Inhalt

1 Installation	2
2 Eingabefelder	
2.1 Register Betriebsart & Recalc	2
2.2 Register Untersetzung	2
2.2.1 Untersetzungsermittlung aus Zündsignal	2
2.2.2 Untersetzungsermittlung aus Getriebe und Reifen	2
2.2.3 Angabe der Gesamtuntersetzung n _{KuWe} / n _{Rolle}	2
2.2.4 Vario (km/h)	
2.3 Register Klimadaten	
2.4 Register Filter	
2.4.1 Gleitender Mittelwert	
2.4.2 Differenzenquotient	
2.4.3 n _{min,} v _{min}	
2.5 Register Rolle	
2.5.1 Rollendaten	
2.5.2 Verlustmoment	
2.6 Serielle Schnittstelle	
2.7 Fahrzeugdaten	
3 Diagramm	
3.1 Drehzahlober- und Untergrenze	
3.2 Zoom und Kurven Verschieben	
3.3 Auto	
3.4 Reset	
4 Speichern und Laden	
4.1 Speichern	
4.2 Konfiguration laden	
4.3 Automatisch erstellte Konfig.xml	
5 Drucken	
6 Ablauf der Messung	
7 Funktionstasten	
8 Hilfsprogramm Recalc	
8.1 Neuberechnen von Kurven	
8.2 Überlagern von Kurven	
9 Bekannte Probleme	8
9.1 Programmabsturz durch Zündsignal	8
10Diskussion	8
11Dokumentations-Stand	8

1 Installation

- 1. LabVIEW RunTime Installer
 - ..\LabVIEW\00_NI_LabVIEW\01_LVRTE2014SP1_f7Patchstd.zip entpacken
- LabVIEW RunTime mittels der soeben entpackten01_LVRTE2014SP1_f7Patchstd.exe installieren
- 3. VISA-Treiber downloaden und installieren:
 - ..\\LabVIEW\00 NI LabVIEW\02 NIVISA1600full downloader.exe
- 4. Windows neu starten
- Die WildBugChilGru.exe muss nicht über ein Installationsprogramm installiert werden, es reicht den Inhalt des Ordners ..\LabVIEW\01_EXE in einen lokalen Ordner wie z.B.
 C:\Programme\WildBugChilGru zu kopieren
- 6. WildBugChilGru.exe starten

ACHTUNG: Ein GSF-user hat berichtet, dass bei ihm NI VISA 16 unter Windows 7 nicht funktionierte, dafür aber NI VISA 5.2: Falls also unter Windows 7 mit der seriellen Schnittstelle Probleme auftreten sollten (wie z.B. Start-Button bleibt immer grau, obwohl in der EXE die richtige COM ausgewählt wurde und alle anderen COM belegenden Programme vor Start der EXE geschlossen wurden), dann NI VISA 16 deinstallieren und NI VISA 5.2 versuchen: http://www.ni.com/download/ni-visa-5.2/3337/en/

2 Eingabefelder

2.1 Register Betriebsart & Recalc

Hier kann zw. Messbetrieb und Tachomodus umgeschaltet werden.

Der Messbetrieb dient zur Aufzeichnung des Leistungsdiagramms.

Im Tachomodus können Rollen- und Motordrehzahl live betrachtet werden ohne einen Leistungslauf durchzuführen.

Über einen gesonderten Schalter kann die Auswertung von AFR und EGT aktiviert werden. Weiters ist es möglich λ statt AFR anzuzeigen.

Über diese Registerkarte kann auch das Hilfsprogramm Recalc gestartet werden, siehe Kapitel .8.

2.2 Register Untersetzung

Die Gesamtuntersetzung $i = n_{\text{Kurbelwelle}} / n_{\text{Rolle}}$ kann entweder über das Zündsignal eingemessen oder manuell angegeben werden.

2.2.1 Untersetzungsermittlung aus Zündsignal

Angegeben werden muss die Dauer in s für die Untersetzungsermittlung und die Anzahl der Zündimpulse je Kurbelwellenumdrehung, z.B. 1 bei Standardzündung und 2 bei Vespatronic bzw. 0,5 für 4-Takt Zylinder.

