Imputation for Interaction Effects

Interaction (Moderation)

Moderation (interaction) occurs when the magnitude of a bivariate relation depends on a third variable

In a regression analysis, the influence of the focal predictor depends on the value of the moderator

e.g., The influence of pain severity (focal) on daily stress (outcome) is different for males and females (moderator)

Moderated Regression

Moderated regression analysis where the influence of X_1 depends on X_2 (or vice versa)

$$Y = \beta_0 + \beta_1(X_1) + \beta_2(X_2) + \beta_3(X_1)(X_2) + e$$

Bias-inducing incompatibilities arise when lowerorder variables (and the product) are incomplete

Just-Another-Variable Imputation

Just-another-variable imputation inappropriately treats the product just like any normal variable

$$Z = \left(X_{1}\right)\left(X_{2}\right)$$

$$Z_{\left(mis\right)}^{\left(t\right)} = \gamma_{0} + \gamma_{1}\left(Y\right) + \gamma_{2}\left(X_{1}\right) + \gamma_{3}\left(X_{2}^{\left(t\right)}\right) + \varepsilon$$

$$Z_{\left(mis\right)}^{\left(t\right)} \sim N\left(\gamma_{0} + \gamma_{1}\left(Y\right) + \gamma_{2}\left(X_{1}\right) + \gamma_{3}\left(X_{2}^{\left(t\right)}\right), \sigma_{\varepsilon}^{2}\right)$$

Computer Simulation

2000 replications of N = 250 with 25% of X_2 scores missing due to X_1 (missing at random)

$$Y = \beta_0 + \beta_1 (X_1) + \beta_2 (X_2) + \beta_3 (X_1) (X_2) + e$$
$$= 5 + 1 (X_1) + 1 (X_2) + 1 (X_1) (X_2)$$
$$\sigma_e^2 = 4$$

Substantive Model Compatible Imputation

Predictor variables are imputed only from other predictors (no product term), and the outcome is imputed from a model that matches the substantive analysis

A special algorithm generates imputed predictor variables from a complex distribution that ensures the imputations "fit" well in a moderated regression

The product is not directly imputed, thus reducing bias

Full Bayesian Approach (Substantive Model Compatible Imputation)

Distribution Of Missing Predictor Scores

$$p(X_{2(mis)}|\cdot)$$

$$\propto p\left(Y|X_1, X_{2(mis)}, \boldsymbol{\beta}, \sigma_e^2\right) p\left(X_{2(mis)}|X_1, \gamma, \sigma_{\varepsilon}^2\right)$$

$$\propto exp\left(-\frac{\left(Y - \beta_0 - \beta_1 X_1 - \beta_2 X_{2(mis)} - \beta_3 X_1 X_{2(mis)}\right)^2}{2\sigma_e^2}\right)$$

$$\times exp\left(-\frac{\left(X_{2(mis)} - \gamma_0 - \gamma_1 X_1\right)^2}{2\sigma_{\varepsilon}^2}\right)$$

Distribution of Missing Values

Missing predictor scores must be sampled from a composite distribution that equals the product of two normal distributions

We can view the distribution or missing values as a normal distribution for the predictors, the points on which are weighted by how well each pair of scores fits a moderated regression model

Example: Imputing X_2 When Y = 5Consider a case with Y = 5The fit (likelihood) for that case is maximized when its configuration of X scores give predicted values equal to 5

Distribution Of Missing Values $p\left(Y|X_1,X_{2(mis)},\boldsymbol{\beta},\sigma_e^2\right)p\left(X_{2(mis)}|X_1,\gamma,\sigma_\varepsilon^2\right)$

Computer Simulation Revisited

2000 replications of N = 250 with 25% of X_2 scores missing due to X_1 (missing at random)

$$Y = \beta_0 + \beta_1 (X_1) + \beta_2 (X_2) + \beta_3 (X_1) (X_2) + e$$

= 5 + 1 (X₁) + 1 (X₂) + 1 (X₁) (X₂)
$$\sigma_e^2 = 4$$

DATA: ~/desktop/example.dat; VARNAMES: y x z; MODEL: ~ y x z x*z; OUTCOME: y; BURN: 500; THIN: 500; NIMPS: 20; MISSING: -99; SEED: 90291; OUTFILE: ~/desktop/imps.csv; CHAINS: 2 processors 2;

