Algebra Relacional

Visión General:

- Conjunto de operadores para consultar BD-Rs.
- Define conjunto de ops estándar en BD-Rs.
- Operadores que reciben relaciones y devuelven relaciones:
 - Sobre conjuntos de tuplas:
 - Unión, Diferencia, Producto Cartesiano.
 - Específicos para BDs Rel.
 - Selección, Proyección, Join.

El Algebra Relacional

Sintaxis

Qué símbolos se utilizan para cada operador y qué parámetros recibe.

Semántica

- ¿Cuál es el esquema del resultado?
- ¿Cuál es la instancia del resultado?
- ¿Qué condiciones se deben cumplir para que se pueda aplicar el operador?

Algebra Relacional - Selección

Descripción General:

 Permite obtener las tuplas que cumplen una cierta condición.

Sintaxis:

$$\sigma_{\text{condicion}}$$
 ()

- donde:
 - Condición es una condición lógica sobre valores de los atributos de las tuplas resultado.
 - Relación es una relación o expresión relacional.

Algebra Relacional - Selección

Selección(σ)

Sea R una relación y θ una condición.

$$\sigma_{\theta}(R)$$

- da como resultado otra relación
 - con esquema igual que el de R
 - con instancia el conjunto de tuplas de la instancia de R que cumplen con θ.

Algebra Relacional - Selección

• Ejemplos:

- $\sigma_{ND=4}$ (EMPLEADO)
- σ_{Salario>3000} (EMPLEADO)
- σ_{ND=4 and Salario>3000} (EMPLEADO)
- ◆ Onot (ND=4 and Salario >3000) (EMPLEADO)

Algebra Relacional - Proyección

Descripción General:

 Permite obtener las tuplas con un cierto conjunto de atributos.

Sintaxis:

$$\Pi_{\text{}}$$
 ()

donde:

- Lista_atributos es una lista de atributos a aparecer en la relación resultado.
- Relación es una relación o expresión relacional.

Algebra Relacional - Proyección

Proyección (Π).

Sea R una relación.

$$\Pi_{A1,...,An}(R)$$

- da como resultado otra relación:
 - con esquema (A₁,...,A_n)
 - con tuplas formadas a partir de las de R, tomando los valores para los atributos A₁,...,A_n.

Observación:

 Como no se admiten tuplas repetidas, al realizar una proyección, podrían quedar menos tuplas que en la relación de partida.

Algebra Relacional - Proyección

• Ejemplos:

- 1) $\Pi_{\text{nombre, dirección}}$ (FABS)
- 2). Π_{desc} (PRODS)
- 3). Π _{#f} (VENTAS)

Algebra Relacional - Unión

- Descripción General:
 - Permite obtener la Unión de dos relaciones tomadas como conjuntos de tuplas.
- Sintaxis:

- donde:
 - relación es una relación o expresión relacional.

Algebra Relacional - Unión

Unión:

- Sean R y S dos relaciones con igual esquema (o compatible).
- La operación:

 $(R \cup S)$

- da como resultado otra relación:
 - cuyo esquema es igual al de R (y S),
 - y que tiene como conjunto de tuplas a la unión de las de R y las de S.

Algebra Relacional - Diferencia

Descripción General:

 Permite obtener la Diferencia de dos relaciones tomadas como conjuntos de tuplas.

Sintaxis:

- donde:
 - Relación es una relación o expresión relacional.

Algebra Relacional - Diferencia

Diferencia:

- Sean R y S dos relaciones con igual esquema (o compatible).
- La operación:

$$(R - S)$$

- da como resultado otra relación:
 - cuyo esquema es igual al de R (y S),
 - y que tiene como conjunto de tuplas a la resta de las de R menos las de S.

Algebra Relacional - Producto Cartesiano

- Descripción General:
 - Permite obtener el Producto Cartesiano de dos relaciones tomadas como conjuntos de tuplas.
- Sintaxis:

- donde:
 - Relación es una relación o expresión relacional.

Algebra Relacional - Producto Cartesiano

Producto Cartesiano:

- Sean R y S dos relaciones con esquemas (A₁,...,A_n) y (B₁,...,B_m) respectivamente.
- La operación:

- da como resultado:
 - otra relacion cuyo esquema es
 - $(A_1,...,A_n,B_1,...,B_m)$
 - y cuyas tuplas son generadas por todas las combinaciones posibles de las de R con las de S.

