LEÇON 8:CONVECTION NATURELLE

Transferts convectifs naturels et mixtes

- Convection naturelle: chaque fois qu'un corps solide se trouve dans un fluide à température différente
 - □ Différences de température fluide/solide
 - ⇒transfert de chaleur
 - ⇒ variations locales de masse volumique du fluide
 - ⇒écoulement descendant ou ascendant
- Le mouvement prend naissance au cœur même du processus de transfert (≠ convection forcée)

- Convection naturelle externe:
 - □ Chauffage

Convection naturelle interne:

- Exemples:
 - □ Bâtiment:

- Exemples:
 - ☐ Thermique de l'homme

- Exemples:
 - □ Electronique

Exemples:

grande distance)

Panache au dessus d'un cylindre (à Panache en dessus d'un cylindre (à courte distance)

Canal

- Origine du mouvement:
 - □ Force de volume, proportionnelle à la masse volumique
 - En général gravitationnelle
 - Effets centrifuges (machines tournantes)
 - Effets de Coriolis (mouvements atmosphériques et ou océaniques)
 - □ Présence d'un gradient de masse volumique
 - En général causé par la dilatation du gaz à proximité de la source chaude
 - Gradients de concentration
 - Combinaison des 2

- Convection naturelle:
 - En général, vitesses associées à la convection naturelle nettement plus faibles que celles en convection forcée
 - Coefficients d'échange convectifs généralement plus faibles

- Convection naturelle:
 - □ Combinaison possible avec la convection forcée: convection mixte

Jet libre en convection mixte

- Phénoménologie de la plaque plane verticale
- Mise en équation pour la plaque plane verticale
- Ordres de grandeur
- Résolution par la méthode des similitudes
- Effet de la turbulence
- Conditions en flux imposé
- Autres géométries
- La convection mixte

PHÉNOMÉNOLOGIE DE LA PLAQUE PLANE

- Hypothèses:
 - □ Convection naturelle
 - □ Écoulement laminaire
 - □ Stationnaire
 - □ Température de la plaque imposée

PHÉNOMÉNOLOGIE DE LA PLAQUE PLANE

Plaque plane dans un fluide au repos:

□ Profil de température semblable à celui de la

convection forcée

□ Profil de vitesse différent

■ u=0 pour y=0

■ $u\rightarrow 0$ pour $y\rightarrow \infty$

- Mêmes équations que pour la convection forcée
 - □ 2D, stationnaire, incompressible, propriétés uniformes
- Terme particulier:
 - □ Forces de flottabilité
 - Forces de pression
 - Forces de gravité: F_x=-ρg
 - □ Variation de la masse volumique

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = \left(\frac{1}{\rho}\frac{\partial p}{\partial x}\right) + \frac{\mu}{\rho}\frac{\partial^2 u}{\partial y^2} + \frac{F_x}{\rho}$$

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = \left(\frac{1}{\rho}\frac{\partial p}{\partial y}\right) + \frac{\mu}{\rho}\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right) + \frac{F_y}{\rho}$$

- Solution: hypothèse de Boussinesq:
 - □ La masse volumique est considérée comme constante sauf dans le terme de pesanteur: $-\frac{1}{\rho}\frac{\partial p}{\partial x} g$
 - \square Alors $\rho = \rho_{\infty} \rho \beta (T T_{\infty})$
- Explication:
 - □ Hypothèse 1: petits écarts de pression et de température
 - $\blacksquare T \rightarrow T', p \rightarrow p'$
 - □ ⇒variations linéaires de la masse volumique:
 - $\rho = \rho \rho \beta T' + \rho \alpha p'$

- Solution: hypothèse de Boussinesq:
 - Hypothèse 2: variations de masse volumique dues à la pression négligeables devant celles dues à la température (incompressibilité)
 - $|\alpha p'| \ll |\beta T'|$

Validation:

- □ Pour une plaque de 1m de haut en contact avec de l'air:
 - $\alpha \approx 10^{-5} \Rightarrow \alpha p' \approx 10^{-4}$
 - $\beta \approx 10^{-3} \Rightarrow \beta \text{ T'} \approx 10^{-3}.\Delta \text{T}$
- □ Si Δ T>10°C \Rightarrow 2 ordres de grandeur de différence

- Equation de continuité:
 - Pas de changement

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

- Equations de quantité de mouvement:
 - □ Suivant X:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + \frac{\mu}{\rho}\frac{\partial^2 u}{\partial y^2} - g$$

- □ Suivant Y:
 - Négligeable au 1^{er} ordre
 - $\frac{\partial p}{\partial y} \approx 0$ ⇒ Pour un X donné, p=cte=pression hors de la couche limite
 - Or à l'extérieur de la couche limite: u=v=0

$$\Rightarrow \frac{\partial p}{\partial x} = -\rho_{\infty} g$$

- Equations de quantité de mouvement:
 - □ Suivant X:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = \left(\frac{g}{\rho}(\rho_{\infty} - \rho)\right) + \frac{\mu}{\rho}\frac{\partial^{2} u}{\partial y^{2}}$$

Terme de flottabilité (ou de pesanteur)

□ Hypothèse de Boussinesq:

□ Donc équation suivant X:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = \beta g \left(T - T_{\infty}\right) + \frac{\mu}{\rho} \frac{\partial^{2} u}{\partial y^{2}}$$

- Equations de l'énergie:
 - Pas de dissipation visqueuse ou due à la pression ni de flux volumique
 - □ Pas de changement:

$$\rho c_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \lambda \frac{\partial^2 T}{\partial y^2}$$

Equations :

2D, stationnaire, incompressible, propriétés uniformes,
 Pas de dissipation visqueuse ou due à la pression ni de flux volumique

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = \beta g (T - T_{\infty}) + \frac{\mu}{\rho} \frac{\partial^2 u}{\partial y^2}$$

$$\rho c_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \lambda \frac{\partial^2 T}{\partial y^2}$$

□ ⇒Couplage des équations de quantité de mouvement et de l'énergie

Au sein de la couche limite thermique:

$$x \approx L$$

$$y \approx \delta_t$$

$$T \approx (T_0 - T_\infty) = \Delta T$$

$$u \approx ?$$

□ Equation de continuité:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \quad \Rightarrow \quad \frac{u}{L} \approx \frac{v}{\delta_t}$$

- Au sein de la couche limite thermique:
 - □ Equation de l'énergie:

$$\rho c_{p} \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \lambda \frac{\partial^{2} T}{\partial y^{2}}$$

$$\Rightarrow \rho c_{p} \left(u \frac{\Delta T}{L} + v \frac{\Delta T}{\delta_{t}} \right) \approx \lambda \frac{\Delta T}{\delta_{t}^{2}}$$

- Au sein de la couche limite thermique:
 - □ Equation de quantité de mouvement:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = \beta g (T - T_{\infty}) + \frac{\mu}{\rho} \frac{\partial^{2} u}{\partial y^{2}}$$
$$u\frac{u}{L} + v\frac{u}{\delta_{t}} \approx \beta g \Delta T + \frac{\mu}{\rho} \frac{u}{\delta_{t}^{2}}$$

- $\square \text{ Or } \frac{u}{L} \approx \frac{v}{\delta_t}$ $\frac{u^2}{L} \approx \beta g \Delta T + \frac{\mu}{\rho} \frac{u}{\delta_t^2}$
- $\Box \text{ Or } u \approx a \frac{L}{\delta_t^2}$ $a^2 \frac{L^2}{\delta_t^4} \frac{1}{L} \approx \beta g \Delta T + \frac{\mu}{\rho} \frac{aL}{\delta_t^4}$

- Au sein de la couche limite thermique:
 - □ Equation de quantité de mouvement:

$$a^{2} \frac{L}{\delta_{t}^{4}} \approx \beta g \Delta T + \frac{\mu}{\rho} \frac{aL}{\delta_{t}^{4}}$$

$$\Rightarrow \frac{a^{2}L}{g\beta \Delta T \delta_{t}^{4}} \approx 1 + \frac{\mu}{\rho} \frac{aL}{g\beta \Delta T \delta_{t}^{4}}$$

