Énoncés : V. Gritsenko Corrections : J.-F. Barraud

Lemme Chinois

Exercice 1

Soient A un anneau et I et J les idéaux de A tels que I+J=(1). Démontrer que $I^n+J^m=(1)$ quels que soient entiers positifs non-nuls n et m.

Correction ▼ [002300]

Exercice 2

Trouver toutes les solutions des systèmes suivantes :

1.
$$\begin{cases} x \equiv 3 \mod 5 \\ x \equiv 4 \mod 7 \\ x \equiv 2 \mod 11 \end{cases}$$
2.
$$\begin{cases} x \equiv 997 \mod 2001 \\ x \equiv 998 \mod 2002 \\ x \equiv 999 \mod 2003 \end{cases}$$

Correction ▼ [002301]

Exercice 3

Démontrer que les anneaux suivants sont isomorphes

$$\mathbb{Z}/72\mathbb{Z} \times \mathbb{Z}/84\mathbb{Z} \cong \mathbb{Z}/36\mathbb{Z} \times \mathbb{Z}/168\mathbb{Z}.$$

Correction ▼ [002302]

Exercice 4

- 1. Montrer que $20^{15} 1$ est divisible par $11 \times 31 \times 61$.
- 2. Trouver le reste de la division de 2^{6754} par 1155.

Correction ▼ [002303]

Exercice 5

- 1. Quels sont les restes des division de 10^{100} par 13 et par 19?
- 2. Quel est le reste de la division de 10^{100} par $247 = 13 \cdot 19$? En déduire que $10^{99} + 1$ est multiple de 247.

Correction ▼ [002304]

Exercice 6

Soit $C = A \times B$ le produit direct de deux anneaux. Décrire les ensembles des éléments inversibles, des diviseurs de zéro et des éléments nilpotents de l'anneau C.

Correction ▼ [002305]

Exercice 7

1. Déterminér la structure des anneaux quotients suivants :

$$\mathbb{Z}_2[x]/(x^3+x^2+x+1)$$
, $\mathbb{Z}[x]/(x^2-1)$, $\mathbb{Q}[x]/(x^8-1)$.

- 2. Considérons l'anneau quotient $K[x]/(f^ng^m)$ où f et g sont deux polynômes distincts irréductibles sur le corps K. Décrirer les diviseurs de zéro et les éléments nilpotents de l'anneau $K[x]/(f^ng^m)$.
- 3. Quels idéaux a-t-il cet anneau?
- 4. Soit K le corps fini à p éléments. Trouver le nombre des éléments du groupe multiplicatif de l'anneau $K[x]/(f^mg^l)$.
- 5. Donner une généralisation de la question 4) dans le cas du produit de n polynômes irréductibles sur un corps fini K à q éléments.

Correction ▼ [002306]

Exercice 8

Trouver les facteurs multiples des polynômes suivants :

1.
$$x^6 - 15x^4 + 8x^3 + 51x^2 - 72x + 27$$
;

2.
$$x^6 - 2x^5 - x^4 - 2x^3 + 5x^2 + 4x + 4$$
.

Correction ▼ [002307]

Exercice 9

Trouver le polynôme $f \in \mathbb{Z}[x]$ du dergé le plus petit tel que

$$\begin{cases} f \equiv 2x \mod (x-1)^2 \\ f \equiv 3x \mod (x-2)^3 \end{cases}.$$

[002308]

Correction de l'exercice 1 A

 $1 \in I+J$ donc $\exists (x,y) \in I \times J, 1=x+y$. En multipliant cette égalité par x, on obtient $x^2+xy=x$. On en déduit que $xy \in I$, donc $\forall p \in \mathbb{N}$; $x^py \in I^p$, et donc $\forall (p,q) \in \mathbb{N}^2, x^py^q \in I^p$. Par symétrie, on a aussi $\forall (p,q) \in \mathbb{N}^2, x^py^q \in I^q$. Soit maintenant $(m,n) \in \mathbb{N}^2$. Notons $N=2\sup(m,n)$. Alors $1=1^N=(x+y)^N=\sum_{p+q=N}C_N^px^py^q$. Comme: $(p+q=2N) \Rightarrow (p \geq n \text{ ou } q \geq m)$, tous les termes de cette somme sont dans I^n ou dans I^m , et donc $1 \in I^n+I^m$

