PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-041066

(43) Date of publication of application: 08.02.2000

5/92

(51)Int.Cl.

H04L 12/56 HO4N HO4N 5/765 HO4N 5/781 HO4N

(21)Application number: 11-132139

(71)Applicant: NIPPON HOSO KYOKAI <NHK>

MITSUBISHI ELECTRIC CORP

(22)Date of filing:

13.05.1999

(72)Inventor: KURIOKA TATSUYA

YOSHIDA HIROSHI

TAKATORI KATSUHITO

(30)Priority

Priority number: 10138474

Priority date : 20.05.1998

Priority country: JP

(54) MULTIMEDIA STORAGE DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To improve the compressibility of data by deleting unnecessary data from multiplexed multimedia data and storing the deletion information, and inserting NULL at deleted packet positions according to the deletion information and reproducing the data at the time of transmission. SOLUTION: Multiplexed moving picture data generated by a moving picture data output device 4 are inputted from an input port 6 to a stream control program 2 and it is judged whether or not they are necessary packets. When it is judged that the packets are necessary, they are stored in a storage device 9 together with the added numbers of moving pictures, voice, and NULL packets which were deleted so far. When a moving picture is reproduced, data packets stored in the storage device 9 are read out in order, and NULL packets as many as deleted packets are inserted and outputted. Consequently, the packets needed to reproduce the

moving picture can be sent out in the same timing with the input data. Here, the necessary data are selected with the specific protocol identifier PID, etc., of MPEG2-TS.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-41066 (P2000-41066A)

(43)公開日 平成12年2月8日(2000.2.8)

(51) Int.Cl.'		FΙ			テーマコード(参考)	
H 0 4 L 12/56		H04L 1	1/20	102	A	
H04N 5/76		H04N	5/76	2	Z	
5/765		!	5/781	5101	L	
5/781		!	5/92	Н		
5/92						
		審査請求	未醋求	請求項の数29	OL (全 18 頁)	
(21)出願番号	特願平11-132139	(71) 出顧人	出顧人 000004352			
			日本放	送協 会		
(22)出顧日	平成11年5月13日(1999.5.13)		東京都渋谷区神南2丁目2番1号			
		(71)出願人	0000060	13		
(31)優先権主張番号	特願平10-138474		三菱電機株式会社			
(32)優先日	平成10年5月20日(1998.5.20)		東京都千代田区丸の内二丁目2番3号			
(33)優先権主張国	日本 (JP)	(72)発明者	(72)発明者 栗岡 辰弥			
			東京都世田谷区砧一丁目10番11号 日本放			
			送協会	放送技術研究所	析内	
		(74)代理人	1000994	161		
			弁理士	溝井 章司	(外2名)	
			最終頁に続く			

(54) 【発明の名称】 マルチメディア蓄積装置

(57)【要約】

【課題】 多重化して入力されたマルチメディアデータから不要なデータを削除し、この削除データの削除情報を必要なデータに付加して蓄積することによって、蓄積するデータをさらに圧縮することができるマルチメディア蓄積装置を実現する。

【解決手段】 バケット単位に多重化されたマルチメディアデータを入力する入力手段と、この入力したマルチメディアデータより所定のバケットを選択し出力する制御手段と、この出力されたパケットを蓄積する蓄積手段を備えたことにより、不要なバケットを削除し、削除バケットの削除情報を選択するパケットに付加して蓄積するように構成したものである。

【特許請求の範囲】

載のマルチメディア蓄積装置。

【請求項1】 パケット単位に多重化されたマルチメディアデータを入力する入力手段と、この入力したマルチメディアデータより所定のパケットを選択し出力する制御手段と、この出力されたパケットを蓄積する蓄積手段とを備えたことを特徴とするマルチメディア蓄積装置。 【請求項2】 上記制御手段は、上記マルチメディアデータより所定のパケットを抽出し、音声又は映像データが格納されたパケットを選択するとともに、テキスト又は静止画が格納されたパケットよりテキスト又は静止画 10

の実データのみを抽出することを特徴とする請求項 1 記

【請求項3】 上記制御手段は、関連するパケットの組み毎に、多重化されているパケットの格納状態を示す制御情報をコピーし、各関連するパケットの組み毎に上記パケットを寄せ集め、上記蓄積手段は上記関連するパケットの組み毎に、上記寄せ集められたパケットを蓄積することを特徴とする請求項1記載のマルチメディア蓄積装置。

【請求項4】 上記制御手段は、パケット単位に多重化 20 されたマルチメディアデータから所定のパケットを選択し、選択されなかったパケットを削除し、この削除パケットの削除情報を選択したパケットに付加して出力することを特徴とする請求項1記載のマルチメディア蓄積装置。

【請求項5】 上記制御手段は、上記蓄積手段に蓄積されたパケットより、映像データや音声データなど時間軸を持ったパケットを入力し、削除されたパケット位置にNULLパケットを挿入して送出することを特徴とする請求項4記載のマルチメディア蓄積装置。

【請求項6】 上記制御手段は、上記蓄積手段に蓄積されたバケットより所定のバケットを選択して送出することを特徴とする請求項1記載のマルチメディア蓄積装

【請求項7】 上記制御手段は、上記所定のバケットを 選択し出力するとともに、上記蓄積手段に蓄積中にすで に蓄積されたバケットを入力し送出することを特徴とす る請求項1記載のマルチメディア蓄積装置。

【請求項8】 上記制御手段は、上記選択されたパケットに、このパケットの蓄積時刻を付加して出力すること 40を特徴とする請求項1記載のマルチメディア蓄積装置。

【請求項9】 上記制御手段は、上記蓄積手段に蓄積されたパケットの蓄積時刻と、利用者により指定された再生開始時刻とに基づき再生開始位置を求め、この再生開始位置からのパケットを上記蓄積手段より入力して送出することを特徴とする請求項8記載のマルチメディア蓄積装置。

【請求項10】 上記制御手段は、関連するパケットの ル番号、収録時間(蓄積時間)、番組名組み毎に蓄積データの総蓄積時間を出力し上記蓄積手段 ル、出演者又は放送日時を取り出すことに蓄積させるとともに、利用者により指定された再生開 50 求項1記載のマルチメディア蓄積装置。

始時刻と上記総蓄積時間とから再生開始位置を求め、この再生開始位置からのパケットを上記蓄積手段より入力 して送出することを特徴とする請求項1記載のマルチメ ディア蓄積装置。

【請求項11】 上記制御手段は、上記選択したバケットの蓄積時刻と蓄積位置とを含む関連情報を所定間隔で出力し上記蓄積手段に蓄積させるとともに、利用者により指定された再生開始時刻と上記関連情報とから再生開始位置を求め、この再生開始位置からのバケットを送出することを特徴とする請求項1記載のマルチメディア蓄積装置。

【請求項12】 上記制御手段は、上記蓄積手段に蓄積されたバケットの蓄積時間と蓄積バイトサイズとを所定間隔で出力し上記蓄積手段に蓄積させるとともに、上記蓄積手段に蓄積中にすでに蓄積されたバケットを入力し、利用者により指定された再生開始時刻と上記蓄積時間と上記蓄積バイトサイズとに基づき再生開始位置を求め、この再生開始位置からのバケットを上記蓄積手段より入力して送出することを特徴とする請求項1記載のマルチメディア蓄積装置。

【請求項13】 上記制御手段は、上記蓄積手段への上記パケット蓄積中にすでに蓄積されたパケットより、利用者による所定の操作が行われた時点のパケットの位置を求め、この利用者による所定の操作が行われた時点のパケットの位置からパケットを上記蓄積手段より入力して送出することを特徴とする請求項1記載のマルチメディア蓄積装置。

【請求項14】 上記制御手段は、所定チャンネルのパケットを上記蓄積手段に蓄積中に利用者によるチャンネル切替え操作が行われたとき、切り替えたチャンネルのパケットを上記蓄積手段に出力することを特徴とする請求項1記載のマルチメディア蓄積装置。

【請求項15】 上記制御手段は、上記蓄積手段に蓄積されたパケットのアクセス頻度又は作成日時に基づき所定時間間隔で上記蓄積パケットの要否を判断し、不要なパケットを削除することを特徴とする請求項1記載のマルチメディア蓄積装置。

【請求項16】 上記制御手段は、上記蓄積手段に蓄積 されたパケットの送出中にこの送出が停止されその後送 出再開した際に、停止位置から所定時間までさかのぼっ た位置のパケットより送出を再開することを特徴とする 請求項1記載のマルチメディア蓄積装置。

【請求項17】 上記蓄積手段は、蓄積されたパケットの組の番組識別番号、チャンネル番号、収録時間(蓄積時間)、番組名、番組ジャンル、出演者又は放送日時を含む番組情報を蓄積し、上記制御手段は、上記番組情報を入力し所定のパケットの組の番組識別番号、チャンネル番号、収録時間(蓄積時間)、番組名、番組ジャンル、出演者又は放送日時を取り出すことを特徴とする請求項1記載のマルチメディア蓄積装置

2

【請求項18】 上記制御手段は、番組ジャンルなどの 抽象的な番組指定により所定の番組を特定し、所定の時 間になると所定の番組の内容に相当するバケットの組み を上記蓄積手段に出力することを特徴とする請求項 1 記 載のマルチメディア蓄積装置。

【請求項19】 上記制御手段は、デジタル放送に含ま れる電子番組表(EPG)と呼ばれる番組予定を監視 し、番組編成が変更された場合に既に録画予約されてい る番組の情報を変更して上記録画予約されている番組を 録画可能とすることを特徴とする請求項1記載のマルチ 10 メディア蓄積装置。

