Experimentalphysik 4 - Kern- und Teilchenphysik (Uwer)

Robin Heinemann

6. Mai 2018

Inhaltsverzeichnis

1	Meh	relektronensysteme
	1.1	Wasserstoff - kurze Wiederholung
	1.2	Heliumatom "in a nutshell"
		1.2.1 Wechselwirkung der Elektronen
		1.2.2 Ununterscheidbarkeit der Elektronen
		1.2.3 Term-Schema von Helium
	1.3	Mehreektronensysteme $(Z>2)$
		1.3.1 Numerische Näherungsverfahren
		1.3.2 Drehimpulskopplung und Gesamtdrehimpuls
		1.3.3 Struktur der Elektronenhülle
		1.3.4 Grundzustand des Mehrelektronensystem und Hund'sche Regel
	1.4	Ordnung der Elemente
		1.4.1 Aufbau in der Atomhülle
		1.4.2 Ionisationsenergie und Atomradien
		1.4.3 Periodensystem
	1.5	Angeregte Zustände und Spektren
		1.5.1 Lebensdauer angeregter Zustände
		1.5.2 Natürliche Linienbreite
		1.5.3 Spektren
		1.5.4 Innerschalen Anregung und Auger-Elekrtonen
	1.6	Röntgenstrahlung

1 Mehrelektronensysteme

1.1 Wasserstoff - kurze Wiederholung

Stationäre 3d Schrödinger-Gleichung für kugelsymmetrisches Potential

$$\begin{split} -\frac{\hbar^2}{2m} \nabla^2 \psi(\vec{r}) + V(\vec{r}) \psi(\vec{r}) &= E \psi(\vec{r}) \\ V(\vec{r}) &= -\frac{Z e^2}{4\pi \varepsilon_0} \frac{1}{|\vec{r}|} \end{split}$$

 $\vec{r}=$ Relativkoordinate. Lösung: $\psi_{nlm}(\vec{r})$ mit Radialanteil R(r) und Winkelanteil $Y_{lm}(\varphi,\theta)$. Lösungen werden durch die 3 Quantenzahlen $\{n,l,m\}$ vollständig bestimmt. ψ_k mit $k=\{n,l,m\},|\psi_k\rangle$ oder $|k\rangle$. Energieeigenwerte E_n hängen nur von n ab. (\rightarrow Entartung: n^2 Niveaus)

$$E_n = -\frac{1}{n^2} \mu \frac{Z^2 e^2}{8\varepsilon_0^2 h^2} = -R_y^* \cdot \frac{Z^2}{n^2}$$

 $\mu = \text{reduzierte Masse, mit}$

$$R_y^* = \frac{\mu e^4}{8\varepsilon_0^2 h^2} = R_y hc = R_{y\infty} \frac{\mu}{m_e} hc$$

$$R_y^* = 13.605698 \,\text{eV} R_{y\infty}^*$$

$$= 1097373.15 \,c_0 \,\text{m}^{-1}$$

$$E_n = -\frac{1}{n^2} \frac{m_e c^2}{2} \alpha^2$$

Spektrallinien für Übergang $\psi_m \to \mu_n$ (m, n Hauptquantenzahlen)

$$\frac{1}{\lambda \varphi} = R_y \left(\frac{1}{n^2} - \frac{1}{m^2} \right)$$

Auswahlregel für elektronischen Dipolübergang: $\Delta l=\pm 1$ Elektronenspin: $s=1/2, s_z=\pm 1/2 \to {\rm Gesamtwellenfunktion}$:

$$\psi_{nlmm_s} = \psi_{nlm} \chi_{m_s}$$

Feinstrukturaufspaltung: Magnetischer Moment des Spins koppelt mit magnetischem Moment des Bahndrehimpulses $\sim \vec{l}, \, \vec{s}$, Ersatzdrehimpuls $\vec{J} = \vec{l} + \vec{l}$ Für Einelektronensystem $(s=1/2) \implies j = l+1/2$ oder j = l-1/2 Berücksichtigung der relativistischen Massenzunahme

- \rightarrow Energieniveaus hängen nur noch von n und j ab (E_{nj})
- \rightarrow sind in l entartet:

$$2s\frac{1}{2}(n=2, l=0, j=\frac{1}{2})$$
$$2p\frac{1}{2}(n=2, l=1, j=\frac{1}{2})$$

Lamb-Shift QED-Korrekturen = Austaush Photon / Elektronen.

