Vektorit

Juulia Lahdenperä ja Lotta Oinonen

15. lokakuuta 2015

Sisältö

1	Vektori		1
	1.1	xy-koordinaatisto	1
	1.2	Vektorin muodostaminen	2
	1.3	Kahden pisteen välinen vektori	4
2	Vektor	ien laskutoimituksia	6
	2.1	Summa	6
	2.2	Erotus	7
	2.3	Vektorin kertominen reaaliluvulla	8
	2.4	Vektorin pituus	9

1 Vektori

1.1 xy-koordinaatisto

Kuvassa 1.1 on koordinaatisto, johon on piirretty x- ja y-akselit.

Tehtävä 1.1.1. Tutki alla olevaa kuvaa 1.1.

Kuva 1.1:

- (a) Kuinka monta askelta siirrytään x-akselin suunnassa, jotta päästään pisteeseen P?
- (b) Kuinka monta askelta siirrytään y-akselin suunnassa, jotta päästään pisteeseen P?
- (c) Kuinka monta askelta siirrytään x-akselin suunnassa, jotta päästään pisteeseen \mathbb{Q} ?
- (d) Kuinka monta askelta siirrytään y-akselin suunnassa, jotta päästään pisteeseen \mathbb{Q} ?

Tason piste ilmoitetaan lukuparina (x, y), missä ensimmäinen luku x ilmoittaa xakselin suuntaisten ja toinen luku y y-akselin suuntaisten askelten lukumäärän. Näitä lukuja kutsutaan **pisteen koordinaateiksi**. Kuvan 1.1 piste S sijaitsee siinä tason pisteessä, missä x=3 ja y=2. Näin ollen pistettä S merkitään S=(3,2). Koordinaattien avulla kaikki tason pisteet voidaan määrittää yksikäsitteisesti.

Koordinaattiakselit jakavat tason neljään osaan. Osat nimetään yleensä järjestysnumeroilla I, II, III ja IV alla olevan kuvan 1.2 mukaisesti. Koordinaattiakselien leikkauskohtaa kutsutaan **origoksi**. Origoa merkitään yleensä kirjaimella O, ja sen koordinaatit ovat O = (0,0).

Kuva 1.2: Koordinaatiston neljännekset.

Tehtävä 1.1.2. Valitse kuvasta 1.2 jokaiselta koordinaatiston neljänneksellä jokin piste ja ilmoita sen koordinaatit. Miten eri neljännekset vaikuttavat x- ja y-koordinaattien koordinaattien etumerkkeihin?

Tehtävä 1.1.3. ...

- (a) Piirrä koordinaatistoon pisteet (0,2), (0,-4) ja (0,3).
- (b) Piirrä koordinaatistoon kolme uutta pistettä, jotka ovat muotoa (0, y).
- (c) Piirrä kuva kaikista sellaisista tason pisteistä, jotka ovat muotoa (0, y) jollakin kokonaisluvulla y.

Tehtävä 1.1.4. ...

- (a) Piirrä koordinaatistoon pisteet (2, 2), (3, 3) ja (-2, -2).
- (b) Piirrä koordinaatistoon kolme uutta pistettä, jotka ovat muotoa (x, x) jollakin kokonaisluvulla x.
- (c) Piirrä kuva kaikista sellaisista tason pisteistä, jotka ovat muotoa (x, x) jollakin kokonaisluvulla x.

Tehtävä 1.1.5. Piirrä kuva kaikista sellaisista tason pisteistä, jotka ovat muotoa (x, 2) jollakin kokonaisluvulla x.

1.2 Vektorin muodostaminen

Tarkastellaan seuraavaa kuvaa 1.3. Kuvassa on nuolet \bar{u}, \bar{v} ja \bar{w} , yhden x-akselin suuntaisen askeleen pituinen nuoli $\bar{\imath}$, sekä yhden y-akselin suuntaisen askeleen pituinen nuoli $\bar{\jmath}$.

Kuva 1.3: Esimerkkikuva

Huomataan, että nuolen \bar{v} päästä on sen kärkeen kolme x-akselin suuntaista askelta positiiviseen suuntaan ja kaksi y-akselin suuntaista askelta positiiviseen suuntaan. Tällainen nuoli \bar{v} voidaan ilmoittaa nuolien $\bar{\imath}$ ja $\bar{\jmath}$ avulla muodossa $\bar{v}=3\bar{\imath}+2\bar{\jmath}$.

Tehtävä 1.2.1. Ilmoita kuvassa 1.3 oleva nuoli \bar{u} nuolien $\bar{\imath}$ ja $\bar{\jmath}$ avulla.

