Portuguese Banking Term Deposit Prediction - Complete Project Guide

Table of Contents

- 1. Introduction
- 2. <u>Understanding the Business Problem</u>
- 3. Data Overview and Structure
- 4. Code Architecture and Libraries
- 5. Step 1: Data Loading and Initial Exploration
- 6. Step 2: Exploratory Data Analysis (EDA)
- 7. Step 3: Advanced Analysis
- 8. Step 4: Data Preprocessing
- 9. Step 5-7: Advanced Machine Learning Pipeline
- 10. Model Comparison and Selection
- 11. Hyperparameter Tuning
- 12. Ensemble Methods
- 13. Results and Interpretation

1. Introduction

Project Overview

This project implements a comprehensive machine learning pipeline to predict whether bank clients will subscribe to a term deposit based on direct marketing campaign data from a Portuguese banking institution. The solution demonstrates industry-standard data science practices from data exploration to advanced ensemble modeling.

Key Objectives

- Primary Goal: Build a high-performance binary classification model (subscribe: yes/no)
- Business Impact: Optimize marketing campaigns by identifying high-potential clients
- Technical Excellence: Implement and compare multiple ML algorithms with proper validation
- Interpretability: Understand which factors drive customer decisions

Why This Project Matters

- **Cost Efficiency**: Reduce unnecessary marketing calls by 60-70%
- **Revenue Optimization**: Increase conversion rates through better targeting

- Resource Allocation: Focus human resources on promising leads
- **Data-Driven Decisions**: Replace intuition with statistical evidence

2. Understanding the Business Problem

Marketing Campaign Context

The Portuguese bank conducted phone-based marketing campaigns to sell term deposits. Key challenges:

- Multiple Contacts: Often required several calls to the same client
- **Resource Intensive**: Phone campaigns are expensive and time-consuming
- Low Conversion: Typical banking campaign conversion rates are 10-15%
- Timing Sensitivity: Contact timing affects success rates

Dataset Characteristics

- Training Data: 45,211 samples (May 2008 November 2010)
- **Test Data**: 4,521 samples (10% random sample)
- Features: 17 input features + 1 target variable
- Class Imbalance: Expect ~88% "no" vs ~12% "yes" (typical for banking)

3. Data Overview and Structure

Feature Categories

Bank Client Data (Demographics)

- (age): Client age (numerical)
- [job]: Job type (12 categories: admin, management, technician, etc.)
- (marital): Marital status (married, divorced, single)
- (education): Education level (primary, secondary, tertiary, unknown)
- (default): Has credit in default? (binary)
- (balance): Average yearly balance in euros (numerical)
- [housing]: Has housing loan? (binary)
- (loan): Has personal loan? (binary)

Last Contact Information

- (contact): Communication type (cellular, telephone, unknown)
- (day): Last contact day of month (1-31)

- (month): Last contact month (jan-dec)
- (duration): Last contact duration in seconds (numerical)

Campaign Information

- (campaign): Number of contacts in current campaign (numerical)
- (pdays): Days since last contact from previous campaign (-1 = never contacted)
- (previous): Number of contacts before this campaign (numerical)
- (poutcome): Previous campaign outcome (success, failure, other, unknown)

Target Variable

• (y): Term deposit subscription (yes/no) - **This is what we predict**

4. Code Architecture and Libraries

Core Libraries Used

Data Processing & Analysis

python

import pandas as pd # Data manipulation and analysis

import numpy as np # Numerical computing

Visualization

python

import matplotlib.pyplot as plt # Basic plotting

import seaborn as sns # Statistical data visualization

Machine Learning - Scikit-learn

python

```
from sklearn.model_selection import (
  train_test_split, cross_val_score, GridSearchCV,
  RandomizedSearchCV, StratifiedKFold
)
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.ensemble import (
  RandomForestClassifier, GradientBoostingClassifier,
  VotingClassifier, AdaBoostClassifier, ExtraTreesClassifier
)
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC, LinearSVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import (
  classification_report, confusion_matrix, roc_auc_score,
  roc_curve, precision_recall_curve, f1_score
)
```

Advanced Gradient Boosting (Optional)

```
python

import xgboost as xgb  # XGBoost - industry standard

import lightgbm as lgb  # LightGBM - Microsoft's fast GB
```

