# Fundamentals of Artificial Intelligence – First-Order Logic

Matthias Althoff

TU München

Winter semester 2023/24

1 / 44

## Organization

- Representation Revisited
- Syntax and Semantics of First-Order Logic
- 3 Using First-Order Logic
- 4 Knowledge Engineering in First-Order Logic

The content is covered in the Al book by the section "First-Order Logic".

Matthias Althoff First-Order Logic Winter semester 2023/24 2 / 44

## Learning Outcomes

- You understand the advantages and disadvantages of first-order logic compared to propositional logic.
- You understand the difference between objects, relations, and functions in first-order logic.
- You can create and evaluate sentences in first-order logic. Specifically, you can create terms, atomic sentences, complex sentences, and use quantification.
- You understand and can apply nested quantification.
- You understand the difference between assertions and queries in first-order logic.
- You understand and are able to engineer knowledge in first-order logic.

# Advantages and Disadvantages of Propositional Logic

- ② Propositional logic is **declarative** (in contrast to procedural as in many programming languages, e.g., C): pieces of syntax correspond to facts.
- © Propositional logic allows partial/disjunctive/negated information; e.g.. "There is a pit in [2,2] or [3,1]" (unlike most data structures and databases).
- © Propositional logic is **compositional**: meaning of  $B_{1,1} \wedge P_{1,2}$  is derived from meaning of  $B_{1,1}$  and of  $P_{1,2}$ .
- Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context).
- Propositional logic has very limited expressive power (unlike natural language);
   e.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square.

# First-Order Logic (FOL)

Whereas propositional logic assumes the world contains *facts*, first-order logic (like natural language) assumes the world contains

- Objects: corresponds to nouns in natural language. Examples: people, houses, numbers, theories, Angela Merkel, colors, football games, . . .
- Relations: corresponds to verbs and adjectives. Relations can be unary or n-ary.
  - *Unary examples*: red, round, bogus, prime, multi-storied, . . . *N-ary examples*: brother of, bigger than, inside, part of, occurred after, owns, comes between, . . .
- Functions: relations where each input is related to exactly one output.
  - *Examples*: father of, best friend, third inning of, one more than, end of, ...

## Objects, Relations, and Functions: Examples

"One plus two equals three."

Objects: one, two, three, one plus two

Relations: equals Functions: plus

"Squares neighboring the Wumpus are smelly."

Objects: squares, Wumpus

Relations: smelly (unary), neighboring (n-ary)

Functions: -

"Evil King John ruled England in 1200."

Objects: King John, England, 1200 Relations: evil (unary), ruled (n-ary)

Functions: -

6 / 44

# Logics in General



| Language            | Ontological Commitment (What exists in the world) | Epistemological Commitment (What an agent believes about facts) |  |
|---------------------|---------------------------------------------------|-----------------------------------------------------------------|--|
| Propositional logic | facts                                             | true/false/unknown                                              |  |
| First-order logic   | facts, objects, relations                         | true/false/unknown                                              |  |
| Temporal logic      | facts, objects, relations, times                  | true/false/unknown                                              |  |
| Probability theory  | facts                                             | degree of belief                                                |  |
| Fuzzy logic         | facts + degree of truth                           | known interval value                                            |  |

## Syntax of FOL: Basic Elements

| Syntactic element |              | Representation of | Examples            |  |
|-------------------|--------------|-------------------|---------------------|--|
| Constants         | $\leftarrow$ | Objects           | KingJohn, 2, TUM,   |  |
| Predicates        | _            | Relations         | $Brother, >, \dots$ |  |
| Functions         |              | Functions         | Sqrt, LeftLegOf,    |  |

| Syntactic element | Examples                                           |
|-------------------|----------------------------------------------------|
| Variables         | $x, y, a, b, \ldots$                               |
| Connectives       | $\land, \lor, \lnot, \Rightarrow, \Leftrightarrow$ |
| Equality          | =                                                  |
| ∩ Quantifiers     | $\forall$ , $\exists$                              |

