

```
▼ Исходные данные
```

safety = 1.3Коэф. запаса:

Степень двухконтурности: m2 = 6

РТ: Воздух compressor = "КВД"

Число Maxa: M = 0

Геометрическая высота работы (м): $H_{\bullet} = 0$

 $G_{\text{max}} = 35.65 + 213.93$ if compressor = "B\pi" = 34.81 Массовый расход (кг/с):

35.65 if compressor = "КНД"

34.81 if compressor = "КВД"

 $T^*_{K1} = \begin{vmatrix} 418.2 & \text{if compressor} = "КВД" = 418.2 \\ 288.2 & \text{otherwise} \end{vmatrix}$ Полная температура на входе в К (К):

 $P*_{K1} = \begin{bmatrix} 316.2 \cdot 10^3 & \text{if compressor} = "КВД" = 316.2 \cdot 10^3 \end{bmatrix}$ Полное давление на входе в К (Па):

101325 otherwise

 $\pi^*_K = \begin{bmatrix} 1.6 & \text{if compressor} = "B\pi" \end{bmatrix} = 9.000$ Степень повышения давления КВД:

 $\frac{3.2}{1.6}$ if compressor = "КНД"

9 if compressor = "КВД"

Ожидаемый адиабатический КПД ОК:

$$\eta_{K}^{*} = \begin{vmatrix} 0.86 & \text{if compressor} = "Вл" & = 88.00 \cdot \% \\ 0.87 & \text{if compressor} = "КНД" \\ 0.88 & \text{if compressor} = "КВД" \end{vmatrix}$$

Частота вращения ротора (c^{-1}) :

$$\omega = \begin{bmatrix} 1570.8 & \text{if compressor} = \text{"КВД"} \end{bmatrix} = 1570.8$$

Относ. диаметр корня 1ой ступени [14, с.7]:

$$\overline{d}_1 = \begin{vmatrix} 0.40 & \text{if compressor} = "Вл" = 0.65 \\ 0.75 & \text{if compressor} = "КНД" \\ 0.65 & \text{if compressor} = "КВД" \end{vmatrix}$$

 $0.3 \le \overline{d}_1 \le 0.6 = 0$

Частота вращения ротора (об/мин):
$$n = \frac{60 \cdot \omega}{2 \cdot \pi} = 15000$$

Закон профилирования проточной части (ЗППЧ):

Относ. параметры по относительным ступеням:

$$\begin{pmatrix} z_{\sim} \\ R_{L \sim cp} \\ K_{\sim H} \\ \eta^*_{\sim} \\ \overline{c}_{\sim a1} \\ \overline{H}^{\sim}_{T} \end{pmatrix} = \begin{pmatrix} (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8)^{T} \\ (0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5)^{T} \\ (0.99 \ 0.98 \ 0.97 \ 0.96 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95)^{T} \\ (0.88 \ 0.89 \ 0.905 \ 0.91 \ 0.91 \ 0.905 \ 0.89 \ 0.88)^{T} \\ (0.435 \ 0.425 \ 0.415 \ 0.405 \ 0.395 \ 0.385 \ 0.375 \ 0.365)^{T} \\ (0.25 \ 0.29 \ 0.32 \ 0.33 \ 0.35 \ 0.32 \ 0.29 \ 0.27)^{T}$$

Тип компрессора			I	Номер ступс	ени и $\overline{L}_{CT.i}$			
тип компрессора	I	II	III	IV	Z_{CP}	z - 2	z - 1	Z
Дозвуковой	0,18-0,20	0,24-0,25	0,24-0,25	0,29-0,30	0,30-0,32	0,28-0,29	0,27-0,28	0,26-0,27
Трансзвуковой	0,19-0,22	0,27-0,29	0,30-0,32	0,32-0,33	0,33-0,35	0,31-0,32	0,27-0,28	0,26-0,27
С одной св/зв ступенью	0,23-0,25	0,27-0,29	0,30-0,32	0,32-0,33	0,33-0,35	0,31-0,32	0,27-0,28	0,26-0,27
С 2-мя св/зв ступенями	0,23-0,25	0,27-0,29	0,30-0,32	0,32-0,33	0,33-0,35	0,31-0,32	0,27-0,28	0,26-0,27
С 3-мя св/зв ступенями	0,23-0,25	0,27-0,29	0,30-0,32	0,32-0,33	0,33-0,35	0,31-0,32	0,27-0,28	0,25-0,26

[16, c. 60]

[18, c. 24]

Уточнение параметров:

$$\overline{c}_{\sim a1} = \overline{c}_{\sim a1} - \begin{vmatrix} 0.100 & \text{if compressor} = "Вл" \\ 0.141 & \text{if compressor} = "КНД" \\ 0.203 & \text{if compressor} = "КВД" \end{vmatrix}$$

увеличение несущественно увеличивает π

$$\eta^*_{\sim} = \eta^*_{\sim} + \begin{vmatrix} -0.020 & \text{if compressor} = "Вл" \\ -0.028 & \text{if compressor} = "КНД" \\ -0.017 & \text{if compressor} = "КВД" \end{vmatrix}$$

понижение существенно увеличивает π

$$\overline{H}_{T} = \overline{H}_{T} + \begin{cases} 0.0145 & \text{if compressor} = "Вл" \\ 0.0164 & \text{if compressor} = "КНД" \\ 0.0173 & \text{if compressor} = "КВД" \end{cases}$$
 [16, c. 234]

увеличение несущественно увеличивает π

увеличение существенно увеличивает
$$\pi$$

$$\operatorname{stack}\left(R_{L\sim cp}^{T},K_{\sim H}^{T},\eta^*_{}^{T},\overline{c}_{\sim a1}^{T},\overline{H}_{\sim T}^{T}\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 \\ 2 & 0.990 & 0.980 & 0.970 & 0.960 & 0.950 & 0.950 & 0.950 \\ 3 & 0.863 & 0.873 & 0.888 & 0.893 & 0.893 & 0.888 & 0.873 & 0.863 \\ 4 & 0.232 & 0.222 & 0.212 & 0.202 & 0.192 & 0.182 & 0.172 & 0.162 \\ 5 & 0.267 & 0.307 & 0.337 & 0.347 & 0.367 & 0.337 & 0.307 & 0.287 \end{bmatrix}$$

$$0.15 \le \overline{c}_{\sim a1}^{T} = (1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1)$$

$$\overline{c}_{\sim a1}^{T} \le 0.65 = (1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1)$$

$$0.18 \le \overline{H} \sim_{T}^{T} = (1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1)$$

$$\overline{H} \sim_{T}^{T} \le 0.35 = (1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1)$$

$$ext{Коэф. Теор. напора "средней" ступени [14, c.11]:} \qquad \overline{H}_{Tcp} = rac{\displaystyle\sum_{i=1}^{rows \left(z_{\sim}
ight)}}{rows \left(z_{\sim}
ight)} = 0.3198$$

 $0.25 \le \overline{H}_{Ten} \le 0.32 = 1$

▼ Распределение основных параметров ОК по ступеням

Кинематическая степень реактивности:
$$R_{L\sim cp}(i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, R_{L\sim cp} \right), \frac{z_{\sim}}{rows(z_{\sim})}, R_{L\sim cp}, i \right)$$
 Коэф. уменьшения теор. напора:
$$K_{\sim H}(i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, K_{\sim H} \right), \frac{z_{\sim}}{rows(z_{\sim})}, K_{\sim H}, i \right)$$
 Изоэнтропический КПД:
$$\prod_{m=0}^{\infty} (i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \eta^*_{\sim} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \eta^*_{\sim}, i \right)$$
 Коэф. расхода:
$$\overline{c}_{max}(i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \overline{c}_{\sim a1} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{c}_{\sim a1}, i \right)$$
 Коэф. напора:
$$\overline{H}_{\sim T}(i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \overline{H}_{\sim T} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{H}_{\sim T}, i \right)$$

$$\begin{pmatrix} Z_{\text{temp}} \\ i_{\text{temp}} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} R_{L.cp}(Z_{temp}, i_{temp}) \\ K_{.H}(Z_{temp}, i_{temp}) \\ \eta^*.(Z_{temp}, i_{temp}) \\ \overline{c}_{.a1}(Z_{temp}, i_{temp}) \\ \overline{H}_{.T}(Z_{temp}, i_{temp}) \end{pmatrix} = \begin{pmatrix} 0.700 \\ 0.950 \\ 0.863 \\ 0.162 \\ 0.287 \end{pmatrix}$$

Показатель адиаьаты перед К []: $k_{K1} = k_{ad} \left(Cp_{BO3dyx} \left(P^*_{K1}, T^*_{K1} \right), R_B \right) = 1.394$

Полное давление после К [Па]: $P^*_{K3} = \pi^*_{K} \cdot P^*_{K1} = 2846 \cdot 10^3$

Количество итераций []: iteration₃ = 2

Полная температура после K[K]: $T*_{K3} = 805.9$

Показатель адиаьаты после К []: $k_{K3} = 1.354$

Полная плотность перед и после К [кг/м³]: $\begin{pmatrix} \rho^* K1 \\ \rho^* K3 \end{pmatrix} = \frac{1}{R_B} \cdot \begin{pmatrix} \frac{P^* K1}{T^* K1} \\ \frac{P^* K3}{T^* K3} \end{pmatrix} = \begin{pmatrix} 2.633 \\ 12.297 \end{pmatrix}$

Критические скорости перед и после К [м/с]: $\begin{pmatrix} a^*_{\mathbf{c}.\mathbf{BX}} \\ a^*_{\mathbf{c}.\mathbf{BMX}} \end{pmatrix} = \begin{pmatrix} a_{\mathbf{K}p} \big(\mathbf{k}_{\mathbf{K}1} \,, \mathbf{R}_{\mathbf{B}} \,, \mathbf{T}^*_{\mathbf{K}1} \big) \\ a_{\mathbf{K}p} \big(\mathbf{k}_{\mathbf{K}3} \,, \mathbf{R}_{\mathbf{B}} \,, \mathbf{T}^*_{\mathbf{K}3} \big) \end{pmatrix} = \begin{pmatrix} 373.9 \\ 515.9 \end{pmatrix}$

Ср. показатель адиабаты К []: $k_{cp} = k_{ad} \left(Cp_{Bo3dyx.cp} \left(P^*_{K1}, P^*_{K3}, T^*_{K1}, T^*_{K3} \right), R_B \right) = 1.374$

Теоретический напор [Дж/кг]: $H_{TK} = \frac{Cp_{\text{воздух.cp}}\left(P^*_{K1}, P^*_{K3}, T^*_{K1}, T^*_{K3}\right) \cdot T^*_{K1} \cdot \left(\frac{\frac{k_{cp}-1}{k_{cp}}}{\pi^*_{K}} - 1\right)}{\eta^*_{K}} = 410.3 \cdot 10^3$

```
iteration<sub>u</sub>
    <sup>u</sup>1пер
Z_{recomend}
                            = | iteration<sub>u</sub> = 0
       c_{BX}
                                     \rho_{K1} = \rho^*_{K1}
                                      while 0 < 1
       \rho_{K1}
                                           iteration_u = iteration_u + 1
                                            | trace(concat("iteration.u = ", num2str(iteration_u))) |
                                          u_{1 \text{nep}} = \sqrt[3]{\frac{\pi \cdot G \cdot n^2}{900 \cdot \overline{c}_{.a1}(1,0) \cdot \rho_{K1} \cdot \left[1 - \left(\overline{d}_1\right)^2\right]}}
                                         Z_{recomend} = max \left( round \left( \frac{H_{TK}}{\overline{H}_{Tcp} \cdot u_{1 \pi ep}} \right), 1 \right)
                                           c_{\text{BX}} = \overline{c}_{.a1}(Z_{\text{recomend}}, 0) \cdot u_{1 \pi ep}
                                         \lambda_{\rm BX} = \frac{c_{\rm BX}}{a_{\rm c.BX}^*}

ho'_{K1} = 
ho*_{K1} \cdot \Gamma \mathcal{I} \Phi \left( "
ho", \lambda_{BX}, k_{K1} \right)
                                          \left| \text{ if } \left| \text{eps} \left( \text{"rel"} , \rho'_{K1}, \rho_{K1} \right) \right| \leq \text{epsilon} \right|

\rho_{K1} = \rho'_{K1}

                                           \rho_{K1} = \rho'_{K1}
                                         iterationu
                                            <sup>u</sup>1пер
                                        Z_{recomend} \\
                                               c_{BX}
                                               \lambda_{BX}
                                               \rho_{K1}
```

Количество итераций []: iteration = 2

Окружная скорость на перифкрии перед K [м/c]: $u_{1\text{пер}} = 430.5$

Рекомендуемое количество ступеней []: $Z_{recomend} = 7$

Абс. скорость перед К [м/с]: $c_{BX} = 99.9$

Приведенная скорость перед К []: $\lambda_{\rm BX} = 0.2671$

Плотность перед К [кг/м^3]: $\rho_{K1} = 2.555$

Кольцевая площадь перед К [м²]:
$$F_{BX} = \frac{G \cdot \sqrt{R_B \cdot T^*_{K1}}}{m_q(k_{K1}) \cdot P^*_{K1} \cdot \Gamma \angle \Phi \left(\text{"G"} , \lambda_{BX}, k_{K1} \right)} = 0.1364$$

$$D'_{\text{nep1}} = \frac{2 \cdot u_{1\text{nep}}}{\omega} = 548.2 \cdot 10^{-3}$$

Диамтеры перед К [м]: $D'_{cp1} = \overline{r}_{cp} (\overline{d}_1) \cdot D'_{nep1} = 462.3 \cdot 10^{-3}$

$$D'_{\text{kop1}} = \overline{d}_{1} \cdot D'_{\text{nep1}} = 356.3 \cdot 10^{-3}$$

$$\varphi = 0, \frac{2 \cdot \pi}{360} .. 2 \cdot \pi$$

Рекомендуемое количество ступеней []:

Количество ступеней []:
$$Z = \begin{bmatrix} 1 & \text{if compressor} = "Вл" \end{bmatrix} = 9$$

3 if compressor = "КНД" 9 if compressor = "КВД"

▲ Нулевые приближения

```
BHA = \begin{bmatrix} 1 & \text{if compressor} = "КВД" = 1 \\ 0 & \text{otherwise} \end{bmatrix}
```

▼ Расчет ВН/

```
\alpha_{1BHA}
                   \alpha_{3BHA}
 \sigma_{
m BHA}
                    \sigma_{
m BHA}
                 d<sub>3BHA</sub>
d<sub>1BHA</sub>
T*<sub>1BHA</sub> T*<sub>3BHA</sub>
P*<sub>1BHA</sub> P*<sub>3BHA</sub>
\rho^*_{1BHA} \rho^*_{3BHA}
k<sub>1BHA</sub> k<sub>3BHA</sub>
<sup>а</sup>кр1ВНА <sup>а</sup>кр3ВНА
                                              for r \in av(N_r)
c<sub>a1BHA</sub> c<sub>a3BHA</sub>
                                                  \alpha_{1BHA_r} = 90^{\circ}
c<sub>u1BHA</sub> c<sub>u3BHA</sub>
                                                   \overline{d}_{1BHA} = \overline{d}_{1}
ca1BHA ca3BHA
                                                   \overline{d}_{3BHA} = \overline{d}_{1BHA}
<sup>c</sup>u1BHA <sup>c</sup>u3BHA
                                                   T^*_{1BHA_r} = T^*_{K1}
 c<sub>1BHA</sub>
                   c<sub>3BHA</sub>
                                                   T^*_{3BHA_r} = T^*_{1BHA_r}
\lambda_{c1BHA} \lambda_{c3BHA}
F<sub>1BHA</sub>
                   F<sub>3BHA</sub>
                                                   P^*_{1BHA_r} = P^*_{K1}
                    \epsilon_{
m BHA}
 \varepsilon_{
m BHA}
                                                   k_{1BHA_r} = k_{ad}(Cp_{BO3dyx}(P^*_{1BHA_r}, T^*_{1BHA_r}), R_B)
                                                   a_{\text{Kp1BHA}_r} = a_{\text{Kp}}(k_{1BHA_r}, R_B, T^*_{1BHA_r})
                                                   \overline{c}_{a1BHA_r} = \overline{c}_{.a1}(Z,0)
                                                  \overline{c}_{u1BHA_r} = \overline{r}_{cp}(\overline{d}_{1BHA}) \cdot (1 - R_{L.cp}(Z, 0)) - \frac{\overline{H}_{.T}(Z, 0)}{2 \cdot \overline{r}_{cp}(\overline{d}_{1BHA})} \text{ if BHA} = 1
                                                     c_{a1BHA_r} = c_{a1BHA_r} \cdot u_{1\pi ep}
```

$$\begin{split} &\sigma_{BHA} = 0.9982 \\ &\operatorname{submatrix} \left(\epsilon_{BHA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (22.17) \cdot \operatorname{deg} \\ &\operatorname{submatrix} \left(\alpha_{1BHA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (90.00) \cdot \operatorname{deg} \\ &\operatorname{submatrix} \left(\alpha_{3BHA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (67.83) \cdot \operatorname{deg} \\ &\left(\overline{d}_{1BHA} \right) = \begin{pmatrix} 0.6500 \\ 0.6500 \end{pmatrix} \qquad \begin{pmatrix} F_{1BHA} \\ F_{3BHA} \end{pmatrix} = \begin{pmatrix} 0.1364 \\ 0.1373 \end{pmatrix} \end{split}$$

$$c_{u1BHA_r} = \frac{c_{a1BHA_r}}{\tan(\alpha_{1BHA_r})}$$

$$c_{1BHA_r} = \frac{c_{a1BHA_r}}{\sin(\alpha_{1BHA_r})}$$

$$\lambda_{c1BHA_r} = \frac{c_{1BHA_r}}{a_{p1BHA_r}}$$

$$\sigma_{BHA} = \begin{bmatrix} 1 + \max(0.03, 0.06) \cdot \Gamma/(\Phi("p", \lambda_{c1BHA_r}, k_{1BHA_r}) \cdot \frac{k_{1BHA_r}}{k_{1BHA_r}} + 1 \cdot (\lambda_{c1BHA_r})^2 \end{bmatrix}^{-1} \text{ if } BHA = 1$$

$$\int_{1}^{\infty} 1 \text{ otherwise}$$

$$P^*_{3BHA_r} = P^*_{1BHA_r}^{*} \sigma_{BHA}$$

$$\rho^*_{3BHA_r} = \frac{P^*_{3BHA_r}}{R_n^* T^*_{3BHA_r}}$$

$$k_{3BHA_r} - k_{aq}(Cp_{nonqyq}(P^*_{3BHA_r}, T^*_{3BHA_r}) \cdot R_n)$$

$$a_{kp3BHA_r} = a_{kp}(k_{3BHA_r}, R_n, T^*_{3BHA_r})$$

$$\overline{c}_{a3BHA_r} = \begin{bmatrix} \overline{c}_{a1}(Z, 1) & \text{if } BHA = 1 \\ \overline{c}_{a1BHA_r} & \text{otherwise} \end{bmatrix}$$

$$\overline{c}_{a3BHA_r} = \begin{bmatrix} \overline{c}_{a1}(Z, 1) & \text{if } BHA = 1 \\ \overline{c}_{a1BHA_r} & \text{otherwise} \end{bmatrix}$$

$$\alpha_{3BHA_r} = \begin{bmatrix} \overline{c}_{a1}(\overline{c}_{a1BHA_r}, \overline{c}_{a1BHA_r}) & \text{if } BHA = 1 \end{bmatrix}$$

$$0 & \text{otherwise}$$

$$\alpha_{3BHA_r} = \begin{bmatrix} \overline{c}_{a1BHA_r}, \overline{c}_{a1BHA_r}, \overline{c}_{a1BHA_r} \\ \overline{c}_{a1BHA_r}, \overline{c}_{a1BHA_r}, \overline{c}_{a1BHA_r} \end{bmatrix}$$

$$\alpha_{3BHA_r} = \frac{c_{a3BHA_r}}{\tan(\alpha_{3BHA_r})}$$

$$\alpha_{3BHA_r} = \frac{c_{a3BHA_r}}{\tan(\alpha_{3BHA_r})}$$

$$\alpha_{3BHA_r} = \frac{c_{a3BHA_r}}{\tan(\alpha_{3BHA_r})}$$

$$\alpha_{3BHA_r} = \frac{c_{a3BHA_r}}{\tan(\alpha_{3BHA_r})}$$

$$\alpha_{3BHA_r} = \frac{c_{a3BHA_r}}{\sin(\alpha_{3BHA_r})}$$

$$\begin{split} & \text{submatrix} \Big(T^*_{1BHA}, \text{av} \Big(N_r \big), \text{av} \Big(N_r \big), 1, 1 \Big) = (418.2) \\ & \text{submatrix} \Big(T^*_{3BHA}, \text{av} \Big(N_r \big), \text{av} \Big(N_r \big), 1, 1 \Big) = (418.2) \\ & \text{submatrix} \Big(P^*_{1BHA}, \text{av} \Big(N_r \big), \text{av} \Big(N_r \big), 1, 1 \Big) = (316.2) \cdot 10^3 \\ & \text{submatrix} \Big(P^*_{3BHA}, \text{av} \Big(N_r \big), \text{av} \Big(N_r \big), 1, 1 \Big) = (315.6) \cdot 10^3 \\ & \text{submatrix} \Big(\rho^*_{1BHA}, \text{av} \Big(N_r \big), \text{av} \Big(N_r \big), 1, 1 \Big) = (2.633) \\ & \text{submatrix} \Big(\rho^*_{3BHA}, \text{av} \Big(N_r \big), \text{av} \Big(N_r \big), 1, 1 \Big) = (2.628) \\ & \text{submatrix} \Big(k_{1BHA}, \text{av} \Big(N_r \big), \text{av} \Big(N_r \big), 1, 1 \Big) = (1.394) \\ & \text{submatrix} \Big(k_{3BHA}, \text{av} \Big(N_r \big), \text{av} \Big(N_r \big), 1, 1 \Big) = (1.394) \end{split}$$

$$\begin{split} & \text{submatrix} \Big(a_{Kp1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (373.9) \\ & \text{submatrix} \Big(a_{Kp3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (373.9) \\ & \text{submatrix} \Big(\overline{c}_{a1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.232) \\ & \text{submatrix} \Big(\overline{c}_{a3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.233) \\ & \text{submatrix} \Big(\overline{c}_{a3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.095) \\ & \text{submatrix} \Big(\overline{c}_{a3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.097) \\ & \text{submatrix} \Big(c_{a1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (99.9) \\ & \text{submatrix} \Big(c_{a3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.0) \\ & \text{submatrix} \Big(c_{u3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (40.7) \\ & \text{submatrix} \Big(c_{1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (99.9) \\ & \text{submatrix} \Big(c_{3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (107.9) \\ & \text{submatrix} \Big(\lambda_{c3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.267) \\ & \text{submatrix} \Big(\lambda_{c3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.288) \\ \end{aligned}$$

▲ Расчет ВНА:

$$\begin{cases} R_L & \pi^* \\ K_H & \eta^* \\ C_P & k \\ \overline{H}_T & H_T \\ L^* & J_{\mathcal{H}} \\ T^* & J_{\mathcal{H}} \\ P^* & P \\ \rho^* & \rho \\ a^*c_- & a_{3B} \\ \lambda_c & \lambda_c \\ \overline{J}_{\mathcal{H}} & \overline{J}_{\mathcal{H}} \\ \overline{J}$$

$$\begin{split} D_{s((1,1),N_r} &= \frac{2 \cdot u_{s((1,1),N_r)}}{\omega} \\ D_{s((1,1),1} &= \sqrt{\left(D_{s((1,1),N_r)}\right)^2 - \frac{4 \cdot F_{s((1,1)}}{\pi}}{\pi}} \\ D_{s((1,1),r)} &= \overline{t_{op}} \left(\frac{D_{s((1,1),N_r)}}{D_{s((1,1),N_r)}} \cdot D_{s((1,1),N_r)} \right) \\ D_{s((1,1),r)} &= \overline{t_{op}} \left(\frac{D_{s((1,1),1}}{D_{s((1,1),N_r)}} \cdot D_{s((1,1),N_r)} \right) \\ \overline{d}_{s((1,1)} &= \frac{D_{s((1,1),1}}{D_{s((1,1),N_r)}} \\ &= \frac{H_{T_i}}{H_{s(1,1)}} \cdot \left(\frac{H_{T_i}}{H_{s(1,1)}} \cdot \frac{H_{T_i,r}}{H_{s(2,1)}} \cdot \frac{H_{T_i,r}}{H_{s(2,1)}} \cdot \frac{H_{T_i,r}}{H_{s(2,1)}} \cdot \frac{H_{T_i,r}}{H_{s(1,1),r}} \cdot \frac{H_{T_i,r}}{H_{s(1,1),r}} \cdot \frac{L^*_{i}}{H_{s(1,1),r}} \cdot \frac{H_{s(i,1),r}}{H_{s(i,2),r}} \cdot \frac{H_{s(i,1),r}}{H_{s(2,1),r}} \cdot \frac{H_{s(i,1),r}}{H_{s(2,1),r}} \cdot \frac{H_{s(i,1),r}}{H_{s(2,1),r}} \cdot \frac{H_{s(i,2),r}}{H_{s(2,1),r}} \cdot \frac{H_{s(i,2),r}}{H_{s(i,2),r}} \cdot \frac{H_{s(i,2),r}}{H_{s(i,2),r}} \cdot \frac{H_{s(i,2),r}}{H_{s(i,2),r}} \cdot \frac{H_{s(i,2),r}}{H_{s(i,2),r}} \cdot \frac{H_{s(i,2),r}}{H_{s(i,2$$

```
if \left| \text{eps}\left(\text{"rel"}, k_{\text{st}(i,2),r}, k'_2\right) \right| < \text{epsilon}
          k_{st(i,2),r} = k'_2
      k_{st(i,2),r} = k'_2
a_{c_{st(i,2),r}}^* = a_{kp}(k_{st(i,2),r}, R_B, T_{st(i,2),r})
T^*_{st(i,3),r} = T^*_{st(i,2),r}
P^*_{st(i,3),r} = P^*_{st(i,2),r}
Cp_{st(i,3),r} = Cp_{BO3JJYX}(P^*_{st(i,3),r}, T^*_{st(i,3),r})
k_{st(i,3),r} = k_{aJ}(Cp_{st(i,3),r},R_{B})
a_{c_{st(i,3),r}}^* = a_{kp}(k_{st(i,3),r}, R_B, T_{st(i,3),r}^*)
\overline{c}_{a_{st(i,3),r}} = \overline{c}_{.a1}(Z,i+1)
iteration_3 = 0
                    =\frac{F_{st(i,1)}\cdot m_{q}\left(k_{st(i,1),r}\right)\cdot \Gamma \mathcal{J}\Phi\left("G",\lambda_{c_{st(i,1),r}},k_{st(i,1),r}\right)\cdot \sin\left(\alpha_{st(i,1),r}\right)\cdot P^{*}_{st(i,1),r}\cdot \sqrt{T^{*}_{st(i,3),r}}}{m_{q}\left(k_{st(i,3),r}\right)\cdot \Gamma \mathcal{J}\Phi\left("G",\lambda_{c_{st(i,3),r}},k_{st(i,3),r}\right)\cdot \sin\left(\alpha_{st(i,3),r}\right)\cdot P^{*}_{st(i,3),r}\sqrt{T^{*}_{st(i,1),r}}}
 while 0 < 1
      iteration_3 = iteration_3 + 1
       trace(concat(" iteration.3 = ", num2str(iteration_3))))
       if (3\Pi\Pi H_i \neq "пер") \land (3\Pi\Pi H_i \neq "кор") \land (3\Pi\Pi H_i \neq "ср")
           D_{st(i,3),N_r} = D_{st(i,1),N_r} \cdot str2num(3\Pi\Pi \Psi_i)
D_{st(i,3),1} = \sqrt{(D_{st(i,3),N_r})^2 - \frac{4F_{st(i,3)}}{\pi}}
```

