Loi des Sinus et Exercices

Dans tout triangle non rectangle ABC avec A, B, et C représentant les sommets, et a, b, et c les longueurs des côtés opposés à ces sommets respectifs, la loi des sinus s'énonce comme suit :

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$$

où α , β , et γ sont les angles opposés aux côtés a, b, et c respectivement.

Exercices

Exercice 1

Dans un triangle ABC, on connaît :

- a=8 cm (côté opposé à l'angle A)
- $b=10~{
 m cm}$ (côté opposé à l'angle B)
- $lpha=30^\circ$ (angle en A)

Utilisez la loi des sinus pour déterminer l'angle β (en B), puis l'angle γ (en C), et enfin la longueur du côté c.

_			_
ΕX	Δr	~	` ')
\mathbf{L}			-

Dans un triangle DEF, on connaît :

- $d=12~{
 m cm}$ (côté opposé à l'angle D)
- $e=15~{
 m cm}$ (côté opposé à l'angle E)
- $\delta=45^\circ$ (angle en D)

Trouvez l'angle ϵ (en E), puis l'angle ζ (en F), ainsi que la longueur du côté f.

Exercice 3

Dans un triangle XYZ, on connaît :

- x=9 cm (côté opposé à l'angle X)
- y=6 cm (côté opposé à l'angle Y)
- $heta=40^\circ$ (angle en X)

Déterminez l'angle ϕ (en Y), puis l'angle ψ (en Z), et la longueur du côté z .

_				-			-
	V	Δ	rc	•	•	\mathbf{a}	7
_	_	┖			_	_	_

Dans un triangle GHI, on connaît :

- g=7 cm (côté opposé à l'angle G)
- h=9 cm (côté opposé à l'angle H)
- $\gamma=50^\circ$ (angle en G)

Utilisez la loi des sinus pour trouver l'angle η (en H), ensuite l'angle ι (en I), et la longueur du côté i.

Exercice 5

Dans un triangle JKL, on connaît :

- $j=13~{
 m cm}$ (côté opposé à l'angle J)
- k=10 cm (côté opposé à l'angle K)
- ullet $\phi=60^\circ$ (angle en J)

Déterminez l'angle κ (en K), l'angle λ (en L), puis la longueur du côté l.