The Titanic Dataset

What is the Titanic dataset?

Known as the "Unsinkable ship" the Titanic was the worlds most advanced ship of it's da

• download the data here

For this tutorial, we want to get our hands dirty ASAP. Let's see what happen

Table of Contents:

- 1. Import libraries
- 2. load data for e/csv file

Part 1: Import libraries

```
'''Imagine you're fixing your TV. You need tools right?
  Python has a large of body of opensource tools built and maintained
  All of these words below are basically the tools you need to fix you
  All you need to do is to import them into your notebook so you can u
  I know... You can't import money... yet.
  You will use these tools often while on your journey to creating hig
1.1.1
from sklearn.metrics import make_scorer, accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn import preprocessing
import matplotlib.pylab as pylab
import matplotlib.pyplot as plt
from pandas import get_dummies
import matplotlib as mpl
import xgboost as xgb
```

```
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib
import warnings
import sklearn
import scipy
import numpy
import json
import sys
import csv
import os
```

Scatter Plot settings

scatter plots are a way of expressing datapoints you have in your dataset.

Scatter plots allow you to Identify the type of relationship (if any) between two quantitative va

```
sns.set(style='white', context='notebook', palette='deep')
pylab.rcParams['figure.figsize'] = 12,8
warnings.filterwarnings('ignore')
mpl.style.use('ggplot')
sns.set_style('white')
%matplotlib inline
```

Connect your notebook to your data (create a new folder if you haven't alread

```
# we match our dataset like this:
# train = what you want to predict with
# test = the actual outcome of who died
df_train = pd.read_csv('titanic/train.csv')
df_test = pd.read_csv('titanic/test.csv')
```



```
df_train.plot(kind = 'scatter', x='Age', y='Fare', alpha=.5, color='red
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f18ca6be080>


```
#show scatter with mpl
plt.figure(figsize=(8,6))
plt.scatter(range(df_train.shape[0]), np.sort(df_train['Age'].values))
plt.xlabel("index")
plt.ylabel("Age")
plt.title('Explore: Age')
plt.show()
```


Box Plot

depict groups of numberical data through quartiles.

```
ax= sns.boxplot(x="Pclass", y="Age", data=df_train)
ax= sns.stripplot(x='Pclass', y='Age', data=df_train, jitter=True, edge
plt.show()
```


Histogram

Gives an idea of what the distribution is

df_train.hist(figsize=(15, 20))
plt.figure();

<Figure size 432x288 with 0 Axes>

Two of the variables have a Gaussian distribution, let's check.

```
91 df_train['Age'].hist()
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f18c9d13e10>


```
df_train.Age.plot(kind='hist', bins=5)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f18ca319f60>


```
f, ax=plt.subplots(1,2, figsize=(20,10))
    df_train[df_train['Survived']==0].Age.plot.hist(ax=ax[0],bins=20, edgec
    ax[0].set_title('Survived=0')
    x1=list(range(0,85,5))
    ax[0].set_xticks(x1)
    df_train[df_train['Survived'] ==1].Age.plot.hist(ax=ax[1], color='green)
```

```
ax[1].set_title('Survived=1')
x2=list(range(0,85,5))
ax[1].set_xticks(x2)
plt.show()
```



```
f, ax=plt.subplots(1,2,figsize=(18,8))
    df_train['Survived'].value_counts().plot.pie(explode=[0,0.1],autopct='%
    ax[0].set_title('Survived')
    ax[0].set_ylabel('')
    sns.countplot('Survived', data=df_train, ax=ax[1])
    ax[1].set_title('Survived')
    plt.show()
```



```
f, ax=plt.subplots(1,2, figsize=(18, 8))
df_train[['Sex', 'Survived']].groupby(['Sex']).mean().plot.bar(ax=ax[0]
ax[0].set_title('Survived vs Sex')
```

```
sns.countplot('Sex', hue='Survived', data=df_train,ax=ax[1])
ax[1].set_title('Sex: Survived vs Dead')
plt.show()
```



```
sns.countplot('Pclass', hue='Survived', data=df_train)
plt.title('Pclass: Survived vs Dead')
plt.show()
```


Multivariate Plots

Look at interactions between the variables

Good for spotting structured relationshios between inpiut variables

```
#scatter plot matrix
pd.plotting.scatter_matrix(df_train, figsize=(10,10))
plt.figure()
```

<Figure size 432x288 with 0 Axes>

<Figure size 432x288 with 0 Axes>

Violinplots

Shows distribution of quantitative data across several levels of one (or more) categorical varia