$$\begin{vmatrix} D_{st(i,3),N_T} &= D_{st(i,1),N_T} \\ D_{st(i,3),1} &= \sqrt{\left(D_{st(i,3),N_T}\right)^2 - \frac{4F_{st(i,3)}}{\pi}} \\ & \text{if } 3\Pi\Pi Q_i &= \text{"kop"} \\ & D_{st(i,3),N_T} &= \sqrt{\left(D_{st(i,1),1}\right)^2 + \frac{4F_{st(i,3)}}{\pi}} \\ & \text{if } 3\Pi\Pi Q_i &= \text{"kop"} \\ & D_{st(i,3),N_T} &= \sqrt{\left(D_{st(i,1),1}\right)^2 + \frac{4F_{st(i,3)}}{\pi}} \\ & D_{st(i,3),N_T} &= \sqrt{\left(D_{st(i,1),1}\right)^2 + \frac{2F_{st(i,3)}}{\pi}} \\ & D_{st(i,3),N_T} &= \sqrt{\left(D_{st(i,1),1}\right)^2 - \frac{2F_{st(i,3)}}{\pi}} \\ & D_{st(i,3),T} &= \frac{D_{st(i,3),1}}{D_{st(i,3),N_T}} \\ & D_{st(i,3),r} &= \overline{c_{pp}}(\overline{d}_{st(i,3)}) \cdot D_{st(i,3),N_T} \\ & \overline{c_{u_{st(i,3),r}}} &= \overline{c_{pp}}(\overline{d}_{st(i,3)}) \cdot D_{st(i,3),N_T} \\ & \overline{c_{u_{st(i,3),r}}} &= \overline{c_{pp}}(\overline{d}_{st(i,3),r}) \cdot \int_{\overline{c_{u_{st(i,3),r}}}} \int_{\overline{c_{u_{st(i,3),r}}}} \int_{\overline{c_{u_{st(i,3),r}}}} \int_{\overline{c_{u_{st(i,3),r}}}} b \cdot 0 \\ & u_{st(i,3),r} &= u_{st(i,1),N_T} \\ & \overline{c_{u_{st(i,3),r}}} &= \overline{c_{u_{st(i,3),r}}} \\ & u_{st(i,3),r} &= \overline{c_{u_{st(i,3),r}}} \\ & c_{u_{st(i,3),r}} &= \frac{\overline{c_{u_{st(i,3),r}}}} {c_{u_{st(i,3),r}}} \\ & c_{u_{st(i,3),r}} &= \frac{\overline{c_{u_{st(i,3),r}}}} {c_{u_{st(i,3),r}}} \\ & c_{u_{st(i,3),r}} &= \overline{c_{u_{st(i,3),r}}} \\ & c_{u_{st(i,3),r}} &$$

```
\overline{c}_{a_{st(i,2),r}} = mean(\overline{c}_{a_{st(i,1),r}}, \overline{c}_{a_{st(i,3),r}})
 iteration_2 = 0
 F_{st(i,2)} = mean(F_{st(i,1)}, F_{st(i,3)})
  while 0 < 1
       iteration_2 = iteration_2 + 1
       trace(concat(" iteration.2 = ", num2str(iteration_2))))
       if (3\Pi\Pi\Pi_i \neq "пер") \land (3\Pi\Pi\Pi_i \neq "кор") \land (3\Pi\Pi\Pi_i \neq "ср")
           D_{st(i,2),N_r} = mean(D_{st(i,1),N_r},D_{st(i,3),N_r})
           \overline{d}_{st(i,2)} = \sqrt{2 \cdot \text{mean}(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
            D_{st(i,2),r} = D_{st(i,2),N_r} \overline{\cdot r_{cp}} (\overline{d}_{st(i,2)})
           D_{st(i,2),1} = \overline{d}_{st(i,2)} \cdot D_{st(i,2),N_r}
       if 3ППЧ<sub>i</sub> = "пер"
           D_{st(i,2),N_r} = D_{st(i,1),N_r}
           \overline{d}_{st(i,2)} = \sqrt{2 \cdot mean(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
            D_{st(i,2),r} = D_{st(i,2),N_r} \overline{\cdot r_{cp}} (\overline{d}_{st(i,2)})
            D_{st(i,2),1} = \overline{d}_{st(i,2)} \cdot D_{st(i,2),N_r}
       if ЗППЧ<sub>i</sub> = "кор"
            D_{st(i,2),1} = D_{st(i,1),1}
           \overline{d}_{st(i,2)} = \sqrt{2 \cdot \text{mean}(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
            D_{st(i,2),N_r} = \frac{D_{st(i,2),1}}{\overline{d}_{st(i,2)}}
            D_{st(i,2),r} = D_{st(i,2),N_r} \overline{\cdot r_{cp}} (\overline{d}_{st(i,2)})
       if 3\Pi\Pi\Pi_i = "cp"
            D_{st(i,2),r} = D_{st(i,1),r}
            \overline{d}_{st(i,2)} = \sqrt{2 \cdot mean(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
           D_{st(i,2),N_r} = \frac{D_{st(i,2),r}}{\overline{r_{cp}(\overline{d}_{st(i,2)})}}
            D_{st(i,2),1} = \overline{d}_{st(i,2)} \cdot D_{st(i,2),N_r}
```

$$\begin{vmatrix} \overline{c}_{u_{st(i,2),r} = \frac{1}{r_{cp}(\overline{d}|st(i,2))} \left(\sum_{D_{st(i,2),r_r}}^{\infty} \overline{c}_{u_{st(i,2),r_r}} \right) \\ \overline{c}_{u_{st(i,2),r} = triangle} \left(\overline{c}_{a_{st(i,2),r_r}} \overline{c}_{u_{st(i,2),r_r}} \right) \\ \overline{c}_{u_{st(i,2),r}} = \overline{c}_{u_{st(i,1),r_r}} \\ \overline{c}_{u_{st(i,2),r_r}} = \overline{c}_{u_{st(i,1),r_r}} \\ \overline{c}_{u_{st(i,2),r_r}} = \overline{c}_{u_{st(i,2),r_r}} \\ \overline{c}_{u_{st(i,2),r_r}} - \overline{c}_{u_{st(i,2),r_r}} \\ \overline{c$$

```
 \begin{vmatrix} | \mathbf{N}^{I}\mathbf{c}_{st(i,a),r} | = \overline{a_{3B_{st(i,a),r}}} \\ \mathbf{h}_{st(i,a)} | = 0.5 \cdot \left( \mathbf{D}_{st(i,a),N_r} - \mathbf{D}_{st(i,a),1} \right) \\ \mathbf{for} \ \ radius \in 1...N_r \\ \mathbf{u}_{st(i,a),radius} | = \omega \cdot \frac{\mathbf{D}_{st(i,a),radius}}{2} \\ \begin{pmatrix} \varepsilon_{rotor_{i,av(N_r)}} \\ \varepsilon_{stator_{i,av(N_r)}} \end{pmatrix} = \begin{pmatrix} \beta_{st(i,2),av(N_r)} - \beta_{st(i,1),av(N_r)} \\ \alpha_{st(i,3),av(N_r)} - \alpha_{st(i,2),av(N_r)} \end{pmatrix}  for i \in 1...Z for a \in 1...3 for r \in 1...N_r \mathbf{R}_{st(i,a),r} = 0.5 \cdot \mathbf{D}_{st(i,a),r} \\ \mathbf{R}_{st(i,a),r} = 0.5 \cdot \mathbf{D}_{st(i,a),r} \\ \begin{pmatrix} \mathbf{R}_L \ \mathbf{K}_H \ \mathbf{Cp} \ \overline{\mathbf{H}}_T \ \mathbf{L}^* \ \mathbf{T}^* \ \mathbf{P}^* \ \mathbf{\rho}^* \ \mathbf{a}^*_c \ \lambda_c \ \mathbf{F} \ \mathbf{D} \ \overline{\mathbf{d}} \ \overline{\mathbf{c}}_a \ \mathbf{c}_a \ \mathbf{u} \ \mathbf{c} \ \mathbf{M}_c \ \alpha \ \varepsilon_{rotor} \\ \pi^* \ \eta^* \ \mathbf{k} \ \mathbf{H}_T \ \mathbf{L} \ \mathbf{T} \ \mathbf{P} \ \mathbf{\rho} \ \mathbf{a}_{3B} \ \lambda_c \ \mathbf{F} \ \mathbf{R} \ \mathbf{h} \ \overline{\mathbf{c}}_u \ \mathbf{c}_u \ \mathbf{w}_u \ \mathbf{w} \ \mathbf{M}_w \ \boldsymbol{\beta} \ \varepsilon_{stator} \end{pmatrix}^T
```

$$\begin{pmatrix} H_{T} \\ R_{L} \end{pmatrix} = \begin{vmatrix} \text{for } i \in 1...Z \\ \\ H_{T.}(r) = \text{interp} \end{vmatrix} \text{pspline} \begin{bmatrix} 1 \\ \text{av}(N_{r}) \\ N_{r} \end{vmatrix}, \begin{pmatrix} H_{T_{i,av}(N_{r})} - \frac{\Delta H_{T}(\overline{d}_{st(i,2)})}{2} \\ H_{T_{i,av}(N_{r})} - \frac{\Delta H_{T}(\overline{d}_{st(i$$

$$CA = \begin{bmatrix} 1 & \text{if compressor} = "КВД" = 1 \\ 0 & \text{otherwise} \end{bmatrix}$$

▼ Расчет СА

```
α<sub>1CA</sub>
             \alpha_{3CA}
\sigma_{CA}
               \sigma_{CA}
             \overline{d}_{3CA}
T^*_{1CA} T^*_{3CA}
P*<sub>1CA</sub> P*<sub>3CA</sub>
\rho^*_{1CA} \rho^*_{3CA}
k<sub>1CA</sub> k<sub>3CA</sub>
<sup>а</sup>кр1СА <sup>а</sup>кр3СА
                                   for r \in av(N_r)
\overline{c}_{a1CA} \overline{c}_{a3CA}
                                         \alpha_{1CA_r} = \alpha_{st(Z,3),r}
cu1CA cu3CA
                                         \alpha_{3\text{CA}_r} = 90^{\circ} \text{ if CA} = 1
ca1CA ca3CA
                                                           \alpha_{1CA_r} otherwise
cu1CA cu3CA
                                         \overline{d}_{1CA} = \overline{d}_{st(Z,3)}
              c<sub>3CA</sub>
c<sub>1CA</sub>
                                          \overline{d}_{3CA} = \overline{d}_{1CA}
              \lambda_{3CA}
\lambda_{1CA}
                                          T^*_{1CA_r} = T^*_{st(Z,3),r}
              F<sub>3CA</sub>
F<sub>1CA</sub>
                                          T^*_{3CA_r} = T^*_{1CA_r}
 \varepsilon_{\mathrm{CA}}
               \epsilon_{\mathrm{CA}}
                                          P^*_{1CA_r} = P^*_{st(Z,3),r}
                                          iterarion_{CA} = 0
                                          \sigma_{\text{CA}} = 1
                                           while 0 < 1
                                             iterarion_{CA} = iterarion_{CA} + 1
                                              trace(concat("iterarion.CA = ", num2str(iterarion_{CA})))
                                              P^*_{3CA_r} = P^*_{1CA_r} \cdot \sigma_{CA}
```

$$\begin{split} &\sigma_{CA} = 0.9981 \\ &\operatorname{submatrix} \left(\varepsilon_{CA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (36.82) \cdot \operatorname{deg} \\ &\operatorname{submatrix} \left(\alpha_{1CA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (53.18) \cdot \operatorname{deg} \\ &\operatorname{submatrix} \left(\alpha_{3CA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (90.00) \cdot \operatorname{deg} \\ &\left(\overline{d}_{1CA} \right) = \begin{pmatrix} 0.8390 \\ 0.8390 \end{pmatrix} & \begin{pmatrix} F_{1CA} \\ F_{3CA} \end{pmatrix} = \begin{pmatrix} 0.0498 \\ 0.0598 \end{pmatrix} \end{split}$$

$$\begin{vmatrix} \rho^*_{3CA_r} \end{vmatrix} = \frac{1}{R_B} \begin{vmatrix} \frac{P^*_{3CA_r}}{T^*_{3CA_r}} \\ \frac{1}{R_B} \begin{vmatrix} \frac{P^*_{3CA_r}}{T^*_{3CA_r}} \end{vmatrix}$$

$$\begin{vmatrix} k_{1CA_r} \\ k_{3CA_r} \end{vmatrix} = \begin{pmatrix} k_{an}(C_{Paoanyx}(P^*_{1CA_r}, T^*_{1CA_r}), R_n) \\ k_{an}(C_{Paoanyx}(P^*_{3CA_r}, T^*_{3CA_r}), R_n) \end{pmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp3CA_r}} \end{vmatrix} = \begin{pmatrix} \frac{a_{kp}(k_{1CA_r}, R_B, T^*_{3CA_r})}{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})} \\ \frac{a_{kp3CA_r}}{a_{kp3CA_r}} \end{vmatrix} = \begin{pmatrix} \frac{a_{kp}(k_{1CA_r}, R_B, T^*_{3CA_r})}{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})} \\ \frac{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})}{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp1CA_r}} - \frac{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})}{a_{kp1CA_r}} \\ \frac{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})}{a_{kp1CA_r}} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp1CA_r}} - \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} - \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ \frac{a_{kp1CA_r}}{a_{kp1CA$$

$$\begin{split} & \text{submatrix} \left(T^*_{1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (826.7) \\ & \text{submatrix} \left(T^*_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (826.7) \\ & \text{submatrix} \left(P^*_{1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (2841.7) \cdot 10^3 \\ & \text{submatrix} \left(P^*_{1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (2836.3) \cdot 10^3 \\ & \text{submatrix} \left(P^*_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (11.972) \\ & \text{submatrix} \left(P^*_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (11.949) \\ & \text{submatrix} \left(k_{1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (1.352) \\ & \text{submatrix} \left(k_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (1.352) \\ & \text{submatrix} \left(a_{Kp1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (522.4) \\ & \text{submatrix} \left(\overline{c}_{a1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (0.162) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (0.162) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (0.121) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (58.9) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (48.9) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (44.1) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (73.5) \\ & \text{submatrix} \left(\overline{c}_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (48.9) \\ & \text{submatrix} \left(\overline{c}_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (48.9) \\ & \text{submatrix} \left(\overline{c}_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (48.9) \\ & \text{submatrix} \left(\overline{c}_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (0.094) \\ \\ & \text{submatrix} \left(\overline{c}_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (0.094) \\ \end{aligned}$$

```
1 otherwise
         break if (|eps("rel", \sigma'_{CA}, \sigma_{CA})| < epsilon) \land (iterarion_{CA} = 0)
         | \text{iterarion}_{CA} = -1 \text{ if } (| \text{eps}(\text{"rel"}, \sigma'_{CA}, \sigma_{CA}) | < \text{epsilon}) 
        \sigma_{CA} = \sigma'_{CA}
                                                                         F_{st(Z,3)}
     (F<sub>1CA</sub>)
                                                                    G \cdot \sqrt{R_B \cdot T^*_{3CA_r}}
    (F_{3CA})
                         \left( \overline{m_{q}(k_{3CA_{r}}) \cdot P^{*}_{3CA_{r}} \cdot \Gamma \Pi \Phi("G", \lambda_{3CA_{r}}, k_{3CA_{r}}) \cdot \sin(\alpha_{3CA_{r}})} \right)
    \varepsilon_{\text{CA}_{r}} = \alpha_{3\text{CA}_{r}} - \alpha_{1\text{CA}_{r}}
 \alpha_{1CA} \alpha_{3CA}
 \sigma_{CA}
                \sigma_{\mathrm{CA}}
 \overline{d}_{1CA} \overline{d}_{3CA}
T*<sub>1CA</sub> T*<sub>3CA</sub>
P*<sub>1CA</sub> P*<sub>3CA</sub>
\rho^*_{1CA} \rho^*_{3CA}
k<sub>1CA</sub> k<sub>3CA</sub>
<sup>а</sup>кр1СА <sup>а</sup>кр3СА
\frac{1}{c_{a1CA}} \frac{1}{c_{a3CA}}
\frac{1}{c_{u1CA}} = \frac{1}{c_{u3CA}}
calCA ca3CA
cu1CA cu3CA
 c<sub>1CA</sub> c<sub>3CA</sub>
 \lambda_{1CA} \lambda_{3CA}
 F<sub>1CA</sub> F<sub>3CA</sub>
  \varepsilon_{\mathrm{CA}} \varepsilon_{\mathrm{CA}}
```


▼ Результаты поступенчатого расчета по ср. ЛТ

Относ. погрешность расчета по массовому расходу (кг/с):

$\overline{\Delta}G =$	for $i \in 1Z$
	for $a \in 13$
	$\overline{\Delta}G_{st(i,a)} = \left eps\left("rel", G, \rho_{st(i,a),av(N_r)} \cdot c_{a_{st(i,a),av(N_r)}} \cdot F_{st(i,a)} \right) \right $
	$ar{\Delta}\mathrm{G}$

$\overline{\Delta}G^{T} = \Box$		1	2		3	4	5	(5	7	8	9		10	11	12		13	14	15	16	,	17	18	19	.%
1		0.00	0.0	00	0.04	0.00	0.0	3 0	0.00	0.15	0.00	0.1	11	0.00	0.08	0.0)	0.06	0.00	0.04	ł 0.	00	0.02	0.00	0.03	
$\overline{\Delta}G^{\mathrm{T}} < 1\%$			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19					
$\Delta G < 170$	=	1	1	1	. 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1					

Количество ступеней ОК: Z = 9

Дискритизация сечений: ii = 1..2Z + 1

Дискритизация ступеней: i = 1..Z

_																
$\pi^{*^{\mathrm{T}}} = $		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	1	1.392	1.381	1.365	1.319	1.286	1.253	1.203	1.170	1.148						

Полученная степень повышения полного давления []: $\prod_{i=1}^{Z} \pi^*_{i} = 9.003$

Степень повышения давления в ЛА: $\pi^*_{\text{ЛA}} = \frac{\Gamma^*_{3\text{CA}_{av}(N_r)}}{P^*_{1\text{BHA}_{av}(N_r)}} = 8.970$

 $\tau^*_{\Lambda A} \ge \pi^*_{K} = 0$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
$H_{\mathbf{T}}^{T} =$	1	48.71	52.80	56.08	54.57	54.37	52.65	46.34	41.94	38.93							.10
11	2	48.71	52.80	56.08	54.57	54.37	52.65	46.34	41.94	38.93							
	3	48.71	52.80	56.08	54.57	54.37	52.65	46.34	41.94	38.93							

Действительная работа К (Дж/кг):
$$L_{K} = \sum_{i=1}^{Z} \ L_{i} = 430.1 \cdot 10^{3}$$

Адиабатная работа К [Дж/кг]:
$$L^*_K = \sum_{i=1}^Z \ L^*_i = 378.5 \cdot 10^3$$

Адиабатная КПД К []:
$$n_{K}^* = \frac{L_K^*}{L_K} = 88.00 \cdot \%$$

Мощность K (Вт):
$$N_K = G \cdot L_K = 14.97 \cdot 10^6$$

submatrix $(Cp, 1, 2Z + 1, av(N_r), av(N_r))^T$	= 1	1 1016.2	2 1024.3	3 3 1024.3	4 1034.0	5 1034.0	6 1045.1	7 1045.1	8 1056.3	9 1056.3	10 3 1067	.5 1067.5	12 5 1078.3	13 1078.3	14 1087.8	15 1087.8	16 1096.2	17 1096.2	18 1103.8	19 1103.8
submatrix $(k, 1, 2Z + 1, av(N_r), av(N_r))^T$	= 1	1 1.394	2 1.390	3 4 1.390 1.	5 384 1.3	6 84 1.37	7 9 1.379	8 1.373	9 1.373	10 1.368	11 1.368	12 1 1.363 1.	3 14 .363 1.3!	15 59 1.359	16 1.355	17 1.355	18 1.352	19 1.352	20 2	1
submatrix $(T^*, 1, 2Z + 1, av(N_r), av(N_r))^T$	= 1			•	4 5 516.3 5		1			10 668.6	11 668.6		13 1 ⁴ 715.5 75		16	17	18	19	20	21
submatrix $(T, 1, 2Z + 1, av(N_r), av(N_r))^T$					1 5 96.3 51				9	10	11	,	3 14	56.3 756. 15	792.9	792.9	18	19	20 2	1
	1	412.5		_					616.3	650.2	10	698.1 7	12.8 740	13	778.9	790.4	813.5	824.2	18	·10 ³
submatrix $(P^*, 1, 2Z + 1, av(N_r), av(N_r))^T$	1	315.6	439.3	3 439.3	606.5	5 606.5	6 828	828	1091.8	1091.8				1759.5	2117.2	2117.2	2476.2	2476.2		•10
submatrix $(P, 1, 2Z + 1, av(N_r), av(N_r))^T$	1	300.6	2 376.3	3 422.8	4 526.1	5 588.5	6 724.9	7 808.7	8 972.5	9 1071.5	10 1266.0	11 1383.0	12 1604.1	13 1734.9	14 1958.5	15 2089.9	16 2313.5	17 2446.6	18	·10 ³
submatrix $\left(\rho^*, 1, 2Z + 1, av(N_r), av(N_r)\right)^T$	= 1	1 2.628	2 3.285	3 3.285	4 4.091	5 4.091	6 5.067	7 5.067	8 6.138	9 6.138	10 3 7.31	11 5 7.315	12 8.565	13 8.565	14 9.75	15 9.75	16 10.876	17 10.876	18 11.972	19 11.972
submatrix $(\rho, 1, 2Z + 1, av(N_r), av(N_r))^T$	= 1	1 2.538	2 2.939	3 3.196	4 3.691	5 4.003	6 4.601	7 4.981	8 5.642	9 6.055	10 6.781	11 7.233	12 8.003	13 8.477	14 9.206	15 9.657	16 10.344	17 10.78	18 11.439	19 11.871

 $k_{\text{AD}} = k_{\text{AD}} \left(\text{Cp}_{\text{BO3DJYX.cp}} \left(P^*_{\text{st}(1,1),\text{av}\left(N_r\right)}, P^*_{\text{st}(Z,3),\text{av}\left(N_r\right)}, T^*_{\text{st}(1,1),\text{av}\left(N_r\right)}, T^*_{\text{st}(Z,3),\text{av}\left(N_r\right)}, T^*_{\text{st}(Z,3),\text{av}\left(N_r\right)} \right), R_B \right) = 1.373$

$F^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
•	1	0.1373	0.1218	0.1155	0.1031	0.098	0.0884	0.0846	0.0775	0.0747	0.069	0.0668	0.0624	0.0608	0.0578	0.0568	0.0547	0.0541	0.0514	0.0498		

$\overline{\mathbf{d}}^{\mathrm{T}} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	1	0.6467	0.6726	0.6978	0.7190	0.7397	0.7517	0.7636	0.7734	0.7831	0.7913	0.7995	0.8061	0.8127	0.8173	0.8220	0.8252	0.8284	0.8337	0.8390				

 $\overline{d}_{st(Z,3)} = 0.839$ $\overline{d}_{st(Z,3)} \le 0.9 = 1$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
$D^{T} =$	1	354.5	364.3	373.6	381.1	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2			$\cdot 10^{-3}$
Ъ	2	461.6	461.6	461.6	461.6	461.6	456.9	452.3	448.7	445.3	442.4	439.6	437.4	435.3	433.8	432.3	431.3	430.3	428.7	427.1			
	3	548.2	541.7	535.4	530.0	524.8	516.5	508.4	502.0	495.8	490.6	485.6	481.6	477.7	475.0	472.3	470.5	468.7	465.7	462.7			

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
$R^{T} = \boxed{1}$	177.3	182.2	186.8	190.5	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1							$\cdot 10^{-3}$
2	230.8	230.8	230.8	230.8	230.8	228.4	226.2	224.4	222.6	221.2	219.8	218.7	217.6	216.9	216.2	215.7	215.2	214.4	213.6							10
3	274.1	270.8	267.7	265.0	262.4	258.2	254.2	251.0	247.9	245.3	242.8	240.8	238.9	237.5	236.2	235.2	234.3	232.8	231.4							

$h^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	$\cdot 10^{-3}$
	1	96.8	88.7	80.9	74.5	68.3	64.1	60.1	56.9	53.8	51.2	48.7	46.7	44.7	43.4	42.0	41.1	40.2	38.7	37.2							

$submatrix \left(a*_{C}, 1, 2Z+1, av \left(N_{r}\right), av \left(N_{r}\right)\right)^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ \hline 1 & 373.9 & 394.4 & 394.4 & 414.9 & 414.9 & 435.3 & 435.3 & 453.7 & 471.0 & 471.0 & 486.8 & 486.8 & 500.2 & 500.2 & 511.9 & 511.9 & 522.4 & 522.4 \end{bmatrix}$
$submatrix \left(a_{3B}, 1, 2Z + 1, av\left(N_r\right), av\left(N_r\right)\right)^T = \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$submatrix \Big(c , 1 , 2Z + 1 , av \Big(N_r \Big) , av \Big(N_r \Big) \Big)^T = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ \hline 1 & 107.9 & 201.3 & 100.9 & 203.3 & 94.2 & 206.6 & 87.7 & 201.3 & 81.6 & 198.3 & 77.0 & 193.7 & 75.9 & 183.0 & 75.0 & 175.2 & 74.0 & 170.2 & 73.5 & & & & & & & & & & & & & & & & & & &$
$submatrix \Big(w, 1, 2Z, av \Big(N_r \Big), av \Big(N_r \Big) \Big)^T = \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$u^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 \\ 1 & 278.4 & 286.2 & 293.4 & 299.3 & 304.9 & 30$
$c_{a_{st(Z,3),av(N_r)}} = 58.88$ $c_{a_{st(Z,3),av(N_r)}} \le 130 = 1$ Для КС
$submatrix \Big(c_a, 1, 2Z+1, av \Big(N_r \Big), av \Big(N_r \Big) \Big)^T = \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$submatrix \Big(c_u, 1, 2Z + 1, av \Big(N_r \Big), av \Big(N_r \Big) \Big)^T = \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$submatrix \Big(w_u, 1, 2Z + 1, av \Big(N_r \Big), av \Big(N_r \Big) \Big)^T = \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\Delta c_{a_{i,av(N_r)}} = \left(c_{a_{st(i,2),av(N_r)}} - c_{a_{st(i,1),av(N_r)}}\right)$
$\text{submatrix} \Big(\Delta c_a, 1, Z, \text{av} \Big(N_r \Big), \text{av} \Big(N_r \Big) \Big)^T = \boxed{ \begin{array}{c cccccccccccccccccccccccccccccccccc$
$submatrix \left(\Delta c_{a}, 1, Z, av(N_{r}), av(N_{r})\right)^{T} \geq -12 = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$

$submatrix(\alpha, 1, 2\cdot Z + 1, av(N_r), av(N_r))^T =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	•.
	1	67.83	28.90	69.13	26.74	70.50	24.46	70.13	23.31	70.54	22.04	69.20	21.08	62.72	20.94	57.68	20.56	53.70	20.37	53.18			
submatrix $(\beta, 1, 2 \cdot Z + 1, av(N_r), av(N_r))^T =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	.0
(1) (1))	1	17.38	27.57	16.1	26.82	15.01	26.61	14.21	25.42	13.41	24.45	12.75	23.17	12.39	21.07	11.95	19.39	11.46	18.5	11.42			
submatrix $\left(\varepsilon_{\text{rotor}}, 1, Z, \text{av}(N_r), \text{av}(N_r)\right)^T = \left[-\frac{1}{2}\right]$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	.0
(10101 / / (1) / (1) /	1	10.19	10.72	11.6	11.21	11.04	10.42	8.68	7.44	7.04													
submatrix $\left(\varepsilon_{\text{stator}}, 1, Z, \text{av}(N_r), \text{av}(N_r)\right)^T$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	. •
	1	40.23	43.76	45.67	47.23	47.16	41.64	36.74	33.14	32.81													

5 19 7 8 9 10 11 12 13 14 15 16 17 18 0.2269 0.4746 0.2014 0.4436 0.1798 0.3979 0.3659 0.1500 0.3259 0.4211 0.1634 0.1559 0.3422 0.1446 0.1408

14 15 7 9 10 11 12 13 16 17 18 19 0.7598 0.4098 0.7096 0.3814 0.6726 0.3557 0.6374 0.3388 0.5953 0.3384 0.5645 0.3365 0.5413 0.3324

19 8 9 10 11 12 13 14 15 18 0.4432 0.1853 0.1383 0.4137 0.1655 0.3924 0.1505 0.3706 0.1437 0.3404 0.3182 0.1334 0.3030 0.1300

Вывод результатов поступенчатого расчета по ср. ЛТ ОК в ЕХСЕL:

▼ Расчет параметров потока по высоте Л

Относ. диамет р корня при увеличении которого меняется з-н профилирования Л с промежуточного на Ц = const:

с R = const на промежуточный:

[16, c.94-99]

$$\begin{array}{ll} \overline{m} = & \text{for } i \in 1 ... Z \\ m_i = & -1 \quad \text{if } \overline{d}_{st(i,1)} \leq \overline{d}_{R2m} \\ 1 \quad \text{if } \overline{d}_{st(i,1)} \geq \overline{d}_{m2II} \\ -1 + \frac{1 - (-1)}{\overline{d}_{m2II} - \overline{d}_{R2m}} \cdot \left(\overline{d}_{st(i,1)} - \overline{d}_{R2m} \right) \quad \text{otherwise} \\ m \end{array}$$

$$\begin{pmatrix} \overline{d}_{m2II} \\ \overline{d}_{R2m} \end{pmatrix} = \begin{pmatrix} 0.7 \\ 0.3 \end{pmatrix}$$

$$m_i = \begin{bmatrix} 0.73 & \text{if compressor} = "B\pi" \\ m_i & \text{otherwise} \end{bmatrix}$$

