# Inteligencia Artificial Problemas de Optimización

Nicolás Rojas-Morales nicolas.rojasm@usm.cl

Departamento de Informática Universidad Técnica Federico Santa María







ullet Minimizar costos o evitar vías con peaje



- ullet Minimizar costos o evitar vías con peaje
- Podría aumentar otros costos (bencina, mantención, entre otros).

¿Qué asignaturas tomar este semestre?

| Bloque   | Lunes  | Martes | Miércoles | Jueves | Viernes | Sábado |
|----------|--------|--------|-----------|--------|---------|--------|
| 1 2      |        |        |           |        |         |        |
| 3<br>4   |        | INF236 |           |        | INF295  |        |
| 5<br>6   | FIS120 |        | FIS120    |        |         |        |
| 7<br>8   |        |        | INF266    |        |         |        |
| 9<br>10  |        | INF236 |           |        |         |        |
| 11<br>12 |        |        |           |        |         |        |
| 13<br>14 | INF246 |        | INF246    |        |         |        |
| 15<br>16 |        |        |           |        |         |        |
| 17<br>18 |        |        |           |        |         |        |

¿Qué asignaturas tomar este semestre?

| Bloque   | Lunes  | Martes | Miércoles | Jueves | Viernes | Sábado |
|----------|--------|--------|-----------|--------|---------|--------|
| 1<br>2   |        |        |           |        |         |        |
| 3<br>4   |        | INF236 |           |        | INF295  |        |
| 5<br>6   | FIS120 |        | FIS120    |        |         |        |
| 7<br>8   |        |        | INF266    |        |         |        |
| 9<br>10  |        | INF236 |           |        | FIS120  |        |
| 11<br>12 |        |        |           |        |         |        |
| 13<br>14 | INF246 |        | INF246    |        |         |        |
| 15<br>16 |        |        |           |        |         |        |
| 17<br>18 |        |        |           |        |         |        |

Desde otro foco (institucional)  $\rightarrow \iota$  Cómo planificar la asignación de salas?

Optimización:

Determinación de una alternativa de decisión con la propiedad de ser mejor que cualquier otra en algún sentido a precisar

<sup>&</sup>lt;sup>1</sup>RAE: optimizar

#### Optimización:

Determinación de una alternativa de decisión con la propiedad de ser mejor que cualquier otra en algún sentido a precisar

Buscar la mejor manera de realizar una actividad 1

<sup>&</sup>lt;sup>1</sup>RAE: optimizar

- Función objetivo: Medida cuantitativa del funcionamiento del sistema que se desea optimizar
- Variables: Decisiones que se pueden tomar para afectar el valor de la función objetivo
- Dominios: Valores posibles de las variables
- **Restricciones**: Relaciones (ecuaciones e inecuaciones) que las variables están obligadas a cumplir
- Constantes/Parámetros: Atributos del problema conocidos a priori y fijos que permiten simplificar la formulación del modelo

- Función objetivo: Medida cuantitativa del funcionamiento del sistema que se desea optimizar
- Variables: Decisiones que se pueden tomar para afectar el valor de la función objetivo
- Dominios: Valores posibles de las variables
- **Restricciones**: Relaciones (ecuaciones e inecuaciones) que las variables están obligadas a cumplir
- Constantes/Parámetros: Atributos del problema conocidos a priori y fijos que permiten simplificar la formulación del modelo
- Resolver: Encontrar valor de las variables que optimiza la función objetivo y satisface todas las restricciones. (Detectar que el problema no tiene solución)

PROBLEMA P









- ullet Interpretación del problema en lenguaje matemático o Entender el problema
- Debe responder lo que "buscamos"
- Sirve como mecanismo de comunicación
- Identificar semejanzas con problemas clásicos
  - Mecanismos de resolución

### Clasificación de modelos de optimización

- Programación lineal (continua)
- Programación lineal entera mixta
- Programación no lineal

### Problema de la dieta

 Las necesidades mínimas en la alimentación de una ternera son de 700 [g] de proteínas, 28 [g] de calcio y 150 [mg] de vitaminas. Los alimentos disponibles son pienso<sup>2</sup> y forraje con un costo de 0.30 y 0.35 euros/kg respectivamente. La composición nutritiva por kg:

|         | Proteínas [g] | Calcio [g] | Vitaminas [mg] |
|---------|---------------|------------|----------------|
| Pienso  | 30            | 2          | 10             |
| Forraje | 45            | 1          | 5              |

 Se trata de determinar la cantidad diaria óptima de cada alimento para minimizar el costo total de alimentación.

