Solutions to Ireland, Rosen "A Classical Introduction to Modern Number Theory"

Richard Ganaye

September 1, 2019

1 Chapter 1

Ex 1.1 Let a and b be nonzero integers. We can find nonzero integers q and r such that a = qb + r where $0 \le r < b$. Prove that (a, b) = (b, r).

Proof. Notation: if a, b are integers in \mathbb{Z} , $a \wedge b$ is the non negative greatest common divisor of a, b, the generator in $\mathbb{N} = \{0, 1, 2, \dots\}$ of the ideal $(a, b) = a\mathbb{Z} + b\mathbb{Z}$.

Let $d \in \mathbb{Z}$.

- If $d \mid a, d \mid b$, then $d \mid a qb = r$, so $d \mid b, d \mid r$.
- If $d \mid b, d \mid r$, then $d \mid qb + r = a$, so $d \mid a, d \mid b$.

$$\forall d \in \mathbb{Z}, \ (d \mid b, d \mid r) \iff (d \mid a, d \mid b).$$

If a = bq + r, the set of common divisors of a, b is equal to the set of common divisors of b, r.

As $a \wedge b$ is the smallest positive element of this set, so is $b \wedge r$, we conclude that $a \wedge b = b \wedge r$.

Ex 1.2 If $r \neq 0$, we can find q_1 and r_1 such that $b = q_1r + r_1$, with $0 \leq r_1 < r$. Show that $(a,b) = (r,r_1)$. This process can be repeated. Show that it must end in finitely many steps. Show that the last nonzero remainder must equal (a,b). The process looks like

$$a = bq + r, 0 \le r < b$$

$$b = q_1r + r_1, 0 \le r_1 < r$$

$$r = q_2r_1 + r_2, 0 \le r_2 < r_1$$

$$\vdots$$

$$r_{k-1} = q_{k+1}r_k + r_{k+1}, 0 \le r_{k+1} < r_k$$

$$r_k = q_{k+2}r_{k+1}$$

Then $r_{k+1} = (a, b)$. This process of finding (a, b) is known as the Euclidean algorithm.

Proof. The Euclidian division of b by r gives $b = q_1r + r_1, 0 \le r_1 < r$. The result of exercise 1.1 applied to the couple (b, r) shows that

$$b \wedge r = r \wedge r_1$$
.

Let $N \in \mathbb{N}$. While the remainders $r_i, i \leq N$, are not equal to 0, we can define the sequences $(q_i), (r_i)$ by

$$r_{-1} = a, r_0 = b,$$
 $r_{i-1} = q_{i+1}r_i + r_{i+1}, \ 0 \le r_{i+1} < r_i \ 0 \le i \le N$

.

If no $r_i, i \in \mathbb{N}$, is equal to 0, we can continue this construction indefinitely. So we obtain a strictly decreasing sequence $(r_i)_{i \in \mathbb{N}}$ of positive numbers: it is impossible. Therefore, there exists an index k such as $r_{k+2} = 0$, this is the end of the algorithm.

$$a = bq + r,$$
 $0 \le r < b$
 $b = q_1r + r_1,$ $0 \le r_1 < r$
 $r = q_2r_1 + r_2,$ $0 \le r_2 < r_1$
 \vdots
 $r_{k-1} = q_{k+1}r_k + r_{k+1},$ $0 \le r_{k+1} < r_k$
 $r_k = q_{k+2}r_{k+1},$ $r_{k+2} = 0$

From exercise 1, $r_{i-1} \wedge r_i = r_i \wedge r_{i+1}, 0 \leq i \leq k$, so

$$a \wedge b = b \wedge r = \dots = r_k \wedge r_{k+1} = r_{k+1} \wedge r_{k+2} = r_{k+1} \wedge 0 = r_{k+1}.$$

The last non zero remainder is the gcd of a, b.

Ex 1.3 Calculate (187, 221), (6188, 4709), (314, 159).

Proof. With direct instructions in Python, we obtain :

This gives the equalities

$$187 = 0 \times 221 + 187$$
$$221 = 1 \times 187 + 34$$
$$187 = 5 \times 34 + 17$$
$$34 = 2 \times 17 + 0$$

So $187 \land 221 = 17$.

With the same instructions, we obtain

$$6188 = 1 \times 4709 + 1479$$

$$4709 = 3 \times 1479 + 272$$

$$1479 = 5 \times 272 + 119$$

$$272 = 2 \times 119 + 34$$

$$119 = 3 \times 34 + 17$$

$$34 = 2 \times 17 + 0$$

 $6188 \wedge 4709 = 17.$ Finally

$$314 = 1 \times 159 + 155$$

$$159 = 1 \times 155 + 4$$

$$155 = 38 \times 4 + 3$$

$$4 = 1 \times 3 + 1$$

$$3 = 3 \times 1 + 0$$

 $314 \wedge 159 = 1.$

The Python script which gives the gcd is very concise:

def gcd(a,b):

Ex 1.4 Let d = (a, b). Show how one can use the Euclidean algorithm to find numbers m and n such that am + bn = d. (Hint: In Exercise 2 we have that $d = r_{k+1}$. Express r_{k+1} in terms of r_k and r_{k+1} , then in terms of r_{k-1} and r_{k-2} , etc.).

Proof. With a slight modification of the notations of exercise 2, we note the Euclid's algorithm under the form

$$r_0 = a, r_1 = b,$$
 $r_i = r_{i+1}q_{i+1} + r_{i+2},$ $0 < r_{i+2} < r_{i+1}, 0 \le i < k,$ $r_k = q_{k+1}r_{k+1}, r_{k+2} = 0$

We show by induction on i $(i \le k+1)$ the proposition

$$P(i): \exists (m_i, n_i) \in \mathbb{Z} \times \mathbb{Z}, \ r_i = am_i + bn_i.$$

• $r_0 = a = 1.a + 0.b$. Define $m_0 = 1, n_0 = 0$. We obtain $r_0 = am_0 + bn_0$, then P(0) is true.

 $r_1 = b = 0.a + 1.b$. Define $m_1 = 0, n_1 = 1$. We obtain $r_1 = am_1 + bn_1$, then P(1) is true.

• Suppose for $0 \le i < k$ the induction hypothesis P(i) et P(i+1):

$$r_i = am_i + bn_i, m_i, n_i \in \mathbb{Z}$$

$$r_{i+1} = am_{i+1} + bn_{i+1}, m_{i+1}, n_{i+1} \in \mathbb{Z}$$

Then $r_{i+2} = r_i - r_{i+1}q_{i+1} = a(m_i - q_{i+1}m_{i+1}) + b(n_i - q_{i+1}n_{i+1}).$

If we define $m_{i+1} = m_i - q_{i+1}m_{i+1}$, $n_{i+1} = n_i - q_{i+1}n_{i+1}$, we obtain $r_{i+2} = am_{i+2} + bn_{i+2}$, $m_{i+2}, n_{i+2} \in \mathbb{Z}$, so P(i+2).

• The conclusion is that P(i) is true for all $i, 0 \le i \le k+1$, in particular $r_{k+1} = am_{k+1} + bn_{k+1}$, that is

$$a \wedge b = d = am + bn$$
,

where $m = m_{k+1}, n = n_{k+1} \in \mathbb{Z}$.

Ex 1.5 Find m and n for the pairs a and b given in Ex 1.3

Proof. From exercises 1.3, 1.4, we know that the sequences $(r_i), (m_i), (n_i)$ are given by

$$r_0 = a, r_1 = b$$

 $m_0 = 1, m_1 = 0$
 $n_0 = 0, n_1 = 1$

and for all i < k,

$$r_{i+2} = r_i - q_{i+1}r_{i+1}$$

$$m_{i+2} = m_i - q_{i+1}m_{i+1}$$

$$n_{i+2} = n_i - q_{i+1}n_{i+1}$$

and for all i

17 0 6 -13 -5 11

$$r_i = m_i a + n_i b.$$

This gives the direct instructions in Python:

```
>>> a,b = 187, 221
>>> r0,r1,m0,m1,n0,n1 = a,b,1,0,0,1
>>> q = r0//r1;
>>> q = r0//r1; r0,r1,m0,m1,n0,n1 = r1, r0 -q*r1,m1, m0 -q*m1, n1, n0 - q*n1
>>> print(r0,r1,m0,m1,n0,n1)
221 187 0 1 1 0
>>> q = r0//r1; r0,r1,m0,m1,n0,n1 = r1, r0 -q*r1,m1, m0 -q*m1, n1, n0 - q*n1
>>> print(r0,r1,m0,m1,n0,n1)
187 34 1 -1 0 1
>>> q = r0//r1; r0,r1,m0,m1,n0,n1 = r1, r0 -q*r1,m1, m0 -q*m1, n1, n0 - q*n1
>>> print(r0,r1,m0,m1,n0,n1)
34 17 -1 6 1 -5
>>> q = r0//r1; r0,r1,m0,m1,n0,n1 = r1, r0 -q*r1,m1, m0 -q*m1, n1, n0 - q*n1
>>> print(r0,r1,m0,m1,n0,n1)
```

So

$$17 = 187 \land 221 = 6 \times 187 - 5 \times 221.$$

Similarly

$$17 = 6188 \land 4709 = 121 \times 6188 - 159 \times 4709.$$
$$1 = 314 \land 159 = -40 \times 314 + 79 \times 159.$$

We obtain the same results with the following Python script:

```
def bezout(a,b):
    """input : entiers a,b
        output : tuple (x,y,d),
        (x,y) solution de ax+by = d, d = pgcd(a,b)
    """
    (r0,r1)=(a,b)
    (u0,v0) = (1,0)
    (u1,v1) = (0,1)
    while r1 != 0:
        q = r0 // r1
        (r2,u2,v2) = (r0 - q*r1,u0 - q*u1,v0 - q*v1)
        (r0,r1) = (r1,r2)
        (u0,u1) = (u1,u2)
        (v0,v1) = (v1,v2)
    return (u0,v0,r0)
```

Ex 1.6 Let $a, b, c \in \mathbb{Z}$. Show that the equation ax + by = c has solutions in integers iff (a, b)|c.

Proof. Let $d = a \wedge b$.

- If $ax + by = c, x, y \in \mathbb{Z}$, as $d \mid a, d \mid b, d \mid ax + by = c$.
- Reciprocally, if $d \mid c$, then c = dc', $c' \in \mathbb{Z}$.

