Information Systems Security (SOEN321) A Brief introduction to number Theory

Dr. Amr Youssef

Concordia Institute for Information Systems Engineering (CIISE)

Concordia University

Montreal, Canada

youssef@ciise.concordia.ca

Why do we need to learn number theory

- Many public key systems are based on number theoretic ideas
- Examples include
 - RSA (based on the difficulty of factoring)
 - Diffie-Hellman (based on the difficulty of solving the discrete log problem)
 - El-Gamal (based on discrete log)
 - etc.
- We will no dive deep into number theory. We will only learn what is necessary to understand these systems

Modular Arithmetic

- Definition:
 a mod n = r ⇔ ∃ q s.t. a=q x n + r, where 0≤r ≤n-1
- **Example:**
 - 7 mod 3 = 1
 - $-7 \mod 3 = 2$
- Definition (Congruence)

$$a \equiv b \mod n \Leftrightarrow a \mod n = b \mod n$$

Groups

Definition:

A group (G, *) is a set G on which a binary operation * is defined which satisfies the following axioms:

- Closure: For all $a, b \in G, a * b \in G$
- Associative: For all a, b, $c \in G$, (a * b) * c = a * (b * c)
- Identity: $\exists e \in G$ s.t. for all $a \in G$, $a^*e = a = e^*a$
- Inverse: For all $a \in G$, $\exists a^1 \in G$ s. t. a^*a -1 = a^1 *a = e

Example

- $(Z_{n'} +)$, where
 - $Z_n = \{0, 1, ..., n-1\},$
 - a + b = a + b mod n
- \bullet (Z_p^*, x) , where
 - $Z_p^* = \{1, ..., p-1\}$
 - a x b = a x b mod p
- Abelian Group
 - A group (G, *) is called an abelian group if * is a commutative operation:
 - Commutative: For all $a, b \in G$, a * b = b * a.

More explicit

- ◆ Example: (Z₇,+)
 - elements: {0,1,2,3,4,5,6}
 - -5+4=2
 - 0 is identity element
 - every element x has an inverse y such that x+y=0, what is the inverse of 3?
 - 3+4=0, thus the inverse of 3 is 4.
- \bullet Example: (Z_7, \times)
 - elements: (1,2,3,4,5,6)
 - what is the identity element?
 - what is the inverse of 3?
 - $3 \times 1 = 3$, $3 \times 2 = 6$, $3 \times 3 = 2$, $3 \times 4 = 5$, $3 \times 5 = 1$, $3 \times 6 = 4$

Fields

- a fields F is a commutative ring in which all non-zero elements have multiplicative inverses
- Finite fields: if F contains a finite number of elements
 - the order must be of type p^m with m>=1
 - for every order p^m there is a unique (up to isomorphism) GF(p^m)
- Example: The field: $Fp = (Z_p, +, \times)$
- Example: F₇
 - solve 3x + 1 = 6
 - 3x = 5
 - $x = 3^{-1} \times 5 = 5 \times 5 = 4$

Useful tools

- Extended Euclidian Algorithm
- Euclid's Theorem
- Chinese reminder theorem

Euclidian Algorithm

Towards Extended Euclidian Algorithm

- ◆ Theorem: Given integers a, b > 0 and a > b, then d = gcd(a,b) is the least positive integer that can be represented as ax + by, x, y integer numbers.
- Corollary: if a and b are relative prime, then there exist x and y such that ax + by = 1.
- \bullet In other words, ax mod b = 1.
- How to find such x and y?

Example

Find gcd(143, 111)

$$143 = 1 \times 111 + 32$$

$$111 = 3 \times 32 + 15$$

 $32 = 2 \times 15 + 2$

$$15 = 7 \times 2 + 1$$

$$gcd(143, 110) = 1$$

$$32 = 143 - 1 \times 111$$

$$15 = 111 - 3 \times 32$$

$$= 4 \times 111 - 3 \times 143$$

$$2 = 32 - 2 \times 15$$

$$= 7 \times 143 - 9 \times 111$$

$$1 = 15 - 7 \times 2$$

$$= 67 \times 111 - 52 143$$

Another example

- Example: determine gcd(803; 121)
- Solution

$$803 = 121.6 + 77$$
 $121 = 77.1 + 44$
 $77 = 44.1 + 33$
 $44 = 33.1 + 11$
 $33 = 11.3 + 0$
 $\rightarrow 11 = \gcd(803, 121)$

Extended Euclidian Algorithm

```
x=1; y=0; d=a; r=0; s=1; t=b;
while (t>0) {
    q = \[ \] d/t \]
    u=x-qr; v=y-qs; w=d-qt
    x=r; y=s; d=t
    r=u; s=v; t=w
}
return (d, x, y)
```

Example

gcd(803; 121)

$$44 = 33 \times 1 + 11$$

$$33 = 11 \times 3 + 0$$

$$\rightarrow 11 = \gcd(803, 121)$$

$$11 = 44 - 1 \times 33$$

$$= 44 - 1 \times (77 - 1 \times 44) = 2 \times 44 - 1.77$$

$$= 2 \times (121 - 1 \times 77) - 1 \times 77 = 2 \times 121 - 3 \times 77$$

$$= 2 \times 121 - 3 \times (803 - 6 \times 121) = 20 \times 121 - 3 \times 803$$

