Máquinas térmicas e de fluxo Aula 07

DSc. Eng. Samuel Moreira Duarte Santos Engenheiro Mecânico CREA MG 106478D

Rio de Janeiro, 24 de maio 2023

Samuel Moreira Duarte Santos

Agenda

- Substância Pura;
- Equilíbrio de Fases Sólido-Líquido-Vapor em uma substância pura;
- Diagramas de equilíbrio termodinâmico de fases;
- Substâncias que expandem e contraem na solidificação;
- Propriedades independentes;
- Tabelas de propriedades termodinâmicas;
- Exercícios; e
- Interpolação;

Substância pura

- Uma substância pura é aquela que tem composição química homogênea e invariável;
- Ela pode existir em mais de uma fase, porém a composição química é a mesma em todas as fases;
- Exemplo: Água (H2O) A água tem a mesma composição química nas fases sólida, líquida e vapor;
- Uma mistura de água líquida e vapor também tem composição química homogênea e estável, portanto também pode ser considerado uma substância pura.

Água destilada

Ar que respiramos (N_2, O_2, CO_2, etc)

Equilíbrio de Fases Sólido-Líquido-Vapor em

uma Substância Pura

Vamos analisar o seguinte problema:

- Temos um conjunto cilindro-pistão com água líquida em seu interior.
- Existe um "peso" de peso P em cima do êmbolo
- A pressão externa é atmosférica
- Vamos introduzir calor no sistema
- O que acontecerá com as propriedades?
 - Volume
 - Pressão
 - Temperatura

Equilíbrio de Fases Sólido-Líquido-Vapor em

uma Substância Pura

- Volume:
 - Sempre aumenta
- Pressão:
 - É constante, pois a pressão interna tem que contrabalancear a pressão externa mais o peso
- Temperatura:
 - Aumenta quando não houver mudança de fase; e
 - Permanece constante na mudança de fase pois a pressão é constante.

$$\sum \mathbf{F} = m\mathbf{a}$$

$$\sum \mathbf{F} = 0$$

$$P_{in}A = P + P_{atm}A$$

 $P_{in} = P/A + P_{atm}$

Equilíbrio de Fases Sólido-Líquido-Vapor em

uma Substância Pura

Equilíbrio de Fases Sólido-Líquido-Vapor em uma Substância Pura

- A pressão neste processo é constante, pois o peso é constante, portanto (p = patm+ P/A) onde P é o peso e A é a área do pistão;
- Existem **infinitos estados** no ponto (b), pois a mudança de fase ocorre a pressão constante e temperatura constante, como já sabemos;
- Para definir um estado são necessárias 2 propriedades independentes;
- Com a observação do exemplo, descobrimos que a pressão e temperatura não são propriedades independentes na mudança de fase, assim precisamos de mais uma outra propriedade para definir o estado na mudança de fase.

- Temperatura de saturação: Temperatura que ocorre a ebulição em uma dada pressão;
- Pressão de saturação: Pressão que ocorre a ebulição em uma dada temperatura;
- Exemplo:
 - A temperatura de saturação a 101,325 kPa (1 atm) é 100°C;
 - A pressão de saturação a 100°C é 101,325 kPa (1 atm).

- Líquido saturado: Líquido a temperatura e pressão de saturação;
- Vapor saturado: Vapor a temperatura e pressão de saturação;
- **Líquido comprimido ou subresfriado:** Líquido quando a temperatura do líquido é mais baixa do que a temperatura de saturação a uma dada pressão;
- **Vapor superaquecido:** Vapor em uma temperatura superior que a temperatura de saturação a uma dada pressão.

- Estado de saturação: um estado de mudança de fase;
- **Título:** razão entre a massa de vapor e massa total em um estado de saturação. o título é uma propriedade intensiva e somente é definido na saturação.

$$x = \frac{m_v}{m_{Total}}$$

$$m_{Total} = m_{vapor} + m_{Liquido}$$

- 1. Líquido Comprimido;
- 2. Líquido Saturado (x=0);
- 3. Estado de Saturação (0<x<1);
- 4. Vapor Saturado (x=1); e
- 5. Vapor Superaquecido.

•Ponto Crítico: Acima da pressão do ponto crítico não existe o fenômeno de ebulição e o aquecimento do líquido, produzirá vapor sem ebulição, em uma transição suave. Fluidos supercríticos não têm fases definidas;

•Ponto Triplo: Um estado particular de uma substância determinado por valores de temperatura e pressão, no qual as três fases (sólido, líquido e gasoso) coexistem em equilíbrio.

Substâncias que Expandem e Contraem na Solidificação

O massa específica da maioria das substâncias aumenta durante a solidificação , mas a água é uma exceção (Sabemos que o gelo flutua na água líquida).

Volume específico em um estado saturado

• Definição de volume específico:

$$v = \frac{\mathbb{V}}{m} : \mathbb{V} = mv$$

• Para um estado de saturação:

$$v = v_l + xv_{lv} = v_l + x(v_v - v_l)$$

Propriedades independentes

- Um estado de uma substância pura é definido com 2 propriedades independentes;
- Sabendo 2 propriedades independentes é possível descobrir todas as outras propriedades do estado;
- Em um estado saturado, pressão e temperatura não são independentes; e
- Assim é necessário uma outra propriedade para definir um estado de saturação.

Tabelas de propriedades termodinâmicas

- Foram realizados diversos experimentos para a determinação dos estados termodinâmicos de diversas substâncias puras;
- Com o resultado desses experimentos surgiram as tabelas termodinâmicas; e
- Com elas é possível determinar os estados termodinâmicos e suas propriedades.

