# Consistency - Chapter 5

- Introduce several notions of Local Consistency:
  - arc consistency,
  - hyper-arc consistency,
  - k-consistency and strong k-consistency.
- Local consistency is about the existence of partial solutions and their extensions.
- Local consistency helps search by making partial solutions easier to find.

# Example

Consider the three integer variables x, y and z each with the domain  $\{0, 1, \dots, 10\}$  and the single constraint:

$$x + y = z$$

For any variable and any value there is a solution containing that value and variable.

### Example Continued

 $x, y, z \in \{0, 1, \dots, 10\} \text{ and } x + y = z.$ 

- For any value, x, of X set Y to be 0 and Z to be x;
- For any value, y, of Y set X to be 0 and Z to be y;
- For any value, z, of Z set X to be 0 and Y to be z.

But if we set X to be 8 then this imposes the restrictions:

- $0 \le Y \le 2$
- $8 \le Z \le 10$ .

## Local Consistency

- The various notions of local consistency help understand what is going on in the previous example.
- Constraint propagation attempts to reduce domains so that in the previous example assigning 8 to X reduces the domain of Y and Z so that during search fewer possibilities have to be explored.
- Propagation is the heart of modern constraint programming. Without it constraint programming just reduces to generate and test.

### Arc Consistency of a Binary Constraint

- A binary constraint C on the variables x and y with domains X and Y is a subset of  $X \times Y$ . Such a  $C \subseteq X \times Y$  is arc consistent if:
  - $\forall a \in X \text{ there } \exists b \in Y \text{ such that } (a, b) \in C;$
  - $\forall b \in Y \text{ there } \exists a \in X \text{ such that } (a, b) \in C.$
- Note both directions are important.
- A CSP is said to be *consistent* is all its binary constraints are consistent (this definition is unproblematic if all the constraints in the CSP are binary).

# Examples of Arc-consistency

• For  $x \in [2 \dots 6], y \in [3 \dots 7]$  the constraint

is arc-consistent.

- For example
  - if x = 2 then there is a solution
  - if x = 6 then y must be 7
  - if y = 3 then x must be 2.

## A Non Arc-Consistent Constraint

• For  $x \in [2..7]$  and  $y \in [3..7]$  the constraint:

is not arc consistent.

• If x = 7 (allowed by the domains) then there is no value for y satisfying the constraint.

# Status of Arc Consistency

• Arc consistency does not imply consistency. Given  $x \in \{a,b\}$  and  $y \in \{a,b\}$  the two constraints

$$x = y$$
 and  $x \neq y$ 

are both arc-consistent.

• but there is obviously no solution to both constraints.

# Status of Arc Consistency

For particular CSPs arc consistency implies consistency.

• Given a CSP



where each constraint is arc-consistent, the whole CSP is consistent.

• To see this pick a value for y then arc-consistency gives a value for x and z.

In general if the constraint graph is a tree then arc consistency implies consistency.

### Achieving and Using Arc-Consistency

- The Basic Idea
  - remove values from the domain which do not take part in solutions.
- Given a constraint  $C \subseteq D_x \times D_y$  on the variables  $x \in D_x$  and  $y \in D_y$  reduce the domains by the following two rules:
  - $-D'_{x} = \{a \in D_{x} \mid \exists b \in D_{y} \text{ s.t. } (a, b) \in C\}$
  - $-D'_y = \{b \in D_y \mid \exists a \in D_x \text{ s.t. } (a, b) \in C\}$
- To achieve arc consistency you must apply both rules.

### Directional Arc Consistency

- Sometimes it can be expensive (computationally) to achieve arc consistency: perhaps because the domains are large.
- While searching for values of variables with backtrack search you might not need full arc consistency.
- Suppose you always assign a value to x before you assign a value to y then given a constraint C on x and y all you need is that for all values, a, of x there is a tuple (a, b) in C giving a value for y.

This leads to the notion of directional consistency.

### Directional Arc Consistency

#### Ingredients:

- A linear order  $\leq$  on the variables.
- A linear order is a binary relation such that:
  - For all  $x, x \leq x$  (reflexivity)
  - For all x and y,  $x \leq y$  and  $y \leq x$  implies x = y (antisymmetry)
  - For all x,y and  $z, x \leq y$  and  $y \leq z$  implies  $x \leq z$  (transitivity)
  - For all x and y either  $x \leq y$  or  $y \leq x$ .
- A linear order is just some fixed order on the variables.

### Directional Arc Consistency

Assume a linear ordering  $\leq$  on the variables:

- A constraint C on  $x \in D_x$ ,  $y \in D_y$  is directionally arc consistent w.r.t.  $\leq$  if:
  - $\forall a \in D_x \text{ there } \exists b \in D_y \text{ such that } (a, b) \in C \text{ provided that } x \leq y.$
  - $\forall b \in D_y \text{ there } \exists a \in D_x \text{ such that } (a, b) \in C \text{ provided that } y \leq x.$
  - A CSP is directionally arc consistent w.r.t.  $\preceq$  if all its binary constraints are.

