DESAFIO - CAPÍTULOS III, IV e V

YOU SHALL NOT PASS

FIRST STEP

Defina Programa, Instrução, Hardware, Software e Firmware.

Programa: Um programa é uma sequência de instruções, que descrevem uma tarefa a ser executada pelo computador.

Instrução: Uma instrução é uma operação única executada pelo processador. Pode ser descrito como uma representação de um element num programa.

Hardware: As partes de um computador são definidas como hardware, como a unidade central de processamento, as memórias e os dispositivos de entrada e saída.

Software: Sequência de instruções a serem seguidas para executar determinada tarefa ou manipular determinado dado/informação.

Firmware: Conjunto de instruções programadas diretamente no hardware e armazenado permanentemente em um circuito integrado.

SECOND STEP

Um projetista de compiladores está tentando decidir 2 sequências de códigos para uma determinada máquina. Os aspectos de hardware da máquina são:

Classes de instruções	CPI para a classe	
Α	2	
В	4	
С	6	

Para um comando, o projetista está considerando 2 seqüências de código:

	n. de instruções para cada class		
seqüência de código	A	В	C
1	2	1	2
2	4	1	1

- a) Qual a seqüência que executa mais instruções ?
- b) Qual a seqüência mais rápida?
- c) Qual a CPI de cada seqüência?

THIRD STEP

a) Qual a diferença entre ARQUITETURA e ORGANIZAÇÃO de computadores ? A definição de parâmetros como CPU, memória, cache, dentre outros, junto com a forma de que os diversos components de um computador são organizados é chamada de ARQUITETURA de computadores. Que vai determiner aspectos como qualidade, desempenho e aplicações.

A ORGANIZAÇÃO de computadores são os components físicos do computador, aqueles que compõe sua estrutura.

b) Explique detalhadamente as diferenças entre a Arquitetura Harvard e a Arquitetura de Von Neumann ?

A arquitetura de Von Neumann é caracterizada pela possibilidade de uma máquina digital armazenar seus programas no mesmo espaço de memória que os dados, podendo com isso manupular tais programas.

A arquitetura de Harvard é um avanço da de Von Neumann, essa arquitetura possui duas memórias diferentes e independentes em termos de barramento e ligação ao processador. Acessando assim, a memória de dados separadamente da memória do programa.

FORTH STEP

O que são chamadas de serviço? Qual a relacão do Sistema Operacional com o hardware do computador?

O Sistema Operacional é o software que controla o computador e permite a comunicação entre software e hardware. Ele consiste num conjunto de rotinas que, além de controlar todo o fluxo de informações dentro do computador ainda auxilia na utilização de linguagens e aplicativos, etc.

FIFTH STEP

Relacione as colunas

1) Linguagem de máquina	(7) traduzem os programas em HLL para um nível de abstração inferior
2) Nível Físico	(6) concebidas para serem utilizadas pelos programadores de aplicações
3) Nível Sistema Operacional	(1) instruções e variáveis totalmente codificadas em binário
4) Nível Linguagem assembly	(2) transístores e portas lógicas
5) Assemblers	(5) traduzem os programas escritos em assembly para linguagem de máquina
6) Linguagens de Aplicação	(3) pode ser um superconjunto de das instruções da linguagem tradicional, enriquecido por instruções específicas
7) Compiladores	(4) permite a criação de programas para os níveis inferiores numa forma mais amigável para o programador

SIXTH STEP

Analise as seguintes afirmações relativas à UCP – Unidade Central de Processamento, ou processador, de um computador.

- I. Um processador, além da capacidade de realizar leituras e gravações na memória, deve ser capaz de comunicar-se com o usuário. Ele deve ser capaz de ler dados provenientes do teclado, mouse e outros dispositivos de saída de dados, bem como transferir dados para o vídeo, impressora e outros dispositivos de entrada de dados. II. O processador possui um barramento de dados, através do qual trafegam os dados que são transmitidos ou recebidos pelo barramento de endereços.
- III. O processador utiliza o barramento de endereços para indicar qual é a posição de memória a ser acessada.
- IV. Os processadores possuem, além do barramento de dados e de endereços, o barramento de controle.

	~			· ·	~	
Indialia	α	aue contenha	a tadac 1	ac atirma	2000	Vardadairac
	a ()()(.a()	OUE COIDEIDA	a 11.01.0.a.s. a	15 AUUU	10.00	VELUAUEIIAS

()	l e II
()	()	II e III
()	III e IV
()	l e III
Ì	ĺ	II e IV

SEVENTH STEP

Considere um computador que possua uma CPU com o PC (ou CI) de 16 bits e IR (ou RI) de 38 bits. Suas instruções possuem dois operandos do mesmo tamanho (16 bits cada), além do código de operação.

