Authors' copy: V.A.Plujko, R. Capote and O.A.Gorbachenko, Atomic Data & Nuclear Data Tables 97 (2011) 567–585

GIANT DIPOLE RESONANCE PARAMETERS WITH UNCERTAINTIES FROM PHOTONUCLEAR CROSS SECTIONS

V.A. Plujko^{a,b}, R. Capote^{c,*}, O.M. Gorbachenko^a

 $^a Taras\ Shevchenko\ National\ University,\ Kyiv,\ Ukraine$ $^b Institute\ for\ Nuclear\ Research,\ Kyiv,\ Ukraine$ $^c NAPC-Nuclear\ Data\ Section,\ International\ Atomic\ Energy\ Agency,\ Vienna,\ Austria$

Abstract

Renewed values and corresponding uncertainties of Isovector Giant Dipole Resonance (IVGDR or GDR) model parameters are presented which are obtained by the least-squares fitting of theoretical photoabsorption cross sections to experimental data. The theoretical photoabsorption cross section is taken as a sum of the components corresponding to excitation of the GDR and quasideuteron contribution to the experimental photoabsorption cross section. The present compilation covers experimental data as of January 2010.

 $Email\ address: \ {\tt R.CapoteNoy@iaea.org}\ ({\tt R.\ Capote})$

 $^{^*}$ Corresponding author.

Contents

1.	Intro	oduction	2
2.	Theo	pretical considerations	3
3.	Data	a treatment	6
4.	Polic	ey	7
	Refer	rences	8
Ex	plana	ation of Tables	11
Та	bles		
	1.	Experimental values and uncertainties of GDR parameters within Standard Lorentzian (SLO) approach	13
	2.	Experimental values and uncertainties of GDR parameters within Modified Lorentzian (SMLO) approach	18
	3	References to experimental and evaluated cross section data taken from EXFOR	23

1. Introduction

Isovector Giant Dipole Resonances (IVGDR or GDR) are strongly displayed in electric dipole (E1) gamma-transitions in processes of photo-absorption and gamma decay of the atomic nuclei [1, 2, 3, 4, 5].

The experimental values of the GDR parameters in cold atomic nuclei are most reliably deduced from photo-absorption data. An extensive compilation of the parameters of Lorentz curves fitted to the total photoneutron cross-section data for medium and heavy nuclei (A > 50) was prepared by Dietrich and Berman [6]. Additional analysis of experimental data was presented by Berman *et al.* [7]. The data from Ref.[6] and GDR parameters for light nuclei 12 C, 14 N, 16 O, 27 Al and 28 Si nuclei were listed in the RIPL-1 database [4] as well as in the RIPL-3 [5] /gamma/gdr-parameters-exp.dat file. If the contribution of photo-proton cross sections to the total photoabsorption cross section is small, then the Lorentzian parameters of the total photo-neutron cross sections in spherical and axially deformed nuclei can be identified with the GDR parameters (see Section 2 for details).

Comprehensive databases of the photonuclear reaction parameters are also presented in Refs.[8, 9]. The photo-proton contribution was included there, but the parameters were obtained without the least-squares fitting to Lorentzian shape. Specifically, those databases listed full width at half maximum (FWHM) data for the largest peak in the photonuclear cross sections, that is, they do not contain explicit information on the GDR components of the damping widths in axially deformed nuclei (i.e., on the deformation splitting of the GDR).

Microscopic predictions of the GDR energies and widths for about 6000 nuclei from $14 \le Z \le 110$ between the proton and the neutron drip lines are given in the RIPL-3 database [5]. These GDR parameters were provided by Goriely et al. [10, 11] and resulted from a fit of microscopic calculations of the Lorenzian functions. The calculations were performed on the basis of the quasi-particle random-phase-approximation (QRPA) as well as the microscopic Hartree-Fock-Bogoliubov plus quasi-particle random phase approximation model (HFB-QRPA) with a realistic Skyrme interaction.

For heated atomic nuclei, the GDR parameters are determined by gamma-decay data. Compilation and parametrization of the GDR resonances built on excited states are given in Refs. [12, 13].

A comprehensive experimental database containing a proper estimate of the accuracy of the GDR parameters is very important in nuclear reaction codes for the reliable modelling of E1 gamma-ray cascades in highly excited nuclei as well as for the verification of different theoretical approaches used to describe GDR resonances.

In this contribution, we present tables of updated values of the GDR parameters with estimations of their uncertainties (one-sigma standard deviation). The GDR parameters are treated as variables in the least-squares fitting of the calculated total photo-absorption cross sections to the experimental data retrieved from the EXFOR database [14].

The GDR component of the photoabsorption cross section is calculated within Lorentzian-like models described in more details in Section 2.

For experimental data, we use either the total photoabsorption cross section (if they exist in the EXFOR database) or a combination of experimental partial cross sections best suited for approximation to the total photoabsorption cross section. Estimated data also include contributions from photo-proton reactions, which are important for light nuclei. The evaluation of measured total photoabsorption data and their uncertainties is discussed in Section 3.

The values and corresponding uncertainties of the Lorentzian-like model parameters are given in Tables 1 and 2. These values are derived from a fit of the theoretical photoabsorption cross sections to the experimental data for 131 isotopes from ¹⁰B to ²³⁹Pu nuclei (262 entries) and 9 elements of natural isotopic composition (14 entries). Theoretical photoabsorption cross sections are given by a standard Lorentzian (SLO) model (using parameters from Table 1) or by a Simplified version of the modified Lorentzian (SMLO) approach (using parameters from Table 2; see also Ref. [5] for a detailed description). This compilation updates and extends the RIPL-3 database [5] contained in files /gamma/gdr-parameters&errors-exp-MLO.dat.

2. Theoretical considerations

The theoretical photoabsorption cross section $\sigma_{abs}(\epsilon_{\gamma})$ of gamma-ray energy ϵ_{γ} is taken as a sum of the terms corresponding to the GDR excitation and quasi-deuteron photodisintegration:

$$\sigma_{abs}(\epsilon_{\gamma}) = \sigma_{GDR}(\epsilon_{\gamma}) + \sigma_{ad}(\epsilon_{\gamma}), \tag{1}$$

where the component $\sigma_{GDR}(\epsilon_{\gamma})$ corresponds to the excitation of the GDR and $\sigma_{qd}(\epsilon_{\gamma})$ is a quasi-deuteron contribution (a photoabsorption cross section on a neutron-proton pair), which is taken in accordance with the model proposed by Chadwick *et al.* [15] (see also Ref. [8]).

$$\sigma_{qd}(\epsilon_{\gamma}) = 6.5 \frac{NZ}{A} \sigma_d(\epsilon_{\gamma}) f(\epsilon_{\gamma}).$$
 (2)

Here, $\sigma_d(\epsilon_{\gamma})$ is the experimental photodisintegration cross section of the free deuteron

$$\sigma_d(\epsilon_\gamma) = 61.2 \; \frac{(\epsilon_\gamma - 2.224)^{3/2}}{\epsilon_\gamma^3},\tag{3}$$

with ϵ_{γ} in MeV and σ_d in units of mb. The function $f(\epsilon_{\gamma})$ accounts for the Pauli-blocking of the excited neutron-proton pair in the nuclear medium:

$$f(\epsilon_{\gamma} < 20 \text{ MeV}) = \exp(-73.3/\epsilon_{\gamma}),$$

$$f(20 < \epsilon_{\gamma} < 140 \text{ MeV}) = 8.3714 \times 10^{-2} - 9.8343 \times 10^{-3} \epsilon_{\gamma} + 4.1222 \times 10^{-4} \epsilon_{\gamma}^{2}$$

$$- 3.4762 \times 10^{-6} \epsilon_{\gamma}^{3} + 9.3537 \times 10^{-9} \epsilon_{\gamma}^{4}.$$
(4)

The GDR component, $\sigma_{GDR}(\epsilon_{\gamma})$, of the total photoabsorption cross section is taken as given in Refs. [1, 2, 3, 4, 5, 6, 8] to be equal to the photoabsorption cross section of electric dipole gamma-rays $\sigma_{E1}(\epsilon_{\gamma})$, which is proportional to strength function $S_{E1}(\epsilon_{\gamma})$

$$\sigma_{E1}(\epsilon_{\gamma}) = \frac{8\pi\alpha}{3} \ \epsilon_{\gamma} \ S_{E1}(\epsilon_{\gamma}) \tag{5}$$

with fine structure constant $\alpha = e^2/(\hbar c)^2$.

The strength function $S_{E1}(\epsilon_{\gamma})$ is determined by the imaginary part $\chi''(\omega)$ of the response function of the atomic nucleus to the E1 field of frequency $\omega = \epsilon_{\gamma}/\hbar$. In the vicinity of an isolated resonance state, the strength function has Lorentzian-like shape

$$S_{E1}(\epsilon_{\gamma}) = -\frac{\pi}{2} \chi''(\omega) = \frac{2}{\pi} S_{EWSR} \frac{\epsilon_{\gamma} \Gamma(\epsilon_{\gamma})}{(\epsilon_{\gamma}^2 - E_r^2)^2 + (\Gamma(\epsilon_{\gamma}) \epsilon_{\gamma})^2},$$
 (6)

when the resonance state corresponds to the almost exhausted energy-weighted sum rule S_{EWSR}

$$S_{EWSR} \equiv \hbar^2 \int_0^\infty \omega \chi''(\omega) \, d\omega \ . \tag{7}$$

In Eq. (6), E_r and $\Gamma(\epsilon_{\gamma})$ are the resonance energy and the energy-dependent scaling parameter of the shape ("width"), which is equal to the resonance width Γ_r at the resonance energy: $\Gamma(\epsilon_{\gamma} = E_r) = \Gamma_r$. In the presence of intrinsic excitations (heated nuclei), the widths $\Gamma(\epsilon_{\gamma})$, Γ_r are also dependent on the temperature. The resonance parameters E_r , Γ_r usually are named the GDR energy and width because the giant dipole excitation is the leading contribution to the energy-weighted sum rule.

The Lorentzian shape of Eq. (6) stems from the random-phase approximation. It is also predicted by the extended hydrodynamic model of Steinwedel-Jensen for heated nuclei with friction between the proton and neutron fluids, and by a semi-classical Landau-Vlasov equation with a memory-dependent collision term [5, 16].

Phenomenological models based on Eq. (6) with the GDR parameters as input quantities [4, 5] have been successfully used for a description of the average probabilities of gamma-decay and photoabsorption for γ -ray energies below 30 MeV. These models differ mainly in the expressions for the shape parameter Γ (ϵ_{γ}), which is determined by complex mechanisms of nuclear dissipation and still remains under study [17, 18, 19, 20, 21, 22]. In particular, the gamma-energy dependence of the width $\Gamma_c(\epsilon_{\gamma})$ results from two-body nucleon-nucleon collisions with retardation effects [23, 24]. Redistribution of the γ -strength in a self-consistent mean field can be considered as a fragmentation component of the GDR width [17, 25]. It arises from the nucleon collisions with a moving nuclear surface [26] (or one-body dissipation [27]) and is independent of the GDR energy [28, 29]. Therefore, a fragmentation component of the width $\Gamma_c(\epsilon_{\gamma})$ can be treated as independent of the gamma-ray energy. In accordance with Eqs. (5) and (6), the GDR component of the total photoabsorption cross section for gamma-ray energies in the neighborhood of the GDR peak has a Lorentzian-like shape. For axially deformed

nuclei, the σ_{GDR} is a sum of two Lorentz-like components corresponding to collective vibrations along and perpendicular to the axis of symmetry $(j_m = 2)$ (correspondingly in spherical nuclei $j_m = 1$):

$$\sigma_{GDR}(\epsilon_{\gamma}) = \frac{2}{\pi} \sigma_{TRK} \sum_{j=1}^{j_m} S_{r,j} \frac{\epsilon_{\gamma}^2 \Gamma_j(\epsilon_{\gamma})}{(\epsilon_{\gamma}^2 - E_{r,j}^2)^2 + (\epsilon_{\gamma} \Gamma_j(\epsilon_{\gamma}))^2}.$$
 (8)

Here, $E_{r,j}$ ($S_{r,j}$) is the energy (strength) of the corresponding mode of the giant dipole excitation. The strength is given in units of the Thomas-Reiche-Kuhn (TRK) sum rule σ_{TRK} [3, 5]. An energy-dependent scaling parameter $\Gamma_j(\epsilon_{\gamma})$ of the shape is equal to the appropriate component of the GDR width $\Gamma_{r,j}$ at the GDR energy: $\Gamma_j(\epsilon_{\gamma} = E_{r,j}) = \Gamma_{r,j}$. The TRK sum rule for a nucleus with N neutrons, Z protons and mass number A = N + Z is equal to

$$\sigma_{TRK} = 60 \frac{NZ}{A} = 15A(1 - I^2) \text{ [mb · MeV]}, \quad \sum_{i} S_{r,j} = 1 + \Delta, \quad \Delta \approx 0.2 \div 0.3,$$
 (9)

where I = (N - Z)/A is the neutron-proton asymmetry and Δ is the contribution from interactions which do not commutate with the kinetic energy operator (velocity-dependent and exchange forces).

In the approximation of equally probable excitation of different modes, the giant collective vibration, which is perpendicular to the axis of symmetry, is twofold degenerated and equal to

$$S_{r,2} = 2 S_{r,1} \ (\beta > 0) \text{ and } S_{r,1} = 2 S_{r,2} \ (\beta < 0),$$
 (10)

where β is a parameter of quadrupole deformation and the subindex 1(2) in $S_{r,1}$ ($S_{r,2}$) corresponds to a low (high) value component $E_{r,1}$ ($E_{r,2}$) of the GDR energy.

For the GDR component of the total photoabsorption cross section, we use the standard Lorentzian approach and a simplified version of the modified Lorentzian approach, which are based on different assumptions of the dependence of scaling parameter $\Gamma_j(\epsilon_{\gamma})$ on gamma-ray energy [5].

In the SLO model, the width $\Gamma_j(\epsilon_{\gamma})$ is taken as energy-independent and equal to the GDR width, i.e., the absorption cross section (8) in axially deformed atomic nuclei is given by double-peak Lorentz functions

$$\sigma_{GDR}(\epsilon_{\gamma}) = \sigma_{E1,SLO}(\epsilon_{\gamma}) = \frac{2}{\pi} \sigma_{TRK} \sum_{j} S_{r,j} \frac{\epsilon_{\gamma}^{2} \Gamma_{r,j}}{(\epsilon_{\gamma}^{2} - E_{r,j}^{2})^{2} + (\epsilon_{\gamma} \Gamma_{r,j})^{2}}.$$
 (11)

The GDR strength $S_{r,j}$ is related to the peak value $\sigma_{r,j}$ of the cross-section component of the Eq. (11) corresponding to the giant dipole vibration along the j-axis:

$$\sigma_{r,j} = \frac{2}{\pi} \sigma_{TRK} S_{r,j} / \Gamma_{r,j} . \tag{12}$$

For the SLO model, the product of $\sigma_{r,j}$ and $\Gamma_{r,j}$ is proportional to the total integrated cross section:

$$\sigma_{int,SLO} = \int_{0}^{\infty} \sigma_{E1,SLO}(\epsilon_{\gamma}) d\epsilon_{\gamma} = \frac{\pi}{2} \sum_{j} \sigma_{r,j} \Gamma_{r,j}.$$
(13)

In the SMLO approach [5, 30], the total photoabsorption cross section is given by Eq. (8) with the scaling width $\Gamma_i(\epsilon_{\gamma})$ being proportional to the gamma-ray energy:

$$\Gamma_j(\epsilon_\gamma) = a_j \ \epsilon_\gamma, \qquad \Gamma_{r,j} = a_j \ E_{r,j}.$$
 (14)

In the SLO model, the quantities $E_{r,j}$, $\Gamma_{r,j}$ and $S_{r,j}$ were used as variables in the fitting. The parameters $E_{r,j}$, a_j , $S_{r,j}$ were derived by fitting with the SMLO model; the components of the GDR width were calculated by Eq. (14).

A least-squares fitting procedure was employed, in which the data points were weighted according to the inverse square of their uncertainties, i.e, a minimum value was sought for χ^2 :

$$\chi^{2} = \frac{1}{N_{f}} \sum_{i=1}^{N} \frac{\left(\sigma_{abs}\left(\epsilon_{i}\right) - \sigma_{\exp}\left(\epsilon_{i}\right)\right)^{2}}{\left(\Delta\sigma\left(\epsilon_{i}\right)\right)^{2}},$$
(15)

where $\sigma_{abs}(\epsilon_i)$ is the value for the theoretical curve fit to the cross section data at gamma-ray energy ϵ_i , $\sigma_{\rm exp}(\epsilon_i)$ is the measured value for the total photoabsorption cross section with uncertainty $\Delta\sigma(\epsilon_i)$ at that energy, and $N_f = N - N_{par}$ is the number of degrees of freedom for the data set fitted which is equal to the number N of data points within the fitting interval minus the number N_{par} of fitted parameters (3 parameters for each Lorentz-like curve).

For deformed nuclei, we adopted an approximation of axially deformed nuclei. However, following Ref. [6], some deformed nuclei were considered as spherical ones, if the one-component Lorentz curve gives a better fit (that is, a fit having a lower χ^2 per degree of freedom) to the experimental data than a two-component one.

The minimization of the least-squares functional is undertaken by the CERN MINUIT package [31]. The standard deviation of the parameters was estimated using MINOS procedure of this code. The calculated mode was defined by the following sequence of commands: SEEK 1000, MIGRAD 10000 0.000001, IMPROVE 100, HESSE 1, MINOS 1.

3. Data treatment

Collection of photon-induced reaction data from the EXFOR library [14] were used as the required experimental database on photonuclear cross sections. The evaluated data compiled by Varlamov *et al.* [32, 33] at the Centre for Photonuclear Experiment Data at Institute of Nuclear Physics of the Moscow State University (Moscow, Russia, online at http://cdfe.sinp.msu.ru) are also considered as experimental values.

The total photoabsorption reaction cross section $\sigma(\gamma, abs)$ used in the fits should be equal to the sum of the total photoneutron cross section $\sigma(\gamma, sn)$, also denoted as $\sigma(\gamma, tot n)$, and the photo-charged-particle reaction cross section $\sigma(\gamma, cp)$:

$$\sigma(\gamma, abs) = \sigma(\gamma, sn) + \sigma(\gamma, cp),$$

$$\sigma(\gamma, sn) = \sigma(\gamma, n) + \sigma(\gamma, np) + \sigma(\gamma, 2n) + \sigma(\gamma, 2np) + \sigma(\gamma, 3n) + \dots + \sigma(\gamma, F),$$

$$\sigma(\gamma, cp) = \sigma(\gamma, p) + \sigma(\gamma, 2p) + \dots + \sigma(\gamma, d) + \sigma(\gamma, dp) + \dots + \sigma(\gamma, d) + \dots$$

$$(16)$$

When measured and evaluated data on the total photoabsorption cross section for a given nuclide were absent in the database, then the total photoneutron cross section $\sigma(\gamma, sn)$ was taken instead of the photoabsorption cross section $\sigma(\gamma, abs)$. Such approximation is valid if the contribution of the photo-charged-particle reaction cross sections is small. In the absence of experimental EXFOR data for the $\sigma(\gamma, sn)$, the total photoneutron cross section was evaluated as a combination of the available experimental cross sections on the inclusive photoneutron yield cross section $\sigma(\gamma, sn)$ and

photoneutron cross sections with ejection of more than one neutron:

$$\sigma(\gamma, xn) = \sigma(\gamma, sn) + \sigma(\gamma, 2n) + \sigma(\gamma, 2np) + 2\sigma(\gamma, 3n) + \dots + (\bar{\nu} - 1)\sigma(\gamma, F),$$
(17)

where $\bar{\nu}$ is the average multiplicity of photofission neutrons.