Correction de l'exercice 2 A

1. 3,5,7,11 sont deux à deux premiers entre eux, donc la solution est unique modulo $1155 = 3 \cdot 5 \cdot 7 \cdot 11$.

$$\begin{cases} x \equiv 1 \mod 3 \\ x \equiv 3 \mod 5 \\ x \equiv 4 \mod 7 \\ x \equiv 2 \mod 11 \end{cases} \Leftrightarrow \begin{cases} x \equiv 13 \mod 15 \\ x \equiv 4 \mod 7 \\ x \equiv 2 \mod 11 \end{cases} \Leftrightarrow \begin{cases} x \equiv 88 \mod 105 \\ x \equiv 2 \mod 11 \end{cases} \Leftrightarrow \begin{cases} x \equiv 88 \mod 105 \\ x \equiv 2 \mod 11 \end{cases} \Leftrightarrow \begin{cases} x \equiv 508 \mod 115 \end{cases}$$

2. Un diviseur commun de 2001 et 2002 divise leur différence, et donc pgcd(2001,2002) = 1. De même, pgcd(2002,2003) = 1, et comme 2/2001, pgcd(2001,2003) = 1.

2001,2002,2003 sont donc deux à deux premiers entre eux, et la solution est donc unique modulo 2001 · 2002 · 2003.

$$\begin{cases} x \equiv 997 \mod{2001} \\ x \equiv 998 \mod{2002} \\ x \equiv 999 \mod{2003} \end{cases} \Leftrightarrow \begin{cases} x \equiv -1004 \mod{2001} \\ x \equiv -1004 \mod{2002} \\ x \equiv -1004 \mod{2003} \end{cases}$$
$$\Leftrightarrow x \equiv -1004 \mod{(2001 \cdot 2002 \cdot 2003)}$$

Correction de l'exercice 3 A

On a 72 = 8 · 9 et pgcd(8,9) = 1, donc $\mathbb{Z}_{72} \simeq \mathbb{Z}_8 \times \mathbb{Z}_9$. De même, $\mathbb{Z}_{84} \simeq \mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_7$, $\mathbb{Z}_{36} \simeq \mathbb{Z}_4 \times \mathbb{Z}_9$ et $\mathbb{Z}_{168} \simeq \mathbb{Z}_8 \times \mathbb{Z}_3 \times \mathbb{Z}_7$. Donc $\mathbb{Z}_{72} \times \mathbb{Z}_{84} \simeq \mathbb{Z}_8 \times \mathbb{Z}_9 \times \mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_7 \simeq \mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_8 \times \mathbb{Z}_3 \times \mathbb{Z}_7 \simeq \mathbb{Z}_{36} \times \mathbb{Z}_{128}$

