Université de Montpellier - Master 2 Module **Contraintes**

Feuille TD 3 - 13/11/2023

Exercice 1

Soit $\Delta = \{c_0, c_1, c_2, c_3, \mu_0, \mu_1\}$ un langage de contraintes sur le domaine $D = \{0, 1\}$ dont les fonctions sont définies comme suit :

$$c_{0}(x, y, z) = x \vee y \vee z = D^{3} \setminus \{(0, 0, 0)\}$$

$$c_{1}(x, y, z) = \overline{x} \vee y \vee z = D^{3} \setminus \{(1, 0, 0)\}$$

$$c_{2}(x, y, z) = \overline{x} \vee \overline{y} \vee z = D^{3} \setminus \{(1, 1, 0)\}$$

$$c_{3}(x, y, z) = \overline{x} \vee \overline{y} \vee \overline{z} = D^{3} \setminus \{(1, 1, 1)\}$$

$$\mu_{0}(x) = \{(0)\}$$

$$\mu_{1}(x) = \{(1)\}$$

Question 1. Démontrez que $CSP(\Delta)$ est NP-complet.

Correction. Le langage Δ n'admet aucune opération parmi $\{f_0, f_1, f_{\vee}, f_{\wedge}, \text{majority}, \text{minority}\}$ comme polymorphisme. En effet,

```
\begin{array}{l} (f_0) \ \ \tau_1 = (1,1,1) \in c_0, \ f_0(\tau_1) = (0,0,0) \notin c_0 \Rightarrow f_0 \notin \operatorname{Pol}(\Delta) \\ (f_1) \ \ \tau_1 = (0,0,0) \in c_3, \ f_1(\tau_1) = (1,1,1) \notin c_3 \Rightarrow f_1 \notin \operatorname{Pol}(\Delta) \\ (f_{\vee}) \ \ \tau_1 = (1,0,1), \ \tau_2 = (0,1,0) \in c_3 : f_{\vee}(\tau_1,\tau_2) = (1,1,1) \notin c_3 \Rightarrow f_{\vee} \notin \operatorname{Pol}(\Delta) \\ (f_{\wedge}) \ \ \tau_1 = (1,0,0), \ \tau_2 = (0,1,0) \in c_0 : f_{\wedge}(\tau_1,\tau_2) = (0,0,0) \notin c_0 \Rightarrow f_{\wedge} \notin \operatorname{Pol}(\Delta) \\ (\operatorname{majority}) \ \ \tau_1 = (1,0,0), \ \tau_2 = (0,1,0), \ \tau_3 = (0,0,1) \in c_0 : \operatorname{majority}(\tau_1,\tau_2,\tau_3) = (0,0,0) \notin c_0 \\ \Rightarrow \operatorname{majority} \notin \operatorname{Pol}(\Delta) \\ (\operatorname{minority}) \ \ \tau_1 = (0,1,1), \ \tau_2 = (1,0,1), \ \tau_3 = (1,1,0) \in c_0 : \operatorname{minority}(\tau_1,\tau_2,\tau_3) = (0,0,0) \notin c_0 \\ \Rightarrow \operatorname{minority} \notin \operatorname{Pol}(\Delta) \end{array}
```

Par le théorème de Schaefer, $CSP(\Delta)$ est donc NP-complet.

On suppose que $P \neq NP$. On dit qu'un langage $\Gamma_1 \subseteq \Delta$ est Δ -maximal si $CSP(\Gamma_1)$ est polynomial mais que $CSP(\Gamma_2)$ est NP-complet pour tout Γ_2 tel que $\Gamma_1 \subset \Gamma_2 \subseteq \Delta$.

Question 2. Justifiez qu'il existe au plus six langages Δ -maximaux.

Correction. Supposons qu'il existe 7 langages Δ -maximaux distincts. Par le théorème de Schaefer, chacun de ces langages admet au moins une opération parmi $\{f_0, f_1, f_{\vee}, f_{\wedge}, \text{majority}, \text{minority}\}$ comme polymorphisme. Il n'y a que 6 opérations possibles, donc il existe deux langages Δ -maximaux distincts Γ', Γ'' qui admettent la même opération.