Líquido comprimido

v (m ³ /kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)
	2000 kPa	(212.42°C)	
0.001177	906.42	908.77	2.4473
0.000999	0.03	2.03	0.0001
0.001001	83.82	85.82	.2962
0.001007	167.29	169.30	.5716
0.001016	250.73	252.77	.8300
0.001028	334.38	336.44	1.0739
0.001043	418.36	420.45	1.3053
0.001059	502.84	504.96	1.5259
0.001079	588.02	590.18	1.7373
0.001101	674.14	676.34	1.9410
0.001127	761.46	763.71	2.1382
0.001156	850.30	852.61	2.3301

Pressão	Temp. de	Volume e	specífico	Energia e	específica	Entalpia e	específica	Entropia e	específica
absoluta	vaporização	líquido	vapor	líquido	vapor	líquido	vapor	líquido	vapor
bar	°C	m ³ / kg	m ³ / kg	kJ / kg	kJ / kg	kJ / kg	kJ / kg	kJ/kg.K	kJ/kg.K
0,01	6,97	0,001000	129,183	29,3	2384,5	29,3	2513,7	0,1059	8,9749
0,02	17,5	0,001001	66,9896	73,4	2398,9	73,4	2532,9	0,2606	8,7227
0,03	24,1	0,001003	45,6550	101,0	2407,9	101,0	2544,9	0,3543	8,5766
0,04	29,0	0,001004	34,7925	121,4	2414,5	121,4	2553,7	0,4224	8,4735
0,05	32,9	0,001005	28,1863	137,8	2419,8	137,8	2560,8	0,4763	8,3939
0,06	36,2	0,001006	23,7342	151,5	2424,3	151,5	2566,7	0,5209	8,3291

Temp. de	Pressão de	Volume e	specífico	Energia e	específica	Entalpia e	específica	Entropia	específica
vaporização	saturação	líquido	vapor	líquido	vapor	líquido	vapor	líquido	vapor
.€	bar	m³/kg	m ³ / kg	KJ / kg	kJ / kg	kJ / kg	kJ / kg	kJ/kg.K	kJ/kg.K
0,01	0,0061	0,001000	205,997	0,0	2374,9	0,0	2500,9	0,0000	9,1555
2	0,0071	0,001000	179,764	8,4	2377,7	8,4	2504,6	0,0306	9,1027
4	0,0081	0,001000	157,121	16,8	2380,4	16,8	2508,2	0,0611	9,0506
6	0,0094	0,001000	137,638	25,2	2383,2	25,2	2511,9	0,0913	8,9994
8	0,0107	0,001000	120,834	33,6	2385,9	33,6	2515,6	0,1213	8,9492
10	0,0123	0,001000	106,309	42,0	2388,7	42,0	2519,2	0,1511	8,8998
15	0,0171	0,001001	77,8807	63,0	2395,5	63,0	2528,4	0,2245	8,7804
20	0,0234	0,001002	57,7615	83,9	2402,4	83,9	2537,5	0,2965	8,6661
25	0,0317	0,001003	43,3414	104,8	2409,2	104,8	2546,5	0,3673	8,5568
30	0,0425	0,001004	32,8816	125,7	2415,9	125,7	2555,6	0,4368	8,4521

Vapor saturado

Vapor superaquecido

Temperatura	P =	16	5,0	bar
remperatura	v	u	h	S
~	m ³ / kg	kJ / kg	kJ / kg	kJ/kg.K
201,38	0,1237	2594,9	2792,9	6,4200
225	0,1329	2645,1	2857,8	6,5536
250	0,1419	2692,9	2919,9	6,6754
275	0,1504	2738,1	2978,7	6,7851
300	0,1587	2781,7	3035,5	6,8865
325	0,1667	2824,4	3091,1	6,9814
350	0,1746	2866,6	3146,0	7,0713

Exercício 2.1

Determinar a fase e todas as propriedades da água nos estados abaixo:

(a)
$$T = 200^{\circ}$$
C e $x = 0.7$;

(b)
$$T = 60^{\circ}\text{C e } p = 5 \text{ MPa};$$

(c)
$$T = 350^{\circ}\text{C e } p = 4 \text{ MPa};$$

(d)
$$p = 200 \text{ kPa e } v = 0.2 \text{ m}^3/\text{kg};$$

(a)
$$T = 200^{\circ}$$
C e $x = 0.7$;

			<i>específico</i> , ³/kg	Enei	rgia interna, l	kJ/kg	En	talpia, kJ/k	g	Entropia, kJ/kg·K		
Temp., <i>T</i> °C	Press. sat., <i>P</i> _{sat} kPa	Líq. sat., v _i	Vapor sat. v _v	Líq. sat. <i>u_l</i>	Evap., u _{lv}	Vapor sat. <i>u_v</i>	Líq. sat. h _l	Evap., h _{lv}	Vapor sat. <i>h_v</i>	Líq. sat. s _i	Evap., s _{Iv}	Vapor sat. s _v
175	892,60	0,001121	0,21659	740,02	1.839,4	2.579,4	741,02	2.031,7	2.772,7	2,0906	4,5335	6,6242
180	1.002,8	0,001127	0,19384	761,92	1.820,9	2.582,8	763,05	2.014,2	2.777,2	2,1392	4,4448	6,5841
185	1.123,5	0,001134	0,17390	783,91	1.802,1	2.586,0	785,19	1.996,2	2.781,4	2,1875	4,3572	6,5447
190	1.255,2	0,001141	0,15636	806,00	1.783,0	2.589,0	807,43	1.977,9	2.785,3	2,2355	4,2705	6,5059
195	1.398,8	0,001149	0,14089	828,18	1.763,6	2.591,7	829,78	1.959,0	2.788,8	2,2831	4,1847	6,4678
200	1.554,9	0,001157	0,12721	850,46	1.743,7	2.594,2	852,26	1.939,8	2.792,0	2,3305	4,0997	6,4302

$$v = v_l + xv_{lv}$$

$$v = 0,001157 + 0,7(0,12721 - 0,001157)$$

$$v = 0,0894 \left[\frac{m^3}{kg} \right]$$

(a)
$$T = 200^{\circ}$$
C e $x = 0.7$;