Die Korrekturen sind umso stärker, ja näher die Elektronen am Kern sind, das heißt sie hängen von n und l ab \Longrightarrow Aufhebung der l-Entartung.

Hyperfeinstrukutur Kopplung der Mangnetische Momnete des Elektrons $\vec{j} \left(= \vec{l} + \vec{s}\right)$ und des magnetischen Moments desKernts/Protons $\vec{I} \to$ energiaufspaltung $\sim \vec{j}I$ Kopplung der Drehimpulse zur Ortskomponente

1.2 Heliumatom "in a nutshell"

- \rightarrow Komplikationen gegenüber H:
 - 1. Elektronen-Coulomb-Abstoßung
 - 2. Ununterscheidbarkeit der e^-

1.2.1 Wechselwirkung der Elektronen

= gegenseitige Abstohung der beiden Elektronen ⇒ Hamilton-Operator

$$\hat{H} = \sum_{i=i}^{2} \left(\frac{\vec{p}^2}{2m} - \frac{Ze}{4\pi\varepsilon_0 r_i} \right) + \sum_{\substack{i,j\\i < j}} \frac{e^2}{4\pi\varepsilon_0 |\vec{r}_i - \vec{r}_j|} + \hat{\mathcal{O}} \left(\vec{l}_1, \vec{l}_2, \vec{s}_1 \vec{s}_2, \hat{I} \right)$$

Näherungen: Zentralfeldnäherung. Elektron i sieht ein effektives Zentralpotential

$$V_{\rm eff}(r_i)$$

Produktansatz:

$$\psi(\vec{r}_1, \vec{r}_2) = \psi(\vec{r}_1)\psi(\vec{r}_2)$$

Extrem-Betrachtung

1. Vernachlässige Abschirmung des Kerns durch Elektron $j \to \text{Wasserstoff-L\"osung}$ mit beiden Elektronen im Grundzustand n=1. Bindungsenergi:

$$E_{He} = 2Z^2(-13.6 \,\text{eV}) = -108 \,\text{eV}$$

2. Zweites Elektron schirmt Potential ab, sodass e_i nur noch Z=1 sieht

$$E_{He} = -Z^2 13.6 \,\text{eV} - (Z - 1)^2 13.6 \,\text{eV} = -67.5 \,\text{eV}$$

Experimententell findet man für Grundzustand $E_{He}=-79.93\,\mathrm{eV}$. Zweites Elektron schirmt Potential teilweise ab:

$$E_{He} = -Z^2 13.6 \,\text{eV} - (Z - \Sigma)^2 13.6 \,\text{eV}$$

 \implies Abschirmungsparameter $\Sigma = 0.655$.

Einteilchen-Lösung: $\psi_{nlm}(\vec{r}_i)$ werden wie beim Wasserstoff klassifiziert. Effektives Potential ist zwar Kugelsymmetrisch aber kein 1/r-Potential \to Aufhebung der l-Entartung (größere $l \to$ schächer gebunden)

1.2.2 Ununterscheidbarkeit der Elektronen

Elektronen = Spin $\frac{1}{2}$ - Fermion. Sind ununterscheidbar: Ich weiß nicht, welches Elektron im Zustand $a\{n_1, l_1, m_1\}$ oder im Zustand $b = \{n_2, l_2, m_2\}$ ist!

$$\psi_{ab}^{\rm I}(\vec{r}_1, \vec{r}_2) = \psi_a(\vec{r}_1)\psi_B(\vec{r}_2)$$
$$\psi_{ab}^{\rm I}(\vec{r}_1, \vec{r}_2) = \psi_a(\vec{r}_2)\psi_B(\vec{r}_1)$$

ightarrow für ununterscheidbare Teilchen sin Zustände äquivalent und müssen die gleiche Aufentaltswahrscheinlichkeit ergeben.

$$\left|\psi_{ab}^{\mathrm{I}}\right|^{2} = \left|\psi_{ab}^{\mathrm{II}}\right|^{2} \implies \psi_{ab}^{\mathrm{I}} = \pm \psi_{ab}^{\mathrm{II}}$$

Verallgemeinertes Pauli-Prinzip

Gesamtwellenfunkion eines Systems aus mehreren Fermionen ist antisymmetrisch gegenüber der Vertauschung zweier Fermionen. ⇒ In einem System können deshalb keine zwei Fermionen die gleiche Quantenzahl haben.