Analysis Example

Analysis Model

Data from a sample of 250 chronic pain patients

The analysis is a regression that examines whether the influence of pain on stress differs for males and females

$$Stress = \beta_0 + \beta_1(Pain) + \beta_2(Female) + \beta_3(Pain)(Female) + e$$

Pain scores are incomplete and must be imputed

Ex7.1.imp Blimp Diagnostic Script

```
DATA: ~/desktop/examples/pain.csv;
VARNAMES: id female diagnose sleep pain posaff
negaff stress;
MISSING: -99;
MODEL: ~ stress pain female pain*female posaff;
ORDINAL: female;
OUTCOME: stress;
SEED: 90291;
BURN: 3000;
THIN: 1;
NIMPS: 2;
OUTFILE: ~/desktop/examples/imp*.csv;
OPTIONS: separate psr;
CHAINS: 2 processors 2;
```

Diagnostic Output

Ex7.2.imp Blimp Imputation Script (Mplus Format)

```
DATA: ~/desktop/examples/pain.csv;
VARNAMES: id female diagnose sleep pain posaff
negaff stress;
MISSING: -99;
MODEL: ~ stress pain female pain*female posaff;
ORDINAL: female;
OUTCOME: stress;
SEED: 90291;
BURN: 200;
THIN: 200;
NIMPS: 20;
OUTFILE: ~/desktop/examples/imp*.csv;
OPTIONS: separate;
CHAINS: 2 processors 2;
```

VARIABLE ORDER IN SAVED DATA: id female diagnose sleep pain posaff negaff stress

Ex7.3.inp Mplus Analysis Script

```
DATA:
file = implist.csv;
type = imputation;
VARIABLE:
names = id female diagnose sleep pain posaff
negaff stress;
usevariables = stress female pain femxpain;
DEFINE:
femxpain = female*pain;
MODEL:
stress on female pain femxpain;
OUTPUT:
standardized;
```

Mplus Analysis Output

MODEL RESULTS					
				Two-Tailed	Rate of
	Estimate	S.E.	Est./S.E.	P-Value	Missing
STRESS ON					
FEMALE	-1.695	0.650	-2.610	0.009	0.286
PAIN	0.090	0.088	1.024	0.306	0.316
FEMXPAIN	0.354	0.136	2.590	0.010	0.283
Intercepts					
STRESS	3.343	0.374	8.950	0.000	0.347
Residual Variance	2S				
STRESS	0.744	0.077	9.639	0.000	0.260
					,

Ex7.4.imp Blimp Imputation Script (R, SAS, SPSS, and Stata Format)

```
DATA: ~/desktop/examples/pain.csv;
VARNAMES: id female diagnose sleep pain posaff
negaff stress;
MISSING: -99;
MODEL: ~ stress pain female pain*female posaff;
ORDINAL: female;
OUTCOME: stress;
SEED: 90291;
BURN: 200;
THIN: 200;
NIMPS: 20;
OUTFILE: ~/desktop/examples/imps.csv;
OPTIONS: stacked;
CHAINS: 2 processors 2;
```

VARIABLE ORDER IN SAVED DATA: imp# id female diagnose sleep pain posaff negaff stress

Ex7.5.r R Analysis Script

```
# Required packages
Library(mitml)

# Read data
filepath <- "~/desktop/examples/imps.csv"
impdata <- read.csv(filepath, header = F)
names(impdata) <-
    c("imputation","id","female","diagnose","sleep","pain",
    "posaff","negaff","stress")

# Compute product variable
impdata$femxpain <- impdata$female * impdata$pain</pre>
```

Ex7.5.r R Analysis Script

```
# Analyze data and pool estimates
implist <- as.mitml.list(split(impdata, impdata$imputation))
analysis <- with(implist, lm(stress ~ female + pain + femxpain))
estimates <- testEstimates(analysis, var.comp = T, df.com = 246)
estimates

# Compare models with Wald test
emptymodel <- with(implist, lm(stress ~ 1))
testModels(analysis, emptymodel, method = "D1")</pre>
```

R Analysis Output

Final parameter estimates and inferences obtained from 20 imputed data sets.