There are situations where no uncertainties $\Delta\sigma(\epsilon_i)$ of the experimental cross sections $\sigma_{exp}(\epsilon_i)$ are given in the EXFOR database. For such cases the relative uncertainties $\delta\sigma(\epsilon_i) \equiv \Delta\sigma(\epsilon_i)/\sigma_{exp}(\epsilon_i)$ were taken either as a constant value of 10% (i.e., $\delta\sigma=0.1$), or as an energy-dependent quantity. The energy-dependent relative uncertainties were assumed to take minimal values near the GDR energies and maximal values on the GDR tails, i.e. the triangular shape given below was accepted for spherical nuclei

$$\delta(\epsilon_i) = \delta_{min} + b|E1 - \epsilon_i|,\tag{18}$$

and the trapezoidal shape was used in deformed nuclei

$$\delta(\epsilon_i) = \begin{cases} \delta_{min} + b|E1 - \epsilon_i|, & \epsilon_i < E1, \\ \delta_{min}, & E1 \le \epsilon_i \le E2, \\ \delta_{min} + b|\epsilon_i - E2|, & \epsilon_i > E2, \end{cases}$$
(19)

where $b = (\delta_{max} - \delta_{min})/(E1 - \epsilon_{in})$; $\delta_{min} = 0.1$ and $\delta_{max} = 0.5$ are the minimal and maximal values of the uncertainty; ϵ_{in} is the smallest value of γ -ray energy in the experimental database.

The E1, E2 are the resonance energies for which the uncertainties are the smallest. The peak energies were obtained from datafile /gamma/gdr-parameters-exp.dat [4, 5] if both the nucleus and the reference were present in the file. If the reference was different, the peak energies were taken from the first line of the database for this isotope. If the isotope is not listed, then the systematics [5] with parameters from Ref. [1] is used.

4. Policy

No attempt is made here to recommend the best data, that is, to choose between different sets of parameters for the same nucleus found by fit of measured photoabsorption cross sections, neither to set recommended intermediate values. Methods to resolve discrepancies between photoabsorption cross sections measured at different laboratories are discussed in Refs. [7, 32, 33, 34, 35]. It should be noted, however, that the overall agreement between derived GDR parameters is rather good within quoted uncertainties.

In fact, the energies $E_{r,i}$, widths $\Gamma_{r,i}$ and strengths $S_{r,i}$ presented in Tables 1 and 2 are the shape parameters of Lorentz-like curves representing the best fit of experimental photoabsorption cross sections within the indicated fitting interval for the SLO and SMLO models, respectively. As mentioned above, the SLO and SMLO models are based on two opposite assumptions regarding the dissipation mechanism in atomic nuclei, namely, the one-body relaxation mechanism is assumed in the SLO model while the two-body relaxation mechanism is adopted in the SMLO model. Differences in the values of the derived shape parameters to describe the GDR component of total theoretical photoabsorption cross section demonstrate the impact of such assumptions about the dissipation mechanism on the fit.

The accuracy of approximation of the GDR parameters by shape parameters depends on many factors. Besides well-known problems of the selection and verification of the experimental data and the estimation of the contributions

of cross section with ejection of different particles to the total photoabsorption cross section, there are also ambiguities in the theoretical description of the dipole strength function $S_{E1}(\epsilon_{\gamma})$ given by Eq. (6). Namely, the approximation of S_{E1} by one- or two-component Lorentz-like curve near the beta-stability valley is appropriate for rather heavy (A \gtrsim 50) spherical and axially deformed nuclei (155 \lesssim A \lesssim 190 or 225 \lesssim A \lesssim 250) for gamma-ray energies close to the GDR energy. In other situations, additional physical effects should be taken into account, e.g, the isospin splitting of the GDR, possible intermediate-structure effects, the neutron excess and the triaxial deformation [36, 37].

It is also important to remark that current Tables contain parameter uncertainties only. However, to obtain the total uncertainty of calculated photo-absorption cross section we have to consider additionally the uncertainty of the theoretical model used in the fit. Such *model* uncertainty is rather difficult to estimate; a good guess of the model uncertainty could be the difference between results obtained using SLO and SMLO parameters of Tables 1 and 2, respectively. The biggest differences are located in the low-energy tail of the GDR peak as the SMLO model is asymmetric compared to the symmetric SLO model.

Uncertainty estimates of Lorentzian-like parameters as well as SLO and SMLO model uncertainties are needed in modern computer codes like EMPIRE [38] and TALYS [39] for a proper estimation of corresponding cross-section uncertainties including both parameter and model uncertainties.

Acknowledgments

The authors are very thankful to P. Obložinský, M. Herman, A.V. Ignatyuk, J. Kopecky, V.M. Kolomietz, A.G. Magner, V.I. Abrosimov, F.A. Ivanyuk and V.V. Varlamov for valuable discussions and comments. We very much appreciate help provided by Elyzaveta Kulich (Grabovska) and Vira Bondar in preparing the datafiles. This work is partially supported by the International Atomic Energy Agency.

Note on references

When data from this compilation are cited, reference should also be made to the original publication.

References

- [1] B. L. Berman and S. C. Fultz, Rev. Mod. Phys. 47 (1975) 713.
- [2] J. Speth and A. Van der Woude, Rep. Progr. Phys. 44(1981) 719.
- [3] A. Van der Woude, The electric giant resonances, in: *Electric and magnetic giant resonances in nuclei*, J. Speth (Ed.), (World Scientific, 1991), Ch.II.
- [4] J. Kopecky, in: Handbook for calculations of nuclear reaction data. Reference Input Parameter Library (RIPL), Tech. Rep. IAEA-TECDOC-1034, (International Atomic Energy Agency, Vienna, Austria, 1998); Chapter 6; see directory GAMMA on the RIPL-1 web site at http://www-nds.iaea.org/ripl/.
- [5] R. Capote, M. Herman, P. Obložinský, P. G. Young, S. Goriely, T. Belgya, A. V. Ignatyuk, A. J. Koning, S. Hilaire, V. A. Plujko, M. Avrigeanu, O. Bersillon, M. B. Chadwick, T. Fukahori, Zhigang Ge, Yinlu Han, S. Kailas,

- J. Kopecky, V. M. Maslov, G. Reffo, M. Sin, E. Sh. Soukhovitskii and P. Talou, Nucl. Data Sheets 110 (2009) 3107; see RIPL-3 web site at http://www-nds.iaea.org/RIPL-3/.
- [6] S. S. Dietrich and B. L. Berman, At. Data Nucl. Data Tables 38 (1988) 199.
- [7] B. L. Berman, R. G. Pywell, S. S. Dietrich, M. N. Thompson, K. O. McNeill and J. W. Jury, Phys. Rev. C36 (1987) 1286.
- [8] M. B. Chadwick, P. Obložinský, A. I. Blokhin, T. Fukahori, Y. Han, Y.-O. Lee, M. N. Martins, S. F. Mughabghab, V. V. Varlamov, B. Yu and J. Zhang, *Handbook on photonuclear data for applications: Cross sections and spectra*, Tech. Rep. IAEA-TECDOC-1178, (International Atomic Energy Agency, Vienna, Austria, 2000); available online at http://www-nds.iaea.org/reports-new/tecdocs/iaea-tecdoc-1178.pdf.
- [9] A. V. Varlamov, V. V. Varlamov, D. S. Rudenko and M. E. Stepanov, Atlas of Giant Dipole Resonances. Parameters and graphs of photonuclear reaction cross sections, Tech. Rep. INDC(NDS)-394, (International Atomic Energy Agency, Vienna, Austria, 1999); available online at http://www-nds.iaea.org/reports-new/indc-reports/indc-nds/indc-nds-0394.pdf.
- [10] S. Goriely and E. Khan, Nucl. Phys. A706 (2002) 217.
- [11] S. Goriely, E. Khan and M. Samyn, Nucl. Phys. A739 (2004) 331.
- [12] A. Schiller and M. Thoennessen, At. Data Nucl. Data Tables 93 (2007) 549.
- [13] D. Kusnezov, Y. Alhassid, K. A. Snover and W. E. Ormand, Nucl. Phys. A687 (2001) 12.
- [14] International Network of Nuclear Reaction Data Centres: EXFOR/CSISRS database, available online at http://www-nds.iaea.org/exfor/.
- [15] M. B. Chadwick, P. Oblozinsky, P. E. Hodgson and G. Reffo, Phys. Rev. C44 (1991) 814.
- [16] V. A. Plujko, O. M. Gorbachenko and E. V. Kulich, Int. J. Mod. Phys. E18 (2009) 996.
- [17] V. M. Kolomietz, V. A. Plujko and S. Shlomo, Phys. Rev. C54 (1996) 3014.
- [18] S. F. Mughabghab and C. L. Dunford, Phys. Lett. B487 (2000) 155.
- [19] V. M. Kolomietz and S. Shlomo, Phys. Rep. 690 (2004) 133.
- [20] S. Shlomo and V. M. Kolomietz, Rep. Prog. Phys. 68 (2005) 1.
- [21] B. S. Ishkhanov and V. N. Orlin, Phys. Elem. Particle and Atomic Nuclei 38 (2007) 460.
- [22] V. P. Aleshin, Nucl. Phys. A828 (2009) 84.
- [23] S. Ayik and D. Boiley, Phys. Lett. B276 (1992) 263; B284 (1992) 482E.
- [24] V. A. Plujko, S. N. Ezhov, O. M. Gorbachenko and M. O. Kavatsyuk, J. Phys. Condensed Matter 14 (2002) 9473.
- [25] C. Yannouleas, Nucl. Phys. A439 (1985) 336.
- [26] V. I. Abrosimov and J. Randrup, Nucl. Phys. A449 (1986) 446.
- [27] J. Blocki, Y. Boneh, J. R. Nix, J. Randrup, M. Robel, A. J. Sierk and W. J. Swiatecki, Ann. Phys. 113 (1978) 330.
- [28] W. D. Myers, W. J. Swiatecki, T. Kodama, L. J. El-Jaick and E. R. Hilf, Phys. Rev. C15 (1977) 2032.

- [29] B. Bush and Y. Alhassid, Nucl. Phys. A531 (1991) 27.
- [30] V. A. Plujko, I. M. Kadenko, O. M. Gorbachenko and E. V. Kulich, Int. J. Mod. Phys. E17 (2008) 240.
- [31] CERN Program Library, MINUIT (D506), Function Minimization and Error Analysis; code available online at http://wwwasdoc.web.cern.ch/wwwasdoc/cernlib.html; user manual available online at http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/minmain.html.
- [32] V. V. Varlamov and B. S. Ishkhanov, Phys. Elem. Particle and Atomic Nuclei 34 (2004) 858.
- [33] I. N. Boboshin, V. V. Chesnokov, S. Yu. Komarov, N. N. Peskov, M. E. Stepanov and V. V. Varlamov, in: Proc. Int. Conf. Current Problems Nucl. Phys. Atom. Energy, 9-15 June 2008, Kyiv, Ukraine, Vol.II (2008) 618.
- [34] B. S. Ishkhanov and V. V. Varlamov, Phys. Atomic Nuclei, 67 (2004) 1664.
- [35] V. V. Varlamov, B. S. Ishkhanov, D. S. Rudenko and M. E. Stepanov, Phys. Atomic Nuclei, 67 (2004) 2107.
- [36] B. Bush and Y. Alhassid, Nucl. Phys. A531(1991) 27.
- [37] A. R. Junghans, G. Rusev, R. Schwengner, A. Wagner and E. Grosse, Phys. Lett. B670 (2008) 200.
- [38] M. Herman, R. Capote, B. V. Carlson, P. Obložinský, M. Sin, A. Trkov, H. Wienke and V. Zerkin, Nucl. Data Sheets 108 (2007) 2655.
- [39] A. J. Koning, S. Hilaire and M. C. Duijvestijn, TALYS-1.0, Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, editors O.Bersillon, F.Gunsing, E.Bauge, R.Jacqmin, and S.Leray, EDP Sciences, 2008, p. 211-214. See TALYS web-site at www.talys.eu.

Explanation of Tables

Table 1(2). GDR parameters with uncertainties within SLO (SMLO) approach

Nucl The target studied (symbol); nat supra-index indicates a natural isotopic composition Id

Type of experimental data used in fitting:

0 - experimental $\sigma(\gamma, abs)$ with experimental uncertainties;

1a - experimental $\sigma(\gamma, abs)$ with constant uncertainties (10 %);

1b - experimental $\sigma(\gamma, abs)$ with energy-dependent uncertainties;

2 - evaluated $\sigma(\gamma, abs)$ with experimental uncertainties;

3a - evaluated $\sigma(\gamma, abs)$ with constant uncertainties (10 %);

3b - evaluated $\sigma(\gamma, abs)$ with energy-dependent uncertainties;

4 - experimental $\sigma(\gamma, sn)$ with experimental uncertainties;

5a - experimental $\sigma(\gamma, sn)$ with constant uncertainties (10 %);

5b - experimental $\sigma(\gamma, sn)$ with energy-dependent uncertainties;

6 - composed $\sigma(\gamma, sn)$ as a combination of selected experimental cross sections:

 $\sigma(\gamma, sn) = \sigma(\gamma, xn) - \sigma(\gamma, 2n)$ with absolute uncertainties:

$$\Delta\sigma(\gamma, sn) = \sqrt{\Delta\sigma^2(\gamma, xn) + \Delta\sigma^2(\gamma, 2n)} ;$$

7 - composed $\sigma(\gamma, sn)$ as a combination of the experimental cross sections:

 $\sigma(\gamma, sn) = \sigma(\gamma, xn) - \sigma(\gamma, 2n)$ with absolute uncertainties:

$$\Delta \sigma(\gamma, sn) = \sqrt{\Delta \sigma^2(\gamma, xn) + \Delta \sigma^2(\gamma, 2n)};$$

8 - composed $\sigma(\gamma, sn)$ as a combination of selected experimental cross sections:

 $\sigma(\gamma, sn) = \sigma(\gamma, 1n) + \sigma(\gamma, 2n)$ with absolute uncertainties:

$$\Delta\sigma(\gamma, sn) = \sqrt{\Delta\sigma^2(\gamma, 1n) + \Delta\sigma^2(\gamma, 2n)};$$

9 - composed $\sigma(\gamma, sn)$ as a combination of selected experimental cross sections:

 $\sigma(\gamma, sn) = \sigma(\gamma, 1n) + \sigma(\gamma, 2n) + \sigma(\gamma, 3n)$ with absolute uncertainties:

$$\Delta\sigma(\gamma,sn) = \sqrt{\Delta\sigma^2(\gamma,1n) + \Delta\sigma^2(\gamma,2n) + \Delta\sigma^2(\gamma,3n)};$$

10 - composed $\sigma(\gamma, sn)$ as a combination of selected experimental cross sections:

 $\sigma(\gamma, sn) = \sigma(\gamma, 1n) + \sigma(\gamma, 2n) + \sigma(\gamma, f)$ with absolute uncertainties:

$$\Delta\sigma(\gamma, sn) = \sqrt{\Delta\sigma^2(\gamma, 1n) + \Delta\sigma^2(\gamma, 2n) + \Delta\sigma^2(\gamma, f)};$$

11 - composed $\sigma(\gamma, sn)$ as a combination of selected experimental cross sections:

 $\sigma(\gamma, sn) = (\sigma(\gamma, xn) + \sigma(\gamma, 1n) + \sigma(\gamma, f))/2$ with absolute uncertainties:

$$\Delta\sigma(\gamma, sn) = \sqrt{\Delta\sigma^2(\gamma, xn) + \Delta\sigma^2(\gamma, 1n) + \Delta\sigma^2(\gamma, f)}/2;$$

12 - experimental $\sigma(\gamma, 1n)$ with experimental uncertainties;

13 - experimental $\sigma(\gamma, xn)$ with experimental uncertainties;

13a - experimental $\sigma(\gamma, xn)$ with constant uncertainties (10 %);

13b - experimental $\sigma(\gamma, xn)$ with energy-dependent uncertainties

$E_{r,i}, \Gamma_{r,i}, S_{r,i}$	parameters of energy, width and strength of Lorentz curves fitted to the corresponding photoabsorp-
	tion cross sections within the indicated fitting interval. Notation 'spherical' $(i=1)$ implies that a
	one component Lorentz curve gives a better fit to the data that a two-component one, and 'axially
	deformed' $(i = 1, 2)$ implies the opposite.
$E_{r,1}$	energy of the first component of the GDR with uncertainty (one-sigma standard deviation), MeV.
$\Gamma_{r,1}$	width of the first component of the GDR with uncertainty (one-sigma standard deviation), MeV.
$S_{r,1}$	strength of the first component of the GDR (as a fraction of the TRK sum rule) with uncertainty
	(one-sigma standard deviation); the values of TRK sum rule for $^{90}\mathrm{Zr}$ and $^{208}\mathrm{Pb}$ are used for $^{nat}\mathrm{Zr}$
	and nat Pb.
$E_{r,2}$	energy of the second component of the GDR with uncertainty (one-sigma standard deviation), MeV.
$\Gamma_{r,2}$	width of the second component of the GDR with uncertainty (one-sigma standard deviation), MeV.
$S_{r,2}$	strength of the second component of the GDR (as a fraction of the TRK sum rule) with uncertainty
	(one-sigma standard deviation).
S	sum of strengths of the first and second component of the GDR $(S = S_{r,1} + S_{r,2})$ with uncertainty
	(one-sigma standard deviation); the values of TRK sum rule for $^{90}\mathrm{Zr}$ and $^{208}\mathrm{Pb}$ are used for $^{nat}\mathrm{Zr}$
	and nat Pb.
$\epsilon_{min} \; (\epsilon_{max})$	lower (upper) energy limit of fitting interval, MeV.
Ref	Short references on the experimental data used in the fit.

Table 3. References to experimental and evaluated cross section data taken from ${\it EXFOR}$

Nucl The target studied (symbol); nat supra-index indicates a natural isotopic composition.

Id Type of experimental data used in fitting (without letter indicating method of uncertainty estima-

tion). See page 11 for explanation.

Reaction Type of reaction.

Ref Short references on the experimental data.

EXFOR EXFOR 8-digit entry & subentry number.