			<i>específico</i> , ³/kg	Enei	rgia interna, l	kJ/kg	En	talpia, kJ/k	g	Entropia, kJ/kg·K		
Temp., <i>T</i> °C	Press. sat., <i>P</i> _{sat} kPa	Líq. sat., v _i	Vapor sat. v _v	Líq. sat. <i>u_l</i>	Evap., u _{lv}	Vapor sat. <i>u_v</i>	Líq. sat. h _l	Evap., h _{lv}	Vapor sat. <i>h_v</i>	Líq. sat. s _i	Evap., s _{Iv}	Vapor sat. s _v
175	892,60	0,001121	0,21659	740,02	1.839,4	2.579,4	741,02	2.031,7	2.772,7	2,0906	4,5335	6,6242
180	1.002,8	0,001127	0,19384	761,92	1.820,9	2.582,8	763,05	2.014,2	2.777,2	2,1392	4,4448	6,5841
185	1.123,5	0,001134	0,17390	783,91	1.802,1	2.586,0	785,19	1.996,2	2.781,4	2,1875	4,3572	6,5447
190	1.255,2	0,001141	0,15636	806,00	1.783,0	2.589,0	807,43	1.977,9	2.785,3	2,2355	4,2705	6,5059
195	1.398,8	0,001149	0,14089	828,18	1.763,6	2.591,7	829,78	1.959,0	2.788,8	2,2831	4,1847	6,4678
200	1.554,9	0,001157	0,12721	850,46	1.743,7	2.594,2	852,26	1.939,8	2.792,0	2,3305	4,0997	6,4302

$$u = u_l + xu_{lv}$$

$$u = 850,46 + 0,7(2594,2 - 850,46)$$

$$u = 2071,08 \left[\frac{kJ}{kg} \right]$$

(b)
$$T = 60^{\circ}\text{C e } p = 5 \text{ MPa};$$

Volume específico,

m³/kg

Exercícios

Energia interna, kJ/kg

Temp., <i>T</i> °C	Press. sat., <i>P</i> _{sat} kPa	, Líq. sat., v_I	Vapor sat.	Líq. sat. <i>u_l</i>	Evap., u _{lv}	Vapor sat. <i>u_v</i>	Líq. sat. h _l	Evap., <i>h_{lv}</i>	Vapor sat. <i>h_v</i>	Líq. sat.	Evap., s _{Iv}	Vapor sat. s _v
50 55 60 65 70	12,352 15,763 19,947 25,043 31,202	0,001012 0,001015 0,001017 0,001020 0,001023	12,026 9,5639 7,6670 6,1935 5,0396	209,33 230,24 251,16 272,09 293,04	2.233,4 2.219,1 2.204,7 2.190,3 2.175,8	2.442,7 2.449,3 2.455,9 2.462,4 2.468,9	209,34 230,26 251,18 272,12 293,07	2.382,0 2.369,8 2.357,7 2.345,4 2.333,0	2.591,3 2.600,1 2.608,8 2.617,5 2.626,1	0,7038 0,7680 0,8313 0,8937 0,9551	7,3710 7,2218 7,0769 6,9360 6,7989	8,0748 7,9898 7,9082 7,8296 7,7540
		Volume espec	ífico, m³/kg	Energ	<i>ia interna</i> , k	J/kg	En	talpia, kJ/k	g	Entr	<i>opia</i> , kJ/kg	g-K
Press., <i>P</i> kPa	Temp. sat., <i>T</i> _{sat}	<i>Volume espec</i> Líq. sat., <i>v_i</i>	Vapor sat.,	Energ	<i>ia interna</i> , k Evap., <i>u_{lv}</i>	Vapor sat., u _v	Líq. sat.,	<i>talpia</i> , kJ/k Evap., <i>h_{lv}</i>	Vapor sat., h _v	Entr Líq. sat., s _l	<i>opia</i> , kJ/kg Evap., <i>s_{lv}</i>	y∙K Vapor sat., s _v

Entalpia, kJ/kg

Entropia, kJ/kg·K

(b) $T = 60^{\circ}\text{C e } p = 5 \text{ MPa};$

Exercícios

Água, líquido comprimido

<i>T</i> °C	v m³/kg	<i>u</i> kJ/kg	<i>h</i> kJ/kg	<i>s</i> kJ/kg⋅K	
	P) = 5 MPa (2	263,94 °C)		T
Sat.	0,0012862	1.148,1	1.154,5	2,9207	-
0	0,0009977	0,04	5,03	0,0001	ı
20	0,0009996	83,61	88,61	0,2954	ı
40	0,0010057	166,92	171,95	0,5705	١
60	0,0010149	250,29	255,36	0,8287	1
80	0,0010267	333,82	338,96	1,0723	1
100	0,0010410	417,65	422,85	1,3034	ı
120	0,0010576	501,91	507,19	1,5236	١
140	0,0010769	586,80	592,18	1,7344	١
160	0,0010988	672,55	678,04	1,9374	١
180	0,0011240	759,47	765,09	2,1338	1
200	0,0011531	847,92	853,68	2,3251	١
220	0,0011868	938,39	944,32	2,5127	١
240	0,0012268	1.031,6	1.037,7	2,6983	1
260	0,0012755	1.128,5	1.134,9	2,8841	1
280					١
300					١
320					
340					

(c) $T = 350^{\circ}\text{C e } p = 4 \text{ MPa};$ **Exercícios**

T°C P _{sat} kPa v _I v _v u _I Evap., u _{Iv} sat. u _v Líq. sat. h _I Evap., h _{Iv} sat. h _v s _I 330 12.858 0,001560 0,012979 1.505,7 993,5 2.499.2 1.525,8 1.140,3 2.666,0 3,551 335 13.707 0,001597 0,011848 1.537,5 945,5 2.483,0 1.559,4 1.086,0 2.645,4 3,605	Temn		1 ³ /kg	Energ	Energia interna, kJ/kg Líg. sat. Vapor			talpia, kJ/kg		Entropia, kJ/kg·K		
335 13.707 0,001597 0,011848 1.537,5 945,5 2.483,0 1.559,4 1.086,0 2.645,4 3,605	_	5 15		•	Evap., u_{lv}	•	Líq. sat. h _l	Evap., h _{lv}	• .	Líq. sat. <i>s_i</i>	Evap., <i>s_{Iv}</i>	Vapor sat. s_v
335 13.707 0,001597 0,011848 1.537,5 945,5 2.483,0 1.559,4 1.086,0 2.645,4 3,605												
	330	12.858 0,00156	0,012979	1.505,7	993,5	2.499.2	2 1.525,8	3 1.140,3	2.666,0	3,5516	1,8906	5,4422
240 14601 0.001629 0.010792 1.570.7 902.9 2.464.5 1.504.6 1.027.4 2.622.0 2.660	335	13.707 0,00159	7 0,011848	1.537,5	945,5	2.483,0	1.559,4	1.086,0	2.645,4	3,6050	1,7857	5,3907
340 14.001 0,001036 0,010763 1.370,7 693,6 2.404,3 1.394,6 1.027,4 2.622,0 3,660	340	14.601 0,00163	8 0,010783	1.570,7	893,8	2.464,5	5 1.594,6	1.027,4	2.622,0	3,6602	1,6756	5,3358
<u>345</u> <u>15.541</u> <u>0,001685</u> <u>0,009772</u> <u>1.605,5</u> <u>837,7</u> <u>2.443,2</u> <u>1.631,7</u> <u>963,4</u> <u>2.595,1</u> <u>3,717</u>	345	15.541 0,00168	5 0,009772	1.605,5	837,7	2.443,2	2 1.631,7	963,4	2.595,1	3,7179	1,5585	5,2765
350 16.529 0,001741 0,008806 1.642,4 775,9 2.418,3 1.671,2 892,7 2.563,9 3,778	350	16.529 0,00174	0,008806	1.642,4	775,9	2.418,3	3 1.671,2	892,7	2.563,9	3,7788	1,4326	5,2114

