CS 593/MA 595 - Introduction to Quantum Computing Quantum Computation and Quantum Information by Isaac Chuang, Michael Nielsen Student: Ralph Razzouk

Homework 3

Do the following exercises from Nielsen and Chuang: 4.6, 4.11, 4.12, 4.17, 4.34, 4.35, 4.38, 4.39. For 4.17 and 4.39, just draw your answer, you do not need to justify it.

Problem 4.6

(Bloch sphere interpretation of rotations) One reason why the $R_{\hat{n}}(\theta)$ operators are referred to as rotation operators is the following fact, which you are to prove. Suppose a single qubit has a state represented by the Bloch vector $\vec{\lambda}$. Then the effect of the rotation $R_{\hat{n}}(\theta)$ on the state is to rotate it by an angle θ about the \hat{n} axis of the Bloch sphere. This fact explains the rather mysterious looking factor of two in the definition of the rotation matrices.

Proof. Suppose a single qubit has a state represented by an arbitrary Bloch vector $\vec{\lambda}$. Without loss of generality, we can express $\vec{\lambda}$ in a coordinate system such that \hat{n} is aligned with the \hat{z} axis, so it suffices to consider how the state behaves under application $R_{\hat{z}}(\theta)$. Let $\vec{\lambda} = (\lambda_x, \lambda_y, \lambda_z)$ be the vector expressed in this coordinate system. By Exercise 2.72, the density operator ρ corresponding to this Bloch vector is given by:

$$\rho = \frac{\mathbb{I} + \vec{\lambda} \cdot \vec{\sigma}}{2}.$$

Observing how ρ transforms under conjugation by $R_{\hat{z}}(\theta)$, we have

$$\begin{split} R_{\hat{z}}(\theta)\rho R_{\hat{z}}(\theta)^{\dagger} &= R_{\hat{z}}(\theta)\rho R_{\hat{z}}(-\theta) \\ &= R_{\hat{z}}(\theta) \left(\frac{\mathbb{I} + \vec{\lambda} \cdot \vec{\sigma}}{2}\right) R_{\hat{z}}(-\theta) \\ &= R_{\hat{z}}(\theta) \left(\frac{\mathbb{I} + \lambda_x \sigma_x + \lambda_y \sigma_y + \lambda_z \sigma_z}{2}\right) R_{\hat{z}}(-\theta). \end{split}$$

Using $\sigma_j \sigma_k = \delta_{jk} + i \sum_l \epsilon_{jkl} \sigma_l$ and $\sigma_j \sigma_k = -\sigma_k \sigma_j$, we have

$$R_{\hat{z}}(\theta)\sigma_{x} = \left(\cos\left(\frac{\theta}{2}\right)\mathbb{I} - i\sin\left(\frac{\theta}{2}\right)\sigma_{z}\right)\sigma_{x}$$

$$= \cos\left(\frac{\theta}{2}\right)\mathbb{I}\sigma_{x} - i\sin\left(\frac{\theta}{2}\right)\sigma_{z}\sigma_{x}$$

$$= \cos\left(\frac{\theta}{2}\right)\sigma_{x}\mathbb{I} + i\sin\left(\frac{\theta}{2}\right)\sigma_{x}\sigma_{z}$$

$$= \sigma_{x}\left(\cos\left(\frac{\theta}{2}\right)\mathbb{I} + i\sin\left(\frac{\theta}{2}\right)\sigma_{z}\right)$$

$$= \sigma_{x}\left(\cos\left(-\frac{\theta}{2}\right)\mathbb{I} - i\sin\left(-\frac{\theta}{2}\right)\sigma_{z}\right)$$

$$= \sigma_{x}R_{\hat{z}}(-\theta).$$

Similarly, $R_{\hat{z}}(\theta)\sigma_y = \sigma_y R_{\hat{z}}(-\theta)$ and $R_{\hat{z}}(\theta)\sigma_z = \sigma_z R_{\hat{z}}(\theta)$. Then, we have

