Аналитическая геометрия

1 курс, специальность "Информатика" $1 \ \text{семестр} \\ (\text{Лектор - } \Gamma. \ \Pi. \ \text{Размыслович})$

Оглавление

1	Системы координат			
	1.1	Декартова система координат на прямой		
1.2 Система координат на плоскости			5	
		1.2.1	Декартова прямоугольная система координат (ДПСК)	5
		1.2.2	Полярная система координат	7
		1.2.3	Связь между декартовой и полярной системами координат	8
	1.3	Систе	мы координат в пространстве	8
		1.3.1	Декартова прямоугольная система координат	8
2	Век	торы		10

Глава 1

Системы координат

Метод координат – это способ устанавливать местоположение геометрических объектов с помощью чисел, знаков.

1.1 Декартова система координат на прямой

Рассмотрим некоторую прямую, одно из двух направлений прямой назовём *полоэсительным* и будем обозначать стрелкой, другое – *отрицательным*.

Прямая с выбранным на ней положительным направлением называется ocono (Δ).

Отрезок оси Δ , ограниченный точками A и B, называется **направленным**, если указано, какая из точек является точкой начала, а какая — точкой конца отрезка. Если A — точка начала и B — точка конца, то направленный отрезок обозначается как \overline{AB} . Направление отрезка также обозначается на рисунке стрелкой.

Если точки A и B совпадают, то отрезок называется $\mathit{нулевым}$ и его направление не определено $(\overline{AA}).$

Направленные отрезки

Два направленных отрезка \overline{AB} и \overline{CD} оси Δ называется **равными**, если A=C и B=D ($\overline{AB}=\overline{CD}$).

Выберем на оси Δ отрезок в качестве единицы масштаба, тогда можно измерить длину любого отрезка оси Δ .

Длина направленного отрезка \overline{AB} : $|\overline{AB}|$

Если d(A,B) – расстояние между точками A и B, то

$$d(A,B) = |\overline{AB}| = |\overline{AB}|$$

Рассмотрим два направленных отрезка \overline{AB} и \overline{CD} , которые лежат соответственно на двух параллельных осях Δ_1 и Δ_2 . Через точки A и C проведём плоскость Π , не содержащая точки B и D. Эта плоскость Π разбивает всё пространство на 2 полупространства.

Если точки B и D лежат в одном полупространстве, то говорят, что отрезки \overline{AB} и \overline{CD} сонаправленными и обозначается:

$$\overline{AB} \uparrow \uparrow \overline{CD}$$

Замечание. Eсли \overline{AB} и \overline{CD} лежат на одной оси Δ , то они сонаправлены, если найдётся такой направленный отрезок \overline{EF} , что $\overline{AB} \uparrow \uparrow \overline{EF}$ и $\overline{CD} \uparrow \uparrow \overline{EF}$.

Отрезки \overline{AB} и \overline{CD} называются npomusonoложно направленными $(\overline{AB}\uparrow\downarrow\overline{CD})$, если

$$\overline{AB} \uparrow \uparrow \overline{DC}$$

Определение. <u>Величиной</u> направленного отрезка \overline{AB} называется неотрицательное действительное число \overline{AB} и определяется по формуле:

$$AB ::= \begin{cases} |\overline{AB}|, \overline{AB} \uparrow \uparrow \Delta \\ -|\overline{AB}|, \overline{AB} \uparrow \downarrow \Delta \end{cases} \tag{1}$$

Теорема 1 (Шаля). Для любых трёх точек A, B, C оси Δ верно равенство

$$AB + BC = AC \tag{2}$$

- lack Для взаимного расположения точек <math>A, B, C возможны 6 ситуаций:
 - 1. $\overline{AB} \uparrow \uparrow \Delta$, $\overline{BC} \uparrow \uparrow \Delta$

A B C
$$\Delta$$

$$AB + BC = [AB = |\overline{AB}|, BC = |\overline{BC}|] = |\overline{AB}| + |\overline{BC}| = |\overline{AC}| = AC$$

2. $\overline{AB} \uparrow \uparrow \overline{BC} \uparrow \downarrow \Delta$

A C B
$$\Delta$$

$$AB + BC = [AB = -|\overline{AB}|, BC = -|\overline{BC}|] = -|\overline{AB}| - |\overline{BC}| = -(|\overline{AB}| + |\overline{BC}|) = -|\overline{AC}| = AC$$

3. $\overline{AB} \uparrow \uparrow \Delta, \overline{BC} \uparrow \downarrow \Delta, AB > BC$

$$AB + BC = [AB = |\overline{AB}|, BC = -|\overline{BC}|] = |\overline{AB}| - |\overline{BC}| = |\overline{AC}| = AC$$

4. $\overline{AB} \uparrow \uparrow \Delta, \overline{BC} \uparrow \downarrow \Delta, AB < BC$

C A B
$$\Delta$$

$$AB + BC = [AB = |\overline{AB}|, BC = -|\overline{BC}|] = |\overline{AB}| - |\overline{BC}| = -|\overline{AC}| = AC$$