## Syntax of FOL: Backus-Naur Form

```
Sentence ::= AtomicSentence | ComplexSentence
 AtomicSentence ::= Predicate | Predicate (Term, ...) | Term = Term
ComplexSentence ::= (Sentence) | [Sentence] | \neg Sentence |
                          Sentence \land Sentence \mid Sentence \lor Sentence \mid
                          Sentence \Rightarrow Sentence \mid Sentence \Leftrightarrow Sentence \mid
                          Quantifier Variable, . . . Sentence
               Term ::= Function(Term, . . . ) | Constant | Variable
         Quantifier ::=\forall \mid \exists
          Constant ::=A \mid X_1 \mid John \mid ...
           Variable ::= a | x | s | ...
         Predicate ::= True \mid False \mid After \mid Loves \mid ...
          Function ::= Mother | LeftLeg | ...
```

Convention: Constants are uppercase and variables are lowercase.

Operator precedence (descending order):  $\neg$ , =,  $\wedge$ ,  $\vee$ ,  $\Rightarrow$ ,  $\Leftrightarrow$ .

## Syntax of FOL: Examples

You can fool all of the people some of the time:



,

No car over 10 years old will be repaired if it is severely damaged:

$$\forall x \; \underbrace{\mathit{car}\left(\underset{\mathsf{Var.}}{\times}\right) \land \left(\underset{\mathsf{Funct.}}{\mathit{age}}\left(\underset{\mathsf{Var.}}{\times}\right) > 10\right) \Rightarrow \left(\underset{\mathsf{SevDam}\left(\underset{\mathsf{Var.}}{\times}\right)}{\mathit{sevDam}\left(\underset{\mathsf{Var.}}{\times}\right) \Rightarrow \neg \underbrace{\mathit{repair}\left(\underset{\mathsf{Var.}}{\times}\right)\right)}_{\mathit{Predicate}} } \\ \underbrace{\mathsf{Predicate}\left(\underset{\mathsf{Var.}}{\times}\right) \land \left(\underset{\mathsf{Predicate}}{\mathit{adomicSent.}}\right) \Rightarrow \neg \underbrace{\mathit{repair}\left(\underset{\mathsf{Var.}}{\times}\right)\right)}_{\mathit{Predicate}} \\ \underbrace{\mathsf{Predicate}\left(\underset{\mathsf{Var.}}{\times}\right)}_{\mathit{Predicate}} \land \underbrace{\mathsf{Var.}}_{\mathit{AtomicSentence}}$$

ComplexSentence

$$\equiv \forall x \ car(x) \land (age(x) > 10) \land sevDam(x) \Rightarrow \neg repair(x)$$

# Running Example



Matthias Althoff First-Order Logic Winter semester 2023/24

11 / 44

#### **Terms**

#### Backus-Naur Form of terms

Term ::=Function(Term, ...) | Constant | Variable

- A term is a logical expression that refers to an object.
- Constant symbols are therefore terms, but it is not always convenient to have a distinct symbol, e.g., LeftLeg(John) instead of LeftLegOfJohn.
- Think of a term just as a complicated kind of name, rather than a "subroutine call" that returns a value.

# Atomic Sentences (1)

#### Backus-Naur Form of atomic sentences

AtomicSentence ::=Predicate | Predicate(Term, ...) | Term = Term

 An atomic sentence is formed from a predicate symbol optionally followed by a parenthesized list of terms. A predicate can be seen as a function that only returns true or false.

**Example**: Brother(Richard, John) meaning that Richard is the brother of John.

Atomic sentences can have complex terms as arguments.

**Example**: Married(Father(Richard), Mother(John)) meaning that the father of Richard is married to the mother of John.

# Atomic Sentences (2)

- A further option to form an atomic sentence is by using equality of terms.
- Equality can signify that two terms refer to the same object.

**Example**: Father(John) = Henry.

 Equality can also be used to insist that two terms are not the same object.