		Volume espe	<i>ecífico</i> , m³/kg	Energi	<i>a interna</i> , k	J/kg	Ei	ntalpia, kJ/kg	g	Entr	<i>opia</i> , kJ/kg	·K
Press., P kPa	Temp. sat., T _{sat} °C	Líq. sat., v,	Vapor sat.,	Líq. sat. <i>u_l</i>	Evap., u_{lv}	Vapor sat., <i>u_v</i>	Líq. sat., <i>h_I</i>	Evap., h _{Iv}	Vapor sat., <i>h</i> _v	Líq. sat., s _i	Evap., s _{Iv}	Vapor sat., <i>s</i> _v
3.500	242,56	0,001235	0,057061	1.045,4	1.557,6	2.603,0	1.049,7	1.753,0	2.802,7	2,7253	3,3991	6,1244
4.000	250,35	0,001252	0,049779	1.082,4	1.519,3	2.601,7	1.087,4	1.713,5	2.800,8	2,7966	3,2731	6,0696
5.000	263,94	0,001286	0,039448	1.148,1	1.448,9	2.597,0	1.154,5	1.639,7	2.794,2	2,9207	3,0530	5,9737
6.000	275,59	0,001319	0,032449	1.205,8	1.384,1	2.589,9	1.213,8	1.570,9	2.784,6	3,0275	2,8627	5,8902
7.000	285,83	0,001352	0,027378	1.258,0	1.323,0	2.581,0	1.267,5	1.505,2	2.772,6	3,1220	2,6927	5,8148

(c) $T = 350^{\circ}\text{C e } p = 4 \text{ MPa}$; **Exercícios**

U .		4	,	-
<i>T</i> °C	v m³/kg	<i>и</i> kJ/kg	<i>h</i> kJ/kg	<i>s</i> kJ/kg⋅K
_	P	= 4,0 MPa	(250,35 °C)
Sat.	0,04978	2.601,7	2.800,8	6,0696
275	0,05461	2.668,9	2.887,3	6,2312
300	0,05887	2.726,2	2.961,7	6,3639
350	0,06647	2.827,4	3.093,3	6,5843
400	0,07343	2.920,8	3.214,5	6,7714
450	0,08004	3.011,0	3.331,2	6,9386
500	0,08644	3.100,3	3.446,0	7,0922
600	0,09886	3.279,4	3.674,9	7,3706
700	0,11098	3.462,4	3.906,3	7,6214
800	0,12292	3.650,6	4.142,3	7,8523
900	0,13476	3.844,8	4.383,9	8,0675
1.000	0,14653	4.045,1	4.631,2	8,2698
1.100	0,15824	4.251,4	4.884,4	8,4612
1.200	0,16992	4.463,5	5.143,2	8,6430
1.300	0,18157	4.680,9	5.407,2	8,8164

(d) $p = 200 \text{ kPa e } v = 0.2 \text{ m}^3/\text{kg}$;

	Volume específico, m³/kg		<i>cífico</i> , m³/kg	Energ	gia interna, k	J/kg	Ei	ntalpia, kJ/k	g	Entropia, kJ/kg·K		
Press., <i>P</i> kPa	Temp. sat., <i>T</i> _{sat} °C	Líq. sat., v,	Vapor sat., ν _ν	Líq. sat. <i>u_i</i>	Evap., <i>u_{lv}</i>	Vapor sat., <i>u_v</i>	Líq. sat., <i>h</i> ,	Evap., h _{lv}	Vapor sat., <i>h_v</i>	Líq. sat., s _l	Evap., s _{Iv}	Vapor sat., s _v
175	116,04	0,001057	1,0037	486,82	2.037,7	2.524,5	487,01	2.213,1	2.700,2	1,4850	5,6865	7,1716
200	120,21	0,001061	0,88578	504,50	2.024,6	2.529,1	504,71	2.201,6	2.706,3	1,5302	5,5968	7,1270
225	123,97	0,001064	0,79329	520,47	2.012,7	2.533,2	520,71	2.191,0	2.711,7	1,5706	5,5171	7,0877
250	127,41	0,001067	0,71873	535,08	2.001,8	2.536,8	535,35	2.181,2	2.716,5	1,6072	5,4453	7,0525
275	130,58	0,001070	0,65732	548,57	1.991,6	2.540,1	548,86	2.172,0	2.720,9	1,6408	5,3800	7,0207

$$v = v_l + x v_{lv}$$

$$x = \frac{(v - v_l)}{v_{lv}}$$

$$x = \frac{(0.2 - 0.001061)}{(0.88578 - 0.001061)}$$

$$x = 0.225$$

- Algumas vezes será necessário interpolar dados das tabelas
- Exemplo:
 - Deve-se encontrar o volume específico para o estado:
 - $P=10 \text{ kPa e T} = 215^{\circ}\text{C};$
 - Ao verificar a tabela correspondente (exemplo), temos:

p = 10 kPa						
T(°C)	$v \text{ (m}^3/\text{kg)}$					
120	0.1796					
160	0.1985					
200	0.2060					
240	0.2275					
280	0.2512					