Correction de l'exercice 4 A

- 1. 11,31,61 sont premiers donc 2 à 2 premiers entre eux. Ainsi $20^{15} \equiv 1[11 \cdot 31 \cdot 61] \Leftrightarrow \begin{cases} 20^{15} \equiv 1[11] \\ 20^{15} \equiv 1[31] \\ 20^{15} \equiv 1[61] \end{cases}$
 - En utilisant le petit théorème de Fermat, on obtient que, modulo $11:20^{15} \equiv 20^5 \equiv -2^5 \equiv 1$ [11]
 - $-(20^{15})^2 = 20^{30} \equiv 1[31]$. On en déduit que $20^{15} \equiv \pm 1[31]$. Comme $31 \not\equiv 1[4]$, d'après le théorème de Wilson, $x^2 = -1$ n'a pas de solution modulo 31, et donc $20^{15} \equiv 1[31]$. $20^2 \equiv -3[31]$ est premier
 - $-20^{15} \equiv (9^2)^{15} \equiv 3^{60} \equiv 1[61]$
- 2. $1155 = 11 \cdot 7 \cdot 5 \cdot 3$. De plus (petit théorème de Fermat) $2^{6754} \equiv 2^4 \equiv 5[11]$. De même, $2^{6754} \equiv 2^4 \equiv 2[7]$, $2^{6754} \equiv 2^2 \equiv -1[5]$, et $2^{6754} \equiv 2^0 \equiv 1[3]$. Or

$$\begin{cases} a \equiv 5[11] \\ a \equiv 2[7] \\ a \equiv 4[5] \\ a \equiv 1[3] \end{cases} \Leftrightarrow \begin{cases} a \equiv 5[11] \\ a \equiv 2[7] \\ a \equiv 4[15] \end{cases} \Leftrightarrow \begin{cases} a \equiv 5[11] \\ a \equiv -26[105] \end{cases} \Leftrightarrow a \equiv 709[1155]$$

Donc le reste de la division de 2^{6754} par 1155 est 709.

Correction de l'exercice 5

13 est premier et $100 = 12 \cdot 8 + 4$ donc $10^{100} \equiv 10^4 \equiv (-3)^4 \equiv 3 \equiv -10[13]$. De même $10^{100} \equiv 10^{-8} \equiv 2^8 \equiv 9 \equiv -10[19]$. En utilisant le lemme chinois, on en déduit que $10^{100} \equiv -10[247]$. Comme pgcd(10, 247) = 1, on peut simplifier cette expression par 10 et on a $10^{99} \equiv -1[247]$, et donc $247|10^{99} + 1$.

Correction de l'exercice 6 ▲

 $C = A \times B$.

$$(a,b) \in (A \times B)^{\times} \Leftrightarrow \exists (c,d) \in A \times B, \ (a,b)(c,d) = (1,1)$$

 $\Leftrightarrow \exists (c,d) \in A \times B, \ ac = 1 \text{ et } bd = 1$
 $\Leftrightarrow a \in A^{\times} \text{ et } b \in B^{\times}$

donc $(A \times B)^{\times} = A^{\times} \times B^{\times}$.

De même, on obtient que l'ensemble $\mathcal{D}_{A\times B}$ des diviseurs de 0 de $A\times B$ est

$$\mathscr{D}_{A\times B} = \mathscr{D}_A \times B \cup A \times \mathscr{D}_B \cup (A \setminus \{0\}) \times \{0\} \cup \{0\} \times (B \setminus \{0\}).$$

Enfin, pour les nilpotents $Nil(A \times B) = Nil(A) \times Nil(B)$.

Correction de l'exercice 7

1. En posant y = x + 1, on a $\mathbb{Z}_2[x]/(x^3 + x^2 + x + 1) = \{0, 1, x, y, x^2, y^2, xy, xy + 1\}$. Les tables des opérations sont les suivantes (elles sont symétriques):

\oplus	0	1	x	y	$ x^2 $	y^2	xy	xy+1
0	0	1	x	у	x^2	y^2	xy	xy+1
1		0	у	х	y^2	x^2	xy+1	xy
x			0	1	xy	xy+1	x^2	y^2
У				0	xy+1	xy	y^2	x^2
x^2					0	1	х	у
y^2						0	у	х
xy							0	1
$\overline{xy+1}$								0

\otimes	0	1	x	у	x^2	y^2	xy	xy + 1
0	0	0	0	0	0	0	0	0
1		1	х	у	x^2	y^2	xy	xy+1
X			x^2	xy	xy+1	y^2	у	1
У				y^2	у	0	y^2	xy
x^2					1	y^2	xy	X
y^2						0	0	y^2
xy							y^2	У
xy+1								x^2

