Fake News Detection

CSE 290T course project

- Instructor: Yang Liu
- Group members: Haoru Xiao, Hayden Chen, Jianqiu Bai,

Weihan Song, Yao Wang, Zi Li

Contents

- Introduction
- Data & Process
- Baseline Models
- · DNN
- · RNN
- · CNN
- Conclusion

Source: https://www.legalzoom.com/articles/fake-news-what-laws-are-designed-to-protect

 Introduction
 Data & Process
 Product & Baseline
 DNN
 RNN
 CNN
 Conclusion

Fake News Detection

Comparing Results

Best accuracy of traditional algorithms: 95.46% ---- logistics regression

Best accuracy of deep learning algorithms: 99.91% ----- RNN with Attention

- 20386 transactions
- Attributes & distribution:
 - o 1: unreliable
 - o 0: reliable

True news

Fake news

Zi Li

	title	author	text	label
id				
0	House Dem Aide: We Didn't Even See Comey's Let	Darrell Lucus	House Dem Aide: We Didn't Even See Comey's Let	1
1	FLYNN: Hillary Clinton, Big Woman on Campus	Daniel J. Flynn	Ever get the feeling your life circles the rou	0
2	Why the Truth Might Get You Fired	Consortiumnews.com	Why the Truth Might Get You Fired October 29,	1

Data

- Handle missing value and noise:
 - Missing value
 - (text: #39): drop
 - Author, tittle: fill default value
 - Outliers: length shorter than < 10: drop
- Train and validation split (80% : 20%):
 - Stratified
 - Shuffle

Zi Li

Baseline Models

NLP: okenizat

Tokenization
Stop Words Removal
Stemming
Lemmatization
To Lower

Baseline Models

Tokenization Stop Words Removal Stemming Lemmatization

To Lower

NLP:

Baseline Models

Feature Extraction:

Bag of Words

N-grams

Tf - idf

Baseline Models

Index	'House'
0	1
1	0
20799	0

Feature Extraction:

Bag of Words

N-grams

Tf - idf

Baseline Models

Feature Extraction:

Bag of Words

N-grams

Tf - idf

Baseline Models

Index	'House'	'dem'
0	1	1
1	0	0
20799	0	0

Feature Extraction:

Bag of Words

N-grams

Tf - idf

Baseline Models

Feature Extraction:

Bag of Words

N-grams

Tf - idf

Baseline Models

[Reference by YouTube]

Feature Extraction: Bag of Words

N-grams

Tf - idf

Baseline Models

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

 tf_{ij} = number of occurrences of i in j df_i = number of documents containing iN = total number of documents

[Reference by Wiki]

Measurement: frequency

→ relevance

Feature Extraction:

Bag of Words

N-grams

Tf - idf

Product & Data & Process Conclusion Introduction DNN **RNN** CNN **Baseline**

Baseline Models

Index	Index 'House'		 ʻzzz'
0	0*log(20799 / 100)	1*log(20799 / 123)	 1*log(20799 / 521)
1	0*log(20799 / 100)	0*log(20799 / 100)	 1*log(20799 / 520)
20799	0*log(20799 / 100)	0*log(20799 / 100)	 1*log(20799 / 258)

Feature Extraction: Bag of Words N-grams Tf - idf

Fake News Detection Haoru Xiao Hayden Chen

Baseline Models

Feature Extraction:

Bag of Words

N-grams

<u>Tf - idf</u>

Zi Li

Introduction

Product &

Baseline

DNN

Baseline Models

```
[('the', 91716),
  ('said', 79931),
  ('mr', 66051),
  ('trump', 43730),
  ('one', 38357),
  ('would', 37013),
  ('people', 34278),
  ('year', 30222),
  ('new', 29660),
  ('in', 26922)]
```

```
[('mr', 928.5925215826659),
('said', 862.4139927310313),
('the', 858.4163926949877),
('trump', 763.051045185191),
('clinton', 472.91698356645287),
('people', 429.43436830175136),
('would', 420.1967991746955),
('one', 413.1799007070279),
('president', 387.1987122968727),
('new', 382.69579627242337)]
```

