Question number		Scheme	Mark	
1.	(a)	Use of $(8 + \lambda)m$		
		$\mathbf{i} : 3m \times 4 + \lambda m \times 4 = (8 + \lambda)m \times 2$	M1	
		Solving to $\lambda = 2$ (*)	M1 A1	(4)
		$\mathbf{j} \colon 5m \times (-3) + 2m \times 2 = 10m \times k$	M1 A1	
		k = -1.1	A1	(3)
			(7 m	arks)
2.	(a)	$T_r = \frac{24000}{12} \ (=2000)$	M1	
		N2L: $T_r - 1200 = 1000 \times f$		
		f = 0.08	A1	(4)
	(b)	Work Energy $\frac{1}{2} \times 1000 \times 14^2 = 1200d$	M1 A1	
		$d = 81\frac{2}{3}$ awrt 81.7	A1	(3)
	(c)	Resistances may vary with speed	B1	(1)
			(8 marks)	

EDEXCEL MECHANICS M2

PROVISIONAL MARK SCHEME JAN						
Question number	Scheme			Marks		
3.	$ \begin{array}{c} N B \\ M \\ mg \\ 2mg \\ A \\ Fr \end{array} $	(†) $R = 3mg$ M(B) $mga \cos \alpha + 2mg \times \frac{3}{2} a \cos \alpha + Fr \times 2a \sin \alpha = R \times 2a \cos \alpha$ Solving to $Fr = \frac{3}{4} mg$		B1 M1 A2 1,0 M1 A1)	
	$Fr \le \mu R \Rightarrow \frac{3}{4} mg \le \mu \ 3mg$			M1		
	$\mu \ge \frac{1}{4}$ (least value is $\frac{1}{4}$)			M1 A1	(9)	
					(9 m	arks)
4. (a)			\triangleright	\bigcirc		
	MR	$48a^2$	$12a^2$	$60a^2$	B1, B1ft	
	СМ	4 <i>a</i>	$(-)\frac{1}{3}\times 4a$	$\frac{1}{x}$	B1	
	$48a^2 \times 4a - 12a^2 \times \frac{4}{3}a = 60\bar{x}$			M1 A1		
	Solving to $\bar{x} = \frac{44}{15}a$ (*)			A1	(6)	
(b)	$\lambda M \times 4a = M \times \frac{44}{15}a$			M1 A1		
	$\lambda = \frac{11}{15}$				A1	(3)
					(9 m	arks)

Question number	Scheme		Marks	
5. (a)	$v = \int a dt = 2t^2 - 8t \ (+c)$	M1 A1		
	Using $v = 6$, $t = 0$; $v = 2t^2 - 8t + 6$	M1 A1	(4)	
	$v = 0 \Rightarrow 2t^2 - 8t + 6 = 0, \Rightarrow t = 1,3$	M1 A1		
	$S = \int (2t^2 - 8t + 6) dt = \left[\frac{2}{3}t^3 - 4t^2 + 6t\right]$	M1 A2, 1,	0	
	$=0-2\frac{2}{3}$	M1		
	Distance is $(\pm)2\frac{2}{3}$ m	A1	(7)	
		(11 ma	arks)	
6. (a)	L.M. 2u = 2x + y	M1 A1		
	$NEL y - x = \frac{1}{3}u$	M1 A1		
	Solving to $x = \frac{5}{9}u$ (*)	M1 A1		
	$y = \frac{8}{9}u (*)$	A1	(7)	
(b)	$(\pm) \frac{8}{9}eu$	B1		
	L.M $\frac{10}{9}u - \frac{8}{9}eu = w$	M1 A1		
	$NEL w = \frac{1}{3} \left(\frac{5}{9} u + \frac{8}{9} eu \right)$	M1 A1		
	Solving to $e = \frac{25}{32}$ accept 0.7812s	M1 A1	(7)	
(c)	Q still has velocity and will bounce back from wall colliding with stationary P.	B1	(1)	
		(15 ma	arks)	

Question number	Scheme	Marks	
7. (a)	$I = 0.4(15i + 16j + 20i - 4j) \qquad (= 0.4(35i + 12j) = 14i + 4.8j)$	M1	
	$ \mathbf{I} = \sqrt{(14^2 + 4.8^2)} \text{ or } 0.4\sqrt{(35^2 + 12^2)}$ M1 for any magnitude	M1 A1	
	= 14.8 (Ns)	A1 (4)	
(b)	Initial K.E. = $\frac{1}{2}m(15^2 + 16^2)$ (= 240.5 m = 96.2 J)	M1	
	$\frac{1}{2}mv^2 = \frac{1}{2}m(15^2 + 16^2) = m \times 9.8 \times 1.2$ -1 each incorrect term	M1 A2, 1,0	
	$v^2 = 504.52$	M1	
	$v = 22 \text{ (m s}^{-1})$ accept 22.5	A1 (6)	
(c)	$\arccos \frac{15}{22.5} = 48^{\circ}$ accept 48.1°	M1 A1 A1 A1 (4)	
(<i>d</i>)	Air resistance		
	Wind (problem not 2 dimensional)		
	Rotation of ball (ball is not a particle) any 2	B1, B1 (2)	
		(16 marks)	
Alt (b)	Resolve ↑ with 16 and 9.8	M1	
	$(\uparrow) v_y^2 = 16^2 + 2 \times (-9.8) \times (-1.2)$	M1 A1	
	$(v_y^2 = 279.52, v_y \approx 16.7)$		
	$v^2 = 15^2 + 279.52$	M1 A1	
	$v = 22 \text{ (m s}^{-1})$ accept 22.5	A1 (6)	
Alt (c)	$\arctan \frac{16.7}{15} = 48^{\circ}$	M1 A1 A1 A1 (4)	