

Videos generated by diffusion models

EN.601.482/682 Deep Learning

An Introduction to Diffusion Models

Mathias Unberath, PhD

Assistant Professor

Dept of Computer Science

Johns Hopkins University

Yiqing Shen

PhD Student
Dept of Computer Science
Johns Hopkins University

Agendas

- Recap: Generative Models
 - VAE, GAE, Normalizing Flow, Energy Based Model
- Denoising Diffusion Probabilistic Model
 - Basic Concept & Definitions
 - Method Overview
 - Forward Process
 - Reverse Process
 - Training Objective
 - Denoising Network Architecture
 - Sampling Process
 - Comparisons with other Generative Models
- Conditional Diffusion Model
 - Applications: Text-to-Image, Counterfactual, Inpainting
 - Formulation
 - Network
 - Latent Diffusion Model (Stable Diffusion)

Intro Diffusion Models

Reminder: Generative Models

Discriminative Models

Generative Models

Synthesize Data *x*

Landscape of the Generative Models

Energy-Based Model

Variational Autoencoder

Generative Adversarial Networks

Normalizing Flow

Landscape of the Generative Models

Energy-Based Model

Variational Autoencoder

Generative Adversarial Networks

Normalizing Flow

Diffusion Probabilistic Model

Why Diffusion Models?

Advantages of Diffusion Models:

- Tractable probabilistic parameterization for describing the generation process
- A stable training procedure with sufficient theoretical support
- A unified loss function design with high simplicity

Why Diffusion Models?

DALL-E 2 (OpenAI)

"A teddy bear on a skateboard in times square"

https://openai.com/product/dall-e-2

Imagen (Google)

"A group of teddy bears in suit in a corporate office celebrating the birthday of their friend. There is a pizza cake on the desk."

https://imagen.research.google

Stable Diffusion (Stability AI)

'A street sign that reads "Latent Diffusion" '

'A zombie in the style of Picasso'

'An image of an animal half mouse half octopus'

'An illustration of a slightly conscious neural network'

'A painting of a squirrel eating a burger'

'A watercolor painting of a chair that looks like an octopus'

'A shirt with the inscription: "I love generative models!"

https://stability.ai/blog/stable-diffusion-public-release

High-Resolution Image Synthesis with Latent Diffusion Models CVPR 2022

Midjourney v5

Midjourney v5

- Wider Stylistic Range
- Higher Resolution
- Greater Clarity and Precision
- Broader Aspect Ratio Options

Intro Diffusion Models

Denoising Diffusion Probabilistic Model (DDPM)

Basic Concept of Diffusion

 Diffusion is the movement of anything (atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration.

Basic Concept of Diffusion

 Diffusion is the movement of anything (atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration.

Diffusion Process x_0 x_1 x_2 x_3 x_4 x_5 ... x_T Noise

What is Diffusion Probabilistic Model?

- Consists of two processes.
 - Diffusion/Forward process: gradually add noise to the input
 - Reverse process: learns to denoise -> generate new data

DDPM In the View of a Directed Graph

Reverse Process $x_{T} \xrightarrow{p_{\theta}(x_{t}|x_{t+1})} x_{t} \xrightarrow{q(x_{t+1}|x_{t})} x_{t}$

Diffusion Process

• Motivation: transforms the starting state (x_0) into the tractable noise (x_i)

- Motivation: transforms the starting state (x_0) into the tractable noise (x_i)
- Formally, we call the joint distribution $q(x_{1:T}|x_0)$ as the **diffusion process**.

- Motivation: transforms the starting state (x_0) into the tractable noise (x_i)
- Formally, we call the joint distribution $q(x_{1:T}|x_0)$ as the **diffusion process**.
- In DDPM, $q(x_{1:T}|x_0)$ is defined as a Markov chain:

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^{T} q(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_{t-2},...,\mathbf{x}_0)$$
 Chain Rule (Probabilistic Properties)

- Motivation: transforms the starting state (x_0) into the tractable noise (x_i)
- Formally, we call the joint distribution $q(x_{1:T}|x_0)$ as the **diffusion process**.
- In DDPM, $q(x_{1:T}|x_0)$ is defined as a Markov chain:

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^{T} q(\mathbf{x}_t|\mathbf{x}_{t-1})$$
 Markov Property -> Transaction kernel

- Motivation: transforms the starting state (x_0) into the tractable noise (x_i)
- Formally, we call the joint distribution $q(x_{1:T}|x_0)$ as the **diffusion process**.
- In DDPM, $q(x_{1:T}|x_0)$ is defined as a Markov chain:

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^{T} q(\mathbf{x}_t|\mathbf{x}_{t-1})$$
 Transaction kernel

The transaction kernel in DDPM employs Gaussian perturbation, i.e.

