Real Estate

Course-end Project 1

Description

A banking institution requires actionable insights into mortgage-backed securities, geographic business investment, and real estate analysis. The mortgage bank would like to identify potential monthly mortgage expenses for each region based on monthly family income and rental of the real estate. A statistical model needs to be created to predict the potential demand in dollars amount of loan for each of the region in the USA. Also, there is a need to create a dashboard which would refresh periodically post data retrieval from the agencies. The dashboard must demonstrate relationships and trends for the key metrics as follows: number of loans, average rental income, monthly mortgage and owner's cost, family income vs mortgage cost comparison across different regions. The metrics described here do not limit the dashboard to these few. Dataset Description

Variables

Description

- Second mortgage Households with a second mortgage statistics
- Home equity Households with a home equity loan statistics
- Debt Households with any type of debt statistics
- · Mortgage Costs Statistics regarding mortgage payments, home equity loans, utilities, and property taxes
- Home Owner Costs Sum of utilities, and property taxes statistics
- Gross Rent Contract rent plus the estimated average monthly cost of utility features
- High school Graduation High school graduation statistics
- Population Demographics Population demographics statistics
- Age Demographics Age demographic statistics
- · Household Income Total income of people residing in the household
- Family Income Total income of people related to the householder

Project Task: Week 1

Data Import and Preparation:

- Import data.
- Figure out the primary key and look for the requirement of indexing.
- Gauge the fill rate of the variables and devise plans for missing value treatment. Please explain explicitly the reason for the treatment chosen for each variable.

Exploratory Data Analysis (EDA):

- Perform debt analysis. You may take the following steps:
- Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest and percent ownership is above 10 percent. Visualize using geo-map. You may keep the upper limit for the percent of households with a second mortgage to 50 percent

Use the following bad debt equation:

```
Bad Debt = P (Second Mortgage n Home Equity Loan)
Bad Debt = second_mortgage + home_equity - home_equity_second_mortgage
Create pie charts to show overall debt and bad debt
```

• Create Box and whisker plot and analyze the distribution for 2nd mortgage, home equity, good debt, and bad debt for different cities

- · Create a collated income distribution chart for family income, house hold income, and remaining income
- Perform EDA and come out with insights into population density and age. You may have to derive new fields (make sure to weight
 averages for accurate measurements):
- Use pop and ALand variables to create a new field called population density
- Use male_age_median, female_age_median, male_pop, and female_pop to create a new field called median age
- Visualize the findings using appropriate chart type
- Create bins for population into a new variable by selecting appropriate class interval so that the number of categories don't exceed 5 for the ease of analysis.
- Analyze the married, separated, and divorced population for these population brackets
- Visualize using appropriate chart type
- · Please detail your observations for rent as a percentage of income at an overall level, and for different states.
- · Perform correlation analysis for all the relevant variables by creating a heatmap. Describe your findings.

Project Task: Week 2

Data Pre-processing:

- The economic multivariate data has a significant number of measured variables. The goal is to find where the measured variables
 depend on a number of smaller unobserved common factors or latent variables.
- Each variable is assumed to be dependent upon a linear combination of the common factors, and the coefficients are known as loadings. Each measured variable also includes a component due to independent random variability, known as "specific variance" because it is specific to one variable. Obtain the common factors and then plot the loadings. Use factor analysis to find latent variables in our dataset and gain insight into the linear relationships in the data.

Following are the list of latent variables:

- * Highschool graduation rates
- * Median population age
- * Second mortgage statistics
- * Percent own
- * Bad debt expense

Data Modeling:

• Build a linear Regression model to predict the total monthly expenditure for home mortgages loan.

Please refer deplotment_RE.xlsx. Column hc_mortgage_mean is predicted variable. This is the mean monthly mortgage and owner costs of specified geographical location.

Note: Exclude loans from prediction model which have NaN (Not a Number) values for hc_mortgage_mean.

- a) Run a model at a Nation level. If the accuracy levels and R square are not satisfactory proceed to below step.
- b) Run another model at State level. There are 52 states in USA.
- c) Keep below considerations while building a linear regression model:
- · Variables should have significant impact on predicting Monthly mortgage and owner costs
- Utilize all predictor variable to start with initial hypothesis
- R square of 60 percent and above should be achieved
- Ensure Multi-collinearity does not exist in dependent variables
- Test if predicted variable is normally distributed

Data Reporting:

- Create a dashboard in tableau by choosing appropriate chart types and metrics useful for the business. The dashboard must entail the following:
- Box plot of distribution of average rent by type of place (village, urban, town, etc.).
- Pie charts to show overall debt and bad debt.
- Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest and percent ownership is above 10 percent. Visualize using geo-map.
- Heat map for correlation matrix.
- Pie chart to show the population distribution across different types of places (village, urban, town etc.).

Data Import and Preparation:

Question 1

Import data.

In [1]: ! pip install numpy pandas scikit-learn matplotlib seaborn plotly dash factor-analyzer

```
Defaulting to user installation because normal site-packages is not writeable
Requirement already satisfied: numpy in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.12_qbz5n
2 k fra8p0 \\local cache \\local - packages \\loc
Requirement already satisfied: pandas in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.12_qbz5
n2kfra8p0\localcache\local-packages\python312\site-packages (2.2.1)
Requirement already satisfied: scikit-learn in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.1
2_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (1.4.1.post1)
Requirement already satisfied: matplotlib in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.12_
qbz5n2kfra8p0 \\localcache \\local-packages \\python312 \\local-packages \\(3.8.3)
Requirement already satisfied: seaborn in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.12_qbz
5n2kfra8p0\localcache\local-packages\python312\site-packages (0.13.2)
Requirement already satisfied: plotly in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.12 qbz5
n2kfra8p0\localcache\local-packages\python312\site-packages\ (5.20.0)
Requirement already satisfied: dash in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.12_qbz5n2
kfra8p0\localcache\local-packages\python312\site-packages (2.16.1)
Requirement already satisfied: factor-analyzer in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.
```

Requirement already satisfied: factor-analyzer in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.

3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (0.5.1)

Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.

python.3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from pandas) (2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.1

Requirement already satisfied: tzdata>=2022.7 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python. 3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from pandas) (2024.1)

2_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from pandas) (2024.1)

Requirement already satisfied: scipy>=1.6.0 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.1 2_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from scikit-learn) (1.12.0)

Requirement already satisfied: joblib>=1.2.0 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3. 12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from scikit-learn) (1.3.2)

Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.py thon.3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from scikit-learn) (3.4.0)

Requirement already satisfied: contourpy>=1.0.1 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.pytho n.3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from matplotlib) (1.2.0)

Requirement already satisfied: cycler>=0.10 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.1 2_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from matplotlib) (0.12.1)

Requirement already satisfied: fonttools>=4.22.0 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.pytho n.3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from matplotlib) (4.50.0)

Requirement already satisfied: kiwisolver>=1.3.1 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.pytho n.3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from matplotlib) (1.4.5)

Requirement already satisfied: packaging>=20.0 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python. 3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from matplotlib) (24.0)

Requirement already satisfied: pillow>=8 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.12_q bz5n2kfra8p0\localcache\local-packages\python312\site-packages (from matplotlib) (10.2.0)