【請求項20】 上記制御手段は、所定の番組の内容に 相当するパケットの組みを常に上記蓄積手段に出力する ことを特徴とする請求項1記載のマルチメディア蓄積装

【請求項21】 上記制御手段は、所定の番組の内容に 相当するパケットの組みを常に上記蓄積手段に出力し、 所定の番組の新しい内容に相当するパケットの組みを上 記蓄積手段に出力する際には、上記蓄積手段に蓄積され た上記所定の番組の古い内容に相当するパケットの組み 20 を削除することを特徴とする請求項1記載のマルチメデ ィア蓄積装置。

【請求項22】 上記蓄積手段は、ハードディスクなど のランダムアクセス可能な記録媒体と DV Dやテープな ど取り外しが可能な記録媒体とを備え、

上記制御手段は、ハードディスクなどのランダムアクセ ス可能な記録媒体とDVDやテープなど取り外しが可能 な記録媒体とから、所定の形式で設定した使用者の好み 情報と、番組内容の連続性とのいずれかの要因を条件と してパケットを出力する記録媒体を決定することを特徴 30 とする請求項1記載のマルチメディア蓄積装置。

【請求項23】 上記蓄積手段は、上記制御手段とネッ トワークを介して接続される記録媒体を備え、

上記制御手段は、ネットワークを介して存在する記録媒 体にアクセス可能であり、ネットワークの負荷という要 因を条件としてパケットを出力する記録媒体を決定する ことを特徴とする請求項22記載のマルチメディア蓄積 装置。

【請求項24】 上記制御手段は、蓄積可能な記録媒体 を有する装置の種類と性能と使用記録媒体との少なくと もいずれかを識別し、関連するパケットの組みを定期的 に上記蓄積手段に出力する際に、視聴していない番組の 内容に相当するパケットの組みのうち、最も古いパケッ トの組みがすぐに視聴できるようハードディスクなどの 高機能な記録媒体に蓄積されている場合、これから蓄積 するパケットの組みはハードディスクなどの髙機能な記 録媒体より安価な記録媒体に蓄積することを特徴とする 請求項22又は23のいずれかに記載のマルチメディア 蓄積装置。

を有する装置の種類と性能と使用記録媒体との少なくと もいずれかを識別し、現在視聴していない番組の内容に 相当するパケットの組みのうち、ハードディスクなどの 高機能な記録媒体に蓄積されている最も古いパケットの 組みを視聴する場合、ハードディスクなどの髙機能な記 録媒体より安価な記録媒体に蓄積されている次に視聴す べき番組の内容に相当するパケットの組みを髙機能な記 録媒体にコピーすることを特徴とする請求項24記載の マルチメディア蓄積装置。

【請求項26】 上記制御手段は、上記蓄積手段に蓄積 されたパケットを所定間隔で所定量を繰り返し送出する ことを特徴とする請求項1記載のマルチメディア蓄積装 置。

【請求項27】 上記制御手段は、番組情報の検索機能 を持ち、上記蓄積手段により蓄積された番組情報から番 組タイトル、出演者、番組ジャンル、放送日などの検索 キーワードに合致する番組情報を送出すること特徴とす る請求項17記載のマルチメディア蓄積装置。

【請求項28】 上記蓄積手段は、蓄積されたパケット の組の番組識別番号、チャンネル番号、収録時間(蓄積 時間)、番組名、番組ジャンル、出演者又は放送日時を 含む番組情報を蓄積し、上記制御手段は、上記番組情報 を入力し所定のパケットの組の番組識別番号、チャンネ ル番号、収録時間(蓄積時間)、番組名、番組ジャン ル、出演者又は放送日時を所定のグラフィック情報とし て取り出すことを特徴とする請求項1記載のマルチメデ ィア蓄積装置。

【請求項29】 上記制御手段は、番組情報の検索機能 を持ち、上記蓄積手段により蓄積された番組情報から番 組タイトル、出演者、番組ジャンル、放送日などの検索 キーワードに合致する番組情報を所定のグラフィック情 報として送出することを特徴とする請求項28記載のマ ルチメディア蓄積装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、マルチメディア 蓄積装置に関するものであり、デジタル放送などのデジ タル動画を収録・再生する方法、時刻指定による制御方 法、擬似的に生放送を停止・再開するための方法、番組 名などと蓄積データの関連付けに関するものである。以 降、「動画」を映像と音声の混合映像、「映像」と「音 声」はそれぞれ視覚としての映像、聴覚としての音声を 表す。

[0002]

【従来の技術】図7は例えば、従来のPC (Perso nal Computer) による動画蓄積・再生方法 であり、61はPC本体を示し、62は復号ボード用の ドライバと符号化ボード用のドライバを駆動し、ファイ ルに蓄積されたデータを復号ボードに転送したり、符号 【請求項25】 上記制御手段は、蓄積可能な記録媒体 50 化ボードから出力されるデータをファイル化するための

アプリケーションプログラムであり、65は復号ボー ド、63は映像を出力するためのモニタ、66は符号化 ボード、64は符号化ボードにVTR(VideoTa pe Recorder)装置など動画のアナログ信号 を入力するための入力手段、67はハードディスクなど の映像蓄積手段である。

【0003】図8は家庭用VTRで録画・再生を行う方 法であり、71はVTR本体を示し、72は再生、停止 などの操作を行うスイッチによりテープへの再生、停 止、録画を行うための制御モジュールであり、73は映 10 像の出力手段でありテレビなどに接続する端子などを示 し、74は入力手段であり外部からの信号入力やチュー ナーに相当し、75は動画を表示するテレビであり、7 6は動画信号を記録する蓄積手段であり記録媒体の代表 例としてはビデオテープがある。

【0004】図9は家庭用テレビでテレビ放送を視聴す る方法であり、81はテレビ本体を示し、82はチャン ネル変更などを行うスイッチによりチューナーで選択す るチャンネルの変更などを行うための制御モジュールで あり、83は動画を表示するためのブラウン管などの表 20 示手段、84は動画の入力手段であり外部からの信号入 力端子やチューナーに相当する。

【0005】次に動作について説明する。PC61上で の動画蓄積は、動画信号の入力手段64により符号化ボ ード66に映像信号が入力され、符号化ボード66によ り符号化された動画データをアプリケーションプログラ ム62によりそのままの形態でディスクなどの蓄積装置 67に蓄積し、再生時にはアプリケーションプログラム 62により符号化された動画データを蓄積手段67から 読み込み、コンピュータに内蔵した復号ボード65の復 30 号状況に応じて復号ボード65にその符号化されたデー タを順次転送するだけであり、符号化された動画データ の内部を変更することはない。また、復号ボード65 は、動画として復号したデータを表示するものである。 【0006】VTRでの動画蓄積は、入力手段74によ り入力された動画を利用者のスイッチ操作などの指示に 従って制御モジュール72を動作させ録画を行い、蓄積 手段76に動画を録画する。蓄積手段76に記録された 動画は、利用者のスイッチ操作などの指示に従って制御 モジュール72を動作させ再生を行い、蓄積手段76に 40 記録されている動画を再生し、出力手段73を介してテ レビ75に動画を表示する。テレビは、テレビ放送をチ ューナーで受信したり、VTRからの入力により入力手 段84で得られる動画を制御モジュール82により切り 替え表示手段83に表示するものである。

[0007]

【発明が解決しようとする課題】従来コンピュータに収 録していた動画は、映像と音声を一対とした単一の動画 が主流であり、かつ、符号化されたデータをそのまま収 データ、例えば復号同期のために挿入されるNULLバ ケットやその他復号に直接必要ではない情報用のパケッ トなども同時に収録してしまうため有限の蓄積手段を不 要データの分だけ無駄に使用しており、この無駄を無く し、効率的に不揮発性記憶装置などの蓄積手段を使用す る必要があった。

【0008】また、コンピュータで扱う映像は、一般的 にコンピュータ上で表示可能な転送レートの低いもので あり、仮に多重化された動画を扱う場合には一般的には 分離せずに復号装置への設定によってどのマルチメディ アデータを復号するか決定する必要があり多重化されて いる動画をリアルタイムに分離することができないとい う問題点があった。

【0009】本装置をVTRとして見た場合、一般的に 従来のVTRは、録画か再生を選択的に実行するように 構成されており、両者を同時に行うことができない。す なわち、生放送を録画しながら、その録画中の動画の先 頭部分を再生するといった、複合動作は不可能である。 したがって、VTRは見たいテレビ番組の放送時間に留 守にするためそのテレビ放送を録画する、又は見たい番 組が2つ同じ時間帯に放送されるので裏番組を録画する といった用途に利用される。また、一台のVTRで同時 に録画できる番組は一つに限定されるため、同じ時間帯 に録画したい番組が2つある場合、利用者はどちらかを 選択しなければならないという問題があった。さらに本 装置をテレビとして見た場合、従来のテレビは現在放送 されている番組でもう一度見たい場面や、見逃した場面 をリプレイして見ることができないという問題点があっ た。

【0010】との発明は上記のような問題点を解決する ためになされたもので、多重化されて送信される符号化 された複数のHDTV (High Definitio nTV)映像などの広帯域な動画を含むマルチメディア データを同時に別々の動画として蓄積したり(同一時間 帯に放送される異なるチャンネルの番組の同時録画)、 蓄積途中の動画を蓄積しつつ同時に再生する(番組開始 時間より遅れ、かつ、その番組が放送中であっても番組 冒頭から視聴することが可能) ことを可能とし、さらに 不揮発性記憶装置を効率的に使用する方法を解決し、動 画データのバイト位置と再生時刻を相互に対応づける方 法を解決して時刻により再生位置を指定可能とすること などにより、利用者の利便性をより一層向上することを 目的とする。

[0011]

