Élève 1*

Exercice (ENS 2014). Soit K un compact de $\mathcal{M}_n(\mathbb{C})$. On considère $\sigma(K)$ l'ensemble des valeurs propres complexes des matrices de K.

Montrer que $\sigma(K)$ est un compact de \mathbb{C} . Que dire si K est seulement supposé fermé ?

Élève 2*

Exercice (Mines-Ponts 2022). Soient $n\in\mathbb{N}^*$, $A_1,\ldots,A_n\in\mathcal{M}_n(\mathbb{C})$ des éléments nilpotents qui commutent deux à deux. Calculer $A_1\times\cdots\times A_n$.

Éléments de réponse. On procède par récurrence. Le résultat est clair si n=1, la seule matrice nilpotente étant le scalaire 0. On suppose alors $n\geq 1$ et le résultat de l'énoncé vrai au rang n-1. On note u_i les endomorphismes de \mathbb{C}^n canoniquement associés aux A_i . Les endomorphismes u_i sont nilpotents et commutent deux à deux. Dans une base \mathcal{B} correspondant à une base de $\ker u_1$ complétée, la matrice de u_1 est de la forme

$$\begin{pmatrix} 0 & \times \\ 0 & \times \end{pmatrix}$$

et comme les u_i stabilisent ker u_1 puisqu'ils commutent avec $u_1,$ la matrice de u_i pour $i \geq 2$ s'écrit

$$\left(\begin{array}{cc} \times & \times \\ 0 & B_i \end{array}\right)$$

Les matrices B_i sont encore nilpotentes et commutent encore deux à deux. Par hypothèse de récurrence, $B_2 \dots B_n = 0$ (les matrices B_i sont de taille au plus n-1 puisque ker u_1 est non nul, u_1 étant nilpotente). Ainsi, dans la base \mathcal{B} , la matrice de $u_2 \circ \dots \circ u_n$ est de la forme

$$\left(\begin{array}{cc} \times & \times \\ 0 & 0 \end{array}\right)$$

Finalement, le produit $u_1\circ u_2\circ \dots \circ u_n$ a pour matrice dans la base $\mathcal B$

$$\left(\begin{array}{cc} 0 & \times \\ 0 & \times \end{array}\right) \left(\begin{array}{cc} \times & \times \\ 0 & 0 \end{array}\right) = 0$$

Élève 3*

Exercice (Mines Ponts 2022). Soient A, B, C des matrices de $\mathcal{M}_n(\mathbb{C})$ telles que AC = CB. Notons r le rang de la matrice C. Montrer que $\deg(\chi_A \wedge \chi_B) \geq r$.

Éléments de réponse. D'abord, on montre très facilement que pour tout polynôme $P \in \mathbb{C}[X], P(A)C = CP(B)$. Si on note

$$\chi_B = \prod_{i=1}^m (X - \lambda_i)^{r_i}$$

alors, par le lemme des noyeaux et le théorème de Cayley-Hamilton

$$\mathbb{C}^n = \ker \chi_B(B) = \bigoplus_{i=1}^m (B - \lambda_i I_n)^{r_i}$$
 (1)

Soit $\mathcal{B}=\mathcal{B}_1\cup\cdots\cup\mathcal{B}_m$ une base adaptée à la somme (1) et P la matrice inversible dont les colonnes sont les éléments de \mathcal{B} . Par inversibilité de P, rg $CP=\operatorname{rg} C$, il existe alors $\mathcal{C}\subset\mathcal{B}$ de cardinal r tel que l'image par C de \mathcal{C} soit une famille libre. On peut voir que si $x\in\mathcal{C}$, il existe $i=1,\ldots,m$ tel que $x\in\ker(B-\lambda_iI_n)^{r_i}$, de sorte que, comme $(A-\lambda_iI_n)^{r_i}C=C(B-\lambda_iI_n)^{r_i}$, $Cx\in\ker(A-\lambda_iI_n)^{r_i}$. On a

$$\{0\} \subsetneq \ker(A-\lambda_i I_n) \subsetneq \cdots \subsetneq \ker(A-\lambda_i I_n)^k = \ker(A-\lambda_i I_n)^{k+1} = \ldots$$
 où k est le plus petit indice s tel que $\ker(A-\lambda_i I_n)^s = \ker(A-\lambda_i I_n)^{s+1}$. Comme Cx fait partie d'une famille libre, il est non nul, donc l'indice k n'est

pas nul (car sinon $\ker(A-\lambda_iI_n)^{r_i}=\{0\}$) et alors $\ker(A-\lambda_iI_n)\neq\{0\}$ et λ_i est valeur propre de A. On peut introduire r_i' la multiplicité de λ_i en tant que racine de χ_A . On a $r_i'=\dim\ker(A-\lambda_iI_n)^{r_i'}=\dim\ker(A-\lambda_iI_n)^{r_i'}=\dim\ker(A-\lambda_iI_n)^{k}\geq \dim\ker(A-\lambda_iI_n)^{r_i}\geq \operatorname{Card}\mathcal{B}_i\cap\mathcal{C}$. En particulier, $(X-\lambda_i)^{\operatorname{Card}\mathcal{B}_i\cap\mathcal{C}}$ divise χ_A et χ_B .

