Organizace cvičení, úvod do statistiky a deskriptivní statistika

Supplementum ke cvičení 4ST210 Statistika pro finance

Lubomír Štěpánek^{1, 2}

 Oddělení biomedicínské statistiky Ústav biofyziky a informatiky
 lékařská fakulta
 Univerzita Karlova, Praha

²Katedra biomedicínské informatiky Fakulta biomedicínského inženýrství České vysoké učení technické v Praze

(2020) Lubomír Štěpánek, CC BY-NC-ND 3.0 (CZ)

Dílo lze dále svobodně šířit, ovšem s uvedením původního autora a s uvedením původní licence. Dílo není možné šířit komerčně ani s ním jakkoliv jinak nakládat pro účely komerčního zisku. Dílo nesmí být jakkoliv upravováno. Autor neručí za správnost informací uvedených kdekoliv v předložené práci, přesto vynaložil nezanedbatelné úsilí, aby byla uvedená fakta správná a aktuální, a práci sepsal podle svého nejlepšího vědomí a svých "nejlepších" znalostí problematiky.

- Organizace předmětu
- Středoškolské opakování
- Základní pojmy
- Deskriptivní statistika
- Literatura

•00000000 0000000

prezentace a další materiály ke cvičení jsou dostupné na

https://github.com/LStepanek/4ST210 Statistika pro finance

cvičící

0.0000000 0000000

- Ing. MUDr. Lubomír Štěpánek
- email

lubomir.stepanek@vse.cz

- konzultační hodiny
 - v NB366 vždy v úterý mezi 11:00–12:00, po předchozí emailové domluvě i jindy

00000000 0000000

 oficiální vzorcovník, oficiální statistické tabulky a výčet důležitých kapitol z doporučené literatury je zde

https://kstp.vse.cz/predmety-4st201-4st210-a-4st204/

- tabulky i vzorcovník je vhodné nosit s sebou vytisklý na cvičení
- prezentace ze cvičení a vzorové příklady budou v online složce předmětu, tedy

https://github.com/LStepanek/4ST210 Statistika pro finance

Literatura

Doporučená literatura

000000000 0000000

- Hindls, Richard, Markéta Arltová, Stanislava Hronová, Ivana Malá, Luboš Marek, Iva Pecáková a Řezanková Hana. Statistika v ekonomii. Praha: Professional Publishing, 2018. ISBN: 978-80-88260-09-7.
- Marek, Luboš. Statistika v příkladech. Praha: Professional Publishing, 2015. ISBN: 978-80-7431-153-6.

Literatura

• smyslem je uvést studenty do deskriptivní statistiky, dále do teorie pravděpodobnosti a nakonec do induktivní statistiky

8/68

000000000 0000000

- bude procvičena látka na úrovni učebnice Statistika v ekonomii¹
- probírané okruhy
 - úvod do statistiky
 - deskriptivní statistika
 - pravděpodobnost
 - induktivní statistika
 - testování hypotéz
 - korelační a regresní analýza
 - časové řady
 - indexní analýza

9/68

¹Richard Hindls, Markéta Arltová, Stanislava Hronová, Ivana Malá, Luboš Marek, Iva Pecáková a Řezanková Hana. Statistika v ekonomii. Praha: Professional Publishing, 2018. ISBN: 978-80-88260-09-7

- \bullet v průběhu semestru lze získat až $2 \times 20 = 40$ bodů za průběžné testy
- bodové rozložení je následující

typ testování	maximální možný bodový zisk
první průběžný test	20
druhý průběžný test	20
závěrečný test	60
Σ	100

Průběžné testy

- za každý z průběžných testů je možné získat maximálně 20 bodů, celkem tedy maximálně 40 bodů
- každý z průběžných testů se obvykle skládá právě ze tří početních příkladů
- na každý průběžný test je oficiálně 45 minut (na mých cvičeních však 45-50 minut)
- u průběžných testů je povoleno používat
 - neprogramovatelný kalkulátor,
 - MS Excel[®]
 - oficiální vzorcovník (bez vlastních poznámek)
 - oficiální statistické tabulky
- pro připuštění k závěrečnému testu je nutné získat v součtu za oba průběžné testy alespoň 16 bodů

