

LEC-1b Introduction

8/29/2024

INDENG 250 2024 Fall
Introduction to Production Planning and Logistics Models
University of California, Berkeley

Huiwen Jia
Assistant Professor
Industrial Engineering & Operations Research

About the Instructor

Instructor: **Huiwen Jia** (huiwenj@berkeley.edu)

B.S. @ Tsinghua University

Ph.D. @ University of Michigan, Ann Arbor

Applied Scientist @ Amazon

Research Areas:

- Theory: Stochastic Optimization, Robust Optimization, Machine Learning, Online Learning
- Applications: Supply Chain, Transportation, Revenue Management

Course Details

- Instructor office hours @ Etcheverry Hall 4175
 - Tues 4-5pm,
 - Thu 1-2pm,
 - By appointment.
- The course materials are self-contained.
- This course also covers numerical implementation with *Python + Gurobi*.
- Grades:
 - Participation (5%) 2 quizzes
 - Homework (20%) 4 problem sets (coding questions) Typed
 - www.overleaf.com
 - In-class open-book midterm 1 (25%)
 - Take-home three-day open-book midterm 2 (25%) Typed
 - Group project (25%) 2-3 students in each group. 10-min presentation and 5-page paper report.

Overleaf, Online LaTeX Editor

bCourses

https://bcourses.berkeley.edu/

- Announcements
- Class materials syllabus, lecture notes, problem sets, take home exams, project requirements
- Grades
- Use Piazza for Q&A's with classmates and the instructional team (optional, recommended)

Class Schedule

Table 1: Tentative Class Schedule (subject to changes)

