Localization with Monte-Carlo

Real-Time Embedded System - The F1tenth autonomous racing

H

Course outline

- Intro course + basics of AD
- > Hardware platform
- > ROS2: Installation and profiling
 - Ex: ROS2 to HiL, open a bag
- > Navigation: FTG, FTW, Pure pursuit
 - EX: navigation HiL
- > Perception: scan matching, PF, LIO?
 - Ex: perception (PF with PThreads)
- > Build the car

I do <u>not</u> cover all aspects of AD!!!

- > Systems and control theory => Prof. Falcone
- > Platforms and algorithms for autonomous systems => Prof. Sanudo & Prof. Falcone
- High-Performance Computing => Prof. Marongiu (FIM)
- Machine Learning => Cucchiara's

Why do we need maps?

Defining path

 \rightarrow 2nd right, 2nd right, 1st right, 1st left, 1st right

Why do we need maps?

Compute racing lines

- > Precise acceleration/braking/turn points
- > Typically, a LUT

Simultaneous Location And Mapping

Task: Build the map and Localize

- > Can be treated as two different problems...os as one (SLAM)!
- > Is SLAM really needed?
- > (In racing..no..)

Which sensors to use?

LiDAR is the most precise for distance

> All known limitations in cost, fragility...

Cameras are less precise

- ..but cheaper and robust
- > Feature-based localization

Mix different sensors (fuse them)

SLAM: A Chicken-Egg problem

Localization: Scan Matching

Challenge:

Where is the robot with respect to the previous frame

Learning Outcome:

Iterative closest point algorithm, implementing a real research paper

Assignment:

Scan matching using iterative closest point in the simulator

Localization: Scan Matching

Scan matching is a fundamental localization algorithm, and is used in most of the modern SLAM algorithms.

Iterative closest point algorithm

Highly sensitive to noise

Assumption:

> most likely car position at Scan 2 is the position that gives best overlap between the two scenes

Initial position in world coordinates

Assumption:

> most likely car position at Scan 2 is the position that gives best overlap between the two scenes

Initial position in world coordinates

Localization flow

We don't employ SLAM, and we use a fast MC method, more robust to noise Assume this is Build the map done Point cloud Serial Point cloud Úrg Perc/Loc ROS Plan+ Ctrl Teensy ROS ROS ROS ROS2 GNU/Linux

Teensy

NVIDIA Jetson NX

Monte-Carlo methods

> Random-based experiments

Used in

- \rightarrow Solving deterministic problems (e.g., π computation)
- > Studying random systems

Sensors

LiDAR

- > 270° FoV
- > 10m range
- > High accuracy

Odometry

- > Engine speed
- > Steering angle
- > Low accuracy

Particle Filter

1) Initialization

Map preprocessing

- > Build a distance map
- By querying we can get the nearest wall distance given a set of coordinates (x, y)
- > Used to compute the **weight** of every ray => particle

Precompute sensor model

Spawn (random) particles

- > We spawn the particles at a given initial pose
- > We spread them around with a gaussian distribution

2) Scan downsampling

Each LiDAR scan has a lot of redundant information

- > With our LiDAR we have 1080 rays
- > Processing each ray is expensive and practically useless
- > We initially reduce the lidar scan size by culling the out-of-range rays
- > We then linearly downsample them into a fixed size

3) Motion model

Moves the particles to the estimate position

- > Ackermann model
- > Using odometry data (in our case, by VESC)
- Adds noise (to represent noise)

This tells us the general area where the vehicle might be located

> initialized manually at race start

Issue in simulator: odometry is too precise!!

4) Sensor model (particles weighting)

Calculate Rays

- > Calculates a simulated scan for each particle
- > We use ray marching for this task
- > Highly parallel

Compute Weights

- Scores each particle based on the simulated scan similarity
- > Look-up table

Normalize

- Normalize particle weights
- > Weight sum is now 1
- > We can easily estimate the pose from here

Issue with motion model

Original Particles

After N iterations

Issue with motion model

Original Particles

After N iterations

Resampling

5) Resampling

We respawn the particles around the estimated pose

> Using a weighted uniform distribution

This step is useful to

- > Eliminate outliers generated during the processing
- Avoid divergence by moving the particles closer to the estimated pose

Parameters

Accuracy/performance parameters

- > Number of particles
- > Number of downsampled rays
- > Basically, reduce the computational load

Accuracy/divergence parameters

- > Motion model noise distribution
 - If you spread the particles too much you reduce the overall accuracy
 - If you don't spread them enough, the particles may not model the odometry correctly

Parallelization

Ray marching is embarassingly parallel!

- > Particle computation is data-parallel
- > Rays computation is data-parallel

Can parallelize it with PThreads

- > Find our code in Code/particle_filter folder from the course website
- > Branch refactor!!!
- Also, acceleration with CUDA (GPUs) and FPGA (HW accelerators)

Multi-threading optimizations (possible project)

More particles/rays

- > More precision
- > Require more threads

More threads

- > Faster (scale out)
- > Can compute more particles (scale up)
- > Less resources for other applications

Solution: dynamic thread adjustement!

References

Course website

- > http://personale.unimore.it/rubrica/contenutiad/markober/2023/71846/N0/N0/10005
- https://github.com/HiPeRT/F1tenth-RTES
 - Online resources/preview

My contacts

- > paolo.burgio@unimore.it
- http://hipert.mat.unimore.it/people/paolob/

Resources

- > https://f1tenth.org
- > A "small blog"
 - http://www.google.com