ANNALEN

DER

PHYSIK.

HERAUSGEGEBEN

VON

LUDWIG WILHELM GILBERT

DR. D. PH. U. M., ORD. PROFESSOR D. PHYSIK ZU LEIPZIG,
MITCLIED D. KÖN. GES. D. WISS. ZU HAARLEN U. ZU KOPENHAGEN,
DER GES. NATURF FREUNDE IN BERLIN, DER BATAV. GES. D. NATURK.
ZU ROTTERDAM, D. ÖKONOM GESS. ZU LEIPZ. U. ZU POTSDAM, U. D.
PHYS. GESS. ZU ERLANG., GRÖNING., HALLE, JENA. MAINZ U. ROSTOCK;
UND CORRESP. MITGLIED D. KAIS. AKAD. D. WISS. ZU PETERSBURG,
DER KÖNIGL. AKADEMIEEN DER WISS. ZU BERLIN U. ZU MÜNCHEN,
UND DER KÖNIGL. GES. D. WISS. ZU GÖTTINGEN.

FUNFZIGSTER BAND.

NEBST VIER KUPFERTAFELN.

LEIPZIG,
BEI JOH. AMBROSIUS BARTH
1815.

ANNALEN

DER

PHYSIK.

HERAUSGEGEBEN

VON

LUDWIG WILHELM GILBERT

DR. D. PH. U. M., ORD. PROFESSOR D. PHYSIK ZU LEIPZIG,
MITCLIED D. KÖN. GES. D. WISS. ZU HAARLEN U. ZU KOPENHAGEN,
DER GES. NATURF FREUNDE IN BERLIN, DER BATAV. GES. D. NATURK.
ZU ROTTERDAM, D. ÖKONOM GESS. ZU LEIPZ. U. ZU POTSDAM, U. D.
PHYS. GESS. ZU ERLANG., GRÖNING., HALLE, JENA. MAINZ U. ROSTOCK;
UND CORRESP. MITGLIED D. KAIS. AKAD. D. WISS. ZU PETERSBURG,
DER KÖNIGL. AKADEMIEEN DER WISS. ZU BERLIN U. ZU MÜNCHEN,
UND DER KÖNIGL. GES. D. WISS. ZU GÖTTINGEN.

FUNFZIGSTER BAND.

NEBST VIER KUPFERTAFELN.

LEIPZIG,
BEI JOH. AMBROSIUS BARTH
1815.

ANNALEN

DER

PHYSIK,

NEUE FOLGE.

HERAUSGEGEBEN

VON

LUDWIG WILHELM GILBERT

DR. D. PH. U. M., ORD, PROFESSOR D PHYSIK ZU LEIPZIG, MITCLIED D. KÖN. GES. D. WISS. ZU HARRLEM U ZU KOPENHAGEN, DER GES. NATURF. FREUNDE IN BERLIN, DER BATAV GES. D. NATURK. ZU ROTTERDAM, D. ÖKONOM GESS. ZU LEIPZ. U. ZU POTSDAM, U. D. PHYS. GESS. ZU ERLANG., GRÖNING.. HALLE. JENA, MAINZ U. ROSTOCK; UND CORRESP. MITGLIED D. KAIS. AKAD. D. WISS. ZU PETERSBURG, DER KÖNIGL. AKADEMIKEN DER WISS. ZU BERLIN U ZU MÜNCHEN, UND DER KÖN. GES. D. WISS. ZU GOTTINGEN,

ZWANZIGSTER BAND.

NEBST VIER KUPFERTAFELN.

LEIPZIG, BEI JOH. AMBROSIUS BARTH 1815.

ANNALEN DER PHYSIK.

JAHRGANG 1815, FÜNFTES STÜCK.

T.

Einige Versuche über das Verbrennen des Diamanten und des Kohlenstoffs,

TOR

Sir Humpnny Davy; frei bearbeitet von Gilbert *).

Seitdem man durch genaue Versuche weiß, daß gleiche Gewichte von Diamant und von gewöhnlichem Kohlenstoff beim Verbrennen ungefähr gleiche Mengen von Sauerstoffgas verzehren und ein Gas erzeugen, das in beiden Fällen einerlei Eigenschaften zu haben scheint, hat man mancherlei Vermuthungen über die Ursache der großen Verschiedenheit gemacht, welche zwischen den in die Augen fallenden Eigenschaften dieser beiden Körper Statt findet, und hat gesucht, wo möglich, irgend eine Verschiedenheit in ihrer chemischen Zusammensetzung aufzusinden. Die Herren

^{&#}x27;) Nach den Philosoph. Transact. of the Roy. Sec. of Lond. for 1814. P. I.

Biot und Arago vermutheten, der Diamant enthalte etwas Wasserstoff, weil er eine so große strahlenbrechende Kraft belitzt. In meiner dritten Baker'schen Vorlesung gründete ich darauf, dass der Diamant ein Nichtleiter der Electricität ist, und auf die Wirkung, welche das Kalium auf ihn au-Isert, die Vermuthung, dass er ein wenig Sauer-Roff enthalte; und in meiner letzten Baker'schen Vorlefung habe ich den Gedanken zu äußern gewagt, der Diamant sev vielleicht eine Verbindung von Kohlenstoff mit irgend einem noch unbekannten, fehr feinen elementaren Körper, der zu der Klaile der Unterhalter des Verbrennens gehöre. Hr. Guyton-Morveau glaubte durch Verfuche, die er vor 1/4 Jahren anliellte, bewiefen zu haben, daß der gewöhnliche Kohlenstoff ein bloßes Oxyd des Diamants fey *); und feinen neuften Verfuchen zu Folge, welche er nach demfelben Plan, als die HH. Pepys und Allen die ihrigen, ausgesührt hat, scheint er auch jetzt noch geneigt zu seyn, diese Meinung zu vertheidigen, wenn er gleich den Gehalt der Kohle an Sauerstoff jetzt weit geringer setzt als ehemals. Nach ihm ist der Diamant reiner Kohlenstoff, und enthält außerdem höchstens einige Atome Krystallwasser.

Ich wünschte seit geraumer Zeit Gelegenheit zu finden, noch ein Mal vergleichende Versuche mit dem Diamanten und mit Körpern anzustellen,

^{*)} S. diele Annalen B. 2. S. 387.

t-

h-

a-

er

ad

u-

er.

en

e-

ng

n-

ier

re.

he,

en,

cyd

ien

die

hrt

yn,

den

ger

rei-

ens

heit

che

len,

welche Kohlenstoff enthalten, und dieser Wunsch war feit der Entdeckung der Jodine noch lebhafter geworden. Denn da die Jodine in Verbindung mit Wallerstoff eine Säure giebt, welche der gewöhnlichen Salzfäure fo ähnlich ift, dass man he eine Zeit lang für diese genommen hat, so wollte ich nachforschen, ob nicht vielleicht auch von dem Diamanten, während er verbrennt, irgend ein befonderer Körper getrennt werde, und ob das Gas. welches dabei entsteht, seiner chemischen Mischung nach wirklich genau dasselbe fey, als das, welches lich bei dem Verbrennen der gewöhnlichen Kohle erzeugt. Vor Kurzem ist dieser mein Wunsch erfüllt worden, und ich nehme mir jetzt die Ehre. der königl. Societät die Refultate mitzutheilen, auf welche mich meine Verfuche geführt haben.

Während meines Aufenthalts zu Florenz, am Ende des März und im Anfange des April dieses Jahrs (1814), habe ich mittellt desselben großen Brennglales, womit der Großherzog Gosmus von Toscana zum erlien Male die Wirkung des Sonnenlichtes auf den Diamanten erforscht hat, und welches sich noch auf dem dortigen naturhistorischen Museum befindet, Verbrennungs-Versuche mit Diamanten und mit Reissblei angestellt, bei denen mir der Director des Museum, Graf Bardi, und der Professor Gazzari hüssreich gewesen sind. Und später habe ich in Rom in dem Laboratorium der Akademie eine Reihe von Versuchen über das Verbrennen der verschiednen Arten von Kohle an-

gestellt, bei welchen die HH. Morichini und Barlocci, Professoren am Collegium der Sapienza, mir Hülfe geleistet haben.

Eine bisher, so viel ich weiss, unbekannte Thatfache, welche mir gleich bei den ersten Versuchen über das Verbrennen des Diamanten auffiel, fetzte mich in den Stand, mich eines fehr einfachen Apparats und Vefahrens zu bedienen, und Versuche, von denen man zu glauben pflegt, sie forderten mehrere Stunden anhaltenden Sonnenscheins, in wenigen Augenblicken auszuführen. Hat man nämlich den Diamant in einer durchlöcherten Platinschale, welche freien Lustzug zulässt, mittellt eines Brennglases einmal erst gehörig erhitzt, lo brennt er im Sauerstoffgas von selbst fort, auch wenn man ihn aus dem Brennpunct des Brennglases bringt. Das Licht, welches er dabei aussendet, ist fix, und so glänzend roth, dass man es felbit mitten in den Sonnenstrahlen lieht. Und es entbindet fich eine fo außerordentliche Hitze. dass in einem Versuch, in welchem ich Diamentfplitter verbrannte, welche zusammen 1,84 Grain wogen, ein Platindrath, mit dem sie an der Schale befestigt waren, schmelzte, und dieses erst nachdem die Diamanten aus dem Brennpuncte der Linse entfernt waren.

Mein Apparat besteht aus Kugeln von sehr dünnem Glase, die 14 bis 40 Kubikzoll sassen, und nur eine einzige Oeffnung haben, [Schuster-Kugeln?] an welcher ein Hahn angekittet ist. Ein d

d

e

1.

.

.

Œ

5

i

n

d

n

e

n

e

đ

kleiner hohler Platincylinder, dessen ich mich zo meinen Versuchen mit dem Löthrohr bediene, ist an dem einen Ende des Hahns befestigt, und darüber eine kleine durchlöcherte Platinschale so angebracht, dass sie die Diamanten in sich aufnehmen kann. Bei jedem Verfuch brachte ich den zu verbrennenden Körper in die Schale, pumpte dann die Kugel mittelst einer vortrefflichen Lustpumpe luftleer, und liefs reines Sauerstoffgas, das ich aus fogenanntem überoxygenirt - l'alzfaurem Kali entbunden hatte, in die Kugel hineinsteigen. Der Ballon wurde vor und nach dem Verfuche zu derfelben Temperatur gebracht, die das Wasser hatte, über welchem das Sauerstoffgas war aufgefangen worden; und da in der kurzen Zeit, die das Verbrennen dauerte, weder das Barometer noch das Thermometer ihren Stand merkbar andern konnten, fo waren keine Correctionen für Veränderungen des Luftdrucks und der Temperatur nöthig. Um die Raum-Veränderung zu mellen, welche das Gas bei dem Verbrennen erlitten haben konnte, schrob ich eine enge mit einem Hahn versehene Glasröhre auf das Hahnstück der Glaskugel, und schloss aus der Menge von Quecklilber, welche in diese Röhre hineintrat, auf die Größe der Absorption des Gas *);

^{*)} Unstreitig hatte die Rühre an ihrem offnen Ende eine Faffung mit 'einer Schraube, die sich auf das Hahnstück der Glaskugel ausschrauben ließ, und an dem andern Ende den Hahn, und dieser wurde unter Quecksilber geöffnet. Genauer hat der Leser dieses Verfahren in Herrn von Sauffure's interessanter Arbeit über den Stärkenzucker im vor. Bande dies. Annal. S. 129 beschrieben gefunden. G.

ein Verfahren, welches eine solche Genauigkeit giebt, dass die geringste Veränderung im Zustande des Gas durch dasselbe sogleich sichtbar wird.

Da die elastische Kraft des Wassers bei einerlei Temperatur immer dieselbe ist, so hätte, wenn Wasser in diesen Versuchen gebildet worden wäre, es sich nothwendig in Gestalt von Thau in der Glaskugel absetzen müssen; denn ich habe mich durch directe Versuche vergewissert, dals eine Menge von Feuchtigkeit, die durch eine für 100 Grain empfindliche Wage kaum noch gewogen werden kann, sich auf der glatten Obersläche des Glases sichtbar absetzt *).

Die Diamanten wurden jedes Mal bis zum Rothglühen erhitzt, ehe ich sie in die Schale brachte. Während sie verbrannten, wurde die Glaskugel kalt erhalten, durch Anbringung von Wasser senkrecht über der Schale, an dem heilsesten Theile der Kugel.

Bei dem ersten Versuche wurden drei Diamanten, die zusammen 1,63 Grain wogen, in einer mehr als drei Mal so großen Menge Sauerstoffgas verbrannt, als nöthig war, um sie ganz zu verzehren. Als das Verbrennen angesangen hatte, dauerte

^{*)} Ich brachte ein Stückchen Papier, welches r Grain wog, in eine Glasröhre von ungefähr 4 Kubikzoll Inhalt, und erhitzte den untern Theil der Röhre ein wenig über einer Lichtslamme; fogleich erschien an der inneren Seire des obern Theils ein leichter Thau, das Papier aber, als ich es heraus nahm und auf der erwähnten Wage wog, schien gar nichts an Gewicht verloren zu haben. Davy.

it

le

ei

n

e,

er

ch

ge

in

en

es

m

te.

alt

ht

er

n-

er

33

h-

rte

og,

er-

ner

des

ien

es fort, ohne dass es des Brennglases weiter bedurfte, bis von den Diamanten nichts mehr übrig war, als ein fehr dünnes Stück des größten, welches die Schale unmittelbar berührt hatte; und auch dieses verschwand schnell, als wir den Brennpunct der Brennlinse darauf fallen ließen. Nachdem die Glaskugelauf ihre anfängliche Temperatur zurückgebracht worden war, fand lich in ihr ein wenig Feuchtigkeit abgesetzt; der Raum des Gas hatte lich aber nur um as Grainmaal's Quecklilber vermindert. Der Platin-Cylinder war bei diesem Verluche mittelt eines kleinen durchbohrten Korkes an dem Hahn befestigt gewesen, und bedenkt man, wie höchlt gering diese Verminderung des Gasvolums ist, so wird es sehr wahrscheinlich, dass die Feuchtigkeit, welche erschien, von Wasserdämpfen herrührte, die während des Verbrennens von dem Korke aufgestiegen waren. Der folgende Versuch bewies die Wahrheit dieser Vermuthung.

Zu dem zweiten Versuche nahm ich 1,84 Grain Diamant, und eine Glaskugel von 7,49 Kub. Zoll Inhalt. Bald nachdem die Schale in den Brennpunct des Brennglases gebracht war, brannen die Diamanten mit hellem Glanze, bis sie an Größe bedeutend vermindert waren; dann aber nahm die Hestigkeit des Verbrennens immer mehr ab, und hörte ganz auf, noch ehe die Diamanten sich um die Hälste verkleinert zu haben schienen. Ich schüttelte die Glaskugel, so dass andere Flächen der Diamanten oben zu liegen kamen, und setzte

fie zum zweiten Mal in den Brennpunct der Linse; fie brannten zwar aus neue, aber weit weniger lebhaft und weit kürzere Zeit über. So brachte ich sie ein drittes, ein viertes und ein fünstes Mal wieder in den Brennpunct; nach dem vierten Male aber schienen sie nicht mehr fähig zu seyn zu brennen, und schienen sich nicht weiter zu vermindern, obgleich ich sie einige Minuten lang in dem Brennpuncte ließ. Es blieben zwei Stückchen übrig, welche, wie sich nachher fand, 0,52 Grain wogen. Das Barometer stand während des Versuchs auf 29,9 Zoll, das Thermométer auf 56° F.

Es zeigte fich in der Glaskugel, als sie auf die ansängliche Temperatur zurückgekommen war, auch nicht eine Spur von Dunst oder Feuchtigkeit; sie war im Innern so hell und klar als vor dem Versuch. Eben so wenig fand sich in der Schale irgend ein sester Körper, der sich abgeschieden hätte. Die übriggebliebnen Diamant-Stückehen waren nicht schwarz, hatten aber ihren Glanz verloren und glichen von Flussfaure angegriffenem Glase; auch hatten sie während der ganzen Zeit des Verbrennens nie wie Kohle ausgesehn. Als ich die Maassröhre aufgeschroben und sie durch Oeffnen des Hahns mit dem Quecksilber in freie Gemeinschaft gebracht hatte, drangen nicht mehr als 7½ Grain Quecksilber hinein.

Ich brachte einen Theil des Gas, womit die Glaskugel jetzt angefüllt war, in zwei Röhren über die Queckfilberwanne. In der einen Röhre schüttelte ich es mit Kalkwasser, wobei von 10 Maals 7. Maafs verschluckt wurden. Der Rückstand unterhielt das Verbrennen mit Lebhaftigkeit, und wurde von Salpetergas vermindert; da ich aber verfäumt hatte, die Reinheit des Sauerstoffgas vor dem Versuche zu bestimmen, so war es nicht möglich auszumachen, ob nicht irgend ein elastischer Körper während des Verbrennens erzeugt worden war; und dieses machte einen dritten Versuch nüthig. In der andern Röhre ließ ich Phosphor in dem Gas langfam verbrennen; wobei von 3,5 Maafs Gas 2.5 Maals Rückstand blieben, die mit mehreren Reagentien behandelt alle physikalische und chemische Eigenschaften des kohlensauren Gas zeigten. Kalium über Queckliber stark darin erhitzt, verbrannte mit matter rother Flamme, und bildete ein alkalisches Product, das dieselbe sehwarze Farbe hatte, als das, welches durch Einwirkung des Kalium auf kohlenfaures Gas, das aus Marmor entbunden worden, entsteht. Destillirtes Wasser verschluckte davon weniger als seinen eignen Raum, und wurde dadurch ein wenig fauerlich, füllte fich beim Schütteln mit Blasen, schmeckte und roch wie eine Auflöfung von kohlenfaurem Gas in Waffer, fällte das Kalkwasser auf eben die Art wie dieses Gas, und löste den Niederschlag, in Uebermaass zugeletzt, wieder auf.

e

,

8

-

8

ft

n

e

75

t-

Um zu prüfen, ob dieser Niederschlag genau se wie der kohlensaure Kalk zusammengesetzt sey, und mir zu dem Ende hinlänglich viel davon zu ver-

schaffen, brachte ich Kalkwasser in den Recipienten, der die Producte des ersten Versuchs enthielt, fammelte und trocknete den Niederschlag bei 2120 F. Wärme, und brachte davon eine zerstolsne und gewogne Menge, in ein Platinblättchen gewickelt, in eine Röhre voll Quecklilber, die über der Queckfilberwanne stand. Auf dielelbe Weile verfuhr ich mit einer gleichen Menge Carrarischen Marmor in einer andern Röhre. Mit beiden brachte ich in den Röhren gleiche Mengen verdünnter Salzläure in Berührung. Der Carrarische Marmor gab hierbei etwas mehr Gas, als der mit dem Diamanten hervorgebrachte kohlenfaure Kalk; beim Unterfuchen des Platinblättchen nach dem Verluche fand fich aber, dass ein wenig dieses kohlensauren Kalks nicht zersetzt worden war. Ich wiederholte daher den Verfuch noch zwei Mal, wickelte aber das Pulver in Löschblatt statt in Platinblättchen, und nun bewielen die Verluche, dals beide Pulver genau gleiche Mengen Kohlenfäure in sich schlossen.

Ich schüttete ein wenig von dem mit Diamant bereiteten kohlenfauren Kalk in einer Röhre auf Kalium, und trieb dieses durch Erhitzen dampsförmig durch ihn hindurch. Es ersolgte Entzündung (ignition) und Bildung eines schwarzen Körpers, den verdünnte Salzfäure angriff, unter Zurücklassen eines seinen schwarzen Pulvers, das wie Kienruss brannte, und auf geschmolzenen Salpeter geworsen Funken warf und verschwand, wie Kohlenpulver.

t.

.

d

t,

.

h

n

n

e

-

n

d

5

r

D

Lä.

t

f

In dem dritten Versuche that ich einen kleinen Dismanten, der 0,03 Grain wog, in die Platinschale, brachte diese in eine mit Wasser angefüllte und gesperrte Glaskugel, und ließ von Sauerstoffgas, welches den letzten Autheil ausmachte. der beim Zersetzen des überoxygenirt-salzsauren Kali übergegangen war, so viel hinzusteigen, dals der Spiegel des Wassers bis unter die Schale lank. Kaum fiel der Brennpunct des Brennglases auf die Schale, fo waren auch der Diamant und fie schon trocken, und gleich darauf fing der Diamant an zu verbrennen und brannte wie gewöhnlich fort. Nachdem das Verbrennen zu Ende war, ließ ich das kohlenfaure Gas von Kalkwalfer einschlürfen. und stellte dann mit dem Gasrückstande, der ungefähr & des anfänglichen Sauerstoffgas betrug, und mit eben so viel Sauerstoffgas von dem, womit die Glaskugel gefüllt worden war, vergleichende Verfuche an. Zwei Maafs Salpetergas gaben zwar mit 1 Maals des Gasrückstandes eine Raumverminderung, welche um 1 oder 2 Hundertel weniger betrug, als mit i Maass des anfänglichen Sauerstoffgas; so kleine Verschiedenheiten waren aber unvermeidlich, und konnten schon von der atmosphärischen Luft herrühren, welche das kohlensaure Gas in geringer Menge aus dem Wasser und dem Kalkwasser, von denen es verschluckt wird, austreibt.

In diesem letztern Versuche blieb ein kleines Stück Diament unverbrannt. Es hatte dasselbe. Aussehn, als die unverbrannten Stückchen in dem weiten Versuche, und die Farbe desselben, welche ursprünglich gelb war, wurde dunkler. In keinem dieser Versuche zeigte sich die mindeste Spur von Verkohlung, wenn das Verbrennen wegen Unreinheit des Gas aushörte; die Diamanten waren indess von verschiednen Farben und hatten nicht einerlei Glanz.

Auf dieselbe Art, wie mit den Diamanten in den beiden ersten Fällen, habe ich dielen Verluch mit Reifsblei von Borrowdale in Cumberland angestellt. Von diesem Reisblei wurden 2 Grain, nachdem sie zuvor waren geglüht worden, in die Platinschale, und diese in eine Glaskugel gebracht, welche 81 Kub. Zoll Sauerstoffgas enthielt. Es verbrannte nicht ganz die Hälfte des Reissbleis, und es entstand etwas bräunliche Asche. Während des Brennens verdunkelte fich das Gas, und es setzte fich eine bedeutende Menge Feuchtigkeit an der innern Wand der Kugel ab. Als die Kugel auf ihre vorige Temperatur zurückgekommen war und der Hahn über Queckfilber geöffnet wurde, drangen 96,6 Grain Queckfilber hinein, und an den Wänden der Kugel zeigten sich Wassertropfen,

Ich habe ferner diese Versuche wiederholt mit 3 Grain durch Einwirkung von Schwefelsaure auf Terpentinöhl gebildeter Kohle, mit 2,5 Grain während der Bildung von Schwefel-Aether entstandener Kohle, über welche Salpetersäure destillirt und die dann stark erhitzt worden war, und endlich mit 5 Grain Eichenkohle, welche dieselbe Be-

he

m

on

n-

· Cs

ei

in

ch

n-

n,

ie

ıt,

r-

ıd

es

te

er

re

75

n

1-

it

if

-

-

t

-

handlung erlitten hatte. Bei jeder dieler drei Verbrennungen verdunkelte sich das Gas, und es zeigte fich verdichtete Feuchtigkeit im Innern der Kugel, als die Glaskugel auf ihre anfängliche Temperatur zurückgekommen war; die mehrste bei dem Verluch mit Eichenkohle, die wenigste bei dem mit Terpentinöhl-Kohle. Die Eichenkohle gab eine weilse Alche, welche großentheils aus kohlenfaurem Kalk bestand; die Terpentinöhl-Kohle liess gar keinen Rückstand, die Alkoholkohle aber gab ein wenig Asche, welche wahrscheinlich von Unreinigkeiten der Schwefelfaure herrührte, mit der der Aether bereitet worden war. Und bei diesen drei Verluchen drangen, als die auf der Glaskugel aufgeschraubte Röhre nach dem Abkühlen über Queckfilber geöffnet wurde, folgende Mengen von Queckfilber hinein:

Es scheint aus diesen verschiedenen Versuchen das Resultat bestimmt hervorzugehn, dass beim Verbrennen des Diamanten kein andres Product als reines kohlensaures Gas entsteht, und dass dieser ganze Process bei dem Diamanten lediglich in einem Auslösen desselben in Sauerstoffgas, ohne alle Veränderung des Raums dieses Gas besteht. Denn in dem zweiten Versuche drang so wenig Quecksiber in die Glaskugel, dass sich dieses Eindringen für ein bloses Ersetzen des Raumes nehmen ließ,

welchen die verbrannten Diamanten eingenommen hatten.

Eben fo offenbar ift es. dass beim Verbrennen der verschiedenen Arten von Kohlen Wasser erzeugt wurde. Und da fich in diesen Fällen der Raum des Gas jedesmal bedeutend verminderte. To haben wir elle Urlache zu glauben, dass dieses Wasser, welches erschien, durch das Verbrennen von Wasserstoff, den die Kohle als Bestandtheil enthält, erzeugt worden fev. Die Verfuche, welche ich in meiner dritten Baker'schen Vorlesung beschrieben, und auf die ich hier schon verwiesen habe, beweilen die Gegenwart des Wasserstoffs in der gemeinen Kohle. Und da beim Verbrennen der Terpentinöhl-Kohle keine Asche zurückbleibt. to last lich keine andere Ursache der Raum-Verminderung, welche das Gas während des Verbrennens derfelben erleidet, annehmen, als Gegenwart von Wallerstoff in ihr.

Schon Hr. Guyton - Morveau hat gefunden, dass beim Verbrennen des Reissbleies von Keswich Wasser erscheint, und es ist nach leinen Versuchen wahrscheinlich, dass dieses Wasser während des Processes des Verbrennens gebildet wird; denn dass Wasser in dem Reissblei in der Rothglühehitze zurückbleiben könne, hat keine Wahrscheinlichkeit. Ueberdem habe ich bei meinen Versuchen über das Verbrennen des Reissbleis durch Voltasche Electricität, welche ich vor mehrern Jahren angestellt und beschrieben habe, nie gesehn,

oen

nen

er-

der

rte,

eles

nen

nt-

che

be-

len

in

nen

ibt,

er-

en-

art

un-

on

nen

äh-

rd:

he-

in-

erreli

ern

hn.

das dabei Feuchtigkeit abgesondert oder irgend ein Gas erzeugt worden sey. Es ist daher sehr wahrscheinlich, dass das Reissblei Wasserstoff innig gebunden enthält. Denn dass darin Wasser am Eisenoxyde gebunden vorhanden sey, lässt sich nicht annenmen, weil es sonst an einem Grunde sehlte, aus dem sich die Verminderung des Raums des Gas während des Verbrennens erklären ließe, und weil alle Analogieen für die Hypothese sprechen, dass das Eisen im Reissblei den metallischen Zustand hat.

Diese allgemeinen Resultate meiner Versuche widersprechen der Meinung, dass die gewöhnliche Kohle lich von dem Diamanten durch einen Antheil Sauerstoff unterscheide; denn wenn diesem so ware, so müste sich beim Verbrennen der Raum des Sauerstoffgas nicht vermindern, sondern vermehren. Eben so wenig günstig sind sie der Annahme, dass der Diamant Sauerstoff enthalte; denn die Mengen des kohlensauren Gas, welche sich beim Verbrennen des Diamanten und der Kohle erzeugen, find nicht um mehr verschieden, als sie vermöge der Walferbildung feyn müllen, die beim Verbrennen der gewöhnlichen Kohle Statt findet; und die Erscheinungen, welche sich beim Einwirken von Kalium auf den Diamanten zeigten, lassen sich aus andern Umständen leicht erklären *).

^{*)} Ich habe nämlich in meiner Baker'schen Vorlesung vom J. 1808 nachgewiesen, dass Kalium, welches in Berührung mit Gas erhitst wird, die Kieselerde des Glases zersetzt. Werden aber zwei gleiche Mengen Kalium in zwei Glas-

Aus dem viel lockerern Gewebe der Kohle und aus ihrem Gehalt an Wasserstoff erklärt es sich, warum sie leichter entzündlich ist, als der Diamant. Der Diamant brennt aber im Sauerstoffgas eben so leicht als das Reisblei, so das wenigstens eine der Verschiedenheiten, welche man zwischen Diamant und gewöhnlichem Kohlenstoff anzugeben psiegt, durch diese Untersuchungen ausgehoben wird.

Schon vor geraumer Zeit hatte ich wahrgepommen, dass ein Diamant schwarz wird, wenn Kaliumdämpfe lange auf ihn einwirken, und hatte darauf die Vermuthung gegründet, dass die Farbe, die Undurchlichtigkeit und das electrische Leitungsvermögen der gewöhnlichen Kohle von der kleinen Menge Metall, Alkali und Erde herrühre, welche lie enthält; und dass die Farbe und Undurchsichtigkeit des Reissbleies eben so seinem Gehalt an Eisen zuzuschreiben sey. Da sich nun aber findet, dass Terpentinöhl-Kohle, ohne irgend einen festen Rückstand zu lassen, verbrennt, und so auch der Kohlenstoff, welcher durch Chlorine aus Kohlen-Wasserstoffgas [öhlerzeugendem Gas] niedergeschlagen worden, so sehe ich mich genöthigt, diese Meinung aufzugeben.

Die einzige chemische Verschiedenheit, welche sich zwischen dem Diamant und der reinsten Kohle ausfinden lässt, ist, das diese eine geringe Menge

röhren, die eine in Berührung mit Diamanten, die andre allein, lange Zeit erhitzt, so mus jene Menge auf eine größere Glassläche wirken, ale diese.

Walferstoff enthält. Sollte aber ein Bestandtheil, der in manchen Fällen nicht 30000 des ganzen Gewichts des Körpers beträgt, eine so bedeutende Verschiedenheit in den physikalischen und chemischen Eigenschaften desselben hervorbringen können? Wäre dieses auch möglich, so widerspricht es doch der Analogie, und ich bin daher mehr geneigt, der Meinung des Hrn. Tennant beizutreten, der die Verschiedenheit dieser beiden Körper der Krystallisation des Diamants zuschreibt. Die felten und durchlichtigen Körper find im Allgemeinen nur schlechte Leiter der Electricität, und es ist wahrscheinlich, dass dieselben Anordnungen der Theilchen, welche der Materie das Vermögen geben, das Licht hindurchzulassen und zu polarisiren, mit dem electrischen Verhalten der Körper in Verbindung stehn. Das Wasser, die Alkali-Hydrate und viele andere Körper, welche im flüsligen Zu. siande Leiter der Electricität sind, werden in ihrem krystallisirten Zustande zu Nicht-Leitern.

t

,

e

r

Das Vermögen, welches einige Kohlen besitzen, die Gasarten zu verschlucken, und von tropsbaren Flüssigkeiten die färbenden Materien zu trennen, ist wahrscheinlich ein mechanisches Vermögen, welches von ihrer porösen Natur abhängt; denn die thierischen und vegetabilischen Kohlen besitzen es in einem hohen Grade, es mangelt aber dem Reisblei, und der Kohlenblende oder dem Anthracit.

Was das Mischungs-Verhältnis der Kohlenfäure betrifft, so lassen sich über sie aus meinen Versuchen dieselben Folgerungen als aus denen der
Herren Allen und Pepys ziehn. Gründet
man die Rechnungen auf den Unterschied des
Gewichts des Sauerstoffgas und des kohlensauren
Gas, welches das genauste Versahren zu seyn
scheint, und nimmt die specifischen Gewichte der
beiden Gasarten so, wie die Herren Biot und
Arago sie gefunden haben, so wird die Kohlensauerstoff, also 2 bestimmte Proportionen, und 11,3 Theile Kohlenstoff, also 1 bestimmte Proportion enthalten *).

Nehmen wir an, daß die Raumverminderung, welche das Sauerstoffgas bei den Versuchen mit der gewöhnlichen Kohle erlitt, lediglich daher rührte, daß sich beim Verbrennen derselben Wafser bildete, so lässt sich daraus ihr Gehalt an

[&]quot;) Da der Raum des Sauerstoffgas nicht verändert wird, wenn es sich in kohlensaures Gas verwandelt, und nach den HH. Biot und Arago das specis Gewicht des erstern 1,10359 und das des letztern 1,51961 ist, so bestehn dem Gewichte nach 1,51961 Theile Kohlensaure aus 1,10359 Theilen Sauerstoff und 0,41602 Theilen Kohlenstoff, also Gewichtstheile Kohlensaure aus 72,62 Theilen Sauerstoff und 28,38 Theilen Kohlenstoff und auf 30 Theile Sauerstoff kommen 11,31 Theile Kohlenstoff Die Proportiouszahl des Sauerstoffs setzt aber Hr. Davy auf 15, nicht auf 7,5, die des Wasserstoffs 1 gesetzt (vergl. den vorigen Band dieser Annalen S. 270); und nach Dalton besteht die Kohlensaure aus 2 Atomen Sauerstoff und 1 Atom Kohlenstoff (Annal. B. 46. S. 263).

.

r

t

5

n

n

r

d

-

-

it

7

[-

n

d,

'n

9

6

le o-

5,

n

1

Wasserstoff leicht berechnen. Bei dem Versuche mit dem Reissblei hat aber wahrscheinlich die Oxydirung des Eisens Antheil an der Verminderung des Sauerstoffgas. Da es nicht gewiss ist, dass die Asche, welche die Pslanzenkohlen beim Verbrennen zurücklallen, sich in diesen Kohlen im Zustande von Erden oder Alkalien fund nicht in dem von Metall] befinden, und da die Menge des Wasserstoffs, welchen diese Kohlen schon hergegeben hatten, nach dem Grade der Hitze verschieden seyn mulste, dem man sie ausgesetzt hatte; so würde es unnütz seyn, zu verluchen, die Menge des Wasserstoffs der Kohle in jedem einzelnen dieser Verluche durch Rechnung nachzuweisen, besonders da selbst die größte Menge desselben nur fehr gering ist.

Es läst sich noch durch ein anderes Mittel nachweisen, worin die eigentliche Natur der chemischen Verschiedenheit des Diamants und der kohlenartigen Körper besteht; nämlich durch das Glühen derselben in Chlorine. Erhitzt man gut gebrannte gewöhnliche Kohle oder Reisblei aus Cumberland stark in Chlorine, so zeigen sich unmittelbar weise Dämpse, welche durch Bildung von salzsaurem Gas mittelst ihres Wasserlichs entstehn. Der Diamant zeigt dagegen keine ähnliche Wirkung. Ich habe einen kleinen Diamanten, der 0,45 Grain wog, in Chlorinegas mittelst des großen Brennglases des Museums zu

Florenz über eine halbe Stunde lang im heftigflen Glühen erhalten; das Gas litt aber keine Veränderung, der Diamant verlor nichts an Gewicht, und fein Ansehn veränderte sich nicht im Mindesten.

Kohle, welche in Chlorine in heftigem Glühen erhalten worden ist, findet sich dadurch weder in ihrem electrischen Leitungsvermögen, noch in ihrer Farbe verändert. Dieser Umstand begünstigt die Meinung, dass die geringe Menge von Wasserstoff, welche jede Kohle enthält, nicht die Ursache der großen Verschiedenheit seyn kann, die zwischen den physikalischen Eigenschaften des Diaments und der Kohle Statt findet.

II.

a

t

Versuche über das Brechungs-Vermögen der stüssigen und der sesten Körper mittelst neuer Vorrichtungen,

von

DAVID BREWSTER, LL. D., Mitgl. d. Edinb. Gef. d. Wiff.

Frei übersetzt von Gilbert *).

Untersuchungen der physikalischen Eigenschaften der Körper gehören zu den interessanteiten in der Naturlehre. Bis jetzt hatte man sich indes vorzüglich nur mit den mechanischen und chemischen Eigenschaften undurchsichtiger Körper beschäftigt; erst seit einigen Jahren hat man die Kräfte durchsichtiger Körper, die Lichtstrahlen zu brechen und zu zerstreuen, wieder ernstlicher untersucht, und wenn gleich damit die Verbesserung der optischen Werkzeuge in wesentlichem Zusammenhange steht, so ist dieser Theil der Physik doch immer noch in der Kindheit. Ich glaube daher, das jeder Verfuch, unsere Kenntnisse über das Brechungs- und

^{*)} Aus seiner Treatife on new philos: Instrum. for various purposes in the arts and sc., with exp. on light and colours, Edinb. 1813. B. 4. K. 2., einem Werke voll neuer und interessanter optischer Thatsachen. Gitb.

das Zerstreuungs - Vermögen der Körper zu berichtigen und zu erweitern, die besondere Ausmerksamkeit der Physiker und der Chemiker verdiene.

Aeltere Methoden und Verfuche.

Um das Brechungs - Vermögen eines durchlichtigen Körpers zu messen, hat man sich mehrentheils folgender Methode bedient. Man bildete aus ihm ein Prisma, und maass die Ablenkung, welche ein Sonnenstrahl von seiner anfänglichen Richtung erlitt, wenn er durch zwei Seitenflächen dieles Prisma hindurchging. Das Prisma wurde langfam um eine den Kanten desselben parallele Axe gedreht, bis der gebrochne Strahl unverrückt stehn blieb, indem dann seine Bewegung aus einer Richtung in die entgegengeletzte fz. B. aus der aufwärts in die herabwärts bei dem Drehen] überging. In dieser Lage machen bekanntlich die einfallenden und die ausfallenden Strahlen gleiche Winkel, jene mit der vordern, diese mit der hintern Fläche des Prisma; und hat man in ihr die Ablenkung des Sonnenstrahls genau gemessen, und kennt den brechenden Winkel des Prisma gleichfalls genau, so findet fich das Verhältnis, worin die Sinusse des Einfallswinkels und des gebrochnen Winkels zu einander stehn, durch eine einfache Rechnung. Um aber die Ablenkung des Strahls genau messen zu können, brachte Newton das Prisma an einem Quadranten an, und beobachtete den Winkel, den die am wenigsten brechbaren Strahlen [die rothen] mit dem Horizonte machten; und aus diesem Winkel und des zugleich beobachteten Sonnenhöhe ergab sich der Brechungswinkel, und folglich auch das Verhältniss der Sinusse des Einfalls- und des Brechungs-Winkels für die Strahlen von mittlerer Brechbarkeit.

Euler hat ein anderes Verfahren empfohlen, das Brechungs-Vermögen durchlichtiger Flüsligkeiten zu bestimmen: Man foll sie zwischen zwei große Glasmenisken einschließen, und beobachten, um wie viel die Brennweite der so zusammengesetzten Linse durch die verschiedenen convexen Linsen verändert wird, zu welchen sich die eingeschlosnen Flüsligkeiten gestalten. Kennt man die Krümmungen der Oberflächen der Menisken, und das Brechungs-Vermögen des Glases, aus dem sie beliehen, so lassen sich die brechenden Kräfte der eingeschlosnen Flülligkeiten leicht ausmitteln. Diese Methode wurde durch seinen Sohn Albert Euler in Ausführung gebracht, welcher sie aber nur auf fehr wenige Flüsligkeiten anwendete, und kein bemerkenswerthes Refultat fand.

1

Diese beiden Methoden geben zwar hinlängliche Genauigkeit bei durchsichtigen Flüssigkeiten, lassen sich aber nicht auf eine Menge zäher und harter, halb durchsichtiger Körper, auch nicht auf Flüssigkeiten anwenden, welche eine so unvollkomme Flüssigkeit besitzen, als das Steinöhl, der peruanische Balsam, der Schwefel-Balsam u. f. f.

Vor Kurzem hat der Dr. Wollasson eine dritte, neue und elegante Methode bekannt ge-

macht, die brechenden Kräfte durch prismatische Zurückwerfung zu unterluchen, und hat mittelst derfelben den Exponenten des Brechungs-Verhältnisses von mehr als 50 verschiednen Körpern bestimmt *). Ihn führte auf lie Newton's Gebrauch eines Prisma flatt des kleinen Planspiegels in seinem Telefkope, und er felbst fagt von ihr Folgendes: "Unter einem gewissen Einfallswinkel verwandelt fich die Brechung, welche aus Glas in Luft im Innern des Prisma vor lich geht, ganz in Zurlickwerfung: die Grüße dieses Winkels hängt nicht blos von dem Brechungs-Vermögen des Prisma, fondern auch von dem des daran gränzenden durchlichtigen Mittels ab. lo dals, wenn das Brechungs-Vermögen der Materie des Prisma bekannt ist, sich das jedes dünneren durchsichtigen Mittels aus dem Winkel finden läset. bei welchem das Licht von dem Prisma an der Stelle zurückgeworfen zu werden beginnt, wo es mit dielem Mittel in Berührung ift. Legt man g. B. unter ein Prisma aus Flintglas irgend einen Körper und lälst zwischen beiden eine Luftschicht, so ist der Einfallswinkel, unter welchem Licht-Itrahlen ganz zurückgeworfen werden und der Körper durch Brechung fichtbar zu seyn aufhört, ungefähr 30° 10'; hat man dagegen den Körper in Wasser getaucht und mit der Glassläche in Berührung gebracht, so bleibt er, vermüge der stärkern brechenden Kraft des Wallers, fichtbar, bis der Einfallswinkel auf 571° fleigt. Noch größer ist

[&]quot;) Diele Annalen Neue Folge B. t. S. 235.

diefer Winkel, wenn man irgend ein Oehl oder einen Harzkitt zwischen dem Körper und das Prisms bringt; und durch einen Kitt, der stärker als das Glas das Licht bricht, bleibt der Körper unter jedem Einfallswinkel fichtbar. Flüslige oder schmelzbare Körper in unmittelbare Berührung mit der Glassliche zu bringen, hat keine Schwierigkeit; bei festen Körpern lässt sich aber (auch wenn man fie völlig eben gemacht hat) eine genaue Berührung mit dem Prisma nicht anders hervorbringen, als wenn man zwischen beide eine Flüssigkeit oder einen Kitt bringt, und diese müssen ein grö-Iseres Brechungs - Vermögen als das zu unterfuchende Mittel haben. Da die beiden Oberflächen einer solchen Zwischenlage zwischen zwei ebeneu Flächen parallel find, fo verändert die Zwifchenlage die Ablenkung eines Lichtstrahls, der durch sie hindurchgeht, im Ganzen nicht, und sie lässt fich daher anwenden, ohne dals man Gefahr läuft. durch fie in Irrthum geführt zu werden."

Der Dr. Wollaston hat diesem Princip gemäs ein sinnreiches, äuserst einfaches Instrument angegeben, über dessen Genauigkeit ich aber nicht urtheilen kann, da ich es nicht untersucht habe. Indess bemerkt Dr. Thomas Young, ein sehr gültiger Richter, dass Wollaston's Zahlen genau genommen von den rothen Strahlen gelten; und ist das der Fall, so müsten alle seine Messungen der Brechungs-Vermögen um die Hälste des Zerstreuungswinkels vergrößert werden; und dieser

Winkel läßt fich nicht eher finden, als bis der Exponent des Brechungs - Verhältnisses bekannt ift. Doch auch abgesehn von diesem Einwurf, so scheint es, das Princip der prismatilichen Zurückwerfung fey in der Anwendung durch irgend eine Quelle von Irrthum getrübt worden, gegen welche Dr. Wollaston sich nicht gehörig verwahrt hat; eine Vermuthung, zu der mich die außerordentlichen Abweichungen mehrerer seiner Bestimmungen von den meinigen berechtigen, welche fich nicht Ungenauigkeiten im Beobachten, und noch weniger einer Verschiedenheit in der Beschaffenheit der Körper selbst, zuschreiben lassen. So z. B. stellt Dr. Wollaston in der Reihe der Brechungs-Vermögen Pech unter Saffafrasöhl, und felbst unter Radcliff's Crown-Glas, indess es nach meinen Verfuchen fehr weit über Salfafrasöhl steht. Ich bin hierdurch veranlasst worden, die Versuche mit ver-Schiednen Arten von Sassafrasöhl und von Pech zu wiederholen, erhielt aber immer dasselbe Resultat. Den Brechungs - Exponent des Phosphors bestimmt Dr. Wollaston auf 1,579, und kleiner als für Horn und Flintglas; ich habe aber das Brechungs-Vermögen dieses Körpers mit besonderer Sorgfalt unterfucht, und es größer als das aller andern Körper gefunden, die von mir nach dieser Methode geprüft worden find. Der Phosphor steht in Hinsicht des Brechungs-Vermögens zwischen dem Schwefel und dem Diamant, wie fich aus feiner großen Verbrennlichkeit schon voraus vermuthen ließt Ich

werde in meinen Bemerkungen über die folgende Tafel der Brechungs-Vermögen Gelegenheit haben, auf diesen Gegenstand zurück zu kommen, und noch andre Fälle nachzuweisen, in welchen Dr. Wollaston's Messungen irrig zu seyn scheinen.

L

ıt

g e

r.

n

.

۲.

n

-

.

n

.

u

i.

t

n

-

-

r

t

8

Mich mit dem Brechungs-Vermögen der Körper zu beschäftigen, bin ich zunächst dadurch veranlasst worden, dass ich ein Fernrohr zu Stande zu bringen suchte, mit dem man Gegenstände am Boden des Meeres, oder die unter einer andern Flüsligkeit liegen, deutlich und vergrößert sehn kann *). Die Brennweite des Objectivglases eines lolchen Fernrohrs verändert fich mit dem Brechungs-Vermögen der Flüsligkeit, in welche es getaucht wird. Nimmt man ein zulammengeletztes Mikro-Ikop, in welchem bekanntlich das Bild immer in einerlei Abstand hinter der Objectivlinse entsteht. und taucht das Object und die Objectivlinse in die Flüssigkeit, so muss die Entsernung beider von einander, oder die Grüße des Bildes, mit einem Mikrometer gemessen, ebenfalls ein Maals für das Brechungs-Vermögen der Flüssigkeit abgeben. versah diesem gemäß ein zusammengesetztes Mikro-Ikop mit einem Apparate, wie er fich hierzu schickt, legte den Gegenstand auf den Boden eines Glasgefälses, gofs in dieles die zu unterluchende Flüsfigkeit, und tauchte die äußere Oberfläche der Objectivlinse des Mikroskops in die Flüsligkeit. Der

^{*)} Von diefem Fernrohre handelt der nachft folg. Auffatz. G.

Abstand, in welchen ich den Gegenstand und die Objectivlinse von einander bringen mulste, um ihn völlig scharf zu sehn, gaben mir ein relatives, und eine kleine Rechnung das absolute Mans des Brechungs - Vermögens der Flüssigkeit. Nachdem ich eine Menge folcher Verluche angestellt hatte. fand lich, dass dieses Princip von einer zu eingeschränkten Anwendung ist, daß es bei einer Flüsligkeit von großem Brechungs - Vermögen eine zu große Tiefe des Gefässes erfordert, und dass sich das Verfahren auf unvollkommen - durchlichtige Flüsligkeiten und auf weiche feste Körper, wie Gummi und Harze, gar nicht anwenden läßt. Ich gab es daher gänzlich auf, und erwählte die Methode, welche ich nun umständlicher beschreiben will.

i

1

(

1

c

5 0

k

a

I

P

g

D

d

L

fi

W

ab

2.

Eigne Untersuchungen über das Brechungs-Vermögen stüssiger und weicher Körper.

Die Vorrichtung, deren ich mich zu diesen Untersuchungen bedient habe, sieht man abgebildet auf Tas. I in Fig. 1. MN stellt das Ende eines zusammengesetzten Mikroskops vor, an welches die Objectivlinse angeschroben wird. Hier ist ein dünnes Planglas a mit parallelen Flächen senkrecht auf der Axe mP des Instrumentes besestigt, und vor demselben läst sich auf das Stück MN die kleine messingne Röhre ABCD, an deren Ende eine biconvexe Linse, b, von gleichen Halbmessern besestigt

ie

D

d

EB

m

e.

8-

9-

u

h

e

ie

h

9-

1-

n

1-

28

ie

1-

af.

10

.

i-

32

ist, so aufschrauben, dass ihre Axe mit der des Mikrolkops zulammen fällt, und dals man ihre Hinterfläche mit dem Planglale a in Berührung bringen oder in beliebigen kleinen Entfernungen von ihr feltstellen kann. Unmittelbar hinter der Linse b befinden fich in den Wänden des Rohrs ABCD zwei Löcher, durch welche sich eine Flüssigkeit oder ein kleines Stückchen eines festen Kürpers in den Raum zwischen der Linse und dem Planglase hineinbringen lälst. Eine Flüssigkeit füllt dielen Raum in Gestalt einer plan-concaven Linse aus, deren Dicke lich bis zu jeder angeblichen Größe vermindern last, wenn man die Linse b näher an das Planglas heranschraubt, Weiche, unvollkommendurchlichtige Körper werden, wenn man die Schraube mit Gewalt anzieht, durch die Kraft derselben ebenfalls zu einer planconcaven Linse ge-Staltet, die in ihrer Mitte lo dünn ist, das sie vollkommen durchlichtig wird. Ich habe auf diese Art aus Gummi Aloe, Pech, Opium, Affa foetida, Drachenblut, Kautschuk und mehrern andern Körpern, durch welche das Licht noch nie regelmälsig gebrochen worden war, Hohllinsen von vollkommper Durchlichtigkeit erhalten.

Die so gebildete planconcave Linse vergrößert durch ihre Brechung die Brennweite der convexen Linse b, und macht, dass das Bild eines in m befindlichen Gegenstandes, das zuvor in P entstanden war, jetzt dem Ocularglase QR näher liegt. Nun aber sind alle drei Linsen, QR, LL und b, so be-

festigt, dass sich ihr Abstand von einander nicht verändern lässt; folglich muss der Gegenstand aus m weiter von der Objectivlinse ab gerückt werden, nach n zu, um ein deutliches Bild in R, dem Brennpuncte des Oculars P, zu machen, und zwar desto weiter ab, je größer das Brechungs-Vermögen des stüssigen oder weichen Körpers ilt, den man zwischen a und b gebracht hat. Werden folglich die Entsernungen bm und bn mit Genauigkeit gemelsen, so geben sie den relativen, und durch eine einsache Rechnung den absoluten Werth des Brechungs-Vermögens des eingeschlossenen Körpers.

Bei den folgenden Verluchen dienten mir als Gegenstand, den ich durch das Mikrolkop betrachtete, einige kleine Kritzel an der Oberfläche einer Glasplatte, und ich maals die Entfernungen bm. bn mit einem verkehrten Tafterzirkel auf eioem gut getheilten Maalsstabe. Die Linsen wurden in unveränderter Entfernung erhalten; der planconcaven Linfe gab ich in ihrer Mitte fo genau als möglich immer eine gleiche Dicke, und mit der größten Sorgfalt falt ich darauf, die Bilder zu beobachten, welche durch Strahlen von mittlerer Brechbarkeit hervorgebracht wurden. Um im Beurtheilen des Augenblicks, wenn deutliches Sehen eintrat, allen Irrthum zu vermeiden, der durch Veränderung der Brennweite des Auges hätte entstehn können, spannte ich ein seines Glasfädchen quer durch die Blendung in dem vordern Focus des

Oculars; da das Auge sich dann immer um Augenblicke der Beobachtung nach dem mittleren Theile dieses Fadchens adjustirte, so wurden offenbar alle Resultate bei einerlei Brennweite des Auges erhalten.

Die Zahlen, welche in den folgenden Tafeln enthalten find, gehen blos die Entfernungen bm. bn etc., oder den Abstand des Objects von der Objectivlinfe des Mikrofkops. Ich wollte zwar anfangs aus ihnen den Exponenten des Brechungs-Verhältnisses für jeden Körper berechnen; da aber die Objectivlinie nur einen fehr kleinen Durchmesser hat, und ich die Schalen, in welchen sie ge-Schliffen war, nicht belas, so konnte ich mich auf eine Bestimmung der Halbmesser ihrer beiden Oberflächen an der Linfe felbst, zu wenig verlassen. Ich fetze indess zum Gebrauch derer, welche diese Verfuche wiederholen wollen, einige Formeln her, die ihnen von vielem Nutzen feyn, und fie in den Stand setzen werden, den Exponenten des Brechungs-Verhältniffes leicht zu finden. Es fey in Fig. 2

r der Halbmesser der Vorder- und der Hintersläche der convexen Linse A von gleichen Halbmessern;

m der Exponent des Brechungs-Verhältnisses für die Linse A;

μ für die Hüslige Hohllinse B;

$$p = \frac{1}{m-1} \text{ und } \pi = \frac{1}{\mu-1};$$

d = SA, die Enfernung des Objects von der Objectivlinse, so wie die solgende Tasel sie gieht;

f = AP, die Vereinigungs-Weite von Strahlen, welche von dem Puncte S ausgehen, hinter der Linfe;

φ = Af, die Brennweite der zusammengesetzten Linse A, B;

fo gelten folgende Formeln:

$$f = \frac{p \, dr}{2 \, d - p \, r} \quad ; \quad \phi = \frac{\pi \, f \, r}{f - \pi \, r} \quad *)$$

$$\pi = \frac{\phi \, f}{\phi \, r - f \, r} \quad ; \quad \mu = \frac{\phi \, r - f \, r}{\phi \, f} + 1$$

In der Objectivlinse, mit der ich die solgenden Besbachtungen angestellt habe, war nahe r=1,16 Zoll; diese Zahl genauer auszumitteln, hielt ich für überställig, da eine neue Linse für mich in Arbeit war, für die die Halbmesser ihrer Krümmungen sich genau mussten aussinden lassen. — Uebrigens ist die Bestimmung des Exponenten des Brechungs-Verhältnisses von keiner Wichtigkeit. Die Zahlen in den solgenden Taseln sind für jeden Gebrauch in Physik und Chemie ausreichend, und wer einen dieser Körper zu optischen Zwecken brauchen will, wird immer lieber das Verhältniss der Sinusse des Einfalls- und des Brechungs-Winkels an ihnen selbst bestimmen.

TAFEL I.

zur Bestimmung des Brechungs - Vermögener stuffiger und weicher Körper.

Diamant | ihr Brech, Vermögen ist zu groß, | als daß es sich mit dieser Object, | Linse bestimmen ließ *).

engl. Zoll

- 5 Aloe von Socotora (Aloe lucida), und von Barbados, gleichmälsig 5,120 Zimmtöhl, nachdem es durch Stehn von 1 Stunde an freier Luft eingedickt war 5,0877 Caffiaöhl 5,077
- *) Man vergl. die letzte Tabelle in diesem Auffatze. G.
- ") Fast alle Ochle, mit denen die Versuche in dieser Tafel angestellt find, kamen aus einer Apotheke, find also wahrscheinlich nicht alle acht gewesen. - Es ift sonderbar, dass Hawksbee dem Zimmtohl ein kleineres Brechungs-Vermögen als dem Saffafrasöhl giebt. Niemand anders hat, so viel ich weise, hierüber Verluche gemacht, und das große Brechungs-Vermögen des Zimmtohle und des Caffieohls war daher bis jetst unbekannt. Das Zimmtohl au Versuch 6 und 13 kam aus derfelben Flasche, war aber suverläßig Coffiaöhl, und schien nach dem Geruch, der etwas brenzlich war, und nach der Farbe zu urtheilen, mit einem fremden Körper verfälscht zu feyn. Das Zimmedhi g war aus einer andern Apotheke, und hatte einerlei Farbe mit dem Caffiaohl 7, das unter feinem wahren Namen verkauft wurde. Vielleicht hat Hawksbee achtes Zimmtöhl gehabt, welches ich mir nicht verschaffen konnte; doch bleibt es immer unwahrscheinlich, das das Brechungs-Vermögen desselben so klein sey, als er es angiebt.

[Das ächte Zimmtöhl soll ehemals allein in der Apotheke der Hauptstadt Ceylon's, Punto Gale, aus den kleinen Brocken, die beim Verpacken der ächtes Zimmtrinde vom Laurus einnamomum in die Schiffe absallen, und die man eine Woche lang im Wasser maceriren liefs, überdestillirt worden seyn. Es wurde in Gegenwart von obrigkeitlichen

A SANTEN TORK BELLATE AND A	engl. Zoll
Tolutanischer Balsam	4,987
Zimmtöhl (eine andre Art)	4,837
To Salmiak, der 2 Tage an der Luft gel	an-
den hatte	4,710 *)
Jalappaharz	4,63r
Peruanischer Balfam	4,576
Zimmtöhl	4,560
Guajak	4,498
15 Salmiak, der 22 St. an d. Luft gest. ha	tte 4,473 *)
Pech 4,201; andre Art 4,198; et	was
gebrannt	4,311, **)
Gummi ammoniacum	4,159
Assa foetida	4.106
Drachenblut	4,009
Manna, die durch Brennen eine fe	ehr
dunkle Farbe angenommen hatte	3,996

Personen von dem Wasser, womit es übergegangen war, abgeschöpst, und in Flaschen versiegelt; die Unze kostete in Ceylon 94 holland. Reichsthaler. Aus den Zimmtkelchen destillirt man ein ähnliches, weit wohlseiseres Oehl. Die Cassa Rinde und ihr Oehl kommen von dem Laurus cassa, und sind minder sein und theuer. Auch aus dem in Westindien und Carolina wachtenden weissen Zimmtbaum oder der Winterschen Rinde wird ein gelbes, im Wesser zu Boden sinkendes Oehl abgezogen, das wie Zimmt riecht.

²⁾ Diefer Salmiak ist derselbe als in 79. Das Brechungs-Vermögen desselben wächst sehr schnell, wenn man ihn der Luft aussetzt; ein Resultar, welches um so sonderbarer ist da er aus der Lust schnell Feuchtigkeit einlaugt, und Wasser bei seinem geringen Brechungs-Vermögen sonst die brechende Kraft der Körper, mit denen es vermischt wird, schwächt, Br.

^{**)} Es ift sehr merkwürdig, dass, wenn die Hohllinse aus Pech bestand, man deutlicher sah, als wenn sie aus irgend einem der andern Körper gebildet war.

Br.

	The state of the s	!
	Saft des Afarum Europaeum, nach Steh	engl. Zoll
	von 18 Stunden	3,949
	Opium	-
25	Kautschuk	3,887
	Salmiak, der 5 St. an der Luft gest. hatte	
	Kopal	3,843
	Leim, beinahe hart	3,841 *)
	California de Ca	3,832
50	Harz	3,83r
	Elemi, Galbanum, beide	3,811
		3,774
	Gummi anime	3,767
35	Weihrauch (Gum Thus)	3,766 **)
-	Burgunderpech	3,761
	Gewöhnlicher Terpentin von einer Bohle	
	Weißer Zucker durch Hitze geschmolzen	
		3,751
60	Terpentin yon Chios	3,748
40	Steinöhl	3,739
	Benzoe	3,722
	Sandarach	3,711
	Zimmtöhl und Baumöhl gleiche Theile	3,602
45	Gewürznelken - Oekl	3,688
	Mastix	3,678
	Anisohl	3,657
	Saffafrasöhl (aus dem Holze des Lau-	The same
	rus Saffafrus)	3,65x
	Manna, ein wenig erwärmt zwisch. den	San Bard
	beiden Gläsern und wieder erkaltet	3,623
50	Kanadischer Balsam	3,617
	Olibanum	3,610 **)

") Zwischen die Gläser gebracht, als er so hart war, dass er sich kaum mit einem Federmesser schneiden ließ; er war an der Luft erhärtet, doch noch nicht ganz frei von Wasser. Br.

1		engl. Zell
	Saft der Urtica dioica, nachdem er ei-	Cingil Louis
	nige Zeit gestanden, (keine gute	
	Beobachtung)	3,592
	Aechter Balfam von Mecca	3,580 *)
	Schollack 1 1	3,573
55	Frisches Lerchenharz	3,567
	Harz aus Ochfengalle (von John Davy)	3,567
	Terpentin von Chios, geschmelzt,	3,560
	Muskatenblumen - Oehl (oil of mace)	3,547
	Theerohl von Barbados	3,526
60	Milch, abgefähnte mit Waller gemischt	va inte
	und eingedickt durch Abdampfen	-3,520
1"	Myrrhe	3,463
-	Leim fo weich als Kautschuk	3,458
	Kopaiva - Balfam	3,457
	Zimmtöhl 1, Baumöhl 2 Theile	3,443
65	Saft reifer Orangen, eingedickt	3,433
	Arabifches Gummi, nicht ganz frei	Marie San
	von Waffer	3,423
	Muskatenblumen (Mace)	3,413
	Schwache Senesblätter-Infusion, die	
	9 Stunden gestanden hatte	3,412
	Saft von Sedum Telephium, der 14 St.	THE OWNER OF
	gestanden hatte	3,412
70	Saft der Angelica Archangelica, der einige Stunden gestanden hatte	
	Saft von Leontodon taraxacum, der	3,403
	14 St. gest. hatte	3,400
	Saft von Lactuca virofa, der 10 St.	3,400
	gestanden hatte	3,400
	Scammonium	3,400
	Saft der Sanguinaria Canadensis, der	5.43
.3	12 St. gelt hatte	3,387
75	Fenchel - Oehl	3,376
*)	Von Mecca mitgebracht durch Kapitain Val	hon. Br.

[37]

Weifses Wachs geschmelzt und dan	engl. Zoll	
kühl geworden	3,375	0,1
Bernsteinöhl	3,373	
Stärke, getrocknet	3,347	
Salmiak, bevor er an d. Luft gest. hatt		
80 Orangen-Saft, nachdem er 18 St. geft.	the second second second	
Saft des Ranunculus Flammula, nach dem er 7 St. gestanden		114
Saft der Angelica Sylvestris, nachden	The same production of the same	
er 41 St. gestanden hatte	3,334	
Ochl aus Piment- oder Jamaica-Pfeffer	A CONTRACTOR OF THE PARTY OF TH	
Rofenholz - Oehl	3,333	111
35 Wallrath, kalt	3,318	
Schierlingsfaft (Conium maculatum)		
nachdem er 7 St. gest.	3,317	
Eydotter, fast trocken	3,310	
Theriak (?)	3,307	4.
Zimmtöhl 1 Th. und Baumöhl 4 Theile	e 3,283	
90 Kumpfer 10	3,280	
Krausemünzen-Oehl (oil of Spearmint	3,277	
If op - Oehl	3,271	
Honig	3,267	
Schwefelbalfam	3,259	
95 Bienen - Wachs, kalt	3,243	11
Talg, kalt	3,243	
Eydotter, nachd. es 15 St. an d. Luft geft.	3,234	
Wacholderöhl, ächtes (von J. Murray)	3,231	
Muskatennuss - Oehl (oil of nutmey)	3,227	-
oarvi (oil of caraway feeds)	3,223	
Flöhkrautöhl	3,220	
Citronenöhl	3,216	
Schierlingsfaft, nachd. er 41 St. geft.	8,210 .	
Wermuthöhl, gelbes, nachdem es 6 St.	1000	
geltanden hatte	3,210	
_		0.

1	19. 219	engl. Zoll	
105	Alang and bay the miles who are	3,209	
	Himbeerengeles	3,207	
	Dillöhl	5,201	
	Windfor-Seife	3,200	
	Leinöhl	3,196	2
110	Orangenfaft, nachd. er 8 St. geft.	3,196	
	Thymianohl	3,190	
	Zimmtöhl 1 Th. und Baumöhl 8 Theile	3,187	
	Sadebaum - Oehl	3,184	
	Florentiner Ochl	3,183	
115	Biehergeil-Fett (Castor oil)	3,183	
	Wermuthöhl, gelbes	3,181	255
	Larbeeröhl (ein Pflafter für die Füsse		
	der Pferde)	3,170	
	Talg, geschmolzen	5,167	
	Thran	3,167	
120	Wacholderöhl	3,157	
	Cocosnuss - Milch, nachd, sie 8 St. gest.	3,156	00
	Mandelöhl	3,153	411
	Muskatennuss-Oehl [oder Butter], ge-		
	[chmolzen	3,147	
	Neapolitanische Seise	3,137	
125	Cajeput - Oehl	3,126	30
	Zimmtöhl 1 Th. und Baumöhl 12 Thle.	3,120	
	Huile antique de la rose	3,116	
	Terpentinöhl	3,115	
	Kamillenöhl	3,114	
130	Olivenöhl	3,113	001
	Sast einer reifen Orange, nachdem er	200	200
	4 Stunden gestanden	3,107	
	Lavendelöhl	3,105	
	Naphtha	5,105	
	Rübsenöhl, oder grünes Oehl	5,105	
135	Palmöhl	5,103	

1 2 m	engl. Zoll
Butter, frische	
Wallrathöhl (?)	3,090
Pfeffermünzöld	3.080
Bergamotöhl " " " " " "	3,086
140 Rosmarinöhl	3,077
Inneres der Krystallinse eines Kabliau	Schwere
(nicht der Kern)	3,067
Ziegelöhl, destillirt von Wallrathöhl	3,066
Gefalzne Butter	3,053
Quittenfaft dates Continued to	3,047
145 Gelee von Lammfleisch, nachdem es	· ····································
15 St. geft.	3,047
Eydotter, nachd. es i Min. and. Luft gel	1.3,041
Talg, geschmolzen	3,038
Saft des Rumex fanguineus, nachdem	million .
er einige Stunden gestanden	3,037
	3,003
250 Wallrath, geschmolzen	2,946
Bienenwachs, geschmolzen	2,94
Rautenöhl	2,909
Schwefelfäure, aus der Apotheke	2,867
Salmiak	2,853 *)
155 Aeufsere Theile der Kryftallinfe eines	tenentile or
jungen Kabliau	2,843 **).
Phosphorfäure	2,833
Centraler Theil der Krystallinse eines	annan anga
Lamms	2,829 ***)
Mittlere Schicht derfelben	2,780 +)
*) Der Salmiak der Apotheken, der dem in 79 a Vermögen sehr nachsteht. Br.	n Brechunge-
**) External part of the crystalline of	f a young
***) Central portion of the cryftalline lens of	a lamb.
†) Middle coat of dito.	The Course

-1

1		(4- 1	,
		dall light	engl. Zoll
		Dotter eines Hühnereyes, eben her- ausgenommen	2,778
	160	Kleber aus Weizenmehl, getrocknet zwischen den Linsen	2,767
		Drachenblut, beinshe trocken	2,723 *)
		Schwefelfäure 153, nachdem sie 3 St. in feuchter Luft gestanden	2,687
		Aeusserer Theil der Krystallinse eines Kabliau (älter als 155)	
	1.	Krystallinse (crystalline) eines Tau- ben-Auges	2,650
	165	Saft aus der Rinde einer reifen Orange	Continue I
		Eiter stone 1141	2,587 **)
		Pfeffermünz - Esfenz	2,577
		Spiritus aromáticus aceti	2,555
		Cocosnufs - Ochl	2,547
	170	Aeußere Schicht der Krystallinse eines	evillett.
		Lamms (157, 158)	2,541 ***)
		Hornhaut desselben	2,541
		Saft einer reifen Orange	2,517
		Weinöhl	2,504
		Ambraöhl (oil of amber-greafe)	2,504
	175	Alkohol	2,197
		The state of the s	

⁹) Dr. Wollast en giebt dem Drachenblut ein viel größeres Brechungs-Vermögen als dem Tolutanischen Balsam; nach meinen Versuchen Reht es darin ellen Balsamen, Gummien, Harsen und Oehlen nach. Der Theil des Drachenbluts, dessen ich mich bedient habe, war aber nicht vollkemmen trocken, und deshalb das Brechungs-Vermögen eiwas kleiner, als ich es gesunden haben würde, wäre es ganz trocken gewesen.

Br.

**) Eiter und Mucus haben ein fo sehr verschiednes Brechungs-Vermögen, dass man sie schwerlich eins sür das andre nehmen kann, wenn man sie optisch untersucht. Br.

***) Outer coat of the cryfialline of a lamb (fee No. 157, 158).

The last last	engl. Zoll
Weissliche Flüssigkeit zwischen	der
Krystallinse und ihrer Kapsel,	
dem Kabliau (170)	2,491
Flüssigkeit aus der Krystallinse ein Lamms, nachdem die Kapsel dur	
Rochen war	2,473 *)
Galle eines Vogels	2,473
Saft des Sonchus oleraceus	2,473
180 Tinte	2,467
Ketchup (?)	2,460 **)
Saft des Chalidonium majus	2,448
Saft der Angelica Archangelica	2,447
Starker hochländ. Whisky (Branntwe	
185 Laudanum	entral and a second second
100000000000000000000000000000000000000	8.446
Pfoffermünz-Esfenz	2,436
Saft des Afarum europaeum	2,433
Arquebufade	2,423
Branntwein	2,413
190 Rum Anna San Anna Marine Marine	2,413
Eyweifs aus einem Hühnerey	2,409
Saft des Leentodon taraxacum	2,403
Saft des Ranunculus Flammula	2,399
Saft der Sanguinaria Canadensis	1,398
195 Saft der Urtica dioica	2,597
Buchsbaumöhl	3,396
Saft der Angelica filveftris	a,593
Gelee von kaltem Lammfleifch	2,393
Saft einer reifen Orange, eben he	er-
ausgenommen	2,392
200 Schierlingsfaft, frischer	2,390
Devi de neleganting	141 1 (\$1050) 3551

^{*)} Ruid from the eryfialline of a lamb, ofter puncturing the capfule (see No. 170).

[&]quot;) Ob damit Katechu oder logenaonte japanische Erde (Caschou) gemeint ist?

		1
1	the William I was a second of the latest	engl. Zoll
	Menfchen - Blut	2,387
	Saft des Sedum Telephium	2,387
+-1	Glasfeuchtigkeit eines Taubenauges	2,580
	Portwein ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	2,375
205	Starker Aufguls auf Thee	2,357
	Saft der Lactuca virofa	2,354
	Schwacher Aufgus auf Senesblätter	2,353
	Weineflig	2,347
10	Glasfeuchtigkeit eines Lammauges	2,346
210	Saft des Rumex fanguineus	2,343
	Wässerige Feuchtigkeit eines Kablian	- national
	Auges	2,326
	Glasfeuchtigkeit desselben	2,326
	Ansgespuckter Mucus	2,321
	Speichel	2,321
215	Waffer .	2,309
	Lufe	1,415

bk

I

e

I

E

Das Brechungs-Vermögen des Schwefels ist forgroß, daß, als er die planconvexe Linse zwischen dem ebnen und dem biconvexen Glase am vordern Ende des Mikroskops bildete, die Brechung, welche die Lichtstrahlen an der einen hohlen Fläche des Schwesels erlitten, der Summe ihrer Brechungen an den beiden Glassfächen, die jede einerlei Convexität mit ihr hatte, gleich kam, so daß die zusammengesetzte Linse fast wie ein Glas mit parallelen Flächen wirkte, an denen die Brechungen gleich und entgegengesetzt sind.

Noch größer fand sich das Brechungs-Vermögen des *Phosphors*, von dem ich dieses, nach Dr. Wollatton's Versuchen, keineswegs erwartete. An der einen hohlen Fläche des Phosphors ging in der aus ihm und aus Glas zusammengesetzten Objectivlinse eine stärkere Brechung vor, als an den beiden convexen Glasslächen, so dass die zusammengesetzte Linse wie ein Hohlglas wirkte.

Da das Brechungs - Vermögen dieser beiden brennbaren Körper weit über die Skale der Tafel I hinausging, so setzte ich, um dasselbe zu bestimmen, eine neue Objectiplinse in das Mikrofkop ein, bei übrigens unveränderter Einrichtung desselben; und zwar eine doppelt convexe Linfe von ungleichen Halbmessern, so dass die flächere Oberfläche derselben nach Inpen, dem Planglase zu, gekehrt war. Dadurch erhielt ich Iowohl von dem Schwefel als von dem Phosphor eine planconvexe Linfe, deren hohle Fläche fo wenig gekrümmt war, dass nun die Brechung an der ltark convexen vordern Glasfläche die ihrige überwog, fo dass der Gegenstand nunmehr in eine zur Beobachtung bequemen Entfernung von der Objectivlinfe zu stehn kam, wenn er ein scharfes Bild gab.

Mit dieser neuen Objectiv-Linse habe ich die solgenden Maasse zur Bestimmung des Brechungs-Vermögens von Körpern erhalten, welche ich großentheils noch nicht untersucht hatte. Zur Vergleichung mit den Zahlen in der vorigen Tasel habe ich indess auch einige in ihr enthaltene Körper genommen, und für sie die Zahlen nach der neuen Skale hergesetzt.

TAFEL II.

zur Beftimmung des Brochungs - Vermögens des Schwefels. Phosphors und einiger andrer Körper; nach einer andern Skale.

andern Skale,	a1 7-11
- un tripolities of the control nergy	engl. Zoll
I Luft (†)	1,000
Waffer (†)	1,345
Aether the formation of the state of the	1,400
Alkohol (†)	1,404
5 Kanthariden - Tinctur	1,413
Salzfäure	1,431
Salpetrige Säure	1,446
Salpeterfäure	1,456
Kali Hydrat, geschmolzen durch Hitze	1,458
Davy bereitet,) geschmolzen und	
heiss 1,476; kalt	1,507
Chlorin-Mangan (von John Davy) nach dem Zertließen	1,500
nachd. es die ganze Nacht durch geft,	1,516
Schwefelfüure (†)	1,517
15 Mohnöhl (†)	1,584
Terpentinöhl (†)	1,588
Foenu-graecum - Ochl	1,593
Mairanohl	1,596
Nufachl a Literate 12 Man 19 19 19 19	1,600
20 Angelika - Oehl	1,600
Gummi Kino-Auflöfung in Alkohol,	110
	1,600
The state of the s	1,630
2 (C) (C) (NOTE 1341 CENTER OF 14 (C) (C) (C) (C) (C) (C)	1,637
	1,646
25 Kümmel - Oehl von Cuminum cimi- num (oil of cumin)	1,650
A A COUNTY OF A COUNTY OF THE	

(†) So habe ich die Körper bezeichnet, welche auch in Gilbert.

Tafel I vorkommen.

V

fc di

cl w

fe

gı da

ga

14	build the facts that negotiality for	engl. Zoll
-0.0	Saffafras - Oehl (+)	1,663
1	Cashew - Nuss - Ochl (?)	1,692
	Zucker, nach dem Schmelzen (†)	1,704
	Harz (†)	1,720
30	Pech (†)	1,806
1	Zimmtöhl (†)	1,817
21.0	Peruanischer Balsam (†)	1,826
	Tolutanifcher Balfam (†)	1,871
	Biebergeil (castor from the beaver)	1,900
35	Caffiaöhl (†)	1,911
-	Schwefel	4,337
20)	Phosphor	7,094

Diese Messung der brechenden Krast des Phosphors weicht ganz ausnehmend von der des Dr. Wollaston ab, (welche, auf die Skale dieser Tafel reducirt, ungefähr 1,8 giebt,) und bestätigt die schöne und scharssinnige Vermuthung Newton's, dass alle verbrennliche Körper ein großes Brechungs-Vermögen besitzen. Er hatte sie nur auf wenige Versuche gegründet; Wollaston's Versuche schienen sie völlig zu widerlegen; sie gerechtsertigt zu haben, macht mir ein besonderes Vergnügen. Fürs erste dürsen wir nun behaupten, dass die brechenden Kräste der drei einfachen werbrennlichen Körper *) in derselben Ordnung als ihre Verbrennlichkeit stehn.

Bei dem Versuche mit Phosphor habe ich mich ganz besonders bemüht, mich gegen alle Fehler zu

[&]quot;) Hr. Brewster meint: der Kohle (als Diamant', des Schwefels und des Phosphors. Gilbert.

fichern. Ich habe ihn sechs Mal angestellt, immer mit demselben Erfolg; und man wird weiterhin sehn, dass ich ein ähnliches Resultat erhielt, als ich zwischen Glasplatten ein Prisma aus Phosphor gebildet hatte. Die, welche diesen Versuch wiederholen wollen, werden einige Schwierigkeit finden, ein Phosphorblättchen in eine planconcave Linse zu verwandeln. Die phosphorige Säure, welche sich in der Lust augenblicklich an der Obersläche bildet, muß mit einem Stückchen Löschpapier sorgsältig weggenommen werden, ehe man das Plättchen zwischen die beiden Gläser bringt.

Noch habe ich mit dieser neuen Objectivlinse folgende Versuche mit Salmiak angestellt, um die Ursache auszumitteln, welche macht, das sein Brechungs-Vermögen, wenn er an der Lust steht, zunimmt:

Salmiak,	engl. Zoll
ehe er an der Luft gestanden hat	1,600
nachdem er an der Luft gestanden,	1,642
längere Zeit	1,700
nachdem er an freier feuchter Luft gest. hatt	e 1,578
nachdem er in das Zimmer genommen wor	
den war	1,643
nachdem er in trockner Luft gestanden hatt	e 1,687
dem Sonnenlichte ausgesetzt 1,750; 1,800;	1,927
als dieses sehr schwach war,	1,850
noch fehwächer	1,827
in feuchte Luft gestellt	1,667

Um aus den Versuchen mit einer biconvexen Linse von ungleichen Halbmessern der Oberstächen de

de

den Exponenten des Brechungs-Verhältnisse zu finden, dienen solgende Formeln. Es sey

r der Halbmesser der Vordersläche (nach dem Ob-

R der Halbmesser der Hintersläche der Objectivlinse aus Glas, und folglich auch der Halbmesser der Hohlstäche der gebildeten planconcaven Linse;

und die übrigen Buchstaben mögen dasselbe als S. 31 a. 32 bedeuten, fo ist:

$$f = \frac{p \, dr \, R}{dr + dR - p \, rR};$$

$$\varphi = \frac{\pi f R}{f - \pi R}; \qquad \pi = \frac{\varphi f}{\varphi R - f R}$$

$$\mu = \frac{\varphi R - f R}{\varphi f} + 1$$

Die Zahlen in den folgenden beiden Tafeln (III und IV) stehn zwar schon in Tafel I. auf deren Skale sie sich beziehn; es ist indes wichtig, sie allein beisammen zu haben:

TAFEL III,

für das Brechungs Vermögen von Pflanzenfästen; (nach der Skale von Tasel I.)

Saft	frisch	7		em er an der standen hatte
einer reifen Orange	2,392	;	3,433,	einige Tage
des Schierlings (Conium			who !	THE REAL PROPERTY.
maculatum)	2,390	;	3,317,	7 Stunden
der Angelica silvestris	2,393	;	2,853,	
and taglets		;	3,334,	41 St.
Angelica Archangelica	2,447	;	3,402,	einige St.
der Sanguineria Cana-	a ferror	6)	11/15/	sein with H
denfis	2,398		3,387,	12 St.

Safe Wagner	frisch	d)	nachdem er an det Luft gestanden hatte
des Leontodon taraxacum	2,403	:	3,400, 14 St.
der Lactuca virofa	2,354		3,400, 10 St.
des Rumex sanguineus	2,343	;	2,833, einige St. 3,037, länger
des Chelidonium majus	2,448		
Schwacher Aufguß auf Senesblätter	2,353		3,412
des Asarum europaeum	2,433	;	3,648, einige St. 3,813, länger 3,949, 18 St.
des Ranunculus Flammula	2,399	;	3,337, 7 St.
des Sedum Telephium	2,387	;	3,412, 14 St.
der Urtica dioica	2,397	;	3,592 (fchl. Beob.)
des Sonchus oleraceus	2,473	;	3,400, 7 St.
der Fragaria Vesca	2,390		7-7

Diese Versuche mit Pflanzensäften geben in ihren Resultaten eine bemerkenswerthe Uebereinstimmung. Das Brechungs-Vermögen aller ist etwas größer als das des Wassers, und wenn ihre wässerigen Theile verdunstet sind, hat der Rückstand, mit wenigen Ausnahmen, nahe einerlei Brechungs-Vermögen.

3

TAFEL IV

für das Brechungs-Vermögen der Feuchtigkeiten des Auges*), (nach der Skale von Tafel I.

that the same and	eines jungen	eines
Carlotte Carlo	Kabliau	Lamms
Wäfferige Feuchtig	keit 2,326	-
Glasfeuchtigkeit	2,326	2,346
Weissliche Fläsligke	it zwischen	
d. Krystallinse u. ih	rer Kapfel 2,491	-

^{*)} Die ganze Kryftallinse (cryftallins) besteht aus einem inneren, linsentörmigen, festeren Theile, dem Corpus cry-

Flüfligk, d. Kryftallinfe, nachd.	
die Kapfel durchstoch. worden -	2,473 *)
Aeußerer Theil d. Kryftallinfe 2,843	The state
Aeufs. Schicht (coat) derfelben -	2,541
Mittlere Schicht (coat) derf	2,780
Centraler Theil derfelben 3,067 **)	2,829

Bei dem letzten Versuche mit dem Kabliau-Auge wurde der centrale Theil desselben zwischen dem Daumen und den Fingern gerollt, bis er aller weichern Theile beraubt war, und blos ein kleiner harter Kern zurück blieb, der einen Durchmesser von 0,13 Zoll hatte. Als dieser Kern zwischen die beiden Gläser des Mikroskops gebracht war, fand sich die zu einem deutlichen Bilde nöthige Entsernung des Objects nur 0,37 Zoll, und nicht gegen 3 Zoll, wie man auf den ersten Anblick hätte ver-

fiallinum, einer Feuchtigkeit, die diesen rings umgiebt, dem Humor Morgagnt, und einer häutigen linsensörmigen Kapsel, welche diese Feuchtigkeit umschließt. Durchsticht man die Kapsel, so sließt Morgagni's Feuchtigkeit aus, und unterscheidet man von der Kapsel und der Feuchtigkeit noch den Krystallkörper selbst, so ist mit diesem das Corpus ergfalltnum gemeint. Dieses scheint aus concentrischen Schichten zu bestehn, und was Herr Brewster outer und middle cout neunt, scheint solche Schichten bedeuten zu sollen, welche den innersten centralen Theil des Krystallkörpers umgeben.

*) Fluid from the crystalline of a lamb, after puncturing she capfule.

**) The central part of the crystalline of a haddock (not the nucleus), 0.135 of an inch thick, placed between the linfes. Wie das gemeint ley, erklärt Hr. Brewster in dem gleich Folgenden, wobei mir indess noch nicht alles gans deutlich ist.

Aunal. d. Physik. B. 50. St. 1. J. 1815. St. 5. D

muthen sollen. Dieses merkwürdige Resultat dient zum vollständigen Beweise der großen Schnelligkeit, mit der das Brechungs-Vermögen der Krystallinse um ihren Mittelpunct zunimmt. Denn es fey in Fig. 3. CD das Planglas, AB die hiconvexe Linfe des Mikrofkops, und EF der Kern der Krystallinse, so bildet offenbar die die Hintersläche der convexen Linfe AB berührende äußere Schicht (coat) mm der Krystallinse die hohle Oberstäche der künstlichen planconcaven Linse EF, und da diese Schicht ein kleineres Brechungs-Vermögen als der innere Kern n hat, lo muss dieser Kern bei dieser Vorrichtung als eine convexe Linfe wirken; und feine Wirkung ist so gross, dass sie die ander hohlen Oberfläche der Schicht mm bewirkte Brechung weit übertrifft. Wäre das Brechungs-Vermögen des Kerns gepau gleich gewesen dem des äussern Theils der Krystallinse, welcher die hohle Fläche der planconcaven Linfe bildete, so würde die Entfernung des Objects 2,845 Zoll haben feyn müffen, statt dass sie 0,377 Zoll war. Doch muß man nicht übersehn, dass der Kern n wie eine biconvexe Linse bricht, indess die äussere Hülle mm hier blos an ihrer vordern Fläche eine Brechung äußert.

3

ſ

I

f

Versuche über das Brechungs-Vermögen harter.

Das vorige Verfahren, die brechende Kraft zu bestimmen, lässt sich blos auf Flüsligkeiten, und auf solche feste Körper anwenden, die durch Wärme, Druck oder Verdunftung zwilchen den beiden Gläfern in eine Hohllinse verwandelt werden können: auf Glas und auf die durchlichtigen Steine ist es unanwendbar. Um das Brechungs-Vermögen diefer harten festen Körper zu bestimmen, gab es bisher keinen andern Weg, als lie in ein Prisma zu verwandeln, das wenigstens zwei vollkommen ebene und gut polirte Flächen haben muß, damit man den Winkel dieser Seitenflächen messen, und die Ablenkung beobachten könne, welche ein Lichtstrahl beim Hindurchgehn durch die beiden Flächen von leinem anfänglichen Wege erleidet. Verfahren ist mühfam und kostbar, und daher nicht häufig ausgeführt worden, wie die geringe Menge von festen Körpern beweist, deren brechende Kraft Praktische Optiker unterziehn sich wir kennen. nicht einmal bei der Verfertigung achromatischer Fernröhre der Mühe, zu dieser Ablicht aus Flintglas ein Prisma zu schleifen, sondern begnügen sich mit dem leichten, doch nicht genauen Verfahren, das Brechungs-Verhältniss nach dem specifischen Gewichte des Flintglases ungefähr zu schätzen.

r

e

-

n

11

72

e

e

u

d

В,

Eine einfache und genaue Methode, das Brechungs-Vermögen harter fester Körper zu bestimmen, sehlt uns also noch; und ich habe mich besonders bemüht, eine solche aufzusinden, bei der man des Schleisens und Polirens überhoben ist, und die sich selbst bei Oberstächen anwenden läst, welche so unregelmäßig sind, dass man keinen Gegenstand durch sie hindurch erkennen kann.

Es fiel mir ein, dass, wenn man ein abgesprengtes Stückchen irgend eines durchlichtigen Körpers in eine Flüsligkeit von ganz gleichem Brechungs-Vermögen mit demselben tauche, ein Lichtstrahl beim Uebergehen aus dieser Flüsligkeit in den festen Körper, und umgekehrt aus ihm in die Flüssigkeit, gar keine Brechung leiden könne, und das sich daher auf diese Weise Gegenstände mit aller Deutlichkeit durch das feste Stückchen missen erkennen lassen, die Obersläche desselben sey noch fo regellos. So richtig diese Ueberlegung auch nach der Theorie ist, so hatte ich doch wenig Hoffnung, dass es sich bei der Aussührung bestätigen würde. Um die Sache logleich unter den ungünstigsten Umständen zu versuchen, nahm ich ein sehr unregelmäßig gestaltetes und an seiner Oberstäche ganz zerbrochnes Stückchen Crownglas, welches ganz undurchlichtig zu seyn schien, und tauchte es in Canadilchen Ballam. Ich war nicht wenig überrascht, als es darin fast unsichtbar wurde, und zwi-Schen Balfam und Glas nur eine so geringe Brechung Statt fand, dals ich durch alle Unregelmälsigkeiten der Oberfläche hindurch selbit leien konnte.

Vergrößert man die Entfernung des Gegenftandes, so lässt sich leicht jede Brechung entdecken, die in der Berührungsfläche zwischen dem festen und dem stilligen Körper noch übrig ist; und daher lässt sich durch Vermischung zweier Flüssigkeiten von ungleichem Brechungs-Vermögen a

1

e

i

ohne Schwierigkeit eine Flüsligkeit erhalten, welche genau dasselbe Brechungs-Vermögen hat, als der feite Körper. Es fehlte indels noch an einer genauen Anzeige des Augenblicks, wenn alle Brechung in der Berührungsfläche beider Mittel auf. hört; denn blos dann kann das Brechungs-Vermögen der Flüssigkeit als Maass des Brechungs-Vermögens des felten Körpers dienen. Sie habe ich mir folgendermaßen verschafft. Nachdem ich zwischen der Objectivlinse b und dem Planglase a des Mikrofkops, Fig. 1, von der Flüssigkeit, die dem felten Körper an Brechungs-Vermögen am näch-Iten kam, eine Hohllinse gebildet, und den Abstand des Objectes bn, bei dem es alsdann deutlich in dem Mikrofkop erschien, gemessen hatte, brachte ich ein kleines Stückchen von dem festen Körper in diese stüslige Hohllinse, so dass die Lichtstrahlen, welche von dem Objecte kamen, durch dallelbe hindurchgehn mussten, und sah nun, ob das Object, wenn es in dem Mikrofkope vollkommen scharf und deutlich erschien, dieselbe Entfernung bn als zuvor hatte. War das nicht der Fall, fo veränderte ich die Mengung der Flüssigkeit, bis sie, diefer Prüfung zu Folge, genau einerlei Brechungs-Vermögen mit dem festen Körper zeigte. Und dann gab die Entfernung bn zugleich das Maass des Brechungs-Vermögens der Flüssigkeit und des felten Körpers.

Unter allen Flüssigkeiten fand ich zu diesen Versuchen ammehrsten sich eignend Cassia-Ochl und Baumöhl; das Maass ihres Brechungs-Vermögens war 5,077 und 3,113, und durch Mischungen beider ließen sich die Brechungs-Vermögen aller sesten Körper, welche zwischen diese Gränzen sielen, bestimmen. Die solgende Tasel zeigt, wie sich das Brechungs-Vermögen mit dem Mischungs-Verhältnisse beider verändert:

Castiacht (7) 5,077 und (13) 4,560; Baumcht 3,113 Scastiacht i ; i ; i ; i Thie. Raumcht 1; 2 ; 4 ; 8 ; 12 Thie. Brech. Verm. 3,692; 3,443; 3,283; 3,187; 5,120.

Ich hätte gewünscht, als eine Probe dieser Art das Brechungs-Vermögen harter sester Körper zu mesen, hier eine Reihe von Bestimmungen beisügen zu können, die ich auf diese Art gemacht habe; meine Versuche sind aber noch nicht vollendet, und ich behalte es mir vor, sie künstig bekannt zu machen,

den Difute galvin, durch dellell

Ich kann diesen Gegenstand nicht verlassen, ohne noch auf eine Anwendung des eben erwähnten Princips, welche von praktischem Nutzen ist, ausmerksam gemacht zu haben. Die Edelsteinschleiser haben kein sicheres Mittel, um die innere Güte eines kostbaren Steins, der eine rauhe Oberssäche hat, zu beurtheilen, bevor sie ihn anschleisen. Ich habe mehrmals Stücke Topas mit rauher Obersläche als innerlich ohne Fehler bezahlen sehn, die, als sie angeschlissen wurden, rissig und unbrauchbar besunden wurden. Man braucht in solchen Fällen den Stein blos in Canadischen

Ballam, Sallafrasöhl oder in ein andres Oehl von ähnlichem Brechungs-Vermögen zu tauchen, und ihn darin mit der Hand umzudrehen, so wird er nach allen Richtungen durchlichtig, und man entdeckt fogleich jeden noch fo kleinen Riss oder Sprung, durch die Einwirkung desselben auf die hindurchgehenden Lichtstrahlen. Untersucht man den Stein in Wasser, so find die Risse sichtbarer, als wenn man ihn in der Luft betrachtet, und je näher das Brechungs-Vermögen der Flüssigkeit dem des festen Körpers kömmt, desto deutlicher sind sie wahrzunehmen. Diamant, Zirkon, Rubin, Spinell und andre Edelsteine, die an Brechungs-Vermögen jede Flüsligkeit übertreffen, muls man daher in Cassia-Oehl oder in Salmiak-Auflösung unterfuchen, obgleich auch in diesen Flüsligkeiten das Licht in der Berührungsfläche desselben mit dem Steine noch eine bedeutende Brechung erleidet.

Auf dasselbe Princip läst sich ein sehr einfaches Versahren gründen, Edelsteine von künstlichen Pasten zu unterscheiden, mit denen manche berühmte Mineralogen betrogen worden sind. Da Diamant, Zirkon, Rubin, Granat, Pyrop, Saphir, Turmalin, Rubellit, Pistacit, Axinit, Kanelstein, Chrysoberill und Chrysolith das Licht stärker brechen als das Cassa-Oehl, so eignet dieses sich ganz vorzüglich zu solchen Untersuchungen. Taucht man einen der hier genannten geschliffenen Steine in Cassa-Oehl, und sieht durch zwei gegen einander geneigte Facetten hindurch, so muss das Licht,

wenn der Stein ächt ist, nach dem brechenden Winkel zuwärts abgelenkt werden. Geschieht die Ablenkung vom brechenden Winkel abwärts, so ist es eine Paste, oder ein blosser Glasslus.

Dasselbe Verfahren lässt sich mit gutem Erfolg von praktischen Optikern anwenden, um die Reinheit und innere Beschaffenheit des Glases zu unterfuchen, aus welchem fie Linfen und Prismen schleifen wollen. Wenige Arbeiten werden so häufig vergeblich gemacht, als das Schleifen von Flintglas zu Linsen und Prismen; kaum pflegen die Oberflächen derfelben polirt zu feyn, so zeigen sich unzählige Fafern und Wellen, die fich zuvor nicht entdecken ließen, und die das Bild, welches die Linfe macht, gänzlich verzerren. Schwerlich giebt es irgendwo ein Flintglas-Prisma ohne Fasern und Unvollkommenheiten, und Liebhaber, welche sich mit Schleifen von Linsen zu achromatischen Fernröhren beschäftigt haben, müssen nur zu oft ihre Verfuche aus diesem Grunde ohne Erfolg gefunden haben.

Ich habe von diesem Princip wesentlichen Nutzen bei meinen Versuchen über das Brechungsund Zerstreuungs-Vermögen solcher sesten Körper gezogen, die keiner guten Politur sähig sind. Nachdem ich aus ihnen Prismen geschliffen hatte, kittete ich an die heiden brechenden Flächen zwei
parallele Gläser, und füllte zwischen sie eine Flüssigkeit, deren Brechungs-Vermögen dem jener
Körper nahe kam. Auf diese Art werden Horn,

Schildpatt, Aleun, Steinsalz und einige Gummie und Harze vollkommen durchsichtig.

3.

Das Zerstreuungs-Vermögen der durchsichtigen Körper läst sich nicht messen, wenn nicht ihr Brechungs-Verhältnis bekannt ist. Bei meinen Untersuchungen über jenes Vermögen *) war ich daher genöthigt, zugleich eine Reihe von Versuchen über das Brechungs-Verhältnis dieser Körper anzultellen; und um alle Quellen von Irrthum möglichst zu vermeiden, maas ich dieses mit denselben Prismen, mit welchen ich die Zerstreuung aufhob.