 $\begin{tabular}{ll} \textbf{Table 1} \\ \textbf{Experimental values and uncertainties of GDR parameters within Standard Lorentzian (SLO) approach. \end{tabular}$

Nucl	Id	$E_{r,1}$ (MeV)	$\Gamma_{r,1}$ (MeV)	$S_{r,1}$	$E_{r,i}$ (MeV		Γ_r (Me		$S_{r,2}$		S		$\epsilon_{min} - \epsilon_{max}$ (MeV)	Ref
$^{10}{ m B}$	5a	21.72 10	9.08 16	0.441 8							0.441	8	8.5 - 24.9	1987Ahs
	5b	22.54 32	10.81 63	0.518 26								26	8.5 - 24.9	$1987 \mathrm{Ahs}$
$^{12}\mathrm{C}$	0	22.79 7	3.62 28	0.494 27							0.494	27	14.0 - 24.9	1963Bur
	0	22.86 2	3.61 7	$0.671 \ 10$							0.671		20.1 - 25.0	1969Bez
	1a	22.87 6	3.35 23	0.611 35								35	21.1 - 24.0	1975Ahr
	1b	22.85 8	3.32 29	0.607 47							0.607	•	21.1 - 24.0	1975Ahr
	3a 3b	23.07 5 $23.05 8$	$3.65 23 \\ 3.65 30$	0.641 25 $0.640 38$							$0.641 \\ 0.640$	25	21.2 - 25.0 21.2 - 25.0	2002Ish 2002Ish
	зь 3а	$23.03 \ \delta$ $22.71 \ \beta$	$3.21 ext{ } 9$	0.579 10								10	20.1 - 25.0	20021sii 2003Var
	3b	22.65 10	3.40 27	0.589 39								39	20.1 - 25.0	2003 Var
$^{13}\mathrm{C}$	3a	24.60 13	8.43 41	0.868 22								22	14.5 - 29.0	2002Ish
	3b	24.40 17	$7.70 \frac{63}{63}$	$0.828 \ 36$								36	14.5 - 29.0	2002 Ish
$^{14}\mathrm{C}$	3a	15.41 26	5.82 90	0.333 47	26.13	15	7.78	92	0.483	46	0.816	66	14.5 - 30.0	$2002 \mathrm{Ish}$
	3b	$16.68 ext{ } 57$	3.10 67	0.177 23	25.87	17	6.84	84	0.490	46		51	9.0 - 30.0	2002 Ish
^{14}N	0	23.05 3	6.95 13	1.193 16								16	18.2 - 28.0	1969Bez
	3a	23.39 8	4.83 17	0.729 15							0.729		15.0 - 28.0	2002Ish
$^{15}\mathrm{N}$	3b	23.13 18	4.83 35	0.725 47								47	15.0 - 28.0	2002Ish
- « IN	1a 1b	24.68 1 $24.72 1$	1.22 <i>1</i> 2.99 <i>2</i>	0.435 3 0.554 2							$0.435 \\ 0.554$		9.7 - 26.5 9.7 - 26.5	1989Bat 1989Bat
	3a	24.72 1 24.78 26	$12.82 \ 63$	$0.534 ext{ } z$ $1.242 ext{ } 56$							1.242		9.7 - 20.5 14.5 - 28.0	2002Ish
	3b	24.96 39	12.47 134	1.259 111							1.259		14.5 - 28.0	2002Ish
^{nat}O	2	22.52 27	9.89 111	1.710 187							1.710		21.8 - 25.5	1985Ahr
^{16}O	0	23.37 4	5.54 14	0.957 19							0.957	19	18.5 - 26.0	$1969 \mathrm{Bez}$
	0	$23.70 ext{ } 4$	5.36 12	$0.981 \ 16$							0.981	16	18.1 - 26.0	$1975 \mathrm{Ahr}$
	3a	23.71 7	$3.98 ext{ } 12$	0.762 17							0.762		18.2 - 26.0	2002 Ish
170	3b	23.89 11	4.59 23	0.820 29								29	18.2 - 26.0	2002Ish
¹⁷ O	3a	23.40 10	5.48 31	0.739 24								24	18.5 - 26.5	2002Ish
¹⁸ O	3b 3a	23.38 13	$5.57 ext{ } 49$ $2.12 ext{ } 57$	0.740 36	24.10	16	5.25	00	0.417	10		36	18.5 - 26.5 18.5 - 26.0	2002 Ish 2002 Ish
O	3b	19.08 <i>14</i> 16.61 <i>65</i>	7.82 204	$0.064 ext{ } 18 \\ 0.263 ext{ } 64$	24.10 24.07		$\frac{5.25}{4.71}$		0.417 0.337		$0.481 \\ 0.600$	52 96	11.5 - 26.0	2002Ish
$^{19}{ m F}$	3a	21.91 34	12.89 58	1.211 66	24.01	20	4.11	111	0.001	, 1		66	10.0 - 24.5	2002Ish
23 Na	0	17.43 13	3.10 42	0.175 35	21.13	10	4.51	52	0.555	63		72	14.2 - 23.0	1981Ish
	3a	$17.45 ext{ } 15$	3.08 33	$0.178 \ 34$	20.98		4.34	49	0.492		0.670	65	14.3 - 23.0	2002 Ish
23 Na	3b	17.39 22	2.90 69	0.161 48	20.94	14	4.55	59	0.519		0.680	86	14.3 - 23.0	$2002 \mathrm{Ish}$
$^{24}{ m Mg}$	3a	$19.76 ext{ } 10$	$3.28 \ 32$	$0.467 ext{ } 49$	22.92		1.96		0.118			91	18.2 - 23.0	2002Ish
	3b	19.75 9	3.41 35	0.484 49	22.90		1.80	90	0.105	63		80	18.2 - 23.0	2002Ish
	$\frac{3a}{2}$	19.74 5	2.45 15	0.310 24	24.51		6.34		0.554		0.864		16.3 - 26.0	2003Var
$^{25}{ m Mg}$	3b 3a	$19.75 ext{ } 6$ $22.06 ext{ } 10$	$\begin{array}{ccc} 2.82 & 19 \\ 6.09 & 15 \end{array}$	$0.352 29 \\ 0.894 20$	24.62	12	5.84	15	0.500	03	0.852 0.894	69	16.3 - 26.0 9.0 - 24.2	2003Var 2002Ish
wig	3b	22.00 10	6.30 30	0.894 20							0.894 0.902		9.0 - 24.2	2002Ish
$^{26}{ m Mg}$	3a	17.38 5	2.21 17	0.352 - 54 $0.151 - 11$	23.54	8	6.90	32	1.098	40		41	16.1 - 26.0	2003Var
-11-8	3b	17.37 12	1.74 30	0.119 17	23.50		7.41		1.174		1.293		16.1 - 26.0	2003Var
27 Al	1a	20.82 6	6.60 17	1.037 17							1.037		14.2 - 24.4	1975 Ahr
	1b	20.84 9	$6.73 \ 30$	1.044 32							1.044	32	14.2 - 24.4	$1975 \mathrm{Ahr}$
	3a	20.58 7	4.46 11	0.772 16							0.772		14.2 - 23.0	2002 Ish
nata.	2	20.78 7	7.88 30	1.180 32	05.40		2.00		0.440		1.180		16.3 - 25.4	1985Ahr
^{nat} Si ²⁸ Si	0	20.35 3	4.53 9	0.871 18	25.16		2.86		0.112		0.983		16.4 - 25.8	1975Ahr
~ 51	3a 3b	19.81 <i>12</i> 19.73 <i>21</i>	2.56 20 $2.24 86$	0.371 73 $0.238 183$	21.81 21.56		3.15 4.03		$0.474 \\ 0.676$		$0.845 \\ 0.914$		16.7 - 23.0 16.7 - 23.0	2003Var 2003Var
$^{29}\mathrm{Si}$	зь 3а	20.70 8	5.60 17	0.238 183	21.50	30	4.05	00	0.070	230	0.914 0.810		14.2 - 23.0	2003 var 2002Ish
	3b	20.73 12	5.76 34	$0.810 \ 13$ $0.821 \ 32$							0.810 0.821		14.2 - 23.0	2002Ish
$^{30}\mathrm{Si}$	3a	20.86 13	7.40 31	0.767 27							0.767		14.2 - 23.0	2002Ish
	3b	20.91 19	7.51 58	0.778 48							0.778		14.2 - 23.0	2002Ish
$^{32}\mathrm{Si}$	3a	21.17 9	5.08 12	$0.967 \ \ 25$							0.967	•	14.4 - 23.0	$2002 \mathrm{Ish}$
24-	3b	$21.51 ext{ } 14$	5.67 30	$1.082 ext{ } 50$							1.082		14.4 - 23.0	2002 Ish
^{34}S	3a	20.89 47	9.61 77	1.501 149							1.501		12.0 - 25.0	1986Ass
$^{34}\mathrm{S}$	3b	20.89 47	9.61 77	1.501 149							1.501		12.0 - 25.0	1986Ass
- 15	3a	21.13 10	12.58 36	1.755 41							1.755		14.1 - 25.1	2003Var
$_{nat}$ S	3b 13	$21.57 ext{ } 19$ $20.31 ext{ } 10$	11.07 - 63 5.48 - 37	1.652 82							1.652		12.3 - 25.1 17.2 - 23.6	2003Var
b	15 1b	20.31 10 $20.31 10$	5.48 37 5.48 37	0.858 44 $0.858 44$							$0.858 \\ 0.858$		17.2 - 23.6 17.2 - 23.6	1965Wyc 1965Wyc
$^{40}\mathrm{Ar}$	3a	19.86 15	9.12 31	$1.372 \ 36$							1.372		10.5 - 25.0	2002Ish
	3b	20.12 37	10.65 87	1.471 103							1.471		10.5 - 25.0	2002Ish
$^{nat}\mathrm{Ar}$	1a	20.47 20	9.44 62	1.080 45							1.080		16.5 - 27.5	1960Fas
	1b	20.53 62	10.55 209	1.144 190							1.144		16.5 - 27.5	1960 Fas
^{nat}K	4	21.12 2	6.89 <i>8</i>	0.418 - 4							0.418	4	16.0 - 25.9	1974 Ve1

Table	1 (con	tinued)								
Nucl	Id	$E_{r,1}$ (MeV)	$\Gamma_{r,1}$ (MeV)	$S_{r,1}$	$E_{r,2}$ (MeV)	$\Gamma_{r,2}$ (MeV)	$S_{r,2}$	S	$\epsilon_{min} - \epsilon_{max}$ (MeV)	Ref
<i>nat</i> Ca	1a 1b	20.23 <i>2</i> 20.22 <i>2</i>	5.03 <i>6</i> 5.03 <i>6</i>	1.225 <i>10</i> 1.226 <i>10</i>				1.225 <i>10</i> 1.226 <i>10</i>	13.5 - 25.9 13.5 - 25.9	1975Ahr 1975Ahr
$^{40}\mathrm{Ca}$	2 3a	19.98 <i>4</i> 19.96 <i>9</i>	4.82 <i>11</i> 5.52 <i>29</i>	1.128 <i>19</i> 1.286 <i>46</i>				1.128 <i>19</i> 1.286 <i>46</i>	9.4 - 24.0 18.2 - 24.0	1985Ahr 2003Er
$^{42}\mathrm{Ca}$	3b $3a$	19.92 <i>14</i> 20.11 <i>10</i>	5.51 <i>46</i> 8.07 <i>40</i>	1.286 85 $1.455 50$				$1.286 ext{ } 85 $ $1.455 ext{ } 50$	18.2 - 24.0 15.2 - 23.0	2003Er 2003Er
44 Ca	3b 3a	20.23 <i>16</i> 19.60 <i>18</i>	7.63 68 $11.33 76$	1.426 <i>101</i> 1.732 <i>78</i>				1.426 <i>101</i> 1.732 <i>78</i>	15.2 - 23.0 15.5 - 26.0	2003Er 2003 Er
⁴⁸ Ca	3b	$19.95 \ 33$	10.39 97	1.603 123				1.603 123	12.5 - 26.0	$2003\mathrm{Er}$
Ca	0 $3a$	19.70 <i>14</i> 19.75 <i>13</i>	$6.23 ext{ } 90 \\ 7.11 ext{ } 55$	$\begin{array}{ccc} 1.474 & 180 \\ 1.353 & 66 \end{array}$				$\begin{array}{ccc} 1.474 & 180 \\ 1.353 & 66 \end{array}$	17.9 - 21.6 15.5 - 23.0	1987O'k 2003Er
⁴⁶ Ti	3b 3a	19.62 <i>22</i> 19.96 <i>8</i>	6.60 <i>85</i> 6.92 <i>19</i>	1.293 128 $1.246 22$				1.293 <i>128</i> 1.246 <i>22</i>	15.5 - 23.0 13.2 - 25.0	2003Er 2002 Ish
⁴⁸ Ti	3b 3a	19.79 <i>20</i> 19.78 <i>17</i>	7.54 <i>52</i> 8.42 <i>53</i>	1.282 73 $1.179 56$				1.282 73 $1.179 56$	13.2 - 25.0 14.5 - 23.0	2002Ish 2002 Ish
	3b	19.90 38	9.21 124	$1.248 \ 150$	22.22 *2		4 500 000	$1.248 \ 150$	14.5 - 23.0	$2002 \mathrm{Ish}$
^{51}V	3a 3b	$17.71 ext{ } 13$ $17.76 ext{ } 23$	3.46 114 4.08 152	$0.279 ext{ } 179 \\ 0.447 ext{ } 349$	22.03 59 $22.37 60$	11.41 <i>185</i> 8.83 <i>473</i>	1.739 392 $1.292 827$	2.018 <i>431</i> 1.739 <i>898</i>	15.2 - 25.0 15.2 - 25.0	2003Var 2003Var
$^{52}\mathrm{Cr}$	$\frac{4}{3a}$	17.90 6 $19.16 7$	$4.55 ext{ } 14 \\ 6.19 ext{ } 20$	0.569 36 1.020 22	21.26 13	4.37 76	$0.239 ext{ } 52$	$0.808 63 \\ 1.020 22$	14.1 - 22.9 14.3 - 23.0	1962Fu1 2002Ish
⁵⁵ Mn	3b	19.24 18	6.88 51	1.068 66	10.77 10	0.61 10	0.960 50	1.068 66	14.3 - 23.0	$2002 \mathrm{Ish}$
nat Fe	$\frac{4}{0}$	16.43 6 $11.89 14$	$\begin{array}{cc} 2.95 & 32 \\ 1.01 & 66 \end{array}$	$0.153 31 \\ 0.161 49$	19.77 <i>17</i> 17.46 <i>46</i>	8.61 <i>43</i> 6.93 <i>149</i>	$0.860 ext{ } 59 \\ 1.053 ext{ } 175$	1.013 67 $1.214 182$	14.0 - 23.0 10.0 - 24.0	1979Al2 1969Dob
	13a 13b	17.76 4 $17.59 6$	$6.03 ext{ } 12$ $7.07 ext{ } 22$	$0.711 ext{ } 12 \\ 0.817 ext{ } 23$				$0.711 ext{ } 12 \\ 0.817 ext{ } 23$	13.2 - 24.0 13.2 - 24.0	1967Cos 1967Cos
⁵⁴ Fe ⁵⁹ Co	0 1a	19.35 <i>8</i> 16.68 <i>18</i>	5.50 <i>28</i> 0.59 <i>114</i>	$1.570 ext{ } 49 \\ 0.024 ext{ } 21$	18.88 31	7.92 85	1.195 97	1.570 <i>49</i> 1.219 <i>99</i>	16.0 - 23.0 14.5 - 21.0	1978Nor 1965Wyd
00	1b	16.67 29	0.60 171	$0.023 \ 31$	18.78 <i>51</i>	7.62 128	1.157 179	1.180 182	14.5 - 21.0	1965Wyc
$^{58}\mathrm{Ni}$	$\frac{8}{3a}$	16.43 7 18.98 10	$\begin{array}{cc} 2.73 & 37 \\ 6.50 & 32 \end{array}$	$0.138 39 \\ 0.987 32$	18.64 20	7.31 31	0.747 - 52	$0.885 - 65 \\ 0.987 - 32$	14.0 - 20.9 14.4 - 22.0	1979Al2 2002Ish
	3b 3a	18.74 20 $18.78 5$	6.18 <i>63</i> 5.57 <i>15</i>	0.945 78 $0.885 14$				0.945 <i>78</i> 0.885 <i>14</i>	14.4 - 22.0 14.1 - 22.0	2002Ish 2003Var
	3b 4	18.66 <i>10</i> 18.26 <i>6</i>	5.50 <i>30</i> 6.95 <i>17</i>	$0.873 \ 38$ $0.294 \ 6$				0.873 <i>38</i> 0.294 <i>6</i>	14.1 - 22.0 12.2 - 21.8	2003Var 1974Fu3
$^{60}\mathrm{Ni}$	3a	16.99 <i>15</i>	2.88 31	$0.196 ext{ } 51$	19.19 16	4.21 25	0.523 60	0.719 79	12.2 - 21.0	$2003 \mathrm{Var}$
	3b 4	$ \begin{array}{ccc} 16.78 & 7 \\ 16.30 & 9 \end{array} $	$0.91 29 \ 2.45 70$	$0.039 ext{ } 14 \\ 0.147 ext{ } 85$	18.75 <i>13</i> 18.49 <i>39</i>	4.85 22 $6.26 48$	$0.729 33 \\ 0.592 120$	$0.768 ext{ } 36 \\ 0.739 ext{ } 147 $	12.2 - 21.0 14.0 - 20.9	2003Var 1974Fu3
⁶³ Cu	$\frac{4}{3a}$	16.39 <i>2</i> 16.43 <i>28</i>	0.41 4 4.84 72	0.019 <i>2</i> 0.646 <i>213</i>	$18.35 \ 3$ $20.15 \ 34$	$6.55 ext{ } 9 \\ 5.52 ext{ } 289$	0.768 8 0.456 333	0.787 8 $1.102 395$	14.1 - 22.0 14.0 - 21.0	1970Gor 2003Var
	3b 6	$16.35 64 \\ 16.72 10$	4.59 <i>257</i> 4.17 <i>16</i>	0.566 742 $0.460 42$	20.12 <i>101</i> 19.08 <i>15</i>	6.75 <i>1 42</i> 3.43 <i>40</i>	0.602 <i>1362</i> 0.166 <i>41</i>	1.168 <i>1551</i> 0.626 <i>59</i>	14.0 - 21.0 14.0 - 21.0	2003Var 1968Su1
65 ~	4	$16.25 ext{ } 10$	$4.64 \ 31$	0.469 - 53	19.62 19	4.47 120	$0.100 \ 41$ $0.191 \ 69$	0.660 87	14.2 - 20.7	1964Fu 1
⁶⁵ Cu	3a 3b	16.92 7 16.85 <i>26</i>	8.09 <i>38</i> 7.46 <i>119</i>	1.139 <i>37</i> 1.079 <i>154</i>				1.139 <i>37</i> 1.079 <i>154</i>	14.2 - 21.0 14.2 - 21.0	2003Var 2003Var
$^{64}\mathrm{Zn}$	4 8	16.68 <i>6</i> 16.23 <i>13</i>	$6.78 27 \ 3.25 48$	$0.822 27 \ 0.220 74$	19.16 25	5.91 89	0.533 119	0.822 27 $0.753 140$	14.2 - 19.9 14.0 - 20.8	1964Fu1 1976Ca1
$^{65}\mathrm{Zn}$	1a 1b	16.17 <i>11</i> 16.21 <i>22</i>	3.06 <i>44</i> 3.32 <i>97</i>	0.173 47 $0.208 127$	19.04 <i>21</i> 19.16 <i>45</i>	6.50 <i>34</i> 6.12 <i>126</i>	0.585 62 $0.529 188$	0.758 78 $0.737 227$	12.0 - 21.0 12.0 - 21.0	2003Rod 2003Rod
$^{70}{ m Ge}$	0	15.16 18	$5.92 ext{ } 45$	1.432 81	19.10 40	0.12 120	0.529 100	1.432 81	10.0 - 20.0	1975 Mcc
$^{72}{ m Ge}$	8 0	16.76 <i>8</i> 17.88 <i>16</i>	7.55 <i>34</i> 5.71 <i>39</i>	1.006 <i>35</i> 1.409 <i>70</i>				1.006 <i>35</i> 1.409 <i>70</i>	13.1 - 20.8 10.0 - 24.0	1976Ca1 1975Mcc
$^{74}\mathrm{Ge}$	8	16.63 6 $14.51 11$	7.48 <i>25</i> 2.01 <i>81</i>	$1.173 30 \\ 0.074 55$	17.03 27	7.97 49	1.158 108	1.173 <i>30</i> 1.232 <i>121</i>	13.1 - 20.8 13.1 - 20.8	1976Ca1 1976Ca1
$^{76}\mathrm{Ge}$	0	16.40 16	$7.04 ext{ } 43$	1.140 <i>108</i> 0.381 <i>462</i>	24.63 107	10.86 346	0.748 296	1.888 315	10.0 - 24.0	1975 Mcc
$^{75}\mathrm{As}$	$\frac{8}{4}$	15.48 <i>38</i> 14.98 <i>13</i>	4.37 211 $3.66 53$	0.217 82	18.87 <i>228</i> 17.59 <i>28</i>	10.99 242 $7.12 39$	$\begin{array}{cc} 1.104 & 595 \\ 0.760 & 109 \end{array}$	$\begin{array}{ccc} 1.485 & 753 \\ 0.977 & 136 \end{array}$	13.1 - 20.8 13.1 - 20.9	1976Ca1 1969Be1
$^{76}\mathrm{Se}$	8 0	15.19 <i>29</i> 15.67 <i>8</i>	$4.43 102 \\ 6.33 32$	0.419 273 $1.337 50$	18.12 80	7.66 126	0.819 353	1.238 <i>446</i> 1.337 <i>50</i>	13.1 - 20.8 13.1 - 19.7	1976Ca1 1978Gur
$^{78}\mathrm{Se}$	8 8	16.69 <i>8</i> 14.97 <i>16</i>	9.38 <i>40</i> 3.91 <i>61</i>	1.398 <i>48</i> 0.376 <i>113</i>	18.42 28	6.19 100	0.671 161	1.398 <i>48</i> 1.047 <i>197</i>	13.1 - 20.8 13.1 - 20.8	1976Ca1 1976Ca1
$^{80}\mathrm{Se}$	8	16.16 11	$5.51 \ 36$	1.004 63	10.42 20	0.10 100	0.011 101	1.004 63	13.1 - 17.0	1976Ca1
⁸² Se	0 8	$ \begin{array}{ccc} 16.00 & 5 \\ 16.63 & 5 \end{array} $	5.68 <i>21</i> 5.80 <i>17</i>	$1.308 ext{ } 35$ $1.125 ext{ } 24$				$1.308 ext{ } 35$ $1.125 ext{ } 24$	13.1 - 19.9 13.1 - 20.8	1978Gur 1976Ca1
⁸⁹ Y	3a 3b	16.80 6 $16.80 22$	4.49 <i>28</i> 4.50 <i>101</i>	$1.253 ext{ } 55 $ $1.255 ext{ } 255$				$1.253 ext{ } 55 $ $1.255 ext{ } 255$	15.3 - 19.0 15.3 - 19.0	2003Var 2003Var
	4	$16.74 ext{ } 1$	$4.23 \ 3$	1.135 7				1.135 7	14.0 - 19.0	1971 Le1
	4	16.78 1	3.92 2	$0.861 \ 3$				$0.861 \ 3$	14.0 - 18.9	1967 Be2