Interpolação

 Sendo assim, devemos fazer uma interpolação linear para encontrar o valor para T=215°C;

Fase líquida e sólida

- A variação do volume específico de líquidos de um estado para o outro é muito pequena e apenas depende da temperatura;
- Por isso podemos considerar os líquidos como fluidos incompressíveis e assim pode se utilizar o volume especifico do líquido saturado a mesma temperatura quando não se tem tabela para o líquido comprimido;

$$v(T_1) \approx v_l(T_1)$$

• O mesmo é válido para a fase sólida que também é considerada incompressível:

$$v(T_2) \approx v_i(T_2)$$

$$v = v_l + xv_{lv} = v_l + x(v_v - v_l)$$

 $v = 0,103 \text{ m}^3/\text{kg}$

T	p	v_l	$\nu_{ u}$	u_l	u_{ν}	h_I	h_v	s_I	S_{D}
°C	kPa	l/kg	l/kg	kJ/kg	kJ/kg	kJ/kg	kJ/kg	kJ/(kg·K)	kJ/(kg·K)
0.01	0.61200	1.0002	206190.	0.0004	2374.7	0.0010	2500.9	0.00000	9.1555
5.	0.87212	1.0001	147110.	21.019	2381.8	21.020	2510.1	0.07627	9.0249
10.	1.2284	1.0003	106290.	42.020	2388.6	42.021	2519.2	0.15111	8.8998
15.	1.7054	1.0009	77900.	62.980	2395.5	62.981	2528.3	0.22448	8.7803
20.	2.3392	1.0018	57747.	83.912	2402.4	83.914	2537.4	0.29646	8.6660
25.	3.1702	1.0030	43338.	104.83	2409.1	104.83	2546.5	0.36720	8.5567
30.	4.2474	1.0044	32881.	125.73	2415.9	125.73	2555.5	0.43679	8.4519
35.	5.6285	1.0060	25208.	146.63	2422.7	146.63	2564.5	0.50513	8.3517
40.	7.3848	1.0079	19516.	167.53	2429.4	167.53	2573.5	0.57237	8.2555
45.	9.5948	1.0099	15252.	188.43	2436.1	188.44	2582.4	0.63858	8.1633
50.	12.352	1.0121	12027.	209.33	2442.7	209.34	2591.3	0.70381	8.0748
55.	15.762	1.0146	9564.4	230.24	2449.3	230.26	2600.1	0.76801	7.9898
60.	19.946	1.0171	7667.2	251.16	2455.9	251.18	2608.8	0.83132	7.9082
65.	25.042	1.0199	6193.4	272.09	2462.4	272.12	2617.5	0.89366	7.8296
70.	31.201	1.0228	5039.5	293.03	2468.9	293.07	2626.1	0.95515	7.7540
75.	38.596	1.0258	4129.0	313.99	2475.2	314.03	2634.6	1.0158	7.6812
80.	47.414	1.0291	3405.2	334.96	2481.6	335.01	2643.0	1.0756	7.6111
85.	57.867	1.0324	2825.9	355.95	2487.8	356.01	2651.3	1.1346	7.5434
90.	70.182	1.0360	2359.1	376.97	2494.0	377.04	2659.5	1.1929	7.4781
95.	84.608	1.0396	1980.5	398.00	2500.0	398.09	2667.6	1.2504	7.4150

		_	específico, ³/kg	Energia interna, kJ/kg			En	talpia, kJ/k	g	Entropia, kJ/kg·K		
Temp., <i>T</i> °C	Press. sat., <i>P</i> _{sat} kPa	Líq. sat., v _i	Vapor sat. v_v	Líq. sat. <i>u_l</i>	Evap., u_{lv}	Vapor sat. <i>u_v</i>	Líq. sat. <i>h_l</i>	Evap., h _{lv}	Vapor sat. <i>h_v</i>	Líq. sat. <i>s</i> ,	Evap., s _{lv}	Vapor sat. <i>s</i> ,
355	17.570	0,001808	0,007872	1.682,2	706,4	2.388,6	1.714,0	812,9	2.526,9	3,8442	1,2942	5,1384
360	18.666	0,001895	0,006950	1.726,2	625,7	2.351,9	1.761,5	720,1	2.481,6	3,9165	1,1373	5,0537
365	19.822	0,002015	0,006009	1.777,2	526,4	2.303,6	1.817,2	605,5	2.422,7	4,0004	0,9489	4,9493
370	21.044	0,002217	0,004953	1.844,5	385,6	2.230,1	1.891,2	443,1	2.334,3	4,1119	0,6890	4,8009
373,95	22.064	0,003106	0,003106	2.015,7	0	2.015,7	2.084,3	0	2.084,3	4,4070	0	4,4070

P = 0.5 MPa T = 370°C

Interpolação

- Algumas vezes será necessário interpolar dados das tabelas
- Sendo assim, devemos fazer uma interpolação linear para encontrar o valor para T=370°C;

Interpolação

$$v\left(\frac{m^3}{ka}\right)$$

$$\frac{370 - 350}{400 - 350} = \frac{\nu - 0,57016}{0,6173 - 0,57016}$$

$$\nu = 0.589016 \,\mathrm{m}^3/\mathrm{kg}$$

T(°C)

