

明間遥駒 - ソフト 上野朝陽 - 設計 松井宏道 - ハード

和歌山県立桐蔭高校科学部 2025 和歌山ノード 1位 2025 関西ブロック 1位

スポンサー様

Maxon RE16

9V 4.5W

3Dモデル HARD

Control Sensor **Actuator**

╱ 新戦法「後ろドリブラー」 soff

ボールが前方にある時、ボールを中心とする円の 接線方向に向かって走り、回り込みます。(A1) ボールを捕捉すると、カメラの情報を使いゴール **の中心**に向かって姿勢制御をし、キッカーでシュ ートして得点を狙います。(A2)

ボールが後方にある時、ボールがある方向に向か って姿勢制御をし、直進して後方に取り付けられ **たドリブラー**でボールを保持します。(B1) ボールを捕捉すると、ゴールの近くまで移動した

後、ゴールの中心に向かってマカオシュートで得 点を狙います。(B2)

〜 ムダのない防御 soft

ラインセンサーの中で連続で反応している ものをまとめて1つとして扱い、白線を踏 んでいる2か所のうちボールがある方の角 度に進むことによって、なめらかにライン トレースをしながらゴールを守ります。(1) 全方位カメラで常に自ゴールとの角度を測 り、ボール・機体・ゴールが一直線になる 地点で停止します。(2)

/ 速度限界突破 soft

アタッカーは**カメラ**を使い自身がライン際にいるかどうかを認識します。 そして、**ライン際**ではラインアウトしない程度のスピードで動き、ライン から離れたコート中央付近ではそれより速く動くことで、アウトオブバウ ンズのリスクを下げたまま速度を上げることに成功しています。

・ ドリブラーの最適解 HARD

2025シーズン中に計5種類のドリブラーを作成したノウハウ を生かし、理想とする戦法に最適なドリブラーを完成させま した。さらに、**ブラシレスモーター**を使うことで**スピードと** トルクの両方を手に入れることができました。

回転伝導抑える方向	ギア	ベルト
上から		安定してボールを 回転させることができた
横から	ギアが崩れて 回らなくなったり、 壊れたりしてしまった	ボールは回るが抑える 力が足りていなかった

基礎カアップ HARD

全国大会で勝利するためにはただラインアウトしないだけで は不十分だと感じたので、これまで使用していたニッケル水 素バッテリーからリチウムイオンバッテリーに変更し、ロボ ットの基礎的なスペック向上を図りました。これによりスピ ードが速くなっただけでなく、消費電力の大きいキッカーや ドリブラーの実装も実現できました。

メインマイコン: Teensy 4.1

品の選定 HARD

>処理速度が速く、シリアル通信ポート が多い。Arduino IDEで開発可能。モータ ー、キッカーを制御。

サブマイコン: Arduino MEGA 2560

>ピン数の多さから採用。ボールセンサ ー、ラインセンサーの情報をもとに進む 方向を計算しメインマイコンに送信。

モータードライバー: DRV8874

>制御が簡単で、大電流を流すことがで きる。サイズが小さい。

カメラ: Pixy 2.1

>Arduino IDEにライブラリがあるため簡 単に制御ができる。SPIで通信。

驚異の小車輪24個 (HARD)

ロボットを速く正確 に走らせるために は、モーターの力を 地面に伝えるオムニ ホイールの性能もモ ーター自体の性能と 同じくらい重要だと

考えました。そこで、ホイールのボディ の表裏に交互に小車輪をはめるという方 式を編み出し、小車輪の数を前回の16個 から24個に増やしたことで、スピードと 制御性が格段に向上しました。

桐蔭の開発環境 other

私たちが所属する桐蔭高校には、アルミ板を切削 するCNC、モーターの固定具などの比較的小さい 部品を印刷する3Dプリンター (Flash Forge Adventure 3)、ロボットのカバーなどの比較的大 きい部品を印刷する3Dプリンター(Formlabs Fuse 1) があり、他にもドリルやねじ切り機、グ ラインダーなど部品の加工に役立つ様々な道具が 揃っています。

アプリの活用 other

私達Toin ADMIXは 様々なアプリを活用す ることで設計、プログ ラミング、及び進捗状 況の確認などを**充実**さ

せています。

SWL-002