CSC363 Tutorial 11

almost done!

Paul "sushi_enjoyer" Zhang

University of Chungi

March 30, 2021

Learning objectives this tutorial

By the end of this tutorial, you should...

Have one more NP-complete problem added to your "NP-complete problems" toolkit.

Add a problem to your "NP-hard problems" toolkit, even though it's kinda useless since the problem isn't even computable.

Probably work on assignment 5? Oh wait, you probably have other courses with higher priority...:(

Be scared for the final exam! D:

Feel like sushi_enjoyer is just being sarcastically enthusiastic about CSC363 material when he himself hates it.

Big Chungus certified readings: chapter 8 probably, but it isn't really necessary tbh.

do you like proving NP-completeness? D:

well too bad! you'll have to do it for the upcoming problem set.

Set cover

We will now describe the **set cover problem** and prove it is NP-complete, because why not.

Suppose we are given a set of elements U (called the *universe*), and a collection $S = \{S_1, \dots, S_n\}$ of subsets of U such that (brace yourself, \bigcup)

$$\bigcup_{i=1}^n S_i = U.$$

A set cover of U is a subcollection $\mathcal{S}' = \{S_{i_1}, S_{i_2}, \dots, S_{i_k}\} \subseteq \mathcal{S}$ such that

$$\bigcup_{m=1}^k S_{i_k} = U.$$

For example, if $U = \{1, 2, 3, 4, 5\}$, and our collection of sets is $S = \{\{1, 2, 3\}, \{2, 4\}, \{3, 4\}, \{4, 5\}\}$, then $\{\{1, 2, 3\}, \{4, 5\}\}$ is a set cover.

Set cover

Task: Let
$$U = \{ , \vec{b}, \not/, r, \not/, \land \}$$
, and

$$\mathcal{S} = \{\{ \textcircled{6}, \textbf{/}\}, \{ \textcircled{1}, \textbf{/}, \textbf{\wedge}\}, \{ \textcircled{1}, \textbf{/}, \textbf{/}\}, \{ \textcircled{1}, \textbf{\wedge}, \textbf{/}\}, \{ \textcircled{1}, \textbf{/}, \textbf{\wedge}\} \}.$$

Find the smallest set cover of U.

Answer: The smallest set cover is $\{\{[0, \mathbb{Z}, \mathbb{A}], \{(\mathbb{S}, \mathbb{Z}, \mathbb{Z})\}\}$, which is of size 2.

Now given a universal set U, a collection $S = \{S_1, \ldots, S_n\}$ of subsets of U, and a natural number k, the **set cover problem** asks you whether it is possible to find a set cover for U of size k. In language form, it would be

Set-Cover = $\{(U, S, k) : U \text{ is a set, } S \text{ is a collection of subsets of } U,$ and there is a set cover of U of size $k\}$.

Turns out this problem is NP-complete! Let's prove it's NP first. **Task:** Prove that Set-Cover is NP.

Task: Prove that Set-Cover is NP.

Answer: We can build a poly-time verifier V that checks whether a given subcollection S' of S is a set cover for U.

$$V(U,\mathcal{S},k,\mathcal{S}')$$
: Check if $\mathcal{S}'\subseteq\mathcal{S}$
Check if $\bigcup_{S_i\in\mathcal{S}'}S_i=U$
Check if $|\mathcal{S}'|=k$
Accept iff all of the above are true

Now we prove it is NP-complete. Remember how we can prove something is NP-complete by showing that some known NP-complete problem reduces to it?

Now we prove it is NP-complete. Remember how we can prove something is NP-complete by showing that some known NP-complete problem reduces to it?

Task: Show that Set-Cover \in NP by proving Vertex-Cover \leq_p Set-Cover.¹

 $^{^{1}}$ Recall: this involves converting an instance of the vertex cover problem into an instance of set cover problem in poly-time.

Answer: Suppose we are given an instance (G, k) of the vertex cover problem. We may transform it into a set cover problem $(U_G, \mathcal{S}_G, k_G)$ with the property that

$$(G, k) \in \text{Vertex-Cover} \Leftrightarrow (U_G, S_G, k_G) \in \text{Set-Cover}.$$

Let v_1, \ldots, v_n be the vertices of G, and e_1, \ldots, e_m the edges of G. Define U_G, S_G, k_G as follows:

 U_G will consist of all the edges $\{e_1,\ldots,e_m\}$.

