

EE3704 Embedded System

Chapter 6

Presented by Asst. Prof. Dr. Narong Aphiratsakun

Chapter 6: Analog Output (share with PWM (8 bits))

Arduino Uno R3 Pinout

Function:

analogWrite();

- Switching frequency of arduino Pins (default)
 - Pins 5, 6:1 KHz
 - Pins 9, 10, 11:500 Hz

Pin 3 -

- 0% as 0
- 100% as 255

100

266

45

255x45 100

- Example 6.1:
- Use PIN 5 as PWM
- Measure with oscilloscope
 - Set duty cycle of PWM = 20%
 - Set duty cycle of PWM = 50%
 - Set duty cycle of PWM = 75%
- From each duty cycle, measure output voltage from respective duty cycle?

What is frequency of the PWM

..... Hz

• Set duty cycle of PWM = 50%

- Example 6.2:
- Use PIN 9 as PWM
- Measure with oscilloscope
 - Set duty cycle of PWM = 20%
 - Set duty cycle of PWM = 50%
 - Set duty cycle of PWM = 75%
- From each duty cycle, measure output voltage from respective duty cycle?
- What is frequency of the PWM

```
...... Hz
```

Chapter 6: PWM

Example 6.3: Control duty cycle of PWM with DIP SW (active high connection), use switching frequency as 500 Hz.

Press Sw1 : AH-LED1 Blink 25%, PWM data show in serial and measure analog voltage output from

multimeter

Press Sw2 : AH-LED1 Blink 50%, PWM data show in serial and measure analog voltage output from

multimeter

Press Sw3 : AH-LED1 Blink 75%, PWM data show in serial and measure analog voltage output from

multimeter

• Press Sw4 : AH-LED1 Blink 100%, PWM data show in serial and measure analog voltage output from

multimeter

Others : AH-LED1 OFF

• Show Circuit diagram, Coding, results (with LEDs and serial data)

Example 6.4: Control duty cycle of PWM with analog reading

Example 6.4: Control duty cycle of PWM with analog reading

Analog read XX%: AH-LED1 Blink XX%, analog reading value show in

serial monitor as percentage

• Example xx = 10%

Analog read 10%: AH-LED1 Blink 10%, analog reading value show in

serial monitor as percentage

Show Circuit diagram, Coding, results (with LEDs and serial data)

- To set PWM switching frequency
- 100
- * Divides a given PWM pin frequency by a divisor.
- *
- * The resulting frequency is equal to the base frequency divided by
- * the given divisor:
- * Base frequencies:
- The base frequency for pins 3, 9, 10, and 11 is 31250 Hz.
- o The base frequency for pins 5 and 6 is 62500 Hz.
- Divisors:
- o The divisors available on pins 5, 6, 9 and 10 are: 1, 8, 64,
 - 256, and 1024.
- o The divisors available on pins 3 and 11 are: 1, 8, 32, 64,
- 128, 256, and 1024.

- * PWM frequencies are tied together in pairs of pins. If one in a
- * pair is changed, the other is also changed to match:
- * Pins 5 and 6 are paired on timer0
- Pins 9 and 10 are paired on timer1
- Pins 3 and 11 are paired on timer2
- *
- * Note that this function will have side effects on anything else
- * that uses timers:
- Changes on pins 3, 5, 6, or 11 may cause the delay() and
- * millis() functions to stop working. Other timing-related
- functions may also be affected.
- Changes on pins 9 or 10 will cause the Servo library to function
- incorrectly.

Chapter 6 : PWM

To set PWM switching frequency

```
// Set pin 9's PWM frequency to 3906 Hz (31250/8 = 3906)

// Note that the base frequency for pins 3, 9, 10, and 11 is 31250 Hz

setPwmFrequency(9, 8);

// Set pin 6's PWM frequency to 62500 Hz (62500/1 = 62500)

// Note that the base frequency for pins 5 and 6 is 62500 Hz

setPwmFrequency(6, 1);

// Set pin 10's PWM frequency to 31 Hz (31250/1024 = 31)

setPwmFrequency(10, 1024);
```

```
void setPwmFrequency(int pin, int divisor) {
  byte mode;
  if(pin == 5 || pin == 6 || pin == 9 || pin == 10) {
    switch(divisor) {
      case 1: mode = 0x01; break;
      case 8: mode = 0x02; break;
      case 64: mode = 0x03; break;
      case 256: mode = 0x04; break;
      case 1024: mode = 0x05; break;
      default: return;
  }
```

```
if(pin == 5 || pin == 6) {|}
  TCCROB = TCCROB & Obilillio00 | mode:
} else {
  TCCR1B = TCCR1B & Ob11111000 | mode;
else if(pin == 3 | pin == 11) {
switch(divisor) {
  case 1: mode = 0x01; break;
  case 8: mode = 0x02; break;
  case 32: mode = 0x03; break;
  case 64: mode = 0x04; break;
  case 128: mode = 0x05; break;
  case 256: mode = 0x06; break;
  case 1024: mode = 0x07; break;
  default: return;
TCCR2B = TCCR2B & Oblillio00 | mode;
```

• Register

Waveform Generation Mode Bit Description(1)