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t|\sqrt{1-\beta_t}\mathbf{x}_{t-1},\beta_t\mathbf{I})$$

Q: Why Gaussian perturbation i.e., $q(x_t|x_{t-1}) = \mathcal{N}(x_t|\sqrt{1-\beta_t}x_{t-1},\beta_t I)$?

Q: Why Gaussian perturbation i.e., $q(x_t|x_{t-1}) = \mathcal{N}(x_t|\sqrt{1-\beta_t}x_{t-1},\beta_t I)$?

A: Composition of Gaussians is still Gaussian

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t|\sqrt{\overline{\alpha_t}}\mathbf{x}_{t-1}, (1-\overline{\alpha_t})I)$$
 where $\overline{\alpha_t} = \prod_{s=1}^t (1-\beta_t)$

Q: Why Gaussian perturbation i.e., $q(x_t|x_{t-1}) = \mathcal{N}(x_t|\sqrt{1-\beta_t}x_{t-1},\beta_t I)$?

A: Composition of Gaussians is still Gaussian

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t|\sqrt{\overline{\alpha_t}}\mathbf{x}_0, (1-\overline{\alpha_t})I)$$
 where $\overline{\alpha_t} = \prod_{s=1}^t (1-\beta_t)$

By choosing β_t properly (*e.g.*, all β_t < Constant < 1), we have $\lim_{n \to \infty} \overline{\alpha_t} = 0 \quad \text{and} \quad \lim_{t \to \infty} q(\mathbf{x}_t) = \lim_{t \to \infty} q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(0, \mathbf{I}).$

Q: How to sample from $q(x_t|x_{t-1}) = \mathcal{N}(x_t|\sqrt{1-\beta_t}x_{t-1},\beta_t I)$?

Q: How to sample from $q(x_t|x_{t-1}) = \mathcal{N}(x_t|\sqrt{1-\beta_t}x_{t-1},\beta_t I)$?

A:
$$\mathbf{x}_t = \sqrt{1 - \beta_t} \mathbf{x}_{t-1} + \beta_t \cdot \epsilon_{t-1}$$
 where $\epsilon_{t-1} \sim \mathcal{N}(0, \mathbf{I})$.

Q: How to sample from $q(x_t|x_{t-1}) = \mathcal{N}(x_t|\sqrt{1-\beta_t}x_{t-1},\beta_t I)$?

A:
$$\mathbf{x}_t = \sqrt{1 - \beta_t} \mathbf{x}_{t-1} + \beta_t \cdot \epsilon_{t-1}$$
 where $\epsilon_{t-1} \sim \mathcal{N}(0, \mathbf{I})$.

Similarly, $q(x_t|x_0) = \mathcal{N}(x_t|\sqrt{\overline{\alpha_t}}x_0, (1-\overline{\alpha_t})I)$ yields $x_t = \sqrt{\overline{\alpha_t}}x_0 + (1-\overline{\alpha_t}) \cdot \epsilon$, where $\epsilon \sim \mathcal{N}(0, I)$.

What Happen in the Diffusion/Forward Process?

• Motivation: Reverse $q(x_t|x_{t-1})$ to reconstruct image (x_0) from noise (x_T) .

- Motivation: Reverse $q(x_t|x_{t-1})$ to reconstruct image (x_0) from noise (x_T) .
- Formally, we term the joint distribution $p_{\theta}(x_{0:T})$ as the **reverse process**.

- Motivation: Reverse $q(x_t|x_{t-1})$ to reconstruct image (x_0) from noise (x_T) .
- Formally, we term the joint distribution $p_{\theta}(x_{0:T})$ as the **reverse process**.
- In DDPM, $p_{\theta}(x_{0:T})$ is also a Markov chain, i.e.

$$p_{\theta}(x_{0:T}) = p_{\theta}(x_T) \prod_{t=1}^{I} p_{\theta}(x_{t-1}|x_t).$$

EN.601.482/682 Deep Learning

- Motivation: Reverse $q(x_t|x_{t-1})$ to reconstruct image (x_0) from noise (x_T) .
- Formally, we term the joint distribution $p_{\theta}(x_{0:T})$ as the **reverse process**.
- In DDPM, $p_{\theta}(x_{0:T})$ is also a Markov chain, i.e.

$$p_{\theta}(x_{0:T}) = p_{\theta}(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t).$$