Literatura

- první průběžný test budeme psát pravděpodobně 6. vyučovací týden, tj. 24. března 2020
- druhý průběžný test budeme psát pravděpodobně 11. vyučovací týden, tj. 28. dubna 2020

• součet $n \in \mathbb{N}$ čísel x_1, x_2, \dots, x_n značíme též symbolem (velká) sigma, $\sum_{i=1}^{n} x_i$, tedy

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$$

▶ MS Excel®

$$=SUMA(x_1:x_n)$$

• součin $n \in \mathbb{N}$ čísel x_1, x_2, \dots, x_n značíme též symbolem (velké) pí, $\prod_{i=1}^n x_i$, tedy

$$\prod_{i=1}^{n} x_i = x_1 \cdot x_2 \cdot \dots \cdot x_n$$

▶ MS Excel®

 $=SOUČIN(x_1:x_n)$

• součin všech přirozených čísel $1, 2, \ldots, n-1, n$ obvykle značíme n!a čteme "en faktoriál", tedy

$$n! = n \cdot (n-1) \cdot \cdots \cdot 2 \cdot 1$$

- ▶ MS Excel®
- =FAKTORIÁL(n)

• počet všech možností, kolika lze z $n \in \mathbb{N} \cup \{0\}$ prvků vybrat $k \in \mathbb{N} \cup \{0\}$ prvků tak, že $k \leq n$ a nezáleží na pořadí výběru, obvykle značíme $\binom{n}{k}$, a platí

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

▶ MS Excel®

000000000 0000000

=KOMBINACE(n;k)

0000000000000000

(i) Najděme $x \in \mathbb{N}$ takové, aby

$$\binom{x}{2} = 10.$$

(ii) Najděme $x \in \mathbb{N}$ takové, aby

$$\binom{x}{3} = 455.$$

(iii) Najděme $x \in \mathbb{N}$ takové, aby

$$x! = 362880.$$

- Jirka má právě sedm různých triček, čtvery kalhoty a pět párů bot.
 - Kolika navzájem různými způsoby může vytvořit svůj outfit?
 - Kolik by potřeboval triček, aby měl každý den v roce originální² outfit?

²Ve smyslu ijný outfit než během kteréhokoliv ostatního dne v roce.

000000000 0000000

• Uvažujme číslice 1, 2, 3, ..., 6, 7.

- Kolika navzájem různými způsoby z nich můžeme sestavit trojciferné číslo, pokud se číslice mohou opakovat?
- Kolika navzájem různými způsoby z nich můžeme sestavit trojciferné číslo, pokud se číslice nemohou opakovat?
- (iii) Pro kolik takových trojciferných čísel bude platit, že první jejich cifra je menší než druhá a zároveň druhá jejich cifra je menší než třetí?

Dělení statistiky

- deskriptivní statistika
 - popisuje data, ale nedělá na nich žádné "velké" závěry
- induktivní statistika
 - pozoruje konkrétní data a vyvozuje z nich obecné závěry, ovšem s udáním stupně jejich spolehlivosti

Pojem statistický znak, veličina

- statistický znak, veličina
 - měřitelná (veličina) či jinak zjistitelná (znak) charakteristika našeho zájmu
 - např. tělesná výška, pohlaví, mzda, apod.

- statistická jednotka
 - základní atomický prvek zájmu, u nějž lze měřit nebo jinak získat hodnotu statistického znaku či veličiny
 - např. student, pacient, stát, molekula, apod.

- statistický soubor
 - množina statistických jednotek (prvků statistického souboru)
 - např. třída žáků, kohorta pacientů, apod.

