Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра інформаційних систем і технологій

Практикум №3 3 дисципліни «Теорія прийняття рішень»

На тему

«Відношення переваги при глобальній порівнюваності критеріїв»

Виконала: студентка гр. ІС-03

Козюк Ю.О.

Перевірила: Жураковська О. С.

Варіант 64

Завдання

Задано множину з 20 альтернатив, які оцінені за множиною критеріїв $K = \{ki\}$, i = 1, ..., 12.

Необхідно за інформацією про оцінки альтернатив за критеріями k1-k12 та інформацією про порівнюваність критеріїв побудувати на множині альтернатив відношення переваги та визначити оптимальні альтернативи, якщо:

- 1. інформація про порівнюваність критеріїв несуттєва (відн. Парето);
- 2. критерії рівноважливі (мажоритарне в.);
- 3. на множині критеріїв задане віднош. строгого порядку V1 (лексикографічне в.);
- 4. на множині критеріїв задане відношення квазіпорядку V2 (відн. Березовського);
- 5. для випадку рівноважливих критеріїв побудувати на множині альтернатив відношення Подиновського.

6.

Виконання

Оцінки альтернатив за критеріями

	k1	k2	k 3	k4	k5	k6	k 7	k8	k9	k10	k11	k12
x1	3	1	7	2	3	9	8	5	2	8	5	7
x2	9	1	7	5	9	9	8	5	2	8	7	7
x3	9	5	7	7	9	9	8	5	2	8	7	7
x4	9	9	7	7	9	9	8	5	5	8	7	7
x 5	9	9	7	8	9	9	10	8	9	10	7	7
x6	3	4	3	2	6	3	5	6	7	9	3	7
x 7	9	9	7	8	9	9	10	8	10	10	10	7
x8	3	9	7	8	3	2	9	1	6	9	6	5
x9	3	1	1	1	3	2	5	1	2	8	6	5
x10	10	5	6	1	9	9	5	8	5	8	10	7
x11	2	3	3	1	4	2	4	5	5	2	2	4
x12	8	9	3	3	8	7	4	5	6	9	2	4
x13	3	1	3	3	7	5	4	5	2	5	2	4
x14	3	1	2	3	7	5	4	3	2	1	2	4
x15	3	1	2	2	3	5	4	3	2	1	2	4
x16	9	7	3	2	4	5	10	3	6	3	6	5
x17	9	9	8	8	9	9	10	8	9	10	7	7
x18	9	9	8	8	9	9	10	8	9	10	7	7
x19	9	9	8	8	9	9	10	8	9	10	8	7
x20	9	9	8	8	9	9	10	10	9	10	8	7

Відношення Парето

Інформація про порівнюваність критеріїв несуттєва.

Оптимальні альтернативи за К-оптимізацією:

$$K1_max = [7, 10, 20], K1_opt = [7, 10, 20]$$

 $K2_max = []$

 $K3_max = []$

K4_max = [10]

Множина X^0 максимальних по P^0 елементів на множині Ω є множиною Парето, або множиною ефективних розв'язків.

Проведемо попарне порівняння для частини альтернатив для прикладу. Побудуємо вектори різниць оцінок та вектори знаків різниць оцінок. Якщо вектор знаків різниць оцінок не містить «-1», пара альтернатив належить до відношення Парето.

$\Delta^{\text{x1x1}} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$	$\sigma^{x1x1} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$	$R^0 = 1$
$\Delta^{x1x2} = (-6, 0, 0, -3, -6, 0, 0, 0, 0, 0, -2, 0)$	$\sigma^{x1x2} = (-1, 0, 0, -1, -1, 0, 0, 0, 0, 0, -1, 0)$	$R^0 = 0$
$\Delta^{x1x3} = (-6, -4, 0, -5, -6, 0, 0, 0, 0, 0, 0, 0)$	$\sigma^{x1x3} = (-1, -1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0)$	$R^0 = 0$
$\Delta^{x1x15} = (0, 0, 5, 0, 0, 4, 4, 2, 0, 7, 3, 3)$	$\sigma^{x1x15} = (0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1)$	$R^0 = 1$

Мажоритарне відношення

Критерії ϵ рівноважливими.

