Titel: Beschleunigung von Autos an der schiefen Ebene

Bearbeiter: Dominik Eisele

Mitarbeiterin: Jonathan Moschner

Datum Versuchsdurchführung: 12.10.2015

Datum Abgabe: 20.10.2015

Ich erkläre an Eides statt, den vorliegenden Laborbericht selbst angefertigt zu haben. Alle fremden Quellen wurden in diesem Laborbericht benannt.

Aichwald, 18. Oktober 2015 Dominik Eisele

1 Einführung

Bei dem Versuch "Beschleunigung von Autos an der schiefen Ebene" wurde ein Wagen auf einer geneigten Rollbahn beschleunigt und die Zeit gemessen, die der Wagen für eine bestimmte Strecke s benötigt.

Ziel des Versuches ist das Diagramm $t(\alpha)$ und die Endgeschwindigkeit des Wagens v_e . Der Versuch "Beschleunigung von Autos an der schiefen Ebene" kommt aus der Kinematik, der Lehre der Bewegung von Punkten und Körpern im Raum, beschrieben durch die Größen Position, Geschwindigkeit und Beschleunigung, ohne die Ursachen der Bewegung (Kräfte) zu betrachten.

1.1 Benötigten Formeln

Beschleunigte Bewegung:

$$\overline{v} = \frac{s}{t}$$

$$s = \frac{1}{2} \cdot a \cdot t^2$$

$$v_e = a \cdot t$$

$$v_e = 2 \cdot \overline{v}$$

Arithmetischer Mittelwert:

$$\bar{t} = \frac{1}{n} \sum_{i=1}^{n} t_i$$

Standardabweichung:

$$\sigma = \pm \sqrt{\frac{1}{1-n} \sum_{i=1}^{n} (t_i - \overline{t})^2}$$

Mittlere Quadratische Fehler:

$$\sigma_m = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^n (t_i - \bar{t})^2}$$

2 Material und Methoden

2.1 Material

Für den Versuch verwendete Materialien:

- Rollbahn
- Wagen
- analoge Handstoppuhr
- Lineal
- Holzklötze

2.2 Aufbau

Eine Rollbahn wird durch das einseitige Unterlegen von verschieden großen Holzklötzen in eine Schräglage gebracht, wie in Abbildung 1 zu sehen ist. Ein Wagen wird am oberen Ende der Rollbahn fixiert, sodass er, nachdem er losgelassen wurde, ohne eine Anfangsgeschwindigkeit beschleunigt werden kann. Diese Beschleunigung erfährt der Wagen ausschließlich durch der Erdbeschleunigung, die $9,81\frac{m}{s^2}$ beträgt.

Abbildung 1: Skizze des Versuchsaufbaus

2.3 Durchführung 3 MESSWERTE

2.3 Durchführung

Nachdem der Versuch aufgebaut wurde, wurde ein Wagen am oberen Ende der Rollbahn losgelassen, und die Zeit t die er für die Abfahrt der Strecke $s=1,37\,\mathrm{m}$ benötigt gestoppt. Zusätzlich wird noch die Zeit t^* für die halbe Strecke $s_{1/2}$ genommen. Für t und t^* werden jeweils drei Messungen genommen, der Versuch wird anschließend weitere neun mal durchgeführt, wobei der Winkel α stetig verändert wird. Insgesamt hat man nun zehn Werte-Tripel für t und t^* .

3 Messwerte

Messung	α	t_1^*	t_2^*	t_3^*	$\overline{t^*}$	t_1	t_2	t_3	\overline{t}	σ_{m_t}
1	1,56°	2,8 s	2,5 s	2,6 s	2,63 s	3,1 s	3,2 s	3,0 s	3,10 s	0,09
2	2,21°	2,0 s	1,7 s	1,6 s	1,77 s	2,5 s	2,6 s	2,8 s	2,63 s	0,13
3	2,37°	2,0 s	2,3 s	2,3 s	2,20 s	2,6 s	2,6 s	2,5 s	$2,57\mathrm{s}$	0,05
4	2,62°	1,6 s	1,6 s	1,5 s	1,57 s	2,3 s	2,5 s	2,3 s	$2,37\mathrm{s}$	0,10
5	2,87°	1,6 s	1,5 s	1,6 s	1,57 s	2,4 s	2,3 s	2,4 s	2,33 s	0,05
6	3,52°	1,2 s	1,4 s	1,4 s	1,33 s	2,1 s	2,2 s	2,2 s	2,17 s	0,05
7	3,69°	1,3 s	1,4 s	1,3 s	1,33 s	2,0 s	2,0 s	2,2 s	$2,07{\rm s}$	0,10
8	4,01°	1,5 s	1,3 s	1,4 s	1,40 s	2,1 s	2,0 s	2,0 s	2,03 s	0,05
9	4,92°	1,1 s	1,0 s	1,1 s	1,07 s	1,3 s	1,5 s	1,7 s	1,50 s	0,17
10	5,74°	1,1 s	1,0 s	$0.9\mathrm{s}$	1,00 s	1,4 s	1,5 s	1,5 s	1,47 s	0,05

Tabelle 1: Messwerte

4 Auswertung

4.1 Verhältnis $\frac{t}{t^*}$

Das Verhältnis $\frac{\bar{t}}{\bar{t}^*}$ beträgt in Messreihe 1 1,18.

Das Verhältnis $\frac{\bar{t}}{\bar{t}^*}$ beträgt in Messreihe 2 1,49.

Das Verhältnis $\frac{\bar{t}}{\bar{t}^*}$ beträgt in Messreihe 3 1,17.

Das Verhältnis $\frac{\bar{t}}{\bar{t}^*}$ beträgt in Messreihe 4 1,51.

Das Verhältnis $\frac{\bar{t}}{\bar{t}^*}$ beträgt in Messreihe 5 1,48.

Das Verhältnis $\frac{\bar{t}}{\bar{t}^*}$ beträgt in Messreihe 6 1,63.

Das Verhältnis $\frac{\bar{t}}{\bar{t}^*}$ beträgt in Messreihe 7 1,56.

Das Verhältnis $\frac{\bar{t}}{\bar{t}^*}$ beträgt in Messreihe 8 1,45.

Das Verhältnis $\frac{\bar{t}}{\bar{t}^*}$ beträgt in Messreihe 9 1,40.

Das Verhältnis $\frac{\bar{t}}{\bar{t}^*}$ beträgt in Messreihe 10 1,47.

Das Durchschnittsverhältnis $\overline{\frac{\overline{t}}{t^*}}$ beträgt 1,43.

Das theoretische Verhältnis beträgt:

$$s = \frac{1}{2} \cdot a \cdot t^{2}$$

$$t = \sqrt{\frac{2s}{a}}$$

$$t^{*} = \sqrt{\frac{2 \cdot \frac{1}{2} \cdot s}{a}}$$

$$t^{*} = \sqrt{\frac{s}{a}}$$

$$\frac{t}{t^{*}} = \frac{\sqrt{\frac{2s}{a}}}{\sqrt{\frac{s}{a}}}$$

$$\frac{t}{t^{*}} = \sqrt{2}$$

$$\frac{t}{t^{*}} \approx 1,414$$

4.2 Diagramm $t(\alpha)$

Seite 5 von 6

5 Quellen

- www.lern-online.net/physik/mechanik/kinematik Upload: 21.09.2015 10:59 Uhr, Abgerufen: 17.10.2015 13:39 Uhr
- www.fersch.de/pdfdoc/Physik.pdf Upload: 20. August 2015, Abgerufen: 17.10.2015 13:17 Uhr