<sup>&</sup>lt;sup>2</sup>Alimento seco que se le da al ganado

# Inteligencia Artificial Problemas de Optimización

Nicolás Rojas-Morales nicolas.rojasm@usm.cl

Departamento de Informática Universidad Técnica Federico Santa María

### Problema de la dieta

 Las necesidades mínimas en la alimentación de una ternera son de 700 [g] de proteínas, 28 [g] de calcio y 150 [mg] de vitaminas. Los alimentos disponibles son pienso<sup>3</sup> y forraje con un costo de 0.30 y 0.35 euros/kg respectivamente. La composición nutritiva por kg:

|         | Proteínas [g] | Calcio [g] | Vitaminas [mg] |
|---------|---------------|------------|----------------|
| Pienso  | 30            | 2          | 10             |
| Forraje | 45            | 1          | 5              |

 Se trata de determinar la cantidad diaria óptima de cada alimento para minimizar el costo total de alimentación.

<sup>&</sup>lt;sup>3</sup>Alimento seco que se le da al ganado

### Problemas de Transporte

- Minimizar el costo total de transporte de un producto desde ciertos orígenes a ciertos destinos satisfaciendo la demanda de cada destino sin superar la oferta disponible en cada origen.
- Se supone todos los orígenes conectados con todos los destinos:



• Se busca satisfacer la demanda sin superar la oferta a mínimo costo

### Problemas de Transbordo

• Llevar un producto desde orígenes a destinos con puntos intermedios en una red de n nodos con mínimo costo.



### Problemas de Transbordo

• Llevar un producto desde orígenes a destinos con puntos intermedios en una red de n nodos con mínimo costo.



- Considerando:
  - $b_i > 0 \rightarrow \text{nodo origen (generador)}$
  - $b_i < 0 \rightarrow \text{nodo destino (consumidor)}$
  - $b_i = 0 \rightarrow \text{nodo transbordo (no genera ni consume)}$

### Problemas de Transbordo

• Variables:

 $x_{ij}$ : cantidad transportada desde el nodo i al nodo j

• Constantes:

n: total de nodos

 $c_{ij}$ : costo (por kilogramo) de transportar desde el nodo i al nodo j

 $b_i$ : flujo en el nodo i

$$\mathsf{M}\mathsf{in} \sum_{i}^{n} \sum_{j}^{n} c_{ij} * x_{ij}$$

$$\sum_{j}^{n} x_{ij} - \sum_{j}^{n} x_{ji} = b_{i} \quad \forall i = 1, \dots, n$$

$$x_{ij} \geq 0 \quad \forall i, j$$

### Modelado con variables enteras y binarias

El uso de variables enteras y binarias aumenta considerablemente las posibilidades de modelado:

- Modelado de cantidades discretas
- Modelado de decisiones que implican un costo fijo o de arranque:
  - Adquirir o no un activo (un edificio, una máquina, etc.)
  - Poner en marcha un proceso o no.
- Modelado de decisiones que posibilitan la toma de otras decisiones:
  - La compra de un determinado aparato (variable binaria) permite después tomar decisiones relativas a su operación.
- Modelado de restricciones no lineales y no convexas.
- Modelado de implicaciones y de condiciones lógicas.

Problema de la Mochila (Knapsack)

Problema de la mochila (Knapsack problem) modela una situación análoga al llenado de una mochila, con una capacidad determinada en peso. La idea es seleccionar un subconjunto de objetos, donde cada objeto cuenta con un peso y ganancia específicos. Los objetos colocados en la mochila deben maximizar la ganancia total sin exceder la capacidad de la mochila.