From Prop. 1.3.2., $d\mathbb{Z} = a\mathbb{Z} + b\mathbb{Z}$, so d = au + bv, $u, v \in \mathbb{Z}$, and c = dc' = a(c'u) + b(c'v) = ax + by, where x = c'u, y = c'v are integers.

Conclusion:

$$\exists (x,y) \in \mathbb{Z} \times \mathbb{Z}, \ ax + by = c \iff a \wedge b \mid c.$$

Ex 1.7 Let d = (a, b) and a = da' and b = db'. Show that (a', b') = 1.

Proof. Suppose $d \neq 0$ (if d = 0, then a = b = 0, and a', b' are any numbers in \mathbb{Z} and the result may be false, so we must suppose $d \neq 0$).

As d = am + bn, $m, n \in \mathbb{Z}$, d = d(a'm + b'n), so 1 = a'm + b'n, which proves $a' \wedge b' = 1$. conclusion: if $d = a \wedge b \neq 0$, and a = da', b = db', then $a' \wedge b' = 1$.

Ex. 1.8 Let x_0 and y_0 be a solution to ax + by = c. Show that all solutions have the form $x = x_0 + t(b/d)$, $y = y_0 - t(a/d)$, where d = (a, b) and $t \in \mathbb{Z}$.

Proof. Suppose $a \neq 0, b \neq 0$.

Let x_0 and y_0 be a solution to ax + by = c.

If (x, y) is any solution of the same equation,

$$ax + by = c$$
$$ax_0 + by_0 = c,$$

then

$$a(x - x_0) = -b(y - y_0),$$

so

$$\frac{a}{d}(x-x_0) = -\frac{b}{d}(y-y_0).$$

Let a' = a/d, b' = b/d: from ex. 1.7, we know that $a' \wedge b' = 1$.

As $a'(x-x_0) = -b'(y-y_0)$, $b' \mid a'(x-x_0)$, and $b' \wedge a' = 1$, so (Gauss' Lemma : prop. 1.1.1) $b' \mid x - x_0$.

There exists $t \in \mathbb{Z}$ such that $x - x_0 = tb'$. Then $a'tb' = -b'(y - y_0)$. As $b \neq 0$, $b' \neq 0$, so $a't = -(y - y_0)$:

$$x = x_0 + t(b/d)$$
$$y = y_0 - t(a/d)$$

Reciprocally, $a(x_0 + t(b/d)) + b(y_0 - t(a/d)) = ax_0 + by_0 = c$.

Conclusion: if $a \neq 0, b \neq 0$, and $ax_0 + by_0 = c$,

$$ax + by = c \iff \exists t \in \mathbb{Z}, \ x = x_0 + t(b/d), y = y_0 - t(a/d).$$

Ex. 1.9 Suppose that $u, v \in \mathbb{Z}$ and that (u, v) = 1. If $u \mid n$ and $v \mid n$, show that $uv \mid n$. Show that this is false if $(u, v) \neq 1$.

Proof. As $u \mid n$, n = uq, $q \in \mathbb{Z}$, so $v \mid n = uq$, and $v \wedge u = 1$, so (Gauss' lemma : prop. 1.1.1), $v \mid q : q = vl$, $l \in \mathbb{Z}$, and $n = uvl : uv \mid n$.

If the case $u \wedge v \neq 1$, we give the counterexample $6 \mid 18, 9 \mid 18$, but $6 \times 9 \nmid 18$.

Ex. 1.10 Suppose that (u, v) = 1. Show that (u + v, u - v) is either 1 or 2.

Proof. Let $d = u + v \wedge u - v$. Then $d \mid u + v, d \mid (u - v, \text{ so } d \mid 2u = (u + v) + (u - v)$ and $d \mid 2v = (u + v) - (u - v)$. So $d \mid (2u) \wedge (2v) = 2(u \wedge v) = 2$. As $d \geq 0$, d = 1 or d = 2.

Ex. 1.11 *Show that* (a, a + k) | k.

Proof. Let
$$d = a \wedge (a + k)$$
. As $d \mid a, d \mid (a + k), d \mid k = (a + k) - a$. Conclusion : $a \wedge (a + k) \mid k$.

Ex. 1.12 Suppose that we take several copies of a regular polygon and try to fit them evenly about a common vertex. Prove that the only possibilities are six equilateral triangles, four squares, and three hexagons.

Proof. Let n be the number of sides of the regular polygon, m the number of sides starting from a summit in the lattice, α the measure of the exterior angle, β the measure of the interior angle (in radians) $(\alpha + \beta = \pi)$.

Then $\alpha = 2\pi/n, \beta = \pi - 2\pi/n$.

 $m\beta = 2\pi, m(\pi - 2\pi/n) = 2\pi, m(1 - 2/n) = 2$, so

$$\frac{1}{m} + \frac{1}{n} = \frac{1}{2}, \qquad m > 0, n > 0.$$
 (1)

As this equation is symmetric in m, n, we may suppose first $m \leq n$.

In this case $1/m \ge 1/n$, so $2/n \le 1/2$: $n \ge 4$.

If n > 6, 1/n < 1/6, 1/m = 1/2 - 1/n > 1/2 - 1/6 = 1/3, so m < 3, $m \le 2$: m = 1 or m = 2.

If m = 1, n < 0: it is impossible. If m = 2, 1/n = 0: also impossible. Therefore $n \le 6$: $4 \le n \le 5$. If n = 4, m = 4. if n = 5, n = 10/3: impossible. if n = 6, m = 3. Using the symetry, the set of solutions of (1) is

$$S = \{(3,6), (6,3), (4,4)\},\$$

corresponding with the usual lattices composed of equilateral triangles, squares or hexagons.

Ex. 1.13 Let $n_1, n_2, \dots, n_s \in \mathbb{Z}$. Define the greatest common divisor d of n_1, n_2, \dots, n_s and prove that there exist integers m_1, m_2, \dots, m_s such that $n_1m_1 + n_2m_2 + \dots + n_sm_s = d$.

Proof. Let $n_1, n_2, \dots, n_s \in \mathbb{Z}$. The ideal of \mathbb{Z} , $(n_1, \dots, n_s) = n_1 \mathbb{Z} + \dots + n_s \mathbb{Z}$ is principal, so there exists an unique $d \in \mathbb{Z}$, $d \geq 0$ such that

$$n_1\mathbb{Z} + \dots + n_s\mathbb{Z} = d\mathbb{Z} \quad (d > 0).$$

We define

$$d = \gcd(n_1, \dots, n_s) \iff n_1 \mathbb{Z} + \dots + n_s \mathbb{Z} = d \mathbb{Z} \text{ and } d \ge 0.$$
 (2)

The characterization of the gcd is

$$d = \gcd(n_1, \cdots, n_s) \iff$$

$$(i) \ d \ge 0 \tag{3}$$

$$(ii) \ d \mid n_1, \cdots, d \mid n_s \tag{4}$$

$$(iii) \ \forall \delta \in \mathbb{Z}, \ (\delta \mid n_1, \dots, \delta \mid n_s) \Rightarrow \delta \mid d$$
 (5)

(⇒) Indeed, if we suppose (1), then $d \geq 0$, and $n_1 = n_1.1 + n_2.0 + \cdots + n_s.0 \in n_1\mathbb{Z} + \cdots + n_s\mathbb{Z} = d\mathbb{Z}$, so $d \mid n_1$. Similarly $d \mid n_i, 1 \leq i \leq s$ so (i)(ii) are true. if $\delta \mid n_i, 1 \leq i \leq s$, as $d = n_1m_1 + \cdots + n_sm_s, m_1, \cdots, m_s \in \mathbb{Z}$, then $\delta \mid d$.

(\Leftarrow)Suppose that d verify (i)(ii)(iii). From (ii), we see that $n_i\mathbb{Z} \subset d\mathbb{Z}, i = 1, \dots, s$, so $n_1\mathbb{Z} + \dots + n_s\mathbb{Z} \subset d\mathbb{Z}$.

As \mathbb{Z} is a principal ring, there exists $\delta \geq 0$ such that $n_1 \mathbb{Z} + \cdots + n_s \mathbb{Z} = \delta \mathbb{Z}$. $n_i \in$ $n_1\mathbb{Z}+\cdots+n_s\mathbb{Z}$ so $n_i\in\delta\mathbb{Z},\ i=1,\cdots,s:\delta\mid n_1,\cdots,\delta\mid n_s.$ From (iii), we deduce $\delta\mid d$. As $\delta \mathbb{Z} \subset d\mathbb{Z}, d \mid \delta$, with $d \geq 0, \delta \geq 0$. Consequently, $d = \delta$ and $n_1 \mathbb{Z} + \cdots + n_s \mathbb{Z} = d \mathbb{Z}, d \geq 0$, so $d = \gcd(n_1, \cdots, n_s)$.

At last, as $n_1\mathbb{Z} + \cdots + n_s\mathbb{Z} = d\mathbb{Z}$, there exist integers m_1, m_2, \cdots, m_s such that $n_1m_1 + n_2m_2 + \dots + n_sm_s = d.$

Ex. 1.14 Discuss the solvability of $a_1x_1 + a_2x_2 + \cdots + a_rx_r = c$ in integers. (Hint: Use Exercise 13 to extend the reasoning behind Exercise 6.)

Proof. Let $a_1, a_2, \dots, a_r \in \mathbb{Z}$.

Note $gcd(a_1, a_2, \dots, a_r) = a_1 \wedge a_2 \wedge \dots \wedge a_r$. The following result generalizes Ex. 6:

$$\exists (x_1, x_2, \cdots, x_r) \in \mathbb{Z}^r, \ a_1x_1 + a_2x_2 + \cdots + a_rx_r = c \iff a_1 \land a_2 \land \cdots \land a_r \mid c.$$

Let $d = a_1 \wedge a_2 \wedge \cdots \wedge a_r$.

- If $a_1x_1 + a_2x_2 + \cdots + a_rx_r = c$, as $d \mid a_1, \cdots, d \mid a_r, d \mid a_1x_1 + a_2x_2 + \cdots + a_rx_r = c$.
- Reciprocally, if $d \mid c$, then $c = dc', c' \in \mathbb{Z}$.

As $d\mathbb{Z} = a_1\mathbb{Z} + a_2\mathbb{Z} + \dots + a_r\mathbb{Z}$, so $d = a_1m_1 + a_2m_2 + \dots + a_rm_r$, $m_1, m_2, \dots, m_r \in \mathbb{Z}$. $c = dc' = a_1(m_1c') + \cdots + a_r(m_rc') = a_1x_1 + \cdots + a_rx_r$, where $x_i = m_ic', i = 1, 2, \cdots, r$.

