ОГЛАВЛЕНИЕ 2

Оглавление

1.	Описание использованных алгоритмов	2
2.	Ответы на контрольные вопросы	2
3.	Ответы на дополнительные вопросы	5

1. Описание использованных алгоритмов

2. Ответы на контрольные вопросы

1) Предложите разностные схемы, отличные от схемы «крест», для численного решения задачи (3.1)–(3.4).

$$u_{tt} = a^2 u_{xx}, \quad 0 < x < L, \ t > 0,$$

$$u(x,0) = f(x), \ u_t(x,0) = g(x),$$

$$u(0,t) = \varphi(t), \ u(L,t) = \psi(t).$$

Схема Дюфорта-Франкила:

$$\frac{\hat{y} - \check{y}}{2\tau} = a^2 \frac{y_{+1} - \hat{y_i} - \check{y_i} + y_{-1}}{h^2}$$

Неявная устойчивая схема:

$$\frac{\hat{y} - y}{\tau} = a^2 \frac{\hat{y}_{+1} - 2\hat{y} + \hat{y}_{+1}}{h^2}$$

Неявная абсолютно устойчивая схема:

$$\frac{\hat{y} - 2y + \check{y}}{\tau^2} = a^2 \frac{\check{y}_{+1} - 2\check{y} + \check{y}_{-1}}{2h^2}$$

2) Постройте разностную схему с весами для уравнения колебаний струны. Является ли такая схема устойчивой и монотонной?

$$y_{\bar{t}t} = a^2 (\sigma \hat{y}_{\bar{x}x} + (1 - 2\sigma) y_{\bar{x}x} + \sigma \check{y}_{\bar{x}x})$$
$$\frac{\hat{y} - 2y + \check{y}}{\tau^2} = a^2 \left(\sigma \frac{\hat{y}_{+1} - \hat{y} + \hat{y}_{-1}}{h^2} + (1 - 2\sigma) \frac{y_{+1} - 2y + y_{-1}}{h^2} + \sigma \frac{\check{y}_{+1} - 2\check{y} + \check{y}_{-1}}{h^2} \right)$$

Для проверки схемы на устойчивость введем замену $y_i^j = \rho^j e^{i \tilde{i} \varphi}$. Разделим обе части на $\rho^{j-1} e^{i \tilde{i} \varphi}$.

$$\frac{\rho^2 - 2\rho + 1}{\tau^2} = \frac{a^2}{h^2} \left(e^{\tilde{i}\varphi} - 2 + e^{\tilde{i}\varphi}\right) \left(\sigma\rho^2 + (1 - 2\sigma)\rho + \sigma\right)$$
$$\rho^2 - 2\rho + 1 = -4\left(\frac{a\tau}{h}\right)^2 \sin^2\frac{\varphi}{2} \left(\sigma\rho^2 + (1 - 2\sigma)\rho + \sigma\right),$$

$$\rho^2 - 2\frac{1 - 2\left(\frac{a\tau}{h}\right)^2 \sin^2\frac{\varphi}{2}(1 - 2\sigma)}{1 + 4\sigma\left(\frac{a\tau}{h}\right)^2 \sin^2\frac{\varphi}{2}}\rho + 1 = 0.$$

 $\rho_1 \cdot \rho_2 = 1 \Rightarrow \rho \leq 1 \Leftrightarrow |\rho_1| = |\rho_2| = 1 \Rightarrow$ необходимо получить комплексно сопряженные корни $\Rightarrow D \leq 1$.

$$\left| \frac{1 - 2\left(\frac{a\tau}{h}\right)^2 \sin^2\frac{\varphi}{2}(1 - 2\sigma)}{1 + 4\sigma\left(\frac{a\tau}{h}\right)^2 \sin^2\frac{\varphi}{2}} \right| \le 1,$$

$$-1 - 8\sigma\left(\frac{a\tau}{h}\right)^2 \sin^2\frac{\varphi}{2} \le 1 - 2\left(\frac{a\tau}{h}\right)^2 \sin^2\frac{\varphi}{2} \le 1.$$

Левое неравенство:

$$2 - 2(1 - 4\sigma) \left(\frac{a\tau}{h}\right)^2 \sin^2 \frac{\varphi}{2} \ge 0,$$

$$\sigma \ge \frac{1}{4} - \frac{h^2}{4a^2\tau^2 \sin^2 \frac{\varphi}{2}}.$$

Правое неравенство верно для любого σ по лучшей:

$$\sigma \ge \frac{1}{4} - \frac{h^2}{4a^2\tau^2}.$$

$$\sigma \geq \frac{1}{4}$$
 — безусловная устойчивость,

$$\sigma < \frac{1}{4}$$
 — условная устойчивость при $a\tau \leq \frac{h}{\sqrt{1-4\sigma}}.$