# Inteligencia Artificial Problemas de Optimización

Nicolás Rojas-Morales nicolas.rojasm@usm.cl

Departamento de Informática Universidad Técnica Federico Santa María

Problema de la mochila (Knapsack problem) modela una situación análoga al llenado de una mochila, con una capacidad determinada en peso. La idea es seleccionar un subconjunto de objetos, donde cada objeto cuenta con un peso y ganancia específicos. Los objetos colocados en la mochila deben **maximizar la ganancia total** sin exceder la capacidad de la mochila.



Tabla: Enumerando todas las soluciones posibles - Fuerza Bruta

| $\overline{X_1}$ | <i>X</i> <sub>2</sub> | <i>X</i> <sub>3</sub> | <i>X</i> <sub>4</sub> | <i>X</i> <sub>5</sub> | Ganancia | Capacidad |
|------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------|-----------|
| 1                | 0                     | 0                     | 0                     | 0                     | 4        |           |

Tabla: Enumerando todas las soluciones posibles - Fuerza Bruta

| $\overline{X_1}$ | <i>X</i> <sub>2</sub> | <i>X</i> <sub>3</sub> | <i>X</i> <sub>4</sub> | <i>X</i> <sub>5</sub> | Ganancia | Capacidad |
|------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------|-----------|
| 1                | 0                     | 0                     | 0                     | 0                     | 4        | OK        |

Tabla: Enumerando todas las soluciones posibles - Fuerza Bruta

| $\overline{X_1}$ | <i>X</i> <sub>2</sub> | <i>X</i> <sub>3</sub> | <i>X</i> <sub>4</sub> | <i>X</i> <sub>5</sub> | Ganancia | Capacidad |
|------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------|-----------|
| 1                | 0                     | 0                     | 0                     | 0                     | 4        | OK        |
| 0                | 1                     | 0                     | 0                     | 0                     | 2        |           |

Tabla: Enumerando todas las soluciones posibles - Fuerza Bruta

| $X_1$ | $X_2$ | <i>X</i> <sub>3</sub> | $X_4$ | $X_5$ | Ganancia | Capacidad |
|-------|-------|-----------------------|-------|-------|----------|-----------|
| 1     | 0     | 0                     | 0     | 0     | 4        | OK        |
| 0     | 1     | 0                     | 0     | 0     | 2        | OK        |
|       |       |                       |       |       |          |           |
| 1     | 1     | 1                     | 1     | 1     | 19       |           |

Tabla: Enumerando todas las soluciones posibles - Fuerza Bruta

| $X_1$ | $X_2$ | $X_3$ | $X_4$ | $X_5$ | Ganancia | Capacidad |
|-------|-------|-------|-------|-------|----------|-----------|
| 1     | 0     | 0     | 0     | 0     | 4        | OK        |
| 0     | 1     | 0     | 0     | 0     | 2        | OK        |
| 1     | 1     | 1     | 1     | 1     | 19       | NOT-OK    |

Tabla: Enumerando todas las soluciones posibles - Fuerza Bruta

| $X_1$ | $X_2$ | $X_3$ | $X_4$ | $X_5$ | Ganancia | Capacidad |
|-------|-------|-------|-------|-------|----------|-----------|
| 1     | 0     | 0     | 0     | 0     | 4        | OK        |
| 0     | 1     | 0     | 0     | 0     | 2        | OK        |
|       |       |       |       |       |          |           |
| 1     | 1     | 1     | 1     | 1     | 19       | NOT-OK    |

Tabla: Cantidad total de soluciones posibles

| $X_1$ | $X_2$ | <i>X</i> <sub>3</sub> | $X_4$ | $X_5$ |
|-------|-------|-----------------------|-------|-------|
|       |       |                       |       |       |

### Espacio de Búsqueda

#### Espacio de Búsqueda (EDB)



Contiene todas las soluciones posibles para un problema, tanto factibles como infactibles, para un modelo determinado.

## Espacio de Búsqueda

#### Espacio de Búsqueda (EDB)



Contiene todas las soluciones posibles para un problema, tanto factibles como infactibles, para un modelo determinado.

