Zsigmondy's Theorem

Bart Michels

February 4, 2014*

Zsigmondy's theorem is a by few known theorem that often proves useful in various number theory problems. In this article we give an elementary proof of Zsigmondy's theorem.

Zsigmondy's theorem. Let $a, b \in \mathbb{N}$ such that gcd(a, b) = 1 and $n \in \mathbb{N}$, n > 1. There exists a prime divisor of $a^n - b^n$ that does not divide $a^k - b^k$ for all $k \in \{1, 2, \dots, n-1\}$, except in the following cases:

- $2^6 1^6$,
- n = 2 and a + b is a power of 2.

Such a prime divisor is called a *primitive prime divisor of* $a^n - b^n$. Note that 2 can never be a primitive prime divisor.

The theorem was discovered by Zsigmondy in 1892 and independently rediscovered by Birkhoff and Vandiver in 1904. The special case where b=1 was discovered earlier by Bang in 1886.

The proof we present is mainly a reformulation of Birkhoff and Vandivers proof, which was published in 1904, see [1]. [1, Theorem 1] is nowadays, among Olympiad enthousiasts, known as a case of the Lifting The Exponent Lemma. Here we present this Lemma as Lemma 5, for a proof we refer to [4]. We give a shorter proof of [1, Theorem 5], using some properties of cyclotomic polynomials. The most important properties are restated here, a more detailed version with proofs is to be found in [2]. Case 3 in the third part of the proof given here is a generalisation of its source of inspiration, namely [3, Key Lemma].

1 Prerequisites

Before proving the main theorem we present some elementary properties of cyclotomic polynomials. The proofs can be found in [2].

Let $\Phi_n(x)$ denote the *n*-th cyclotomic polynomial.

Theorem 1. Let p be a prime number. If the polynomial $x^n - 1$ has a double root modulo p, that is, there exists an integer a and a polynomial $f(x) \in \mathbb{Z}[x]$ for which

$$x^n - 1 \equiv (x - a)^2 f(x) \pmod{p},$$

then $p \mid n$.

^{*}Modified december 1st, 2014

Theorem 2. If n is a positive integer, then

$$x^n - 1 = \prod_{d|n} \Phi_d(x) \tag{1}$$

and

$$\Phi_n(x) = \prod_{d|n} (x^{\frac{n}{d}} - 1)^{\mu(d)}.$$
 (2)

Here a negative exponent in the right hand side of (2) has to be interpreted as a division of polynomials.

Theorem 3. Let p be a prime number and n, k be positive integers. Then

$$\Phi_{p^k n}(x) = \begin{cases} \Phi_n(x^{p^k}) & \text{if } p \mid n \\ \frac{\Phi_n(x^{p^k})}{\Phi_n(x^{p^{k-1}})} & \text{if } p \nmid n. \end{cases}$$

In particular we have that $\Phi_{p^k n}(a) \mid \Phi_n(a^{p^k})$ for all $a \in \mathbb{Z}$.

Theorem 4. Let n be a positive integer and a be any integer. Then every prime divisor p of $\Phi_n(a)$ either satisfies $p \equiv 1 \pmod{n}$ or $p \mid n$.

There are three more Lemmas that will be useful.

Lemma 5. Let x and y be integers, let n be a positive integer, and let p be an odd prime such that $p \mid x - y$ and none of x and y is divisible by p. Then

$$v_p(x^n - y^n) = v_p(x - y) + v_p(n).$$

Here $v_p(a)$ denotes the highest integer exponent k such that $p^k \mid a$. We also write $p^k \parallel a$. We will refer to this as the *Lifting The Exponent Lemma*.

Lemma 6. Let p be prime, $n = p^{\alpha}q \in \mathbb{Z}$ such that $p \nmid q$. The integer zeroes of Φ_n modulo p have order q modulo p.

Proof.