Each factor $p_{\theta}(x_{t-1}|x_t)$ learns to approximate unknown $q(x_{t-1}|x_t)$ by:

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}|\boldsymbol{\mu}_{\theta}(\mathbf{x}_t,t),\boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t,t))$$

- However, $q(x_{t-1}|x_t)$ is not identifiable
- $q(x_{t-1}|x_t,x_0)$ is identifiable, using the Bayesian Rule:

$$\begin{aligned} q(x_{t-1}|x_t, x_0) &= q(x_t|x_{t-1}, x_0) \frac{q(x_{t-1}|x_0)}{q(x_t|x_0)} \\ &\propto \exp\left(-\frac{1}{2}\Big(\frac{(x_t - \sqrt{\alpha_t}x_{t-1})^2}{\beta_t} + \frac{(x_{t-1} - \sqrt{\overline{\alpha}_{t-1}}x_0)^2}{1 - \overline{a}_{t-1}} - \frac{(x_t - \sqrt{\overline{\alpha}_t}x_0)^2}{1 - \overline{a}_t}\Big)\right) \\ &= \exp\left(-\frac{1}{2}\Big((\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \overline{\alpha}_{t-1}})x_{t-1}^2 - (\frac{2\sqrt{\alpha_t}}{\beta_t}x_t + \frac{2\sqrt{\overline{a}_{t-1}}}{1 - \overline{\alpha}_{t-1}}x_0)x_{t-1} + C(x_t, x_0)\Big)\right) \end{aligned}$$

Reverse Process (2/2)

- However, $q(x_{t-1}|x_t)$ is not identifiable
- $q(x_{t-1}|x_t,x_0)$ is identifiable, using the Bayesian Rule:

$$q(x_{t-1}|x_t, x_0) = q(x_t|x_{t-1}, x_0) \frac{q(x_{t-1}|x_0)}{q(x_t|x_0)}$$

$$\propto \exp\left(-\frac{1}{2}\left(\frac{(x_t - \sqrt{\alpha_t}x_{t-1})^2}{\beta_t} + \frac{(x_{t-1} - \sqrt{\overline{\alpha}_{t-1}}x_0)^2}{1 - \overline{a}_{t-1}} - \frac{(x_t - \sqrt{\overline{\alpha_t}}x_0)^2}{1 - \overline{a_t}}\right)\right)$$

$$= \exp\left(-\frac{1}{2}\left((\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \overline{\alpha}_{t-1}})x_{t-1}^2 - (\frac{2\sqrt{\alpha_t}}{\beta_t}x_t + \frac{2\sqrt{\overline{a}_{t-1}}}{1 - \overline{\alpha}_{t-1}}x_0)x_{t-1} + C(x_t, x_0)\right)\right)$$

• In brief, we have $q(x_{t-1}|x_t,x_0) = \mathcal{N}(x_{t-1}|\widetilde{\mu_t}(x_t,x_0),\widetilde{\beta_t}I)$ with

$$\widetilde{\boldsymbol{\mu_t}}(\boldsymbol{x}_t, \boldsymbol{x}_0) = \frac{\sqrt{\overline{\alpha_{t-1}}}\beta_t}{1-\overline{\alpha_t}}\boldsymbol{x}_0 + \frac{\sqrt{\alpha_t}(1-\overline{\alpha_{t-1}})}{1-\overline{\alpha_t}}\boldsymbol{x}_t \text{ and } \widetilde{\beta_t} = \frac{1-\overline{\alpha_{t-1}}}{1-\overline{\alpha_t}}\beta_t$$

• To approximate $q(x_{t-1}|x_t,x_0)$ with $p_{\theta}(x_{t-1}|x_t)$, we define the loss to be the KL-divergence between them *i.e.*, $D_{KL}(q(x_{t-1}|x_t,x_0)||p_{\theta}(x_{t-1}|x_t))$, which can be simplified to:

$$\mathbb{E}_{\boldsymbol{x}_{t} \sim q} \left[\frac{1}{2\sigma_t^2} \| \widetilde{\boldsymbol{\mu}_t}(\boldsymbol{x}_t, \boldsymbol{\varepsilon}) - \boldsymbol{\mu}_{\theta}(\boldsymbol{x}_t, t) \|^2 \right]$$

