SCC0213 - Metodologia de Pesquisa em Computação

Procedimento Metodológico e Design de Experimento

Prof.: Leonardo Tórtoro Pereira

- → Monografias, no geral, tem um capítulo ou seção de "Metodologia"
 - Metodologia é o estudo dos métodos
- → O mais correto seria **Procedimento Metodológico**
 - É seguido um procedimento metodológico puro ou misto até comprovação ou refutação da hipótese
- → Em um artigo, pode ser separado em capítulos diferentes, para cada tópico do procedimento

- O procedimento mais adequado a um trabalho é normalmente estabelecido depois que objetivo de pesquisa foi identificado
 - O procedimento é uma sequência de passos necessários para demonstrar que o objetivo foi atingido
 - Se os passos forem executados corretamente, os resultados objetivos devem ser convincentes

- → O procedimento indica o que será feito
 - Revisão sistemática
 - Entrevistas
 - Desenvolvimento de protótipos
 - Construção de modelos teóricos
 - Realização de experimentos
 - Como dados serão organizados e comparados
 - **•** ...

- → É preciso respeitar o método científico
 - Evitar viés
 - Garantir número de dados para população de controle e da proposta para uma análise estatística adequada
 - Garantir análises coerentes com seus dados
 - Atentar à normalidade
 - Gráficos que representem adequadamente os dados
 - Lógica correta...

- → É preciso discutir os dados e o que eles representam
- → Cada tabela, cada gráfico, cada dado precisa ser discutido
- → Assim como conclusões e teorias devem ser tecidas a respeito do que foi coletado e analisado
- → Qual informação está-se buscando com tal questionário?
 - E ao coletar tais métricas?
 - Qual hipótese estamos tentando comprovar?

- → Tomar cuidado com viés!
 - Se seus amigos responderem, vão tentar ser positivos
 - Se pessoas que gostam do tema responderem, também vão tender a ser positivas
 - Ou já vão ter mais experiência no assunto
 - Pessoas mais experientes v\u00e3o ter melhor desempenho

- → Tomar cuidado com viés!
 - Idealmente queremos uma população bem grande e heterogênea, com quantidades mais ou menos iguais de cada grupo relevante pra avaliação
 - Se possível, identificando diferentes grupos para poder excluir aqueles enviesados, se preciso

Definições Construtivas e Operacionais

Definições Construtivas e Operacionais

- → É preciso definir termos usados na monografia
- → Definições construtivas
 - De dicionário
 - Define termo a partir dos constituintes
- → Exemplo:
- Gramática formal é um conjunto de regras de produção
 - Regra de produção são duas sequências de símbolos
 - ...

Definições Construtivas e Operacionais

- → É preciso definir termos usados na monografia
- Definições operacionais
 - Dá significado a algo ao especificar atividades ou operações necessárias para manipulá-lo ou medi-lo
 - Definição pragmática
- → Exemplo
 - Facilidade pode ser o número de toques no teclado ou mouse para realizar determinada tarefa

- → Variável é um fenômeno que pode ser medido e que varia conforme a medição
 - É o interesse das medições objetivas da pesquisa
- → Possuem um domínio
 - lacktriangle Inteiro, letras, categorias, etc lacktriangle
 - Podem ser discreto ou contínuo

- → Variáveis contínuas
 - Valores reais
 - Tempo, acurácia, temperatura, etc.
- → Variáveis discretas
 - Conjuntos de elementos que podem ser ordenados ou são finitos
 - Nº de participantes, nota, etc.