- každá statistická jednota (prvek) statistického souboru má svou hodnotu³ určitého zkoumaného statistického znaku či veličiny (jde-li o měřitelný znak)
- např. ve školní třídě změříme tělesnou výšku každého žáka
 - školní třída je statistický soubor
 - žáci jsou statistické jednotky (prvky)
 - tělesná výška je statistická veličina

³ta může eventuálně chybět nebo být neznámá (missing value)

Intermezzo

- měříme tělesné hmotnosti v kohortě pacientů-diabetiků na interním oddělení
- určeme, co je v takovém případě
 - statistickým znakem, resp. veličinou
 - statistickou jednotkou
 - statistickým souborem

- cílem je popsat soubor dat
 - číselně (resp. tabulkou)
 - graficky
- popisné číselné ukazatele i grafické přístupy se liší, pokud jde
 - o kvantitativní statistický znak (veličinu)
 - o kvalitativní statistický znak

Kvantitativní znak (veličina)

- je vyjádřen číslem (a obvykle s jednotkou), kdy s číselnou hodnotou je smysluplné provádět aritmetické operace
- číslo tedy nenese pouze "katalogizační" význam
- někdy též označován jako numerický typ dat
- např.
 - tělesná výška, hmotnost, stupně Celsia, skóre z testu, směnné kurzy, HDP daného státu atd.
 - počet kandidátů, počet pacientů, počet dětí v rodinách daného státu, věk probanda atd.

Kvalitativní znak

- je vyjádřen obvykle slovně
- pokud vyjádřen číslem, pak nese pouze "katalogizační" význam a není smysluplné s ním provádět aritmetické operace
- někdy též označován jako kategorický typ dat
- např.
 - pohlaví {muž, žena}, rodinný stav muže {svobodný, ženatý, rozvedený, vdovec, registrovaný} atd.
 - pořadí v závodu, grade tumoru {1, 2, 3, 4} atd.

- určeme typ znaku u následujících příkladů
 - procentuální úspěšnost v testu v souboru studentů jednoho kruhu [%]
 - soubor všech červencových dní jednoho roku (1., 2., ..., 31.)
 - směnný kurz USD–CZK k danému datu
 - soubor čísel všech tramvají projíždějících zastávkou Husinecká
 - počet porodů v jedné porodnici za jednu noc
 - staging kolorektálního karcinomu {1, 2, 3, 4}

Popis kvantitativního znaku

- např. tělesná výška, glykémie, výše mzdy, sázkový kurz atd.
- číselně (center spread shape!)
 - mírou polohy (center)
 - aritmetický průměr, geometrický průměr, harmonický průměr, medián, modus, kvantil
 - mírou variability (spread)
 - rozpětí (min-max), směrodatná odchylka, rozptyl, kvantil
 - tvar (shape)4
 - šikmost, špičatost
- graficky
 - krabicový diagram (boxplot)
 - histogram

ullet pro n čísel x_1, x_2, \ldots, x_n spočítáme jejich aritmetický průměr jako

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- ▶ MS Excel®
- =PRŮMĚR $(x_1:x_n)$
 - pro n hodnot x_1, x_2, \ldots, x_n tvořících soubor m čísel takových, že je mezi nimi číslo x_1 právě m_1 -krát, číslo x_2 právě m_2 -krát, ..., číslo x_n právě m_n -krát a je $m_1 + m_2 + \cdots + m_n = m$, spočítáme jejich aritmetický průměr jako

$$\bar{x} = \frac{m_1 x_1 + m_2 x_2 + \dots + m_n x_n}{m} = \frac{1}{m} \sum_{i=1}^n m_i x_i$$

určeme aritmetický průměr z následujícího souboru tělesných výšek

Příklad

- určeme aritmetický průměr z následujícího souboru tělesných výšek
- $\bar{x} = \frac{165 + 176 + 152 + 194 + 171}{5} \doteq 171,6 \text{ [cm]}$

- určeme aritmetický průměr z následujícího souboru tělesných výšek
- $\bar{x} = \frac{165+176+152+194+171}{5} \doteq 171,6$ [cm]
- kolik navzájem různých průměrů může mít jeden soubor čísel?

