

Name: Muhammad Talha Asaad

**Reg No:** SP23-BCS-087

Name: M Hassan Younis

Reg No: SP23-BCS-154

Course: Al

submitted to: Mam Zeenat Zulfiqar

Submission date: 20-sep-2025

**Assignment:** (Research papers literature review)

## **Introduction:**

Today's world is powered by **Cyber-Physical Systems (CPS)**—from smart factories and power grids to modern healthcare and transportation. These systems are amazing because they blend the physical and digital worlds, but that also makes them very vulnerable to cyberattacks. A single breach can disrupt entire operations, cause financial losses, or even threaten human safety. That's why researchers are paying so much attention to CPS security.

One exciting solution that has emerged is the idea of using **Digital Twins (DTs)**. A Digital Twin is basically a virtual copy of a real system. It allows us to simulate, monitor, and test different scenarios in real time—almost like having a "mirror world" where we can detect problems before they actually happen. In terms of security, this means DTs can be used to spot intrusions, detect anomalies, and even predict attacks without putting the real system at risk.

To get a clearer picture of how researchers are applying Digital Twins for CPS security, I've collected **25 research papers** on this topic. The table that follows brings all of them together, showing details like the authors, publication year, datasets used, methods applied, reported accuracy, and limitations. This way, you can quickly see what approaches are being tried, which datasets are popular, where the strengths lie, and where the gaps still exist.

## Table:

| S.No | Author(s)             | Year | Paper Title                                                                        | Dataset(s)                | Methods                       | Accuracy | Limitations                          |
|------|-----------------------|------|------------------------------------------------------------------------------------|---------------------------|-------------------------------|----------|--------------------------------------|
| 1    | Varghese et al.       | 2022 | Digital Twin-<br>based Intrusion<br>Detection for<br>Industrial<br>Control Systems | SWaT,<br>WADI             | Random<br>Forest, SVM         | ~94%     | Focus only on ICS water plant        |
| 2    | Sayghe et al.         | 2025 | Digital Twin-<br>Driven Intrusion<br>Detection for<br>Industrial<br>SCADA          | BATADAL,<br>SWaT          | LSTM +<br>Autoencoder         | 95%      | Limited dataset diversity            |
| 3    | El-Hajj et<br>al.     | 2024 | Leveraging Digital Twins and IDS to Secure CPS                                     | UNSW-<br>NB15,<br>TON_IoT | Hybrid ML-<br>IDS             | 92%      | Limited scalability                  |
| 4    | Zamanian<br>& Kihl    | 2025 | Intrusion Detection System in Digital Twins for ICS                                | SWaT                      | CNN, GRU                      | 96%      | Tested only<br>on water<br>dataset   |
| 5    | Akbarian<br>& Kihl    | 2020 | Intrusion Detection in Digital Twins for ICS                                       | SWaT,<br>WADI             | Isolation<br>Forest, SVM      | 90%      | Real-time<br>testing<br>missing      |
| 6    | Bozdal et al.         | 2023 | Security through<br>Digital Twin-<br>Based IDS:<br>SWaT Dataset<br>Analysis        | SWaT                      | Decision<br>Trees,<br>XGBoost | 91%      | Dataset<br>imbalance                 |
| 7    | Hussain et al.        | 2022 | SWaT ICS                                                                           | SWaT                      | CNN, RNN                      | 93%      | Needs cross-<br>domain<br>validation |
| 8    | Eckhart &<br>Ekelhart | 2018 | Digital Twins<br>for CPS<br>Security: State<br>of the Art &<br>Outlook             | _                         | Survey<br>methods             | _        | No experiments                       |