Un punto es: 
$$X_1 = 0, X_2 = X_3 = X_4 = X_5 = 1$$

### Espacio de Búsqueda

**Explosión Combinatorial:** crecimiento desmedido del tamaño del Espacio de Búsqueda al aumentar el tamaño del problema (tanto en cantidad de variables como en su dominio).

Tabla: Explosión Combinatorial - Ejemplo KP

| #Variables | Tamano EDB                 |  |
|------------|----------------------------|--|
| 5          | $2^5 = 32$                 |  |
| 6          | $2^6 = 64$                 |  |
| 7          | $2^7 = 128$                |  |
| 20         | $2^{20} = 1.048.576$       |  |
| 50         | $2^{50} = 1.12 * 10^{15}$  |  |
| 100        | $2^{100} = 1,26 * 10^{30}$ |  |

### Mochila con Múltiples Dimensiones



## Modelos de Presupuesto [Mochila Multidimensional]

 El límite total de recursos disponibles consumidos por los proyectos seleccionados e inversiones en cada período de tiempo no deben exceder los recursos disponibles.

$$x_i = \left\{ egin{array}{ll} 1 & {\sf La} \ {\sf actividad} \ i \ {\sf se} \ {\sf realiza} \ 0 & {\sf si} \ {\sf no} \end{array} 
ight.$$

Las restricciones son:

$$\begin{array}{c} 6 \cdot x_1 + 2 \cdot x_2 + 3 \cdot x_3 + 1 \cdot x_7 + 4 \cdot x_9 + 5 \cdot x_{12} \leq 10 & \text{(Ene-Feb)} \\ 3 \cdot x_2 + 5 \cdot x_3 + 5 \cdot x_5 + 8 \cdot x_7 + 5 \cdot x_9 + 8 \cdot x_{10} + 7 \cdot x_{12} + 1 \cdot x_{13} \leq 12 & \text{(Mar-Abr)} \\ 8 \cdot x_5 + 1 \cdot x_4 + 4 \cdot x_{10} + 2 \cdot x_{11} + 4 \cdot x_{13} + 5 \cdot x_{14} \leq 14 & \text{(Jun-Ago)} \\ 8 \cdot x_6 + 5 \cdot x_8 + 7 \cdot x_{11} + 1 \cdot x_{13} + 3 \cdot x_{14} \leq 14 & \text{(Sept-Dic)} \\ x_i \in \{0,1\} \end{array}$$

### Modelos de Presupuesto [Mochila Multidimensional]

Restricciones en un Modelo de Presupuesto:

Actividades mutuamente excluyentes
 La actividad 4 no se puede realizar si se realiza la actividad 5 y viceversa

### Modelos de Presupuesto [Mochila Multidimensional]

Restricciones en un Modelo de Presupuesto:

Actividades mutuamente excluyentes
 La actividad 4 no se puede realizar si se realiza la actividad 5 y viceversa

Dependencia entre actividades
 La actividad 11 requiere que la actividad 2 se realice

Modelos de Set Covering, Packing y Partitioning

### Modelos de Set Covering, Packing y Partitioning

Trabajan con un conjunto de elementos, la idea es construir sub-conjuntos de elementos considerando diversos puntos de vista respecto a las restricciones:

- Set Covering Requieren que cada elemento pertenezca a al menos un sub-conjunto.
- Set Packing Requieren que cada elemento aparezca en a lo más un sub-conjunto.
- Set Partitioning Requieren que cada elemento aparezca en exactamente un sub-conjunto.

### Set Covering

Instalar la menor cantidad de Estaciones de Bomberos de manera que puedan satisfacer las demandas de las 11 comunas de una ciudad. Se considera que una Estación de Bomberos es capaz de satisfacer las demandas de la comuna en la que se encuentra y de las inmediatamente adyacentes a dicha comuna.



# Inteligencia Artificial Problemas de Optimización

Nicolás Rojas-Morales nicolas.rojasm@usm.cl

Departamento de Informática Universidad Técnica Federico Santa María

### Set Covering

Instalar la menor cantidad de Estaciones de Bomberos de manera que puedan satisfacer las demandas de las 11 comunas de una ciudad. Se considera que una Estación de Bomberos es capaz de satisfacer las demandas de la comuna en la que se encuentra y de las inmediatamente adyacentes a dicha comuna.