Requirement already satisfied: pyparsing>=2.3.1 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.pytho n.3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from matplotlib) (3.1.2)

Requirement already satisfied: tenacity>=6.2.0 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python. 3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from plotly) (8.2.3)

Requirement already satisfied: Flask<3.1,>=1.0.4 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.pytho n.3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from dash) (3.0.2)

Requirement already satisfied: Werkzeug<3.1 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.1 2_{pbc} (from dash) (3.0.1)

Requirement already satisfied: dash-html-components==2.0.0 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefounda tion.python.3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from dash) (2.0.0)

Requirement already satisfied: dash-core-components==2.0.0 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefounda tion.python.3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from dash) (2.0.0)

Requirement already satisfied: dash-table==5.0.0 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.pytho n.3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from dash) (5.0.0)

Requirement already satisfied: importlib-metadata in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.pyth on.3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from dash) (7.1.0)

Requirement already satisfied: typing-extensions>=4.1.1 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundatio n.python.3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from dash) (4.10.0)

Requirement already satisfied: requests in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.12_qb z5n2kfra8p0\localcache\local-packages\python312\site-packages (from dash) (2.31.0)

Requirement already satisfied: retrying in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.12_qb z5n2kfra8p0\localcache\local-packages\python312\site-packages (from dash) (1.3.4)

Requirement already satisfied: nest-asyncio in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.1 2_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from dash) (1.6.0)

Requirement already satisfied: setuptools in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from dash) (69.2.0)

Requirement already satisfied: Jinja2>=3.1.2 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3. 12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from Flask<3.1,>=1.0.4->dash) (3.1.3)

Requirement already satisfied: itsdangerous>=2.1.2 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.pyt hon.3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from Flask<3.1,>=1.0.4->dash) (2.1.2)

Requirement already satisfied: click>=8.1.3 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.1 2_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from Flask<3.1,>=1.0.4->dash) (8.1.7)

Requirement already satisfied: blinker>=1.6.2 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.

3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from Flask<3.1,>=1.0.4->dash) (1.7.0)

Requirement already satisfied: six>=1.5 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.12_qb z5n2kfra8p0\localcache\local-packages\python312\site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)

Requirement already satisfied: MarkupSafe>=2.1.1 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.pytho n.3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from Werkzeug<3.1->dash) (2.1.5)

```
n.python. 3.12\_qbz5n2kfra8p0\\localcache\\local-packages\\python312\\site-packages (from requests->dash) (3.3.2)
       Requirement already satisfied: idna<4,>=2.5 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.1
       2_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from requests->dash) (3.6)
       Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.pyth
       on. 3.12\_qbz 5n2kfra8p0 \\ local cache \\ local-packages \\ (ptom requests->dash) (2.2.1)
       Requirement already satisfied: certifi>=2017.4.17 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.pyth
       on.3.12_qbz5n2kfra8p0\localcache\local-packages\python312\site-packages (from requests->dash) (2024.2.2)
       Requirement already satisfied: colorama in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.12_qb
       z5n2kfra8p0\localcache\local-packages\python312\site-packages\ (from click>=8.1.3->Flask<3.1,>=1.0.4->dash)\ (0.4.6)
In [2]: import numpy as np
        import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
        import plotly.express as px
         from plotly.subplots import make_subplots
        import plotly.graph_objects as go
         import plotly.figure_factory as ff
        from dash import Dash, html, dcc, callback, Output, Input
        import geopandas as gpd
         from factor_analyzer import FactorAnalyzer
         from scipy import stats
         import warnings
In [3]: warnings.filterwarnings('ignore')
         pd.set_option('display.max_rows', None)
         sns.set_style('dark')
        pd.set_option('display.max_columns', None)
        sns.set(rc={'axes.facecolor':'black', 'figure.facecolor':'darkgrey'})
In [4]: # Imports from Sklearn and other modelling packages
         from sklearn.impute import KNNImputer
         from sklearn.preprocessing import LabelEncoder
         from sklearn.preprocessing import StandardScaler
         from sklearn.linear_model import LinearRegression
        from sklearn.metrics import r2_score
In [5]: # Loading Data
         df_train = pd.read_csv('train.csv'); print(df_train.shape)
        df_test = pd.read_csv('test.csv'); print(df_test.shape)
        #This flag will help us split the data back later
        df_train['split']= 'Train'
        df_test['split']= 'Test'
        df = pd.concat([df_train, df_test], axis=0); print(df.shape)
        df.head()
       (27321, 80)
       (11709, 80)
       (39030, 81)
              UID BLOCKID SUMLEVEL COUNTYID STATEID
                                                              state state ab
                                                                                   city
                                                                                             place
                                                                                                    type primary zip_code area_code
                                                               New
         0 267822
                       NaN
                                   140
                                                53
                                                         36
                                                                         NY
                                                                               Hamilton
                                                                                          Hamilton
                                                                                                     City
                                                                                                             tract
                                                                                                                     13346
                                                                                                                                  315 4
                                                               York
                                                                                  South
         1 246444
                                               141
                       NaN
                                   140
                                                         18 Indiana
                                                                                          Roseland
                                                                                                     City
                                                                                                             tract
                                                                                                                     46616
                                                                                                                                  574
                                                                                  Bend
         2 245683
                       NaN
                                   140
                                                         18 Indiana
                                                                                                                     46122
                                                                                                                                  317 :
                                                                                Danville
                                                                                           Danville
                                                                                                     City
                                                                                                             tract
                                                             Puerto
         3 279653
                       NaN
                                   140
                                               127
                                                         72
                                                                               San Juan
                                                                                         Guaynabo Urban
                                                                                                             tract
                                                                                                                       927
                                                                                                                                  787
                                                               Rico
                                                                                        Manhattan
         4 247218
                                   140
                                                                          KS Manhattan
                                                                                                                                  785 :
                       NaN
                                               161
                                                         20 Kansas
                                                                                                     City
                                                                                                             tract
                                                                                                                     66502
                                                                                              City
```

Requirement already satisfied: zipp>=0.5 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundation.python.3.12_q

Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\aditya raj\appdata\local\packages\pythonsoftwarefoundatio

 $bz 5n2k fra 8p0 \\ local cache \\ local-packages \\ yython 312 \\ site-packages \\ (from importlib-metadata->dash) \\ (3.18.1)$

Question 2

Figure out the primary key and look for the requirement of indexing.