Ex. 1.15 Prove that $a \in \mathbb{Z}$ is the square of another integer iff $\operatorname{ord}_n(a)$ is even for all primes p. Give a generalization.

Proof. Suppose $a = b^2, b \in \mathbb{Z}$. Then $\operatorname{ord}_p(a) = 2\operatorname{ord}_p(b)$ is even for all primes p.

Reciprocally, suppose that $\operatorname{ord}_p(a)$ is even for all primes p. We must also suppose $a \ge 0$. Let $a = \prod p^{a(p)}$ the decomposition of a in primes. As a(p) is even, a(p) = 2b(p)

for an integer b(p) function of the prime p. Let $b = \prod p^{b(p)}$. Then $a = b^2$.

With a similar demonstration, we obtain the following generalization for each integer $a \in \mathbb{Z}, a > 0$:

$$a = b^n$$
 for an integer $b \in \mathbb{Z}$ iff $n \mid \operatorname{ord}_p(a)$ for all primes p .

Ex. 1.16 If (u, v) = 1 and $uv = a^2$, show that both u and v are squares.

Proof. Here $u, v \in \mathbb{N}$, where $\mathbb{N} = \{0, 1, 2, \dots\}$.

For all primes p such that $p \mid u$, $\operatorname{ord}_p(u) + \operatorname{ord}_p(v) = 2 \operatorname{ord}_p(a)$. As $u \wedge v = 1$ and $p \mid u, p \nmid v$, so $\operatorname{ord}_p(v) = 0$. Consequently, $\operatorname{ord}_p(u)$ is even for all prime p such that $p \mid u$. From Exercise 1.15, we can conclude that u is a square. Similarly, v is a square.

Ex. 1.17 Prove that the square root of 2 is irrational, i.e., that there is no rational number r = a/b such that $r^2 = 2$.

Proof. Suppose there exists $r \in \mathbb{Q}$, r > 0 such that $r^2 = 2$. Then $r = a/b, a \in \mathbb{N}^*, b \in \mathbb{N}^*$. With $d = a \wedge b$, a = da', b = db', $a' \wedge b' = 1$, so r = a'/b', $a' \wedge b' = 1$, so we may suppose $r = a/b, a > 0, b > 0, a \wedge b = 1$ and $a^2 = 2b^2$.

 a^2 is even, then a is even (indeed, if a is odd, $a=2k+1, k\in\mathbb{Z}, a^2=4k^2+4k+1=$ $2(2k^2 + 2k) + 1$ is odd).

So $a = 2A, A \in \mathbb{N}$, then $4A^2 = 2b^2, 2A^2 = b^2$.

With the same reasoning, b^2 is even, then b is even : $b=2B, B \in \mathbb{N}$. $2 \mid a, 2 \mid b, 2 \mid a \wedge b$, in contradiction with $a \wedge b = 1$.

Conclusion: $\sqrt{2}$ is irrational.

Ex. 1.18 Prove that $\sqrt[n]{m}$ is irrational if m is not the n-th power of an integer.

Proof. Here $m \in \mathbb{N}$.

Suppose that $r = \sqrt[n]{m} \in \mathbb{Q}$. As $r \ge 0$, r = a/b, $a \ge 0$, b > 0, $a \land b = 1$, and $r^n = m$, so $a^n = mb^n$.

For all primes p, n ord_p $(a) = \operatorname{ord}_p(m) + n$ ord_p(b), so $n \mid \operatorname{ord}_p(m)$.

From Ex. 1.15, we conclude that m is a n-th power.

Conclusion: if $m \ge 0$ is not the *n*-th power of an integer, $\sqrt[n]{m}$ is irrational.

Ex. 1.19 Define the least common multiple of two integers a and b to be an integer m such that $a \mid m, b \mid m$, and m divides every common multiple of a and b. Show that such an m exists. It is determined up to sign. We shall denote it by [a, b].

Proof. As $a\mathbb{Z} \cap b\mathbb{Z}$ is an ideal of \mathbb{Z} , and \mathbb{Z} is a principal ideal domain, there exists an unique $m \geq 0$ such that $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$. So by definition,

$$m = [a, b] \iff a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z} \text{ and } m \geq 0.$$

We may note also $[a, b] = a \vee b$.

characterization of lcm:

$$\begin{split} m &= a \vee b \iff \\ (i) \ m &\geq 0 \\ (ii) \ a \mid m, b \mid m \\ (iii) \ \forall \mu \in \mathbb{Z}, (a \mid \mu, b \mid \mu) \Rightarrow m \mid \mu \end{split}$$

- (⇒) By definition, $m \ge 0$. $m \in m\mathbb{Z} = a\mathbb{Z} \cap b\mathbb{Z}$, so $a \mid m$ and $b \mid m$: (ii) is verified. If $\mu \in \mathbb{Z}$ is such that $a \mid \mu, b \mid \mu$, then $\mu \in a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$, so $m \mid \mu$: (iii) is true.
- (\Leftarrow) Suppose that m verifies (i),(ii),(iii). Let m' such that $a\mathbb{Z} \cap b\mathbb{Z} = m'\mathbb{Z}, m' \geq 0$. We show that m = m'.

As $m' \in a\mathbb{Z} \cap b\mathbb{Z}$, $a \mid m', b \mid m'$, so from (iii) $m \mid m'$. From (ii), we see that $m \in a\mathbb{Z} \cap b\mathbb{Z} = m'\mathbb{Z}$, so $m' \mid m, m \geq 0, m' \geq 0$. The conclusion is m = m' and $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}, m \geq 0$, so $m = a \wedge b$.

Ex. 1.20 Prove the following:

- (a) $\operatorname{ord}_p[a, b] = \max(\operatorname{ord}_p(a), \operatorname{ord}_p(b)).$
- (b) (a,b)[a,b] = ab.
- (c) (a + b, [a, b]) = (a, b).

Proof. (a) Let $a=\varepsilon\prod_p p^{a(p)}, b=\varepsilon'\prod_p p^{b(p)}, \varepsilon, \varepsilon'=\pm 1$, and

$$m = \prod_{p} p^{\max(a(p), b(p))}.$$

Then

(i) $m \ge 0$.

- (ii) As $a(p) \leq \max(a(p), b(p))$, $p^{a(p)} \mid p^{\max(a(p), b(p))}$, so $a \mid m$. Similarly, $b \mid m$.
- (iii) If $\mu = \varepsilon'' \prod_{p} p^{c(p)}$ is a common multiple of a and b, then for all primes p, $a(p) \le c(p) \log p$

 $c(p), b(p) \leq c(p)$, so $\max(a(p), b(p) \leq c(p))$, so $m \mid \mu$. m verifies the characterisation of lcm:

$$m = a \lor b = \prod_{p} p^{\max(a(p), b(p))}.$$

So $\operatorname{ord}_p[a, b] = \max(\operatorname{ord}_p(a), \operatorname{ord}_p(b)).$

(b) Similarly, we prove that

$$a \wedge b = \prod_{p} p^{\min(a(p), b(p))}.$$

As $\max(a, b) + \min(a, b) = a + b$, we obtain

$$(a \lor b)(a \land b) = |ab|.$$

second proof (without decompositions in primes):

Let $d = a \wedge b$. If d = 0, then a = b = 0 and $(a \vee b)(a \wedge b) = ab$.

Suppose now that $d \neq 0$. There exists integers a', b' such that

$$a = da', b = db', a' \wedge b' = 1.$$

Let m = da'b': $a = da' \mid m$ and $b = db' \mid m$. If μ is a common multiple of a and b, then $d \mid \mu$, and $a' \mid \mu/d$, $b' \mid \mu/d$. As $a' \land b' = 1$, $a'b' \mid \mu/d$ (see Ex.1.9). so $m = da'b' \mid \mu$.

|m| verifies the characterization of lcm (Ex. 1.19), so $a \lor b = |m| = |da'b'| = |ab|/d$. Conclusion : $(a \lor b)(a \land b) = |ab|$.

(c) Let $\delta \in \mathbb{Z}$. If $\delta \mid a, \delta \mid b$, then $\delta \mid a + b$ and $\delta \mid a \vee b$.

Reciprocally, suppose that $\delta \mid a+b, \delta \mid a \vee b$.

Let $a', b' \in \mathbb{Z}$ such that $a = da', b = db', a' \wedge b' = 1$. Then $a \vee b = da'b'$, so

$$\delta \mid d(a'+b'),$$

$$\delta \mid da'b'.$$

Multiplying the first relation by b' and a', we obtain : $\delta \mid da'b' + db'^2, \delta \mid da'^2 + da'b'$. As $\delta \mid da'b'$, we obtain :

$$\delta \mid db'^2$$

$$\delta \mid da'^2$$

As $a'^2 \wedge b'^2 = 1$, $\delta \mid d(a'^2 \wedge b'^2) = d$, so $\delta \mid a, \delta \mid b$.

the set of divisors of a, b is the same that the set of divisors of $a + b, a \vee b$, so

$$(a+b, a \lor b) = a \land b.$$

2 Chapter 2

Ex 2.1 Show that k[x], with k a finite field, has infinitely many irreducible polynomials.

Proof. Suppose that the set S of irreducible polynomials is finite: $S = \{P_1, P_2, \dots, P_n\}$. Let $Q = P_1 P_2 \cdots P_n + 1$. As S contains the polynomials $x - a, a \in k$, $\deg(Q) \ge q = |k| > 1$. Thus Q is divisible by an irreducible polynomial. As S contains all the irreducible polynomials, there exists $i, 1 \le i \le n$, such that $P_i \mid Q = P_1 P_2 \cdots P_n + 1$, so $P_i \mid 1$, and P_i is an unit, in contradiction with the irreducibility of P_i .

Conclusion : k[x] has infinitely many irreducible polynomials. As each polynomial has only a finite number of associates, there exists infinitely many monic irreducible polynomials.

Ex. 2.2. Let $p_1, p_2, \dots, p_t \in \mathbb{Z}$ be primes and consider the set of all rational numbers r = a/b, $a, b \in \mathbb{Z}$, such that $\operatorname{ord}_{p_i} a \geq \operatorname{ord}_{p_i} b$ for $i = 1, 2, \dots, t$. Show that this set is a ring and that up to taking associates p_1, p_2, \dots, p_t are the only primes.