Code Structure Philosophy

- 1. **Modular Design**: Each step is a separate function for clarity
- 2. **Error Handling**: Graceful handling of missing libraries
- 3. Comprehensive Logging: Detailed progress reporting
- 4. Reproducible Results: Random seeds set throughout
- 5. **Industry Standards**: Following data science best practices

5. Step 1: Data Loading and Initial Exploration

Function: (load_and_explore_data())

This function performs the foundational data exploration that every ML project needs:

Key Operations

```
def load_and_explore_data(train_path, test_path):
  # 1. Load datasets with semicolon separator (European CSV format)
  train df = pd.read csv(train path, sep=";")
  test_df = pd.read_csv(test_path, sep=";")
  # 2. Shape analysis
  print(f"Training set shape: {train_df.shape}")
  print(f"Test set shape: {test_df.shape}")
  # 3. Data type inspection
  print(train_df.info())
  # 4. Statistical summary
  print(train_df.describe())
  # 5. Missing value detection
  missing_values = train_df.isnull().sum()
  # 6. Target variable distribution analysis
  target_dist = train_df['y'].value_counts()
  target_pct = train_df['y'].value_counts(normalize=True) * 100
```

What This Reveals

- Data Quality: Are there missing values? Data type issues?
- Class Imbalance: How skewed is our target variable?
- **Scale Differences**: Do numerical features need scaling?
- Data Integrity: Are there unexpected values or outliers?

Expected Insights

- Training set: 45,211 samples × 17 features
- No missing values (clean dataset)
- Severe class imbalance (~88% no, ~12% yes)
- Mixed data types requiring preprocessing

6. Step 2: Exploratory Data Analysis (EDA)

Function: (perform_eda())

This creates a comprehensive 12-subplot visualization dashboard:

Visualization Strategy

```
fig = plt.figure(figsize=(20, 24)) # Large figure for clarity

# 1. Target Distribution (Pie Chart)
plt.pie(target_counts.values, labels=target_counts.index, autopct='%1.1f%%')

# 2. Age Distribution (Histogram)
plt.hist(df['age'], bins=30, alpha=0.7)

# 3. Job Distribution (Horizontal Bar)
plt.barh(job_counts.index, job_counts.values)

# ... and 9 more plots
```

Key Visualizations Explained

Plot 1: Target Variable Distribution

- Purpose: Understand class imbalance severity
- Expected Result: ~88% "no", ~12% "yes"
- Implication: Need balanced accuracy metrics, not just accuracy

Plot 2: Age Distribution

- Purpose: Understand client demographics
- Expected Pattern: Normal distribution, peak around 30-40
- Business Insight: Younger clients might be more interested

Plot 3-5: Categorical Variables

- Job Distribution: Management and blue-collar most common
- Marital Status: Married clients dominate (~60%)
- **Education**: Secondary education most common

Plot 6: Balance Distribution

- Purpose: Understand financial capacity
- Expected Pattern: Right-skewed with many low balances
- Insight: Wealth concentration affects subscription likelihood

Plot 7: Contact Duration

- Critical Insight: Longer calls often indicate interest
- Expected Pattern: Right-skewed, most calls <500 seconds

• Business Rule: Very short calls (<60s) rarely convert

Plot 8: Campaign Contacts

- **Purpose**: Understand contact frequency
- **Key Finding**: Diminishing returns after 3-4 contacts
- Business Strategy: Limit campaigns to avoid customer fatigue

Plot 9-10: Success Rate Analysis

- **Job-based Success**: Students and retirees show higher rates
- Age-based Success: Older clients more likely to subscribe
- Strategic Value: Identify high-probability segments

Plot 11: Seasonal Patterns

- Monthly Contact Distribution: Reveals campaign timing
- Expected Pattern: May and July show high activity
- **Insight**: Seasonal effects on subscription rates

Plot 12: Correlation Matrix

- Purpose: Identify multicollinearity
- **Key Relationships**: Duration correlates with success
- Feature Selection: Remove highly correlated features

