SCHOOL OF ELECTRONIC ENGINEERING AND COMPUTER SCIENCE QUEEN MARY UNIVERSITY OF LONDON

CBU5201 Machine Learning A bit of notation and basic maths

Credit to Dr Jesús Requena Carrión

26 Sept 2022

Agenda

The dataset

Linear algebra

Linear functions

Basic probability and statistics

The dataset

Datasets are collections of items described by a set of attributes.

Animal (ID)	Body mass [g]	Heart rate [bpm]
Wild mouse	22	480
Rabbit	2.5×10^3	250
Humpback whale	30×10^6	30

Types of attributes

The basic types of attributes are:

- Continuous (real numbers: temperature, voltage)
 - Equality, ordering and distance are defined
- Categorical (discrete, nominal: name, nationality)
 - Equality is defined, ordering and distance are not
- Ordinal (categories with ordering: low/medium/high)
 - Ordering and equality are defined, distance is not

The dataset as a table

Datasets can be represented as tables, where rows correspond to items and columns to attributes .

The first 5 instances of a dataset recording the age and salary of a group of people are shown below in a table form:

	Age	Salary
S_1	18	12000
S_2	37	68000
S_3	66	80000
S_4	25	45000
S_5	26	30000

The values S_1 , S_2 ... are not attributes, but identifiers.

The dataset as a matrix

Datasets consisting of **numerical attributes** can also be represented in **matrix** form, for instance:

$$S = \begin{pmatrix} 18 & 12000 \\ 37 & 68000 \\ 66 & 80000 \\ 25 & 45000 \\ 26 & 30000 \\ \vdots & \vdots \end{pmatrix}$$

This is a useful and compact notation that will make it easier for us to formulate problems and represent computations.

The dataset as a point cloud

Datasets can be represented **sets of points** in a space (known as the **feature** or **attribute space**), where each axis corresponds to one attribute. The values of the attributes are used as coordinates.

The dataset as a point cloud

Categorical values can be represented by **different symbols** in a point cloud, instead of a value in an axis.

From basket to table

In market basket analysis, raw items consist of a list of products, for instance:

```
S_1 = \{ \text{The Beatles}, \text{The Who, Cream} \}
S_2 = \{ \text{Muse}, \text{Franz Ferdinand} \}
S_3 = \{ \text{The Who}, \text{Franz Ferdinand} \}
...
```

Such datasets can be represented as a table, where each product corresponds to a binary attribute:

	The Beatles	The Who	Cream	Muse	Franz Ferdinand
S_1	1	1	1	0	0
S_2	0	0	0	1	1
S_3	0	1	0	0	1

Datasets with grid support

Digital signals and images are collections of values on a temporal and spatial grid. Each value can be treated as separate attribute.

A collection of images consisting of 28×28 pixels can be represented as a table with 784 columns, where each column represents one pixel.

	x_1	x_2	x_3	 x_{784}
S_1		0.1		
S_2	0	0.1	0	 0
S_3	0	0.7	0.6	 0.1

It is however more useful to represent each individual image as a 28×28 array, where each entry corresponds to a pixel value.

Agenda

The dataset

Linear algebra

Linear functions

Basic probability and statistics

Scalars

A **scalar** is value consisting of one numerical quantity. Scalars are usually represented by a letter of the alphabet in italics, for instance a.

When dealing with several scalars, we can use **different symbols** (a, b, c), or use **one symbol** with a **subscript** (also known as **index**) whose value identifies each scalar (a_1, a_2, a_3) .

Using subscript notation, large collections of scalars can be represented, for instance a_0, a_1, \ldots, a_{99} or equivalently a_i , where $0 \le i \le 99$.

Sum and product notation

The sum and product notations provide a compact way of expressing operations involving many scalars.

The **sum notation** uses the symbol Σ (meaning "sum"):

$$\sum_{i=1}^{N} a_i = a_1 + a_2 + a_3 + \dots + a_N$$

It reads as the sum of all the scalars a_i starting from i=1 through i=N. If the subscripts are known, we can write $\sum_i a_i$ or simply $\sum a_i$.

The **product notation** uses the symbol Π (meaning "product"):

$$\prod_{i=1}^{N} a_i = a_1 \times a_2 \times a_3 \times \dots \times a_N$$

and sometimes will be written as $\prod_i a_i$ or $\prod a_i$.

