# Assignment Project Exam 1

https://powercoder.com

College of Engineering and Computer Science
The Australian National University

#### Add Wechat powcode

Semester One, 2020.

Statistical Machine Learning

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University



Overview

Introduction
Linear Algebra
Probability
Linear Regression 1
Linear Regression 2
Linear Classification 1
Linear Classification 1
Linear Classification 2
Kernel Methods
Sparse Kernel Methods
Sparse Kernel Methods
Mixture Models and EM 1
Mixture Models and EM 2
Neural Networks 1
Pairal Networks 2
Principal Component Analysis
sutromorofore.

Graphical Models 1 Graphical Models 2 Graphical Models 3 Sampling

Sequential Data 1 Sequential Data 2

(Many figures from C. M. Bishop, "Pattern Recognition and Machine Learning")



One & Walder & Webers Data61 | CSIRO The Australian National

# Assignment Project Exam Help



https://powwooder.com

Add WeChat powcoder

© 2020 Ong & Walder & Webers Data61 | CSIRO The Australian National University

# expression of a function is compact when it has few sometiments, refer to be tuned by learning



- for a fixed number of training examples, expect that compact representations of the target function would yield better better bation DOWCOGET.COM
- Example representations
  - affine operations, sigmoid ⇒ logistic regression has depth
     1 fixed number of units (a.k.a. neurons)
  - has two levels, with as many units as data points
  - stacked neural network of multiple "linear transformation followed by a non-linearity" ⇒ deep neural network has arbitrary depth with arbitrary number of units per layer

© 2020
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

## DATA COMP

Autoencoder

#### An old result:

functions that can be compactly represented by a depth k
 Signification in the properties of the compact at the comp



• Theo And to pay Vote its that 2 pro wore mider

#### Analogous in modern deep learning:

 "Shallow networks require exponentially more parameters for the same number of modes" — Canadian deep learning mafia.

#### Recall: Multi-layer Neural Network Architecture

Statistical Machine Learning

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

# Assignment Profect Exam He



where  $\boldsymbol{w}$  now contains all weight and bias parameters.



We could add more hidden layers

One & Walder & Webers Data61 | CSIRO The Australian National

# Assignment Project Exam • Deep architectures get stuck in local minima or plateaus

- As architecture gets deeper, more difficult to obtain good generalisations // powcoder.com

  Hard to initialise random weights well
- 1 or 2 hidden layers seem to perform better
- 2006: Unsupervised pre-training, find distributed representation We Chat powcoder

#### Deep representation - intuition

Statistical Machine Learning

© 2020 Ong & Walder & Webers Data61 | CSIRO The Australian National University

# Assignment Project Exam I

very high level representation:



https://powcoder.com

raw input vector representation:  $\mathcal{U} = \begin{bmatrix} 23 & 19 & 20 \\ 19 & 20 \end{bmatrix} \qquad \begin{bmatrix} 18 \\ x & 3 \end{bmatrix}$ 

Add WeChat powcoder

Bengio, "Learning Deep Architectures for AI", 2009

Ong & Walder & Webers Data61 | CSIRO The Australian National University





Conv 1: Edge+Blob

Conv 3: Texture

Conv 5: Object Parts

Fc8: Object Classes

AlexNet / VGG-F network visualized by mNeuron.

Ong & Walder & Webers The Australian National



Autoencoder

 Idea: Linearly project the data points onto a lower dimensional subspace such that

the variance of the projected data is maximised, or the displacement for the projection is minimised.

- Both formulation lead to the same result.
- Need to find the lower dimensional subspace, called the wcoder.com



# As should have seed the transformation (because it is a projection)



Autoencoder

The composite of two linear transformations is linear

• Linear transformations  $M: \mathbb{R}^m \to \mathbb{R}^n$  are inatrices

 Let 5 and 7 be matrices of appropriate dimension such that ST is defined

# Add We Chat Powcoder • Similarly for multiplication with a scalar

- ⇒ multiple PCA layers pointless

© 2020
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

#### Help Motivation

Autoencoder

- Let  $X^TX = U\Lambda U^T$  be the eigenvalue decomposition of the covariance matrix (what is assumed about the mean?).
- We perform PCA a second time,  $Z^TZ = V\Lambda_Z V^T$ .

the Hargest eigenvalues. Define  $\Lambda_k$  similarly

- By the definition of the proposal to the
  - $Z^{T}Z = (XU_{k})^{T}(XU_{k}) = U_{k}^{T}X^{T}XU_{k} = \overline{U_{k}^{T}}U\Lambda U^{T}U_{k} = \Lambda_{k}$
- Hence  $\Lambda_Z = \Lambda_k$  and V is the identity, therefore the second PCA has no effect
- ⇒ again, multiple PCA layers pointless

