Lecture 04: PyTorch

A zoo of frameworks!

Caffe — Caffe2 (UC Berkeley) (Facebook)

Torch ____ PyTorch (NYU / Facebook) (Facebook)

Theano — TensorFlow (U Montreal) (Google)

PaddlePaddle Chainer (Baidu)

MXNet
(Amazon)

Developed by U Washington, CMU, MIT. Ho

Developed by U Washington, CMU, MIT, Hong Kong U, etc but main framework of choice at AWS

CNTK (Microsoft)

JAX (Google)

PyTorch vs TensorFlow

PyTorch

- My personal favorite
- Clean, imperative API
- Easy dynamic graphs for debugging
- JIT allows static graphs for production
- Hard / inefficient to use on TPUs
- Not easy to deploy on mobile

TensorFlow 1.0

- Static graphs by default
- Can be confusing to debug
- API a bit messy

TensorFlow 2.0

- Dynamic by default
- Standardized on Keras API
- API still confusing

The point of deep learning frameworks

- 1. Allow rapid prototyping of new ideas
- 2. Automatically compute gradients for you
- 3. Run it all efficiently on GPU (or TPU)

PyTorch

PyTorch: Versions

For this class we are using **PyTorch version 2.1** (Released October 2023)

Be careful if you are looking at older PyTorch code – the API changed a lot before 1.0

PyTorch: Fundamental Concepts

Tensor: Like a numpy array, but can run on GPU

Autograd: Package for building computational graphs out of Tensors, and automatically computing gradients

Module: A neural network layer; may store state or learnable weights

Running example: Train a two-layer ReLU network on random data with L2 loss

```
import torch
device = torch.device('cpu')
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in, device=device)
y = torch.randn(N, D out, device=device)
w1 = torch.randn(D in, H, device=device)
w2 = torch.randn(H, D out, device=device)
learning rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h relu = h.clamp(min=0)
    y pred = h relu.mm(w2)
    loss = (y pred - y).pow(2).sum()
    grad y pred = 2.0 * (y pred - y)
    grad w2 = h relu.t().mm(grad y pred)
    grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu.clone()
    grad h[h < 0] = 0
    grad w1 = x.t().mm(grad h)
    w1 -= learning rate * grad w1
    w2 -= learning rate * grad w2
```

Create random tensors for data and weights

```
import torch
device = torch.device('cpu')
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in, device=device)
y = torch.randn(N, D out, device=device)
w1 = torch.randn(D in, H, device=device)
w2 = torch.randn(H, D out, device=device)
learning rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h relu = h.clamp(min=0)
    y pred = h relu.mm(w2)
    loss = (y pred - y).pow(2).sum()
    grad y pred = 2.0 * (y pred - y)
    grad w2 = h relu.t().mm(grad y pred)
    grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu.clone()
    grad h[h < 0] = 0
    grad w1 = x.t().mm(grad h)
    w1 -= learning rate * grad w1
    w2 -= learning rate * grad w2
```

Forward pass: compute predictions and loss

```
import torch
device = torch.device('cpu')
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in, device=device)
y = torch.randn(N, D out, device=device)
w1 = torch.randn(D in, H, device=device)
w2 = torch.randn(H, D out, device=device)
learning rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h relu = h.clamp(min=0)
    y pred = h relu.mm(w2)
    loss = (y_pred - y).pow(2).sum()
    grad y pred = 2.0 * (y pred - y)
    grad w2 = h relu.t().mm(grad y pred)
    grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu.clone()
    grad h[h < 0] = 0
    grad w1 = x.t().mm(grad h)
    w1 -= learning rate * grad w1
    w2 -= learning rate * grad w2
```

Backward pass: manually compute gradients

```
import torch
device = torch.device('cpu')
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in, device=device)
y = torch.randn(N, D out, device=device)
w1 = torch.randn(D in, H, device=device)
w2 = torch.randn(H, D out, device=device)
learning rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h relu = h.clamp(min=0)
    y pred = h relu.mm(w2)
    loss = (y pred - y).pow(2).sum()
    grad y pred = 2.0 * (y pred - y)
    grad w2 = h relu.t().mm(grad y pred)
    grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu.clone()
    grad h[h < 0] = 0
    grad w1 = x.t().mm(grad h)
    w1 -= learning rate * grad w1
    w2 -= learning rate * grad w2
```

