Beijing Engineering Research Center of Mixed Reality and Advanced Display

IGTA2019

Multi-Level Context Ultra-Aggregation for Stereo Matching

Guang-Yu Nie¹, Ming-Ming Cheng², Yun Liu², Zhengfa Liang³, Deng-Ping Fan², Yue Liu^{1,4}, and Yongtian Wang^{1,4}

Beijing Institute of Technology
2 TKLNDST, CS, Nankai University

³ National Key Laboratory of Science and Technology on Blind Signal Processing

⁴ AICFVE, Beijing Film Academy

Depth from Stereo What is stereo?

Depth from images is a very intuitive ability

 Given two images of a scene from (slightly) different viewpoints, we are able to infer depth

Can we do the same using computers?

Yes

Source: http://www.vudream.com/reasons-whv-virtual-reality-is-happening-now/3d-brain/

- Think of images as projections of 3D points (in the real world) onto a 2D surface (image plane)
- X_A is the projection of X, X_1 , X_2 , X_3 , onto the left image
- X, X_1 , X_2 , X_3 will also project onto the right image

Source: Schairer, Edward, et al. "Measurements of tip vortices from a full-Scale UH-60A rotor by retro-reflective background oriented schlieren and stereo photogrammetry." (2013).

- Projections of X_1 , X_2 , X_3 on right image all lie on a line
- This line is known as an epipolar line
 - \triangleright Projections of cameras' optical centers O_A , O_B onto the images
 - \triangleright Points e_A , e_B are known as **epipoles**
 - > All epipolar lines will intersect at epipoles
 - Left image has corresponding epipolar line

Source: Schairer, Edward, et al. "Measurements of tip vortices from a full-Scale UH-60A rotor by retro-reflective background oriented schlieren and stereo photogrammetry." (2013).

What does this give us?

- All 3D points that could have resulted in X_A must have a projection on the right image, and must be on the epipolar line $e_B x_B$
- Given just the left/right images and X_A, you can search on the corresponding epipolar line in the right image. If you can find the corresponding match X_B, you can uniquely determine the 3D position of X.

Source: Schairer, Edward, et al. "Measurements of tip vortices from a full-Scale UH-60A rotor by retro-reflective background oriented schlieren and stereo photogrammetry." (2013).

Depth from Stereo

Geometry in stereo

- Epipolar lines can be made parallel through a process called rectification
- Simplifies the process of finding a match and calculating the 3D point

Epipolar geometry

Point triangulation

Source: https://www.ivs.auckland.ac.nz/web/calibration.php http://web.stanford.edu/class/cs231a/lectures/lecture6_stereo_systems.pdf

Problem statement, reformulated:

Find the disparity for every pixel in the left (or right) image by finding matches in the right (or left) image

disparity =
$$x - x' = \frac{Bf}{Z}$$
 $\frac{x - x'}{O - O'} = \frac{f}{Z}$

Related Research Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- 2. For each pixel x in the first image:
- Find corresponding epipolar scanline in the right image
- Search the scanline and pick the best match x'
- Compute disparity x-x' and set depth(x) = Bf/(x-x')

Correspondence search

Related Research Failures of correspondence search

Textureless surfaces

Occlusions, repetition

Non-Lambertian surfaces, specularities

Related Research Learning-Based Stereo Matching

End-to-end training network

Related Research GC-Net by Kendall et al.

End-to-End Learning of Geometry and Context for Deep Stereo Regression (ICCV'17)

Figure 1: Our end-to-end deep stereo regression architecture, GC-Net (Geometry and Context Network).

Related Research PSM-Net by Chang et al.

