MATEMATIK 3

Konya Teknik Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Mühendislik Temel Bilimleri Bölümü

Prof. Dr. Abdullah Selçuk KURBANLI

2020

iki dépis benli fonksiyonların Touylor ve Mc'Loren serilerine (Taylor ve Mc Loren formülleri). ACIP2 de sürekli ve istenildifi mertebeden Kismi türevlere sahip 2=f(x,y) fonksi-yonunu göz önüne ælalim. Eger z=f(x,y)=f(a+ht,b+kt)=F(t) (1) dersex, (2) x=a+ht ve y=b+kt olur. V f(x,y) fonksiyonu istenildipi mertebeden Kismi türeve sahip oldupundan, F(t) fonksiyonuda o bølgede sürekli ve her mertebeden türeve sahip olur. Budurumde F(t)

Jonesiyone Mc'Loren serisine asilabilir.

Hawi,
$$F(t) = F(0) + \frac{t}{4!} F'(0) + \frac{t^2}{2!} F''(0) + \dots + \frac{t^{n-1}}{(n-1)!} F^{(n-1)}(0) + \frac{t^n}{n!} F^{(n)}(0) + \dots + \frac{t^n}{(n-1)!} F^{(n-1)}(0) + \frac{t^n}{n!} F^{(n)}(0) + \dots + \frac{t^{n-1}}{(n-1)!} F^{(n-1)}(0) + \frac{t^n}{n!} F^{(n)}(0) + \dots + \frac{t^{n-1}}{(n-1)!} F^{(n-1)}(0) + \frac{t^n}{n!} F^{(n)}(0) + \dots + \frac{t^n}{(n-1)!} F^{(n)}(0) + \dots$$

$$F(1) = F(0) + F'(0) + \frac{1}{2!} F''(0) + \dots + \frac{1}{(n-1)!} F^{(n-1)}(0) + \frac{1}{n!} F^{(n)}(0)$$
elde edilic.

(4)

Diger tourattour

(5)
$$F(1) = f(a+h, b+k)$$
, $F(0) = f(a,b) dir$.
Sindi, $F'(0)$, $F''(0)$,..., therevier in i hesapla-

yalim.

$$F'(t) = \frac{Of}{Ox} \frac{Ox}{Ot} + \frac{Of}{Oy} \frac{Oy}{Ot} = h \cdot \frac{Of}{Ox} + k \cdot \frac{Of}{Oy} = h \cdot \frac{Of}{Ox} + k \cdot \frac{Of}{Ox} = h \cdot \frac{Of}{Ox} = h \cdot \frac{Of}{Ox} = h \cdot \frac{Of}{Ox} + k \cdot \frac{Of}{Ox} = h \cdot \frac{Of$$

$$F'(0) = \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right)^{(1)} f(a,b) \qquad (6) \text{ bulceneer.}$$

$$F''(t) = \frac{\partial F'}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial F'}{\partial y} \frac{\partial y}{\partial t} =$$

$$= h \cdot \frac{\partial}{\partial x} \left(h \frac{\partial f}{\partial x} + k \cdot \frac{\partial f}{\partial y}\right) + k \cdot \frac{\partial}{\partial y} \left(h \frac{\partial f}{\partial x} + k \cdot \frac{\partial f}{\partial y}\right) =$$

$$= h^2 \cdot \frac{\partial^2 f}{\partial x^2} + h \cdot k \cdot \frac{\partial^2 f}{\partial y \partial x} + k \cdot h \cdot \frac{\partial^2 f}{\partial x^2} + k^2 \cdot \frac{\partial^2 f}{\partial y^2} =$$

$$= h^2 \cdot \frac{\partial^2 f}{\partial x^2} + 2 \cdot h \cdot k \cdot \frac{\partial^2 f}{\partial x^2} + k^2 \cdot \frac{\partial^2 f}{\partial y^2} =$$

$$= \left(h \cdot \frac{\partial}{\partial x} + k \cdot \frac{\partial}{\partial y}\right)^2 f(x,y) \text{ obs.}$$

$$F''(0) = \left(h \cdot \frac{\partial}{\partial x} + k \cdot \frac{\partial}{\partial y}\right)^2 f(a,b) \qquad (7)$$

Benjer sexilde islemé devam edersex

$$F^{(n)}(0) = \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^{(n)} \cdot f(a,b) \quad (8)$$

