Algorithmique de Graphes

TD3: Quelques preuves dans les graphes

Exercice 1

Pour un graphe G = (V, E), montrer que :

- 1. $\sum_{v \in V} d_v = 2|E|$, où d_v est le degré du sommet v.
- 2. Le nombre de sommets de degré impair est pair.
- 3. Si m = |E| et n = |V| et G est simple, $m \le \frac{n(n-1)}{2}$.

Exercice 2

Existe-t-il

- 1. un graphe dont la suite des degrés est
 - a) 1, 3, 3, 4, 5, 6, 6, 6, 6, 6, 6, 7?
 - b) 2, 3, 4, 5? Si $(d_i)_{1 \le i \le n}$ est une suite d'entiers non décroissante, démontrer que l'on peut lui associer un graphe si et seulement si la somme des d_i est paire.
- 2. un graphe simple dont la suite des degrés est 1, 1, 3, 3, 3, 3, 5, 6, 8, 9?

Exercice 3

Soit G = (V, A) le graphe orienté défini par :

 $V = \{a, b, c, d, e\}$

 $A = \{(a,b), (a,c), (b,d), (c,b), (c,d), (d,a), (d,e), (e,c)\}$

- 1. On note $d^+(x)$ le degré sortant de x, c'est-à-dire le nombre d'arcs (x,y), $x \neq y$. On note de façon analogue $d^-(x)$ le degré entrant. Calculer $d^+(x)$ et $d^-(x)$ pour chaque sommet $x \in V$.
- 2. Trouver dans G un cycle de longueur 4, un circuit de longueur 3.
- 3. On appelle *chemin* (resp. *circuit*) *eulérien* un chemin (resp. circuit) qui passe une fois et une seule sur chaque arc du graphe.

On a les propriétés suivantes :

Propriété 1 : Un graphe orienté connexe admet un chemin eulérien de a à b ssi $d^+(a) - d^-(a) = d^-(b) - d^+(b) = 1$

et $\forall x, \, x \neq a, \, x \neq b, \, d^{+}(x) = d^{-}(x).$

Propriété 2 : Un graphe orienté connexe admet un circuit eulérien ssi $\forall x, d^+(x) = d^-(x)$.

G admet-il un chemin eulérien? Un circuit eulérien? Si oui, en trouver un.

Exercice 4

Peut-il exister un groupe de 15 personnes au sein duquel chacun a exactement 3 amis?

Exercice 5

Les arêtes d'un graphe complet à $n \ge 6$ sommets ont été colorées en rouge et en vert au hasard. Montrer que le graphe contient au moins un triangle unicolore.

Exercice 6

Le professeur Mongraf et sa femme ont organisé une soirée avec quatre autres couples. Certaines personnes, issues de couples différents, se sont serrées la main. A la fin de la soirée, Mongraf demande à chacun combien de mains il a serré. Il reçoit neuf réponses différentes. Combien sa femme a-t-elle serré de mains?

Exercice 7

G = (V, E) est un graphe simple non orienté. Soit $\epsilon(G) = \frac{\sum_{v \in V} d(v)}{2|V|}$.

- 1. Quelle interprétation peut-on donner à $\epsilon(G)$?
- 2. On suppose qu'il existe v_1 de V tel que $d(v_1) \leq \epsilon(G)$. Posons $\begin{cases} V_1 = V \setminus \{v_1\} \\ E_1 = E \setminus \{[v_1, v]; v \in V\} \end{cases}$ Considérons le graphe $G_1 = (V_1, E_1)$. Quelle relation a-t-on entre $\epsilon(G)$ et $\epsilon(G_1)$?

3. En déduire un algorithme qui permet d'extraire un sous-graphe H d'un graphe non orienté simple G, vérifiant : $min\{d_H(v); v \in H\} > \epsilon(H) \ge \epsilon(G)$.

Exercice 8

Le conseil général d'un département comprend 7 commissions. On sait que :

- tout conseiller général fait partie de 2 commissions exactement,
- 2 commissions quelconques ont exactement un conseiller général en commun.

Combien y a-t-il de conseillers généraux? (Justifier clairement la réponse en utilisant un graphe.)

Algorithmique de Graphes TD3 : Quelques preuves dans les graphes

Algorithmique de Graphes TD3 : Quelques preuves dans les graphes

