B Cell Differentiation and Interaction with T cells

Prof. Dr. Andreas Hutloff

Institut für Immunologie Universitätsklinikum Schleswig-Holstein, Kiel Deutsches Rheuma-Forschungszentrum, Berlin

The adaptive immune system - Humoral immunity

Secondary lymphoid organs as meeting point for T and B cells

T and B cells enter the lymph node via afferent lymphatics ...

... and distrubute via the marginal sinus and interollicular regions

Alternatively, they can enter via the blood

They leave via medulla and efferent lymphatics

Additional cell types provide a unique micro environment

from: Mueller and Germain, Nat Rev Immunol (2009)

What happens during an antigen-specific immune response?

SLO provide a highly organized microenvironment for T/B interaction

Antigen-specific T and B cells both recognize their antigen

T cells can differentiate into different lineages

The subset of Tfh cells interacts with antigen-specific B cells

Tfh cells drive B cell differentiation in the germinal center

Tfh cells drive B cell differentiation in the germinal center

T cell help in the germinal center has to be strictly controlled

The GC reaction produces high-affinity memory B cells and PC

Tfh cells are critical regulators of immunity versus autoimmunity

Protection

Tfh cells are critical regulators of immunity versus autoimmunity

ICOS deficient patients (CVID)

Rheumatoid arthritis Systemic lupus erythematosus Type I diabetes

Costimulation blockade as therapeutic target

Abatacept (Orencia[™]) Bristol-Myers-Squibb

- CTLA-4-Ig fusion protein
- higher affinity to B7 than CD28
- blocks CD28 signaling
- approved for treatment of RA

Prezalumab (AMG 557) Amgen

- fully human mAb against ICOS-L
- blocks ICOS signaling
- phase Ib study in patients with mild SLE sucessfully completed
- phase II study for lupus did not meet expectations

T cell / B cell cooperation in inflamed non-lymphoid tissues

T and B cell infiltrates are frequently found in inflamed tissues

Special case: Ectopic lymphoid structures (ELS)

Special case: Ectopic lymphoid structures (ELS)

Fully resemble germinal centers in SLO with

- separate T and B cell zones
- follicular dendritic cells (FDC)
- GC B cells and Tfh cells
- Require strong stimuli like viral infection

Special case: Ectopic lymphoid structures (ELS)

Disease	Organ	Prevalence
Rheumatoid arthritis	synovial joint	6% - 25%
Rheumatoid arthritis	lung	11%
Sjögren syndrome	salivary glands	20%
Systemic lupus erythematosus	kidney	6%
Myositis (adult)	muscle	0%

Unstructured T/B infiltrates are a typical finding in autoimmune diseases

Unstructured T cell / B cell infiltrates are also found in:

- inflamed synovium of RA patients
- > inflamed gut, e.g. inflammatory bowel disease
- inflamed lung, e.g. asthma, rheumatic lung disease (up to 70% of RA patients)

Mouse model to study T/B cooperation in inflamed tissues

Lung T cells lack a classical Tfh phenotype but are potent B cell helpers

Co-culture of *ex-vivo* lung or lymph node T cells with naive B1-8i B cells in the presence of antigen for 7 days

Transriptome analysis confirms Tfh-like phenotype

Transcriptome analysis by RNAseq

- Tfh-like cells from lung
- Classical Tfh cells from lymph node
- Non-Tfh effector cells from lymph node
- Naive T cells

The lung contains three distinct B cell populations

Uncontrolled T/B interaction poses a high risk for development of autoreactive clones

classical germinal center

tissue T/B infiltrate

Tfh-like cells recently identified in autoimmune patients

General phenotype in comparison to classical Tfh cells

- distinct: lack of Bcl-6 and CXCR5
- similar: high expression of IL-21, CD40L, CXCL13

- ➤ Rheumatoid arthritis (Manzo Arthr Rheum 2008, Rao Nature 2017) > peripheral T helper cells
- Lupus nephritis (Hutloff *Arthr Rheum* 2004, Lin *Rheumatol* 2019, Bocharnikov *JCI Insight* 2019)
- Sjögren's syndrome (Haskett *J Immunol* 2016, Blokland *Arthr Rheum* 2017)
- Systemic sclerosis (Taylor Sci Transl Med 2018, Christophersen Nat Med 2019)
- Pemphigus (Yuan J Inv Derm 2017)
- ➤ Breast cancer (Gu-Trantien JCI Insight 2017) > T_{FH}X13 cells

SUMMARY

Recommended reading

Michael McHeyzer-Williams, Shinji Okitsu, Nathaniel Wang and Louise McHeyzer-Williams. Molecular programming of B cell memory.

Nat Rev Immunol (2012) 12:24

Abhinav Seth and Joe Craft.

Spatial and functional heterogeneity of follicular helper T cells in autoimmunity. *Curr Opin Immunol* (2019) 61:1

Andreas Hutloff.

T follicular helper-like cells in inflamed non-lymphoid tissues.

Front Immunol (2018) 9:1707.