

Data Science Project Report

Sales Data Analysis and Forecasting/Prediction

Section 1: Introduction:

This Sales dataset comprises sales information, including product details, quantities, and financial aspects. The goal is to provide a comprehensive analysis, uncovering patterns and trends that can inform strategic business decisions.

Data Overview:

The dataset encompasses **290,514 entries and 12 columns**.

Key columns include:

- DistributorCode & DistributorName: Unique identifier and name of the distributor.
- ClientCode & ClientName: Unique identifier and name of the client or store.
- BrickName: A detailed location or category identifier.
- Product & SKU: Product details, with SKU offering a granular identifier.
- InvoiceDate: Date of the transaction.
- Units, Bonus, Discount: Quantities and financial aspects of the transaction.
- ValueNp (Net Profit): Total revenue from sales.

:	2 df_order.head()											
	DistributorCode	DistributorName	ClientCode	ClientName	BrickName	Product	SKU	InvoiceDate	Units	Bonus	Discount	ValueNp
0	2715	Premier Agencies - HYDERABAD	3129643	STAR MEDICAL STORE/HIRABAD/HIRABAD- HIRABAD-AZA	HIRABAD- HIRABAD- AZAD MEEZAN MASJID HIRABAD	Prod-NS	Prod- NS- Tab	4/1/2017		0	0.0	97.75
1	2715	Premier Agencies - HYDERABAD	1301969	BHITAI MEDICAL STORE/BIHAR COLONY HOSRI/HOSRI	HOSRI- HOSRI- BIHAR COLONY HOSRI	Prod-NS	Prod- NS- Tab	4/1/2017	3	0	0.0	293.25
2	2715	Premier Agencies - HYDERABAD	1301971	SARFARAZ MEDICAL STORE/HOSRI PUL PAR/HOSRI-HOS	HOSRI- HOSRI- HOSRI PULL PAR	Prod-NS	Prod- NS- Tab	4/1/2017	2	0	0.0	195.50
3	2715	Premier Agencies - HYDERABAD	1466465	MEHRAN MEDICAL STORE/HOSRI PUL PAR/HOSRI-HOSRI	HOSRI- HOSRI- HOSRI PULL PAR	Prod-NS	Prod- NS- Tab	4/1/2017	2	0	0.0	195.50
4	2715	Premier Agencies - HYDERABAD	1301976	RANA MUKESH MEDICAL STORE/HOSRI PUL PAR/HOSRI	HOSRI- HOSRI- HOSRI PULL PAR	Prod-NS	Prod- NS- Tab	4/1/2017		0	0.0	97.75

Section 2: Exploratory Data Analysis

1. Product Wise Analysis:

• Products Distribution in Cities:

Products Distribution in Bricks:

2. Distributor Wise Analysis:

• Product Sales for Each Distributor:

• Brick Wise Analysis for Each Distributor:

Yearly Sales for Each Distributor:

'Premier Agencies HYDERABAD' had a substantial increase in sales from 2016 to 2017.

3. Brick Analysis:

• Top 10 Bricks by Sales:

4. Yearly Sales Trends for Each City:

Section 3: Data Preprocessing:

1. Handling DateTime:

Began by converting the 'InvoiceDate' column to a datetime format to facilitate temporal analysis.

2. Time Series Analysis:

Plotted the trends of 'ValueNp,' 'Discount,' and 'Units' over time to identify any patterns or anomalies.

Trend of ValueNp Over Time reveals overall sales trends.

• Trend of Discount Over Time showcases variations in discount patterns.

• Trend of Units Over Time illustrates fluctuations in product units sold.

3. Seasonal Decomposition:

We performed seasonal decomposition using the additive model to identify underlying trends, seasonality, and residuals. The decomposition helps discern patterns in the data.

4. Monthly Sales Analysis:

• Monthly sales were analyzed to uncover patterns and trends over the two-year period.

Contribution of Each Month to Overall Sales

Section 4: Feature Engineering for Prediction Purpose:

1. Min-Max Scaling:

Applied Min-Max scaling to three columns ('Units,' 'Discount,' 'ValueNp') to bring them to a standard scale. Visualizations of the original and scaled distributions are presented.

2. Encoding Categorical Features:

Categorical features such as 'DistributorName,' 'Product,' 'SKU,' 'ClientName,' and 'BrickName' were encoded for model compatibility.

