DDA3020 Machine Learning Lecture 05 Linear Regression

Baoyuan Wu School of Data Science, CUHK-SZ

Jan 24/29/31, 2024

Outline

- 1 Notations, vectors, matrices
- 2 Functions, derivative and gradient
- 3 Modeling of linear regression
 - Deterministic perspective
 - Probabilistic perspective
- 4 Learning of linear regression
 - Analytical solution
 - Gradient descent algorithm
- 5 Linear regression of multiple outputs
- 6 Linear regression for classification
- 7 Variants of linear regression
 - Ridge regression
 - Polynomial regression
 - Lasso regression
 - Robust linear regression

- Notations, vectors, matrices
- 2 Functions, derivative and gradient
- 3 Modeling of linear regression
 - Deterministic perspective
 - Probabilistic perspective
- 4 Learning of linear regression
 - Analytical solution
 - Gradient descent algorithm
- 5 Linear regression of multiple outputs
- 6 Linear regression for classification
- Variants of linear regression
 - Ridge regression
 - Polynomial regression
 - Lasso regression
 - Robust linear regression

Notations

- A set is an unordered collection of unique elements.
- We denote a set as a calligraphic capital character, for example, S.
- A set of numbers can be finite (include a fixed amount of values). In this case, it is denoted using accolades, for example, $\{1, 3, 18, 23, 235\}$ or $\{x_1, x_2, x_3, ..., x_d\}$.
- A set can also be infinite.

Notations

- A set can be infinite and include all values in some interval.
- If a set includes all values between a and b, including a and b, it is denoted using brackets as [a, b].
- If the set does not include the values a and b, such a set is denoted using parentheses like this: (a,b).
- For example, the set [0, 1] includes such values as 0, 0.0001, 0.25, 0.784, 0.9995, and 1.0.
- A special set denoted \mathcal{R} (or R, \mathbb{R}) includes all real numbers from minus infinity to plus infinity.

Notations

• Intersection of two sets:

$$S_3 \leftarrow S_1 \cap S_2$$

Example: $\{1, 3, 5, 8\} \cap \{1, 8, 4\} = \{1, 8\}$

• Union of two sets:

$$S_3 \leftarrow S_1 \cup S_2$$

Example: $\{1, 3, 5, 8\} \cup \{1, 8, 4\} = \{1, 3, 4, 5, 8\}$

- 1 Notations, vectors, matrices
- 2 Functions, derivative and gradient
- Modeling of linear regression
 - Deterministic perspective
 - Probabilistic perspective
- 4 Learning of linear regression
 - Analytical solution
 - Gradient descent algorithm
- 5 Linear regression of multiple outputs
- 6 Linear regression for classification
- Variants of linear regression
 - Ridge regression
 - Polynomial regression
 - Lasso regression
 - Robust linear regression

- A function is a relation that associates each element x of a set \mathcal{X} , the domain of the function, to a single element y of another set \mathcal{Y} , the codomain of the function.
- A function usually has a name. If the function is called f, this relation is denoted y = f(x) (read f of x), the element x is the argument or input of the function, and y is the value of the function or the output.
- The symbol that is used for representing the input is the variable of the function (we often say that f is a function of the variable x).

- A scalar function can also have vector argument such as, $y = f(\mathbf{x})$, or a scalar argument (y = f(x)).
- A vector function, denoted as $\mathbf{y} = \mathbf{f}(\mathbf{x})$, is a function that returns \mathbf{y} , which can have either a vector argument $(\mathbf{y} = \mathbf{f}(\mathbf{x}))$ or a scalar argument $(\mathbf{y} = \mathbf{f}(x))$.

Notation

- The notation $f: \mathbb{R}^d \to \mathbb{R}$ means that f is a function that maps real d-vectors to real numbers, *i.e.*, it is a scalar-valued function of d dimension vectors.
- If \mathbf{x} is a d-vector, then $f(\mathbf{x})$, which is a scalar, denotes the value of the function f at \mathbf{x} . In the notation $f(\mathbf{x})$, \mathbf{x} is referred to as the argument of the function

$$f(\mathbf{x}) = f(x_1, x_2, \dots, x_d)$$

Linear and Affine functions

- To describe a function $f: \mathbb{R}^d \to \mathbb{R}$ we have to specify what its value is for any possible argument $\mathbf{x} \in \mathbb{R}^d$.
- For example, we can define a function $f: \mathbb{R}^4 \to \mathbb{R}$ by

$$f(\mathbf{x}) = x_1 + x_2 - 2x_3 - x_4$$

Linear and Affine functions

Another example: The inner product function

ullet Suppose there is a d-vector. We can define a scalar valued function f of d-vectors, given by

$$f(\mathbf{x}) = \mathbf{a}^{\top} \mathbf{x} = a_1 x_1 + a_2 x_2 + \ldots + a_d x_d$$

for any d-vector \mathbf{x} .

- This function gives the inner product of its d-vector argument \mathbf{x} with some (fixed) d-vector \mathbf{a} .
- We can also think of f as forming a weighted sum of the elements of \mathbf{x} ; the elements of \mathbf{a} give the weights used in forming the weighted sum.

Linear and Affine functions

- A function $f: \mathbb{R}^d \to \mathbb{R}$ is **linear** if it satisfies the following two properties:
 - Homogeneity: For any d-vector \mathbf{x} and a scalar α , $f(\alpha \mathbf{x}) = \alpha f(\mathbf{x})$.
 - Additivity: For any d-vectors \mathbf{x} and \mathbf{y} , $f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$

$$f(\mathbf{x}) = \mathbf{a}^{\top} \mathbf{x} = a_1 x_1 + a_2 x_2 + \ldots + a_d x_d$$

for any d-vector \mathbf{x} .

- **Homogeneity** states that scaling the (vector) argument is the same as scaling the function value.
- Additivity says that adding (vector) arguments is the same as adding the function values.

Linear and Affine functions Superposition and linearity

 \bullet The inner product function f defined before satisfies the linearity property

$$f(\alpha \mathbf{x} + \beta \mathbf{y}) = \mathbf{a}^{\top} (\alpha \mathbf{x} + \beta \mathbf{y})$$

$$= \mathbf{a}^{\top} (\alpha \mathbf{x}) + \mathbf{a}^{\top} (\beta \mathbf{y})$$

$$= \alpha (\mathbf{a}^{\top} \mathbf{x}) + \beta (\mathbf{a}^{\top} \mathbf{y})$$

$$= \alpha f(\mathbf{x}) + \beta f(\mathbf{y})$$

for all d-vectors \mathbf{x}, \mathbf{y} , and all scalars α, β .

- This property is called **superposition** (which consists of homogeneity and additivity).
- A function that satisfies the superposition property is called linear

Linear and Affine functions

 If a function f is linear, superposition extends to linear combinations of any number of vectors:

$$f(\alpha_1 \mathbf{x}_1 + \ldots + \alpha_k \mathbf{x}_k) = \alpha_1 f(\mathbf{x}_1) + \ldots + \alpha_k f(\mathbf{x}_k)$$

for any d-vectors $\mathbf{x}_1, ..., \mathbf{x}_k$ and any scalars $\alpha_1, ..., \alpha_k$

Linear and Affine functions

A function $f: \mathbb{R}^d \to \mathbb{R}$ is affine if and only if it can be expressed as $f(\mathbf{x}) = \mathbf{a}^\top \mathbf{x} + b$ for some d-vector \mathbf{a} and a scalar b, which is sometimes called the offset.