Die Untersetzung wird dann über die angegebene Zeitdauer (z.B. 5 s) bei annähernd konstant zu haltender Drehzahl (z.B. in einem Drehzahlbereich von ca. 3000 1/min) automatisch ermittelt.

2.2.2 Untersetzungsermittlung aus Getriebe und Reifen

Alternativ zur automatischen Ermittlung der Untersetzung kann diese manuell über Angabe der Getriebeübersetzung und des Reifenumfangs angegeben werden. Als Getriebe ist hier die Untersetzung i $_{\text{Getriebe}} = n_{\text{Kurbelwelle}} / n_{\text{Hinterrad}}$ anzugeben, also die Gesamtübersetzung bestehend aus Primär und Gangrädern.

Beispiel:

- Primär 65 : 23 = 2,826
- Lauf im 3. Gang 38: 17 = 2.235
- Die Gesamtübersetzung beträgt dann 2,826 * 2,235 = 6,316
- In das Eingabefeld Getriebe ist folglich der Wert 6,316 einzugeben

Werte typischer Getriebe und Reifendurchmesser sind aktuell noch nicht in die Software eingepflegt, findet man bis dahin aber z.B. in der GSF-Dyno Software.

2.2.3 Angabe der Gesamtuntersetzung n_{KuWe} / n_{Rolle}

Ist die Gesamtuntersetzung n_{KuWe} / n_{Rolle} bereits bekannt, weil sie beispielsweise schon mal über das Zündsignal eingemessen wurde, so kann diese direkt angegeben werden.

2.2.4 Vario (km/h)

Modus für Automatikgetriebe (Variomatic)

2.3 Register Klimadaten

Je nach Witterung liefert ein und derselbe Motor unterschiedliche Leistungswerte. So liefern Läufe bei sehr geringer Lufttemperatur zu hohe Drehmoment- und Leistungswerte und an heißen Tagen zu geringe. Beim Luftdruck verhält es sich genau umgekehrt. Daher erfolgt mit Hilfe der beim Lauf aktuellen Klimadaten eine Korrektur der Drehmoment- und Leistungsberechnung nach DIN 70020. Es kann ausgewählt werden, ob die Klimadaten manuell eingegeben werden oder automatisch über einen Bosch BME280 Klimasensor gemessen und eingelesen werden sollen.

Die Berechnung des Leistungskorrekturfaktors erfolgt entsprechend DIN 70020:

$$Ka = \frac{1013}{p \text{ [mbar]}} \cdot \left(\frac{T \text{ [K]}}{293}\right)^{0.5}$$

mit

- Ka Korrekturfaktor
- p Atmosphärischer Druck am Prüfstand in mbar (1 mbar = 0,001 bar)
- T Lufttemperatur am Prüfstand in Kelvin (0°C = 273 K)

z.B.

- Umgebungsluftdruck p = 936 mbar
- Umgebungstemperatur T = 17°C = 290K
- nach DIN 70200 ergibt sich: Ka = 1,07671

Luftdruck wird nach DIN 70020 der gemessene absolute Druck der feuchten Luft verwendet, d.h. Luftfeuchtigkeit geht nach DIN 70020 nicht in die Berechnung ein.

2.4 Register Filter

2.4.1 Gleitender Mittelwert

Damit vermindert man das Rauschen im Drehzahlverlauf, welches in einer Drehzahlmessung je nach Rundlauf der Rolle und des Gebers, der Geberauflösung, Messgenauigkeit usw. immer in einem gewissen Maß vorhanden ist.

Je höher der Zahlenwert in Gleitender Mittelwert, umso stärker wird geglättet.

Änderung des Wertes wirkt sich erst im nächsten Lauf aus. Möchte man die Auswirkung des geänderten Filterparameters auf den letzten oder einen früher schon gespeicherten Lauf beurteilen, so geht ist dies über das Hilfsprogramm Recalc möglich, siehe Kapitel 8.

