CARLINGFORD HIGH SCHOOL

	CARLINGFORD
	HS
ADI	EVILLE IN LEMENTHS

2021

Semester 2/Term 4 YEARLY EXAMINATION

NAME: Solutions Teacher:

Year 9 (5.3) Mathematics

General Instructions

- Write using black or blue pen.
- Time allowed: 50 minutes
- NESA approved calculators may be used.
- Show relevant mathematical reasoning and/or calculations.
- Marks may be deducted for incorrect working or no working.

TOPICS	MARKS	
Linear Relationships	/8	3.8
Geometry	/9	4.4
Surface Area & Volume	/9	4.5
Equations	/9	5.2
Trigonometry	/7	3.9
Indices	/8	4.4
TOTAL	/50	

Linear Relationships (8 marks)

1. Find the equation of the line, in general form, through the origin and perpendicular to y = 7x - 5.

2

- A(2, 1), B(-5, -6), C(-6, -1) and D(1, 6) form a parallelogram. 2.
 - (i) Plot points A, B, C and D on the number plane below

1

(ii) Find the gradient of AB M= 42-41 1

(iii) Show that the equation of AB is: x - y - 1 = 01 Show that the equation of AD is. x, A(2,1) $y-y_1 = m(x-x_1)$ M=1 y-1=1(x-2) y-1=x-2 x-y-1=0

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(-5 - 2)^2 + (-6 - 1)^2}$$

$$= \sqrt{98}$$

(v) Find the coordinates where the diagonals of ABCD intersect. Label it as point E on your diagram.

2

The	diag	ona	ls bis	sect	each	other		So find	the	mid	point
of	AC'	or	BD	•							1
A(2	(10		M=	/x.	1+X2,	タノナタン	=	12-6,	1-1)=[1-2,0
01	, .				2-	-		2	2-		

* Labol Fon

Label Eon number plane.

Geometry (9 marks)

1. Find the value of x, giving reasons.

2

 $\angle ACB = 180 - 110 = 70^{\circ}$ (augles on a straight line) $\frac{3}{2}$

2. ABCDEF Is a regular hexagon, and $CP \parallel AB$.

i. Find the size of $\angle BCP$, giving reasons.

LBCP = LABC (alternate angles on parallel lines: CPIIAB)

$$\angle ABC = 180(6-2) = 120^{\circ}$$

.. < BCP = 120°

ii. Prove that $\triangle BCP \equiv \triangle DCP$.

3

LBCD = <ABC = 120° (interior angle of a regular hexagon)

$$\angle BCP + \angle BCD + \angle DCP = 360^{\circ}$$

 $120 + 120 + \angle DcP = 360$

:. < DCP = 120°

In ABCP and ADCP:

< BCP = < DCP = 120°

CP is common

BC = CD (sides are equal for a regular hexagon)

- ABCP = ADCP (SAS)

3. A conveyor belt loading luggage onto a plane is 12.5 m long. A vertical support 1.6 m high is placed under the conveyor belt so that it is 4 m along the conveyor belt as shown.

Find the height (AE) of the luggage door above the ground.

AE	= 12.5				
1.6	4				
AE	= 12.5 X	1.6 = 5 m	1		*
	4			. 11	

Surface Area and Volume (9 marks)

1. Find the perimeter of this shape. Express your answer to 1 decimal place.

Arc =
$$2\pi r = 2 \times \pi \times 11.5 = 18.06 \text{ m}$$

4 4
:. Perimeter = $18.06 + 11.5 \times 2 = 41.1 \text{ m}$

2. The sides and floor of this swimming pool are to be tiled. The tiles cost \$22 per square metre and there is a further charge of \$1500 for labour.

(i) Calculate the area to be tiled.

