Лабораторная работа 5: Изучение алгоритма настройки автояркости изображения

Цель работы: реализовать программу, которая позволяет проводить настройку автояркости изображения в различных цветовых пространствах.

Описание:

Программа должна быть написана на С/С++ и не использовать внешние библиотеки.

Аргументы передаются через командную строку:

lab5.exe <имя_входного_файла> <имя_выходного_файла> <преобразование> [<смещение> <множитель>],

- <преобразование>:
 - 0 применить указанные значения <смещение> и <множитель> в пространстве RGB к каждому каналу;
 - 1 применить указанные значения <смещение> и <множитель> в пространстве YCbCr.601 к каналу Y;
 - 2 автояркость в пространстве RGB: <смещение> и <множитель> вычисляются на основе минимального и максимального значений пикселей;
 - 3 аналогично 2 в пространстве YCbCr.601;
 - 4 автояркость в пространстве RGB: <смещение> и <множитель> вычисляются на основе минимального и максимального значений пикселей, после игнорирования 0.39% самых светлых и тёмных пикселей;
 - 5 аналогично 4 в пространстве YCbCr.601.
- <смещение> целое число, только для преобразований 0 и 1 в диапазоне [-255..255];
- <множитель> дробное положительное число, только для преобразований 0 и 1 в диапазоне [1/255..255].

Значение пикселя Х изменяется по формуле:

(Х-<смещение>)*<множитель>.

YCbCr.601 в РС диапазоне: [0, 255].

Входные/выходные данные: PNM P5 или P6 (RGB).

Частичное решение: только преобразования 0-3 + корректно выделяется и освобождается память, закрываются файлы, есть обработка ошибок.

Полное решение: все остальное.

Если программе передано значение, которое не поддерживается – следует сообщить об ошибке.

Коды возврата:

0 - ошибок нет

1 - произошла ошибка

В поток вывода (printf, cout) выводится только следующая информация: для преобразований 2-5 найденные значения <смещение> и <множитель> в формате: "<смещение> <множитель>".

Сообщения об ошибках выводятся в поток вывода ошибок:

C: fprintf(stderr, "Error\n");

C++: std::cerr