Calculated Properties of the 'Empty' $[AuPH_3]_4^{2+}$ and Related Systems: Role of Covalent and Correlation Contributions

Pekka Pvvkkö* and Nino Runeberg

Department of Chemistry, University of Helsinki, PO Box 19 (Et. Hesperiankatu 4), 00014 Helsinki, Finland

Quasirelativistic pseudopotential *ab initio* calculations on tetrahedral (AuPH₃) $_4^{2+}$ reproduce the experimental Au–Au distance in [AuP(But)₃] $_4^{2+}$ and suggest that covalent and correlation bonding in this two-electron, four-centre system are comparable.

The possibility of n-centre-2-electron(nc-2e) systems $(ML)_n^{(n-2)+}$ (n=3-7, M=Au, $L=PH_3$) was pointed out by Mingos.¹ For n=4, Ag_4^{2+} in aqueous solution has been observed.^{2,3} The n=4 case with M=Li and Na was theoretically discussed⁴ while the simplest 4c-2e system, free H_4^{2+} , was reported not to have local minima.⁵ Inelastic neutron scattering evidence exists for a tetrahedral $(H_4)^{x+}$ entity with H-H=80 pm in Mn^{4+} vacancies in γ -MnO₂.⁶

As Zeller et al. ⁷ have prepared the $[AuPR_3]_4^{2^+}$ ion $(R = Bu^t)$ in stable compounds, we consider here the nature of bonding in the naked $M_4^{2^+}$ (M = Ag, Au) and in the $[AuPH_3]_4^{2^+}$ model system. One question is the relative importance of covalent character⁸ and the 'aurophilic' attraction, identified as a correlation effect. ⁹⁻¹¹ Both contributions are strongly strengthened by relativity ⁸⁻¹⁰ and by the phosphines. ^{8,11} replacing the R(=Me, Ph) in PR_3 by R = H is acceptable for the geometry but is less acceptable for the energetics. ¹²

For both M = Ag and M = Au 19-valence-electron (19VE) quasirelativistic pseudopotentials¹³ with corresponding basis sets and GAUSSIAN92 at Hartree–Fock (HF) or second-order Møller–Plesset (MP2) level were used. The calculated E_T for the naked M_2 , M_3^+ and M_4^{2+} (M = Ag, Au) are compared in Fig. 1. The gas-phase reaction 2 $M_2^+ \rightarrow M_4^{2+}$ is seen to be exothermic for both M = Ag and M = Au, as experimentally found for M = Ag in water.³ Similarily, the gas-phase reactions $2M^+ + M_2 \rightarrow M_4^{2+}$ are calculated to be exothermic.

The bond distances are given in Table 1. The importance of the correlation effect on R_e increases with n. This is expected, as M_4^{2+} has six Au-Au pairs, each with a van der Waals interaction, but only one electron pair, leading to a covalent bond order of 1/6. Note that gold atoms are smaller than silver, the Ag > Au difference increasing with n. A relativistic multiple-scattering (MS) analysis of the bonding in the naked

Table 1 Calculated M-M distances, R_e (in pm). D_{3h} symmetry assumed for M_4^+ , T_d symmetry assumed for M_4^{2+} and $(ML)_4^{2+}$, $L = PH_3$

M	Method	Species			
		M_2	M ₃ ⁺	M ₄ ²⁺	$(ML)_4^{2+}$
Ag	HF	271.1	287.8	310.2	
	MP2	259.0	271.6	284.8	_
	Exp.	253.0			
Au	HF	262.8	277.4	292.0	289.9^{a}
	MP2	252.3	263.4 ^b	272.3	271.8^{c}
	Exp.	249.2	_		270.3- 273.0 ^d

^a Au–P optimized to 246.0 pm. P–H and Au–P–H assumed to be 143.0 pm and 119.4°, respectively. ^b The calculated MP2 frequencies $v(a'_1)$ and $v_2(e')$ and 187 and 123 cm⁻¹, respectively (H–P–H = 98.0°). ^c Experimental Au–P = 230.5 pm (ref. 7). ^d Ref. 7.

Fig. 1 Heats of formation per atom (in eV) compared with that of M(s). The theoretical scales are fixed to the experimental scale for M2(g).

Table 2 Energy lowering, ΔE , (in kJ mol⁻¹) for the reactions NAu₄⁺ + 4 PH₃ \rightarrow N(AuPH₃)₄⁺ (ref. 11) and Au₄²⁺ + 4 PH₃ \rightarrow (AuPH₃)₄²⁺ (present work), and Au₂ + 2 PH₃ \rightarrow (AuPH₃)₂ (ref. 8).

