

第七章回溯法

显录

- •7.1 一般方法
- •7.2 效率估计
- •7.3 n-皇后问题
- •7.4 子集和数问题
- •7.5 图着色问题
- •7.6 小结

7.1 一般方法

- •适用的问题特点
- •多米诺性质
- •基本概念
- •动态树
- •设计思想
- •算法描述

回溯法的基本思想

- •例:迷宫游戏
- ■回溯法是一种搜索算法,是通用的解题法。
- ■以深度优先的方式系统地搜索问题的解。

方法适用的问题特点

- 方法适用于解决多阶段决策问题, 也称为组合问题
 - •问题的解向量用元组来表示,元素x;通常取自于某个有穷集S;,1≤i≤n,n表示问题规模
 - 固定长n-元组(x₁, ..., xₙ)
 - 可变长k-元组(x₁, ..., x_k), k<n
 - •问题的目标:

组合搜索

- •满足约束条件的一个解或多个解;通常用限界函数表示约束条件;
- 满足约束条件的最优解;此时需要定义目标函数,使目标函数取极值的解是最优解。
- ●问题满足多米诺性质
- 适用于求解组合数较大的问题。

组合优化

细分多阶段决策问题

- •多阶段决策问题/组合问题
 - •组合搜索:关注解的存在性
 - •问题描述中仅存在约束条件
 - •问题希望找到一个可行解/所有可行解
 - •组合优化:关注解的最优性
 - •问题描述中还存在目标函数
 - •问题希望找到一个具有极小值/极大值的可行解, 即最优解
 - •也称为极小化/极大化问题

多米诺性质

- •多米诺性质
 - •设 $P(x_1,...,x_i)$ 是关于向量 $(x_1,...,x_i)$ 的某种性质的判定,当 $P(x_1,...,x_{i+1})$ 为真时,一定有 $P(x_1,...,x_i)$ 为真,0 < i < n
- •根据多米诺性质,如果P(x₁,...,x_i)不成立,则P(x₁,...,x_{i+1})亦不成立
- •一个满足多米诺性质的组合问题
 - •是指能够根据约束条件和目标函数不断检验正在构造的部分解向量 $(x_1,...,x_i)$,0 < i < n,一旦发现不成立,则无需考虑后续 $x_{i+1},...,x_n$ 的取值

问题的多米诺性质是回溯法提高算法效率的关键

- •设限界函数B实现问题的约束条件,对于n-元组 $(x_1,...,x_n)$, $x_i \in S_{i,n}$
- •硬性处理
 - • $|S_i|=m_i$,向量个数 $m=m_1\times m_2\times ...\times m_n$,对这m个n-元组逐一检测是否满足 $B(x_1,...,x_n)$,从而找出问题的解。
- •回溯法利用多米诺性质
 - •B无需等待,可以提前检验正在构造中的部分向量 $(x_1,...,x_i)$,如果发现不能导致问题的解,终止该向量继续构造,即不再构造 $x_{i+1},...,x_n$ 的取值,从而减少了 $m_{i+1} \times ... \times m_n$ 个向量。

测试次数比硬性处理的m次要少得多

回溯求解的基本概念

- •显式约束:每个xi的取值集合Si,可能与问题实例有关,也可能无关
 - x_i>=0, S_i={所有非负实数}
 - $x_i=0$ 或1, $S_i=\{0,1\}$
- ●隐式约束:描述了xi彼此相关的情况,与问题实例有关

对应限界函数

- •解空间:满足显式约束条件的所有元组
- •可行解:解空间中满足隐式约束条件的元组。
- •解空间树:基于解空间画成的树形状

解空间树

回溯法解决问题的过程就是在解空间树上搜索答案状态结点的过程

- •解空间树:基于解空间画成的树形状
 - •问题状态:解空间树中的所有结点。
 - ●解状态:是这样的一些问题状态X,对于这些问题状态,由根到节点X的那条路径确定了这个解空间中的一个元组。 满足显式约束条件
 - •答案状态: 是这样的一些解状态X,对于这些解状态而言,由根到节点X的 这条路径确定了问题的一个解,也就是说,它满足隐式约束条件。

