Table I. IMC-Based PID Controller Parameters^a

$\frac{\beta e^2}{2\beta^2 + 4\beta \epsilon + \epsilon^2}$	ļ	βε 2β + ε	1	$\frac{\beta \epsilon^2}{2\beta^2 + 4\beta \epsilon + \epsilon^2}$
	۴		_ 1 1-	1 - 8
1		۴	$\frac{\tau(\beta+2\epsilon)}{\beta+2\epsilon+\tau}$	$\frac{2\tau(\beta+\epsilon)}{2(\beta+\epsilon)+\tau}$
$2(eta+\epsilon)$	ı	ſ	$\beta + 2\epsilon + \tau$	$2(\beta+\epsilon)+\tau$
$\frac{2(\beta+\epsilon)}{2\beta^2+4\beta\epsilon+\epsilon^2}$	$\frac{1}{\beta + \epsilon}$	$\frac{1}{2\beta+\epsilon}$	$\frac{\beta + 2\epsilon + \tau}{(\beta + \epsilon)^2}$	$\frac{2(\beta+\epsilon)+\tau}{2\beta^2+4\beta\epsilon+\epsilon^2}$
$\frac{2(\beta+\epsilon)s+1}{ks(\beta\epsilon^2s+\epsilon^2+4\beta\epsilon+2\beta^2)}$	$\frac{rs+1}{k(\beta+\epsilon)}$	$\frac{rs+1}{k(\beta\epsilon s+2\beta+\epsilon)}$	$\frac{(rs+1)((\beta+2\epsilon)s+1)}{ks(\beta+\epsilon)^2}$	$\frac{(\tau s + 1)(2(\beta + \epsilon)s + 1)}{ks(\beta \epsilon^2 s + \epsilon^2 + 4\beta \epsilon + 2\beta^2)}$
$\frac{(-\beta s+1)(2(\beta+\epsilon)s+1)}{(\beta s+1)(\epsilon s+1)^2}$	$\frac{-\beta s+1}{\epsilon s+1}$	$\frac{-\beta s+1}{(\beta s+1)(\epsilon s+1)}$	$\frac{(-\beta s+1)((\beta+2\epsilon)s+1)}{(\epsilon s+1)^2}$	$\frac{-\beta s+1}{s(rs+1)} = \frac{(-\beta s+1)(2(\beta+\epsilon)s+1)}{(\beta s+1)(\epsilon s+1)^2} = \frac{(rs+1)(2(\beta+\epsilon)s+1)}{ks(\beta \epsilon^2 s+\epsilon^2+4\beta \epsilon+2)} = \frac{2(\beta+\epsilon)+\tau}{2\beta^2+4\beta \epsilon+\epsilon^2} = \frac{2r(\beta+\epsilon)}{2(\beta+\epsilon)+\tau} = \frac{2r(\beta+\epsilon)}{2(\beta+\epsilon)+\tau} = \frac{\beta \epsilon^2}{2(\beta+\epsilon)+\tau}$
$k \frac{-\beta s + 1}{s}$	$h\frac{-\beta s+1}{s(\tau s+1)}$	$k\frac{-\beta s+1}{s(\tau s+1)}$	$\frac{-\beta s+1}{s(\tau s+1)}$	$k\frac{-\beta s+1}{s(rs+1)}$

O

0

^a Controller form: $c = [k_c/(\tau_F s + 1)](1 + [1/(\tau_f s)] + \tau_D s)$. ϵ is the only adjustable parameter; for most cases ϵ is equivalent to the closed-loop time constant and $1/\epsilon$ is approximately the closed-loop bandwidth. In all cases, there exists no offset for step set-point/disturbance changes. Comments: 1. ISE optimal for step set-point changes when $\epsilon = 0$. 3. ISE optimal for step set-point changes when $\epsilon = 0$. 4. Filter/factorization option 1 (64). Practical recommendation $\epsilon > \beta/2$. 5. Filter/factorization option 2 (66). Practical recommendation $\epsilon > \beta$. 6. No offset for ramp set-point/disturbance changes.

Table II. IMC-Based PID Parameters for $g(s) = ke^{-\theta s}/(\tau s)$ + 1) and Practical Recommendations for ϵ/θ

•				
controller	kk_{c}	$ au_{ m I}$	$ au_{ m D}$	recommended ϵ/θ (> $0.1\tau/\theta$ always)
PID PI	$\frac{(2\tau + \theta)/(2\epsilon + \theta)}{\theta/\tau = 0.1}$	$\begin{array}{c} \tau + (\theta/2) \\ 1.54 \end{array}$	$\tau\theta/(2\tau+\theta)$	>0.8 >1.7
improved PI	$(2\tau + \theta)/2\epsilon$	$\tau + (\theta/2)$		>1.7

Figure 3. IMC-PID tuning rule. Effect of ϵ/θ on the closed-loop response to a unit step set-point change. $g(s) = ke^{-\theta s}/(\tau s + 1)$. (—) $\epsilon/\theta = 0.8$; (---) $\epsilon/\theta = 0.4$; (...) $\epsilon/\theta = 2.5$.

Option 2 (eq 66) was chosen for the filter for the first-order Padé approximation in order to get a PID controller without an additional lag term. These controllers are represented compactly in Table II. The closed-loop transfer functions for system (71) with these controllers indicate a number of advantages:

PID
$$y = \frac{e^{-\theta s}}{\left(\frac{\epsilon}{\theta} + \frac{1}{2}\right)\theta s} (y_s - d) + d \qquad (76)$$

$$\frac{1 + \frac{1}{2}\theta s}{1 + \frac{1}{2}\theta s} + e^{-\theta s}$$
PI
$$y = \frac{e^{-\theta s}}{\left(\frac{\epsilon}{\theta}\right)\theta s + e^{-\theta s}} (y_s - d) + d \qquad (77)$$

PI
$$y = \frac{e^{-\theta s}}{\left(\frac{\epsilon}{\theta}\right)\theta s + e^{-\theta s}} (y_s - d) + d$$
 (77)

The closed-loop response is independent of the system time constant τ . (The process lag $(1 + \tau s)$ is cancelled by the controller.) The time is scaled by θ . The shape of the response depends on ϵ/θ only.

In other words, specifying one value of ϵ/θ for any first-order lag with the dead-time model results in an identical response when the time is called by θ , regardless of k, θ , and τ . For instance, if the dead time in system I is twice as long as the dead time in system II, then for a specific ϵ/θ , the response characteristics will be identical except that it will take the response of system I exactly twice as long to reach the same point as system II. The choice of the "best" ratio ϵ/θ must be based on performance and robustness considerations.

For the PID controller, Figure 3 demonstrates the dependence of the step response on ϵ/θ . $\epsilon/\theta = 0.4$ is fairly close to the value where instability occurs ($\epsilon/\theta = 0.145$), and the large overshoot and poorly damped oscillations are therefore not surprising. Note that $\epsilon/\bar{\theta}=0.5$ is the lower value recommended in Table I for models with a RHP zero factored according to (66). For $\epsilon/\theta = 0.8$, the response looks very good: the rise time is about 1.5θ and the settling time is 4.5θ ; the overshoot is about 10%, and the decay