Gradient descent step on weights

```
import torch
device = torch.device('cpu')
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in, device=device)
y = torch.randn(N, D out, device=device)
w1 = torch.randn(D in, H, device=device)
w2 = torch.randn(H, D out, device=device)
learning rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h relu = h.clamp(min=0)
    y pred = h relu.mm(w2)
    loss = (y pred - y).pow(2).sum()
    grad y pred = 2.0 * (y pred - y)
    grad w2 = h relu.t().mm(grad y pred)
    grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu.clone()
    grad h[h < 0] = 0
    grad w1 = x.t().mm(grad h)
    w1 -= learning rate * grad w1
    w2 -= learning rate * grad w2
```

To run on GPU, just use a different device!

```
import torch
device = torch.device('cuda:0')
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D out, device=device)
w1 = torch.randn(D in, H, device=device)
w2 = torch.randn(H, D out, device=device)
learning rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h relu = h.clamp(min=0)
    y pred = h relu.mm(w2)
    loss = (y pred - y).pow(2).sum()
    grad y pred = 2.0 * (y pred - y)
    grad w2 = h relu.t().mm(grad y pred)
    grad h relu = grad y pred.mm(w2.t())
    grad h = grad h relu.clone()
    grad h[h < 0] = 0
    grad w1 = x.t().mm(grad h)
    w1 -= learning rate * grad w1
    w2 -= learning rate * grad w2
```

Creating Tensors with

requires_grad=True enables autograd

```
import torch
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y \text{ pred} = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

We will not want gradients (of loss) with respect to data

Do want gradients with respect to weights

```
import torch
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y \text{ pred} = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning rate * w1.grad
        w2 -= learning_rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

Forward pass looks exactly the same as before, but we don't need to track intermediate values - PyTorch keeps track of them for us in the graph

```
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

Computes gradients with respect to all inputs that have requires_grad=True!

```
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y \text{ pred} = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning rate * w1.grad
        w2 -= learning_rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

Every operation on a tensor with requires_grad=True will add to the computational graph, and the resulting tensors will also have requires_grad=True

```
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```


Every operation on a tensor with requires_grad=True will add to the computational graph, and the resulting tensors will also have requires_grad=True

```
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```



```
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```



```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```



```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

PyTorch: Autograd w2 w1 X mm clamp mm y pred loss

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```


After backward finishes, gradients are **accumulated** into w1.grad and w2.grad and the graph is destroyed

```
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y \text{ pred} = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

After backward finishes, gradients are **accumulated** into w1.grad and w2.grad and the graph is destroyed

Make gradient step on weights

```
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y \text{ pred} = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no_grad():
        w1 -= learning rate * w1.grad
        w2 -= learning rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

2

After backward finishes, gradients are **accumulated** into w1.grad and w2.grad and the graph is destroyed

<u>Set gradients to zero</u> – forgetting this is a common bug!

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y \text{ pred} = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no_grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

After backward finishes, gradients are **accumulated** into w1.grad and w2.grad and the graph is destroyed

Tell PyTorch not to build a graph for these operations

```
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)
learning rate = 1e-6
for t in range(500):
    y \text{ pred} = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y pred - y).pow(2).sum()
    loss.backward()
    with torch.no grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        wl.grad.zero ()
        w2.grad.zero ()
```

Can define new operations using Python functions

```
def sigmoid(x):
   return 1.0 / (1.0 + (-x).exp())
```

```
import torch
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D_out)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
for t in range(500):
  y pred = sigmoid(x.mm(w1)).mm(w2)
  loss = (y pred - y).pow(2).sum()
  loss.backward()
  if t % 50 == 0:
    print(t, loss.item())
  with torch.no grad():
    w1 -= learning rate * w1.grad
    w2 -= learning rate * w2.grad
    wl.grad.zero ()
    w2.grad.zero ()
```

Can define new operations using Python functions

```
def sigmoid(x):
   return 1.0 / (1.0 + (-x).exp())
```



```
import torch
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
y = torch.randn(N, D out)
w1 = torch.randn(D in, H, requires grad=True)
w2 = torch.randn(H, D out, requires grad=True)
learning rate = 1e-6
for t in range(500):
 y pred = sigmoid(x.mm(w1)).mm(w2)
  loss = (y pred - y).pow(2).sum()
  loss.backward()
  if t % 50 == 0:
    print(t, loss.item())
  with torch.no grad():
    w1 -= learning_rate * w1.grad
    w2 -= learning rate * w2.grad
    wl.grad.zero ()
    w2.grad.zero ()
```

Can define new operations using Python functions

```
def sigmoid(x):
  return 1.0 / (1.0 + (-x).exp())
```


When our function runs, it will add to the graph

Define new autograd operators by subclassing Function, define forward and backward