(©) 2020 Ong & Walder & Webers Data61 | CSIRO The Australian National University

## Help

Autoencoder

- An autoencoder is trained to encode the input x into some representation c(x) so that the input can be reconstructed
- the target output of the autoencoder is the autoencoder input itself
- With one linear hidden layer and the mean squared error crite not, the Gidden in is learn to one part input the span of the first k principal components of the data
- If the hidden layer is nonlinear, the autoencoder behaves differently from PCA, with the ability to capture multimodal aspects of the input is the lution at powcode
- Let f be the decoder. We want to minimise the reconstruction error

$$\sum_{n=1}^{N} \ell\left(x_n, f(c(x_n))\right)$$

• Recall: f(c(x)) is the reconstruction produced by the

### seiver nment Project Exam I

reconstruction, given the encoding c(x)



Autoencoder

#### https://powcoder.com

- If x|c(x) is Gaussian, we recover the familiar squared error
- If the inputs  $x_i$  are either binary or considered to be binomial probabilities the the cross entropy.

$$-\log P(x|c(x)) = -x_i \log f_i(c(x)) + (1 - x_i) \log(1 - f_i(c(x)))$$

where  $f_i(\cdot)$  is the  $i^{\mbox{th}}$  component of the decoder

### Assignment Project Exam He



- Consider a small number of hidden units.
- c(x) is viewed as a lossy compression of x
- Can https://pspont/Gocletaircom examples
- Hope code c(x) is a distributed representation that captures the main ractors of variation in the data  $\frac{1}{2}$

Autoencoder

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

ullet Let  $c_j$  and  $f_j$  be the encoder and corresponding decoder of

## Assignment Project Exam





• Because of non-linear activation functions, the latent feature  $z_2$  can capture more complex patterns than  $z_1$ .



Autoencoder



#### Higher level image features - faces

Statistical Machine Learning

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University



codingplayground.blogspot.com

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

## As saject features ein layer Pancapture chitch Personatterns



 $z_j = c_j(c_{j-1}(\cdots c_2(c_1(x))\cdots))$ 

- These features may also be useful for supervised learning task 1ttps://powcoder.com
- In contrast to the feed forward network, the features  $z_j$  are constructed in an unsupervised fashion.
- Discard the decoding layers, and directly use with a supervised training method, such as logistic regression. der
- Various such pre-trained networks are available on-line, e.g VGG-19.

(c) 2020

Ong & Walder & Webers

Data61 | CSIRO

The Australian National

University

- - Autoencoder

- Layer-wise unsupervised pre-training helps by extracting useful features for subsequent supervised backprop.
- S Pre-training also avoids subjection (large mathitude am
- Simpler Xavier initialization can also avoid saturation.
- Let the inputs  $x_i \sim \mathcal{N}(0,1)$ , weights  $w_i \sim \mathcal{N}(0,\sigma^2)$  and activating  $\mathbf{S}_i = \mathbf{N}(0,\sigma^2)$

$$\begin{aligned} \text{VAR}[z] &= \mathbb{E}[(z - \mathbb{E}[z])^2] = \mathbb{E}[z^2] = \mathbb{E}[(\sum_{i=1}^m x_i w_i)^2] \\ \text{Add} &= \sum_{i=1}^m \mathbb{E}[(x_i w_i)^2] = \sum_{i=1}^m \mathbb{E}[x_i^2] \mathbb{E}[w_i^2] = m\sigma^2. \end{aligned}$$

- So we set  $\sigma = 1/\sqrt{m}$  to have "nice" activations.
- Glorot initialization takes care to have nice back-propagated signals — see the auto-encoder lab.
- ReLU activations  $h(x) = \max(x, 0)$  also help in practice.

One & Walder & Webers Data61 | CSIRO The Australian National

### Assignment Project Exam H



• if there is no other constraint, then an autoencoder with d-dimensional input and an encoding of dimension at least d could potentially just learn the identity function

- Regularisation
- Early stopping of stochastic gradient descent
- Add noise in the encoding that powcoder

## Assignment Project Exam Add Project Exam Add Project to input, keeping perfect example as output

Autoencoder

- Autoencoder tries to:

  - preserve information of input

    notified still still control to the still still
- Reconstruction log likelihood

 $\underset{\text{where } \hat{x} \text{ noise free, } \hat{x} \text{ corrubted}}{\text{Add}} \underbrace{We^{-\log P(x|c(\hat{x}))}}_{\text{end to the properties of the$ 

#### Image denoising

Statistical Machine Learning

© 2020
Ong & Walder & Webers
Data61 | CSIRO
The Australian National

Images with Gaussian noise added.