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'>
Index: 39030 entries, 0 to 11708
Data columns (total 81 columns):

	columns (total 81 columns):		
#	Column	Non-Null Count	Dtype
0	UID	39030 non-null	int64
1	BLOCKID	0 non-null	float64
2	SUMLEVEL	39030 non-null	int64
3	COUNTYID	39030 non-null	
4	STATEID	39030 non-null	
5	state	39030 non-null	
6	state_ab	39030 non-null	-
7	_	39030 non-null	3
8	city place	39030 non-null	object
9	type	39030 non-null	_
	* '	39030 non-null	-
10 11	primary	39030 non-null	3
	zip_code	39030 non-null	
12	area_code	39030 non-null	
13	lat	39030 non-null	float64 float64
14	lng		
15	Allatan	39030 non-null	
16	AWater	39030 non-null	
17	pop	39030 non-null	
18	male_pop	39030 non-null	
19	female_pop	39030 non-null	
20	rent_mean	38568 non-null	
21	rent_median	38568 non-null	
22	rent_stdev	38568 non-null	
23	rent_sample_weight	38568 non-null	
24	rent_samples	38568 non-null	
25	rent_gt_10	38567 non-null	
26	rent_gt_15	38567 non-null	
27	rent_gt_20	38567 non-null	
28	rent_gt_25	38567 non-null	
29	rent_gt_30	38567 non-null	float64
30	rent_gt_35	38567 non-null	
31	rent_gt_40	38567 non-null	
32	rent_gt_50	38567 non-null	
33	universe_samples	39030 non-null	int64
34	used_samples	39030 non-null	int64
35	hi_mean	38640 non-null	float64
36	hi_median	38640 non-null	
37	hi_stdev	38640 non-null	float64
38	hi_sample_weight	38640 non-null	
39	hi_samples	38640 non-null	
40	family_mean	38596 non-null	
41	family_median	38596 non-null	
42	family_stdev	38596 non-null	
43	family_sample_weight	38596 non-null	
44	family_samples	38596 non-null	
45	hc_mortgage_mean	38189 non-null	float64
46	hc_mortgage_median	38189 non-null	float64
47	hc_mortgage_stdev	38189 non-null	float64
48	hc_mortgage_sample_weight	38189 non-null	float64
49	hc_mortgage_samples	38189 non-null	float64
50	hc_mean	38140 non-null	float64
51	hc_median	38140 non-null	float64
52	hc_stdev	38140 non-null	float64
53	hc_samples	38140 non-null	float64
54	hc_sample_weight	38140 non-null	float64
55	home_equity_second_mortgage	38353 non-null	float64
56	second_mortgage	38353 non-null	float64
57	home_equity	38353 non-null	float64
58	debt	38353 non-null	float64
59	second_mortgage_cdf	38353 non-null	float64
60	home_equity_cdf	38353 non-null	float64
61	debt_cdf	38353 non-null	float64
62	hs_degree	38755 non-null	float64
63	hs_degree_male	38741 non-null	float64
64	hs_degree_female	38702 non-null	float64
65	male_age_mean	38757 non-null	float64
66	male_age_median	38757 non-null	float64
67	male_age_stdev	38757 non-null	float64
68	male_age_sample_weight	38757 non-null	float64
69	male_age_samples	38757 non-null	float64
70	female_age_mean	38728 non-null	float64
71	female_age_median	38728 non-null	float64
72	female_age_stdev	38728 non-null	float64
73	female_age_sample_weight	38728 non-null	float64
-	0		

```
74 female_age_samples 38728 non-null float64
75 pct_own 38640 non-null float64
76 married 38755 non-null float64
77 married_snp 38755 non-null float64
78 separated 38755 non-null float64
79 divorced 38755 non-null float64
80 split 39030 non-null object
dtypes: float64(62), int64(12), object(7)
memory_usage: 24.4+ MB
```

• Changing the naems of columns to lower-case

```
In [7]: df.columns = df.columns.str.lower()
In [8]: df.describe().transpose()
```

Out[8]: count mean std min 25% 50% 75%

	count	mean	std	min	25%	50%	75%	
uid	39030.0	2.573899e+05	2.138060e+04	220336.000000	2.388172e+05	2.573805e+05	2.759708e+05	2.94
blockid	0.0	NaN	NaN	NaN	NaN	NaN	NaN	
sumlevel	39030.0	1.400000e+02	0.000000e+00	140.000000	1.400000e+02	1.400000e+02	1.400000e+02	1.40
countyid	39030.0	8.566569e+01	9.862420e+01	1.000000	2.900000e+01	6.300000e+01	1.090000e+02	8.40
stateid	39030.0	2.833702e+01	1.645755e+01	1.000000	1.300000e+01	2.800000e+01	4.200000e+01	7.20
zip_code	39030.0	5.009443e+04	2.962301e+04	601.000000	2.626100e+04	4.763750e+04	7.732000e+04	9.99
area_code	39030.0	5.956349e+02	2.323714e+02	201.000000	4.050000e+02	6.140000e+02	8.010000e+02	9.89
lat	39030.0	3.747782e+01	5.599713e+00	17.929085	3.390548e+01	3.871221e+01	4.132777e+01	6.70
Ing	39030.0	-9.130394e+01	1.636285e+01	-166.770979	-9.781644e+01	-8.658708e+01	-7.976499e+01	-6.53
aland	39030.0	1.235224e+08	1.146022e+09	8299.000000	1.777882e+06	4.854619e+06	3.320334e+07	1.03
awater	39030.0	6.112049e+06	2.010698e+08	0.000000	0.000000e+00	2.595650e+04	5.132392e+05	2.45
рор	39030.0	4.331385e+03	2.155202e+03	0.000000	2.899000e+03	4.065000e+03	5.442000e+03	5.38
male_pop	39030.0	2.132501e+03	1.106520e+03	0.000000	1.412000e+03	1.988000e+03	2.673000e+03	2.79
female_pop	39030.0	2.198884e+03	1.097316e+03	0.000000	1.463000e+03	2.067000e+03	2.773000e+03	2.72
rent_mean	38568.0	1.054833e+03	4.365636e+02	117.150000	7.426814e+02	9.529741e+02	1.259885e+03	3.96
rent_median	38568.0	1.007476e+03	4.431000e+02	104.000000	7.030000e+02	8.970000e+02	1.197000e+03	3.97
rent_stdev	38568.0	3.943633e+02	1.877907e+02	18.257420	2.632678e+02	3.471726e+02	4.756280e+02	1.72
rent_sample_weight	38568.0	2.985383e+02	2.749905e+02	0.343000	1.023907e+02	2.222738e+02	4.120453e+02	4.11
rent_samples	38568.0	5.526431e+02	4.655351e+02	3.000000	2.230000e+02	4.290000e+02	7.490000e+02	7.63
rent_gt_10	38567.0	9.577213e-01	6.331078e-02	0.000000	9.405900e-01	9.770500e-01	1.000000e+00	1.00
rent_gt_15	38567.0	8.673243e-01	1.090979e-01	0.000000	8.197400e-01	8.885000e-01	9.403100e-01	1.00
rent_gt_20	38567.0	7.403840e-01	1.434207e-01	0.000000	6.630550e-01	7.598800e-01	8.380800e-01	1.00
rent_gt_25	38567.0	6.133925e-01	1.606805e-01	0.000000	5.171350e-01	6.256700e-01	7.234200e-01	1.00
rent_gt_30	38567.0	5.003519e-01	1.645326e-01	0.000000	3.966900e-01	5.044700e-01	6.095150e-01	1.00
rent_gt_35	38567.0	4.116023e-01	1.605353e-01	0.000000	3.073900e-01	4.099400e-01	5.157350e-01	1.00
rent_gt_40	38567.0	3.458975e-01	1.534465e-01	0.000000	2.429400e-01	3.395000e-01	4.420000e-01	1.00
rent_gt_50	38567.0	2.547799e-01	1.377162e-01	0.000000	1.606400e-01	2.431500e-01	3.370750e-01	1.00
universe_samples	39030.0	5.786274e+02	4.695183e+02	0.000000	2.510000e+02	4.590000e+02	7.770000e+02	7.63
used_samples	39030.0	5.327799e+02	4.544985e+02	0.000000	2.110000e+02	4.130000e+02	7.250000e+02	7.33
hi_mean	38640.0	7.035984e+04	3.030312e+04	4999.846690	4.905325e+04	6.396553e+04	8.570023e+04	2.97
hi_median	38640.0	5.751498e+04	2.928903e+04	4790.000000	3.731525e+04	5.118800e+04	7.067925e+04	2.96
hi_stdev	38640.0	5.434974e+04	1.767257e+04	1825.741860	4.197626e+04	5.213996e+04	6.517940e+04	1.35
hi_sample_weight	38640.0	9.270302e+02	4.544973e+02	0.114260	6.033096e+02	8.672207e+02	1.184152e+03	1.09
hi_samples	38640.0	1.612883e+03	7.500159e+02	3.000000	1.099000e+03	1.522000e+03	2.022000e+03	2.03
family_mean	38596.0	7.889682e+04	3.156500e+04	5374.842520	5.662406e+04	7.285496e+04	9.591450e+04	2.42
family_median	38596.0	6.921084e+04	3.367063e+04	5278.000000	4.601725e+04	6.226850e+04	8.460075e+04	2.42
family_stdev	38596.0	5.063234e+04	1.427344e+04	1825.741860	4.074870e+04	4.958999e+04	6.039576e+04	1.11
family_sample_weight	38596.0	5.356586e+02	2.901442e+02	0.199960	3.332809e+02	4.924642e+02	6.868784e+02	6.90
family_samples	38596.0	1.066489e+03	5.579105e+02	3.000000	6.887500e+02	9.890000e+02	1.352000e+03	1.49
hc_mortgage_mean	38189.0	1.631830e+03	6.266921e+02	234.650000	1.156408e+03	1.461484e+03	1.985853e+03	4.46
hc_mortgage_median	38189.0	1.553907e+03	6.562238e+02	237.000000	1.067000e+03	1.372000e+03	1.879000e+03	4.47
hc_mortgage_stdev	38189.0	6.223144e+02	2.388920e+02	36.514840	4.395353e+02	5.884327e+02	7.879708e+02	1.81
hc_mortgage_sample_weight	38189.0	2.880717e+02	1.958908e+02	0.198400	1.478149e+02	2.540932e+02	3.872603e+02	4.22
hc_mortgage_samples	38189.0	6.709076e+02	4.635394e+02	1.000000	3.460000e+02	5.910000e+02	8.990000e+02	1.16