Table	1 (cor	ntinued)								
Nucl	Id	$E_{r,1}$ (MeV)	$\Gamma_{r,1}$ (MeV)	$S_{r,1}$	$E_{r,2}$ (MeV)	$\Gamma_{r,2}$ (MeV)	$S_{r,2}$	S	$\epsilon_{min} - \epsilon_{max}$ (MeV)	Ref
	12	16.83 <i>3</i>	3.68 <i>8</i>	0.893 16				0.893 16	14.0 - 18.1	1972Yo
$^{90}{ m Zr}$	3a	16.82 5	3.99 23	1.192 47				1.192 47	14.9 - 18.5	2003 Var
	3b	16.79 15	3.85 62	1.164 164				1.164 164	14.9 - 18.5	2003Var
	4 8	16.84 <i>1</i> 16.73 <i>1</i>	$3.99 ext{ } 3$ $4.14 ext{ } 3$	$0.861 ext{ } 5 \\ 1.025 ext{ } 6$				$0.861 ext{ } 5 \\ 1.025 ext{ } 6$	14.0 - 18.9 14.0 - 19.0	1967Be2 1971Le1
$^{91}{ m Zr}$	4	16.58 2	4.17 7	0.892 10				0.892 10	14.0 - 18.9	1967Be2
$^{92}\mathrm{Zr}$	4	16.26 2	4.64 9	0.885 12				0.885 12	14.0 - 18.9	1967 Be2
$^{94}\mathrm{Zr}$	4	16.21 2	5.25 11	$0.956 ext{ } 15$				0.956 15	14.0 - 18.9	$1967 \mathrm{Be}2$
^{nat}Zr	8	16.51 3	4.37 15	0.890 23				0.890 23	14.9 - 19.0	1987Ber
⁹³ Nb ⁹² Mo	$\frac{8}{3a}$	16.58 1 17.16 6	$\begin{array}{ccc} 4.95 & 6 \\ 4.68 & 22 \end{array}$	$1.132 ext{ } 10$ $1.287 ext{ } 42$				$1.132 ext{ } 10$ $1.287 ext{ } 42$	14.0 - 19.0 14.4 - 19.0	1971Le1 2003Var
WIO	3b	17.10 0	4.34 55	1.227 135				1.227 135	14.4 - 19.0	2003 Var
$^{92}\mathrm{Mo}$	4	16.82 1	4.11 4	0.756 5				0.756 5	14.0 - 18.9	1974Be3
94 Mo	4	16.53 2	5.12 5	1.113 8				1.113 8	9.6 - 18.9	$1974 \mathrm{Be}3$
96Mo	4	16.11 4	5.64 15	1.155 29				1.155 29	13.2 - 17.0	1974Be3
⁹⁸ Mo ¹⁰⁰ Mo	4	15.79 3	5.90 16	1.211 24				1.211 24	13.2 - 18.9	1974Be3
$^{103}\mathrm{Rh}$	9 3a	15.72 3 $16.24 7$	$7.68 ext{ } 14 \\ 7.49 ext{ } 39$	$1.404 ext{ } 19$ $1.486 ext{ } 57$				$1.404 ext{ } 19$ $1.486 ext{ } 57$	12.1 - 20.0 13.1 - 19.0	1974Be3 2003Var
1011	3b	16.23 17	7.60 81	1.500 138				1.500 138	13.1 - 19.0	2003 Var
	4	16.14 3	7.22 17	1.414 26				1.414 26	13.2 - 18.9	1974Le1
$^{107}\mathrm{Ag}$	4	15.83 4	6.49 12	1.193 17				1.193 17	9.5 - 19.0	1969 Ish
100 .	4	15.89 4	6.65 18	0.986 23	10.00 40		0.400404	0.986 23	13.1 - 18.7	1969Be1
$^{109}_{115}{ m In}$	4	$13.54 ext{ } 19$ $15.63 ext{ } 1$	$\begin{array}{ccc} 3.49 & 167 \\ 5.22 & 5 \end{array}$	$0.275 ext{ } 165 $ $1.285 ext{ } 10$	16.62 <i>18</i>	4.41 46	0.490 124	0.765 206 $1.285 10$	13.1 - 19.0 13.1 - 17.8	1969Ish 1969Fu1
111	$\frac{4}{4}$	15.72 1	5.57 6	$1.283 ext{ } 10$ $1.273 ext{ } 10$				$1.283 ext{ } 10$ $1.273 ext{ } 10$	13.1 - 17.8	1909Fu1 1974Le1
$^{116}\mathrm{Sn}$	4	15.55 1	5.06 6	1.254 11				1.254 11	13.1 - 17.9	1974Le1
	4	15.67 2	4.17 7	1.017 11				1.017 11	13.0 - 18.0	1969Fu1
$^{117}\mathrm{Sn}$	4	15.64 2	5.02 9	1.181 17				1.181 17	13.2 - 17.8	1974 Le1
$^{118}\mathrm{Sn}$	4	15.65 1	5.00 6	1.153 9				1.153 9	13.1 - 17.9	1969Fu1
¹¹⁰ Sn	$\frac{4}{4}$	15.43 <i>1</i> 15.59 <i>1</i>	4.84 6	$1.221 ext{ } 11 \\ 1.097 ext{ } 7$				1.221 <i>11</i> 1.097 7	13.1 - 17.9	1974Le1 1969Fu1
$^{119}\mathrm{Sn}$	4	15.59 1 $15.53 2$	4.75 4 $4.78 6$	1.085 11				1.085 11	13.1 - 17.9 13.0 - 17.9	1969Fu1
$^{120}\mathrm{Sn}$	4	15.37 1	5.08 6	1.295 12				1.295 12	13.1 - 17.9	1974Le1
	4	15.40 1	$4.86 ext{ } 4$	1.219 8				1.219 8	13.1 - 17.9	1969Fu 1
$^{124}\mathrm{Sn}$	3a	$15.31 ext{ } 5$	4.94 22	$1.173 \ 34$				1.173 34	13.1 - 18.0	2003 Var
	3b	15.29 8	4.86 36	1.162 66				1.162 66	13.1 - 18.0	2003Var
	4	15.27 2 $15.18 2$	$4.77 8 \\ 4.79 7$	1.150 <i>14</i> 1.183 <i>14</i>				1.150 <i>14</i> 1.183 <i>14</i>	13.2 - 17.8 13.1 - 17.8	1974Le1 1969Fu1
$^{124}\mathrm{Te}$	6	15.23 2	5.50 8	1.337 15				1.337 15	12.0 - 18.9	1976Le2
$^{126}\mathrm{Te}$	6	15.15 2	5.36 7	1.358 13				1.358 13	12.0 - 18.9	1976 Le2
¹²⁸ Te	6	15.12 2	5.30 8	1.367 14				1.367 14	12.0 - 18.9	1976 Le2
¹³⁰ Te	6	15.11 2	4.98 7	1.334 13			0.44** 0.85**	1.334 13	12.0 - 18.9	1976Le2
^{127}I	$\frac{4}{4}$	14.59 30 $13.91 9$	$4.12 ext{ } 58$ $1.10 ext{ } 63$	$0.856 \ 358$ $0.052 \ 38$	16.74 <i>78</i> 15.20 <i>10</i>	$4.73 ext{ } 121$ $4.73 ext{ } 10$	0.445 377 $1.088 49$	1.301 <i>520</i> 1.140 <i>62</i>	12.1 - 19.8 12.2 - 20.0	1969Be6 1989Ras
	4	14.25 15	3.28 39	0.340 122	16.30 30	5.15 34	0.632 142	$0.972 \ 187$	12.1 - 19.9	1966Br1
	8	14.61 20	2.62 104	0.163 196	15.72 50	6.19 115	1.012 142	1.175 243	12.1 - 16.9	1987Ber
$^{133}\mathrm{Cs}$	4	15.33 1	5.28 2	1.351 4				$1.351 ext{ 4}$	12.0 - 19.0	1974 Le1
1385	4	15.24 2	4.97 8	1.155 12				1.155 12	12.1 - 18.7	1969Be1
¹³⁸ Ba ¹³⁹ La	$\frac{4}{4}$	15.25 <i>1</i>	4.58 5	1.176 9				1.176 9	12.1 - 18.7	1970Be8
¹⁴⁰ Ce	4 6	15.11 <i>1</i> 15.03 <i>1</i>	3.96 <i>4</i> 4.39 <i>4</i>	$1.045 7 \\ 1.292 9$				$ \begin{array}{ccc} 1.045 & 7 \\ 1.292 & 9 \end{array} $	12.0 - 18.9 12.0 - 18.9	1971Be4 1976Le2
$^{142}\mathrm{Ce}$	6	14.85 2	5.08 8	1.284 15				1.284 15	12.0 - 18.9	1976Le2
$^{141}\mathrm{Pr}$	4	15.14 2	4.40 6	1.083 10				1.083 10	12.1 - 18.7	1966Br1
	4	15.39 2	3.80 6	1.039 12				1.039 12	12.0 - 18.9	1972De1
	4	15.19 1	4.23 8	1.106 18				1.106 18	12.1 - 16.9	1987Ber
	$\frac{12}{12}$	15.23 <i>1</i>	$3.98 ext{ } 4 \\ 4.47 ext{ } 3$	1.031 7				1.031 7	12.1 - 19.0 12.0 - 16.9	1970Su1 1971Be4
	$\frac{12}{12}$	$15.04 ext{ } 1$ $15.35 ext{ } 2$	$4.47 \ 3$ $4.05 \ 4$	1.179 5 $1.021 8$				$ \begin{array}{ccc} 1.179 & 5 \\ 1.021 & 8 \end{array} $	12.0 - 16.9 12.0 - 18.1	1971Be4 1972Yo
$^{142}\mathrm{Nd}$	3a	14.93 3	4.54 12	1.229 17				1.229 17	12.0 - 19.0	2003Var
	3b	14.94 11	$4.52 \ 35$	1.227 76				1.227 76	12.0 - 19.0	2003 Var
	4	14.94 1	4.41 3	1.195 7				1.195 7	12.0 - 18.9	1971Ca1
143371	4	14.94 1	4.41 3	1.195 7				1.195 7	12.0 - 18.9	1971Ca1
¹⁴³ Nd ¹⁴⁴ Nd	$\frac{4}{4}$	15.00 2 $15.04 2$	$4.73 8 \\ 5.25 7$	1.236 <i>14</i> 1.239 <i>12</i>				1.236 <i>14</i> 1.239 <i>12</i>	12.0 - 19.0 12.0 - 18.9	1971Ca1 1971Ca1
145Nd	4	15.04 <i>z</i> 14.94 <i>4</i>	6.25 7 $6.27 18$	1.239 12 1.378 28				1.378 28	12.0 - 18.9 12.0 - 18.9	1971Ca1 1971Ca1
$^{146}\mathrm{Nd}$	4	14.73 2	5.74 10	1.314 17				1.314 17	12.0 - 18.9	1971Ca1
$^{148}\mathrm{Nd}$	4	12.78 26	4.03 69	0.326 126	$15.49 ext{ } 19$	5.22 39	0.827 143	1.153 191	10.8 - 18.6	1971Ca1

Table	1 (cor	ntinued)								
Nucl	Id	$E_{r,1}$ (MeV)	$\Gamma_{r,1}$ (MeV)	$S_{r,1}$	$E_{r,2}$ (MeV)	$\Gamma_{r,2}$ (MeV)	$S_{r,2}$	S	$\epsilon_{min} - \epsilon_{max}$ (MeV)	Ref
$^{150}\mathrm{Nd}$	4	12.30 6	3.38 26	0.432 46	16.03 9	5.12 31	0.821 62	1.253 77	10.8 - 18.6	1971Ca1
$^{144}\mathrm{Sm}$	4	15.31 2	4.42 7	1.251 13				1.251 13	12.1 - 18.9	1974Ca5
$^{148}\mathrm{Sm}$	4	14.82 1	5.06 - 5	1.242 9				1.242 9	12.1 - 18.9	1974Ca5
$^{150}{\rm Sm}$	4	14.59 3	5.92 11	1.324 18				1.324 18	12.1 - 18.9	1974Ca5
$^{152}{\rm Sm}$	4	12.39 3	2.99 12	0.377 21	15.73 4	5.15 13	0.853 28	1.230 35	10.9 - 18.8	1974Ca5
$^{154}\mathrm{Sm}$	0 4	12.17 20 $12.27 3$	2.80 95 $2.97 15$	$0.360 ext{ } 187 \\ 0.381 ext{ } 26$	$15.63 ext{ } 49$ $15.94 ext{ } 6$	5.89 <i>151</i> 5.62 <i>20</i>	0.873 286 $0.845 37$	1.233 <i>342</i> 1.226 <i>45</i>	10.9 - 18.6 11.0 - 18.6	1981Gur 1974Ca5
$^{153}\mathrm{Eu}$	4	12.33 4	2.77 17	0.301 20 $0.305 27$	15.78 7	5.76 19	0.892 40	1.197 48	10.9 - 18.7	1969Be8
$^{156}\mathrm{Gd}$	0	12.46 19	3.14 74	0.501 162	15.79 32	4.56 100	0.683 201	1.184 258	10.9 - 18.7	1981Gur
$^{160}\mathrm{Gd}$	3a	12.28 10	3.33 42	0.532 83	16.06 15	5.12 42	0.863 97	1.395 128	10.9 - 18.8	2003 Var
	3b	12.26 12	3.27 60	0.513 123	16.03 20	5.32 79	0.897 167	1.410 207	10.9 - 18.8	2003 Var
150	4	12.23 5	2.78 23	0.409 38	15.95 8	5.23 26	0.822 50	1.231 63	10.9 - 18.7	1969Be8
$^{159}\mathrm{Tb}$	4	12.42 4	2.71 14	0.317 28	15.86 6	5.98 20	1.205 46	1.522 54	11.1 - 19.0	1976Gor
	$\frac{4}{4}$	12.22 4 $12.08 5$	$2.65 ext{ } 17$ $2.97 ext{ } 25$	0.327 28 $0.397 40$	15.66 7 $15.87 7$	4.91 28 $5.06 27$	$0.731 ext{ } 45 \\ 0.848 ext{ } 53$	$1.058 ext{ } 53 $ $1.245 ext{ } 66$	10.8 - 18.7 11.0 - 18.7	1964Br1 1968Be5
$^{165}\mathrm{Ho}$	0	12.38 11	2.59 56	0.376 94	15.48 21	4.05 70	0.604 122	0.980 154	11.1 - 18.7	1981Gur
	4	12.28 2	2.58 9	0.365 16	15.78 3	4.94 13	0.793 23	1.158 28	10.9 - 18.7	1969Be8
	4	$12.01 \ 3$	2.50 17	$0.394 \ 34$	15.58 7	5.08 22	0.968 47	$1.362 \ 58$	11.0 - 18.7	$1968 \mathrm{Be}5$
$^{168}{\rm Er}$	0	12.09 25	3.66 129	0.562 242	15.54 27	3.99 85	0.652 221	1.214 328	10.9 - 18.8	1981Gur
¹⁷⁴ Yb ¹⁷⁵ Lu	0	12.50 19	3.41 65	0.724 189	15.68 25	3.74 72	0.683 196	1.407 272	10.9 - 18.7	1981Gur
176Hf	4	12.32 6 12.34 3	2.59 28 $2.77 13$	$0.351 ext{ } 50 $ $0.476 ext{ } 28$	$15.47 ext{ } 10$ $15.67 ext{ } 6$	4.64 31 $4.72 17$	$0.820 - 68 \\ 0.799 - 38$	1.171 <i>84</i> 1.275 <i>47</i>	11.0 - 18.7 10.9 - 17.9	1969Be6 1977Gor
¹⁷⁸ Hf	0	12.42 21	4.89 76	1.086 208	15.70 19	3.13 61	0.449 150	1.535 256	10.8 - 18.6	1981Gur
	4	12.44 4	2.89 15	0.534 34	15.78 6	4.05 18	0.683 40	1.217 52	11.0 - 17.9	1977Gor
$^{180}\mathrm{Hf}$	0	$12.55 \ 30$	4.71 100	1.004 281	15.61 <i>23</i>	3.27 80	0.482 217	$1.486 \ 355$	10.8 - 18.7	1981 Gur
101—	4	$12.46 \ 3$	2.68 11	0.498 23	15.75 4	3.78 13	0.654 26	$1.152 \ 35$	11.0 - 17.9	1977Gor
$^{181}\mathrm{Ta}$	0	12.19 29	2.93 113	0.462 297	14.99 53	5.13 88	0.979 347	1.441 457	10.8 - 18.6	1981Gur
	3a 3b	12.30 8 $12.32 13$	2.44 22 $2.56 48$	$0.372 ext{ } 52 \\ 0.388 ext{ } 110$	$15.20 ext{ } 12$ $15.23 ext{ } 20$	$4.51 ext{ } 23$ $4.54 ext{ } 66$	$0.918 66 \\ 0.907 165$	1.290 <i>84</i> 1.295 <i>198</i>	10.0 - 18.8 10.0 - 18.8	2003Var 2003Var
	3b 4	12.32 13 $12.31 5$	$2.56 ext{ } 48$ $2.50 ext{ } 20$	$0.388 \ 110$ $0.392 \ 42$	15.23 20	4.41 20	0.892 53	1.284 68	11.0 - 18.7	1968Be5
	$\overline{4}$	12.54 5	1.75 23	$0.156 \ 36$	14.89 14	5.03 34	0.839 67	0.995 76	10.8 - 18.7	1963Br1
$^{182}\mathrm{W}$	0	$11.98 \ 37$	3.91 199	$0.662 \ 515$	14.94 61	5.16 <i>136</i>	0.798 497	1.460 716	11.0 - 18.8	$1981 \mathrm{Gur}$
104	4	12.64 4	2.60 11	0.446 31	15.45 7	4.66 13	0.916 41	1.362 51	10.8 - 18.6	1978Gor
$^{184}\mathrm{W}$	0	11.92 27	4.52 167	0.930 432	15.05 29	3.87 110	0.534 319	1.464 537	11.0 - 17.6	1981Gur
$^{186}\mathrm{W}$	$\frac{4}{0}$	12.48 <i>4</i> 13.04 <i>30</i>	2.38 <i>14</i> 6.60 <i>56</i>	0.363 <i>35</i> 1.591 <i>202</i>	15.17 7 14.89 <i>41</i>	$4.80 ext{ } 12$ $2.12 ext{ } 202$	$1.023 ext{ } 45 $ $0.086 ext{ } 134$	$1.386 ext{ } 57$ $1.677 ext{ } 242$	10.8 - 18.6 10.9 - 18.7	1978Gor 1981Gur
**	4	$12.59 \ 3$	2.32 14	$0.292 \ 34$	14.89 8	5.10 14	0.989 48	1.281 59	10.9 - 18.7	1969Be8
	4	12.58 5	$2.53 \ 16$	0.379 42	15.07 8	4.72 15	0.988 - 55	1.367 - 69	11.0 - 17.8	1978Gor
$^{186}\mathrm{Os}$	7	13.04 11	3.14 28	0.570 91	15.27 12	3.33 27	0.575 93	1.145 130	11.1 - 18.7	1979Be4
¹⁸⁸ Os	9	12.81 6	2.77 15	0.419 55	14.88 8	4.15 15	0.929 67	1.348 87	10.8 - 18.7	1979Be4
$^{189}{\rm Os}$ $^{190}{\rm Os}$	9 9	12.64 6	2.60 14	0.373 48	14.63 7	3.78 14	0.884 60	1.257 77	10.8 - 18.7	1979Be4
$^{192}\mathrm{Os}$	9	12.64 9 $12.64 9$	2.53 25 $2.53 25$	$0.283 76 \\ 0.281 76$	14.36 <i>11</i> 14.36 <i>11</i>	$4.17 ext{ } 13$ $4.17 ext{ } 13$	$0.981 90 \\ 0.974 89$	1.264 118 $1.255 117$	10.8 - 18.7 10.8 - 18.7	1979Be4 1979Be4
$^{191}{ m Ir}$	4	12.72 10	2.08 73	0.231 70 $0.217 167$	14.21 32	5.27 27	1.148 208	1.365 267	11.0 - 16.8	1978Gor
$^{193}{ m Ir}$	4	12.86 6	1.90 37	0.247 92	14.30 22	5.62 29	1.132 110	1.379 143	11.0 - 16.8	1978Gor
$^{194}\mathrm{Pt}$	4	13.42 7	3.61 20	0.918 128	15.97 63	6.16 95	0.386 159	1.304 204	11.0 - 17.8	1978Gor
¹⁹⁵ Pt	4	12.99 15	2.92 49	0.584 286	14.90 66	4.85 91	0.689 355	1.273 456	11.0 - 17.8	1978Gor
¹⁹⁶ Pt ¹⁹⁸ Pt	4	13.28 4	3.10 27	0.597 126	14.81 40	7.51 42	0.808 143	1.405 191	11.0 - 17.8	1978Gor
¹⁹⁷ Au	$\frac{4}{0}$	13.31 <i>4</i> 13.58 <i>7</i>	$\begin{array}{ccc} 3.88 & 6 \\ 5.32 & 28 \end{array}$	1.141 27 $1.539 61$	16.12 10	2.77 35	0.152 27	1.293 <i>38</i> 1.539 <i>61</i>	8.0 - 17.8 11.1 - 17.0	1978Gor 1981Gur
Au	4	13.71 2	4.51 7	1.359 01 $1.354 16$				1.354 16	11.0 - 16.8	1970Ve1
	$\overline{4}$	13.83 3	3.84 8	1.170 19				1.170 19	11.1 - 16.8	1962Fu2
	8	$13.71 \ 3$	4.88 14	$1.345 \ 32$				$1.345 \ 32$	12.1 - 16.9	$1987 \mathrm{Ber}$
²⁰⁶ Pb	4	13.58 1	3.83 5	1.041 8				1.041 8	10.0 - 17.0	1964Ha2
²⁰⁷ Pb	4	13.55 2	3.95 5	1.002 8				1.002 8	10.0 - 17.0	1964Ha2
208 Pb	3a 3b	13.37 3 $13.41 7$	3.93 <i>8</i> 3.97 <i>19</i>	1.337 16				1.337 16	10.9 - 18.8	2003Var 2003Var
	36 4	13.41 7	3.97 19 4.14 4	1.342 <i>45</i> 1.368 <i>11</i>				1.342 <i>45</i> 1.368 <i>11</i>	10.9 - 18.8 10.2 - 16.8	2005 var 1970Ve1
	4	13.45 1	3.89 4	1.004 7				1.004 7	10.2 - 10.8	1964Ha2
	12	13.63 2	3.93 5	1.334 13				1.334 13	10.0 - 14.9	1972Yo
nat Pb	8	13.57 2	$3.78 ext{ } 9$	1.227 24				1.227 24	12.1 - 16.9	1987Ber
$^{209}\mathrm{Bi}$	0	13.79 8	5.02 29	1.546 64				1.546 64	10.9 - 18.3	1976Gur
	$\frac{4}{12}$	13.44 1 $13.56 1$	3.96 <i>4</i> 3.72 <i>4</i>	$1.077 ext{ } 6$ $1.259 ext{ } 10$				$1.077 ext{ } 6$ $1.259 ext{ } 10$	10.0 - 17.0 10.0 - 14.8	1964Ha2 1972Yo
$^{232}\mathrm{Th}$	0	13.56 1 10.37 209	3.12 4 3.57 430	0.470 905	13.75 34	4.66 95	0.804 454	1.259 10	10.0 - 14.8 11.0 - 18.3	1972 Yo 1976Gur
111	4	$11.27 \ 36$	4.34 106	0.588 252	14.18 28	4.43 98	0.636 264	1.224 365	9.2 - 16.3	1973Ve1
	10	11.04 2	2.71 7	0.394 23	13.87 4	4.73 15	1.005 37	1.399 44	9.4 - 17.8	1980Ca1

