11.2

1) (a)

- (b) Étant donné que la fonction f est croissante sur [a;b], on a : $f(x_0) \leqslant f(x) \leqslant f(x_0+h) \text{ pour tout } x_0 \leqslant x \leqslant x_0+h.$ $f(x_0) \left((x_0+h)-x_0\right) \leqslant \mathcal{A}(x_0+h)-\mathcal{A}(x_0) \leqslant f(x_0+h) \left((x_0+h)-x_0\right)$ $f(x_0) \cdot h \leqslant \mathcal{A}(x_0+h)-\mathcal{A}(x_0) \leqslant f(x_0+h) \cdot h$ $f(x_0) \leqslant \frac{\mathcal{A}(x_0+h)-\mathcal{A}(x_0)}{h} \leqslant f(x_0+h)$
- (c) Comme f est continue sur [a;b], on a $\lim_{\substack{h\to 0\\h>0}} f(x_0+h) = f(x_0)$.

$$\lim_{\substack{h \to 0 \\ h > 0}} f(x_0) \leqslant \lim_{\substack{h \to 0 \\ h > 0}} \frac{\mathcal{A}(x_0 + h) - \mathcal{A}(x_0)}{h} \leqslant \lim_{\substack{h \to 0 \\ h > 0}} f(x_0 + h)$$
$$f(x_0) \leqslant \lim_{\substack{h \to 0 \\ h > 0}} \frac{\mathcal{A}(x_0 + h) - \mathcal{A}(x_0)}{h} \leqslant f(x_0)$$

Le théorème des gendarmes donne $\lim_{\substack{h\to 0\\h>0}} \frac{\mathcal{A}(x_0+h)-\mathcal{A}(x_0)}{h} = f(x_0)$.

2) (a)

(b) Étant donné que la fonction f est croissante sur $[a\,;b],$ on a :

$$f(x_0 + h) \leqslant f(x) \leqslant f(x_0)$$
 pour tout $x_0 + h \leqslant x \leqslant x_0$.

$$f(x_0+h)(x_0-(x_0+h)) \le A(x_0)-A(x_0+h) \le f(x_0)(x_0-(x_0+h))$$

$$f(x_0 + h) \cdot (-h) \leqslant \mathcal{A}(x_0) - \mathcal{A}(x_0 + h) \leqslant f(x_0) \cdot (-h)$$

$$f(x_0 + h) \leqslant \frac{\mathcal{A}(x_0) - \mathcal{A}(x_0 + h)}{-h} \leqslant f(x_0)$$

$$f(x_0 + h) \leqslant \frac{\mathcal{A}(x_0 + h) - \mathcal{A}(x_0)}{h} \leqslant f(x_0)$$

Comme f est continue sur [a;b], on a $\lim_{\substack{h\to 0\\h<0}} f(x_0+h) = f(x_0)$.

$$\lim_{\substack{h \to 0 \\ h < 0}} f(x_0) \leqslant \lim_{\substack{h \to 0 \\ h < 0}} \frac{\mathcal{A}(x_0 + h) - \mathcal{A}(x_0)}{h} \leqslant \lim_{\substack{h \to 0 \\ h < 0}} f(x_0 + h)$$

$$f(x_0) \leqslant \lim_{\substack{h \to 0 \\ h < 0}} \frac{\mathcal{A}(x_0 + h) - \mathcal{A}(x_0)}{h} \leqslant f(x_0)$$

Le théorème des gendarmes donne
$$\lim_{\substack{h\to 0\\h\neq 0}} \frac{\mathcal{A}(x_0+h)-\mathcal{A}(x_0)}{h} = f(x_0)$$
.

On a donc obtenu $\mathcal{A}'(x_0) = \lim_{h \to 0} \frac{\mathcal{A}(x_0 + h) - \mathcal{A}(x_0)}{h} = f(x_0)$.

3) (a)
$$(\mathcal{A}(x) - F(x))' = \mathcal{A}'(x) - F'(x) = f(x) - f(x) = 0$$

Par conséquent, la fonction $\mathcal{A}(x) - F(x)$ est constante : il existe $c \in \mathbb{R}$ tel que $\mathcal{A}(x) - F(x) = c$, c'est-à-dire $\mathcal{A}(x) = F(x) + c$.

- (b) A(a) = 0
- (c) $0 = \mathcal{A}(a) = F(a) + c$ fournit c = -F(a). Donc $\mathcal{A}(x) = F(x) + c = F(x) - F(a)$.
- (d) $\mathcal{A}(b) = F(b) F(a)$

Analyse : intégrales Corrigé 11.2