### Example:

 $\exists x, y \mid Brother(x, Richard) \land Brother(y, Richard) \land \neg(x = y).$ 

## **Complex Sentences**

### Backus-Naur Form of complex sentences

```
ComplexSentence ::=(Sentence) | [Sentence] | \negSentence |

Sentence \land Sentence | Sentence \lor Sentence |

Sentence \Rightarrow Sentence | Sentence \Leftrightarrow Sentence |

Quantifier Variable, . . . . Sentence
```

- We can use logical connectives to construct more complex sentences using the syntax from propositional logics.
- Examples:

```
\bigcircBrother(LeftLeg(Richard), John) \lor
Brother(Richard, John) \land Brother(John, Richard)
King(Richard) \lor King(John)
\negKing(Richard) \Rightarrow King(John)
```

# Universal Quantification (∀)

- Expressing general rules in propositional logic is difficult. **Example:** "Squares neighboring the Wumpus are smelly", requiring to list all cases in propositional logic.
- In FOL this is easy, e.g., 'All kings are persons" can be written using the variable x as  $\forall x \mid King(x) \Rightarrow Person(x)$ .
- A universally quantified expression is true if it is true for every object.

First-Order Logic

### The running example has 5 objects:

- $x \to Richard the Lionheart$
- $x \rightarrow \mathsf{King} \; \mathsf{John}$
- $x \to \text{Richard's left leg}$
- $x \rightarrow John's left leg$
- for all objects and thus
  - $\forall x \; King(x) \Rightarrow Person(x)$  is true.

The sentence  $King(x) \Rightarrow Person(x)$  is true

 $x \rightarrow \text{the crown}$ 

# Existential Quantification $(\exists)$

• In FOL, the existential quantifier is used to express a statement about some object.

**Example:** "King John has a crown on his head" can be written as

$$\exists x \quad Crown(x) \land OnHead(x, John).$$

 An existentially quantified expression is true if it is true for at least one object.

First-Order Logic

### The running example has 5 objects:

- $x \rightarrow Richard the Lionheart$
- $x \rightarrow \mathsf{King} \; \mathsf{John}$
- $x \rightarrow Richard's left leg$
- $x \rightarrow John's left leg$
- $x \rightarrow \text{the crown}$

The sentence  $Crown(x) \wedge OnHead(x, John)$  is true for the fifth object and thus

 $\exists x \; Crown(x) \land OnHead(x, John) \text{ is true.}$ 

### Common Mistakes to Avoid

Typically, ⇒ is the main connective with ∀
 Common mistake: using ∧ as the main connective with ∀

$$\forall x \ At(x, TUM) \land Smart(x)$$

means "Everyone is at TUM and everyone is smart" instead of "Everyone at TUM is smart".

Typically, is the main connective with ∃
 Common mistake: using ⇒ as the main connective with ∃

$$\exists x \ At(x, TUM) \Rightarrow Smart(x)$$

is true if there is anyone who is not at TUM instead of "Someone at TUM is smart".

## Scope of Quantifiers

- The scope of a quantifier is the range in the formula where the quantifier "engages in".
- Parentheses make the scope explicit:

$$\forall x (\exists y \; Brother(x, y) \land \forall y \; Sibling(x, y))$$

The scope of quantifiers is often implicit:

$$\forall x \exists y \exists z P(x, y, z)$$

is the same as

$$\forall x(\exists y(\exists z\,P(x,y,z)))$$

and

$$\forall x \exists y \exists z P_1(x, y, z) \land P_2(x, y, z)$$

is the same as

$$\forall x \exists y \exists z (P_1(x, y, z) \land P_2(x, y, z)).$$

### Different Quantifiers Associated with the Same Variable

 Confusion arises when two quantifiers are used with the same variable name, e.g.,

$$\forall x \left( Crown(x) \lor (\exists x \ Brother(Richard, x)) \right),$$

where the x is universally and existentially quantified.

- The rule is that a variable is bound by the innermost quantifier.
- In the above example,  $\forall x$  has no effect for Brother(Richard, x).
- Often better: Use different variable names with nested quantifiers:

$$\forall x (Crown(x) \lor (\exists z) Brother(Richard, z))).$$

## Scope of Quantifiers: Examples

What does this mean?

$$\exists x \, Smart(x) \land Nice(x).$$

"Someone is smart and nice."