Оптимальні альтернативи за К-оптимізацією:

Визначення приналежності відношення альтернатив до Мажоритарного відношення виконується за формулою:

$$xP^{M}y \Leftrightarrow \sum_{i=1}^{m} \sigma_{i}^{xy} > 0$$

Для кожної пари альтернатив ми розраховуємо вектор σ та розраховуємо суму його елементів. Якщо сума > 0, то відносимо пару до відношення.

$\sigma^{x1x1} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$	S = 0	$P^{M}=0$
$\sigma^{x1x2} = (-1, 0, 0, -1, -1, 0, 0, 0, 0, 0, -1, 0)$	S = -4	$P^{M}=0$
$\sigma^{x1x3} = (-1, -1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0)$	S = -4	$P^{M}=0$
	• • •	•••
$\sigma^{x1x11} = (1, -1, 1, 1, -1, 1, 1, 0, -1, 1, 1, 1)$	S = 5	$P^{M} = 1$

Лексикографічне відношення

На множині критеріїв задане віднош. строгого порядку V1: k10>k2>k8>k9>k7>k4>k12>k3>k5>k1>k11>k6

```
Lexicographic relation:
[1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0]
[1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0]
[1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
[1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0]
[1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]
[1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0]
[1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0]
[1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
[1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
[1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]
```

Рішення за Нейманом-Моргенштерна:

$$X_HM = [20]$$

Відношення $\langle V, K \rangle$, задане на множині критеріїв, є слабкозв'язним строгим порядком, тобто критерії можна впорядковувати за важливістю. Множина критеріїв K буде впорядкована за спаданням важливості.

	k10	k2	k8	k9	k 7	k4	k12	k3	k 5	k 1	k11	k6
x1	8	1	5	2	8	2	7	7	3	3	5	9
x2	8	1	5	2	8	5	7	7	9	9	7	9
x3	8	5	5	2	8	7	7	7	9	9	7	9
x4	8	9	5	5	8	7	7	7	9	9	7	9
x5	10	9	8	9	10	8	7	7	9	9	7	9
x6	9	4	6	7	5	2	7	3	6	3	3	3
x 7	10	9	8	10	10	8	7	7	9	9	10	9
x8	9	9	1	6	9	8	5	7	3	3	6	2
x9	8	1	1	2	5	1	5	1	3	3	6	2
x10	8	5	8	5	5	1	7	6	9	10	10	9

Відношення лексикографії визначається таким чином:

$$\forall x, y \in E^{m} | x \neq y$$

$$xP^{L}y \Leftrightarrow [\sigma_{1}^{xy} = 1] \vee [\sigma_{1}^{xy} = 0] \wedge [\sigma_{2}^{xy} = 1] \vee$$

$$... \vee [\sigma_{1}^{xy} = 0] \wedge [\sigma_{2}^{xy} = 0] \wedge ... \wedge [\sigma_{m}^{xy} = 1]$$

$\Delta^{x1x1} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$	$\sigma^{x1x1} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)$	$P^{L}=0$
$\Delta^{x_1x_2} = (0, 0, 0, 0, 0, -3, 0, 0, -6, -6, -2, 0)$	$ \sigma^{x1x2} = (0, 0, 0, 0, 0, -1, 0, 0, -1, -1, -1, 0) $	$P^{L}=0$
$\Delta^{x_1x_3} = (0, -4, 0, 0, 0, 0, 0, 0, -6, -6, -2, 0)$	$\sigma^{x1x3} = (0, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0)$	$P^{L}=0$
$\Delta^{x_1x_9} = (0, 0, 4, 0, 3, 1, 2, 6, 0, 0, -1, 7)$	$\sigma^{x1x15} = (0, 0, 1, 0, 1, 1, 1, 1, 0, 0, -1, 1)$	$P^L = 1$