Example:

$$f(\mathbf{x}) = 2.3 - 2x_1 + 1.3x_2 - x_3$$

is affine, with
$$b = 2.3$$
, $\mathbf{a} = \begin{bmatrix} -2\\1.3\\-1 \end{bmatrix}$.

Figure 2.1 Left. The function f is linear. Right. The function g is affine, but not linear.

- We say that f(x) has a **local minimum** at x = c if $f(x) \ge f(c)$ for every x in some open interval around x = c.
- An **interval** is a set of real numbers with the property that any number that lies between two numbers in the set is also included in the set.
- An **open interval** does not include its endpoints and is denoted using parentheses. For example, (0,1) means "all numbers greater than 0 and less than 1"
- The minimal value among all the **local minima** is called the **global minima**. See illustration in the Figure in next page.

Figure: Local and global minima of a function. a < x < b

max vs arg max

- Given a set of values $\mathcal{A} = \{a_1, a_2, ..., a_m\}$, the operator $\max_{a \in \mathcal{A}} f(a)$ returns the highest value f(a) for all elements in the set \mathcal{A} .
- On the other hand, the operator $\arg \max_{a \in \mathcal{A}} f(a)$ returns the element of the set \mathcal{A} that maximizes f(a).
- Sometimes, when the set is implicit or explicit, we can write

$$\max_{a} f(a)$$
 or $\arg \max_{a} f(a)$

- Operator min and arg min operates in a similar manner.
- Note: **arg max** returns a value from the **domain** of the function and **max** returns from the **range** (**codomain**) of the function

Derivative and Gradient

- A derivative f' of a function f is a function or a value that describes how fast f grows (or decreases).
- If the derivative is a constant value, like 5 or -3, then the function grows (or decreases) constantly at any point x of its domain.
- If the derivative f' is positive at some point x, then the function f grows at this point.
- If the derivative f' is negative at some point x, then the function f decreases at this point.
- The derivative of zero at x means that the function's slope at x is horizontal.

Partial Derivative

- Differentiation of a scalar function w.r.t. a vector
- If $f(\mathbf{w})$ is a scalar function of d variables, \mathbf{w} is a $d \times 1$ vector, then differentiation of $f(\mathbf{w})$ w.r.t. \mathbf{w} results in a $d \times 1$ vector.

$$\frac{df(\mathbf{w})}{d\mathbf{w}} = \begin{bmatrix} \frac{\partial f}{\partial w_1} \\ \vdots \\ \frac{\partial f}{\partial w_d} \end{bmatrix}$$

This is referred to as the **gradient** of $f(\mathbf{w})$ and written as $\nabla_{\mathbf{w}} f$.

Partial Derivative

- Differentiation of a vector function w.r.t. a vector
- If $\mathbf{f}(\mathbf{w})$ is a vector function of size $h \times 1$ and \mathbf{w} is a $d \times 1$ vector, then differentiation of $\mathbf{f}(\mathbf{w})$ w.r.t. \mathbf{w} results in a $d \times h$ vector.

$$\frac{d\mathbf{f}(\mathbf{w})}{d\mathbf{w}} = \begin{bmatrix} \frac{\partial f_1}{\partial w_1} & \cdots & \frac{\partial f_h}{\partial w_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial w_d} & \cdots & \frac{\partial f_h}{\partial w_d} \end{bmatrix}$$

• This is referred to as the **Jacobian** matrix of $f(\mathbf{w})$, *i.e.*,

$$\mathbf{J} = \frac{d\mathbf{f}(\mathbf{w})}{d\mathbf{w}},$$
$$\mathbf{J}_{ij} = \frac{\partial f_j}{\partial w_i}.$$

Some Vector-Matrix Differentiation Formulations

$$\begin{aligned} \frac{d(\mathbf{X}^{\top}\mathbf{w})}{d\mathbf{w}} &= \mathbf{X}, \text{where } \mathbf{X} \text{ is not a function of } \mathbf{w} \\ \frac{d(\mathbf{y}^{\top}\mathbf{X}\mathbf{w})}{d\mathbf{w}} &= \mathbf{X}^{\top}\mathbf{y} \\ \frac{d(\mathbf{w}^{\top}\mathbf{X}\mathbf{w})}{d\mathbf{w}} &= (\mathbf{X} + \mathbf{X}^{\top})\mathbf{w} \end{aligned}$$

- Note that we adopt the denominator layout derivative. If you use the numerator layout derivative, then all above results will be transposed.
- Both types are OK, but keep it **consistent** in all derivatives.
- Please refer to the following wiki page for more details: https://en.wikipedia.org/wiki/Matrix_calculus

- 1 Notations, vectors, matrices
- 2 Functions, derivative and gradient
- 3 Modeling of linear regression
 - Deterministic perspective
 - Probabilistic perspective
- 4 Learning of linear regression
 - Analytical solution
 - Gradient descent algorithm
- 5 Linear regression of multiple outputs
- 6 Linear regression for classification
- Variants of linear regression
 - Ridge regression
 - Polynomial regression
 - Lasso regression
 - Robust linear regression

Linear regression

Dataset:

• We have a collection of m labeled examples $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$, with $\mathbf{x}_i \in \mathcal{X}$ being the d-dimensional feature vector of the i-th example, and $y_i \in \mathcal{Y}$ being a real-valued target.

Linear hypothesis function:

• We want to build a linear model $f_{\mathbf{w},b}(\mathbf{x})$, *i.e.*, linear hypothesis function,

$$f_{\mathbf{w},b}(\mathbf{x}) = \mathbf{x}^{\top}\mathbf{w} + b,$$

where \mathbf{w} is a d-dimensional vector of parameters, and the bias parameter b is a real number.

• Note: $f_{\mathbf{w},b}$ is called **linear** due to the linearity w.r.t. the parameter vector $[b; \mathbf{w}]$, rather than w.r.t. the feature vector \mathbf{x} .

Task of linear regression:

- Using the linear model $f_{\mathbf{w},b}$ to approximate the ground-truth target function $t: \mathcal{X} \to \mathcal{Y}$.
- Note: If \mathcal{Y} is a **finite and discrete** set, then the task corresponds to a classification problem; if \mathcal{Y} is a **continuous** space, then the task corresponds to a regression problem.

Linear regression: deterministic perspective

Learning objective function

• To find the optimal values for \mathbf{w}^* and b^* which minimizes the following expression:

$$\frac{1}{m} \sum_{i=1}^{m} \left(f_{\mathbf{w},b} \left(\mathbf{x}_{i} \right) - y_{i} \right)^{2}$$

• In mathematics, the expression we minimize or maximize is called an objective function, or, simply, an objective.

Linear regression: deterministic perspective

- The expression $(f_{\mathbf{w},b}(\mathbf{x}_i) y_i)^2$ in the above objective is called the loss function. It's a measure of penalty for mis-classification of example i.
- This particular choice of the loss function is called squared error loss.
- All model-based learning algorithms have a loss function and what we do to find the best model is we try to minimize the objective known as the cost function.
- In linear regression, the cost function is given by the average loss, also called the empirical risk.

