BRUTE UDESC

Eliton Machado da Silva, Enzo de Almeida Rodrigues, Eric Grochowicz, João Vitor Frölich, João Marcos de Oliveira e Rafael Granza de Mello

3 de janeiro de 2024

Índice

1	Gra	fos	6
	1.1	Matching	6
	1.2	Hungarian Algorithm for Bipartite Matching	6
	1.3	LCA	6
	1.4	LCA	6
	1.5	HLD	8
	1.6	$\label{eq:heavy-Light Decomposition (hld.cpp)} \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots$	8
	1.7	Binary Lifting	S
	1.8	Binary Lifting	9
	1.9	Kruskal	10
	1.10	Kruskal	10
	1.11	Bridge	11
	1.12	Graph Center	12
	1.13	Graph Center	12
	1.14	Stoer–Wagner minimum cut	13
	1.15	Stoer-Wagner	13
	1.16	Dijkstra	13
	1.17	Dijkstra	13
	1.18	Dijkstra 1:1	13
	1.19	Dijkstra 1:N	14
	1.20	Dijkstra N:N	14
	1.21	Fluxo	15
	1.22	Fluxo	15
	1.23	Dinic	15
	1 24	Edmonds Karp	15

	1.25	Min Cost Max Flow	15
	1.26	2-SAT	19
	1.27	2-SAT	19
	1.28	Inverse Graph	20
	1.29	Inverse Graph	20
	1.30	SPFA	20
	1.31	Shortest Path Fast Algorithm (SPFA)	20
2	Estr	ruturas de Dados	22
	2.1	MergeSort Tree	22
	2.2	MergeSort Tree	22
	2.3	MergeSort Tree com Update Pontual	22
	2.4	Operation Queue	24
	2.5	Operation Queue	24
	2.6	Operation Stack	25
	2.7	Operation Stack	25
	2.8	Ordered Set	25
	2.9	Ordered Set	25
	2.10	Exemplo	25
	2.11	LiChao Tree	26
	2.12	LiChao Tree	26
	2.13	LiChao Tree Sparse	26
	2.14	DSU	28
	2.15	Disjoint Set Union	28
	2.16	DSU Simples	28
	2.17	DSU Bipartido	28
	2.18	DSU com Rollback	28
	2.19	DSU Completo	28
	2.20	Kd Fenwick Tree	31
	2.21	KD Fenwick Tree	31
	2.22	Fenwick Tree	32
	2.23	Fenwick Tree	32
	2.24	Segment Tree	32
	2.25	Segment Tree	32
	2.26	Seg Tree	32
	2 27	Son Troo Lagy	33

	2.28	Sparse Seg Tree	33
	2.29	Persistent Seg Tree	33
	2.30	Seg Tree Beats	33
	2.31	Seg Tree Beats Max and Sum update	33
	2.32	Interval Tree	43
	2.33	Interval Tree	43
	2.34	Sparse Table	44
	2.35	Sparse Table	44
	2.36	Disjoint Sparse Table	45
	2.37	Disjoint Sparse Table	45
0	a.		4 17
3	Stri		47
	3.1	Aho-Corasick	47
	3.2	Aho-Corasick	47
	3.3	Hashing	48
	3.4	Hashing	48
	3.5	Trie	48
	3.6	Trie	48
	3.7	Prefix Function	49
	3.8 3.9	Prefix Function	49
			49
		Autômato de KMP	49
		Prefix Count	49
		Manacher	51
		Algoritmo de Manacher	51
		Lyndon	51
		Lyndon Factorization	51
		Duval	52 52
		Min Cyclic Shift	52 52
		Patricia Tree	52
		Patricia Tree ou Patricia Trie	52
		Suffix Array	53
	3.21	Suffix Array	53
4	Para	adigmas	55
	4.1	Busca Ternaria	55
	1.9	Bussa Tornária	55

	4.3	Busca Ternaria em Espaço Discreto	99
	4.4	Mo	56
	4.5	Mo	56
	4.6	Mo com Update	56
	4.7	All Submasks	58
	4.8	All Submask	58
	4.9	Exponenciação de Matriz	58
	4.10	Exponenciação de Matriz	58
	4.11	Uso Comum	58
	4.12	Variação que dependa de **constantes** e do **índice**	58
	4.13	Variação Multiplicativa	59
	4.14	Divide and Conquer	60
	4.15	Divide and Conquer	60
	4.16	Divide and Conquer com Query on demand	60
	4.17	Busca Binaria Paralela	62
	4.18	Busca Binária Paralela	62
	4.19	DP de Permutacao	63
	4.20	DP de Permutação	63
	4.21	Convex Hull Trick	64
	4.22	Convex Hull Trick	64
5	Mat	emática	65
3			
		Sum of floor(n div i)	65
	5.2	Soma do floor(n / i)	65
	5.3	Primos	65
	5.4	Primos	65
	5.5	Crivo de Eratóstenes	65
	5.6	Miller-Rabin	65
	5.7	Teste Ingênuo	65
	5.8	NTT	66
	5.9	Numeric Theoric Transformation	66
		Totiente de Euler	68
		Totiente de Euler	68
		Totiente de Euler (Phi) para um número	68
		Totiente de Euler (Phi) entre 1 e N	68
	0.14	Exponenciação Modular Rápida	68

5.15	Exponenciação modular rápida	68
5.16	Eliminação Gaussiana	69
5.17	Eliminação Gaussiana	69
5.18	Inverso Modular	70
5.19	Modular Inverse	70
5.20	Modular Inverse	70
5.21	Modular Inverse by Extended GDC	71
5.22	Modular Inverse for 1 to MAX \hdots	71
5.23	Modular Inverse for all powers	71
5.24	GCD	72
5.25	Máximo divisor comum	72
5.26	Algoritmo de Euclides	72
5.27	Algoritmo de Euclides Estendido	72
5.28	Teorema do Resto Chinês	72
5.29	Teorema do Resto Chinês	72
5.30	Generalizado!!! Retorna -1 se a resposta não existir	72
5.31	Fatoração	73
5.32	Fatoração	73
5.33	Fatoração Simples	73
5.34	Crivo Linear	73
5.35	Fatoração Rápida	73
5.36	Pollard-Rho	73
5.37	FFT	74
5.38	Transformada rápida de Fourier	74

1 Grafos

1.1 Matching

1.2 Hungarian Algorithm for Bipartite Matching

Resolve o problema de Matching para uma matriz A[n][m], onde $n \leq m$.

A implementação minimiza os custos, para maximizar basta multiplicar os pesos por -1.

A matriz de entrada precisa ser indexada em 1 !!!

O vetor result guarda os pares do matching.

```
Complexidade de tempo: O(n^2 * m)
```

```
\mathbf{const} \ 11 \ INF = 1e18 + 18;
 1
 2
    vector<pair<int , int>> result ;
 4
     ll hungarian (int n, int m, vector <vi> &A) {
 5
 6
           vi \ u(n+1), \ v(m+1), \ p(m+1), \ way(m+1);
 7
           for (int i = 1; i \le n; i++) {
 8
                p[0] = i;
9
                int j0 = 0;
                 vi\ minv(m+1,\ INF);
10
11
                 vector < char> used (m+1, false);
12
                do {
13
                      used[j0] = true;
14
                      11 \ i0 = p[j0], \ delta = INF, \ j1;
15
                      for (int j = 1; j \le m; j++)
16
                            if (!used[j]) {
                                  int cur = A[i0][j]-u[i0]-v[j];
17
                                  if (\operatorname{cur} < \operatorname{minv}[j]) \operatorname{minv}[j] = \operatorname{cur}, \operatorname{way}[j] = j0;
18
                                  if (minv[j] < delta) delta = minv[j], j1 = j;
19
20
21
                      for (int j = 0; j \le m; j++)
                             \begin{array}{lll} \textbf{if} & (\textbf{used} \, [\, \textbf{j} \, ]) & \textbf{u} \, [\, \textbf{p} \, [\, \textbf{j} \, ]] \ +\!= \ \textbf{delta} \; , \; \textbf{v} \, [\, \textbf{j} \, ] \ -\!= \ \textbf{delta} \; ; \\ \end{array} 
22
23
                            else minv[j] —= delta;
24
                      j0 = j1;
25
                } while (p[j0] != 0);
26
                do {
27
                      int j1 = way[j0];
28
                      p[j0] = p[j1];
29
                      j0 = j1;
                 } while (j0);
30
31
32
           for (int i = 1; i \le m; i++) result.emplace back(p[i], i);
33
           return -v[0];
34
    }
```

1.3 LCA

1.4 LCA

Algoritmo de Lowest Common Ancestor usando EulerTour e Sparse Table

Complexidade de tempo:

- O(Nlog(N)) Preprocessing - O(1) Query LCA

Complexidade de espaço: O(Nlog(N))

```
#include <bits/stdc++.h>
    using namespace std;
 3
   #define INF 1e9
 4
   #define fi first
 5
   #define se second
 7
 8
   typedef vector <int> vi;
    typedef pair <int, int> ii;
9
10
11
   vi tin, tout;
12
   vector <vi> adj;
13
   vector <ii> prof;
   vector < vector < ii > > st;
14
15
   int n, timer;
16
17
18
   void SparseTable(vector <ii> &v) {
19
        int n = v.size();
20
        int e = floor(log2(n));
21
        st. assign (e+1, vector < ii > (n));
         \mbox{ for } (\mbox{ int } \mbox{ i } = \mbox{ 0}; \mbox{ i } < \mbox{ n}; \mbox{ i } ++) \mbox{ st } \mbox{ [0] [i] } = \mbox{ v [i]}; 
22
23
        for (int i = 1; i \le e; i++)
             for (int j = 0; j + (1 << i) <= n; j++)
24
25
                  st[i][j] = min(st[i-1][j], st[i-1][j+(1 << (i-1))]);
26
    }
27
28
   void et dfs(int u, int p, int h) {
29
        tin[u] = timer++;
30
        prof.emplace back(h, u);
        for (int v : adj[u]) if (v != p) {
31
             et dfs(v, u, h+1);
32
33
             prof.emplace back(h, u);
34
35
        tout[u] = timer++;
   }
36
37
38
    void build(int root=0) {
39
        tin.assign(n, 0);
40
        tout.assign(n, 0);
        prof.clear();
41
42
        timer = 0;
43
        et dfs(root, root, 0);
44
        SparseTable(prof);
   }
45
46
   int lca(int u, int v) {
47
        int l = tout[u], r = tin[v];
48
        if (1 > r) swap(1, r);
49
50
        int i = floor(log2(r-l+1));
        return \min(st[i][1], st[i][r - (1 << i) + 1]).se;
51
   }
52
53
54
    int main() {
55
        cin >> n;
56
57
        adj.assign(n, vi(0));
58
        for (int i = 0; i < n-1; i++) {
59
```

1.5 HLD

1.6 Heavy-Light Decomposition (hld.cpp)

Técnica usada para otimizar a execução de operações em árvores.

- Pré-Processamento: O(N) - Range Query/Update: O(Log(N)) * O(Complexidade de query da estrutura) - Point Query/Update: O(Complexidade de query da estrutura) - LCA: O(Log(N)) - Subtree Query: O(Complexidade de query da estrutura) - Complexidade de espaço: O(N)

```
namespace hld {
1
2
        const int MAX = 2e5+5;
3
        int t, sz [MAX], pos [MAX], pai [MAX], head [MAX];
4
        bool e = 0;
        ll merge(ll a, ll b) { return max(a, b); } // how to merge paths
5
6
        void dfs sz(int u, int p=-1) {
7
            sz[u] = 1;
8
            for (int &v : adj[u]) if (v != p) {
9
                dfs sz(v, u);
10
                sz[u] += sz[v];
                if (sz[v] > sz[adj[u][0]] || adj[u][0] == p) swap(v, adj[u][0]);
11
12
            }
13
14
        void dfs_hld(int u, int p=-1) {
15
            pos[u] = t++;
            for (int v : adj[u]) if (v != p) {
16
17
                pai[v] = u;
18
                head[v] = (v = adj[u][0] ? head[u] : v);
19
                dfs hld(v, u);
20
            }
21
22
        void build(int root) {
23
            dfs_sz(root);
            t = 0;
24
25
            pai[root] = root;
26
            head[root] = root;
27
            dfs hld(root);
28
        void build(int root, vector<ll>& v) {
29
30
            build (root);
31
            vector<ll> aux(v.size());
32
            for (int i = 0; i < (int)v.size(); i++) aux[pos[i]] = v[i];
33
            seg::build(aux);
34
35
        void build (int root, vector < i3 > & edges) { // use this if weighted edges
36
            build (root);
37
            e = 1;
38
            vector < ll > aux(edges.size()+1);
39
            for (auto [u, v, w]: edges) {
40
                if (pos[u] > pos[v]) swap(u, v);
```

```
41
                 aux[pos[v]] = w;
            }
42
43
            seg::build(aux);
44
        11 query(int u, int v) {
45
46
            if (pos[u] > pos[v]) swap(u, v);
             if (head[u] = head[v]) return seg::query(pos[u]+e, pos[v]);
47
48
                 11 \ qv = seg :: query (pos[head[v]], pos[v]);
49
                 11 \text{ qu} = \text{query}(u, \text{pai}[\text{head}[v]]);
50
                 return merge (qu, qv);
51
52
53
54
        void update(int u, int v, ll k) {
             if (pos[u] > pos[v]) swap(u, v);
55
56
             if (head[u] = head[v]) seg :: update(pos[u]+e, pos[v], k);
57
             else {
                 seg :: update(pos[head[v]], pos[v], k);
58
                 update(u, pai[head[v]], k);
59
            }
60
61
62
        int lca(int u, int v) {
            if (pos[u] > pos[v]) swap(u, v);
63
            return (head [u] = head [v]? u: lca(u, pai [head [v]]);
64
65
        11 query_subtree(int u) {
66
67
            return seg :: query(pos[u], pos[u]+sz[u]-1);
68
69
   }
```

1.7 Binary Lifting

1.8 Binary Lifting

Usa uma sparse table para calcular o k-ésimo ancestral de u. Pode ser usada com o algoritmo de EulerTour para calcular o LCA.

Complexidade de tempo:

- Pré-processamento: O(N * log(N)) - Consulta do k-ésimo ancestral de u: O(log(N)) - LCA: O(log(N))

Complexidade de espaço: O(Nlog(N))

```
namespace st {
 1
 2
        int n, me, timer;
 3
        vector <int> tin, tout;
        vector <vector <int>>> st;
 4
        void et_dfs(int u, int p) {
 5
 6
            tin[u] = ++timer;
            st[u][0] = p;
 7
 8
            for (int i = 1; i \le me; i++) {
9
                st[u][i] = st[st[u][i-1]][i-1];
10
            for (int v : adj[u]) if (v != p) {
11
12
                et dfs(v, u);
13
14
            tout[u] = ++timer;
15
16
        void build(int _n, int root=0) {
17
            n = n;
```

```
18
             tin.assign(n, 0);
19
             tout.assign(n, 0);
20
             timer = 0;
21
             me = floor(log2(n));
22
             \operatorname{st.assign}(n, \operatorname{vector} < \operatorname{int} > (\operatorname{me}+1, 0));
23
             et_dfs(root, root);
24
25
        bool is ancestor(int u, int v) {return tin[u] \ll tin[v] && tout[u] >= tout[v];}
26
         int lca(int u, int v) {
             if (is\_ancestor(u, v)) return u;
27
              if (is_ancestor(v, u)) return v;
28
29
             for (int i = me; i >= 0; i \longrightarrow
30
                  if (!is\_ancestor(st[u][i], v))
31
                       u = st[u][i];
32
             return st [u][0];
33
34
        int ancestor (int u, int k) { // k-th ancestor of u
35
             for (int i = me; i >= 0; i ---)
                  if ((1 << i) \& k)
36
37
                       u = st[u][i];
38
             return u;
39
         }
40
   }
   namespace st {
1
2
         \mathbf{int} \quad n \;, \quad me \;;
3
         vector < vector < int >> st;
 4
         void bl dfs(int u, int p) {
 5
             st[u][0] = p;
 6
             for (int i = 1; i \le me; i++)
 7
                  st[u][i] = st[st[u][i-1]][i-1];
 8
             for (int v : adj[u])
9
                  if (v != p)
10
                       bl dfs(v, u);
11
12
         void build (int n, int root=0) {
13
             n = n;
             me = floor(log2(n));
14
15
             st.assign(n, vector < int > (me+1, 0));
16
             bl dfs(root, root);
17
18
         int ancestor(int u, int k) { // k-th ancestor of u
19
             for (int i = me; i >= 0; i ---)
20
                  if ((1 << i) \& k)
21
                       u = st[u][i];
22
             return u;
23
         }
24
   }
```

1.9 Kruskal

1.10 Kruskal

 $Utiliza \ [DSU] (.../../Estruturas\%20 de\%20 Dados/DSU/dsu.cpp) - (disjoint set union) - para construir MST - (minimum spanning tree)$

- Complexidade de tempo (Construção): O(M log N)

```
1 struct Edge {
```

```
2
         int u, v, w;
 3
         bool operator < (Edge const& other) { return w < other.w; }
 4
 5
    typedef vector < Edge > ve;
    typedef vector<int> vi;
 6
7
   ve edges, result;
8
9
    int cost;
10
    struct DSU {
11
12
         vector < int > pa, sz;
         DSU(int n) {
13
14
              sz.assign(n + 5, 1);
15
              for (int i = 0; i < n + 5; i++) pa.push back(i);
16
17
         int root(int a) { return pa[a] = (a \Longrightarrow pa[a] ? a : root(pa[a])); }
18
         \textbf{bool} \ \operatorname{find}(\textbf{int} \ a, \ \textbf{int} \ b) \ \{ \ \textbf{return} \ \operatorname{root}(a) = \operatorname{root}(b); \ \}
         void uni(int a, int b) {
19
20
              int ra = root(a), rb = root(b);
21
              if (ra == rb) return;
22
              if (sz[ra] > sz[rb]) swap(ra, rb);
23
              pa[ra] = rb;
24
              sz[rb] += sz[ra];
25
         }
26
    };
27
28
    void kruskal(int m, int n) {
29
         DSU dsu(n);
30
31
         sort(edges.begin(), edges.end());
32
33
         for (Edge e : edges) {
34
              if (!dsu.find(e.u, e.v)) {
35
                  cost += e.w;
36
                   result.push_back(e); // remove if need only cost
37
                  dsu.uni(e.u, e.v);
38
              }
39
         }
40
    }
```

1.11 Bridge

Algoritmo que acha pontes utilizando uma dfs

Complexidade de tempo: O(N + M)

```
int n; // number of nodes
                                               13
                                                            if (visited[v]) {
                                               14
 2
   vector < vector < int >> adj; // adjacency
                                                                low[u] = min(low[u],
       list of graph
                                                                    tin [v]);
 3
                                               15
                                                            } else {
 4
   vector < bool > visited;
                                               16
                                                                dfs(v, u);
   vector < int > tin , low;
                                               17
                                                                low[u] = min(low[u],
 5
                                                                    low[v]);
   int timer;
6
7
                                               18
                                                                if (low[v] > tin[u]) {
   void dfs (int u, int p = -1) {
                                               19
                                                                    // edge UV is a bridge
8
9
        visited[u] = true;
                                               20
                                                                    // do something(u, v)
10
                                               21
        tin[u] = low[u] = timer++;
                                                                }
                                                            }
11
        for (int v : adj[u]) {
                                               22
12
             if (v = p) continue;
                                               23
                                                       }
```

```
}
24
                                               30
                                                       low.assign(n, -1);
                                                       for (int i = 0; i < n; ++i) {
25
                                               31
                                               32
26
   void find_bridges() {
                                                           if (!visited[i])
27
        timer = 0;
                                               33
                                                                dfs(i);
28
        visited.assign(n, false);
                                               34
                                                       }
29
        tin.assign(n, -1);
                                               35
                                                  }
```