$\mathbf{m}^{\mathrm{T}} =$		1	2	3	4	5	6	7	8	9	10	11	12
	1	0.733	0.989	1.000	1.000	1.000	1.000	1.000	1.000	1.000			

```
T*<sub>1BHA</sub> T*<sub>3BHA</sub>
P*<sub>1BHA</sub> P*<sub>3BHA</sub>
ρ*<sub>1BHA</sub> ρ*<sub>3BHA</sub>
Cp<sub>1BHA</sub> Cp<sub>3BHA</sub>
k<sub>1BHA</sub> k<sub>3BHA</sub>
a*c1BHA a*c3BHA
                                                   for i \in 1
cu1BHA cu3BHA
                                                      for r \in 1..N_r
<sup>c</sup>a1BHA <sup>c</sup>a3BHA
                                                                                            \left(T^*_{1BHA_{av(N_r)}}\right)
                                                              \left(T^*_{1BHA_r}\right)
\alpha_{1BHA} \alpha_{3BHA}
                                                              T^*_{3BHA_r}
                                                                                              T^*_{3BHA_{av(N_r)}}
 c<sub>1BHA</sub>
                    c<sub>3BHA</sub>
\lambda_{c1BHA} \lambda_{c3BHA}
                                                             (P^*1BHA_r)
                                                                                             \left(P^*_{1BHA_{av(N_r)}}\right)
                       \varepsilon_{
m BHA}
 \varepsilon_{
m BHA}
                                                              P*3BHA<sub>r</sub>
                                                                                             P^*_{3BHA_{av(N_r)}}
                                                                                              \left( \rho^*_{1BHA_{av(N_r)}} \right)
                                                              (\rho^*_{1BHA_r})
                                                              ρ*<sub>3BHA</sub><sub>r</sub>
                                                                                            \left( \rho^*_{3BHA_{av(N_r)}} \right)
                                                                                              \left( Cp_{\text{воздух}} \left( P^*_{1BHA_r}, T^*_{1BHA_r} \right) \right)
                                                              \left( Cp_{1BHA_{r}} \right)
                                                              Cp<sub>3BHA</sub><sub>r</sub>
                                                                                             \left( \operatorname{Cp}_{\text{воздух}} \left( \operatorname{P*}_{3\text{BHA}_r}, \operatorname{T*}_{3\text{BHA}_r} \right) \right)
                                                              (k<sub>1BHA</sub>
                                                                                          \left(k_{ad}\left(Cp_{1BHA_{r}},R_{B}\right)\right)
                                                                                          \left( k_{aд} \left( Cp_{3BHA_r}, R_B \right) \right)
                                                              k<sub>3</sub>BHA<sub>r</sub>
                                                                                                  \frac{2 \cdot k_{1BHA_{r}}}{k_{1BHA_{r}} + 1} \cdot R_{B} \cdot T^{*}_{1BHA_{r}}
                                                             (a*c1BHA<sub>r</sub>)
                                                             a*c3BHA<sub>r</sub>
                                                            A = \left(1 - R_{L_{i,av(N_r)}}\right) \cdot \omega \cdot \left(R_{st(i,1),av(N_r)}\right)^{m_i + 1}
                                                           B = \frac{H_{T_{i,av(N_r)}}}{2 \cdot \omega}
                                                                                                                          c_{u1BHA_{av(N_r)}}
```



```
P*
                       P
   Cp
                       k
  a*c
                      a_{3B}
     c_{u}
                       c_{a}
                                       = \int for i \in 1...Z
                       β
     \alpha
                                                         for a \in 1...3
     c
                       \mathbf{W}
                                                              for r \in 1..N_r
    \lambda_{\rm c}
                      w_{u}
                                                                 T^*_{st(i,a),r} = T^*_{st(i,a),av(N_r)}
 M_{W}
                     M_{c}
                                                                  P^*_{st(i,a),r} = P^*_{st(i,a),av(N_r)}
                      \mathbf{R}_{\mathbf{L}}
  R_{L}
                                                                  \rho^*_{st(i,a),r} = \rho^*_{st(i,a),av(N_r)}
<sup>ε</sup>rotor <sup>ε</sup>stator ,
                                                                   Cp_{st(i,a),r} = Cp_{BO3ДYX}(P*_{st(i,a),r}, T*_{st(i,a),r})
                                                                    k_{st(i,a),r} = k_{a \perp} (Cp_{st(i,a),r}, R_B)
                                                                   a_{c_{st(i,a),r}}^{*} = \sqrt{\frac{2 \cdot k_{st(i,a),r}}{k_{st(i,a),r} + 1} \cdot R_{B} \cdot T_{st(i,a),r}^{*}}
                                                                    if \Delta H_{Tmax} = 0
                                                                           A_{st(i,a)} = \left(1 - R_{L_{i,av(N_r)}}\right) \cdot \omega \cdot \left(R_{st(i,a),av(N_r)}\right)^{m_i+1} 
                                                                                                                         0 if (a = 1) \land (i = 1) \land (BHA = 0)
                                                                                                                         \frac{\left|\frac{A_{st(i,a)}}{\left(R_{st(i,a),r}\right)^{m_i}} - \frac{B_{st(i,a)}}{\left(R_{st(i,a),r}\right)}\right| \text{ otherwise}
                                                                             c_{a_{st(i,a),r}} = c_{a3BHA_r} \text{ if } (a = 1) \land (i = 1) \land (BHA = 1)
                                                                                                              \sqrt{ \left( c_{a_{st(i,a)},av(N_r)} \right)^2 - 2 \cdot \left( A_{st(i,a)} \right)^2 \cdot \left[ \left( R_{st(i,a),r} \right)^2 - \left( R_{st(i,a),av(N_r)} \right)^2 \right] + 4 \cdot A_{st(i,a)} \cdot B_{st(i,a)} \cdot \ln \left( \frac{R_{st(i,a),r}}{R_{st(i,a),av(N_r)}} \right) \cdot \left| -1 \right| \text{ if } a = 2  if m_i = -1  \sqrt{ \left( c_{a_{st(i,a),av(N_r)}} \right)^2 - 2 \cdot \left( A_{st(i,a)} \right)^2 \cdot \ln \left( \frac{R_{st(i,a),r}}{R_{st(i,a),r}} \right) - 2 \cdot A_{st(i,a)} \cdot B_{st(i,a)} \cdot \left( \frac{1}{R_{st(i,a),av(N_r)}} - \frac{1}{R_{st(i,a),av(N_r)}} \right) \cdot \left| -1 \right| \text{ if } a = 2  if m_i = 0
```

$$\begin{cases} A_{3(1,a)} \cdot R_{3(1,a)} \cdot$$

$$\begin{split} c_{st(1,a),r} &= \operatorname{unangre} \left({^{\text{C}}a}_{st(i,a),r}, {^{\text{C}}u}_{st(i,a),r} \right) \\ c_{st(i,a),r} &= \frac{c_{st(i,a),r}}{\sin(\alpha_{st(i,a),r})} \\ \lambda_{c_{st(i,a),r}} &= \frac{c_{st(i,a),r}}{a^{*}c_{st(i,a),r}} \\ \begin{pmatrix} T_{st(i,a),r} \\ P_{st(i,a),r} \end{pmatrix} &= \begin{pmatrix} T^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} \end{pmatrix} \\ \begin{pmatrix} T^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} \end{pmatrix} &= \begin{pmatrix} T^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} \end{pmatrix} \\ \begin{pmatrix} P^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} \end{pmatrix} &= \sqrt{k_{st(i,a),r}} \\ \begin{pmatrix} P^{*}v_{st(i,a),r} \\ P^{*}s_{t(i,a),r} \end{pmatrix} \\ \begin{pmatrix} P^{*}v_{st(i,a),r} \\ P^{*}s_{t(i,a),r} \end{pmatrix} &= \sqrt{k_{st(i,a),r}} \\ \begin{pmatrix} P^{*}v_{st(i,a),r} \\ P^{*}s_{t(i,a),r} \end{pmatrix} \\ \begin{pmatrix} P^{*}v_{st(i,a),r} \\ P^{*}s_{t(i,a),r} \end{pmatrix} \\ \begin{pmatrix} P^{*}v_{st(i,a),r} \\ P^{*}v_{st(i,a),r} \end{pmatrix} \\ \begin{pmatrix} P^{*}v_{st(i,a),r} \\ P^{*}v_{st(i,a$$

```
T*<sub>1CA</sub> T*<sub>3CA</sub>
P*<sub>1CA</sub> P*<sub>3CA</sub>
\rho^*_{1CA} \rho^*_{3CA}
Cp<sub>1CA</sub> Cp<sub>3CA</sub>
k<sub>1CA</sub> k<sub>3CA</sub>
a*c1CA a*c3CA
                                              for i \in Z
cu1CA cu3CA
                                                   for r \in 1...N_r
calCA ca3CA
                                                          \left(T^*_{1CA_r}\right)
                                                                                             T*_{st(i,3),r}
\alpha_{1CA} \alpha_{3CA}
                                                                                           T^*_{3CA_{av(N_r)}}
                                                            T*3CA<sub>r</sub>
 c<sub>1CA</sub> c<sub>3CA</sub>
                                                            (P^*_{1CA_r})
                                                                                            P*_{st(i,3),r}
 \lambda_{c1CA} \lambda_{c3CA}
                                                                                          P^*_{3CA_{av\left(N_r\right)}} \bigg)
                                                            P*3CA<sub>r</sub>
 \epsilon_{\mathrm{CA}} \epsilon_{\mathrm{CA}}
                                                            (\rho^*_{1CA_r})
                                                                                           \rho^*_{st(i,3),r}
                                                                                          \left[ \rho^*_{3CA_{av(N_r)}} \right]
                                                            \rho^*_{3CA_r}
                                                                                          \left(\operatorname{Cp}_{\operatorname{BO3}\operatorname{JYX}}\left(\operatorname{P*}_{\operatorname{1CA}_{\operatorname{r}}},\operatorname{T*}_{\operatorname{1CA}_{\operatorname{r}}}\right)\right)
                                                            \left( C_{p_{1}CA_{r}} \right)
                                                             Cp<sub>3CA</sub>
                                                                                          \left( Cp_{BO3ДУX} \left( P^*_{3CA_r}, T^*_{3CA_r} \right) \right)
                                                            \binom{k_{1CA_r}}{}
                                                                                      \left(k_{ad}\left(Cp_{1CA_{r}},R_{B}\right)\right)
                                                                                  = \left( k_{a,d} \left( C_{p_3 CA_r}, R_B \right) \right)
                                                            \left[\begin{array}{c} k_{3}CA_{r} \end{array}\right]
                                                            (a*c1CA<sub>r</sub>)
                                                            \left(a^* c3CA_r\right)
                                                           A = \left(1 - R_{L_{i,av(N_r)}}\right) \cdot \omega \cdot \left(R_{st(i,3),av(N_r)}\right)^{m_i + 1}
                                                         B = \frac{H_{T_{i,av}(N_r)}}{2 \cdot \omega}
                                                                                                            c_{u_{st(i,3),r}}
                                                            \begin{pmatrix} c_{u1CA_r} \end{pmatrix}
```

$$\begin{pmatrix} c_{alCA_{1}} \\ c_{alCA_{2}} \\ c_{a3CA_{n}} \\ c$$

▼ Результаты расчета параметров потока по высоте Л

$$T^*_{1BHA} = \begin{pmatrix} 418.2 \\ 418.2 \\ 418.2 \end{pmatrix}$$

$$T^*_{3BHA} = \begin{pmatrix} 418.2 \\ 418.2 \\ 418.2 \end{pmatrix}$$

$$P*_{1BHA} = \begin{pmatrix} 316.2 \\ 316.2 \\ 316.2 \end{pmatrix} \cdot 10^3$$

$$P*_{3BHA} = \begin{pmatrix} 315.6 \\ 315.6 \\ 315.6 \end{pmatrix} \cdot 10^3$$

 $\begin{pmatrix}
2.628 \\
2.628 \\
2.628
\end{pmatrix}$

$$\rho^*_{1BHA} = \begin{pmatrix} 2.633 \\ 2.633 \\ 2.633 \end{pmatrix}$$

 $Cp_{1BHA} = | 1016.2$

(1016.2)

1016.2

$$Cp_{3BHA} = \begin{pmatrix} 1016.2 \\ 1016.2 \\ 1016.2 \end{pmatrix}$$

 $\rho*_{3BHA} =$

$$k_{1BHA} = \begin{pmatrix} 1.394 \\ 1.394 \\ 1.394 \end{pmatrix}$$
 $k_{3BHA} = \begin{pmatrix} 1.394 \\ 1.394 \\ 1.394 \end{pmatrix}$

$$a^*_{c1BHA} = \begin{pmatrix} 373.95 \\ 373.95 \\ 373.95 \end{pmatrix}$$

$$a*_{c3BHA} = \begin{pmatrix} 373.95 \\ 373.95 \\ 373.95 \end{pmatrix}$$

$$c_{1BHA} = \begin{pmatrix} 99.9 \\ 99.9 \\ 99.9 \end{pmatrix} \qquad c_{3BHA} = \begin{pmatrix} 112.6 \\ 108.2 \\ 105.6 \end{pmatrix}$$

$$c_{u1BHA} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \end{pmatrix} \qquad c_{u3BHA} = \begin{pmatrix} 44.5 \\ 41.6 \\ 39.3 \end{pmatrix}$$

$$c_{a1BHA} = \begin{pmatrix} 99.9 \\ 99.9 \\ 99.9 \end{pmatrix} \qquad c_{a3BHA} = \begin{pmatrix} 103.5 \\ 99.9 \\ 98.0 \end{pmatrix}$$

$$\alpha_{1BHA} = \begin{pmatrix} 90.00 \\ 90.00 \\ 90.00 \end{pmatrix}$$
 $\circ \qquad \qquad \alpha_{3BHA} = \begin{pmatrix} 66.71 \\ 67.39 \\ 68.13 \end{pmatrix}$
 $\circ \qquad \qquad \circ$

$$\varepsilon_{\text{BHA}} = \begin{pmatrix} 23.29 \\ 22.61 \\ 21.87 \end{pmatrix}. \circ$$

$$\lambda_{c1BHA} = \begin{pmatrix} 0.267 \\ 0.267 \\ 0.267 \end{pmatrix}$$
 $\lambda_{c3BHA} = \begin{pmatrix} 0.301 \\ 0.289 \\ 0.282 \end{pmatrix}$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
T* ^T =	_		465.7	465.7	516.3	516.3				619.5	668.6	668.6	715.5	715.5	756.3	+			826.7	826.7						
			465.7	465.7	516.3	516.3	_			619.5	668.6	668.6	715.5	715.5	756.3				826.7	826.7						
	3 4	18.2	465.7	465.7	516.3	516.3	3 569.	1 569.1	619.5	619.5	668.6	668.6	715.5	715.5	756.3	756.3	792.9	792.9	826.7	826.7						
			<u> </u>	2	4			7	0	0	10	4.4	12	12	14	4 =	1.0	17	10	10	20	21	22	22	24	25
Т	1 41		2	3	4 400 F	5	6	7	8	9	10	665.0	604.0	13	14	15 752.5	16 776.0	700.2	18		20	21	22	23	24	25
$T^{\Gamma} =$				460.4 460.7	488.5 496.3	511.9 512.1	542.2 548.8	565.3 565.4	594.9 600.4	616.2 616.3	645.5 650.3	665.8 665.9	694.0 698.1	712.6 712.8	737.6 740.9	753.5 753.7	776.0 779.0	790.2 790.4	811.0 813.6	824.1 824.3						
				460.9	500.3	512.2	552.5	565.5	603.7	616.4	653.3	665.9	700.8	712.9	743.2	753.8	780.9	790.4	815.4	824.4						
	3 11	2.7	130.5	100.5	300.3	J12.2	332.3	303.3	003.7	010.1	033.3	003.5	700.0	712.5	7 13.2	733.0	700.5	730.0	013.1	02 1. 1						
		1	2	3	4		5	6	7	8	9	10	11	12	<u> </u>	13	14	15	16	17	18	19		20	21]
P* ^T =	_ 1	315.6	439.3	439	.3 60	06.5	606.5	828.0	828.0	1091.8	1091.	8 1404.	5 140	4.5 17	59.5	1759.5	2117.2	2117.2	2476.2	2476.2	2841.	.7 284	1.7			1.10^{3}
1 -	2	315.6	439.3	439	.3 60	06.5	606.5	828.0	828.0	1091.8	1091.	8 1404.	5 140	4.5 17	59.5	1759.5	2117.2	2117.2	2476.2	2476.2	2841	.7 284	1.7			10
	3	315.6	439.3	439	.3 60	06.5	606.5	828.0	828.0	1091.8	1091.	8 1404.	5 140	4.5 17	59.5	1759.5	2117.2	2117.2	2476.2	2476.2	2841	.7 284	1.7			
																										-
	1		2	3	4		5	6	7	8	9	10	11	12	1	13	14	15	16	17	18	19	2	0	21	
$\mathbf{P}^{\mathrm{T}} =$		99.3	349.8	421.7	-		587.7	694.1	807.9	940.5	1070.8	1232.1	1382.					2088.1	2281.0	2444.2	2640.3	+	-			$\cdot 10^3$
		00.5	376.4	422.8			588.5	725.5	808.7	973.0	1071.5	1266.4	1383.		_		1958.9	2089.9	2313.8	2446.6	2672.7	_				
	3 3	01.2	389.7	423.3	3 54:	1.3	589.0	743.5	809.2	992.7	1071.9	1288.1	1383.	.5 1627	7.6 17	735.8	1981.5	2091.2	2336.2	2448.2	2695.2	2 2811	.8			
		1	ີ າ	7	1	1	Е	6	7	0	0	10	11	4.1	, I	12	1.4	15	16	17	10	10		20	21	1
Т.	1	1 2 628	2 285	3	4 85 4		5	6	7	8	9	10	11			13	14	15	16	17	18	19		20	21	
ρ^{*^T} =		1 2.628 2.628	3.285	3.28	85 4.	.091	4.091	5.067	5.067	6.138	6.13	8 7.31	5 7.3	315 8.	565	8.565	9.750	9.750	10.876	10.876	11.97	72 11.9	972	20	21	
${\rho^*}^T$ =	2	2.628	3.285 3.285	3.28	85 4. 85 4.	.091	4.091 4.091	5.067 5.067	5.067 5.067	6.138 6.138	6.13	8 7.31 8 7.31	5 7.3 5 7.3	315 8. 315 8.	565 565	8.565 8.565	9.750 9.750	9.750 9.750	10.876 10.876	10.876 10.876	11.97 11.97	72 11.9 72 11.9	972 972	20	21	
ρ^{*^T} =	2		3.285	3.28	85 4. 85 4.	.091	4.091	5.067	5.067	6.138	6.13	8 7.31 8 7.31	5 7.3 5 7.3	315 8. 315 8.	565	8.565	9.750	9.750	10.876	10.876 10.876	11.97	72 11.9 72 11.9	972 972	20	21	
ρ* ^T =	2	2.628	3.285 3.285	3.28	85 4. 85 4.	.091 .091 .091	4.091 4.091	5.067 5.067	5.067 5.067	6.138 6.138	6.13	8 7.31 8 7.31	5 7.3 5 7.3	315 8. 315 8.	565 565 565	8.565 8.565	9.750 9.750	9.750 9.750	10.876 10.876	10.876 10.876	11.97 11.97	72 11.9 72 11.9	972 972		21	
T	2 3	2.628	3.285 3.285 3.285	3.28 3.28 3.28	85 4. 85 4. 85 4.	.091 .091 .091	4.091 4.091 4.091	5.067 5.067 5.067	5.067 5.067 5.067	6.138 6.138 6.138	6.138 6.138 6.138	7.31 8 7.31 8 7.31	5 7.3 5 7.3 5 7.3	315 8. 315 8. 315 8.	565 565 565	8.565 8.565 8.565	9.750 9.750 9.750	9.750 9.750 9.750	10.876 10.876 10.876	10.876 10.876 10.876	11.97 11.97 11.97	72 11.9 72 11.9 72 11.9	972 972 972 2			
${\rho^*}^T = $ ${\rho^T} = $	2 3 1 1 2	2.628	3.285 3.285 3.285	3.28 3.28 3.28	85 4. 85 4. 85 4. 0 3.5	.091 .091 .091	4.091 4.091 4.091	5.067 5.067 5.067	5.067 5.067 5.067	6.138 6.138 6.138	6.138 6.138 6.138	7.31 8 7.31 8 7.31	5 7.3 5 7.3 5 7.3	315 8. 315 8. 315 8. 315 8. 12 7.8	565 565 565 175 8	8.565 8.565 8.565	9.750 9.750 9.750	9.750 9.750 9.750	10.876 10.876 10.876	10.876 10.876 10.876	11.97 11.97 11.97	72 11.5 72 11.5 72 11.5 19 11.8	972 972 972 972 2			
T	2 3 1 1 2 2 2	2.628 2.628 .530	3.285 3.285 3.285 2 2.788	3.28 3.28 3.28 3.190	85 4. 85 4. 85 4. 90 3.5 5 3.6	.091 .091 .091 .091	4.091 4.091 4.091 5 3.999	5.067 5.067 5.067 6 4.458	5.067 5.067 5.067 7 4.977	6.138 6.138 6.138 8 5.506	6.136 6.136 6.137 9 6.052	7.31 7.31 7.31 10 6.648 6.782	5 7.3 5 7.3 5 7.3 11 7.23	815 8 815 8 815 8 12 7 83 8	565 565 565 175 8 04 8	8.565 8.565 8.565	9.750 9.750 9.750 14 9.091	9.750 9.750 9.750 15 9.651 9.657	10.876 10.876 10.876 16 10.236	10.876 10.876 10.876 17 10.772 10.780	11.97 11.97 11.97 18 11.338	72 11.5 72 11.5 72 11.5 72 11.5 19 11.86	972 972 972 972 2 66 73			
T	2 3 1 1 2 2 2	2.628 2.628 .530 .537 .542	3.285 3.285 3.285 2 2.788 2.940 3.014	3.28 3.28 3.28 3.190 3.196 3.199	85 4. 85 4. 85 4. 90 3.5 5 3.6	.091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003 4.005	5.067 5.067 5.067 6 4.458 4.604 4.686	5.067 5.067 5.067 7 4.977 4.981 4.983	6.138 6.138 6.138 8 5.506 5.644 5.727	6.136 6.136 6.136 9 6.052 6.055 6.056	7.31 7.31 7.31 10 6.648 6.782 6.867	7.3 5 7.3 5 7.3 11 7.23 7.23	815 8 815 8 815 8 12 7 83 8 83 8 85 8	565 565 565 75 8 04 8 89 8	8.565 8.565 8.565 13 3.472 3.477 3.480	9.750 9.750 9.750 14 9.091 9.207 9.285	9.750 9.750 9.750 15 9.651 9.657 9.661	10.876 10.876 10.876 16 10.236 10.345 10.419	10.876 10.876 10.876 17 10.772 10.780 10.785	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.5 72 11.5 72 11.5 19 11.86 1 11.87 2 11.87	972 972 972 972 2 66 73	0	21	
$\rho^T =$	2 3 1 1 2 2 2 3 2	2.628 2.628 .530 .537 .542	3.285 3.285 3.285 2 2.788 2.940 3.014	3 3.28 3 3.28 3 3.190 3.190 3.199	85 4. 85 4. 85 4. 9 3.5 6 3.6 9 3.7	.091 .091 .091 .091 .642 .691 .768	4.091 4.091 4.091 5 3.999 4.003 4.005	5.067 5.067 5.067 6 4.458 4.604 4.686	5.067 5.067 5.067 7 4.977 4.981 4.983	6.138 6.138 6.138 8 5.506 5.644 5.727	6.136 6.136 6.136 9 6.052 6.055 6.056	7.31 7.31 7.31 10 6.648 6.782 6.867	7.3 5 7.3 5 7.3 5 7.3 7.23 7.23 7.23	315 8. 315 8. 315 8. 315 8. 30 7.8 33 8.0 35 8.0	565 565 565 75 8 04 8 89 8	8.565 8.565 8.565 13 3.472 3.477 3.480	9.750 9.750 9.750 14 9.091 9.207 9.285	9.750 9.750 9.750 15 9.651 9.657 9.661	10.876 10.876 10.876 16 10.236 10.345 10.419	10.876 10.876 10.876 17 10.772 10.780	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.5 72 11.5 72 11.5 72 11.5 19 11.86 1 11.87	972 972 972 972 2 66 73	0	21	
T	2 3 1 1 2 2 2 3 2	2.628 2.628 .530 .537 .542	3.285 3.285 3.285 2 2,788 2.940 3.014 2 1024	3 3.28 3 3.28 3 3.190 3.190 3.199	85 4. 85 4. 85 4. 85 3.6 9 3.7	.091 .091 .091 .091 .642 .691 .768	4.091 4.091 4.091 5 3.999 4.003 4.005	5.067 5.067 5.067 6 4.458 4.604 4.686	5.067 5.067 5.067 7 4.977 4.981 4.983 8 9	6.138 6.138 6.138 8 5.506 5.644 5.727 10	6.13i 6.13i 9 6.052 6.055 6.056	10 6.648 6.782 6.867 12 8 1078	7.3 5 7.3 5 7.3 5 7.3 7.23 7.23 7.23 13 1078	315 8 315 8 315 8 315 8 30 7.8 33 8.0 35 8.0 14 1088	565 565 565 75 8 04 8 89 8	8.565 8.565 8.565 13 3.472 3.477 3.480 16 1096	9.750 9.750 9.750 14 9.091 9.207 9.285	9.750 9.750 9.750 15 9.651 9.657 9.661 18 1104	10.876 10.876 10.876 16 10.236 10.345 10.419	10.876 10.876 10.876 17 10.772 10.780 10.785	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.5 72 11.5 72 11.5 19 11.86 1 11.87 2 11.87	972 972 972 972 2 66 73	0	21	
$\rho^T =$	2 3 1 1 2 2 2 3 2 1 1 2 1	2.628 2.628 .530 .537 .542 1 .016 .016	3.285 3.285 3.285 2 2.788 2.940 3.014 2 1024 1024	3 3.190 3.190 3.199 3 1024 1024	85 4. 85 4. 85 4. 9 3.5 6 3.6 9 3.7	.091 .091 .091 .091 .642 .691 .768 .768	4.091 4.091 4.091 5 3.999 4.003 4.005	5.067 5.067 5.067 6 4.458 4.604 4.686 7 1045	5.067 5.067 5.067 7 4.977 4.981 4.983 8 9 1056 10	6.138 6.138 6.138 8 5.506 5.644 5.727 10 056 106	6.133 6.133 6.133 9 6.052 6.055 6.056 11 88 106	10 6.648 6.782 6.867 12 8 1078 8 1078	7.3 7.3 7.3 7.23 7.23 7.23 13 1078 1078	315 8. 315 8. 315 8. 315 8. 30 7.8 33 8.0 35 8.0 14 1088 1088 1088	565 565 565 75	8.565 8.565 8.565 8.3 3.472 3.477 3.480 16 1096 1096	9.750 9.750 9.750 14 9.091 9.207 9.285 17 1096 1096	9.750 9.750 9.750 15 9.651 9.657 9.661 18 1104 1104	10.876 10.876 10.876 16 10.236 10.345 10.419 19 2 1104 1104	10.876 10.876 10.876 17 10.772 10.780 10.785	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.5 72 11.5 72 11.5 19 11.86 1 11.87 2 11.87	972 972 972 972 2 66 73	0	21	
$\rho^T =$	2 3 1 1 2 2 2 3 2 1 1 2 1	2.628 2.628 .530 .537 .542 1 .016 .016	3.285 3.285 3.285 2 2.788 2.940 3.014 2 1024 1024	3 3.190 3.190 3.199 3 1024 1024	85 4. 85 4. 85 4. 9 3.5 6 3.6 9 3.7	.091 .091 .091 .091 .642 .691 .768	4.091 4.091 4.091 5 3.999 4.003 4.005	5.067 5.067 5.067 6 4.458 4.604 4.686 7 1045	5.067 5.067 5.067 7 4.977 4.981 4.983 8 9 1056 10	6.138 6.138 6.138 8 5.506 5.644 5.727 10	6.133 6.133 6.133 9 6.052 6.055 6.056 11 88 106	10 6.648 6.782 6.867 12 8 1078 8 1078	7.3 7.3 7.3 7.23 7.23 7.23 13 1078 1078	315 8. 315 8. 315 8. 315 8. 30 7.8 33 8.0 35 8.0 14 1088 1088 1088	565 565 565 75 8 04 8 89 8	8.565 8.565 8.565 13 3.472 3.477 3.480 16 1096	9.750 9.750 9.750 14 9.091 9.207 9.285	9.750 9.750 9.750 15 9.651 9.657 9.661 18 1104 1104	10.876 10.876 10.876 16 10.236 10.345 10.419	10.876 10.876 10.876 17 10.772 10.780 10.785	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.5 72 11.5 72 11.5 19 11.86 1 11.87 2 11.87	972 972 972 972 2 66 73	0	21	
$\rho^T =$	2 3 1 1 2 2 2 3 2 1 1 2 1	2.628 2.628 2.530 .537 .542 1 016 016	3.285 3.285 3.285 2 2.788 2.940 3.014 2 1024 1024 1024	3 3.28 3 3.28 3 3.190 3.190 3.199 3 1024 1024 1024	85 4. 85 4. 85 4. 9 3.5 6 3.6 9 3.7 4 1034 1034 1034	.091 .091 .091 .091 .091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003 4.005 6 1045 1045	5.067 5.067 5.067 6 4.458 4.604 4.686 7 1045 1045	5.067 5.067 5.067 7 4.977 4.981 4.983 8 9 1056 10 1056 10	6.138 6.138 6.138 8 5.506 5.644 5.727 10 056 106 056 106	6.133 6.133 6.133 9 6.052 6.055 6.056 11 68 106 68 106	10 6.648 6.782 6.867 12 8 1078 8 1078 8 1078	7.3 7.3 7.3 7.3 7.23 7.23 7.23 7.23 13 1078 1078 1078	315 8. 315 8. 315 8. 315 8. 30 7.8 33 8.0 35 8.0 4 1088 1088 1088 1088	565 565 565 75 8 04 8 89 8 15 1088 1088 1088	8.565 8.565 8.565 8.565 13 3.472 3.477 3.480 16 1096 1096 1096	9.750 9.750 9.750 14 9.091 9.207 9.285 17 1096 1096 1096	9.750 9.750 9.750 15 9.651 9.657 9.661 18 1104 1104 1104	10.876 10.876 10.876 16 10.236 10.345 10.419 19 2 1104 1104 1104	10.876 10.876 10.876 17 10.772 10.780 10.785	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.9 72 11.9 72 11.9 19 11.86 1 11.87 2 11.87	972 972 972 972 266 73 78	25	21	25
$\rho^{T} = Cp^{T} =$	2 3 1 1 2 2 2 3 2 1 1 2 1 3 1	2.628 2.628 2.530 .537 .542 1 .016 .016	3.285 3.285 3.285 2 2.788 2.940 3.014 2 1024 1024 1024 2	3 3.196 3.199 3 1024 1024 3 3	85 4. 85 4. 85 4. 85 3.6 6 3.6 9 3.7 4 1034 1034 1034	.091 .091 .091 .091 .091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003 4.005 6 1045 1045	5.067 5.067 5.067 6 4.458 4.604 4.686 7 1045 1045	5.067 5.067 5.067 7 4.977 4.981 4.983 8 9 1056 10 1056 10	6.138 6.138 6.138 8 5.506 5.644 5.727 10 056 106 056 106	6.136 6.136 6.136 9 6.052 6.055 6.056 11 68 106 68 106	10 6.648 6.782 6.867 12 8 1078 8 1078 11	7.3 7.3 7.3 11 7.23 7.23 7.23 7.23 13 1078 1078	315 8 315 8 315 8 315 8 30 7.8 33 8.0 35 8.0 14 1088 1088 1088 13 13	565 565 565 75 8 04 8 89 8 15 1088 1088 1088	8.565 8.565 8.565 8.565 13 3.472 3.477 3.480 16 1096 1096 1096	9.750 9.750 9.750 9.750 14 9.091 9.207 9.285 17 1096 1096 1096	9.750 9.750 9.750 9.750 15 9.651 9.657 9.661 18 1104 1104 1104	10.876 10.876 10.876 16 10.236 10.345 10.419 19 2 1104 1104 1104	10.876 10.876 10.876 17 10.772 10.780 10.785	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.5 72 11.5 72 11.5 19 11.86 1 11.87 2 11.87	972 972 972 972 2 66 73	0	21	25
$\rho^T =$	2 3 3 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1	2.628 2.628 .530 .537 .542 1 .016 .016 .016	3.285 3.285 3.285 2 2.788 2.940 3.014 2 1024 1024 1024 2 .390	3 3.190 3.190 3.199 3 1024 1024 1024 3 1.390	85 4. 85 4. 85 4. 85 3.5 6 3.6 9 3.7 4 1034 1034 1034 1.384	.091 .091 .091 .091 .642 .691 .768 .768 .768 .768 .768 .768 .768 .768	4.091 4.091 4.091 5 3.999 4.003 4.005 6 1045 1045 1045 6 1.379	5.067 5.067 5.067 5.067 6 4.458 4.604 4.686 7 1045 1045 7 1.379	5.067 5.067 5.067 7 4.977 4.981 4.983 8 9 1056 10 1056 10	6.138 6.138 6.138 8 5.506 5.644 5.727 10 056 106 056 106 056 106	6.133 6.133 6.133 9 6.052 6.055 6.056 11 88 106 88 106 10 1.368	10 6.648 6.782 6.867 12 8 1078 8 1078 8 1078	7.3 7.3 7.3 7.23 7.23 7.23 7.23 7.23 13 1078 1078 1078 1078	12 10 10 10 10 10 10 10	565 565 565 75	8.565 8.565 8.565 8.565 13 3.472 3.477 3.480 16 1096 1096 1096 1096	9.750 9.750 9.750 9.750 14 9.091 9.207 9.285 17 1096 1096 1096 1.355	9.750 9.750 9.750 15 9.651 9.657 9.661 18 1104 1104 1104 1104	10.876 10.876 10.876 16 10.236 10.345 10.419 19 2 1104 1104 1104 1104 18 1.352	10.876 10.876 10.876 17 10.772 10.780 10.785 20 21 19 1.352	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.9 72 11.9 72 11.9 19 11.86 1 11.87 2 11.87	972 972 972 972 266 73 78	25	21	25
$\rho^{T} = Cp^{T} =$	2 3 1 1 2 2 2 3 2 1 1 2 1 3 1	2.628 2.628 2.628 .530 .537 .542 1 .016 .016 .016 .016 .016 .016	3.285 3.285 3.285 2 2.788 2.940 3.014 2 1024 1024 1024 1024 2 .390 .390	3 3.196 3.196 3.199 3 1024 1024 1024 3 1.390 1.390	85 4. 85 4. 85 4. 85 3.6 6 3.6 9 3.7 4 1034 1034 1034	.091 .091 .091 .091 .091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003 4.005 6 1045 1045	5.067 5.067 5.067 6 4.458 4.604 4.686 7 1045 1045	5.067 5.067 5.067 7 4.977 4.981 4.983 8 9 1056 10 1056 10	6.138 6.138 6.138 8 5.506 5.644 5.727 10 056 106 056 106	6.136 6.136 6.136 9 6.052 6.055 6.056 11 68 106 68 106	10 6.648 6.782 6.867 12 8 1078 8 1078 8 1078 11 1.368 1.368	7.3 7.3 7.3 11 7.23 7.23 7.23 7.23 13 1078 1078	315 8 315 8 315 8 315 8 30 7.8 33 8.0 35 8.0 14 1088 1088 1088 13 13	565 565 565 75 8 04 8 89 8 15 1088 1088 1088	8.565 8.565 8.565 8.565 13 3.472 3.477 3.480 16 1096 1096 1096	9.750 9.750 9.750 9.750 14 9.091 9.207 9.285 17 1096 1096 1096	9.750 9.750 9.750 9.750 15 9.651 9.657 9.661 18 1104 1104 1104	10.876 10.876 10.876 16 10.236 10.345 10.419 19 2 1104 1104 1104	10.876 10.876 10.876 17 10.772 10.780 10.785	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.9 72 11.9 72 11.9 19 11.86 1 11.87 2 11.87	972 972 972 972 266 73 78	25	21	25

