Vector Spaces and Subspaces

R4 Cheng

June 7, 2024

 $\mathbb{R}^n = \text{all (column) vectors with n (real) components.}$ = $\{(v_1, v_2, \cdots, v_n) : v_i \in \mathbb{R}, i = 1, 2, \cdots, n\}$

$$\begin{bmatrix} 4 \\ \pi \end{bmatrix} \in \mathbb{R}^2, \quad (1, 1, 0, 1, 1) \in \mathbb{R}^5$$

Vector Space V

V: a set of vectors

- 1. Two operations:
 - vector addition: $\underline{v}, \underline{w} \in V \Rightarrow \underline{v} + \underline{w} \in V$
 - \bullet scalar multiplication: $c\underline{v} \in V$
- 2. Eight rules:
 - (a) $\underline{v} + \underline{w} = \underline{w} + \underline{v}$ (commutative)
 - (b) $(\underline{v} + \underline{w}) + \underline{z} = \underline{v} + (\underline{w} + \underline{z})$ (associative)
 - (c) There is a unique "zero vector" $\underline{0}$ such that $\underline{v} + \underline{0} = \underline{v}$ for all $\underline{v} \in V$
 - (d) For each \underline{v} , there is a unique vector $-\underline{v}$ such that $\underline{v}+(-\underline{v})=\underline{0}$
 - (e) $1 \times \underline{v} = \underline{v}$

(f)
$$(c_1c_2)\underline{v} = c_1(c_2\underline{v})$$

(g)
$$c(\underline{v} + \underline{w}) = c\underline{v} + c\underline{w}$$

(h)
$$(c_1+c_2)\underline{v} = c_1\underline{v} + c_2\underline{v}$$

$$\Rightarrow 0 \times \underline{v} = \underline{0} \text{ (not 0)}$$
$$\Rightarrow (-1)\underline{v} = -\underline{v}$$

Examples:

- \mathbb{R}^n is a vector space
- $M = \{\text{all real } 2 \times 2 \text{ matrices}\}\$ is a vector space
- $F = \{\text{all real functions } f(x) \}$ is a vector space
- $z = \{\underline{0}\}$ is a vector space

Subspaces

Def. A subset W of a vector space V is a subspaces if W itself is a vector space.

Claim Every subspace contains the zero vector.

Proof
$$0 \times \underline{v} = \underline{0} \in W$$