What is GF(pk)?

GF(pk) is the unique field of size pk (up to isa.)

How to see $GF(p^k)$?

Each ele of $GF(p^k)$ is a polynomial f(x)of degree less than k with coeff. as in $Z_p = \{0, 1, 2, \dots, p-1\}$ for $i = 0, \dots, k-1$.

 $f(x) = a_0 + a_1 \times + \cdots + a_{\kappa-1} \times^{\kappa-1} \in \mathbb{Z}_p[x]$

Let h(x) be a monic irreducible polynomial of degree k. Define * in GF(p*) as $f(x), g(x) \in GF(p^k)$

 $f(x) * g(x) = f(x) \cdot g(x) \mod h(x)$

For $f(x) \in GF(p^k) (GF(p^k) \setminus \{0\})$ (multiplicative) inverse of f(x) can be calculated by extended Euclidean algo.

Eg: Define $GF(2^3) = \{0, 1, x, x+1, x, x+1, x^2+1\}$ $\chi^2 + \chi + 1$ $\chi(\chi) = \chi^3 + \chi + 1$

Table 4.7 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

			000	001	010	011	100	101	110	111
_		+	0	1	x	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
_	000	0	0	1	х	x + 1	x^2	$x^2 + 1$	$x^2 + 1$	$x^2 + x + 1$
	001	1	1	0	x + 1	x	$x^2 + 1$	x ²	$x^2 + x + 1$	$x^2 + x$
_	010	x	x	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
_	011	x + 1	x + 1	x	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x ²
	100	x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	х	x + 1
	101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$	1	0	x + 1	x
_	110	$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	x	x + 1	0	1
_	111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	x + 1	X	1	0

(a) Addition

	×	000	001 1	010 x	$\begin{array}{c} 011 \\ x + 1 \end{array}$	$\frac{100}{x^2}$	101 $x^2 + 1$	110 $x^2 + x$	111 $x^2 + x + 1$
- 000	0	0	0	0	0	0	0	0	0
001	1	0	1	x	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	x	0	х	x^2	$x^2 + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	x
_ 100	x^2	0	x^2	x + 1	$x^2 + x + 1$	$x^2 + x$	x	$x^2 + 1$	1
_ 101	$x^2 + 1$	0	$x^2 + 1$	1	x^2	X	$x^2 + x + 1$	x + 1	$x^2 + x$
110	$x^2 + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	x	x^2
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	х	1	$x^2 + 1$	x^2	x + 1

(b) Multiplication

From the table
$$(x)^{-1} = x^2 + 1 \mod x^3 + x + 1$$

why? $(x^2 + x + 1)^{-1} = x^2 \mod x^3 + x + 1$
 $(x^2 + x + 1)^{-1} = x^2 \mod x^3 + x + 1$

why? $(x^2 + x + 1)(x^2) = x^4 + x^3 + x^2 = 1 \mod x^3 + x + 1$

In general, how to find the multiplication inverse?

Use Extended Euclidean Algorithm!

The Advanced Encryption Standard (AES) uses arithmetic in the finite field GF(2⁸), with the irreducible polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$. Consider the two polynomials $f(x) = x^6 + x^4 + x^2 + x + 1$ and $g(x) = x^7 + x + 1$. Then

$$f(x) + g(x) = x^6 + x^4 + x^2 + x + 1 + x^7 + x + 1$$

= $x^7 + x^6 + x^4 + x^2$

$$f(x) \times g(x) = x^{13} + x^{11} + x^9 + x^8 + x^7 + x^7 + x^5 + x^3 + x^2 + x + x^6 + x^4 + x^2 + x + 1 = x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$$

$$x^{5} + x^{3}$$

$$x^{8} + x^{4} + x^{3} + x + 1 / x^{13} + x^{11} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + 1$$

$$x^{13} + x^{9} + x^{8} + x^{6} + x^{5}$$

$$x^{11} + x^{4} + x^{3}$$

$$x^{11} + x^{7} + x^{6} + x^{4} + x^{3}$$

$$x^{7} + x^{6} + x^{1} + x^{1} + x^{2} + x^{2} + x^{2} + x^{2} + x^{3} + x^{4} + x^{3} + x^{4} + x^{$$

Therefore, $f(x) \times g(x) \mod m(x) = x^7 + x^6 + 1$.

Consider the two polynomials in GF(2⁸) from our earlier example: $f(x) = x^6 + x^4 + x^2 + x + 1$ and $g(x) = x^7 + x + 1$. $(x^6 + x^4 + x^2 + x + 1) + (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2$ (polynomial notation) $(01010111) \oplus (10000011) = (11010100)$ (binary notation) $\{57\} \oplus \{83\} = \{D4\}$ (hexadecimal notation)¹⁰

In an earlier example, we showed that for
$$f(x) = x^6 + x^4 + x^2 + x + 1$$
, $g(x) = x^7 + x + 1$, and $m(x) = x^8 + x^4 + x^3 + x + 1$, we have $f(x) \times g(x) \mod m(x) = x^7 + x^6 + 1$.