### Set Covering

Considere un conjunto S de personas:

$$S = \{1, 2, 3, 4, 5\}$$

Suponga que desea organizar dichas personas en varios equipos conocidos:

- El conjunto de equipos posibles es s
- Por ejemplo:  $s = \{\{1, 2\}, \{4, 5\}, \{1, 3, 5\}, \{2, 4, 5\}, \{1\}, \{3\}\}$
- Cada equipo tiene un costo c<sub>i</sub>
- Se desea elegir los equipos que permiten tener ocupadas a todas las personas con un costo mínimo
  - No importa que la misma persona este en más de un equipo

## Set Partitioning

Considere un conjunto S de personas:

$$S = \{1, 2, 3, 4, 5\}$$

Suponga que desea organizar dichas personas en varios equipos conocidos:

- El conjunto de equipos posibles es s
- Por ejemplo:  $s = \{\{1, 2\}, \{4, 5\}, \{1, 3, 5\}, \{2, 4, 5\}, \{1\}, \{3\}\}$
- Cada equipo tiene un costo c<sub>i</sub>
- Se desea elegir los equipos que permiten que cada persona esté exactamente en un equipo con un beneficio máximo

## Set Packing

Considere un conjunto S de personas:

$$S = \{1, 2, 3, 4, 5\}$$

Suponga que desea organizar dichas personas en varios equipos conocidos:

- El conjunto de equipos posibles es s
- Por ejemplo:  $s = \{\{1,2\}, \{4,5\}, \{1,3,5\}, \{2,4,5\}, \{1\}, \{3\}\}$
- Cada equipo tiene un beneficio b<sub>j</sub>
- Se desea elegir los equipos que proporcionen el beneficio máximo sin que se traslapen.
  - Que las personas no se repitan entre equipos diferentes, no importa que una persona no esté en ningún equipo

### Set Covering

Instalar dos Estaciones de Bomberos de manera que puedan satisfacer las demandas de las comunas más importantes de una ciudad. La importancia de la comuna viene dada por la cantidad de ciudadanos que viven en dicha comuna. Se considera que una Estación de Bomberos es capaz de satisfacer las demandas de la comuna en la que se encuentra y de las inmediatamente adyacentes a dicha comuna.









### Generación de Columnas

Modelos de Generación de Columnas

### Generación de Columnas

### Modelos de Generación de Columnas

- La generación de columnas se utiliza como una estrategia de dos pasos para enfrentar la resolución de problemas combinatorios altamente complejos.
- Consiste en la generación de todas las posibles columnas, donde cada columna representa una alternativa factible (en algunas de las restricciones del problema ), siendo una parte posible de una solución

## AA Crew Scheduling

- Problema: Encontrar la secuencia de vuelos para cada tripulación sobre un período de tiempo. Cada secuencia debe comenzar y terminar en la ciudad donde vive la tripulación. Se deben realizar TODOS los vuelos.
- Suponga la siguiente secuencia de viajes de American Airlines.



Nota: Números de vuelos: Miami (100), Chicago (200), Charlotte (300), Dallas (400)

# Inteligencia Artificial Problemas de Optimización

Nicolás Rojas-Morales nicolas.rojasm@usm.cl

Departamento de Informática Universidad Técnica Federico Santa María

## AA Crew Scheduling

- Problema: Encontrar la secuencia de vuelos para cada tripulación sobre un período de tiempo. Cada secuencia debe comenzar y terminar en la ciudad donde vive la tripulación. Se deben realizar TODOS los vuelos.
- Suponga la siguiente secuencia de viajes de American Airlines.



