Package 'nanny'

June 9, 2020

```
Type Package
Title High-Level Data Analysis and Manipulation in 'tidyverse' Style
Version 0.1.8
Maintainer Stefano Mangiola <mangiolastefano@gmail.com>
Description Includes wrapper functions for the main high-level data analysis and manipulations,
      such as cluster, dimensionality reduction, redundancy elimination, identify variable elements.
      It operates on tidy data frames with element, feature and value column.
License GPL-3
Depends R (>= 3.6.0)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
Imports lifecycle,
      magrittr,
      tibble,
      dplyr,
      tidyselect,
      purrr,
      rlang,
      tidyr,
      methods,
      lme4,
      stats,
      utils,
      knitr,
      widyr,
      Rtsne,
      gtools
RdMacros lifecycle
Suggests testthat,
      Seurat,
      limma,
      GGally,
      ggplot2
VignetteBuilder knitr
Biarch true
biocViews AssayDomain, Infrastructure
```

2 as_matrix

R topics documented:

3
5
6
7
8
9
10
11
11
12
14
16
18
19

as_matrix

Get matrix from tibble

Description

Get matrix from tibble

as_matrix

as_matrix

Usage

```
as_matrix(.data, rownames = NULL, do_check = TRUE, sep_rownames = "___")
## S4 method for signature 'spec_tbl_df'
as_matrix(.data, rownames = NULL, do_check = TRUE, sep_rownames = "___")
## S4 method for signature 'tbl_df'
as_matrix(.data, rownames = NULL, do_check = TRUE, sep_rownames = "___")
```

Arguments

.data A tibble

rownames A character string of the rownames

do_check A boolean

 $\verb|sep_rownames| A character with which multiple columns are united if rownames is a column$

array (e.g., rownames = c(col1, col2))

Value

A matrix

A 'tbl' with filled abundance

A 'tbl' with filled abundance

cluster_elements 3

Examples

```
library(dplyr)
library(tidyr)
select(mtcars_tidy, car_model, feature, value) %>%
spread(feature, value) %>%
as_matrix(rownames = car_model)
```

Description

cluster_elements() takes as imput a 'tb1' formatted as | <element> | <feature> | <value> | <...> | and identify clusters in the data.

```
cluster_elements(
 .data,
  .element,
  .feature,
  .value,
 method,
 of_elements = TRUE,
 transform = NULL,
 action = "add",
)
## S4 method for signature 'spec_tbl_df'
cluster_elements(
  .data,
  .element,
  .feature,
  .value,
 method,
 of_elements = TRUE,
 transform = NULL,
 action = "add",
)
## S4 method for signature 'tbl_df'
cluster_elements(
  .data,
  .element,
  .feature,
  .value,
  method,
```

4 cluster_elements

```
of_elements = TRUE,
transform = NULL,
action = "add",
...
)
```

Arguments

.data	A 'tbl' formatted as \mid <element> \mid <feature> \mid <value> \mid <> \mid</value></feature></element>
.element	The name of the element column (normally elements).
.feature	The name of the feature column (normally features)
.value	The name of the column including the numerical value the clustering is based on (normally feature value)
method	A character string. The cluster algorithm to use, ay the moment k-means is the only algorithm included.
of_elements	A boolean. In case the input is a nanny object, it indicates Whether the element column will be element or feature column
transform	A function to use to tranforma the data internalli (e.g., log1p)
action	A character string. Whether to join the new information to the input tbl (add), or just get the non-redundant tbl with the new information (get).
	Further parameters passed to the function kmeans

Details

Maturing

identifies clusters in the data, normally of elements. This function returns a tibble with additional columns for the cluster annotation. At the moment only k-means clustering is supported, the plan is to introduce more clustering methods.

