

AMENDMENTS TO THE CLAIMS

1. (Cancelled)
2. (Currently amended) A compound method of claim [[1]] 21 wherein Z is CH, and Q and X are each N.
3. (Currently amended) A compound method of claim [[1]] 21 wherein R¹ is R⁹-aryl(C₁-C₆)alkyl-, R⁹-heteroaryl-(C₁-C₆)alkyl-, (C₁-C₆)alkyl-SO₂-, (C₃-C₆)cycloalkyl-SO₂-, fluoro-(C₁-C₆)-alkyl-SO₂-, R⁹-aryl-SO₂-, or R⁹-aryl-NH-C(O)-.
4. (Currently amended) A compound method of claim [[1]] 21 wherein R² is hydrogen and R³ is (C₁-C₆)alkyl, R⁹-aryl, R⁹-aryl(C₁-C₆)-alkyl, R⁹-heteroaryl, or R⁹-heteroaryl(C₁-C₆)alkyl.
5. (Currently amended) A compound method of claim [[1]] 21 wherein R, R⁵ and R⁷ are each hydrogen and R⁶ is -CH₃.
6. (Currently amended) A compound method of claim [[1]] 21 wherein X is N and R⁴ is methyl.
7. (Currently amended) A compound method of claim [[1]] 21 wherein X is CH and R⁴ is H.
8. (Currently amended) A compound method of claim [[1]] 21 wherein R⁹ is H, halogen, (C₁-C₆)alkyl or (C₁-C₆)alkoxy.
9. (Currently amended) A compound method of claim [[1]] 21 wherein R⁸ is (R¹⁴, R¹⁵, R¹⁶)-phenyl; (R¹⁴, R¹⁵, R¹⁶)-pyridyl or an N-oxide thereof; or (R¹⁴, R¹⁵, R¹⁶)-pyrimidyl.
10. (Currently amended) A compound method of claim 8 wherein R⁸ is

11. (Currently amended) A compound method of claim 10 wherein R¹⁴ and R¹⁵ are independently selected from the group consisting of (C₁-C₆)alkyl, halogen and NH₂, and R¹⁶ is H.

12. (Currently amended) A compound method of claim [[1]] 21 selected from the group consisting of compounds of the formula

wherein R¹, R³ and R⁶ are as defined in the following table:

R ¹	R ³	R ⁶
4-CH ₃ OC ₆ H ₄ CH ₂	C ₆ H ₅	CH ₃
CH ₃ SO ₂	C ₆ H ₅	CH ₃
4-CH ₃ OC ₆ H ₄ CH ₂	CH ₂ C ₆ H ₅	CH ₃
CH ₃ SO ₂	CH ₂ CH ₂ CH ₃	CH ₃
4-CH ₃ C ₆ H ₄ SO ₂	CH ₂ CH ₂ CH ₃	CH ₃
4-CH ₃ C ₆ H ₄ SO ₂	C ₆ H ₅	CH ₃
C ₆ H ₅ NHC(O)	C ₆ H ₅	CH ₃
4-CH ₃ OC ₆ H ₄ CH ₂	C ₆ H ₅	H
4-CH ₃ OC ₆ H ₄ SO ₂	C ₆ H ₅	CH ₃
3-Cl-C ₆ H ₄ SO ₂	C ₆ H ₅	CH ₃
CH ₃ SO ₂	CH ₂ C ₆ H ₅	CH ₃
3-Cl-C ₆ H ₄ SO ₂	CH ₂ C ₆ H ₅	CH ₃
CH ₃ CH ₂ SO ₂	CH ₂ C ₆ H ₅	CH ₃
4-CH ₃ OC ₆ H ₄ SO ₂	4-F-C ₆ H ₄	CH ₃
CH ₃ SO ₂	4-F-C ₆ H ₄	CH ₃
3-Cl-C ₆ H ₄ SO ₂	4-F-C ₆ H ₄	CH ₃
CF ₃ C(O)	4-F-C ₆ H ₄ CH ₂	CH ₃
CH ₃ SO ₂	3-F-C ₆ H ₄	CH ₃
3-Cl-C ₆ H ₄ SO ₂	3-F-C ₆ H ₄	CH ₃
4-CH ₃ OC ₆ H ₄ SO ₂	3-F-C ₆ H ₄	CH ₃
CH ₃ SO ₂	4-F-C ₆ H ₄ CH ₂	CH ₃
3-Cl-C ₆ H ₄ SO ₂	4-F-C ₆ H ₄ CH ₂	CH ₃
4-CH ₃ OC ₆ H ₄ SO ₂	4-F-C ₆ H ₄ CH ₂	CH ₃
4-CH ₃ OC ₆ H ₄ CH ₂	2-thienyl	CH ₃

