二阶线性微分方程

钟思佳

东南大学数学系

December 29, 2017

基本概念

线性微分方程

$$a_0(x)y^{(n)}(x)+a_1(x)y^{(n-1)}(x)+\cdots+a_{n-1}(x)y'(x)+a_n(x)y(x)=f(x)$$

- if f(x) ≠ 0, 非齐次

 $n = 2 \Longrightarrow$

$$a_0(x)y^{"}(x) + a_1(x)y^{'}(x) + a_2(x)y(x) = 0$$
 (1)

$$a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y(x) = f(x)$$
 (2)

Theorem

- (1) If $y_1(x)$, $y_2(x)$ 是 (1) 的两个解,则 $C_1y_1(x) + C_2y_2(x)$ 也是(1) 的解。
- (2) If $y_1(x)$, $y_2(x)$ 是 (2) 的两个解,则 $y_1(x) y_2(x)$ 是 (1) 的解。

线性相关,线性无关,定义回到几何与代数。

$$a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y(x) = 0$$
 (1)

$$a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y(x) = f(x)$$
 (2)

Theorem

 $If y_1(x), y_2(x)$ 是 (1) 的两个线性无关解, $y^*(x)$ 是(2) 的一个特解,则

- (i) (1) 的通解为 $y = C_1 y_1(x) + C_2 y_2(x)$,
- (ii) (2) 的通解为 $y = C_1 y_1(x) + C_2 y_2(x) + y^*(x)$ 。

例 3.1. 已知某二阶线性非齐次微分方程的三个解为 $y_1 = 5e^{5x} + 5$, $y_2 = 2e^{2x} + 3$, $y_3 = 3e^{5x} + 4e^{2x} + 2$, 求此方程的 通解。

Theorem

设 $y_i^*(x)$, (i = 1,2) 分别是方程

$$a_0(x)y^{''}(x) + a_1(x)y^{'}(x) + a_2(x)y(x) = f_1(x)$$

与

$$a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y(x) = f_2(x)$$

的解,则 $y_1^* + y_2^*$ 是

$$a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y(x) = f_1(x) + f_2(x)$$

的解

常系数二阶线性齐次微分方程

$$ay'' + by' + cy = 0$$

 e^{rx} ? $\sin rx$? $\cos rx$?

$$\cos rx = \frac{e^{irx} + e^{-irx}}{2}, \sin rx = \frac{e^{irx} - e^{-irx}}{2i}$$

$$\Rightarrow e^{rx}$$

常系数二阶线性齐次微分方程

$$ay''+by'+cy=0$$

⇒ 求解特征方程 $ar^2 + br + c = 0$

$$ar^2 + br + c = 0$$

- if $b^2 4ac > 0$, 两个不同的根 r_1 , r_2 , $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$.
- if $b^2 4ac = 0$, 两重根 $r, y = (C_1 + C_2 x)e^{rx}$.
- if $b^2 4ac < 0$, 一对共轭复根, $r = \alpha \pm i\beta$, $y = (C_1 \cos(\beta x) + C_2 \sin(\beta x))e^{\alpha x}$.