Par le théorème de Schaefer, $CSP(\Gamma' \cup \Gamma'')$ est polynomial. De plus, on a $\Gamma' \subset \Gamma' \cup \Gamma'' \subseteq \Delta$, ce qui contredit le fait que Γ' est Δ -maximal.

Question 3. Déterminez tous les langages Δ -maximaux.

Correction. Au vu de la réponse à la question précédente, les langages Δ -maximaux sont exactement les langages maximaux (par rapport à l'inclusion) qui admettent pour polymorphisme au moins une des six opérations du théorème de Schaefer. On commence donc par faire l'inventaire des polymorphismes de chaque fonction de Δ :

	c_0	c_1	c_2	c_3	μ_0	μ_1
f_0	NON	OUI	OUI	OUI	OUI	NON
f_1	OUI	OUI	OUI	NON	NON	OUI
f_{\lor}	OUI	OUI	NON	NON	OUI	OUI
f_{\wedge}	NON	NON	OUI	OUI	OUI	OUI
majority	NON	NON	NON	NON	OUI	OUI
minority	NON	NON	NON	NON	OUI	OUI

Voici une justification brève pour chaque entrée du tableau :

```
(f_0, c_0) \tau_1 = (1, 1, 1) \in c_0, f_0(\tau_1) = (0, 0, 0) \notin c_0 \Rightarrow f_0 \notin Pol(\{c_0\})
(f_1, c_0) \ \forall \tau_1 \in c_0, \ f_1(\tau_1) = (1, 1, 1) \in c_0 \Rightarrow f_1 \in \text{Pol}(\{c_0\})
(f_{\vee}, c_0) \ \forall \tau_1, \tau_2 \in c_0, \ f_{\vee}(\tau_1, \tau_2) \neq (0, 0, 0) \ \text{car} \ (0, 0, 0) \notin \{\tau_1, \tau_2\}
             donc f_{\vee}(\tau_1, \tau_2) \in c_0 et finalement f_{\vee} \in \text{Pol}(\{c_0\})
(f_{\wedge}, c_0) \ \tau_1 = (1, 0, 0), \ \tau_2 = (0, 1, 0) : f_{\wedge}(\tau_1, \tau_2) = (0, 0, 0) \notin c_0 \Rightarrow f_{\wedge} \notin \text{Pol}(\{c_0\})
(majority, c_0) majority((1,0,0), (0,1,0), (0,0,1)) = (0,0,0) \notin c_0 \Rightarrow \text{majority} \notin \text{Pol}(\{c_0\})
(minority, c_0) minority((0, 1, 1), (1, 0, 1), (1, 1, 0)) = (0, 0, 0) \notin c_0 \Rightarrow minority \notin Pol(\{c_0\})
(f_0, c_1) \ \forall \tau_1 \in c_1, \ f_0(\tau_1) = (0, 0, 0) \in c_1 \Rightarrow f_0 \in \text{Pol}(\{c_1\})
(f_1, c_1) \ \forall \tau_1 \in c_1, \ f_1(\tau_1) = (1, 1, 1) \in c_1 \Rightarrow f_1 \in \text{Pol}(\{c_1\})
(f_{\vee}, c_1) \ \forall \tau_1, \tau_2 \in c_1, \ f_{\vee}(\tau_1, \tau_2) \neq (1, 0, 0) \ \mathrm{car} \ (1, 0, 0) \notin \{\tau_1, \tau_2\}
             donc f_{\vee}(\tau_1, \tau_2) \in c_1 et finalement f_{\vee} \in \text{Pol}(\{c_1\})
(f_{\wedge}, c_1) \tau_1 = (1, 0, 1), \tau_2 = (1, 1, 0) : f_{\wedge}(\tau_1, \tau_2) = (1, 0, 0) \notin c_1 \Rightarrow f_{\wedge} \notin \text{Pol}(\{c_1\})
