1.1 Угол между прямыми

$$\cos \angle (a, b) = \left| \cos \angle (\vec{a}, \vec{b}) \right|$$

Задача

Даны точки:

$$A(-2;-2;4), B(-2;-3;2), C(5;-1;2), D(0;1;-2)$$

Найти $\angle(AB,CD)$.

Решение:

Направляющие векторы: $\overrightarrow{AB}\{0; -1; -2\}, \overrightarrow{CD}\{-5; 2; -4\}.$

$$\cos \angle (AB, CD) = \left| \cos \angle \left(\overrightarrow{AB}, \overrightarrow{CD} \right) \right| = \frac{\left| \overrightarrow{AB} \cdot \overrightarrow{CD} \right|}{\left| \overrightarrow{AB} \right| \cdot \left| \overrightarrow{CD} \right|} = \frac{6}{\sqrt{5} \cdot \sqrt{45}} = \frac{2}{5}.$$

Задача

Даны точки:

$$A(-2;-2;4)$$
, $B(-2;-3;2)$, $C(5;-1;2)$, $D(0;1;-2)$
Найти $\angle(AB,CD)$.

Решение:

$$\cos \angle (AB, CD) = \left| \cos \angle \left(\overrightarrow{AB}, \overrightarrow{CD} \right) \right| = \frac{\left| \overrightarrow{AB} \cdot \overrightarrow{CD} \right|}{\left| \overrightarrow{AB} \right| \cdot \left| \overrightarrow{CD} \right|} = \frac{6}{\sqrt{5} \cdot \sqrt{45}} = \frac{2}{5}.$$

$$\angle (AB, CD) = \arccos \frac{2}{5}.$$