Koordinaatistossa olevia nuolia kutsutaan **vektoreiksi**. Edellisen kuvan nuoli \bar{v} on siis vektori \bar{v} , joka voidaan ilmaista vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla. Vektoreita $\bar{\imath}$ ja $\bar{\jmath}$ sanotaan komponenttivektoreiksi, ja summattavia $3\bar{\imath}$ ja $2\bar{\jmath}$ vektorin \bar{v} **komponenteiksi**. Vektorin komponenttiesityksellä tarkoitetaan vektorin esittämistä vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla. Vektorit $\bar{\imath}$ ja $\bar{\jmath}$ ovat käteviä, sillä niiden avulla voidaan ilmaista kaikki mahdolliset xy-koordinaatiston vektorit.

Määritelmä 1.2.2. Vektorin ilmaisemista komponenttivektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla sanotaan vektorin komponenttiesitykseksi.

Vektorin komponenttiesitys

Tehtävä 1.2.3. Tarkastellaan seuraavaa kuvaa 1.4.

Kuva 1.4: Vektoreita

Ilmoita kaikki kuvassa olevat vektorit vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla. Mitä huomaat?

Samat vektorit

Määritelmä 1.2.4. Kaksi vektoria ovat samat, jos ne voidaan esittää samalla tavalla vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla.

Vektorien samuus tarkoittaa siis sitä, että vektorit ovat saman pituisia ja osoittavat samaan suuntaan — niiden paikalla koordinaatistossa ei ole merkitystä.

Tehtävä 1.2.5. Tarkastellaan edelleen kuvaa 1.4. Vertaa origosta lähtevää vektoria sen kärkipisteen koordinaatteihin. Mitä huomaat?

Paikkavektori

Määritelmä 1.2.6. Origosta lähtevän vektorin $\bar{v} = x\bar{\imath} + y\bar{\jmath}$ kärki on pisteessä (x,y). Kyseistä vektoria \bar{v} kutsutaan pisteen (x,y) paikkavektoriksi.

Tehtävä 1.2.7. Piirrä vektorit $\bar{\imath}$ ja $\bar{\jmath}$ koordinaatistoon siten, että ne lähtevät origosta. Minkä pisteiden paikkavektoreita ne ovat?

1.3 Kahden pisteen välinen vektori

Tehtävä 1.3.1. ...

- (a) Piirrä kaksi pistettä koordinaatiston ensimmäiselle neljännekselle. Merkitse pisteiden koordinaatit.
- (b) Piirrä pisteiden väliin vektori \bar{v} .
- (c) Ilmoita vektori \bar{v} vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla.
- (d) Yritä päätellä, miten vektorien i ja j kertoimet voitaisiin saada pisteiden xja y-koordinaattien avulla?

Tehtävä 1.3.2. TÄMÄ TEHTÄVÄ POIS?

- (a) Piirrä kaksi pistettä koordinaatiston toiselle, kolmannelle tai neljännelle neljännekselle. Merkitse pisteiden koordinaatit.
- (b) Piirrä pisteiden väliin vektori \bar{v} .
- (c) Ilmoita vektori \bar{v} vektorien \bar{i} ja \bar{j} avulla. Käytä hyväksesi piirtämiesi pisteiden x- ja y-koordinaatteja.

Vektori voi kulkea pisteiden välillä kahteen eri suuntaan. Pisteestä A pisteeseen B kulkevaa vektoria merkitään \overline{AB} , ja pisteestä B pisteeseen A kulkevaa vektoria merkitään \overline{BA} .

Tehtävä 1.3.3. ...

- (a) Piirrä koordinaatistoon pisteet A ja B. Merkitse niiden koordinaatit.
- (b) Ilmoita vektori \overline{AB} vektorien $\overline{\imath}$ ja $\overline{\jmath}$ avulla.
- (c) Ilmoita vektori \overline{BA} vektorien $\overline{\imath}$ ja $\overline{\jmath}$ avulla.

Vektorit \overline{AB} ja \overline{BA} ovat eri vektorit, sillä niitä ei voida esittää samalla tavalla vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla. Vektorien suunnalla on siis merkitystä.

Määritelmä 1.3.4. Kahden pisteen välillä eri suuntiin kulkevat vektorit ovat toistensa vastavektoreita. Vektorin \bar{v} vastavektoria merkitään $-\bar{v}$.

Vastavektorit

Edellisen tehtävän vektorit \overline{AB} ja \overline{BA} ovat siis toistensa vastavektoreita, ja $\overline{BA}=-\overline{AB}$.

Tehtävä 1.3.5. Tarkastellaan alla olevaa kuvaa 1.5.

Kuva 1.5: Vektoreita

- (a) Ilmoita kaikki kuvan vektori
t vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla.
- (b) Mitkä vektoreista ovat toistensa vastavektoreita?
- (c) Mitä huomaat vastavektorien komponenttiesityksistä?

