MATH 601 HOMEWORK (DUE 8/30)

HIDENORI SHINOHARA

Exercise 0.1. Show that a bijective ring homomorphism is an isomorphism in the category of rings.

Proof. \Box

Let f be a bijective ring homomorphism from a ring A to a ring B. Let \mathbf{C} denote the category of rings. Then A, B are objects of the category \mathbf{C} . Since $\mathrm{Hom}_{\mathbf{C}}(A,B)$ is defined to be the set of all ring homomorphisms from A to $B, f \in \mathrm{Hom}_{\mathbf{C}}(A,B)$.

We will show that there exists an element $g \in \operatorname{Hom}_{\mathbf{C}}(B, A)$ such that $g \circ f = \operatorname{Id}_A$ and $f \circ g = \operatorname{Id}_B$.

Let a function $g: B \to A$ be defined such that $\forall b \in B, g(b) = a$ where a is an element such that f(a) = b. g is well-defined because:

- f is surjective, so there exists an $a \in A$ such that f(a) = b.
- f is injective, so such an a must be unique.

We claim that this g satisfies the desired properties:

- Claim 1: $g \in \text{Hom}_{\mathbf{C}}(B, A)$. This is equivalent to showing that g is a ring homomorphism. Let $b_1, b_2 \in B$ be given. Let $a_1 = g(b_1), a_2 = g(b_2)$. Then $f(a_1) = b_1$ and $f(a_2) = b_2$.
 - Since f is a ring homomorphism, $f(a_1 + a_2) = f(a_1) + f(a_2) = b_1 + b_2$. Therefore, $g(b_1 + b_2) = a_1 + a_2 = g(b_1) + g(b_2)$.
 - Since f is a ring homomorphism, $f(a_1 \cdot a_2) = f(a_1) \cdot f(a_2) = b_1 \cdot b_2$. Therefore, $g(b_1 \cdot b_2) = a_1 \cdot a_2 = g(b_1) \cdot g(b_2)$.
 - Since f is a ring homomorphism, f(1) = 1. Thus g(1) = 1. Therefore, $g \in \text{Hom } \mathbf{C}(B, A)$.
- Claim 2: $g \circ f = \operatorname{Id}_A$. Let $a \in A$. Let b = f(a). Then g(b) = a, so g(f(a)) = a. This implies that $\forall a \in A, g(f(a)) = a$. Thus $g \circ f = \operatorname{Id}_A$.
- Claim 3: $f \circ g = \operatorname{Id}_B$. Let $b \in B$. Let a = g(b). Then f(a) = b, so f(g(b)) = b. Therefore, $\forall b \in B, f(g(b)) = b$. Thus $f \circ g = \operatorname{Id}_B$.

Therefore, f is indeed an isomorphism in the category of rings.