

Design of Embedded System

Mars Rover Project Report

Luca Poli[1124244], Razvan Potcoveanu[1123076]

Version: 1.1.0

Table of Contents

1. Planning	3
1.1 Requirements	3
1.1.1 Definition	3
1.1.2 Timetable	4
1.1.3 Progress Timetable	6
1.2 Sensors/Actuators Mapping	7

1. Planning

1.1 Requirements

1.1.1 Definition

Group	Code	Priority	Description		
	F_SFT	М	The rover shall perform any mission safely (without falling of the edge or getting stuck in the lakes)		
	F_MSQ	М	The rover shall perform the missions in sequential order (from the first)		
	F COL	М	The rover shall be able to detect, find or avoid colors		
	F_DIS	М	The rover shall be able to detect distant objects		
Functionality	F_IMP	М	The rover shall be able to detect impact with other objects		
	F_ARM	М	The rover shall be able to use the measurement arm		
	F_FED	М	The rover shall give feedback (led or sound) on mission start, complete or errors		
	F_POB	S	The rover shall be able to push another object		
	F_PRK	С	The rover shall be able to park		
	F_DNS	W	The rover shall be able to dance and sing		
	U_NHM	М	The rover shall perform any mission without human interaction		
Usability	U_ELG	М	The user shall be able to see the error log		
Usability	U_ALG	S	The rover shall keep an activity log		
	U_TLG	С	The rover shall keep track of time required for a mission		
Reliability	R_ESR	М	The rover shall stop and restart after a critical error		
	R_BRC	М	After a Bluetooth connection lost, the rover shall try to reconnect		
	R_SER	М	The rover shall be able to work normally even with some sensors read errors		
Performance	P_CTM	М	The rover shall be able to perform the missions in a reasonable time (depends on the mission), otherwise it shall start the next mission		
	P_BCM	М	The two bricks shall respond to each other's instructions within 1s		
	P_TPR	М	The rover shall perform the defined actions when triggered by external factors based on their priority		
	P_IEL	S	The rover shall log the errors immediately		
	P_EFM	W	The rover shall perform the missions in an efficient way		
Supportability	S_COL	М	The user shall be able to configure the colors to detect (and how to react to them)		
	S_MSP	S	The user shall be able to configure the speed of the motor		
	S_ARM	S	The user shall be able to configure on which objects the rover has to use the measurement arms		

	1				
	S_MOV	С	The user shall be able to configure the movement actions parameters (angle to turn, distance,)		
	S_FED	С	The user shall be able to configure the missions feedback		
	S_POB	С	The user shall be able to configure which objects the rover has to move		
	S_FSN	W	The user shall be able to add and use custom sounds for feedback		
D_ D_ DSL D_ D_ D_	D_MIS	М	The user shall be able to define missions using the DSL		
	D_VAL	М	The user shall be able to give their own values to specific parameters		
	D_BLU	М	The user shall be able to specify the MAC address for the server		
	D_NEW	М	The user shall be able to define their own missions, to use every rover sensor and actuators as they want (as long as the instance is valid)		
	D_ERR	М	The DSL shall check that the instance provided by the user is correct		
	D_GEN	М	A valid DSL instance shall generate 2 correct Python files, one for the server and one for the client		
	D_FED	М	The DSL shall give feedback regarding the correctness of the provided instance		
	D_ESY	М	The DSL shall be easy to use and understand for the user		

For example, the users shall be able to define the following missions with a DSL instance:

- 1. Exploring The rover will move around the table and perform user-defined actions.
- 2. Obstacle avoidance The rover will navigate on a board with obstacles while avoiding collisions.
- 3. Sample Collection The rover will navigate and collect samples from the environment.

1.1.2 Timetable

Week number	Activities
0: 22/11 – 27/11	Requirements definition and planning; Sensor/actuators mapping;
	DSL TypePal refactor; Refine of DSL grammar
1: 29/11 – 05/12	Basic must have functionalities [F_SFT, F_COL, F_DIS, F_IMP,
	F_ARM, U_NHM, U_ELG, R_SER, S_COL]. DSL functionalities
	[D_MIS, D_VAL, D_BLU, D_NEW, D_ERR, D_GEN, D_FED, D_ESY]
2: 06/12 – 12/12	Test and refine of implementation of F_SFT; Finish implementation of
	previous functionalities; Implementation of [F_MSQ, F_POB, F_FED,
	R_ESR, R_BRC, P_CTM, P_BCM, U_ALG]
3: 13/12 – 19/12	Finish implementation of previous functionalities; Implementation of
	[P_TPR, P_IEL, S_MSP, S_ARM, S_MOV, F_PARK]
4: 20/12 – 26/12	Finish implementation of previous functionalities; Implementation of
	[P_IEL, S_MOV, S_FED, S_POB, U_TLG]

5: 27/12 – 02/01	Finish implementation of previous functionalities; Implementation of [S_FSN, P_EFM, F_DNS]
6: 03/01 – 09/01	Testing and refining

1.1.3 Progress Timetable

Week number	Activities
0: 22/11 – 27/11	Requirements definition and planning; Sensor/actuators mapping;
	TypePal learning; Refine of DSL grammar
1: 29/11 – 05/12	TypePal refactor for actions and triggers; F_SFT; Grammar update for
	[F_SFT, F_COL, F_DIS, F_IMP, U_NHM, U_ELG].
2: 06/12 – 12/12	Test and refine of implementation of F_SFT; Finish implementation of
	[F_SFT, F_COL, F_DIS, F_IMP, U_NHM, U_ELG].; Implementation
	of DSL generator prototype.
3: 13/12 – 19/12	
4: 20/12 – 26/12	
5: 27/12 – 02/01	
6: 03/01 – 09/01	

1.2 Sensors/Actuators Mapping

Port	EV3 brick (server / left)	Port	EV3 brick (client / right)
S1	CL	S1	TL
S2	СМ	S2	TR
S3	CR	S3	ТВ
S4	UB	S4	UF
Α	ML	Α	
В	MR	В	
С	M	С	