Trabajo Práctico de rutas en Internet

Teoría de las Comunicaciones

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

21.10.2015

Agenda

- Introducción
- 2 ICMP: el protocolo de control de internet
 - ICMP desde Scapy
- Traceroute: construyendo la ruta que siguen los datagramas
 - Implementaciones
 - traceroute desde Scapy
- 4 Enunciado del trabajo práctico
- Consignas

Agenda

- Introducción
- 2 ICMP: el protocolo de control de internet
 - ICMP desde Scapy
- Traceroute: construyendo la ruta que siguen los datagramas
 - Implementaciones
 - traceroute desde Scapy
- 🜗 Enunciado del trabajo práctico
- Consignas

Objetivos

- Estudiar el protocolo de control de internet.
- Y algunas herramientas que se apoyan sobre esta tecnología.
- Implementar alguna de ellas.
- Analizar cómo funcionan y sacar conclusiones al respecto.
- En sí, ponernos las botas y dar una vuelta por la capa de red.

Agenda

- Introducción
- ICMP: el protocolo de control de internet
 - ICMP desde Scapy
- Traceroute: construyendo la ruta que siguen los datagramas
 - Implementaciones
 - traceroute desde Scapy
- 4 Enunciado del trabajo práctico
- Consignas

El protocolo ICMP

- Protocolo de control que forma parte del núcleo de la arquitectura TCP/IP.
- La sigla: Internet Control Message Protocol.
- Objetivo: proveer mensajes de error y de control. No intercambia datos!
- Especificado en el RFC 792.

Cómo y dónde se usa

- Del RFC: ICMP debe ser implementado por cada módulo IP.
- Pueden ser enviados tanto por routers como por hosts arbitrarios.
- Son generados a causa de:
 - Errores en los datagramas IP.
 - Necesidad de comunicar información de diagnóstico.
 - Necesidad de comunicar información de ruteo.
- Siempre se envían a la dirección source del datagrama IP que motivó el mensaje.

Formato de los paquetes

• Los paquetes constan de un header de 8 bytes y una sección de datos variable.

• Header:

- ► Type (1 byte): indica el tipo del mensaje y define el formato de lo que sigue.
- Code (1 byte): especifica el subtipo.
- Checksum (2 bytes): usa el algoritmo de IP sobre el header más los datos del paquete ICMP.
- Los restantes 4 bytes dependen del tipo.

Type	Name
0	Echo Reply
1	Unassigned
2	Unassigned
3	Destination Unreachable
4	Source Quench
5	Redirect
6	Alternate Host Address
7	Unassigned
8	Echo
9	Router Advertisement
10	Router Selection
11	Time Exceeded
12	Parameter Problem
13	Timestamp
14	Timestamp Reply
15	Information Request
16	Information Reply
17	Address Mask Request
18	Address Mask Reply
19	Reserved (for Security)
20-29	Reserved (for Robustness Experiment)

Ejemplo: Echo Request (PING)

- La herramienta de diagnóstico ping usa estos mensajes (y el respectivo *Echo Reply* tipo 0).
- En este caso, los 2 bytes restantes del header indican:
 - ▶ Identifier (1 byte): permite asociar solicitudes con respuestas.
 - Sequence Number (1 byte): idem anterior.
- Y la sección de datos puede contener información arbitraria que debe ser devuelta en la respuesta.

Ejemplo: Destination Unreachable

- El tipo 3, por otro lado, es el de *Destination Unreachable*.
- Tiene varios subtipos. Algunos ejemplos:
 - Destination network unreachable (código 0): si el router no sabe cómo pasar el paquete (i.e., no tiene una ruta programada para la red destino).
 - Destination host unreachable (código 1): si el host destino está en la red del router pero éste determinó que no puede llegar al host.
 - Destination port unreachable (código 3): el mensaje llegó al destino pero el puerto no tiene un proceso asociado. Lo envía el host no el router como los anteriores.
- Header: los 2 bytes restantes quedan unused.
- Datos: Se copia el header IP del datagrama original más los primeros 8 bytes de los datos respectivos.

