Laurea Triennale in Informatica, Università di Roma Tor Vergata

Calcolo delle Probabilità e Statistica (ed insegnamenti mutuati)

Anno accademico: 2012-2013. Titolare del corso: Claudio Macci

Simulazione 2

Esercizio 1. Un'urna ha 5 palline numerate da 1 a 5. Si estraggono a caso 3 palline, una alla volta e con reinserimento.

- D1) Calcolare la probabilità di estrarre al massimo un numero dispari.
- D2) Calcolare la probabilità dell'evento "i numeri estratti sono tutti pari oppure tutti dispari".

Esercizio 2. Si lancia ripetutamente una moneta equa e sia X la variabile aleatoria che conta il numeri di lanci necessari per avere per la prima volta testa. Poi si mettono 2^X palline numerate da 1 a 2^X in un'urna inizialmente vuota. Infine si estrae una pallina a caso dall'urna. Indichiamo con E l'evento "estrarre la pallina numero 1".

- D3) Calcolare P(E).
- D4) Calcolare P(X = 1|E).

Esercizio 3. Siano dati $p_1, p_2 \in (0,1)$. Definiamo la seguente densità congiunta: si ha $p_{X_1,X_2}(k,0) = \frac{1}{2}(1-p_1)^k p_1$ per $k \geq 0$ intero; $p_{X_1,X_2}(k,k) = \frac{1}{2}(1-p_2)^{k-1}p_2$ per $k \geq 1$ intero.

- D5) Calcolare $P(X_1 = X_2)$.
- D6) Trovare la densità marginale di X_2 .

Esercizio 4. Sia X una variabile aleatoria esponenziale di parametro $\lambda > 0$.

- D7) Trovare la funzione di distribuzione di $Y = \arctan X$.
- D8) Trovare la funzione di distribuzione di $Z = \frac{1}{X+1}$.

Esercizio 5. Sia $N_t = \sum_{n \ge 1} 1_{T_n \le t}$ (per $t \ge 0$) un processo di Poisson con intensità di $\lambda = \frac{7}{5}$.

- D9) Calcolare $P(N_{10} \leq 1)$.
- D10) Calcolare $P(T_3 \geq \frac{5}{7})$.

Esercizio 6. Sia X una variabile aleatoria normale con media $\mu = 2$ e varianza $\sigma^2 = 81$.

- D11) Calcolare $P(|X-2| \leq 9)$.
- D12) Trovare la distribuzione di $X_1 X_2$ nel caso in cui X_1 e X_2 siano due variabili aleatorie indipendenti e con la stessa distribuzione di X.

Esercizio 7 (solo per ST-Materiali). Consideriamo una catena di Markov omogenea $\{X_n : n \ge 0\}$ con spazio degli stati $E = \{1, 2, 3\}$ e matrice di transizione

$$P = \begin{pmatrix} 2/5 & 0 & 3/5 \\ 2/7 & 3/7 & 2/7 \\ 3/4 & 0 & 1/4 \end{pmatrix}.$$

D13) Consideriamo una distribuzione iniziale $(P(X_0=1), P(X_0=2), P(X_0=3)) = (p, 0, 1-p)$ per qualche $p \in [0,1]$. Dire per quale valore di p si ha $(P(X_1=1), P(X_1=2), P(X_1=3)) = (\frac{1}{2}, 0, \frac{1}{2})$. D14) Dato $k \geq 1$ intero, dire per quali valori di p si ha $P(X_0=2|X_0=2) \leq (\frac{3}{7})^k$.

Cenno alle soluzioni (Ogni segnalazione di errori o sviste (sempre possibili) è gradita)

Esercizio 1.

Sia X la variabile aleatoria che indica il numero di palline con numero dispari estratte. Allora si ha $p_X(k) = \binom{3}{k} (\frac{3}{5})^k (1 - \frac{3}{5})^{3-k}$, da cui segue $p_X(0) = \frac{8}{125}$, $p_X(1) = \frac{36}{125}$, $p_X(2) = \frac{54}{125}$ e $p_X(3) = \frac{27}{125}$. D1) La probabilità richiesta è $P(X \le 1) = p_X(0) + p_X(1) = \frac{8+36}{125} = \frac{44}{125}$. D2) La probabilità richiesta è $P(\{X = 0\} \cup \{X = 3\}) = p_X(0) + p_X(3) = \frac{8+27}{125} = \frac{35}{125}$.

Esercizio 2.

D3) Per la formula delle probabilità totali si ha $P(E) = \sum_{k \geq 1} P(E|X=k) P(X=k) = \sum_{k \geq 1} \frac{1}{2^k} (1 - e^{-k}) P(X=k)$ $\frac{1}{2})^{k-1}\frac{1}{2} = \sum_{k \ge 1} (\frac{1}{4})^k = \frac{1/4}{1-\frac{1}{4}} = \frac{1/4}{3/4} = \frac{1}{3}.$

D4) Per la formula di Bayes (e per il valore di P(E) calcolato prima) si ha $P(X=1|E)=\frac{P(E|X=1)P(X=1)}{P(E)}=\frac{\frac{1}{2^1}(1-\frac{1}{2})^{1-1}\frac{1}{2}}{\frac{1}{2}}=\frac{1/4}{1/3}=\frac{3}{4}.$

Esercizio 3.