Bu itadeler (4) de gerine gazilirson,

$$f(a+h,b+k) = f(a,b) + \frac{1}{1!} (h \cdot \frac{0}{6x} + k \cdot \frac{0}{69}) f(a,b) +$$

$$+\frac{1}{(N-1)!}\left(\frac{1}{N-1}+K\cdot\frac{3}{3}\right)^{(N-1)}f(a,b)+$$

(9) da a gerin x, b yerine y yayılırsa
$$f(x+h,y+k) = f(x,y) + \frac{1}{1!} \left(h \frac{0}{0x} + k \frac{0}{0y} \right) f(x,y) + \frac{1}{2!} \left(h \frac{0}{0x} + k \frac{0}{0y} \right) f(x,y) + \frac{1}{2!} \left(h \frac{0}{0x} + k \frac{0}{0y} \right) f(x,y) + \frac{1}{(n-1)!} \left(h \frac{0}{0x} + k \frac{0}{0y} \right) f(x,y) + \frac{1}{n!} \left(h \frac{0}{0x} + k \frac{0}{0y} \right) f(x+\theta h, y+\theta k)$$

elde edilir.

(9) da
$$a=0$$
, $b=0$, $h=x$, $k=y$ yazılır sa,

 $f(x,y) = f(0,0) + \frac{1}{1!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(1)} f(0,0) + \frac{1}{2!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{3!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{3!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0y} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0x} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0x} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0x} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0x} \right)^{(2)} f(0,0) + \frac{1}{4!} \left(x \frac{0}{0x} + y \frac{0}{0x}$

Orner! (1,-1) noxtous civarin da f(x,y) = exty foursigoneenes Touglor serisine, formesi bir degigkenli formsi youların serige agilimi ve kuvvet serilerinin gælliklerinden yararlanarak, aginiz. Gozum: +(x,y) = exty = ex e = f_1(x), f_2(y) oldregum. dan. fi(x) = ex ve fz(y) = e fonksigon/ori tum R'de tanımlı, surrexli ve istenildipi mer te beden tureve sechip elderpundan Me'loren ve taylor serisine açilabilir.

X = 1 ve j = -1 oldepundan Bu Lurum da Agrica, genel terimi an ve by aloen serilerin = an = = (anbo+an, b1+11+0/16-1-06) $e^{x} \cdot e^{y} = e \cdot \sum_{h=0}^{\infty} \frac{(x-1)^{h}}{h!} \cdot \left[e^{t} \sum_{h=0}^{\infty} \frac{(y+1)^{h}}{n!} \right] =$ $= e \cdot e^{1} \cdot \left[\frac{2}{2} \cdot \left(\frac{(x-1)^{n}}{n!} \right] \left[\frac{2}{2} \cdot \left(\frac{(y+1)^{n}}{n!} \right] \right] =$ $=2\left\{\frac{(x-1)^{\circ}}{0!},\frac{(y+1)^{\circ}}{0!},\frac{1}{0!},\frac{(y+1)^{\circ}}{0!},\frac{(y+1)^{\circ}}{0!},\frac{(y+1)^{\circ}}{0!},\frac{(y+1)^{\circ}}{1!},\frac{(y+1)^{\circ}}{0!},\frac{(y+1)^{\circ}}{1!},\frac{(y+1)^{\circ}}{0!},\frac{(y+1)^{\circ}}{1!},\frac{(y+1)^{\circ}}{0!},\frac{(y+1)^$