```
class Sigmoid(torch.autograd.Function):
  @staticmethod
  def forward(ctx, x):
    y = 1.0 / (1.0 + (-x).exp())
    ctx.save_for_backward(y)
    return y
  @staticmethod
  def backward(ctx, grad_y):
    y, = ctx.saved tensors
    grad x = grad y * y * (1.0 - y)
    return grad x
def sigmoid(x):
  return Sigmoid.apply(x)
```

Recall:
$$\frac{\partial}{\partial x} \Big[\sigma(x) \Big] = (1 - \sigma(x)) \sigma(x)$$

Can define new operations using Python functions

```
def sigmoid(x):
  return 1.0 / (1.0 + (-x).exp())
```


Define new autograd operators by subclassing Function, define forward and backward

```
class Sigmoid(torch.autograd.Function):
  @staticmethod
  def forward(ctx, x):
    y = 1.0 / (1.0 + (-x).exp())
    ctx.save for backward(y)
    return y
  @staticmethod
  def backward(ctx, grad_y):
    y, = ctx.saved_tensors
    grad x = grad y * y * (1.0 - y)
    return grad x
def sigmoid(x):
  return Sigmoid.apply(x)
```

Now when our function runs, it adds one node to the graph!

Can define new operations using Python functions

```
def sigmoid(x):
   return 1.0 / (1.0 + (-x).exp())
```


Define new autograd operators by subclassing Function, define forward and backward

```
class Sigmoid(torch.autograd.Function):
  @staticmethod
  def forward(ctx, x):
    y = 1.0 / (1.0 + (-x).exp())
    ctx.save for backward(y)
    return y
  @staticmethod
  def backward(ctx, grad_y):
    y, = ctx.saved_tensors
    grad x = grad y * y * (1.0 - y)
    return grad x
def sigmoid(x):
  return Sigmoid.apply(x)
```

In practice this is pretty rare – in most cases Python functions are good enough

PyTorch: nn

Higher-level wrapper for working with neural nets

Use this! It will make your life easier

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning rate = 1e-2
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    with torch.no grad():
        for param in model.parameters():
            param -= learning rate * param.grad
    model.zero grad()
```

PyTorch: nn

Object-oriented API: Define model object as sequence of layers objects, each of which holds weight tensors

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D_out))
learning rate = 1e-2
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    with torch.no grad():
        for param in model.parameters():
            param -= learning rate * param.grad
    model.zero grad()
```

PyTorch: nn

Forward pass: Feed data to model and compute loss

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning rate = 1e-2
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse_loss(y pred, y)
    loss.backward()
    with torch.no grad():
        for param in model.parameters():
            param -= learning rate * param.grad
    model.zero grad()
```

PyTorch: nn

Forward pass: Feed data to model and compute loss

torch.nn.functional has useful helpers like loss functions

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning rate = 1e-2
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    with torch.no grad():
        for param in model.parameters():
            param -= learning rate * param.grad
    model.zero grad()
```

PyTorch: nn

Backward pass: compute gradient with respect to all model weights (they have requires_grad=True)

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning rate = 1e-2
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    with torch.no grad():
        for param in model.parameters():
            param -= learning rate * param.grad
    model.zero grad()
```

PyTorch: nn

```
import torch
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning rate = 1e-2
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    with torch.no grad():
        for param in model.parameters():
            param -= learning rate * param.grad
    model.zero grad()
```

Make gradient step on each model parameter (with gradients disabled)

PyTorch: optim

Use an **optimizer** for different update rules

```
import torch
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D_in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D_out))
learning rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(),
                             lr=learning rate)
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
```

PyTorch: optim

After computing gradients, use optimizer to update and zero gradients

```
import torch
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
          torch.nn.Linear(D_in, H),
          torch.nn.ReLU(),
          torch.nn.Linear(H, D out))
learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(),
                             lr=learning rate)
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

A PyTorch **Module** is a neural net layer; it inputs and outputs Tensors

Modules can contain weights or other modules

Very common to define your own models or layers as custom Modules

```
import torch
class TwoLayerNet(torch.nn.Module):
    def init (self, D in, H, D out):
        super(TwoLayerNet, self). init ()
        self.linear1 = torch.nn.Linear(D in, H)
        self.linear2 = torch.nn.Linear(H, D out)
    def forward(self, x):
        h relu = self.linear1(x).clamp(min=0)
        y pred = self.linear2(h relu)
        return y pred
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = TwoLayerNet(D in, H, D out)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

Define our whole model as a single Module

```
import torch
class TwoLayerNet(torch.nn.Module):
    def init (self, D in, H, D out):
        super(TwoLayerNet, self). init ()
        self.linear1 = torch.nn.Linear(D in, H)
        self.linear2 = torch.nn.Linear(H, D out)
    def forward(self, x):
        h relu = self.linear1(x).clamp(min=0)
        y pred = self.linear2(h relu)
        return y pred
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = TwoLayerNet(D in, H, D out)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
   y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

Initializer sets up two children (Modules can contain modules)

