Lec2	
Monday, January 09, 2012 2:21 PM	
Homework set 1 is due today. (last problem should be prob.8)	
Homework set 2 is assigned. Due on Friday.	
TA office hours and location are available at the course homepage.	

Review and objective	
Tuesday, January 03, 2012 4:19 PM	
Review:	
- Electrical Charge Q	Objective:
 Positive and negative charge Electrical current I 	Introduce the notion of voltageIntroduce voltage source/battery
Flow rate of charge	- Introduce the notion of 2-terminal circuit element
 Flow of negative charge viewed as 	- Study absorbed and delivered power
flow of positive charge in the reverse direction	
 Positive and negative current 	
7 - 00	
1 - ot	
i. dq	
- de	

Charge revisited-10min

Tuesday, January 03, 2012 4:07 PM

- Conversely, the "Sum" of the instantaneons
currents through a cross-sectional area from
-vo to t eguals the net change transported
through the boundary

 $f(t) = \int_{-\infty}^{\infty} i(\tau) d\tau = \text{"Area below } i(t)"$

Ex 1.4. Suppose that i(t) is given as follows

Find q(t)

$$\begin{cases}
\gamma(t) = \int_{-\infty}^{t} i(\tau) d\tau = \int_{-\infty}^{0} i(\tau) d\tau + \int_{0}^{t} i(\tau) d\tau \\
= \int_{0}^{t} i(\tau) d\tau$$

Case 1: 0 = t < 1. Here i(t)= zt

$$9(+)=\int_{0}^{t} 27d7 = \frac{1}{2} = \frac{$$

(ase 2:
$$| = t < 2$$
. Here $i(t) = -2t + 4$
 $f(t) = f(t) + \int_{1}^{t} i(t) dt$
 $= 1 + \int_{1}^{t} (-2t + 4) dt$
 $= 1 + \left(-\frac{t}{t} + 4t \right)_{1}^{t}$
 $= 1 + \left(-\frac{t}{t} + 4t - \left(-\frac{t}{t} + 4t \right) \right)$
 $= -2 + 4t - t^{2}$ (c)
(ase 3: $t > 2$

$$\mathcal{F}(t) = \mathcal{F}(z) + \int_{z}^{t} i(\tau) d\tau$$

$$= {}^{(2)} = 2 (c)$$

Find the total charge Q transported.

The total change egnels the total area beneath the curve.

$$=2-1+2=3(c)$$

Recall the water andagy

Water 2

hose high potential energy

Leight Water current

Water Indet / hose Electrical Circuit

Water Mass Electrical charge

Water current Electrical current

Height Voltage

What causes current to flow?

- Gravity forces water to flow from a higherelevation to a lower elevation.

- In battery, such a voltage is produced by accumulation of charged particles at different terminals due to the chemitry reaction. every released = 1. IV × Q - A bestlery produces a nearly-constant voltage, which is determined by the chemesty. O.g. 1.JV.

- Then, when the two sides are connected,

lec2 Page 8

Voltage example-10min

Tuesday, January 03, 2012 5:08 PM

Ex 2.1 (P13)

Suppose V_{AB}=4V, V_{AD}=9V Find Vx, Vy, Vz, V_{BC}, V_{CD}

$$V_{CD} = -V_{DC} = -(-2V) = 2V$$

Resistance and ohm's law-10min

Thursday, January 05, 2012

- Ohm found that for many materials (metal, etc.),
the corrent through is proportional to the
voltage a device made of it

1 0 1

Write
$$I = \frac{N}{R} = GV$$
, $V = IR$

The proportional constant R is called resistance, the inverse G is called the conductance of the device.

- Such a device is called a Resistor
- This relationship between N&I is called Ohm's

Ohm's law

$$N = IR, I = \frac{V}{R}$$

 $N(+) = i(+)R, i(+) = \frac{V(+)}{R}$

- Note the signs:

 Water flows from high altitude to low altitude

 Electric current flows from high voltage to low voltage.
- Basic writ:

- Conductance G: Siemens (Sor 75)

Hore is a problem:

- What if I put the reference directions differently?

$$V_{R} = -2R \qquad V_{R} = 2R \qquad V_{R} = 2R$$

- Problem: When do I need to/not to add the minus sign??

- For both cases A and D, the reference directions of voltage & convent are "naturally compatible"
- Current flows from high voltage to low voltage
- Not for cases B and C

- It voltage is prositive, usually coment flow $\Theta \to \Phi$ inside the battery An active component
This convention is very important:
- Critical for writing down Ohm's Law correctly
- Most common mistakes for ECE 20/ students
(Imaging omitting a minus sign in equations)
- Also important for power calculation

Example - 5min

Tuesday, January 08, 2013 11:50 AM

Ex 2.2

Which of the following relationship does not follow the passivesign convention? Which of them is incorrect?

(1) For
$$R_1: V_1 = 3R_1$$

$$(2)$$
 For $R_2: -10 = 1R_3$

(3) For
$$R_3: -5 = -(1R_3)$$

(4) For $152: V_4 = (-1) \times 15$

Power-10min

Wednesday, January 04, 2012

Hospine the passive-sign convention on any circuit element.

The power absorbed by the circuit element in worth is given by

PCE =
$$V \cdot 1 = \frac{V \cdot sQ}{st}$$
 energy released

(Note the signs,)

- Instantaneous assurbed power (depends on t)
$$\int_{CE} (+) = V(+) \cdot i(+) = V_{AB}(+) \cdot i(+) = V_{S}(+) \cdot i(+)$$

- Integrating power over time leads to the total energy consumed
$$W(t) = \int_{-\infty}^{t} p(z) dz = \int_{-\infty}^{t} v(z)i(z) dz$$

Over finite intervals (1) p(z) dT For a rosistor leg, a heating coil on oven) + VR= 2V -Pass = VRI=4W - If the reference directions are reversed Pals = VRZ=4W T = -2A- As long as the passive-sign convention is fillowed, the absorbed power of a resistor is always positive (good!) - The following represents a case not following the passive-sign VR. 1 = -4W - VR = -2 V Avvid!!! <u>7</u> = 2 V

What about the surree?

$$P_{abs} = V_s 1_s = -4W$$

$$D_{abs} = V_s 1_s = -4W$$

Summay:

- Positive Pass means consuming power hegative Pass means delivering power
- Positive Pdel means delivering power regative Pdel means absorbing power

Example

Wednesday, January 04, 2012

Ex 2.3. Goal: Practice the use of passive sign convention!!!

Pdel =
$$-10 \times 2 = -20 \text{W}$$
 also by

-10V $\int CE$ $Pass = (-10) \times 2 = -20 \text{W}$ delivery

$$| del = (-10) \times (-2) = 20W$$

$$c = (-10) \times (-2) = 20W$$

$$|\mathcal{L}| = \int X(-2) = -10W$$

$$|\mathcal{L}| = \int X(2) = -10W$$

May Ship

$$N(t) = 40 \sin(2002t) \qquad i(t) = 5 \sin(2002t)$$

$$p(t) = N(t) \cdot i(t) = 200 \sin(2002t)$$