Exercises n°1: Random Variables

Exercice 1. Suppose that X is a discrete random variable with P(X = 0) = .25, P(X = 1) = .125, P(X = 2) = .125 and P(X = 3) = .5. Graph the frequency (or probability mass function) and the cumulative distribution function.

Exercice 2. The following table shows the cumulative distribution function of a discrete variable. Find the frequency function.

$$\left(\begin{array}{cccccc} k: & 0 & 1 & 2 & 3 & 5 \\ F(k): & 0 & .2 & .3 & .5 & 1 \end{array}\right)$$

Exercice 3. Sketch the probability density function (pdf) and the cumulative distribution function (cdf) of a random variable that is uniform on [-1,1].

Exercice 4. Suppose that X is a random variable such that P(X = 2) = P(X = 3) = 1/10 et P(X = 5) = 8/10.

- 1. Graph the CDF F of X.
- 2. Compute $\mathbb{P}(2 < X \leq 4.8)$ and $\mathbb{P}(2 \leq X \leq 4.8)$.
- 3. Compute E(X).

Exercice 5. X is a random variable with PDF:

$$f_X(t) = \frac{1}{2} \exp(-\frac{t}{2})$$
 si $t > 0$, 0 sinon.

- 1. Find the CDF.
- 2. Compute $\mathbb{P}(X \geq 2)$.
- 3. Compute E(X).

Exercice 6. X is a random variable with CDF:

$$F_X(t) = 0$$
 si $t \le 0$, $F_X(t) = \frac{1}{2}t$ si $0 \le t \le 2$, $F_X(t) = 1$ si $t \ge 2$.

- 1. Graph the CDF.
- 2. Give the PDF.
- 3. Compute $\mathbb{P}(\frac{1}{4} < X < \frac{3}{4})$.

Exercice 7. X is a random variable with CDF:

$$F_X(t) = 0 \ \text{ si } t < 1, \quad F_X(t) = \frac{1}{5} \ \text{ si } 1 \leq t < 2, \quad F_X(t) = \frac{4}{5} \ \text{ si } 2 \leq t < 3, \quad F_X(t) = 1 \ \text{ si } t \geq 3.$$

- 1. Graph the CDF.
- 2. Give the PMF of X.

Exercice 8. Suppose that X has the density function $f(x) = cx^2$ for $0 \le x \le 1$ and f(x) = 0 otherwise. Find c, the cdf, and $P(.1 \le X < .5)$. What is the median of the distribution of X? the quantile of order .75?

Exercice 9. Let A = [-1, 1] and X have distribution F. Let $Y = I_A(X)$ where I_A is the indicator function for A. Find the probability function for Y, and an expression for its cdf.

Exercice 10. The Weibull cumulative distribution function is

$$F(x) = 1 - \exp(-(x/\alpha)^{\beta}), \quad x \ge 0, \quad \alpha, \beta > 0$$

- 1. Find the density function.
- 2. Show that if W follows a Weibull distribution, then $X = (W/\alpha)^{\beta}$ follows an exponential distribution.
- 3. How could Weibull random variables be generated from a uniform random number generator?

Exercice 11. Let $X \sim \mathcal{N}(\mu, \sigma^2)$ with $\mu = 3$ and $\sigma = 4$. Solve the following using the Normal table or using a computer package.

- 1. Find P(X < 3).
- 2. Find P(X > -2) and $P(0 \le X \le 4)$.
- 3. Compute $\mathbb{E}(\frac{1}{2}X 1)$ and $Var(\frac{1}{2}X 1)$

Exercice 12. Compute the expectation and the variance of a random variable that is uniform on [-1,3].

Exercice 13. What is the expectation of $I_A(X)$?

Exercice 14. Let X be a r. v. with pdf f(x) = 2x, $0 \le x \le 1$. Find $\mathbb{E}(X)$, $\mathbb{E}(X^2)$ and $\mathrm{Var}(X)$.

Exercice 15. Let (X,Y) be a random vector such that Var(X) = 1/2, Var(Y) = 1 and Cov(X,Y) = -1/4. Let U = X - 2Y - 3.

Find Var(U) and Cov(U, Y).

Exercice 16. The Weibull cumulative distribution function is

$$F(x) = 1 - \exp(-(x/\alpha)^{\beta}), \quad x \ge 0, \quad \alpha, \beta > 0$$

- 1. Find the density function.
- 2. Show that if W follows a Weibull distribution, then $X = (W/\alpha)^{\beta}$ follows an exponential distribution.
- 3. Find the pth quantile of the Weibull distribution.
- 4. How could Weibull random variables be generated from a uniform random number generator?