# Applied Deep Learning



## **Neural Network Basics**



September 4th, 2024 <a href="http://adl.miulab.tw">http://adl.miulab.tw</a>



National Taiwan University 國立臺灣大學

## **Learning** ≈ **Looking for a Function**

Speech Recognition

lacktriangle Handwritten Recognition f(



Weather forecast



f(  $\rightarrow$  Thursday )= "  $\rightarrow$  Saturday"

Play video games



)= "move left"

#### **Machine Learning Framework**



Training is to pick the best function given the observed data Testing is to predict the label using the learned function



Training & Resources

**How to Train a Model?** 

實際上我們是如何訓練一個模型的?

#### **Machine Learning Framework**



Training is to pick the best function given the observed data Testing is to predict the label using the learned function

#### **Training Procedure**



- Q1. What is the model? (function hypothesis set)
- Q2. What does a "good" function mean?
- Q3. How do we pick the "best" function?

#### **Training Procedure Outline**

- Model Architecture
- ✓ A Single Layer of Neurons (Perceptron)
- ✓ Limitation of Perceptron
- ✓ Neural Network Model (Multi-Layer Perceptron)
- 2 Loss Function Design
  - ✓ Function = Model Parameters
  - ✓ Model Parameter Measurement
- ③ Optimization
  - ✓ Gradient Descent
  - Stochastic Gradient Descent (SGD)
  - ✓ Mini-Batch SGD
  - ✓ Practical Tips



What is the Model?

什麼是模型?

## **Training Procedure Outline**

- Model Architecture
  - ✓ A Single Layer of Neurons (Perceptron)
  - ✓ Limitation of Perceptron
  - ✓ Neural Network Model (Multi-Layer Perceptron)
- 2 Loss Function Design
  - ✓ Function = Model Parameters
  - ✓ Model Parameter Measurement
- ③ Optimization
- ✓ Gradient Descent
- ✓ Stochastic Gradient Descent (SGD)
- ✓ Mini-Batch SGD
- ✓ Practical Tips

#### Classification Task

Sentiment Analysis "這規格有誠意!" **Binary Classification** Class A (yes) input Speech Phoneme Recognition object Class B (no) **▶** /h/ **Multi-class Classification** Handwritten Recognition Class A input Class B object Class C

Some cases are not easy to be formulated as classification problems

#### **Target Function**

Classification Task

$$f(x) = y \implies f: R^N \to R^M$$

- x: input object to be classified
- y: class/label

- → a *N*-dim vector
- → a M-dim vector

Assume both x and y can be represented as fixed-size vectors

#### **Vector Representation Example**

Handwriting Digit Classification

#### x: image



Each pixel corresponds to an element in the vector

 $f: \mathbb{R}^N \to \mathbb{R}^M$ 

y: class/label

10 dimensions for digit recognition



#### **Vector Representation Example**

Sentiment Analysis

#### x: word

"love"

Each element in the vector corresponds to a word in the vocabulary

 $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 

1: indicates the word

0: otherwise

dimensions = size of vocab

 $f: \mathbb{R}^N \to \mathbb{R}^M$ 

y: class/label

3 dimensions (positive, negative, neutral)



#### **Target Function**

Classification Task

$$f(x) = y \implies f: R^N \to R^M$$

- x: input object to be classified
- y: class/label

- → a *N*-dim vector
- $\rightarrow$  a M-dim vector

Assume both x and y can be represented as fixed-size vectors

## **Training Procedure Outline**

- Model Architecture
- ✓ A Single Layer of Neurons (Perceptron)
- ✓ Limitation of Perceptron
- ✓ Neural Network Model (Multi-Layer Perceptron)
- ② Loss Function Design
  - ✓ Function = Model Parameters
  - ✓ Model Parameter Measurement
- ③ Optimization
  - ✓ Gradient Descent
- ✓ Stochastic Gradient Descent (SGD)
- ✓ Mini-Batch SGD
- ✓ Practical Tips

#### **A Single Neuron**



Each neuron is a very simple function

#### **A Single Neuron**



The bias term is an "always on" feature

# Why Bias?



The bias term gives a class prior

## **Model Parameters of A Single Neuron**



w, b are the parameters of this neuron

#### A Single Neuron



A single neuron can only handle binary classification

#### A Layer of Neurons

• Handwriting digit classification  $f: \mathbb{R}^N \to \mathbb{R}^M$ 



A layer of neurons can handle multiple possible output, and the result depends on the max one