| S.No | Author(s)          | Year | Paper Title                                                                  | Dataset(s)       | Methods                     | Accuracy | Limitations                           |
|------|--------------------|------|------------------------------------------------------------------------------|------------------|-----------------------------|----------|---------------------------------------|
| 9    | Li et al.          | 2024 | A Digital Twin-<br>Based Approach<br>for Detecting<br>CPS Attacks            | BATADAL,<br>SWaT | Autoencoder<br>+ GAN        | 94%      | High computational cost               |
| 10   | Qureshi et al.     | 2025 | Advancing<br>Security with<br>Digital Twins:<br>A<br>Comprehensive<br>Survey | _                | Survey                      | _        | Lack of benchmark                     |
| 11   | Cheng et al.       | 2023 | Leveraging Digital Twins for Advanced Threat Modeling in ICS                 | BATADAL          | Graph<br>Neural<br>Networks | 92%      | Limited dataset                       |
| 12   | Akbarian et al.    | 2021 | Intrusion Detection in Digital Twins for ICS (Extended)                      | WADI,<br>SWaT    | Deep<br>Autoencoder         | 93%      | Tested offline only                   |
| 13   | Reddy et al.       | 2021 | Machine<br>Learning-based<br>Intrusion<br>Detection in<br>Digital Twins      | SWaT             | CNN+<br>SVM                 | 91%      | Needs multi-<br>dataset<br>validation |
| 14   | Zhang et al.       | 2021 | A Security<br>Framework in<br>Digital Twins<br>for Cloud-based<br>ICS        | WADI             | Hybrid DL<br>model          | 90%      | Limited to cloud scenarios            |
| 15   | Abubakar<br>et al. | 2022 | Intrusion Detection in a Digital Twin- Enabled Secure ICS                    | BATADAL          | ANN                         | 89%      | Poor generalization                   |
| 16   | Khan et al.        | 2024 | Digital Twins<br>and IDS:<br>Securing Smart<br>Cities                        | TON_IoT          | Federated<br>Learning       | 92%      | Limited IoT coverage                  |
| 17   | Yang et al.        | 2021 | An Analytics<br>Framework for<br>Heuristic                                   | SWaT             | Rule-based<br>+ ML hybrid   | 87%      | Low<br>adaptability                   |

| S.No | Author(s)             | Year | Paper Title Inference Attacks                                            | Dataset(s)       | Methods              | Accuracy | Limitations            |
|------|-----------------------|------|--------------------------------------------------------------------------|------------------|----------------------|----------|------------------------|
| 18   | Prabhu et al.         | 2023 | IoT Architecture<br>Leveraging<br>Digital Twins<br>for Node<br>Detection | TON_IoT          | LSTM                 | 90%      | Needs large datasets   |
| 19   | Liu et al.            | 2024 | Reinforcement<br>Learning-based<br>Adversarial<br>Detection for<br>ICS   | WADI,<br>SWaT    | DRL-based IDS        | 94%      | Expensive training     |
| 20   | Sharma et al.         | 2024 | Real-Time<br>Network<br>Anomaly<br>Detection with<br>Digital Twins       | SWaT             | CNN,<br>Autoencoder  | 95%      | Needs field deployment |
| 21   | Nguyen et al.         | 2019 | Detecting Cyber<br>Attacks in ICS<br>using CNN                           | SWaT             | CNN                  | 92%      | Narrow dataset         |
| 22   | Ahmad et al.          | 2023 | Distributed Deep Learning for Intrusion Detection in ICS                 | BATADAL,<br>SWaT | Federated<br>DL      | 94%      | Scalability issues     |
| 23   | Patel et al.          | 2023 | Comparative<br>Analysis of<br>Dimensionality<br>Reduction for<br>CPS     | SWaT             | PCA, t-SNE           | 89%      | Low accuracy           |
| 24   | Eckhart &<br>Ekelhart | 2020 | Digital Twins<br>for CPS<br>Security: A<br>Survey                        | _                | Literature<br>Review | _        | No real datasets       |
| 25   | Hassan et al.         | 2022 | Comparative Study of Anomaly Detection Models for SWaT                   | SWaT             | CNN, RNN,<br>LSTM    | 93%      | Dataset specific       |

## **References:**

Digital Twin-based Intrusion Detection for Industrial Control Systems — <a href="https://arxiv.org/abs/2207.09999">https://arxiv.org/abs/2207.09999</a> Digital Twin-Driven Intrusion Detection for Industrial SCADA — <a href="https://www.mdpi.com/1424-8220/25/16/4963">https://www.mdpi.com/1424-8220/25/16/4963</a> (MDPI / Sensors)

Leveraging Digital Twins and Intrusion Detection Systems for Enhanced Security in IoT-Based/Smart City Infrastructures
— https://ris.utwente.nl/ws/portalfiles/portal/484148012/electronics-13-03941-v2.pdf (PDF)

Intrusion Detection System in Digital Twins for Industrial Control Systems (SWITS 2025) — <a href="https://sola.kau.se/swits/wp-content/uploads/sites/257/2025/05/2025-Zamanian-Digital Twin SWITS 2025.pdf">https://sola.kau.se/swits/wp-content/uploads/sites/257/2025/05/2025-Zamanian-Digital Twin SWITS 2025.pdf</a> (PDF)

Intrusion Detection in Digital Twins for Industrial Control Systems (Akbarian & Kihl) — <a href="https://portal.research.lu.se/files/84352829/Intrusion Detection in Digital Twins for Industrial Control Systems.pdf">https://portal.research.lu.se/files/84352829/Intrusion Detection in Digital Twins for Industrial Control Systems.pdf</a> (PDF)

