Evolution strategies

- Developed: Germany in the 1970's
- Early names: I. Rechenberg, H.-P. Schwefel
- · Typically applied to:
 - numerical optimization
- · Attributed features:
 - fast
 - good optimizer for real-valued optimization
 - relatively much theory
- Special:
 - self-adaptation of (mutation) parameters standard

Evolutionary Computing

volution strategie

The famous jet nozzle experiment (movie)

Evolutionary Computing

Evolution strategies

Main characteristics at a glance

- Often continuous search spaces, Rn
- Emphasis on mutation: *n*-dimensionally normally distributed, expectation zero
- Various recombination operators
- Deterministic (μ , λ)-selection
- self-adaptation of strategy parameters: first selfadaptive EA
- Generation of an offspring surplus $\lambda >> \mu$

Evolutionary Computing

Evolution strategies

Reproduction cycle (1)

Evolution Strategy main procedure:

```
 \begin{aligned} t &:= 0; \\ & \textit{initialize} \ P(t); \\ & \textit{evaluate} \ P(t); \\ & \textit{WHILE} \ NOT \ termination \ DO \\ & P'(t) &:= \textit{recombine}(P(t)); \\ & P''(t) &:= \textit{mutate}(P'(t)); \\ & evaluate(P''(t)); \\ & evaluate(P''(t)); \\ & P(t+1) &:= \textit{select}(P''(t) \cup P(t)); \\ & f &:= t+1; \end{aligned}  Either of these two is used
```

Evolutionary Computing

Evolution strategies

Reproduction cycle (2)

- P(t) size μ
- recombination: applied to all individuals
- P'(t) has size λ > μ
- mutation: normally distributed variations, all individuals
- P"(t) has size $\lambda > \mu$,
- selection
 - $(\mu + \lambda)$ selection: from P"(t) \cup P(t)
 - (μ, λ) selection: from P"(t) only

Evolutionary Computing

Evolution strategies

Evolution strategies

Representation (1)

Spaces:

- Phenotype space:

R₽n

- Strategy parameter space (standard deviations and rotation angles of mutation):

$$S = IR_{+}^{n_{\sigma}} \cdot [-\pi, \pi]^{n_{\alpha}}$$

Individual space (genotype):

$$I = IR^n \cdot S$$

One individual:

$$\vec{a} = (\underbrace{(x_1, \dots, x_n)}_{\vec{x}}, \underbrace{(\sigma_1, \dots, \sigma_{n_v})}_{\vec{\sigma}}, \underbrace{(\alpha_1, \dots, \alpha_{n_w})}_{\vec{\alpha}}) \in I$$

Evolution strategies

Representation (2)

The three parts of an individual:

- \overline{x} : Object variables \Rightarrow Fitness $f(\overline{x})$
- $\overline{\sigma}$: Standard deviations \Rightarrow Variances
- \overline{a} : Rotation angles \Rightarrow Covariances

A strategy parameter sets $(s = (\vec{\sigma}, \vec{\alpha}) \in S)$:

- Is part of an individual
- Represents the probability density function (p.d.f.) for its mutation

n_{σ}	n_{α}
1	0
n	0
n	$n \cdot (n-1)/2$
$1 \le n_{\sigma} \le n$	$(n-\frac{n_c}{2})(n_\sigma-1)$

Remark standard mutation standard mutations correlated mutations general case (correlated mutations)

Possible settings of n_{σ} and n_{α}

The one

Evolutionary Computing

Genetic operators: mutations (1)

Simple mutation I

- Simple mutation makes use of normally distributed
- variations, thus
- It requires a given a normal (Gaussian) distribution $N(\xi,\,\sigma)$ with the corresponding pdf

$$p(\Delta x_i) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(\Delta x_i - \xi)^2}{2\sigma^2} \right)$$

- Expectation (ξ) is assumed to equal 0
- Standard deviation (σ) must be adapted

Evolutionary Computing

Evolution strategies

Genetic operators: mutations (2)

10

Genetic operators: mutations (3)

Simple mutation I (continued)