1.12 Graph Center

1.13 Graph Center

Encontra o centro e o diâmetro de um grafo

Complexidade de tempo: O(N)

```
const int INF = 1e9+9;
1
2
3
    vector < vector < int >> adj;
4
5
    struct GraphCenter{
6
         int n, diam = 0;
         {\tt vector}{<} {\tt int}{\gt} \ {\tt centros} \ , \ {\tt dist} \ , \ {\tt pai} \ ;
7
8
         int bfs(int s){
9
              queue < int > q; q.push(s);
10
              dist.assign(n+5, INF);
11
              pai.assign(n+5, -1);
12
              dist[s] = 0;
              int maxidist = 0, maxinode = 0;
13
14
              while (!q.empty()) {
15
                   \mathbf{int}\ u\,=\,q\,.\,front\,(\,)\,\,;\,\,\,q\,.\,pop\,(\,)\,\,;
16
                   if(dist[u]) = maxidist)
                        maxidist \, = \, dist \, [\, u \, ] \, \, , \  \, maxinode \, = \, u \, ; \, \,
17
                   for(int v : adj[u]){
18
19
                        if (dist[u] + 1 < dist[v]) {
20
                             dist[v] = dist[u] + 1;
21
                             pai[v] = u;
22
                             q.push(v);
23
                        }
24
                   }
25
              diam = max(diam, maxidist);
26
27
              return maxinode;
28
29
         GraphCenter(int st=0) : n(adj.size()) 
30
              int d1 = bfs(st);
31
              int d2 = bfs(d1);
32
              vector<int> path;
33
              for (int u = d2; u != -1; u = pai[u]) path.push back(u);
34
              int len = path.size();
35
              if(len\%2 = 1) centros.push back(path[len / 2]);
36
              else{
37
                   centros.push back(path[len/2]);
38
                   centros.push back(path [len/2 - 1]);
39
              }
40
         }
41
    };
```

1.14 Stoer-Wagner minimum cut

1.15 Stoer-Wagner

O algoritmo de Stoer-Wagner é um algoritmo para resolver o problema de corte mínimo em grafos não direcionados com pesos não negativos. A ideia essencial deste algoritmo é encolher o grafo mesclando os vértices mais intensos até que o grafo contenha apenas dois conjuntos de vértices combinados

```
Complexidade de tempo: O(V^3)
    const int MAXN = 555, INF = 1e9+7;
 1
 2
 3
    int n, e, adj [MAXN] [MAXN];
    vector <int> bestCut;
 4
 5
 6
    int mincut() {
 7
         int bestCost = INF;
 8
         vector < int > v[MAXN];
         for (int i = 0; i < n; i++) v[i]. assign (1, i);
 9
         int w[MAXN], sel;
10
11
         bool exist [MAXN], added [MAXN];
12
        memset(exist, true, sizeof(exist));
         for (int phase = 0; phase < n-1; phase++) {
13
             memset(added, false, sizeof(added));
14
15
             memset(w, 0, sizeof(w));
16
             \mathbf{for} \ (\mathbf{int} \ \mathbf{j} = 0 \,, \ \mathbf{prev} \,; \ \mathbf{j} < \mathbf{n} \text{--phase} \,; \ \mathbf{j} \text{++}) \ \{
                  sel = -1;
17
                  for (int i = 0; i < n; i++) {
18
                       if (exist[i] \&\& !added[i] \&\& (sel = -1 || w[i] > w[sel])) sel = i;
19
20
                  if (j = n-phase-1) {
21
22
                       if (w[sel] < bestCost) {</pre>
23
                            bestCost = w[sel];
24
                            bestCut = v[sel];
25
                       v[prev].insert(v[prev].end(), v[sel].begin(), v[sel].end());
26
27
                       for (int i = 0; i < n; i++)
                            adj[prev][i] = adj[i][prev] += adj[sel][i];
28
29
                       exist[sel] = false;
30
                       added[sel] = true;
31
                       for (int i = 0; i < n; i++) w[i] += adj[sel][i];
32
33
                       prev = sel;
                  }
34
35
             }
36
37
        return bestCost;
38
    }
```

1.16 Dijkstra

1.17 Dijkstra

Computa o menor caminho entre nós de um grafo.

1.18 Dijkstra 1:1

Dado dois nós u e v, computa o menor caminho de u para v.

1.19 Dijkstra 1:N

Dado um nó u, computa o menor caminho de u para todos os nós.

Complexidade de tempo: O((E + V) * log(E))

1.20 Dijkstra N:N

1

2

3

const int MAX = 1e5+5, INF = 1e9+9;

vector <ii> adj [MAX];

Computa o menor caminho de todos os nós para todos os nós

```
Complexidade de tempo: O(V * ((E + V) * log(E)))
   const int MAX = 505, INF = 1e9+9;
1
2
3
    vector <ii> adj [MAX];
 4
   int dist [MAX] [MAX];
 5
   \mathbf{void} \ dk(\mathbf{int} \ n) \ \{
6
7
        for (int i = 0; i < n; i++)
8
             for (int j = 0; j < n; j++)
9
                  dist[i][j] = INF;
10
        for (int s = 0; s < n; s++) {
             priority_queue <ii, vector<ii>, greater<ii>>> fila;
11
12
             dist[s][s] = 0;
             fila.emplace(dist[s][s], s);
13
             while (!fila.empty()) {
14
15
                  auto [d, u] = fila.top();
16
                  fila.pop();
                  if (d != dist[s][u]) continue;
17
18
                  for (auto [w, v] : adj[u]) {
19
                       if (dist[s][v] > d + w) {
20
                           dist[s][v] = d + w;
21
                           fila.emplace(dist[s][v], v);
22
                       }
23
                  }
24
             }
25
        }
26
   }
1
   const int MAX = 1e5+5, INF = 1e9+9;
                                                  12
                                                               auto [d, u] = fila.top();
                                                  13
                                                               fila.pop();
3
   vector <ii> adj [MAX];
                                                  14
                                                               if (d != dist[u]) continue;
   int dist[MAX];
                                                  15
                                                               for (auto [w, v] : adj[u]) {
 4
                                                                    \quad \textbf{if} \ (\, \text{dist} \, [\, v\,] \, > \, d \, + \, w) \ \{ \quad
5
                                                  16
6
   void dk(int s) {
                                                                         dist[v] = d + w;
                                                  17
7
        priority queue <ii , vector<ii>>,
                                                                         fila.emplace(dist[v],
            greater<ii>>> fila;
                                                                            v);
8
         fill (begin (dist), end (dist), INF);
                                                                    }
9
         dist[s] = 0;
                                                  20
                                                               }
10
         fila.emplace(dist[s], s);
                                                  21
                                                          }
11
        while (!fila.empty()) {
                                                  22
```

4

6

int dist[MAX];

int dk(int s, int t) {

```
7
        priority queue <ii, vector<ii>>,
                                              16
                                                           for (auto [w, v] : adj[u]) {
                                                               if (dist[v] > d + w) {
            greater<ii>>> fila;
                                              17
8
                                                                    dist[v] = d + w;
        fill (begin (dist), end (dist), INF);
                                              18
9
        dist[s] = 0;
                                              19
                                                                    fila.emplace(dist[v],
10
        fila.emplace(dist[s], s);
                                                                       v);
11
        while (!fila.empty()) {
                                              20
                                              21
                                                           }
12
            auto [d, u] = fila.top();
13
            fila.pop();
                                              22
            if (u == t) return dist[t];
                                              23
14
                                                      return -1;
15
            if (d != dist[u]) continue;
                                              24
                                                  }
```

1.21 Fluxo

1.22 Fluxo

Conjunto de algoritmos para calcular o fluxo máximo em problemas relacionados de fluxo

1.23 Dinic

Muito útil para grafos bipartidos e para grafos com muitas arestas

Complexidade de tempo: $O(V^2 * E)$, mas em grafo bipartido a complexidade é $O(\operatorname{sqrt}(V) * E)$

1.24 Edmonds Karp

Útil para grafos com poucas arestas

Complexidade de tempo: $O(V * E^2)$

1.25 Min Cost Max Flow

Computa o fluxo máximo com custo mínimo

Complexidade de tempo: $O(V^2 * E^2)$

```
const long long INF = 1e18;
 1
 2
3
   struct FlowEdge {
 4
        int u, v;
5
        long long cap, flow = 0;
        FlowEdge(int u, int v, long long cap) : u(u), v(v), cap(cap) {}
 6
 7
   };
8
   struct EdmondsKarp {
9
        int n, s, t, m = 0, vistoken = 0;
10
        vector < FlowEdge> edges;
11
12
        vector < vector < int >> adj;
        vector < int > visto;
13
14
        EdmondsKarp(int n, int s, int t) : n(n), s(s), t(t) 
15
16
            adj.resize(n);
            visto.resize(n);
17
18
        }
19
        void add edge(int u, int v, long long cap) {
20
21
            edges.emplace back(u, v, cap);
```

```
22
            edges.emplace back(v, u, 0);
23
            adj[u].push back(m);
24
            adj [v].push_back(m + 1);
            m += 2;
25
26
        }
27
28
        int bfs() {
29
            vistoken++;
30
            queue <int> fila;
31
            fila.push(s);
32
            vector \langle \mathbf{int} \rangle pego(n, -1);
            while (!fila.empty()) {
33
34
                 int u = fila.front();
35
                 if (u = t) break;
36
                 fila.pop();
37
                 visto[u] = vistoken;
                 for (int id : adj[u]) {
38
39
                     if (edges[id].cap - edges[id].flow < 1) continue;
40
                     int v = edges[id].v;
41
                     if (visto[v] = -1) continue;
42
                     fila.push(v);
43
                     pego[v] = id;
                 }
44
45
46
            if (pego[t] = -1) return 0;
47
            long long f = INF;
48
            for (int id = pego[t]; id != -1; id = pego[edges[id].u])
49
                 f = min(f, edges[id].cap - edges[id].flow);
50
            for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
51
                 edges[id].flow += f;
52
                 edges [id ^1]. flow = f;
53
            }
54
            return f;
        }
55
56
57
        long long flow() {
            long long maxflow = 0;
58
59
            while (long long f = bfs()) maxflow += f;
60
            return maxflow;
61
        }
62
   };
   struct MinCostMaxFlow {
1
2
        int n, s, t, m = 0;
3
        11 \ maxflow = 0, \ mincost = 0;
4
        vector < Flow Edge > edges;
5
        vector < vector < int >> adj;
6
7
        MinCostMaxFlow(int n, int s, int t) : n(n), s(s), t(t) 
8
            adj.resize(n);
9
10
11
        void add edge(int u, int v, 11 cap, 11 cost) {
12
            edges.emplace back(u, v, cap, cost);
13
            edges.emplace back(v, u, 0, -cost);
14
            adj[u].push back(m);
15
            adj[v].push back(m + 1);
16
            m += 2;
17
        }
18
19
        bool spfa() {
```

```
20
                vector \langle \mathbf{int} \rangle pego(n, -1);
21
                vector <ll> dis(n, INF);
22
                vector <bool> inq(n, false);
23
                queue <int> fila;
24
                fila.push(s);
25
                dis[s] = 0;
26
                inq[s] = 1;
27
                while (!fila.empty()) {
                     int u = fila.front();
28
29
                     fila.pop();
                     inq[u] = false;
30
                     for (int id : adj[u]) {
31
                           \mathbf{if} \ \left(\, \mathrm{edges}\, [\, \mathrm{id}\, ]\, .\, \mathrm{cap}\, -\, \mathrm{edges}\, [\, \mathrm{id}\, ]\, .\, \mathrm{flow}\, <\, 1\right) \ \mathbf{continue}\, ;
32
33
                           int v = edges[id].v;
34
                           if (dis[v] > dis[u] + edges[id].cost) {
35
                                dis[v] = dis[u] + edges[id].cost;
36
                                pego[v] = id;
37
                                if (!inq[v]) {
                                      inq[v] = true;
38
39
                                      fila.push(v);
40
                                }
                           }
41
                     }
42
43
               }
44
                if (pego[t] = -1) return 0;
45
46
                11 f = INF;
                \mathbf{for} \ (\mathbf{int} \ \mathrm{id} = \mathrm{pego}[\,\mathrm{t}\,]\,; \ \mathrm{id} \ != \ -1; \ \mathrm{id} = \mathrm{pego}[\,\mathrm{edges}[\,\mathrm{id}\,]\,.\,\mathrm{u}\,]) \ \{
47
                     f = min(f, edges[id].cap - edges[id].flow);
48
                     mincost \; +\!\!= \; edges \, [\, id \, ] \, . \, cost \, ;
49
50
                for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
51
                     edges[id].flow += f;
52
                     edges [id ^1]. flow = f;
53
54
55
                maxflow += f;
56
               return 1;
          }
57
58
          11 flow() {
59
                while (spfa());
60
                return maxflow;
61
62
          }
63
     };
 1
    typedef long long 11;
 2
 3
    const 11 \text{ INF} = 1e18;
 4
    struct FlowEdge {
 5
 6
          int u, v;
 7
          11 \text{ cap}, \text{ flow} = 0;
 8
          FlowEdge(int u, int v, ll cap) : u(u), v(v), cap(cap) {}
 9
    };
10
     struct Dinic {
11
12
          vector<FlowEdge> edges;
13
          vector < vector < int >> adj;
14
          int n, s, t, m = 0;
15
          vector < int > level, ptr;
16
          queue < int > q;
```

```
17
        Dinic(int n, int s, int t) : n(n), s(s), t(t) 
18
19
            adj.resize(n);
20
            level.resize(n);
21
            ptr.resize(n);
22
        }
23
24
        void add edge(int u, int v, ll cap) {
25
            edges.emplace back(u, v, cap);
26
            edges.emplace back(v, u, 0);
27
            adj[u].push back(m);
28
            adj[v].push back(m + 1);
29
            m += 2;
30
        }
31
        bool bfs() {
32
33
            while (!q.empty()) {
34
                int u = q. front();
35
                q.pop();
                 for (int id : adj[u]) {
36
37
                     if (edges[id].cap - edges[id].flow < 1) continue;
                     int v = edges[id].v;
38
39
                     if (level[v] != -1) continue;
40
                     level[v] = level[u] + 1;
                     q.push(v);
41
42
                }
43
44
            return level [t] != -1;
45
        }
46
47
        ll dfs(int u, ll f) {
48
            if (f = 0) return 0;
49
            if (u = t) return f;
            for (int \& cid = ptr[u]; cid < (int)adj[u].size(); cid++) {
50
51
                 int id = adj[u][cid];
52
                 int v = edges[id].v;
                 if (level[u] + 1 != level[v] || edges[id].cap - edges[id].flow < 1)
53
                    continue;
                 11 tr = dfs(v, min(f, edges[id].cap - edges[id].flow));
54
                 if (tr = 0) continue;
55
                 edges[id].flow += tr;
56
                 edges [id ^ 1]. flow -= tr;
57
58
                return tr;
59
60
            return 0;
61
        }
62
63
        ll flow() {
64
            11 \text{ maxflow} = 0;
65
            while (true) {
66
                 fill(level.begin(), level.end(), -1);
67
                 level[s] = 0;
68
                q. push(s);
69
                 if (!bfs()) break;
70
                 fill(ptr.begin(), ptr.end(), 0);
71
                while (ll f = dfs(s, INF)) maxflow += f;
72
73
            return maxflow;
74
        }
75
   };
```

1.26 2-SAT

1.27 2-SAT

Resolve problema do 2-SAT.

- Complexidade de tempo (caso médio): O(N + M)

N é o número de variáveis e M é o número de cláusulas. A configuração da solução fica guardada no vetor *assignment*.

Em relaçõa ao sinal, tanto faz se 0 liga ou desliga, apenas siga o mesmo padrão.

```
1
   struct sat2{
 2
        int n;
 3
        vector < vector < int >> g, gt;
 4
        vector<bool> used;
        vector<int> order, comp;
 5
 6
        vector < bool > assignment;
7
8
        //number of variables
9
        sat2(int n) {
10
            n = 2*(n+5);
11
            g.assign(n, vector < int > ());
12
            gt.assign(n, vector < int > ());
13
        void add edge(int v, int u, bool v_sign, bool u_sign){
14
15
            g\left[2*v\ +\ v\_sign\right].\ push\_back\left(2*u\ +\ !\ u\_sign\right);
16
            g[2*u + u \text{ sign}].push back(2*v + !v \text{ sign});
17
            gt[2*u + !u sign].push back(2*v + v sign);
18
            gt[2*v + !v sign].push back(2*u + u sign);
19
        void dfs1(int v) {
20
            used[v] = true;
21
22
             for (int u : g[v]) if (!used[u])
23
                 dfs1(u);
24
            order.push back(v);
25
26
        void dfs2(int v, int cl) {
27
            comp[v] = cl;
             for (int u : gt[v]) if (comp[u] = -1)
28
29
                 dfs2(u, cl);
30
31
        bool solve(){
32
            order.clear();
33
             used.assign(n, false);
34
             for (int i = 0; i < n; ++i) if (!used[i])
35
                 dfs1(i);
36
37
            comp.assign(n, -1);
            for (int i = 0, j = 0; i < n; ++i) {
38
39
                 int v = order[n - i - 1];
                 if (comp[v] = -1) dfs2(v, j++);
40
41
            }
42
43
            assignment.assign(n / 2, false);
             for (int i = 0; i < n; i += 2) {
44
45
                 if (comp[i] = comp[i + 1]) return false;
46
                 assignment[i / 2] = comp[i] > comp[i + 1];
47
48
            return true;
```

```
49 } 50 };
```

1.28 Inverse Graph

1.29 Inverse Graph

Resolve problemas em que se deseja encontrar as componentes conexas quando são dadas as arestas que não pertencem ao grafo

- Complexidade de tempo: $O(N \log N + N \log M)$

```
#include <bits/stdc++.h>
                                                14
                                                             f.pop();
 2
   using namespace std;
                                                15
                                                             for (int y : nodes) {
3
                                                16
                                                                  if (adj[x].count(y) = 0) {
   set < int > nodes;
                                                17
                                                                      aux.insert(y);
5
   vector < set < int >> adj;
                                                18
 6
                                                19
7
   void bfs(int s) {
                                                20
                                                             for (int y : aux) {
        queue < int > f;
                                                21
 8
                                                                  f.push(y); nodes.erase(y);
9
        f.push(s);
                                                22
10
        nodes.erase(s);
                                                23
                                                             aux.clear();
11
                                                24
        set < int > aux;
                                                         }
12
        while (! f . empty()) {
                                                25
                                                    }
13
             int x = f.front();
```

1.30 SPFA

1.31 Shortest Path Fast Algorithm (SPFA)

Encontra o caminho mais curto entre um vértice e todos os outros vértices de um grafo.

Detecta ciclos negativos.

