Authentication / Integrity

Hash Functions

Hash Functions

Definition

Collision Resistance (Birthday Attack)

Construction

- Merkle Damgård Transformation
- Construction of a 2n —> n hash function

Hash Function

1. Compression

2. Hard to find collision (collision-resistance)

Collision: a pair of inputs x_1, x_2 s.t. $H(x_1) = H(x_2)$

Example: Bad Hash Function

easy to find collision!

Building up intuition on Collisions...

$$\mathsf{MyH}: \{0,1\}^{3n} \to \{0,1\}^n$$

MyH(M)

parse $M = m_1 | m_2 | m_3$ output $h = m_1 \oplus m_2 \oplus m_3$ Find a collision in MyH

a pair of inputs A, B s.t. MyH(A)= MyH(B)

Why Collision Resistance is crucial?

•

•

•

Definition Collision-Resistance Hash function

A function $H:\{0,1\}^* \longrightarrow \{0,1\}^n$ is collision resistance if

- Compressing. |input| < |output|
- Collision Resistance. Finding a collision is hard.

For any PPT Adversary, probability that adversary finds two inputs **x**, **x**', such that

H(x) = H(x') is negligible.

Hash-Collision Game

H is collision-resistance if Pr[A finds a collision] = negl(n)

Definition from Introduction to Modern Cryptography

The collision-finding experiment Hash-coll_{A,Π}(n):

- 1. A key s is generated by running $Gen(1^n)$.
- 2. The adversary A is given s and outputs x, x'. (If Π is a fixed-length hash function for inputs of length $\ell'(n)$ then we require $x, x' \in \{0, 1\}^{\ell'(n)}$.)
- 3. The output of the experiment is defined to be 1 if and only if $x \neq x'$ and $H^s(x) = H^s(x')$. In such a case we say that A has found a collision.

Discussion on Collision-Resistance Hash Functions

▶ There is no secret!

The probability of success is negligible **but**

How hard is to find a collision?

Brute Force Attack. Time N=2ⁿ

- 1. Pick **N+1** messages m_1, \ldots, m_{N+1}
- 2. Compute hash H(m₁), ... H(m_N)

Birthday Attack

Time
$$\sqrt{N} = 2^{n/2}$$

Why "Birthday" Paradox

$$N = 365$$

 $q = \sqrt{365} = 23$

Discussion on Collision-Resistance Hash functions

Even the perfect hash function, can be broken in 2^{n/2}

If we want security of k bits, then the security parameter must be $n=\dots$?

Construction

Hash Functions

Definition

Collision Resistance (Birthday Paradox)

Construction

- Merkle Damgård Transformation
- Construction of a 2n —> n hash function

How to build an arbitrary length hash function

1

Merkle-Damgård transform.

Assume we can compress from 2n —> n, then we can compress any length

2 H

Hash function 2n —> n

Merkle-Damgård transformation

$$X = X_1 || X_2 || \dots$$

MD(x)

CONSTRUCTION 4.13

Let (Gen, h) be a fixed-length collision-resistant hash function for inputs of length $2\ell(n)$ and with output length $\ell(n)$. Construct a variable-length hash function (Gen, H) as follows:

- Gen: remains unchanged.
- H: on input a key s and a string $x \in \{0, 1\}^*$ of length $L < 2^{\ell(n)}$, do the following (set $\ell = \ell(n)$ in what follows):
 - 1. Set $B := \left\lceil \frac{L}{\ell} \right\rceil$ (i.e., the number of blocks in x). Pad x with zeroes so its length is a multiple of ℓ . Parse the padded result as the sequence of ℓ -bit blocks x_1, \ldots, x_B . Set $x_{B+1} := L$, where L is encoded using exactly ℓ bits.
 - 2. Set $z_0 := 0^{\ell}$.
 - 3. For i = 1, ..., B + 1, compute $z_i := h^s(z_{i-1}||x_i)$.
 - 4. Output z_{B+1} .

Theorem.

If H is a collision-resistant hash function with compression factor 2

then MD is a collision-resistant hash function for arbitrary input string

Proof.

By contradiction

Merkle Damgård transformation

Merkle

Damgård

Merkle Tree

How to build an arbitrary length hash function

Merkle-Damgard transform.

Assume we can compress from 2n —> n, then we can compress any length

2 Hash function 2n —> n

From Block-ciphers (Davies-Mayer)

From Number Theoretic Construction

(Ideal Permutation) Block-Cipher

E:
$$\{0,1\}^k \times \{0,1\}^m \longrightarrow \{0,1\}^m$$

Davies-Mayer

$$H: \{0,1\}^{k+n} \to \{0,1\}^n$$

MY Davies-Mayer***

can you find a collision?

E: $\{0,1\}^k \times \{0,1\}^m$

{0,1}^m HINT: we can decrypt

Many variants for constructing Hash functions from blockcipher

12 variants

 $z = E(k_0, m_0) \oplus k_0 \oplus m_0$

 $z = E(k_0 \oplus m_0, m_0) \oplus m_0$

.

.

Putting things together

Merkle-Damgård transform

Davie Mayers with block cipher

Putting things together

Merkle-Damgård transformation + Davies-Mayer

From Block-ciphers (Davies-Mayer)

From Number Theoretic Construction

Discrete Log Assumption

1. Number Theoretic Construction

Assume G is a cyclic group where the DL assumption is believed to hold

```
Gen(G, g, q)

pick a random h in G

Output h
```

<u>H(X,m)</u>

```
parse m = m_1 | m_2
Output y = g^{m_1} h^{m_2}
```

1. Number Theoretic Construction

Theorem.

Assume that the discrete logarithm problem is hard in G

Then (Gen, H) is a collision-resistant hash function

Proof.

By contradiction [on board in class]