TD 7

Suites et séries de fonctions holomorphes, Intégrales à paramètres

Exercice 1. Convergence uniforme I.

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions entières. On suppose qu'elle converge uniformément sur le cercle unité $\partial D(0,1)$ vers une fonction $g:\partial D(0,1)\to\mathbb{C}$.

- a) Calculer $\int_{\partial D(0,1)} g(z) dz$.
- b) Montrer que la fonction $z \mapsto \frac{1}{z}$ n'est pas, sur le cercle unité, la limite uniforme d'une suite de fonctions entières.

Exercice 2. Convergence uniforme II.

Soit $f \in \mathcal{O}(D(0,1))$ telle que f(0) = 0. Montrer que la série $\sum_{n \geq 1} f(z^n)$ converge uniformément sur les compacts de D(0,1) vers une fonction holomorphe g et calculer ses coefficients de Taylors.

Exercice 3. Transformée de Fourier.

Soit f une fonction continue à support compact et $\hat{f}(z) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-izx} dx$ sa transformée de Fourier. Montrer que \hat{f} est une fonction holomorphe. Que dire d'une fonction continue à support compact dont la transformée de Fourier est à support compact?

Exercice 4. Deux fonctions classiques.

On va justifier que les fonctions suivantes définissent des fonctions holomorphes dans des domaines que l'on précisera :

$$\zeta(z) = \sum_{z=1}^{\infty} \frac{1}{n^z}$$
 et $\Gamma(z) = \int_0^{\infty} t^{z-1} e^{-t} dt$.

- a) Trouver un domaine sur lequel ζ est holomorphe.
- b) Montrer que Γ est holomorphe sur $\{z \in \mathbb{C} \mid \text{R\'e}(z) > 0\}$
- c) Montrer que pour tout z tel que Ré(z) > 0, on a $\Gamma(z+1) = z\Gamma(z)$. En déduire que Γ se prolonge analytiquement en une fonction holomorphe sur $\{z \in \mathbb{C} \mid Ré(z) > -1\} \setminus \{0\}$
- d) Par récurrence, prolonger Γ en une fonction holomorphe sur $\mathbb C$ privé d'un ensemble discret que l'on précisera.

Regarder sur la figure 1 une tracé du module de la fonction Γ sur le plan complexe.

Exercice 5. Une intégrale à paramètre

On note [t] la partie entière de $t \in \mathbb{R}$ et ζ la fonction zeta de Riemann.

a) Montrer que l'intégrale à paramètre

$$G(z) = \int_1^\infty \frac{([t] - t)}{t^{z+1}} dt,$$

définit une fonction holomorphe sur $\{z \in \mathbb{C} : Re(z) > 0\}$.

b) Pour $n \ge 1$ calculer

$$I_n(z) = \int_n^{n+1} \frac{1}{t^z} dt$$
.

c) Montrer que

$$\int_{n}^{n+1} \frac{([t]-t)}{t^{z+1}} dt = nI_n(z+1) - I_n(z) ,$$

et en déduire que sur $\{z \in \mathbb{C} : Re(z) > 1\}$

$$\zeta(z) = zG(z) + \frac{1}{z-1} + 1.$$

Exercice 6. *

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions holomorphes sur Ω un ouvert convexe de \mathbb{C} . On suppose que la suite f_n est uniformément bornée et qu'elle converge simplement vers $f \in C^0(\Omega)$. On considère K un compact de Ω .

- a) Montrer que f est holomorphe sur Ω .
- b) Montrer que pour tout $\varepsilon > 0$ et pour tout $z_0 \in K$ tel que $D(z_0, r) \subset \Omega$, il existe N tel que

$$||f_n(z) - f_m(z)||_{D(z_0, r/2)} \le \varepsilon$$

pour tout $n, m \geq N$.

c) En déduire que f_n converge uniformément vers f sur K.

FIGURE 1 – Module de la fonction gamma sur le plan complexe.