

딥러닝 기반의 수산물 수입가격 예측 모형 도출

Seafood import price prediction model based on deep learning

Work Team Name & Members

W_W(윈터위너) 곽원일(팀장), 송민아, 김유환, 김지훈

Work Schedule

2021.08.24 주제선정, 데이터 수집 2021.08.30 데이터 전처리, 데이터 분석 2021.09.03 모델 설계 및 개발 2021.09.13 모델 평가 및 검증 2021.09.24 장고 웹프레임워크 구현

Work Rule

Train Data: 2016년 ~ 2020년 수산물 수입데이터

Test Data: 2021년 1월 ~ 6월 예측 데이터 전처리 방법, 활용 알고리즘 설명

수산물(연어,오징어,흰다리새우) 주별 평균단가 예측 서비스

빅데이터 생태계 조성을 통한 해양수산 뉴딜 정책 실현 및 수산업 이해 관계자의 경영계획 수립 기반 구축

Skills

목 차

• 하이퍼파라미터 조정

· LSTM과 GRU 앙상블

01 02 03 프로젝트 소개 데이터 전처리 모델 탐색 및 검증 ·팀소개 및 개발 환경 · 이상치 보정 · 모델 탐색 · 대회 소개 · 유효한 데이터 선정 · 모델 검증 · RAW DATA · 변수 생성 · 도메인 조사 · 분석 방향 05 04 06 시뮬레이터 구현 결론 및 느낀점 모델 성능 향상

· UI 구현

· 기능 구현

01. 프로젝트 소개

- 1.팀소개
- 2.개발환경
- 3. 대회 소개
- 4. RAW DATA
- 5.도메인조사
- 6.분석방향

1) 팀 소개

1. 프로젝트 총괄
2. 기술 탐색 및 분석 방향 설계
3. 데이터 전처리 및 모델링
4. 웹 프레임워크 구현
(Front-end)

송민아 DA

1. 데이터 분석 및 정의

2. 데이터 전처리 및 모델링

3. 모델 탐구 4. 웹 프레임워크 구현 (Front-end)

김지훈 TA

1. 모델 탐구
2. 웹 프레임워크 구현
(Back-end)
3. 데이터 전처리 및 모델링
4. 데이터 분석 및 정의

김유환 DA

1. 데이터 전처리 및 모델링 2. 데이터 분석 및 정의 3. 도메인 자료 분석 4. 웹 프레임워크 구현 (Back-end)

2) 개발 환경

개발

LSTM

GRU

시각화 및 협업도구

시뮬레이터 구현

v 3.2.7

01. 프로젝트 소개

3) 대회 소개

주관 	한국해양수산개발원	
주제	수산물 수입가격 예측을 통한 최적의 가격예측 모형 도출	
목적	빅데이터 생태계 조성을 통한 해양수산 뉴딜 정책 실현 및 수산업 이해관계자의 경영계획 수립 기반 구축	
CHOIE	2015년 12월 28일 ~ 2020년 12월 28일 약 5년간 수산물 수입평균단가 데이터	√ 주어진 수산물 데 최적 ⁹
예측 시점	2021년 1월 4일 ~ 2021년 6월 28일	
예측 품목	연어, 오징어, 흰다리새우	
평가 척도	RMSE	

