	Лабораторна робота 2 <i>Студентка Пороскун Олена. Група ПМ.м-21 Тask 2</i>
In [1]: In [2]:	<pre>from matplotlib import pyplot as plt import random import numpy as np</pre>
In [3]:	<pre>import math import time count = 100 # кількість частинок</pre>
	Розраховуємо випадкову величину. def randV(): #random.seed(s) max_num = 2147483647
	ksi = random.randint(0, max_num) / (max_num+1) # ksi = rand_r(&seedp)/(RAND_MAX+1.0); return ksi #randV() Розраховуємо початкові значення координат (x_0, y_0) та швидкостей частинок (vx_0, vy_0) , що знаходяться у резервуарі розміром (Lx, Ly) .
In [5]:	<pre>def Inital_XY(N=10, Lx = 20, Ly = 20, vmax = 20): x0, y0 = np.zeros(N), np.zeros(N) vx0, vy0 = np.zeros(N), np.zeros(N) for i in range(N): x0[i] = randV()*Lx; y0[i] = randV()*Ly; vx0[i] = vmax*(2*randV() - 1); vy0[i] = vmax*(2*randV() - 1); return x0, y0, vx0, vy0 #x0_, y0_, vx0_, vy0_ = Inital_XY()</pre>
	x0, y0, vx0, vy0 = Inital_XY(N=count) Перевіряємо межі початкових значень,
	<pre>print(min(x0),min(y0)) print(max(vx0), max(vy0)) 0.26554856449365616 0.19104905426502228 19.873318672180176 19.519715066999197</pre>
	Перевіряємо розмірність масивів. print(np.shape(x0),np.shape(y0), np.shape(vx0), np.shape(vy0)) (100,) (100,) (100,) (100,)
In [9]:	Виводимо перші 5 значень з кожного масиву. list(zip(x0[:5], y0[:5]))
Out[9]: In [10]: Out[10]:	[(15.773125002160668, 8.313399041071534), (2.796621648594737, 10.571214957162738), (15.456303292885423, 14.710078490898013), (15.322227394208312, 1.2708038091659546), (17.543530883267522, 5.942685790359974)] list(zip(vx0[:5], vy0[:5])) [(12.409982606768608, 11.300946287810802), (14.631292000412941, -14.609208796173334), (17.222262527793646, -8.845808207988739),
	(1.9811238907277584, -2.3282594233751297), (16.025061029940844, -15.055219419300556)] Будуємо графік координат декількох перших частинок (за замовчуванням їх буде 10 або всі). def fun_plot1(x, y, n=10):
TII [TT].	<pre>if (n < 2): n = 1 if (n > len(x)): n = len(x)</pre>
	<pre># 1 cnoci6 for i in range(n): plt.scatter(x[i], y[i], s=30, label=f'{i+1}' " частинка") plt.text(x[i], y[i], " "f'{i+1}') # 2 cnoci6</pre>
	#plt.scatter(x[:n], y[:n], s=20, c='m') plt.xlabel("x") plt.ylabel("y") plt.title("Графік координат перших " f'{n}' " частинок")
	<pre>if (n < 20): plt.legend(bbox_to_anchor=(1,1), loc="upper left") ax = [0, 20, 0, 20] ax2=[-1, 21, -1, 21] ax3=[-1, 32, -1, 21] plt.axis(ax2)</pre>
	#fun_plot1(x0, y0) Розглянемо основні ідеї методу молекулярної динаміки. Припустимо, що між N(N – 1)/2 парами частинок діє двочастинковий потенціал.