	ΔE		
Species	HF	MP2	
NAu ₄ ⁺ Au ₂ ²⁺ Au ₂	-480 -735 -86.3	-664 -1220 -120.8	

 Au_4^{2+} suggests the total atomic populations $6s^{0.64}6p^{0.23}5d^{9.63}$ at each $Au^{0.5+}$. ¹⁴ We find at HF-level the Mulliken populations $6s^{0.59}6p^{0.02}5d^{9.88}5f^{0.02}$. A natural-orbital population analysis gives $6s^{0.49}6p^{0.04}5d^{9.97}$. The Mulliken population analysis gives an Au-Au overlap population of 0.054. the bonding a_1 MO is the HOMO, in the HF model, while it was embedded in the 5d band in the MS model. ¹⁴

Already without phosphines, the MP2 Au_4^{2+} bond length of 272.3 pm agrees with the experimental $(ML)_4^{2+}$ one of 270.3–273.0 pm. At the HF level, the influence of the phosphine on the Au–Au distance is small. An MP2 optimization for $(AuPH_3)_4^{2+}$ indeed gives an almost unchanged Au–Au distance of 271.8 pm. The MP2 a_1 stretching force constant is 5.8 (10² N m⁻¹ = 1 mdyn Å⁻¹).

The energy lowering due to phosphines is given in Table 2. As seen, it is larger for the present, 'empty' cluster than for the nitrogen-centred one.

We conclude that the experimental Au-Au distance of the 'empty' cluster $(AuL)_4^{2+}$ is reproduced by theory. Both covalency and correlation effects contribute to its stability. The largest calculated correlation contributions per Au^1-Au^1 pair in various $(XAuPH_3)_2$ dimers were up to 25 kJ mol⁻¹, ¹⁵ or ca. 150 kJ mol⁻¹ for six pairs. The total bonding energy per valence electron pair is 225 and 366 kJ mol⁻¹ for diatomic and metallic gold, respectively. Hence, the two contributions in the present case are expected to be comparable.

The calculations were carried out on the Cray X-MP EA/432 computer at the Centre for Scientific Computing at Espoo, Finland. N.R. is supported by The Academy of Finland.

Received, 3rd August 1993; Com. 3/04675C

References

- D. G. Evans and D. M. P. Mingos, J. Organomet. Chem., 1985, 295, 389.
- 2 R. Tausch-Treml, A. Henglein and J. Lilie, Ber. Bunsenges. Phys. Chem., 1978, 82, 1335.
- 3 B. G. Ershov, E. Janata, A. Henglein and A. Fojtik, J. Phys. Chem., 1993, 97, 4589.
- 4 M. N. Glukhovtsev, P.v.R. Schleyer and A. Stein, J. Phys. Chem., 1993, 97, 5541.
- 5 M. N. Glukhovtsev, P.v.R. Schleyer and K. Lammertsma, Chem. Phys. Lett., 1993, 209, 207.
- 6 F. Fillaux, H. Ouboumour, C. Cachet, J. Tomkinson, G. J. Kearley and L. T. Yu, Chem. Phys., 1992, 164, 311.
- 7 E. Zeller, H. Beruda and H. Schmidbaur, Inorg. Chem., 1993, 32, 3203.
- 8 P. Schwerdtfeger and P. D. W. Boyd, *Inorg. Chem.*, 1992, **31**, 327.
- P. Pyykkö and Y.-F. Zhao, Angew. Chem., 1991, 103, 622;
 Angew. Chem., Int. Ed. Engl., 1991, 30, 604.
- 10 J. Li and P. Pyykkö, Chem. Phys. Lett., 1992, 197, 586.
- 11 J. Li and P. Pyykkö, Inorg. Chem., 1993, 32, 2630.
- 12 O. D. Häberlen and N. Rösch, J. Phys. Chem., 1993, 97, 4970.
- 13 Ag: D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuss, *Theor. Chim. Acta*, 1990, 77, 123, (8s7p6d1f)/[6s5p3dlf]. Au: P. Schwerdtfeger, M. Dolg, W. H. E. Schwarz, G. A. Bowmaker and P. D. W. Boyd, *J. Chem. Phys.*, 1989, **91**, 1762, (8s6p5dlf)/[7s3p4dlf]. $\alpha_f = 0.20$ added to both. P: See ref. 9, (5s5pld)/[2s2pld]. H: T. H. Dunning Jr. and P. J. Hay, in *Modern Theoretical Chemistry 3*, Plenum, New York, 1977, pp. 1–28. (4s1p)/[2s1p], $\alpha_p = 0.1811$.
- 14 R. Arratia-Perez and G. L. Malli, J. Chem. Phys., 1986, 84, 5891.
- 15 P. Pyykkö, J. Li and N. Runeberg, Chem. Phys. Lett., (submitted)