2.4.2 Differenzenguotient

Aus dem bereits mittels Gleitendem Mittelwert geglätteten Drehzahlverlauf wird die Beschleunigung errechnet, welche erneut geglättet werden muss.

Je <u>höher</u> der Zahlenwert in Differenzenquotient, umso stärker wird geglättet.

Änderung des Wertes wirkt sich erst im nächsten Lauf aus. Möchte man die Auswirkung des geänderten Filterparameters auf den letzten oder einen früher schon gespeicherten Lauf beurteilen, so geht ist dies über das Hilfsprogramm Recalc möglich, siehe Kapitel 8.

2.4.3 n_{min} , v_{min}

Die Rollendrehzahl wird während des Laufs solange erfasst, bis vom Gas gegangen wird und die Drehzahl folglich zu sinken beginnt. Um Fehlauslösungen zu vermeiden, wird auf dieses Absinken der Drehzahl erst bei Kurbelwellendrehzahlen $> n_{min}$ bzw. im Vario-Modus bei Geschwindigkeiten $> v_{min}$ geachtet. Die Drehzahl n_{min} bzw. die Geschwindigkeit v_{min} muss also während des Laufs überschritten werden, ansonsten wird kein Ende des Laufs erkannt.

2.4.4 Filter für Zündsignal

Filtert das Zündsignal beim Einmessen der Übersetzung um Ausreißer im Signal zu vermeiden.

2.5 Register Rolle

2.5.1 Rollendaten

Die Anzahl der Inkremente je Umdrehung des Rollengebers, der Umfang der Rolle als auch die rotatorische Massenträgheit der Rolle sind anzugeben. Wobei die ersten beiden Werte klar sind, muss die Trägheit errechnet und i.d.R. dann noch nachjustiert werden, optimaler Weise indem man Vergleichsläufe mit dem eigenen Prüfstand und einem Referenzprüfstand vornimmt.

Beispiel:

- Am besten rechnet durchgehend alles in den Grundeinheiten kg und m:
- Rolle aus Stahl mit spezifischem Gewicht ρ = 7850 kg/m³
- Rollendurchmesser D = 0,4 m und Länge L = 0,5 m
- Umfang U = D * π = 0,4 * π = 1,257 m
- Volumen V = $(D^2 * \pi * L) / 4 = (0.4^2 * \pi * 0.5) / 4 = 0.0628 \text{ m}^3$
- Masse m = $V * \rho = 0.0628 * 7850 = 493.23 \text{ kg}$
- Trägheit $J = (m * D^2) / 8 = (493,23 * 0,4^2) / 8 = 9,865 \text{ kgm}^2$

In die Fehler Rollenumfang und Rollenträgheit sind folglich die Werte 1,257 m bzw. 9,865 kgm² einzugeben.

Meist zeigt der Prüfstand dann noch etwas falsche (meist zu geringe) Leistungswerte im Vergleich zu geeichten Referenzprüfständen. Der Wert für die Rollenträgheit ist dann entsprechend anzupassen (meist zu erhöhen).

Beispiel 1:

- Errechnete Rollenträgheit 9,865 kgm²
- Damit ermittelte Leistung 20.3 PS
- Referenzprüfstand zeigt aber nur 18,7 PS
- Rollenträgheit ist dann auf 9,865 * 18,7 / 20,3 = 9,087 kgm² zu verringern

Beispiel 2:

- Errechnete Rollenträgheit 9,865 kgm²
- Damit ermittelte Leistung 20,3 PS

Rollendrehzahl über der Zeit

- Referenzprüfstand zeigt aber 23,6 PS
- Rollenträgheit ist dann auf 9,865 * 23,6 / 20,3 = 11,469 kgm² zu erhöhen

2.5.2 Verlustmoment

Optional kann das Verlustmoment der Rolle, welches vorwiegend durch Lagerreibung verursacht wird, berücksichtigt werden. Wird dieses korrekt berücksichtigt, kann die rotatorische Massenträgheit der Rolle i.d.R. näher am errechneten Wert eingetragen.

