Slowing Down the Weight Norm Increase in Momentum-based Optimizers

Byeongho Heo*, Sanghyuk Chun Chun*, Seong Joon Oh, Dongyoon Han, Sangdoo Yun, Youngjung Uh, Jung-Woo Ha

Clova AI Research, NAVER Corp

Two major breakthrough of DL

- Momentum-Based Weight Optimizers
 - Add "Momentum" to Optimizers
 - Give us more stable, fast convergence
 - Can go through the small Local Minima
- Normalization
 - Solve Internal Covariate Shift Problem
 - Makes scale-invariant weights.

Momentum-Based Weight Optimizer

- Problem of previous (without momentum) optimizers.
 - Slow optimization
 - Prone to local minima

Let's add a bit of momentum!

Momentum-Based Weight Optimizer

- By adding Momentum to optimizer, we get...
 - More Stable and Fast Convergence
 - Immunity to local minima

$$W_1 = W_0 - \eta \frac{\partial cost}{\partial W} + \alpha v$$

Normalization

- To prevent overfitting, we should regularize model complexity
 - Batch Normalization
 - Weight Normalization
 - Other Normalization Techniques...

Example of L2 Weight Normalization, Gives penalty to Complex Weights of model. λ is regularization strength

Final Cost = Cost(T,Y) +
$$\frac{\lambda}{2} ||w||_2$$

 $||w||_2 = w_1^2 + w_2^2 + w_3^2 + \dots + w_n^2$

Problem

- Normalization techniques in DNN result in the scale invariance for weights*
- Momentum-based optimizers with these scale-invariance abnormally increase the weight norms.
- Highly increased weight norms regularize the step size too earlier then we need.

Exploding Weight norm

• Figure on the right side, You can find out how weight norm drastically increased with momentum.

Normalization and Scale invariance

- When if f(cu) = f(u), we say that function f is scale invariant.
- When we normalize weight in neural nets, we observe $Norm(w^{T}x) = Norm((cw)^{T}x)$
- For any c > 0, normalization layer makes w scale-invariant.
- In the paper, we represent the scale-invariant weight via their L2 normalized vectors $\widehat{w} \coloneqq \frac{w}{\|w\|_2} \in \mathbb{S}^{d-1}$ (i.e. $c = \frac{1}{\|w\|_2}$).

Notations for the optimization steps

• In this paper, we write a GD algorithm as below:

```
w_{t+1} \leftarrow w_t - \eta p_t
Where \eta is learning rate and p is \nabla_w f(w).
```

- Thus, $\|\Delta w_{t+1}\|_2 \coloneqq \|w_{t+1} w_t\|_2 = \eta \|p_t\|_2$ is step size.
- Momentum-Based variants have more complex forms for p.

Notations for the optimization steps

- We will study the optimization problem in terms of the L2 normalized weights in \mathbb{S}^{d-1} , as opposed to the nominal space \mathbb{R}^d .
- As the result of GD algorithm, a virtual step takes place in \mathbb{S}^{d-1} .
- We refer to the length of the step on \mathbb{S}^{d-1} as the *effective step size*.

Effective Step Sizes for Vanilla GD

Effective step sizes for vanilla GD is as follows.

$$\|\Delta \widehat{w}_{t+1}\|_2 \coloneqq \frac{\|\Delta w_t\|_2}{\|w_t\|_2}$$

 Following Lemma 2.1 shows relationship between the effective step sizes and the weight norm.

$$||w_{t+1}||_2^2 = ||w_t||_2^2 + \eta^2 ||p_t||_2^2.$$

- This Lemma indicates Norm growth by vanilla GD, where $p = \nabla_w f(w)$.
- The Lemma 2.1 follows from the orthogonality in equation below.

$$0 = \frac{\partial f(cw)}{\partial c} = w^{\mathsf{T}} \nabla_w f(w).$$

Rapid norm growth for the momentum-based GD

Momentum is one of keystone for training modern DNNs.

$$w_{t+1} \leftarrow w_t - \eta p_t$$

$$p_t \leftarrow \beta p_{t-1} + \nabla_{w_t} f(w_t)$$

- Momentum-based GD uses previous gradient p_{t-1} , to avoid local minima and keep going to "Good Direction".
- But what if the p_{t-1} is not a proper direction anymore?

Norm growth by Momentum

$$||w_{t+1}||_2^2 = ||w_t||_2^2 + \eta^2 ||p_t||_2^2 + 2\eta^2 \sum_{k=0}^{t-1} \beta^{t-k} ||p_k||_2^2$$

- Comparing this Lemma 2.2 with Lemma 2.1 in slide 11, you can notice the last term is added in Lemma 2.2.
- This term keep accumulating the past updates.
- It leads to super-highly accelerated increase of weight norms.
- We should remove the accumulated error term in Lemma 2.2, while retaining the benefits of momentum.