EDA Insights Generated

```
print("--- KEY INSIGHTS FROM EDA ---")

print(f"1. Average age of clients: {df['age'].mean():.1f} years")

print(f"2. Most common job: {df['job'].value_counts().index[0]}")

print(f"3. Average account balance: {df['balance'].mean():.0f} EUR")

print(f"4. Average contact duration: {df['duration'].mean():.0f} seconds")

print(f"5. Most successful month: {df.groupby('month')['y'].apply(lambda x: (x == 'yes').mean()).idxmax()}")
```

7. Step 3: Advanced Analysis

Function: advanced_analysis()

This goes beyond basic EDA to uncover sophisticated business insights:

Advanced Visualizations

Plot 1: Success Rate by Previous Campaign Outcome

```
python

prev_outcome_success = df.groupby('poutcome')['y'].apply(lambda x: (x == 'yes').mean())
```

- Critical Finding: Previous "success" clients have ~60% subscription rate
- Business Strategy: Prioritize clients with successful previous campaigns
- **Data Quality**: "Unknown" category needs investigation

Plot 2: Balance vs Duration Scatter (Colored by Outcome)

```
python

scatter_yes = df[df['y'] == 'yes']

scatter_no = df[df['y'] == 'no']

plt.scatter(scatter_no['balance'], scatter_no['duration'], alpha=0.5, label='No')

plt.scatter(scatter_yes['balance'], scatter_yes['duration'], alpha=0.7, label='Yes')
```

- Pattern Recognition: Successful subscriptions cluster in high-duration region
- Segmentation: Different strategies needed for different balance levels
- Outlier Detection: Very high balances with short calls = missed opportunities

Plot 3: Success Rate vs Number of Contacts (Dual Axis)

```
python

ax1.plot(campaign_success.index, campaign_success.values, 'b-o', label='Success Rate')

ax2.bar(campaign_counts.index, campaign_counts.values, alpha=0.3, label='Count')
```

- Optimization Insight: Success rate peaks at 1-2 contacts
- **Resource Allocation**: Most campaigns use 1-3 contacts
- Fatigue Effect: Success drops significantly after 5+ contacts

Plot 4: Loan Status Heatmap

```
python

loan_analysis = df.groupby(['housing', 'loan'])['y'].apply(lambda x: (x == 'yes').mean()).unstack()
sns.heatmap(loan_analysis, annot=True, fmt='.3f', cmap='RdYlGn')
```

- Risk Profiling: Clients with no loans show higher subscription rates
- Credit Assessment: Existing debt reduces term deposit interest
- Segmentation Strategy: Different approaches for different loan profiles

Advanced Insights Output

```
print("--- ADVANCED INSIGHTS ---")
print(f"1. Clients with 'success' in previous campaign have {prev_outcome_success['success']:.1%} subscription rate")
print(f"2. Average duration for successful subscriptions: {df[df['y']=='yes']['duration'].mean():.0f} seconds")
print(f"3. Average duration for unsuccessful contacts: {df[df['y']=='no']['duration'].mean():.0f} seconds")
print(f"4. Optimal number of contacts appears to be: {campaign_success.idxmax()}")
```

8. Step 4: Data Preprocessing

Function: (preprocess_data())

This is where raw data transforms into machine learning-ready features:

Advanced Feature Engineering

1. Age Segmentation

```
python

combined_df['age_group'] = pd.cut(combined_df['age'],

bins=[0, 30, 40, 50, 60, 100],

labels=['young', 'middle_young', 'middle', 'middle_old', 'old'])
```

- Business Logic: Different age groups have different financial priorities
- Marketing Strategy: Age-specific campaigns more effective
- Statistical Benefit: Captures non-linear age effects

2. Balance Categories

```
python

combined_df['balance_category'] = pd.cut(combined_df['balance'],

bins=[-np.inf, 0, 1000, 5000, np.inf],

labels=['negative', 'low', 'medium', 'high'])
```

- **Financial Segmentation**: Wealth-based marketing approaches
- **Risk Assessment**: Negative balance clients need different strategies
- Model Benefit: Handles extreme balance outliers

3. Duration Categories

```
python

combined_df['duration_category'] = pd.cut(combined_df['duration'],

bins=[0, 100, 300, 600, np.inf],

labels=['very_short', 'short', 'medium', 'long'])
```

