

UNIVERSIDADE FEDERAL DO MARANHÃO DEPARTAMENTO DE ENGENHARIA DA COMPUTAÇÃO ENGENHARIA DA COMPUTAÇÃO EECP0053 - TÓPICOS EM ENGENHARIA DA COMPUTAÇÃO II FUNDAMENTOS DE REDES NEURAIS

 Callbacks, Schedulers e Funções Customizadas para Ajustes e Monitoramento Automáticos no Treinamento do Modelo

- ANTONIO FIALHO DA SILVA NETO
- JUSTINO FELIPE LOPES NUNES
- THALES GUSTAVO MENDES

INTRODUÇÃO

- Treinar redes neurais pode levar horas ou dias
- São ferramentas essenciais no treinamento de modelos de deep learning que ajudam a melhorar o desempenho, evitar problemas
- Importância da automação para evitar overfitting e reduzir custo computacional

Callbacks: Assistentes Inteligentes do Treinamento

 São funções ou classes que são chamadas em pontos específicos durante o treinamento para executar ações personalizadas

O que você pode fazer com retornos de chamada?

- Atualizar taxas de aprendizagem
- Visualizar gradientes
- Enviar e-mails durante o treinamento (ou após o término)
- ...
- Você só é limitado pela sua imaginação

CALLBACKS KERAS

CALLBACKS KERAS:

- EarlyStopping
- ModelCheckpoint
- ReduceLROnPlateau
- TensorBoard
- LearningRateScheduler
- Base Callback class

- BackupAndRestore
- RemoteMonitor
- LambdaCallback
- TerminateOnNaN
- CSVLogger
- ProgbarLogger
- SwapEMAWeights

Callback Keras CSVLogger

Callback Keras EarlyStopping

Callback	Descrição/Pontos Principais		
EarlyStopping	Interrompe o treinamento quando uma métrica (ex.: val_loss) para de melhorar.		
ModelCheckpoint	Salva o modelo em intervalos regulares (ex.: melhor epoch ou a cada epoch).		
ReduceLROnPlateau	Reduz a taxa de aprendizado quando uma métrica estagna.		
TensorBoard	Salva logs para visualização no TensorBoard (gráficos, métricas, etc.).		
LearningRateScheduler	Ajusta a taxa de aprendizado conforme uma função pré-definida (ex.: decay exponencial).		
Base Callback class	Classe base para criar callbacks personalizados.		
BackupAndRestore	Faz backup do modelo e restaura em caso de interrupção (útil para treinos longos).		

RemoteMonitor	Envia logs para um servidor remoto via HTTP.		
LambdaCallback	Cria callbacks simples com funções lambda (ex.: log em epoch específico).		
TerminateOnNaN	Interrompe o treinamento se os gradientes/valores se tornarem NaN.		
CSVLogger	Salva métricas de treinamento em um arquivo CSV.		
ProgbarLogger	Exibe métricas em uma barra de progresso durante o treinamento.		
SwapEMAWeights	Mantém uma média móvel exponencial (EMA) dos pesos do modelo (útil para inferência).		

CALLBACKS PYTORCH

CALLBACKS PYTORCH:

- BaseCSVWriter
- GarbageCollector
- Lambda
- LearningRateMonitor
- ModuleSummary
- PyTorchProfiler

- SystemResourcesMonitor
- TensorBoardParameterMonitor
- IterationTimeLogger
- TorchSnapshotSaver
- TQDMProgressBar
- TrainProgressMonitor

https://docs.pytorch.org/tnt/stable/framework/callbacks.html

Callback	Descrição/Pontos Principais	
BaseCSVWriter	Grava saídas de previsão em um arquivo CSV.	
GarbageCollector	Executa coleta de lixo síncrona periodicamente.	
Lambda	Executa funções personalizadas durante os loops de treino, avaliação e previsão.	
LearningRateMonitor	Registra a taxa de aprendizado de otimizadores e planejadores.	
ModuleSummary	Gera e registra um resumo dos módulos.	
PyTorchProfiler	Cria perfis de código do usuário com PyTorch Profiler.	