(\text{majority}, c_1) \text{ majority}((1, 0, 1), (1, 1, 0), (0, 0, 0)) = (1, 0, 0) \notin c_1 \Rightarrow \text{majority} \notin \text{Pol}(\{c_1\})
(minority, c_1) minority((1, 1, 0), (0, 0, 0), (0, 1, 0)) = (1, 0, 0) \notin c_1 \Rightarrow \text{minority} \notin \text{Pol}(\{c_1\})
(f_0, c_2) \ \forall \tau_1 \in c_2, \ f_0(\tau_1) = (0, 0, 0) \in c_2 \Rightarrow f_0 \in \text{Pol}(\{c_2\})
(f_1, c_2) \ \forall \tau_1 \in c_2, \ f_1(\tau_1) = (1, 1, 1) \in c_2 \Rightarrow f_1 \in \text{Pol}(\{c_2\})
(f_{\vee}, c_2) \tau_1 = (1, 0, 0), \tau_2 = (0, 1, 0) : f_{\vee}(\tau_1, \tau_2) = (1, 1, 0) \notin c_2 \Rightarrow f_{\vee} \notin \text{Pol}(\{c_2\})
(f_{\wedge}, c_2) \ \forall \tau_1, \tau_2 \in c_2, f_{\wedge}(\tau_1, \tau_2) \neq (1, 1, 0) \ \text{car} \ (1, 1, 0) \notin \{\tau_1, \tau_2\}
             donc f_{\wedge}(\tau_1, \tau_2) \in c_2 et finalement f_{\wedge} \in \text{Pol}(\{c_2\})
(\text{majority}, c_2) \text{ majority}((1,0,0), (1,1,1), (0,1,0)) = (1,1,0) \notin c_2 \Rightarrow \text{majority} \notin \text{Pol}(\{c_2\})
(\text{minority}, c_2) \text{ minority}((1, 0, 0), (0, 1, 0), (0, 0, 0)) = (1, 1, 0) \notin c_2 \Rightarrow \text{minority} \notin \text{Pol}(\{c_2\})
(f_0, c_3) \ \forall \tau_1 \in c_3, \ f_0(\tau_1) = (0, 0, 0) \in c_3 \Rightarrow f_0 \in \text{Pol}(\{c_3\})
(f_1, c_3) \tau_1 = (0, 0, 0) \in c_3, f_1(\tau_1) = (1, 1, 1) \notin c_3 \Rightarrow f_1 \notin Pol(\{c_3\})
(f_{\vee},c_3) \ \tau_1=(1,0,1), \ \tau_2=(0,1,0): f_{\vee}(\tau_1,\tau_2)=(1,1,1) \notin c_3 \Rightarrow f_{\vee} \notin \operatorname{Pol}(\{c_3\})
(f_{\wedge}, c_3) \ \forall \tau_1, \tau_2 \in c_3, \ f_{\wedge}(\tau_1, \tau_2) \neq (1, 1, 1) \ \text{car} \ (1, 1, 1) \notin \{\tau_1, \tau_2\}
             donc f_{\wedge}(\tau_1, \tau_2) \in c_3 et finalement f_{\wedge} \in \text{Pol}(\{c_3\})
(\text{majority}, c_3) \text{ majority}((1,0,1), (1,1,0), (0,1,1)) = (1,1,1) \notin c_3 \Rightarrow \text{majority} \notin \text{Pol}(\{c_3\})
(\text{minority}, c_3) \text{ minority}((1, 0, 0), (0, 1, 0), (0, 0, 1)) = (1, 1, 1) \notin c_3 \Rightarrow \text{minority} \notin \text{Pol}(\{c_3\})
                                                                              \mu_{\mathbf{0}}, \mu_{\mathbf{1}}
```

 f_{\vee} , f_{\wedge} (resp. majority et minority) sont des polymorphismes de μ_0 et μ_1 car ce sont des opérations idempotentes : si on leur donne deux fois (resp. trois fois) le même tuple τ en entrée, elles renvoient τ en sortie. Les cas f_0 et f_1 sont immédiats.

