LAG

2. Lineární prostor, báze a dimenze, řešení soustav lineárních rovnic, lineární zobrazení, základy maticového počtu

Těleso

```
Množina F s operacemi + a *, která splňuje: - Komutativita - a+b = b+a - Asociativita - (a * b) * c = a * (b * c) - Neutrální prvek - a + 0 = a - Distributivita - a * (b + c) = ab + ac - Opačný prvek (negace) - a + b = 0, b = -a - Inverzní prvek - a * b = 1, b = a^{-1}, kromě a = 0 - Alespoň 2 prvky 0 a 1 - Zn je těleso pro n prvočíslo
```

Lineární prostor

Neprázdná množina L se nazývá lineární vektorový prostor nad tělesem R, jestliže je splněno následujících deset podmínek.

- 1. Pro každé dva prvky $u,v\in L$ je jednoznačně určen prvek $u+v\in L$ nazývaný součet prvků u a v. (uzavření na sčítání)
- 2. Pro každý prvek $u \in L$ a pro každý prvek $\lambda \in R$ je jednoznačně určen prvek $\lambda \cdot u \in L$ nazývaný násobek prvku u prvkem λ . (uzavření na násobení)
- 3. u + v = v + u pro každé dva prvky $u, v \in L$ (komutativita)
- 4. (u+v)+w=u+(v+w) pro každé tři prvky $u,v,w\in L$ (asociativita)
- 5. Existuje prvek $0 \in L$. takový, že pro každý prvek $u \in L$ platí u + 0 = 0 + u = u (existence 0)
- 6. Pro každý prvek $u \in L$ existuje prvek $-u \in L$ takový, že u + (-u) = (-u) + u = 0 (existence negace)
- 7. $\lambda \cdot (u+v) = \lambda u + \lambda v$ pro každé dva prvky $u, v \in L$ a pro každý prvek $\lambda \in R$.
- 8. $(\lambda + \alpha)u = \lambda u + \alpha u$ pro každý prvek $u \in L$ a pro každé dva prvky $\lambda, \alpha \in R$.
- $\Theta.~(\lambda \alpha)u=\lambda(\alpha u)$ pro každý prvek $u\in L$ a pro každé dva prvky $\lambda,\alpha\in R.$
- 10. 1u=u pro každý prvek $u\in L$

Lineární podprostor

Neprázdná podmnožina W vektorového prostoru V nad tělesem T se nazývá podprostorem V, pokud pro libovolné vektory $u,v\in W$ a libovolný skalár $\lambda\in T$ platí:

```
ullet u+v\in W
```

• $\lambda a \in W$

Množina W je tedy uzavřená vzhledem k operacím sčítání vektorů a násobení vektoru skalárem. Lépe $span(W) \subseteq W$.

Lineární kombinace

Nechť L je lineární prostor, $v_1,v_2,\ldots,v_n\in L$ a $\lambda_1,\lambda_2,\ldots,\lambda_n\in R$. Prvek $\lambda_1v_1+\lambda_2v_2+\ldots+\lambda_nv_n\in L$ se nazývá lineární kombinace prvků v_1,v_2,\ldots,v_n s koeficienty $\lambda_1,\lambda_2,\ldots,\lambda_n$.

- Lineární kombinace $\lambda_1v_1,\lambda_2v_2,\dots,\lambda_nv_n$ se nazývá **netriviální**, pokud existuje $i\in\{1,2,\dots,n\}$ takové, že $\lambda_i\neq 0$
- Lineární kombinace $\lambda_1v_1, \lambda_2v_2, \dots, \lambda_nv_n$ se nazývá **triviální**, jestliže $\lambda_i=0$ pro každé $i=1,2,\dots,n$

Lineární závislost a nezávislost

Prvky v_1, v_2, \dots, v_n množiny M se nazývají **lineárně závislé**, pokud existuje taková **netriviální lineární kombinace** těchto prvků, která vyhovuje vztahu $\sum_{i=1}^{n} a_i v_i = 0$ kde a_i je skalár a alespoň jedno a_i je nenulové. V opačném případě jsou lineárně nezávislé.

- Pro **lineárně nezávislé** prvky je jediným řešením výše uvedeného vzorce triviální řešení, tedy $a_i=0$
- Jsou-li prvky lineárně závislé, je možné nějaký z nich vyjádřit jako lineární kombinaci ostatních prvků

Lineární obal

Mějme množinu M, která je podmnožinou vektorového prostoru V. Průnik všech podprostorů prostoru V, které obsahují množinu M se nazývá lineárním obalem množiny M.

