Métodos Numéricos Computacionais (2ª Lista de Exercícios) Engenharia de Computação, Prof. Sebastião C. P. Gomes

Questão 1

Determine os coeficientes de um polinômio do terceiro grau que melhor se ajuste aos pontos:

Ī	X	0	1	2	3	4	5	6	7	8
Ī	y	-12	-11	-9	-2	2	6	9	11	12

Utilize os seguintes métodos:

Questão 2

Determine a equação de uma reta que melhor se ajuste aos pontos:

X	0	2	4	6	8	10
у	1.12	5.06	9.09	13.12	17.14	21.11

Questão 3

Em um determinado experimento, medições realizadas mostraram que o número de elementos de uma população de bactérias diminuía com o tempo, de forma aproximadamente exponencial:

tempo	0	1	2	3	4	5	6	7	8	9	10
quant	419	274	181	122	85	61	46	36	30	26	24

Tente ajustar os pontos acima por uma função do tipo $\phi(x) = a_1 e^{a_2 x}$ (identificar a_1 e a_2);

Ouestão 4

As funções $y_1(x) = -x^2 + 0.4sin(5x) + 3$ e $y_2(x) = x^2 + 0.8cos(3x)$ se interceptam em dois pontos, conforme mostra a figura abaixo.

Determine a área formada entre as curvas (entre os pontos de intersecção):

- a) Solução analítica;
- b) Aproximação por Simpson (11 pontos);
- c) Aproximação por Trapézios (11 pontos).

Observar 1e-4 de precisão para a obtenção dos pontos de intersecção.

Ouestão 5:

Considere a seguinte integral definida:

$$u = \int_{1}^{6} \frac{\cos\left(\frac{1}{x}\right)}{x^2} dx$$

- a) Pesquise sobre a existência de uma solução analítica;
- b) Determine as soluções numéricas por Simpson e Trapézios e calcule os erros cometidos (utilizar o mesmo passo de integração em ambos os casos).

Ouestão 6:

Encontre a área entre as curvas das seguintes funções:

 $u = \sin(x)$ e $v = e^e$, entre 0 e 1. Utilize os métodos de Simpson e Trapézios e compare os resultados com a solução analítica.

Questão 7 (para programar):

Foi projetado o controle em posição de um motor elétrico. A curva solução analítica para o ângulo do rotor em resposta ao degrau possui a forma:

$$\theta(t) = 1 - \frac{e^{-(\gamma \omega)t}}{w\sqrt{1 - \gamma^2}} [sin(wt) + \varphi]$$

Onde:

$$\gamma = 0.9; \ w = 6; \ \varphi = tg^{-1} \left(\frac{\sqrt{1 - \gamma^2}}{\gamma} \right)$$

- a) Obtenha as funções analíticas correspondentes à velocidade e a aceleração do rotor;
- b) Utilizando a derivação numérica com 0.005s de passo, determine os sinais equivalentes à velocidade e a aceleração;
- c) Obtenha gráficos contendo os sinais analíticos e numéricos, bem como os erros nas derivações numéricas.

Questão 8 (para programar)

Considere um sinal função do tempo na forma:

t=0:0.005:10;

 $y=(2*\sin(2*pi*t).*\exp(-0.1*t)+0.2*\cos(20*pi*t))./(4-0.1*t+0.2*\sin(10*pi*t));$

- a) Derive duas vezes o sinal y;
- b) Integre duas vezes (por trapézios) o sinal obtido após a última derivação e compare-o com o sinal original;

Observação: utilize o mesmo passo 0.005s para derivar e integrar.