Nota: Números de vuelos: Miami (100), Chicago (200), Charlotte (300), Dallas (400)

## Generación de Columnas en AA Crew Scheduling

Paso 1: Generación de secuencias de vuelos (columnas)

| i  | Secuencia de Vuelos   | Costo |
|----|-----------------------|-------|
| 1  | 101 - 203 - 406 - 308 | 2900  |
| 2  | 101 - 203 -407        | 2700  |
| 3  | 101 - 204 - 305 - 407 | 2600  |
| 4  | 101 - 204 - 308       | 3000  |
| 5  | 203 - 406 - 310       | 2600  |
| 6  | 203 - 407 - 109       | 3150  |
| 7  | 204 - 305 - 407 - 109 | 2550  |
| 8  | 204 - 308 - 109       | 2500  |
| 9  | 305 - 407 - 109 - 212 | 2600  |
| 10 | 308 - 109 - 212       | 2300  |
| 11 | 310 - 212             | 2000  |
| 12 | 402 - 203             | 2100  |
| 13 | 402 - 204 - 305       | 2400  |
| 14 | 402 - 204 - 310 - 211 | 2550  |
| 15 | 406 - 308 - 109 - 211 | 2750  |
| 16 | 406 - 310 - 211       | 2600  |
| 17 | 407 - 109 - 211       | 2550  |

# Generación de Columnas en AA Crew Scheduling

Paso 2:

Resolver el problema como un Set [Covering/ Partitioning]

Variables:

$$x_i = \begin{cases} 1 & \text{Si se elige la columna } i \\ 0 & \text{si no} \end{cases}$$

Constantes:

$$a_{ij} = \left\{ egin{array}{ll} 1 & ext{Si el vuelo } j ext{ está en la columna } i \ 0 & ext{si no} \end{array} 
ight.$$

$$Ci = Costo de la columna i$$

Objetivo:

$$\mathsf{M\'{i}n} \ \sum_{i=i}^{1} C_i \cdot x_i$$

Restricciones:

$$\sum_{i=1}^{17} a_{ij} \cdot x_i = 1 \quad \forall j$$

### Generación de Columnas

- La selección del conjunto óptimo de alternativas se resuelve mediante un set Partitioning (o Covering)
- Ventaja: Flexibilidad
- Desventaja: Dificultad para enumerar todas las columnas.
- ¿Podría ser útil para United Airlines?, considerando que tienen 4500 vuelos diarios app.

El problema del vendedor viajero (Traveling Salesman Problem (TSP)) consiste en encontrar un circuito de costo mínimo que pase una sola vez por cada ciudad que debe visitar el vendedor y que le permita volver a su ciudad de origen al final del día



El problema del vendedor viajero (Traveling Salesman Problem (TSP)) consiste en encontrar un circuito de costo mínimo que pase una sola vez por cada ciudad que debe visitar el vendedor y que le permita volver a su ciudad de origen al final del día.



El problema del vendedor viajero (Traveling Salesman Problem (TSP)) consiste en encontrar un circuito de costo mínimo que pase una sola vez por cada ciudad que debe visitar el vendedor y que le permita volver a su ciudad de origen al final del día.



El problema del vendedor viajero (Traveling Salesman Problem (TSP)) consiste en encontrar un circuito de costo mínimo que pase una sola vez por cada ciudad que debe visitar el vendedor y que le permita volver a su ciudad de origen al final del día.



# Inteligencia Artificial Problemas de Optimización

Nicolás Rojas-Morales nicolas.rojasm@usm.cl

Departamento de Informática Universidad Técnica Federico Santa María

El problema del vendedor viajero (Traveling Salesman Problem (TSP)) consiste en encontrar un circuito de costo mínimo que pase una sola vez por cada ciudad que debe visitar el vendedor y que le permita volver a su ciudad de origen al final del día.