## Directionally Arc Constraints - Example

- Given  $x \in [2...7]$ ,  $y \in [3...7]$  the constraint x < y is not arc consistent (no solution for x = 7).
- It is directionally arc consistent w.r.t.  $y \leq x$ . That is for any value you assign to y there is an assignment to x satisfying the constraint.
- Is is not directionally consistent when  $x \leq y$ : for example assigning 7 to x means that we can not assign any value to x.

### Non Binary Constraints and Consistency

- Most constraints that you meet are not binary, for example you have already met the alldifferent constraint.
- Although you can always model a problem with binary constraints it is not always as efficient as using global (non-binary) constraints.
- There are lots of possible definitions of arc-consistency possible for non-binary constraints.
- We will look at a pragmatically useful one which is often used in implementations.

## Hyper-Arc Consistency

• A constraint on the variables  $x_1, \ldots, x_n$  with the domains  $D_1, \ldots, D_n$  is hyper-arc consistent if

$$\forall i \in [1..n] \forall a \in D_i \text{ there } \exists d \in C \text{ s.t. } a = d[x_i]$$

- The notation  $d[x_i]$  takes a tuple of values in a relation and projects it down to the entry corresponding to the variable  $x_i$ .
- The tuple d is often called a supporting tuple of the assignment x=a.

## Hyper-arc Consistency - Examples

Suppose C is a constraint on the variables  $x \in \{1, 2, 3\}, y \in \{1, 2, 3\}$  and  $z \in \{1, 2, 3\}.$ 

Suppose C(x, y, z) is given by a list of tuples:  $\langle 1, 2, 3 \rangle, \langle 1, 2, 2 \rangle$  and  $\langle 2, 3, 3 \rangle$  then this is not hyper-arc consistent w.r.t to the domains since for z = 1 there is no tuple supporting it.

The first constraint in this lecture is hyper-arc consistent  $(x, y, z \in \{0, 1, ..., 10\} \text{ and } x + y = z).$ 

# Global Constraints

- Given some global constraints how to prune values from the domain to keep hyper-arc consistency.
- Problem to do this efficiently.
- Later on in the course you will meet many global constraints and pruning algorithms.

### Instantiations

Fix a CSP  $\mathcal{P}$ .

- ullet An instantiation is a function on a subset of the variables of  ${\mathcal P}$  which assigns a value in the domain.
- Notation from the book:

$$\{(x_1,d_1),\ldots,(x_n,d_n)\}$$

means  $x_1$  is assigned to  $d_1, \ldots, x_n$  is assigned to  $d_n$ .

• Another common notation:

$$x_1 \mapsto d_1 \wedge \cdots \wedge x_n \mapsto d_n$$

### Consistent Instantiations

We want a notion of when a partial solution satisfies a CSP  $\mathcal{P}$ .

• Given an instantiation I on the variables X, we denote the restriction of I to a set  $Y \subset X$ :

#### I|Y

- An instantiation I with domain X is consistent if for every constraint C of  $\mathcal{P}$  on the variables Y with  $Y \subset X$ , I|Y satisfies C. (I will often refer to consistent instantiations as partial solutions).
- A Consistent instantiation is a k-consistent instantiation if its domain consists of k variables.

### Example

Let  $\mathcal{P}$  be the CSP

$$x < y , y < z , x < z ; x \in [0...4] , y \in [1...5] , z \in [5...10]$$

Let I be  $x \mapsto 0 \land y \mapsto 5 \land z \mapsto 6$ 

- $I|\{x,y\} = x \mapsto 0 \land y \mapsto 5 \text{ and satisfies } x < y;$
- $I|\{x,z\} = x \mapsto 0 \land z \mapsto 6$  and satisfies x < z;
- $I|\{y,z\} = y \mapsto 5 \land z \mapsto 6$  and satisfies y < z.
- ullet So I is a 3-consistent instantiation. It is a solution to the CSP.

# k-Consistency

- A CSP is 1-consistent if for every variable x every unary constraint equals the domain of x (Node consistency).
- A CSP is k-consistent for k > 1 if every k 1-consistent instantiation can be extended to a k-consistent instantiation no matter which new variable is chosen.

### Example

Consider the CSP.



This is 2-consistent.

Pick any partial solution:

$$x_1 \mapsto 1$$

pick any other variable say  $x_3$  and we can find a consistent instantiation satisfying the constraints say  $x_3 = 2$ .

### Example Continued

But



is not 3-consistent.

To prove this we pick some 2-consistent partial solution:

$$x_1 \mapsto 1 \land x_2 \mapsto 2$$

this cannot be extended to a solution on 3 variables.