• What does this mean?

$$\exists x \, Smart(x) \land \exists x \, Nice(x).$$

"Someone is smart and someone is nice." This is identical to

$$\exists x \ Smart(x) \land \exists y \ Nice(y).$$

• How to write the following sentence without parentheses?

$$\exists x (Smart(x) \land \exists x (Nice(x))).$$

This is identical to

$$\exists x \ Smart(x) \land \exists x \ Nice(x).$$

## **Nested Quantifiers**

- We often want to use multiple quantifiers.
- Quantifiers of the same type:

```
\forall x \forall y \text{ is the same as } \forall y \forall x.
```

$$\exists x \exists y \text{ is the same as } \exists y \exists x.$$

Why? Consecutive quantifiers of the same type can be written as one quantifier with several variables:

$$\forall (x,y) \;\; Brother(x,y) \Rightarrow Sibling(x,y)$$
 is the same as

$$\forall x \forall y \quad Brother(x, y) \Rightarrow Sibling(x, y)$$

### • Quantifiers of different type:

$$\exists x \forall y \text{ is } \mathbf{not} \text{ the same as } \forall y \exists x.$$

### Example:

$$\forall y (\exists x \ Loves(x,y))$$
 "Everyone is loved by at least one person".  $\exists x (\forall y \ Loves(x,y))$  "There is a person who loves everyone".

### Connections between $\forall$ and $\exists$

**Quantifier duality**:  $\forall$  and  $\exists$  can be expressed by each other using negation:

 $\forall x \; Likes(x, IceCream)$  is equivalent to  $\neg \exists x \; \neg Likes(x, IceCream)$ 

 $\exists x \; Likes(x, Broccoli)$  is equivalent to  $\neg \forall x \; \neg Likes(x, Broccoli)$ 

### De Morgan rules for quantified sentences

$$\forall x \quad \neg P \equiv \quad \neg \exists x \quad P$$

$$\neg \forall x \quad P \equiv \quad \exists x \quad \neg P$$

$$\forall x \quad P \equiv \quad \neg \exists x \quad \neg P$$

$$\exists x \quad P \equiv \quad \neg \forall x \quad \neg P$$

We do not need both  $\forall$  and  $\exists$ , just as we do not need both  $\land$  and  $\lor$ , but we keep it for readability.

## Tweedback Questions

Brothers are siblings:

```
A \forall x, y Brother(x, y) \land Sibling(x, y).
B \forall x, y Brother(x, y) \Rightarrow Sibling(x, y).
```

One's mother is one's female parent:

```
A \forall x, y Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)).
B \forall x, y Mother(x, y) \Leftrightarrow (Female(x) \Rightarrow Parent(x, y)).
```

• A first cousin is a child of a parent's sibling:

Α

$$\forall x, y \quad \textit{FirstCousin}(x, y) \Leftrightarrow \\ \forall p, ps \quad \textit{Parent}(p, x) \land \textit{Sibling}(ps, p) \land \textit{Parent}(ps, y).$$

В

$$\forall x, y \mid FirstCousin(x, y) \Leftrightarrow \exists p, ps \mid Parent(p, x) \land Sibling(ps, p) \land Parent(ps, y).$$

## Assertions and Queries in First-Order Logic

• We add sentences to a knowledge base using Tell, called assertions:

John is a king: Tell(KB, King(John))Richard is a person: Tell(KB, Person(Richard))

We ask questions of the knowledge base using Ask, called queries:

All kings are persons: Tell(KB,  $\forall x \ King(x) \Rightarrow Person(x)$ )

For some queries a yes/no answer is undesirable:

$$Ask(KB, \exists x \ Person(x)).$$

With AskVars we obtain a stream of answers:

AskVars(
$$KB$$
,  $\exists x \ Person(x)$ ),

which returns  $\{x/John\}$  and  $\{x/Richard\}$ .

