Generowanie liczb (pseudo)losowych Seminarium: Algorytmy numeryczne i graficzne

Dawid Żywczak

06 kwietnia 2020

Wprowadzenie

- RNG w życiu codziennym
- Zastosowania
- Co będziemy tak właściwie robić?

Pierwszy zaproponowany generator liniowy (algorytm kwadratowy von Neumanna)

 $F(X_n) = X_{n+1}$ gdzie funkcja F oblicza $Z = X_n^2$, jeżeli trzeba uzpełnia liczbę Z wiodącymi zerami, tak aby miała $2 \cdot N$ cyfr, a następnie wycina z liczby Z N środkowych cyfr.

Ogólna postać generatora liniowego

$$X_{n+1} = (a_1X_n + a_2X_{n-1} + ... + a_kX_{n-k+1} + c) \mod m$$

Dodatkowo zdefiniujmy pojęcie okresu

Niech $P=\min\{i: X_i=X_0, i>0\}$ oraz $v\in\mathbb{N}$ wtedy jeśli $\forall i,\ i\geq v$ zachodzi $X_i=X_{i+j\cdot P},\ j=1,2,...$ to fragment ciągu $X_0,X_1,...,X_{v+P-1}$ nazywamy okresem aperiodyczności ciągu, v parametrem aperiodyczności, a liczbę P okresem ciągu.

Generatory liniowe Jak dobierać liczbe m i a?

Dla generatora multiplikatywnego najczęściej wykorzystywany jest punkt 4 twierdzenia 3. Czyli aby otrzymać maksymalny okres, powinniśmy dobierać $m=2^e$ $e\geq 4$ oraz a=3 mod 8 lub a=5 mod 8.

Inna możliwość to m pierwsze. (Dokładnie - twierdzenia 1, 2, 3)

Generatory liniowe Wady generatorów multiplikatywnych

- Okresowość ostatnich bitów
- Struktura przestrzenna

Ogólna postać generatorów opartych na rejestrach przesuwnych

$$b_i = (a_1b_{i-1} + ... + a_kb_{i-k}) \mod 2, i = k+1, k+2,...$$

Korzystamy z faktu, że łatwo zaimplementować na komputerze. Mając wzór na poszczególne bity, możemy generować

$$U_i = \sum_{j=1}^L 2^{-j} b_{is+j} = 0.b_{is+1} b_{is+2}...b_{is+L}$$
 gdzie s jest ustaloną liczbą naturalną

Generator Tauswortha:

•
$$B = ((A << q) \text{ xor } A) << (L - p)$$

•
$$B = ((A << s) \text{ xor } A) >> (L - s)$$

Return A

Generatory liniowe Generatory Fibonacciego

Generatory Fibonacciego:

- Ogólna forma $X_n = X_{n-1} + X_{n-2} \mod m$
- Uogólnienie
- Zmiana działania

Generatory nieliniowe:

- Eichenauera-Lehna $X_{n+1} = (aX_n^{-1} + b) \mod m$
- Eichenauera-Hermanna $X_{n+1} = (a(n+n_0)+b)^{-1} \mod m$

Kombinacje generatorów Potrzebne definicje

Załóżmy, że mamy zmienne losowe X i Y określone na zbiorze $S=\{1, 2,..., n\}$ o rozkładach prawdopodobieństwa równych:

$$P(X = i) = p_i, P(Y = i) = q_i, i=1, 2,..., n$$

Zdefiniujmy teraz normę wektora $t=(t_1, t_2, ..., t_n)$ dla ustalonego $p=1, 2,...,\infty$ jako:

$$||t|| = (\sum_{i=1}^{n} t_i^p)^{\frac{1}{p}}$$

Teraz dla zdefiniowanej wyżej zmiennej X wprowadźmy miarę podobieństwa do rozkładu jednostajnego na zbiorze S:

$$\delta(X) = \|(p_1, p_2, ..., p_n) - (\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n})\|$$

Kombinacje generatorów Własności

Okazuje się, że dla "dobrych"działań o zachodzi:

$$\delta(X \circ Y) \le \min\{\delta(X), \delta(Y)\}$$

Czyli ciąg $(X_1 \circ Y_1, X_2 \circ Y_2, ...)$ powinien być bardziej równomiernie rozłożony niż każdy z ciągów składowych.

Generatory o dowolnym rozkładzie

Dla rozkładów ciągłych:

- Metoda odwracania dystrybuanty
- Metoda eliminacji

Metody dla rozkładów dyskretnych są podobne i ich opis znajduje się w notatce.

