程序代写代做CS编程辅导

1a. (5 points) Suppose subspace of \mathbb{C}^n such that

rix with complex entries and $A^* = A$. Suppose V is a $V \Rightarrow Ax \in V$. Show that $A(V^{\perp}) \subset V^{\perp}$.

Let ye V

The for We Chat. Estutores

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

1b. (5 points) Suppose this real symmetric $n \times n$ matrix. Show that e^A is positive definite.

A=
$$\alpha N\alpha^T$$
 $e^A = \alpha e^A\alpha^T$
 $e^A = (e^A)^T = \alpha e^A\alpha^T = e^A \Rightarrow symmetric$

and all upwreless of e^A are positive

2a. (2 points) Write down the overdetermined linear system Ax = b whose least squares solution $x = \begin{pmatrix} C \\ D \end{pmatrix}$ gives the best-fit line y(t) = C + Dt to the following points (t_i, b_i)

程序代写代数₄CS编程编导

$$|a| = b_i - y(t_i)$$
.

in the sense that $||r||_2$ is

2b. (5 points) Find the **Proposition** Function $H_1 = I - \tau_1 v_1 v_1^T$ that reflects the first column of the matrix from part b_1 axis. (Find τ_1 and v_1 , following the convention that $(v_1)_1 = 1$.)

QQ: 749389476

2c. (3 points) After applying P₁ and computing and applying a second householder transformation, the above system becomes

$$\begin{pmatrix} -2 & -13/3 \\ 0 & -5 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} -1 \\ -5 \\ -0.3 \\ -0.4 \end{pmatrix}.$$

Compute C, D and the norm $||r||_2$ of the minimum residual.

$$-5D = -5 \Rightarrow \boxed{D=1}$$

$$-10 = -5 \Rightarrow \boxed{10}$$

$$-2C - \frac{13}{3}D = -1$$

$$-2C = -1 + \frac{13}{3} = \frac{10}{3}$$

$$= 0.5$$

3. (10 points) Let $A = \begin{pmatrix} 6 & 8 \\ 4 & -3 \end{pmatrix}$. Find all rank-1 matrices B such that $||A - B||_2$ is minimized. Hint: if you can't figure out the SVD by inspection, AA^T is simpler than A^TA as a starting point to compute the SVD sys程ate的代写代做 CS编程辅导 $\begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix} = \begin{pmatrix} 1 & 10 \\ 1 & 10 \end{pmatrix} \begin{pmatrix} 3/5 & 4/5 \\ 1/5 & -7/5 \end{pmatrix}$ By inspection: WeChat: cstutorcsio () Assignment Project Exam Help Email: tutorcs@163.com
QQ: 749389476 ona you hattps://tutores.com? A, = U(10 0)VT → ||A-A, ||= ||U(0, 0)VT| = ||(0 ())|| = 5 Eckart - Young: (best possible) Any rank-1 B with 11A-B1)=5 11 als a minimiter. B= W(~ 0) VT, A-B= W(10-05) VT need $-5 \leqslant 10 - \alpha \leqslant 5$ $5 \approx (3 \approx \frac{4}{5} \alpha)$ $5 \approx (-10 \approx -5)$ $5 \approx \alpha \leqslant 15$

4. (10 points) Compute the pseudo-inverse of

程序代2写代做-C5编程辅导

You can leave your answer as a product of 3 matrices if you wish, but compute each entry of each of those matrices.

Assignment Project Exam Help

QQ: 749389476

$$= \begin{pmatrix} 1 & -2 \\ 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1/6 & 1/5 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1/6 & 1/5 \\ 1/5 & 1 \end{pmatrix} \begin{pmatrix} 1/6 & 1/6 \\ 1/5 & 1 \end{pmatrix} \begin{pmatrix} 1/6 & 1/6 \\ 1/5 & 1 \end{pmatrix} \begin{pmatrix} 1/6 & 1/6 \\ 1/5 & 1 \end{pmatrix} \begin{pmatrix} 1/6 & 1/6 \\ 1/5 & 1 \end{pmatrix} \begin{pmatrix} 1/6 & 1/6 \\ 1/5 & 1 \end{pmatrix} \begin{pmatrix} 1/6 & 1/6 \\ 1/5 & 1 \end{pmatrix} \begin{pmatrix} 1/6 & 1/6 \\ 1/6 & 1/6 \end{pmatrix} \begin{pmatrix} 1/6 & 1/6 \\ 1/6 &$$