	count	mean	std	min	25%	50%	75%	
hc_mean	38140.0	5.400576e+02	2.228372e+02	53.594610	3.885522e+02	4.778551e+02	6.310456e+02	1.70
hc_median	38140.0	5.129899e+02	2.332398e+02	53.000000	3.600000e+02	4.480000e+02	5.990000e+02	1.70
hc_stdev	38140.0	2.184086e+02	9.195354e+01	18.257420	1.538986e+02	1.985915e+02	2.662663e+02	8.20
hc_samples	38140.0	3.701282e+02	2.504009e+02	2.000000	1.920000e+02	3.270000e+02	5.010000e+02	1.13
hc_sample_weight	38140.0	2.548620e+02	1.900167e+02	0.491230	1.202828e+02	2.126803e+02	3.432932e+02	7.10
home_equity_second_mortgage	38353.0	2.572316e-02	3.108756e-02	0.000000	5.020000e-03	1.859000e-02	3.704000e-02	1.00
second_mortgage	38353.0	3.001914e-02	3.398802e-02	0.000000	7.720000e-03	2.252000e-02	4.285000e-02	1.00
home_equity	38353.0	1.010637e-01	6.963801e-02	0.000000	4.938000e-02	9.461000e-02	1.436000e-01	1.00
debt	38353.0	6.299163e-01	1.566799e-01	0.000000	5.392900e-01	6.487900e-01	7.385900e-01	1.00
second_mortgage_cdf	38353.0	4.677382e-01	2.955378e-01	0.000000	2.481300e-01	4.190400e-01	5.538100e-01	1.00
home_equity_cdf	38353.0	4.768957e-01	2.564298e-01	0.000000	2.648800e-01	4.656200e-01	6.778500e-01	1.00
debt_cdf	38353.0	4.979522e-01	2.643914e-01	0.000000	2.788400e-01	4.907200e-01	7.173900e-01	1.00
hs_degree	38755.0	8.576950e-01	1.130291e-01	0.000000	8.063650e-01	8.883700e-01	9.398050e-01	1.00
hs_degree_male	38741.0	8.512397e-01	1.213130e-01	0.000000	7.934900e-01	8.830500e-01	9.408400e-01	1.00
hs_degree_female	38702.0	8.643533e-01	1.125550e-01	0.000000	8.168025e-01	8.953050e-01	9.447600e-01	1.00
male_age_mean	38757.0	3.828283e+01	5.596338e+00	12.145830	3.499516e+01	3.829111e+01	4.134406e+01	8.33
male_age_median	38757.0	3.800188e+01	7.851792e+00	9.750000	3.275000e+01	3.783333e+01	4.283333e+01	8.33
male_age_stdev	38757.0	2.147981e+01	2.553394e+00	0.737110	2.055694e+01	2.190030e+01	2.295085e+01	3.10
male_age_sample_weight	38757.0	5.377034e+02	3.079646e+02	0.745760	3.491365e+02	4.937908e+02	6.687151e+02	1.20
male_age_samples	38757.0	2.147522e+03	1.095788e+03	3.000000	1.425000e+03	1.995000e+03	2.679000e+03	2.79
female_age_mean	38728.0	4.025749e+01	5.876502e+00	15.360240	3.683268e+01	4.032055e+01	4.354850e+01	9.01
female_age_median	38728.0	4.028816e+01	8.019936e+00	12.833330	3.483333e+01	4.050000e+01	4.533333e+01	9.01
female_age_stdev	38728.0	2.216957e+01	2.544665e+00	0.556780	2.130053e+01	2.250221e+01	2.356625e+01	3.02
female_age_sample_weight	38728.0	5.460894e+02	2.827939e+02	0.251910	3.579785e+02	5.049821e+02	6.823097e+02	6.19
female_age_samples	38728.0	2.216031e+03	1.084201e+03	2.000000	1.480000e+03	2.078000e+03	2.781000e+03	2.72
pct_own	38640.0	6.385631e-01	2.283459e-01	0.000000	5.003375e-01	6.896700e-01	8.167825e-01	1.00
married	38755.0	5.074999e-01	1.377443e-01	0.000000	4.242950e-01	5.262100e-01	6.057150e-01	1.00
married_snp	38755.0	4.766375e-02	3.795871e-02	0.000000	2.084000e-02	3.879000e-02	6.518000e-02	7.14
separated	38755.0	1.916585e-02	2.098770e-02	0.000000	4.530000e-03	1.358000e-02	2.765000e-02	7.14
divorced	38755.0	9.993071e-02	4.889849e-02	0.000000	6.542000e-02	9.491000e-02	1.287900e-01	1.00