Bei Anwendung auf Helium muss berücksichtigt werdes, dass Gesamtwellenfuktion Ortsanteil ψ_{nlm} und einen Spinanteil χ_{m_s} hat. \to Elektronenspins im Helium können zu zwei verschiedenen Gesamtspins S koppeln.

1. Symmetrisches Triplett $(S=1, s_s=0, \pm 1)$

$$\chi_S^{-1} = \chi_1(\downarrow)\chi_2(\downarrow)$$

$$\chi_S^0 = \{\chi_2(\uparrow)\chi_2(\downarrow) + \chi_1(\downarrow)\chi_2(\uparrow)\} \frac{1}{\sqrt{2}}\chi_S^1 \qquad = \chi_1(\uparrow)\chi_2(\uparrow)$$

2. Antisymmetirsches Singlett $(S = 0, m_s = 0)$

$$\chi_a^0 = \{\chi_1(\uparrow)\chi_2(\downarrow) - \chi_1(\downarrow)\chi_2(\uparrow)\}\frac{1}{\sqrt{2}}$$

Befinden sich die beiden Elektronen in einem symmetrischen (antisymmetischen) Spinzustand, so muss die Ortswellenfunktion entsprechend antisymmetrisch (symmetrisch) sein.

Antisymmetrisierung von $\psi(\vec{r}_1, \dots, \vec{r}_n) = \psi_1(\vec{r}_1) \cdot \dots \cdot \psi_n(\vec{r}_n)$. Für Mehrelektronensysteme erhält man die antisymmetrische Wellenfunktion mittels der Slater-Determinante

$$\psi(\vec{r}_1, \dots, \vec{r}_n) = \frac{1}{\sqrt{n!}} \begin{vmatrix} \psi_{k_1}(\vec{r}_1) & \dots & \psi_{k_1}(\vec{r}_n) \\ \vdots & & \vdots \\ \psi_{k_n}(\vec{r}_1) & & \psi_{k_n}(\vec{r}_n) \end{vmatrix}$$

1.2.3 Term-Schema von Helium

Im Grundzustand des Helium sind beide Elektronen im tiefstmöglischen Zustand: $n_1 = n_2 = 1, l_1 = l_2 = 0$ (symmetrisch). Die Spins **müssen** dann antiparallel beziehungsweise im antisymmetrischen Singlett Zustand sein. Für angeregtes Helium existieren dann zwei Term-Systeme:

- Zustände mit S=0: Para-Helium
- Zustände mit S=1: Ortho-Helium

Die angeregten Singlett-Zustände liegen jeweils höher als die entsprechenden Triplett Zustände: Coulomb-Abstoß ist im Falle antisymmetrischer Spinwellenfunktion (= symmetrische Ortswellenfunktion) größer \rightarrow weniger stark gebunden $\stackrel{\wedge}{=}$ "höhere Niveaus". Spektroskopische Notation:

$$^{2S+1}L_{l}$$

1.3 Mehreektronensysteme (Z > 2)

1.3.1 Numerische Näherungsverfahren

nicht Kugelsymmetrische Wechselwirkung zwischen Elektronen \to keine analytsiche Lösung \implies iterativep Näherungsverfahren.

Modell unabhängiger Elektronen:

Kernladung Z_e und die zeitlich gemittelte Verteilung der anderen (Z-1) Elektronen resultieren für ein Elektron i in ein effektives kugelsymmetrisches Potential $V_{\rm eff}(r_i)$ Einteilchenproblem mit Energiezuständen $E_i(n_i,l_i,m_i)$ und mit Einteilchenlösungen $\psi_{n_il_im_i}$. Da $V_{\rm eff}(r_i)$ zwar kugelsymmetrisch aber kein 1/r-Potential \to Aufhebung der (n,l)-Entartung. \implies nach Pauli-Prinzip werden $E_{n,l}$ sukzessive besetzt. Gesamtwellenfunktion = Produkt der Einteilchenlösungen

$$\psi(\vec{r}_1,\ldots,\vec{r}_Z) = \psi_1(\vec{r}_1)\psi_2(\vec{r}_2)\ldots\psi_Z(\vec{r}_Z)$$