Das Verlustmoment wird als linear von der Rollendrehzahl abhängig modelliert:

Durch Einstellung M0 = 0, M1 = 0, n1 = 1 bleibt das Verlustmoment unberücksichtigt. Möchte man das Verlustmoment berücksichtigen, so erfolgt dies am besten mittels Messung im

Rahmen eines Ausrollversuchs:

• Durch Aktivierung des Schalters • öffnet sich ein neues Fenster mit Graph der

- Das Senden der aktuellen Rollendrehzahl beginnt sobald START geklickt wird und wird wieder beendet mit Cancel. Funktion von Start/Cancel also wie bereits vom Tachomodus bekannt.
- Sobald das Senden der Telegramme gestartet wurde, kann die Aufzeichnung durch *Record* gestartet werden.
- Sobald die Aufzeichnung aktiviert wurde wird der Drehzahlverlauf im Graphen dargestellt.
- Während laufender Aufzeichnung kann der Inhalt des Graphen jederzeit durch Klick auf Reset gelöscht werden. Die Aufzeichnung beginnt dann ab diesem Zeitpunkt neu zu laufen.
- Sobald man die Aufzeichnung durch Deaktivieren von *Record* wieder gestoppt hat, kann man den Inhalt des Graphen durch klick auf *Export* ins Excel exportieren. Es öffnet sich dann automatisch eine Excel-Tabelle, welche gespeichert und weiterverarbeitet werden kann. Voraussetzung ist natürlich am Rechner installiertes Excel.
- Über Ausschalten von precord dyno speed wird das Graph-Fenster wieder geschlossen.

Für die Aufzeichnung beschleunigt man die Rolle am besten auf Maximaldrehzahl, hebt den Reifen von der Rolle ab, startet die Aufzeichnung und läst diese dann bis zum Stillstand der Rolle laufen. Wie man eine solche Aufzeichnung auswertet zeigt beispielsweise GSF-user hanni-piston hier: https://www.germanscooterforum.de/topic/335103-open-source-pr%C3%BCfstandssoftware-aufbasis-von-arduino-mega-und-labview/?page=65&tab=comments#comment-1069058937

2.6 Serielle Schnittstelle

Der Serielle Port, an welchem die Auswerteelektronik angeschlossen ist, ist anzugeben. Der lässt sich z.B. über den Geräte-Manager der Windows Systemsteuerung eruieren. Hier im Bild noch mit Arduino Uno, tatsächlich verwendet wird mittlerweile ein STM32:

Im Textfeld werden die aktuell von der Elektronik an den PC übertragenen Daten angezeigt. Eine Zeile entspricht einem Telegramm und enthält jeweils folgende Daten durch ; getrennt

- Telegrammnummer (von 0 bis 65535 hochlaufend, dann wieder mit 0 beginnend)
- Messfrequenz in Hz (zeitlicher Abstand zwischen zwei aufeinanderfolgenden Telegrammen)
- Aktuelle Frequenz des Zündsignals in Hz
- Aktuelle Frequenz des Rollensignals in Hz
- EGT [°C]
- AFR

Im Optimalfall wird immer nur 1 Zeile (= 1 Telegramm) angezeigt, d.h. dass das Telegramm durch die Software vollständig verrechnet wurde, bevor das nächste Telegramm im PC eintrifft.

Ist die Rechenleistung des PCs zu schwach, erhöht sich die Anzahl der angezeigten Telegramme und der rote Balken (= Füllstand des Lesepuffers) steigt. Die Telegramme gehen dann nicht verloren, sondern werden zwischengespeichert und zeitlich verzögert abgearbeitet. Die Drehzahl- und Geschwindigkeitszeiger arbeiten dann natürlich entsprechend zeitverzögert.

Je nach Leistung des PCs muss nach Hochfahren des PCs eventuell einige Zeit gewartet werden, bis der Füllstand des Lesepuffers von Beginn eines Laufs weg auf niedrigem Niveau bleibt (z.B. Update Virenscanner abwarten, ...). Es empfiehlt sich ggf. die Kontrolle der CPU- und Datenträger-Auslastung mittels Windows Taskmanager.