In [9]: df['sumlevel'].unique()

Out[9]: array([140], dtype=int64)

• Dropping the SUMLEVEL column as

```
In [10]: df['blockid'].unique()
```

Out[10]: array([nan])

• Dropping the BLOCKID column as there are no values in the feature

```
In [11]: df.drop(['blockid', 'sumlevel'], axis = 1, inplace=True)
df.head()
```

Out[11]:		uid	countyid	stateid	state	state_ab	city	place	type	primary	zip_code	area_code	lat	Ing	
	0	267822	53	36	New York	NY	Hamilton	Hamilton	City	tract	13346	315	42.840812	-75.501524	202
	1	246444	141	18	Indiana	IN	South Bend	Roseland	City	tract	46616	574	41.701441	-86.266614	1
	2	245683	63	18	Indiana	IN	Danville	Danville	City	tract	46122	317	39.792202	-86.515246	69
	3	279653	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban	tract	927	787	18.396103	-66.104169	1
	4	247218	161	20	Kansas	KS	Manhattan	Manhattan City	City	tract	66502	785	39.195573	-96.569366	2
In [12]:		•	uplicated	.,	•										

df.drop_duplicates(inplace= True)
print(df.duplicated().sum())
192

• Checking the UID for its suitablity of becoming the index

In [13]: df.info()

0

<class 'pandas.core.frame.DataFrame'>
Index: 38838 entries, 0 to 11708
Data columns (total 79 columns):

	columns (total 79 columns):		
#	Column (total /9 columns):	Non Null Count	Dtypo
		Non-Null Count	Dtype
0	uid	38838 non-null	int64
1	countyid	38838 non-null	
2	stateid	38838 non-null	int64
3	state	38838 non-null	3
4	state_ab	38838 non-null	
5	city	38838 non-null	object
6	place	38838 non-null	object
7	type	38838 non-null	object
8	primary	38838 non-null	object
9	zip_code	38838 non-null	int64
10	area_code	38838 non-null	int64
11	lat	38838 non-null	
12	lng	38838 non-null	
13	aland	38838 non-null	float64
14	awater	38838 non-null	int64
15	pop	38838 non-null	int64
16	male_pop	38838 non-null	int64
17	female_pop	38838 non-null	int64
18	rent_mean	38462 non-null	float64
19	rent_median	38462 non-null	float64
20	rent_stdev	38462 non-null	float64
21	rent_sample_weight	38462 non-null	float64
22	rent_samples	38462 non-null	float64
23	rent_gt_10	38461 non-null	float64
24	rent_gt_15	38461 non-null	float64
25	rent_gt_20	38461 non-null	float64
26	rent_gt_25	38461 non-null	float64
27	rent_gt_30	38461 non-null	float64
28	rent_gt_35	38461 non-null	float64
29	rent_gt_40	38461 non-null	float64
30	rent_gt_50	38461 non-null	float64
31	universe_samples	38838 non-null	int64
32	used_samples	38838 non-null	int64
33	hi_mean	38519 non-null	float64
34	hi_median	38519 non-null	float64
35	hi_stdev	38519 non-null	float64
36	hi_sample_weight	38519 non-null	float64
37	hi_samples	38519 non-null	float64
38	family_mean	38483 non-null	float64
39	family_median	38483 non-null	float64
40	family_stdev	38483 non-null	
41	family_sample_weight	38483 non-null	float64
42	family_samples	38483 non-null	float64
43	hc_mortgage_mean	38151 non-null	float64
44	hc_mortgage_median	38151 non-null	float64
45	hc_mortgage_stdev	38151 non-null	float64
46	hc_mortgage_sample_weight	38151 non-null	float64
47	hc_mortgage_samples	38151 non-null	float64
48	hc_mean	38093 non-null	float64
49	hc_median	38093 non-null	float64
50	hc_stdev	38093 non-null	float64
51	hc_samples	38093 non-null	float64
52	hc_sample_weight	38093 non-null	float64
53	home_equity_second_mortgage	38274 non-null	float64
54	second_mortgage	38274 non-null	float64
55	home_equity	38274 non-null	float64
56	debt	38274 non-null	float64
57	second_mortgage_cdf	38274 non-null	float64
58	home_equity_cdf	38274 non-null	float64
59	debt_cdf	38274 non-null	float64
60	hs_degree	38615 non-null	float64
61	hs_degree_male	38602 non-null	float64
62	hs_degree_female	38571 non-null	float64
63	male_age_mean	38613 non-null	float64
64	male_age_median	38613 non-null	float64
65	male_age_stdev	38613 non-null	float64
66	male_age_sample_weight	38613 non-null	float64
67	male_age_samples	38613 non-null	float64
68	female_age_mean	38590 non-null	float64
69	female_age_median	38590 non-null	float64
70	female_age_stdev	38590 non-null	float64
71	female_age_sample_weight	38590 non-null	float64
72	female_age_samples	38590 non-null	float64
73	pct_own	38519 non-null	float64

```
74 married
                                       38611 non-null float64
        75 married_snp
                                      38611 non-null float64
        76 separated
                                       38611 non-null float64
                                       38611 non-null float64
        77 divorced
                                       38838 non-null object
        78 split
       dtypes: float64(61), int64(11), object(7)
       memory usage: 23.7+ MB
In [14]: df.drop_duplicates('uid', inplace= True)
         df.set_index('uid', inplace=True)
        df.sort_index(inplace=True)
        df.head(10)
Out[14]:
```

	countyid	stateid	state	state_ab	city	place	type	primary	zip_code	area_code	lat	Ing	
uid													
220336	16	2	Alaska	AK	Unalaska	Unalaska City	City	tract	99685	907	53.621091	-166.770979	2.82318
220342	20	2	Alaska	AK	Eagle River	Anchorage	City	tract	99577	907	61.174250	-149.284329	5.09234
220343	20	2	Alaska	AK	Jber	Anchorage	City	tract	99505	907	61.284745	-149.653973	2.70593
220345	20	2	Alaska	AK	Anchorage	Point Mackenzie	City	tract	99501	907	61.229560	-149.893037	2.37151
220347	20	2	Alaska	AK	Anchorage	Anchorage	City	tract	99504	907	61.217082	-149.767214	1.97923
220348	20	2	Alaska	AK	Anchorage	Anchorage	City	tract	99504	907	61.217507	-149.744426	2.08977
220349	20	2	Alaska	AK	Anchorage	Anchorage	City	tract	99504	907	61.223372	-149.723327	2.93637
220350	20	2	Alaska	AK	Anchorage	Point Mackenzie	City	tract	99508	907	61.216701	-149.792744	2.49442
220352	20	2	Alaska	AK	Anchorage	Point Mackenzie	City	tract	99508	907	61.215067	-149.836271	4.46747
220353	20	2	Alaska	AK	Anchorage	Point Mackenzie	City	tract	99501	907	61.204383	-149.852526	1.14615

