ASSIGNMENT-2

AI22BTECH11022

MISCELLINIOUS EXERCISE 16: Q9

Question:

If 4-digit numbers greater than 5,000 are randomly formed from the digits 0,1,3,5 and 7, what is the probability of forming a number divisible by 5 when

- (i) the digits are repeated?
- (ii) the repetition of digits is not allowed?

Solution:

Let $X=\{0,1\}$ be a random variable which represents the 4-digit number formed from the digits 0,1,3,5 and 7.

let $Y=\{0, 1\}$ be another random variable representing the repetition of digits in the 4-digit number.

(i)

$$\Pr\left(\frac{(X=0)(X=1)}{(Y=0)}\right) \tag{1}$$

- a) Greater than $5{,}000 \Rightarrow$ first digit = 5 or 7.
- b) Divisible by $5 \Rightarrow$ last digit = 0 or 5.
- c) repetition allowed \Rightarrow second and third digits = 0 or 1 or 3 or 5 or 7.

$$\Rightarrow \Pr\left(\frac{(X=0)(X=1)}{(Y=0)}\right) = \frac{(2\times5\times5\times2-1)}{(2\times5\times5\times5-1)}$$
(2)

$$=\frac{99}{249}.$$
 (3)

(ii)

$$\Pr\left(\frac{(X=0)(X=1)}{(Y=1)}\right) \tag{4}$$

There are three possible cases:

a) first digit = 5 last digit = 0

- b) first digit = 7 last digit = 0
- c) first digit = 7 last digit = 5
- d) repetition not allowed ⇒ second and third digits = two digits from the three left

1

$$\Rightarrow \Pr\left(\frac{(X=0)(X=1)}{(Y=1)}\right) = \frac{6+6+6}{2\times4\times3\times2}$$
 (5)
= $\frac{18}{48}$ (6)
= $\frac{3}{6}$. (7)