En conclusion, d'après le tableau on a :

$$\Gamma \text{ est } \Delta\text{-maximal} \iff \begin{cases} \Gamma = \{c_1, c_2, c_3, \mu_0\}, ou \\ \Gamma = \{c_0, c_1, c_2, \mu_1\}, ou \\ \Gamma = \{c_0, c_1, \mu_0, \mu_1\}, ou \\ \Gamma = \{c_2, c_3, \mu_0, \mu_1\} \end{cases}$$

Exercice 2

Pour tout entier naturel n > 0 on définit $X_n = \{x_i \mid 1 \le i \le n\}$, $Y_n = \{y_i \mid 1 \le i \le n\}$, $\mathcal{Y}_n^{+1} = \{Y_n \cup \{x\} \mid x \in X_n\}$ et $\mathcal{X}_n^{+1} = \{X_n \cup \{y\} \mid y \in Y_n\}$. On considère la famille \mathcal{H} des hypergraphes dont l'ensemble des sommets est de la forme $X_n \cup Y_n$ (pour un n qui peut varier d'un hypergraphe à un autre) et dont les arêtes sont des éléments de $\mathcal{Y}_n^{+1} \cup \mathcal{X}_n^{+1}$.

Question 1. La treewidth des hypergraphes de \mathcal{H} est-elle bornée par une constante? Justifiez.

Correction. Si un hypergraphe H a une arête qui contient au moins k sommets, alors sa treewidth est au moins k-1 car dans toute décomposition arborescente de H il existe un sac qui contient entièrement cette arête. Pour tout k>0 la famille \mathcal{H} contient des hypergraphes dont les arêtes contiennent plus de k sommets, donc la treewidth de \mathcal{H} n'est pas bornée.

Question 2. Démontrez que tout $H \in \mathcal{H}$ a une hypertreewidth d'au plus 2.

Correction. Soit $H \in \mathcal{H}$ un hypergraphe dont l'ensemble des sommets est $X_n \cup Y_n$. Si H ne contient aucune arête, son hypertreewidth est 0.

Si H contient deux arêtes e, f telles que $e \in \mathcal{Y}_n^{+1}$ et $f \in \mathcal{X}_n^{+1}$, alors e et f couvrent H: la décomposition arborescente dont le seul sac est $X_n \cup Y_n$ a une c-width de 2.

Supposons au contraire que H ne contient aucune arête de \mathcal{Y}_n^{+1} . Alors, H a une décomposition arborescente composée d'une racine dont le sac est X_n , et de feuilles dont les sacs coincident avec les arêtes de H. La c-width de cette décomposition est 1 car chaque sac est couvert par une arête.

Le dernier cas (aucune arête de \mathcal{X}_n^{+1}) est symétrique.

Question 3. Soient n > 0 et H_n l'hypergraphe dont les sommets sont $X_n \cup Y_n$ et les arêtes sont $\mathcal{Y}_n^{+1} \cup \mathcal{X}_n^{+1}$. Montrer que l'hypertreewidth fractionnaire de H_n est strictement inférieure à 2.

Correction. Si l'on donne un poids w(e) = 1/(n+1) à chaque arête e de H_n , pour chaque sommet v on a $\sum_{e:v \in e} w(e) = 1$. C'est donc une couverture fractionnaire de H_n . H_n contient 2n arêtes, donc le poids total de cette couverture est $2n \times (1/(n+1)) < 2$: la décomposition arborescente dont le seul sac est $X_n \cup Y_n$ a une fc-width strictement inférieure à 2.

Question 4. La famille \mathcal{H} a la propriété d'être *hypertreewidth-monotone*, c'est-à-dire que retirer une arête d'un hypergraphe de \mathcal{H} ne peut pas augmenter son hypertreewidth. Est-ce vrai en général, pour tous les hypergraphes? Est-ce vrai en général pour la treewidth?

Correction. C'est faux en général. Si c'était le cas, tous les hypergraphes auraient une hypertreewidth 1 : ajouter une arête complète (qui couvre tous les sommets) à un hypergraphe produit toujours un hyper-

graphe d'hypertreewidth 1. C'est en revanche vrai pour la treewidth : si l'on obtient H' en supprimant une arête d'un hypergraphe H, toute décomposition arborescente de H reste valable pour H' et sa largeur (en termes de nombre de sommets par sac) ne change pas.

Question 5. Dans l'autre sens, il est évidemment possible qu'ajouter une arête à un hypergraphe augmente son hypertreewidth. Montrez que dans ce cas, son hypertreewidth augmente de 1 au maximum.

Correction. On prend une décomposition arborescente de H de c-width minimum, et on ajoute les sommets de la nouvelle arête à tous les sacs. C'est une décomposition arborescente du nouvel hypergraphe, et sa c-width n'a augmenté que d'au plus 1.

Exercice 3

Pour tout entier naturel k > 0 et tout ensemble $S \subseteq \{0, \dots, k\}$, on définit la fonction booléenne $c_S^k = \{\tau \in \{0, \dots, k\}, t \in S\}$ $\{0,1\}^k \mid \sum_{i=1}^k \tau[i] \in S\}$. Par exemple, on a

$$c_{\{1,3\}}^3(x,y,z) = \begin{bmatrix} x & y & z \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad c_{\{0,1\}}^3(x,y,z) = \begin{bmatrix} x & y & z \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad c_{\{1\}}^2(x,y) = \begin{bmatrix} x & y & z \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Question 1. Soient k > 0 et $S \subseteq \{0, ..., k\}$ tel que $S \neq \emptyset$ et $0 \notin S$. Démontrez que l'opération \vee ("ou" logique) est un polymorphisme de c_S^k si et seulement si il existe $j \in \{1, ..., k\}$ tel que $S = \{j, ..., k\}$.

Correction. Première implication : supposons $S = \{j, \ldots, k\}$. Soient $\tau_1, \tau_2 \in c_S^k$ et $\tau_3 = \tau_1 \vee \tau_2$. Alors,

$$\sum_{i=1}^{k} \tau_3[i] = \sum_{i=1}^{k} (\tau_1[i] \vee \tau_2[i]) \ge \sum_{i=1}^{k} \tau_1[i] \ge j$$

et donc $\tau_3 \in c_S^k$: \vee est un polymorphisme de c_S^k . Réciproque : supposons que \vee est un polymorphisme de c_S^k . L'ensemble S est non vide, donc $j = \min(S)$ existe. De plus, $0 \notin S$ donc $j \in \{1, \dots, k\}$. On va prouver la proposition suivante par récurrence sur $n \geq j$:

$$P(n): \{j, \ldots, n\} \subseteq S$$

P(j) est vraie. Supposons maintenant que P(n) est vraie pour un certain n tel que $j \leq n < k$. Soit un tuple $\tau_1 \in c_k^S$ tel que $\sum_{i=1}^k \tau_1[i] = n$, et deux indices p_0, p_1 tels que $\tau_1[p_0] = 0$ et $\tau_1[p_1] = 1$. (Ces deux indices existent car $n \geq j > 0$ et n < k.) On construit un tuple τ_2 comme suit :

$$\tau_2[i] = \begin{cases} 1 & \text{si } i = p_0 \\ 0 & \text{si } i = p_1 \\ \tau_1[i] & \text{sinon} \end{cases}$$

Par construction, on a $\tau_2 \in c_k^S$ car $\sum_{i=1}^k \tau_2[i] = \sum_{i=1}^k \tau_1[i] = n \in S$. De plus, par hypothèse \vee est polymorphisme de c_k^S et $\sum_{i=1}^k (\tau_1 \vee \tau_2)[i] = n+1$, ce qui implique que $n+1 \in S$ et donc P(n+1) est vraie. Finalement, par récurrence on conclut que P(k) est vraie, cqfd.

Question 2. Soient k>0 et $S\subseteq\{0,\ldots,k\}$. Montrez que l'opération \vee est un polymorphisme de c_S^k si et seulement si c'est un polymorphisme de $c_{S\backslash\{0\}}^k$. Déduisez-en une caractérisation précise des fonctions c_S^k qui

admettent le polymorphisme \vee , en fonction de l'ensemble S.

Correction. On a $(0,\ldots,0) \vee \tau_1 = \tau_1$ pour tout tuple τ_1 , donc

$$\vee$$
 polymorphisme de $c^k_{S\backslash\{0\}} \Rightarrow \vee$ polymorphisme de c^k_S

Réciproquement, si \vee n'est pas polymorphisme de $c^k_{S\backslash\{0\}}$ alors il existe $\tau_1, \tau_2 \in c^k_{S\backslash\{0\}}$ tels que $\tau_3 = \tau_1 \vee \tau_2 \notin c^k_{S\backslash\{0\}}$. Puisque $0 \notin S$, on a $(0, \dots, 0) \notin \{\tau_1, \tau_2\}$ et donc $\tau_3 \neq (0, \dots, 0)$. Cela implique $\tau_3 \notin c^k_S$, et finalement \vee n'est pas polymorphisme de c^S_k . En combinant ce résultat avec la question précédente on obtient :

$$\vee$$
 polymorphisme de $c_k^S \iff S = \emptyset, S = \{0\} \text{ ou } S \setminus \{0\} = \{j, \ldots, k\} \text{ pour un certain } j > 0.$

Question 3. Soit k > 0. Pour tout ensemble $S \subseteq \{0, \dots, k\}$, on définit $S^{\perp} = \{k - i \mid i \in S\}$. Montrez que \vee est un polymorphisme de c_S^k si et seulement si \wedge est un polymorphisme de $c_{S^{\perp}}^k$.

Correction. On commence par observer que pour tout tuple τ , $\tau \in c_S^k \iff \overline{\tau} \in c_{S^{\perp}}^k$ (ici, $\overline{\tau}$ désigne la négation du tuple τ). Soient $\tau_1, \tau_2 \in c_S^k$. Alors,

$$\begin{split} \vee \in \operatorname{Pol}(c_S^k) &\iff \forall \tau_1, \tau_2 \in c_S^k, \ \tau_1 \vee \tau_2 \in c_S^k \\ &\iff \forall \overline{\tau_1}, \overline{\tau_2} \in c_{S^\perp}^k, \ \overline{\tau_1 \vee \tau_2} \in c_{S^\perp}^k \\ &\iff \forall \overline{\tau_1}, \overline{\tau_2} \in c_{S^\perp}^k, \ \overline{\tau_1} \wedge \overline{\tau_2} \in c_{S^\perp}^k \\ &\iff \wedge \in \operatorname{Pol}(c_{S^\perp}^k) \end{split}$$

On rappelle que $CSP(\Gamma)$ est $r\acute{e}solu$ par AC si la fermeture arc cohérente de toute instance insatisfiable de $CSP(\Gamma)$ contient un domaine vide.

Question 4. Soit Γ un langage booléen. Démontrez que $\mathrm{CSP}(\Gamma)$ est résolu par AC si et seulement si Γ admet un polymorphisme parmi $\{0, 1, \wedge, \vee\}$.

Correction. D'après la version du théorème de Schaefer présentée en cours, si Γ admet un polymorphisme parmi $\{0, 1, \wedge, \vee\}$ alors $\mathrm{CSP}(\Gamma)$ est résolu par AC. Pour la réciproque, on va utiliser le théorème de Dalmau-Pearson : si $\mathrm{CSP}(\Gamma)$ est résolu par AC, alors pour tout k>0 le langage Γ admet un polymorphisme totalement symétrique d'arité k.

Soit f un polymorphisme totalement symétrique de Γ d'arité 2. Si f(1,1)=f(0,0), alors $g:\{0,1\}\to\{0,1\}$ défini par g(a)=f(a,a) est un polymorphisme constant de Γ (0 ou 1). Si f(1,1)=1 et f(0,0)=0, alors on a deux cas possibles : soit f(1,0)=f(0,1)=1, auquel cas $f(a,b)=a\vee b$, soit f(1,0)=f(0,1)=0 et donc $f(a,b)=a\wedge b$. Enfin, si f(1,1)=0 et f(0,0)=1 alors g(a,b)=f(f(a,b),f(a,b)) est totalement symétrique et satisfait g(1,1)=1, g(0,0)=0, ce qui nous ramène au deuxième cas.

Question 5. Déduisez-en une caractérisation des langages finis $\Gamma \subset \{c_S^k \mid k > 0, S \subseteq \{0, \dots, k\}\}$ résolus par AC.

Correction. En combinant les réponses aux questions précédentes, on déduit :

$$\operatorname{CSP}(\Gamma) \text{ r\'esolu par AC} \iff \begin{cases} \forall c_S^k \in \Gamma, S = \emptyset \text{ ou } 0 \in S, \text{ ou} \\ \forall c_S^k \in \Gamma, S = \emptyset \text{ ou } k \in S, \text{ ou} \\ \forall c_S^k \in \Gamma, S = \emptyset, S = \{0\} \text{ ou } \exists j > 0 : S \backslash \{0\} = \{j, \dots, k\}, \text{ ou} \\ \forall c_S^k \in \Gamma, S = \emptyset, S = \{k\} \text{ ou } \exists j < k : S \backslash \{k\} = \{0, \dots, j\}. \end{cases}$$

Exercice 4

On dit qu'une fonction booléenne $c: D^2 \to \{0,1\}$ est ZOA (Zero-One-All) s'il existe $D_1, D_2 \subseteq D$ tels que

- $(1): \forall (d_1, d_2) \in c$, on a $d_1 \in D_1$ et $d_2 \in D_2$
- $(2): \forall \alpha \in D_1, |\{d \in D_2 \mid (\alpha, d) \in c\}| \in \{1, |D_2|\}$
- $(3): \forall \beta \in D_2, |\{d \in D_1 \mid (d, \beta) \in c\}| \in \{1, |D_1|\}$

Par exemple, considérons les fonctions

$$c_1(x,y) = \begin{bmatrix} x & y \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 2 & 1 \end{bmatrix} \qquad c_2(x,y) = \begin{bmatrix} x & y \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 2 & 1 \\ 3 & 3 \end{bmatrix}$$

définies sur $D = \{1, 2, 3\}$. Informellement, la propriété ZOA signifie que chaque valeur qui apparaît dans une colonne est compatible avec soit *toutes* les valeurs apparaissant dans l'autre colonne, soit *une seule*. Ainsi, la fonction c_1 est ZOA avec $D_1 = \{1, 2\}$ et $D_2 = \{1, 2, 3\}$, mais la fonction c_2 ne l'est pas car on a $(1, 3), (3, 3) \in c_2$ mais $(2, 3) \notin c_2$.

Question 1. Soit D un domaine fini et l'opération $f_{dd}: D^3 \to D$ définie par

$$f_{dd}(x, y, z) = \begin{cases} x & \text{si } y \neq z \\ z & \text{sinon.} \end{cases}$$

Démontrez que si une fonction booléenne $c: D^2 \to \{0,1\}$ est ZOA, alors f_{dd} est un polymorphisme de c.

Correction. Soient $\tau_1 = (\alpha_1, \beta_1)$, $\tau_2 = (\alpha_2, \beta_2)$ et $\tau_3 = (\alpha_3, \beta_3)$ trois tuples de c. Notons que par la condition (1), chaque α_i appartient à D_1 et chaque β_i appartient D_2 . On va démontrer que $f_{dd}(\tau_1, \tau_2, \tau_3)$ est également un tuple de c. On distingue quatre cas :

- 1) $\alpha_2 \neq \alpha_3$ et $\beta_2 \neq \beta_3$. Dans ce cas, $f_{dd}(\tau_1, \tau_2, \tau_3) = (\alpha_1, \beta_1) = \tau_1 \in c$.
- 2) $\alpha_2 \neq \alpha_3$ et $\beta_2 = \beta_3$. Comme $\tau_2, \tau_3 \in c$, on a $\{\alpha_2, \alpha_3\} \subseteq \{d \in D_1 \mid (d, \beta_2) \in c\}$ et par la condition (3), $|\{d \in D_1 \mid (d, \beta_2) \in c\}| = |D_1|$. Avec la condition (1) cela implique $\{d \in D_1 \mid (d, \beta_2) \in c\} = D_1$ et finalement $f_{dd}(\tau_1, \tau_2, \tau_3) = (\alpha_1, \beta_2) \in c$.
- 3) $\alpha_2 = \alpha_3$ et $\beta_2 \neq \beta_3$. Ce cas est symétrique au cas précédent, en utilisant la condition (2) au lieu de la condition (3).
- 4) $\alpha_2 = \alpha_3$ et $\beta_2 = \beta_3$. Dans ce cas, $f_{dd}(\tau_1, \tau_2, \tau_3) = (\alpha_3, \beta_3) = \tau_3 \in c$.

 $f_{dd}(\tau_1, \tau_2, \tau_3)$ est donc un tuple de c pour tout choix de tuples $\tau_1, \tau_2, \tau_3 \in c$: f_{dd} est un polymorphisme de c.

Question 2. Soit Γ un langage dont toutes les fonctions sont ZOA. En vous appuyant sur la réponse à la question précédente, démontrez que Γ a la propriété de *bounded width*. Quel algorithme utiliseriez-vous pour résoudre $CSP(\Gamma)$?

Correction. L'opération f_{dd} de la question précédente satisfait l'identité

$$f_{dd}(x, x, y) = f_{dd}(x, y, x) = f_{dd}(y, x, x) = x$$

pour tout $x, y \in D$ et est polymorphisme de Γ . De plus, l'opération $g: D^4 \to D$ définie par

$$q(x, y, z, w) = f(f(x, y, z), z, w)$$

satisfait l'identité

$$q(x, x, x, y) = q(x, x, y, x) = q(x, y, x, x) = q(y, x, x, x) = x$$

et est également polymorphisme de Γ (car Pol(Γ) est un clone concret, donc invariant par composition). Par le théorème de Barto-Kozik, on déduit donc que Γ a la propriété de bounded width et $CSP(\Gamma)$ est résolu par SAC.

A priori, il est possible que $CSP(\Gamma)$ ne soit pas résolu par AC (par exemple, le langage $\{c_{\oplus}\}$ est ZOA mais n'est pas résolu par AC). En l'absence d'information additionnelle sur Γ , SAC est donc un bon choix d'algorithme pour $CSP(\Gamma)$.

Exercice 5

Pour tout entier naturel $n \ge 2$ on définit l'hypergraphe H_n dont l'ensemble des sommets est $\{x_1, \ldots, x_n, y_1, \ldots, y_n\}$ et l'ensemble des arêtes est $\{\{x_i, x_{i+1}, y_{i+1}\} \mid 1 \le i \le n-1\} \cup \{\{x_i, y_i, y_{i+1}\} \mid 1 \le i \le n-1\}$.

Question 1. Démontrez que pour tout $n \geq 2$, l'hypertreewidth de H_n est égale à 1.

Correction. On construit une décomposition arborescente $(T,(B_t)_{t\in V(T)})$ de H_n comme suit. T est un chemin $(t_1^y,t_1^x,t_2^y,t_2^x,\ldots,t_{n-1}^y,t_{n-1}^x)$ de taille 2n-2 dont chaque sommet est associé à une arête de H_n :

$$\forall i \in \{1, \dots, n-1\}, B_{t_i^y} = \{x_i, y_i, y_{i+1}\}$$
$$\forall i \in \{1, \dots, n-1\}, B_{t_i^x} = \{x_i, x_{i+1}, y_{i+1}\}$$

Notons que chaque arête de H_n est effectivement contenue dans au moins un sac. Il reste donc à vérifier que tout sommet de H_n induit un sous-arbre connexe de T. y_1 appartient à un seul sac, celui de t_1^y . Pour 1 < i < n-1, y_i appartient à exactement trois sacs : ceux de t_{i-1}^y , t_{i-1}^x et t_i^y . Ces sacs sont consécutifs dans T donc le sous-arbre induit est connexe. Finalement, y_n appartient aux sacs de t_{n-1}^y , t_{n-1}^x , qui sont également consécutifs dans T. Le cas des x_i est symétrique.

Chaque sac de cette décomposition arborescente de H_n est entièrement contenu dans une arête, donc l'hypertreewidth de H_n est au plus 1. Comme H_n contient au moins une arête, son hypertreewidth est au moins 1, ce qui conclut la démonstration.

Question 2. Existe-t-il un entier $n \ge 2$ et un réseau de contraintes N dont l'hypergraphe est H_n , tels que N n'a pas de solution mais appliquer la 3-cohérence forte sur N ne vide aucun domaine? Justifiez votre réponse.

Correction. Non. Par la réponse à la question précédente et le fait que les arêtes de H_n contiennent toutes 3 sommets, la treewidth de H_n est d'au plus 2. Par le cours, appliquer la (2+1)-cohérence forte sur N permet de déterminer l'existence d'une solution, c'est-à-dire qu'un domaine sera forcément vidé si N n'a pas de solution.