- \boldsymbol{x}_{i} is mutated by adding some $\Delta\boldsymbol{x}_{i}$ from a normal probability distribution
- $\,\sigma$ is mutated by multiplying by $e^\Gamma\!,$ with Γ from a normal probability distribution

$$I = IR^{n} \cdot IR_{+}$$
$$m'_{\{\tau_{0}\}}(\overline{x}, \sigma) = (\overline{x}', \sigma')$$

$$\tau_0 \sim 1/\sqrt{n}$$

$$\sigma' = \sigma \cdot \exp(\tau_0 \cdot N(0, 1))
x'_i = x_i + \sigma' \cdot N_i(0, 1)$$

Evolutionary Computing

Evolution strategies

11

Genetic operators: mutations (4)

Evolution strategies

Simple mutation I (continued)

Simple mutations, n = 2, $n_{\sigma} = 1$, $(n_{\alpha} = 0)$ Evolutionary Computing

Genetic operators: mutations (5)

Simple mutation II

- \textbf{x}_{i} is mutated by adding some $\Delta\textbf{x}_{i}$ from a normal probability distribution
- $-\ \sigma_j$ is mutated by multiplying by $e^{i j},$ with Γ_j from a normal probability distribution

$$I = IR^{n} \cdot IR_{+}^{n}$$

$$m'_{(\tau,\tau')}(\overline{x},\overline{\sigma}) = (\overline{x}',\overline{\sigma}')$$

$$\tau \sim 1/\sqrt{2\sqrt{n}}$$

$$\tau' \sim 1/\sqrt{2n}$$

Evolutionary Computing

olution strategies

Genetic operators: mutations (6)

Simple mutation II (continued)

$$\begin{aligned}
\sigma_i' &= \sigma_i \cdot \exp(\tau' \cdot N(0, 1) + \tau \cdot N_i(0, 1)) \\
x_i' &= x_i + \sigma_i' \cdot N_i(0, 1)
\end{aligned}$$

Boundary rule for preserving standard deviations larger than zero:

$$\sigma_i' < \varepsilon_\sigma \Rightarrow \sigma_i' := \varepsilon_\sigma$$

Evolutionary Computing

Evolution strategies

Genetic operators: mutations (7)

Simple mutation II (continued)

Equal probability to place an offspring

Simple mutations, $n = 2, n_{\sigma} = 2, (n_{\alpha} = 0)$ Evolutionary Computing

Evolution strategies 15

Genetic operators: mutations (8)

Correlated mutation

– Correlated $\underline{\text{mut}}$ ation uses following probability distribution function for $\overline{\Delta x}$:

$$p(\overline{\Delta x}) = \sqrt{\frac{\det C}{(2\pi)^n}} \cdot \exp\left(-\frac{1}{2}\overline{\Delta x}^T \cdot C\overline{\Delta x}\right)$$

- Where C-1 is the covariance matrix:

$$\begin{aligned} c_{ii} &&= \sigma_i^2 \\ c_{ij,(i \neq j)} &&= \begin{cases} 0 & \text{no correlations} \\ \frac{1}{2} \left(\sigma_i^2 - \sigma_j^2\right) \tan(2\alpha_{ij}) & \text{correlations} \end{cases} \end{aligned}$$

Evolutionary Computing

Evolution strategies

Genetic operators: mutations (9)

Correlated mutation (continued)

Illustration of the mutation ellipsoid for the case $n=2,\,n_{\sigma}=2,\,n_{\alpha}=1$ Evolutionary Computing Evolution strategies 17

Genetic operators: mutations (10)

Correlated mutation (continued)

- $-\overline{x}$ is mutated by adding some $\overline{\Delta x}$ from an n-dimensional normal distribution
- σ_i is mutated by multiplying by $e^{\Gamma_i},$ with Γ_i from a normal probability distribution
- ${\bf a_j}$ is mutated by adding some Δa_j from a normal probability distribution

Evolutionary Computing

Evolution strategies

18

Genetic operators: mutations (11)

Correlated mutation (continued)

$$\begin{array}{ll} n_{\alpha} & = n \cdot (n-1)/2 \\ I & = IR^n \cdot IR_+^n \cdot [-\pi, \pi]^{n_{\alpha}} \\ m'_{(\tau, \tau', \beta)}(\overline{x}, \overline{\sigma}, \overline{\alpha}) & = (\overline{x}', \overline{\sigma}', \overline{\alpha}') \\ \tau & \sim 1/\sqrt{2\sqrt{n}} \end{array}$$