□ Introduisons 2 nombres çaractéristiques:

• Grashof:
$$Gr = \frac{g\beta\Delta T L^3}{v^2}$$

Rayleigh: Ra = Gr Pr

$$\frac{L^4}{\delta_t^4} \frac{1}{Gr \operatorname{Pr}^2} \approx 1 + \frac{L^4}{\delta_t^4} \frac{1}{Gr \operatorname{Pr}} \Longrightarrow \frac{L^4}{\delta_t^4} \frac{1}{Ra \operatorname{Pr}} \approx 1 + \frac{L^4}{\delta_t^4} \frac{1}{Ra}$$

- Au sein de la couche limite thermique:
 - □ Ordre de grandeur h et Nu:

$$h = \frac{-\lambda \frac{\partial T}{\partial y}}{\Delta T} \approx \frac{\lambda \Delta T}{\Delta T \delta_t} \approx \frac{\lambda}{\delta_t}$$

$$\Rightarrow Nu = \frac{hL}{\lambda} \approx \frac{L}{\delta_t}$$

Au sein de la couche limite thermique:

$$\Box \left(\frac{\delta_t}{L}\right)^4 \approx \frac{1}{Ra \operatorname{Pr}} + \frac{1}{Ra}$$

Flottabilité Inertie Viscosité

- Si Pr≥1(Pr=1, Pr>>1):
 - □ Les forces de flottabilité sont équilibrées par:
 - Les forces de viscosité (Pr>>1)
 - Les forces de viscosité et Pr>>1

d'inertie (Pr=1)
$$\Box \left(\frac{\delta_t}{L}\right)^4 \approx \frac{1}{Ra}$$

$$u \approx a \frac{L}{\delta_t^2} \approx \frac{a}{L} \sqrt{Ra}$$

$$Nu \approx Ra^{1/4}$$

Au sein de la couche limite thermique:

$$\Box \left(\frac{\delta_t}{L}\right)^4 \approx \frac{1}{Ra \Pr} + \frac{1}{Ra}$$
Flottabilité Inertie Viscosité

- Si Pr<<1:
 - □ Les forces de flottabilité sont équilibrées par:
 - Les forces d'inertie(Pr<<1)</p>

$$\Box \left(\frac{\delta_t}{L}\right)^4 \approx \frac{1}{Ra \operatorname{Pr}}$$

$$u \approx a \frac{L}{\delta_t^2} \approx \frac{a}{L} \sqrt{Ra \operatorname{Pr}}$$

$$Nu \approx (Ra \operatorname{Pr})^{1/4}$$

Equations et conditions aux limites:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = \beta g (T - T_{\infty}) + \frac{\mu}{\rho} \frac{\partial^2 u}{\partial y^2}$$

$$\rho c_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \lambda \frac{\partial^2 T}{\partial y^2}$$

- Conditions aux limites
 - Sur la plaque (y=0): u=v=0, $T=T_0$
 - Dans le fluide au loin(y $\rightarrow \infty$): $u \rightarrow 0, v \rightarrow 0, T \rightarrow T_{\infty}$

Résolution:

- □ On pose $\eta = \frac{y}{x} \left(\frac{Gr_x}{4} \right)^{1/4}$ □ fonction courant : $\Psi(x, y) = f(\eta) \left[4 \frac{\mu}{\rho} \left(\frac{Gr_x}{4} \right)^{1/4} \right]$
- \square On pose également: $\theta = \frac{T T_{\infty}}{1 T_{\infty}}$
- Cheminement similaire à celui de la convection forcée
- On aboutit à:

$$\begin{cases} f'''+3ff''-2(f')^2+\theta=0\\ \theta''+3\Pr f \theta'=0 \end{cases}$$

- Conditions aux limites
 - □ Sur la plaque (y=0): η =0, f=f'=0, θ =1
 - Dans le fluide au loin($y\rightarrow\infty$): $\eta\rightarrow\infty$, $f\rightarrow0$, $\theta\rightarrow0$