Gauge the fill rate of the variables and devise plans for missing value treatment. Please explain explicitly the reason for the treatment chosen for each variable.

```
In [15]: print(">>>Total number of columns with null values\n...", end = ' ')
    print((df.isnull().sum() != 0).sum())
    print(">>>Total number of Numerical columns with null values\n...", end = ' ')
    print((df.select_dtypes('number').isnull().sum() != 0).sum())
    print(">>>Total number of Object columns with null values\n...", end = ' ')
    print((df.select_dtypes('object').isnull().sum() != 0).sum())
    print(">>>Total number of missing values\n...", end = ' ')
    print(df.isnull().sum().sum())

>>>Total number of columns with null values
    ... 58
    >>>Total number of Object columns with null values
    ... 58
    >>>Total number of Object columns with null values
    ... 58
    >>>Total number of Object columns with null values
    ... 58
    >>>Total number of Object columns with null values
    ... 58
    >>>Total number of Object columns with null values
    ... 58
    >>>Total number of Object columns with null values
    ... 20328
```

• As the number of missing values are bigger, we will go KNN Imputation method

```
In [16]: imputer = KNNImputer(n_neighbors= 1)
# Getting the columns of dataframe which have null values and imputing the values
for i in df.columns:
    if df[i].isna().sum() != 0:
        df[i] = imputer.fit_transform(pd.DataFrame(df[i]))

print(">>>Total number of columns with null values\n...", end = ' ')
print((df.isnull().sum() != 0).sum())
print(">>>Total number of Numerical columns with null values\n...", end = ' ')
```

```
print((df.select_dtypes('number').isnull().sum() != 0).sum())
print(">>>Total number of Object columns with null values\n...", end = ' ')
print((df.select_dtypes('object').isnull().sum() != 0).sum())
print(">>>Total number of missing values\n...", end = ' ')
print(df.isnull().sum().sum())
print(">>>Shape of dataframe\n...", end = ' ')
print(df.shape)

>>>Total number of columns with null values
... 0
>>>Total number of Numerical columns with null values
... 0
>>>Total number of Object columns with null values
... 0
>>>Total number of missing values
... 0
>>>Total number of missing values
... 0
>>>Shape of dataframe
... (38715, 78)
```

Exploratory Data Analysis (EDA):

```
In [17]: feature_list = df.select_dtypes('number').columns
In [18]: 1 = len(feature_list)
         row = 1 // 3 +1
         fig = make_subplots(cols = 3,
                             subplot_titles=[f'<i>{i.title()}</i>' for i in feature_list])
         for i in range(1):
            fig.add_trace(go.Histogram(x = df[feature_list[i]]),
                          col = i // row +1,
                           row = i \% row +1)
         fig.update_layout(height = 2900,
                         width = 900,
                         title_text = '<b>Feature Distribution',
                         template = 'plotly_dark',
                         title_x = 0.5,
                         showlegend=False)
         fig.show()
```

Feature Distribution

Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest and percent ownership is above 10 percent. Visualize using geo-map. You may keep the upper limit for the percent of households with a second mortgage to 50 percent

```
In [19]: df_debt = df.sort_values(by = 'second_mortgage', ascending=False)
         df_debt = df_debt[df_debt['pct_own']>0.1].iloc[0:2500,]
         df_debt.shape
Out[19]: (2500, 78)
In [20]: df_by_city_2500 = df_debt.select_dtypes('number').groupby(df['city']).mean()
         debt_scatter = px.scatter_geo(data_frame=df_by_city_2500,
                         lat = 'lat',
                        lon= 'lng',
                        color = 'debt',
                         hover_name=df_by_city_2500.index,
                         height = 700,
                         width = 1000,
                         template = 'plotly_dark',
                         color_continuous_scale='tealrose',
                        title = '<b>Debt Distribution in top 2500 Cities</b>',
scope = 'usa')
         debt_scatter.show()
```


Use the following bad debt equation:

```
Bad Debt = P (Second Mortgage n Home Equity Loan)
Bad Debt = second_mortgage + home_equity - home_equity_second_mortgage
Create pie charts to show overall debt and bad debt
```

```
In [23]: df['bad_debt'] = df['second_mortgage'] + df['home_equity'] - df['home_equity_second_mortgage']

df.head()
```

Out[23]:		countyid	stateid	state	state_ab	city	place	type	primary	zip_code	area_code	lat	Ing	
	uid													
	220336	16	2	Alaska	AK	Unalaska	Unalaska City	City	tract	99685	907	53.621091	-166.770979	2.82318
	220342	20	2	Alaska	AK	Eagle River	Anchorage	City	tract	99577	907	61.174250	-149.284329	5.09234
	220343	20	2	Alaska	AK	Jber	Anchorage	City	tract	99505	907	61.284745	-149.653973	2.70593
	220345	20	2	Alaska	AK	Anchorage	Point Mackenzie	City	tract	99501	907	61.229560	-149.893037	2.37151
	220347	20	2	Alaska	AK	Anchorage	Anchorage	City	tract	99504	907	61.217082	-149.767214	1.97923

Out[26]:		countyid	stateid	state	state_ab	city	place	type	primary	zip_code	area_code	lat	Ing	
	uid													
	289712	147	51	Virginia	VA	Farmville	Farmville	Town	tract	23901	434	37.297357	-78.396452	4
	251185	27	25	Massachusetts	МА	Worcester	Worcester City	City	tract	1610	508	42.254262	-71.800347	7
	274394	109	40	Oklahoma	OK	Edmond	Edmond City	CDP	tract	73003	405	35.655695	-97.471535	13
	269323	81	36	New York	NY	Corona	Harbor Hills	City	tract	11368	718	40.751809	-73.853582	1
	251324	3	24	Maryland	MD	Glen Burnie	Glen Burnie	CDP	tract	21061	410	39.127273	-76.635265	11

Create Box and whisker plot and analyze the distribution for 2nd mortgage, home equity, good debt, and bad debt for different cities


```
In [28]: app = Dash(__name__)
         app.layout = html.Div([
             dcc.Dropdown(df.city.unique(), 'New York', id='dropdown-selection'),
             dcc.Graph(id='graph-content')
         ])
             Output('graph-content', 'figure'),
             Input('dropdown-selection', 'value')
         def update_graph(value):
             dff_value = df[df['city']==value]
             dff_value = dff_value[['home_equity','second_mortgage','bad_debt', 'good_debt']]
             dff_value_box = px.box(dff_value,
                       template = 'plotly_dark',
                       color = 'variable'
                       title = f'<b>distribution for 2nd mortgage, home equity, good debt, and bad debt : {value}</b>')
             dff_value_box.update_traces(showlegend = False)
             return dff_value_box
```

```
if __name__ == '__main__':
    app.run(debug=True)
```