určeme aritmetický průměr z následujícího souboru tělesných výšek

•
$$\bar{x} = \frac{165 + 176 + 152 + 194 + 171}{5} \doteq 171,6 \text{ [cm]}$$

- kolik navzájem různých průměrů může mít jeden soubor čísel?
- pouze jeden

 pokud zavěsíme n jednogramových závaží na pozice čísel x_1, x_2, \ldots, x_n pravítka, hodnota průměru \bar{x} je v těžišti soustavy

 pokud zavěsíme n jednogramových závaží na pozice čísel x_1, x_2, \ldots, x_n pravítka, hodnota průměru \bar{x} je v těžišti soustavy

- pokud zavěsíme n jednogramových závaží na pozice čísel x_1, x_2, \ldots, x_n pravítka, hodnota průměru \bar{x} je v těžišti soustavy
- Důkaz. Označme polohu těžiště na pravítku xt, dále hmotnost závaží je m=1 [g] a gravitační konstanta je q = 10 [m/s²]. Zřejmě, pokud jde o těžiště, pak je soustava je v rovnovážném klidu a musí platit zákon zachování hybnost. Hybnost je u soustavy v rovnovážném klidu nulová, tedy

$$(x_1 - x_t)mg + (x_2 - x_t)mg + \dots + (x_n - x_t)mg = 0$$

$$(x_1 - x_t) + (x_2 - x_t) + \dots + (x_n - x_t) = 0$$

$$x_1 + x_2 + \dots + x_n - nx_t = 0$$

$$x_1 + x_2 + \dots + x_n = nx_t$$

$$\frac{x_1 + x_2 + \dots + x_n}{n} = x_t.$$

Literatura

- V souboru šestnácti čísel je jejich aritmetických průměr roven 10,3. Jak se změní jejich aritmetický průměr, pokud
 - zvýšíme každé z čísel o 5,2?
 - zvýšíme každé z čísel třikrát?
 - zvýšíme polovinu čísel o 7,2 a zbytek čísel zmenšíme o 7,2?
 - zvýšíme polovinu čísel o 3,1 a druhou polovinu čísel zmenšíme o 1,1?

Literatura

 Ve třídě 8. A jedné základní školy bylo původně 32 žáků. Určitý počet žáků, jejichž průměrný inteligenční kvocient je 120, byl z kázeňských důvodů přesunut ze třídy 8. A do jiné třídy dané školy. Díky tomu vzrostl průměrný inteligenční kvocient zbylých žáků v 8. A ze 127 na 128. Určete, kolik žáků bylo přesunuto ze třídy 8. A do jiné zmíněné třídy.

Geometrický průměr

• pro n nezáporných čísel x_1, x_2, \ldots, x_n spočítáme jejich geometrický průměr jako

$$\bar{x}_G = \sqrt[n]{x_1 \cdot x_2 \cdot \dots \cdot x_n} = \sqrt[n]{\prod_{i=1}^n x_i}$$

▶ MS Excel(R)

=GEOMEAN $(x_1:x_n)$

 Během čtyř let cena akcie meziročně postupně vzrostla o 8 %, pak o 12 %, poté o 3 % a nakonec klesla o 1 %. Pokud by se během těchto čtyřech let měnila cena akcie meziročně vždy o konstantní procento, o kolik by to bylo?

• Ukažme, že pokud se geometrický průměr původního množství n kladných čísel rovnal \bar{x}_{G} , pak aritmetický průměr logaritmů původních čísel je roven $\log \bar{x}_G$.

• pro n nenulových čísel x_1, x_2, \ldots, x_n spočítáme jejich harmonický průměr jako

$$\bar{x}_H = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}} = \frac{n}{\sum_{i=1}^n \frac{1}{x_i}}$$

▶ MS Excel®

- =HARMEAN $(x_1:x_n)$
 - pro n nenulových hodnot x_1, x_2, \ldots, x_n tvořících soubor m čísel takových, že je mezi nimi číslo x_1 právě m_1 -krát, číslo x_2 právě m_2 -krát, ..., číslo x_n právě m_n -krát a je $m_1 + m_2 + \cdots + m_n = m$, spočítáme jejich harmonický průměr jako

$$\bar{x}_H = \frac{m}{\frac{m_1}{x_1} + \frac{m_2}{x_2} + \dots + \frac{m_n}{x_n}} = \frac{m}{\sum_{i=1}^n \frac{m_i}{x_i}}$$

• Loď pluje z říčního přístavu k ústí řeky rychlostí $v_1 > 0$, poté se vrací stejnou trasou zpět do přístavu rychlostí $v_2 > 0$. Určete průměrnou rychlost lodi na celkové trase z říčního přístavu k ústí řeky a zpět.