【課題を解決するための手段】第1の発明は、パケット 単位に多重化されたマルチメディアデータを入力する入 力手段と、この入力したマルチメディアデータより所定 のパケットを選択し出力する制御手段と、この出力され たパケットを蓄積する蓄積手段とを備えたものである。 録するため、目的の映像、音声を再生するために不要な 50 ととで、請求項において「出力」とは、選択したパケッ

トを制御手段から蓄積手段に送信することをいい、「送出」とは、制御手段が蓄積手段から取り出したデータを外部に送り出すことをいう。

【0012】第2の発明は、上記マルチメディアデータより所定のバケットを抽出し、音声又は映像データが格納されたパケットを選択するとともに、テキスト又は静止画が格納されたパケットよりテキスト又は静止画の実データのみを抽出する制御手段を備えたものである。

【0013】第3の発明は、関連するバケットの組み毎に、多重化されているバケットの格納状態を示す制御情 10報をコピーし、各関連するバケットの組み毎に上記バケットを寄せ集める制御手段と、上記関連するバケットの組み毎に、上記寄せ集められたバケットを蓄積する蓄積手段を備えたものである。

【0014】第4の発明は、パケット単位に多重化されたマルチメディアデータから所定のパケットを選択し、選択されなかったパケットを削除し、この削除パケットの削除情報を選択したパケットに付加して出力する制御手段を備えたものである。

【0015】第5の発明は、上記蓄積手段に蓄積された 20 パケットより、映像データや音声データなど時間軸を持ったパケットを入力し、削除されたパケット位置にNU LLパケットを挿入して送出する制御手段を備えたものである。

【0016】第6の発明は、上記蓄積手段に蓄積されたパケットより所定のパケットを選択して送出する制御手段を備えたものである。

【0017】第7の発明は、上記所定のパケットを選択し出力するとともに、上記蓄積手段に蓄積中にすでに蓄積されたパケットを入力し送出する制御手段を備えたも 30のである。

【0018】第8の発明は、上記選択されたパケットに、このパケットの蓄積時刻を付加して出力する制御手段を備えたものである。

【0019】第9の発明は、上記蓄積手段に蓄積されたパケットの蓄積時刻と、利用者により指定された再生開始時刻とに基づき再生開始位置を求め、この再生開始位置からのパケットを上記蓄積手段より入力して送出する制御手段を備えたものである。

【0020】第10の発明は、関連するパケットの組み毎に蓄積データの総蓄積時間を出力し上記蓄積手段に蓄積させるとともに、利用者により指定された再生開始時刻と上記総蓄積時間とから再生開始位置を求め、この再生開始位置からのパケットを上記蓄積手段より入力して送出する制御手段を備えたものである。

【0021】第11の発明は、上記選択したパケットの 蓄積時刻と蓄積位置とを含む関連情報を所定間隔で出力 し上記蓄積手段に蓄積させるとともに、利用者により指 定された再生開始時刻と上記関連情報とから再生開始位 置を求め、この再生開始位置からのパケットを送出する 制御手段を備えたものである。

【0022】第12の発明は、上記蓄積手段に蓄積されたパケットの蓄積時間と蓄積バイトサイズとを所定間隔で出力し上記蓄積手段に蓄積させるとともに、上記蓄積手段に蓄積中にすでに蓄積されたパケットを入力し、利用者により指定された再生開始時刻と上記蓄積時間と上記蓄積バイトサイズとに基づき再生開始位置を求め、この再生開始位置からのパケットを上記蓄積手段より入力して送出する制御手段を備えたものである。

1 【0023】第13の発明は、上記蓄積手段への上記パケット蓄積中にすでに蓄積されたパケットより、利用者による所定の操作が行われた時点のパケットの位置を求め、この利用者による所定の操作が行われた時点のパケットの位置からパケットを上記蓄積手段より入力して送出する制御手段を備えたものである。

【0024】第14の発明は、所定チャンネルのパケットを上記蓄積手段に蓄積中に利用者によるチャンネル切替え操作が行われたとき、切り替えたチャンネルのパケットを上記蓄積手段に出力する制御手段を備えたものである。

【0025】第15の発明は、上記蓄積手段に蓄積されたパケットのアクセス頻度又は作成日時に基づき所定時間間隔で上記蓄積パケットの要否を判断し、不要なパケットを削除する制御手段を備えたものである。

【0026】第16の発明は、上記蓄積手段に蓄積されたパケットの送出中にこの送出が停止されその後送出再開した際に、停止位置から所定時間までさかのぼった位置のパケットより送出を再開する制御手段を備えたものである。

30 【0027】第17の発明は、蓄積されたパケットの組の番組識別番号、チャンネル番号、収録時間(蓄積時間)、番組名、番組ジャンル、出演者又は放送日時を含む番組情報を蓄積する蓄積手段と、上記番組情報を入力し所定のパケットの組の番組識別番号、チャンネル番号、収録時間(蓄積時間)、番組名、番組ジャンル、出演者又は放送日時を取り出す制御手段を備えたものである。

【0028】第18の発明は、番組ジャンルなどの抽象的な番組指定により所定の番組を特定し、所定の時間に40 なると所定の番組の内容に相当するパケットの組の蓄積を自動的に開始する制御手段を備えたものである。

【0029】第19の発明は、デジタル放送に含まれる電子番組表を監視し、番組編成が変更された場合に既に録画予約されている番組の情報を変更することによって上記録画予約されている番組を録画可能とする制御手段を備えたものである。

【0030】第20の発明は、あらかじめ設定された所定の定期的に放送される番組を、毎回必ず録画するための制御手段を備えたものである。

置を求め、この再生開始位置からのパケットを送出する 50 【0031】第21の発明は、所定の番組の新しい内容

に相当するパケットの組みを蓄積する際には、上記所定 の番組の古い内容に相当するパケットの組みを廃棄する ことで蓄積メディアの肥大や蓄積不能を防止するための 制御手段を備えたものである。

【0032】第22の発明は、ハードディスク、DVD (Digital Versatile Disc)やテープなどの記録媒体の中から、使用者からの指示や、蓄積対象のパケットの属性情報により、パケットを蓄積する記録媒体を決定するための制御手段を備えたものである。

【0033】第23の発明は、第22の発明に加え、ネットワーク接続された記録媒体をも選択対象とし、使用者からの指示や、蓄積対象のバケットの属性情報により、内蔵した装置とネットワーク上の装置の中からバケットを蓄積するメディアを決定するための制御手段を備えたものである。

【0034】第24の発明は、第22の発明、第23の発明においていくつかの関連するパケットの組みを定期的に蓄積する際に、視聴していない番組の内容に相当するパケットの組みのうち、最も古いパケットの組みを高 20機能な記録媒体に蓄積し、それ以外のパケットの組みは高機能な記録媒体より安価な記録媒体に蓄積するための制御手段を備えたものである。

【0035】第25の発明は、第24の発明の効果により視聴していない番組の内容に相当するパケットの組みのうち、最も古いパケットの組みが高機能な記録媒体に存在し、それ以外のパケットの組みは高機能な記録媒体より安価な記録媒体に存在する状態において、視聴していない番組の内容に相当するパケットの組みのうち最も古いパケットの組みを再生して視聴を開始した時に、次30に視聴すべきパケットの組みを高機能な記録媒体にコピーするための制御手段を備えたものである。

【0036】第26の発明は、蓄積されたパケットを所定間隔で所定量を繰り返し送出することにより、再生と飛び越しを繰り返し実行するための制御手段を備えたものである。

【0037】第27の発明は、第17の発明において蓄積された番組情報から番組タイトル、出演者、番組ジャンル、放送日時などの検索キーワードに合致するものだけを送出するために番組情報の検索機能を持つ制御手段 40を備えたものである。

【0038】第28の発明は、蓄積されたパケットの組の番組識別番号、チャンネル番号、収録時間(蓄積時間)、番組名、番組ジャンル、出演者又は放送日時を含む番組情報を蓄積する蓄積手段と、上記番組情報を入力し所定のパケットの組の番組識別番号、チャンネル番号、収録時間(蓄積時間)、番組名、番組ジャンル、出演者又は放送日時を所定のグラフィック情報として取り出す制御手段を備えたものである。

【0039】第29の発明は、第28の発明において蓄 50 ド受信 I / F はこのようにマルチメディア蓄積装置上に

積された番組情報から番組タイトル、出演者、番組ジャンル、放送日時などの検索キーワードに合致するものだけを送出するために番組情報の検索機能を持ち、検索結果を所定のグラフィック情報として取り出す制御手段を備えたものである。

[0040]

【発明の実施の形態】実施の形態1. この実施の形態の 入力ボード(入力ボードは入力手段の一例である。)は 以下の機能を有する。

10 (1)パケット単位に多重化されたマルチメディアデータを入力する。

また、ストリーム制御プログラムは以下の機能を有する。 とこで、ストリーム制御プログラムは制御手段の一例である。

- (1)入力したマルチメディアデータより所定のパケットを選択し出力する。
- (2) マルチメディアデータより所定のパケットを抽出し、音声又は映像データが格納されたパケットを選択するとともに、テキスト又は静止画が格納されたパケットよりテキスト又は静止画の実データのみを抽出する。
- (3) パケット単位に多重化されたマルチメディアデータから所定のパケットを選択し、選択されなかったパケットを削除し、この削除情報を付加して出力する。
- (4) 記憶装置に蓄積されたパケットより、映像データや音声データなど時間軸を持ったパケットを入力し、削除されたパケット位置にNULLパケットを挿入して送出する。