答案状态⊆解状态⊆问题状态

问题建模

- 确定元组表达形式
 - •固定长元组:用大小固定的n-元组 $(x_1, ..., x_n)$ 表示
 - ●不定长元组:用大小可变的k-元组 $(x_1, ..., x_k)$ 表示, $k \le n$
- •确定约束条件:显示约束和隐式约束
- 检验问题满足多米诺性质
- •确定解空间树:问题状态、解状态和答案状态

以子集和问题为例

•问题描述:

●已知n+1个正数: w_i(1≤i≤n)和M, 要求找出w_i的和是M的所有子集。

•问题实例:

•n=4, (w_1, w_2, w_3, w_4) = (11,13,24,7), M=31_o

●可行解1:11,13,7

•可行解2:24,7

固定长元组表达

●n-元组(x₁, ..., x_n)

■ 显式约束: x_i ∈ {0,1},1≤i≤n; 如果选择w_i,则x_i=1; 否则x_i=0

•隐式约束: ∑w_ix_i=M, 1≤i≤n

•多米诺性质:如果部分解向量大于M,则包含它的解向量也大于M

•解空间共计2n个元组

n=4, (w₁, w₂, w₃, w₄)= (11,13,24,7), M=31。 解空间:2⁴=16个元组

可行解1: 11,13,7 可行解1: (1,1,0,1)

可行解2: 24,7 可行解2: (0,0,1,1)

• 子集和数问题的4-元组表达的解空间树

WITH THE RESULT OF THE PARTY OF

• 问题状态:全部结点31个

•解状态:叶结点16个

• 答案状态: 当前实例2个

从根结点到<mark>叶结点</mark>的一条路 径确定解空间中的一个元组

结点8和27是答案状态

避免重复情况,

如(1,2,4)和(1,4,2)

不定长元组表达

•k-元组(x₁, ..., xೖ), k≤n

显式约束: x_i∈{ j | j是w_i的下标, 1≤j≤n },1≤i≤k。 x_i<x_{i+1},1≤i<k

•隐式约束:相应的wi的和等于M

•多米诺性质:如果部分解向量大于M,则包含它的解向量也大于M

•解空间共计2n个元组

n=4, (w₁, w₂, w₃, w₄)= (11,13,24,7), M=31。解空间:2⁴=16个元组

可行解1: 11,13,7 可行解1: (1,2,4)

可行解2: 24,7 可行解2: (3,4)

• 问题状态:全部结点16个

•解状态:全部结点16个

• 答案状态: 当前实例2个

空向量

(1,2,3)

(1,2,3,4)

(1)

(16)

结点13和11是答案状态

动态树

- •静态树: 即解空间树, 树结构与所要解决的问题实例无关。
- •动态树: 树结构与实例相关, 在求解过程中生成结点。
 - •活结点: 自己已经生成而其儿子结点还没有全部生成的结点。
 - •E-结点(正在扩展的结点): 当前正在生成其儿子结点的活结点。
 - 死结点: 不再进一步扩展或者其儿子结点已全部生成的结点。

- •第一种方式

•第二种方式:

•当前结点一旦成为**E**-结点,就一直处理到变成死结点为止。其生成的儿子结点加入到活结点表中,然后再从活结点表中选择下一个新的**E**-结点。

该方法称为分支限界法。

回溯法的设计思想

- •针对问题定义解空间树结构:元组、显式约束条件、隐式约束条件。
- 检验问题满足多米诺性质。
- •以深度优先方式搜索解空间树,在搜索过程中使用限界函数避免无效搜索。
 - 首先根结点成为一个活结点,同时也是当前的扩展结点。沿当前扩展结点向纵深方向移至一个新的活结点,该活节点成为当前新的扩展结点。
 - 如果当前扩展结点不能再向纵深方向移动,则其成为死结点。回溯至最近的一个活结点,并使该活结点成为当前新的扩展结点。
- •在解空间树中搜索,直至找到所要求的解或解空间中已没有活结点时为止。

回溯法的形式化描述

- •假设要找出所有的答案结点
- ●(x₁,x₂,...,x_{i-1})是状态空间树中由根出发的一条路径,到达 结点Y
- T(x₁,...x_{i-1})是元素x_i的集合,对于每一个x_i,(x₁,x₂,...,x_{i-1},x_i)
 是一条由根到结点Y的一个儿子结点的路径
- •对于限界函数B_i,如果路径(x₁,x₂,...,x_{i-1},x_i)不可能延伸到一个答案结点,则B_i(x₁,x₂,...,x_i)取假值,否则取真值