2.7 Fahrzeugdaten

In das Eingabefeld oberhalb der Leistungskurve können Fahrzeugdaten eingegeben werden (maximal 3 zeilen), welche dann auch im Protokoll erscheinen wie z.B.:

- Besitzer des Rollers
- Zylindertype

- Zylinder Steuerzeiten
- Drehschieber Steuerzeiten od. Membran
- Hub
- Auspuff
- Zündzeitpunkt
- Vergasertype und Bedüsung
- Luftfilter
-

3 Diagramm

3.1 Drehzahlober- und Untergrenze

Alle Achsen werden nach Beendigung eines Laufs automatisch skaliert. Der im Diagramm dargestellte Drehzahlbereich kann aber bei Bedarf direkt an den beiden Enden der Drehzahlachse im Diagramm eingegeben werden.

3.2 Zoom und Kurven Verschieben

Über die Graph-Palette in der rechten unteren Ecke des Graphen können die Kurven auf vielfältige Weise gezoomt oder verschoben werden. Einfach testen.

3.3 Auto

Über die Schaltfläche Auto werden die Kurven im jeweiligen Diagramm maximiert. Zusätzlich wird (bei aktiviertem AFR/EGT-Diagramm) die x-Achse des anderen Diagramms entsprechend mitskaliert.

3.4 Reset

Über die Schaltfläche Reset werden die Achsskalierungen im jeweiligen Diagramm auf Standardskalierung zurückgesetzt. Zusätzlich wird (bei aktiviertem AFR/EGT-Diagramm) die x-Achse des anderen Diagramms entsprechend mitskaliert.

4 Speichern und Laden

4.1 Speichern

Über die Schaltfläche Speichern wird die komplette Konfiguration (Werte aller Eingabefelder), die berechneten Kurven als auch der zeitliche Verlauf des noch ungefilterten Rollensignals (also noch vor Durchlaufen des gleitenden Mittelwertfilters) des letzten Laufs in ein XML-File abgespeichert.

4.2 Konfiguration laden

Über den Button Konfiguration laden kann die in einem XML-File enthaltene Konfiguration geladen werden. Sämtliche Eingabefelder werden dann entsprechend ausgefüllt und die Schalter zur Untersetzungs- und Klimadatenermittlung entsprechend gesetzt.

Ggf. ebenfalls im XML enthaltenen Leistungskurven werden nicht geladen.

4.3 Automatisch erstellte Konfig.xml

Wird das Programm nach einem Lauf mittels des Buttons Ende beendet, so wird die aktuelle Konfiguration automatisch in die Datei Konfig.xml gespeichert, welche dann beim nächsten Programmstart wieder automatisch geladen wird. So erspart man sich ggf. das manuelle Speichern und Laden der Konfiguration.

5 Drucken

Über den Button Drucken wird ein Protokoll erstellt und an den unter Windows eingerichteten **Standarddrucker** geschickt.

6 Ablauf der Messung

- 1. EXE starten
- 2. Einstellung COM Port
- 3. Eingabe der Daten und Wahl der Art der Untersetzungs- und Klimadatenermittlung bzw. Laden der Konfiguration aus einer XML-Datei.
- 4. In Gang hochschalten, in welchem der Lauf erfolgen soll
- 5. Auf konstante Drehzahl bringen
- 6. Messung mittels Button START starten
- 7. Falls aktiviert, werden nun die Klimadaten gemessen und eingelesen.

- 8. Falls Untersetzungsermittlung aus Zündsignal gewählt ist, startet nun die Übersetzungsermittlung.
- 9. Warten auf grünes GO
- 10. Vollgas geben bis Maximaldrehzahl erreicht wird (Achtung: hier muss zumindest der Eingabewert n_{min} bzw. v_{min} überschritten werden!)
- 11. Vom Gas gehen
- 12. Bei Reduzierung der Drehzahl wird die Messung automatisch beendet und die Kurven visualisiert
- 13. Die Messung kann nun inkl. der Konfiguration als XML gespeichert und die Kurven gedruckt werden
- 14. Für neuen Lauf ab Schritt 3 wiederholen
- 15. Programm beenden mittels ENDE

Nach betätigen des START Buttons in Schritt 6, ändert sich dessen Text in Abbrechen. Durch betätigen dieses Abbrechen Buttons kann ein Lauf jederzeit abgebrochen werden. Der Button ändert sich dann wieder in START.