(1)出力されたパケットを蓄積する。以下図面に基づいて説明を行う。

【0041】図1は、この発明のマルチメディア蓄積装置の構成図である。図において、太い線はハードウエアを、破線はソフトウエアを示し、1はコンピュータ、2はこのコンピュータのマルチメディア蓄積装置としての機能を制御するためのソフトウエアで、アプリケーション又はRS232CやLANなど外部I/Fからのコマンド受信やそのコマンドによる動画データの送受信制御を行うストリーム制御プログラムである。3は復号装置、4は符号化装置又は多重化装置など動画データを出

力する動画データ出力装置であり、これらはコンピュータに内蔵されていても外付けでも良い。 【0042】5、6は符号化された動画データを転送レートに従って復号装置へ送り出す又はコンピュータに取

ートに使って復号装置へ送り出す又はコンピュータに取りいれるためのそれぞれ出力ボード、入力ボードであり、図では入出力を別々のボードとしているが、同一のボードで入出力を兼ねても良い。7はストリーム制御プログラム2に対してコマンドを送付するためのアプリケーションである。ストリーム制御プログラム2のコマンド発送してアレスについるとコルチュニュスを持ち思した

設けても良いし、他のI/Fを設けても良いし、両者を 併設しても良い。8は、RS232CあるいはLANの ような外部との通信を行うための外部通信ボードであ る。この外部通信ボードが十分な転送能力を有していれ は、5、6に示した入力ボード、出力ボードと共用する ことも可能である。このようなボードには例えば I E E E1394ボードが挙げられる。このようにストリーム 制御プログラム2にコマンドを送信する部分を外部のコ ンピュータあるいはコマンド送信専用のハードウエアな どとして、外部よりマルチメディア蓄積装置を制御する ことも可能である。

11

【0043】9は、受信された動画を蓄積するための蓄 積手段であり、HDD(HardDisc Driv e) に代表される不揮発性の記憶装置である。記憶装置 9は、HDDでも良いし、広帯域の動画の入出力が可能 な速度をもつものであればCD-ROMやDVD、MO (Magneto-Optical Disc)なども 考えられる。特に書き込みをできる必要も無く、取り外 し可能な記録媒体をことに設置し、再生専用の記憶装置 限定しない。さらに、本発明によるマルチメディア蓄積 装置は、コンピュータとしてモニタと別に存在しても良 いし、全体をモニタの中に内蔵しても良い。

【0044】図2は、映像Aと音声Aで構成された第1 の動画と映像Bと音声Bで構成された第2の動画の2つ の動画が多重化された動画データから、第1の動画だけ を蓄積し、再生する際のパケット構成を示した図である (図中映A、Bは映像A、Bを、音A、Bは音声A、B を表す。以下、図4、5とも同様である。)。これは、 化されて送られてきており、その中から1チャンネルの 番組だけを収録する動作を表している。ととで、パケッ トの一単位とは図2に示す各「映A」、「音A」、「P MT」等をいう。

【0045】次に図3のフローチャートを用いて動作に ついて説明する。まず、図2の入力データ21に示すよ うな形式で動画データ出力装置4において生成された、 バケット単位で多重化された動画データが、動画の入力 ボード6を介してストリーム制御プログラム2に入力さ れる (ステップS1)。

【0046】アプリケーション7又は外部より外部通信 ボード8を介して利用者から蓄積開始の指示を行う(ス テップS2)。指示を受けるとコマンド送受信 I / Fを 介してストリーム制御プログラム2に入力される。スト リーム制御プログラム2は入力データを蓄積手段9に蓄 積する際に、入力データ21のデータから1パケットを 取得し(ステップS3)、必要なパケットかどうか判断 して(ステップS4)、必要な動画Aのパケットであれ ぱこれまでに削除したパケットの数をパケット内又は各 パケットにデータを付加しそこに書き込んだ上でこのパ 50 除し、削除情報を蓄積データ中に残すようにしたもので

ケットを蓄積し、削除したパケットの数を0にリセット する(ステップS6)。

【0047】不必要な動画Bのデータすなわち、映像B および音声BのパケットとNULLパケットであればこ のパケットを蓄積せず、削除したパケットの数に1を加 算する(ステップS5)。ステップS3からステップS 6の動作は蓄積の終了を示す指示が発行されるまで継続 され(ステップS7)、蓄積終了指示が発行されると蓄 積完了となる(ステップS8)。ステップS6で削除情 10 報を書き込むパケットは、削除したパケットの前のパケ ットでも後ろのパケットでも良いが、本実施形態では後 ろのパケットに書き込む形式を取っている。図2で示し た蓄積データ22の各パケットのうち、○印で囲んだパ ケットが、O以外の削除情報を持ち、映Aは3つのパケ ット、PATは2つのパケットを削除した情報を持つ。 【0048】利用者から動画Aを再生する指示が発行さ れると(ステップS9)、ストリーム制御プログラム2 で蓄積データ22の各パケットを順次読み込み (ステッ プS10)、各パケットの削除情報に記録されているパ として用いることも可能である。接続数量、種類も特に 20 ケットの数だけNULLパケットを挿入し(ステップ 1 1)、その後に取得したパケットを出力する(ステップ 12)。ステップ10からステップ12までの動作を未 出力のデータが無くなるまで (ステップ13)繰り返す ことによって、出力データ23のような形態で蓄積デー タを出力することができ、入力データ21と同等のタイ ミングで第1の動画を再生するために必要なパケット (PAT、PMT、映A、音A)を送信することが可能 となる。本実施例ではステップS13において蓄積した 全てのデータを出力するように記述しているが、利用者 例えば1チャンネルと3チャンネルのテレビ放送が多重 30 からの停止コマンドによって任意の場所で停止させるこ とも可能である。

> 【0049】以上のように本実施の形態によれば、蓄積 する際に必要なデータを例えばMPEG2-TSで言え dPID (Packet Identificatio n) により選択するようにしているので、入力データに 比べて蓄積するデータをさらに圧縮することができる。 また、再生時には削除情報に従ってNULLパケットを 挿入しながら順にパケット送信をすれば入力データと同 じタイミングで動画を再生することができる。さらに、 40 多重化されるデータは動画のみとは限らず、あらゆるマ ルチメディアデータが考えられ、その場合には再生同期 の問題は無いので、削除情報を書き込まずに必要な部分 だけを取り出すよう選択すれば良い。マルチメディアデ ータには、映像、音声の他にテレビ番組表、静止画、テ キスト、データベース等のバイナリデータも考えられ る。このため、蓄積したデータを用いることにより、番 組表等を作成することができる。

【0050】実施の形態2.実施の形態1では、蓄積し たい動画を第1の動画に決定した上で不要なデータを削 あるが、同時に2つの動画を収録したい時に、コンピュータの性能などの制限によって同時に収録プログラムを 複数動作できない場合がある。本実施の形態は、同時に 2つの動画を収録する場合の動画の蓄積方式について説明する。

13

【0051】この実施の形態の制御手段は以下の機能を 有する。

(1) マルチメディアデータより所定のパケットを抽出 し、音声又は映像データが格納されたパケットを選択す るとともに、テキスト又は静止画が格納されたパケット 10 よりテキスト又は静止画の実データのみを抽出する。

(2)記憶装置に蓄積されたパケットより所定のパケットを選択して送出する。

以下図面に基づいて説明を行う。

【0052】図4は、入力データ31に対して同時に2つの動画を蓄積し、再生する場合のパケット構成を示した図である。蓄積データ32は、第1の動画および第2の動画すなわち映像A、音声A、映像B、音声Bと管理パケットPAT(Programmable Asociation Table)、PMT(Programmable Map Table)を蓄積するように指示したものである。蓄積データ32で、〇印で囲んだ部分は削除情報を持つパケットを示す。とこではNULLパケットのみの削除で圧縮比率が少ないように見えるが、実際には第1の動画、第2の動画以外に他の動画やその他のマルチメディアデータが多重化されている場合もあり、さらに圧縮して蓄積することが可能である。

【0053】このように蓄積されたデータから、第1の動画あるいは第2の動画のパケットのみを出力データ33あるいは出力データ34の形式で復号装置3に送信す30る場合には、蓄積時に不要なパケットを削除して蓄積するのと逆に必要なパケットのみを選択して送信する。選択されていないパケットに関しては同期のためのNULLパケットに置き換えて送信すれば良い。

【0054】以上のように本実施の形態によれば、第1の動画と第2の動画を多重化した状態で蓄積し、再生の際にどちらの動画を再生するか選択することが可能である。また、上記多重化された蓄積データを入力として、第1の動画と第2の動画を別々のデータ列として蓄積後に分割することも可能である。すなわち、コンピュータの能力により同時に動作可能な収録プログラムの数が制限された場合でも、その制限に関係なく複数の番組を収録できる。また、PAT、PMTなどを共通して利用できるため、その分だけ第1の動画、第2の動画を別々に蓄積するよりもディスク容量を少なくすることができる。

【0055】実施の形態3.実施の形態1、2では、不のみが不要となっても第2の動産要なデータを削除し、削除情報を蓄積データ中に残すよっただひとつの蓄積データを生成するものであるなるまで第1の動画の分だけディが、本実施の形態では多重化されたデータを同時に分離50でしまうことを未然に防止する。

しながら蓄積する場合について説明する。

【0056】との実施の形態の制御手段は以下の機能を 有する。

(1) 関連するパケットの組み毎に、多重化されている バケットの格納状態を示す制御情報をコピーし、各関連 するパケットの組み毎にパケットを寄せ集め、記憶装置 は関連するパケットの組み毎に、寄せ集められたパケッ トを蓄積する。ここで、パケットの組みとは、パケット を複数組み合わせたものをいい、例えば、図2に示す入 カデータ21や蓄積データ22等がある。また、関連す るパケットの組みとは互いに組み合わせることにより一 つの動画(一つの番組の内容を表す場合も含む。)、映 像、音声などを構成するパケットの組みをいう。例え ば、図2において映A、音Aがある番組の内容を表し、 映B、音Bが別番組の内容を表すとすると入力データ2 1は関連するパケットの組みではない。一方、蓄積デー タ22は、関連するパケットの組みということになる。 さらに制御情報とは、目的に適合するように対象となっ ているものに所定の操作を加えるための情報をいう。具 体的には、パケット単位に分割された動画データを再生 等できるようにするための情報をいう。 以下図面に基づいて説明を行う。