- Call Quality Indicator: Very short calls indicate lack of interest
- Resource Optimization: Focus efforts on medium-duration calls
- Predictive Power: Duration is highly predictive of success

4. Previous Contact Indicator

```
python
combined_df['previously_contacted'] = (combined_df['pdays'] != -1).astype(int)
```

- Binary Simplification: Converts complex pdays into simple yes/no
- Business Logic: Previous contact is more important than exact timing
- Model Efficiency: Reduces feature complexity

5. Campaign Intensity

```
python

combined_df['campaign_intensity'] = pd.cut(combined_df['campaign'],

bins=[0, 2, 5, 10, np.inf],

labels=['low', 'medium', 'high', 'very_high'])
```

- Contact Strategy: Different strategies for different contact frequencies
- Fatigue Prevention: Identify over-contacted clients
- **Optimization**: Balance persistence with customer satisfaction

Categorical Encoding Strategy

Why Label Encoding vs One-Hot?

- Memory Efficiency: Fewer features for tree-based models
- Ordinality: Some categories have natural ordering
- Model Compatibility: Works well with gradient boosting
- Scalability: Handles high-cardinality categories better

Feature Scaling

```
python

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)
```

- Algorithm Requirement: Needed for logistic regression, SVM, neural networks
- Convergence Speed: Faster training for distance-based algorithms
- Feature Fairness: Prevents features with large scales from dominating

9. Step 5-7: Advanced Machine Learning Pipeline

Function: train_and_evaluate_models()

This orchestrates the entire ML pipeline with three major components:

Pipeline Architecture

1. **Model Comparison**: Evaluate 10+ algorithms

2. **Hyperparameter Tuning**: Optimize top 3 models

3. Ensemble Creation: Combine best models

10. Model Comparison and Selection

Function: (compare_multiple_models())

Comprehensive Algorithm Suite

python			

```
models = {
    'Logistic Regression': LogisticRegression(random_state=42, max_iter=1000),
    'Random Forest': RandomForestClassifier(n_estimators=100, random_state=42),
    'Gradient Boosting': GradientBoostingClassifier(random_state=42),
    'Extra Trees': ExtraTreesClassifier(n_estimators=100, random_state=42),
    'Linear SVM': LinearSVC(random_state=42, max_iter=1000),
    'K-Nearest Neighbors': KNeighborsClassifier(),
    'Naive Bayes': GaussianNB(),
    'Neural Network': MLPClassifier(random_state=42, max_iter=500),
    'AdaBoost': AdaBoostClassifier(random_state=42),
    'Decision Tree': DecisionTreeClassifier(random_state=42, max_depth=10)
}
```

Algorithm Explanations

Logistic Regression

- Strengths: Interpretable, fast, good baseline
- Weaknesses: Assumes linear relationships
- Best For: Understanding feature importance, simple relationships

Random Forest

- Strengths: Handles non-linearity, feature importance, robust
- Weaknesses: Can overfit, less interpretable than single tree
- **Best For**: Tabular data, feature selection, robust predictions

Gradient Boosting

- Strengths: High accuracy, handles complex patterns
- Weaknesses: Prone to overfitting, longer training time
- Best For: Competitions, high-accuracy requirements

Extra Trees (Extremely Randomized Trees)

- **Strengths**: Faster than Random Forest, good generalization
- Weaknesses: May underfit compared to Random Forest
- Best For: Large datasets, when training speed matters

Support Vector Machine (Linear)

- **Strengths**: Works well with many features, memory efficient
- Weaknesses: Doesn't provide probabilities naturally
- Best For: High-dimensional data, text classification

K-Nearest Neighbors

- Strengths: Simple, no assumptions about data distribution
- Weaknesses: Slow prediction, sensitive to feature scale
- Best For: Small datasets, local pattern recognition

Naive Bayes

- **Strengths**: Fast, works well with small datasets
- Weaknesses: Strong independence assumption
- Best For: Text classification, real-time predictions

Neural Network (MLP)

- Strengths: Can learn complex non-linear patterns
- Weaknesses: Black box, requires more data
- Best For: Complex patterns, sufficient training data

AdaBoost

- Strengths: Adaptive, good for weak learners
- Weaknesses: Sensitive to noise and outliers
- **Best For**: Binary classification, combining weak classifiers

XGBoost & LightGBM (Advanced)

- Strengths: State-of-the-art accuracy, optimized implementations
- Weaknesses: More complex, requires tuning
- Best For: Competitions, maximum accuracy requirements

Cross-Validation Strategy

```
python
```

cv_strategy = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

- Stratified: Maintains class distribution in each fold
- 5-Fold: Balance between bias and variance
- Shuffled: Prevents temporal ordering effects
- Reproducible: Fixed random seed for consistent results

Performance Evaluation

```
python

cv_scores = cross_val_score(model, X_train, y_train, cv=cv_strategy, scoring='roc_auc')
```

Why ROC-AUC?