- a) Qual o tamanho da instrução?
- b) Qual o tamanho do campo do código de operação?
- c) Considerando que a configuração básica desta máquina é de 16k bytes de memória, até que tamanho pode esta memória ser expandida?

EIGHTH STEP

Uma interrupção pode ser considerada como uma solicitação de atenção feita pelo processador. Sempre que o processador recebe uma interrupção ele

- () acessa o BIOS, faz uma varredura no HD e transfere o controle para o usuário.
- () suspende suas operações do momento, salva o status do trabalho e transfere o controle para o teclado.
- (X) suspende suas operações do momento, salva o status do trabalho e transfere o controle para uma determinada rotina de tratamento de interrupção.
- () acelera suas operações do momento para salvar os arquivos abertos e transfere o controle para o usuário.

DROP THE RING INTO THE FIRE

NINTH STEP

A figura a seguir mostra a estrutura básica de um microprocessador.

Com base na figura, descreva a função de cada bloco, abaixo identificados:

UAL: Processa os dados dos registradores para gerar outros dados, nas quais são resultados de operações.Realiza operações como soma, subtração, multiplicação e divisão assim como as operações lógicas (and, or, not, etc).

ACC Registradores: Dispositivo de armazenamento de dados existentes no processador. Seu tamanho é medido em bits. O conjunto dos registradores forma a memória interna do processador.

CI (PC): Os circuitos integrados são circuitos eletrônicos miniaturizados, que permitiram a diminuição no tamanho dos computadores.

REM(MAR): São os registradores de endereços.

RDM(MBR: São os registradores de dados.

UC: É responsável por gerar impulsos elétricos que controlam os demais componentes do processador, como a UAL e os registradores.

RI(IR): É onde o processador procura suas instruções, no registrador de instruções.

Decodificador de Instruções: Utilizado para identificar as operações a serem realizadas relacionadas à instrução a ser executada.

Relógio: A frequencia do relógio indica a velocidade em que o pocessador vai executar suas tarefas.

MP: Processador capaz de suportar o multi-processamento.

TENTH STEP

Escolha a função ou definição que melhor condiz com os dispositivos e conceitos listados a seguir.

Dispositivos e conceitos:

1.Registrador acumulador (AC)

- 2.Registrador de Instruções (RI)3.Registrador de Endereço de Memória4.Registrador de Dado de Memória
- 5.Registrador contador de instrução ou program counter (PC)
- 6.Computador
- 7.Gargalo de Von Neumann 8.Memória
- 9. Unidade Central de Processamento (CPU)

- 10.Relógio
- 11.Unidade de Controle
- 12. Unidade Aritmética e Lógica (ULA)
- 13.Barramento
- 14.Programa
- 15.Instruções

Funções e definições:

- (6) É composto basicamente por blocos convencionalmente chamados de memória, unidade operacional, unidade de controle e dispositivos de entrada e saída.
- (1) Registrador que será utilizado para armazenar o resultado de operações (aritméticas, lógicas, etc) e de uso geral.
- (11) Circuito lógico que se responsabilizará pela seqüência de pulsos de habilitação (sinais de controle) para os diversos circuitos da arquitetura.
- (2) Registrador que contém a instrução que deverá ser executada pela Unidade Central de Processamento (UCP).
- (3) Registrador que será utilizado para indicar o endereço da instrução que deverá ser carregada no RI para futura execução.
- (15) É composta pela operação que especifica a função que será desempenhada e por operandos que fornecem a maneira de calcular a posição atual dos dados com o qual a operação será realizada.
- (4) Registrador que armazena o dado a ser escrito ou o dado lido da memória.
- (12) Faz as operações aritméticas e lógicas necessárias.
- (8) Armazena os dados e as instruções
- (5) Registrador que armazena o endereço do dado a ser lido ou gravado na memória
- (10) Irá marcar a cadência de operação dos circuitos; cada ciclo do relógio ou *clock* corresponderá a uma ou mais operações dependendo da arquitetura.
- (14) É constituído por uma seqüência pré-determinada de instruções que devem ser seguidas para que seja atingido o objetivo computacional.
- (9) As principais funções são: busca da instrução na memória de programa, decodificação da instrução e execução das instruções.
- (7) Mesmo barramento para os dados e para as instruções.
- (13) Caminhos físicos por onde os dados e instruções são transferidos entre os diversos elementos de um computador.

ELEVENTH STEP

Considere um computador que possua uma UCP com o PC (ou CI) de 16 bits e IR (ou RI) de 38 bits. Suas instruções possuem dois operandos do mesmo tamanho (16 bits cada), além do código de operação.