√ 주어진 수산물 데이터를 분석하여 수산물의 수입가격을 예측하고, 최적의 수산물 수입가격 예측 모형 제시

01. 프로젝트 소개

4) RAW DATA

< 수산물 수입평균단가 데이터 >

	REG_DATE	P_TYPE	CTRY_1	CTRY_2	P_PURPOSE	CATEGORY_1	CATEGORY_2	P_NAME	P_IMPORT_TYPE	P_PRICE
0	2015-12-28	수산물	아르헨티나	아르헨티나	판매용	갑각류	새우	아르헨티나붉은새우	냉동	7.48
1	2015-12-28	수산물	바레인	바레인	판매용	갑각류	게	꽃게	냉동	2.92
2	2015-12-28	수산물	바레인	바레인	판매용	갑각류	게	꽃게	냉동,절단	3.36
3	2015-12-28	수산물	칠레	칠레	판매용	패류 멍게류	해삼	해삼	건조,자숙	18.26
4	2015-12-28	수산물	중국	중국	판매용	어류	서대 박대 페루다	서대	냉동	4.79
5	2015-12-28	수산물	중국	중국	판매용	어류	복어	은밀복	냉동	2.17
6	2015-12-28	수산물	중국	중국	판매용	어류	옥돔	옥돔	냉동	5.15
7	2015-12-28	수산물	중국	중국	판매용	어류	복어	까치복	냉동	4.27
8	2015-12-28	수산물	중국	중국	판매용	갑각류	새우	흰다리새우	냉동,살,자숙	7.20
9	2015-12-28	수산물	중국	중국	판매용	갑각류	새우	흰다리새우	냉동,살	6.97
10	2015-12-28	수산물	중국	중국	판매용	패류 멍게류	바지락	바지락	냉장,살	4.70

< 테이블 정의서 >

컬럼ID	컬럼명
reg_date	기준일
p_type	제품구분
ctry_1	제조국
ctry_2	수출국
p_purpose	수입용도
category_1	중분류명 카테고리
category_2	어종
p_name	상세어종
p_import_type	수입형태
p_price	평균단가(\$)

2015년 12월 28일 ~ 2020년 12월 28일까지의

시계열적 데이터

→ 총 51,552개 데이터

10개의 변수

5) 도메인 조사

- 수산물 수입단가에 대한 전반적인 지식과 동향 습득

도메인 조사 결과 수입단가는 이상치가 생기는 경우가 빈번

→ 데이터 전처리과정에서 이상치를 어떻게 처리할 것인지가 핵심

6) 분석 방향

상세어종별(연어, 오징어, 흰다리새우)로 나누어 데이터 분석 및 모델 구축

예측하고자 하는 시점의 평균단가에 무엇이 영향을 미칠 것인지를 중점으로 데이터를 분석 및 유효한 데이터로 정제

- 1. 데이터 전처리
- 2. 이상치 보정 및 유효한 데이터 선정
- 3. 파생변수

1) 데이터 전처리 - 상세어종별 분류

< 주어진 수산물 수입평균단가 데이터 >

	REG_DATE	P_TYPE	CTRY_1	CTRY_2	P_PURPOSE	CATEGORY_1	CATEGORY 2	P_NAME	P_MPORT_TYPE	P_PRIC
0	2015-12-28	수산물	아르헨티나	아르헨티나	판매용	갑각류	새우	아르헨티나붉은새우	냉동	7.48
1	2015-12-28	수산물	바레인	바레인	판매용	갑각류	게	꽃게	냉동	2.92
2	2015-12-28	수산물	바레인	바레인	판매용	갑각류	게	꽃게	냉동,절단	3.36
3	2015-12-28	수산물	칠레	칠레	판매용	패류 멍게류	해삼	해삼	건조,자숙	18.26
4	2015-12-28	수산물	중국	중국	판매용	어류	서대 박대 페루다	서대	냉동	4.79
5	2015-12-28	수산물	중국	중국	판매용	어류	복어	은밀복	냉동	2.17
6	2015-12-28	수산물	중국	중국	판매용	어류	옥돔	옥돔	냉동	5.15
7	2015-12-28	수산물	중국	중국	판매용	어류	복어	까치복	냉동	4.27
8	2015-12-28	수산물	중국	중국	판매용	갑각류	새우	흰다리새우	냉동,살,자숙	7.20
9	2015-12-28	수산물	중국	중국	판매용	갑각류	새우	흰다리새우	냉동,살	6.97
10	2015-12-28	수산물	중국	중국	판매용	패류 멍게류	바지락	바지락	냉장,살	4.70

< 상세어종 데이터 분할 코드 >

연어

					연이	H_RAW_GIOLE				
Χī	REG DATE	P_TYPE	CTRY_1	CTRY_2	P_PURPOSE	CATEGORY_1	CATEGORY_2	P_NAME	P_IMPORT_TYPE	P_PRICE
0	2015-12-28	수산물	노르웨이	노르웨이	판매용	어류	언어	연어	냉장,뜊렛(F)	12.94
1	2015-12-28	수산물	노르웨이	노르웨이	판매용	어류	언어	연어	냉장,포장횟감,필렛(F)	19.15
2	2015-12-28	수산물	노르웨이	노르웨이	판매용	어쮸	언어	인이	냉장,띨렛(F),횟감	12.08
3	2015-12-28	수산물	노르웨이	노르웨이	자사제품제조용	어큐	연어	연어	냉장,틸렛(F)	13.43
4	2015-12-28	수산물	노르웨이	노르웨이	판매용	어쀼	연어	연어	생왕	8.84
5	2016-01-04	수산물	케나다	캐나다	판매용	어류	연어	연어	98	9.20