Pour $\mathbb{Z}[x]/(x^2-1)$, (x-1) et (x+1) sont deux idéaux étrangers, et le lemme chinois nous donne $\mathbb{Z}[x]/(x^2-1) \simeq \mathbb{Z}[x]/(x-1) \times \mathbb{Z}[x]/(x+1)$. Or $\mathbb{Z}[x]/(x+1) \simeq \mathbb{Z}$ et $\mathbb{Z}[x]/(x-1) \simeq \mathbb{Z}$ donc $\mathbb{Z}[x]/(x^2-1) \simeq \mathbb{Z} \times \mathbb{Z}$.

La factorisation de (x^8-1) sur $\mathbb Q$ est $(x^8-1)=(x-1)(x+1)(x^2+1)(x^4+1)$. En utilisant le lemme chinois, on obtient que $\mathbb Q[x]/(x^8-1)\simeq \mathbb Q[x]/(x+1)\times \mathbb Q[x]/(x^2+1)\times \mathbb Q[x]/(x^4+1)$ soit :

$$\mathbb{Q}[x]/(x^8-1) \simeq \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}[i] \times \mathbb{Q}[e^{i\pi/4}].$$

Montrons en effet que $\mathbb{Q}[x]/(x^2+1) \simeq \mathbb{Q}[i]$: l'application $\phi: \mathbb{Q}[x]/(x^2+1) \to \mathbb{Q}[i]$ définie par $\bar{P} \mapsto P(i)$ est un morphisme d'anneau.

- injectivité : Soit $\bar{P} \in \ker \phi$. Alors P(i) = 0. Comme P est à coefficient rationnels donc réels, -i est aussi raine de P. Donc $x^2 + 1|P$.
- surjectivité : Soit $z = a + ib \in \mathbb{Q}[i]$. Alors $z = \phi(ax + b)$.

De même pour $\mathbb{Q}[x]/(x^4+1)\simeq \mathbb{Q}[e^{i\pi/4}]$. Considérons le morphisme $\phi:\mathbb{Q}[x]/(x^4+1)\to \mathbb{Q}[e^{i\pi/4}]$ défini par $\phi(\bar{P})=P(e^{i\pi/4})$. ϕ est bien définie, c'est un morphisme d'anneau.

- injectivité : Soit \bar{P} ∈ ker ϕ . Alors $P(e^{i\pi/4}) = 0$. Par ailleurs $X^4 + 1$ est *irréductible* dans \mathbb{Q} : sa factorisation sur \mathbb{R} est $(x^2 + \sqrt{2}x + 1)(x^2 \sqrt{2}x + 1)$, et aucun de ces deux polynômes, même à inversible réel près, n'est rationnel. On en déduit que si $(x^4 + 1)$ ne divise pas P, alors $\operatorname{pgcd}(X^4 + 1, P) = 1$. Il existerait donc $U, V \in \mathbb{Q}[x]$, $UP + V(X^4 + 1) = 1$. En évaluant en $x = e^{i\pi/4}$, on obtient une contradiction. Donc $X^4 + 1|P$. (cf. exexercice ??).
- surjectivité : Soit $z = a + be^{i\pi/4} \in \mathbb{Q}[e^{i\pi/4}]$. Alors $z = \phi(ax + b)$.
- 2. On a $K[x]/(f^ng^m) \simeq K[x]/(f^m) \times K[x]/(g^m)$. On en déduit que les diviseurs de 0 sont les polynômes de la forme \bar{P} où P satisfait l'une des conditions suivantes :

$$\begin{array}{c|c} f^n|P \ \text{et} \ g^m \not|P & \qquad & (\{0\} \times K[x]/(g^m) \setminus \{0\}) \\ g^m|P \ \text{et} \ f^n \not|P & \qquad & (K[x]/(f^n) \setminus \{0\} \times \{0\}) \\ f|P \ \text{et} \ f^n \not|P & \qquad & (\mathscr{D}_{K[x]/(f^n)} \times K[x]/(g^m)) \\ g|P \ \text{et} \ g^m \not|P & \qquad & (K[x]/(f^n) \times \mathscr{D}_{K[x]/(g^m)}) \end{array}$$