Linear regression: probabilistic perspective

 \bullet We assume that the relationship between the input variable/feature ${\bf x}$ and the output variable y is

$$y = \mathbf{w}^{\top} \mathbf{x} + e$$
, where $e \sim \mathcal{N}(0, \sigma^2)$, (1)

where e is called observation noise or residual error, and it is independent with any specific input \mathbf{x} .

ullet Thus, the output y can also be seen as a random variable, and its conditional probability is formulated as

$$p(y|\mathbf{x}, \mathbf{w}) = \mathcal{N}(\mathbf{w}^{\top} \mathbf{x}, \sigma^2)$$
 (2)

Linear regression: probabilistic perspective

Maximum log-likelihood estimation:

• The parameter **w** can be learned by maximum log-likelihood estimation (MLE), given the training dataset $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$, as follows

$$\mathbf{w}_{MLE} = \arg\max_{\mathbf{w}} \log \mathcal{L}(\mathbf{w}; D), \tag{3}$$

$$\log \mathcal{L}(\mathbf{w}; D) = \log \left(\prod_{i=1}^{m} p(y_i | \mathbf{x}_i, \mathbf{w}) \right) = \sum_{i=1}^{m} \log \mathcal{N}(\mathbf{w}^{\top} \mathbf{x}_i, \sigma^2)$$
(4)

$$= -m \log(\sigma(2\pi)^{\frac{1}{2}}) - \frac{1}{2\sigma^2} \sum_{i=1}^{m} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2.$$

• Removing the constants w.r.t. **w**,

$$\mathbf{w}_{MLE} = \arg\min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^{m} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2, \tag{5}$$

which is exactly the same with the cost function from the deterministic perspective.

- 1 Notations, vectors, matrices
- 2 Functions, derivative and gradient
- 3 Modeling of linear regression
 - Deterministic perspective
 - Probabilistic perspective
- 4 Learning of linear regression
 - Analytical solution
 - Gradient descent algorithm
- 5 Linear regression of multiple outputs
- 6 Linear regression for classification
- Variants of linear regression
 - Ridge regression
 - Polynomial regression
 - Lasso regression
 - Robust linear regression

Linear regression with analytical solution

Learning (Training)

• Consider the set of feature vector \mathbf{x}_i and target output y_i indexed by $i = 1, \dots, m$, then a linear model $f_{\mathbf{w},b}(\mathbf{x}) = \mathbf{x}^{\top}\mathbf{w} + b$ can be packed as

$$f_{\mathbf{w},b}(\mathbf{X})$$
 \Leftrightarrow $\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$

Learning model Learning target vector

$$= \left[\begin{array}{c} \mathbf{x}_1^\top \mathbf{w} \\ \vdots \\ \mathbf{x}_m^\top \mathbf{w} \end{array} \right]$$

where
$$\mathbf{x}_i^{\top} \mathbf{w} = \begin{bmatrix} 1, x_1, \dots, x_d \end{bmatrix}_i$$
 $\begin{bmatrix} b \\ w_1 \\ \vdots \\ w_d \end{bmatrix}$

Note: The bias term is responsible for shifting the line/plane up or down.

Linear Regression

Least Squares Regression

• In vector-matrix notation, the squared error loss function can be written compactly using $\mathbf{e} = \mathbf{X}\mathbf{w} - \mathbf{y}$:

$$J(\mathbf{w}) = \mathbf{e}^{\top} \mathbf{e}$$

$$= (\mathbf{X} \mathbf{w} - \mathbf{y})^{\top} (\mathbf{X} \mathbf{w} - \mathbf{y})$$

$$= (\mathbf{w}^{\top} \mathbf{X}^{\top} - \mathbf{y}^{\top}) (\mathbf{X} \mathbf{w} - \mathbf{y})$$

$$= \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w} - \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{y} - \mathbf{y}^{\top} \mathbf{X} \mathbf{w} + \mathbf{y}^{\top} \mathbf{y}$$

$$= \mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w} - 2 \mathbf{y}^{\top} \mathbf{X} \mathbf{w} + \mathbf{y}^{\top} \mathbf{y}$$

Note: when $f_{\mathbf{w},b}(\mathbf{X}) = \mathbf{X}\mathbf{w}$, then

$$\sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}_i) - y_i)^2 = (\mathbf{X}\mathbf{w} - \mathbf{y})^{\top} (\mathbf{X}\mathbf{w} - \mathbf{y}).$$

Linear Regression

Differentiating $J(\mathbf{w})$ with respect to \mathbf{w} and setting the result to 0:

$$\frac{\partial}{\partial \mathbf{w}} J(\mathbf{w}) = \mathbf{0}$$

$$\frac{\partial}{\partial \mathbf{w}} (\mathbf{w}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{w} - 2 \mathbf{y}^{\top} \mathbf{X} \mathbf{w} + \mathbf{y}^{\top} \mathbf{y}) = \mathbf{0}$$

$$\Rightarrow 2 \mathbf{X}^{\top} \mathbf{X} \mathbf{w} - 2 \mathbf{X}^{\top} \mathbf{y} = \mathbf{0}$$

$$\Rightarrow 2 \mathbf{X}^{\top} \mathbf{X} \mathbf{w} = 2 \mathbf{X}^{\top} \mathbf{y}$$

If $\mathbf{X}^{\top}\mathbf{X}$ is invertible, then

Learning:
$$\hat{\mathbf{w}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$$

Prediction: $f_{\mathbf{w},b}(\mathbf{X}_{\text{new}}) = \mathbf{X}_{\text{new}} \hat{\mathbf{w}}$

Linear Regression

The 1
$$\{x = -7\} \rightarrow \{y = -6\}$$

$$\{x = -5\} \rightarrow \{y = -4\}$$

$$\{x = -5\} \rightarrow \{y = -4\}$$

$$\{x = 1\} \rightarrow \{y = -1\}$$

$$\{x = 5\} \rightarrow \{y = 1\}$$

$$\{x = 5\} \rightarrow \{y = 1\}$$

$$\{x = 5\} \rightarrow \{y = 1\}$$

$$\{x = 9\} \rightarrow \{y = 4\}$$

$$\{(\mathbf{x}_i, \ \mathbf{y}_i)\}_{i=1}^m \quad \begin{cases} x = -9 \} \to \{y = -6\} \\ x = -7 \} \to \{y = -6\} \end{cases}$$

$$\{x = -5\} \rightarrow \{y = -4\}$$

$$\{x = 1\} \rightarrow \{y = -1\}$$

 $\{x = 5\} \rightarrow \{y = 1\}$

$$\{x = 5\} \rightarrow \{y = 1\}$$
$$\{x = 9\} \rightarrow \{y = 4\}$$

$$\{x = 9\} \rightarrow \{y = 4\}$$

(Least squares approximation).

This set of linear equations has NO exact solution.

$$\widehat{\mathbf{w}} = \mathbf{X}^{\dagger} \mathbf{y} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

However ($\mathbf{X}^T\mathbf{X}$ is invertible)

$$= \begin{bmatrix} 6 & -6 \\ -6 & 262 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ -9 & -7 & -5 & 1 & 5 & 9 \end{bmatrix} \begin{bmatrix} -6 \\ -6 \\ -4 \\ -1 \\ 1 \\ 4 \end{bmatrix} = \begin{bmatrix} -1.4375 \\ 0.5625 \end{bmatrix}$$

Linear regression

Linear Regression for one-dimensional examples.