【0057】図5は、このような場合の、蓄積方式であり、入力データ41に対して同時に3つの蓄積データ42、43、44を蓄積する場合のパケット構成図である。蓄積データ42は、第1の動画すなわち映像Aと音声Aおよび管理パケットPATとPMTを蓄積するように指示したものであり、蓄積データ43は、第2の動画すなわち映像Bと音声Bおよび管理パケットPATとPMTを蓄積するように指示したものであり、蓄積データ44は、第1の動画の音声のみである音声Aと管理パケットPAT、PMTを蓄積するように指示したものである。蓄積データ42、43、44で、〇印で囲んだ部分は削除情報を持つパケットを示す。

【0058】蓄積データ42、43、44で共通するパケットである、PATとPMTは3つに複製してそれぞれの蓄積データとして蓄積する。蓄積データ42、44のみで共通する音声Aのパケットは、2つに複製してそれぞれに蓄積する。このように、それぞれの蓄積データで共通して使用するものは複製することにより、それぞれの蓄積データは独立して再生することが可能となるため、不要となった場合にはその蓄積データを削除しても他の蓄積データに影響はない。

【0059】これは、実施の形態2で説明した、多重化したままで蓄積する形態を取った場合、例えば第1の動画と第2の動画を多重化して蓄積した場合、第1の動画のみが不要となっても第2の動画が必要ならばこの蓄積データを不要とすることができず、第2の動画が不要となるまで第1の動画の分だけディスク容量が無駄となってしまうことを未然に防止する

【0060】以上のように本実施の形態によれば、多重化された第1の動画と第2の動画を同時に分離蓄積することが可能である。それぞれの蓄積データに独立性があるので、それぞれの動画などが不要となれば対応する蓄積データを削除するだけで良く、蓄積データと番組名などを一意に対応させることができ、管理し易くなる。

【0061】実施の形態4、実施の形態1、2、3では、ディスク容量を少なくして目的の動画などを蓄積、再生するものである。入力データのパケットをすべて蓄積すれば蓄積データの先頭からの再生時間の指定による 10 再生個所を転送レートから正確に特定することが可能であるが、不要なパケットは削除してしまうため、正確に再生開始時刻を指定したジャンプ再生ができない。そこで動画など時間軸を持つ蓄積データに関して、蓄積データの先頭からのバイト位置と時刻を対応づける方法に関しての実施の形態を示す。実施の形態1、2、3での蓄積データの生成時に削除情報の他にタイムスタンプを設け、全てのパケットに蓄積時刻をスタンプしておくものとする。

【0062】この実施の形態の制御手段は以下の機能を 20 有する。

- (1)選択されたパケットに、このパケットの蓄積時刻 を付加して出力する。
- (2) 記憶装置に蓄積されたパケットの蓄積時刻と、利用者により指定された再生開始時刻とに基づき再生開始位置を求め、この位置からのパケットを記憶装置より入力して送出する。ここで、蓄積時刻とは、選択したパケットを蓄積する時刻をいう。

以下この実施の形態について説明を行う。

【0063】まず、蓄積データの最初のバケットのタイ 30 良い。ムスタンプを確認し、その時刻を記憶する。次に蓄積データのタイムスタンプを順に走査し、走査したタイムスタンプを順に走査し、走査したタイムスタンプを順に走査し、走査したタイムスタンプを順に走査し、定確に指定された再生開始時刻(蓄積データの先頭からの相対時刻)に対するバイト位置を決定することができる。全てのバケットを確認すると走査時間が長くなることが考えられるが、指定された再生開始時刻と現在の位置により、目的の位置まで非常に長い場合には例えば1000パケット毎にたるとで表表し、目的の位置が近づいてきたらさらに詳などして、時間短縮を図ることが可能である。なる。なるの方である。

【0064】実施の形態5. 実施の形態4は、パケット内もしくはパケットに付加したタイムスタンプによって指定された時刻位置を発見するものであるが、本実施の形態ではタイムスタンプのような付加情報無しで、ファイルの属性として総蓄積時間を記録することにより時刻位置を発見する。

【0065】との実施の形態の制御手段は以下の機能を有する。

- 10 択し出力するととも*に*

(1) 所定のパケットを選択し出力するとともに、記憶 装置に蓄積中にとこまで蓄積されたパケットを入力し送 出する。

(2)関連するパケットの組み毎に蓄積データの総蓄積時間を出力し記憶装置に蓄積させるともに、利用者により指定された再生開始時刻と総蓄積時間とから再生開始位置を求め、この再生開始位置からのパケットを記憶装置より入力して送出する。

(3)選択したバケットの蓄積時刻と蓄積位置とを含む関連情報を所定間隔で出力し記憶装置に蓄積させるとともに、利用者により指定された再生開始時刻と関連情報とから再生開始位置を求め、この再生開始位置からのバケットを送出する。ここで、総蓄積時間とは、蓄積データの蓄積開始時刻と蓄積終了時刻との差時間をいう。また、関連情報とは、バケットの蓄積時刻と蓄積位置に関する情報を含んだ情報をいう。

以下との実施の形態について説明を行う。

【0066】まず、蓄積の際に蓄積開始時刻を記憶し、次に蓄積終了時に蓄積終了時刻を記憶する。この両者の差分から総蓄積時間を算出し、蓄積データの属性情報の一つとして記憶する。ファイルシステムなどによって蓄積データの総蓄積バイトサイズは既に記憶されている。同一の蓄積データであり、総蓄積時間に対する指定時刻の比率は、総蓄積バイトサイズに対する指定時刻のバイト位置と同じものであるため、求めるバイト位置=指定時刻/総蓄積時間×総蓄積バイトサイズによって算出することが可能となる。これにより、即座に指定時刻に対するバイト位置を求めることができるので、次に蓄積データの読み出し位置を算出したバイト位置に合わせれば良い。

【0067】マルチメディア蓄積装置は蓄積と同時に再生することができるが、本実施の形態により時刻位置とバイト位置の関連付けを行うためには、それまでの蓄積バイトサイズが必要になる。しかし、OSの書き込み処理の遅延や、クローズ処理を行うまでファイルサイズが決定できないなどの影響によってそれまでの蓄積実績が正確に把握できない場合がある。そこでストリーム制御プログラム2の内部で蓄積中は蓄積するバッファ単位毎にそれまでの蓄積実績を総蓄積時間、総蓄積バイトサイズとして上記計算式にあてはめ、バイト位置を求める。なお、本実施の形態によってバイト位置を算出した後、実施の形態によってバイト位置を算出した後、実施の形態によってバイト位置を算出した後、実施の形態によってバイト位置を算出した後、実施の形態によってバイト位置を算出した後、実施の形態によってバイト位置を算出した後、実施の形態4と同様にしてバケットのタイムスタンプを走査すればより正確な時刻位置を発見することができる。

【0068】実施の形態6. 実施の形態5は、ファイルの属性として総蓄積時間を記録することにより時刻位置を計算して発見するものであるが、本実施の形態では任意の単位毎に時刻とバイト位置をインデックスとして属50 性とする場合について示す。

【0069】との実施の形態の制御手段は以下の機能を 有する。

17

(1) 蓄積されたパケットの蓄積時間と蓄積バイトサイ ズとを所定間隔で出力し記憶装置に蓄積させるととも に、利用者により指定された再生開始時刻と蓄積時間及 び蓄積バイトサイズとから再生開始位置を求め、この再 生開始位置からのパケットを送出する。

以下との実施の形態について説明を行う。

【0070】まず、蓄積の際には任意の単位時間毎に蓄 積開始時刻から測定時刻までの蓄積時間と蓄積バイトサ 10 イズを関連付けて蓄積データのインデックス情報として 持つ。こうしておけば、蓄積データの先頭からの相対時 刻を指定された時に容易に最も近い場所を発見すること が可能となる。本実施の形態においても、さらに精度が 必要な場合には、タイムスタンプを全てのパケットに記 憶させ、インデックス情報によって最も近い時刻のバイ ト位置を発見した後、パケットのタイムスタンプを走査 して正確な位置を得る。ここで、蓄積時間とはあるパケ ットの蓄積時刻と別のパケットの蓄積時刻との差時間を いう。また、蓄積バイトサイズとは、蓄積時間の間に蓄 20 えられた蓄積データのデータ量をいう。

【0071】なお、この単位時間は、人間がわかりやす いように秒単位でも良いが、動画データの圧縮方式に準 じたものとしても良い。例えばMPEGにはGOP (G roup of Picture) と呼ばれる動画の再 生・編集単位があり、GOPの先頭はパケット内部のフ ラグで判別可能である。蓄積時にこのフラグを走査して おけば再生時にはインデックス情報によって得たバイト 位置から再生を開始することにより復号装置の再生遅延 などの影響を少なくすることができ、編集にも応用可能 であり、編集が容易にできる利点がある。

【0072】実施の形態7.上記実施の形態による蓄積 方法、時刻指定による再生開始位置発見方法を利用し、 生放送動画のリプレイや停止、再開といった動作を行う 実施の形態を示す。