Algebra Relacional - Producto Cartesiano

• Ejemplos:

• $\sigma_{\#p<3}$ (PRODS) x $\sigma_{\#p<3}$ (VENTAS) da como resultado:

<u>#p</u>	desc	#f	#p	<u>precio</u>
1	t1	1	1	100
1	t1	1	2	200
2	t2	1	1	100
2	t2	1	2	200

 Este operador permite combinar las tuplas de dos tablas.

Ejemplo

- Ejemplo:
 - $\Pi_{\$2,\$3,\$4,\$5}$ ($\sigma_{\$1<3}$ (PRODS) x $\sigma_{\$2<3}$ (VENTAS))
 - da como resultado:

desc	#f	#p	precio	
t1	1	1	100	
t1	1	2	200	
t2	1	1	100	
t2	1	2	200	

La notación de atributos numerados también puede ser usada en la selección.

Operadores Derivados

- Los operadores presentados antes:
 - son los básicos del Álgebra Relacional.
- Se definen otros que:
 - se pueden expresar en función de los básicos,
 - pero que expresan operaciones importantes dado que se usan habitualmente.
- Estos operadores son:
 - Join:
 - Permite expresar la combinación de tablas.
 - División:
 - Permite obtener los datos que se relacionan con todos los elementos de otro conjunto.

Algebra Relacional - Join

Descripción General:

- Permite combinar tuplas de dos relaciones a través de una condición sobre los atributos.
- Corresponde a una selección sobre el Prod.
 Cartesiano de las relaciones.

Sintaxis:

Algebra Relacional - Θ–Join

- Θ–Join.
 - Sean R y S dos relaciones, la operación

es equivalente a realizar :

$$\sigma_{\text{condicion}} (R \times S)$$

Algebra Relacional - Join Natural

- Join Natural.
 - Sean R y S dos relaciones, la operación

R * **S**

- es equivalente a realizar el:
 - θ-Join con la condicion de igualdad entre los atributos de igual nombre y luego proyectar eliminando columnas con nombre repetido.

Algebra Relacional - Join

¿Cómo se ejecuta el Join?

- Cuando se realiza un Join entre dos relaciones (R y S), cada vez que una tupla de R y otra de S cumplen la condición del join, se genera una tupla en el resultado.
- Para que se genere una tupla en el resultado alcanza con que exista una tupla en R y otra en S que se "conecten" por la condición del Join.

Algebra Relacional - Join Natural

• Ejemplos:

 1) Dar los nombres de fabricantes y la descripción de los productos que vende.

```
• \Pi_{\text{nombre,desc}} ((FABS * VENTAS) * PRODS)
```

- 2) Dar descripción y precio de productos vendidos por Juan.
 - $\Pi_{\text{desc,precio}}$ (($\sigma_{\text{nombre='Juan'}}$ (FABS) * VENTAS) * PRODS)

Algebra Relacional - Join

Por ejemplo:

- Cuando se consulta el nombre y descripción de producto tal que el fabricante vende ese producto,
 - alcanza con que el fabricante venda un producto para que este en la solución.
 - Si vende varios productos, se obtendrán varias tuplas en la solución.

División.

- Sean R y S dos relaciones con esquemas
 - \bullet (A₁,...,A_n,B₁,...,B_m) y (B₁,...,B_m) respectivamente.
- La operación

$$R \div S$$

da como resultado otra relación con esquema

$$(A_1,\ldots,A_n)$$

- y su contenido son:
 - las tuplas tomadas a partir de las de r(R) tales que su valor (a₁,...,a_n) está asociado en r(R) con TODOS los valores (b₁,...,b_m) que están en s(S).

Por ejemplo:

```
Sean R y S,
```

```
R(A, B) S(B) Q(A)

a1 b1 b1 ==> a2

a1 b2 b2

a2 b1 b3

a2 b2

a2 b3

a2 b4

a3 b1

a3 b3
```

Observación:

Las tuplas solución deben estar relacionadas con todos los valores de S, pero NO se exige que lo este solo con esos valores. Pueden estar relacionadas con otros valores.

Ejemplo:

Dar los #p vendidos por todos los fabricantes.

Result =
$$\Pi_{\text{#p,#f}}$$
 (VENTAS) ÷ $\Pi_{\text{#f}}$ (FABS)

Ejemplos

Ejemplo1.

 Dar los #p vendidos por todos los fabricantes que venden algún producto.

 \bullet $\Pi_{\text{#p,#f}}$ (VENTAS) \div $\Pi_{\text{#f}}$ (VENTAS)

Ejemplo 2.

- Dar los #f que venden todos los productos vendidos por algún fabricante.
 - $\Pi_{\text{#f,#p}}$ (VENTAS) ÷ $\Pi_{\text{#p}}$ (VENTAS)

Ejemplos

Ejemplo 3.