In dem Verlauf dieser Unterstichung bin ich auf einige ganz unerwartete Resultate gekommen, und habe einige Körper entdeckt, welche ein größeres Brechungs-Verhältnis als der Diamant besitzen. Dieser durch seine chemische Natur und seine physikalische Eigenschaften gleich ausgezeichnete Edelstein steht, seitdem Newton seine Wirkung auf das Licht gemessen hat, in allen Taseln über das Brechungs-Vermögen der Körper oben an, und bis jetzt hat niemand auch nur vermuthet, dass es einen andern Körper gebe, der diese optische Eigenschaft in einem eben so hohen Grade als er besitzt. Man wird indess aus der folgenden Tasel sehn, dass Realgar, eine Verbindung von Arsenik mit Schwesel, und chromiumsaures Blei,

^{*)} Diese an unerwarteten Resultaten reichen Versuche über das Zerstreuungs-Vermögen der Körper erhält der Leser in dem folgenden Stücke.

ü

I

g

K

T

€

6

Ł

-

oder der rothe sibirische Bleispath, auf das Licht noch stärker wirken, als der Diamant; denn der Exponent des Brechungs-Verhältnisses ist für den Diamant 2,44, für das chromiumsaure Blei 2,50 und für den Realgar 2,55.

Obgleich weder Hauy, noch andere Mineralogen, dem chromiumfauren Blei eine doppelte Strahlenbrechung zuschreiben, so habe ich doch gefunden, dats es diele Eigenschaft in einem fo ausgezeichneten Grade belitzt, dass es den isländischen Krystall in der Größe derselben um mehr als das Dreifache übertrifft. Während der Exponent des Brechungs-Verhältnisses des schwächer gebrochnen Strahlenbündels 2,50 ift, steigt der des stärker gebrochnen Strahlenhündels auf 2,97; und wenn man bei letzterem das Zerstreuungs-Vermögen mit in Rechnung bringt, so ist das Brechungs-Verhältnis für die blauen Strahlen nahe 3,5. Dieses Resultat ist fo ausserordentlich, dass ich es für nöthig hielt, es durch mehrmalige Beobachtungen mit verschiednen Krystallen chromiumsauren Bleis zu bestätigen.

Die drei Körper, chromiumsaures Blei, Realgar und Diamant, lassen sich daher an die Spitze der Körper stellen, welche eine besondre Wirkung auf das Licht ausüben. Der Diamant zeichnet sich aus durch seinen außerordentlichen Glanz, durch seine Eigenschaft das Licht einzusaugen, und durch seine große brechende Kraft. Der Realgar hat ein noch größeres Brechungs-Vermögen, und übertrifft alle andre Körper, das chromiumfaure Blei ausgenommen, an Zerstreuungs-Vermögen. Das chromiumfaure Blei endlich ist der merkwürdige Körper, der die größte brechende Kraft, die größte doppelte Strahlenbrechung und die größte zerstreuende Kraft unter allen bis jetzt untersuchten Körpern besitzt *).

Obgleich die strahlenbrechende Kraft von noch mehreren Körpern, die in der folgenden Tafel enthalten find, bisher noch nicht untersucht worden war, so findet sich doch darunter weiter kein befonderes und unerwartetes Refultat. Die Edelsteine haben in der Regel ein sehr großes Brechungs-Vermögen. Wie die verschiednen Metalle das Brechungs-Vermögen des Glases ändern; zeigen die Versuche mit mehreren künstlichen Pasten. Die Flussfäure vermindert die Wirkung anderer Körper auf das Licht; denn Flufsfpath und Kryolith haben ein kleineres Brechungs Wermögen, als irgend ein andres Mineral oder ein andrer fester Körper, und stehn auch in der Tafel der zerstreuenden Kräfte unten an. Der Kryolith, der verhältnismässig mehr Flussäure als der Flusspath enthält, bricht das Licht nicht stärker als Salzwasser,

[&]quot;) Und doch ist weder das Ganze, noch einer der beiden Bestandtheile verbrennlich, vielmehr ist Chromiumsäure im Maximo oxygenist, und das gelbe Bleioxyd wenigstens mit einem bedeutenden Autheil Sauerstoff verbunden. Oder sollten diese Eigenschasten ein Wink der Natur seyn, dass hier noch wichtige chemische Entdeckungen zu machen sind?

TAFEL V.

Brechungs-Formögen mehrerer fester und stuffiger Körper, aus denen ich Prismen gebildet habe.

> Exponent des Brech. Verhältnisses

Chromiumfaures Blei, der am ftärksten	1
gebrochne Strahlenbündel	2,9747
- in einem andern Stück	2,9265
Realgar	2,549
Chromiumfaures Blei, der am schwäch-	. 1
sten gebrochne Strahlenbunde	2,5037
5 — in einem andern Stück	2,4795
Diamant, braun gefärbter	2,487)
ein anderer	2,470
nach Newton	2,439)
Phosphor	2,229
10 Spiessglanz-Glas	2,216
Schwefel, geschmolzen	2,1482
gediegner, verdoppelt	2,1155
Kohlenfaures Blei, Stärkste Brechung verdoppelt Zschwächere Brech.	1,8135
Zirkon, verdop- Sstärkste Brechung	2,0157
pelt, Zschwächere Brech.	1,9615
15 Schwefelfaures Blei	1,925
Granat	1,815
Saphir (blauer)	1,794
Pyroph disloyed and and gambe	1,792
Zirkon (orangefarbner)	1,782
20 Rubellit	1,779
Rubin - Spinell	1,761
Chryfoberill	1,760
Kanelstein	1,750
Axinit Manual Comments	1,735
Man 1989 M. Aug. des	
	1,729
	1,7037

	Marie Control of the	Exponent des Brech. Verhältn.
	Boracit	1,701 .
	Kohlenfaurer Stron- Stärkere Brech tian, verdoppelt, Ischwäch. Brech	1,700}
	Orangefarbnes Glas	1,695
30	Chryfolith, verdop- ftärkere Brech pelt, fchwäch. Brech	
	Turmalin	1,668
	Katkspath, verdop- Stärkere Brech pelt, Schwäch. Brech	1,6657
	Schwefelfaurer Baryt, verdoppelt, fta	
	kere Brechung	1,664
	Spargelstein	1,657
35	Topas (rother)	1,65a
	Hyacinthrothes Glas	1,647
	Schwefelfaurer Strontian	1,644
	Caffia - Oehl	1,641
	Topas, (gelber)	1,638
40	- (blauer von Aberdeenshire) ve	r-
•	doppelt	1,636
	Opalartig gefärbtes Glas	1,635
	Tolutanischer Balsam	1,628
	Biebergeil (caftor)	1,626
	Salmiak	1,625
45	Topas (blauer aus Cairngorm)	1,624
	Guajacum	1,619
	Flintglas	1,616 *)
	Grün gefärbtes Glas	1,615
	Purpurfarbiges Glas	1,608
50	Flintglas, eine andere Art	1,604 *)
	Rothes Glas, des man für orientalisch Rubin hielt	1,601
*)	Die verschiednen von Boscovich unte	rfuchten Arren

^{*)} Die verschiednen von Boscovich untersuchten Arten von Flintglas hatten solgende Brechungs-Vermögen: 1,590; 1,593; 1,594; 1,604; 1,625.

20.		Exponent des rech. Verhältn
- Clar	Anisohi .	1,601
	Beryll	1,598
,	Peruanifcher Balfam	1,597
55	Flintglas, eine dritte Art,	1,596
	Gummi ammoniacum	1,592
*	Schildpatt	1,591
	Smaragd	1,585
	Balfam aus Styrax	1,584
60	Bouteillen - Glas	1,582
	Weinsteinfäure, ver- Stärkere Brech. doppelt, Ischwäch Brech	
	Blassroth gefärbtes Glas	1,570
	Horn	1,565
	Bergkrystall, verdoppelt	1,562
65	Amethyst	1,562
	Maftix	1,560
	Burgunder Pech	1,560
	Harz	1,559
	Terpentin von Chio	1,559
70	Steinfalz	1,557
	Zucker, nach dem Schmelzen	1,555
	Weihraugh? (Gum Thus)	1,554
	Chalcedon :	1,553
75	Schwefelfaures Kupfer, Stärkere Brech verdoppelt Ichwäch. Brec	h. 1,5527
9-	Kopal	1,549
	Kanadischer Balsam	1,549
	Elemi	1,547
	Qlibanum	1,544
80	Phosphorfaure, felte,	1,544
	Crownglas	1,541
	Sandarach	1,538
1	Selenit, verdoppelt, größere Brechung	1,536

10

I

and or	The state of the s	Exponent des Brech. Verhältn
	Feldspath	1,536
85	Crownglas, eine andre Art	1,334
	Kautschuk	1,534
	Saffafrasöhl	Moh 1,53a
	Gefärbtes Glas, das man für Ka	
	Kopaiva - Balfam	1,528
00	Leucit	1,527
90	Tafelglas	1,527
	Zitronenfäure	1,527
	Schelllack	1,525
-	Myrrhe	1,524
05	Drachenblut	1,520
30	Arabifches Gummt	1,512
	Schwefelfaures Kali	1,509
	Italien. Kümmelöhl (oil of cu	
	Stilbit	1,508
100	Nusshl	1,507
	Pimentöhl	1,507
	Fenchelöhl	1,506
	Rofenholzöhl	1,505
	Schwefelbalfam	1,497
105	Schwefelfaures Eifen	1,494
	Angelika - Oehl	1,493
	Mairan - Oehl	1,49r
	Gemeines Kümmelöhl (oil of	
	way feeds)	1,491
	Biebergeil - Fett (caftor oil)	1,491
110	Obsidian	1,488
	Ifop - Oeld	1,487
18/24	Fenugrec - Oehl	1,487
	Kajaput - Oehl	1,483
	Mandelöhl	1,482

Accorded to the second of	Exponent der Brech Verhält
115 Sadebaumöhl	1,482
Flöhkrautöhl	1,481
Citronenöhl	1,481
Krausemünzenöhl (oil of spearming	1,481
Thymianöhl	1,477
120 Dillöhl	1,477
Terpentinöhl	1,475
Rübsenöhl	1,475
Borax	1,475
Sandarack	1,473
125 Ziegelöhl	1,471
Bergamotöhl	1,471
Olivenöhl	1,470
Wallrath - Oehl (?)	1,470
Rosmarinöhl	1,469
130 Mohnöhl	1,463
Lavendelöhl	1,457
Kamillenöhl	1,457
Buchsbaumöhl	1,453
Hydro-Phosphorfaure	1,442
135 Schwefelfäure	1,440
Flusspath	1,436
Rautenöhl	1,433
Salpeterfäure	1,406
Salpetrige Säure	1,596
140 Salzfäure	1,376
Alkohol	1,374
Ambraöhl (oil of ambergreafe)	1,368
Eywoifs	1,361
Ein Weichthier (Medusa aequoria)	1,345
145 Kryolith	1,344
Salzwasfer	1,343
Wasser	1,336
Eis *)	1,307

lii A tiil Fo da re pr be ko zu ze sta

⁹) Das Eis, welches sehr durchsichtig war, bevor es anfing zu schmelzen, wurde während des Schmelzens völlig undurchsichtig.

Brewster.

IH.

Beschreibung eines Fernrohrs, welches zum Sehen unter Wasser bestimmt ist,

von

DAVID BREWSTER, LL. D., Mitgl. d. Edinb. Gef. d. Wiff.

Frei übersetzt von Gilbert *).

Ich las vor einiger Zeit in einem unfrer physikalischen Journale die Nachricht, die Kopenhagner
Akademie der Wissenschaften habe ihren mathematischen Preis auf die Ersindung eines hydraulischen
Fernrohrs gesetzt, das heisst eines solchen, durch
das sich Gegenstände auf dem Boden des Meeres sollten deutlich erkennen lassen. Der große
praktische Nutzen, den dieses Instrument haben wilrde, veranlasste mich darüber nachzudenken, und da die Grundsätze, nach denen es auzuordnen ist, sich auch auf andere optische Werkzeuge anwenden lassen, so habe ich diesen Gegenstand mit aller Sorgsalt zu ergründen gesucht.

Ist die Obersläche der See unruhig und in Bewegung, so läst sich nur mit einem Fernrohre, welches in das Wasser eingetaucht wird, in dieselbe

^{*)} Aus dessen oben erwähntem Werke. Gilbers.
Annal. d. Physik, B. 50. St. 1. J. 1815. St. 5.

b

k

k

ir

ft

d

il

n

RB

d

g

e

L

je

Z

V

g

F

li

K

hinab sehn; und selbst wenn die See ganz glatt und still und der Grund hinlänglich erleuchtet ist, kann man die Gegenstände, welche sich auf dem Boden des Meeres besinden, nur dann deutlich erkennen, wenn die Gesichtslinie einen großen Winkel mit der Obersläche des Wassers [und also nur einen kleinen Winkel mit dem Einfallslothe] macht. Nothwendig muss daher ein Fernrohr, das zum Sehen unter Wasser bestimmt ist, so eingerichtet werden, das sich der vordere Theil desselben in das Wasser eintauchen läst, und dass es entweder von selbst schwimmt, oder an irgend einem schwimmenden Körper besestigt ist. Folgende Vorrichtungen scheinen diese verschiedenen Bedingungen zu erfüllen.

Es stelle in Fig I Tas. II SS die wellenschlagende Oberstäche des Meeres vor, und MNSS ein auf dasselbe schwimmendes Parallelepipedon aus Holz oder hohlem Kupser, in welchem an der horizontalen Axe P ein Rohr ABCD so besestigt sey, dass es sich um diese Axe in der Vertikalebene frei bewegen lasse, und dass die vordere Hälste desselben sich unter dem Wasser besinde. Ist unweit des vordern Endes desselben in ef ein dünnes, gut polirtes Spiegelglas mit parallelen Oberstächen wasserdicht eingekittet, so schließt sich das Wasser, durch den Druck des höher stehenden daran gepresst, so genau an dieses Glas an, dass die Strahlen von dem Boden des Meeres eben so in das Auge des Beobachters bei O gelangen, als wenn man bei voller

Ruhe der See aus O nach einem Gegenstande herab sähe, der lenkrecht darunter auf dem Meeresboden läge.

Ist die Tiefe zu groß, oder der Gegenstand zu klein, als dass er sich ohne Fernrohr deutlich erkennen lässt, so brauchte man nur ein Fernrohr in die Röhre ABCD hinein zu schieben: oder noch besser nur ein Fernrohr so einzurichten, dass es sich statt dieses Rohrs in das schwimmende Parallelepipedon einsetzen ließe, wie das in Fig. 2 vorgestellt ift. Ein folches Fernrohr müsste nicht nur mit einer horizontalen Axe P und einem wasserdicht eingekitteten Objectivglase versehn seyn, sondern das Rohr desselben müßte sich auch bis zur doppelten Brennweite dieses Glases herausziehn lassen. Denn die Strahlen, welche von dem Gegenstande ausgehn, treten dann unmittelbar aus dem Waller in das Objectivglas, leiden also an der Gränze beider eine schwächere Brechung, als beim Eintreten aus Luft in Glas, wodurch die Brennweite des Objectivs für diesen Fall sehr vergrößert werden muls, Zwar würde dadurch die Farbenlofigkeit desselben vermindert werden, dieses kömmt aber bei den groben Beobachtungen, zu welchen ein folches Fernrohr beltimmt ist, nicht in Betrachtung.

Folgende Berechnung zeigt dieses umständlicher. Es sey BAD Fig. 3 die Vordersläche der Kronenglaslinse des Objectivs, welche mit dem Wasser in Berührung ist; der Halbmesser dieser Vorderfläche fey AC = CB = r, und das Verhältnis der Sinusse des Einfalls- und des Brechungs-Winkels m:n [d. h. für die Brechung aus Luft in Glas]. Man denke sich einen in B, parallel mit der Axe AF, und also unter dem Winkel $ACB = \phi$ einfallenden Strahl, und die Oeffnung der Linie so gering, das man das Verhältnis der Winkel für das der Sinusse nehmen könne. Unter diesen Voraussetzungen ist

$$\varphi: CBF = m: n$$
, and $\langle CBF = \frac{n}{m} \varphi;$
also $\langle CFB = \varphi - \frac{n}{m} \varphi = \frac{m-n}{m} \varphi;$

und da in dem Dreyeck BCF die Sinusse der Winkel CFB und CBF den gegenüberstehenden Seiten CB und CF proportional sind, so ist

$$\frac{m-n}{m}\varphi:\frac{n}{m}\varphi=r:CF,$$

folglich
$$CF = \frac{m \cdot r}{m-n}$$
*).

Nun aber ist für Brechung aus Lust in Glas m:n = 1,53:1, folglich

$$CF = \frac{1,53}{0,53} \cdot r = 2,887 \cdot r **).$$

") Vielwehr $CF = \frac{nr}{m-n}$; Herr Brewster hat diesen Schreibesehler so ganz übersehn, dass er nach seiner unrichtigen Formel rechnet, daher seine solgenden Zahlbestimmungen so zu verändern sind, wie ich es in den Anmerkungen gethan babe.

Gilbert.

") Vielmehr
$$CF = \frac{1}{0.65} \cdot r = 1.887 \cdot r$$
 G116.

Und für Brechung aus Wasser in Glas m:n = 1,15:1 (vorausgesetzt für die Brechung aus Lust in Wasser sey m:n = 1,336:1); in diesem Fall ist also

$$\mathbf{C} \mathbf{F} = \frac{\mathbf{r}_{1} \mathbf{r}_{2}}{\mathbf{o}_{1} \mathbf{r}_{3}}, \mathbf{r} = 7.667, \mathbf{r}_{1}, *),$$

Soll also in beiden Fällen [d. h. wenn die Lichtstrahlen aus Luft, und wenn sie aus Wasser in das Objectivglas eintreten.] die Vereinigungsweite parallel einfallender Strahlen (CF) gleich weit hinter der Linse sallen, so muss der Halbmesser der Vordersläche der Kronenglassinse in beiden Fällen verschieden seyn. Und zwar, wenn wir diesen Halbmesser sür den Fall, dass der Lichtstrahl aus Luft in Glas trifft, r, und für den Fall des Einfallens aus Wasser in Glas r setzen, so muss 2,887. r=7,667. r

oder
$$r' = \frac{2,887}{7,667} \cdot r = \frac{1}{2,65}$$
, r feyn **),

Soll also ein achromatisches Objectiv völlig achromatisch bleiben, wenn man den Gebrauch desselben dahin verändert, dass man die Vordersläche in Wasser taucht, so muss die vordere Kronenglaslinse mit einer andern vertauscht werden, deren Vordersläche einen 2,65 [3,55] Mal kleinern Halbmesser hat.

") Vielmehr CF =
$$\frac{1}{0.15}$$
. $r = 6.667$. r Gilb.

^{**)} Vielmehr 1,887 . r = 6,667 . r', oder r' = 1,887 r = 3,63 r = 3,63 r Gilb.

Um wie viel die Focallange eines Objectivglases zunimmt, wenn man es auf die angegebene Art braucht, d.h. mit der vordern Fläche in Walfer taucht, das hängt offenbar von der Krümmung der Vorderfläche der vordersten Linse desselben ab. welche mit dem Wasser in Berührung ist. Wäre ihr Halbmesser unendlich groß, d. b. wäre die vorderste Fläche der Linse eben, so würden parallel mit der Axe einfallende Strahlen hier keine Brechung leiden, sie möchten aus Luft oder aus Wasfer in das Glas übergehn, und folglich würde dann die Brennweite des zusammengesetzten Objectivs durch Eintauchen des Rohrs in Waller gar nicht verändert werden, da die Brechungen an allen übrigen Flächen in beiden Fällen ebenfalls genau diefelben wären.

Es sey F die Pocallänge des zusammengesetzten achromatischen Objectivs, und a der Halbmesser der vordern, b der Halbmesser der hintern Fläche einer biconvexen Linse aus Kronenglas (für das das Brechungs-Verhältnis 1,53; 1 sey), so ist nach den Lehren der Dioptrik

$$F = \frac{1.887 \cdot a \cdot b}{a + b}, \text{ und also}$$

$$a = \frac{F \cdot b}{1.887 \cdot b - F} \text{ und } b = \frac{F \cdot a}{1.887 \cdot a - F}.$$

Es ist aber die Brennweite eines jeden zusammengesetzten doppelten oder dreifachen Objectivs v.

ne

al.

ng

b.

TO

T-

el

e-

[-

n

V\$

ht

i-

bekannt, und der Halbmesser der vordersten, nach dem Objecte zu gewendeten Oberstäche läst sich leicht sinden. Und hat man diese beiden, so giebt die dritte Formel den Halbmesser b der Hinterstäche einer Kronenglaslinse, welche die Strahlen eben dahin vereinigen würde, wo sie es durch alle übrige Flächen des zusammengesetzten Objectives werden. Ist z. B. F = 12 und a = 8, folglich b = 24 Zoll, so hat eine biconvexe Linse aus Kronenglas, deren Halbmesser der Vorderstäche 8, und der Hinterstäche 24 Zoll sind, nahe dieselbe Brennweite als ein zusammengesetztes Objectiv von 12 Zoll Brennweite, dessen vorderste Fläche einen Halbmesser von 8 Zoll hat.

Nun haben wir aber gesehn, das, wenn die convexe Vorderseite einer Linse aus Kronenglas in Wasser getaucht wird, der Halbmesser dieser Vorderseite 2,65 [3,53] Mal kleiner werden müsste, wenn die Brennweite der Linse dieselbe bleiben soll, welche sie war, als die Strahlen aus Luft in Glas einsielen. Folglich ist die Brennweite einer convexen Linse oder eines zusammengesetzten Objectivglases, wenn die Vordersläche desselben mit Wasser in Berührung ist, solgende:

$$\mathbf{F} = \frac{2,65 \cdot 1,887 \cdot ab}{2,65 \cdot a+b} = \frac{5 \cdot ab}{2,05 \cdot a+b} *).$$

') Vielmehr
$$F = \frac{3.53 \cdot 1.887 \cdot ab}{3.53 \cdot a + b} = \frac{6.66 \cdot ab}{3.53 \cdot a + b}$$
 G.

Hierbei bedeutet b bei einer einfachen Linse den Halbmesser der hintern Fläche, bei einem zusammengesetzten Objective dagegen den Halbmesser einer solchen Hinterstäche, welche allen übrigen Oberstächen des zusammengesetzten Objectivs zusammengenommen gleich wirkt. Haben beide Flächen der Linse gleiche Halbmesser, so wird F=1,37.a *).

Diese Formeln setzen uns in den Stand, für jedes Objectiv-Glas, das man zu dem hydraulischen Fernrohr brauchen will, wenn der Halbmesser der vordersten Fläche und die Brennweite bekannt sind, die Länge F zu sinden, welche das Rohr für unendlich entsernte Gegenstände haben müßste. Ist aber die Entsernung der Gegenstände nur klein, und z. B. die Tiese des Wassers, in welchem das Instrument gebraucht werden soll, = D, wodurch der kleinste Abstand der Gegenstände von dem Objectivglase bestimmt ist, so muß die Länge des Rohres L, seyn

 $L = \frac{FD}{D - F}.$

Da es vortheilhaft ist, ein möglichst kurzes Rohr zu haben, so muls man den Halbmesser der vordersten Fläche des Objectivs so groß machen, als es mit der Farbenlosigkeit des Objectivs besteht; denn die Focallänge des Objectivglases nimmt mit dem Eintauchen in Wasser um so mehr zu, je kleiner der Halbmesser dieser Fläche ist.

^{*)} Vielmehr F = 1,47 . a.

Wenn die Gegenstände, welche sich am Boden des Wassers besinden, von dem Tageslichte, das durch das Wasser zu ihnen hinab dringt, hinlänglich erleuchtet sind, so reichen die beschriebenen Instrumente hin, sie uns fast eben so deutlich wahrnehmen zu lassen, als man sie in der Lust bei gleicher Entsernung sehn würde. Sind sie aber wegen der Bewegung der Oberstäche des Wassers, oder weil Licht während des Durchgehens durch das Wasser verschluckt würde, zu dunkel, so muß man ihnen künstliches Licht zusenden *), und zu

F

-

r

it

В.

1,

15

h

m

28

28

3.6

a,

t;

it

1-

*) Bei heiterem Himmel und ruhiger See kann man Gegenstände bis in einer Tiefe von 50 bis 60 Fuss, und oft noch weit tiefer, ohne künstliche Erleuchtung deutlich wahrnehmen. Dr. Halley fagt in feinem Berichte von seinen Versuchen mit der Täucherglocke: "Wenn das Meer glatt und ruhig war, kam fo viel Licht zu dem Glasfenster herein, besonders wenn die Sonne ichien, dass ich lesen und schreiben und jeden Gegenstand unter uns erkennen und fest binden konnte; und oft habe ich mit den heraufgehenden Lufttonnen Befehle, wie man die Glocke fortbewegen solle, heraufgeschickt, welche ich unten mit einem eilernen Stifte auf kleine Bleitafeln geschrieben hatte. War aber die See unruhig und trübe. so war es unten in der Täucherglocke so dunkel, wie in der Nacht; ich brannte dann ein Licht in der Glocke, ungeachtet dieses viel Luft versehrt." (Philosophical Transactions 1716. Vol. 29. p. 498.) Und an einem andern Orte bemerkt Halley: "Was das Sehn unter Waffer betrifft, so erkennt man, so lange das Wasser hell ift, die Gegenstände hinlänglich deutlich; aber wenn es nur wenig trübe ift, fo herricht ichen in geringer Tiefe unter dem Waller völlige Nacht" (daf. 1721. p. 179). In einigen der nordamerikanischen Seen ist das Wasser so durchsichtig, dass sich Gegenstände in ihnen in ganz

dem Ende die Röhre Fig. 1, oder das Fernrohr Fig. 2, mit einem Erleuchtungsrohre GHEF Fig 4 verbinden. Dieses ist unten mit einem eingekitteten, gegen die Axe etwas geneigten Planglase EF, und oben mit einem parabolischen Spiegel GH verfehn, in delfen Brennpunct eine Lampe Steht, und neben welchem ein konischer Plauchfang angebracht ift, Der Spiegel wirft die Strahlen der Lampe in paralleler Richtung auf das Glas, und indem sie hier etwas gebrochen werden, fallen sie auf die Gegenstände, welche in der Richtung des Fernrohrs liegen. Damit die Strahlen ein wenig zerstreut werden, mülste man die innere Seite des Planglases etwas hohl schleifen; auch müßte das Rohr GF gegen das Fernrohr etwas können geneigt werden. Wenn indels die See trübe ift, fangen die kleinen fremden in dem Waller zerstreuten Theilchen die Lichtstrahlen auf, und es ist dann unmöglich, die Gegenstände auf dem Meeresgrunde künstlich zu erleuchten.

Es dürfte vielleicht besser seyn, dieses Instrument an der Kanonenlage eines Boots, als an ei-

ungewöhnlichen Tiefen erkennen lassen, wie Heriot in seinen Reisen durch Kanada angiebt "Das Wasser des Oberen Sees, sagt er, ist reiner und durchsichtiger, als das Wasser irgend eines andern Sees auf Erden, und man sieht darin Fische und Felsen in Tiesen, die jedem unglaubsich scheinen müssen, wer nicht selbst dort gewesen ist, und dass man meinen sollte, das Wasser, worauf man schifft, sey nicht dichter als die Lust."

Brewster.

br

4

t-

[e

0-

ie

er

iè

uf

n

in

ie

n

i-

1-

[s

n

n

e

l-

i-

in

88

la

d

m

nem schwimmenden Holze zu besestigen. Wollte man damit zur Seite unter das Boot oder unter Felsen sehn, so müssten das Fernrohr und das Erleuchtungsrohr am vordern Ende einen unter 45° gegen die Axe der Röhren geneigten Spiegel, und ihr Plan- und Objectiv-Glas daneben an der Seite des Rohres haben. Oder man müsste den Spiegel in einer kleinen Entsernung vor dem Objectivglase des Fernrohrs anbringen, so dass er sic hin dem Wasser selbst besände,

Für die, welche mit einer Täucherglocke unter Wasser arbeiten wollen, ift ein solches Fernrohr von vorzüglichem Nutzen, da es sie in den Stand setzt, ohne die Glocke zu verlassen, welches immer gefährlich ist, den Boden weit umher zu untersuchen. Bei mässigen Tiefen reicht dieses Instrument allein aus, Gegenstände am Boden des Meeres aufzuhnden, und viele würden sich dann schon von einem Täucher heraufbringen lafsen, ohne dass man eine Täucherglocke nöthig hätte. Naturforscher würden durch ein solches Fernrohr in den Stand gesetzt werden, die Gebirgsarten und Erdlagen am Boden von Flüssen und Seen zu beobachten, die Pflanzen, welche unter dem Wasser wachsen, zu erkennen, und die Lebensart der Fische und andrer Wasserthiere zu belauschen. Auch bei manchen Fischereyen dürfte das Wasser-Fernrohr von Nutzen seyn, z. B. bei dem Fischen der Pinna marina, wie es

in Neapel getrieben wird; um Korallenreiche Felfen in mäßigen Tiefen, und um Banke, woran Perlenmuscheln sitzen, aufzusuchen; eben so beidem Harpuniren der Lachse in Strömen u. d. m. Der Nutzen dieses Wasser-Fernrohrs würde sich endlich auch bei Wasserbauten bewähren, indem man damit die Fundamente von Brücken und Dämmen würde besehn, und Schäden untersuchen können, welche Wasser an diesen und andern hydrotechnischen Arbeiten unter seiner Obersläche könnte angerichtet haben. Auch ließe sich ein folches Fernrohr mit einer Flinte verbinden, wodurch ein Jäger in den Stand gesetzt würde, mit Sicherheit nach Thieren zu zielen, die fich am Boden eines Flusses oder stehender Gewässer befinden.

Ich werde in einem andern Auffatze zeigen, wie sich die Mikroskope durch Anwendung eben dieses Princips verbessern lassen *).

a. It, ber den Lithers at Frang man on

Mignaren und Federal am iloden som Inden que Seen in bealement de Planten, weighe anter dem Weiter wei bien, au rekennen und die Leitenste der Fr, as und ander Walesthern in belegning. Auch In menchen Filmeren

⁹ Der Leser erhält diesen Aufsatz in dem nächsten Stücke dieser Annalen. G.

che ce, fo m.

em

nd

he

ein

10-

nit

m

8+

n,

en

cke

100

.2

IV.

Ueber die Einwirkung der Jodine auf den thierischen Körper.

VOL

M. P. ORFILA in Paris *).

Die chemische Einwirkung der Jodine auf die Körper des Pflanzen- und Thierreichs ist bis jetzt nur im Allgemeinen untersucht worden. Man weißs nichts weiter, als dals fast alle diese organischen Körper durch die Jodine zersetzt werden, indem sie ihnen einen großen Theil Wasserstoff entzieht, um sich selbst dadurch in Jodine-Wasserstoffaure zu verwandeln. Die folgenden Versuche sind von mir angestellt worden, um zu einer nähern Kenntniss der Einwirkung zu gelangen, welche dieser neu entdeckte Körper auf Thiere in dem lebenden Zusstande äußert.

[&]quot;) Eine Uebersetzung aus Hrn. Orfila's Tratte des potfons, tires des regnes mineral vegetal et animal, ou
Toxicologie generale, confiderée fous les rapports de
la Physiologie, de la Pathologie et de la Medecine
legale, Paris 1814. T. 1. P. 2, welche zugleich als Probe
einer Uebertragung dieses lehrreichen Werks in unsere
Muttersprache dient, mit der sich der Uebersetzer dieses
Abschnitts belchästigt, und für deren Genausgkeit und
Güte ich einstehn kann.

Gilbers

Verfuch 1. Ich ließ einem Hunde von mittler Größe zu Mittag 2 Drachmen und 48 Gran Jodine verschlingen. Unmittelbar darauf war das Maul desselben voll gelblichen Schaums, und er machte schluckende Bewegungen, die er oft wiederholte. Um 3 Uhr hatte er noch keine Ausleerung gehabt, um 5 Uhr aber fand fich ein nicht fehr reichlicher Stuhl ein, der aus einer gelben felten, und einer bläulichen teigartigen Masse bestand, in welcher letztern man einen Theil des beigebrachten Giftes unterscheiden konnte. Diele abgegangene Malle hatte den Geruch der Jodine: getrocknet und der Wärme ausgesetzt, stiels sie einen schönen violetten Dampf aus, und lieferte bei der Sublimation & Drachme der bläulichen krystallinischen Blättchen, welche die Jodine bildet. Um 6 Uhr brach der Hund eine fehr kleine Menge von einer ziemlich dunkelgelben. weichen Materie aus, und dieses Erbrechen kam 10 Minuten nachher wieder. Er fah etwas niedergeschlagen aus, ließ aber keinen Laut von Schmerzen hören. Den Tag darauf wies er Nahrung und Getränke von fich, lag auf dem Bauche und athmete ohne Schwierigkeit. Den dritten Tag war er noch immer niedergeschlagen, wollte keine Nahrung nehmen, und das Herz schlug sehr geschwind: um 6 Uhr Abends erfolgte noch ein Stuhl, in welchem aber nicht die geringlie Spur von Jodine zu finden war. Den vierten Tag wollte der Hund keine Milch genießen, hatte von Zeit zu Zeit Schlucken, zeigte aber weiter kein merkwürdiges

r

ıl

e

t.

r

r

75

25

[e

er

n

1-

e

ie

n,

m

r-

r-

d

1-

er

1-

1;

1-

u

d

it

es

Symptom, als Niedergeschlagenheit. In der Nacht des siebenten Tages hatte er wieder einen Stuhl, und starb 2 Stunden nachher, ohne irgend ein Symptom von Paralyse, Convulsionen oder Schwindel zu zeigen.

Besichtigung. Der Magen war leer und zusammengezogen, und seine innere Fläche mit einem gelben, schleimigen, dicken, sehr zähen Ueberzuge bedeckt. Die Schleimhaut zeigte in der Gegend der Cardia 7 oder 8 kleine Gelchwüre, welche die Gestalt von Linien hatten, unter einander in Winkeln zusammenstielsen, und von einem gelben Hofe umgeben waren. Sie waren von der Einwirkung der Jodine auf die freistehenden Kanten der Falten in der Schleimhaut entstanden, und wenn man die Theile, worauf diele Geschwüre falsen, gegen das Licht hielt, fo zeigten fich die entblößten Stellen offenbar durchscheinend. Am blinden Sacke des Magens bemerkte ich einige Flocken von hellgelber, und andre von etwas braungelber Farbe; sie verschwanden bald, als sie mit dem Hefte des Skalpells leicht gerieben wurden, und eben so verhielt sich die Schleimhaut, auf welcher sie lassen. Neben dem Pylorus sah man eine große Anzahl Falten, deren freistehende Kanten stark gelb gefärbt, deren Seitentheile aber in ihrem natürlichen Zustande waren. Bei dem geringsten Verluche, diese Falten auszudehnen, zerrifs die Schleimhaut, ein Beweis, dass schon ein

Anfang von Vereiterung da war. Zunächst am Pylorus hatten die Theile eine schmuzig dunkelgrüne Farbe, und nahm man diesen gefärbten Ueberzug weg, so zeigte sich die Schleimhaut in ihrer ganzen Dicke entzündet; eben so der darunter liegende Theil der Muskelhaut. Die innere Fläche aller dünnen Gedärme bedeckte ein sehr reschlicher gelber, mit Blut gemengter Schleimüberzug. Die Lungen waren in sich selbst zusammengeschrumpst und gaben ein knisterndes Geräusch. Die Leber, die Milz und die Harnblase schienen im natürlichen Zustande zu seyn.

Verfuch 2. Ich ließ einen jungen Mops um 1 Uhr 1 Drachme und 12 Gran Jodine nüchtern nehmen. Augenblicklich machte er schluckende Bewegungen, und nach 8 Minuten brach er eine weiche gelb gefärbte Masse aus, in welcher ich einen Theil der Jodine wiedersand. Solche Erbrechungen kamen in den ersten 18 Minuten nach der Vergiftung vier Mal wieder. Um 2 Uhr schien das Thier zu leiden, es hatte den Schlucken, machte immersort schluckende Bewegungen, und legte sich auf den Bauch. Den andern Morgen fras es ziemlich begierig. Nach Verlauf von 6 Tagen schien es völlig hergestellt zu seyn, und verschlang alle Nahrungsmittel, die man ihm reichte. Am 10ten Tage endlich war es entsprungen.

Verfuch 3. Einem Hunde von mittler Größe gab ich i Drachme Jodine. Nach 20 Min, brach er eine d

re

in

schaumige, welfse, stellenweis gelblich gefärbte Masse weg, und machte schluckende Bewegungen. Zekin Minuten nachher brach er aus Neue eine eyweissartige, safrangelbe Masse aus, die sich in Fäden ziehn liefs, und dieses Erbrechen wurde in einer halben Stunde zweimal wiederholt; das Thier war etwas niedergeschlagen und wollte keine Nahrung nehmen. Den andern Tag frass es sehr willig, und nach 4 Tagen schien es völlig hergestellt zu seyn.

Verfuch 4. Ich ließ einem Hunde von mittlerer Größe i Drachme und 18 Gran Jodine verschlingen. Zwei Standen nachher hatte das Thier
noch nicht gebrochen, es war unruhig und bewegte die Zunge, als wollte es sich von etwas
Uebelschmeckendem befreien. Es hatte den
Schlucken und blieb immer auf dem Bauche liegen.
Drei Stunden nach der Vergiftung brach es eine
bräunliche, teigartige Masse weg, worin keine Jodine zu finden war. Den andern Tag wollte das
Thier keine Nehrung nehmen, und wurde sehr niedergeschlagen. Nachdem dieser Zustand 5 Tage gedauert hatte, starb es, ohne das geringste Zeichen
von Paralyse oder Convulsionen gegeben zu haben.

Besichtigung. Das Innere des Magens zeigte die gelbe Farbe und die Geschwüre, wie in Versuch 1. Die Schleimhaut und die Muskelhaut waren stellenweis ein wenig entzündet, es war aber unmöglich, auch nur die geringste Spur von Jodine in irgend einem Theile des Darmkanals zu sinden.

Annal. d. Phylik. B. 50. St. 1. J. 1815. St. 5. F

Verfuch 5. Ich entblößte die Speiferöhre eines kleinen Hundes, machte eine Oeffnung hinein, und brachte auf diese Art i Drachme und 48 Gran Jodine in einer Papierkapsel in den Magen. Hierauf wurde die Speiseröhre unterhalb der gemachten Oeffnung unterbunden, um das Herausbrechen zu verhindern. Der Hund machte nach 2 Stunden einige gewaltsame Versuche zum Erbrechen. Den andern Tag war er niedergeschlagen, aber nicht gelähmt, und das Athmen ging frei von Statten. Er starb am sechsten Tage des Morgens in einem Zustande großer Krastlosigkeit.

Besichtigung. Die innere Fläche des Magens hatte kein entzündetes Ansehn. Um die Cardia herum war die Schleimhaut zersressen, und sie zeigte hier mehrere Vereiterungen von ziemlicher Ausbreitung. Die Muskelhaut war gleichfalls an einigen der Stellen vereitert, die an den zerstörten Theilen angelegen hatten. Diese Geschwüre waren deutlicher ausgebildet, als bei dem Hunde in Versuch 1, übrigens aber von derselben länglichen Ausbreitung und in derselben Lage; auch sah man gegen den Pylorus zu einen gelben, schleimigen, ziemlich dicken Ueberzug. Der Darmkanal zeigte nichts merkwürdiges. Die Lungen waren gesund.

Versuch 6. Um 7 Uhr Morgens legte ich die Speiseröhre eines kleinen Hundes blos, machte in sie eine kleine Oeffnung, brachte 3 Drachmen Jodine, in zwei Papieren vertheilt, hinein, und un١,

n

r-

n

ein.

1

en

ht

n.

m

ol.

ns

lia

te

15-

ni-

en

en

er-

115-

ge-

en,

gte

d.

die

in

Jounterband dann die Speiseröhre. Nach 6 Minuten erfolgten heftige Austrengungen zum Erbrechen. Um 10 Uhr hatte der Hund den Schlucken und schien etwas zu leiden. Abends 11 Uhr stieß er ein schneidendes Klaggeschrei aus, war sehr niedergeschlagen, und hatte den ganzen Tag keine Ausleerung gehabt. Den andern Tag war die Niedergeschlagenheit außerordentlich groß, der Pulsschlug 140 Mal in einer Minute, und der Hund wurde von einem brennenden Durste gequält. Er hatte in der Nacht einen seiten, nicht sehr reichlichen Stuhl gehabt. Um a Uhr starb er.

Besichtigung. In der geöffneten Speiseröhre fand ich noch etwa 11 Drachmen Jodine, die nicht bis zum Magen herab war gestossen worden. Der Magen selbst zeigte um die Cardia und den Pylorus herum mehrere purpurtothe Flecken, und die Schleimhaut an dem großen Bogen des Magens war an vier Stellen vereitert, mit runden Geschwüren, welche aber die Muskelhaut selbst nicht angegriffen hatten. Die Wände der Speiseröhre waren in hohem Grade gelb gesärbt und sehr hart geworden, sie zeigten unter dem Messer so viel Widerstand als die Wände der Luströhre.

Diese Versuche wurden mit andern Hunden wiederholt, und gaben ähnliche Resultate.

Versuch 7. Ich machte in den Rücken eines Hundes von mittlerer Größe eine Wunde, bestreute sie mit 1 Drachme und 12 Gran Jodine,

und vereinigte dann die Wundränder durch zwei Stiche. Die Haut wurde fogleich gelb, das Thier schien aber nicht beunruhigt. Den andern Tag fraß es, wie gewöhnlich. Drei Tage nachher zeigte die Oberstäche der Wunde einen weißgelben, ziemlich dicken Ueberzug; der weniger Empfindlichkeit als die darunter liegenden Theile hatte, welche roth und sehr entzündet waren. Nach Verlauf von 6 Tagen besand sich das Thier vollkommen wohl.

Versuch 8. Begierig, die Wirkungen der Jodine auf den menschlichen Körper kennen zu lernen, nahm ich nüchtern a Gran davon ein. Ein abscheulicher Geschmack und einige Anfälle von Ekel waren alles, was auf diesen Genus erfolgte. Den andern Morgen nahm ich 4 Gran; ich empfand fogleich eine Zusammenziehung und Hitze an der Kehle, welche Zufälle & Stunde lang anhielten, dann brach ich eine gelbliche, flüslige Materie weg, in welcher sich die eingenommene Jodine leicht erkennen ließ. Ich konnte übrigens keine merkliche Veränderung in der Art wahrnehmen, wie meine Functionen von Statten gingen, außer dals ich eine unbedeutende Beklommenheit während des übrigen Theils des Tages Am dritten Morgen nahm ich nüchtern 6 Gran des giftigen Körpers; gleich darauf erfolgten Hitze, Zusammenziehungen an der Kehle, Ekel, Aufstolsen, Speichelfluß und Schmerz vei

ier

ag

ner

el-

m-

ile

en.

ier

To-

er-

Zin.

on

te.

m.

tze

an-

ige

ne

hr-

in-

m-

ges

ch-

ár-

der

erz

in der Oberbauchgegend, und nach io Minuten gallichtes, ziemlich reichliches Erbrechen, leichte Coliken, die & Stunde anhielten, und auf zwei erweichende Clyfliere wichen. Der Puls, welcher vor dem Versuch nur 70 Schläge in der Minute gethan hatte, wurde häufiger und stieg bie auf 85 und oo Schläge; auch war er freier geworden. Das Athmen ging ziemlich ungehindert von Statten, doch war es mir bisweilen beim Einathmen, als miisse ich ein großes Hinderniss überwinden, um die Brusthöhle zu erweitern. Die Warme der Haut schien mir ein wenig gröfser zu feyn, als gewöhnlich. Der Harn war wenig gefärbt, und verhielt sich zu den chemischen Reagentien, wie der, den ich vor dem Einnehmen der Jodine gelassen hatte. Auf erweichende Klyftiere und nach einem reichlichen Genus von Pflanzenschleim in Wasser verschwanden alle diese Zufälle. Den folgenden Tag empfand ich blos eine unbedeutende Mattigkeit. gerählt werden.

Refultate.

Aus allen diesen Thatsachen lässt sich Folgendes schließen:

- Die Jodine, in kleiner Menge in den Magen gebracht, wirkt als leichtes Reizmittel, und bewirkt Erbrechen.
- 2) Zu i Drachme gegeben, wirkt sie allezeit in vier bis fünf Tagen tödtend für die Hunde, denen man die Speiseröhre unterbunden hat, in-

den sie nach und nach Geschwüre auf den Puncten der Schleimhaut hervorbringt, mit welchen sie in Berührung ist.

- 3) In Gaben von 2 bis 3 Drachmen wirkt dieses Gift eben so auf die Thiere, denen man die Speisescher nicht unterbunden hat, wenn sie es in mehrern Stunden nach nicht weggebrochen haben, mag auch übrigens ein Theil des Giftes durch den Stuhl abgegangen seyn.
- 4) In Gaben von 1 bis 2 Drachmen wirkt die Jodine felten tüdlich, wenn die Thiere nur kurze Zeit nachher das Gift durch wiederholtes Erbrechen auswerfen,
 - 5) Aeußerlich angebracht zerstört die Jodina das Leben nicht,
- 6) Auf den Menschen scheint sie eben so zu wirken, als auf die Hunde.
- Die Jodine muß unter die ätzenden Gifte gezählt werden.

A of the Colon Thatlachen Edit Sch Pol-

with Ethiocian

observe white six leiches Marinari, and her

2) Zu t Duchme gereben, wicht in ellereit up sign ber icht. Tagen ti ben i für dig brunde, denen men die Shederillee in ebunden hat, an-

V.

in

es es

1

eg hl

ie

.

u

Nachrichten von trocknen Zamboni'schen Säulen, und neuen Versuchen mit ihnen,

aus Briefen an den Professor Gilbert,

1) Von Herrn Dr. Montanus in Berlin.

den 5. Mai 1815.

Mit Vorwissen und Genehmigung meines Freundes, des Professor Erman, von dem Sie bald mehr hierüber erhalten werden, theile ich Ihnen kürzlich den Erfolg von Versuchen mit, welche wir seit einiger Zeit gemeinschaftlich mit der in Ihren Annalen öfters zur Sprache gekommenen trocknen Volta'schen Säule angestellt haben.

Professor Pfaff aus Kiel hatte uns, als er auf seiner Rückreise aus dem südlichen Deutschland vor mehreren Monaten über Berlin kam, einige in München erhaltene Plättchen von Silberpapier überlassen, welche auf der Papierseite mittelst Honig mit Braunstein belegt waren, wie sie angeblich zur Construction der Zamboni'schen Säule daselbst angewendet worden sind. Nach diesem Muster und ganz in derselben Art machten wir uns 4000

Platten und erbauten aus ihnen zwei Säulen, erhielten aber trotz aller gebrauchten Vorsicht nur eine so schwache electrometrische Wirkung, dass sie nicht anders als mittelst des Condensators bemerkt werden konnte, und also zur Bewegung eines Pendels, ja selbst des Goldblatt-Electrometers viel zu schwach war.

Wir versuchten nun Säulen aus dünnem gewalzten Zink (von Neustadt-Eberswalde, Schlesischer ist hier nicht zu haben) und unächtem Goldpapier, die mit mehr Recht als die Zamboni'schen, deren gerühmte lange Wirkung ich noch sehr bezweifle, den Namen trockner Säulen verdienen, besonders da ich vor dem Aufbauen recht gestiffentlich und forgfältiglt die Goldpapier-Platten durch Sonnen- und Ofenwarme austrocknete. Der Erfolg war fehr befriedigend. Wir hatten zwei Säulen, jede von, 500 Plattenpaaren, welche durch meffingne Schlussplatten mittelft seidner Schnüre fest zusammengehalten wurden. Eine jede dieser Säulen fetzte das Goldblatt-Electrometer, auch ein leichtes Pendel, in lebhafte Bewegung, noch mehr thaten dieles beide Säulen gulammen. Das Zamboni'sche Pendel fanden wir indess hierzu zu schwerfällig, und andere leichte Pendel, z. B. ein sehr dünnes Glasstängelchen mit einem kleinen metallnen Knöpschen, gaben auch uns, wie Hrn. De Luc, die verdriessliche Erscheinung des Hängenbleibens an dem einen oder andern Pole. Bei dem Goldblatt-Electrometer, das sich übrigens am besten

hierzu eignen würde, ist begreislicher Weise dieses Anhängen gar nicht zu vermeiden. Nach vielfältigen Versuchen gerieth ich auf ein hüchst einsaches Pendel, (wie denn auch in der Physik meist das Einfachste das Beste ist,) welches aus einer mittelmäßig starken Nähnadel besteht, die an einem äußerst seinen seidnen Faden hängt. Dieses Pendel giebt sehr lebhaste, ziemlich isochronische Schwingungen, ohne das ich noch das Hängenbleihen der Nadel an den Kugeln der Pole bemerkt habe, welches seinen Grund wohl in der besondern, das Anhängen überwindenden Bewegung der Nadel am Faden hat,

Der erste dieser von uns zusammengesetzten Säulen - Apparate steht nun beim Professor Erman feit 6 Wochen, zeigt aber am Electrometer noch nicht die mindeste Abnahme seiner Kraft. Ich habe feitdem ihrer noch einige für Liebhaber der Phyfik verfertigt. Wir verbanden mehrere derselben mit einander, um zu sehn, wie ihre electrometrische Kraft fich verstärken würde, und es fand fich, dass 1 Säule von 500 Plattenpaaren an unferm Strohhalm-Electrometer ungefähr 2°, 2 Säulen ungefähr 4°. 3 Säulen ungefähr 6°, und 4 Säulen ungefähr 8° Spannung gaben. Ob diese arithmetische Progresfion beim Verbinden noch mehrerer Säulen irgendwo eine Grenze finde, werden wir fernerhin zu erfahren fuchen. Von einer chemischen Mitwirkung (z. B. Wasserzersetzung) haben wir bis jetzt nicht die mindeste Spur bemerkt, und der Unterschied

.

1

4]

hi

...

zwischen der nassen und trocknen Säule unterliegt kaum mehr einem Zweisel. — Ich habe übrigens beobachtet, dass die Pendelbewegung zwischen
den entgegengesetzten Polen zweier Säulen dieselbe bleibt, die Säulen mögen mit dem Boden in
Verbindung gesetzt seyn, (welches, wenn ich nicht
irre, als wesentlich nothwendig angegeben wurde,)
oder isolirt stehen; ich sehe sogar die Bewegung
fortdauern, wenn ich die Verbindung der unteren
entgegengesetzten Pole der beiden Säulen aushebe,
indem ich jede auf Glas oder Seide isolire,

Ich glaube überhaupt, dass dieser schöne Gegenstand noch eine sehr erweiterte Untersuchung
zuläst, und dass wir mit unsrer Theorie des
Galvanismus noch lange nicht aus Reine sind.
Sollten sich uns bei unsern weiter fortzusetzenden
Untersuchungen noch andere neue Resultate darbieten, so werde ich, oder auch Prosessor Erman
sie Ihnen anzeigen; ein Geschäft, welches dieser
treffliche Physiker mit geschickterer Hand aussühren dürste,

Ich lasse jetzt unter meiner Leitung mehrere der hier beschriebenen Apparate für Freunde der Physik versertigen. Die Goldpapier- und Zink-Platten sind Quadrate von etwas über 14 Zoll ins Gevierte; jede Säule enthält 500 Plattenpaare (1000 Platten). An den obern und untern Schlussplatten beider Säulen lassen sich zwei umgebogne starke Messingdräthe ausschrauben, welche sich in Ku-

r-

1

en

e-

n

ht

,)

g

,

ş

1

1

.

geln endigen, die man durch Verrückung der Säulen einander beliebig nähern kann. Fig. 12 auf Taf. II ist eine leicht hingeworfne Abbildung derselben, in welcher jedoch die Breite gegen die Höhe der Säulen zu groß erscheint. Das Nadelpendel ift ganz einfach an einer oben übergebognen Glasstange aufgehängt, die man beliebig in einen hölzernen Fuss einsetzen kann. Zwei solcher Säulen überlasse ich Physikern, die fich unmittelbar oder durch Professor Erman an mich wenden, für 10 Thaler, einen in Verhältnis der vielen Mühe bei der Construction fehr mäßigen Preis. Die Aufträge werden portofrei und mit Beilegung des Geldbetrags an mich eingefendet, und fogleich bestens von mir beforgt und mit einem beigelegten schriftlichen Zeugnis des Prof. Erman versehn werden, dass er die Säulen geprüft und gut befunden hat. Für gute und sichere Emballage des Apparats, wosür der Betteller 16 Groschen beifügt, wird alle mögliche Sorge getragen. Den Pendel-Apparat kann fich jeder Physiker sehr leicht selbst ansertigen, oder bedarf ihn gar nicht, wenn er mit guten Electrometern versehen ist. Auch stehe ich denen zu Dienst, welche zwei oder mehrere solche Säulen-Apparate durch mich zu erhalten wünschen. - -

a) Von Herrn Professor M. Lildicke.

Meisen d, 14. Mai 1815.

Left mit dem Anfange meiner Ferien kann ich Ihnen von einigen Verfuchen Nachricht mittheilen, welche ich mit meinen trocknen electrischen Säulen gemacht habe.

Meine beiden Säulen bestehen aus 3000 Quadrat-Blättchen Gold- und Silberpapiers, deren Seiten 1,4 Dresdner Zoll halten. Sie sind an beiden Polen mit Messingblechen versehn, und werden von 4 seinen blauseidnen Schnüren zusammengehalten. Die Leitungsdräthe an den obern Polen sind Stecknadeln, deren Knöpse herausstehen, und der Knopse einer seinen Stecknadel, dessen Nadel in ein Oehr verwandelt worden ist, macht mit einem blauseidnen Faden das Pendel.

Wenn diese Säulen auf guten Leitern stehen, können die Leitungsdräthe 2 bis 3 Linien von einander entsernt seyn. Sie sind schon 2 Tage lang sortgesetzt in Wirksamkeit gewesen; um sie aber zu schonen, lege ich sie nach dem jedesmaligen Versuche wieder in die Pappkästchen, in welchen sie aufgebauet worden sind. Als ich diese Säulen auf einen gläsernen Teller mit gläsernem Fussestellte, zeigten sie sich in ihrer Wirksamkeit zwar etwas schwächer, das Pendel war aber noch nach einer Stunde im Gange. Legte ich sie dagegen auf diesen Teller, se war alle Wirkkung verschwunden, Hieraus erhellet, das Glas diese Art der

Electricität leitet. Wenn ich sie auf einen kleinen Electrophor stellte, hörte das Pendel in kurzer Zeit auf zu schwingen, welches jedoch gewöhnliche Siegellackstangen nicht bewirkten.

Da ich wünschte, diesen Säulen alle Zuleitung von außen abzuschneiden, so hing ich sie in vertikaler Stellung zwischen seinen blauseidnen Schnitten in dem Gestelle auf, das zu meiner großen nassen electrischen Batterie gehört, und sand sehr bald, dass nun das Pendel, auch bei der kleinsten Entsernung der Leitungsdräthe, gleich nachdem die Hände sie verlassen hatten, zu schlagen aufhörte, und fortgesetzt einen halben Tag lang ruhig blieb, wenn auch der Luststrom durch das Gehen in der Stube und durch Oeffnen des Fensters verändert wurde.

Da ich auf diese Art meine Absicht, die Säulen ganz zu isoliren, vollkommen erreicht hatte, so näherte ich zuvörderst Pappe. Holz oder Metalle den untern Flächen der Säulen, und fand, dass das Pendel, auch bei der kleinsten Berührung der Säulen mit diesen Körpern, zu schlagen ansing. Ich legte nun meine vier großen, 13 Zoll langen Magnetstähle so an, dass zwei und zwei Stähle in einer Linie lagen, die beiden entsernten magnetischen Pole derselben mit Eisen verbunden waren, und ihre beiden unverbundnen Pole den untern Flächen der Säulen genähert werden konnten. Selbst als sie von diesen nur noch um 1 Linie entsernt waren, blieb das Pendel, so oft ich den Verfernt waren, blieb das Pendel, so oft ich den Verfernt waren, blieb das Pendel, so oft ich den Verfernt waren, blieb das Pendel, so oft ich den Verfernt waren,

fuch angestellt habe, siets in Ruhe, ich mochte +M gegen - E, oder + M gegen + E (und so umgekehrt bei der andern Säule) gerichtet haben. Das Pendel sing nicht eher an sich zu bewegen, bis die scharsen Kanten der Stähle die unteren Messingplatten berührten, und dann wirkten die Stähle nur so, wie andere metallische Leiter.

Ich glaube hierdurch überzeugend dargethan zu haben, dass die magnetische Flüssigkeit auf diese Art der Electricität keinen Eiuslus äussert *).

Da diese Kolirungsart mit seidnen Schnüren den Vorzug hat, dass sie die untern Flächen der Säulen frei läst, so ist sie sehr bequem, die verhältnissmäsige Leitungs-Fähigkeit andrer Körper zu bestimmen, und aus diesem Grunde habe ich nicht säumen wollen, sie Ihnen bekennt zu machen.

⁵⁾ Zugleich erhellt hieraus also wiedrum deutlich, welchen Glauben diejenigen verdienen, die uns von den electrischen Wirkungen des Magnet genze Reihen von Versuchen erzählt haben, durch welche diese Wirkung sest begründet seyn sollte; und wie, was sie daraus für die Natur im Grossen und im Kleinen solgerten, zu den Gebilden der poesischen Physik gehört.

VI.

Ueber die chemische Nomenclatur, und einige andre chemische und physikalische Gegenstände:

in einem Schreiben an den Prof. Gilbert

von dem

Professor von Giese in Dorpat.

(Mit Bemerkungen von Gilbert.)

Dorpat d. 28. April 1815 ..

Sie eröffnen den neuen Jahrgang Ihrer Annalen mit der Aufforderung an deutsche Physiker und Chemiker, fich an Ihre Bemühungen anzuschließen, eine deutsche, allgemeine, dem jetzigen Zustande der Wissenschaft angemessene chemische Nomens clatur zu gründen und festzuhalten, um der drohenden Sprachverwirrung in dem chemischen Theile der Physik zuvorzukommen. In der That läst sich befürchten, dass bei der Nichtbeachtung Ihrer Aufforderung, die deutschen Chemiker künftig in den nämlichen Fall kommen könnten, in welchem fich die Erbauer des Thurmes zu Babylon befunden haben sollen. Jene Aufforderung kann zugleich zu der Gründung einer gleichen lateinisch-chemischen Nomenclatur einladen, welche fast noch verwirrter ift, als die deutsche. Durch solche bezeichnen wir die Gegenstände Sir andre Nationen mit Sicherheit,

und ich wünschte, dass Sie bei neuen Namen auch stets den lateinischen beifügen möchten. dem wird die Chemie auf einigen Universitäten Europa's in lateinischer Sprache vorgetragen, wie ich es felbst, mehrere Jahre hindurch, auf der Charkower Universität zu thun hatte. Sie äußern noch, nach Ihrer Aufforderung, als ein Mann, dem die wahre Beförderung der Wissenschaft am Herzen liegt, und der dieselbe durch strenge Erfüllung der Pflichten. welche der Redacteur eines naturwissenschaftlichen Journals auf fich hat, in einem hohen Grade bewirkt, dass es Ihnen angenehm seyn würde, wenn man Ihnen nothwendig erscheinende Verbesserungen Ihrer gebräuchlichen Kunftspräche mittheilen wollte. Dieser Aeusserung will ich in Hinlicht der Namen Chlorine und Jodine Genüge zu leisten fuchen. Es stehe indess hier zuvor eine Stelle aus meiner in ruslischer Sprache geschriebenen allgemeinen Chemie B. 3. S. 251 fg., welche die Davy'sche Ansicht von der oxygenirten Salzsäure zu bewähren dient, und wodurch ich mir also auch zu einer Discussion über eine neue, richtige Benennung der oxygenirten Salzfäure ein Recht erworben zu haben glaube.

Ich sage daselbst Folgendes: "Nach den Bestimmungen und Berechnungen von Chenevix, Gay-Lussac und Berzelius besteht die sogenannte oxygenirte Salzsäure dem Gewichte nach aus 77,5 Theilen Salzsäure und 22,5 Thln. Sauerstoff. Berechnet man nach diesen Gewichtstheilen das Volumen beider gas-

ch

-T

u÷

ch

rer

ch

le-

 \mathbf{nd}

n,

en

e-

nn

n-

en

er

en

us

18-

y'-

e-

zu

n-

en

m-

y-

cy-

en -

an .

88-

förmigen Körper in dem oxygenirt-falzsauren Gas, so findet fich, dass darin 300 Maasse salzsaures Gas fast genau 100 Maasse Sauerstoffgas aufgenommen, und dass sich beide Gasarten bis auf die Hälfte ihres Volumen condensirt haben. Es beträgt demnach das in 100 M. oxygenirt-falzfaurem Gas vorausgesetzte Sauerstoffgas 50 Maass, und es brauchen auch gerade 100 M. oxygenirt-salzsaures Gas 100 Maass Wasserstoffgas zu ihrer Sättigung, und wenn i Maass Sauerstoffgas einen Körper bis zu einem gewissen Grade oxydirt hat, find an dessen Stelle 2 Maass oxygenirt-salzsaures Gas erforderlich. Im ersten Falle entzieht der Wasserstoff der oxygenirten Salzfäure den Sauerstoff, bildet damit Wasfer, und sie selbst, indem sie noch das gebildete Wasser in sich aufnimmt, erscheint als gewöhnliche gassörmige Salzfäure. Wäre das Gefagte mit der Wahrheit übereinstimmend, so müsste das freigewordene salzlaure Gas auch seine ursprüngliche Extension zeigen, d. h. aus 100 Maals oxygenirt - falzlaurem Gas, in welchem 150 Maals falzfaures Gas bis auf 75 Maals verdichtet vorhanden find, müßten, nach der Vereinigung mit 100 Maaß Walferstoffgas, 150 Maass salzsaures Gas zurück erhalten werden; aber man erhält nur 100 Maass. Will man diesen Umstand dadurch erklären, dass man Gay-Luffac's und Thenard's [chemalige] Annahme von dem nothwendigen Vorhandenseyn des Wassers zu der Existenz der gasförmigen Salzfäure gelten lässt, und annimmt, dass diese durch die Aufnahme von Wasser verdichtet werde, so zeigt dagegen die Berechnung, dass die in dem salsauren Gas angenommene Menge von Wasser nicht diejenige Menge von Sauerstoff enthalte, welche alle Sauerstoff - haltende Körper, mit welchen es sich neutralisirt, voraussetzen. Wenn nämlich 100 Kub. Zoll oxygenirt-falzfaures Gas mit 100 Kub. Z.

Annal. d. Physik. B. 50. St. 1. J. 1815. St. 5.

i i cara la

Wasserstoffgas, an Gewicht 2,61 Gran [?], zusammen treten, so fordern diese zu der Bildung von Wasser 19,59 Gran Sauerstoff, und es find in den entstehenden 200 Kub. Z falzfaurem Gas 2,61 + 19,59 = 22,20 Gran Wasser enthalten. Es wiegen ferner jene 200 Kub. Zoll falzsaures Gas 78 Gran 1?1, und es finden sich daber in 100 Gewichtstheilen Salzfäure 29,74 Theile Wasser, welche 26,25 Theile Sauerstoff enthalten. Nach den Gesetzen, welche Berzelius mit Gründen aufgestellt hat, müste aber in 100 Theilen Salzsaure, wenn sie wirklich chemisch gebundenes Wasser enthielte, dessen fo viel vorhanden feyn, als wenigstens 20 Theile Sauerstoff in sich schließt. Ueberdem kann die Menge des Sauerstoffs des Wassers, welches in 100 Theilen salzsaurem Gas angenommen wird, nicht einmal 26,25 Theile betragen, da das Gewicht des Sauerstoffs, der in 100 Kub. Zoll oxygenirt falzfaurem Gas enthalten feyn foll. kaum mehr als 17 Gran feyn kann. Die Annahme eines Wassergehaltes in der gassörmigen Salzsäure steht daher in einer bedeutenden Disharmonie mit der auf vielen Thatfachen gestützten Lehre von den bestimmten Proportionen, in welchen fich die Körper gegenseitig verbinden können, indess die Annahme, dass das oxygenirt-falzfaure Gas ein chemisch einfacher Körper sev und mit dem Wasserstoff die gemeine Salzsaure bilde, fehr gut mit jener Lehre übereinzustimmen scheint *)." - In dem 12ten Stücke Ihrer vorjährigen Annalen führt der Gründer dieser Proportionslehre, der vortreffliche Forscher Berzelius, (und früher

^{*)} Die Gewichte der Gasarten, auf welche fich Hr. Prof. von Giele bei diesen Berechnungen bezieht, passen weder auf franzölisches noch englisches Maass und Gewicht, (ob auf ruslisches?) und ich muss es daher dahin gestellt seyn lassen, ob seine Berechnungen beweisend find. Gill.

nen

ffer

len

ran

Coll

ber ler,

den

ellt

fie

flen

des

fau-

eile

ioo foll.

ei-

ieht

auf

nın-

en-

das

per

ure

men

gen

hre,

iher

Prof.

We-

icht.

itellt

116.

schon in einem Briese an mich,) gerade entgegengesetzte Fälle an; doch glaube ich späterhin darauf antworten zu können. Ich betrachte daher fortdauernd
die sogenannte oxygenirte Salzsäure als einen chemisch
einsachen Körper, wozu die neuere Kenntnis der sogenanten Jodine noch mehr berechtiget *).

Was nun den von Davy für die fogenannte oxygenirte Salzläure gewählten Namen Chlorine betrifft, so darf dieser durchaus nicht angenommen werden, wie überhaupt kein Name eines chemischen Gegenstandes, der ohne alle Beachtung der Grundsätze, welche die chemische Nomenclatur zu berücklichtigen fordert, geschaffen worden ist. Ein in der gegenwärtigen Zeit zu benennender chemisch

*) Eine Frage, welche in dieler Sache nicht fo ganz unnutz zu leyn scheint, ist noch die folgende: Angenommen, dass die gewöhnliche Salzfäure, so wie andere eigentliche Säuren (nach der alten Theorie) schon Sauerstoft enthalte, woher kommt es, dass nur sie allein sich überoxygeniren läst, und keine andere Saure? Der Vilnaer Chemiker Sniadecki, welcher in dem Briefwechsel, den ich mit ihm geführt habe, gar nicht für die Davy'sche Lehre Stimmte, findet nur in dieser Thatfache einen Grund, bei der Salzfäure eine andere Zusammenletzung annehmen zu konnen, als bei den übrigen Säuren, d. h. bei ihr nicht den Sauerstoff als das acidificirende Princip vorauszusetzen. Um Davy's Theorie durch einen directen Verfuch su verificiren, glühte ich in einem dazu eingerichteten Apparate wallerfreies Salzlaures Natron und faures schwefelfaures Kali, wobei aber die Retorte Schaden litt, so dass ich den Verluch nicht beendigen konnte. Ich will ihn indels au einer andern Zeit wieder vornehmen, ungeachtet es Manchem febr leicht scheinen wird, mit Gewisheit vorauszufagen, dals ich bei diesem Versuche nicht das erhalten werde, was ich zu erhalten hoffe.

einfacher Körper muß nach einer feiner chemischen Haupteigenschaften getauft werden, und das Namliche ist bei den aus gleichen Bestandtheilen zusammengesetzten organischen Substanzen zu beobach-Höchstens mag es erlaubt seyn, einen solchen Körper nach demjenigen zu benennen, aus welchem er zuerst dargestellt worden, oder in welchem er in der größelten Menge vorhanden ift. Bei diesen letzteren Namen wird wenigstens zugleich noch dem Gedächtnils etwas Nützliches eingeprägt, was in den mehresten Fällen nicht von den Namen gilt, die von der Farbe eines Körpers hergeleitet werden. Ich möchte eher noch den Geschmack eines Körpers, als seine Farbe, zur Bezeichnung desselben dienen lassen, da dieser schon auf einer gewillen chemischen Action beruht. Das Wort Chlorine, welches durch gelblichgrün (xhapic, virens in modum germinum recens e planta germinantium übersetzt werden kann, foll also abgeschafft und dafür ein neues gewählt werden *). Dieses hat

^{*)} Ich kann hierin Hrn. Prof. von Giese nicht beistimmen, und zwar aus solgenden Gründen: Erstens. Dass ein von einer wesentlichen Eigenschaft entlehnter kurzer und wohltönender Name zur Bezeichnung eines Körpers, der von andern chemisch verschieden ist, Vorzüge vor einem Namen habe, der von etwas für uns nur Zufälligem genommen ist, scheint zwar auf den ersten Anblick sehr richtig zu seyn. Allein es mischt sieh in unsere Ansicht häusig so viel aus blosen Hypothesen mit ein, dass wir leicht etwas für wesentlich halten können, was es nicht ist, (z. B. dass nur der Sauerstoff durch seine Verbindung mit andern Körpern Säuren erzeuge,) und eben desbalb wollte Davy

n

1-

1-

1-

1-

113

1-

ei

ch

às

lt,

és

1-

e-

0-

ns

n-

fft

at

en.

on

hl-

on

la-

m-

tig

fo

788

als

ern

* y

Ichon Schweigger gleich im Anfange gethan, (dessen Journ. f. Chem. u. Phys. B. 3. S. 251 u. s.) und, meines Erachtens, recht glücklich den Namen Halogen (Salzzeugendes) gewählt. Ich habe mich dieser Bezeichnung in meiner Chemie bedient, und andere deutsche Chemiker haben sie ebenfalls gewählt. Es ist daher für die Gleichheit der Nomenclatur von Wichtigkeit, wenn auch Sie den schicklicheren Namen Halogen an die Stelle von Chlorine in Ihren Annalen setzen wollen *). Es

keinen solchen Namen erwählen, sondern hat ihn mit Abficht von einer aus der Anschauung genommenen, von allen Ansichten und Hypothesen unabhängigen, wenn gleich zufälligen Eigenschaft des Körpers, nämlich von seiner Farbe, entlehnt. Dass dieser Grund sehr beachtungswerth sey, wird Hr. Prof. von Giele nicht läugnen. Zweitens fehe ich nicht ab, warum ein von der charakteristischen Farbe eines Körpers hergenommener, aus dem Griechischen abgeleiteter und uns daher gar nicht störender Name, (welches der deutsche Name, z. B. das Gelblichgrune, allerdings in hohem Grade thun wurde,) warum ein solcher Name schlechter seyn solle, als ein auf den Geschmack und die oft zufälligen Umstände sich beziehender, aus welchem Körper man einen andern zuerst dargestellt hat. sens haben wir, wie mich dünkt, Urfach, vor dem Scharffinne und dem philosophischen Geiste Davy's die höchste Achtung zu haben, und diese wurden wir durch ein nicht besier gerechtfertigtes Verwerfen des Namens, den er mit forgfältiger Ueberlegung ausgewählt hat, und der ihm, als dem Erfinder, auszuwählen zukam, zu weit au-Gilbert. fser Augen fetzen.

*) Ich bedaure es, dass ein so gründlicher und eifriger Chemiker, wie Hr. Prof. von Giese, und mehrere andere, sich zu voreilig haben verführen lassen, den von allen Chemikern in England und Frankreich angenommenen Namen Chlorine oder Chlore auszugeben, und einem in jeder Hinsicht so un-

kann auch der gewählte generische Name Chloran für die Verbindungen des Halogens nicht füglich gebilligt werden, wie Chloran-Silber, Chloran-Schwefel u. s. w., wenn man die wahre Bedeutung des Wortes berücksichtigt. Der Name Haloid bezeichnet hingegen sehr gut diese den Oxyden analoge Reihe von Verbindungen. Und so ist mir denn noch kaum zu erwähnen übrig, das auch der

passenden und wenig tauglichen Namen wie Halogen ihren Beifall zu geben, und ihn selbst in ihre Schriften zu übertragen. Dieser Name ist untauglich aus folgenden Grunden. Erftens. Wer bei der alten Anficht bleibt, braucht keines neuen Namens, da die Benennung oxygenirte Salzfaure diefer Anficht ganz gut entspricht. Es kommt alfo auf einen Namen an, der nach der neuen Anlicht diesen Körper durch eine wesentliche Eigenschaft charakterisirt; und ein folcher Name, (scheint Hr. Prof. Schweigger gemeint zu haben, und Hr. Prof. von Giele mit ihm,) sey Halogen (Salzzeugendes). Erzeugt denn aber die Chlorine Salz nach der Davy'schen Anlicht? Gerade das Gegentheil gehört zu dem Charakteristlischen der Davy'schen Ansicht. Die Chlorine verbindet fich nach ihr nicht wie die Sauren mit den Metalloxyden, sondern wie der Schwefel mit den Metallen selbst, und bildet also mit ihnen nicht Salze, sondern Chlorin-Metalle. Und doch follen wir den etwas Wahres bezeichnenden Namen Chlorine schlechterdings abschaffen, und einen Namen, der etwas Faliches auslagt, Halogen, dafür annehmen! Möge man auch mit diesem Namen haben andeuten wollen, dass die Chtorine die Salzsaure erzeuge; dieser Name sagt das nicht, und will man einmal fo sprachgerecht an Worten hangen, fo mus man es auch in allem gaus genau nehmen. Und gesetzt, Halogen bezeichnete einen Körper, der Salzfäure erzeuge, so dürften wir die Salzfäure nicht Halogen-Wasserstofffaure oder Hydrohalogen-Saure nennen, ohne in eine sonderbare Tautologie zu gerathen; wiederum ein Beweis von dem Uebereilten in dieser UmName Chlorine - Wasserstoffsäure durch Halogen-Wasserstoffsäure zu ersetzen sey, und dass man für die Davy'sche Euchlorine den Namen Halogensäure mit größerem Rechte gebrauchen könne *).

in

h

2-

g

e-

8-

ir

er

en

PT+

in-

ht

lze

lla

en

rt;

er

n,)

die

las

y'-

cht

der

nit

ch

10-

et-

ge als

las

ten

eh-

der

cht

en-

m-

Der fehlerhafte, ebenfalls von der Farbe hergeleitete Name Jodine ist leider schon ganz allgemein angenommen worden, und es wird schwierig seyn, einem andern, ächt chemischen Namen den

taufung des Namens. Zweitens. Nur der Erfinder hat das Recht, einen Namen zu geben; nur mit seiner Einstimmung läst sich ein besterer, den man zu haben glaubt, einführen; am wenigsten darf der Herausgeber eines wifsenschaftlichen periodischen Werks es sich erlauben, ihm in diesem wohlerworbnen Rechte Eintrag zu thun. Und gefetst, ich wüste auch einen unbezweifelt besleren Namen, so wurde ich es doch für eine mir nicht geziemende Anmassung halten, ihn ohne Vorwissen oder Einwilligung des Erfinders in den Gang zu bringen. Ich hoffe daher, dass Herr Prof. von Giese, dessen Eifer für die Wissenschaft ich ehrend anerkenne, es mir nicht werde als Eigenfinn auslegen, wenn ich seiner Aufforderung nicht Folge leifte, fondern in den Annalen den Namen Chlorine beibehalte. hoffend und erwartend, dass er und alle, die sich zu leicht haben verführen laffen, den fehlerhaften und gänzlich untauglichen Namen Halogen anzunehmen, nach Erwägung meiner hier auseinandergesetzten Gründe, diesen aufgeben und zu dem besieren Davy'schen Namen Chlorine zurückkehren werden.

*) Dass die Euchlorine ein Chlorin-Oxyd und keine Säure ist, wird Herr Prof. von Giese in den Untersuchungen des Hrn. Gay-Lussac im vorigen Stücke dieser Annalen gesunden haben. Zusammensetzungen aus Chlorine und Silber oder Schwesel habe ich sich on seit geraumer Zeit mit Chlorine-Silber, Chlorine-Schwesel u. s. f. bezeichnet, da wir in der That keine Ursache haben, in ihnen den Namen Chlorine in Chloran zu verwandeln. Haloid ist ein ganz untauglicher Name.

gehörigen Eingang zu verschaffen. Sie, der Sie sichon so Manches zur Berichtigung und Gründung der chemischen Sprache beigetragen haben, können nebst Schweigger ein Solches am besten bewirken. Lächeln muss ich jedesmal, wenn ich von veilchenfarbnen Säuren lese, die nicht einmal solche Farbe zeigen, und ich glaube, man wird dieses nicht übel deuten, da mir und jedem andern das Recht zusteht, die griechische Benennung in ihrem wahren Sinne aufzusassen und dabei doch etwas zu denken *).

Es bedienen fich jetzt Einige der Zwitterwörter Sub-Oxyd und Super-Oxyd, ungeachtet wir richtigere Bezeichnungen haben, zu welchen ich die von Thomfon rechne, denen zu Folge ein fogenanntes Suboxyd ein Protoxyd, das auf dieses folgende Oxyd, ein Deuteroxyd u. f. w. zu nennen ist. Nur nenne man nicht, wie er, das zum höchsten Grade oxydirte ein Peroxyd oder, wie andre, ein Superoxyd, sondern Hyperoxyd, da-

^{*)} Aus ähnlichen Gründen, als den zuvor angegebenen, halte ich dafür, dass wir den von der Veilchenfarbe entlehnten Namen des neuen in der Tang-Asche entdeckten Körpers beibehalten müssen, auch wenn Jodine nicht ganz etymologisch richtig und die Farbe des Damps vielleicht mehr amethystsarben als veilchensarben wäre. Es kömmt hier auf die Wortbedeutung gar wenig an, alles aber daraus, dass man sich allgemein verstehe, und genau wisse, was das Wort bezeichnen soll, und dass der Name wehltönend, biegsam, zu Zusammensetzungen geschickt, andern nicht allzu ähnlich, und doch den Namen nahe verwandter Körper analog sey.

mit doch die Benennung ächt griechisch bleibe *). In welchen Fällen man sich der längst gebräuchlichen einfachen Wörter Oxydul und Oxyd bedienen kann, darf nicht erst erwähnt werden. Unter den aufgestellten Metall-Oxyden besinden sich noch manche, welche man blos wegen einer besondern Farbe als eigenthümliche angenommen hat, wofür sie nicht gelten dürfen. So ist z. B. das rothe Manganoxyd, welches sich bei der Entmischung des in Wasser gelösten **) mineralischen Chamäleons

") Erstes Oxyd, zweites Oxyd, höchstes Oxyd sind deutsche Namen, die gerade dasselbe sagen als Protoxyd, Deuteroxyd und Peroxyd, und denen ich daher unbedenklich vor diesen den Vorzug gebe. Für Oxyd und oxydiren giebt es keine passende deutsche Wörter; beide Ausdrücke sind jetzt in unsre Sprache eingebürgert, und wir müssen sie beibehalten. Dieses köst aber nicht die Regel um, dass wir möglich wenig ausländische Wörter in unsere Sprache ausnehmen, und es möglichst vermeiden sollen, die deutsche Sprache durch Einmengen so fremdartig klingender Wörter, wie die drei hier erwähnten sind, unbeholsen und widrig zu machen. Uebrigens verbindet Herr Dr. Berzelius mit Sub-Oxyd und Super-Oxyd andere Begriffe, als Hr. Thomson mit Protoxyd und Peroxyd.

**) Die vorigen Bemerkungen über die chemische Sprache veranlassen mich, hier noch Einiges über die Ausdrücke lösen statt ausschen, und Kalten statt Alkalten beizusugen. Obgleich mehrere Chemiker sich dieser Ausdrücke bedienen, so scheinen sie mir doch so vieles wider sich zu haben, dass ich wünschte, man gäbe sie allgemein aus. Denn sie sind erstenz gezwungen und steis, zweitenz sprachwidrig, und drittenz übersüssig. Lösen bedoutet von Banden besreien, also ganz etwas andres als den chemischen Process, den man im gemeinen Leben ausschen nennt; ist solglich ein Wort, das, wenn es statt des letztern

in gewissen Fällen niederschlägt, ein solches, und stellt eine Verbindung des grünen Protoxydes mit dem braunen Deuteroxyde dar. Die Verwandt-

gebraucht wird, alle gerügte Fehler hat. Selbst wenn es etwas von dem Auflösen Verschiedenes bezeichnen follte, wofür wir kein deutsches Wort hatten, bliebe es immer schlecht gewählt. Es scheint, man habe anfänglich disselutions im Gegensatze mit folutions durch diese beiden Wörter unterscheiden wollen; dass dieses aber eine unglückliche Wahl gewesen sey, davon ift der beste Beweis der, dale, wo fich auch jone erkunstelte und sprachwidrige Bedeutung des Wortes lofen in chemischen Schriften erhalten hat, doch diese Unterscheidung verloren gegangen ift. Kall ist der eigenthümliche Name des Pflanzen - Alkali. Jeder Unbefangene wird also unter Kalien den Plural dieses Namens verstehn, und meinen, wenn man von den Kalten spreche, habe man mehrere Varietäten des Pflanzen-Alkali, s. B. in mehreren Officinen, oder auf gewöhnliche, auf Berthollet's, auf Davy's Weile bereitete im Sinne. Aber nein. Wir follen dann Kali, Natron, Ammoniak u. f. f. unter den Kalten verstehn, ohne dass doch die beiden letztern einzeln ein Kali find, vielmehr vom Kali wesentlich verschiedene Körper bedeuten. Welche Verwirrung in der Sprache! Und warum muthet man uns einen folchen erzwungnen und ganz regelwidrigen Sprachgebrauch au? Weil in dem Worte Alkali, (welches seit alten Zeiten her und bei allen andern Nationen die Gattung bezeichnet, unter die Kali, Natron, Ammoniak etc. als Arten gehören,) die Sylbe Al der arabische Artikel ift, und also im Arabifchen Kali und Alkali dasselbe bedeuten. Fast folite man glauben, es sey zuweilen ein Unglück, allzu sprachgelehrt gu feyn. Für Araber schreibt niemand deutsch; man ver-Ständige sich nur im Deutschen genau, im Arabischen giebt man beim Deutschschreiben keinen Anstofe. Das Pflanzen-Alkali aber in unserer Sprache Kali (und nicht Potasche) su nennen, welches Einiges für sich zu haben schien, ist allgemein angenommen, und lässt sich, ohne Verwirrung zu veranlassen, nicht mehr zurücknehmen. Gilb.

schaft des grünen Manganoxydes zum braunen veranlasst selbst die Aufnahme von dielem in Säuren. und dadurch entstehen die violblauen, mehr und weniger violetten und rothen Mangan-Auflösungen. Das zuerst von Ritter in der galvanischen Kette gebildete indigblaue Eisenoxyd ist ein Hydrat des Eisenoxydes, verbunden mit Oxydul, welches die Basis im natürlichen und künstlichen blauen und phosphorfauren Eifen ausmacht. Eine ähnliche Verbindung stellen die dunkelgrünen Niederschläge dar, welche Kalien in aufgelößen Eisenoxydul-Salzen hervorbringen können. Die 5 von Bucholz angenommenen Molybdanoxyde find wenigstens auf 3 zu reduciren. Und fo mehrere andre Beispiele. welche in dem 2ten Bande meiner allgemeinen Chemie mitgetheilt worden find.

In dem genannten Werke habe ich die Lehre von den bestimmten Proportionen zu begründen und zu erweitern gesucht, wozu mir die Salze (B.4) eine besondere Gelegenheit darboten, mich aber auch häusig bemerken ließen, wie viel noch zu thun sey, um von dieser Lehre jeden Einwurf abzuhalten. Die electro-chemische Theorie durste nicht übergangen werden, und ich freue mich, mit den von andern Chemikern später mitgetheilten Ansichten, z. B. mit denen von Berzelius, übereinzustimmen. Es mag hier die Theorie von der Verbrennung einen Platz sinden, indem sich aus ihr eine gehörige Erklärung über die vom Grasen von Rumford gemachten Erfahrungen, auf

Uog M

welche er eine irrige Meinung über die Quelle des Lichtes bei dem Verbrennen (Annal. B. 46. S. 225 f.) gestützt hat, folgern lasst. Nach Angabe der zum gewöhnlichen Verbrennen nöthigen Bedingungen heißt es weiter:

"Jede Entzündung fetzt eine Compression der brennbaren Theilchen voraus, und der Einfluss der Wärme scheint fast nur darum zu der Entzündung in vielen Fällen nothig zu seyn, weil dadurch eine Compression bewirkt wird. Diese Annahme möchten Manche für sehr unrichtig halten, indem bekanntlich die Wärme die Körper ausdehnt. Aber gerade in diefer durch Warme bewirkten Ausdehnung des Verbrennlichen liegt der Grund seiner Zusammendrükkung, welche auf eine besondere Art geschieht. Die Zusammenpressung der erhitzten brennbaren Theilchen wird nämlich durch die fie berührende Luftfäule bewirkt, und kann keinesweges langfam und gleichförmig erfolgen, sondern geschieht unter starker Bewegung und in unendlich kleinen auf einander folgenden Momenten. Die erhitzten, schnell bewegten und nach Ausdehaung strebenden Körpertheilchen, indem sie durch den Widerstand der Luftsäule sehr an ihrer Ausdehnung gehindert werden, bewirken zugleich eine Compression derjenigen brennbaren Theilchen, welche noch nicht in einem solchen Grade nach Ausdehnung streben können. Es erfolgt daher zwischen den Theilen des verbrennlichen und des die Verbrennung unterhaltenden Körpers, durch Ausdehnung und Druck, ein heftiges, ungemein schnelles Zusammenstossen und Reiben, welches uns längst als eins von denjenigen Mitteln bekannt ist, durch das die in den Körpern schlummernden Electricitäten erweckt

.)

n

n

12

1

9

werden konnen. Und ist vielleicht die Hervorrufung dieser nicht der einzige Grund von jeder Verbrennung? Kaum läßt fich daran zweifeln, wenn man folgende Thatfachen in Erwägung zieht: 1) Die blossen, in gehöriger Menge ausströmenden Electricitäten, zum Beispiel zwischen den beiden Endpolen starker electrischer Säulen, erzeugen bei ihrer Vereinigung Licht und Wärme, und legen uns über die Entstehung des Feuers den reinsten Versuch vor Augen. 2) Metall und Schwefel, zwei brennbare und Sauerstoff-leere Körper, schmelzen im luftleeren Raume unter einer wahren Feuer-Erscheinung zusammen. und es ist bereits durch das Experiment erwiesen worden, namentlich vom Kupfer und Schwefel, daß beide bei ihrem Zusammenliegen, wenn sie erwärmt werden, zu einem hohen Grade von entgegengesetzter Electricität gelangen. Auch können 3) mehrere andre Körper, ohne den Einfluss der für die Möglichkeit der Feuer-Erscheinung als nothwendig angegebenen körperlichen Agentien, Licht und Wärme gleichzeitig entwickeln. Nach dem Gefagten drücken wir die Theorie von dem Verbrennungs-Processe in folgenden Worten aus! Der Process der Verbrennung besteht in einer fortdauernden, starken Erregung der beiden entgegengesetzten Electricitäten und in deren Wiedervereinigung. Es ist nicht die ponderable Basis, weder des verbrennlichen Stoffes, noch desjenigen, den man für das die Verbrennung Bewirkende ansieht, welche die Flamme erzeugt, fondern es strömen aus beiden Ponderabilien blos die dazu nothigen Electricitäten hervor, und bewirken zugleich die Vereinigung der ponderablen Grundlagen. Wenn in den gewöhnlichen Fällen die Verbrennung nicht anders vor fich geht, als

unter dem Beisein von Sauerstoff oder von dem ihm ähnlichen Halogen, oder auch von Körpern, worin der eine oder der andere von diesen nur schwach gebunden sind, wie in der atmosphärischen Lust; so beruht diese Thatsache einzig darauf, das Sauerstoff und Halogen an der Spitze aller negativ-electrischen Körper stehn, und daher im Contacte mit den brennbaren, positiv-electrischen Körpern den größten electrischen Gegensatz erzeugen, oder denjenigen hohen Grad von entgegengesetzter Electricität, der zu einer wirklichen Entglühung oder Entslammung erforderlich ist."

Schon vorhin wollte ich bemerken, dass die Salzfäure im rauchenden Zustande etwas anderes darstellen müsse, als gewöhnliches salzsaures Gas mit Waller in einem gewillen Maalse verbunden und dadurch dampfförmig gemacht. Ich habe über diesen Gegenstand ichon 1807 meine Bemerkungen in meinem Lehrbuche der Pharmacie (§. 194) niedergelegt, welche das Gesagte erweisen. jetzt die Theorie abgeändert werden. chende Salzfäure, welche fich durch ihren Geruch. durch ihre dem Halogen ähnliche schädliche Einwirkung auf den Organismus, durch ihre Ichwere Vereinbarkeit mit Wasser, ja selbst mit den darin in geringer Menge gelösten Kalien und durch ihre Wirkung auf Metalle, von der reinen flüsligen, geruchlosen Salzsäure unterscheidet, stellt eine Verbindung der letzten mit Halogen dar, und wird erzeugt, indem der atmolphärilche Sauerstoff einem Theile der Salzfäure den Wasserstoff raubt und dam

cin

ch

fo

off

en

ın-

ien

zu

er-

die

res

ias

len

ber

gen ie-

us

ch,

in-

ere rin

hre ge-

ег-

er-

da-

mit Waller bildet. Die Gründe davon finden fich am angeführten Orte. Daselbst ist auch das Verhalten des Phosphors in gewöhnlichem falzfauren Gas angegeben worden. In Berührung beider bilden sich nämlich an den Seitenwänden des Glases feine nadelförmige, fich durchkreuzende Krystalle. die fich nach und nach vermehren, während der Phosphor in ein rothes Oxyd übergeht. Die Krystalle riechen nicht, bilden, über Kohlen erwärmt, einen weißen schweren Dampf, der, ganz nahe gerochen, etwas stechend ist, und sich bei dem Verschließen des Gefässes wieder theils in spielsiger. theils in dendritischer Form verdichtet. An der Luft zerfließen diese Krystalle zu einer consistenten Flüsligkeit, die einen sehr sauren, der Phosphorfäure ganz ähnlichen Geschmack besitzt.

Mit besonderm Interesse habe ich die von Ihnen mitgetheilten Abhandlung über die trocknen electrischen Säulen gelesen, deren Existenz, nach den Parrot'schen Versuchen, durchaus für unmöglich gehalten werden sollte (dessen Grundt. d. theoret. Physik §. 1300 u. f.). Ueber die Arten, welche der vortressliche Beobachter und Experimentator Jäger ansührt, nach denen die erregten entgegengesetzten Electricitäten durch die Leiter zweiter Klasse gebunden werden können, möchten vielleicht die Prechtlischen Untersuchungen in dem 35sten Bande Ihrer Annalen einigen Aussichlus geben. Dass die erregten Electricitäten durch ihr Eingreisen in einen schon früher und von ihnen

unabhängig vorhandenen chemischen Process latent gemacht werden, kann ich jetzt nicht bejahen, sondern betrachte die Electricität als das jeden chemischen Procesa Einleitende und Vollführende. Wenn es electrisch- aber nicht chemisch-wirksame Säulen giebt, woran man nach Lesung des Briefs des Hrn, Leibmedicus Dr. Jäger in Ihren Annal. B. 23. S. 50 f. keinen Augenblick zweifeln darf. fo folgt daraus für das Erste blos, dass der chemische Proceis, felbst bei stark dazu hinneigenden Körpern, nur unter gewissen Umständen durch die Electricitäten eingeleitet werden könne, und dass er ein dem electrischen Processe untergeordneter sey. Doch auch der letzte Ausdruck ist wohl ein unrichtiger, und man kann den chemischen Process mit größerem Rechte als einen besondern Zweig des electrischen ansehn, in welchem die entgegengesetzten Electricitäten zugleich von mehreren Seiten auftreten und wirken, so dass wir in ihm keinen einfachen. Sondern einen mehrfach verwickelten electrischen Process als vorhanden annehmen können.

