Divide-and-Conquer

Monday, February 8, 2021

12:11 PM

Merge Sort

5 3 2 4 6 9 11 13 0,7

5 3 2 4 6 9 11 13 0,3

5 3 2 4 6 9 11 13 0,1

5 3 2 4 6 9 11 13

Ms(0,1) calls ms(0,0)

Returns to ms(1,1)

Left -> Right -> Root (postorder)

Merge(0,0,1) //sorts

out-place sorting because auxiliary array created in merge() to sort

35 2 4 6 9 11 13

Ms(2,3), merge(2,2,3)

35 24 6 9 11 13

Merge(0,1,3)

2345 6 9 11 13

$$T(n) = 2 * T\left(\frac{N}{2}\right) + c * n, T(1) = 1$$

Try minimizing copying from a to b

T(n) = O(nlogn)

By storing the numbers in a linked list instead of an array, n may reduce to 1

If you work on one half at a time, best case the storage $O(n) \rightarrow O(\log n)$

Min Max Problem

Replacing with else does not change complexity --> brute force algorithm -->O(n)

Recursive:

14	15	13	2
----	----	----	---

14	15
Min	Max

13	2
Max	Min

Merge:

2 <14	15 >13
Min	Max

2 steps only

But we're working on both halves --> 1.5n - 2

$$T(1) = 0$$

$$T(2)=1$$

$$T(n) = 2 * T\left(\frac{n}{2}\right) + 2$$