$$\begin{split} R_{\hat{z}}(\theta)\rho R_{\hat{z}}(\theta)^{\dagger} &= R_{\hat{z}}(\theta) \left(\frac{\mathbb{I} + \lambda_x \sigma_x + \lambda_y \sigma_y + \lambda_z \sigma_z}{2}\right) R_{\hat{z}}(-\theta) \\ &= \left(\frac{\mathbb{I} R_{\hat{z}}(\theta) + \lambda_x \sigma_x R_{\hat{z}}(-\theta) + \lambda_y \sigma_y R_{\hat{z}}(-\theta) + \lambda_z \sigma_z R_{\hat{z}}(\theta)}{2}\right) R_{\hat{z}}(-\theta) \\ &= \frac{\mathbb{I} + \lambda_x \sigma_x R_{\hat{z}}(-2\theta) + \lambda_y \sigma_y R_{\hat{z}}(-2\theta) + \lambda_z \sigma_z}{2}. \end{split}$$

By term-by-term calculation, we have

$$\sigma_x R_{\hat{z}}(-2\theta) = \sigma_x \left(\cos \left(-\frac{2\theta}{2} \right) - i \sin \left(-\frac{2\theta}{2} \right) \sigma_z \right)$$

$$= \sigma_x \left(\cos(\theta) + i \sin(\theta) \sigma_z \right)$$

$$= \cos(\theta) \sigma_x + i \sin(\theta) \sigma_x \sigma_z$$

$$= \cos(\theta) \sigma_x + i \sin(\theta) (-i \sigma_y)$$

$$= \cos(\theta) \sigma_x + \sin(\theta) \sigma_y,$$

$$\sigma_y R_{\hat{z}}(-2\theta) = \sigma_y \left(\cos \left(-\frac{2\theta}{2} \right) - i \sin \left(-\frac{2\theta}{2} \right) \sigma_z \right)$$

$$= \sigma_y \left(\cos(\theta) + i \sin(\theta) \sigma_z \right)$$

$$= \cos(\theta) \sigma_y + i \sin(\theta) \sigma_y \sigma_z$$

$$= \cos(\theta) \sigma_y + i \sin(\theta) (i \sigma_x)$$

$$= \cos(\theta) \sigma_y - \sin(\theta) \sigma_x,$$

and substituting in the inital expression, we get

$$\begin{split} R_{\hat{z}}(\theta)\rho R_{\hat{z}}(\theta)^{\dagger} &= \frac{\mathbb{I} + \lambda_x \sigma_x R_{\hat{z}}(-2\theta) + \lambda_y \sigma_y R_{\hat{z}}(-2\theta) + \lambda_z \sigma_z}{2} \\ &= \frac{\mathbb{I} + \lambda_x \left(\cos(\theta)\sigma_x + \sin(\theta)\sigma_y\right) + \lambda_y \left(\cos(\theta)\sigma_y - \sin(\theta)\sigma_x\right) + \lambda_z \sigma_z}{2} \\ &= \frac{\mathbb{I} + \left(\lambda_x \cos(\theta) - \lambda_y \sin(\theta)\right)\sigma_x + \left(\lambda_x \sin(\theta) + \lambda_y \cos(\theta)\right)\sigma_y + \lambda_z \sigma_z}{2}. \end{split}$$

From this, the new Bloch vector $\vec{\lambda}'$, after conjugation by $R_{\hat{z}}(\theta)$ is expressed as

$$\vec{\lambda}' = (\lambda_x \cos(\theta) - \lambda_y \sin(\theta), \lambda_x \sin(\theta) + \lambda_y \cos(\theta), \lambda_z).$$

Notice that

$$\vec{\lambda}' = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \lambda_x\\ \lambda_y\\ \lambda_z \end{pmatrix},$$

where the matrix is the 3-dimensional rotation matrix about \hat{z} by an angle of θ .

Thus, the conjugation of ρ under $R_{\hat{z}}(\theta)$ has the equivalent effect to rotating the Bloch vector by θ about the z-axis, and hence, the effect of $R_{\hat{n}}(\theta)$ on a one qubit state is to rotate it by an angle θ about \hat{n} .

Problem 4.12

Give A, B, C, and α for the Hadamard gate

Proof. Since the Hadamard gate H is a unitary gate on a single qubit, then there exist unitary operators A, B, C on a single qubit such that $ABC = \mathbb{I}$ and $U = e^{i\alpha}AXBXC$, where α is some overall phase factor.

