向量

Didnelpsun

目录

1	问重 与问重组			
	1.1	向量的定义与运算	1	
	1.2	向量组的线性概念	1	
2	线性相关性 2			
	2.1	线性相关判定	2	
	2.2	极大线性无关组	3	
		2.2.1 概念	3	
3	向量	组秩	3	
4	等价向量组 3			
	4.1	定义	3	
	4.2	判定	4	
	4.3	与等价矩阵区别	4	
5	向量空间			
	5.1	基本概念	4	
	5.2	基变换与坐标变换	4	

线性代数的主要研究对象就是向量,行列式与矩阵都是由向量组成的向量 组。

1 向量与向量组

1.1 向量的定义与运算

n 维向量定义: n 个数构成的一个有序数组 $[a_1, a_2, \cdots, a_n]$ 称为一个 n 维向量,记为 $\alpha = [a_1, a_2, \cdots, a_n]$,并称 α 为 n 维行向量, α^T 为 n 维列向量, a_i 为向量 α 的 i 个分量。

若 α 与 β 都是 n 维向量,且对应元素相等,则 $\alpha = \beta$ 。

$$\alpha + \beta = [a_1 + b_1, a_2 + b_2, \cdots, a_n + b_n] \circ$$

$$k\alpha = [ka_1, ka_2, \cdots, ka_3] \circ$$

1.2 向量组的线性概念

线性组合定义: m 个 n 维向量 $\alpha_1, \alpha_2, \dots, \alpha_m$ 以及 m 个数 k_1, k_2, \dots, k_m ,则向量 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m$ 就是向量组 a_1, a_2, \dots, a_m 的线性组合。

线性表出**定义**:若向量 β 能表示成向量组 $\alpha_1, \alpha_2, \cdots, a_m$ 的线性组合,则存在 m 个数 k_1, k_2, \cdots, k_m ,使得 $\beta = k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m$,则成向量 β 能被向量组 a_1, a_2, \cdots, a_m 线性表出。否则不能被线性表出。

线性相关定义: 对 m 个 n 维向量 a_1, a_2, \dots, a_m ,存在一组不全为 0 的数 k_1, k_2, \dots, k_m ,使得 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m = 0$,则称 a_1, a_2, \dots, a_m 线性相关。

含有零向量或成比例向量的向量组必然线性相关。

线性无关**定义**: 对 m 个 n 维向量 a_1, a_2, \cdots, a_m ,不存在一组不全为 0 的数 k_1, k_2, \cdots, k_m ,使得 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m = 0$,即仅当 $k_1 = k_2 = \cdots = k_m = 0$ 才成立,则称 a_1, a_2, \cdots, a_m 线性无关。

两个非零向量,不成比例向量的向量必然线性无关。

2 线性相关性

2.1 线性相关判定

- 1. 向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ $(n \ge 2)$ 线性相关的充要条件是向量组中至少有一个向量可由其他 n-1 个向量线性表出。若 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关的充要条件是向量组的任何一个向量都不能被其他 n-1 个向量线性表出。
- 2. 向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关,而 $\beta, \alpha_1, \alpha_2, \dots, \alpha_n$ 线性相关,则 β 可由 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表示,且表示方法唯一。
- 3. 向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 可由向量组 $\beta_1, \beta_2, \dots, \beta_s$ 线性表示,且 n > s,则 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性相关。(以少表多,多的相关)若向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 可由向量组 $\beta_1, \beta_2, \dots, \beta_s$ 线性表示, $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关,则 $n \leq s$ 。
- 4. 设 m 个 n 维向量 $\alpha_1, \alpha_2, \dots, \alpha_m$,其中 $\alpha_1 = [a_{11}, a_{12}, \dots, a_{m1}]^T$,…, $\alpha_m = [a_{1m}, a_{2m}, \dots, a_{mm}]^T$,则向量组 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性相关的充要条件是齐次线性方程 Ax = 0 有非零解,其中 $A = [\alpha_1, \alpha_2, \dots, \alpha_m]$, $x = [x_1, x_2, \dots, x_m]^T$ 。m 个 n 维向量 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性无关的充要条件是齐次线性方程 Ax = 0 只有零解。
- 5. 向量 β 可由向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 表出,则向量组 $\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = [\alpha_1, \alpha_2, \dots, \alpha_n][x_1, x_2, \dots, x_n]^T = \beta$ 有解,即 $r([\alpha_1, \alpha_2, \dots, \alpha_n]) = r([\alpha_1, \alpha_2, \dots, \alpha_n, \beta])$ 。否则则不能表出,则方程无解, $r([\alpha_1, \alpha_2, \dots, \alpha_n]) + 1 = r([\alpha_1, \alpha_2, \dots, \alpha_n, \beta])$
- 6. 向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 存在一部分向量线性相关,则整个向量组线性相关。 若 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关,则任意一部分向量组线性无关。
- 7. 设 m
 ho n 维向量 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性无关,则把这些向量中每个各任意添加 s 个分量所得到的新向量组 (n+s 维) $\alpha_1^*, \alpha_2^*, \cdots, \alpha_m^*$ 也是线性无关的;如果 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性相关,则每个各去掉相同的若干分量得到的新向量组也线性相关。(原来无关延长无关,原来相关缩短相关)

