第7.5节 测定电源的电动势和内阻

{INCLUDEPICTURE"15WL7-89.TIF"}

一、实验目的

- (1)测定电源的电动势和内阻。
- (2)加深对闭合电路欧姆定律的理解。

二、实验器材

电池、电压表、电流表、滑动变阻器、开关、导线、坐标纸和刻度尺。

考点一 实验原理与操作

[典**例** 1] 利用电流表和电压表测定一节干电池的电动势和内电阻。要求尽量减小实验误差。

{INCLUDEPICTURE"14GKL-86.TIF"}

图实-9-1

- (1)应该选择的实验电路是图实-9-1中的 (选填"甲"或"乙")。
- (2)现有电流表(0~0.6 A)、开关和导线若干,以及以下器材:
- A. 电压表(0~15 V)
- B. 电压表(0~3 V)
- C. 滑动变阻器(0~50 Ω)
- D. 滑动变阻器(0~500 Ω)

实验中电压表应选用_____;滑动变阻器应选用____。(选填相应器材前的字母)

(3)某位同学记录的 6 组数据如下表所示,其中 5 组数据的对应点已经标在图实-9-2 的 坐标纸上,请标出余下一组数据的对应点,并画出 *U-I* 图线。

序号	1	2	3	4	5	6
电压 <i>U</i> (V)	1.45	1.40	1.30	1.25	1.20	1.10
电流 <i>I</i> (A)	0.060	0.120	0.240	0.260	0.360	0.480

{INCLUDEPICTURE"14GKL-33.TIF"}

图实-9-2

- (4)根据(3)中所画图线可得出干电池的电动势 E= V,内电阻 r= Ω 。
- (5)实验中,随着滑动变阻器滑片的移动,电压表的示数 U 及干电池的输出功率 P 都会发生变化。图实-9-3 的各示意图中正确反映 P-U 关系的是

图实-9-3

[题组突破]

1. 某同学要测定一电源的电动势 E 和内电阻 r,实验器材有:一只 DIS 电流传感器(可

第{ PAGE * MERGEFORMAT }页 共{ NUMPAGES * MERGEFORMAT }页

视为理想电流表,测得的电流用 I 表示),一只电阻箱(阻值用 R 表示),一只开关和导线若干。该同学设计了如图实-9-4 甲所示的电路进行实验和采集数据。

{INCLUDEPICTURE"15WL7-90.TIF"}

图实-9-4

国 关*7***
(1)该同学设计实验的原理表达式是 $E =$
(2)该同学在闭合开关之前,应先将电阻箱调到(填"最大值"、"最小值"或
"任意值"),实验过程中,将电阻箱调至如图乙所示位置,则此时电阻箱接入电路的阻值
为Ω。
(3)该同学根据实验采集到的数据作出如图丙所示的 $\{eq \setminus f(1,I)\}$ -R 图像,则由图像可求得,该电源的电动势 $E=$
测电源,电阻箱 R (最大阻值为 999.9 Ω),电阻 R_0 (阻值为 3.0 Ω),电阻 R_1 (阻值为 3.0 Ω),电
流表 \mathbb{A} (量程为 200 mA,内阻为 R_{A} =6.0 Ω),开关 S。
{INCLUDEPICTURE"GKJXKB1-11.TIF"}
图实-9-5
实验步骤如下:
①将电阻箱阻值调到最大,闭合开关 S;
②多次调节电阻箱,记下电流表的示数 I 和电阻箱相应的阻值 R ;
③以 $\{eq \setminus f(1,I)\}$ 为纵坐标, R 为横坐标,作 $\{eq \setminus f(1,I)\}$ - R 图线(用直线拟合);
④求出直线的斜率 k 和在纵轴上的截距 b 。
回答下列问题:
(1) 分别用 E 和 r 表示电源的电动势和内阻,则 $\{eq \setminus f(1,I)\}$ 与 R 的关系式为。
(2)实验得到的部分数据如下表所示,其中电阻 $R=3.0~\Omega$ 时电流表的示数如图实-9-6 所
示,读出数据,完成下表。答:①;②。
R/Ω 1.0 2.0 3.0 4.0 5.0 6.0 7.0
I/A 0.143 0.125 ① 0.100 0.091 0.084 0.077
{eq
\f(1,I)\f(1,I)\f(A^-\) 6.99 8.00 2 10.0 11.0 11.9 13.0
{INCLUDEPICTURE"GKJXKB1-12.TIF"}
图分 0.6

图实-9-6

$\{INCLUDEPICTURE"GKJXKB1-12A.TIF"\}$

图实-9-7

(3)在图实-9-7	的坐标纸上将所	缺数据点补充完整并作图,	根据图线求得斜率	k =
$A^{-1}\cdot\Omega^{-1}$,	截距 <i>b</i> =	A^{-1} \circ		