SystemResourcesMonitor	Registra uso da CPU, RAM, GPU e memória CUDA.		
TensorBoardParameterMonitor	Registra parâmetros do módulo como histogramas no TensorBoard.		
IterationTimeLogger	Registra tempos de iteração como escalares no TensorBoard.		
TorchSnapshotSaver	Salva periodicamente o estado do app usando TorchSnapshot.		
TQDMProgressBar	Mostra barra de progresso durante treino, avaliação e previsão.		
TrainProgressMonitor	Registra progresso do treinamento em etapas vs épocas.		

Callback pytorch BaseCSVWriter

Callback pytorch TrainProgressMonitor.

SCHEDULERS

LEARNING RATE SCHEDULERS

- Algoritmos que ajustam automaticamente a taxa de aprendizado do seu modelo durante o treinamento
- Capacidade de otimizar diferentes fases do treinamento
- Convergência mais rápida e treinamento mais estável em comparação com taxas de aprendizado fixas

LEARNING RATE SCHEDULERS

- Step Decay
- Exponential Decay
- Cosine Annealing
- Cyclical Learning Rates

STEP DECAY

Reduz a taxa de aprendizado por um fator fixo em intervalos regulares

$$n_{t} = n_{0} \times \gamma^{\left[\frac{t}{N}\right]}$$

Onde:

- n(t): Taxa de aprendizado na época t
- n(0): Taxa de aprendizado inicial
- y: Fator de decaimento
- N : Número épocas até a próxima redução
- t : Época atual

STEP DECAY

$$n(0) = 0.1$$
; $\gamma = 0.1$; $N = 30$

Época (t)	Cálculo	n(t)
0	0,1 × 0,1 0	0,1
1	0,1 × 0,1 0	0,1
30	0,1 × 0,1 1	0,01
60	0,1 × 0,1 ²	0,001

EXPONENTIAL DECAY

 Reduz suavemente a taxa de aprendizado multiplicando-a por um fator de decaimento a cada época

$$n_t = n_0 \times \gamma^t$$

Onde:

- n(t): Taxa de aprendizado na época t
- n(0): Taxa de aprendizado inicial
- y: Fator de decaimento
- t : Época atual

EXPONENTIAL DECAY

 $n(0) = 0.1; \gamma = 0.5$

Época (t)	Cálculo	n(t)
0	0,1 × 0,5	0,1
1	0,1 × 0,5 1	0,05
2	0,1 × 0,5 ²	0,025
3	0,1 × 0,5 3	0,0125

COSINE ANNEALING

 Segue uma curva de cosseno, começando em um valor alto e diminuindo suavemente até um valor mínimo

$$n_t = n_{min} + 0.5(n_{max} - n_{min})(1 + cos(\frac{t}{T}\pi))$$

Onde:

- n(max): Taxa de aprendizado máxima
- n(min): Taxa de aprendizado mínima
- T : Número total de Épocas
- t : Época atual

COSINE ANNEALING

n(min) = 0.001; n(max) = 0.1; T = 100

Época (t)	$cos(\frac{t}{T}\pi)$	Cálculo	n(t)
0	cos(0) = 1	0,001 + 0,5 × 0,099 × 2	0,1
50	$cos(\pi/2) = 0$	0,001 + 0,5 × 0,099 × 1	0,0505
100	$cos(\pi) = -1$	0,001 + 0,5 × 0,099 × 0	0,001

CYCLICAL LEARNING RATES

Oscila entre taxas de aprendizado mínimas e máximas em um padrão

$$n_t = n_{min} + (n_{max} - n_{min}) \times max(0, (1 - |x|))$$

Para
$$x = \frac{t}{m} - 2 \times (\frac{1+t}{2\times m})$$

Onde:

- n(max): Taxa de aprendizado máxima.
- n(min): Taxa de aprendizado mínima.
- m = Número de iterações para metade do ciclo.
- t : Época atual.

