Data Mining (EECS 6412)

Clustering

Outline

- ▶ What is Clustering?
- ► Types of Data in Cluster Analysis and Similarity Measures
- Clustering Methods
 - ▶ K-means
 - ▶ K-medoids
 - ▶ Hierarchical clustering method
 - ▶ DBSCAN: a Density-based Algorithm
- Cluster Validity Measures

,

What Is Clustering?

► Group data into clusters so that the points in one group are similar to each other and are as different as possible from the points in other groups

Examples of Clustering Applications

- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- Image processing: Soil scientists filter trees from background
- <u>Genomics:</u> Group genes to predict possible functions of genes with unknown function
- <u>City-planning:</u> Identifying groups of houses according to their house type, value, and geographical location
- **WWW**
 - ▶ Cluster web documents
 - ▶ Cluster web log data to discover groups of users

Example

- > Filtering real images
 - Images of trees taken in near-infrared band (NIR) and visible wavelength (VIS)
 - > 512x1024 pixels and each of them contains a pair of brightness values (NIR,VIS)

The images taken in NIR and VIS

1st step: 284 seconds 2nd step: 71 seconds

The sunlit leaves, branches and shadows

5

What Is Good Clustering?

- ► A good clustering method will produce high quality clusters with
 - ▶ high <u>intra-class</u> similarity
 - ▶ low <u>inter-class</u> similarity
- ► The <u>quality</u> of a clustering method is measured by its ability to discover some or all of the <u>hidden</u> patterns.
- ▶ The quality of a clustering result depends on
 - ▶ the clustering method
 - the similarity measure used by the method.

Data Representation

▶ Typical Data matrix

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$$

▶ Similar to the table used in classification algorithm, but without the class attribute.

7

Similarity (or Dissimilarity) Measures

► For data containing only *numeric attributes*, a popular measure of distance between two data objects, *i* and *j*, is *Minkowski distance*:

$$d(i,j) = \sqrt{(|x_{i_1} - x_{j_1}|^q + |x_{i_2} - x_{j_2}|^q + ... + |x_{i_p} - x_{j_p}|^q)}$$

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two *p*-dimensional data objects, and *q* is a positive integer.

▶ If q = 1, d is Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

Similarity and Dissimilarity Between Objects (*Cont'd*)

• If q = 2, d is Euclidean distance:

$$d(i,j) = \sqrt{(x_{i_1} - x_{j_1})^2 + (x_{i_2} - x_{j_2})^2 + \dots + (x_{i_p} - x_{j_p})^2}$$

- Properties of Minkowski distance
 - ▶ $d(i,j) \ge 0$ (nonnegative)
 - d(i,i) = 0 (distance to itself is 0)
 - d(i,j) = d(j,i) (symmetric)
 - ▶ $d(i,j) \le d(i,k) + d(k,j)$ (Triangular inequality)
- Also, one can use weighted distance (or other dissimilarity measures)

$$d(i,j) = \sqrt{w_1 |x_{i_1} - x_{j_1}|^q + w_2 |x_{i_2} - x_{j_2}|^q + \dots + w_p |x_{i_p} - x_{j_p}|^q)} \quad (q > 0)$$

9

Similarity (or Dissimilarity) Measures

Another similarity measure for data with only numeric attributes is cosine similarity:

Similarity(
$$\mathbf{x}, \mathbf{y}$$
) = $\cos(\theta) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$

where θ is the angle between two examples \mathbf{x} and \mathbf{y} .

Similarity (or Dissimilarity) Measures

- ▶ What if data contain *both numeric and nominal attributes*?
- ► Can use the distance measure that we introduced in the kNN method:

Distance
$$(x, y) = \sum_{i=1}^{m} dist(x_i, y_i)$$

where $(x_1, x_2, ..., x_m)$ and $(y_1, y_2, ..., y_m)$ are two instances;

$$dist(x_i, y_i) = \begin{cases} 0 & \text{if } x_i \text{ and } y_i \text{ are nominal and } x_i = y_i \\ 1 & \text{if } x_i \text{ and } y_i \text{ are nominal and } x_i \neq y_i \\ |norm(x_i) - norm(y_i)| & \text{if } x_i \text{ and } y_i \text{ are continuous} \end{cases}$$

11

Outline

- ▶ What is Clustering?
- Types of Data in Cluster Analysis and Similarity Measures
- ► Clustering Methods
 - ▶ K-means
 - ▶ K-medoids
 - ▶ Hierarchical clustering method
 - ▶ DBSCAN: a Density-based Algorithm
- ► Cluster Validity Measures

Major Clustering Approaches

- ▶ <u>Partitioning algorithms</u>: Construct various partitions and then evaluate them by some criterion
- Hierarchical algorithms: Create a hierarchical decomposition of the set of data (or objects) using some criterion
- <u>Density-based</u>: based on connectivity and density functions
- ▶ <u>Model-based</u>: A model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other