From $p \mid \Phi_n(a)$ we certainly have $p \mid a^n - 1 \equiv a^q - 1$, so $k = \operatorname{ord}_p(a)$ exists and $k \mid q$. Because (theorem 3) $\Phi_n(a) \mid \Phi_q(a^{p^{\alpha}}) \equiv \Phi_q(a) \pmod{p}$ we have that $p \mid \Phi_q(a)$. If k < q there would be a divisor $d \mid k$ for which $p \mid \Phi_d(a)$ (a consequence of (1)). As $d \mid q$ and d < q this means the polynomial $x^q - 1 = \prod_{r \mid q} \Phi_r(x)$ has a double root, a, modulo p due to a factor $\Phi_d(x)\Phi_q(x)$. From theorem 1 we would obtain that $p \mid q$, which is impossible. Therefore k = q.

Lemma 7. If n is a positive integer and x > 1 is a real number, then

$$(x-1)^{\varphi(n)} \leqslant \Phi_n(x) < (x+1)^{\varphi(n)},$$

where the first inequality becomes an equality only if n = 2.

Proof.

From the triangle inequality for complex numbers we have $x-1 \leq |x-\zeta| \leq x+1$ for any complex number ζ with $|\zeta|=1$. The first inequality is strict unless $\zeta=1$, and the second is strict unless $\zeta = -1$. Applying this we obtain

$$(x-1)^{\varphi(n)} \leqslant \prod_{\substack{\zeta^n = 1 \\ \operatorname{ord}(\zeta) = n}} |x - \zeta| < (x+1)^{\varphi(n)},$$

with equality only if $\varphi(n) = 1$, that is, n = 2. Note that the second inequality is always strict, because |x-1| < |x+1|. The product in the middle is, by definition $|\Phi_n(x)|$. If x>1 then from (2) we have $\Phi_n(x)>0$, hence $|\Phi_n(x)|=\Phi_n(x)$.

We are ready to prove Zsigmondy's theorem.

2 Proof of Zsigmondy's theorem

Fix two coprime positive integers a and b with a > b.

It is sufficient to prove that $a^n - b^n$ has a prime divisor that does not divide $a^k - b^k$ for all positive divisors $k \mid n$. Indeed, if $p \mid a^n - b^n$, c is an inverse of b modulo p and k is the smallest integer such that $p \mid a^k - b^k$, then $k = \operatorname{ord}_n(ac)$ has to be a divisor of n, as $(ac)^n \equiv 1 \pmod{p}$.

1. Connection to cyclotomic polynomials

We define $z_n = a^n - b^n$ and

$$\Psi_n = \prod_{d|n} z_{\frac{n}{d}}^{\mu(d)}.$$
 (3)

Because $z_n = b^n \left(\left(\frac{a}{b} \right)^n - 1 \right)$, from (1) and (2) we have that

$$\Psi_n = b^{\varphi(n)} \Phi_n \left(\frac{a}{b}\right) \tag{4}$$

and

$$z_n = \prod_{d|n} \Psi_d. \tag{5}$$

If $z_n = p_1^{a_1} \cdots p_r^{a_r}$ where p_{s_1}, \dots, p_{s_t} are the primitive prime divisors of z_n , we set

$$P_n = p_{s_1}^{a_{s_1}} \cdots p_{s_t}^{a_{s_t}}.$$

From (4) we have $\Psi_n \in \mathbb{Z}$ and from (3) it follows that $P_n \mid \Psi_n$, because the only z_k for which $gcd(P_n, z_k) > 1$ is z_n , by definition of P_n . Let $\Psi_n = \lambda_n P_n$. We will prove that $P_n > 1$ in the cases Zsigmondy's theorem does not exclude.

2. An upper bound on λ_n

From (5) it follows that $\Psi_n \mid \frac{z_n}{z_d}$ for every positive divisor $d \mid n$ with d < n. Note that $\gcd(\lambda_n, P_n) = 1$, because $\lambda_n P_n = \Psi_n \mid z_n$ and by definition P_n contains all primitive divisors of z_n , so λ_n can not be a multiple of a prime which divides P_n .

Let p be a prime divisor of Ψ_n such that $p \mid \lambda_n$, so p is not primitive. We will prove that $p \mid n$. Let d < n such that $p \mid z_d$.