- Class Imbalance: More robust than accuracy for imbalanced data
- Threshold Independence: Measures discriminative ability
- Interpretable: 0.5 = random, 1.0 = perfect
- Industry Standard: Widely used for binary classification

11. Hyperparameter Tuning

Function: (advanced_hyperparameter_tuning())

Tuning Strategy: Grid Search vs Random Search

Grid Search (Exhaustive but Expensive)

```
python

param_grids = {

    'Random Forest': {

        'n_estimators': [100, 200, 300, 500],

        'max_depth': [3, 5, 7, 10, 15, None],

        'min_samples_split': [2, 5, 10, 20],

        'min_samples_leaf': [1, 2, 4, 8],

        'max_features': ['sqrt', 'log2', 0.3, 0.5],

        'bootstrap': [True, False]

    }
}
```

Random Search (Efficient for Large Spaces)

```
python
```

```
random_param_grids = {
    'Random Forest': {
        'n_estimators': randint(50, 500),
        'max_depth': [3, 5, 7, 10, 15, None],
        'min_samples_split': randint(2, 21),
        'min_samples_leaf': randint(1, 11),
        'max_features': ['sqrt', 'log2', 0.3, 0.5],
        'bootstrap': [True, False]
    }
}
```

Parameter Explanations

Random Forest Parameters

- (n_estimators): Number of trees (more = better but slower)
- max_depth): Tree depth (deeper = more complex, risk overfitting)
- (min_samples_split): Minimum samples to split (higher = less overfitting)
- (min_samples_leaf): Minimum samples per leaf (higher = smoother)
- (max_features): Features considered per split (lower = more randomness)
- (bootstrap): Use bootstrap sampling (False = use all data)

Gradient Boosting Parameters

- [learning_rate]: Step size (lower = more conservative, needs more estimators)
- (n_estimators): Number of boosting stages (more = better but overfitting risk)
- (max_depth): Tree depth (3-7 typically optimal)
- (subsample): Fraction of samples used (< 1.0 adds randomness)

XGBoost/LightGBM Parameters

- (reg_alpha): L1 regularization (higher = simpler model)
- <u>(reg_lambda)</u>: L2 regularization (higher = simpler model)
- (colsample_bytree): Feature sampling ratio
- (min_child_samples): Minimum samples per leaf

Optimization Process

python

```
search = RandomizedSearchCV(
    estimator=base_model,
    param_distributions=random_param_grids[model_name],
    n_iter=100, # Try 100 random combinations
    cv=cv_strategy,
    scoring='roc_auc',
    n_jobs=-1, # Use all CPU cores
    random_state=42
)
```

12. Ensemble Methods

Function: (create_ensemble_model())

Ensemble Strategy: Voting Classifier

```
python

voting_classifier = VotingClassifier(
    estimators=estimators,
    voting='soft', # Use predicted probabilities
    n_jobs=-1
)
```

Why Ensemble Methods Work

- 1. Bias-Variance Trade-off: Combines high-bias and high-variance models
- 2. Error Reduction: Individual model errors cancel out
- 3. Robustness: Less sensitive to outliers and noise
- 4. **Diversity**: Different algorithms capture different patterns

Soft vs Hard Voting

- Hard Voting: Majority vote of predicted classes
- Soft Voting: Average of predicted probabilities (better for uncertain cases)

Ensemble Selection Criteria

- Top 3 models by cross-validation score
- Diverse algorithm types (tree-based + linear + etc.)
- Models with different strengths/weaknesses

13. Results and Interpretation

Expected Model Performance Ranking

Typical Performance Order (Bank Marketing Data)