	Як придатний приклад такого потенціалу можна розглянути потенціал Леннарда-Джонса $U(r_{12})=4\varepsilon\{(\frac{\sigma}{r_{12}})^{12}-(\frac{\sigma}{r_{12}})^6\}$ де r_{12} — відстань між частинками 1 і 2,
In [12]:	а ε ("відстань" взаємодії частинок 1 та 2) і σ (глибина потенціальної ями або "енергія") — сталі. # (двочастинковий) потенціал Леннарда-Джонса, що ді ε між $N(N-1)/2$ парами частинками def phi(r, sigma=1, eps=1):
	sr6 = (sigma/r)**6 U_r = 4*eps*(sr6*sr6 - sr6) return U_r Такий потенціал добре описує притягання у випадку, коли частинки віддалені на значну відстань, і відштовхування, коли вони зближені. У такому разі еволюція системи у часі відбувається відповідно до
	детерміністичних законів руху кожної частинки, причому сила взаємодії F_{ij} спрощується і подається так: $\overrightarrow{F}(\overrightarrow{x_i}-\overrightarrow{x_j}) = -\frac{\partial}{\partial \overrightarrow{x_i}} U(\overrightarrow{x_i}-\overrightarrow{x_j})$
	# сила взаємодії між частинкамии def F(r, sigma=1, eps=1): sr6 = (sigma/r)**6 F_r = 24*eps*sigma/r*sr6*(2*sr6 - 1) return F r
	return F_r Граничні умови (коли частинка виходить за межі резервуара) # жорсткі граничні умови
[T] •	<pre>def Test11(X, Y, Vx, Vy, Lx=20, Ly=20): k=0 while ((X < 0) (X > Lx) (Y < 0) (Y > Ly)): if (X < 0): X = -X Vx = -Vx</pre>
	<pre>if (X > Lx): X = Lx-(X-Lx) Vx = -Vx</pre>
	<pre>if (Y < 0): Y = -Y Vy = -Vy if (Y > Ly): Y = Ly (Y Ly)</pre>
	Y = Ly-(Y-Ly) Vy = -Vy k+=1 return X, Y, Vx, Vy, k
	#X, Y , Vx , Vy , k = $Test11(X=-4, Y=250, Vx=9, Vy=8, Lx=20, Ly=20)$ $#print(X, Y, Vx, Vy)$ $#A=10=-9=8$ Використовуємо алгоритм Ейлера щоб розрахоувати координати (x,y) частинок з часом та з цими даними розрахувати значення середнього часу $mpt(R)$ досягнення значення R (відстані, що пройшла частинка).
	Алгоритм Ейлера
	$a_{xi} = rac{F(x_i,y_i)}{m_i} = -rac{1}{m_i}rac{\partial}{\partial x_i}U(x_i,y_i)$
	$egin{align} a_{yi} &= rac{1}{m_i} rac{\partial}{\partial y_i} U(x_i, y_i) \ x_i(t+\Delta t) &= x_i(t) + v_{xi}(t) \Delta t \ y_i(t+\Delta t) &= y_i(t) + v_{yi}(t) \Delta t \ \end{pmatrix}$
	$egin{aligned} v_{xi}(t+\Delta t) &= v_{xi}(t) + a_{xi}(t) \Delta t \ v_{yi}(t+\Delta t) &= v_{yi}(t) + a_{yi}(t) \Delta t \end{aligned}$
	$a=rac{dv}{dt}=rac{d^2x}{dt^2} \ rac{dx}{dt}=v$
In [15]:	$\frac{dv}{dt}=a$ def funct2(x0, y0, vx0, vy0, R=1, mas=1, Lx=20, Ly=20, test_ = "Test11"):
	N = len(x0) # к-сть частинок t = 0 # початковий час dt = 0.0002 # крок по часу
	# тимчасовий # масив координат та швидкостей x_n, y_n = np.zeros(N), np.zeros(N) vx_n, vy_n = np.zeros(N), np.zeros(N) times_R = np.zeros(N) # час для кожної частинки коли вона досягла R
	R_i = np.zeros(N) # саме значення R_i(>=R), яке досягла кордината # mean pasage time (середній час досягнення значення R) mpt = 0
	<pre>for i in range(N): t = 0 x, y = x0, y0 vx, vy = vx0, vy0 while (R_i[i] < R):</pre>
	<pre>t = round(t,5) X, Y = x[i], y[i] Vx, Vy = vx[i], vy[i]</pre>
	<pre>X1 = X + Vx*dt Y1 = Y + Vy*dt fx, fy = 0, 0 for j in range(N):</pre>
	<pre>if (j!=i): rx = X1 - x[j] ry = Y1 - y[j] r = math.sqrt(rx*rx + ry*ry) if (r < math.sqrt(Lx*Lx + Ly*Ly)): Fr = F(r)</pre>
	Fr = Fr/mas fx += (Fr * rx / r) fy += (Fr * ry / r) Vx1 = Vx + fx*dt Vy1 = Vy + fy*dt
