REDES DE COMPUTADORAS 2

Clase 2: Conceptos generales – Parte 2

Bibliografía:

Kurose y Ross. Redes de computadoras. Un enfoque descendente. 7ª Edición. Editorial Pearson. Capítulo 1.

Contenidos – Clase 2

- ¿Qué es una red de computadoras?
- ¿Qué es Internet?
- La frontera de la red
- El núcleo de la red
 - Retardos en Redes de Conmutación de Paquetes

□ Retardo de procesamiento en el nodo

- ☐ Retardo de procesamiento en el nodo
- □ Retardo de cola

- ☐ Retardo de procesamiento en el nodo
- ☐ Retardo de cola
- Retardo de transmisión

- ☐ Retardo de procesamiento en el nodo
- □ Retardo de cola
- ☐ Retardo de transmisión
- Retardo de propagación

- Retardo de procesamiento en el nodo
- > Tiempo requerido para procesar la cabecera del paquete
 - Determinación del enlace de salida.
 - Comprobación de errores de nivel de bit.
 - ❖ Es del orden del µseg o menores

Retardo de cola

Tiempo esperado en la cola hasta ser transmitidos.

Retardo de cola

- Tiempo esperado en la cola hasta ser transmitidos.
 - Depende del número de paquetes que hayan llegados antes.
 - Depende de la intensidad y la naturaleza del tráfico.

- Depende de la la Intensidad del Tráfico
 - Velocidad media a la que llegan los paquetes

a[paq/seg]

Velocidad de transmisión del enlace de salida

R[bps]

Velocidad media a la que llegan los bits a la cola

$$L \cdot a[bps]$$

Intensidad del Tráfico

$$I = \frac{L \cdot a}{R}$$

- Depende de la la Intensidad del Tráfico
- Depende de la naturaleza del tráfico

$$L \cdot a/R \cong 0$$
 \longrightarrow d_{cola} pequeño

 d_{cola} se hace grande

$$L \cdot a/R = 1$$

 d_{cola} pequeño

Retardo de cola promedio tiende a infinito!

$$L \cdot a/R \rightarrow 1$$

 d_{cola} se hace grande

$$L \cdot a/R = 1$$

Pérdidas de Paquetes

Colas de paquetes en los routers

- Cola se forman en la memoria a la entrada del router (buffer de entrada)
- Buffers de capacidad finita

Pérdidas de Paquetes

- Colas de paquetes en los routers
 - Cola se forman en la memoria a la entrada del router (buffer de entrada)
 - Buffers de capacidad finita

Si llega un paquete y la cola está llena

El paquete es descartado

Se produce la Pérdida de Paquetes

Retardo de transmisión

Tiempo necesario para trasmitir todos los bits del paquete al enlace.

Retardo de transmisión

$$d_{Transm}[seg] = \frac{L[bits]}{R[bps]}$$

R: tasa de transmisión del enlace

L: longitud del paquete.

Retardo de transmisión

$$d_{Transm}[seg] = \frac{L[bits]}{R[bps]}$$

Del orden del µseg al mseg

Retardo de propagación

Tiempo necesario para que 1 bit se propague por el medio físico.

Retardo de propagación

$$d_{Prop}[seg] = \frac{d[Km]}{s[Km/seg]}$$

d: distancia entre dos routers.

s: velocidad de propagación del medio (entre 2 · 10⁸ m/s y 3 · 10⁸ m/s)

Retardo de propagación

$$d_{Prop}[seg] = \frac{d[Km]}{s[Km/seg]}$$

Del orden del µseg a 100mseg

Retardo Nodal

Retardo total en el nodo

$$d_{nodal} = d_{proc} + d_{cola} + d_{trans} + d_{prop}$$

Retardo extremo a extremo

- > (N -1) routers entre Origen y Destino (N enlaces)
- > No hay congestión (Retardo de cola despreciable)

> Si todos los nodos tienen iguales retardos nodales:

Otra medida crítica de rendimiento de las redes de computadoras es la Tasa de transferencia terminal a terminal

- > Existen diferentes medidas de la Tasa de Transferencia:
 - Tasa de Transferencia Instantánea
 - Tasa Media de Transferencia
 - Cuello de botella

Otra medida crítica de rendimiento de las redes de computadoras es la Tasa de transferencia terminal a terminal

- > Existen diferentes medidas de la Tasa de Transferencia:
 - Tasa de Transferencia Instantánea
 - ⇒ Velocidad en cualquier instante de tiempo [bps]
 - Tasa Media de Transferencia
 - Cuello de botella

Otra medida crítica de rendimiento de las redes de computadoras es la Tasa de transferencia terminal a terminal

- > Existen diferentes medidas de la Tasa de Transferencia:
 - Tasa de Transferencia Instantánea
 - Tasa Media de Transferencia
 - ⇒ Velocidad promedio. Se calcula a partir del tiempo (T) requerido para enviar un paquete de gran tamaño (L)

$$R_{media} = L/T$$

Cuello de botella

Otra medida crítica de rendimiento de las redes de computadoras es la Tasa de transferencia terminal a terminal

- > Existen diferentes medidas de la Tasa de Transferencia:
 - Instantánea
 - Promedio
 - Cuello de botella
 - ⇒ La más pequeña de la ruta
 - ⇒ Es la que limita la transmisión
 - ⇒ Sobre todo para en transferencias servidor-cliente

Cuello de Botella

R_c: Velocidad de transmisión del cliente

R_s: Velocidad de transmisión del servidor

R_N: Velocidad de transmisión del núcleo

$$R_c$$
 y $R_s \ll R_N$

El cuello de botella es R_c o R_s

 $R_{ext-ext} \cong \min \left\{ R_c; R_s \right\}$

Cuello de Botella

10 clientes conectados al núcleo

Si bien
$$R_c$$
 y $R_s \ll R_N$

$$Si \qquad \frac{R_N}{10} << R_c \text{ o } R_s$$

El cuello de botella podría ser $R_{\scriptscriptstyle N}$

$$R_{ext-ext} \cong \min \left\{ R_c; R_s; \frac{R_N}{10} \right\}$$

