

Debugging Experiment

Oscar Corcho, Catherine Roussey
Facultad de Informática
Universidad Politécnica de Madrid
Campus de Montegancedo sn
28660 Boadilla del Monte, Madrid

Contents

- Debugging experiment
 - Motivation
 - How to make an experiment where we look for a validation of a set of hypotheses
 - Experiment setup

Motivation

- Current ontology debugging tools are still hard to use for DL newbies
 - Explanations are hard to understand
 - Debugging takes too much time in large ontologies (hours in some cases)
 - Lots of dependencies between errors that are not clearly seen.
- We have proposed
 - A set of guidelines to help users in the ontology debugging (hence in the ontology development) process
 - Focused on common anti-patterns from a set of ontologies created by domain experts.
 - With a proposed workflow of debugging activities to improve the debugging process

Motivation (II)

Work hypotheses

- The use of our guidelines, in combination with existing debugging tools, reduces the time needed to debug an ontology
- The use of our guidelines will still allow debugging the ontology in cases where the computation of justifications takes too much time
- The results obtained will be of better quality
 - Natural language definitions will be more precise and will align better with formal definitions
 - The intended meaning of the final debugged ontology will still remain the same as the one intended by the user

- Analysis of pre-existing knowledge
 - Questionnaire 1 that you have already filled in
 - Objective 1: detect the pre-existing knowledge, so as to characterise the types of users that will perform the validation.
 - Objective 2: divide into two groups of similar expertise, so that comparisons can be done in similar conditions between people using the new tools/guidelines and people not using them.
- Generally speaking, this is the result obtained
 - Good knowledge of software debugging
 - Basic knowledge of the Protégé tool
 - Very basic knowledge of DL and OWL
 - Little interest in Geography

- Creation of two groups
 - Group 1 (use of existing ontology debugging tools only)
 - Luis Pelayo, Yolanda Sanz, Jaime Fernández, Pedro Luis, María Teresa Trigo, Farooque, Umer, Manuel Vargas
 - Group 2 (use of existing tools and of our guidelines)
 - Aday Francisco, Pablo Chico, Alberto Moreno, Alberto Arteta, José María Larrea, Eldora, José Alonso Gaytán
- Group 1 will not be able to attend the second part of this session, nor will they have access to our guidelines.

- Quantitative measures
 - Time to perform specific tasks
 - Correctness and completeness of the proposed solutions
- Qualitative measures
 - Perceived amount of correctness

- Tasks to be done:
 - Phase I (2 weeks). Understanding of the ontology without the need to use reasoners
 - Group 1. Without guidelines
 - Group 2. With guidelines
 - Phase II (2 weeks later). Solving problems in the ontology using all tools available.
 - Group 1.Without guidelines
 - Group 2. With guidelines
- Questionnaires will be made available in due time in the wiki.
- The student providing the best comments (as a combination of precision in the answers, and as additional comments sent to us by e-mail) will be included as an author of the paper (to be submitted to the International Semantic Web Conference 2009).