Pyramid Stereo Matching Network (CVPR'18)

Related Research Learning-Based Stereo Matching

End-to-end training network

Related Research Different aggregation patterns

Intra-Level combination

(a) DenseNets

(b) Deep Layer Aggregation

Multi-Level Context Ultra-Aggregation

- Receptive field
- 2-D feature

Receptive field

2-D feature

Connections

Independent child module

Independent child module Receptive field 2-D feature **AvgPool Connections** P_0 (b) Share parameters $1\times$ **OUT** (a) IN

MCUA Dense Connection

MCUA Dense Connection

MCUA

Receptive Field

Capture more area

IGTA2019

MCUA Stereo Matching

EMCUA Stereo Matching

Experiment Datasets

Scene Flow dataset:

FlyingThings3D, Driving, Monkaa

>39000(35454/4370 train/test) stereo frames 960×540 pixel resolution

KITTI2015/2012 datasets

Left view Right view

Disparity map (Ground truth)

KITTI2015: 200/200 train/test stereo images

KITTI2012: 194/200 train/test stereo images

1242×375 pixel resolution

Experiment Implementation Details

Train on a lot of data:

- Scene Flow datasets
- Finetuning on KITTI

Test on Flying Things and KITTI

Input: 256×512 pixel resolution

Optimizer: Adam

The training process of EMCUA contains two steps:

Train MCUA:

```
20+50 epochs on SF dataset (lr=0.01)
600 (lr=0.001) + 400 (lr=0.0001) epochs on KITTI datasets
```

Train EMCUA (+ Residual module)

```
1 epoch on SF dataset (lr=0.01)
600 (lr=0.001) + 400 (lr=0.0001) epochs on KITTI datasets
```


Performance KITTI2015 dataset

Table 2. KITTI2015 Results

Mod.		All (%)		Noc (%)			
	D1-bg	D1-fg	D1-all	D1-bg	D1-fg	D1-all	
SegStereo	1.88	4.07	2.25	1.76	3.70	2.08	
iResNet	2.25	3.40	2.44	2.07	2.76	2.19	
CRL	2.48	3.59	2.67	2.32	3.12	2.45	
GC-Net [9]	2.21	6.16	2.87	2.02	5.58	2.61	
PSM-Net MCUA EMCUA	1.86	4.62	2.32	1.71	4.31	2.14	
	1.69	4.38	2.14	1.55	3.90	1.93	
	1.66	4.27	2.09	1.50	3.88	1.90	

"All" and "Noc": percentage of outliers averaged over ground truth pixels of all/non-occluded regions. "D1-bg", "D1-fg", and "D1-all": percentage of outliers averaged only over background regions, foreground regions, and all ground truth pixels.

Performance KITTI2012 dataset

Table 3. KITTI2012 Results

Mod	> 2	2px	> 3	3px	> 4	4px	> 5	δpx	ME	(px)
11100	Noc	All	Noc	All	Noc	All	Noc	All	AN	AA
SegStereo	2.66	3.19	1.68	2.03	1.25	1.52	1.00	1.21	0.5	0.6
iResNet	2.69	3.34	1.71	2.16	1.30	1.63	1.06	1.32	0.5	0.6
GC-Net	2.71	3.46	1.77	2.30	1.36	1.77	1.12	1.46	0.6	0.7
PSM-net	2.44	3.01	1.49	1.89	1.12	1.42	0.90	1.15	0.5	0.6
MCUA	2.07	2.64	1.30	1.70	0.98	1.29	0.80	1.04	0.5	0.5
EMCUA	2.02	2.56	1.26	1.64	0.95	1.24	0.76	0.99	0.4	0.5

"Noc" and "All": percentage of erroneous pixels in non-occluded areas, and in total. "AN" and "AA": average disparity/end-point error in non-occluded areas, and in total. "ME": mean error.

Sample output

Performance Residual Module

Table 2. KITTI2015 Results

Mod.		All (%)		Noc (%)			
1,100.	D1-bg	D1-fg	D1-all	D1-bg	D1-fg	D1-all	
SegStereo	1.88	4.07	2.25	1.76	3.70	2.08	
iResNet	2.25	3.40	2.44	2.07	2.76	2.19	
CRL	2.48	3.59	2.67	2.32	3.12	2.45	
GC-Net [9]	2.21	6.16	2.87	2.02	5.58	2.61	
PSM-Net	1.86	4.62	2.32	1.71	4.31	2.14	
MCUA	1.69	4.38	2.14	1.55	3.90	1.93	
EMCUA	1.66	4.27	2.09	1.50	3.88	1.90	

"All" and "Noc": percentage of outliers averaged over ground truth pixels of all/non-occluded regions. "D1-bg", "D1-fg", and "D1-all": percentage of outliers averaged only over background regions, foreground regions, and all ground truth pixels.