Comme ceci vaut pour tout i tel que Card $\mathcal{B}_i \cap \mathcal{C} \neq 0$, on a

$$\prod_{i=1}^m (X-\lambda_i)^{\operatorname{Card} \mathcal{B}_i \cap \mathcal{C}} = \prod_{\substack{i=1 \\ \operatorname{Card} \mathcal{B}_i \cap \mathcal{C} \neq 0}}^m (X-\lambda_i)^{\operatorname{Card} \mathcal{B}_i \cap \mathcal{C}} \quad \text{divise} \quad \chi_A \wedge \chi_B$$

Finalement

$$\boxed{\deg \chi_A \wedge \chi_B \geq \sum_{i=1}^m \operatorname{Card} \mathcal{B}_i \cap \mathcal{C} = \operatorname{Card} \mathcal{C} = r}$$

Élève 4

Exercice CCP. Soit E un espace vectoriel sur \mathbb{R} ou \mathbb{C} . Soit $f \in \mathcal{L}(E)$ tel que $f^2 - f - 2\operatorname{id}_E = 0$.

- 1. Prouver que f est un automorphisme et exprimer f^{-1} en fonction de f.
- 2. Prouver que $E=\ker(f+\mathrm{id}_E)\oplus\ker(f-2\operatorname{id}_E)$ de deux manières différentes.
- 3. Dans cette question, on suppose que E est de dimension finie. Prouver que $\operatorname{im}(f+\operatorname{id}_E)=\ker(f-2\operatorname{id}_E).$

Exercice (Mines-Ponts 2022, adapté). Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice nilpotente.

- 1. Montrer que $A^n = 0$ en utilisant le théorème de Cayley-Hamilton.
- 2. Calculer $\det(A + I_n)$.
- 3. Soit $M \in \mathcal{M}_n(\mathbb{C})$ telle que AM = MA. Démontrer qu'il existe une suite (M_p) de matrices inversibles, commutant avec A, et qui converge vers M. En déduire que $\det(A+M) = \det M$.

Élève 5

Exercice CCP. Soient u et v deux endomorphismes d'un \mathbb{R} -ev E.

- 1. Soit λ un réel non nul. Montrer que λ est vp de uv ssi λ est vp de vu.
- 2. Dans cette question, $E = \mathbb{R}[X]$, u(P) désignera la primitive de P nulle en 1, v(P) le polynôme dérivé de P. Déterminer $\ker(uv)$ et $\ker(vu)$. Discuter le résultat de la première question pour $\lambda = 0$.
- 3. Si E est de dimension finie, démontrer que le résultat de la première question reste vrai pour $\lambda = 0$.

Exercice. Soit $E = \mathcal{C}^0([0,1], \mathbb{R})$. Pour $f \in E$, on note T(f) l'application définie sur [0,1] par

$$T(f)(x) = \int_0^1 \min(x, t) f(t) \, \mathrm{d}t$$

- 1. Monter que $T \in \mathcal{L}(E)$.
- 2. Déterminer les valeurs propres et les vecteurs propres de T.

Élève 6

Exercice CCP. Soit E un espace vectoriel réel de dimension finie $n \ge 1$ et u un endomorphisme de E annulé par $X^3 + X^2 + X$.

- 1. Montrer que im $u \oplus \ker u = E$.
- 2. Rappeler le lemme des noyeaux pour deux polynômes et en déduire que im $u = \ker(u^2 + u + \mathrm{id}_E)$.

- 3. On suppose que u est non bijectif. Déterminer les valeurs propres de u. **Exercice** (Mines Ponts 2022, adapté). Soient A, B, C des matrices de $\mathcal{M}_n(\mathbb{C})$ telles que AC = CB. Notons r le rang de la matrice C.
 - 1. Montrer que pour tout polynôme $P \in \mathbb{C}[X]$, P(A)C = CP(B).
 - 2. On note

$$\chi_B = \prod_{i=1}^m (X - \lambda_i)^{r_i}$$

 $\chi_B=\prod_{i=1}^m(X-\lambda_i)^{r_i}$ On note également, pour $i=1,\dots,m,\,N_i=\ker(B-\lambda_iI_n)^{r_i}.$ Justifier que

$$\mathbb{C}^n = \bigoplus_{i=1}^m N_i \tag{1}$$

- 3. Montrer que pour tout i et pour tout $x\in N_i,\, Cx\in \ker(A-\lambda_i I_n)^{r_i}.$
- 4. En prenant une base adaptée à la somme (1), en déduire que le pgcd de χ_A et χ_B est de degré plus grand que r.