Primeiros passos de Deep Learning em Python

Antonio Abello

https://github.com/Abello966

Felipe Salvatore

https://felipessalvatore.github.io/

October 8, 2017

IME-USP: Instituto de Matemática e Estatística, Universidade de São Paulo

Function

Revisão: função sigmoide

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

ReLU: Rectified Linear Units

Revisão: função softmax

$$softmax(x) = \frac{e^x}{\sum e^x}$$

Revisão: entropia

$$\begin{array}{ccc}
p & q \\
0.8 \\
0.2
\end{array}$$

$$\begin{bmatrix}
0.5 \\
0.5
\end{bmatrix}$$

$$H(p) = 0.72$$
 $H(q) = 1$

$$H(\mathbf{p}) = \sum_{i} \mathbf{p}_{i} \log \frac{1}{\mathbf{p}_{i}}$$

Revisão: entropia

$$\begin{bmatrix} p \\ 1-p \end{bmatrix}$$

Revisão: divergência Kullback-Leibler

$$\begin{array}{c|ccc} \boldsymbol{p} & \boldsymbol{q} & \boldsymbol{p'} & \boldsymbol{q'} \\ \hline 0.8 \\ 0.2 \end{bmatrix} & \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} & \begin{bmatrix} 0.8 \\ 0.2 \end{bmatrix} & \begin{bmatrix} 0.88 \\ 0.12 \end{bmatrix} \\ D_{KL}(\boldsymbol{p}||\boldsymbol{q}) = 0.28 & D_{KL}(\boldsymbol{p'}||\boldsymbol{q'}) = 0.04 \\ D_{KL}(\boldsymbol{p}||\boldsymbol{q}) = \sum_{i} \boldsymbol{p}_{i} \log \frac{\boldsymbol{p}_{i}}{\boldsymbol{q}_{i}} \end{array}$$

NN

Perceptron

Rede neural: versão antiga

Rede neural: versão antiga

Rede neural: versão antiga

Rede neural

Rede neural profunda

Rede neural profunda

Classificação com uma rede neural

Computational Graph

Example with images

Fashion MNIST

Fashion MNIST

Figure 1: Exemplo de aplicação de filtros em uma imagem (extraído de https://en.wikipedia.org/wiki/Kernel_(image_processing))

Dropout

Dropout

Dropout

Back Propagation

Operações simples: soma

Operações simples: multiplicação

Operações simples: divisão

Operações simples: negativo

Operações simples: exponenciação

Operações simples: logarítimo

Aplicando a regra da cadeia

Exemplo

Grafo de $L(\hat{y}, y)$

Derivada parcial de L com respeito a b_1 : 2

Values

Exemplo

$$\mathbf{W} = \begin{bmatrix} 0.65 & 1.19 \\ 0.69 & -0.92 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 0.2 \\ 0.7 \end{bmatrix}$$

$$b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 $y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Calculando em Lote

$batch_size = 3$

$$\begin{array}{ccc}
\mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \\
0.2 \\
0.7
\end{array}$$

$$\begin{bmatrix}
0.8 \\
0.1
\end{bmatrix}$$

$$\begin{bmatrix}
0.3 \\
0.5
\end{bmatrix}$$

$$\mathbf{y}_1 & \mathbf{y}_2 & \mathbf{y}_3 \\
\begin{bmatrix}
1 \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
0 \\
1
\end{bmatrix}$$

$$\begin{bmatrix}
0 \\
1
\end{bmatrix}$$

Calulando em lote

Matrix

Exemplo de imagem

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

Exemplo de filtro

0	1	2
2	2	0
0	1	2

Feature map

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

References I

I. Goodfellow, Y. Bengio, and A. Courville.

Deep Learning.

MIT Press, 2017.

H. Xiao, K. Rasul, and R. Vollgraf.

Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017.