For each vertex v_i , let S_i be the set of edges that v_i touches. Then let $S_G = \{S_1, \ldots, S_n\}$.

$$k_G = k$$
.

This transformation takes poly-time with respect to the size of (G, k). We claim $(G, k) \in \text{Vertex-Cover} \Leftrightarrow (U_G, \mathcal{S}_G, k_G) \in \text{Set-Cover}$.

We'll "prove" $(G, k) \in \text{Vertex-Cover} \Leftrightarrow (U_G, S_G, k_G) \in \text{Set-Cover via example.}^2$ Suppose k = 2 and G is the following graph:

 U_G will consist of all the edges $\{e_1,\ldots,e_m\}$.

For each vertex v_i , let S_i be the set of edges that v_i touches. Then let $S_G = \{S_1, \ldots, S_n\}$.

 $k_G = k$.

Task: Find U_G , S_G , and k_G for this instance of the vertex cover problem.

²Please, please, do not do this in any proof course. It's just easier for illustrate with an example.

$$U_G=\{e_1,e_2,e_3,e_4,e_5\}.$$
 We have $S_1=\{e_1,e_2\},~S_2=\{e_1\},~S_3=\{e_2,e_4\},~S_4=\{e_3,e_4,e_5\},~S_5=\{e_5\}.$ So

$$\mathcal{S}_G = \{S_1, \dots, S_5\} = \{\{e_1, e_2\}, \{e_1\}, \{e_2, e_4\}, \{e_3, e_4, e_5\}, \{e_5\}\}.$$

$$k_G = 2$$
 since $k = 2$.

Task: Find a vertex cover for *G*. What would the corresponding set cover be?

$$U_G=\{e_1,e_2,e_3,e_4,e_5\}.$$
 We have $S_1=\{e_1,e_2\},\ S_2=\{e_1\},\ S_3=\{e_2,e_4\},\ S_4=\{e_3,e_4,e_5\},\ S_5=\{e_5\}.$ So $S_G=\{S_1,\ldots,S_5\}=\{\{e_1,e_2\},\{e_1\},\{e_2,e_4\},\{e_3,e_4,e_5\},\{e_5\}\}.$

$$k_G = 2$$
 since $k = 2$.

 v_1, v_4 form a vertex cover of G. $S' = \{S_1, S_4\}$ forms a set cover of U.

Break time!

No sushi juice this time. But you get to ask me one question, about pretty much anything (as long as it's appropriate i guess lol).

no more brake time with uwu

Alright so we now have one more problem that we know is NP-complete. I'm so excited! Anyone? ;-;

Let's add an NP-hard problem to the back of our memory! This one is actually a bit tricky to prove though...

Task: What does HP stand for?

no more brake time with uwu

Task: What does HP stand for?

Answer: Helo Phish.

 $HP = \{(M, w) : M \text{ is a Turing machine that halts on input } w\}.$

We will prove HP is NP-Hard by showing $3SAT \leq_p HP$.

³In fact, any computable language A satisfies $A \leq_p HP!$ You can just adapt the proof I'm about to show.

HP is **NP**-complete

 $\mathsf{HP} = \{(M,w) : M \text{ is a Turing machine that halts on input } w\}.$ We will construct the following reduction of 3SAT to HP. Suppose φ is a given instance of 3SAT. Construct the following Turing machine M:

 $M(\varphi)$: Check whether $\varphi \in 3\mathrm{SAT}$ via brute force. If $\varphi \in 3\mathrm{SAT}$: Accept Else:

Notice that it takes constant time to construct M, since the code of M doesn't depend on φ at all. It's like writing a program that writes a fixed Python script into a text file. Also, we don't run M; we only construct it, and bypass the exponential time computation needed to check whether $\varphi \in 3SAT$ via brute force. Again, it's like writing some really slow code to a text file but not running it.

HP is **NP**-complete

 $\mathsf{HP} = \{(M,w) : M \text{ is a Turing machine that halts on input } w\}.$ We will construct the following reduction of 3SAT to HP. Suppose φ is a given instance of 3SAT. Construct the following Turing machine M:

```
M(\varphi) : Check whether \varphi \in 3\mathrm{SAT} via brute force. If \varphi \in 3\mathrm{SAT}: Accept Else:
```

Task: Show $\varphi \in 3SAT \Leftrightarrow (M, \varphi) \in HP$, where M is as above. Then convince yourself that we can replace 3SAT with any computable language, and the same proof would work.

buy

helo_fish.jpg is sad to see you go ;-; only one more week left! D: helo