

The Imaging X-ray Polarimetry Explorer (IXPE)

Martin C. Weisskopf on behalf of the IXPE Science Team NASA/MSFC (Emeritus)

Presentation to the APS, April 2023

The IXPE Team

PI team, project management, SE and S&MA oversight, mirror module fabrication, X-ray calibration, science operations, and data analysis and archiving

Detector system funding, ground station

Spacecraft, payload structure, payload, observatory I&T

Science Advisory Team

SAT currently comprises > 175 scientists from 13 countries

Launch 1:00 AM December 9, 2021

Equatorial Orbit 600 km altitude

IXPE Mission Description

- Launched 2021 December 9, on a Falcon 9 from KSC
- 600-km circular orbit at a nominal 0° inclination
- 2-year baseline mission, optional extension with GO program
- Point and stare (with dither) at pre-selected targets
- Malindi ground station primary (Singapore secondary)
- Mission Operations Center (MOC) at the University of Colorado,
 Laboratory for Atmospheric and Space Physics (LASP)
- Sciences Operations Center (SOC) at MSFC
- Data archiving at NASA's HEASARC
 - During the first 3 months of the mission, including orbital checkout, all IXPE data shall be made publicly available at the HEASARC within 30 days of the end of an observation.
 - After the first 3 months of the mission, data shall be made available to the HEASARC within 1 week of the end of an observation

IXPE DEPLOYED

5.2 m total length 4.0 m focal length

Release from the Falcon 9

Shield and Collimator Suppress Background

Optics Production

Mandrel fabrication

- 1. Machine mandrel from aluminum bar
- 2. Coat mandrel with electroless nickel (Ni-P)

3. Diamond turn mandrel to sub-micron figure accuracy

4. Polish mandrel to 0.3-0.4 nm RMS

5. Conduct metrology on the mandrel

Mirror-shell forming

6. Passivate mandrel surface to reduce shell adhesion

7. Electroform
Nickel/Cobalt shell onto
mandrel

8. Separate shell from mandrel in chilled water

Ni/Co electroformed IXPE mirror shell

The Optics

Mirror Module Assembly Properties

Property	Value
Number of modules	3
Mirror shells per module	24
Inner, outer shell diameter	162, 272 mm
Total shell length	600 mm
Inner, outer shell thickness	180, 250 μm
Shell material	Nickel cobalt alloy
Effective area per module	163 cm ² (2.3 keV) ~ 192 cm ² (3-6 keV)
Angular resolution	≤ 27 arcsec HPD
Detector limited FOV	12.9 arcmin
Focal length	4 m
Mass (3 assemblies)	93.12 kg

Polarization Detection Principle

The detection principle is based on the photoelectric effect

The Polarization-Sensitive Detectors

The distribution of the photoelectron initial directions determines the degree of polarization and the position angle

$$\frac{d\sigma}{d\Omega} = f(\zeta)r_0^2 Z^5 \alpha_0^4 \left(\frac{1}{\beta}\right)^{7/2} 4\sqrt{2}\sin^2\theta\cos^2\varphi \text{ , where } \beta \equiv \frac{E}{mc^2} = \frac{h\nu}{mc^2}$$

The Detectors

• The Detector Units (DUs) mounted to the spacecraft top deck at Ball

Detector Properties

Parameter	Value
Sensitive area	15 mm × 15 mm (13 x 13 arcmin)
Fill gas and composition	DME @ 0.8 atmosphere
Detector window	50-μm thick beryllium
Absorption and drift region depth	10 mm
GEM (gas electron multiplier)	copper-plated 50-μm liquid-crystal polymer
GEM hole pitch	50 μm triangular lattice
ASIC pixelated anode	Hexagonal @ 50-μm pitch
Number ASIC readout pixels	300 × 352
Spatial resolution (FWHM)	≤ 123 µm (6.4 arcsec) @ 2 keV
Energy resolution (FWHM)	0.57 keV @ 2 keV (∝ √ <i>E</i>)
Useful energy range	2 - 8 keV

How it Works: Observing the Crab Nebula

Replay of a sample of events obtained by one of IXPE's three detectors (39 ks livetime, segment 1 of 2 of the Crab nebula observation)

Powered by https://github.com/lucabaldini/ixpeobssim

Calibration: MSFC Stray Light Test Facility

Polarized Sources

3 Polarized Sources

- Crystal Box
 - Holds all X-ray sources
 - Holds crystals, which polarize source

Energy	X-ray Tube	Crystal	Polarization
2.7 keV	Rh	Ge(111)	> 99%
4.5 keV	Ti	Si(220)	> 99%
6.4 keV	Fe	Si(400)	> 99%

Interior of
Crystal Box,
showing
stages and
crystal being
aligned on
turret

Angular Resolution

MMA	#1	#2	#3
6.4 keV	18.9"	24.8"	24.2"
4.5 keV	18.9"	25.0"	26.9"
2.3 keV	18.7"	24.5"	26.7"

Values in the table are half-power diameters (HPDs) for the individual MMAs alone. These need to be adjusted for alignment errors, detector resolution, focus etc. to determine the on-orbit system-level resolution.

 Based upon X-ray calibration, analysis, and on-orbit images, the system-level performance is ≈ 30" HPD

Imaging polarimetry

• IXPE 30" half-power diameter on Chandra image

Filter Calibration Wheel Assembly

Filter and Calibration Wheel (FCW), providing open, attenuator, and closed positions, plus four ⁵⁵Fe-powered calibration sources:

- Cal A Bragg-reflected polarized 2.98-keV (Ag-L α fluorescence) and 5.89-keV (Mn-K α)
- Cal B unpolarized 5.89-keV spot
- Cal C unpolarized 5.89-keV flood
- Cal D unpolarized 1.74-keV (Si-K α fluorescence) flood

The Minimum Detectable Polarization (MDP)

$$MDP_{99}(\%) = (4.29 \times 10^4 / M(\%)) \sqrt{(R_S + R_B)} / \sqrt{R_S^2} t$$

- R_s is the observed source counting rate
- \blacksquare R_B is the observed background counting rate
- t is the integration time
- *M* is the modulation factor, i.e. the amplitude of the variation of the ensemble of position angles for a 100% polarized source

Effective Area and Modulation Factor

The Targets

IXPE's first observations

Polarization detected (>99.99% confidence): 19

The Early Results

- IXPE's first observations have been especially rewarding
- Many leading to unexpected results
 - See the following talks for details
- Here we present two snapshots

Magnetars (First and Brightest)

IXPE observations of the magnetar 4U0142 show evidence for birefringence where the position angle flips by 90°

Another Magnetar (1RXS J1708)

However, IXPE observations of the magnetar 1RXS J1708 show energy dependence but no position angle flip

Was Sgr A^* 10⁶ × more active?

- Galactic Center molecular clouds (MC) are known X-ray sources
 - MCs reflect X-rays from Sgr A*
 - X-radiation would be highly polarized perpendicular to plane of reflection and indicates the direction back to Sgr A*

A Hint