(4)根据图线求得电源电动势 E= V,内阻 r= Ω 。

考点二 数据处理与误差分析

[典例 2] 用图实-9-8 所示电路,测定一节干电池的电动势和内阻。电池的内阻较小,为了防止在调节滑动变阻器时造成短路,电路中用一个定值电阻 R_0 起保护作用。除电池、开关和导线外,可供使用的实验器材还有:

{INCLUDEPICTURE"15WL7-91.TIF"}

图实-9-8

- A. 电流表(量程 0.6 A、3 A);
- B. 电压表(量程 3 V、15 V);
- C. 定值电阻(阻值 1Ω 、额定功率 5W);
- D. 定值电阻(阻值 10 Ω、额定功率 10 W);
- E. 滑动变阻器(阻值范围 $0\sim10\,\Omega$ 、额定电流 $2\,A$);
- F. 滑动变阻器(阻值范围 $0{\sim}100~\Omega$ 、额定电流 1~A)。

那么:

- PT / -	
(2)引起该实验系统误差的主要原因是	
R_0 应选择 Ω 的定值电阻, R 应选择阻值范围是 Ω 的滑动变阻器。	
(1)要正确完成实验, 电压表的量程应选择V, 电流表的量程应选择	A

[题组突破]

3. 现要测量某电源的电动势和内阻。可利用的器材有:电流表 $\{ eq \setminus o \setminus ac(\bigcirc, A) \}$,内阻为 1.00Ω ;电压表 $\{ eq \setminus o \setminus ac(\bigcirc, V) \}$;阻值未知的定值电阻 $R_1 \setminus R_2 \setminus R_3 \setminus R_4 \setminus R_5$; 开关 S;一端连有鳄鱼夹 P 的导线 1,其他导线若干。某同学设计的测量电路如图实-9-9 所示。

{INCLUDEPICTURE"14DG-7.TIF"}

图实-9-9

(1)按图实-9-9 在实物图实-9-10 中画出连线,并标出导线 1 和其 P 端。

{INCLUDEPICTURE"14DG-8.TIF"}

图实-9-10

(2)测量时,改变鳄鱼夹 P 所夹的位置,使 R_1 、 R_2 、 R_3 、 R_4 、 R_5 依次串入电路,记录对应的电压表的示数 U 和电流表的示数 I。数据如下表所示。根据表中数据,在图实-9-11 中的坐标纸上将所缺数据点补充完整,并画出 U-I 图线。

I(mA)	193	153	111	69	30
U(V)	2.51	2.59	2.68	2.76	2.84

{INCLUDEPICTURE"14DG-9.TIF"}

图实-9-11

(3)根据 U - I 图线求出电源的电动势 E =
中 R_0 是定值电阻,通过改变 R 的阻值,测出 R_0 两端的对应电压 U_{12} ,对所得的实验数据进
行处理,就可以实现测量目的。根据实验数据在 $\{eq \setminus f(1,U_{12})\}$ -R 坐标系中描出坐标点,如图
实-9-13 所示。已知 R_0 =150 Ω ,请完成以下数据分析和处理。
{INCLUDEPICTURE"15WL7-92.TIF"}
图实-9-12
{INCLUDEPICTURE"15WL7-93.TIF"}
图实-9-13
(1)图实-9-13 中电阻为
(2)在坐标纸上画出 {eq \ $f(1,U_{12})$ }- R 关系图线;
(3)图线的斜率是($V^{-1}\cdot\Omega^{-1}$),由此可得电池电动势 E_x = V 。
5. 老师要求同学们测出一待测电源的电动势及内阻,所给的实验器材有: 待测电源 E ,
定值电阻 R_1 (阻值未知),电压表 V(量程为 3.0 V,内阻很大),电阻箱 $R(0\sim 99.99~\Omega)$,单刀
单掷开关 S ₁ , 单刀双掷开关 S ₂ , 导线若干。
{INCLUDEPICTURE"15WL7-95.TIF"}
图实-9-14
某同学连接了一个如图实-9-14 所示的电路,他接下来的操作是:
$a.$ 拨动电阻箱旋钮,使各旋钮盘的刻度处于如图实-9-15 甲所示的位置后,将 S_2 接到 A ,
闭合 S_1 , 记录下对应的电压表示数为 $2.20V$, 然后断开 S_1 ;
b. 保持电阻箱示数不变,将 S_2 切换到 B ,闭合 S_1 ,记录此时电压表的读数(电压表的
示数如图乙所示),然后断开 S_1 。
(1)请你解答下列问题:
图实-9-15 甲所示电阻箱的读数为 Ω ,图乙所示的电压表读数为 V 。
由此可算出定值电阻 R_1 的阻值为 Ω 。(计算结果取 3 位有效数字)
{INCLUDEPICTURE"15WL7-96.TIF"}
图实-9-15
(2)在完成上述操作后,该同学继续以下的操作:
将 S_2 切换到 A ,多次调节电阻箱,闭合 S_1 ,读出多组电阻箱的示数 R 和对应的电压表
示数 U ,由测得的数据,绘出了如图丙所示的 $\{eq \ f(1,U)\} - \{eq \ f(1,R)\}$ 图像。由此可求得该
电池组的电动势 E 及内阻 r ,其中 E =
留 3 位有效数字)
考点三 实验的改进与创新
[典例 3] 某研究性学习小组利用伏安法测定某一电池组的电动势和内阻,实验原理如