Proof. Let R the set of such rationals. Simplifying these fractions, we obtain

$$r \in R \iff \exists p \in \mathbb{Z}, \exists q \in \mathbb{Z} \setminus \{0\}, \ r = \frac{p}{q}, \ q \land p_1 p_2 \cdots p_t = 1.$$

- $1 = 1/1 \in R$.
- if $r, r' \in R$, r = p/q, r' = p'/q', with $q \wedge p_1 p_2 \cdots p_t = 1, q' \wedge p_1 p_2 \cdots p_t = 1$. then $qq' \wedge p_1 p_2 \cdots p_t = 1$, and $r r' = \frac{pq' qp'}{qq'}$, $rr' = \frac{pp'}{qq'}$, so $r r', rr' \in R$. Thus R is a subring of \mathbb{Q} .

If $r = a/b \in R$ is an unit of R, then $b/a \in R$, so $\operatorname{ord}_{p_i} a = \operatorname{ord}_{p_i}(b)$, $i = 1, \dots, t$. After simplification, r = p/q, with $p \wedge p_1 \cdots p_t = 1$, $q \wedge p_1 \cdots p_t = 1$, and such rationals are all units.

 $p_i, 1 \leq i \leq t$ is a prime: if $p_i \mid rs$ in R, where $r = a/b, s = c/d \in R$, then there exists $u = e/f \in R$ such that $rs = p_i u$, with b, d, e relatively prime with p_1, \dots, p_t . Then $acf = p_i bde$. As $p_i \wedge f = 1$, p_i divides a or c in \mathbb{Z} , so p_i divides r or s in R.

If $r = a/b \in R$, with $b \wedge p_1 \cdots p_r = 1$, $a = p_1^{k_1} \cdots p_t^{k_t} v, v \in \mathbb{Z}, k_i \geq 0, i = 1, \cdots, t$. So $r = up_1^{k_1} \cdots p_t^{k_t}$, where u = v/b is an unit.

Let π be any prime in R. As any element in R, $\pi = up_1^{k_1} \cdots p_t^{k_t}$, $k_i \geq 0$, u = a/b an unit. $u^{-1}\pi = p_1^{k_1} \cdots p_t^{k_t}$, so $\pi \mid p_1^{k_1} \cdots p_t^{k_t}$ (in R). As π is a prime in R, $\pi \mid p_i$ for an index $i = 1, \dots, t$. Moreover $p_i \mid p$, so p_i and π are associate.

Conclusion: the primes in R are the associates of p_1, \dots, p_t .

Ex. 2.3 Use the formula for $\phi(n)$ to give a proof that there are infinitely many primes. [Hint: If p_1, p_2, \dots, p_t were all the primes, then $\phi(n) = 1$, where $n = p_1 p_1 \dots p_t$.]

Proof. Let $\{p_1, \dots, p_t\}$ the finite set of primes, with $p_1 < p_2 \dots < p_t$, and $n = p_1 \dots p_t$. By définition, $\phi(n)$ is the number of integers $k, 1 \le k \le n$, such that $k \land n = 1$. From the existence of decomposition in primes, if $k \ge 1$, $k = p_1^{k_1} \dots p_t^{k_t}$, where $k_i \ge 0$, $i = 1, \dots t$. So $k \land n = 1$ if and only if k = 1. Thus $\phi(n) = 1$ The formula for $\phi(n)$ gives $\phi(n) = (p_1 - 1) \dots (p_t - 1) = 1$. As $p_i \ge 2$, this equation implies that $p_1 = p_2 = \dots = p_t = 2$, so t = 1, and the only prime number is 2. But 3 is also a prime number: this is a contradiction.

Conclusion: there are infinitely many prime numbers.

Ex. 2.4 If a is a nonzero integer, then for n > m show that $(a^{2^n} + 1, a^{2^m} + 1) = 1$ or 2 depending on whether a is odd or even.

Proof. Let $d = a^{2^n} + 1 \wedge a^{2^m} + 1$. Then $d \mid a^{2^n} + 1, d \mid a^{2^m} + 1$. So

$$a^{2^n} \equiv -1 \pmod{d}$$
$$a^{2^m} \equiv -1 \pmod{d}$$

As n > m, 2^{n-m} is even, so

$$-1 \equiv a^{2^n} = (a^{2^m})^{2^{n-m}} \equiv (-1)^{2^{n-m}} \equiv 1 \pmod{d}.$$

 $-1 \equiv 1 \pmod{d}$, then $d \mid 2 \pmod{2}$. Thus d = 1 or d = 2.

If a is even, $a^{2^n} + 1$ is odd, so d = 1. If a is odd, both $a^{2^n} + 1$, $a^{2^m} + 1$ are even, so d = 2.

Use the result of Ex. 2.4 to show that there are infinitely many primes. (This proof is due to G.Polya.)

Proof. Let $F_n = 2^{2^n} + 1, n \in \mathbb{N}$. We know from Ex. 2.4 that $n \neq m \Rightarrow F_n \wedge F_m = 1$. Define p_n as the least prime divisor of F_n . If $n \neq m, F_n \wedge F_m = 1$, so $p_n \neq p_m$. The application $\varphi: \mathbb{N} \to \mathbb{N}, n \mapsto p_n$ is injective (one to one), so $\varphi(\mathbb{N})$ is an infinite set of prime numbers.

Ex. 2.6 For a rational number r let |r| be the largest integer less than or equal to r, $e.g., \lfloor \frac{1}{2} \rfloor = 0, \lfloor 2 \rfloor = 2, \ and \lfloor 3 + \frac{1}{3} \rfloor = 3. \ Prove \ ord_p \ n! = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor \cdots$

Proof. The number N_k of multiples m of p^k which are not multiple of p^{k+1} , where $1 \leq m \leq n$, is

$$N_k = \left| \frac{n}{p^k} \right| - \left| \frac{n}{p^{k+1}} \right|.$$

Each of these numbers brings the contribution k to the sum $\operatorname{ord}_p n! = \sum_{k=1}^n \operatorname{ord}_p k$. Thus

$$\operatorname{ord}_{p} n! = \sum_{k \geq 1} k \left(\left\lfloor \frac{n}{p^{k}} \right\rfloor - \left\lfloor \frac{n}{p^{k+1}} \right\rfloor \right)$$

$$= \sum_{k \geq 1} k \left\lfloor \frac{n}{p^{k}} \right\rfloor - \sum_{k \geq 1} k \left\lfloor \frac{n}{p^{k+1}} \right\rfloor$$

$$= \sum_{k \geq 1} k \left\lfloor \frac{n}{p^{k}} \right\rfloor - \sum_{k \geq 2} (k-1) \left\lfloor \frac{n}{p^{k}} \right\rfloor$$

$$= \left\lfloor \frac{n}{p} \right\rfloor + \sum_{k \geq 2} \left\lfloor \frac{n}{p^{k}} \right\rfloor$$

$$= \sum_{k \geq 1} \left\lfloor \frac{n}{p^{k}} \right\rfloor$$

Note that $\left|\frac{n}{p^k}\right| = 0$ if $p^k > n$, so this sum is finite.

Ex. 2.7 Deduce from Ex. 2.6 that $\operatorname{ord}_p n! \leq n/(p-1)$ and that $\sqrt[n]{n!} \leq \prod_{p \leq n} p^{1/(p-1)}$. (The original statement $\prod_{p|n} p^{1/(p-1)}$ was modified.)

Proof.

$$\operatorname{ord}_{p} n! = \sum_{k>1} \left\lfloor \frac{n}{p^{k}} \right\rfloor \le \sum_{k>1} \frac{n}{p^{k}} = \frac{n}{p} \frac{1}{1 - \frac{1}{p}} = \frac{n}{p-1}$$

The decomposition of n! in prime factors is $n! = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ where $\alpha_i = \operatorname{ord}_{p_i} n! \le \frac{n}{p_i - 1}$, and $p_i \le n, \ i = 1, 2, \cdots, k$.

$$\begin{split} n! &\leq p_1^{\frac{n}{p_1 - 1}} p_2^{\frac{n}{p_2 - 1}} \cdots p_k^{\frac{n}{p_n - 1}} \\ \sqrt[n]{n!} &\leq p_1^{\frac{1}{p_1 - 1}} p_2^{\frac{1}{p_2 - 1}} \cdots p_k^{\frac{1}{p_n - 1}} \\ &\leq \prod_{p \leq n} p^{\frac{1}{p - 1}} \end{split}$$

(the values of p in this product describe all prime numbers $p \leq n$.)

Use Exercise 7 to show that there are infinitely many primes.

Proof. If the set \mathbb{P} of prime numbers was finite, we obtain from Ex.2.7, for all $n \geq 2$:

$$\sqrt[n]{n!} \le C = \prod_{p \in \mathbb{P}} p^{\frac{1}{p-1}},$$

where C is an absolute constant.

Yet $\lim_{n\to\infty} \sqrt[n]{n!} = +\infty$. Indeed

$$\ln(\sqrt[n]{n!}) = \frac{1}{n}(\ln 1 + \ln 2 + \dots + \ln n)$$

As ln is an increasing function,

$$\int_{i-1}^{i} \ln t \, dt \le \ln i, \ i = 2, 3, \dots, n$$

So

$$\int_{1}^{n} \ln t \, dt = \sum_{i=2}^{n} \int_{i-1}^{i} \ln t \, dt \le \sum_{i=2}^{n} \ln i = \sum_{i=1}^{n} \ln i$$

Thus

$$\ln(\sqrt[n]{n!}) \ge \frac{1}{n} \int_{1}^{n} \ln t \, dt = \frac{1}{n} (n \ln n - n + 1) = \ln n - 1 + \frac{1}{n}$$

As $\lim_{n\to\infty} \ln n - 1 + \frac{1}{n} = +\infty$, $\lim_{n\to\infty} \ln(\sqrt[n]{n!}) = +\infty$, so $\lim_{n\to\infty} \sqrt[n]{n!} = +\infty$. So there exists n such that $\sqrt[n]{n!} \ge C$: this is a contradiction. $\mathbb P$ is an infinite set. \square

Ex. 2.9 A function on the integers is said to be multiplicative if f(ab) = f(a)f(b). whenever (a,b) = 1. Show that a multiplicative function is completely determined by its value on prime powers.

