Complex Analysis Qualifying Exam Solutions

D. Zack Garza

Wednesday 17th June, 2020

Contents

1	Wee	ek 1
	1.1	Integrals and Cauchy's Theorem
		1.1.1 5
	1.2	Liouville. The Fundamental Theorem of Algebra, Power Series
		1.2.1 1
		1.2.2 5
		1.2.3 6

1 Week 1

1.1 Integrals and Cauchy's Theorem

1.1.1 5

Show that there is no sequence of polynomials converging uniformly to f(z) = 1/z on S^1 .

Solution

- By Cauchy's integral formula, $\int_{S^1} f = 2\pi i$
- If p_j is any polynomial, then p_j is holomorphic in \mathbb{D} , so $\int_{S^1} p_j = 0$.
- \bullet Contradiction: compact sets in $\mathbb C$ are bounded, so

$$\left| \int f - \int p_j \right| \le \int |p_j - f| \le \int \|p_j - f\|_{\infty} = \|p_j - f\|_{\infty} \int_{S^1} 1 \, dz = \|p_j - f\|_{\infty} \cdot 2\pi \longrightarrow 0.$$

1.2 Liouville. The Fundamental Theorem of Algebra, Power Series

1.2.1 1

Suppose f is analytic on $\Omega \supseteq \mathbb{D}$ whose power series $\sum a_n z^n$ has radius of convergence 1.

- a. Give an example of an f which converges at every point on S^1 .
- b. Give an example of an f which is analytic at z = 1 but $\sum a_n$ diverges.
- c. Prove that f can not be analytic at every point of S^1 .

Solution:

- a. Take $\sum \frac{z^n}{n^2}$; then $|z| \le 1 \implies \left| \frac{z^n}{n^2} \right| \le \frac{1}{n^2}$ which is summable, so the series converges for $|z| \le 1$.
- b. Take $\sum \frac{z^n}{n}$; then z=1 yields the harmonic series, which diverges.
 - For $z \in S^1 \setminus \{1\}$, we have $z = e^{2\pi i t}$ for $0 < t < 2\pi$.
 - So fix *t*.
 - Toward applying the Dirichlet test, set $a_n = 1/n, b_n = z^n$.
 - Then for all N,

$$\left| \sum_{n=1}^{N} b_n \right| = \left| \sum_{n=1}^{N} b_n \right| = \left| \sum_{n=1}^{N} z^n \right| = \left| \frac{z - z^{N+1}}{|1 - z|} \right| \le \frac{2}{1 - z} < \infty.$$

• Thus $\sum a_n b_n < \infty$ and $\sum z^n/n$ converges.

c. ?

1.2.2 5

Prove the Fundamental Theorem of Algebra: every non-constant polynomial $p(z) = a_n z^n + \cdots + a_0 \in \mathbb{C}[x]$ has a root in \mathbb{C} .

Solution:

- Strategy: By contradiction with Liouville's Theorem
- Suppose p is non-constant and has no roots.
- Claim: 1/p(z) is a bounded holomorphic function on \mathbb{C} .
 - Holomorphic: clear? Since p has no roots.
 - Bounded: for $z \neq 0$, write

$$\frac{P(z)}{z^n} = a_n + \left(\frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n}\right).$$

- The term in parentheses goes to 0 as $|z| \longrightarrow \infty$
- Thus there exists an R > 0 such that

$$|z| > R \implies \left| \frac{P(z)}{z^n} \right| \ge c \coloneqq \frac{|a_n|}{2}.$$

- So p is bounded below when |z| > R
- Since p is continuous and has no roots in $|z| \leq R$, it is bounded below when $|z| \leq R$.
- Thus p is bounded below on \mathbb{C} and thus 1/p is bounded above on \mathbb{C} .
- By Liouville's theorem, 1/p is constant and thus p is constant, a contradiction.

1.2.3 6

Find all entire functions f which satisfy the following inequality, and prove the list is complete:

$$|f(z)| \ge z$$
.

Solution:

- Suppose f is entire and define $g(z) := \frac{z}{f(z)}$.
- By the inequality, $|g(z)| \le 1$, so g is bounded.
- g potentially has singularities at the zeros $Z_f := f^{-1}(0)$, but since f is entire, g is holomorphic on $\mathbb{C} \setminus Z_f$.
- Claim: $Z_f \subset \mathbb{C}$ is closed and discrete -???
- \bullet Thus the singularities Z_f are isolated
- By Riemann's removable singularity theorem, the singularities Z_f are removable and g has an extension to an entire function \tilde{g} .
- By continuity, we have $|\tilde{g}(z)| \leq 1$ on all of \mathbb{C}
- By Liouville, \tilde{g} is constant, so $\tilde{g}(z) = c_0$ with $|c_0| \leq 1$
- Thus $f(z) = c_o^{-1} z$

Thus all such functions are of the form f(z) = cz for some $c \neq 0 \in \mathbb{C}$.