Literatura

Literatura

Příklad

- Totožná součástka se vyrábí na dvou automatech. Starší z nich vyrobí 1 kus každých 10 minut, nový každých 6 minut.
 - Jak dlouho trvá v průměru výroba jedné součástky?
 - Jak dlouho trvá v průměru výroba jedné součástky, pracuje-li starší automat 5 hodin denně a nový 8 hodin denně?
 - Jaká je týdenní produkce součástek, pracují-li oba stroje na maximum, tj. 8 hodin denně, 7 dní v týdnu?

 Investor se rozhodl pravidelně investovat do určité akcie každý měsíc fixní částku 10 000 Kč po dobu 3 měsíců. Cena jedné akcie byla první měsíc 100 Kč, druhý měsíc 125 Kč a třetí měsíc 80 Kč. Jaká byla průměrná pořizovací cena jedné akcie?

Vztah mezi aritmetickým, geometrickým a harmonickým průměrem

- pro n nezáporných čísel x_1, x_2, \ldots, x_n spočítejme jejich aritmetický průměr \bar{x} , geometrický průměr \bar{x}_G a harmonický průměr \bar{x}_H
- pak platí

$$\bar{x}_H \leq \bar{x}_G \leq \bar{x}$$

- a rovnost nastává tehdy a jen tehdy, pokud je $x_1 = x_2 = \cdots = x_n$
- vztahu $\bar{x}_G \leq \bar{x}$ se někdy též říká AG nerovnost ("aritmeticko-geometrická")

• Dokažme AG nerovnost pro n nezáporných čísel x_1, x_2, \ldots, x_n pokud je n=2.

- medián je "prostřední" prvek, zhruba polovina hodnot je větší než medián a zbylá polovina hodnot je menší než medián
- pro n čísel x_1, x_2, \ldots, x_n zjistíme jejich medián tak, že
 - (i) čísla seřadíme vzestupně, tj. pro původní vektor hodnot $(x_1, x_2, \dots, x_n)^T$ získáme vektor hodnot $(x_{(1)}, x_{(2)}, \dots, x_{(n)})^T$, kde pro $\forall i \in \{1, 2, \dots, n\}$ je $x_{(i)}$ právě i-tá nejmenší hodnota ve vektoru $(x_1,x_2,\ldots,x_n)^T$
 - (ii) medián \tilde{x} je prostřední hodnota (pro n liché), resp. aritmetický průměr z "prostředních" dvou hodnot (pro n sudé)

▶ MS Excel(R)

=MEDIAN $(x_1:x_n)$

určeme medián z následujícího souboru tělesných výšek

- určeme medián z následujícího souboru tělesných výšek
- $\tilde{x} = 171 \text{ [cm]}$

- určeme medián z následujícího souboru tělesných výšek
- $\tilde{x} = 171 \text{ [cm]}$
- kolik navzájem různých mediánů může mít jeden soubor čísel?

- určeme medián z následujícího souboru tělesných výšek
- $\tilde{x} = 171 \text{ [cm]}$
- kolik navzájem různých mediánů může mít jeden soubor čísel?
- pouze jeden

• pokud na pravítku vyznačíme pozice čísel x_1, x_2, \ldots, x_n , hodnota mediánu \tilde{x} má od všech vyznačených bodů nejmenší možný součet vzdáleností