## **Training Procedure Outline**

- Model Architecture
  - ✓ A Single Layer of Neurons (Perceptron)
- ✓ Limitation of Perceptron
- ✓ Neural Network Model (Multi-Layer Perceptron)
- ② Loss Function Design
  - ✓ Function = Model Parameters
  - ✓ Model Parameter Measurement
- ③ Optimization
  - ✓ Gradient Descent
- ✓ Stochastic Gradient Descent (SGD)
- ✓ Mini-Batch SGD
- ✓ Practical Tips

#### A Layer of Neurons – Perceptron

Output units all operate separately – no shared weights





Adjusting weights moves the location, orientation, and steepness of cliff

#### **Expression of Perceptron**



A perceptron can represent AND, OR, NOT, etc., but not XOR → linear separator

#### **How to Implement XOR?**

| Input |   | Output |
|-------|---|--------|
| Α     | В | Output |
| 0     | 0 | 0      |
| 0     | 1 | 1      |
| 1     | 0 | 1      |
| 1     | 1 | 0      |



$$A \times B = AB' + A'B$$

Multiple operations can produce more complicate output

## **Training Procedure Outline**

- Model Architecture
  - ✓ A Single Layer of Neurons (Perceptron)
- ✓ Limitation of Perceptron
- ✓ Neural Network Model (Multi-Layer Perceptron)
- 2 Loss Function Design
  - ✓ Function = Model Parameters
  - ✓ Model Parameter Measurement
- 3 Optimization
  - ✓ Gradient Descent
  - ✓ Stochastic Gradient Descent (SGD)
  - ✓ Mini-Batch SGD
  - ✓ Practical Tips

#### **Neural Networks – Multi-Layer Perceptron**



#### **Expression of Multi-Layer Perceptron**

Continuous function w/ 2 layers



 Combine two opposite-facing threshold functions to make a ridge Continuous function w/ 3 layers



- Combine two perpendicular ridges to make a bump
  - Add bumps of various sizes and locations to fit any surface

multiple layers enhance the model expression
 → the model can approximate more complex functions

#### **Deep Neural Networks (DNN)**

Fully connected feedforward network

$$f: \mathbb{R}^N \to \mathbb{R}^M$$



**Deep** NN: multiple hidden layers







 $w_{ij}^{l} \quad \text{from neuron } \substack{j \text{ (layer } l-1) \\ \text{to neuron } i \text{ (layer } l)}}$ 

$$W^{l} = \begin{bmatrix} w_{11}^{l} & w_{12}^{l} & \cdots \\ w_{21}^{l} & w_{22}^{l} & \cdots \\ \vdots & & \ddots \end{bmatrix}$$

weights between two layers

→ a matrix



 $b_i^l$ : bias for neuron i at layer l

$$b^l = \begin{vmatrix} \vdots \\ b_i^l \\ \vdots \end{vmatrix}$$

bias of all neurons at each layer→ a vector



#### **Notation Summary**

```
a_i^l : output of a neuron w_{ij}^l : a weight a^l : output vector of a layer w^l : a weight matrix
```

$$oldsymbol{z}_i^l$$
 : input of activation function  $oldsymbol{b}_i^l$  : a bias

$$\mathcal{Z}^l$$
 : input vector of activation function  $b^l$  : a bias vector for a layer

## **Layer Output Relation**



#### Layer Output Relation – from a to z



$$z_{1}^{l} = w_{11}^{1} a_{1}^{l-1} + w_{12}^{1} a_{2}^{l-1} + \dots + b_{1}^{l}$$

$$\vdots$$

$$z_{i}^{l} = w_{i1}^{1} a_{1}^{l-1} + w_{i2}^{1} a_{2}^{l-1} + \dots + b_{i}^{l}$$

$$\vdots$$

$$\begin{bmatrix} z_{1}^{l} \\ \vdots \\ z_{i}^{l} \end{bmatrix} = \begin{bmatrix} w_{11}^{l} & w_{12}^{l} & \dots \\ w_{21}^{l} & w_{22}^{l} & \dots \end{bmatrix} \begin{bmatrix} a_{1}^{l-1} \\ \vdots \\ a_{i}^{l-1} \end{bmatrix} + \begin{bmatrix} b_{1}^{l} \\ \vdots \\ b_{i}^{l} \\ \vdots \end{bmatrix}$$