오징어

	1		요집어_RAW_데이터											
×	£	REG_DATE	P_TYPE	CTRY_1	CTRY_2	P_PURPOSE	CATEGORY_1	CATEGORY_2	P_NAME	P_IMPORT_TYPE	P_PRICE			
	5	2015-12-28	수산물	대만	대만	판매용	연체류 하물모등	오징어	요점어	냉동,동제	1.99			
	1	2015-12-28	수산물	중국	중국	판매용	연체류 해물모듬	오징어	오징어	냉동,동체	0.79			
	2	2015-12-28	수산물	퍼루	利井	판매용	연체류 해물모듬	오징어	오징어	냉동,다리	1.23			
	3	2015-12-28	수산물	퍼무	И#	판매용	연체류 해물모듬	오징어	오징어	냉동,동체,자숙	5.48			
	4	2015-12-28	수산물	칠레	칠레	반액용	연체류 해물모듬	오징어	오징어	냉동,다리	0.97			
	5	2015-12-28	수산물	칠레	침레	반액용	연체류 해물모등	오징어	오징어	냉동,지느러미	0.76			

흰다리새우

1					흰다리새우	RAW_데이터				
ı	PEG_DATE	P_TYPE	CTRY_1	CTRY_2	P_PURPOSE	CATEGORY_1	CATEGORY_2	P_NAME	P_IMPORT_TYPE	P_PRICE
j	2015-12-28	수산물	중국	중국	판매용	갑각류	사우	흰다리세우	냉동,살,자숙	7.20
1	2015-12-28	수산물	중국	중국	판매용	감각류	세우	흰다리새우	냉동,살	6.97
2	2015-12-28	수산물	퍼루	제무	판매용	감각류	사우	흰다리새우	48	6.10
3	2015-12-28	수산물	타국	明국	판매용	갑각류	세우	흰다리세우	냉동,살,자숙	13.38
4	2015-12-28	수산물	445	10元	판매용	갑각류	세우	흰다리새우	냉동,살	15.05
5	2015-12-28	수산물	사는다이라비아	사유디아라비아	판매용	갑각류	세우	흰다리새우	냉동	6.02

1) 데이터 전처리 - 필요하지 않은 기본변수 제거

< 흰다리새우_RAW_데이터 >

	REG_DATE	P_TYPE	CTRY_1	CTRY_2	P_PURPOSE	CATEGORY_1	CATEGORY_2	P_NAME	P_IMPORT_TYPE	P_PRICE
0	2015-12-28	수산물	중국	중국	판매용	갑각류	새우	흰다리새우	냉동,살,자숙	7.20
1	2015-12-28	수산물	중국	중국	판매용	갑각류	새우	흰다리새우	냉동,살	6.97
2	2015-12-28	수산물	페루	페루	판매용	갑각류	새우	흰다리새우	냉동	6.10
3	2015-12-28	수산물	태국	태국	판매용	갑각류	새우	흰다리새우	냉동,살,자숙	13.38
4	2015-12-28	수산물	태국	태국	판매용	갑각류	새우	흰다리새우	냉동,살	15.05
5	2015-12-28	수산물	사우디아라비아	사우디아라비아	판매용	갑각류	새우	흰다리새우	냉동	6.02

: 상세어종별 공통적인 부분으로 평균단가에 영향 끼치는 요인 x

: 종류에 따라 평균단가에 영향 끼치는 요인 o

→ 연어, 오징어 또한 공통적으로 적용.