Lecture	Date	Topic
1b	Aug 29	Introduction & preliminary techniques
2a	Sept 3	Demand Forecasting I - Smoothing, linear regression
2b	Sept 5	Demand Forecasting II - ARIMA, gradient boosting
3a	Sept 10	Inventory Management I - EOQ model and extensions
3b	Sept 12	Inventory Management II - Dynamic lot sizing & Wagner-Whitin model
4a	Sept 17	Inventory Management III - Newsvendor model I
4b	Sept 19	Inventory Management IV - Newsvendor model II
5a	Sept 24	Inventory Management V - Two/Multi-Echelon Problem
5b	Sept 26	Inventory Management VI - Continuous review
6a	Oct 1	Production Planning I - Scheduling
6b	Oct 3	Review and Discussion
7a	Oct 8	In-class Midterm 1
7b	Oct 10	Production Planning II - Knapsack problem, aggregate production planning
8a	Oct 15	Network & Logistics I - Maximum flow
8b	Oct 17	Network & Logistics II - Multi-commodity distribution system design
9a	Oct 22	No class (INFORMS Annual Meeting)
9b	Oct 24	Network & Logistics III - Maximum covering & set covering
9b 10a	Oct 24 Oct 29	Network & Logistics III - Maximum covering & set covering Network & Logistics IV - Deterministic facility location problem
9b 10a 10b	Oct 24 Oct 29 Oct 31	Network & Logistics III - Maximum covering & set covering Network & Logistics IV - Deterministic facility location problem Network & Logistics V - Stochastic facility location problem
9b 10a 10b 11a	Oct 24 Oct 29 Oct 31 Nov 5	Network & Logistics III - Maximum covering & set covering Network & Logistics IV - Deterministic facility location problem Network & Logistics V - Stochastic facility location problem Algorithms - Decomposition algorithm, greedy algorithm
9b 10a 10b 11a 11b	Oct 24 Oct 29 Oct 31 Nov 5 Nov 7	Network & Logistics III - Maximum covering & set covering Network & Logistics IV - Deterministic facility location problem Network & Logistics V - Stochastic facility location problem Algorithms - Decomposition algorithm, greedy algorithm Network & Logistics VI - Guest lecture or paper reading
9b 10a 10b 11a 11b 12a	Oct 24 Oct 29 Oct 31 Nov 5 Nov 7 Nov 12	Network & Logistics III - Maximum covering & set covering Network & Logistics IV - Deterministic facility location problem Network & Logistics V - Stochastic facility location problem Algorithms - Decomposition algorithm, greedy algorithm Network & Logistics VI - Guest lecture or paper reading Revenue Management I - Newsvendor with pricing
9b 10a 10b 11a 11b 12a 12b	Oct 24 Oct 29 Oct 31 Nov 5 Nov 7 Nov 12 Nov 14	Network & Logistics III - Maximum covering & set covering Network & Logistics IV - Deterministic facility location problem Network & Logistics V - Stochastic facility location problem Algorithms - Decomposition algorithm, greedy algorithm Network & Logistics VI - Guest lecture or paper reading Revenue Management I - Newsvendor with pricing Revenue Management II - Pricing & MAB
9b 10a 10b 11a 11b 12a 12b 13a	Oct 24 Oct 29 Oct 31 Nov 5 Nov 7 Nov 12 Nov 14 Nov 19	Network & Logistics III - Maximum covering & set covering Network & Logistics IV - Deterministic facility location problem Network & Logistics V - Stochastic facility location problem Algorithms - Decomposition algorithm, greedy algorithm Network & Logistics VI - Guest lecture or paper reading Revenue Management I - Newsvendor with pricing Revenue Management II - Pricing & MAB Review and Discussion
9b 10a 10b 11a 11b 12a 12b 13a	Oct 24 Oct 29 Oct 31 Nov 5 Nov 7 Nov 12 Nov 14 Nov 19 Nov 21	Network & Logistics III - Maximum covering & set covering Network & Logistics IV - Deterministic facility location problem Network & Logistics V - Stochastic facility location problem Algorithms - Decomposition algorithm, greedy algorithm Network & Logistics VI - Guest lecture or paper reading Revenue Management I - Newsvendor with pricing Revenue Management II - Pricing & MAB Review and Discussion No Class - Midterm 2
9b 10a 10b 11a 11b 12a 12b 13a 13b	Oct 24 Oct 29 Oct 31 Nov 5 Nov 7 Nov 12 Nov 14 Nov 19 Nov 21 Nov 26	Network & Logistics III - Maximum covering & set covering Network & Logistics IV - Deterministic facility location problem Network & Logistics V - Stochastic facility location problem Algorithms - Decomposition algorithm, greedy algorithm Network & Logistics VI - Guest lecture or paper reading Revenue Management I - Newsvendor with pricing Revenue Management II - Pricing & MAB Review and Discussion No Class - Midterm 2 No Class - Meeting between instructor and each project group
9b 10a 10b 11a 11b 12a 12b 13a 13b 14a	Oct 24 Oct 29 Oct 31 Nov 5 Nov 7 Nov 12 Nov 14 Nov 19 Nov 21 Nov 26 Nov 28	Network & Logistics III - Maximum covering & set covering Network & Logistics IV - Deterministic facility location problem Network & Logistics V - Stochastic facility location problem Algorithms - Decomposition algorithm, greedy algorithm Network & Logistics VI - Guest lecture or paper reading Revenue Management I - Newsvendor with pricing Revenue Management II - Pricing & MAB Review and Discussion No Class - Midterm 2 No Class - Meeting between instructor and each project group No Class - Holiday
9b 10a 10b 11a 11b 12a 12b 13a 13b 14a 14b 15a	Oct 24 Oct 29 Oct 31 Nov 5 Nov 7 Nov 12 Nov 14 Nov 19 Nov 21 Nov 26 Nov 28 Dec 3	Network & Logistics III - Maximum covering & set covering Network & Logistics IV - Deterministic facility location problem Network & Logistics V - Stochastic facility location problem Algorithms - Decomposition algorithm, greedy algorithm Network & Logistics VI - Guest lecture or paper reading Revenue Management I - Newsvendor with pricing Revenue Management II - Pricing & MAB Review and Discussion No Class - Midterm 2 No Class - Meeting between instructor and each project group No Class - Holiday Project presentation session 1
9b 10a 10b 11a 11b 12a 12b 13a 13b 14a	Oct 24 Oct 29 Oct 31 Nov 5 Nov 7 Nov 12 Nov 14 Nov 19 Nov 21 Nov 26 Nov 28 Dec 3 Dec 5	Network & Logistics III - Maximum covering & set covering Network & Logistics IV - Deterministic facility location problem Network & Logistics V - Stochastic facility location problem Algorithms - Decomposition algorithm, greedy algorithm Network & Logistics VI - Guest lecture or paper reading Revenue Management I - Newsvendor with pricing Revenue Management II - Pricing & MAB Review and Discussion No Class - Midterm 2 No Class - Meeting between instructor and each project group No Class - Holiday Project presentation session 1 Project presentation session 2
9b 10a 10b 11a 11b 12a 12b 13a 13b 14a 14b 15a	Oct 24 Oct 29 Oct 31 Nov 5 Nov 7 Nov 12 Nov 14 Nov 19 Nov 21 Nov 26 Nov 28 Dec 3	Network & Logistics III - Maximum covering & set covering Network & Logistics IV - Deterministic facility location problem Network & Logistics V - Stochastic facility location problem Algorithms - Decomposition algorithm, greedy algorithm Network & Logistics VI - Guest lecture or paper reading Revenue Management I - Newsvendor with pricing Revenue Management II - Pricing & MAB Review and Discussion No Class - Midterm 2 No Class - Meeting between instructor and each project group No Class - Holiday Project presentation session 1

https://registrar.berkeley.edu/wpcontent/uploads/UCB_AcademicCalendar_202 4-25.pdf