第{ PAGE * MERGEFORMAT }页 共{ NUMPAGES * MERGEFORMAT }页

图实-10-16 甲所示,其中,虚线框内为用灵敏电流计 $\{eq \setminus o\setminus ac(\bigcirc,G)\}$ 改装的电流表 $\{eq \setminus o\setminus ac(\bigcirc,A)\}$, $\{eq \setminus o\setminus ac(\bigcirc,V)\}$ 为标准电压表,E 为待测电池组,S 为开关,R 为滑动变阻器, R_0 是标称值为 4.0 Ω 的定值电阻。

(1)已知灵敏电流计 $\{eq \setminus ac(\bigcirc,G)\}$ 的满偏电流 $I_g=100$ μA、内阻 $r_g=2.0$ kΩ,若要改装后的电流表满偏电流为 200 mA,应并联一只________Ω(保留一位小数)的定值电阻 R_1 。

(2)根据图甲,用笔画线代替导线将图乙连接成完整电路。

{INCLUDEPICTURE"14LZFJ9.TIF"}

图实-9-16

(3)某次实验的数据如下表所示:

测量次数	1	2	3	4	5	6	7	8
电压表 {eq \o\ac((),V)}读数 <i>U</i> /V	5.26	5.16	5.04	4.94	4.83	4.71	4.59	4.46
改装表{eq \o\ac(○,A)}读数 I/mA	20	40	60	80	100	120	140	160

- (4)该小组在前面实验的基础上,为探究图甲电路中各元器件的实际阻值对测量结果的影响,用一已知电动势和内阻的标准电池组,通过上述方法多次测量后发现:电动势的测量值与已知值几乎相同,但内阻的测量值总是偏大。若测量过程无误,则内阻测量值总是偏大的原因是。(填选项前的字母)
 - A. 电压表内阻的影响
 - B. 滑动变阻器的最大阻值偏小
 - $C. R_1$ 的实际阻值比计算值偏小
- $D. R_0$ 的实际阻值比标称值偏大

[题组突破]

6. 为了测定电源电动势 E、内电阻 r 的大小并同时描绘出小灯泡的伏安特性曲线,某同学设计了如图实-9-17 甲所示的电路。闭合开关,调节电阻箱的阻值,同时记录电阻箱的阻值 R,电压表 V_1 的示数 U_1 ,电压表 V_2 的示数 U_2 。根据记录数据计算出流过电阻箱的电流 I,分别描绘了 a、b 两条 U-I 图线,如图乙所示。请回答下列问题:

{INCLUDEPICTURE"15WL7-100.TIF"}

图实-9-17

{INCLUDEPICTURE"15WL7-101.TIF"}

图实-9-18

- (2)然后,用电压表 V、电阻箱 R、定值电阻 R_0 、开关 S、若干导线和该电池组成电路,测定该电池电动势。
 - (i)根据电路图,用笔画线代替导线,将实物图连接成完整电路。

图实-9-18, 其示数为 V。

(ii)闭合开关 S,调整电阻箱阻值 R,读出电压表 V 相应示数 U。该学习小组测出大量数据,分析筛选出下表所示的 R、U 数据,并计算出相应的 $\{eq \ f(1,R)\}$ 与 $\{eq \ f(1,U)\}$ 的值。请用表中数据在坐标纸上描点,并作出 $\{eq \ f(1,U)\}$ - $\{eq \ f(1,R)\}$ 图线。

{INCLUDEPICTURE"15WL7-102.TIF"}

图实-9-19

$R(\Omega)$	166.7	71.4	50.0	33.3	25.0	20.0
U(V)	8.3	5.9	4.8	4.2	3.2	2.9
{eq \f(1,R)}						
$(\times 10^{-2}\Omega^{-1})$	0.60	1.40	2.00	3.00	4.00	5.00
{eq \f(1,U)}(V ⁻	0.12	0.17	0.21	0.24	0.31	0.35

{INCLUDEPICTURE"15WL7-103.TIF"}

图实-9-20

(iii)从图线中可求得E= V。