Value

A tbl object with additional columns with cluster labels

A tbl object with additional columns with cluster labels

A tbl object with additional columns with cluster labels

```
cluster_elements(mtcars_tidy, car_model, feature, value, method="kmeans",centers = 2)
```

combine_nest 5

combine_nest

Combine columns and nest data for each permutation

Description

combine_nest() takes as imput a 'tbl' formatted as | <element> | <feature> | <value> | <...> | and returns a 'tbl' with data nested for each combination The package used in the backend is gtools (Gregory R. Warnes, Ben Bolker, and Thomas Lumley, 2020)

Usage

```
combine_nest(.data, .names_from, .values_from)
## S4 method for signature 'spec_tbl_df'
combine_nest(.data, .names_from, .values_from)
## S4 method for signature 'tbl_df'
combine_nest(.data, .names_from, .values_from)
```

Arguments

```
.data A 'tbl' formatted as | <element> | <feature> | <value> | <...> |
.names_from The columns to build the permutations on (e.g., c(col1, col2))
.values_from The columns to be nested for each permutation (e.g., c(col3, col4, col5))
```

Details

Maturing

•••

Value

```
A nested 'tbl'
A 'tbl' with filled abundance
```

A 'tbl' with filled abundance

```
combine_nest(mtcars_tidy, car_model, c(feature, value))
```

6 fill_missing

fill_missing

Fill feature value if missing from element-feature pairs

Description

fill_missing() takes as imput a 'tbl' formatted as | <element> | <feature> | <value> | <...> | and returns a 'tbl' with an edditional adjusted value column. This method uses scaled counts if present.

Usage

```
fill_missing(.data, .element, .feature, .value, fill_with)
## S4 method for signature 'spec_tbl_df'
fill_missing(.data, .element, .feature, .value, fill_with)
## S4 method for signature 'tbl_df'
fill_missing(.data, .element, .feature, .value, fill_with)
```

Arguments

.data	A 'tbl' formatted as <element> <feature> <value> <> </value></feature></element>
.element	The name of the element column
.feature	The name of the feature/gene column
.value	The name of the feature/gene value column
fill_with	A numerical value with which fill the mssing data points

Details

Maturing

This function fills the value of missing element-feature pair using the median of the element group defined by the formula

Value

```
A 'tbl' non-sparse value
A 'tbl' with filled abundance
A 'tbl' with filled abundance
```

```
fill_missing(mtcars_tidy, car_model, feature, value, fill_with = 0)
```

impute_missing 7

impute_missing

Impute feature value if missing from element-feature pairs

Description

impute_missing() takes as imput a 'tbl' formatted as | <element> | <feature> | <value> | <...> | and returns a 'tbl' with an edditional adjusted value column. This method uses scaled counts if present.

Usage

```
impute_missing(.data, .element, .feature, .value, .formula)
## S4 method for signature 'spec_tbl_df'
impute_missing(.data, .element, .feature, .value, .formula)
## S4 method for signature 'tbl_df'
impute_missing(.data, .element, .feature, .value, .formula)
```

Arguments

.data	A 'tbl' formatted as <element> <feature> <value> <> </value></feature></element>
.element	The name of the element column
.feature	The name of the feature/gene column
.value	The name of the feature/gene value column
.formula	A formula with no response variable, representing the desired linear model where the first covariate is the factor of interest and the second covariate is the unwanted variation (of the kind ~ factor_of_intrest + batch)

Details

Maturing

This function imputes the value of missing element-feature pair using the median of the element group defined by the formula

Value

```
A 'tbl' non-sparse value
A 'tbl' with imputed abundnce
A 'tbl' with imputed abundnce
```

```
impute_missing(mtcars_tidy, car_model, feature, value, ~1)
```

8 keep_variable

keep_variable

Keep top variable features across elements

Description

keep_variable() takes as imput a 'tbl' formatted as | <element> | <feature> | <value> | <...> | and returns a 'tbl' with the filtered most variable features. The formula used is from limma::plotMDS (Robinson et al., 2010, <doi:10.1093/bioinformatics/btp616>)

