

IIC2223 — Teoría de Autómatas y Lenguajes Formales — 2' 2021

PAUTA TAREA 6

Pregunta 1

Por demostrar el contrapositivo, es decir, que si \mathcal{G} no es unambigua, entonces \mathcal{G} no es LL(k) para algún k > 0. Sea \mathcal{G} una gramática no unambigua. Por contradicción, suponga que \mathcal{G} es LL(k) para algún k > 0.

Como \mathcal{G} es una gramática NO unambigua, entonces existe $w \in \mathcal{L}(\mathcal{G})$ tal que existen 2 o más derivaciones de w según \mathcal{G} . Suponga que estas son:

$$\bullet S \xrightarrow[lm]{} \alpha_1 \xrightarrow[lm]{} \alpha_2 \xrightarrow[lm]{} \dots \xrightarrow[lm]{} \alpha_n \xrightarrow[lm]{} w$$

$$\bullet S \Longrightarrow_{lm} \beta_1 \Longrightarrow_{lm} \beta_2 \Longrightarrow_{lm} \dots \Longrightarrow_{lm} \beta_n \Longrightarrow_{lm} w$$

Sea i el menor natural tal que $\alpha_i \neq \beta_i$. Entonces,

1.
$$S \stackrel{*}{\Longrightarrow} uX\gamma \stackrel{*}{\Longrightarrow} u\gamma_1\gamma \stackrel{*}{\Longrightarrow} w$$
, con $uX\gamma = \alpha_{i-1} y u\gamma_1\gamma = \alpha_i$.

2.
$$S \stackrel{*}{\Longrightarrow} uX\gamma \stackrel{*}{\Longrightarrow} u\gamma_2\gamma \stackrel{*}{\Longrightarrow} w$$
, con $uX\gamma = \beta_{i-1} y u\gamma_2\gamma = \beta_i$.

Como $\alpha_i \neq \beta_i$, entonces $\gamma_1 \neq \gamma_2$ (*).

Luego, sea v tal que w = uv. Si consideramos $v = v_1 = v_2$, como \mathcal{G} se supuso LL(k), se cumple el ítem 1, el ítem 2 y $v_1|_k = v_2|_k$, por definición se deduce que $\gamma_1 = \gamma_2$. Pero, esto contradice (*).

Por lo tanto, si \mathcal{G} no es unambigua, entonces \mathcal{G} no puede ser LL(k).

- (1 punto) Por utilizar 2 derivaciones.
- \blacksquare (1 punto) Por encontrar el menor i que diferencia las derivaciones.
- (1 punto) Por el ítem 1, el ítem 2 y (*).
- (1 punto) Por la conclusión.

Pregunta 2

Pregunta 2.1

Para demostrar que existe una CFG en CNF que es LL(k), pero no LL(k) fuerte para algún $k \geq 3$, bastará con encontrar una CFG que cumpla la condición buscada.

Podemos encontrar la gramática basándonos en el ejemplo visto en clases para una gramática cualquiera:

$$S \to aXaa \mid bXba$$
$$X \to b \mid \varepsilon$$

Es claro que esta gramática no está en CNF, pero podemos seguir la misma idea formando la siguiente gramática \mathcal{G} :

$$S \rightarrow AY_1 \mid BY_2$$

$$Y_1 \rightarrow XZ_1$$

$$Y_2 \rightarrow XZ_2$$

$$X \rightarrow CB \mid C$$

$$Z_1 \rightarrow AA$$

$$Z_2 \rightarrow BA$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$C \rightarrow c$$

Luego, podemos seguir la misma idea de clases, pero para LL(3) encontrando que:

 \bullet $S \stackrel{*}{\Rightarrow} aXZ_1, X \Rightarrow CB \land X \Rightarrow C$:

$$first_3(CBZ_1) \cap first_3(CZ_1) = \{cba\} \cap \{caa\} = \emptyset$$

 \bullet $S \stackrel{*}{\Rightarrow} aXZ_2, X \Rightarrow CB \land X \Rightarrow C$:

$$first_3(CBZ_2) \cap first_3(CZ_2) = \{cbb\} \cap \{cba\} = \emptyset$$

Por lo tanto, \mathcal{G} es LL(3).

Analizando ahora la gramática para ver si es LL(3) fuerte, con $S \stackrel{*}{\Rightarrow} aXZ_1$, $X \Rightarrow CB \land X \Rightarrow C$ podemos ver lo siguiente:

$$\begin{aligned} \operatorname{first}_3(CB) \odot_3 \operatorname{follow}_3(X) \cap \operatorname{first}_3(C) \odot_3 \operatorname{follow}_3(X) &= \\ \operatorname{first}_3(CB) \odot_3 \left(\operatorname{first}_3(Z_1) \cup \operatorname{first}_3(Z_2) \right) \cap \operatorname{first}_3(C) \odot_3 \left(\operatorname{first}_3(Z_1) \cup \operatorname{first}_3(Z_2) \right) &= \\ \left\{ cb \right\} \odot_3 \left\{ aa, ba \right\} \cap \left\{ c \right\} \odot_3 \left\{ aa, ba \right\} &= \\ \left\{ cba, cbb \right\} \cap \left\{ caa, cba \right\} &= \\ \left\{ cba \right\} \end{aligned}$$

Por lo tanto, \mathcal{G} no es LL(3) fuerte.