# Problema del vendedor viajero: Modelo 1 (2/2)

#### Para evitar ciclos:

Subconjuntos:

$$\sum_{i \in \mathcal{U}} \sum_{j \in \mathcal{U}} x_{ij} \leq \textit{Card}(\mathcal{U}) - 1 \quad \ \forall \mathcal{U} \ \mathsf{tal} \ \mathsf{que} \ 2 \leq \textit{Card}(\mathcal{U}) \leq \textit{n} - 2$$





## Problema del vendedor viajero: Modelo 1 (2/2)

#### Para evitar ciclos:

• Secuencia:  $u_i$  = orden en que se visita la ciudad i

$$u_{i} \neq u_{j} \quad \forall i \neq j$$

$$2 \leq u_{i} \leq n \quad \forall i \neq 1$$

$$u_{1} = 1$$

$$u_{j} - u_{i} \leq 1 + (n - 1) \cdot (1 - x_{ij}) \quad \forall i \neq 1, \forall j \neq 1$$



### Complejidad Computacional

#### Problema de Optimización: TSP

Datos: Dado un grafo G de orden n, completo y valorizado con valores positivos

Objetivo: Determinar el largo mínimo de un ciclo hamiltoneano en G

#### Problema de reconocimiento/decisión: RTSP

Datos: Dado un entero k, dado un grafo G de orden n, completo y valorizado con valores positivos

Pregunta: ¿Existe en el grafo un ciclo hamiltoneano de largo inferior o igual a k?

RTSP permite resolución en tiempo polinomial ssi TSP también lo permite

### Problemas P versus NP

#### Problema P

Un problema se dice polinomial si existe un algoritmo de complejidad polinomial que permite responder la pregunta del problema cualquiera sea el dato de éste. La clase P es el conjunto de todos los problemas de reconocimiento polinomiales.

#### Problemas NP (No-determinístico polinomiales)

Un problema de reconocimiento está en la clase NP si, para toda instancia de ese problema, en un tiempo polinomial con respecto al tamaño de la instancia, se puede verificar una solución propuesta o adivinada ("sí")

#### $P \subseteq NP$

No existe certeza si las clases P y NP coinciden o si la inclusión de la clase P en NP es estricta.

### Problemas NP-completos

#### Transformación polinomial

Dados dos problemas de reconocimiento:  $D_1$  y  $D_2$ ,  $D_1 \prec D_2$  ssi:

- Existe una aplicación f que transforme cualquier instancia I de  $D_1$  en una instancia f(I) de  $D_2$ , y un algoritmo polinomial, con respecto al tamaño de I para calcular f(I).
- Hay una equivalencia entre los dos enunciados " $D_1$  acepta la respuesta "sí" para la instancia I" y " $D_2$  acepta la respuesta "sí" para la instancia f(I)".

Si  $D1 \prec D_2$  y existe un algoritmo polinomial para resolver  $D_2$ , luego existe un algoritmo polinomial para resolver  $D_1$ .

Además se cumple que si  $D_1 \prec D_2$  y  $D_2 \prec D_3$ , entonces  $D_1 \prec D_3$ .

#### NP-completitud

Un problema Q se dice NP-completo si pertenece a la clase NP y si, para todo problema Q' de la clase NP, se tiene que  $Q' \prec Q$ .

### Consecuencias de la NP-completitud

#### ¿Por qué demostrar la NP-completitud?

- Evitar perder tiempo buscando un algoritmo polinomial que resuelva el problema
- Justificar el uso de heurísticas para el problema que entreguen resultados cercanos al óptimo.

### Problemas NP-difíciles

Aquí el interés no se centra sólo en los problemas de reconocimiento.

#### NP-difícil

Sea O un problema de optimización. Si el problema de reconocimiento asociado a O es NP-completo, entonces O es NP-difícil.

El RTSP es NP-completo y el TSP es NP-difícil.

Modelos de Asignación, redes y ruteo de vehículos

## Modelos de Problema de Asignación

 Encontrar la mejor asignación (máquina-trabajo, personal-cliente) para minimizar costos

Tiempo (horas)

|         | ricilipo (lioras) |         |         |         |  |
|---------|-------------------|---------|---------|---------|--|
| Máquina | Tarea 1           | Tarea 2 | Tarea 3 | Tarea 4 |  |
| 1       | 14                | 5       | 8       | 7       |  |
| 2       | 2                 | 12      | 6       | 5       |  |
| 3       | 7                 | 8       | 3       | 9       |  |
| 4       | 2                 | 4       | 6       | 10      |  |

# Modelos de Problema de Asignación

Variables:

$$x_{ij} = \begin{cases} 1 & \text{Si } i \text{ esta asignado a } j \\ 0 & \text{si no} \end{cases}$$

