Applied Mathematics

Rafał Staroszczyk

Differentia models

Linear Regression

Dynamica Systems 1 Philosophy of Science Mechanism of Universe

2 Differential models

- 3 Linear Regression
- 4 Dynamical Systems

Staroszczyk

Mechanism of

- Is universe deterministic or probabilistic?
- Can universe be described in mathematically "pretty" way?
- Can we find The Model?

Philosophy of Science

Differentia

Linear Regression

Dynamica Systems

Simulation Hypothesis

We can't look into the code of the universe. We need models.

Scientific method

Theory is the base of science. It requires falsifiable model described mathematically.

Figure: Source: wikimedia.org,

Author: Efbrazil

Differential models

Linear Regression

Dynamical Systems

Important differential equations in physics

$$\begin{array}{ll} \text{Continuity} & \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = \sigma \\ & \text{Diffusion} & \frac{\partial \rho}{\partial t} = \nabla \cdot (\mathsf{D} \, \nabla \rho) \\ & \text{Harmonic oscillator} & \frac{\mathrm{d}^2 \phi}{\mathrm{d} t^2} + \omega_0^2 \phi = 0 \\ & \text{Euler-Lagrange} & \frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} - \frac{\partial \mathcal{L}}{\partial q_i} = 0 \\ & \text{Laplace} & \nabla^2 \, V = 0 \\ & \text{Poisson} & \nabla^2 \, V = -\frac{\rho}{\varepsilon_0} \\ & \text{Helmholtz} & \left(\nabla^2 + k^2\right) V = 0 \\ & \text{Wave} & \left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) V = 0 \end{array}$$

'hilosophy f Science Mechanism of

Differential models

Linear Regression

Dynamical Systems

Gauss's Law in Linear Medium

$$\nabla \cdot \mathsf{E} = \frac{\rho_f}{\varepsilon_r \varepsilon_0} \qquad \qquad \oint_{\mathcal{S}} \mathsf{E} \cdot \mathrm{d}\mathsf{S} = \frac{Q_f}{\varepsilon_r \varepsilon_0}$$

Capacitor equation

$$C = \frac{Q_f}{V} = \varepsilon_r \varepsilon_0 \frac{S}{d}$$

taroszczyk

of Science

Differentia models

Linear Regression

Dynamica Systems

Model

$$y_i = ax_i + b + e_i$$
 $y_i = C_i$ $a = \varepsilon_r \varepsilon_0 S$ $x_i = \frac{1}{d_i}$ $b = C_0$

Least Squares Method

$$G(a,b) = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$
$$\frac{\partial G(a,b)}{\partial a} = 0 \quad \frac{\partial G(a,b)}{\partial b} = 0$$

otaroszcz_y

of Science Mechanism o Universe

Differentia models

Linear Regressior

Dynamical Systems

Equations

$$\frac{\mathrm{d}x}{\mathrm{d}\tau} = \mathbf{a} - \mathbf{a}\mathbf{x}\mathbf{y}$$
$$\frac{\mathrm{d}y}{\mathrm{d}\tau} = \mathbf{x}\mathbf{y} - \mathbf{y}$$

Figure: Lotka model : a = 0.1

Staroszcz,

of Science

Mechanism of Universe

Differentia models

Linear Regression

Dynamical Systems

Equations

$$\frac{\mathrm{d}x}{\mathrm{d}\tau} = ax - axy$$
$$\frac{\mathrm{d}y}{\mathrm{d}\tau} = xy - y$$

Figure: Lotka-Volterra model : a = 1

hilosophy of Science

Differentia

Linear Regression

Dynamical Systems

Equations

$$\frac{\mathrm{d}x}{\mathrm{d}\tau} = 1 + ax^2y - ax - x$$
$$\frac{\mathrm{d}y}{\mathrm{d}\tau} = -bx^2y + bx$$

Figure: Brusselator model : a = 7, b = 4

of Science

Differentia models

Linear Regressior

Dynamica Systems

- 1 J. R. Taylor. Wstęp do Analizy Błędu Pomiarowego, 2012
- 2 D. J. Griffiths. *Podstawy elektrodynamiki*, 2019
- 3 I. Prigogine. From being to becoming, 1980
- 4 M. Orlik. Reakcje oscylacyjne, porządek i chaos, 1996
- **6** A. L. Kawczyński. Reakcje Chemiczne of równowagi przez struktury dyssypatywne do chaosu, 1990