Nucl	Id	$E_{r,1}$ (MeV)	$\Gamma_{r,1}$ (MeV)	$S_{r,1}$	$E_{r,2}$ (MeV)	$\Gamma_{r,2}$ (MeV)	$S_{r,2}$	S	$\epsilon_{min} - \epsilon_{max}$ Ref (MeV)
$^{233}\mathrm{U}$	11	11.10 2	1.78 7	0.263 17	13.97 3	5.26 6	2.370 29	2.633 34	9.4 - 17.8 1986Be
$^{234}\mathrm{U}$	11	11.08 5	2.20 19	0.530 - 59	14.23 5	4.43 19	1.775 79	2.305 99	9.4 - 17.8 1986Be
$^{235}\mathrm{U}$	0	11.11 13	$1.12 \ 53$	0.128 72	13.41 20	$4.98 ext{ } 45$	0.992 103	1.120 126	11.0 - 18.4 1976Gu
$^{236}\mathrm{U}$	10	10.93 3	2.58 11	0.335 24	$13.80 \ 6$	4.78 14	$0.915 \ 35$	1.250 42	9.4 - 17.8 1980Ca
$^{238}\mathrm{U}$	0	11.21 22	1.99 93	0.249 140	14.13 22	4.97 - 50	$0.871 \ 130$	1.120 191	11.1 - 18.8 1976Gu
	4	10.94 4	2.64 14	0.364 28	13.99 6	$4.56 ext{ } 18$	0.803 40	1.167 49	9.1 - 17.8 1973Ve
$^{237}\mathrm{Np}$	10	11.01 25	2.92 89	0.343 170	14.10 32	4.76 112	0.863 252	1.206 304	9.2 - 16.6 1973Ve
	10	10.98 - 5	2.17 16	$0.312 \ 38$	14.06 9	4.64 27	1.160 65	1.472 75	9.4 - 17.8 1986Be
239 Pu	0	10.60 131	$4.18 \ 518$	0.502 893	14.00 58	5.44 127	$0.842 \ 612$	1.344 1083	11.0 - 18.7 1976Gu
	10	11.31 10	2.48 21	0.385 76	13.90 22	$4.36 ext{ } 43$	0.766 105	1.151 130	9.1 - 17.8 1986Be

 ${\bf Table~2} \\ {\bf Experimental~values~and~uncertainties~of~GDR~parameters~within~Modified~Lorentzian~(SMLO)~approach.}$

Nucl	Id	$E_{r,1}$ (MeV)	$\Gamma_{r,1}$ (MeV)	$S_{r,1}$	$E_{r,2}$ (MeV)	$\Gamma_{r,2}$ (MeV)	$S_{r,2}$	S	$\epsilon_{min} - \epsilon_{max}$ (MeV)	Ref
$^{10}\mathrm{B}$	5a	23.31 22	17.51 44	0.755 25				0.755 25	8.5 - 24.9	1987Ahs
	5b	24.96 92	22.20 233	0.967 122				0.967 122	8.5 - 24.9	1987 Ahs
$^{12}\mathrm{C}$	0	22.82 7	3.71 <i>31</i>	0.504 29				0.504 29	14.0 - 24.9	1963Bur
	0	22.90 2	3.69 7	0.683 11				0.683 11	20.1 - 25.0	1969Bez
	1a	22.91 7	3.44 24	0.625 38				0.625 38	21.1 - 24.0	1975Ahr
	1b 3a	22.90 9 $23.10 6$	3.41 30 $3.69 23$	$0.622 ext{ } 50 \\ 0.646 ext{ } 26$				$0.622 ext{ } 50 \\ 0.646 ext{ } 26$	21.1 - 24.0 21.2 - 25.0	1975Ahr 2002Ish
	3b	23.10 8	3.69 31	0.647 39				0.647 39	21.2 - 25.0	2002Ish
	3a	$22.70 \ 3$	3.27 10	0.588 10				0.588 10	20.1 - 25.0	2003Var
	3b	22.67 10	3.46 28	0.598 41				0.598 41	20.1 - 25.0	2003Var
$^{-3}\mathrm{C}$	3a	25.02 21	10.72 64	1.012 40				$1.012 \ \dot{40}$	14.5 - 29.0	$2002 \mathrm{Ish}$
	3b	24.54 21	8.63 82	0.901 49				0.901 49	14.5 - 29.0	$2002 \mathrm{Ish}$
^{14}C	3a	15.69 22	6.51 114	$0.381 \ 55$	$26.27 ext{ } 16$	7.11 104	$0.420 ext{ } 53$	0.801 76	14.5 - 30.0	2002Ish
1437	3b	16.17 40	3.80 62	0.251 27	$26.07 ext{ } 19$	7.05 117	0.475 61	0.726 67	9.0 - 30.0	2002Ish
¹⁴ N	0	23.19 3	7.09 14	1.217 18				1.217 18	18.2 - 28.0	1969Bez
	3a 3b	23.36 <i>9</i> 23.29 <i>21</i>	5.68 <i>20</i> 5.88 <i>45</i>	$0.808 ext{ } 18 \\ 0.809 ext{ } 58$				$0.808 ext{ } 18 \\ 0.809 ext{ } 58$	15.0 - 28.0 15.0 - 28.0	2002Ish 2002Ish
$^{15}{ m N}$	1a	24.58 1	1.96 2	0.514 2				0.514 2	9.7 - 26.5	1989Bat
11	1b	25.04 1	5.14 4	0.718 4				0.718 4	9.7 - 26.5	1989Bat
	3a	26.29 57	19.45 144	1.752 149				1.752 149	14.5 - 28.0	2002Ish
	3b	26.35 90	18.54 287	1.756 277				1.756 277	14.5 - 28.0	$2002 \mathrm{Ish}$
^{nat}O	2	23.03 17	10.03 122	1.717 191				1.717 191	21.8 - 25.5	1985Ahr
^{16}O	0	$23.45 ext{ } 5$	$5.72 ext{ } 15$	0.983 22				0.983 22	18.5 - 26.0	1969Bez
	0	23.78 4	5.67 13	1.028 19				1.028 19	18.1 - 26.0	1975Ahr
	3a	23.72 8	4.36 14	0.822 20				0.822 20	18.2 - 26.0	2002Ish
¹⁷ O	3b 3a	23.91 <i>13</i> 23.46 <i>11</i>	$4.98 ext{ } 26$ $5.95 ext{ } 37$	$0.882 ext{ } 35 \\ 0.783 ext{ } 29$				$0.882 ext{ } 35 \\ 0.783 ext{ } 29$	18.2 - 26.0 18.5 - 26.5	2002Ish 2002Ish
0	3b	23.42 15	5.95 <i>37</i> 5.87 <i>55</i>	0.774 42				0.774 42	18.5 - 26.5	2002Ish
.8O	3a	19.12 13	2.31 61	0.075 20	24.19 18	5.24 87	0.413 54	0.488 58	18.5 - 26.0	2002Ish
Ü	3b	17.44 125	10.80 389	$0.372 \ 136$	24.08 21	4.12 114	0.278 76	0.650 156	11.5 - 26.0	2002Ish
$^{19}\mathrm{F}$	3a	24.63 90	26.14 226	2.202 268		,		2.202 268	10.0 - 24.5	2002 Ish
^{23}Na	0	17.57 17	$3.75 ext{ } 45$	0.233 41	$21.26 ext{ } 10$	$4.35 ext{ } 54$	0.505 66	0.738 78	14.2 - 23.0	1981 Ish
	3a	17.61 20	3.83 <i>35</i>	0.241 42	21.11 11	$4.18 ext{ } 57$	0.440 62	0.681 75	14.3 - 23.0	2002Ish
242.5	3b	17.51 29	3.58 77	0.219 59	21.08 13	4.33 63	0.466 77	0.685 97	14.3 - 23.0	2002Ish
$^{24}{ m Mg}$	3a	19.80 10	3.36 32	0.482 46	22.93 34	1.84 98	0.101 67	0.583 81	18.2 - 23.0	2002Ish
	3b 3a	19.81 <i>10</i> 19.68 7	$\begin{array}{ccc} 3.48 & 35 \\ 2.47 & 26 \end{array}$	$0.497 ext{ } 47 \\ 0.301 ext{ } 45$	22.91 30 $24.97 24$	1.70 <i>84</i> 8.68 <i>179</i>	$0.091 ext{ } 55 \\ 0.713 ext{ } 158$	0.588 <i>72</i> 1.014 <i>164</i>	18.2 - 23.0 16.3 - 26.0	2002Ish 2003Var
	3b	19.77 7	3.00 20	0.386 30	24.82 14	5.86 87	0.474 72	0.860 78	16.3 - 26.0	2003 Var
$^{25}{ m Mg}$	3a	22.73 17	8.44 26	1.170 40	24.02 14	0.00 07	0.414 72	1.170 40	9.0 - 24.2	2002Ish
8	3b	22.41 23	7.90 45	1.092 59				1.092 59	9.0 - 24.2	2002Ish
$^{26}{ m Mg}$	3a	17.40 5	2.41 18	0.177 12	$23.73 ext{ } 10$	$7.23 \ 36$	$1.128 ext{ } 49$	$1.305 \ 50$	16.1 - 26.0	2003 Var
	3b	17.37 11	1.93 31	0.142 19	23.73 11	$7.84 \ 45$	1.219 62	$1.361 \ 65$	16.1 - 26.0	2003 Var
^{27}Al	1a	20.97 8	7.80 23	1.169 24				1.169 24	14.2 - 24.4	1975Ahr
	1b	20.94 10	7.47 39	1.137 41				1.137 41	14.2 - 24.4	1975Ahr
	3a	20.62 8	5.32 14	0.876 21				0.876 21	14.2 - 23.0	2002Ish
$^{nat}\mathrm{Si}$	2	21.00 9	8.56 36	1.253 41	25 24 10	2.10 50	0.063 17	1.253 41	16.3 - 25.4	1985Ahr
²⁸ Si	0 $3a$	$20.45 3 \\ 19.88 16$	$\begin{array}{ccc} 4.85 & 10 \\ 2.91 & 22 \end{array}$	$0.929 ext{ } 17 \\ 0.418 ext{ } 104$	$25.24 ext{ } 19$ $21.84 ext{ } 20$	$\begin{array}{ccc} 2.10 & 59 \\ 3.39 & 54 \end{array}$	0.464 128	0.992 <i>24</i> 0.882 <i>165</i>	16.4 - 25.8 16.7 - 23.0	1975Ahr 2003Var
D1	3b	19.78 36	2.68 97	0.305 280	21.64 20	4.12 113	0.630 358	0.935 454	16.7 - 23.0	2003 Var
$^{29}\mathrm{Si}$	3a	20.97 11	6.88 25	0.941 29	21.00 40	1.12 110	0.000 000	0.941 29	14.2 - 23.0	2003 Vai 2002Ish
	3b	20.91 16	6.69 46	0.923 47				0.923 47	14.2 - 23.0	2002Ish
$^{30}\mathrm{Si}$	3a	21.32 21	9.16 48	0.916 48				0.916 48	14.2 - 23.0	$2002 \mathrm{Ish}$
	3b	21.25 29	8.88 82	0.899 75				0.899 75	14.2 - 23.0	$2002 \mathrm{Ish}$
$^{32}\mathrm{Si}$	3a	21.21 12	6.08 16	1.098 36				1.098 36	14.4 - 23.0	2002Ish
84.0	3b	21.77 20	7.04 41	1.288 78				1.288 78	14.4 - 23.0	2002Ish
^{34}S	3a	21.66 76	13.43 148	1.963 299				1.963 299	12.0 - 25.0	1986Ass
	3b 3a	21.66 76 $22.32 22$	13.43 <i>148</i> 17.94 <i>75</i>	1.963 <i>299</i> 2.333 <i>98</i>				1.963 <i>299</i> 2.333 <i>98</i>	12.0 - 25.0 14.1 - 25.1	1986Ass 2003Var
	за 3b	$22.32 ext{ } zz$ $22.78 ext{ } 41$	16.62 136	2.333 <i>98</i> 2.318 <i>198</i>				2.333 <i>98</i> 2.318 <i>198</i>	14.1 - 25.1 12.3 - 25.1	2003 Var 2003 Var
^{nat}S	35 13	20.42 11	5.74 40	0.887 50				0.887 50	17.2 - 23.6	1965Wyc
$^{10}{ m Ar}$	3a	19.91 21	11.50 51	1.648 62				1.648 62	10.5 - 25.0	2002Ish
	3b	$20.54 ext{ } 59$	13.98 160	1.857 204				1.857 204	10.5 - 25.0	2002Ish
$^{nat}\mathrm{Ar}$	1a	$20.60 ext{ } 19$	9.58 72	1.087 50				1.087 50	16.5 - 27.5	1960 Fas
,	1b	20.91 65	11.27 261	1.199 240				1.199 240	16.5 - 27.5	1960 Fas
nat K	4	21.28 3	7.40 10	0.443 5				0.443 5	16.0 - 25.9	1974Ve1
nat Ca	1a	20.24 2	5.23 7	1.268 11				1.268 11	13.5 - 25.9	1975Ahr

