Espaces vectoriels de dimension finie - exercices supplémentaires

Exercice 1 ($\stackrel{\triangleright}{\sim}$) Soit U un sous-espace vectoriel de E espace vectoriel, et

$$A = \{ f \in \mathcal{L}(E) \mid U \subset \operatorname{Ker}(f) \}.$$

Montrer que A est un sous-espace vectoriel de $\mathcal{L}(E)$. Si E est de dimension finie, quelle est la dimension de A? Donner un supplémentaire de A dans $\mathcal{L}(E)$.

Exercice 2 ()

Théorèmes de factorisation.

Soit E, F et G des \mathbb{K} -espace vectoriels, avec $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$, G étant de dimension finie.

- 1) Soit $u \in \mathcal{L}(F, E)$ et $v \in \mathcal{L}(G, E)$. Montrer qu'il existe $h \in \mathcal{L}(G, F)$ tel que $v = u \circ h$ si et seulement si $\mathrm{Im}(v) \subset \mathrm{Im}(u)$.
- 2) Soit $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(E, G)$. Montrer qu'il existe $h \in \mathcal{L}(G, F)$ tel que $u = h \circ v$ si et seulement si $\operatorname{Ker}(v) \subset \operatorname{Ker}(u)$.

On pourra réaliser un schéma à chaque fois pour se représenter la situation.