产品概述

BDR6122T 是一款直流有刷电机驱动 IC,适用于电子锁、无线充电、玩具、消费类产品以及其它低压或者电池供电的运动控制产品。

BDR6122T 输出 DC 电流达到 1.8A。有两组工作电压: VM 工作范围是 0~12V, VCC 工作范围是 1.8~5.5V。

BDR6122T 有一组 PWM(IN1-IN2)输入,超低输出 内阻,采用 DFN8 和 SOP8 两种封装。内部集成过流 保护、欠压保护和过温保护。

应用

- 电子锁
- 玩具
- 无线充电
- 机器人
- 消费类产品

特征

- H桥马达驱动
 - 驱动直流有刷马达或电感或其它负载
 - 超低内阻: 上臂+下臂: **280m**Ω
- 最大 1.8A 直流输出驱动电流
- 马达电压和逻辑电压独立供电
 - 马达电源 VM: 0 to 12V
 - 逻辑电源 VCC: 1.8V to 5.5V
- 低功耗休眠模式
 - IVM 和 IVCC 的静态电流 10nA
- 小封装
 - DFN8 (2.0 X 2.0 mm)
 - SOP-8
- 保护特征
 - VCC 欠压锁定
 - 过流保护
 - 过热保护

框图

V1.0 1 2017

应用电路

*C3 可选,细节请参见"电源电容推荐"章节

订单资料

产品编号	封装类型	标记
BDR6122T-S	8-Pin, SOP, 150 MIL	-
BDR6122T	8-Pin, DFN	-

脚位定义

引脚名称	输入/输出	描述	引脚编号
VM	电源	功率电源	1
OUT1	输出	全桥输出 1	2
OUT2	输出	全桥输出 2	3
GND	电源	地	4
IN2	输入	逻辑输入2	5
IN1	输入	逻辑输入1	6
nSLEEP	输入	休眠模式输入端口	7
VCC	电源	逻辑供电电源	8

功能描述

全桥控制方式

BDR6122T 是由一组 PWM 输入信号控制的(也叫 IN-IN 控制),每一路输出都是由一个输入脚控制。

nSLEEP	IN1	IN2	OUT1	OUT2	功能 (DC Motor)
0	Х	Х	Z	Z	Off
1	0	0	Z	Z	Off
1	0	1	L	Н	Reverse
1	1	0	Н	L	Forward
1	1	1	L	L	Brake

表 1. 逻辑控制

保护模式

BDR6122T有三种保护模式: VCC欠压保护、过流和过温保护。

故障	条件	H桥	特性恢复点
VCC 欠压保护	VCC < 1.7V	关断	VCC>1.8V
过流保护	IOUT > 1.9A (MIN)	关断	tRETRY
过温保护	TJ > 150°C (MIN)	关断	TJ < 150℃

表 2. 故障模式

功能

TBDR6122T 在 nSLEEP 为低电平时进入休眠模式,输出 H 桥被关断。如果 nSLEEP 为高电平时,BDR6122T 进入正常工作模式。

模式	条件	H桥
正常工作	nSLEEP pin=1	工作
休眠模式	nSLEEP pin=0	关断
故障	任意一种故障出现	关断

表 3. 工作模式

电源电容推荐

在马达驱动系统设计中,电源电容是非常重要的,一般而言,容值大一些效果更好一些。

电源电容值选取由以下几个因素决定:

- 马达系统需要很高的电流能力
- 电源电容要求提供电流能力
- 在电源和马达直接寄生的电感数量
- 可接受的电压纹波
- 马达类型(有刷直流马达,无刷直流马达,步进马达)
- 马达刹车方式

电源和马达驱动系统之间的电感限制了电源的额定电流值。如果电源电容值太小,系统需要额外的电流提供或者马达电压会有跳变。当电源电容值足够大的时候,马达电压就会很稳定,并且在大电流切换时也能快速响应。

电源电容的额定电压应该比工作电压高,当马达传输给电源能量时能够提供足够的裕度。

图 2. 外部电源供电的马达驱动系统

PCB 布局

VM 和 VCC 应该使用低 ESR 陶瓷电容旁路到地,建议数值是 0.1uF。这些电容应该尽可能的放在 VM 和 VCC 脚位旁边,并用粗线与地相连。

图 4. 简化的 PCB 布局

绝对最大额定值

参数			最小	最大	单位
马达供电电压	, VM		-0.3	13.5	V
逻辑电源供电	逻辑电源供电电压, VCC		-0.3	6.5	V
工作温度			-40	150	°C
存储温度, Tstg			-40	150	°C
工作湿度			20	85	%
存储湿度			20	90	%
НВМ			±4		KV
静电等级	所有脚位	MM	±0.4		KV
		CDM*	±1.5		KV

