LISTA 4: ESPAÇOS DE MEDIDA ABSTRATOS

Exercício 1. Prove que uma álgebra atômica é uma σ -álgebra.

Recorde que uma álgebra atômica é definida como segue.

Dado um conjunto X, considere uma partição

$$X = \bigcup_{\alpha \in I} A_{\alpha}$$

em subconjuntos disjuntos (os quais nos referimos como "átomos"), e defina

$$\mathcal{A} := \left\{ \bigcup_{\alpha \in J} A_{\alpha} \colon J \subset I \right\}.$$

Em outras palavras, \mathcal{A} consiste de todas as possíveis uniões de átomos.

Então prove que \mathcal{A} é uma σ -álgebra.

Exercício 2. Considere uma álgebra atômica com um conjunto enumerável de átomos.

Explique como se pode definir uma medida neste espaço mensurável e verifique que esta definição corresponde de fato a uma medida.

Dica: comece por associar a cada átomo uma certa "massa".

Exercício 3. Prove que se (X, \mathcal{B}, μ) é um espaço de medida *finita*, ou seja $\mu(X) < \infty$, e se $f_n \colon X \to [0, \infty], n \ge 1$ é uma sequência de funções mensuráveis tal que $f_n \to f$ uniformemente então

$$\int_X f_n \, d\mu \to \int_X f \, d\mu.$$

Exercício 4. Seja $S \subset \mathbb{R}$ tal que $\mathrm{m}^*(S) > 0$. Prove que existe um subconjunto $E \subset S$ não mensurável.

Este exercício deveria ter sido sugerido em uma lista anterior. A solução dele usa a ideia da construção de um conjunto não mensurável (veja Aula 10), mas não é imediata. Pode seguir os seguintes passos.

(a) Prove que se $K \subset \mathbb{R}$ é um compacto com m(K) > 0, então o conjunto

$$K - K := \{x - y \colon x, y \in K\}$$

contém um intervalo (em torno de 0).

Dica: Começe com um aberto $U \supset K$ com medida comparável a de K.

(b) Prove que se F é mensurável e m(F) > 0, então F - F (i.e., o conjunto de todas as diferenças de elementos de F) contém um intervalo (em torno de 0), logo contém números racionais.

Dica: Use a regularidade interior da medida de Lebesgue.

(c) Defina em S a relação de equivalência

$$x \sim y$$
: $x - y \in \mathbb{Q}$,

e (usando o axioma da escolha) seja $R\subset S$ um conjunto que contém um representante de cada classe de equivalência.

Então, existe $q \in \mathbb{Q}$ para o qual o conjunto $(R+q) \cap S$ não é mensurável.

Exercício 5. Sejam $\mathcal{C} \subset [0,1]$ o conjunto de Cantor e $c : [0,1] \to [0,1]$ a função de Cantor. Considere a função

$$f: [0,1] \to [0,2], \quad f(x) = x + c(x).$$

Prove as seguintes afirmações.

- (a) f é uma função contínua (bom, isso é evidente), (estritamente) crescente e sobrejetora, portanto é bi contínua.
- (b) A imagem do conjunto de Cantor pela função f é mensurável e

$$m\left(f(\mathcal{C})\right) = 1.$$

Conclua que existe um subconjunto $\mathcal{N} \subset f(\mathcal{C})$ não mensurável.

(c) Seja

$$E := f^{-1}(\mathcal{N}) \subset \mathcal{C}$$
.

Prove que E não é boreliano, mas é mensurável à Lebesgue, logo

$$\mathcal{B}(\mathbb{R}^d) \subsetneq \mathcal{L}(\mathbb{R}^d)$$
.

Exercício 6. Seja (X, \mathcal{B}, μ) um espaço mensurável e seja $\phi: X \to [0, 1]$ uma função mensurável. Para cada $n \ge 1$ defina as funções $f_n := \phi^{1/n}$ e $g_n := \phi^n$.