Les nilpotents sont donnés par les conditions

$$\begin{cases} fg|P\\ (f^ng^m/P \text{ si on veut exclure } 0) \end{cases}$$

3. Les idéaux de $K[x]/(f^n)$ sont les idéaux engendrés par les diviseurs de f^n soit les f^k pour $0 \le k \le n$.

La démonstration peut se faire en toute généralité exactement de la même manière que dans $\mathbb{Z}/n\mathbb{Z}$: Soit \mathscr{D} l'ensemble des diviseurs de f^n (modulo K^*). Ici, $\mathscr{D} = \{f^k, 0 \le k \le n\}$. Soit \mathscr{I} l'ensemble de idéaux de $K[x]/(f^n)$.

On a une flèche de $\mathscr{D} \to \mathscr{I}$, donnée par $d \mapsto (\bar{d})$.

- surjectivité Soit $I \in \mathscr{I}$. I est principal : notons $I = (\bar{h})$. Soit $d = \operatorname{pgcd}(f, h)$, et h_1 le polynôme déterminé par $h = dh_1$. Alors $\operatorname{pgcd}(f, h_1) = 0$ et h_1 est inversible dans le quotient. On en déduit que $(\bar{h}) = (\bar{d}) = I$ (or $d \in \mathscr{D}$).
- injectivité Soit $d, d' \in \mathcal{D}$ tels que $(\bar{d}) = (\bar{d}')$. On a alors $d = h_1 d' + h_2 f$ donc d'|d. De même, d|d'. On en déduit que $d \sim d'$.

Revenons à notre exercice : les idéaux de $K[x]/(f^n) \times K[x]/g^m$ sont donc de la forme $(f^\alpha) \times (g^\beta)$. En revenant à $K[x]/(f^ng^m)$, on obtient que l'ensemble des idéaux est

$$\{(f^{\alpha}g^{\beta}), 0 \le \alpha, \beta \le n\}$$

- 4. Les inversibles de $K[x]/(f^n)$ sont les (classes des) polynômes premiers avec f. Le complémentaire est donc formé des multiples de f, il y en a donc autant que de polynômes de degré (nd-1)-d où d est le degré de f, soit $p^{(n-1)d}$. Il y a donc $p^{(n-1)d}(p-1)$ inversibles dans $K[x]/(f^n)$.
 - On en déduit qu'il y en a $p^{(n-1)d_f+(m-1)d_g}(p-1)^2$ dans $K[x]/(f^ng^m)$, où d_f et d_g sont les degrés respectifs de f et g.
- 5. Plus généralement, si les f_i sont des polynômes irréductibles distincts, dans $K[x]/(f_1^{n_1}\cdots f_k^{n_k})$ il y a $p^{\sum (n_i-1)d_i}(p-1)^k$ inversibles, où d_i est le degré de f_i .

Correction de l'exercice 8 A

Pour obtenir les facteurs multiples, on utilise la remarque suivante : g est un facteur multiple de f ssi g est un facteur commun à f et à f' (dérivé formel de f).

Ainsi $\operatorname{pgcd}(f,f')$ est le produit de tous les facteurs multiples de f, avec exposant diminué de 1 par rapport à f. Ainsi $f/\operatorname{pgcd}(f,f')$ est le produit de tous les facteurs irréductibles de f, avec exposant 1 pour tous. Finalement, $\operatorname{pgcd}(\operatorname{pgcd}(f,f'),f/\operatorname{pgcd}(f,f'))$ est le produit de tous les facteurs multiples de f avec exposant 1.