Table	2 (cor	ntinued)								
Nucl	Id	$E_{r,1}$ (MeV)	$\Gamma_{r,1}$ (MeV)	$S_{r,1}$	$E_{r,2}$ (MeV)	$\Gamma_{r,2}$ (MeV)	$S_{r,2}$	S	$\epsilon_{min} - \epsilon_{max}$ (MeV)	Ref
	1b	20.23 2	5.22 7	1.267 12				1.267 12	13.5 - 25.9	1975Ahr
	2	20.02 4	5.04 13	1.171 22				1.171 22	9.4 - 24.0	$1985\mathrm{Ahr}$
$^{40}\mathrm{Ca}$	3a	20.06 7	5.30 28	1.249 42				1.249 42	18.2 - 24.0	2003Er
$^{42}\mathrm{Ca}$	3b 3a	20.04 <i>12</i> 20.53 <i>16</i>	5.34 <i>46</i> 9.75 <i>58</i>	1.255 <i>81</i> 1.678 <i>83</i>				1.255 <i>81</i> 1.678 <i>83</i>	18.2 - 24.0 15.2 - 23.0	$2003 Er \\ 2003 Er$
Ca	3b	20.59 24	8.95 <i>95</i>	1.622 151				1.622 151	15.2 - 23.0	2003Er
44 Ca	3a	20.08 19	12.45 102	1.858 110				1.858 110	15.5 - 26.0	2003Er
	3b	20.38 47	$12.76 ext{ } 154$	1.892 207				1.892 207	12.5 - 26.0	$2003\mathrm{Er}$
⁴⁸ Ca	0	19.90 18	6.42 96	1.512 199				1.512 199	17.9 - 21.6	1987O'k
	3a 3b	19.95 <i>18</i> 19.80 <i>28</i>	7.82 67 $7.11 100$	1.461 <i>90</i> 1.375 <i>160</i>				1.461 90 $1.375 160$	15.5 - 23.0 15.5 - 23.0	2003Er 2003Er
$^{46}\mathrm{Ti}$	3a	19.95 9	7.99 24	1.393 30				1.393 30	13.2 - 25.0	2003E1 2002Ish
	3b	19.98 25	8.77 70	1.451 103				1.451 103	13.2 - 25.0	2002 Ish
$^{48}\mathrm{Ti}$	3a	20.13 25	9.98 75	1.352 88				1.352 88	14.5 - 23.0	$2002 \mathrm{Ish}$
$^{51}{ m V}$	3b	20.43 59	11.23 187	1.472 246	00.71.77	16.07 006	0.449. 450	1.472 246	14.5 - 23.0	2002Ish
01 V	3a 3b	17.67 <i>16</i> 17.96 <i>36</i>	3.08 <i>135</i> 4.91 <i>123</i>	0.191 <i>150</i> 0.646 <i>288</i>	22.71 57 $22.87 65$	16.27 <i>236</i> 8.20 <i>396</i>	2.443 <i>452</i> 1.053 <i>638</i>	2.634 <i>476</i> 1.699 <i>700</i>	15.2 - 25.0 15.2 - 25.0	2003Var 2003Var
	4	18.18 6	5.29 14	0.701 28	21.37 15	3.36 63	$0.127 \ 30$	0.828 41	14.1 - 22.9	1962Fu1
$^{52}\mathrm{Cr}$	3a	19.16 8	6.70 24	1.075 27				$1.075 \ 27$	14.3 - 23.0	$2002 \mathrm{Ish}$
	3b	19.36 22	$7.52 \ 63$	1.146 84				1.146 84	14.3 - 23.0	2002Ish
55 Mn nat Fe	4	16.43 8	2.91 47	0.122 37	20.13 23	11.28 60	1.107 79	1.229 87	14.0 - 23.0	1979Al2
ге	0 13a	11.89 <i>14</i> 17.88 <i>5</i>	1.06 62 $6.50 14$	$0.178 ext{ } 51 \\ 0.756 ext{ } 15$	17.58 48	6.88 157	1.046 188	1.224 <i>195</i> 0.756 <i>15</i>	10.0 - 24.0 13.2 - 24.0	1969Dob 1967Cos
	13b	17.82 6	7.15 25	0.820 25				0.820 25	13.2 - 24.0	1967Cos
54 Fe	0	19.39 8	5.69 30	1.606 54				1.606 54	16.0 - 23.0	1978Nor
⁵⁹ Co	8	16.44 9	2.42 37	0.087 28	18.68 22	8.63 46	$0.922 \ 35$	1.009 45	14.0 - 20.9	1979Al2
⁵⁸ Ni	3a	19.14 13	7.22 38	1.078 44				1.078 44	14.4 - 22.0	2002Ish
	3b 3a	18.92 25 $18.87 6$	6.77 75 $6.16 17$	$1.022 ext{ } 100 \\ 0.958 ext{ } 19$				1.022 <i>100</i> 0.958 <i>19</i>	14.4 - 22.0 14.1 - 22.0	2002Ish 2003Var
	3b	18.78 12	6.03 36	0.942 47				0.942 47	14.1 - 22.0	2003 Var
	4	18.53 7	7.97 22	$0.330 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				0.330 9	12.2 - 21.8	1974Fu3
$^{60}\mathrm{Ni}$	3a	16.77 8	0.71 27	0.024 9	18.76 9	5.53 15	$0.821 ext{ } 15$	0.845 17	12.2 - 21.0	2003 Var
	3b	16.79 8	0.67 23	0.024 9	18.87 15	5.80 28	0.854 42	0.878 43	12.2 - 21.0	2003Var
	$\frac{4}{4}$	16.23 7 16.38 2	$ \begin{array}{ccc} 1.83 & 56 \\ 0.35 & 4 \end{array} $	$0.072 ext{ } 35 \\ 0.015 ext{ } 2$	18.25 <i>18</i> 18.46 <i>3</i>	7.09 <i>24</i> 7.06 <i>10</i>	$0.746 ext{ } 48 \\ 0.822 ext{ } 9$	$0.818 ext{ } 59 \\ 0.837 ext{ } 9$	14.0 - 20.9 14.1 - 22.0	1974Fu3 1970Gor
$^{63}\mathrm{Cu}$	3a	16.79 31	5.76 68	0.844 175	20.37 32	4.56 243	$0.322 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	1.118 274	14.0 - 21.0	2003Var
	3b	16.67 74	5.44 197	0.766 510	20.43 108	5.62 776	0.377 774	1.143 927	14.0 - 21.0	2003 Var
	6	$17.01 ext{ } 10$	4.80 15	$0.575 \ 37$	19.16 11	$2.55 ext{ } 49$	0.078 28	$0.653 \ 46$	14.0 - 21.0	1968Su1
65.C	4	16.51 12	5.26 33	0.557 49	19.72 21	3.81 112	0.117 49	0.674 69	14.2 - 20.7	1964Fu1
⁶⁵ Cu	3a 3b	17.23 8 $17.16 29$	8.38 <i>43</i> 7.87 <i>138</i>	$1.176 ext{ } 45 $ $1.126 ext{ } 183$				1.176 <i>45</i> 1.126 <i>183</i>	14.2 - 21.0 14.2 - 21.0	2003Var 2003Var
	4	16.92 6	7.04 31	0.847 31				0.847 31	14.2 - 19.9	1964Fu1
$^{64}\mathrm{Zn}$	8	16.37 19	3.84 46	0.303 86	19.49 19	5.82 120	0.457 139	0.760 163	14.0 - 20.8	1976Ca1
$^{65}\mathrm{Zn}$	1a	16.06 12	$2.26 ext{ } 42$	0.077 23	$18.87 ext{ } 19$	8.62 31	0.842 26	$0.919 \ 35$	12.0 - 21.0	2003Rod
70.0	1b	16.66 28	4.86 53	0.416 96	19.70 19	5.03 115	0.306 117	0.722 151	12.0 - 21.0	2003Rod
70 Ge	0 8	15.31 <i>23</i> 17.03 <i>10</i>	7.19 <i>60</i> 8.19 <i>41</i>	$1.642 ext{ } 117 \\ 1.076 ext{ } 46$				1.642 <i>117</i> 1.076 <i>46</i>	10.0 - 20.0 13.1 - 20.8	1975Mcc 1976Ca1
$^{72}\mathrm{Ge}$	0	17.85 16	6.19 41 $6.22 54$	1.461 84				1.461 84	10.0 - 24.0	1975Mcc
	8	16.90 7	8.03 30	1.244 38				1.244 38	13.1 - 20.8	1976Ca1
$^{74}\mathrm{Ge}$	0	13.06 10	0.07 14	1.596 3225	$17.10 \ 33$	7.61 149	1.478 237	3.074 3234	12.0 - 24.0	$1975 {\rm Mcc}$
76.0	8	14.42 16	2.46 83	0.115 84	17.47 29	8.37 85	1.159 166	1.274 186	13.1 - 20.8	1976Ca1
⁷⁶ Ge ⁷⁵ As	8	15.42 72	3.62 <i>383</i>	0.197 504	18.69 <i>297</i>	13.81 541	1.604 354 $0.563 142$	1.801 616	13.1 - 20.8	1976Ca1
AS	4 8	15.25 <i>24</i> 15.30 <i>77</i>	$4.73 ext{ } 52$ $4.91 ext{ } 173$	$0.401 ext{ } 118 \\ 0.494 ext{ } 543$	18.16 <i>25</i> 18.40 <i>115</i>	6.73 <i>71</i> 8.18 <i>281</i>	$0.563 142 \\ 0.791 706$	$0.964 ext{ } 185 $ $1.285 ext{ } 891$	13.1 - 20.9 13.1 - 20.8	1969Be1 1976Ca1
$^{76}\mathrm{Se}$	0	15.86 7	6.50 35	$1.365 ext{ } 56$	10.10 110	0.10 201	100	1.365 56	13.1 - 19.7	1978Gur
	8	17.21 12	10.66 55	1.555 72				1.555 72	13.1 - 20.8	1976Ca1
⁷⁸ Se	8	15.23 <i>23</i>	4.67 64	0.527 123	18.76 19	5.68 107	$0.512 \ 150$	1.039 194	13.1 - 20.8	1976Ca1
⁸⁰ Se	8	16.48 17	6.43 48	1.152 94				1.152 94	13.1 - 17.0	1976Ca1
⁸² Se	0 8	16.13 5 16.75 5	5.81 <i>23</i>	1.339 39				1.339 <i>39</i> 1.168 <i>29</i>	13.1 - 19.9 13.1 - 20.8	1978Gur 1976Ca1
⁸⁹ Y	$\frac{8}{3a}$	16.75 5 16.89 5	6.08 20 $4.50 29$	1.168 29 $1.255 57$				1.168 29 $1.255 57$	13.1 - 20.8 15.3 - 19.0	1976Ca1 1903Var
1	3b	16.91 22	4.57 106	1.268 268				1.268 268	15.3 - 19.0	2003Var
	4	16.82 1	4.42 4	1.175 8				1.175 8	14.0 - 19.0	1971Le1
	4	16.84 1	$4.14 \ 3$	0.896 4				0.896 4	14.0 - 18.9	$1967 \mathrm{Be}2$
90~	12	16.93 3	4.01 9	0.956 20				0.956 20	14.0 - 18.1	1972Yo
$^{90}\mathrm{Zr}$	3a	16.90 5	4.13 25	1.226 53				1.226 53	14.9 - 18.5	2003Var
	3b	16.87 <i>16</i>	3.97 67	1.193 179				1.193 179	14.9 - 18.5	2003 Var

Table 2 (continued)

Nucl	Id	$E_{r,1}$ (MeV)	$\Gamma_{r,1}$ (MeV)	$S_{r,1}$	$E_{r,2}$ (MeV)	$\Gamma_{r,2}$ (MeV)	$S_{r,2}$	S	$\epsilon_{min} - \epsilon_{max}$ (MeV)	Ref
	4	16.91 <i>1</i>	4.18 3	0.893 6				0.893		1967Be2
$^{91}{ m Zr}$	8 4	16.81 <i>1</i> 16.64 <i>2</i>	$\begin{array}{ccc} 4.31 & 4 \\ 4.32 & 7 \end{array}$	1.057 7 0.917 11				1.057 0.917		1971Le1 1967Be2
$^{92}\mathrm{Zr}$	4	16.34 2	4.70 10	0.898 13				0.898		1967Be2
$^{94}\mathrm{Zr}$	4	16.35 3	5.52 12	0.991 17				0.991		1967 Be2
$^{nat}\mathrm{Zr}$	8	$16.61 \ 3$	$4.45 ext{ } 15$	0.903 25				0.903	25 14.9 - 19.0	$1987 \mathrm{Ber}$
93 Nb	8	16.70 2	$5.18 ext{ } 6$	1.175 12				1.175		1971 Le1
92 Mo	3a	17.28 7	5.05 25	1.368 52				1.368		2003Var
	3b 4	$17.21 ext{ } 17 \\ 16.89 ext{ } 1$	$4.62 ext{ } 62$ $4.28 ext{ } 4$	1.293 <i>160</i> 0.781 <i>6</i>				1.293 0.781	160 14.4 - 19.0 6 14.0 - 18.9	2003Var 1974Be3
$^{94}\mathrm{Mo}$	4	16.73 2	6.04 6	1.268 12				1.268		1974Be3
$^{96}\mathrm{Mo}$	4	16.42 7	6.52 20	1.315 43					43 13.2 - 17.0	1974Be3
98 Mo	4	$15.96 ext{ } 4$	6.17 18	1.257 28				1.257	28 13.2 - 18.9	$1974 \mathrm{Be}3$
$^{100}{ m Mo}$	9	16.02 4	8.44 18	1.515 26					<i>26</i> 12.1 - 20.0	1974 Be3
103 Rh	3a	16.59 11	8.44 51	1.638 82					82 13.1 - 19.0	2003Var
	3b	16.62 25 $16.47 5$	8.56 <i>107</i> 8.02 <i>21</i>	1.658 <i>193</i> 1.543 <i>35</i>					193 13.1 - 19.0 35 13.2 - 18.9	2003Var 1974Le1
$^{107}\mathrm{Ag}$	$\frac{4}{4}$	16.47 5	$7.51 ext{ } 17$	1.338 26					26 9.5 - 19.0	1974Le1 1969Ish
	4	16.14 5	7.18 22	1.053 29					29 13.1 - 18.7	1969Be1
$^{109}\mathrm{Ag}$	4	13.74 22	3.81 154	0.337 167	16.76 12	4.17 53	0.423			1969Ish
$^{115}{ m In}$	4	15.79 <i>1</i>	5.58 6	1.357 12				1.357		1969Fu1
116~	4	15.91 2	6.00 7	1.353 13				1.353		1974Le1
$^{116}\mathrm{Sn}$	4	15.69 1	5.29 6	1.302 12				1.302		1974Le1
$^{117}\mathrm{Sn}$	$\frac{4}{4}$	15.74 2 $15.77 2$	4.34 8 $5.29 11$	$1.049 ext{ } 13$ $1.232 ext{ } 20$				1.049 1.232	13 13.0 - 18.0 20 13.2 - 17.8	1969Fu1 1974Le1
511	4	15.77 2	5.31 7	1.208 11				1.208		1969Fu1
$^{118}\mathrm{Sn}$	4	15.55 1	5.02 6	1.259 12				1.259		1974Le1
	4	15.70 <i>1</i>	5.02 - 5	1.148 8				1.148	8 13.1 - 17.9	1969Fu 1
¹¹⁹ Sn	4	15.65 2	5.09 7	1.144 14				1.144	•	1969Fu 1
$^{120}\mathrm{Sn}$	4	15.50 1	5.26 7	1.334 13				1.334		1974Le1
$^{124}\mathrm{Sn}$	4 3a	$15.53 ext{ } 1 $ $15.41 ext{ } 5$	5.03 <i>4</i> 5.06 <i>24</i>	1.256 9 $1.198 37$				1.256 1.198		1969Fu1 2003Var
SII	3b	15.41 9	5.00 24	1.189 73					73 13.1 - 18.0	2003 Var
	4	15.39 2	4.90 9	1.174 16				1.174		1974Le1
	4	15.30 2	4.98 - 8	1.222 16				1.222	<i>16</i> 13.1 - 17.8	1969Fu 1
¹²⁴ Te	6	15.36 2	5.81 9	1.394 18				1.394		1976Le2
$^{126}{ m Te}$ $^{128}{ m Te}$	6	15.27 2	5.62 8	1.407 15				1.407		1976Le2
¹³⁰ Te	6 6	15.23 2 15.21 2	5.55 8 $5.19 8$	$1.414 ext{ } 16$ $1.377 ext{ } 15$				1.414 1.377		1976Le2 1976Le2
$^{127}\mathrm{I}$	4	14.98 20	4.93 27	1.228 158	17.03 35	2.65 16	69 0.106		201 8.8 - 19.8	1969Be6
	4	14.64 22	4.00 27	0.860 179	16.51 39	3.21 91			244 12.2 - 20.0	1989Ras
	4	$14.65 ext{ } 18$	4.34 26	0.650 117	16.80 22	4.24 - 64			<i>167</i> 12.1 - 19.9	1966 Br1
122 ~	8	14.72 26	2.33 157	0.098 205	15.81 <i>65</i>	6.91 19	95 1.206			1987Ber
$^{133}\mathrm{Cs}$	4	15.44 1 $15.32 2$	5.50 2	1.397 5				1.397		1974Le1
138 Ba	$\frac{4}{4}$	15.32 z $15.31 2$	5.11 8 $4.76 6$	1.186 <i>14</i> 1.208 <i>10</i>				1.186 1.208		1969Be1 1970Be8
139 La	4	15.15 1	4.09 4	1.068 8				1.068		1971Be4
$^{140}\mathrm{Ce}$	6	15.09 1	$4.51 \ \ \dot{5}$	1.317 10				1.317		1976 Le2
$^{142}\mathrm{Ce}$	6	14.95 2	5.24 9	1.313 16				1.313		1976 Le2
$^{141}\mathrm{Pr}$	4	15.20 2	4.63 6	1.127 11				1.127		1966Br1
	4	15.43 2	4.02 7	1.081 13				1.081		1972De1
	$\frac{4}{12}$	15.33 2 $15.26 1$	4.49 <i>9</i> 4.09 <i>4</i>	1.165 <i>21</i> 1.049 <i>8</i>				1.165 1.049		1987Ber 1970Su1
	12	15.17 <i>1</i>	4.88 3	1.262 6				1.262		1971Be4
	12	15.42 2	4.39 5	1.081 10				1.081		1972Yo
$^{142}\mathrm{Nd}$	3a	$14.93 \ 3$	4.54 12	1.228 18				1.228	18 12.0 - 19.0	2003 Var
	3b	15.00 11	4.59 37	1.241 81				1.241		2003Var
	4	15.01 1	4.56 4	1.226 7				1.226		1971Ca1
$^{143}\mathrm{Nd}$	$\frac{4}{4}$	15.01 <i>1</i> 15.08 <i>2</i>	4.56 4 $4.99 9$	1.226 7 1.281 16				1.226 1.281		1971Ca1 1971Ca1
144Nd	4	15.08 2 $15.17 2$	4.99 9 $5.56 7$	1.281 16				1.281		1971Ca1 1971Ca1
$^{145}\mathrm{Nd}$	4	15.14 5	6.75 22	1.456 36				1.456		1971Ca1
$^{146}\mathrm{Nd}$	4	14.88 3	6.04 11	1.361 20				1.361		1971Ca1
¹⁴⁸ Nd	4	$13.34 \ 38$	5.41 70	0.623 184	15.79 11	4.57 - 56		165 1.175	247 10.8 - 18.6	1971Ca1
¹⁵⁰ Nd	4	12.49 9	3.93 29	0.556 55	16.23 7	$4.85 \ 34$	0.696			1971Ca1
144Sm	4	15.37 2	4.53 7	1.274 15				1.274		1974Ca5
$^{148}\mathrm{Sm}$	4	14.91 <i>1</i>	$5.15 ext{ } 6$	$1.260 \ 10$				1.260	10 12.1 - 18.9	1974Ca5

Table 2 (continued)