Usage

```
keep_variable(.data, .element, .feature, .value, top = Inf, transform = NULL)
## S4 method for signature 'spec_tbl_df'
keep_variable(.data, .element, .feature, .value, top = Inf, transform = NULL)
## S4 method for signature 'tbl_df'
keep_variable(.data, .element, .feature, .value, top = Inf, transform = NULL)
```

Arguments

.data A 'tbl'

.element A character name of the element column

 $. \, {\tt feature} \qquad \quad A \, {\tt character} \, \, {\tt name} \, \, {\tt of} \, \, {\tt the} \, \, {\tt transcript/gene} \, \, {\tt column}$

.value A character name of the read count columntop An integer. How many top genes to select

transform A function to use to tranforma the data internalli (e.g., log1p)

Details

Maturing

...

Value

A 'tbl' with filtered features

A 'tbl' with filled abundance

A 'tbl' with filled abundance

```
keep_variable(mtcars_tidy, car_model, feature, value, top=10)
```

lower_triangular 9

lower_triangular Keep rows corresponding of a lower triangular matrix built from two columns

Description

lower_triangular() takes as imput a 'tbl' formatted as | <element> | <feature> | <value> | <...> | and returns a filtered 'tbl'

Usage

```
lower_triangular(.data, .col1, .col2, .value)
## S4 method for signature 'spec_tbl_df'
lower_triangular(.data, .col1, .col2, .value)
## S4 method for signature 'tbl_df'
lower_triangular(.data, .col1, .col2, .value)
```

Arguments

.data A 'tbl'
.col1 A column name
.col2 A column name
.value A column names of the value column

Details

Maturing

...

Value

A 'tbl' with filtered rows

A 'tbl' with filled abundance

A 'tbl' with filled abundance

```
library(dplyr)
library(purrr)
library(tidyr)

mtcars_tidy_permuted =
   mtcars_tidy %>%
   filter(feature == "mpg") %>%
   head(5) %>%
   permute_nest(car_model, c(feature, value))

mtcars_tidy_permuted %>%
```

nest_subset

```
# Summarise mpg
mutate(data = map(data, ~ .x %>% summarise(mean(value)))) %>%
unnest(data) %>%

# Lower triangular
lower_triangular(car_model_1, car_model_2, `mean(value)`)
```

nest_subset

Nest according to selected-column-wise information

Description

nest_subset() takes as imput a 'tbl' and returns a nested 'tbl' according to only selected-column-related columns

Usage

```
nest_subset(.data, ..., .names_sep = NULL)
## S4 method for signature 'spec_tbl_df'
nest_subset(.data, ..., .names_sep = NULL)
## S4 method for signature 'tbl_df'
nest_subset(.data, ..., .names_sep = NULL)
```

Arguments

```
.data A 'tbl'... The name of the columns of interest.names_sep Deprecated by tidyr
```

Details

Maturing

This function extracts only selected-column-related information for downstream analysis (e.g., visualisation). It is disruptive in the sense that it cannot be passed anymore to nanny function.

Value

```
A 'tbl' object
A 'tbl' object
A 'tbl' object
```

```
nest_subset(mtcars_tidy,data = -car_model)
```

nest_subset,tbl-method

```
nest_subset,tbl-method

nest_subset
```

Description

nest_subset

Usage

```
## S4 method for signature 'tbl'
nest_subset(.data, ..., .names_sep = NULL)
```

Arguments

.data A 'tbl'

... The name of the columns of interest

Value

A 'tbl' object

permute_nest

Permute columns and nest data for each permutation

Description

permute_nest() takes as input a 'tbl' formatted as | <element> | <feature> | <value> | <...> | and returns a 'tbl' with data nested for each permutation. The package used in the backend is gtools (Gregory R. Warnes, Ben Bolker, and Thomas Lumley, 2020)

Usage

```
permute_nest(.data, .names_from, .values_from)
## S4 method for signature 'spec_tbl_df'
permute_nest(.data, .names_from, .values_from)
## S4 method for signature 'tbl_df'
permute_nest(.data, .names_from, .values_from)
```

Arguments

```
.data A 'tbl' formatted as | <element> | <feature> | <value> | <...> |
.names_from The columns to build the permutations on (e.g., c(col1, col2))
.values_from The columns to be nested for each permutation (e.g., c(col3, col4, col5))
```

12 reduce_dimensions

Details

Maturing

...