 \rightarrow Antisymmetrisierung mittels Slater-Determinante. Mit dieser gesamtwellenfunktion kann das zeitliche gemittelte effektive Potential V_{eff} neu berechnet werden:

$$V_{eff}(r_i) \sim -e^2 \left(\frac{Z}{r_i} - \sum_{i \neq j} \int \frac{1}{|\vec{r}_i - \vec{r}_j|} |\psi_i(r_i)|^2 d^3 r_j \right)$$

Mit diesem verbesserten Potential startet die nächste Iteration zur Berechnung der Einteilchenzustände $E_i(n_i, l_i, m_i)$ Hartree-Verfahren.

Bemerkung 1.1 Neben der Coulomb Wechselwirkung müssen auch die magnetische Wechselwirkung zwischen den magnetischen Momenten der Elektronen (Bahndrehimpuls + Spin) berücksichtigt werden \rightarrow "Feinstruktur". Relativ zu Wasserstoff sind komplexere Drehimpulskopplungen möglich.

1.3.2 Drehimpulskopplung und Gesamtdrehimpuls

Gesamtdrehimpuls eines Mehrelektronensystems hängt davon ab, wie Drehimpulse und Spins koppeln.

 $ec{L}, ec{S}, ec{J} =$ Gesamt Bahn-, Spin-, totaler Drehimplus

L, S, J = zugehörige Quantenzahlen

 $\vec{l}_i, \, \vec{s}_i, \, \vec{j}_i =$ Bahn-, Spin, totaler Drehimpuls des Elektron i

 $l_i, s_i, j_i =$ zughörige Quantenzahlen

1. L-S-Kopplung (Russel-Sanders-Kopplung)

falls Kopplungsenergie zwischen Bahdrehimpulsen und zwischen Spins groh

$$ec{L} = \sum_{i} ec{l}_{i} \qquad \left| ec{L} \right| = \sqrt{L(L+1)}$$
 $ec{S} = \sum_{i} ec{s}_{i} \qquad \left| ec{S} \right| = \sqrt{S(S+1)}$
 $ec{J} = \sum_{i} ec{j}_{i} \qquad \left| ec{J} \right| = \sqrt{J(J+1)}$

Beispiel 1.2 Kopplung zweiter *p*-Elektronen
$$(p^2)$$
 $(l_1 = l_2 = 1, s_1 = s_2 = 1/2)$ L: $|l_1 - l_2| \le L \le l_1 + l_2 \implies L = 0, 1, 2$ S: $|s_1 - s_2| \le S \le s_1 + s_2 \implies S = 0, 1$

- \implies bereits 10 verschiedene Drehimpulskopplungen $|S-L| \leq J \leq S+L$ mit J=0,1,2,3
 - a) JJ-Kopplung

Falls Energiegewinn der Kopplung der einzelnen Spins beziehungsweise Bahndrehimpulse klein gegenüber der Kopplung von l_i und s_i ist ($\sim \vec{l}_i \vec{s}_i$ groß gegenüber der Coulomb):

$$\vec{j}_i = \vec{l}_i + \vec{s}_i \rightarrow \vec{J} = \sum_i \vec{j}_i$$

JJ tritt vor allem bei schweren Atomen auf. Im Folgenden nur Diskussion von LS-Kopplung.

b) Termschemata (LS)

Elektronekonfiguration mit Gesamtdrehimpuls \vec{L} und Gesamtspin \vec{S} führen je nach Kopplung von \vec{L} und \vec{S} zu verschiedenen Feinstrukturkompensationen mit verschiedenen \vec{J} :

$$|L - S| \le J \le L + S$$

Multiplizität: 2S + 1 für S < L, 2L + 1 für $L \le S$

Beispiel 1.3 () Mögliche Feistruktur für p^2 -Konfiguration. Aufspaltung von 3P aufgrund der Feinstruktur durch $\vec{L}\vec{S}:\sim c\vec{L}\sim S$

$$c\,\vec{L}\,\vec{S} = c(J(J+1) - L(L+1) - S(S+1))$$

$$\vec{L}\,\vec{S}\,\text{für}\,\,^3P(L=1,S=1): \begin{cases} J=2 & 6-2-2=+2\\ J=1 & 2-2-2=-2\\ J=0 & 0-2-2=4 \end{cases}$$