5. $\overline{AB} \uparrow \downarrow \Delta, \overline{BC} \uparrow \uparrow \Delta, AB > BC$

$$AB + BC = [AB = -|\overline{AB}|, BC = |\overline{BC}|] = -|\overline{AB}| + |\overline{BC}| = -|\overline{AC}| = AC$$

6. $\overline{AB} \uparrow \downarrow \Delta, \overline{BC} \uparrow \uparrow \Delta, AB < BC$

B A C
$$\Delta$$

$$AB + BC = |AB = -|\overline{AB}|, BC = |\overline{BC}|| = -|\overline{AB}| + |\overline{BC}| = |\overline{AC}| = AC$$

Введём декартову систему координат. На оси Δ зададим точку O, которую назовём naчалом отсчёта, или началом координат. Возьмём [O, E] в качестве единицы масштаба.

Ось, на которой заданы точка начала отсчёта и единица масштаба, называется координатной осью. Полупрямая, исходящая из точки О в положительном направлении, называется положительной полуосью, а исходящая в отрицательном направлении - отрицательной полуосью.

Рассмотрим на координатной оси Δ точку A.

Определение. <u>Координата</u> x_A точки A $(A(x_A))$ — величина OA направленного отрезка \overline{AB} , m.~e.

$$x_A ::= OA \tag{3}$$

 $f:\Delta\longrightarrow\mathbb{R}$ — отображение 1 точек оси Δ в множество действительных чисел \mathbb{R}

Теорема 2. Для любых точек A и B координатной оси Δ верно:

$$AB = x_B - x_A \tag{4}$$

$$|\overline{AB}| = |x_B - x_A| \tag{5}$$

♦ На основании **Теоремы Шаля**

$$OA + AB = OB \Rightarrow AB = OB - OA \Rightarrow AB = x_B - x_A$$

(5) следует из (4) и того, что длина $|\overline{AB}|$ – это модуль величины этого отрезка.

¹Это отображение является взаимно-однозначным

Деление отрезков в заданном отношении

Рассмотрим на координатной оси Δ три точки $A, B, C \ (A \neq B)$ и некоторое число $\lambda \in \mathbb{R}$. Точка C делит направленный отрезок \overline{AB} в отношении λ , если выполняется:

$$AC = \lambda CB \tag{6}$$

Замечания.

1. $C \neq B$

Если C = B, то из (6) следует, что

$$AB = \lambda BB \Rightarrow AB = 0 \Rightarrow A = B$$

Противоречие!

2. Если C = A, то из (6) следует, что

$$AA = \lambda AB \Rightarrow \lambda AB = 0 \Rightarrow \lambda = 0$$

3. $\lambda \neq -1$

Если $\lambda = -1$, то из (6) следует, что

$$AC = -CB(BC) \Rightarrow A = B$$

Противоречие!

4. Если $\lambda > 0$, то точка С делит отрезок \overline{AB} внутренним образом. Если $\lambda < 0$, то точка С делит отрезок \overline{AB} внешним образом.

Найдем координаты x_C точки C, если известны координаты x_A и x_B .

Рассмотрим равенство (6): $x_C - x_A = \lambda(x_B - x_C) \Leftrightarrow x_C + \lambda x_C = x_A + x_B \Leftrightarrow$

$$x_C = \frac{x_A + \lambda x_B}{1 + \lambda} \tag{7}$$

$$\lambda = 1 \Rightarrow x_C = \frac{x_A + x_B}{2} \tag{8}$$

1.2 Система координат на плоскости

1.2.1 Декартова прямоугольная система координат (ДПСК)

Если на плоскости Π зафиксировать dee взаимно-перпендикулярные координатные оси с серединой O - точкой начала отсчёта, то говорят, что на плоскости Π задана прямоугольная система координат.

Рассмотрим на плоскости Π некоторую точку A. Ортогональным образом спроецируем её на координатные оси O_x и O_y и получим соответственно точки A_x и A_y .

 \mathcal{A} екартовыми прямоугольными координатами точки A называются величины направленных отрезков $\overline{OA_x}$ и $\overline{OA_y}$, т. е.

$$x_A ::= OA_x$$

$$y_A ::= OA_y$$

Запись $A(x_A, y_A)$ означает, что (x_A, y_A) – величины декартовых прямоугольных координат точки A.

Таким образом, каждой точке на плоскости Π ставится упорядоченная пара из двух декартовых координат этой точки.