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$\mathbf{a^*}_{\mathbf{c}}^{\mathrm{T}}$	_ 1	373.9	394.4	394.4	414.9	414.9	435.3	435.3	453.7	453.7	471.0	471.0	486.8	486.8	500.2	500.2	511.9	511.9	522.4	522.4						
a c	2	373.9	394.4	394.4	414.9	414.9	435.3	435.3	453.7	453.7	471.0	471.0	486.8	486.8	500.2	500.2	511.9	511.9	522.4	522.4						
	3	373.9	394.4	394.4	414.9	414.9	435.3	435.3	453.7	453.7	471.0	471.0	486.8	486.8	500.2	500.2	511.9	511.9	522.4	522.4						
				•	•	•		•					•					•		•	•	•		•	•	•
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
a _{3B}	= 1	406.0	417.5	428.6	440.7	451.1	463.3	473.1	484.3	493.0	503.5	511.4	521.1	528.1	536.4	542.2	549.5	554.5	561.0	565.5						
ЗВ	2	406.3		428.8	444.2	451.2	466.1	473.2	486.6	493.0	505.4	511.4	522.7	528.2	537.6	542.2	550.5	554.5	561.9	565.6						
	3	406.4	423.9	428.8	446.0	451.2	467.7	473.2	487.9	493.0	506.6	511.4	523.7	528.2	538.4	542.3	551.2	554.6	562.5	565.6						
T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$c^{T} =$		112.6	243.0	104.2	239.8	96.3	237.2	89.4	228.0	83.0	222.3	78.3	215.2	77.9	201.9	77.5	192.3	76.9	185.9	75.3						
		108.2	201.0	100.9	203.3	94.2	206.0	87.7	200.8	81.6	198.0	77.0	193.5	75.9	182.8	75.0	175.0	74.0	169.9	72.7						
	3	105.6	177.6	99.2	182.2	93.0	186.3	86.6	182.8	80.7	181.2	76.1	178.0	74.5	168.9	73.3	162.2	71.9	157.9	70.8						
		4	2	2	4	- 1		7	0	0	10	11	10	12	1.4	1.5	10	17	10	10	20	21	22	22	24	25
Т	1	J	2	3	120.6	5	6	7	8	9	10	202.2	122.0	13	14	15	16	17	18	19	20	21	22	23	24	25
$\mathbf{w}^{\mathrm{T}} =$	2	255.8 336.1	131.6 210.4	266.6 339.9	120.6 202.8	281.9 342.8	119.6 191.6	282.5 335.8	121.1 186.0	284.3 331.6	121.0 180.1	283.3 326.0	122.9 177.4	274.4 314.4	131.4 182.2	267.9 306.1	137.3 185.4	263.2 300.2	141.7 187.1	264.7 298.7						
	3	403.3	286.5	400.6	274.2	394.7	255.0	381.8	243.1	373.0	232.3	363.8	225.5	350.1	227.0	340.2	227.9	333.3	227.2	329.4						
	٦	TUJ.J	200.5	100.0	2/7.2	334.7	233.0	301.0	273.1	3/3.0	232.3	303.0	223.3	330.1	227.0	370.2	227.9	333.3	227.2	323.7						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$u^T =$	1	278.4	286.2	293.4	299.3	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	20					
u =	2	362.5	362.5	362.5	362.5	362.5	358.8	355.3	352.4	349.7	347.5	345.3	343.6	341.9	340.7	339.6	338.8	338.0	336.7	335.5						
	3	430.5	425.4	420.5	416.3	412.2	405.6	399.3	394.3	389.4	385.3	381.4	378.3	375.2	373.1	371.0	369.5	368.1	365.7	363.4						
				I	I	I		L	I	I	I	I			I			I	I	I		L	L	L_	I	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$c_{0}^{T} =$	1	103.5	111.3	94.4	92.0	88.8	85.5	82.4	79.6	76.9	74.4	72.0	69.7	67.5	65.4	63.4	61.5	59.6	59.3	58.9						
a	2	99.9	97.3	94.3	91.5	88.8	85.5	82.4	79.6	76.9	74.4	72.0	69.7	67.5	65.4	63.4	61.5	59.6	59.3	58.9						
	3	98.0	89.6	94.2	91.2	88.8	85.5	82.4	79.6	76.9	74.4	72.0	69.7	67.5	65.4	63.4	61.5	59.6	59.3	58.9						
																	4.0	17	10	10	20	24	22	22	24	25
_		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	1/	18	19	20	21		23	27	
$c_{11}^{T} =$		1 44.5	216.0	44.1	221.4	37.4	221.3	34.7	213.7	31.2	209.5	31.0	203.6	39.0	191.0	44.7	182.2	48.6	176.2	46.9	20	21	22	23	24	
$c_u^T =$	2	41.6	216.0 175.9	44.1 35.9	221.4 181.6	37.4 31.4	221.3 187.4	34.7 29.8	213.7 184.4	31.2 27.2	209.5 183.5	31.0 27.3	203.6 180.5	39.0 34.8	191.0 170.7	44.7 40.1	182.2 163.8	48.6 43.8	176.2 159.3	46.9 42.6	20	21	22	23	24	
$e_u^T =$			216.0	44.1	221.4	37.4	221.3	34.7	213.7	31.2	209.5	31.0	203.6	39.0	191.0	44.7	182.2	48.6	176.2	46.9	20	21	22	23	24	
$c_u^T =$	2	41.6	216.0 175.9 153.3	44.1 35.9 31.1	221.4 181.6 157.7	37.4 31.4 27.6	221.3 187.4 165.5	34.7 29.8 26.5	213.7 184.4 164.6	31.2 27.2 24.4	209.5 183.5 165.2	31.0 27.3 24.7	203.6 180.5 163.7	39.0 34.8 31.7	191.0 170.7 155.7	44.7 40.1 36.7	182.2 163.8 150.1	48.6 43.8 40.2	176.2 159.3 146.4	46.9 42.6 39.3						1
$c_{\mathbf{u}}^{T} =$	2	41.6 39.3	216.0 175.9 153.3	44.1 35.9 31.1	221.4 181.6 157.7	37.4 31.4 27.6	221.3 187.4 165.5	34.7 29.8 26.5	213.7 184.4 164.6	31.2 27.2 24.4	209.5 183.5 165.2	31.0 27.3 24.7	203.6 180.5 163.7	39.0 34.8 31.7	191.0 170.7 155.7	44.7 40.1 36.7	182.2 163.8 150.1	48.6 43.8 40.2	176.2 159.3 146.4	46.9 42.6 39.3	20	21	22	23	24]
$c_u^T = w_u^T$	= 1	41.6 39.3 1 233.9	216.0 175.9 153.3 2 70.2	44.1 35.9 31.1 3 249.3	221.4 181.6 157.7 4 77.9	37.4 31.4 27.6 5 267.6	221.3 187.4 165.5 6 83.6	34.7 29.8 26.5 7 270.2	213.7 184.4 164.6 8 91.3	31.2 27.2 24.4 9 273.7	209.5 183.5 165.2 10 95.5	31.0 27.3 24.7 11 274.0	203.6 180.5 163.7 12 101.3	39.0 34.8 31.7 13 265.9	191.0 170.7 155.7 14 113.9	44.7 40.1 36.7 15 260.3	182.2 163.8 150.1 16 122.7	48.6 43.8 40.2 17 256.4	176.2 159.3 146.4 18 128.7	46.9 42.6 39.3 19 258.0						
T	2	41.6 39.3	216.0 175.9 153.3 2 70.2 186.6	44.1 35.9 31.1	221.4 181.6 157.7 4 77.9 181.0	37.4 31.4 27.6	221.3 187.4 165.5 6 83.6 171.4	34.7 29.8 26.5 7 270.2 325.5	213.7 184.4 164.6	31.2 27.2 24.4	209.5 183.5 165.2 10 95.5 164.0	31.0 27.3 24.7	203.6 180.5 163.7 12 101.3 163.1	39.0 34.8 31.7	191.0 170.7 155.7 14 113.9 170.0	44.7 40.1 36.7 15 260.3 299.4	182.2 163.8 150.1	48.6 43.8 40.2	176.2 159.3 146.4 18 128.7 177.5	46.9 42.6 39.3						

$$\Delta c_a = \left[\begin{array}{l} \text{for } i \in 1..Z \\ \\ \text{for } a \in 2..3 \\ \\ \text{for } r \in 1..N_r \\ \\ \Delta c_{a_{st(i,a),r}} = c_{a_{st(i,a),r}} - c_{a_{st(i,a-1),r}} \\ \\ \Delta c_{a} \end{array} \right.$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\Delta c_{2}^{T} =$	1	0.00	7.83	-16.91	-2.36	-3.28	-3.22	-3.10	-2.80	-2.72	-2.51	-2.46	-2.27	-2.23	-2.04	-2.02	-1.89	-1.87	-0.38	-0.38		
—•a	2	0.00	-2.60	-3.01	-2.79	-2.73	-3.22	-3.10	-2.80	-2.72	-2.51	-2.46	-2.27	-2.23	-2.04	-2.02	-1.89	-1.87	-0.38	-0.38		
	3	0.00	-8.41	4.66	-3.01	-2.45	-3.22	-3.10	-2.80	-2.72	-2.51	-2.46	-2.27	-2.23	-2.04	-2.02	-1.89	-1.87	-0.38	-0.38		

			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
[16, c. 81]	$\Delta c_0^T \ge -25 = 1$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1						
[,]	— a —	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1						
		3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1						

		1	2	3	4	5	6	7	8	9	10	11	12
$R_{\tau}^{T} =$	1	0.5386	0.5520	0.5759	0.5927	0.6054	0.6153	0.6229	0.6280	0.6314			
'`L	2	0.7000	0.7000	0.6967	0.6974	0.6978	0.6983	0.6990	0.6994	0.6990			
	3	0.7749	0.7743	0.7639	0.7592	0.7552	0.7519	0.7495	0.7478	0.7457			

		1	2	3	4	5	6	7	8	9	10	11	12
$R_T^T > 0 =$	1	1	1	1	1	1	1	1	1	1			
TL = 0	2	1	1	1	1	1	1	1	1	1			
	3	1	1	1	1	1	1	1	1	1			

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
$\alpha^{T} =$	1	66.71	27.26	64.95	22.57	67.17	21.14	67.17	20.44	67.94	19.56	66.72	18.89	59.97	18.91	54.84	18.65	50.84	18.58	51.47							. c
30	2	67.39	28.94	69.13	26.74	70.50	24.54	70.13	23.36	70.54	22.08	69.20	21.11	62.72	20.97	57.68	20.58	53.70	20.41	54.10							
	3	68.13	30.29	71.71	30.05	72.70	27.34	72.18	25.83	72.39	24.24	71.02	23.05	64.84	22.78	59.93	22.29	56.00	22.03	56.25							
		·					•			•	•		•		•	•			•						•		•
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21					
$\beta^{T} =$	1	23.86	57.77	20.74	49.75	18.35	45.64	16.97	41.11	15.70	37.94	14.72	34.53	14.23	29.86	13.69	26.62	13.09	24.72	12.85			.0				
١٥	2	17.29	27.53	16.10	26.82	15.01	26.52	14.21	25.36	13.41	24.41	12.75	23.14	12.39	21.04	11.95	19.37	11.46	18.46	11.37							
	3	14.06	18.22	13.60	19.43	13.00	19.60	12.47	19.12	11.90	18.68	11.41	18.00	11.11	16.75	10.74	15.66	10.31	15.12	10.30							

12

13

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\beta^{\mathrm{T}} \leq 91.^{\circ} =$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		

40.26

36.52

46.04

46.74

48.39 47.91

 $\beta.2 > 91 \Longrightarrow$ поменять з-н профилирования

$\varepsilon_{\text{rotor}}^{\text{T}} = $	1	33.91	29.01	27.29	24.14	22.24	19.81	15.63	12.93	11.63							.0
rotor	2	10.25	10.72	11.51	11.14	10.99	10.38	8.66	7.42	7.01							
	3	4.16	5.82	6.61	6.65	6.78	6.59	5.64	4.92	4.81							
-																	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
ε ^T =	1	38.38	41.87	47.52	47.71	49.08	48.10	40.53	35.16	32.89							.0
$\varepsilon_{ m stator} =$	2	37.26	41.21	46.92	47.37	48.87	48.14	41.09	36.00	33.70							

41.32

36.50

34.22

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$\lambda_{c}^{T} =$	1	0.3012	0.6161	0.2642	0.5779	0.2321	0.5451	0.2055	0.5025	0.1829	0.4720	0.1663	0.4421	0.1600	0.4036	0.1550	0.3757	0.1502	0.3559	0.1441				
· ·c	2	0.2893	0.5098	0.2559	0.4900	0.2269	0.4733	0.2014	0.4426	0.1798	0.4204	0.1634	0.3974	0.1559	0.3654	0.1500	0.3419	0.1446	0.3253	0.1391				
	3	0.2823	0.4503	0.2516	0.4390	0.2240	0.4279	0.1989	0.4029	0.1779	0.3848	0.1616	0.3656	0.1531	0.3377	0.1465	0.3169	0.1405	0.3024	0.1355				
[16, c. 87	7]	$\lambda_{c}^{T} \leq 0$	$0.85 = \frac{1}{2}$	1 1 2 1	2 3 1 1 1 1 1 1	4 5 1 1 1 1 1 1	6 7	8 1 1 1 1 1 1	9 10 1 1 1 1 1 1	11 12 1 1 1 1	13 1 1 1 1 1 1	14 15 1 1 1 1 1 1	16 17 1 1 1 1	18 1 1 1 1 1 1 1	9 1 1 1 1 1									
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$M_c^T =$	1	0.2774	0.5820	0.2431	0.5441	0.2135	0.5120	0.1891	0.4708	0.1684	0.4415	0.1532	0.4130	0.1475	0.3763	0.1430	0.3500	0.1387	0.3314	0.1331				
С	2	0.2663	0.4766	0.2353	0.4577	0.2087	0.4419	0.1853	0.4128	0.1655	0.3918	0.1505	0.3701	0.1437	0.3400	0.1383	0.3179	0.1334	0.3024	0.1285				
	3	0.2597	0.4189	0.2314	0.4084	0.2060	0.3982	0.1830	0.3747	0.1637	0.3578	0.1488	0.3398	0.1411	0.3137	0.1351	0.2942	0.1297	0.2808	0.1252				
										•														,
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$M_{\mathbf{w}}^{T} =$	1	0.6299	0.3151	0.6220	0.2736	0.6249	0.2582	0.5972	0.2501	0.5768	0.2404	0.5539	0.2359	0.5195	0.2449	0.4941	0.2498	0.4747	0.2525	0.4680				

0.6374

0.7114

0.3393

0.4307

0.5953

0.6628

0.3388

0.4215

0.5645

0.6274

0.3369

0.4135

0.5413

0.6009

0.3329

0.4039

0.5281

0.5824

0.8274

0.9923

0.4989

0.6758

0.7928

0.9341

0.4565

0.6149

0.7598

0.8747

0.4110

0.5451

0.7096

0.8069

0.3822

0.4983

0.6726

0.7565

0.3563

0.4586

$$T^*_{1CA} = \begin{pmatrix} 826.7 \\ 826.7 \\ 826.7 \end{pmatrix} \qquad T^*_{3CA} = \begin{pmatrix} 826.7 \\ 826.7 \\ 826.7 \end{pmatrix} \qquad a^*_{c1CA} = \begin{pmatrix} 522.4 \\ 522.4 \\ 522.4 \end{pmatrix} \qquad a^*_{c3CA} = \begin{pmatrix} 522.4 \\ 522.4 \\ 522.4 \end{pmatrix} \qquad \alpha_{1CA} = \begin{pmatrix} 51.47 \\ 54.10 \\ 56.25 \end{pmatrix} \cdot \alpha_{3CA} = \begin{pmatrix} 90.00 \\ 90.00 \\ 90.00 \end{pmatrix} \cdot P^*_{1CA} = \begin{pmatrix} 2841.7 \\ 2841.7 \\ 2841.7 \end{pmatrix} \cdot 10^3 \qquad P^*_{3CA} = \begin{pmatrix} 2836.3 \\ 2836.3 \\ 2836.3 \end{pmatrix} \cdot 10^3 \qquad c_{1CA} = \begin{pmatrix} 75.3 \\ 72.7 \\ 70.8 \end{pmatrix} \qquad c_{3CA} = \begin{pmatrix} 48.9 \\ 48.9 \\ 48.9 \end{pmatrix} \qquad \varepsilon_{CA} = \begin{pmatrix} 38.53 \\ 35.90 \\ 33.75 \end{pmatrix} \cdot P^*_{1CA} = \begin{pmatrix} 11.972 \\ 11.972 \\ 11.972 \\ 11.972 \end{pmatrix} \qquad \rho^*_{3CA} = \begin{pmatrix} 1103.8 \\ 1103.8 \\ 1103.8 \\ 1103.8 \end{pmatrix} \qquad c_{1CA} = \begin{pmatrix} 58.9 \\ 38.9 \\ 58.9 \end{pmatrix} \qquad c_{a3CA} = \begin{pmatrix} 48.9 \\ 48.9 \\ 48.9 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 0.044 \\ 0.139 \\ 0.136 \end{pmatrix} \qquad \lambda_{c3CA} = \begin{pmatrix} 0.094 \\ 0.094 \\ 0.094 \end{pmatrix}$$

Вывод результатов расчета параметров потока по высоте Л

Рассматриваемая ступень:
$$j=1$$
 $j=1$ $j=$

▼ Построение треугольников скоростей в 3х сечениях

$$\begin{split} \Delta_c(v,i,j,r) &= \left| \begin{array}{l} \tan(\alpha_{st(i,j),r}) \cdot v \ \ \mathrm{if} \ \left(\tan(\alpha_{st(i,j),r}) \geq 0 \wedge - \left| c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r}) \right| \leq v \leq 0 \right) \\ & \tan(\alpha_{st(i,j),r}) \cdot v \ \ \mathrm{if} \ \left(\tan(\alpha_{st(i,j),r}) < 0 \wedge 0 \leq v \leq \left| c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r}) \right| \right) \\ \Delta_W(v,i,j,r) &= \left| -\tan(\beta_{st(i,j),r}) \cdot v \ \ \mathrm{if} \ \left(-\tan(\beta_{st(i,j),r}) \geq 0 \right) \wedge \left(-\left| w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r}) \right| \leq v \leq 0 \right) \wedge (j \neq 3) \\ & -\tan(\beta_{st(i,j),r}) \cdot v \ \ \mathrm{if} \ \left(-\tan(\beta_{st(i,j),r}) < 0 \right) \wedge \left(0 \leq v \leq \left| w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r}) \right| \right) \wedge (j \neq 3) \\ \Delta_U(v,i,j,r) &= \left| -c_{a_{st(i,j),r}} \quad \mathrm{if} \ \left(-c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r}) \right) \leq v \leq w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r}) \right) \wedge (j \neq 3) \\ \mathrm{NaN} \quad \mathrm{otherwise} \end{split}$$

$$v_{lim} = ceil \left(\frac{max(c, w, u)}{10^2}\right) \cdot 10^2 = 500$$

Дискретизация скорости: $v = -v_{lim}, -v_{lim} + \frac{v_{lim}}{3000} ... v_{lim}$

 $r = av(N_r)$

▲ Построение треугольников скоростей в 3х сечениях

$$\begin{pmatrix} F_{I} & F_{II} \\ D2 & R2 \end{pmatrix} = \begin{cases} \text{for } i \in 1...Z \\ \text{for } a \in 1...3 \end{cases} \\ \rho_{\cdot}(z) = \text{interp} \Big(\text{lspline} \Big(\text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(\rho, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, z \Big) \\ c_{a,}(z) = \text{interp} \Big(\text{lspline} \Big(\text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(c_a, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(c_a, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, z \Big) \\ R2 = \sqrt{\frac{\left(R_{\text{st}(i, a)}, N_f \right)^2 + \text{m2} \cdot \left(R_{\text{st}(i, a)}, N_f \right)^2 - \left(R_{\text{st}(i, a)}, N_f \right)^2 - \left(R_{\text{2}} \right)^2}{1 + \text{m2}}} \\ R2_{\text{st}(i, a)} = \text{root} \left[\frac{\rho_{\cdot} (R2) \cdot c_a \cdot \left(R2 \right) \cdot \pi \cdot \left[\left(R2 \right)^2 - \left(R_{\text{st}(i, a)}, 1 \right)^2 \right]}{\rho_{\cdot} (R2) \cdot c_a \cdot \left(R2 \right) \cdot \pi \cdot \left[\left(R2 \right) \cdot \left(R_{\text{st}(i, a)}, 1 \right)^2 \right]} - \text{m2}, R2 \right] \\ D2_{\text{st}(i, a)} = 2 \cdot R2_{\text{st}(i, a)} \\ \left(F_{\text{II}}_{\text{st}(i, a)} \right) = \pi \cdot \left[\frac{\left(R_{\text{st}(i, a)}, N_f \right)^2 - \left(R2_{\text{st}(i, a)}, 1 \right)^2}{\left(R2_{\text{st}(i, a)}, 1 \right)^2} \right] \\ \left(F_{\text{I}} \cdot F_{\text{II}} \right) \\ D2 \cdot R2 \right] \\ \begin{pmatrix} F_{\text{I}} \cdot F_{\text{II}} \\ D2 \cdot R2 \end{pmatrix}$$

Кольцевые площади (м^2):

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
$\operatorname{stack}\left(F_{\mathbf{I}}^{T}, F_{\mathbf{II}}^{T}, F^{T}\right) =$	1	0.0196	0.0180	0.0165	0.0152	0.0140	0.0130	0.0121	0.0114	0.0107	0.0101	0.0095	0.0091	0.0087	0.0084	0.0081	0.0079	0.0077	0.0074	0.0071
	2	0.1177	0.1082	0.0990	0.0914	0.0840	0.0781	0.0726	0.0682	0.0640	0.0606	0.0573	0.0547	0.0522	0.0504	0.0487	0.0476	0.0464	0.0445	0.0427
	3	0.1373	0.1218	0.1155	0.1031	0.0980	0.0884	0.0846	0.0775	0.0747	0.0690	0.0668	0.0624	0.0608	0.0578	0.0568	0.0547	0.0541	0.0514	0.0498

Радиус и диаметр двухконтурности (м):

(T T)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	– 3
$\operatorname{stack}(R2^{1}, D2^{1}) = \boxed{1}$	194.1	197.3	200.4	202.9	205.3	204.5	203.8	203.2	202.7	202.2	201.8	201.5	201.1	200.9	200.7	200.5	200.4	200.1	199.9	.10
2	388.1	394.6	400.7	405.7	410.5	409.0	407.6	406.4	405.3	404.5	403.6	402.9	402.2	401.8	401.3	401.0	400.7	400.2	399.7	

$$\begin{pmatrix} \pi^* \Pi \\ \pi^* I \end{pmatrix} = \begin{cases} \text{for i = 1..Z} \\ \text{for a = 1} \end{cases} \\ \begin{pmatrix} C_{D}(z) = \text{interp} \Big(\text{Ispline} \Big(\text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(C_{D}, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), 1, N_f$$

$\operatorname{stack}\left(\pi^*_{I}^{T}, \pi^*_{II}^{T}\right) =$		1	2	3	4	5	6	7	8	9	10	11	12
	1	1.392	1.381	1.365	1.319	1.286	1.253	1.203	1.170	1.148			
,	2	1.392	1.381	1.365	1.319	1.286	1.253	1.203	1.170	1.148			

$$\prod_{i=1}^{Z} \pi^*_{\text{II}_i} = 9.003$$

Относ. толщины ЛРК и СА:

$$\overline{c}_{rotor.}(r) = interp \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{cases} 12 + \begin{vmatrix} 4 \text{ if compressor} = "B\pi" \\ -4 \text{ if compressor} = "KHД" \\ -0.8 \text{ otherwise} \\ 3 + \begin{vmatrix} 1.65 \text{ if compressor} = "B\pi" \\ 0 \text{ if compressor} = "KHД" \\ 0.62 \text{ otherwise} \\ 2 \end{cases}, \begin{cases} 1 \\ av(N_r) \\ N_r \end{cases}, \begin{cases} 12 + \begin{vmatrix} 4 \text{ if compressor} = "B\pi" \\ -4 \text{ if compressor} = "KHД" \\ -0.8 \text{ otherwise} \\ 3 + \begin{vmatrix} 1.65 \text{ if compressor} = "B\pi" \\ 0 \text{ if compressor} = "KHД" \\ 0.62 \text{ otherwise} \\ 2 \end{bmatrix}, \begin{cases} 1 \\ av(N_r) \\ N_r \end{cases}, \begin{cases} 1 \\ 0 \text{ if compressor} = "KHД" \\ 0.62 \text{ otherwise} \\ 2 \end{cases}$$

$$\overline{c}_{stator.}(r) = interp \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}, \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}, (r)$$

$$r = ORIGIN, ORIGIN + \frac{N_r - ORIGIN}{N_{dis}} .. N_r$$

$$\overline{c}_{BHA} = \begin{vmatrix} for & r \in 1...N_r \\ \overline{c}_{BHA} & \overline{c}_{stator.}(r) \end{vmatrix}$$

$$\overline{c}_{BHA} = \begin{array}{|c|c|c|}\hline & 1 \\ \hline 1 & 3.00 \\ \hline 2 & 6.00 \\ \hline 3 & 9.00 \\ \hline \end{array}.\%$$

$$\begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor}
\end{bmatrix} = \begin{cases}
for i \in 1...Z \\
for r \in 1...N_r
\end{cases}$$

$$\begin{bmatrix}
\overline{c}_{stator}_{i,r} \\
\overline{c}_{rotor}_{i,r}
\end{bmatrix} = \begin{bmatrix}
\overline{c}_{stator.}(r) \\
\overline{c}_{rotor.}(r)
\end{bmatrix}$$

$$\begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor}
\end{bmatrix}$$

$$\overline{c}_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 \\ 2 & 6.00 & 6.00 & 6.00 & 6.00 & 6.00 & 6.00 & 6.00 & 6.00 & 6.00 \\ 3 & 9.00 & 9.00 & 9.00 & 9.00 & 9.00 & 9.00 & 9.00 & 9.00 & 9.00 \\ \end{bmatrix} \cdot \%$$

$$\overline{c}_{rotor}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 11.20 & 11.20 & 11.20 & 11.20 & 11.20 & 11.20 & 11.20 & 11.20 & 11.20 \\ 2 & 3.62 & 3.62 & 3.62 & 3.62 & 3.62 & 3.62 & 3.62 & 3.62 \\ 3 & 2.00 & 2.00 & 2.00 & 2.00 & 2.00 & 2.00 & 2.00 & 2.00 & 2.00 \end{bmatrix} . 0$$

$$\overline{c}_{CA} = \begin{vmatrix} for & r \in 1 ... N_r \\ \overline{c}_{CA}_r & = \overline{c}_{stator.}(r) \\ \overline{c}_{CA} \end{vmatrix}$$

$$\overline{c}_{CA} = \begin{bmatrix} & 1 & \\ 1 & 3.00 \\ 2 & 6.00 \\ \hline 3 & 9.00 \end{bmatrix} .0$$

$$\frac{1}{\text{r_inlet}_{BHA}} = \begin{vmatrix}
 & 1 \\
 & 1 & 0.600 \\
 & 2 & 1.200 \\
 & 3 & 1.800
\end{vmatrix} .\%$$

$$\frac{1}{\text{r_inlet}_{\text{stator}}}^{\text{T}} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 \\ 2 & 0.600 & 0.600 & 0.600 & 0.600 & 0.600 & 0.600 & 0.600 & 0.600 \\ 3 & 0.900 & 0.900 & 0.900 & 0.900 & 0.900 & 0.900 & 0.900 & 0.900 \\ \end{bmatrix}$$

$$\frac{T}{r_outlet_{stator}}^T = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.150 & 0.150 & 0.150 & 0.150 & 0.150 & 0.150 & 0.150 & 0.150 \\ 2 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 \\ 3 & 0.450 & 0.450 & 0.450 & 0.450 & 0.450 & 0.450 & 0.450 & 0.450 \\ \end{bmatrix} .\%$$

$$\overline{r}_{outlet_{BHA}} = \begin{bmatrix} & & 1 \\ 1 & 0.300 \\ 2 & 0.600 \\ \hline 3 & 0.900 \end{bmatrix} .\%$$

$$\underline{r}_{inlet_{CA}} =
\begin{vmatrix}
 & 1 & \\
 & 1 & 0.600 \\
 & 2 & 1.200 \\
 & 3 & 1.800
\end{vmatrix}$$
.%

$$\frac{T}{r_outlet_{rotor}} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.560 & 0.560 & 0.560 & 0.560 & 0.560 & 0.560 & 0.560 & 0.560 & 0.560 \\ 2 & 0.181 & 0.181 & 0.181 & 0.181 & 0.181 & 0.181 & 0.181 & 0.181 \\ 3 & 0.100 & 0.100 & 0.100 & 0.100 & 0.100 & 0.100 & 0.100 & 0.100 \\ \end{bmatrix} .\%$$

Относ. удлинение ЛРК и НА:

[16, c. 244]

$$\overline{h}_{rotor}(Z,i) = \begin{vmatrix} \overline{h}_{\sim rotor} \left(\frac{1}{rows(z_{\sim})} \right) & \text{if } i < 1 \\ \overline{h}_{\sim rotor}(1) & \text{if } i > Z \end{vmatrix} \begin{vmatrix} \overline{h}_{\sim stator} \left(\frac{1}{rows(z_{\sim})} \right) & \text{if } i < 1 \\ \overline{h}_{\sim stator}(1) & \text{if } i > Z \end{vmatrix}$$
$$\overline{h}_{\sim rotor} \left(\frac{i}{Z} \right) & \text{otherwise} \end{vmatrix}$$

$$\overline{\underline{h}}_{\sim}(i) = interp \left(cspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim}rotor \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim}rotor, i \right)$$

$$\overline{\underline{h}}_{\text{constator}}(i) = interp \left(cspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim stator} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim stator}, i \right)$$

Для компрессора газогенератора

$$\frac{h_{PK}}{S_{PK}}$$
=2,5...4,5 – для первой дозвуковой ступени;

$$\frac{h_{PK}}{S_{PK}}$$
 =2,0...3,5 – для первой околозвуковой ступени;

$$\frac{h_{PK}}{S_{PK}}$$
=1,7...3,0 – для первой сверхзвуковой ступени;

$$\frac{h_{PK}}{S_{PK}}$$
=1,0...2,5 – для последней ступени.