1.3.3 Struktur der Elektronenhülle

Aufgrund des Pauli-Prinzips darf Zustand mit $\{n, l, m\}$ nur mit maximal 2 Elektronen $(m_s = \pm 1/2)$ besetzt werden. Für Hauptquantenzahl n:

$$k = \sum_{l=0}^{n-1} (2l+1) = n^2$$

Zustände die mit insgesamt $2n^2$ Elektronen besetzt werden können. Die energetische Reihenfolge der Energiezustände E_{nl} :

$$1s, 2s, 2p, 3s, 3p, [4s, 3d], 4p, [5s, 4d], 5p, [6s, 5d, 4f], 6p, [7s, 6d, 5f]$$

Elektron / Ladungsdichte (sehr kurz)

$$\rho_n \sim \sum_e r^2 |R_{nl}(r)|^2 2n^2 e$$

Dar Hauptteil der Ladungsverteilung bei gegebener Hauptquatenzahl n ist in einer Kugelschale konzentriert.

- n = 1 K-Schale
- n=2 L-Schale
- n=3 M-Schale
- n=4 N-Schale
- n=5 O-Schale
- n = 6 P-Schale
- n = 7 Q-Schale

Der mittlere Radius der Elektronenverteilung nimmt mit steigendem n zu. Die intrinsische Längenskala a_0/Z kompensiert (durch größere Coulomb-Anziehung). Die radiale Wellenfunktion, R_{ln} hängt von l ab \rightarrow verschiedene l-Werte bilden Unterschalen (s,p,d,f) zur Hauptschale. Frage: Was ist die energetisch günstigte Konfiguration, bei nicht völlig besetzten Unterschalen?

1.3.4 Grundzustand des Mehrelektronensystem und Hund'sche Regel

Aus Beispiel der verschiedenen Drehimpulskopplung für die p^2 Elektronenkonfiguration wurde gezeigt, das für eine feste Elektronenkonfiguration eine Vielzahl von Termen gibt. Eine dieser Zustände sollte das energetisch tiefste Zustand sein, den das Atom im Grundzustnad einnimmt. Aus spektroskopischen Daten vieler Atome wurden von F. Hund die folgenden empirischen Regeln aufgestellt.

- 1. Für alle abgeschlossenen Schalen und Unterschalen gilt $L=0, S=0 \rightarrow J=0$. Die Überlagerung der Wellenfunktionen abgeschlossener Schalen führt auf eine kugelsymmetrische Ladungsverteilung. Spektroskopische Notation: $\binom{2S+1}{L_J}: {}^1S_0$ (Singlett ohne Feinstruktur). \Longrightarrow Es genügt, für die spektroskopischen Eigenschaften sich auf die Elektronen außerhalb der abgeschlossenen Schalen zu beschränken. Beispiel: Natrium (Z = 11): $1s^22s^22p^63s^1$, Neon: $3s^1$
- 2. In einer nicht-abgeschlossenen s,p,d,f Unterschale liegen die Zustände mit maximalen Spin energetisch am tiefsten. (symmetrische Spinwellenfunktion \rightarrow maximaler Abstand \rightarrow minimale Coulombenergie.)
- 3. Für Terme mit maximalem Spin liegen die Terme mit maximalem L am tiefsten. Die zu einer Unterschale gehörenden m-Zustände werden so gefüllt, dass die Spin \uparrow erst $m=l, m=l-1,\ldots$ Orbitale besezten. Beispiel: $C(Z=6)[1s^22s^2]2p^2; p=\{m=1:\uparrow, m=0:\uparrow\} \implies L=1, S=1$

- 4. Ist die s, p, d, f Unterschale
 - Weniger als halb gefüllt: Term J = |L S| ist Grundzustand
 - mehr als halb gefüllt: Term mit J = L + S ist Grundzustand

Beispiel C: Spin S=1 mit L=1 kopplen zu $J=2,1,0 \implies$ entspricht Triplett ${}^3P_2, {}^3P_1, {}^3P_0 \implies$ Zustand 3P_0 ist Grundzustand. Entspricht Antiparallelzustand von \vec{l} und \vec{s} im Wasserstoff-Atom. Bei mehr als halbgefüllten Schalen: Fehlende Elektronen können als Löcher mit positiver Ladung angesehen werden \rightarrow parallele Ausrichtung von \vec{L} und \vec{S} minimiert Energie.