Complexidade de tempo: O(|V| * |E|)

```
const int MAX = 1e4 + 4;
    const 11 \text{ INF} = 1e18 + 18;
 3
    vector < ii > adj [MAX];
 4
 5
    ll dist [MAX];
 6
7
    void spfa(int s, int n) {
8
          fill(dist, dist + n, INF);
9
         vector < int > cnt(n, 0);
10
         vector <bool> inq(n, false);
11
         queue < int > fila;
12
          fila.push(s);
13
         inq[s] = true;
14
          dist[s] = 0;
15
         while (!fila.empty()) {
               int u = fila.front();
16
17
               fila.pop();
18
               inq[u] = false;
               \quad \textbf{for} \ (\textbf{auto} \ [\textbf{w}, \ \textbf{v}\,] \colon \ \textbf{adj}\,[\textbf{u}\,]) \ \{
19
                    11 \text{ newd} = (dist[u] = -INF ? -INF : max(w + dist[u], -INF));
20
21
                    if (newd < dist[v]) {
22
                         dist[v] = newd;
```

```
\quad \textbf{if} \quad (! \, \mathrm{inq} \, [\, v\,]\,) \quad \{
23
                                                fila .push(v);
inq[v] = true;
cnt[v]++;
if (cnt[v] > n) { // negative cycle
    dist[v] = -INF;
24
25
26
27
28
29
                                                }
                   }
30
31
32
               }
33
34 }
```

2 Estruturas de Dados

2.1 MergeSort Tree

2.2 MergeSort Tree

40

Resolve Queries que envolvam ordenação em Range. (**SEM UPDATE**)

- Complexidade de construção : O(N * log(N)) - Complexidade de consulta : $O(log^2(N))$

2.3 MergeSort Tree com Update Pontual

Resolve Queries que envolvam ordenação em Range. (**COM UPDATE**) **1 segundo para vetores de tamanho $3*10^{5**}$

- Complexidade de construção : $O(N*log^2(N))$ - Complexidade de consulta : $O(log^2(N))$ - Complexidade de update : $O(log^2(N))$

```
\#include < ext/pb_ds/assoc\_container.hpp>
1
   #include <ext/pb ds/tree policy.hpp>
3
4
   using namespace __gnu_pbds;
5
6
   namespace mergesort {
7
       typedef tree<ii, null_type, less<ii>, rb_tree_tag,
           tree_order_statistics_node_update> ordered set;
8
       const int MAX = 1e5+5;
9
10
       int n;
        ordered set mgtree [4*MAX];
11
12
        vi values;
13
14
       int le(int n) \{return 2*n+1;\}
15
        int ri(int n) {return 2*n+2;}
16
        ordered set join (ordered set set 1, ordered set set r) {
17
18
            for(auto v: set r) set l.insert(v);
19
            return set 1;
20
       }
21
22
       void build(int n, int esq, int dir) {
23
            if (esq = dir) mgtree [n]. insert (ii(values[esq], esq));
24
            else {
25
                int mid = (esq + dir) / 2;
                \operatorname{build}(\operatorname{le}(n), \operatorname{esq}, \operatorname{mid});
26
27
                build(ri(n), mid+1, dir);
28
                mgtree[n] = join(mgtree[le(n)], mgtree[ri(n)]);
            }
29
30
31
       void build (vi &v) { n = v.size(); values = v; build (0, 0, n-1);}
32
        int less (int n, int esq, int dir, int l, int r, int k) {
33
            if (esq > r \mid | dir < 1) return 0;
34
35
            if (1 \le esq \&\& dir \le r) return mgtree[n].order of key(\{k, -1\});
36
            int mid = (esq + dir) / 2;
            37
38
39
       int less (int l, int r, int k) {return less (0, 0, n-1, l, r, k);}
```

```
41
        void update(int n, int esq, int dir, int x, int v){
42
            if (esq > x \mid | dir < x) return;
            if (esq = dir) mgtree[n].clear(), mgtree[n].insert(ii(v, x));
43
44
            else {
                int mid = (esq + dir) / 2;
45
46
                if (x \le mid) update (le(n), esq, mid, x, v);
47
                else update(ri(n), mid+1, dir, x, v);
48
                mgtree[n].erase(ii(values[x], x));
49
                mgtree[n].insert(ii(v, x));
50
51
        void update(int x, int v) { update(0, 0, n-1, x, v); values[x] = v;}
52
53
           ordered_set debug_query(int n, int esq, int dir, int l, int r) {
54
55
               if (esq > r \mid | dir < l) return ordered set();
56
               if (1 \le esq \&\& dir \le r) return mgtree[n];
57
               int mid = (esq + dir) / 2;
               return join (debug query (le(n), esq, mid, l, r), debug query (ri(n),
58
           mid+1, dir, l, r);
59
60
        // ordered set debug query(int 1, int r) {return debug query(0, 0, n-1, 1, r);}
61
        // int greater(int n, int esq, int dir, int l, int r, int k) {
62
               if (esq > r \mid | dir < 1) return 0;
63
64
               if (1 \le esq \&\& dir \le r) return (r-l+1) - mgtree[n]. order of key(\{k, r\})
           1e8);
65
               int mid = (esq + dir) / 2;
               return greater(le(n), esq, mid, l, r, k) + greater(ri(n), mid+1, dir,
66
           1, r, k);
        // }
67
68
        // int greater(int l, int r, int k) \{\text{return greater}(0, 0, n-1, 1, r, k);\}
69
   };
1
   namespace mergesort {
2
       const int MAX = 1e5 + 5;
3
4
        int n;
5
        vi mgtree [4*MAX];
6
7
        int le(int n) {return 2*n+1;}
        int ri(int n) {return 2*n+2;}
8
9
        void build (int n, int esq, int dir, vi& v) {
10
11
            mgtree[n] = vi(dir-esq+1, 0);
12
            if (esq = dir) mgtree[n][0] = v[esq];
13
            else {
14
                int mid = (esq + dir) / 2;
                build(le(n), esq, mid, v);
15
                build(ri(n), mid+1, dir, v);
16
17
                merge (mgtree [le(n)].begin(), mgtree [le(n)].end(),
18
                     mgtree [ri(n)]. begin(), mgtree [ri(n)]. end(),
19
                    mgtree[n].begin());
            }
20
21
        void build (vi &v) { n = v.size(); build(0, 0, n-1, v);}
22
23
        int less(int n, int esq, int dir, int l, int r, int k) {
24
25
            if (esq > r \mid | dir < 1) return 0;
            if (l <= esq && dir <= r) return lower_bound(mgtree[n].begin(),</pre>
26
                mgtree[n].end(), k) - mgtree[n].begin();
27
            int mid = (esq + dir) / 2;
```

```
28
            return less (le(n), esq, mid, l, r, k) + less (ri(n), mid+1, dir, l, r, k);
29
30
       int less(int l, int r, int k) {return less(0, 0, n-1, l, r, k);}
31
32
33
           vi debug_query(int n, int esq, int dir, int l, int r) {
34
               if (esq > r \mid \mid dir < l) return vi();
35
               if (1 \le esq \&\& dir \le r) return mgtree[n];
36
               int mid = (esq + dir) / 2;
37
               auto vl = debug query(le(n), esq, mid, l, r);
38
               auto vr = debug query(ri(n), mid+1, dir, l, r);
39
               vi ans = vi(vl.size() + vr.size());
40
               merge(vl.begin(), vl.end(),
41
                   vr.begin(), vr.end(),
42
                   ans.begin());
43
               return ans;
44
45
          vi debug query(int 1, int r) {return debug query(0, 0, n-1, 1, r);}
46
   };
```

2.4 Operation Queue

2.5 Operation Queue

Fila que armazena o resultado do operatório dos itens.

* Complexidade de tempo (Push): O(1) * Complexidade de tempo (Pop): O(1)

```
template <typename T>
   struct op queue{
2
3
        stack<pair<T, T>> s1, s2;
4
        T result;
5
        T op(T a, T b){
            {f return} a; // TODO: op to compare
6
7
            //\ \min\left(\,a\,,\ b\,\right)\,;
8
            // gcd(a, b);
9
             // lca(a, b);
10
        }
T get(){
11
12
             if (s1.empty() || s2.empty())
13
                 return result = s1.empty() ? s2.top().second : s1.top().second;
14
             else
15
                 return result = op(s1.top().second, s2.top().second);
16
17
        void add(T element){
             result = s1.empty() ? element : op(element, s1.top().second);
18
19
             s1.push({element, result});
20
        void remove(){
21
22
             if (s2.empty()) {
23
                 while (!s1.empty()) {
24
                     T \text{ elem} = s1.top().first;
25
                      s1.pop();
26
                     T result = s2.empty()? elem : op(elem, s2.top().second);
27
                      s2.push({elem, result});
28
                 }
29
30
            T \text{ remove } elem = s2.top().first;
31
            s2.pop();
```

```
32 };
```

2.6 Operation Stack

2.7 Operation Stack

Pilha que armazena o resultado do operatório dos itens.

* Complexidade de tempo (Push): O(1) * Complexidade de tempo (Pop): O(1)

```
1
   template <typename T>
    struct op stack{
        stack < pair < T, T >> st;
 3
 4
        T result;
        T op (T a, T b) {
 5
            return a; // TODO: op to compare
 6
 7
            // \min(a, b);
 8
            // \gcd(a, b);
9
            // lca(a, b);
10
11
        T get(){
12
            return result = st.top().second;
13
14
        void add(T element){
            result = st.empty() ? element : op(element, st.top().second);
15
            st.push({element, result});
16
17
        void remove(){
18
19
            T removed_element = st.top().first;
20
            st.pop();
21
        }
22
   };
```

2.8 Ordered Set

2.9 Ordered Set

Pode ser usado como um set normal, a principal diferença são duas novas operações possíveis:

- $find_by_order(x)$: retorna o item na posição x. - $order_of_key(k)$: retorna o número de elementos menores que k. (o índice de k)

2.10 Exemplo

```
#include <ext/pb_ds/assoc_container.hpp>
 1
 2
    \#include < ext/pb_ds/trie\_policy.hpp>
 3
 4
     using namespace __gnu_pbds;
     \mathbf{typedef} \ \mathsf{tree} \negthinspace < \negthinspace \mathbf{int} \ , \ \ \mathsf{null\_type} \ , \ \ \mathsf{less} \negthinspace < \negthinspace \mathbf{int} \negthinspace > \negthinspace , \ \ \mathsf{rb\_tree\_tag} \ ,
 5
           tree_order_statistics_node_update> ordered_set;
 6
 7
     ordered_set X;
 8
    X.insert(1);
 9 X. insert (2);
10 X.insert(4);
```

```
11 X. insert (8);
12 X. insert (16);
13
14
    cout << *X. find by order (1) << endl; // 2
    cout << *X. find by order (2) << endl; // 4
15
16
    cout << *X. find by order (4) << endl; // 16
    cout << (end (X)=X. find by order (6)) << endl; // true
17
18
19
   \operatorname{cout} << X.\operatorname{order} \operatorname{of} \operatorname{key}(-5) << \operatorname{endl};
    cout \ll X. order\_of\_key(1) \ll endl;
20
    cout <<X.order_of_key(3)<<endl;
cout <<X.order_of_key(4)<<endl;
21
22
    cout \ll X.order of key (400) \ll endl; // 5
1
   #include <ext/pb ds/assoc container.hpp>
   #include <ext/pb_ds/trie_policy.hpp>
3
    using namespace gnu pbds;
 4
5
    typedef tree<int, null type, less<int>, rb tree tag,
         tree_order_statistics_node_update> ordered_set;
```

2.11 LiChao Tree

2.12 LiChao Tree

Uma árvore de Funções. Retorna o F(x) máximo em um ponto X.

Para retornar o minimo deve-se inserir o negativo da função e pegar o negativo do resultado.

Está pronta para usar função linear do tipo F(x) = mx + b.

Funciona para funções com a seguinte propriedade, sejam duas funções f(x) e g(x), uma vez que f(x) ganha/perde de g(x), f(x) vai continuar ganhando/perdendo de g(x), ou seja f(x) e g(x) se intersectam apenas uma vez.

* Complexidade de consulta : O(log(N)) * Complexidade de update: O(log(N))

2.13 LiChao Tree Sparse

O mesmo que a superior, no entanto suporta consultas com $|x| \le 1e18$.

* Complexidade de consulta : O(log(tamanho do intervalo)) * Complexidade de update: O(log(tamanho do intervalo))

```
typedef long long 11;
1
3
   const 11 MAXN = 1e5+5, INF = 1e18+9;
4
5
   struct Line {
6
        ll a, b = -INF;
7
        ll operator()(ll x)  {
8
            return a * x + b;
9
10
   } tree [4 * MAXN];
11
12
   int le(int n) { return 2*n+1; }
   int ri(int n) \{ return 2*n+2; \}
13
14
```

```
15
    \mathbf{void} insert (Line line, \mathbf{int} n=0, \mathbf{int} l=0, \mathbf{int} r=MAXN) {
16
          \mathbf{int} \ \mathrm{mid} = (1 + \mathrm{r}) \ / \ 2;
          bool bl = line(l) < tree[n](l);
17
18
          bool bm = line(mid) < tree[n](mid);
          if(!bm) swap(tree[n], line);
19
20
          if(l = r) return;
          if(bl != bm) insert(line, le(n), l, mid);
21
22
          else insert (line, ri(n), mid+1, r);
23
    }
24
     ll query(int x, int n=0, int l=0, int r=MAXN) {
25
26
          if(l = r) return tree[n](x);
27
          \mathbf{int} \ \mathrm{mid} = (1 + \mathrm{r}) \ / \ 2;
          \mathbf{if} \, (x < \, \mathrm{mid}) \ \mathbf{return} \ \mathrm{max} (\, \mathrm{tree} \, [\, \mathrm{n} \, ] \, (\, x) \, , \ \mathrm{query} \, (x \, , \ \mathrm{le} \, (\mathrm{n}) \, , \ \mathrm{l} \, , \ \mathrm{mid}) \, ) \, ;
28
29
          else return \max(\text{tree}[n](x), \text{query}(x, \text{ri}(n), \text{mid}+1, r));
30
    }
 1
    typedef long long 11;
 2
 3
    const 11 MAXN = 1e5+5, INF = 1e18+9, MAXR=1e18;
 4
 5
    struct Line {
 6
          ll a, b = -INF;
          __int128 operator()(ll x) {
 7
 8
               return ( int128) a * x + b;
          }
 9
     } tree [4 * MAXN];
10
    int idx = 0, L[4 * MAXN], R[4 * MAXN];
11
12
13
    int le(int n) {
          if (!L[n]) L[n] = ++idx;
14
15
          return L[n];
16
    }
17
    int ri(int n) {
          if (!R[n]) R[n] = ++idx;
18
19
          return R[n];
20
    }
21
    void insert(Line line, int n=0, ll l=-MAXR, ll r=MAXR)  {
22
23
          11 \mod = (1 + r) / 2;
24
          bool bl = line(1) < tree[n](1);
25
          bool bm = line(mid) < tree[n](mid);
26
          if(!bm) swap(tree[n], line);
27
          if(l = r) return;
          if(bl != bm) insert(line, le(n), l, mid);
28
29
          else insert (line, ri(n), mid+1, r);
30
    }
31
     \_\_int128 \text{ query}(int x, int n=0, ll l=-MAXR, ll r=MAXR) 
32
          if(1 = r) return tree[n](x);
33
          11 \mod = (1 + r) / 2;
34
          \mathbf{if} \, (x < \, \mathrm{mid}) \ \mathbf{return} \ \mathrm{max} (\, \mathrm{tree} \, [\, n \, ] \, (\, x) \, , \ \mathrm{query} \, (x \, , \ le \, (n) \, , \ l \, , \ \mathrm{mid}) \, ) \, ;
35
36
          else return max(tree[n](x), query(x, ri(n), mid+1, r));
37
   }
```

2.14 DSU

2.15 Disjoint Set Union

2.16 DSU Simples

Estrutura que trata conjuntos. Verifica se dois itens pertencem a um mesmo grupo.

- Complexidade de tempo: O(1) amortizado.

Une grupos.

- Complexidade de tempo: O(1) amortizado.

2.17 DSU Bipartido

DSU para grafo bipartido, é possível verificar se uma aresta é possível antes de adicioná-la. Para todas as operações:

- Complexidade de tempo: O(1) amortizado.

2.18 DSU com Rollback

Desfaz as últimas K uniões

- Complexidade de tempo: O(K).

É possivel usar um checkpoint, bastando chamar **rollback()** para ir até o último checkpoint. O rollback não altera a complexidade, uma vez que K <= queries. **Só funciona sem compressão de caminho**

- Complexidade de tempo: O(log(N))

2.19 DSU Completo

DSU com capacidade de adicionar e remover vértices. **EXTREMAMENTE PODEROSO!** Funciona de maneira off-line, recebendo as operações e dando as respostas das consultas no retorno da função **solve()**

- Complexidade de tempo: O(Q * log(Q) * log(N)); Onde Q é o número de consultas e N o número de nodos

Roda em 0,6ms para $3*10^5$ queries e nodos com print
f e scanf. Possivelmente aguenta 10^6 em 3s

```
struct DSU {
1
2
        vector < int > pa, sz;
3
       DSU(int n) : pa(n + 1), sz(n + 1, 1) {
4
            iota(pa.begin(), pa.end(), 0);
5
6
       int root(int a) \{ return pa[a] = (a == pa[a] ? a : root(pa[a])); \}
7
       bool find (int a, int b) { return root(a) == root(b); }
8
        void uni(int a, int b) {
9
            int ra = root(a), rb = root(b);
10
            if (ra = rb) return;
            if (sz[ra] > sz[rb]) swap(ra, rb);
11
12
            pa[ra] = rb;
13
            sz[rb] += sz[ra];
        }
14
```

```
15
   };
 1
   struct rollback dsu{
 2
        struct change{ int node, old_size;};
 3
        stack<change> changes;
 4
        vector<int> parent, size;
 5
        int number_of_sets;
 6
 7
        rollback dsu(int n){
 8
            size . resize (n+5, 1);
            number of sets = n;
9
10
            for (int i = 0; i < n+5; ++i) parent.push back(i);
11
        }
12
13
        int get(int a) \{ return (a = parent[a])? a: get(parent[a]); \}
14
        bool same(int a, int b) { return get(a) = get(b);}
15
        void checkpoint() { changes.push(\{-2, 0\});}
16
        void join(int a, int b){
17
18
            a = get(a); b = get(b);
            if(a = b) \{ changes.push(\{-1, -1\}); return; \}
19
            if(size[a] > size[b]) swap(a, b);
20
            changes.push({a, size[b]});
21
22
            parent[a] = b;
23
            size[b] += size[a];
            -number_of_sets;
24
25
        }
26
27
        void rollback (int qnt = 1 < <31){
28
            for(int i = 0; i < qnt; ++i)
29
                 auto ch = changes.top();
30
                 changes.pop();
                 if(ch.node = -1) continue;
31
                 if(ch.node == -2){
32
33
                     if(qnt = 1 << 31) break;
34
                     —i; continue;
35
                 size [parent [ch.node]] = ch.old size;
36
37
                 parent [ch.node] = ch.node;
38
                ++number of sets;
39
            }
        }
40
   };
41
   struct bipartite_dsu{
1
 2
        vector < int > parent;
 3
        vector < int > color;
 4
        int size;
        bipartite_dsu(int n){
 5
 6
            size = n;
 7
            color.resize(n+5, 0);
 8
            for(int i = 0; i < n+5; ++i) parent.push back(i);
9
        }
10
11
        pair < int, bool > get(int a) {
12
            if(parent[a] = a) return \{a, 0\};
13
            auto val = get(parent[a]);
14
            parent[a] = val. fi;
            color[a] = (color[a] + val.se) \% 2;
15
16
            return {parent[a], color[a]};
        }
17
```

```
18
        bool same_color(int a, int b){get(a); get(b); return color[a] = color[b];}
19
20
        bool same group(int a, int b){get(a); get(b); return parent[a] == parent[b];}
        bool possible edge(int a, int b){return !same color(a, b) | | !same group(a,
21
            b);}
22
23
        void join(int a, int b){
24
             auto val a = get(a), val b = get(b);
25
             parent[val_a.fi] = val_b.fi;
26
             color[val a.fi] = (val a.se + val b.se + 1)\%2;
27
        }
    };
28
1
   struct full dsu{
2
        struct change{ int node, old size;};
        struct query { int l, r, u, v, type;};
3
4
        stack<change> changes;
5
        map<pair<int,int>, vector<query>> edges;
 6
        vector < query > queries;
7
        vector < int > parent, size;
8
        int number of sets, time;
9
10
        full dsu(int n){
11
             time = 0;
12
             size.resize(n+5, 1);
13
             number_of_sets = n;
14
             loop(i, 0, n+5) parent.push back(i);
15
        }
16
17
        int get(int a){ return (parent[a] == a? a: get(parent[a]));}
18
        bool same(int a, int b){return get(a) = get(b);}
        void checkpoint() \{ changes.push(\{-2, 0\}); \}
19
20
        void join(int a, int b){
21
22
             a = get(a); b = get(b);
             if(a == b) return;
23
             \mathbf{if}\,(\,\mathrm{size}\,[\,\mathrm{a}\,]\,>\,\,\mathrm{size}\,[\,\mathrm{b}\,]\,)\  \, \mathrm{swap}\,(\,\mathrm{a}\,,\  \, \mathrm{b}\,)\,;
24
25
             changes.push({a, size[b]});
26
             parent[a] = b;
27
             size[b] += size[a];
            —number of sets;
28
29
        }
30
        void rollback(){
31
32
             while (!changes.empty()) {
33
                 auto ch = changes.top();
34
                 changes.pop();
35
                 if(ch.node = -2) break;
                 size [parent [ch.node]] = ch.old_size;
36
37
                 parent[ch.node] = ch.node;
38
                 ++number of sets;
39
             }
40
41
        void ord (int& a, int& b) { if (a > b) swap (a, b);}
42
        void add(int u, int v) { ord(u, v); edges[{u, v}].push back(\{time++, (int)1e9, 
43
            u, v, 0);
        void remove(int u, int v) { ord(u, v); edges[{u, v}].back().r = time++;}
44
45
46
        // consulta se dois vertices estao no mesmo grupo
47
        void question (int u, int v) { ord (u, v); queries.push back (\{time, time, u, v, \}
```

```
1\}); ++time;
48
         // consulta a quantidade de grupos distintos
49
50
         void question() { queries.push back(\{time, time, 0, 0, 1\}); ++time;
51
52
         vector<int> solve(){
              for(auto [p, v]: edges) queries.insert(queries.end(), all(v));
53
54
              vector < int > vec(time, -1), ans;
              run(queries, 0, time, vec);
55
56
              for (int i: vec) if (i != -1) ans. push back(i);
              return ans;
57
         }
58
59
         void run(const vector<query>& qrs, int 1, int r, vector<int>& ans){
60
              if(l > r) return;
61
62
              checkpoint();
63
              vector <query> qrs_aux;
              for(auto& q: qrs){
64
                    if (!q.type \&\& q.l \le l \&\& r \le q.r) join(q.u, q.v);
65
                    \label{eq:else} \textbf{else if } (\texttt{r} < \texttt{q.l} \ || \ \texttt{l} > \texttt{q.r}) \ \textbf{continue};
66
67
                   else qrs aux.push back(q);
68
              if(1 == r){
69
70
                    for(auto\& q: qrs) if(q.type \&\& q.l == l){
71
                         ans[1] = number_of_sets; // numero de grupos nesse tempo
                        // \operatorname{ans}[1] = \operatorname{same}(q.u, q.v); // \operatorname{se} u \in v \operatorname{estao} \operatorname{no} \operatorname{mesmo} \operatorname{grupo}
72
73
74
                   rollback();
75
                   return;
76
77
              int m = (1+r)/2;
              run(qrs aux, l, m, ans);
78
79
              run(qrs aux, m+1, r, ans);
80
              rollback();
81
         }
82
    };
```

2.20 Kd Fenwick Tree

2.21 KD Fenwick Tree

Fenwick Tree em K dimensoes.