2 Vektorien laskutoimituksia

2.1 Summa

Edellisessä kappaleessa opittiin muodostamaan vektoreita x- ja y-akselien suuntaisten yhden askeleen pituisten vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla. Kuvan 2.1 vektori \bar{v} saadaan laskemalla yhteen vektorit $2\bar{\imath}$ ja $4\bar{\jmath}$.

Kuva 2.1: Vektori $\bar{v} = 2\bar{\imath} + 4\bar{\jmath}$.

Tehtävä 2.1.1. Tutkitaan vektoreita $\bar{v} = 2i + 2j$ ja $\bar{w} = i + 3j$.

- (a) Piirrä vektori \bar{v} koordinaatistoon.
- (b) Piirrä vektori \bar{w} koordinaatistoon siten, että se alkaa vektorin \bar{v} kärjestä.
- (c) Piirrä vektori, joka alkaa vektorin \bar{v} alkupisteestä ja päättyy vektorin \bar{w} kärkeen. Merkitse tätä vektoria $\bar{v}+\bar{w}$.
- (d) Ilmoita vektori $\bar{v} + \bar{w}$ vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla.
- (e) Miten vektorin $\bar{v} + \bar{w}$ komponentit voitaisiin muodostaa vektorien \bar{v} ja \bar{w} komponentiin avulla?

Tarkastellaan seuraavaa kuvaa 2.2.

Kuva 2.2: Vektorien \bar{a} ja \bar{b} summa.

Summavektori $\bar{a}+\bar{b}$ lähtee vektorin \bar{a} kanssa samasta pisteestä ja päättyy vektorin \bar{b} kärkeen. Summavektori $\bar{a}+\bar{b}$ saadaan suoraan laskemalla vektorit \bar{a} ja \bar{b} yhteen komponenteittain:

$$\begin{split} \bar{a} + \bar{b} &= (5\bar{\imath} - 3\bar{\jmath}) + (-8\bar{\imath} - 2\bar{\jmath}) \\ &= 5\bar{\imath} - 3\bar{\jmath} - 8\bar{\imath} - 2\bar{\jmath} \\ &= 5\bar{\imath} - 8\bar{\imath} - 3\bar{\jmath} - 2\bar{\jmath} \\ &= -3\bar{\imath} - 5\bar{\jmath}. \end{split}$$

Määritelmä 2.1.2. Vektorien $\bar{v}=x_1\bar{\imath}+y_1\bar{\jmath}$ ja $\bar{w}=x_2\bar{\imath}+y_2\bar{\jmath}$ summavektori on vektori $\bar{v}+\bar{w}=(x_1+x_2)\bar{\imath}+(y_1+y_2)\bar{\jmath}$.

Summavektori

Tehtävä 2.1.3. Tutkitaan vektoreita $\bar{v} = -2i + j$ ja $\bar{w} = 4i + 4j$.

- (a) Määritä summavektori $\bar{v} + \bar{w}$ laskemalla yhteen vektorit \bar{v} ja \bar{w} komponenteittain.
- (b) Piirrä vektori $\bar{v}+\bar{w}$ koordinaatistoon vektorien \bar{v} ja \bar{w} avulla.

2.2 Erotus

Tehtävä 2.2.1. Tutkitaan vektoreita $\bar{v} = -2\bar{\imath} + 3\bar{\jmath}$ ja $\bar{w} = 2\bar{\imath} - 3\bar{\jmath}$.

- (a) Määritä summavektori $\bar{v}+\bar{w}$ laskemalla yhteen vektorit \bar{v} ja \bar{w} komponenteittain.
- (b) Piirrä vektori $\bar{v}+\bar{w}$ koordinaatistoon vektorien \bar{v} ja \bar{w} avulla.

Edellisen tehtävän vektorit \bar{v} ja \bar{w} ovat toistensa vastavektoreita. Näin ollen voidaan merkitä $\bar{w} = -\bar{v}$, ja summavektori $\bar{v} + \bar{w}$ saadaan muotoon $\bar{v} + \bar{w} = \bar{v} + (-\bar{v}) = \bar{v} - \bar{v} = 0$.

Tehtävä 2.2.2. Tutkitaan vektoreita $\bar{v} = ja \ \bar{w} =$

- (a) Piirrä vektori \bar{v} koordinaatistoon.
- (b) Muodosta vektorin \bar{w} vastavektori $-\bar{w}$.
- (c) Piirrä vektori $-\bar{w}$ koordinaatistoon siten, että että se alkaa vektorin \bar{v} kärjestä.
- (d) Piirrä vektori, joka alkaa vektorin \bar{v} alkupisteestä ja päättyy vektorin $-\bar{w}$ kärkeen. Merkitse tätä vektoria $\bar{v} + (-\bar{w})$.
- (e) Ilmoita vektori $\bar{v} + (-\bar{w})$ vektorien \bar{i} ja \bar{j} avulla.