^{*}CDM 测试是基于 ANSI/ESDA/JECEC JS-002-2014

推荐工作条件

参数		最小	最大	单位
VM	马达工作电压	0	12	V
VCC	逻辑工作电压	1.8	5.5	V
louт	马达直流电流	0	1.8	Α
fрwм	PWM 输入频率	0	250	KHz
VLOGIC	逻辑输入电压	0	5	V
TA	环境工作温度	-40	85	°C

电特性参数

如无特殊规定,TA=25℃

符号	がた。TA=25 C 参数	测试条件	最小	典型	最大	单位
电源电压(VM,VCC)	<u>'</u>				
VM 电流	-					
I _{VM1}	关断模式下 VM 电流	VM=5V; VCC=3V; 无 PWM 关断模式		65	90	μΑ
I _{VM2}	正/反转模式下 VM 电流	VM=5V; VCC=3V; 无 PWM 正/反转模式		300	500	μΑ
Ivмз	刹车模式下 VM 电流	VM=5V; VCC=3V; 无 PWM 刹车模式		65	90	μΑ
I∨M4	PWM 输入时 VM 电流	VM=5V ; VCC=3V PWM=50KHz		240	400	μΑ
Ivмq	休眠模式下 VM 电流	VM=5V ; VCC=3V nSLEEP=0		5		nA
VCC 电流						
Ivcc ₁	关断模式下 VCC 电流	VM=5V; VCC=3V; 无 PWM 关断模式		380	500	μΑ
Ivcc2	正/反转模式下 VCC 电流	VM=5V; VCC=3V; 无 PWM 正/反转模式		450	650	μΑ
Ivcc3	刹车模式下 VCC 电流	VM=5V; VCC=3V; 无 PWM 刹车模式		480	650	μA
Ivcc4	PWM 输入时 VCC 电流	VM=5V ; VCC=3V PWM=50KHz		450	650	μΑ
Ivccq	休眠模式下 VCC 电流	VM=5V; VCC=3V nSLEEP=0		2		nA
逻辑输入(IN1, IN2, nSLEEP)					
VIL	输入逻辑低电平				0.3*VCC	V
Vih	输入逻辑高电平		0.5*VCC			V
lı∟	逻辑低电平输入的电流	V _{IN} =0V			5	μΑ
Іін	逻辑高电平输入的电流	V _{IN} =3.3V			50	μΑ
R_{PD}	下拉电阻	IN1 IN2 nSLEEP		100		ΚΩ
马达驱动物	<i>输出</i> (OUT1, OUT2)					
r _{DS(ON})	上臂+下臂 MOS 阻抗	VM=5V ; VCC=3V ; Io=800mA ; Tj=25°C		280		mΩ
loff	关断状态下漏电流	Vout=0V		5		nA
保护功能		•				
	VOC ETEMP	VCC 下降			1.7	V
Vuvlo	VCC 欠压锁定	VCC 上升	1.8			V
Іоср	过流保护触发点		1.9		3.5	Α
t retry	过流保护恢复时间			1		mS
T _{TSD}	过温保护温度点	芯片温度		160		$^{\circ}\!\mathbb{C}$

时序要求

Ta=25 $^{\circ}$ C , VM=5V, VCC=3V, RL=20 Ω

时间	参数	最小	单位
t ₁	输出开启时间	0.8	μS
t ₂	输出关断时间	0.8	μS
t 3	延迟时间, INx high to OUTx high	0.7	μS
t ₄	延迟时间, INx low to OUTx low	0.7	μS
t 5	输出上升时间	0.5	μS
t ₆	输出下降时间	0.5	μS
twake	唤醒时间,nSLEEP 上升沿到输入开启	5	μS

典型工作特性

(如无特殊规定, VM=5V, VCC=3V)

图 6. IVMQ vs TA

图 7. IVCCQ vs TA

图 8. IVM vs TA(50KHz PWM)

图 9. IVCC vs TA(50KHz PWM)

图 10. HS + LS ros-on vs TA

封装资料

8-PIN, DFN

Symbol	Dimensions			
Symbol	Min.	Nom.	Max.	
Α	0.70	0.75	0.80	
A1	0	0.02	0.05	
A3	0.20 REF			
b	0.18	0.25	0.30	
D	2.00 BSC			
E	2.00 BSC			
е	0.50 BSC			
D2	1.50	1.60	1.65	
E2	0.80	0.90	0.95	
L	0.25	0.30	0.35	

Note: Refer to JEDEC MO-229

8 PINS, SOP, 150MIL

Cymbol	Millimeter					
Symbol	Min.	Nom.	Max.			
Α	-	-	1.75			
A1	0.10	-	0.25			
A2	1.25	-	-			
b	0.31	-	0.51			
С	0.10	-	0.25			
D		4.90 BSC				
Е		6.00 BSC				
E1		3.90 BSC				
е	1.27BSC					
L	0.40	0.40 - 1.27				
θ	0° - 8°					

- Notes:
 1. Refer to JEDEC MS-012AA
- 2. All dimensions are in millimeter