Generatory o dowolnym rozkładzie Metoda odwracania dystrybuanty

Metoda odwracania dystrybuanty korzysta z faktu, że dla zmiennej losowej U o rozkładzie jednostanym U(0,1) oraz ściśle rosnącej i ciągłej dystrybuanty F, zmienna $X=F^{-1}(U)$ ma rozkład prawdopodobieństa o dystrybuancie F, ponieważ

$$P(X \le x) = P(F^{-1}(U) \le x) = P(U \le F(x)) = F(x)$$

Generatory o dowolnym rozkładzie Metoda odwracania dystrybuanty - przykład

Przykład metody odwracania dystrybuanty dla rozkładu wykładniczego

$$F(x) = 1 - e^{-x}$$

$$x = 1 - e^{-y}$$

$$1 - x = e^{-y}$$

$$-ln(1 - x) = y = F^{-1}(x)$$

Zauważmy, że 1-x zachowuje się jak zmienna losowa o rozkładzie jednostajnym U(0,1) zatem $F^{-1}(x)=-{\it InU}$.

Generatory o dowolnym rozkładzie Metoda eliminacji

Metoda eliminacji wymaga wprowadzenia najpierw kilku oznaczeń oraz twierdzeń. Omówimy działanie metody eliminacji dla dwuwymiarowego punktu losowego oraz podamy schemat dla uogólnionej na k wymiarów wersji. Uogólnienie to jest dokładnie omówione w notatce.

Generatory o dowolnym rozkładzie Schemat dla dwóch wymiarów

Ogólny schemat można przedstawić w dwóch krokach: Niech f jest gęstością oczekiwanego rozkładu ppb, dodatnią na pewnym przedziale (a,b) i ograniczoną przez stałą d>0. Wtedy liczba X generowana według poniższego schematu ma rozkład o gęstości f(x)

- Generuj dwie niezależne zmienne losowe U_1 U(a,b) i U_2 U(0,d)
- Jeśli $U_2 \leq f(U_1)$ to X = U_1 wpp. powtórzyć generowanie.

Generatory o dowolnym rozkładzie Uzasadnienie

Niech
$$A = \{(x, u) : a \le x \le b, 0 \le u \le f(x)\}.$$

Twierdzenie

Niech $(X_1, U_1), (X_2, U_2), ...$ będzie ciągiem punktów losowych o rozkładzie równomiernym na prostokącie $(a, b) \times (0, d)$ i niech (X, U) będzie pierwszym punktem tego ciągu, który wpada do zbioru A. Wtedy punkt losowy (X, U) ma rozkład jednostajny na zbiorze A.

Dowód.

Rozważmy pozdbiór B zbioru A i niech $l_2(B)$ oznacza jego pole powierzchni. Chcemy udowodnić, że $P((X, U) \in B) = l_2(B)/l_2(A)$.

$$\begin{array}{c} P((X,U) \in B) = \sum_{i=1}^{\infty} P((X_1,U_1) \notin A,...,(X_{i-1},U_{i-1}) \notin A,(X_i,U_i) \in B) = \sum_{i=1}^{\infty} (1 - \frac{l_2(A)}{(b-a)d})^{i-1} \frac{l_2(B)}{(b-a)d} = (\text{z sumy szeregu geometrycznego}) \frac{l_2(B)}{l_2(A)} \end{array}$$

Generatory o dowolnym rozkładzie Uzasadnienie cz.2

Twierdzenie

- a) Jeżeli U ma rozkład jednostajny U(0,1), X ma rozkład o gęstości f(x) oraz X i U są niezależne, to punkt losowy (X, Uf(X)) ma rozkład jednostajny na zbiorze A.
- b) Jeżeli punkt losowy (X, U) ma rozkład jednostajny na zbiorze A, to zmienna losowa X ma rozkład o gęstości f(x).

Dowód.

a) Jeżeli U ma rozkład jednostajny U(0,1), to dla każdego ustalonego x zmienna losowa V=Uf(x) ma rozkład jednostajny U(0,f(x)). Dla ustalonego x i dla danego zbioru $B\subset A$ oznaczamy $B_x=\{u:(x,u)\in B\}$

$$P((X, Uf(X)) \in B) = \int (\int_{B_X} \frac{dv}{f(x)}) f(x) dx = \int \int_B dv dx = I_2(B) = \frac{I_2(B)}{I_2(A)}$$

czyli (X, Uf(X)) ma rozkład jednostajny na zbiorze A.

b) Oznaczmy
$$A_t = \{(x, u) : a \le x \le t, 0 \le u \le f(x)\}$$
. Wtedy

$$P(X \le t) = P((X, U) \in A_t) = \int_a^t \int_0^{f(x)} \frac{dudx}{l_2(A)} = \int_a^t f(x)dx$$

czyli f(x) jest gęstością zmiennej losowej X.