- a) Qual o tamanho da instrução?
- b) Qual o tamanho do campo do código de operação?
- c) Considerando que a configuração básica desta máquina é de 16 K bytes de memória, até que tamanho pode esta memória ser expandida?

TWELFTH STEP

Um computador tem uma REM de 16 bits e um barramento de dados de 20 bits. Possui instruções de 1 operando, todas do tamanho de uma *palavra de memória* e de mesmo tamanho da *palavra do processador*. Ele foi adquirido com uma placa de 4K de memória.

a) Qual o tamanho, em bits, do RDM e PC?

Como o barramento de dados tem tamanho de 20 bits, o registrador RDM terá o mesmo tamanho, uma vez que este registrador faz a interface entre o processador e o barramento de dados. O registrador REM, é usado para interconectar o processador ao barramento de endereço. Como REM possui 16 bits, o barramento de endereço também terá 16 bits

b) É possível aumentar a capacidade de armazenamento desta memória? Até quanto? Por quê?

Como o barramento de endereço tem 16 bits, podemos ter uma memória com 216 = 64K palavras. Portanto é possível aumentar a quantidade de palavras de memória até 64K.

THIRTEENTH STEP

Um computador possui um conjunto de 128 instruções de um operando; supondo que sua memória tenha capacidade de armazenar 512 palavras e que cada instrução tem o tamanho de uma palavra do processador e palavra de memória, responda as perguntas a seguir:

- a) Qual o tamanho em bits do REM, RDM, RI, ACC e PC?
- b) Qual a capacidade da memória em bytes?
- c) Se alterarmos o tamanho das instruções para 17 bits, mantendo inalterado o tamanho do REM, quantas novas instruções poderiam ser criadas?

FOURTEENTH STEP

Considere as instruções definidas a seguir, todas elas com apenas um operando:

Instrução	Significado
LDA Op	ACC ← Op
STA Op	Op ← ACC
ADD Op	ACC ← ACC + Op
SUB Op	ACC ← ACC - Op
MUL Op	ACC ← ACC * Op
DIV Op	ACC ← ACC /Op

Obter a equação que resultou no programa descrito a seguir:

1: LDA A	8: LDA X
2: ADD C	9: ADD Y
3: STA X	10: DIV F
4: LDA B	11: STA X
5: MUL D	
6: SUB E	
7: STA Y	

X = (A+C+((B.D)-E))/F

FIFTEENTH STEP

Utilizando as instruções descritas na tabela do PASSO 14, escreva os programas para as equações a seguir:

- a) X = A + (B*(C-A) + (D-E/B) * D)
- b) Y = A + B*(C-D*(E/(B-F)) + B)

SIXTEENTH STEP

Considere uma máquina com 32K células de memória onde cada célula possui 20 bits e 32 instruções distintas com um único operando. Cada instrução possui 20 bits.

- a) Qual o tamanho mínimo do MAR?
- b) Qual o tamanho mínimo do IR?
- c) Qual o tamanho mínimo do MBR?

d) Qual o tamanho da memória em bits ?

SEVENTEENTH STEP

Com relação ao cálculo de memórias, calcular e completar os campos:

M - Tamanho da célula	x - nº de bits do endereço	N - nº de endereços	T - Capac. da memória	0 a (N-1) - Faixa de endereços
8 bits	10 bits	1 K	1 K byte	0 a 1023
16 bits	10 bits	1 K	2 K byte	0 a 1023
16 bits	4 bits	1 K	256 bits	0 a 15
4 bytes	30 bits	16	4 Gbytes	0 a 1073741823
16 bits	16 bits	64 K	1 Mbyte	0 a 65.535
64 bits	5 bits	18	1.1152 bits	0 a 262.143

EIGHTEENTH STEP

Um computador tem um RDM de 16 bits e um REM de 20 bits. Sabe-se que a célula desse computador é de 8 bits e que ele tem um número de células igual à sua possibilidade de endereçamento. Pede-se:

- a) qual o tamanho da barra de endereços?
- b) quantas células são lidas da memória em uma única operação?
- c) quantos bits tem a memória desse computador?

CRITÉRIOS DA AVALIAÇÃO

CADA DESAFIO DEVERÁ SER IMPLEMENTADO CORRETAMENTE NO SIMULADOR. A PONTUAÇÃO PARA NOTA SERÁ DADA DE ACORDO COM O SEGUINTE CRITÉRIO:

DESAFIO	NOTA		
	4 DE CADA	+ 1 DE	TODOS
		CADA	
YOU SHALL NOT PASS		70 %	
DROP THE RING INTO THE FIRE	60%	80%	
	(REQUISITO		100%
	MÍNIMO		
	PARA o + 1)		