Відношення Березовського

Відношення квазіпорядку на мн-ні критеріїв (класи впорядковані за зростанням важливості): $\{k1,k5,k7,k10\} < \{k8,k9\} < \{k2,k3,k4,k6,k11,k12\}$

Оптимальні альтернативи за Нейманом-Моргенштерна:

$$X_HM = [20, 7]$$

1. Побудова системи відношень Парето для кожної групи рівноважливих критеріїв за формулами:

$$xP^{0j}y \Leftrightarrow (\forall k_i \in K_j[\sigma_i^{xy} \ge 0] \land (\exists k_{i_0} \in K_j[\sigma_{i_0}^{xy} = 1]),$$

$$xI^{0j}y \Leftrightarrow (\forall k_i \in K_j[\sigma_i^{xy} = 0],$$

$$xN^{0j}y \Leftrightarrow (\exists k_{i_1} \in K_j[\sigma_{i_1}^{xy} = 1]) \land (\exists k_{i_2} \in K_j[\sigma_{i_2}^{xy} = -1]).$$

1.1) Побудуємо систему відношень Парето для першої групи рівноважливих критеріїв (P^0_j , I^0_j , N^0_j)

	k 1	k 5	k7	k10
x1	3	3	8	8
x2	9	9	8	8
x3	9	9	8	8
x4	9	9	8	8

```
10
                            10
 x5
         9
               9
                      5
         3
               6
                             9
 x6
 x7
         9
               9
                     10
                            10
         3
               3
                      9
                             9
 x8
 x9
         3
               3
                      5
                             8
                      5
x10
        10
               9
                             8
x11
         2
                             2
               4
                      4
                             9
x12
         8
               8
                      4
x13
         3
               7
                             5
                      4
x14
                             1
         3
               7
                      4
x15
         3
                      4
                             1
               3
                     10
                             3
x16
         9
               4
x17
               9
                     10
                            10
         9
x18
         9
               9
                     10
                            10
x19
               9
                            10
         9
                     10
x20
         9
               9
                     10
                            10
```

1.2) Побудуємо систему відношень Парето для другої групи рівноважливих критеріїв (P^1_j , I^1_j , N^1_j).

P^{02}	x1	x2	x3	x15	I^0	2	x1	x2	x3	X15
x1	0	0	0	1	X	1	1	1	1	0
x2	0	0	0	1	X.	2	1	1	1	0
x3	0	0	0	1	X.	3	1	1	1	0
x15	0	0	0	0	X	15	0	0	0	1

1.3) Побудуємо систему відношень Парето для другої групи рівноважливих критеріїв (P_j^2 , I_j^2 , N_j^2).

	k2	k3	k4	k6	k11	k12
x1	1	7	2	9	5	7
$\mathbf{x2}$	1	7	5	9	7	7
x3	5	7	7	9	7	7
x4	9	7	7	9	7	7
x5	9	7	8	9	7	7
x6	4	3	2	3	3	7
x 7	9	7	8	9	10	7
x8	9	7	8	2	6	5
x9	1	1	1	2	6	5
x10	5	6	1	9	10	7
x11	3	3	1	2	2	4
x12	9	3	3	7	2	4
x13	1	3	3	5	2	4
x14	1	2	3	5	2	4
x15	1	2	2	5	2	4
x16	7	3	2	5	6	5
x17	9	8	8	9	7	7
x18	9	8	8	9	7	7
x19	9	8	8	9	8	7
x20	9	8	8	9	8	7

\mathbf{P}^{03}	x1	x2	х3	x15	I^{03}	x1	x2	х3	x15	N^{03}	x1	x2	х3	x15	
x1	0	0	0	1	x1	1	0	0	0	x1	0	0	0		
x2	1	0	0	1	x2	0	1	0	0	x2	0	0	0		
x3	1	1	0	1	х3	0	0	1	0	x3	0	0	0	0	
x15	0	0	0	0	x15	0	0	0	1	x15	0	0	0	0	

2. Побудова відношення Березовського. Виконується ітераційно за 3 ітерації.