Proof. Let the decomposition of n in prime factors be $n=p_1^{k_1}\cdots p_t^{k_t}, p_1<\cdots< p_t$. As $p_i^{k_i}\wedge p_j^{k_j}=1$ for $i\neq j,\ i,j=1,\cdots,t,$

$$f(n) = f(p_1^{k_1} \cdots p_t^{k_t}) = f(p_1^{k_1}) \cdots f(p_t^{k_t})$$

(by induction on the number of prime factors.)

So f(n) is completely determined by its value on prime powers.

Ex. 2.10 If f(n) is a multiplicative function, show that the function $g(n) = \sum_{d|n} f(d)$ is also multiplicative.

Proof. If $n \wedge m = 1$,

$$g(nm) = \sum_{\delta \mid nm} f(\delta)$$
$$= \sum_{d \mid n, d' \mid m} f(dd')$$

Actually, if $d \mid n, d' \mid m$, so $\delta = dd' \mid nm$, and reciprocally, if $\delta \mid nm$, as $n \wedge m = 1$, there exist d, d' such that $d \mid n, d' \mid m$, and $\delta = dd'$.

If $d \mid n, d' \mid m$, with $n \wedge m = 1$, then $d \wedge d' = 1$, so

$$g(nm) = \sum_{d|n} \sum_{d'|m} f(d)f(d')$$
$$= \sum_{d|n} f(d) \sum_{d'|m} f(d')$$
$$= g(n)g(m)$$

g is a multiplicative function.

Ex. 2.11 Show that $\phi(n) = n \sum_{d|n} \mu(d)/d$ by first proving that $\mu(d)/d$ is multiplicative and then using Ex. 2.9 and 2.10.

Proof. Let's verify that μ is a multiplicative function. If $n \wedge m = 1$, then $n = p_1^{a_1} \cdots p_l^{a_l}$, $m = q_1^{b_1} \cdots q_r^{b_r}$, where $p_1, \cdots, p_l, q_1, \cdots q_r$ are distinct primes. Then the decomposition in prime factors of nm is $nm = p_1^{a_1} \cdots p_l^{a_l} q_1^{b_1} \cdots q_r^{b_r}$. If one of the a_i or one of the b_j is greater than 1, then $\mu(nm) = 0 = \mu(n)\mu(m)$. Otherwise, $n = p_1 \cdots p_l, m = q_1 \cdots q_r, nm = p_1 \cdots p_l q_1 \cdots q_r, \text{ and } \mu(nm) = (-1)^{l+r} = (-1)^l (-1)^r = (-1)^l (\mu(n)\mu(m)$. So

$$\frac{\mu(nm)}{nm} = \frac{\mu(n)}{n} \frac{\mu(m)}{m}.$$

that is, $n \mapsto \frac{\mu(n)}{n}$ is a multiplicative function.

From Ex.2.10, $n \mapsto \sum_{d|n} \frac{\mu(d)}{d}$ is also a multiplicative function, and so is ψ , where ψ is defined by

$$\psi(n) = n \sum_{d|n} \frac{\mu(d)}{d}.$$

To verify the equality $\phi = \psi$, it is suffisant from Ex. 2.9 to verify $\phi(p^k) = \psi(p^k)$ for all prime powers $p^k, k \ge 1$ ($\phi(1) = \psi(1) = 1$).

$$\psi(p^k) = p^k \sum_{d|p^k} \frac{\mu(p^k)}{p^k}$$
$$= p^k \left(\frac{\mu(1)}{1} + \frac{\mu(p)}{p}\right)$$

(The other terms are null.)

So

$$\psi(p^k) = p^k \left(1 - \frac{1}{p}\right) = p^k - p^{k-1} = \phi(p^k).$$

Thus $\phi = \psi$: for all $n \geq 1$,

$$\phi(n) = n \sum_{d|n} \frac{\mu(d)}{d}.$$

Ex. 2.12 Find formulas for $\sum_{d|n} \mu(d)\phi(d)$, $\sum_{d|n} \mu(d)^2\phi(d)^2$, and $\sum_{d|n} \mu(d)/\phi(d)$.

Proof. As μ, ϕ are multiplicative, so are $\mu\phi, \mu^2\phi^2, \mu/\phi$. We deduce from Ex. 2.10 that the three following functions F, G, H are multiplicative, defined by

$$F(n) = \sum_{d|n} \mu(d)\phi(d), G(n) = \sum_{d|n} \mu(d)^2 \phi(d)^2, H(n) = \sum_{d|n} \mu(d)/\phi(d),$$

so it is sufficient to compute their values on prime powers $p^k, k \ge 1$.

$$F(p^k) = \sum_{i=0}^k \mu(p^i)\phi(p^i)$$

= $\phi(1) - \phi(p) = 1 - (p-1) = 2 - p$

So $F(n) = \sum_{p|n} (2-p)$. Similarly,

$$G(p^k) = \sum_{i=0}^k \mu(p^i)^2 \phi(p^i)^2$$

= $\phi(1)^2 + \phi(p)^2 = 1 + (p-1)^2 = p^2 - 2p + 2$

$$H(p^k) = \sum_{i=0}^k \mu(p^i)/\phi(p^i)$$

= $1/\phi(1) - 1/\phi(p) = 1 - 1/(p-1) = (p-2)/(p-1)$

Ex. 2.13 Let $\sigma_k(n) = \sum_{d|n} d^k$. Show that $\sigma_k(n)$ is multiplicative and find a formula for it.

Proof. As $n \mapsto n^k$ is multiplicative, then so is σ_k (Ex. 2.10).

• Suppose $k \neq 0$.

If $n = p^{\alpha}$ is a prime power $(\alpha \ge 1)$,

$$\sigma_k(p^{\alpha}) = \sum_{i=0}^{\alpha} p^{ik}$$
$$= \frac{p^{(\alpha+1)k} - 1}{p^k - 1}$$

• if k = 0, $\sigma_0(n)$ is the number of divisors of n.

$$\sigma_0(p^{\alpha}) = \sum_{i=0}^{\alpha} 1$$
$$= \alpha + 1$$

Conclusion: if $n = p_1^{\alpha_1} \cdots p_t^{\alpha_t}$ is the decomposition of n in prime factors, then

$$\sigma_0(n) = (\alpha_1 + 1) \cdots (\alpha_t + 1),$$

$$\sigma_k(n) = \prod_{i=0}^t \frac{p_i^{(\alpha_i + 1)k} - 1}{p_i^k - 1} \ (k \neq 0).$$

Ex. 2.14 If f(n) is multiplicative, show that $h(n) = \sum_{d|n} \mu(n/d) f(d)$ is also multiplicative.

Proof. We show first that the Dirichlet product $f \circ g$ of two multiplicative functions f, g is multiplicative. Suppose that $n \wedge m = 1$. If $d \mid n, d' \mid m$, so $\delta = dd' \mid nm$, and reciprocally, if $\delta \mid nm$, as $n \wedge m = 1$, there exist d, d' such that $d \mid n, d' \mid m$, and $\delta = dd'$. Thus

$$(f \circ g)(nm) = \sum_{\delta \mid nm} f(\delta)g\left(\frac{m}{\delta}\right)$$

$$= \sum_{d \mid n, d' \mid m} f(dd')g\left(\frac{nm}{dd'}\right)$$

$$= \sum_{d \mid n} \sum_{d' \mid m} f(d)f(d')g\left(\frac{n}{d}\right)g\left(\frac{m}{d'}\right)$$

$$= \sum_{d \mid n} f(d)g\left(\frac{n}{d}\right) \sum_{d' \mid m} f(d')g\left(\frac{m}{d'}\right)$$

$$= (f \circ g)(n)(f \circ g)(m)$$

Applying this result with $g = \mu$, we obtain that $h(n) = \sum_{d|n} \mu(n/d) f(d)$ is multiplicative, if f is multiplicative.

Ex. 2.15 Show that

- (a) $\sum_{d|n} \mu(n/d)\nu(d) = 1$ for all n.
- (b) $\sum_{d|n} \mu(n/d)\sigma(d) = n$ for all n.

Proof. Here $\nu = \sigma_0, \sigma = \sigma_1$.

(a) From the Möbius Inversion Theorem, as $\nu(n) = \sum_{d|n} 1 = \sum_{d|n} I(d)$, where I(n) = 1 for all $n \ge 1$,

$$1 = I(n) = \sum_{d|n} \mu(n/d)\nu(d).$$

(b) From the same theorem, as $\sigma(n) = \sum_{d|n} d = \sum_{d|n} \mathrm{Id}(d)$, where $\mathrm{Id}(n) = n$ for all $n \ge 1$,

$$n = \operatorname{Id}(n) = \sum_{d|n} \mu(n/d)\sigma(d).$$

Ex. 2.16 Show that $\nu(n)$ is odd iff n is a square.

Proof. • If $n = a^2$ is a square, where $a = p_1^{k_1} \cdots p_t^{k_t}$, then $\nu(n) = (2k_1 + 1) \cdots (2k_t + 1)$ is odd.

- Reciprocally, if $n=q_1^{l_1}\cdots q_r^{l_r}$ is odd, then $(l_1+1)\cdots (l_r+1)$ is odd. So each l_i+1 is odd, and then l_i is even, for $i=1,2,\cdots,r:n$ is a square.
- **Ex. 2.17** Show that $\sigma(n)$ is odd iff n is a square or twice a square.

Proof. • Note that for all $r \ge 0$, $\sigma(2^r) = 1 + 2 + 2^2 + \dots + 2^r = 2^{r+1} - 1$ is always odd. If $p \ne 2$, $\sigma(p^{2k}) = 1 + p + p^2 + \dots + p^{2k}$ is a sum of 2k + 1 odd numbers, so is odd. So if $n = a^2$, or $n = 2a^2$, $a \in \mathbb{Z}$, $\sigma(n)$ is odd.

• Reciprocally, suppose that $\sigma(n)$ is odd, where $n = p_1^{k_1} p_2^{k_2} \cdots p_t^{k_t}$, with $p_1 = 2 < p_2 < \cdots < p_t$. Then

$$\sigma(n) = (2^{k_1+1} - 1) \frac{p_2^{k_2+1} - 1}{p_2 - 1} \cdots \frac{p_t^{k_t+1} - 1}{p_t - 1}$$

is odd. Then each $\frac{p_i^{k_i+1}-1}{p_i-1}=1+p_i+\cdots+p_i^{k_i}$ $(i=2,\cdots,t)$ is odd. As each $p_i^j, j=0,\cdots,k_i$ is odd, the number of terms k_i+1 is odd, so k_i is even $(i=2,\cdots,t)$. Thus n is a square, or twice a square.

