

Detecção de objetos - Yolo

Prof. Douglas Rodrigues Prof. Pedro Pedrosa Rebouças Filho Laboratório de Processamento de Imagens, Sinais e Computação Aplicada (LAPISCO)

Detecção de objetos

 Objetivo é a partir de uma imagem de entrada (ou frame), identificar se há e se houver, onde está o objeto na cena.

Detecção de objetos: Contagem

Detecção de objetos: Contagem e classificação

Detecção de objetos: Monitoramento

Detecção de objetos: Monitoramento

Detecção de objetos

- **1. Posição:** onde está a coordenadas x e y do objeto?
- 2. Dimensão: qual a largura (w) e altura (h) ?
- 3. Classificação: qual a classe do objeto {carro, cachorro, bicicleta}?

Detecção de objetos

Essas tarefas são geralmente realizadas usando redes neurais convolucionais (CNNs) que foram treinadas em grandes conjuntos de dados contendo imagens rotuladas.

Modelos e abordagens eficientes para detecção de objetos:

- YOLO (You Only Look Once)
- SSD (Single Shot MultiBox Detector)
- Faster R-CNN

Yolo - You Only Look Once

- O que é a YOLO?
 - YOLO é um modelo de detecção de objetos que utiliza redes neurais convolucionais.
 - Premissas:
 - Utiliza uma rede neural convolucional como extrator de features
 - Análise em uma única passagem pela imagem.
 - Focada no alto desempenho

Yolo - You Only Look Once

Aplicações no mundo real

Rastreamento de Pessoas

Rastreamento de veículos

Yolo - You Only Look Once

YOLOv8

YOLOv8

Modelos disponíveis em YOLOv8

Tipo de modelo	Tarefa	Pesos pré-treinados
YOLOv8	Detecção	yolov8n.pt,yolov8s.pt,yolov8m.pt, yolov81.pt,yolov8x.pt
YOLOv8-seg	Segmentação de instância	yolov8n-seg.pt,yolov8s-seg.pt, yolov8m-seg.pt, yolov8l-seg.pt,yolov8x-seg.pt
Pose YOLOv8	Pose/pontos-chave	yolov8n-pose.pt,yolov8s-pose.pt, yolov8m-pose.pt,yolov8l-pose.pt, yolov8x-pose.pt,yolov8x-pose-p6.pt
YOLOv8-cls	Classificação	yolov8n-cls.pt,yolov8s-cls.pt, yolov8m-cls.pt, yolov81-cls.pt,yolov8x-cls.pt

YOLOv8 - Implementação

Yolo - imagem: <u>link</u>

• Yolo - video: <u>link</u>

- Como podemos saber se uma detecção de objetos é ou não satisfatória?
- A ideia é avaliar a detecção do algoritmo comparando-a com a marcação (annotation) do conjunto de imagens de teste.
- Contar uma a uma não é uma boa ideia, para isso, existem algumas métricas que podem ser usadas:
 - loU (Intersecção sobre União)
 - MAP (Mean Average Precision)

- IoU (Intersecção sobre União)
 - Quanto mais próximo a 1, melhor foi a detecção.
 - Quanto mais próximo a 0, pior foi a detecção.

- loU (Intersecção sobre União)
 - Esta métrica penaliza bastante qualquer desvio, isto é, valores altos só acontecem quando há um matching praticamente perfeito entre a detecção e a annotation.
 - No contexto de detecção, valores próx.: 0.7 são aceitáveis.

- IoU (Intersection over Union)
 - Esta métrica pode ser impactada se a marcação (annotations) no dataset não estiverem com boa qualidade.

- MAP (Mean Average Precision)
 - Não avalia a região de detecção, mas o grau de confiança da detecção.
 - O grau de confiança deve ser avaliado como uma proporção entre os verdadeiros positivos (detecções verdadeiras) e os falsos positivos (detecções falsas)

Ground Truth/Predições

Obrigado!

Prof. Douglas de Araújo Rodrigues

E-mail: douglas@lapisco.ifce.edu.br

