Название курса. Листок №1. Счёт углов-І.

1. (Лемма Фусса) Окружности ω_1 и ω_2 пересекаются в точках A и B. Через точку A проведена прямая вторично пересекающая окружность ω_1 в точке A_1 и окружность ω_2 в точке A_2 . Точки B_1 и B_2 для прямой через точку B определяются аналогично. Докажите, что $A_1B_1 \parallel A_2B_2$.

- 2. В равнобедренном треугольник ABC (AB = AC) на меньшей дуге AB окружности (ABC) взята точка D. На продолжении отрезка AD за точку D выбрана точка E так, что точки A и E лежат по одну сторону относительно прямой BC. Окружность (BDE) пересекает прямую AB в точке F. Докажите, что $EF \parallel BC$.
- 3. В трапеции ABCD проведена окружность, проходящая через точки A и D. Окружность пересекает боковые стороны AB и CD (или их продолжения) в точках N и M соответственно. Докажите, что если точка пересечения прямых BM и CN равноудалена от точек A и D, то она лежит на окружности.
- 4. В остроугольном треугольнике ABC на высоте, проведённой из вершины A, выбрана точка P. Пусть B_4 и C_4 проекции точки P на прямые AC и AB соответственно.
 - (a) Докажите, что точки B, C, B_1 , C_1 концикличны.
 - (b) Докажите, что отрезок, соединяющий проекции точек B_1 и C_4 , на прямые AB и AC соответственно, параллелен стороне BC.
- 5. В остроугольном треугольнике *ABC* проведена высота *AD*. Пусть точки *K* и *L* проекции точки *D* на стороны *AB* и *AC* соответственно. Известно, что $\angle BAC = 72^{\circ}$, $\angle ABL = 30^{\circ}$. Чему равен угол $\angle DKC$?
- 6.* (Окружность Тейлора) Докажите, что шесть точек в виде шести проекций трёх оснований высот треугольника, пересекающих каждую сторону, на две оставшиеся стороны лежат на одной окружности.
- 7. (а) (Точка Микеля треугольника) На сторонах AB, BC и AC треугольника ABC или их продолжениях, выбраны точки C_1 , B_1 и A_1 соответственно. Докажите, что окружности (AB_1C_1) , (A_1BC_1) и (A_1B_1C) пересекаются в одной точке.
 - (b)* (Точка Микеля четырехсторонника) На плоскости даны четыре прямые общего положения. Эти прямые образуют 4 треугольника. Докажите, что описанные окружности этих треугольников пересекаются в одной точке.
- 8. В треугольнике ABC точки B_1 и C_1 основания высот, проведенных из вершин B и C соответственно. Точка D проекция точки B_1 на сторону AB, точка E пересечения перпендикуляра, опущенного из точки D на сторону BC, с отрезком BB_1 . Докажите, что $EC_1 \perp BB_1$.
- 9. На гипотенузе *AC* прямоугольного треугольника *ABC* во внешнюю сторону построен квадрат с центром в точке *O*. Докажите, что *BO* биссектриса угла *ABC*.
- 10. В треугольнике ABC угол A равен 60° . Биссектрисы треугольника BB_4 и CC_4 пересекаются в точке I. Докажите, что $IB_4 = IC_4$.
- 11. Прямая ℓ касается описанной окружности треугольника ABC в точке B. Точки A_1 и C_1 проекции точки $P \in \ell$ на прямые AB и BC соответственно. Докажите, что $A_1C_1 \perp AC$.
- 12. Окружности ω_1 и ω_2 пересекаются в точках A и B. Прямая ℓ касается окружностей ω_1 и ω_2 в точках P и Q соответственно (точка B^1 лежит внутри треугольника APQ). Прямая BP вторично пересекает ω_2 в точке \mathcal{T} . Докажите, что AQ биссектриса угла $\mathcal{L}PA\mathcal{T}$.
- 13.* Пусть AA_1 , BB_1 и CC_1 высоты остроугольного треугольника ABC. Докажите, что проекции точки A_1 на прямые AB, AC, BB_1 , CC_1 коллинеарны.
- 14.* В треугольнике *ABC* точки *D* и *E* основания биссектрис из углов *A* и *C* соответственно, а точка *I* центр вписанной в треугольник *ABC* окружности. Точки *P* и *Q* пересечения прямой *DE* с (*AIE*) и (*CID*) соответственно, причем $P \neq E, Q \neq D$. Докажите, что $\angle EIP = \angle DIQ$.

 $^{^{1}}$ Точка $\mathcal B$ называется точкой Шалтая треугольника APQ.

²Сделав инверсию в точке А или I, получите задачу с Высшей Пробы 2024.