11 sum = 0;

 $\mathbf{while}(\mathbf{s}[\mathbf{pos}] > 0)$

7

8

* Complexidade de update: $O(log^k(N))$. * Complexidade de query: $O(log^k(N))$.

```
\begin{array}{lll} 9 & & \textbf{if} ( pos < s. size ()-1) \\ 10 & & sum += query(s \,, \; pos+1); \\ 11 & & \textbf{else} \\ 12 & & sum += tree [s [0]][s [1]][s [2]][s [3]][s [4]][s [5]][s [6]][s [7]]; \\ 13 & & s[pos] -= lsONE(s[pos]); \end{array}
```

```
}
14
15
        return sum;
16
   }
17
18
   void update(vi s, int pos, int v){
19
        \mathbf{while} (s[pos] < MAX+1) \{
20
             if(pos < s.size()-1)
21
                 update(s, pos+1, v);
22
             else
23
                 tree[s[0]][s[1]][s[2]][s[3]][s[4]][s[5]][s[6]][s[7]] += v;
24
25
             s[pos] += lsONE(s[pos]);
26
        }
27
   }
```

2.22 Fenwick Tree

2.23 Fenwick Tree

Consultas e atualizações de soma em intervalo.

O vetor precisa obrigatoriamente estar indexado em 1.

* Complexidade de tempo (Pre-processamento): O(N * log(N)) * Complexidade de tempo (Consulta em intervalo): O(log(N)) * Complexidade de tempo (Update em ponto): O(log(N)) * Complexidade de espaço: 2 * N = O(N)

```
struct FenwickTree {
 1
2
         int n;
3
         vector<int> tree;
         FenwickTree(int n) : n(n) \{ tree.assign(n, 0); \}
 4
 5
         FenwickTree(vector < int > v) : FenwickTree(v.size()) {
 6
               \mbox{for } (\mbox{size } t \ i = 1; \ i < \mbox{v.size}(); \ i++) \ \mbox{update}(i\,, \ \mbox{v}[\,i\,]); 
 7
 8
         int lsONE(int x) \{ return x & (-x); \}
9
         int query(int x) {
10
              int soma = 0;
11
              for (; x > 0; x = lsONE(x)) soma += tree[x];
12
              return soma;
13
14
         int query(int 1, int r) {
15
              return query (r) - query (l - 1);
16
         void update(int x, int v) {
17
              for (; x < n; x \leftarrow lsONE(x)) tree [x] \leftarrow v;
18
19
         }
20
    };
```

2.24 Segment Tree

2.25 Segment Tree

2.26 Seg Tree

Implementação padrão de Seg Tree

- Complexidade de tempo (Pré-processamento): O(N) - Complexidade de tempo (Consulta em intervalo): $O(\log(N))$ - Complexidade de tempo (Update em ponto): $O(\log(N))$ - Complexidade de espaço: 4*N = O(N)

2.27 Seg Tree Lazy

Implementação padrão de Seg Tree com lazy update

- Complexidade de tempo (Pré-processamento): O(N) - Complexidade de tempo (Consulta em intervalo): $O(\log(N))$ - Complexidade de tempo (Update em ponto): $O(\log(N))$ - Complexidade de tempo (Update em intervalo): $O(\log(N))$ - Complexidade de espaço: 2*4*N = O(N)

2.28 Sparse Seg Tree

Seg Tree Esparsa:

- Complexidade de tempo (Pré-processamento): O(1) - Complexidade de tempo (Consulta em intervalo): $O(\log(N))$ - Complexidade de tempo (Update em ponto): $O(\log(N))$

2.29 Persistent Seg Tree

Seg Tree Esparsa com histórico de Updates:

- Complexidade de tempo (Pré-processamento): O(N *log(N)) - Complexidade de tempo (Consulta em intervalo): O(log(N)) - Complexidade de tempo (Update em ponto): O(log(N)) - **Para fazer consulta em um tempo específico basta indicar o tempo na query**

2.30 Seg Tree Beats

Seg Tree que suporta update de maximo e query de soma

- Complexidade de tempo (Pré-processamento): O(N) - Complexidade de tempo (Consulta em intervalo): $O(\log(N))$ - Complexidade de tempo (Update em ponto): $O(\log(N))$ - Complexidade de tempo (Update em intervalo): $O(\log(N))$ - Complexidade de espaço: 2*4*N = O(N)

2.31 Seg Tree Beats Max and Sum update

Seg Tree que suporta update de maximo, update de soma e query de soma. Utiliza uma fila de lazy para diferenciar os updates