13

Partitioning Algorithms: Basic Concept

- ightharpoonup Partition n objects into k clusters
 - ▶ Optimize the chosen partitioning criterion
- ▶ Global optimal: exhaustively enumerate all partitions
 - ▶ Infeasible in practice
- ▶ Heuristic methods: *k-means* and *k-medoids* algorithms
 - ▶ <u>k-means</u> (MacQueen'67): Each cluster is represented by the mean values of the objects in the cluster (as the cluster center)
 - ▶ <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

K-means

Group objects into *k* clusters:

- Arbitrarily choose *k* objects as the initial cluster centers
- ▶ Until no change, do
 - ► (Re)assign each object to the cluster to which the object is the most similar, based on the mean value of the objects in the cluster
 - ▶ Update the cluster means, i.e., calculate the mean value of the objects for each cluster

Comments on the *K-Means* Method

- ▶ Strength: Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.
 - ▶ Comparing: PAM: $O(k(n-k)^2)$, CLARA: $O(ks^2 + k(n-k))$
- Comment: Often terminates at a *local optimum*.
- Weakness
 - ▶ Sensitive to the initial clusters
 - ▶ Applicable only when *mean* is defined, then what about categorical data?
 - ightharpoonup Need to specify k, the *number* of clusters, in advance
 - ▶ Very sensitive to noise and *outliers*
 - May have a problem when clusters have different sizes and are close to each other.
 - Not suitable to discover clusters with *non-convex shapes*

nple

A Problem of k-Means Method

- ▶ The k-means algorithm is sensitive to outliers!
 - ▶ Since an object with an extremely large value may substantially distort the distribution of the data.
- ► K-Medoids: Instead of taking the **mean** value of the objects in a cluster as a reference point, **medoids** can be used, which is the **most centrally located** object in a cluster.

29

PAM: A K-medoids Method

- ▶ PAM: Partitioning Around Medoids (1987)
- ightharpoonup Arbitrarily choose k objects as the initial medoids
- Until no change, do
 - ▶ (Re)assign each object to the cluster whose medoid is the nearest
 - For each pair of a non-medoid object o' and a medoid
 o, compute the total cost, S, of swapping medoid o with
 o'
 - ▶ If the lowest cost $S_{lowest} < 0$ then swap o with o_{lowest} ' to form the new set of k medoids

How to Choose the new Medoid for a Cluster

▶ Use the squared-error criterion

$$E_o = \sum_{p \in C_i} d(p, o)^2$$

where o is a candidate medoid for the ith cluster C_i and d(p, o) is the distance between o and point p in C_i .

▶ Choose point o in C_i that minimizes E_o

Pros and Cons of PAM

- ▶ PAM is more robust than k-means in the presence of noise and outliers
 - ▶ Medoids are less influenced by outliers
- ▶ PAM is efficient for small data sets but does not scale well for large data sets
 - $ightharpoonup O(k(n-k)^2)$ for each iteration
- ▶ Sampling based method: CLARA

33

Outline

- ▶ What is Clustering?
- Types of Data in Cluster Analysis and Similarity Measures
- Clustering Methods
 - ▶ K-means
 - ▶ K-medoids
 - ▶ Hierarchical clustering method
 - ▶ DBSCAN: a Density-based Algorithm
- ▶ Cluster Validity Measures

Hierarchical Clustering

- ▶ Iteratively merge or split clusters to form a tree of clusters
- Two types
 - ▶ Agglomerative (bottom-up): merge clusters iteratively
 - ▶ Start by placing each object in its own cluster
 - ▶ Merge these small clusters into larger and larger clusters
 - ▶ until all objects are in a single cluster
 - ▶ Most hierarchical methods belong to this category. They differ only in their definition of between-cluster similarity
 - ▶ Divisive (top-down): split a cluster iteratively
 - ► Start with all objects in one cluster and subdivide them into smaller pieces

35

Hierarchical Clustering

▶ Use distance matrix as clustering criteria. This method does not require the number of clusters *k* as an input, but needs a termination condition

Decompose data objects into a several levels of nested partitioning (<u>tree</u> of clusters), called a <u>dendrogram</u>.

A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected</u> <u>component</u> forms a cluster.

Inter-cluster Distances in Hierarchical Clustering

- ► Three widely used ways to define the distance between two separate clusters:
 - ▶ Single linkage method (nearest neighbor):

$$d(C_{i}, C_{j}) = \min_{x \in C_{i}, y \in C_{j}} \{d(x, y)\}\$$

• Complete linkage method (furthest neighbor):

$$d(C_i, C_j) = \max_{x \in C_i, y \in C_j} \{d(x, y)\}$$

Average linkage method (unweighted pair-group average):

 $d\left(C_{i},C_{j}\right) = \underset{x \in C_{i}, y \in C_{j}}{\operatorname{avg}} \left\{d\left(x,y\right)\right\}$

Strengths and Limitations of Hierarchical Methods

- ▶ Conceptually simple
- ▶ Theoretical properties are well understood
- ▶ When clusters are merged/split, the decision is permanent
 - ► The number of different alternatives that need to be examined is reduced.
 - ▶ Erroneous decision are impossible to correct later
- ▶ Do not scale well:
 - ► Time complexity for agglomerative clustering is at least $O(n^2)$, where n is the number of total objects