

planetmath.org

Math for the people, by the people.

generators of inverse ideal

Canonical name GeneratorsOfInverseIdeal

Date of creation 2015-05-06 14:52:30 Last modified on 2015-05-06 14:52:30

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 18

Author pahio (2872) Entry type Theorem Classification msc 13A15

Related topic FractionalIdealOfCommutativeRing

Related topic IdealGeneratedByASet

Related topic PruferRing

Theorem. Let R be a commutative ring with non-zero unity and let T be the total ring of fractions of R. If $\mathfrak{a}=(a_1,\ldots,a_n)$ is an invertible http://planetmath.org/FractionalIdealOfCommutativeRingfractional ideal of R with $\mathfrak{ab}=R$, then also the inverse ideal \mathfrak{b} can be generated by n elements of T.

Proof. The equation $\mathfrak{ab} = (1)$ implies the existence of the elements a_i' of \mathfrak{a} and b_i' of \mathfrak{b} (i = 1, ..., m) such that $a_1'b_1' + \cdots + a_m'b_m' = 1$. Because the a_i' 's are in \mathfrak{a} , they may be expressed as

$$a'_{i} = \sum_{j=1}^{n} r_{ij} a_{j}$$
 $(i = 1, ..., m),$

where the r_{ij} 's are some elements of R. Now the unity acquires the form

$$1 = \sum_{i=1}^{m} a_i' b_i' = \sum_{i=1}^{m} \sum_{j=1}^{n} r_{ij} a_j b_i' = \sum_{j=1}^{n} a_j \sum_{i=1}^{m} r_{ij} b_i' = \sum_{j=1}^{n} a_j b_j,$$

in which

$$b_j = \sum_{i=1}^m r_{ij}b_i' \in R\mathfrak{b} = \mathfrak{b} \qquad (j = 1, \dots, n).$$

Thus an arbitrary element b of the \mathfrak{b} satisfies the condition

$$b = b \cdot 1 = \sum_{j=1}^{n} (a_j b) b_j \in Rb_1 + \dots + Rb_n = (b_1, \dots, b_n).$$

Consequently, $\mathfrak{b} \subseteq (b_1, \ldots, b_n)$. Since the inverse inclusion is apparent, we have the equality

$$\mathfrak{a}^{-1}=\mathfrak{b}=(b_1,\,\ldots,\,b_n).$$