Autoencoder

Dengtise Offig Stake Capar A Retois prover condet



Images from Xie et. al. NIPS 2012

© 2020 Ong & Walder & Webers Data61 | CSIRO The Australian National University

Assignment Project Exam H



Autoencoder



#### Image from http:

//cimg.eu/greycstoration/demonstration.shtml

Undo text over image

Statistical Machine Learning

One & Walder & Webers Data61 | CSIRO The Australian National

Assignment Project Exam He

Autoencoder

https://powcoder.com

Add WeChat powcoder

### Assignment Project Exam For ged basis functions $\phi(x)$ , we use domain knowledge





- The transformations  $\phi_i(\cdot)$  for a particular dataset may no longer be orthogonal, and furthermore may be minor variation (each whee nat powcode)
- We collect all the transformed features into a matrix  $\Phi$ .



Autoencoder

Ong & Walder & Webers The Australian National

 Idea: Have many hidden nodes, but only a few active for a Project Exam

- $\ell_1$  penalty on coefficients  $\alpha$ 
  - Given bases in matrix  $\Phi$ , look for codes by choosing  $\alpha$  such

 $\frac{1}{2} ||x_n - \Phi \alpha_n||_2^2 + \lambda ||\alpha||_1$ powcoder

- Φ is overcomplete, no longer orthogonal
- Sparse  $\Rightarrow$  small number of non-zero  $\alpha_i$ .
- Exact recovery under certain conditions (coherence):  $\ell_1 \to \ell_0$ .
- $\ell_1$  regulariser  $\sim$  Laplace prior  $p(\alpha_i) = \frac{\lambda}{2} \exp(-\lambda |\alpha_i|)$ .

#### The image denoising problem

Statistical Machine Learning

© 2020 Ong & Walder & Webers Data61 | CSIRO The Australian National University



Help

Motivation

Autoencoder

 $y = x_{orig} + w$ measurements original image noise

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Only have noisy measurements

# Assignment Project Exam He measurements original image noise



• Given  $\Phi \in \mathbb{R}^{m \times p}$ , find  $\alpha$  such that  $\frac{1}{n}$  such that  $\frac{1}{n}$  such that  $\frac{1}{n}$  such that

where  $\|\cdot\|_0$  is the number of non-zero elements of  $\alpha$ .

- 1 is not necessal Weatures constructed from training der
- Minimise reconstruction error

$$\min_{\alpha} \sum_{n=1}^{N} \frac{1}{2} \|x_n - \Phi \alpha_n\|_2^2 + \lambda \|\alpha\|_0$$

One & Walder & Webers The Australian National

Want to minimise number of components

# Assignment Project Exam $\mathbb{H}_{\underline{a}}^{\text{para}}$

Autoencoder

but his hard to optimise wooder.com

# Add $\stackrel{\text{min}}{W} \stackrel{\frac{1}{2}\|x_n}{\text{e}} \stackrel{\Phi \alpha_n\|_2^2 + \lambda \|\alpha\|_1}{\text{powcoder}}$

where  $\|\alpha\|_1 = \sum_n |\alpha_n|$ .

• In some settings does minimisation with  $\ell_1$  regularisation give the same solution as minimisation with  $\ell_0$ regularisation (exact recovery)?

One & Walder & Webers The Australian National

#### & Exhanto had contact the control of the control of

- Assume columns of  $\Phi$  are normalised to unit norm
- Let  $K = \Phi \Phi^T$  be the Gram matrix, then K(i, j) is the value of the inner product between  $\phi_i$  and  $\phi_i$ .

  • Define the pure control of the inner product between  $\phi_i$  and  $\phi_i$ .

$$M = M(\Phi) = \max_{i \neq j} |K(i,j)|$$

- If we have about the property of the last propert matrix, hence K(i, j) = 0 when  $i \neq j$ .
- However, if we have very similar columns, then  $M \approx 1$ .

One & Walder & Webers The Australian National

# Assigning the Projectis exam $H_0^{\text{parable}}$



then nittps que spewwooder.com

• If  $\alpha^*$  satisfies the stronger condition

## Add WeChat powcoder

then the minimiser of the  $\ell_1$  relaxation has the same sparsity pattern as  $\alpha^*$ .

## Assitgateminentin Drept Getre Forsam Foundations and Trends in Machine Learning, 2009

Help Motivation

Autoencoder

• http://deeplearning.net/tutorial/

- htthttps://powcoder.com
- Fuchs, "On Sparse Representations in Arbitrary Redundant Bases", IEEE Trans. Info. Theory, 2004
- Xavier Go (f and Vestura Bengip Under antibuting C e1 difficulty of training deep feedforward neural networks", 2010.