CYCLICAL LEARNING RATE

n(min) = 0.001; n(max) = 0.1; T = 20

Época	Cálculo de x	1 - x	Cálculo de n(t)	n(t)
0	1	0	$n_t = 0,001 + (0,1 - 0,001) \times 0$	0,001
20	0	1	$n_t = 0,001 + (0,1-0,001) \times 1)$	0,1
40	1	0	$n_t = 0,001 + (0,1-0,001) \times 0$	0,001

LEARNING RATE SCHEDULERS

Funções Customizadas em Machine Learning e Deep Learning

O que são Funções Customizadas?

- Funções customizadas são blocos de código que nos dão o poder de ir além do que as bibliotecas e frameworks (como TensorFlow, PyTorch, Keras) oferecem "de fábrica"
- Os principais componentes onde aplicamos customização são:
 - a. Funções de Custo (Loss Functions)
 - b. Funções de Métrica
 - c. Funções de Ajuste Dinâmico de Parâmetros (Learning Rate Schedulers)
 - d. Callbacks Personalizados

Por que Usar Funções Customizadas?

- Correspondência com o Objetivo de Negócio ou Pesquisa
- Lidar com a Complexidade dos Dados e do Problema
- Controle Granular sobre o Processo de Treinamento

Tipos Comuns de Funções Customizadas

Funções de Perda Personalizadas (Custom Loss Functions)

- As funções de perda são o compasso do seu modelo. Elas fornecem o sinal de erro que o algoritmo de otimização (como Descida de Gradiente) usa para ajustar os pesos
- Função de perda que penaliza mais os erros positivos (y>ŷ) que os negativos

$$ext{Loss} = rac{1}{N} \sum_{i=1}^N egin{cases} lpha \cdot (y_i - \hat{y}_i)^2, & ext{se } y_i > \hat{y}_i \ (y_i - \hat{y}_i)^2, & ext{caso contrário} \end{cases}$$

- N é o número de amostras no batch
- yi é o valor verdadeiro para a i-ésima amostra
- ŷi é a previsão para a i-ésima amostra
- α é o fator de penalidade para subestimação ou erros positivos

Por que customizar a função de perda?

- Para Ditar o Que o Modelo Deve Aprender
 - Em detecção de câncer: penalizar mais os falsos negativos do que os falsos positivos.
 - Em previsão de falência de banco: errar ao prever que tudo vai bem pode ser muito custoso.
- Para Lidar com o Desequilíbrio de Classes
 - Em detecção de fraude bancária: fraudes são raras, mas importantes.
 - Em reconhecimento facial: ajustar perda para dar peso igual a todas as etnias ou gêneros.
- Para Incorporar Conhecimento de Domínio na Otimização
 - Em manutenção preditiva: evitar que o modelo subestime falhas que custam caro.
 - Em classificação médica: usar penalidades mais altas para erros em pacientes de risco.
- Para Implementar Novas Regularizações
 - Em redes neurais profundas: adicionar perda de regularização L1 ou L2 para evitar overfitting.
 - Em modelos de séries temporais: incentivar suavidade nas previsões com termos de penalização.

Métricas Personalizadas (Custom Metrics)

- Métricas são a forma como medimos o sucesso do nosso modelo na linguagem do problema. Elas não são usadas para otimizar, mas para entender
- O **F1-Score** é particularmente útil quando temos um desequilíbrio significativo entre as classes ou quando a importância de falsos positivos e falsos negativos é diferente, mas equilibrada

$$ext{Precision (P)} = rac{TP}{TP + FP}$$
 $ext{Recall (Sensibility, R)} = rac{TP}{TP + FN}$
 $ext{F1-Score} = 2 \cdot rac{P \cdot R}{P + R}$

Callbacks Personalizados

Callbacks são como agentes de monitoramento e controle que você pode implantar em diferentes fases do treinamento. Eles te dão a flexibilidade de intervir no processo sem ter que modificar o loop de treinamento principal

Por que customizar os callbacks?

- Para Monitorar e Intervir no Processo de Treinamento em Tempo Real
- Para Automatizar Ações Essenciais
- Para Implementar Lógicas de Treinamento Avançadas e Dinâmicas
- Para Integrar Ferramentas Externas

Exemplos

