1. Wen finds 17 consecutive positive integers that sum to 2023. Compute the smallest of these integers.

Answer: 111

Solution: Notice that the average of these integers must be $\frac{2023}{17} = 119$. Since they are consecutive, we know that the middle, 9th, number out of our 17 integers must be 119. This will be 8 more than the smallest integer, so our answer is $119 - 8 = \boxed{111}$.

2. Triangle $\triangle ABC$ has $\angle ABC = \angle BCA = 45^{\circ}$ and AB = 1. Let D be on \overline{AC} such that $\angle ABD = 30^{\circ}$. Let \overrightarrow{BD} and the line through A parallel to \overrightarrow{BC} intersect at E. Compute the area of $\triangle ADE$.

Answer: $\frac{3+\sqrt{3}}{12}$

Solution:

Triangles $\triangle ADE$ and $\triangle CDB$ are similar. Thus, the area of $\triangle ADE$ is $(\frac{AD}{DC})^2$ times the area of $\triangle CDB$. Since $\angle ABD = 30^\circ$ and AB = 1, we have $AD = \frac{1}{\sqrt{3}}$ and $DC = 1 - \frac{1}{\sqrt{3}}$. Thus, the

area of
$$\triangle ADE$$
 is $\frac{1}{2} \left(1 - \frac{1}{\sqrt{3}} \right) \left(\frac{1/\sqrt{3}}{1 - (1/\sqrt{3})} \right)^2 = \boxed{\frac{3 + \sqrt{3}}{12}}$

3. Mataio has a weighted die numbered 1 to 6, where the probability of rolling a side n for $1 \le n \le 6$ is inversely proportional to the value of n. If Mataio rolls the die twice, what is the probability that the sum of the two rolls is 7?

Answer: $\frac{40}{343}$

Solution: The probability of rolling a given side n is $\frac{k}{n}$ for some constant k. So the probability that rolling the die twice yields a sum of 7 is $2 \cdot (\frac{k}{1} \cdot \frac{k}{6} + \frac{k}{2} \cdot \frac{k}{5} + \frac{k}{3} \cdot \frac{k}{4}) = \frac{7k^2}{10}$

We can solve for k using the following equation

$$1 = \frac{k}{1} + \frac{k}{2} + \frac{k}{3} + \frac{k}{4} + \frac{k}{5} + \frac{k}{6}$$

Solving, we get $k = \frac{20}{49}$, and plugging into $\frac{7k^2}{10}$ gives the final answer of $\frac{40}{343}$

4. Let $N=2^{18}\cdot 3^{19}\cdot 5^{20}\cdot 7^{21}\cdot 11^{22}$. Compute the number of positive integer divisors of N whose units digit is 7.

Answer: 2530

Solution: Any divisor n can be written as

$$n = 2^a \cdot 3^b \cdot 5^c \cdot 7^d \cdot 11^e,$$

where a, b, c, d, e are nonnegative integers bounded above. To count divisors n with units digit 7, we immediately require a = c = 0. Now, the key trick is that 3 generates $(\mathbb{Z}/10\mathbb{Z})^{\times}$ because

$${3^0, 3^1, 3^2, 3^3} \equiv {1, 3, 9, 7} \pmod{10},$$

so for any choice of d and e, there is a unique value of $b \pmod 4$ which give $n = 3^b \cdot 7^d \cdot 11^e$ with units digit 7. Because $0 \le b < 19$, this amounts to five different choices for b for any choices of (d, e).

To finish, we note that d has 22 options, and e has 23 options, so our answer is $5 \cdot 22 \cdot 23 = 110 \cdot 23 = 2530$.

5. Compute the real solution for x to the equation $(4^{x} + 8)^{4} - (8^{x} - 4)^{4} = (4 + 8^{x} + 4^{x})^{4}$.

Answer: $\frac{2}{3}$

Solution: Let $a = 4^x + 8$ and $b = 8^x - 4$. Then the equation becomes $a^4 - b^4 = (a + b)^4$. Then $(a^2 - b^2)(a^2 + b^2) = (a + b)^4$, and so $(a - b)(a + b)(a^2 + b^2) = (a + b)^4$. Note that $a + b = (4^x + 8) + (8^x - 4) = 4^x + 8^x + 4 > 0$. Thus, we can divide by a + b on both sides to get that $(a - b)(a^2 + b^2) = (a + b)^3$. Expanding the LHS and RHS gives $a^3 - b^3 - a^2b + ab^2 = a^3 + 3a^2b + 3ab^2 + b^3$, which after simplification yields $2b^3 + 4a^2b + 2ab^2 = 0$. We can factor out a b and we have $b(2b^2 + 4a^2 + 2ab) = 0$. This gives a solution of b = 0, which implies that the only real solution here is a = 0, b = 0. The expression $2b^2 + 4a^2 + 2ab$ has no other real solutions. We can show this by factoring it as $2(2a^2 + ab + b^2)$: applying the quadratic formula by treating the b terms as constants would imply the discriminant, $-7b^2$, is negative. Since b = 0 is our only

possibility, we have $8^x - 4 = 0$, so $8^x = 4$, which means $x = \begin{bmatrix} \frac{2}{3} \end{bmatrix}$ is the solution for x.