```
sns.violinplot(data=df_train, x='Sex', y='Age')
```



```
f, ax = plt.subplots(1, 2, figsize=(18, 8))
sns.violinplot("Pclass", "Age", hue='Survived', data=df_train, split=Tr
ax[0].set_title('Pclass and Age vs Survived')
ax[0].set_yticks(range(0, 110, 10))
sns.violinplot("Sex", "Age", hue='Survived', data=df_train, split=True,
ax[1].set_title('Sex and Age vs Survived')
ax[1].set_yticks(range(0,110, 10))
plt.show()
```


Pairplot

```
# use seaborn pairplot to see the bivariate relationship between each p sns.pairplot(data=df_train[["Fare", "Survived", "Age", "Pclass"]],
```

<seaborn.axisgrid.PairGrid at 0x7f18c98f9320>

KDEplot

replace histograms shows in the diagonal of the pairplot by kde

```
sns.FacetGrid(df_train, hue='Survived', size=5).map(sns.kdeplot, "Fare" plt.show()
```


Jointplot

```
sns.jointplot(x='Fare', y='Age', data=df_train)
```

<seaborn.axisgrid.JointGrid at 0x7f18ca583ba8>


```
sns.jointplot(x='Fare', y='Age', data=df_train, kind='reg')
sns.jointplot(x='Fare', y='Survived', data=df_train, kind='reg')
```

<seaborn.axisgrid.JointGrid at 0x7f18c993e5f8>

sns.swarmplot(x='Pclass', y='Age', data=df_train)

<matplotlib.axes._subplots.AxesSubplot at 0x7f18ca3fbdd8>

Heatmap

A heatmap is a two-dimensional graphgical representation of data where the indiviudla values

plt.figure(figsize=(7, 4))
sns.heatmap(df_train.corr(), annot=True, cmap='cubehelix_r')#draws heat
plt.show()

plt.imshow(df_train.corr(), cmap='hot', interpolation='nearest')
plt.show()

Bar Plot

```
df_train['Pclass'].value_counts().plot(kind="bar")
plt.title("this")
```

Text(0.5, 1.0, 'this')

Factorplot

```
sns.factorplot('Pclass','Survived',hue='Sex',data=df_train)
plt.show();
```



```
sns.factorplot('SibSp','Survived',hue='Pclass',data=df_train)
plt.show()
```



```
#let's see some others factorplot
f,ax=plt.subplots(1,2,figsize=(20,8))
sns.barplot('SibSp','Survived', data=df_train,ax=ax[0])
ax[0].set_title('SipSp vs Survived in BarPlot')
sns.factorplot('SibSp','Survived', data=df_train,ax=ax[1])
ax[1].set_title('SibSp vs Survived in FactorPlot')
plt.close(2)
plt.show();
```


Distplot

```
sns.distplot(df_train[df_train['Pclass']==1].Fare,ax=ax[0])
ax[0].set_title('Fares in Pclass 1')
sns.distplot(df_train[df_train['Pclass']==2].Fare,ax=ax[1])
ax[1].set_title('Fares in Pclass 2')
sns.distplot(df_train[df_train['Pclass']==3].Fare,ax=ax[2])
ax[2].set_title('Fares in Pclass 3')
plt.show()
```


Preprocessing

```
def check_missing_data(df):
    flag=df.isna().sum().any()
    if flag==True:
        total = df.isnull().sum()
        percent = (df.isnull().sum())/(df.isnull().count()*100)
        output = pd.concat([total, percent], axis=1, keys=['Total', 'Pe data_type = []
        for col in df.columns:
            dtype = str(df[col].dtype)
            data_type.append(dtype)
        output['Types'] = data_type
        return(np.transpose(output))
    else:
        return(False)
```

```
[31] check_missing_data(df_train)
```

	PassengerId	Survived	Pclass	Name	Sex	Ag€
--	-------------	----------	--------	------	-----	-----

	PassengerId	Survived	Pclass	Name	Sex	Age
Total	0	0	0	0	0	177
Percent	0	0	0	0	0	0.00198653
Types	int64	int64	int64	object	object	float64

[32] check_missing_data(df_test)

	PassengerId	Pclass	Name	Sex	Age	SibSp
Total	0	0	0	0	86	0
Percent	0	0	0	0	0.00205742	0
Types	int64	int64	object	object	float64	int64

print(df_train.shape)

(891, 12)

[34] df_train.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): PassengerId 891 non-null int64 Survived 891 non-null int64 Pclass 891 non-null int64 Name 891 non-null object Sex 891 non-null object Age 714 non-null float64 891 non-null int64 SibSp Parch 891 non-null int64 Ticket 891 non-null object Fare 891 non-null float64 Cabin 204 non-null object Embarked 889 non-null object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.6+ KB