	Estimate S	Std.Error	t.value	df	P(> t)	RIV	FMI
(Intercept)	3.343	0.376	8.902	82.791	0.000	0.504	0.343
female	-1.695	0.653	-2.594	103.078	0.011	0.383	0.283
pain	0.090	0.088	1.018	92.562	0.311	0.439	0.312
femxpain	0.354	0.137	2.575	104.306	0.011	0.377	0.279

Estimate

Residual ~~Residual 0.756

Hypothesis test adjusted for small samples with df=[246] complete-data degrees of freedom.

R Analysis Output

Model comparison calculated from 20 imputed data sets. Combination method: ${\tt D1}$

F.value df1 df2 P(>F) RIV 7.042 3 960.250 0.000 0.297

Unadjusted hypothesis test as appropriate in larger samples.

Ex7.6.sps SPSS Analysis Script

data list free file = '/users/craig/desktop/examples/imps.csv' /imputation_ id female diagnose sleep pain posaff negaff stress. exe.

- * Compute product variable. compute femxpain = female * pain. exe.
- * Initiate pooling routines. sort cases by imputation_. split file layed by imputation_.
- * Analysis and pooling.
 regression
 /descriptives mean stddev corr sig n
 /dependent stress
 /method enter female pain femxpain.

SPSS Analysis Output

					Coefficients ^a				
			Unstandardize	d Coefficients	Standardized Coefficients				
imputation_	Model		В	Std. Error	Beta	t	Sig.		
1.00	1.00 1	(Constant)	3.101	.324		9.576	.000		
		female	-1.412	.574	760	-2.459	.015		
	pain	.146	.077	.167	1.893	.060			
	femxpain	.288	.121	.801	2.382	.018			

20.00 1	(Constant)	3.118	.322		9.679	.000	
	female	-1.097	.576	586	-1.904	.058	
	pain	.149	.078	.171	1.919	.056	
	femxpain	.220	.122	.604	1.800	.073	
Pooled 1	(Constant)	3.343	.376		8.902	.000	
	female	-1.695	.653		-2.594	.010	
	pain	.090	.088		1.018	.310	
		femxpain	.354	.137		2.575	.011

Ex7.7.do Stata Analysis Script

```
// Import and save original data
import delimited "-/desktop/examples/pain.csv"
rename (v1 - v8)(id female diagnose sleep pain posaff negaff stress)
generate imp = 0

// Recode missing values
foreach var of varlist id - stress {
    replace 'var' = . if 'var' == -99
}
save original, replace

// Import and save imputed data
clear
import delimited "-/desktop/examples/imps.csv"
rename (v1 - v9)(imp id female diagnose sleep pain posaff
    negaff stress)
save imputed, replace
```

Stata Analysis Output

```
Multiple-imputation estimates
                                                     Imputations
                                                                                    20
Linear regression
                                                     Number of obs =
                                                                                  250
                                                     Average RVI =
                                                                               0.2728
                                                     Largest FMI
                                                                               0.3455
                                                    Complete DF
                                                                                246
DF adjustment: Small sample
                                                    DF: min
                                                                                82.79
                                                     avg
max
                                                                                95.68
                                                                     = 104.31
                                         F( 3, 192.1) =
Model F test: Equal FMI
                                                                            7.04
Within VCE type: OLS
                                                  Prob > F
                                                                               0.0002
   stress | Coef. Std. Err. t P>|t| [95% Conf. Interval]
------
     female | -1.695095 .6533503 -2.59 0.011 -2.990849 -.3993403

        pain
        .0896054
        .0880383
        1.02
        0.311
        -.0852321
        .2644429

        femxpain
        .3535154
        .1372886
        2.57
        0.011
        .0812764
        .6257544

        _cons
        3.343092
        .3755457
        8.90
        0.000
        2.596119
        4.090065
```

Ex7.7.do Stata Analysis Script

```
// Append original and imputed data
use original, clear
append using imputed

// Convert to mi data
mi import flong, m(imp) id(id) imputed(female - stress) clear

// Compute product term
gen femxpain = female * pain

// Analyze data and pool results
mi estimate, cmdok: regress stress female pain femxpain
```