Express Mail No: EL 886460564US Inventor: Schmid, et al.

Title: Selective Functionalization of Hydrocarbons With Isolated Oxygenases and Mediator Based Regeneration Our Docket No: 294-160

Figure 1: In vitro regeneration of styrene monooxygenase (StyA). [Cp*Rh(bpy)(H₂O)]²⁺ catalyzed regeneration (upper) compared to a reductase-catalyzed setup (e.g. utilizing the native reductase StyB) with NAD(P)H regeneration.

Express Mail No: EL 886460564US Inventor: Schmid, et al.

Title: Selective Functionalization of Hydrocarbons With Isolated Oxygenases and Mediator Based Regeneration

Our Docket No: 294-160

= H, 3-methyl, 4-methyl, 4-F, 4-Cl, 4-Br, 3-Br, 3-NO₂

R' = H, methyl

R'' = H, trans-methyl X = C, N

Figure 2: Examples for StyA-cataylyzed oxidation reactions.

Figure 3: [Cp*Rh(bpy)H]+ catalyzed and formate driven reduction of CytC. Electrons are derived either from chemical reductants (such as formate) or from the cathode.

Express Mail No: EL 886460564US Inventor: Schmid, et al.

Title: Selective Functionalization of Hydrocarbons
With Isolated Oxygenases and Mediator
Based Regeneration
Our Docket No: 294-160

Figure 4: Summarized regeneration pathways of in vitro regeneration of monooxygenases and peroxidases.

Figure 5: Transhydrogenation from NAD(P)H to FAD (FMN) catalyzed by Cp*Rh(bpy)(H₂O)]²⁺ and its application to dehydrogenase catalyzed oxidation reactions.

Inventor: Schmid, et al.

Our Docket No: 294-160

Title: Selective Functionalization of Hydrocarbons With Isolated Oxygenases and Mediator Based Regeneration

Figure 6: Schematic setup of a compartmented electrochemical setup with immobilized biocatalyst. (1) stirred reservoir for substrates and products in a suitable solvent; (2) pump; (3) hollow-fibre module; (4) flow-through electrolysis cell (connected to a potentiostat); (5) pump; (6) immobilized biocatalyst (7) thermostat (8) pump.

Figure 7: UV-spectra of CytC while incubation with hydrogen peroxide.

Express Mail No: EL 886460564US Inventor: Schmid, et al.

Title: Selective Functionalization of

Title: Selective Functionalization of Hydrocarbons With Isolated Oxygenases and Mediator Based Regeneration

Our Docket No: 294-160

Figure 8: Experiments on varying $c([Cp*Rh(bpy)(H_2O)]^{2+})$ and c(CytC).

Figure 9: Sub-stochiometric use of [Cp*Rh(bpy)(H₂O)]²⁺. c([Cp*Rh(bpy)(H₂O)]²⁺) = 10 μ M, c(cytC)= 80 μ M, c(NaHCO₂) = 150 mM, T= 30 °C, degassed buffer.

Figure 10: Time course of [Cp*Rh(bpy)(H₂O)]²⁺-driven and StyA-catalyzed epoxidation of styrene. Styrene oxide (——); styrene (——). T = 37 °C; c(NaHCO₂) = 0.15 M; c([Cp*Rh(bpy)(H₂O)]²⁺) = 2 × 10⁻⁴ M: c(FAD) = 5 × 10⁻⁵ M; c(FMN) = 5 × 10⁻⁶ M: catalase = 28 U × ml⁻¹; c₀ (styrene) = 2 × 10⁻³ M; c(StyA) = 50 µg × ml⁻¹ = 1.16 × 10⁻⁶ M

Figure 11: Styrene oxide formation in the presence of neat styrene as 2^{nd} organic phase (substrate & product reservoir).

Figure 12: Styrene oxide concentration after 15 min incubation on variation of c(StyA).