Table 3. KITTI2012 Results

Mod	> 2	2px	> 3	3px	> 4	4px	> 5	δpx	ME	(px)
1,100	Noc	All	Noc	All	Noc	All	Noc	All	AN	AA
SegStereo iResNet GC-Net	2.69	3.34	1.71	2.16	1.30	1.63	1.06	1.32	0.5	0.6
PSM-net MCUA EMCUA	2.07	2.64	1.30	1.70	0.98	1.29	0.80	1.04	0.5	0.5

"Noc" and "All": percentage of erroneous pixels in non-occluded areas, and in total. "AN" and "AA": average disparity/end-point error in non-occluded areas, and in total. "ME": mean error.

Residual module is mainly used to improve the performance of the accuracy of the foreground.

Performance Scene Flow Datasets

Table 4. Performance comparison on Scene Flow test set

Mod.	EPE Mod.	EPE Mod.	EPE
MCUA	0.56 PSM-Net [2] 1.32 iResNet [11]	1.09 StereoNet [10]	1.10
CRL. [18]		1.40 SegStereo [24]	1.45

Mod.: model; **EPE**: end-point-error;

Sample output

IGTA2019

Ground truth

MCUA

PSM-Net

Different aggregation schemes

- Dense connection
- Deep Layer Aggregation
- MCUA

Table 5. Ablation study

Mod.		Scene	Flow		KITTI2015	Para.			
1,100.	> 1px	> 3px	> 5px	EPE	VE (%)	T uru.			
Compare of aggregation patterns									
PSM-Net	_	_	_	1.119	1.83	5.22M			
DenseNets	8.526	3.329	2.286	0.794	1.698	5.27M			
DLA	8.586	3.337	2.280	0.806	1.685	5.32M			
MCUA	7.885	3.108	2.148	0.758	1.579	5.31M			
	Comp	are of ar	chitectu	re comp	onents				
UChi	8.185	3.153	2.147	0.755	1.635	5.39M			
Chi	8.133	3.242	2.226	0.777	1.642	5.29M			
DenPool	8.187	3.187	2.179	0.761	1.628	5.31M			
MCUA	7.885	3.108	2.148	0.758	1.579	5.31M			

Effect of MCUA

Table 5. Ablation study

Mod.		Scene	Flow		KITTI2015	Para.			
2:20 0.	> 1px	> 3px	> 5px	EPE	VE (%)				
Compare of aggregation patterns									
PSM-Net	_	_	_	1.119	1.83	5.22M			
DenseNets	8.526	3.329	2.286	0.794	1.698	5.27M			
DLA	8.586	3.337	2.280	0.806	1.685	5.32M			
MCUA	7.885	3.108	2.148	0.758	1.579	5.31M			
	Comp	are of ar	chitectu	re comp	onents				
UChi	8.185	3.153	2.147	0.755	1.635	5.39M			
Chi	8.133	3.242	2.226	0.777	1.642	5.29M			
DenPool	8.187	3.187	2.179	0.761	1.628	5.31M			
MCUA	7.885	3.108	2.148	0.758	1.579	5.31M			

Effect of MCUA

Table 5. Ablation study

Mod.		Scene	Flow		KITTI2015	Para.			
2.20	> 1px	> 3px	> 5px	EPE	VE (%)				
	Con	npare of	aggrega	tion pat	terns				
PSM-Net	_	_	_	1.119	1.83	5.22M			
DenseNets	8.526	3.329	2.286	0.794	1.698	5.27M			
DLA	8.586	3.337	2.280	0.806	1.685	5.32M			
MCUA	7.885	3.108	2.148	0.758	1.579	5.31M			
	Comp	are of ar	chitectu	re comp	onents				
UChi	8.185	3.153	2.147	0.755	1.635	5.39M			
Chi	8.133	3.242	2.226	0.777	1.642	5.29M			
DenPool	8.187	3.187	2.179	0.761	1.628	5.31M			
MCUA	7.885	3.108	2.148	0.758	1.579	5.31M			