Constantes:

$$C_{ij} = \text{Costo de asignar } i \text{ a } j$$

Mín 
$$\sum_i \sum_j C_{ij} * x_{ij}$$
  $\sum_j x_{ij} = 1 \quad \forall i$   $\sum_i x_{ij} = 1 \quad \forall j$ 

# Modelos de Problema de Asignación Cuadrática

Ejemplo: Mall Layout

Se tienen 4 posibles ubicaciones para departamentos en un shopping mall. Se conocen las distancias (en metros) entre las ubicaciones. Se conoce además el número de clientes a la semana que desearían visitar los diferentes pares de departamentos. Por ejemplo, se proyecta que 500 clientes a la semana visitarían la tienda de ropa (Tienda 1) y computación (Tienda 2). El objetivo del problema es determinar la ubicación de las tiendas minimizando la molestia de los clientes.



# Inteligencia Artificial Problemas de Optimización

Nicolás Rojas-Morales nicolas.rojasm@usm.cl

Departamento de Informática Universidad Técnica Federico Santa María

## Modelos de Problema de Asignación Cuadrática

Ejemplo: Mall Layout

Se tienen 4 posibles ubicaciones para departamentos en un shopping mall. Se conocen las distancias (en metros) entre las ubicaciones. Se conoce además el número de clientes a la semana que desearían visitar los diferentes pares de departamentos. Por ejemplo, se proyecta que 500 clientes a la semana visitarían la tienda de ropa (Tienda 1) y computación (Tienda 2). El objetivo del problema es determinar la ubicación de las tiendas minimizando la molestia de los clientes.



### Job-Shop

- Planificación óptima para una colección dada de trabajos. Cada uno de dichos trabajos requiere una secuencia de procesadores, los cuales pueden realizar sólo un trabajo a la vez.
- Suponga tres trabajos a realizar:  $W_1$ ,  $W_2$  y  $W_3$ .

| $W_1$                 |   |  |  |  |
|-----------------------|---|--|--|--|
| $p_2$                 | 3 |  |  |  |
| <i>p</i> <sub>3</sub> | 3 |  |  |  |
| <i>p</i> <sub>4</sub> | 3 |  |  |  |
|                       |   |  |  |  |
| <i>p</i> <sub>8</sub> | 2 |  |  |  |

| $W_2$                 |   |  |  |  |
|-----------------------|---|--|--|--|
| <i>p</i> <sub>3</sub> | 7 |  |  |  |
| $p_1$                 | 2 |  |  |  |
|                       |   |  |  |  |
| <b>p</b> <sub>9</sub> | 6 |  |  |  |

| <i>W</i> <sub>3</sub> |   |  |  |  |
|-----------------------|---|--|--|--|
| <i>p</i> <sub>7</sub> | 5 |  |  |  |
| <i>p</i> <sub>6</sub> | 9 |  |  |  |
| <i>p</i> <sub>3</sub> | 2 |  |  |  |
| $p_5$                 | 1 |  |  |  |
|                       |   |  |  |  |
| $p_{10}$              | 5 |  |  |  |

### Problema de ruteo de vehículos

El problema de ruteo de vehículos (Vehicle routing problem (VRP)) busca satisfacer la demanda de un conjunto de clientes utilizando una flota de vehículos. Los bienes son despachados desde un almacén central a todos los consumidores. El objetivo consiste en construir las rutas que deben realizar los vehículos de la flota de modo de minimizar los costos de entrega (tiempo, bencina).



Figura: http://www.liacs.nl/~ftakes/vrp/

### Glosario

- Optimización
- Variable, Dominio, Restricción, Función Objetivo
- Problema Combinatorial
- Modelo
- Instancia
- Fuerza Bruta Generate and test
- Solución Factible / Infactible

- Espacio de Búsqueda
- Tamaño Espacio de Búsqueda
- Explosión Combinatorial
- Set Covering, Partitioning, Packing
- Generación de Columnas
- Problemas P, NP, Transformación, NP-Completo, NP-Difícil