1.1—A inequação $|1-x| \le 1/x$ é equivalente a,

$$\left(1 - x \le \frac{1}{x} \land x \le 1\right) \lor \left(x - 1 \le \frac{1}{x} \land x > 1\right),$$

que, resolvida, é equivalente a $x \in]0, (1 + \sqrt{5})/2].$

1.2—

$$Maj(A) = [(1 + \sqrt{5})/2, +\infty[; Min(A) =] -\infty, 0].$$

$$\sup(A) = \max(A) = (1 + \sqrt{5})/2.$$

$$\inf(A) = 0, \min(A)$$
 não existe.

2.—A verificação para n=1 é imediata. Admitindo como hipótese de indução que $\sum_{k=1}^{n}(k+1)2^k=n2^{n+1}$, tentaremos demonstrar a tese, i.e., $\sum_{k=1}^{n+1}(k+1)2^k=(n+1)2^{n+2}$. Tem-se,

$$\sum_{k=1}^{n+1} (k+1)2^k = \sum_{k=1}^{n} (k+1)2^k + (n+2)2^{n+1} =_{\text{H.I.}} n2^{n+1} + (n+2)2^{n+1} = 2(n+1)2^{n+1} = (n+1)2^{n+2},$$

como se pretendia. O resultado fica assim estabelecido por indução matemática.

- 3.1—Verdade
- 3.2—Verdade

4.1—A demonstração pode fazer-se por indução matemática, i.e., podemos demonstrar por indução matemática que $(\forall n)a_n \geq a_{n+1}$.

O caso n=0 é uma simples verificação. Admitamos que $a_n \ge a_{n+1}$ para provar que $a_{n+1} \ge a_{n+2}$. Temos,

$$a_n \ge a_{n+1} \Rightarrow \frac{1}{a_n} \le \frac{1}{a_{n+1}} \Rightarrow -\frac{1}{a_n} \ge -\frac{1}{a_{n+1}} \Rightarrow 3 - \frac{1}{a_n} \ge 3 - \frac{1}{a_{n+1}} \equiv a_{n+1} \ge a_{n+2},$$

como se pretendia.

4.2—Nas condições inicadas a sucessão é limitada e monótona, por isso é encessariamente convergente. Para calcular o limite usamos a relação de recorrência e o facto de que se a_n) $\to \alpha$ então também se tem $(a_{n+1}) \to \alpha$. Assim, se α é o limite de (a_n) (e de (a_{n+1})) então passando a relação de recorrência ao limite, concluímos que α satisfaz a equação.

$$\alpha = 3 - \frac{1}{\alpha} \equiv \alpha^2 = 3\alpha - 1 \equiv \alpha^2 - 3\alpha + 1 = 0.$$

Esta equação tem duas soluções: $(3 \pm \sqrt{5})/2$, destas só a solução $(3 + \sqrt{5})/2$ é ≥ 2 pelo que temos que ter $\alpha = (3 + \sqrt{5})/2$.

- 5.— (a) 1/2; (b) ; (c) 2.
- 6.— (a) Não existe; (b) 0; (c) 0.

7.1—Neste conjunto, a função obtém-se de funções contínuas usando operações algébricas e composição de funções, logo é contínua.

7.2.—Se f é contínua em x=0 então $f(0)=\lim_{x\to 0} f(x)$. Tem-se que,

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\ln(1+x^2)}{x} = \lim_{x \to 0} \frac{\ln(1+x^2)}{x^2} \cdot x = 1 \cdot 0 = 0.$$

8.—A função é contínua em a=1 pois como se tem $\lim_{x_1} x=1$ e $\lim_{x\to 1} 1/x=1$. dado $\epsilon>0$ podemos fixar $\delta>0$ tal que $x\in]1-\delta,1]$ implica $|x-1|,|1/x-1|<\epsilon$, ou seja, implica que $|f(x)-1|<\epsilon$. Isto mostra que $\lim_{x\to 1} f(x)=1=f(1)$. A função não é contínua em b=0, por exemplo pois, considerando uma sucessão (α_n) de irracionais, tal que $(\alpha_n)\to 0^+$ tem-se $(f(\alpha_n))\to +\infty$.

1