7 Funktionstasten

In der Prüfstandssoftware (nicht in Recalc) kann statt auf die Buttons zu klicken, die jeweilige Funktion auch über folgende Funktionstasten aufgerufen werden:

F1	Start	F3	Speichern	F5	Ende
F2	Konfiguration laden	F4	Drucken	F6	Recalc

8 Hilfsprogramm Recalc

Zusätzlich zur eigentlichen Prüfstandssoftware existiert das Hilfsprogramm Recalc, welches aus der gleichnamigen Registerkarte gestartet werden kann. Nach Beendigung von Recalc kehrt man automatisch wieder in die Prüfstandssoftware zurück.

8.1 Neuberechnen von Kurven

Der letzte in der Prüfstandssoftware abgeschlossene Lauf wird automatisch ins Recalc übergeben und dort angezeigt. Alternativ kann über den Button Öffnen ein früherer Lauf aus einer XML eingelesen werden. Die zuletzt angezeigte Kurve wird dann gelöscht und durch jene aus der XML ersetzt.

Solange nur ein einziger Lauf angezeigt wird, können nun die Auswirkungen unterschiedlicher Einstellungen folgender Eingabefelder getestet werden:

- Rollenträgheit
- Gleitender Mittelwert
- Differenzenguotient

Eine Änderung dieser Werte wirkt sich nach Klick auf den Button Berechnen aus.

Man kann also einen Lauf mal mit irgendwelchen Werten durchführen und speichern und anschließend in Recalc die Werte solange anpassen, bis die Kurve ausreichend gut mit jener eines Referenzprüfstands übereinstimmt. Die so gefundene Konfiguration kann man dann wieder als XML speichern und in der Prüfstandssoftware mittels Konfiguration laden für die nächsten Läufe importieren. Ebenfalls kann die neu berechnete Kurve gedruckt werden (Ausgabe erfolgt stets am Windows Standarddrucker).

8.2 Überlagern von Kurven

Über den Button Vergleichen kann man zusätzliche Kurven laden, welche dann zusätzlich im Graphen eingeblendet werden. Es können bis zu maximal 7 Kurven (jeweils M und P) gleichzeitig dargestellt werden. Jede Kurve erhält automatisch eine eigene Farbe.

Durch Mausbewegung über das Textfeld oberhalb des Graphen wird dieses automatisch vergrößert und die Daten sämtlicher Kurven eingeblendet.

Sobald mehr als eine Kurve angezeigt wird, können diese nicht mehr neu berechnet oder gespeichert werden. Sehr wohl können die überlagerten Kurven aber gedruckt werden (Ausgabe erfolgt stets am Windows Standarddrucker).

9 Bekannte Probleme

9.1 Programmabsturz durch Zündsignal

Z.T. berichten Anwender, dass bei Nutzung des Zündsignal die Prüfstandssoftware abstürzt/einfriert. Folgendes brachte dann oft Abhilfe:

- Entstörte Zündkerze
- Entstörter Zündkerzenstecker
- Beiderseits Magnete auf Krokoklemme, falls eine solche zur Zündabnahme verwendet wird.
- Zange einer Zündpistole statt Krokoklemme
- Zündzange über Koaxkabel (Antennenkabel) zur Auswerteelektronik verbinden: Innenleiter = Zündsignal
 Schirm großflächig (!) leitend aufs Prüfstandsgestell verbinden und dieses leitend mit Hauserde verbinden
- Elektronik in metallenen Kasten / Schaltschrank verbauen und diesen leitend mit Hauserde verbinden

10 Diskussion

https://www.germanscooterforum.de/topic/335103-open-source-prüfstandssoftware-auf-basis-von-arduino-mega-und-labview

11 Dokumentations-Stand

GSF-user grua am 25.01.2021