

FOIL it! Find One mismatch between Image and Language caption

ACL, Vancouver, 31st July, 2017

Ravi Shekhar, Sandro Pezzelle, Yauhen Klimovich, Aurelie Herbelot, Moin Nabi, Enver Sangineto, Raffaella Bernardi

{firstname.lastname}@unitn.it <u>https://foilunitn.github.io</u>

Research Question

 Do Language and Vision models genuinely integrate both modalities, plus their interaction?

Research Question

- Do Language and Vision models genuinely integrate both modalities, plus their interaction?
 - Image Captioning

- People riding bicycles down the road approaching a pigeon.
- A group of people on bicycles coming down a street

Image Captioning

Research Question

- Do Language and Vision models genuinely integrate both modalities, plus their interaction?
 - Visual Question Answering

Research Question

 Do Language and Vision models genuinely integrate both modalities, plus their interaction?

Our contribution

FOIL dataset and tasks as a (challenging) benchmark for SoA models

Take-home

Current models fail in deeply integrating the two modalities

Related Work

- Binary Forced-Choice Tasks (Hodosh and Hockenmaier, 2016)
 - given two captions, original & distractor, an image captioning model has to pick one
 - model fails to pick the original caption
 - limitations
 - hard to pinpoint the reason for the model failure: due to multiple word change simultaneously
 - easier problem: due to selection between two captions

Related Work

- CLEVR Dataset (Johnson et al., 2016)
 - artificial dataset to evaluate visual reasoning
 - analysed shortcoming of VQA models
 - limitations
 - task specific model achieves super human performance (Santoro et al., 2017)
 - some questions are hard to answer by human's (Santoro et al., 2017)

Motivation

- Need of automatically generate resource with less effort
- Need tasks such that automatic and human evaluation have the same metric
- Need of diagnostics way to evaluate limitations of SoA models

FOIL Dataset

 For a given image and original captions, generate foil captions by replacing one NOUN in the original caption

A person on bike going through green light with red **bus** nearby in a sunny day.

Original Caption

Target Word: bus

Foil Word : truck

Target - Foil pair = bus - truck

A person on bike going through green light with red truck nearby in a sunny day.

Generated Foil Caption

FOIL Dataset

- For a given image and original captions, generate foil captions by replacing one NOUN in the original caption
- Original caption based on the MS-COCO (Lin et al., 2014) dataset for image and caption
- Target-Foil pair creation based on MS-COCO object super-category
 - o replace objects within same super-category with each other
 - e.g. cat-dog, car-truck etc

- Foil not present
 - perform replacement only if the 'foil' word is not present
- Salient Target
 - replace a 'target' word only if it is visually salient
- Mining hardest foil caption
 - by using 'neuraltalk' (Karpathy and Fei-Fei, 2015) loss

FOIL Dataset : Sample

Sample Generated Example

- 1. An orange cat hiding on the wheel of a red car.
- 2. A cat sitting on a wheel of a vehicle.

Original Caption

- 1. An orange cat hiding on the wheel of a red boat.
- 2. A dog sitting on a wheel of a vehicle.

Generated Foil Captions

FOIL Dataset : Composition

Composition of FOIL-COCO dataset

	# datapoints	# images	# captions	# target-foil pairs
Train	197,788	65,697	395,576	256
Test	99,480	32,150	198,960	216

FOIL Dataset : Proposed Tasks

- Task 1: Binary classification: Original or Foil
- Task 2 : Foil word detection
- Task 3 : Foil word correction

task 1: classification

People riding bicycles down the road approaching a dog.

task 2: foil word detection

People riding bicycles down the road approaching a **dog**.

task 3: foil word correction

People riding bicycles down the road approaching a **bird**.

- Binary classification: Original or Foil
 - O Given an image and a caption decide original or foil caption

People riding bicycles down the road approaching a bird.

Original Caption

People riding bicycles down the road approaching a dog.

Foil Caption

- Binary classification: Original or Foil
 - Given a image and a caption decide original or foil caption

People riding bicycles down the road approaching a bird.

Original Caption

Human performance (AMT)

• Majority (2/3): 92.89

Unanimity (3/3): 76.32

People riding bicycles down the road approaching a dog.

Foil Caption

- Foil word detection
 - Given an image and a 'foil' caption identify the 'foil' word

People riding bicycles down the road approaching a dog.

Where is the mistake in caption?

People riding bicycles down the road approaching a dog.

- Foil word detection
 - Given an image and a 'foil' caption identify the 'foil' word

Human performance (AMT)

Majority (2/3): 97.00

• Unanimity (3/3): 73.60

People riding bicycles down the road approaching a dog.

Where is the mistake in caption?