• En Scapy, la clase ICMP permite armar paquetes ICMP:

```
>>> icmp = ICMP()
>>> icmp.show2()
###[ ICMP ]###
  type= echo-request
  code= 0
  chksum= 0xf7ff
  id= 0x0
  seq= 0x0
```

- Por defecto, el paquete es tipo 8 (i.e., Echo Request).
- Dependiendo del tipo, los campos posteriores al checksum se actualizarán para reflejar la especificación del RFC.

Implementación de ping

Armando y enviando un Echo Request

Jugando con el TTL

Armando un paquete con TTL bajo >>> sr(IP(dst='www.dc.uba.ar', ttl=1))

```
>>> res[0][ICMP].display()
    0000 192.168.0.105 > 157.92.27.21 ip ==> IP / ICMP 192.168.0.1
```

192.168.0.105 time-exceeded ttl-zero-during-transit / I

Agenda

- Introducción
- ICMP: el protocolo de control de internetICMP desde Scapy
- Traceroute: construyendo la ruta que siguen los datagramas
 - Implementaciones
 - traceroute desde Scapy
- 4 Enunciado del trabajo práctico
- Consignas

¿Qué es traceroute?

- Es una herramienta de diagnóstico para averiguar las rutas que atraviesan los paquetes en Internet.
- La mayoría de los sistemas operativos actuales proveen alguna implementación. Ejemplos:
 - tracert en Windows.
 - traceroute en *nix.
- Al correr la herramienta, se debe indicar hacia qué host destino se desea trazar la ruta.
- La salida obtenida suele mostrar las direcciones IP de los hops sucesivos y el respectivo tiempo de respuesta esperado.

Los distintos sabores

- Existen varias maneras de implementar traceroute.
- Usualmente consisten en enviar paquetes IP donde se incremente progresivamente el campo TTL.
- El efecto colateral de esto es recibir respuestas ICMP sucesivas informando que el tiempo de vida del paquete acaba de expirar.
- En lo que sigue describiremos dos implementaciones de traceroute:
 - ▶ Enviando paquetes ICMP de tipo *Echo Request* ajustando el TTL.
 - Utilizando las opciones de los datagramas IP (RFC 1393).

traceroute sobre ICMP

- Implementa (esencialmente) el siguiente algoritmo:
 - **1** Sea h la IP del host destino y sea ttl = 1.
 - Repetir los siguientes pasos hasta obtener una respuesta ICMP de tipo Echo Reply por parte de h:
 - Senviar un paquete ICMP de tipo Echo Request al host h cuyo campo TTL en el header IP valga ttl.
 - Si se recibe una respuesta ICMP de tipo Time Exceeded, anotar la IP origen de dicho paquete. En otro caso, marcar como desconocido (*) el hop.
 - Incrementar ttl.

traceroute sobre ICMP: observaciones

- Usualmente suele enviarse una serie de paquetes por cada valor de ttl (por lo general tres).
- A través de esto, puede estimarse el tiempo medio de respuesta.
- El host origen define un timeout para esperar por cada respuesta. Pasado este intervalo, el hop actual se asume desconocido.
- Observar que las rutas no necesariamente serán siempre iguales!

traceroute utilizando opciones IP

- Problemas del enfoque anterior:
 - ▶ Se generan muchos paquetes: $\geq 2n$, siendo n la cantidad de hops.
 - La ruta puede cambiar en el transcurso del algoritmo.
- El RFC 1393 especifica un algoritmo nuevo de traceroute que utiliza las opciones IP.
- Es más eficiente: genera n+1 paquetes y no sufre del cambio de rutas dado que el origen envía un único paquete.

El algoritmo básico

- La idea: enviar un paquete arbitrario con la opción IP de traceroute adjuntada.
- Cada hop intermedio notará su presencia y devolverá un paquete ICMP de tipo 30 (*Traceroute*) con información apropiada.
- Desventaja: los routers deben implementar esta nueva funcionalidad.

Formato de la opción IP

- La opción de traceroute definida en el RFC esencialmente contiene estos campos:
 - ▶ ID Number: valor arbitrario para identificar las respuestas ICMP.
 - Hop Count: número de routers a través de los cuales pasó hasta el momento el paquete original.
 - Originator IP Address: dirección IP del host que origina el traceroute. Los routers utilizan este campo para devolver las respuestas ICMP.