```
[35] df_train['Embarked'].unique()
```

array(['S', 'C', 'Q', nan], dtype=object)

```
[36] df_train.groupby('Survived').count()
```

	PassengerId	Pclass	Name	Sex	Age	SibSp	Parch
Survived							
0	549	549	549	549	424	549	549
1	342	342	342	342	290	342	342

[37] df_train.columns

[38] df_train[df_train['Age']==30]

	PassengerId	Survived	Pclass	
79	80	1	3	Dowdell, Miss. Elizabeth
157	158	0	3	Corn, Mr. Harry
178	179	0	2	Hale, Mr. Reginald
213	214	0	2	Givard, Mr. Hans Kristensen
219	220	0	2	Harris, Mr. Walter
244	245	0	3	Attalah, Mr. Sleiman
253	254	0	3	Lobb, Mr. William Arthur
257	258	1	1	Cherry, Miss. Gladys

	PassengerId	Survived	Pclass	
286	287	1	3	de Mulder, Mr. Theodore
308	309	0	2	Abelson, Mr. Samuel
309	310	1	1	Francatelli, Miss. Laura Mabel
322	323	1	2	Slayter, Miss. Hilda Mary
365	366	0	3	Adahl, Mr. Mauritz Nils Martin
418	419	0	2	Matthews, Mr. William John
452	453	0	1	Foreman, Mr. Benjamin Laventall
488	489	0	3	Somerton, Mr. Francis William
520	521	1	1	Perreault, Miss. Anne
534	535	0	3	Cacic, Miss. Marija
537	538	1	1	LeRoy, Miss. Bertha
606	607	0	3	Karaic, Mr. Milan
726	727	1	2	Renouf, Mrs. Peter Henry (Lillian Jeffer
747	748	1	2	Sinkkonen, Miss. Anna
798	799	0	3	Ibrahim Shawah, Mr. Yousseff
799	800	0	3	Van Impe, Mrs. Jean Baptiste (Rosalie
842	843	1	1	Serepeca, Miss. Augusta

Separate the data into dependent and independent variables

```
[39] X = df_train.iloc[:, :-1].values
y = df_train.iloc[:, -1].values
```

```
[40] train = df_train.dropna()
```

Cleaning:

1. Tranforming

```
def simplify_ages(df):
    df.Age = df.Age.fillna(-0.5)
    bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120)
    group_names = ['Unknown', 'Baby', 'Child', 'Teenager', 'Student', '
    categories = pd.cut(df.Age, bins, labels=group_names)
    df.Age = categories
    return df
def simplify_cabins(df):
    df.Cabin = df.Cabin.fillna('N')
    df.Cabin = df.Cabin.apply(lambda x: x[0])
    return df
def simplify_fares(df):
    df.Fare = df.Fare.fillna(-0.5)
    bins = (-1, 0, 8, 15, 31, 1000)
    group_names = ['Unknown', '1_quartile', '2_quartile', '3_quartile',
    categories = pd.cut(df.Fare, bins, labels=group_names)
    df.Fare = categories
    return df
def format_name(df):
    df['Lname'] = df.Name.apply(lambda x: x.split(' ')[0])
    df['NamePrefix'] = df.Name.apply(lambda x: x.split(' ')[1])
    return df
def drop_features(df):
    return df.drop(['Ticket', 'Name', 'Embarked'], axis=1)
def transform_features(df):
    df = simplify_ages(df)
    df = simplify_cabins(df)
    df = simplify_fares(df)
    df = format_name(df)
    df = drop_features(df)
    return df
df_train = transform_features(df_train)
df_test = transform_features(df_test)
df_train.head()
```

	PassengerId	Survived	Pclass	Sex	Age	SibSp	
0	1	0	3	male	Student	1	(

	PassengerId	Survived	Pclass	Sex	Age	SibSp
1	2	1	1	female	Adult	1
2	3	1	3	female	Young Adult	0
3	4	1	1	female	Young Adult	1
4	5	0	3	male	Young Adult	0

Feature Encoding

Must ALWAYS change categorical variables to numerical values.