Value

A nested 'tbl'

A 'tbl' with filled abundance

A 'tbl' with filled abundance

Examples

```
permute_nest(mtcars_tidy, car_model, c(feature, value))
```

reduce_dimensions Dimension reduction of the feature value data

Description

reduce_dimensions() takes as imput a 'tbl' formatted as | <element> | <feature> | <value> | <...> | and calculates the reduced dimensional space of the feature value. The functions available are PCA, MDS (Robinson et al., 2010, <doi:10.1093/bioinformatics/btp616>), tSNE (Laurens van der Maaten, 2009)

```
reduce_dimensions(
  .data,
  .element,
  .feature,
  .value,
  method,
  .dims = 2,
  top = Inf,
  of_elements = TRUE,
  transform = NULL,
  scale = TRUE,
  action = "add",
)
## S4 method for signature 'spec_tbl_df'
reduce_dimensions(
  .data,
  .element,
  .feature,
  .value,
  method,
```

reduce_dimensions 13

```
.dims = 2,
 top = Inf,
 of_elements = TRUE,
 transform = NULL,
 scale = TRUE,
 action = "add",
)
## S4 method for signature 'tbl_df'
reduce_dimensions(
 .data,
 .element,
 .feature,
 .value,
 method,
 .dims = 2,
 top = Inf,
 of_elements = TRUE,
 transform = NULL,
 scale = TRUE,
 action = "add",
)
```

Arguments

.data	A 'tbl' formatted as <element> <feature> <value> <> </value></feature></element>
.element	The name of the element column (normally elements).
.feature	The name of the feature column (normally features)
.value	The name of the column including the numerical value the clustering is based on (normally feature value)
method	A character string. The dimension reduction algorithm to use (PCA, MDS, tSNE).
.dims	A list of integer vectors corresponding to principal components of interest (e.g., list(1:2, 3:4, 5:6))
top	An integer. How many top genes to select for dimensionality reduction
of_elements	A boolean. In case the input is a nanny object, it indicates Whether the element column will be element or feature column
transform	A function to use to tranforma the data internalli (e.g., log1p)
scale	A boolean for method="PCA", this will be passed to the 'prcomp' function. It is not included in the argument because although the default for 'prcomp' if FALSE, it is advisable to set it as TRUE.
action	A character string. Whether to join the new information to the input tbl (add), or just get the non-redundant tbl with the new information (get).
• • •	Further parameters passed to the function prcomp if you choose method="PCA" or Rtsne if you choose method="tSNE"

14 remove_redundancy

Details

Maturing

This function reduces the dimensions of the feature values. It can use multi-dimensional scaling (MDS) of principal component analysis (PCA).

Value

A tbl object with additional columns for the reduced dimensions

A tbl object with additional columns for the reduced dimensions

A tbl object with additional columns for the reduced dimensions

Examples

```
reduce_dimensions(mtcars_tidy, car_model, feature, value, method="PCA")
reduce_dimensions(mtcars_tidy, car_model, feature, value, method="MDS")
reduce_dimensions(mtcars_tidy, car_model, feature, value, method="tSNE")
```

Description

remove_redundancy() takes as imput a 'tbl' formatted as | <element> | <feature> | <...> | for correlation method, and returns a 'tbl' with dropped elements (e.g., elements). The backend function used is widyr::pairwise_cor (David Robinson, 2020)

```
remove_redundancy(
   .data,
   .element,
   .feature,
   .value,
   of_elements = TRUE,
   correlation_threshold = 0.9,
   top = Inf,
   transform = NULL
)

## S4 method for signature 'spec_tbl_df'
remove_redundancy(
   .data,
   .element,
```

remove_redundancy 15

```
.feature,
  .value,
  of_elements = TRUE,
  correlation_threshold = 0.9,
  top = Inf,
  transform = NULL
## S4 method for signature 'tbl_df'
remove_redundancy(
  .data,
  .element,
  .feature,
  .value,
  of_elements = TRUE,
  correlation_threshold = 0.9,
  top = Inf,
  transform = NULL
)
```