Dado lo anterior, la distribución de puntaje es la siguiente:

- (1 punto) Por construir una gramática que cumpla con ser LL(3), pero no LL(3) fuerte.
- (2 puntos) Por convertir correctamente la gramática a CNF.
 - (1 punto) Por simular correctamente los distintos caminos para S ($S \to AY_1 \mid BY_2; Y_1 \to XZ_1; Y_2 \to XZ_2$)
 - (1 punto) Por simular correctamente la producción vacía $(X \to CB \mid C)$
- (1 punto) Por demostrar que la gramática entregada es LL(3), pero no LL(3) fuerte.

Pregunta 2.2

Para demostrar que toda gramática en CNF que es LL(k) es también LL(k) fuerte para $k \leq 2$, bastará demostrar esta condición para k = 2, pues el caso k = 1 se demostró en clases.

Sea \mathcal{G} una gramática LL(2) en CNF. Sabemos que cumplirá que para todas dos reglas distintas $Y \to \gamma_1$, $Y \to \gamma_2$ y para todo $S \stackrel{*}{\Rightarrow} uY\beta$ se tiene que:

$$first_2(\gamma_1\beta) \cap first_2(\gamma_2\beta) = \emptyset$$

Podemos demostrar por casos que esta gramática será LL(2) fuerte.

1. Suponga que $\operatorname{first}_2(\gamma_1) \cap \Sigma^{\leq 1} \neq \emptyset \wedge \operatorname{first}_2(\gamma_2) \cap \Sigma^{\leq 1} \neq \emptyset$. Para que algún elemento de $\operatorname{first}_2(\gamma_1)$ tenga largo 1, tiene que cumplirse que $\gamma_1 = a$, con $a \in \Sigma$, ya que sabemos que $\mathcal G$ está en CNF.

Análogamente, tendremos que $\gamma_2 = b$, con $b \in \Sigma$ y como $Y \to \gamma_1$ y $Y \to \gamma_2$ deben ser reglas distintas, es claro que $a \neq b$ y, por tanto:

$$\operatorname{first}_2(\gamma_1) \odot_2 \operatorname{follow}_2(Y) \cap \operatorname{first}_2(\gamma_2) \odot_2 \operatorname{follow}_2(Y) = \emptyset$$

2. Suponga que $\operatorname{first}_2(\gamma_1) \cap \Sigma^{\leq 1} = \emptyset \wedge \operatorname{first}_2(\gamma_2) \cap \Sigma^{\leq 1} = \emptyset$. Como todos los elementos de $\operatorname{first}_2(\gamma_1)$ y $\operatorname{first}_2(\gamma_2)$ tienen largo 2, tendremos que:

$$first_2(\gamma_1) \odot_2 follow_2(Y) = first_2(\gamma_1)$$

= $first_2(\gamma_1 \beta)$

Ánalogamente, $first_2(\gamma_2) \odot_2 follow_2(Y) = first_2(\gamma_2\beta)$. Entonces se cumple que:

$$\operatorname{first}_2(\gamma_1) \odot_2 \operatorname{follow}_2(Y) \cap \operatorname{first}_2(\gamma_2) \odot_2 \operatorname{follow}_2(Y) = \emptyset$$

3. Suponga que $\operatorname{first}_2(\gamma_1) \cap \Sigma^{\leq 1} \neq \emptyset \wedge \operatorname{first}_2(\gamma_2) \cap \Sigma^{\leq 1} = \emptyset$. Al igual que para el primer caso, tendremos que $\gamma_1 = a$, con $a \in \Sigma$ y, al igual que en el segundo caso, tendremos que $\operatorname{first}_2(\gamma_2) = \operatorname{first}_2(\gamma_2\beta) = \operatorname{first}_2(\gamma_2\beta')$ para todo $\beta, \beta' \in (V \cup \Sigma)^*$.

Luego, como \mathcal{G} es LL(2), tenemos que para todo $\beta' \in (V \cup \Sigma)^*$:

Lo que significa que:

$$\begin{split} \operatorname{first}_2(\gamma_1) \odot_2 \operatorname{follow}_2(Y) \cap \operatorname{first}_2(\gamma_2) \odot_2 \operatorname{follow}_2(Y) \\ &= \bigcup_{S \overset{*}{\underset{\lim}{\longrightarrow}} uY\beta} \operatorname{first}_2(\gamma_1\beta) \cap \bigcup_{S \overset{*}{\underset{\lim}{\longrightarrow}} uY\beta'} \operatorname{first}_2(\gamma_1\beta') \\ &= \varnothing \end{split}$$

Finalmente, como para todos los casos se cumple que $\mathtt{first}_2(\gamma_1)\odot_2\mathtt{follow}_2(Y)\cap\mathtt{first}_2(\gamma_2)\odot_2\mathtt{follow}_2(Y) = \emptyset$, si una gramática $\mathcal G$ en CNF es LL(k), también será LL(k) fuerte para todo $k \leq 2$.

Dado lo anterior, la distribución de puntaje es la siguiente:

- (1 punto) Por el caso 1.
- (1 punto) Por el caso 2.
- (1 punto) Por el caso 3.
- (1 punto) Por concluir correctamente.