MEDIATEK

MTK In-House TEE Overview & Customization Guide (Type B Customer)

v0.2

2014/2/23 MTK

Confidential A

Outline

- Revision
- Introduction
- Document Suit
- MTEE Architecture

Confidential A

Revision

Rev.	Date	Author	Description
0.1	2013/8/14	KL Huang	Initiative
0.2	2014/2/23	KL Huang	Support KK and AOSP
		.1	

Introduction

- The document is applied for
 - MTK In-House Trusted Execution Environment (MTEE)
 - MTK SoCs and SW versions
 - MT8135
 - JB on Turnkey and AOSP
 - KK on Turnkey and AOSP
 - Type B Customer
 - Can get the encrypted and signed MTEE image
- The purpose of the document introduce the MTEE architecture and related information to customer
 - After reading this document, it is expected that customer will
 - Understand document suit of MTEE
 - Have background and understanding for MTEE architecture

Document Suit

- Documents related to MTEE includes
 - MTK In-House TEE Overview & Customization Guide (Type B Customer)
 - Introduce MTEE architecture and customization

- Terminology
 - Execution Environment (EE)
 - SW execution environment with HW resources (CPU, memory, peripheral devices, ...) and SW infrastructure (OS, Core SW, ...)
 - Rich Execution Environment (REE, Normal World)
 - Usually refer to normal OS (like Linux, Window, Unix, ...) which all HW resources can be accessed in different permission
 - More open environment for SW to run
 - Not easy to apply security constraint on it
 - SW, executing in it, is easy to be hacked
 - Trusted Execution Environment (TEE, Secure World)
 - More secure execution environment
 - SW, executing in it, is separated from SW executing in REE in the following aspects.
 - CPU state/Memory space/HW Resources/Permission/SW infrastructure/...
 - Established by co-working with HW and SW

- Client Application (CA)
 - SW, in REE, uses REE-TEE mechanism to use the functionality of the SW in TEE or communicate with SW in TEE
 - CA could be in user space or kernel space of REE (such as Linux)
- Trusted Application (TA)
 - SW, in TEE, uses REE-TEE mechanism to use the functionality of the SW in REE or communicate with SW in REE
- MTK In-House TEE (MTEE)
 - Proprietary TEE implementation by MTK
 - Based on
 - ARM TrustZone Technology
 - MTK HW/SW implementation

- SW Principle
 - Using ARM Instruction and ARM CPU state to separate the TEE/REE
 - Secure memory region is configured and can only be accessed in by secure access or SW in TEE
 - External memory (DRAM) or SRAM or ROM
 - Contains code/stack/heap/data in TEE
 - Refer to next slide
 - TEE SW environment is prepared before
 - · CPU state is switched to non-secure state, and
 - REE SW environment is setup
- HW Principle
 - Register of some HWs related to security are designed to
 - Be accessed by SW in TEE
 - Be configured to be accessed by SW in TEE
 - The configuration can only be done by SW in TEE
 - Memory can be separated into secure region and non-secure region
 - Configure HW related to memory protection
 - Some HWs direct memory access (DMA) can be configured to perform secure access
 - The configuration is done by SW in TEE

- Memory layout with different access permission
 - The secure memory region is statically pre-configured and preconfigured in compiling time

- Secure boot flow for MTEE images
 - TEE SW environment and SW is verified first and then loaded by Preloader
 - TEE images are signed and encrypted on the host PC
 - Target platform will use public key to verify the signature and then decrypt the image
 - OTA and Fastboot supports MTEE image upgrading for TEE1/TEE2 partition
 - Platform supports 2 partitions for MTEE image
 - MTEE1/MTEE2 partitions
 - Downloaded by SP Flash Tool (refer figure below)
 - Use tz.img for TEE1/TEE2 partitions

MEDIATEK

www.mediatek.com