Formato de los paquetes ICMP (tipo 30)

- El RFC también define el formato de los paquetes ICMP de tipo 30.
- Éstos corresponden a las paquetes intermedios que los routers van enviando al host origen.
- Los campos más relevantes son los siguientes:
 - ▶ ID Number: el identificador copiado del paquete original.
 - ▶ Hop Count: el valor (actualizado) de la cantidad de hops atravesados.
- También indica la velocidad del enlace y la MTU respectiva.

La implementación nativa de Scapy

- Scapy provee una implementación propia de traceroute.
- Utiliza conceptos de nivel de transporte (puntualmente TCP).

```
>>> traceroute('www.dc.uba.ar')
157.92.27.21:tcp80
 192.168.0.3
               11
                         10 190.220.179.1
                                         11
2 190.246.18.1 11
                         11 190.220.176.34
                                         11
                         12 190.220.179.122 11
6 200 89 165 117 11
7 200.89.165.1
              11
                         14 157.92.47.13
                                         11
8 200.89.165.250
               11
                         15 157.92.18.21
                                         11
  200.49.69.165
               11
                         16 157.92.27.21
                                         SA
```

- 11 indica el tipo ICMP: Time to Live Exceeded.
- SA indica la contestación positiva del destino (SYN-ACK).

Detrás de las bambalinas

```
>>> res = sr(IP(dst="www.google.com", ttl=range(7))/ICMP(), timeout=1)
Begin emission:
****Finished to send 7 packets.
**....
Received 14 packets, got 6 answers, remaining 1 packets
>>> res
(<Results: TCP:0 UDP:0 ICMP:6 Other:0>, <Unanswered: TCP:0 UDP:0 ICMP:1 Other:0>)
>>> res[0].display()
0000 IP / ICMP 192.168.0.105 > 173.194.42.211 echo-request 0 ==> IP / ICMP
    192.168.0.1 > 192.168.0.105 time-exceeded ttl-zero-during-transit / IPerror
    / TCMPerror
0001 IP / ICMP 192.168.0.105 > 173.194.42.211 echo-request 0 ==> IP / ICMP
    192.168.0.1 > 192.168.0.105 time-exceeded ttl-zero-during-transit / IPerror
    / TCMPerror
0002 IP / ICMP 192.168.0.105 > 173.194.42.211 echo-request 0 ==> IP / ICMP
    157.92.19.129 > 192.168.0.105 time-exceeded ttl-zero-during-transit /
    IPerror / ICMPerror
```

- 11 indica el tipo ICMP: Time to Live Exceeded.
- SA indica la contestación positiva del destino (SYN-ACK).

MAP OF THE INTERNET THE IPV4 SPACE, 2006

LOCAL	W W	PUBLIC DATA NETS	HP	DEC	19 FORD	CSC.	DDN-RYN	234	235	234	237	200	241	254 W/	255
GENERAL ELECTRIC	# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	XEISOX	BELL LABS	APPLE	MIT	11 11/	3 DISA	233	232	257	2.78	245	242	11/253	ssf"
BB\$N INC	711 41	BBIN	DOD INTEL	ъ D1	5A	CABLE	UK MoD	ML 230	234	1 CA	5	244	141 V/	249	251 31/
5111 711 1 111 111	ARMY ALSC	IBM	VPN s	(E) ""	25 D51	11/ 27	DISA	227	228	221	224	245	296 \//	249	11 11
51 FS	SITA	MERC	STCAP DEBIS CCS	NORSK	35 MERIT	36	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A5	1A - P	220 AC	W 17 17 17 17 17 17 17 17 17 17 17 17 17	ASIA- PACIFIC	A COREIBREAN	US !	
57 D	54 USPS	55 BOEING	SE DUPONT	DLA	34 HALUBURTO	39 VI	PS1	EUROP	Junanie.	7 221 6	10	Sep. 203	200	NORTH AMERIC 195	
PACIFIC		11 vil	UK SOCIAL SECURITY SIG	BBIN	INTERDA	4	Y ARINIC		ART MENT	P. 21	SUCIDESIEL		-(194 EV	ROPE
(")	EUROPE	49 11	48 PRUDENTIA	BELL NORTH	HAM RADIO	JAPAN INET	11/ 4E 11/	EUR	ROPE	A ZINE	A N	NER	ICA 204	193	PRIVATE 1918
CHOOPE ON MET	16	- FLICKR	4		-PACI	FIC	127 LOOPBACK)128)128	131	In	JAPAN	E6	(947	FV PSI	RION
et Dioc et	STANADOT SERRY SERRY		70	10 }	120 4	125	JAPAN	} 129	13#	135	134	185 111	184	187	AMERICA E 100
EUROP	77	P2 ORISINAL	73	<u>ر</u> ال	is we will	14	117 111	142	141	134	137	185 /	u 197	179	177