- Résultats:
 - □ Résolution numérique
 - □ Solution en vitesse et température:
 - Air: Pr=0.72

Résultats:

- □ Solution en flux, coefficient d'échange et nombre de Nusselt:
 - Valeurs locales:

$$\varphi = h(T_s - T_{\infty}) = -\lambda \frac{\partial T}{\partial y} \bigg|_{y=0}$$

$$= -\frac{\lambda}{x} (T_s - T_{\infty}) \left(\frac{Gr_x}{4} \right)^{1/4} \frac{d\theta}{dy} \bigg|_{\eta=0}$$

$$Nu_x = \frac{h_x x}{\lambda} = \left(\frac{Gr_x}{4}\right)^{1/4} g(Pr)$$

$$g(Pr) = \frac{0.75 \text{ Pr}^{1/2}}{\left(0.609 + 1.221 \text{ Pr}^{1/2} + 1.238 \text{ Pr}\right)^{1/4}}$$

Résultats:

- □ Solution en flux, coefficient d'échange et nombre de Nusselt:
 - Valeurs moyennes:

$$\overline{h}_L = \frac{1}{L} \int_0^L h_x \ dx$$

$$\overline{Nu_L} = \frac{\overline{h}_L L}{\lambda}$$

□ On a:

$$\overline{h}_L = \frac{4}{3} h_L$$

$$\overline{Nu}_{L} = \frac{4}{3} Nu_{L}$$

RESULTATS LAMINAIRES

Corrélations:

□ Ra<10⁹

$$\begin{cases} Nu_x = 0.59 \ Ra_x^{1/4} \\ \overline{Nu}_L = 0.59 \ Ra_I^{1/4} \end{cases}$$

EFFET DE LA TURBULENCE

- Caractérisation laminaire/turbulent:
 - □ Plaque plane verticale à T_P imposée
 - □ Nombre de Rayleigh:

$$Ra = Gr \text{ Pr} = \frac{g\beta\Delta T L^3}{v^2} \text{Pr}$$

- ☐ Si Ra<Ra_c: laminaire, Si Ra>Ra_c: turbulent
- □ Ra_c≈ 10⁹ pour la plaque verticale

EFFET DE LA TURBULENCE

- Corrélations:
 - □ Plaque plane verticale à T_P imposée
 - □ En turbulent:
 - Corrélation de Mac Adams: Ra>109

$$\begin{cases} Nu_x = 0.1 Ra_x^{1/3} \\ \overline{Nu}_L = 0.1 Ra_t^{1/3} \end{cases}$$

CONDITIONS EN FLUX IMPOSÉ

- Densité de flux imposé uniforme φ:
 - □ Plaque plane verticale
 - □ Nombre de Grashof modifié:

$$Gr_x^* = Gr_x Nu_x = \frac{g\beta\varphi x^4}{v^2\lambda}$$

 \square Corrélation: $10^5 < Gr_x^* < 10^{11}$

$$Nu_x = \frac{hx}{\lambda} = 0.6(Gr_x^* \text{ Pr})^{1/5}$$

Cylindres:

Cylindre vertical

Cebeci [15] Sparrow and Gregg [16] Pr = 0.01 $\frac{(\mathrm{Nu}_x)_{\mathrm{cyl}}}{(\mathrm{Nu}_x)_{\mathrm{f.p.}}}$ Pr = 0.10Pr = 0.72air Pr = 1.0Pr = 10 Pr = 100 $\xi = \frac{2\sqrt{2}}{Gr_x^{1/4}} \left(\frac{x}{R}\right)$

Cylindre horizontal

- Cylindres et sphères:
 - □ Corrélations:
 - Cylindres: 10⁻⁵ < Ra_D < 10¹²

$$\overline{Nu}_{D} = \left\{ 0,60 + \frac{0,387 \, Ra_{D}^{1/6}}{\left[1 + (0,559 / \Pr)^{9/16} \, \right]^{8/27}} \right\}^{2}$$