Generatory o dowolnym rozkładzie Ogólny schemat metody eliminacji

1. Wybierz gęstośc g, żeby generowanie liczb losowych o tej gęstości było łatwe i szybkie oraz wyznacz stałą c>0, taką żeby $f(x)\leq cg(x)$ dla wszystkich x.

Ze względu na ten warunek gęstość g, będziemy nazywać dominującą. Za obszar Ω przyjąć

$$\Omega = \{(x, u) : x \in \mathbb{R}^k, 0 \le u \le cg(x)\}.$$

- 2. Wygeneruj punkt losowy X o rozkładzie z gęstością g oraz liczbę losową U U(0,1), wtedy punkt losowy (X, cUg(X)) ma rozkład jednostajny na zbiorze Ω .
- 3. Powtarzać generowanie według p. 2, dopóki kolejno wygenerowany punkt nie wpadnie do zbioru $A = \{(x, u) : x \in \mathbb{R}^k, 0 \le u \le f(x)\}$, tzn. dopóki nie zostanie spełniony warunek akceptacji

$$U \le \frac{f(X)}{cg(X)}$$

Generatory o dowolnym rozkładzie Jak dobrać współczynnik c?

Zastanówmy się jak wyznaczyć stałą c, tak aby warunek akceptacji był jak najszybciej osiągany. Możemy to osiągnąć przez dobranie wartości c takiej, żeby prawdopodobieństwo spełnienia warunku akceptacji było jak największe tzn.

$$P(Ucg(X) \le f(X)) = \int_{\mathbb{R}^k} g(x) dx \int_0^{f(x)/cg(x)} du = \frac{1}{c}$$

Optymalną wartością powyższego warunku jest $c = \sup_{x} \frac{f(x)}{g(x)}$.

Generatory wielowymiarowe

- Wielowymiarowy rozkład jednostajny
- Wielowymiarowy rozkład normalny

Generatory wielowymiarowe Wielowymiarowy rozkład normalny

Niech

$$A = \begin{bmatrix} \sigma_{1,1} & \dots & \sigma_{1,n} \\ \dots & \dots & \dots \\ \sigma_{n,1} & \dots & \sigma_{n,n} \end{bmatrix}$$

Jesli $Z=(Z_1,...,Z_n)$ oraz każda składowa Z jest niezależna i ma taki sam rozkład N(0,1), to zmienna losowa CZ, gdzie C jest pewną nieosobliwą macierzą, ma rozkład normalny z macierzą kowariancji CC^T . Potrzebujemy więc macierz C taką, że $CC^T=A$

$$c_{i,1} = \frac{\sigma_{i,1}}{\sqrt{\sigma_{1,1}}}$$

$$c_{i,i} = (\sigma_{i,i} - \sum_{r=1}^{i-1} c_{i,r}^2)^{1/2}$$

$$c_{i,j} = \sigma_{j,j}^{-1} (\sigma_{i,j} - \sum_{r=1}^{j-1} c_{i,r} c_{j,r}) \text{ gdy } i > j$$

$$c_{i,j} = 0 \text{ gdy } i < j$$

Testowanie poprawności generatorów

- Opis metodologii
- Test χ^2
- Test Kołomogorowa
- Test pokerowy

Testowanie poprawności generatorów $T_{\text{est }\chi^2}$

- Cel testu
- Statystyka $\phi = \sum_{i=1}^k \frac{(n_i np_i)^2}{np_i}$

Testowanie poprawności generatorów Test Kołomogorowa

- Cel testu
- Dystrybuanta empiryczna $F_n(x) = \frac{1}{n} \sum_{j=1}^n \mathbb{1}_{(-\infty,x]}(X_j)$ gdzie $\mathbb{1}_{(a,b)}$ to funckja charakterystyczna zbioru (a,b)
- Statystyka $D_n = \sup_{-\infty < x < +\infty} |F_n(x) F(x)|$

Testowanie poprawności generatorów Test pokerowy

- Cel testu
- Opis procesu testowania: $X_1, X_2, ..., X_n \rightarrow Y_j = i$ jeśli $X_j \in (a_i, a_{i+1}) \rightarrow$ pięcioelementowe krotki \rightarrow sprawdzenie rozkładu