POSGRADO EN CIENCIA E INGENIERÍA DE LA COMPUTACIÓN Universidad Nacional Autónoma de México

Aprendizaje automático

MGP: moralización.

Ayudantes: Bere y Ricardo

Mayo, 2021

Redes de Markov (RM)

Gráfica no dirigida que expresa una distribución de probabilidad conjunta.

$$P(x_1,x_2,x_3,x_4,x_5,x_6) = \frac{1}{Z} \psi(x_1,x_2,x_3) \psi(x_2,x_3,x_4) \psi(x_2,x_5) \psi(x_3,x_6)$$

Independencia en redes de Markov

RB a RM: cadena causal

Red bayesiana

 $A \perp \!\!\! \perp C \mid B$

Red de Markov

 $A \perp \!\!\! \perp C \mid B$

RB a RM: causa común

Red bayesiana

Causa común

 $A \perp\!\!\!\perp C \mid B$

Red de Markov

$$A \perp \!\!\! \perp C \mid B$$

RB a RM: efecto común

Red bayesiana

 $A \perp \!\!\!\perp C \mid$

Red de Markov

 $A \not\perp\!\!\!\perp C \mid$

RB a RM: moralización

► Si en una RB dos vertices *A* y *B* son padres de *C* entonces estos se conectan.

Ejemplo: RB a RM

¿Qué independencias condicionales se pierden?