

20BSMA101

PROBABILITY AND STASTICS INFORMATION TECHNOLOGY

ANALYSIS OF VARIANCE

2.6 - TWO SQUARE FACTORIAL DESIGN

SCIENCE & HUMANITIES

YEAR

State the advantages of a factorial experiment over a simple experiment.

In simple experiment, we study the effect of a single factor at a time by making the other factors constant as far as possible.

In factorial experiment an attempt is made to estimate the effects of each of the factors and also the interaction effects i.e., the variation in the effect of one factor as a result of different levels of other factors.

Drawbacks of 2ⁿ factorial design

Each factor has two levels and so it is impossible to judge whether the effects produced by variations in a factor linear or parabolic or exponential

If the number of factors is more, then the number of experimentations becomes very large. For example, in a 2⁸ factorial design, 256 treatment combinations are required, which is large.

Factorial Experiments with factors at two levels:

Suppose in an experiment, the value of the current and voltage in an experiment affect the rotation per minute of the speed.

		VOLTAGE		
		Level 1 V ₀	Level 2 V ₁	
CUDDENT	Level 1 C ₀	C_0V_0	C_0V_1	
CURRENT	Level 2 C ₁	C_1V_0	C_1V_1	

Let
$$C_0 = a_0$$
, $C_1 = a_1$, $V_0 = b_0$ and $V_1 = b_1$. Therefore

$$C_0V_0 = a_0b_0 = (1), C_0V_1 = a_0b_1 = b, C_1V_0 = a_1b_0 = a \text{ and } C_1V_1 = a_1b_1 = ab$$

		VOLTA	VOLTAGE (B)		
		Level 1 V ₀	Level 2 V₁	TOTAL	
CURRENT (A)	Level 1 C ₀	(1)	b	(1) + b	
CURRENT (A)	Level 2 C₁	а	ab	a + ab	
TOTAL		(1) + a	b + ab	(1) + a + b + ab	

Main effects of
$$A = \frac{a+ab-b-(1)}{2n}$$

Main effects of $B = \frac{b+ab-a-(1)}{2n}$

Main effects of $AB = \frac{ab+(1)-a-b}{2n}$

Computation of sum of squares:

$$SSA = \frac{(a+ab-b-(1))^2}{4n}$$

$$SSB = \frac{(b+ab-a-(1))^2}{4n}$$

$$SSAB = \frac{(ab+(1)-a-b)^2}{4n}$$

$$SSE = SST - SSA - SSB - SSAB$$

ANOVA TABLE

SOURCE OF VARIANCES	SUM OF SQUARES	D.F	MEAN SQUARE	VARIATION RATIO
Factor A	SSA	1	SSA / 1	
Factor B	SSB	1	SSB / 1	
Interaction AB	SSAB	1	SSAB / 1	
Error	SSE	4 (n-1)	SSE / 4 (n-1)	
TOTAL	TSS	4n - 1		

EXAMPLE: 1

The following data are obtained from a 2² factorial experiment replicated three times. Evaluate the sum of the squares for all factorial effect by the contrast method. Draw conclusions.

Treatment Combination	Replicate 1	Replicate 2	Replicate 3
(1)	12	19	10
a	15	20	16
b	24	16	17
ab	24	17	29

SOLUTION:

Treatment Combination	Replication			Total
	X ₁	X_2	X_3	
(1)	12	19	10	41
a	15	20	16	51
b	24	16	17	57
ab	24	17	29	70
Total	75	72	72	219

H₀: All the mean effects are equal

H₁: Not all mean effects equal

$$n = 3$$
 and $N = 12$

Correction factor =
$$\frac{T^2}{N} = \frac{219^2}{12} = 3996.75$$

$$A \ contrast = a + ab - b - (1) = 51 + 70 - 57 - 41 = 23$$

$$B \ contrast = b + ab - a - (1) = 57 + 70 - 51 - 41 = 35$$

$$AB \ contrast = (1) + ab - a - b = 41 + 70 - 51 - 57 = 3$$

$$SST = \sum x_i^2 - \frac{T^2}{N}$$

$$= 12^2 + 19^2 + 10^2 + 15^2 + 20^2 + 16^2 + 24^2 + 16^2 + 17^2 + 24^2 + 17^2 + 29^2 - 3996.75$$

$$= 316.25$$

$$SSA = \frac{\left(A \text{ contrast}\right)^2}{4n} = \frac{\left(23\right)^2}{12} = 44.08$$

$$SSB = \frac{\left(B \text{ contrast}\right)^2}{4n} = \frac{\left(35\right)^2}{12} = 102.08$$

$$SSAB = \frac{\left(AB \text{ contrast}\right)^2}{4n} = \frac{\left(3\right)^2}{12} = 0.75$$

$$SSE = SST - SSA - SSB - SSAB$$

$$= 316.25 - 40.08 - 102.08 - 0.75 = 173.34$$

Source	SS	df	MS	Variation ration F
Factor A	SSA = 44.08	1	MSA = 44.08	44.08 / 21.67 = 2.03
Factor B	SSB = 102.08	1	MSB = 102.08	102.08 / 21.67 = 4.71
Factor AB	SSAB = 0.75	1	MSAB = 0.75	21.67 / 0.75 = 28.89
Error	SSE = 173.34	$4 (n-1) = 4 \times 2 = 8$	MSE = 21.67	
Total	SST = 316.25	4n – 1 = 11		