算法7.1 回溯法的非递归算法描述

repeat

end BACKTRACK

```
THE RESITY CHINA
```

```
在X(1)...X(k-1)已经被确定
procedure BACKTRACK(n)
                                    的情况下, T(X(1)...X(k-1))
  int k, n
                                    给出X(k)的所有可能的取值,
  local X(1:n)
                                    限界函数B(X(1)...X(k))判断
  k ← 1
                                    哪些X(k)满足隐式约束条件
 while (k>0) do
    if (还剩有没检验的X(k)使得X(k)∈T(X(1)...X(k-1))
       and B(X(1)...X(k))=TRUE)
    then if (X(1) ...X(k))是一条抵达答案结点的路径)
        then print (X(1)...X(k))
        endif
        k \leftarrow k+1
    else k ← k-1 //回溯
    endif
```


算法7.2 回溯法的递归算法描述

```
procedure RBACKTRACK(k)
                             进入算法时,解向量X中的前k-1
global X(1:n);
                             个分量X(1) ...X(k-1)已经被赋值
int k, n;
for (满足下式的每个X(k), X(k) ∈ T(X(1)...X(k-1))
    and B(X(1),...X(k))=true) do
  if (X(1),...,X(k))是一条抵达答案结点的路径 then
      print (X(1)...X(k)) endif
   call RBACKTRACK(k+1)
 repeat
end RBACKTRACK
```


7.2 回溯法的效率分析

- •决定回溯法效率的因素
- •回溯法的效率估计
- ●蒙特卡罗方法的一般思想
- 效率估计算法
- •蒙特卡罗方法的特点

决定回溯法效率的因素

- •生成下一个X(k)的时间
 - •生成一个结点的时间
- •满足显式约束条件的X(k)的数目
 - •子结点的数量
- •限界函数B_i的计算时间
 - 检验结点的时间
- •对于所有的i,满足Bi的X(k)的数目
 - 通过检验的结点数量

B_i能够大大减少生成的结点数,但在 计算时间和减少程度上要进行折中

思考:哪一个因素会导致不同实例产生的结点数不同?

决定回溯法效率的因素

- ●一旦选定了一种状态空间树结构,前三种因素对于所要解决的实例没有多大的关系,只有第四种因素,对于问题的不同实例,生成的结点数是不相同的。
- •对于某一实例,回溯算法可能只生成O(n)个结点;
- •对于另一实例, 回溯算法可能生成这棵状态空间树的全部结点。

回溯法的效率估计

●如果解空间的结点数是2ⁿ或n!,易知,回溯算法最坏情况下的时间复杂度为O(p(n)2ⁿ)或O(q(n)n!),其中p(n)和q(n)为n的多项式

Bi花费的时间等

- ●由于回溯法对同一问题不同实例的巨大差异,在n很大时,对某些实例是十分有效的。因此,在采用回溯法计算某个实例之前,应估算其工作效能。
- •用回溯算法处理一棵树所要生成的结点数,可以用蒙特卡罗方法估算出来

古计活结点的个数,即动态树结点个数。

蒙特卡罗方法的一般思想

- •假定限界函数是固定的
 - 在状态空间中生成一条随机路径。
 - ●设x是这条路径上的位于第i级的一个结点。
 - •设限界函数确定x的可用儿子结点的数目为mio
 - •从这**m**_i个儿子结点中随机选中一个,重复上述过程,直到当前结点是 叶结点或者儿子结点都被限界为止。

不受限界结点的估计数: $\mathbf{m}=\mathbf{1}+\mathbf{m}_1+\mathbf{m}_1*\mathbf{m}_2+\mathbf{m}_1*\mathbf{m}_2*\mathbf{m}_3+\dots$ \mathbf{m}_i 表示第i级结点没受限界的儿子结点数。

全部不受限结点的估计数目

- •第一级不受限界的结点数为1;
- •第二级不受限界的结点数为 m_1 ;
- ●<u>预计</u>每个二级结点<mark>平均</mark>有m₂个没限界的儿子结点,则在第三级上有不受限界的结点m₁*m₂个;
- 第四级预计没受限结点个数为 $m_1*m_2*m_3$ 个;
-
- 所有不受限结点的估计数为 $m=1+m_1+m_1m_2+m_1m_2m_3+\dots$