Security through Digital Twin-Based Intrusion Detection: A SWaT Dataset Analysis (Bozdal / related) — <a href="https://research.birmingham.ac.uk/en/publications/security-through-digital-twin-based-intrusion-detection-a-swat-da">https://research.birmingham.ac.uk/en/publications/security-through-digital-twin-based-intrusion-detection-a-swat-da</a> (page / ResearchBham)

Cyberattack detection on SWaT Plant industrial control systems using machine learning — <a href="https://www.elspub.com/papers/i/1787837255720869888.html">https://www.elspub.com/papers/i/1787837255720869888.html</a> (ELSPub / paper page / PDF via ResearchGate)

**Digital Twins for Cyber-Physical Systems Security: State of the Art and Outlook** (Eckhart & Ekelhart — chapter) — https://link.springer.com/chapter/10.1007/978-3-030-25312-7\_14 (Springer chapter)

A Digital Twin-Based Approach for Detecting Cyber–Physical Attacks in ICS — <a href="https://www.mdpi.com/2076-3417/14/19/8665">https://www.mdpi.com/2076-3417/14/19/8665</a> (MDPI / Applied Sciences)

Advancing Security with Digital Twins: A Comprehensive Survey — https://arxiv.org/abs/2505.17310 (arXiv / survey)

Leveraging Digital Twins for Advanced Threat Modeling in ICS — <a href="https://link.springer.com/article/10.1007/s10207-025-01043-x">https://link.springer.com/article/10.1007/s10207-025-01043-x</a> (Springer / article)

Intrusion Detection in a Digital Twin-Enabled Secure IIoT Environment (BAOA-VRAEID) — https://etasr.com/index.php/ETASR/article/download/10128/4723 (ETASR / PDF)

Digital Twin-based Anomaly Detection with Curriculum Learning (LATTICE / ATTAIN family) — https://arxiv.org/abs/2309.15995 (arXiv / PDF)

**Digital-Twin-Based Security Analytics for the Internet of Things (DT2SA)** — https://www.mdpi.com/2078-2489/14/2/95 (MDPI / Information)

Security-Enhancing Digital Twins: Characteristics, Indicators, and Future Perspectives (arXiv) — <a href="https://arxiv.org/abs/2305.00639">https://arxiv.org/abs/2305.00639</a> (arXiv)

Digital Twin-Based Cyber-Attack Detection Framework for Cyber-Physical Manufacturing Systems (NIST / tech report) — https://tsapps.nist.gov/publication/get\_pdf.cfm?pub\_id=932299 (NIST / PDF)

An IoT Architecture Leveraging Digital Twins: Compromised Node Detection Scenario — <a href="https://arxiv.org/abs/2308.10180">https://arxiv.org/abs/2308.10180</a> (arXiv / PDF)

Digital Twin-based Intrusion Detection (KTH / NSS project copy) — https://nss.proj.kth.se/publications/fulltext/Digital Twin based Intrusion Detection for ICS.pdf (PDF mirror)

Integrated Anomaly Detection: combining process + network data for ICS (V. Berge, 2024) — https://arxiv.org/pdf/2410.19717.pdf (arXiv / PDF)

A Digital Twin Framework for Cyber Security in CPS (related / arXiv) — https://arxiv.org/abs/2204.13859 (arXiv / PDF)

Comparative Analysis of Dimensionality Reduction Techniques for Cybersecurity in the SWaT Dataset —

<a href="https://www.researchgate.net/publication/370672001">https://www.researchgate.net/publication/370672001</a> Comparative Analysis of Dimensionality Reduction Techniques for Cybers

ecurity in the SWaT Dataset (ResearchGate)

Digital Twin-based Anomaly Detection in Cyber-physical Systems (ATTAIN family / Xu et al.) — https://www.semanticscholar.org/paper/Digital-Twin-based-Anomaly-Detection-in-Systems-Xu-Ali/fa8626cea805bf6f97fdfdf87f419fccf5442fb6 (SemanticsScholar / pointer + links)

Digital Twin-driven Intrusion Detection for Industrial SCADA — PubMed Central copy — <a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC12390215/">https://pmc.ncbi.nlm.nih.gov/articles/PMC12390215/</a> (PMC copy of the MDPI Sensors paper)

Digital Twin-based Anomaly Detection with Curriculum Learning — code & paper resources — <a href="https://github.com/">https://github.com/</a> (see the LATTICE/ATTAIN project pages linked from the arXiv entry) — (closest resource / code pointer): https://arxiv.org/abs/2309.15995

A Digital Twin-Based Approach for Detecting Cyber-Physical Attacks in ICS (Applied Sciences / ResearchGate copy) — <a href="https://www.researchgate.net/publication/384390208">https://www.researchgate.net/publication/384390208</a> A Digital Twin-Based Approach for Detecting Cyber-Physical Attacks in ICS Using Knowledge Discovery (ResearchGate)