# Example 1: Formalizing Overtaking in First-Order Logic



### German Traffic Code Straßenverkehrsordnung §5(4)

When changing the lane to the left lane during overtaking, no following road users shall be endangered. [...] During overtaking, the driver has to change from the fast lane to the right lane as soon as possible. The road user being overtaken shall not be obstructed.

# Formalizing Overtaking (Objects and Predicates)



### Objects required:

- real numbers for denoting times
- Traffic participants for identifying other traffic participants
- @ ego a constant for ego vehicle

### Predicates required:

- $\bigcirc$  is-time(t) true iff t is a real number
- is-traffic-part(id) true iff id is a traffic participant or ego
- 3 sd-rear $(id_1, id_2)$   $id_1$  is safely located behind  $id_2$
- $\P$  follows( $id_1, id_2$ )  $id_1$  follows  $id_2$

### Function required:

• *veh-being-overtaken* — returns the vehicle being overtaken

# Formalizing Overtaking (Semantics)





| predicates         |     | meaning (semantics) |
|--------------------|-----|---------------------|
| overtaking(t)      | iff | $t \in [t_1, t_4)$  |
| begin-overtake(t)  | iff | $t \in [t_1; t_2)$  |
| merging(t)         | iff | $t=t_3$             |
| finish-overtake(t) | iff | $t \in [t_3, t_4)$  |

# Formalizing Overtaking (Translation to First-Order Logic)



When changing the lane to the left lane during overtaking, no following road users shall be endangered.

$$\forall t, id \quad \textit{is-time}(t) \land \textit{begin-overtake}(t) \land \textit{follows}(id, ego) \\ \Rightarrow \textit{sd-rear}(id, ego)$$

② During overtaking, the driver has to change from the fast lane to the right lane as soon as possible.

$$\forall t, id \quad \textit{is-time}(t) \land \quad \textit{veh-being-overtaken}(t) = \textit{id} \Rightarrow \\ (\textit{merging}(t) \Leftrightarrow \textit{sd-rear}(\textit{id}, \textit{ego}))$$

The road user being overtaken shall not be obstructed.

$$\forall t, id \quad \textit{is-time}(t) \land \textit{veh-being-overtaken}(t) = \textit{id} \land$$

$$\textit{finish-overtake}(t) \Rightarrow \textit{sd-rear}(\textit{id}, \textit{ego})$$

# Example 2: Wumpus World (Sensing and Acting)



- Comparison with propositional logic: The first-order axioms are much more concise.
- **Percept vector:** The agent perceives three elements and a time step, e.g., Percept([Stench, Breeze, Glitter], 5), or Percept([Stench, None, None], 6), where Percept is a binary predicate.
- Percept data implies facts about the current state, e.g.,
  - $\forall t, s, g \quad Percept([s, Breeze, g], t) \Rightarrow Breeze(t),$
  - $\forall t, s, b \ Percept([s, b, Glitter], t) \Rightarrow Glitter(t).$

Note the quantification of time: In propositional logic, we need copies of sentences for each time step.

- Actions are represented by logical terms:
   Turn(Right), Turn(Left), Forward, Shoot, Grab, Climb.
- The best action is determined by the query  $AskVars(\exists a \; BestAction(a, 5))$ .
- Simple reflex behavior (see reflex agent), e.g.,  $\forall t \quad Glitter(t) \Rightarrow BestAction(Grab, t)$ .

# Wumpus World (Environment)



- **Propositional logic:** We would have to "hand code" facts, such as which squares are adjacent.
- First-order logic: Complex term in which row and column appear as integers. Adjacency can be defined as:

$$\forall x, y, a, b \quad Adjacent([x, y], [a, b]) \Leftrightarrow \\ \left(x = a \land (y = b - 1 \lor y = b + 1)\right) \lor \left(y = b \land (x = a - 1 \lor x = a + 1)\right).$$

- Pit: Unary predicate that is true of squares containing pits.
- Wumpus: Constant since only one exists.
- **Predicate** At(Agent, s, t): Agent is at square s at time t.
- **Wumpus' location is fixed** by  $\forall t$  At(Wumpus, [2, 2], t).
- Objects can only be at one location at a time:  $\forall x, s_1, s_2, t \quad At(x, s_1, t) \land At(x, s_2, t) \Rightarrow s_1 = s_2.$