算法7.3 效率估计算法


```
Procedure ESTIMATE() //程序沿着状态空间树中一条随机路径产生
 这棵树中不受限界结点的估计数//
 m \leftarrow 1; r \leftarrow 1; k \leftarrow 2
  loop
    T_k \leftarrow \{X(k): X(k) \in T(X(1), ..., X(k-1)) \text{ and } B_k(X(1), ..., X(k))\}
    if SIZE(T_k)=0 then exit endif
    r \leftarrow r*SIZE(T_k)
                                 第k级的结点数
    m \leftarrow m + r
                                 前k级的结点总数
    X(k) \leftarrow CHOOSE(T_k)
    k \leftarrow k+1
  repeat
                                 从Tk中随机地挑选一个元素
  return m
end ESTIMATE
```


蒙特卡罗方法的特点

•优点:

找到所有答案结点的情况非常有用,

限界函数固定不变,计算方便,对状态空间树中同一级结点都适用。

●缺点:

只求一个解时,生成的结点数远小于m,

随着检索的进行,限界函数应该更强,使得m的值更小。

7.3 n-皇后问题

- ●问题描述
- •解空间树
- •问题分析
- •限界函数
- •算法描述
- •效率估计

问题描述

• n-皇后问题:

• 在一个n*n棋盘上放n个皇后,使每两个皇后之间都不能互相"攻击",即使得每两个皇后都不能在同一行、同一列及同一条斜角线上。

• 基于回溯法求解:

n-元组(x₁,...x_n):表示皇后i放在i行x_i列上。

显式约束条件: x_i∈{1, 2, ..., n}, 1≤i≤n

解空间: **n**ⁿ

• 隐式约束条件: 没有两个x_i可以相同, 且没有两个皇后可以在同一条斜角线上。

与问题实例无关, 解空间: n!

解空间树

•n=4时, 叶结点个数=4! =24, 解空间是从根结点到叶结点的所有路径。

问题分析

●开始把根结点作为唯一的活结点,根结点就成为E-结点而且路径为();接着生成儿子结点,那么结点2被生成,这条路径为(1),即把皇后1放在第1列上。

• 结点2变成E-结点,它再生成结点3,路径变为(1,2),

结点3被杀死,此时回溯。

• 回溯到结点2生成结点8,路径变为(1,3),则结点8成为E-结点,它生成结点9和结点11都会被杀死,所以结点8也被杀死,应回溯。

THE RESTRICT OF THE RESTRICT O

•回溯到结点2生成结点13,路径变为(1,4),结点13成为E-结点,它的儿子不

可能导致答案结点,因此结点13也被杀死,回溯。

●结点2的所有儿子都不能导致答案棋盘格局,因此结点2也被杀死;再回溯到结点1生成结点18,路径变为(2)。

•结点18的儿子结点19、结点24被杀死,回溯。

- 结点29生成结点30, 路径变为(2,4,1)。
- 结点30生成结点31,路径变为(2,4,1,3),找到一个4-皇后问题的可行解。

限界函数

- ●在n-皇后问题中,(x₁,x₂,..x_n)表示一个解,x_i表示第i个皇后放在第i行的列数。
- ●设有两个皇后被放置在(i, j)和(k, l)位置上, 什么情况下它们在同一条斜角线上?
- ✓ 对于两个皇后所在位置,如果行差距=列差距, 则两个皇后在同一条斜角线上

$$|j-l|=|i-k|$$

a ₁₁	a ₁₂	a ₁₃	a ₁₄	a ₁₅	a ₁₆	a ₁₇	a ₁₈
a ₂₁	a ₂₂	a ₂₃	a ₂₄	a ₂₅	a ₂₆	a ₂₇	a ₂₈
a ₃₁	a ₃₂	a ₃₃	a ₃₄	a ₃₅	a ₃₆	a ₃₇	a ₃₈
a ₄₁	a ₄₂	a ₄₃	a ₄₄	a ₄₅	a ₄₆	a ₄₇	a ₄₈
a ₅₁	a ₅₂	a ₅₃	a ₅₄	a ₅₅	a ₅₆	a ₅₇	a ₅₈
a ₆₁	A ₆₂	a ₆₃	a ₆₄	a ₆₅	a ₆₆	a ₆₇	a ₆₈
a ₇₁	a ₇₂	a ₇₃	a ₇₄	a ₇₅	a ₇₆	a ₇₇	a ₇₈
a ₈₁	a ₈₂	a ₈₃	a ₈₄	a ₈₅	a ₈₆	a ₈₇	a ₈₈

限界函数

// 前k-1行的皇后已经放置,现在确定第k行皇后欲放在X(k)列上,是否可以?