- Complexidade de tempo (Pré-processamento): O(N) - Complexidade de tempo (Consulta em intervalo): $O(\log(N))$ - Complexidade de tempo (Update em ponto): $O(\log(N))$ - Complexidade de tempo (Update em intervalo): $O(\log(N))$ - Complexidade de espaço: 2*4*N = O(N)

```
#include <bits/stdc++.h>
 1
 2
   using namespace std;
 3
 4
   #define ll long long
   #define INF 1e9
 5
 6
 7
   typedef vector <int> vi;
8
9
   struct Node {
        int m1 = INF, m2 = INF, cont = 0, lazy = 0;
10
11
        11 \text{ soma} = 0;
```

```
12
13
        void set(int v) {
14
            m1\,=\,v\,;
15
            cont = 1;
16
            soma = v;
17
18
19
        void merge(Node a, Node b) {
20
            m1 = min(a.m1, b.m1);
21
            m2 = INF;
22
            if (a.m1 != b.m1) m2 = min(m2, max(a.m1, b.m1));
23
            if (a.m2 != m1) m2 = min(m2, a.m2);
24
            if (b.m2 != m1) m2 = min(m2, b.m2);
25
            cont = (a.m1 = m1? a.cont:0) + (b.m1 = m1? b.cont:0);
26
            soma = a.soma + b.soma;
        }
27
28
29
        void print() {
30
             printf("%d %d %d %lld %d\n", m1, m2, cont, soma, lazy);
31
        }
32
   };
33
34
   int n, q;
35
   vector <Node> tree;
36
   int le(int n) \{return 2*n+1;\}
37
38
   int ri(int n) {return 2*n+2;}
39
40
   void push(int n, int esq, int dir) {
41
        if (tree[n].lazy <= tree[n].m1) return;</pre>
42
        tree[n].soma += (ll) abs(tree[n].ml-tree[n].lazy) * tree[n].cont;
43
        tree[n].m1 = tree[n].lazy;
44
        if (esq != dir) {
            tree[le(n)]. lazy = max(tree[le(n)]. lazy, tree[n]. lazy);
45
46
             tree[ri(n)]. lazy = max(tree[ri(n)]. lazy, tree[n]. lazy);
47
48
        tree[n].lazy = 0;
49
   }
50
   void build(int n, int esq, int dir, vi &v) {
51
        if (esq = dir) tree[n]. set(v[esq]);
52
53
        else {
54
            int mid = (esq + dir) / 2;
55
            build(le(n), esq, mid, v);
56
            build(ri(n), mid+1, dir, v);
57
             tree[n].merge(tree[le(n)], tree[ri(n)]);
58
        }
59
   void build (vi &v) {build (0, 0, n-1, v);}
60
61
   // ai = max(ai, mi) em [1, r]
62
63
   void update(int n, int esq, int dir, int l, int r, int mi) {
64
        push(n, esq, dir);
65
        if (esq > r \mid | dir < l \mid | mi \ll tree[n].m1) return;
        if (l <= esq && dir <= r && mi < tree[n].m2) {
66
67
            tree[n].lazy = mi;
68
            push(n, esq, dir);
69
        } else {}
            int mid = (esq + dir) / 2;
70
71
            update\left(\,l\,e\,(\,n\,)\;,\;\;es\,q\;,\;\;mid\,,\;\;l\;,\;\;r\;,\;\;mi\,\right)\,;
72
            update(ri(n), mid+1, dir, l, r, mi);
```

```
73
             tree[n].merge(tree[le(n)], tree[ri(n)]);
         }
74
    }
75
76
    void update(int l, int r, int mi) {update(0, 0, n-1, l, r, mi);}
77
78
    // soma de [1, r]
   int query(int n, int esq, int dir, int l, int r) {
79
80
        push(n, esq, dir);
         if (esq > r \mid | dir < 1) return 0;
81
82
         if (1 \le esq \&\& dir \le r) return tree [n]. soma;
         int mid = (esq + dir) / 2;
83
84
         return query (le (n), esq, mid, l, r)
85
                + \operatorname{query}(\operatorname{ri}(n), \operatorname{mid}+1, \operatorname{dir}, l, r);
86
    int query (int 1, int r) {return query (0, 0, n-1, 1, r);}
87
88
   int main() {
89
90
         cin >> n;
91
         tree assign (4*n, Node());
92
    }
   \#include <bits/stdc++.h>
 1
    using namespace std;
 3
   #define ll long long
 4
   #define INF 1e9
 5
 6
   #define fi first
7
   #define se second
8
9
   typedef vector <int> vi;
10
   typedef pair <int, int> ii;
11
12
    struct Node {
         int m1 = INF, m2 = INF, cont = 0;
13
14
         11 \text{ soma} = 0;
15
         queue <ii> lazy;
16
         void set(int v) {
17
18
             m1 = v;
             cont = 1;
19
20
             soma = v;
21
22
23
        void merge(Node a, Node b) {
24
             m1 = min(a.m1, b.m1);
25
             m2 = INF;
26
             if (a.m1 != b.m1) m2 = min(m2, max(a.m1, b.m1));
27
             if (a.m2 != m1) m2 = min(m2, a.m2);
              \mbox{if} \ (\, b \, .m2 \ != \ m1) \ m2 \, = \, min (\, m2 \, , \ b \, .m2) \; ; \\
28
             cont = (a.m1 = m1? \ a.cont:0) + (b.m1 = m1? \ b.cont:0);
29
             soma = a.soma + b.soma;
30
31
        }
32
33
         void print() {
             printf("%d %d %d %lld\n", m1, m2, cont, soma);
34
35
         }
36
    };
37
38
   int n, q;
39
    vector <Node> tree;
40
```

```
int le(int n) {return 2*n+1;}
    int ri(int n) {return 2*n+2;}
42
43
44
    void push(int n, int esq, int dir) {
45
         while (! tree[n]. lazy.empty()) {
46
             ii p = tree[n].lazy.front();
47
             tree[n].lazy.pop();
48
             int op = p.fi, v = p.se;
49
             if (op = 0) {
50
                  if (v \le tree[n].m1) continue;
                  tree[n].soma += (11) abs(tree[n].ml-v) * tree[n].cont;
51
52
                  tree[n].m1 = v;
53
                  if (esq != dir) {
54
                      tree [le(n)]. lazy.push(\{0, v\});
55
                      tree | \operatorname{ri}(n) |. lazy.push(\{0, v\});
56
                  }
57
             \} else if (op == 1) \{
                  tree[n].soma += v * (dir-esq+1);
58
59
                  tree[n].m1 += v;
60
                  tree[n].m2 += v;
61
                  if (esq != dir) {
62
                      tree[le(n)].lazy.push({1, v});
63
                      tree [ri(n)]. lazy.push(\{1, v\});
64
                  }
65
             }
         }
66
67
    }
68
69
    void build (int n, int esq, int dir, vi &v) {
70
         if (esq = dir) tree [n]. set (v[esq]);
71
         else {
72
             int mid = (esq + dir) / 2;
73
             build(le(n), esq, mid, v);
74
             build (ri(n), mid+1, dir, v);
             tree[n].merge(tree[le(n)], tree[ri(n)]);
75
76
77
    void build (vi &v) {build (0, 0, n-1, v);}
78
79
80
    // ai = max(ai, mi) em [1, r]
    void update(int n, int esq, int dir, int l, int r, int mi) {
81
82
         push(n, esq, dir);
         if (esq > r \mid \mid dir < l \mid \mid mi \le tree[n].m1) return;
83
         if (1 \le esq \&\& dir \le r \&\& mi < tree[n].m2) {
84
             tree [n]. soma \mathrel{+}= (ll) abs(tree [n].ml-mi) * tree [n].cont;
85
86
             tree[n].m1 = mi;
             if (esq != dir) {
87
                  tree [le(n)]. lazy. push (\{0, mi\});
88
89
                  tree[ri(n)].lazy.push({0, mi});
             }
90
         } else {
91
92
             int mid = (esq + dir) / 2;
93
             update(le(n), esq, mid, l, r, mi);
94
             update(ri(n), mid+1, dir, l, r, mi);
95
             tree[n].merge(tree[le(n)], tree[ri(n)]);
         }
96
97
98
    void update(int 1, int r, int mi) {update(0, 0, n-1, 1, r, mi);}
99
100
    // soma v em [1, r]
    void upsoma(int n, int esq, int dir, int l, int r, int v) {
101
```

```
102
          push(n, esq, dir);
103
           if (esq > r \mid | dir < l) return;
           if (1 \le esq \&\& dir \le r)  {
104
105
                tree[n].soma += v * (dir - esq + 1);
                tree[n].m1 += v;
106
107
                tree[n].m2 += v;
108
                if (esq != dir) {
109
                     tree [le(n)]. lazy. push(\{1, v\});
                     tree[ri(n)].lazy.push({1, v});
110
111
           } else {
112
                int mid = (esq + dir) / 2;
113
114
                upsoma(le(n), esq, mid, l, r, v);
115
                upsoma(ri(n), mid+1, dir, l, r, v);
116
                tree[n].merge(tree[le(n)], tree[ri(n)]);
117
118
     }
     void upsoma(int l, int r, int v) {upsoma(0, 0, n-1, l, r, v);}
119
120
121
     // soma de [1, r]
122
     int query(int n, int esq, int dir, int l, int r) {
123
           push(n, esq, dir);
           if (esq > r \mid | dir < 1) return 0;
124
125
           if (1 \le esq \&\& dir \le r) return tree [n]. soma;
126
          int mid = (esq + dir) / 2;
127
          return query (le (n), esq, mid, l, r)
128
                   + \operatorname{query}(\operatorname{ri}(n), \operatorname{mid}+1, \operatorname{dir}, l, r);
129
     }
130
     int query (int 1, int r) {return query (0, 0, n-1, 1, r);}
131
132
     int main() {
133
           cin >> n;
           tree.assign(4*n, Node());
134
135
           build(v);
136
137
     }
     const int SEGMAX = 8e6+5; // should be Q * log(DIR-ESQ+1)
  1
     const 11 ESQ = 0, DIR = 1e9+7;
 3
 4
     struct seg {
 5
        ll tree [SEGMAX];
           int R[SEGMAX], L[SEGMAX], ptr = 2; // 0 is NULL; 1 is First Root
 6
 7
           ll op(ll a, ll b) {
 8
             return (a + b) \% MOD;
 9
10
        int le(int i){
           if (L[i] = 0) L[i] = ptr++;
11
          \mathbf{return} \ L[\ i\ ];
12
13
14
        int ri(int i){
15
           if (R[i] = 0) R[i] = ptr++;
          return R[i];
16
17
        ll query(ll l, ll r, int n=1, ll esq=ESQ, ll dir=DIR) {
18
           if (r < esq \mid | dir < 1) return 0;
19
 20
           \label{eq:if_def} \textbf{if} \hspace{0.2cm} (\hspace{0.1cm} \textbf{l} \hspace{0.1cm} <= \hspace{0.1cm} \text{esq \&\& dir} \hspace{0.1cm} <= \hspace{0.1cm} \textbf{r} \hspace{0.1cm}) \hspace{0.2cm} \textbf{return} \hspace{0.2cm} \textbf{tree} \hspace{0.1cm} [\hspace{0.1cm} \textbf{n} \hspace{0.1cm}] \hspace{0.1cm};
 21
           11 \text{ mid} = (\operatorname{esq} + \operatorname{dir})/2;
 22
           return op(query(1, r, le(n), esq, mid), query(1, r, ri(n), mid+1, dir));
23
        void update(ll x, ll v, int n=1, ll esq=ESQ, ll dir=DIR) {
24
```

```
25
         if (esq = dir) tree[n] = (tree[n] + v) \% MOD;
26
             else {
27
                  11 \text{ mid} = (esq + dir)/2;
28
                  if (x \le mid) update(x, v, le(n), esq, mid);
29
                  else update(x, v, ri(n), mid+1, dir);
30
                  tree[n] = op(tree[le(n)], tree[ri(n)]);
31
             }
32
      }
    };
33
   const int MAX = 2505;
1
3
   int n, m, mat [MAX] [MAX], tree [4*MAX] [4*MAX];
4
   int le(int x) { return 2*x+1; }
6
   int ri(int x) { return 2*x+2; }
7
8
   void build y(int nx, int lx, int rx, int ny, int ly, int ry) {
9
         if (ly = ry) {
10
              if (lx = rx) tree [nx][ny] = mat[lx][ly];
              else tree [nx][ny] = tree [le(nx)][ny] + tree [ri(nx)][ny];
11
12
         } else {
13
             int my = (ly + ry)/2;
14
             build_y(nx, lx, rx, le(ny), ly, my);
             \label{eq:build_y(nx, lx, rx, ri(ny), my+1, ry);} \text{ build_y(nx, lx, rx, ri(ny), my+1, ry);}
15
16
              tree[nx][ny] = tree[nx][le(ny)] + tree[nx][ri(ny)];
17
18
   }
19
   void build x(int nx, int lx, int rx) {
         if (lx != rx) {
20
21
             int mx = (lx + rx)/2;
22
             build_x(le(nx), lx, mx);
23
             build x(ri(nx), mx+1, rx);
24
25
         build_y(nx, lx, rx, 0, 0, m-1);
26
    }
27
   void build() {
28
        build x(0, 0, n-1);
29
   }
30
31
   void update y(int nx, int lx, int rx, int ny, int ly, int ry, int x, int y, int v)
32
         if (ly = ry) {
33
             if (lx = rx) tree[nx][ny] = v;
34
             else tree [nx][ny] = tree [le(nx)][ny] + tree [ri(nx)][ny];
35
         } else {}
36
             int my = (ly + ry) / 2;
37
             \label{eq:if_state} \textbf{if} \ \ (y <= my) \ \ update\_y(nx\,, \ lx\,, \ rx\,, \ le\,(ny)\,, \ ly\,, \ my, \ x\,, \ y\,, \ v)\,;
             else update_y(nx, lx, rx, ri(ny), my+1, ry, x, y, v);
38
39
              tree[nx][ny] = tree[nx][le(ny)] + tree[nx][ri(ny)];
40
         }
41
   }
42
   void update x(int nx, int lx, int rx, int x, int y, int v) {
43
         if (lx != rx) {
44
             int mx = (lx + rx) / 2;
             \label{eq:force_force} \textbf{if} \ \ (x <= mx) \ \ update\_x(\,le\,(\,nx\,) \;,\;\; lx \;,\;\; mx,\;\; x \;,\;\; y \;,\;\; v\,) \;;
45
             else update x(ri(nx), mx+1, rx, x, y, v);
46
47
48
        update_y(nx, lx, rx, 0, 0, m-1, x, y, v);
49
50
   void update(int x, int y, int v) {
```

```
update x(0, 0, n-1, x, y, v);
51
52
    }
53
    int sum_y(int nx, int ny, int ly, int ry, int qly, int qry) {
54
          \quad \textbf{if} \ (\, \text{ry} \, < \, \text{qly} \ \mid \, \mid \ \ \text{ly} \, > \, \text{qry}\,) \ \ \textbf{return} \ \ 0\,;
55
56
          if (qly \le ly \&\& ry \le qry) return tree [nx][ny];
57
          int my = (ly + ry)/2;
58
          return sum y(nx, le(ny), ly, my, qly, qry)
59
                 + \operatorname{sum} y(\operatorname{nx}, \operatorname{ri}(\operatorname{ny}), \operatorname{my}+1, \operatorname{ry}, \operatorname{qly}, \operatorname{qry});
60
    int sum x(int nx, int lx, int rx, int qlx, int qrx, int qly, int qry) {
61
62
          if (rx < qlx \mid | lx > qrx) return 0;
63
          if (qlx \ll lx \&\& rx \ll qrx) return sum y(nx, 0, 0, m-1, qly, qry);
64
          int mx = (lx + rx)/2;
65
          return sum x(le(nx), lx, mx, qlx, qrx, qly, qry)
66
                 + sum_x(ri(nx), mx+1, rx, qlx, qrx, qly, qry);
67
    }
    \mathbf{int} \ \mathrm{sum}(\mathbf{int} \ \mathrm{lx} \ , \ \mathbf{int} \ \mathrm{rx} \ , \ \mathbf{int} \ \mathrm{ly} \ , \ \mathbf{int} \ \mathrm{ry}) \ \{
68
69
          return sum x(0, 0, n-1, lx, rx, ly, ry);
70
    }
    namespace seg {
 1
 2
          const int MAX = 2e5 + 5;
 3
          int n;
 4
          11 tree [4*MAX];
          11 merge(11 a, 11 b) { return a + b; }
 5
 6
          int le(int n) \{ return 2*n+1; \}
 7
          int ri(int n) \{ return 2*n+2; \}
          void build(int n, int esq, int dir, const vector<ll> &v) {
 8
 9
                if (esq = dir) tree [n] = v[esq];
10
                else {
11
                     int mid = (esq + dir) / 2;
12
                     build(le(n), esq, mid, v);
13
                     build(ri(n), mid+1, dir, v);
14
                     tree[n] = merge(tree[le(n)], tree[ri(n)]);
15
16
          void build (const vector < 11 > &v) { n = v.size(); build (0, 0, n-1, v); }
17
          11 query(int n, int esq, int dir, int l, int r) {
18
                if (esq > r \mid | dir < 1) return 0;
19
20
                if (1 \le esq \&\& dir \le r) return tree [n];
21
                int mid = (esq + dir) / 2;
                \textbf{return} \ \operatorname{merge} \left( \, \operatorname{query} \left( \, \operatorname{le} \left( \, n \right) \,, \ \operatorname{esq} \,, \ \operatorname{mid} \,, \ l \,, \ r \, \right) \,, \ \operatorname{query} \left( \, \operatorname{ri} \left( \, n \right) \,, \ \operatorname{mid} + 1 \,, \ \operatorname{dir} \,, \ l \,, \ r \, \right) \right) ;
22
23
24
          ll query(int l, int r) { return query(0, 0, n-1, l, r); }
25
          void update(int n, int esq, int dir, int x, ll v) {
26
                if (esq > x \mid | dir < x) return;
                if (esq = dir) tree[n] = v;
27
                else {
28
29
                     int mid = (esq + dir) / 2;
                     if (x \le mid) update(le(n), esq, mid, x, v);
30
31
                     else update(ri(n), mid+1, dir, x, v);
32
                     tree[n] = merge(tree[le(n)], tree[ri(n)]);
33
                }
34
          void update(int x, ll v) { update(0, 0, n-1, x, v); }
35
    }
36
 1
    namespace seg {
          const int MAX = 1e5+5;
 2
 3
          int n;
```

```
4
         11 tree [4*MAX];
         ll merge(ll a, ll b) { return max(a, b); }
5
6
        int le(int n) \{ return 2*n+1; \}
7
        int ri(int n) \{ return 2*n+2; \}
8
        void build(int n, int esq, int dir, const vector<ll> &v) {
9
             if (esq = dir) tree[n] = v[esq];
10
             else {
11
                  int mid = (esq + dir) / 2;
12
                  build(le(n), esq, mid, v);
13
                  build(ri(n), mid+1, dir, v);
                  tree[n] = merge(tree[le(n)], tree[ri(n)]);
14
15
16
        }
17
        18
         // find fist index greater than k in [l, r]
19
         ll query(int n, int esq, int dir, int l, int r, ll k) {
20
             if(esq > r \mid | dir < 1) return -1;
             if(1 \le esq \&\& dir \le r) {
21
                  if (tree[n] < k) return -1;
22
23
                  while (esq != dir) {
24
                       int mid = (esq + dir) / 2;
25
                       if (tree[le(n)] >= k) n = le(n), dir = mid;
26
                       else n = ri(n), esq = mid+1;
27
                  }
28
                  return esq;
29
30
             int mid = (esq + dir) / 2;
31
             {\bf int} \ {\rm res} \ = \ {\rm query} \, (\, {\rm le} \, (\, n\, ) \, \, , \  \, {\rm esq} \, \, , \  \, {\rm mid} \, , \  \, l \, \, , \  \, r \, , \  \, k \, ) \, ;
32
             if (res != -1) return res;
33
             return query (ri(n), mid+1, dir, l, r, k);
34
35
        ll query(int l, int r, ll k) { return query(0, 0, n-1, l, r, k); }
36
        void update(int n, int esq, int dir, int x, ll v) {
             if (esq > x \mid | dir < x) return;
37
38
             if (esq = dir) tree[n] = v;
39
             else {
40
                  int mid = (esq + dir) / 2;
                  if (x \le mid) update (le(n), esq, mid, x, v);
41
42
                  else update(ri(n), mid+1, dir, x, v);
43
                  tree[n] = merge(tree[le(n)], tree[ri(n)]);
44
             }
45
46
        void update(int x, 11 v) { update(0, 0, n-1, x, v); }
47
   }
1
    struct SegTree{
2
        int n;
3
        vector <int> tree;
 4
5
        SegTree(int n) : n(n) {
6
             tree.assign(4*n, 0);
7
        }
8
9
        int le(int n) {return 2*n+1;}
10
        int ri(int n) {return 2*n+2;}
11
12
        int query(int n, int esq, int dir, int l, int r) {
13
              \textbf{if} \ (\operatorname{esq} > \operatorname{r} \ || \ \operatorname{dir} < 1) \ \textbf{return} \ 0; 
14
             if (1 \le esq \&\& dir \le r) return tree [n];
15
             int mid = (esq + dir) / 2;
16
             return \max(\text{query}(\text{le}(n), \text{esq}, \text{mid}, \text{l}, \text{r}), \text{query}(\text{ri}(n), \text{mid}+1, \text{dir}, \text{l}, \text{r}));
```

```
17
         int query(int l, int r) {return query(0, 0, n-1, l, r);}
18
19
20
         void update(int n, int esq, int dir, int x, int v) {
              if (esq > x \mid | dir < x) return;
21
22
              if (esq = dir) tree[n] = v;
23
              else {
24
                   int mid = (esq + dir) / 2;
                   if (x \le mid) update(le(n), esq, mid, x, v);
25
26
                   else update(ri(n), mid+1, dir, x, v);
                   tree[n] = max(tree[le(n)], tree[ri(n)]);
27
28
29
30
         void update(int x, int v) {update(0, 0, n-1, x, v);}
    };
31
    namespace seg {
1
         const int MAX = 1e5+5;
 2
 3
         struct node {
 4
              ll pref, suff, sum, best;
5
 6
         node new node(11 v) { return node{v, v, v}; }
7
         const node NEUTRAL = \{0, 0, 0, 0\};
8
         node tree [4*MAX];
9
         node merge(node a, node b) {
              11 \text{ pref} = \max(a.\text{pref}, a.\text{sum} + b.\text{pref});
10
11
              11 \text{ suff} = \max(b.\text{suff}, b.\text{sum} + a.\text{suff});
12
              11 \text{ sum} = a.\text{sum} + b.\text{sum};
              11 best = max(a.suff + b.pref, max(a.best, b.best));
13
14
              return node{pref, suff, sum, best};
15
         }
16
17
         int n;
         int le(int n) \{ return 2*n+1; \}
18
19
         int ri(int n) \{ return 2*n+2; \}
20
         void build(int n, int esq, int dir, const vector<ll> &v) {
              if (esq = dir) tree[n] = new_node(v[esq]);
21
22
23
                   int mid = (esq + dir) / 2;
24
                   build(le(n), esq, mid, v);
25
                   build(ri(n), mid+1, dir, v);
26
                   tree[n] = merge(tree[le(n)], tree[ri(n)]);
27
28
         29
30
         node query (int n, int esq, int dir, int l, int r) {
              if (esq > r || dir < 1) return NEUTRAL;
31
              if (l \le esq \&\& dir \le r) return tree[n];
32
              int mid = (esq + dir) / 2;
33
              return merge(query(le(n), esq, mid, l, r), query(ri(n), mid+1, dir, l, r));
34
35
36
         ll query(int l, int r) { return query(0, 0, n-1, l, r).best; }
37
         void update(int n, int esq, int dir, int x, ll v) {
38
              if (esq > x \mid | dir < x) return;
39
              if (esq = dir) tree[n] = new node(v);
40
              else {
                   int mid = (esq + dir) / 2;
41
                   \label{eq:force_force} \textbf{if} \hspace{0.2cm} (\hspace{0.1cm} x \hspace{0.1cm} < \hspace{0.1cm} = \hspace{0.1cm} mid\hspace{0.1cm}) \hspace{0.2cm} update\hspace{0.1cm} (\hspace{0.1cm} le\hspace{0.1cm} (\hspace{0.1cm} n)\hspace{0.1cm}, \hspace{0.1cm} esq\hspace{0.1cm}, \hspace{0.1cm} mid\hspace{0.1cm}, \hspace{0.1cm} x\hspace{0.1cm}, \hspace{0.1cm} v\hspace{0.1cm})\hspace{0.1cm};
42
43
                   else update(ri(n), mid+1, dir, x, v);
44
                   tree[n] = merge(tree[le(n)], tree[ri(n)]);
              }
45
```

```
46
         void update(int x, ll v) { update(0, 0, n-1, x, v); }
47
48
   }
1
    namespace seg {
2
         const int MAX = 2e5+5;
         const ll NEUTRAL = 0; // merge(a, neutral) = a
3
4
         11 \text{ merge}(11 \text{ a}, 11 \text{ b}) \{ \text{ return } a + b; \}
 5
         int sz; // size of the array
 6
         ll tree [4*MAX], lazy [4*MAX];
 7
         int le(int n) \{ return 2*n+1; \}
 8
         int ri(int n) \{ return 2*n+2; \}
9
         void push(int n, int esq, int dir) {
10
              if (lazy[n] = 0) return;
11
              tree |n| += lazy |n| * (dir - esq + 1);
12
              if (esq != dir) {
13
                  lazy[le(n)] += lazy[n];
14
                  lazy[ri(n)] += lazy[n];
15
16
              lazy[n] = 0;
17
18
         void build (span < const ll > v, int n, int esq, int dir) {
19
              if (esq = dir) tree [n] = v[esq];
20
              else {
21
                   int mid = (esq + dir) / 2;
                   \texttt{build}\,(\,v\,,\ \texttt{le}\,(\,n\,)\,\,,\ \texttt{esq}\,\,,\ \texttt{mid}\,)\,\,;
22
23
                   build(v, ri(n), mid+1, dir);
24
                   tree[n] = merge(tree[le(n)], tree[ri(n)]);
25
              }
26
         }
27
         void build (span < const ll > v) { sz = v.size(); build (v, 0, 0, sz-1); }
         ll query (int l, int r, int n=0, int esq=0, int dir=sz-1) {
28
29
              push(n, esq, dir);
30
              if (esq > r || dir < 1) return NEUTRAL;
31
              if (1 \le esq \&\& dir \le r) return tree [n];
32
              int mid = (esq + dir)/2;
33
              return merge(query(1, r, le(n), esq, mid), query(1, r, ri(n), mid+1, dir));
34
35
         void update(int 1, int r, 11 v, int n=0, int esq=0, int dir=sz-1) {
36
              push(n, esq, dir);
              if (esq > r \mid | dir < l) return;
37
              \mathbf{if} \ (\ l <= \ \mathrm{esq} \ \&\& \ \mathrm{dir} <= \ r \,) \ \ \{
38
                   \mathtt{lazy}\,[\,n\,] \ +\!= \ v\,;
39
40
                  push(n, esq, dir);
41
              } else {}
42
                   int mid = (esq + dir)/2;
43
                   update(l, r, v, le(n), esq, mid);
44
                   update(l, r, v, ri(n), mid+1, dir);
                   tree[n] = merge(tree[le(n)], tree[ri(n)]);
45
46
              }
47
         }
48
    }
    namespace seg {
         const 11 ESQ = 0, DIR = 1e9+7;
 2
3
      struct node {
 4
              11 \ v = 0;
 5
              node *l = NULL, *r = NULL;
             \operatorname{node}\left(\,\right)\ \left\{\,\right\}
 6
 7
              node(11 v) : v(v) \{\}
              node(node* 1, node* r) : 1(1), r(r) \{ v = 1 -> v + r -> v; \}
```

```
9
                void apply() {
                       if(l == NULL) l = new node();
10
                       if(r = NULL) r = new node();
11
12
                 }
13
        };
14
           vector <node*> roots;
           void build() { roots.push_back(new node()); }
15
16
           void push(node* n, int esq, int dir) { if (esq != dir) n->apply(); }
           // sum v on x
17
18
           node* update(node* n, int esq, int dir, int x, int v) {
                 push(n, esq, dir);
19
                  \textbf{if} \ (\operatorname{esq} = \operatorname{dir}) \ \textbf{return} \ \textbf{new} \ \operatorname{node}(\operatorname{n-\!\!>\!\!v} + \operatorname{v}); 
20
21
                 int mid = (esq + dir)/2;
22
                 \textbf{if} \hspace{0.2cm} (x \mathrel{<=} \hspace{0.1cm} mid) \hspace{0.2cm} \textbf{return} \hspace{0.2cm} \textbf{new} \hspace{0.2cm} node (\hspace{0.1cm} update \hspace{0.1cm} (n \hspace{-0.1cm} -\hspace{-0.1cm} >\hspace{-0.1cm} l \hspace{0.1cm}, \hspace{0.1cm} esq \hspace{0.1cm}, \hspace{0.1cm} mid \hspace{0.1cm}, \hspace{0.1cm} x \hspace{0.1cm}, \hspace{0.1cm} v) \hspace{0.1cm}, \hspace{0.1cm} n \hspace{-0.1cm} -\hspace{-0.1cm} >\hspace{-0.1cm} r) \hspace{0.1cm};
23
                 else return new node(n->l, update(n->r, mid+1, dir, x, v));
24
25
           int update(int root, int pos, int val) {
                 node* novo = update(roots[root], ESQ, DIR, pos, val);
26
                 roots.push back(novo);
27
28
                 return roots. size () - 1;
29
30
           // sum in [L, R]
           11 query(node* n, int esq, int dir, int l, int r) {
31
32
                 push(n, esq, dir);
33
                 if (esq > r \mid | dir < 1) return 0;
                 if (1 \le esq \&\& dir \le r) return n\rightarrow v;
34
35
                 int mid = (esq + dir)/2;
36
                 return query (n->l, esq, mid, l, r) + query (n->r, mid+1, dir, l, r);
37
           11 query(int root, int 1, int r) {
38
39
                return query (roots [root], ESQ, DIR, 1, r);
40
           // kth min number in [L, R] (l root can not be 0)
41
           int kth(node* L, node* R, int esq, int dir, int k) {
42
                 push(L, esq, dir);
43
44
                 push(R, esq, dir);
45
                 if (esq = dir) return esq;
                 int mid = (esq + dir)/2;
46
47
                 int cont = R \rightarrow l \rightarrow v - L \rightarrow l \rightarrow v;
                 if (cont >= k) return kth(L\rightarrow l, R\rightarrow l, esq, mid, k);
48
                 else return kth(L\rightarrow r, R\rightarrow r, mid+1, dir, k-cont);
49
50
           int kth(int 1 root, int r root, int k) {
51
52
                 return kth(roots[l_root-1], roots[r_root], ESQ, DIR, k);
53
54
     };
```

2.32 Interval Tree

2.33 Interval Tree

Por Rafael Granza de Mello

Capaz de retornar todos os intervalos que intersectam [L, R]. **L e R inclusos** Contém funções insert(L, R, ID), erase(L, R, ID) , overlaps(L, R) e find(L, R, ID). É necessário inserir e apagar indicando tanto os limites quanto o ID do intervalo.

- Complexidade de tempo: O(N * log(N)).

Podem ser usadas as operações em Set:

```
- insert() - erase() - upper bound() - etc
  #include <ext/pb ds/assoc container.hpp>
   #include <ext/pb ds/tree policy.hpp>
   using namespace gnu pbds;
3
   struct interval{
5
       long long lo, hi, id;
6
7
       bool operator <(const interval& i) const{
            return lo < i.lo || (lo == i.lo && hi < i.hi) || (lo == i.lo && hi == i.hi
8
               \&\& id < i.id);
9
        }
10
   };
   template < class CNI, class NI, class Cmp Fn, class Allocator >
11
12
   struct intervals node update{
        typedef long long metadata type;
13
14
        int sz = 0;
15
        virtual CNI node begin() const = 0;
16
        virtual CNI node end() const = 0;
17
        inline vector<int> overlaps(const long long l, const long long r){
18
19
            queue < CNI> q; q. push (node begin ());
20
            vector<int> vec;
21
            while (!q.empty()) {
22
                CNI it = q.front(); q.pop();
23
                if (it == node end()) continue;
24
                if (r >= (*it) -> lo && l <= (*it) -> hi) vec.push back((*it) -> id);
                CNI l it = it.get l child();
25
                long long | l max = (l it == node end())? -INF: l it.get metadata();
26
27
                if (l \max >= l) q.push(l it);
28
                if ((*it)->lo <= r) q.push(it.get r child());
29
30
            return vec;
31
        }
32
33
        inline void operator()(NI it, CNI end it){
            const long long 1 max = (it.get 1 child() == end it)? -INF:
34
                it.get\_l\_child().get\_metadata();\\
            const long long r_max = (it.get_r_child() == end_it)? -INF:
35
                it.get r child().get metadata();
36
            const cast<long long&>(it.get metadata()) = max((*it)->hi, max(l max,
               r max));
        }
37
38
   };
39
   typedef tree<interval , null_type , less<interval >, rb_tree_tag ,
       intervals node update> interval tree;
```

2.34 Sparse Table

2.35 Sparse Table

Responde consultas de maneira eficiente em um conjunto de dados estáticos. Realiza um pré-processamento para diminuir o tempo de cada consulta.

- Complexidade de tempo (Pré-processamento): O(N * $\log(N)$) - Complexidade de tempo (Consulta para operações sem sobreposição amigável): O(N * $\log(N)$) - Complexidade de tempo (Consulta para operações com sobreposição amigável): O(1) - Complexidade de espaço: O(N * $\log(N)$)

Exemplo de operações com sobreposição amigável: max(), min(), gcd(), f(x, y) = x

```
struct SparseTable {
 1
2
        int n, e;
3
        vector <vi> st;
        SparseTable(vi \& v) : n(v.size()), e(floor(log2(n)))  {
4
             \operatorname{st.assign}(e+1, \operatorname{vi}(n));
 5
 6
             for (int i = 0; i < n; i++) st [0][i] = v[i];
 7
             for (int i = 1; i \le e; i++) {
                 for (int j = 0; j + (1 << i) <= n; j++) {
8
                      st[i][j] = min(st[i-1][j], st[i-1][j+(1 << (i-1))]);
9
                 }
10
11
            }
12
        // O(log(N)) Query for non overlap friendly operations
13
        int logquery(int 1, int r) {
14
15
            int res = 2e9;
16
             for (int i = e; i >= 0; i---) {
                 if ((1 << i) <= r-l+1) {
17
18
                      res = min(res, st[i][1]);
19
                      1 += 1 << i;
20
            }
21
22
            return res;
23
24
        // O(1) Query for overlab friendly operations
        // \exp : \max(), \min(), \gcd(), f(x, y) = x
25
26
        int query(int 1, int r) {
27
            // if (1 > r) return 2e9;
28
            int i = ilogb(r-l+1);
29
            return \min(st[i][1], st[i][r - (1 << i) + 1]);
30
        }
31
   };
```

2.36 Disjoint Sparse Table

2.37 Disjoint Sparse Table

Resolve Query de range para qualquer operação associativa em **O(1)**.