		•	•		-		•
 -		-	STATE OF THE PERSON NAMED IN				
 1.3	7 (2	. 2	_			

(ii) Find the cost of tiling the pool.

cost =	\$22 x 137.9	+ 1500	
=	\$4533.80		

(iii) Find the volume of the pool.

$$V = Ah$$
= $\pm \times 12 \times (0.8 + 2) \times 7$
= 117.6 m^3

(iv) How many litres of water is needed to completely fill the pool?

2

1

1

3. A closed cylinder has a **curved surface area** of 72π cm² and a height of 6 cm.

Calculate the radius of the cylinder. Must show working.

$2\pi rh = 72\pi$	×.
2Tr(6) = 72TV	
12 Tr = 72T	
r = 72T = 6 cn	~ (/
127	

Equations (9 marks)

1. Solve: 8(3x-2)-2(5-4x)+58=0

$$\frac{24x - 16 - 10 + 8x + 58 = 0}{27x + 32} = 0$$

$$32x + 32 = 0$$
 $x = -1$

2. Solve:

$$\frac{5e}{6} - 3 = 12$$

$$\frac{5e}{6} = 15$$

2

2

3. Solve:

$$\frac{6-x}{3} = \frac{2x-1}{5}$$

5(6-x)	= 3	(2x-1)	V
30 - 5x	Section 2	6x-3	
33	=	11 ×	

_	-	The same of the sa	
2	GESTA GESTA	3	

4. The area of an equilateral triangle of side x cm is given by the formula $A = \frac{\sqrt{3}}{4}x^2$.

Find, correct to 2 decimal places, the side length of an equilateral triangle with an area $30\ cm^2$.

$$\frac{\sqrt{3}x^{2} = 30}{4}$$

$$x^{2} = 30 \div \sqrt{3}$$

$$x^{2} = 69.282...$$

$$x = 8.32 cm \quad (x > 0)$$

5. Make x the subject

$$t = \frac{x}{x - 3}$$

$$t(x-3) = x$$

$$tx - 3t = x$$

$$tx - x = 3t$$

$$x(t-1) = 3t$$

$$x = 3t$$

2

2

Trigonometry (7 marks)

A ski slope of length 815 m has a vertical drop of 320 m. Calculate the angle between the ski slope and the horizontal. Round your answer to the nearest minute.

Must be rounded correctly

2

1			
0	=	23°71	1
			-

2. From a point on top of a building that is 98 m tall, the angle of depression of a car is 37°.

How far is the car from the foot of the building? Give your answer correct to the nearest metre.

fan 37° = 98

$$d = \frac{98}{4 \text{ m} 37} = 130 \text{ m}$$

3. Two towns, A and B, are 12 km apart. The bearing of B from A is 250°.

nust be rounded to 3 s.f

2

1

(i) How far west of A is B, correct to 3 significant figures?

$$\chi = 12 \omega s 20^{\circ} = 11 \cdot 2763... = 11 \cdot 3 \text{ km}$$

(ii) Find the bearing of A from B.

$$\theta = 90 - 20 = 70$$

Indices (8 marks)

1. Simplify:

$$3p^4 \times 4p^5 \times 3p$$

1

2. Simplify: $(8g)^{0} + 8g^{0} = 1 + 8 = 9$

2

1

1

$$\frac{5d^{2} \times 2 d^{2}e^{2}}{(2d)^{4}} = \frac{10d^{4}e^{2}}{16d^{4}} = \frac{5e^{2}}{8}$$

4. Simplify, writing your answer with positive indices.

$$a^{5}b^{-4} \times a^{-3}b^{-5}$$
= $a^{2}b^{-9}$
= a^{2}

5. Write in index form:

$$\frac{1}{x \times \sqrt[3]{x}} = \frac{1}{x \times x^{\frac{1}{3}}} = \frac{1}{x^{\frac{4}{3}}} = \boxed{x^{-\frac{4}{3}}}$$

6. The distance from Earth to the moon is approximately 3.844×10^5 km. If you could drive there without breaking the speed limit of 110 km/h, how many days would it take?

END OF EXAM