1.4 Ordnung der Elemente

1.4.1 Aufbau in der Atomhülle

Durch sukzessives Aufüllen der Schalen und Unterschalen erhält man die Elektronen-Konfiguration der Elemente für Z>2. Nach Z=18 wird mit dem nächsten Element nicht die 3d-Unterschale gefüllt (siehe Merkregel, Abbildung), sondern es wird erst die 4s Unterschale gefüllt. Da die 3d Unterschale innerhalb der 4s Unterschale liegt werden die chemischen Eigenschaften dieser Elemente vor allem durch die 4s Elektronen bestimmt ("Übergangselemente") Die nächste Unregelmäßigkeit findet nach Krypton (Z=36) statt. Mit Rubidium (Z=37) wird erst die 5s Schale gefüllt. Die 4d Unterschale wir zwischen Z=39 (Yttrium) und Z=48 (Cadmium) gefüllt. Nach Xeon (Z=54): \$4f\$-Unterschale, 5d Unterschale und nach Radon (Z=86) 5f Unterschale, 6d Unterschale. Da der Radius der Unterschalen mit n anwächst, wird mit dem Einbau in die d, f Unterschalen Z besetzt, die einen geringeren mittleren Abstand zum Kern aufweisen, als die bereits besetztne, s, p Orbitale bei größeren n ("innere Schalen") 3d, 4d, 5d, 4f, 5f

1.4.2 Ionisationsenergie und Atomradien

Gemessenen Atomradien belegen die Schalenstruktur. Radien weisen eine Periodizität auf: Immer wen ein Elektron in neue Schale eingebaut wird $(n \to n+1)$ Steigt der Radius stark an. Gleiche Periodizität auch bei Ionsiierungsenergie = Energie um das am schwächsten gebundene Elektron mit mittlerem Radius $\langle r \rangle = r_n$ ins Unendliche zu bringen:

$$E_{\text{ION}} = \int_{r_n}^{\infty} \frac{Z_{eff} e^2}{4\pi\varepsilon_0 r^2} dr = \frac{Z_{eff} e^2}{4\pi\varepsilon_0 r_n} = R_y^* \frac{Z_{eff}^2}{n^2}$$

 Z_{eff} : effektive Kernladung für das äußerste Elektron.

- Edelgase besitzen die kleinsten Werte von r_n und sehen damit die größte effektive Ladung \to maximale Ionisationsenergie.
- Alkali-Atome besitzen die kleinste Ionsiationsenergie (das einzelne Elektron befindet sich weit außen)

1.4.3 Periodensystem

Die Elemente werden nach steigendem Z geordnet (ursprünglich Masse) geordnet und in eine Tabelle mit 7 Zeilen (Perioden) und 18 (ursprünglich 8) Spalten = 8 Hauptgruppen + 10 Nebengruppen eingetragen, wobei die Ordnung in Spalten aus den chemischen Eigenschaften rührt. Schwerstes bekannte Element: $^{294}_{118}Og$ (Oganesson). Chemische Eigenschaften werden durch die äußeren Elektronen in nicht-vollständig besetzten Schalen bestimmt: Valenz-Elektronen

- 1. Gruppe: Alkali-Metalle einzelnes Elektron, leicht ionisierbar
- 2. Gruppe: Erdalkali-Metalle s^2 Elektronen
- 7. Gruppe: Halogene: ein freiter Platz in äußerster Schale → verbinden sich gerne mit Alkali-Metallen

8. Gruppe: Edelgase: volle s+p Unterschale \rightarrow hohe Ionisationsenergie \rightarrow chemisch inert.

Nebengruppe: Überlagerung der s- und d-Zustände

- \rightarrow Teilnahme der d-Elektronen an den Bindungen
- → unterschiedliche chemische Eigenschaften

f-Übergangselemente: f-Unterschale liegt weit innerhalb der äußeren s-Elektronen \implies chemische Eigenschaften sind ähnlich. Lanthanide (seltene Erden) und Actiniden werden im Periodensystem als ein Element behandelt.