【0073】この実施の形態の制御手段は以下の機能を

- (1)記憶装置へのパケット蓄積中にすでに蓄積された パケットより、利用者による所定の操作が行われた時点 のパケットの位置を求め、この位置からのパケットを記 40 となく挺似的に生放送の操作を行うことを可能とし、コ 憶装置より入力して送出する。
- (2) 所定チャンネルのパケットを記憶装置に蓄積中に 利用者によるチャンネル切替え操作が行われたとき、切 り替えたチャンネルのパケットを記憶装置に出力する。
- (3) 記憶装置に蓄積されたパケットのアクセス頻度又 は作成日時に基づき所定時間間隔で蓄積バケットの要否 を判断し、不要なパケットを削除する。
- (4) 蓄積されたパケットの組の番組識別番号、チャン ネル番号、収録時間(蓄積時間)、番組名、番組ジャン

リーム制御プログラムは番組情報を入力し所定のパケッ トの組の番組識別番号、チャンネル番号、収録時間(蓄 積時間)、番組名、番組ジャンル、出演者又は放送日時 を取り出す。

以下この実施の形態について説明を行う。

【0074】利用者が生放送(現在の放送)の番組を選 択すると、モニタには現在放送されている番組が表示さ れる。この利用者の番組選択をトリガとして、マルチメ ディア蓄積装置は自動的に該当番組の蓄積を開始する。 例えば利用者がリモコンなどにより現在視聴中の番組を 停止すると、マルチメディア蓄積装置は現在蓄積中の番 組に対する再生を、現在の総蓄積時間を再生開始時刻と して指定して実行し、直後に停止命令を実行する。とれ により、現在視聴中の番組は現在収録中の蓄積データの 再生に置き換えられ、かつ、画面は停止する。この間 も、蓄積は継続しており、現在放送中の番組は記憶装置 に蓄積している。

【0075】利用者が再生を再開すると、マルチメディ ア蓄積装置は再生を実行し、停止後の動画を続けて視聴 することができる。実際には、現在の放送とは時間差が できているが、利用者にとっては現在の放送を視聴して いる感覚を継続できる。例えば現在放送中のドラマを視 聴中に電話やトイレなどで中座しなければならない場面 は一般的に多数存在するが、本実施の形態ではそういっ た場合に利用者から見ると現在の放送を停止できる効果 があり、見たかった番組は最後まで見ることが可能とな

【0076】とのように、利用者の操作は意識して現在 の放送と再生の画面を切り替えるものではなく、マルチ メディア蓄積装置の内部で自動的に行うものである。し たがって、自動収録を行うため、有限のディスク容量は 徐々に圧迫されていく。そこで、マルチメディア蓄積装 置が自動的に収録した蓄積データに関してはディスク容 量を圧迫する恐れが生じた時に自動的に削除していく必 要がある。削除する優先度に関しては、a)アクセス頻 度(最後にいつ視聴したか)や、b)作成日時、c)利 用者によるロック指定などにより決定する。このよう に、自動的に蓄積し利用された後、自動的に削除すると とにより、利用者はディスク容量をほとんど意識すると ンピュータの知識が無くとも容易に利用できるマルチメ ディア蓄積装置を実現する。

【0077】デジタル放送はEventlDと呼ばれる I Dにより番組内容や放送時間を管理する方式が一般的 である。したがって、現在視聴中の番組のEventl D、放送局のチャンネル番号と蓄積を開始した蓄積デー タの名前として管理し、現在収録済みのEventI D、チャンネル番号に対応した番組名や、放送時間など のテーブルをハードディスクなどの不揮発性の記憶装置 ル、出演者又は放送日時を含む番組情報を蓄積し、スト 50 に常に保持し、いつでもマルチメディア蓄積装置に蓄積

されている蓄積データを利用者にわかりやすいチャンネ ル番号、番組名、放送日時、蓄積時間などの番組情報と して取り出せるようにしておく。これにより、利用者か ら見れば、番組名や放送時間などのインデックスとして みることができ、蓄積データを再生するための選択や不 要な蓄積データの削除などを容易に実施することが可能 となる。

19

【0078】ここで、蓄積データが数多くなってくる と、これらの中から所望の番組を探すのは困難である。 そこで、番組情報を任意のキーワードで検索できるよう 10 をしなければならない。 にしておく。これにより、番組情報が膨大量になって も、利用者が放送日やチャンネル、番組名といったキー ワードを指定して取り出す番組情報を限定することによ り、所望の番組情報だけを取り出すことが可能となる。 【0079】上記番組情報の取り出しに際しては、基本 的に個々の蓄積データに関連する番組情報を1つ以上同 時に取り出すことを想定している。これらの情報を表示 する表示形式は、表示を行う機器に任される。したがっ て、この方法は極めて一般的なものである。マルチメデ ィア蓄積装置の使用形態としては、受信機等の放送スト 20 良く実施されているように、CM直前の動画をCM後に リームを受け取る機器との接続が想定され、受信機は一 般的に多くのグラフィック機能を持たない。そこで、受 信機の負荷を軽減するために、テレビ画面に表示するた めのグラフィック情報に変換する機能を蓄積手段または 制御手段に設け、番組情報をグラフィック情報として取 り出す手段を設ける。これにより受信機は表示する機能 だけを持てば良く、取り出した番組情報を変換する必要 が無い。

【0080】実施の形態8.実施の形態7により、蓄積 データの再生、停止、再開といった動作を繰り返す場 合、一時的にパケットの流れが停止し、動画データの連 続性が失われるため、復号装置によってはエラーが発生 し再生画面がエラー復帰までの間凍結する場合がある。 これにより、利用者はマルチメディア蓄積装置から復号 装置へのデータ送信が再開されてから実際に画面に動画 が表示されるまでの時間に相当する動画を視聴できない 状況が発生する。この状況を緩和し、少なくとも利用者 が蓄積データのすべての動画を視聴できるようにするた めの実施の形態を示す。

【0081】この実施の形態の制御手段は以下の機能を 40 有する。

(1)記憶手段に蓄積されたパケットの送出中にこの送 出が停止されその後送出再開した際に、停止位置から所 定時間までさかのぼった位置のパケットより送出を再開 する。

以下本実施の形態について説明を行う。

【0082】図6は動画データの転送が途切れた場合 に、データの転送が再開されてから実際に画面に動画が 表示されるまでに数秒を要する復号装置を使用した場合 において、従来の方法によりデータ転送を行った場合の 50 を指定する。マルチメディア蓄積装置はキーワードを元

従来方式51と、本実施の形態により復号装置のエラー が復帰できる程度のデータを再送する場合である本願方 式52を示したものである。

【0083】従来方式51では、利用者の操作によって データ転送が停止すると、次にデータ転送を再開する時 には停止した直後のデータからデータ転送を再開するも のであり、利用者は斜線で示した部分の動画を見ること ができない。これを見るためには、利用者自ら復号装置 のエラー復帰を考慮した再生開始位置を再設定して再生

【0084】一方本願方式52では、利用者の操作によ ってデータ転送が停止すると、マルチメディア蓄積装置 が自動的に再生再開位置を復号装置のエラーを復帰する に充分な位置まで戻しておき、再生再開時には利用者が 意識すること無くこれまで見てきた動画の続きとして視 聴を再開することが可能となる。この復号装置のエラー が復帰するに充分な位置(時間)は、マルチメディア蓄 積装置のハードディスクなどの不揮発性の記憶領域にあ らかじめ記憶しておく。これにより、現在テレビ放送で 再び流し、利用者から見た番組の感覚的な連続性を保つ 効果がある。

【0085】実施の形態9. これまでの実施の形態で は、利用者の操作によって録画を開始、停止することを 前提としてきたが、本実施の形態では自動的に録画をす る方式に関して、利用者の利便性を追求した実施の形態 を示す。

【0086】この実施の形態の制御手段は以下の機能を 有する。

- (1)利用者から指定された番組タイトルなどから、番 30 組を特定してその放送時間やパケットの組みの識別子な どを検索する番組詳細情報の検索機能
 - (2) 放送される番組情報を常に解析し、番組編成に変 更があった場合それを検知できる機能
 - (3) マルチメディア蓄積装置に接続されている様々な 種類の蓄積メディアを識別および、記録媒体の残り容量 などの情報を監視する機能

以下本願方式の実施の形態について説明を行う。

【0087】従来、例えば家庭用VTR装置では録画予 約は録画する時間をあらかじめ指定することにより、V TR装置がその時間になると録画を開始する単純な構造 である。現在はGコードと呼ばれる、コードを入力する 方法があるが、これもコード番号を元にチャンネルや録 画時間を指定するだけのものであり、録画予約完了後の 変更は利用者が手操作で行う必要があり、また、放送時 間が変更されるとそれに伴って予約時間を変更しなけれ ばならないなどの問題があった。

【0088】一方、本願方式では、番組タイトルや番組 ジャンル、出演者といった抽象的、感覚的なキーワード 21

に、電子番組表から1つ以上の番組を検索し、録画予約 を行う。この時、マルチメディア蓄積装置により検索さ れた1つ以上予約候補に関しては利用者に表示すること も可能であるし、また、対話的に利用者が選択する手段 も考えられる。録画予約の録画制御は録画開始時刻の数 秒前に開始され、その後の録画処理は実施形態1,2, 3で記述した内容と同じである。