P = 475,9 kPa v = 0,7 m³/kg

		Volume espe	<i>Volume específico</i> , m³/kg		Energia interna, kJ/kg			<i>ntalpia</i> , kJ/k	.g	Ent	Entropia, kJ/kg·K		
Press., <i>P</i> kPa	Temp. sat., <i>T</i> _{sat} °C	Líq. sat., v	Vapor sat., v_{ν}	Líq. sat. <i>u_l</i>	Evap., <i>u_{lv}</i>	Vapor sat., <i>u</i> _v	Líq. sat., <i>h_l</i>	Evap., h _{lv}	Vapor sat., <i>h</i> ,	Líq. sat., <i>s</i> ,	Evap., s _{lv}	Vapor sat., s _v	
300	133,52	0,001073	0,60582	561,11	1.982,1	2.543,2	561,43	2.163,5	2.724,9	1,6717	5,3200	6,9917	
325	136,27	0,001076	0,56199	572,84	1.973,1	2.545,9	573,19	2.155,4	2.728,6	1,7005	5,2645	6,9650	
350	138,86	0,001079	0,52422	583,89	1.964,6	2.548,5	584,26	2.147,7	2.732,0	1,7274	5,2128	6,9402	
375	141,30	0,001081	0,49133	594,32	1.956,6	2.550,9	594,73	2.140,4	2.735,1	1,7526	5,1645	6,9171	
400	143,61	0,001084	0,46242	604,22	1.948,9	2.553,1	604,66	2.133,4	2.738,1	1,7765	5,1191	6,8955	
450	147,90	0,001088	0,41392	622,65	1.934,5	2.557,1	623,14	2.120,3	2.743,4	1,8205	5,0356	6,8561	
500	151,83	0,001093	0,37483	639,54	1.921,2	2.560,7	640,09	2.108,0	2.748,1	1,8604	4,9603	6,8207	
550	155,46	0,001097	0,34261	655,16	1.908,8	2.563,9	655,77	2.096,6	2.752,4	1,8970	4,8916	6,7886	
600	158,83	0,001101	0,31560	669,72	1.897,1	2.566,8	670,38	2.085,8	2.756,2	1,9308	4,8285	6,7593	
650	161,98	0,001104	0,29260	683,37	1.886,1	2.569,4	684,08	2.075,5	2.759,6	1,9623	4,7699	6,7322	

	-			-										
	P	= 0,20 MP	a (120,21 °C	C)	P =	= 0,30 MPa	(133,52 °C)	P = 0,40 MPa (143,61 °C)					
Sat.	0,88578	2.529,1	2.706,3	7,1270	0,60582	2.543,2	2.724,9	6,9917	0,46242	2.553,1	2.738,1	6,8955		
150	0,95986	2.577,1	2.769,1	7,2810	0,63402	2.571,0	2.761,2	7,0792	0,47088	2.564,4	2.752,8	6,9306		
200	1,08049	2.654,6	2.870,7	7,5081	0,71643	2.651,0	2.865,9	7,3132	0,53434	2.647,2	2.860,9	7,1723		
250	1,19890	2.731,4	2.971,2	7,7100	0,79645	2.728,9	2.967,9	7,5180	0,59520	2.726,4	2.964,5	7,3804		
300	1,31623	2.808,8	3.072,1	7,8941	0,87535	2.807,0	3.069,6	7,7037	0,65489	2.805,1	3.067,1	7,5677		
400	1,54934	2.967,2	3.277,0	8,2236	1,03155	2.966,0	3.275,5	8,0347	0,77265	2.964,9	3.273,9	7,9003		
500	1,78142	3.131,4	3.487,7	8,5153	1,18672	3.130,6	3.486,6	8,3271	0,88936	3.129,8	3.485,5	8,1933		
600	2,01302	3.302,2	3.704,8	8,7793	1,34139	3.301,6	3.704,0	8,5915	1,00558	3.301,0	3.703,3	8,4580		
700	2 24434	2 <u>1</u> 79 9	3 028 ¥	9 0221	1 49580	२	२ 	ጻ ጳጳ45	1, 12152	3 479 ∩	3 927 6	Ջ 7∩12		
		<i>P</i> = 0,50 M	Pa (151,83	°C)	P	= 0,60 MPa	ı (158,83 °C)	P = 0,80 MPa (170,41 °C)					
Sat.	0,37483	2.560,7	2.748,1	6,8207	0,31560	2.566,8	2.756,2	6,7593	0,24035	2.576,0	2.768,3	6,6616		
200	0,42503	2.643,3	2.855,8	7,0610	0,35212	2.639,4	2.850,6	6,9683	0,26088	2.631,1	2.839,8	6,8177		
250	0,47443	2.723,8	2.961,0	7,2725	0,39390	2.721,2	2.957,6	7,1833	0,29321	2.715,9	2.950,4	7,0402		
300	0,52261	2.803,3	3.064,6	7,4614	0,43442	2.801,4	3.062,0	7,3740	0,32416	2.797,5	3.056,9	7,2345 [?]		
350	0,57015	2.883,0	3.168,1	7,6346	0,47428	2.881,6	3.166,1	7,5481	0,35442	2.878,6	3.162,2	7,4107		
400	0,61731	2.963,7	3.272,4	7,7956	0,51374	2.962,5	3.270,8	7,7097	0,38429	2.960,2	3.267,7	7,5735		
500	0,71095	3.129,0	3.484,5	8,0893	0,59200	3.128,2	3.483,4	8,0041	0,44332	3.126,6	3.481,3	7,8692		
600	0,80409	3.300,4	3.702,5	8,3544	0,66976	3.299,8	3.701,7	8,2695	0,50186	3.298,7	3.700,1	8,1354		
700	0,89696	3.478,6	3.927,0	8,5978	0,74725	3.478,1	3.926,4	8,5132	0,56011	3.477,2	3.925,3	8,3794		
800	0,98966	3.663,6	4.158,4	8,8240	0,82457	3.663,2	4.157,9	8,7395	0,61820	3.662,5	4.157,0	8,6061		
900	1,08227	3.855,4	4.396,6	9,0362	0,90179	3.855,1	4.396,2	8,9518	0,67619	3.854,5	4.395,5	8,8185		
1.000	1,17480	4.054,0	4.641,4	9,2364	0,97893	4.053,8	4.641,1	9,1521	0,73411	4.053,3	4.640,5	9,0189		
1.100	1,26728	4.259,0	4.892,6	9,4263	1,05603	4.258,8	4.892,4	9,3420	0,79197	4.258,3	4.891,9	9,2090		
1.200	1,35972	4.470,0	5.149,8	9,6071	1,13309	4.469,8	5.149,6	9,5229	0,84980	4.469,4	5.149,3	9,3898		
1.300	1,45214	4.686,6	5.412,6	9,7797	1,21012	4.686,4	5.412,5	9,6955	0,90761	4.686,1	5.412,2	9,5625		