Верно и обратное:

$$f:\Pi\longrightarrow\mathbb{R}$$

Расмотрим на плоскости П ещё точку $B(x_B, y_B)$. Найти $d(A, B) = |\overline{AB}|$

▶ Ортогональным образом спроецируем точки A и B на координатные оси O_x и O_y . Получим точки A_x, A_y, B_x, B_y .

$$|\overline{AN}| = |\overline{A_x B_x}| = |x_B - x_A|$$
$$|\overline{BN}| = |\overline{A_y B_y}| = |y_B - y_A|$$

Тогда по теореме Пифагора для $\triangle ANB$ получаем:

$$d(A,B) = |\overline{AB}| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$
(9)

Теорема 3. Координаты (x_C, y_C) точки C, делящей направленный отрезок $\overline{AB}(B \neq C)$ в отношении $\lambda = \frac{AC}{BC}$, равны:

$$\begin{bmatrix} x_C = \frac{x_A + \lambda x_B}{1 + \lambda} \\ y_C = \frac{y_A + \lambda y_B}{1 + \lambda} \end{bmatrix}$$
(10)

lacktriangle Проектируем точки A,B,C на O_x,O_y и воспользуемся $Teopemoù\ \Phi aneca\ (cm.\ чертёж)$

Рассмотрим $\triangle ABN$:

$$AN||CM \Rightarrow \frac{AC}{CB} = \frac{NM}{MB} = \lambda$$

$$\frac{NM}{MB} = \frac{A_x C_x}{C_x B_x} = \frac{x_A - x_C}{x_C - x_B} = \lambda \Leftrightarrow x_A - x_C = \lambda x_C - \lambda x_B \Leftrightarrow x_C (1 + \lambda) = x_A + \lambda x_B \Leftrightarrow x_C = \frac{x_A + \lambda x_B}{1 + \lambda}$$

Аналогично для $\triangle AA_{v}E$:

$$AA_y||BB_y||CC_y \Leftrightarrow \frac{y_A - y_C}{y_C - y_B} = \lambda \Leftrightarrow y_C = \frac{y_A + \lambda y_B}{1 + \lambda}$$

1.2.2 Полярная система координат

Зафиксируем на плоскости Π некоторую точку O, которую назовём *полюсом*, и луч OM, который назовём *полярной осью*. На ней выберем некоторый отрезок в качестве единицы масштаба.

Рассмотрим некоторую точку A на плоскости Pi и проведём луч OA.

Тогда точке A можно поставить в соответствие пару чисел (r,φ) - ее **полярные координаты**, где

$$r = d(O, A), 0 \le r < +\infty$$

 φ - угол, на который нужно повернуть полярную ось, чтобы она совпала с лучом OA (поворот провтив часовой стрелки - nonoжumenьное направление, по часовой стрелке -

$$ompuцательное), \varphi \in \mathbb{R}$$

Ясно, что если φ - полярный угол точки A, то $\varphi+2\pi k, k\in\mathbb{Z}$ также является полярным углом точки A. Поэтому значение полярного угла $-\pi<\varphi\leq\pi$ называется **главным значением** полярного угла точки A.

1.2.3 Связь между декартовой и полярной системами координат

Рассмотрим на плоскости Π некоторую прямоугольную декартову систему координат O_{xy} и такую полярную систему координат, что её полюс совпадает с точкой O, а полярная ось совпадает с положительной полуосью O_x .

Нетрудно видеть, что

$$\begin{cases} x_A = r\cos\varphi \\ y_A = r\sin\varphi \end{cases} \tag{11}$$

Из формулы (11) можно найти выражения полярных координат точки через её декартовы координаты, а именно:

$$\begin{cases} r = \sqrt{x_A^2 + y_A^2} \\ \cos \varphi = \frac{x_A}{\sqrt{x_A^2 + y_A^2}} \\ \sin \varphi = \frac{y_A}{\sqrt{x_A^2 + y_A^2}} \end{cases}$$
(12)

1.3 Системы координат в пространстве

1.3.1 Декартова прямоугольная система координат

Рассмотрим в пространстве 3 взаимно-перпендикулярные ортогональные оси с единой точкой отсчёта O.

Оси образуют 3 координатные плоскости: O_{xy}, O_{yz}, O_{xz} . Эти плоскости разбивают пространство на $8\ oкmanmos$.

Рассмотрим в пространстве точку A и спроецируем ортогональным образом на оси O_x, O_y, O_z . Отметим соответствующие точки A_x, A_y, A_z .

Определение. Декартовыми прямоугольными координатами точки A в пространстве называются величины отрезков $\overline{OA_x}, \overline{OA_y}, \overline{OA_z}, \ m.\ e.$

$$x_A ::= OA_x$$

$$y_A ::= OA_y$$

$$z_A ::= OA_z$$

$$A(x_A, y_A, z_A)$$

Теорема 4. Координаты (x_C, y_C, z_C) точки C, делящей отрезок \overline{AB} $(B \neq C)$ в отношении $\lambda = \frac{AC}{CB}$, равны:

$$x_{C} = \frac{x_{A} + \lambda x_{B}}{1 + \lambda}$$

$$y_{C} = \frac{y_{A} + \lambda y_{B}}{1 + \lambda}$$

$$z_{C} = \frac{z_{A} + \lambda z_{B}}{1 + \lambda}$$
(13)

♦ Доказательство Теоремы 4 аналогично доказательству Теоремы 3

$$d(A,B) = |\overline{AB}| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$
(14)

9