Pré-processamento em **O(Nlog(N))**

```
struct dst{
 1
 2
        const int neutral = 1;
 3
        \#define comp(a, b) (a | b)
        vector < vector < int >> t;
 4
        dst(vi v){
 5
 6
             int n, k, sz = v.size();
 7
             for (n = 1, k = 0; n < sz; n <<= 1, k++);
                 t.\,assign\left(\,k\,,\ vector\!<\!\!\mathbf{int}\!>\!\!(n\,)\,\right);
 8
 9
             for (int i = 0; i < n; i++)
                  t[0][i] = i < sz ? v[i] : neutral;
10
11
             for(int j = 0, len = 1; j \le k; j++, len <<= 1) 
                  for(int s = len; s < n; s += (len << 1)) {
12
                      t[j][s] = v[s]; t[j][s-1] = v[s-1];
13
                      for(int i = 1; i < len; i++) {
14
                           t[j][s+i] = comp(t[j][s+i-1], v[s+i]);
15
16
                           t[j][s-1-i] = comp(v[s-1-i], t[j][s-i]);
17
                 }
18
```

3 String

3.1 Aho-Corasick

3.2 Aho-Corasick

Constrói uma estrutura de dados semelhante a um trie com links adicionais e, em seguida, constrói uma máquina de estados finitos (autômato). Útil para pattern matching de um set de strings em um texto.

Complexidade de tempo: O(|S|+|T|), onde |S| é o somatório do tamanho das strings e |T| é o tamanho do texto

```
const int K = 26;
 1
 2
 3
   struct Vertex {
        int next[K], p = -1, link = -1, exi = -1, go[K], cont = 0;
 4
        bool term = false;
 5
 6
        vector < int > idxs;
7
        char pch;
 8
        Vertex(int p=-1, char ch='\$') : p(p), pch(ch) 
9
             fill (begin (next), end (next), -1);
10
             fill(begin(go), end(go), -1);
11
        }
12
    };
    vector < Vertex > aho(1);
13
   void add_string(const string &s, int idx) {
14
15
        int v = 0;
        for (char ch : s) {
16
             int c = ch - 'a';
17
             if (aho[v]. next[c] = -1) {
18
19
                 aho[v]. next[c] = aho. size();
                 aho.emplace back(v, ch);
20
21
22
             v = aho[v].next[c];
23
        aho[v].term = true;
24
25
        aho[v].idxs.push back(idx);
26
   int go(int u, char ch);
27
   int get_link(int u) {
28
29
        if (aho[u].link = -1) {
              \mbox{if } (u =\!\!= 0 \ || \ aho[u].p =\!\!= 0) \ aho[u]. \, link = 0; \\
30
31
             else aho[u]. link = go(get link(aho[u].p), aho[u].pch);
32
33
        return aho[u].link;
34
   }
   int go(int u, char ch) {
35
        int c = ch - 'a';
36
37
        if (aho[u].go[c] = -1) {
             if (aho[u].next[c] != -1) aho[u].go[c] = aho[u].next[c];
38
39
             else aho [u]. go [c] = u = 0 ? 0 : go (get link(u), ch);
40
41
        return aho[u].go[c];
42
43
   int exi(int u) {
        if (aho[u]. exi != -1) return aho[u]. exi;
44
        \mathbf{int}\ v = \, \mathtt{get\_link}\,(u)\,;
45
        return aho[u]. exi = (v == 0 \mid \mid aho[v]. term? v : exi(v));
46
47
   void process (const string &s) {
```

```
49
       int st = 0;
50
        for (char c : s) {
51
            st = go(st, c);
52
            for (int aux = st; aux; aux = exi(aux)) aho[aux].cont++;
53
        for (int st = 1; st < aho_sz; st++) {
54
            if (!aho[st].term) continue;
55
56
            for (int i : aho[st].idxs) {
                // Do something here
57
58
                  / idx i ocurs + aho[st].cont times
                h[i] += aho[st].cont;
59
60
            }
61
        }
62
   }
```

3.3 Hashing

3.4 Hashing

Hashing para testar igualdade de duas strings A função ***range(i, j)*** retorna o hash da substring nesse range. Pode ser necessário usar pares de hash para evitar colisões.

* Complexidade de tempo (Construção): O(N) * Complexidade de tempo (Consulta de range): O(1)

```
1
   struct hashing {
2
       const long long LIM = 1000006;
3
       long long p, m;
4
       vector<long long> pw, hsh;
5
       hashing (long long _p, long long _m) : p(_p), m(_m) {
6
          pw.resize(LIM);
7
          hsh.resize(LIM);
8
          pw[0] = 1;
9
          for (int i = 1; i < LIM; i++) pw[i] = (pw[i-1] * p) % m;
10
       void set string(string& s) {
11
          hsh[\overline{0}] = s[0];
12
          13
14
15
       long long range(int esq, int dir) {
16
          long long ans = hsh[dir];
           if(esq > 0) ans = (ans - (hsh[esq-1] * pw[dir-esq+1] % m) + m) % m;
17
18
          return ans;
19
       }
20
   };
```

3.5 Trie

3.6 Trie

Estrutura que guarda informações indexadas por palavra. Útil encontrar todos os prefixos inseridos anteriormente de uma palavra específica.

* Complexidade de tempo (Update): O(|S|) * Complexidade de tempo (Consulta de palavra): O(|S|)

```
1  struct trie {
2       map<char, int> trie [100005];
3       int value [100005];
4       int n nodes = 0;
```

```
5
        void insert(string &s, int v){
 6
            int id = 0;
 7
            for (char c: s){
 8
              if(!trie[id].count(c)) trie[id][c] = ++n_nodes;
9
              id = trie[id][c];
10
11
            value[id] = v;
12
        int get value(string &s){
13
14
            int id = 0;
            for (char c: s){
15
              if (! trie [id]. count(c)) return -1;
16
              id = trie[id][c];
17
18
19
            return value [id];
20
        }
21
    };
```

3.7 Prefix Function

3.8 Prefix Function

Para cada prefixo k de uma dada string s, calcula o maior prefixo que tambem é sufixo de k.

Seja n o tamanho do texto e m o tamanho do padrão.

3.9 KMP

String matching em O(n + m).

3.10 Autômato de KMP

String matching em O(n) com O(m) de pré-processamento.

3.11 Prefix Count

Dada uma string s, calcula quantas vezes cada prefixo de s aparece em s com complexidade de tempo de O(n).

```
vector <int> pi(string &s) {
                                                             if (s[i] = s[j]) j++;
1
                                                 5
2
       vector < int > p(s.size());
                                                             p[i] = j;
       for (int i = 1, j = 0; i <
                                                         }
3
           s.size(); i++) {
                                                         return p;
            while (j > 0 \&\& s[i] != s[j]) j 9 | 
4
               = p[j-1];
   vector <int> pi(string &s) {
1
2
       vector < int > p(s.size());
3
       \mbox{for } (\mbox{int} \ i = 1, \ j = 0; \ i < s.\, size(); \ i+\!\!\!+) \ \{
            while (j > 0 \&\& s[i] != s[j]) j = p[j-1];
4
5
            if (s[i] = s[j]) j++;
6
            p[i] = j;
7
       return p;
```

```
}
9
10
11
   vector <int> kmp(string &s, string t) {
12
        t += '$';
        vector < int > p = pi(t), match;
13
14
        for (int i = 0, j = 0; i < s.size(); i++) {
15
            while (j > 0 \&\& s[i] != t[j]) j = p[j-1];
16
             if (s[i] = t[j]) j++;
            if (j = t.size() - 1) match.push back(i-j+1);
17
18
19
        return match;
20
   }
1
   vector <int> pi(string s) {
2
        vector < int > p(s.size());
3
        for (int i = 1, j = 0; i < s.size(); i++) {
4
             while (j > 0 \&\& s[i] != s[j]) j = p[j-1];
5
             if (s[i] = s[j]) j++;
6
            p[i] = j;
7
8
        return p;
9
   }
10
   vector <int> prefixCount(string s) {
11
12
        vector < int > p = pi(s + '\#');
13
        int n = s.size();
14
        vector \langle \mathbf{int} \rangle cnt(n+1, 0);
15
        16
        for (int i = n-1; i > 0; i--) cnt [p[i-1]] += cnt[i];
17
        for (int i = 0; i \le n; i++) cnt[i]++;
18
        return cnt;
19
   }
1
   struct AutKMP {
2
        vector <vector <int>>> nxt;
3
4
        vector <int> pi(string &s) {
5
             vector < int > p(s.size());
6
             for (int i = 1, j = 0; i < s.size(); i++) {
7
                 while (j > 0 \&\& s[i] != s[j]) j = p[j-1];
8
                 if (s[i] = s[j]) j++;
9
                 p[i] = j;
10
             }
11
            return p;
        }
12
13
14
        void setString(string s) {
15
             s += '#';
16
            nxt.assign(s.size(), vector < int > (26));
17
             vector < int > p = pi(s);
18
            for (int c = 0; c < 26; c++)
19
                 nxt[0][c] = ('a' + c = s[0]);
20
            for (int i = 1; i < s.size(); i++)
21
                 for (int c = 0; c < 26; c++)
22
                     nxt[i][c] = ('a' + c = s[i])? i+1 : nxt[p[i-1]][c];
23
        }
24
25
        vector <int> kmp(string &s, string &t) {
26
             vector < int > match;
27
             \mbox{for } (\mbox{int} \ i \, = \, 0 \, , \ j \, = \, 0 \, ; \ i \, < \, s \, . \, \mbox{size} \, (\,) \, ; \ i + \! + ) \, \, \{
28
                 j = nxt[j][s[i]-'a'];
```

3.12 Manacher

3.13 Algoritmo de Manacher

Dada uma string s de tamanho n, encontra todos os pares (i,j) tal que a substring s

i...j

seja um palindromo.

```
* Complexidade de tempo: O(N)
    struct manacher {
 1
 2
        long long n, count;
 3
         vector < int > d1, d2;
        long long solve (string &s) {
 4
 5
             n = s.size(), count = 0;
 6
             solve odd(s);
 7
             solve_even(s);
             return count;
 8
 9
10
         void solve_odd(string &s) {
             d1. resize(n);
11
             for (int i = 0, l = 0, r = -1; i < n; i++) {
12
13
                  int k = (i > r) ? 1:min(d1[l+r-i], r-i+1);
                  while (0 \le i-k \&\& i+k < n \&\& s[i-k] == s[i+k]) k++;
14
                  count += d1[i] = k--;
15
                  if (i + k > r) {
16
                       l \ = \ i \ - \ k \, ;
17
18
                       r = i + k;
19
20
             }
21
         void solve even(string &s) {
22
23
             d2. resize(n);
              for (int i = 0, l = 0, r = -1; i < n; i++) {
24
                  int k = (i > r) ? 0:min(d2[l+r-i+1], r-i+1);
25
                  while (0 \le i-k-1 \&\& i+k \le n \&\& s[i-k-1] == s[i+k]) k++;
26
                  count \,\, +\!\!= \, d2\,[\,i\,] \,\,= \,k-\!\!-\!;
27
                  if (i + k > r) {
28
29
                       1 = i - k - 1;
30
                       \mathbf{r} = \mathbf{i} + \mathbf{k} \;\; ;
31
             }
32
33
34
    } mana;
```

3.14 Lyndon

3.15 Lyndon Factorization

Strings em decomposição única em subcadeias que são ordenadas lexicograficamente e não podem ser mais reduzidas.

3.16 Duval

Gera a Lyndon Factorization de uma string

* Complexidade de tempo: O(N)

3.17 Min Cyclic Shift

Gera a menor rotação circular da string original que pode ser obtida por meio de deslocamentos cíclicos dos caracteres.

* Complexidade de tempo: O(N)

```
string min cyclic shift(string s) {
                                                 9
1
                                                                  if (s[k] < s[j]) k = i;
2
                                                 10
        s += s;
                                                                  else k++;
 3
        int n = s.size();
                                                 11
                                                                  j++;
 4
        int i = 0, ans = 0;
                                                 12
 5
        while (i < n / 2) {
                                                13
                                                              while (i \le k) i += j - k;
 6
             ans = i;
                                                14
 7
                                                 15
                                                         return s.substr(ans, n / 2);
             int j = i + 1, k = i;
             while (j < n \&\& s[k] <= s[j]) {16
 8
    vector<string> duval(string const& s) {
 1
2
        int n = s.size();
3
        int i = 0;
 4
        vector < string > factorization;
        \mathbf{while} \ (i < n) \ \{
 5
 6
             int j = i + 1, k = i;
 7
             while (j < n \&\& s[k] <= s[j]) {
 8
                 if (s[k] < s[j])
 9
                      k = i;
10
                 else
11
                      k++;
12
                 j++;
13
             \mathbf{while} (i <= k) {
14
15
                 factorization.push\_back(s.substr(i, j - k));
16
                 i += j - k;
17
             }
18
        }
19
        return factorization;
20
   }
```

3.18 Patricia Tree

3.19 Patricia Tree ou Patricia Trie

Implementação PB-DS, extremamente curta e confusa:

- Criar: patricia_tree pat; - Inserir: pat.insert("sei la"); - Remover: pat.erase("sei la"); - Verificar existência: pat.find("sei la") != pat.end(); - Pegar palavras que começam com um prefixo: auto match = pat.prefix_range("sei"); - Percorrer *match*: for(auto it = match.first; it != match.second; ++it); - Pegar menor elemento lexicográfico *maior ou igual* ao prefixo: *pat.lower_bound("sei"); - Pegar menor elemento lexicográfico *maior* ao prefixo: *pat.upper_bound("sei");

TODAS AS OPERAÇÕES EM O(|S|) **NÃO ACEITA ELEMENTOS REPETIDOS**

```
1 #include <ext/pb_ds/assoc_container.hpp>
2 #include <ext/pb_ds/trie_policy.hpp>
3
4 using namespace __gnu_pbds;
5 typedef trie < string, null_type, trie_string_access_traits <>, pat_trie_tag, trie_prefix_search_node_update> patricia_tree;
```

3.20 Suffix Array

3.21 Suffix Array

Estrutura que conterá inteiros que representam os índices iniciais de todos os sufixos ordenados de uma determinada string.

Tambem Constroi a tabela LCP(Longest common prefix).

* Complexidade de tempo (Pré-Processamento): O(|S|*log(|S|)) * Complexidade de tempo (Contar ocorrencias de S em T): O(|S|*log(|T|))

```
pair < int , int > busca (string &t , int i , pair < int , int > &range) {
        \label{eq:cond} \textbf{int} \ esq = \texttt{range.first} \ , \ dir = \texttt{range.second} \ , \ L = -1, \ R = -1;
 2
3
        \mathbf{while} \ (\mathbf{esq} \le \mathbf{dir}) \ \{
            int mid = (esq + dir)/2;
 4
            if (s[sa[mid]+i] = t[i]) L = mid;
 5
 6
            if (s[sa[mid]+i] < t[i]) esq = mid+1;
7
            else dir = mid-1;
8
        }
9
        esq = range.first, dir = range.second;
10
        while (esq \ll dir) {
            int mid = (esq + dir)/2;
11
            if (s[sa[mid]+i] = t[i]) R = mid;
12
13
            if (s[sa[mid]+i] \le t[i]) esq = mid+1;
14
            else dir = mid-1;
15
16
        return {L, R};
17
18
   // count ocurences of s on t
19
   int busca string(string &t) {
        pair < int, int > range = \{0, n-1\};
20
21
        for (int i = 0; i < t.size(); i++) {
22
            range = busca(t, i, range);
23
            if (range.first = -1) return 0;
24
25
        return range.second - range.first + 1;
26
   }
   const int MAX N = 5e5+5;
1
2
3
   struct suffix array {
 4
        string s;
        int n, sum, r, ra [MAX N], sa [MAX N], auxra [MAX N], auxsa [MAX N], c [MAX N],
5
           lcp [MAX N];
 6
        void counting sort(int k) {
            memset(c, 0, sizeof(c));
 7
            for (int i = 0; i < n; i++) c[(i + k < n)? ra[i + k] : 0]++;
 8
             \mbox{for (int $i = sum = 0$; $i < max(256, n)$; $i++$) $sum += c[i]$, $c[i] = sum - c[i]$; } 
9
10
            11
            for (int i = 0; i < n; i++) sa[i] = auxsa[i];
12
        void build sa() {
13
```

```
for (int k = 1; k < n; k <<= 1) {
14
15
              counting_sort(k);
16
              counting_sort(0);
              auxra[sa[0]] = r = 0;
17
18
              && ra[sa[i]+k] = ra[sa[i-1]+k]? r:++r;
19
              for (int i = 0; i < n; i++) ra[i] = auxra[i];
20
              if (ra[sa[n-1]] = n-1) break;
21
          }
22
23
       void build lcp() {
24
          for (int i = 0, k = 0; i < n-1; i++) {
25
              int j = sa[ra[i]-1];
26
              while (s[i+k]==s[j+k]) k++;
27
              lcp[ra[i]] = k;
28
              if (k) k--;
          }
29
30
31
       void set string(string s) {
          s = _s + '$';
32
33
          n = s.size();
34
          for (int i = 0; i < n; i++) ra[i] = s[i], sa[i] = i;
35
          build sa();
36
          build lcp();
37
          // for (int i = 0; i < n; i++) printf("%2d: %s\n", sa[i], s.c_str() +
             sa[i]);
38
39
       int operator[](int i){return sa[i];}
40
   } sa;
```

4 Paradigmas

4.1 Busca Ternaria

4.2 Busca Ternária

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas).

- Complexidade de tempo: O(log(N) * O(eval)). Onde N é o tamanho do espaço de busca e O(eval) o custo de avaliação da função.

4.3 Busca Ternária em Espaço Discreto

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas). Versão para espaços discretos.

- Complexidade de tempo: O(log(N) * O(eval)). Onde N é o tamanho do espaço de busca e O(eval) o custo de avaliação da função.

```
1
                                                  11
                                                               double mid 2 = r - step;
2
    double eval (double mid) {
                                                  12
3
        // implement the evaluation
                                                               // minimizing. To maximize use
 4
                                                                   >= to compare
                                                               if(eval(mid 1) \le eval(mid 2))
 5
                                                  14
 6
    double ternary search (double 1, double
                                                                   r = mid 2;
                                                               else l = mid 1;
                                                  15
 7
        \mathbf{int}\ k\,=\,100;
                                                  16
        \mathbf{while}(k--){
 8
                                                  17
                                                          return 1;
             double step = (l+r)/3;
 9
                                                  18
                                                      }
             double mid 1 = 1 + \text{step};
10
```

```
1
    long long eval (long long mid) {
 3
        // implement the evaluation
    }
 4
 5
    long long discrete_ternary_search(long long 1, long long r){
 6
 7
         \mathbf{long} \ \mathbf{long} \ \mathbf{ans} = -1;
 8
        r--; // to not space r
 9
         while ( l<=r ) {
             long long mid = (l+r)/2;
10
11
             // minimizing. To maximize use >= to compare
12
13
             if(eval(mid) \le eval(mid+1))
14
                  ans = mid;
15
                  r = mid-1;
             else l = mid+1;
16
17
18
        return ans;
19
    }
```

4.4 Mo

4.5 Mo

Resolve Queries Complicadas Offline de forma rápida. É preciso manter uma estrutura que adicione e remova elementos nas extremeidades de um range (tipo janela).

- Complexidade de tempo (Query offline): O(N * sqrt(N))

4.6 Mo com Update

Resolve Queries Complicadas Offline de forma rápida. Permite que existam **UPDATES PONTUAIS!** É preciso manter uma estrutura que adicione e remova elementos nas extremidades de um range (tipo janela).