Ex. 2.18 Prove that $\phi(n)\phi(m) = \phi((n,m))\phi([n,m])$.

Proof. Let p_1, \dots, p_r the common prime factors of n and m.

$$n = p_1^{\alpha_1} \cdots p_r^{\alpha_r} q_1^{\lambda_1} \cdots q_s^{\lambda_s}$$
$$m = p_1^{\beta_1} \cdots p_r^{\beta_r} s_1^{\mu_1} \cdots s_t^{\mu_t}$$

where $\alpha_i, \beta_i, \lambda_j, \mu_k \in \mathbb{N}^*$, $1 \le i \le r, 1 \le j \le s, 1 \le k \le t$ (the formula $\phi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1}$ is not valid if $\alpha = 0$). Then

$$n \wedge m = p_1^{\gamma_1} \cdots p_r^{\gamma_r}$$

$$n \vee m = p_1^{\beta_1} \cdots p_r^{\beta_r} q_1^{\lambda_1} \cdots q_s^{\lambda_s} s_1^{\mu_1} \cdots s_t^{\mu_t},$$

where $\gamma_i = \min(\alpha_i, \beta_i), \delta_i = \max(\alpha_i, \beta_i) \ (\gamma_i \ge 1, \delta_i \ge 1), 1 \le i \le r$. Then

$$\phi(n \wedge m) = \prod_{i=1}^{r} (p_i^{\gamma_i} - p_i^{\gamma_i - 1})$$

$$\phi(n \vee m) = \prod_{i=1}^{r} (p_i^{\delta_i} - p_i^{\delta_i - 1}) \prod_{i=1}^{s} (q_i^{\lambda_i} - q_i^{\lambda_i - 1}) \prod_{i=1}^{t} (s_i^{\mu_i} - s_i^{\mu_i - 1})$$

As $\alpha_i + \beta_i = \min(\alpha_i, \beta_i) + \max(\alpha_i, \beta_i) = \gamma_i + \delta_i, 1 \le i \le r$, then

$$\begin{split} \phi(n)\phi(m) &= \prod_{i=1}^{r} (p_{i}^{\alpha_{i}} - p_{i}^{\alpha_{i}-1}) \prod_{i=1}^{s} (q_{i}^{\lambda_{i}} - q_{i}^{\lambda_{i}-1}) \prod_{i=1}^{r} (p_{i}^{\beta_{i}} - p_{i}^{\beta_{i}-1}) \prod_{i=1}^{t} (s_{i}^{\mu_{i}} - s_{i}^{\mu_{i}-1}) \\ &= \prod_{i=1}^{r} \left[p_{i}^{\alpha_{i}+\beta_{i}} \left(1 - \frac{1}{p_{i}} \right)^{2} \right] \prod_{i=1}^{s} (q_{i}^{\lambda_{i}} - q_{i}^{\lambda_{i}-1}) \prod_{i=1}^{t} (s_{i}^{\mu_{i}} - s_{i}^{\mu_{i}-1}) \\ &= \prod_{i=1}^{r} \left[p_{i}^{\gamma_{i}+\delta_{i}} \left(1 - \frac{1}{p_{i}} \right)^{2} \right] \prod_{i=1}^{s} (q_{i}^{\lambda_{i}} - q_{i}^{\lambda_{i}-1}) \prod_{i=1}^{t} (s_{i}^{\mu_{i}} - s_{i}^{\mu_{i}-1}) \\ &= \prod_{i=1}^{r} (p_{i}^{\gamma_{i}} - p_{i}^{\gamma_{i}-1}) \prod_{i=1}^{r} (p_{i}^{\delta_{i}} - p_{i}^{\delta_{i}-1}) \prod_{i=1}^{s} (q_{i}^{\lambda_{i}} - q_{i}^{\lambda_{i}-1}) \prod_{i=1}^{t} (s_{i}^{\mu_{i}} - s_{i}^{\mu_{i}-1}) \\ &= \phi(n \land m)\phi(n \lor m) \end{split}$$

Ex. 2.19 Prove that $\phi(nm)\phi((n,m)) = (n,m)\phi(n)\phi(m)$.

Proof. With the notations of Ex. 2.18,

$$\phi(nm) = \prod_{i=1}^r p_i^{\alpha_i + \beta_i} \left(1 - \frac{1}{p_i} \right) \prod_{i=1}^s q_i^{\lambda_i} \left(1 - \frac{1}{q_i} \right) \prod_{i=1}^t s_i^{\mu_i} \left(1 - \frac{1}{s_i} \right)$$

$$\phi(n \wedge m) = \prod_{i=1}^r p_i^{\gamma_i} \left(1 - \frac{1}{p_i} \right)$$

so

$$\begin{split} (n \wedge m)\phi(n)\phi(m) &= \prod_{i=1}^{r} p_{i}^{\gamma_{i}} \prod_{i=1}^{r} \left[p_{i}^{\alpha_{i} + \beta_{i}} \left(1 - \frac{1}{p_{i}} \right)^{2} \right] \prod_{i=1}^{s} q_{i}^{\lambda_{i}} \left(1 - \frac{1}{q_{i}} \right) \prod_{i=1}^{t} s_{i}^{\mu_{i}} \left(1 - \frac{1}{s_{i}} \right) \\ &= \prod_{i=1}^{r} \left[p_{i}^{\alpha_{i} + \beta_{i} + \gamma_{i}} \left(1 - \frac{1}{p_{i}} \right)^{2} \right] \prod_{i=1}^{s} q_{i}^{\lambda_{i}} \left(1 - \frac{1}{q_{i}} \right) \prod_{i=1}^{t} s_{i}^{\mu_{i}} \left(1 - \frac{1}{s_{i}} \right) \\ &= \phi(nm)\phi(n \wedge m) \end{split}$$

Conclusion:

$$(n \wedge m)\phi(n)\phi(m) = \phi(nm)\phi(n \wedge m).$$

Ex. 2.20 Prove that $\prod_{d|n} d = n^{\nu(n)/2}$.

Proof. Let

$$n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$$

the decomposition of n in prime factors.

$$\left(\prod_{d|n} d\right)^2 = \prod_{d|n} d \prod_{d|n} d$$

$$= \prod_{d|n} d \prod_{\delta|n} \frac{n}{\delta} \qquad (\delta = n/d)$$

$$= n^{\nu(n)} \prod_{d|n} d \prod_{d|n} \frac{1}{d}$$

$$= n^{\nu(n)}$$

Conclusion:

$$\prod_{d|n} d = n^{\frac{\nu(n)}{2}}.$$

Ex. 2.21 Define $\wedge(n) = \log p$ if n is a power of p and zero otherwise. Prove that $\sum_{d|n} \mu(n/d) \log d = \wedge(n)$. [Hint: First calculate $\sum_{d|n} \wedge(d)$ and then apply the Möbius inversion formula.]

Proof.

$$\left\{ \begin{array}{rcl} \wedge(n) & = & \log p & \text{if } n = p^{\alpha}, \ \alpha \in \mathbb{N}^* \\ & = & 0 & \text{otherwise.} \end{array} \right.$$

Let $n=p_1^{\alpha_1}\cdots p_t^{\alpha_t}$ the decomposition of n in prime factors. As $\wedge(d)=0$ for all divisors of n, except $d=p_j^i, i>0, j=1,\cdots t$,

$$\sum_{d|n} \wedge (d) = \sum_{i=1}^{\alpha_1} \wedge (p_1^i) + \dots + \sum_{i=1}^{\alpha_t} \wedge (p_t^i) = \alpha_1 \log p_1 + \dots + \alpha_t \log p_t$$

$$= \log n$$

By Möbius Inversion Theorem,

$$\wedge(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) \log d.$$

Ex. 2.22 Show that the sum of all the integers t such that $1 \le t \le n$ and (t,n) = 1 is $\frac{1}{2}n\phi(n)$.

Proof. Suppose n>1 (the formula is false if n=1). Let $S=\sum\limits_{1\leq t\leq n-1,\ t\wedge n=1}t.$

19

Using the symmetry $t \mapsto n - t$, as $t \wedge n = 1 \iff (n - t) \wedge n = 1$, we obtain

$$2S = \sum_{1 \le t \le n-1, \ t \land n=1} t + \sum_{1 \le t \le n-1, \ t \land n=1} t$$

$$= \sum_{1 \le t \le n-1, \ t \land n=1} t + \sum_{1 \le s \le n-1, \ (n-s) \land n=1} n - s \qquad (s = n - t)$$

$$= \sum_{1 \le t \le n-1, \ t \land n=1} t + \sum_{1 \le t \le n-1, \ (n-t) \land n=1} n - t$$

$$= \sum_{1 \le t \le n-1, \ t \land n=1} t + \sum_{1 \le t \le n-1, \ t \land n=1} n - t$$

$$= \sum_{1 \le t \le n-1, \ t \land n=1} n$$

$$= n \operatorname{Card}\{t \in \mathbb{N} \mid 1 \le t \le n-1, t \land n=1\}$$

$$= n\phi(n)$$

Conclusion:

$$\forall n \in \mathbb{N}^*, \sum_{1 \le t \le n-1, \ t \land n=1} t = \frac{1}{2} n \phi(n).$$

Ex. 2.23 Let $f(x) \in \mathbb{Z}[x]$ and let $\psi(n)$ be the number of $f(j), j = 1, 2, \ldots, n$, such that (f(j),n)=1. Show that $\psi(n)$ is multiplicative and that $\psi(p^t)=p^{t-1}\psi(p)$. Conclude that $\psi(n) = n \prod_{p|n} \psi(p)/p$.

Proof. My interpretation of this statement is that $\psi(n)$ is the number of $j, j = 1, 2, \ldots, n$,

such that (f(j), n) = 1 (if f is not one to one, we may obtain a different value). Let $A_n = \{j \in \mathbb{Z}, 1 \le j \le n \mid f(j) \land n = 1\}$: then $\psi(n) = |A_n|$. If $f(x) = \sum_{k=0}^d a_k x^k$, note $f_n(x) \in (\mathbb{Z}/n\mathbb{Z})[x]$ the polynomial $f_n(x) = \sum_{k=0}^n [a_k]_n x^k$ (here, we represent the class of $j \in \mathbb{Z}$ in $\mathbb{Z}/n\mathbb{Z}$ by $[j]_n$). We can write without inconvenient $f = f_n$.