Schon oft wünschte ich die Frage beantwortet zu sehen, woher die beiden Hauptbestandtheile der Lust ihren Ursprung nehmen und ersetzt werden? Die Quelle, aus welcher die Atmosphäre das ihr entrissene Sauerstoffgas wieder erhält, ist zwar schon nachgewiesen; wenigstens hat Muncke in Ihren Annalen (Band 34) es von neuem bestätiget, das die lebenden Pslanzen sie darbieten. Aber sollte der weiter blickende Natursorscher im Ernst

ıt

1-

e-

e.

e

es

3.

gt

8

n-

en

m

ch

er,

e-

ri+

en

ıf-

n-

C+

1.

tet

ile

er-

las

var

in

et,

er

nlt

glauben können, dass der Luft ihr Verlust an Sauerstoff durch die Vegetation ersetzt werde? Gewiss nicht, und es ist die Frage, woher der Ersatz des Sauerstoffs komme, noch immer zu beantworten. Eben so nothwendig ist das Fragen nach der Quelle des Stickstoffs, um welche man sich fast nie bekümmert hat, und wohl deshalb, weil der Stickstoff weder zu der Unterhaltung des Athmens, noch zu der Unterhaltung der Feuer- und Oxydations-Processe dienen kann, also nicht verbraucht wird. Daher lässt man ihn mit der Erschaffung der Welt gegeben feyn, und hat fich, da er keinen Verlust seit jener Zeit erlitten hat, auch nicht um feinen Erfatz bekümmert. Doch möchte es wohl der Wahrheit gemäßer feyn, die stets übergangene Untersuchung über die Herkunft des Stickstoffs von der Unkenntniss des Weges herzuleiten, welchen man bei einer. folchen einschlagen könnte. Der Stickstoff der Atmosphäre bedarf wahrlich eben so gut eines Ersatzes, als der Sauerstoff derselben, und beide können, nach den deutlichen Fingerzeigen der Natur, nur Eine Quelle haben, welche das Waffer darreicht. Woher nämlich die ungeheure Menge von Wasser, welche uns oft fehr lange Zeit hindurch aus der Luft zugelendet wird, und wozu umgekehrt das Verschwinden von einer großen Menge desselben, durch einen Uebergang in die Luft? Man wird mir hier vielleicht irgend ein physikalisches Werk zu einer nöthigen Belehrung anzuempfehlen wünschen, doch kann ich diesem Thun dadurch zuvorkommen, dals Annal, d. Physik. B. go. St. t. J. 1815. St. 5. H

ich mich zu einer genügenden Widerlegung dellen erbiete, was man als einen befriedigenden Auf-Schluss über die in Rede Stehenden Thatsachen anführen will. Diese Thatsachen find von der Art, dass sich über sie in den beschränkten Laboratorien der Kunst allein nicht entscheiden lässt. Unsere Einsichten find bereits bis zu dem Grade gelangt, oder follten es wenigstens seyn, dass wir nicht mehr alles dasjenige, was wir durch unsere Kunst weder Schaffen, noch umändern, noch zergliedern können, als ein Solches annehmen, das diesem auch dann nicht unterworfen sey, wenn es dem Einflusse der mächtigen Naturkräfte ausgesetzt ist. Davy hat die Nichtdaritellbarkeit des Stickstoffs aus dem Wasser und aus feinen Bestandtheilen durch die Mittel dargethan, welche die heutige, vervollkommnete chemilche Kunlt zu folchem Zwecke darbietet. Aber welcher ächte Naturforscher möchte mit Gewissheit behaupten wollen, dals das genannte Material auch in dem Wirkungskreife der Natur nicht zur Bildung des Stickstoffs dienen könne; ja ich behaupte, dals wirklich das Wasser die Quelle des Entstehens von dem Stickstoff in der Natur ley. Meine Theorie über die Entstehung und das constante Verhältnis von den Bestandtheilen der atmosphärischen Luft ist folgende:

Die atmosphärische Luft ist ein chemisches Gemisch von zwei gasförmigen Körpern und gasartigem Wasser, welches nur bei einem bestimmten quantitativen Verhältnisse, gleich andern chemischen n

E-

n-

rt.

re

gt,

hr

er

n,

er

lie

fer

Ta'

le-

er

eit

ch

ng

als

on

rie

ils

uft

ie-

ti-

ten

en

Verbindungen, bestehen kann, und sich stets unter Umständen versetzt besindet, bei welchen es, wenn ihm ein Theil von seinen Bestandtheilen entzogen wird, diesen sogleich wieder ersetzen kann. Das Letzte beruht auf der steten Gegenwart von Wasser und Electricität, wobei das ihr ähnliche imponderable Agens, das Licht, nicht ausgeschlossen zu werden verdient. Nur hierdurch allein wird der Ersatz von einem der atmosphärischen Lust entrissenen Theile bewirkt und sie selbst gebildet.

Auf dem jetigen Standpunkte der Wissenschaft lässt sich noch eine andere Theorie ausstellen, die mit einer gewissen, schon vorhandenen Ansicht des Satzes übereinstimmt, nämlich, das Wasser sey ein elementarischer, eines sehr verschiedenen electrischen Zustandes fähiger Körper; in einem dieser Zustände bilde es die Luft, im andern den Sauerstoff und den Stickstoff, welche das Experiment in der Luft nachweiset, und in einem noch andern . Die verschiedene Reaction des den Wasserstoff. quantitativ nicht verschiedenen Wassers in dem belebten Organismus und gegen todtscheinende Körper etc. lässt durchaus auf die Gegenwart eines Imponderablen schließen, dem es seinen verschiedenen Charakter verdankt. Die Reihe der Hydrate, wozu nun selbst der Stärkenzucker gehören soll, bietet die interessantesten Beispiele dar. Beiläutig kann ich noch bemerken, dass man wohl schwerlich zu einer einwurfsfreien Theorie über

den chemischen Vorgang zwischen den Polardräthen der Säule gelangen möchte, wenn man der durch Ritter erneuerten Lehre des Thales sortdauernd seinen Beisall verlagt. Ich bin hier in ein Feld gerathen, welches zu betreten vielleicht der größere Theil nicht billigen wird. Indessen wird vielleicht auch dieser über lang oder kurz erkennen lernen, das solches Feld einen fruchtbaren Boden darbiete *).

*) Schon vor zehn Jahren hat Hr. Dr. Chladni in diefen Annalen eine dritte Hypothese vorgetragen, auf die
er selbst den Leser hinweisen mag, da er zufällig, indem ich dieses Schreiben des Hrn. Prof. von Giese an
mith in den Druck gebe, auf der Durchreise bei mir
gegenwärig ist. Gilbert.

"Die Hauptbestandtbeile der Atmosphäre der Erde und anderer Weltkörper find in äußerst verdünntem Zuflande in dem allgemeinen Weltraume verbreitet. Jeder Weltkörper verdichtet auf seiner Oberfläche so viel davon. als ihm vermöge seiner Anziehungskraft zukömmt; es können aber auch manche von der Oberfläche desselben aufgelöfte Bestandtheile hinzukommen. Wird durch Entwickelung elastischer Flüsligkeiten auf der Oberstäche die Quantität der Atmosphäre zu fehr vermehrt, so wird der Ueberschuse über das, was dem Weltkörper vermöge seiner Anziehungskraft zukömmt, im allgemeinen Weltraume zurückgelassen; ift aber der Niederschlag oder die Verwandlung elastischer Flüssigkeiten in felte oder tropfbar slüssige Substanz; größer, so wird der Mangel durch neue Anziehung und Verdichtung elastischer Flüssigkeit aus dem allgemeinen Weltraume ersetzt. Hieraus erklären sich auf eine fehr einfache Art viele fonft fehr schwer erklärbare Erscheinungen. Mehreres darüber habe ich schon in dielen Annalen im dritten Stück des Jahrgangs von 1805 gelagt. Chladni

B

fo

Y

Vor einiger Zeit habe ich, einem Auftrage der Kaiferlichen Universität zu Charkow gemäß, den an dieselbe überschickten Bachmuter Luftstein zerlegt. Dieser Aërolith fiel am 3ten Februar des vergangnen Jahres, des Mittags bei hellem Sonnen-Ichein, in dem Bachmuter Diffricte des Ekaterinoslav'schen Gouvernements zur Erde, nachdem man zuvor : Stunde [?] lang starke Explosionen (gleich einem abgefeuerten Geschütz) und Geräusch in der Luft gehört hatte. Das niedergefallene, 6 Zell seitwärts in die Erde eingedrungene und heiß zerplatzte Stück wog 40 Pfund, und das durch den Gouverneur zu Ekaterinoslav an die Univerlität Charkow gefendete einzelne Stück an 20 Pfund. Da mir eine hinreichende Menge für die Unterfuchung zu Gebote stand, so habe ich diese 3 Mal wiederholt, und mich dabei völlig überzeugt, daß die bis jetzt befolgten Methoden nur unvollkommen zum Zweck führen. Ich wollte daher einen andern Weg einschlagen, aber viele andere Arbeiten und meine Verletzung nach Dorpat hielten mich ab, und noch jetzt kann ich denselben nicht versuchen, indem ich meine übrige Zeit einer Reihe mit organischen Körpern anzustellender Verfuche widmen muss. Ich werde aber jenen Vorlatz noch durchzuführen fuchen, und Ihnen dann, außer den dabei erhaltenen Refultaten, auch meine Bemerkungen über die Fehler der gewöhnlich befolgten analytischen Methoden mittheilen. Nach den veranstalteten, mir nicht ganz genügenden Analyten

enthält der Bachmuter Aërolith, dessen Physiognomie mit der von den mehresten jetzt bekannten übereinstimmt, in 100 Theilen:

44 Theile Kieselerde

18 — Magnesia

3 — Thonerde

21 — merallischen Eisen

2½ — metallisches Nickel

1 — Mangan

1 — Chrom (grünes Oxyd) und Schwesel.

Von mehreren Untersuchungen, welche ich bei der Charkower Universität mit den in ihrem großen Bezirke neu entdeckten Naturproducten angestellt habe, und welche in russischer Sprache zum Druck befördert worden sind, will ich Ihnen wenigstens die Resultate von der Untersuchung mittheilen, welche eine Walkererde betrifft. Diese Walkererde wurde im Ekaterinoslav'schen Gouvernements-Districte Alexandrowskoi auf dem dem Hosrathe Kapnist zugehörigen Gute Sophievka, nahe am Flüsschen Thesse, gefunden, und bildet daselbst ein tieses Lager. Sie besteht in 100 Theilen aus

Kiefelerde 49 Theile
Thonerde 31 —
Eifenoxyd 5 —
Waffer fast 15 —
und Spuren von Magnesia und Manganoxyd.

Sie gehört nach den damit angestellten Proben zu den ziemlich guten Walkererden, und wird vielleicht den Tuchfabriken des südlichen Russlands einen bedeutenden Vortheil gewähren.

Meine jetzt mit organischen Körpern anzustellenden Verluche haben den Zweck, die von mir in meiner Chemie der Pflanzen- und Thier-Körper (Leipzig 1811) zuerst aufgeliellte chemische Classification und Charakteristik derselben noch mehr zu begründen und zu verbesfern, und zwar für den 5ten und letzten Band meiner allgemeinen Chemie in russicher Sprache; einem Werke, welches auf Befehl des Ministeriums der Aufklärung auf öffentliche Kosten gedruckt wird, und für die Gründung und Verbreitung der heutigen Chemie in Russland bestimmt ist. Jenes deutsche Werk enthält eine große Reihe eigner, fonst nicht bekannt gewachter Verluche; ich hoffte daher, es würde beachtet werden, habe mich aber darin geirrt, indem es scheint, meine mühfame Arbeit werde unter meinen Landsleuten als etwas nicht Vorhandenes betrachtet, und selbst Männer, die mir ihr Erstaunen über den Reichthum der darin befindlichen neuen Erfahrungen schriftlich zu erkennen gegeben hatten, und zu dessen Bekanntwerden gerade am besten hätten beitragen können, dieles gänzlich unterlassen ha-Wie fehr der Verfasser der chemischen Tabellen des Pflanzen- und Thier-Reichs seinen Arbeiten dadurch geschadet hat, dass die meinigen von ihm übersehn worden find, mag er felbst beurtheilen, wenn er diele einmal durchlehen wird. Auch würde er in diesem Falle noch schwerlich, wenigstens nicht mit den Worten, eine Unterfuchung des Gummigutti mittheilen, wie wir sie im

-

n

.

-

0

-

n

6

lt

u

Berliner Jahrbuche für die Pharmacie 1815 von ihm erhalten haben. Nur Schrader hat von meinem Werke Gebrauch gemacht, und den darin von mir zuerst vom Gummi unterschiedenen gummiartigen Extractivitoff durch weitere Verluche als folchen żu charakterifiren gefucht (Schweigger's Journal für Chemie und Physik B. g. S. 130 u. f.). Dass ich meine 1800 bereits vollendete Arbeit, besonders in Hinficht der Classification der fogenannten näheren Bestandtheile der Pslanzen- und Thier - Körper, nicht als untadelhaft betrachte, werde ich durch Revision derselben zu beweisen fuchen. Vielleicht sende ich Ihnen davon einen ähnlichen Abrifs, wie der ift, welcher in einer 1810 gedruckten Abhandlung, Classification des substances végetales et animales, selon leurs propriétés chimiques, in den Mémoires de la Sacieté impériale des naturalistes de Moscou S. 4. mitgetheilt worden ift.

Ferdinand v. Giefe.

VII.

Chemische Zerlegung des Alcornoque,

vom

Dr. REIN in Leipzig;

(in einem Briefe an den Herausgeber.)

Leipzig d. 7. Juni 1815

Sie werden sich vielleicht eines Auszugs aus der Gazette de la Martinique erinnern, welchen der gelehrte Herr Dr. Albers in Bremen vor einiger Zeit in der Salzburger medicinisch-chirurgischen Zeitung mitgetheilt hat, und durch den wir mit einem neuen vegetabilischen Arzneimittel bekannt geworden sind, welches die Wurzel eines noch nicht bestimmten Baumes ist, und von den Indianern Alcornoque genannt wird.

Durch die Güte des Hrn. Dr. Olbers, dem ich deshalb sehr verbunden bin, erhielt ich ein Stückchen von dieser Wurzel. Ich habe sie einer chemischen Zergliederung unterworfen, und bin so frei, die Resultate derselben Ihnen hier mitzutheilen. Doch muss ich bemerken, das sich diese Arbeit blos auf den holzigen Theil beschränkt, und nicht den rindigen Theil umfast. Die Analyse der Rinde dieser Wurzel hosse ich in den nächsten Monaten vornehmen zu können, weil man dann Hoffnung hat, dass mehrere tausend Pfund dieser Wurzel nach

Europa, und namentlich nach unserm Vaterland für Bremen und Leipzig, werden gebracht werden. Zwar habe ich so viel Rinde durch das Abschälen erhalten. dass ich genug hätte, eine Zerlegung mit ihr vorzunehmen: allein es fehlt ihr das Oberhäutchen. welches nach der Gebrauchs-Vorschrift der Indianer vorher abgeschält werden muls, und daher für diele Arbeit von Wichtigkeit zu feyn scheint.

Die vorbereitenden Verluche, und das technische und manuelle Verfahren Ihnen mitzutheilen. halte ich für überställig, und glaube hier sofort die Refultate niederlegen zu dürfen.

Die Eigenschwere ist 1,970. Die Bestandtheile des holzigen Theils der Wurzel find:

41 11 11 11	Gummiftoff	0,105	Theils	
was friends	Seifenstoff	0,103	-	Districtive.
	Harzstoff	0,054	-	
	Feuchtigkeit	0,136	- '	VAII V
ir ibnonial	Pflanzenfufer	0,605	11 72	arsonner.
	eine Spur Weinsteinsä	ire	(((4))	Man of
mod .sm	of the De Old	1,000	To will	Howell L.

Transmiss. and

Eigenschaften dieser Stoffe find: die Feuchtigkeit ist geruchlos; der Seifenstoff rein bitter; der Harzstoff hatte keinen besondern Geschmack.

Einen neuen oder fich besonders auszeichnenden Stoff habe ich nicht auffinden können. ir ar

ır

n,

er l'e

1-

1,

VIII.

Von des Dr. Edlin Werk: Ueber die Kunst Brod zu machen *).

Der Dr. Edlin unternahm die Untersuchungen über die Mittel, ein leichtes und wohlfeiles Brod zu bereiten, deren Resultate er in einem kleinen Werke bekannt gemacht hat, auf Veranlassen des Landbau-Departements, als Großbritannien in dem J. 1804 mit einer Hungersnoth bedroht war. Er gieht 1) einige Nachweisungen über die Naturgeschichte und die Cultur des Weizens. Dann handelt er 2) von dem Mehlhandel in London, von den zuverläßigsten Mitteln, das Getreide gegen Würmer zu schützen und die furchtbaren Explosionen zu vermeiden, welche manchmal entstehn, wenn man Mehl in der Nähe von Lichtern schaufelt, und von der Construction der Wassermühlen. Er kömmt 3) auf die Analyse des Mehls und auf dessen Zusammensetzung, welche er für den verdienstlichsten Theil des Werkes hält. Er giebt 4) eine Zerlegung der Bierhefen, und zeigt, wie sich dieses Gährungsmittel ersetzen läst; stellt 5) seine Theorie der Brodgährung auf; giebt 6) eine Ueberlicht über die verschiedenen Arten Brod zu bereiten: führt

e) Entlehnt aus einer Anzeige, welche der Dr. Peschier zu Genf. Vers. einer französ. Uebersetzung dieses interessarten Werks, davop in der Bibl. brit. bekannt gemacht hat. G.

7) die Namen und Eigenschaften aller Surrogate des Weizens an, die man zu Brod genommen hat; giebt 8) Vorschriften, wie die Hefen zu bereiten und aufzuheben sind, und 9) den Plan einer neuen Bäckerei; und zeigt 10) wie die Brodtaxe schicklich einzurichten sey. Der französische Uebersetzer hat das weggelassen, was nur in England interessiren kann, und dasür etwas von den Krankheiten des Weizens und von den schrecklichen Uebeln hinzugesigt, welche der Genuss des kranken Weizens nach sich zieht.

Nach dem Dr. Edlin bestehn zwar die Getreidearten, welche die vornehmste Nahrung der Menschen ausmachen, die verschiednen Arten des Weizen, der Roggen, die Gerste, der Hafer, und selbst die Erdäpfel, aus ähnlichen Bestandtheilen, diese sind in ihnen aber nach so verschiedenen Verhältnissen vorhanden, dal's fie nicht Brod von einerlei Art geben. Bekanntlich müssen die Getreidearten in eine Art von Gährung verletzt werden, bevor lie recht als Nahrungsmittel dienen. Sie erlangen durch lie die Leichtigkeit und den Geschmack, welche das Brod so angenehm und so nützlich machen. Nicht alle find indels zur Gährung gleich geneigt, und sie werden großentheils erst dadurch gahrungsfähig, dass man lie nach gewilfen Verhältnissen mit einander vermengt. Der Dr. Edlin zeigt, dass der Weizen außer der Stärke und dem Kleber noch Zucker enthält, [wie das übrigens den Chemikern längst bekannt war,] welcher fich in vierleitigen mit zwei Flächen zugeschärften Krystallen erhalten lälst, und wovon in jees

bt

E-

e-

0-

as

n,

15

1.

t.

-

n

r

-

n

.

.

t

s

9

ì

dem Pfunde Weizenkörner 2 Drachmen enthalten Er glaubt aus leinen Verluchen mit Sicherheit folgern zu dürfen, dass weder der Kleber. noch die Stärke für lich, oder mit einander gemilcht in Gährung kommen können; wohl aber, wenn man fie zu einem Teige knetet, ihnen etwas Zucker zusetzt. und sie in die nöthige Wärme bringt. Dann zerletze fich der Zucker, unter Entbindung von kohlenfaurem Gas; so auch das Gährungsmittel; das aus beiden aufsteigende kohlenfaure Gas blähe den Kleber in dünnen Häutchen auf, vermehre den Raum der Masse. und erleichtere dadurch dem Gährungsprincip das Eindringen zwischen alle Theilchen der Stärke. Umfontt hat der Verf. gefucht aus Stärke, worunter Bierhefe geknetet war, oder aus Starke und Kleber, die er mit Bierhefe und Wasser zusammen geknetet hatte. aufgegangenes Brod zu erhalten; wenn er dann aber ein wenig Weizenzucker hinzufügte, fing die Gälirung augenblicklich an, und er erhielt ein vortreffliches Brod. Dieses war die Thatsache, auf welche es ankam, meint der Dr. Edlin; fein Werk enthält die Verfuche, durch die er auf dieselbe gekommen ilt.

Da es leicht ist, ungefähr zu sinden, wie viel jede Getreideart an Stärke, an Kleber und an Zucker enthält, so läst sich dann von demjenigen dieler Stoffe, wovon zu wenig vorhanden ist, die erforderliche Menge hinzusetzen, und so läst sich selbst aus Kartoffeln ein gutes Brod machen. Die Kenntniss dieler Thatsachen ist also für Bäcker, Hausväter u. s. s. sehr wichtig, und verbreitet zugleich ein helles Licht über diesen Theil der Küchen-Chemie.

Das Werk ist reich an belehrenden Thatlachen dieser Art. —

IX.

Einige Gedanken über das Leuchten des Meerwassers,

von dem

Königl. Schwed. General-Feldzeugmeister Herwic, Mitgl. d. Akad. d. Wiss. zu Stockholm.

Eine Abhandlung über das Leuchten des Meerwaffers von Hrn. Oken, welche ich in einem der neusten Hefte des Schweiggerschen Journals f. Chem. u. Phyfik gefunden habe, fucht darzuthun, dass dieses Leuchten nicht, wie viele glauben, von Medusen und andern kleinen Thierchen herrühren könne, weil man in leuchtendem Meerwasser nichts dem ähnliches durch das Mikrofkop habe entdecken können. Bei dem Durchlesen fiel mir bei, was ich während meines Aufenthalts am schwarzen Meere, und auch an der Külte von Italien, über diesen Gegenstand beobachtet hatte. Auch ich habe nie Thiere gefunden, obgleich ich das Meerwaffer an den Stellen schöpfte, wo der Lichtschein am flärksten war; immer zeigte sich das Wasser vollkommen klar und durchlichtig.

Am Einslus des schwarzen Meeres in den Kanal von Constantinopel ist auf der assatischen Seite eine kleine Bucht, die ganz von hohen Bäumen beschattet wird, so dass die Sonne nie darauf scheinen kann. Ich habe Tage und Nächte in Gesellschaft dort zugebracht; den Abend und ein Theil der Nacht 1-

,

13

n

u.

es

n

e,

m

n

h

e,

n

ie

n

-

-

e

n

t

t

So viel ich mich erinnere, über wurde gefischt. habe ich nie in dieser von der Sonne nicht beschienenen Bucht das Wasser leuchtend gefunden, obgleich es unmittelbar mit dem übrigen Meerwassec zusammenhing, und einen Theil des Meeres ausmachte. Dagegen konnte man, wenightens in vollkommen ruhigen und windstillen Nächten, gleich außerhalb der Bucht, sobald man ins Freie kam. durch einen Stock und mit der Hand das Leuchten auf der Wassersläche herorbringen. Damals habe ich darüber nicht weiter nachgedacht; beim Lesen des erwähnten Auflatzes daran erinnert, entstand aber in mir der Gedanke: köunten die gröseren Meere nicht Lichtmagnete feyn? Den Einwurf, dals, wenn das Meerwaller eine folche Eigenschaft hätte, ohne alle Ausnahme alle Meeresslächen. leuchten müßten, kann ich nicht als einen Beweis der Unstatthastigkeit meiner Vermuthung ansehen, da befondere Urlachen das mehrere oder mindere Anhäufen der Lichtmaterie an ihren Oberflächen beltimmen können. Und wenn das Leuchten allein von Thieren herrührte, mülsten nicht stets alle still-Stehende Seen und alle Ströme leuchten, die, im Verhältnis zu ihrer Gölse, ungleich mehr von solchen Körpern von den Medulen und andern Thieren, an welchen Macartney, Tilelius u. a. die Eigenschaft zu leuchten gefunden haben?] in sich fasfen, als die größern Weltmeere. Ich glaube, daß in 100 Tonnen von dem meilt leuchtenden Meerwaffer nicht fo viele kleine Thiere enthalten find, als in einem kleinen Eimer Waller aus einem Landlee oder Fluis.

Es wäre interessant, wenn man zu einer Zeit, wo das Meer am stärksten zu leuchten scheint, aus mehreren Tiesen, z. B. von Ful's zu Ful's unter der Oberfläche, gleichzeitig Wasser schöpfte, und die verschiedenen Leuchtungsgrade untersuchte. Ich bin überzeugt, dass nie ein Wasser, aus welchem Meer es genommen sey, 8 bis 10 Klaster unter der Obersläche.

geschöpft, leuchten wird.

Die kleinen leuchtenden Punkte, welche man bei ganz ruhiger See bemerkt hat, rühren von kleinen Fischen her, welche an der Oberstäche des Wassers ihre Nahrung suchen und sie punktweise in Bewegung setzen. Zuweisen lieht man lange schlangenförmige leuchtende Linien auf der Wassersläche, wenn gröfsere Fische so nahe an der Oberstäche schwimmen, das sie dadurch in Bewegung gesetzt wird, oder wenn ein Theil von dem Rücken des Fisches über das Wasser heraus ragt. Das schönste Schauspiel ist, wenn mehrere Delphine auf einer Stelle ihre Sprünge machen.

Hr. Gollin in Stockholm, Erfinder der Wasser-Tuben, mit welchen man auf beträchtliche Tiesen unter Wasser sehen kann svergl. S. 65], hat mir gesagt, dass er bei den Versuchen, die er auf Besehl des Königs mit diesen Tuben in Wasser süger Seen und salziger Meere angestellt, gesunden habe, dass man in letzterem bis auf größere Tiesen hinab sehen könne. Hängt damit vielleicht das Leuchten des Meerwassers zusammen? Sollte sich über dieses Leuchten nicht durch Versuche etwas entscheiden lassen, wenn man z. B. in einem dunkelfarbigen Gesäse von beträchtl. Oberssäche ein künstliches Meerwasser durch Mischung mit Salzen bildete, es dem Sonnenlichte aussetzte, und dann im Dunkeln bewegte, um zu sehn, ob es nicht einen Schein von sich gebe?

Jugart Brickner del: et ve: 1645.

e:

n

g e -

n r

i.

t, 39

gt

h

n

it d

Gills N. Ann. & Phys 20 1 B. 1 ts. St.

ANNALEN DER PHYSIK.

JAHRGANG 1815, SECHSTES STÜCK.

T.

Versuche über die Farben-Zerstreuung fester und stüssiger Körper,

angestellt mittelst eines neuen Instruments,

und Bemerkungen über die Verschnedenheit der Farbenräume prismatischer Spectra, welche durch verschiedene durchsichtige Mittel gebildet sind,

t 0.11

DAVID BREWSTER, LL. D., Mitgl. d. Edinb. Gef. d. Wiff.

Frei übersetzt von Gilbert.

Seit langer Zeit haben sich die Physiker ein veränderliches Prisma gewünscht, das heißt ein Prisma, dessen brechender Winkel sich nach Willkühr vergrößern oder verkleinern ließe. Clairaut sowohl als Boscovich, zwei der Hauptschriftsteller über achromatische Fernröhre, hatten sich ein solches Instrument eingerichtet, und sich desselben bedient, um die brechenden und zerstreuenden

Annal. d. Phylik. B. 50. St. 2. J. 1815. St. 6.

Kräfte verschiedener Körper zu messen; die Prismen beider waren aber nicht hinlänglich einfach und genau, daher die Optiker späterhin es vorzogen, den brechenden Winkel ihrer Prismen durch Hinzusetzen mehrerer dünner Prismen zu verändern.

Das Instrument, welches Clairaut gebraucht hat, war nichts anders als eine plan-cylindrische Linfe: in ihr machten nämlich verschiedne Stellen der Cylindersläche verschiedne brechende Winkel mit der ehnen Seite. Läßt man aber einen Lichtstrahl durch eine runde Oeffnung auf die krumme Oberfläche eines folchen Prisma fallen, so ilt für ihn der Einfallswinkel nicht überall gleich, und die dadurch entstehende Zerstreuung des gebrochnen Strahls verwirrt das prismatische Spectrum. Ein Optiker zu Marseille, der P. Abat, gab eine sehr nette Construction an, wodurch diesem Uebel abgeholfen wird, und sie wurde von Boscovich befolgt und noch verbessert. Er verband nämlich zwei plan - cylindrifche Linfen [von gleichen Cylinderflächen], eine plan-concave und eine planconvexe, indem er die concave Fläche auf die convexe legte; drehte er nun die eine über die andere fort, so veränderte sich der Winkel, unter dem die beiden ebenen Flächen gegen einander geneigt waren. Es treten indels hierbei mehrere Schwierigkeiten ein: erstens ist es sehr schwer, die beiden krummen Oberflächen zu poliren, ohne dals sie aufhören überall genau an einander zu schließen; zweitens

leiden sie beim Verschieben über einander durch das Reiben einer an der andern; drittens sind die Zurückwerfungen, welche an den krummen Oberflächen vor sich gehn, störend; und endlich ist es mühlam, den veränderlichen Winkel der beiden ebenen Seitenslächen zu messen.

Das folgende Instrument läst sich an die Stelle der beiden eben erwähnten setzen, und ich kann den Gebrauch desselben den Physikern und Optikern empfehlen. Denn is sindet gegen dasselbe keine jener Einwendungen Statt, und die Einrichtung gründet sich auf ein ganz allgemeines Princip, welches sich gleich gut auf feste Prismen, und auf ein stüssiges Prisma anwenden läst, das aus einer zwischen zwei Glasplatten eingeschlossnen Flüssigkeit besteht.

Wenn man durch ein Prisma nach der Sonne sieht, so erblickt man ein längliches gefärbtes Bild, das seiner Länge nach nach der Sonne selbst hinweiset; und dreht man dann das Prisma in der den brechenden Winkel halbirenden Ebene in die Runde, so geht das sarbige Spectrum rund um die Sonne herum, ohne sich in Hinsicht der Farbe, des Abstands von der Sonne, und der Richtung nach derselben hin zu verändern. Durch dieses Drehen wird folglich der brechende Winkel des Prisma in Beziehung auf die Sonne nicht verändert, da die Brechung und die Farbenzerstreuung in jedem Puncte des Kreislaus des Prisma unverändert dieselben bleiben. Dadurch, das alle Optiker die

Sache auf diese Art angesehn haben, ist die besondere Vorrichtung, welche ich hier beschreiben will, ihrer Ausmerksamkeit entgangen, und nicht Einer von Ihnen ist auf den Gedanken gekommen, dass sich der Brechungswinkel eines Prisma, durch ein solches Drehen des Instruments in der den brechenden Winkel halbirenden Ebene, in der That verändern läst *).

Folgendes dient zur Erläuterung dieser anscheinenden Paradoxie **). Besieht man durch ein Prisma eine oder mehrere schwarze gerade Linien, welche auf weißem Grunde gezogen sind, und sich unter gleichen Winkeln in einem Puncte O durchschneiden, wie in Fig. 4 Tas. I, und hält die Seitenkante des brechenden Winkels in einer parallelen Lage mit einer dieser Linien, z. B. mit HD, so geht die Brechung nach der auf HD senkrechten Richtung BF vor sich. Daher wird die Linie HD an ihren Rändern stärker farbig als irgend eine der andern erscheinen, und zwar nach dem brechenden Winkel zuwärts blau und violet, und von demselben abwärts gelb und roth. Die Linien AE und CG erscheinen minder stark

[&]quot;) Die Farbenzerstreuung eines Prisma läst sich auf eine ähnliche Art mittelst eines andern Prisma von geringerer Zerstreuung aufheben, wenn man dieses in der Ebene dreht, welche auf der den brechenden Winkel halbirenden Ebene fenkrecht sieht. Diese Methode führt aber Nachtheile mit sich, welche machen, dass sie sich nicht in Ausübung bringen läst.

[&]quot;) Ich habe hier den Vortrag bedeutend abgekürzt und verändert, indem er mit dadurch an Deutlichkeit zu gewinnen schien. Gilb.

farbig, und BF ohne alle Farben, vollkommen scharf. Dreht man ein Prisma in der den brechenden Winkel halbirenden Ebene rund amher, so findet sich in jeder Lage desselben eine solche gerade Linie, die ungebrochen und ohne alle Farben bleibt, und diese Linie ist immer senkrecht auf einer andern geraden Linie, welche die größte Brechung leidet, und in der die Farben am stärksten erscheinen. Dieses giebt uns die Besugniss, uns die Sache auch so vorzustellen: das Prisma, wenn es aus der mit HD parallelen Lage auf die beschriebne Art um einen Quadranten weiter gedreht wird, verändere in Beziehung auf die Linie BF feinen brechenden Winkel, und vergrößere ihn allmählig von o bis zu dem wahren Winkel, den die beiden brechenden Flächen des Prisma mit einander machen, und den ich mit A' bezeichnen will. In jeder Lage zwischen diesen beiden, z. B. in AE, ge-Schieht die Brechung in Beziehung auf BF so, als ware der brechende Winkel = A'. fin. HOA oder =A'. cof. BOA.

Will man von diesem Princip Gebrauch machen, um die brechenden und zerstreuenden Kräfte der Körper zu messen, so muss man ein zum Maasse dienendes Prisma von Flintglas oder von Kronenglas haben, dessen brechender Winkel und dessen Brechungs- und Zerstreuungs-Vermögen genau bestimmt sind. Ferner ist dazu nöthig, dass man ein für Flüssigkeiten bestimmtes Prisma besitze, das aus zwei Glastafeln mit parallelen Oberstachen besteht,

1

c

,

und dessen brechender Winkel viel kleiner als der des Maassprisma ist. Beide Prismen müssen in dem Mittelpuncte eines senkrecht stehenden Goniometer oder andern eingetheilten, um seine Axe drehbaren Kreises angebracht seyn, und zwar das zweite an einem unbeweglichen Theile des Instruments, das Maaßprisma dagegen in dem Mittelpuncte des fich drehenden Kreises, dem Auge des Beobachters näher, und fo, dass beide Prismen entgegengeletzt brechen, wenn der Index des eingetheilten Kreises auf o steht. Die Kanten ihrer nach entgegengesetzten Seiten sich öffnenden brechenden Winkel müssen also alsdann parallel feyn. Wir wollen setzen, sie wären beide vertikal, und man sehe in dieser Lage durch beide Prismen nach einer senkrechten Fensterstange (AB Fig. 5), hinter der der Himmel fey. Das Bild dieses Fensterholzes wird in A'B' erscheinen. Man drehe nun den eingetheilten Kreis, bis das durch Brechung entstehende Bild A'B' in die Lage ab kömmt, mit AB zusammenfallend, und bemerke genau die Anzahl von Graden und Minuten, welche der Index nun abschneidet; sie sey = M. Ferner sey der Winkel der brechenden Flächen des Maassprisma = A, fo ist nun, das heisst wenn das directe und das gebrochne Bild zusammenfallen, der brechende Winkel = A. fin. M. Da aber die brechenden Winkel beider Prismen und das Brechungs -Vermögen des Maassprisma bekannt sind, so lässt sich das Brechungs-Vermögen der in dem zweiten Prisma enthaltenen Flüssigkeit leicht nach den folgenden Formeln berechnen.

Sind die Rander des geradelinigen Gegenstandes AB vollkommen farbenfrei, wenn das Zufammenfallen eintritt, lo hat das Maalsprisma einerlei zerstreuende Kraft mit dem in dem feststehenden Prisma eingeschloßnen Körper, vorausgesetzt, daß sie einerlei brechende Kraft haben. Denn bei gleichem brechenden Winkel wird dann die Farbenzerstreuung des feststiehenden Prisma genau aufgehoben durch die des Maalsprisma. Bleiben dagegen die Ränder des Gegenstandes farbig, so drehe man das Maafsprisma weiter; werden die Farben stärker, so übertrifft es an zerstreuender Kraft das felistehende Prisma; werden sie schwächer, so steht es demfelben nach. Hat man das Maassprisma so gestellt, dass die senkrechten Linien ohne alle Farbe fich zeigen, und steht dann der Index auf m Grade, so ist der veränderliche brechende Winkel des Maalsprisma, bei welchem die Farben des feststehenden Prisma aufgehoben werden, = A. sin, m; und daraus läßt fich die zerstreuende Kraft des in dem festlichenden Prisma enthaltenen Körpers leicht herleiten. Bei dielen Versuchen muß das feltstehende Prisma so gegen den Gegenstand AB gestellt werden, dass die Strahlen von demselben auf die vordere Fläche dieses Prisma senkrecht einfallen, welches sich immer durch ganz einfache Mittel bewerkstelligen läst; denn da alsdenn die Strahlen durch die Vorderfläche ungebrochen bindurchgehn, so werden dadurch die Formeln sehr vereinsacht, nach denen die brechende und die zerfircuende Kraft des seststeenden Prisma berechnet werden muss. Diese Formeln sind solgende; sie kommen den von Boscovich gegebenen sehr nahe. Es sey

der brechende Winkel des feststehenden Prisma = A der Winkel der brechenden Flächen des fich drehenden Maassprisma = A', (also der veränderliche brechende Winkel dieses Prisma, wenn der Index auf M Grade steht, = A'. sin. M), und der Werth des veränderlichen brechenden Winkels desselben, bei welchem die Brechung des feststehenden Prisma aufgehoben wird, = 4 so wie derjenige, bei welchem dessen Farbenzerstreuung aufgehoben wird, Der Exponent des Brechungs-Vermögens sey des feststehenden Prisma des veränderlichen oder Maafsprisma =r;die Portion der mittlern Brechung, für welche die Zerstreuung gleich ist, dR, dr; die zerstreuende Kraft des feststeh. Prisma D=

Wir haben dann für die brechende Kraft des feststehenden Prisma, sin. $(a-x) = \frac{\sin \cdot (a-A)}{R}$, woraus sich zugleich sin. x ergiebt; und es ist $R = \frac{r \sin x}{\sin A}$.

Wenn die beiden Prismen in ihrem Brechungs-Vermögen nicht fehr verschieden sind, wie das bei Frismen der Fall ist, die aus verschiedenen Glasarten bestehn, so lassen sich folgende noch einfachere Formeln brauchen:

Es fey
$$a-A = p$$
 und $p - \frac{p}{r} = q$;
fo if: $R = r + r \text{ fin. } q \cdot \text{cotg. } A$.

Die zerstreuende Krast des sesssehenden Prisma sindet sich dann solgendermassen:

fin.
$$x' = \frac{R}{r}$$
, fin. A,
$$\frac{dR}{dr} = \frac{R}{r} \cdot [tg.(a-x') \cdot \cot g. x' + 1], \text{ und}$$

$$D = \frac{dr}{R-1} \cdot \frac{R}{r} \cdot [tg.(a-x') \cot g. x' + 1].$$

Da R den Exponenten des Brechungs-Verhältnisses für die Strahlen von mittlerer Brechbarkeit bedeutet, so ist dR ein Theil der ganzen Brechung, und immer gleich dem Unterschiede der beiden Exponenten der Brechungs-Verhältnisse für den äußersten rothen und für den äußersten violetten Strahl.—Beim Messen des Zerstreuungs-Vermögens verschiedener Arten von Flintglas, und in allen Fällen, wenn R und r nur wenig von einander verschieden sind, ist x'= A, und dann verwandelt sich die letzte Formel in die folgende weit einfachere:

$$D = \frac{dr.[tg.(a-A).cotg.A+1]}{R-1}$$

Sollte der Fall eintreten, dass der Körper, woraus das feltstehende Prisma besteht, ein so großes Brechungs-Vermögen hätte, dass der größte Winkel des Maassprisma die Brechung und Zerstreuung desselben nicht aufzuheben vermöchte, so mache man das Maassprisma zum selten, und das andre zum beweglichen, indem man beide mit einander vertauscht, und vermindre dann durch Drehen den veränderlichen brechenden Winkel des letzteren Prisma, bis es die Brechung und Zerstreuung des Maassprisma aushebt.

Der größte brechende Winkel in jedem der beiden Prismen kann mit der äußersten Schärfe bestimmt werden, und die Veränderungen des brechenden Winkels des Maassprisma lassen sich nach einer Skale messen, welche hinlängliche Größe hat, um noch die kleinsten Veränderungen anzugeben */. Es hängt daher die Genauigkeit der Refultate hauptfächlich von der Genauigkeit ab. mit der man das Zusammenfallen der Bilder und die vollkommene Aufhebung aller Farben beobachtet. Wünscht man eine noch größere Schärfe der Beobachtungen, so braucht man nur den Goniometer mit den beiden Prismen vor das Objectivglas eines kleinen Fernrohrs zu stellen, und durch dieses das prismatische Bild des Gegenstandes AB und dessen Farbenränder zu beobachten. Diese erscheinen

^{*)} Ift der größte brechende Winkel des Prisma in einem Fall 20°, in einem andern Fall 5°, so haben wir einen Bogen von 90°, der uns als Skale zum Messen der Veränderungen des brechenden Winkels im ersten Fall von 0° bis 20°, im zweiten Fall von 0° bis 5° dient; und so wächst verhältnismäsig die Größe der Skale in eben dem Grade, in welchem die Größe des brechenden Winkels geringer wird.

te

re

n

n

38

r

-

-

h

e

-

-

t

e

t.

-

r

5

5

1

1

dann bedeutend vergrößert, und ihre Anshebung ist also um so sichrer wahrzunehmen; und sollte auch das Fernrohr noch einige Farben haben, so stören diese nicht, da sie von jenen farbigen Rändern leicht zu unterscheiden sind, auch sehr große Oeffnungen und Vergrößerungen hierbei nicht genommen zu werden brauchen.

Der Dr. Blair hat in seiner scharssinnigen Abhandlung über die ungleiche Brechbarkeit des Lichtes, mit Clairaut und Boscovich behauptet, die verhältnissmässige Größe des sarbigen Raums *) sey verschieden nach Verschiedenheit der brechenden Körper, und aus diesem Grunde lasse sich keine vollkommne Aushebung aller Farben mittelst zweier verschiedner durchsichtigen Körper von ungleichem Zerstreuungs - Vermögen hervorbringen. Diese merkwürdige Thatsache ist seitdem von dem Dr. Wollast on bestritten worden, welcher behauptete, dass er bei allen Körpern, die er untersucht, bei ähnlicher Lage des Prisma die farbigen Räume von verhältnissmässig gleicher Größe gesunden habe **), Der Dr. Blair schreibt, wie ich

^{*)} Das heißt des Raumes, durch welchen die Farbenstrahlen beim Brechen zerstreut werden. (Ein Auszug aus Blair's Aussauf steht in diesen Annalen Jahrg. 1800. B. 6. S. 129.) Gilb.

[&]quot;) Dass die farbigen Räume bei verschiednen brechenden Mitteln nicht einander proportional sind, hatte Clairaut beobachtet, und sand auch Boscovich. Er glaubte sich aber bei einem so sonderbaren Resultate nicht beruhigen zu dürsen, hevor nicht alles völlig in das Reine gesetzt sey; er wiederholte daher seine Versuche mit der größten Sorg-

weiß, diesen Nicht-Erfolg Wollaston's dem Umstande zu, das Wollaston sich keiner Linsen bedient habe, dass diese aber die uncorrigirten Farben bedeutend vergrößern, und dadurch mehr
sichtlich machen, als wenn man allein das Prisma
braucht. Bei meinen Versuchen über die zerstreuenden Kräfte habe ich indes auch durch bloße
Prismen aus verschiednen durchsichtigen Körpern
die nicht corrigirte Farbe in Gestalt grüner und
weingelber Ränder erscheinen sehn, und ich habe
sie bei mehreren weder von Blair noch von
Boscovich untersuchten Körpern gesunden. Wird
daher die zerstreuende Kraft von Körpern, in welchen diese Nicht-Proportionalität Statt sindet,
durch die eben beschriebene Methode gemessen,

falt, und führte über die möglichen Irrthümer Rechnung. Zuletzt mulste er indels doch die Nicht-Proportionalität der farbigen Räume zugeben, als eine Thatfache, welche durch unwiderlegliche Versuche dargethan sey, und er zeigte nun, wie sich doch wenigstens drei Farben des Spectrum in den achromatischen Fernröhren aufheben lasfen Derfelben Meinung war unfer berühmter Landamann John Robifon, zu Folge eigner Versuche. Wer geneigt ilt, der Meinung des Dr. Wollaston, als auf directere Beweile fich gründend, den Vorzug zu geben, dem Ichlaze ich folgenden entscheidenden Versuch vor. Man nehme ein Prisma aus Calliaöhl und eins aus Kronenglas, und vermindre den brechenden Winkel desjenigen, welches die Farben im größten Grade hervorbringt, bis das hindurchgelassene Licht möglichst farbenlos ift. In dieler Lage ift die Menge unaufgehobner Farbe noch fo groß, dals fie fich keiner andern Urfache, als der Ungleichheit in den correspondirenden Räumen der Farbenspectra, die durch Flintglas und durch Caffiaöhl gebildet werden zuschreiben fast. Mehr davon in einem folgenden Auffatze. Br.

I

i

8

b

п

d

iı

w

cl

K

ſu

th

er

n-

6-

T-

hr

na

21-

se

rn

nd

be

on

ird

el-

et.

en,

ing.

che

er

laf-

ann

eigt

tere hla-

eh-

und

rch-

ift

den

rch

ben r. fo wird das Erscheinen der grünen und weingelben Ränder die Lage des Maassprisma andeuten, bei welcher die Farbenzerstreuung des in der Unterfuchung begriffenen Körpers aufgehoben wird.

In den letzten Jahren ist die Materie von den zerstreuenden Kräften der Körper blos in der Abficht unterfucht worden, um achromatische Verbindungen aufzuluchen und durch sie die Fernröhre zu verbessern, und man hat die Farbenzertfreuung von 2 oder 3 Arten von Glas und von einigen wenigen Flüssigkeiten in Zahlen bestimmt. Auf eine allgemeine Art war die Sache noch nicht unterfucht worden. Dr. Wollaston hat das Verdienst. hier zuerst die Bahn gebrochen zu haben: er bestimmte für 33 Körper die Ordnung, worin sie nach ihren brechenden Kräften stehn, ohne jedoch irgend eine Schätzung des Zahlwerths derfelben zu geben *). Ich habe mit Hülfe des vorhin beschriebenen Instruments die zerstreuenden Kräfte von mehr als 100 durchfichtigen Körpern, von denen der größte Theil noch nie unterfucht worden war, in Zahlen bestimmt, und dabei viele höchst unerwartete und merkwürdige Resultate erhalten, welche uns neue Eigenschaften der durchlichtigen Körper kennen lehren.

Doch es ist nöthig, dass, bevor ich diese Refultate mittheile, ich das Instrument und die Methode umständlicher beschreibe, durch die ich sie erhalten habe,

^{*)} Sein Auffatz Hoht in dielen Annalen B. 31. S. 410. G.

Man fieht dieses Instrument in einem senkrechten Durchschnitte abgebildet, Fig. 6 Taf. I. Der ringförmige Kreis A, B ist auf leinem äußern Umfange in 360° getheilt, und fest mit dem röhrenförmigen Stück ee verbunden (and has a rubular shoulder ee), welches fich auf der Röhre dd'dd' bewegen läst, deren Ende dd in dem Fussgestell CD festsitzt. Auf dieser letztern Röhre ist ein anderes kleines Rohr befestigt, das den Arm de trägt, auf dessen Umfang der Vernier angebracht ist, welcher die Grade der Theilung weiter eintheilt. Das vordere Ende d'd' jener Röhre endigt sich in einem Ringe, und an diesem ist das Prisma m befestigt, dessen zerstreuende Kraft man bestimmen will. Das Maassprisma n, dessen brechender Winkel eine solche Größe hat, daß es stärker als des Prisma m zerstreut, sitzt fest an einer Röhre fg, welche auf die äußere Oberfläche des Schulterstücks ee aufgeschroben ist (Fig. 7). Wenn folglich der Kreis AB gedreht wird, so nimmt er diese Röhre fg mit. und das Maassprisma n dreht sich genau so wie er. indess der Vernier c und das andere Prisma m in unveränderter Lage bleiben. Und wenn die inneren Seitenslächen der beiden Prismen in irgend einer Lage des Kreises einander parallel find, und auf der Axe der Drehung senkrecht stehn, so behalten sie diesen Parallelismus in jeder andern Lage.

b

d

d

n

d

ai

lä

ei

m

be

m

fc

ur

Vi

fg

be

di

fo

ob

let

Will man dieses Instrument brauchen, so lässt man vor einem Fenster ein 3 bis 4 Zoll breites Bret AB Fig. 8, dessen Kanten vollkommen gerade und ha

8-

ge

en

il-

e-

D

es

mf

er

)r-

em

gt,

as

ol-

m

uf

164

1B

it.

er,

in

in-

nd

nd

al-

fst

ret

nd

parallel find, fo genau als möglich horizontal befestigen, so dass es ein Bleiloth CD, welches man von dem obern Theil des Fensters herabhängen lässt, rechtwinklig durchschneidet. Man stellt dann das Instrument in einen schicklichen Abstand von dem Brete, so, dass die Gesichtslinie von dem Mittelpuncte E des Brets nach dem in O (Fig. 6) fich befindenden Auge, auf dem Brete AB und auf der Vorderfläche des Prisma m senkrrecht steht. Ist das Instrument so adjustirt, so dreht man es in dem Rohre, welches den Kopf des Stativs ausmacht (dd'dd' Fig. 6), so weit umher, bis die Kante des brechenden Winkels des Prisma m senkrecht auf dem Bleilothe CD ist, und stellt es in diefer Lage fest, mittelst der Schraube S. Diese Lage läfst fich aber leicht erhalten, wenn man mit der einen Hälfte der Pupille durch das Prisma m. und mit der andern direct nach CD fieht, weil alsdann beide Bilder zusammenfallen müssen. Betrachtet man nun das Bret AB durch das Prisma m, fo erscheint die untere Seite desselben mit einem rothen und gelben, und die obere mit einem blauen und violetten Rande. Schraubt man darauf die Röhre fg mit dem Maassprisma n auf das Schulterstück ee' auf (Fig. 7), so dals der brechende Winkel desselben dem des erstern Prisma entgegengesetzt liegt, die Kante aufwärts gekehrt und lenkrecht auf CD, so zeigt sich nun der rothe und gelbe Rand an der obern Seite des Brets AB und der blaue und violette Rand an der untern Seite, weil das Maassprisma die stärkere Farbenzerstreuung hat. Um den brechenden Winkel desselben zu vermindern, dreht man den Kreis nach der rechten Hand zu, während der Beobachter immerfort das durch die beiden Prismen entstehende Bild des Bretes AB im Auge behält. Er sieht dann die farbigen Ränder allmählig schwächer werden. Verschwinden sie endlich, und zeigt sich das Bret ganz farbenlos, so liest man die Menge von Graden und Minuten ab, welche der Vernier auf dem eingetheilten Kreise abschneidet, und schreibt sie auf. Eben so dreht man den Kreis links herum, bis alle Farbenränder verschwunden sind, und schreibt ebenfalls die Zahl von Graden und Minuten auf, die der Vernier alsdann abschneidet. Bedeutet

- φ den Bogen, der zwischen diesen beiden Lagen des Maassprisma n enthalten ist,
- B den Winkel der brechenden Flächen des Maaßprisma, und
- a den brechenden Winkel, zu welchem es herabgebracht ist, bis es die Farbenzerstreuung des Prisma m aushob,

fo ist $\alpha = B \cdot \cot \frac{\pi}{2} \varphi$.

Ist zum Beispiel das Prisma m mit Wasser gefüllt, und hat einen brechenden Winkel von 24° 39'; und besteht das Prisma n aus Flintglas, und hat einen brechenden Winkel B von 41° 11', so wird $\phi = 156^{\circ}$ seyn. Und ist dieses der Fall, so haben wir $\alpha = (41^{\circ} 11')$ cos. $78^{\circ} = 8^{\circ}$ 34'. Also corrigirt ein Flintglas-Prisma mit einem brechenden

Jen

rn,

,us

die

im

ler

fie

la

ab.

eife

eht

der

ahl als-

des

als-

ge-

ris-

ge-

von

las,

ıı',

fo

Mollo

len

Winkel von 8° 34' die Farbenzerstreuung eines Wasser-Prisma mit einem brechenden Winkel von 24° 39'. Ist folglich die brechende Krast des Wassers und die des Flintglases bekannt, und zugleich die farbenzerstreuende Krast des Flintglases, so läst sich hieraus leicht die zerstreuende Krast des Wassers nach den S. 137 gegebenen Formeln berechnen, wie dieses das solgende Beispiel zeigt, bei dem wir die brechende Krast des Flintglases r=1,616, die brechende Krast des Wassers R=1,336, und die Portion der mittleren Refraction des Flintglases, welcher die Zerstreuung gleich ist, dr=0,0320 setzen wollen. Wir haben dann

log. R = log. 1,336 = 0,125806 | 0,208441 | alfo log.
$$\frac{R}{r}$$
 = 9,917365 | 9,917365 | dazu log. fin. A = log. fin. 24°39′ = 9,620213 | glebt log. fin. x′ = 9,537578 | alfo x′ = 20° 10′, und α = 8°34′ | glebt α - x′ = -11°36′ | log. cols. α ′ = 10.435017

$$\begin{array}{lll}
\log \frac{R}{r} &= 9.917365 \\
\log \frac{R}{r} &= 8.505150 \\
\log \frac{R}{r} &= 9.644537 \\
8.067052 & \text{Num.} = 0.0117 = dR
\end{array}$$

$$\begin{array}{lll}
\log R - 1 &= 9.526339 \\
8.567052 & \text{Num.} = 0.0117 = dR
\end{array}$$

8,540713 Num. = 0,0347 = R-1

Aunal. d. Phylik. B. 50. St. a. J. 1815. St. 6.

Folglich ift die Zerstreuungskraft des Wassers hiernach 0.0347. Eine andere Beobachtung mit einem andern Flintglas-Prisma gab mir dK = 0.0119 und $\frac{dR}{R-1} = 0.0352$.

Auf diese Art habe ich die Zerstreuungskräfte aller in der folgenden Tafel enthaltenen Körper mit vieler Sorgfalt gemessen und berechnet. Die erste Spalte derselben enthält die Werthe $\frac{dR}{R-1}$, welche das natürliche Maaß der Zerstreuungskräfte sind; und die zweite Spalte die Werthe von dR, oder den Theil der ganzen Brechung, welcher die Zerstreuung gleich ist.

Die in dieser Tasel enthaltenen zerstreuenden Kräfte gehn von 0,0218 bis 0,400; jene ist dem Kryolith eigen, diese dem chromiumsauren Blei, und zwar ist sie in diesem mit der größten (der ungewöhnlichen) Brechung verbunden, (nach Schäzzung.) Die Größe dieses Zwilchenraums wird jeden überraschen, der weiß, das Newton und Euler meinten, alle durchsichtige Körper hätten einerlei Zerstreuungskraft. Die beiden Körper, denen sie zukommen, waren bisher noch von niemand in dieser Hinticht untersucht worden.

Chromiumsaures Blei, Realgar und Phosphor haben, wie die größten brechenden, so auch die größten farbenzerstreuenden Kräfte. Aussallend ist das große Zerstreuungs-Vermögen des Cassiaöhls, welches selbst das des Phosphors übertrist, über

das aller andern thierischen und Pslanzen-Körper weit hinaus liegt, und auf irgend einen Bestandtheil zu deuten scheint, den die chemische Analyse noch nicht ausgefunden hat.

Bei Vergleichung der brechenden und der zerstreuenden Kräfte der durchsichtigen Körper mit einander, zeigt lich kein Geletz, wonach sie von einander abhängen. In den beiden einfachen verbrennlichen Körpern, Schwefel und Phosphor. und in den Metallsalzen, ist mit einem großen Brechungs - Vermögen eine starke Farben - Zerstreuung verbunden. Die Edelsteine übertreffen zwar an Brechungs-Vermögen das Flintglas, stehn aber im Zerstreuungs-Vermögen mehrentheils selbst dem Wasser nach. Beide Kräfte entsprechen einander so ziemlich in den Harzen, Gummien, Oehlen und Balfamen, und übertrefen in ihnen weit die Kräfte des Wassers; eben so gehn in beiden mehrere gefärbte Gläser dem Flintglase voran. Die Zerstreuungskräfte der Salzfäure, der Salpeterfäure und der salpetrigen Säure find bedeutend größer, die der Schwefelfäure, der Phosphorfaure, der Citronenfaure und der Weinsteinfäure dagegen kleiner als die des Wassers. Unter allen Körpern haben die beiden Flussfäure enthaltenden Minerale, der Flussspath und der Kryolith, das kleinste Zerstreuungs-Vermögen, zugleich auch haben sie unter den festen Körpern das kleinste Brechungs-Vermögen. Topas, der 17 bis 20 Procent Fluisfäure enthält, hat eine fast eben

so kleine Farbenzerstreuung als der Flussspath, dagegen, gleich den andern Edelsteinen, ein großes Brechungs-Vermögen.

Am auffallendsten find indess die Resultate, auf welche die in der folgenden Tafel verzeichneten Beobachtungen über doppelte Strahlenbrechung führen. Meine ersten Versuche darüber stellte ich mit dem isländischen Krystall an; zufällig fanden fich die Farben des am schwächsten gebrochpen Strahlenbündels aufgehoben, und die Beobachtung gab die zerstreuende Kraft 0,026, also bedeutend kleiner als die des Wallers, welche 0,035 ift. Diefes überraschte mich nicht wenig, da in Dr. Wollaston's Tafel die zerstreuenden Kräfte des isländischen Krystalls bedeutend hoch über dem Wasser. und felbst über dem Diamant stehn. Ich wiederholte daher die Bestimmung sowohl mit andern Prismen aus isländischem Krystall, als mit andern Maassprismen aus Flintglas und Kronenglas. Sie bestätigten das vorige Resultat. Da wir indess beide der Meinung gewelen waren, der isländische Krystall habe nur eine zerstreuende Kraft, so eilte ich, die mit der ungewöhnlichen Brechung verbundene zu mellen; lie fand lich größer als die zerstreuende Kraft des Wassers. Offenbar hatte allo Dr. Wollation die Farbenzerstreuung der größsten Brechung gemessen, indes meine Bestimmung lich auf die Farben der kleinsten Brechung bezog. Und fo fand fich denn, dals dieses merkwürdige Mineral, das durch leine doppelte Strahlenbrechung die

Physiker so lange gemartert hat, die nicht minder außerordentliche und unerklärliche Eigenschaft einer doppelten Farbenzerstreuung besitzt.

Versuche, die ich mit andern verdoppelnden Krystallen anstellte, z. B. mit Strontianit, mit kohlenfaurem Blei und mit chromfaurem Blei, zeigten, dass auch in ihnen jeder der getrennten Strahlenbündel eine besondere farbenzerstreuende Kraft belitzt. Dieses allgemeine Gesetz ist zwar mit keiner einzigen optischen Erscheinung in Widerspruch, hängt aber doch fo wenig von allem dem ab, was wir von dem Zulammenhange zwischen den brechenden und den zerstreuenden Kräften wissen, dals man a priori nie würde darauf gekommen leyn. Bis jetzt hat niemand auch nur einmal vermuthet, das bei doppelter Brechung immer auch eine doppelte Farbenzerstreuung Statt finde *). Hatte man blos nach Analogie urtheilen follen, so würde man daraus, dass alle Minerale, in wel-

[&]quot;De Cavallo, der in seinen Ansangsgründen der Physik Zahlbeitimmungen der Zerstreuung einiger wenigen Körper, nach verschiednen Optikern, ausammengestellt har, giebt in der That sür jede der heiden Brechungen im isländischen Krystall eine besondere Messungen ihrer farbenzerstreuung. Dieses sind indels nicht Messungen der beiden Zerstreuungskräfte des Krystalls, sondern nur der Farbenmenge, welche durch jede der beiden Brechungen fervorgebracht wird, und solglich den Brechungen selbst proportional ist. Auf dieselbe Art haben zwei Prismen aus Flintglas mit verschiednen brechenden Winkeln zwei Zerstreuungen, obgleich die zerstreuende Kraft in beiden dieselbe ist.

chen Metall der Hauptbestandtheil ist, ein großes Brechungs-Vermögen und zugleich ein großes Zerstreuungs -Vermögen, die Edelsteine aber ein gro-Ises Brechungs - Vermögen und nur ein kleines Zerstreuungs-Vermögen besitzen, unstreitig haben schließen müssen, dass auch bei den Krystallen von doppelter Brechung die größte brechende Kraft mit der kleinsten zerstreuenden Kraft verbunden sevn werde: dieses ist aber der Erfahrung gerade zuwider. Diese merkwürdige Eigenschaft eines doppelten Zerstreuungs-Vermögens scheint einige der Theorien zu widerlegen, durch die man die doppelte Brechung hat erklären wollen; auf jedem Fall vermehrt sie die Schwierigkeiten, mit denen der Phyliker zu kämpfen hat, bevor es ihm gelingen wird, die anomalen und eigensinnigen Erscheinungen, welche das Licht uns bei seinem Durchgehn durch durchfichtige Körper giebt, auf eine genügende Weise zu verallgemeinern.

[† Die so bezeichneten Körper		Welchem Thle.
finden fich auch in Wolla-		
fton's Tafel der Reihenfolge	Kraft, oder	die Zerstreuung
der zerstreuenden Kräfte, in	Werth von	gleich ist, oder
diesen Annal. B. 31. S. 411.]	dR	Werth von dR
er the root another process	R-1	14
Chromiumfaures Blei,	bun want	11/11
größte Brech. (geschätzt) (geht gewis hin-	0,400	0,770 *)
aus über)	0,296	0,570
kleinste Brechung	0,262	0,388 **)

[&]quot;) Diele Schätzung gründet sich auf folgende Beobachtung: Ein Prisma aus Cassiaöhl mit einem brechenden Winkel

r-s n n t n

1

perduction of the state of	Izerftr. Kraft	Werth von
98 14	dR	dR
34.4	R - 1	
Realgar, geschmolzen	0.267	0,394
eine andre Art, geschmolzen 2		0,374
Calliaohl	0 139	0,080
Schwefel, nach dem Schmelzen +	0,130	0,149
Phosphor	0,128	0,156
Tolutanischer Balsam +	0,103	0,065
Peruanijcher Balfam	0,093	0,058
Kohlenfaures Blei,		
größte Bréchung	100,0	100,0
kleinste Brechung	0,066	0,056
Aloe von Barbados	0,085	0,058
Aniesöhl	0,077	0,044
Ballam aus Styrax	0,067	0,039
Guajac +	0,066	0,041
Italien. Kümmelöhl (oil of cumin)	0,065	0,033
Gummi ammoniacum	0,063	0,037
Berg - Ther - Ochl aus Barbados	0,062	0,032
Gewürznäglein - Oehl	0,062	0,033
Grünes Glas	0,061	0,037
Schwefelfaures Blei	0,060	0,056
Dunkelrothes Glas	0,060	0,044
Saffafrasühl †	0,060	0,033
Opalfarbiges Glas	0,060	0,038
Harz	0,057	0,032
Fenchelöhl	0,055	0,028
Wailrathöhl	0,054	0,026
Orangefarbnes Glas	0,053	0,043
The state of the s		

von 59° 30' hebt nicht völlig auf die Farbenzerstreuung der größten Brechung eines Prisma von chromsaurem Blei mit einem brechenden Winkel von 9° 16', und die uncorrigirte Farbe ist nicht viel geringer, als alle durch die letzte Brechung hervorgebrachte Farbe.

**) Diesem liegt folgende Beobachtung zum Grunde. Ein Prisma aus Cassiaöhl mit brechendem Winkel von 39° 15' hebt die Farbenzerstreuung auf der kleineren Brechung eines Prisma aus chromsaurem Blei mit brechendem Winkel von 9° 16'.

Br.

and the second second	zerftr. Kraft	Werth von
Har Care	d R	dR
V - 1 1 1 1	R - i	1
Steinfalz	0,053	0,029
Kautschuk	0,052	0,028
Pimentöhl	0,052	0,026
Flintglas eine Art +	0,052	0,032
eine zweite *) }	0,048	0,029
eine dritte	0,048	0,028
Dunkel purpurfarbnes Glas	0,051	0,031
Angelikaöhl	0,051	0,025
Thymianöhl	0,050	0,024
Fenugrec - Oehl	0,050	0,024
Buchsbaumähl	0,049	0,023
Flöhkrautöhl (penny royal)	0,049	0,024
Gewöhnliches Kümmelöhl	0,049	0,024
Dillöhl	0,049	. 0,023
Bergamotöhl	0,049	0,023
Terpentin von Chios	0,048	0,029
Weihrauch (Gum Thus)	0,048	0,028
Citronenöhl	0,048	0,028
Wacholderöhl	0,047	0,023
Kamillenöhl	0,046	0,021
Sandarac	0,046	0,025
Strontianit, größte Brechung	0,046	0,032
Ziegelühl	0,046	0,021
Salpeterfäure	0,045	0,019
Lavendelöhl	0,045	0,021
Schwefelbalfam	0,045	0,023
Schildpatt Com	0,045	0,027
Horn	0,045	0,025
Kanadifoher Balfam +	0,045	0,024
Marranöld	0,045	0,022
Olibanum	0,045	0,024

[&]quot;) Die zerstreuende Krast der verschiednen Arten von Flintglas, welche Boscovich untersucht hat, siel zwischen 0,0457 und 0,0525. Dr. Robison sagt, ein von ihm mit grosser Sorgsalt untersuchtes Stück Flintglas habe die zer-freuende Krast 0,038 gehabt, er hat sich aber vermuthlich bei der Berechnung seines Versuchs geiert.

man along the Colonia and America	zerftr. Kraft	Werth von
Ah. The	dR	dR
1-3-1	R-I	
Salpetrige Säure	0,044	0,018
Kajaputöhl	0,044	0,021
Ifopöhl	0,044	0,023
Refenholzöhl	0,044	0,023
Blassroth gefärbtes Glas	0,044	0,025-
Sadebaumöhl	0,044	0,021
Mohnöhl	0,044	0,020
Zirkon, größte Brechung †	0,044	0,045
Salzfäure	0,043	0,016
Kopal +	0,043	0,024
Nufsöhl	0,043	0,022
Burgunder Pech	0,043	0,024
Terpentinöld +	0,042	0;0203
Rosmarinöhl	0,042	0,020
Feldspath	0,042	0,028
Leim Low	0,041	0,022
Kopaiva - Balfam +	0,041	0,021
Bernstein (amber) +	0,041	0,025
Muskatnufsöhl	0,041	0,021
Stilbit	0,041	0,021
Pfeffermünzöhl	0,040	0,019
Rubin Spinell	0,040	0,031
Kalkspath, größere Brechung +	0,040	0,627
Rübsenöhl	0,040	0,019
Bouteillenglas	0,040	0,025
Elemi	0,039	0,021
Schwefelsaures Eisen	0,039	0,019
Diamant + I made house	0,038	0,056
Baumöhl	0,038	810,0
Maftix	0,038	0,022
Eyweifs	0,037	0,013
Rautenöhl	0,037	0,016
Myrrhe	0,037	0,020
Beryll	0,037	0,022
Obsidian	0,037	0,018
Aether	0,037	0,012
Selenit +	0,037	0,020
Alaun +	0,036	0,017

mer desi Wellard dham	zerftr. Krafi	Westh von
R4	dR R-1	d R
Bibergeil - Fett (castor oil)	0,036	0,018
Schwefelfaures Kupfer	0,036	0,019
Kronenglas, fehr grünes +	0,036	0,020 *)
Arabifches Gummi	0,036	0,018
Zucker, nach dem Schmelzen und	ารเปลี่ย	North City
Abkühlen	0,036	0,020
Ein Weichthier (Medusa aequo-		0 mm 3 TVE
rea, der Körper)	0,035	0,013
Waffer	0,035	0,012
Wässerige Feuchtigheit eines Ka-		10000
blian - Auges	0,035	0,012
Gläserne Feuchtigkeit desselben	0,035	0,012
Citronenfäure	0,035	0,019
Rubellit	0,035	0,027
Leucit	0,075	0,018
Epidot	0,035	0,024
Granat	0,033	0,027
Pyrop 1,000	0,033	0,026

*) Die Zersteenungskraft der verschiednen Arten gemeinen Glases (Strass), welche Boscovich untersucht hat, variirten zwischen 0,033 und 0,0346; Dr. Robison hat die Zerstreuungskraft eines zu Leith verserzigten Kronenglases nur 0,027 gefunden.

Br.

des äußeren und des inneren Theils der Kryftaltinfe zu bestimmen, so war dieses doch nicht auszusühren, da es mir nicht möglich war, irgend einen Theil derselben von gleichsormiger brechenden Krast zu sinden. Wegen des allmähligen Zunehmens ihrer brechenden Dichtigkeit nach dem Mittelpunkte zu, sieht man durch einen Theil derselben nie ein Bild mit Deutlichkeit, und bei Versuchen, die ganze Krystallinse, welche ungefähr 0,32 Zoll im Durchmesser hatte, in ein Prisma zu verwandeln, sand sich, dass, wenn sie gleich von zwei parallelen Glasebnen begränzt wurde, sie doch noch eine Brennweite von 0,85 Zoll hatte, daher sie zu diesem Versuch sich nicht eignete.

on

**)

les vigsge-

en

su

68

on

ch

ern,

im

nd

en on

ht

ed w nemmind is sup it in	Principal Control of the	
	dR	dR -
the other wan make potential offer offer	R-I	III TEWA
Chryfolith	0,033	0,023
Kronenglas	0,033	0,018
Ambraöhl (oil of ambergreafe)	0,032	0,012
Weinöhl and and and and	0,032	0,0120
Phosphorfäure, feste in Prismen,	0,032	0,017
Tafelglas +	0,032	0,017
Schwefelfäure +	0,031	0,014
Weinsteinfäure	0,030	0,016
Borax	0,030	0,014
Axinit and del mos an . slore	0,030	0,022
Alkohol + JatoiV land door and	0,029	0,011
Schwerspath +	0,029	0,010
Turmalin	9,028	0,010
Strontianit, kleinste Brechung	0,027	0,015
Bergkryftall + miner bas , Tell	0,026	0,014
Smaragd	0,026	0,015.
Kalkspath, kleinere Brechung	0,026	0,016
Saphir, blauer,	0,026	0,021"
Topas, bläulicher, von Cairngorm	0,025	0,016
von Aberdeenshire	0,024	.0,025
Chryfoberill	0,025	0,019
-Schwefelfaurer Strontian	0,024	0,015
Flufsfpath +	0,022	9,010
Kryolith	0,022	0,007

Ich darf nicht vergessen, dem Baronet Sir George Mackenzie, dem Professor Jameson und Hrn. Thomas Allen meinen Dank öffentlich zu bezeigen, für die Bereitwilligkeit, mit der sie mich für meine Untersuchungen über die brechenden und die zerstreuenden Kräfte mit mehreren Mineralien, die ich mir ohnedem nicht würde haben verschaffen können, versehn haben.

Zum Schluss noch die Bemerkung, dass es noch eine andere Methode giebt, die zerstreuenden

Kräfte durchlichtiger Körper zu bestimmen, welche zwar minder genau, als die von mir gebrauchte ist, doch unter gewissen Umständen Beachtung verdient. Sieht man nämlich durch ein Prisma nach einem horizontalen Ouerholze eines Fensters, so erscheint dieses an dem einen Rande roth und gelb, an dem andern indigoblau und violet, und ist der Winkel, den die Strahlen von beiden Randern mit einander machen, groß, se zeigt sich ein dunkler Raum zwilchen dem Roth und Violet. Entfernt man fich von dem Fenster, so wird in dem Grade, wie der Gelichtswinkel abnimmt, dieser dunkle Raum immer ichmäler, und verschwindet endlich gonz, und in dem Augenblicke, wenn das Roth und Violet fich berühren, zeigt fich der Anfang eines blassrothen (pink) Streifen zwischen ihnen. Sind daher der brechende Winkel und die brechende Kraft des Prisma bekannt, fo kann die Entfernung des Auges von dem Querholze des Fensters, wenn der blasrothe Streif sich zu zeigen beginnt, zum Maasse der zerstreuenden Kraft des Prisma dienen. Hält man es für zweckmälsiger, die Beobachtungen bei gleichbleibender Entfernung des Fensterholzes vom Prisma anzustellen, so lässt fich der brechende Winkel durch Drehen des Prisma vermindern, auf die vorhin beschriebene Weise, bis es den blassrothen Streisen zwischen dem Roth und Violet zu zeigen anfängt, und diefer Winkel in Rechnung bringen.

he lt.

rh

ó

b.

er

it

2.

e

.

left glacin calor and a tree offer, which is the baltit

the first the second se

Farbenlose Opernkuker und Nacht-Ferngläser [niederländische Fernröhre], von einer neuen Einrichtung,

v o n

DAVID BREWSTER, LL. D., Mitgl. d. Edinb. Gef. d. Wiff.

Die Theorie der achromatischen Fernröhre ist gleich nach der Erfindung achromatischer Ohjective durch Dollond, von Euler, Clairaut, d'Alembert und Boscovich fast in jeder Beziehung behandelt und auf das Reine gebracht worden. Insbefondere zeigte d'Alembert. dals es möglich sey, aus einem einfachen Objectivglafe und einem einzigen Ocular ein achromatisches Fernrohr zu bilden, wenn die beiden Glasarten. aus denen lie beliehn, fowohl an Brechungs- als Zerftreuungs - Vermögen -verschieden find Das Ocular muls dann nothwendig hohl, und aus dem Glafe gebildet feyn, welches das größere Zerstreuungs - Vermögen belitzt. Diese Einrichtung wurde indels logleich aufgegeben; denn unter allen damals unterfuchten Körpern wichen Kronenglas und Flintglas in ihrem Zerstreuungs-Vermögen am weitellen von einander ab, und follten fie völlige Farbenlofigkeit bei einer solchen Einrichtung bewirken, so konnte das Fernrohr nicht mehr als 14 Mal, das ist also so gut als gar nicht vergrößern. Ich glaube daher auch nicht, das je ein Künstler versucht hat, sie auszuführen.

ſ

Durch meine Entdeckung der außerordentlichen zerstreuenden Kraft des Cassiaöhls und einiger andern wesentlichen Oehle wird dieser Mangel
sehr vermindert. Zwar lässt sich bei der erwähnten
Einrichtung noch immer nicht die zu astronomischem Gebrauche nöthige Vergrößerung erlangen;
aber sür Opernkuker und kleine Fernröhre ist sie
sehr brauchbar, und giebt ihnen eine bewundernswürdige Präcision. In einem Opernkuker [niederländischem Fernrohr] mit achromatischem Objective bleibt immer noch die Farbenzerstreuung
übrig, welche das Ocular bewirkt; bei jener Einrichtung lässt sich dagegen die Farbenzerstreuung
des Objectivs durch die entgegengesetzte Zerstreuung des Oculars vollkommen ausheben.

Ich nehme eine Objectivlinse, deren beide convexe Flächen nach gleichen Halbmessern geschliffen sind, und setze, dass auch die beiden hohlen Flächen des Oculars gleiche Halbmesser haben. Es sey

der Exponent des Brechungs-Verhältnisses des Objectivs = R, und des Oculars = r;

der Theil der ganzen Brechung, welchem die Farbenzerstreuung gleich ist, im Objectiv = dR, im Oculer = dr;

die Brennweite des Objectivs = F, des Oculars = f; und der Halbmesser der beiden convexen Flächen des Objectivs = A, der beiden hohlen Flächen des Oculars = a;

fo läst sich leicht zeigen, das das hohle Ocular die Farben-Zerstreuung des convexen Objectivs vollkommen ausheben mus, wenn sich verhält

$$A: a = \frac{dr}{(r-t)^2} : \frac{dR}{(R-t)^2}$$
$$= \frac{dr}{dR} \cdot \frac{(R-t)^2}{(r-t)^2} : r$$

r

ı

Wenden wir diese Formel auf verschiedne Verbindungen aus zwei durchsichtigen Körpern an, so werden sich dabei diesenigen ergeben, welche sich am besten für dieses Instrument eignen:

1) Wenn das Objectiv aus Kronenglas, und das Ocular aus Flintglas (I) oder aus Cassiaöhl (II) besteht. In diesen Fällen haben wir, meinen Tafeln der brechenden und der zerstreuenden Kräfte der durchsichtigen Körper zu Folge, für die eben angegebnen Größen folgende Zahlwerthe:

(I)

$$R = 1,544$$
; $r = 1,616$
 $dR = 0,020$; $dr = 0,032$
 df_0
 $A: a = 1,25:1$
(II)

1,641
0,089
3,24:1

Und daraus ergiebt fich, daß die Vergrößerung bei der ersten Verbindung nicht viel über 1 ¼ Mal steigen kann, bei der zweiten aber über das 3fache hinaus geht *).

•) Genauer ergiebt fich die Vergrößerung aus dem Verhältnisse der Brennweiten $F = \frac{A}{2R+2}$ und $f = \frac{a}{2r-3}$. Br.

2) Wenn das Objectiv aus Waffer und das Ocular aus Cassiaöhl besteht, haben wir folgende Werthe:

$$R=1,336$$
; $dR=0,012$ und $A:a=2,05:t$
 $r=1,64t$; $dr=0,089$

Eine folche Verbindung vergrößert also nur 2 Mal.

Ocular aus Cassiaöhl (I), oder aus Flintglas (II), oder aus Aniesöhl (III) besteht. Die vorigen Größen haben dann folgende Werthe:

Also steigt die Vergrößerung mit einem Ocular aus Cassiaöhl über das 5fache, aus Flintglas höchstens auf das afache, und aus Aniesöhl beinahe auf das 3fache.

Da die Verbindung von Bergkrystall mit Cassiaöhl die ansehnlichsten Vergrößerungen, nämlich eine 5 bis 6malige giebt, so habe ich für sie berechnet A) die Länge des niederländischen Fernrohrs oder Opernkukers, B) den Halbmesser beider Flächen des Objectivglases aus Bergkrystall, und C) den Halbmesser beider hohlen Seiten des Oculars aus Cassiaöhl, wie sie zusammen gehören.

- A) 3,98; 4,78; 5,58; 6,38; 7,97; 9,57; 11,16 engl. Zoll
- B) 5; 6; 7; 8; 10; 12; 14
- C) 1,02; 1,22; 1,42; 1,62; 2,03; 2,43; 2,84

Auch Verbindungen zweier einfachen Linsen aus folgenden Körpern geben völlig farbenlose Ferngläser mit Vergrößerungen, welche für Opernkuker hinlänglich sind:

> zu Objectiv - Glafe zum Ocular Kronenglas Bleiglas Caffiaöhl Tafelglas Aniesöhl Waller Ital. Kümmelöhl Alkohol Muskatenblüthen - Oehl Schwefelfäure Saffafrasöhl Ambraöhl Fenchelöhl Bergkrystall Frauenmünzöhl Topas Pimentöhl

Bedarf man ansehnlicherer Vergrößerungen, als mit völliger Aufhebung der Abweichung wegen der Farbenzerstreuung bestehn, so wird durch diese Verbindungen wenigstens der größte Theil der Farben aufgehoben. Und wenn man slüssige Linsen nicht nehmen will, so sollte man doch wenigstens immer das Ocular aus einem Körper bilden, der eine größere zerstreuende Kraft als das Objectiv hat.

Auf Nacht-Ferngläfer, welche viel Licht, aber nur eine geringe Vergrößerung bedürfen, und auf Verbindungen von Linsen zu Mikroskopen, lassen sich dieselben Grundsätze mit Erfolg anwenden.

III.

Befchreibung eines neuen zusammengesetzten Mikroskops für naturhistorischen Gebrauch, welches sich achromatisch machen lässt,

von

DAV. BREWSTER, LL. Dr., Mitgl. d. Edinb. Gef. d. W.

Frei übersetzt von Gilbert.

Das einfache und das zusammengesetzte Mikro-Ikop find in den letzten funfzig Jahren zu einer grolsen Vollkommenheit gebracht worden, und in so fern lie blos zur Ergötzung oder zu allgemeinen Beobachtungen dienen follen, ist an ihnen nichts mehr zu verbestern. Wenn man indels mit dem Mikrofkop auf naturhistorische, anatomische und physiologische Entdeckungen über den Bau der Pflanzen und Infecten und über mikrofkopische Thierchen ausgeht, so kömmt man bald an eine, dem Anschein nach unüberschreitbare Gränze. In der That find die Naturforlcher mit der Organifation der blos mikrofkopischen Welt weniger bekannt, als die Altronomen mit den entfernten Weltfystemen, die sich uns als Nebelslecke und Doppelsterne zeigen. Wir verdanken es allein den Verbesserungen der Teleskope durch Dr. Herschel. dals der Blick der Altronomen bis in diese entfernten Regionen gedrungen ist, bis zu welchen früherhin kaum ihre Phantasie sich hin zu schwingen vermochte. Aehnliche Vervollkommnungen unser Mikroskope dürften uns zu nicht minder interessanten, wenn gleich nicht so erstaunlichen Entdeckungen in den Theilen des Raums führen, die wir täglich mit Füssen treten.

Den Ursachen dieser Gränzen der mikroskopischen Entdeckungen nachzusorschen, ist eben so wichtig als interessant.

Ich besitze einsache Glassinsen von 1, 1, 1, 2 und 2, 2 oll Brennweite, welche von Shuttleworth mit der größten Genauigkeit geschlissen sind. Dr. Wollast on hat diese Linsen neuerlich noch vervollkommnet, indem er sie aus zwei hemisphärischen Segmenten zusammensetzte, welche er durch ein dünnes, in der Mitte durchbohrtes Messingplättchen von einander trennte. Eine wesentliche Verbesserung des einsachen Mikroskops läst sich daher nicht mehr erwarten, es sey denn, man entdecke einen dazu brauchbaren durchsichtigen Körper, in welchem, wie in dem Diamant, ein sehr großes Brechungs-Vermögen mit einem geringen Zersstreuungs-Vermögen verbunden ist.

Auch im Verbinden einfacher Linsen zu einem zusammengesetzten Mikroskope haben die Optiker einen großen Grad von Vollkommenheit erreicht. Die Abweichung wegen der Farbenzerstreuung wird durch eine schickliche Anordnung der einzelnen Linien vollständig aufgehoben, und man hat alle Kunst aufgeboten, dem verschiednen Geschmack der Käufer und jeder Anforderung für allgemeine Beobachtungen zu genügen.

Dagegen scheinen die Optiker es vernachläßigt zu haben, das Mikrofkop so einzurichten, dass es für die besondere Art von Präpariren sich recht schickt, welche wesentlich nöthig ift, um sehr kleine Gegenstände hinlänglich lange zu erhalten und zu betrachten. Aus den Schriften der Naturforscher, die sich mit mikroskopischen Unterfuchungen beschäftigt haben, erhellt hinlänglich, dals das Schwierigste bei diesen Beobachtungen das Erhalten und Präpariren der kleinen Thierchen und andrer Gegenstände ist, die man unterluchen will. Die Thierchen schrumpfen gleich nach dem Tode zusammen und verlieren ihre natürliche Ge-Stalt; so auch die kleinen Theile der Pflanzen, wenn man fie an der Luft stehn läst. Swammerdam und Lyonet erfäuften daher die Infecten. welche sie untersuchen wollten, in Wasser, Terpentinöhl oder verdünntem Weingeilt, wodurch fie den Theilen ihre Weichheit und Durchlichtigkeit während des Anatomirens erhielten; erst wenn die innern Theile ganz blos gelegt waren, ließen tie das Infect trocknen, und brachten es dann unter das Mikrofkop. Aber dabei ziehen fich die Theile zusammen und verheren ihre eigenthümliche Geitalt und das Fleischige und Frische der Farbe, welche fie im Leben hatten.

Es lassen sich in der That fast alle naturhistorische Gegenstände, die aus sehr kleinen und feinen Theilen beltehn, nur durch Liegen in einer Flüsligkeit eine Zeit lang erhalten; häusig müssen sie in ihr präparirt, manchmal von andern durch Maceriren und Abspülen in Wasser getrennt werden, und befinden fich dann erst in einem für das Mikrolkop fich eignenden Zultande. Jede Veranderung, die sie dann noch leiden, bringt ihnen Scheden, und trocknet man sie, so schrumpfen und fallen lie zusammen, und verlieren ihre natürliche Politur und ihren Glanz; ihre feinen Haare und Federchen kleben an einander, und ihre wahre Gestalt und Lage der Theile ist nicht mehr zu erkennen. Es wäre daher für diese Untersuchungen fehr wichtig, wenn man fich in Stand gesetzt sähe, Gegenstände, noch wenn sie nass find, und bevor sie irgend eine dieser Veränderungen erlitten haben, durch das Mikrofkop ungehindert zu betrachten.

3

2

r

-

ı,

S

n

n

١,

n

.

.

5

e

Dieses lässt sich durch folgende Einrichtung des Mikroskops erreichen, bei welcher man den Gegenstand der Luft gar nicht auszusetzen braucht.

Man gebe dem zusammengeletzten Mikroskope eine Objectivlinse, deren vordere in die Flüssigkeit zu tauchende Fläche einen Halbmesser habe, der ungefähr 9 Mal so groß als die Brennweite der Linse sey, und deren Halbmesser der hintern Fläche nur 3 dieser Brennweite betrage. Diese Linse kitte man in ihre Röhre mit einem Kitte ein, der der

Einwirkung des Wassers und des Weingeistes widersteht, und treffe die Einrichtung so, dass dieses Rohr sich in alle Richtungen bewegen lasse, damit man es dahin bringen könne, dass die Axe der Objectivlinse mit den Axen der übrigen Linsen des Mikroskops genau zusammen falle.

Ferner mus man mehrere recht helle und durchfichtige Glasnäpschen, von 1 bis 3 Zoll Tiefe, mit völlig ebnem Boden zur Hand haben, damit der Spiegel durch dasselbe hindurch den Gegenstand hinlänglich erleuchten könne. In eines derfelben gieße man die Flüssigkeit, in welcher man den zu untersuchenden Gegenstand aufgehoben oder präparirt hat, und thue den Gegensiand selbst hinein, auf einem geschliffnen Glase liegend oder befestigt. Man setze dann das Gefäs auf den gewöhnlichen Objectenträger des Mikrofkops, und bringe die Objectivlinse mit der Flüsligkeit in Berührung, so dass die von dem Gegenstand ausgehenden Lichtstrahlen aus derselben unmittelbar in Die Strahlen werden dann die Linse eintreten. zwar von der Linse weniger gebrochen, als wenn sie aus der Lust in die Objectivlinse einträten: doch vermehrt dieses ihre Brennweite nur wenig, weil die Vorderfläche der Linfe äußerst flach ist: und der Gegenstand ist daher leicht in den gehörigen Abstand von der Linse zu bringen. Ist dieses geschehn, so zeigt er sich mit vollkommner Deutlichkeit, ohne dass Bewegungen der Flüssigkeit darauf Einflus haben; man sieht alle Theile auf

das schönste erhalten, die seinsten Muskelsasern, die Haare und die Federn getrennt durch die Flüssigkeit, und die Obersläche so glatt als im Leben, und die natürliche Politur durch die Flüssigkeit noch erhöht. Wasser-Pslanzen und Wasser-Thiere lassen sich auf diese Art mit ungewöhnlicher Deutlichkeit beobachten, und Muscheln und nicht politte Mineralien erscheinen mit einem Glanze, den kein Steinschleiser ihnen zu verschaffen vermag. Ist der Gegenstand specifisch leichter als die Flüssigkeit, und läst er sich auf dem Glase nicht wohl besettigen, so decke man über ihn einen dünnen Glasschieber, oder ein Netz aus seinem Silberdrath, und halte ihn damit in der Flüssigkeit zurück.

1

t

Folgende Formeln geben die Vergrößerung eines folchen Mikrofkops.

Es fey die Brennweite der Objectivlinse = f, und des Collectivglases = F;

der Abstand der Objectivlinse von dem Gegenstande =d, von dem Collectivglase =D, und
von dem Vereinigungspunkte der Strahlen =x;

die Vergrößerung des Ocularglases = m, und des Mikroskops = M;

So haben wir, den Ueberlegungen zu Folge, welche wir in einem der vorstehenden Aussatze angestellt haben *),

$$x = \frac{df}{d-f} - D$$
; $M = \frac{F}{x+F} \cdot \frac{f}{d-f} \cdot m$

[&]quot;) Ueber die zum Schen unter Wasser bestimmten Feruröhre, im vorigen Stück der Annalen S. 65 f; und zwar insbefondre S. 72. 6116.

Hat die biconvexe Objectivlinse gleiche Halbmesser, und ist sie mit der Vordersläche in Wasser getaucht, so ist

$$x = \frac{1,37 \cdot fd}{d-1,37 \cdot f}$$
; $M = \frac{F}{x+F} \cdot \frac{1,37 \cdot f}{d-1,37 \cdot f} \cdot m$ *)

Ist dagegen die Objectivlinse ungleich convex, und a ihr Halbmesser der vordern in Wosser getauchten, b der Halbmesser ihrer hintern Fläche, so haben wir

$$f = \frac{5 a b}{2.65 a + b}$$
 **)

und wenn man diesen Werth von f in die erstern Gleichungen setzt, so findet sich die Vergrößerung.

Die einfache Objectivlinse eines solchen Mikroskops läst sich sehr leicht, ohne dass man ihr
eine andre Linse hinzuzusügen braucht, achromatisch machen. Das Bild des Gegenstandes kömmt
an der Stelle zu Stande, wo es stehn würde, wenn
sich der Gegenstand in der Lust befände, und man
ihn durch eine Linse betrachtete, welche aus einer
plan-concaven, aus der Flüssigkeit bestehenden
Linse und der Objectivlinse zusammengesetzt wäre.
Nimmt man daher eine Flüssigkeit, deren farbenzerstreuende Kraft größer ist, als die des Kronglases, und giebt der Vorderstäche einen dem
Unterschiede der beiden zerstreuenden Kräfte entsprechenden Halbmesser, so erscheint das Bild frei

^{*)} In beiden Formeln mus der Zahl-Coefficient 1,47 statt 1,37 seyn, vergl. S. 72. Gib.

von allen Hauptfarben des Sonnenspectrum. Die Flüssigkeiten, welche sich hierzu am besten eignen, sind:

Caffiaöhl, Aniesöhl, italien Kümmelöhl, Gewürznelkenöhl, Saffafrasöhl, Fenchelöhl, Frauenmünzöhl, Pimentöhl.

Diese Oehle stehn hier in der Folge ihres Zerstreuungs - Vermögens, und wenn die vordersten gebraucht werden, so muss der Halbmesser der Vorderfläche der Objectivlinse größer seyn, als wenn man die hintersten nimmt. So z. B. miiffen die beiden Halbmeffer diefer Linfe fich verhalten wie 2,5::, wenn man Cassiaöhl nimmt: ware sie dann aber noch nicht farbenlos, so nehme man ihre Halbmesser in dem Verhältnisse von 2.2:1 und vermindre das Zerstreuungs-Vermögen des Cassiaöhls durch Zulatz von Baumöhl oder einem andern minder zerstreuenden Oehle allmählig, bis die Farben völlig aufgehoben find. Braucht man Fenchelöhl, so mus sich der Halbmesser der Vordersläche zu dem der Hintersläche wie 0.8:1 verhalten.

IV.

Befchreibung eines neuen Sonnen-Mikrofkops, welches sich achromatisch machen läst,

von

DAV. BREWSTER, LL. D., Mitgl. d. Ed. Gef. d. W. Frei überfetzt von Gilbert.

Das Princip, worauf die eben beschriebene Verbesserung des zusammengeletzten Mikroskops beruht, lässt sich mit besonderem Vortheil auf das Sonnen-Mikroskop anwenden, sowohl bei durchsichtigen als bei undurchsichtigen Gegenständen. Man sieht die Einrichtung in Fig. 5 Tas. II abgebildet.

AB ist das Erleuchtungsglas, welches die parallelen Sonnenstrahlen auf den Gegenstand zusammenbricht. Die Objectivlinse CD ist wasserdicht in der
Röhre mCDn eingekittet, welche an der Seite mit
einem offnen Tubulus E, und der Objectivlinse
gegenüber mit einer eingekitteten ebnen Glasplatte
mn versehn ist. Die Röhre wird mit Wasser oder
irgend einer andern Flüssigkeit gefüllt, und der Gegenstand auf einem Schieber liegend, oder von einer Pincette gehalten, in die Flüssigkeit hineingebracht. Es ist leicht, den Schieber und die Pincette beweglich zu machen, und so den Gegenstand
in die gehörige Entsernung von der Objectivlinse

zu bringen; es läßt fich dieses aber auch durch Verschiebung des Schirms bewirken, auf welchem das Bild aufgesangen wird. Die Glasplatte mn kann man weglassen, wenn man den ganzen Raum zwischen den beiden Glassinsen AB, CD mit der Flüssigkeit anfüllen will; doch würde in diesem Fall das Licht die Farbe der Flüssigkeit annehmen, und dieses, wenn sie nicht ganz farbenlos ist, der Deutlichkeit des Bildes nachtheilig seyn.

Es fällt in die Augen, dass man von durchsichtigen Gegenständen auf diese Art weit vollkommnere Bilder, als auf die gewöhnliche Art erhalten muß. Denn es sindet hierbei nicht die Undurchsichtigkeit Statt, welche durch das Einschrumpsen einzelner Theile entsteht, und die Flüsligkeit erhöht die Durchsichtigkeit des Gegenstandes, wie das auf keine andere Weise zu bewerkstelligen ist. Gegenstände, welche in dem gewöhnlichen Sonnen-Mikroskope undurchsichtig zu seyn scheinen, zeigen sich hier sehr durchscheinend, und es treten hier alle Vortheile ein, welche vorhin von den Beobachtungen von Gegenständen, die in einer Flüssigkeit liegen, gerühmt worden sind.

Folgt man in der Wahl der Flüssigkeit, und in der Bestimmung des Halbmessers der vordern Seite der Objectivlinse der vorhin gegebenen Anweisung, so läst sich auch dieses Sonnen-Mikroskop völlig achromatisch machen.

V.

Beschreibung eines neuen aus einer Flüssigkeit gebildeten Mikroskops,

von

DAV. BREWSTER, LL. D., Mitgl. d. Edinb. Gef. d. W.
Frei überfetzt von Gilbert.

Die erste Idee eines aus einer Flüssigkeit bestehenden Mikrofkops rührt her von Stephan Gray? er hat es in den Philosophical Transactions No. 221 und 223 beschrieben *). Es bestand aus weiter nichts, als einem Wassertropfen, der mit einer Nadelspitze genommen, und in ein Löchelchen von Zoll Durchmesser gebracht wurde, das sich in einem Plättchen in der Mitte zweier einander gegenüberstehenden sphärischen Vertiefungen befand. Die eine hatte 18, die andre 16 Zoll Durchmesser: jene hatte etwas über die Hälfte der Dicke der Platte zur Tiefe, diese war so tief, dass der Rand des Löchelchens eine Schneide wurde. In solchen Höhlungen bildet das Wasser eine doppelt convexe Linfe mit ungleichen Halbmessern, welche sich zum Unterluchen kleiner Gegenstände eben so, wie jedes andere einfache Mikrofkop, brauchen lätst.

[&]quot;, Smith's Opties Vol. 2. p. 394.

Da indes Wasser ein großes Zerstreuungs-Vermögen und nur ein geringes Brechungs-Vermögen besitzt, so lassen sich vollkommen slüßige Mikroskope mit Schwefelsäure*), Biebergeil-Fett**), Ambraöhl ***) und Alkohol machen. Die Schwefelläure hat eine sehr geringe Farbenzerstreuung und eine größere brechende Krast als das Wasser, und giebt daher eine vollkommnere Linse, als irgend eine andre Flüßigkeit. Biebergeil-Fett lätst lich fast mit demselben Vortheil brauchen; nicht minder Ambraöhl und Alkohol, wiewohl ihre Flüchtigkeit sie zu diesem Gebrauche weniger geschickt macht.

