Queiroz Videira Raphael Note: 10/20 (score total : 10/20)

Nom et prénom, lisibles :

+176/1/30+

Identifiant (de haut en bas):

QCM THLR 4

	QUEREOZ NIDETRA 00 01 102 03 04 05 06 07 08 09
1	
1	
_	
si pl pa	Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cases autôt que cocher. Renseigner les champs d'identité. Les questions marquées par « » peuvent avoir plueurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la lus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est as possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les accorrectes pénalisent; les blanches et réponses multiples valent 0.
Q	.2 Le langage $\{ \stackrel{\bigcirc}{\mathbb{Z}}^n \stackrel{\bigcirc}{\mathbb{S}}^n \mid \forall n \in \mathbb{N} \}$ est
/2	☐ fini non reconnaissable par automate fini ☐ rationnel vide
Q	.3 Le langage $\{a^n \mid \forall n \in \mathbb{N}\}$ est
/2	☐ vide ☐ non reconnaissable par automate ☑ rationnel ☐ fini
/2	 A propos du lemme de pompage ☑ Si un langage ne le vérifie pas, alors il n'est pas rationnel ☑ Si un langage ne le vérifie pas, alors il n'est pas forcement rationnel ☑ Si un langage le vérifie, alors il est rationnel Quels langages ne vérifient pas le lemme de pompage?
/2	 □ Tous les langages reconnus par DFA □ Certains langages reconnus par DFA □ Tous les langages non reconnus par DFA □ Tous les langages non reconnus par DFA
Q	.6 Si un automate de n états accepte a^n , alors il accepte
/2	\square a^{n+1} \boxtimes $a^p(a^q)^*$ avec $p \in \mathbb{N}, q \in \mathbb{N}^* : p+q \le n$ \square $(a^n)^m$ avec $m \in \mathbb{N}^*$ \square $a^n a^m$ avec $m \in \mathbb{N}^*$
	.7 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ ont la n -ième lettre avant la fin est un a (i.e., $(a+b)^*a(a+b)^{n-1}$):
/2	$n+1$ Il n'existe pas. $\frac{n(n+1)}{2}$ \times 2^n
	Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ ont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):
/2	
Q	.9 Déterminiser cet automate. a, b a b a b a b a a b a a a b a

- Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

- \Box $T(Det(T(Det(\mathcal{A}))))$

Fin de l'épreuve.

2/2