【0089】実際のテレビ放送では、野球中継の放送時 間の延長や緊急特別番組などの挿入により、予約されて いた番組の放送時間が変更になる場合がある。マルチメ 10 ードディスク装置を示す。 112は再生時の応答速度な ディア蓄積装置では、常に現在の電子番組表を監視し て、以前のものと変更があった番組を発見すると、その 番組が録画予約されているかどうか検索し、予約されて いるならば、番組変更の情報を反映する。マルチメディ ア蓄積装置の予約録画においては、録画制御が開始され るまで、予約された録画の情報はメモリまたは不揮発性 の記憶装置に記憶された状態となる。この情報を変更す ることにより、録画制御の開始時刻が変更となるため、 結果として番組を確定的に録画することが可能となる。 【0090】次に、利用者の指定により自動的に最新の 20 番組を録画し、古い動画を削除する、自動更新とも呼ぶ べき機能に関して説明する。この機能は、利用者にとっ て最新の情報が意味を持つ番組、例えば天気予報やニュ ースを自動的に更新し、最新のもの以外、あるいは最新 のものと過去2回分の放送以外といった指定により過去 の動画を自動的に削除するものである。連続ドラマに適 用する場合には、「視聴が完了したら削除する」など、 削除方法に関しては色々と考えられる。この自動更新の 機能は、「ニュース」「天気」というジャンルから定期 的に録画することを自動的に認識し、かつ、設定条件に より自動的に削除する機能を組み合わせることにより、 本機能が記録媒体の不足に陥ることを防止する。したが って、マルチメディア蓄積装置は常に最新のニュースや

【0091】本機能を利用者の利便性の観点から見れ ば、利用者は放送時間に左右されることなく、利用者の 都合の良い時間に視聴することができる効果がある。

天気を確定的に録画することが可能となる。

【0092】実施の形態10. 実施の形態1では、基本 的な構成として図1について説明したが、ネットワーク を用いた構成として図10のような構成も考えられる。 本実施形態では、このように様々な種類の記憶装置を内 蔵、あるいはネットワーク上に実装した場合に、蓄積先 を決定する方法について一実施例を説明する。

【0093】図10において、1から8は、図1の同一 符号の説明と同等である。10は8の外部通信ボードを 他の機器と接続するためネットワークケーブルであり、 11はネットワーク上の記憶装置であり、この記憶装置 はネットワークによる通信が可能であれば図1の9と同 様の種類が考えられる。また12はハードディスクなど の高速ランダムアクセス記憶装置である。

【0094】との実施の形態の制御手段は実施形態1の 制御手段に加えて以下の機能を有する。

(1)マルチメディア蓄積装置に接続されている様々な 種類の蓄積メディアを識別および、記録媒体の残り容 量、ネットワーク回線の負荷などの情報を監視する機能 以下本願方式の実施の形態について説明を行う。

【0095】図11は最適蓄積形態の一実施例を示す図 である。111は高機能高性能であり、収録と同時に再 生したり、再生時の応答速度が速い記憶装置、例えばハ どは111に比べて劣るが、安価で取り外し可能な記録 媒体を持つ記憶装置を示す。113は111と112を 接続するケーブルを示し、内蔵の場合はマルチメディア 蓄積装置の内部でSCSIケーブルなどで接続され、ネ ットワーク接続の場合には、図10の10で示したネッ トワークケーブルで接続されているものである。

【0096】今、マルチメディア蓄積装置として管理し ている動画は両者に蓄積した動画すべてであるが、なぜ このような形態で蓄積するのかを説明する。最新のニュ ース、最新の天気に関しては、実施形態9で説明した通 りであり、常に最新のニュースをいつでも視聴可能な状 態としている。また、過去のニュースには、最新のニュ ースでは視聴できない内容も含まれている可能性がある ため、図の112に示すように、安価な記録媒体の方に 蓄積する。また、それぞれの動画には視聴済や未試聴な どの状態を示す属性情報を自動的に付加している。

【0097】例えば連続ドラマなど毎週連続して録画し なければ全体のストーリ展開がわからない番組など動画 の連続性が重要な番組に関しては、見ていない動画の中 で最も古いものだけをハードディスク上に置く。これま で5回の放送を録画した場合、2回目まで視聴したとす ると、次に視聴すべき3回目のドラマだけをいつでもす ぐに視聴可能なハードディスク上に置き、その他の週に 放送された動画は、テープやDVDなど112に示した 記憶装置に蓄積する。との時、連続性が重要なドラマな どに関しては、視聴済や未試聴を示す属性情報を自動的 に設定する。これにより、再生を実行した際の応答性能 やハードディスクの利用効率を高めるだけでなく、必要 な番組だけをハードディスク上に録画するため内蔵する ハードディスクの容量を少なくでき、装置をより安価に することができる。なお、DVD装置はランダムアクセ スであるため、ハードディスクと同様の使用方法ができ ると考えられるが、性能面からHDTVのような高精細 映像に関してはハードディスクを使用した方が望ましい などの条件があり、とういった条件に関してもマルチメ ディア蓄積装置は個々のデバイスの性能を管理すること によって自動的に判別できる。

【0098】さらに、図10に示すようなネットワーク を介して接続されている記憶装置に動画を蓄積させると 50 ともある。この場合、ネットワークの負荷が大きい記憶 装置に動画を蓄積させると時間がかかる。しかし、実施 の形態10に係るマルチメディア装置はネットワークの 負荷についての情報を監視する機能を有する。したがっ て、ネットワークを介して接続されている記憶装置に動 画を蓄積させる場合、ネットワーク回線の負荷を考慮 し、負荷の小さな回線に接続されている記憶装置を選ん で動画を蓄積することができる。

23

【0099】続いて、上記録画時の実施例で蓄積した図 11の状態において、ドラマ3を再生する場合の実施例 を図12について説明する。図12は、図11の状態で(10)とれにより、番組の内容を確認するための時間が飛躍的 ドラマ3の視聴を開始した後の状態を示すものであり、 121は111と、122は112と、123は113 とそれぞれ同一である。連続して毎週録画されているド ラマ番組で、5回目まで既に録画されており、現在の状 態が図11の状態であるとする。今、3回目の視聴を開 始すると、次に視聴すべき動画はドラマ4であるため、 マルチメディア蓄積は自動的に4回目のドラマをテープ 装置からハードディスク装置に読み込みを開始し、次の ドラマの視聴に備える。3回目のドラマは、視聴が終了 すると属性情報を視聴済に変更した上でハードディスク 20 上から削除する。利用者の希望によって長期保存する必 要がある場合でテープやDVDに存在しない場合はテー プやDVDなどの安価なデバイスにコピーした上でハー ドディスク上の動画を削除する。

【0100】本実施形態によれば、ハードディスクなど 比較的高価な記憶装置の容量を減らすことが可能であ る。本実施形態で説明した図11の蓄積事例でも、ドラ マ1回につき1時間の放送があるとすると、すべてをハ ードディスク上に蓄積すれば5時間分の容量が必要とな るが、本願実施形態によればハードディスク装置は1時 30 ケットを寄せ集め、上記関連するパケットの組み毎に、 間分だけで良い。このように、ハードディスクなどの髙 性能な記憶装置を使用するがゆえに実現可能な高機能

(同一動画に対する複数再生、瞬時アクセス、瞬時再生 位置移動、瞬時頭出しなど)をこれから視聴すると予想 される動画のみに割り当てることにより、マルチメディ ア蓄積装置全体の蓄積容量に対するコストを安価にする ことが可能であり、また、他の装置に持ち運ぶことも可 能となる。

【0101】実施の形態11. 従来のVTRでは、録画 した内容を確認する際には、早送り再生や巻き戻し再生 40 などで録画した内容をすべて見るか、早送り、巻き戻し と再生を繰り返し操作することによって飛び飛びに再生 しなから確認するのが一般的である。本実施形態では、 録画した動画の内容を確認する際に再生と飛び越しを繰 り返す方法について一実施例を説明する。

【0102】図13について説明する。この図は、1つ の蓄積されたパケットの組み、すなわち1つの録画され た動画を示す。との中で、131で示された空白の部分 を飛び越し、斜線で示した132の3つの部分だけを連 続的に再生する。従来のVTRでは、見ない部分を飛び 50 出力するとともに、蓄積手段に蓄積中にすでに蓄積され

越すためにはテープを早送りしなければならず、その分 だけ時間がかかっていた。また、操作が多くなればその 分だけスイッチボタンを押下する回数が増え、その回数 は動画全体の長さが長くなるほど多くなるという特徴を 持つ。マルチメディア蓄積装置は、ハードディスクなど の高機能な記憶装置を主たる記憶装置としている。この 特徴を利用し、1つの操作によりあらかじめ設定した時 間あるいは、番組の特徴部分を示す番組インデックスな どを利用して、再生と飛び越しを繰り返すものである。 に向上し、また、ボタン操作などの手間も不要となるた め、利用者の利便性が向上する。

[0103]

【発明の効果】この発明は、以上説明したように構成さ れているので、以下に示すような効果を奏する。

【0104】第1の発明では、入力されたバケット単位 に多重化されたマルチメディアデータより所定のパケッ トを選択し出力し、この出力されたパケットを蓄積する ことにより、入力データに比べて蓄積するデータをさら に圧縮することができる。

【0105】第2の発明では、マルチメディアデータよ り所定のパケットを抽出し、音声又は映像データが格納 されたパケットを選択するとともに、テキスト又は静止 画が格納されたパケットよりテキスト又は静止画の実デ ータのみを抽出することにより、必要なデータを取り出 すことができる。

【0106】第3の発明では、関連するパケットの組み 毎に、多重化されているパケットの格納状態を示す制御 情報をコピーし、各関連するパケットの組み毎に上記パ 上記寄せ集められたパケットを蓄積することにより、複 数の関連するデータを同時に分離蓄積することができ る。

【0107】第4の発明では、バケット単位に多重化さ れたマルチメディアデータから所定のパケットを選択 し、選択されなかったバケットを削除し、この削除バケ ットの削除情報を付加して出力することにより、入力デ ータに比べて蓄積するデータをさらに圧縮することがで きる。

【0108】第5の発明では、蓄積手段に蓄積されたパ ケットより、映像データや音声データなど時間軸を持っ たパケットを入力し、削除されたパケット位置にNUL しパケットを挿入して送出することにより、入力と同様 の送出タイミングで出力することができる。

