<epam>

Normal Forms – Part 2

Relational Databases Basics

Normal forms hierarchy

Read and remember!

A relvar is in **3NF** if it satisfies 2NF and has no nonprime attribute that is transitively dependent on the primary key.

In other words: there must not be an attribute that is not a part of PK and transitively dependent on PK.

3NF: third normal form (violation example)

group

Nonprime attributes "g_dean", "g_dean_dob" are transitively dependent on candidate keys and thus should be moved to another relation

g_id	g_number	g_start_year	g_faculty	g_dean	g_dean_dob
PK	Alter	nate key			
1	1	1998	Physics	John Smith	1974 01-12
2	1	1999	Physics	John Smith	1974-01-12
3	1	2000	Mathematics	Joe Black	1984-12-23
4	2	2000	IT	Jane Dow	1985-05-28
5	1	2008	IT	Jane Dow	1985-05-28
6	2	2008	Chemistry	Walter White	1969-02-20

```
\{g_id\} \rightarrow \{g_faculty\} \rightarrow \{g_dean\} \rightarrow \{g_dean_dob\}
\{g_number, g_start_year\} \rightarrow \{g_faculty\} \rightarrow \{g_dean\} \rightarrow \{g_dean_dob\}
```

3NF: third normal form (dealing with violations)

1969-02-20

group

a
<u> </u>
Į,O
0
m

After

8.046					
g_id PK	g_number Alter	g_start_year nate key	g_faculty	g_dean	g_dean_dob
1	1	1998	Physics	John Smith	1974-01-12
2	1	1999	Physics	John Smith	1974-01-12
3	1	2000	Mathematics	Joe Black	1984-12-23
4	2	2000	IT	Jane Dow	1985-05-28
5	1	2008	IT	Jane Dow	1985-05-28
6	2	2008	Chemistry	Walter White	1969-02-20

group

_	1-M relationship		
staff			
s_id PK	s_name	s_dob	
127	John Smith	1974-01-12	
216	Joe Black	1984-12-23	
678	Jane Dow	1985-05-28	

Walter White

faculty	1	
f_id PK	f_name AK	f_dean FK
1	Physics	127
2	Mathematics	216
3	IT	678
4	Chemistry	993

1-M relationship

g_id PK	g_number Alterna	g_start_year te key	g_	faculty FK
1	1	1998	1	
2	1	1999	1	
3	1	2000	2	
4	2	2000	3	
5	1	2008	3	
6	2	2008	4	

993

3NF: third normal form (conclusion)

- 3NF doesn't protect you from "local mistakes", but it keeps you from violating "global rules".
- One of the most obvious evidence of 3NF violation is that a relation has some attributes with multiple values duplication (for many tuples). Such attributes are the first candidates to moving to another relation.

Read and remember!

A relvar is in **BCNF** if it satisfies 2NF and has no attribute that is transitively dependent on the primary key.

In other words: there must not be an attribute that is transitively dependent on PK.

Compare to 3NF:

A relvar is in **3NF** if it satisfies 2NF and has no nonprime attribute that is transitively dependent on the primary key.

In other words: there must not be an attribute that is not a part of PK and transitively dependent on PK.

BCNF: Boyce-Codd normal form (violation example)

"g_name" attribute is dependent on "g_type" attribute (while "g_type" itself is not a candidate key)

PK		4
g_set	g type	g_name
AK		AK
Set 1	Toys	Teddy Bear
Set 1	Sweets	Marmalade
Set 1	Fruits	Oranges
Set 2	Toys	Teddy Bear
Set 2	Sweets	Marmalade
Set 3	Toys	Teddy Bear

 $\{g_set, g_type\} \rightarrow \{g_name\}$ $\{g_type\} \rightarrow \{g_name\}$ This statement holds due to the following subject matter rules:

- No set may contain two or more items of the same type.
- No set may contain two or more items of the same name.
- No item type may contain two or more items.

BCNF: Boyce-Codd normal form (dealing with violations)

Before

gift

P	PK	
g_set AK	g_type	g_name AK
Set 1	Toys	Teddy Bear
Set 1	Sweets	Marmalade
Set 1	Fruits	Oranges
Set 2	Toys	Teddy Bear
Set 2	Sweets	Marmalade
Set 3	Toys	Teddy Bear

After

set 1-M relationship

P	PK	
s_name	s o type	
	FK	
Set 1	Toys	
Set 1	Sweets	
Set 1	Fruits	
Set 2	Toys	
Set 2	Sweets	

Toys

Set 3

object

PK g type	g_name
Toys	Teddy Bear
Sweets	Marmalade
Fruits	Oranges

BCNF: Boyce-Codd normal form (conclusion)

- BCNF (like 3NF) doesn't protect you from "local mistakes", but it keeps you from violating "global rules".
- One of the most obvious evidence of BCNF violation is that a relation has candidate keys intersection.
- Most relations that satisfy 3NF also satisfy BCNF, because BCNF violation require specific subject matter rules.

Read and remember!

A relvar is in **4NF** if it satisfies BCNF and any multi-valued dependency that holds in this relation is implied by some superkey.

In other words: there must not be non-trivial multi-valued dependencies.

4NF: fourth normal form (violation example)

One applicant may apply to several university_application

One faculty has several entrance exams, i.e.: {ua_faculty} → {ua_exam}

{ua applicant} → {ua faculty}

faculties, i.e.:

For each applicant we have to add as many rows, as many exams there are on a faculty, this applicant applies to.

7 - 7 -		
ua_applicant	ua_faculty	<u>ua_exam</u>
	PK	
Ivanov I.I.	Math. faculty	Computer science
Ivanov I.I.	Math. faculty	Mathematics
Ivanov I.I.	Phys. faculty	Computer science
Ivanov I.I.	Phys. faculty	Physics
Petrov P.P.	Math. faculty	Computer science
Petrov P.P.	Math. faculty	Mathematics
Sidorov S.S.	Phys. faculty	Computer science
Sidorov S.S.	Phys. faculty	Physics

4NF: fourth normal form (dealing with violations)

Before

university_application

ua_applicant	ua_faculty	<u>ua_exam</u>
	PK	
Ivanov I.I.	Math. faculty	Computer science
Ivanov I.I.	Math. faculty	Mathematics
For each applican have to add as m	t we Phys. faculty	Computer science
Petrov P.P. rows, as many ex	Phys. faculty ams	Physics
there are on a fac		Computer science
this applicant appli		Mathematics
Sidorov S.S.	Phys. faculty	Computer science
Sidorov S.S.	Phys. faculty	Physics

After

application

a_applicant P	K <u>a_faculty</u>
Ivanov I.I.	Math. faculty
Ivanov I.I.	Phys. faculty
Petrov P.P.	Phys. faculty
Petrov P.P.	Math. faculty
Sidorov S.S.	Phys. faculty

No relationships

exam

e_faculty P	K <u>e exam</u>
Math. faculty	Computer science
Math. faculty	Mathematics
Phys. faculty	Computer science
Phys. faculty	Physics

4NF: fourth normal form (dealing with violations, more realistic)

4NF: fourth normal form (conclusion)

- 4NF (like BCNF) doesn't protect you from "local mistakes", but it keeps you from violating most "global rules".
- One of the most obvious evidence of 4NF violation is that a relation has a group of three or more attributes with pairwise dependencies inside such group.
- Most relations that satisfy BCNF also satisfy 4NF, because 4NF violation require specific subject matter rules.

<epam>

Normal Forms – Part 2

Relational Databases Basics