```
def encode_features(df_train, df_test):
    features = ['Fare', 'Cabin', 'Age', 'Sex', 'Lname', 'NamePrefix']
    df_combined = pd.concat([df_train[features], df_test[features]])

for feature in features:
    le = preprocessing.LabelEncoder()
    le = le.fit(df_combined[feature])
    df_train[feature] = le.transform(df_train[feature])
    df_test[feature] = le.transform(df_test[feature])
    return df_train, df_test
```

Model Deployment

Encode Dataset

```
[43] df_train, df_test = encode_features(df_train, df_test)
df_train.head()
```

	PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	ı
0	1	0	3	1	4	1	0	(
1	2	1	1	0	0	1	0	3
2	3	1	3	0	7	0	0	(
3	4	1	1	0	7	1	0	3
4	5	0	3	1	7	0	0	:

```
x_all = df_train.drop(['Survived', 'PassengerId'], axis=1)
y_all = df_train['Survived']
```

```
[45] num_test = .3
X_train, X_test, y_train, y_test = train_test_split(x_all, y_all, test_
```

Accuracy and precision

We know that the titanic problem is a binary classification and to eva

accuracy

Your score is the percentage of passengers you correctly predict. This

precision:

In pattern recognition, information retrieval and binary classification

recall:

recall is the fraction of relevant instances that have been retrieved

F-score:

the F1 score is a measure of a test's accuracy. It considers both the

```
"Accuracy" and "precision" are general terms throughout science. A go
```

RandomForestClassifier

```
rfc = RandomForestClassifier()
 # Choose some parameter combinations to try
 parameters = {'n_estimators': [4, 6, 9],
               'max_features': ['log2', 'sqrt','auto'],
               'criterion': ['entropy', 'gini'],
               'max_depth': [2, 3, 5, 10],
               'min_samples_split': [2, 3, 5],
               'min_samples_leaf': [1,5,8]
 # Type of scoring used to compare parameter combinations
 acc_scorer = make_scorer(accuracy_score)
 # Run the grid search
 grid_obj = GridSearchCV(rfc, parameters, scoring=acc_scorer)
 grid_obj = grid_obj.fit(X_train, y_train)
 # Set the clf to the best combination of parameters
 rfc = grid_obj.best_estimator_
 # Fit the best algorithm to the data.
 rfc.fit(X_train, y_train)
```

```
rfc_prediction = rfc.predict(X_test)
rfc_score=accuracy_score(y_test, rfc_prediction)
print(rfc_score)
```

Gradient Boosting

```
xgboost = xgb.XGBClassifier(max_depth=3, n_estimators=300, learning_rat
```

Prediction

```
xgb_prediction = xgboost.predict(X_test)
xgb_score=accuracy_score(y_test, xgb_prediction)
print(xgb_score)
```

0.8134328358208955

Logreg

```
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
```

```
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=Tru intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='warn', n_jobs=None, penalty='l2', random_state=None, solver='warn', tol=0.0001, verbose=0 warm_start=False)
```

```
logreg_prediction = logreg.predict(X_test)
logreg_score=accuracy_score(y_test, logreg_prediction)
print(logreg_score)
```

0.7947761194029851

Decision Tree Regressor

Mean Squared Error is to meature quality of the split.

```
from sklearn.tree import DecisionTreeRegressor

# define model. specify a number for random_state to ensure same result
dt = DecisionTreeRegressor(random_state=1)
```

```
dt.fit(X_train, y_train)
```

```
dt_prediction = dt.predict(X_test)
dt_score = accuracy_score(y_test, dt_prediction)
print(dt_score)
```

0.7835820895522388

Extra Tree Regressor

differ: WHen looking for the best split to sepearate the sames opf a node into two groups, ranc

```
from sklearn.tree import ExtraTreeRegressor
#define model. SPecify a number for random_state to ensure same results
etr = ExtraTreeRegressor()
```

```
[65] # fit model
etr.fit(X_train, y_train)
```

```
min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
random_state=None, splitter='random')
```

```
etr_prediction = etr.predict(X_test)
etr_score = accuracy_score(y_test, etr_prediction)
print(etr_score)
0.7723880597014925
X_train = df_train.drop("Survived", axis=1)
y_train = df_train['Survived']
X_train = X_train.drop("PassengerId", axis=1)
X_test = df_test.drop("PassengerId", axis=1)
xgboost = xgb.XGBClassifier(max_depth=3, n_estimators=300, learning_rat
y_pred = xgboost.predict(X_test)
submission = pd.DataFrame({
        "PassengerId": df_test["PassengerId"],
        "Survived": y_pred
    })
submission.to_csv('submission.csv', index=False)
```