

Sensitivity improvements with hadronic energy fraction binning

NuMu group, Oct. 2016

Luke Vinton, University of Sussex

Version details

Running in S16-09-13

 Using FD and ND NuMu decafs found here: / pnfs/nova/persistent/production/concat/ R16-03-03-prod2reco.d/

Outline

- All Sensitivities shown:
 - made with the SA NuMu (non max mixing) oscillation parameters
 - Include all NuMu systematics but not the cosmic background
- Sensitivity with cvn-remid hybrid selection & finer neutrino energy binning & Ehad frac binning
- Tune of cvn-remid hybrid selection
 - for contour area
 - for max mixing rejection
- Sensitivity with varying number of neutrino energy bins and 4 Ehad frac bins.

University of Sussex

Oscillation parameters

```
SetL(810);

SetRho(0); // No matter effects

SetDmsq21(7.59e-5);

SetDmsq32(2.6746e-3);

SetTh12(.601);

SetTh13(.1567);

SetdCP(0);

SetTh23(0.68696); // non max (ssqth23 = 0.4022)
```


CVN and ReMId hybrid selection

Kirk introduced a hybrid remid and cvn FD cut designed for efficiency studies in the FD:

I created a similar cut for the ND omitting the cosmic rejection and nhit cuts.

Contours with and without cosmic bkg

Luke Vinton

Contours with and without cosmic bkg

Rejection of max. mixing increased to $3.3\ \sigma$ with combination of hybrid selection, finer energy binning and hybrid selection

US University of Sussex

hybrid: remid & cvn selection

Luke Vinton

Optimising CVN and ReMId hybrid selection

Following plots are the result of making a std (no had. energy fraction binning) non-max mixing full-syst. sensitivity contour for each value of the remid and cvn cuts.

First, number of bins within the contour shows a approximation of the contour size.

Second, the rejection of maximal mixing is shown for each value of the remid and cvn cut.

Number of bins within 90% C.L.

Current parameters used in tuned hybrid cut (291 bins)

University of Sussex

Least number of bins within contour (287 bins)

Luke Vinton

Sensitivity to reject maximal mixing

Current parameters used in tuned hybrid cut (2.992 σ)

Largest maximal mixing rejection sensitivity (3.073 σ)

Luke Vinton 10

4 had frac. bins and vary number neutrino energy bins {20,40,60,80,120,160}

- We can use Ehad/Enu to divide our better and worse resolved events
- A finer binning would take advantage of the well resolved portion of events

Non-max mixing contours, 4 had frac bins

Non-max mixing contours, 4 had frac bins

Non-max mixing contours, 4 had frac bins

Summary

- Using hybrid selection along with finer neutrino energy binning and had. frac binning increases sensitivity (at SA NuMu parameters) to reject maximal mixing to **3.3** σ
- Sensitivity to rejection of maximal mixing is fairly flat vs. the hybrid selection values
 - but would be slightly increased with adjustment (increase in max. mixing rejection of 0.08 σ)
 - "Optimal" value of cuts probably not shown, need to assess lower region of remid and cvn
- Rejection vs. number of neutrino energy bins shows that 50 or 60 neutrino energy bins is about optimal for rejection and computing time

Future plan

- Use variable neutrino energy binning and reduce number of bins
 - finer in most statistically powerful region
 - coarser in less powerful regions
 - optimise for 4 had frac divisions

Backup

Hadronic energy fraction vs. reco. energy

Cosmic background

Contours with and without cosmic bkg

Contours with and without cosmic bkg

Hadronic energy fraction binning

Split events into hadronic energy quantiles

Quantiles made for each bin of reconstructed neutrino energy

Up next, sensitivities with events split into 2,3,4 and 5 hadronic energy fraction quantiles

Sensitivity with hadronic energy fraction binning

Sensitivity with hadronic energy fraction binning

Sensitivity with hadronic energy fraction binning