# Wumpus World (Combining Knowledge)



• Infer properties from agent's percept:

$$\forall s, t \quad At(Agent, s, t) \land Breeze(t) \Rightarrow Breezy(s)$$

• Infer locations of pits:

$$\forall s \; Breezy(s) \Leftrightarrow \exists r \; Adjacent(r,s) \land Pit(r)$$

• **Quantification over time**: Just one successor-state axiom for each predicate, rather than a different copy for each time step, e.g.,  $\forall t \; HaveArrow(t+1) \Leftrightarrow (HaveArrow(t) \land \neg Action(Shoot, t)).$ 

# Knowledge Engineering Process (1)

We describe the general process of knowledge-base construction, which we exemplify for the Wumpus world:

- ① Identify the task

  Example: does the knowledge base need to answer questions about actions or only about the environment?
- **Assemble** the relevant knowledge from experts in their domain. *Example:* what does it mean when a cave is smelly?
- 3 Decide on vocabulary of predicates, functions, and constants. The resulting vocabulary is also known as the ontology of a domain. Example: Should pits be represented by constants or unary predicates?
- **4** Encode general knowledge about the domain. This often reveals misconceptions, requiring us to go back to step 3. Example:  $\forall s, t \ At(Agent, s, t) \land Breeze(t) \Rightarrow Breezy(s)$

# Knowledge Engineering Process (2)

- Encode a description of the specific problem instance. This step is simple if the ontology is well thought out. Problem instances come from sensors or are added as sentences.
  - Example: There is no pit in square [1,1]:  $\neg Pit([1,1])$ .
- **Output** Pose queries to the inference procedure. This is the reward: We get answers without writing an application-specific solution algorithm. Example: Where are the pits? AskVars(KB,  $\exists x \mid Pit(x)$ )
- **Debug the knowledge base**. If knowledge is missing, some queries cannot be answered.

Example: if the knowledge base includes the diagnostic rule

$$\forall s \; Smelly(s) \Rightarrow Adjacent(Home(Wumpus), s),$$

instead of the biconditional for finding the Wumpus, then the agent will never be able to prove the absence of Wumpus.

## Detailed Example: One-Bit Full Adder





## Short Excursion into Digital Circuits: Half Adder



A half adder takes as input two boolean variables A and B and produces two outputs: sum S and carry C. The carry represents an overflow into the next digit of a multi-digit addition.



### Truth table:

| Inputs |   | Outputs |   |  |
|--------|---|---------|---|--|
| Α      | В | S       | C |  |
| 0      | 0 | 0       | 0 |  |
| 0      | 1 | 1       | 0 |  |
| 1      | 0 | 1       | 0 |  |
| 1      | 1 | 0       | 1 |  |

## Short Excursion into Digital Circuits: Full Adder

Not relevant for the exam

A full adder adds binary numbers and accounts for values carried in as well as out. A one-bit full adder adds the one-bit numbers A, B, and  $C_{in}$ .



### Truth table:

|   |   | npu | Outputs  |   |         |  |  |
|---|---|-----|----------|---|---------|--|--|
|   | Α | В   | $C_{in}$ | S | $C_out$ |  |  |
| • | 0 | 0   | 0        | 0 | 0       |  |  |
|   | 0 | 1   | 0        | 1 | 0       |  |  |
|   | 1 | 0   | 0        | 1 | 0       |  |  |
|   | 1 | 1   | 0        | 0 | 1       |  |  |
|   | 0 | 0   | 1        | 1 | 0       |  |  |
|   | 0 | 1   | 1        | 0 | 1       |  |  |
|   | 1 | 0   | 1        | 0 | 1       |  |  |
|   | 1 | 1   | 1        | 1 | 1       |  |  |

## Detailed Example: First Steps

### Identify the task:

- Does the circuit actually add properly? (circuit verification)
- Other questions, e.g., timing analysis, are not of interest.