• To approximate $q(x_{t-1}|x_t,x_0)$ with $p_{\theta}(x_{t-1}|x_t)$, we define the loss to be the KL-divergence between them *i.e.*, $D_{KL}(q(x_{t-1}|x_t,x_0)||p_{\theta}(x_{t-1}|x_t))$, which can be simplified to:

$$\mathbb{E}_{\boldsymbol{x}_{t} \sim q} \left[\frac{1}{2\sigma_t^2} \| \widetilde{\boldsymbol{\mu}_t}(\boldsymbol{x}_t, \boldsymbol{\varepsilon}) - \boldsymbol{\mu}_{\theta}(\boldsymbol{x}_t, t) \|^2 \right]$$

• It means that $\mu_{\theta}(x_t, t)$ tries to predict $\widetilde{\mu_t}(x_t, \varepsilon) = \frac{1}{\sqrt{\alpha_t}}(x_t - \frac{\beta_t}{\sqrt{1-\alpha_t}}\varepsilon)$.

• To approximate $q(x_{t-1}|x_t,x_0)$ with $p_{\theta}(x_{t-1}|x_t)$, we define the loss to be the KL-divergence between them *i.e.*, $D_{KL}(q(x_{t-1}|x_t,x_0)||p_{\theta}(x_{t-1}|x_t))$, which can be simplified to:

$$\mathbb{E}_{\boldsymbol{x}_{t} \sim q} \left[\frac{1}{2\sigma_{t}^{2}} \| \widetilde{\boldsymbol{\mu}_{t}}(\boldsymbol{x}_{t}, \boldsymbol{\varepsilon}) - \boldsymbol{\mu}_{\theta}(\boldsymbol{x}_{t}, t) \|^{2} \right]$$

- It means that $\mu_{\theta}(x_t, t)$ tries to predict $\widetilde{\mu_t}(x_t, \varepsilon) = \frac{1}{\sqrt{\alpha_t}}(x_t \frac{\beta_t}{\sqrt{1-\alpha_t}}\varepsilon)$.
- We come to the parametrization $\mu_{\theta}(x_t, t) = \frac{1}{\sqrt{\alpha_t}}(x_t \frac{\beta_t}{\sqrt{1-\alpha_t}}\boldsymbol{\varepsilon}_{\theta}(x_t, t))$ where $\boldsymbol{\varepsilon}_{\theta}(x_t, t)$ intends to predict $\boldsymbol{\varepsilon}$ from x_t .

• To approximate $q(x_{t-1}|x_t,x_0)$ with $p_{\theta}(x_{t-1}|x_t)$, we define the loss to be the KL-divergence between them *i.e.*, $D_{KL}(q(x_{t-1}|x_t,x_0)||p_{\theta}(x_{t-1}|x_t))$, which can be simplified to:

$$\mathbb{E}_{\boldsymbol{x}_{t} \sim q} \left[\frac{1}{2\sigma_{t}^{2}} \| \widetilde{\boldsymbol{\mu}_{t}}(\boldsymbol{x}_{t}, \boldsymbol{\varepsilon}) - \boldsymbol{\mu}_{\theta}(\boldsymbol{x}_{t}, t) \|^{2} \right]$$

- It means that $\mu_{\theta}(x_t, t)$ tries to predict $\widetilde{\mu_t}(x_t, \varepsilon) = \frac{1}{\sqrt{\alpha_t}} (x_t \frac{\beta_t}{\sqrt{1-\alpha_t}} \varepsilon)$.
- We come to the parametrization $\mu_{\theta}(x_t, t) = \frac{1}{\sqrt{\alpha_t}}(x_t \frac{\beta_t}{\sqrt{1-\alpha_t}}\varepsilon_{\theta}(x_t, t))$ where $\varepsilon_{\theta}(x_t, t)$ intends to predict ε from x_t .
- It leads the loss function to be

$$L_{t} = \mathbb{E}_{x_{0}, \varepsilon} \left[\frac{\beta_{t}^{2}}{2\sigma_{t}^{2}\alpha_{t}(1 - \overline{\alpha_{t}})} \| \varepsilon - \varepsilon_{\theta} (\sqrt{\overline{\alpha_{t}}}x_{0} + \sqrt{1 - \overline{\alpha_{t}}}\varepsilon) t) \|^{2} \right]$$
Known weights

• To simplify the formulation, we can re-weight $L_t = \mathbb{E}_{x_0, \varepsilon} \left[\frac{\beta_t^2}{2\sigma_t^2 \alpha_t (1 - \overline{\alpha_t})} \| \varepsilon - \varepsilon_\theta \left(\sqrt{\overline{\alpha_t}} x_0 + \sqrt{1 - \overline{\alpha_t}} \varepsilon, t \right) \|^2 \right]$, which is empirically found beneficial to the sample quality

$$\mathbb{E}_{\boldsymbol{x}_0,\boldsymbol{\varepsilon}} \|\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_{\theta} (\sqrt{\overline{\alpha_t}} \boldsymbol{x}_0 + \sqrt{1 - \overline{\alpha_t}} \boldsymbol{\varepsilon}, t) \|^2$$

where t is uniform between 1 and T.