Vektori $\bar{v} + (-\bar{w}) = \bar{v} - \bar{w}$. Se on siis vektorien \bar{v} ja \bar{w} erotusvektori.

Erotusvektori

Määritelmä 2.2.3. Vektorien $\bar{v} = x_1\bar{\imath} + y_1\bar{\jmath}$ ja $\bar{w} = x_2\bar{\imath} + y_2\bar{\jmath}$ erotusvektori on vektori $\bar{v} - \bar{w} = (x_1 - x_2)\bar{\imath} + (y_1 - y_2)\bar{\jmath}$.

Tehtävä 2.2.4. Tutkitaan vektoreita \bar{a} ja \bar{b} .

- (a) Määritä vektorin \bar{b} vastavektori $-\bar{b}$.
- (b) Piirrä vektori $\bar{a} \bar{b}$ koordinaatistoon vektorien \bar{a} ja $-\bar{b}$ avulla.
- (c) Määritä koordinaatistosta vektorin $\bar{a} \bar{b}$ komponenttiesitys.
- (d) Tarkista vastauksesi määrittämällä vektori $\bar{a}-\bar{b}$ suoraan vektorien \bar{a} ja \bar{b} komponenttiesitysten avulla.

2.3 Vektorin kertominen reaaliluvulla

Vektori $\bar{\imath}$ ja vektori $3\bar{\imath}$.

Tehtävä, jossa piirretään vektori v ja vektoreita rv, $r \in \mathbb{R}$

Yhdensuuntaisuus

Määritelmä 2.3.1. Vektorit \bar{v} ja \bar{w} ovat yhdensuuntaiset, jos $\bar{v}=r\bar{w}$ jollakin reaaliluvulla r.

Tehtävä 2.3.2. Tarkastellaan alla olevaa kuvaa (paljon erilaisia vektoreita, joista osa kulkee samaan ja osa vastakkaissuuntiin)

- (a) Mitkä kuvan vektoreista ovat samansuuntaisia?
- (b) Mitkä kuvan vektoreista ovat vastakkaissuuntaisia?
- (c) Mikä kuvan vektoreista ei ole yhdensuuntainen minkään muun kuvan vektorin kanssa?

nollavektori ja kertominen luvulla 1

2.4 Vektorin pituus

Vektorin pituus saadaan laskettua Pythagoraan lauseen avulla. (KUVA) Esimerkiksi vektorin $\bar{a}=-2\bar{\imath}+3\bar{\jmath}$ pituus saadaan yhtälöstä

$$|\bar{a}|^2 = 2^2 + 3^2.$$

Vektorin \bar{a} pituudeksi saadaan $|\bar{a}| = \sqrt{2^2 + 3^2}?\sqrt{4 + 9} = \sqrt{13}$.

Tehtävä 2.4.1. Tutkitaan vektoria $\bar{b} = 3\bar{\imath} - 4\bar{\jmath}$.

- (a) Piirrä vektori \bar{b} koordinaatistoon.
- (b) Laske vektorin \bar{b} pituus $|\bar{b}|$ Pythagoraan lauseen avulla.
- (c) Kuinka moneen osaan vektori \bar{b} pitäisi jakaa, jotta yhden osan pituus olisi 1?

TÄHÄN VÄLIIN LASKETAAN VEKTORIEN I JA J PITUUDET.

Määritelmä 2.4.2. Vektoria, jonka pituus on 1, sanotaan yksikkövektoriksi.

Yksikkövektori

Esimerkiksi vektorin $\bar{v}=8\bar{\imath}+6\bar{\jmath}$ pituudeksi saadaan $|\bar{v}|=\sqrt{8^2+6^2}=\sqrt{100}=10$. Sen kanssa samansuuntainen yksikkövektori saadaan ottamalla vektorista \bar{v} kymmenesosa eli

$$\frac{1}{10}\bar{v} = \frac{1}{10}(8\bar{\imath} + 6\bar{\jmath}) = 0.8\bar{\imath} + 0.6\bar{\jmath}$$

(KUVA)

Tehtävä 2.4.3. Jatkoa tehtävään 2.4.1. Tutkitaan edelleen vektoria $\bar{b}=3\bar{\imath}-4\bar{\jmath}$.

- (a) Määritä vektorin \bar{b} kanssa samansuuntainen yksikkövektori eli vektori, joka pituus on 1. Piirrä se koordinaatistoon.
- (b) Määritä vektorin \bar{b} kanssa samansuuntainen vektori, jonka pituus on 10. Piirrä se koordinaatistoon.

(c) Määritä vektori
n \bar{b} kanssa vastakkaissuuntainen yksikkövektori. Piirrä se
 koordinaatistoon.

Nollavektori

Määritelmä 2.4.4. Vektoria, jonka pituus on nolla, sanotaan nollavektoriksi.