Arguments

.data	A 'tbl' formatted as <element> <feature> <value> <> </value></feature></element>		
.element	The name of the element column (normally elements).		
.feature	The name of the feature column (normally features)		
.value	The name of the column including the numerical value the clustering is based on (normally feature value)		
of_elements	A boolean. In case the input is a nanny object, it indicates Whether the element column will be element or feature column		
correlation_threshold			
	A real number between 0 and 1. For correlation based calculation.		
top	An integer. How many top genes to select for correlation based method		
transform	A function to use to tranforma the data internalli (e.g., log1p)		

Details

Maturing

This function removes redundant elements from the original data set (e.g., elements or features). For example, if we want to define cell-type specific signatures with low element redundancy. This function returns a tibble with dropped recundant elements (e.g., elements). Two redundancy estimation approaches are supported: (i) removal of highly correlated clusters of elements (keeping a representative) with method="correlation"; (ii) removal of most proximal element pairs in a reduced dimensional space.

Value

A tbl object with with dropped recundant elements (e.g., elements).

A tbl object with with dropped recundant elements (e.g., elements).

A tbl object with with dropped recundant elements (e.g., elements).

16 rotate_dimensions

Examples

```
remove_redundancy(mtcars_tidy, car_model, feature, value)
```

rotate_dimensions Rotate two dimensions (e.g., principal components) of an arbitrary angle

Description

rotate_dimensions() takes as imput a 'tbl' formatted as |<DIMENSION 1> |<DIMENSION 2> |<...> | and calculates the rotated dimensional space of the feature value.

```
rotate_dimensions(
  .data,
 dimension_1_column,
 dimension_2_column,
  rotation_degrees,
  .element,
 of_elements = TRUE,
 dimension_1_column_rotated = NULL,
 dimension_2_column_rotated = NULL,
  action = "add"
)
## S4 method for signature 'spec_tbl_df'
rotate_dimensions(
  .data,
 dimension_1_column,
 dimension_2_column,
 rotation_degrees,
  .element,
 of_elements = TRUE,
  dimension_1_column_rotated = NULL,
 dimension_2_column_rotated = NULL,
  action = "add"
)
## S4 method for signature 'tbl_df'
rotate_dimensions(
  .data,
 dimension_1_column,
 dimension_2_column,
  rotation_degrees,
  .element,
```

rotate_dimensions 17

```
of_elements = TRUE,
dimension_1_column_rotated = NULL,
dimension_2_column_rotated = NULL,
action = "add"
)
```

Arguments

```
A 'tbl' formatted as | <element> | <feature> | <value> | <...> |
.dat.a
dimension_1_column
                 A character string. The column of the dimension 1
dimension_2_column
                 A character string. The column of the dimension 2
rotation_degrees
                 A real number between 0 and 360
                 The name of the element column (normally elements).
.element
of_elements A boolean. In case the input is a nanny object, it indicates Whether the element
                 column will be element or feature column
dimension_1_column_rotated
                 A character string. The column of the rotated dimension 1 (optional)
dimension_2_column_rotated
                 A character string. The column of the rotated dimension 2 (optional)
                 A character string. Whether to join the new information to the input tbl (add),
action
                 or just get the non-redundant tbl with the new information (get).
```

Details

Maturing

This function to rotate two dimensions such as the reduced dimensions.

Value

A tbl object with additional columns for the reduced dimensions. additional columns for the rotated dimensions. The rotated dimensions will be added to the original data set as '<NAME OF DIMENSION> rotated <ANGLE>' by default, or as specified in the input arguments.