Проверим схему на монотонность.

$$\frac{\hat{y} - 2y + \check{y}}{\tau^2} = a^2 \left(\sigma \frac{\hat{y}_{+1} - \hat{y} + \hat{y}_{-1}}{h^2} + (1 - 2\sigma) \frac{y_{+1} - 2y + y_{-1}}{h^2} + \sigma \frac{\check{y}_{+1} - 2\check{y} + \check{y}_{-1}}{h^2} \right)$$

Канонический вид:

$$\left(\frac{1}{\tau^2} + \frac{2a^2\sigma}{h^2}\right)\hat{y} = a^2\sigma \frac{\hat{y}_{+1} + \hat{y}_{-1}}{h^2} + a^2(1 - 2\sigma)\left(\frac{y_{+1} + y_{-1}}{h^2} + 2\left(-\frac{1}{h^2} + \frac{1}{\tau^2}\right)y\right) + a^2\sigma\left(\frac{\check{y}_{+1} + \check{y}_{-1}}{h^2} + 2\left(-\frac{1}{h^2} + \frac{1}{\tau^2}\right)\check{y}\right)$$

При \check{y} и y имеем отрицательные коэффициенты, следовательно условие положительности коэффициентов не соблюдается, следовательно схема не является монотонной.

3) Предложите способ контроля точности полученного решения.

Пусть численная схема имеет p-й порядок сходимости по пространству и q-й по времени, т.е. верно следующее выражение:

$$u(x_i, t_i) = y_i^j + O(h^p + \tau^q).$$

Теперь распишем $O(h^p + \tau^q)$ более подробно:

$$u(x_i, t_j) = y_i^j + C_x(x, t)h^p + C_t(x, t)\tau^q + O(h^{p+1} + \tau^{q+1}),$$

где C_x и C_t — некоторые непрерывные функции, которые в общем случае являются вектор-функциями (если u — вектор-функция). В дальнейшем для простоты будем опускать их аргументы.

Далее сгущаем сетку в r_x раз по пространству и в r_t раз по времени. Тогда получаем, что

$$u(x_{r_x i}, t_{r_t j}) = y_{r_x i}^{r_t j} + C_x \left(\frac{h}{r_x}\right)^p + C_t \left(\frac{\tau}{r_t}\right)^q + O\left(\left(\frac{h}{r_x}\right)^{p+1} + \left(\frac{\tau}{r_t}\right)^{q+1}\right),$$

где под $(r_x i, r_t j)$ понимается номер узла сгущенной сетки, координаты которого совпадают с координатами узла, имеющего номер (i, j), исходной сетки. Таким образом, $u(x_{r_x i}, t_{r_t j}) = u(x_i, t_j)$. Однако это неверно для $y_{r_x i}^{r_t j}$ и y_i^j .

Для того, чтобы теперь получить оценку погрешности, потребуем выполнения

$$r_x^p = r_t^q.$$

Данное условие называется условием согласования коэффициентов сгущения по времени и пространству.

Введем следующее обозначение, описывающее искомую оценку погрешности на сгущенной сетке:

$$R(x,t) = C_x \left(\frac{h}{r_x}\right)^p + C_t \left(\frac{\tau}{r_t}\right)^q$$

Приходим к системе, через которую можно выразить R путем вычитания одной из другой:

$$\begin{cases} u(x_i, t_j) = y_i^j + r_x^p R + O(h^{p+1} + \tau^{q+1}), \\ u(x_i, t_j) = y_{r_x}^i + R + O(h^{p+1} + \tau^{q+1}) \end{cases} \Rightarrow y_{r_x}^i - y_i^j \approx (r_x^p - 1)R \Rightarrow R \approx \frac{y_{r_x}^i - y_i^j}{r_x^p - 1}.$$

Таким образом, если для некоторой заданной точности ε получили, что $R \ge \varepsilon$, то следует дробить сетку до тех пор, пока данное выражение не станет ложным. В качестве итогового ответа можно взять решение на последней сетке.

4) Приведите пример трехслойной схемы для уравнения теп- лопроводности. Как реализовать вычисления по такой раз- ностной схеме? Является ли эта схема устойчивой?