- Complexidade de tempo: $O(Q * N^{(2/3)})$ typedef pair<int, int> ii; 1 int block sz; // Better if 'const'; 2 3 namespace mo{ 5 struct query { 6 int l, r, idx; 7 bool operator < (query q) const { 8 $int _l = 1/block_sz;$ 9 $int _ql = q.l/block_sz;$ **return** ii (1, (1&1? -r: r)) < ii (ql, (ql&1? -q.r: q.r));10 11 } 12 }; 13 vector < query> queries; 14 void build(int n){ 15 16 block sz = (int) sqrt(n);17 // TODO: initialize data structure 18 inline void add query(int 1, int r){ 19 20 queries.push_back({1, r, (int) queries.size()}); 21 22 inline void remove(int idx){ 23 // TODO: remove value at idx from data structure 24 25 inline void add(int idx){ 26 // TODO: add value at idx from data structure 27 28 inline int get answer(){ 29 // TODO: extract the current answer of the data structure 30 return 0; 31 } 32 33 vector<int> run() { vector < int > answers (queries.size()); 34 35 sort (queries.begin(), queries.end()); 36 int L = 0; 37 int R = -1; for (query q : queries) { 38 39 while (L > q.l) add(--L); 40 while (R < q.r) add(++R); while (L < q.1) remove (L++); 41 42while (R > q.r) remove (R--);

```
43
                answers[q.idx] = get answer();
44
45
           return answers;
46
       }
47
48
   };
   typedef pair <int, int> ii;
   typedef tuple <int, int, int> iii;
   int block_sz; // Better if 'const';
   vector<int> vec;
 4
   namespace mo{
5
6
       struct query {
7
           int l, r, t, idx;
8
           bool operator < (query q) const {
                int _l = 1/block sz;
9
10
                int _r = r/block_sz;
                int _ql = q.1/block_sz;
11
                int _qr = q.r/block_sz;
12
13
                (_ql\&1?-_qr:_qr), (_qr\&1?q.t:-q.t));
14
15
       };
       vector<query> queries;
16
17
       vector<ii> updates;
18
19
       void build(int n){
20
            block_sz = pow(1.4142*n, 2.0/3);
21
            // TODO: initialize data structure
22
23
       inline void add query(int 1, int r){
24
            queries.push_back({l, r, (int) updates.size(), (int) queries.size()});
25
       inline void add update(int x, int v){
26
27
           updates.push back(\{x, v\});
28
29
       inline void remove(int idx){
30
           // TODO: remove value at idx from data structure
31
32
       inline void add(int idx){
33
           // TODO: add value at idx from data structure
34
35
       inline void update(int 1, int r, int t){
36
           auto\& [x, v] = updates[t];
37
           if(1 \le x \&\& x \le r) remove(x);
38
           swap(vec[x], v);
39
           if(1 \le x \&\& x \le r) add(x);
40
       inline int get_answer(){
41
42
            // TODO: extract the current answer from the data structure
43
           return 0;
44
       }
45
46
       vector < int > run() {
47
            vector < int > answers (queries.size());
48
            sort(queries.begin(), queries.end());
49
           int L = 0;
50
           int R = -1;
51
           int T = 0;
52
            for (query q : queries) {
53
                while (T < q.t) update (L, R, T++);
```

```
54
                  while (T > q.t) update (L, R, -T);
                  while (L > q.1) add(--L);
55
                  \mathbf{while} \ (R < q.r) \ \mathrm{add}(++R);
56
                  while (L < q.1) remove (L++);
57
58
                  while (R > q.r) remove(R--);
                  answers [q.idx] = get_answer();
59
60
61
             return answers;
62
         }
63
   };
```

4.7 All Submasks

4.8 All Submask

Percorre todas as submáscaras de uma máscara de tamanho N

* Complexidade de tempo: $O(3^N)$

```
1 int mask;
2 for(int sub = mask; sub; sub = (sub-1) 4 }
& mask) {
```

4.9 Exponenciação de Matriz

4.10 Exponenciação de Matriz

Otimização para DP de prefixo quando o valor atual está em função dos últimos K valores já calculados. * Complexidade de tempo: $O(log(n) * k^3)$

 $\acute{\rm E}$ preciso mapear a DP para uma exponenciação de matriz.

4.11 Uso Comum

DP:

$$dp[n] = \sum_{i} i = 1^k c[i] \cdot dp[n-i]$$

Mapeamento:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ c[k] & c[k-1] & c[k-2] & \dots & c[1] & 0 \end{pmatrix}^n \times \begin{pmatrix} dp[0] \\ dp[1] \\ dp[2] \\ \dots \\ dp[k-1] \end{pmatrix}$$

4.12 Variação que dependa de **constantes** e do **índice**

Exemplo de DP:

$$dp[i] = dp[i-1] + 2 \cdot i^2 + 3 \cdot i + 5$$

Nesses casos é preciso fazer uma linha para manter cada constante e potência do índice.

Mapeamento:

4.13 Variação Multiplicativa

Exemplo de DP:

$$dp[n] = c \times \prod_{i=1}^{n} i = 1^k dp[n-i]$$

Nesses casos é preciso trabalhar com o logaritmo e temos o caso padrão:

$$\log(dp[n]) = \log(c) + \sum_{i} i = 1^{k} \log(dp[n-i])$$

Se a resposta precisar ser inteira, deve-se fatorar a constante e os valores inicias e então fazer uma exponenciação para cada fator primo. Depois é só juntar a resposta no final.

```
11 dp [100];
 1
 2
   mat T;
 3
   #define MOD 1000000007
 4
 5
 6
   mat mult(mat a, mat b) {
 7
        mat res(a.size(), vi(b[0].size()));
        for (int i = 0; i < a.size(); i++) {
 8
 9
            for (int j = 0; j < b[0].size(); j++) {
10
                 for (int k = 0; k < b.size(); k++) {
                     res[i][j] += a[i][k] * b[k][j] % MOD;
11
                     res[i][j] %= MOD;
12
13
14
15
16
        return res;
17
   }
18
19
   mat exp_mod(mat b, ll exp){
        mat res(b.size(), vi(b.size()));
20
        for (int i = 0; i < b. size(); i++) res[i][i] = 1;
21
22
23
        while (exp) {
            if(\exp \& 1) res = mult(res, b);
24
            b = mult(b, b);
25
26
            \exp /= 2;
27
28
        return res;
29
30
   // MUDA MUITO DE ACORDO COM O PROBLEMA
31
    // LEIA COMO FAZER O MAPEAMENTO NO README
```

```
33
    ll solve (ll exp, ll dim) {
34
         if(exp < dim) return dp[exp];</pre>
35
         T. assign (dim, vi (dim));
36
37
         // TO DO: Preencher a Matriz que vai ser exponenciada
38
         // T[0][1] = 1;
39
         // T[1][0] = 1;
         // T[1][1] = 1;
40
41
42
43
         mat prod = exp mod(T, exp);
44
45
         mat vec; vec.assign(dim, vi(1));
         {f for}({f int}\ i=0;\ i<{
m dim}\,;\ i++)\ {
m vec}\,[\,i\,][\,0\,]\ ={
m dp}\,[\,i\,]\,;\ //\ {
m Valores}\ {
m iniciais}
46
47
48
         mat ans = mult(prod, vec);
49
         return ans [0][0];
50
    }
```

4.14 Divide and Conquer

4.15 Divide and Conquer

Otimização para DP de prefixo quando se pretende separar o vetor em K subgrupos. É preciso fazer a função query(i, j) que computa o custo do subgrupo

i, j

. * Complexidade de tempo: O(n * k * $\log(n)$ * O(query))

4.16 Divide and Conquer com Query on demand

Usado para evitar queries pesadas ou o custo de pré-processamento. É preciso fazer as funções da estrutura **janela**, eles adicionam e removem itens um a um como uma janela flutuante.

* Complexidade de tempo: O(n * k * log(n) * O(update da janela))

```
namespace DC{
1
2
        vi dp before, dp cur;
3
        void compute(int 1, int r, int optl, int optr) {
4
            if (1 > r) return;
5
            int mid = (1 + r) >> 1;
6
            pair < ll, int > best = \{0, -1\}; // \{INF, -1\}  se quiser minimizar
7
            for (int i = optl; i \le min(mid, optr); i++) {
                best = max(best, \{(i ? dp\_before[i - 1] : 0) + query(i, mid), i\}); //
8
                    min() se quiser minimizar
9
10
            dp cur[mid] = best.first;
11
            int opt = best.second;
12
            compute(1, mid - 1, optl, opt);
13
            compute(mid + 1, r, opt, optr);
        }
14
15
16
        ll solve(int n, int k) {
            dp before.assign(n+5, 0);
17
18
            dp_{cur.assign}(n+5, 0);
19
            for (int i = 0; i < n; i++)
20
                dp before[i] = query(0, i);
```

```
21
             for (int i = 1; i < k; i++) {
22
                  compute (0, n - 1, 0, n - 1);
23
                  dp before = dp cur;
24
25
             return dp before [n-1];
26
         }
27
    };
1
    namespace DC{
2
         struct range { // eh preciso definir a forma de calcular o range
              vi freq;
 3
 4
              11 \text{ sum} = 0;
 5
             int 1 = 0, r = -1;
 6
             void back_l(int v){ // Mover o 'l' do range para a esquerda
 7
                  sum += freq[v];
8
                  freq[v]++;
9
                  1--;
10
             void advance r(int v) { // Mover o 'r' do range para a direita
11
12
                  sum += freq[v];
13
                  freq[v]++;
14
                  r++;
15
             void advance l(int v) { // Mover o 'l' do range para a direita
16
17
                  freq |v| --;
                  sum = freq[v];
18
19
                  1++;
20
21
             void back r(int v) { // Mover o 'r' do range para a esquerda
22
                  freq[v]--;
23
                  sum = freq[v];
24
25
             void clear(int n){ // Limpar range
26
27
                  1 = 0; r = -1; sum = 0;
28
                  freq.assign (n+5, 0);
29
             }
30
         }s;
31
32
         vi dp before, dp cur;
         void compute(int 1, int r, int optl, int optr) {
33
34
              if (l > r) return;
35
              \mathbf{int} \ \mathrm{mid} = (1 + r) >> 1;
36
              pair < ll, int > best = \{0, -1\}; // \{INF, -1\}  se quiser minimizar
37
38
             while (s.l < optl) s.advance l(v[s.l]);
39
             while (s.l > optl) s.back l(v[s.l-1]);
             \mathbf{while}(\mathbf{s.r} < \mathbf{mid}) \ \mathbf{s.advance} \mathbf{r}(\mathbf{v}[\mathbf{s.r}+1]);
40
             \mathbf{while}(\mathbf{s.r} > \mathbf{mid}) \ \mathbf{s.back\_r}(\mathbf{v}[\mathbf{s.r}]);
41
42
43
              vi removed;
44
              for (int i = optl; i \le min(mid, optr); i++) {
                  best = \min(\text{best}, \{(i ? \text{dp before}[i-1] : 0) + \text{s.sum}, i\}); // \min() \text{ se}
45
                      quiser minimizar
46
                  removed.push back(v[s.1]);
                  s.advance l(v[s.1]);
47
48
              for (int rem: removed) s.back l(v[s.l-1]);
49
50
             dp_cur[mid] = best.first;
51
52
             int opt = best.second;
```

```
53
            compute(1, mid - 1, optl, opt);
54
            compute(mid + 1, r, opt, optr);
        }
55
56
57
        ll solve(int n, int k) {
58
            dp_before.assign(n, 0);
59
            dp_cur.assign(n, 0);
60
            s.clear(n);
            for (int i = 0; i < n; i++){
61
62
                 s.advance r(v[i]);
63
                 dp before [i] = s.sum;
64
            for (int i = 1; i < k; i++) {
65
66
                 s.clear(n);
67
                compute (0, n - 1, 0, n - 1);
                 dp before = dp_cur;
68
69
70
            return dp before [n-1];
71
        }
72
   };
```

4.17 Busca Binaria Paralela

4.18 Busca Binária Paralela

Faz a busca binária para múltiplas consultas quando a busca binária é muito pesada.

- Complexidade de tempo: $O((N+Q)\log(N) * O(F))$, onde N é o tamanho do espaço de busca, Q é o número de consultas e O(F), o custo de avaliação da função.

```
1
2
    namespace parallel binary search {
         \mathbf{typedef} \ \ \mathbf{tuple} < \mathbf{int} \ , \ \ \mathbf{int} \ , \ \ \mathbf{long} \ \ \mathbf{long} \ \ \mathbf{long} > \ \mathbf{query} \ ; \ \ // \{ value \ , \ \ \mathrm{id} \ , \ \ 1 \ , \ \ r \}
3
         vector < query > queries[1123456]; // pode ser um mapa se for muito esparso
 4
 5
         long long ans [1123456]; // definir pro tamanho das queries
 6
         long long 1, r, mid;
 7
         int id = 0;
8
         void set lim search (long long n) {
9
              1 = 0;
10
              r = n;
11
              mid = (1+r)/2;
12
         }
13
14
         void add query(long long v){
15
               queries[mid].push\_back(\{v, id++, l, r\});
16
         }
17
18
         void advance search(long long v){
19
              // advance search
20
         }
21
         bool satisfies (long long mid, int v, long long l, long long r) {
22
               // implement the evaluation
23
         }
24
25
26
         bool get ans(){
27
               // implement the get ans
28
29
```

```
30
        void parallel binary search (long long 1, long long r) {
31
32
            bool go = 1;
33
            while (go) {
34
                go = 0;
35
                int i = 0; // outra logica se for usar um mapa
36
                 for(auto& vec: queries){
37
                     advance search (i++);
38
                     for (auto q: vec) {
39
                         auto [v, id, l, r] = q;
                         if(l > r) continue;
40
41
                         // return while satisfies
42
                         if(satisfies(i, v, l, r)){
43
                              ans[i] = get ans();
44
45
                              long long mid = (i+1)/2;
46
                              queries[mid] = query(v, id, l, i-1);
                         }else{
47
                              long long mid = (i+r)/2;
48
49
                              queries[mid] = query(v, id, i+1, r);
50
51
                     vec.clear();
52
53
                }
54
            }
55
56
   } // namespace name
```

4.19 DP de Permutação

4.20 DP de Permutação

Otimização do problema do Caixeiro Viajante

* Complexidade de tempo: $O(n^2 * 2^n)$

Para rodar a função basta setar a matriz de adjacência 'dist' e chamar solve(0,0,n).

```
const int lim = 17; // setar para o maximo de itens
   long double dist[lim][lim]; // eh preciso dar as distancias de n para n
   long double dp[\lim][1 << \lim];
4
   int limMask = (1 << lim) - 1; // 2**(maximo de itens) - 1
 5
   long double solve (int atual, int mask, int n) {
 6
        if (dp[atual][mask] != 0) return dp[atual][mask];
 7
        if(mask == (1 << n) -1) return dp[atual][mask] = 0; // o que fazer quando chega
 8
           no final
9
        long double res = 1e13; // pode ser maior se precisar
10
        for (int i = 0; i < n; i ++){
11
            if (!( mask & (1<<i i ))) {
12
13
                long double aux = solve(i, mask|(1 << i), n);
14
                if(mask) aux += dist[atual][i];
15
                res = min(res, aux);
16
17
18
        return dp[atual][mask] = res;
19
   }
```

4.21 Convex Hull Trick

4.22 Convex Hull Trick

Otimização de DP onde se mantém as retas que formam um Convex Hull em uma estrutura que permite consultar qual o melhor valor para um determinado x.

Só funciona quando as retas são monotônicas. Caso não forem, usar LiChao Tree para guardar as retas

Complexidade de tempo:

- Inserir reta: O(1) amortizado - Consultar x: $O(\log(N))$ - Consultar x quando x tem crescimento monotônico: O(1)

```
const 11 INF = 1e18+18;
   bool op(ll a, ll b) {
        return a >= b; // either >= or <=
3
4
   }
5
   struct line {
6
        11 a, b;
7
        ll get(ll x) {
8
            return a * x + b;
9
10
        11 intersect(line 1) {
            return (1.b - b + a - 1.a) / (a - 1.a); // rounds up for integer only
11
12
        }
13
   };
   deque<pair<line, ll>> fila;
14
   void add line(ll a, ll b) {
15
16
        line nova = \{a, b\};
        if (!fila.empty() && fila.back().first.a == a && fila.back().first.b == b)
17
18
        while (!fila.empty() && op(fila.back().second,
            nova.intersect(fila.back().first))) fila.pop_back();
19
        11 x = fila.empty()? -INF:nova.intersect(fila.back().first);
20
        fila.emplace back(nova, x);
21
   }
22
   ll get_binary_search(ll x) {
23
        int esq = 0, dir = fila.size()-1, r = -1;
24
        while (esq \ll dir) {
            {\bf int} \ \ {\rm mid} \ = \ \left( \, {\rm esq} \ + \ {\rm dir} \, \right) / \, 2;
25
26
            if (op(x, fila[mid].second)) {
27
                 esq = mid+1;
28
                 r = mid;
29
            } else dir = mid-1;
30
31
        return fila[r].first.get(x);
32
   // O(1), use only when QUERIES are monotonic!
33
34
   ll get(ll x)  {
35
        while (fila.size() \ge 2 \&\& op(x, fila[1].second)) fila.pop front();
36
        return fila.front().first.get(x);
37
   }
```

5 Matemática

5.1 Sum of floor(n div i)

5.2 Soma do floor(n / i)

Computa o somatório de n dividido de 1 a n (divisão arredondado pra baixo).

- Complexidade de tempo: O(sqrt(n)).

```
const int MOD = 1e9 + 7 ;
                                                    9
                                                             i ---;
1
                                                    10
2
                                                             for (int j = 1; n/(j+1) >= i; j++) {
3
  long long sumoffloor(long long n){
                                                                  answer \; +\!\! = \; (\,(\,(\,n\,/\,j \; - \; n\,/\,(\,j\,+1)\,) \;\;\%
                                                    11
        long long answer = 0, i;
                                                                     MOD) * j) \% MOD;
4
        for (i = 1; i*i \le n; i++) {
                                                    12
                                                                  answer \% = MOD;
5
             answer += n/i;
6
                                                    13
             answer %= MOD;
7
                                                    14
                                                             return
                                                                      answer;
        }
                                                    15
                                                        }
```

5.3 Primos

5.4 Primos

5.5 Crivo de Eratóstenes

Computa a primalidade de todos os números até N, quase tão rápido quanto o crivo linear.

- Complexidade de tempo: O(N * log(log(N)))

Demora 1 segundo para LIM igual a $3 * 10^7$.

5.6 Miller-Rabin

Teste de primalidade garantido para números menores do que 2⁶4.

- Complexidade de tempo: O(log(N))

5.7 Teste Ingênuo

Computa a primalidade de um número N.

- Complexidade de tempo: $O(N^{(1/2)})$

```
vector < bool > sieve(int n){
                                                               if(is prime[i])
        vector < bool > is_prime(n+5, true);
                                                                \label{eq:for_sol} \mbox{for } (\mbox{long long } j \ = \ i \ * \ i \ ; \ j \ <
2
3
        is prime[0] = false;
                                                                    n; j += i
                                                   8
                                                                     is_prime[j] = false;
        is_prime[1] = false;
4
5
       long long sq = sqrt(n+5);
                                                           return is_prime;
        for (long long i = 2; i \le sq; i++) 10
                                                      }
6
1
   bool is prime(int n) {
                                                   3
                                                                if (n \% d = 0) return false;
2
        for (long long d = 2; d * d \ll n;
                                                   4
                                                           return true;
                                                      }
```

```
long long power (long long base, long long e, long long mod) {
2
        long long result = 1;
3
        base %= mod;
        while (e) {
 4
 5
             if (e & 1) result = (__int128)result * base % mod;
             base = (\_int128)base * base % mod;
 6
7
             e >>= 1;
8
9
        return result;
10
   }
11
   bool is composite (long long n, long long a, long long d, int s) {
12
13
        \mathbf{long} \ \mathbf{long} \ \mathbf{x} = \mathbf{power}(\mathbf{a}, \ \mathbf{d}, \ \mathbf{n});
14
        if (x = 1 \mid | x = n - 1) return false;
15
        for (int r = 1; r < s; r++) {
16
             x = (\_int128)x * x % n;
17
             if (x = n - 1) return false;
18
19
        return true;
20
   }
21
22
   bool miller rabin (long long n) {
23
        if (n < 2) return false;
24
        int r = 0;
        long long d = n - 1;
25
        while ((d \& 1) == 0) d >>= 1, ++r;
26
        for (int a : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) {
27
28
             if (n == a) return true;
29
             if (is composite(n, a, d, r)) return false;
30
        }
31
        return true;
32
   }
```

5.8 NTT

5.9 Numeric Theoric Transformation

Computa multiplicação de polinômino; **Somente para inteiros**.