• nad souborem čísel x_1, x_2, \ldots, x_n se p-tý kvantil značí \tilde{x}_p a je definován jako

$$\tilde{x}_p = \left\{ \begin{array}{c} x_{(\lfloor k \rfloor + 1)}, & \text{pro } k = np \notin \mathbb{N} \\ \\ \frac{1}{2} \left(x_{(k)} + x_{(k+1)} \right), & \text{pro } k = np \in \mathbb{N}, \end{array} \right.$$

kde $x_{(k)}$ je k-té nejmenší číslo mezi čísly x_1, x_2, \ldots, x_n , dále kde $0 \le p \le 1$ a kde |x| značí dolní celou část čísla x, tedy nejvyšší celé číslo takové, že nepřevýší x; tedy např. $|4,3|=4,\ |1|=1$ a |-2.8| = -3

ullet pravděpodobnost, že hodnota v dané souboru nepřevýší hodnotu $ilde{x}_{v}$, ie rovna p, tedv

$$x \in (x_1, x_2, \dots, x_n)^T \implies P(x \le \tilde{x}_p) = p$$

• zhruba 100p % hodnot v souboru $(x_1, x_2, \ldots, x_n)^T$ je menších než nebo rovných hodnotě \tilde{x}_n

\overline{p}	p-tý kvantil	triviální název
0,25	$\tilde{x}_{0,25}$	první kvartil
$0,\!50$	$\tilde{x}_{0,50}$	medián
0,75	$ ilde{x}_{0,75}$	třetí kvartil

- V souboru hodnot $x = (1, 3, 2, 2, 4, 1, 4, 2, 2, 5, 1, 2)^T$ nalezněme
 - hodnotu kvantilu $\tilde{x}_{0.25}$.
 - hodnotu kvantilu $\tilde{x}_{0.45}$.

- modus je hodnota statistického znaku, který se v souboru čísel vyskytuje nejčastěji
 - pozor, modem není četnost takového prvku, tj. v souboru $\{10, 11, 11, 12\}$ je modem hodnota 11, nikoliv 2
- pro n hodnot x_1, x_2, \ldots, x_n tvořících soubor m čísel takových, že je mezi nimi číslo x_1 právě m_1 -krát, číslo x_2 právě m_2 -krát, ..., číslo x_n právě m_n -krát a je $m_1 + m_2 + \cdots + m_n = m$, určíme jejich modus jako

$$\hat{x} = \underset{i \in \{1, 2, \dots, n\}}{\operatorname{arg max}} \{m_i\}$$

• všimněme si, že takových hodnot \hat{x} ale může být více než jedna

▶ MS Excel®

 $=MODE(x_1:x_n)$

určeme modus z následujícího souboru tělesných výšek

- určeme modus z následujícího souboru tělesných výšek
- $\hat{x} = \{165; 176\}$ [cm]

- určeme modus z následujícího souboru tělesných výšek
- $\hat{x} = \{165; 176\}$ [cm]
- kolik navzájem různých modů může mít jeden soubor čísel?

- určeme modus z následujícího souboru tělesných výšek
- $\hat{x} = \{165; 176\}$ [cm]
- kolik navzájem různých modů může mít jeden soubor čísel?
- alespoň jeden

• určeme aritmetický průměr a medián u každého z obou následujícího souborů

$$x_1 = \{1, 2, 3, 4, 5\}$$
 $x_2 = \{1, 2, 3, 4, 90\}$

 určeme aritmetický průměr a medián u každého z obou následujícího souborů

$$x_1 = \{1, 2, 3, 4, 5\}$$
 $x_2 = \{1, 2, 3, 4, 90\}$

$$\bar{x}_1 = \tilde{x}_1 = 3;$$
 $\bar{x}_2 = 20; \ \tilde{x}_2 = 3$

 určeme aritmetický průměr a medián u každého z obou následujícího souborů

$$x_1 = \{1, 2, 3, 4, 5\}$$
 $x_2 = \{1, 2, 3, 4, 90\}$

$$\bar{x}_1 = \tilde{x}_1 = 3;$$
 $\bar{x}_2 = 20; \ \tilde{x}_2 = 3$

 která z měr polohy (průměr, medián) lépe vyhovuje "asymetrickým" datům?