• To simplify the formulation, we can re-weight $L_t = \mathbb{E}_{x_0, \varepsilon} \left[\frac{\beta_t^2}{2\sigma_t^2 \alpha_t (1 - \overline{\alpha_t})} \| \varepsilon - \varepsilon_\theta \left(\sqrt{\overline{\alpha_t}} x_0 + \sqrt{1 - \overline{\alpha_t}} \varepsilon, t \right) \right]^2$, which is empirically found beneficial to the sample quality

$$\mathbb{E}_{x_0,\varepsilon} \| \varepsilon - \varepsilon_{\theta} (\sqrt{\overline{\alpha_t}} x_0 + \sqrt{1 - \overline{\alpha_t}} \varepsilon, t) \|^2$$

where t is uniform between 1 and T.

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1,\ldots,T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}, t) \right\|^{2}$$

6: **until** converged

Denoising Network $\varepsilon_{\theta}(x_t, t)$

U-Net with ResNet blocks + self-attention layers + time embedding

 Time Representation: Sinusoidal Positional Embeddings Time embeddings are fed to the residual blocks using either simple spatial addition or using adaptive group normalization layers

MLP

Sampling Process

- Goal Generate a sample $\widehat{x_0}$ from the Gaussian x_T .
- Limitation Slow. Take 20
 hours to sample 50k images of
 size 32 × 32 on a NVIDIA
 2080Ti (vs. a GAN takes less
 than 1 min)

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$

4:
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$$

- 5: end for
- 6: return x_0

Comparisons with Other Generative Model

Tackling the Generative Learning Trilemma with Denoising Diffusion GANs ICLR 2022

Intro Diffusion Models

Conditional Diffusion Model

Text-to-Image Generation

"A teddy bear on a skateboard in times square"

https://openai.com/product/dall-e-2

Counterfactual Generation

What is Healthy? Generative Counterfactual Diffusion for Lesion Localization MICCAI/W 2022

Image Inpainting

Randomness

RePaint: Inpainting using Denoising Diffusion Probabilistic Models, CVPR 2022

Image Segmentation

Input

Multiple runs on the same input

Averaged Ground Truth

Include Condition to Reverse Process

Conditional Reverse Process:

$$p_{\theta}(x_{0:T}|\boldsymbol{c}) = p_{\theta}(\boldsymbol{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{c})$$
$$p_{\theta}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{c}) = \mathcal{N}(\boldsymbol{x}_{t-1}|\boldsymbol{\mu}_{\theta}(\boldsymbol{x}_{t},t,\boldsymbol{c}),\boldsymbol{\Sigma}_{\theta}(\boldsymbol{x}_{t},t,\boldsymbol{c}))$$

Impose Conditions onto the Denoising UNet

- Scalar Conditioning (Representations): encode scalar as a vector embedding, simple spatial addition or adaptive group normalization layers.
- Image Conditioning: channel-wise concatenation of the conditional image.
- Text Conditioning: single vector embedding spatial addition or adaptive group norm / a seq of vector embeddings - cross-attention.

Conditional Denoising Network $\varepsilon_{\theta}(x_t, t, c)$

Conditional Denoising Network $\varepsilon_{\theta}(x_t, t, c)$

- Poor scalability to high-resolution images
- Long-time to train the model (hundreds of GPU days)

U-Net with ResNet blocks + self-attention layers + time embedding

- Poor scalability to high-resolution images
- Long-time to train the model (hundreds of GPU days)

Latent Space (lower feature dimensions)

U-Net with ResNet blocks + self-attention layers + time embedding

- Poor scalability to high-resolution images
- Long-time to train the model (hundreds of GPU days)

Latent Space (lower feature dimensions)

Laten Diffusion Model

High-Resolution Image Synthesis with Latent Diffusion Models CVPR 2022

The Power of Prompt Engineering in Diffusion Model

Adding 'Lighting' Words

Stable Diffusion Prompts

The Stable Diffusion prompts search engine.

Explore millions of AI generated images and create collections of prompts. Search generative visuals for everyone by AI artists everywhere in our 12 million prompts database.

Create better prompts. Generative visuals for everyone. By Al artists everywhere.

Q Search prompts...

Search

Intro Diffusion Models

Questions?