 $803 = 121 \times 6 + 77$

 $121 = 77 \times 1 + 44$

 $77 = 44 \times 1 + 33$

Example

```
m = 841
160^{-1} in \mathbb{Z}_{841} = ?
gcd(841, 160) = 1; indeed:
                          841 = 5 \cdot 160 + 41
                          160 = 3 \cdot 41 + 37
                           41 = 1 \cdot 37 + 4
                           37 = 9 \cdot 4 + 1
    1 = 37 - 9 \cdot 4 = 37 - 9 \cdot (41 - 1 \cdot 37)
       = 10 \cdot 37 - 9 \cdot 41 = 10 \cdot (160 - 3 \cdot 41) - 9 \cdot 41
       = 10 \cdot 160 - 39 \cdot 41 = 10 \cdot 160 - 39 \cdot (841 - 5 \cdot 160)
       = 205 \cdot 160 - 39 \cdot 841
\sim 160 \cdot 205 = 1 \pmod{841} \iff 160^{-1} = 205 \pmod{841}
```

The Euler Phi Function

- Definition
- Given an integer n, $\Phi(n) = |Zn^*|$ is the number of all numbers a such that 0 < a < n and a is relatively prime to n (i.e., gcd(a, n)=1).
- **Theorem:** If gcd(m,n) = 1, $\Phi(mn) = \Phi(m) \Phi(n)$

Let p be prime, e, m, n be positive integers

1)
$$\Phi(p) = p-1$$

2)
$$\Phi(p^e) = p^e - p^{e-1}$$

3) If
$$n = p_1^{e_1} p_2^{e_2} ... p_k^{e_k}$$
 then

$$\Phi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})...(1 - \frac{1}{p_k})$$

Fermat's (Little) Theorem

Let p be a prime For each integer a one has:

$$a^p = a \pmod{p}$$

and if gcd(p, a) = 1:

$$a^{p-1} = 1 \pmod{p}$$

Example:

$$p = 11$$
, $a = 2$ compute 2^{10} (mod 11):

$$2^4 = 16 = 5 \pmod{11}$$

 $2^8 = 5^2 = 25 = 3 \pmod{11}$
 $2^{10} = 3 \cdot 2^2 = 12 = 1 \pmod{11}$

Euler's Theorem

- Euler's Theorem
- Given integer n > 1, such that gcd(a, n) = 1 then $a^{\Phi(n)} \equiv 1$ (mod n)
- Corollary
- Given integer n > 1, such that gcd(a, n) = 1 then $a^{\Phi(n)}-1$ mod n is a multiplicative inverse of a mod n.
- Corollary
 - Given integer n > 1, x, y, and a positive integers with gcd(a, n) = 1. If $x \equiv y \pmod{\Phi(n)}$, then $a^x \equiv a^y \pmod{n}$.

Linear Equation Modulo n

$$ax \equiv b \bmod n$$

If gcd(a, n) = 1, the equation has a unique solution x = a⁻¹ b mod n

Chinese Reminder Theorem (CRT)

Theorem:

```
Let n_1, n_2, ..., n_k be integers s.t. gcd(n_i, n_j) = 1, x \equiv a_1 \mod n_1 x \equiv a_2 \mod n_2 ...
```

$$x \equiv a_k \mod n_k$$

There exists a unique solution modulo $n = n_1 n_2 ... n_k$

Let $y_i = (n/n_i)^{-1} \mod n_i$ Then the solution is given by $x = \sum_i x_i y_i$ (n/n_i) mod n

Example:

- $n_1=7$, $n_2=11$, $n_3=13$, n=1001
- $m_1=143$, $m_2=91$, $m_3=77$
- $y_1 = 143^{-1} \mod 7 = 3^{-1} \mod 7 = 5$
- $y_2 = 91^{-1} \mod 11 = 3^{-1} \mod 11 = 4$
- $y_3 = 77^{-1} \mod 13 = 12^{-1} \mod 13 = 12$
- x=(5×143×5 + 3×91×4 + 10×77×12) mod 1001
 = 13907 mod 1001 = 894

 $x \equiv 5 \pmod{7}$

 $x \equiv 3 \pmod{11}$

 $x \equiv 10 \pmod{13}$

Famous Number Theory Problems

FACTORING	Given <i>n</i> , find a factor of <i>n</i>
RSAP	find m such that $m^e = c \mod n$
QRP	if , decide whether a is a QR or not.
SOROOT	find x such that $x^2 = a \mod n$
DLP	find x such that $g^x = y \mod p$
GDLP	DLP on a finite cyclic group G
DHP	given g^a mod p , g^b mod p , find g^{ab} mod p
GDHP	DHP on a finite cyclic group G
SUBSETSUM	given $\{a_1, \dots, a_n\}$ and s , find subset of a_j that sums to s