Die beste Methode von allen, ein süssiges Mikroskop zu bilden, ist indes, das man einen Tropfen Kanadischen Balsam, oder Koparva-Balsam, oder von reinem Terpentin-Firniss auf ein dünnes ebnes Glas bringt. Ein solcher Tropfen bildet auf demselben eine planconvexe Linse, deren Brennweite sich durch die Menge der Flüssigkeit, welche man nimmt, reguliren läst. Fig. 8 auf Tas. Il stellt einige solche Tröptchen vor, wie sie an dem Parallelglase hängen; doch ist die horizontale Lage des Glases die eigentlich schickliche. Int die slüssige Linse über dem Glase, so plattet sie

it

V.

n-

Y ?

0.

er

a-

n

in

e-

d.

r;

er

be

en

m

e-

^{*)} Es möchte doch wohl gefährlich feyn, das Auge fehr nahe an ein Tröpfehen concentrirter Schwefelläure au brungen.

Gilb.

[&]quot;, Caftor oil.

[&]quot;) Oil of ambergreafe.

sich ab durch die Wirkung der Schwere, und ihre Brennweite vermindert sich. Kehrt man dagegen das Glas um, so wird die daran herabhängende stüssige Linse convexer und ihre Brennweite kürzer. Verwahrt man diese Linsen gegen Staub, so sind sie eben so dauerhaft als die aus Glas gemachten; und nimmt man dicken Kanadischen Balsam, so erhärtet die Linse bald zu einem harten wie Gummi aussehenden Körper, und verändert ihre Gestalt bei Veränderung der Lage nicht weiter.

Ich habe mehrmals folche flüssige Linsen als Objectivlinsen eines zusammengesetzten Mikroskops gebraucht, ja ich habe selbst ein gutes zusammengesetztes Mikroskop versertigt, in welchem die Objectivlinse und das Ocular aus einer Flüssigkeit bestanden.

Bei der jetzigen Vollkommenheit der optischen Werkzeuge sind diese Mikroskope ohne wesentlichen Nutzen. Es kommen aber Gelegenheiten vor, dass man eine mikroskopische Beobachtung zu machen wünscht, und keine Glassinse bei der Hand hat. Für diese Fälle verdient ein slüssiges Mikroskop, das man sich sogleich machen kann, Empsehlung.

n le

Γ-

o

3-

n

r-

r-

e

ls

-

-

[_

n

n

g

i

1

VI.

Ein adjustirendes Mikroskop, wodurch sich Gegenstände in zwei verschiedenen Entsernungen zugleich betrachten lassen,

VOR

DAV. BREWSTER, LL. D., Mitgl. d. Ed. Gef. d. W. Frei überfetzt von Gilbert.

Bei vielen Beobachtungen wird erfordert, das sich das Auge für zwei verschiedne Entsernungen adjustire. Misst man z. B. den Durchmesser kleiner Gegenstände mittelst des Raums, den sie auf einer entsernter liegenden Ebene einzunehmen scheinen, so muss man den Gegenstand und diese Ebene zugleich scharf sehn, wenn die Messung genau werden soll. So auch beim Beobachten des Quecktilberstandes in dem obern und dem untern Schenkel eines Heber-Barometers, u. s. f.

Steht der entferntere der beiden Puncte, die man zugleich sehn will, um mehr als 7 oder 8 Zoll vom Auge ab, (welches die kleinste Gränze deutlichen Sehens ist *),) so kann man ein adjuttirendes Mikroskop bilden, indem man eine biconvexe Glasliuse in ihrem Mittelpuncte durchbohrt, wie in Fig. 7 Taf. II, oder, was manchmal noch passender seyn möchte, wenn man auf beide Seiten der

Für einen Nicht Kurzfichtigen.

Linse zwei kleine kreisrunde Glasstückchen m. n aufkittet, wie in Fig. 8, mittelst Kanadischen Balsams oder einer ähnlichen Flüsligkeit, welche beinahe diefelbe brechende Kraft als das Glas hat. Dadurch wird der centrale Theil der Linse in ein Planglas verwandelt, und wirkt eben so als das Loch in Fig. 7. Die Lichtstrahlen, welche von dem entferntern Puncte durch dieses Loch, oder durch den ebnen centralen Theil in Fig. 8 hindurchgehn, werden dann auf der Netzhaut zu einem scharfen Bilde vereinigt, indess die Strahlen, welche von dem nähern Gegenstande zu divergent in das Auge kommen würden, von dem übrigen Theil der Linse weniger divergent gemacht, und dann vor dem Auge gleichfalls auf der Netzhaut vereinigt werden. Und nun lätst fich das Zulammenfallen beider Bilder, oder der Raum, den eins auf dem andern einnimmt, Scharf Sehen.

Sind beide Gegenstände von dem Auge nicht um 7 bis 8 Zoll entfernt, so gebe man dem adjustirenden Mikroskope eine Einrichtung wie in Fig. 9, und kitte auf der biconvexen Linse eine Scheibe aus ebnem Glase auf, mittelt eines runden Tröpfchens Kanadischen Balsams oder einer andern klebrigen Flüssigkeit, welche ein solches Brechungs-Vermögen hat, dass sie die Focallänge der Linse so vermehre, dass sie zu der vorigen in eben dem Verhältniss stehe, als die größere zu der kleinern der beiden Entfernungen, für welche das adjustirende Mikroskop bestimmt ist. Man sieht dann durch den

mittelsten Theil der Linse den entsernteren, und durch den äuseren Theil den nähern Punct gleich deutlich. Dasselbe lässt sich durch die Einrichtung in Fig. 10 bewirken, wo der Kitt einen Ring am Umfang der Linse bildet.

1-

i-

it.

in

as

m

ch

n,

en

on

ge

le

ge

nd

er,

it,

ht

ti-

9,

be

of-

e-

S-

fo

r-

er de

Will man drei Puncte, die verschieden entfernt find, zu gleicher Zeit gleich deutlich sehn, so muss man eine Einrichtung wie in Fig. 11 treffen, auf der Mitte der Vorderfläche der Linfe mit Kanadischem Balfam eine kleine Glasscheibe, und auf der entgegengesetzten Seite einen kleinen Glasring aufkitten, so dass er diese Scheibe unmittelbar zu umgeben scheine. So wird die Linse in drei Zonen getheilt, welche drei verschiedene Brennweiten haben, die fich nach jedem beliebigen Verhältnisse abändern lassen, indem man andre Halbmesser für die Oberflächen der Linfe, oder ein Cement von anderm Brechungs - Vermögen nimmt. Um den Licht-Verlust zu vermeiden, der aus der Undurchfichtigkeit des Randes der Plangläser entspringen könnte, lasse man sie beide bis an den Rand der Linfe reichen.

In allen hier erwähnten Einrichtungen müssen die Oessenungen sorgfältig nach der Größe der Pupille abgemessen, und daher für Beobachtungen, die bei hellerem Lichte angestellt werden, kleiner seyn, als bei solchen, wo man es mit matterem Lichte zu thun hat.

VII.

Beobachtungen

über die dusgezeichneten Wirkungen von Magnefia und von Säuren gegen das Entstehn von Nieren- und von Blasen-Steinen.

W O 1

W. Th. BRANDE, Esq., Mitgl. d. Lond. Soc. u. Prof. d. Chem. an d. Roy. Inft.

auszugsweise und frei bearbeitet, mit Zusätzen, von Gilbert.

Herr Brande hat über diesen Gegenstand, der für die Heilkunde von Wichtigkeit ist, zwei Abhandlungen in der königl. Gesellschaft der Wissenschaften zu London vorgelesen, die erste am 22. Februar 1810, die zweite am 3. Juni 1813. Beide sind in den Schriften dieser gelehrten Gesellschaft für die angeführten Jahre äbgedruckt, und enthalten eine Sammlung genau und einsach erzählter Thatsachen, aus welchen hervorzugehn scheint, das in Menschen, deren Urin kleine Nierensteine mit sich führt, oder einen Bodensatz von röthlichem oder weißem Sande absetzt, diese Bildung von Nierensteinen oder Gries sich auf chemischem Wege hemmen läst, ohne dass der mit Blasensteinen Bedrohte davon irgend einen andern Nachtheil für seine Gesundheit zu besürchten hat, wenn man die rechten

Mittel erwählt. Da dieses einer der wenigen Fälle ist. wo chemische Reagentien im lebenden Körper auf eine ziemlich ähnliche Art, als in unsern Gefässen zu wirken scheinen, und wo der Kranke sehr leicht in den Stand gesetzt werden kann, unter Aufsicht und Rath eines erfahrnen Arztes fich selbst zu beobachten, die Sache alfo den Phyliker und alle, welche in Steinbeschwerden zu rathen oder sie zu besürchten haben. interessirt, so habe ich geglaubt, meine Leser durch die folgende freie Bearbeitung der beiden Auffätze des Hrn. Brande und durch die von mir eingeschalteten Ich habe dabei zugleich die Zusätze zu verbinden. fehr zweckmäßigen Auszüge des Hrn. Guyton-Morveau in den Annales de Chimie vor Augen, und die Bemerkungen, mit denen er sie bereichert hat. Dass ich den Verfasser und nicht den Referenten sprechen lasse, wird, wie ich nicht zweisle, Hr. Brande billigen.

Gilbert.

Erste Abhandlung,

geschrieben im Jahr 1810.

Herr Home hatte in seinen Untersuchungen über die Verrichtungen des Magens, bei denen er auf die Entdeckung gekommen war, das Flüssigkeiten aus dem Magenmunde in den Blutumlauf übergehn*), darauf ausmerksam gemacht, dass es nicht unmöglich sey, den mehresten Steinbeschwerden dadurch

M a

^{*)} In den Philosoph. Transactions Y. 1808.

zuvorzukommen, dass man irgend einen Körper in den Magen hineinbringe, der fich vermöge leiper chemischen Natur dem Bilden der Harnstofffaure *) entgegensetze, und das eine solche Curart große Vorzüge vor jeder andern haben mülle, vermöge der man die Harnstoffläure, nachdem lie fich Ichon gebildet und als Nieren- oder Blatenstein abgesetzt habe, wieder auflösen wolle. Er glaubte, dass fich zu jenem Zweck die Magnelia vorzüglich eigne, weil sie im Wasser unauslöslich ist, und daher so lange in dem Magen bleiben müsse, bis lich irgend eine Säure mit ihr verbinde, oder fie mit den Nahrungsmitteln durch den Pförtner abgeführt werde. Herr Hatchett, den er hierüber zu Rathe zog, stimmte dieser Anficht bei, und auch die Erfahrung schien sich für sie zu erklären. da fich bei forgfältiger Unterfuchung des Urins fand, dass in einigen Fällen zu starker Bildung von

Auch Blasensteinsäure (acide urique oder lithique), und abkürzungsweise Harnsäure genannt welcher abgekürzte Name doch leicht auf eine unrichtige Vorstellung führen kann. Der Urin ist nämlich eine Auslöfung von zehn und mehr verschiednen Salzen und einem ihm eigenen Körper thierischer Natur, dem Harnstoff (urée), in zwanzig Mal so viel Wasser und mehr. Farbe und Geruch, wenn er absliefat, rühren von diesem Harnstoff her, der sich einzeln daraus darstellen und krystalisliren sälst, und man hält die röthliche seste welche gewöhnlich die Blasensteine bildet, für eine aus diesem Harnstoff entstehende Säure. Diese Harnstoff oder Blasenstein-Säure ist im Wasser nur sehr wenig auslöslich, und scheint in dem Urine durch die freie Säure des Urins (welche Phosphorsäure ist, schwebend erhalten zu werden.

Harnstoffläure der Gebrauch von Magnelia sie weit mehr verminderte, als in demselben Patienten durch Alkalien geschehn war, die in sehr großen Dosen genommen wurden *).

Dieser Umstand machte eine genauere Untersuchung wünschenswerth, und veranlaste Herrn
Home mich aufzusordern, mich mit ihm zur Prüsung dieser Curart zu vereinigen. Der Erfolg unserer Bemühungen scheint uns wichtig genug zu
seyn, um ihn der königl. Gesellschaft der Wissenschaften mitzutheilen, und wir wählen zu dem Ende
aus einer größeren Zahl von Fällen vier aus, welche als Beispiele der hauptsächlichsten Verschiedenheiten dienen können, die in den durch Nierenund Blasen-Steinen bewirkten Krankheiten vorzukommen pslegen.

Er/ter Fall. Ein 60jähriger Mann, der sich an einen reichlichen Gebrauch saurer Getränke gewöhnt hatte, sah mit seinem Urine wiederholt kleine Steinchen abgehn, die ganz aus Harnstoffsaure bestanden, und aus seinem Urin setzte sich jederzeit, gleich nachdem er abgegangen war, eine bedeutende Menge Harnstoffsaure in Gestalt eines rothen Pulvers und manchmal in größeren Krystallen ab. Man gab ihm täglich in 3 Portionen,

[&]quot;) Unter Alkalien vorsteht Hr. Brande in diesem Aussatze immer die beiden seuerbeständigen, und zwar in dem Zustande basischer kohlensaurer Salze, wie sich dieser in dem gemeinen kohlensauren Kali und dem gemeinen kohlensauren Natron sindet; daher ich mich auch dieser Namen mehrmals bedient habe.

Gilbert.

9 Drachmen *) gemeines kohlenfaures Natron ein, das in Wasser, welches stark mit Kohlensäure geschwängert worden, aufgelöst war; dieses Mittel äußerte aber keine Wirkung auf die Bildung der Harnstoffläure, indem der rothe Sand sich aus dem Urin wie gewöhnlich absetzte und kleine Steine nach wie vor mit abgingen. Darauf wurden dem Kranken jedes Mal 3 Drachmen gemeines kohlenfaures Kali eingegeben, die ebenfalls in kohlensaurem Wasser aufgelöst und täglich drei Mal genommen wurden. Es verminderte sich nun das Absetzen von Harnstoffsäure ein wenig, aber noch nach einem Jahre, während welchem der Patient den Gebrauch der Alkalien nur mit kurzen Unterbrechungen fortgesetzt hatte, gingen kleine Steinchen mit dem Urin ab.

Diese ausserordentliche Anlage zur Bildung von Harnstofffäure, und der wenige Ersolg, den die Alkalien gegen sie äusserten, gaben uns eine erwünschte Gelegenheit, uns über die Heilkraft der Magnesia im Vergleich mit der der Alkalien zu belehren. Nachdem wir die Menge von Harnstofffäure genau bestimmt hatten, welche der Urin enthielt, verordneten wir dem Kranken 15 Gran Magnesia drei Mal täglich, in 11 Unzen eines Aufgusses von Enzian zu nehmen **). Nach einer

^{&#}x27;) Die englische Drachme ist nur um ein Unbedeutendes schwerer, als die Drachme des deutschen Medicinal-Gewichts.

G116.

^{**)} Unstreitig meint Hr. Brande hier, wie im ganzen Auffatze, kohtenfaure Magnesia, welche man gewöhnlich

Woche fand lich die Menge der Harnkoffläure vermindert, und nach drei Wochen zeigte lie lich nur noch dann und wann in dem Urine. Der Gebrauch der Magnetia wurde 3 Monate lang fortgeletzt, und es verschwanden nicht nur alle Steinchen und aller Bodensatz aus dem Urine des Patienten, sondern auch das Sodbrennen und das Drücken in der Gegend des Magens, an welchem er gelitten hatte.

Zweiter Fall. Ein 40jähriger Mann, von dem feit 4 Jahren eine große Menge Harnstoffsaure in Gestalt eines rothen Sandes, ein Mal auch als ein Steinchen, mit dem Urine abgegangen war, und der, so oft er etwas genoß, das seinem Magen nicht zusagt, seinen Urin trübe werden sah, hatte bis dahin weder Alkalien noch sonst etwas gegen den Stein gebraucht. Er entschloß sich, täglich 14 Drachmen gewöhnliches kohlensaures Natron einzuhnehmen, in 14 Pinten Wasser, das stark mit Kohlensaure geschwängert war, ausgelöst *). Nachdem er dieses Mittel einige Zeit lang gebraucht hatte, gingen der Steinchen weit weniger ab; da er es aber den solgenden Monat über aussetzte, bekam

su verschreiben pslegt, weil er sich sonst des Ausdrucks gebrannte Magnessa bedient haben würde. Hr. Guyton-Mozweau macht darauf ausmerklam, dass die in Frankreich von den Salpeter-Fabrikanten in den Handel gebrachte Magnessa mit Kalksalzer vermischt ist, welche beim innerlichen Gebrauch Magenschmerzen verursachen, und dadurch mehrmals Veranlassung geworden sind, das Kranke den Gebrauch der Magnessa ausgeben musten. Gilb.

^{*)} Die Pinte hält 23.85 fransöl. Kubiksoll, und beträgt urrgefähr 2 Berliner Quarts G116.

er wieder einige Anfälle. Man setzte nun jeder Dosis des Natronwassers 20 Gran einer Auslösung reinen Kalis zu, erhielt aber die gehoffte Wirkung nicht. Denn drei Tage nachher, als er etwas mehr Wein wie gewöhnlich getrunken hatte, fühlte er Schmerzen in den Nieren, und in dem Urin erschien eine Menge Harnstofffäure in Gestalt kleiner rother Krystalle. Nun wurde ihm Magnesia verordnet, 20 Gran Abends und Morgens, in ein wenig Walfer. Am dritten Tage empfand er eine außerordentliche Ermattung, die aber ohne Folgen blieb, Er setzte die Cur 6 Wochen fort; lein Urin zeigte während dieser Zeit kein Uebermaals an Harnstofffaure, und er hat seitdem nicht wieder Schmerzen empfunden, obgleich er in seiner gewohnten Art zu leben nichts veränderte.

Dritter Fall. Ein 43jähriger Mann wurde nach heftigem Reiten von starken Schmerzen in den Nieren und dem Harngange der rechten Seite befallen, und in der folgenden Nacht ging mit seinem Urin ein kleiner Stein von Harnstoffsaure ab. Der Gebrauch von Natron-Wasser schien ihm ansangs gut zu thun, aber allmählig erschien die Harnstoffsaure wieder, und nach einem Monate fortgesetzten Gebrauchs ging mehr Gries ab und war sein Urin stärker mit Schleim (Mucus) beladen, als vorher. Er fing am 3ten Januar 1809 an, alle Abend 20 Gran Magnesia zu nehmen. Schon nach dem dritten Male war die Menge des rothen Grieses vermindert, doch nach drei Wochen noch nicht ganz ver-

schleim, und dieses Symptom verlor sich bald. Den solgenden Monat ließ ich ihn Abends und Morgens 20 Gran Magnesia nehmen, und am isten März war sein Urin, als ich ihn untersuchte, ganz wie in dem gesunden Zustande. Am 1. Juni ging noch ein Mahl ein wenig krystallisiter rother Gries ab, nach geringen Schmerzen in dem rechten Harngange; er nahm darauf 3 Wochen lang dieselbe Menge Magnesia Morgens und Abends, und seitdem hat sich bis in die Mitte des Novembers kein Symptom der Krankheit bei ihm weiter gezeigt.

Vierter Fall. Ein 56jähriger Mann fand, nachdem er von einem heftigen Anfall der Gicht wieder genelen war, seinen Urin sehr trübe, was er sonst nie bemerkt hatte. Der Urin fährte viel Schleim mit fich, mitunter auch röthlichen Sand, der größtentheils aus Harnstoffsaure bestand, doch immer ohne Steine war. Er litt an einer großen Schwäche des Magens, an häufigem Sodbrennen und an einem betäubenden Schmerz in der Gegend der rechten Niere, und brauchte unausgesetzt Chinawein und andre geistige Getränke, weil er meinte, die Gicht sey ihm in den Magen getreten. Es waren ihm schon Alkalien verordnet worden, sie hatten ihm aber so widrige Empfindungen in dem Magen gemacht, dass man ihn nicht dahin bringen konnte, fie noch einmal zu versuchen. Er entschlos sich aber die geiftigen Mittel aufzugeben, und täglich

drei Mal 20 Gran Magnesia in Wasser zn nehmen, doch wirkte auch diese so hestig auf seine Eingeweide, daß er sie täglich nur zwei Mal nehmen konnte, und man jeder Dolis 5 Tropfen Laudanum anfetzen mulste. Nachdem er diele Kur 3 Wochen. und nach einer Unterbrechung nochmals 3 Wochen gebraucht hatte, fand er sich bedeutend erleichtert, fowohl was den Magen, als was die Schmerzen in den Nieren betraf, und der Urin bewies, dals die Anlage, Harnsteinsaure zu bilden, bedeutend vermindert war, obgleich von Zeit zu Zeit noch ein beträchtlicher Bodensatz von Harnsteinsaure und noch mehr von Schleim erfolgte. Es verdient bemerkt zu werden, dass der Kranke seit dem letzten Anfall der Gicht, in länger als einem Jahre nicht die geringlie Spur von Gicht bemerkt hat, obgleich das der längste Zeitraum ist, den er während der letzten 6 Jahre je ohne Gicht geblieben war *). Er

[&]quot;) Hr. Guyton - Morveau macht hierbei darauf aufmerkfam. dass nach Tennant's Entdeckung, welche von Fourcrov und Vauquelin bestätigt worden, Harnstoffläure ein Bestandtheil der gichtischen Erhärtungen ist, welche bei der Gicht fich in den Gelenken abletzen sollen, (Fourcroy kounte in sehn Jahren nur swei folcher Steine auffinden, fie waren harnstofffaures Natron,) und dass daher diese Beobachtung des Hrn. Brande des Ausbleibens der Gicht, bei der gegen Harnsteine gerichteten Kur, von Wichtigkeit für den praktischen Arzt zu seyn scheine. -Die rosenfarbne Saure des Harns in der Gicht ift, nach den Untersuchungen des Hrn. Vogel in Paris, von der Harnstofffaure nur wenig verschieden, und scheint nur eine durch Krankheitsurfachen etwas veränderte Harnstoffläure gu leyn. Gilbert.

braucht jetzt die Magnesia nur noch dann, wenn er unangenehme Emplindungen in dem Magen verspürt, und nimmt sie in diesem Fall 8 oder 10 Tage lang.

Ich glaube aus diesen Beobachtungen schließen zu dürsen, dass bei krankhafter Anlage, Harnstofffaure in Uebermaals zu bilden, die Magnesia innerlich gebraucht, in mehreren Rücksichten anders als die beiden seuerbeständigen Alkalien wirkt. Folgende Versuche, die ich an gesunden Menschen unter einerlei Umständen angestellt habe, geben hiertüber mehr Belehrung.

Kohlenfaures Natron. Ich gab einem Gefunden 2 Drachmen gemeines kohlenfaures Natron in 3 Unzen Wasser aufgelöst, nüchtern, um q Uhr Morgens ein, und liefs ihm eine große Taffe warmen Thee nachtrinken. Nach 6 Minuten gab er i Unze. nach 20 Minuten 6 Unzen, und nach 2 Stunden abermals 6 Unzen Urin von fich. Die erste Portion trübte fich erst innerhalb 10 Minuten, und Setzte dann phosphorsaure Salze in Menge ab *): sie machte geröthetes Lackmuspapier allmählig wieder blau. Die Menge des Natron reichte also nicht hin, die freie Säure in dem Urin ganz zu fättigen, und dadurch die phosphorfauren Salze niederzuschlagen, war aber doch in Uebermaals vorhanden, und der Urin, als er abging, alkalisch. Auch der nach 20 Minuten abgelassene Urin zeigte eine Wolke

^{*)} Sie charakteriliren sich unter andern durch ihre weiße Farbe.

phosphorsaurer Salze; der nach 2 Stunden erhaltene Urln wurde aber nicht weiter getrübt. Die größte Wirkung des Natron auf den Urin fand allo wahrscheinlich Statt schon in weniger Zeit als 25 Minuten, nachdem es in den Magen gekommen war, und die ganze Wirkung war nach 2 Stunden vorbei.

Ich löfte dielelbe Menge kohlenfaures Natron in's Unzen Waller auf, das ftark mit kohlenfaurem Gas gelichwängert war, verfuhr damit wie vorhin, und fing nach denselben Zwischenzeiten Urin auf. Die Abscheidung der phosphorfauren Salze ging jetzt langlamer vor fich, und minder merklich; denn erst nach 2 Stunden fand sich ein kleiner Bodenfatz phosphorfauren Kalkes ein, und bedeckte fich die Obersläche mit einer Haut aus kleinen Krystallen des Doppelfalzes, welches aus Phosphorfaure, Ammoniak und Magnelia belteht. Die Kohlenfäure hielt dieles Salz bis dahin aufgelöft, entwich dann aber. Ein solches Häutchen setzt sich nicht felten von felbst auf dem Urine völlig Gefunder ab. dieles geschieht aber viel gleichförmiger und merklicher, wenn man ein Alkali in stark mit Kohlenfäure geschwängertem Wasser eingenommen hat: es scheint daher, dass die Kohlensaure aus dem Magen mit durch die Nieren abgeht.

Kohlenfaures Kali. Dieselben Versuche wurden mit kohlensaurem Kali wiederholt, und gaben ganz ähnliche Resultate.

Magnefia. Eine Dolis von & Drachme Magnelia eben lo eingenommen als das Natron zuerlt. brachte den ganzen Tag über in dem Urin keine fichtbare Veränderung hervor. Als i Drachme um Q Uhr Morgens eingenommen worden war, trübte fich der um 12 Uhr abfließende Urin ein wenig. und erst um 3 Uhr zeigte sich die größte Wirkung; indem fich nun die phosphorfauren Salze deutlich absetzten, das vorhin erwähnte Doppelsalz rein als ein Häutchen, und mit phosphorfaurem Kalk very mengt als ein weißes Pulver. Es ist fehr bekannt, dals, wenn man große Dolen Magnelia einnimmt; im Urin lich ein weißer Bodenlatz findet; fehr mit Unrecht hat man ihn aber für Magnelia gehalten. welche durch die Nieren abgehe. Dals die Magnefia in Steinbeschwerden heilsamer als die Alkahen wirke, scheint auf dieser langsameren Einwirkung derselben auf den Urin zu beruhn, und darauf, dats fie die phosphorfauren Salze aus ihm nicht in solcher Menge niederschlägt.

Kalkwaffer. Zwei Unzen Kalkwaffer blieben ohne alle Wirkung. Eine Pinte Kalkwaffer, welche in 4 gleichen Portionen von Stunde zu Stunde genommen wurde, hatte nach 3 Stunden noch gar keine Wirkung, und erst am Ende der 5ten Stunde einen leichten Niederschlag phosphorsaurer Salze hervorgebracht, der aber doch viel geringer als von einer kleinen Menge Natron war, der Unaulöslichkeit der Salze ungeachtet, welche der Kalk mit den Sauren des Urins bildet. Der unangenehme Ge-

schmack des Kalkwassers, die große Menge, welche man davon trinken muß, da das Wasser nur so höchst wenig Kalk ausgelöst enthält, und die Unzuverlässigkeit in den Wirkungen desselben, haben gemacht, dass man den Gebrauch auf die seltenen Fälle eingeschränkt hat, wo es dem Magen besonders zuzusagen scheint. — Kohlensaurer Kalk wirkt noch weit weniger auf den Urin, und bewirkt pur in großen Dosen einen leichten Niederschlag phosphorsaurer Salze.

1

t

ł

1

1

Alle diese Versuche sind an drei verschiedenen Menschen angestellt worden, und haben in ihnen dieselben Resultate gegeben. Nimmt man die Mittel einige Stunden nach dem Essen, so ersolgen ihre Wirkungen blos etwas langsamer *). Wir haben mehrere andre Körper auf ähnliche Weise untersucht, ihre Wirkungen waren aber nach Umständen so verschieden, dass sich kein genügendes Resultat ziehn liess.

Kohlenfäure. Da kohlenfaures Wasser die Wirkung des kohlensauren Natron verändert hatte, so sollte uns solgender Versuch über die Wirkung der Kohlensaure auf den Urin im gesunden Zustande belehren. Wir ließen einen gesunden Mann, nüchtern um 9 Uhr Morgens, 12 Unzen Wasser trinken, das stark mit Kohlensaure geschwängert war. Nach i Stunde gingen 8 Unzen Urin ab, die im natürlichen Zustande zu seyn schie-

[&]quot;) Vergl. den folgenden Zusatz.

-

n

n

-

k

t

g

n

n

e

n

.

*

men, beim Vergleichen mit dem gewöhnlichen Urine zeigten sie aber einen Uebersluss an Kollensaure, die sich bei gelindem Erhitzen, oder unter dem Recipienten der Lustpumpe als Gas in Menge entband. Und damit stimmt folgende Erfahrung sehr gut überein. Ein Patient, dem man einen großen Stein aus der Blase herausgeholt hatte, welcher ganz aus phosphorsauren Salzen bestand, und dessen Magen keine stänkere Säure als kohlensaures Wasser vertragen konnte, besand sich bei dem Genuss desselben sehr wohl; sein Magen war gut, und sein Urin ließ keine phosphorsauren Salze mehr fallen; setzte er aber den Gebrauch dieses Mittels eine Zeit lang aus, so erschienen sie wieder als ein weiser Sand *).

Z U S A T Z

-Schleim lead die similage

Herr Guyton - Morveau hat seinen Auszug aus diesem Aussatze des Hrn. Brande mit einigen Bemerkungen begleitet, in denen er unter andern darauf aufmerksam macht, dass kohlensaures Kali, und so alle kohlensaure Alkalien, auf die Harnstoffsaure keine chemische Einwirkung äußern, sondern sie unverändert und unausgelöst lassen, indes die Harnstoffsaure vir Imehr, wenn sie in reinen ätzenden Alkalien ausgelöst worden, durch die Kohlensaure aus diesen

^{*)} Diesen Fingerzeig verfolgte Herr Brande bei seinen weiteren Versuchen, und er kömmt darauf in dem zweiten Theile seiner zweiten Abhandlung zurück. Gilb.

niedergeschlagen werden *). Von dieser Unwirksamkeit, fagt Hr. Guyton, habe er fich noch vor Kurzem bei Untersuchung des röthlichen Griefes überzeugt, der von einer am Nieren- oder Stein-Koliken leidenden 55jährigen Frau am Ende einer folchen Kolik abgegangen, und ihm von dem Dr. Guyton aus Autun zugeschickt worden sey. Er digerirte diesen rothen Sand mit einer starken Auslösung kohlenfauren Kalis erst in der Kälte, dann in einer Wärme, die allmählig bis 45° C. erhöht wurde, der Sand verlor aber nur seine Farbe und höchstens 3 Procent an Gewicht. Und doch bestand er fast aus reiner Harnstofflaure; denn in einer Platinschale über glühende Kohlen gesetzt, verkohlte er sich anfangs und verbrannte dann, wobei nur einige kleine glänzend weiße Körnchen zurückblieben, auf welche Schwefelfaure auch beim Erhitzen nicht wirkte. [Harnstofffaure und Schleim find die einzigen Körper thierischer Natur. (alfo verbrennlich,) welche in den Blasensteinen vorkommen.] Herr Guyton Morveau Schliesst hieraus. das aus Harnstofffaure bestehende Steinchen, wenn sie schon gebildet in der Harnblase sind, von kohlenfauren Alkalien nicht angegriffen werden können **).

o) In gewöhnlichem, d. h. basischem kohlensauren Kali wollen indes Einige Biasensteine aus Harnstoffsaure nach längerer Einwirkung ganz haben zergehn sehn. G.

[&]quot;) Vielleicht aber von ätzenden Alkalien; wenigstens sindet sich in dem Januarhest 1814 der Annales de Chimie ein Brief des Herrn Guyton über Möglichkeit, die Auflöfung der Blasensteine in der Harnblase zu bewirken, in welchem er nachweist, dass Fourcroy zwar, als er seine große Arbeit über die Blasensteine ausing, der Meinung war, dass es nicht thunlich sey, die Steine in der Blase aufzulösen, ("er behauptote diese einst sehr behauptote diese einst sehr annal, de Chimie, indess

Da es nun aber doch durch viele Erfahrungen bewährt sey, dass kohlensaure Alkalien, welche in den Magen gebracht werden, machen, dass die Absonderung der Harnstofsläure und die sie begleitenden Zu-

fein Mitarbeiter Vauquelin schon damale andrer Meinung war,") dass er aber fehrbald zu der entgegengefetzten Meinung übergetreten sey. (,, Wir waren nicht wenig verwundert, als Hr. Fourcroy 7 oder 8 Monate darauf in dem Institute eine Abhandlung vorlas, welche die Resultate einer großen Menge von Verluchen, die er und Vauquelia augestellt hatten, enthielt, und aus denen er den Schluss zog, dass, wenn man sich nur Mühe gebe, die verschiedenen Arten der Blatensteine zu unterscheiden, es leicht Sey, ihre Auflösung in der Blase zu bewirken.") In dem letsten Werke Fourcroy's, feinem Systeme des conn. chim., finden fich in B. 5, nach Anführung der Schwierigkeit, welche es haben durfte, die Auflösungsmittel unmittelbar in die Blase zu bringen, folgende Aeusserungen. S. 542: "Wir wollen indels zeigen, dals lie keine unüberfleiglichen Hindernisse find, das Auflosen der Blasensteine in der Harnblase eines Menschen zu bewirken." S. 546: "In Dijon und in Paris angeRellte Verluche haben bewiesen, dass nach einem mehrtägigen inneren Gebrauch eines Alkalis der Urin alkalisch wird. - Ich kann diesem Mittel mein Zutrauen nicht verlagen, ley es, dals es die Nierensteine auflosen und den Gries heilen, oder die Vergrößerung der Blasensteine aus Harnstoffläure verhindern foll." Hr. Guyton fügt noch hinzu, in einer Sitzung der Gesellschaft der Herausgeber der Annales de Chinie am 19. Octor. 1807 habe Parmentier Gries vorgewinsen, der mit dem Urine eines seiner Freunde unter vielen Schmerzen abgegangen war, und Fourcroy habe ihm in derselben Sitzung Folgendes mit seiner Namensunterschrift zugeltellt : ., Ich habe bei diesen Griesbeschwerden den Gobrauch reinen Alkalis von glücklichem Erfolg gesehn. Man verschreibt einige Tropfen recht ätzendet Natronladge, in einem Schoppen fehr schwachen Decocts von Leinfaamen des Morgens zu trinken, und damit fährt man mehrere Monate fort, indem man allmäblig mehr Alkali nimmt, fälle aufhören; so erhalte bierdurch die Meinung des Hrn. Brande viel Wahrscheinlichkeit, dass diese Krankheit dorch Mittel bekämpst werden müsse, welche sich der Bildung der Harnstofssäure, noch ehe sie in die Nieren übergegangen ist, entgegen setzen. Und diese Kurart sei bei weitem die vorzüglichste.

Ueber die Wirkungsart der kohlensauren Alkalien und der kohlensauren Magnesia gegen diese Art von Steinbeschwerden scheinen die Erfahrungen einigen Aufschluss zu geben, welche der berühmte Mascagni, Professor der Anatomie zu Florenz, an sich selbst angestellt hat. Er war der Erste, der kohlenfaure Alkalien bei Steinbeschwerden, (an denen er felbst litt,) innerlich gebraucht hat, in Mengen, bemerkt er, (Memoria della Soc. Italiana t. 11. 1804), wie sie wohl noch nie verschrieben worden sind. Nach Lendenschmerzen sah er mehrmals einen ziegelrothen Gries mit seinem Urine abgehn, trank nicht ohne Erleichterung Seltzerwaffer, welches kohlenfaures Natron in fich enthält, und verschaffte fich im Jahre 1798 einen Vorrath kryftallisirtes, völlig mit Kohlenfaure gefättigtes Kali. Im August und September 1700 hatte er viel gesessen; es befielen ihn fürchterliche Nierenschmerzen, und es ging eine beträchtliche Menge röthlichen krystallisirten Grieses mit seinem Urine ab, darunter Stückchen von folcher Größe,

bis der Gries ganz verschwindet. Während des Gebrauchs prüst man von Zeit zu Zeit den Urin des Kranken; dieser röthet ansangs blaue Pstanzensässe; zuletzt grünt er sie, und diese Veränderung ist ein Beweis der Wirkung des Mittels." Der Kranke brauchte dieses Mittel 3 Monate lang, slieg bis zu to Tropsen ätzendes Natron täglich, und besand sich danach sehr wohl.

Annual C. Pt. 461 1 40. 5: 2. 5 10 11 11 11 11 11

daß sie für wahre Harnsteine gelten konnten *). Der Urin war ein wenig trübe, aber doch durchsichtig. und röthete Lackmuspapier lebhaft; ein saurer Geschmack im Munde bewies ebenfalls, dass in seinem Magen viel Säure war. So oft er urinirte, setzte fich am Boden des Gefässes solcher rother Gries ab. woran sich glänzende Flächen erkennen ließen, und dieser, wohl gewaschen und auf Löschpapier getrocknet, rethete gleichfalls Lackmuspapier, wenn er befeuchtet darauf gelegt wurde, löste sich auch im Wasser etwas auf, und verhielt sich auf jede andre Weise wie Harnstofffaure. Mascagni nahm daher getrost kohlenfaures Kali ein, Morgens und Abends, & Drachme jedes Mal in 5 Unzen Wasser ausgelöst, wodurch das Wasser nur wenig Geschmack annahm, und keine Empfindung weder in dem Magen noch in den Eingeweiden hervorbrachte. Sobald die Auflöfung in dem Magen war, veranlasste sie ein reichliches Entbinden von kohlensaurem Gas, das sich erst durch Aufstossen im Munde und dann durch entweichende Winde verrieth: ein Zeichen, dass das Kali sich mit einer andern Säure verband, welche die Kohlenfäure austrieb. Den andern Tag erhöhte er die Menge auf 2, den dritten auf 3 Drachmen, welche in 20 Unzen Wasser aufgelöst wurden, und mit dieser Menge fuhr er die andern Tage über fort, so dass er in 10 Tagen über 3 Unzen gefättigtes kohlenfaures Kali einnahm. Gleich zu Anfang dieser Kur wurde das Lackmuspapier von dem Urine schwächer, und schon am dritten Tage gar nicht mehr geröthet; ein Beweis, dass nun die Säure gefättigt war; auch verminderten sich an diesem Tage

N a

^{&#}x27;) In mehreren Fällen haben fich nach dem Abgehn eines folchen Griefes Blasensteine su bitden angesangen,

die Schmerzen, und es erschien kein Gries mehr mit Zuletzt wurde der Urin alkalisch und bräunte das Curcumapapier; und nun hörte Herr Mascagni mit dem Gebrauch des kohlenfauren Kali auf. Als nach einigen Monaten sich wieder Gries in dem Urine einfand, brauchte er dasselbe Mittel mit dem nämlichen Erfolg, und so seitdem immer wieder, so oft fich das Uebel einstellte. Als er dieses im J. 1804 Schrieb, waren zwei Jahre verflossen, ohne dass sich Gries abgesetzt hatte, obgleich er kein koblensaures Kali brauchte. Er glaubt aus diesen Ersahrungen schließen zu dürfen, daß das Kali in die Harnwege übergehe, die Harnstofffaure faitige; und mit ihr ein auflöslicheres Salz bilde, wodurch die Erzeugung des rothen Grieses vermieden werde. berhaupt, meint er hatten die Alkalien eine machtige Wirkung auf alle thierische Concretionen, und man könne von ihnen in vielen Fällen den heilfamsten Erfolg eihalten. Diese Erklärung scheint aber nicht mit seinen Erfahrungen übereinzustimmen, nach denen die Säure, welche die Kohlensäure aus den Alkalien austrieb, in dem Magen vorhanden war, und fich dort schon mit ihnen vereinigte.

Noch verdient hier ein Gedanke des Dr. Wollaston zu stehn. Er sand in dem Vögelmiste bei
zerlegenden Versuchen viel Harnstoffsäure, und zwar
in den Excrementen der sleischfressenden Vögel die
mehrste; darauf gründet er die Vermuthung, dass
man der krankhaften Anlage des Körpers, Steine aus
Harnstoffsäure oder gichtische Erhärtungen abzusetzen,
durch eine vegetabilische Diät werde entgegen wirken können. — Hr. Prof. Berzelius führt einen
Fall an, wo in der Gicht der Urin alkalisch und
durch phosphorsaure erdige Salze getrübt war, und

weder durch den Gebrauch von Schwefelfaure, noch von Phosphorfaure, noch von Citronenfaure ihm diefer alkalische Zustand dauernd benommen wurde.

Ueber den Einfluss der Nahrungsmittel auf das Entstehn von Blasensteinen finden sich einige interesfante Bemerkungen und Versuche in einer Abhandlung des Dr. Schultens, Arzt zu Amsterdam, Von den Ursachen der Verminderung der Steinkrankheit in den vereinigten Niederlanden, Leiden 1802, welche in B. 3 des Gehlen'schen Neuen Journ. d. Chemie im Auszuge übersetzt ist. Die Steinkrankheit war ehemals, besonders im Anfange des vorigen Jahrhunderts, in den Niederlanden sehr häufig *) und in mehreren Provinzen, vorzäglich in Seeland, endemisch; jetzt kömmt sie nur selten vor. Da der Einfluss der Diät auf diese Krankheit groß und bekannt ist, und zu jener Zeit dort viel Bier getrunken wurde, welches jetzt nicht mehr der Fall ist, so haben Viele die Urfache davon im häufigen Genus des Biers und andrer fauerlicher Nahrungsmittel gesucht. Camper glaubte dagegen, der wahre Grund liege in dem ehemals weit häufigern und allgemein verbreiteten Genuss von Fleischspeisen, welcher nicht wie jetzt auf

[&]quot;) Zwei berühmte Aerzte, Ravius und Cyprianus, die im ersten Viertel dieses Jahrhunderts zu Amsterdam lebten, hatten, ersterer über 2000, letzterer 1400 Menschen am Steine operirt. Dr. Schultens hat in holländischen anatomischen Kabinetten 286 auseinander gesägte, und daher ihrer Natur nach mit Sicherheit zu bestimmende Blasensteine untersucht; von diesen bestanden: aus Harnstoffsaure 138; aus harnstoffsaurem Ammoniak 14; aus phosphorsauren Salzen allein 30, mit Harnstoffsaure 53, mit harnstoffsaurem Ammoniak 11; und aus sauerkleesaurem Kalke allein 18, mit Harnstoffsaure 8 und mit phosphorsauren Salzen 14.

die Wohlhabenderen eingeschränkt war, und der sich dem Steinkranken nachtheilig zeigt. Nach Vauquelin's Untersuchungen ist der Urin fleischfrossender Thiere, wie des Löwen, des Tigers, der Hunde, der Katzen sauer, der der kräuterfressenden Thiere dagegen alkalisch. Versuche, welche Dr. Schultens an fich und andern angestellt hat, scheinen zu beweisen, daß gutes Bier keinen Antheil an der Erzeugung von Blasensteinen habe, sie eher verhindere; auch sind Steinbeschwerden häufiger in den Provinzen Englands, in welchen Cyder das gewöhnliche Getränk ist, als wo man Bier trinkt. Bei denen, die an Wein gewöhnt find, scheint ein reichlicher Genuss desselben den Urin reicher an Harnstoffsaure zu machen *). Sehr wahr bemerkt indess der Dr. Schultens, die Urfache, warum man jetzt in den Niederlanden, ungeachtet des Weintrinkens, weniger als die Vorfahren am Stein leide, liege darin, dass man jetzt mehr harntreibende Getränke zu fich nehme **), denen man es zu danken habe, dass der Harn, auch wenn in ihm ein Uebermaass von Harnstofffäure und Mucus entstanden ist, aus dem Körper fortgeschafft wird, ehe diese fich mit einander zu steinartigen Erhärtnngen verbinden können. - Thierische Kost führt, nach Dr. Schultens Versuchen, zur Anlage zu der Steinkrankheit. Bei 3 Tage lang fortgesetzter thierischer Kost enthielt der Urin fast noch ein Mal so viel Harnstofffaure als bei der gewöhnlichen gemischten Koft, und der Harnabgang war viel sparsamer. Steine

^{*)} Camper fand, dass, wenn er täglich rothen Wein trank, fein Urin rothen Saud und kleine rothe Krystalle absetzte; als er sich an weisen Wein gewöhnte, erschien kein Gries mehr.

^{**)} In Holland besonders der dunne Kaffee.

sollen überdiess nur bei den fleischfressenden Thieren anzutreffen, und der Oekonomie der pflanzenfressenden ganz fremde feyn. Die armere Klasse der Einwohner lebt jetzt fast ganz von Pflanzenspeisen, und gerade sie war es, welche ehemals den Steinkrankheiten besonders unterworfen war. (Bei gleicher Anzahl fanden fich, nach der Behauptung der Aerzte, als alles noch großentheils von Fleisch lebte, noch ein Mal so viel Steinkranke unter den Armen als den Reichen; auch war der Stein viel häufiger bei Knaben als bei Erwachsenen über 30 Jahren.) Hr. Dr. Schultens tritt daher der Meinung Camper's bei, daß die Verminderung der Steinkrankheit in den vereinigten Niederlanden hauptsächlich der veränderten Lebensart, (der Verwandlung der Fleisch- in Pslanzen-Kost bei dem gemeinen Mann,) zuzuschreiben sey, und dem häufigeren fast allgemeinen Genusse verdünnender wäsferiger und auch geistiger Getränke, deren harntreibende Eigenschaft hinlänglich bekannt ist. Seitdem der Gebrauch dieser Getränke, seit etwa 1760, so allgemein geworden, ist die Verminderung der Steinkrankheit besonders auffallend *). Speisen und Getränke find jedoch, nach Dr. Schultens, keineswegs die einzigen Urfachen, welche Einfluß auf die Erzeugung der Blasensteine haben. Eine Menge andrer Reize wirken auf den Körper, und sie alle können. wenn auch nur mittelbar, mehr oder weniger Antheil an ihr haben.

^{*)} Blos an Bewohnern von Amsterdam find glückliche Stein-Operationen verrichtet worden im ersten Viertel des vorigen Jahrhunderts 220, im zweiten 159, im dritten 64, im vierten 39.

Zweite Abhandlung,

geschrieben im Jahre 1813.

Ich habe meine Verfuche in Uebereinstimmung mit Hrn. Home fortgesetzt, und sehe mith durch neue Beobachtungen im Stande, die vorigen nicht blos zu bestätigen, sondern auch zu erweitern.

1) Bestätigung der Wirksamkeit der Magnesia.

Erster Fall. Ein Rechtsgelehrter gab von seiner Krankheit und den Mitteln, die er gebraucht hatte, folgende Nachricht: In seinem 26sten Jahre empfand er 6 Monate lang Schmerzen in den Nieren, besonders wenn er zu Bette lag, die immer stärker wurden, und von denen er keine Ursache wuste. Die Anfälle dauerten 12 bis 24 Stunden lang und matteten ihn sehr ab. Der Arzt, den er bei dem vierten Anfall zu Rathe zog, glaubte, seine Krankheit könne von dem Cyder herrühren, der sein gewöhnliches Getränk ausmachte, und verordnete ihm Bouillons, denen etwas zersloßnes Kali zugesetzt war. Er brauchte dieses Mittel eine Zeit lang, es schwächte aber seinen Magen so, das seine Verdauung litt.

Neun Monate nach dem ersten Ansall fühlte er, dass etwas aus den Nieren in die Blase überging. Er trank eine Pinte Wasser mit Wacholderbranntweib, und versuchte mehrmals zu uriniren; dabei überzeugte er sich, dass ein fremder Körper ungefähr 1 Zoll vom Ende der Harnröhre sest gehalten werde. Es gelang ihm, am andern Tage mit Hülfe einer kleinen Uhrmacher-Zange einen Stein herauszuziehn, dessen Obersläche rauh und von dunkler Ziegelfarbe war, und es ging dann mit dem Urin eine Menge rothen krystallinischen Grieses ab. Man verschrieb ihm ein Alkali, um die Wiederkehr der Krankheit zu verhindern, aber das Absetzen von rothem Sande aus dem Urin, und die Nieren-Schmerzen dauerten fort. Seine sitzende Lebensart verschlimmerte diesen Zustand, und kaum konnte er 2 oder 3 Stunden lang schlasen.

Um fich einige Erleichterung zu verschaffen. nahm er Abends beim zu Bette Gehn 1 oder 2 Theelöffel voll Magnesia, ohne doch von der Kraft dieses Mittels gegen die Bildung von Harnsteinen etwas zu ahnen, und die Ferien benutzte er, fich Bewegung zu verschaffen und kalt zu baden. Sein Magen verbesserte sich dadurch so, dass er alle Arzneimittel aufgab, und nur dann etwas Magnelia nahm, wenn er von einem Essen oder einem Getränk Beschwerde empfand. Die Nierenschmerzen und das Absetzen rothen Sandes in dem Urin hörten ganz auf, und er erhielt fich auf diese Art in vollkommner Gesundheit bis zu dem Zeitpunct, als er dieses in einem Alter von 57 Jahren schrieb. Nur manchmal hatte er Magenichmerzen, wenn er sich von einem Gerichte verführen ließ, und dieles schrieb er den Alkalien zu, die er gebraucht hatte.

Diefer Fall ist sehr wichtig, da er die Kraft der Magnesia gegen die Anlage zu Steinbeschwerden unwiderleglich darthut, und zugleich den Beweis giebt, daß sie selbst dann wirksam ist, wenn die Alkalien fruchtlos gebraucht worden sind und die Werkzeuge der Verdauung angegriffen haben. Die lange Zeit, welche seit der Kur ohne Rückfall hingegangen ist, empsiehlt dieses Heilmittel noch ganz besonders.

B

r

fi

k

i

ľ

Zweiter Fall, Ein am Sodbrennen und schlechter Verdauung leidender Kranke, 20 Jahr alt, empfand am 1. Juni 1811 heftige Schmerzen in den Nieren, besonders an der rechten Seite, und sah in der Nacht mit seinem Urin eine große Menge rothen Sandes abgehn. Da die Schmerzen immer stärker wurden, nahm er am zweiten Tage 20 Tropfen Laudanum und trank viel Gerstenwasser. Die nächste Nacht hatte er einige Ruhe, aber am Morgen nahmen die Schmerzen wieder zu, und es zeigten fich die Symptome, welche das Eintreten eines Steins in die Harngänge zu begleiten pflegen. Diefer Zustand dauerte mit stärkern und schwächern Schmerzen bis an den Abend des vierten Tages; dann hatte er einige Ruhe bis am Morgen des sechsten Tages, und nun ging mit vieler Mühe und unter großem Leiden ein o Gran schwerer Stein von ihm ab, der aus Harnstofffäure bestand. Die folgenden Tage fetzte fein Urin rothen Sand in Menge ab und drei sehr kleine runde Steine. Man unterfagte ihm alle fauren und gegohrnen Getränke, und ließ ihn täglich 3 Drachmen gewöhnliches kohlensaures Natron in 1 Pinte Wasser nehmen. Bei anhaltendem Gebrauch dieses Mittels hürten alle Zufälle bis gegen Ende des August auf; nun aber setzte sein Urin wieder eine große Menge rothen Sandes ab, die Schmerzen in den Nieren stellten sich wieder ein, und er empfand einen beständigen Ekel. Man stieg mit der Natron-Auflösung allmählig auf 1½ bis 2 Pinten den Tag über, und ließ ihn in den Zwischenzeiten Gerstenwasser trinken, aber noch am zehnten Tage hatte er keine Linderung.

Man rieth ihm nun Magnesia zu versuchen. Morgens und Abends nahm er einen Theelöffel voll in einem Aufgus von Kamillen (Kamillenthee). Nach 8 Tagen sing sein Magen an sichtlich besser zu werden, des Bodensatzes im Urine wurde weniger, und nach 3 Wochen waren alle Symptome der Krankheit verschwunden.

Im Februar 1812 meldete man mir, dass der Urin des Kranken wieder einen Bodensatz zeige, ungeachtet er die Magnesia ununterbrochen fort gebraucht habe, dass er sich bei Vermehrung der Dosis der Magnesia nicht besier besinde, und dass Alkalien seine Schmerzen selbst vermehrten, den Magen ermüdeten und den Bodensatz im Urin verstärkten. Als ich diesen Bodensatz untersuchte, fand sich, dass er nicht roth, sondern weiss war, und nicht aus Harnstoffsäure, sondern aus einer Mengung phosphorsaurer Ammoniak-Magnesia und phosphorsauren Kalks bestand. Ich untersagte daher sogleich die Magnesia und die Alkalien, und

verordnete die Kurart, welche den Gegenstand des folgenden Abschnitts ausmacht.

Diefer Fall giebt uns wiederum ein merkwürdiges Beispiel von einer starken Neigung, sandige Harnstoffsäure und Blasensteine zu bilden, die dem Gebrauch der Alkalien und der Magnesia wich, und von dem großen Vorzuge des letzteren Heilmittels vor dem erstern. Zugleich belehrt sie uns, dass beide, wenn der rothe Sand (Harnstoffsäure) nicht mehr in dem Urin erscheint, dahin wirken, einen Bodensatz von weißem Sande (phosphorsauren Salzen) hervorzubringen,

2) Wirksamkeit der Säuren gegen Bildung der weißen Biasensteine.

Die folgenden Fälle find von mir unter einer noch größern Anzahl von Beobachtungen, als die vorigen, ausgewählt worden. Sie belehren uns über die zweckmäßigste Art, der Bildung des weißen Sandes in dem Urine entgegen zu wirken, und über die sicherste Behandlung von Kranken, in deren Urin sich diese Art von Bodensatz von selbst, oder durch die nachtheiligen Wirkungen eingenommener Alkalien einsindet,

Dieser weise Sand, der nicht selten bei Steinbeschwerden mit dem Urine abgeht, ist von dem Dr. Wollaston chemisch zerlegt worden, und er hat gesunden, dass er entweder blos aus phosphorsaurer Ammoniak-Magnesia oder aus einer Mengung dieses Doppelsalzes mit phosphorsaurem Kalke besteht. (Philosoph. Transact. for 1797.) Schon vor 15 Jahren sind gegen ihn Säuren von geschickten Chemikern empsohlen worden, mir ist aber nicht ein einziger Versuch bekannt, der mit ihnen gemacht worden wäre. Ich habe seit der Bekanntmachung meiner ersten Abhandlung keine Gelegenheit versäumt, darüber Beobachtungen zu sammeln; und die solgenden Fälle scheinen mir hinzureichen, den praktischen Arzt über diese Kurart zu belehren.

Erster Fall. Ein Sojähriger Mann hatte sich zehn Jahre zuvor dem Steinschnitt unterworfen; der Stein war während der Operation zerbrochen worden, und scheint die Größe eines Taubeneys gehabt zu haben; die Rinde bestand aus einer Mengung phosphorfaurer Salze, der Kern in der Größe einer Erbfe aus Harnstofffaure. Am 15ten Januar 1810 empfand diefer Mann heftige Nierenschmerzen an der rechten Seite und in den Harngängen. welche zwei Tage anhielten, und sich damit endigten, dass einige Steine in die Blase fielen; und diefes ging mehrere Tage lang fort. Er trank während dieser Zeit viel Gerstenwasser und andre Flüsfigkeiten, konnte es aber nicht dahin bringen, daß die Steine mit aus der Blase hinausgeschwemmt wurden, welches ihn äußerst beunruhigte, wenn er an seine vorigen Leiden dachte. Am Abend des austen verhel er in einen fehr schmerzhaften Paroxismus, als er Urin lassen wollte, und entichloss fich unter diesen Umständen eine Medicin zu nehmen, die aus 2 Unzen Aufguls auf Senesblätter. 2 Drachmen Tinctur von Senesblättern und 20 Gran Jalapp-Pulver bestand, von der, wie ich mich erinnerte, Hr. Home in seinen chirurgischen Vorlesungen erzählt hatte, dass er durch sie einen Knaben von einem Stückchen Röhre (Bougie) besreit habe, das in der Harnröhre sitzen geblieben war. Dieses Arzneimittel wirkte nach 3 Stunden sehr heftig, und der Kranke hatte das Glück, mit seinem Urin einen Stein hervorkommen zu sehn, der 8 Gran wog.

Es fielten fich am 28. Januar aufs Neue Nierenschmerzen ein, und es ging eine Menge Sandes mit dem Urine ab, der aus einem Gemenge von Harnstofffäure und von phosphorfaurer Ammoniak-Magnelia bestand. Er nahm nun täglich drei Mal Pinte mit kohlenfaurem Natron verfetztes Waffer. und diefes vermehrte sichtlich die Menge des weifsen und Verminderte die des gelben Sandes. Darauf nahm er täglich drei Mal Wasser, dem 10 Tropfen Salzfaure augesetzt waren; der rothe Sand erschien wieder, und am 4. Februar ging ein fehr kleiner Stein ab, der aus Harnstofffaure bestand. Der Urin, den er des Nachmittags liefs, war voll Schleim mit Streifen von Blut, vorzüglich stark wenn er etwas mehr Wein getrunken hatte, und als er vom 6ten bis 12ten während einer Abwefenheit von London alle Medicin aussetzte, fand fich viel weißer Sand diefe Zeit über in feinem Urine.

Da mich meine vorigen Beobachtungen belehrt. hatten, das die Kohlenfäure dem Absetzen der

phosphorfauren Salze in dem Urin entgegen wirkt, und dass sie das Wiedererscheinen des Sandes und der Steine aus Harnstoffläure weniger als andere Säuren befördert, so verordnete ich dem Patienten Wasser, das stark mit Kohlenfäure geschwängert war, wovon er täglich 4 oder 5 Mal, jedes Mal I Pinte, trinken mulste, und rieth ihm, zu feinem Tischgetränk statt des Weines Cyder zu nehmen. Schon am 18. Februar war fein Urin minder trübe als in den vergangenen Monaten, und bei fortgesetztem Gebrauch der Kohlensäure waren am 20. März die vorigen Symptome ganz verschwunden. Im August trübte sich zwar sein Urin wieder, aber der Gebrauch von Essig und Citronenlast bei Tische schützte ihn vor der Wiederkehr der Zufälle. indem bekanntlich diese Säuren den rothen Sand nicht hervorbringen. Ich habe mehrmals verfucht in dem Urine Spuren diefer Säuren zu entdecken, doch bei der sehr zusammengesetzten Natur des Urins bis jetzt ohne genügenden Erfolg.

Zweiter Fall. Einem 11jährigen Knaben wurde am 11. Octbr. 1812 der Stein geschnitten, und man zog aus der Blase 4 Steine, von denen der größte die Größe einer Bohne hatte, und die alle aus einem Kern von Harnstoffsaure und einer Rinde von phosphorsaurer Ammoniak - Magnesia bestanden. Nach der Operation setzte der Urin eine große Menge weißen Bodensatzes ab, und zugleich einige Stücken rothen Grandes. Ich ließ den Knaben drei Mal des Tags 8 Gran Citronensaure in Ger-

stenwasser nehmen; dieses verminderte den Bodenfatz bedeutend, machte ihn aber nicht ganz verschwinden. Die Dosis wurde allmählig bis 20 Gran vermehrt, und nun erschien der Bodensatz nur zufällig und bestand fast nur aus Schleim. Man bemerkte, das, so oft er die Citronensaure aussetzte, wenn auch nur auf 24 Stunden, der Bodensatz stärker war, er häufiger uriniren mulste, und andre Zeichen eines Reizes in der Blase sich äußerten; sobald er aber wieder Citronensaure nahm, verschwanden der Bodenfatz und der Reiz in der Harnblafe: und dieles hat fich lo häufig ereignet, dass an der Wirkung der Citronensaure auf die Zusammensetzung des Urins kein Zweifel bleibt. Nachdem der Kranke drei Jahre lang bei diesem Mittel geblieben war, setzte sein Urin kein phosphorlaures Salz mehr ab, und wenn man die Citronensaure aussetzte, erschien nur ein leichter Niederschlag von einem wenig bestimmten Charakter. Man rieth ihm daher, mit dem Gebrauch der Citronensaure aufzuhören, und dafür von Zeit zu Zeit Orangen und andre saure Früchte zu essen. Bei dieser Diät blieb er ohne alle Zeichen der Krankheit, und noch im April 1813 war fein Urin vollkommen hell.

fe

ic

81

al

da

na

D

Dritter Fall. Im October 1811 zog mich ein 34jähriger Mann zu Rath, der den ganzen Sommer über in seinem Urin einen weißen Bodensatz bemerkt, und dagegen viel Natron-Wasser und Alkalien in verschiedner andrer Gestalt gebraucht hatte, von denen er aber behauptete, das erstere habe den Bodensatz vermehrt, und die letztern seinen Zustand augenscheinlich verschlimmert. Sein Urin war zwar, wenn er von ihm abging, hell und klar, aber kurze Zeit nachher setzte er einen weißen Staub ab, der aus einer Mengung von phosphorfaurem Kalk und Schleim bestand, und es erschien an der Oberstäche desselben ein Krystall-Häutchen von phosphorsaurer Ammoniak-Magnesia. Man verordnete dem Kranken täglich i Drachme Salzfäure hinlänglich verdünnt in mehreren Portionen zu nehmen, aber schon am dritten Tage mußte er damit aushören, wegen der Wirkung der Salzsäure auf die Eingeweide, und weil sie einen Trieb zu häusigem Uriniren hervorbrachte *).

Am 10. October rieth man ihm, täglich zwei große Gläser voll Limonade, und statt einer Flasche Portwein, an die er sich gewöhnt hatte, eine Flasche weisen Franzwein (Clairet) zu trinken. Die Schmerzen, welche die Salzsäure verursacht hatte, verloren sich, aber es zeigte sich keine Veränderung in seinem Urin. Erst am zosten sing das Häutchen an sich zu vermindern, der weise Bodensatz war aber noch so stark wie zuvor. Man verordnete ihm daher, bei fortgesetztem Gebrauch der Limonade, täglich 20 Gran Citronensäure zu nehmen. Diese griff ansangs seine Eingeweide schmerzlich

⁹⁾ In mehreren Fällen wurden Schwefelfüure oder Salpeterfüure versucht, man mußte sie aber eben so wie die Salssäure ausgeben.

an, doch nicht lange, und bald zeigte der Urin nur noch des Morgens einen Bodenfatz. Um auch diesen zu vertreiben, nahm der Kranke noch des Nachts 20 Gran Citronensaure, und dabei blieb er fast ohne Unterbrechung bis zu Anfang Decembers. Der Niederschlag phosphorsauren Kalkes verschwand nun allmählig ganz, und der Kranke genol's vollkommner Gefundheit, bis nach einer heftigen Bewegung und nach Genuss von mehr Wein wie gewöhnlich, in der Mitte des May 1812, der weisse Sand in großer Menge wieder erschien. Der Magen litt dabei empfindlich, und die Säuren, die er zuvor mit Erfolg gebraucht hatte, veranlaßten ihm einen Reiz in der Harnblafe. Ein Zufatz von 10 Tropfen Laudanum zu jeder Portion Citroneufäure machte diefen Zufällen ein Ende: er konnte nun die Säuren fortbrauchen, und nach vierzehn Tagen war die Heilung vollendet. So oft feitdem der ehemalige Kranke die faure Diät vernachläfligt oder etwas mehr Wein als gewöhnlich trinkt, belonders Portwein, zeigt sein Urin zwei oder drei Tage lang einen Niederschlag weitsen Sandes und Schleims.

Vierter Fall. Ein Sojähriger Gentleman, der fich in 5 Jahren zwei Mal dem Steinschnitt unterworfen hatte, sah mit seinem Urin eine Menge weisen Grieses und Schleims abgehn. Das Alter des Kranken, und was er von seinem Zustande erzählte, ließ keinen Zweisel, das sich Steine gebildet hatten, in Folge einer Krankheit der Vor-

steherdrüfe (Prostata), ähnlich der von Hrn. Home beschriebenen. Die Untersuchung der Steinchen zeigte, dass sie ohne einen Kern von Harnstofffäure waren, und daß folglich keine Nierenkrankheit vorangegangen war. Der Kranke hatte bisher Wasser mit Natron gebraucht, und wollte diese Diät mit einer sauren vertauschen. Es wurde ihm gerathen 8 Tropfen Salzfäure zu nehmen, drei Mal des Tags, in zwei Gläsern Waller: aber beim dritten Einnehmen empfand er einen heftigen Reiz in der Blase und eine Verstärkung der Symptome, so dass er die Salzläure ausgeben Citronenfaft, oder eine Auflösung von reiner Citronenfäure brachten zwar einige Veranderung hervor, wenn he in hinlänglicher Menge genommen wurden, hatten aber dieselben nachtheiligen Folgen als die Salzfäure. Da fich der Kranke kein mit Kohlenfäure geschwängertes Walfer verschaffen konnte, so wurde ihm gerathen. 20 Gran Citronenfäure und 30 Gran krystallisirtes [alfo völlig gefättigtes] kohlenfaures Kali, jedes für fich in Waller aufzulölen, beide zusammenzugielsen, und lie im Augenblicke des heftigen Aufbraufens zu trinken. Dieses that er anfangs nur Morgens und Abends, da er fich aber fehr wohl dabei befand, vier oder fünf Mal des Tags. Sein Urin verbesserte sich zusehends, und die Menge des Sandes und des Schleims nahm bedeutend ab. Während der sechs Wochen, welche er noch in radiponyrathy and yet then O a strong putt

London blieb, floss sein Urin zwar hell und klar ab, er setzte aber, wenn man ihn einige Stunden ruhig stehn ließ, einen bedeutenden Niederschlag phosphorfaurer Salze ab. Auch dieses verlor sich, wie er mir schrieb, bei fortgesetztem Gebrauch der Kohlensäure, und zugleich aller krankhafter Reiz in der Blase.

Folgerungen.

Ich habe die vorstehenden Beobachtungen aus mehreren ausgewählt, weil sie uns über die zweckmässige Behandlung der Kranken, welche an Steinbeschwerden leiden, so weit diese auf chemischen Grundsätzen beruht, die nöthige Belehrung verschaffen, und uns Folgendes sestzusetzen berechtigen:

- 1) Wenn die Alkalien ihre Wirkung versehlen, die vermehrte Secretion von Harnstoffsaure
 zu vermindern, und der Bildung eines Steines aus
 ihr in der Harnblase zuvorzukommen, oder wenn
 der Magen sie nicht verträgt, so zeigt sich in der
 Regel die Magnesia wirksam, und läst, wenn
 eine Anlage zur Bildung überschüssiger Harnstoffsaure zurückbleibt, ihr Gebrauch sich eine geraume
 Zeit lang ohne Nachtheil fortsetzen.
- 2) Haben die Alkalien oder die Magnesia die Bildung rothen Sandes, das heisst übersüffiger Harnstoffsaure, völlig hintertrieben, so hören sie auf vortheilhaft zu wirken, und machen, dass der Urin weisen Sand absetzt, der aus phosphorsaurer

Ammoniak - Magnelia und phosphorfaurem Kalk besteht.

- 3) Die Mineral-Säuren (das heißt Salzfäure, Schwefelfäure und Salpeterfäure) vermindern den Niederschlag der phosphorsauren Salze, erzeugen aber eine Anlage zur Bildung von rothem Gries *).
- 4) Die Pflanzen-Säuren, besonders die Citronenfäure und die Weinsteinfäure, bringen diese nachtheilige Wirkung weniger hervor, selbst wenn man sie in großen Dosen und lange Zeit über nimmt. Vorzüglich vortheilhaft aber wirkt Kohlenfäure, besonders auch in dem Fall, wenn zu große Reizbarkeit der Blase die Anwendung anderer Säuren nicht zuläst.

but I have proven a leafly be an account mental but and

And the property of the standard control of the Land-The control of the standard control of the control of the landthe compact of the standard of the control of the c

nisk gudan, i spisetti e visco i som holod kin gamavi, s norga nizosa sak metalow, kinko i sim dana, pisosana, danasa zena sa sakutaka san ti suawanian kabi kin da

⁾ Und lagen dem Magen so wenig zu, daß keiner der Patienten sie langer als ein Paar Tage hat einnehmen konnen.

Australia Cannella and Secondorden

VIII.

eath ter transfer

Auszug aus einem Schreiben des Herrn Leibmedicus Dr. Jüger an den Professor Gilbert über die trocknen electrischen Säulen.

Sintgard d. 5. Juni 1815.

- Ich habe meine Untersuchungen über die Zamboni'sche Säule, welche sich in dem ersten und zweiten diessjährigen Stücke Ihrer Annalen finden, nicht liegen lassen, doch noch keine Zeit finden können, die Relultate zu einem Ganzen zu ordnen: daher beantworte ich jetzt nur einige Andeutungen in Ihrem Briefe. Sie fragen mich: ob der Copal-Firnils, mittellt dessen in dem Versuche r (voriger Band der Annalen S. 48) die heterogenen Metall-Platten zulammengekittet wurden, mit Oehl bereitet gewesen sey? Nur durch einen Fehler im Abschreiben steht dort Copal-Firnis statt Lack-Firnis. Der Firnis bestand nämlich aus einer gefättigten Auflöfung von Schellack in Alkohol, und dieser bleibt, zwischen zwei Metall-Platten eingeschlossen, allerdings ziemlich lange klebrig. Man könnte daher vermuthen, beim Verdunsten des Weingeists behalte er etwas wässerige Feuchtigkeit zurück, und die Platten wären demnach nicht durch eine isolirende Harz - Schicht, sondern durch einen feuchten Leiter von einander getrennt ge-

wesen. Allein diese zusammengeklebten Platten ließen fich, wie die beiden Belege einer Leidner Flasche, mit entgegengesetzten Electricitäten laden. und es kann daher über die condensirende Eigenschaft des Apparats und über die isolirende Wirkung der Harz-Schichten gar kein Zweifel obwal-Zudem habe ich den Versuch mit Bernstein-Firniss wiederholt, welcher auf den damit überzogenen Zink - Platten fo erhitzt wurde, dass er beinahe trocken war und die Kupfer-Platten kaum noch aufgeklebt werden konnten. Das Ueberzeugendste ist indess eine Säule aus wollkommenen Condensatoren von Zink und Kupfer, deren Platten mit ganz trocknem Firnifs überzogen find, und mittelst gläserner Handgriffe von einander abgehoben werden können. Die Schwierigkeit, fich eine beträchtliche Anzahl solcher gleich und constant wirkender Condensatoren zu verschaffen, hinderte mich, den Verfuch ins Größere zu treiben, und brachte mich auf die Idee, durch das Zusammenkitten der Platten die Störungen in der condenfatorischen Wirkung zu vermeiden, welche ihre Beweglichkeit mit fich führt; dennoch habe ich mir 6 dergleichen Condensatoren zubereitet, an welchen lich die electrischen Erscheinungen der Säule, namentlich die Zunahme der Electricität mit der Anzahl der Electromotoren, vollkommen deutlich machen lassen. Nur der Satz: dass die Säulen-Electricität dem Producte aus dieser Anzahl in die electrische Wirkung des einzelnen Metalls, mit dem

gleichen Condenfator gemessen, gleich sey, leidet eine Einschränkung, von welcher ich Ihnen künftig Rechenschaft geben werde.

Demnach halte ich es für vollkommen erwiesen, dass es trockne Säulen giebt, deren Electromotoren blos condensirend auf einander einwirken, und welche alle electrische Aeusserungen der · Volta'schen Säule hervorbringen. Davon aber. dass meine Papier-Säulen aus zusammengeleimtem Gold- und Silber-Papier auch folche Systeme von Condensatoren find, glaube ich mich ebenfalls hinlänglich überzeugt zu haben. Und von den Glas-Säulen gilt wohl für ihre constanten Wirkungen das Nämliche. Allein außer diesen constanten Wirkungen zeigen die letztern noch das Eigenthümliche, dass sie schnell auf eine kurze Zeit in den Zustand der nassen Säule versetzt werden können: man darf zu diesem Ende nur ihre Seiten stark anhauchen.

1

Eine ausfährliche Darstellung dieser Unterfuchungen, so wie der Resultate der Vergleichung
mit der gewöhnlichen nassen Säule, hoffe ich Ihnen
nächstens zustellen zu können. Und bis dahin muss
ich auch das versparen, was ich indessen über andere Wirkungen der trocknen Säulen, z. B. die
Funken, welche mir Herr Geh. Rath von Sömmerring zuerst zeigte, die Anziehung des Zambonischen Pendels u. d. m. bemerkt habe. —

gekeinten Seite hellblement, und en stieft eines

larger, brotter, gebinner Standy une ergen die Sonne zu rolenfacher und er der von hafderere

Nebenfonnen.

In Dillingen, in Schwaben, zeigte sich am 16. Juni 1815, laut öffentlichen Blättern, folgendes schöne und seltene Licht-Meteor um die Mittagszeit am Himmel.

Um halb zwölf Uhr bildete fich um die Sonne ein Kreis mit Regenbogen-Farben, der das Roth inwärts nach der Sonne zu, das Blau nach außen gekehrt zeigte. Um ihn schlos sich nördlich ein andrer weißer Kreis an, der ihn auf beiden Seiten durchschnitt und durch die Sonne ging. Die Kreise hatten dieselbe scheinbare Breite als die Sonne, und die beiden Stellen, wo sie sich durchschnitten, waren heller und von der Größe der Sonne, so dass alfo auch zwei Nebensonnen erschienen. Der farbige Ring um die Sonne war zirkelrund und hatte nahe 45° im Durchmesser. Der nördlich daneben liegende und in den farbigen eingreifende Kreis war jenem, der die Sonne zum Mittelpuncte hatte, an Größe gleich, nur schien er sich nach Norden zu verlängern *). Zugleich zeigte sich

^{*)} Unstreitig war dieses ein Stück des mit dem Horizonte parallelen Kreises durch die Sonne, der sich ganz zeigt bei einer vollständigen Erscheinung dieses glänzenden Me-

gegen Süden, 60 Grad von der Sonne entfernt, ein langer, breiter, gefärbter Streif, der gegen die Sonne zu rosenfarbig und an der von ihr abwärts gekehrten Seite hellblau war, und ein Stück eines großen Kreises zu seyn schien *). Die Lust war ruhig, schwül, trocken, von mittlerem Druck, und der Himmel mit halb durchsichtigem Gewölk überzogen; nur südlich stand eine Wolke, in welcher der beschriebene gefärbte, schweisartige Streisen sich zeigte. Das Meteor war zu Mittag sehr lebhast, hernach erblaste es, und sing um zu Uhr an zu verschwinden **).

teors, (dergleichen man in diesen Annalen Jahrg. 1804.

B. 18. S. 99 und 80 beschrieben und auf Kupfert. II abgehildet sindet,) manchmal mit 6 Nobensonnen prangend.

Da die Mittagahöhe der Sonne zu Dillingen am 16. Junis ungefahr 65°, allo der Zenith-Abstand des Mittelpuncts der Sonne 25 war, so hatte ein horizontaler Kreis, der durch den Mittelpunct der Sonne ging, einen Durchmesser von 50°, also dem Augenmaasse nach denselben, als der mit der Sonne concentrische Kreis.

G11b.

Wahrscheinlich des äussern die Sonne umgebenden Kreifes, den man ebenfalls am angef. Orte auf Taf. II in Fig. 3 abgebildet sieht. G.

harte, an tirolike chied over februa et liets mich Norde, en verlüngern ", Jogiciels zeigte fich " Letrius var dieler ein Statt der mit den Herkents per bem kinde der in de seen, der heb gene zeigt bei den und mitter Universität gewenden der

Das Seltenste hierbei ist die große Sonnenhöhe, bei der fich des Meteor zeigte, das sich gewöhnlich nur näher am Horizonte bildet.

G.

on acres to be good to a will be to be seen of more in

e

\$

Ę

c

a

i

2

.

8

Preisfragen der physikalischen Klasse der Akademie der Wissenschaften in Berlin, für das Jahr 1816.

1) Gewähnliche physikalische Preisfrage.

Aus einigen chemischen Wirkungen des heterogenen Lichtes in dem Farbenspectrum scheint hervorzugehen, dass die am wenigsten brechbaren Strahlen oxydirend wirken, die brechbarsten dagegen (selbst mit Inbegriff einer Zone von unsichtbaren Strahlen jenseits des Violets) Hydrogenation, oder mindestens Desoxydation bedingen. Einige Chemiker haben dieses Geletz bereits als ausgemacht aufgeführt, andere dagegen in den Resultaten ihrer eigenen sehr genauen Prüfung nur Gründe gefunden, ihr Urtheil zurückzuhalten, und die Induction als unvollständig enzusehen. Die Wichtigkeit und die Schwierigkeit der Untersuchung bewegen die Klasse, dieses Problem den Forschungen der Physiker zu empfehlen. Sie verlangt eine streng-kritische, auf eigne Beobachtungen und Versuche gestützte Prüfung der chemischen Wirkungen des verschiedentlich gefürbten Lichtes, woraus ergebt: Deliev seb req . banate squer to ble sommer

Ob der hiebei wahrgenommene Unterschied eine specisische ausschließliche und durchgängige Beziehung hat auf denjenigen Process, den man durch Oxygenation und Hydrogenation bezeichnet? Oder ob er sich am Ende ergebe, entweder als blos quantitativ und abhängig von dem größeren und ge-

Reble

de

mi

ringeren erwärmenden Vermögen des heterogenen Lichtes, oder als blosse Verbindung des heterogenen Lichtes mit der reagirenden Substanz; oder endlich als eine vielfache Wirkung, die zur Zeit noch unter kein allgemeines einfaches Gesetz aufgestellt werden kann *).

*) Die Akademie hat diese Preisausgabe zugleich in deutscher, französischer und lateinischer Sprache bekannt gemacht. Ich süge bier das Französische bei, weil ich glaube, dass es den Preisbewerbern nützlich seyn wird, auch dieses vor Augen zu haben.

Les diverses actions chimiques de la lumtère disseremment colorée ont elles un rapport spécifique constant et exclusif avec les procédés connus sous les moms d'oxidation et d'hydrogénation: ou bien se présement elles en dernière analyse comme des dissérences simplement graduelles et dépendantes du degré de chaleur excité; ou comme des combinations chimiques des rayons hétérogènes avec la substance servant de réactif; ou ensur comme des phénomènes complexes et multiples, qu'il ne nous est point donné encore d'assujétir à une lot unique.

Si l'on se contentoit de soumettre à l'expérience de nouvelles substances, et d'augmenter sinsi le nombre des réactifs déjà employés dans ces recherches, on avanceroit peut-être moins vers la solution du problème, qu'en pratiquant une methode propre à manifelter dans un feul et même corps individuel les différences d'action de la lumière, en faifant varier à volonté les phénomènes chimiques de ce corps donné, par des variations correspondantes des teintes prismatiques. La Classe, sans exclure aucune autre méthode d'investigation, demande le résultat précis d'une série d'expériences, dans lesquelles une substance donnée seroit préalablement soumise à un trèsfoible degré d'action galvanique, tellement qu'abandonné à lui même, le procédé d'oxidation et d'hydrogénation follicité par des forces électriques très peu intenfes, ne s'y manifestat qu'après un laps de tems suffisamment long.

Eine bloße Vervielfältigung der anzuwendenden Reagentien würde vielleicht für die Löfung des Problems weniger ersprießlich seyn, als eine Methode der Untersuchung, welche die entgegengesetzten chemischen Wirkungen des Lichtes an einem und dem-

L'appareil ainsi disposé, on emploieroit le prisme, pour faire tomber les rayons violets ou leur limite non-lumineuse, sur l'extrémité de l'appareil hydrogénée par le galvanisme, et les rayons rouges sur l'extrémité électrico-oxidée, puis on observeroit comparativement l'effet d'une combinaison inverse. Si dans le premier cas, les actions de la lumière et de l'électricité se montroient effectivement conspirantes, par l'augmentation sensible de l'effet total, et si dans le second cas, en proportionnant disment les deux forces censées contraires, ou arrivoit à annuller l'effet chimique, ou même à le produire inverse, on auroit sans contredit sait un grand pas vers la solution du problème.

La Classe désire que dans cette série d'expériences, qui du reste peut être sort simplisée en substituant au prisme des verres colorés, on ne se borne pas à employer les solutions de ser et d'argent; car on peut espérer que dans cette nouvelle combinaison, d'autres métaux, comme l'étain par exemple, conduiront à des aperçus utiles. Par la même raison, il conviendroit de soumettre à l'épreuve encore d'autres teintures végétales que celle d'orseille et de guayac, et d'autres solides que le phosphore; peut-être même les phosphores terreux ou aimans de lumière meriteroient-ils d'ètre interrogés de cette manière. Mais le résultat le plus décisse et le succès le plus brillant seroit de déterminer ou de suspendre à volonté la décomposition galvanique de l'eau pure par l'action additionnelle de la lumière.

Si une observation aprosondie de la distribution des couleurs appropriées aux organes des végétaux pouvoit suggérer quelque résultat qui vint se rattacher à la solution du problème de l'instrucce chimique de la lumière diversement colorée, la Classe applandiroit à ce succès, sans néanmoins en saire une condition du concours.

felben individuellen Körper hervortreten ließe, durch wechselseitige Zurückführung desselben Reagens auf entgegengeletzte Zustände durch blosse Vermittelung der entgegengesetzten Qualitäten des Lichtes. Klasse wünscht daher, ohne irgend eine andere Art der Prüfung auszuschließen, das genaue Resultat sol-Während das gender Prüfungsmethode zu erfahren. gewählte Reagens durch eine so schwache galvanische Electrifation behandelt wird, dass die Oxydation und Hydrogenation nur im Minimum eingeleitet werde, fo dass an und für fich die chemischeWirkung nur nach einer gehörig langen Zeit wahrnehmbar würde; fetze man die relativ - oxygenirten und hydrogenisirten Extremitäten dem Einflusse der heterogenen Lichtstrahlen aus; fowohl im Farbenspectrum selbst, als mittelst gefärbier Gläser, mit oder ohne Collectiv-Linsen. Wenn die electrisch-chemische Wirkung beschleunigt würde durch den Einfluss des violetten Lichtes auf die electrisch hydrogene Seite des Reagens, und des rothen Lichtes auf die oxygene Seite desselben, und wenn die entgegengesetzte Combination eben so bestimmt den chemischen Erfolg hemmte, oder gar in einen entgegengesetzten verwandelte; (wozu es doch durch gehörige Abwägung der anzuwendenden electrischen Kraft kommen müste, unter Voraussetzung des erwähnten Gesetzes,) dann wäre ein entschiedener Schritt gethan zur Lößing des Problems.

Die Klasse wünscht, das in dieser Reihe von Verfuchen, neben den bis jetzt gewählten Aussöfungen des
Silbers und des Eisens, auf die es hauptsächlich ankömmt, auch andere Metall-Aussöfungen geprült würden; denn es ist möglich, das einige derselben, wie
z. B. die des Zinnes, in dieser Modification des Verfuchs unerwartet entscheidende Resultate geben. Aus
demselben Grunde kann es gerathen seyn, neben den
üblichen Pigmenten des Lackmus und Guajaks, auch
andere vegetabilische Tincturen, und neben dem Phosphor noch andere seite Körper, vielleicht selbst die
Lichtmagnete, dieser Prüsung zu unterwersen. Am
glänzendsten wäre aber der Ersolg, wenn es gelänge,

die Zersetzung des chemisch-reinen Wassers durch die conspirirende oder contrastirende Einwirkung des heterogenen Lichtes nach Willkühr zu bedingen und zu hemmen.

Einige Züge von Gesetzmäßigkeit bei der Farbengebung der Natur, vorzüglich an den verschiedenen Theilen der Vegetabilien, aus Beobachtungen abgeleitet, und mit den etwanigen Resultaten für oder wider den erwähnten Satz in genügende Verbindung gebracht, würden der Klasse ertreulich seyn als willkommene Zugabe, aber nicht als unablassliche Bedingung der Preisbewerbung.

2) Elleri'schet Preis aus der Agrikultur - Chemie.

Da auf die Frage über die chemische Beschaffenheit der Danmerde nur Eine Preisschrift eingegangen war, welche die Klasse nicht als genügend erkannt hat, so wird dieselbe Frage mit verdoppeltem Preise für das Jahr 1816 wiederholt.

Seitdem die Natur der Dammerde (Humus) durch mehrere Phyliker genauer als vorher ausgemittelt worden: seitdem man weis, dass mit dem Namen Dammerde nur das End-Refultat der Verwefung organischer Wesen bezeichnet werden darf, ohne Rücklicht auf irgend eine andere damit verbundene Erde, die verschieden ware von derjenigen, welche durch den Verwesungsprocess aus jenen Substanzen entweder abgeschieden oder vielleicht auch erzeugt wird; seitdem endlich als erwiesen angenommen werden darf, dass die mannigfaltigen einsachen Erden, welche die Ackerkrume bilden. blos dazu dienen, das ihnen auf verschiedenen Wegen zuströmende Wasser sestzuhalten, so wie den Wurzeln der darin wachtenden Pflanzen die erforderliche Stabilität zu geben, oder auch als eigene Potenzen auf den damit gemengten Humus zu wirken, ohne felbst als nährende Mittel in die Pflanzen übergehen zu können: so bleibt noch immer die für die verschiedenen Zweige der Phanzenkultur sehr wichtige Frage unentschieden: Wie und auf welche Weise wirkt der Humus als ernährendes Mittel für die Pflanzen?

Was mehrere gelehrte Physiker, besonders die Herren Fourcroy, Hassenfratz, v. Saussure der jüngere, Darwin, Smithson Tennant, Carradori, Tessier, Braconnot, Einhof und andere, über diesen Gegenstand bereits gesagt und zum Theil auch erwiesen haben, bestieht in einzelnen Ansichten des Gegenstandes, die, so wichtig sie auch seyn mögen, keinesweges geeignet sind, eine allgemeine Grundregel daraus ableiten zu können. Die physikalische Klasse stellt daher zur genauen Ausmittelung dieses so erheblichen Gegenstandes solgende Preissrage aus:

Was ist Humus? Welche nähere Bestandtheile werden in jedem Humus mit Zuversicht anerkannt? Welche Veränderungen erleidet derselbe, und durch welche Potenzen erleidet er sie, um zum nährenden Mittel für die Pstanzen verarbeitet zu werden? Wie verhalten sich iusbesondere in diesem Process die atmosphärische Lust, das Wasser und die im Contact stehenden Grunderden der Ackerkrume?

Kann mit Grund mehr als eine Art des Humus als exiftirend anerhannt werden? Ist dieses der Fall, wie unterscheidet sich der Humus nach seiner Abstammung aus verschieden-gearteten organischen Substanzen? Welchen Einstuß hat die verschiedene Grundmischung des Humus auf die Erzeugung der specisiken näheren Bestandtheile der Vegetabilien?

Die phyfikalische Klasse erwartet von den Preisbewerbern keinesweges eine blosse Zusammenstellung desjenigen, was über diesen Gegenstand bereits öffentlich bekannt worden ist; sie sieht vielmehr den Resultaten ganz neuer, mit möglichster Genauigkeit angestellter Versuche entgegen; nur auf solche und auf die daraus gezogenen Schlüsse kann bei den deshalb eingehenden Abhandlungen Rücksicht genommen werden.

Auf jede dieser beiden Fragen ist ein Preis von 100 Ducaten ausgesetzt. Der letzte Einsendungstermin der Abhandlungen, welche sich um ihn bewerben sollen, ist der 31. März 1816. Die Preisertheilung wird in der öffentlichen Sitzung am 3. Julius 1816 bekannt gemacht werden.

ANNALEN DER PHYSIK.

JAHRGANG 1815, SIEBENTES STÜCK.

L

Neues Verzeichniss der herabgefallenen Steinund Eisenmassen, in chronologischer Ordnung,

VOB

E. F. F. CRLADNI

(Diejenigen, von welchen der Verfasser etwas besitzt, sind mit einem Sternchen (*) bezeichnet.)

Seitdem ich Verzeichnisse der herabgesallenen Massen, zuerst in diesen Annalen (B. 15. S. 307) und späterhin in Schweigger's Journ. der Chemie IV, St. 1, (wo nur gar zu viele Drucksehler sich eingeschlichen haben,) ingleichen im Journal des mines, im Journal de physique von Delamétherie und in dem Giornale di Fisica e Ohimica di Brugnatelli bekannt gemacht habe, sind verschiedene neuere Ereignisse dieser Art vorgesallen; es haben sich auch noch manche ältere Nachrichten gesunden, so dass also gegenwärtiges Verzeichniss die vorigen an Vollständigkeit bedeutend übertressen wird. Ich lasse absachte solche Nachrichten weg, die ganz und gar

Annal. d. Phylik. B. 50. St. 3. J. 1815. St. 7.

nicht hieber gehören, wo bloße atmolphärische Niederschläge, wie z. B. Hagel, Schweselregen (von Blüthenstaube), Sandregen (durch Winde herbeigeführt) u. f. w., von Manchen theils aus Unkunde der Sache. theils auch aus Vorliebe für einen ihrer Meinung nach atmosphärischen Ursprung niedergefallener Steinund Eisenmassen mit erwähnt worden find. kann nämlich nur von folchen Massen die Rede seyn. welche aus höhern Regionen, in denen sich keine atmosphärischen Niederschläge mehr bilden können, (es fey nun aus Mondvulkanen oder fonst woher aus dem allgemeinen Weltraume,) in unserer Atmosphäre ankommen, in einer Bahn, wie sie bei einem von Aussen kommenden Projectil seyn muss; welche des Nachts als ein feuriges Meteor erscheinen, in Gestalt einer brennenden, mit leuchtenden Dämpfen umgebenen und mit einem Schweif versehenen Kugel, am Tage aber wegen der Verdunkelung durch das stärkere Sonnenlicht, und wegen des Rauches und der Dämpte, die fich entwickeln, mehr als ein vielfarbiges sonderbar gestaltetes Wölkchen sich zeigen, und welche dann nach einer heftigen Explosion, wahrscheinlich nach einer Zerplatzung der blasensörmig ausgedehnt gewesenen. breiartig geschmolznen Masse, niederfallen. Alle diejenigen gut oder schlecht beobachteten Feuerkugeln. bei welchen der Ort des Niedertallens nicht genau bekannt geworden ist, und also weder Massen gesunden, noch Wirkungen an der Stelle des Niederfallens beobachtet worden find, lasse ich weg; es hätte fich fonft das Verzeichniss noch sehr vermehren lassen.

Viele in den ältern Zeiten als heilig angesehene Steine, welche baetylia genannt wurden, und meistens Meteorsteine waren, führe ich nicht besonnt sind. an, wenn Zeit und Ort des Falles nicht bekonnt sind. 6-

ũ-

rt)

le.

ng

n-

ier

m,

ne

n,

123

ire

en

als

n-

nd

er

n-

lie

ar

ch

er

n.

ie-

n,

au

n-

ns

ch

ne

ei-

TS

d.

Die besten Bemerkungen hierüber sind die von Münter, (Annal. Band 21 im 1sten Stück.) Manche gar zu sabelhasten Nachrichten, so wie auch wanche von Livius, Julius Obsequens und von manchen Chronikenschreibern erwähnte Steinregen, wo man aus den Umständen nicht wohl beurtheilen kann, ob es ein Hagel, oder ein Niedersallen von Meteorsteinen gewesen ist, lasse ich ebenfalls weg.

Bei Angabe der Zeit und des Ortes habe ich gleichzeitigen oder wenig an Zeit verschiedenen Schriftstellern, und überhaupt den ersien Quellen, mehr Glauben beigemessen, als späteren Erwähnungen, weil ich in diesen so oft Unrichtigkeiten gefunden habe, die alsdann wieder von Andern sind nachgeschrieben worden. Ich ersuche also diejenigen, welche gegenwärtiges Verzeichniss etwa durch eine und andere Nachricht vermehren wollen und können, zu Vermeidung der Misverständnisse, erst genau nachzusehen, ob nicht ebendieselbe Nachricht hier schon unter einem andern vielleicht richtigeren Datum angegeben ist.

Manche Nachrichten von Steinen, die in Italien gefallen sind, würde ich schwerlich haben erhalten können, wenn nicht zwei sehr achtungswürdige Literatoren in Mailand, Hr. Staatsrath Bossi, und Hr. Abbate Amoretti, Director der Ambrosianischen Bibliothek, die Gefälligkeit gehabt hätten, sie mir mitzutheilen. Die arabischen Nachrichten verdankt dieses Verzeichniss der gefälligen Mittheilung der Werke, in welchen sie enthalten sind, durch Hrn. Pros. Rosenmüller in Leipzig, und der Leser wird sie in dem dritten Aussatze dieses Hestes der Annalen aussührlicher sinden, für welches Hr. Pros. Gilbert sie bestimmt hat.

Chladni.

1. Niederfülle von Stein- und Eifenmaffen vor unferer Zeitrechnung.

Die ältesten Nachrichten dieser Art, welche man als glaubwürdig ansehen kann, find theils von Livius, Plutarch und Plinius, theils von chinefischen Schriftstellern aufgezeichnet; die letztern find aus dem ersten Bande der Reise nach China von des Guignes entlehnt, welcher sie aus dem Schu-king und andern chinesischen Werken ausgezogen hat.

Unter dem Tullus Hostilius sind, nach Livius I, 31, Steine auf dem Albanischen Berge gefallen. Dals es kein Hagel, wie wahrlcheinlich viele andere von Livius erwähnte Steinregen, fondern ein wirkliches Niederfallen von Meteorsteinen gewesen ist, lässt sich daraus schließen, weil es mit einem vom Winde getriebenen Hagel verglichen wird, und weil Senatoren, um dieses Wunder zu sehen, hinausgegangen find.

644 Jahre vor unserer Zeitrechnung fielen in China 5 Steine in der Provinz Song.

462 J. fiel ein großer Stein bei Aegos-Potamos in Thracien, nach Plutarch im Leben Lyfan-Wenn hinzugefügt wird, Anaxagoras habe es vorhergelagt, so wird dieses wohl nur so zu verstehen seyn, er habe schon früher gelagt, dass bisweilen Steine herabfallen. Plinius, der den Stein einige Jahrhunderte später gesehen hat, sagt (Hift. nat. II, 68); er ley magnitudine vehis, colore adufto gewesen; er mag also, wenn es nicht

1

eine Eisenmaße gewesen ist, eine schwarze Rinde, wie andre Meteorsteine, gehabt haben.

n

i-

i-

n

18

m

5-

ch

ge

0-

n,

r-

eil

r-

n-

in

os

7-

1 5

us

1s

n

gt

0-

ht

211 J. fiel ein Stein in China. Es wird gesagt, ein Stern sey auf die Erde gesallen, und habe sich in Stein verwandelt. Man grub auf dem Steine eine Inschrift ein, welche den baldigen Tod des tyrannischen und auch wegen seines Besehls, alle Bücher zu verbrennen, berüchtigten Kalsers Tschi-Hoang-ti vorhersagte, welcher auch binnen einem Jahr ersolgte. Der Kaiser ließ den Stein zerschlagen, und alle Einwohner des Orts, wo er sich besand, umbringen.