Solution: Projection

• Let $\Pi_w(x)$ be a projection onto the tangent space of w:

$$\Pi_w(x) \coloneqq x - (\widehat{w} \cdot x)\widehat{w}$$

• Let's apply $\Pi_w(x)$ to the momentum update p to remove unnecessary component.

$$w_{t+1} = w_t - \eta q_t$$

$$q_t = \begin{cases} \Pi_w(p_t) & \text{if } w^{\mathsf{T}} \nabla_w f(w) < \delta \\ p_t & \text{otherwise} \end{cases}$$

• If $w^{\mathsf{T}} \nabla_w f(w) < \delta$ detects scale invariances, Algorithm takes projection of p_t .

Figure 2: **Method.** Vector directions of the gradient, momentum, and ours.

Solution: Projection

 It alleviate norm accumulation shown in Lemma 2.2 back to the vanilla GD growth rate in Lemma 2.1 due to the orthogonality.

 $||w_{t+1}||_2^2 = ||w_t||_2^2 + \eta^2 ||q_t||_2^2.$

Figure 2: **Method.** Vector directions of the gradient, momentum, and ours.

Now, We can apply momentum without exploding weight norm.

Algorithm Application: SGDP/AdamP

Apply projection method to ADAM optimizer.

```
Algorithm 1: SGDP

Require: Learning rate \eta > 0,

momentum \beta > 0, thresholds

\delta, \varepsilon > 0.

1: while w_t not converged do

2: p_t \leftarrow \beta p_{t-1} + \nabla_w f_t(w_t)

3: if w_t \cdot \nabla_w f(w_t) < \delta then

4: w_{t+1} \leftarrow w_t - \eta \prod_{w_t} (p_t)

5: else

6: w_{t+1} \leftarrow w_t - \eta p_t

7: end if

8: end while
```

```
Algorithm 2: AdamP
   Require: Learning rate \eta > 0,
         momentum 0 < \beta_1, \beta_2 < 1,
         thresholds \delta, \varepsilon > 0.
    1: while w_t not converged do
     2: m_t \leftarrow
              \beta_1 m_{t-1} + (1 - \beta_1) \nabla_{w_t} f_t(w_t)
     v_t \leftarrow
              \beta_2 v_{t-1} + (1 - \beta_2) (\nabla_w f_t(w_t))^2
    4: \boldsymbol{p}_t \leftarrow \boldsymbol{m}_t/(\sqrt{\boldsymbol{v}_t} + \varepsilon)
    5: if \boldsymbol{w}_t \cdot \nabla_{\boldsymbol{w}} f(\boldsymbol{w}_t) < \delta then
                 \boldsymbol{w}_{t+1} \leftarrow \boldsymbol{w}_t - \eta \, \Pi_{\boldsymbol{w}_t}(\boldsymbol{p_t})
              else
                  \boldsymbol{w}_{t+1} \leftarrow \boldsymbol{w}_t - \eta \, \boldsymbol{p}_t
              end if
   10: end while
```

Experiment

- Following shows the trend of three optimizers. Vanilla SGD, momentum SGD and finally Lemma 2.2 SGDP.
- Trained ResNet18 Models on ImageNet for 100 epochs.

Figure 3: Empirical analysis of optimizers. Weight norms $\|\boldsymbol{w}\|_2$ (left), effective step sizes $\|\Delta \widehat{\boldsymbol{w}}_t\|_2$ (center), and accuracies (right) for ResNet18 trained on ImageNet with variants of SGD.

Results

 SGDP and AdamP have shown better results on various DL tasks like Image Classification Object Detection, etc.

Table 1: **ImageNet classification.** Accuracies of state-of-the-art networks trained with SGDP and AdamP.

Architecture	# params	SGD [20]	SGDP (ours)	Adam [9]	AdamP (ours)
MobileNetV2 [22]	3.5M	71.61	72.18 (+0.57)	72.12	72.57 (+0.45)
ResNet18 [11]	11.7M	70.28	70.73 (+0.45)	70.41	70.81 (+0.40)
ResNet50 [11]	25.6M	76.64	76.71 (+0.07)	76.65	76.94 (+0.29)
ResNet50 [11] + CutMix [23]	25.6M	77.61	77.72 (+0.11)	78.00	78.31 (+0.31)

Table 5: Audio classification. Results on three audio classification tasks with Harmonic CNN [38].

Optimizer	Music Tagging [35]		Keyword Spotting [36]	Sound Event Tagging [37]	
	ROC-AUC	PR-AUC	Accuracy	F1 score	
Adam + SGD [39]	91.27	45.67	96.08	54.60	
Adam	91.12	45.61	96.47	55.24	
AdamP (ours)	91.35 (+0.23)	45.79 (+0.18)	96.89 (+0.42)	56.04 (+0.80)	

Summary

- They found a huge problem: accumulated weight norms are slowing down the convergence.
- Problem came from Normalization and Momentum-based GD.
- Solved problem using projection to get rid of accumulated norms.
- And It works well!

Slowing Down the Weight Norm Increase in Momentum-based Optimizers

Official Project Page: https://clovaai.github.io/AdamP/

Paper: https://arxiv.org/abs/2006.08217

Official PyTorch Implementation: https://github.com/clovaai/adamp

Thank you for watching!