상세어종별(연어, 오징어, 흰다리새우) 주별 평균단가를 예측하기위해 주별 평균단가에 영향을 끼치는 변수를 4가지로 추림 제조국(CTRY_1)

수출국(CTRY_2)

수입용도(P_PURPOSE)

수입형태(P_IMPORT_TYPE)

1) 데이터 전처리 - 이상치 보정

이상치로 판단 → 안정적인 예측 모델을 위해 평균단가로 데이터 보정

1) 데이터 전처리 - 이상치 보정 결론

2) 유효한 데이터 선정

예측시점에 수입되지 않을 데이터를 제거해 예측시점 수입단가의 예측 정확성을 높임

유효한 데이터 선정

- ☑ 가격 변동이 심해 예측에 악영향을 끼치는 과거 데이터
- 예측시점에 수입되지 않을 것이라 판단되는 데이터

< 특정 조건 데이터 제거 코드 >

```
df = pd.read_csv('/Users/mlnaworld/Desktop/현다리새우_데이터_전처리.csv')
print(df)
df.drop('Unnamed: 0', axis=1, inplace=True)

idx = df[(df['CTRY_2'] == '태국') & (df['P_IMPORT_TYPE'] == '냉장')].index
# print(idx)

df.drop(idx, inplace=True)

df.reset_index(drop=True, inplace=True)
print[df]

df.to_csv('한다리새우_유효한_데이터.csv')
```


연어 데이터 제거: 55건 오징어 데이터 제거: 40건 흰다리새우 데이터 제거: 291건

3) 변수 생성

주별 평균단가 예측 모델 학습에 필요한 변수 생성 과정 필요

3) 변수 생성(내부 데이터)

<대표적인 변수 생성 코드 예시 >

<변수 종류 > 날짜별 평균단가 변수

국가별 평균단가 변수

국가별 카운트 변수

수입용도별 평균단가 변수

수입용도별 카운트 변수

수입형태별 평균단가 변수

수입형태별 카운트 변수

국가 타입별 평균단가 변수

국가 타입별 카운트 변수

총 9가지 경우 중

상세어종별 데이터 분석을 바탕으로 변수 생성 및 결측치는 0으로 처리

3) 변수 생성(외부 데이터)

▶ 원달러 환율

< 활용 목적 >

- 1. 환율이 수입단가에 영향을 미칠 것이라 판단
- 2. 원달러 환율이 가장 대표적인 지표

날짜	통화명	환율
2015.12.28	미 달러화(USD)	1,171.00
2015.12.29	미 달러화(USD)	1,165.00
2015.12.30	미 달러화(USD)	1,167.70
2015.12.31	미 달러화(USD)	1,172.00
2016.01.04	미 달러화(USD)	1,172.00

(출처: 서울외국환중개소)

▶ 유가 두바이유 시세

< 활용 목적 >

- 1. 수출입 국가간 거리를 고려하여 유가가 수입단가에 영향을 미칠 것이라 판단
- 2. 두바이유가는 유가 중에서도 가장 대표적인 지표

날짜	종가	오픈	고가	저가	거래량	변동 %
2021년 06월 28일	71.54	71.54	71.54	71.54	-	-0.16%
2021년 06월 25일	71.65	71.65	71.65	71.65	-	0.08%
2021년 06월 24일	71.60	71.60	71.60	71.60	-	0.11%
2021년 06월 23일	71.52	71.52	71.52	71.52	-	0.15%
2021년 06월 22일	71.41	71.41	71.41	71.41		-0.09%

(출처: Investing)

3) 변수 생성(외부 데이터)

원달러 환율 데이터 전처리

```
df = pd.read csv('RAW_DATA/변수/외부데이터/환율데이터.csv')
df.drop('Unnamed: 0', axis=1, inplace=True)
df['REG_DATE'] = pd.to_datetime(df['REG_DATE'])
df['날짜'] = pd.to_datetime(df['날짜'])
price list = df['REG_DATE'].unique()
price_list2 = df['날짜'].unique()
list price = []
for i in df['整量']:
df['환율'] = list_price
dict_price = {}
for i in price_list:
   is_price = df['날짜'] == i
   price_df = df[is_price]
   dict_price[i] = price_df['환율'].sum()
dict_price = pd.DataFrame(dict_price, index=['환율'])
dict_price = dict_price.transpose()
dict_price['垫量'].interpolate()
print(dict price)
dict_price.to_csv('RAW_DATA/변수/외부데이터/환율데이터전처리.csv')
```