### ② Assemble the relevant knowledge:

- Composed of wires and gates; Gate types: AND, OR, XOR, NOT.
- Irrelevant: size, shape, color, cost of gates.

### 3 Decide on a vocabulary:

- Each gate, terminal, and circuit is represented by a predicate:  $Gate(X_1)$ ,  $Terminal(T_1)$ ,  $Circuit(C_1)$ .
- Each gate can be of one type only (AND, OR, XOR, NOT), so that a function can specify it:  $Type(X_1) = XOR$ . Alternatives:  $Type(X_1, XOR)$  or  $XOR(X_1)$ .
- We use the function  $In(1, X_1)/Out(1, X_1)$  to return the first input/output terminal for gate  $X_1$ .
- Pred. Arity(c, i, j) says circuit c has i input and j output terminals.
- Predicates for gate connections:  $Connected(Out(1, X_1), In(1, X_2))$ .
- The function Signal(t) returns the signal value (1 or 0) at terminal t.



# Detailed Example: Domain Knowledge (1)



- 4 Encode general knowledge of the domain:
- 1. Connected terminals have the same signal:

$$\forall \ t_1, \ t_2 \quad \textit{Terminal}(t_1) \land \textit{Terminal}(t_2) \land \textit{Connected}(t_1, t_2) \Rightarrow \\ \textit{Signal}(t_1) = \textit{Signal}(t_2).$$

2. The signal at every terminal is either 1 or 0:

$$\forall t \quad Terminal(t) \Rightarrow Signal(t) = 1 \lor Signal(t) = 0.$$

3. Connected is commutative:

$$\forall t_1, t_2 \quad Connected(t_1, t_2) \Leftrightarrow Connected(t_2, t_1).$$

4. There are four types of gates:

$$\forall g \; Gate(g) \land Type(g) = k \Rightarrow k = AND \lor k = OR \lor k = XOR \lor k = NOT.$$

# Detailed Example: Domain Knowledge (2)



5. An AND gate's output is  $0 \Leftrightarrow \text{any of its inputs is } 0$ :

$$\forall g \;\; Gate(g) \land Type(g) = AND \Rightarrow Signal(Out(1,g)) = 0 \Leftrightarrow \exists n \, Signal(In(n,g)) = 0.$$

6. An OR gate's output is  $1 \Leftrightarrow$  any of its inputs is 1:

$$orall \ g \quad \textit{Gate}(g) \land \textit{Type}(g) = \textit{OR} \Rightarrow \\ \textit{Signal}(\textit{Out}(1,g)) = 1 \Leftrightarrow \exists \textit{n Signal}(\textit{In}(\textit{n},g)) = 1.$$

7. An XOR gate's output is  $1 \Leftrightarrow$  its inputs are different:

$$orall g \quad \textit{Gate}(g) \land \textit{Type}(g) = \textit{XOR} \Rightarrow Signal(Out(1,g)) = 1 \Leftrightarrow Signal(In(1,g)) \neq Signal(In(2,g)).$$

8. A NOT gate's output is different from its input:

$$\forall g \ \ Gate(g) \land Type(g) = NOT \Rightarrow Signal(Out(1,g)) \neq Signal(In(1,g)).$$

# Detailed Example: Domain Knowledge (3)



- 9. Gates (excl. NOT) have two inputs and one output:
  - $\forall g \quad \textit{Gate}(g) \land \textit{Type}(g) = \textit{NOT} \Rightarrow \textit{Arity}(g, 1, 1).$
  - $\forall g \; Gate(g) \land Type(g) = k \land (k = AND \lor k = OR \lor k = XOR) \Rightarrow Arity(g, 2, 1).$
- 10. A circuit has terminals up to its input and output arity:

$$\forall c, i, j \quad \textit{Circuit}(c) \land \textit{Arity}(c, i, j) \Rightarrow \\ \forall n \ (n \leq i \Rightarrow \textit{Terminal}(\textit{In}(n, c))) \land (n > i \Rightarrow \textit{In}(n, c) = \textit{Nothing}) \land$$

$$\forall n \ (n \leq j \Rightarrow Terminal(Out(n,c))) \land (n > j \Rightarrow Out(n,c) = Nothing).$$