[16, c. 83-84]

▼ Расчет длин хорд по высоте Л

$$\begin{array}{l} \operatorname{chord}_{rotor} \cdot \operatorname{chord}_{xator} \big) = & \begin{array}{l} \operatorname{for} \; i = 1...Z \\ \\ \operatorname{chord}_{xator}_{i, av(N_r)} \\ \operatorname{chord}_{stator}_{i, av(N_r)} \\ \end{array} \\ \begin{array}{l} \operatorname{chord}_{stator}_{i, av(N_r)} \\ \end{array} \\ \operatorname{sail} \; = & \begin{array}{l} \frac{\operatorname{meam} \left(h_{si(i,1)}, h_{si(i,2)} \right)}{h_{rotor}(Z, i)} \\ \\ \operatorname{sail} \; = & \begin{array}{l} \frac{\operatorname{R}_{si(i,2)}, n_r - \operatorname{Resi}(i,2), 1}{R_{si(i,2), av(N_r)} - \operatorname{Resi}(i,2), 1} \\ \\ \operatorname{for} \; \; r = 1...N_r \\ \end{array} \\ \begin{array}{l} \operatorname{bp}_{rotor} \; = & \begin{array}{l} \operatorname{chord}_{rotor}_{i, av(N_r)} \\ \end{array} \\ \operatorname{sail} \; = & \begin{array}{l} \frac{\operatorname{chord}_{rotor}_{i, av(N_r)} - \operatorname{Resi}(i,2), 1}{R_{si(i,2), av(N_r)} - \operatorname{Resi}(i,2), 1} \\ \\ \operatorname{bp}_{rotor} \; = & \begin{array}{l} \operatorname{chord}_{rotor}_{i, av(N_r)} \\ \end{array} \\ \operatorname{sail} \; = & \begin{array}{l} \operatorname{chord}_{rotor}_{i, av(N_r)} \\ \end{array} \\ \operatorname{sail} \; = & \begin{array}{l} \operatorname{chord}_{stator} - 1 + \operatorname{sail} \\ \\ \operatorname{chord}_{stator} - 1 + \operatorname{sail} \end{array} \\ \\ \operatorname{chord}_{rotor}_{i, av(N_r)} \\ \operatorname{bh}_{rotor} \\ \operatorname{bh}_{rotor} \\ \operatorname{bh}_{rotor} \\ \end{array} \\ \operatorname{chord}_{rotor}_{i, av(N_r)} \\ \operatorname{bh}_{rotor} \\ \operatorname{chord}_{rotor}_{i, av(N_r)} \\ \operatorname{chord}_{stator} \\ \operatorname{chord}_{stator} \\ \operatorname{chord}_{stator}_{i, av(N_r)} \\ \operatorname{chord}_{stator}_{i, av(N_r)} \\ \operatorname{chord}_{rotor}_{i, r} = & \operatorname{chord}_{rotor} (\operatorname{Resi(i, 2), r}) \\ \operatorname{chord}_{rotor}_{i, r} = & \operatorname{chord}_{rotor} (\operatorname{Resi(i, 2), r}) \\ \operatorname{chord}_{rotor}_{i, r} = & \operatorname{chord}_{rotor} (\operatorname{Resi(i, 2), r}) \\ \operatorname{chord}_{rotor}_{i, r} = & \operatorname{chord}_{rotor} (\operatorname{Resi(i, 2), r}) \\ \operatorname{chord}_{rotor}_{i, r} = & \operatorname{chord}_{rotor} (\operatorname{Resi(i, 2), r}) \\ \operatorname{chord}_{rotor}_{i, r} = & \operatorname{chord}_{rotor} (\operatorname{Resi(i, 2), r}) \\ \operatorname{chord}_{rotor}_{i, r} = & \operatorname{chord}_{rotor} (\operatorname{Resi(i, 2), r}) \\ \operatorname{chord}_{rotor}_{i, rotor} = & \operatorname{chord}_{rotor} (\operatorname{chord}_{rotor} (\operatorname{$$

$$\begin{split} & \mathsf{chord}_{CA} = & & \mathsf{for} \ i \in Z \\ & & \mathsf{chord}_{CA_{av}(N_r)} = \frac{h_{st(i,3)}}{h_{stator}(Z,Z+1)} \\ & \mathsf{sail} = \frac{R_{st(1,1),N_r} - R_{st(1,1),1}}{R_{st(1,1),av}(N_r) - R_{st(1,1),1}} \\ & \mathsf{for} \ r \in 1..N_r \\ & & \mathsf{b}_{CA\kappa op} = \frac{\mathsf{chord}_{CA_{av}(N_r)} \cdot \mathsf{sail}}{\mathsf{sail}_{stator} - 1 + \mathsf{sail}} \\ & \mathsf{b}_{CA\pi cp} = b_{CA\kappa op} \cdot \mathsf{sail}_{stator} \\ & & \mathsf{b}_{CA}(z) = \mathsf{interp} \left[\mathsf{cspline} \left[\begin{pmatrix} R_{st(i,1),av}(N_r) \\ R_{st(i,1),av}(N_r) \\ R_{st(i,1),N_r} \end{pmatrix}, \begin{pmatrix} \mathsf{b}_{CA\kappa op} \\ \mathsf{chord}_{CA_{av}(N_r)} \\ \mathsf{b}_{CAnep} \end{pmatrix} \right], \begin{pmatrix} \mathsf{b}_{CA\kappa op} \\ \mathsf{chord}_{CA_{av}(N_r)} \\ \mathsf{chord}_{CA} \end{pmatrix}, \\ & \mathsf{chord}_{CA} = \mathsf{b}_{CA}(R_{st(i,1),r}) \\ & \mathsf{chord}_{CA} \end{pmatrix}$$

▼ Определение количества Л РК и Ни

$$\begin{array}{c} \left(\frac{\varepsilon}{B}HA(b^*)=1}{Z_{BHA}} \\ r_{-inlet}BHA \\ r_{-inlet}BHA \\ \bar{r}_{BHA} \\$$


```
\varepsilon_{\text{HA}(b/t)=1}
\varepsilon_{PK(b/t)=1}
   Z<sub>rotor</sub>
                         Z<sub>stator</sub>
r_inletrotor
                    r_inlet<sub>stator</sub>
r_outlet<sub>rotor</sub> r_outlet<sub>stator</sub>
     trotor
                          tstator
                          i<sub>stator</sub>
     <sup>1</sup>rotor
   m<sub>rotor</sub>
                         m<sub>stator</sub>
    \theta_{rotor}
                          \theta_{\text{stator}}
                         \boldsymbol{\delta}_{stator}
    \delta_{rotor}
                                             = \int for i \in 1...Z
                                                        for r \in av(N_r)
                          \chi_{\text{stator}}
    \chi_{rotor}
   v_{\text{rotor}}
                         v_{
m stator}
 R_{\text{СЛ.rotor}}
                       R<sub>CЛ.stator</sub>
                         K_{stator}
    K<sub>rotor</sub>
   \mathbf{D}_{\text{rotor}}
                         D<sub>stator</sub>
    \zeta_{\rm rotor}
                          \zeta_{\rm stator}
                     quality<sub>stator</sub>
qualityrotor
   \eta_{stage}
                          \eta_{stage}
                                                                                        chord_{rotor_{i,\underline{r}}}
                                                                                          b/t<sub>PK</sub>i,r
                                                               tstator<sub>i,r</sub>
```

$$\begin{cases} r_{:} \text{inlet}_{\text{Stator}_{i,r}} & r_{:} \text{outlet}_{\text{Stator}_{i,r}} \\ r_{:} \text{inlet}_{\text{Totor}_{i,r}} & r_{:} \text{outlet}_{\text{Stator}_{i,r}} \end{cases} = \begin{cases} \frac{r_{:} \text{inlet}_{\text{Stator}_{i,r}} \cdot \text{chord}_{\text{Stator}_{i,r}}}{r_{:} \text{inlet}_{\text{Totor}_{i,r}}} & r_{:} \text{outlet}_{\text{Stator}_{i,r}} \end{cases} \\ \begin{cases} \frac{r_{:} \text{inlet}_{\text{Totor}_{i,r}}}{r_{:} \text{tstator}_{i,r}} \end{cases} = \pi \begin{cases} \frac{\text{mean}(D_{\text{St}(i,1),r},D_{\text{St}(i,2),r})}{r_{:} \text{Totor}_{i,r}} \\ \frac{r_{:} \text{ond}}{r_{:} \text{stator}} \end{cases} \\ \frac{r_{:} \text{inlet}_{\text{Totor}_{i,r}}}{r_{:} \text{tstator}_{i,r}} \end{cases} = 2.5 \end{cases} \\ \begin{cases} \frac{\text{chord}_{\text{Totor}_{i,r}}}{r_{:} \text{totor}_{i,r}} - 1} \\ \frac{\text{chord}_{\text{Stator}_{i,r}}}{r_{:} \text{tstator}_{i,r}} \end{cases} \\ = 0.23 \cdot \left(2 \cdot \frac{r_{i,r}}{r_{:}}\right)^2 + 0.18 - \frac{0.002}{\text{deg}} \cdot \left(\frac{\theta_{\text{St}(i,2),r}}{\theta_{\text{St}(i,3),r}}\right) \end{cases} \\ \\ \begin{pmatrix} \theta_{\text{Totor}_{i,r}} \\ \theta_{\text{Stator}_{i,r}} \end{pmatrix} = \begin{cases} \frac{\varepsilon_{\text{Totor}_{i,r}} - 1}{r_{\text{Totor}_{i,r}}} \\ 1 - m_{\text{Totor}_{i,r}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Chord}_{\text{Totor}_{i,r}}}} \\ 1 - m_{\text{Stator}_{i,r}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Chord}_{\text{Totor}_{i,r}}}} \\ 1 - m_{\text{Stator}_{i,r}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Chord}_{\text{Totor}_{i,r}}}} \\ \frac{\varepsilon_{\text{Stator}_{i,r}}}{r_{\text{Totor}_{i,r}}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Chord}_{\text{Totor}_{i,r}}}} \\ \frac{\delta_{\text{Stator}_{i,r}}}{r_{\text{Stator}_{i,r}}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} \\ \frac{\kappa_{\text{Totor}_{i,r}}}{r_{\text{Chord}_{\text{Totor}_{i,r}}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Chord}_{\text{Totor}_{i,r}}}} \\ \frac{\kappa_{\text{Totor}_{i,r}}}{r_{\text{Chord}_{\text{Totor}_{i,r}}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Chord}_{\text{Totor}_{i,r}}} \\ \frac{\kappa_{\text{Totor}_{i,r}}}{r_{\text{Stator}_{i,r}}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} \\ \frac{\kappa_{\text{Totor}_{i,r}}}{r_{\text{Stator}_{i,r}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} \\ \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} \\ \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} \\ \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} \\ \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} \\ \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} & \frac{r_{$$

$$\begin{pmatrix} R_{CJI.rotor_{1,\,r}} \\ R_{CJI.stator_{1,\,r}} \end{pmatrix} = \frac{1}{2} \cdot \begin{vmatrix} \frac{1}{\sin(0.5 \cdot 9 \operatorname{rotor_{1,\,r}})} \\ \frac{1}{\sin(0.5 \cdot 9 \operatorname{stator_{1,\,r}})} \\ \frac{1}{\sin(0.5 \cdot 9 \operatorname{stator_{1,\,r}})} \\ \frac{1}{\sin(0.5 \cdot 9 \operatorname{stator_{1,\,r}})} \end{vmatrix} = \begin{pmatrix} \frac{e_{a_{St(1,\,2),\,r}}}{e_{a_{St(1,\,2),\,r}}} \\ \frac{e_{a_{St(1,\,2),\,r}}}{e_{a_{St(1,\,2),\,r}}} \\ \frac{e_{a_{St(1,\,2),\,r}}}{e_{a_{St(1,\,2),\,r}}} \\ \frac{1}{e_{a_{St(1,\,2),\,r}}} \\ \frac{e_{a_{St(1,\,2),\,r}}}{e_{a_{St(1,\,2),\,r}}} \\ \frac{e_{a_{St(1,\,2),\,r}}}{e_{a_{St(1,\,2),\,r}}}} \\ \frac{e_{a_{St(1,\,2),\,r}}}{e_{a_{St(1,\,2),\,r}}} \\ \frac{e_{a_{St(1,\,2),\,r}}}{e_{a_{St(1,\,2),\,r}}}} \\ \frac{e_{a_{St(1,\,2),\,r}}}{e_{a_{St(1,\,2),\,r}}} \\ \frac{e_{a_{St(1,\,2),\,r}}}{e_{a_{St(1,\,2),\,r}}} \\ \frac{e_{a_{St(1,\,2),\,r}}}{e_{a_{St(1,\,2),\,r}}}} \\ \frac{$$

	η _{stag}	$e_{i,r} = 1$	quality _{roto}	$c_{ast(i,1),r}$ $c_{ast(i,1),r}$ $u_{st(i,1),r}$	$r + R_{L_{i}}$	– + <u>——</u> qual r	lity _{stator}	$ \frac{c_{a_{st(i,i)}}}{c_{st(i,i)}} $	$\frac{(2), r}{(2), r} + ($	$\left(1 - R_{L_{i}}\right)$	(r)							
	$\int \varepsilon_{PK(b/t)=1}$	Z _{rotor}	r_inletrotor	r_outletrotor	t _{rotor}	i _{rotor}	m _{rotor}	θ_{rotor}	δ_{rotor}	χ_{rotor}	$v_{ m rotor}$	R _{CЛ.rotor}	K _{rotor}	D _{rotor}	$\zeta_{ m rotor}$	qualityrotor	η_{stage}	Γ
	$\left \varepsilon_{\text{HA}(b/t)=1} \right $	Z _{stator}	r_inlet _{stator}	r_outlet _{stator}	t _{stator}	i _{stator}	m _{stator}	θ_{stator}	δ_{stator}	χ_{stator}	$v_{ m stator}$	R _{CЛ.stator}	K _{stator}	D _{stator}	$\zeta_{ ext{stator}}$	quality _{stator}	η_{stage}	

```
\epsilonCA(b/t)=1
    Z_{CA}
r_inlet<sub>CA</sub>
r_{
m Ca}outlet_{
m CA}
     t_{CA}
     iCA
    m_{CA}
                                    if CA = 1
    \theta_{\text{CA}}
                                             for r \in av(N_r)
    \delta_{\text{CA}}
                                                     \left| \varepsilon_{CA(b/t)=1_r} = \varepsilon_{(b/t)=1} \left( \alpha_{3CA_r} \right) \right|
    \chi_{\text{CA}}
    v_{\mathrm{CA}}
RСЛ.СА
    K_{CA}
    D_{CA}
                                                    Z_{CA} = \left[ \text{round} \left( \frac{\pi \cdot D_{st(Z,3),r}}{t_{CA_r}} \right) \text{ if } \text{mod} \left( \text{round} \left( \frac{\pi \cdot D_{st(Z,3),r}}{t_{CA_r}} \right), 2 \right) = 0 \right]
                                                            round \left(\frac{\pi \cdot D_{st(Z,3),r}}{t_{CA_r}}\right) + 1 otherwise
                                                    \left| \left( r_{-} \text{inlet}_{CA_r} \quad r_{-} \text{outlet}_{CA_r} \right) \right| = \text{chord}_{CA_r} \cdot \left( \overline{r_{-}} \text{inlet}_{CA_r} \quad \overline{r_{-}} \text{outlet}_{CA_r} \right)
                                                   m_{\text{CA}_{r}} = 0.23 \cdot (2 \cdot \overline{x}_{f})^{2} + 0.18 - \frac{0.002}{\text{deg}} \cdot (\alpha_{3\text{CA}_{r}})^{2}
```

$$\begin{split} \delta_{\text{CA}_r} &= \text{m}_{\text{CA}_r} \cdot \theta_{\text{CA}_r} \cdot \sqrt{\frac{^{\text{i}_{\text{CA}_r}}}{\text{chord}_{\text{CA}_r}}} \\ \chi_{\text{CA}_r} &= \theta_{\text{CA}_r} \cdot \frac{1 + 2 \cdot \left(1 - 2 \cdot \overline{x}_f\right)}{2} \\ v_{\text{CA}_r} &= \chi_{\text{CA}_r} + \alpha_{1\text{CA}_r} + i_{\text{CA}_r} \\ R_{\text{CJI.CA}_r} &= \frac{\text{chord}_{\text{CA}_r}}{2 \cdot \sin\left(0.5 \cdot \theta_{\text{CA}_r}\right)} \\ K_{\text{CA}_r} &= \frac{^{\text{c}_{\text{a3CA}_r}}}{^{\text{c}_{\text{a1CA}_r}}} \\ D_{\text{CA}_r} &= \left(1 - K_{\text{CA}_r} \cdot \frac{\sin\left(\alpha_{1\text{CA}_r}\right)}{\sin\left(\alpha_{3\text{CA}_r}\right)}\right) + \left(\frac{1}{\tan\left(\alpha_{1\text{CA}_r}\right)} - K_{\text{CA}_r} \cdot \frac{1}{\tan\left(\alpha_{3\text{CA}_r}\right)}\right) \cdot \frac{\sin\left(\alpha_{1\text{CA}_r}\right)}{^{\text{c}_{\text{chord}_{\text{CA}_r}}}} \\ \left(\varepsilon_{\text{CA}(b/t)=1} \mid Z_{\text{CA}_r} \mid r_{\text{inlet}_{\text{CA}_r}} \mid r_{\text{outlet}_{\text{CA}_r}} \mid t_{\text{CA}_r} \mid t_{\text{CA}$$

$$chord_{BHA} = \begin{bmatrix} & & 1 \\ 1 & 26.42 \\ 2 & 29.35 \\ \hline 3 & 31.71 \end{bmatrix} \cdot 10^{-3}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
chord , T =	1	54.30	48.94	43.38	39.63	36.89	34.80	33.42	32.84	32.50							$\cdot 10^{-3}$
chord _{rotor} =	2	63.23	56.88	50.34	45.95	42.75	40.30	38.68	38.00	37.59							10
	3	70.59	63.63	56.39	51.52	47.96	45.24	43.45	42.69	42.25							

Длина хорды Л (м):

$$chord_{CA} = \begin{array}{|c|c|c|}\hline & 1 \\ \hline 1 & 25.80 \\ \hline 2 & 28.65 \\ \hline 3 & 30.96 \\ \hline \end{array} \cdot 10^{-3}$$

$$r_inlet_{stator}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.07 & 0.07 & 0.06 & 0.06 & 0.06 & 0.06 & 0.07 & 0.07 & 0.08 \\ 2 & 0.15 & 0.15 & 0.14 & 0.14 & 0.14 & 0.15 & 0.16 & 0.18 \\ 3 & 0.24 & 0.24 & 0.23 & 0.22 & 0.22 & 0.23 & 0.24 & 0.26 & 0.29 \end{vmatrix} \cdot 10^{-3}$$

$$r_inlet_{CA} = \begin{bmatrix} 1 & 1 \\ 1 & 0.15 \\ 2 & 0.34 \\ 3 & 0.56 \end{bmatrix} \cdot 10^{-3} \qquad r_outlet_{CA} = \begin{bmatrix} 1 \\ 1 & 0.08 \\ 2 & 0.17 \\ 3 & 0.28 \end{bmatrix} \cdot 10^{-3}$$

Радисы входных и выходных кромок профилей Л (мм):

$$r_outlet_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline 1 & 0.30 & 0.27 & 0.24 & 0.22 & 0.21 & 0.19 & 0.19 & 0.18 & 0.18 \\ \hline 2 & 0.11 & 0.10 & 0.09 & 0.08 & 0.08 & 0.07 & 0.07 & 0.07 & 0.07 \\ \hline 3 & 0.07 & 0.06 & 0.06 & 0.05 & 0.05 & 0.05 & 0.04 & 0.04 & 0.04 \end{bmatrix} \cdot 10^{-1}$$

$$r_outlet_{stator}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.03 & 0.03 & 0.03 & 0.03 & 0.03 & 0.03 & 0.04 & 0.04 \\ 2 & 0.08 & 0.07 & 0.07 & 0.07 & 0.07 & 0.07 & 0.07 & 0.08 & 0.09 \\ 3 & 0.12 & 0.12 & 0.12 & 0.11 & 0.11 & 0.11 & 0.12 & 0.13 & 0.14 \end{vmatrix} \cdot 10^{-1}$$

$$\varepsilon_{\text{BHA}(b/t)=1_{\text{av}(N_r)}} = 23.47.^{\circ}$$

 $submatrix \left(\varepsilon_{PK(b/t)=1}, 1, Z, av(N_r), av(N_r) \right)^T =$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	. •
1	7.41	7.26	7.19	6.95	6.76	6.52	6.16	5.91	5.78							

Угол поворота потока:

$$\varepsilon_{\text{CA(b/t)}=1_{\text{av(N_r)}}} = 33.67 \cdot ^{\circ}$$

$$\frac{\text{chord}_{BHA}}{t_{BHA}} = \begin{vmatrix} 1 & 1 \\ 1 & 3.429 \\ 2 & 2.924 \\ 3 & 2.661 \end{vmatrix}$$

(chord	T		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(chord _{rotor})	=	1	2.068	2.353	2.810	2.827	2.813	2.653	1.891	1.427	1.306						
(t _{rotor})		2	1.875	2.236	2.757	2.825	2.851	2.720	1.955	1.485	1.365						
,		3	1.773	2.167	2.724	2.824	2.879	2.769	2.003	1.528	1.410						

Густота решетки:

$$\frac{\text{chord}_{CA}}{t_{CA}} = \begin{vmatrix} 1 & 1 \\ 1 & 3.455 \\ 2 & 3.488 \\ 3 & 3.479 \end{vmatrix}$$

$$Z_{BHA} = 46$$

Количество Л:

 $Z_{CA} = 52$

Значения округляются до целого в большую сторону так, чтобы при разъемном корпус е количество Л НА было четным, а количества Л РК и НА были взаимно простыми

$$t_{BHA} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 10.04 \\ 3 \\ 11.92 \end{bmatrix} \cdot 10^{-3}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
t , T =	1	26.26	20.80	15.44	14.02	13.11	13.11	17.68	23.01	24.89							$\cdot 10^{-3}$
rotor –	2	33.73	25.44	18.26	16.27	14.99	14.81	19.78	25.60	27.54							10
	3	39.81	29.36	20.70	18.24	16.66	16.34	21.69	27.94	29.95							

Шаг решетки (м):

$$t_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ & 1 & 8.16 & 7.03 & 4.59 & 4.48 & 3.72 & 2.28 & 2.85 & 3.37 & 5.04 & & & & & & \\ & 2 & 10.21 & 8.43 & 5.37 & 5.16 & 4.22 & 2.56 & 3.18 & 3.74 & 5.56 & & & & & & & \\ & 3 & 11.91 & 9.63 & 6.05 & 5.76 & 4.68 & 2.81 & 3.48 & 4.08 & 6.03 & & & & & & & & \\ \end{bmatrix} \cdot 10^{-3}$$

$$i_{BHA} = \begin{vmatrix} & & 1 \\ 1 & 3.572 \\ 2 & 2.311 \\ 3 & 1.652 \end{vmatrix} . \circ$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
i =	1	2.669	3.383	4.524	4.567	4.533	4.133	2.227	1.067	0.764							.0
rotor –	2	2.187	3.089	4.392	4.561	4.628	4.301	2.388	1.211	0.913							
	3	1.932	2.918	4.309	4.560	4.697	4.423	2.508	1.319	1.026							

Угол атаки:

$$i_{CA} = \begin{vmatrix} & 1 \\ 1 & 3.639 \\ 2 & 3.721 \\ \hline 3 & 3.698 \end{vmatrix}$$

$$m_{BHA} = \begin{vmatrix} & & 1 \\ 1 & 0.2766 \\ 2 & 0.2752 \\ 3 & 0.2737 \end{vmatrix}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\mathbf{m} , \mathbf{T} =	1	0.2945	0.3105	0.3187	0.3278	0.3341	0.3409	0.3503	0.3568	0.3606						
m _{rotor} =	2	0.3549	0.3564	0.3570	0.3593	0.3612	0.3637	0.3679	0.3713	0.3731						
	3	0.3736	0.3711	0.3708	0.3718	0.3726	0.3740	0.3765	0.3787	0.3798						

Коэф. формы ср. линии профиля по Ховеллу:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\mathbf{m} , \mathbf{T}	1	0.2801	0.2757	0.2757	0.2741	0.2766	0.2901	0.3003	0.3083	0.3071						
m _{stator} =	2	0.2717	0.2690	0.2697	0.2689	0.2716	0.2846	0.2946	0.3026	0.3018						
	3	0.2666	0.2646	0.2656	0.2652	0.2680	0.2803	0.2901	0.2980	0.2975						

$$m_{CA} = \begin{vmatrix} & & 1 \\ 1 & 0.2300 \\ 2 & 0.2300 \\ 3 & 0.2300 \end{vmatrix}$$

$$\theta_{BHA} = \begin{vmatrix} 1 & 1 \\ 1 & 23.18 \\ 2 & 24.19 \\ 3 & 24.29 \end{vmatrix}.$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
θ = T	1	39.28	32.14	28.11	24.32	22.12	19.83	17.98	16.92	15.87							٠. [
orotor –	2	10.88	10.02	9.07	8.37	8.10	7.80	8.50	8.92	8.95							
	3	3.10	3.88	2.96	2.69	2.67	2.79	4.27	5.19	5.56							

Угол изгиба ср. линии профиля:

$$\theta_{\text{stator}}^{\text{T}} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 1 & 43.86 & 46.01 & 46.85 & 47.17 & 45.55 & 33.17 & 29.23 & 25.11 & 28.60 & & & & & & \\ 2 & 43.71 & 46.09 & 46.93 & 47.31 & 45.70 & 33.59 & 30.02 & 26.09 & 29.42 & & & & & & \\ 3 & 43.53 & 45.50 & 46.44 & 46.95 & 45.44 & 33.62 & 30.39 & 26.68 & 29.93 & & & & & & & \\ \end{bmatrix}$$

$$\theta_{\text{CA}} = \begin{bmatrix} & 1 & \\ 1 & 39.82 \\ 2 & 36.69 \\ \hline 3 & 34.27 \end{bmatrix} .$$

$$\delta_{\rm BHA} = \begin{bmatrix} & 1 \\ 1 & 3.462 \\ 2 & 3.893 \\ \hline 3 & 4.076 \end{bmatrix} \, .$$

Угол отставания:

$$\delta_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 7.387 & 7.106 & 5.982 & 6.016 & 5.347 & 3.165 & 3.149 & 2.889 & 3.833 \\ 2 & 7.584 & 7.228 & 6.031 & 6.038 & 5.339 & 3.171 & 3.187 & 2.953 & 3.871 \\ 3 & 7.696 & 7.210 & 5.993 & 5.995 & 5.290 & 3.146 & 3.188 & 2.979 & 3.880 \end{bmatrix}$$

$$\delta_{\text{CA}} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & 4.926 \\ \hline 2 & 4.519 \\ \hline 3 & 4.226 \\ \hline \end{array}.$$

$$v_{BHA} = \begin{vmatrix} & 1 & \\ 1 & 105.16 \\ \hline 2 & 104.40 \\ \hline 3 & 103.80 \end{vmatrix} . \circ$$