If p=2, then from theorem 4 we have $2 \mid n$, at least if n>1. Suppose p is odd. If $p \nmid n$ then by the Lifting The Exponent Lemma, $v_p(z_n) = v_p(z_d)$ so $p \nmid \frac{z_n}{z_d}$, a contradiction to $\Psi_n \mid \frac{z_n}{z_d}$. Hence $\operatorname{rad}(\lambda_n) \mid n$.

Suppose $\lambda_n > 1$. If p is a prime divisor of λ_n with $p^{\alpha} \parallel n$ and $n = p^{\alpha}q$, then from theorem 3 we have

$$p \mid \Psi_n \mid \Psi_q(a^{p^{\alpha}}, b^{p^{\alpha}}) \equiv \Psi_q \pmod{p},$$

where more generally we denote

$$\Psi_n(x,y) = y^{\varphi(n)} \Phi_n\left(\frac{x}{y}\right).$$

This means if p is a prime divisor of λ_n , then $p \mid \Psi_q$. From theorem 4 we obtain that $p \equiv 1 \pmod{q}$, because $p \nmid q$ by our assumption. So $p > q = \frac{n}{n^{\alpha}}$.

If r is another prime divisor of n, then $r \mid q$, so $r \leqslant q < p$. This means p is uniquely determined as the largest prime divisor of n.

Therefore, set $\lambda_n = p^{\beta}$. We will prove that $\beta = 1$ if n > 2, and treat the case n = 2 separately.

If n = 2, $a^2 - b^2$ obviously has a primitive prime divisor (any odd prime dividing a + b) unless a + b is a power of 2, an exception mentioned in the theorem.

If p=2 we have that n is a power of 2. Then $\Psi_n=a^{\frac{n}{2}}+b^{\frac{n}{2}}$, a and b odd. Modulo 4 this is congruent to 2, which implies $\beta=1$.

Suppose p > 2. Let $d \mid n$ such that $p \mid z_d$. Let c be an inverse of b modulo p, then $p \mid \Psi_n$ and thus $p \mid \Phi(ac)$, so by lemma 6, $\operatorname{ord}_p(ac) = q$. So certainly we should have $q \mid d$.

Now from (3) we have $\beta = v_p(\Psi_n) = v_p(z_n) - v_p(z_{\frac{n}{p}})$, because the only factors that do not vanish due to the exponent $\mu(d)$ and contain a factor p are z_n and $z_{\frac{n}{p}}$. By the Lifting The Exponent Lemma, $\beta = 1$.

3. A lower bound on P_n

In this part of the proof we exploit the result of Lemma 7. We consider three cases.

Case 1: $\lambda_n = 1$

If $\lambda_n = 1$, then $P_n = \Psi_n \geqslant (a-b)^{\varphi(n)} \geqslant 1$. The inequality is strict unless n=2 and a-b=1, but then Zsigmondy's theorem is trivially true.

Case 2: $\lambda_n = p$ and a - b > 1

In this case $P_n = \frac{1}{p}\Psi_n \geqslant \frac{1}{p}(a-b)^{\varphi(n)} \geqslant \frac{2^{p-1}}{p} \geqslant 1$. Again the inequality is strict unless a-b=2 and n=2, which has already been treated.

Case 3: $\lambda_n = p$ and a - b = 1

Suppose the inequality $P_n \ge 1$ is not strict, so $\Psi_n = p$. This will eventually give us the only counterexample that's left, being n = 6, a = 2.

From $p \mid z_n$ it follows that p is odd. Let $n = p^{\alpha}q$.

If $\alpha > 1$, then $p = \Psi_n = \Psi_{pq}(a^{p^{\alpha-1}}, b^{p^{\alpha-1}})$, but

$$\Psi_{pq}(a^{p^{\alpha-1}}, b^{p^{\alpha-1}}) \geqslant (a^{p^{\alpha-1}} - b^{p^{\alpha-1}})^{\varphi(pq)} \geqslant a^p - b^p = \sum_{k=0}^{p-1} \binom{p}{k} b^k > p,$$

because p > 2, contradiction. Hence n = pq. Now we have

$$p = \Psi_n = \frac{\Psi_q(a^p, b^p)}{\Psi_q} \geqslant \frac{(a^p - b^p)^{\varphi(q)}}{(a+b)^{\varphi(q)}} \geqslant \frac{a^p - b^p}{a+b} \geqslant \frac{(2^p - 1)b}{2b+1} \geqslant \frac{2^p - 1}{3}.$$

This is impossible when p > 3, so p = 3. Since q < p the only cases to consider are n = 3 and n = 6.