	<pre>if (test_ == "Test11"): X1, Y1, Vx1, Vy1, steps = Test11(X1, Y1, Vx1, Vy1) x_n[i], y_n[i] = X1, Y1</pre>
	<pre>vx_n[i], vy_n[i] = Vx1, Vy1 dx = X1 - x0[i] dy = Y1 - y0[i] R_i[i] += math.sqrt(dx*dx + dy*dy)</pre>
	<pre>if (R_i[i] >= R): times_R[i] = t x, y = x_n, y_n vx, vy = vx_n, vy_n</pre>
	<pre>t += dt mpt = np.mean(times_R) mpt = round(mpt,5)</pre>
-	<pre>#print("R","\t mpt") print(R, "\t", mpt) return times_R, R_i, mpt #start time = time time()</pre>
	#start_time = time.time() R_ = [1, 2, 5, 10] times = [] # Ri = [] # mpt = [] # mean pasage time (середній час досягнення значення R) print("R","\t mpt")
	<pre>for i in range(len(R_)): times_, Ri_, mpt_ = funct2(x0, y0, vx0, vy0, R = R_[i]) times.append(times_) Ri.append(Ri_) mpt.append(mpt_) #print("Ця частина коду виконувалася %s seconds." % round(time.time() - start_time, 2))</pre>
	R mpt 1 0.00463 2 0.00659 5 0.01034 10 0.01457
In [17]:	Перевіримо розмірність нових масивів. print(np.shape(times)) print(np.shape(Ri))
	<pre>print(np.shape(mpt)) (4, 100) (4, 100) (4,)</pre>
	Функція, що априксимує дані, повертає: • соеf - коефіцієнти рівняння, яке відповідає початковим даним, • polinom - рівняння з коефіцієнтами, • mpt_to_compare - значення функції для порівняння зі початковими.
In [18]:	<pre>k=1 mpt_new = mpt*0 eps = 1000</pre>
	<pre>bool_mpt = 0 while ((eps >= 0.0001) & (k<10)): coef = np.polyfit(X, mpt,k) polinom = np.poly1d(coef) mpt_to_compare = polinom(X)</pre>
	<pre>mpt_old = np.round(mpt,5) mpt_to_compare = np.round(mpt_to_compare,5) eps = abs(mpt_old[0] - mpt_to_compare[0]) bool_mpt = np.sum(mpt_old == mpt_to_compare)</pre>
	#print("\n k =",k) #print("coef:", coef) #print("y = aprox(x):\n",polinom) #print("Перевірка:\n", " X =", X, "\n mpt = ", mpt_old,"\n mpt_to_compare =", mpt_to_compare)
	<pre>#print("bool_mpt =",bool_mpt) #print("eps =",eps) k += 1 print("coef:", coef)</pre>
	<pre>print("y = aprox(x) :\n",polinom) print("Περεβίρκα:\n", " X =", X, "\n", mpt_old, "= mpt\n",mpt_to_compare,"= mpt_to_compare") return coef, polinom, mpt_to_compare #c0, p0, mpt_to_compare0 = fun_aprox(R_, mpt)</pre>
	Побудуємо тепер початкові дані та знайдену криву. def fun_plot2(mpt, R = [1, 2, 5, 10]):
	plt.scatter(R, mpt, label="Початкові значення функції у = mpt(R)", s=40, c='m') # порівняння з апроксимованою кривою деякого степеня R_new = np.linspace(0.05, 10.5, 50) coef, polinom, mpt_to_compare = fun_aprox(R, mpt)
	<pre>mpt_new = polinom(R_new) plt.plot(R_new, mpt_new, label = "y = aprox(x)", linewidth = 1, c='c') plt.xlabel("R") plt.ylabel("mpt") plt.title("Графік mpt в залежності від R") plt.lagend()</pre>
	<pre>plt.legend() fun_plot2(mpt, R_) coef: [1.41111111e-05 -2.90388889e-04 2.73238889e-03 2.17388889e-03] y = aprox(x) :</pre>
	3 2 1.411e-05 x - 0.0002904 x + 0.002732 x + 0.002174 Περεβίρκα: X = [1, 2, 5, 10] [0.00463 0.00659 0.01034 0.01457] = mpt [0.00463 0.00659 0.01034 0.01457] = mpt_to_compare
	[0.00463 0.00659 0.01034 0.01457] = mpt_to_compare Графік mpt в залежності від R Початкові значення функції у = mpt(R)
	0.012
	0.010 - ====================================
	0.006 -
	0.002 - 0 2 4 6 8 10 R

Комп'ютерне моделювання задач прикладної математики

Основи класичної молекулярної динаміки.