Express Mail No: EL 886460564US
Inventor: Schmid, et al.
Title: Selective Functionalization of Hydrocarbons
With Isolated Oxygenases and Mediator

With Isolated Oxygenases and Mediator Based Regeneration Our Docket No: 294-160

Figure 13: Styrene oxide concentration after 15 min incubation on variation of $c([Cp*Rh(bpy)(H_2O)]^{2+})$.

Figure 14: Styrene oxide formation rate as a function of c(FAD). c([Cp*Rh(bpy)(H₂O)]²⁺) = 0.2 mM; c(StyA) = 1.25 μ M; Catalase 280 U; c(styrene) = 2 mM; T = 37 °C.

Figure 15: Styrene oxide (StyOx) formation using immobilized StyA.

Figure 16: Time course of dissolved oxygen (DOT) (●) and c(FADH₂) (○) while incubating with [Cp*Rh(bpy)(H₂O)]²⁺ (0.2 mM) in sodium formate (0.15 M) at 37°C.

Express Mail No: EL 886460564US Inventor: Schmid, et al.

Title: Selective Functionalization of Hydrocarbons With Isolated Oxygenases and Mediator

Based Regeneration Our Docket No: 294-160

Figure 17: Time course of hydrogen peroxide formation at different ratios [Cp*Rh(bpy)(H₂O)]²⁺ / FAD. c([Cp*Rh(bpy)(H₂O)]²⁺) = 19 μ M, c(NaHCO₂) = 0.15 M, T = 37°C, c(FAD) = 0 μ M (\spadesuit), 10 μ M (\bigcirc), 20 μ M (\spadesuit), 50 μ M (\diamondsuit), 100 μ M (\spadesuit), 200 μ M (\triangle).

Inventor: Schmid, et al.

Title: Selective Functionalization of Hydrocarbons
With Isolated Oxygenases and Mediator
Based Regeneration

Our Docket No: 294-160

Figure 18: UV-spectra of a 50 μM Cyt C solution in the presence of 1 mM H_2O_2 .

Express Mail No: EL 886460564US Inventor: Schmid, et al. Title: Selective Functionalization of Hydrocarbons With Isolated Oxygenases and Mediator

Based Regeneration Our Docket No: 294-160

Figure 19: Dependence of the CytC-catalyzed sulfoxidation efficiency on c(CytC).

Figure 20: Time-course of CytC-catalyzed sulfoxidation of thioanisol with *in situ* generation of hydrogen peroxide by [Cp*Rh(bpy)(H₂O)]²⁺.

Inventor: Schmid, et al.

Title: Selective Functionalization of Hydrocarbons
With Isolated Oxygenases and Mediator

Based Regeneration Our Docket No: 294-160

Figure 21: Residual HbpA activity while incubation with $[Cp*Rh(bpy)(H_2O)]^{2+}$ and varying NH₃ concentrations.

Inventor: Schmid, et al.

Title: Selective Functionalization of Hydrocarbons²⁻³²
With Isolated Oxygenases and Mediator
Based Regeneration
Our Docket No: 294-160

Figure 22: Inhibition of formate driven NADH regeneration catalyzed by $[Cp*Rh(bpy)(H_2O)]^{2+}$ under varying NH_4^+ concentrations.

Figure 23: Feasibility of electrochemical NADH regeneration in NH₄+ containing buffers.

Figure 24: Oxidation of NADH by $[Cp*Rh(bpy)(H_2O)]^{2+}/FAD$: $c(NADH)_0 = 0.1 \text{ mM}$; $T = 30^{\circ}C$; (\blacksquare) only $[Cp*Rh(bpy)(H_2O)]^{2+}$ (0.01 mM); (O) only FAD (0.04 mM); (\bullet) both $[Cp*Rh(bpy)(H_2O)]^{2+}$ (0.01 mM) and FAD (0.04 mM).

Inventor: Schmid, et al.

Title: Selective Functionalization of Hydrocarbons With Isolated Oxygenases and Mediator Based Regeneration

Our Docket No: 294-160

Figure 25: Time course of the oxidation of 3-methyl cylohexanol catalyzed by alcohol dehydrogenase from *Thermus sp.*. The necessary oxidized nicotinamide coenzyme was in situ generated from NADH.