Zjednodušeně - lineární obal množiny M podprostor prostoru V . Co obsahuje? Všechny ty prvky, ke kterým se mohu dostat libovolnou lineární kombinací vektorů z množiny M .

$$\langle M
angle = \{\sum_{i=1}^n a_i u_i \mid u_i \in M, a_i \in R, i=1,2,3,\ldots,n\}$$

Báze

Báze vektorového prostoru V je nejmenší množina **lineárně nezávislých vektorů** taková, že její lineární obal je roven celému prostoru V. V konečně dimenzionálním prostoru dimenze n je bází každá množina obsahující n lineárně nezávislých vektorů.

- Obal báze prostoru V tvoří celý prostor V
- · Vektory báze jsou lineárně nezávislé.
- Prostor může mít více bází. Všechny ale mají stejný počet prvků.

Dimenze

Dimenze lineárního prostoru L je **počet prvků báze** tohoto prostoru. Dimenzi prostoru L značíme dim L. Dimenzi jednobodového lineárního prostoru $L = \{\emptyset\}$ pokládáme rovnu 0.

Nechť L lineární prostor a $M\subseteq L$ je lineární podprostor L pak $\dim M \leq \dim L$.

Souřadnice vektoru v bázi

Jsou to koeficienty jednotlivých vektorů báze. Například bázové vektory $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ a $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, tak souřadnice pro vektor $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ jsou $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$. Je to lineární zobrazení. Platí $coord_b(x+y)=coord_b(x)+coord_b(y)$ a násobení skalárem.

Lineární zobrazení

Pojmem **lineární zobrazení** (lineární transformace) se v matematice označuje takové zobrazení mezi vektorovými prostory U a V, které zachovává vektorové operace sčítání a násobení skalárem. Název lineární je odvozen z faktu, že grafem obecného lineárního zobrazení z reálných čísel do reálných čísel je přímka.

```
1. L(u+v)=L(u)+L(v), u\in U, v\in V (aditivita)
2. L(\alpha u)=\alpha L(u), u\in U, \alpha\in R (homogenita)
```

Prosté zobrazení: $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$, každé x se zobrazí na jiné y **Na zobrazení:** $\forall y \in Y, \forall x \in X: f(x) = y$, každé y má své x **Bijekce:** $\forall y \in Y, \exists! x \in X: f(x) = y$, spojení prostého a na, má inverzi $(\exists!$ - existuje právě jedno)

Monomorfismus - prosté a lineární Epimorfismus - na a lineární Isomorfismus - bijekce a lineární

Jádro zobrazení

Jádro lineárního zobrazení A z L_1 do L_2 je: $Ker A = \{x \in L_1; A(x) = o\}$

Obraz zobrazení

Mějme lin. zobrazení z L1 do L2. Obraz zobrazení f, im(f), je poté množina všech y \in L2 takových, že existuje nějaké x \in L1, že f(x) = y.

Defekt a hodnost zobrazení

```
Defekt je def\,A=dim\,Ker\,A, hodnost zobrazení hod\,A=dim\,Im(A), platí def\,A+hod\,A=dim\,L_1 hod\,A=rng\,A null\,A=def\,A
```

Transformace souřadnic v jedné bázi na souřadnice v jiné bázi

První bázi zobrazíme do výsledného prostoru. U výsledku zjistíme souřadnice vhledem k první bázi. Tyto souřadnice dáme jako sloupce matice -> transformace souřadnic z první do druhé báze.

Matice lineárního zobrazení

Nechť U a V jsou lineární vektorové prostory konečné dimenze nad tělesem $R,L:U\to V$ je lineární zobrazení. Mějme u_1,u_2,\ldots,u_k bázi prostoru U, $dim\,U=k$ a v_1,v_2,\ldots,v_n bázi prostoru V, $dim\,V=n$. Matice A typu (n,k) která splňuje maticovou rovnost:

$$(A*\vec{u}_1, A*\vec{u}_2, \ldots, A*\vec{u}_k)) = (\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n)$$

nazýváme maticí zobrazení A vzhledem k uspořádaným bázím (U) a (V)

Sčítání - stejné rozměry, složka po složce

Násobení - A o rozměru (n*m) (n - počet řádků, m - počet sloupců) a matici B o rozměru (k* l), lze násobit jen když k = m a výsledná matice má rozměry (n*l)

Inverze - GEM z (A|E) do $(E|A^{-1})$

Vyjádřeno méně formálně: každý vektor z U si můžeme vyjádřit jako kombinaci bázových vektorů U . Pak se podíváme na koeficienty, kterými násobíme tyto bázové vektory, a chceme z nich dostat koeficienty bázových vektorů v prostoru V . Pokud těmito koeficienty vynásobíme bázové vektory V , dostaneme lineární zobrazení původního vektoru do prostoru V . Díky matici lineárního zobrazení můžeme tyto koeficienty získat.