		1	2	3	4	5	6	7	8	9	
$v_{rotor}^{T} =$	1	46.18	40.19	36.93	33.69	31.29	28.76	25.45	23.22	21.79	٠.
rotor	2	24.91	24.20	23.93	22.96	22.09	20.95	19.03	17.63	16.85	
	3	17.54	18.46	18.79	18.37	17.93	17.23	15.75	14.65	14.11	1

Угол установки Л:

$$\upsilon_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 51.10 & 48.54 & 51.21 & 50.58 & 51.21 & 53.57 & 47.96 & 44.15 & 41.01 \\ 2 & 51.93 & 52.14 & 54.02 & 53.11 & 53.43 & 55.63 & 50.24 & 46.49 & 43.27 \\ 3 & 52.74 & 54.77 & 56.15 & 55.09 & 55.20 & 57.30 & 52.10 & 48.43 & 45.17 \end{bmatrix} . \circ$$

$$v_{CA} = \begin{bmatrix} & 1\\ & 1 & 75.02\\ \hline 2 & 76.17\\ \hline & 3 & 77.09 \end{bmatrix} \cdot ^{\circ}$$

$$R_{\text{СЛ.BHA}} = \begin{bmatrix} & 1 & \\ 1 & 65.77 \\ 2 & 70.03 \\ \hline 3 & 75.35 \end{bmatrix} \cdot 10^{-3}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
$R_{CR} = T$	1	80.77	88.42	89.30	94.08	96.17	101.05	106.93	111.63	117.69							$\cdot 10^{-3}$
R _{CЛ.rotor} =	2	333.47	325.78	318.31	314.82	302.80	296.09	260.85	244.20	240.89							
	3	1306.64	939.04	1090.02	1098.07	1030.28	927.48	583.29	471.73	435.47							

Радиус дуги ср. линии (м):

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
$R_{CJI.stator}^{T} =$	1	30.22	28.63	26.88	25.89	26.66	36.83	43.90	55.64	53.55							1.10^{-3}
*CJI.stator	2	33.64	31.68	29.70	28.56	29.39	40.21	47.27	59.20	57.54							10
	3	36.52	34.73	32.52	31.20	32.07	43.63	50.73	62.91	61.46							

$$R_{\text{СЛ.CA}} = \begin{bmatrix} & 1 & \\ 1 & 37.88 \\ 2 & 45.51 \\ \hline 3 & 52.53 \end{bmatrix} \cdot 10^{-3}$$

$$K_{BHA} = \begin{array}{|c|c|} \hline & 1 \\ \hline 1 & 1.0359 \\ \hline 2 & 1.0000 \\ \hline 3 & 0.9808 \\ \hline \end{array}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
K_{\cdots}	1	1.0757	0.9750	0.9637	0.9661	0.9673	0.9684	0.9698	0.9702	0.9936						
rotor –	2	0.9740	0.9704	0.9637	0.9661	0.9673	0.9684	0.9698	0.9702	0.9936						
	3	0.9142	0.9680	0.9637	0.9661	0.9673	0.9684	0.9698	0.9702	0.9936						

Фактор диффузорности решетки:

$$K_{CA} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & 0.8302 \\ \hline 2 & 0.8302 \\ \hline 3 & 0.8302 \\ \hline \end{array}$$

$$D_{BHA} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & -0.1928 \\ \hline 2 & -0.1544 \\ \hline 3 & -0.1308 \\ \hline \end{array}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$D_{\cdots} = T$	1	0.6404	0.6843	0.6917	0.6833	0.6858	0.6809	0.6676	0.6675	0.6475						
rotor –	2	0.4805	0.4993	0.5256	0.5291	0.5407	0.5433	0.5321	0.5311	0.5192						
	3	0.3730	0.3907	0.4212	0.4296	0.4446	0.4506	0.4416	0.4405	0.4337						

Диффузорность решетки:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$D \cdot T =$	1	0.6991	0.7188	0.7073	0.7226	0.7200	0.6794	0.6625	0.6485	0.6615						
stator –	2	0.6401	0.6624	0.6613	0.6819	0.6842	0.6492	0.6360	0.6251	0.6375						
	3	0.5925	0.6177	0.6231	0.6474	0.6533	0.6226	0.6124	0.6040	0.6160						

$$D_{CA} = \begin{vmatrix} & & 1 \\ 1 & 0.4407 \\ 2 & 0.4115 \\ 3 & 0.3896 \end{vmatrix}$$

		1	
D _{BHA} ≤ 0.6 =	1	1	
BHA = 0.0	2	1	
	3	1	

		1	2	3	4	5	6	7	8	9
$D_{mator} \stackrel{T}{\leq} 0.6 =$	1	0	0	0	0	0	0	0	0	0
rotor = 0.0 -	2	1	1	1	1	1	1	1	1	1
	3	1	1	1	1	1	1	1	1	1

[18, c. 71]

		1	2	3	4	5	6	7	8	9
$D_{\text{stator}} \stackrel{T}{\leq} 0.6 =$	1	0	0	0	0	0	0	0	0	0
stator = 0.0 =	2	0	0	0	0	0	0	0	0	0
	3	1	0	0	0	0	0	0	0	0

		1	
$D_{CA} \le 0.6 =$	1	1	
2CA = 0.0	2	1	
	3	1	

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$C \cdot T =$	1	0.1570	0.2300	0.3005	0.3197	0.3431	0.3452	0.2678	0.2245	0.2055						
Srotor _	2	0.1475	0.1929	0.2643	0.2859	0.3120	0.3159	0.2386	0.1955	0.1803						
	3	0.1404	0.1716	0.2383	0.2608	0.2870	0.2925	0.2196	0.1781	0.1660						

Коэф. потерь полного давления:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$C_{-4} = T$	1	0.2392	0.2892	0.4074	0.4223	0.5074	0.7833	0.6592	0.6117	0.4634						1
$\zeta_{\text{stator}} = $	2	0.1685	0.2162	0.3234	0.3485	0.4311	0.6770	0.5769	0.5405	0.4131						
	3	0.1302	0.1734	0.2694	0.2979	0.3763	0.5990	0.5153	0.4864	0.3741						

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
quality , T =	1	9.264	6.101	4.625	4.403	4.163	4.256	6.054	7.639	8.907						
quality _{rotor} =	2	9.020	7.083	5.063	4.726	4.388	4.462	6.642	8.629	10.166						
	3	6.616	7.281	5.146	4.751	4.386	4.445	6.787	8.970	10.690						

Качество профилей решеток РК и НА:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$quality_{stator}^{T} =$	1	4.944	4.613	2.981	2.888	2.187	0.788	1.194	1.371	2.456						
Stator	2	7.583	6.028	3.825	3.565	2.693	1.147	1.545	1.706	2.807						
	3	10.095	7.312	4.583	4.178	3.146	1.453	1.847	1.995	3.121						

.%

11 12 13 14 15 10 КПД элементарной ступени: $\eta_{stage}^{T} = \frac{1}{2}$ 67.95 73.97 57.82 56.04 50.83 37.74 48.01 52.64 61.06 57.02 75.29 69.62 59.59 52.20 42.65 52.42 57.11 63.86 67.58 58.02 55.32 58.57 64.53 67.36 51.02 43.70 53.56

▶ Результаты расчета количества Л и параметров решеток РК и НА

EXCEL_{AIRFOIL.subsonic} = ...\A40.xlsx

 $X/B_{subsonic} = submatrix(EXCEL_{AIRFOIL.subsonic}, 2, rows(EXCEL_{AIRFOIL.subsonic}), ORIGIN + 0, ORIGIN + 0)$

 $Y/B_{subsonic} = submatrix (EXCEL_{AIRFOIL.subsonic}, 2, rows (EXCEL_{AIRFOIL.subsonic}), ORIGIN + 1, ORIGIN + 1)$

Предел использования дозвукового профиля: $M_{lim} = 0.95$

EXCEL_{AIRFOIL}.supersonic = ...\Емин сверхзв

 $X/B_{supersonic} = submatrix(EXCEL_{AIRFOIL.supersonic}, 2, rows(EXCEL_{AIRFOIL.supersonic}), ORIGIN + 0, ORIGIN + 0)$

Y/B_{supersonic} = submatrix(EXCEL_{AIRFOIL.supersonic}, 2, rows(EXCEL_{AIRFOIL.supersonic}), ORIGIN + 1, ORIGIN + 1)

 $augment \left(X/B_{subsonic}, Y/B_{subsonic} \right)^{T} = \boxed{\frac{1}{2}}$ 5 8 10 11 12 13 14 15 16 17 18 19 20 0.000 0.010 0.015 0.025 0.050 0.075 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.500 0.600 0.700 0.800 0.900 0.950 1.000 0.114 0.143 0.185 0.255 0.309 0.352 0.416 0.455 0.479 0.493 0.494 0.500 0.486 0.444 0.378 0.285 0.172 0.100 0.000

15 $augment(X/B_{supersonic}, Y/B_{supersonic})^{T} =$ 0.050 0.000 0.100 0.200 0.150 0.300 0.400 0.500 0.600 0.700 0.800 0.850 0.900 0.950 1.000 0.045 0.132 0.208 0.282 0.342 0.430 0.482 0.500 0.482 0.430 0.342 0.282 0.208 0.132 0.045


```
\begin{aligned} \text{AIRFOIL}_{\text{subsonic}}(x, \text{line}, \overline{c}, \theta) &= & \text{if } 0 \leq x \leq 1 \\ & \text{interp}\big(\text{cspline}\big(X/B_{\text{subsonic}}, y/b_{\text{cp.}\Pi}\big(X/B_{\text{subsonic}}, \theta\big) + Y/B_{\text{subsonic}}, y/b_{\text{cp.}\Pi}\big(X/B_{\text{subsonic}}, y/b_{\text{cp.}\Pi}\big(X/B_{\text{subsonic}},
```

$$\begin{aligned} \text{AIRFOIL}_{\text{supersonic}}(\textbf{x}, \text{line}, \overline{\textbf{c}}, \theta) &= & \text{if } 0 \leq \textbf{x} \leq 1 \\ & \text{interp}\big(\text{cspline}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \textbf{I}}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \theta\big) + \textbf{Y}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \textbf{I}}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \textbf{I}}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \theta\big) + \textbf{Y}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \textbf{I}}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \textbf{I}}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \theta\big) + \textbf{Y}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \textbf{I}}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \theta\big) - \textbf{Y}/\textbf{B}_{\text{supersonic}}, \theta\big) - \textbf{Y}/\textbf{B}_{\text{su$$

$$x = 0,0.005..1$$
 $\dot{j} = 1$

▶ Определение относительных геометрических характеристик сечений Л

▶ Определение абсолютных геометрических характеристик сечений Л

		1 2	2	3	4		5	6		7	8	3	9	
$1_{upper_{stator}}^{T} =$	1 2	3.18 23	3.08	22.20	21	.53 2	1.49	21	.86	22.82	24	1.75	27.0	$1 \cdot 10^{-3}$
_spr stator	2 2	5.94 2!	5.81	24.82	24	.06 2	4.02	24	1.43	25.48	27	7.63	30.1	3
	3 2	8.32 28	3.23	27.19	26	.39 2	6.36	26	5.83	27.99	30).35	33.0	9
'	•	•	'		•	,			'		•	,		
		1 2	2	3	4		5	6	,	7	8	3	9	
$l_lower_{stator}^{T} =$	1 2	2.86 2	2.73	21.83	21	.16 2	1.12	21	.49	22.48	24	1.44	26.6	$9 \cdot 10^{-3}$
is istator	2 2	5.25 2!	5.07	24.02	23	.27 2	3.21	23	3.62	24.75	26	5.92	29.4	0
	3 2	7.26 2	7.07	25.93	25	.15 2	5.08	25	5.54	26.82	29	9.21	31.9	2
	1	2	3		4	5		6	7		8	9		
$area_{stator}^{T} = \frac{1}{2}$	11.18	10.99	10.0)2	9.42	9.35	5	9.70	10.	77 :	2.84	15	5.36	$\cdot 10^{-6}$
2	27.53	26.99	24.5	56	23.05	22.86	5 2	3.70	26.	31 3	31.33	37	7.47	-
3	48.29	47.48	43.2	29	40.67	40.38	3 4	1.90	46.	55 5	55.45	66	5.34	
	1	2	3	4	1	5	6		7	8		9		
$Sx_{stator}^{T} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	16.3	17.4	17.3	3	15.8	16.1	10	6.7	16.	4 1	8.4	22	.5 . 1	0^{-9}
Stator 2	43.3	46.6	46.3	3 4	42.5	43.4	4	5.1	44.8	3 5	0.8	62	.0	
3	80.5	86.7	86.8	3 8	30.3	82.3	80	6.1	86.	5 9	9.0	121	.2	
	1	2	3	4	ŀ	5	6		7	8		9		
$Sy_{stator}^{T} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	114.0	111.1	96.7	8	38.1	87.1	92	2.1	107.8	3 14	0.2	183	.5 .1	0^{-9}
2	311.4	302.3	262.4	23	38.6	235.6	248	3.8	291.0	37	8.1	494	.4	
3	590.8	575.9	501.3	45	56.6	451.7	477	7.4	559.0	72	6.8	951	.1	
	1	2	3	4	1	5	6		7	8		9		
$x0_{stator}^{T} = \boxed{\frac{1}{2}}$	10.19	10.11	9.65	9	9.36	9.32	9.	50	10.0	10	.92	11.9	.1	0^{-3}
2	11.31	11.20	10.68	10	0.35	10.31	10.	50	11.06	5 12	.07	13.2	20	
3	12.23	12.13	11.58	11	1.23	11.19	11.	39	12.0	l 13	.11	14.3	34	
	1	2	3	4	5	6	7	7	8	9				
$y0_{stator}^{T} = \boxed{1}$	1.46	1.59	1.73	1.68	1.72	2 1.7	2 1	52	1.43	1.4		10^{-3}	3	
2	1.57	1.73	1.89	1.85	1.90	1.9) 1	.70	1.62	1.6	6			
3	1.67	1.83	2.00	1.97	2.04	2.0	5 1	.86	1.79	1.8	3			

		1	2	3	4	4	5	ϵ	5	7	8	9		
$l_upper_{rotor}^{T} =$	1	57.05	51.08	45.18	3 4	1.12	38.19	35	5.93	34.35	33.67	33.	.28 ·10	3
rrotor	2	63.57	57.20	50.6	4	6.22	42.99	40	0.51	38.86	38.15	37.	.74	
	3	70.65	63.73	56.50) 5	1.62	48.06	45	5.32	43.52	42.75	42.	.31	
		•			•									
		1	2	3	4	4	5	6	5	7	8	9		
$1_lower_{rotor}^{T} =$	1	54.63	49.22	43.62	2 3	9.86	37.11	35	5.02	33.67	33.11	32.	.78 .10	3
– rotor	2	63.27	56.92	50.38	3 4	5.99	42.78	40	0.32	38.71	38.03	37.	.62	
	3	70.59	63.64	56.40) 5	1.53	47.97	45	5.25	43.46	42.70	42.	.25	
	1		2	3		4	5		6	7		8	9	
$area_{rotor}^{T} = \frac{1}{2}$	241		96.22	154.13	12	28.65	111.5	0	99.19	91.4	19 8	38.34	86.51	$\cdot 10^{-6}$
2	105	.86 8	35.66	67.10) !	55.91	48.3	8	42.99	39.6	52 3	38.23	37.42	
3	69	.81 5	59.22	46.51		38.82	33.6	5	29.93	27.6	51 2	26.66	26.11	
		_	_											
	1	2	3		4	5	6		7	8	9			
$Sx_{rotor}^{T} = \boxed{\frac{1}{2}}$	747.9	-	-		05.9	153.0	_	_	79.7	62.		4.5	·10 ⁻⁹	
	114.2		_	54.8	47.7	37.9	_	0.0	22.1	17.	_	6.4		
3	35.0	36.	5 2	28.8	22.2	18.7	2 14	4.9	11.3	9.	3	8.8		
T	1	2		3	4		5		6	7	8			
$Sy_{rotor}^{T} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	5922.			3019.5	230		1857.8		558.9	1380.9		0.1	$\cdot 10^{-9}$	
	3023.	_		1525.6	116		934.2		782.5	692.2	+	6.1		
3	2464.	0 170	1.5	1184.6	90	3.4	728.9		611.6	541.8				
		_	_						_	_		_		
Т	1	2	3		4	5	6		7	8	9		2	
$x0_{rotor}^{T} = \boxed{\frac{1}{2}}$	24.52	+			7.90	16.66	_		15.09	14.8		.68	$\cdot 10^{-3}$	
	28.56	ļ			0.75	19.3			17.47		_	.98		
3	35.29	28.73	3 25	5.47 2	3.27	21.66	5 20.	43	19.62	19.2	8 19	.08		
					_			_			l			
	1	2	3	4	5	6		7	8	9		2		
$y0_{rotor} = 1$	3.10	2.38	1.98		1.3	_		0.87	0.71	0.63	·10 ⁻	J		
2	1.08	1.02	0.97		0.7).56	0.47	0.44				
3	0.50	0.62	0.62	0.57	0.5	0.	.50 0).41	0.35	0.34				

		1	2	3	4	5	6	7	8	9	l
$Jx \cdot T =$	1	27	31	33	29	31	32	28	29	37	$\cdot 10^{-12}$
stator –	2	79	92	99	89	93	97	87	95	120	10
	3	165	191	205	186	196	207	192	217	276	ı

$$Jy_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 1486 & 1437 & 1194 & 1054 & 1039 & 1119 & 1381 & 1959 \\ 2 & 4507 & 4332 & 3587 & 3159 & 3107 & 3340 & 4117 & 5838 \\ 3 & 9246 & 8937 & 7428 & 6559 & 6464 & 6960 & 8589 & \dots \end{bmatrix} \cdot 10^{-12}$$

$$Jxy_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 173 & 183 & 173 & 154 & 156 & 165 & 170 & 209 & 279 \\ 2 & 509 & 543 & 514 & 457 & 465 & 492 & 515 & 637 & 851 \\ 3 & 1023 & 1093 & 1044 & 937 & 957 & 1020 & 1080 & 1349 & 1807 \end{bmatrix} \cdot 10^{-12}$$

$$Jx0_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2.64 & 2.98 & 3.12 & 2.77 & 2.88 & 2.99 & 2.70 & 2.98 & 3.81 \\ 2 & 10.43 & 11.45 & 11.41 & 10.19 & 10.50 & 11.04 & 10.84 & 12.93 & 17.07 \\ 3 & 30.53 & 32.24 & 30.74 & 27.60 & 28.28 & 30.11 & 31.78 & 40.23 & 54.59 \end{bmatrix} \cdot 10^{-12}$$

$$Jy0_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 325 & 314 & 261 & 230 & 227 & 244 & 301 & 428 & 612 \\ 2 & 984 & 946 & 783 & 690 & 679 & 729 & 899 & 1275 & 1823 \\ 3 & 2019 & 1952 & 1622 & 1432 & 1412 & 1520 & 1876 & 2662 & 3810 \end{bmatrix} \cdot 10^{-12}$$

$$Jxy0_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 6.57 & 6.93 & 6.54 & 5.80 & 5.88 & 6.21 & 6.45 & 7.94 & 10.62 \\ 2 & 19.34 & 20.58 & 19.41 & 17.26 & 17.52 & 18.55 & 19.50 & 24.21 & 32.39 \\ 3 & 38.83 & 41.39 & 39.38 & 35.30 & 36.03 & 38.40 & 40.84 & 51.17 & 68.63 \end{bmatrix} \cdot 10^{-12}$$

$$\alpha_{major_{stator}}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1.17 & 1.28 & 1.45 & 1.46 & 1.50 & 1.47 & 1.24 & 1.07 & 1.00 \\ 2 & 1.14 & 1.26 & 1.44 & 1.45 & 1.50 & 1.48 & 1.26 & 1.10 & 1.03 \\ 3 & 1.12 & 1.23 & 1.42 & 1.44 & 1.49 & 1.48 & 1.27 & 1.12 & 1.05 \\ \end{bmatrix} . \circ$$

		1	2	3	4	5	6	7	8	9	
Jx T =	1	3086	1581	887	516	346	236	154	121	107	$\cdot 10^{-12}$
Jx _{rotor} =	2	169	119	82	54	40	29	18	14	12	10
	3	27	31	23	16	13	10	6	5	4	

		1	2	3	4	5	6	7	8	9	
$Jy_{rotor}^{T} =$	1	185803	122653	75683	52727	39605	31344	26667	24859	23840	$\cdot 10^{-12}$
rotor	2	110446	72318	44378	30808	23074	18218	15472	14406	13798	
	3	105911	62553	38598	26891	20199	15986	13600	12678	12159	

		1	2	3	4	5	6	7	8	9	
Jxy, $T =$	1	19065	10739	6227	3832	2650	1866	1251	964	831	$\cdot 10^{-12}$
Jxy _{rotor} =	2	3392	2324	1532	1029	760	567	401	320	290	10
	3	1235	1091	764	536	410	316	230	187	175	

		1	2	3	4	5	6	7	8	9	
$Jx0_{rotor}^{T} =$	1	769.58	467.90	280.92	186.70	136.53	104.68	84.86	77.08	73.11	$\cdot 10^{-12}$
rotor	2	46.01	30.88	19.78	13.46	10.00	7.64	5.95	5.24	4.93	10
	3	9.56	8.08	5.38	3.77	2.87	2.23	1.73	1.51	1.43	

$$\alpha_{-} major_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1.04 & 0.89 & 0.84 & 0.74 & 0.68 & 0.61 & 0.48 & 0.40 & 0.36 \\ 2 & 0.31 & 0.32 & 0.35 & 0.34 & 0.33 & 0.31 & 0.26 & 0.22 & 0.21 \\ 3 & 0.00 & 0.18 & 0.20 & 0.20 & 0.20 & 0.20 & 0.17 & 0.15 & 0.15 \end{bmatrix}.$$

		1	2	3	4	5	6	7	8	9	
$Ju \cdot T =$	1	2.50	2.82	2.95	2.63	2.73	2.83	2.56	2.84	3.62	$\cdot 10^{-12}$
^{Ju} stator –	2	10.04	11.00	10.92	9.75	10.04	10.56	10.41	12.47	16.48	10
	3	29.77	31.35	29.77	26.71	27.35	29.12	30.87	39.23	53.33	

$$Jv_{stator}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 325 & 314 & 261 & 230 & 227 & 244 & 302 & 428 & 613 \\ 2 & 985 & 946 & 784 & 690 & 679 & 730 & 899 & 1275 & 1823 \\ 3 & 2020 & 1953 & 1623 & 1433 & 1413 & 1521 & 1877 & 2663 & 3811 \end{bmatrix} \cdot 10^{-12}$$

$$Jp_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 327 & 317 & 264 & 233 & 230 & 247 & 304 & 431 & 616 \\ 2 & 995 & 957 & 795 & 700 & 689 & 740 & 910 & 1288 & 1840 \\ 3 & 2050 & 1984 & 1653 & 1460 & 1440 & 1550 & 1908 & 2702 & 3864 \end{bmatrix} \cdot 10^{-12}$$

$$Wp_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 26.3 & 25.6 & 22.3 & 20.3 & 20.1 & 21.2 & 24.8 & 32.3 & 42.3 \\ 2 & 71.9 & 69.8 & 60.6 & 55.1 & 54.4 & 57.5 & 67.2 & 87.3 & 114.2 \\ 3 & 137.1 & 133.7 & 116.4 & 106.0 & 104.8 & 110.8 & 129.8 & 168.7 & 220.8 \end{bmatrix} \cdot 10^{-9}$$

$$stiffness_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 1.25 & 1.21 & 1.00 & 0.88 & 0.87 & 0.94 & 1.16 & 1.64 \\ 2 & 15.13 & 14.54 & 12.04 & 10.60 & 10.43 & 11.21 & 13.82 & 19.59 \\ 3 & 69.81 & 67.47 & 56.08 & 49.52 & 48.81 & 52.55 & 64.85 & ... \\ \end{bmatrix} \cdot 10^{-1}$$

		1	2	3	4	5	6	7	8	9	
$Ju \cdot T =$	1	756.40	461.54	277.45	184.80	135.33	103.92	84.46	76.82	72.91	$\cdot 10^{-12}$
rotor –	2	45.31	30.38	19.43	13.23	9.83	7.52	5.88	5.19	4.89	10
	3	9.56	7.95	5.28	3.70	2.81	2.18	1.70	1.49	1.41	

		1	2	3	4	5	6	7	8	9	
$Jv_{rotor}^{T} = $	1	40591	26793	16532	11517	8651	6846	5824	5429	5207	$\cdot 10^{-12}$
rotor	2	24118	15792	9691	6727	5039	3978	3379	3146	3013	10
	3	18949	13659	8429	5872	4411	3491	2970	2768	2655	

		1	2	3	4	5	6	7	8	9	
$Juv_{\cdots} = T$	1	0.00	0.00	-0.00	0.00	0.00	0.00	-0.00	0.00	0.00	$\cdot 10^{-12}$
Juv _{rotor} =	2	0.00	0.00	0.00	0.00	-0.00	-0.00	0.00	0.00	0.00	10
	3	0.00	-0.00	0.00	0.00	0.00	0.00	-0.00	0.00	0.00	

		1	2	3	4	5	6	7	8	9	
$Wp_{rotor}^{T} =$	1	1381.2	1011.5	704.2	537.0	433.3	363.6	322.0	305.5	296.1	$\cdot 10^{-9}$
rotor	2	696.5	507.0	351.5	267.3	215.2	180.3	159.5	151.2	146.4	
	3	537.1	391.7	272.7	207.9	167.8	140.8	124.7	118.3	114.7	

$CPx_{stator}^{T} =$		1	2	3	4	5	6	7	8	9		$CPx_{rotor}^{T} =$		1	2	3	4	5	6	7	8	9	10^{-3}
	1	7.900	7.833	7.479	7.250	7.224	7.359	7.756	8.465	9.259	$\cdot 10^{-3}$ CPx		1	19.004	17.130	15.182	13.871	12.913	12.179	11.697	11.494	11.374	
	2	8.767	8.680	8.280	8.021	7.988	8.134	8.570	9.352	10.227	10 011		2	22.131	19.908	17.620	16.083	14.962	14.104	13.540	13.300	13.157	
	3	9.480	9.400	8.975	8.700	8.669	8.830	9.307	10.158	11.111			3	24.705	22.269	19.737	18.032	16.787	15.833	15.206	14.942	14.786	
$CPy_{stator}^{T} =$		1	2	3	4	5	6	7	8	9		$CPy_{rotor}^{T} =$		1	2	3	4	5	6	7	8	9	1
	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	$\cdot 10^{-3}$ CPv		1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	$\cdot 10^{-3}$
	2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	10 01)		2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

Результат расчета абсолютных геометрических характеристик сечений Л

Вывод результатов расчета геометрических хар-к сечений Л

Абс. координаты профиля:

$$\begin{split} & \text{Airfoil(type}, \textbf{x}, \text{line}, \textbf{i}, \textbf{r}) = & \text{if type} = \text{"BHA"} \\ & \text{AIRFOIL}_{\text{subsonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{BHA}_{r}}, \varepsilon_{\text{BHA}_{r}}\right) & \text{if } \textbf{M}_{\textbf{c}}_{\text{st}(1,1),r} < \textbf{M}_{\text{lim}} \\ & \text{AIRFOIL}_{\text{supersonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{BHA}_{r}}, \varepsilon_{\text{BHA}_{r}}\right) & \text{otherwise} \\ & \text{if type} = \text{"rotor"} \\ & \text{AIRFOIL}_{\text{subsonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{rotor}_{1,r}}, \varepsilon_{\text{rotor}_{1,r}}\right) & \text{if } \textbf{M}_{\textbf{w}_{\text{st}(1,1),r}} < \textbf{M}_{\text{lim}} \\ & \text{AIRFOIL}_{\text{supersonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{rotor}_{1,r}}, \varepsilon_{\text{rotor}_{1,r}}\right) & \text{otherwise} \\ & \text{if type} = \text{"stator"} \\ & \text{AIRFOIL}_{\text{subsonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{stator}_{1,r}}, \varepsilon_{\text{stator}_{1,r}}\right) & \text{if } \textbf{M}_{\textbf{c}}_{\text{st}(1,2),r} < \textbf{M}_{\text{lim}} \\ & \text{AIRFOIL}_{\text{subsonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{CA}_{r}}, \varepsilon_{\text{stator}_{1,r}}\right) & \text{otherwise} \\ & \text{if type} = \text{"CA"} \\ & \text{AIRFOIL}_{\text{subsonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{CA}_{r}}, \varepsilon_{\text{CA}_{r}}\right) & \text{if } \textbf{M}_{\textbf{c}}_{\text{st}(Z,3),r} < \textbf{M}_{\text{lim}} \\ & \text{AIRFOIL}_{\text{supersonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{CA}_{r}}, \varepsilon_{\text{CA}_{r}}\right) & \text{otherwise} \\ \end{cases} \end{aligned}$$

Рассматриваемая ступень:

$$j_w = \begin{cases} j = 1 \end{cases}$$
 = 1 $j = 1$ $j = 1$ "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

▼ Построение профилей Л РК и НА

$$\begin{aligned} \text{AXLEO(type}, x, i, r) &= & \frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \tan\left(\alpha_{-}\text{major}_{rotor_{i,r}}\right) \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}}\right) & \text{if type} = \text{"rotor"} \\ & \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \tan\left(\alpha_{-}\text{major}_{stator_{i,r}}\right) \cdot \left(x - \frac{x0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) & \text{if type} = \text{"stator"} \\ & \text{NaN otherwise} \end{aligned}$$

$$\begin{aligned} \text{AXLE90(type}, x, i, r) &= \left| \frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \tan \left(\alpha_{\text{major}_{rotor_{i,r}}} + \frac{\pi}{2} \right) \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} \right) & \text{if (type = "rotor")} \land \left| \alpha_{\text{major}_{rotor_{i,r}}} \right| \ge 1 \cdot \circ \\ & \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \tan \left(\alpha_{\text{major}_{stator_{i,r}}} + \frac{\pi}{2} \right) \cdot \left(x - \frac{x0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} \right) & \text{if (type = "stator")} \land \left| \alpha_{\text{major}_{stator_{i,r}}} \right| \ge 1 \cdot \circ \\ & \text{NaN otherwise} \end{aligned}$$

$$b_{lim} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{rotor_{j,N_r}}, \text{chord}_{stator_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 80 \cdot 10^{-3}$$