## Recap

- ullet To show k consistency you have to look at every consistent k-1 solution and every other variable and show that the extension exists.
- To disprove consistency you only have to find one counter example.

# Why is Consistency a Good Thing?

• If your CSP is k consistent you know that if you have assigned k-1 variables you can assign the next variable in the search tree.

But k-consistency is not the whole story.

- k consistency does not imply k-1 consistency (example next slide);
- If your CSP is k consistent you still have to find a k-1 consistent partial solution.

## Example



This CSP is consistent but not 3 consistent. There is a solution:

$$x_1 \mapsto 1 \land x_2 \mapsto 2 \land x_3 \mapsto 3$$

but the partial solution:

$$x_3 \mapsto 1 \land x_2 \mapsto 2$$

has no extension.

# Strong k-Consistency

- A CSP is strongly k-consistent where  $k \ge 1$  if it is i-consistent for every  $i \in [1 ... k]$ .
- A CSP with non-empty domains on k variables which is k-consistent has a solution.
- Sometimes we can do better (later in the course) and show when we only need a certain amount of local consistency to achieve global consistency.
- In the next lecture we will see that it is possible to make a CSP k-consistent (or show it is not consistent) for any k. So one way of solving the CSP is to progressively increase the level of consistency until the CSP is solved.

### Path Consistency

Path Consistency is a special case of k-consistency when k=2 (plus some other conditions to be spelled out below).

Consider the CSP

$$x < y$$
 ,  $y < z$  ,  $z < x$ 

with  $x \in \{1 \dots 1000\}$ ,  $y \in \{1 \dots 1000\}$  and  $z \in \{1 \dots 1000\}$ .

This can be shown to be inconsistent by using the arc-consistency domain reduction rules. Applying the rule to x < y gives that  $x \in \{1...999\}$  then applying the rule z < x gives  $z \in \{1...998\}$  and so on. Eventually you can show that the CSP is inconsistent.

# Path Consistency

But the CSP

$$x < y$$
 ,  $y < z$  ,  $z < x$ 

can be shown to be inconsistent: by combining the two constraints x < y and y < z allows you to deduce that x < z contradicting the constraint z < x.

# Operations on Binary Relations

Path consistency generalises the previous example to arbitrary binary constraints.

Given two binary relations R and S define the following operations:

• the transpose of R by

$$R^T = \{ (b, a) \mid (a, b) \in R \}$$

some people write  $R^{op}$  instead of  $R^T$ ;

• the composition of R and S by

$$R \cdot S = \{(a,c) \mid \exists b \text{ s.t. } (a,b) \in R \land (b,c) \in S\}$$

# Examples of Composition

• Let

$$R = \{(1,2), (1,3), (4,3), (2,3)\}$$

 $\bullet$  and

$$S = \{(1,3), (3,1), (4,2)\}$$

• then

$$R \cdot S = \{(1,1), (4,1), (2,1)\}$$

 $\bullet$  and

$$S \cdot R = \{(3,2), (3,3), (4,3)\}$$

# Normalised CSPs

A CSP is normalised if for every subsequence x,y of variables at most one constraint on x,y exists (defn. 5.15)

The CSP

$$x + y < 5, \ x + y \neq 2, \ x \in \{0 \dots 4\}, \ y \in \{0 \dots 4\}$$

is not normalised.

A CSP can be made normalised by taking the conjunctions of the multiple constraints.

### Path Consistency

Notation a C constraint on the variables x, y will be denoted  $C_{x,y}$ .

Given a constraint on the variables x, y there is also an imaginary constraint  $C_{y,x}^T$  on the variables y, x which is the transpose of the constraint C.

A normalised CSP is path consistent (Defn. 5.18) if for every subset of variables  $\{x,y,z\}$  of its variables have

$$C_{x,z} \subseteq C_{x,y} \cdot C_{y,z}$$

# Example

$$y \in [1 \dots 5]$$

$$x \in \{0 \dots 4\}$$

$$x \in [6 \dots 10]$$

# Path Consistency

- To make a CSP arc-consistent we reduced the domains.
- To make it path-consistent we reduce the constraints.
- Path consistency is about triangles of relations, so there are three rules.

# Path Consistency Rules

• Given  $C_{x,y}, C_{x,z}, C_{y,z}$  replace  $C_{x,y}$  by

$$C'_{x,y} = C_{x,y} \cap (C_{x,z} \cdot C_{y,z}^T)$$

• Given  $C_{x,y}, C_{x,z}, C_{y,z}$  replace  $C_{x,z}$  by

$$C'_{x,z} = C_{x,z} \cap (C_{x,y} \cdot C_{y,z})$$

• Given  $C_{x,y}, C_{x,z}, C_{y,z}$  replace  $C_{y,z}$  by

$$C'_{y,z} = C_{y,z} \cap (C_{x,y}^T \cdot C_{x,z})$$