- → Variáveis discretas com valores em conjunto finito
 - Categóricas
 - Notas (A, B, C, D, E)
 - Existe, Não Existe, Existe Parcialmente, Não Aplica
 - Likert (Discordo fortemente-Concordo fortemente)
 - Mais fáceis de compreender

- → É possível estabelecer regras de conversão de valores contínuos para discretos
 - ◆ Discretização
 - Ex: Arredondar nota decimal
 - ♠ Ex: Notas 0 a 4,9 são E;
 - 5 a 5,9 são D;
 - 6 a 6,9 são C;
 - 7 a 8,9 são B e 9 a 10 são A

- → Variável medida
 - Fenômeno observado pelo pesquisador
 - Quantas vezes usuário olha o manual?
- → Variável manipulada ou experimental
 - Deliberadamente modificada no experimento
 - Número de passos da tarefa repassada aos usuários
 - Passar mais para alguns, menos para outros

- → Novamente, cuidado com falsas correlações
 - Dificilmente haverá conexão entre manipular "número de botões na tela do aplicativo" e medir "quantas vezes usuário espirra enquanto usa a ferramenta"
 - "Programas rodam mais rápido na sexta-feira?"
- Foco numa boa hipótese e embasamento teórico

- → Variável independente influencia outra variável (a variável dependente)
- Hipótese tem associação de uma implicação

 (antecedente/consequente) entre uma ou mais variáveis
 independentes e uma ou mais variáveis dependentes
 - Número de consultas ao manual (dependente) depende do número de passos da tarefa (independente)?

- → Usualmente, a variável independente é manipulada, e a dependente é medida
- → Se ambas aumentam, correlação direta
- → Se uma aumenta e a outra diminui, correção inversa
- → Pode existir dependência linear
 - ◆ Relação expressa por função linear (Ex: y=2x)
- → Ou dependência não-linear
 - Polinômio de grau > 1, Exponenciais, Logs, Raízes.

- → Um dos fundamentos da ciência moderna é o empiricismo
- → Portanto, muitas vezes usamos de métodos empíricos para sustentar nossas hipóteses e auxiliar na obtenção de dados que suportem teorias
- Muito útil para afirmar se uma coisa é melhor que outra

- → Já vimos diversos na aula de "Tipos de Pesquisa"
 - Survey
 - Estudo de Caso
 - ♦ Pesquisa-Ação
 - Experimento
 - Quasi-Experimento

- → Vamos focar nos experimentos
 - Investigação formal, rigorosa e controlada
 - Fatores chaves são identificados e manipulados
 - Os outros fatores são mantidos sem alteração
 - WOHLIN et al., 2012, p. 11

- Objetivos da experimentação
 - Compreender a natureza dos processos de informação ao observar o fenômeno, encontrar explicação, formular uma teoria e verificá-la
 - Ajudar a construir uma base de conhecimento confiável
 - Reduzir incertezas sobre ferramentas, teorias e metodologias mais adequadas

- Objetivos da experimentação
 - Levar a novos meios de introspecção
 - Abrir novas áreas de investigação
 - Acelerar o processo ao eliminar abordagens inúteis
 - Remover suposições errôneas

- Experimentos podem ser
 - ♦ In-vitro
 - Sob condições controladas no laboratório
 - O mais comum na computação
 - ♦ In-vivo
 - Sob condições normais
 - Estudo de um projeto real

- → Para que usar experimentação?
 - Confirmar teoria
 - Confirmar senso comum
 - Explorar relacionamentos (correlações)
 - Avaliar acurácia de modelos (e outros dados)
 - Validar se medida realmente mede o que se propõe

- → Experimento
 - Geralmente é realizado em laboratório
 - Maior nível de controle
 - Manipula uma ou poucas variáveis
 - Mantém o resto fixo
 - Mede os resultados

- Experimento são quantitativos e concentram-se em
 - Medir variáveis
 - ◆ Alterá-las
 - Medi-las de novo
- → Após coletar dados quantitativos são aplicados métodos estatísticos para analisá-los

Fases da Experimentação

Fases da Experimentação

- 1. Definição
 - Estabelecer problema e escopo da pesquisa
- 2. Planejamento
 - Planejar o experimento a partir do escopo
- 3. Execução
 - Executar experimento, seguindo planejamento
- 4. Análise
 - Analisar dados coletados durante execução
- 5. Apresentação e Empacotamento
 - Organização dos resultados para apresentação

