Computability

Rasmus Guldborg Pedersen

January 2015

Nondeterministic Finite Automata

Define formally a non-deterministic finite automaton and the language accepted by a finite automaton. Describe a language over the alphabet $\{a,b\}$ that can be accepted by a finite automaton. Explain and justify your answer.

A Nondeterministic Finite Automaton

```
(Q, \Sigma, q_0, A, \delta)

Q is a finite set of states;

\Sigma is a finite input alphabet;

q_0 \in Q is the initial state;

A \subseteq Q is the set of accepting states;

\delta: Q \times (\Sigma \cup \{\Lambda\}) \to 2^Q is the transition function.

For q \in Q and \sigma \in (\Sigma \cup \{\Lambda\}) then \delta(q, \sigma) denotes the set of states the NFA can move to from q on input \sigma.
```

Extended Transition Function δ^*

$$\delta^*: Q \times (\Sigma \cup \{\Lambda\}) \to 2^Q$$
$$\delta^*(q, y\sigma) = \delta(\delta^*(q, y), \sigma)$$

- ① For every $q \in Q$, $\delta^*(q, y\sigma) = \Lambda(\{q\})$.
- ② For every $q \in Q$, every $y \in \Sigma^*$, and every $\sigma \in \Sigma$, $\delta^*(q, y\sigma) = \Lambda(\bigcup \{\delta(p, \sigma) | p \in \delta^*(q, y)\})$

Language accepted by a NFA

$$L(M) = \{x \in \Sigma^* \mid (\delta^*(q_0, x)) \cap A \neq \emptyset\}$$

Example

The End

The End