Dual-stream-network-for-visual-recognition

1. Motivation

transformer具有很强的全局建模能力,但是缺乏捕获局部模式的能力。为了解决这一问题作者提出了可以计算细粒度特征并高效融合的dual stream network。

过往的工作有许多将CNN引入Transformer来提升局部建模能力的方法。(CvT中将linear projection换成CNN,ContNet在token maps上做卷积)但这存在一些问题:1、卷积-注意力交替或将linear换成卷积的操作可能不够好;2、CNN和attention功能上的冲突可能会影响训练效果;3、attention不一定能在高分辨率的feature map上很好地捕获信息;4、纯attention的计算复杂度很高,降采样降低复杂度的操作也丢失了一部分局部信息。

2、Approach

Figure 2: Illustration of the proposed DS-Net, including Intra-scale Propagation module and Inter-scale Alignment module. Compared to ResNet, in which only single resolution is processed, our DS-Net, instead, generates dual-stream representations via DS-Blocks.

2.1 overview

看完整体框架以后感觉其思路是沿用downsample的方式,将self-attention作用的分辨率控制在1/32 of the image降低计算复杂度并捕获global信息,而用dw卷积作用于更高的分辨率,捕获local信息。然后接一个coattention模块实现跨尺度信息的融合。

比较好奇的是down sample是怎么做的,以及每个stage 的channel size如何确定。

2.2 Intra-scale propagation

将当前stage的输入feature map分成 f_l 和 f_a 两部分,该模块具体实现如下:

local representation

对于 $f_l \in \mathbb{R}^{W_i imes H_i imes C_l}$,用3 x 3 DW卷积提取局部特征

$$f_L(i,j) = \sum_{m,n}^{M,N} W(m,n) \odot f_l(i+m,j+n),$$

这个地方原文对公式的表述可以学一下的。

global representation

首先将 f_g flatten 到 $l_g = rac{W}{32} imes rac{H}{32}$ 长度,然后对之采用self-attention。

$$f_Q = f_g W_Q, \quad f_K = f_g W_K, \quad f_V = f_g W_V,$$
 $f_G = \operatorname{softmax}(\frac{f_Q f_K^T}{\sqrt{d}}) f_V,$

其中 $d=rac{rac{C_i}{2}}{N}$,N是self-attention的头数

2.3 Inter-scale Alignment

之所以需要有这样的一个模块,是因为作者发现global feature和local feature所关注的内容并不匹配,简单地将其融合(concatenation、element-wise addition和production)可能无法捕获两者的深层关系。

首先将获取的 f_L 拉平成时序特征,然后采用下面的方式实现特征融合:

$$Q_L = f_L W_Q^l, \quad K_L = f_L W_K^l, \quad V_L = f_L W_V^l,$$

 $Q_G = f_G W_Q^g, \quad K_G = f_G W_K^g, \quad V_G = f_G W_V^g,$

$$W_{G \to L} = \operatorname{softmax}(\frac{Q_L K_G^T}{\sqrt{d}}), \quad W_{L \to G} = \operatorname{softmax}(\frac{Q_G K_L^T}{\sqrt{d}}).$$

$$h_L = W_{G \to L} V_G, \quad h_G = W_{L \to G} V_L,$$

这个地方比较容易理解,值得注意的是两个co-attention模块的参数并不共享。

2.4 dual-stream feature pyramid network

Previous methods often cause large extra memory and computation costs, due to their complicated architectures and utilized high resolution feature maps

同时,全局的nonlocal又会丢失一些局部信息导致小物体检测效果不好。

因此,作者将dual-stream的设计引入FPN

Figure 3: The architecture of DS-FPN. C_i denotes the feature maps in stages from backbone, and F_i denotes the reconstructed features for detection and segmentation.

3. Experiment

三种结构:

Table 1: Detailed settings of DS-Net. Dconv denotes 3×3 depth-wise convolution, and MHSA denotes multi-head self-attention. C_i denotes the number of channels in ith stage. The feature dimension expansion ratio of each block is set to 4.