192 J. vor Chr. Geb. ein Stein in China.

176 J., oder nach der Erbauung von Rom 575, ist ein Stein in agro Crustumino, in den See des Mars gefallen, nach Liv. XLI, 3.

89 J. fielen zwei Steine in China, bei Yong; das Getöse war so stark, dass man es 20 Meilen weit hörte; der Himmel war heiter.

56 J. vor Chr. Geb., ein Jahr ehe Marcus Craffus von den Parthern getödtet wurde, ist schwammiges Eisen in Lucanien vom Himmel gefallen, nach Plin. Hist. nat. II. 58.

Plinius redet auch von einem Steine, der in Vocontionum agro (bei Vaisien), und einem, der bei Potidaea gefallen war, ingleichen auch von einem, der im Gymnasium zu Abydos ausbewahrt wurde.

38 J. vor Chr. Geb. fechs Steine in China im Bezirk von Leang. ag J. vor Chr. Geb. in China, 6 Steine bei Bo, und 2 im Bezirk von Tsching-ting-fu.

22 J. acht Steine in China,

19 J. drei Steine in China.

12 J. ein Stein bei Tu-ku-an in China.

q J. zwei Steine in China.

6 J., in China 16 Steine im Bezirk von Ningtfchu, und 2 bei Yu,

II, Stein- und Eisenmassen, die nach dem Anfange unserer Zeitrechnung gefallen sind.

In den erstern Jahrhunderten unserer Zeitrechnung ist man sehr nachlässig in Aufzeichnung solcher Begebenheiten gewesen.

Im Jahre 452 find drei große Steine in Thracien getallen, nach Marcellini Comitis Chronicon.

648 ist zu Constantinopel ein glühender Stein, wie ein feuriger Ambos, (also vielleicht eine Eisenmasse) herabgefallen, nach der Chronik von Calonius Ghönneir (eigentlich Nicolaus Höninger) S. 416. — Wenn ebendaselbst von Steinen geredet wird, die im Jahre 823 in Burgund gefallen seyn sollen, so scheint dieses ein Hagel gewesen zu seyn. — Dasselbe gilt von dem in Muratori Script, rer. Ital. tom. I. p. 33 angegebenen Steinregen in Italien im Jahre 649.

852 im Julius oder August, oder im Monat Safar im Jahre der Hedschra 238, hat Taher ben-Abdallah dem Kalisen Motawakkel einen in *Taha-* ristan gesallenen Stein, 840 Rotl oder 840 Dirhems (656 oder 13 Pfund) schwer, geschickt, welcher weiss und voll Risse war, und 5 halbe Armlängen (coudées) tief in die Erde geschlagen hatte. Annalen in Auss. III dieses Hestes, No. 4, nach Gilbert's Reductionen. Chrest. arabe par de Sacy, t. III. p. 527. Mém. sur l'Égypte par Quatremère, p. 487. Assemani bibl. oriental. tom. I. p. 403.

856 im December, oder im J. 242 der Hedschra, im Monate Schaban (nach Abou'lmahasen) sind in Aegypten, in einem Dorse Sowaida, 5 Steine gefallen; einer davon zündete das Zelt eines Beduin Arabers an; 4 wurden nach Fossat und einer nach Tennis gebracht. Auch auf ein anderes Dors sielen weise und schwarze Steine. Ebendaselbst.

897, oder im Jahre 285 der Hedfchra, fielen in der Stadt Kufa weiße und schwarze Steine, der ren viele nach Bagdad gebracht wurden. Ebendaf.

951, nach dem Chronicon Ursbergense. oder 956 nach Lycosthenes de prodigiis et ostentis, oder nach Platina de vitis pontificum, zur Zeit des Papstes Johann XIII, also zwischen 965 und 972, ist ein großer Stein in Italien, oder vielleicht bei Augsburg, gefallen. Bibl. britann. Avril 1811. Annal. B. 47. S. 105. Mir scheint aus den Nachrichten zu erhellen, dass das Ereigniss sich in Italien zugetragen habe.

998 find, nach Spangenberg's Chronicon Saxon., zu Magdeburg zwei große Steine gefallen, einer in die Stadt, der andre nach der Elbe zu. Nicht lange nach 1009, oder in den ersten Jahren des sünsten Jahrhunderts der Hedschra, ist, nach Avicenna, eine sehr harte Eisenmasse von 50 oder 150 Man bei Dschurdschan oder Dschuzzan gefallen. Spätere Schriststeller haben den Namen des Orts in Lurgea oder Cordova umgeändert, wie es auch diesen zusolge in Annalen B. 18. S. 305 erwähnt worden ist. Das Eisen war aus groben Körnern zusammengesügt. Auf Beschl des Sultans von Khoralan hat man sich vergeblich bemüht, Schwerter daraus zu schmieden. Mehrere Nachrichten darüber in Ausstatz III. dieses Hestes der Annalen No. 2 u. 4.

1020 im August, oder im zweiten Monat Rebi im Jahre 411 der Hedschra, siel in Afrika ein Steinregen, der viele Menschen getüdtet hat, wie Kazwini aus der Chronik von Ebn-Alathir ansührt, Ebendaselbst No. 3,

1112 fielen bei Aglar (oder Aquileja), nahe am Adriatischen Meere, glühende Steine nieder, welche so schwarz wie Kohlen und so hart wie Eifen waren, (also vielleicht Eisenmassen,) nach Valvasor's Ehra des Herzogthums Crain. 4, Band, 14, Buch, S. 279.

von der Größe eines Menschenkops herabgefallen, nach Spangenberg's Chron. Saxon. In Wenceslai-Hagecii von Libotschan Böhmifcher Chronik S. 312 wird gesagt, es sey 1135 im Sommer geschehen; der Stein sey überaus groß

und von der Gestalt eines Hauses gewesen; er sey auf ein Feld gesallen, und bis auf die Hälste in die Erde gedrungen; er sey so heis gewesen, dass er drei Tage gezischt habe, und sey hernach schwarz geblieben.

niedergefallen, nach Georg. Fabricii rer. Misnie. t. I. p. 32. Annal. B. 29. S. 379.

Eine fehr fabelhafte Nachricht, die wahrscheinlich einem frommen Betruge von Seiten der Secte der Millenarier, ungefähr im raten oder raten Jahrhunderte, ihr Daseyn zu verdanken hat, aber doch zeigt, dass entweder ein Stein herabgefallen ist, oder doch wenigstens, dass solche Ereignisse damals nicht ganz unbekannt gewesen find, findet fich in einer griechischen Handschrift auf der Ambrofianischen Bibliothek zu Mailand, bezeichnet B. Num. 146. Der Titel ift: Επιζολή του αυρίου ημών Ιησού Χριςού περί του λίθου πέσοντος έξ ovoavov. Es wird erzählt, der Stein fey nicht groß, aber so schwer gewesen, dass niemand ihn habe von der Stelle bewegen können. Endlich habe fich der Patriarch von Jerufalem mit feiner Geistlichkeit dem Steine genähert, und nach vielen Gebeten und Cerimonien habe sich der Stein in zwei Theile getheilt. Inwendig habe fich ein von Gott dem Vater dictirter und von Jesu Christo eigenhändig geschriebener Brief gefunden, welcher Drohungen gegen die Ungläubigen und gegen die nicht Wohlthätigen enthalten habe.

1249 fielen am St. Annentage Steine in der Gegend von Quedlinburg, Ballenstädt und Blankenburg, nach Spangenberg's Chron. Saxon. (wenn es nicht Hagel gewesen ist.) Ann. B. 29. S. 376.

Zur Zeit des heil. Macarius, also im 13ten Jahrhunderte, soll nach Schotti physica curiosa lib.

XI. cap. 19 ein Stein auf den Thurm des von ihm
gestisteten Schottenklosters zu Würzburg gefallen
seyn. Den angeblich gefallenen Stein, welcher in
der Kirche des Klosters aufbewahrt worden ist,
habe ich gesehn; er ist nichts anders als eine alte
Streitaxt von einer sehr harten grauen Steinart,
die mit Meteorsteinen gar keine Aehnlichkeit hat.
Annial. B. 47. S. 97.

Zwischen 1251 und 1360 sind viele Steine bei Welikoi-Usting in Russland gefallen. Annalen B. 31. S. 360.

[1280 ein Stein in Alexandrien. Siehe Auff. III dieses Hestes No. 3. Anm. Gilb.]

1304 am Remigiustage find, nach Kranzii Saxonia und einigen andern, bei Friedland (Vredeland in Vandalia), aber nach Spangenberg's Chron. Saxon. und nach Olearii Beschreibung der Stadt Halle in Sachsen S. 157 bei Friedeburg an der Saale, glühende und schwarze Steine gefallen, und haben viel Schaden angerichtet.

[1323 am 9. Januar, oder am 1. Moharram im J. 723 der Hedschra, sielen, nach Macrizy, in der Provinz Mortahiak zugleich mit Hagel Steine 7 bis 30 Rotl schwer. Ann. Auss. III dies. Hests, No. 4. G.]

1438, viele schwammige Steine bei Roa. nicht weit von Burgos in Spanien. Journ. de Phys. LX. Annal. B. 24. S. 263.

1491 den 22. März find Steine bei Rivolta de' Bassi nicht weit von Crema gefallen. Bonisacii Simonetae epistolae, lib. VI. epist. 46.

1

9

2

I

.

i

e

n

r

is .]

* 1492, den 7. November fiel bekanntermaßen ein Stein von ungefähr 270 Pfund bei Ensisheim in Ober-Elfass, oder im Departement des Ober-Rheins. Der Römische König Maximilian, welcher fich dort besand, lies eine Urkunde darüber aufsetzen, und zwei Stücke abschlagen, eins für sich, das andre für den Kaifer Sigismund, welcher den Stein in der dortigen Pfarrkirche aufbewahren liefs, mit dem Verbote, schlechterdings für keinen andern ein Stück davon abzuschlagen. Während der Revolutionszeit hat man den Stein auf die öffentliche Bibliothek zu Colmar geschafft, und viele Stücke davon abgeschlagen; das größte davon, 71 Kilogramme schwer, hat Fourcroy and as Naturalienkabinet im Jardin des plantes zu Paris gegeben. Es war mir dieses Stück besonders deswegen merkwürdig, weil ich darin ein wie einen Zahn hervorragendes Stückchen Gediegen - Eisen bemerkte. Als ich 1810 nach Colmar kam, fand ich dort den Stein nicht mehr, sondern nur die leere Stelle, und eine Zeichnung desselben, denn die Einwohner von Ensisheim hatten den Befehl ausgewirkt, den Stein ihrer Kirche wiederzugeben. Dort fand ich ihn an seiner vorigen Stelle, nicht weit vom Altare, auf

der linken Seite, in einer Höhe von etwa 10 bis 12 Fuls, mit vielen Inschriften umgeben. Was noch übrig ist, mag etwas über 100 Pfund schwer seyn. Der Stein ist an Farbe und Gefüge ein wenig von den andern verschieden. Er ist mit keiner schwarzen Rinde umgeben, wohl aber besinden lich im Innern viele kleine dunkelgraue glänzende Facetten, oder Absonderungsstächen, die einer unvollkommen gebildeten Rinde ähnlich sehen. Mir ist es wahrscheinlich, dass die blasenartig ausgedehnt gewesene, breyig geschmotzene Masse nach der Zerplatzung wieder zusammengeslossen ist, und die Theile der Rinde, die sich auswendig schon gebildet hatten, wieder in das Innere hineingeknetet worden sind. Annal. B. 15. S. 312 u. B. 18. S. 280.

1496 den 26. oder 28. Januar, viele Steine zwifchen Cefena und Bertinoro, und zu Valdinoce in
der Gegend von Forli. Buriel, Vita di Caterina Sforza Riario, Ducheffa d'Imoli e di Forli,
Vol. III. p. 658. Marcus Anton, Sabellicus
hiftor. ab orbe condito, Ennead. X. lib. IX. Soldani in den Atti dell' Academia di Siena,
tom. IX.

(Wenn Linthurius in Append. ad fasc, temporum Werneri Rollewinck. in Piftorii script. rer. Germ. tom. II. p. 577 fagt, dass 1496 am Feste der heil. Margaretha Steine bei Münchberg sollen gefallen seyn, so ist es wohl nur von Hagel zu verstehen.)

vom Flusse Adda, viele Steine gefallen, nach einer Tag für Tag niedergeschriebenen Chronik in der Ambrosianischen Bibliothek in Mailand: Istoria di Milano, von Giovanni Andrea del Prato, Opuscoli scelti da Carlo Amoretti, tom. XXII. p. 61. Nach Cardanus und einigen Andern soll es 1510 oder 1520 geschehen seyn. Der Ausdruck: prope Abduam, ist von manchem falsch verstanden worden.

1525, den 28. oder 29. Junius, hat eine in der Citadelle zu Mailand niedergefallene Masse ein Pulvermagazin in Brand gesteckt. Giulio Cessare de Solis, origine di molte città. Milano 1590. Verri Istoria di Milano, tom. II. p. 181. Aus den Umständen läst sich schließen, dess es kein Blitz, sondern die Masse einer Feuerkugel gewelen ist.

Kurz vor dem innern Kriege in Sachsen, also etwa zwischen 1540 und 1550, ist eine große Eisenmasse in silvis Neuhosianis prope Grimmam, also allem Ansehn nach im Walde bei Naunhos zwischen Leipzig und Grimma gefallen. Albini Meisnische Bergchronik S. 135, in einer andern Ausgabe S. 139. Johnston und Alberti haben den Namen Neuhos in Neuholem umgeändert, und viele Neuere haben es ihnen nachgeschrieben. Annalen B. 29. S. 379.

In Neufpanien find Steine in einer großen Ebene zwilchen Cicuic und Quivira gefallen, (wenn es nicht Hagel gewesen ist, nach Cardanus de varietate rerum, p. 921, und Mercati metallotheca Vaticana, p. 249.

1548, den 6. Nov.', bei Mansfeld in Thüringen eine schwärzliche Masse. Spangenberg's Chron. Saxon.

1552, den 19. Mai war ein sehr großer Niederfall von Steinen, welche vielen Schaden angerichtet, unter andern das Lieblingspferd des Grasen von Schwarzburg getüdtet, und seinen Leibarzt Mitthobius am Fuße verwundet haben. Spangenberg il Chron. Saxon. Spangenberg, der zugegen war und das Ereignis als Augenzeuge beschreibt, hat dergleichen Steine mit nach Eisleben genommen. Annalen B. 29. S. 376.

1559, bei Miskoz, oder Miskolz in Ungarn, 5 große Steine, oder vielleicht Eisenmaßen, wegen der nicht schwarzen, sondern rostfarbenen Rinde. Vier davon wurden in das Kaiserliche Kabinet nach Wien gebracht, sind dort aber nicht mehr vorhanden. Nicol. Isthuansii Historia Hungariae, lib. 20. fol. 394. Ann. B. 18. S. 289 u. B. 47. S. 97.

1561, den 27. Mai hat bei Torgau eine Steinoder Eisenmasse durch eine Windmühle geschlagen,
nach Conr. Gesner de fossil. sol. 62. Kentmann erwähnt auch einen prope arcem Juliam,
und einen in dem Dorse Siptitz bei Torgau gesallenen Stein. De Boot, gemmarum et lapidum
historia, 1. 261.

Zu der Zeit Emanuel Philiberts, etwa zwischen 1550 und 1570, ist an mehrern Orten in Piemont Eisen niedergefallen. Mercati metallotheca Vaticana p. 248. Scaliger sagt, de subtilitate, exerc. 323, er habe selbst ein Stück davon in den Händen gehabt.

1564 den 1. März, oder 1546 den 7. August, find Steine zwischen Mecheln und Brüffel gefallen. Vielleicht sind es zwei verschiedene Steinfälle gewesen. Ein Stein, der dicht neben dem Grasen von Nassau gefallen war, wurde im Nassausschen Hause ausbewahrt, Albrecht Dürer hat ihn gesehn. Er ist seitdem durch den Brand dieses Stadttheils verloren gegangen; ich sand aber zu Brüssel in einer Abbildung und Beschreibung des Hauses den Ort genau angegeben, wo er sich besunden hatte. Annal. B. 22. S. 331, und B. 29. S. 379.

Kircher (Mund. fubterran.), Scheuchzer (Naturgeschichte der Schweitz) und Cysatus reden von einem bei Lucern gefallenen Steine, welchen man für das Ey eines sliegenden Drachen gehalten, und lange ausbewahrt hat. Er soll nicht mehr vorhanden seyn. Annal. B. 29. S. 378.

1581, den 26. Jul. oder (nach Olearius) 1582, fiel in Thüringen zu Niederreissen bei Buttstädt ein Stein 39 (nach Mollerus 49) Pfund schwer. Binhard's Thüringische Chronik, S. 139. I. C. Olearii rerum Thuringicarum syntagma, tom. II. p. 149. Andr. Molleri Beschreibung von Freyberg, tom. II. p. 337. Er soll erst nach Wei-

mar, sodann nach Dresden gebracht worden seyn; gegenwärtig ist er aber nicht mehr dort vorhanden. Es besinden sich jedoch im Königl. Archiv Acten über diese Begebenheit, nebst einer Zeichnung des Steins, dessen Gestalt unregelmäßig dreieckig gewesen ist.

1583, den g. Januar, fiel bei Castrovillari in Abruzzo ein Stein von 33 Pfund. Tommaso Costo Istoria di Napoli, (Venez. 1613) tom. III. p. 98. Mercati metallotheca Vaticana, p. 248.

1583, den a. März in Piemont, ein Stein. Mercati metallotheca Vaticana, p. 248.

1591, den g. Juni bei Kunersdorf große Steine. Angelus in Annal. Marchiae.

viele Steine. Ioh. Ben. Mittarelli bibliotheca codicum manuscriptorum monasterii St. Michaelis. Venet. 1779. append column. 39.

1603, im Königreiche Valencia in Spanien, ein Stein mit metallischen Adern, nach den Bemerkungen der Jesuiten in Coimbra zu der Meteorologie des Aristoteles. Caesius erwähnt ihn auch in seiner Mineralogia, lib. V. cap. 1. §. 5.

F

1618 ist in Böhmen Metall (nes, also wahrscheinlich eine Eisenmasse,) gefallen, nach Marcus Marci a Kronland philosophia vetus restituta, p. 149. Hr. Prof. Neumann in Prag äussert in B. 42 dieser Annalen die Vermuthung, es könne vielleicht die Masse seyn, welche in Ellbogen unter dem Namen, der verwünschte Burggraf, auf-

bewahrt ward. Nur scheint mir dieses nicht recht mit dem Namen der Masse, und mit den Volksfagen übereinzustimmen, da, soviel ich weiß, diefer Theil von Böhmen night damals, wohl aber ein Paar Jahrhunderte früher von Burggrafen beherricht worden ift.

1620, welches richtiger scheint als 1652, ift bei Lahore in Indien eine Eisenmasse von 5 Pfund gefallen; der Groß-Mogul Jehan-Girchat 2 Säbel, ein Messer und einen Dolch daraus smit & anderm Eisen versetzt] schmieden, und eine Urkunde darüber ausfertigen lassen. Journal de physique, Germinal an XI. Annalen B. 18. S. 266. 330. +)

[1622 den 10. Januar ist unweit Tregnie in Devonshire in England ein 31 Schuh langer, 25 Schuh breiter und 21 Schuh dicker Stein herabgefallen, der i Elle tief in die Erde fank. ,,Nachmittags entstand ein großes Krachen von Donnerschlägen, und ein Geräusch als wenn Trommeln gerührt würden: dieses verstärkte sich bis zum Knall von Büchsen und Kanonen, und mit heftigem Gebrause

t) Ich habe die an der letztern Stelle von Hrn. Greville mitgetheilte arabische Zeitbestimmung (der 30. Furverdeen oder 26. Dichemadi el ewvel des J. 1030 der Hedichra) und seine Angabe der Gewichte (160 Tolahs) in Auffatz III des gegenwärt. Stücks genauer berechnet, und finde, dass ihnen zu Folge die Eisenmasse, welche 20 geogr. Meilen öftlich von Lahore herabfiel, nur 3% engl. Pfund wog, und am 17ten April 1621 herabgekommen ift. Das Jahr 1620 beruht auf eine nur ungefähre Reduction, und die Angabe 1652 auf einen Irrthom. Gilbert.

fiel auf einen Acker ein Wetterkeil herab, in Härte und Farbe einem Kielelstein fast gleich. Sobald er auf der Erde lag, schwieg der Donner. Der Stein wurde in viele Stücke zerschlagen, vertheilt und als ein Wunder gezeigt. Happelii mundus mirabilis. Ulm. 1687. 4. tom. I. p. 130. Gilb.]

1634, den 27. October, find in der Graffchaft Carolath, in Gegenwart eines Regiments Soldaten, viele Steine mit einem Feuer-Meteor bei heiterem Himmel herabgefallen. Mehrere fielen in einen Sumpf; andere, die tief in die Erde eingeschlagen hatten und ausgegraben wurden, wogen 5 bis 8 Pfund, und waren nach der Beschreibung eben so beschaffen, wie Meteorsteine gewöhnlich sind. J. B. Morini diff. de atomis et vacuo contra Gassendum, p. 30.

1635, den 7. Jul. bei Calce im Vicentinischen, ein Stein. Galleria di Minerva, tom. VI. p. 206. Valisnieri Opere, tom. II. p. 64. Annal. B. 18. S. 307.

1636, den 6. März zwischen Sagan und Dubrow in Schlesien ein großer Stein. Lucas Chronicon Silesiae p. 2228. Cluverii Geographia, p. 238.

1637, den 2g. Novbr. ein Stein von 38 Pfund auf dem Berge Vaisien in der Provence, zwischen Guilleaume und Pesne Er-ward zu Aix in der Borellischen Sammlung ausbewahrt. Petri Gasfen di Physica, sect. III. membr. I. lib. 2. cap. 5. ed. Florent. p. 83, ed. Lugdun. p. 96. Verschie-

dene haben bei Anführung des Gassendi das Datum unrichtig angegeben. Annal, B. 13. S. 358.

1645 oder 1644 find einige harte Steine auf ein Schiff gefallen, nach Wurfbain in der Befchreibung feiner Reife nach Indien, in Beckmann's Literatur d. ältern Reifebefchreibungen I. 7. p. 96.

1647, am dritten Pfinglifeyertage, find auf der Insel Falster Steine gefallen. Museum Wormianum p. 76. Dass es zur Zeit eines Hagels geschehen seyn soll, ist nur als etwas Zufalliges anzusehn, da es andre Male eben sowohl bei heiterem Himmel geschehen ist.

1647, zu Stolzenau in Westphalen, einige Steine. Annalen B. 29. S. 215.

Zwischen 1647 und 1654 ist eine Kugel von 8
Pfund (also wahrscheinlich eine Eisenmasse) auf ein
Schiff im offenen Meere gefallen, und hat zwei
Menschen getödtet, nach Olof Erichson Willmann in der Beschreibung seiner Reise nach Indien, in Beckmann's Literatur der ältern Reisebeschreibungen, II. 22. S. 272.

1650, zu Dordrecht, ein Stein, der in das Haus des Syndicus D. Berck durch das Fenster gelchlagen, und den Fussboden gesengt hat. Arnoldi Senguerdi exercitt. physicae, p. 188. Annal. B. 29. S. 380. Der Stein befand sich in der Sammlung des Dr. Bennet zu Leyden, ist aber durch die bekannte Pulverexplosion verloren gegangen, welche dessen Haus nebst allem, was darin war, zerstört hat. Annal. B. 47. S. 98.

Ein zu Warschau, wahrscheinlich um die Mitte desselben Jahrhunderts, gesallener Stein hat den Thurm eines Gesängnisse zerstört. Petri Borrelli histor. et observationes physico-medicae, 1676, cent. III. obs. 86.

1654, den 3. März, find viele Steine auf der Dänischen Insel Fünen gefallen. Thomae Bartholini historia motuum, IV. p. 337. Annalen B. 18. S. 328. Einer von diesen Steinen wurde im Königl. Naturalienkabinet zu Kopenhagen aufbewahrt, ist aber nicht mehr vorhanden †).

steine im Veronesischen. Francesco Carli in der Galleria di Minerva tom. VI. p. 206. Valisnieri Opere, tom. II. p. 66. Montanari in einem Aussatze, der von Soldani in den Opuscoli scelti da Carlo Amoretti, tom. XIX. p. 42 angesührt ist. Conversations tirées de l'Académie de M. Bourdelot, par Le Gallois, Paris 1072, obs. 5. Ungeachtet an die damalige Akademie der Wissenschaften zu Verona zwei Steine, einer 300,

t) Eine sabelhaste Nachricht, bei der wohl kein Niedersallen von Meteorsteinen zum Grunde liegen mag, sindet sich in dem Gazophylacium linguae Persarm des Pater Angelus de S. Josepho (Amstelod. 1684) S. 290 u. 291. Es wird nämlich gesagt, es wären 1667 zu Schiras 4 Tage lang Steine auf das Haus der Frau des eben nicht sehr glaubwürdigen Pietro della Valle gesailen, sie wären wie von unsichtbaren Händen geworsen worden. aber von Meuschen und Gesäsen, ohne sie zu beschädigen, abgesprungen; endlich habe man durch Gebete und Exorcismen dem Unwesen ein Ende gemacht. Chiadai.

der andre 200 Pfund schwer, geschickt worden sind, und auch einer in einer Kirche ausbewahrt worden ist, sindet sich doch dort nirgends etwas mehr davon. Das einzige Stückchen, etwa 3 Quentchen schwer, welches sich im Museo Moscardi besand, ist nach Paris gekommen, wo Vauquelin es analysirt, und andern Meteorsteinen ähnlich gefunden hat. Verschiedene Schriftsteller haben dem Ereignisse ein salsches Datum gegeben. Annalen B. 15. S. 314, und B. 47. S. 99.

1671, den 27. Februar, zwei Steine in der Ortenau in Schwaben. Annal. B. 33. S. 183.

Dietlingen im Badenschen) gefullen, wovon sich einiges in Brakenhofer's Sammlung befand. Mem. del. soc. Colombaria Fiorentina, Vol. I. p. 114.

1674, den 6. October, im Canton Glarus in der Schweitz zwei große Steine, nach Scheuchzer's Naturgeschichte der Schweiz.

r677, den 26. Mai, viele Steine zu Ermendorf bei Großenhayn in Sachlen. Nach den für die dammalige Zeit ziemlich genauen Untersuchungen von Balduin, in den Miscell. Nat. Curios. 1677, append. p. 247, sollte man glauben, diese Steine müßten von andern Meteorsteinen ganz verschieden, und mehr einem Kupferkiese ähnlich gewesen seyn. Annal. B. 15. S. 314.

1678, den 26. Februar, foll zu Sachfenhaufen bei Frankfurt am Mayn, am Affenthore, Feuer vom Himmel gefallen feyn, und auf der Erde noch eine Viertelstunde lang geglimmt und gedampst haben. Lersner's Chronik von Frankfurt. II. Theil, S. 763. Annalen B. 29. S. 380. Es ist Schade, dass man die niedergefallene Masse nicht besser unterfucht hat.

einen Ort, Namens Pentolina, gefallen, nach Soldani in den Atti dell' Accademia di Siena, tom, IX.

1698 fiel in der Gemeine Waltring im Canton Bern ein schwarzer Stein, nach Scheuchzer's Naturgeschichte der Schweiz. P. II. ad ann. 1706, S. 76. Der Stein war mit der Nachricht auf der Bibliothek zu Bern aufbewahrt worden, er ist aber nicht mehr vorhanden,

Einige Jahre vor 1700 ist ein Stein bei Copinsha, einer von den Orkadischen Inseln, auf ein Schiff gefallen. Account of the Islands of Orkney, by James Wallace, Lond. 1700. chap. I. p. 3.

Gegen das Ende desselben, oder zu Anfange des 18ten Jahrhunderts, ist zu Mailand ein Stein, nicht ganz eine Unze schwer, in das Kloster von Santa Maria della Pace, welches jetzt eine Baumwollenzeug-Fabrik ist, gefallen, und hat einen Franziskaner getödtet. Der Stein, welcher tief in dessen Körper eingedrungen war, ist in der Sammlung des Grasen Settala, welche hernach großentheils an die Ambrosianische Bibliothek gekommen ist, ausbewahrt worden, er ist aber verloren gegangen. Ich habe mir zugleich mit dem eben so gefälligen als kenntnissyollen Director der

Bibliothek, Hrn. Abbate Carlo Amoretti, alle Mühe gegeben, ihn unter einer Menge von Steinen aufzulinden, habe aber nichts einem Meteorsteine ähnliches gesehn. Nachrichten davon sinden sich im Museo Settaliano, descritto in Latino da Paolo Maria Terzago, ed in Italiano da Francesco Pietro Scarabelli (Tortona 1677) cap. 18. Merkwürdig ist, dass der italiänische Verfasser, so wie in neuerer Zeit Laplace, äußert, dass dergleichen Steine wohl könnten von Mondyulkanen auf unsere Erde geschleudert seyn. Nuova scelta d'opuscoli da Carlo Amoretti, tom. II. p. 65.

1700 haben in Jamaika, nach dem Zerspringen einer Feuerkugel, die niedergefüllenen Stücke tiese Lücher in die Erde geschlagen, nach Barham in den Philos. Transactions No. 357, p. 148. Es ist Schade, dass man nicht nachgegraben hat, um die niedergefallenen Massen zu finden.

1706, den 7. Juni, bei Lariffa in Griechenland ein Stein, 72 Pfund schwer. Voyage de Paul Lucas, tom. I. Annal. B. 15. S. 315.

1723, den 22. Juni, viele Steine bei Plescowitz in Böhmen. Stepling de pluvia lapidea. Rost in den Breslauer Sammlungen XXXI. S. 44. Annalen B. 18. S. 291.

[1740, den 25. October, einige Steine beim Flecken Hajargrad (Rasgrad) am Ufer der Donau in der Türkei, von denen zwei nach Constantinopel geschickt und dem Großherrn vorgelegt wurden, einer 494, der andre 54 Pfund schwer. Nach

den Osmanischen Reichs-Annalen Subbi Mohammed Effendi's, und Hrn. Jos. von Hammer in den Fundgruben des Orients. Siehe Ausfatz III gegenwärt. Stücks dieser Annalen. Gilb.]

1743 einige Steine bei Lowositz in Böhmen. Stepling de pluvia lapidea. Ann. B. 18. 8. 307.

Niort in der Normandie, nach Lalande im Journal de Physique LV. 451. Annal. B. 13: S. 345.

Der Merkur (welcher Merkur?) vom Jahre 1751 redet von einem bei Constanz gefallenen Steine, nach Soldani in den Atti dell' Accademia di Siena, tom. IX.

* 1751, den 26. Mai, fielen bei Hradfchina im Agramer Comitat in Croatien, zwei Eisenmassen, eine von 71, die andre von 16 Pfund. Die kleisnere Masse ist nicht aufzusinden, die größere aber besindet sich im Kaiserl. Naturalienkabinet zu Wien, nebst der vom bischöslichen Consistorium zu Agram abgefalsten Urkunde. Stütz im ersten Bande der Bergbaukunde. Annal. B. 13. S. 339 u. B. 18. S. 297. Journal der Chemie I. r. In dem folgenden Aufstatze soll mehr darüber gesagt werden.

* 1753, den 3. Juli, viele Steine bei Taber in Böhmen. Stepling de pluvia lapidea.

1753, im September, zwei Steine bei Laponas in Breffe, nach Lalande im Journal de Phyfique LV. 451. Annal. B. 13. S. 343.

1755, im Julius, ein Stein von 9 Pfund bei Terranova in Calabrien. Domenico Tata Memoria fulla pioggia di pietre nella campagna Sanefe, Napoli 1794. pag. 14. Annal. B. 6. 8. 187. Biblioth. britann. XXV. p. 144.

cin Stück von einer zerplatzten Feuerkugel in der Gegend von Dijon in ein Haus gefallen, und hat es in Brand gesteckt. Mem de l'Acad. de Dijon, vol. I. p. 42.

1766, in der Mitte des Julius, ist bei Albereto, nicht weit von Modena, ein Stein gefallen. Troili ragionamento della caduta di un fasso. Modena, 1766. Man sagte mir, der Stein sey verloren gegangen. — (Ein angeblich am 15. Aug. 1766 bei Novellara gefallner Stein, scheint nur eine durch den Blitz bewirkte Verglasung zu seyn.)

* 1766, den 13. September, ist ein Stein von 71 Pfund bei Luce in Maine herabgefallen, welchen der Abbé Bachelay an den Minister Trudaine in Montigny geschickt hat, und von dem ich auch etwas besitze; ein zweiter Stein bei Aire in Artois; und ein dritter in Cotentin. Diese drei Steine scheinen von demselben Meteor zu seyn, wie man denn auch andere Beispiele hat, dass eine Feuerkugel bei ihrem Fortziehen durch die Atmosphäre mehr als Eine Explosion gemacht hat. Mém. de l'Acad. de Paris, 1769. Annal. B. 13. S. 293 und 330.

* 1768, den 20. November, bei Maurkirchen in Bayern ein Stein von 38 Pfund. Annalen B. 15. S. 316, u. B. 18. S. 328.

Aragon, welcher fich zu Paris im Naturalienkabinet des Pflanzengartens befindet, und an dunkler Farbe und beträchtlichem Eilengehalt denen sehr ähnlich ist, die 1790 bei Barbotan gefallen sind. Journal de Physique LX, 185. Annal. B. 24. S. 261.

1775, den 19. Sept., bei Rodach im Coburgischen ein Stein, welcher sich zu Coburg im Herzogl. Naturalienkabinet besindet. Annal. B. 23. S. 93.

nige Steine, Annal. B. 31, S. 306.

1776 oder 1777, im Januar oder Februar, Steine bei Fabbriano, nach Soldani in den Atti dell' Accademia di Siena, tom. IX.

1779, Steine bei Petriswood in Irland. Gentlemans Magazine, September 1796.

Weinberg der Königin war, eine Feuerkugel gefallen, und hat ein großes Loch in die Erde gemacht. Einige Monate darauf grub man nach, und fand eine weißliche Masse in der Tiese von 8 Fuß. Bibl. britann. XXV. 291. Nuova scelta d'opuscoli da Carlo Amoretti, I. p. 49. Tata sulla pioggia di pietre, p. 30.

1785., den 19. Febr., einige Steine im Eichflädtischen. Annalen der Berg- u. Hüttenkunde vom Frhrn, von Moll, Ill. 2. Ann. B. 13. S. 538.

Gouvernment von Charkow. Annal. B. 29. S. 213, u. B. 31. S. 312.

Niederfall von Steinen bei Barbotan. Créon. Inliac etc. zwischen Roquesort (Dép. des Landes).
Mezin (Dép. du Lot et Garonne) und Eause
(Dép. du Gers). Bibl. britann. XX. 85.; Décade
philosophique. litéraire et politique. num. 67;
Annal. B. 13, 15 u. 18. Die Steine sind dunkler,
und enthalten mehr oxydirtes und gediegenes Eisen, als viele andere; an einem Stücke, das ich
besitze, besinden sich zahnförmige Stückchen Gediegen-Eisen, welche Krystallistionssfächen zu zeigen
scheinen. Einige Schriftsteller haben dem Ereignisse
sin salsches Datum gegeben.

1791, den 17, Mai, einige Steine bei Castel-Berardenga in Toscana, nach Soldani in den Atti dell' Acad. di Siena, tom, IX.

* 1794, den 16. Juni, war ein sehr bekannter Niederfall vieler Steine bei Siena, der von Soldani in den Atti dell' Accademia di Siena, tom. IX. und von Andern beschrieben ist. Annal. B. 6, 13 u. 18. †).

†) Bei Gelegenheit des Niedersallens von Steinen in Toscand 1697, 1776 oder 1777, 1798 und 1794 bemerke ich, dass der bekannte No ftra da mus dieses in solgenden Versen (Prophésses, Cont. III. 42) vorhergesagt hat:

L'enfant naiftra à deux denis en la gorge, Pierres en Tufcie en pluie tomberont. Peu d'ans après ne fera bled my orge, Pour faouler ceux qui de faim faillerent.

Da er aber die Zeit nicht bestimmt hat, so war es nicht schwer, etwas dergleichen zu prophezeihen, da doch wohl in jedem Lande Steinfälle irgend einmal vorgekommen,

1795, den 13. Dec., bei Woldcottage in Irland ein Stein von 56 Pfund. Annal. B. 13, 14 u. 15.

1796, den 4. Jan., ein großer Stein bei Belaja Zerkwa im südlichen Russland. Annal. B. 31. S. 307. Voigt's Magazin VIII. 1.

796, den '9. Februar, in Portugal ein Stein von 10 Pfund. Southey's letters written during a fhort residence in Spain and Portugal, p. 239.

bei Sales, nicht weit von Villefranche im Departement du Rhône, ein Stein von 20 Pfund. Bibl. britann. XX. S. 371. XXIII. S. 113 u. 218. Annal. B. 15, 16 u. 78.

1

1

T

n

n

W Je

el

ar

lie

fir

ge

bei Benares in Bengalen. Bibl. britann. XLVI. S. 96. Reife des Lord Valentia. Annal. B. 13, 15, 18 u. 41.

* 1803, den 26. April, war der fehr bekannte und vielfach beschriebene Niedersall von 2000 bis 3000 Steinen bei L'Aigle im Départ, de l'Orné, Annal, B. 16, S, 44, und B. 15 u. 18.

1803, den 4. Juli, ilt die Masse einer Feuerkugel über den Gasthof zum weissen Ochsen zu East-Norton gesallen, und hat die Fenster und die Küche zerstört. Philos. Magazine, Jul. 1803; Bibl, britann. XXVI. p. 385.

oder zu erwarten find. Die Nachricht von der Stelle des Notirademus hat der Herr Geh. Legationsrath Beigel untr gefällight mitgetheilt. 1803, den 8. October, bei Apr in der Provence ein Stein von 7 Pfund, der fich zu Paris im Naturalienkabinet des Pflanzengartens befindet. Annal. B. 16. S. 7a, und B. 18. S. 290. 321.

* 1803, den 13. December, zu Mässing, nicht weit von Eggenfelde in Baiern, oder im Innviertel, ein Stein von 3½ Pfund. Das Stück, das ich befütze, ist deswegen merkwürdig, weil es Theile enthält, die dem Olivin ähnlich sind, wie auch dunkelgrane Theile mit Krystallisationsstächen. Die Rinde ist so glänzend, wie an den in Mähren 1808 gefallenen Steinen. Voig t's Magazin VII, 3. Annal. B. 18. S. 330.

Schottland. Annalen B. 24. S. 369.

1805, den 15. März, ein großer Stein bei Doroninsk im Irkutskischen Gouvernement in Sibirien, nahe am Flusse Indoga. Annalen B. 29. S. 212, und B. 31. S. 308.

1805, im Julius, fielen Steine zu Constantinopel. Einige vom Pöbel glaubten, die Griechen wären daran schuld, und seindeten sie deshalb an. Journal des mines, Fevrier 1808.

* 1806, den 15. März, einige Steine bei Alais und Valence im füdlichen Frankreich. Sie enthalten außer den gewöhnlichen Bestandtheilen auch etwas Kohlenstoff; dieser macht, dass sie nicht wie andere Meteorsteine beschaffen, sondern schwärzlich und zerreiblich sind, und leicht zerfallen. Sie sind auswendig auch mit einer Art von Rinde umgeben, welche sich nur durch etwas mehreren Glanz

vom Innero unterscheidet. Bibl. britann. XXXII. Nuova scelta d'opuscoli da Carlo Amoretti, II. p. 63. Annalen B. 24. S. 189.

1807, den 27. Juni, bei Timochin in Russland, im Smolenskilchen Gouvernement, ein Stein von 160 Pfund. Annalen B. 26. S. 238; B. 29. S. 213 und B. 33. S. 203.

* 1807, den 14. December, viele Steine bei Weston in Connecticut in Nordamerika. Journal de Physique, Juin 1810. Annalen B. 29. S. 352; B. 30. S. 401 und B. 42. S. 210.

* 1808, den 19. April, bei Borgo San Donnino und Pieve di Cafignano im Parmelanischen einige Steine, wortiber die Professoren Guidotti und Sgägnoni als Commissarien Untersuchungen an Ort und Stelle angestellt, und Berichte bekannt gemacht haben. Annal. B. 22. S. 209. Die Steine sind besonders daran kenntlich, dass sie mehr abgesonderte Theile von glänzendem Eisenkies enthalten, als andere.

* 1808, den 22. Mai, bei Stannern in Mähren viele Steine, welche keinen Nickel und kein Gediegen - Eilen entbalten, und eine glänzendere Rinde als die meisten andern Meteorsteine haben. Annal. B. 28. S. 491; B. 29. S. 225. 309, und B. 31. S. 1 u. 16. Klaproth's Beyträge V. S. 257.

* 1808, den 3. Septbr., bei Liffa in Böhmen einige Steine. Annal. B. 30. S. 358 u. B. 32. S. 125.

1809, den 17. Juni, bei Nordamerika zwischen Block Island und St. Bart ein Stein auf ein Schiff,

und mehrere ins Meer. Bibl. britann., Octobre

1810, den 4. Januar, ein Stein in Nordcarolina, der fich magnetisch zeigte. Bibl. britann. Octobre 1811. S. 166. Annal. B. 41. S. 449.

1810, den 23. November, in der Gegend von Charfouville bei Orleans drei Steine. Bibl. britann. XLVI. 8. 94. Journal de Phys., Decembre 1810. Annal. B. 37. 8.349 u. B. 41. 8.450.

eî

ıl

1;

l-

n

ti

n

nt

18

b-

en e-

re

n.

en

5.

en

H.

1811, den 13. März, ein Stein von 15 Pfund in Rufsland, im Gouvernement von Poltawa im Romenschen Kreise, im Dorse Kuleschowka. Annal. B. 38. S. 120.

1811, den 8. oder 18. Juli, unweit Burgos in Spanien, bei Berlanguillas auf dem Wege von Aranda nach Roa, 3 Steine. Bibl. britann. Octobre 1811. S 162. Annal. B. 40. S. 116, u. B. 41. S. 452.

1812, den 10ten April, Steine bei Touloufe. Annal, B. 41. S. 445 und B. 42. S. 101. 343.

1812, den 15. April, ein Stein bei Erxleben zwischen Megdeburg und Helmstädt. Annal. B. 40. 8. 450; B. 41. 8.96, und B. 42. S. 105.

Von Meteorsteinen, die in demselben Jahre bei Limerick in Irland gefallen sind, hat Tennant dem französischen Institute Nachricht gegeben. Sie sollen denen von L'Aigle ähnlich, nur dunkler und reicher an Eisen seyn, (mögen also wohl mehr denen von Barbotan gleichen.) Journal de Physique, Septembre 1814. p. 211. Annalen B. 49. 8. 180.

1814, den 3. Februar, große Steine im Ekaterinoslawschien Gouvernement, im District von Bachmut in Russland, nach einer vom Herrn Professor von Giese in Dorpat dem Professor Gilbert mitgetheilten Nachricht. Annal. B. 50. S. 117.

1814, den 5. September, find Steine bei Agen gefallen, die hellgrauer und von feinerem Korne als manche andere find. Journal de Phys. Sept. 1814. S. 212. Annal. B. 48. S. 395.

Unter den an verschiedenen Orten gesundenen Gediegen-Eisenmassen, bei welchen alle Umstände einen meteorischen Ursprung zu erkennen geben, ist die von Pallas in Sibirien entdeckte Masse auch in diesem Verzeichnisse mit zu erwähnen, weil man sie füglich unter diesenigen rechnen kann, deren Niederfallen wirklich beobachtet worden ist. Pallas sagt nämlich in der Beschreibung seiner Reise, dass die Bewohner der Gegend sie ihm nicht haben überlassen wollen, weil sie solche als ein vom Himmel gesallenes Heiligthum ansahen. Von dieser und von manchen andern Eisenmassen wird übrigens in dem solgenden Aussatze ein Mehreres gesagt werden.

ralation I was come appeared within the bottom of the common and the common appeared to the

and miles are the second

timplement gavestage, n

with the property of the world with the training

and the state of t

in the most Hamble and another fire

Sem Clasers and like authorized to he had

Bemerkungen über Gediegen - Eisenmassen,

water and the vondition of the systems will

E. F. F. CHLADNI.

(Diejenigen, von denen der Verfasser etwas besitzt, sind mit einem Sternchen (*) bezeichnet.)

Nur bei wenigen von den in meinem Verzeichnisse erwähnten Meteormassen macht Gediegen-Eilen den Haupt-Bestandtheil aus, und seit dem Falle zweier Eisenmassen bei Agram, im Jahre 1751, find immer nur Niederfälle von Meteorsteinen beobachtet worden, in welchen das Gediegen-Eisen in geringer Menge vorhanden war, obwohl es in ihnen dielelbe Beschaffenheit hat, wie in den ganz oder größtentheils daraus bestehenden Massen. Es find aber außer diesen Agramer noch manche andre Gediegen-Eisenmassen gefunden worden; und auch ihnen kann man mit einer Wahrscheinlichkeit, die an Gewissheit gränzt, einen meteorischen Ursprung zuschreiben. Denn sie sind eben so beschaffen, wie einige Massen, deren Herabfallen als Thatsache beobachtet worden ist, das Eisen, woraus sie bestehen. unterscheidet sich sehr von dem gewöhnlichen Eilen, durch seine Geschmeidigkeit ungeachtet der Annal. d. Phylik. B. 50. St. 3. J. 1815. St. 7.

sichtbaren Spurenvon Schmelzung, durch eine hellere dem Silberweißen sich nähernde Farbe, durch
das innere Gefüge und durch den Nickelgehalt, und
sie sind meistens isolirt an Orten gefunden worden,
wo weit umher keine Eisenlager und keine Eisenhütten waren, u. s. w. Wo von diesen Umständen
einige anders sind, ist der Ursprung dieser Massen
mehr problematisch, wiewohl sich bei manchen derselben mit keiner Wahrscheinlichkeit irgend ein bekannter irdischer Process denken lässt, durch welchen sie könnten gebildet seyn.

* Die schon zu Ende des Verzeichnisses erwähnte, von Pallas in Sibirien, zwischen Krasnojarsk und Abekansk, entdeckte Masse, 1600 Pfund schwer, ist von andern Gediegen-Eisenmassen darin verschieden, dass alle Zwischenräume des ältig gebildeten Eisens mit Olivin ausgefüllt find. war mit einer schlackigen Rinde umgeben. Das Eifen ist in Ansehung des Nickelgehalts und der Geschmeidigkeit eben so beschaffen, wie anderes meteorische Eisen, und der Olivin enthält dieselben Bestandtheile, wie die Steinart der gewöhnlichen Meteorsteine. Wahrscheinlich ist die Masse durch einen meteorischen Schmelzprocess, der von unfern künstlichen sehr verschieden sevn mag, in diefen Zustand versetzt worden. Die Einwohner haben die Masse nicht weglassen wollen, weil sie solche als ein vom Himmel gefallenes Heiligthum betrachteten, und ich habe auch den meteorischen Ursprung derselben in meiner zu Leipzig 1794 bei

Göschen oder bei Hartknoch erschienenen Schrift: Ueber den Ursprung der von Pallas entdeckten Eisenmasse, und über einige damit in Verbindung stehende Naturerscheinungen, dargethan, und die Natursorscher auf diele Art von Ereignissen zuerst ausmerksam gemacht.

a

n

n

.

|-

r.

)-

d

r-

ig

ie

i-

e-

e-

en

en ch

n-

e-

8-

1-

e-

en

ei

Eine große Aehnlichkeit mit der Pallas'schen Masse scheint das von Lehmann beschriebene †), bei Eibenstock gefundene Stück Gediegeneisen zu haben, wovon Klaproth etwas besitzt, Annalen B. 13. S. 340. Das, was Lehmann für Saalbänder gehalten hat, mag wohl die schlackige Rinde gewesen seyn. Das Eisen ist seiner geätiet und der Olivin seinkörniger als an der Pallas'schen Masse, von welcher ich indessen auch Stücke gesehn habe, die eine seinere, und andre, die eine gröbere Bildung hatten.

In dem Kaiserl. Naturalienkabinet zu Wien befindet sich, so viel ich mich erinnere, auch ein Stück von ästigem Gediegeneisen voll Olivin, das nicht von der Pallas'schen Masse, aber von derselben Belchaffenheit, wiewohl etwas seiner geästet ist ++).

^{†)} Einl. in einen Theil d. Bergwiff. Berl. 1751. S. 79. G.

^{††)} Ueber diese Eisenstuffe glaube ich einige genauere Nachweisungen aus dem Munde eines meiner hieligen Freunde geben zu können, des Rathsherrn Dr. Stieglitz, dessen gelehrte Werke über die Baukunst bekannt sind. Sie gehörte höchst wahrscheinlich zu der Mineralien-Sammlung seines Vaters, des Rathsherrn und Beisitzers des Oberhofgerichts Dr. Christ. Ludw. Stieglitz, welche nach dessen Tode durch Kauf an das kais. königt. Mineralien-

Außer den jetzt erwähnten Massen sind, so vielmir bekannt ist, noch keine andern gesunden worden, wo in allen Zwischenräumen des ästig gebil-

kabinet nach Wien gekommen ift. Die merkwürdigsten Stücke dieser Sammlung, 65 an der Zahl, hatte der Besitzer auf 21 Kupfertafeln, in groß Quart, in ihrer naturlichen Größe in Umrissen darstellen, und diese von einem Miniaturmaler (Namens Morino), der fich in Leipzig aufhielt, ausmalen lassen, so treu und gut, als sich das durch Farben nur immer thon lafet. Diefe, begleitet von 24 Seiten lateinischer und dentscher Erklärung, machen ein kleines mineralogisches Prachtwerk aus, wovon höchstens 10 Exemplare vorhanden find, unter dem Titel: Spieilegium quarundam rerum naturalium fubterranearum Lipfiae collectarum. Editum Anno MDCCLXIX. Ex officina Breitkophana. Auf Tafel XI ift vorgestellt eine 41 rheinl. Zoll lauge und 31 Zoll hohe Stuffe, von der die Erklärung weiter nichts fagt als: "Zackig gewachsen "Eisen, in einer grünlichen glas- oder eisengranat artigen "Stein Gangart; aus Norwegen." Sie scheint ein Olivinreiches Stück Gediegen - Eisen vorzustellen, mit hervorragenden sackigen und größern platten Theilen regulini-Ichen, grauen Eisens, worauf man einzelne filberweisse Punkte sieht, vielem grünen, an einigen Stellen röthlichen Olivin, und mit den vielen bräuplichen Flecken, welche fich auf atlen Stücken Pallas'schen Eisens finden. Der Besitzer war sorgfältig in Auszeichnung der Orie, wo feine Exemplare her waren; auf welche Weife er zum Belitz dieles Gediegen Eisens gekommen ist, lätst fich aber nicht mehr ausmitteln. Pallas hat feine Sibirische Reise zwar erst im Jahre 1972 gemacht, die nach ihm benannte Eisenmasse war aber schon im J. 1749 von einem Schmidt gefunden, und bald darauf von dem Inspector der Estengrube su Krasnojarsk unterfucht worden, und hatte schon damals, wie Pallas anführt, viel Verwunderung erregt. Es ift daher nicht unwahrscheinlich, dass das Gediegen-Eisen, welches in einem im J. 1769 herausgegebnen Werke abgebildet ist, durch schwedische oder norwegische Sammler, die mit dem Inspector der Krasnojarsk schen Werke

deten Eisens sich Olivin befindet. An andern hernach zu erwähnenden Massen ist das Eisen derb, und aus lauter blättrigen vierseitigen Tafeln zusam-

und mit dem Dr. Stieglitz in Verbindung ftehn mochten, schon vor Pallas Reife, von der Pallas'schen Eisenmasse, über Norwegen, in eine deutsche Mineraliensammlung gekommen sey. -Noch liegt vor mir ein Exemplar des fast drei Jahrzehend älteren Mufeum Richterlanum Illuftratum teontbus, et commentariis Hebenstrettii, Lipsiae 1743, fol., mit fehr gut illuminirten Kupfern, welches ebenfalls auf Kosten eines Leipziger Sammlers, des Kaufmanns, Kammerrath Richter, verfertigt worden ift. Auf Tafel VIII ift eine der angeblichen Stuffen Gediegen-Eisens, von denen das Kabinet, nach dem Hebenstreitischen Verzeichnisse, 5 besellen haben soll, und zwar unstreitig die ausgezeichnerste abgebildet, in Vergleich mit der vorigen aber nur schlecht, indem man an ihr nichts als viele braune Flächen und einzelne regulinisch - glänzende Eisen-graue Punkte sieht. Die Stuffe ift 14 rheinl. Zoll lang, eben fo hoch, und unregelmäßig gestaltet. In der Beschreibung heisst es: "Gewachsen Ei-"fen, aus Schweden. Ift ganz derb gewachfen zackiges "Eisen, mit brauner lettigter Erde vermischt, worauf "Schwarzer Glanz ansteht, fo der Eisenseile gleich fieht." Und im lateinischen Texte: Ferrum nativum Sueciae. Ferrum est nativum, absolutissimum, fibris in ramos excrescentibus, in terra limofa fusca; cut nitidum metal-Heum nigrum, foret limaci facie, innafcitur. Ich habe bei dem jetzigen Besitzer dieses Richterschen mineralogi-Schen Kabinets, dem Geheimen Kammerrath Frege in Abtnauendorf bei Leipzig, drei Stück gediegnes Eisen gefehn, welche gans fo ausfehn, als waren fie von der Pallas'schen Masse; das eine derselben halt der Besitzer für das dort abgebildete. Sollte aber Hebenstreit die grune glafige Malle fo gans haben überfehn können? In dem Richter-Ichen Katalog ftehn unter dem gewachsen, oder gediegen Eifen (oder, wie es im Lateinischen heifst, Foreum fui coloris, nativam, abfolutissimum) noch folgende Stücke verzeichnet: F.n., varis forma nafcens, Sueclas. - F.n. Hungariw. - , Weifs- und röthlicher Spath, in welchem

mengesetzt, deren Dicke sehr verschieden ist. und deren Länge und Breite etwas mehr oder weniger als einen halben Zoll betragen. Sie find theils unter einem rechten, theils unter einem fpitzigen Winkel zusammengehäuft, und allem An-Schen nach durch eine Art von Schmelzung mehr oder weniger innig mit einander verbunden. Eine folche Masse kann daher entweder ganz dicht seyn, oder größere und kleinere Zwilchenräume enthalten, ohne dass dieses als eine wesentliche Verschiedenheit anzusehen ist. Diese innere Structur mache ich hier zuerst bekannt, und zwar auf Veranlassung einer von Hrn. von Widmanstädten in Wien gemachten Beobachtung, nach welcher auf einer politten und mit Scheidewasser geätzten Fläche folches Eifens fich porollele Streifen zeigen, an welche fich wieder folche Anhäufungen von Streifen unter einem rechten oder unter einem spitzigen Winkel anschließen. Die meisten Blätter scheinen gerade, manche aber auch gekrümmt zu seyn. Auf einer polirten und geätzten Fläche des Pallas'schen Eisens zeigen lich die Linien so, wie fie der ästigen Gestalt desselben angemessen find. Die blättrige, aus vierleitigen Tafeln bestehende

"angeflogen gediegen Eisen, von St. Anna auf dem Rosen"höferzug, zu Clausthal. — Rether Eisenstein, mit Kiess
"durchwachsen, darin gewachsen Eisen ist, von der Maud"ner Revier in Böhmen." Hebenstreit scheint den Eisenglanz und Eisenglimmer für Gediegen-Eisen genommen su
haben, und seine Abbildung passt in der That mehr auf
ein zackigen Stück rothen Eisenzahme mit Eisenglimmer, als
auf Meteoreisen.

Structur zeigt fich auch bei mehrern Arten Gediegeneisens, die ich besitze, ganz deutlich auf dem Bruche, Wir haben also nun drei Arten von Vorkommen des meteorischen Gediegen-Eisens, alle drei mit Nickel, nämlich:

- 1) Eingesprengt, in der Steinert der gewöhnlichen Meteorsteine, in welchen aber doch auch
 bisweilen, wiewohl äußerst selten, sich ein und anderer Zahn von solchem Eisen sindet, der, in soweit ich es gesehen habe, und es auch an einem
 Stücke Meteorstein von Burbotan, das ich besitze,
 zu sehn ist, etwa 3 Zoll lang seyn kann.
- Aestig, mit Ausfüllung aller Zwischenräume durch Olivin, wie in der Pallarschen und den andern vorher erwähnten Massen.
- 3) Derb, und aus blättrigen vierfeitigen, mehr oder weniger innig mit einander verbundenen Tafeln zusammengesetzt, wie in der zunächst zu erwähnenden Masse, deren Herabsallen als Thatsache beobachtet worden ist, und in andern ihr ähnlichen Massen,
- * Die bei Agram in Croatien am 26, Mei 1751 gefallene, Ichon im Verzeichnisse erwähnte Masse, 71 Pfund schwer, welche sich nebst der vom bischöflichen Consistorium zu Agram über dieses Ereigniss ausgestellten Urkunde im Kaiserl. Naturalienkabinet zu Wien besindet, besteht ganz aus dichtem nickelhaltigem und geschmeidigem Eisen. Die slache wie hingegossene Gestalt der Masse mit welförmigen Unebenheiten zeigt offenbar, dass das

Eisen in einem Zustande der Schmelzung war, wie denn auch das von denen, die bei dem Falle zugegen waren, gesehene Herabkommen in Gestalt seuriger Ketten dasselbe lehrt. Stütz im ersten Theile der Bergbaukunde. Annal. B. 13. S. 339, u. B. 18. S. 297. An meinem Stückchen von dieser Masse ist auf einer politten und geätzten Fläche die vorher erwähnte Bildung deutlich zu sehen.

(Die Eifenmasse, welche nach Avicenna bei Dichurdichan oder Dichuzzan in Khoralan (nicht bei Lurgea oder Cordova) gegen Ende des 10ten Jahrhunderts gefallen ist, Annal. B. 18. S. 304; ingleichen auch die bei Lahore in Indien 1620 [1621] gefallene, Annalen B. 18. S. 266 u. 339 +), können nicht der Pallas'schen Masse ähnlich, sondern müssen vielmehr derb, und ohne Olivin, wie die Agramer und ähnliche Massen gewesen seyn, weil man Schwerter daraus geschmiedet oder schmieden gewollt hat, welches bei einer Masse von der Art, wie die Pallas'sche ist, wohl Niemandem würde eingefallen feyn. Das nach Plinius, Hift. nat. II. 58. in Lucanien gefallene Eisen war schwammig. Wie einige andere Massen beschaffen gewesen sind, ist unbekannt.)

* Eine große Aehnlichkeit mit der bei Agram gefallenen Masse hat die, welche am Vorgebirge der guten Hossnung, im District von Graaf-Reynet, am großen Fischstusse ist gefunden worden, und

j) S. mehreres von beiden im folg. Auffatte.

wovon Barrow in seiner Reise nach dem Innern von Süd-Afrika S. 270 u. f. Nachricht giebt. Die Masse, welche der General-Procurator de Mist nach Holland gebracht, und der Batavischen Gefellschaft der Wissenschaften zu Harlem geschenkt hat, wiegt ungefähr 100 Pfund; sie ist aber wahrscheinlich ein Theil einer größern Masse, da Barrow ihr Gewicht auf 300 Pfund geschätzt hat, und auch Stücke dergleichen Eisens theils von den Hottentotten verschmiedet, theils von dem Obersten Prehn und Andern nach England gebracht worden find. Natuurkundige Verhandelingen van de Bataaffche Maatschappy te Haarlem, II. 2. S. 257. Voigt's Magazin für Naturkunde, X. 1. Die abgeplattete wie hingegossene Gestalt, mit wellenförmigen Unebenheiten, und die Belchaffenheit des derben, geschmeidigen, nach der Analyse von Smithson Tennant nickelhaltigen Eisens find ganz wie bei der Agramer Masse; dass auch das Gefüge so ist, wie ich vorher angegeben habe, lässt fich an dem Stücke, das ich besitze, deutlich genug fehen.

* Ohne Zweisel gehört hieher auch die Masse, etwa 190 Pfund schwer, welche unter dem Namen: der verwinschte Burggraf, auf dem Rathhause zu Ellbogen in Böhmen seit Jahrhunderten ist ausbewahrt worden, und sich jetzt größtentheils im Kaiserlichen Naturalienkabinet zu Wien befindet. Unter den diese Masse betreffenden Volkssagen ist wohl die wahrscheinlichste die, dass sie einen tyran-

nischen Buggrafen, während er die Einwohner zu den Frohnarbeiten zusammenläutete, soll erschlagen haben. Ich habe die Maffe gefehen, als fie noch ganz in Ellbogen war; die Geltalt, welche unten flach und oben erhaben und wellenförmig war, zeigt offenbar, dass das Eisen in einem Zustande der Schmelzung auf einen flachen Felfenboden gefallen feyn muß. Klaproth hat at Procent Nickel darin gefunden, und Profesfor Neumann in Prag in leinem Stücke noch mehr. Die vorher beschriebene Beschaffenheit des Gefüges ist an dem gestrickten Ansehn der Obersläche, sowohl an der ganzen Maffe, als an meinem Stücke, wie auch an dem Bruche sehr deutlich zu bemerken. Die Blätter und deren Anhäufungen, aus denen die Maffe besteht, find weniger innig mit einander verbunden, als bei den vorher erwähnten Massen, sie enthält auch kleine leere Zwischenräume. Annal. B. 42. S. 107, und B. 44. S. 103. 104.

* Die von Don Rubin de Celis in Südamerika, in der Provinz Chaco, im Bezirk von San Jago del Estero, bei Ocumpa, in einer Gegend, wo weit umher keine Berge, ja nicht einmel Steine anzutressen sind, gesundene Eisenmasse, über 300 Centner schwer, gehört auch hieher. Die äussere Oberstäche ist dicht und uneben; das Innere voll Höhlungen. In einem Walde in derselben Gegend soll, wie die Einwohner behauptet haben, noch eine solche Masse von ästiger Gestalt seyn, Philosoph. Transactions LXXVIII. P. I. pag 57. Annales de

I

T

T

C

fi

d

Chimie, V. 149. Annal. B. 13. S. 317. Das blattrige Gefüge ist an dem Stücke, welches ich dem Herr De Dree zu Paris verdanke, der noch zwei ähnliche Stücke befaß, und an andern Stücken, die ich gesehn habe, deutlich zu bemerken; das Eisen. ist geschmeidig, und enthält Nickel. Hr. De Dree verlicherte mich, mit dem Mikrolkope in den Zwischenräumen einige dem Olivin der Pallas'schen Masse ähnliche Theilchen gefunden zu haben, wovon ich aber an meinem Stücke nichts bemerken kann. In dem Lehrbuche der Mineralogie von Reufs, 3. Th. v. Buch, S. 480 wird eine Eisenmalle von 100000 Pfund Schwere erwähnt, die Bougainville am Plataflusse in 320, 10' der Breite und 51°, 50' der Länge, von Cadix an gerechnet, (die Worte Länge und Breite find verwechfelt,) gesehen, und von der er in der Sitzung des franzöfischen Instituts vom 25sten Floréal des roten Jahres Nachricht gegeben haben foll, wovon ich aber in den Mémoires de l'Institut nichts finden kapp. Fast möchte man vermuthen, daß das eben die vorher erwähnte Masse seyn möchte, welche sich, wie Don Rubin de Celis fagt, nach den Verlicherungen der Einwohner in einer von den fast undurchdring-Tichen Waldungen der dortigen Gegend finden foll. Die angegebenen Stellen find (wenigstens für menche dortige nomadische Indianer) nicht so gar weit auseinander, nur ist die Stelle, wo die eine Masse fich im Bezirk von San Jago del Estero fand, auf dem rechten Ufer des Plataflusses, die andre aber

miliste, wenn sie richtig angegeben ist, sich auf dem linken Ufer desselben besinden.

* Herr von Humboldt erwähnt in seinem Estai politique etc. fur la Nouvelle Espagne, chap. 8, p. 203 eine Eisenmasse, welche sich in Mexico in der Gegend von Durango (?) befinden, and etwa 300 bis 400 Zentner (?) Schwer seyn soll. Da er diele Gegend von Neufpanien nicht felbst bereiset, und die mitgebrachten Stücke von Don Fausto d'Elhuyar, Generaldirector der Mexikanischen Bergwerke, erhalten hat, und also nur das hat mittheilen können, was Andere ihm darüber gelagt haben, so sinde ich in den sogleich hernach zu grwähnenden Nachrichten von Mexikanischen Eisenmassen, Gründe, um an der Genauigkeit dessen, was man ihm über den Fundort und über die Schwere gefagt hat, zu zweifeln, und eine Identität dieser Masse mit einer von den hernach zu erwähnenden zu vermuthen. Das Eilen ist nickelhaltig: die Stücke, welche ich gesehen habe, waren theils fo dicht, wie die Agramer Masse, theils etwas weniger, ungefähr fo, wie die Ellbogner Mafse; an den meinigen zeigt sich deutlich ein blättriges Gefüge. I fint esb any rame ni remieration

I

u

ſ

E

H

n

w

E

21

Die folgenden Nachrichten von Mexicanischen Eisenmassen hat Herr Bergrath Sonneschmidt theils auf meine Anfrage mir schriftlich mitzutheilen die Gefälligkeit gehabt, theils sind sie aus dessen Beschreibung der vorzüglichsten Bergwerksreviere von Mexico oder Neuspanien, 1804. S. 192 u. 288

entlehnt, (nach welchem Buche ich lange vergeblich nachgefragt hatte, da es auf Kosten des Verfassers gedruckt, und also nicht in den Buchhandel gekommen ist).

Zu Zacatecas fand Hr. Bergrath Sonneschmidt ein großes Stück gediegen Eifen, dessen Schwere 10 Jahre früher ungefähr 20 Zentner betragen konnte. Es lag fonit in der Strafse San Domingo. und wurde gewöhnlich der Eifenstein (la piedra de sierro) genennt. In der Länge hat es ungefahr 4. Fuls und in der Breite 1.; auf der einen Seite war es erhaben; auf der andern hatte es einige Vertiefungen. Es ist derb, ohne Beygemenge, (und alfo ift es nicht richtig, wenn Hr. v. Humboldt, der es auch am ang. Orte erwähnt, fagt, es fey der Pallas'schen Masse ähnlich). Auf frischem Bruche ist die Farbe lichtstahlgrau, das sich zuweilen dem Silberweißen nähert. Der innere Glanz ist schimmernd und auch wenig glänzend. Der Bruch ist an einigen Stellen hakig, an andern uneben von kleinem und feinem Korn, so dass er öfters dem Stahlbruche ähnlich ift. Die specifische Schwere wechselt von 7,2 bis 7,625. An vielen Stellen ist es geschmeidig, an einigen aber spröde. Lagerstätte von Eisenerzen find in der Gegend nicht vorhanden. Herr Bergrath Sonneschmidt besitzt gegenwärtig nichts davon, weil er die beträchtliche Quantität, welche er von diesem mexikanischen Gediegen-Eilen mitgenommen, auf den westindischen Inseln zurückgelassen hat.

An der Ecke des Kirchhofes zu Charcas (welches nicht die Stadt Charcas in Peru, sondern ein kleiner Ort in Mexico, einige Meilen oftwärts von Zacatecas, und auf der Humboldt'schen Karte unter dem Namen Santa Maria de los Charcas angegeben ift,) fand er auch ein großes Stück gediegen Eisen, das, soweit es aus der Erde hervorragte, 24 Fuss long und ungefähr i Fuss stark war. Auch dieles schien ganz derb ohne Beygemenge zu seyn: indessen hatte Hr. Bergrath Sonneschmidt nicht Gelegenheit, das Innere zu unterfuchen, da er nur durchreifte, und außer einem Hammer kein Werkzeug mit fich führte. Auch in der Gegend bemerkte er keine große Eisenlagerstätte. Man hatte ihm gefagt, es fey aus der Gegend eines 12 fpanische Meilen (die Meile zu 5000 Varas) entfernten Landgutes San José del Sitio, dahin gebracht worden. wo man noch mehrere Stücke gesehen haben will. die in einer kalkartigen Steinart, wahrscheinlich Kalktuff, festsitzen sallen. In einer andern Gegend, deren Namen ihm nicht gleich beyfiel, foll man bey den Ackern zuweilen kleinere und größere Stücke von gediegen Eifen finden, wovon er aber nichts gesehn hat. Dass die Eisenmassen zu Zacatecas und zu Charcas keine Rinde oder Ueberzug haben, findet Hr. Bergrath Sonneschmidt sehr natürlich, weil die mexicanischen Berg- und Hüttenleute an allem klopfen und hämmern, was nur ein metallisches oder erzartiges Ansehen hat.

a

Da Hr. Bergrath Sonneschmidt, welcher in keiner großen Entfernung von den angegebenen Gegenden, zu Sombrerete als Bergwerksdirector fich aufhielt, die Gegend um Durango bereifet und genau unterfucht hat, aber schlechterdings nichts von einer dort vorhandenen Eisenmasse sagt, da auch beyde Orte, wo er Eisenmassen fand, Zacatecas und Charcas, von Mexico aus gerechnet, ungefähr in der Richtung von Durango liegen, nur diefes einige Meilen nördlich vom Wendezirkel des Krebles. die andern beiden aber ungefähr eben so weit sudlich von demselben entsernt, so ist es wohl sehr wahrscheinlich, dass eine von den Massen, die Hr. Bergrath Sonneschmidt gesehen hat, dieselbe seyn möchte, welche Hr. von Humboldt erwähnt, und wenn diefer den von Andern ihm mitgetheilten vielleicht ziemlich unbestimmten Nachrichten zufolge lagt: aux environs de Durango, dieses nur so viel fagen will, als von Mexico aus, wo er feinen Hauptaufenthalt hatte, nach Durango zu, und in keiner fehr großen Entfernung davon,

Die am rechten Ufer des Senegal befindlichen großen Massen von geschmeidigem Eisen, wovon Golberry (Voyage en Afrique, tom. II. chap. 9) Nachricht gegeben hat, sind von derselben Bildung, wie ich an einem Stücke bemerkt habe, das sich in dem Münzhause zu Paris in der von Sage angelegten. Sammlung befindet. General O'Hara hat Stücke davon nach England gebracht, Howard hat es analysirt und Nickel derin gefunden. Annal. B. 13.

S. 326. Das geschmeidige Eisen, welches lich nach Compagnon (in den allgem. Reisen zu Wasser und zu Lande. 2. Bd. S. 510) in einigen Gegenden am Senegal, besonders im Lande des Siratik sindet, und von den Negern verschmiedet wird, ist wahrscheinlich entweder ebendasselbe, oder von derselben Art. Wenn es aber, wie man als wahrscheinlich annehmen kann, meteorisch ist, was muß das für ein fürchterliches Meteor gewesen seyn, und was für eine Erderschütterung muß es gegeben haben, wenn so viele große Eisenmassen auf einmal herabgefallen sind.

Auf den Karpathen, an der Grenze von Ungarn gegen Gallizien, in dem Sarofcher Comitat, ist eine Masse von geschmeidigem Gediegen-Eisen, 104 Pfund schwer, gefunden worden, welche im Ungarischen Museum zu Pesth ausbewahrt werden foll. Ann. Bd. 49. S. 181. Die Masse ist derb, auf der Oberfläche größtentheils in rhomboidalischen Tafeln-crystallisirt, und mit bräunlich schwarzem Eisenoxyd überzogen. Der Bruch ist stark glänzend von stahlgrauer ins Silberweisse fallenden Farbe, dicht und hakig. (Ich vermuthe, der dichte Bruch möge wohl da, wo die Blätter Absonderungsflächen bilden, der hakige aber da sich zeigen, wo er quer durch die Anhäufungen von Blättern geht.) Die angegebenen Umstände machen sehr wahrscheinlich, dass die Masse bey der bald zu erwartenden chemischen Analyse sich nickelhaltig zeigen werde; dass sie von demselben Gefüge sey, wie die

von Agram, von Ellbogen und andere die hier erwähnt find, und das sie also einen meteorischen Urspeung habe.

Noch erwähne ich

zwey Massen, deren Ursprung problematisch ist. Sie enthalten nemlich keinen Nikel und ihr Gesüge ist gar, nicht so beschaffen, wie bey den vorher erwähnten Massen. Indessen ist wohl die Abwesenheit des Nikels noch kein hinreichender Grund, um einer Masse blos deswegen den meteorischen Ursprung geradehin abzusprechen, da die 1808 bey Stannern in Mähren gefallenen Meteorsieine auch keinen Nickel enthalten; obwohl die Wahrscheinlichkeit eines solchen Ursprunges dadurch sehr vermindert wird.

* In Aachen fand 1762 Hofrath Löber, welcher als Leibarzt des Prinzen Maximilian von Sachfen dort war, dem neuen Bade gegenüber in dem Straßenpflatter, eine große Eifenmaffe, ungefähr 10000 Pfund schwer, von der er einige Stücke ablichlagen ließ. Sie lag späterhin unter dem erhöhten Straßenpflatter verborgen, und ist am 5. Nov. 1814 wieder ausgegraben worden, wozu ich einige Veranlassung gegeben habe. Annal. Bd. 48. S. 410. 478. Sie war mit einer auswendig ockerartigen, nach innen schlackigen Rinde umgeben. Nach der Analyse vom Hrn. Apotheker Monheim enthält sie keinen Nickel, sondern in 600 Theilen 500,5 Eisen, go Arsenikmetall, 4,5 Kieselmetall, 3 Kohlenstoff, 2 Schwesel. Nach Klaproth's Analyse

ift fie nichts weiter als reines Eifen, ohne eine andere Beimischung. (S. den 6ten Band seiner Beiträge zur chemischen Kenntniss der Mineralkörper.) Das Eisen ist zwar geschmeidig, scheint es aber doch etwas weniger zu feyn, als bey mehreren der vorher erwähnten Massen. An einigen Stellen ist es dicht, an andern voll Höhlungen. Der Bruch ilt an verschiedenen Stellen sehr verschieden: er zeigt fich an manchen Stellen fast wie im Gusstahle, andere Stellen, die etwas mehr Eilenoxyd und Kieselerde zu enthalten scheinen, vielleicht auch wohl, wo Feuchtigkeit mag eingedrungen feyn, haben mehr ein schlackiges und dem Rasen-Eisenstein etwas ähnliches Ansehn. Von der S. 260 erwähnten Art des Gefüges ist hier nichts zu bemerken. Dieses sowohl. wie die Abwelenheit des Nickels, möchten wohl mehr einen irdischen, als einen meteorischen Ursprung vermuthen lassen; indessen scheint auch jede Art der Erklärung eines Ursprungs durch einen bekaunten irdischen Schmelzprozels ihre Schwierigkeiten zu haben. Ein künstliches Schmelzprodukt möchte he wohl deshalb nicht feyn, weil es schwer zu begreifen feyn würde, wie eine Maffe von folcher Größe und Schwere [4"9" lang, 2'11" breit und 2! 6" hoch und gegen 100 Zentner schwer, Ann. Bd. 48. S. 411.] follte können auf einmal geschmolzen werden, und wenn es ja geschehen wäre, wie sie follte ungenutzt liegen geblieben und in Vergessenheit gerathen leyn.

n-

ei-

es

en

ich

er le,

ie.

bl.

ehr

des

hl.

ehr

ing

Art

n-

ten

hte be-

her

nn.

ol-

fie

en-

* Im Mailändischen ist auf der Collina di Brianza, nordnordostwärts von Mailand, bey Villa, vor ungefähr 40 bis 50 Jahren eine Eisenmasse, ungefähr 200 bis 300 Pfund schwer, gefunden worden, als man Stèine zur Grundlegung eines Hauses zusammensuchte. In der Gegend finden sich weit umher weder Eisenlager noch Eisenwerke. Die Masse ist unregelmäßig, länglichrund und etwas flach. Sie war, so wie manche andere Gediegeneisen-Massen, mit einer 1 bis etwa 11 Zoll dicken, auswendig ockerartigen, nach innen schlackigen und dem Raseneisenstein etwas ähnlichen Rinde umgeben, von welcher aber, wegen des lockern Zusammenhangs derselben mit der Oberfläche des Eisens, nur noch wenige Ueberreste vorhanden waren. Das Aeufsere der Masse ist dicht, und voll unregelmäßiger Erhöhungen und Vertiefungen. Das Innere ist nicht von dem Gefüge, wie bei den zuvor erwähnten Massen, sondern durchaus schwammig und ästig, mit vielen Höhlungen, in welchen fich außer dem das metallische Eisen meistens überziehenden Oxyd, auch hier und da etwas von erdiger Substanz findet, die an manchen Stellen fich, wiewohl in geringer Quantität, grüngelblich und glänzend zeigt. Der Bruch ist an verschiedenen Stellen sehr verschieden; hakig, uneben, ungestaltet etc. Das Eisen ist sowohl an den härtern als an den weichern Stellen sehr geschmeidig, und lässt sich warm und kalt schmieden. Ich habe aus einem der weichern und dichtern Stücke eine Stimmgabel schmieden lassen, und daran unten an

den Stiel einen kleinen Knopf in seiner natürlichen Gestalt gelassen. Die Schwere des geschwiedeten Eisens ist 7,5081. Die Farbe ist heller als die des gewöhnlichen Eisens und halt die Mitte zwischen filberweiß und stahlgrau. Nach der Analyse von Guidotti, Klaproth und Gehlen enthält es keinen Nikel, sondern es ist ein sehr reines Eisen, ohne Kohlenstoff, mit einer kleinen Spur von Braunflein und von Schwefel, und nach Klaproth von etwas Bituminösem. Der Ursprung der Masse ilt wohl auch für fehr problematisch zu halten. Mit einem künstlichen Schmelzprodukte hat das Eisen keine Aehnlichkeit; auch machen dieses der isolirte Fundort an einer Stelle, wo keine Eisenlager oder Schmelzhütten waren, die Umgebung mit einer folchen Rinde, wie bey manchen meteorischen Massen. und überhaupt die ganze Beschaffenheit der Masse fehr unwahrscheinlich. In den Schriften der königt. Akademie der Wissenschaften zu München auf 1813, und in dem Schweigger'schen neuen Journale für Chemie, Bd. IV. S. 1. habe ich von dieser Malle zuerst Nachricht gegeben.

(Eine Masse, welche ganz und gar nicht hieher gehört, ist die, welche angeblich bey Gross-Kamsdorf im Sächsischen Erzgebirge ist gefunden worden. Annal. Bd. 13. S. 341., Bd. 18. S. 309. Nach den vorhandenen bistorischen Nachrichten mag vielleicht ansangs wirklich eine gediegene Eisenmasse gefunden worden seyn, diese hatte man aber, der Verordnung zuwider, aus Unachtsamkeit

eingeschmolzen, und um sich die Verantwortung zu ersparen, ilt ein künstliches Schmelzprodukt, das eine Art von Gusstahl ist, untergeschoben worden. An dem größten Stücke, welches fich in der Sammlung der Bergakademie zu Freyberg befindet, sieht man dieses ganz deutlich, nicht nur am Bruche, fondern auch an der gar zu regelmäßigen Gestalt an den Seiten. Auch das Stück, welches in dem königlichen Naturalienkabinet zu Dresden sich befindet, scheint nichts anders, als gewöhnlicher Gulsstahl zu seyn. Ob aber nicht manche kleineren Stücke, die fich in einem und andern Naturalienkabinette befinden, vielleicht auch wohl das, welches Klaproth analylirt, und worin er in 100 Theilen 6 Theile Bley und 1,50 Kupfer gefunden hat, von der wahrscheinlich früher wirklich vorhanden gewesenen gediegenen Eisenmasse mögen abgeschlagen worden leyn, mag ich nicht ent-Scheiden.)

a

n

8

١,

1-

t-

d

n

ie

1-

r

-

n,

Te

l.

le le

e-

8-

n

9. n

i-

in it Ein zu verbessernder Drucksehler: Seite 249 Zeile 16 setze man 1768 statt 1766.

and the state of t

A Specifical Manager of the Specifical Control of

the admit was written as a few parts of the state of the

call us a left south of his bit of all the cities a

III.

Einige orientalische Nachrichten von meteorischen Stein- und Eisen-Massen, von Froschund Fisch-Regen etc.

zusammengestellt von GILBERT.

Diese Nachrichten betreffen Ereignisse, welche uns bisher noch nicht, oder unrichtig bekannt waren. Selbst der erste Beitrag scheint für die Geschichte der Physik und der Gewerbe nicht ohne Interesse zu feyn, stammt er gleich aus einem Gedichte her. Den von mir eingeschalteten Zusatz wird der Leser hier ebenfalls nicht ungern finden. Er enthält die Regeln, nach denen Hr. Prof. Ideler in Berlin Zeitbestimmungen, die nach arabischer Zeitrechnung gegeben find, auf christliche Zeitrechnung zurückführt, und Berechnungen mehrerer bisher noch nicht oder falsch reducirter Zeitangaben aus orientalischen Schriftstellern von dem Herabfallen merkwürdiger meteorischer Eisen - oder Steinmassen, nach diesen Regeln. so mitgetheilt, dass der Leser leicht wird nachrechnen können. Herrn Professor Rosenmüller verdanke ich die Mittheilung der hierbei benutzten Werke aus dem Fachte der morgenländischen Litteratur.

Gilbert.

1) Beitrag zur Geschichte der Lusisteine, aus dem arabischen Ritterromane Antar ausgezogen, nach Hrn. Joseph von Hammer.

Die Stelle, welche Herr von Hammer in dem neusten Hefte der schätzbaren Fundgruben des Orients B. 4. H. 3., unter jener Ueberschrift arabisch und in deutscher Uebersetzung, bekannt gemacht hat, - (als erste Probe des Styls und der Erzählungsmanier des berühmtesten arabischen Ritterromanes, der ohne Einmischung übernatürlicher Mächte, weit mehr als die Taufend und Eine Nacht anziehn foll, durch Treue des Sittengemäldes und hiltorisches Interesse, wenn er gleich mit fabelhaften Sagen vermischt ist,) - verdient es in der That, den Documenten beigezählt zu werden, welche uns die Vorzeit über das Herabfallen von Massen Gediegeneisens aufbehalten hat. Der Erzähler, Assmai, läst seinen Helden Antar, "dessen Glück Gott wollte," auf folgende Art zu einem Schwerte fonder Gleichen kommen.

r

Er trifft auf zwei kämpfende Ritter, Brüder und Söhne eines großen arabischen Emirs, die bei seinem Anblick im Kampse inne halten. Der jüngere berichtet ihm, sein Großvater habe aus einem schwarzen Steine, "der wie ein Kiesel aussah, aber von hellem lichtem Glanze war," und der ein Kameel, welches ein Hirt mit ihm geworsen, durchbohrt und zerrissen habe, "Kraft seines Scharssins für einen Donnerstein erkannt. Er ließ Künstler

aund Handwerker kommen und befahl ihnen "einen Degen daraus zu schmieden," Als dieles geschehn war, gab der Emir dem Schmid dafür ein Ehrenkleid, "schwang den Degen dass er "glänzte, und der Tod auf der Klipge wiederschien, ,und hieb damit dem Schmide den Kopf ab." Das Schwert aber nannte er Dhami. Von ihm erbte es der Vater, und als dieser seinen Tod verspürte, berief er den jüngern Sohn zu sich, und fagte ihm: "Nimm mein Kind diesen Degen und "verstecke ihn vor deinem Bruder; wenn du dann "fiehst, dass er sich meines Habes bemächtigt und "Tage und Nächte durch praist, dass er dich unge-"recht entfernt und den Herrn der Erde und des "Himmels nicht achtet, begnüge du dich mit die-"lem Degen, und bewahre dir denselben für die "kommende Zeit auf; er wird dir nützen und dich "schützen im Laufe der Jahre. Denn wenn du da-"mit nach Persien ziehst, und ihn dem Chosroos "Nulchirwan bringst, wird er dich mit Geschenken und Gnaden überhäufen, und wenn du damit "zum Cafar (von Byzanz), dem Könige der Die-,ner des Kreutzes gehst, wird er dir geben was du "verlangst an Gold und Silber," Er habe darauf den Degen in diesen Sandhügeln vergraben, der Bruder habe aber, als er nach dem Tode des Vaters alle seine Güter in Besitz genommen, den Dhami vermilst, ihn auf die Folter spannen lassen und ihm cas Geheimnis abgepresst, und sey jetzt mit ihm hier, um fich den Ort zeigen zu lassen, wo

en

les

für

er

en.

)." hm

er-

nd

nd

nn

ba

10h

es

e-

lie

ch

a-

08

n

it

elu

uf

er

-

n

n

0

er das Schwert verborgen habe. Er aber könne den Ort nicht wieder finden, und sein Bruder habe ihn mit dem Schwerte angefallen, um ihn zu tödten. Antar erlegt als ein ehrenfester fahrender Ritter den ältern Bruder, schickt den jüngern heim, um das Volk feines Vaters in Ruhe zu regieren, legt lich an einer kleinen Walferquelle nieder, und findet beim Wühlen in dem Sande den geluchten Degen in seiner Scheide: "einen Degen geglättet ,,und schwer, breit und lang, angelaufen mit blau-"lichem Hauche der Amalekiten, strahlenwerfend, und schärfer treffend als der Wetterstrahl mit "Streichen, wider die kein Panzer und Helm ver-"wahrt; der Tod lag darauf im Hinterhalte, und "die Ameilen schienen die Klinge geglättet zu ha-"ben. Treffender als das Schickfal, fchneller erreichend als das Unglijde, wenn er der Scheide ent-"fuhr leuchtete er, und wenn er fiel schnitt er; Licht "entstrahlte demselben. Wer ihn ansah, fah dass er "vor Ungeduld zitterte, und wer ihn berührte, "zahlte die Probe mit dem Leben. Von diesem "Degen fang der Dichter Schemaamaa: Grünlich "von Farbe, die Zierde des Todes Ameisen - be-,, wohnet, strahlend wie Blitzesgeschoss, schneidend "durch Mark und Gebein; wer ihn führet, dem "liegt nichts an der Linken und Rechten; Stahl und "Edelgestein schwinden als Wasser dem Glanz."

Herr von Hammer äußert, es scheine ihm nach dieser Stelle wahrscheinlich, dass die ersten sogenannten Damascener Klingen aus Aerolithen

verfertigt, oder wenigstens aus Meteoreisen nachgeahmt worden feyn, da das von Hrn. von Widmanstädten für den Kailer Franz aus dem grosen böhmischen Aerolithen *) versertigte Messer schon von Natur das Ansehn einer gewässerten Klinge habe, pur dass auf ihr die Linien sich in Ecken brechen, auf den wahren Damascenern aber wellenförmig verschlungen seyn. - Mehr geneigt ware ich indess aus dieser Stelle des Dichters zu schließen, das Herabfallen unter donnerndem Getöle von Gediegen-Eilen, aus dem lich Degenklingen von der ersten Güte schmieden lassen, sey ein in Arabien mehrmals vorgekommenes Ereignis, das sich im Andenken des Volks erhalten habe. Was die Damascener betrifft, so scheint mir gegen Hrn. v. Hammer's Meinung einige Schwierigkeit aus folgender Stelle zu entitehen, welche Agricola de ortu et causis fubterraneorum (Opera, Bafil. 1546. fol. p. 77) aus Avicenna anführt, und auf die ich mich Ichon in den Annalen B. 18. S. 305 berufen habe, Avi-

^{*)} Dem verwünschten Burggraf von Ellbogen (vergl. Annalen B. 44. S. 104). Möchten die HH. von Schreibers und von Widmanstädten in den ruhigeren Zeiten, die jetzt wieder beginnen, Musse sinden, ihre interessanten technischen Versuche mit dem Agramer und diesem Meteor-Eisen bekannt zu machen, worauf sie die Naturkündiger hoffen ließen. Nach Proust läst sich das amerikanische Meteoreisen nicht härten; sollten sich daber wirklich aus Meteoreisen ohne Zusammenschmieden mit Stahl nach Damascener Art, Degen von ausgezeichneter Güte versertigen lassen? Eine Frage, welche niemand genügender als Herr Director von Widmanstädten beantworten kann. Aus dem Lahorer Meteoreisen konnte man nur durch Zusatz von ein Viertel gewöhnlichem Eisen (oder Stahl?) nach des Kaiser Jahan-Gir's Bericht, Degen und Oolche bereiten. Gilb.

cenna vero inquit: in Persia decidunt, cum coruscat, corpora aërea et similia sagittis hamatis, quae in fornacibus non liquescunt: sed eorum aqua in fumum refolvitur, terra autem fit cinis. Decidio quoque prope Lurgeam *) ferri massa 50 librarum, quae prae duricia frangi non quivit **), cujus pars ad regem Torati ***) est missa, is vero ut enses inde cuderentur. iussit: sed illa nec frangi nec cudi potuit ****). "Arabes autem dicunt enses Alemannicos, qui "optimi funt, ex eiusmodi ferro fieri, " Atque haec quidem Avicenna. Arabes vero verba sibi dari a mercatoribus patiuntur in hoc. Germanis enim ferrum non de coelo decidit; wohl aber dann und wann den Arabern, welche in ihrer Wüste keine Eisenbergwerke hatten, und desto aufmerkfamer auf diese himmlischen Gaben gewesen zu feyn scheinen.

Gilbert.

Soll, wie aus den weiterhin folgenden arabischen Nachrichten erhellt, Djurdjeam heisen, und den gleichnamigen Hauptort der kleinen am öftlichen Ufer des Caspischen Meeres liegenden, an Chorasan gränzenden persischen Provinz Dichordschan bedeuten.

^{**)} Man schlägt Dutzende von Meisseln entzwei, wenn man von einer Masse dichten Meteor-Eisens auch nur kleine Stücke trennen will.

Gilb.

e**) Wahrscheinlich eine ähnliche Latinistrung als die vorige des Namens einer persischen Stadt, in welcher der damalige Sultan von Chorasan sich jaushalten mochte, vielleicht von Herat, der jetzigen (von Alexander dem Großen gegründeten) Hauptstadt der Provinz Chorasan, woser man leicht in einem MS. Toras lesen konnte.

Gilb.

[&]quot;"") Vermuthlich mochte sie olivinartige steinige Theile entbalten. Gtlb.

2) Von Meteorsteinen, welche im J. 1740 in der Türkei, an der Donau herabgefallen sind;

aus den osmanischen Reichsannalen Subbi Mohammed Esendi's ausgezogen von Joseph von Hammer in Wien *).

Im Jahre der Hedschra 1153: Ereignis himmlischer Zeichen in der Gerichtsbarkeit von Hesargrad (Rasgrad).

Am 4ten des Monats Schaban **) geschah es, dass in dem nicht serne von dem Ufer der Donau gelegenen Markte Hesargrad, bei heiterer Luft, während auch nicht die geringste Spur einer Wolke am Himmel zu fehn, und auf der Erde kein Lüftchen zu fühlen war, durch Gottes des Allmächtigen allweisen Rathschlufs, um Mittagszeit, jählings ein heftiger, einem Wirbelwind ähnlicher Wind entstand, die Luft sich trübte, und der heitere Tag durch Stanbwolken und Regengülse finsterer Nacht gleich wurde. Dieses schreckliche Ereignis machte alle fürchten und zittern, und während die, welche fich außer Haule befanden, mit größtem Schrecken ihren Häufern zueilten, lielen 3 auf einander folgende seelenschmelzende Donnerschläge, gleich dem Knalle von Kanonen, deren jede mehrere hundert Centner Pulver auf einmal abschießt, mit einem

Bekannt gemacht, türkisch und in einer Uebersetzung, ebenfalls in den Fundgruben des Orients, B. 4. H. 3. G.

^{**)} Welches der 25. Oct. 1740 war, wie aus dem Zusatze zu dielem Aussatze erheilt. Gilbert.

der

m-

Zei-

es,

au

ft,

ke ft-

en

in

it-

ag

ht

te

re

n

1-

m

rt

n

۲,

u

fürchterlichen, den Verstand betäubenden Getöse, vor dessen Wirkung die Himmelskugel und die Erdkugel erzitterten, und alle Menschen und Thiere, die sich in dem Gesichtskreise besanden, sinnlos zur Erde sielen.

Eine Zeit lang blieben fie betäubt, und ohne Kunde die Einen von den Andern. Als fie fich dann aber nach dem Ort erkundigten, wo der Blitz herabgefallen war, vernahmen fie, dals Ein Streich [Blitzstrahl] geschehen worden sey in dem Garten eines nahe an dem Markte Rasgrad geleguen Mayerhofes, ein zweiter auf dem Felde, und ein dritter weiter gegen Norden. Wiewohl weder Menich noch Vieh todt geblieben, so war doch einer von den an diesem Orte Gegenwärtigen 7 bis 8 Tage lang mit epileptischen Zufällen behaftet, und verlorseine Sprache.

Da dieses die vornehmsten Einwohner mit Augen angesehn hatten, so erstatteten sie, sammt dem Richter, hierüber Bericht an die hohe Pforte, und legten zwei schwere steinförmige Körper bei, welche in der Gerichtsbarkeit von Rasgrad mit diesen Streichen niedergefallen waren. Als dieselben in Gegenwart des Großwesses besichtigt und gewogen wurden, wurde der eine 19 und der andre 2 Okka schwer besunden *), eine mineralische Masse, die zwischen Eisen und Stein das Mittel hielt. Diese

^{*)} D. i. der erste 49,5, der zweite 5,2 Pfunde des französ.

Markgewichts, da z Okka nach Paucton 2,600 folche
Pfunde beträgt.

Gilbert.

beiden Massen wurden sogleich von dem Großweire mit einem über diese wunderbare Begebenheit erstatteten Vortrage, an den kaiserlichen Steigbügel einbegleitet. Man besprach sich eine Weile über diese Abzeichen der Allmacht des höchsten Gottes, der über allen Wahn erhaben, und über die Ursachen, warum Er dieselben unter die Menschen gesendet; und beschloß das Gespräch mit dem aus dem Sinne des Textes: "Gott thut was er will" hergenommenen Verse:

Sein Schwert schnitt diesen Stein, bestreit' es nicht, Das Schwert: Man geht mit ihm nicht ins Gericht!