$$z^{l} = W^{l} a^{l-1} + b^{l}$$

# Layer Output Relation – from z to a



$$a_{i}^{l} = \sigma(z_{i}^{l})$$

$$\begin{bmatrix} a_{1}^{l} \\ a_{2}^{l} \\ \vdots \\ a_{i}^{l} \\ \vdots \end{bmatrix} = \begin{bmatrix} \sigma(z_{1}^{l}) \\ \sigma(z_{2}^{l}) \\ \vdots \\ \sigma(z_{i}^{l}) \\ \vdots \end{bmatrix}$$

$$a^l = \sigma(z^l)$$

#### **Layer Output Relation**



$$z^{l} = W^{l}a^{l-1} + b^{l}$$

$$a^{l} = \sigma(z^{l})$$

$$a^{l} = \sigma(W^{l}a^{l-1} + l)$$

#### **Neural Network Formulation**

• Fully connected feedforward network  $f: \mathbb{R}^N \to \mathbb{R}^M$ 



#### **Neural Network Formulation**

• Fully connected feedforward network  $f: \mathbb{R}^N \to \mathbb{R}^M$ 



$$y = f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L)$$

# Activation Function $\sigma(\cdot)$

| Activation function      | Equation                                                                                                                                        | Example                                   | 1D Graph     |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------|
| Unit step<br>(Heaviside) | $\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$                                                               | Perceptron<br>variant                     |              |
| Sign (Signum)            | $\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$                                                                | Perceptron<br>variant                     |              |
| Linear                   | $\phi(z) = z$                                                                                                                                   | Adaline, linear regression                | -            |
| Piece-wise linear        | $\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$ | Support vector<br>machine                 |              |
| Logistic (sigmoid)       | $\phi(z) = \frac{1}{1 + e^{-z}}$                                                                                                                | Logistic<br>regression,<br>Multi-layer NN | <del>-</del> |
| Hyperbolic tangent       | $\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$                                                                                                   | Multi-layer NN                            | -            |

bounded function

# Activation Function $\sigma(\cdot)$

| Activation function      | Equation                                                                                                                                        | Example                                   | 1D Graph |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------|
| Unit step<br>(Heaviside) | $\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$                                                               | Perceptron<br>variant                     |          |
| Sign (Signum)            | $\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$                                                                | Perceptron<br>variant                     |          |
| Linear                   | $\phi(z) = z$                                                                                                                                   | Adaline, linear regression                |          |
| Piece-wise linear        | $\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$ | Support vector machine                    |          |
| Logistic (sigmoid)       | $\phi(z) = \frac{1}{1 + e^{-z}}$                                                                                                                | Logistic<br>regression,<br>Multi-layer NN |          |
| Hyperbolic tangent       | $\phi(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$                                                                                               | Multi-layer NN                            |          |

boolean

linear

non-linear

#### **Non-Linear Activation Function**

Sigmoid

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

Tanh

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$



$$ReLU(x) = max(x, 0)$$



Non-linear functions are frequently used in neural networks

# Why Non-Linearity?

- Function approximation
  - Without non-linearity, deep neural networks work the same as linear transform

$$W_1(W_2 \cdot x) = (W_1 W_2)x = Wx$$

 With non-linearity, networks with more layers can approximate more complex functions





# 45

# What does the "Good" Function mean?

什麼叫做"好"的Function呢?

# **Training Procedure Outline**

- ① Model Architecture
- ✓ A Single Layer of Neurons (Perceptron)
- ✓ Limitation of Perceptron
- ✓ Neural Network Model (Multi-Layer Perceptron)
- 2 Loss Function Design
  - ✓ Function = Model Parameters
  - ✓ Model Parameter Measurement
- ③ Optimization
- ✓ Gradient Descent
- ✓ Stochastic Gradient Descent (SGD)
- ✓ Mini-Batch SGD
- ✓ Practical Tips

# **Training Procedure Outline**

- ① Model Architecture
- ✓ A Single Layer of Neurons (Perceptron)
- ✓ Limitation of Perceptron
- ✓ Neural Network Model (Multi-Layer Perceptron)
- 2 Loss Function Design
  - ✓ Function = Model Parameters
  - ✓ Model Parameter Measurement
- ③ Optimization
  - ✓ Gradient Descent
- ✓ Stochastic Gradient Descent (SGD)
- ✓ Mini-Batch SGD
- ✓ Practical Tips