- Complexidade de tempo: O(N * log(N))

Constantes finais devem ser menor do que 10^9 . Para constantes entre 10^9 e 10^{18} é necessário codar também [big_convolution](big_convolution.cpp).

```
typedef long long 11;
   typedef vector<ll> poly;
 3
    11 \mod [3] = \{998244353LL, 1004535809LL, 1092616193LL\};
 4
    11 \text{ root} [3] = \{102292LL, 12289LL, 23747LL\};
 5
    11 \text{ root}_1[3] = \{116744195LL, 313564925LL, 642907570LL\};
 6
7
    11 \text{ root } pw[3] = \{1LL \ll 23, 1LL \ll 21, 1LL \ll 21\};
8
9
    11 modInv(11 b, 11 m) {
         11 \ e = m - 2;
10
         ll res = 1;
11
12
        while (e) {
13
             if (e \& 1) res = (res * b) \% m;
             e /= 2;
14
             b = (b * b) \% m;
15
16
        }
```

```
17
        return res;
18
   }
19
20
   void ntt(poly &a, bool invert, int id) {
21
        11 n = (11)a.size(), m = mod[id];
22
        for (ll i = 1, j = 0; i < n; ++i) {
            ll bit = n \gg 1;
23
24
            for (; j >= bit; bit >>= 1) j == bit;
25
            i += bit;
26
            if (i < j) swap(a[i], a[j]);
27
        for (ll len = 2, wlen; len \langle = n; len \langle = 1 \rangle) {
28
29
            wlen = invert ? root_1[id] : root[id];
30
            \mathbf{for} \ (ll \ i = len; \ i < root_pw[id]; \ i <<= 1) \ wlen = (wlen * wlen) \% m;
31
            for (ll i = 0; i < n; i += len) {
32
                 11 w = 1;
33
                 for (ll j = 0; j < len / 2; j++) {
                     ll u = a[i + j], v = (a[i + j + len / 2] * w) % m;
34
                     a[i + j] = (u + v) \% m;
35
                     a[i + j + len / 2] = (u - v + m) \% m;
36
37
                     w = (w * wlen) \% m;
                 }
38
            }
39
40
        if (invert) {
41
42
            11 \text{ inv} = \text{modInv}(n, m);
43
            for (ll i = 0; i < n; i++) a[i] = (a[i] * inv) \% m;
44
        }
45
   }
46
47
   poly convolution (poly a, poly b, int id = 0) \{
        11 n = 1LL, len = (1LL + a.size() + b.size());
48
49
        while (n < len) n *= 2;
        a.resize(n);
50
51
        b.resize(n);
52
        ntt(a, 0, id);
        ntt(b, 0, id);
53
54
        poly answer(n);
55
        for (11 i = 0; i < n; i++) answer[i] = (a[i] * b[i]);
        ntt(answer, 1, id);
56
        return answer;
57
   }
58
1
    ll mod_mul(ll a, ll b, ll m){ return (__int128) a * b % m;}
2
 3
    11 ext gcd(11 a, 11 b, 11 &x, 11 &y)
        if(!b){
4
            x = 1; y = 0;
5
6
            return a;
7
        }else{
8
            11 g = ext_gcd(b, a\%b, y, x);
9
            y = a/b * x;
10
            return g;
11
        }
12
   }
13
   // convolution mod 1,097,572,091,361,755,137
14
    poly big_convolution(poly a, poly b){
15
16
        poly r0, r1, answer;
17
        r0 = convolution(a, b, 1);
18
        r1 = convolution(a, b, 2);
```

```
19
20
           11 \, s, r, p = mod[1] * mod[2];
21
           \operatorname{ext} \operatorname{gcd} (\operatorname{mod} [1], \operatorname{mod} [2], r, s);
22
23
           answer.resize(r0.size());
24
           for(int i = 0; i < (int) answer.size(); i++){
                  answer\,[\,i\,] \ = \ (mod\_mul\,(\,(\,s*mod\,[2\,]+p\,)\%p\,,\ r\,0\,[\,i\,]\,\,,\ p\,) \ + \ mod\_mul\,(\,(\,r*mod\,[1\,]+p\,)\%p\,,
25
                      r1[i], p) + p) \% p;
26
27
           return answer;
28
     }
```

5.10 Totiente de Euler

5.11 Totiente de Euler

5.12 Totiente de Euler (Phi) para um número

Computa o totiente para um único número N.

- Complexidade de tempo: $O(N^{(1/2)})$

5.13 Totiente de Euler (Phi) entre 1 e N

Computa o totiente entre 1 e N.

- Complexidade de tempo: O(N * log(log(N)))

```
vector < int > phi_1_to_n(int n)  {
1
                                                                      5
                                                                                        for (int j = i; j \ll n; j += i)
                                                                                              phi[j] — phi[j] / i;
           vector < int > phi(n + 1);
3
           for (int i = 0; i \le n; i++) phi[i]
                                                                                 return phi;
           \label{eq:formula} \textbf{for} \hspace{0.2cm} (\textbf{int} \hspace{0.2cm} i \hspace{0.2cm} = \hspace{0.2cm} 2; \hspace{0.2cm} i \hspace{0.2cm} < \hspace{0.2cm} n \hspace{0.2cm} ; \hspace{0.2cm} i \hspace{0.2cm} + \hspace{0.2cm} ) \hspace{0.2cm} \textbf{if}
                                                                      9
                                                                          }
4
                (phi[i] == i) {
    int phi(int n) {
                                                                      7
                                                                                        }
1
2
           int result = n;
                                                                      8
3
           for (int i = 2; i*i \le n; i++) {
                                                                      9
                                                                                 if (n > 1) result -= result / n;
                 if (n \% i = 0) {
4
                                                                                 return result;
                                                                     10
5
                        while (n % i == 0) n /= i; 11
6
                        result —= result / i;
```

5.14 Exponenciação Modular Rápida

5.15 Exponenciação modular rápida

Computa $(base^exp)\%mod$. - Complexidade de tempo: O(log(exp)). - Complexidade de espaço: O(1)

```
11 exp_mod(11 base, 11 exp){
                                                           b = (b * b) \% MOD;
                                               5
1
2
       11 b = base, res = 1;
                                               6
                                                           \exp /= 2;
3
                                               7
       while (exp) {
                                                      }
            if(exp \& 1) res = (res * b) \%
4
                                               8
                                                      return res;
                                                  }
```

5.16 Eliminação Gaussiana

5.17 Eliminação Gaussiana

Método de eliminação gaussiana para resolução de sistemas lineares.

- Complexidade de tempo: $O(n^3)$.

Dica: Se os valores forem apenas 0 e 1 o algoritmo [gauss_mod2](gauss_mod2.cpp) é muito mais rápido.

```
const double EPS = 1e-9;
    const int INF = 2; // it doesn't actually have to be infinity or a big number
 2
 3
 4
    int gauss (vector < vector < double > > a, vector < double > & ans) {
5
        int n = (int) a.size();
 6
        int m = (int) a[0]. size() - 1;
7
8
        vector < int > where (m, -1);
        for (int col=0, row=0; col \le w \le row \le n; ++col) {
9
             int sel = row;
10
11
             for (int i=row; i<n; ++i)
                  if (abs (a[i][col]) > abs (a[sel][col]))
12
13
                      sel = i;
             if (abs (a[sel][col]) < EPS)
14
                 {\bf continue}\ ;
15
16
             for (int i=col; i<=m; ++i)
                 swap (a[sel][i], a[row][i]);
17
18
             where [col] = row;
19
20
             for (int i=0; i< n; ++i)
21
                  if (i != row) {
22
                      double c = a[i][col] / a[row][col];
23
                      \quad \textbf{for} \ (\textbf{int} \ j{=}col\ ; \ j{<}\!\!=\!\!m;\ +\!\!+\!\!j\ )
24
                           a[i][j] = a[row][j] * c;
                 }
25
26
             ++row;
27
        }
28
29
        ans.assign (m, 0);
30
        for (int i=0; i < m; ++i)
31
             if (where [i] != -1)
32
                  ans [i] = a[where [i]][m] / a[where [i]][i];
33
        for (int i=0; i < n; ++i) {
34
             double sum = 0;
35
             for (int j=0; j < m; ++j)
36
                 sum += ans[j] * a[i][j];
37
             if (abs (sum - a[i][m]) > EPS)
38
                 return 0;
39
        }
40
        for (int i=0; i < m; ++i)
41
             if (where [i] == -1)
42
43
                 return INF;
44
        return 1;
45
    }
    const int N = 105;
 1
 2
    const int INF = 2; // tanto faz
 3
   // n -> numero de equações, m -> numero de variaveis
```

```
// a[i][j] para j em [0, m - 1] \rightarrow coeficiente da variavel j na iesima equação
   // a[i][j] para j == m -> resultado da equação da iesima linha
   // ans -> bitset vazio, que retornara a solucao do sistema (caso exista)
   int gauss (vector<br/>bitset<N>>a, int n, int m, bitset<N>& ans) {
9
       vector < int > where (m, -1);
10
        for (int col = 0, row = 0; col < m && row < n; col++) {
11
12
            for (int i = row; i < n; i++){
                if (a[i][col]) {
13
14
                    swap (a[i], a[row]);
15
                    break;
16
17
            if (!a[row][col]) continue;
18
19
            where [col] = row;
20
21
            for (int i = 0; i < n; i++){
22
                if (i != row && a[i][col]) a[i] ^= a[row];
23
24
            row++;
25
        }
26
27
        for (int i = 0; i < m; i++){
28
            if (where [i] != -1) {
29
                ans[i] = a[where[i]][m] / a[where[i]][i];
30
31
        for (int i = 0; i < n; i++){
32
33
            int sum = 0;
34
            for (int j = 0; j < m; j++){
35
                sum += ans[j] * a[i][j];
36
            if (abs(sum - a[i][m]) > 0) return 0; // Sem solucao
37
        }
38
39
40
        for (int i = 0; i < m; i++){
            if (where [i] = -1) return INF; // Infinitas solucoes
41
42
       return 1; // Unica solucao (retornada no bitset ans)
43
44 }
```

5.18 Inverso Modular

5.19 Modular Inverse

The modular inverse of an integer a is another integer x such that a * x is congruent to 1 (mod MOD).

5.20 Modular Inverse

Calculates the modular inverse of a.

Uses the [exp_mod](/Matemática/Exponenciação%20Modular%20Rápida/exp_mod.cpp) algorithm, thus expects MOD to be prime.

^{*} Time Complexity: O(log(MOD)). * Space Complexity: O(1).

5.21 Modular Inverse by Extended GDC

Calculates the modular inverse of a.

Uses the [extended_gcd](/Matemática/GCD/extended_gcd.cpp) algorithm, thus expects MOD to be coprime with a.

Returns -1 if this assumption is broken.

* Time Complexity: O(log(MOD)). * Space Complexity: O(1).

5.22 Modular Inverse for 1 to MAX

Calculates the modular inverse for all numbers between 1 and MAX.

expects MOD to be prime.

* Time Complexity: O(MAX). * Space Complexity: O(MAX).

5.23 Modular Inverse for all powers

Let b be any integer.

Calculates the modular inverse for all powers of b between b^0 and b^MAX.

Needs you calculate beforehand the modular inverse of b, for 2 it is always (MOD+1)/2.

expects MOD to be coprime with b.

* Time Complexity: O(MAX). * Space Complexity: O(MAX).

```
11 inv [MAX];
                                                   5
                                                           for (int i = 2; i < MAX; i++)
1
                                                   6
                                                                inv[i] = m - (m/i) * inv[m\%i] \%
2
3
   void compute inv(const 11 m=MOD) {
       \operatorname{inv}[1] = 1;
                                                      }
4
1
   const 11 INVB = (MOD + 1) / 2; // Modular inverse of the base, for 2 it is
       (MOD+1)/2
2
   ll inv[MAX]; // Modular inverse of b^i
3
4
   void compute inv() {
5
        inv[0] = 1;
6
7
        for(int i = 1; i < MAX; i++)
             \operatorname{inv}[i] = \operatorname{inv}[i-1] * \operatorname{INVB} \% \operatorname{MOD};
8
9
   }
   ll inv(ll a) { return exp mod(a,
                                                          MOD-2); 
  int inv(int a) {
                                                           if (g == 1) return (x \% m + m) \% m;
                                                   4
1
2
                                                           return -1;
3
        int g = extended_gcd(a, MOD, x, y); 6 |
```

5.24 GCD

5.25 Máximo divisor comum

5.26 Algoritmo de Euclides

Computa o Máximo Divisor Comum (MDC em português; GCD em inglês).

- Complexidade de tempo: O(log(n))

Mais demorado que usar a função do compilador C++ __gcd(a,b).

5.27 Algoritmo de Euclides Estendido

Algoritmo extendido de euclides que computa o Máximo Divisor Comum e os valores x e y tal que a * x + b * $y = \gcd(a, b)$.

- Complexidade de tempo: O(log(n))

```
long long gcd(long long a, long long b) \{ return (b = 0) ? a : gcd(b, a\%b); \}
1
  int extended_gcd(int a, int b, int& x,
                                                         tie(y, y1) = make\_tuple(y1, y -
                                                             q * y1);
      int& y) {
                                                         tie(a, b) = make tuple(b, a - q)
2
       x = 1, y = 0;
                                              8
       int x1 = 0, y1 = 1;
3
                                                             * b);
                                              9
                                                     }
4
       while (b) {
5
           int q = a / b;
                                                     return a;
6
           tie(x, x1) = make\_tuple(x1, x-11)
               q * x1);
1
   11 extended gcd(11 a, 11 b, 11& x, 11&
                                                             y, x);
      y) {
                                                         y = a / b * x;
2
       if(b = 0)
                                              7
                                                         return g;
3
           x = 1; y = 0; return a;
                                              8
                                                     }
                                                }
4
       }else{
5
           11 g = \text{extended } \gcd(b, a \% b,
```

5.28 Teorema do Resto Chinês

5.29 Teorema do Resto Chinês

```
Resolve em O(n * log(n)) o sistema **(x = rem
```

i% modi)** para i entre *0* e *n*

5.30 Generalizado!!! Retorna -1 se a resposta não existir

```
6
            y = a / b * x;
7
            return g;
        }
 8
9
   }
10
   ll crt (vector < ll > rem , vector < ll > mod ) {
11
12
        int n = rem. size();
13
        if(n = 0) return 0;
          _{\text{int}128 \ \text{ans} = \text{rem}[0]}, m = \text{mod}[0];
14
15
        for(int i = 1; i < n ; i++) 
16
            11 x , y;
            17
            if ((ans - rem[i]) \% g != 0) return -1;
18
            ans = ans + (\_int128)1* (rem[i] - ans) * (m / g) * y;
19
20
            m = (\_int128) (mod[i] / g) * (m / g) * g;
21
            ans = (ans \% m + m)\%m;
22
23
       return ans;
24
```

5.31 Fatoração

5.32 Fatoração

5.33 Fatoração Simples

Fatora um número N.

- Complexidade de tempo: $O(\sqrt{n})$

5.34 Crivo Linear

Pré-computa todos os fatores primos até MAX. Utilizado para fatorar um número N menor que MAX.

- Complexidade de tempo: Pré-processamento O(MAX) - Complexidade de tempo: Fatoraração O(quantidade de fatores de N) - Complexidade de espaço: O(MAX)

5.35 Fatoração Rápida

Utiliza Pollar-Rho e Miller-Rabin (ver em Primos) para fatorar um número N.

- Complexidade de tempo: $O(N^{1/4} \cdot log(N))$

5.36 Pollard-Rho

Descobre um divisor de um número N.

- Complexidade de tempo: $O(N^{1/4} \cdot log(N))$ - Complexidade de espaço: $O(N^{1/2})$

```
vector<int> factorize(int n) {
                                             6
                                                                n /= d;
2
        vector<int> factors;
                                             7
3
        for (long long d = 2; d * d \ll n;
                                                      if (n != 1) factors.push back(n);
                                             8
                                                     return factors;
           d++)
             while (n \% d == 0){
                                                }
4
                                            10
                   factors.push back(d);
5
```

```
namespace sieve {
 2
          const int MAX = 1e4;
          \quad \textbf{int} \ \text{lp}\left[\text{MAX}{+}1\right], \ \text{factor}\left[\text{MAX}{+}1\right];
 3
 4
          vector <int> pr;
 5
          void build() {
 6
               for (int i = 2; i \le MAX; ++i) {
 7
                     if (lp[i] = 0) {
 8
                          lp[i] = i;
9
                          pr.push back(i);
10
                     for (int j = 0; i * pr[j] <= MAX; ++j) {
11
12
                           lp[i * pr[j]] = pr[j];
13
                           factor[i * pr[j]] = i;
                           \quad \textbf{if} \ (\operatorname{pr}[\, j \,] \ = \ \operatorname{lp}[\, i \,]) \ \ \textbf{break};
14
15
                     }
               }
16
17
          }
18
          vector < int > factorize (int x) {
               if (x < 2) return \{\};
19
20
                vector < int > v;
21
               for (int lpx = lp[x]; x >= lpx; x = factor[x]) v.emplace back(lp[x]);
22
               return v;
23
          }
24
    }
    long long mod mul(long long a, long long b, long long m) {
1
 2
           return (__int128)a * b % m;
3
    }
 4
    long long pollard rho(long long n) {
 6
       auto f = [n](long long x) \{ return mod mul(x, x, n) + 1; \};
7
       \textbf{long long } x = 0\,, \ y = 0\,, \ t = 30\,, \ prd = 2\,, \ i = 1\,, \ q\,;
       while (t++\% 40 | | _{-gcd(prd, n)} = 1) {
 8
9
          if (x = y) x = ++i, y = f(x);
10
          \mathbf{if} \ \left( \left( \mathbf{q} = \mathbf{mod}_{\mathbf{mul}}(\mathbf{prd} \ , \ \mathbf{max}(\mathbf{x}, \mathbf{y}) \ - \ \mathbf{min}(\mathbf{x}, \mathbf{y}) \ , \ \mathbf{n} \right) \right) \right) \ \mathbf{prd} \ = \ \mathbf{q} \ ;
11
          x = f(x), y = f(f(y));
12
13
       return _{gcd}(prd, n);
14
    }
                                                           6
    // usa miller_rabin.cpp!! olhar em
                                                                    if (miller_rabin(n)) return {n};
                                                           7
         matematica/primos
                                                                    long long x = pollard rho(n);
                                                                    auto l = factorize(x), r =
        usa pollar rho.cpp!! olhar em
                                                           8
                                                                         factorize(n / x);
         matematica/fatoracao
                                                           9
 3
                                                                    1.insert(l.end(), all(r));
    vector < long long > factorize (long long
                                                          10
                                                                    return 1;
                                                               }
                                                          11
         n) {
 5
          if (n = 1) return \{\};
```

5.37 FFT

5.38 Transformada rápida de Fourier

Computa multiplicação de polinômio.

- Complexidade de tempo (caso médio): O(N * log(N)) - Complexidade de tempo (considerando alto overhead): $O(n*log^2(n)*log(log(n)))$

Garante que não haja erro de precisão para polinômios com grau até $3 * 10^5$ e constantes até 10^6 .

```
typedef complex<double> cd;
   typedef vector < cd > poly;
2
   const double PI = acos(-1);
3
4
   void fft(poly& a, bool invert = 0){
5
6
        int n = a.size(), log_n = 0;
7
        \mathbf{while}((1 << \log_n) < n) \log_n++;
8
9
        for (int i = 1, j = 0; i < n; ++i)
10
            int bit = n >> 1;
            \mathbf{for}(\ ;\ j>=\ \mathrm{bit}\,;\ \mathrm{bit}>>=1)\ j-=\ \mathrm{bit}\,;
11
            j += bit;
12
13
            if (i < j) swap(a[i], a[j]);
14
        }
15
16
        double angle = 2*PI/n * (invert ? -1 : 1);
17
        poly root (n/2);
        for (int i = 0; i < n/2; ++i) root [i] = cd(cos(angle*i), sin(angle*i));
18
19
        for (long long len = 2; len \leq n; len \leq 1) {
20
21
            long long step = n/len;
22
            long long aux = len / 2;
23
            for (long long i = 0; i < n; i+=len)
24
                 for (int j = 0; j < aux; ++j)
                     cd\ u = a[i+j],\ v = a[i+j+aux]*root[step*j];
25
                     a[i+j] = u + v;
26
27
                     a[i+j+aux] = u - v;
28
                 }
29
30
        if(invert) for(int i = 0; i < n; ++i)
31
            a[i] /= n;
32
   }
33
   vector < long long> convolution (vector < long long>& a, vector < long long>& b) {
34
        int n = 1, len = a.size() + b.size();
35
36
        \mathbf{while}(n < len) n <<= 1;
37
        a.resize(n); b.resize(n);
38
        poly fft_a(a.begin(), a.end()); fft(fft_a);
39
        poly fft_b(b.begin(), b.end()); fft(fft_b);
40
41
        poly c(n);
42
        for (int i = 0; i < n; ++i) c[i] = fft a[i] * fft b[i];
        fft(c, 1);
43
44
45
        vector < long long > res(n);
        for(int i = 0; i < n; ++i) res[i] = round(c[i].real()); // res = c[i].real();
46
            se for vector de double
        // while (size (res) > 1 \&\& res.back() == 0) res.pop_back(); // apenas para
47
            quando os zeros direita nao importarem
48
        return res;
49 }
```