Minsterul Educației, Cercetării și Inovării Societatea de Științe Matematice din România Inspectoratul Școlar al Județului Constanța

A 60-a Olimpiadă Națională de Matematică Mangalia -Neptun – 13 aprilie 2009

CLASA a X-a – SOLUŢII ŞI BAREMURI DE CORECTARE

Problema 1. a) Arătați că, dacă $x,y\in(1,\infty)$ și $x^y=y^x$, atunci x=y sau există $m\in(0,\infty)\setminus\{1\}$ astfel încât $x=m^{\frac{1}{m-1}},\ y=m^{\frac{m}{m-1}}$.

b) Rezolvați în mulțimea $(1,\infty)$ ecuația cu două necunoscute

$$x^y + x^{x^{y-1}} = y^x + y^{y^{x-1}}.$$

Problema 2. Fie $a \in [2 + \sqrt{2}, 4]$. Determinați minimul expresiei $|z^2 - az + a|$, când $z \in \mathbb{C}$ și $|z| \leq 1$.

Avem $|z^2 - az + a| = |z - z_1||z - z_2| = MA \cdot MB$, unde M, A, B sunt punctele din plan corespunzătoare afixelor z, z_1 , respectiv z_2 . Fie T punctul de afix 1 şi M_1 intersecția dintre AM şi cercul unitate dacă unghiul AM_1B este ascutit (în caz contrar, M_1 va fi intersecția dintre BM și cercul unitate).

Avem $MA \cdot MB \ge M_1A \cdot M_1B \ge TA \cdot TB = (TA)^2,$ 2 puncte deci

$$min|z^2 - az + a| = |z_1 - 1|^2 = \left(\frac{a}{2} - 1\right)^2 + \left(\frac{\sqrt{4a - a^2}}{2}\right)^2 = 1.$$

Observație: Să notăm cu A_1 și B_1 punctele din plan corespunzătoare soluțiilor ecuației $z^2 - az + a = 0$, $a = 2 + \sqrt{2}$. Măsura unghiului A_1TB_1 este de 90°, ceea ce explică de ce unul din unghiurile AM_1B este întotdeauna ascuțit și $AM_1 \cdot M_1B \geq AT \cdot TB$.

Problema 3. Determinați toate funcțiile $f: \mathbb{R} \to \mathbb{R}$ care verifică relația

$$f(x^3 + y^3) = xf(x^2) + yf(y^2), \ \forall x, y \in \mathbb{R}.$$

Problema 4. Vom spune că un număr natural $n \geq 4$ este neobișnuit dacă se poate așeza câte un număr real în fiecare din cele n^2 pătrate unitate ale unui pătrat \mathcal{P} de latură n, astfel încât suma celor 9 numere din orice pătrat 3×3 conținut de \mathcal{P} să fie strict negativă, iar suma celor 16 numere din orice pătrat 4×4 conținut de \mathcal{P} să fie strict pozitivă.

Determinați toate numerele neobișnuite.

Soluţie. Vom arăta că numerele neobișnuite sunt n=4 şi n=5. Pentru $n \geq 6$ suma elementelor tuturor pătratelor 3×3 din pătratul mare este egală cu suma elementelor tuturor pătratelor 4×4 din același pătrat. . . 4 puncte

Pentru a exemplifica în acelaşi timp că n=4 şi n=5 sunt numere neobişnuite propunem cititorului următorul exemplu: un pătrat de dimensiune 5×5 în care coloana din mijloc conține numai -5, celelalte elemente fiind $2 \dots 3$ puncte