Geração de Mapas Dinâmicos para Monitorizar a Evolução Temporal da Temperatura de uma Escombreira de Carvão em Autocombustão

Lia Duarte, José Alberto Gonçalves (jagoncal@fc.up.pt)

Ana Cláudia Teodoro, Joana Ribeiro, Deolinda Flores

Dep. de Geociências, Ambiente e Ordenamento do Território

Sumário

- Projeto ECOAL
- Descrição do problema
- Componente espacial
- Processamento preparatório de dados
- Geração de grelhas de temperatura por interpolação
- Fluxo de processamento automático de dados
- Análises espaciais e temporais

• Principal objetivo é a monitorização da escombreira de resíduos de carvão em autocombustão em S. Pedro da Cova (Gondomar).

- Incluiu o desenvolvimento de uma ferramenta tecnológica, com base em sensores de fibra ótica, para medir remotamente parâmetros associados ao processo de combustão da escombreira (por exemplo a temperatura).
- Monitorização realizada de forma contínua e <u>distribuída no</u> <u>espaço</u>, contribuindo para a identificação dos riscos associados, para a previsão da dinâmica da autocombustão, assim como para o estabelecimento de prováveis <u>cenários</u> <u>evolutivos</u>.
- Pretende-se selecionar ações corretivas adequadas, que contribuam para a minimização do impacto negativo.

• Escombreira de S. Pedro da Cova (Gondomar)

Área da imagem: 15 ha

Escombreira de S. Pedro da Cova (Gondomar)

• Escombreira de S. Pedro da Cova (Gondomar)

• Sondas espaçadas de 20 cm. Recolhem dados de temperatura.

• Algumas sondas encontram-se assinaladas com estacas numeradas.

• Algumas sondas encontram-se assinaladas com estacas numeradas.

 Exigência de posicionamento rigoroso das sondas. Levantamento das estacas com GNSS RTK (precisão 2 a 3 cm).

Preparação de dados

- Conhecemos as posições das sondas com estaca e a localização do tubo, que passa nas estacas, e está estendido em troços retos e curvas aproximadamente circulares.
- As sondas estão igualmente espaçadas.

₽	ESTACA	DIST (m)	M (m)	P (m)	
1333	36	270.00	-31044.03	165414.32	
1334		270.20			
1335		270.40			
1375		278.51			
1376		278.71			
1377	35	278.92	-31036.35	165409.89	
1378		279.12			
1379		279.32			
1602		324.52			
1603		324.73			
1604	34	324.93	-31038.81	165407.63	
1605		325.13			
1606		325.33			

Preparação de dados

- Cada sonda tem uma distância à origem do tubo (DIST). Calculamos as posições de todas as sondas.
- Ficamos a dispor assim de uma shapefile com todas as sondas, identificadas por um ID.

ID	ESTACA	DIST (m)	M (m)	P (m)	
1333	36	270.00	-31044.03	165414.32	
1334		270.20	-31043.86	165414.22	
1335		270.40	-31043.68	165414.12	
		••••	••••	••••	
1375		278.51	-31036.70	165410.09	
1376		278.71	-31036.52	165409.99	
1377	35	278.92	-31036.35	165409.89	
1378		279.12	-31036.18	165409.77	
1379		279.32	-31036.01	165409.66	
1602		324.52	-31038.47	165407.40	
1603		324.73	-31038.64	165407.52	
1604	34	324.93	-31038.81	165407.63	
1605		325.13	-31038.98	165407.76	
1606		325.33	-31039.16	165407.88	

Dados fornecidos pelas sondas

- Ficheiro de texto com ID das sondas e dados de temperatura em diferentes instantes.
- JOIN desta tabela com a shapefile das cordenadas das sondas.
- A partir deste momento posso fazer interpolação espacial para gerar uma grelha de temperaturas para cada instante de dados.

ID	DIST	TEMP1	TEMP2	TEMP3	••••
1333	270.00	69.64	74.09	75.21	
1334	270.20	70.08	74.90	75.68	
1335	270.40	70.28	75.63	76.13	
1375	278.51	48.94	48.58	48.84	
1376	278.71	48.65	48.04	48.53	
1377	278.92	48.39	47.81	47.96	
1378	279.12	47.18	47.01	47.46	
1379	279.32	46.79	46.15	46.75	
1602	324.52	44.40	44.06	43.52	
1603	324.73	44.49	44.17	43.68	
1604	324.93	44.27	43.79	43.52	
1605	325.13	43.71	43.38	42.15	
1606	325.33	42.41	42.72	41.99	
••••	••••	••••		••••	••••

Dados fornecidos pelas sondas

Gráfico de temperatura em função da distância à origem.

• Gráfico de temperatura em função do tempo.

Dados espaciais de sondas com temperaturas

• Grande irregularidade da amostragem.

20 cm de distância entre sondas ao longo do tudo, cerca de 2 m entre linhas)

Dados espaciais de sondas com temperaturas

• Grande irregularidade da amostragem.

20 cm de distância entre sondas ao longo do tubo, cerca de 2 m entre linhas.

• Substituição pelo ponto médio de cada 10 pontos consecutivos.

Substituição das 10 temperaturas pelo valor da MEDIANA (ou eventualmente MÉDIA)

Pontos que entram no processo de interpolação

Definição do limite da área de interesse

Interpolação por kriging ordinário (Grass ou SAGA)

Alguns exemplos para diferentes épocas

Desenvolvimento de um Plugin

- Possui as shapefiles das sondas e do limite.
- Recebe ficheiro com dados de temperatura de um dado instante.
- Faz JOIN com a shapefile pelo campo ID.
- Cria nova shapefile:
 - Posição média de agrupamento de N pontos consecutivos (N escolhido pelo utilizador).
 - Valores de temperatura calculados por média ou mediana (escolha do utilizador).
- Geração de ficheiro raster:
 - Normalmente através de kriging (outros métodos poderão ser considerados).
 - Formato Geotiff, Float, pixel de 1 metro (ajustável pelo utilizador).
 - Restrição da grelha ao polígono de limite da área.
- Possibilidade de processamento de dados de várias épocas gerando igual número de rasters.

Possibilidades de análise

- Montagem de vídeo ao longo do tempo.
- Agrupamento de vários ficheiros raster, por exemplo para cálculo de médias diárias.
- Análise estatística ao longo do dia.
- Fixação de um ponto e criação de gráfico ao longo do tempo para esse ponto.

Conclusões

- Desenvolveu-se uma ferramenta SIG para tratamento de dados recolhidos com fibra ótica, para monitorização de uma escombreira em autocombustão.
- QGIS fornece todas as funcionalidades para o tratamento de dados conducente à elaboração de mapas de temperatura na escombreira.
- Plugin desenvolvido permite agilizar a produção de mapas individuais, para um dado instante, ou grande número de mapas para vários ficheiros recebidos.
- Possibilidade de geração de novas ferramentas de análise, quer espacial, quer temporal, dos dados de forma a permitir um melhor conhecimento da dinâmica da escombreira.
- Possibilidade de implementar futuramente processamento em tempo real, com geração de alertas em caso de deteção de variações anormais.

Lia Duarte liaduarte@fc.up.pt