$\text{CF}_3\text{CH}_2\text{SO}_2$	C_6H_5	CH_3
CF_3SO_2	C_6H_5	CH_3
$4\text{-CH}_3\text{OC}_6\text{H}_4\text{CH}_2$	3-thienyl	CH_3
$3\text{-Cl-C}_6\text{H}_4\text{SO}_2$	2-thienyl	CH_3
$4\text{-CH}_3\text{OC}_6\text{H}_4\text{SO}_2$	2-thienyl	CH_3
CH_3SO_2	2-thienyl	CH_3
CH_3SO_2	3-thienyl	CH_3
$3\text{-Cl-C}_6\text{H}_4\text{SO}_2$	3-thienyl	CH_3
$4\text{-F-C}_6\text{H}_4\text{SO}_2$	$\text{CH}_2\text{C}_6\text{H}_5$	CH_3
2-thienyl-SO ₂	$\text{CH}_2\text{C}_6\text{H}_5$	CH_3
$\text{C}_6\text{H}_5\text{SO}_2$	$\text{CH}_2\text{C}_6\text{H}_5$	CH_3
CF_3SO_2	$\text{CH}_2\text{C}_6\text{H}_5$	CH_3
$\text{CF}_3\text{CH}_2\text{SO}_2$	$\text{CH}_2\text{C}_6\text{H}_5$	CH_3
$(\text{CH}_3)_2\text{NSO}_2$	$\text{CH}_2\text{C}_6\text{H}_5$	CH_3
cyclopropyl-SO ₂	3-F-C ₆ H ₄	CH_3
$4\text{-F-C}_6\text{H}_4\text{SO}_2$	3-F-C ₆ H ₄	CH_3
$4\text{-CH}_3\text{OC}_6\text{H}_4\text{CH}_2$	n-Butyl	CH_3
$3\text{-Cl-C}_6\text{H}_4\text{SO}_2$	n-Butyl	CH_3
$4\text{-CH}_3\text{OC}_6\text{H}_4\text{SO}_2$	n-Butyl	CH_3
$3\text{-Cl-C}_6\text{H}_4\text{SO}_2$	3-pyridyl	CH_3
$4\text{-CH}_3\text{OC}_6\text{H}_4\text{SO}_2$	3-pyridyl	CH_3
$3\text{-Cl-C}_6\text{H}_4\text{SO}_2$	2-pyridyl	CH_3
cyclopropyl-SO ₂	C_6H_5	CH_3
$\text{CH}_3\text{CH}_2\text{SO}_2$	C_6H_5	CH_3
$\text{CH}_3\text{CH}_2\text{CH}_2\text{SO}_2$	C_6H_5	CH_3
i-propyl-SO ₂	C_6H_5	CH_3
$\text{CH}_3\text{C(O)}$	C_6H_5	CH_3
cyclopropyl-C(O)	C_6H_5	CH_3
$\text{CH}_3\text{CH}_2\text{C(O)}$	C_6H_5	CH_3
i-propyl-C(O)	C_6H_5	CH_3
$4\text{-CH}_3\text{OC}_6\text{H}_4\text{CH}_2$	3,5-difluorophenyl	CH_3
cyclopropyl-SO ₂	3,5-difluorophenyl	CH_3
CH_3SO_2	cyclohexyl	CH_3

13. (Currently amended) A compound method of claim [[1]] 21 selected from the group consisting of

14. to 20. (Canceled)

21. (New) A method of treating solid organ transplant rejection, arthritis, rheumatoid arthritis or multiple sclerosis, comprising administering to a mammal in need of such treatment an effective amount of a compound of the formula I

or a diastereomer, enantiomer, atropisomer or pharmaceutically acceptable salt thereof, wherein:

X is N;

Q and Z are independently selected from the group consisting of CH and N, provided that one or both of Q and Z is N;

R, R⁵, R⁶ and R⁷ are independently selected from the group consisting of H and (C₁-C₆)alkyl;

R⁴ is (C₁-C₆)alkyl;

