Automated Narrative Planning Model Extension

Julie Porteous, João F. Ferreira, Alan Lindsay, Marc Cavazza

What is Interactive Narrative?

- Automated storytelling where characters' actions are generated automatically
- Uses AI planning instead of branching story paths Challenges:
 - Must respond to user choices (robustness)

 Must tell new, interesting stories on replay (diversity)
- Must tell new, interesting stories on replay (diversity)
 Currently, humans must manually write all narrative actions

which is too time consuming

The Core Idea

Problem: domain solution is a bottleneck Solution: Automatically expand a small, human-made narrative using:

Anton - generates opposite actions
Thype - generates new types based on hierarchy

How does "anton" work?

- Analyzes existing actions to detect missing reverse transitions
- Uses linguistic resources to find antonyms
- Generates human-readable new actions
- Example:
 - O love-spell
 - Anton generates: hatespell
- Enables story recovery when the user disrupts the plan

How does "thype" work?

- Looks at type hierarchies (like "person → king → emperor")
- Uses WordNet and ConceptNet to generate related types (hyponyms/hypernyms)
- Adds new types with minimal human input
- Enables variety by introducing new story elements.

${\rm Type}$	Action	State Transi	tion	Rules: $E =$	$\Rightarrow S$	$\rightarrow F$	Rule #
person	love-spell summon	$\begin{array}{c} {\rm alive_1} \\ {\rm alive_2} \\ {\rm has_2 \ at_1} \end{array}$	\Rightarrow	$\neg loves_1$ $\neg loves_2$ $\{\ \}$	\rightarrow	$\begin{array}{c} loves_1 \\ loves_2 \\ controls_1 \end{array}$	$\begin{array}{ c c } & 1 \\ & 2 \\ & 3 \end{array}$
monster	slay	at_1	\Rightarrow	$alive_1$	\rightarrow	{}	4
male	marry	$loves_1, loves_2,$	\Rightarrow	$single_1$	\rightarrow	$ \text{married}_1 $ $ \text{married}_2 $	5
Œ	fall-in-love		\Rightarrow	$\neg loves_1$	\rightarrow	$loves_1$	6
princess	marry	$loves_2$ $loves_1$	\Rightarrow	$single_1$	\rightarrow	$ \text{married}_2 $ $ \text{married}_1 $ $ \text{loves}_2 $	7
	fall-in-love	beautiful ₁ at ₁ alive ₁	\Rightarrow	$\neg loves_2$	\rightarrow		8
genie	summon	$alive_1$	\Rightarrow	$\begin{array}{c} in_1 \\ confined_1 \end{array}$	\rightarrow	$\begin{array}{c} \operatorname{controls}_2 \\ \operatorname{at}_1 \\ \neg \operatorname{confined}_1 \end{array}$	9

Example State Transition Rules for the Aladdin Domain.

- Rules take the form $E \Rightarrow S \rightarrow F$ where:
 - O E is a set of properties that enable the transition
 - S are the properties given up by the transition
 - O F are properties acquired by the transition.
- The negative of a property x, used for analysing negative preconditions, is shown as ¬x.

Anton Process

:effect (and (beautiful ?p) (not (ugly ?p))))

- Antonym selection for the action marry
- The weights for each antonym are listed
- They are summed and the highest ranked is selected.

Linguistic

 In this case divorce is selected

(1) Action from Missing Transitions (:action marry (:action divorce :parameters (?m-male ?p-princess) :parameters (?m-male ?p-princess) :precondition (and :precondition (and (married ?m ?p) (married ?p ?m) A (single ?m) (single ?p) (loves ?m ?p) (loves ?p ?m) ...) (motivated-to-divorce?m?p)...) :effect (and :effect (and A (married ?m ?p) (married ?p ?m) (single ?m) (single ?p) B B (not (single ?m)) (not (single ?p)))) (not (married ?m ?p)) ...) A (2) Action from Missing Properties :action become-beautiful (:action become-ugly :parameters (?p - princess) :parameters (?p - princess) :precondition (and (not (beautiful ?p))) :precondition (and (beautiful ?p)) :effect (and (beautiful ?p))) :effect (and (not (beautiful ?p)))) (3) New Predicates: e.g. replace (not (beautiful ?p) with (ugly ?p) (:action become-beautiful :parameters (?p - princess) :precondition (and (ugly ?p))

	Antonyms for "marry"		
	dissociate	divorce	separate
Merriam-Webster	1	2	1
BigHuge Thesaurus	0	0	0
Power Thesaurus	1	3	1
Totals	2	5	2

- New actions are generated using the original action(marry) as a template for the newly generated action (divorce)
- The pre-conditions are those predicates achieved by the action A (green circled) plus an enabling condition; the positive effects are the pre-conditions of the initial action B (green circled)

 takes an existing type from the original story domain (like ranch) and finds related types (like stud_farm, creamery, chicken_farm) to increase narrative diversity.

Why does this matter?

- Diversity: More possible storylines leads to better replayability
- Robustness: If a user breaks the story, planner can still reach an ending
- Human-readability: All actions/types are labeled using real language

Evaluation

- Tested on a range of narrative planning domains: Aladdin,
- Crime Drama, Medical Drama, Red Riding Hood, Western M, M^T, M^A, M^{TA}

Domain	Origina	al Model M #T		ANTON Model \mathbb{M}^A #A	\parallel THYPE Model \mathbb{M}^T $\#\mathrm{T}$
Aladdin	12	12		21	18
Crime	9	8	П	11	12
Medical	10	18	П	19	20
Red	5	10	li	9	14
Aladdin Crime Medical Red Western	19	10		25	14

 We can observe that new actions and types were generated across all domains

- Robustness Results: comparing ability of (green square)T, (yellow square) A, (purple square) TA to continue to original goal in execution failure simulation (5 domains, 10 problems, 100 failrestarts on each)
- M(skyblue square) is included for comparison.
- Performance of T and A are consistently good across all domains and outperform throughout.
- TA outperforms all other models and demonstrates the performance gains that can result from combining extensions

Original Content	t THYPE content	Definition	Rank
Aladdin			
dragon	troll	a supernatural creature supposed to live in caves or mountains	G
dragon	werewolf	a monster able to change appearance from human to wolf and back	U
Crime Drama			
car	jeep horseless-carriage		G P

- Examples of thype generated content and user rankings (G(ood), P(oor) and U(nsure)).
- For the type "dragon" (Aladdin), the alternative type, "troll" was ranked G, whereas the alternative, "werewolf", was ranked U
- for "car" (Crime Drama) the type "jeep" was ranked G, and "horseless-carriage" P.
- These rankings are genre dependent and can differ across domains e.g. a werewolf is plausible in Harry Potter but not Aladdin.

Strengths

Automates a major bottleneck in narrative AI development Generalizable to many story genres Human-readable output makes adoption easier

numan-readable output makes adoption easier Demonstrates measurable gains in robustness &

Demonstrates measurable gains in robustness & diversity

Weaknesses

- Relies heavily on external linguistic tools and dictionaries which could lead to error
- Some generated actions/types are not appropriate for narrative

Requires human filtering (not 100% automatic)

Conclusion

- This paper presents an automated way to enhance narrative AI planning models
- It significantly improves diversity and robustness

Thank You!