CS 457, Data Structures and Algorithms I Second Problem Set

October 8, 2019

Due on October 16. Collaboration is not allowed. Contact Daniel and me for questions.

1. (24 pts) Solve the following recurrence equation (tight upper and lower bounds!)

$$T(n) = \begin{cases} 1 & \text{if } n < 1\\ 2T(n/2) + 23 & \text{otherwise.} \end{cases}$$

- a) Using the *master theorem*. Make sure to explain which case applies and why.
- b) Using the *recursion tree* method. Do not use asymptotic notation for the depth of the recursion tree; use exact upper and lower bounds instead.
- c) Using the *substitution* method. Make sure to show that the boundary conditions hold as well; choose the constants c and n_0 appropriately.
- 2. (30 pts) For the following algorithm calls, prove a *tight* asymptotic bound for their worst-case running time. Pay attention to the input in the algorithm *calls*!
 - a) The call to Recursive-Algorithm(n) for some n > 1.

[H] Recursive-Algorithm(a) q=0 $a\geq 1$ i=1 $\lfloor a\rfloor q=q+1$ Recursive-Algorithm(a/2) Recursive-Algorithm(a/5) Recursive-Algorithm(a/9)

- b) The call to Recursive-Algorithm 2(n, n) for some n > 2.
 - [H] Recursive-Algorithm2(a,b) $a \ge 2$ and $b \ge 2$ u = a/3 v = b-1 Recursive-Algorithm2(u,v)

- 3. (30 pts) In solving the following recurrence equations, first try to use the master theorem. If it does not apply, explain why this is the case.
 - a) Solve the following recurrence equation.

$$T(n) = \begin{cases} 1 & \text{if } n \leq 1 \\ T(2n/3) + T(n/4) + \Theta(n) & \text{otherwise.} \end{cases}$$

b) Solve the following recurrence equation. one

$$T(n) = \begin{cases} 1 & \text{if } n \le 1\\ 4T(n/2) + n^2/\log n & \text{otherwise.} \end{cases}$$

c) For the following equation provide an exact $(not\ asymptotic)$ closed form solution.

$$T(n) = \begin{cases} 1 & \text{if } n \le 1 \\ 5T(n/2) & \text{otherwise.} \end{cases}$$

4. (16 pts) Consider the following variation of Merge Sort: rather than dividing the array into two equal sized parts, recursively sorting each of them, and then merging them together, we divide the array into \sqrt{n} equal sized parts instead. Once we recursively sort each one of these \sqrt{n} parts of size \sqrt{n} each, we need $\Theta(n \lg n)$ time in order to merge them together, leading to the following recurrence equation:

$$T(n) = \begin{cases} 1 & \text{if } n \le 1\\ \sqrt{n}T(\sqrt{n}) + n \lg n & \text{otherwise.} \end{cases}$$

Solve this recurrence equation, providing tight upper and lower bounds

- a) Using the recursion tree method.
- b) Using the *master theorem* after applying an appropriate change of variables.