#### **Function = Model Parameters**

$$y = f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L)$$

function set

different parameters W and  $b \rightarrow$  different functions

Formal definition

$$f(x; \theta)$$
 model parameter set

$$\theta = \left\{ W^1, b^1, W^2, b^2, \dots W^L, b^L \right\}$$

pick a function f = pick a set of model parameters  $\theta$ 

# **Training Procedure Outline**

- ① Model Architecture
- ✓ A Single Layer of Neurons (Perceptron)
- ✓ Limitation of Perceptron
- ✓ Neural Network Model (Multi-Layer Perceptron)
- 2 Loss Function Design
  - ✓ Function = Model Parameters
  - ✓ Model Parameter Measurement.
- 3 Optimization
- ✓ Gradient Descent
- ✓ Stochastic Gradient Descent (SGD)
- ✓ Mini-Batch SGD
- ✓ Practical Tips

#### **Model Parameter Measurement**

- lacktriangle Define a function to measure the quality of a parameter set heta
  - $\circ$  Evaluating by a loss/cost/error function  $C(\theta) \rightarrow$  how bad  $\theta$  is
  - Best model parameter set

$$\theta^* = \arg\min_{\theta} C(\theta)$$

- Evaluating by an objective/reward function  $O(\theta) \rightarrow$  how good  $\theta$  is
- Best model parameter set

$$\theta^* = \arg\max_{\theta} O(\theta)$$

#### **Loss Function Example**



A "Good" function: 
$$f(x;\theta) \sim \hat{y} \quad ||\hat{y} - f(x;\theta)|| \approx 0$$

Define an example loss function: 
$$C(\theta) = \sum_k \|\hat{y}_k - f(x_k; \theta)\|$$

sum over the error of all training samples

## **Frequent Loss Function**

Square loss

$$C(\theta) = (1 - \hat{y}f(x;\theta))^2$$

• Hinge loss

$$C(\theta) = \max(0, 1 - \hat{y}f(x; \theta))$$

Logistic loss

$$C(\theta) = -\hat{y}\log(f(x;\theta))$$

Cross entropy loss

$$C(\theta) = -\sum \hat{y} \log(f(x; \theta))$$

Others: large margin, etc.

#### How can we Pick the

"Best" Function?

我們如何找出"最好"的Function呢?

## **Training Procedure Outline**

- Model Architecture
- ✓ A Single Layer of Neurons (Perceptron)
- ✓ Limitation of Perceptron
- ✓ Neural Network Model (Multi-Layer Perceptron)
- ② Loss Function Design
  - ✓ Function = Model Parameters
  - ✓ Model Parameter Measurement
- ③ Optimization
  - ✓ Gradient Descent
  - ✓ Stochastic Gradient Descent (SGD)
  - ✓ Mini-Batch SGD
  - Practical Tips

#### **Problem Statement**

- Given a loss function and several model parameter sets
  - $\circ$  Loss function:  $C(\theta)$
  - $\circ$  Model parameter sets:  $\{ heta_1, heta_2, \cdots\}$
- Find a model parameter set that minimizes  $C(\theta)$

How to solve this optimization problem?

- $\odot$  1) Brute force enumerate all possible  $\theta$
- 2) Calculus  $\frac{\partial C(\theta)}{\partial \theta} = 0$

Issue: whole space of  $C(\theta)$  is unknown



# **Training Procedure Outline**

- ① Model Architecture
- ✓ A Single Layer of Neurons (Perceptron)
- ✓ Limitation of Perceptron
- ✓ Neural Network Model (Multi-Layer Perceptron)
- ② Loss Function Design
  - ✓ Function = Model Parameters
  - ✓ Model Parameter Measurement
- ③ Optimization
  - ✓ Gradient Descent
  - ✓ Stochastic Gradient Descent (SGD)
  - ✓ Mini-Batch SGD
  - ✓ Practical Tips

lacktriangle Assume that  $\theta$  has only one variable



Idea: drop a ball and find the position where the ball stops rolling (local minima)

lacktriangle Assume that heta has only one variable



**Output** Assume that  $\theta$  has two variables  $\{\theta_1, \theta_2\}$ 



- Assume that  $\theta$  has two variables  $\{\theta_1, \theta_2\}$ 
  - Randomly start at  $\theta^0$ :  $\theta^0 = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix}$
  - Compute the gradients of  $C(\theta)$  at  $\theta^0$ :  $\nabla_{\theta} C(\theta^0) = \begin{vmatrix} \frac{\partial C(\theta_1^\circ)}{\partial \theta_1} \\ \frac{\partial C(\theta_2^0)}{\partial \theta_2} \end{vmatrix}$
  - Update parameters:

