Heterogeneous Artificial Agents for Triage Nurse Assistance

D.M. Wilkes, Stan Franklin, Erdem Erdemir, Stephen Gordon, Steve Strain, Karen Miller and Kazuhiko Kawamura

Proceedings of the 2010 IEEE-RAS International Conference on Humanoid Robots https://ieeexplore.ieee.org/document/5686839

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Presented by Cecilia Aponte

Goal of the study

- Propose a system of cognitive robots "TriageBot System" to shorten waiting time in ER, relieve overburden of medical staff, and reduce mistakes
- First to address the use of robots in ER
- Function for less severe case patients (60%):
 - Gather logistical and medial info
 - Take diagnostic measurements
 - Give tentative, possible diagnoses to curse and recommendation to non-physician care
- Feasible (in principal) with advances in sensor technology and cognitive control architecture

Importance

- Overcrowding in ER is a major public health problem as identified by the Institute of Medicine
- Unpredictability of amount of patients, arrival times, type of illness and future complications
- This increases patient mortality, time to treat infections, blood clots, and pain
- Affecting mainly minorities (African-American, Hispanic), low-income, uninsured, and women
- Robot assistants can therefore improve ER throughput and provide a safer environment

The Concept

Humanoid Cognitive

- Robot Registration
 Assistant: upon arrival gets
 basic info and some
 diagnostic data (pain and
 level with Visual Analog
 Scores)
- Robot Triage Nurse
 Assistant: takes
 measurements in a chair
 instrumented with sensors.
 Calculates ESI score and
 priority in the queue

Chair Motor-skills

The Concept

Mobile Cognitive

- Robot Monitoring
 Assistant: periodically
 checks patient in waiting
 room. May take simple
 measurements and pain
 level
- Robot Supervisor: central manager of robots and check for events such as unconscious patient. May calculate possible diagnoses and suggest early testing

N/A Sensors

Proposal and Conclusion

 Agents that communicate and interact with patients, doctors and nurses through I AN

- Capable of learning what to pay attention and know what it doesn't know (to extract it)
- Cognitive control to react correctly to varying situations (rather than precisely)

Proposal and Conclusion

Awareness of unexpected events and unpredictable behaviors

 Create a plan given current knowledge and state, or interrupt a cycle due to

new information, or folded **SENSOR**

into the currently forming plan if information is

consistent with partial

plan

Challenges

 Ethics – model and design system to protect health, safety, and privacy of patient

- Support NLP with medical emergency vocabulary
- Conventional computer-assisted diagnosis have had limited success in improving practitioner performance and outcomes (LIDA Architecture)

- Gather reliable measurements
- Interpretation of events during waiting (use patient's record and badge)

Discussion of Paper

- Other challenges not included: handicapped, languages
- Reduction of measurements to only necessary & use of other robots such as Samsung Bot Care
 Bixby which reads blood pressure and heart rate
- Final decision of proposed diagnosis should be checked and finalized by a medical staff
- Liked: focus on ethics, use of medical record to check on patients and use of badge
- No mention of multi-agent architecture
- Implementation advances?

Relation to my project

- Concept is very similar to what I had envisioned for my project
- Some additional features that can be added:
 - Knowledge of expectation in ER
 - Use of Visual Analog Scores and ESI scores for diagnosis
 - Checking patients through general cameras for events such as unconsciousness (out of scope for project)

Takeaway message

- A lot of work and detail is still necessary for the execution of this concept
- To start, a single robot can be put in place to understand the details and challenges in the initial phase as the patient arrives
- Further advances in AI, Robotics, and sensing will enable this implementation