People riding bicycles down the road approaching a dog.

- Foil word correction
 - Given an image, a 'foil' caption and 'foil' word location, correct the 'foil' caption

People riding bicycles down the road approaching a dog.

Can you correct the mistake?

People riding bicycles down the road approaching a bird.

FOIL Dataset: is NOT Equal to

Visual Question Answering

• In VQA, answers are highly dependent on the (linguistic) context of the question.

What man is riding?

≠

A person on motorcycle going through green light with red bus nearby in a sunny day.

• In FOIL, we are asked a context independent fine-grained information about the image.

FOIL Dataset: is NOT Equal to

Object Classification/Detection

 In computer vision tasks, generally question is, what objects are present in the image

 In FOIL, question is "what object is NOT in the image (foil classification/detection) and understand what object is there based on the context(correction)?"

- VQA Models
- Image Captioning Model

- Baseline Models
 - Language Only (Blind)
 - LSTM (Question) followed by MLP

- Baseline Models
 - Language Only (Blind)
 - CNN + LSTM (Zhou et al., 2015)
 - CNN (Image), LSTM (Question) joined by concatenation followed by MLP

- VQA Models
 - LSTM + norm I (Antol et al., 2015)
 - CNN (Image), LSTM (Question) joined by pointwise multiplication followed by MLP

- VQA Models
 - LSTM + norm I (Antol et al., 2015)
 - Hierarchical Co-attention (HieCoAttn) (Lu et al., 2016)

■ CNN (Image), LSTM (Question), both Image & Question is co-attended in

- Image Captioning Model
 - Bi-directional IC Model (IC-Wang) (Wang et al., 2016)
 - Given Image, and past and future context model predicts current word

Results

• Task 1 : Binary Classification

	Overall	Correct	Foil
Blind	55.62	86.20	25.04
CNN + LSTM	61.07	89.16	32.98
LSTM + norm I	63.26	92.02	34.51
HieCoAttn	64.14	91.89	36.38
IC-Wang	42.21	38.98	45.44
Human (Majority)	92.89	91.24	94.52
Human (Unanimity)	76.32	73.73	78.90

Results

• Task 2 : Foil word detection

	Only Nouns	All Words
Chance	23.25	15.87
LSTM + norm I	26.32	24.25
HieCoAttn	38.79	33.69
IC-Wang	27.59	23.32
Human (Majority)	_	97.00
Human (Unanimity)	_	73.60

Results

• Task 3 : Foil word correction

	All Target Words
Chance	1.38
LSTM + norm I	4.7
HieCoAttn	4.21
IC-Wang	22.16

Conclusion

- Created a challenging dataset and corresponding challenging tasks
 - used to evaluate limitations of language and vision models
 - can be extended to other part of speech (see Shekhar et al., 2017), scene etc
 - by knowing source of error, will help in designing better models
- Need fine-grained joint understanding of language and vision

Thank You !!! Q & A

Dataset https://foilunitn.github.io

- Read and understand the caption and carefully watch the image
- Determine if the caption provides a correct description of what is depicted in the image
- If you judge the caption as "wrong", you will be asked to type the word that makes the caption incorrect

Caption: a man riding a bull through part of a parking lot

Does the caption provide a correct or wrong description of the image? (required)

correct

wrong

Caption: a man riding a bull through part of a parking lot

Does the caption provide a correct or wrong description of the image? (required)

correct

wrong

Caption: a man riding a bull through part of a parking lot

Does the caption provide a correct or wrong description of the image? (required)

correct

wrong

Type the wrong word (one word) (required)

- Foil not present
- Salient Target

- Foil not present
 - Perform replacement only if 'Foil' word is not present in the image
 - Check that 'Foil' word is not used by any other ms-coco annotator

For e.g.,

- I. "A **boy** is running on the beach"
- II. "A boy and a little girl are playing on the beach"
 - Target Foil = Boy Girl

- Salient Target
 - Replace 'Target' words only if it is visually salient in the image
 - Based on annotator agreement i.e. more than one annotator used 'Target' word

For e.g.,

- I. Two **zebras** standing in the grass near rocks.
- II. Two **zebras** grazing together near rocks in their enclosure.
- III. Two **Zebras** are standing near some rocks.
- IV. two **zebras** in a field near one another
- V. A grassy area shows artificially arranged rocks and two zebras, as well as part of the lower half of a deer.
- Target Foil = Zebra Dog (Used)
- Target Foil = Deer Dog (Not Used)

FOIL Dataset: Mining Hardest Foil Caption

- To eliminate visual-language bias
 For every original caption could produce one or more foil caption
- Neuraltalk loss is used to mine hardest foil caption Eliminates both visual and language bias