f té un mínim o un punt de sella al punt (a, b).

iii) Si $h_{11} = h_{22} = 0$, aleshores f pot tenir un màxim, un mínim o un punt de sella al punt (a, b).

Per últim, cal notar que per a $n \geq 2$ variables, l'estudi de les segones derivades no sempre permet decidir sobre el caràcter de màxim relatiu, mínim relatiu o punt de sella d'un punt crític. En aquests casos, consideracions sobre les propietats particulars de la funció concreta objecte d'estudi permeten, de vegades, determinar el caràcter del punt crític. A més, cal tenir en compte que una funció pot tenir un extrem relatiu en un punt en què no sigui diferenciable, i en aquest cas la discussió anterior no és aplicable.