第二章 光谱分析导论

李哲 博士、副教授

药学院332

lizhe5@mail.sysu.edu.cn

分析方法

第一节 光的本质

- ፠电磁辐射的性质
- 1. 波动性

用波长 λ (nm)、波数 σ (cm⁻¹)和频率 ν (Hz)表示

$$V = \frac{c}{\lambda}$$

$$\sigma = \frac{1}{\lambda} = \frac{V}{c}$$

$$c=2.997925 \times 10^{10} \text{ cm/s}$$
真空中光的速度

2. 微粒性

用每个光子具有的能量E作为表征

$$E = h \times v = h \times \frac{c}{\lambda} = h \times c \times \sigma$$
 h=6.6262×10⁻³⁴J·s 普朗克常数

电磁辐射具有波动性和微粒性:光的波粒二象性。

第二节 光与物质的相互作用

- 1.光子被物质吸收;
- 2.光子被吸收后再**发射**;
- 3.光子与物质发生弹性或非弹性碰撞。

光与物质的相互作用

吸收:光子的能量等于两个能级之间的差值

反射: 界面上改变方向返回

发射: 高能态回到低能态而发射光子

折射:改变角度

衍射:绕过障碍物,向外辐射

干涉: 光波叠加

光与物质的相互作用

散射: 光子四周散开

丁铎尔散射: 弹性碰撞

瑞利散射: 弹性碰撞

拉曼散射: 非弹性碰撞

光学分析法

光分析法

基于物质与辐射能作用

光谱分析法

吸收光谱法 发射光谱法 散射光谱法

测量由物质内部发生能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度

非光谱分析法

测量辐射的 某些性质变化 折射法 旋光法 浊度法 X射线衍射法

分子内部运动 🗪 决定了光与物质的相互作用

电子运动	分子振动	分子转动
电子 绕原子核 的相对运动	原子或原子团再其 平衡位置上做相对 振动	分子本身 绕其 重心的转动
电子能级	振动能级	转动能级
<i>E</i> e	Ev	<i>E</i> r

E = Ee + Ev + Er

能级跃迁

 $\Delta E = E_2($ **激发态** $) - E_1($ **基态**)光子的能量等于两个能级之间的差值时, 光子被吸收,发生**能级跃迁。**

 $\Delta Ee > \Delta Ev > \Delta Er$

光谱与能级跃迁

电子能级跃迁	振动和转动 能级跃迁	转动能级跃迁	原子核自旋 能级跃迁
<i>∆E</i> e 1 ~ 20eV	ΔE v $0.05 \sim 1 \text{ eV}$	ΔE r 0.005 ~ 0.050eV	
紫外可见光区 1.25-0.06 μm	红外线 25-1.25 μm	远红外光 250-25 μm	无线电波 1-100 m
紫外-可见吸收 光谱	红外吸收光谱	远红外光谱 (转动光谱)	核磁共振
50,000 25,000	12,500 4,000	400 10	cm-1 (Wavenumber)
Far- ultraviolet Ultraviolet Visit 200 400	Near-infrared 800 2,500	Infrared Far-infrared Micro	owaves nm (Wavelength)

带状光谱和线状光谱

线状光谱

气态**原子**(或**离子**)核外电子发生能级跃迁

连续光谱

由炽热的固体或液体所发射

带状光谱

分子外层电子发生能级跃迁

分子吸收和发射光谱中, 电子光谱中总包含有振动能级 和转动能级间跃迁产生的若干 谱线而呈现宽**谱带**。

第四节 光谱分析仪器

紫外-可见分光光度计

红外光谱仪

1. 光源

紫外分光光度计: 氢灯、氘灯

可见分光光度计: 钨灯、卤钨灯

红外分光光度计: 硅碳棒、能斯特灯

原子吸收分光光度计: 空心阴极灯

光源要求: 输出功率大、稳定

性好、发光面积小。

2. 单色系统

入射狭缝

准光器

色散原件

聚焦元件

出射狭缝

2. 色散元件

棱镜 光栅

玻璃 350-3200 nm 可见、近红外

石英 185-4000 nm 紫外、可见、近红外

紫外、可见、红外

- 色散率随波长变化
- 光谱非均匀排列
- 光传递效率低

- 波长范围宽、分辨率 高、成本低
- 各级光谱重叠而干扰

3. 样品室

紫外-可见分光光度计

红外分光光度计

原子光谱

4. 检测系统

(1) 光检测器 (紫外可见吸收)

硒光电池、光电二极管、光电倍增管、半导体检测器。

先分光再照射样品

4. 检测系统

二极管阵列检测器

先**照射样品**再分光

(2) 热检测器 (红外吸收)

真空热电偶检测器、热释电检测器。

5. 数据处理和显示系统

光谱分析法的属性

1. 准确度

分析方法的测量值与真实值接近的程度。(通常用误差来表示)

紫外可见吸收光谱法: 0.5%

原子吸收光谱法: 1%

准确度高,但精密度低

精密度高,但准确度低

精密度: 多次测定结果互相接近的程度,

通常用偏差(算术平均偏差或标准偏差)来表示的

光谱分析法的属性

2. 灵敏度

被测组分浓度或含量改变一个单位时所引起的分析信号的变化。

3. 定量限与检测限

定量限:能被定量检测的最低量。

检测限:能合理检测出的最小分析信号的浓度或质量。

紫外-可见吸收光谱法: 10-4~10-6 g/mL

荧光光谱法: 10⁻¹⁰ g/mL

火焰原子吸收光谱法: 10-9 g/mL

光谱分析法的属性

4. 线性和线性范围

线性范围:分析方法适用的高低限浓度或量的区间。

5. 专属性

再其他组分存在的情况下,分析方法能准确测出 待测组分的特性。

学习重点

- 光与物质作用的几种形式
- 分子内部三种运动的名称、运动方式、跃迁所对应的光谱
- 光谱分析仪的五部分组成