General Linear Models

- Response variable, Y, can be represented by a linear model plus random error
 - Scatter of Y measurements around the model is random error
- So far, we have looked at (univariate) ANOVA

We have also looked at the linear regression

$$Y = \alpha + \beta X + \varepsilon$$

- Extends the linear regression in two ways
 - More explanatory variables (>1)
 - Allows use of categorical explanatory variables
 - Example:
 - Linear model for single-factor ANOVA

$$Y = \mu + A$$

- Extends the linear regression in two ways
 - More explanatory variables
 - Allows use of categorical explanatory variables
 - Example:
 - Linear model for single-factor ANOVA

- Linear Model for single-factor ANOVA
- Linear Regression

$$Y = \mu + A$$
, $A_i = \text{group mean} - \mu$ $Y = \alpha + \beta X$

You are fundamentally fitting two models in both of these cases

RESPONSE = CONSTANT + VARIABLE

We have already encountered some methods which are actually specific examples of the general linear model:

- Linear regression
- One factor ANOVA
 - t-test

Additionally, we will encounter these:

- Analysis of covariance (video 20)
 - Multiple regression

General Linear Models

Linear Model	Other Name	Example-study Design
Y = μ +X	Linear Regression	Dose-Response
Υ = μ +Α	One-way ANOVA	Completely randomized
Y = μ +A +b	Two-way ANOVA, no replication	Randomized block
$Y = \mu + A + B + A*B$	Two-way, fixed effects ANOVA	Factorial Experiment
$Y = \mu + A + b + A*b$	Two-way, mixed effects ANOVA	Factorial Experiment
$Y = \mu + X + A(+A*X)$	Analysis of Covariance (ANCOVA)	Observational Study
$Y = \mu + X_1 + X_2 + X_1 * X_2$	Multiple Regression	Dose-Response

Match the linear model with the "name of the test" and a given (example study design). Variable Descriptions:

mu = Constant X = Numerical explanatory variable Y = Numerical response variable A, B = Fixed, categorical variables b = Random-effect categorical variable (ex. blocking)

- 1) Y = mu + X
- 2) Y = mu + A
- 3) Y = mu + X + A
- 4) Y = mu + A + B + A*B
- I) "Linear Regression" (Dose-response)
- II) "One-way, single factor, ANOVA" (Completely randomized)
- III) "Two-way, fixed-effect ANOVA" (Factorial experiment)
- IV) "Analysis of covariance, ANCOVA" (Observational study)

Clicker Choices:

- A) 1=I, 2=II, 3=III, 4=IV
- B) 1=I, 2=II, 3=IV, 4=III
- C) 1=II, 2=I, 3=IV, 4=III
- D) 1=III, 2=IV, 3=I, 4=II
- E) 1=II, 2=I, 3=III, 4=IV

Note: General linear model

In the form:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \text{error}$$

Doesn't have to be LINEAR relationship:

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2$$
 (Quadratic)

H₀: Treatment means are same

H_A: Treatment means are not all the same

Significance of a treatment variable is tested by comparing the fit of two models, H₀ and H_A, to the data by using **F-test**

F-test =
$$H_A$$
 = Constant + Variable
 H_0 Constant

Does the additional parameter, the variable, improve the fit of the data <u>significantly</u>?

- ANOVA table
- P-value leads to rejection or FTR H₀

Often appropriate/useful to investigate >1 explanatory variable simultaneously

- Efficiency
- Interactions

Three major approaches:

- Blocking
 - Improve detection of treatment effects
 - If nuisance variable is known and controllable
- Factorial experiment
 - Investigate effects of ≥ 2 treatment variables
 - Interactions
- Covariates
 - Confounding variables
 - Nuisance variable is known but uncontrollable

Assumptions of general linear models:

- Test these by using residual plots
- Same as for regression and ANOVA
 - Random sample from the population of possible measurements
 - Normal distribution
 - Variance of response variable is the same for all combinations of the explanatory variables