	Р	= 0,20 MP	a (120,21 °	,C)	P =	= 0,30 MPa	ı (133,52 °C	;)	P = 0,40 MPa (143,61 °C)				
Sat.	0,88578	2.529,1	2.706,3	7,1270	0,60582	2.543,2	2.724,9	6,9917	0,46242	2.553,1	2.738,1	6,8955	
150	0,95986	2.577,1	2.769,1	7,2810	0,63402	2.571,0	2.761,2	7,0792	0,47088	2.564,4	2.752,8	6,9306	
200	1,08049	2.654,6	2.870,7	7,5081	0,71643	2.651,0	2.865,9	7,3132	0,53434	2.647,2	2.860,9	7,1723	
250	1,19890	2.731,4	2.971,2	7,7100	0,79645	2.728,9	2.967,9	7,5180	0,59520	2.726,4	2.964,5	7,3804	
300	1,31623	2.808,8	3.072,1	7,8941	0,87535	2.807,0	3.069,6	7,7037	0,65489	2.805,1	3.067,1	7,5677	
400	1,54934	2.967,2	3.277,0	8,2236	1,03155	2.966,0	3.275,5	8,0347	0,77265	2.964,9	3.273,9	7,9003	
500	1,78142	3.131,4	3.487,7	8,5153	1,18672	3.130,6	3.486,6	8,3271	0,88936	3.129,8	3.485,5	8,1933	
600	2,01302	3.302,2	3.704,8	8,7793	1,34139	3.301,6	3.704,0	8,5915	1,00558	3.301,0	3.703,3	8,4580	
700	2,24434	3.479,9	3.928,8	9,0221	1,49580	3.479,5	3.928,2	8,8345	1,12152	3.479,0	3.927,6	8,7012	
800	2,47550	3.664,7	4.159,8	9,2479	1,65004	3.664,3	4.159,3	9,0605	1,23730	3.663,9	4.158,9	8,9274	
900	2,70656	3.856,3	4.397,7	9,4598	1,80417	3.856,0	4.397,3	9,2725	1,35298	3.855,7	4.396,9	9,1394	
1.000	2,93755	4.054,8	4.642,3	9,6599	1,95824	4.054,5	4.642,0	9,4726	1,46859	4.054,3	4.641,7	9,3396	
1.100	3,16848	4.259,6	4.893,3	9,8497	2,11226	4.259,4	4.893,1	9,6624	1,58414	4.259,2	4.892,9	9,5295	
1.200	3,39938	4.470,5	5.150,4	10,0304	2,26624	4.470,3	5.150,2	9,8431	1,69966	4.470,2	5.150,0	9,7102	
1.300	3,63026	4.687,1	5.413,1	10,2029	2,42019	4.686,9	5.413,0	10,0157	1,81516	4.686,7	5.412,8	9,8828	

$$\frac{(400-300)}{(400-T)} = \frac{(0,77265-0,65489)}{(0,77265-0,7)}$$

$$T = 338^{\circ}C$$

				-				-		-	-		
	P	= 0,50 MP	Pa (151,83 °	C)	P :	= 0,60 MPa	ı (158,83 °C)	P = 0,80 MPa (170,41 °C)				
Sat.	0,37483	2.560,7	2.748,1	6,8207	0,31560	2.566,8	2.756,2	6,7593	0,24035	2.576,0	2.768,3	6,6616	
200	0,42503	2.643,3	2.855,8	7,0610	0,35212	2.639,4	2.850,6	6,9683	0,26088	2.631,1	2.839,8	6,8177	
250	0,47443	2.723,8	2.961,0	7,2725	0,39390	2.721,2	2.957,6	7,1833	0,29321	2.715,9	2.950,4	7,0402	
300	0,52261	2.803,3	3.064,6	7,4614	0,43442	2.801,4	3.062,0	7,3740	0,32416	2.797,5	3.056,9	7,2345	
350	0,57015	2.883,0	3.168,1	7,6346	0,47428	2.881,6	3.166,1	7,5481	0,35442	2.878,6	3.162,2	7,4107	
400	0,61731	2.963,7	3.272,4	7,7956	0,51374	2.962,5	3.270,8	7,7097	0,38429	2.960,2	3.267,7	7,5735	
500	0,71095	3.129,0	3.484,5	8,0893	0,59200	3.128,2	3.483,4	8,0041	0,44332	3.126,6	3.481,3	7,8692	
600	0,80409	3.300,4	3.702,5	8,3544	0,66976	3.299,8	3.701,7	8,2695	0,50186	3.298,7	3.700,1	8,1354	
700	0,89696	3.478,6	3.927,0	8,5978	0,74725	3.478,1	3.926,4	8,5132	0,56011	3.477,2	3.925,3	8,3794	
800	0,98966	3.663,6	4.158,4	8,8240	0,82457	3.663,2	4.157,9	8,7395	0,61820	3.662,5	4.157,0	8,6061	
900	1,08227	3.855,4	4.396,6	9,0362	0,90179	3.855,1	4.396,2	8,9518	0,67619	3.854,5	4.395,5	8,8185	
1.000	1,17480	4.054,0	4.641,4	9,2364	0,97893	4.053,8	4.641,1	9,1521	0,73411	4.053,3	4.640,5	9,0189	
1.100	1,26728	4.259,0	4.892,6	9,4263	1,05603	4.258,8	4.892,4	9,3420	0,79197	4.258,3	4.891,9	9,2090	
1.200	1,35972	4.470,0	5.149,8	9,6071	1,13309	4.469,8	5.149,6	9,5229	0,84980	4.469,4	5.149,3	9,3898	
1.300	1,45214	4.686,6	5.412,6	9,7797	1,21012	4.686,4	5.412,5	9,6955	0,90761	4.686,1	5.412,2	9,5625	

$$\frac{(500 - 400)}{(500 - T)} = \frac{(0,71095 - 0,61731)}{(0,71095 - 0,7)}$$
$$T = 448,3°C$$

$$\frac{(0,5-0,4)}{(0,5-0,4759)} = \frac{(448,3-338,095)}{(488,3-T)}$$

$$T = 452,1^{\circ}C$$

Região de líquido comprimido

Para a região de Líquido comprimido, tem a tabela de líquido comprimido, porém pode-se aproximar os dados à saturação para algumas propriedades desde que não seja a pressões muito altas.