11. Gates, terminals, signals, gate types, and Nothing are distinct:

$$\forall \, g, \, t \quad \textit{Gate}(g) \land \textit{Terminal}(t) \Rightarrow \\ g \neq t \neq 1 \neq 0 \neq \textit{OR} \neq \textit{AND} \neq \textit{XOR} \neq \textit{NOT} \neq \textit{Nothing}.$$

12. Gates are circuits:

$$\forall g \; Gate(g) \Rightarrow Circuit(g).$$

## Detailed Example: Encode Problem





$$Circuit(C_1) \land Arity(C_1, 3, 2)$$
  
 $Gate(X_1) \land Type(X_1) = XOR$   
 $Gate(X_2) \land Type(X_2) = XOR$   
 $Gate(A_1) \land Type(A_1) = AND$   
 $Gate(A_2) \land Type(A_2) = AND$   
 $Gate(O_1) \land Type(O_1) = OR$ .

```
\begin{array}{ll} \textit{Connected}(\textit{Out}(1, X_1), \textit{In}(1, X_2)) & \textit{Connected}(\textit{In}(1, C_1), \textit{In}(1, X_1)) \\ \textit{Connected}(\textit{Out}(1, X_1), \textit{In}(2, A_2)) & \textit{Connected}(\textit{In}(1, C_1), \textit{In}(1, A_1)) \\ \textit{Connected}(\textit{Out}(1, A_2), \textit{In}(1, O_1)) & \textit{Connected}(\textit{In}(2, C_1), \textit{In}(2, X_1)) \\ \textit{Connected}(\textit{Out}(1, A_1), \textit{In}(2, O_1)) & \textit{Connected}(\textit{In}(2, C_1), \textit{In}(2, A_1)) \\ \textit{Connected}(\textit{Out}(1, X_2), \textit{Out}(1, C_1)) & \textit{Connected}(\textit{In}(3, C_1), \textit{In}(2, X_2)) \\ \textit{Connected}(\textit{Out}(1, O_1), \textit{Out}(2, C_1)) & \textit{Connected}(\textit{In}(3, C_1), \textit{In}(1, A_2)) \\ \end{array}
```

## Detailed Example: Pose Queries

- Open Pose queries to the inference procedure:
- What combination of inputs causes the first output of  $C_1$  to be 0 and the second output of  $C_1$  to be 1?

43 / 44

$$\exists i_1, i_2, i_3 \quad Signal(In(1, C_1)) = i_1$$
$$\land Signal(In(2, C_1)) = i_2 \land Signal(In(3, C_1)) = i_3$$
$$\land Signal(Out(1, C_1)) = 0 \land Signal(Out(2, C_1)) = 1.$$

AskVars provides three answers:

$$\{i_1/1, i_2/1, i_3/0\}, \{i_1/1, i_2/0, i_3/1\}, \{i_1/0, i_2/1, i_3/1\}.$$

• What are the possible values of all terminals?

$$\exists i_1, i_2, i_3, o_1, o_2 \quad Signal(In(1, C_1)) = i_1$$
  
  $\land Signal(In(2, C_1)) = i_2 \land Signal(In(3, C_1)) = i_3$   
  $\land Signal(Out(1, C_1)) = o_1 \land Signal(Out(2, C_1)) = o_2.$ 

The result is the complete input/output table from slide 37.

## Summary

- First-order logic is far more powerful than propositional logic.
- Knowledge representation languages should be declarative, compositional, expressive, context independent, and unambiguous.
- The syntax of first-order logic builds on that of propositional logic. It adds terms to represent objects, and has universal and existential quantifiers.
- Developing a knowledge base in first-order logic requires analyzing the domain, choosing a vocabulary, and encoding the axioms required to support the desired queries.

Matthias Althoff First-Order Logic Winter semester 2023/24 44 / 44