If n=3 the theorem is obviously true because $a^3-b^3=(a-b)(a^2+ab+b^2)$ and a-b=1. The case n=6 remains, and indeed Zsigmondy fails here. From $3=\Psi_6=a^2-ab+b^2$ we easily deduce that a=2 and b=a-1=1.

3 Applications

In this section we present some elementary applications of Zsigmondy's theorem. We start with a similar theorem for sums of nth powers.

Zsigmondy's theorem for sums. Let $a, b \in \mathbb{N}$ such that gcd(a, b) = 1 and $n \in \mathbb{N}$, n > 1. There exists a prime divisor of $a^n + b^n$ that does not divide $a^k + b^k$ for all $k \in \{1, 2, ..., n-1\}$, except for the case $2^3 + 1^3$. Proof.

This is an immediate consequence of Zsigmondy's theorem. For any positive integer n > 1 for which 2n does not give an exception on Zsigmondy's theorem, $a^{2n} - b^{2n}$ has a primitive prime divisor p, dividing $a^n - b^n$ or $a^n + b^n$.

Because p is primitive, p does not divide $a^n - b^n$. Thus $p \mid a^n + b^n$ and $p \nmid a^{2k} - b^{2k}$ for all k < n. This implies that $p \nmid a^k + b^k$ for all k < n.

Note that the exception $2^6 - 1^6$ is reflected in $2^3 + 1^3$. The case n = 2 and a + b a power of 2 disappears because we only consider n > 1 here.

We give a few examples where Zsigmondy's theorem can be used.

Example 1. Find all positive integers a, n > 1 and k for which $3^k - 1 = a^n$.

Solution.

Because -1 is not a quadratic residue modulo 3, we have that n is odd. From $a+1 \mid a^n+1$ we have that $3 \mid a+1$. If $a \neq 2$ or $n \neq 3$, a^n+1 has a prime divisor different from 3, which means a^n+1 cannot be a power of 3.

The only remaining case is a=2 and n=3, giving the only solution (a,n,k)=(2,3,2).

Example 2. (IMO Shortlist 2002) Let $p_1, p_2, ..., p_n$ be distinct primes greater than 3. Show that $2^{p_1p_2...p_n} + 1$ has at least 4^n divisors.

Solution.

Let $a = p_1 p_2 \cdots p_n$ and $b = 2^a + 1$. It is sufficient to prove that b has at least 2n prime divisors. This is indeed true, because Zsigmondy's theorem for sums says that as $3 \nmid a$, $2^d + 1$ introduces a new prime for every divisor $d \mid a$. As a has 2^n divisors, b has at least 2^n prime divisors, which is much bigger than the required 2n.

In fact, we have the following general result:

Theorem 8. Let a, b, n be positive integers such that $3 \nmid n$ and gcd(a, b) = 1. Then $\tau(a^n + b^n) \ge 2^{\tau(n)}$. If n is odd and a - b > 1, then $\tau(a^n - b^n) \ge 2^{\tau(n)}$.

Here τ counts the number of positive divisors. The proof is analoguous to the solution of example 2. The conditions for the inequalites can be weakened by studying in which cases $a^d \pm b^d$ does not contain a primitive prime divisor, for some $d \mid n$.

References

- [1] G.D. Birkhoff, H.S. Vandiver, On the Integral Divisors of $a^n b^n$, 1904, http://www.jstor.org/stable/info/2007263
- [2] Y. Ge, Elementary Properties of Cyclotomic Polynomials, http://www.yimin-ge.com/doc/cyclotomic_polynomials.pdf
- [3] L. Thompson, Zsigmondy's Theorem, 2009, www.artofproblemsolving.com/Forum/download/file.php?id=25872
- [4] A.H. Parvardi, Lifting The Exponent Lemma, 2011, http://www.artofproblemsolving.com/Resources/Papers/LTE.pdf