Create a collated income distribution chart for family income, house hold income, and remaining income

```
In [29]: title_list = ['Family Mean', 'HouseHold Income', 'Other Incomes']
         fig_income_dist = make_subplots(cols = 3,
                             subplot_titles=[f'<i>{i}</i>' for i in title_list])
         dist_family_mean = ff.create_distplot([df['family_mean']],
                                               ['Family'],
                                               bin_size=1000)
         for trace in dist_family_mean.select_traces():
             fig_income_dist.add_trace(trace, row=1, col=1)
         dist_houshold_mean = ff.create_distplot([df['hi_mean']],
                                                 ['HouseHold'],
                                                 bin_size=1000)
         for trace in dist_houshold_mean.select_traces():
             fig_income_dist.add_trace(trace, row=1, col=2)
         dist_other_mean = ff.create_distplot([df['family_mean'] - df['hi_mean']],
                                              ['Family Other Incomes'],
                                              bin_size=1000)
         for trace in dist_other_mean.select_traces():
             fig_income_dist.add_trace(trace, row=1, col=3)
         fig_income_dist.update_layout(height = 400,
                         width = 1200,
                         title_text = '<b>Income Distribution',
                         template = 'plotly_dark',
```


Perform EDA and come out with insights into population density and age. You may have to derive new fields (make sure to weight averages for accurate measurements)

Use pop and ALand variables to create a new field called population density

```
In [30]: # Getting the population density per square kilometer
          df['population_density'] = (df['pop']/df['aland']) * 1000000
         df.head()
Out[30]:
                  countyid stateid state state_ab
                                                           city
                                                                    place type primary zip_code area_code
                                                                                                                     lat
                                                                                                                                Ing
             uid
                                                                 Unalaska
          220336
                                 2 Alaska
                                                      Unalaska
                                                                                                         907 53.621091 -166.770979 2.82318
                        16
                                                 ΑK
                                                                            City
                                                                                            99685
                                                                                    tract
                                                                      City
                                                         Eagle
          220342
                        20
                                 2 Alaska
                                                                Anchorage
                                                                                    tract
                                                                                            99577
                                                                                                         907 61.174250 -149.284329 5.09234
                                                          River
          220343
                        20
                                 2 Alaska
                                                 ΑK
                                                                                            99505
                                                                                                         907 61.284745 -149.653973 2.70593
                                                          Jber Anchorage
                                                                            City
                                                                                    tract
                                                                     Point
          220345
                        20
                                 2 Alaska
                                                 AK Anchorage
                                                                                            99501
                                                                                                         907 61.229560 -149.893037 2.37151
                                                                            City
                                                                                    tract
                                                                Mackenzie
          220347
                        20
                                 2 Alaska
                                                 AK Anchorage Anchorage City
                                                                                    tract
                                                                                                         907 61.217082 -149.767214 1.97923
```

Use male_age_median, female_age_median, male_pop, and female_pop to create a new field called median age

Out[31]:		countyid	stateid	state	state_ab	city	place	type	primary	zip_code	area_code	lat	Ing	
	uid													
	220336	16	2	Alaska	AK	Unalaska	Unalaska City	City	tract	99685	907	53.621091	-166.770979	2.82318
	220342	20	2	Alaska	AK	Eagle River	Anchorage	City	tract	99577	907	61.174250	-149.284329	5.09234
	220343	20	2	Alaska	AK	Jber	Anchorage	City	tract	99505	907	61.284745	-149.653973	2.70593
	220345	20	2	Alaska	AK	Anchorage	Point Mackenzie	City	tract	99501	907	61.229560	-149.893037	2.37151
	220347	20	2	Alaska	AK	Anchorage	Anchorage	City	tract	99504	907	61.217082	-149.767214	1.97923
In [32]:	df.drop	na(inplace	e = True)										

Visualize the findings using appropriate chart type

Create bins for population into a new variable by selecting appropriate class interval so that the number of categories don't exceed 5 for the ease of analysis.

```
In [35]: df['pop_bins'] = pd.cut(df['pop'],
                                bins=5,
                               labels=['very low',
                                        'low',
                                        'medium',
                                        'high',
                                        'very high'])
         df['pop_bins'].value_counts()
Out[35]: pop_bins
          very low
                       38166
          low
                        347
          medium
                         12
          high
                          4
          very high
                          1
          Name: count, dtype: int64
```

Analyze the married, separated, and divorced population for these population brackets

Out[36]: married separated divorced pop_bins very low 38166 38166 38166 low 347 347 347 medium 12 12 12 high very high

Visualize using appropriate chart type

0.7 married separated divorced 0.5 0.4 0.3 0.2 0.1 0.0

medium

pop_bins

Question 9

very low

low

Please detail your observations for rent as a percentage of income at an overall level, and for different states.

very high

high

```
In [38]: rent_state_mean = df.groupby(by='state')['rent_mean'].agg(["mean"])
         income_state_mean=df.groupby(by='state')['family_mean'].agg(["mean"])
In [39]: rent_perc_of_income=rent_state_mean['mean']/income_state_mean['mean']*100
         rent_perc_of_income.head()
Out[39]: state
         Alabama
                    1.172225
                      1.294831
         Alaska
         Arizona
                       1.486834
         Arkansas
                      1.115344
         California
                     1.672457
         Name: mean, dtype: float64
In [40]: rent_perc_of_income=rent_state_mean['mean']/income_state_mean['mean']*100
         rent_perc_of_income.head()
Out[40]: state
         Alabama
                      1.172225
         Alaska
                      1.294831
                     1.486834
         Arizona
         Arkansas
                      1.115344
         California
                      1.672457
         Name: mean, dtype: float64
In [41]: sum(df['rent_mean']) / sum(df['family_mean'])
Out[41]: 0.01335408695373265
```

Question 10

Perform correlation analysis for all the relevant variables by creating a heatmap. Describe your findings.

Building Model

Data Pre-processing:

LabelEncoding

```
In [44]: le = LabelEncoder()
In [45]: # Fitting the Label Encoder
df['type'] = le.fit_transform(df['type'])
```

Question 11

The economic multivariate data has a significant number of measured variables. The goal is to find where the measured variables depend on a number of smaller unobserved common factors or latent variables.

```
In [46]: # Splitting the train test data back
    train = df[df['split'] == 'Train']
    test = df[df['split'] == 'Test']
In [47]: train.head()
```

• Each variable is assumed to be dependent upon a linear combination of the common factors, and the coefficients are known as loadings. Each measured variable also includes a component due to independent random variability, known as "specific variance" because it is specific to one variable. Obtain the common factors and then plot the loadings. Use factor analysis to find latent variables in our dataset and gain insight into the linear relationships in the data.

