Now let's run the I-way ANOVA using the *aov* function (part of base R). We are going to assign it to a variable we are calling *model*.

Here's the output we get – the F value is the ratio of systematic variance to unsystematic variation. It is the Mean SS of Condition divided by Mean Residual SS.

To get the Mean Square values we divide the Sum of Squares by the associated degrees of freedom (e.g., 7.343 / 42 = 0.175).

The ANOVA tells us we have an effect somewhere of Condition, but we don't yet know which level of this factor differs from which other level(s).

We need to conduct post hoc tests to figure this out. We can conduct both Bonferroni and Tukey pairwise comparisons using the *emmeans* function - Bonferroni is slightly more conservative than Tukey.

```
> emmeans (model, pairwise ~ Condition, adjust = "Bonferroni")
$emmeans
Condition
                                SE df lower.CL upper.CL
                  emmean
                5.165081 0.1079627 42 4.947204 5.382959
Water
Single Espresso 6.985001 0.1079627 42 6.767124 7.202879
Double Espresso 8.886287 0.1079627 42 8.668409 9.104164
Confidence level used: 0.95
$contrasts
 contrast
                                 estimate
                                                  SE df t.ratio p.value
Water - Single Espresso
                            -1.819920 0.1526824 42 -11.920 <.0001
                                  -3.721205 0.1526824 42 -24.372 < .0001
Water - Double Espresso
 Single Espresso - Double Espresso -1.901285 0.1526824 42 -12.453 <.0001
P value adjustment: bonferroni method for 3 tests
```