Let $B_n = \{a \in \mathbb{Z}/n\mathbb{Z} \mid f(a) \in (\mathbb{Z}/n\mathbb{Z})^*\}$, where $(\mathbb{Z}/n\mathbb{Z})^*$ is the group of invertible elements of $\mathbb{Z}/n\mathbb{Z}$.

Then $u: A_n \to B_n, j \mapsto [j]_n$ is a bijection.

Indeed u is well defined : if $j \in A_n$, $f(j) \wedge n = 1$, so $f([j]_n) = [f(j)]_n \in (\mathbb{Z}/n\mathbb{Z})^*$.

u is injective : $[j]_n = [k]_n$ with $1 \le j \le n, 1 \le k \le n$ implies j = k.

u is surjective: if $a \in \mathbb{Z}/n/Z$ verifies $f(a) \in (\mathbb{Z}/n\mathbb{Z})^*$, let j the unique representative of a such that $1 \le j \le n$. Then $f(j) \land n = 1$, so u(j) = a.

Thus

$$\psi(n) = |B_n|$$
, where $B_n = \{a \in \mathbb{Z}/n\mathbb{Z} \mid f(a) \in (\mathbb{Z}/n\mathbb{Z})^*\}.$

Suppose $n \wedge m = 1$. Let

$$\varphi: \left\{ \begin{array}{ccc} B_{nm} & \to & B_n \times B_m \\ [j]_{nm} & \mapsto & ([j]_n, [j]_m) \end{array} \right.$$

- φ is well defined : $[j]_{nm} = [k]_{nm} \Rightarrow j \equiv k \pmod{nm} \Rightarrow (j \equiv k \pmod{n}, j \equiv k)$ $(\text{mod } m)) \Rightarrow ([j]_n, [j]_m) = ([k]_n, [k]_m).$
- φ is injective: if $\varphi([j]_{nm}) = \varphi([k]_{nm})$, then $[j]_n = [k]_n$, $[j]_m = [k]_n$, so $n \mid j k, m \mid$ j - k. As $n \wedge m = 1, nm \mid j - k$ so $[j]_{nm} = [k]_{nm}$.

• φ is surjective: if $(a,b) \in B_n \times B_m$, there exist $j,k \in \mathbb{Z}, 1 \leq j \leq n, 1 \leq j \leq m$, such that $a = [j]_n, b = [k]_n$. From the Chinese Remainder Theorem, there exists $i \in$ $\mathbb{Z}, 1 \leq i \leq n$, such that $i \equiv j \pmod{n}, i \equiv k \pmod{m}$. Then $\varphi([i]_{nm}) = ([i]_n, [i]_m) = ([i]_n, [i]_m)$ $([j]_n, [k]_m) = (a, b).$

Finally, $\psi(nm) = |B_{nm}| = |B_n| |B_m| = \psi(n)\psi(m)$, if $n \wedge m = 1$: ψ is a multiplicative function.

The interval $I = [1, p^t]$ is the disjoint reunion of the p^{t-1} intervals $I_k = [kp+1, (k+1)p]$ for $k = 0, 1, \dots, p^{t-1} - 1$, so $\psi(p^t) = \sum_{k=0}^{p^{t-1}-1} \operatorname{Card} C_k$, where $C_k = \{j \in I_k | f(j) \land p^t = 1\}$ $1\} = \{ j \in I_k | f(j) \land p = 1 \}.$

As $f(j) \wedge p = 1 \iff f(j-kp) \wedge p = 1$, the application $v: C_k \to C_0, j \mapsto j-kp$ is well defined and is bijective, so $|C_k| = |C_0| = \psi(p)$. Thus $\psi(p^t) = p^{t-1} \operatorname{Card} I_0 = p^{t-1} \psi(p)$:

$$\psi(p^t) = p^{t-1}\psi(p).$$

If $n = \prod_{p|n} p^{t(p)}$, then

$$\psi(n) = \prod_{p|n} \psi(p^{t(p)})$$

$$= \prod_{p|n} p^{t(p)-1} \psi(p)$$

$$= n \prod_{p|n} \frac{\psi(p)}{p}$$

Ex. 2.24 Supply the details to the proof of Theorem 3.

As Adam Michalik, I suppose that there is a misprint: we must prove Theorem 4: Let k a finite field with q elements.

 $\sum q^{-\deg p(x)}$ diverges, where the sum is over all monic irreducible p(x) in k[x].

Proof. Notations:

 \mathcal{P} : set of all monic polynomials p in k[x].

 \mathcal{P}_n : set of all monic polynomials p in k[x] with $\deg(p) \leq n$.

 \mathcal{M} : set of all monic irreducible polynomials p in k[x]. We must prove that $\sum_{p \in \mathcal{M}} q^{-\deg p(x)}$ diverges.

• $\sum_{f \in \mathcal{D}} q^{-\deg f}$ diverges:

$$\sum_{f \in \mathcal{P}_n} \frac{1}{q^{\deg f}} = \sum_{d=0}^n \sum_{\deg(f)=d} \frac{1}{q^d}$$

$$= \sum_{d=0}^n \frac{1}{q^d} \operatorname{Card} \{ f \in \mathcal{P} \mid \deg(f) = d \}$$

$$= \sum_{d=0}^n \frac{1}{q^d} q^d = n + 1.$$

So $\sum_{f \in \mathcal{D}} q^{-\deg f}$ diverges.

• $\sum_{f \in \mathcal{D}} q^{-2 \deg f}$ converges :

$$\begin{split} \sum_{f \in \mathcal{P}_n} q^{-2\deg(f)} &= \sum_{d=0}^n \sum_{\deg(f)=d} \frac{1}{q^{2d}} \\ &= \sum_{d=0}^n \frac{1}{q^{2d}} \operatorname{Card} \{ f \in \mathcal{P} \mid \deg(f) = d \} \\ &= \sum_{d=0}^n \frac{1}{q^d} \\ &\leq \frac{1}{1 - \frac{1}{q}} \end{split}$$

As any finite subset of \mathcal{P} is included in some \mathcal{P}_n , $\sum_{f \in \mathcal{P}} q^{-2 \deg f}$ converges.

• $\sum q^{-\deg p(x)}$ diverges :

Let $\mathcal{P}_n = \{p_1, p_2, \cdots, p_{l(n)}\}$ the set of all monic irreducible polynomials such that $\deg p_i \leq n$. Let

$$\lambda(n) = \prod_{i=1}^{l(n)} \frac{1}{1 - \frac{1}{q^{\deg(p_i)}}}.$$

For simplicity, we write l = l(n) for a fixed $n \in \mathbb{N}$. Then

$$\lambda(n) = \prod_{i=1}^{l} \sum_{a_i=0}^{\infty} \frac{1}{q^{a_i \deg p_i}}$$

$$= \left(1 + \frac{1}{q^{\deg p_1}} + \frac{1}{q^{\deg p_1^2}} + \cdots \right) \times \cdots \times \left(1 + \frac{1}{q^{\deg p_l}} + \frac{1}{q^{\deg p_l^2}} + \cdots \right)$$

$$= \sum_{\substack{(a_1, \dots, a_i) \in \mathbb{N}^l \\ q^{\deg(p_1^{a_1} \dots p_l^{a_l})}}} \frac{1}{q^{\deg(p_1^{a_1} \dots p_l^{a_l})}}$$

Since the monic prime factors of any polynomial $p \in \mathcal{P}_n$ are in \mathcal{P}_n , the decomposition of p is $p = p_1^{a_1} \cdots p_l^{a_l}$, so

$$\lambda(n) \ge \sum_{p \in \mathcal{P}_n} \frac{1}{q^{\deg p}} = n + 1.$$

So $\lim_{n\to\infty}\lambda(n)=\infty$: this is another proof that there exist infinitely many monic irreducible polynomials in k[x] (cf Ex. 2.1).

$$\log \lambda(n) = -\sum_{i=1}^{l(n)} \log \left(1 - \frac{1}{q^{\deg p_i}}\right)$$

$$= \sum_{i=1}^{l(n)} \sum_{m=1}^{\infty} \frac{1}{mq^{m \deg p_i}}$$

$$= \frac{1}{q^{\deg p_1}} + \dots + \frac{1}{q^{\deg p_{l(n)}}} + \sum_{i=1}^{l(n)} \sum_{m=2}^{\infty} \frac{1}{mq^{m \deg p_i}}$$

Yet

$$\sum_{m=2}^{\infty} \frac{1}{mq^{m \deg p_{i}}} \le \sum_{m=2}^{\infty} \frac{1}{q^{m \deg p_{i}}}$$

$$= \frac{1}{q^{2 \deg p_{i}}} \frac{1}{1 - \frac{1}{q^{\deg p_{i}}}}$$

$$= \frac{1}{q^{2 \deg p_{i}} - q^{\deg p_{i}}} \le \frac{2}{q^{2 \deg p_{i}}}$$

(the last inequality is equivalent to $2 \leq q^{\deg p_i}$). So

$$\log \lambda(n) \le \frac{1}{q^{\deg p_1}} + \dots + \frac{1}{q^{\deg p_{l(n)}}} + 2\left(\frac{1}{q^{2\deg p_1}} + \dots + \frac{1}{q^{2\deg p_{l(n)}}}\right).$$

As $\frac{1}{q^{2 \deg p_1}} + \dots + \frac{1}{q^{2 \deg p_{l(n)}}}$ is less than the constant $\sum_{f \in \mathcal{P}} q^{-2 \deg f}$, if $\sum_{p \in \mathcal{M}} q^{-\deg p(x)}$ converges, then $\log \lambda(n) \leq C$, where C is a constant, so $\lambda(n) \leq e^{C}$ for all $n \in \mathbb{N}$, in

contradiction with
$$\lim_{n\to\infty} \lambda(n) = \infty$$
.
Conclusion: $\sum_{p\in\mathcal{M}} q^{-\deg p(x)}$ diverges.

Ex. 2.25 Consider the function $\zeta(s) = \sum_{n=1}^{\infty} 1/n^s$. ζ is called the Riemann zeta function. It converges for s > 1. Prove the formal identity (Euler's identity)

$$\zeta(s) = \prod_{p} (1 - 1/p^s)^{-1}.$$

Proof. We prove this equality, not only formally, but for all complex value s such that Re(s) > 1.

Let $s \in \mathbb{C}$ and $f(n) = \frac{1}{n^s}$, $n \in \mathbb{N}^*$. f is completely multiplicative : f(mn) = f(m)f(n) for $m, n \in \mathbb{N}^*$.