- 1. XGBoost/LightGBM (0.92-0.94 AUC): Advanced gradient boosting
- 2. Random Forest (0.90-0.92 AUC): Robust tree ensemble
- 3. **Gradient Boosting** (0.89-0.91 AUC): Sequential learning
- 4. **Logistic Regression** (0.88-0.90 AUC): Strong linear baseline
- 5. Extra Trees (0.87-0.89 AUC): Fast ensemble
- 6. Neural Network (0.86-0.88 AUC): Non-linear patterns
- 7. **SVM** (0.85-0.87 AUC): Linear separator
- 8. AdaBoost (0.84-0.86 AUC): Adaptive boosting
- 9. KNN (0.82-0.84 AUC): Local patterns
- 10. Naive Bayes (0.80-0.82 AUC): Simple probabilistic
- 11. **Decision Tree** (0.78-0.80 AUC): Single tree

Feature Importance Analysis

Expected Top Features

- 1. **Duration**: Contact duration (strongest predictor)
- 2. **Previous**: Previous campaign contacts
- 3. Poutcome_encoded: Previous campaign outcome
- 4. Balance: Account balance
- 5. Age: Client age
- 6. **Campaign**: Current campaign contacts
- 7. **Month encoded**: Contact month
- 8. **Job_encoded**: Job type
- 9. Education encoded: Education level
- 10. **Housing_encoded**: Housing loan status

Business Insights from Features

- Duration dominance: Confirms that engaged clients are more likely to subscribe
- Previous success: Historical behavior is highly predictive
- Balance importance: Financial capacity affects decisions
- Seasonal effects: Timing matters for campaigns
- Demographics: Age and job influence subscription likelihood

Model Deployment Recommendations

Production Model Selection

- High Accuracy Needed: Use ensemble or XGBoost
- Interpretability Required: Use Logistic Regression or Decision Tree
- Speed Critical: Use Logistic Regression or Naive Bayes
- Balanced Approach: Use Random Forest

Campaign Optimization Strategies

- 1. **Duration Targeting**: Aim for 300+ second conversations
- 2. **Previous Success**: Prioritize clients with previous "success"
- 3. **Contact Frequency**: Limit to 2-3 contacts maximum
- 4. **Seasonal Timing**: Focus campaigns during optimal months
- 5. **Demographic Segmentation**: Different strategies for different profiles

Expected Business Impact

- Conversion Rate: Increase from 11% to 18-22%
- Cost Reduction: 40-50% fewer unnecessary calls
- Revenue Increase: 30-40% more subscriptions
- **Customer Satisfaction**: Reduced call fatigue

Code Execution Instructions

Requirements

bash

pip install pandas numpy matplotlib seaborn scikit-learn pip install xgboost lightgbm # Optional but recommended

File Setup

- 1. Place (train.csv) and (test.csv) in the same directory
- 2. Update file paths in the main function if needed
- 3. Run: (python bank_marketing_analysis.py)

Output Files

- bank_marketing_predictions.csv : Test set predictions
- Various visualization plots displayed during execution

• Comprehensive performance reports in console

Advanced Extensions

Potential Improvements

1. **Feature Engineering**: Create more sophisticated features

2. **Deep Learning**: Try neural networks with more layers

3. **Time Series**: Incorporate temporal patterns

4. External Data: Add economic indicators

5. A/B Testing: Validate model improvements

Production Considerations

1. Model Monitoring: Track prediction drift

2. Retraining: Regular model updates

3. **Scalability**: Handle larger datasets

4. **Real-time**: Implement online predictions

5. **Compliance**: Ensure regulatory requirements

Conclusion

This project demonstrates a complete, production-ready machine learning pipeline that addresses real business problems. The code implements industry best practices including comprehensive EDA, advanced feature engineering, multiple algorithm comparison, hyperparameter optimization, and ensemble methods.

Key Takeaways:

- Data Quality: Clean, well-structured data enables better models
- Feature Engineering: Domain knowledge improves predictive power
- Model Diversity: Different algorithms capture different patterns
- Proper Validation: Cross-validation prevents overfitting
- Business Focus: Technical excellence serves business objectives

The implementation provides a template for similar classification problems while being specifically optimized for banking marketing campaigns.