Einige Sterndeuter und Kundige der Erfahrungs-Wissenschaften, welche dieses seltene Zeichen erwähnten, erklärten dasselbe in ihren Werken fo: Ein westliches oder nördliches unglückliches Gestirn sey in einen verderblichen Knoten gefallen, und dieses bedeute vor, das Verbrennen und den Untergang eines der drey Sterne im Schweife des großen Bären. Allein diese Begebenheit widerstreitet nicht im geringsten dem höchsten Willen des Einzigen Gottes (dessen Herrschaft erhöht und dessen Wahrzeichen verdeutlicht werden mögen,) sondern mag füglich als ein von Gott herkommendes Ereigniss und als Vorbedeutung einer dem Willen des Schöpfers angemessenen Begebenheit, als eine Ermahnung und Warnung betrachtet werden, worüber bei vernünftigen und urtheilsfähigen Männern kein Zweisel obwaltet. Bei Gott! Er weis am besten die wahren Verhältnisse der Dinge.

Z U S A T Z

Gre er-

gel

ber

tes,

rla-

ge-

aus

110

t,

ah-

lei-

er-

kli-

geand eife lerdes lefondes len

ine

-10

ern

be-

(Zurückführung arabischer auf christliche Zeitrechnung.)

Folgendes Verfahren lehrt Hr. Prof. Ideler in Berlin, in demselben Heste der Fundgruben des Orients, um ein Datum nach arabischer Zeitrechnung auf die christliche Zeitrechnung zu reduciren. Es dürste Mehreren meiner Leser angenehm seyn, dieses einsache Versahren hier zu sinden, und von mir gleich auf den vorliegenden Fall angewendet zu sehen: (Welcher Tag unserer Zeitrechnung ist der Jehen: (Welcher Tag unserer Zeitrechnung ist der Jehen: (Welcher Tag unserer Zeitrechnung ist der Jehen: die Zahl der verstossenen Jahre [der Hedschra] durch 30; (1152=38.30+12); der Quotient giebt die [Zahl der] abgelausenen Schaltzirkel (jeden von 30 Jahren) und der Rest die verstossenen Jahre des lausenden Schaltzirkels an *). Die Tagessumme der verstossen Jahre im Schaltzirkel giebt die solgende Tasel I:

J.	Tag. S.	J.	Tag. S.	J.	Tag. S.	J.	Tag. S.
I	354	9	3189	17	6024	25	8859
*2	709	*10	3544	*18	6379	*26	9214
3			3898				
4	1417	12	4252	20	7087	28	9922
*5	1772	*13	4607	*21	7442	*29	10277
6			4961				
*7			5315				1
8	2835	*16	5670	*24	8505		

*) Die Araber und überhaupt die Muselmänner rechnen nach Mondenjahren. Je zwey nächste Zusammenkünste des Mondes mit der Sonne, liegen, nach der mittlern Bewegung beider Himmelskörper gerechnet, 29 Tage, 12 Stundea 44 Minuten 3 Secunden aus einander; das astronomische Mondjahr hat daher eine Länge von 354 Tagen 8 Stund. 48 Min. 36 Secund., und vernachtässigt man die Secunden, so betragen biernach 30 astronomische Mond-

Sie addire man zum Product des Quotienten in 10631 (4252+38.10631=408230). Und dazu füge man noch die aus der folgenden Tafel II zu nehmende Tageslumme der verstossnen Monate des laufenden Jahres, und endlich die Tage des laufenden Monats (+207+4)

Name d. Monate.	Tage	Tag. Sumr
1) Muharrem	-30	30
2) Safer	29	59
3) Rebi el-ewwel	30	89
4) Rebi el-achir	29	118
5) Dichemadi el-ewwel	30	148
6) Dichemadi el - achir	29	177
7) Redicheb	30	207
8) Schaban	29	236
9) Ramadan	30	266
10) Schewwal	29	295
11) Dfu'l-kade	30	325
12) Dfu'l - hedsche	29	354

Auf diese Weise hat man die Anzahl aller Tage gesunden (408441), welche auf die Hedschra von ihrer Epoche bis auf das gegebene Datum, einschließlich gehen. Addirt man dazu noch die 227015 Tage, welche vom Januar des ersten Jahres unserer Zeitrechnung bis zum 15 Julius 622, der Epoche der Hedschra verstoffen sind, so erhält man die ganze Anzahl von Tagen (635456) welche man auf unsere Jahre und Monate zu bringen hat. — Dieses geschieht am bequemsien, wenn man sie durch die 1461 Tage einer 4 jährigen Schaltperiode dividirt, den Quotienten 4 Mahl nimmt, und vom Reste

jahre gerade 10631 Tage. Da aber 30 bürgerliche Mondjahre zu 354 Tagen jedes nur 20620 Tage ausmachen, so bat man die in der folgenden Schalttabelle mit * bezeichneten Jahre zu Schaltjahren von 355 Tagen gemacht, indem man den Schalttag dem letzten Monate des Jahres zulegt. Dieles sind die Gründe, welche Hr. Prof. Ideler zu Begründung seines Versahrens lichtvoll auseinandersetzt. 51

an a-

es,

4)

an-

-00

en.

om

um

nd,

56)

gen

fie

ode

efte

nd-

lo

ichin-

ares

eler

tzt.

fo oft 365 abzieht als es geht, und für jeden Abzug noch ein Jahr mehr rechnet (434.4+3J.+287 T.) Der Rest der letzten Subtraction zeigt den lausenden Tag des julianischen oder alten Kalenders an, dem das gegebene arabische Datum entspricht. Ist von den Zeiten nach der Kalenderverbesserung die Rede, so muss man, um das Datum in das gregorianische zu verwandeln, für die Jahre vom 5. Octob. 1582 bis Ende Februar 1700, 10, von da bis Ende Februars 1800, 11, und weiterhin 12 Tage hinzusügen. Es ist aber die Tagessumme unserer Monate, das Schaltjahr ausgenommen, solgende:

Januar 31, Februar 59, Marz 90, April 120, Mai 151, Juni 181, Julius 212, August 243, Sept. 273,

Octob. 304, Nov. 334, Decemb. 365.

(Wir haben also 1739 J. + 298 T., und das gesuchte Datum ist: der 25. October 1740.)

Als ein anderes Beyspiel dieser Zurückführung auf unsere Zeitrechnung, diene der bisher noch nicht genau reducirte Tag, an welchem 20 geograph. Meilen ölilich von Lahore in Hindostan, die 35 engl. Pfund (160 Tolah's jeden zu 180 Grain Troy - Gewicht) Schwere Masse gediegen Eisen herabgefallen ist, aus der der mongolische Kaiser Gehan-Gir, laut der von ihm felbst perfisch geschriebenen Memoiren, mit Zusatz von 1 gemeinem Eisen (weil es für sich unter dem Hammer brach) 2 Säbel, 1 Messer und 1 Dolch hatte schmieden lassen, die von der ersten Güte waren. (Annal. Bd. 18. S. 266 u. 339). Das Meteor erschien im J. 1030 der Hedschra, den 30. des Furverdeen, welcher der 26. des Immad ul Ouwul d. b. des Monats war, der in Taf. II den Namen Dichemadi el-ewvel führt. - Der verflossnen Jahre der Hedschra waren also 1029, und es ift 1029 = 34.30 +9 J., oder Taf. I zu Folge 3189+34 × Annal. d. Physik. B. 50. St. 3. J. 1815. St. 7.

10631 = 364643 Tage. Dazu noch 118 + 26 Tage, giebt 364787 Tage seit der Hedschra; und fügt man noch 227015 T. hinzu, zusammen 591802 Tage seit Christi Geburt. Diese sind 405.4 J. + 97 T. oder 1620 J. + 97 T. des Julianischen, oder 1620 J. und 107 T. des Gregorianischen Kalenders. Der Tag des Meteors war also der 17. April 1621, und kein Tag des Jahres 1620, wie aus dem Greville'schen Aussatze an der angesürten Stelle der Annal. S. 339 sieht.

Ein drittes Beyspiel. Der naturhistorische Schristeller Zacharias Kazwini starb am 7. Moharram des J. 682 der Hedschra; wenn nach unserer Zeitrechnung? Es sind 681=22.30+21 J., oder Tafel I zu solge 7442+22.10631=241324 Tage, dazu noch 7 Tage und 227015 Tage, giebt 468346 Tage seit Christi Geburt; und diese sind 320.4+2J.+96 T. oder 1282 J. und 96 Tage, also der 6. April 1283 nach dem Julianischen Kalender.

Ein viertes Beyspiel. Der große Steinregen in Afrika, von dem uns der Chronikenschreiber Ebn-Alathir die Nachricht aufbehalten hat, ereignete sich im zweyten Monat Rebi des Jahres 411 der Hedschra. Wenn war der iste dieses Monats nach christlicher Zeitrechnung? Es sind 410 = 13.30 + 20 J, oder nach Tasel I 7087 + 138203 = 145290 Tage. Dazu noch 89 + 1 Tag und 227015 Tage, giebt 372395 Tage seit Christi Geburt, oder 254.4 + 3 J + 206 T, oder 1019 J. und 206 Tage; also, da 1020 ein Schaltjahr ist, der 24. Juli 1020 nach dem julianischen Kalender.

Ein fünstes Beispiel. Der Steinregen beim Dorfe Soweida in Aegypten ereignete sich im Monat
Schaban im J. 242 der Hedschra. Wenn war der stie
dieses Monats nach christlicher Zeitrechnung? Es sind
241 = 8.30 + 1 J. oder 354 + 85048 = 85402 Tage,

dazu 207+1 T. und 227015 T. giebt 312625 Tage seit Christi Geburt, oder 213.4+3J.+337 T., oder 855 J. +337 T., also da das J. 856 ein Schaltjehr war, uicht am 3. sondern am 2. December im J. 856.

ge,

nan

feit-

520

T.

ors

res

an-

rift-

am

ch-

hø rifti

282

lia-

in

bn-

ich

ra

eit-

ach

ch feit

919

der

or-

nat

lie nd

ge,

Ein fechstes Beispiel. Der große in Tabaristan herabgefallene Stein wurde im Monat Safar im J. der Hedschra 238 dem Khalisen Mutawakkel zugeschickt. Wenn war der iste dieses Monats? Es sind 237=7. 30+27 J. oder 9568+74417=83985 Tage. Dazu 30+1 T. und 227015 T., giebt 212.4+3 J.+204 T., oder 851 J.+204 T., also, da 852 ein Schaltjahr war, den 22. Julius 852.

3) Nachrichten aus Morgenländischen Manuscripten

Sylvestre de Sacy, Mitgl. d. Inst. in Paris.

In des Herrn Sylvestre de Sacy-Chrestomatie Arabe, ou Extraits de divers écrivains
Arabes, tant en prose qu'en vers, à l'usage des
Eleves de l'Ecole spéciale des langues orientales
vivantes, Paris 1806. sinden sich Auszüge aus dem
cosmographischen und naturhistorischen Werke,
welches der gelehrte Imam Zacharias aus Kasbin unter dem Titel: Wunder der Geschöpse
(Adjaïb almakhloukat) geschrieben hat. Herr
Chezy hat diese Auszüge aus dem Plinius der Morgenländer, wie er ihn nennt, in dem dritten Theile
dieser Chrestomathie übersetzt, und er und Hr.
Sylvestre de Sacy haben sie umständlich und
wissenschaftlich erläutert*). In der Einleitung Kaz-

^{*)} Tom. 3. p. 371 – 499. Zacaria ben - Mohammed ben-Mamoud Anfari Kazwini ift der ausführliche

wini's findet fich zur Erläuterung des Worts Befonderheiten folgendes: "Ich rechne zu den Besonmerheiten in der Natur, das Herabkommen eisenmatiger und kupferartiger Steine. welche mit "dem Blitze herunterfallen; man findet folche in "Turkestan und manchmal auch in Guilan. Dahin "gehört auch die Thatsache, welche von Abou'l-"hasan Ali Ebn-Alathir Djézeri in seiner "Chronik angeführt wird; er erzählt nämlich, man "habe im Jahre der Hedschra 411 in Afrika eine mit "Donner und Blitz geladene Wolke sich bilden "sehn, aus der viele Steine herabgeregnet sind (d'où "il tomba une pluie de pierres abondantes), wel-"che alle, die sie erreichten, tödteten *)."

Name des Verfassers, und: Wunder der Geschöpse und Besonderheiten der Wesen, der aussührliche Titel des Werks. Die Zunahmen Ansari und Kazwini zeigen an, dass die Familie Zacharias aus Medina abstammte, und in Kasbin zu Hause war. Er war ein gelehrter Rechtsverständiger, hat mehrere Bücher hinterlassen, und starb am 7. Moharram im J. 682 der Hedschra, welches, wie wir vorhin gesehn haben, der 6. April 1283 war. Der erste Theil des Werkes handelt von den überirdischen Wesen und ist astronomischen und chronologischen Inhalts; der zweite Theil von den irdischen Wesen, den Meteoren, den Meeren, Inseln und Meerthieren, und von der Erde und ihren Merkwürdigkeiten aus den drei Natureichen.

") In einem arabischen Auszuge aus Kazwini sindet sich, wie Hr. de Sacy ansührt, noch der Umstand, dass diese Steine groß waren und 5 Rotl wogen. Auch Abulfeda führt diesen Steinregen in Afrika beim Jahre 411 an, berust sich ebenfalls auf Ebn-Alathir, undfagt, er habe sich im zweiten Monat Rebi dieses Jahres ereigust. Es war aber der

71-

n-

n-

nit

in

1-

er

an

nit

en

uc

-1:

nd.

es

en

nd s-

rb'

ie

19

Hr. de Sacy bemerkt hierbei, in einem arabischen Auszuge aus Kazwini's Werk [der sich unter dem Titel: Auserlesene Perlen des Buchs Wunder der Geschöpfe etc. unter den arabischen Manuscripten der Pariser Bibliothek findet] seyen dieser Notiz noch folgende beigefügt: "außerordentlichen himmlischen Phänomenen, lagt "der anonyme Epitomator, muls man das Erschei-"nen der Cometen und das Herabfallen schwerer "Körper rechnen. Es wird erzählt, es sey ein-,mal in Djouzdjan eine Eisenmasse von 50 Man "herabgefallen (der Man ist ein Vielfaches vom "Rotl, doch giebt es deren von verschiedenem Ge-"wicht) und diese habe zusammengebacknen Kör-"nern grober Hirse geglichen: die Substanz wurde "vom Eisen nicht angegriffen Ein andres au-"serordentliches Phanomen ist ein Regen coagu-"lirten Blutes, der zu Balk herabfiel *)." "Man "erzählt, man habe einst dem Khalifen Mutawak-"kel einen Stein gebracht, der in Tabaristan aus "der Luft gefallen sey; er wog 840 Rotl, war weiss ,,und hatte Risse; man foll das Getöfe, welches er "beim Herabfallen gemacht hat, 4 Parafangen rund number gehört haben, und er foll 5 Ellen tief in

¹ste des Rebi el-achtr des J. 411 der Hedschra, der 24. Juli 1020, (S. 290) und der letste jenes Monats der 21. August des J. 1020. Und der Aegyptische Rott wiegt ungefähr 1 französisches Pfund.

Gilbert.

^{*)} Dieser Blutregen zu Balk, bemerkt Hr. de Sacy, ist ohne Zweisel der, welchen Tabari beim J. 245 der Hedschra ansührt (Elmac. Hist. Sarac. p. 151.)

"die Erde eingefunken seyn *)." "Bei einem in Aegypten gelegenen Dorse Namens Soweida sind 5 Steine aus der Lust herabgefallen; einer derselben siel auf das Zelt eines Beduin-Arabers und setzte es in Brand. Man wog einen dieser Steine, sein Gewicht betrug 4 Rotl; vier dieser Steine sind nach Fostat, der fünste nach Tennis gebracht worden **). Es ist auch auf ein Dors ein Regen weißer und schwarzer Steine herabgefallen. Djahedh erzählt

^{*)} Der ungehoure in Tabaristan herabgefallene und dem Kalisen Motawakkel überreichte Stein, ist wahrscheinlich entweder aus dem J 242 oder 245 der Hedschra, welche an ausserordentlichen Erscheinungen reich waren. (Elmac. p. 150. und Abu'lfaradj Hist. dynast. p. 261.) de Sacy.

^{**)} Auch Abu'lmahafen führt dieses Herabfallen von Steinen aus der Luft beim Dorfe Soweida an, und fagt es habe fich im Monate Schaban im J. 242 der Hedichra ereignet. Unter demfelben Datum führt es auch Soyouti an. [Wir haben aber S. 290 geschen, dass der 1. Schaban des J. 242 der Hedschra der 2. Decemb, 856 war. G.] Diefes Jahr zeichnete fich noch durch andere Phanomene, z. B. durch Erdbeben aus. In dem Manuscripte Soyouti's findet fich noch folgendes hierher gehörendes Ereignis: "Im J. "679 der Hedschra, an dem Tage, an welchem die Pilger "den Berg Arafat zu besuchen pflegen, fiel in Aegypten "ein großer Hagel, der einen großen Theil der Feld-"früchte zerstörte. In Alexandrien schlug der Blitz ein; "auch fiel er an dem Fusse des sogenannten rothen Berges "auf einen Stein, den er verbrannte. Man nahm diesen "Stein, lies ihn schmelzen, und erhielt daraus mehrere "Unzen Eisen, nach dem Aegyptischen Rotlgewichte." de Sacy. [Diefer Stein ift also im J. 1280 der chrifil. Zeitrechnung in Alexandrien in Aegypten herunter gefallen. Gilb.]

n in

find

ben

e es

Ge-

ach

**).

and

ählt

Ka-

lich che

tei-

ig-

an.

ie-

B.

J.

er

en d-

n;

es

en

46

l.

-

es fey einst über der zwischen Ispahan und Khusistan gelegnen Stadt Aïdhadj eine sehr schwarze
Wolke erschienen, an die man sast mit dem Kopse
stieß; man hörte in dieser Wolke etwas dem Geschrei eines Kameel-Füllens ähnlich, und als die
Wolke platzte, ergoss sich aus ihr ein so furchtbarer Regen, dass er alles unter Wasser zu setzen
drohte. Darauf warf die Wolke Frösche und sehr
grotse und sette Fische herunter, die man as und
in Vorrath legte. Auch soll es einmal bei den Einwohnern von Djebal eine Menge Fische geregnet
haben, von denen mehrere 1 Rott wogen."

4) Nachrichten aus morgenländischen Manuscripten,

Herrn Quatremère, Prof. d. griech. Litt. zu Rouen *).

— Der Verfasser des in Paris im Manuscript vorhandnen Mirat-al-zeman sagt, indem er sich auf 1bn-Habib al-Haschemy berust, der in Tabarestan vom Himmel gefallene Stein sey im Monat Safar des J. 238 der Hedschra von Taher ben Abdallah dem Khalisen Mutawakkel zugeschickt worden. Im übrigen stimmt seine Erzählung mit der von Hrn. von Sacy angeführten

^{*)} In den Anhängen zu dem zweiten Bande seiner Mémoires geogr. et histor. sur l'Egypte, et sur quelques contrées voisines, recueillis des MS, coptes, arabes etc. de la Bibl. imper. Paris 1811. Gilb.

überein, nur dass sie dem Steine ein Gewicht von 840 Dirhems und nicht Rotls giebt, welches auch wahrscheinlicher ist *).

Nach dem Bericht von Ibn-al-Athir erhob fich im J. 285 der Hedschra **) über der Stadt Kusah ein mit gelben Dünsten beschwerter Wind, der bis Sonnen-Untergang blies, und dann seine Farbe in schwarz verwandelte. Bald daraus siel ein hestiger Regen, von fürchterlichen Donnerschlägen und ununterbrochenen Blitzen begleitet. Nach einer Stunde sielen in dem Dorse Ahmed-dad und der Gegend umher weisse und schwarze Steine, die in der Mitte runzlich und rauh waren (dans le milieu desquelles étoient des rugosités). Man brachte ihrer mehrere nach Bagdad, wo Viele sie gesehn haben.

^{*)} Der zste des Monats Safar im J. 238 der Hedschra war der 22. Juli 852 (S. 291) der chriftl. Zeitrechnung, der letzte des Monats Safar aifo der 19. August 852. Die persische Provinz Tabarestan, auch Masanderan genannt, gränzt füdlich an das Kaspische Meer. Ueber das jetzige persische Gewicht findet man fehr verschiedene Angaben. Ein Man oder Maun enthält nach Paucton 8 Rotls, nach Kruse 6 Rotls, jeden von 50 Derhems, und der von Tauris wiegt nach ersterem 61 französische, nach letzterem ungefähr 6 Berliner Pfunde, der von Chahy ist aber noch ein Mal so schwer. Nach Peyssonel wiegt dagegen 1 Man in Tauris 183 franz. Pfunde. Bleiben wir bei Paucton's Bestimmung, so wurde der in Tabareltan herabgefallene Stein, wenn er 840 Rotls wog, ein Gewicht von 656 franz. Pfunden, wenn er nur 840 Derhems wog, etwas über 13 Pfund gehabt haben, Gilbert.

^{**)} Nach christl. Zeitrechnung war dieles das J. 897. G.

Im J. 318 der Hedschra sah man zu Bagdad eine Röthe am Himmel, und es siel auf die Dächer der Häuser eine Menge röthlicher Sand herab.

Der von Hrn. von Sacy ausgezogne arabische Schriftsteller giebt keine Jahrszahl an, wenn die Masse körnigen Eisens im Djouzdjan oder Djordjan herabgefallen sey. Dieses ist in den ersten Jahren des Sten Jahrhunderts der Hedschra geschehn*), wie aus Avicenna erhellt, den Abulseda (Annales muslem. t. 3. p. 96) ansührt, und der uns solgende Umstände ausbehalten hat: "Zu "meiner Zeit, sagt dieser berühmte Schriftsteller, "ist aus der Atmosphäre in der Provinz Djordjan "eine Masse herabgefallen, welche ungefahr 150 Man "wog **); als sie auf der Erde ankam, sprang sie

^{*)} Der Anfang des 5ten Jahrhunderts der Hedfehra fällt in das Jahr 2009 der christlichen Zeitrechnung. Gilb:

^{**)} Rechnen wir den Man auch nur, fo wie er in Tauris nach Paucton's Angabe üblich ift, zu 61 franzof. Pfunde, fo find 150 Man nahe an 940 Pfund. Der Man von Chaby ift aber noch ein Mal fo schwer; nach Peyssonel wiegt der in Tauris übliche Man 182 franz. Pfuade. In Bender Aballi, dem Hafen am perfischen Meerbusen, wiegt der große Man 71, der kleine 64 franz. Pfunde, zu Surate aber, an der westlichen Kuste von Hindostan, der Man, wonach Mineralien gewogen werden, 342 franz. Pfunde. Zehn Centner waren schwerlich eine zu große Last gewesen, um die Eisenmasse von Dichordichan nach Herat zu schaffen; daher möchte ich eher glauben, dass hier der Man zu 12 der 18% frans. Pfunde su rechnen fey. Im ersten Fall wurde die Masse 1880, im zweiten 2812 franzos. Pfunde gewogen haben, und ein würdiges Gegenstück zu der Pallas'schen Masse gewasen seyn. - Man sieht, dass Agricola, oder sein Gewährsmann, an der S. 282 angef. Stelle eine fehr verderbte Copie Avicenna's vor Augen hatte, da er auch in det

von ihr wieder zurück, wie eine gegen eine Mauer "geworfne Kugel. Ihr Herabfallen war von einem "fürchterlichen Getöle begleitet. Mehrere Men-"schen, welche herbeigelaufen waren, um die Ur-"fache dieles Getöfes zu erfahren, fanden diefe "Masse, und sie brachten sie zu dem Statthalter des "Djordjan. Mahmud ben Sebektekin, Sul-Aan von Khorasan, befahl diesem Officier, ihm auf der Stelle den ganzen Stein oder ein Stück adavon zu schicken. Da die Schwere desselben "den Transport unmöglich machte *), wollte man "ein Stück herunter brechen; aber das Metall war ofo hart, dass alle Werkzeuge daran zerbrachen, "Nur mit der größten Mühe brachte man es dahin, "ein Stück loszuarbeiten, und dieses schickte man "dem Sultan. Auf Befehl dieses Fürsten suchte man daraus einen Degen zu schmieden, aber man "konnte damit nicht zu Stande kommen. Nach "dem, was man mir erzählt hat, bestand die Masse aus kleinen runden Körnern, Hirlekörnern ähn-"lich, die an einander klebten," **)

Im J. 464 der Hedfchra fiel im Irak, nach dem Verfasser des Mirat-al-zeman, ein Regen, der von Hagel und Erdkugeln begleitet war, welche

Zahl der Man irrt, die er statt 150 auf 50, und gar auf libras herabsetst, wobei man an unsere Pfunde zu denken geneigt ist.

Gilbers.

^{*)} Ein merkwürdiger Umstand. Gilb.

^{**)} Höchst wahrscheinlich war das Eisen mit vielen sehr kleinen Olivinkörnern durchsäet, wie mit größeren Massen das Pallas'sche Eisen, und diese machten, das es sich nicht schmieden liefe,

Sperlingseyern glichen und einen angenehmen Geruch hatten.

Nach Macrizy erhielt man im Monat Rebyal-awal des Jahres 716 der Hedfchra *) die Nachricht, dals in den Districten von Kara, Hemes, Balbek, Aleppo und Harem ein außerordentlicher Regen gefallen sey, auf den ein Hagel solgte, dessen Körner die Größe von Orangen hatten und einige 3 Oukiah von Damascus wogen; daß dieser Hagel viele Menschen und Thiere getödtet, und mehrere Dörser zerstört habe; und daß nach dem Regen eine Menge großer und kleiner lebender Fische herabgefallen seyn, welche die Dorsbewohner auslasen und gebraten verzehrten; und daß zu Maarrah und zu Sarmin nach dem Regen eine unzählige Menge sehr dicker Frösche, einige todt, andere lebend, herabgefallen wären.

Im J. 723 am 1. Moharram **) fiel, ebenfalls nach Macrizy, nach einem Regen und heftigem Winde in der Provinz Mortahiah und Dakhaliah ein Hagel, dessen Körner über 50 Dirhems wolgen ***), und dieser war von Steinen begleitet, von denen mehrere ein Gewicht von 7 bis 30 Rotls hatten ****). Er zerstörte viele Ortschaften, und tödtete eine Menge Rindvich und Schafe.

^{*)} Also im J. 1316 unserer Zeitrechnung. Gilb.

^{**)} Am 9. Januar 1323 unserer Zeitrechnung.

^{***)} Sind darunter persische Dirhems zu verstehn, so wäre das ein Gewicht von mehr als i franzöl. Pfund. G.

^{****)} Der Rotl von Cairo wiegt nicht ganz r Berliner Pfund. G.

Im J. 755 follen gar, nach Macrizy, während eines Gefechts der Bewohner von Zeila mit den Abysliniern, eine Menge faulen Wassers, und darauf viele große Schlangen vom Himmel gefallen seyn, welche viele Abyslinier tödteten. Und im J. 775 foll es, nach ihm, in der Stadt Schizer in Syrien Schlangen geregnet haben.

Im J. 833 am 9. oder 10. Moharram fiel, nach ihm, in der Stadt Hemes ein heftiger Regen, und mit ihm kam eine fo große Menge grüner Frösche herunter, das sie die Straßen und die Dächer der Häuser ganz bedeckten.

Die Griechischen Schriftsteller, fügt Hr. Quatremère hinzu, haben uns ähnliche Vorfälle aufbehalten : "Nach Eustathius (Comm. in Iliad. libr. A) wurde einst eine große Menge Ratzen am Fusse des Bergs Marcu in die Luft erhoben, und gegen die Mauern der Häuser mit einer solchen Heftigkeit geschleudert, dass alle starben. - Andere Schriftsteller führen an, es seyen Ratzen vom Himmel gefallen; und nach Athenaeus hat es häufig Fifche geregnet. Nach Phanias foll es im Cherlones an drei Tagen nach einander Fische geregnet haben, und in Peonien und Dardanien sollen Frösche in solcher Menge herunter geregnet feyn, dass Häuser und Straßen davon voll waren, so dals man zuletzt nicht mehr auftreten konnte und alles Waffer verdorben war, und nach dem Tode sollen sie die Luft so verpestet haben, dals die Einwohner auswandern musten."

- Service Conditions of the Service Condition of the Service Condition

a

4

h

d

e

n

d

a

-

ñ

8

ş

8

2

t

S

e

.

IV.

Versuche über die Wirkung brechender Mittel auf die verschiednen farbigen Strahlen, und eine darauf gegründete Verbesserung der achromatischen Fernröhre durch Aushebung aller übrigen Farben,

VOR

DAVID BREWSTER, LL.D., Mitgl. d. Edinb. Gef. d. W.
Frei überfetzt von Gilbert.

1) Wirklichkelt und Urfprung der nicht aufzuhebenden Farben.

Ich habe bei den Versuchen, welche ich über die zerstreuenden Kräfte der Körper bekannt gemacht habe *), angemerkt, daß, wenn man die Farbenzerstreuung eines Kronglas-Prisma durch ein Flintglas-Prisma aufhebt, die Farben nie ganz verschwinden, sondern die Gegenstände, von denen die Lichtstrahlen herkommen, immer noch mit einem grünen und weinfarbnen Rande erscheinen. Dieser zuerst von Clairaut bemerkten Thatsache zu Folge, ist also völlige Farbenlosigkeit eines Fernrohrs unmöglich, und lassen sich immer nur zwei der prismatischen Farben durch entgegengesetzte Zerstreuung zweier Glasarten ausheben.

[&]quot;) Im vorigen Stück diefer Annalen S. 129.

b

(

F

u

T

g

n

W

21

n

S

fo

u

in

ZI

in

bi

tr

fte

hi

ur

gl

Li

Sp

Sc

Boscovich, dessen Scharssinn man nicht genug anerkannt hat, bestätigte die Beobachtung
Clairauts durch eine Reihe gut durchgeführter
Versuche, zeigte, dass die uncorrigirten Farbenränder von einer Ungleichheit der farbigen Räume
in den durch verschiedene Körper gebildeten prismatischen Spectris herrühren, und ersann eine Methode, wie sich drei der Farben durch drei Mittel,
die verschiedne brechende und zerstreuende Kräfte
haben, mit einander vereinigen lassen.

Dr. Blair beobachtete die uncorrigirten Farben, welche er ein abgeleitetes Spectrum (fecondary spectrum) nennt, bei verschiedenen Flüssigkeiten. Er fand, dass die Salzfäure und die Salpeterfäure die Eigenschaft haben, prismatische Spectra zu bilden, in welchen die Räume der Farben in einem ganz andern Verhältnisse zu einander stehn, als in den durch alle andern Körper gebildeten prismatischen Spectris, und zeigte, wie sich die uncorrigirte Farbe durch doppelte Verbindung stüssiger Linsen ausheben läst. Diese Methode haben indess die Optiker, so vollkommen richtig das Princip derselben auch ist, doch nie in Ausführung gebracht, und sie wird wahrscheinlich nie von praktischem Nutzen werden.

Diese Erscheinung unaufgehobener Farben zu erläutern, dient Folgendes: Es stelle in Fig. 1 Tas. III SS den Fensterladen eines verdunkelten Zimmers vor, RRO einen Lichstraht, der durch ein kleines Loch des Ladens in dieses Zimmer hineinsalt, und Pein

Prisma, mit welchem man ihn auffängt. Diefes breche ihn nach M himauf, und bilde an der Wand OA das prismatische Farbenspectrum AB, da denn PM die mittlern grünen, PB die äußersten rothen und PA die äußersten violetten Strahlen find. Dieses Spectrum AB besteht aus 4 Farben, roth, grün, blau, violet, und wenn das Prisma aus Kronenglas besteht, find die mittelsten Strahlen PMN. welche das Spectrum halbiren, die Gränzstrahlen zwischen den grünen und blauen Räumen. Stellt man nun ein Flintglas-Prisma, welches einen kleineren brechenden Winkel hat, fo, dals es ein Spectrum CD von gleicher Länge mit AB giebt, so find in diesem die Granzstrahlen zwischen grün und blau nicht mehr in der Mitte, fondern liegen in mn, bedeutend näher nach dem rothen Ende D zu: so dass also die minder brechbaren Strahlen in diesem Spectrum mehr contrahirt, die stärker brechbaren dagegen expandirter als in dem Spectrum AB find. Bildet man ein drittes eben fo langes Spectrum neben den beiden vorigen, mit einem Prisma aus Bergkry/tall, so fallen jene Gränzstrahlen in uv, dem violetten Ende näher, so daß hier die minder brechbaren Strahlen expandirter, und die brechbarften contrahirter als in dem Kronglas - Spectrum find.

8

Diese Beobachtungen über die verschiedene Länge der gefärbten Räume in verschiedenen Spectris unmittelbar anzustellen, läst die wenige Schärse, mit der die einzelnen farbigen Räume in

n

gl

di

di

es

H

ili

ei

fc

ne

ei

ve

K

Ra

Pi

da

an

di

ur

gla

ſŧä

gi

Ra

m

du

m

de

i

dem Spectro begränzt find, nicht zu. Wenn aber die farbigen Räume des Fhintglas-Spectrum alle genau fo groß als die des Kronglas-Prisma wären, fo müßte, wenn man durch zwei solche entgegengeletzt. brechende Prismen nach einem den Kanten der brechenden Winkel beider Prismen parallelen Fensterriegel fähe, diefer Querriegel vollkommen farbenlos erscheinen. Sind dagegen die Größen der farbigen Räume in beiden Spectris einander nicht proportional, so können in diesem Fall nicht alle Farben verschwinden; denn werden die äußersten rothen und violetten Strahlen beider völlig vereinigt, so können die zwischen ihnen liegenden Farben nicht genau mit diesen äußersten zusammen fallen, da die ersten grünen Strahlen, MN, mn vom Kronglase stärker als vom Flintglase gebrochen werden, Die grünen Strahlen bleiben daher zurück, wie sie find, weil das Flintglas fie verhältnismässig zu Schwach bricht, während die rothen und violetten zusammenfallen; und ist in Fig. 1, p ein Flintglas-Prisma, welches die Farbenzerstreuung des davor stehenden Kronglas-Prisma P möglichst genau aufhebt, so verwandelt es das Spectrum AB in ein Nebenspectrum (secondary spectrum) ab, dessen obere Hälfte grün und delsen untere Hälfte weinfarben ist, welche letzte Farbe die der vereinigten rothen und violetten Strahlen ist. Sieht man durch beide Prismen P, p nach einem ihren Kanten parallelen Fensterriegel, so erscheint dieser oben mit einem grünen und unten mit einem weinfarbnen

Rande. Ein Prisma aus Bergkrystall bricht die grünen Strahlen verhältnismäsig stärker als das Kronglasprisma, welches es compensirt, und führt daher die grünen Strahlen unter den Vereinigungspunct der violetten und rothen Strahlen herunter, so dass es ein Nebenspectrum ef bildet, dessen obere Hälfte weinfarben und dessen untere Hälste grün ist. Und sieht man durch zwei solche Prismen nach einem ihren Kanten parallelen Fensterriegel, so erscheint er unten mit einem grünen, oben mit einem weinfarbnen Rande.

Richtet man daher irgend zwei Prismen, die einander compensiren, ohne doch alle Farben zu vereinigen, nach einem Fensterriegel, mit ihren Kanten diesem parallel, so erscheint ein grüner Rand an der Seite, nach welcher die Kante des Prisma zu liegt, welches die kleinste Wirkung auf das grüne Licht hat, und im Verhältnis gegen das andre die rothen und grünen Strahlen contrahirt, die blauen und violetten expandirt; also bei Kronund Flintglas-Prismen nach der Kante des Flintglasprisma zu. Welches von zwei solchen Prismen stärker als das andre auf das grüne Licht wirkt, giebt sich also unmittelbar, wenn man den grünen Rand beobachtet.

Diese aus einer Ungleichheit der farbigen Räume theoretisch abgeleiteten Folgerungen werden durch die Beobachtung vollkommen bewährt. Prismen aus Kron- und Flintglas mit großen brechenden Winkeln, welche einander compensiren, geben stets ein Nebenspectrum wie ab, Fig. 1; und aus derselben Ursache zeigen die vollkommensten achromatischen Fernröhre, die sich bis jetzt haben machen lassen, um den Mond und andre lichte Körper, wenn man den Oculareinsatz über den Punct scharfen Sehens hinaus zieht, einen glänzenden Rand grünen Lichtes, und wenn man es über diesen Punct hinein schiebt, einen minder glänzenden Rand weinfarbnen Lichtes.

B

Ь

ć

8

di

ZV

de

Vi

ein

fo

[cl

be

gle

Ra

ab

de

Ho

ne

fes

210

nei

läß

che

det

Spe

dar

luc.

2) Urfache der Nicht-Proportionalität der Farbenräume.

Nachdem wir uns auf diese Art von der Wirklichkeit und von dem Ursprunge der uncorrigirten
Farben völlig überzeugt haben, ist es nicht wenig
interessant, der Ursache dieser Nicht-Proportionalität der farbigen Räume der Spectra nachzusorschen,
Diese Unterluchung hängt mit der Vervollkommnung der achromatischen Fernröhre zusammen, und
muss entscheiden, ob wir die Hoffnung ausgeben
müssen, oder nicht, eine Aushebung aller Farben
sehr nahe zu bewirken.

Boscovich, Blair und Robison, die einzigen Physiker, welche über diesen Gegenstand geschrieben haben, behaupten, die Ungleichheit der farbigen Räume in verschiednen Spectris beruhe auf einer besonderen Beschaffenheit der Körper, welche diese Spectra bilden, und in Hinsicht derer die Körper eben so verschieden seyn, als in ihren brechenden und zerstreuenden Kräften.

Als ich zuerst auf diesen Gegenstand aufmerkfam wurde, dachte ich, die Ungleichheit der farbigen Räume entstehe blos dadurch, dass die brechenden Winkel der Prismen, welche gleich lange Spectra bilden, verschieden sind; eine Meinung. die innerhalb gewisser Gränzen auf nicht zu bezweifelnden Grundfätzen beruht. Obgleich ich indels von dieser Hypothese durch den Erfolg jedes Verfuchs zurückgewielen wurde, so wird man doch im Verfolg dieles Auflatzes lehn; dals, während eine Ungleichheit in den farbigen Räumen, und folglich ein abgeleitetes Spectrum durch eine Verschiedenheit der Wirkung auf die verschiednen Farben hervorgebracht wird, noch eine andere Ungleichheit entgegengeletzter Art in den farbigen Räumen Statt findet, und folglich noch ein anderes abgeleitetes (fecundary) Spectrum, welches aus der Ungleichheit der Umstände, unter welchen die Haupt- (primary) Spectra gebildet werden, feinen Ursprung hat. Da sich die Wirklichkeit dieses neuen abgeleiteten Spectrum, welches ich das zweite abgeleitete Spectrum (tertiary spectrum) nennen wilt, aus optischen Grundsätzen folgern läst, so wollen wir zuerst die Veränderungen, welche in den farbigen Räumen nach Verschiedenheit der Umstände entstehn müssen, unter denen die Spectra gebildet werden, theoretisch erwägen, und dann mit unsern Folgerungen die Resultate der Verfuche vergleichen.

.

d

ń

n

-

3-

75

e

1-

ie

e-

h

d

f

f

Ň

Ħ

ti

V

fe

Ξ

n

a

te

g

W

g

te

d

f

C

C

f

Es giebt vier verschiedene Arten, ein Spectrum von gegebner Länge mit Prismen aus ver-Schiednen Materien hervor zu bringen: 1) Bei großem Zerstreuungs- und verhältnismässig nur geringem Brechungs - Vermögen einer Materie, braucht der brechende Winkel nur klein zu seyn, z. B. mit Cassiaöhl. 2) Bei sehr kleinem Brechungs-Vermögen muß der brechende Winkel fehr groß feyn, z. B. bei Flussfpath. 3) Bei geringem Zerstreuungs - aber großem Brechungs-Vermögen ist nur ein kleiner brechender Winkel nöthig, z. B. beim Diamant *). 4) Endlich lässt sich ein Spectrum von gegebner Länge durch Verminderung des Einfallswinkels auf die vordere Fläche des Prisma, so dass die größte Brechung an der hintern Fläche vor fich geht, hervorbringen.

Man denke sich zwei Lichtstrahlen AO und CO, Fig 2, welche in dem Puncte O aus Lust in einen Glaskörper mit ebner Oberstäche, EF, eintreten, der erste unter einem kleinen Einfallswinkel AOT, der andere unter einem sehr großen COT. Statt in dem Glase ihren Weg in gerader Linie OP, Op fortzusetzen, werden sie gebrochen und in farbige Strahlen zerstreut. Es seyen OR, Or die äußersten rothen, OV, Ov die äußersten violetten Strahlen beider, folglich, wenn man die Winkel ROV und rOv durch die Linien OM, OL

^{*)} Ist indes das Zerstreuungs-Vermögen verhältnismätsig soäuserst gering wie in dem Topas, so wird doch auch dann ein großer brechender Winkel erfordert. Br.

halbirt, OM und OL die mittelsten Strahlen beider Spectra. Endlich beschreibe man um O mit einem willkührlichen Halbmesser OT einen Kreis, und ziehe von den Puncten, wo die einfallenden und die gebrochnen Strahlen den Umfang desselben schneiden, auf das Einfallsloth TOS senkrecht die geraden Linien AB, CD und Ra, Mb, Vc, rd, vf, so stellen die beiden ersten die Sinusse der Einfallswinkel dar, die letztern die Sinusse der Brechungswinkel für die rothen, die mittleren und die violetten Strahlen. Nun fey der Exponent des Brechungs-Verhältnisses für dieses Glas 1,548, und es betrage von gleichen Theilen AB 12, CD 4. 12=48 Theile; fo ift Ra = 7.80, Mb = 7.75, Vc = 7.70 und rd =4.7.80=31.12, vf=4.7.70=30.80, weil nämlich das Verhältniss der Sinusse für große und kleine Einfallswinkel ein und dasselbe ist. Es sollte also auch, 4.7,75=31,00=em, der Sinus des mittelsten farbigen Strahles OL im zweiten Spectrum gleich seyn. Da aber nur für kleine Winkel, wie SOV, SOM, SOR, die Sinusse sich nahe eben so wie die Winkel verhalten, für große Winkel dagegen, wie SOv, SOL, SOr, die Sinusse bedeutend langfamer wie die Bogen wachfen, fo muß, da em die mittlere Länge zwischen den Sinussen fy und dr hat, der Bogen vm kleiner als der Bogen rm feyn, kann also der Strahl Om, der den Brechungs-Verhältnissen zu Folge in dem zweiten Spectrum dem mittelsten Strahle OM in dem ersten entspricht, in diesem zweiten Spectrum nicht wirklich der mittelste seyn, sondern muss dem aussersten violetten Strahle näher als dem äußersten rothen Strahle liegen, und einer der minder brechbaren Strahlen OL das zweite Spectrum halbiren, und der mittelfte Strahl feyn. Und daraus folgt, dass bei allen Brechungen aus einem dünneren in ein dichteres_durchsichtiges Mittel, das Roth und Grün, oder die minder brechbaren Farben bei Vergröserung des Einfallswinkels sich vergrößern, das Blau und Violet, oder die brechbarften Farben dagegen sich zusammenziehn müssen,

D

Fo

Ha

W

Br

3

3

alfo

Un

une

Vio

Fal

dur

Gla

der

Spe rüc

tere Bre

die

Blan

geg

fen

Dieses läst sich leicht durch Berechnung bestätigen, und genau nach Zahlwerthen ausmitteln.

Es geschehe die Brechung aus dem dünnern in das dichtere Mittel, und es fey

der Einfallswinkel COT = a

der Exponent des Brechungs - Verhältnisses für die äusfersten rothen Strahlen = r (1,55842)

violetten Strahlen = v (1,53846)

der Brechungswinkel der äußersten

rothen Strablen = x violetten Strablen = y

und der Abweichungs-Winkel des mittelsten Strahls des Spectrum, oder mOL = z.

Es ist dann

n mappe one are $r: i = lin, a : lin, x und lin. x = \frac{lin. a}{r}$

and the Bogen vis Branch all and v: 1 = fin. a : fin. y und fin. y = -

Der Sinus Mb des mittelsten Strahl SOM für sehr kleine Einfallswinkel hält das Mittel zwischen diesen beiden Sinusien; wenn wir daher

den Winkel mOv für febr kleine Einfallswinkel = 9 fetzen, fo haben wir

$$\frac{1}{2}\left(\frac{\sin a}{r}+\frac{\sin a}{r}\right)=\sin a$$

Dagegen ist bei großen Einfallswinkeln

$$LOv = LOr = \frac{1}{2}(x+y)$$

Folglich ergiebt fich

$$z = \frac{1}{3}(x+y) - \varphi.$$

Haben daher r und v die obigen eingeklammerten Werthe, und wir fetzen, um die größte mögliche Brechung zu haben, a=90°, fo wird

$$x=39^{\circ}55'$$
 o", 8 und $y=40^{\circ}32'$ 29", 8

folglich

$$y-x=0^{\circ}37'29''$$
 und $\frac{1}{3}(x+y)=40^{\circ}13'45'',3$
also $\varphi=40^{\circ}18'42'',7$ und $x=2'',6$

Und folglich umspannen in diesem Spectro das Roth und Grün einen Winkel von 18'47", t, das Blau und Violet dagegen einen Winkel von 18'41", 9.

Zeichnet man sich eine ähnliche Figur für den Fall, wenn der Lichtstrahl aus dem dichteren durchsichtigen Mittel in das dünnere, z. B. aus Glas in Lust übergeht, so sindet sich, dass dann der mittlere brechbare Strahl dem rothen Ende des Spectrums für größere Einfallswinkel immer näher rückt, daher bei allen Brechungen aus einem dichteren in ein dünneres Mittel bei Vergrößerung des Brechungs-Winkels das Roth und Grün, oder die minder brechbaren Farben contrahirt, das Blau und Violet oder die brechbaren Farben dagegen expandirt werden. Und führt man für diesen Fall die Rechnung wie zuvor, so erhält man

fin. x = v. fin. a, fin. y = v. fin. a, $\frac{1}{2}$ (r. fin. a + v fin. a) = fin. φ , and $\frac{1}{2}$ (v + x) $- \varphi = z$.

Nimmt man r und v wie vorbin, und fetzt, um auch für diesen Fall, bei Brechung aus Glas in Lust, die größte mögliche Brechung für die blauen Strahlen zu haben, 2 = 40° 39′ 29″, 8, folglich

.

I

ſ

h

f

0

I

.L

Y

r

a

4

e

24

G

d

fi

9

 $y = 90^{\circ}$ und $x = 80^{\circ} 47'3'',6$ fo erhalten wir

‡(y+x)=85° 23′ 51″,8 und φ=83° 29′ 13″,5 also z=1° 54′ 18″,3, als die größte Ablenkung der Strahlen von mittlerer Brechbarkeit vom Mittel des Spectrum. Und folglich umspannte in diesem Spectro die rothe und grüne Hälfte einen Winkel von 2° 42′ 9″9, die blaue und violette Hälfte dagegen von 6° 50′ 46″,5,

Da bei der Brechung aus dem dichtern in das dünnere Mittel die Brechungswinkel größer als die Einfallswinkel, bei der Brechung aus dem dünnern in das dichtere Mittel dagegen kleiner als diese Winkel werden, so muß für einerlei Einfallswinkel bei der Brechung aus dem dünnern in das dichtere Mittel die Expansion der rothen Strahlen kleiner als die der blauen, und als beim Brechen aus dem dichtern in das dünnere Mittel die Contraction der rothen Strahlen seyn.

Man übersieht die Expansion welche die minder brechbaren, und die Contraction, welche die brechbaren Strahlen beim Eintritte des Lichts aus einem dichteren in ein dünneres Mittel erleiden, noch leichter aus folgendem. Es sey CDE, Fig. 3, ein Glasprisma, in welches ein Lichtstrahl AB so eintrete, dass der mittelste der gebrochnen Strahlen Bm, der den Winkel rBv der äußersten rothen und violetten Strahlen halbirt, auf der hintern Glassläche ED senkrecht stehe, und solglich ungebrochen nach M durchgehe. Es fallen dann die äußersten rothen und violetten Strahlen Br, Bv unter gleichen Winkeln auf die hintere Fläche des Prisma ein, und solglich werden letztere stärker als erstere abgelenkt, eben weil sie die brechn bareren Strahlen sind, so dass der Winkel av V größfer als brR ist. Folglich kann nun BM das Spectrum nicht mehr halbiren, sondern liegt dem rothen Ende näher als dem violetten des Spectrum, so dass die weniger brechbaren Strahlen contrahirt, die brechbarsten expandirt erscheinen.

Geht daher Licht durch ein Prisma durch, so werden die rothen Strahlen bei der ersten Brechung expandirt, bei der zweiten, an der Hintersläche des Prisma, contrahirt, und da das Spectrum hauptsächlich durch die Brechung an der Hintersläche hervorgebracht wird, so übertrisst die Contraction der rothen Strahlen stets gar sehr ihre Expansion. Daraus folgt, dals durch Brechung in einem Prisma die rothen Strahlen contrahirt, und die violetten expandirt werden, und dass diese Contraction und Expansion größer werden, wenn der brechende Winkel zunimmt.

Aehnliche Schlüsse führen auf die Folgerung, dass die Contraction der rothen und die Expansion der violetten Strahlen bei der Brechung in einem Prisma vergrößert werden, wenn man den

ş

d

G

le

1s

ri

M

241

ge

fa

de

di

fal

ma

fu

ge fer

fri

als

M

G

einfallenden Strahl der senkrechten Lage auf die Vordersläche immer näher bringt, so dass die größte Brechung an der hintern Fläche des Prisma vor sich geht.

Wir wollen nun den Einfluss überlegen, den ein fehr großes Brechungsvermögen auf das prismatische Spectrum haben muss, z. B. das des Diamant und einiger Edelsteine, und zu dem Ende ein durch he gebildetes Spectrum mit einem gleich langen Spectrum vergleichen, das von einem minder stark brechenden Körper mittelst eines großen brechenden Winkels hervorgebracht fey, und annehmen, beide Prismen hätten einerlei Zerstreuungs-Vermögen. Wir haben gesehen, wie in Fig. 2. bei einem großen Einfallswinkel COT aus Luft in ein brechendes Mittel von mittlerer brechender Kraft die rothen und grünen Strahlen rm in dem Spectrum rmv expandirt, und die blauen und violetten vm contrahirt werden. Soll ein Mittel von viel größerer brechender, aber gleich großer zerstreuender Kraft, als das vorige, ein gleich langes Farbenspectrum hervorbringen, so mus der Einfallswinkel des Strahls nur klein feyn, wie AOT, wo dann RV=rv, und wegen der gleichen Zerstreuungskraft beider Mittel ROP=rop und VOP= vop wird. Wegen dieses kleinen Einfallswinkels hat aber, wie wir gesehen haben, derselbe Strahl OM, welcher ROV halbirt, in dem andern Speetrum die Lage Om, und fällt näher an y als an r. Hieraus übersieht man, dass für Brechungen aus

dünnern in dichtere Mittel, in den durch größere brechende Kraft gebildeten Spectris, das Roth und Grün minder expandirt, und das Blau und Violet minder contrakirt feyn müssen, als in einem gleich langen Spectrum, das mittelst eines größern brechenden Winkels durch Mittel von geringerer brechender Kraft hervorgebracht wird.

Und bei Brechungen aus dichtern in dünnere Mittel find in gleich langen Spectris, in den durch größere brechende Kräfte gebildeten das Roth und Grün minder contrahirt, und das Blau und Violet minder expandirt, als in den durch geringere brechende Kräfte hervorgebrachten.

3) Versuche über das Verhältniss der Farbenräume in . Spectris verschiedener Körper,

returned codies (opening day a color-

Diese Folgerungen sind zwar so klar und einfach, dass sie keinen Zweisel übrig lassen; wegen der Wichtigkeit und Schwierigkeit des Gegenstandes bin ich aber doch bemüht gewesen, sie durch directe Versuche zu bestätigen. Die äusserste und sast verschwindende Kleinheit der farbigen Ränder, macht es indess sehr schwierig, bei diesen seinen Versuchen binlänglich zuverlässige Resultate zu erlangen, und hätte ich nicht glücklicher Weise das ausserordentliche Zerstreuungsvermögen des Cassiosla früher entdeckt, so würde ich diese Untersuchung als für unsre Mittel unaussührbar ausgegeben haben Mit blossem Auge lassen seine der verschiednen Spestorisen der farbigen Räume in verschiednen Spestorische Seine der farbigen Räume in verschiednen Spestorische der farbigen Räume in verschiednen Spestorische der seine der s

kräfte des geübtesten Beobachters hinaus, die relative Größe der uncorrigirten Farbenränder zu bestimmen, welche Verbindungen zweier entgegengessetzt brechenden Prismen hervorbringen, deren zerstreuende Kräfte nicht mehr von einander verschieden sind, als die des Kronglases und des Flintglases; und wollte man die Wirkung dadurch vergrößern, dass man beide Substanzen zu einem achromatischen Objectiv verbände, so würden Kosten und Arbeit außerordentlich seyn, und das Mittel sich doch nur auf durchsichtige Flüssigkeiten anwenden lassen.

re

be

ne

kl

ZV

Vé

th

W

all

ſŧä

the

me

gr

ſtä

de

Pr

Pri

Diese Verlegenheit endigt sogleich das Cassia. öhl, durch sein mächtiges Zerstreuungs-Vermögen, welches fieben Mahl größer als das des Kryolith und des Flusspath ist, und von einem verhältnismässig nur geringen Brechungs - Vermögen begleitet wird, wodurch es uns einen Maafsstab von ungewöhnlicher Größe verschafft. Ich bediente mich des Farbenspectrums eines Prisma aus Casfiaöhl, mit einem brechenden Winkel von 8° 16'. und das Verhältniss der farbigen Räume desselben. als Maafsstabes; womit ich das Verhältnifs der farbigen Räume aller andern Spectra verglich. Es müssen bei diesen Versuchen die Prismen große brechende Winkel haben, damit die Farbenrander, welche bei der Compensation nicht verschwinden, hinlänglich breit werden; und um diese noch möglichst zu vergrößern, muß man den Querriegel des Fensters; so wie er sich durch beide vereinigte und sich compensirende Prismen zeigt, mit einem kleinen 10 bis 12 Mahl vergrößernden Fernrohre untersuchen. Ist die Zerstreuungskraft der beiden Prismen sehr verschieden, so lässt sich einem großen brechenden Winkel des einen nur ein kleiner brechender Winkel in dem andern entgegensetzen, wie in Vers. 56; dass in diesem Fall das zweite abgeleitete Spectrum, indem es das erste vergrößert oder verkleinert, einen geringen Irrthum veranlaßen könnte, verdient kann Erwähnung.

Auf diese Art habe ich mittelst der Größe und Lage der nicht aufgehobenen Farbenründer, (mit wenig Ausnahmen, die ich nachher angeben will,) allgemein gefunden:

- r) daß in den Spectris von Körpern, welche ftärker zerstreuen, die minder brechbaren oder rothen Strahlen mehr contrahirt, und die violetten mehr expandirt sind;
- a) daß in Prismen von einerlei Substanz bei größerm brechenden Winkel die rothen Strahlen stärker contrahirt werden;
- und 3) dass diese Contraction durch Verminderung des Einfallswinkels auf die Vordersläche des Prisma, noch um Vieles mehr vergrößert wird.

r

Erste Reihe von Versuchen.

1) Wird die Farbenzerstreuung des angezeigten Prisma aus Cassiaöhl mit einem Wasser-Prisma, dessen brechender Winkel ungefähr 68° seyn mus, ausgehoben, so zeigt der Querriegel eines Fensters, nach dem man durch beide vereinigte Prismen hinsieht, an der von der brechenden Kante des Cassaöhl-Prisma abgekehrten Seite einen sehr breiten weinfarbnen, und an der andern Seite einen ähnlichen glänzend grünen Rand.

- 2) Geschieht die Compensation des Prisma aus Cassiaöhl mit einem Kronglas - Prisma, dessen brechender Winkel 41° 11' seyn mus, so sind die farbigen Ränder etwas schmäler als in 1, und der grüne Rand liegt nach der Kante des Cassiaöhl-Prisma zu.
- 3) Ein compensirendes Flintglas Prisma muss einen brechenden Winkel von 23° 26' haben, giebt schmälere farbige Ränder als in 1 und 2, und des Grün liegt nach der Kante des Prisma aus Cassiaöhl zu,
- 4) 5) Bergkrystall und Cassiaöhl geben breitere farbige Ränder als in 1, 2 und 3, und die Lage des grünen Randes ist die vorige, und wenn Prismen aus Bergkrystall und Flintglas sich compensiren, so liegt der grüne Rand nach der Kante des Flintglas Prisma 2u.
- 6) Blauer Topas und Caffiaöhl geben fast eben so breite Ränder als in 4, und der grüne Rand liegt wie dort.
- 7) Flussspath und Cassiaöhl geben außerordentlich breite Farbenränder; der grüne liegt wie zuvor.
- 8) Diamant und Caffiaöhl, die fich compensiren, geben fast eben so breite Farbenränder als in 3; die Lage des grünen ist dieselbe.
- 9) Opalfarbiges Glas und Caffiaöhl geben schmälere Ränder als alle bisher genannte Compensationen; das Grün liegt wie zuvor.

10) Tolutanischer Balsam und Cassiaühl geben noch schmälere Farbenränder; der grüne liegt wie zuvor.

n

18

n,

ıd

us

e-

ì-

ne

.

ıls

bt

in

re

les

us

egt

15-

en

egt

nt-

n,

lie

18-

n;

Stellt man die bis hierher aufgezählten Versuche so an, dass man an die Stelle des Cassiaöhls Tolutanischen Balfam nimmt, so bleiben die Resultate nahe dieselben, nur mit dem Unterschiede, das die farbigen Ränder schmäler und minder deutlich sind.

einander compensiren, so liegt der grüne Rand nach der Kante des Flintglas-Prisma zu. Der rothe und grüne Farbenraum sind also in dem Flintglas-Spectrum mehr contrahirt als in dem gleich langen Spectrum des Kronglas-Prisma.

12) Wenn Bergkrystall und Kronglas einander compensiren, liegt der grüne Rand nach der Kante des Kronglas-Prisma zu. Immer aber liegt, wie wir gesehn haben, der grüne Rand nach der Kante desjenigen Prisma zu, welches die größere Contraction der rothen und grünen Strahlen bewirkt, und daher sind Roth und Grün in dem Bergkrystall-Spectrum mehr expandirt als in dem gleichen Kronglas-Spectrum.

13) Salzsäure und Kronglas; der grüne Rand liegt nach der Kante des Kronglas-Prisma zu. In dem Salzsäure-Spectrum find also Roth und Grün mehr expandirt als in dem gleichen Kronglas-Spectrum.

14) Salzfäure und Bergkrystall; der grüne Rand liegt nach der Kante des Salzsäure-Prisma zu. Roth und Grün sind also im Bergkrystall-Spectro mehr expandirt als in dem Salzsäure-Spectro.

15) Lavendelöhl und Flintglas; der grüne Rand liegt nach der Kante des Lavendelöhl-Prisma zu. Roth und Grün find also im Lavendelöhl-Prisma stärker contrahirt, als im Flintglas-Prisma.

- 16) Lavendelöhl und Kronglas eben fo, und die Farbenränder find breiter.
- 17) 18) Lavendelöhl und Tolutanischer Balsam oder Cassiaöhl; der grüne Rand liegt nach der Kante des Balsam oder Cassiaöhl-Prisma zu.

u

P

(:

V

es

fo

S

K

gl

de

hà

de

vo

eb

br

au

Pr

Be

rig

[pa

To

ler

de

- 19) 20) Sassafrasöhl und Cassiaöhl oder Folutanischer Balsam; der grüne Rand liegt nach der Kante des Cassiaöhl- oder des Balsam-Prisma zu.
- 21) 22) Sassafrasöhl und Flintglas oder Kronglas; der grüne Rand liegt nach der Seite des Sassafrasöhl-Prisma zu.
- 23) Wenn ein Flintglas-Prisma mit einem brechenden Winkel von 41° und ein Kronglas-Prisma mit einem brechenden Winkel von 69° einander compensiren, so sind die uncorrigirten Farben deutlich zu sehen, und der grüne Rand liegt nach der Kante des Flintglas-Prisma zu.
- 24) 25) Roth gefürbtes Glas und Kronglas oder Flintglas; der grüne Rand liegt nach der Kante des rothen Glasprisma 2u, in 25 find aber die farbigen Ränder sehr schwer zu erkennen.
- 26) 27) 28) 29) Arabisches Gummi mit Tolutanischem Balsam, oder Flintglas oder Bergkrystall oder Kronglas; der grüne Rand liegt in den beiden ersten Fällen nach der Kante des Balsam- oder Flintglas Prisma, im dritten nach der des Gummi Prisma zu. Im vierten scheint er nach der Kante des Kronglas Prisma zu zu liegen, die Farben sind aber nur außerordentlich schmal.
- 30) 31) 32) Ital. Kümmelöhl mit Tolutanischem Balsam oder Lavendelöhl oder Flintglas; der grüne Rand liegt im ersten Fall nach der Kante des Balsamim zweiten und dritten nach der des Kümmelöhl-Prisma zu.

- 33) Werden die Farben eines Kalkspath Prisma (iste Brechung), dessen brechender Winkel 63° 30', mit einem Flintglas Prisma, dessen brechender Winkel ungefähr 65° seyn muss, aufgehoben, so liegt der nicht aufgehobne grüne Rand nach der Kante des Flintglas-Prisma zu.
- 34) Compensiren einander ein Kalkspath-Prisma (2te Brechung) von 65° und ein Kronglas-Prisma von 41° 11' oder 69° brechendem Winkel, wenn man es so neigt, dass die Farbenzerstreuung verstärkt wird, so sieht man das unausgehobne Grün deutlich an der Seite des Querriegels des Fensters, welche nach der Kante des Kronglas-Prisma zu liegt.

35) Kalkspath (2te Brechung) mit 42° und Kronglas mit 69° brechendem Winkel, geben, wenn man den Kalkspath so einschließt, daß die Zerstreuung erhöht wird, das uncorrigirte Grün nach der Kante

des Kalkspath Prisma zu.

-

d

-

ì-

u

r

28

n

Z»

er

n

8-

m

S-T-

m

n-

is-

36) Wenn ein Kallsspath-Prisma (1ste Brechung) von 42° brechendem Winkel, so geneigt wird, daß es eben so stark als ein Kronglas-Prisma mit einem brechenden Winkel von 69° zerstreut, so liegt das unaufgehobne Grün nach der Kante des Kalkspath-Prisma zu.

37) Wird Kalkspath (1ste und 2te Brechung) mit Bergkrystall oder Topas compensirt, so liegt das uncorrigirte Grün in beiden Fällen nach der Kante des Kalk-

fpath - Prisma zu.

38) Leucit und Flintglas oder Kronglas oder Topas; der grüne Rand liegt in den beiden ersten Fällen nach der Kante des Glas-Prisma, im dritten nach der Kante des Leucit-Prisma zu.

39) 40) 41) Berill oder Turmalin oder Borax Annal. d. Phylik. B. 50. St. 5. J. 1815. St. 7. X und Flintglas oder Kronglas; der grüne Rand liegt

nach den Kanten der Glasprismen zu.

42) Gyps und Flintglas oder Kronglas oder Topas; der grüne Rand liegt in den beiden ersten Fäl. nach der Kante des Glasprisma, im dritten nach der des Gyps-Prisma zu.

43) Citronenfäure und Flintglas; der grüne Rand

liegt nach der Kante des Flintglas-Prisma zu.

44) Sandarac und Kronglas; das Grüne liegt nach der Kante des Sandarac-Prisma zu.

45 Kanadifcher Balfam und Flintglas; der grüne Rand liegt nach der Kante des Balfam Prisma zu.

46) 47) Kohlenfaures Blei und Caffiaöhl oder Tolutanischer Balsam; der grüne Rand liegt nach der Kante des Oehl und des Balsam-Prisma zu; im zweiten Fall sind aber die farbigen Ränder sehr schmal.

6

d

6

n

V

V

B

Z

g

F

- 48, 49) Schwefel und Kronglas oder Cafficihl; die farbigen Rander waren im erstern Fall nahe so breit als in 2; im zweiten Fall verschwanden sie ganz, wobei die brechenden Winkel beider Prismen sehr klein waren.
- 50) Muskatenblütenöhl und Flintglas, oder Kanadischer Balsam oder Lavendelöhl; der grüne Hand liegt nach der Kante des Oehl-Prisma zu.
- 51) Muskatenblütenöhl und Suffafrasöhl oder Kümmelöhl; der grüne Rand liegt nach den Kanten der beiden letztern Ochl-Prismen zu.
- 52) Terpentinöhl und Flintglas; der grüne Rand liegt nach der Kante des Terpentinöhl-Prisma zu. Dagegen mit Saffafrasöhl oder Muskatenblütenöhl oder Kanadischem Balsam liegt der grüne Rand nach den Kanten der Prismen aus diesen drei Flüssigkeiten zu.
- 53) 54) Schwefeisäure und Kronglas oder Bergkryfiall; die farbigen Ränder find sehr breit und der

grüne liegt nach der Kante des Prisma aus Kronglas oder Bergkrystall zu.

55) 56) 57) Schwefelfäure und Wasser, oder Flussspath oder Salzsäure; der grüne Rand liegt nach der Kante des Prisma aus jedem dieser drei Körper zu.

0-

1.

er

id

gt

ű-

n.

er

er

i-

1:

fo

Z,

hr

a.

nd

er

n

d

a-

er

n

er

- 58) Wasser und Bergkrystall; der grüne Rand liegt nach der Kante des letzten Prismen zu, und ist sehr schmal.
- 59) Alkohol und Wasser oder Salzsäure oder Kronglas; der grüne Rand liegt in den beiden ersten Fällen nach der Kante des Alkohol-Prisma, im dritten nach der des Kronglas-Prisma zu, und ist im letztern kaum noch wahrzunehmen.
- 60) Schwefel-Aether und Alhohol; lassen keine sichtlich unaufgehobene Farbe zurück.

Zweite Reihe von Versuchen.

- 61) Wenn man das Farbenspectrum eines Prisma ans Flintglas, dessen brechender Winkel 41° 11' ist, durch ein andres Flintglas Prisma mit einem brechenden Winkel von 60° 2' compensirt, indem man das erstere neigt, um die Brechung zu erhöhen, so bleiben unausgehobene Farben sichtbar zurück, und der grüne Rand liegt nach der Kante des kleinern brechenden Winkels der beiden Prismen zu.
- 62) Wenn zwei Fliniglas-Prismen mit brechenden Winkeln von 38° 54', und 66° 2' entgegengesetzte Brechungen ausüben, und man neigt das erstere um die Zerstreuung durch dasselbe zu vermehren, so liegt der grüne Rand nach der Kante des dünneren Prisma zu. Beide Prismen waren aus einem Glasstücke geschliffen.

Ich habe diese beiden Versuche mit verschiednen Flintglas - Prismen wiederholt, und immer gefunden, daß der uncorrigirte grüne Rand nach der Kante des Prisma zu lag, welches den kleineren brechenden Winkel hatte, und dessen Farbenzerstreuung durch Neigung verstärkt wurde. Und was noch weit sonderbarer war: Der farbenlose Strahlenbündel wurde noch bedeutend von seiner ursprünglichen Richtung abgebrochen durch das Prisma mit dem größern brechenden Winkel.

63) Wenn zwei Prismen aus Bergkrystalt mit brechenden Winkeln von 25° 28' und von ungefähr 70° einander compensiren, indem man das erste in eine geneigte Lage bringt, um die Farbenzerstreuung desselben zu vergrößern, so liegt das uncorrigirte Grün nach der Kante des ersten Prisma zu, welches den kleinern brechenden Winkel hat, und der farbenlose Strahlenbündel wird noch bedeutend gebrochen von dem Prisma mit dem größern brechenden Winkel.

Ist der brechende Winkel des zweiten Bergkrystall-Prisma 41° 20', so bleibt noch ein bedeutender Ueberschuss an Brechung in dem dickeren Prisma, nachdem die Farbenzerstreuung vollständig corrigirt ist.

64) Ein kleinwinkliges, beträchtlich geneigtes Prisma aus Tafelglas und ein großwinkliges Prisma aus Bergkryftall lassen einen grünen Rand zurück, der nach der Kante des Tafelglasprisma zu liegt.

65) Wird ein Prisma aus Tolutanischem Balsam mit einem brechenden Winkel von 8° so geneigt, dass es ein Flintglas-Prisma von 66° 2' compensirt, so bleiben uncorrigirte Farbenränder von außerordentlicher Breite.

8

0

e

fu

Dritte Reihe von Versuchen.

66) 67) 68) Wird ein Kronglas - Prisma mit einem brechenden Winkel 41° 11' in drei geneigte La-

gen gebracht, fo dast es zuerst ein Flintglas-Prisma, dessen brechender Winkel 66° ist, dann ein Flintglas-Prisma von 50° 28' und endlich ein solches Prisma mit einem brechenden Winkel von ungefähr 62° compensist, so liegt der grüne Rand im ersten Fall nach der Kante des Kronglas-Prisma, im zweiten Fall dagegen nach der Kante des Flintglas-Prisma zu, und im dritten Fall bleiben gar keine uncorrigirten Farbenränder sichtbar.

69) Wird ein Bergkrystall-Prisma mit einem brechenden Winkel von 25° 28' so geneigt, dass es ein Flintglas - Prisma von 66° compensirt, so liegt der grüne Rand nach der Kante des Bergkrystall-Prisma zu.

C.

n

8

n

1-

a,

ì.

8-

15

r

(a

o

-

4) Folgerungen aus diesen Versuchen.

Aus der ersten Reihe dieser Versuche, 1 bis 60, ersieht man, das die farbigen Räume zu einander ein verschiednes Verhältnis fast in allen von verschiedenen durchsichtigen Körpern gebildeten gleich langen Farbenspectris haben. Die Variation in der Größe der Farbenräume gründet sich offenbar auf eine Verschiedenheit in der Wirkung der brechenden Mittel auf die verschiedenen farbigen Strahlen; denn die Wirkung, welche eine Vergrößerung des brechenden Winkels des Prisma im Contrahiren des Roth und Grün und Expandiren des Blau und Violett hervorbringt, ist von einer entgegengesetzten Art als die, welche in der Wirklichkeit (actually) erzeugt wird.

Durch Vergleichung der Resultate dieser Versuche mit einander, bin ich zu folgender Tafel gekommen, welche mit erträglicher Genauigkeit die Wirkung verschiedener Körper auf die verschiedenen farbigen Strahlen zeigt. Die Substanzen stehen in der umgekehrten Ordnung ihrer Wirkung auf das grüne Licht, das heißt, die, welche zuvörderststehn, bilden Spectra, in welchen die rothen und grünen Strahlen am stärksten contrahirt, und die blauen und violetten am stärksten expandirt sind. In diesen Spectris sind also die grünen Strahlen näher bei dem rothen als bei dem violetten Ende, und werden also verhältnismässig weniger als die grünen Strahlen in den andern Spectris gebrochen.

z) Caffiaöhl
Schwefel
Tolutanifcher Balfam
Kohlenfaures Blei
5) Anisöhl

Saffafrasöhl
Opalartiges Glas
Kümmelöhl
Muskatenblüthenöhl

Kanadischer Balsam
Terpentinöhl
Flintglas
Kalkspath

15) Mandelöhl
Kronglas
Arabifches Gummi
Alkohol

Alkohol Aether

Blauer Topas
Flusspath
Salpetrige Säure
Salzfaure

25) Bergkrystall Wasser Schwefelsäure

Aus dieser Tafel lassen sich die folgenden Folgerungen ziehn:

1) Die Wirkung der durchsichtigen Körper auf das grüne Licht nimmt ab, wie die Zerstreuungskraft derselben zunimmt.

2) Ausnahmen von diesem Gesetze machen Muskatenblüthenöhl, Lavendelöhl, Kanadischer Balfam und Terpentinöhl, da sie weniger auf das grüne Licht wirken als Flintglas, ungeachtet dieles sie an Zerstreuungskraft übertrift. Eine Ausnahme umgekehrter Art machen die Salzfäure und die falpetrige Säure, welche stärker als das Kronglas auf das grüne Licht einwirken, obgleich sie ein größeres Zerstreuungsvermögen als dasselbe befitzen. Auch Flusspath, Bergkrystall, Wasser und Schwefelfäure gehören zu den Ausnahmen.

3) Die Schwefelfäure übertrifft alle bisher untersuchten durchsichtigen Körper in ihrer Einwirkung auf die grünen Strahlen, indels Caffiaöhl unter allen die kleinste Wirkung auf sie äussert. Diese beiden Flüssigkeiten sind daher vorzüglich geeignet zu völlig farbenlosen Objectiven verbunden zu werden, in welchen auch das abgeleitete Spectrum aufgehoben wird.

en

in

as

rft

272

bi

rt

1-

e,

ie

Will man diese Versuche wiederholen oder weiter ausdehnen, so muss man eine Menge Prismen mit verschiedenen brechenden Winkeln bei der Hand haben. Doch kann man fich diesem einigermaßen dadurch überheben, dass man zuvor den brechenden Winkel bestimmt, den ein Prisma aus einem bestimmten durchsichtigen Mittel haben muß, um ein gegebnes Prisma, das aus einem andern Mittel besteht, genau zu compensiren. Und dazu läst fich mit vielem Vortheil dasselbe Instrument brauchen, dessen ich mich bedient habe, um die Farbenzerstreuende Kraft der Körper zu messen. Auch zeigt dieses Instrument sogleich, ob bei sich compensirenden Prismen aus zwei verschiedenen Körpern ein Ueberschuss an Brechung bleibt oder nicht, und ob also eine solche Verbindung zu einem achromatischen Objective brauchbar ist, oder nicht,

Dasselbe läst sich auch durch Rechnung sinden. Gesetzt nämlich es sey A der gegebne brechende Winkel des einen Prisma, und α der brechende Winkel, den ein Prisma aus einem andern Körper haben muß, um die Farbenzerstreuung des erstern Prisma aufzuheben; endlich sey R die Brechung (refraction) des erstern, r die des zweiten Prisma, und sin. $\mathbf{x}' = \frac{R}{r}$, sin. A, so ist

$$tg. (a-x') = \left(\frac{dR}{dr.\frac{R}{r}} - 1\right).\frac{1}{\cot g.x'}$$

woraus fich a leicht finden läßt. — Und ist, wie in verschiedenen Arten von Kron- und Flintglas, R nahe gleich r, so ist x' = A, und

tg.
$$(a-A) = \left(\frac{dR}{dr} - 1\right)$$
, $\frac{1}{\cot g. A}$.

Der Winkel a, welcher die Brechung eines andern Winkels A compensirt, lässt sich durch folgende Formeln finden;

$$\label{eq:fin.x} \text{fin.x} = \frac{\text{R. fin.A}}{\text{r}} \;, \; \; \text{fin.(a-x)} = \frac{\text{fin.(a-A)}}{\text{R}}.$$

r

n

g

R

n

e

Beim Messen der mittleren brechenden Kräfte der Körper find die hier angegebnen Refultate von vieler Wichtigkeit, da sie uns in den Stand setzen, die Farbe und die Lage des Strahls, welcher das durch irgend einen Körper gebildete Spectrum halbirt, der Wahrheit sehr nahe zu bestimmen, Ganz unentbehrlich ist diese Nachweisung, um die mittleren brechenden Kräfte von chromfaurem Blei, Realgar und Cassiaöhl, welche die äussersten farbigen Strahlen fo mächtig auseinander brechen, mit einiger Zuverläßigkeit zu bestimmen. Es giebt keine Methode, wie sich die brechende Kraft des Strahls, welcher das Spectrum halbirt, aus den brechenden Kräften der äußersten rothen und violetten Strahlen herleiten ließe; und es kömmt daher bei der Bestimmung des mittleren Exponenten der Brechung alles auf die Genauigkeit an, mit der wir den mittelsten-Strahl herauszusinden vermögen. In dem Flintglas-Spectrum ist die äusserste Granze des Violet scharf genug, dass sich blos mit den Augen der Strahl bestimmen lässt, welcher das Spectrum in zwei gleiche Theile theilt; aber in nicht ganz durchsichtigen Körpern, wie chromfäures Blei, Realgar und Cassiaöhl, welche sehr breite und daher fehr schwache Farbenspectra mittelst kleiner brechender Winkel machen, find die äußersten violetten Strahlen nicht mehr sichtbar, und das Auge vermag in ihnen nicht die Farbe und die Lage der mittelsten Strahlen zu bestimmen.

Die folgenden allgemeinen Resultate werden allen sehr nützlich seyn, welche sich mit dem Messen der brechenden Kräfte, besonders des chromsauren Bleis und des Realgar, beschäftigen wollen. Es wird dabei angenommen, dass in einem durch Kronglas gebildeten Spectrum der erste grüne Strahl, oder der Strahl, der die grünen und blauen Farbenräume von einander trennt, von den äußersten rothen und violetten Strahlen gleich weit ab liege, obgleich nach Dr. Wollaston's scharssinnigen Beobachtungen über das prismatische Spectrum, einer der blauen Strahlen der wahre mittelste Strahl in einem durch Kronglas gebildeten Spectrum zu seyn scheint.

1) In einem durch ein Prisma aus Schwefelfäure gebildeten Spectrum befindet sich der mittellte, das Farbenspectrum in zwei gleiche Theiletheilende Strahl sehr nahe in der Mitte des Grün.

2) In dem durch Salzfäure gebildeten Spectrum liegt der mittelste Strahl um ein Viertel des grünen Raums dem Blau näher, als in dem vorigen, also mitten zwischen der Mitte des Grün und dem Anfang des Blau.

 In dem Kronglas-Spectrum fällt der mittelste Strahl in die Gränze zwischen dem grünen und dem blauen Raume.

4) In dem Flintglas-Spectrum ist der mittelste Strahl schon etwas in das Blau vorgerückt.

 In einem durch ein Prisma aus Caffiaöhl gebildeten Spectrum liegen die mittelsten Strahlen n L-

a-

n.

le:

n

r-

1-

C=

le

m

1-

t-

le

m.

lo

n-

t-

n

le.

hl

n

giemlich tief in das Blau hinein; und noch mehr muß das, nach der Analogie zu schließen, in den von Realgar und von chromfaurem Blei gebildeten Spectris der Fall seyn, mit denen diele Versuche anzustellen, ihre unvollkommene Durchsichtigkeit mich verhindert haben.

Aus der zweiten Reihe der erzählten Verfuche erhellt, (und zwar aus Versuch 61, 62, 63) dass es wirklich ein zweites abgeleitetes Spectrum (tertiary (pectrum) giebt, welches durch Veränderung der Neigung des ersten Prisma gegen die einfallenden Lichtstrahlen hervorgebracht wird. Da es sich mittelit zweier Prismen zeigt, welche aus einerlei Substanz bestehn, und folglich einerlei Wirkung auf die verschiedenen farbigen Strahlen äußern, so hat dieses zweite abgeleitete Spectrum offenbar seinen Ursprung in der Abweichung der Strahlen mittlerer Brechbarkeit von der Mitte des Spectrum, welche durch Vergrüßerung des Einfallswinkels bei gleich bleibendem Verhältnisse zwischen den Sinussen der Einfalls- und Brechungs-Winkel bewirkt wird. Es hat nicht so lebhafte Farben, als das erste abgeleitete Spectrum, die Farbenränder find aber mit hinlänglicher Deutlichkeit zu erkennen', und das nicht aufgehobne Grün liegt immer nach der Kante des Prisma zu, welches den kleineren brechenden Winkel hat, und gegen den Strahl so viel stärker als das andre geneigt ist, dass es eine eben so große Farbenzerstreuung als dieses letztere, das den größeren brechenden Winkel hat,

hervorbringt. Unsern vorigen theoretischen Schlüssen ganz entsprechend solgt hieraus, dass, wenn man die Brechung eines Prisma vergrößert, es sey dadurch, dass man den brechenden Winkel des Prisma, oder dass man den Einfallswinkel der Strahlen vergrößert, die rothen und grünen Räume des Spectrum contrahirt, und die blauen und violetten expandirt werden.

Dieses ist indess völlig das Umgekehrte dessen, was der Dr. Wollaston bei einem Prisma aus Flintglas gefunden hat, In der gewöhnlichen Lage seines Prisma verhielt sich der grüne und rothe Raum zu dem blauen und violetten wie 3g:61; als er aber die Neigung der Vorderfläche gegen den einfallenden Strahl so veränderte, dass die Farbenzerstreuung stärker wurde, expandirte sich der grüne und rothe Raum bis auf 42, und contrahirte fich der blaue und violette Raum bis auf 58 folcher Theile, wovon das ganze Spectrum 100 Theile der Länge nach enthielt, Ich setze keinen Zweifel in die Genauigkeit, womit Dr. Wollaston das Verhältnis der Größe der beiden Hälften des Spectrum unter diesen verschiedenen Umständen gemessen hat, vermuthe aber, dass bei der Schwächung des Lichtes, mit der die Vergrößerung des Spectrum verbunden ist, die äußersten violetten Strahlen nicht mehr sichtbar waren, und dass ihm aus diesem Grunde die blaue und violette Hälfte contrahirt zu seyn schien, während sie in der That expandirt ift.

G

H

m

Dieselben Versuche, welche die Wirklichkeit eines zweiten abgeleiteten Spectrum darthun, zeigen uns die nicht weniger sonderbare Erscheinung einer Brechung ohne Farben mittelst zweier Prismen aus derselben Substanz. Dieser Ersolg, den man bisher für unmöglich hielt, scheint davon abzuhängen, dass die Zerstreuung stärker zunimmt als die mittlere Brechung, wenn man die Neigung des einfallenden Strahls gegen das Prisma verändert, und scheint uns die Möglichkeit zu zeigen, ein achromatisches Objectiv durch Verbindung zweier Linsen aus einerlei Glasart hervorzubringen.

Aus der dritten Reihe der angeführten Verfuche, 66 bis 6q, zeigt fich, dass das zweite abgeleitete Spectrum fich dem ersten entgegenletzen. und zum Aufheben desselben brauchen läst. In Vers. 67 wird das erste Spectrum nur zum Theil von dem zweiten aufgehoben; in Vers. 68 aber vollständig; und in Verf. 66 corrigirte das zweite das erste zu stark, so dass der übrig bleibende grüne Rand nach der Kante des andern Prisma zu überfprang. Diese Versuche vollenden daher nicht nur den Beweis der Wirklichkeit dieses neuen Spectrum, sondern scheinen auch die Möglichkeit anzudeuten. die in den bisherigen achromatischen Objectiven nicht aufgehobnen Farben, welche das vorzüglichste Hinderniss der Vervollkommnung dieser Fernröhre waren, völlig aufzuheben, oder wenigstens zu vermindern.

1

r

e

r

a,

ā

1

n

Die ausnehmende Kleinheit der uncorrigirten Farbenränder, welche durch das erste abgeleitete Spectrum entstehn, machen es unmöglich, ihre relative oder ihre absolute Größe durch irgend eine der Methoden zu finden, mittelst deren wir etwas Räumliches zu messen pflegen: felbst das feinste Mikrometer reicht dazu nicht hin. Das zweite abgeleitete Spectrum kömmt uns aber hierbei zu Hülfe, und giebt uns ein genaues Mittel an die Hand, in jedem Fall die Größe des ersten abgeleiteten Spectrum zu messen. Denn da es nicht durch irgend eine specifische Beschaffenheit der brechenden Mittel hervorgebracht wird, sondern allein von den Einfallswinkeln der Lichtstrahlen auf die beiden brechenden Flächen des Prisma abhängt, fo läist sich die Größe desselben unmittelbar durch Rechnung bestimmen. Wir brauchen also in Fällen, wo das zweite abgeleitete Spectrum das erste, wie in Vers. 68, vollständig aufhebt, nur die Größe des zweiten abgeleiteten Spectrum, oder die kleine Ablenkung des Strahls von mittlerer Brechbarkeit, so wie ihn das Kronglas giebt, zu berechnen. Und wenn man also so für das Flintglas-Prisma die Größe des zweiten abgeleiteten Spectrum, oder die kleine Ablenkung des mittleren Strahls, welche durch das Flintglas-Prisma hervorgebracht wird, berechnet, so erhält man ein Maass des ersten abgeleiteten Spectrum des Plintglas, welches durch, die specifische Anziehung, die dasselbe auf die

verschiedenen farbigen Strahlen äußert, hervorgebracht wird.

Diese ist eine vollständige Uebersicht der Verfuche, welche ich über das erste und das zweite abgeleitete Farbenspectrum des Prisma angestellt habe. Ich schließe mit einer Anwendung der Resultate derselben auf die achromatischen Fernröhre und deren Verbesserung.

5) Anwendung auf die Vervollkommnung der achromatischen bernröhre.

î

Die Unvollkommenheiten der achromatischen Fernröhre beruhen auf zwei Gründen. Erstens darauf, dass sie die Farben nicht ganz, sondern pur zum Theil aufheben, wovon die Urlache darin liegt, dals in dem durch Kronglas und durch Flintglas hervorgebrachten Spectris die farbigen Räume in dem einen ein anderes Verhältnils der Größe zu einander, als in dem andern haben. Zweitens in der großen Schwierigkeit, fich Adern- und Streifen - freyes Flintglas zu verschaffen. Bis jetzt ist es, so viel ich weiß, noch von niemand versucht worden, das erste dieser Uebel wegzuräumen oder wenigstens zu vermindern. Die großen Belohnungen, welche der Board of Longitude in England und die Akademie der Wissenschaften in Frankreich auf die Verfertigung guten Flintglases ausgesetzt haben, find ebenfalls bis jetzt noch ohne gedeihlichen Erfolg geblieben. Die folgenden Maximen. welche sich unmittelbar auf Versuche gründen,

dürften vielleicht zur Vervollkommnung dieles wichtigen Instrumentes beitragen.

D

d

ft

H

d

fe

V

el

W

di

F

di

Ye

m

G

A

ih

at

til

gl

- 1) Es erhellt aus den hier mitgetheilten Verfuchen, dass die nicht corrigirte Farbe im Allgemeinen abnimmt, wenn der Unterschied der zerstreuenden Kräfte der beiden sie hervorbringenden Prismen oder Glaslinsen geringer wird. In einer Verbindung zweier Prismen oder Linsen aus Kronglas oder Flintglas, deren zerstreuende Kräfte 0,036 und 0.052 find, bleibt noch beträchtlich viel Farbe zurück. Die uncorrigirte Farbe kann daher fehr vermindert werden, wenn man Flintglas nimmt, das eine so kleine zerstreuende Kraft hat, als es das Flintglas nur zulässt. Die Zerfireuungs - Kraft verschiedner Arten von Flintglas variet von 0,045 bis 0,052, und Dr. Robison will lie felbst 0,038 gefunden haben, hat er sich anders nicht in Berechnung seines Versuchs geirrt *),
 - * Hr. Tulley zu Islington nimmt zu seinen Achromaten Flintglas vom specis. Gewichte 3,466 bis 3,192, und da er sindet, dass die brechenden und die zerstreuenden Kräste desselben sich ziemlich nahe wie das specis. Gewicht verhalten, so mus die esste att Flintglas die letztere sehr an Farbenzerstreuung übertressen. Bei dem Flintglas vom specis. Gewichte 3,466 ist das Verhältnisseler Brechung im Kronglase zu dem im Flintglase wie 1:1,74, und die Halbmesser der Krümmungen sind

a = 14,3 a' = 18,0 F = 44 Zoll b = 19,4 b' = 72,0

Bei dem Flintglase vom specif. Gewichte 3,192 ist das Verhältniss der Breehung 1:1,52, und die Halbmesser der Krümmungen sind

a = 11.5 a' = 15.25 F = 44 Zoll.

Der praktische Optiker sollte sich daher immer das Flintglas aussuchen, welches das kleinste Zerstreuungs-Vermögen hat; denn obgleich dann die Halbmesser der Oberstächen kleiner genommen werden müssen, so wird doch das erste abgeleitete Spectrum sehr verringert.

- 2) Da auch das Kronglas von bedeutend verschiedenem Brechungs-Vermögen vorkömmt, nach Verschiedenheit seiner Mischung, so ist es wichtig, ebenfalls das, welches die äußersten Strahlen am wenigsten auseinander bricht, zu nehmen. Denn dann kann der Optiker noch weniger zerstreuendes Flintglas als das vorhin angeführte brauchen, wodurch die unausgehobnen Farbenränder noch mehr verkleinert werden müssen.
- 3) Flintglas das ein geringes Zerstreuungs-Vermögen haben soll, bedarf nur eines geringen Zufatzes an Blei, und es läst sich erwarten, dass die Glasmasse homogener ausfallen, und durch weniger Adern und Streisen entstellt seyn werde, wenn man ihr weniger Blei als jetzt zusetzen wird; so dass also auch der zweiten Unvollkommenheit der achromatischen Teleskope durch Gebrauch leichteren Flintglases sich wird abhelsen lassen *).

Man sehe in der Edinburgh Encyclopaedia, ad Edit., den Artikel Achromatic Telescope, wo ich einige Geftalten für achromatische Objectivgläser angegeben habe, welche mir von diesem berühmten Optiker mitgetheilt worden find.

Brewster.

^{*)} Da es fast unmöglich ist, ein gutes Stück Flintgles von mehr als 4 bis 5 Zoll Durchmesser zu erhalten, so müchte

Verfuche über die beste Glasmischung zu achromatischen Teleskopen anzustellen, und der Baronet Sir George Mackenzie, der mit solchen Operationen bekannter ist als ich, will die Güte haben, mir bei dieser wichtigen Untersuchung zu helsen.

Die zweite Reihe der von mir hier mitgetheilten Versuche scheint uns einige Hoffnung zu geben, dass man durch zwei Linsen aus einerlei Glasart eine farbenlose Brechung werde bewirken können. Dollond, und jeder Optiker nach ihm, würde dieses für ganz unmöglich erklärt haben, Allein der Erfolg in Verl. 63 beweift, dass sich dieses mittelst zweier Prismen erreichen lässt, vermöge einer folchen Anordnung derfelben, wie ich sie in Fig. 4 abgebildet habe. Das Prisma mit dem kleineren brechenden Winkel B steht fo, dass die einfallenden Strahlen RR gegen die diesen Winkel halbirende Ebene geneigt find, wodurch die Farbenzerstreuung dieses Prisma vergrößert wird, so daß sie die Farbenzerstreuung des Prisma A mit dem größeren brechenden Winkel aufzuheben vermag,

f

E

G

K

es der Mühe werth seyn zu versuchen, ob sich nicht das zu einer Linse von einer bedeutenden Größe bestimmte Flintglas aus einzelnen Stücken guten Flintglases aus einem und demselben Hasen sollte hinlänglich sost zusammenkitten, und dann schleiten und polizen lassen! Ich habe ein solches Versahren in der Edinb Encyct. Vol. 5. Burning Instr., für große Brenngläser in Vorschlag gebracht.

ared delphelik. B co. are

ohne dass sie die Brechung desselben ganz aushebt. Daher wird der Strahl RD sarbenlos, und durch-schneidet doch die Axe CD.

ŧ.

n

Œ

-

ì,

3,

0

n

Ŕ

A

n

Diele Anordnung der Prismen läßt fich in den Linfen eines achromatischen Objectivs nachahmen, wenn man sie wie in Fig. 5 stellt. Die plan-convexe Linfe A entspricht hier dem Prisma A Fig. 4. und der erhabne Meniscus B dem Prisma B Fig. 4. Eine plan-convexe Linse nehme ich, weil sie die Abweichung wegen der Kugelgestalt vollkommen aufhebt. Vielleicht müßte bei der besten Einrichtung B ein hohler Meniscus und A ein erhabener Meniscus feyn, der feine erhabne Seite dem Okular zukehrte. Ich habe einige Verfuche mit solchen Glaslinsen gemacht, und fand offenbar eine Verminderung der Abweichung wegen der Farbenzerstrenung, konnte aber nicht alle Farben wegschaffen, wahrscheinlich weil es mir an passenden Linfengläsern fehlte. des Dr. Urinkloy, Pel

Vielleicht wäre es vortheilhaft, der Linse B im Bilden eines gleich großen Farbenspectrum mit der Linse A dadurch zu Hülse zu kommen, dass men sie aus einer etwas dichteren Art von Kronglas machte, welche die Farben etwas stärker, als es das Kronglas der Linse A thut, zerstreute,

Complete there. This Mittel was charm gabe the die jahre. Being Paradine diefer Schrein, da. und er bahre kei-

Sends of the property of the contract of the c

mon Aveiled, and he fiber & herene

V.

Ein paar ungewisse Nachrichten von himmlischen Gegenständen:

1) Aus einem Briefe des Herrn Flangergues an den Herrn Delametherle, Sept. 1813.

Ich habe eine sonderbare Beobachtung über den Planeten Mars gemacht. Vor seiner Opposition bemerkte
ich einen weißen, glänzenden ovalen Fleck, genau
an dem Südpol desselben. Dieser nahm an Umfang
immer mehr ab, und verschwand endlich einen Monat nach dem Erscheinen. Ich zweiste nicht, dass dieses eine Lage Schnee oder Eis gewesen ist, welche
den Südpol umgab, und die von den Sonnenstrahlen
geschmelzt wurde. Der Frühling hatte für die südliche Hemisphäre des Mars am vergangnen 12: April
angesangen.

a) In einem Briefe an den seitdem gestorbenen königl. Astronomen Dr. Maskelyne zu Greenwich des Dr. Brinkley, Prof. der Astronomie zu Dublin, beist es zu Folge englischer Zeitschristen, er habe nun Beobachtungen genag über seinen Stüsigen Kreis, am mit diesem Instrumente sehr zusrieden zu seyn, und sey mit ihm zu einem für die Astronomie wichtigen Resultate gelangt. Er habe nunmehr 47 Beobachtungen zur Bestimmung der jährlichen Parallaxe von a der Leyer, nämlich 22 um die Opposition, und 25 um die Zeit der Conjunction. Das Mittel aus ihnen gebe für die jährliche Parallaxe dieses Sterns 2", 52, und er habe keinen Zweisel, das sie über 2" betrage *).