$$+ \left\{ \frac{(x-1)^{2}}{2!} \cdot \frac{(y+1)^{0}}{0!} + \frac{(x-1)^{1}}{1!} \cdot \frac{(y+1)^{1}}{1!} + \frac{(x-1)^{0}}{0!} \cdot \frac{(y+1)^{2}}{2!} \right\} + \left\{ \frac{(x-1)^{3}}{3!} \cdot \frac{(y+1)^{0}}{0!} + \frac{(x-1)^{3}}{2!} \cdot \frac{(y+1)^{4}}{1!} + \frac{(x-1)^{4}}{2!} \cdot \frac{(y+1)^{2}}{2!} + \frac{(x+1)^{6}}{0!} \cdot \frac{(y+1)^{3}}{3!} \right\} + \left\{ \frac{(x-1)^{6}}{n!} \cdot \frac{(y+1)^{6}}{0!} + \frac{(x-1)^{6}}{(n-1)!} \cdot \frac{(y+1)^{4}}{1!} + \frac{(x-1)^{6}}{1!} \cdot \frac{(y+1)^{6}}{n!} + \frac{(x-1)^{6}}{0!} \cdot \frac{(y+1)^{6}}{n!} \right\} + \left\{ \frac{(x-1)^{2}}{2!} + 2 \cdot \frac{(x-1)^{6}}{2!} + 2 \cdot \frac{(x-1)^{6}}{3!} \right\} + \left\{ \frac{(y+1)^{2}}{2!} + \left\{ \frac{(x-1)^{3}}{3!} + 3 \cdot \frac{(x-1)^{2}}{3!} \cdot \frac{(y+1)^{4}}{3!} + 3 \cdot \frac{(x-1)^{6}}{n!} \cdot \frac{(y+1)^{6}}{n!} + \frac{(y+1)^{6}}{n!} \right\} + \left\{ \frac{(x-1)^{6}}{n!} + n \cdot \frac{(x-1)^{6}}{n!} \cdot \frac{(y+1)^{4}}{n!} + \frac{(y+1)^{6}}{n!} + \frac{(y+1)^{6}}{n!} + \frac{(y+1)^{6}}{n!} \right\} + \dots + \left\{ \frac{(x-1)^{6}}{n!} + n \cdot \frac{(x-1)^{6}}{n!} + n \cdot \frac{(x-1)^{6}}{n!} \cdot \frac{(y+1)^{6}}{n!} + \dots + n \cdot \frac{(x-1)^$$

+ { n! + n - n! $=2+\frac{1}{1!}\left\{ (x-1)+(y+1)\right\} +\frac{1}{2!}\left\{ (x-1)+(y+1)\right\} +$ + 1 { (x+1) } + (y+1) } + 111 + 1 { (x-1) + (y+1) } + 111 + 11 } electric istorial. olurki istenilendir. Ancak bu
me to IV her bir örnek isin, bu sexilde
kolay sonuca varilæmagabilir. Simdi aynı örnepi iki depizkenli fonksiyoularin Taylor serisine ægilimin dan your arlamaran serige asalim.

(1,-1) nontast civarinda $f(x,y) = e^{x+y}$ fonksigoneener Taylor serisine asing.

$$\frac{cogum!}{(12)}$$
 den $(a=1, b=-1 yazılarane)$

$$f(x,y) = f(x,-1) + \frac{1}{1!} \left[(x-1) \frac{\partial}{\partial x} + (y+1) \frac{\partial}{\partial y} \right]^{(1)} f(x,-1) +$$

$$+\frac{1}{2!}\left[(x-1)\frac{0}{0x}+(y+1)\frac{0}{0y}\right]^{(2)}f(1,-1)+$$

$$\frac{1}{(n-1)!} \left[(x-1) \frac{1}{0} + (y+1) \frac{1}{0} \right] \frac{1}{(n-1)} + \frac{1}{(n-1)!} \left[(x-1) \frac{1}{0} + (y+1) \frac{1}{0} \right] \frac{1}{(n-1)!}$$

7

$$= \begin{cases} f(3,-1) = 1 & \text{ve } \frac{\partial f}{\partial x} |_{(3,-1)} = 1, & \text{of } |_{(3,-1)} = 1, \\ \frac{\partial^2 f}{\partial x \partial y} |_{(3,-1)} = 1, & \frac{\partial^2 f}{\partial x^2} |_{(3,-1)} = 1, & \frac{\partial^2 f}{\partial y^2} |_{(3,-1)} = 1, \\ \frac{1}{3!} [(x-1) + (y+1)]^{\frac{1}{2!}} [(x-1) + (y+1)]^{\frac{1}{2!}} + \frac{1}{2!} [(x-1) + (y+1)]^{\frac{1}{2!}} + \frac{1}{3!} [(x-1) + (y+1)]^{\frac{1}{2!}} + \frac{1}{3!}$$

Drnek!
$$f(x,y) = e^x \sin y$$
 for resigonement

Me' Loren series ne azing.