Linear combination

Given N scalars a_i , a linear combination is the sum

$$\sum_{i=1}^N b_i a_i = b_1 \times a_1 + b_2 \times a_1 + b_3 \times a_3 + \dots + b_N \times a_N$$

where the N scalars b_i are the **weights** of the linear combination.

Vectors

In some situations, we are interested in values that are represented by an **ordered arrangement of scalars**, for instance the coordinates of a point or a digital picture consisting of an array of pixels.

Vectors are ${f 1D}$ arrays of scalars arranged in order. Typically vectors are represented in bold typeface and its elements are written in italic typeface with a subscript. By using brackets, a vector consisting of N elements is represented as a **column**:

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{bmatrix}$$

Matrices

A matrix is a **2D** array of scalars. Matrices are usually represented as an uppercase variable in bold typeface and its elements are written in italic typeface with two subscripts instead of one, for instance:

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,M} \\ a_{2,1} & a_{2,2} & & a_{2,M} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N,1} & a_{N,2} & \dots & a_{N,M} \end{bmatrix}$$

Matrix $\mathbf A$ is said to have N rows (height) and M columns (width) or to be an $N \times M$ matrix, where $N \times M$ is known as the **shape** of the matrix.

Individual elements of the matrix are denoted by $a_{i,j}$, where i is the row number and j the column number.

Some special matrices

- A **vector** can be seen as an $N \times 1$ matrix, i.e. a matrix consisting of just one column
- A square matrix has the same number of rows and columns, i.e. its an $N \times N$ matrix. Its diagonal consists of the elements where both subscripts are identical, i.e. $a_{1,1}, a_{2,2}, \ldots$
- A diagonal matrix is a square matrix such that all its entries (except the diagonal) are zero. Diagonal entries can be nonzero or zero
- The **identity matrix I** is the diagonal matrix with 1's on the diagonal and 0's elsewhere:

$$\mathbf{I}_{3\times3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Transpose

The transpose \mathbf{A}^T of a matrix \mathbf{A} is a matrix created by interchanging rows and columns, reading the rows from **left to right** and the columns from **top to bottom**.

For instance, if
$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 5 & 6 \\ 0 & 3 \end{bmatrix}$$
, then $\mathbf{A}^T = \begin{bmatrix} 1 & 5 & 0 \\ 4 & 6 & 3 \end{bmatrix}$

Note that the transpose of an $N\times M$ matrix is an $M\times N$ matrix and hence the transpose of a $N\times 1$ vector is a single-row $1\times M$ matrix.

Matrix addition and multiplication by scalar

We can add two matrices $\bf A$ and $\bf B$ as long as they have the **same** shape, by adding element-wise, for instance:

$$\begin{bmatrix} 1 & 4 \\ 5 & 6 \\ 0 & 3 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ -1 & 2 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 4 & 8 \\ 0 & 1 \end{bmatrix}$$

By using the mathematical notation that we have developed, the elements $c_{i,j}$ of the matrix $\mathbf{C} = \mathbf{A} + \mathbf{B}$ are defined as $c_{i,j} = a_{i,j} + b_{i,j}$.

Similarly, if b is a scalar, the elements $c_{i,j}$ of the matrix $\mathbf{C} = b \times \mathbf{A}$ are defined as $c_{i,j} = b \times a_{i,j}$.

Matrix multiplication

The product of matrices represent **linear transformations**. The product C = AB exists if the number of columns of A is the same as the number of rows of B. The entries of C are defined as the linear combination:

$$c_{i,j} = \sum_{k} a_{i,k} b_{k,j}$$

Visually:

$$B = \begin{pmatrix} b_{1,1} & b_{1,2} & \cdots & b_{1,M} \\ b_{2,1} & b_{2,2} & \cdots & b_{2,M} \\ \vdots & \vdots & \vdots & \vdots \\ b_{P,1} & b_{P,2} & \cdots & b_{P,M} \end{pmatrix}$$

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,P} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,p} \\ \vdots & \vdots & \vdots & \vdots \\ a_{N,1} & a_{N,2} & \cdots & a_{N,P} \end{pmatrix} \quad \begin{pmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,M} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,M} \\ \vdots & \vdots & \vdots & \vdots \\ c_{N,1} & c_{N,2} & \cdots & c_{N,M} \end{pmatrix} = AB$$

For instance, $c_{1,2} = \sum_K a_{1,K} b_{K,2} = a_{1,1} b_{1,2} + a_{1,2} b_{2,2} + \dots + a_{1,P} b_{P,2}$. If **A** is $N \times P$ and **B** is $P \times M$, **C** = **AB** is $N \times M$.