Stage	Input size	DS-Net-T	DS-Net-S	DS-Net-B			
Stage 0	224×224	4×4, 64, stride=4, padding=0					
Stage 1	56×56	$\left[\begin{array}{c} Dconv \\ MHSA - 8 \\ C_1 = 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} Dconv \\ MHSA - 8 \\ C_1 = 64 \end{array}\right] \times 3$	$\begin{bmatrix} Dconv \\ MHSA - 8 \\ C_1 = 64 \end{bmatrix} \times 3$			
Stage 2	28×28	$\left[\begin{array}{c} Dconv \\ MHSA - 8 \\ C_2 = 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} Dconv \\ MHSA - 8 \\ C_2 = 128 \end{array}\right] \times 4$	$\left[\begin{array}{c} Dconv \\ MHSA - 8 \\ C_2 = 128 \end{array}\right] \times 4$			
Stage 3	14×14	$\begin{bmatrix} Dconv \\ MHSA - 8 \\ C_3 = 320 \end{bmatrix} \times 4$	$\left[\begin{array}{c} Dconv \\ MHSA - 8 \\ C_3 = 320 \end{array}\right] \times 8$	$\left[\begin{array}{c} Dconv \\ MHSA - 8 \\ C_3 = 320 \end{array}\right] \times 28$			
Stage 4	7×7	$\begin{bmatrix} Dconv \\ MHSA - 8 \\ C_4 = 512 \end{bmatrix} \times 1$	$\begin{bmatrix} \text{Dconv} \\ \text{MHSA} - 8 \\ \text{C}_4 = 512 \end{bmatrix} \times 3$	$\begin{bmatrix} Dconv \\ MHSA - 8 \\ C_4 = 512 \end{bmatrix} \times 3$			
	7×7 global average pooling, 1000-d fc, softmax						

3.1 Ablation study

3.1.1 ratio of local to global feature

在前面的描述中,input feature被均匀分成两部分送入两个stream,如果不平衡地送入不同的stream会怎么样呢?

When α equals 0, only depth-wise convolution is performed, and when α equals 1, only self-attention is performed.

Table 2: DS-Net-T performance on ImageNet-1k validation set with different α .

α	0	0.25	0.5	0.75	1
Top-1(%)	77.1	78.0	78.1	77.9	77.6
Top-5(%)	93.3	94.1	94.1	94.0	93.9
Params (M)	8.6	8.7	9.1	9.8	10.7
FLOPs (G)	1.573	1.578	1.592	1.615	1.647
Throughput (Images/s)	3240	1733	1199	912	740

3.1.2 none is dispensable in DS-Block

Table 3: Ablations of removing components of DS-Net-T* on ImageNet-1k validation set.

Versions	DS-Net-T*	$w/o f_L$	$w/o~f_G$	G o L	$U \to G$	$_{L\leftrightarrow G}^{w/o}$
Top-1(%)	79.0	76.7	76.6	76.5	76.4	78.1
Top-5(%)	94.8	93.6	93.7	93.5	93.4	94.1

3.2 Image classification

Table 4: Comparison with the accuracy of other state-of-art methods on ImageNet-1k validation set. The input images are reshape to 224×224 resolution. DS-Net* represents the corresponding DS-Net version with Inter-scale Alignment module.

Method	Params (M)	FLOPs (G)	Throughput (Images/s)	Top-1 (%)			
ConvNet							
ResNet-18 [18]	11.8	2	-	69.9			
ResNet-50 [18]	25.6	4.1	-	74.2			
ResNet-101 [18]	44.5	7.8	-	77.4			
RegNetY-8GF [35]	39.2	8	-	79.9			
RegNetY-16GF [35]	83.6	15.9	-	80.4			
Transformer / Hybrid							
DeiT-T [42]	6	-	2536	72.2			
CPVT-Ti [7]	6	-	-	72.4			
T2T-ViT-12 [48]	6.9	-	-	76.5			
ConTNet-S [47]	10.1	1.5	-	76.5			
DS-Net-T (ours)	9.1	1.6	1199	78.1			
DS-Net-T* (ours)	10.5	1.8	1034	79.0 (+6.8)			
DeiT-S [42]	22.1	4.6	940	79.9			
CrossViT-15 [4]	27.4	5.8	640	81.5			
T2T-ViT-14 [48]	22	5.2	-	81.5			
ConTNet-M [47]	19.2	3.1	-	80.2			
TNT-S [16]	23.8	5.2	-	81.3			
CvT-13 [46]	20	4.5	-	81.6			
PVT-Small [45]	24.5	3.8	820	79.8			
CPVT-Small-GAP [7]	23	4.6	817	81.5			
Swin-T [27]	29	4.5	766	81.3			
DS-Net-S (ours)	19.7	3	582	81.9			
DS-Net-S* (ours)	23	3.5	510	82.3 (+2.4)			
DeiT-B [42]	86	17.5	292	81.8			
CrossViT-18 [4]	43.3	9	430	82.5			
ConTNet-B [47]	39.6	6.4	-	81.8			
PVT-L [45]	61.4	9.8	_	81.7			
Swin-S [27]	50	8.7	437	83.0			
DS-Net-B (ours)	48.8	7.6	387	82.8			
DS-Net-B* (ours)	49.3	8.4	335	83.1 (+1.3)			

这里的DS-Net-B是没有Inter-scale -Alignment module的网络,带*的则是有的