- (a) Prove que todas as funções f_n e g_n são mensuráveis.
- (b) Prove que

$$\lim_{n \to \infty} \int_X f_n d\mu = \mu \left(\left\{ x \in X : \phi(x) \neq 0 \right\} \right).$$

(c) Suponha que $\int_X \phi \, d\mu < \infty$. Prove que

$$\lim_{n \to \infty} \int_X g_n d\mu = \mu \left(\left\{ x \in X : \phi(x) = 1 \right\} \right).$$

Dica: na parte (a) use o fato de que funções potências são contínuas.

Nas partes (b) e (c) use o TCM. Tenha em mente que $0 \le f(x) \le 1$, o que lhe permite mostrar que as sequências $\{f_n\}$ e $\{g_n\}$ são monótonas.

Exercício 7. Seja (X, \mathcal{B}, μ) um espaço mensurável e seja $\phi \colon X \to [0, \infty]$ uma função mensurável. Defina a função $\nu \colon \mathcal{B} \to [0, \infty]$ pondo

$$\nu(A) := \int_A \phi \, d\mu = \int_X \phi \cdot \mathbf{1}_A \, d\mu \quad \text{for every } A \in \mathcal{B}.$$

- (a) Prove que ν é mensurável em (X, \mathcal{B}) .
- (b) Prove que se $f \colon X \to [0, \infty]$ for uma função mensurável, então

$$\int_X f \, d\nu = \int_X f \cdot \phi \, d\mu.$$

Dica: para parte (a), apenas para aquecer, comece provando a aditividade finita da função ν . Para provar a aditividade enumerável use o Teorema de Tonelli (a primeira consequência do TCM).

Parte (b) será feita em casos, começando pelo mais simples tipo de função f até o caso mais geral.

- i. Suponha que f seja uma função indicadora $f = \mathbf{1}_E$ para algum $E \in \mathcal{B}$.
- ii. Suponha que f seja uma função simples: $f = c_1 \mathbf{1}_{E_1} + \ldots + c_k \mathbf{1}_{E_k}$.
- iii. Para o caso geral, f mensurável, use o fato de que existe uma sequência crescente, $f_n \nearrow f$, de funções simples não-negativas. Aplique o caso ii. à f_n e então use o MCT.

Exercício 8. (a) Calcule o limite

$$\lim_{n \to \infty} \int_0^1 e^{-x^n} dx.$$

(b) Mostre que a função $g\colon [1,\infty)\to \mathbb{R},\ g(x):=e^{-x}$ é absolutamente integrável e então calcule o limite

$$\lim_{n\to\infty} \int_1^\infty e^{-x^n} dx.$$

Dica: na parte (a) use o teorema da convergência monótona. Na parte (b) use o teorema da convergência dominada.

Exercício 9. Mostre que a função $g: \mathbb{R} \to \mathbb{R}$ dada por $g(x) := e^{-x^2}$ é absolutamente integrável (relativamente à medida de Lebesgue).

Exercício 10. Defina a sequência de funções $f_n \colon \mathbb{R} \to \mathbb{R}$ pondo

$$f_n(x) := e^{-x^2} \left(\sin x\right)^n.$$

Mostre o seguinte:

- (a) $f_n \to 0$ pontualmente em q.t.p. (relativamente à medida de Lebesgue).
- (b) $\lim_{n \to \infty} \int_{\mathbb{R}} f_n(x) dx = 0.$
- (c) Prove ainda que $f_n \to 0$ na norma L^1 (e portanto, também em medida).

Dica: cabe relembrar que $\left|\sin x\right|\leq 1$ para todo x,e que além disso $\sin x=\pm 1$ não ocorre frequentemente.

Para parte (b) use o teorema da convergência dominada e o problema anterior. Na parte (c) não há muito o que ser feito, se for notado que, partes (a) e (b) permanecem válidas para $|f_n(x)|$ ao invés de $f_n(x)$.