^{&#}x27;) Welchem eine Eutfernung von uns, von 100000 Durchmelfern der Erdbahn, oder von 4 Billionen geograph. Meilen entfpräche. C.

Jaf. III. Fig 5 B. D. va. M.b.

.

à

,

r

r

Cill. N. Ann. O. Plays 20 3. 3. 4 1

I who do

ANNALEN DER PHYSIK.

JAHRGANG 1815, ACHTES STÜCK.

T.

Nachrichten über das Gewitter vom 11ten Januar 1815,

. Am

Dr. Benzenberg.

Dieses Gewitter wurde besonders dadurch merkwürdig, dass es fast zu gleicher Zeit an sehr entfernten Orten einschlug, und dass es an zweien Orten, wo es die Blitzableiter traf, zündete, nämlich in Düffeldorf und Dortmund, obschon beide Ableiter sehlersrei angelegt waren, und auch eine hinlängliche Metallsläche zur Ableitung der electrischen Materie darboten.

Ich will hier die Nachrichten mittheilen, die ich darüber gesammelt habe, und diese dann mit einigen Bemerkungen begleiten.

- 1) Verzeichniss der Orte, wo das Gewitter einge-Schlagen hat.
- 1. Zu Antwerpen im Hafen;
 - 2. zu Rotterdam in die große Kirche, Morgens Annal. d. Phylik. B. 50. St. 4. J. 1815. St. 8.

9 Uhr. (Nach andern Nachrichten zwischen 7 und 8 Uhr Morgens.)

3. Zu Zwoll :

4. zu Nimwegen;

5. zu Kanten (der zweite Schlag löschte, was der erste gezündet hatte);

6. zu Udem;

7. zu Goch;

8. zu Duisburg;

9. zu Wefel;

10. zu Mühlheim an der Ruhr;

11. zu Dortmund um 10 Uhr in den Reinoldi-Thurm;

12. zu Diffeldorf im Lamberti-Thurm um halb 11 Uhr;

13. zu Cölln in groß St. Martin;

14. zu Bonn im großen Thurm, wo er am Blitzableiter herunterlief, ohne ihn zu beschädigen;

15. zu Düren;

16. zu Herford;

17. zu preusisch Minden:

18. zu Bocholdt;

19. zu Hopstern im Münsterschen;

20. zu Wevelzberg im Paderbornschen;

21. zu Beek im Cleveschen, (hier schlug es am 11. Januar um 11 Uhr die Zahl 11 vom Zifferblatt ab;)

1

1

22. zu Bielefeld;

23. zu Borken;

24. zu Paderborn, wo der große Thurm um 11 Uhr abbrannte, und die ganze Stadt in Gefahr war.

Es hat wahrscheinlich noch an mehreren Orten eingeschlagen, ohne dass mir dieses bekannt geworden. An den meisten dieser Orte tras der Blitz die Thürme und zündete. ad

er

m:

lb

tz-

m

hr

en

r-

ie

Zeichnet man diese Orte auf eine Karte, so sieht man, dass das Gewitter einen Raum von etwa 40 Meilen Länge (von Antwerpen bis Minden) und etwa 15 Meilen Breite (von Bonn bis Nimwegen) eingenommen hat.

Es scheint, als wenn auf diesem ganzen Striche die Lust in der electrischen Gährung, dass aber in verschiedenen Puncten dieser Process stärker gewesen sey, und dort dann vollkommene Gewitter gebildet habe. An den zwischenliegenden Orten hat es doch sast überall gehagelt, und man hat in der Ferne donnern gehört,

2) Der Blitz trifft den Ableiter auf dem Lamberti-Thurme in Duffeldorf, und zundet.

Der Lamberti-Thurm ist ungefähr 200 Fuss hoch. Er hat die gewöhnliche Form der Kirchthürme. Auf einem 200 Fuss hohen Mauerwerke sieht eine eben so hohe achtkantige Spitze. Die eiserne Helmstange war von außen auf die Königsstange befestigt *), und die Spitze hatte einen bleiernen Mantel von etwa 15 Fus, der an der Helmstange herunter ging. Hier singen die Schiefer an, und über die acht Ecken des Thurms liesen acht Bleistreisen herab, bis auß Mauerwerk. Hier hatte Professor Brewer, der im Jahr 1811 den

^{*)} Königsftange ift ein Ausdruck, den man in unsern Gegenden nicht zu kennen scheint. Helmstange ist die Rarke hölserne, senkrecht stehende Stange, welche die Wettersahne und den Knopf trägt, die unmittelbar auf einer in dem obern Ende derselben besestigten eisernen Stange auslitzen. G.

Blitzableiter anlegte, diese Bleistreisen alle in einen horizontalen Bleistreisen vereinigt, der rund um den Thurm geht, und von dem zwei 5 Zoll breite Bleistreisen am Mauerwerk herunter bis in die Erde lausen. Das Metall des Blitzableiters ist nirgends beschädigt; ein Zeichen, dass es hinlänglich war, die electrische Materie abzusühren.

Der Blitz tref auf die Schwanzfeder des kupfernen Hahns *), und schmolz hier eine Scharte von etwa & Zoll aus. Auf derselben Schwanzfeder sind noch mehrere Scharten ausgeschmolzen, allein nur etwa i bis i & Linien tief. Sie sind älter, und wohl von früheren Blitzschlägen, die weniger stark waren, wie dieser. Uebrigens ist der Hahn 1811 mit dem Blitzableiter zu gleicher Zeit ausgestellt worden.

Der Blitz schlug um halb in Uhr ein, und man will den electrischen Funken am Ableiter herunter haben sahren sehn. Eine Viertelstunde nachher sah man oben an der Helmstange Rauch heraus kommen, und bald eine kleine Flamme, die scharf herauszüngelte, wie vor einer Schmiede-Esse. Die hohe Thurmspitze wirkte als Windosen. Der obere Theil der Spitze stand bald in Brand, indes trieben doch die Brandspritzen das Wasser bis oben hin, und ein Schlossermeister, Namens Wimmer, hatte die Verwegenheit hinauf zu steigen, und die

^{*)} D. h. unstreitig des zuoberst auf der eisernen Helmstange stehenden Wetterhahns, der aus dunnem Kupserblech besteht. G.

Spitze unter dem Feuer abzuhauen, sie herunter zu stürzen, und so den Thurm zu retten.

n

m

ta

le

ds

r,

r-

n

d

11

1

1-

it

lt

n

T

h

.

e

e

Ich glaubte früher, dass die Ursache des Zündens die gewesen sey, dass der untere Theil der Helmstange in den Thurm gegangen, und dass ein Theil des Strahls dem Metall nachgelausen, und von diesem wieder auf den nahen Ableiter gesprungen sey, und beim Abspringen ein paar Spähne losgeschlagen und sie gezündet habe.

Dieses ist aber nicht der Fall. Die abgehauene Spitze des Thurms liegt nebst Hahn, Knopf, Helmstange und Königsstange auf dem Hose des an der Kirche wohnenden Pastors, und ich habe mich hier überzeugt, dass die Helmstange von außen auf die Königsstange beseltigt, und dass alles Metall gehörig verbunden war.

Das Blei ist aber schadhaft gewesen, und es hat schon Jahre lang durchgeregnet, wodurch die Helmstange der Länge nach angesault war. Sie ist 7 Fus von ihrem obern Ende abgebrochen; zum Theil war sie durchgebrannt, zum Theil durchgesault. Auf der Stelle des Bruchs mochte das gesunde Holz noch 4 Zoll breit und 1 Zoll dick seyn.

Da nasses Holz ein Leiter ist, und trocknes nicht, so sind zweierlei Ansichten möglich. Erstens: Der Blitz zündete, weil er dem angesaulten Holze nachlief, und als er am gesunden nicht weiter konnte, nun absprang auf den vielleicht einen Fuss von ihm entsernten Ableiter. Oder zweitens, der Blitz selbst hat gar nicht gezündet, sondern die

Wärme, welche durch die schnelle Compression der Luft ausgeschieden wurde, zündete das mürbe schwammartige Holz, auf dieselbe Weise, wie der Zunder in den Pariser Feuerzeugen sich entzündet. Ich lasse es dahin gestellt seyn, welche Meinung die wahrscheinlichste ist.

nu

W

ep be

fit

di

Fi

uì

m

n

ill

F

3) Der Blitz trifft den Abletter auf dem Reinoldi-Thurm in Dortmund, und zündet.

Der Ableiter auf dem Reinoldi-Thurm wurde ums J. 1783 von dem verstorbenen Professor Hemmert angelegt, der damals von Mannheim nach Düsseldorf geschickt worden war, um die Churfürstl. Gebäude mit Ableitern zu versehn. Ein Freund von ihm, der Rathsherr in Dortmund war, veranlasste ihn, den dortigen Reinoldi-Thurm auch mit einem Ableiter zu bewaffnen.

Dieser besteht in einer eisernen Stange, welche von der Spitze des Thurms bis in die Erde läuft. Ein zweiter Ableiter ist am Chor angebracht, und verbindet das Kreuz, welches auf dem Chor steht, mit der Erde. Die Kirche ist nach alter Art ins Kreuz gebaut, mit vielen Nebendächern und zwischen ihnen liegenden Regenrinnen von Blei versehn. Sie alle sind unter einander sowohl, als auch mit beiden Ableitern verbunden.

Gegen die Mitte des April war ich in Dortmund. Die Umstände, welche das Einschlagen begleiteten, wurden mir von Augenzeugen auf folgende Weise erzählt. be

er.

et.

ie

le

1-

h

İ,

d

t

B

Des Morgens gegen 10 Uhr erhob sich in Nordoff ein Schneegestöber, mit einem hestigen Wirbelwinde. Es wurde so dunkel, dass man im Zimmer
nur noch mit Mühe lesen konnte. Die Wolken
wogten auf und ab, sie näherten sich der Erde und
entsernten sich wieder von ihr. Das Schneegestöber zog sich um die Spitze des Thurms. Die Fahne
stand Ost; es erfolgte ein hestiger Schlag, und
die Fahne stand West. Bei dem Schlage lief ein
Funke von der Größe einer Faust am Ableiter hernnter; unten auf der Erde, am Ableiter, war alles
mit Feuer übergossen. Nach dem Schlage zertheilte sich die Wolke. Nach 4 Minuten erfolgte
noch ein zweiter Schlag, von dem es aber ungewiss
ist, ob er auch den Thurm getrossen hat.

Man ging gleich in den Thurm, um zu sehn, ob es eingeschlagen habe. Man sand den Ableiter unbeschädigt, und keine Spur des Blitzes. Dieses war gegen 10 Uhr. Um halb 12 hiese es, dase Feuer auf der Kirche sey. Es stieg Rauch auf, und man eilte auf den Kirchboden; da die Schlüssel nicht gleich zur Hand waren, so wurde die Thür ausgeschlagen. Das Feuer war unter einer Dachrinne, wo ein Querstügel aus dem Schiff der Kirche anstöst. Das Feuer war noch klein und wurde in 5 Minuten gelöscht.

An dieser Rinne, die 1½ Fuss breit und 45 Fuss lang ist, schlug der Blitz sieben Mal durchs Blei, und gewöhnlich da, wo die Bleiplatten übereinander griffen. In der gegenüber stehenden Rinne

ga

Bl

in

Wa

pr fre

Fu

im

Fu

du

pa W

St

gr

F

ki

W

B

S

li

A

F

fchlug er auch 5 Mal durch, und in zweien horizontalen, die den Abhang mit dem Schiffe verbinden, 6 Mal. Die Rinnen lagen voll Schnee
und Eis. In neuem Blei hatte es weniger durchgeIchlagen, als in altem verwitterten. In der Rinne,
wo das Holz zündete, war viel altes verwittertes
Blei; es hatte durchgeregnet, und das Holz war
faul und mürbe. Ich habe verschiedene Stücke
mitgenommen, die gerade so mürbe und trocken
waren wie Zunder,

An beiden Seiten der schiefen Rinne waren die Nägel, auf 4 Zoll Breite, sowohl aus dem Blei, als auch aus den Schiefern. Der Bleistreisen auf der Firste des Querstügels war 10 bis 12 Mal aufgebogen. Von den meisten Nägeln waren die Köpfe fort; die Stifte salsen noch.

Man fieht, dass hier, wie in Düsseldorf, die Urfache des Zündens im fauten Holze lag. Wäre das Blei in den Rinnen nicht alt und verschlissen gewesen, hätte es nicht durchgeregnet, und wären die Breter unter den Rinnen neu und fest gewesen, so wäre sicher kein Feuer entstanden.

Allein hier ist nun die Frage; Warum schlug der Funke so oft durchs Blei, da er eine Metallstrecke von 12 Fuss Breite hatte? Bei dem jedesmaligen Durchschlagen brannte er Löcher ins Blei von 3 bis 4 Linien Durchmesser. Der Schieferdecker, Herr Wirth, hatte eine Menge solcher Platten ausgeschnitten, in denen solche Löcher waren, auch zeigte er mir noch welche auf der Kirche in den

ri-

éé

6-

ė,

es

ar

te

in

ie

ds

er

n.

ié

.

15

.

e

Ò

ė

1

S

ganzen Platten. Angeschmolzen war wenig. Das Blei war weggebranne. so wie das Kupfer am Hahn in Düsseldorf.

Eben so wiederholt sich hier die Frage: Was war die Ursache des Zündens? War dieses die Compression der Luft, so dass die Zündung durch die freiwerdende Wärme geschah, oder waren es kleine Funken, die vom Strahl absprangen, so wie man im Finstern diese ausschießenden Strahlen au dem Funken der Tayler'schen Maschine sieht? Die Zündung war sehr klein, und man hätte sie vielleicht nach 5 Minuten noch mit einem Fingerhute voll Wasser aussüschen können. Erst in anderthalb Stunden blies sie sich in dem morschen Holze so groß an, dass es zur Flamme wurde,

Der Funke der Electrisirmaschine und der Funke der Batterie sind verschieden. Dieser ist kürzer und ohne ausschießende Strahlen. Im Gewitter hat der electrische Funken die Stärke des Batteriesunkens, und vielkeicht die ausschießenden Strahlen von dem der Maschine; und es ist möglich, dass sich hieraus manches erklären lässt,

4) Bemerkungen über die Erscheinungen des Gewitters vom itten Januar.

Dieses merkwürdige Gewitter scheint uns einigen Ausschluß über den Bau der Gewitterwolken zu versprechen. Wir sehen hier den Process der Ausscheidung der Electricität über eine große Fläche verbreitet, und in dieser Fläche wieder be-

Wi

nic

Ital

So

Ma

En

ma

me

der

feh grö

Ele

bei

Ele

che

Du: Vie

nen

ver

,,m

,,W

kar

der

alle

hen

nic

ift e

Iondere Puncte, wo er fich falt gleichzeitig und in großer Stärke en sehr entsernten Orten zeigt. So zündete dieses Gewitter in Düsseldorf und in Paderborn die Thürme fast zu gleicher Zeit.

Auch bestätigt es die alte Erfahrung, das Gewitter im Winter seltener, aber gefährlicher sind; vielleicht weil kalte Luft besser isolirt als warme, und sich die electrische Materie dann um so stärker anhäust, ehe sie die isolirende Lustschicht durchbrechen kann.

Auch ist wieder überall, wo das Gewitter war, der Schlag aus einer Wolke von Graupenhagel gekommen. Wird bei dem Processe, bei dem die Electricität ausgeschieden wird, so viel Wärme verschluckt, dass dieses die Ursache des Gestierens des Wassers ist; oder ist umgekehrt die Capacität des Hagels gegen Electricität geringer, als die des Wassers oder des Dampses, dass also der Process des Gestierens die Ursache des Gewitters ist?

Eine Gewitterwolke, die eine Quadratmeile Fläche hat, braucht auf jedem Quadratfuße nicht viel Electricität auszuscheiden, und kann doch einen Feuerballen geben, gegen den der Funke der Tayler'schen Batterie ein nur kaum merkbares Pünctchen ist. Das ist es aber eben, was die Erklärung von diesem allem so schwierig macht, dass die Anstalten droben so sehr ins Große gehen. Jeder Quadratsuß der Wolke ist wohl nur sehr schwach im Verhältnis mit einem Quadratsuß einer electrischen Batterie geladen. Allein die Menge macht die große

0

.

.

.

e,

er

34

a

r,

6+

ie

F4

es

es

es

13

lé

ht

1-

er

es

r-

(s

er

m

n

se

Wirkung. Deswegen lernten wir auch wohl noch nicht recht viel, wenn man uns ein Gewitter im Maafsfiabe unserer physikalischen Cabinette vormachte. So wie wir auch wohl nicht viel über den ErdMagnetismus lernen würden, wenn man uns eine Erdkugel von 3 Fus Durchmesser schenkte, die alle magnetische Eigenschaften unser Erde hätte. Wir merkten in beiden Fällen wahrscheinlich nichts von der Electricität und nichts vom Magnetismus. Oft sehlt es uns bei unsern Untersuchungen an den Vergrößerungsgläsern, und oft an den Ferngläsern,

Wir kennen jetzt fünf Wege, auf welchen Electricität frei wird. Durch Erwärmung, wie beim Turmalin. Durch Reibung, wie bei der Electrifirmalchine. Durch die electrifichen Wirkungskreise, wie beim Electrophor. Durch einen chemischen Process, wie in der Volta'schen Säule. Durch Compression, wie bei den Feuerkugeln. Vielleicht befolgt die Natur im Gewitter noch einen sechsten Weg, der von den fünf vorigen völlig verschieden ist

Es geht wie Göthe im Faust sagt: "Was "man nicht weiß, das eben brauchte man, und "was man weiß, kann man nicht brauchen." Man kann zwar nicht läugnen, daß in unsern Lehrbüchern der Naturkunde manches Interessante zu sinden ist, allein ohne ihnen zu schmeicheln, muß man gestehen, daß sich von manchem Interessanten auch gar nichts in ihnen sindet. Indes unsere Naturlebre ist erst 300 Jahre alt, und die Natur, wie die Theo-

fibe

anf

den

dur

,,de

,,T

,,he

"In

,,de

tr

,,01

,,de

ten

der

gin

abe

obl

füh

70

VO

Fa

W

do

un

de

im

es

die

logen fagen, 6000. Nimmt man in diesen 6000 Jahren die Zeit zu Abseissen, und die Höhe der Kenntnisse in jedem Jahrhundert zu Ordinaten, so erhalten wir eine krumme Linie, die uns die schönsten Hoffnungen für die Zukunft giebt, wenn wir von den Fortschritten der drei vorigen Jahrhundert auf die der drei solgenden schließen.

Wir kennen den Process des Regnens noch nicht, und diesen müssen wir wohl früher kennen, ehe wir den Process des Gewitters erklären wollen.

Dals des Gewitter zwei Ableiter traf, die fehterfrei waren, und doch zündete, erregte unter den Physikern einen großen Rumor. Unter den verfehiedenen Meinungen, die geäußert wurden, um die Theorie und die Ableiter zu retten, will ich nur zwei anführen.

Einige waren der Meinung, es käme daher, "daß die Ableiter die electrische Materie immet "auf Umwegen in die Erde führten, und nicht senk"recht. Dadurch würde dann der Blitz veranlaßt, "den Ableiter zu verlassen, und geradezu zu sprin"gen, um den unter der Spitze senkrechten Punct "zu treffen." Allein die Leitungsfähigkeit der Metalle ist so start, daß der Blitz sich gern kleine Umwege gefallen läßt, ehe er vom Metall ab- und auf schlechtere Leiter springt. Auch war in Düsseldorf die Zündung ja ganz in der Spitze, wo das Metall noch fast völlig senkrecht leitete. Und wie seht der Blitz horizontalen Metallstrecken nachläust, das sah man in Dortmund an den Regenröhren, wo er

0000

der

fo

ön.

wit

erte

och

en,

n.

en-

den

er.

UM

ich

16.53

er,

ner

st,

in-

act

le-

m.

ruf

orf

all

hŕ

25

er

über 100 Fus horizontal fortlief, und dann bergauf, drauf bergab und wieder bergauf, um über den Ableiter des Chors in die Erde zu kommen.

Andere waren der Meinung, die Zündung fev durch den Rückschlag geschehen. Nämlich: "in-"dem die Gewitterwolke mit ihrem +E über dem "Thurm schwebe. So werde der ganze Thurm - E "haben, vermöge der electrischen Wirkungskreile! -"In dem Augenblick des Schlages werde das +E "der Wolke vernichtet, das -E des Thurmes "trete augenblicklich wieder ins Gleichgewicht, und da, wo nun vollkommne Leiter waren, würde "der Funke überspringen und zünden," Sie führten ein Beispiel vom Freyberger Thurm an, auf den der Blitz fchlug und am Ableiter in die Erde ging. In der Wohnung des Thürmers fanden fich aber Spuren von kleinen electrischen Zerstörungen, obschon der Ableiter alle electrische Materie abgeto attent our school that one our it

Es ist mir nicht unwahrscheinlich, dass dieses von dem schnellen Herstellen des Gleichgewichts von + und -E herrührte, und dass sich dieser Fall befriedigend aus der Theorie der electrischen Wirkungskreise erklären lässt. Allein in Düsseldorf und Dortmund geschah das nicht, es zündete unmittelbar unter dem Metall, oder doch ganz in der Nähe desseben. An beiden Orten geschah es im faulen Holze, und es ist kein Umstand da, der es wahrscheinlich macht, dass das Zünden durcht diesen Rückschlag geschehen, der seinen Grund

in dem electrischen Wirkungskreise der Wolke gehabt habe.

YC

ul

te

Si

ke

00

de

7

fe

pl

fie

[cl

da

de

du

re

pa

ge

D

Di

Man kann wohl mit ziemlicher Sicherheit behaupten, dass der Blitz an beiden Orten nicht würde gezündet haben, wenn kein faules Holz unter dem Metall gewesen wäre; und wenn man künstig bei der Anlage der Blitzableiter hierauf Rücklicht nimmt, so werden keine Zündungen mehr Statt finden.

Erklärung der Kupfertafel IV.

Fig. 1 stellt den Thurm Lamberti in Düsseldorf vor. Die punctirten Linien sind die Bleistreisen des Blitzableiters. Bis an die oberste horizontale Linie in der Spitze war er mit Blei gedeckt. Bis an die 2te ist die Spitze abgebrannt. Die beiden Nebenthürmehen hatten auf den Ecken ebenfalls Bleistreisen, welche alle mit einander in Verbindung standen.

Fig. 2 ist ein Stück von der Schwanzseder des Hahns in natürlicher Größe. Er ist von Kupfer, welches etwa 0,7 Pariser Linien dick ist, und vergoldet. In a ist ein Stück vom Blitze weggebrannt. Ein kleines geschmolzenes Kügelchen sitzt noch b und a sind Anschmelzungen von früheren Blitzschlägen.

Fig. 3 stellt die Reinoldi-Kirche in Dortmund vor. Die punctirte Linie am Thurm den Blitzableiter, der aus einer 5 Linien dicken eisernen Stange besteht; die punctirten Linien über der Kirche aber die Regenrinnen, denen der Blitz nachlief, lke

be-

icht

ter

ftig

icht

tatt

lorf

ifen

tale

an

den

alls

in-

des

fer,

er-

ch.

itzien

ef,

um auf den Ableiter des Chors zu kommen, und von diesem in die Erde. Die Firsten von Kirche und Chor find mit Bleistreifen gedeckt, die alle unter fich und mit dem Ableiter in Verbindung stehn. Sie find auf der Zeichnung nicht angegeben, da keine Spur da war, dass der Blitz sie getroffen, oder ihnen gefolgt wäre. In x ist die Stelle, wo der Blitz gezündet hatte. In dieser Rinne hatte er 7 Mal durchs Blei geschlagen, und, wie der Schieferdecker fagte, gewöhnlich da, wo die untere Bleiplatte unter der obern endigte. In der gegenüber siehenden Rinne in m hatte er 5 Mal durchgeschlagen. Auf der Firste K des Quergebäudes war das Blei 10 bis 12 Mal aufgebogen. In jede der beiden horizontalen Rinnen o und p hatte es 3 Mal durchgeschlagen. In R ist am Querflügel ein senkrechtes Regenrohr, an diesem hatte es auch ein paar Mal durchgeschlagen, und eine Klammer abgeriffen.

Fig. 4 ist ein Stück aus einer Bleiplatte der Dachrinnen mit dem durchgeschlagenen Loch, in natürlicher Größe.

क्षि हैं। इस स्ट्रिक कुन्द कर है। है।

lic

fel gla de

tei

da ge

L

für

We Na Ui

fül

Ge vo: wa

die

H

du

fta

di

än

me

bis

au

ric

Sa

Na

II

The make animal district the

Verfuch einer Vergleichung der älteren und der neueren Meinungen über die Natur der oxydirten Salzfäure.

zur Beurtheilung

des Vorzugs der einen vor der andern;

Von

JACOB BERZELIUS,

Prof. d. Medic. u. Pharm. und Mitgl. d. kön. Akad. d. Wiff.

Es ist allgemein bekannt, dass Humphry Davy eine neue hre von der Natur der Salzsaure und ihren Verbindungen aufgestellt hat, welche jetzt ziem-

1) Es sey mir erlaubt vorläusig zu bemerken, dass der Leser in diesem Aussatze mehr sinden wird, als er nach dieser einsachen Ueberschrist erwarten dürste; eine mit Scharfsinn und tieser Kenntniss durchgesübrte philosophische Erörterung über mehrere der schwierigsten und doch sehr interessanten Gegenstände der physischen Chemie, welche klar, geistreich und anziehend dargestellt ist, und unsere Ansichten in diesem Theile der Physik läutert und erweitert. Möge diese Abhandlung sludiren, wer über Gegenstände der Naturschie philosophiren will, um sich mit dem Geiste wahrer Naturschilosophiren will, um sich mit dem Geiste wahrer Naturschilosophire vertraut zu machen. — Den Körper, von welchem hier vorzüglich die Rede seyn wird, erklärt Hr. Pros. Berzelius sür ein Ueberoxyd; dieses scheint der Grund zu seyn, warum er die Benennung oxydirte der oxygenirte Salssäure vorzieht.

lich allgemein angenommen wird, ungeachtet sie nicht ohne Widerspruch blieb. Bis jetzt kann ich nicht einsehn, dass sie Vorzüge vor der älteren Lehre hat, glaube aber eben deshalb mich verpflichtet, die Gründe anzugeben, welche mich bestimmen, bei den älteren Meinungen zu bleiben. Und das um so mehr, da es scheinen muss, dass Gründe, welche so ausgezeichnete Männer, als die Herre Davy, Gay-Luffac, Vauquelin u. m. bestimmen konnten, sich für die neue Lehre zu erklären, wohl hinreichen sollten, auch andere zu überzeugen, und ich recht gut weiß, daß die Beharrlichkeit, mit welcher mancher Naturforscher älteren Meinungen anhieng, von seinem Unvermögen berrührte, die Kraft der gegen sie angeführten Beweise gehörig zu würdigen. Doch selbst die Gefahr, der ich mich aussetze, dass man dasselbe mir vorwerfe, foll mich nicht abhalten, einen Streit zu wagen, durch welchen, wie er auch ausfallen mag, die Wahrheit nothwendig gewinnen muß.

ber

, left

iff.

RVY

und em-

ieler

harf-

Er-

lche

wei-

inde

eifte

Körer-

eint

der

Humphry Davy fand, dass eine Kohle, die durch galvanische Entladung in den Zustand der stärksten Glühung gebracht war, das trockne oxydirt-salzsaure Gas nicht zu zerlegen oder zu verändern vermochte. Man hatte bis dahin angenommen, die oxydirte Salzsaure sey eine fehr lose Verbindung der wassersteinen Salzsaure mit Sauerstoff; aus diesem Versuch folgte, dass diese Meinung unrichtig ist. Davy siel nun daranf, die oxydirte Salzsaure sey ein einsacher Körper, "dem er den Namen Chlorine gab, und um dieses zu beweisen,

dir

gas

fal

fau

fäu

Sci

Sc

wa

De

we

BU

Sa

na

WO

Sa

Sa

un

Wil

da

[en

eir

fo

ni

nu

fä

fe

bi

W

liefs er oxydirt-falzfaures Gas auf erhitzte Salzi balen einwirken. Das Gas wurde verschluckt, und Sauerstoffgas in einer Menge entbunden, die genau der des Sauerstoffs der Salzbasis gleich war: woraus er Schloss, dieser Sauerstoff rühre nicht, wie man bis dahin angenommen hatte, von der oxydirten Salzfäure; fonder von der Salzbalis her. Dass lich aber in keinem Verfuche Sauerstoff unzweideutig von der oxydirten Salzläure abscheiden liefs, nafim er für einen Beweis; daß die ältere Lehre nicht die richtige fey, und dass, um seine eignen Worte anzuführen, "Chlorine must be regarded, accord-,ing to a just logic of chemistry, as an ele-"mentary substance." (Elem. of Chem. Phili T.I. P. 1. p. 241.) Herr Davy hat feitdem diese Meinung immer mehr zu bestätigen und durch neue Beweise fester zu begründen gesucht, und bestimmt erklärt, dass er die ältere Meinung als eine unerweisliche Hypothele ansehe, indem sie etwas annehme, das durch die Erfahrung nicht bewiefen werden könne. Er hat zwar nicht unbemerkt gelassen, dass die Chlorine Eigenschaften besitzt, welche sie. ohne ein oxydirter Körper zu seyn, vielleicht nicht hätte, setzt aber gleich (S. 485) hinzu, man dürse daraus auf keine Weise schließen, dass die Chlorine Salzfäure enthalte.

Da die neue Lehre und ihr scheinbarer Vorzug vor der älteren hauptsächlich auf diesen Thatsachen beruht, so will ich die beweisende Kraft derselben näher untersuchen.

Z-

nd

an er

Dis

lz,

ch

tig

im

lie

n-

·d-

le-

uil

ele

ne

788

en

ie,

ht

rfe o-

ug

en en

Man hatte erwartet, bei dem Versuch mit oxydirt-falzfaurem Gas und glühender Kohle werde gasförmiges Kohlenstoff-Oxyd und gewöhnliches falzfaures Gas entstehn. Das uns bekannte falzfaure Gas ift aber eine Verbindung wasserfreier Salzfaure mit Wasser, eben so wie die concentrirte Schwefelfäure eine Verbindung der wasserfreien Schwefesaure mit Wasser ist; und hieraus erhellt, warum diese Erwartung nicht erfüllt werden konnte. Denn die Kohle musste die oxydirte Salzfäure entweder zu wasserfreier unverbundner Salzsäure, oder zu Salzfäure-Radical reduciren. Wenn aber die Salzfäure nicht ungebunden bestehn kann, wie es nach der Analogie mit mehreren andern Säuren wohl feyn könnte, und wenn die Grundlage der Salzfäure eine größere Verwandtschaft zu dem Sauerstoff als die Kohle hätte, welches auch weder unwahrscheinlich noch ohne Beispiel ist, so konnte, was man hier erwartete, nicht eintreffen, ohne dass die oxydirte Salzsäure ein einfacher Körper zu seyn braucht. Wenn daher dieses Factum auf der einen Seite für die neue Lehre zu fprechen scheint. fo kann es auf der andern Seite doch in der That nichts gegen die Richtigkeit unserer älteren Meinungen beweisen.

Die Nicht-Reducirbarkeit der oxydirten Salzfäure durch Kohle gab Davy'n zu der Idee, fie fey einfach, Veranlassung. Das fie in ihrer Verbindung mit Basen eine Sauerstoffmenge entbindet, welche der in den Basen enthaltenen gleich ist, betrachtete er als einen entscheidenden Beweis für die Richtigkeit dieser Idee. Wir wollen nun ebenfalls diesen Beweis prüfen.

it

d

ei

ei

S

de

hi

fis

di

de

au

de

m

tie

VO

an

di

Va

Re

bi

le

de

m

be

be

ab

hi

Wissenschaftliche Sätze, die Prüfung bedürfen, muß man von allen Seiten betrachten; denn was nur von einer Seite gesehn, Wahrheit zu seyn scheint, zeigt sich von einer andern Seite betrachtet öfters als völlig unrichtig, oder doch als sehr zweiselhaft. Man denke sich in die Zeit zurück, als Davy diese vermeinte Entdeckung machte; seine Schriften zeigen, dass er damals mit den Resultaten der Versuche über die sesten Mischungs-Verhältnisse so gut als völlig unbekannt war. Diese Lehre ist seitdem in einem bedeutenden Umfange bearbeitet, und, wie ich glaube, ziemlich gut bestätigt worden; es ist daher nothwendig, diese Sache noch von der Seite der chemischen Proportionen zu betrachten.

Nach den Grundsätzen der älteren Lehre ist die oxydirte Salzfäure ein Ueberoxyd, und es geschieht die Ausscheidung des Sauerstoffs in dem erwähnten Versuche dadurch, das ihr überschüssiger Sauerstoff wegen der größeren Verwandtschaft der Säure zur Basis entweicht, ganz wie beim Einwirken von Schwefelfäure auf Mangan-Ueberoxyd der überschüßige Sauerstoff sich ausscheidet und schwefelsaures Mangan-Oxydul gebildet wird. Das aber das Ueberoxyd einer Grundlage, welche fähig ist zur Säure zu werden, sich durch Einwirkung einer Basis, unter Sauerstoff-Entbindung, zu Säure reducire, ist

für

en-

en,

Was

ch-

ehr

ck.

te;

gsele

ige

)e4

efe.

ift

e-9

254

er

er

en

T-

es

F-

re

a-

in der That nichts Unwahrscheinlicheres, als dass das Ueberoxyd einer Grundlage, welche fähig ift eine Basis zu werden, sich durch die Einwirkung einer Säure mit der nämlichen Erscheinung zur Salzbalis reducirt. Die Menge des dabei entbundenen Sauerstoffs muss in einem bestimmten Verhältmis fowohl zu der der Säure, als zu der der Basis stehen; und dieles Verhältnis lässt sich durch die Analyse verschiedener Verbindungen, sowohl der Säure als der Basis, ohne große Schwierigkeit ausmitteln. Erwägt man nun die Verbindungen der Salzfäure, und die Proportionen ihrer Zusam, menfetzungen, so ergiebt sich auf eine unzweideutige Weise das Resultat, (vorausgesetzt die Lehre von den bestimmten Mischungs-Verhältnissen führe auf keine grobe Täuschungen,) dass, wenn die oxydirte Salzfäure, der älteren Meinung gemäß, eine Verbindung von Salzfäure mit überschüfligem Sauerfloff ift, die Sauerstoffmenge, welche sie beim Verbinden mit Salzbasen hergiebt, genau der gleich feyn mus, welche die Euchlorine ausscheidet, indem sie sich zur oxydirten Salzsäure reducirt; d. h. 4 von der, welche die Salzfäure im überoxydirtsalzsauren Kali beim Glühen sahren lässt; halb so viel, als sich in der wasserfreien Säure belinden muls; und eben fo viel, als fich in einer jeden Bafis befindet, von der die in der oxydirten Salzfäure befindliche Salzfäure gefättigt wird. Dann muß aber oxydirt - falzfaures Gas, wann es von einer erhitzten Salzbalia verschluckt wird, genau so viel

Sauerstoff hergeben, als die mit der Salzsäure in Verbindung tretende Basis enthält; und so zeigt sich der Umstand, den man als einen entscheidenden Beweis von der Unrichtigkeit der älteren Lehre angegeben hat, als eine nothwendige Folge der Richtigkeit dieser Theorie, und als keinen genugthuenden Grund abgebend, die ältere Lehre als unzulänglich zu verlassen.

n

i

I

v

k

Č

Geben wir also auch zu, dass die Nicht-Reducirbarkeit des oxydirt-falzlauren Gas durch Kohle in dem damaligen Zustande unserer Kenntnisse der neuen Lehre Wahrscheinlichkeit gab, so lässt sie fich doch nicht nach dem jetzigen Zustande der Wisfenschaft als bestätigt durch den eben beleuchteten Verluch anfehn. Eben so bestimmt als Davy erklärt, daß der Sauerstoff von der Basis kömmt, weil er dem der Basis in Menge gleich ist, ist der Vertheidiger der älteren Lehre berechtigt zu behaupten, dats er von der Säure herrührt, und dem der Basis, zu Folge der Lehre von den festen Mischungs-Verhältnissen, in Menge gleich seyn muss, Beide haben daher nun die Pflicht auf fich, durch entscheidende Beweise die Unrichtigkeit der entgegengeletzten Meinung darzuthun, und so lange dieses für beide Parteien in gleichem Grade unmöglich ist, wird die Versicherung der einen oder der andern gleich viel oder gleich wenig gelten.

Ich glaube durch das Angeführte dargethan zu haben, daß die Umstände, welche die neue Lehre veranlasst und begründet haben, nichts gegen die in

igt

en-

hre

der

ng.

als

lu-

hle

er

fie

if-

en

er-

r-

e. m

1-

s. h

3+

-

h

-

1

ė

Richtigkeit der älteren beweisen. Dann aber ist es klar, dals man, um die Erscheinungen zu erklären, nicht nöthig hat, zu einer andern als der älteren Lehre seine Zuslucht zu nehmen. Dieses habe ich geglaubt vorläusig erinnern zu müssen, damit der Leser es nicht aus der Acht lasse, dass er durch die angeführten Umstände nicht genöthigt wird, der einen Meinung mehr als der andern zu huldigen, und dass er daher völlige Freiheit hat, nach der hieranzustellenden Vergleichung beider Erklärungsarten, sich für die eine oder die andere zu entscheiden.

Ich will nun die merkwürdigsten Verbindungen der Salzfäure, der Flufsfäure und der Jodfäure durchlaufen, bei der Salzfäure mich aber hauptfächlich verweilen, und da Davy's Lehre fast allgemein angenommen zu seyn scheint, von seinen Gesichtspunkten ausgehen.

Jan . Salzfäure.

1) Chlorine ift ein einfacher Korper.

Es ist dem Scharssinne Davy's nicht entgangen, dass die Chlorine mehrere Eigenschaften von oxydirten Körpern besitzt, wozu besonders die gehört, sich mit Wasser zu einem Körper zu verbinden, der in einer niedrigeren Temperatur krystallistren kann, welches mit keinem andern einfachen Körper der fall ist. Er giebt nun zwar, wie wir gesehn haben, die Wahrscheinlichkeit eines Sauerstoffgehalts in der Chlorine zu, welche hieraus hervorgeht, will aber

doch nicht, dass sie Salzsaure enthalte. Es kann nicht geläugnet werden, dass diese Eigenschaft der Chlorine (oder oxydirten Salzsaure) der neuen Lehre nichts weniger als günstig sey; dagegen stimmt sie mit der älteren gut überein.

3) Chlorine ist ein brennbarer, d. b. mit Sauerstoff vereinbarer Körper.

Chlorine kann sich mit Sauerstoff in zwei verschiednen Verhältnissen verbinden; nämlich i Antheil Chlorine entweder mit 1 oder mit 5 Antheilen Sauerstoff. Das Oxyd wird Euchlorine genannt, und die höchste Oxydations-Stufe ist eine Säure, die Chlorinefäure. - Hiebei find zwei Umstände fehr auffallend. Erstens ist es fehr sonderbar, dass ein Elementarkärper, die Chlorine, seinem erlien Oxyde in Eigenschaften, z. B. Farbe, Geruch, Auflöslichkeit in Wasser u. f. w., so außerordentlich ähnlich seyn sollte, dass man so viele Jahre hindurch sie nicht zu unterscheiden vermochte, welches der neueren Lehre nicht günstig ist, indess es sich wohl begreifen lässt, wie zwei neben einander liegende Oxydationsstufen einander so ähnlich seyn können. Zweitens ist auch der Sprung von 1 zu 5, welchen die Chlorine auf einmal macht, wenn man fie mit andern brennbaren Körpern vergleicht, ganz ohne Beispiel. Man kennt noch keine Oxydations-Stufe, in welcher i Antheil einer Grundlage mit 5 Antheilen Sauerstoff verbunden ist, und aus den Ansichten der Corpuscular-Theorie lässt es sich sogar muthmassen, dass eine solche Verbindung nicht vorhanden seyn kann *).

n

er

re

31

Γ,

4

n

t,

e,

le

G

E.

h

.

13

r

a

2

1

Die Oxydationsstufen der Chlorine nach der älteren Lehre, durch Hülfe der Lehre von den festen Mischungs-Verhältnissen berechnet, find folgende: Erstens Salzfäure = 1 Antheil Grundlage mit 2 Antheilen Sauerstoff. Zweitens oxydire Salzfäure (richtiger Salzfäure Ueberoxydul, Superoxydum muriatofum zu nennen) = 1 Anth. Grundlage mit 3 Anth. Sauerstoff. Drittens Euchlorine (Salzfäure-Ueberoxyd, Superoxydum muriaticum) = 1 Anth. Grundlage mit 4 Anth. Sauerstoff. Viertens überoxydirte Salzfäure (Acidum oxymuriaticum) =: 1 Anth. Grundlage mit 8 Antheilen Sauerstoff. Sie stimmen nicht nur vortrefflich untereinander überein, sondern stehn auch in einer sehr schönen Harmonie mit den Verbindungs-Proportionen der Salzfäure in einfachen und doppelten, fowohl neutralen als balischen Salzen. Die ältere Lehre lässt auch vermuthen, dass die bleichende Flüssigkeit, welche man erhält, wenn oxydirt-falzfaures Gas von einer nicht allzusehr concentrirten ätzenden Kalilauge verschluckt wird, eine Verbindung der Salzläure-Grundlage mit 6 Antheilen Sauerstoff, d. h. ein

⁷⁾ Dass die Salpetersaure, welche nach einigen Chemikern nur 5 Antheile Sauerstoff enthalten soll, in der That 6 Antheile enthält, habe ich durch Versuche gezeigt, welche nicht ein unrichtiges Resultat haben geben können, ohne das zugleich eine Menge andere, leichter zu bewährende Versuche auch unrichtige Resultate gegeben haben mussen.

acidum oxymuriatofum enthält; denn daß en nicht eine Verbindung von Kali mit oxydirter Salzfäure ist, ergiebt sich schon aus der häufigen Bildung und Abscheidung von gewöhnlichem salzsaurem Kali. Aus dem Gesagten erhellt also, daß die Erklärung nach der neuen Lehre wepiger gut mit den Proportionen nach Vielsechen, als die nach der älteren, übereinstimmt.

G

(

d

le h

b

fi

g

g

h

C

el

C

S

in

th

D

gl

ſe

Ď

h

III

a

3) Chlorine hat gegen brennbare Körper eine größere Verwandischaft als der Sauerstoff, und treibt diesen daher von den Oxyden aus...

Die electrisch-chemischen Entdeckungen des letzten Jahrzehends haben uns höchst wahrscheinlich darin nicht getäuscht, dass die chemischen Verwandtschaften von den electrisch-chemischen Eigenschaften der Körper abhängig, und delto größer find, je gröiser der electrisch-chemische Gegensatz der in Verbindung tretenden Körper ist. Wenn ein Körper den andern durch einfache Wahl-Verwandtschaft mit hervorgebrachter Temperatur-Erhöhung austreibt, so ist dieses ein Zeichen einer größeren Verwandtschaft, welche mit der Erhöhung der Temperatur immer im Verhältnis steht; und die Temperatur-Erhöhung felbst scheint auf einer vollständigeren Aufhebung des electrisch-chemischen Gegensatzes der in Verbindung tretenden Körper zu beruhen. So z. B. scheidet Kalium aus dem Kupferoxyde das Metall mit Erscheinung von Feuer aus, aus dem Eisenoxydul aber nur mit Temperatur-Erhöhung ohne Feuer, weil das Eisen eine größere

Verwandtschaft zu dem Sauerstoff als das Kupfer hat, und daher die electrisch-chemischen Eigenschaften des Sauerstoffs vollkommner als das Kupfer (das Kalium sie aber noch vollkommner) aufhebt.

Wasserfreies (d. h. durch Einwirkung von Kalium auf Kalium-Ueberoxyd hervorgebrachtes) Kali, der Einwirkung des oxydirt-falzfauren Gas ausgefetzt, verschluckt dieses unter Temperatur-Erhöhung, welche, wenn das Kali vorher erhitzt war, bis zu Feuer-Erscheinung steigt. Das Nämliche findet mit dem Kali-Hydrate, obgleich in geringerem Grade, Statt. Es wird dabei Sauerstoff abgeschieden. Wenn nun dieser Sauerstoff vom Kali herrührte, so würde der Versuch beweisen, dass die Chlorine eine stärkere Verwandtschaft gegen das Kalium als der Sauerstoff hat, das sie folglich die electrisch-positiven Eigenschaften des Kalium vollkommper als dieler aufhebt; und dass mithin die Chlorine ein electrisch - negativerer Körper als der Sauerstoff sey. Nun aber ist die Chlorine sowohl in der Euchlorine als in der Chlorinesaure die Grundlage, d. h. der electrisch-positive Bestandtheil; die Chlorine ist folglich weniger electrischnegativ als der Sauerstoff. Dass sie aber nicht zugleich mehr und weniger negativ als der Sauerstoff feyn kann, wird jedermann als gewiss zugeben. Dals in diesem Versuche der Sauerstoff vom Kali herrührt, läst sich also nicht mit der electrisch-chemischen Lehre vereinigen; und es ergiebt sich hieraus klärlich, dals entweder diese electrisch-chemi-

m

de

Sc

ce

H

wä

erl

W

rin

mi

De

in,

ger

bra

Voi

Lei

ent

Ein

fel-

Fol

ferfi

Koh

tern

grof

der

thei

2

febe Lehre, oder die neue Lehre von der Einfachheit der Chlorine unrichtig feyn muß. — Dagegen ist es in der Ansicht der älteren Lehre sehr begreiflich, dass in dem Ueberoxydul der Salzfäure die Säure den überschüstigen Sauerstoff verläßt, um sich mit der Salzbasis, zu der sie eine größere Verwandtsschaft hat, zu verbinden. Da die Sauerstoffmenge auch in der neuen Verbindung die nämliche bleibt, so rührt die Erscheinung ganz von der Verwandtsschaft der Gründlage der Salzbasis her. Die nach der älteren Lehre gegebene Erklärung ist also völlig solgerecht und mit den andern chemischen Theorien übereinstimmend.

4) Chlorine verbindet sich mit Schwefel zu Chlorine-Schwefel.

Dieser Chlorine-Schwesel ist die von Thomson entdeckte schweselhaltige Salzsaure, und mustalsonach der älteren Lehre ein salzsaures SchweselOxyd seyn. Hier hat nun die neue Lehre, wie es auf den ersten Anblick scheint, einen ganz ausgemachten Vorzug, indem man in der älteren die Existenz eines Schwesel-Oxyds annehmen muss, welches sich außer dieser Verbindung nicht ausweisen läst, Allein diese Annahme hat doch in der That nichts Ungereimtes. Wir kennen mehrere Körper, welche in einer gewissen OxydationsStuse nicht einzeln bestehn können, und sich zerlegen, wenn man sie zu isoliren sucht. Gesetzt, dieses sey auch mit dem Schwesel-Oxyde der Fall, so dar

man fich nicht wundern, wenn es fich auf keine andere Weife darftellen läfst. Wenn das falzfaure Schwefel-Oxyd durch Waffer zerlegt wird, fo concentrirt fich aller Sauerstoff des Oxyds auf die Hälfte des Schwefels und giebt schweslige Säure, während die andre Hälfte des Schwefels reducirt erscheint. Nach der neuen Lehre wird hier das Wasser zerlegt, der Wasserstoff giebt mit der Chlorine Chlorine-Walferstofffaure, und der Sauerstoff mit einem Theil des Schwefels schweflige Säure. Der Vorzug der neuen Lehre besteht also nur darin, dass sie die hypothetische Existenz einer niedrigeren Oxydations-Stufe des Schwefels (die übrigens nicht unwahrscheinlich ist) nicht anzunehmen braucht. Wir werden aber bald diesen scheinbaren Vorzug vernichten, und diese Waffen der neuen Lehre gegen sie selbst wenden.

Man kennt den von Dr. Marcet und mir entdeckten sonderbaren Körper, welcher durch Einwirkung von salpetrigsaurer Salzsäure auf Schwefel-Kohlenstoff entsicht *). Der älteren Lehre zu Folge muss er zusammengesetzt seyn aus drei walferfreien Säuren: Salzsäure, schwessige Säure und Kohlensäure. Die Sauerstoffmenge der beiden letztern ist einander gleich, und die der Salzsäure so groß als die beider zusammengenommen. Nach der neuen Lehre besteht dieser Körper aus zantheil Phosgène, (das heißt des Körpers, welchen

⁹ S. diele Annal. B. 18, S. 161.

mi

gas

zer

rid

Le

ter

frei

erk

mit

fala

une

ohr

6)

**

nui

fich

ver

die

ftei

lei

Ha

ger

Sal

nu

dir

fiel

gar

(Wi

Kohlenoxyd-Gas und oxydixt-falzfaures Gas mit einander bilden,) und i Antheil einer Verbindung aus Chlorine, Schwefel und Säuerstoff. Nun aber ist darin das Verhältnis des Schwefels zu dem Sauerstoff ganz das nämliche, als in dem von der älteren Lehre angenommenen Schwefeloxyd der salzsauren Verbindung, (d. h. der Schwefel ist hier mit der Hälste so viel Sauerstoff als in der schwefelligen Säure verbunden); offenbar mus also die neue Lehre hier die nämliche für sich nicht darstellbare niedrigere Oxydations-Stufe des Schwefels als die ältere Lehre annehmen, um die Zusammenssetzung dieses Körpers nach den neueren Antichten zu erklären, hat also auch in diesem Falle nicht den geringsten Vorzug vor der älteren Lehre.

5) Chlorine verbindet sich mit Phosphor in zwei Verhältnissen.

Die Verbindungen des Phosphors mit oxydirter Salzfäure find, den Ansichten der älteren Lehre
zu Folge, Verbindungen von Salzfäure und phosphoriger Säure oder Phosphorfäure, im wasserlosen
Zustande. Wasser, mit dem sie in Berührung gebracht werden, trennt sie, und sie treten in dem
mit Wasser verbundenen Zustande über. — Nach
der neuen Lehre aber sind diese Verbindungen in
wasserlosem Zustande eigene Säuren, in welchen
der Phosphor die Grundlage oder den electrischpositiven, die Chlorine aber den electrischnegativen
Bestandtheil darstellt. Diese Säuren können sich nur

t

g

è

n

ė

r

P

-

ŝ

n

n

.

e

n

a

mit einer einzigen Balis, dem wasserfreien Ammoniakgas, verbinden; von allen andern Basen werden sie
zerlegt, indem ein phosphorsaures Salz und ein Chlorid [Chlorine-Metall] gebildet werden. — Die ältere
Lehre scheint mir hier viel einsacher und consequenter zu seyn, da sie dieses Ammoniaksalz für ein wasserfreies Doppelsalz mit einer Bäsis und zwei Säuren
erklärt, und die Verbindung dieser Doppelsauren
mit andern Basen entweder für dergleichen Doppelsalze, oder nur für Mischungen von phosphorsauren
und salzsauren Salzen, nach Umständen mit oder
ohne chemisch- gebundenem Wasser, ausgiebt.

6) Chlorine verbindet sich nicht mit dem Kohlenstoffe, wohl aber mit einem, dem seinigen gleichen Volumen von Kohlen Oxyd-Gas.

Aus den der Salzsaure eigenthümlichen Erscheinungen schließt die ältere Lehre, diese Säure lasse sich durch die bisher bekannten Mittel nicht im unverbundenen Zustande erhalten, eben so wenig als die Salpetersäure, die Sauerkleesaure, die Weinsteinsäure und mehrere andere, und sie sey vielleicht im isolirten Zustande gar nicht vorhanden. Hat dann aber die Kohle zu dem Sauerstoff eine geringere Verwandtschaft, als die Grundlage der Salzsäure, so vermag sie das oxydirte salzsaure Gas nur dann zu Salzsäure zu reduciren, wenn ein oxydirter Körper gegenwärtig ist, mit dem die Säure sich verbinden kann. Wäre nicht das Kohlenoxyd ganz unvereinbar mit andern oxydirten Körpern, (wiedieses im Allgemeinen mit den Unter-Oxyden der

zi

W

YC

fa

03

fc

in

all

es.

ge

fte

eil

lei

Sa

for

un

ei

ge

Zu

ni

WE

de

WE

Bl

löl

be

pe

mi

[ei

4

Fall ist,) so würde es sich mit der Salzsaure verbinden und ein salzsaures Kohlenoxyd darstellen, das ganz den Schein einer Verbindung des einfachen Kohlenstoffs mit der einfachen Chlorine baben würde. Nach der älteren Lehre können wir also einigermaßen einsehen, warum die Kohle nicht auf das oxydirt-salzsaure Gas wirkt, indes in der neuen Lehre es unerklärlich bleibt, warum die Kohle die einzige Elementarsubstanz ist, welche sich nicht ohne Zwischenkunst von Sauerstoff mit der Chlorine vereinigen kann.

Wenn Chlorinegas sich mit einem, dem seinigen gleichen Volumen Kohlen-Oxyd-Gas verbindet, so entsteht eine starke gasförmige Säure, welche den höchst unrichtigen und unpassenden Namen Phosgène erhalten bat. Diese Säure ist, der neuen Lehre zu Folge, eine mit der Chlorine-Phosphorfäure analoge Säure, welche fich aber von der letzteren durch einen Gehalt an Sauerstoff unterscheidet. Sie ist das einzige Beispiel einer Säure. welche aus einem electrisch-positiven Körper, der Kohle, und zwei electrisch-negativen, der Chlorine und dem Sauerstoff, zusammengesetzt ist. Auch diese Säure kann nur mit einer einzigen Bafis, dem wasserfreien Ammoniak, ein Salz geben. Durch alle andre Salzbalen wird lie zerlegt, indem kohlensaure Salze und Chloride gebildet werden. Phosgène ist also eine ziemlich starke Saure, die aus einer Grundlage und zwei Oxygenes (fit venia verbo) besteht, welche aber nur mit einer ein-

zigen Basis salzfähig ist, indem sie mit allen andern wasserlosen Basen eine sehr sonderbare Verbindung von einem Salz, dem kohlenfauren, und einem nicht falzartigen Karper, dem Chlorid, hervorbringt.

0

n

0

E

T

8

£

Ċ

-

-

r

-

T

V.

'n

T

.

t

-

W

n

V

e

4

.

Der älteren Hypothese zu Folge enthält die oxydirte Salzfäure die Hälfte ihres Raums an überschüsligem Sauerstoff, daher das Kohlen - Oxyd - Gas in einem gleichen Raum oxydirt-falzfauren Gafes allen Sauerstoff findet, welcher erfordert wird, um es in kohlenfaures Gas zu verwandeln. Durch die gegenseitige Einwirkung der beiden Gasarten entsteht also Kohlensaure und Salzsaure, die sich mit einander verbinden und eine Doppelfäure darstellen, in welcher beide Säuren eine gleiche Menge Sauerstoff enthalten. Diese Säure verbindet sich fowohl mit wasserfreien als mit wasserlosen Basen, und einige ihrer Salze find wahre Doppelfalze aus einer Balis und zwei Säuren, andere nur Mischungen des salzsauren Salzes mit dem kohlensauren. Zu den Doppelfalzen gehört das wasserfreie Ammoniakfalz, das Bleifalz, und vielleicht mehrere andre. welche auch durch Mischungen des salzsauren mit dem kohlenfauren Salze können hervorgebracht werden; trägt man fo z. B. feuchtes koblenfaures Bleioxyd in eine kochend heisse und gesättigte Auslölung von salzsaurem Blei ein, so verbinden sich beide Salze, und es entsteht ein unauflösliches Doppelfalz aus einer Basis und zwei Säuren. Es scheint mir alfo, dass auch hier nur die ältere Lehre mit unfern übrigen chemischen Ideen übereinstimmend ist.

7) Chlorine verbindet sich mit dem Stickstoff; die Verbindung ist eine öhlartige Flüssigkeit, welche ungefähr bei der Hitze des kochenden Wassers hestig explodirt; indem sich ihre Bestandtheile trennen.

K

ei

fc

tr

hà

te

di

ve

Sa

nu

fte

Ka

re

for

fat

fin

bir

we

fch

höl

fen

len

fol

che

die

tur

dar

une

des

Um diese Thatsachen richtig a beurtheilen, müssen wir eine kleine Abschweifung machen, über die Explosionen der chemischen Verbindungen überhaupt, und über das Erscheinen von Feuer, welches dabei Statt findet.

Von den Hypothesen, welche man gemacht hat, um die Temperatur-Erhöhung bei chemischen Verbindungen, welche nicht selten in Feuer ausbricht, zu erklären, erfüllt alle Forderungen, und bleibt mit dem Ganzen der Wissenschaft consequent, allein diejenige, welche das Feuer und die Wärme-Entbindung bei den chemischen Verbindungen von der nämlichen inneren Ursache, als bei der electrischen Entladung, herseitet. Ich brauche hier nicht die überaus große Menge von Thatsachen anzusühren, welche uns genöthigt haben, die älteren Erklärungen zu verlassen und diese anzunehmen, da sie jedem, welcher den Fortschritten der Wissenschaft gefolgt ist, bekannt seyn müssen.

Das Feuer entsteht in dieser Theorie durch die gegenseitige Entladung oder Neutralisirung des electrisch-chemischen Gegensatzes der in Verbindung tretenden Körper, und es ist durch die Erfahrung außer allen Streit gesetzt, das, je größer dieser electrisch-chemische Gegensatz zwischen zwei Körpern ist, die Feuer-Erscheinung bei ihrer Verbindung sich desto intensiver zeigt. Wenn daher zwei

£

n

.

t,

-

t,

ot

in

t-

er

n

ie

n,

n-

e-

e-

ch

es n-

r-

er

ei

r-

ei

Körper A und B verbunden find, und es kömmt ein dritter C hinzu, welcher den electrisch-chemischen Gegensatz in A bedeutend mehr als B neutralisiren kann, so wird B unter Temperatur-Erhöhung von C ausgetrieben, indem die neu eintretende, stärkere, electrisch-chemische Neutralisirung die Temperatur-Erhöhung hervorbringt. So z. B. verbinden sich Gold und Silber sehr lose mit dem Sauerstoff, und es läst sich vermuthen, dass dabei nur eine sehr geringe Temperatur-Erhöhung entstehn kann; wenn die Oxyde dieser Metalle durch Kalium, oder Wasserstoff, oder Eisen oder Kohle reducirt werden, entsteht daher immer Fener.

Die Erfahrung lehrt, dass Körper von nicht fonderlich großem electrisch-chemischem Gegensatze, d. h. wo die Verwandtschaften sehr schwach find, nur in fehr niedrigen Temperaturen fich verbinden können, und in höheren wiederum getrennt werden. Dagegen ist es eine fehr gewöhnliche Erscheinung, dals stärkere Verwandtschaften nur in höheren Temperaturen thätig werden. Die in diesen entstehenden Verbindungen erhalten sich in allen Temperaturen, in den niedrigen Temperaturen folgen aber doch die Körper vorzugsweise den schwächeren Verwandtschaften, und die Verbindungen. die sie dabei geben, werden in höheren Temperaturen mehr oder weniger heftig zersetzt, indem dann die stärkeren Verwandtschaften thätig werden. und bei einer sehr großen Verschiedenheit des Grades der eintretenden und der aufzuhebenden Verwandtichaft die Zersetzung von Feuer und einem Knall begleitet zu seyn pflegt.

1

1

f

1

V

n

V

d

li

di

E

fe

ni

ga

te

E

£s€

M

du

rir

Es

ru

en

du

Wir fehn hieraus, wie Knallfilber, Knallgold etc. in einer gewissen Temperatur entstehen, und in einer andern von felbst unter Feuer-Erscheinung und Knall zerlegt werden können. Die Verwandtichaften, welche dem Knallfilber Existenz geben, find die des Wasserstoffs zum Stickstoff *), des Silbers zum Sauerstoffe, und des Ammoniak zum Silberoxyde; fie find jede für fich fehr schwach, und werden in höheren Temperaturen aufgehoben. Dass das Knallfilber bei einer höheren Temperatur zerlegt werden müsse, lies sich daher voraussehn; es entsteht aber in diesem Fall die Frage: warum die Zerletzung auch schon in einer beträchtlich niedrigeren Temperatur bewirkt wird, warum dabei Feuer entsteht, und woher die schreckliche Gewalt der Zerlegung rührt? Alles dieses rührt von dem Verbrennen des Wasserstoffs auf Kosten des Sauerstoffs im Silberoxyde her, oder von der vollkommneren electrisch - chemischen Neutralisation des Sauerstoffs und des Wasserstoffs im Wasser, als im Knallfilber.

Eine nicht zweideutige Erfahrung lehrt, dass, wenn zwei Körper von entgegengesetzten electrischchemischen Eigenschaften mit einander in Berüh-

^{*)} Um den Leser nicht durch allsu viele, weniger bekannts theoretische Ansichten zu verwirren, setze ich hier die vielleicht richtigere Erklärung, nach welcher Stickstoff ein Suboxyd des Nitricum ist, bei Seite.

B.

rung kommen, eine electrische Polarisirung zwiichen ihnen entsteht, welche in dem Maasse zunimmt, wie sie der Temperatur näher kommen, in welcher ihre gegenseitigen Verwandtschaften wirksam werden, in welchen dann die Polarisirung unter Vollendung der Verbindung mit Erscheinung von Feuer verschwindet. Eine solche Polarifirung muss folglich auch zwischen dem Sauerstoff und dem Wasserstoff des Knallsibers Statt finden, und sie ist desto größer, je weniger sie von ihren ursprünglichen electrisch-chemischen Eigenschaften durch die anderweitige Verbindung neutralisirt ist. Die Erfahrung lehrt auch, dass die Verwandtschaften in fellen oder tropfbar-flüsligen Körpern bei einer niedrigeren Temperatur wirksamer werden, als in gasförmigen Körpern, so wie sie auch in verdichteten Gasarten eher als in Gas von gewöhnlicher Expansion wirken *).

1

0

1

n

-

.

r

ď

-

•

n

n

.

8

Aus allen diesen Ersahrungen lässt sich schliesen, dass in dem Knallsiber die Polarisirung ihrem
Maximum (d. h. dem Entladungs- oder Verbindungs-Puncte) sehr nahe ist, so dass eine sehr geringe Ursache die Polarisirung dahin bringen kann.
Es wird dadurch begreislich, wie eine leise Berührung machen kann, dass Knallsiber explodirt,
entweder durch Temperatur-Erhöhung, oder nur
durch die Electricität-erregende Krast des Reibens.

^{*)} So z. B. kann Knalllust von einem glühenden Eisen nicht angezündet werden, indes sie sich von selbst entzundet, wenn man sie stark comprimirt.

B.

1

E

ir

k

re

el

m

fel

ein

nu

en

mi

the

Fe

wii

der

nic

fol

ode

Sta

mit

zige

Ein

Tre

rati

ein

fetz

Aber woher kömmt die außerordentliche Geschwindigkeit, mit welcher die Zerlegung vor fich geht? kann sie aus der schnellen Mittheilung der erhöheten Temperatur oder der Entzündung erklärt werden? Die Erfahrung lehrt uns, dass das Fortpflanzen des Wärmestoffs nicht sonderlich geschwind und nichts weniger als augenblicklich vor fich geht, und dass sie in flüssigen Körpern selbst sogar nahe an o gränzt. Die Geschwindigkeit steigt mit der Zunahme der Temperatur, wird aber immer einen bestimmbaren Zeitmoment erfordern, und durch blosses Fortpflanzen des Wärmestoffs, der durch die Verbrennung entbunden wird von Theil zu Theil, kann nicht die unermelsliche Geschwindigkeit einer Explosion entstehn, durch welche eine Kanone zersprengt wird, ehe die Kugel Zeit hat, sich in Bewegung zu setzen. Dagegen lässt sich, zu Folge der Versuche, die Fortpflanzung der electrischen Spannung und der electrischen Entladung ohne Fehler für augenblicklich erklären. Sind daher in der explodirenden Verbindung zwei oder mehrere Bestandtheile in einer ihrem Maximum nahen electrisch-polarischen Spannung, so lässt es fich begreifen, wie diese Spannung fich auf einmal, in einer unermesslich kleinen Zeit, ausladen, und durch Entbindung von Stoffen, die in dieser Temperatur flüchtig find, die fürchterlichen Erscheinungen, welche wir Explosionen nennen, hervorbringen kann.

Die electrisch-chemische Theorie erklärt also alle Erscheinungen einer Explosion auf eine genugthuende und mit den übrigen chemischen Lehren übereinstimmende Weise, und sie zeigt, dass eine Explosion nicht anders entstehen kann, als wenn in einer Verbindung (oder in einer höchst vollkommnen mechanischen Mischung) die Bestandtheile sich in andern Verhältnissen zusammen paaren können, durch welche ihre entgegengesetzten electrisch-chemischen Eigenschaften sehr bedeutend mehr als vorher neutralisit werden.

r

t

r

d

T

il

10

t,

.

14

T

1-

l,

d

1,

1.

.

Nun aber fragt es fich: Da bei jeder chemischen Verbindung eine Erhöhung der Temperatur eintritt, welche zuweilen bis zur Feuer-Erscheinung gehen kann, läst sich das nämliche unter entgegengesetzten Umständen, d. h. bei der chemischen Trennung, denken? Wir haben keinen theoretischen Grund, dieses zu läugnen. Warum Feuer durch electrische Entladung entsteht, wissen wir nicht, und so lange wir dieses nicht wissen, werden wir auch nicht sagen können, warum dieses nicht auch beim Trennen der EE Statt finden sollte. Ob aber eine Erhöhung der Temperatur oder eine Feuer-Erscheinung dabei in der That Statt findet, das können wir durch Erfahrung ausmitteln. Es fragt fich daher: Kennen wir ein einziges Beispiel, dass zwei verbundene Körper, deren Einfachheit unbestritten ist, unter einer durch den Trennungsprocess selbst hervorgebrachten Temperatur-Erhöhung, fich von einander trennen, und in einen vollkommen unverbundenen Zustand sich versetzen? Mir ist kein einziger solcher Fall bekannt.

Denn das hier weder Euchlorine, noch Chlorine-Stickstoff, noch Jodine-Stickstoff als Beispiele angenommen werden können, ist klar.

wi

de Vi

di Ri

V

üb

er

hu

gr

fic

D

je

hä

da

YO

in

kċ

m

m

ke

de

lä

da

P

E

ge

St

Keins von den leicht herstellbaren Metalloxy. den giebt die geringste Temperatur-Erhöhung zu erkennen, wenn es sich durch die Hitze reducirt, und die Reduction hört auf, sobald man die Temperatur erniedrigt, welches doch nicht geschehen würde, brächte der Trennungs-Process eine Temperatur-Erhöhung hervor, welche wenigstens in einigen Fällen diesen Process müsste ohne Beihülfe äußerer Warme unterhalten können. Wäre dieses in der That der Fall, so müsste z. B. rothes Quecktilber-Oxyd, welches man bis zum Reductionspunct erhitzt hat, explodiren, wenn man es plötzlich in einen Platintiegel würfe, der zwischen heftig brennenden Kohlen weißsglühte, Ungeachtet aber fowohl das Queckfilber als der Sauerstoff in dieser Temperatur elastisch-stüssig find, so wird doch das Oxyd nur nach und nach reducirt, in dem Maafe, als es mit dem glühenden Tiegel in Berührung kömmt. Man sollte vielmehr sagen, dass hier, ganz wie bei dem Sieden, Wärme latent gemacht wird, und daß also der chemische Trennungs - Process eher Wärme absorbirt als entbindet,

Wenn die Verwandtschaft zwischen zwei Körpern durch eine erhöhete Temperatur ausgehoben wird, so kann man sich nicht vorstellen, dass dieses durch ein Vernichten der Verwandtschaft geschieht, wobei die verbundenen Körper in einem Augenblick fich von einander losreissen, gleichwie ein an einem Faden hängender Körper zu Boden stürzt, wenn man den Faden durchschneidet. Vielmehr find die Wirkungen der Verwandtschaft und die der Temperatur als zwei in entgegengesetzter Richtung wirkende Kräfte zu betrachten, wobei die Verwandtschaft auch in dem Augenblick, wenn sie überwunden wird, nicht zu streben aufhört. Man ersieht hieraus leicht, dass die Temperatur-Erhöhung keine augenblickliche Trennung über einer großen Masse ausbreiten kann, zumal wenn man sich an die Langsamkeit der Wärmeleitung erinnert. Da ohnedem jede electrische Neutralistrung und jede chemische Verbindung von Temperatur-Erhöhung begleitet find, so ist es klar, dass, im Fall dass auch die electrisch - chemische Trennung davon begleitet ware, dieles nicht eine zufällige nur in wenigen Fällen eintretende Erscheinung seyn könne, fondern damit in nothwendigem Zusammenhange stehen, und alle Trennungen begleiten müßte. Da wir aber mehrere folche Trennungen kennen, und eine Temperatur-Erhöhung dabei doch in keinem einzigen Fall bemerkt haben, so lässt es sich mit ziemlicher Sicherheit schließen. daß Temperatur-Erhöhung von dem Trennungs-Process nicht hervorgebracht wird.

Aus dem Gesagten geht also hervor, das eine Explosion, welche ohne eine von selbst erfolgende beträchtliche Temperatur-Erhöhung nicht Statt zu sinden vermag, nicht wohl die Trennung

zweier Elementarkörper begleiten kann, welche durch das Trennen außer aller Verbindung gesetzt werden, und dass diese Erscheinung also an und für sich andeutet, dass die getrennten Körper entweder alle, oder nur der eine, zusammengesetzt sind, und während des Explodirens hervorgebracht seyn müssen.

હા, દું કું કું કું હાલ છે. કું કું હાલ 🗱 🔻 🖟 🚉 કું કું કું છે. જો

fa S

de

pe

Ri

kċ

,,[

,,d

,,5

,,H

,,[

,,k

,,C

,,W

ger

mo

VOI

tig

Sti

Ich komme nun zu dem Chlorine-Stickstoff zurück. Die neue Lehre erklärt diesen Körper für zusammengesetzt aus Chlorine und Stickstoff. Bei einer wenig erhöheten Temperatur trennen sich diese beiden Elementarkörper unter Explosion und unter Hervorbringung von Feuer. Die neue Lehre

erkennt die Schwierigkeit, die Explosion zu erklären, giebt aber nicht zu, dass daraus etwas gegen ihre Richtigkeit geschlossen werden kann.

Die ältere Lehre betrachtet diesen sonderbaren Körper als eine Verbindung der wassersienen Salzfäure mit wassersier salpetriger Saure (oder auch wohl Salpetersäure), weil diese Säuren in wasserhaltigem Zustande erhalten werden, wenn man die explodirende Verbindung in einem verschloßenen Gefässe der Wirkung des Wassers aussetzt. Da die oxydirte Salzsäure in höheren Temperaturen den Sauerstoff mit bedeutend größerer Kraft als die Kohle bindet, so muss bei einer erhöheten Temperatur nicht nur die salpetvige Säure von der Salzsäure zerlegt werden, sondern es muss auch bei dieser Verbrennung Feuer entstehen. Die glühende

Verslüchtigung des oxydirt-salzsauren Gas und des Stickstoffgas verursacht dabei die Explosion.

Wenn diele Verbindung von einem wasserstoffhaltenden brennbaren Körper berührt wird, so verbindet sich der Wasserstoff mit dem Sauerstoff der salpetrigen Säure zu Wasser, welches wasserhaltige Salzsäure hervorbringt; da aber dieser Process auf dem Puncte, wo er vor sich geht, eine starke Temperatur-Erhöhung hervorbringt, so explodirt das Ganze im Augenblicke der Berührung.

Um den Leser in den Stand zu setzen, die Richtigkeit dieser Ansichten besser beurtheilen zu können, will ich mich bemühen folgende Fragen zu beantworten. "Wie läst es sich begreisen, dass "dieser Körper, wenn er wasserseie Salzsaure und "salpetrige Säure enthält, im Wasser entstehn kann, "da doch die Salzsaure bei einer erhöheten Tempe-"ratur eine unendlich größere Verwandtschaft zum "Sauerstoffe als der Stickstoff hat? — Wie ist eine "wasserseie Säure von einer wasserhaltigen ver-"schieden? — Was ist eine Doppelfäure? und "kennen wir solche außer denen, welche durch "Chlorine, Fluorine und Jodine hervorgebracht "werden?"

Wenn oxydirt-salzsaures Gas bei einer niedrigen Temperatur auf ein in Wasser aufgelöstes Ammoniaksalz einwirkt, so wird die oxydirte Salzsäure von dem Wasserstoff des Ammoniaks zu wasserhaltiger Salzsäure reducirt, und da der freiwerdende Stickstoff im Entstehungs-Augenblick von noch un-

ci

A

Si

lei

ce

ko

for

be

Sä

[ch

wa

exp

gev

hie

Sal

f. w

fie

and

VOL

für

doc

ihre

zerlegtem oxydirt-falzfalzfaurem Gas umgeben ift. so wird durch die Verwandtschaft des Stickstoffs zum Sauerstoff vereint mit der der salpetrigen Säure zur Salzfäure die einzelne Verwandtschaft der Salzfäure zum Sauerstoff überwunden, die oxydirte Salzfäure zerlegt, und es setzt sich eine im Wasser unauflösliche Verbindung der beiden Säuren in der Flüsligkeit zu Boden. Wie es nun aber zugeht, dass bei dieser neuen Anordnung der Bestandtheile, welche in einer niedrigen Temperatur vor sich geht, der Sauerstoff den größten Theil seiner ursprünglichen electrisch-chemischen Polarisirung gegen die Salzsäure wieder erhält, indem er mit dem Stickstoff in Verbindung tritt, und nur als ein Theil der salpetrigen Säure in der Verbindung existirt, (ohne welche die explodirende Zerletzung nicht Statt finden follte.) - das lässt sich freilich in dem jetzigen Zustande unserer electrisch-chemischen Kenntnisse nicht erklären. Solches kann aber nichts gegen die Richtigkeit der älteren Lehre beweisen, denn wir kennen mehrere Beispiele der nämlichen Art, welche auf die Erweiterung unserer Kenntnisse warten, um auf eine genugthuende Weise erklärt zu werden. Viele andere einer höheren Oxydation fähige Körper reduciren einander wechselseitig bei verschiednen Temperaturen, so wie hier der Stickstoff und die Salzfaure. Wenn man z. B. in eine kalte Auflöfung von schwefelsaurem Silber eine Auflösung von Schwefellaurem Eisenoxydul giesst, so schlägt das Oxydul das Silber metallisch nieder, indem es sich

felbst in schwefelsaures Eisenoxyd verwandelt. Wird nun die Mischung bis zum Kochen erhitzt, so reducirt das Silber wiederum das Eisenoxyd, und die Austösung enthält nun schwefelsaures Eisenoxydul und schwefelsaures Silberoxyd aufgelöst. Während der Erkaltung tritt wieder die Niederschlagung des Silbers ein. Diese Erscheinung wird noch auffallender, wenn man Silberpulver mit einer etwas concentrirten Austösung von schwefelsaurem Eisenoxyd kocht. — Unsere Kenntnisse mögen noch so sehr fortschreiten, immer werden wir doch auf das Unbegreißliche stoßen.

Nun fragt es sich: Wie kann eine wasserfreie Säure von einer wasserhaltenden so bedeutend verschieden seyn? und wie der wasserfreie Zustand etwas beitragen, die eigenthümlichen Charaktere der explodirenden Verbindung, welche von denen der gewöhnlichen Säuren abweichen, zu erklären? Dass hierbei keine der wasserfreien Verbindungen der Salzsäure mit Phosphorsäure, phosphoriger Säure u. s. w. zum Beispiel genommen werden darf, so viel sie auch für den, der die ganze Klasse solcher Körper überschaut, beweisen, fällt von selbst ins Auge.

Es ist sowohl durch meine, als durch mehrerer andrer Chemiker Versuche dargethan, dass viele von den stärkeren Säuren, welche ältere Chemiker sür reine unverbundene Säuren hielten, mit Wasser verbunden sind, das ihnen als Basis dient, ohne doch (weil es den meisten andern Basen Platz macht) ihre sauren Eigenschaften abzustumpsen oder zu ver-

1

I

fe

fo

gl

re

F

(p

in

TH

per

der

des

tifc

zu

rich

ein

übe

Sch

fand

bilde

berfa

Dure

fische

gewö

nicht

dieler

ringern. Viele von diesen Säuren sind sogar von der Art, dass die Chemie kein Mittel kennt, sie in unverbundenem und zugleich wasserfreiem Zustande darzustellen. Andere solche Säuren können indels in einen isolirten Zustand gebracht werden, und zeigen dabei Eigenschaften, die sehr auffallend sind, und von den Chemikern weit mehr Ausmerksamkeit verdienen, als man bisher auf sie gewendet hat.

Werfen wir einen Blick auf die im Feuer entwässerte Phosphorsaure und Borasaure, und auf das getrocknete kohlensaure Gas. Es zeigt sich bald, dals beide in dielem Zustande einen guten Theil von ihren Eigenschaften als Säuren eingebüsst haben, welche sie nur durch Zutritt von Wasser wieder erhalten. Gepülverte glafige Phosphorfäure oder Borafaure, welche über Queckfilber in getrocknetes Ammoniakgas gebracht werden, äußern keine Einwirkung auf die Salzbalen, und es entsteht kein Ammoniakfalz; läfst man aber in der Glocke ein feuchtes Papier zu der Obersläche des Quecksilbers aufsteigen, so beginnt in wenigen Augenblicken die Bildung von phosphorlaurem oder boralaurem Ammoniak, welche fortdauert, bis das Papier ganz getrocknet, und alles Wasser in dem entstehenden Salze gebunden ist. Dieses sollte man, wie es scheint, daraus erklären können, dass keine neutrale einfache Ammoniaksalze ohne gebundenes Walfer exiltiren. Da es aber balische walferlose Ammoniaklalze giebt, und da besonders die Borafäure basische Salze zu bilden geneigt ist, so möchte

doch wohl ein basisches borafaures Ammoniak entstehn können. Bringt man gebrannten wasserleeren Kalk in getrocknetes kohlen/aures Gas, fo wird das Gas nicht, oder doch so gut als gar nicht verschluckt; lässt man aber Wasserdampf zutreten. fo wird es in wenigen Minuten eingeschlürft, obgleich das Wasser kein Bestandtheil des kohlensauren Kalkes ift. Wer die Verfuche von der Dame Fulhame ftudirt hat, kennt noch mehrere Beispiele von der nämlichen Art. Wasser bringt daher in den mehrsten oxydirten Körpern eine Veränderung hervor, wodurch diele bei niedrigeren Temperaturen leichter in Verbindung mit andern Oxyden treten. Man ist noch nicht mit dieser Wirkung des Wassers im Reinen, und von allen den theoretischen Ausschweifungen, welche der Versuch, sie zu erklären, veranlasst hat, ist sicher keine die richtige.

e

n

n

rs.

ie

0-

e-

en

es

u-

es

ofe

ra-

hte

Man weiß, daß bei der Destillation des Vitriols ein rauchender, slüchtiger, krystallisirbarer Stoff, über dessen Natur man lange ungewiß war, die Schwefelsaure begleitet. Hr. Vogel in Bayreuth fand, daß dieser sonderbare Körper mit Kalk Gyps bildete, mit Baryt Schwerspath, mit Natron Glaubersalz, und mit Wasser gewöhnliche Schwefelsaure. Durch die gtoße Verschiedenheit der übrigen physischen Charaktere dieses Körpers von denen der gewöhnlichen Schweselsaure verleitet, zog er aber nicht die ganz natürliche Schlussfolge, daß, weil dieser Körper mit Wasser gewöhnliche Schwefelsaure

fe

III

fa

ſä

fir

Sa

kε

ve

eil

Ita

Fli

Ma

ten

ma

fch

De

erh

fell

die

(=

line

nac

Ma

zer

Sch

An

giebt, er wasserfreie Schweselsaure seyn muss. Er fand auch, dass, wenn Schwesel mit diesem Körper erhitzt wurde, dieser sich damit wenigstens in zwei verschiedenen Proportionen verband, ohne schweslige Säure hervorzubringen. Hr. Vogel scheint also neue Oxydations-Stusen des Schwesels, durch Reduction der wasserfreien Säure mittelst Schwesel, hervorgebracht zu haben, welche die Ausmerksamkeit der Chemiker im hohen Grade verdienen.

Aus dem Gefagten erhellet alfo, das Säuren in wasserfreiem (und von Salzbasen nicht gesättigtem) Zustande in ihren physischen Charakteren bedeutend von ihren Verbindungen mit Wasser abweichen können; ein Abweichen, welches sich wohl dem an die Seite setzen läst, das zwischen einem brennbaren Radicale und seinen Oxyden oder irgend einer andern seiner Verbindungen Statt findet.

Was die Verbindungen zwischen zwei oder mehreren Säuren betrifft, so verdienen auch sie recht sehr die Ausmerksamkeit der Chemiker, zumal da diese Klasse von Körpern noch nicht lange bekannt, und solglich noch wenig untersucht ist. Ich darf mich hier nicht auf die Doppelsauren berusen, in welchen Salzsäure oder Flussäure eingeht, und muss mich daher nach Doppelsauren umsehn, welche beide Lehren für solche erkennen.

Man bringe höchst concentrirte Schwefelfäure, in einem kleinen Gefässe, über Quecksilber in reines Salpetergas; das Gas wird von der Säure nicht verschluckt, ein Beweis, das auf diese Weise kein

schwefelsaures Stickstoffoxyd entsteht. Nun lasse man ein wenig Sauerstoffgas hinzutreten, damit sich falpetrige Säure bilde; sie wird von der Schwefelfaure verschluckt, und bringt mit ihr eine krystallifirende Verbindung hervor; und fährt man fort Sauerstoffgas in kleinen Portionen zuzusetzen, bis keine salpetrige Säure mehr von der Schwefelfäure verschluckt wird, so verwandelt sich diese ganz in ein krystallinisches Magma voll federartiger Krystalle. Das Krystallisirte läst sich von dem noch Flüsligen durch Filtriren trennen, wenn man das Magma in einen mit gepulvertem Glase zu 3 gefüllten gläfernen Trichter schüttet, dessen Mündung man durch eine geschliffene Glasplatte luftdicht verschließen muß, um die Feuchtigkeit abzuhalten, Der krystallisirte Körper, den man auf diese Art erhält, ist eine chemische Verbindung der Schwefelfäure mit der falpetrigen Säure, in welcher diese nur & so viel Sauerstoff als jene enthält (=NO4+4SO3); fie scheint auch etwas Wasser zu enthalten *). Wenn man diese Doppelsäure gelinde erhitzt, so schmilzt sie wie Fett, gesteht aber nach dem Erkalten wieder zu einer kryftallinischen Malle. Ein wenig Waller, womit man sie vermischt. zersetzt sie und verwandelt sie in gewühnliche Schwefelfaure und falpetrige wasserhaltige Säure.

1

3

•

r

e

-

9-

1-

n-

ę,

i-

ht

in

^{*)} Eine fehr interessante, über ihre Zusammensetzung aber weniger belehrende Methode, diese Doppessaure zu erhalten, findet man in Davy's Elem. of Chem. Phil. T. I. P. 1. pag. 276. 277.

U

E

ni

K

Sa

fo

Sä

au

da

de

da

W

de

wie

de

Ro

fch

Ch

Te

Wa

der

der

Wa

det

Url

lich

ner

eing

und diese letztere giebt der Füssigkeit, nach Verschiedenheit der Menge des zugesetzten Wassers, eine gelbe, grüne oder blaue Farbe. Wird so viel Waller zugesetzt, dass die Farbe verschwindet, so zersetzt sich die salpetrige Saure vollsländig, und giebt Salpeterfäure und Salpetergas, ganz wie dieses mit der gewöhnlichen rothen Salpetersäure der Fall ist. Destillirt man die Doppelsure in einer Glasretorte, so verwandelt sich die salpetrige Säure (theils durch Einlaugung von Sauerstoff, theils durch Entbindung von Salpetergas) in Salpeterfäure, und man erhält eine Verbindung von Schwefelfäure mit Salpeterfäure, welche nicht durch Destillation getrennt werden kann, (wenn man fie nicht vorher mit Walfer verdünnt und dann destillirt.) Diese Doppelsäure ist schwerer als die gewöhnliche concentrirte Schwefelfäure, und man kann sie von einer Eigenschwere 1,04 bis 1,06 erhalten: sie krystallisirt nicht beim Erkalten, und löft Metalle unter Entbindung von Salpetergas auf.

Wir haben hier also zwei Doppelfäuren aus Schwefelfäure, die eine mit salpetriger Säure, die andre mit Salpeterfäure beltehend, sehen daher, dass es Doppelsäuren außer den streitigen Säuren giebt, und haben Grund zu vermuthen, dass es auch ähnliche Verbindungen der andern Säuren, z. B. der Salzsäure, der Phosphorsäure, der Flussfäure, der Jodesaure mit der salpetrigen Säure und mit der Salpetersäure geben müsse, nur dass diese Verbindungen erst noch zu ersorschen find.

Und hieraus erhellet, das die Schwierigkeit, das Explodiren des Chlorine-Stickstoffs zu erklären, nicht der einzige Grund ist, den wir haben, diesen Körper für eine Verbindung der Salzsäure mit der Salpetersäure oder der salpetrigen Säure zu nehmen,

Möge man doch nicht von der älteren Lehre fordern, dass sie die Ursache angebe, warum diese Säuren fich mit einander mitten im, oder wenigstens auf der Oberfläche des Wassers verbinden, und dann von dem Wasser nur schwer und langsam in den Zustand wasserhaltiger Säuren versetzt werden. da fie doch eine stärkere Verwandtschaft zu dem Waller als zu einander haben. Denn es wird von der neuen Lehre nicht gefordert, dass sie erkläre. wie es zugeht, dass, obgleich die Verwandtschaften der Chlorine zu dem Wasterstoffe und die des Stick-Stoffs zum Sauerstoffe größer find, als die Verwandt-Ichaft des Wasserstoffs zum Sauerstoff, (lo dass der Chlorine - Stickstoff das Wasser in der gewöhnlichen Temperatur nach und nach zerlegt und Chlorine-Walferlioffläure und Salpeterläure hervorbringt.) dennoch diele Sauren nicht fogleich gebildet werden, da doch der Chlorine-Stickstoff mitten im Wasser oder auf der Obersläche des Wassers gebildet wird. Man fieht, dass die Schwierigkeit, diese Urfache anzugeben, in beiden Lehren die nämliche ift.

Herr Gay-Lussac hat die Schwierigkeit einer Explosion durch blosse Trennung sehr richtig eingesehen, und frägt (Gilb. Annalen Neue Folge

G

tig

10. B. S. 31), ob die Feuer-Erscheinung durch den Stofs bewirkt werden könne, welche die in einem Augenblick freiwerdenden Gasarten auf die nmgebende Luft hervorbringen, indem man weiß, dass die Compression der Luft Wärme entbindet, welche wohl bis zum Glühen gehen könnte. Es wird aber auf diese Weise die Hauptsache bei der Explosion nicht erklärt, nämlich die außerordentliche Gewalt, mit welcher die gasförmigen Körper sich entbinden; und es stellt sich hierbei noch eine andere, fo nicht zu erkärende Erscheinung ein, welche die Unzulänglichkeit dieser Erklärungsart aufser Zweifel fetzt. Lässt man nämlich etwas von der explodirenden Verbindung in einem Gefäße zerplatzen, das atmosphärische Lust enthält, so dehnt fich die Luftmasse während der Explosion beträchtlich aus, und zieht fich dann wieder zusammen, welches letztere aber nicht feyn könnte, wäre das Feuer der Explosion nur eine Folge der Compression der Luft. Denn in diesem Falle miiste die Luft während des Explodirens einen geringeren Raum einnehmen, als nachher, wenn lie Zeit gewinnt, fich auszudehnen und den abgelchiedenen Wärmestoff wieder einzusaugen *). Aus dem hier

⁷⁾ Hr. Gay-Lussa c. frägt bei dieser Gelegenheit, ob mat nicht seine Zuslucht zu den Electricitäten nehmen könne, da wir so viele von der Electricität bewirkte Zersetzungen kennen. Aus dieser Frage sowohl, als aus dem, was er in der Beilage zu seiner Abhandlung (chendas. B. 18-S. 348) über die Neutralität der Verbindungen äusert, zu ersahren, dass er bisher dem electrisch-chemischen Stu-

Gefagten erhellt hinlänglich, daß die Erklärung, welche Hr. Gay-Luffac vorschlägt, nicht die richtige seyn kann, und daß also die Temperatur-Er-

e

5,

t,

d

é

h

-

L

-

n

e

0

e

e

1

dium keine besondere Ausmerksamkeit geschenkt hat, ift zwar auf der einen Seite etwas befremdend, auf der andern Seite ift es indels febr erfreulich zu fehn, dals auch feine chemischen Studien ihn nöthigen, zu diesem allgemein verbreiteten Agens seine Zuslucht zu nehmen, da die neue Wissenschaft sich so viel von den ungewöhnlichen Talenten dieses ausgezeichneten Mannes versprechen kann, -Hr. Gay-Luffac führt, im Zusammenhange mit dem Angeführten, als noch unerklärt an, warum eine gefättigte Auflölung von falpeterfaurem Ammoniak, mit einem gleichen Volumen reinen Walfers vermischt, einen geringeren Raum einnimmt und doch kälter wird. Es fey mir erlaubt, hier ein paar Worte darüber zu lagen. In meiner Abhandlung von dem Krystallwasser (Annal. B. 40. S. 235) habe ich bereits die Chemiker auf die Verschiedenheit aufmerksam zu machen gesucht, welche zwischen dem Auflösen in Wasser und dem chemischen Verbinden mit Walfer Statt findet. Kohlensaure Magnelia bindet chemisch & seines Gewichts Waffer, lofet fich aber in Waffer nicht auf. Das Salpetersaure Kali enthält kein chemisch - gebundnes Wasser, lölt fich aber in Wasser in Menge auf. Wenn ein Körper Wasser chemisch bindet, entsteht Warme, wenn er aber im Waller nur aufgelöft wird, fo entsteht Kälte. Befonehtet man daher geglüheten salzsauren Kalk mit Wasser, so entsteht erst Wärme, indem das Krystallwasser gebunden wird, dann aber durch mehr Wasser Kälte. Die Haupt-Urfache der Wärme Entbindung ift nicht fo fehr eine Verdichtung des Wassers, als vielmehr eine chemische Verbindung, d. b. eine gegenseitige electrisch - chemische Neutralisirung des Wassers und des Salzes Die Ursache der Kälte bei der Auflösung ist dagegen die Vermehrung des Volumen und der Leichtsfüssigkeit des Salzes, welches sich nun über die ganze Masse des Wassers verbreiten muls. Die Summe der Räume beider wird verringert, weil das Wasfer, während es das Salz in feinen Zwischenräumen aufnimmt und es dilatirt, felbst contrahirt wird durch die

höhung ihren Grund in dem chemischen Processe, der bei der Explosion vorgeht, haben mus, und nur von den nämlichen Ursachen, als die Explosionen des Knallsilbers, des Knallgoldes etc. herrühren kann.

di

W

dı d.

he

Sa

H

el

ur

ſe

de

lu

ZV

di ha

lic

Sa

bi

nu

fel

pe

tip

W

ur

ch

Wir haben nun zu erklären, was bei der Explosion der Euchlorine vor sich geht. Nach der älteren Lehre ist dieses Gas das zweite Ueberoxyd der Grundlage der Salzsäure, in welchem diese Grundlage mit doppelt so viel Sauerstoff als in der Salzsäure verbunden ist. Dieses Gas explodirt in einer Wärme von 35 bis 40°, wobei Feuer entsteht, und das Gas sich zu einem 1½ Mal so großen Raum, als es zuvor hatte, ausdehnt, indem es in ½ Sauerstoffgas und ½ oxydirt-salzsäures Gas zerlegt wird, Ich erkläre mir diese Erscheinung solgendermaßen: Die Salzsäure verbindet sich in einer gewissen niedrigeren Temperatur weniger innig mit 2 Partikeln Sauerstoff, mit welchen sie fich dann als Gas aus

Einwirkung des Salzes. Wenn nun das Salz mehr Wärme bedarf zu den verhältnismäsig viel größeren Entfernungen seiner Moleculen, als das Wasser durch die unbedeutende Annäherung seiner Moleculen hergiebt, so entsteht Kälte. (In dem umgekehrten Fall würde Wärme entstehen.) Je größer die Wassermenge gegen die des Salzes ist, desto mehr Wärme wird gebunden, obsehon die Mischung nicht so viele Grade von seiner Temperatur verliert, als wenn weniger Flüssekeit und eine kleinere zu erkaltende Masse zugegen ist. Die von Hrn. Gay-Lussa angeführte Erscheinung läst sich daher dadurch erklären, dass das Salsden Abstand seiner Moleculen verdoppelt, während die Moleculen des Wassers sich pinander nur unbedeutend nächern.

d

١,,

.

d

e

r

n

.

I,

a

8

der Flüsligkeit entfernt. In dieser Verbindung ist die electrisch-chemische Polarisirung des Sauerstoffs weniger vollkommen neutralisirt, als in der Verbindung der Salzläure mit der Hälfte so viel Sauerstoff, d. i. in dem oxydirt-falzfauren Gas. Bei einer höheren Temperatur kann die Salzfäure diese ganze Sauerstoffmenge nicht zurückhalten, sie geht mit der Hälfte des überschüssigen Sauerstoffs eine innigere Verbindung ein, und verbrennt auf Koften desselben zu oxydirter Salzfäure, wobei durch die höhere electrisch - chemische Neutralisirung Feuer entsteht, und die andre Hälfte des Sauersloffs in Freiheit gefetzt wird: die Abscheidung desselben hat keinen andern Antheil an der Explosion, als dass sie das Volumen der gasförmigen Masse und dadurch auch die Gewalt der Explosion vermehrt.