Linear Regression

$$\begin{aligned} \{(\mathbf{x}_i, \ \mathbf{y}_i)\}_{i=1}^m & \{x_1 = 1, \ x_2 = 1, \ \ x_3 = 1\} \rightarrow \{y = 1\} \\ & \{x_1 = 1, \ x_2 = -1, x_3 = 1\} \rightarrow \{y = 0\} \\ & \{x_1 = 1, \ x_2 = 1, \ x_3 = 3\} \rightarrow \{y = 2\} \\ & \{x_1 = 1, \ x_2 = 1, \ x_3 = 0\} \rightarrow \{y = -1\} \end{aligned}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 3 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ -1 \end{bmatrix}$$

$$\mathbf{X} \qquad \mathbf{w} \qquad \mathbf{y}$$

 $\mathbf{w}^T \mathbf{X}^T$

This set of linear equations has NO exact solution.

$$\widehat{\mathbf{w}} = \mathbf{X}^{\dagger} \mathbf{y} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{y}$$
However ($\mathbf{X}^{T} \mathbf{X}$ is invertible)
$$= \begin{bmatrix} 4 & 2 & 5 \\ 2 & 4 & 3 \\ 5 & 3 & 11 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & 3 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix} \approx \begin{bmatrix} -0.75 \\ 0.18 \\ 0.93 \end{bmatrix}$$
 (Least squares approximation).

Linear Regression

Prediction:

$$\{x_1 = 1, x_2 = 6, x_3 = 8\} \rightarrow \{y = ?\}$$

$$\{x_1 = 1, x_2 = 0, x_3 = -1\} \rightarrow \{y = ?\}$$

$$\hat{y} = \begin{bmatrix} 1 & 6 & 8 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} -0.75 \\ 0.18 \\ 0.93 \end{bmatrix}$$

$$= \begin{bmatrix} 7.7500 \\ -1.6786 \end{bmatrix}$$

Linear regression solved by gradient descent

• The linear regression is formulated to the following optimization problem

$$\bar{\mathbf{w}}^* = \underset{\bar{\mathbf{w}}}{\operatorname{arg\,min}} J(\bar{\mathbf{w}}), \quad J(\bar{\mathbf{w}}) = \frac{1}{2} \sum_{i=1}^{m} (\mathbf{x}_i^{\top} \mathbf{w} + b - y_i)^2 = \frac{1}{2} (\mathbf{X}\bar{\mathbf{w}} - \mathbf{y})^2, \quad (6)$$

where $\mathbf{X} = [(1, \mathbf{x}_1^\top); \dots; (1, \mathbf{x}_m^\top)] \in \mathbb{R}^{m \times (d+1)}$, and $\bar{\mathbf{w}} = [b; \mathbf{w}] \in \mathbb{R}^{(d+1) \times 1}$. Note: for clarity, we will also use \mathbf{w} to represent $\bar{\mathbf{w}}$, when b is not explicitly written.

• w can be updated by gradient descent algorithm,

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}}, \ \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = \mathbf{X}^{\top} (\mathbf{X} \mathbf{w} - \mathbf{y})$$
 (7)

where α is called step-size or learning rate.

• Does gradient descent always converge to the optimal solution? (Plot the update trajectory of gradient descent on loss curve)

Closed-form solution vs. gradient descent

Closed-form solution	Gradient descent
$\mathbf{ar{w}} = (\mathbf{X}^{ op}\mathbf{X})^{-1}\mathbf{X}^{ op}\mathbf{y}$	$\bar{\mathbf{w}} \leftarrow \bar{\mathbf{w}} - \alpha \mathbf{X}^{\top} (\mathbf{X}\bar{\mathbf{w}} - \mathbf{y})$
No hyper-parameter	Needs to choose α
No need to iterate	Needs many iterations
Complexity $O(d^3 + md^2)$	Complexity $O(T \times md^2)$
Slow if d is very large	Works well when d is large

Thus, you can choose between above two solutions according to the dimensionality of your training data:

- When the training data is very high-dimensional, *i.e.*, d is very **large**, then it is better to choose **gradient descent algorithm**
- When the training data is not high-dimensional, *i.e.*, *d* is very **small**, then it is better to choose **closed-form solution**

- 1 Notations, vectors, matrices
- 2 Functions, derivative and gradient
- 3 Modeling of linear regression
 - Deterministic perspective
 - Probabilistic perspective
- 4 Learning of linear regression
 - Analytical solution
 - Gradient descent algorithm
- 5 Linear regression of multiple outputs
- 6 Linear regression for classification
- Variants of linear regression
 - Ridge regression
 - Polynomial regression
 - Lasso regression
 - Robust linear regression

Linear regression with single output

When considering the entire set of data indexed by i = 1, ..., m, a linear model $f_{\mathbf{w},b}(\mathbf{x}) = \mathbf{x}^{\top}\mathbf{w} + b$ can be packed as

$$f_{\mathbf{w},b}(\mathbf{X}) = \mathbf{X}\mathbf{w} \leftarrow \text{Scalar function}$$

$$= \begin{bmatrix} \mathbf{x}_{1}^{\top}\mathbf{w} \\ \vdots \\ \mathbf{x}_{m}^{\top}\mathbf{w} \end{bmatrix} \quad \text{where} \quad \mathbf{x}_{i}^{\top}\mathbf{w} = [1, x_{i,1}, \dots, x_{i,d}] \begin{bmatrix} b \\ w_{1} \\ \vdots \\ w_{d} \end{bmatrix}$$

$$(8)$$

Primal solution: $\widehat{\mathbf{w}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$

Note: The bias term is responsible for shifting the line/plane up or down.

• When considering the entire set of data indexed by i = 1, ..., m, a linear model $\mathbf{f}_{\mathbf{w},b}(\mathbf{x}) = \mathbf{x}^{\top}\mathbf{W} + \mathbf{b}^{\top}$ can be packed as

$$\mathbf{f}_{\mathbf{w},b}(\mathbf{X}) = \mathbf{X}\mathbf{W}$$

In matrix-matrix notation, the squared error loss function can be written compactly using ${\bf E}={\bf XW-Y}$:

$$\begin{aligned} J(\mathbf{W}) &= \operatorname{trace} \left(\mathbf{E}^{\top} \mathbf{E} \right) \\ &= \operatorname{trace} \left[(\mathbf{X} \mathbf{W} - \mathbf{Y})^{\top} (\mathbf{X} \mathbf{W} - \mathbf{Y}) \right] \end{aligned}$$

If $\mathbf{X}^{\top}\mathbf{X}$ is invertible, then

Learning:
$$\widehat{\mathbf{W}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{Y}$$

Prediction: $\mathbf{f}_{\mathbf{w},b} (\mathbf{X}_{\text{new}}) = \mathbf{X}_{\text{new}} \widehat{\mathbf{W}}$