PLACE(k)

令X(k)与X(i)逐个比较, i=1..k-1。

若存在X(k)=X(i)或者|X(i)-X(k)|=|i-k|

则返回false;

否则返回true。

算法7.4 能否放置一个新皇后?

end PLACE


```
procedure PLACE(k)
//若一个皇后能放在第k行和第X(k)列,则返回true,否则返回false。
//X是全程数组,进入此过程时已置入了k个值,ABS是绝对值函数。
int i, k
i←1
while (i<k) do
 if (X(i)=X(k) or ABS(X(i)-X(k))=ABS(i-k)) // 若两个皇后在同一列上,或在
   then return false
                                同一对角线上,则说明该位置
 endif
                                不能放皇后, 应返回false值
 i ← i+1
repeat
return true
```

算法7.5 n-皇后问题的回溯算法描述


```
procedure NQUEENS(n)
int k, n, X(1:n)
X(1) \leftarrow 0; k \leftarrow 1 // k是当前行; X(k)是当前列 while (k>0) do // 对所有的行执行循环语句
   X(k) ← X(k)+1 // 移到下一列
   while (X(k) \le n \text{ and not } PLACE(k)) do
       X(k) \leftarrow X(k)+1; repeat //当前列X(k)不能放皇后k时,放到下一列
   if(X(k)≤n) //找到一个位置
       then if(k=n) //若是一个完整的解则打印数组X
               then print (X)
               else k ←k+1; X(k) ←0 //准备求解下一个皇后
             endif
       else k \leftarrow k-1; //没有合适的位置,回溯
   endif
repeat
end NQUEENS
```

8-皇后问题的效率估计

- ●在8-皇后问题中, (x₁,x₂,...x₈)表示一个解, x_i表示第i个皇后放在第i行的列数。
 - 显式: S_i={1, 2, 3, 4, 5, 6, 7, 8}, 1≤i≤8
 - 隐式: 没有两个x_i可以相同, 且没有两个皇后可以在同一条斜角线上。
- •硬性处理法(8*8棋盘上随便8个位置):要检查元组个数为88
 - 状态空间树结点个数: 1+8+8²+...+8⁸
- •没有两个x_i可以相同:要检查元组个数为8!
 - 状态空间树结点个数: 1+8+8*7+8*7*6+...+8*7*6*5*4*3*2*1=69281
- •限界函数实现隐式约束条件?

使用蒙特卡罗方法估计

8-皇后问题的不受限结点的估计值

多次实验后取平均值1625

不受限结点的估计数大约是8-皇后状态空间树的结点总数的

1625/69281=2.34%

7.4 子集和数问题

- ●问题描述
- 限界函数
- 效率估计
- 递归回溯算法
- •实例运行结果

问题描述

- •子集和数问题:
 - •假定有n个不同的正数W(1:n),找出这些数中所有使得和为M的组合。 元素W(i)称为权。
- •回溯法求解:
 - •用固定长的n-元组X来表示,解向量元素X(i)取1或0值,表示解中是否包含权数W(i)。∑W(i)X(i)=M, 1≤i≤n

• 6-元组表达的解空间树

解状态: 叶结点2⁶=64个

● 部分解结点: 2⁰ +2¹+ 2²+ 2³+ 2⁴+ 2⁵= 2⁶-1=63个

• 问题状态: 全部结点64+63个

从根结点到<mark>叶结点</mark>的一条路 径确定解空间中的一个元组

限界函数

- 当满足条件: $\sum_{i=1}^{k} W(i) X(i) + \sum_{i=k+1}^{n} W(i) \ge M$
 - X(1),..,X(k)能导致一个答案结点,
- •如果一开始W(i)按非降次序排列,那么当满足条件:

$$\sum_{k=1}^{k} W(i) X(i) + W(k+1) > M$$

- X(1),...,X(k)不能导致ⁱ⁼¹个答案结点。
- 综上, 限界函数B_k(X(1),...,X(k))=true, 当且仅当:

$$\sum_{i=1}^{k} W(i) X(i) + \sum_{i=k+1}^{n} W(i) \ge M \quad \boxed{1} \quad \sum_{i=1}^{k} W(i) X(i) + W(k+1) \le M$$