Platí: souřadnice v bází
$$V$$
 pro vektor z báze U najdeme pomocí: $A \cdot \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_k \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$

Regulární matice

Platí Isomorfismus, čtvercová, má inverzi, det(A) != 0, A * x = b má jedno řešení, defekt 0, sloupce a řádky LN

Řešení soustav lineárních rovnic

 $A \text{ matice reálných čísel typu } (m,n) \text{, dále } x \text{ je jednosloupcová matice symbolů} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \text{ typu } (n,1) \text{ a } b \text{ je matice reálných čísel } \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \text{ typu } (m,1) \text{. Pak }$

maticovou rovnost Ax=b nazýváme **soustavou m lineárních rovnic o n neznámých**. Matici A nazýváme **maticí soustavy** a vektor $b^T=(b_1,\cdots,b_m)$ nazýváme **vektorem pravých stran**. Připíšeme-li k matici soustavy do dalšího sloupce matici b oddělenou svislou čarou, dostáváme matici $(A\mid b)$ typu (m,n+1), kterou nazýváme rozšířenou maticí soustavy.

Řešení soustavy Ax = b je takový vektor $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$, pro který platí: dosadíme-li hodnoty α_i za symboly x_i , pak je splněna požadovaná maticová rovnost, tj.:

$$A \cdot egin{pmatrix} lpha_1 \ dots \ lpha_n \end{pmatrix} = egin{pmatrix} b_1 \ dots \ b_n \end{pmatrix}$$

Řešit soustavu Ax = b znamená nalézt **všechna** její řešení.

GEM - získáme podobnou matici v horním blokovém tvaru (HBT)

- lze prohodit 2 řádky
- lze vynásobit řádek skalárem (ne 0)
- lze přičíst skalární násobek řádku k jinému řádku
- platí rank(A) je počet nenulových řádků v HBT = počet pivotů (p != 0)
- platí def(A) = počet sloupců rank(A)

Frobeniova Věta

Soustavě Ax=b má řešení právě tehdy, když $hodA=hod(A\mid b)$ Pokud má řešení, tak množina řešení je p + ker(A), kde p je jedno řešení

Permutace

Permutace na n je bijekce π : {1, 2, ..., n} \rightarrow {1, 2, ..., n}. Množině všech permutací množiny {1, 2, ..., n} říkáme symetrická grupa permutací n-prvkové množiny, značíme S_n .

Determinant čtvercové matice

Pouze čtvercová matice, výsledek je skalár, geometrický význam - je to velikost orientovaného objemu rovnoběžnostěnu Vlastnosti - $det(A) = det(A^T)$, $det(A^{-1}) = (det(A))^{-1}$, $det(E_n) = 1$, invariance vůči mat. násobení, $det(\alpha A) = \alpha^n det(A)$, det(A) != 0 tak a1, ..., an jsou LN

```
Inverze v permutaci - Ať \pi = \begin{bmatrix} 1 & 2 & 3 & \dots & n \\ \pi(1) & \pi(2) & \pi(3) & \dots & \pi(n) \end{bmatrix} je permutace. Inverze v permutaci \pi je výskyt situace i < j a současně \pi(i) > \pi(j) (inverze v permutaci je jedno překřížení strun ve strunovém diagramu).
```

Znaménko permutace - Znaménko permutace π je číslo sign π , které je definováno takto:

```
\operatorname{sign} \pi = \left\{ \begin{array}{l} +1, & \operatorname{pokud} \pi \text{ obsahuje sudý počet inverzí,} \\ -1, & \operatorname{pokud} \pi \text{ obsahuje lichý počet inverzí.} \end{array} \right.
```

 $\begin{array}{l} \textbf{Determinant} \text{ - Pro matici } \textbf{A} \text{ typu } n \times n \text{ nad } \mathbb{F} \text{ definujeme determinant jako skalár} \\ \det(\textbf{A}) = \sum_{\pi \in S_n} \text{sign } \pi \cdot a_{\pi(1),1} \cdot a_{\pi(2),2} \cdot \ldots \cdot a_{\pi(n),n} \text{ . Často se píše i } |\textbf{A}| \text{ místo } \det(\textbf{A}). \end{array}$

Algebraický doplněk - Determinantu $A_{ij} = \det(\mathbf{a}_1,...,\mathbf{a}_{j-1},\mathbf{e}_i,\mathbf{a}_{j+1},...,\mathbf{a}_n)$ říkáme algebraický doplněk pozice (i,j) v matici $\mathbf{A} = (\mathbf{a}_1,...,\mathbf{a}_n)$.