Table :	2 (cor	ntinued)								
Nucl	Id	$E_{r,1}$ (MeV)	$\Gamma_{r,1}$ (MeV)	$S_{r,1}$	$E_{r,2}$ (MeV)	$\Gamma_{r,2}$ (MeV)	$S_{r,2}$	S	$\epsilon_{min} - \epsilon_{max}$ (MeV)	Ref
$^{150}\mathrm{Sm}$	4	14.76 3	6.01 12	1.340 20				1.340 20	12.1 - 18.9	1974Ca5
$^{152}\mathrm{Sm}$	4	12.56 4	3.53 13	0.511 25	15.97 <i>3</i>	4.77 14	0.704 30	1.215 39	10.9 - 18.8	1974Ca5
$^{154}\mathrm{Sm}$	0	12.31 29	3.27 104	0.483 217	15.95 <i>36</i>	5.53 176	$0.729 \ 305$	1.212 374	10.9 - 18.6	1981Gur
	4	12.42 4	3.43 16	$0.495 \ 30$	16.20 4	5.29 22	0.716 39	1.211 49	11.0 - 18.6	1974Ca5
$^{153}\mathrm{Eu}$	4	12.47 5	3.26 18	$0.416 \ 31$	16.07 5	5.48 21	$0.769 ext{ } 42$	$1.185 ext{ } 52$	10.9 - 18.7	1969 Be8
$^{156}\mathrm{Gd}$	0	12.63 24	3.61 80	0.632 177	15.97 23	4.10 105	0.537 191	1.169 260	10.9 - 18.7	1981 Gur
$^{160}\mathrm{Gd}$	3a	$12.47 ext{ } 14$	$3.85 ext{ } 49$	0.678 101	16.26 11	$4.69 ext{ } 48$	0.700 104	1.378 145	10.9 - 18.8	2003 Var
	3b	12.42 16	3.71 67	0.638 142	16.25 16	5.07 88	0.764 177	1.402 227	10.9 - 18.8	2003Var
$^{159}\mathrm{Tb}$	4	12.34 6	3.13 24	0.502 43	16.16 6	4.99 29	0.717 54	1.219 69	10.9 - 18.7	1969Be8
- 00 I D	$\frac{4}{4}$	12.55 5 12.33 5	3.23 <i>15</i> 3.04 <i>18</i>	$0.452 33 \\ 0.414 31$	$ \begin{array}{ccc} 16.16 & 5 \\ 15.85 & 6 \end{array} $	5.74 22 $4.60 29$	$ \begin{array}{ccc} 1.059 & 50 \\ 0.631 & 46 \end{array} $	1.511 60 $1.045 55$	11.1 - 19.0 10.8 - 18.7	1976Gor 1964Br1
	4	12.33 6 $12.22 6$	3.37 28	0.414 31	16.05 6	4.79 29	0.737 57	1.234 75	11.0 - 18.7	1968Be5
	12	12.22 6	3.37 28	0.497 48	16.05 6	4.79 29	0.737 57	1.234 75	11.0 - 18.7	1968Be5
	1b	12.22 6	3.37 28	0.497 48	16.05 6	4.79 29	0.737 57	1.234 75	11.0 - 18.7	1968Be5
$^{165}\mathrm{Ho}$	0	12.47 13	$2.84 ext{ } 59$	0.445 100	15.59 18	3.78 72	0.520 120	0.965 156	11.1 - 18.7	1981Gur
	4	12.38 2	2.92 9	0.453 17	$15.98 \ 3$	$4.66 ext{ } 14$	0.692 23	1.145 29	10.9 - 18.7	$1969 \mathrm{Be}8$
	4	$12.11 ext{ } 4$	$2.81 ext{ } 19$	$0.489 \ 38$	$15.78 ext{ } 5$	4.83 24	$0.856 \ 50$	$1.345 \ 63$	11.0 - 18.7	1968 Be5
¹⁶⁸ Er	0	12.33 36	4.18 140	0.698 281	15.65 20	3.58 96	0.516 225	1.214 360	10.9 - 18.8	1981Gur
¹⁷⁴ Yb	0	12.73 25	3.95 69	0.909 211	15.80 18	3.18 81	0.496 186	1.405 281	10.9 - 18.7	1981Gur
¹⁷⁵ Lu ¹⁷⁶ Hf	4	12.44 9	2.99 30	0.456 59	15.65 9	4.32 34	0.699 71	1.155 92	11.0 - 18.7	1969Be6
¹⁷⁸ Hf	4	12.46 4	3.13 13	0.585 31	15.86 5	4.44 18	0.677 38	1.262 49	10.9 - 17.9	1977Gor
~HI	0 4	12.59 22 $12.57 5$	4.95 68 $3.26 17$	1.126 <i>190</i> 0.643 <i>39</i>	$15.65 ext{ } 16$ $15.91 ext{ } 5$	3.00 <i>61</i> 3.71 <i>19</i>	0.401 <i>128</i> 0.564 <i>40</i>	1.527 229 $1.207 56$	10.8 - 18.6 11.0 - 17.9	1981Gur 1977Gor
$^{180}\mathrm{Hf}$	0	$12.74 \ 31$	4.93 88	1.089 256	15.59 <i>18</i>	3.04 79	0.304 40 $0.407 177$	1.496 311	10.8 - 18.7	1977Gor 1981Gur
111	4	12.56 4	2.96 12	0.584 26	15.86 3	3.51 13	0.558 27	1.142 37	11.0 - 17.9	1977Gor
$^{181}\mathrm{Ta}$	0	12.36 39	3.41 110	0.638 331	15.26 40	4.71 111	0.774 356	1.412 486	10.8 - 18.6	1981Gur
	3a	12.52 11	3.23 23	0.582 62	15.47 10	3.89 27	0.680 67	1.262 91	10.0 - 18.8	2003 Var
	3b	12.45 17	3.08 - 50	0.536 124	$15.43 ext{ } 16$	4.17 71	0.742 165	1.278 206	10.0 - 18.8	2003 Var
	4	$12.43 ext{ } 6$	2.90 22	$0.518 ext{ } 50$	$15.42 ext{ } 6$	4.03 21	$0.743 ext{ } 56$	1.261 75	11.0 - 18.7	1968Be 5
100	4	12.52 8	1.90 41	0.164 69	15.06 20	5.83 72	0.917 140	1.081 156	10.8 - 18.7	1963Br1
$^{182}\mathrm{W}$	0	13.08 34	7.29 100	1.655 268	15.20 21	1.53 123	0.091 90	1.746 283	11.0 - 18.8	1981Gur
$^{184}\mathrm{W}$	4	12.80 5	3.17 12	0.629 35	15.71 5	4.14 14	0.704 39	1.333 52	10.8 - 18.6	1978Gor
$^{186}\mathrm{W}$	0	$12.27 ext{ } 45 \\ 13.01 ext{ } 48$	$5.17 ext{ } 188 $ $6.25 ext{ } 93$	1.144 <i>513</i> 1.400 <i>392</i>	15.10 <i>17</i> 14.81 <i>30</i>	3.15 <i>143</i> 2.84 <i>186</i>	$0.347 301 \\ 0.205 255$	1.491 <i>595</i> 1.605 <i>468</i>	11.0 - 17.6 10.9 - 18.7	1981Gur 1981Gur
vv	4	12.74 5	$2.94 ext{ } 12$	0.484 38	15.25 6	4.61 17	0.755 47	1.239 60	10.9 - 18.7	1969Be8
	4	12.73 7	3.06 16	0.557 51	15.34 6	4.33 17	0.785 58	1.342 77	11.0 - 17.8	1978Gor
$^{186}\mathrm{Os}$	7	13.27 13	3.65 26	0.756 95	15.39 8	2.80 31	0.394 83	1.150 126	11.1 - 18.7	1979Be4
$^{188}\mathrm{Os}$	9	13.12 7	3.61 12	$0.739 ext{ } 59$	15.17 - 6	3.55 19	0.597 - 61	1.336 85	10.8 - 18.7	1979Be4
$^{189}\mathrm{Os}$	9	12.93 7	3.39 12	$0.657 \ 53$	14.86 5	3.19 16	$0.582 \ 55$	1.239 76	10.8 - 18.7	1979Be4
¹⁹⁰ Os	9	13.04 10	$3.62 ext{ } 14$	0.694 85	14.75 8	3.51 20	0.549 85	1.243 120	10.8 - 18.7	1979Be4
^{192}Os	9	13.04 10	3.62 14	0.690 85	14.75 8	3.51 20	0.545 84	1.235 120	10.8 - 18.7	1979Be4
¹⁹¹ Ir ¹⁹³ Ir	4	13.16 15	3.75 25	0.894 155	15.24 22	3.69 97	0.359 171	1.253 231	11.0 - 16.8	1978Gor
194Pt	4	12.85 8 $13.66 7$	1.64 <i>37</i> 4.29 <i>13</i>	0.149 64	14.18 16	5.94 37	1.322 <i>65</i> 0.088 <i>81</i>	1.471 91	11.0 - 16.8	1978Gor
195Pt	4	13.28 12	$\frac{4.29}{3.71}$ 22	1.203 <i>69</i> 0.964 <i>126</i>	$16.70 ext{ } 42$ $15.44 ext{ } 24$	4.55 264 $3.56 96$	$0.088 \ 61$ $0.273 \ 132$	1.291 <i>106</i> 1.237 <i>183</i>	11.0 - 17.8 11.0 - 17.8	1978Gor 1978Gor
$^{196}\mathrm{Pt}$	4	13.38 7	2.87 39	0.376 149	14.18 19	6.94 71	1.067 130	1.443 198	11.0 - 17.8	1978Gor
$^{197}\mathrm{Au}$	0	13.72 7	5.43 30	1.570 69	11.10 10	0.01 /1	1.00. 100	1.570 69	11.1 - 17.0	1981Gur
	4	13.81 2	4.79 8	1.410 19				1.410 19	11.0 - 16.8	1970Ve1
	4	13.88 3	4.09 9	1.231 22				1.231 22	11.1 - 16.8	1962 Fu2
	8	$13.86 \ 3$	4.94 15	$1.354 \ 34$				$1.354 \ 34$	12.1 - 16.9	$1987 \mathrm{Ber}$
²⁰⁶ Pb	4	13.61 1	4.01 - 5	1.072 9				$1.072 ext{ } 9$	10.0 - 17.0	1964Ha2
²⁰⁷ Pb	4	13.57 2	4.22 6	1.042 10				1.042 10	10.0 - 17.0	1964Ha2
$^{208}\mathrm{Pb}$	3a	13.34 3	3.64 8	1.270 15				1.270 15	10.9 - 18.8	2003Var
	3b	13.43 7	3.83 18	1.301 44				1.301 44	10.9 - 18.8	2003Var
	4	13.52 2 $13.50 1$	4.67 5 $4.15 5$	1.473 <i>14</i> 1.048 <i>9</i>				1.473 <i>14</i> 1.048 <i>9</i>	10.2 - 16.8 10.0 - 17.0	1970Ve1 1964Ha2
	$\frac{4}{12}$	13.79 2	4.13 3	1.488 19				1.488 19	10.0 - 17.0	1904Ha2 1972Yo
$^{nat}\mathrm{Pb}$	8	13.64 2	3.74 9	1.209 24				1.209 24	12.1 - 16.9	1987Ber
$^{209}\mathrm{Bi}$	0	13.87 8	5.04 31	1.559 70				1.559 70	10.9 - 18.3	1976Gur
.=	4	13.49 1	4.28 5	1.132 8				1.132 8	10.0 - 17.0	1964Ha2
	12	13.66 2	4.17 - 5	1.387 13				1.387 13	10.0 - 14.8	1972Yo
$^{232}\mathrm{Th}$	0	11.00 51	3.42 223	0.469 387	13.94 21	4.26 82	0.690 291	1.159 484	11.0 - 18.3	1976 Gur
	4	12.61 67	7.84 152	1.429 434	14.30 16	1.90 153	0.114 146	1.543 458	9.2 - 16.3	1973 Ve1
022	10	11.23 3	3.36 7	0.586 25	14.12 3	4.35 17	0.799 37	1.385 45	9.4 - 17.8	1980Ca1
²³³ U	11	11.14 3	2.51 7	0.472 28	14.20 3	5.17 9	2.172 44	2.644 52	9.4 - 17.8	1986Be2
$^{234}{ m U}$	11	11.18 6	2.60 21	0.713 74	14.39 4	4.20 22	1.575 92	2.288 118	9.4 - 17.8	1986Be2
	0	11.11 14	1.34 68	0.184 108	13.64 18	$4.67 ext{ } 49$	0.900 122	1.084 163	11.0 - 18.4	1976Gur

Nucl	Id	$E_{r,1}$ (MeV)	$\Gamma_{r,1}$ (MeV)	$S_{r,1}$	$E_{r,2}$ (MeV)	$\Gamma_{r,2}$ (MeV)	$S_{r,2}$	S	$\epsilon_{min} - \epsilon_{max}$ (MeV)	Ref
²³⁶ U	10	11.11 4	3.20 11	0.499 29	14.06 5	4.34 16	0.727 37	1.226 47	9.4 - 17.8	1980Ca1
$^{238}\mathrm{U}$	0	11.28 18	2.26 103	0.326 169	14.34 19	4.60 56	0.761 152	1.087 227	11.1 - 18.8	1976Gur
	4	11.10 5	3.20 15	0.503 33	14.20 5	4.15 20	0.647 40	1.150 52	9.1 - 17.8	1973 Ve1
$^{237}\mathrm{Np}$	10	$11.21 \ 37$	3.59 98	0.494 209	14.32 26	4.46 125	0.710 265	1.204 337	9.2 - 16.6	1973 Ve1
	10	11.09 7	$2.68 ext{ } 16$	$0.452 \ 45$	14.26 8	$4.32 \ 30$	1.000 70	1.452 83	9.4 - 17.8	1986 Be2
239 Pu	0	$11.12 \ 56$	3.72 283	0.489 494	$14.22 \ 33$	5.13 117	0.754 417	1.243 646	11.0 - 18.7	1976 Gur
	10	11.41 16	3.05 24	0.515 111	14.05 24	4.23 72	0.641 150	1.156 187	9.1 - 17.8	1986 Be2

 $\begin{tabular}{ll} \textbf{Table 3} \\ \textbf{References to experimental and evaluated cross section data taken from EXFOR.} \\ \end{tabular}$

Nucl	Id	Reaction	Ref	EXFOR
$^{10}{ m B}$	5	$\gamma,\!\mathrm{sn}$	1987Ahs	M0207002
$^{12}\mathrm{C}$	0	γ ,abs	1963Bur	M0160002
Ü	0	γ ,abs	1969Bez	L0064002
	1	γ ,abs	1975Ahr	M0372004
	3	γ ,abs	2002Ish	M0648002
	3	γ ,abs	2003Var	M0656002
¹³ C	3	γ, abs	2002Ish	M0648003
14C	3	γ, abs γ, abs	2002Ish	M0648003
14N	0	γ, abs γ, abs	1969Bez	L0064003
11	3		2002Ish	M0648005
$^{15}{ m N}$	3 1	γ ,abs	1989Bat	M0264003
- IN		$\gamma, ext{abs}$	2002Ish	
^{nat}O	3	γ ,abs	1985Ahr	M0648006
¹⁶ O	2	$\gamma, ext{abs}$		M0188006
100	0	γ, abs	1969Bez	L0064004
	0	γ, abs	1975Ahr	M0372005
17 -	3	γ, abs	2002Ish	M0648007
¹⁷ O	3	γ, abs	2002Ish	M0648008
¹⁸ O	3	γ, abs	$2002 \mathrm{Ish}$	M0648009
¹⁹ F	3	γ, abs	2002Ish	M0648010
23 Na	0	γ, abs	1981Ish	M0043025
	3	γ, abs	2002Ish	M0648011
$^{24}{ m Mg}$	3	γ, abs	2002Ish	M0648012
G	3	$\gamma_{ m ,abs}$	2003 Var	M0656003
$^{25}{ m Mg}$	3	γ ,asb	2002Ish	M0648013
$^{26}\mathrm{Mg}$	3	γ ,abs	2003Var	M0656004
²⁷ Al	1	γ ,abs	1975Ahr	M0372006
711	3	γ, abs γ, abs	2002Ish	M0648015
	$\frac{3}{2}$	γ ,abs	1985Ahr	M0188007
nat Si	0	γ, abs γ, abs	1975Ahr	M0372007
²⁸ Si			2003Var	
²⁹ Si	3	$\gamma, ext{abs}$		M0656005
	3	γ, abs	2002Ish	M0648017
³⁰ Si	3	γ, abs	2002Ish	M0648018
³² Si	3	γ, abs	2002Ish	M0648019
^{34}S	3	γ, abs	1986Ass	M0510006
,	3	$\gamma, ext{abs}$	2003 Var	M0656006
nat S	13	$\gamma,$ xn	$1965 \mathrm{Wyc}$	L0122009
$^{40}\mathrm{Ar}$	3	γ, abs	$2002 \mathrm{Ish}$	M0648021
$^{nat}\mathrm{Ar}$	1	γ, abs	1960 Fas	M0214004
nat K	4	$\gamma,\!\mathrm{sn}$	1974 Ve1	L0039036
nat Ca	1	γ, abs	1975Ahr	M0372008
	2	γ, abs	1985Ahr	M0188017
$^{40}\mathrm{Ca}$	3	γ, abs	$2003\mathrm{Er}$	M0653002
42 Ca	3	γ, abs	2003Er	M0653003
44 Ca	3	$\gamma_{ m ,abs}$	2003Er	M0653004
⁴⁸ Ca	0	$\gamma_{ m ,abs}$	1987O'k	M0636010
	3	γ ,abs	$2003\mathrm{Er}$	M0653005
⁴⁶ Ti	3	γ ,abs	2002Ish	M0648026
⁴⁸ Ti	3	γ ,abs	2002Ish	M0648027
$^{51}\mathrm{V}$	3	γ, abs	2003Var	M0656007
v	4		1962Fu1	L0001008
$^{52}\mathrm{Cr}$	3	γ ,sn	2002Ish	M0648028
⁵⁵ Mn		$\gamma, ext{abs}$		
	4	γ, sn	1979Al2	L0028011
^{nat} Fe	0	$\gamma, ext{abs}$	1969Dob	M0540002
545	13	$\gamma,$ xn	1967Cos	L0114003
⁵⁴ Fe	0	γ, abs	78Nor	M0507004
⁵⁹ Co	1	$\gamma, ext{abs}$	$1965 \mathrm{Wyc}$	L0122011
*0	8	$\gamma, ext{sn}$	1979Al2	L0028008,L0028009
⁵⁸ Ni	3	$\gamma, ext{abs}$	2002Ish	M0648029
	3	γ, abs	2003 Var	M0656008
	4	γ, sn	1974Fu3	L0034002
$^{60}\mathrm{Ni}$	3	γ, abs	2003 Var	M0656009
	4	γ ,sn	1974Fu3	L0034008
	4	γ ,sn	1970Gor	M0597003
⁶³ Cu	3	γ ,abs	2003Var	M0656010
-: -:-	6	γ ,sn	1968Su1	L0013002,L0013003
	4		1964Fu1	L0013002,L0013003
	4	$\gamma,\!\mathrm{sn}$		
$^{65}\mathrm{Cu}$	3	γ_{abs}	2003 Var	M0656011

Table 3 (continued)

Nucl	Id	Reaction	Ref	EXFOR
	4	$\gamma,\!\mathrm{sn}$	1964Fu1	L0006013
$^{64}\mathrm{Zn}$	8	γ ,sn	1976Ca1	L0043002,L0043003
$^{65}\mathrm{Zn}$	1	$\gamma_{\rm abs}$	2003Rod	M0652007
$^{70}\mathrm{Ge}$	0	$\gamma_{\rm abs}$	1975Mcc	M0496004
	8	γ ,sn	1976Ca1	L0043008,L0043009
$^{72}\mathrm{Ge}$	0	$\gamma_{\rm abs}$	1975 Mcc	M0496010
	8	γ ,sn	1976Ca1	L0043011,L0043012
74 Ge	0	γ, abs	1975 Mcc	M0496013
	8	γ ,sn	1976Ca1	L0043014,L0043015
$^{76}\mathrm{Ge}$	0	γ ,abs	1975Mcc	M0496007
	8	γ ,sn	1976Ca1	L0043017,L0043018
$^{75}\mathrm{As}$	4	γ ,sn	1969Be1	L0014012
	8	$\gamma,\!\mathrm{sn}$	1976Ca1	L0043020,L0043021
$^{76}\mathrm{Se}$	0	γ ,abs	1978Gur	M0023002
	8	$\gamma,\!\mathrm{sn}$	1976Ca1	L0043023,L0043024
⁷⁸ Se	8	$\gamma,\!\mathrm{sn}$	1976Ca1	L0043026,L0043027
⁸⁰ Se	8	γ, sn	1976Ca1	L0043029,L0043030
$^{82}\mathrm{Se}$	0	$\gamma_{ m,abs}$	1978Gur	M0023003
20	8	γ ,sn	1976Ca1	L0043032,L0043033
^{89}Y	3	$\gamma_{ m,abs}$	2003Var	M0656012
	4	$\gamma,$ sn	1971Le1	L0027019
	4	γ ,sn	1967Be2	L0011018
$^{90}\mathrm{Zr}$	12	$\gamma,1\mathrm{n}$	1972Yo	L0059002
⁵⁰ Zr	3	$\gamma, ext{abs}$	2003Var	M0656013
	4	$\gamma, ext{sn}$	1967Be2	L0011019
$^{91}{ m Zr}$	8	$\gamma, ext{sn}$	1971Le1	L0027012,L0027013
⁹² Zr	4	$\gamma,$ sn	1967Be2 1967Be2	L0011020
$^{94}\mathrm{Zr}$	$\frac{4}{4}$	γ ,sn	1967Be2 1967Be2	L0011021 L0011022
$^{nat}\mathrm{Zr}$	8	γ ,sn	1987Ber	L0057002,L0057003
93Nb	8	γ ,sn	1971Le1	L0027015,L0027016
92Mo	$\frac{\circ}{3}$	$\gamma, ext{sn} \ \gamma, ext{abs}$	2003Var	M0656014
WIO	4	γ ,abs γ ,sn	1974Be3	L0032020
94 Mo	4	γ ,sn	1974Be3	L0032025
96 Mo	4	γ ,sn	1974Be3	L0032022
⁹⁸ Mo	4	γ ,sn	1974Be3	L0032023
$^{100}{ m Mo}$	9	γ ,sn	1974 Be3	L0032017,L0032018,L0032019
$^{103}\mathrm{Rh}$	3	$\gamma, ext{abs}$	2003 Var	M0656015
	4	γ ,sn	1974Le1	L0035041
107 Ag	4	γ ,sn	1969Ish	M0524002
	4	$\gamma,$ sn	1969Be1	L0014013
$^{109}\mathrm{Ag}$	4	γ, sn	1969 Ish	M0524003
$^{115}{ m In}$	4	$\gamma,\!\mathrm{sn}$	1969Fu 1	L0017029
	4	γ, sn	1974 Le1	L0035045
$^{116}\mathrm{Sn}$	4	γ ,sn	1974 Le1	L0035046
	4	$\gamma,\!\mathrm{sn}$	1969Fu1	L0017030
$^{117}\mathrm{Sn}$	4	$\gamma,\!\mathrm{sn}$	1974Le1	L0035047
	4	$\gamma,\!\mathrm{sn}$	1969Fu 1	L0017031
118Sn	4	$\gamma,\!\mathrm{sn}$	1974 Le1	L0035048
¹¹⁸ Sn	4	$\gamma,\!\mathrm{sn}$	1969Fu 1	L0017032
¹¹⁹ Sn	4	γ, sn	1969Fu 1	L0017033
$^{120}\mathrm{Sn}$	4	γ, sn	1974 Le1	L0035049
104	4	$\gamma,\!\mathrm{sn}$	1969Fu 1	L0017034
$^{124}\mathrm{Sn}$	3	$\gamma_{ m,abs}$	2003 Var	M0656016
	4	$\gamma,\!\mathrm{sn}$	1974Le1	L0035050
104-	4	γ, sn	1969Fu1	L0017035
¹²⁴ Те ¹²⁶ Те	6	$\gamma,\!{ m sn}$	1976Le2	L0042004,L0042002
¹²⁶ Te ¹²⁸ Te	6	$\gamma,\!{ m sn}$	1976Le2	L0042007,L0042005
¹²⁰ Te ¹³⁰ Te	6	$\gamma, ext{sn}$	1976Le2	L0042010,L0042008
¹³⁰ Te ¹²⁷ I	6	$\gamma,$ sn	1976Le2	L0042013,L0042011
1	4	$\gamma, ext{sn}$	1969Be6	L0015022
	4	$\gamma,$ sn	1989Ras	M0511002
	4	$\gamma,$ sn	1966Br1	L0009009
$^{133}\mathrm{Cs}$	8	$\gamma, ext{sn}$	1987Ber	L0057005,L0057006
Cs	4	$\gamma,$ sn	1974Le1	L0035053
¹³⁸ Ba	4	γ ,sn	1969Be1	L0014014
¹³⁹ Lа	4	γ ,sn	1970Be8	L0019008
La	4	$\gamma,\!\mathrm{sn}$	1971 Be4	L0024017