 $r = av(N_r)$

 $r = N_r$

r = 1

$r = av(N_r)$

Построение профилей Л РК и НА

Рассматриваемая ступень:
$$j = j = 1$$

$$j = 1$$
 = 1
$$j = \begin{bmatrix} \text{"Такой ступени не существует!"} & \text{if } (j < 1) \lor (j > Z) \\ j & \text{otherwise} \end{bmatrix}$$

$$b_{\text{line}} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{\text{rotor}_{j,N_r}}, \text{chord}_{\text{stator}_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 80 \cdot 10^{-3}$$

▼ Построение плоских решеток профилей Л РК и НА (+ ВНА и СА) на треугольниках скоростей

r = 1

 $r = av(N_r)$

 $r = av(N_r)$

■ Построение плоских решеток профилей Л РК и НА (+ ВНА и СА) на треугольниках скоростей

▼ Радиальные и осевые зазоры и длина К

Радиальный зазор (м) [с.64 казаджан]:

$$\overline{\Delta}$$
r = 0.0025

 $0.0015 \le \overline{\Delta}r \le 0.0035 = 1$

$$\Delta_{\mathbf{r}_{i}} = \overline{\Delta}\mathbf{r} \cdot \mathbf{D}_{\mathrm{st}(i,2), N_{\mathbf{r}}}$$

Относительный осевой зазор () [16, с. 245]:

 $\overline{\Delta}a = 0.17$

 $0.1 \le \overline{\Delta}a \le 0.2 = 1$

Осевой зазор (м): $\Delta a_i = \overline{\Delta} a \cdot \text{chord}_{rotor_{i,av(N_r)}}$

Односторонний осевой зазор (м):

Длина ОК (м):

$$\begin{aligned} \text{Length} &= \begin{bmatrix} \Delta a_1 + \left| \text{chord}_{BHA_{av\left(N_r\right)}} \cdot \sin\left(\upsilon_{BHA_{av\left(N_r\right)}}\right) & \text{if } BHA = 1 & \dots \\ 0 & \text{otherwise} \\ + \sum_{i \, = \, 1}^{Z} \left(\text{chord}_{rotor_{i}, \, av\left(N_r\right)} \cdot \sin\left(\upsilon_{rotor_{i}, \, av\left(N_r\right)}\right) \right) + 2 \cdot \sum_{i \, = \, 1}^{Z} \Delta a_i + \sum_{i \, = \, 1}^{Z} \left(\text{chord}_{stator_{i}, \, av\left(N_r\right)} \cdot \sin\left(\upsilon_{stator_{i}, \, av\left(N_r\right)}\right) \right) \\ + \left| \begin{array}{c} \text{chord}_{CA_{av\left(N_r\right)}} \cdot \sin\left(\upsilon_{CA_{av\left(N_r\right)}}\right) & \text{if } CA = 1 & + \Delta a_Z \\ 0 & \text{otherwise} \\ \end{bmatrix} \end{aligned} \end{aligned}$$

▼ Проточная часть

$$\begin{pmatrix} x_{\Pi H} \\ y_{\Pi H nep} \\ y_{\Pi H cp} \\ y_{\Pi H nep} \\ y_{\Pi H nep} \\ y_{\Pi I nep} \end{pmatrix} = \begin{vmatrix} c = 1 \\ x_{\Pi H_c} = \begin{vmatrix} c \operatorname{chord}_{BHA_{av(N_r)}} \cdot \sin(\upsilon_{BHA_{av(N_r)}}) & \text{if } BHA = 1 \\ 0 & \operatorname{otherwise} \\ y_{\Pi I nep_c} = R_{st(c,1),N_r} \\ y_{\Pi I nep_c} = R_{st(c,1),av(N_r)} \\ y_{\Pi H cop_c} = R_{st(c,1),av(N_r)} \\ \begin{pmatrix} v_{\Pi H nep_c} \\ y_{\Pi H cop_c} \\ y_{\Pi H cop_c} \\ y_{\Pi H cop_c} \\ y_{\Pi H cop_c} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,2),N_r} \\ R_{st(i,2),av(N_r)} \\ R_{st(i,2),av(N_r)} \\ \end{pmatrix} \\ y_{\Pi nep_c} = y_{\Pi H nep_c} - \Delta_{r_i} \\ c = c + 1 \\ x_{\Pi H_c} = x_{\Pi H_{c-1}} + 0.5 \cdot \Delta a_i + \operatorname{chord}_{stator_{i,av(N_r)}} \cdot \sin(\upsilon_{stator_{i,av(N_r)}}) + 0.5 \cdot \Delta a_i \\ \begin{pmatrix} y_{\Pi H nep_c} \\ y_{\Pi H cop_c} \\ y_{\Pi H cop_c} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,3),N_r} \\ R_{st(i,3),av(N_r)} \\ \end{pmatrix} \\ y_{\Pi nep_c} = y_{\Pi H nep_c} - \Delta_{r_i} \\ \end{pmatrix} \\ \begin{pmatrix} y_{\Pi H nep_c} \\ y_{\Pi H cop_c} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,3),av(N_r)} \\ R_{st(i,3),av(N_r)} \\ \end{pmatrix} \\ y_{\Pi nep_c} = y_{\Pi H nep_c} - \Delta_{r_i} \\ \end{pmatrix} \\ \begin{pmatrix} v_{\Pi H nep_c} \\ y_{\Pi H cop_c} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,3),av(N_r)} \\ R_{st(i,3),av(N_r)} \\ \end{pmatrix} \\ y_{\Pi nep_c} = y_{\Pi H nep_c} - \Delta_{r_i} \\ \end{pmatrix} \\ \begin{pmatrix} v_{\Pi H nep_c} \\ y_{\Pi H cop_c} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,3),av(N_r)} \\ R_{st(i,3),av(N_r)} \\ \end{pmatrix} \\ y_{\Pi nep_c} = y_{\Pi H nep_c} - \Delta_{r_i} \\ \end{pmatrix} \\ \begin{pmatrix} v_{\Pi H nep_c} \\ v_{\Pi H nep_c} \\ v_{\Pi H nep_c} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,3),av(N_r)} \\ R_{st(i,3),av(N_r)} \\ \end{pmatrix} \\ y_{\Pi nep_c} = y_{\Pi H nep_c} - \Delta_{r_i} \\ \end{pmatrix} \\ \begin{pmatrix} v_{\Pi H nep_c} \\ v_{\Pi H nep_c}$$

```
\begin{aligned} y_{\Pi \Pi nep}(l) &= interp \Big( cspline \Big( x_{\Pi \Pi}, y_{\Pi \Pi nep} \Big), x_{\Pi \Pi}, y_{\Pi \Pi nep}, l \Big) \\ y_{\Pi \Pi cp}(l) &= interp \Big( cspline \Big( x_{\Pi \Pi}, y_{\Pi \Pi cp} \Big), x_{\Pi \Pi}, y_{\Pi \Pi cp}, l \Big) \\ y_{\Pi \Pi kop}(l) &= interp \Big( cspline \Big( x_{\Pi \Pi}, y_{\Pi \Pi kop} \Big), x_{\Pi \Pi}, y_{\Pi \Pi kop}, l \Big) \\ y_{\Pi nep}(l) &= interp \Big( cspline \Big( x_{\Pi \Pi}, y_{\Pi nep} \Big), x_{\Pi \Pi}, y_{\Pi nep}, l \Big) \end{aligned}
```


▲ Проточная часть

$$j = 1$$
 = 1 $j = 1$ = 1 $j = 1$ Taкой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

▼ Поперечная часть ступени

$$\mathbf{r} = \min(\mathbf{D}), \min(\mathbf{D}) + \frac{\max(\mathbf{D}) - \min(\mathbf{D})}{N_{\text{dis}}} ... \max(\mathbf{D})$$

$$\mathbf{i}_{\text{rotor}} = 1 ... Z_{\text{rotor}_{j}}$$

$$\mathbf{i}_{\text{stator}} = 1 ... Z_{\text{stator}_{j}}$$

$$\Pi_{\text{HA}}(r,j) = \begin{cases}
\frac{2 \cdot \pi}{Z_{\text{stator}_{j}}} & \text{if } D_{\text{st}(j,2),1} < r < D_{\text{st}(j,2),N_{r}} \\
NaN & \text{otherwise}
\end{cases}$$

Запас по температуре (К):

$$\Delta T_{\text{safety}} = 50$$

Выбранный материал Л:

$$\begin{split} \text{material_blade}_i &= & \text{"\mathbb{K}C-6$K"} \quad \text{if } 1123 \leq T^*_{st(i,2),\,av\left(N_r\right)} + \Delta T_{safety} \\ & \text{"$BT41"} \quad \text{if } 873 \leq T^*_{st(i,2),\,av\left(N_r\right)} + \Delta T_{safety} < 1123 \\ & \text{"$BT25"} \quad \text{if } 753 \leq T^*_{st(i,2),\,av\left(N_r\right)} + \Delta T_{safety} < 873 \\ & \text{"$BT9"} \quad \text{otherwise} \end{split}$$

Плотность материала Л (кг/м^3):

$$\rho_blade_i = \begin{bmatrix} 8393 & if material_blade_i = "KC-6K" \\ 7900 & if material_blade_i = "BT41" \\ 4500 & if material_blade_i = "BT25" \\ 4570 & if material_blade_i = "BT23" \\ 4510 & if material_blade_i = "BT9" \\ 4430 & if material_blade_i = "BT6" \\ NaN & otherwise \\ \end{bmatrix}$$

Предел длительной прочности ЛРК (Па):

$$\sigma_blade_long_i = 10^6. \begin{tabular}{llll} 125 & if material_blade_i = "KC-6K" \\ 123 & if material_blade_i = "BT41" \\ 150 & if material_blade_i = "BT25" \\ 230 & if material_blade_i = "BT23" \\ 200 & if material_blade_i = "BT9" \\ 210 & if material_blade_i = "BT6" \\ NaN & otherwise \\ \end{tabular}$$

material bla

lade ^T	=		1	2	3	4	5	6	7	8	9
		1	"BT9"	"BT9"	"BT9"	"BT9"	"BT9"	"BT25"	"BT25"	"BT25"	"BT41"
				_			_	_		-	

 $\rho_{\text{blade}}^{\text{T}}$

Γ =		1	2	3	4	5	6	7	8	9
	1	4510	4510	4510	4510	4510	4500	4500	4500	7900

 $\sigma_{\text{blade_long}}^{\text{T}}$

											_
=		1	2	3	4	5	6	7	8	9	$\cdot 10^6$
	1	200.0	200.0	200.0	200.0	200.0	150.0	150.0	150.0	123.0	

material_blade
$$_{i}$$
 = "BT23" if compressor = "Вл" "BT6" if compressor = "КНД" material_blade $_{i}$ otherwise

Коэф. формы:
$$\frac{k_n}{k_n} = 6.8$$

Модуль Юнга Ірода материала Л (Па):

E blade =
$$210 \cdot 10^9$$

Коэф. Пуассона материала Л():

 μ steel = 0.3

```
\nu 0_{\text{изг.stator}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                 \nu 0_{\text{изг.rotor}}
                                                                        \nu 0_{y_{\Gamma \Pi}.stator}
                                                                                                                                                                                                                                                                                                                                                                                                                                                 \nu_{\rm VII.rotor}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                for i \in 1...Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  for r \in av(N_r)
(\nu^0угл.stator_bondage \nu^0угл.rotor_bondage
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                for mode \in 1..6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      \nu 0_{\text{M3}\Gamma.\text{stator}_{\hat{1},\,\text{mode}}} = \nu 0_{\text{M3}\Gamma\text{M5}} \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big)\,, \\ E\_\text{blade}\,, \rho\_\text{blade}_{\hat{1}}\,, \text{area}_{\text{stator}_{\hat{1},\,r}}\,, \\ Ju_{\text{stator}_{\hat{1},\,r}} \Big) \Big( h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big( h_{\text{st}(\hat{1},\,3)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big) \Big( h_{\text{st}(\hat{1},\,3)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big( h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}(\hat{1},\,3)} \Big) \Big( h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}(\hat{1},\,3)} \Big) \Big( h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}(\hat{1},\,3)} \Big) \Big( h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      \nu 0_{\text{M3}\Gamma.\text{rotor}_{\hat{i}\,,\,\text{mode}}} = \nu 0_{\text{M3}\Gamma\text{M}} \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}\,, \rho\_\text{blade
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      \nu 0_{\text{yrn.stator}_{i,\,mode}} = \nu 0_{\text{yrn}} \Big( \text{mode}\,, 0\,, \text{mean} \Big( h_{st(i,\,2)}\,, h_{st(i,\,3)} \Big) \,, \\ \text{Jung}(2\,, \mu\_\text{steel}\,, E\_\text{blade}) \,, \rho\_\text{blade}_i\,, \\ \text{stiffness}_{stator}_{i,\,r}\,, \\ \text{Jp}_{stator}_{i,\,r} \,, \\ \text{Jp}_{st
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    \nu 0_{\text{yr.i.rotor}_{i, \, mode}} = \nu 0_{\text{yr.ii}} \left( \text{mode}, 0, \text{mean} \left( h_{\text{st(i,1)}}, h_{\text{st(i,2)}} \right), \text{Jung}(2, \mu_{\text{steel}}, E_{\text{blade}}), \rho_{\text{blade}_{i}}, \text{stiffness}_{\text{rotor}_{i,r}}, \text{Jp}_{\text{rotor}_{i,r}} \right) \right)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      \nu 0_{y_{\Gamma JI}.stator\_bondage_{\hat{1},\,mode}} = \nu 0_{y_{\Gamma JI}} \Big( mode, 1, mean \Big( h_{st(\hat{1},\,2)}, h_{st(\hat{1},\,3)} \Big), \\ Jung(2, \mu\_steel, E\_blade), \rho\_blade_{\hat{1},\,stiffness} \\ stator_{\hat{1},\,r}, Jp_{stator_{\hat{1},\,r}}, Jp_{stator_{\hat{1},\,r}}, Jp_{stator_{\hat{1},\,r}} \Big) \\ + \frac{1}{2} \left( mode + \frac{1}{2} \left( mo
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 \nu 0_{\text{yrst.rotor\_bondage}_{i, \, mode}} = \nu 0_{\text{yrst}} \left( \text{mode}, 1, \text{mean} \left( h_{\text{st}(i, 1)}, h_{\text{st}(i, 2)} \right), \text{Jung}(2, \mu\_\text{steel}, E\_\text{blade}), \rho\_\text{blade}_i, \text{stiffness}_{\text{rotor}_{i, r}}, \text{Jp}_{\text{rotor}_{i, r}}, \text{Jp}_{\text{rotor}_{i
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 \nu 0_{\text{изг.stator}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              \nu 0_{\text{изг.rotor}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ν0<sub>VГЛ.rotor</sub>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 \nu_{\rm V\Gamma J. stator}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      (\nu^0угл.stator_bondage \nu^0угл.rotor_bondage
```

Частота собственных изгибных колебаний (Гц) [9, с.240]:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1	1539	1826	2097	2353	2606	2851	3056	3212	2597	852	1018	1194	1352	1506	1660	1796	1903	1513
, T	2	4617	5479	6290	7060	7819	8553	9167	9635	7790	2557	3053	3582	4055	4519	4979	5389	5710	4540
stack $(ν0_{yгл.stator}, ν0_{yгл.rotor})^{T} =$	3	7694	9131	10483	11767	13031	14255	15278	16059	12983	4261	5088	5970	6758	7532	8298	8982	9516	7567
	4	10772	12784	14677	16474	18243	19956	21389	22482	18177	5966	7124	8358	9461	10544	11617	12575	13322	10594
	5	13850	16436	18870	21180	23456	25658	27500	28906	23370	7670	9159	10746	12164	13557	14936	16168	17129	13621
	6	16927	20089	23063	25887	28668	31360	33611	35329	28563	9375	11194	13135	14867	16570	18256	19761	20935	16648

Частота собственных угловых колебаний (Гц) [9, с.243] без и с бандажом:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1	321	478	660	811	1015	1221	1318	1457	1326	290	377	469	543	625	703	759	814	669
, T	2	2011	2998	4137	5085	6360	7653	8260	9134	8312	1820	2362	2938	3402	3916	4407	4755	5103	4195
$\operatorname{stack}(\nu 0_{\text{M3}\Gamma.\text{stator}}, \nu 0_{\text{M3}\Gamma.\text{rotor}})^{T} =$	3	5630	8395	11585	14241	17810	21430	23131	25578	23275	5095	6614	8226	9528	10967	12341	13316	14290	11749
	4	11042	16464	22719	27927	34926	42026	45362	50160	45645	9992	12970	16132	18685	21507	24202	26114	28024	23040
	5	18245	27205	37541	46147	57711	69443	74956	82885	75423	16511	21431	26657	30875	35538	39992	43151	46307	38071
	6	27248	40629	56066	68918	86189	103709	111943	123783	112640	24658	32006	39811	46109	53074	59725	64444	69156	56857

		1	2	3	4	5	6	/	8	9	10	11	12	13	14	15	16	1/	18
	1	3078	3653	4193	4707	5212	5702	6111	6423	5193	1705	2035	2388	2703	3013	3319	3593	3806	3027
, <i>(</i>	2	6155	7305	8387	9414	10425	11404	12222	12847	10387	3409	4071	4776	5406	6025	6638	7186	7613	6054
stack $(ν_{yгл.stator_bondage}, ν_{yгл.rotor_bondage})^{T} =$	3	9233	10958	12580	14120	15637	17106	18333	19270	15580	5114	6106	7164	8109	9038	9958	10779	11419	9081
	4	12311	14610	16773	18827	20850	22807	24444	25694	20773	6818	8141	9552	10813	12051	13277	14372	15225	12108
	5	15389	18263	20967	23534	26062	28509	30555	32117	25967	8523	10177	11941	13516	15063	16596	17965	19032	15135
	6	18466	21915	25160	28241	31275	34211	36666	38541	31160	10227	12212	14329	16219	18076	19915	21558	22838	18162

▶ Расчет собственных частот колебаний Л

№ Вывод результатов расчета собственных частот колебаний Л-

Pасчетный узел: type = "compressor"

Объем бандажной полки (M^3): $V_{\delta\Pi} = 0$

Радиус положения ЦМ бандажной полки (м): $R_{6\Pi} = 0$

▼ Расчет Л на прочность

```
\begin{aligned} & \text{area0}_{rotor}(i,z) = \text{area}_{rotor_{i},N_{r}} \cdot \begin{bmatrix} e^{\left( \overrightarrow{\sigma 0}_{rotor.max}(i,z) \cdot \int_{Z} & z \, dz \right)} & \text{if } z \leq R0_{rotor}(i,z) \\ & 1 \quad \text{otherwise} \\ & \text{N0}_{rotor}(i,z) = \rho\_\text{blade}_{i} \cdot \omega^{2} \cdot \begin{bmatrix} \int_{Z}^{mean\left(R_{st(i,1),N_{r}},R_{st(i,2),N_{r}}\right)} & \text{area0}_{rotor}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \end{bmatrix} & \text{if type} = \text{"compressor"} \\ & \left( \int_{Z}^{mean\left(R_{st(i,2),N_{r}},R_{st(i,3),N_{r}}\right)} & \text{area0}_{rotor}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \right) & \text{if type} = \text{"turbine"} \end{aligned} \right) \end{aligned}
                \sigma_{0_{rotor}(i,z)} = \frac{N0_{rotor}(i,z)}{area0_{rotor}(i,z)}
                     area_{rotor.}(i,z) = interp\Big(pspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(area_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(area_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
                     area_{stator.}(i,z) = interp \left( pspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( area_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( area_{stator}, i, i, 1, N_r \right)^T, submatrix \left( area_{stato
          \begin{aligned} N_{rotor}(i,z) &= \rho\_{blade}_{i} \cdot \omega^{2} \cdot \\ & \int_{z}^{mean \left(R_{st(i,1),N_{r}}, R_{st(i,2),N_{r}}\right)} \operatorname{area}_{rotor.}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \end{aligned} \quad \text{if type = "compressor"} \\ & \left(\int_{z}^{mean \left(R_{st(i,2),N_{r}}, R_{st(i,3),N_{r}}\right)} \operatorname{area}_{rotor.}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \right) \quad \text{if type = "turbine"} \end{aligned}
                \sigma_{z_{rotor}(i,z)} = \frac{N_{rotor}(i,z)}{area_{rotor}(i,z)}
                      \rho_{1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,1),st(i,1),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(
                     \rho_{2}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,2),st(i,2),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,2),st(i,2),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2
                     \rho_{3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,3),st(i,3),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3
                     P_{1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),
                     P_2(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(P,st(i,2),st(i,2),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(P,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(P,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i
                     P_{3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,3),st(i,3),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(
                     c_{a1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_a,st(i,1),st(i,1),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_a,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_a,st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),
                     c_{a2}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(c_a,st(i,2),st(i,2),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(c_a,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(c_a,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),
                     c_{a3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(c_a,st(i,3),st(i,3),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(c_a,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(c_a,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),
                     c_{u1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_{u},st(i,1),st(i,1),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_{u},st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(s_{u},st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st
```

```
c_{u2}(i,z) = interp\Big(lspline\Big(submatrix(R,st(i,2),st(i,2),1,N_r)^1,submatrix(c_u,st(i,2),st(i,2),1,N_r)^1\Big),submatrix(R,st(i,2),st(i,2),1,N_r)^1,submatrix(c_u,st(i,2),st(i,2),1,N_r)^1,submatrix(c_u,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,
         c_{u3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T,submatrix\Big(c_u,st(i,3),st(i,3),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T,submatrix\Big(c_u,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i
         w_{u1}(i,z) = interp \Big( lspline \Big( submatrix \Big( R \,, st(i,1) \,, st(i,1) \,, 1 \,, N_r \Big)^T \,, submatrix \Big( w_u \,, st(i,1) \,, st(i,1) \,, 1 \,, N_r \Big)^T \Big), submatrix \Big( R \,, st(i,1) \,, st(i
         w_{u2}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(w_u,st(i,2),st(i,2),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(w_u,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(w_u,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(
         w_{u3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T,submatrix\Big(w_u,st(i,3),st(i,3),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T,submatrix\Big(w_u,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i
        qx_{rotor}(i,z) = -\frac{2\pi z}{Z_{rotor_i}} \cdot \begin{bmatrix} \left[ \left( P_2(i,z) - P_1(i,z) \right) + \rho_1(i,z) \cdot c_{a1}(i,z) \cdot \left( c_{a2}(i,z) - c_{a1}(i,z) \right) \right] & \text{if type = "compressor"} \\ \left[ \left( P_3(i,z) - P_2(i,z) \right) + \rho_2(i,z) \cdot c_{a2}(i,z) \cdot \left( c_{a3}(i,z) - c_{a2}(i,z) \right) \right] & \text{if type = "turbine"} \end{aligned}
   \begin{vmatrix} q y_{rotor}(i,z) &= \frac{2\pi\,z}{Z_{rotor_i}} \cdot \\ \begin{bmatrix} \rho_1(i,z) \cdot c_{a1}(i,z) \cdot \left(w_{u2}(i,z) - w_{u1}(i,z)\right) \end{bmatrix} & \text{if type = "compressor"} \\ \left[ \rho_2(i,z) \cdot c_{a2}(i,z) \cdot \left(w_{u3}(i,z) - w_{u2}(i,z)\right) \right] & \text{if type = "turbine"} \\ \end{vmatrix} 
    | \text{qy}_{\text{stator}}(i,z) = -\frac{2\pi z}{Z_{\text{stator}_i}} \cdot \left[ \begin{bmatrix} \rho_2(i,z) \cdot c_{a2}(i,z) \cdot \left( c_{u3}(i,z) - c_{u2}(i,z) \right) \end{bmatrix} \text{ if type = "compressor"} \\ \left[ \rho_1(i,z) \cdot c_{a1}(i,z) \cdot \left( c_{u2}(i,z) - c_{u1}(i,z) \right) \right] \text{ if type = "turbine"} 
qy_{rotor}(i,z1)\cdot(z1-z) dz1
                                                                                                                                                           mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="compressor"
                                                                                                                                         \bigcap \mathsf{lmean} \big( \mathsf{R}_{\mathsf{st}(i,1),1}, \mathsf{R}_{\mathsf{st}(i,2),1} \big) \text{ if type="turbine"} 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             qy_{stator}(i,z1)\cdot(z1-z)dz1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       qx_{rotor}(i,z1)\cdot(z1-z) dz1
                                                                                                                                                             mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="compressor"
                                                                                                                                                        \max(R_{st(i,1),1},R_{st(i,2),1}) if type="turbine"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        qx_{stator}(i,z1)\cdot(z1-z) dz1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        \left( \begin{array}{c} \operatorname{mean} \left( {{R_{st(i,1),N_r}},{R_{st(i,2),N_r}}} \right) & \text{if type="compressor"} \\ \operatorname{mean} \left( {{R_{st(i,2),N_r}},{R_{st(i,3),N_r}}} \right) & \text{if type="turbine"} \end{array} \right)
```

```
q_{rotor}(1, z) uz
shift_x_{rotor}(i, z) =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   N<sub>rotor</sub>(i,z)
                                                                                                                                                          mean(R_{st(i,1),1}, R_{st(i,2),1}) if type="compressor"
                                                                                                                                                            mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="turbine"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        mean \left(R_{st(i,1),N_r}, R_{st(i,2),N_r}\right) if type="compressor"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (qy_{rotor}(i,z)\cdot z) dz
shift_y_{rotor}(i, z) = z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  N_{rotor}(i,z) \cdot z^2
                                                                                                                                                                     mean(R_{st(i,1),1}, R_{st(i,2),1}) if type="compressor"
                                                                                                                                                                         mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="turbine"
 x0_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(x0_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(x0_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(R,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,
 x0_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(x0_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(x0_{stator},i,i,1,N_r\Big)^T,submatrix\Big(x0_{stator},i,i,1,N_r\Big)^T\Big)
y0_{\text{rotor.}}(i,z) = \text{interp}\Big(\text{lspline}\Big(\text{submatrix}\Big(R,\text{st}(i,2),\text{st}(i,2),1,N_r\Big)^T, \text{submatrix}\Big(y0_{\text{rotor.}}i,i,1,N_r\Big)^T\Big), \text{submatrix}\Big(R,\text{st}(i,2),\text{st}(i,2),1,N_r\Big)^T, \text{submatrix}\Big(y0_{\text{rotor.}}i,i,1,N_r\Big)^T, \text{submatrix}\Big(R,\text{st}(i,2),\text{st}(i,2),1,N_r\Big)^T, 
y0_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(y0_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(y0_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
\alpha_{major_{rotor.}(i,z)} = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \alpha_{major_{rotor},i,i,1,N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \alpha_{major_{rotor},i,i,1,N_r \right)^T \right), submatrix \left( \alpha_{major_{rotor},i,i,1,N_r \right)^T, submatrix \left( \alpha_{major_{rotor},i,i,1,N_r \right)^T \right)
\alpha_{\text{major}_{\text{stator.}}(i,z)} = \text{interp} \Big( \text{lspline} \Big( \text{submatrix} \Big( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big( \alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big( \alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big), \text{submatrix} \Big( \alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big), \text{submatrix} \Big( \alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big) \Big)
Ju_{rotor.}(i,z) = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Ju_{rotor}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Ju_{rotor}, i, i, 1, N_r \right)^T, submatrix \left( Ju
Ju_{stator.}(i,z) = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Ju_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Ju_{stator}, i, i, 1, N_r \right)^T, submatrix \left( Ju_
Jv_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Jv_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Jv_{rotor},i,i,1,N_r\Big)^T, su
Jv_{stator.}(i,z) = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Jv_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Jv_{stator}, i, i, 1, N_r \right)^T, submatrix \left( Jv_
CPx_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPx_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPx_{rotor},i,i,1,N_r\Big)^T, submatrix\Big(CPx_{rotor},i,i,1,N_r\Big)^T\Big)
CPx_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPx_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPx_{stator},i,i,1,N_r\Big)^T, submatrix\Big(CPx_{stator},i,i,1,N_r\Big)^T
CPy_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{rotor},i,i,1,N_r\Big)^T, submatrix\Big(CPy_{rotor},i,i,1,N_r\Big)^T\Big)
 CPy_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
 CPx_{rotor.axis}(i,z) = axis_{X} \Big( CPx_{rotor.}(i,z), CPy_{rotor.}(i,z), x0_{rotor.}(i,z), y0_{rotor.}(i,z), \alpha_{major_{rotor.}}(i,z), 1 \Big)
 CPx_{stator.axis}(i,z) = axis_{x} \left( CPx_{stator.}(i,z), CPy_{stator.}(i,z), x0_{stator.}(i,z), y0_{stator.}(i,z), \alpha_{stator.}(i,z), \alpha_{
 CPy_{rotor.axis}(i,z) = axis_{y} \left( CPx_{rotor.}(i,z), CPy_{rotor.}(i,z), x0_{rotor.}(i,z), y0_{rotor.}(i,z), \alpha_{major_{rotor.}}(i,z), 1 \right)
CPy_{stator.axis}(i,z) = axis_{v} \Big( CPx_{stator.}(i,z), CPy_{stator.}(i,z), x0_{stator.}(i,z), y0_{stator.}(i,z), \alpha_{major_{stator.}}(i,z), 1 \Big)
```

```
Wp_{rotor.}(i,z) = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Wp_{rotor}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Wp_{rotor}, i, i, 1, N_r \right)^T, submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( R, st(i,2), st(i,2),
  Wp_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Wp_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Wp_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    \left(qx_{rotor}(i,z1) \cdot CPy_{rotor.axis}(i,z1) - qy_{rotor}(i,z1) \cdot CPx_{rotor.axis}(i,z1)\right) dz1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            \left(qx_{stator}(i,z1)\cdot CPy_{stator.axis}(i,z1) - qy_{stator}(i,z1)\cdot CPx_{stator.axis}(i,z1)\right) dz1
  \varphi_{\text{uv}_{\text{rotor}}(i,z)} = \text{interp} \left[ \text{lspline} \left[ \text{submatrix} \left( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{submatrix} \left( \frac{\pi}{2} - \upsilon_{\text{rotor}}, i, i, 1, N_r \right)^T \right] \right], \text{submatrix} \left( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{submatrix} \left( \frac{\pi}{2} - \upsilon_{\text{rotor}}, i, i, 1, N_r \right)^T, \text{submatrix} \left( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{st}(i,2), \text
 \left| \phi_{\_} u v_{stator}(i,z) \right| = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, sub
  Mu_{rotor}(i,z) = axis_{x}(Mx_{rotor}(i,z), My_{rotor}(i,z), 0, 0, \phi_{uv_{rotor}(i,z), 1})
  Mu_{stator}(i,z) = axis_{x}(Mx_{stator}(i,z), My_{stator}(i,z), 0, 0, \varphi_{uv_{stator}}(i,z), 1)
  Mv_{rotor}(i,z) = axis_{y}(Mx_{rotor}(i,z), My_{rotor}(i,z), 0, 0, \phi_{uv_{rotor}(i,z), 1})
   Mv_{stator}(i,z) = axis_{v}(Mx_{stator}(i,z), My_{stator}(i,z), 0, 0, \varphi_{uv_{stator}}(i,z), 1)
```