$$\begin{bmatrix} \theta_1^1 \\ \theta_2^1 \end{bmatrix} = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial C(\theta_1^0)}{\partial \theta_1} \\ \frac{\partial C(\theta_2^0)}{\partial \theta_2} \end{bmatrix}$$

$$\theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} C(\theta^i)$$

 $\begin{bmatrix} \theta_1^1 \\ \theta_2^1 \end{bmatrix} = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial C(\theta_1^0)}{\partial \theta_1} \\ \frac{\partial C(\theta_2^0)}{\partial \theta_2} \end{bmatrix} \qquad \theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} C(\theta^i)$  Compute the gradients of  $C(\theta)$  at  $\theta^1$ :  $\nabla_{\theta} C(\theta^1) = \begin{bmatrix} \frac{\partial C(\theta_1^1)}{\partial \theta_1} \\ \frac{\partial C(\theta_2^0)}{\partial \theta_2} \end{bmatrix}$ 



#### **Algorithm**

```
Initialization: start at \theta^0 while (\theta^{(i+1)} \neq \theta^i) { compute gradient at \theta^i update parameters \theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} C(\theta^i) }
```

#### **Revisit Neural Network Formulation**

• Fully connected feedforward network  $f: \mathbb{R}^N \to \mathbb{R}^M$ 



$$y = f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L)$$

#### **Gradient Descent for Neural Network**

$$y = f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L)$$

$$\theta = \left\{ W^1, b^1, W^2, b^2, \dots W^L, b^L \right\}$$

$$W^l = \begin{bmatrix} w_{11}^l & w_{12}^l & \cdots \\ w_{21}^l & w_{22}^l & \cdots \\ \vdots & & \ddots \end{bmatrix} \quad b^l = \begin{bmatrix} \vdots \\ b_i^l \\ \vdots \end{bmatrix}$$

$$\nabla C(\theta) = \begin{bmatrix} \vdots \\ \frac{\partial C(\theta)}{\partial w_{ij}^l} \\ \vdots \\ \frac{\partial C(\theta)}{\partial b_i^l} \end{bmatrix}$$

#### **Algorithm**

Initialization: start at  $\theta^0$  while  $(\theta^{(i+1)} \neq \theta^i)$  { compute gradient at  $\theta^i$  update parameters  $\theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} C(\theta^i)$  }

#### **Gradient Descent for Optimization Simple Case**

```
y = f(x; \theta) = \sigma(Wx + b)
\theta = \{W, b\} = \{w_1, w_2, b\}
```



```
Algorithm
Initialization: start at \theta^0
while (\theta^{(i+1)} \neq \theta^i)
       compute gradient at \theta^i
      update parameters \theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} C(\theta^i)
```

$$\nabla_{\theta} C(\theta) = \begin{bmatrix} \frac{\partial C(\theta)}{\partial w_{1}} \\ \frac{\partial C(\theta)}{\partial w_{2}} \\ \frac{\partial C(\theta)}{\partial b} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} w_{1}^{i+1} \\ w_{2}^{i+1} \\ b^{i+1} \end{bmatrix} \leftarrow \begin{bmatrix} w_{1}^{i} \\ w_{2}^{i} \\ b^{i} \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial C(\theta)}{\partial w_{1}} \\ \frac{\partial C(\theta)}{\partial w_{2}} \\ \frac{\partial C(\theta)}{\partial b} \end{bmatrix}$$

#### **Gradient Descent for Optimization** Simple Case – Three Parameters & Square Error Loss

Update three parameters for *t*-th iteration

$$w_1^{(t+1)} = w_1^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial w_1}$$

$$w_2^{(t+1)} = w_2^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial w_2}$$

$$b^{(t+1)} = b^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial b}$$

$$\begin{aligned} w_1^{(t+1)} &= w_1^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial w_1} \\ w_2^{(t+1)} &= w_2^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial w_2} \\ b^{(t+1)} &= b^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial b} \end{aligned} \qquad \begin{aligned} & \begin{bmatrix} w_1^{i+1} \\ w_2^{i+1} \\ b^{i+1} \end{bmatrix} \leftarrow \begin{bmatrix} w_1^i \\ w_2^i \\ b^i \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial C(\theta)}{\partial w_1} \\ \frac{\partial C(\theta)}{\partial w_2} \\ \frac{\partial C(\theta)}{\partial b} \end{bmatrix} \end{aligned}$$