Following are the list of latent variables:

- * Highschool graduation rates
- * Median population age
- * Second mortgage statistics
- * Percent own
- * Bad debt expense

```
In [49]: fa = FactorAnalyzer(n_factors=5)
    fa.fit_transform(train.select_dtypes(exclude= ('object','category')))
    fa_results = fa.loadings_

In [50]: fa_df = pd.DataFrame(fa_results)
    fa_df.set_index(train.select_dtypes('number').columns, inplace= True)
    fa_df.where(fa_df >=0.5)
```

Out[50]: 0 1 2 3 4

countyid	NaN	NaN	NaN	NaN	NaN
stateid	NaN	NaN	NaN	NaN	NaN
type	NaN	NaN	NaN	NaN	NaN
zip_code	NaN	NaN	NaN	NaN	NaN
area_code	NaN	NaN	NaN	NaN	NaN
lat	NaN	NaN	NaN	NaN	NaN
Ing	NaN	NaN	NaN	NaN	NaN
aland	NaN	NaN	NaN	NaN	NaN
awater	NaN	NaN	NaN	NaN	NaN
рор	NaN	0.961767	NaN	NaN	NaN
male_pop	NaN	0.926051	NaN	NaN	NaN
female_pop	NaN	0.954539	NaN	NaN	NaN
rent_mean	0.756421	NaN	NaN	NaN	NaN
rent_median	0.704784	NaN	NaN	NaN	NaN
rent_stdev	0.704324	NaN	NaN	NaN	NaN
rent_sample_weight	NaN	NaN	NaN	NaN	NaN
rent_samples	NaN	NaN	NaN	NaN	NaN
rent_gt_10	NaN	NaN	NaN	NaN	NaN
rent_gt_15	NaN	NaN	NaN	0.659146	NaN
rent_gt_20	NaN	NaN	NaN	0.816860	NaN
rent_gt_25	NaN	NaN	NaN	0.905071	NaN
rent_gt_30	NaN	NaN	NaN	0.933571	NaN
rent_gt_35	NaN	NaN	NaN	0.913893	NaN
rent_gt_40	NaN	NaN	NaN	0.869300	NaN
rent_gt_50	NaN	NaN	NaN	0.762257	NaN
universe_samples	NaN	NaN	NaN	NaN	NaN
used_samples	NaN	NaN	NaN	NaN	NaN
hi_mean	0.774085	NaN	NaN	NaN	NaN
hi_median	0.697474	NaN	NaN	NaN	NaN
hi_stdev	0.859444	NaN	NaN	NaN	NaN
hi_sample_weight	NaN	0.847529	NaN	NaN	NaN
hi_samples	NaN	0.958821	NaN	NaN	NaN
family_mean	0.823911	NaN	NaN	NaN	NaN
family_median	0.786580	NaN	NaN	NaN	NaN
family_stdev	0.814037	NaN	NaN	NaN	NaN
family_sample_weight	NaN	0.859784	NaN	NaN	NaN
family_samples	NaN	0.935016	NaN	NaN	NaN
hc_mortgage_mean	0.974647	NaN	NaN	NaN	NaN
hc_mortgage_median	0.954544	NaN	NaN	NaN	NaN
hc_mortgage_stdev	0.818570	NaN	NaN	NaN	NaN
hc_mortgage_sample_weight	NaN	0.718380	NaN	NaN	NaN
hc_mortgage_samples	NaN	0.730404	NaN	NaN	NaN
hc_mean	0.907873	NaN	NaN	NaN	NaN
hc_median	0.870011	NaN	NaN	NaN	NaN

	0	1	2	3	4
hc_stdev	0.760412	NaN	NaN	NaN	NaN
hc_samples	NaN	0.628482	0.595341	NaN	NaN
hc_sample_weight	NaN	0.575236	0.563933	NaN	NaN
home_equity_second_mortgage	NaN	NaN	NaN	NaN	NaN
second_mortgage	NaN	NaN	NaN	NaN	NaN
home_equity	NaN	NaN	NaN	NaN	NaN
debt	NaN	NaN	NaN	NaN	NaN
second_mortgage_cdf	NaN	NaN	NaN	NaN	0.626438
home_equity_cdf	NaN	NaN	NaN	NaN	0.589429
debt_cdf	NaN	NaN	NaN	NaN	0.717007
hs_degree	NaN	NaN	NaN	NaN	NaN
hs_degree_male	NaN	NaN	NaN	NaN	NaN
hs_degree_female	NaN	NaN	NaN	NaN	NaN
male_age_mean	NaN	NaN	0.734432	NaN	NaN
male_age_median	NaN	NaN	0.767031	NaN	NaN
male_age_stdev	NaN	NaN	0.563811	NaN	NaN
male_age_sample_weight	NaN	0.840713	NaN	NaN	NaN
male_age_samples	NaN	0.925881	NaN	NaN	NaN
female_age_mean	NaN	NaN	0.720388	NaN	NaN
female_age_median	NaN	NaN	0.791343	NaN	NaN
female_age_stdev	NaN	NaN	NaN	NaN	NaN
female_age_sample_weight	NaN	0.879196	NaN	NaN	NaN
female_age_samples	NaN	0.954892	NaN	NaN	NaN
pct_own	NaN	NaN	0.837123	NaN	NaN
married	NaN	NaN	0.577636	NaN	NaN
married_snp	NaN	NaN	NaN	NaN	NaN
separated	NaN	NaN	NaN	NaN	NaN
divorced	NaN	NaN	NaN	NaN	NaN
bad_debt	NaN	NaN	NaN	NaN	NaN
good_debt	NaN	NaN	NaN	NaN	NaN
population_density	NaN	NaN	NaN	NaN	NaN
median_age	NaN	NaN	0.821364	NaN	NaN

Data Modeling:

Build a linear Regression model to predict the total monthly expenditure for home mortgages loan.

```
In [51]: feature_cols=['countyid', 'stateid', 'zip_code', 'type', 'pop', 'family_mean', 'second_mortgage', 'home_equity', 'debt','hs_
In [52]: X_train = train[feature_cols]
    y_train = train['hc_mortgage_mean']

In [53]: X_test = test[feature_cols]
    y_test = test['hc_mortgage_mean']

In [54]: sc = StandardScaler()
    X_train = sc.fit_transform(X_train)
    X_test = sc.fit_transform(X_test)
```

• a) Run a model at a Nation level. If the accuracy levels and R square are not satisfactory proceed to below step.

• Storing the Names of the States in dictionary

State Level Model

• Will run if the accuracy of the nation level model comes out to be below 0.6

```
In [60]: if r2_score_nation < 0.60:</pre>
             for i in train['stateid'].unique():
                 print(">>>State ID-",i)
                 X_train_nation = train[train['stateid'] == i][feature_cols]
                 y_train_nation = train[train['stateid'] == i]['hc_mortgage_mean']
                 X_test_nation = test[test['stateid'] == i][feature_cols]
                 y_test_nation = test[test['stateid'] == i]['hc_mortgage_mean']
                 lr.fit(X_train_nation,y_train_nation)
                 y_pred_nation = lr.predict(X_test_nation)
                 print(f">>>Overall R2 score of linear regression model for state, {dict_state[i]} : {r2_score(y_test_nation,y_pred_n
                 print('*'*70)
In [61]: fig_final = px.histogram(data_frame = y_pred,
                                  template = 'plotly_dark',
                                  title = '<b>Predicted Values Distribution</b>')
         fig_final.update_traces(showlegend = False)
         fig_final.show()
```


Data Reporting:

- Create a dashboard in tableau by choosing appropriate chart types and metrics useful for the business. The dashboard must entail the following:
- Box plot of distribution of average rent by type of place (village, urban, town, etc.).
- Pie charts to show overall debt and bad debt.
- Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest and percent ownership is above 10 percent. Visualize using geo-map.
- Heat map for correlation matrix.
- Pie chart to show the population distribution across different types of places (village, urban, town etc.).

https://public.tableau.com/shared/F7YGFTR65?:display_count=n&:origin=viz_share_link

Thank You for viewing the Real Estate Model Created by Aditya Raj