유가 두바이유 데이터 전처리

```
if = pd.read_csv('RAW_DATA/변수/외부데이터/두바이유내역(investing.com).csv'
df1 = pd.read csv('RAW DATA/변수/외부데이터/환율데이터.csv')
df.drop('오픈', axis=1, inplace=True)
df.drop('저가', axis=1, inplace=True)
df.drop('거래랑', axis=1, inplace=True)
df.drop('변동 %', axis=1, inplace=True)
for i in df['날짜'];
   i = i.replace(""", " -")
   i = i.replace("%", " -")
   i = i.replace("2", "")
df['划阱'] = date
df['날짜'] = pd.to_datetime(df['날짜'])
df1['REG_DATE'] = pd.to_datetime(df1['REG_DATE'])
for i in df1['REG DATE']:
   is_date = df['날짜'] == i
   date = df[is_date]
   do[i] = date['증가'].sum()
do_price = pd.DataFrame(do, index=['증가'])
do_price.to_csv('RAW_DATA/변수/외부데이터/두바이유전처리.csv')
```

최종 데이터 셋과 일치하는 날짜의 원달러 환율 및 유가 두바이유 만을 추출하기 위한 데이터 전처리

원달러 환율

	환율
2015-12-28	1171.00
2016-01-04	1172.00
2016-01-11	1196.20
2016-01-18	1211.00
2016-01-25	1203.20
2021-06-07	1117.50
2021-06-14	1111.20
2021-06-21	1132.20
2021-06-28	1128.80

두바이유

3) 변수 생성 - 최종 변수 선정

주별 평균단과와 변수간의 상관계수 확인 코드

```
squid= pd.read_csv('data/result/초안/squid_result_initial.csv', encoding='cp949')
# squid_head(2)

squid_cloumns = []

for i in squid.columns:
    squid_cloumns.append(i)

print(squid_cloumns)

for i in range(1, len(squid_cloumns) -1):
    value = squid_cloumns(i)
    x_squid = squid[value]
    y_squid = squid['P_PRICE']
    corr = np.corrcoef(x_squid, y_squid)[0, 1]
    if corr >= 0.4 or corr <= -0.4:
        print(f'(value)과 P_PRICE의 상관계수 : {corr}')
```

상관계수 기준: 절댓값 0.4 이상

	REG_DATE	相正品	냉동,살	냉동,살, 자숙,포 장쵯감	냉동,살, 자속,포 장횟감 C	냉동,살,자 숙,포장쵯 감_베트남	냉동,살,자 숙,포장횟 감_태국	냉동,살,자 숙,포장횟감 _베트남C	냉동,삶,자 숙,포장쵯 감_태국C	P_PRICE
	2016-07- 04	10.150000	8.120000	19.345		16.19	22.50			10.988750
	2016-07- 11	11.288000	8.857500	16.340		16.34	0.00			9.633846
	2016-07- 18	10.128000	10.300000	18.265		16.91	19.62			10.946000
	2016-07- 25	10.866000	9.397500	18.280		18.28	0.00			9.624167
	2016-08- 01	11.068000	11.500000	15.270		15.27	0.00			10.427000
229	2020-11- 30	10.063333	11.695000	0.000			0.00			8.764286
230	2020-12- 07	10.376667	9.315000	14.855		15.78	13.93			9.614000
	2020-12- 14	10.153333	8.963333	15.800		14.61	16.99			9.702000
	2020-12- 21	9.136667	10.483333	17.440		0.00	17.44			9.889000
233	2020-12- 28	11.395000	8.540000	18.905		16.77	21.04			10.782727