A tbl object with additional columns for the reduced dimensions. additional columns for the rotated dimensions. The rotated dimensions will be added to the original data set as '<NAME OF DIMENSION's rotated <ANGLE's by default, or as specified in the input arguments.

A tbl object with additional columns for the reduced dimensions. additional columns for the rotated dimensions. The rotated dimensions will be added to the original data set as '<NAME OF DIMENSION> rotated <ANGLE>' by default, or as specified in the input arguments.

```
mtcars_tidy_MDS = reduce_dimensions(mtcars_tidy, car_model, feature, value, method="MDS'
rotate_dimensions(mtcars_tidy_MDS, `Dim1`, `Dim2`, .element = car_model, rotation_degree
```

18 subset

subset

Extract selected-column-wise information

Description

subset() takes as imput a 'tbl' and returns a 'tbl' with only selected-column-related columns

Usage

```
subset(.data, .column)
## S4 method for signature 'spec_tbl_df'
subset(.data, .column)
## S4 method for signature 'tbl_df'
subset(.data, .column)
## S4 method for signature 'tbl'
subset(.data, .column)
```

Arguments

.data A 'tbl'

.column The name of the column of interest

Details

Maturing

This functon extracts only selected-column-related information for downstream analysis (e.g., visualisation). It is disruptive in the sense that it cannot be passed anymore to nanny function.

Value

A 'tbl' object A 'tbl' object A 'tbl' object

A 'tbl' object

```
subset(mtcars_tidy,car_model)
```

Index

```
nest_subset,tbl_df-method
as_matrix, 2
as_matrix, spec_tbl_df-method
                                                (nest_subset), 10
       (as_matrix), 2
                                         permute nest, 11
as_matrix,tbl_df-method
                                         permute_nest, spec_tbl_df-method
       (as_matrix), 2
                                                (permute_nest), 11
cluster_elements, 3
                                         permute_nest,tbl_df-method
cluster_elements, spec_tbl_df-method
                                                (permute_nest), 11
       (cluster_elements), 3
                                         reduce dimensions, 12
cluster_elements,tbl_df-method
                                         reduce_dimensions, spec_tbl_df-method
       (cluster_elements), 3
                                                (reduce_dimensions), 12
combine_nest, 5
                                         reduce_dimensions,tbl_df-method
combine_nest,spec_tbl_df-method
                                                (reduce_dimensions), 12
       (combine_nest), 5
                                         remove_redundancy, 14
combine nest, tbl df-method
                                         remove_redundancy, spec_tbl_df-method
       (combine_nest), 5
                                                (remove_redundancy), 14
fill missing, 6
                                         remove_redundancy,tbl_df-method
fill_missing, spec_tbl_df-method
                                                (remove_redundancy), 14
       (fill_missing), 6
                                         rotate_dimensions, 16
fill_missing,tbl_df-method
                                         rotate_dimensions, spec_tbl_df-method
       (fill_missing), 6
                                                (rotate_dimensions), 16
                                         \verb"rotate_dimensions", \verb"tbl_df-method"
impute_missing,7
                                                (rotate_dimensions), 16
impute_missing, spec_tbl_df-method
       (impute_missing), 7
                                         subset, 18
impute_missing,tbl_df-method
                                         subset, spec_tbl_df-method
       (impute_missing), 7
                                                (subset), 18
                                         subset, tbl-method (subset), 18
keep_variable, 8
                                         subset, tbl_df-method(subset), 18
keep_variable, spec_tbl_df-method
       (keep variable), 8
keep variable, tbl df-method
       (keep_variable), 8
lower triangular, 9
lower_triangular, spec_tbl_df-method
       (lower_triangular), 9
lower_triangular,tbl_df-method
       (lower_triangular),9
nest subset, 10
nest_subset,spec_tbl_df-method
       (nest_subset), 10
nest_subset,tbl-method,11
```