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = e^{i\frac{\pi}{2}} R_z(\pi) R_y \left(-\frac{\pi}{2} \right) R_z(0).$$

Thus,

$$A = R_z(\pi)R_y\left(-\frac{\pi}{4}\right)$$

$$B = R_y\left(\frac{\pi}{4}\right)R_z\left(-\frac{\pi}{2}\right)$$

$$C = R_z\left(-\frac{\pi}{2}\right)$$

$$\alpha = \frac{\pi}{2}.$$

Page 2 of 5

Problem 4.17

(Building CNOT from controlled-Z gates) Construct a CNOT gate from one controlled-Z gate, that is, the gate whose action in the computational basis is specified by the unitary matrix

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix},$$

and two Hadamard gates, specifying the control and target qubits.

Proof. From Exercise 4.13, we have that HZH = X. To obtain a CNOT gate from a single controlled-Z gate, we can conjugate the target qubit with Hadamard gates

which is

$$\begin{pmatrix} H & 0 \\ 0 & H \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & Z \end{pmatrix} \begin{pmatrix} H & 0 \\ 0 & H \end{pmatrix} = \begin{pmatrix} HH & 0 \\ 0 & HZH \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & X \end{pmatrix} = CNOT.$$

Problem 4.34

(Measuring an operator) Suppose we have a single qubit operator U with eigenvalues ± 1 , so that U is both Hermitian and unitary, so it can be regarded both as an observable and a quantum gate. Suppose we wish to measure the observable U. That is, we desire to obtain a measurement result indicating one of the two eigenvalues, and leaving a post-measurement state which is the corresponding eigenvector. How can this be implemented by a quantum circuit? Show that the following circuit implements a measurement of U:

Proof. We can obtain a measurement result indicating one of the two eigenvalues, while leaving a post-measurement state which is the corresponding eigenvector by using a controlled gate to entangle the system to a qubit whose measurement will collapse the state into +1 or -1, while also giving us the state of the original qubit. Additionally, since U is both Hermitian and unitary, then it is also an involutory matrix, i.e. $1 = U^{\dagger}U = UU = U^2$. The circuit will execute as follows

$$\begin{split} |0\rangle \left| \psi \right\rangle &\to^{H} \frac{1}{\sqrt{2}} (\left| 0 \right\rangle \left| \psi \right\rangle + \left| 1 \right\rangle \left| \psi \right\rangle) \\ &\to^{CU} \frac{1}{\sqrt{2}} (\left| 0 \right\rangle \left| \psi \right\rangle + \left| 1 \right\rangle U \left| \psi \right\rangle) \\ &\to^{H} \frac{1}{2} \left[\left| 0 \right\rangle \left| \psi \right\rangle + \left| 1 \right\rangle \left| \psi \right\rangle + \left| 0 \right\rangle U \left| \psi \right\rangle + \left| 1 \right\rangle U \left| \psi \right\rangle \right] \\ &= \frac{1}{2} \left[\left| 0 \right\rangle (\mathbb{I} + U) \left| \psi \right\rangle + \left| 1 \right\rangle (\mathbb{I} - U) \left| \psi \right\rangle \right]. \end{split}$$

• If the measurement value is $|0\rangle$, then the state is in $|\psi_{out}\rangle = (\mathbb{I}+U) |\psi\rangle$, where $U |\psi_{out}\rangle = U(\mathbb{I}+U) |\psi\rangle = (\mathbb{I}+U) |\psi\rangle$, and thus has an eigenvalue of +1.

• If the measurement value is $|1\rangle$, then the state is in $|\psi_{out}\rangle = (\mathbb{I} - U) |\psi\rangle$, where $U |\psi_{out}\rangle = U(\mathbb{I} - U) |\psi\rangle = -(\mathbb{I} - U) |\psi\rangle$, and thus has an eigenvalue of -1.

Problem 4.35

(Measurement commutes with controls) A consequence of the principle of deferred measurement is that measurements commute with quantum gates when the qubit being measured is a control qubit, that is:

(Recall that the double lines represent classical bits in this diagram.) Prove the first equality. The rightmost circuit is simply a convenient notation to depict the use of a measurement result to classically control a quantum gate.