1.5 Angeregte Zustände und Spektren

1.5.1 Lebensdauer angeregter Zustände

Durch Absorption von Photonen oder durch inelastische Stöße kann Elektron in ein höheres Niveau angeregt werden. Angeregte Zustände sind in der Regel instabl und zerfallen mit Lebensdauer τ . Zerfallsgesetz:

$$N(t) = N_0 \exp\left(-\frac{t}{\tau}\right)$$

N(t)= Zahl der noch angeregten Atome, $N_0=$ der ursprünglich t=0 angeregten Atome. Für einen spezifischen Übergang $|i\rangle$ und $|k\rangle$ mit Energien E_i und E_k bestimmt das Übergangsmatrixelement M_{ki} beziehungsweise dessen Betragsquadrat $|M_{ki}|^2$ der Wahrscheinlichkeit / Stärke des Übergangs:

$$\left| M_{ki} \right|^2 = \left| \begin{array}{c} \text{elektrisch} e^2 \text{Dipoln\"{a}herung} \\ \left| \langle k | \hat{H}_{WW} | i \rangle \right| \stackrel{\uparrow}{\approx} e^2 \left| \int \psi_k^* \hat{r} \psi_i \mathrm{d}V \right|^2 \end{array} \right|$$

Wechselwirkung mit elektromagnetischem Potential

Aus den Bedingungen, dass das Integral nicht verschwindet ergeben sich die Auswahlregeln für Mehrelektronensysteme bezüglich elektrischer Dipol Strahlung. Auswahlregeln: $\Delta l=\pm 1, \Delta m_L=0, \pm 1, \Delta S=0, \Delta J=0, \pm 1$ ($\leftarrow \Delta J=0$ möglich für $\Delta L=\pm 1$ und $\Delta m_l=\mp 1$ aber kein $J=0 \rightarrow J=0$!!)

Bemerkung 1.4 • emmitiertes Photon besitzt Drehimpuls $\pm \hbar$

zum gleichen Schluss kommt man mit anderer Überlegung

Parität - Verhalten eines Zustandes unter Operation $\vec{r} \to -\vec{r}$ Man unterschiedet Zustände mit gerader und ungerader Partät

$$\psi(\vec{r}) \implies \psi(-\vec{r}) = \pm \psi(\vec{r})$$

- += gerade Parität
- — = ungerade Parität

für Wasserstoff-Lösung $\mathbb{P}(\psi) = (-1)^l$

- 1. Damit der Integrand für M_{ki} nicht verschwindet muss Integrand insgemat symmetrisch in \vec{r} sein, das heißt positive Parität besitzen
- 2. Da \vec{r} eine ungerade Funktion ist, muss Produkt aus ψ_i und ψ_k^* ebenfalls ungerade sein. Das ist aber nur der Fall für "ungerade-gerade" Produktkombinationen, und zusammen mit $P(\psi_j) = (-1)^{l_j}$ folgt, dass der Drehimpuls ΔL sich um ± 1 ändert. Betrachßtet man den Ausgangszustand ψ_i und dem Endzustand $(\psi_k + \gamma)$, dann muss (Paritätserhaltung): $P(\psi_i) = P(\psi_k)P(\gamma) \implies P(\gamma) = -1$

Typische Lebensdauren für elektrische Dipolübergänge:

$$\mathcal{O}(1 \times 10^{-9} \,\mathrm{s}) \qquad H(2^{2} P_{1/2}) : \tau = 1.5 \times 10^{-9} \,\mathrm{s}$$

1.5.2 Natürliche Linienbreite

Mit endlicher Lebensdauer τ ist eine natürlich Energiebreite der Zustände verbungen: $\Delta E \cdot \tau \geq \hbar$. Damit verbunden ist eine endliche Frequenzbreite

$$\Delta\omega = \frac{1}{\tau}$$

für den Überganz zwischen 2 Niveaus. Im Frequenzraum wird die natürlich Linienbreite durch Lorentzprofil beschrieben. Leistungsdichte $P(\omega)$:

$$P(\omega) = P_0 \frac{\gamma/(2\pi)}{(\omega - \omega_0)^2 + (\gamma/2)^2}$$

wobei γ für einen Übergang $|i\rangle \rightarrow |k\rangle$ gegeben ist durch

$$\gamma = \frac{1}{\tau_i} + \frac{1}{\tau_k}$$

 (au_j) ist dabei die Lebensdauer für Zustand $|j\rangle$). Für kurzlebige Zustände (au o 0) ist die natürlich Linienbreite sehr groß. Neben der natürlichen Linienbreite führt die Bewegung der Atome (Doppler-Effekt) sowie die Stöße zwischen Atomen (Druck) zu einer weiteren Verbreitung.