R¹ is H, (C₁-C₆)alkyl, fluoro-(C₁-C₆)alkyl-, R⁹-aryl(C₁-C₆)alkyl-, R⁹-heteroaryl-(C₁-C₆)alkyl-, (C₁-C₆)alkyl-SO₂-, (C₃-C₆)cycloalkyl-SO₂-, fluoro-(C₁-C₆)alkyl-SO₂-, R⁹-aryl-SO₂-, R⁹-heteroaryl-SO₂-, N(R²²)(R²³)-SO₂-, (C₁-C₆)alkyl-C(O)-, (C₃-C₆)cyclo-

alkyl-C(O)-, fluoro-(C₁-C₆)alkyl-C(O)-, R⁹-aryl-C(O)-, NH-(C₁-C₆)alkyl-C(O)- or R⁹-aryl-NH-C(O)-;

R² is H or (C₁-C₆)alkyl, and R³ is H, (C₁-C₆)alkyl, (C₁-C₆)alkoxy(C₁-C₆)alkyl-, (C₃-C₁₀)-cycloalkyl-, (C₃-C₁₀)cycloalkyl(C₁-C₆)alkyl-, R⁹-aryl, R⁹-aryl(C₁-C₆)-alkyl-, R⁹-heteroaryl, or R⁹-heteroaryl(C₁-C₆)alkyl-, provided that both X and Z are not each N;

or R² and R³ together are =O, =NOR¹⁰, or =N-NR¹¹R¹²;

R⁸ is (R¹⁴,R¹⁵,R¹⁶)-substituted phenyl, (R¹⁴,R¹⁵,R¹⁶)-substituted pyridyl, (R¹⁴,R¹⁵,R¹⁶)-substituted pyridyl N-oxide, or (R¹⁴,R¹⁵,R¹⁶)-substituted pyrimidyl;

R⁹ is 1, 2 or 3 substituents independently selected from the group consisting of H, halogen, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, -CF₃, -OCF₃, CH₃C(O)-, -CN, CH₃SO₂-, CF₃SO₂- and -N(R²²)(R²³);

R¹⁰ is H, (C₁-C₆)alkyl, fluoro(C₁-C₆)alkyl-, (C₃-C₁₀)cycloalkyl(C₁-C₆)alkyl-, hydroxy(C₂-C₆)alkyl-, (C₁-C₆)alkyl-O-(C₂-C₆)alkyl-, (C₁-C₆)alkyl-O-C(O)-(C₁-C₆)alkyl- or N(R²²)(R²³)-C(O)-(C₁-C₆)alkyl-;

R¹¹ and R¹² are independently selected from the group consisting of H, (C₁-C₆)alkyl and (C₃-C₁₀)cycloalkyl, or R¹¹ and R¹² together are C₂-C₆ alkylene and form a ring with the nitrogen to which they are attached;

R¹⁴ and R¹⁵ are independently selected from the group consisting of (C₁-C₆)alkyl, halogen, -NR²²R²³, -OH, -CF₃, -OCH₃, -O-acyl and -OCF₃;

R¹⁶ is R¹⁴, hydrogen, phenyl, -NO₂, -CN, -CH₂F, -CHF₂, -CHO, -CH=NOR²⁴, pyridyl, pyridyl N-oxide, pyrimidinyl, pyrazinyl, -N(R²⁴)CONR²⁵R²⁶, -NHCONH(chloro-(C₁-C₆)alkyl), -NHCONH((C₃-C₁₀)cycloalkyl(C₁-C₆)alkyl), -NHCO(C₁-C₆)alkyl, -NHCOCF₃, -NSO₂N(R²²)(R²³), -NSO₂(C₁-C₆)alkyl, -N(SO₂CF₃)₂, -NHCO₂-(C₁-C₆)alkyl, C₃-C₁₀ cycloalkyl, -SR²⁷, -SOR²⁷, -SO₂R²⁷, -SO₂NH(R²²), -OSO₂(C₁-C₆)alkyl, -OSO₂CF₃, hydroxy(C₁-C₆)alkyl-, -CON R²⁴R²⁵, -CON(CH₂CH₂OCH₃)₂, -OCONH(C₁-C₆)alkyl, -CO₂R²⁴, -Si(CH₃)₃ or -B(OC(CH₃)₂)₂;

R¹⁷ is (C₁-C₆)alkyl, -N(R²²)(R²³) or R¹⁹-phenyl;

R¹⁸, R²², R²³, R²⁴, R²⁵ and R²⁶ are independently selected from the group consisting of H and (C₁-C₆)alkyl; and

R²⁷ is (C₁-C₆)alkyl or phenyl;

wherein heteroaryl is selected from the group consisting of thienyl, pyridyl and pyrimidyl.