Square error loss

$$C(\theta) = \sum_{\forall x} ||\hat{y} - f(x; \theta)|| = (\hat{y} - f(x; \theta))^2$$

# **Gradient Descent for Optimization Simple Case – Square Error Loss**

Square Error Loss

$$\frac{\partial C(\theta)}{\partial w_1} = \frac{\partial}{\partial w_1} (f(x;\theta) - \hat{y})^2 
= 2(f(x;\theta) - \hat{y}) \frac{\partial}{\partial w_1} f(x;\theta) 
= 2(\sigma(Wx + b) - \hat{y}) \frac{\partial}{\partial w_1} \sigma(Wx + b)$$

# **Gradient Descent for Optimization Simple Case – Square Error Loss**

$$\frac{\partial \sigma(Wx+b)}{\partial w_1} = \frac{\partial \sigma(Wx+b)}{\partial (Wx+b)} \frac{\partial (Wx+b)}{\partial w_1}$$

$$\frac{\partial g}{\partial x} = \frac{\partial g}{\partial f} \frac{\partial f}{\partial x} \text{ chain rule } \frac{\partial g(z)}{\partial z} = [1 - g(z)] g(z) \text{ sigmoid func } g(z) = \frac{1}{1 + e^{-x}}$$

$$= \left[1 - \sigma(Wx + b)\right]\sigma(Wx + b)\frac{\partial(Wx + b)}{\partial w_1}$$

$$= \frac{\partial(w_1x_1 + w_2x_2 + b)}{\partial w_1} = x_1$$

$$\frac{\partial \sigma(Wx+b)}{\partial w_1} = [1 - \sigma(Wx+b)]\sigma(Wx+b)x_1$$

# **Gradient Descent for Optimization Simple Case – Square Error Loss**

Square Error Loss

$$\frac{\partial C(\theta)}{\partial w_1} = \frac{\partial}{\partial w_1} (f(x;\theta) - \hat{y})^2 
= 2(f(x;\theta) - \hat{y}) \frac{\partial}{\partial w_1} f(x;\theta) \qquad f(x;\theta) = \sigma(Wx + b) 
= 2(\sigma(Wx + b) - \hat{y}) \frac{\partial}{\partial w_1} \sigma(Wx + b) 
\frac{\partial \sigma(Wx + b)}{\partial w_1} = [1 - \sigma(Wx + b)] \sigma(Wx + b) x_1$$

$$\frac{\partial C(\theta)}{\partial w_1} = 2(\sigma(Wx+b) - \hat{y})[1 - \sigma(Wx+b)]\sigma(Wx+b)x_1$$

# **Gradient Descent for Optimization Simple Case – Three Parameters & Square Error Loss**

Update three parameters for t-th iteration

$$\begin{split} w_1^{(t+1)} &= w_1^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial w_1} \\ \frac{\partial C(\theta)}{\partial w_1} &= 2(\sigma(Wx+b) - \hat{y})[1 - \sigma(Wx+b)]\sigma(\mathbf{W}x+b)x_1 \\ w_2^{(t+1)} &= w_2^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial w_2} \\ \frac{\partial C(\theta)}{\partial w_2} &= 2(\sigma(Wx+b) - \hat{y})[1 - \sigma(Wx+b)]\sigma(\mathbf{W}x+b)x_2 \\ b^{(t+1)} &= b^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial b} \\ \frac{\partial C(\theta)}{\partial b} &= 2(\sigma(Wx+b) - \hat{y})[1 - \sigma(Wx+b)]\sigma(Wx+b) \end{split}$$

### **Optimization Algorithm**

#### **Algorithm**

```
Initialization: set the parameters \theta, b at random while(stopping criteria not met) \{ \\ \text{for training sample } \{x, \hat{y}\}, \text{ compute gradient and update parameters } \\ \theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} C(\theta^i) \}
```

$$\begin{split} w_1^{(t+1)} &= w_1^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial w_1} \quad \frac{\partial C(\theta)}{\partial w_1} = 2(\sigma(Wx+b) - \hat{y})[1 - \sigma(Wx+b)]\sigma(Wx+b)x_1 \\ w_2^{(t+1)} &= w_2^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial w_2} \quad \frac{\partial C(\theta)}{\partial w_2} = 2(\sigma(Wx+b) - \hat{y})[1 - \sigma(Wx+b)]\sigma(Wx+b)x_2 \\ b^{(t+1)} &= b^{(t)} - \eta \frac{\partial C(\theta^{(t)})}{\partial b} \quad \frac{\partial C(\theta)}{\partial b} = 2(\sigma(Wx+b) - \hat{y})[1 - \sigma(Wx+b)]\sigma(Wx+b) \end{split}$$