1.5.3 Spektren

Aufgrund der komplexen Multiplettstruktur sind die Spektren der Mehrelektronen-Systeme kompliziert.

Beispiel 1.5 (Natrium) Aufhebung der l-Entartung bewirkt, dass die Energiedifferenz ΔE für zwei benachbarte n in der gleichen Größenordnungwie das l-splitting ist. Abei Alkali-Atomen mit einzelnem Valenzelektron (S=1/2) findet man Dupletts: $J=L\pm 1/2, {}^2P_{1/2}, {}^2P_{3/2}, {}^2D_{3/2}, {}^2D_{5/2}$. Übergang von 3P (Duplett) nach 3S (Singlett) \rightarrow Doppellinie.

1.5.4 Innerschalen Anregung und Auger-Elekrtonen

Anregung eines "inneren" Elektrons dbedarf hoher Energie (Effektive Kernladung $Z_{\rm eff}e$ groß) \to Anregung nur mittels Röntgenstrahl (UV-LIcht) oder durch direkt Elektronen Stöße möglich. In das entsprechende Loch kann ein äußeres Elektron nachfallen \to Photon $\hbar\nu$ typischer Weise im keV Bereich.

- · charakteristisches Röntgen-Photon
- Energie kann auf äußeres Elektron übertragen werden

1.6 Röntgenstrahlung

Prinzip einer Röntgenröhre: Elektronen werde durch einen Heizwedel auf eine Annode geschossen. Kinetische Energie $E_{\rm kin}=eU_B$. Beim Auftreffen auf Anode verlieren die Elektronen einen Teil ihrer Energie durch Abstrahlung. Zwei verschiedene Mechanismen zur Erzeugung von Röntgen-Strahlung

- 1. Abbremsen der Elektronen im Feld des Kerne der Anoden-Atome \to Bremsstrahllung (aufgrund der Beschleunigung): kontinuierliches Spektrum mit $E_{\rm max}=eU_B$
- 2. Ionisation beziehungsweise Stoßanregung von Elektronen der inneren Schalen k hinterlassen freie Plätze die von äußeren Elektronen i besetzt werden.

$$\Delta E = E_k - E_i = h\nu_{ki} = (Z - \Sigma)^2 R_y hc \left(\frac{1}{n_k^2} - \frac{1}{n_i^2}\right)$$

 $\implies i,k$ sind diskrete Übergänge \rightarrow charakteristisches Spektrum.

Bei den beiden Strahlungsanteilen handelt es sich tatsächlich um elektromagnetische Strahlung (Messung der Polarisation, Beugungs + Interferenzeffekte (Laue, W. H + W.L Bragg)).

$$\begin{split} E_{\text{max}} &= eU_B \\ h\nu_G &= eU_B \iff \lambda \geq \lambda_G = \frac{hc}{eU_B} \\ \lambda_G &= \frac{1234.5 \text{ nm}}{U[\text{V}]} \to \lambda_G \end{split} \qquad = 0.12 \text{ nm}[10 \text{ kV}]$$

Absorption:

$$dI = -\mu I_0 dx$$

 \implies Dicke d:

$$I(d) = I_0 e^{-\mu d}$$

 $\mu =$ Absorptionskoeffizient

$$\mu = \mu_s + \alpha$$

 μ_s : Streuung, α : Absorption. Für Röntgenstrahlen ist die Absorption bestimmt durch das Anregungs- und Ionisationsspekturm des Absorbermaterial. Absorptionskanten entspricht gerade der Energie um Elektron aus K, L, M Schale zu ionisiren.

$$U(K - \text{Kante}) = R_y hc(Z - \Sigma)^2 \left(\frac{1}{1^2} - \frac{1}{\infty^2}\right)$$

Absorptionskante $\nu_{k,l,m} \sim (Z - \Sigma)^2$