Definição

Fases da Experimentação

- → Definição
 - Descrever
 - Objetivos
 - Objetos de estudo
 - Foco da qualidade
 - Ponto de vista
 - Contexto

- → Definição
 - Resultados esperados
 - Direcionamento geral do experimento
 - Escopo
 - Base para formulação de hipóteses
 - Notações preliminares para avaliação da validade

- → Definição
 - Analisar < objeto >
 - Com a finalidade de <objetivo>
 - Em relação a <foco da qualidade>
 - Do ponto de vista de <perspectiva>
 - No contexto de <contexto>

Planejamento

- → Planejamento
 - Seleção do contexto
 - Formulação das hipóteses
 - Seleção das variáveis
 - Seleção dos sujeitos
 - Escolha do tipo de design
 - Instrumentação
 - Avaliação da validade

- → Planejamento
 - ◆ Ao final:
 - Experimento totalmente planejado e pronto para execução

- → Planejamento
 - Design:
 - Randomização
 - Bloqueamento de possíveis interferências
 - Balanceamento dos grupos
 - Ordem dos procedimentos é importante?
 - É possível balancear grupos de controle?

- → Planejamento
 - Muitas vezes, é possível retirar questionários, métricas e outros recursos de trabalhos anteriores que funcionam bem para avaliar algo que queremos
 - É possível criar nossos questionários e métricas, mas é preciso embasamento na literatura!
 - A área de IHC, de modo geral, pode trazer inspirações

- → Planejamento
 - Exemplo
 - Executar o software 1000x com o método de controle e 1000x com o novo método para 10 diferentes entradas
 - Analisar tempo médio de execução e acurácia
 - Realizar análises estatísticas para comprovar se tempo e/ou acurária melhoram

- → Planejamento
 - Outro exemplo
 - Questionário em escala Likert com usuários que testarão a versão de controle ou a proposta, aleatoriamente, sem você ou eles saberem qual versão estão testando (double-blind)
 - Verificar se houve diferença na média das respostas entre os grupos

Execução

- → Execução
 - Verificar se é preciso aprovação do conselho de ética e, se preciso, pedir e garantir a documentação
 - Coleta de dados deve ser realizada de maneira que não cause efeito significativo ao processo estudado
 - Formulários o mais curto possíveis
 - Garantir que a coleta esteja ocorrendo como previsto
 - Especialmente ao usar sistemas novos

Análise dos resultados

- → Análise dos Resultados
 - Analisar dados coletados
 - Basear-se em testes estatísticos
 - Rejeição ou não da hipótese nula
 - Eliminar dados fora da distribuição normal (outliers)
 - Escolher teste estatístico adequado
 - Explicar resultados
 - Analisar custo-benefício

- → Análise dos Resultados
 - Interpretar corretamente resultados negativos
 - Gerar visualizações para entender melhor os dados
 - Também ajuda na escrita de papers e monografias
 - Será o foco da próxima aula!

Apresentação e Empacotamento

- Apresentação e Empacotamento
 - Experimentos precisam ser repetidos por outros!
 - Aumenta aprendizado dos conceitos investigados
 - Calibração das características
 - Possibilidade de verificar falsidade
 - Portanto, precisa ser bem empacotado

- → Apresentação e Empacotamento
 - Bom empacotamento pode criar bibliotecas de experimentação
 - Bancos de dados com informação empírica pode abrir possibilidade de armazenar diferentes artefatos
 - Ideias e hipóteses
 - Resultados e experiências finais

- → Apresentação e Empacotamento
 - Possibilidade de estudos futuros com comparação direta com seu método
 - Não existe um padrão
 - Faça o melhor possível

Referências

Referências

- → [1] MARCONI, M. de A.; LAKATOS, M. (2007). Metodologia científica. Atlas.
- → [2] WAZLAWICK, R. (2009). Metodologia de Pesquisa para Ciência da Computação.