效率估计

•n=6,M=30,W=(5,10,12,13,15,18)

结点编号	S	r	W(i+1)	B值	1 \(\)
2	5	68	10	Т	$X_1=1$ 0
3	0	68	10	Т	$2\uparrow$ (2) (3)
4	10	58	12	Т	$X_2=1$ 0
5	0	58	12	Т	2 \(\begin{picture} 4 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
6	22	46	13	F	$X_3=1$
7	10	46	13	T	1 (6) (7)

$$\sum_{i=1}^{k} W(i) X(i) + \sum_{i=k+1}^{n} W(i) \ge M \qquad \sum_{i=1}^{k} W(i) X(i) + W(k+1) \le M$$

效率估计

•n=6,M=30,W=(5,10,12,13,15,18)

结点编号	S	r	W(i+1)	B值	1个	1
8	23	33	15	F		$X_1=1$ 0
9	10	33	15	Т	2个	(2) (3)
10	25	18	18	F		$X_2=1$ 0
11	10	18	18	F	2个	$\begin{pmatrix} 4 \end{pmatrix}$ $\begin{pmatrix} 5 \end{pmatrix}$
	X(i) +	$\sum_{k=1}^{n} W(i)$	≥ M	1个 1个	$X_3=1$ 0 7 $X_4=1$ 0 9
$\sum_{i=1}^{k} W(i)$	X(i)) + V	V(k+1)	\leq M	0^	$X_{5}=1 \qquad 0 \qquad 11$

不受限界结点的估计数: m=1+2+2*2+2*2*1+2*2*1*1+0=15

算法7.6 子集和数的递归回溯算法

Procedure SUMOFSUB(s,k,r)

//找出W(1:n)中和数为M的所有子集。 $s=\sum_{j=1}^{n-1}W(i)X(i)$ 且 $r=\sum_{j=k}^{n}W(j)$ //进入此过程时X(1),...X(k-1)的值已确定。

//这些W(j)按非降次序排列。 $W(1) \leq M, \sum_{i=1}^{n} W(i) \geq M$ integer W(1:n), M, n;

boolean X(1:n)

integer s, k, r

//生成左儿子。由于B_{k-1}=true,因此s+W(k)≤M 且s+r ≥ M

X(k)←1 if s+W(k) = Mthen print(X) else if s+W(k)+W(k+1) \leq M //B_K=true then call SUBOFSUB(s+W(k), k+1, r-W(k)) endif

endif

$$\sum_{i=1}^{k} W(i) X(i) + \sum_{i=k+1}^{n} W(i) \ge M$$

$$\sum_{i=1}^{k} W(i) X(i) + W(k+1) \le M$$

$$S = \sum_{j=1}^{k-1} W(i) X(i) \coprod r = \sum_{j=k}^{n} W(j)$$

左子树-递归入

//生成右儿子和计算Bk的值

If $s+r-W(k) \ge M$ and $s+W(k+1) \le M$ then $X(k) \leftarrow 0$; call SUMOFSUB(s,k+1,r-W(k)) endif end SUMOFSUB

$$s = \sum_{j=1}^{k-1} W(i) X(i)$$
 $r = \sum_{j=k}^{n} W(j)$

$$\sum_{i=1}^{k} W(i) X(i) + \sum_{i=k+1}^{n} W(i) \ge M$$

$$\sum_{i=1}^{k} W(i) X(i) + W(k+1) \le M$$

右子树-递归入口

思考:如果不将W预排序,算法怎样设计?算法效率怎样变化?

实例

- •n=6,M=30,W=(5,10,12,13,15,18)
- ●使用限界函数前,状态空间树中所有结点都会被访问到,叶结点(解状态)个数为2⁶=64个,部分解结点63个。
- •使用限界函数后,动态树一共生成33个结点.

