

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Робототехники и комплексной автоматизации»

КАФЕДРА «Системы автоматизированного проектирования (РК-6)»

ОТЧЁТ О ВЫПОЛНЕНИИ ДОМАШНЕГО ЗАДАНИЯ

по дисциплине «Вычислительная математика»

Студент:	Кочетов Иван Андреевич	
Группа:	PK6-54B	
Тип задания:	Домашнее задание № 1.3	
Тема:	Интерполяционные	полиномы
	Лагранжа	

Студент	подпись, дата	$\frac{\text{Koyetob } H. A.}{\Phi_{\text{амилия, И.О.}}}$
Преподаватель	подпись, дата	Фамилия, И.О.

Содержание

И	нтер	поляционные полиномы Лагранжа	3
	Зада	ание	3
	1	Выполнение задания	3
	2	Ответ	3

Интерполяционные полиномы Лагранжа

Задание

Требуется найти интерполяционный многочлен Лагранжа, проходящий через узлы

$$x_1 = 1, x_2 = \frac{3}{5}, x_3 = \frac{9}{10}$$
 (1)

для функции $f(x) = \sqrt{1+x}$.

1 Выполнение задания

Запишем формулу интерполяционного полинома Лагранжа:

$$L_{n-1}(x) = \sum_{i=1}^{n} f(x_i) \prod_{i \neq j}^{n} \frac{x - x_j}{x_i - x_j}$$
 (2)

Так как набор (1) состоит из трёх точек, то возьмём n = 3.

Определим значения $f(x_i)$, подставив значения аргумента x из набора (1) в заданную функцию $f(x) = \sqrt{1+x}$. Тогда получим следующие значения:

$$f(x_1) = \sqrt{1+1} = \sqrt{2} \tag{3.1}$$

$$f(x_2) = \sqrt{1 + \frac{3}{5}} = \sqrt{\frac{8}{5}} \tag{3.2}$$

$$f(x_3) = \sqrt{1 + \frac{3}{5}} = \sqrt{\frac{19}{10}} \tag{3.3}$$

Подставим (3.1), (3.2) и (3.3) в формулу (2) и получим:

$$L_2(x) = \sqrt{2} \frac{\left(x - \frac{3}{5}\right)\left(x - \frac{9}{10}\right)}{\left(1 - \frac{3}{5}\right)\left(1 - \frac{9}{10}\right)} + \sqrt{\frac{8}{5}} \frac{\left(x - 1\right)\left(x - \frac{9}{10}\right)}{\left(\frac{3}{5} - 1\right)\left(\frac{3}{5} - \frac{9}{10}\right)} + \sqrt{\frac{19}{10}} \frac{\left(x - 1\right)\left(x - \frac{3}{5}\right)}{\left(\frac{9}{10} - 1\right)\left(\frac{9}{10} - \frac{3}{5}\right)}$$
(4)

Раскрыв скобки в формуле (4), получим:

$$L_2(x) = 25\sqrt{2}\left(x^2 - \frac{3}{2}x + \frac{27}{50}\right) + \frac{50}{3}\sqrt{\frac{2}{5}}\left(x^2 - \frac{19}{10}x + \frac{9}{10}\right) - \frac{100}{3}\sqrt{\frac{19}{10}}\left(x^2 - \frac{8}{5}x + \frac{3}{5}\right)$$
 (5)

2 Ответ

Интерполяционный многочлен Лагранжа, проходящий через узлы

$$x_1 = 1, x_2 = \frac{3}{5}, x_3 = \frac{9}{10}$$

для функции $f(x) = \sqrt{1+x}$ имеет следующий вид:

$$L_2(x) = 25\sqrt{2}\left(x^2 - \frac{3}{2}x + \frac{27}{50}\right) + \frac{50}{3}\sqrt{\frac{2}{5}}\left(x^2 - \frac{19}{10}x + \frac{9}{10}\right) - \frac{100}{3}\sqrt{\frac{19}{10}}\left(x^2 - \frac{8}{5}x + \frac{3}{5}\right)$$