Krabicový diagram (boxplot)

vhodný pro kvantitativní znaky

• který z krabicových diagramů nedává smysl?

vhodný pro posouzení tvaru rozdělení hodnot

- rozdílný počet intervalů histogramu mění "příběh" dat!
- nejčastěji je počet intervalů k dán Sturgesovým pravidlem

$$k = \lceil \log_2 n \rceil,$$

kde n je počet pozorování v souboru

Popis kvalitativního znaku

- např. krevní skupiny, grading tumoru, pohlaví, atd.
- číselně
 - absolutní, relativní četnosti
- graficky
 - koláčový diagram

- absolutní četnost n_k kategorie k se rovná počtu jednotek souboru, jejichž statistický znak odpovídá kategorii k
- relativní četnost π_k kategorie k je podíl absolutní četnosti kategorie k a celkového rozsahu souboru

určeme absolutní a relativní četnost krevní skupiny A

- určeme absolutní a relativní četnost krevní skupiny A
- $n_A = 4$; $\pi_A = \frac{4}{12} = \frac{1}{3}$

vhodný pro kvalitativní znaky k vyjádření četností jejich kategorií

- Ize-li hodnoty kvalitativního znaku uspořádat vzestupně (či sestupně), jde-li tedy kvalitativní znak ordinální, má smysl definovat i kumulativní četnost
 - kumulativním ordinálním znakem může být např. platová tarifní třída (5, 6, ..., 14, 15), stádium onkologické nemoci (I, II, III, IV), apod.
- kumulativní absolutní četnost $n_{k, \text{ kumul}}$ kategorie k se rovná počtu jednotek souboru, jejichž statistický znak odpovídá kategorii k a všem nižším kategoriím, tedy

$$n_{k, \text{ kumul}} = \sum_{i \in \{\text{kategorie } k \text{ a všechny nižší}\}} n_i$$

• kumulativní relativní četnost $\pi_{k, \text{ kumul}}$ kategorie k je podíl kumulativní absolutní četnosti kategorie k a celkového rozsahu souboru n, tedy

$$\pi_{k, \text{ kumul}} = \frac{n_{k, \text{ kumul}}}{n}$$

 snadno nahlédneme, že kumulativní absolutní četnost $n_{
m neivy\check{s}\check{s}\acute{i}\;katerogie,\;kumul}$ pro nejvy $\check{s}\check{s}\acute{i}\;kategorii\;v\;dan\acute{e}m$ uspořadatelném souboru je rovna jeho rozsahu n, neboť

$$n_{
m nejvy\check{s}\check{s}\acute{i}}$$
 katerogie, kumul $=\sum_{i\in\{ ext{nejvy\check{s}\check{s}\acute{i} katerogie a v\check{s}echny ni\check{z}\check{s}\acute{i}\}}}n_i=$
$$=\sum_{i\in\{ ext{v\check{s}echny katerogie}\}}n_i=$$
 $=n$

ullet obdobně kumulativní relativní četnost $\pi_{
m neivv\check{s}\check{s}\acute{i}\ katerogie,\ kumul}$ pro nejvyšší kategorii v daném uspořadatelném souboru je rovna 1, neboť

$$\pi_{\text{nejvyšší katerogie, kumul}} = \frac{n_{\text{nejvyšší katerogie, kumul}}}{n} = \frac{n}{n} = 1$$

 Na jisté katedře je věkový profil zaměstnanců takový, že šest z nich patří věkově do dekády (20,30) let, čtyři z nich do dekády (30,40) let sedm z nich do dekády (40,50) let, dva z nich do dekády (50,60) let a jeden z nich do dekády (60,70) let. Určete absolutní a relativní četnosti všech dekád na dané katedře, současně určete i jejich kumulativní protějšky.

Hindls, Richard, Markéta Arltová, Stanislava Hronová, Ivana Malá, Luboš Marek, Iva Pecáková a Řezanková Hana. Statistika v ekonomii. Praha: Professional Publishing, 2018. ISBN: 978-80-88260-09-7.

Marek, Luboš. Statistika v příkladech. Praha: Professional Publishing, 2015. ISBN: 978-80-7431-153-6.

Děkuji za pozornost!

lubomir.stepanek@vse.cz lubomir.stepanek@lf1.cuni.cz lubomir.stepanek@fbmi.cvut.cz