Effect of MCUA

Table 5. Ablation study

Mod.		Scene	Flow		KITTI2015	Para.			
2:20 0.	> 1px	> 3px	> 5px	EPE	VE (%)				
Compare of aggregation patterns									
PSM-Net	_	_	_	1.119	1.83	5.22M			
DenseNets	8.526	3.329	2.286	0.794	1.698	5.27M			
DLA	8.586	3.337	2.280	0.806	1.685	5.32M			
MCUA	7.885	3.108	2.148	0.758	1.579	5.31M			
	Comp	are of ar	chitectu	re comp	onents				
UChi	8.185	3.153	2.147	0.755	1.635	5.39M			
Chi	8.133	3.242	2.226	0.777	1.642	5.29M			
DenPool	8.187	3.187	2.179	0.761	1.628	5.31M			
MCUA	7.885	3.108	2.148	0.758	1.579	5.31M			

Effect of MCUA

Table 5. Ablation study

	Mod.		Scene	KITTI2015	Para.		
	11100.	> 1px	> 3px	> 5px	EPE	VE (%)	T uru.
		Con	npare of	aggrega	tion pat	terns	
	PSM-Net	_	_	_	1.119	1.83	5.22M
	DenseNets	8.526	3.329	2.286	0.794	1.698	5.27M
	DLA	8.586	3.337	2.280	0.806	1.685	5.32M
	MCUA	7.885	3.108	2.148	0.758	1.579	5.31M
		Comp	are of ar	chitectu	re comp	onents	
г	UChi	8.185	3.153	2.147	0.755	1.635	5.39M
	Chi	8.133	3.242	2.226	0.777	1.642	5.29M
	DenPool	8.187	3.187	2.179	0.761	1.628	5.31M
	MCUA	7.885	3.108	2.148	0.758	1.579	5.31M

Conclusion

- We propose a general feature aggregation scheme, MCUA, which contains both intra- and inter-level feature aggregation, while DenseNets and DLA contain only intra-level aggregation.
- We use an independent child module to introduce inter-level aggregation, which enlarges the receptive fields and captures more context information.

Future work

- Dataset bias (Stereo matching Depth estimation)
- Real-time stereo matching

Future work **Datasets**

Scene Flow dataset:

FlyingThings3D, Driving, Monkaa

>39000(35454/4370 train/test) stereo frames 960×540 pixel resolution

KITTI2015/2012 datasets

Left view Right view

Disparity map (Ground truth)

KITTI2015: 200/200 train/test stereo images

KITTI2012: 194/200 train/test stereo images

1242×375 pixel resolution

Future work

- Dataset bias (Stereo matching Depth estimation)
- Real-time stereo matching

Framework of traditional stereo vision algorithm

Matching cost: SSD, SAD, or normalized correlation

$$SSD(x,y,d) = \sum_{(x,y)\in w} \left| I_{l}(x,y) - I_{r}(x-d,y) \right|^{2}$$

Source: A. Fusiello, U. Castellani, and V. Murino, "Relaxing symmetric multiple windows stereo using Markov Random Fields," in Computer Vision and Pattern Recognition, vol. 2134 of Lecture Notes in Computer Science, pp. 91–105, Springer, 2001.

Correspondence search

Future work

- Dataset bias (Stereo matching Depth estimation)
- Real-time stereo matching

StereoNet architecture (ECCV'18)

Source: Khamis, Sameh, et al. "Stereonet: Guided hierarchical refinement for real-time edge-aware depth prediction." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

Qualitative results on the FlyingThings3D test set

Beijing Engineering Research Center of Mixed Reality and Advanced Display

Thanks for your watching.

Beijing Engineering Research Center of Mixed Reality and Advanced Display

Q&A

Guang-Yu Nie

guyuneeee@outlook.com

IGTA2019

04/19-20/2019