Трехслойная схема Ричардсона:

$$y_{\downarrow} = a^2 y_{x\bar{x}}$$

Исследуем схему на устойчивость, применяя метод гармоник, получим:

$$\rho^2+8\rho\gamma\sin^2\frac{\varphi}{2}-1=0;$$

$$D>0\Rightarrow\rho_1,\rho_2\in\mathbb{R}\Rightarrow\rho_1\cdot\rho_2=-1;$$

$$\rho_1=-\frac{1}{\rho_2}\Rightarrow\exists\;|\rho|>1\Rightarrow$$
 схема безусловно неустойчива.

$$\psi_h = O(\tau^2 + h^2)$$

Схема Дюфорта-Франкила:

$$\frac{\hat{y} - \check{y}}{2\tau} = a^2 \frac{y_{+1} - \hat{y}_i - \check{y}_i + y_{-1}}{h^2}$$

Также применяя метод гармоник, получим:

$$\rho_{1,2} = \frac{2\gamma\cos\varphi \pm \sqrt{1 - 4\gamma^2\sin^2\varphi}}{1 + 2\gamma}.$$

Оценивая модуль значения ρ , получим:

$$|\rho| \le \frac{|2\gamma\cos\varphi| + |\sqrt{1 - 4\gamma^2\sin^2\varphi}|}{|1 + 2\gamma|} \le \frac{|2\gamma| + 1}{|1 + 2\gamma|} \le 1.$$

 \Rightarrow схема безусловно устойчива, однако имеет условную аппроксимацию при $\frac{\tau}{h}\to 0$:

$$\psi_n = O(h^2 + \tau^2 + \frac{\tau^2}{h^2})$$

.

3. Ответы на дополнительные вопросы

1) Как можно определить тип уравнения по его общему виду? Перечислить явные схемы для гиперболических уравнений и их преимущества перед неявными.

Рассмотрим уравение второго порядка с двумя независимыми переменными

$$a_{11}u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy} + F(x, y, u, u_x, u_y) = 0$$

Пусть
$$\triangle = a_{12}^2 - a_{11}a_{22}$$

Если $\Delta>0$, то уравнение имеет гиперболический тип, $\Delta<0$ — эллиптический тип, $\Delta=0$ — параболический тип.

Явные схемы решения гиперболических уравнений

1. Явная схема с правой разностью

$$y_t + cy_x = 0$$

2. Явная схема с центральной разностью

$$y_t + cy_{\hat{x}} = 0$$

3. Явная схема с левой разностью

$$y_t + cy_{\bar{x}} = 0$$

Явные схемы не требуют решения системы уравнений на каждом шаге, быстрее на каждом временном шаге, используют меньше памяти и показывают лучше результаты при решении задач с большими сетками.

2) При каких условиях схема "крест"является монотонной?

$$\frac{\hat{y} - 2y + \check{y}}{\tau^2} = a^2 \frac{y_{+1} - 2y + y_{-1}}{h^2}$$

Для исследования монотонности схемы приведем ее к каноническому виду

$$\frac{1}{\tau^2}\hat{y} = 2\left(\frac{1}{\tau^2} - \frac{a^2}{\tau^2}\right)y - \frac{1}{\tau^2}\dot{y} + \frac{a^2}{h^2}y_{+1} + \frac{a^2}{h^2}y_{-1}$$

Схема не является монотонной из-за отрицательного коэфициента $-\frac{1}{\tau^2}$ при \check{y}

3) Устойчивость схемы "крест" через гармоники

Запишем разностную схему "крест"

$$\frac{\hat{y} - 2y + \check{y}}{\tau^2} = a^2 \frac{y_{+1} - 2y + y_{-1}}{h^2}$$

Введем две замены:
$$\gamma = \frac{\tau a}{h}, \ y_i^j = \rho^j e^{i\tilde{i}\varphi}$$

$$\rho^{j+1} e^{i\tilde{i}\varphi} - 2\rho^j e^{i\tilde{i}\varphi} + \rho^{j-1} = \gamma^2 (\rho^j e^{(i-1)\tilde{i}\varphi} - 2\rho^j e^{i\tilde{i}\varphi} + \rho^j e^{(i-1)\tilde{i}\varphi})$$

$$\rho^2 - 2\rho + 1 = \gamma^2 \rho (e^{-\tilde{i}\varphi} - 2 + e^{\tilde{i}\varphi})$$

$$\rho^2 - 2\rho + 1 = \gamma^2 \rho (2\cos\varphi - 2)$$

$$\rho^2 + 2\left(2\left(\gamma\sin\frac{\varphi}{2}\right)^2 - 1\right)\rho + 1 = 0$$

По теореме Виета произведение корней уравнения $\rho^{(1)}\rho^{(2)}=1$. Значит, условие устойчивости $|\rho| \leq 1$ может быть выполнено, если $|\rho^{(1)}| = |\rho^{(2)}| = 1$. Для уравнения с действительными коэффициентами это означает, что корни являются комплексно сопряженными, для этого дискриминант уравнения должен быть неположительным, что равносильно справедливости неравенства

$$\left| 2\left(\gamma\sin\frac{\varphi}{2}\right)^2 - 1 \right| \le 1$$

Чтобы это условие выполнялось для любых гармоник, необходимо и достаточно соблюдения условия Куранта:

$$\left|\frac{\tau a}{h}\right| \le 1$$

Таким образом, схема "крест" условно устойчива.