- √ Signaux variables, continus, périodiques
- √ Période, fréquence, pulsation
- ✓ Amplitudes
- √ Valeur moyenne, valeur efficace

Apports de connaissances

1. Les signaux électriques (selon la nature de l'information transportée).

11 Les signaux analogiques.

Un signal analogique est un signal faisant l'objet de variations continues dans le temps.

<u>Exemple</u>: signal électrique analogique délivré par un capteur de température.

À la date t1, la tension u(t) est égale à 4,5 V, ce qui correspond à une température de 38 °C.

12 Les signaux numériques.

Un **signal numérique** est un signal faisant l'objet de <u>variations discontinues dans le temps</u>. En termes simples, cela signifie que c'est un signal qui ne prend qu'un <u>nombre fini de valeurs</u>.

<u>Exemple</u>: signal électrique numérique traité par les ordinateurs.

Ce signal ne prend que deux valeurs **0 V** ou **5 V**.

En associant par convention l'état logique 0 à la valeur u(t) = 0 V et l'état logique 1 à la valeur u(t) = 5 V, ce signal électrique représente le code binaire 1.0.1.0.1... compréhensible par un ordinateur.

Remarque 1 : Un signal <u>numérique qui ne peut prendre que deux états distincts</u> est appelé <u>signal logique</u> ou <u>signal TOR</u> (Tout Ou Rien).

Remarque 2 : Le signal électrique représenté ci-dessous possède quatre états distincts, c'est un autre exemple de signal numérique.

Ce signal électrique numérique possède quatre états distincts :

- état 1 : u(t) = 0 V
- état 2 : u(t) = 1 V
- état 3 : u(t) = 2 V
- état 4 : u(t) = 3 V.

Par convention, en associant à chaque état les codes binaires suivants :

- état 1 : "00"
- état 2 : "01"
- état 3 : "10"
- état 4 : "11".

ce signal électrique représente alors le code binaire 0001.101.0101.0001......

2. Les signaux électriques (selon leur forme).

21 Les signaux variables.

Un signal variable est un signal dont l'amplitude varie en fonction du temps.

<u>Exemple</u>: signal électrique cité au paragraphe 11.

22 Les signaux continus.

Un **signal continu** est un signal dont l'amplitude est constante sur un intervalle de temps donné.

<u>Exemple</u>: tension continue 9 V disponible aux bornes d'une pile électrique.

23 Les signaux périodiques.

231 <u>Définition</u>.

Un **signal périodique** est un signal qui se reproduit identique à lui-même à des intervalles de temps égaux appelés périodes.

Exemple: signal périodique de période T = 4 s, de valeur maximale Umax = 3 V, de valeur minimale Umin = -2 V.

232 Les caractéristiques des signaux périodiques.

2321 La période.

La <u>période</u> T d'un signal est la <u>plus petite durée au bout de laquelle le signal</u> <u>se reproduit identique à lui-même</u>. Elle s'exprime en <u>seconde</u> (s).

2322 La fréquence.

La **fréquence f** d'un signal est le <u>nombre de périodes qu'il y a en une seconde</u>. Elle s'exprime en <u>hertz</u> (Hz).

$$f = \frac{1}{T}$$

ILes signaux électriques

Page 2 sur 5

Dans le cas du signal périodique de la fig. 1 (voir ci-dessus), la fréquence f est égale à 0.25Hz (4sec).....

2323 La valeur moyenne.

La **valeur moyenne Umoy** d'un signal est égale à l'aire algébrique occupée par le signal durant une période, divisée par la période du signal.

Dans le cas où le signal u(t) est une tension, Umoy s'exprime en volt (V).

$$Umoy = \frac{Aire \ algébrique \ du \ signal}{T}$$

Vmoy = (aire algé)/(T) = Vmax * alpha (rapport cyclique)

Dans le cas de la fig. 1:

- Aire algébrique positive du signal = 4 x 1 V.s = 4 V.s
- Aire algébrique négative du signal = 2 x 1 V.s = 2 V.s
- Aire algébrique du signal = 4 2 = 2 V.s
- Période T = 4 s

On en déduit ici Umoy = 2/4 = 0.5 V.

2324 L'amplitude et l'amplitude crête à crête d'un signal.

• L'amplitude A d'un signal est la différence entre sa valeur maximale Vmax et sa valeur moyenne Vmoy.

• L'amplitude crête à crête Acc d'un signal est la différence entre sa valeur maximale Vmax et sa valeur minimale Vmin.

Dans le cas de la fig. 1 :

- L'amplitude A = 2.5\(\).....
- L'amplitude crête à crête Acc = ^{5V}

2325 La valeur efficace.

Les signaux électriques peuvent avoir une valeur moyenne nulle. Néanmoins, ils peuvent transmettre de l'énergie. En effet, l'énergie associée à un signal u(t) est en général proportionnelle au carré u(t)² de celui-ci. On définit la **valeur efficace Ueff** d'un signal u(t) comme étant la racine carrée de la valeur moyenne de u(t)².

$$Ueff = \sqrt{valeur moyenne de u(t)^2}$$

Dans le cas où le signal u(t) est une tension, Ueff s'exprime en volt (V).

■Les signaux électriques Page 3 sur 5

233 Les formes de signaux les plus rencontrés en électronique.

2331 Le signal sinusoïdal.

<u>Exemple</u>: signal alternatif sinusoïdal ayant les caractéristiques suivantes :

- Vmax = 6V.....
- Vmin = -6V....
- Vmoy = 0\(\text{V}\).....
- \bullet T =0.004 (4ms)
- f = 250Hz

Remarque:

Dans le cas d'un signal sinusoïdal, on définit la **pulsation** ω de ce signal telle que

$$\omega = 2 \cdot \pi \cdot f$$

avec ω en rad.s⁻¹ et f en Hz.

2332 Le signal rectangulaire.

<u>Exemple</u>: signal rectangulaire ayant les caractéristiques suivantes :

- Vmax =
- Vmin =
- Vmoy =
- T =
- f =
- durée à l'état haut t_H =
- durée à l'état bas t_{I.} =

Remarque:

Dans le cas du signal rectangulaire, on définit le **rapport cyclique** α comme étant le rapport entre sa durée à l'état haut t_H et sa période T.

$$\alpha = \frac{t_H}{T}$$

Dans l'exemple ci-dessus : $\alpha = \dots$

2333 Le signal triangulaire.

<u>Exemple</u>: signal triangulaire ayant les caractéristiques suivantes :

- Vmax =
- Vmin =
- Vmoy =
- T =
- f =

2334 Le signal dent de scie.

<u>Exemple</u>: signal dent de scie ayant les caractéristiques suivantes :

- Vmax =
- Vmin =
- Vmoy =
- T =
- f =

234 <u>Décomposition d'un signal périodique.</u>

Tout signal périodique u(t) peut se décomposer en la somme d'une composante continue Uc et d'une composante alternative ua(t).

$$u(t) = Uc + ua(t)$$

La composante continue Uc est égale à la valeur moyenne Umoy du signal u(t). La composante alternative ua(t) a par définition une valeur moyenne égale à 0.

Exemple:

■Les signaux électriques Page 5 sur 5