Factor A: The calculated value of F_A = 2.03 At 5% level of significance, the table value of F_A (1,8)= 5.32 The calculated value of F_A < the table value of F_A Hence H_0 is accepted at 5% of level of significance. Therefore the mean effect of A is not significant.

Factor B: The calculated value of F_B = 4.71 At 5% level, the table value of F_B (1,8)= 5.32 The calculated value of F_B < the table value of F_B Hence H_0 is accepted at 5% of level of significance. Therefore the mean effect of B is not significant.

Interaction AB: The calculated value of F_{AB} = 28.89 At 5% level, the table value of F_{AB} (8,1) = 161 the calculated value of F_{AB} < the table value of F_{AB} Hence H_0 is accepted at 5% of level of significance. Therefore the mean effect of interaction AB is not significant.

EXAMPLE: 2

Given the following observations for two factors A and B at two levels compute (i) the main effects (ii) make an analysis of variance.

Treatment Combination	Replicate I	Replicate II	Replicate III
(1)	10	14	9
а	21	19	23
b	17	15	16
ab	20	24	25

SOLUTION:

Treatment Combination	Replication			Total
(1)	10	14	9	33
а	21	19	23	63
b	17	15	16	48
ab	20	24	25	69
Total	68	72	73	213

H₀: All the mean effects are equal

H₁: Not all mean effects equa

$$n = 3$$
 and $N = 12$

Correction factor =
$$\frac{T^2}{N} = \frac{213^2}{12} = 3780.75$$

$$A \ contrast = a + ab - b - (1) = 63 + 69 - 48 - 33 = 51$$

$$B \ contrast = b + ab - a - (1) = 48 + 69 - 63 - 33 = 21$$

$$AB \ contrast = (1) + ab - a - b = 33 + 69 - 63 - 48 = -9$$

Main effects of
$$A = \frac{A \ contrast}{2n} = \frac{51}{6} = 8.5$$

Main effects of
$$B = \frac{B \ contrast}{2n} = \frac{21}{6} = 3.5$$

Main effect of interaction
$$AB = \frac{AB \ contrast}{2n} = \frac{-9}{6} = -1.5$$

$$SST = \sum x_i^2 - \frac{T^2}{N}$$

$$= 10^2 + 14^2 + 9^2 + 21^2 + 19^2 + 23^2 + 17^2 + 15^2 + 16^2 + 20^2 + 24^2 + 25^2 - 3780.75$$

$$= 298.25$$

$$SSA = \frac{\left(A \text{ contrast}\right)^2}{4n} = \frac{\left(51\right)^2}{12} = 216.75$$

$$SSB = \frac{\left(B \text{ contrast}\right)^2}{4n} = \frac{\left(21\right)^2}{12} = 36.75$$

SSAB =
$$\frac{(AB \text{ contrast})^2}{4n} = \frac{(-9)^2}{12} = 6.75$$

$$SSE = SST - SSA - SSB - SSAB$$

= 298.25 - 216.75 - 36.75 - 6.75 = 38

ANOVA TABLE

Source of variation	SS	df	M.S	Variation ration
Factor A	SSA = 216.75	1	MSA = 216.75	216.75 / 4.75 = 45.63
Factor B	SSB = 36.75	1	MSB = 36.75	36.75 / 4.75 = 7.74
Factor AB	SSAB = 6.75	1	MSAB = 6.75	6.75 / 4.75= 1.42
Error	SSE = 38	4(n - 1) = 4 (3 - 1) = 8	MSE = 4.75	
Total	SST = 298.25	4n – 1 = 12 - 1 = 11		

Factor A: The calculated value of $F_A = 45.63$

At 5% level of significance, the table value of $F_A(1,8) = 5.32$

The calculated value of F_A > the table value of F_A

Hence H₁ is accepted at 5% of level of significance.

Therefore the mean effect of A is significant.

Factor B: The calculated value of F_B = 7.74

At 5% level, the table value of $F_B(1,8) = 5.32$

The calculated value of F_B > the table value of F_B

Hence H₁ is accepted at 5% of level of significance.

Therefore the mean effect of B is significant.

Interaction AB: The calculated value of $F_{AB} = 1.42$

At 5% level, the table value of $F_{AB}(1,8) = 5.32$

the calculated value of F_{AB} < the table value of F_{AB}

Hence H_0 is accepted at 5% of level of significance.

Therefore the mean effect of interaction AB is not significant.