#### **Gradient Descent for Neural Network**

$$y = f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L)$$

$$\theta = \left\{ W^1, b^1, W^2, b^2, \dots W^L, b^L \right\}$$

$$W^l = \begin{bmatrix} w_{11}^l & w_{12}^l & \cdots \\ w_{21}^l & w_{22}^l & \cdots \\ \vdots & & \ddots \end{bmatrix} \quad b^l = \begin{bmatrix} \vdots \\ b_i^l \\ \vdots \end{bmatrix}$$

```
\nabla C(\theta) = \begin{bmatrix} \vdots \\ \frac{\partial C(\theta)}{\partial w_{ij}^l} \\ \vdots \\ \frac{\partial C(\theta)}{\partial x^l} \end{bmatrix}
```

# Algorithm Initialization: start at $\theta^0$ while $(\theta^{(i+1)} \neq \theta^i)$ { compute gradient at $\theta^i$ update parameters $\theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} C(\theta^i)$

Computing the gradient includes millions of parameters. To compute it efficiently, we use **backpropagation**.

#### **Gradient Descent Issue**

$$\begin{split} \theta^{i+1} &= \theta^i - \eta \nabla C(\theta^i) & \text{Training Data} \\ C(\theta) &= \frac{1}{K} \sum_{k} \|f(x_k;\theta) - \hat{y}_k\| = \frac{1}{K} \sum_{k} C_k(\theta) \\ \nabla C(\theta^i) &= \frac{1}{K} \sum_{k} \nabla C_k(\theta^i) \end{split}$$

After seeing all training samples, the model can be updated → slow

## **Training Procedure Outline**

- Model Architecture
- ✓ A Single Layer of Neurons (Perceptron)
- ✓ Limitation of Perceptron
- ✓ Neural Network Model (Multi-Layer Perceptron)
- ② Loss Function Design
  - ✓ Function = Model Parameters
  - ✓ Model Parameter Measurement
- ③ Optimization
  - ✓ Gradient Descent
  - ✓ Stochastic Gradient Descent (SGD)
  - ✓ Mini-Batch SGD
  - ✓ Practical Tips

# **Stochastic Gradient Descent (SGD)**

Gradient Descent

$$\boldsymbol{\theta}^{i+1} = \boldsymbol{\theta}^i - \eta \nabla C(\boldsymbol{\theta}^i) \quad \nabla C(\boldsymbol{\theta}^i) = \underbrace{\frac{1}{K} \sum_k \nabla C_k(\boldsymbol{\theta}^i)}_{}$$

- Stochastic Gradient Descent (SGD)
  - Pick a training sample  $x_k$

$$\theta^{i+1} = \theta^i - \eta \nabla C_k(\theta^i)$$

If all training samples have same probability to be picked

$$E[\nabla C_k(\theta^i)] = \boxed{\frac{1}{K} \sum_k \nabla C_k(\theta^i)}$$

The model can be updated after seeing one training sample → faster

Training Data  $\{(x_1, \hat{y}_1), (x_2, \hat{y}_2), ...\}$ 

## **Epoch Definition**

lacktriangle When running SGD, the model starts  $heta^0$ 

$$\begin{array}{ll} \operatorname{pick} x_{l} & \theta^{1} = \theta^{0} - \eta \nabla C_{1}(\theta^{0}) \\ \operatorname{pick} x_{2} & \theta^{2} = \theta^{1} - \eta \nabla C_{2}(\theta^{1}) \\ \vdots & \vdots \\ \operatorname{pick} & \theta^{k} = \theta^{k-1} - \eta \nabla C_{k}(\theta^{k-1}) \\ x_{k} \vdots & \vdots \\ \operatorname{pick} x_{K} & \theta^{K} = \theta^{K-1} - \eta \nabla C_{K}(\theta^{K-1}) \end{array} \quad \begin{array}{ll} \operatorname{see all training samples once} \\ \operatorname{sepick} & \operatorname{see all training samples once} \\ \operatorname{pick} & x_{K} & \theta^{K} = \theta^{K-1} - \eta \nabla C_{K}(\theta^{K-1}) \end{array} \quad \begin{array}{l} \operatorname{see all training samples once} \\ \operatorname{pick} & \operatorname{see all training samples once} \\ \operatorname{pick} & \operatorname{pick$$

**Training Data** 

#### **Gradient Descent v.s. SGD**

- Gradient Descent
- Update after seeing all examples



- Stochastic Gradient Descent
- ✓ If there are 20 examples, update 20 times in one epoch.