결측치 0으로 변환

노르웨이과 P_PRICE의 상관계수 : 0.8128772225011722 칠레과 P_PRICE의 상관계수 : -0.4754421454865802 c칠레과 P_PRICE의 상관계수 : -0.49093647660833467 사제품제조용과 P_PRICE의 상관계수 : 0.6612479986189607 매용과 P_PRICE의 상관계수 : 0.9220717381393944 냉장과 P_PRICE의 상관계수 : 0.6977374765283038 생장,포장횟감,필렛(F)과 P_PRICE의 상관계수 : 0.41547842580026867 ェ르웨이 판매용과 P_PRICE의 상관계수 : 0.6684619910083915 칠레 판매용과 P_PRICE의 상관계수 : -0.4754421454865802 호주 판매용과 P_PRICE의 상관계수 : -0.4229645173194794 c칠레 판매용과 P_PRICE의 상관계수 : -0.49093647660833467 호주 판매용과 P_PRICE의 상관계수 : -0.4251406401486903 노르웨이 냉장과 P_PRICE의 상관계수 : 0.63736095967937 노르웨이 냉장,포장횟감,필렛(F)과 P_PRICE의 상관계수 : 0.4216365857502705 노르웨이 냉장,필렛(F)과 P_PRICE의 상관계수 : 0.6672517359984668 노르웨이 냉장,필렛(F),횟감과 P_PRICE의 상관계수 : 0.40806748502944573

3) 변수 생성 - 최종 변수 선정

<최종 데이터 셋>

연어: 26개 변수, 235개 데이터

오징어: 10개 변수, 234개 데이터

흰다리새우: 10개 변수, 234개 데이터

<Data Split>

Train Data: 2016년 7월 4일 ~ 2020년 5월 25일

Validate Data: 20%

Test Data: 2020년 6월 1일 ~ 2020년 12월 28일

03.모델탐색및검증

시계열 데이터 예측을 위한 모델 탐색 및 검증

1.모델 탐색

- SARIMA, XGBoost, LSTM, GRU

2.모델검증

1) 모델 탐색

SARIMA

대표적인 시계열 분석 모형 ARIMA + 계절성 반영

LSTM

장기간에 걸친 데이터간의 연관관계 파악 용이

XGBoost

사용하기에 편리하고 앙상블에 용이

GRU

기존 LSTM의 구조를 간단하게 개선한 모델

2) 모델 검증 - SARIMA

- 1. 하나의 변수에 대해서만 작동
- 2. 모델 돌리는 시간이 평균 5분 이상
 - → 후보 모델에서 제외

2) 모델 검증 - XGBoost

- 1. Test Data가 주어지지 않음
 - 2. 다 대 다 예측이 불가능
 - → 후보 모델에서 제외

2) 모델 검증

[최종 모델로 LSTM, GRU 선정]

04.모델성능향상

1.하이퍼파라미터 튜닝

2. 소프트 앙상블

앙상블: 하나의 데이터를 여러개의 분류기를 통해 다수의 학습 모델을 만들어 학습시키고 학습 결과를 결합함으로써 과적합을 방지하고 정확도를 높이는 학습기법

3.최종모델

1) 하이퍼파라미터 튜닝 - 기준

* RMSE : 오차의 제곱합을 산술평균한 값의 제곱근으로서 관측값들간의 상호간 편차를 의미. 실제값과 예측값의 차이가 얼마인가를 알려주는데 많이 사용되는 척도