Proof. Let the system be in the state $a|0\rangle |\psi\rangle + b|1\rangle |\psi\rangle$. Then the effect of the circuits are

• Circuit 1:

$$\begin{split} a \left| 0 \right\rangle \left| \psi \right\rangle + b \left| 1 \right\rangle \left| \psi \right\rangle &\to^{CU} a \left| 0 \right\rangle \left| \psi \right\rangle + b \left| 1 \right\rangle U \left| \psi \right\rangle \\ &\to^{M} \begin{cases} \left| 0 \right\rangle, & \text{with } p = |a|^{2} \text{ and state } |\psi\rangle, \\ \left| 1 \right\rangle, & \text{with } p = |b|^{2} \text{ and state } U \left| \psi \right\rangle \end{cases} \end{split}$$

• Circuit 2:

$$\begin{split} a \left| 0 \right\rangle \left| \psi \right\rangle + b \left| 1 \right\rangle \left| \psi \right\rangle &\to^M \begin{cases} \left| 0 \right\rangle, & \text{with } p = |a|^2 \text{ and state } \left| \psi \right\rangle, \\ \left| 1 \right\rangle, & \text{with } p = |b|^2 \text{ and state } \left| \psi \right\rangle \end{cases} \\ &\to^{CU} \begin{cases} \left| 0 \right\rangle, & \text{with } p = |a|^2 \text{ and state } \left| \psi \right\rangle, \\ \left| 1 \right\rangle, & \text{with } p = |b|^2 \text{ and state } U \left| \psi \right\rangle \end{cases} \end{split}$$

Problem 4.38

Prove that there exists a $d \times d$ unitary matrix U which cannot be decomposed as a product of fewer than d-1 two-level unitary matrices.

Proof. Suppose U is a $d \times d$ unitary matrix which can be decomposed using less than d-1 two-level unitaries. We can think of each two-level unitary as an "edge" linking some pair of nodes $|i\rangle$ and $|j\rangle$, interpreting each node as a vertex. Let $U = U_{d-1}U_{d-2}\cdots U_2U_1$, where U_k is a two-level unitary. The graph corresponding to U has at most d-1 edges corresponding to the U_k operators, but we have d vertices, then there must be two subsets of nodes on which U acts independently. Hence, U must be block diagonal in some rearrangement of the initial basis. A one-component graph would require more than d-1 edges. A non-block diagonal operator cannot be written with less than d operators U_k .

Clearly not every U has this form. To name one example, the Quantum Fourier Transform matrix doesn't. Thus, by contradiction, there exists a $d \times d$ matrix U which cannot be decomposed as a product of fewer than d-1 two-level unitary matrices.

Problem 4.39

Find a quantum circuit using single qubit operations and CNOTs to implement the transformation

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & a & 0 & 0 & 0 & 0 & c \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & b & 0 & 0 & 0 & 0 & d \end{bmatrix}$$

where $\tilde{U} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ is an arbitrary 2×2 unitary matrix.

Proof. From the entries of the matrix, we can see that it acts non-trivially on the states $|010\rangle$ and $|111\rangle$. We write a Gray code connecting 010 and 111:

From this we read off the required circuit to be

Give an example of a unitary 2-qubit gate $U: (\mathbb{C}^2)^{\otimes 2} \to (\mathbb{C}^2)^{\otimes 2}$ that is "entangling," that is, can not be expressed as a tensor product $U_1 \otimes U_2$ where U_1 and U_2 are two 1-qubit gates $U_1, U_2: \mathbb{C}^2 \to \mathbb{C}^2$. Justify your example.

Proof. An example of a unitary 2-qubit gate that is "entangling" is the CNOT gate, given by

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} \mathbb{I}_2 & 0 \\ 0 & X \end{pmatrix}.$$

This gate is not separable (entangling) as it cannot be written as the tensor product of two matrices. In fact, if it separable, then

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \otimes B = \begin{pmatrix} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{pmatrix} \implies \begin{cases} \mathbb{I}_2 = a_{11}B \\ X = a_{22}B \end{cases} \implies \mathbb{I}_2 = bX,$$

where $b=\frac{a_{11}}{a_{22}}$ is some scalar, which is a contradiction. Therefore, CNOT is an entangling gate.