$$v_{l,c}(P,T) \approx v_{l,sat}(T) \rightarrow v_A = v_B = v$$
 $u_{l,c}(P,T) \approx u_{l,sat}(T) \rightarrow u_A = u_B = u$
 $h_A = u_A + p_A v_A \rightarrow u = h_A - p_A v$
 $h_B = u_B + p_B v_B \rightarrow u = h_B - p_B v$

$$h_A - p_A v = h_B - p_B v$$
 $h_{l,c}(T, P) = h_{l,sat}(T) + (p - p_{sat}(T)) v_{l,sat}(T)$
 $h_A - h_B = (p_A - p_B) v$

Testando aproximação

 $P = 15 \text{ MPa, } T = 100^{\circ}\text{C}$

		_	<i>specífico</i> , /kg	Ener	gia interna, k	kJ/kg	En	talpia, kJ/k	g	Entropia, kJ/kg·K			
Temp., <i>T</i> °C	Press. sat., P _{sat} kPa	Líq. sat., v _/	Vapor sat. v_v	Líq. sat. <i>u_i</i>	Evap., <i>u_{lv}</i>	Vapor sat. <i>u_v</i>	Líq. sat. h _i	Evap., h_{lv}	Vapor sat. <i>h_v</i>	Líq. sat. s _i	Evap., s _{lv}	Vapor sat. <i>s</i> ,	
100	101,42	0,001043	1,6720	419,06	2.087,0	2.506,0	419,17	2.256,4	2.675,6	1,3072	6,0470	7,3542	
105	120,90	0,001047	1,4186	440,15	2.071,8	2.511,9	440,28	2.243,1	2.683,4	1,3634	5,9319	7,2952	
110	143,38	0,001052	1,2094	461,27	2.056,4	2.517,7	461,42	2.229,7	2.691,1	1,4188	5,8193	7,2382	
115	169,18	0,001056	1,0360	482,42	2.040,9	2.523,3	482,59	2.216,0	2.698,6	1,4737	5,7092	7,1829	
120	198,67	0,001060	0,89133	503,60	2.025,3	2.528,9	503,81	2.202,1	2.706,0	1,5279	5,6013	7,1292	
	(P,T)				. 2,00	/kg		= 10	1 42	kPa			
$h_{l,s}$	sat(T):	= 419	,17 $^{kJ}/$	/ kg			p_{sat}	= 10	1,42	kPa			
$h_{l,c}($	(T,P) =	= $h_{l,sat}$	f(T) +	(p-	$p_{sat}(T)$	$)) v_{l,}$	$_{sat}(T)$						
$_{l,c}(T$	(P) =	419,17	+ (15				10 ³)0,0 te Santos		3 = 43	34,71	kJ/kg		

Testando aproximação

 $P = 15 \text{ MPa, } T = 100^{\circ}\text{C}$

		•											
T	V	и	h	s	V	u	h	s	v	u	h	S	
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg⋅K	m³/kg	kJ/kg	kJ/kg	kJ/kg∙K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K	
	P) = 5 MPa (2	263,94 °C)		P :	= 10 MPa (311,00 °C)		P = 15 MPa (342,16 °C)				
Sat.	0,0012862	1.148,1	1.154,5	2,9207	0,0014522	1.393,3	1.407,9	3,3603	0,0016572	1.585,5	1.610,3	3,6848	
0	0,0009977	0,04	5,03	0,0001	0,0009952	0,12	10,07	0,0003	0,0009928	0,18	15,07	0,0004	
20	0,0009996	83,61	88,61	0,2954	0,0009973	83,31	93,28	0,2943	0,0009951	83,01	97,93	0,2932	
40	0,0010057	166,92	171,95	0,5705	0,0010035	166,33	176,37	0,5685	0,0010013	165,75	180,77	0,5666	
60	0,0010149	250,29	255,36	0,8287	0,0010127	249,43	259,55	0,8260	0,0010105	248,58	263,74	0,8234	
80	0,0010267	333,82	338,96	1,0723	0,0010244	332,69	342,94	1,0691	0,0010221	331,59	346,92	1,0659	
100	0,0010410	417,65	422,85	1,3034	0,0010385	416,23	426,62	1,2996	0,0010361	414,85	430,39	1,2958	
120	0,0010576	501,91	507,19	1,5236	0,0010549	500,18	510,73	1,5191	0,0010522	498,50	514,28	1,5148	
140	0,0010769	586,80	592,18	1,7344	0,0010738	584,72	595,45	1,7293	0,0010708	582,69	598,75	1,7243	
160	0,0010988	672,55	678,04	1,9374	0,0010954	670,06	681,01	1,9316	0,0010920	667,63	684,01	1,9259	
180	0,0011240	759,47	765,09	2,1338	0,0011200	756,48	767,68	2,1271	0,0011160	753,58	770,32	2,1206	
200	0,0011531	847,92	853,68	2,3251	0,0011482	844,32	855,80	2,3174	0,0011435	840,84	858,00	2,3100	
220	0,0011868	938,39	944,32	2,5127	0,0011809	934,01	945,82	2,5037	0,0011752	929,81	947,43	2,4951	
240	0,0012268	1.031,6	1.037,7	2,6983	0,0012192	1.026,2	1.038,3	2,6876	0,0012121	1.021,0	1.039,2	2,6774	
260	0,0012755	1.128,5	1.134,9	2,8841	0,0012653	1.121,6	1.134,3	2,8710	0,0012560	1.115,1	1.134,0	2,8586	
280					0,0013226	1.221,8	1.235,0	3,0565	0,0013096	1.213,4	1.233,0	3,0410	
300					0,0013980	1.329,4	1.343,3	3,2488	0,0013783	1.317,6	1.338,3	3,2279	
320									0,0014733	1.431,9	1.454,0	3,4263	
340									0,0016311	1.567,9	1.592,4	3,6555	

Samuel Morella Dualte Samos

DSc. Eng. Samuel Moreira Duarte Santos CREA 106478D

samuelmoreira@id.uff.br

(21) 980031100

https://www.linkedin.com/in/samuel-moreira-a3669824/

http://lattes.cnpq.br/8103816816128546