→ 개별 관측값이 중심으로부터 얼마나 머릴 떨어져 있는 정도를 나타냄

1) 하이퍼파라미터 튜닝

LSTM 모델 코드

```
def RMSE(y_test,y_pred):
    return np.sqrt(mean_squared_error(y_test,y_pred))
def split_xy5(dataset, time_steps, y_column):
    y=[]
    for i in range(len(dataset)):
        x_end_number = i + time_steps
        y_end_number = x_end_number + y_column
        if y end number > len(dataset):
            break
        tmp_x = dataset[i:x_end_number, :]
        tmp_y = dataset[x_end_number:y_end_number,:]
        x.append(tmp_x)
        y.append(tmp_y)
    return np.array(x), np.array(y)
df = pd.read_csv(r'C:\Users\yuhwan\PycharmProjects\pythonsm1\bc_test\
df = df.fillna(0) # nan
df['reg_date'] = pd.to_datetime(df['reg_date'], format="%Y-%m-%d")
df=df.set_index(df['reg_date'])
dataset = df.loc['2016-07':'2020-06'].reset_index(drop=True)
df1 = dataset.copy()
use_col = dataset.columns[1:]
dataset=dataset[use_col]
sc = MinMaxScaler(feature_range=(0,1))
dataset = sc.fit_transform(dataset)
```

```
epoch = 500
                                  * 하이퍼파라미터 튜닝 코드
window_size = 52
unit= 64
x, y = split_xy5(dataset, window_size, pred)
savey_shape1=y.shape[1]
y=y.reshape(y.shape[0],y.shape[1]*y.shape[2])
model = Sequential()
model.add(LSTM(unit, input_shape=(x.shape[1],x.shape[2]))) # LSTM GRU
model.add(Dense(y.shape[1]))
model.summary()
model.compile(optimizer='adam',loss='mse',metrics=['accuracy'])
early_stopping = EarlyStopping(monitor='loss',patience=10,mode='min')
hist = model.fit(x,y,epochs=epoch,batch_size=bs, validation_split=0.2, callbacks=[early_stopping])
 c_test = dataset[-window_size:] shape: Any
x_test=x_test.reshape(1,x_test.shape[0],x_test.shape[1])
y_pred = model.predict(x_test)
y_test = df.loc['2020-07':].reset_index(drop=True) # 여기 날짜|
y_test = y_test[use_col].values
y_pred=y_pred.reshape(savey_shape1,savey_shape2)
y_pred = sc.inverse_transform(y_pred)
print("RMSE: ", RMSE(y_test[:,-1],y_pred[:,-1]))
 print("window_size",window_size,"//unit:",unit,"//반복횟수:",epoch,"//배치사이즈",bs)
```

1) 하이퍼파라미터 튜닝

< 오징어 데이터 셋 GRU 예측 결과 >

하이퍼파라미터에 따라 예측결과 다름 → 안정적인 예측을 위해 최적의 하이퍼파라미터 선정 필요

1) 하이퍼파라미터 튜닝

< 최적의 모델 하이퍼파라미터 선정 >

연어

	LSTM	GRU
Unit 수	16	64
배치 사이즈	8	64

오징어

	LSTM	GRU
Unit 수	32	64
배치 사이즈	4	4

흰다리새우

	LSTM	GRU
Unit 수	64	16
배치 사이즈	64	16

04. 모델 성능 향상

2) 소프트 앙상블

<최적의 앙상블 비율 선정 코드 >

```
en9_1=[]
for i in range(len(y_pred)):
   en9_1.append((y_pred[:,-1][i]*0.9+y_pred2[:,-1][i]*0.1))
for i in range(len(y_pred)):
    en8_2.append((y_pred[:,-1][i]*0.8+y_pred2[:,-1][i]*0.2))
en7_3=[]
for i in range(len(y_pred)):
   en7_3.append((y_pred[:,-1][i]*0.7+y_pred2[:,-1][i]*0.3))
en6_4=[]
for i in range(len(y_pred)):
   en6_4.append((y_pred[:,-1][i]*0.6+y_pred2[:,-1][i]*0.4))
 en5 5=11
for i in range(len(y_pred)):
   en5_5.append((y_pred[:,-1][i]*0.5+y_pred2[:,-1][i]*0.5))
en4 6=[]
for i in range(len(y_pred)):
    en4_6.append((y_pred[:,-1][i]*0.4+y_pred2[:,-1][i]*0.6))
en3 7=[]
for i in range(len(y_pred)):
   en3_7.append((y_pred[:,-1][i]*0.3+y_pred2[:,-1][i]*0.7))
en2 8=[]
for i in range(len(y_pred)):
   en2_8.append((y_pred[:,-1][i]*0.2+y_pred2[:,-1][i]*0.8))
en1 9=[]
for i in range(len(y_pred)):
    en1_9.append((y_pred[:,-1][i]*0.1+y_pred2[:,-1][i]*0.9))
print("LSTM의 RMSE: ", RMSE(y_test[:,-1],y_pred[:,-1]))
print("GRU의 RMSE: ", RMSE(y_test[:,-1],y_pred2[:,-1]))
print("앙상블모델9:1의 RMSE: ", RMSE(y_test[:,-1],en9_1))
print("앙상블모델8:2의 RMSE: ", RMSE(y_test[:,-1],en8_2))
print("앙상블모델7:3의 RMSE: ", RMSE(y_test[:,-1],en7_3))
print("앙상블모델6:4의 RMSE: ", RMSE(y_test[:,-1],en6_4))
print("앙상블모델5:5의 RMSE: ", RMSE(y_test[:,-1],en5_5))
print("앙상블모델4:6의 RMSE: ", RMSE(y_test[:,-1],en4_6))
print("앙상블모델3:7의 RMSE: ", RMSE(y_test[:,-1],en3_7))
print("앙상블모델2:8의 RMSE: ", RMSE(y_test[:,-1],en2_8))
print("앙상블모델1:9의 RMSE: ", RMSE(y_test[:,-1],en1_9))
```