D5) Si ha $P(X_1 = X_2) = \sum_{k \geq 0} p_{X_1, X_2}(k, k) = \frac{p_1}{2} + \frac{1}{2} \sum_{k \geq 1} (1 - p_2)^{k-1} p_2 = \frac{p_1}{2} + \frac{1}{2} = \frac{p_1 + 1}{2}.$ D6) Si ha $p_{X_2}(0) = \sum_{k \geq 0} p_{X_1, X_2}(k, 0) = \frac{1}{2} \sum_{k \geq 0} (1 - p_2)^{k-1} p_2 = \frac{1}{2} e p_{X_2}(k) = \frac{1}{2} (1 - p_2)^{k-1} p_2$ per ogni $k \ge 1$ intero.

Esercizio 4.

D7) Si vede che $P(0 \le \arctan X \le \pi/2) = 1$, da cui $F_Y(y) = 0$ per $y \le 0$ e $F_Y(y) = 1$ per $y \ge \pi/2$. Per $y \in (0, \frac{\pi}{2})$ si ha $F_Y(y) = P(\arctan X \le y) = P(X \le \tan y)$; in questo caso $\tan y > 0$ e, ricordando l'espressione di F_X , possiamo concludere che $F_Y(y) = 1 - e^{-\lambda \tan y}$.

D8) Si vede che $P(0 \le \frac{1}{X+1} \le 1) = 1$, da cui $F_Z(z) = 0$ per $z \le 0$ e $F_Z(z) = 1$ per $z \ge 1$. Per $z \in (0,1)$ si ha $F_Z(z) = P(\frac{1}{X+1} \le z) = P(X+1 \ge \frac{1}{z}) = P(X \ge \frac{1}{z}-1)$; in questo caso $\frac{1}{z}-1>0$ e, ricordando l'espressione di F_X , possiamo concludere che $F_Z(z) = e^{-\lambda(\frac{1}{z}-1)}$.

Esercizio 5.

D9) Si ha
$$P(N_{10} \le 1) = P(N_{10} = 0) + P(N_{10} = 1) = \sum_{k=0}^{1} \frac{(\frac{7}{5} \cdot 10)^k}{k!} e^{-\frac{7}{5} \cdot 10} = (1+14)e^{-14} = 15e^{-14}.$$
D10) Si ha $P(T_3 \ge \frac{5}{7}) = \sum_{k=0}^{3-1} \frac{(\frac{7}{5} \cdot \frac{5}{7})^k}{k!} e^{-\frac{7}{5} \cdot \frac{5}{7}} = (1+1+\frac{1}{2})e^{-1} = \frac{5}{2}e^{-1}.$

Esercizio 6.

D11) Si ha $P(|X-2| \le 9) = P(-\frac{9}{\sqrt{81}} \le \frac{X-2}{\sqrt{81}} \le \frac{9}{\sqrt{81}}) = \Phi(1) - \Phi(-1) = \Phi(1) - (1 - \Phi(1)) = \Phi(1)$ $2\Phi(1) - 1 = 2 \cdot 0.84134 - 1 = 0.68268$

D12) In generale $a_1X_1 + a_2X_2$ è Normale di media $a_1\mathbb{E}[X_1] + a_2\mathbb{E}[X_2]$ e varianza $a_1^2\operatorname{Var}[X_1] + a_2\mathbb{E}[X_2]$ $a_2^2 \text{Var}[X_2]$. Nel nostro caso si ha $a_1 = 1$, $a_2 = -1$, $\mathbb{E}[X_1] = \mathbb{E}[X_2] = 2$ e $\text{Var}[X_1] = \text{Var}[X_2] = 81$; quindi $X_1 - X_2$ ha distribuzione Normale di media 2 - 2 = 0 e varianza 81 + 81 = 162.

Esercizio 7.

D13) Dobbiamo considerare la relazione matriciale

$$(p,0,1-p)\begin{pmatrix} 2/5 & 0 & 3/5 \\ 2/7 & 3/7 & 2/7 \\ 3/4 & 0 & 1/4 \end{pmatrix} = \left(\frac{1}{2},0,\frac{1}{2}\right)$$

che fornisce il seguente sistema:

$$\begin{cases} \frac{2}{5}p + \frac{3}{4}(1-p) = \frac{1}{2} \\ 0 = 0 \\ \frac{3}{5}p + \frac{1}{4}(1-p) = \frac{1}{2}. \end{cases}$$

Il valore richiesto è $p=\frac{5}{7}$ perché è soluzione della prima e della terza equazione. D14) Osserviamo che se la catena lascia lo stato 2 non ci torna più; quindi $P(X_n=2|X_0=2)=P(\cap_{j=1}^n\{X_j=2\}|X_0=2)=\left(\frac{3}{7}\right)^n$. Allora vogliamo trovare i valori di n per cui si ha $\left(\frac{3}{7}\right)^n \leq \left(\frac{3}{7}\right)^k$; tale disequazione è soddisfatta per $n\geq k$ (perché $0<\frac{3}{7}<1$).

Comment i.

La somma dei valori di ciascuna densità discreta che appare è 1 in accordo con la teoria. D1) In altro modo la probabilità richiesta è $1-(p_X(2)+p_X(3))=1-\frac{54+27}{125}=\frac{125-81}{125}=\frac{44}{125}$. D14) Il fatto che si ottiene $n\geq k$ segue anche dal fatto che $\left(\frac{3}{7}\right)^n$ decresce rispetto ad n e tende a zero; quindi non sorprende che $\left(\frac{3}{7}\right)^n$ diventi minore di $\left(\frac{3}{7}\right)^k$ per n che "va da un certo punto in poi".