Matrix inversion

The inverse ${\bf A}^{-1}$ of a square matrix ${\bf A}$ is a matrix such that there product is the identity matrix ${\bf I}:$

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$$

Not all the matrices have an inverse.

Agenda

The dataset

Linear algebra

Linear functions

Basic probability and statistics

The notion of function

Given two sets of objects, called domain and codomain, a function is a **rule** that associates (or maps) each element in the domain to exactly one element in the codomain.

The notation

$$y = f(x)$$

reads function f maps x to y. The scalar x is known as the **independent** variable and y as the **dependent variable**.

Functions can be represented graphically as for example, curves in a 2D space or surfaces in a 3D space, and in turn, functions can be used to describe curves and surfaces.

The straight line

The simplest function that maps one scalar value \boldsymbol{x} to another scalar value \boldsymbol{y} is the rule represented by the linear operation

$$y = w_0 + w_1 x$$

which corresponds to a straight line with slope w_1 and intercept point w_0 .

Planes and hyperplanes

Plane surfaces in 3D spaces map two scalar values x_1 and x_2 to one scalar value y and are represented by the linear combination

$$y = w_0 + w_1 x_1 + w_2 x_2$$

The notions of straight line and plane can be readily extended to any number of independent variables:

$$y = w_0 + w_1 x_1 + \dots + w_n x_n$$

The corresponding geometrical object is known as a hyperplane.

Straight lines, planes and hyperplanes in vector notation

Straight lines, planes and hyperplanes are defined by a **linear equation**, i.e. the dependent variable is a linear combination of the dependent variables.

Using vector notation, straight lines, planes and hyperplanes can be defined by the **same equation**:

$$y = \boldsymbol{w}^T \boldsymbol{x} = w_0 + w_1 x_1 + \dots + w_P x_P$$

where $\boldsymbol{w} = [w_0, w_1, \dots, w_P]^T$ is the weight vector, $\boldsymbol{x} = [1, x_1, \dots, x_P]^T$ is a vector containing all the independent variables and P is the number of independent variables.

Straight lines, planes and hyperplanes in vector notation

If we now define $x_{P+1} = y$, then

$$x_{P+1} = \boldsymbol{x}^T \boldsymbol{w}$$

$$0 = \boldsymbol{x}^T \boldsymbol{w} - x_{P+1}$$

$$0 = \boldsymbol{x}'^T \boldsymbol{w}'$$

where $w' = [w_0, w_1, \dots, w_P, -1]^T$ and $x' = [1, x_1, \dots, x_P, x_{P+1}]^T$. Therefore, straight lines, planes and hyperplanes will sometimes be defined by the equation

$$\boldsymbol{x}^T \boldsymbol{w} = 0$$

This equation should be read as follows: every point x such that $x^Tw = 0$ belongs to the hyperplane defined by the weights w.

Agenda

The dataset

Linear algebra

Linear functions

Basic probability and statistics

Random variables

- A random variable is a variable that can take on different values randomly.
- An experiment is the act of producing such value, which we call outcome. Example: rolling a die or tossing a coin.
- Random variables can be discrete (e.g. a die) or continuous (e.g. tomorrow's temperature).
- An **event** is a set of values that a random variable can take. For instance, the values $\{1,4,5\}$ constitute an event in the case of the die, heads is an elementary event in the case of the coin.

Probability

A **probability** P(x) allows to quantify how likely a random variable is to take on the values in an event x:

- P(x) = 1 indicates that it is certain that the random variable will take on one of the values in x.
- P(x) = 0 indicates that it is impossible.

Given two random variables, the **joint probability** P(x,y) describes how likely the first random variable is to take on a value in x and the second random variable is to take on a values in y.

Finally, a **conditional probability** P(x|y) is the probability that the first variable takes on a value in x **given that we know** that the second has taken on a value in y.

Bayes'Theorem

Bayes'Theorem gives us a simple way to calculate a conditional probability P(x|y) from a probability P(y|x):

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

In the context of Bayes'Theorem, we will call P(x) and P(y) priors, and P(x|y) and P(y|x) and posteriors.

Probability distributions

- In general, the probability that a continuous random variable takes on a specific value is 0. Continuous random variables are best described by **probability distributions**, which quantify the density of probability, rather than the probability itself.
- The probability of an event can be calculated by **integrating** the distribution (i.e. obtaining its area or volume).

Gaussian distribution

An example of probability distribution is the Gaussian or normal distribution, which is defined as

$$N(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