 Dar los #f que venden todos los productos con descripción "t1".

• A =
$$\Pi_{\text{#f,#p}}$$
 (VENTAS) ÷ $\Pi_{\text{#p}}$ ($\sigma_{\text{desc="t1"}}$ (PRODS))

Ejemplo 4.

 Dar nombre y dirección de fabricantes que venden todos los productos con descripción "t1".

→ Π_{nombre, direc} (FABS * A)

- La división en función de operadores base.
 - Sea:
 - $T(X) = R(X,Y) \div S(Y).$
 - T1 = Π_X (R).
 - Valores base a incluir en el resultado.
 - $T2 = \Pi_X ((T1 \times S) R)$
 - Tuplas de R a las que les falta relacionarse en R con algún elemento de S.
 - Lo que NO se quiere en el resultado.
 - ▶ T = T1 T2

Algebra vs Cálculo

- Se puede demostrar formalmente que es equivalente al cálculo de tuplas seguro.
- Para definir el álgebra en función del cálculo, necesitamos algo de notación.
 - Φ_i^A denota una expresión en algebra y Φ_i^C denota la fórmula de primer orden que aparece en la consulta en cálculo correspondiente. ($\Phi_i^A \equiv \{t \mid \Phi_i^C(t)\}$)
 - Si φ es una condición usada en una selección, φ^c(t) es la misma condición en donde los atributos se toman de la variable t.

Algebra en Calculo.

- $\Pi_{a1...an} (\Phi^A) \equiv \{ < t.a_1..., t.a_n > / \Phi^C(t) \}$
- $\Phi_1^A \cup \Phi_2^A \equiv \{t / \Phi_1^c(t) \vee \Phi_2^c(t) \}$
- $\Phi_1^A \cap \Phi_2^A \equiv \{t / \Phi_1^c(t) \land \Phi_2^c(t) \}$
- $\Phi_1^A \Phi_2^A \equiv \{t / \Phi_1^c(t) \land \neg \Phi_2^c(t) \}$
- $\Phi_1^A \times \Phi_2^A \equiv \{t / \Phi_1^c(t) \land \neg \Phi_2^c(t) \}$
- $\Phi_1^A * \Phi_2^A = \{t / \Phi_1^c(t_1) \land \Phi_2^c(t_2) \land \Phi_2^c($
- ▶ $t_1.a_1 = t_2.a_1 \land ... \land t_1.a_n = t_2.a_n$ } Donde $a_1...a_n$ son los atributos de igual nombre en t_1 y t_2
- ◆ $Φ_1^A ÷ Φ_2^A ≡ \{t / ∀t_2.Φ_2^c(t_2) →$ $∃t_1.(Φ_1^c(t_1) ∧ t_1.a_{i+1} = t_2.a_1 ∧... ∧ t_1.a_{i+n} = t_2.a_n$ $∧ t.a_1 = t_1.a_1 ∧... ∧ t.a_i = t_1.a_i)\}$

Donde a₁...a_n son todos los atributos de t₂

Otra visión del Algebra Relacional

Visión hasta el momento:

- Una tupla es una lista de valores.
- Un Esquema de Relación es una pareja de un nombre de relación y una lista de atributos.

Otra Visión:

- Una tupla es una función de los nombres de atributo en los valores.
- Un Esquema de Relación es una pareja de un nombre de relación y una lista de atributos.

Renombre

Sintaxis:

- $ightharpoonup
 ho_{(A1,..An \to B1...Bn)}(R)$ donde:
 - \bullet A₁... A_n y B₁... B_n son listas de n atributos.
 - R es una expresión relacional.

Semántica:

- Esquema:
 - El mismo que en R pero con los nombres de atributos A₁... A_n cambiados por B₁... B_n respectivamente.
- Instancia:
 - Exactamente la misma que R.

Renombre - Ejemplos.

- Fabs(#f,Nom,Dir), Prods(#p,desc),
 Versión Vieja:
- Ejemplo 1
 - → ρ_(#f→NumFab) (Fabs) Devuelve una tabla con el siguiente esquema.

posiciones

(NumFab, Nom, Dir) Versión Nueva:

Versión Nueva: renombre inteligente

- Ejemplo 2
 - Obtener las parejas dé números de fabricantes que se llaman igual.
 - $\Pi_{\$1,\$4}(Fabs)$ Fabs)
 - \bullet $\Pi_{\text{#f,#f1}}(\text{Fabs} * \rho_{(\text{#f,Dir}} \rightarrow \text{#f1,Dir1})(\text{Fabs}))$