Técnicas de Desenvolvimento de Algoritmos (parte 2)

Prof. Marcelo Rosa

Algoritmos e Estrutura de Dados 2 (AE43CP) Engenharia de Computação Departamento Acadêmico de Informática (Dainf) Universidade Tecnológica Federal do Paraná (UTFPR) Campus Pato Branco

Sumário

- Divisão e Conquista
 - Problema: ordenar um vetor de inteiros
 - Problema: encontrar o maior valor
 - Problema: potenciação

Ideia básica

- Divisão: dividir o problema a ser resolvido em 2 ou mais subproblemas menores e independentes
- Conquista: encontrar soluções para as partes recursivamente
 - Se o tamanho do subproblema for pequeno o bastante, então a solução é direta
- Combinação: combinar as soluções obtidas em uma solução global

3

Pseudocódigo: ideia geral

```
1: function Divisao e Conquista(x)
         if x é pequeno ou simples then
             return resolver(x)
        else
             decompor x em conjuntos menores x_0, x_1, \ldots x_n
             for (i \leftarrow 0 \text{ até } n) do
                 y_i \leftarrow \mathsf{Divisao} \ \mathsf{e} \ \mathsf{Conquista}(x_i)
             end for
             combinar y_i's
        end if
10:
11:
         return y
12: end function
```

Sumário

- 🕕 Divisão e Conquista
 - Problema: ordenar um vetor de inteiros
 - Problema: encontrar o maior valor
 - Problema: potenciação

Exemplo 1: ordenar um array de inteiros

ullet O problema consiste em ordenar um array A[1..n] com n inteiros

- (

Exemplo 1: ordenar um array de inteiros

ullet O problema consiste em ordenar um array A[1..n] com n inteiros

1	2	3	4	5	6	7	8
2	8	4	7	6	3	1	5

- **Divisão**: o array de n elementos a ser ordenado é divido em dois subarrays de n/2 elementos cada.
- Conquista: cada subarray é ordenado individualmente, recursivamente, utilizando a ordenação por intercalação.
 - subarray com tamanho 1 já está ordenado.
- Combinação: os subarrays ordenados são intercalados para produzir a resposta ordenada.

6

Exemplo 1: ordenar um array de inteiros

Exemplo 1: ordenar um array de inteiros

Exemplo 1: ordenar um array de inteiros

Algoritmo Merge Sort

```
1: procedure MERGE-SORT(A, p, r)
      if p < r then
       q \leftarrow \lfloor (p+r)/2 \rfloor
         MERGE-SORT(A, p, q)
         MERGE-SORT(A, q + 1, r)
         MERGE(A, p, q, r)
      end if
8: end procedure
```

```
1: procedure MERGE(A, p, q, r)
          n_1 \leftarrow q - p + 1
       n_2 \leftarrow r - q
         sejam L[1 \dots n_1 + 1] e R[1 \dots n_2 + 1] novos arranjos
         for i \leftarrow 1 to n_1 do
6:
7:
8:
9:
10:
12:
13:
14:
15:
              L[i] = A[p+i-1]
          end for
         for j \leftarrow 1 to n_2 do
           R[j] = A[q+j]
           end for
           L[n_1+1] \leftarrow \infty
           R[n_2+1] \leftarrow \infty
           i \leftarrow 1
           for k \leftarrow p to r do
16:
                if L[i] \leq R[j] then
17:
18:
19:
20:
21:
22:
23:
                     A[k] = L[i]
                     i \leftarrow i + 1
                     A[k] = R[j]
                    i \leftarrow i + 1
                end if
           end for
      end procedure
```

Exemplo 1: ordenar um array de inteiros

 A função que descreve o número de operações realizada pelo algoritmo é representada pela equação de recorrência

$$T(n) = \begin{cases} \Theta(1) & n = 1\\ 2T(\frac{n}{2}) + \Theta(n) & n > 1 \end{cases}$$

• Logo, a complexidade do Merge Sort é $\Theta(n \log n)$, pelo caso 2 do método mestre.

- 8

Sumário

- 🕕 Divisão e Conquista
 - Problema: ordenar um vetor de inteiros
 - Problema: encontrar o maior valor
 - Problema: potenciação

9

Exemplo 2: encontrar o maior valor

ullet O problema consiste em encontrar o maior elemento de um array A[1..n]

						7													
46	53	27	15	76	89	31	1	81	47	57	71	67	75	69	42	47	78	23	37

Exemplo 2: encontrar o maior valor

ullet O problema consiste em encontrar o maior elemento de um array A[1..n]