Assumption: the error terms $\mathbf{e}_k^{\top} \mathbf{e}_k$ are independent for all $k = 1, \dots, h$

$$\begin{aligned} \mathbf{J}(\mathbf{W}) &= \operatorname{trace}(\mathbf{E}^T \mathbf{E}) \\ &= \operatorname{trace}(\begin{bmatrix} \mathbf{e}_1^T \\ \vdots \\ \mathbf{e}_h^T \end{bmatrix} [\mathbf{e}_1 \quad \mathbf{e}_2 \quad \dots \quad \mathbf{e}_h]) \\ &= \operatorname{trace}(\begin{bmatrix} \mathbf{e}_1^T \mathbf{e}_1 & \mathbf{e}_1^T \mathbf{e}_2 & \dots & \mathbf{e}_1^T \mathbf{e}_h \\ \mathbf{e}_2^T \mathbf{e}_1 & \mathbf{e}_2^T \mathbf{e}_2 & \dots & \mathbf{e}_2^T \mathbf{e}_h \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{e}_h^T \mathbf{e}_1 & \mathbf{e}_h^T \mathbf{e}_2 & \dots & \mathbf{e}_h^T \mathbf{e}_h \end{bmatrix}) = \sum_{k=1}^h \mathbf{e}_k^T \mathbf{e}_k \end{aligned}$$

Linear regression

Example
$$\begin{cases} \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^m & \{x_1=1, x_2=1, x_3=1\} \rightarrow \{y_1=1, \quad y_2=0\} \\ \{x_1=1, x_2=-1, x_3=1\} \rightarrow \{y_1=0, \quad y_2=1\} \\ \{x_1=1, x_2=1, \quad x_3=3\} \rightarrow \{y_1=2, y_2=-1\} \\ \{x_1=1, x_2=1, \quad x_3=0\} \rightarrow \{y_1=-1, y_2=3\} \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 3 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \\ w_{3,1} & w_{3,2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & -1 \\ -1 & 3 \end{bmatrix}$$

$$\mathbf{X} \qquad \mathbf{W} \qquad \mathbf{Y}$$

This set of linear equations has NO exact solution.

$$\widehat{\mathbf{W}} = \mathbf{X}^{\dagger} \mathbf{Y} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{Y}$$
However ($\mathbf{X}^{T} \mathbf{X}$ is invertible)
$$= \begin{bmatrix} 4 & 2 & 5 \\ 2 & 4 & 3 \\ 5 & 3 & 11 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & -1 \\ 1 & 1 & 3 \end{bmatrix} = \begin{bmatrix} -0.75 & 2.25 \\ 0.1786 & 0.0357 \\ 0.9286 & -1.2143 \end{bmatrix}$$
 (Least squares approximation).

Example:

Prediction:

$$\{x_1 = 1, x_2 = 6, x_3 = 8\} \rightarrow \{y_1 = ?, y_2 = ?\}$$

 $\{x_1 = 1, x_2 = 0, x_3 = -1\} \rightarrow \{y_1 = ?, y_2 = ?\}$

$$\begin{split} \widehat{\mathbf{Y}} &= \mathbf{X}_t \widehat{\mathbf{W}} \\ &= \begin{bmatrix} 1 & 6 & 8 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} -0.75 & 2.25 \\ 0.1786 & 0.0357 \\ 0.9286 & -1.2143 \end{bmatrix} \\ &= \begin{bmatrix} 7.75 & -7.25 \\ -1.6786 & 3.4643 \end{bmatrix} \end{split}$$

- 1 Notations, vectors, matrices
- 2 Functions, derivative and gradient
- 3 Modeling of linear regression
 - Deterministic perspective
 - Probabilistic perspective
- 4 Learning of linear regression
 - Analytical solution
 - Gradient descent algorithm
- 5 Linear regression of multiple outputs
- 6 Linear regression for classification
- Variants of linear regression
 - Ridge regression
 - Polynomial regression
 - Lasso regression
 - Robust linear regression

Dataset:

• We have a collection of m labeled examples $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$, with $\mathbf{x}_i \in \mathcal{X}$ being the d-dimensional feature vector of the i-th example, and $y_i \in \mathcal{Y}$ being a real-valued target.

Linear hypothesis function:

• We want to build a linear model $f_{\mathbf{w},b}(\mathbf{x})$, i.e., linear hypothesis function,

$$f_{\mathbf{w},b}(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{w} + b,$$

where \mathbf{w} is a d-dimensional vector of parameters, and the bias parameter b is a real number.

• Note: $f_{\mathbf{w},b}$ is called linear due to the linearity w.r.t. the parameter vector $[b; \mathbf{w}]$, rather than w.r.t. the feature vector \mathbf{x} .

Task of linear regression:

- Using the linear model $f_{\mathbf{w},b}$ to approximate the ground-truth target function $t: \mathcal{X} \to \mathcal{Y}$.
- Note: If \mathcal{Y} is a **finite and discrete** set, then the task corresponds to a **classification** problem; if \mathcal{Y} is a **continuous** space, then the task corresponds to a regression problem.

Binary Classification: If $\mathbf{X}^{\top}\mathbf{X}$ is invertible, then

Learning:
$$\widehat{\mathbf{w}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}, \quad y_i \in \{-1, +1\}, i = 1, \dots, m$$

Prediction: $f_{\mathbf{w},b}(\mathbf{x}_{new}) = \operatorname{sgn}(\mathbf{x}_{new}^{\top}\widehat{\mathbf{w}})$ (for each row \mathbf{x}_{new}^{\top} of \mathbf{X}_{new})

Example

$$\begin{bmatrix} 1 & -9 \\ 1 & -7 \\ 1 & -5 \\ 1 & 1 \\ 1 & 5 \\ 1 & 9 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
This see equation exacts
X Y

$$\widehat{\mathbf{w}} = \mathbf{X}^{\dagger} \mathbf{y} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$= \begin{bmatrix} 6 & -6 \\ -6 & 262 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -9 & -7 & -5 & 1 & 5 & 9 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.1406 \\ 0.1406 \end{bmatrix}$$
 (Least squares approximation).

$$\begin{bmatrix} -1 \\ -1 \\ -1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.1406 \\ 0.1406 \end{bmatrix}$$

Linear regression for one-dimensional classification.

Linear Methods for Multi-Category Classification:

If $\mathbf{X}^{\top}\mathbf{X}$ is invertible, then

Learning:
$$\widehat{\mathbf{W}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{Y}, \quad \mathbf{Y} \in \mathbf{R}^{m \times C}$$

Prediction: $f_{\mathbf{w},b}\left(\mathbf{x}_{\text{new}}\right) = \underset{i=1,...,C}{\operatorname{arg}} \max_{i=1,...,C} (\mathbf{x}_{\text{new}}^{\top} \widehat{\mathbf{W}}) \text{(for each row } \mathbf{x}_{\text{new}}^{\top} \text{ of } \mathbf{X}_{\text{new}})$

Each row (of i=1, ..., m) in Y has a one-hot assignment:

e.g., target for class-1 is labelled as $\mathbf{y}_i^{\top} = [1, 0, 0, \dots, 0]$ for the i th sample, target for class-2 is labelled as $\mathbf{y}_i^{\top} = [0, 1, 0, \dots, 0]$ for the i th sample, target for class-C is labelled as $\mathbf{y}_i^{\top} = [0, 0, \dots, 0, 1]$ for the i th sample.