Mode	WGM13	WGM12 (CTC1)	WGM11 (PWM11)	WGM10 (PWM10)	Timer/Counter Mode of Operation	тор	Update of OCR1x at	TOV1 Flag Set on
0	0	0	0	0	Normal	0xFFFF	Immediate	MAX
1	0	0	0	1	PWM, Phase Correct, 8-bit	0x00FF	TOP	воттом
2	0	0	1	0	PWM, Phase Correct, 9-bit	0x01FF	TOP	воттом
3	0	0	1	1	PWM, Phase Correct, 10-bit	0x03FF	TOP	воттом
4	0	1	0	0	стс	OCR1A	Immediate	MAX
5	0	1	0	1	Fast PWM, 8-bit	0x00FF	воттом	TOP
6	0	1	1	0	Fast PWM, 9-bit	0x01FF	воттом	TOP
7	0	1	1	1	Fast PWM, 10-bit	0x03FF	воттом	TOP
8	1	0	0	0	PWM, Phase and Frequency Correct	ICR1	воттом	воттом
9	1	0	0	1	PWM, Phase and Frequency Correct	OCR1A	воттом	воттом
10	1	0	1	0	PWM, Phase Correct	ICR1	TOP	воттом
11	1	0	1	1	PWM, Phase Correct	OCR1A	TOP	воттом
12	1	1	0	0	стс	ICR1	Immediate	MAX
13	1	1	0	1	(Reserved)	-	-	-
14	1	1	1	0	Fast PWM	ICR1	воттом	TOP
15	1	1	1	1	Fast PWM	OCR1A	воттом	TOP

Chapter 6: PWM

function
 setPwmFrequency(int pin, int divisor)

Clock Select Bit Description

C\$12	C\$11	C\$10	Description	
0	0	0	No clock source (Timer/Counter stopped).	
0	0	1	clk _{iiO} /1 (No prescaling)	
0	1	0	clk _{i/O} /8 (From prescaler)	
0	1	1	clk _{i/O} /64 (From prescaler)	
1	0	0	clk _{I/O} /256 (From prescaler)	
1	0	1	clk _{I/O} /1024 (From prescaler)	
1	1	0	External clock source on T1 pin. Clock on falling edge.	
1	1	1	External clock source on T1 pin. Clock on rising edge.	

```
void setPwmFrequency(int pin, int divisor) {
 byte mode;
 if(pin == 5 || pin == 6 || pin == 9 || pin == 10) {
  switch(divisor) {
   case 1: mode = 0x01; break;
   case 8: mode = 0x02; break;
   case 64: mode = 0x03; break;
   case 256: mode = 0x04; break;
   case 1024: mode = 0x05; break;
   default: return;
  if(pin == 5 || pin == 6) {
   TCCR0B = TCCR0B & 0b11111000 | mode;
  } else {
   TCCR1B = TCCR1B & 0b111111000 | mode;
} else if(pin == 3 || pin == 11) {
  switch(divisor) {
   case 1: mode = 0x01; break;
   case 8: mode = 0x02; break;
   case 32: mode = 0x03; break;
   case 64: mode = 0x04; break;
   case 128: mode = 0x05; break;
   case 256: mode = 0x06: break:
   case 1024: mode = 0x07; break;
   default: return;
  TCCR2B = TCCR2B & 0b111111000 | mode;
```

Pin5; 62500/8-7-2KHZ 7.8KHZ

Chapter 6: Pulse Width Modulation (PWM)

- Example 6.5:
- Use PIN 5 as PWM
- Set Pulse Width to 50%
- Set divisor to 8, measure the waveform
- Set divisor to 256, measure the waveform
- What is frequency of the PWM for each divisor

divisor is 8, PWM =	Hz
divisor is 256, PWM =	Hz

62500256 = 244. 12

Pm 9° 31250/g = 3°9 KHZ

31250/256 3 1/24 1/2

- Example 6.6:
- Use PIN 9 as PWM
- Set divisor to 8, measure the waveform
- Set divisor to 256, measure the waveform
- What is frequency of the PWM for each divisor

divisor is 8, PWM =	Hz
divisor is 256, PWM =	Hz

Use R between 200-300 ohm for limiting the current to each LED

Example 6.7: Use RGB module

- Perform RGB LED module as color indicated
 - Pin for R, Value 0
 - Pin for G Value 108
 - Pin for B, Value 255

Can you obtained color as indicated?

Example 6.8: Speed control of motor

• Set f = 3.9 KHz

Press "a" from KB, set motor 100% CW

- Press "b" from KB, set motor 60% CW
- Press "s" from KB, set motor 0%
- Press "d" from KB, set motor 100% CCW
- Press "e" from KB, set motor 60% CCW

Line driver L 74Ls244 (buffer)

SN54/74LS244

INPU	OUTBUT	
1G, 2G	D	ОПТР
L	L H	L
H	X	(Z)

Input	Enable (*)	Output
Н	Н	Н
L	Н	l L
H	L	Z
L	L	Z

\prod	EN	1A	2A	FUNCTION
١	Н	L	Н	Turn right
	Н	Η	L	Turn left
	Н	L	L	Fast motor stop
	Н	Н	Н	Fast motor stop
	L	Χ	Х	Fast motor stop

L = low, H = high, X = don't care