Sphères: Pr≥ 0.7, Ra_D ≤ 10¹¹

$$\overline{Nu}_D = 2 + \frac{0,589 Ra_D^{1/4}}{\left[1 + (0,469/Pr)^{9/16}\right]^{4/9}}$$

- Plaque inclinée: θ≤60°
 - ☐ Ecoulement ascendant
 - Ecoulement inferieur
 - □ 2D
 - ☐ Idem plaque plane
 - \square Avec g.cos θ au lieu de g
 - Ecoulement supérieur
 - □ 3D
 - □ Très complexe

- Plaque inclinée: θ≤60°
 - □ Ecoulement descendant
 - Ecoulement supérieur
 - □ 2D
 - ☐ Idem plaque plane
 - \square Avec g.cos θ au lieu de g
 - Ecoulement inférieur
 - □ 3D
 - □ Très complexe

Plaques horizontales:

L=S/P

$$cas\ 1\ et\ 4\begin{cases} \overline{Nu}_{L} = 0.54(Gr_{L}\ Pr)^{1/4} & 10^{4} < Ra_{L} < 10^{7} \\ \\ \overline{Nu}_{L} = 0.15(Gr_{L}\ Pr)^{1/3} & 10^{7} < Ra_{l} < 10^{11} \end{cases}$$

$$cas\ 2\ et\ 3: \overline{Nu}_{L} = 0.27(Gr_{L}\ Pr)^{1/4} & 10^{4} < Ra_{L} < 10^{10}$$

- Définitions:
 - □ Convection naturelle:
 - Vitesses imposées inexistantes ou négligeables
 - □ Convection forcée:
 - Vitesses imposées importantes
 - Effets de flottabilité négligeables

Convection naturelle/convection forcée:

$$\Box \text{ Critère de choix: } \frac{Gr_{naturelle}}{\left(\text{Re}_{forcée}\right)^2} = \frac{\frac{g\beta\Delta T L^3}{v^2}}{\left(\frac{U_{forcée}L}{v}\right)^2}$$

- - □ convection naturelle dominante (convection forcée négligée)
- $\blacksquare \operatorname{Si} \frac{Gr_{naturelle}}{\left(\operatorname{Re}_{forc\acute{e}e}\right)^2} << 1$
 - convection forcée dominante (convection naturelle négligée)
- Sinon: convection mixte

- Exemple:
 - □ Ecoulement autour d'un cylindre
 - Convection naturelle:
 - Panache ascendant
 - □ Pas de vitesse imposée

- Exemple:
 - □ Ecoulement autour d'un cylindre
 - Convection mixte:
 - □ Imposition d'un vitesse latérale
 - □ Cas b):Re=85

- Exemple:
 - □ Ecoulement autour d'un cylindre
 - Convection mixte:
 - □ Imposition d'un vitesse latérale
 - □ Cas c): Re=230

- Exemple:
 - □ Ecoulement autour d'un cylindre
 - Convection mixte:
 - □ Imposition d'une vitesse latérale
 - □ Cas d):Re=1200

- Exemple:
 - □ Ecoulement autour d'un cylindre
 - Convection forcée:
 - □ Imposition d'une vitesse latérale

Exemple 2:

- □ Ecoulement autour d'un cylindre
- □ Vitesse imposée dans la direction de l'écoulement due à la convection naturelle
- □ Sens assisté:

Exemple 2:

- □ Ecoulement autour d'un cylindre
- □ Vitesse imposée dans la direction de l'écoulement due à la convection naturelle
- □ Sens opposée:

- Ecoulement très complexe
- Nécessite généralement une étude spécifique
- Règle simplifiée :

$$Nu = \left(Nu_F^n \pm Nu_N^n\right)^{1/n}$$

- Nu_F nombre de Nusselt de convection forcée(corrélation)
- Nu_N nombre de Nusselt de convection naturelle(corrélation).
- Signe + pour
 - convection mixte assistée
 - convection mixte transverse
- Signe pour convection mixte contraire
- n généralement de l'ordre de n = 3

Ordre de grandeur:

