Simulating dynamics with finiteelements

G. Anciaux

Civil Enginering, Materials Science, EPFL

Outline

- · fundamental solid mechanics concepts
- Strong and weak forms of elasto-dynamics equations
- Semi-discrete equations of motion
- Temporal discretization
- Newmark algorithm
 - Explicit dynamics; mass lumping
 - Newmark implicit

Further reading:

T. Belytschko, W. Liu, B. Moran. Nonlinear Finite Elements for Continua and Structures. (John Wiley \& Sons, 2000).

T. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. (Dover Publications Inc., 2003).

Elasto-dynamics

Initial boundary value problem (IBVP):

$$\nabla_0 \cdot \mathbf{P} + \rho_0 \mathbf{B} = \rho_0 \ddot{\mathbf{x}}$$
 in B_0

with:

- *P* first Piola-Kirchhoff stress tensor
- $\ddot{\mathbf{x}}(\mathbf{X}, t)$ material acceleration
- $\mathbf{F} = \nabla_0 \mathbf{x}$ deformation gradient
- $P \cdot N = T(\mathbf{X}, t)$ in ∂B_{02}
- $\mathbf{x} = \bar{\mathbf{x}}(\mathbf{X}, t)$ in ∂B_{01}
- B body forces

Initial conditions:

- $\mathbf{x}(\mathbf{X}, 0) = \mathbf{x}_0(\mathbf{X})$
- $\dot{\mathbf{x}}(\mathbf{X},0) = \mathbf{v}_0(\mathbf{X})$

Constitutive equations for hyperelastic materials:

$$W(\mathbf{F}) \equiv \text{strain-energy density/undeformed volume}$$

$$P_{iJ} = \frac{\partial W}{\partial F_{iI}} (\nabla_0 \mathbf{x}) \quad in \quad B_0$$

Formulate weak form of equations:

$$\int_{B_0} [\rho_0(\ddot{\mathbf{x}} - \mathbf{B}) - \nabla_0 \cdot \mathbf{P}] \cdot \boldsymbol{\eta} \, dV_0 = \mathbf{0}$$

$$\forall \boldsymbol{\eta} \text{ admissible} \quad i.e. \quad \boldsymbol{\eta} | \partial B_{01} = 0$$

Integration by part

$$\int_{B_0} \left[\rho_0 (\ddot{\mathbf{x}} - \mathbf{B}) \cdot \mathbf{\eta} + \mathbf{P} : \nabla_0 \mathbf{\eta} \right] dV_0 - \int_{\partial B_0} \underbrace{(\mathbf{P} \cdot \mathbf{N})}_{\hat{\mathbf{T}}} \cdot \mathbf{\eta} dS_0 = 0$$

Semi-discrete equations of motion:

- Discretize in space (finite dimensional space \mathcal{V}_h)
- Keep time as a continuous variable (for now)

$$\mathbf{x}_h(X,t) = \sum_{a=1}^{N} \mathbf{x}_a(t) N_a(X)$$

Derived fields:

$$\dot{\mathbf{x}}_h(\mathbf{X}, t) = \sum_a \dot{\mathbf{x}}_a(t) N_a(\mathbf{X})$$

$$\ddot{\mathbf{x}}_h(\mathbf{X}, t) = \sum_a \ddot{\mathbf{x}}_a(t) N_a(\mathbf{X})$$

$$\mathbf{F}_h(\mathbf{X}, t) = \sum_a \mathbf{x}_a(t) \nabla_0 N_a(\mathbf{X})$$

Insert fields into weak form

$$\eta_h = \sum_{a}^{N} \eta_a N_a$$
 and $\mathbf{x}(X, t) = \sum_{a} \mathbf{x}_a(t) N_a$

Leads to:

$$\int_{B_0} \left[\rho_0 \left(\sum_a \ddot{\mathbf{x}}_a(t) N_a - \mathbf{B} \right) \cdot \sum_b \eta_b N_b + \mathbf{P} : \left(\sum_b \eta_b \nabla_0 N_b \right) \right] dV_0 - \int_{\partial B_{02}} \bar{\mathbf{T}} \cdot \left(\sum_b \eta_b N_b \right) dS_0 = 0$$

Reordering the terms:

$$\sum_{a} \sum_{b} \frac{\eta_{b} \ddot{\mathbf{x}}_{a}(t)}{N_{b}} \underbrace{\left(\int_{B_{0}} \rho_{0} N_{a} N_{b} dV_{0} \right)}_{M} + \sum_{b} \frac{\eta_{b}}{N_{b}} \underbrace{\left(\int_{B_{0}} \mathbf{P} : (\nabla_{0} N_{b}) dV_{0} \right)}_{\mathbf{f}^{int}} = \sum_{b} \frac{\eta_{b}}{N_{b}} \underbrace{\left(\int_{B_{0}} \rho_{0} \mathbf{B} N_{b} + \int_{\partial B_{02}} \mathbf{T} \cdot N_{b} dS_{0} \right)}_{\mathbf{f}^{int}} = 0$$

Indicial notations:

$$M_{iakb} = \int_{B_0} \rho_0 \delta_{ik} N_a N_b dV_0 \qquad M_{iakb} = \sum_{e=1}^E M_{iakb}^e = \sum_{e=1}^E \int_{\Omega_0^e} \rho_0 \delta_{ik} N_a^e N_b^e dV_0$$

$$M^e = \int_{B_0} \rho_0 \delta_{ik} N_a N_b dV_0 \qquad M_{iakb} = \sum_{e=1}^E M_{iakb}^e = \sum_{e=1}^E \int_{\Omega_0^e} \rho_0 \delta_{ik} N_a^e N_b^e dV_0$$

$$M^e = \int_{B_0} \rho_0 \delta_{ik} N_a N_b dV_0 \qquad M_{iakb} = \sum_{e=1}^E M_{iakb}^e = \sum_{e=1}^E \int_{\Omega_0^e} \rho_0 \delta_{ik} N_a^e N_b^e dV_0$$

$$M^e = \int_{B_0} \rho_0 \delta_{ik} N_a N_b dV_0 \qquad M_{iakb} = \sum_{e=1}^E M_{iakb}^e = \sum_{e=1}^E \int_{\Omega_0^e} \rho_0 \delta_{ik} N_a^e N_b^e dV_0$$

$$M^e = \int_{B_0} \rho_0 \delta_{ik} N_a N_b dV_0 \qquad M_{iakb} = \sum_{e=1}^E M_{iakb}^e = \sum_{e=1}^E \int_{\Omega_0^e} \rho_0 \delta_{ik} N_a^e N_b^e dV_0$$

$$M^e = \int_{B_0} \rho_0 \delta_{ik} N_a N_b dV_0 \qquad M_{iakb} = \sum_{e=1}^E M_{iakb}^e = \sum_{e=1}^E \int_{\Omega_0^e} \rho_0 \delta_{ik} N_a^e N_b^e dV_0$$

$$M^e = \int_{B_0} \rho_0 \delta_{ik} N_a N_b dV_0 \qquad M_{iakb} = \sum_{e=1}^E M_{iakb}^e = \sum_{e=1}^E \int_{\Omega_0^e} \rho_0 \delta_{ik} N_a^e N_b^e dV_0$$

$$M^e = \int_{B_0} \rho_0 \delta_{ik} N_a N_b dV_0 \qquad M_{iakb} = \sum_{e=1}^E M_{iakb}^e = \sum_{e=1}^E \int_{\Omega_0^e} \rho_0 \delta_{ik} N_a^e N_b^e dV_0$$

$$M^e = \int_{B_0} \rho_0 \delta_{ik} N_a N_b dV_0 \qquad M_{iakb} = \sum_{e=1}^E M_{iakb}^e = \sum_{e=1}^E \int_{\Omega_0^e} \rho_0 \delta_{ik} N_a^e N_b^e dV_0$$

$$M^e = \int_{B_0} \rho_0 \delta_{ik} N_a N_b dV_0 \qquad M_{iakb} = \sum_{e=1}^E M_{iakb}^e = \sum_{e=1}^E \int_{\Omega_0^e} \rho_0 \delta_{ik} N_a^e N_b^e dV_0$$

$$\begin{split} M_{iakb} &= \int_{B_0} \rho_0 \delta_{ik} N_a N_b dV_0 \\ f_{ia}^{int}(x, \dot{x}) &= \int_{B_0} P_{iJ} (\dot{F}_h, F_h) N_{aJ} dV_0 \\ f_{ia}^{ext}(t) &= \int_{B_0} \rho_0 B_i N_a dV_0 + \int_{B_{02}} \bar{T}_i N_a dS_0 \end{split}$$

(continuous in time)

Semi-discrete equations of motion (matricial)

$$M\ddot{x} + f^{int}(x, \dot{x}) = f^{ext}(t)$$

Rq: all degrees of freedom are placed contiguously

Initial conditions:

- $x(0) = x_0$
- $\dot{x}(0) = v_0$

Objective: compute trajectory $x(t), t \in [0, T]$

Definition:

- Tangent stiffness matrix: $K(x,\dot{x})\equiv \frac{\partial f^{int}(x,\dot{x})}{\partial x}$ Tangent damping matrix: $C(x,\dot{x})\equiv \frac{\partial f^{int}(x,\dot{x})}{\partial x}$

Linear behavior
$$\Rightarrow f^{int}(x, \dot{x}) = Kx + C\dot{x}$$

 $\Rightarrow M\ddot{x} + Kx + C\dot{x} = f^{ext}(t)$

Temporal discretization = time stepping algorithm

Sample the solution (approximately)

$$t_0, t_1 = t_0 + \Delta t, \dots, t_n = t_0 + n\Delta t$$

 x_0, x_1, \ldots, x_n

 v_0, v_1, \ldots, v_n

 a_0, a_1, \ldots, a_n

A set of rules is needed to compute $(x_{n+1}, v_{n+1}, a_{n+1})$ from (x_n, v_n, a_n) which is consistent with equations of motion.

Newmark algorithm

$$x_{n+1} = x_n + \Delta t v_n + \Delta t^2 \left[\left(\frac{1}{2} - \beta \right) a_n + \beta a_{n+1} \right]$$

$$v_{n+1} = v_n + \Delta t [(1 - \gamma) a_n + \gamma a_{n+1}]$$

Closing with governing equation

$$Ma_{n+1} + f_{n+1}^{int}(x_{n+1}, v_{n+1}) = f_{n+1}^{ext}$$

Newmark parameters

- $\beta \in [0, 12]$ • $\gamma \in [0, 1]$
- Solutions
- · Explicit dynamics
- Implicit dynamics

Explicit dynamics (no equation solving)

Explicit member of Newmark's family of algorithm: $\beta=0, \gamma\neq0, M$ diagonal, no damping: $f^{int}(x)$

$$x_{n+1} = x_n + \Delta t v_n + \frac{\Delta t^2}{2} a_n$$

$$a_{n+1} = M^{-1} \left[f_{n+1}^{ext} - f_{n+1}^{int}(x_{n+1}) \right]$$

$$v_{n+1} = v_n + \Delta t [(1 - \gamma)a_n + \gamma a_{n+1}]$$

- Δt restricted by stability condition
- No equation solving
- Impact applications, shock waves,...

Mass lumping

Consistent mass:

$$M_{iakb} = \sum_{e=1}^{E} \int_{\Omega_0^e} \rho_0 \delta_{ik} N_a N_b dV_0$$

Leads to optimal error estimates, but speed can be a motivation for breaking the basic rules.

Diagonal or lumped mass matrix:

- Economy
- · Leads to explicit methods (no equation solving)

$$a_{n+1} = M^{-1} \left[f_{n+1}^{ext} - f_{n+1}^{int} \right]$$

Computation of lumped mass matrix?

One possibility:

• Row/column sum technique: put in diagonal entry the sum of all components in the corresponding row/column.

The diagonal entries of lumped mass matrix are:

$$M_{iaia}^{lumped} = \sum_{k} \sum_{b} M_{iakb} = \sum_{k} \sum_{a} \sum_{c} \int_{\Omega_{0}^{e}} \rho_{0} \delta_{ik} N_{a}^{e} N_{b}^{e} dV_{0}$$

Can lump at the element level, then assemble:

$$M_{iaia}^{lumped} = \sum_{e} \sum_{k} \sum_{b} \int_{\Omega_{0}^{e}} \rho_{0} \delta_{ik} N_{a}^{e} N_{b}^{e} dV_{0}$$

Lumped mass at element level

$$\begin{split} M_{iaia}^{lumped} &= \sum_{e} \sum_{k} \sum_{b} \int_{\Omega_{0}^{e}} \rho_{0} \delta_{ik} N_{a}^{e} N_{b}^{e} dV_{0} \\ &= \sum_{e} \sum_{b} \int_{\Omega_{0}^{e}} \rho_{0} N_{a}^{e} N_{b}^{e} dV_{0} \\ &= \sum_{e} \int_{\Omega_{0}^{e}} \rho_{0} N_{a}^{e} \left(\sum_{b} N_{b}^{e}\right) dV_{0} \\ &= \sum_{e} \int_{\Omega_{0}^{e}} \rho_{0} N_{a}^{e} dV_{0} \end{split}$$

Mass preservation

$$\sum_{a} M_{iaia}^{lumped} = \sum_{e} \int_{\Omega_0^e} \rho_0 \sum_{a} N_a^e dV_0 = \int_{B_0} \rho_0 dV_0$$

Newmark-Implicit

$$x_{n+1} = x_n + \Delta t v_n + \Delta t^2 \left[\left(\frac{1}{2} - \beta \right) a_n + \beta a_{n+1} \right]$$

$$v_{n+1} = v_n + \Delta t [(1 - \gamma) a_n + \gamma a_{n+1}]$$

$$M a_{n+1} + f_{n+1}^{int}(x_{n+1}, v_{n+1}) = f_{n+1}^{ext}$$

Then, a predictor-corrector Newton-Raphson is required.

Stability ($\xi = 0$)

 $\begin{tabular}{llll} \bf Method & Type & β & γ & Stability cond. Order \\ Average acc. & Implicit 1/4 & 1/2 & Unconditional & 2 \\ Linear acc. & Implicit 1/6 & 1/2 & Ω_{crit} & 2 & 2 \\ Fox-Goodwin & Implicit 1/12 & $1/2 & Ω_{crit} & $\sqrt{6}$ & 2 \\ Central & difference & Implicit 0 & $1/2 & Ω_{crit} & 2 & 2 \\ \end{tabular}$

Bibliography

T. Belytschko, W. Liu, B. Moran. Nonlinear Finite Elements for Continua and Structures. (John Wiley \& Sons, 2000).

T. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. (Dover Publications Inc., 2003).