$$2.1)\; P^{B1} = P^{01}, \, I^{B1} = I^{01}, \, N^{B1} = N^{01}.$$

\mathbf{P}^{01}	x1	x 2	x 3	 x15	I^{01}	x 1	x2	x3	 x15	N^{01}	x1	x2	x3	 x15
x1	0	0	0	 1	x1	1	0	0	 0	x1	0	0	0	 0
x2	1	0	0	 1	x2	0	1	1	 0	x2	0	0	0	 0
x3	1	0	0	 1	x2 x3	0	1	1	 0	x3	0	0	0	 0
x15	0	0	0	 0	 x15	0	0	0	 1	x15	0	0	0	 0

Для всіх пар альтернатив побудуємо систему відношень P^{Bj} , I^{Bj} , N^{Bj} , використовуючи співвідношення:

$$xP^{B_{j}}y \Leftrightarrow [(xP^{0_{j}}y) \wedge \neg (yP^{B_{j-1}}x)] \vee [(xI^{0_{j}}y) \wedge (xP^{B_{j-1}}y)] =$$

$$= [(xP^{0_{j}}y) \wedge [(xP^{B_{j-1}}y) \vee (xN^{B_{j-1}}y) \vee (xI^{B_{j-1}}y)]] \vee [(xI^{0_{j}}y) \wedge (xP^{B_{j-1}}y)],$$

$$xI^{B_{j}}y \Leftrightarrow (xI^{0_{j}}y) \wedge (xI^{B_{j-1}}y),$$

$$xN^{B_{j}}y \Leftrightarrow \neg [(xP^{B_{j}}y) \vee (yP^{B_{j}}x) \vee (xI^{B_{j}}y)].$$

Має місце xP^By , якщо для пари (x,y) виконується хоча б одна із умов:

$$xP^{02}y \wedge xP^{01}y;$$

 $xP^{02}y \wedge xN^{01}y;$
 $xP^{02}y \wedge xI^{01}y;$
 $xI^{02}y \wedge xP^{01}y.$

P)2 x1	x2	x3	x15	I02	x1	x2	x3	X15	N02	x1	x2	x3	x15
			0						0					
x 2	2 0	0	0	1	x2	1	1	1	0	x2	0	0	0	0
x 3	0	0	0	1	x3	1	1	1	0	x3	0	0	0	0
x1	5 0	0	0	0	X15	0	0	0	1	x15	0	0	0	0

Відношення Березовського РВ, отримане після 2-ї ітерації, буде мати вигляд:

Має місце xP^By , якщо для пари (x,y) виконується хоча б одна із умов:

$$xP^{03}y \wedge xP^{02}y;$$

 $xP^{03}y \wedge xN^{02}y;$
 $xP^{03}y \wedge xI^{02}y;$
 $xI^{03}y \wedge xP^{02}y;$

x1 x2 x3 x15	$-\frac{x1}{0}$	x2 0 0 0 0	x3 0 0 0 0	x15	x1 x2 x3 x15	x1 1 1 1 0	x2 1 1 1 0	x3 1 1 1 0	X15 0 0 0 1	x1 x2 x3 x15	x1 0 0 0 0	x2 0 0 0 0	x3 0 0 0 0	x15 0 0 0 0
x1 x2 x3 x15	- x1 0 1	x2 0 0 1 0	x3 0 0 0 0	x15	x1 x2 x3 x15	x1 1 0 0 0	x2 0 1 0 0	x3 0 0 1 0	x15 0 0 0 1	N ⁰³ x1 x2 x3 x15	x1 0 0 0 0	x2 0 0 0 0	x3 0 0 0 0	x15 0 0 0 0

Відношення, отримане на останній ітерації, є відношенням Березовського:

$P_{\rm B}$	x1	x2	x3		x15
x1	0	0	0		1
x2	1	0	0		1
x3	1	1	0	•••	1
• • •	• • •			• • •	
x15	0	0	0		0

Відношення Подиновського

Побудува на множині альтернатив відношення Подиновського для випадку рівноважливих критеріїв

```
Podynovskii relation:
[1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0]
[1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0]
[1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]
[1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]
[1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0]
[1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]
[1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]
[1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
```