 τ' ~ $1/\sqrt{2n}$

3 ≈ 5°

Evolutionary Computing

lution strategies

Genetic operators: mutations (12)

Correlated mutation (continued)

$$\begin{array}{rcl} \sigma_i' &=& \sigma_i \cdot \exp(\tau' \cdot N(0,1) + \tau \cdot N_i(0,1)) \\ \alpha_j' &=& \alpha_j + \beta \cdot N_j(0,1) \\ \vec{x}' &=& \vec{x} + \vec{N}(\vec{0},C') \end{array}$$

Boundary rule for keeping rotation angles feasible:

$$|\alpha'_i| > \pi \implies \alpha'_i := \alpha'_i - 2\pi \cdot sign(\alpha'_i)$$

Evolutionary Computing

Evolution strategies

Genetic operators: mutations (13)

Correlated mutation (continued)

Equal probability to place an offspring

Correlated mutations, $n=2, n_0=2, n_\alpha=1$)

Genetic operators: mutations (14)

Some remarks:

- Biological model: Repair enzymes, mutator genes
- No deterministic control: strategy parameters evolve
- Indirect link between fitness and useful strategy parameter settings
- $-\ \overline{\sigma}, \overline{\alpha}$ are conceivable as an internal model of the local topology
- Standard strategy: $n_{\sigma} = n, n_{\alpha} = 0$

Evolutionary Computing

Evolution strategies

22

Genetic operators: recombination (1)

Evolution strategies

Basic ideas:

Evolutionary Computing

- $I^{\mu}\!\rightarrow\!I,\,\mu$ parents yield 1 offspring
- Is applied λ times, typically $\lambda >> \mu$
- Is applied to object variables as well as strategy parameters
- Per offspring gene two corresponding parent genes are involved
- Two ways to recombine two parent alleles:
 - Discrete recombination: choose one randomly
 - Intermediate recombination: average the values
- $-\,$ Might involve two or μ parents (global recombination)

Evolutionary Computing

Evolution strategies

23

Genetic operators: recombination (2)

The operator:

- 1 For each object variable:
 - a Choose two parents
 - b Apply discrete recombination on the corresponding
- 2 For each strategy parameter:
 - a Choose two parents
 - b Apply intermediate recombination on the corresponding parameters

Evolutionary Computing

Evolution strategies

strategies 24

Selection (1)

- · Strictly deterministic, rank based
- The μ best ranks are handled equally
- The μ best offspring (P"(t)) survive
 - Important for self-adaptation
 - Applicable also for noisy objective functions, moving optima
- N.B. μ selected from λ ; notation: (μ, λ)
- · Selective pressure: very high

Evolutionary Computing

Evolution strategies

Selection (2)

Take-over time τ^* :

Definition:

Number of generations until application of selection completely fills the population with copies of the best individual

Evolutionary Computing

Evolution strategies

27

Selection (3)

Remarks:

• Goldberg and Deb 1991:

$$\tau^* = \frac{\ln \lambda}{\ln(\lambda/\mu)}$$

- $\tau^* \approx 2$ generations for a (15, 100)-ES
 - (15 and 100 are typical values for the standard ES)
- Proportional selection in GA's: $\tau^* \approx \lambda \; ln\lambda = 460 \; generations!$

Evolutionary Computing Evolution strategies

28

Other components

- · Initialisation:
 - x_i, α_l: randomly
 - $-~\sigma_{j} \cdot \delta x_{i} / \sqrt{n},$ with $\delta x_{i} a$ very rough measure for the distance to the optimum
- Termination:
 - Termination after a number of generations
 - Or iff $\max\{f(\overline{x}_i(t))\}$ $\min\{f(\overline{x}_i(t))\} \le c(P(t))$
 - c(P(t)) absolute (= $\epsilon_1 > 0$), or
 - c(P(t)) relative (= $\varepsilon_2 \cdot |\overline{f}|$)
- Constraints:
 - Handled by repeating creation and evaluation of individuals

Evolutionary Computing

Evolution strategies

Evolution strategies