```
import torch
class TwoLayerNet(torch.nn.Module):
    def init (self, D in, H, D out):
        super(TwoLayerNet, self). init ()
        self.linear1 = torch.nn.Linear(D in, H)
        self.linear2 = torch.nn.Linear(H, D out)
    def forward(self, x):
        h relu = self.linear1(x).clamp(min=0)
        y pred = self.linear2(h relu)
        return y pred
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = TwoLayerNet(D in, H, D out)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
   y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

Define forward pass using child modules and tensor operations

No need to define backward - autograd will handle it

```
import torch
class TwoLayerNet(torch.nn.Module):
    def init (self, D in, H, D out):
        super(TwoLayerNet, self). init ()
        self.linear1 = torch.nn.Linear(D in, H)
        self.linear2 = torch.nn.Linear(H, D out)
    def forward(self, x):
        h relu = self.linear1(x).clamp(min=0)
        y pred = self.linear2(h relu)
        return y pred
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = TwoLayerNet(D in, H, D out)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

Very common to mix and match custom Module subclasses and Sequential containers

```
import torch
class ParallelBlock(torch.nn.Module):
    def init (self, D in, D out):
        super(ParallelBlock, self). init ()
        self.linear1 = torch.nn.Linear(D in, D out)
        self.linear2 = torch.nn.Linear(D in, D out)
    def forward(self, x):
        h1 = self.linear1(x)
        h2 = self.linear2(x)
        return (h1 * h2).clamp(min=0)
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
            ParallelBlock(D_in, H),
            ParallelBlock(H, H),
            torch.nn.Linear(H, D out))
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

Define network component as a Module subclass

import torch def init (self, D in, D out): super(ParallelBlock, self). init ()

```
class ParallelBlock(torch.nn.Module):
        self.linear1 = torch.nn.Linear(D in, D out)
        self.linear2 = torch.nn.Linear(D in, D out)
    def forward(self, x):
       h1 = self.linear1(x)
       h2 = self.linear2(x)
        return (h1 * h2).clamp(min=0)
```

```
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
            ParallelBlock(D in, H),
            ParallelBlock(H, H),
            torch.nn.Linear(H, D out))
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

Stack multiple instances of the component in a sequential

Very easy to quickly build complex network architectures!


```
import torch
class ParallelBlock(torch.nn.Module):
    def init (self, D in, D out):
        super(ParallelBlock, self). init ()
        self.linear1 = torch.nn.Linear(D in, D out)
        self.linear2 = torch.nn.Linear(D in, D out)
    def forward(self, x):
        h1 = self.linearl(x)
        h2 = self.linear2(x)
        return (h1 * h2).clamp(min=0)
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
model = torch.nn.Sequential(
            ParallelBlock(D in, H),
            ParallelBlock(H, H),
            torch.nn.Linear(H, D out))
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for t in range(500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero grad()
```

PyTorch: DataLoaders

A **DataLoader** wraps a **Dataset** and provides minibatching, shuffling, multithreading, for you

When you need to load custom data, just write your own Dataset class

```
import torch
from torch.utils.data import TensorDataset, DataLoader
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
loader = DataLoader(TensorDataset(x, y), batch_size=8)
model = TwoLayerNet(D in, H, D out)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)
for epoch in range(20):
    for x batch, y batch in loader:
        y pred = model(x batch)
        loss = torch.nn.functional.mse_loss(y_pred, y_batch)
        loss.backward()
        optimizer.step()
        optimizer.zero grad()
```

PyTorch: DataLoaders

Iterate over loader to form minibatches

```
import torch
from torch.utils.data import TensorDataset, DataLoader
N, D in, H, D out = 64, 1000, 100, 10
x = torch.randn(N, D in)
y = torch.randn(N, D out)
loader = DataLoader(TensorDataset(x, y), batch size=8)
model = TwoLayerNet(D in, H, D out)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)
for epoch in range(20):
    for x batch, y batch in loader:
        y pred = model(x batch)
        loss = torch.nn.functional.mse_loss(y_pred, y_batch)
        loss.backward()
        optimizer.step()
        optimizer.zero grad()
```

PyTorch: Pretrained Models

Super easy to use pretrained models with torchvision https://github.com/pytorch/vision

```
import torch
import torchvision

alexnet = torchvision.models.alexnet(pretrained=True)
vgg16 = torchvision.models.vgg16(pretrained=True)
resnet101 = torchvision.models.resnet101(pretrained=True)
```