This set of linear equations has NO exact solution.

$$\widehat{\mathbf{W}} = \mathbf{X}^{\dagger} \mathbf{Y} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{Y}$$
However ($\mathbf{X}^{T} \mathbf{X}$ is invertible) (Least squares approximation)
$$= \begin{bmatrix} 4 & 2 & 5 \\ 2 & 4 & 3 \\ 5 & 3 & 11 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.2857 & -0.5 & 0.2143 \\ 0.2857 & 0 & -0.2857 \end{bmatrix}$$

Example

Prediction:

$$\{x_1 = 1, x_2 = 6, x_3 = 8\} \rightarrow \{ \text{ class } 1, 2, \text{ or } 3 ? \}$$

 $\{x_1 = 1, x_2 = 0, x_3 = -1\} \rightarrow \{ \text{ class } 1, 2, \text{ or } 3 ? \}$

$$\widehat{\mathbf{Y}} = \mathbf{X}_t \widehat{\mathbf{W}} = \arg\max_{i=1,\dots,C} \left(\begin{bmatrix} 1 & 6 & 8 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.2857 & -0.5 & 0.2143 \\ 0.2857 & 0 & -0.2857 \end{bmatrix} \right)$$

$$= \arg\max_{i=1,\dots,C} \left(\left[\begin{array}{ccc} \mathbf{4} & -2.50 & -0.50 \\ -0.2587 & 0.50 & \mathbf{0.7857} \end{array} \right] \right) \begin{array}{c} \text{Position of the largest} \\ \text{number determines} \\ \text{the class label} \end{array}$$

$$= \begin{bmatrix} 1 \\ 3 \end{bmatrix}_{\rightarrow \text{Class-3}}^{\rightarrow \text{Class-1}}$$

- 1 Notations, vectors, matrices
- 2 Functions, derivative and gradient
- 3 Modeling of linear regression
 - Deterministic perspective
 - Probabilistic perspective
- 4 Learning of linear regression
 - Analytical solution
 - Gradient descent algorithm
- 5 Linear regression of multiple outputs
- 6 Linear regression for classification
- 7 Variants of linear regression
 - Ridge regression
 - Polynomial regression
 - Lasso regression
 - Robust linear regression

Motivation 1:

Recall the learning computation: $\hat{\mathbf{w}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$.

We cannot guarantee that the matrix $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible.

Here on, we shall focus on single output y in derivations in the sequel.

$$\min_{\mathbf{w},b} \sum_{i=1}^{m} (f_{\mathbf{w},b}(\mathbf{x}_i) - y_i)^2 + \lambda \bar{\mathbf{w}}^{\top} \bar{\mathbf{w}}, \text{ where } \bar{\mathbf{w}} = \hat{\mathbf{I}}_d \mathbf{w} = [0, w_1, w_2, \dots, w_d]^{\top},$$

 $\hat{\mathbf{I}}_d \in \mathbb{R}^{(d+1)\times(d+1)}$ is defined by setting the (1,1) entry in the d+1 dimensional identity matrix $\hat{\mathbf{I}}_{d+1}$ as 0. Note: The bias/offset b is NOT included in the ℓ_2 regularization term, as it just affects the function's height, not its complexity. Linear Model: $\min_{\mathbf{w},b} (\mathbf{X}\mathbf{w} - \mathbf{y})^{\top} (\mathbf{X}\mathbf{w} - \mathbf{y}) + \lambda \bar{\mathbf{w}}^{\top} \bar{\mathbf{w}}$

$$\begin{split} \frac{\partial}{\partial \mathbf{w}} (\mathbf{X} \mathbf{w} - \mathbf{y})^\top (\mathbf{X} \mathbf{w} - \mathbf{y}) + \lambda \bar{\mathbf{w}}^\top \bar{\mathbf{w}} &= \mathbf{0} \\ \Rightarrow 2 \mathbf{X}^\top \mathbf{X} \mathbf{w} - 2 \mathbf{X}^\top \mathbf{y} + 2\lambda \hat{\mathbf{I}}_d \mathbf{w} &= \mathbf{0} \\ \Rightarrow \mathbf{X}^\top \mathbf{X} \mathbf{w} + \lambda \hat{\mathbf{I}}_d \mathbf{w} &= \mathbf{X}^\top \mathbf{y} \\ \Rightarrow \left(\mathbf{X}^\top \mathbf{X} + \lambda \hat{\mathbf{I}}_d \right) \mathbf{w} &= \mathbf{X}^\top \mathbf{y} \\ \Rightarrow \mathbf{w} &= \left(\mathbf{X}^\top \mathbf{X} + \lambda \hat{\mathbf{I}}_d \right)^{-1} \mathbf{X}^\top \mathbf{y} \end{split}$$

Note that $(\mathbf{X}^{\top}\mathbf{X} + \lambda \hat{\mathbf{I}}_d)$ is guaranteed to be invertible, given $\lambda > 0$.

Motivation 2:

- Overfitting is an important challenge for linear regression, as shown below. Note: *M* in the figure denotes the degree of polynomial hypothesis function.
- If ovefitting, the prediction performance on testing data will be very poor. How to alleviate ovefitting?

- Let's see one simple example, we use a **polynomial function** (introduced later) with 14 degree to fit m=21 data points. The learned curve is very "wiggly" (see above).
- The parameter values of this curve are as follows 6.56, -36.934, -109.25, 543.452, 1022.561, -3046.224, -3768.013, 8524.54, 6607.897, -12640.058, -5530.188, 9479.73, 1774, 639, -2821.526
- There are many large positive/negative values, such that a small change of features could lead to significant change of output.

- How to get smaller parameter values?
- \bullet We can assume that the parameter **w** (excluding the bias b) follow a zeromean Gaussian prior

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \tau^2 \mathbf{I}) \tag{9}$$

- For clarity, we omit the bias b in the following derivation.
- Utilizing this prior, we obtain the maximum a posteriori (MAP) estimation

$$\mathbf{w}_{MAP} = \arg\max_{\mathbf{w}} \left[\sum_{i=1}^{m} \log p(y_i | \mathbf{x}_i, \mathbf{w}) + \log p(\mathbf{w}) \right]$$
 (10)

$$= \arg \max_{\mathbf{w}} \left[\sum_{i=1}^{m} \log \mathcal{N}(\mathbf{x}_{i}^{\top} \mathbf{w}, \sigma^{2}) + \log \mathcal{N}(\mathbf{w} | \mathbf{0}, \tau^{2} \mathbf{I}) \right]$$
(11)

$$\equiv \arg\min_{\mathbf{w}} \left[\sum_{i=1}^{m} (\mathbf{x}_i^{\top} \mathbf{w} - y_i)^2 + \lambda \|\mathbf{w}\|_2^2 \right]. \tag{12}$$

• The corresponding closed-form solution is given by

$$\mathbf{w}_{MAP} = (\lambda \mathbf{I} + \mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}. \tag{13}$$

- The above method is also known as ridge regression, or penalized least squares.
- In general, adding a Gaussian prior to the parameters of a model to encourage them to be small is called ℓ_2 regularization or weight decay.
- As shown below, when we set a larger λ , *i.e.*, more weight on the prior, the resulting curve will be smoother.

Motivation

- Some data may be not linearly separated, such as the classic **XOR** data, as shown on the bottom left.
- Consequently, the linear regression model doesn't work.
- To tackle it, we could project the original data to the **monomial** axis x_1x_2 .
- Then, the XOR becomes linearly separated, as shown on the bottom right.
- Accordingly, we can design a novel linear regression model, as follows

$$f_{\mathbf{w},b}(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + w_{12} x_1 x_2 + w_{11} x_1^2 + w_{22} x_2^2$$
, where $w_0 = b$.