SGD approaches to the target point faster than gradient descent

# **Training Procedure Outline**

- ① Model Architecture
- ✓ A Single Layer of Neurons (Perceptron)
- ✓ Limitation of Perceptron
- ✓ Neural Network Model (Multi-Layer Perceptron)
- ② Loss Function Design
  - ✓ Function = Model Parameters
  - ✓ Model Parameter Measurement
- ③ Optimization
  - ✓ Gradient Descent
- ✓ Stochastic Gradient Descent (SGD)
- ✓ Mini-Batch SGD
- ✓ Practical Tips

#### Mini-Batch SGD

Batch Gradient Descent

Use all *K* samples in each iteration

$$\theta^{i+1} = \theta^i - \eta \frac{1}{K} \sum_k \nabla C_k(\theta^i)$$

- Stochastic Gradient Descent (SGD)
  - $\circ$  Pick a training sample  $x_k$

$$\theta^{i+1} = \theta^i - \eta \nabla C_k(\theta^i)$$

Use 1 samples in each iteration

- Mini-Batch SGD
  - Pick a set of B training samples as a batch b

B is "batch size"

$$\theta^{i+1} = \theta^i - \eta \frac{1}{B} \sum_{x_i \in h} \nabla C_k(\theta^i)$$

Use all *B* samples in each iteration

#### Mini-Batch SGD

**Algorithm 8.1** Stochastic gradient descent (SGD) update at training iteration k

**Require:** Learning rate  $\epsilon_k$ .

**Require:** Initial parameter  $\theta$ 

while stopping criterion not met do

Sample a minibatch of m examples from the training set  $\{x^{(1)}, \dots, x^{(m)}\}$  with corresponding targets  $y^{(i)}$ .

Compute gradient estimate:  $\hat{\boldsymbol{g}} \leftarrow +\frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$ 

Apply update:  $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \hat{\boldsymbol{g}}$ 

end while

# Batch v.s. Mini-Batch Handwritting Digit Classification



#### Gradient Descent v.s. SGD v.s. Mini-Batch

Training speed: mini-batch > SGD > Gradient Descent



#### SGD v.s. Mini-Batch

Stochastic Gradient Descent (SGD)

Mini-Batch SGD



Modern computers run matrix-matrix multiplication faster than matrix-vector multiplication

## **Big Issue: Local Optima**





Neural networks has no guarantee for obtaining global optimal solution

# **Training Procedure Outline**

- ① Model Architecture
- ✓ A Single Layer of Neurons (Perceptron)
- ✓ Limitation of Perceptron
- ✓ Neural Network Model (Multi-Layer Perceptron)
- ② Loss Function Design
  - ✓ Function = Model Parameters
  - ✓ Model Parameter Measurement
- ③ Optimization
- ✓ Gradient Descent
- ✓ Stochastic Gradient Descent (SGD)
- ✓ Mini-Batch SGD
- ✓ Practical Tips

#### **Initialization**

Different initialization parameters may result in different trained models



Do not initialize the parameters equally → set them randomly

#### **Learning Rate**



Learning rate should be set carefully

# **Tips for Mini-Batch Training**

- Shuffle training samples before every epoch
  - the network might memorize the order you feed the samples
- Use a fixed batch size for every epoch
  - enable to fast implement matrix multiplication for calculations
- Adapt the learning rate to the batch size
  - $\sim$  K times of batch size  $\rightarrow$  (theoretically)  $\sqrt{K}$  times of learning rate







- Possible reasons
  - no good function exists: bad hypothesis function set
    - → reconstruct the model architecture
  - cannot find a good function: local optima
    - → change the training strategy



Better performance on training but worse performance on dev → overfitting

## **Overfitting**









- Possible solutions
  - more training samples
  - some tips: dropout, etc.

# **Concluding Remarks**

- Q1. What is the model?
- Q2. What does a "good" function mean?
- Q3. How do we pick the "best" function?

**Model Architecture** 

**Loss Function Design** 

**Optimization** 