Оптимальні альтернативи за К-оптимізацією:

$$K1_max = [7, 20], K1_opt = [7, 20]$$

 $K2_max = []$

 $K3_max = []$

 $K4_{max} = [20]$

Якщо усі критерії ϵ рівноважливими, то виконується:

$$xR^{\Pi}y <=> \Psi(x) R^{0} \Psi(y),$$

 $xP^{\Pi}y <=> \Psi(x) P^{0} \Psi(y),$
 $xI^{\Pi}y <=> \Psi(x) I^{0} \Psi(y),$

- де $\Psi(x)$ – вектор-функція, що розташовує усі компоненти вектора $x \in E^m$ за спаданням значень, R^0 – відношення Парето, P^0 , I^0 – асиметрична та симетрична частини відповідно відношення R^0 .

Розташуємо критерії за спаданням та побудуємо на множині векторів $\{\Psi(x1), \Psi(x2), \Psi(x3), \Psi(x15)\}$ відношення Парето:

	Ψ1	Ψ2	Ψ3	Ψ4	Ψ5	Ψ6	Ψ7	Ψ8	Ψ9	Ψ10	Ψ11	Ψ12
Ψ(x1)	9	8	8	7	7	5	5	3	3	2	2	1
Ψ(x2)	9	9	9	8	8	7	7	7	5	5	2	1
Ψ(x3)	9	9	9	8	8	7	7	7	7	5	5	2
•••		•••	•••	•••	•••	•••	•••	•••				•••
Ψ(x15)	7	5	4	4	3	3	3	2	2	2	1	1

$\sigma^{\Psi(x1)\Psi 1} = (0, 0, 0, 0, 0, 0, 0, 0, $	$R^0 = 1$
$\sigma^{\Psi(x1)\Psi2} = (0, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0)$	$R^0 = 0$
$\sigma^{\Psi(x1)\Psi3} = (0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1$	$R^0 = 0$
$\sigma^{\Psi(x1)\Psi15} = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)$	$R^0 = 1$

Перенесемо ці значення на множину альтернатив Ω , отримавши відношення R^Π .

Опис функцій програми

Ф-ція/Метод	Параметри	Опис	Значення, що повертає		
calc_delta	row: int, col: int	Розрахунок	Матрицю Δ		
		матриці Δ	тиатрицю Д		
calc_sigma	delta: List	Розрахунок	Матрицю σ		
		матриці σ	матрицю о		
		Розрахунок	Елемент		
calc_pareto	el: List	елемента			
		відношення	відношення Парето		
		Парето	Парето		
		Розрахунок	Елемент		
calc_majority	el: List	елемента			
		мажоритарного	мажоритарного		
		відношення	відношення		
	el: List	Розрахунок	Елемент		
calc_lex		елемента			
		лексикографічног	лексикографічног		
		о відношення	о відношення		
	cur_pareto_mat:	Ітерація			
iteration	List, prev_mat:	розрахунку	Відношення		
	List	відношення	Березовського		
		Березовського			
neyman_morgensht	matrix	Знаходження	Outron to the		
ern		оптимальних	Оптимальні		
		альтернатив	альтернативи		
		Знаходження			
k_optimization	matrix	оптимальних	Оптимальні		
		альтернатив	альтернативи		
	1	<u> </u>			

Висновки

У даній лабораторній роботі було визначено відношення переваги при глобальній порівнювальності критеріїв за допомогою відношення Парето (інформація про порівнюваність критеріїв несуттєва), Мажоритарного відношення (критерії рівноцінні), Лексикографічного відношення (на множині критеріїв задане віднош. строгого порядку V1), відношення Березовського (на множині критеріїв задане відношення квазіпорядку V2), відношення Подиновського (для випадку рівноважливих критеріїв) та визначено оптимальні альтернативи за допомогою методу Неймана-Моргенштерна та Коптимізації в залежності від того, чи є відношення ациклічним.