	2																		
46	53	27	15	76	89	31	1	81	47	57	71	67	75	69	42	47	78	23	37

Solução Ingênua

```
1: max \leftarrow A[1]
```

2: for
$$i \leftarrow 2$$
 até n do

if
$$A[i] > max$$
 then

$$1: \qquad max \leftarrow A[i]$$

7: return
$$max$$

Exemplo 2: encontrar o maior valor

ullet O problema consiste em encontrar o maior elemento de um array A[1..n]

						7													
46	53	27	15	76	89	31	1	81	47	57	71	67	75	69	42	47	78	23	37

Solução Ingênua

```
1: max \leftarrow A[1]
```

2: for
$$i \leftarrow 2$$
 até n do

if
$$A[i] > max$$
 then

$$max \leftarrow A[i]$$

7: return
$$max$$

• Complexidade de tempo: $\Theta(n)$

Exemplo 2: encontrar o maior valor

Solução por divisão e conquista

```
1: function Maxim(A, inicio, fim)
        if inicio = fim then
            return A[inicio]
        else
            m \leftarrow |(inicio + fim)/2|
            max \ esq \leftarrow \mathsf{Maxim}(A, inicio, m)
            max dir \leftarrow \mathsf{Maxim}(m+1, fim)
            return max(max \ esq, max \ dir)
        end if
10: end function
```

Exemplo 2: encontrar o maior valor

ullet A complexidade de tempo T(n) do algoritmo é uma fórmula de recorrência

$$T(n) = \begin{cases} \Theta(1) & n = 1\\ 2T(\frac{n}{2}) + \Theta(1) & n > 1 \end{cases}$$

• Logo, por meio do método mestre (caso 1), para a função T(n) foi definida a complexidade de tempo $\Theta(n)$

-10

Sumário

- 🕕 Divisão e Conquista
 - Problema: ordenar um vetor de inteiros
 - Problema: encontrar o maior valor
 - Problema: potenciação

Exemplo 3: potenciação

• Calcular a^n , para $n \ge 0$

Exemplo 3: potenciação

• Calcular a^n , para $n \ge 0$

Solução Ingênua

```
1: function potencia (a, n)
        if n=0 then
            return 1
        else
            p \leftarrow a
            for i \leftarrow 2 até n do
                p \leftarrow p \times a
            end for
            return p
        end if
10:
11: end function
```

Divisão e Conquista Exemplo 3: potenciação

• Calcular a^n , para $n \ge 0$

```
Solução Ingênua
```

```
1: function potencia(a, n)
```

2: if n = 0 then

return
$$1$$

$$p \leftarrow a$$

for
$$i \leftarrow 2$$
 até n do $p \leftarrow p \times a$

- end for
- return p
- end if

10:

- 11: end function
 - ullet Complexidade de tempo: O(n)

Exemplo 3: potenciação

• Calcular a^n , para $n \ge 0$

Exemplo 3: potenciação

• Calcular a^n , para $n \ge 0$

ldeia básica

$$a^n = \begin{cases} 1 & n = 0 \\ (a^{\lfloor \frac{n}{2} \rfloor})^2 & n \text{ \'e par} \\ a \times (a^{\lfloor \frac{n}{2} \rfloor})^2 & n \text{ \'e impar} \end{cases}$$

Exemplo 3: potenciação

• Calcular a^n , para $n \ge 0$

Solução divisão e conquista

```
1: function potencia(a, n)
2:
         if n=0 then
             return 1
       end if
       p \leftarrow \mathsf{potencia}(a, \lfloor n/2 \rfloor)
       p \leftarrow p \times p
         if n é impar then
             p \leftarrow a \times p
         end if
10:
         return p
11: end function
```

Exemplo 3: potenciação

ullet A complexidade T(n) do algoritmo é uma fórmula de recorrência, tanto para a análise de tempo quanto de espaço

$$T(n) = \begin{cases} \Theta(1) & n = 0\\ T(\frac{n}{2}) + \Theta(1) & n \ge 1 \end{cases}$$

• Logo, por meio do método mestre (caso 2), para a função foi definida a complexidade de $\Theta(\log n)$

- Vantagens:
 - Paralelismo
 - Os subproblemas geralmente são independentes
 - Fácil implementação (recursividade)
 - Simplificação de problemas complexos
 - ullet Por exemplo, a ordenação de arrays pode ser reduzida de $O(n^2)$ para $O(n\log n)$ (Merge Sort)
- Desvantagens:
 - Repetição de subproblemas
 - Problemas como Fibonacci repetem cálculos.
 - Necessidade de memória auxiliar
 - Excesso de chamadas pode causar estouro de pilha (StackOverflow)
 - Programação dinâmica

Referências I

Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Clifford, S. *Algoritmos: teoria e prática*. Elsevier, 2012.

Oliva, J. T.

Árvores B. AE23CP - Algoritmos e Estrutura de Dados II. Slides. Engenharia de Computação. Dainf/UTFPR/Pato Branco, 2025.