Table 3 (continued)

Nucl	Id	Reaction	Ref	EXFOR
$^{140}{ m Ce}$	6	$\gamma,\!\mathrm{sn}$	1976 Le2	L0042016,L0042014
$^{142}\mathrm{Ce}$	6	γ ,sn	1976Le2	L0042019,L0042017
$^{141}\mathrm{Pr}$	$\overset{\circ}{4}$	γ ,sn	1966Br1	L0009010
11	4	γ ,sn	1972De1	M0398002
	4	γ ,sn	1987Ber	L0057015
	12	γ ,3n γ ,1n	1970Su1	L0020002
	12	γ ,1n	1971Be4	L0024011
	12	γ ,1n	1972Yo	L0059003
$^{142}\mathrm{Nd}$	3	$\gamma, ext{abs}$	2003Var	M0656017
114	4	$\gamma, ext{sos}$ $\gamma, ext{sn}$	1971Ca1	L0025023
$^{143}\mathrm{Nd}$	4	γ ,sn	1971Ca1	L0025024
144Nd	4	γ ,sn γ ,sn	1971Ca1	L0025025
$^{145}\mathrm{Nd}$	4	γ ,sn	1971Ca1	L0025026
146Nd	4		1971Ca1	L0025027
148Nd	4	γ ,sn	1971Ca1	L0025027 L0025028
$^{150}\mathrm{Nd}$	4	$\gamma,$ sn	1971Ca1 1971Ca1	L0025028 L0025029
144Sm		$\gamma, ext{sn}$		
148Sm	4	$\gamma, ext{sn}$	1974Ca5	L0033017
150Sm	4	γ, sn	1974Ca5	L0033018
	4	γ, sn	1974Ca5	L0033019
¹⁵² Sm	4	γ ,sn	1974Ca5	L0033020
$^{154}\mathrm{Sm}$	0	γ, abs	1981Gur	M0073002
150	4	$\gamma,\!\mathrm{sn}$	1974Ca5	L0033021
¹⁵³ Eu	4	$\gamma,\!\mathrm{sn}$	1969 Be 8	L0016018
$^{156}\mathrm{Gd}$	0	γ ,abs	1981Gur	M0073003
$^{160}\mathrm{Gd}$	3	γ, abs	2003 Var	M0656018
	4	$\gamma,\!\mathrm{sn}$	1969Be8	L0016019
$^{159}{ m Tb}$	4	γ, sn	1976Gor	M0057002
	4	γ, sn	1964 Br1	L0005006
	4	$\gamma,$ sn	$1968 \mathrm{Be}5$	L0012019
	12	$\gamma,1$ n	$1968 \mathrm{Be}5$	L0012007
¹⁶⁵ Ho	0	$\gamma_{\rm abs}$	$1981 \mathrm{Gur}$	M0073004
	4	$\gamma,$ sn	1969 Be 8	L0016020
	4	γ, sn	$1968 \mathrm{Be}5$	L0012020
$^{168}\mathrm{Er}$	0	$\gamma_{\rm abs}$	1981Gur	M0073005
$^{174}\mathrm{Yb}$	0	$\gamma_{ m ,abs}$	1981Gur	M0073006
$^{175}\mathrm{Lu}$	$\stackrel{\circ}{4}$	$\gamma, ext{sn}$	1969Be6	L0015026
¹⁷⁶ Hf	4	γ ,sn	1977Gor	M0007002
¹⁷⁸ Hf	0	γ ,abs	1981Gur	M0073007
111	4	$\gamma, ext{sn}$	1977Gor	M0007003
$^{180}{ m Hf}$	0	γ ,abs	1981Gur	M0073008
111	4	γ ,abs γ ,sn	1977Gor	M0073003 M0007004
¹⁸¹ Ta	0		1981Gur	M0073009
1a	3	$\gamma, ext{abs}$	2003Var	
		$\gamma, ext{abs}$		M0656019
	4	γ, sn	1968Be5	L0012021
$^{182}{ m W}$	4	γ, sn	1963Br1	L0003005
102 W	0	γ, abs	1981Gur	M0073010
18/117	4	γ ,sn	1978Gor	M0025002
^{184}W	0	γ, abs	1981Gur	M0073011
196	4	γ ,sn	1978Gor	M0025003
$^{186}{ m W}$	0	γ, abs	1981Gur	M0073012
	4	$\gamma,\!\mathrm{sn}$	1969Be8	L0016021
100	4	$\gamma,\!\mathrm{sn}$	1978Gor	M0025004
¹⁸⁶ Os	7	$\gamma,\!\mathrm{sn}$	1979 Be4	L0046004,L0046002
¹⁸⁸ Os	9	$\gamma,\!\mathrm{sn}$	1979 Be4	L0046005,L0046006,L0046007
$^{189}\mathrm{Os}$	9	$\gamma,\!\mathrm{sn}$	1979 Be4	L0046009,L0046010,L0046011
$^{190}\mathrm{Os}$	9	$\gamma,\!\mathrm{sn}$	1979Be4	L0046013,L0046014,L0046015
$^{192}\mathrm{Os}$	9	γ, sn	1979 Be4	L0046017,L0046018,L0046019
$^{191}{ m Ir}$	4	γ, sn	1978Gor	M0008002
$^{193}\mathrm{Ir}$	4	γ, sn	1978Gor	M0008003
¹⁹⁴ Pt	4	γ, sn	1978Gor	M0008004
¹⁹⁵ Pt	4	γ ,sn	1978Gor	M0008005
¹⁹⁶ Pt	4	γ ,sn	1978Gor	M0008006
¹⁹⁸ Pt	$\stackrel{1}{4}$	γ ,sn	1978Gor	M0008007
¹⁹⁷ Au	0	$\gamma_{ m,abs}$	1981Gur	M0073013
110	4	γ ,abs γ ,sn	1970Ve1	L0021010
	4		1962Fu2	L0021010 L0002005
	8	γ ,sn	1987Ber	L0057009,L0057010
	U	γ ,sn	1901 Det	L0031003,L0031010
²⁰⁶ Pb	4	$\gamma,\!\mathrm{sn}$	1964Ha2	L0007014

Table 3 (continued)

EXFOR	Ref	Reaction	Id	Nucl
L000701:	1964Ha2	$\gamma,\!\mathrm{sn}$	4	²⁰⁷ Pb
M0656020	2003Var	γ ,abs	3	²⁰⁸ Pb
L002101	1970Ve1	γ ,sn	4	
L0007010	1964Ha2	γ, sn	4	
L0059004	1972Yo	γ ,1n	12	
L0057012,L0057013	1987Ber	γ ,sn	8	^{nat} Pb
M0056008	1976Gur	$\gamma_{,\mathrm{abs}}$	0	$^{209}\mathrm{Bi}$
L000701	1964Ha 2	γ ,sn	4	
L005900	1972Yo	$\gamma,1$ n	12	
M0090003	1976Gur	$\gamma_{,\mathrm{abs}}$	0	$^{232}\mathrm{Th}$
L0031014	1973 Ve1	γ ,sn	4	
L0050002,L0050003,L0050004	1980Ca1	$\gamma,$ sn	10	
L0058004,L0058003,L0058003	1986Be2	γ, sn	11	$^{233}\mathrm{U}$
L0058007,L0058006,L0058003	1986Be2	γ, sn	11	$^{234}\mathrm{U}$
M0090003	1976Gur	γ ,abs	0	$^{235}{ m U}$
L0050010,L0050011,L0050013	1980Ca1	$\gamma,$ sn	10	$^{236}\mathrm{U}$
M0090004	1976Gur	γ ,abs	0	$^{238}{ m U}$
L0031013	1973Ve1	$\gamma,$ sn	4	
L0031007,L0031008,L0031009	1973Ve1	γ, sn	10	$^{237}\mathrm{Np}$
L0058008,L0058009,L0058010	1986 Be2	$\gamma,\!\mathrm{sn}$	10	
M009000	1976 Gur	γ ,abs	0	²³⁹ Pu
L0058012,L0058013,L0058014	1986 Be2	γ, sn	10	

References used in the Tables

- [1960Fas] R. W. Fast, P. A. Flournoy, R. S. Tickle, W. D. Whitehead, Phys. Rev. 118(2) (1960) 535.
- [1962Fu1] S. C. Fultz, R. L. Bramblett, J. T. Caldwell, N. E. Hansen, C. P. Jupiter, Phys. Rev. 128 (1962) 2345.
- [1962Fu2] S. C. Fultz, R. L. Bramblett, J. T. Caldwell, N. A. Kerr, Phys. Rev. 127 (1962) 1273.
- [1963Br1] R. L. Bramblett, J. T. Caldwell, G. F. Auchampaugh, S. C. Fultz, Phys. Rev. 129 (1963) 2723.
- [1963Bur] N. A. Burgov, G. V. Danilyan, B. S. Dolbilkin, L. E. Lazareva, F. A. Nikolaev, Zhur. Eksper. Teoret. Fiz. 45,(6) (1963) 1694.
- [1964Br1] R. L. Bramblett, J. T. Caldwell, R. R. Harvey, S. C. Fultz, Phys. Rev. 133 (1964) B869.
- [1964Fu1] S. C. Fultz, R. L. Bramblett, J. T. Caldwell, R. R. Harvey, Phys. Rev. 133 (1964) B1149.
- [1964Ha2] R. R. Harvey, J. T. Caldwell, R. L. Bramblett, S. C. Fultz, Phys. Rev. 136 (1964) B126.
- [1965Wyc] J. M. Wyckoff, B. Ziegler, H. W. Koch, R. Uhlig, Phys. Rev. 137 (1965) B576.
- [1966Br1] R. L. Bramblett, J. T. Caldwell, B. L. Berman, R. R. Harvey, S. C. Fultz, Phys. Rev. 148 (1966) 1198.
- [1967Be2] B. L. Berman, J. T. Caldwell, R. R. Harvey, M. A. Kelly, R. L. Bramblett, S. C. Fultz, Phys. Rev. 162 (1967) 1098.
- [1967Cos] S. Costa, F. Ferrero, C. Manfredotti, L. Pasqualini, G. Piragino, H. Arenhovel, Nuov. Ciment. B51 (1967) 199.
- [1968Be5] R. Bergere, R. Beil, A. Veyssiere, Nucl. Phys. A121 (1968) 463.
- [1968Su1] R. E. Sund, M. P. Baker, L. A. Kull, R. B. Walton, Phys. Rev. 176 (1968) 1366.
- [1969Be1] B. L. Berman, R. L. Bramblett, J. T. Caldwell, H. S. Davis, M. A. Kelly, S. C. Fultz, Phys. Rev. 177 (1969) 1745.
- [1969Be6] R. Bergere, H. Beil, P. Carlos, A. Veyssiere, Nucl. Phys. A133 (1969) 417.
- [1969Be8] B. L. Berman, M. A. Kelly, R. L. Bramblett, J. T. Caldwell, H. S. Davis, S. C. Fultz, Phys. Rev. 185 (1969) 1576.
- [1969Dob] B. S. Dolbilkin, A. I. Isakov, V. I. Korin, L. E. Lazareva, N. V. Linkova, B. A. Tulupov, Yadern. Fiz. 9 (1969) 675.
- [1969Fu1] S. C. Fultz, B. L. Berman, J. T. Caldwell, R. L. Bramblett, M. A. Kelly, Phys. Rev. 186 (1969) 1255.
- [1969Bez] N. Bezic, D. Brajnik, D. Jamnik, G. Kernel, Nucl. Phys. A128 (1969) 426.
- [1970Be8] B. L. Berman, S. C. Fultz, J. T. Caldwell, M. A. Kelly, S. S. Dietrich, Phys. Rev. C2 (1970) 2318.
- [1970Gor] B. I. Goryachev, B. S. Ishkhanov, I. M. Kapitonov, I. M. Piskarev, V. G. Shevchenko, O. P. Shevchenko; Yad. Fiz. 11 (1970) 252.
- [1970Su1] R. E. Sund, V. V. Verbinski, H. Weber, L. A. Kull; Phys. Rev. C2 (1970) 1129.
- [1970Ve1] A. Veyssiere, H. Beil, R. Bergere, P. Carlos, A. Lepretre, Nucl. Phys. A159 (1970) 561.
- [1971Be4] H. Beil, R. Bergere, P. Carlos, A. Lepretre, A. Veyssiere, A. Parlag, Nucl. Phys. A172 (1971) 426.
- [1971Ca1] P. Carlos, H. Beil, R. Bergere, A. Lepretre, A. Veyssiere, Nucl. Phys. A172 (1971) 437.
- [1971Le1] A. Lepretre, H. Beil, R. Bergere, P. Carlos, A. Veyssiere, M. Sugawara, Nucl. Phys. A175 (1971) 609.
- [1972De1] T. K. Deague, R. J. Stewart, Nucl. Phys. A91 (1972) 305.
- [1972Yo] L. M. Young, Ph.D. Thesis, University of Illinois(1972), unpublished.
- [1973Ve1] A. Veyssiere, H. Reil, R. Bergere, P. Carlos, A. Lepretre, K. Kernbach, Nucl. Phys. A199 (1973) 45.
- [1974Be3] H. Beil, R. Bergere, P. Carlos, A. Lepretre, A. De Miniac, A. Veyssiere, Nucl. Phys. A227 (1974) 427.
- [1974Ca5] P. Carlos, H. Beil, R. Bergere, A. Lepretre, A. De Miniac, A. Veyssiere, Nucl. Phys. A225 (1974) 171.
- [1974Fu3] S. C. Fultz, R. A. Alvarez, B. L. Berman, P. Meyer, Phys. Rev. C10 (1974) 608.
- [1974Le1] A. Lepretre, H. Beil, R. Bergere, P. Carlos, A. De Miniac, A. Veyssiere, K. Kernbach, Nucl. Phys. A219 (1974) 39.
- [1974Ve1] A. Veyssiere, H. Beil, R. Bergere, P. Carlos, A. Lepretre, A. De Miniac, Nucl. Phys. A227 (1974) 513.
- [1975Ahr] J. Ahrens, H. Borchert, K. H. Czock, H. B. Eppler, H. Gimm, H. Gundrum, M. Kroning, P. Riehn, G. Sita Ram, A. Zieger, B. Ziegler, Nucl. Phys. A251 (1975) 479.
- [1975Mcc] J. J. McCarthy, R. C. Morrison, H. J. Vander-Molen, Phys. Rev. C11 (1975) 772.
- [1976Ca1] P. Carlos, H. Beil, R. Bergere, J. Fagot, A. Lepretre, A. Veyssiere, G. V. Solodukhov, Nucl. Phys. A258 (1976) 365.
- [1976Le2] A. Lepretre, H. Beil, R. Bergere, P. Carlos, J. Fagot, A. De Miniac, A. Veyssiere, H. Miyase, Nucl. Phys. A258 (1976) 350.
- [1976Gor] B. I. Goryachev, Y. V. Kuznetsov, V. N. Orlin, N. A. Pozhidaeva, V. G. Shevchenko, Yad. Fiz. 23 (1976) 1145.
- [1976Gur] G. M. Gurevich, L. E. Lazareva, V. M. Mazur, G. V. Solodukhov, B. A. Tulupov, Nucl. Phys. A273 (1976) 326.
- [1977Gor] A. M. Goryachev, G. N. Zalesnyi, Yad. Fiz. 26 (1977) 465.
- [1978Gur] G. M. Gurevich, L. E. Lazareva, V. M. Mazur, G. V. Solodukhov, Prob. Yad. Fiz. Kosm. Luch. 8 (1978) 106.
- [1978Nor] J. W. Norbury, M. N. Thompson, K. Shoda, H. Tsubota, Australian Jour. of Phys. 31 (1978) 471.
- [1979Al2] R. A. Alvarez, B. L. Berman, D. D. Faul, F. H. Lewis, Jr., P. Meyer, Phys. Rev. C20 (1979) 128.
- [1979Be4] B. L. Berman, D. D. Faul, R. A. Alvarez, P. Meyer, D. L. Olson, Phys. Rev. C19 (1979) 1205.
- [1980Ca1] J. T. Caldwell, E. J. Dowdy, B. L. Berman, R. A. Avarez, P. Meyer, Phys. Rev. C21 (1980) 1215.
- [1981Gur] G. M. Gurevich, L. E. Lazareva, V. M. Mazur, S. Yu. Merkulov, G. V. Solodukhov, V. A. Tyutin, Nucl. Phys. A351 (1981) 257.

- [1981Ish] B. S. Ishkhanov, I. M. Kapitonov, V. I. Shvedunov, A. I. Gutii, A. M. Parlag, Yad. Fiz. 22 (1981) 581.
- [1985Ahr] J. Ahrens, Nucl. Phys. A446 (1985) 229.
- [1986Be1] B. L. Berman, R. E. Pywell, M. N. Thompson, K. G. Mcneill, J. W. Jury, J. G. Woodworth, Bull. Am. Phys. Soc. 31 (1986) 855.
- [1986Ass] Y. I. Assafiri, M. N. Thompson, Nucl. Phys. A460 (1986) 455.
- [1986Be2] B. L. Berman, J. T. Caldwell, E. J. Dowdy, S. S. Dietrich, P. Meyer, R. A. Alvarez, Phys. Rev. C34 (1986) 2201.
- [1987Ahs] M. H. Ahsan, S. A. Siddiqui, H. H. Thies, Nucl. Phys. A469 (1987) 381.
- [1987Ber] B. L. Berman, R. G. Pywell, S. S. Dietrich, M. N. Thompson, K. O. McNeill, J. W. Jury, Phys. Rev. C36 (1987) 1286.
- [1987O'k] G. J. O'Keefe, M. N. Thompson, Y. I. Assafiri, R. E. Pywel, Nucl. Phys. A469 (1987) 239.
- [1989Bat] A. D. Bates, R. P. Rassool, E. A. Milne, M. N. Thompson, K. G. Mcneil, Phys. Rev. C40 (1989) 506.
- [1989Ras] R. P. Rassool, M. N. Thompson, Phys. Rev. C39 (1989) 1631; Phys. Rev. C40 (1989) 506.
- [2002Ish] B. S. Ishkhanov, I. M. Kapitonov, E. I. Lileeva, E. V. Shirokov, V. A. Erokhova, M. A. Elkin, A. V. Izotova, Moscow State Univ. Inst. of Nucl. Phys. Report No.2002 27/711 (2002).
- [2003Er] V. A. Erokhova, M. A. Elkin, A. V. Izotova, B. S. Ishkhanov, I. M. Kapitonov, E. I. Lilieva, E. V. Shirokov, Izv. Ros. Akad. Nauk, Ser. Fiz. 67 (2003) 1479.
- [2003Rod] T. E. Rodrigues, J. D. T. Arruda-Neto, Z. Carvaheiro, J. Mesa, Phys. Rev. C68 (2003) 68.
- [2003Var] V. V. Varlamov, M. E. Stepanov, V. V. Chesnokov, Izv. Ros. Akad. Nauk, Ser. Fiz. 67 (2003) 656.