Polynomial expansion

• The linear model $f_{\mathbf{w},b}(\mathbf{x}) = \mathbf{x}^{\top}\mathbf{w} + b$ can be written as

$$f_{\mathbf{w},b}(\mathbf{x}) = \sum_{i=0}^{d} x_i w_i = \mathbf{w}_0 + \sum_{i=1}^{d} x_i w_i.$$

• By including terms involving the products of pairs of components of \mathbf{x} , we obtain a quadratic model:

$$f_{\mathbf{w},b}(\mathbf{x}) = \mathbf{w}_0 + \sum_{i=1}^d w_i x_i + \sum_{i=1}^d \sum_{j=1}^d w_{ij} x_i x_j.$$

• In general:

$$f_{\mathbf{w},b}(\mathbf{x}) = w_0 + \sum_{i=1}^d w_i x_i + \sum_{i=1}^d \sum_{j=1}^d w_{ij} x_i x_j + \sum_{i=1}^d \sum_{j=1}^d \sum_{k=1}^d w_{ijk} x_i x_j x_k + \dots$$

Remarks

- For high dimensional d and high polynomial order, the number of polynomial terms becomes explosive! (In fact, this number of terms grows exponentially.)
- Hence, for high dimensional problems, polynomials of order larger than 3 is seldom used.

Linear model with basis expansion $\phi(\mathbf{x})$

$$f_{\mathbf{w},b}(\mathbf{x}) = w_0 + \sum_{i=1}^d w_i x_i + \sum_{i=1}^d \sum_{j=1}^d w_{ij} x_i x_j + \sum_{i=1}^d \sum_{j=1}^d \sum_{k=1}^d w_{ijk} x_i x_j x_k + \dots$$
$$= \phi(\mathbf{x})^{\top} \mathbf{w},$$

where

$$\phi(\mathbf{x}) = [1, x_1, \dots, x_d, \dots, x_i x_j, \dots, x_i x_j x_k, \dots]^\top,$$

$$\mathbf{w} = [\mathbf{w}_0, w_1, \dots, w_d, \dots, w_{ij}, \dots, w_{ijk}, \dots]^\top.$$

Note: $f_{\mathbf{w},b}(\mathbf{x})$ is still a linear function w.r.t. **w**, rather than **x**. Thus, it is still a linear model.

Extending to the case of m data points, i.e., $\mathbf{X} = [\mathbf{x}_1^\top; \dots; \mathbf{x}_m^\top] \in \mathbb{R}^{m \times (d+1)}$, the basis expansion is presented by

$$\mathbf{P}(\mathbf{X}) = [\phi(\mathbf{x}_1)^\top; \dots; \phi(\mathbf{x}_m)^\top] \in \mathbb{R}^{m \times |\mathbf{w}|}.$$

Example

 $\begin{aligned} \{\mathbf{x_i}, \mathbf{y_i}\}_{\mathbf{i}=1}^{\mathbf{m}} & \{x_1 = \mathbf{0}, x_2 = \mathbf{0}\} \rightarrow \{y = 0\} \\ & \{x_1 = 1, x_2 = 1\} \rightarrow \{y = 1\} \\ & \{x_1 = 1, x_2 = \mathbf{0}\} \rightarrow \{y = 2\} \\ & \{x_1 = \mathbf{0}, x_2 = 1\} \rightarrow \{y = 3\} \end{aligned}$

 $2^{\mathbf{nd}}$ **order** polynomial model

$$f_{\mathbf{w},b}(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + w_{12} x_1 x_2 + w_{11} x_1^2 + w_{22} x_2^2$$

$$= \begin{bmatrix} 1 & x_1 & x_2 & x_1 x_2 & x_1^2 & x_2^2 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ w_{12} \\ w_{11} \\ w_{22} \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} 1 & x_1 & x_2 & x_1 x_2 & x_1^2 & x_2^2 \\ 1 & x_1 & x_2 & x_1 x_2 & x_1^2 & x_2^2 \\ 1 & x_1 & x_2 & x_1 x_2 & x_1^2 & x_2^2 \\ 1 & x_1 & x_2 & x_1 x_2 & x_1^2 & x_2^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Ridge regression with original features X:

Learning:
$$\hat{\mathbf{w}} = (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^{\top} \mathbf{y}$$

Prediction: $f_{\mathbf{w},b}(\mathbf{X}_{new}) = \mathbf{X}_{new} \hat{\mathbf{w}}$

Ridge regression with basis expansion P(X):

Learning:
$$\hat{\mathbf{w}} = (\mathbf{P}^{\top}\mathbf{P} + \lambda \mathbf{I})^{-1}\mathbf{P}^{\top}\mathbf{y}$$

Prediction: $f_{\mathbf{w},b}(\mathbf{P}(\mathbf{X}_{new})) = \mathbf{P}_{new}\hat{\mathbf{w}}$

For Regression Applications

- Learning: $\hat{\mathbf{w}} = (\mathbf{P}^{\top}\mathbf{P} + \lambda \mathbf{I})^{-1}\mathbf{P}^{\top}\mathbf{y}$, where \mathbf{y} is continuous
- Prediction: $f_{\mathbf{w},b}(\mathbf{P}(\mathbf{X}_{new})) = \mathbf{P}_{new}\hat{\mathbf{w}}$

For Classification Applications

- Learn discrete valued y (binary) or Y (one-hot)
- Binary Prediction: $f_{\mathbf{w},b}(\mathbf{P}(\mathbf{X}_{new})) = \mathbf{sgn}(\mathbf{P}_{new}\hat{\mathbf{w}})$ if $y \in \{-1, +1\}$
- $\bullet \ \text{Multi-Category Prediction:} \ f_{\mathbf{w},b}(\mathbf{P}(\mathbf{X}_{new})) = \underset{i=1,\dots,C}{\operatorname{\mathbf{argmax}}}_{i=1,\dots,C}(\mathbf{P}_{new}\hat{\mathbf{w}})$

$$\begin{aligned} & \{\mathbf{x_i,y_i}\}_{\mathbf{i=1}}^{\mathbf{m}} & \{x_1=0,x_2=0\} \rightarrow \{y=-1\} \\ & \{x_1=1,x_2=1\} \rightarrow \{y=-1\} \\ & \{x_1=1,x_2=0\} \rightarrow \{y=-1\} \\ & \{x_1=1,x_2=0\} \rightarrow \{y=+1\} \\ & \{x_1=0,x_2=1\} \rightarrow \{y=-1\} \\ & \{x_1=0,x_2$$

$$\hat{\mathbf{w}} = \mathbf{P}^{\top} (\mathbf{P} \mathbf{P}^{\top})^{-1} \mathbf{y} \text{ (note: under determined linear system)} \\
= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 6 & 3 & 3 \\ 1 & 3 & 3 & 1 \\ 1 & 3 & 1 & 3 \end{bmatrix}^{-1} \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 1 \\ -4 \\ 1 \end{bmatrix}$$

Example (Cont'd)

 $\hat{y} = \mathbf{P}_t \hat{\mathbf{w}}$

Prediction:

Test point 1:
$$\{x_1 = 0.1, x_2 = 0.1\} \rightarrow \{y = \text{class } -1 \text{ or } +1?\}$$