Moreover $\sum_{n=1}^{\infty} f(n)$ is absolutely convergent for Re(s) > 1. Indeed, If $s = u + iv, u, v \in \mathbb{R}$, $|f(n)| = |n^{-s}| = |e^{-s\log(n)}| = |e^{-u\log(n)}e^{-iv\log(n)}| = e^{-u\log(n)} = \frac{1}{n^u}$, so $\sum_{n=1}^{\infty} |f(n)| = 1/n^u \text{ converges if } u = \text{Re}(s) > 1.$

With these properties of f (f multiplicative and $\sum_{n=1}^{\infty} f(n)$ absolutely convergent), we will show that

$$\sum_{n=1}^{\infty} f(n) = \prod_{p} (1 + f(p) + f(p^{2}) + \cdots).$$

Let $S^* = \sum_{n=1}^{\infty} |f(n)| < \infty$, and $S = \sum_{n=1}^{\infty} f(n) \in \mathbb{C}$. For each prime number $p, \sum_{k=1}^{\infty} |f(p^k)|$ converges (this sum is less than S^*), so $\sum_{k=0}^{\infty} f(p^k)$ converges absolutely. Thus, for $x \in \mathbb{R}$, the two finite products

$$P(x) = \prod_{p \le x} \sum_{k=0}^{\infty} f(p^k), \qquad P^*(x) = \prod_{p \le x} \sum_{k=0}^{\infty} |f(p^k)|$$

are well defined.

If p,q are two prime numbers, as $\sum_{i=0}^{\infty} f(p^i)$, $\sum_{j=0}^{\infty} f(q^j)$ are absolutely convergent, $(f(p^i)f(q^j))_{(i,j)\in\mathbb{N}^2}$ is sommable, so the sum of these elements can be arranged in any order:

$$\sum_{i=0}^{\infty} f(p^i) \sum_{k=0}^{\infty} f(q^k) = \sum_{(i,j) \in \mathbb{N}^2} f(p^i) f(q^j) = \sum_{(i,j) \in \mathbb{N}^2} f(p^i q^j).$$

If p_1, \dots, p_t are all the prime $p \leq x$, repeating t times these products, we obtain

$$P(x) = \prod_{p \le x} \sum_{k=0}^{\infty} f(p^k)$$

$$= \sum_{i_1=0}^{\infty} f(p_1^{i_1}) \cdots \sum_{i_t=0}^{\infty} f(p_t^{i_t})$$

$$= \sum_{(i_1, \dots, i_k) \in \mathbb{N}^k} f(p_1^{i_1} \cdots p_t^{i_t})$$

$$= \sum_{n \in \Lambda} f(n),$$

where Δ is the set of integers $n \in \mathbb{N}^*$ whose prime factors are not greater than x. Let $\overline{\Delta} = \mathbb{N}^* \setminus \Delta$: this is the set of numbers $n \in \mathbb{N}^*$ such that at least a prime factor is greater than x. So

$$P(x) = \sum_{n \in \Delta} f(n) = S - \sum_{n \in \overline{\Delta}} f(n).$$

Then

$$|P(x) - S| \le \sum_{n \in \overline{\Lambda}} |f(n)| \le \sum_{n \ge x} |f(n)|.$$

So $\lim_{x \to +\infty} P(x) = S$, that is

$$\prod_{p} \sum_{k=0}^{\infty} f(p^k) = \sum_{n=1}^{\infty} f(n).$$

Finally,

$$\sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} \left(1 + \frac{1}{p^s} + \dots + \frac{1}{p^{ks}} + \dots \right)$$
$$= \prod_{p} (1 - 1/p^s)^{-1}$$

Ex. 2.26 Verify the formal identities:

(a)
$$\zeta(s)^{-1} = \sum \mu(n)/n^s$$

(b)
$$\zeta(s)^2 = \sum \nu(n)/n^s$$

(c)
$$\zeta(s)\zeta(s-1) = \sum \sigma(n)/n^s$$

Proof. Without any consideration of convergence:

$$\zeta(s) \sum_{m=1}^{\infty} \frac{\mu(m)}{m^s} = \sum_{n=1}^{\infty} \frac{1}{n^s} \sum_{m=1}^{\infty} \frac{\mu(m)}{m^s}$$

$$= \sum_{n,m \ge 1} \frac{\mu(m)}{n^s m^s}$$

$$= \sum_{u=1}^{\infty} \sum_{m|u} \mu(m) \frac{1}{u^s} \qquad (u = nm)$$

$$= \sum_{u=1}^{\infty} \frac{1}{u^s} \sum_{m|u} \mu(m)$$

$$= 1$$

Indeed, $\sum_{m|u} \mu(m) = 1$ if u = 1, 0 otherwise. So

$$\zeta(s)^{-1} = \sum_{n \in \mathbb{N}^*} \mu(n) / n^s.$$

(b)

$$\zeta(s)^2 = \sum_{n=1}^{\infty} \frac{1}{n^s} \sum_{m=1}^{\infty} \frac{1}{m^s}$$

$$= \sum_{n,m \ge 1} \frac{1}{(nm)^s}$$

$$= \sum_{n \ge 1} \sum_{n \mid n} \frac{1}{n^s}$$

$$= \sum_{n \ge 1} \frac{1}{n^s} \sum_{n \mid n} 1$$

$$= \sum_{n \ge 1} \frac{1}{n^s} \nu(n)$$

So

$$\zeta(s)^2 = \sum_{n=1}^{\infty} \frac{\nu(n)}{n^s}.$$

(c) For Re(s) > 2,

$$\zeta(s)\zeta(s-1) = \sum_{n\geq 1} \frac{1}{n^s} \sum_{m\geq 1} \frac{1}{m^{s-1}}$$
$$= \sum_{m,n\geq 1} \frac{m}{(nm)^s}$$
$$= \sum_{u\geq 1} \left(\sum_{m|u} m\right) \frac{1}{u^s}$$
$$= \sum_{u\geq 1} \frac{\sigma(u)}{u^s}$$

So

$$\zeta(s)\zeta(s-1) = \sum_{n \ge 1} \frac{\sigma(n)}{n^s}.$$

Ex. 2.27 Show that $\sum 1/n$, the sum being over square free integers, diverges. Conclude that $\prod_{p < N} (1 + 1/p) \to \infty$ as $N \to \infty$. Since $e^x > 1 + x$, conclude that $\sum_{p < N} 1/p \to \infty$. (This proof is due to I.Niven.)

Proof. Let $S \subset \mathbb{N}^*$ the set of square free integers.

Let $N \in \mathbb{N}^*$. Every integer $n, 1 \le n \le N$ can be written as $n = ab^2$, where a, b are integers and a is square free. Then $1 \le a \le N$, and $1 \le b \le \sqrt{N}$, so

$$\sum_{n \leq N} \frac{1}{n} \leq \sum_{a \in S, a \leq N} \sum_{1 < b < \sqrt{N}} \frac{1}{ab^2} \leq \sum_{a \in S, a \leq N} \frac{1}{a} \sum_{b=1}^{\infty} \frac{1}{b^2} = \frac{\pi^2}{6} \sum_{a \in S, a \leq N} \frac{1}{a}.$$

So

$$\sum_{a \in S, a \le N} \frac{1}{a} \ge \frac{6}{\pi^2} \sum_{n \le N} \frac{1}{n}.$$

As $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, $\lim_{N \to \infty} \sum_{a \in S, a \le N} \frac{1}{a} = +\infty$, so the family $\left(\frac{1}{a}\right)_{a \in S}$ of the inverse of square free integers is not summable.

Let $S_N = \prod_{p < N} (1 + 1/p)$, and $p_1, p_2, \dots p_l$ (l = l(N)) all prime integers less than N. Then

$$S_N = \left(1 + \frac{1}{p_1}\right) \cdots \left(1 + \frac{1}{p_l}\right)$$
$$= \sum_{(\varepsilon_1, \dots, \varepsilon_l) \in \{0, 1\}^l} \frac{1}{p_1^{\varepsilon_1} \cdots p_l^{\varepsilon_l}}$$

We prove this last formula by induction. This is true for l = 1: $\sum_{\varepsilon \in \{0,1\}} 1/p_1^{\varepsilon} = 1 + 1/p_1$. If it is true for the integer l, then

$$\begin{split} \left(1 + \frac{1}{p_{1}}\right) \cdots \left(1 + \frac{1}{p_{l}}\right) \left(1 + \frac{1}{p_{l+1}}\right) &= \sum_{(\varepsilon_{1}, \cdots, \varepsilon_{l}) \in \{0, 1\}^{l}} \frac{1}{p_{1}^{\varepsilon_{1}} \cdots p_{l}^{\varepsilon_{l}}} \left(1 + \frac{1}{p_{l+1}}\right) \\ &= \sum_{(\varepsilon_{1}, \cdots, \varepsilon_{l}) \in \{0, 1\}^{l}} \frac{1}{p_{1}^{\varepsilon_{1}} \cdots p_{l}^{\varepsilon_{l}}} + \sum_{(\varepsilon_{1}, \cdots, \varepsilon_{l}) \in \{0, 1\}^{l}} \frac{1}{p_{1}^{\varepsilon_{1}} \cdots p_{l}^{\varepsilon_{l}} p_{l+1}} \\ &= \sum_{(\varepsilon_{1}, \cdots, \varepsilon_{l}, \varepsilon_{l+1}) \in \{0, 1\}^{l+1}} \frac{1}{p_{1}^{\varepsilon_{1}} \cdots p_{l}^{\varepsilon_{l}} p_{l+1}^{\varepsilon_{l+1}}} \end{split}$$

So it is true for all l.

Thus $S_N = \sum_{n \in \Delta} \frac{1}{n}$, where Δ is the set of square free integers whose prime factors are less than N.

As $\sum 1/n$, the sum being over square free integers, diverges, $\lim_{N\to\infty} S_N = +\infty$:

$$\lim_{N \to \infty} \prod_{p < N} \left(1 + \frac{1}{p} \right) = +\infty.$$

 $e^x \ge 1 + x, x \ge \log(1 + x)$ for x > 0, so

$$\log S_N = \sum_{k=1}^{l(N)} \log \left(1 + \frac{1}{p_k} \right) \le \sum_{k=1}^{l(N)} \frac{1}{p_k}.$$

 $\lim_{N\to\infty} \log S_N = +\infty$ and $\lim_{N\to\infty} l(N) = +\infty$, so

$$\lim_{N \to \infty} \sum_{p < N} \frac{1}{p} = +\infty.$$