10.01	10.01
P_1	ρ_1
P ₂	ρ_2
P ₃	ρ_3
c _{a1}	c_{u1}
c _{a2}	c_{u2}
c _{a3}	c_{u3}
qx _{rotor}	qx _{stator}
qy _{rotor}	qy _{stator}
Mx _{rotor}	Mx _{stator}
My _{rotor}	My _{stator}
shift_x _{rotor}	shift_y _{rotor}
x0 _{rotor} .	x0 _{stator} .
y0 _{rotor} .	y0 _{stator} .
α _major _{rotor} .	α _major _{stator} .
^{Ju} rotor.	Ju _{stator} .
Jv _{rotor} .	Jv _{stator} .
CPx _{rotor} .	CPx _{stator} .
CPy _{rotor} .	CPy _{stator} .
CPx _{rotor.axis}	CPx _{stator.axis}
CPy _{rotor.axis}	CPy _{stator.axis}
Wp _{rotor} .	Wp _{stator} .
Mτ _{rotor}	$M\tau_{stator}$
τ _{rotor}	$\tau_{ m stator}$
φ_uv _{rotor}	$\phi_{-}^{uv}_{stator}$
Mu _{rotor}	Mu _{stator}
Mv _{rotor}	Mv _{stator}
$\varphi_{\text{neutral}_{\text{rotor}}}$	φ_neutral _{stator}

$$\text{neutral_line(type, x, i, r)} = \begin{vmatrix} y0_{rotor_{i, r}} \\ \frac{y0_{rotor_{i, r}}}{\text{chord}_{rotor_{i, r}}} + \tan\left(\left(\alpha_{major_{rotor_{i, r}}} + \phi_{neutral_{rotor}}(i, R_{st(i, 2), r})\right)\right) \cdot \left(x - \frac{x0_{rotor_{i, r}}}{\text{chord}_{rotor_{i, r}}}\right) \text{ if type} = "rotor"$$

$$\frac{y0_{stator_{i, r}}}{\text{chord}_{stator_{i, r}}} + \tan\left(\left(\alpha_{major_{stator_{i, r}}} + \phi_{neutral_{stator}}(i, R_{st(i, 2), r})\right)\right) \cdot \left(x - \frac{x0_{stator_{i, r}}}{\text{chord}_{stator_{i, r}}}\right) \text{ if type} = "stator"$$

$$\frac{y0_{rotor_{i, r}}}{\text{chord}_{stator_{i, r}}} + \frac{-1}{(x_{major_{stator_{i, r}}})} = \frac{y0_{rotor_{i, r}}}{(x_{major_{stator_{i, r}}})} = \frac{y0_{rotor_{i, r}}}{(x_{ma$$

$$\begin{aligned} & \text{epure(type,x,i,r)} = \boxed{\frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \frac{-1}{\text{tan}\left(\alpha_\text{major}_{rotor_{i,r}} + \varphi_\text{neutral}_{rotor}\left(i,R_{st(i,2),r}\right) - \frac{\pi}{4}\right)} \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}}\right) \text{ if type = "rotor"} \\ & \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \frac{-1}{\text{tan}\left(\alpha_\text{major}_{stator_{i,r}} + \varphi_\text{neutral}_{stator}\left(i,R_{st(i,2),r}\right) - \frac{\pi}{4}\right)} \cdot \left(x - \frac{x0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) \text{ if type = "stator"} \end{aligned}$$

Наиболее удаленные точки от НЛ (мм):

14.811

14.799

14.779

14.776

14.769

14.766

		1	2	3	4	5	6	7	8	9					1	2	3	4	5	6	7	8	9		
$\mathbf{u} \cdot \mathbf{T} =$	1	-2.547	-2.080	-2.107	-1.590	-1.605	-1.621	-1.641	-1.652	-1.659	$\cdot 10^{-3}$		v II .	_ 1	4.006	3.850	3.795	3.707	3.653	3.586	3.474	3.401	3.366	$\cdot 10^{-3}$	
_u _{rotor} =	2	-0.725	-0.724	-0.723	-0.724	-0.724	-0.725	-0.727	-1.361	-1.361	10		v_urotor	2	1.463	1.478	1.503	1.491	1.486	1.467	1.413	1.375	1.362	!	
	3	0.000	-0.818	-0.817	-0.817	-0.817	-0.817	-0.818	-0.818	-0.818				3	0.845	0.908	0.935	0.936	0.941	0.934	0.901	0.876	0.872	!	
		·		·							•					•		·						_	
		1	2	3	4	5		5	7	8	9				1	2	3	4	5	6		7	8	9	
$1_{rotor}^{T} = $	1	29.509	29.617	29.64	9 29.13	38 28	.068 2	5.997 -	12.640	-9.373	-9.369	$\cdot 10^{-3}$	$v_{lrotor}^{T} =$	1	-5.036	-4.050	-3.697	-3.228	-2.970	-2.6	90 -2	2.694 -	2.726	-2.749	$\cdot 10^{-3}$
-rotor	2	34.666	34.665	34.66	4 34.66	55 34	.665 3	4.666 -	21.609	-20.343	-19.710	10	'-rotor	2	-1.331	-1.388	-1.487	-1.437	-1.415	-1.3	35 -1	l.158 -	1.117	-1.106	10
	3	23.293	38.705	38.70	4 38.70)4 38	.704 3	3.704	38.705	-24.823	-24.822			3	-0.582	-0.819	-0.929	-0.935	-0.952	-0.9	25 -0).791 -	0.730	-0.725	
		1	2	3	4	5	6	7	8	9	1				1	2	3	4	5		6	7	8	9	
T	1	0.206	0.209	-1.564	-1.570	-1.618	-	-1.326			$\cdot 10^{-3}$		T	1	0.76	6 0.80	4 10.23	7 10.2	37 10.	240 1	10.238	10.225	10.21		14 · 10
_u _{stator} =	2	-0.014	-0.009	-0.001	-0.000	0.003	1	ł	+		- 10		v_ustator	$=$ $\frac{1}{2}$	1.21	_	_	_			1.342	1.257	1.19		
	3	-0.276	-0.268	-0.257	-0.256	-0.252		-0.264			-			3	1.70	_				859	1.853	1.767	1.70		
	_						1	1	1	1 - "	_					_1	1	1					1		
		1	2	3	4	5	6	7	8	9					1	2	3		1	5	6		,	8	9
1 T	1	12.342	12.335	-2.137	-2.146	-2.210	0 -2.16	4 -1.81	12 -1.50	57 -1.4	64 ·10 ⁻	3	1 T	1	-1.73	5 -1.9	03 -12.	327 -12	2.327 -	12.324	-12.3	326 -12	2.341	-12.351	-12.354
_l _{stator} =	2	13.697	13.687	13.669				_			-10		^V _lstator	= -	-1.87	_			2.435	-2.522			2.102	-1.826	-1.699

-2.005

-2.237

-2.588

-2.627

-2.733

-2.729

-2.319

-2.032

-1.891

14.793

14.808

14.815

$$\begin{pmatrix} \sigma_{-Protor} & \sigma_{-n}rotor \\ \sigma_{-Dstator} & \sigma_{-n}rotor \\ \sigma_{-Dstator}$$

$$\begin{pmatrix} \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \end{pmatrix} = \begin{bmatrix} \text{for } i \in 1 ... Z \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \end{bmatrix} = \begin{bmatrix} \text{for } i \in 1 ... Z \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} &$$

		1	2	3	4	5	6	7	8	9
$\sigma p \cdot T =$	1	-24.59	-35.43	-47.02	-62.63	-78.53	-98.25	-143.38	-184.44	-193.90
$\sigma_p_{rotor} =$	2	-66.85	-75.01	-90.36	-110.97	-132.28	-160.03	-230.81	-296.24	-315.96
	3	-0.34	-0.29	-1.04	-0.93	-0.85	-0.74	-0.57	-0.38	-1.16

		1	2	3	4	5	6	7	8	9
$\sigma p_{matan} \leq 70.10^6 =$	1	1	1	1	1	1	1	1	1	1
-Protor = 70 10 -	2	1	1	1	1	1	1	1	1	1
	3	1	1	1	1	1	1	1	1	1

$$\sigma_{-n_{rotor}}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 38.31 & 45.18 & 54.66 & 64.61 & 74.69 & 85.27 & 103.32 & 140.76 & 151.40 \\ 2 & 63.68 & 73.61 & 93.21 & 111.30 & 130.92 & 151.20 & 184.57 & 235.46 & 251.55 \\ 3 & 0.24 & 0.27 & 1.06 & 0.95 & 0.88 & 0.74 & 0.51 & 0.31 & 0.95 \end{bmatrix} \cdot 10^{6}$$

		1	2	3	4	5	6	7	8	9
$\sigma n_{\text{mater}} \leq 70 \cdot 10^6 =$	1	1	1	1	1	0	0	0	0	0
-rotor = 70 10 -	2	1	0	0	0	0	0	0	0	0
	3	1	1	1	1	1	1	1	1	1

		1	2	3	4	5	6	7	8	9	
$\cdot 10^6 \sigma p_{\text{stator}} =$	1	0.55	0.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	.10
$\cdot 10 \sigma_{p_{stator}} =$	2	83.95	58.73	39.85	38.94	28.76	14.34	14.90	12.68	12.98	10
	3	134.64	98.88	68.11	67.27	50.49	25.15	24.90	20.35	20.51	

		1	2	3	4	5	6	7	8	9
$\sigma p_{\text{ototor}} \leq 70 \cdot 10^6 =$	1	1	1	1	1	1	1	1	1	1
o_Pstator = 70 To =	2	0	1	1	1	1	1	1	1	1
	3	0	0	1	1	1	1	1	1	1

		1	2	3	4	5	6	7	8	9	
$\sigma n_{\text{stater}} =$	1	-1.25	-0.79	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$\cdot 10^6$
stator	2	-132.36	-99.95	-74.49	-73.17	-55.40	-27.72	-25.65	-19.85	-19.28	
	3	-162.26	-130.36	-100.17	-99.90	-77.32	-38.87	-34.05	-25.17	-23.91	

		1	2	3	4	5	6	7	8	9
$\sigma n_{\text{stator}} \leq 70 \cdot 10^6 =$	1	1	1	1	1	1	1	1	1	1
S_nstator = 70 10 =	2	1	1	1	1	1	1	1	1	1
	3	1	1	1	1	1	1	1	1	1

$$\begin{pmatrix} \sigma_{rotor} \\ \sigma_{stator} \end{pmatrix} = \begin{cases} \text{for } i \in 1...Z \\ \text{for } r \in 1...N_r \end{cases}$$

$$\begin{vmatrix} \sigma_{rotor_{i,r}} = \sqrt{\left(\sigma_{-}z_{rotor}(i,R_{st(i,2),r}) + \max\left(\sigma_{-}p_{rotor_{i,r}},\sigma_{-}n_{rotor_{i,r}}\right)\right)^2 + \tau_{rotor}(i,R_{st(i,2),r})^2}$$

$$\begin{vmatrix} \sigma_{stator_{i,r}} = \sqrt{\left(0 + \max\left(\sigma_{-}p_{stator_{i,r}},\sigma_{-}n_{stator_{i,r}}\right)\right)^2 + \tau_{stator}(i,R_{st(i,2),r})^2} \\ \begin{pmatrix} \sigma_{rotor} \\ \sigma_{stator} \end{pmatrix}$$

$$\begin{pmatrix} \sigma_{rotor.} \\ \sigma_{stator.} \end{pmatrix} = \begin{cases} \text{for } i \in 1..Z \\ \\ \sigma_{rotor.}(i,z) = \text{interp} \Big(\text{lspline} \Big(\text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor}, i, i, 1, N_r \Big)^T, \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{stator}, i, i, 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor}, i, i, 1, N_r \Big)^T, \text{submatrix} \Big$$

$$\sigma_{rotor}^{T} = \begin{bmatrix} 1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 152.77 & 142.09 & 138.21 & 137.27 & 139.06 & 143.07 & 156.39 & 190.65 & 233.81 \\ 2 & 153.13 & 150.11 & 160.35 & 169.30 & 182.06 & 196.87 & 226.18 & 274.33 & 316.42 \\ 3 & 5.14 & 4.21 & 7.12 & 5.48 & 4.42 & 3.43 & 2.30 & 1.52 & 4.37 \end{bmatrix} \cdot 10^{6}$$

$$\sigma_{stator}^{T} = \begin{bmatrix} 1 & 0.57 & 0.36 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 2 & 83.95 & 58.74 & 39.86 & 38.95 & 28.78 & 14.35 & 14.91 & 12.68 & 12.99 \\ 3 & 134.64 & 98.88 & 68.12 & 67.28 & 50.50 & 25.15 & 24.91 & 20.35 & 20.52 \end{bmatrix} \cdot 10^{6}$$

$$\left(\begin{array}{c} \text{safety}_{rotor} \\ \text{safety}_{stator} \end{array} \right) = \left| \begin{array}{c} \text{for } i \in 1 ... Z \\ \text{for } r \in 1 ... N_r \end{array} \right|$$

$$\left| \begin{array}{c} \text{safety}_{rotor}_{i,\,r} = \left| \begin{array}{c} \underline{\sigma_{_blade_long_i}} \\ \overline{\sigma_{rotor}_{i,\,r}} \end{array} \right| \text{if } \sigma_{rotor}_{i,\,r} \neq 0 \right|$$

$$\left| \begin{array}{c} \infty \text{ otherwise} \end{array} \right|$$

$$\left| \begin{array}{c} \text{safety}_{stator}_{i,\,r} = \left| \begin{array}{c} \underline{\sigma_{_blade_long_i}} \\ \overline{\sigma_{stator}_{i,\,r}} \end{array} \right| \text{if } \sigma_{stator}_{i,\,r} \neq 0 \right|$$

$$\left| \begin{array}{c} \text{safety}_{rotor} \\ \text{safety}_{stator} \end{array} \right|$$

$$\left(\begin{array}{c} \text{safety}_{rotor} \\ \text{safety}_{stator} \end{array} \right)$$

		1	2	3	4	5	6	7	8	9
safety _{rotor} $\frac{T}{T}$ =	1	1.31	1.41	1.45	1.46	1.44	1.05	0.96	0.79	0.53
saicty _{rotor} –	2	1.31	1.33	1.25	1.18	1.10	0.76	0.66	0.55	0.39
	3	38.90	47.54	28.09	36.53	45.26	43.76	65.24	98.98	28.13

		1	2	3	4	5	6	7	8	9
$safety_{rotor} \xrightarrow{T} \ge safety =$	1	1	1	1	1	1	0	0	0	0
rotor = salety	2	1	1	0	0	0	0	0	0	0
	3	1	1	1	1	1	1	1	1	1

		1	2	3	4	5
safety = T	1	352.11	562.93	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
safety _{stator} =	2	2.38	3.4	5.02	5.13	6.95
	3	1.49	2.02	2.94	2.97	

		1	2	3	4	5	6	7	8	9
$safety_{stator}^{T} \ge safety =$	1	1	1	1	1	1	1	1	1	1
	2	1	1	1	1	1	1	1	1	1
	3	1	1	1	1	1	1	1	1	1

Рассматриваемая ступень:

$$j = \begin{vmatrix} j = 1 & \text{if type} = \text{"compressor"} \\ Z & \text{if type} = \text{"turbine"} \end{vmatrix}$$
 = 1 $= 1$

$$b_{\text{Line}} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{\text{rotor}_{j,N_r}}, \text{chord}_{\text{stator}_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 80 \cdot 10^{-3}$$

Расстояния от оси ЛМ до рассматриваемой ступени (м):

$$Rj = submatrix (R, 2 \cdot j - 1, 2 \cdot j + 1, 1, N_r) = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 177.3 & 230.8 & 274.1 \\ 2 & 182.2 & 230.8 & 270.8 \\ 3 & 186.8 & 230.8 & 267.7 \end{vmatrix} \cdot 10^{-3}$$

Дискретизация по высоте Л:

$$z = \min(Rj), \min(Rj) + \frac{\max(Rj) - \min(Rj)}{100} ... \max(Rj)$$

$$z_{rotor} = \begin{bmatrix} mean(Rj_{1,1},Rj_{2,1}), mean(Rj_{1,1},Rj_{2,1}) + \frac{mean(Rj_{1,N_r},Rj_{2,N_r}) - mean(Rj_{1,1},Rj_{2,1})}{100} ... mean(Rj_{1,N_r},Rj_{2,N_r}) & \text{if type = "compressor"} \\ mean(Rj_{2,1},Rj_{3,1}), mean(Rj_{2,1},Rj_{3,1}) + \frac{mean(Rj_{2,N_r},Rj_{3,N_r}) - mean(Rj_{2,1},Rj_{3,1})}{100} ... mean(Rj_{2,N_r},Rj_{3,N_r}) & \text{if type = "turbine"} \\ \end{bmatrix}$$

▼ Результаты расчета на прочность Л

$$\begin{pmatrix} blade \\ r \end{pmatrix} = \begin{pmatrix} "rotor" \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -2.55 & 4.01 \\ 2 & 29.51 & -5.04 \\ 3 & 0.21 & 0.77 \\ 4 & 12.34 & -1.74 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{p_{rotor_{j,r}}} & \sigma_{p_{stator_{j,r}}} \\ \sigma_{n_{rotor_{j,r}}} & \sigma_{n_{stator_{j,r}}} \end{pmatrix} = \begin{pmatrix} -25 & 1 \\ 38 & -1 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{pmatrix} 1 \\ 153 \end{pmatrix} \cdot 10^{6}$$

Коэф. запаса:
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 352.115 \\ 2 \\ 1.309 \end{bmatrix}$$

$$\begin{pmatrix} v_{-}p \\ v_{-} \end{pmatrix} = \begin{pmatrix} v_{-}u_{rotor_{j},r} \\ v_{-}l_{rotor_{j},r} \end{pmatrix} \text{ if blade = "rotor"} = \begin{pmatrix} x_{0} \\ \frac{1}{2} & 4.006 \\ \frac{1}{2} & -5.036 \end{pmatrix} \cdot 10^{-3} \quad \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\ v_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ v_{0} \\ v_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ v_{0} \\ v_{0} \\ v_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ v_{0} \\ v_{0} \\ v_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ v_{0} \\ v_{0} \\ v_{0} \\ v_{0} \\ v_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ v_{0} \\ v_{0$$

$$\begin{pmatrix} \text{blade} \\ \text{max} \end{pmatrix} = \begin{pmatrix} \text{"rotor"} \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -0.72 & 1.46 \\ 2 & 34.67 & -1.33 \\ 3 & -0.01 & 1.21 \\ 4 & 13.70 & -1.88 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{-}p_{rotor_{j,r}} & \sigma_{-}p_{stator_{j,r}} \\ \sigma_{-}n_{rotor_{j,r}} & \sigma_{-}n_{stator_{j,r}} \end{pmatrix} = \begin{pmatrix} -67 & 84 \\ 64 & -132 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{pmatrix} 84 \\ 153 \end{pmatrix} \cdot 10^{6}$$

Коэф. запаса:
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2.382 \\ 2 \\ 1.306 \end{bmatrix}$$

$$\begin{pmatrix} \text{blade} \\ \text{x} \end{pmatrix} = \begin{pmatrix} \text{"stator"} \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -0.72 & 1.46 \\ 2 & 34.67 & -1.33 \\ 3 & -0.01 & 1.21 \\ 4 & 13.70 & -1.88 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{-}p_{rotor_{j}, r} & \sigma_{-}p_{stator_{j}, r} \\ \sigma_{-}n_{rotor_{j}, r} & \sigma_{-}n_{stator_{j}, r} \end{pmatrix} = \begin{pmatrix} -67 & 84 \\ 64 & -132 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{pmatrix} 84 \\ 153 \end{pmatrix} \cdot 10^{6}$$

Коэф. запаса:
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2.382 \\ 2 \\ 1.306 \end{bmatrix}$$

$$\begin{pmatrix} \text{blade} \\ \text{r} \\ \end{pmatrix} = \begin{pmatrix} \text{"stator"} \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 0.00 & 0.85 \\ 2 & 23.29 & -0.58 \\ 3 & -0.28 & 1.70 \\ 4 & 14.81 & -2.00 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{p_{rotor_{j,r}}} & \sigma_{p_{stator_{j,r}}} \\ \sigma_{n_{rotor_{j,r}}} & \sigma_{n_{stator_{j,r}}} \end{pmatrix} = \begin{pmatrix} -0 & 135 \\ 0 & -162 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{pmatrix} 135 \\ 5 \end{pmatrix} \cdot 10^{6}$$

Коэф. запаса:
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{vmatrix} 1 \\ 1 \\ 2 \\ 38.90 \end{vmatrix}$$

$$\begin{pmatrix} v_{-}v_{rotor_{j,r}} \\ v_{-}l_{rotor_{j,r}} \end{pmatrix} \text{ if blade = "rotor" } = \begin{bmatrix} \frac{1}{1 & 1.703} \\ \frac{1}{2} & -2.005 \end{bmatrix} \cdot 10^{-3} \qquad \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} = \begin{bmatrix} x_{0} \\ y_{0} \\ y_{0} \end{pmatrix} \text{ if blade = "rotor" } = \begin{bmatrix} \frac{1}{1 & 12.233} \\ \frac{1}{2} & 1.667 \end{bmatrix} \cdot 10^{-3} \qquad \text{chord} = \begin{bmatrix} \text{chord}_{rotor_{j,r}} & \text{if blade = "rotor" } \\ \text{chord}_{stator_{j,r}} & \text{if blade = "stator" } \end{bmatrix}$$

$$\begin{pmatrix} v_{-}u_{stator_{j,r}} \\ v_{-}l_{stator_{j,r}} \end{pmatrix} \text{ otherwise }$$

$$\begin{pmatrix} v_{-}u_{stator_{j,r}} \\ v_{-}l_{stator_{j,r}} \end{pmatrix} \text{ otherwise }$$

 Вывод результатов расчета Л на прочность

▼ Выбор материала Д

Запас по температуре (K): $\Delta T_{\text{safety}} = 0$

Выбранный материал Д: $material_disk_i = \begin{subarray}{ll} "BT23" & if compressor = "Вл" \\ "BT6" & if compressor = "КНД" \\ \end{subarray}$

"ВТ9" if compressor = "КВД"

Плотность материала Д (кг/м^3):

Предел длительной прочности Д (Па):

 $\rho_disk_i = \begin{bmatrix} 8266 & if material_disk_i = "BЖ175" \\ 8320 & if material_disk_i = "ЭП742" \\ 8393 & if material_disk_i = "ЖС-6К" \\ 7900 & if material_disk_i = "BT41" \\ 4500 & if material_disk_i = "BT25" \\ 4570 & if material_disk_i = "BT23" \\ 4510 & if material_disk_i = "BT9" \\ 4430 & if material_disk_i = "BT6" \\ NaN & otherwise \\ \end{bmatrix}$

 $\sigma_{disk_long_i} = 10^6 \cdot \begin{vmatrix} 620 & \text{if material_disk}_i = "B\%175" \\ 680 & \text{if material_disk}_i = "ЭП742" \\ 125 & \text{if material_disk}_i = "ЖС-6К" \\ 123 & \text{if material_disk}_i = "BT41" \\ 150 & \text{if material_disk}_i = "BT25" \\ 230 & \text{if material_disk}_i = "BT23" \\ 200 & \text{if material_disk}_i = "BT9" \\ 210 & \text{if material_disk}_i = "BT6" \\ NaN & \text{otherwise} \end{vmatrix}$

$\rho_{\text{disk}}^{\text{T}} =$		1	2	3	4	5	6	7	8	9
	1	4510	4510	4510	4510	4510	4510	4510	4510	4510

Рассматриваемая ступень:
$$j = 1$$

$$j_w = \begin{cases} j = 1 \end{cases}$$
 = 1 $j = \begin{cases} T$ акой ступени не существует!" if $(j < 1) \lor (j > Z) \end{cases}$ $j = \begin{cases} T$ otherwise

▼ Профилирование равнопрочного Д без центрального отв.

$$h(i,z) = \frac{\rho_{-} \text{disk}_{i} \cdot \omega^{2}}{\left(\text{chord}_{rotor_{i}, ORIGIN} \cdot \sin\left(\upsilon_{rotor_{i}, ORIGIN}\right)\right) \cdot e^{\frac{\rho_{-} \text{disk}_{i} \cdot \omega^{2}}{2} \cdot \frac{1}{\sigma_{-} z_{rotor}\left(i, R_{st(i,2), ORIGIN}\right)} \cdot \left[\left(R_{st(i,2), ORIGIN}\right)^{2} - z^{2}\right]}{\text{if } z \leq R_{st(i,2), ORIGIN}}$$

$$z = 0, \frac{R_{st(j,2), ORIGIN}}{N_{dis}} .. R_{st(j,2), ORIGIN}$$

Мах разница теор. напора ступени и реактивности от периферии к корню по высоте Л (Дж/кг) [16, с.118-119]:

$$\Delta H_{Tmax} = 0.10^{3}$$
$$\Delta R_{Lmax} = 0.0$$

$$\Delta H_{T}(\overline{d}) = -\Delta H_{Tmax} \cdot \overline{d} + \Delta H_{Tmax}$$

$$\Delta R_{L}(\overline{d}) = -\Delta R_{Lmax} \cdot \overline{d} + \Delta R_{Lmax}$$

$$\begin{pmatrix} c_{st(j,1),r} \\ c_{st(j,2),r} \\ c_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 112.65 \\ 242.98 \\ 104.19 \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{st(j,1),r} \\ \alpha_{st(j,2),r} \\ \alpha_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 66.71 \\ 27.26 \\ 64.95 \end{pmatrix} \cdot \circ$$

$$\varepsilon_{\text{stator}_{j,r}} = 38.38^{\circ}$$

$$\begin{pmatrix} c_{a_{st(j,1),r}} \\ c_{a_{st(j,2),r}} \\ c_{a_{st(j,3),r}} \end{pmatrix} = \begin{pmatrix} 103.47 \\ 111.3 \\ 94.4 \end{pmatrix}$$

$$\begin{pmatrix} u_{st(j,1),r} \\ u_{st(j,2),r} \\ u_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 278.42 \\ 286.15 \\ 293.41 \end{pmatrix}$$

$$\begin{pmatrix} w_{st(j,1),r} \\ w_{st(j,2),r} \\ w_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 255.76 \\ 131.57 \\ 266.58 \end{pmatrix}$$

$$\begin{pmatrix} \beta_{st(j,1),r} \\ \beta_{st(j,2),r} \\ \beta_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 23.86 \\ 57.77 \\ 20.74 \end{pmatrix} \cdot \circ$$

$$\varepsilon_{\text{rotor}_{j,r}} = 33.91^{\circ}$$

$$\begin{pmatrix} c_{st(j,1),r} \\ c_{st(j,2),r} \\ c_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 108.2 \\ 201.04 \\ 100.9 \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{st(j,1),r} \\ \alpha_{st(j,2),r} \\ \alpha_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 67.39 \\ 28.94 \\ 69.13 \end{pmatrix}.$$

$$\varepsilon_{\text{stator}_{j,r}} = 37.26^{\circ}$$

$$\begin{pmatrix} c_{a_{st(j,1),r}} \\ c_{a_{st(j,2),r}} \\ c_{a_{st(j,3),r}} \end{pmatrix} = \begin{pmatrix} 99.89 \\ 97.28 \\ 94.28 \end{pmatrix}$$

$$\begin{pmatrix} u_{st(j,1),r} \\ u_{st(j,2),r} \\ u_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 362.55 \\ 362.55 \\ 362.55 \end{pmatrix}$$

$$\begin{pmatrix} w_{st(j,1),r} \\ w_{st(j,2),r} \\ w_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 336.14 \\ 210.45 \\ 339.94 \end{pmatrix}$$

$$\begin{pmatrix} \beta_{st(j,1),r} \\ \beta_{st(j,2),r} \\ \beta_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 17.29 \\ 27.53 \\ 16.1 \end{pmatrix} \cdot \circ$$

$$\varepsilon_{\text{rotor}_{j,r}} = 10.25 \cdot ^{\circ}$$

$$\begin{pmatrix} c_{st(j,1),r} \\ c_{st(j,2),r} \\ c_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 105.56 \\ 177.58 \\ 99.23 \end{pmatrix}$$

$$\begin{pmatrix} c_{a_{st(j,1),r}} \\ c_{a_{st(j,2),r}} \\ c_{a_{st(j,3),r}} \end{pmatrix} = \begin{pmatrix} 97.97 \\ 89.56 \\ 94.22 \end{pmatrix}$$

$$\begin{pmatrix} w_{st(j,1),r} \\ w_{st(j,2),r} \\ w_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 403.30 \\ 286.46 \\ 400.56 \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{st(j,1),r} \\ \alpha_{st(j,2),r} \\ \alpha_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 68.13 \\ 30.29 \\ 71.71 \end{pmatrix} \cdot \circ$$

$$\begin{pmatrix} u_{st(j,1),r} \\ u_{st(j,2),r} \\ u_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 430.54 \\ 425.44 \\ 420.47 \end{pmatrix}$$

$$\begin{pmatrix}
\beta_{st(j,1),r} \\
\beta_{st(j,2),r} \\
\beta_{st(j,3),r}
\end{pmatrix} = \begin{pmatrix}
14.06 \\
18.22 \\
13.6
\end{pmatrix}$$

$$\varepsilon_{\text{stator}_{j,r}} = 36.52^{\circ}$$

$$\varepsilon_{\text{rotor}_{j,r}} = 4.16^{\circ}$$