【0109】第6の発明では、蓄積手段に蓄積されたバ ケットより所定のパケットを選択して送出することによ り、蓄積データから任意に指定したパケットのみを選択 して送信することができる。

【0110】第7の発明では、所定のパケットを選択し

たパケットを入力し送出することにより、これまでのVTR装置のように収録の終了を待たずに現在までの蓄積 データを再生することができる。

25

【0111】第8の発明では、選択されたパケットに、 このパケットの蓄積時刻を付加して出力することによ り、任意のパケットの蓄積時刻を認識することができ る。

【0112】第9の発明では、蓄積手段に蓄積されたバケットの蓄積時刻と、利用者により指定された再生開始時刻とに基づき再生開始位置を求め、この位置からのバ 10ケットを上記蓄積手段より入力して送出することにより、再生開始位置を指定することができる。

【0113】第10の発明では、関連するパケットの組み毎に蓄積データの総蓄積時間を出力し蓄積手段に蓄積させるとともに、利用者により指定された再生開始時刻と上記総蓄積時間とから再生開始位置を求め、この再生開始位置からのパケットを上記蓄積手段より入力して送出することにより、ランダムにかつ高速に再生開始位置を指定することができる。

【0114】第11の発明では、所定間隔でパケットの収録時刻と蓄積位置とを含む関連情報を出力し蓄積手段に蓄積させるとともに、利用者により指定された再生開始時刻と上記関連情報とから再生開始位置を求め、この再生開始位置からのパケットを送出することから、ランダムにかつ高速に再生開始位置をファイルの先頭からの相対時刻により指定することを可能とした。

【0115】第12の発明では、蓄積手段に蓄積されたパケットの蓄積時間と蓄積バイトサイズとを所定間隔で出力し上記蓄積手段に蓄積させるとともに、上記蓄積手段に蓄積中にすでに蓄積されたパケットを入力し、利用者により指定された再生開始時刻と上記蓄積時間と上記蓄積バイトサイズとに基づき再生開始位置を求めることから、蓄積途中であっても再生開始位置を指定することができる。

【0116】第13の発明では、蓄積手段へのパケット 蓄積中にすでに蓄積されたパケットより、利用者による 所定の操作が行われた時点のパケットの位置を求め、この位置からのパケットを上記蓄積手段より入力して送出 することにより、モニタ上に出力されている映像を再生 映像と瞬時に置き換え、生放送を停止、再開、リプレイ 40 といった擬似的な生放送に対する操作ができる。

【0117】第14の発明では、所定チャンネルのパケットを蓄積手段に蓄積中に利用者によるチャンネル切替え操作が行われたとき、切り替えたチャンネルのパケットを上記蓄積手段に出力することにより、モニタ上に出力されている映像を再生映像と瞬時に置き換え、生放送を停止、再開、リプレイといった擬似的な生放送に対する操作ができる。

【0118】第15の発明では、蓄積手段に蓄積された に内蔵された装置とネットワークに接続された記憶装パケットのアクセス頻度又は作成日時に基づき所定時間 50 のうち、どの記録媒体を使用するか決定することによ

間隔で蓄積パケットの要否を判断し、不要なパケットを 削除することにより、ディスク容量不足による蓄積不能 を自動的に解消する。

【0119】第16の発明では、蓄積手段に蓄積されたパケットの送出中に、との送出が停止されその後送出再開した際に、停止位置から所定時間までさかのぼった位置のパケットより送出を再開することにより、モニタ上で蓄積した全ての映像を漏れなく視聴することができる

【0120】第17の発明では、蓄積されたパケットの組の番組識別番号、チャンネル番号、収録時間(蓄積時間)、番組名、番組ジャンル、出演者又は放送日時を含む番組情報を蓄積し、これらの番組情報を取り出すことにより、これらの番組情報を利用者が理解できる表示方法で管理できる。

【0121】第18の発明は、従来は新聞や雑誌によって番組の存在を知り、録画予約を実施していた操作を、連続ドラマ、出演者の名前といった抽象的な指定によってあらかじめ番組の存在さえ知ることなく好みの自動的に録画予約を行うことができる。

【0122】第19の発明は、録画予約された番組の放送時間が変更になった時、その番組変更に追従して録画予約の内容も変更することによって、一度録画予約した番組は必ず録画されることを保証するものである。

【0123】第20の発明は、例えばニュースや天気予報などの主として最新の情報に価値がある番組につい

て、自動的に最新の番組を録画することによって、視聴者の都合に合わせていつでも最新のニュースや天気予報 を視聴することを可能とするものである。

【0124】第21の発明は、第18の発明や第20の 発明によって自動的に録画された動画により、記録装置 が満杯になるのを防ぐことができる。例えば、自動更新 は必ず最新の1世代分だけを記録装置に残す、あるいは 過去3回分を記録装置に残すといった具合である。通常 の録画や録画予約により蓄積された映像においても、利 用者の指定により削除可能、削除不可を指定できるよう にすることで、利用者が明示的に削除機能を使って削除 しなくても本発明の自動削除機能によって定期的に一括 削除できるようになる。

【0125】第22の発明は、動画の種類や利用者の好み、蓄積した動画の連続性などによってすぐに再生できる必要があるかどうか判断し、マルチメディア蓄積装置に内蔵された装置のうち、どの記録媒体を使用するか決定することにより、動画が占める単位容量に対する記録媒体の価格を安価にするものである。

【0126】第23の発明は、動画の種類や利用者の好み、蓄積した動画の連続性などによってすぐに再生できる必要があるかどうか判断し、マルチメディア蓄積装置に内蔵された装置とネットワークに接続された記憶装置のうち、どの記録媒体を使用するか決定することによ

り、動画が占める単位容量に対する記録媒体の価格を安価にするとともに、マルチメディア蓄積装置に内蔵する記憶装置を最小に抑えることによって装置の価格を安価にすることができ、ネットワーク上に記憶装置を接続することにより、マルチメディア蓄積装置で使用可能な記憶装置を簡単に増加させることが可能になる。

27

【0127】第24の発明は、連続するドラマをすべて 録画する場合には、即時に再生可能な記録媒体にこれから視聴すべき週のドラマを録画しておき、その他の週の 動画に関しては、他の記録媒体に録画しておくことによ 10 り、限られた高機能な記録媒体を効率的に使用する。

【0128】第25の発明は、即時に再生可能な記録媒体に録画されているこれから視聴すべき週のドラマを再生した場合、再生と併行して他の記録媒体に録画してある次に視聴すべき動画を即時に再生可能な記録媒体にコピーする。これにより、利用者から見れば、連続したドラマを順番に再生していく際に、連続ドラマがすべて即時再生可能な記録媒体に録画されているのと同等の機能をより安価に提供することができる。

【0129】第26の発明は、例えば第18の発明によ 20って、マルチメディア蓄積装置の判断により録画予約をした場合や利用者が試しに録画した番組など、利用者がその内容を飛び飛びに見ていくことによって、より早く番組の内容を把握し、視聴するか否か決定できる効果があり、従来に比べて視聴者の利便性が飛躍的に向上する。

【0130】第27の発明では、利用者が、番組識別番号、チャンネル番号、収録時間(蓄積時間)、番組名、番組ジャンル、出演者又は放送日時などのキーワードを指定し、その検索結果のみを表示する。これにより、表 30 示される内容がマルチメディア蓄積装置全体でなく、一部になることから、特に収録された動画の数が多くなった場合、利用者は目的の収録済みの番組をより早く発見できる

【0131】第28の発明では、蓄積されたパケットの組の番組識別番号、チャンネル番号、収録時間(蓄積時間)、番組名、番組ジャンル、出演者又は放送日時を含む番組情報を蓄積し、これらの番組情報をグラフィック情報を取り出すことを可能とする。これにより、受信機では番組情報を解析する必要が無く、受信機のコストを*40

*安価にすることができる。

【0132】第29の発明では、利用者が、番組識別番号、チャンネル番号、収録時間(蓄積時間)、番組名、番組ジャンル、出演者又は放送日時などのキーワードを指定し、その検索結果のみをグラフィック情報として取り出すことを可能とする。番組情報の解析機能を持たない安価な受信機でも、マルチメディア蓄積装置の検索機能を利用することが可能となる。

【図面の簡単な説明】

10 【図1】 実施の形態1のマルチメディア蓄積装置の 構成図。

【図2】 実施の形態1において動画を蓄積、再生する際のパケット構成図。

【図3】 実施の形態1においてマルチメディア蓄積装置の動作を説明するフローチャート。

【図4】 実施の形態2において動画を蓄積、再生する際のパケット構成図。

【図5】 実施の形態3において動画を蓄積、再生する際のパケット構成図。

20 【図6】 実施の形態8において送信停止した動画データの再送信動作の説明図。

【図7】 従来例のPCでの動画蓄積装置。

【図8】 従来例のVTRでの動画蓄積装置。

【図9】 従来例の家庭用テレビ。

【図10】 実施の形態10におけるマルチメディア 蓄積装置の構成図。

【図11】 実施の形態10における蓄積形態の一実施例。

【図12】 実施の形態10における再生時の動作の一実施例。

【図13】 実施の形態11における飛び越し再生の概念図。

【符号の説明】

1 コンピュータ、2 ストリーム制御プログラム、3 復号装置、4 動画データ出力装置、5 出力ボード、6 入力ボード、7 アプリケーション、8外部通信ボード、9 記憶装置、10 ネットワークケーブル、11 ネットワーク上の記憶装置、12 高速ランダムアクセス記憶装置。

【図8】

[図13]

【図3】

フロントページの続き

(72)発明者 吉田 浩

東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 鷹取 功人

東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内