2.2 极大线性无关组

2.2.1 概念

极大线性无关组**定义**: 在向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 中,若存在部分 a_i, a_j, \cdots, a_k 满足: ① a_i, a_j, \cdots, a_k 线性无关; ②向量组中任一向量 a_s ($i = 1, 2, \cdots, n$) 均可由 a_i, a_j, \cdots, a_k 线性表出,则称向量组 a_i, a_j, \cdots, a_k 为原向量组的极大线性无关组。

不包含无用约束方程的最简方程组的系数矩阵就是极大线性无关组。

向量组的极大线性无关组一般不唯一,只由一个零向量组成的向量组不存 在极大线性无关组,一个线性无关向量组的极大线性无关组就是其本身。

3 向量组秩

向量组构成矩阵的秩等于行向量组的秩等于列向量组的秩。

若 A 通过初等行变换为 B,则 AB 的行向量组是等价向量组,任何对应的部分列向量组都具有同样的线性相关性。

若向量组 B 均可由 A 线性表出,则 $r(B) \leq r(A)$ 。

4 等价向量组

任何一个组都可以由其极大线性无关组来代表。

4.1 定义

设两个向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 和 $\beta_1, \beta_2, \dots, \beta_m$,若这两个向量组可以互相线性表出,则称其为等价向量组,记为 $\alpha \cong \beta$ 。

具有的性质:

- 1. $A \cong A$ (反身性)。
- 2. $A \cong B$, 则 $B \cong A$ (对称性)。
- 3. $A \cong B$, $B \cong C$, 则 $A \cong C$ (传递性)。

向量组和其极大线性无关组是等价向量组。

4.2 判定

若 r(A) = r(B) = r(A|B), 则向量组等价。

r(A) = r(B),A 可以由 B 表出(只需要一个方向的表出),则向量组等价。 PAQ = B(PQ 为可逆矩阵),通过初等行列变换 A 能转换为 B。

4.3 与等价矩阵区别

对于矩阵而言, 若 $A \cong B$, 则 AB 同型且 r(A) = r(B)。

对于向量组而言,若 $A \cong B$,则 AB 同维(行数相同)且 r(A) = r(B) = r(A|B)。

记住等价向量组跟等价矩阵不同,等价矩阵必然完全一致,而等价向量组只要其极大线性无关组一致,可以多一些其他线性相关向量。

5 向量空间

5.1 基本概念

若 $\xi_1, \xi_2, \dots, \xi_n$ 是 n 维向量空间 R^n 中的线性无关的有序向量组,则任意向量 $\alpha \in R^n$ 均可由 $\xi_1, \xi_2, \dots, \xi_n$ 线性表出,记为 $\alpha = a_1\xi_1 + a_2\xi_2 + \dots + a_n\xi_n$,类似一个极大线性无关组,则称有序向量组 $\xi_1, \xi_2, \dots, \xi_n$ 为 R^n 的一个基,基向量的个数 n 为向量空间的**维数**,而 $[a_1, a_2, \dots, a_n]([a_1, a_2, \dots, a_n]^T)$ 为向量 α 在基 $\xi_1, \xi_2, \dots, \xi_n$ 下的**坐标**,或称为 α 的坐标行列向量。

5.2 基变换与坐标变换

若 $\eta_1, \eta_2, \dots, \eta_n$ 和 $\xi_1, \xi_2, \dots, \xi_n$ 是 R^n 中两个基,且有关系: $[\eta_1, \eta_2, \dots, \eta_n] = [\xi_1, \xi_2, \dots, \xi_n] C_{n \times n}$,则这个式子称为基 $\xi_1, \xi_2, \dots, \xi_n$ 到基 $\eta_1, \eta_2, \dots, \eta_n$ 的基变换公式,矩阵 C 就是基 $\xi_1, \xi_2, \dots, \xi_n$ 到基 $\eta_1, \eta_2, \dots, \eta_n$ 的过渡矩阵,C 可逆,C 的第 i 列就是 η_i 在基 $\xi_1, \xi_2, \dots, \xi_n$ 下的坐标列向量。

 α 在基 $\xi_1, \xi_2, \dots, \xi_n$ 和基 $\eta_1, \eta_2, \dots, \eta_n$ 下坐标分别为 $x = [x_1, x_2, \dots, x_n]^T$, $y = [y_1, y_2, \dots, y_n]^T$, 即 $\alpha = [\xi_1, \xi_2, \dots, \xi_n] x = [\eta_1, \eta_2, \dots, \eta_n] y$ 。又 C 是基 $\xi_1, \xi_2, \dots, \xi_n$ 到基 $\eta_1, \eta_2, \dots, \eta_n$ 的过渡矩阵,则 $[\xi_1, \xi_2, \dots, \xi_n] = [\eta_1, \eta_2, \dots, \eta_n] C$,则 $\alpha = [\xi_1, \xi_2, \dots, \xi_n] x = [\eta_1, \eta_2, \dots, \eta_n] y = [\xi_1, \xi_2, \dots, \xi_n] Cy$,从而 x = Cy 或 $y = C^{-1}x$,这个就是坐标变换公式。