Formall $f(0,0) = e^x \sin 0 = 0$ obtains

$$f'(x,y) = \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}\right) f(0,0) = x \cdot \left(e^x \sin y\right) \frac{\partial}{\partial y} + y \cdot \left(e^x \cos y\right) = x \cdot \left(e^x \cos y\right) \frac{\partial}{\partial y} + y \cdot \left(e^x \cos y\right) \frac{\partial}{\partial y} + y \cdot \frac$$

$$= x^{2} \left(e^{x} \sin y \Big|_{(0,0)} \right) + 2x \cdot y \left(e^{x} \cos y \Big|_{(0,0)} \right) + y^{2} \left(-e^{x} \sin y \Big|_{(0,0)} \right)^{2}$$

$$= x^{2} \cdot 0 + 2 \cdot x \cdot y \cdot 1 + y^{2} \cdot 0 = 2x \cdot y ;$$

$$f^{(1)}(x,y) \Big|_{(0,0)} = x^{3} \left(e^{x} \sin y \Big|_{(0,0)} \right) + 3 \cdot x^{2} y \left(e^{x} \cos y \Big|_{(0,0)} \right) +$$

$$+ 3x \cdot y^{2} \left(-e^{x} \sin y \Big|_{(0,0)} \right) + y^{3} \left(-e^{x} \cos y \Big|_{(0,0)} \right)^{2}$$

$$f(x,y) = e^{x} \sin y = 0 + \frac{1}{1!} y + \frac{1}{2!} 2xy + \frac{1}{3!} (3x^{2}y - y^{3}) + \frac{1}{3!} (3x^{2} - y^{2}) \cdot y + \frac{1}{3!} (3x^{2} - y^{2}) \cdot y + \frac{1}{3!} olur.$$

Orner! x2+y2-22-xy=0. denklemile kapali olarak verilen 7=f(x,y) fonksiyonu-nun (-1,0) noktasında aldığıp deper 7=f(-1,0) = 1 olduguna gore sig vonusu Janksiyonu (-1,0) noxtass civarinda ireinci mertebeden turevler dahil Toylor serisine eginiz.

To sim! (11) formillinde
$$x = x_0$$
, $y = y_0$ dersex,

 $f(x_0 + h, y_0 + \kappa) = f(x_0, y_0) + \frac{1}{11} \left(h \cdot \frac{0}{0x} + \kappa \cdot \frac{0}{0y} \right) f(x_0, y_0) + \frac{1}{11} \left(h \cdot \frac{0}{0x} + \kappa \cdot \frac{0}{0y} \right) f(x_0, y_0) + \dots$