Test point 2: $\{x_1 = 0.9, x_2 = 0.9\} \rightarrow \{y = \text{class } -1 \text{ or } +1?\}$
Test point 3: $\{x_1 = 0.1, x_2 = 0.9\} \rightarrow \{y = \text{class } -1 \text{ or } +1?\}$
Test point 4: $\{x_1 = 0.9, x_2 = 0.1\} \rightarrow \{y = \text{class } -1 \text{ or } +1?\}$

$$\hat{\mathbf{y}} = \mathbf{sgn} \begin{pmatrix} \begin{bmatrix} 1 & 0.1 & 0.1 & 0.01 & 0.01 & 0.01 \\ 1 & 0.9 & 0.9 & 0.81 & 0.81 & 0.81 \\ 1 & 0.1 & 0.9 & 0.09 & 0.01 & 0.81 \\ 1 & 0.9 & 0.1 & 0.09 & 0.81 & 0.01 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \\ -4 \\ 1 \end{bmatrix} \end{pmatrix}$$

$$= \operatorname{sgn}\begin{pmatrix} \begin{bmatrix} -0.82 \\ -0.82 \\ 0.46 \\ 0.46 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix} \xrightarrow[- \rightarrow]{\text{Class -1}} \xrightarrow[- \rightarrow]{\text{Class +1}} \xrightarrow[- \rightarrow]{\text{Class +1}} \xrightarrow[- \rightarrow]{\text{Class +1}}$$

Lasso regression

• We can replace the Gaussian prior by a Laplacian prior, i.e.,

$$p(\mathbf{w}) = \text{Lap}(\mathbf{w}|\mathbf{0}, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|\mathbf{w}|}{\lambda}\right),$$
 (14)

• The combination of the Gaussian distribution of $p(y|\mathbf{x}, \mathbf{w})$ and the Laplacian prior, leading to

$$\mathbf{w}_{MAP} = \arg\max_{\mathbf{w}} \left[\sum_{i=1}^{m} \log p(y_i | \mathbf{x}_i, \mathbf{w}) + \log p(\mathbf{w}) \right]$$
 (15)

$$= \arg \max_{\mathbf{w}} \left[\sum_{i=1}^{m} \log \mathcal{N}(\mathbf{w}^{\top} \mathbf{x}, \sigma^{2}) + \operatorname{Lap}(\mathbf{w} | \mathbf{0}, b) \right]$$
 (16)

$$\equiv \arg\min_{\mathbf{w}} \left[\sum_{i=1}^{m} (\mathbf{x}_{i}^{\top} \mathbf{w} - y_{i})^{2} + \alpha |\mathbf{w}| \right]. \tag{17}$$

Lasso regression

- It is Lasso regression, and the regularization is called ℓ_1 regularization. It will encourage the sparse parameters.
- As shown below, when we set a larger α , *i.e.*, more weight on the prior, the resulting curve will be smoother.

Geometry of Ridge and Lasso regression

• Geometry of Ridge and Lasso regression. Which one is Ridge?

- When there is a few outliers in the training data D, which are far from most other points, then learned parameters \mathbf{w}_{MLE} will be significantly influenced, leading to very poor fit.
- Let's see the loss curve of the residual sum of squares (RSS),

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (\mathbf{x}_i^{\mathsf{T}} \mathbf{w} - y_i)^2.$$
 (18)

- The error increases quadratically along with the residual. To minimize such a large error, the linear model will be significantly changed.
- How to alleviate the significant influence of outliers?

• We adopt the ℓ_1 loss to replace the ℓ_2 loss, as follows

$$J(\mathbf{w}) = \sum_{i=1}^{m} |\mathbf{x}_i^{\mathsf{T}} \mathbf{w} - y_i|.$$
 (19)

- The curves of ℓ_1 and ℓ_2 losses are shown as follows.
- When the residual is large, the ℓ_1 loss is much smaller than the ℓ_2 loss, such that the influence of outliers could be alleviated.

• Actually, the above ℓ_1 loss can also be derived from the probabilistic perspective, by assuming that

$$p(y|\mathbf{x}, \mathbf{w}, b) = \text{Lap}(y|\mathbf{x}, \mathbf{w}, b) \propto \exp(-\frac{1}{b}|y - \mathbf{w}^{\top}\mathbf{x}|)$$
 (20)

• Applying the maximum log-likelihood estimation (MLE), we will obtain

$$\mathbf{w}_{MLE} = \arg\max_{\mathbf{w}} \log \mathcal{L}(\mathbf{w}; D) = \arg\max_{\mathbf{w}} \sum_{i}^{m} \log p(y|\mathbf{x}, \mathbf{w})$$
 (21)

$$\equiv \arg\min_{\mathbf{w}} \frac{1}{b} \sum_{i=1}^{m} |\mathbf{x}_{i}^{\mathsf{T}} \mathbf{w} - y_{i}| \tag{22}$$

Baoyuan Wu

f Data Science, CUDDA

0A3020 Machine Learnin

Lecture 05

Jan 24/29/31, 2024

$$\mathbf{w}_{MLE} = \arg\min_{\mathbf{w}} \sum_{i=1}^{m} |\mathbf{x}_{i}^{\top} \mathbf{w} - y_{i}|$$
 (23)

- However, the ℓ_1 loss function is non-differentiable. The gradient descent algorithm cannot be adopted.
- We can transform it to a linear program, as follows

$$\min_{\mathbf{w}, \mathbf{t}} \sum_{i}^{m} \mathbf{t}_{i}
s.t. -\mathbf{t}_{i} < \mathbf{x}_{i}^{\top} \mathbf{w} - y_{i} < \mathbf{t}_{i}, 1 < i < m.$$
(24)

Please refer to:

 $\verb|https://math.stackexchange.com/questions/1639716/how-can-l-1-norm-minimization-with the constraints of t$

$$\mathbf{w}_{MLE} = \arg\min_{\mathbf{w}} \sum_{i=1}^{m} |\mathbf{x}_{i}^{\mathsf{T}} \mathbf{w} - y_{i}|$$
 (25)

• We can also utilize the following equation:

$$|a| = \min_{\mu > 0} \frac{1}{2} \left(\frac{a^2}{\mu} + \mu \right) \tag{26}$$

• Then, the above ℓ_1 minimization problem (25) can be reformulated as follows

$$\min_{\mathbf{w}} \min_{\mu_1, \dots, \mu_m > 0} \frac{1}{2} \left(\frac{(\mathbf{x}_i^{\top} \mathbf{w} - y_i)^2}{\mu_i} + \mu_i \right). \tag{27}$$

- It can be iteratively and alternatively optimized as follows:
 - Given $\mathbf{w}, \, \mu_i = |\mathbf{x}_i^{\top} \mathbf{w} y_i|, i = 1, \dots, m$
 - Given μ , $\mathbf{w} = \arg\min_{\mathbf{w}} \sum_{i=1}^{m} \frac{1}{2} (\mathbf{x}_i^{\top} \mathbf{w} y_i)^2$
- It is called iteratively reweighted least squares method.

Summary of different variants of linear regressions

Note that the uniform distribution will not change the mode of the likelihood. Thus, MAP estimation with a uniform prior corresponds to MLE.

		1 1
$p(y \mathbf{x}, \mathbf{w})$	$p(\mathbf{w})$	regression method
Gaussian	Uniform	Least squares
Gaussian	Gaussian	Ridge regression
Gaussian	Laplace	Lasso regression
Laplace	Uniform	Robust regression
Student	Uniform	Robust regression

