

Balanced Product of Calibrated Experts for Long-Tailed Recognition

Emanuel Sanchez Aimar¹

Arvi Jonnarth^{1,2} Michael Felsberg¹

Marco Kuhlmann¹

²Husqvarna Group, Sweden

Challenges of Long-Tailed Recognition

- Class imbalance and data scarcity
- Label distribution shift: training and test distributions tend to be different (long-tailed vs uniform)
- Lead to *poorly-calibrated models*

Contributions

- We propose **BalPoE**, an ensemble-based framework composed of skill-diverse calibrated experts, to address long-tailed (LT) recognition
- We validate its properties:
- Unbiased: loss formulation is fisher-consistent for minimizing the balanced error
- Well-calibrated
- SOTA performance on LT benchmarks

Balanced Product of Experts (BalPoE)

¹Linköping University, Sweden

Logit-adjusted loss for $(1 - \tau)$ -expert:

$$\ell_{\boldsymbol{\tau}}(y, f(x)) = -\log \frac{e^{f_y(x) + \boldsymbol{\tau}_y \log \mathbb{P}^{\text{train}}(y)}}{\sum_{j \in \mathcal{Y}} e^{f_j(x) + \boldsymbol{\tau}_j \log \mathbb{P}^{\text{train}}(j)}}$$

- BalPoE attains the average bias of all its experts
- **Simple constraint**: average tau is one => unbiased ensemble
- Logit adjustment assumes calibrated model!

Meeting the calibration assumption

- Mixup promotes expert calibration for target distributions
 - => improves **ensemble calibration**!

Experiments

Classification results

- •Train on long-tailed data, test on balanced data, M=3 experts
- •IR: Imbalance ratio, BB: backbone. e.g., R50 -> ResNet50

		CIFAR-100-LT		ImageNet-LT		iNat	
	$\text{IR} \rightarrow$	10	50	100	256	256	500
Method \downarrow	${\rm BB} \to$	R32	R32	R32	R50	RX50	R50
PaCo [12]		64.2	56.0	52.0	57.0	58.2	73.2
CMO+BS [49]		65.3	56.7	51.7	58.0	-	74.0
BCL [72]		64.9	56.6	53.9	56.0	57.1	71.8
NCL [38]		-	<u>58.2</u>	<u>54.2</u>	<u>59.5</u>	60.5	<u>74.9</u>
SADE [70]		<u>65.3</u>	57.3	52.2	-	<u>61.2</u>	74.5
BalPoE (ours)		68.1	60.1	55.9	60.8	62.0	76.9

Calibration results

•Expected Calibration Error (ECE) and Maximum Calibration Error (MCE) over CIFAR100-LT100 test set

References

[Mixup] Zhang et al. Mixup: Beyond empirical risk minimization. ICLR, 2018.

[BS] Ren et al. Balanced meta-softmax for long-tailed visual recognition. NeurIPS, 2020.

[PaCo] Cui et al. Parametric contrastive learning. ICCV, 2021.

[NCL] Li et al. Nested collaborative learning for long-tailed visual recognition. CVPR, 2022.

[BCL] Zhu et al. Balanced contrastive learning for long-tailed visual recognition. CVPR, 2022.

[CMO] Park et al. The majority can help the minority: Context-rich minority oversampling for long-tailed classification. CVPR, 2022.

[SADE] Zhang et al. Self-supervised aggregation of diverse experts for test-agnostic long-tailed recognition. NeurIPS, 2022.