Buradan dor

 $f(-1 + h, 0 + \kappa) = f(-1, 0) + \frac{1}{11} \left(h \cdot \frac{0}{0x} + \kappa \cdot \frac{0}{0y} \right) f(-1, 0) + \dots$
 $f(-1 + h, 0 + \kappa) = f(-1, 0) + \frac{1}{11} \left(h \cdot \frac{0}{0x} + \kappa \cdot \frac{0}{0y} \right) f(-1, 0) + \dots$
 $f(-1 + h, 0 + \kappa) = f(-1, 0) + \frac{1}{11} \left(h \cdot \frac{0}{0x} + \kappa \cdot \frac{0}{0y} \right) f(-1, 0) + \dots$
 $f(-1 + h, 0 + \kappa) = f(-1, 0) + \frac{1}{11} \left(h \cdot \frac{0}{0x} + \kappa \cdot \frac{0}{0y} \right) f(-1, 0) + \dots$
 $f(-1 + h, 0 + \kappa) = f(-1, 0) + \frac{1}{11} \left(h \cdot \frac{0}{0x} + \kappa \cdot \frac{0}{0y} \right) f(-1, 0) + \dots$
 $f(-1 + h, 0 + \kappa) = f(-1, 0) + \frac{1}{11} \left(h \cdot \frac{0}{0x} + \kappa \cdot \frac{0}{0y} \right) f(-1, 0) + \dots$
 $f(-1 + h, 0 + \kappa) = f(-1, 0) + \frac{1}{11} \left(h \cdot \frac{0}{0x} + \kappa \cdot \frac{0}{0y} \right) f(-1, 0) + \dots$
 $f(-1 + h, 0 + \kappa) = f(-1, 0) + \frac{1}{11} \left(h \cdot \frac{0}{0x} + \kappa \cdot \frac{0}{0y} \right) f(-1, 0) + \dots$
 $f(-1 + h, 0 + \kappa) = f(-1, 0) + \frac{1}{11} \left(h \cdot \frac{0}{0x} + \kappa \cdot \frac{0}{0y} \right) f(-1, 0) + \dots$
 $f(-1 + h, 0 + \kappa) = f(-1, 0) + \frac{1}{11} \left(h \cdot \frac{0}{0x} + \kappa \cdot \frac{0}{0y} \right) f(-1, 0) + \dots$
 $f(-1 + h, 0 + \kappa) = f(-1, 0) + \frac{1}{11} \left(h \cdot \frac{0}{0x} + \kappa \cdot \frac{0}{0y} \right) f(-1, 0) + \dots$
 $f(-1 + h, 0 + \kappa) = f(-1, 0) + \frac{1}{11} \left(h \cdot \frac{0}{0x} + \kappa \cdot \frac{0}{0y} \right) f(-1, 0) + \dots$
 $f(-1 + h, 0 + \kappa) = f(-1, 0) + \frac{1}{11} \left(h \cdot \frac{0}{0x} + \kappa \cdot \frac{0}{0y} \right) f(-1, 0) + \dots$
 $f(-1 + h, 0 + \kappa) = f(-1, 0) + \frac{1}{11} \left(h \cdot \frac{0}{0x} + \kappa \cdot \frac{0}{0y} \right) f(-1, 0) + \dots$
 $f(-1 + h, 0 + \kappa) = f(-1, 0) + \frac{1}{11} \left(h \cdot \frac{0}{0x} + \kappa \cdot \frac{0}{0y} \right) f(-1, 0) + \dots$
 $f(-1 + h, 0 + \kappa) = f(-1, 0) + \frac{1}{11} \left(h \cdot \frac{0}{0x} + \kappa \cdot \frac{0}{0y} \right) f(-1, 0) + \dots$

 $f(x,y) = f(-1,0) + \frac{1}{1!} \left((x+1) \frac{\partial}{\partial x} + y \cdot \frac{\partial}{\partial y} \right)^{(1)} f(-1,0) + \frac{1}{2!} \left((x+1) \frac{\partial}{\partial x} + y \cdot \frac{\partial}{\partial y} \right)^{(2)} f(-1,0) + \dots$ bulunur.

Osamon, f(-1,0) = Z = 1 olup, verilen denklem x ve y dépisseulerine gore kapali türetilisse,

$$2x - 2z \cdot z_x - y = 0$$
 (*)

 $2y - 2z \cdot z_y - x = 0$ (#) bulusur.

 $x = -1$, $y = 0$ ve $z = 1$ dersex,

 $-2 - 2 \cdot 1 \cdot z_x - 0 = 0 = 0$ $z_x = -1$.

 $+2 \cdot 0 - 2 \cdot 1 \cdot z_y - (-1) = 0 = 0$ $z_y = \frac{1}{2}$ bulusur.

 $\frac{1}{2} |z_x|^2 = \frac{1}{2} |z_x|$

2-2.
$$\frac{1}{2}$$
, $\frac{1}{2}$, $\frac{1}{$

bulunur. 1-1-2.2xy=0 =) 2xy=0 Bulmus oldupunny bu déperler, (**) don yerine youzilirsa, $f(x,y) = 1 + \frac{1}{11} ((x+1).(-1) + y. - \frac{1}{2}) +$ $+\frac{1}{2!}\left((x+1)^2.0+2.(x+1).y.(0)+y^2.\frac{3}{4}\right)+m=$ $= 4 + \left(-(x+1) + \frac{4}{2}\right) + \frac{1}{2!}\left(\frac{3}{4}y^{2}\right) + \pi r =$ bulunut. $=\frac{1}{2}-(x+1)+\frac{3}{2}+\frac{3}{8}y^2+111$

Kaynaklar:

- 1. A. H. Berksoy, O. Özkan, Mühendisler İçin Çözümlü Kalkülüs, S.Ü. Basımevi, 2010
- 2. G. B. Thomas ve Ark., **Thomas Calculus II**, Çeviri: R. Korkmaz, Beta Yayıncılık, İstanbul, 2010.
- 3. J. Stewart, Kalkülüs Kavram ve Kapsam (Diferansiyel ve İntegral Hesap), TÜBA, 2010.