<최적의 앙상블 선정을 위한 오징어 그래프 >

LSTM의 RMSE: 0.34510605374424436 GRU의 RMSE: 0.38180010380241586 RMSE를 기준으로 앙상블 비율 선정

앙상블모델9:1의 RMSE: 0.3421938960455942 앙상블모델8:2의 RMSE: 0.34078241799388853 앙상블모델6:3의 RMSE: 0.3408902610806306 앙상블모델6:4의 RMSE: 0.3425159902083994 앙상블모델5:5의 RMSE: 0.3456381876474604 앙상블모델4:6의 RMSE: 0.35021683245521257 앙상블모델3:7의 RMSE: 0.3561957642542435 앙상블모델2:8의 RMSE: 0.3635058940008092 앙상블모델1:9의 RMSE: 0.372068766811931

2) 소프트 앙상블

< 흰다리 새우의 2021년 26주 예측 그래프 >

소프트 앙상블을 통해 안정적인 예측결과가 나오는 것을 확인

04. 모델 성능 향상

2) 소프트 앙상블

< 최적의 모델 앙상블 비율 선정 >

연어

	LSTM	GRU
Unit 수	16	64
배치 사이즈	8	64
앙상블 비율	8	2

오징어

	LSTM	GRU
Unit 수	32	64
배치 사이즈	4	4
앙상블 비율	5	5

흰다리새우

	LSTM	GRU
Unit 수	64	16
배치 사이즈	64	16
앙상블 비율	3	7

3) 최종 모델

- 상세어종별 최적의 모델 하이퍼파라미터를 선정 → 소프트 앙상블

< 2021년 가격 예측 >

1.UI 구현

2.기능구현

1) UI 구현

- 시뮬레이터 최종 UI

2) 기능 구현


```
$(".fish_species").change(function (e) {
    if (e.target.value === 'salmon') {
        $('.lstm_epoches').val("500")
        $('.lstm_windowsize').val("52")
        $('.lstm_units').val("16")
        $('.lstm_batchsize').val("8")
        $('.gru_epoches').val("500")
        $('.gru_windowsize').val("52")
        $('.gru_units').val("64")
        $('.gru_batchsize').val("64")
        $('.ratio').val("{{2}}_{{8}}")
```

JQuery 사용하여 기능 19개 구현

2) 기능 구현


```
let myChartOne = document.getElementById('myChartOne').getContext('2d');
let lineChart = new Chart(myChartOne, {
   type: 'line',
   data:
       labels: predict_dates,
       datasets: [{
           label: '예측 평균단가',
           data: predict_price,
           borderColor: 'orange',
           pointHoverBackgroundColor: 'red',
           pointHoverBorderColor: 'red',
           fill: false
           label: '실제 평균단가',
           data: real_price,
           borderColor: 'gray',
           pointHoverBackgroundColor: 'red',
           pointHoverBorderColor: 'red',
           fill: false
```

Chart.js 사용하여 그래프 출력 Table 사용하여 결과 출력 실행, Reset, 모델저장, 데이터저장 버튼 구현

06. 결론 및 느낀점

1) 결론 및 느낀점

- 1. 프로젝트를 진행하면서 데이터 분석부터 전처리, 모델선정, 모델 설계, 시뮬레이터 제작 까지 직접 수행 하며 실질적 경험을 쌓을 수 있었습니다.
- 2. 같은 목표를 가지고 학원에서 처음 만난 교육생들 과 함께 프로젝트를 진행하면서, 융합적 연구와 팀의 중요성을 크게 배웠습니다.
- 3. 분석한 것은 많은데 문서로 정리를 다 하지 못해 아 쉬움이 많이 남는 프로젝트였고, 이후 보완해나갈 계 획입니다.

시연 시작하겠습니다.