Groupby

The groupby method allows you to group rows of data together and call aggregate functions

```
In [1]:
```

In [2]:

```
1 print(data)
{'Company': ['G00G', 'G00G', 'MSFT', 'MSFT', 'FB', 'FB'], 'Person':
['Sam', 'Charlie', 'Amy', 'Vanessa', 'Carl', 'Sarah'], 'Sales': [200, 120, 340, 124, 243, 350]}
In [3]:
```

```
1 df = pd.DataFrame(data)
```

In [5]:

```
1 df
```

Out[5]:

	Company	Person	Sales
0	GOOG	Sam	200
1	GOOG	Charlie	120
2	MSFT	Amy	340
3	MSFT	Vanessa	124
4	FB	Carl	243
5	FB	Sarah	350

In [10]:

```
1 df.groupby('Company')
2 
3 
4 res = df.groupby('Company')
5 
6 res
```

Out[10]:

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x7f721f49d0b
8>

```
In [12]:
   200+120
Out[12]:
320
In [14]:
    320/2
Out[14]:
160.0
In [16]:
 1 (340+124)/2
Out[16]:
232.0
In [15]:
    (243+350)/2
Out[15]:
296.5
In [9]:
 1 res.mean()
Out[9]:
         Sales
Company
     FΒ
         296.5
   GOOG 160.0
   MSFT 232.0
```

** Now you can use the .groupby() method to group rows together based off of a column name. For instance let's group based off of Company. This will create a DataFrameGroupBy object:**

```
In [34]:
    1 df.groupby('Company')
```

```
Out[34]:
```

<pandas.core.groupby.DataFrameGroupBy object at 0x113014128>

You can save this object as a new variable:

```
24/06/2020
                                                   05-Groupby
  In [18]:
   1 by_comp = df.groupby("Company")
  And then call aggregate methods off the object:
  In [19]:
   1 by_comp.mean()
  Out[19]:
           Sales
  Company
        FΒ
            296.5
     GOOG 160.0
     MSFT 232.0
  In [20]:
   1 df.groupby('Company').mean()
  Out[20]:
           Sales
  Company
           296.5
     GOOG 160.0
     MSFT 232.0
  In [21]:
   1 df.groupby('Company').mean()
  Out[21]:
           Sales
  Company
```

FΒ

GOOG 160.0 **MSFT** 232.0

296.5

```
In [24]:
```

```
1 res.std()
```

Out[24]:

Sales

Company

FB 75.660426 **GOOG** 56.568542

MSFT 152.735065

In [28]:

1 res.max()

Out[28]:

Person Sales

Company

FB Sarah 350GOOG Sam 200MSFT Vanessa 340

In [29]:

1 | df

Out[29]:

	Company	Person	Sales
0	GOOG	Sam	200
1	GOOG	Charlie	120
2	MSFT	Amy	340
3	MSFT	Vanessa	124
4	FB	Carl	243
5	FB	Sarah	350

```
In [27]:
```

```
1 res.min()
```

Out[27]:

Compa	any
	FB

Carl 243

GOOG Charlie 120

MSFT Amy 124

In [30]:

```
1 res.count()
```

Out[30]:

Person Sales

Company	
FR	

FB 2 2 GOOG 2 2

MSFT 2 2

In [31]:

1 res.describe()

Out[31]:

Sales

	count	mean	std	min	25%	50%	75%	max
Company								
FB	2.0	296.5	75.660426	243.0	269.75	296.5	323.25	350.0
GOOG	2.0	160.0	56.568542	120.0	140.00	160.0	180.00	200.0
MSFT	2.0	232.0	152.735065	124.0	178.00	232.0	286.00	340.0

More examples of aggregate methods:

```
In [38]:
```

```
1 by_comp.std()
```

Out[38]:

Sales

Company

FB 75.660426

GOOG 56.568542

MSFT 152.735065

In [39]:

```
1 by_comp.min()
```

Out[39]:

Person Sales

Company

 FB
 Carl
 243

 GOOG
 Charlie
 120

MSFT Amy 124

In [40]:

1 by_comp.max()

Out[40]:

Person Sales

Company

 FB
 Sarah
 350

 GOOG
 Sam
 200

 MSFT
 Vanessa
 340

In [41]:

1 by_comp.count()

Out[41]:

Person Sales

Company

FB	2	2
GOOG	2	2
MSFT	2	2

In [42]:

1 by_comp.describe()

Out[42]:

Sales

FB	count	2.000000
	mean	296.500000
	std	75.660426
	min	243.000000
	25%	269.750000
	50%	296.500000
	75%	323.250000
	max	350.000000
GOOG	count	2.000000
	mean	160.000000
	std	56.568542
	min	120.000000
	25%	140.000000
	50%	160.000000
	75%	180.000000
	max	200.000000
MSFT	count	2.000000
	mean	232.000000
	std	152.735065
	min	124.000000
	25%	178.000000
	50%	232.000000
	75%	286.000000
	max	340.000000

```
In [43]:
```

1 by_comp.describe().transpose()

Out[43]:

Company FB								GOOG				
	count	mean	std	min	25%	50%	75%	max	count	mean		75
Sales	2.0	296.5	75 660426	243.0	269 75	296.5	323 25	350.0	2.0	160.0		180

1 rows × 24 columns

In [44]:

by_comp.describe().transpose()['G00G']

Out[44]:

 count
 mean
 std
 min
 25%
 50%
 75%
 max

 Sales
 2.0
 160.0
 56.568542
 120.0
 140.0
 160.0
 180.0
 200.0

Type *Markdown* and LaTeX: α^2

In [32]:

1 res.describe()

Out[32]:

Sales

	count	mean	sta	mın	25%	50%	75%	max
Company								
FB	2.0	296.5	75.660426	243.0	269.75	296.5	323.25	350.0
GOOG	2.0	160.0	56.568542	120.0	140.00	160.0	180.00	200.0
MSFT	2.0	232.0	152.735065	124.0	178.00	232.0	286.00	340.0

In [33]:

1 res.describe().transpose()

Out[33]:

	Company	FB	GOOG	MSFT
Sales	count	2.000000	2.000000	2.000000
	mean	296.500000	160.000000	232.000000
	std	75.660426	56.568542	152.735065
	min	243.000000	120.000000	124.000000
	25%	269.750000	140.000000	178.000000
	50%	296.500000	160.000000	232.000000
	75%	323.250000	180.000000	286.000000
	max	350.000000	200.000000	340.000000

In [36]:

1 df

Out[36]:

	Company	Person	Sales	
0	GOOG	Sam	200	
1	GOOG	Charlie	120	
2	MSFT	Amy	340	
3	MSFT	Vanessa	124	
4	FB	Carl	243	
5	FB	Sarah	350	

In [39]:

1 res.describe()

Out[39]:

Sales

	count	mean	std	min	25%	50%	75%	max
Company								
FB	2.0	296.5	75.660426	243.0	269.75	296.5	323.25	350.0
GOOG	2.0	160.0	56.568542	120.0	140.00	160.0	180.00	200.0
MSFT	2.0	232 0	152 735065	124 0	178 00	232 0	286 00	340 0

```
In [40]:
 1 res.describe().transpose()['G00G']
Out[40]:
Sales
                  2.000000
      count
       mean
                160.000000
       std
                 56.568542
       min
                120.000000
       25%
                140.000000
       50%
                160.000000
       75%
                180.000000
                200.000000
       max
Name: GOOG, dtype: float64
In [41]:
   res.describe().transpose()['FB']
Out[41]:
Sales count
                  2.000000
                296.500000
       mean
                 75,660426
       std
       min
                243.000000
       25%
                269.750000
       50%
                296.500000
       75%
                323.250000
                350.000000
       max
Name: FB, dtype: float64
In [42]:
 1 res.describe().transpose()['MSFT']
Out[42]:
Sales
      count
                  2,000000
       mean
                232.000000
       std
                152.735065
       min
                124.000000
       25%
                178.000000
       50%
                232.000000
       75%
                286.000000
                340.000000
       max
Name: MSFT, dtype: float64
In [ ]:
 1
```