Course Objective

Introduction – Survey Course

- Goal 1: Problem
 - Problems
 - Decisions

- Goal 2: Methodology
 - Models
 - Linear (mixed integer) programming, stochastic programming, dynamic programming
 - Algorithms
 - Lagrangian relaxation, decomposition algorithm, greedy algorithm
- Goal 3: Analysis
 - Coding
 - Performance metrics

Production & Logistics

Production & Logistics

What is Supply Chain?

All the activities and infrastructure whose purpose is to move products from where they are produced to where they are consumed.

2024 Annual Business Logistics Cost \sim 2.3 trillion (\sim 8.7% of total US GDP)

Behind the Definition

- A supply chain consists of all stages involved, directly or indirectly, in fulfilling a (final) customer request.
 - It not only includes the manufacturer and suppliers, but also transporters, warehouses, retailers, and customers themselves.

- Two roles: customer & operator
 - Duality: one agent can be both customer & operator

- Infrastructure & Activities
 - Materials/Equipment/Locations
 - Human resources/Scheduling
 - Services/Sales

Production & Logistics

Material/product flow is from upstream \rightarrow downstream

But the decisions/requests, they come from downstream \rightarrow upstream.

Material/product flow is from upstream → downstream

But the decisions/requests, they come from downstream \rightarrow upstream.

Schematic Diagram

Managing a Supply Chain

• The objective of every supply chain is to maximize the overall value generated.

 The value is the difference between what the final product is worth to the customer and the effort the supply chain expends in filling the customer's request. [Price - Cost]

• The total profit, to be shared across all supply chain stages, is called *supply chain profitability*.

Production Planning & Logistics Management

What is Supply Chain Management?

SCM is the set of practices required to perform the functions of a SC and to make them

- more efficient
- more profitable
- more equitable
- more sustainable
- less costly
- less wasteful
- less stressful

Multi-dimensional objectives!

Typical Set of Practices

- Demand forecasting
- Production planning
- Inventory management
- Warehouse location (facility location)
- Supplier selection (sourcing)
- Transportation, shipping, last-mile delivery
- Revenue management (dynamic pricing)

Each part requires decisions → optimization!

Decisions of Industry Examples

- Amazon Fresh
 - Perishable Inventory Systems
 - Order Fulfillment (Service Level)
- Airline (Network) Revenue Management
 - Inventory and Capacity Constraints
 - Dynamic Booking and Pricing
- On-Demand E-Hailing/Ride-Sharing Platform (Uber, Lyft, DiDi)
 - Demand Prediction
 - Dynamic Matching
 - Dynamic Pricing
- Online Algorithms and Online Reinforcement Learning
 - Learning & Decision Making

Three Types/Layers of Decisions

- Strategic (long-term planning):
 - Location & sizes of warehouses
 - Location & capabilities of factories
 - Contracts with suppliers
- Tactical (medium-term planning):
 - Assignments of customers to warehouses
 - Inventory policies at warehouses
- Operational (short-term planning):
 - Filling customer orders
 - Routing of delivery vehicles

Strategic Innovations

VMI (Vendor Managed Inventory)

- Vendor employee is on-site of Walmart's facility
- Physically replenish inventory on a visit
- Vendor has (partial) access to Walmart's inventory system (MRP/ERP)

Benefits:

- Protect vendor from under-stock and lost-sales
- Better inventory carrying costs
- Easy "decentralized" management for Walmart

Centralized Optimization vs Distributed Optimization

Strategic Innovations

Cross-Docking Strategy

Strategic Innovations

Membership Fee (Sam's club): \$50 basic, \$110 premium Membership Fee (Costco): \$65 basic, \$130 executive (2% cashback)

Costco made membership Fee \$4.6 billion - accounts for 72% of net profit (2022)

Failure Case

- Expansion into Canada in 2013
- Had to close 133 stores and laid off 17600 employees
- Lost \$2.5 billion

Problems:

- Wrong demand prediction (based on US sales)
- Poor SKU selection and inventory management
- Overstock and understock at the same time

Failure Case

@Mt. Shasta

Single resource to support multiple products

Pros: pooling effect

• Cons: cut off critical resource

Better to offer with other products!

Take Away

This class:

- Supply chain
 - Components
 - Examples
- Supply chain management
 - Objective
 - Practices
- Three types of decisions
 - Strategic innovations

Next class:

Demand forecast