3. Drop Unnecessary Columns and Final Dataset:

Columns like 'InvoiceDate,' 'ValueNp,' 'Discount,' and 'Units' were dropped to streamline the dataset for modeling purposes.

```
dropping categorical columns
[]
      2 drop = ['DistributorName','ClientCode', 'ClientName', 'BrickName', 'Product', 'SKU', 'Bonus']
      3 df_order = df_order.drop(columns=drop, inplace=False)
0
      2 drop = ['InvoiceDate', 'ValueNp', 'Discount', 'Units']
      3 df_order = df_order.drop(columns=drop, inplace=False)
      5 df_order.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 290514 entries, 0 to 290513
    Data columns (total 5 columns):
     # Column
                              Non-Null Count
                                                  Dtype
     0 DistributorCode 290514 non-null int64
1 Product_encoded 290514 non-null int64
      2 SKU encoded
                               290514 non-null float64
     3 ClientName_encoded 290514 non-null int64
4 BrickName_encoded 290514 non-null int64
     dtypes: float64(1), int64(4)
     memory usage: 11.1 MB
```

The dataset is now ready for model training and evaluation.

Section 5: Predictive Modeling:

The predictive modeling phase aimed to forecast future sales using a robust ensemble model. Utilized a <u>Voting Regressor</u> combining RandomForest and GradientBoosting models.

The model was trained on <u>80% dataset</u>, <u>tested on 20% dataset</u>, and evaluated using metrics such as <u>Mean Squared Error</u> (<u>MSE</u>), <u>Mean Absolute Error</u> (<u>MAE</u>), <u>and R-squared</u>. The evaluation results indicated high accuracy and reliability.

Model Evaluation Results:

```
11 print(f"R-squared: {r_squared:.4f}")
12

Mean Squared Error (MSE): 0.0000
Mean Absolute Error (MAE): 0.0003
R-squared: 0.9928
```

The predictive model's accuracy was further visualized through a scatter plot comparing actual vs. predicted values.

Predicted and Actual Scaled ValueNp values (20%):

```
Actual
                 Predicted
0
       0.221311
                  0.220446
       0.209734
                  0.209806
2
       0.207650
                  0.207605
                  0.206466
       0.206489
4
       0.208128
                  0.208001
58098
       0.206489
                  0.206479
58099
       0.205704
                  0.205704
       0.211516
                  0.211547
58101
                  0.207274
       0.207213
58102
       0.209631
                  0.209679
[58103 rows x 2 columns]
```

Section 6: SHAP Interpretation:

Employed SHAP values to interpret the model's decisions and understand the importance of features in predicting sales.

SHAP summary plots provided a global interpretation, while dependence plots showcased the impact of individual features on predictions. They helped in identifying key factors influencing sales predictions and insights into the model's decision-making process.

• SHAP Summary Plot:

Plot describes that **Units** has major impact followed by Product Types i.e., SKU

• SHAP Decision Plot:

SKU (Stock Keeping Unit)

Product

Brick Name

Client Name(Encoded)

Distributor Code

Section 7: Conclusion:

What We Explored:

We dug into a big set of sales data to understand how things work. It's like looking at sales trends, figuring out when sales are high or low, and finding patterns over time.

What We Found:

We noticed interesting things in the data, like when sales go up or down. We also checked out what happens each month and saw which months bring in the most sales.

What We Predicted:

We used cool math stuff to predict future sales. Our predictions were quite accurate, and we measured this accuracy using numbers like MSE, MAE, and R-squared.

How We Figured It Out:

We made a smart model that learned from the data. It's like having a super-smart friend who can predict what might happen next based on what happened before.

Understanding the Predictions:

We didn't stop at predictions; we also wanted to know why the model made those predictions. We uncovered the secrets behind the predictions by looking at important factors like the distributor, product, and client names.

Why It Matters:

All this isn't just about numbers; it's about helping businesses make smart decisions. By understanding sales patterns and predicting the future, we're handing over a powerful tool for making wise choices.

• The Big Picture:

In wrapping up, our journey was like solving a puzzle. We looked at data, predicted the future, and understood why. It's not just about numbers; it's about empowering businesses to make informed decisions.

End of Project — Unraveling Sales Secrets for Smart Decisions!