S1211Q Introduction to Statistics Lecture 22

Wei Wang

August 7, 2012

▶ Based on Least Squares method, we have the estimator of slope β_1 , $\hat{\beta_1}$, but this doesn't answer some of the most important inferential problems.

- ▶ Based on Least Squares method, we have the estimator of slope β_1 , $\hat{\beta_1}$, but this doesn't answer some of the most important inferential problems.
- ▶ Is $\hat{\beta}_1$ unbiased?

- ▶ Based on Least Squares method, we have the estimator of slope β_1 , $\hat{\beta_1}$, but this doesn't answer some of the most important inferential problems.
- ▶ Is $\hat{\beta}_1$ unbiased?
- What's the (estimated) standard error?

- ▶ Based on Least Squares method, we have the estimator of slope β_1 , $\hat{\beta_1}$, but this doesn't answer some of the most important inferential problems.
- ▶ Is $\hat{\beta}_1$ unbiased?
- What's the (estimated) standard error?
- ▶ How to get Confidence Interval of β_1 ?

- ▶ Based on Least Squares method, we have the estimator of slope β_1 , $\hat{\beta_1}$, but this doesn't answer some of the most important inferential problems.
- ▶ Is $\hat{\beta}_1$ unbiased?
- What's the (estimated) standard error?
- ▶ How to get Confidence Interval of β_1 ?
- ▶ How to perform Hypothesis Test and get P-value about null hypothesis $H_0: \beta_1 = 0$

Sampling Distribution of $\hat{\beta}_1$

- ▶ The least squares estimator $\hat{\beta}_1$ is an unbiased estimator, which mean that $E(\hat{\beta}_1) = \beta_1$.
- Also we have shown yesterday that the variance of this estimator is σ^2/S_{xx} . The estimated standard error is $s_{\hat{\beta_1}} = \frac{s}{\sqrt{S_{xx}}}$.
- In particular, under the assumption that the noise terms are normally distributed, the $\hat{\beta}_1$ is also normally distributed

$$\hat{\beta_1} \sim N(\beta_1, \sigma^2/S_{XX})$$

Confidence Interval of β_1

- ▶ The way to build confidence interval for β_1 is the classical procedure, standardizing the estimator by subtracting its mean and then dividing by its estimated standard error.
- It turns out that the standardized variable

$$T = \frac{\hat{\beta_1} - \beta_1}{S/\sqrt{S_{XX}}} = \frac{\hat{\beta_1} - \beta_1}{S_{\hat{\beta_1}}}$$

follows a t distribution with df n-2.

▶ So a $100(1 - \alpha)$ % CI for the slope β_1 is

$$\hat{eta}_1 \pm t_{\alpha/2,n-2} \cdot s_{\hat{eta}_1}$$

Hypothesis Testing

Null hypothesis: H_0 : $\beta_1 = \beta_{10}$ Test statistic value: $t = \frac{\hat{\beta_1} - \beta_{10}}{s_{\hat{\beta_1}}}$

Alternative Hypothesis Rejection Region for Level α Test

```
\begin{array}{lll} \mathsf{H}_{\mathsf{a}} \!\!: \beta_1 > \beta_{10} & & \mathsf{t} \geq \mathsf{t}_{\alpha,\mathsf{n}-2} \\ \mathsf{H}_{\mathsf{a}} \!\!: \beta_1 < \beta_{10} & & \mathsf{t} \leq -\mathsf{t}_{\alpha\mathsf{n}-2} \\ \mathsf{H}_{\mathsf{a}} \!\!: \beta_1 \neq \beta_{10} & & \mathsf{either} \, \mathsf{t} \geq \mathsf{t}_{\alpha/2,\mathsf{n}-2} & \mathsf{or} & \mathsf{t} \leq -\mathsf{t}_{\alpha/2,\mathsf{n}-2} \end{array}
```

A P-value based on n-2 df can be calculated just as was done previously for t tests in Chapters 8 and 9.

The **model utility test** is the test of H_0 : $\beta_1 = 0$ versus H_a : $\beta_1 \neq 0$, in which case the test statistic value is the **tratio** $t = \hat{\beta}_1/s_{\hat{\beta}_i}$.