M=30,W=(5,10,12,13,15,18)

$s+W(i+1) \le M$ 且 $s+r \ge M$

结点编号	S	r	W(i+1)	B值
2	5	68	10	Т
3	15	58	12	Т
4	27	46	13	F
5	15	46	13	Т
6	28	33	15	F
7	15	33	15	Т
8	5	58	12	Т
9	17	46	13	Т
10	5	46	13	Т
11	18	33	15	F
12	20	33	15	F S Then then then then then then then then t
13	10	46	13	

• • 14

$s+W(i+1) \le M$ 且 $s+r \ge M$

结点编号	S	r	W(i+1)	B值
13	0	68	10	Т
14	10	58	12	Т
15	22	46	13	F
16	10	46	13	Т
17	23	33	15	F
18	10	33	15	Т
19	25	18	18	F
20	5	18	18	F
21	0	58	12	Т
22	12	46	13	Т
23	25	33	15	
24	12	33	15	

M=30,W=(5,10,12,13,15,18)

$s+W(i+1) \le M$ 且 $s+r \ge M$

结点编号	S	r	W(i+1)	B值
25	27	18	18	F
26	12	18	18	Т
27	0	46	13	Т
28	13	33	15	Т
29	28	18	18	F
30	13	18	18	F
31	0	33	15	Т
32	15	18	18	F
33	0	18	18	F

7.5 图着色问题

- ●问题描述
- •图的m-着色判定问题
- •解空间树
- ●回溯算法
- •实例分析

问题描述

- ●图着色问题(Graph Coloring Problem, GCP) 又称着色问题,是最著名的NP-完全问题之一。
- ●数学定义:给定无向连通图G=(V,E),其中V为顶点集合,E为边集合,用不同的颜色给图中顶点着色,要求任何两个相邻顶点的着色不同。
- •问:最少需要多少种颜色?

图的m-着色判定问题

- ●给定无向连通图G=(V,E),其中V为顶点集合,E为边集合,用m种不同颜色给图中顶点着色,问:是否存在任何两个相邻顶点颜色不同的着色方案?
- •本节用回溯来解决图的m着色判定问题,如果判定答案为"是",要求给出着色方案。

解空间树

•考虑n=4(4个顶点)的连通图, m=3(3种颜色)

• **n**元组表示: **X=** (**x**₁,..**x**₄), **x**_i表示结点i的颜色。

显式: 1≤ x_i ≤3。

● 隐式: 若结点i和j之间有边存在,则x_i≠x_{i。}

算法7.7 回溯法求解图着色判定问题


```
Procedure MCOLORING(V,E,C,n,m)
// 图G=(V,E),n个顶点, m种颜色
一个顶点开始
  C(k) \leftarrow C(k) + 1 C(k) 当前颜色发生冲突
  while (not OK(k) and C(k) \le m) do C(k) \leftarrow C(k) + 1 repeat
  if C(k) \le m then
       if k=n then print(C); return true //全部着色,打印
            else k ← k+1; C(k) ← 0 //准备为下一个顶点着色
       endif
    else k ← k-1 //顶点k无法着色, 回溯
  endif
Repeat
return false
END MCOLORING
```


算法7.8 判断顶点k的着色是否合法

```
procedure OK(k)
  int i, k
  i ← 1
 while (i<k) do
    if (i和k之间有边存在 and C(i)=C(k))
        then return false
    endif
    i ← i+1
  repeat
  return true
end OK
```

实例分析

(a) 一个无向图

n=5个顶点的无向图, m=3, 对应的完全状态空间树是完全m叉树, 最后一层有多少个叶子结点?

(b) 回溯法搜索空间

7.6 小结

- •回溯法适用的问题
 - 多阶段决策问题/组合问题满足多米诺性质
- •回溯法的设计思想概述
 - •确定解向量: n-元组/k-元组
 - •分解约束条件:显示&隐式
 - 确定解空间树
 - •设计限界函数B
 - 深度优先方式搜索树

- •解空间树的分类
 - •集合树:问题的解是对已知集合元素的取舍
 - •如子集和数问题, 0/1背包问题
 - •排列树:问题的解是对已知集合元素的排列
 - •如n-皇后问题,图着色判定问题
- •回溯法的效率问题
 - •解空间树的大小:决定最坏情况
 - 限界函数B的剪枝能力: 决定动态树
 - •求问题全部的解时,可以用蒙特卡洛方法估计算法效率

- •n-皇后问题
- •子集和数问题
- •图的着色问题

能够识别出适合回溯法的可计算性问题、独立设计算法和分析算法复杂度。

本章结束