Adjungovaná matice - Pro matici A typu $n \times n$ je její adjungovaná matice adj(A) transponovaná matice algebraických doplňků pozic v matici A.

Rozvoj podle řádku nebo sloupce

Vybereme si nejvhodnější řádek/sloupec (R), pak $\det(A) = R_1 * (-1)^{R_{idx,X} + R_{idxY}} * \det(\text{matice bez sloupee a řádku daného aktuálním prvkem}) + ...$

GEM determinant

Je-li matice horní/dolní trojúhelníková je det(A) roven součinu prvků na diagonále, přičítání řádků determinant nemění, násobení řádku α pak je potřeba determinant vydělit α , prohození řádků mění znaménko

Vlastní číslo

Číslo $\lambda \in C$ je vlastním číslem zobrazení A pokud existuje vektor $x \in L, x \neq o$ takový, že $A(x) = \lambda x$. Vektor x nazýváme pak vlastní vektor A příslušný vlastnímu číslu λ .

Postup:

- víme, že $Av=\lambda v$ -> upravíme na $Av-\lambda v=o$ -> vytkneme v $(A-\lambda E_n)v=o$
- z toho víme že $v \in ker(A \lambda E_n)$
- z toho víme že A λE_n musí být singulární ->det(A λE_n) = 0
- z toho získáme vlastní čísla a jejich násobnost
- pro všechna vlastní čísla spočítáme eigen $(\lambda_i, A) = (A \lambda * E_n | o)$ -> span vlastních vektorů, kde pro diagonalizaci musí platit dim(eigen (λ_i, A)) = násobnost λ_i

Diagonalizace

Pouze čtvercová, D = $(\lambda_1 * e_1, \dots, \lambda_n * e_n)$, D = $T^{-1} * A * T$, kde T je matice složena z vlastních vektorů a je regulární, 2 vlastní vektory příslušné různým vlastním číslům jsou LN

Skalární a vektorový součin

Skalární součin definujeme mezi dvěma vektory. Výsledkem skalárního součinu je reálné číslo, není to vektor. Máme-li dva vektory u=[u1, u2] a v=[v1, v2], pak jejich skalární součin je roven:

 $u^T \bullet v = \mid u \mid \mid v \mid cos\alpha$, kde α je velikost úhlu mezi vektory u a v.

Vlastnosti - $< x | x > \ \ge 0$. Také norma vektoru na druhou

- Pořadí vektorů je jedno.
- Invariance k násobení skalárem.
- < x|y+z> = < x|y> + < x|z>

CSB nerovnost - $| < x | y > | \le ||x|| * ||y||$

Norma vlastnosti - vždy kladná nebo rovna 0

- -||ax|| = |a| * ||x||
- $||x + y|| \le ||x|| + ||y||$ (troj. nerovnost)

Kosinova věta - $||y-x||^2 = ||x||^2 + ||y||^2 - 2*||x||*||y||*cos(\alpha)$

Metrika - vzdálenost 2 vektorů, norma jejich rozdílu

Ortogonalita vektorů - když skalární součin = 0, jsou kolmé, všechny vektory jsou kolmé na nulový vektor, pokud chceme ověřit kolmost na span(M), stačí ověřit kolmost na množinu generátorů M

Vektorový součin je binární operace vektorů v trojrozměrném vektorovém prostoru. Výsledkem této operace je vektor, který je kolmý k oběma původním vektorům. Velikost tohoto vektoru je rovna obsahu rovnoběžníku tvořeného původními vektory. Spočítá se u × v=[u2 v3 - u3 v2, u3 v1 - u1 v3, u1 v2 - u2 v1]=w a platí u T • w=0, v T • w=0

Ortogonalizační proces

Ortogonální báze - všechny vektory báze jsou na sebe navzájem kolmé Gram-Smith - B = (b1, b2, b3), C = ?
1, c1 = b1
2, c2 = b2 - $\frac{\langle b2|c1 \rangle}{\langle c1|c1 \rangle} * c1$
3, c3 = b3 - $\frac{\langle b3|c1 \rangle}{\langle c1|c1 \rangle} * c1$ - $\frac{\langle b3|c2 \rangle}{\langle c2|c2 \rangle} * c2$

Pro orto
NORMální bázi platí coord (x) = $(< x|b_1>, \ldots, < x|b_n>)^T$