Agenda

- Introducción
- 2 ICMP: el protocolo de control de interne
 - ICMP desde Scapy
- Traceroute: construyendo la ruta que siguen los datagramas
 - Implementaciones
 - traceroute desde Scapy
- 4 Enunciado del trabajo práctico
- Consignas

Objetivos

- Experimentar con herramientas y técnicas frecuentes a nivel de red: traceroute.
- Entender los protocolos involucrados.
- Desarrollar una implementación propia para afianzar los conocimientos.
- Continuar con el enfoque analítico de la instancia anterior.
- Probar algunos tests de hipótesis usando datos concretos.

Fecha de entrega

• Mircoles 11 de Noviembre de 2015

Agenda

- Introducción
- 2 ICMP: el protocolo de control de internet
 - ICMP desde Scapy
- Traceroute: construyendo la ruta que siguen los datagramas
 - Implementaciones
 - traceroute desde Scapy
- 4 Enunciado del trabajo práctico
- Consignas

Primera consigna: caracterizando rutas

(a) Implementar una herramienta que permita monitorear una ruta usando un esquema tipo traceroute mediante sucesivos paquetes con TTLs incrementales, calculando los RTTs a cada salto para los que se reciba una respuesta ICMP de tipo time exceeded. Tener en cuenta que es posible enviar varios paquetes para un mismo TTL y analizar las respuestas tanto para distinguir entre varias rutas como para obtener un valor de RTT promediado.

Primera consigna: caracterizando rutas (cont.)

(b) Adaptar la herramienta del inciso anterior para que calcule estadísticas de la ruta. Además de la media del RTT, obtener para cada salto, el desvío estandard. A su vez, a partir de los promedios del RTTs para cada salto, obtener el valor de RTT de cada enlace calculado como la diferencia con el salto anterior.

$$\Delta RTT_i = RTT_i - RTT_{i-1}$$

(c) Con los valores de ΔRTT obtenidos, adaptar la herramienta con el objetivo de realizar un test de hipótesis para verificar si la distribución de ΔRTTs obtenidos a lo largo del tiempo. Sugerimos para ello usar una funcionalidad de SciPy que se puede encontrar en scipy.stats.normaltest.

Primera consigna: caracterizando rutas (cont.)

- (d) Diseñar un test de hipótesis basándose en el test Grubbs [?] que permita detectar enlaces submarinos en la ruta mediante el análisis estadístico de la existencia de valores distintivos (outliers) en la distribución de ΔRTTs.
- (e) Usando dicha *herramienta*, estudiar rutas (una por cada integrante de grupo) a universidades fuera de sudamérica.

Segunda consigna: gráficos y análisis

- Realizar un análisis que permita detectar saltos correspondientes a enlaces submarinos, valiéndose principalmente de gráficos.
- Sugerimos gráficos de distribuciones de RTTs analizando qué saltos son estadísticamente significativos con respecto a la ruta analizada.
- Se valorará especialmente en esta consigna la creatividad y el análisis propuesto.
- Pensar cómo resultará más efectivo presentar la información recopilada.

Herramientas adicionales

- Recomendamos el uso de herramientas de geolocalización (ver referencias en el enunciado).
- Nos permiten ubicar en el mapa la localización aproximada de una dirección IP.
- En nuestro caso serán las direcciones de los hops encontrados en las rutas.