Diese Erklärung scheint beim ersten Anblick zweierlei Anstösiges zu haben. Das erste ist, dass die Salzsäure, welche hier im Zustande einer wasserhaltenden Säure war, das Wasser verlassen soll, um sich mit den 2 Portionen weniger innig gebundenen Sauerstoffs zu einer elastischen Flüssigkeit zu verbinden. Es ist aber eine sehr gewöhnliche Erscheinung, dass, wenn durch das Spiel der Verwandtschaften ein gassörmiger oder unaussischer Körper gebildet werden kann, beinahe immer der süchtige oder unaussische entsteht, und gassörmig entweicht, oder sich aus der Flüssigkeit niederschlägt, ungeachtet sein Bilden übrigens auf den schwächeren Verwandtschaften beruhet. Die Salzsäure

verläst hier das Wasser, das sie zurückhalten sollte, um sich mit dem Sauerstoff als gassürmiges Salzfäure-Ueberoxyd (Euchlorine) zu entsernen. Auf die nämliche Weise treiben concentrirte Phosphorsäure oder Arsenikläure die viel stärkere Schweselfäure aus den Salzbasen aus, wenn die Mischung die Temperatur erreicht, in welcher die wasserhaltige Schweselsäure als Gas erscheint. Die Chemie hat solche Beispiele von mannigsaltiger Art auszuweisen; ihre Erklärung gehört aber in ein noch unbekanntes Gebiet der Lehre von der Wärme und deren Verhältniss zu den beiden EE. In der Erklärung nach der älteren Lehre ist hier also keine Anomalie von dem, was mit andern Körpern Statt findet,

Der sweite scheinbare Anstols beruht darauf, dass die Salzsäure die a Portionen Sauerstoff, womit he Euchlorine bildet, weniger innig binden foll, als die 1 Portion, mit der sie oxydirt-salzsaures Gas Es ist aber klar, das, gesetzt es finde darstellt. wirklich eine solche verschiedene Innigkeit der Verbindung zwischen andern Körpern Statt, diese Erklärung nichts Anstößiges oder Unwahrscheinliches Ich will nun zeigen, dass diese in fich schließe. verschiedene Innigkeit der Verbindung eine allgemeiner verbreitete Erscheinung ist, welche nicht nur zwischen einfachen Körpern, sondern auch zwischen zusammengesetzten Statt findet, auf die wir aber bisher nur lehr wenig Acht gehabt haben.

Als ich im Jahre 1811 die Verbindungen des Antimon-Metalls unterfuchte, entdeckte ich zufällig, dass mehrere antimonsaure Metallfalze, wenn sie ansingen zu glühen, eine lehhafte Feuer-Erscheinung hervorbrachten, welche einen Augenblick dauerte, und dass dann die Temperatur wieder zu der des umgebenden Feuers herablank. Ich stellte, um die Natur dieser Erscheinung zu erforschen, eine Reihe von Versuchen an, aus der sich ergab, dass sich das Gewicht dieser Salze dabei nicht verandert, und dass die Erscheinung auch ohne Zutritt von Sauerstoff Statt findet. Vor der Feuer-Erscheinung find diese Salze fehr leicht zu zerlegen. nacher aber werden sie weder von den Säuren noch von den alkalischen Laugen angegriffen; ein Beweis, dass ihre Bestandtheile pun von einer kräftigeren Verwandtschaft zusammengehalten, d. h. inniger verbunden find. Thre entgegengesetzte electrisch-chemische Polarität muß also vollkommner als vorher neutralifirt feyn, wobei diese Körper in eine Art von electrisch - chemischer Indifferenz gerathen. Die Urfache der Erscheinung des Feuers ist also diese in einer höheren Temperatur eintretende innigere Verbindung oder stärkere electrischchemische Entladung zwischen Körpern, die bereits in Verbindung waren; und hieraus erhellet, dass es zwischen den nämlichen Körpern verschiedene Stufen von Innigkeit der Vebindung geben kann. Man wird aus meiner Abhandlung darüber finden, dass ich bereits damals ahnete, dass diese Entdeckung den Schlüssel zu der Erklärung der Explofion der Euchlorine geben werde.

m

gr

ili

de

di

m

di

di

hà

na

lo

n

di

a

h

 \mathbf{z}

de

ei

w el

V

ſе

fe

ei

ta

Ich habe einige Zeit nachher, während meines kurzen Aufenthälts in London, diele Erscheinung den Herren Wollaston und Davy erzählt. Ersterer sagte mir, er habe zu seiner großen Verwunderung etwas Aehnliches bei dem Gadolinit beobachtet *). Davy hatte bei der Erhitzung des Zirkonerden-Hydrats die nämliche Feuer-Erscheinung gelehen, welche er aber einer Gontraction der Erde in dem Austreibungs-Augenblicke des Wassers zuschnieb. Seitdem habe ich diese Erscheinung bei inehreren Körpern beobachtet, z. B. mit grünem Chromoxyd, Tantaloxyd und Rhodiumoxyd. Ich will das Chromoxyd als Beispiel wählen,

Man übergielse gepulvertes chromfaures Bleioxyd mit einer Mischung von concentrirter Salzfaure und Alkohol; es wird Wärme entstehn, und Aether, salzsaures Bleioxyd und salzsaures Chromoxyd sich bilden. Man verdünne die Flüssigkeit mit mehr Alkohol, um alles Bleisalz abzuscheiden, destillire den Alkohol ab, verdünne die Flüssigkeit wiederum mit Wasser, und schlage aus ihr alles

[&]quot;) Die Feuer-Erscheinung, welche der Gadolinit zeigt, ist sehr lebhaft. Der im Bruche glasige Gadolinit bringt sie sicherer hervor, als der splittrige. Man erhitzt ihn in der Flamme vor dem Löthiohre, so dass das ganze Stück gleich auf allen Puncten erwärmt wird. In der Glübehitze fängt er dann Feuer, die Farbe ist nachher grünlich gran, und die Aussöslichkeit in Säuren ist verloren. Zwei kleine Stücke Gadolinit, von welchen das eine verglimmt war, wurden in Königswasser getragen; das nicht verglimmte war in einigen Stunden ausgelöst, das verglimmte war aber noch nach 2 Monaten nicht sonderlich angegriffen. B.

Chromoxyd mit ätzendem Ammoniak nieder, das man etwas in Ueberschuss zusetze; den grünlichgrauen Niederschlag, welcher Chromoxyd-Hydrat ist, süße man aus, trockne ihn, und erhitze ihn dann in einem Tiegel oder in einer Retorte bis zum dunkeln Glühen; dabei giebt er Wasser ber, und wird schwarzgrau, beinahe schwarz. Nun nehme man ihn aus dem Feuer, wiege ihn, und fetze ihn dann einer steigenden Hitze aus. Man wird ihn dann, wenn er roth glühet, auf einmal von einem höchst intensiven Feuer durchdrungen sehn, welches nach einem Augenblick wieder verschwindet. Das fo verglimmte Chromoxyd hat an Gewicht weder zu noch abgenommen, es ist schön blalsgrün, und statt dass es im Zustande des Hydrats in Sauren leicht auflöslich war, so ist es im wasserleeren Zustande höchlt schwer auflöslich, und in dem verglimmten Zultande völlig unauflöslich. Hier ist also zwischen den nämlichen Antheilen einfachen Chromiums und einfachen Sauerstoffs, welche bereits verbunden weren, eine neue Verbrennung, d. h. eine neue electrisch - chemische Entladung entstanden, durch welche die Elemente nicht nur in eine innigere Verbindung getreten find, fondern das Oxyd auch seine vorigen Verwandtschaften eingebülst, d. h. feine vorige electrisch - chemische Polarisirung mit einer völligen electrisch-chemischen Indisferenz vertauscht hat *), Es ist klar, dass, wenn das Chrom-

^{*)} Wenn man sich Muthmassungen erlauben will, und die electrisch-chemischen Eigenschaften der Körper in einer

dr

fse

hä

fte

in

Sc

we

ter

di

Do

erl

Te

Du

de

de

chi

lag

Ox

me

mil

nei

ger Stu

det

der

tio

Sau

ent

oxyd in diefer Temperatur gasförmig wäre, die neue Feuer-Erscheinung eine Explosion hervorgebracht haben müßte, ohne daß der Beobachter dabei weder eine Verbindung mit einer neuen Materie, noch irgend eine Trennung hätte wahrnehmen können, und ohne daß das Chromoxyd aufhörte, den Betiandtheilen und ihrem Verhältnisse nach die nämliche Substanz jetzt wie zuvor zu seyn. Könnte man die Chromsäure wasserfrei und isolirt darstellen, so würde sie vielleicht in einer höheren Temperatur die nämliche Feuer-Erscheinung unter Entbinden von Sauerstoff, und ganz so wie das Euchlorinegas hervorbringen.

Edmund Davy hat beim Niederschlagen einer neutralen Platin-Auslösung durch SchwefelWasserstoff-Kali gesunden, dass, wenn der Niederschlag in Sauerstofffreier Lust getrocknet wird, man
eine schwarze Schwefel-Verbindung erhält, welche
beim Erhitzen im lustleeren Raume Schwefel mit
etwas Schwefel-Wasserstoff entbindet, dabei eine
Feuer - Erscheinung, der bei der Bildung von
Schwefel-Metallen ähnlich, hervorbringt, und gewöhnliches Schwefel-Platin zurückläst. Offenbar
ist hier ganz die nämliche Erscheinung, wie mit der

electrisch chemischen Polarität der kleinsten Theile seizt, so wird die erste Verbindung durch Entladung zweier Pole, B und C (Tas. IV. Fig. 5) bewirkt. Die Verbindung ist nun durch die Electricitäten der Pole A und D polarisch, d. h. hat durch diese seine Verwandtschaften, welche aufhören, wenn sich A und D eutladen, indem der Körper indisserent wird, B.

Euchlorine. Das Platin verbindet fich in einer niedrigen Temperatur weniger innig, mit einer gröseren Anzahl Schwefelpartikeln, als es in einer
höheren Temperatur zurückhalten kann; es entsieht, wenn man diese Verbindung erhitzt, Feuer,
indem sich das Platin mit dem einen Theile des
Schwefels inniger verbindet, und der andere Theil,
welcher bei dieser Temperatur nicht zurückgehalten werden kann, sich in Freiheit setzt.

Ich habe gefunden, dass, wenn man das Rhodium - Oxyd erhitzt, welches man aus dem rothen Doppelsalze aus Rhodium, Salzsaure und Natron erhält, erst Wasser, und dann bei einer höheren Temperatur, unter einer leichten Feuer-Erscheinung, gewaltsam Sauerstoffgas entbunden wird, indels Rhodium - Oxydul zurückbleibt. Hier ist wiederum die nämliche Erscheinung, wie mit der Euchlorine. Das Rhodium hat ohnehin mit der Grundlage der Salzfäure das gemein, dass das erste und dritte Oxyd desselben Salzbalen find, während das zweite mehrere Charaktere eines Ueberoxydes hat, z. B. mit Salzfäure oxydirte Salzfäure giebt, und mit keiner Säure ein Salz bildet, fich aber mit Bafen einigermaßen verbinden läßt. Die höchste Oxydations-Stufe ist wiederum eine ausgezeichnete Salzbase: der Sauerstoff ist aber darin weniger innig gebunden. Sie kann nicht von den niedrigeren Oxydations-Stufen hervorgebracht werden, weil diese den Sauerstoff inniger neutralisirt enthalten, sondern entsteht nur in niedrigeren Temperaturen und

durch besonders günstige Umstände bei der Auflösung der Legirungen des Rhodium *). Die Grundlage der Salzläure giebt auf die nämliche Weile erst eine Säure, dann zwei Ueberoxyde, und dann wieder eine Säure, welche nur unter besonders günstigen Umständen, und niemals direct hervorgebracht werden kann.

Wir haben uns nun, glaube ich, völlig überzeugt, dass es mehrere Grade von Innigkeit der Verbindung zwischen dem Sauerstoff und der nämlichen brennbaren Grundlage giebt, manchmal zwischen den nämlichen Proportionen, indess zuweilen der brennbare Körper in einer niedrigeren Temperatur mehrere Atome Sauerstoff weniger innig bindet, und dann in einer höheren Temperatur eine innigere Verbindung mit wenigeren Atomen eingeht, wobei Feuer entsteht, und die übrigen Sauerstoff - Partikeln abgeschieden werden. Wir haben auch gesehn, dass diese verschiedenen Grade der Innigkeit der Verbindung nicht nur zwischen Sauerstoff und brennbaren Körpern Statt findet. fondern fich auch auf andere nicht blos einfache, fondern auch zusammengesetzte Körper erstrecken. wie dieles aus den Verluchen mit dem auf naffem Wege bereiteten Schwefel - Platin, mit antimonfauren Metallsalzen, und mit dem Yttererde-Siliciat hervorgeht. Diese innigere Verbindung ist also eine

h

r

1

Ve

W

A

be

W

all

V.

Sa

eir

in

^{*)} Man sehe meine Abhandlung: Ueber die Ursache der chemischen Mischungs-Verhältnisse, in Thomson's Annals of Philosophy XVI, p. 255.

allgemeinere Erscheinung, und man kann nicht einwenden, sie sey blos um die Explosion der Euchlorine zu erklären erdacht worden. Und hieraus geht also klar hervor, dass die Erklärung nach der älteren Lehre mit der übrigen chemischen Wissenschaft vollkommen übereinstimmend ist.

8) Chlorine giebt mit Wasserstoff Chlorine-Wasserstoffsaure (Salzsäure) und mit dem Sauerstoff Chlorinsaure (überoxydirte Salzsäure), und ist daher mit dem Schwesel analog, der auch eine Säure sowohl mit dem Wasserstoff als mit dem Sauerstoff hervorbringt.

Ich finde es immer fonderbar, wenn die Anhänger der neuen Lehre fich auf eine Analogie berufen; denn es scheint, als mache es sich diese Lehre zur Pflicht, Analogieen nicht zu beachten. Doch wir wollen diese der neuen Lehre günstige Analogie etwas näher untersuchen.

Schwefel, Tellur, Phosphor, Kohle, Arsenik verbinden lich mit Wasserstoff zu eigenen Körpern, welche alle eine gemeinschaftliche, unverkennbare Analogie mit einander haben. Die beiden ersten besitzen zwar dabei auch Charaktere von Säuren, welche den übrigen sehlen; diese Säure-Eigenschaften vermindern aber nicht im geringsten die allgemeine Analogie zwischen diesen Wasserslöff-Verbindungen. Es verbinden sich Schwefel, Arsenik, Phosphor, Kohle und Tellurium auch mit dem Sauerstoff, und geben Säuren, welche gleichfalls eine ausgezeichnete Analogie mit einander sowohl in den äußeren Charakteren als in den chemischen

n

er

di

lie

un

do

WC

Wa

let

ge

dei

/ta

die

als

Kra

die

faut

dun

and

dief

nich

Salp

Zun

Eigenschaften haben. Es fragt sich nun: Mit welcher von diesen beiden Körper-Reihen hat die Salzfaure Analogie? Es findet lich schwerlich auch nur ein einziger Chemiker, die Anhänger der neuen Lehre nicht ausgenommen, der sich einen Augenblick bedenken follte, die Salzfäure unter die fauerstoffhaltigen Säuren zu stellen, zu Folge ihrer Charaktere: ihrer Säure, ihres Geschmacks und Geruchs, ihrer Eigenschaft im concentricten Zuflande Pflanzen- und Thier-Körper zu corrodiren und zu schwärzen, des Grades ihrer Verwandtschaften u. f. w. Und es findet fich gar kein Grund, wenn man das Bedürfnis der neuen Lehre ausnimmt, welcher es rechtfertigen könnte, wenn man die Salzfäure eher mit Schwefel-Wasserstoff oder Tellur-Wasserstoff, als mit Schweselsäure oder Phosphorläure vergleicht.

Von den andern Wasserstoff-Säuren macht eine jede der schwächsten Sauerstoff-Säure Platz, und dieses liegt in der Natur der Sache. Die Chlorine-Wasserstofffäure weicht aber hierin so sehr von ihnen ab, das sie vielmehr die meisten Sauerstoff-Säuren aus ihren Verbindungen austreibt, selbst auch die, welche stärker als die Chlorinesäure sind, welches aller Analogie mit dem Schwesel-Wasserstoff und dem Tellur-Wasserstoff gunz entgegen ist, und auch schwerlich mit unsern theoretischen Ideen über die Acidität bestehn kann. Lässt es sich daher wohl mit Grund annehmen, dass die Erklärungsart der neuen Lehre mit der übrigen

chemischen Theorie übereinstimme und der älteren Lehre vorgezogen zu werden verdiene? und hat nicht hier die ältere Lehre, in ihrem Zusammenhange mit unsern übrigen chemischen Kenntnissen betrachtet, einen ganz ausgemachten Vorzug?

Das Einzige, welches hier der älteren Lehre entgegen seyn kann, ist der Begriff einer überoxydirten Säure; zwar hat er nichts Unwahrscheinliches in sich, wir kennen aber davon kein Beitpiel unter den unbestrittenen Säuren. Wer dieses jedoch als einen Beweis für die neue Lehre ansehen wollte, würde die Möglichkeit alles dessen läugnen, was noch unentdeckt ist. Wir haben erst in den letzten Jahren eine wasserfreie Schwefelsäure aufgefunden; wer kann nun dafür bürgen, das wir in den folgenden nicht eine überoxydirte entdecken?

Die Salzfäure ist nach beiden Lehren eine fehr starke Säure. Der natürlichen Erklärung nach sagt dieses, die Salzfäure äusere ihre Verwandtschaften als Säure, d. h. zu den Salzbasen, mit größerer Kraft, als die meisten andern Säuren. Auch schließet dieser Ausdruck den Begriff in sich, dass die salzfauren Verbindungen sester bestehn, als die Verbindungen der nämlichen Salzbasen mit den mehrsten andern Säuren. Wir werden aber gleich sehn, ob dieses nach der neuen Lehre der Fall ist, oder nicht.

1

1

n

Wenn eine Portion concentrirte Schwefelfäure, Salpeterfäure, Salzfäure oder Phosphorfäure auf die Zunge oder die Haut wirkt, fo fagen uns Geschmack Annal. d. Physik. B. 50. St. 4. J. 1815. St. 8. Dd

und Gefühl, dass ihre Wirkungen analog und ziemlich einerlei find. Ihre Wirkungen auf Pflanzenfarben und Pflanzenstoffe haben auch die größte Aehnlichkeit. Verbinden wir diese Säuren mit Ammoniak, fo fehen wir wiederum vollkommen analoge Wirkungen; die Säure-Charaktere verschwinden, und werden von einem salzigen Geschmack erfetzt, indem wasserhaltige Ammoniaksalze, welche beide Hypothelen als Salze anerkennen, gebildet werden. Verbinden wir ferner diese Säuren mit Kali oder mit Bleioxyd, fo können wir wiederum nichts entdecken, was ihrer analogen Wirkung widerspräche; es werden salzige Körper hervorgebracht, die gewisse unter sich übereinstimmende Eigenschaften und Charaktere als Kalifalze oder als Bleioxydfalse besitzen. Die ältere Lehre erklärt das falzfaure Kali für ein Kalifalz, ganz wie das salpetersaure, schwefeselsaure etc. Kali, von denen keines chemisch-gebundenes Wasser enthält. Hier aber weichen die Anlichten der neuen Lehre von denen der älteren gänzlich ab. Da das nämliche Product, welches beim Sättigen des Kali mit Salzfäure entsteht, auch durch Verbinden von Kalium mit Chlorine zu erhalten ist, das letztere aber. wenn man es in Wasser auflöst und dann der atmosphärischen Verdünstung überlässt, nach dem Austrocknen keine Zunahme an Gewicht zeigt, lo kann es weder Kali noch Chlorine-Wasserstoffläure enthalten, kann also kein Salz seyn, sondern muss als Chlorine-Kalium angesehen werden. Die Tempe-

Amend delivered, B go S. , I was well

ratur-Erhöhung, welche beim Mischen von Salzfäure mit einer Lauge ätzenden Kalis entsteht, kann daher nicht einerlei Urfache mit der nämlichen Erscheinung haben, die durch verdünnte Schwefelfäure oder Salpeterfäure und Kali hervorgebracht wird, fondern muß davon herrühren, daß den Wasserstoff der Chlorine-Wasserstoffläure mit dem Sauerstoff des Kali Wasser giebt, indem Chlorine-Kalium entsteht. Der salzige Geschmack des Chlorine-Kalium kann über die Natur dieses Körpers nichts beweisen, da eine Analogie niemals als ein Beweis angenommen werden kann, Ganz das nämliche gilt auch von dem Chlorine-Blei; obgleich es alle Charaktere eines Bleifalzes hat, z. B. einen zuckrigen Geschmack, leichte Schwärzung durch Schwefel-Walferstoff u. f. w., fo ist es doch kein Bleifalz, und enthält keinen Sauerstoff. Das Chlorine-Kalium (das falzfaure Kali) und das Chlorines Blei (das falzfaure Bleioxyd) find daher keine Salzet fie find vielmehr in ihrer Zulammenletzung mit den Oxyden oder mit den Schwefel-Metallen analog. -Und nun frage ich: darf man dieses für eine confequente chemische Philosophie ausgeben? und ist dieles die "just logic of chemistry." welche die Chemiker die neue Lehre anzunehmen genöin the grant has been been been been been thigt hat?

Die neue Lehre zeigt fich, je genauer man ihre Sätze entwickelt, desto weniger übereinstimmend mit der übrigen chemischen Theorie, und solglich desto weniger wahrscheinlich. Wir wollen daher

t

n

noch ein wenig bei dem Chlorine-Kalium verweilen. Es ist klar, dass die Chlorine eine große Verwandtschaft zu dem Kalium haben mus; es ist auch aus der Erfahrung bekannt, dass die Chlorine eine größere Verwandtschaft gegen den Wasserstoff als der Sauerstoff, und das Kalium eine stärkere Verwandtschaft gegen den Sauerstoff als der Wasserstoff hat. Es kann auch in keinem philosophisch - chemilchen Raisonnement gelängnet werden, dass die Chlorine-Wafferstoffläure, als Säure, eine starke Verwandtschaft zum Kali, als Basis, haben muß. Mit allen diesen, wie ich glaube, vollkommen gegründeten und von der Erfahrung beltätigten Voraussetzungen steht in dem nothwendigsten und engsten Zusammenhange, dass, wenn das Chlorine-Kalium mit Wasser angeseuchtet wird, alle diese Verwandtschaften (der Chlorige zum Wasserstoff, des Kalium zum Sauerstoff, und der Chlorine-Wafferstoffläure zu dem Kali) in Wirksamkeit gesetzt und das Wasser mit großer Kraft, d. h. mit Temperatur-Erhöhung, zerlegt, und chlorine-wasserstofflaures Kali hervorgebracht werden müßte. Die Anhänger der neuen Lehre geben aber zu, dass nichts von allem diesem Statt findet. Es lind also entweder die Voraussetzungen unlerer Schlussfolge, oder die neue Lehre von der Einfachheit der Chlorine, falsch und ohne Grund. Dass aber die aus der Verwandtschaftslehre genommenen Prämissen nicht so ganz ohne Grund feyn können, erhellt ganz deutlich daraus, dass, wenn Schwefel-Kalium und Tel-

I

r

K

S

d

d

e

п

d

ei

M

ge

di

n-

T

ch

ne

als

1-

ffe

20

lie

ke

ſs.

e-

-10

ig-

8-

er-

les

er-

nd

ur-

res

D-

hts

ve-

ler

ne.

er-

fo

int-

el-

lur-Kalium in Berührung mit Wasser kommen, dieses unter Temperatur-Erhöhung zerlegt wird, indem sich Schwesel-Wasserstoff-Kali und TellurWasserstoff-Kali bilden, welche, wenn man Sorge
trägt die Auslösungen in einer sauerstoffleeren Atmosphäre zu verdunsten, in sester Gestalt erhalten
werden können. Sie werden auch nicht in der
Glühehitze zerlegt, wenigstens nicht das SchweselWasserstoff-Kali, und es läst sich davon kein
Schwesel-Kalium wieder erhalten,

Wir wollen annehmen, ein Anhänger der neuen Lehre ändere, durch das Angeführte bestimmt, seine Meinung und stelle den Satz auf, dass eine Auflöfung des Chlorine-Kalium in Waffer immer chlorine-wasserstofffaures Kali enthalte, welches aber durch den Act des Krystallisirens wieder in Chlorine-Kalium verwandelt werde; dass also Chlorine-Kalium, wenn es aufgelöft wird, eine gewiffe Menge Sauerstoff und Wasserstoff inniger mit sich verbinde. Da die Chlorine den Wasserstoff stärker als den Sauerstoff bindet, und da Kalium Wasser mit einer starken Temperatur-Erhöhung zerlegt, so muss bei diesem neuen Binden des Sauerstoffs durch das Kalium und des Wasserstoffs durch die Chlorine eine bedeutende Temperatur-Erhöhung entstehen. Man nehme nun eine Menge, z. B. 4 Unzen feingeriebenes Chlorine - Kalium und setze darein die Kugel eines Thermometers, befeuchte das Pulver mit Wasser von gleicher Temperatur, und rühre dabei mit der Thermometerkugel die angefeuchtete

Masse um. Man wird das Quecksilber in dem Thermometer im Augenblicke finken fehn; statt einer Erhöhung erfolgt also eine Erniedrigung der Temperatur, ganz fo, als wenn man den nämlichen Verfuch mit salpetersaurem Kali anstellt. Das Chlorine-Kalium verbindet also kein Wasser mit sich chemisch, und das Wasser wirkt dabei nur als Auflöfungs- oder flüfligmachendes Mittel, indem fich ein Theil des Chlorine-Kaliums durch die Masse des Wasfers ausdehnt und Kälte verursacht. Da sich nun in diesem Versuche nichts anderes als eine gewöhnliche Auflölung eines Salzes, und keine eintretende chemische Verbindung zu erkennen giebt, so kann es, dünkt mich, nicht mit einer gefunden chemischen Philosophie vereinbar seyn, auf das Gegentheil von dem zu schließen, was wir durch unsere von wissenschaftlichen Hülfsmitteln unterstützten Sinne wahrnehmen.

Wie man auch die neue Lehre wendet, immer stösst man auf Sätze, welche mit unserer gewöhnlichen chemischen Theorie unverträglich sind; und es muss daher entweder diese Theorie oder die neue Lehre von der Natur der Salzsäure unrichtig seyn. Doch wir wollen in unserer Prüfung fortsahren.

Man gielse in eine heilse concentrirte Auflöfung von salzsaurem Kali eine concentrirte Säure, welche etwas schwächer ist als die Salzsaure, z. B. Phosphorsaure oder Arseniksaure. Die Flüsligkeit giebt nun freie Salzsaure zu erkennen. Hier hat er-

uer

m-

ten

lo-

ich nf-

ein af-

in

ın-

nn

ni-

n-

еге

en

er

П-

nd

lie

tig

rt-

ö-

e,

В.

it

at

wandtschaft als die der Salzfäure eine Zerlegung des Wassers verursacht, bei der das Kalium die Chlorine verlassen hat, um sich mit dem schwächer verwandten Sauerstoff zu verbinden und ein phosphorsaures oder arseniksaures Salz darzustellen. Die Chlorine aber zeigt dabei eine äußerst bizarre Erscheinung, indem sie sich in eine stärkere Säure verwandelt, in dem Augenblicke, in welchem sie außer Verbindung mit der basefähigen Grundlage gebracht wird; und obgleich sich diese Säure mit dem Kali nicht verbinden kann, so ist sie doch im Stande, die gänzliche Sättigung der zugesetzten. Phosphorsäure mit dem Kali zu verhindern. Nun frage ich wiederum: Ist dieses chemische Logik?

Es läfst fich nicht einwenden, dass die Eigenschaften der Salzsaure als Saure nur scheinbar sind,
und nur von ihrer reducirenden und mit der Chlorine sich verbindenden Kraft herrühren. Denn wie
könnte dieses mit der größeren Verwandtschaft des
Wasterstoffs zur Chlorine als zu dem Sauerstoff bestehn, wodurch diese Säure weniger reducirend als
irgend eine andere Wasserstoff - Säure seyn müste.
Der Phosphor-Wasserstoff und der Arsenik-Wasserstoff haben ja ein größeres Reductions-Vermögen
als der Schwesel-Wasserstoff, sind aber doch keine
Säuren.

Während also die neue Lehre sich in Beziehung auf die allgemeine Chemie, als theoretische Wissenschaft, überall inconsequent und mit ihr nicht zusammenhängend zeigt, werden von der älteren Lehre alle Erscheinungen vollkommen consequent, einfach, und ich wage zu sagen, auf eine mehr als nur wahrscheinliche Weise erklärt, indem diese Lehre annimmt, dass das salzsaure Gas, ganz wie die gewöhnliche concentrirte Schwefelsaure, eine Verbindung einer wassersienen Säure mit einer Menge Wasser seine Verbindung einer wassersienen Säure mit einer Menge Wasser seine Verbindung einer wassersienen Säure mit einer Menge Wasser seine Verbindung einer wassersienen Säure mit einer Menge Wasser seine Säure, die Salzsaure, kann sich mit den verschiedenen Salzbasen verbinden, indem sie Salze darstellt, welche sowohl mit als ohne chemisch-gebundnem Wasser seyn können, wonach also das salzsaure Kali eben so gut wie das salpetersaure Kali, und das salzsaure Bleioxyd, Salze sind.

Betrachtungen über neutrale, einfache und doppelte falzfaure Salze.

Die Verlegenheit, in welche die Anhänger der neuen Lehre gerathen, wenn von falzfauren Salzen die Rede ist, könnte zum Lächeln veranlassen. Sie sind weder unter einander, noch jeder mit sich selbst, darüber einig, was als ein chlorine-wasserstoffsaures Salz und was als ein Chlorid zu betrachten sey. Nimmt man die Sache genau, so können sie keine andern chlorine-wasserstoffsauren Salze zugeben, als die, welche man nicht in wassersteilem Zustande erhalten kann; d. h. falzsaures Ammoniak, salzsaure Magnesia, salzsaure Thonerde, und einige andre Verbindungen der Salzsäure mit Erden und Metalloxyden, aus

1

r

è

.

e

,

n

9

.

1

welchen beim Erhitzen die Salzsäure entweicht. Dass der Salmiak als chlorine - wasserstofflaures Ammoniak angesehen wird, rührt daher, dass das salzsaure Ammoniak eben so wenig wie ein andres einfaches, neutrales Ammoniaksalz ohne chemischgebundenes Waller erhalten werden kann; beim Vermischen von oxydirt-falzsaurem Gas mit Ammoniak entsteht das nöthige Wasser durch Zersezzung eines Theils des Ammoniaks auf Kolten der oxydirten Salzfäure: oder wenn man Ammoniakgas mit salzsaurem Gas verbindet, verschluckt das Salz alles in dem falzfauren Gas befindliche Waffer, welches dann das Krystallwasser des Salmiaks bildet. Nach der neuen Lehre zerlegt das Chlorine-Gas das Ammoniakgas durch die Verwandtschaft der Chlorine zu dem Wasserstoff, und der Chlorine-Wasserstoff-Säure zu dem unzerlegten Ammoniak. wobei ein wasserleeres chlorine-wasserstofflaures Ammoniak entsteht. Dabei wird es aber eine sehr anomale Erscheinung, dass gerade dieses chlorinewallerstofflaure, wie auch das sluorine-wallerstoffsaure und jodine-wasserstofflaure Ammoniak die einzigen neutralen Ammoniak-Salze feyn follen. welche kein Wasser binden, da doch alle andere neutrale Verbindungen unbestrittener Säuren mit Ammoniak Krystallwasser enthalten, und ohne diefes nicht erhalten werden können.

Einige englische Chemiker, welche die Vorzüge der älteren Lehre vor der neueren einzusehen glaubten, haben sich bemüht, die Unrichtigkeit der

letzteren dadurch zu zeigen, dals sie getrocknetes Ammoniakgas mit ebenfalls getrocknetem falzfaurem Gas mischten, und das dadurch erhaltene neutrale Salz gelinde erhitzten; sie behaupteten dabei Waffer zu erhalten, und dieses Waffer sahen sie als das an, welches dem falzfauren Gas vorher als Basis angehört habe. Ja man versicherte sogar, Wasser aus dem Salmiak erhalten zu haben, als man ihn über glühende Kohlen in Dampfgestalt weggetrieben habe. Dergleichen Resultate stimmen aber eben so wenig mit der einen Lehre als mit der andern überein, und es konnte beiden zu Folge das erhaltene Walfer nur durch unvermeidliche Feuchtigkeit hervorgebracht worden seyn. Diese Vertheidiger der älteren Lehre zeigten durch diese Bemühungen, dass sie der Sache nicht ganz Meister waren: ihre Gründe wurden daher auch von einigen Anhängern der neuen Lehre ziemlich vornehm beantwortet, und sie trugen, ohne es zu wünschen. zur weiteren Ausbreitung der neuen Lehre bei.

Diese sieht auch die falzsaure Magnesia, Thonerde, Zirkonerde etc. als chlorine-wasserstoffsaure Verbindungen an, weil sie alle in der Hitze Salzsaure geben und die Erde ungebunden zurücklassen, und weil man eingesehen hat, dass es eine allzugroße Inconsequenz seyn würde, die Grundlagen der Säure und der Basis sich erst in dem Trennungs-Momente acidisciren und basisciren zu lassen. Von den chlorine - wasserstoffsauren Salzen kann allein die Verbindung mit Magnesia auch als ChlorineMagnesium erscheinen. Es entsteht, wenn man Chlorine über glühende Magnesia leitet, wobei der Sauerstoff der Erde ausgetrieben wird; Wasser zerlegt aber augenblicklich diese Verbindung, und erzeugt chlorine-wasserstoffsaure Magnesia, welche durch Abdampsen nicht mehr in Chlorine-Magnesium verwandelt werden kann.

-

91

s

5

r

-

r

-

S

-

_

-

n

,

e

a

1

1

.

Hier lässt sich fragen, warum die chlorinewallerstoffsauren Salze auf so wenige und nur schwächere Basen beschränkt find, und warum ihnen, die Magnelia ausgenommen, keine Chloride [Chlorine-Metalle] entsprechen? Nichts ist naturlicher, als eine Verschiedenheit zwischen den Chloriden und den chlorine-wasserstoffsauren Verbindungen zu erwarten, welche der zwischen Schwesel-Kalium und Schwefel-Wasserstoff-Kali analog seyn Denn die Verwandlung der metallischen Grundlage der Salzbalis in ein Oxyd, und der einfachen Chlorine in eine Säure, müßte doch nothwendig eine Veränderung auch in den physischen Charakteren hervorbringen. Dagegen können wir zwischen den Körpern, welche die neue Lehre als Chloride, und denen, welche sie als chlorine-wasser-Stoffsaure Salze ansieht, keine andere Verschiedenheit, als die zwischen Salzen mit und Salzen ohne Krystallwasser, entdecken. Alle Chloride verhalten fich gerade so wie Salze, eben so gut als die chlorine-wasserstofflauren Verbindungen, und das Chlorine-Kalium verhält fich zur chlorine-wasserstofffauren Thonerde vollkommen wie das schwefelfaure Kali zu der schwefelsauren Thonerde. — Kurz, es liegt für den, der die Sache mit einem etwas umfassenden Blick betrachtet, ganz klar am Tage, dass die Chloride und die chlorine-wasserstoffsauren Verbindungen zu einerlei Gattung von Körpern gehören, und das sie alle eben so gut Salze sind, als die schwefelsauren, salpetersauren u. s. w., gerade so, wie die ältere Lehre sie von langen Zeiten her angesehen hat.

Mehrere salzsaure Salze haben die Eigenschaft, fich mit einander zu Doppelfalzen zu verbinden; z. B. falzfaures Ammoniak mit falzfaurem Platinoxyd, oder falzfaurem Kupferoxyd etc. Das erste Doppelfalz enthält nur fo viel Kryftallwaffer, als dem darin befindlichen falzfauren Ammoniak angehört; diese Verbindung kann daher in der neuen Lehre kein Doppelfalz feyn, fondern fie muls eine fonderbare Zusammensetzung von chlorine - wasserstoffsaurem Ammoniak (ohne Wasser) und chlorine-Platin feyn. Das Doppelfalz aus falzfaurem Ammoniak und Kupferoxyd, enthält aber mehr Krystallwasser, und ist daher in der neuen Lehre ein wahres chlorine-wasserstoffsaures Doppelsalz. Nun frage ich: Welche Erklärung ist die confequentere, die ältere, welche diese Salze als Doppelfalze mit mehr oder weniger chemisch gebundenem Wasser ansieht, oder die neue, welche das eine für ein Doppelfalz und das andere für eine Verbindung eigner Art erklärt, ohne andere Gründe

für diese Verschiedenheit, als das Bedürfnis der Lehre, angeben zu können?

Einige wasserfreie salzsaure Neutralsalze haben auch die Eigenschaft sich mit Ammonisk zu bastschen Doppelsalzen zu vereinigen, welche das Ammoniak mit desto größerer Kraft zurückhalten, je schwächer die Basis des salzsauren Salzes ift. Dieses geschiehet z. B. mit wasserfreiem salzsauren Kalk und mit falzfaurem Zinnoxyd (Spiritus Libavii). Mehrere schwefelsaure Salze haben die nämliche Eigenschaft. Das schwefelfaure Kupferoxyd verschluckt z. B. sowohl in wasserhaltigem als in verwittertem Zustande, das Ammoniakgas, wird dadurch blau, und ist dann ein basisches Doppelfalz. Wenn man gepülvertes Schweselzinn mit 20 Mal lo viel Quecklilberoxyd vermischt und aus einer Retorte alles Queckfilber überdestillirt, oder wenn man Zinn mit concentrirter Schwefellaure zur Trocknifs abdestillirt, und bis zum Dunkelgfühen erhitzt, so erhält man wasserfreies schwefelsaures Zinnoxyd. welches Ammoniakgas verschluckt. Die salzsauren Salze stimmen also in dieser Eigenschaft mit den schwefelfauren Salzen überein. - Die neue Lehre ist aber weit entfernt diese Uebereinstimmung anzuerkennen. Nach ihr find Chlorine-Kalium und Chlorine-Zinn Säuren eigner Art, in welchen das Metall die Grundlage ist und die Chlorine die Stelle des Sauerstoffs vertritt. Diele Säuren können sich nur mit dem Ammoniak verbinden, womit fie eigene Ammoniak - Salze bilden. Solche extravagante

Erklärungen, welche nur in dem Bedürfniss der Hypothese ihren Grund haben können, sollten doch, dünkt mich, schon längst Misstrauen gegen die neue Lehre erregt haben, und ich muss vermuthen, dass die, welche der neuen Lehre beipflichten, an die hier angesührten Umstände wohl nur nicht gedacht haben.

to. Bafifche falzfaure Salze.

Die Salzfäure giebt mit mehreren Bafen bafische Verbindungen, in welchen die Salzfäure gewöhnlich mit 4 Mal fo viel Basis als im neutralen Salze verbunden ist, so wie in den basischen schwefelfauren Salzen die Säure gewöhnlich 3 Mal fo viel Balis, als in dem neutralen Salze aufnimmt. Mehrere, wenn nicht alle basische salzsaure Salze, enthalten Krystallwasser, welches bei gelindem Erhitzen der Salze entweicht. Die neue Lehre nimmt die Wasser-enthaltenden basischen Salze für wahre basische chlorine - wasserstofflaure Verbindungen; wenn aber das Wasser aus ihnen durch Warme ausgetrieben ist, betrachtet sie den Rückstand als eine Verbindung von einem Partikel Chlorid mit 3 Partikeln Oxyd, so dass also in der neuen Lehre die Chloride fowohl mit Oxyden als mit kohlenfauren und mit chlorine - walferstoffsauren Salzen Verbindungen eingehen können. Wenn aber die neue Lehre dahin gebracht werden follte, die Existenz der Chlorine-Wasserstofffäure in den basischen salzsauren Salzen zu läugnen, (denn dieses ist sehr

er

en

en

T+

eihl

G-

49

al-

eliel

h-

ze,

ir-

mt

re

n;

us-

ine

ar-

die

en in-

eue

enz

ılzehr möglich in einer Theorie, wo man, ohne die Eigenschaften der Körper zu berücklichtigen, jede Erklärungsart, deren die Theorie bedarf, gelten läst,) so wird sie diese Körper als aus Chlorid und Oxyd-Hydrat zusammengesetzt ansehen.

Auf welche Weife indess auch diese Verbindungen zusammengesetzt seyn mögen, immer müssen sie doch den Gesetzen der chemischen Milchungs-Verhältnille gehorchen. In dieler Beziehung will ich das basische salzsaure Bleioxyd, und das basische salzsaure Kupferoxyd, beide im wasserhaltenden Zustande, untersuchen. Nach den von diefen Salzen gemachten und, wie ich glaube, ziemlich zuverläßigen Analysen, find sie so zusammengefetzt, dass die Salzfäure darin mit 4 Mal so viel Basis als im neutralen Salze verbunden ist, und dass das Metalloxyd und das chemisch gebundene Wasser eine gleiche Menge Sauerstoff enthalten. Bei den folgenden Ausdrücken dieser Zusammensetzung in Zahlen lege ich die Gewichte der einfachen Atome zu Grunde, welche ich in meiner Abhandlung von der Ursache der chemischen Proportionen gegeben habe, nämlich das Gewicht des Sauerstoffs O=100, das der Grundlage der Salzfäure M = 130,56, das des Bleies Pb. = 2597,4, das des Kupfers Cu. = 806,45, und endlich das des Wasserstoffs H=6,636. Die Salzfäure, das Bleioxyd und das Kupferoxyd enthalten jede 2 Partikel Sauerstoff auf 1 Partikel der Grundlage. Das Wasser dagegen enthält 2 Partikel Grundlage gegen i Partikel Sauerstoff. In der neuen Lehre ist das Gewicht von einem Partikel der einfachen Chlorine Ch. = 439,56 (d. h. M+30 der ält. Lehre) und ein Partikel Chlorine-Wasserstoffläure (der Ch+2H ist) wiegt 452,82 (in der älteren Lehre MO^2+H^2O).

A. Basisches Salzsaures Bleioxyd.

Aeltere Lehre.

Salzfaure
$$\begin{cases} M = 159.56 \\ 20 = 200.00 \end{cases} = 339.56$$
Bleioxyd
$$\begin{cases} 2Pb. = 5194.80 \\ 40. = 400.00 \end{cases} = 5594.80$$
Waffer
$$\begin{cases} 8H = 53.08 \\ 40 = 400.00 \end{cases} = 453.08$$

$$6387.44$$

Neue Lehre a).

Chlorine - W	re { Ch. = 459,56} re { 2 H = 13,27}	= 452,8\$
Bleioxyd		= 5594.80
Waller	\$6 H. = 39.817 30. =300,00 \$	= 339.81
		6387.44

Neue Lehre β).

Chlorine Blei (meta	illisches) ½ Pb.		439,56
Bleioxyd	{1\frac{1}{2}Pb.=3896,10\} {30.=300,00}	=	4196,to
Waller	$ \begin{cases} 8 H. = 53.08 \\ 40. = 400,00 \end{cases} $	=	453,08
	Circumitation		6387,44

B. Bafifches falzfaures Kupferoxyd.

Aeltere Lehre.

Salzfaire
$$\begin{cases} M = 139.56 \\ 20 = 200.00 \end{cases} = 559.56$$
Kupferoxyd
$$\begin{cases} {}^{2}Cu. = 1612.90 \\ 40. = 400.00 \end{cases} = 2012.90$$
Waffer
$$\begin{cases} 8H = 55.08 \\ 40 = 400.00 \end{cases} = 455.08$$

der

30

Ter-

der

Neue Lehre a).

Neue Lehre \$).

Chlorine
$$= 439.560$$

Kupfer (metallifches) $\frac{1}{2}$ Cu. $= 402.225$
Kupferoxyd $\begin{cases} \frac{1}{2}$ Cu. $= 1209.675$
 $30. = 300.000$ $\end{cases} = 1509.675$
Waller $\begin{cases} 8 H. = 53.080 \\ 40. = 400.000 \end{cases}$ $= 453.080$
 $= 2805.54$

Vergleicht man diese Auseinandersetzungen mit einander, so zeigt sich, das beide der Lehre von den chemischen Proportionen in so weit entsprechen, als diese Lehre die Körper aus ganzen Elementar-Atomen zusammengesetzt betrachtet. Denn es ist einleuchtend, das, wenn man die Zahlen der

Annal. d. Phylik. B. 50. St. 4. J. 1815. St. 8. E

beiden unter & angeführten Beispiele verdoppelt, die Brüche der Atomen verschwinden.

Ich habe mich aber zu zeigen bemüht, dass dieses nicht der einzige Umstand ist, auf den es in der chemischen Proportionslehre ankömmt, und dass, wenn dieses Gesetz allein die ganze Lehre ausmachte, die Existenz der chemischen Proportionen darzuthun, schwerlich möglich seyn möchte. Denn es würde demselben gemäs (z. B. zwischen zwei brennbaren Körpern und dem Sauerstoff) eine zu große Anzahl von Verbindungen möglich werden, und für diese die Verschiedenheit der Zusammensetzung durch Vergrößerung und Annäherung der relativen Anzahl von einfachen Atomen zu klein ausfallen, um durch Analysen mit einiger Sicherheit ausgemittelt werden zu können. Nun aber zeigt die Erfahrung, dass die Sprünge zwischen möglichen Verbindungen zweier Oxyde fehr groß find, ganz wie wir es hier bei den neutralen und bafischen salzsauren und schwefelsauren Salzen gesehn haben. Dieses muss eine Urfache haben, und diese Ursache findet sich in einem zweiten Gesetz, welches die Verbindungen oxydirter Körper unter einander bestimmt. Diesem Gesetze zu Folge ist in einer Verbindung von zwei oder mehrern Oxyden, der Sauerstoff eines jeden Oxyds ein Vielfaches nach einer ganzen Zahl der Sauerstoffmenge desjenigen Oxydes, welches die geringste Sauerstoffmenge enthält. - Ich glaube, dass die große Anzahl von Versuchen und Analysen, welche ich mit

elt,

lie-

der

als,

us-

en

nn

wei zu

en,

en-

der

ein eit

igt

ig-

ad,

afi-

hn

ele

el-

in-

in

en,

1es

je-

ff-

n-

nit

den verschiedenartigsten Verbindungen oxydirter Körper angestellt habe, um dieses Gesetz aufzusinden und zu prüsen, hinreichend seyn müssen, zu zeigen, dass die Uebereinstimmung der Versuche mit der Regel nicht ein nur zufälliges Eintressen seyn kann, sondern dass sie die Allgemeinheit und Gültigkeit des angesührten Gesetzes anzudeuten scheinen. Die Zusammensetzung der augesührten Salze entspricht nach der älteren Lehre völlig diesem Gesetze, wie aus der obigen Auseinandersetzung erhellt. Denn will man auch die Sauerstoffmenge der Salzsäure als zu problematisch betrachten, so sind doch die völlig bekannten Sauerstoffmengen der Metalloxyde und des Wassers einander gleich, und daher der Regel entsprechend.

Nach der neuen Lehre findet aber das Gegentheil Statt. Entweder enthält das Metalloxyd 400 und das Waffer 300 Theile Sauerstoff, oder umgekehrt das Waffer 400 und das Metalloxyd nur 300 Theile Sauerstoff. Nun aber ist 400 kein Vielfaches nach einer ganzen Zahl von 300, und die Chlorine kann, wenn man sie für einfach nimmt, keinen Sauerstoff enthalten. Es erhellet also, dass die Zufammensetzung der wasserhaltigen basischen salzsauren Salze, so wie sie nach der neuen Lehre seyn müste, mit dem Gesetz der Verbindungen oxydirter Körper nicht übereinslimmt. Daher muß entweder die neue Lehre, oder das angesührte Gesetz unrichtig seyn.

Sollen wir also die neue Lehre von der Natur der Salzfäure nicht als durch dieses Gesetz vollkommen widerlegt betrachten, so müssen die Anhänger diefer Lehre die Unrichtigkeit des Gefetzes darthun. Dieses kann aber nicht anders als dadurch geschehen, dass man Verbindungen oxydirter Körper nachweist, deren Sauerstoffmenge außer allen Streit gesetzt ist, und in welchen die Menge des Sauerstoffs in dem einen, nicht von der in dem andern ein Vielfaches nach einer ganzen Zahl ist. Dass keine auf die neue Lehre sich gründende Beispiele angeführt werden dürfen, brauche ich kaum zu erinnern. Und da meine Versuche über den Stickstoff und das Ammoniak, wie ich glaube, so viel Zutrauen verdienen, dass man den Sauerstoffgehalt des Stickstoffs als wahrscheinlich annehmen kann, so darf auch kein salpetersaures Salz, in welchem man den Stickstoff als einfach betrachtet, als Beispiel angeführt werden.

Die Sache so, wie es Hr. Humphry Davy gethan hat, zu entscheiden, indem er sagt: "Pro"fessor Berzelius has lately adduced some argu"ments, which he conceives are in savour of Chlo"tine being a compound of oxygen, from the laws
"of definite proportions; but I cannot regard these
"arguments as possessing any weight. By trans"ferring the definite proportions of oxygen to the
"metals, which he has given to the Chlorine, the
"explanation becomes a simple expression of facts;
"and there is no general canon with respect to

"the multiples of the proportions, in which dif"ferent bodies combine;" — das nenne ich etwas
durch Ueberlegenheit beweisen wollen. Während
ich indes die Ueberlegenheit mit Ehrerbietung anerkenne, werde ich doch nie aufhören, ihr die
Kraft eines wissenschaftlichen Beweises streitig zu
machen.

-

r

-

h

-

n

5

n

t.

i-

n

n

0

-

n

-

s

.

7

e

e

e

Aus dem Angeführten erhellt hinreichend, daß die neue Lehre von der Natur der Salzfäure mit dem Gesetz für die Verbindungen oxydirter Körper nicht übereinstimmt, daß also nicht beide zugleich wahr und richtig seyn können, sondern eins das andre widerlegt. Ich überlasse es den Anhängern der neuen Lehre, die Unrichtigkeit des angeführten Gesetzes darzuthun, und will nur im Vorbeigehn erinnern, daß, wer beide zugleich annimmt, keine Ansprüche machen darf, für einen philosophischen Chemiker zu gelten.

II. Die Flussfaure.

Eben so wenig als wir in der älteren Lehre einen zweiten, der oxydirten Salzsäure analogen Körper kennen, hatte die neue Lehre einen der Chlorine ähnlichen Körper aufzuweisen. Der Einwurf, den man daraus gegen jene hernehmen wollte, traf daher auch diese; läst er sich aber in einer dieser Lehren heben, so wird er offenbar auch in der andern aufgehoben seyn.

Davy hat, in der Hoffnung seine neue Lehre dadurch noch mehr zu bestätigen, unternommen

darzuthun, dass alle Schlüsse, welche er aus seinen früheren Verfuchen über die Reduction der Flussfaure gezogen hatte, unrichtig find, und dass man in ihnen keine Spuren einer wiederhergeliellten Grundlage der Säure erhalte; und durch höchst finnreiche Verfuche fuchte er dann zu beweifen, dals aus der Flussläure ein mit der Chlorine analoger -Körper, den er Fluorine nennt, erhalten werden könne. Obgleich es in der einen, so wie in der andern Lehre höchst wahrscheinlich ist, dass ein folcher Körper (ein flusslaures Ueberoxyd) existire, fo ist es doch Hrn. Davy, die Sache genau genommen, nicht gelungen, diesen Körper darzustellen, und eben so wenig hat er bewielen, dass die von den Herren Gay-Lussac und Thenard beobachteten Reductionen der Grundlage der Flusfäure unrichtige Beobachtungen waren.

Ich muß hier im Allgemeinen die Bemerkung vorausschicken, daß, nachdem wir die neue Lehre und ihre Anwendungen auf die salzsauren Verbindungen etwas weitläuftig durchgegangen sind, sehr wenig für die andern beiden Säuren hinzuzusetzen übrig bleibt. Denn wenn sich die neue Lehre von der Salzsaure nicht bewähren läst, so muß sie, in so fern sie die Flussfaure und die Jodsaure betrifft, von selbst fallen.

Die der Flussfäure eigenthümlichen Verbindungen sind besonders die Boraxfäure-haltende und die Kiefelerde-haltende Flussfäure, welche beide Doppelsauren sind. Die neue Lehre nimmt sie für

en

Is-

an

en

hft

als

er

en

er

in

e,

e-

u-

(s

rd

5-

1g

re

2-

ır

n

n

n

i,

d

Säuren, welche aus Boron und aus Silicium mit Fluorine zusammengesetzt sind. Das Boron und das Silicium sind die Grundlage der Säuren, und die Fluorine vertritt die Stelle des Sauerstoffs. Beide können sich nur mit Ammoniak verbinden, ohne zerlegt zu werden. Die neue Lehre nimmt hier also an, was nicht sonderlich wahrscheinlich ist, dass in diesen Ammoniaksalzen z. B. das Silicium in metallischem, d. h. nicht oxydirtem Zustande vorhanden sey. Uebrigens gilt hier das Nämliche, was ich über den Chlorine-Phosphor bemerkt habe.

Der Umltand, daß, wenn man neutrales flußfaures Kali mit falzfaurer Beryllerde niederschlägt,
ein großer Theil Kali in Freiheit gesetzt wird,
dürfte einen nicht gewiegten Anhänger der neuen
Lehre in Verlegenheit setzen. Da man aber in diefer Lehre, ohne Bedenken, je nachdem man es bedarf, die Verbindungen für Salze oder für Chloride
und Fluoride erklären, und annehmen darf, daß
die fluorine-wasserstofssauren Salze, gleich den
schwesel-wasserstofssauren, im Feuer bestehn, so
wird man schwerlich etwas aus dieser Erscheinung
schließen können, welches die neue Lehre als einen
Beweis gegen ihre Richtigkeit anerkennen sollte.

Die mehr zusammengesetzten Verbindungen der Flussäure stimmen eben so wenig mit der Lehre von den Mischungs-Verhältnissen überein, wie dieses mit den wasserhaltenden basischen salzauren Salzen der Fall ist. Ich habe z. B. die Topase aus Brasilien, vom Schneckenstein und aus Fahlun mit

der größten Sorgfalt unterlucht, und bei allen das nämliche Resultat erhalten. Nach diesem find sie Verbindungen von i Partikel basischer slussaurer Thonerde, (in welcher die Erde a Mal fo viel Sauerstoff als die Saure enthält,) mit 3 Partikeln Thonerde-Siliciat, (in welcher die Thonerde und die Kiefelerde gleiche Mengen Sauerstoff in sich schlie-Isen.) Wenn nun in dieler Verbindung nicht flußfaure Thonerde, fondern Fluorine-Aluminium enthalten ift, so muss der Sauerstoff des oxydirten Antheils vom Alaminium zu dem der Kiefelerde in dem Verhältnisse von 4 zu 3 stehn, hier also die nämliche Abweichung von der Regel, als in den wasserhaltenden bafischen salzsauren Salzen Stattfinden. -In dem Stangenstein von Altenberg fand ich 1 Partikel neutrale flussaure Thonerde mit 3 Partikeln des angeführten Thonerde-Siliciats verbunden, so dass diese Verbindung nach beiden Lehren gleichmälsig der Lehre von den bestimmten Proportionen entlpricht.

Uns weiter bei der Flussfäure aufzuhalten, ist für die Ablicht dieler Abhandlung ganz überslüssig.

III. Die Jodfaure.

Die Jodine wurde gerade in der Zeit entdeckt, als sich die neue Lehre auszubreiten ansing, und da die Eigenschaften dieses Körpers nur von denen Chemikern, welche der neuen Lehre zugethan waren, untersucht und beschrieben worden sind, so ist alles, was wir darüber wissen, nur in den An88

lie er

r-

n-

e-

t-

n-

m

n-

r-

rln

ol

h-

n

ilt

.

t,

d

n

o

1-

sichten und der Sprache der neuen Lehre abgesast, ohne dass man sich die Mühe gegeben zu haben scheint, zu untersuchen, ob die ältere Lehre durch die neue Entdeckung an Wahrscheinlichkeit verloren oder gewonnen habe.

Man hat stillschweigend angenommen, dass die Erscheinungen, welche die Jodine uns zeigt, nur von der neuen Lehre erklärt werden können, und bei der großen Aufmerksamkeit, welche die Jodine als neuentdeckter Körper erregte, hat dadurch die neue Lehre eine Publicität gewonnen, die sie ohnedem vielleicht niemals hätte erreichen können. Diefer Umstand hat gewiss manchen Chemiker veranlasst, die ältere Lehre zu verlassen, und der Mode-Ueberzeugung zu folgen, aus Gründen, die bei einer andern Gelegenheit unzulänglich gewesen wären, ihn zu bestimmen, seine Meinung zu verändern. Der ehrwürdige Vauquelin, dessen Verdienste um die Chemie über mein Lob erhaben find, giebt hiervon ein merkwürdiges Beispiel. Er fand, dass, wenn er die Verbindung von Jodine und Phosphor mit Walfer übergols, oder wenn er Jodine und Phosphor unter Wasser auf einander wirken liels, Phosphorfäure und Jodfäure gebildet werden. "Dieses, sagt er, kann nur durch eine Zerletzung des Wassers erklärt werden;" wodurch er fich genöthigt glaubte, der neuen Lehre beizutreten. Sollte es wohl bei einer andern Gelegenheit dem Scharfblicke dieses Chemikers entgangen feyn, dass, wenn man Jodine als ein mit der oxydirten

Salzläure analoges Ueberoxyd betrachtet, die nämliche Erscheinung durch Zersetzung des Ueberoxyds hervorgebracht werden müsse, indem diese sich zur Säure reducirt, und der Phosphor sich auf Kosten des überschüssigen Sauerstoffs in Phosphorsaure verwandelt. Das Wasser verbindet sich dann, ohne zerlegt zu werden, mit den Säuren, welche in den Zustand von wasserhaltenden Säuren übergehen.

1

Bereits in den ersten Nachrichten von der Jodine hatte man angefangen, sie als eine einfache, brennbare, mit Schwefel-Blei oder Schwefel-Antimon im Aeussern sehr ähnliche Substanz zu betrachten. Sie hat, sagte man, die größte Analogie mit dem Schwefel und mit der Chlorine; so wie diese bildet sie ein gefärbtes Gas, mit Wasserstoff und mit Sauerstoff läst sie sich zu Säuren vereinigen, u. s. f. — und aus allen diesen Analogieen zog man den Schlus, dass nur die neue Lehre zu den Erscheinungen passe.

Wenn aber dergleichen Analogieen zur Sprache kommen, so darf man auf der andern Seite nicht vergessen, dass die Jodine mit dem krystallisiten Mangan-Ueberoxyd [grauen Braunsteinerz] eine noch größere Aehnlichkeit als mit den gedachten Schwefel-Metallen hat. Die gasförmige Chlorine und Jodine sind in diesem Zustande dem salpetrigsauren Gas nicht nur viel ähnlicher, als dem Schwefel, sondern ihr eigenthümlicher Geruch hat auch mit dem der salpetrigen Säure die aussallendste Analogie. Es ist daher klar, dass eben so viel,

mds

ur

en

r-i

ne

en

0-

e,

n-

e-

ie

ie

ff

i-

n

u

1-

e

-

1

-

.

n

t

,

als die neue Lehre durch die Entdeckung der mit der Chlorine analogen Jodine gewonnen zu haben glaubt, auch die ältere Lehre dadurch gewinnt, indem sie eine Säure kennen lehrt, welche sich in verschiedenen Graden überoxydiren lässt, ganz wie die Salzsäure.

Da alles, was ich in Beziehung auf die Salzfäure gelagt habe, fich auch auf die Jodfäure anwenden läst, so wird eine weitere Vergleichung der beiden Hypothesen hier überflüslig. Die Erscheinungen der Jodsäure find aber nur in der Sprache der neuen Lehre abgefalst; ich glaube daher, dass ein kurzer Entwurf einer nach der älteren Lehre abgefasten Beschreibung derselben hier an der rechten Stelle stehn werde. Ich bedaure aber, dass ich in meinem von den allgemeineren litterarischen Communicationen entfernten Wohnorte noch nicht alles von der Jodfäure angegebene (und erst die Hälfte von Hrn. Gay-Lussac's Arbeit) habe lesen können, daher man in dem Entwurf einige mir noch nicht bekannte Erscheinungen vermissen wird.

1. Jodfäure (Acidum jodicum).

In mehreren Sodaarten befindet sich, außer dem kohlensauren Natron und den andern vorher bekannten Salzen, ein neues, Feuchtigkeit anziehendes Salz, welches eine Verbindung von Natron mit einer neuen Säure, der Jodfäure, ist. Dieses Salz sindet man in der Mutterlauge, nachdem sich aus ihr alles leichter Krystallisischare abgeschieden

k

£

I

hat. Die Jodfäure kann dann durch stärkere Säuren ausgetrieben werden; da sie sich aber leicht oxydirt, und dann ein der oxydirten Salzfäure ähnliches Ueberoxyd bildet, so wird sie von den leichter zersetzbaren Säuren (auch von der Schwefelfäure) in der Form eines Ueberoxydes ausgetrieben, wobei sich die austreibende Säure zum Theil desoxydirt. Da dieses eine leichte Methode ist, die Säure von andern Stoffen zu reinigen, so bedient man sich folgenden Verfahrens, um das Ueberoxyd rein von Säure zu erhalten. Man trocknet die Mutterlauge ein, mischt das dadurch erhaltene Salz in einer langhalfigen Retorte mit Schwefelfäure, treibt dann durch gelindes Erhitzen das salzsaure Gas aus, setzt darauf Mangan - Ueberoxyd (schwarzen Braunstein) hinzu, und destillirt die Mischung. Bei einer nicht Sonderlich großen Hitze fängt die Retorte an sich mit einem schön violetten Gas zu erfüllen, welches sich am Halfe derselben in metallisch-glänzenden, dunkelgrauen Krystall-Gruppen verdichtet. Die Jodfäure wird dabei, nach Art der Salzfäure, durch den überschüssigen Sauerstoff des Braunsteins in ein Ueberoxyd verwandelt, das wir Jod- Ueberoxyd (Superoxydum jodicum) nennen wollen, und die in dem Halfe der Retorte verdichtete Sublianz ist dieses Ueberoxyd der Jodine. Um es in Jodsäure zu verwandeln, braucht man es nur mit Wasser zu vermischen, und durch die Mischung einen Strom von Schwefel-Walferstoffgas hindurchsteigen zu lassen. Der Wasserstoff reducirt das Ueberoxyd zur

Säure, während sich der Schwesel niederschlägt. Wenn die Mischung ungefärbt erscheint, ist alles Ueberoxyd in Säure verwandelt. Wenn man dann die Säure siltrirt und in sauerstoffleeren Destillir-Gefäsen erhitzt, so läst sich die gröste Menge des Wassers abdestilliren und die rückständige Flüssigkeit immer mehr concentriren. Wird diese wasserhaltende Jodsäure der Lust ausgesetzt, so überoxydirt sie sich leicht, und indem die Säure das Ueberoxyd auslöst, bildet sie eine rothbraun-gefärbte Flüssigkeit, aus der sich das ausgelösse Oxydnicht durchs Kochen abscheiden lässt, weil es weniger slüchtig als die Säure ist.

Sowohl mit dem Wasser als mit den übrigen Salzbasen geht die Jodsaure neutrale Verbindungen ein, welche jodsaure Salze sind, und aus denen man die wassersiele Jodsaure in unverbundenem Zustande noch nicht hat darstellen können. Es sättigen 100 Theile der isolitten Säure eine Menge Bass, deren Sauerstoff 6,851 ist *); diese Säure hat also eine sehr kleine Sättigungs-Capacität. — Die Verbindung der Jodsaure mit so viel Wasser, als erfordert wird, um als Basis sie zu sättigen, giebt sich uns in Gestalt eines sauren Gas, das dem salzsauren Gas sehr ähnlich ist. Man erhält es, indem man die wassersiele Verbindung der Phosphorsaure und Jodsaure mit ein wenig Wasser ansenchtet. Die

^{*)} Nach Gay-Luffac's Bestimmung, dass 100 Theile Jod-Ueberoxyd mit 26,225 Theilen Zink neutrales jodfaures Zink-Oxyd darstellen, B.

Sa

da

ze

OX

fin

O

ma

pe

OX

F

Pu

br

U

da

im

ze

lei

bis

fel

de

Ita

ei

mi

of

fel

de

Bäuren verbinden sich unter Temperatur-Erhöhung mit dem Wasser, werden dadurch getrennt und treten in den Zustand wasserhaltender Säuren über, wobei sich die wasserhaltende Jodfäure (jodas hydricus) als Gas entbindet. Es nehmen 100 Theile Jodfäure 7,767 Theile Wasser auf. Das eigenthümliche Gewicht dieses Gas ist 4,443. Vom Wasser wird es begierig verschluckt, und die gesättigte Auflösung ist eine rauchende, farbenlose, sehr saure Flüssigkeit. Diese concentrirte Säure kocht erst bei 4 125 bis 128°, und hat dann eine Eigenschwere von 1,7. Die Schweselsaure, die Salpetersaure, die oxydirte Salzsaure, und mehrere Oxydsalze, auch die des Eisenoxydes, werden davon desoxydirt, indem sich Jod-Ueberoxyd bildet.

Die Jodfäure löset mehrere Metalle mit Entbindung von Wassersteinst auf; mit Oxyden verbindet sie sich begierig, und bringt sowohl neutrale als bassische Salze hervor. Die jodfauren Verbindungen haben eine ausgezeichnete Anlage, neutrale und basische Doppelsalze zu bilden; mehrere von den setztgenannten werden von den ätzenden Alkalien ausgelöst, ohne zerlegt zu werden. Uebrigens behalten die jodsauren Salze die allgemeinen Charaktere, welche den Salzen jeder Basis zukommen; soz. B. ist das jodsaure Eisenoxydul grünlich, von einem zusammenziehenden sütslichen Geschmack; das jodsaure Zinkoxyd, farbenlos und von einem zusammenziehenden oder metallischen Geschmack, u. s. f. Mehrere unter ihnen sind slüchtiger als die

Salze der nämlichen Basen mit andern Säuren, z.B. das jodsaure Kali. Andere, z.B. der jodsaure Kalk, zerlegen sich im Feuer, indem die Säure sich überoxydirt und entweicht; in verschlossnen Gefässen sindet dieses nicht Statt. — Es ist hier übrigens der Ort nicht, jedes einzelne Salz zu beschreiben.

2. Jod-Ueberoxyd (Superoxydum jodicum).

Das Ueberoxyd der Jode wird erhalten, wenn man die Jodfaure durch Mangan-Ueberoxyd, Salpeterlaure, oxydirte Salzfäure und andre leicht desoxydirbare Körper fich überoxydiren lässt. Aus Flüssigkeiten schlägt es sich in Gestalt eines braunen Pulvers nieder, und kann dann auf ein Filtrum gebracht und getrocknet werden. Das trockne Jod-Ueberoxyd schmilzt bei + 107° C., und gesteht dann nach dem Erkalten zu einer dunkelgrauen, im Bruche blättrigen, fettartig-glänzenden, leicht zerreiblichen Masse, welche die Electricität nicht zu leiten scheint. Bei einer Temperatur von + 175 bis 180° verwandelt es sich in ein sehr schön violettes Gas, das völlig wie oxydirte Salzfäure, aber schwächer riecht, und sich an kälteren Körpern wiederum zu schwarzgrauen, metall-glänzenden Krystallgruppen verdichtet. Mit Waller lässt es sich in einer geringeren Temperatur verdunsten, wie das mit den mehrelten flüchtigen Körpern der Fall ist. In offener Luft verfliegt es nach und nach, wiewohl sehr langsam. Kaltes Wasser löst sehr wenig von dem Jod-Ueberoxyd auf, und nimmt dayon eine

Si

Jo

fe

ur

ge

th

ge

Ite

Sä

Ph

Ue

ph

vei

de

tre

Ha

nic

fch

wa

lat

Sai

fac

röthliche Farbe an. Die Auflöfung einem anhaltenden Sonnenschein ausgesetzt, entfärbt sich nach und nach, indem sich wasserhaltende Jodsäure und siberoxydirte Jodsäure bilden, und sich im Wasser auslösen. Wenn das Wasser entweder jodsaure Salze, oder auch einige andere, z. B. Salmiak oder salzenseraures Ammoniak enthält, so kaun es eine bedeutende Menge von dem Jod-Ueberoxyd auslösen. Diese ist aber nur als eine Auslösung, nicht aber als eine chemische Verbindung des Jod-Ueberoxyds mit diesen Salzen anzusehen. Uebrigens zeichnet sich dieses Ueberoxyd dadurch aus, dass die Säure desselben eine weit größere Verwandtschaft zu dem Sauerstoffe, und eine viel geringere zu den Salzbasen, als die Salzsäure hat.

Der Schwefel desoxydirt bei einer nicht sehr erhöheten Temperatur das Jod-Ueberoxyd, und verwandelt sich damit in jodfaures Schwefeloxyd. Wenn die Verbindung erhitzt wird, reducirt die Säure das Schwefel-Oxyd, und entweicht als Jod-Ueberoxyd, mit Hinterlassung von hergestelltem Schwefel.

Der Phosphor zerlegt das Jod-Ueberoxyd und bringt, nach Verschiedensieit der Menge des angewendeten Phosphors, verschiedenartige Verbindungen hervor. I Theil Phosphor und 8 Theile Jod-Ueberoxyd geben ein jodsaures Phosphor-Oxyd, welches orangefarben ist, und vom Wasser zerlegt wird, wobei man wasserhaltende Jodsaure, und indem das Phosphoroxyd sich zerlegt, phosphorige

Saure und wiederhergestellten Phosphor erhält. Wenn man eine größere Menge Phosphor zu dem Jod-Ueberoxyd zusetzt. so scheidet sich der über-Ichüssige in dem Augenblicke der Verbindung ab. und itellt freien Phosphor in der durch Sonnenlicht gewöhnlich hervorgebrachten Modification des rothen Phosphors dar. - Wird 1 Theil Phosphor gegen 16 Theile Jod-Ueberoxyd genommen, fo entfieht eine Verbindung wasserfreier phosphoriger Saure mit wasserfreier Jodlaure; und wenn i Theil Phosphor gegen 24 Theile (d. h. 11 fo viel +) Jod-Ueberoxyd genommen wird, fo erhalt man Phosphorläure mit Jodfäure in wasserfreiem Zustande verbunden. Wenn man Wasser zusetzt, so verbinden sich die Säuren damit, werden getrennt, und treten in den Zustand von wasserhaltenden Säuren. Hat man in der letzten Milchung das Jod-Ueberoxyd nicht ganz genau abgemellen, so dals ein Ueberschuss davon zugegen ift, so löst sich dieser in der wallerhaltenden Saure auf, und färbt lie. Ein Zulatz von Phosphor nimmt die Farbe wieder weg.

Die größere Verwandtschaft der Jodsäure zum Sauersloff und die geringere zu den Basen verursachen, das sich das Jod-Ueberoxyd mit mehreren

^{*)} Diese Bestimmungen sind von Hrn. Gay-Lussac entlehnt. Sie können schwerlich völlig genau seyn. Wenn aber die relative Menge 16 und 24 richtig ist, was man wohl nicht bezweiseln kann, so sind unsere Bestimmungen der Zusammensetzung der beiden Säuren der Phosphors unzuversässig, weiches ich lange als sehr wahrscheinlich angelehen habe. B.

Körpern unzerlegt verbinden kann, von welchen die oxydirte Salzfäure augenblicklich zerfetzt wird. Daher verbindet fich das Jod-Ueberoxyd mit mehreren Basen, in welchen Verbindungen es als Jod-Ueberoxyd existirt, z. B. mit dem Ammoniak, dem Kalke, der Magnesia, und vielleicht noch mit andern. Die Verbindung mit Ammoniak ist schwarz, und geschieht ohne Entbindung von etwas Elastisch-Flüssigem. Da das Ueberoxyd zu dem Ammoniak eine geringere Verwandtschaft als das Wasser hat, so wird diese Verbindung vom Wasser zerlegt, es entsteht stülliges Ammoniak, von welchem das Jod-Ueberoxyd zu Säure reducirt wird, indem der Wasserstoff eines Theils des Ammoniaks mit dem Sauerstoff des Ueberoxyds Wasser bildet. Der dadurch entstehende Stickstoff zerlegt einen andern Theil des noch gegenwärtigen Jod-Ueberoxyds, und bringt eine unauslösliche, pulverförmige, schwarze Verbindung von salpetriger Säure mit Jodsäure, beide im wasserfreien Zustande, hervor. Diese Donpelfäure hat die Eigenschaft, durch Explosion sich zu zerlegen, in noch höherem Grade, als die entsprechende salpetrigsaure Salzfäure. Dieser Körper zerlegt fich im feuchten Zustande nach und nach von felbst; es wird Stickstoffgas losgebunden, und wasserhaltende Jodsäure und überoxydirte Jodsäure werden gebildet.

Das Jod-Ueberoxyd läst sich auch mit mehreren Pslanzenstoffen verbinden, ohne zerlegt zu werden, z. B. mit dem Zucker, der Stärke, dem Gummi u. f. f., so wie wir wissen, dass diese Pflanzenstoffe sich auch mit andern binären Oxyden, z. B. mit dem Bleioxyd, verbinden können. Bei einer erhöheten Temperatur, z. B. bei trockner Destillation, werden diese Verbindungen zerlegt, der Wasserstoff reducirt das Ueberoxyd, und die Producte der Destillation enthalten Jodsäure.

3. Ueberoxydirte Jodfäure (Acidum oxyjodicum).

Wenn das Ueberoxyd der Jode der Einwirkung von oxydirt - falzfaurem Gas ausgefetzt wird, fo verbinden fich beide, und es entsteht ein tropfbar-flüsfiger, gelblicher, fehr faurer, aus der Luft Feuchtigkeit anziehender Körper. War das oxydirt-falzfaure Gas in Ueberschuss vorhanden, so enthält er davon etwas aufgelöft. Dieser Körper ist eine Verbindung. der überoxydirten Jodfäure mit Salzfäure, welche dadurch entsteht, dass die oxydirte Salzsäure von dem Jod-Ueberoxyd zu Salzfäure reducirt wird. Setzt man der erhaltenen Doppelsäure mehr Jod-Ueberoxyd zu, so löset sich dieses darin auf, und die Auflölung erhält eine dunkle Orangefarbe, welche desto dunkler wird, je mehr Ueberoxyd aufgelöst ist. Wird die reine Doppelfaure erhitzt, so entsteht die nämliche Auflösung, indem die Salzfäure die überoxydirte Säure wieder zu Ueberoxyd reducirt, und sie entweicht dann als oxydirt-salzsaures Gas. Löft man die Doppelfaure im Wasser auf und fättigt sie mit ätzendem Kali, so erhält man salzsaures Kali und überoxydirt-falzfaures Kali. Enthielt

aber die Doppelläure Jod-Ueberoxyd aufgelöft, fo wird dieses von den zuerst zugesetzten Portionen des Alkali niedergeschlagen, löst sich aber bald wieder auf. Indigo-Auflösung wird von der Doppelläure entfärbt, und die Flüssigkeit enthält dann nur gewöhnliche Jodsaure und Salzsaure.

Wird Jod-Ueberoxyd mit ätzendem Kali behandelt, so löst es sich darin farbenlos auf. Das Ueberoxyd wird dabei nach Art der oxydirten Salzfaure zerlegt, indem der überschüflige Sauerstoff fich auf einen geringeren Theil des Ueberoxyds concentrirt und überoxydirte Säure hervorbringt, und der größere Theil wird in Jodfäure verwandelt. Das entstehende überoxydirt-jodfaure Kali schlägt sich als ein schwer auflösliches Salzpulver aus der Flüssigkeit nieder. Die nämlichen Erscheinungen bringen Natron, Kalk, Baryt und Strontian hervor, mit welchen die überoxydirte Salzfäure auch wenig - auflösliche Salze hervorbringt. Alle diese Salze geben im Feuer Sauerstoffgas und werden in jodfaure Salze verwandelt. Um die größte Menge überoxydirte Jodjäure von einer gegebenen Menge Jod-Ueberoxyd zu erhalten, thut man am besten, das Ueberoxyd durch oxydirte Salzläure in überoxydirte Säure zu verwandeln, und die entstandene Doppelfäure dann mit der erforderlichen Basis zu sättigen. Man kann die überoxydirte Jodfaure in krystallinischer Form darstellen, wenn man überoxydirt-jodfauren Baryt mit verdünnter Schwefelfaure zerlegt, und die erhaltene

Auflösung der überoxydirten Säure abdampft, und kristallisiren läst. Die Kristalle sind farbenlos.

Wenn man diese concentrirte Aussölung der jodsauren Magnesia mit einer ebensalls concentrirten Aussölung der überoxydirt-jodsauren Magnesia vermischt, so schlägt sich ein slohsarbener Stoff nieder, welcher eine Verbindung von regenerirtem Jod-Ueberoxyd mit Magnesia ist. Etwas Aehnliches, wiewohl in geringerem Grade ereignet sich auch mit dem Kalk und dem Strontian. Es scheint nur schwächeren Basen zuzukommen, daher überoxydirte Salze nicht aus der unmittelbaren Behandlung derselben mit Jod-Ueberoxyd gebildet werden können.

Der größte Theil des vorstehenden Entwurfs
ist aus Gay-Lussac's vortresslicher Abhandlung
genommen. Da ich diese Abhandlung aber nur
zur Hälste gesehen habe, so sehlt in dieser Darstellung unstreitig noch vieles; dieses wird aber
Jedermann leicht nach der älteren Theorie darstellen können.

Befchluss.

Um die streitige Frage über die Natur der drei Körper, von denen ich in diesem Aussatze gehandelt habe, auf das Bestimmteste zum Vortheil der ältern Lehre zu entscheiden, wäre es freylich nöthig, dass wir die brennbare Grundlage sowohl der Salzsäure, als der Jodsäure und der Flussfäure im ilolirten Zustande darstellen könnten. Dieses haben wir aber noch nicht vermocht. Mit welchem Rechte kann man aber daraus schliefsen, dass eine solche Zerlegung nicht mit der Zeit möglich werden könne, und wie diesen Umstand als einen entscheidenden Beweis gegen die ältere Lehre ansehen? Geletzt es hätte im Jahr 1806 ein Chemiker behauptet, die Alkalien und Erden seven einfache und nicht, (wie Lavoisier aus ihrer Analogie mit den metallischen Salzbasen muthmasste,) oxydirte Körper, und hätte diese Behauptung darauf gestützt, dal's man die Alkalien damals nicht reduciren konnte; so würde sich dieser Chemiker doch geirrt haben, obgleich seine Behauptung von denen, welche in Lavoilier's Ideen einzudringen und ihre große Wahr-Scheinlichkeit einzusehn vermochten, damals nicht auf eine solche Weise widerlegt werden konnte, wie er es gefordert haben würde, d. h. durch Reduction der Alkalien. Dieses Beispiel lässt sich auf die jetzige Philosophie der Anhänger der neuen Lehre anwenden, da fie, alle Analogieen verwerfend, eine Reduction der Salzfäure als das Einzige fordern, was eine Ueberzeugung von der Unzulänglichkeit der neuen Lehre geben könne. In dem Jahre 1806 rechnete man nicht auf die Reductionskraft von Davy's electrischen Säulen und Trögen; und wer wird jetzt schon die Wirkung berechnen wollen, welche eine in allen Dimensionen 1000 Mal größere electrische Säule hervorzubringen vermöchte.

F

E

Ich glaube daher, daß, wenn auch die Möglichkeit jetzt für uns aufhört das Wahrscheinliche durch Erfahrung zu priifen und zu bestätigen, es doch nicht erlaubt fey in der chemilchen Philosophie etwas auf diefes Aufhören zu bauen, und was aus anderen Gefichtspunkten als fehr wahrscheinlich erscheint, für nichts und falsch blos aus dem Grunde zu erklären, weil man den politiven Beweis dafür noch nicht zu führen im Stande ift, voransgeletzt, dals auch keine politiven Gegenbeweife vorhanden find. Es kömmt dann alles darauf an, die Ansichten fo zu wählen i dass die Vermuthungen der chemilchen Philosophie von der Nachwelt, durch das immer fleigende Vermögen Ericheinungen hervorzubringen, eher dürften bestätigt als widerlegt werden. Dazu kann men aber nur dadurch gelangen; daß man die Analogie forgfältig ftudirt, und nur Vermuthangen aufstellt, welche mit dem übereinstimmen was wir in der Chemie als bewährt ansehen de Wer aber bei dem Ausbleiben einer erwarteten Ecscheinung fogleich zurücktritt, und alles das was ihm zu der unerfüllten Erwartung veranlaßte, für unrichtig erklärt, indem er eine neue, mit der sibrigen chemilchen Theorie weniger zufammenflimmende Hypothefe, in welcher die ausgebliebene Erscheinung nicht zu erwarten ist, ansstellt, schwebt immersort in der Gefahr, daß ein anderer Chemiker in Hervorbringung dieler Erscheinung glücklicher feyn werde, als er, und dais man ihm dana nicht

Annal. d. Physik. B. 50. St. 3. J. 1815. St. 7. Gg

ganz oline Grund Kurzlichtigkeit werde vorwerfen

Seitdem Davy entdeckt hat, dass die Alkalien und die alkalischen Erden wahre Metalloxyde find. schließen wir, daß auch die Thonerde, die Zirkonerde, die Beryllerde, die Yttererde Oxyde find, obgleich es doch, so viel ich weiss, noch Niemand geglückt ist, Sauerstoff aus diesen Körpern abzuscheiden. Dennoch zweifelt kein Chemiker en der Richtigkeit dieser Vermuthung, weil er die Analogie fieht, welche zwischen diesen Oxyden und den Oxyden des Zinks, des Mangans, des Ceriums u. f. w. Statt findet. Haben wir aber wohl weniger Veranlassung, aus der noch größeren Analogie der Salzfaure, der Flussfäure und der Jodfaure mit der Schwefelfäure, der Salpeterfäure und der Phosphorfäure den Schluss zu ziehn, dass die erstgenannten Säuren eben so wie die letztgenannten aus einer brennbaren Grundlage mit Sauerstoff verbunden bestehen, obgleich wir jene noch nicht haben reduciren können? Oder ist es uns etwa erlaubt zu behaupten, dass wir in diesem Fache das nicht weiter erreicht haben, und dass auch unsere Nachkommen nicht auf Wegen, die uns jetzt unbekannt find. diese Reductionen werden hervorbringen können? Ich glaube, das kein philosophischer Chemiker diefer Meinung feyn wird.

g

g

V

al

fc

đi

W

fie

ur

W

le

de

ge

ſäı

WE

de

ka

ne

die

m

Was ich über die beiden streitigen Lehren von der Natur der Salzfäure, der Flussfäure und der Jodfäure gesagt habe, möchte also doch wohl hin-

reichend feyn, den unbefangenen Leser in seiner Wahl zu bestimmen. Ich habe immer zu Gunsten der älteren Lehre gesprochen. Dieses hat seinen Grund darin, dass ich glaube gezeigt zu haben, dass die neue Lehre weder mit der electrisch-chemischen Theorie, noch mit der Lehre der Verwandtschaften. noch mit der Lehre von den bestimmten Mischungs-Verhältnissen übereinstimmt. Sie passt also im Allgemeinen nicht zu dem übrigen chemischen Lehrgebäude, in fo fern man unter diesem eine Reihe, zusammenhängender Erörterungen verstehn will, von welchen keine der andern widerspricht. Wer aber keinen Grund hat, die allgemeine chemische Theorie als falsch anzusehn, muss Lehren, die mit ihr nicht übereinstimmen, als unrichtig verwerfen. Soll daher die chemische Theorie, so wie sie durch die electrisch-chemischen Entdeckungen. und durch die chemischen Proportionen nun geworden ist, bestehen, so muss die neue Lehre fallen, oder umgekehrt.

Ich werde mich fogleich von der Unrichtigkeit der älteren Lehre überzeugt bekennen, wenn irgend jemand eine Erscheinung, die Salzsäure, Flussfäure oder Jodsäure betreffend, entdecken follte, welche von dieser Lehre nicht übereinstimmend mit der übrigen chemischen Theorie erklärt werden kann; ich werde mich aber auch nicht eher für einen Anhänger der neuen Lehre erklären, als bis diese Lehre vollkommen consequent und zusammenhängend mit der neuen theoretischen Wissen-

io

B

fer

de

de

ble

nn

fer

dr

ge

Bü ihr

Sc

de

fei

gel

Dr

lie

nei

TO1

de

schaft wird geworden seyn, welche man auf den Ruinen der von ihr niedergerissenen chemischen Theorie
wird aufgebaut haben. Denn ich fordere unnachlässig von einem jeden chemischen Satze, dass er
mit der übrigen chemischen Theorie übereinstimme,
und ihr einverleibt werden könne; im emgegengesetzten Fall muss ich ihn verwersen, es sey denn,
dass die unumstößtiche Evidenz desselben eine Revolution in der mit ihm nicht passenden Theorie
nothwendig mache.

Ich Ichließe mit der Bitte an die Chemiker, dem, was ich in diesem Aussatze gesagt habe, ihre Ausmerksamkeit zu schenken. Wenn der Fehler, gegen meine Vermuthung, auf der Seite der älteren Lehre seyn sollte, so wäre es vielleicht eine nicht unverdienstliche Arbeit, wenn ein Anhänger der neuen Lehre sich die Mühe nehmen wollte, die von mir angesührten Umstände in ein besseres Licht zu setzen, und die Beweise für die Richtigkeit der neuen Lehre auf eine so klare und die Sache entscheidende Weise darzustellen, das sie Ueberzeugung nach sich ziehen.

ica mieli, mis ich i Benden, jene son room u

Saulen unteilt tracs in even Winkel gebigt en breches einen ein infehaltlichen "Higeben koget. Die bak-

Son Lagen. In sufferiellt bute, dale ich rivel und zwei-

Ueber den Wirkungskreis der trocknen electri-

ding of the Marchiger of the bitte. Daily aber eis

Prof. M. Lüdicke in Meisen.

Die electrische trockne Säule, wie ich sie zuerst verfertigt habe, ist von mir in dem diesjährigen 5. Stück der Annalen B. 56. S. 92 beschrieben worden. Seitdem habe ich eine solche Batterie aus gewalztem Zinkblech No. 18, wie es von Ihnen dazu empsohlen worden, und aus ächtem Silberpapier, dasich dazu besonders verfertigen ließ, zusammengesetzt. Den Seiten der Quadrate habe ich eine Größe von 1,2 Dresdner Zoll gegeben, damit ein ächtes Silberblatt 4 Blätter, und ein Büchelchen 100 Blätter geben konnte. Die Säule hat ihr eignes Gestelle, in welchem sie durch blauseidne Schnuren isolirt und mit Glastaseln umschlossen werden kann.

t

r

.

166

13

6 4

Um die Entfernung der Pole oder den Raum zwischen den Stecknadelknöpfen zu messen, babe ich aus
feiner Kartenpappe 12 Streisen von 4 bis 3 Linien Breite
geschnitten, deren Unterschied also 4 Decimallinie des
Dresdner Zolles beträgt. Mit Hülfe dieser Streisen
ließ sich diese Entfernung genauer finden, als bei meinen erstern Versuchen, wo ich nur den Zirkel anwenden konnte.

Dass der Wirkungskreis auch in dieser Säule nicht von der Größe der Flächen, sondern von der Menge der Lagen oder der Paare abhänge, davon überzeugte ich mich, als ich 4 Säulen, jede von 1000 Blättern oder 500 Lagen, so aufgestellt hatte, das ich zwei und zwei Säulen mittelst eines in einen Winkel gebogenen Drathes einen gemeinschaftlichen Pol geben konnte. Die Entfernung dieser Pole musste i Decimallinie seyn, damit das Pendel sich fortgesetzt bewegte; aber eben dieses leisteten auch zwei dieser Säulen, als ich die Verbindungsdräthe hinweggenommen hatte. Dass aber die Entsernungen der Pole ziemlich regelmässig mit der Menge der Lagen wachsen, welche jede Batterie enthält, scheint aus meinen mit verschiednen Säulen vielfältig angestellten Versuchen zu solgen. Ein geordneter Auszug aus diesen Versuchen wird hinreichen:

Eine mit der Erde verbundene Batterie von unachtem Gold- und Silber-Papier konnte, damit das Pendel fortgesetzt schlug, bei 450 Lagen in einer Säule, 7 Linie Entfernung, bei 500 Lagen 1 Linie, bei 750 Lagen 1,5 Linie, bei 1000 Lagen 2 Linien und bei 1250 Lagen 21 Linie Entfernung der Pole vertragen. Die Batterie aus Zink und ächtem Silberpapier mit der Erde verbunden, vertrug eine viel größere Entfernung: denn eine Säule derselben hielt nur 500 Lagen und vertrug dennoch die Entsernung von al Linie, also eben so viel als 1250 Lagen der unächten Gold- und Silber-Batterie, und war folglich bei gleich viel Lagen mit dieser letztern 24 Mal stärker. Diese beträchtliche Verschiedenheit fand sich ebenfalls, wenn die Batterien durch blaufeidne Schnuren allenthalben ifolirt, und nur unter fich an den beiden untern Blechen mittelft eines dünnen Bleches oder Drathes verbunden waren. Bei dieser Einrichtung durfte die unächte Batterie, von 1250 Lagen in einer Saule, an ihren Polen nur die Entfernung von 14 Linie haben; diese Entfernung vertrug aber anch die ifolirte Zink- und Silber-Batterie.

von 500 Lagen in einer Säule. Auch fie war also bei gleich viel Lagen 21 Mal stärker.

Rechnet man nun für den Pendelknopf 1 Linie von der jedesmaligen Entfernung der Pole ab, so ist die Hälste des Restes der Bewegungsraum des Pendels, oder der Halbmesser des Wirkungskreises. Dieser wäre also bei jenen nicht isolirten Batterien von unächtem Goldund Silber-Papier nach obiger Ordnung, von 450, 500, 750, 1000, 1250 Lagen, solgender gewesen, 0,187, 0,25, 0,5, 0,75, 0,87 Decimallinien; und bei jenen isolirten Batterien würde der Halbmesser des Wirkungskreises nur 0,1, 0,14, 0,28, 0,42 und 0,5 Decimallinien seyn. Dahingegen ist derselbe bei der Zinkund Silber-Batterie in beiden Fällen 3 Mal größer.

Es ist also auch hier, wie bei der nassen Batterie, Zink und Silber ganz vorzüglich zu empsehlen.

Diese Versuche sind in einer trocknen Oberstube an heitern und warmen Tagen angestellt worden, und unter dieser Voraussetzung können obige Angaben als näherungsweise Masse betrachtet werden.

Meissen den 27. July 1815.

IV.

Bereitung der Ochsengalle für Maler.

Wenn man Ochlengalle im stüstigen Zustande aufbebt, so fault sie bald unter unerträglichem Geruche. Ein Engländer, Herr Cathery, machte vor einigen Jahren bekannt, er besitze ein wohlseiles Versahren, sie, geschützt gegen Fäulnis und Insekten, viele Jahre lang zum Gebrauch der Maler zu erhalten, so dass sich eine kleine Tasse voll in ihren Farbenkasten setzen lasse. Den Malern mit Wasserfarben, besonders

denen, die Kupferstiche illuminiren, fey es binlänglich bekannt, wie vortheilhaft die Galle wirke, um die Farben in das Papier einzubeitzen, da ohne sie das in der Kupferdrucker-Schwarze enthaltene Oehl die Farben verhindre, fich mit Leichtigkeit zu verbreiten. Auch bedienen he fich in Waster zerrührter Ochsengalle, um von dem Papier die Fettlecke fortzubringen, welche es vom Auflegen der Hände annimmt, und um die Farben netter und lebhafter zu machen. Von der praparirten braucht man zu dem Ende nur ein Stück wie eine Erble groß in einem Etslöffel voll Waffer aufzulöfen, welches in einigen Minuten: geschehw ift. Auch von Wollenzeug nimmt die Ochlengalle Fett- und Theerflecke fehr gut weg Folgendes ift die Art fie zu bereiten. Man fammelt die Galle, sobald das Thier getödtet ift, lässt sie eine Nacht hindurch stehn, giesst sie dann vorsichtig von dem Bodensatze ab in ein irdenes Gefäs, und setzt diefes in ein Wafferbad über Feuer. Man erhält das Wasser so lange im Kochen, his die Galle eingedickt ift. and giesst he darm, um das Eindicken zu vollenden, auf einen Teller, Hat man fie möglichst Wasserfrei gemacht, so thut man sie in kleine Topfe und bindet über diele Papier, um lie gegen den Staub zu verwahren. So behält fie ihre Eigenschaften Jahre lang.

Zwei Künstler, welche sich mit dem Illuminiren botanischer Kupfersiiche beschäftigen, haben der Gesellschaft der Känste Zengnisse eingereicht, in denen sie sagen, dass sie sich der von Cathery bereiteten Ochsengalle bedient, und gefunden haben, dass sie der stüssigen weit vorzuziehn sey; sie rieche nicht, und sey im Gebrauch viel wohseller, weil sie nie verderbe. Ein anderes Zengniss eines Seesahrers sagt aus, er habe einen Topf voll präparirter Ochsengalle auf der Fregatte die Vestallm mit nach Neufundland genommen, um damit die Fettslecke aus den Kleidern auszumachen, und

fie fey immer gut geblieben.

Druckfehler. S. 240 Z. 16 setze man 1768 statt 1766; und S. 289 Z. 17 (wie auch S. 247 Z. 5 von unten, und S. 284 Z., 2 von unten) setze man den 24. statt den 25. October, — denn 1740 ist ein Schahjahr.

Angust Bruckner. del: el so: 1811.