Feature Extraction:

Bag of Words

N-grams

Tf - idf

Baseline Models

Classifiers:
Logistic Regression
Random Forest
Naive Bayes
SVM
KNN

Zi Li

 Fake News Detection
 Haoru Xiao
 Hayden Chen
 Jianqiu Bai
 Weihan Song
 Yao Wang

Baseline Models

====== Logistic Regression (on cv) =======

Accuracy: 0.9545673076923077

Training Time: 6.4234230518341064 seconds

====== Logistic Regression (on tf) =======

Accuracy: 0.9492788461538462

Training Time: 1.1744792461395264 seconds

Classifiers:

Logistic Regression

Random Forest

Naive Bayes

SVM

Baseline Models

====== Random Forest (on cv) ========

Accuracy: 0.8764423076923077

Training Time: 3.203977346420288 seconds

====== Random Forest (on tf) =======

Accuracy: 0.8403846153846154

Training Time: 3.1179282665252686 seconds

Classifiers:

Logistic Regression

Random Forest

Naive Bayes

SVM

Product & Introduction Data & Process DNN RNN CNN Conclusion **Baseline**

Baseline Models

====== Naieve Bayes (on cv) ========

Accuracy: 0.9098557692307693

Training Time: 4.190976142883301 seconds

====== Naieve Bayes (on tf) =======

Accuracy: 0.8793269230769231

Training Time: 3.8143389225006104 seconds

Classifiers:

Logistic Regression

Random Forest

Naive Bayes

SVM

Baseline Models

====== Support Vector Machine (on cv) =======

Accuracy: 0.9139423076923077

Training Time: 2315.0215451717377 seconds

====== Support Vector Machine (on tf) ========

Accuracy: 0.49903846153846154

Training Time: 3326.895786046982 seconds

Classifiers:

Logistic Regression

Random Forest

Naive Bayes

<u>SVM</u>

Baseline Models

====== K Nearest Neighbors (on cv) =======

Accuracy: 0.7555288461538462

Training Time: 12.049926042556763 seconds

====== K Nearest Neighbors (on tf) ========

Accuracy: 0.5692307692307692

Training Time: 12.22933292388916 seconds

Classifiers:

Logistic Regression

Random Forest

Naive Bayes

SVM

Baseline Models

Model	CV	TF	
LR	95% / 6.5s	95% / 1.2s	
RF	88% / 3.2s	88% / 3.2s	
NB	91% / 4.2s	88% / 3.8s	
SVM	91% / 6.4hr	50% / 9.2hr	
KNN	75% / 12s	57% / 12s	

Classifiers:
Logistic Regression
Random Forest
Naive Bayes
SVM
KNN

Zi Li

Baseline Models

http://127.0.0.1:5000/

Flask Web App:
HTML
CSS (Bootstrap)
JS
Python

Zi Li

DNN (Baseline)

Artificial Neural Network

 Inspired by the biological neural networks that constitute animal brains.

Zi Li

- Formed by a collection of artificial neurons
- Neurons are organized in layers.

DNN (Baseline)

hidden layer 1 hidden layer 2

Deep Neural Network

- An artificial neural network (ANN) with multiple layers between the input and output layers
- Generate compositional models where the object is expressed as a layered composition of primitives.

Zi Li

 In this project, we consider Multiple Layer Perceptions (Feedforward networks)

Yao Wang

Fake News Detection Haoru Xiao Hayden Chen Jianqiu Bai Weihan Song

DNN (Baseline)

Epoch 1/10							
16376/16376	[======]		17s	<pre>1ms/sample - loss:</pre>	0.0189	<pre>- binary_accuracy:</pre>	0.9930
Epoch 2/10							
16376/16376	[]		18s	<pre>1ms/sample - loss:</pre>	0.0211	<pre>- binary_accuracy:</pre>	0.9918
Epoch 3/10							
16376/16376	[]		16s	<pre>1ms/sample - loss:</pre>	0.0157	<pre>- binary_accuracy:</pre>	0.9940
Epoch 4/10							
16376/16376	[]		18s	<pre>1ms/sample - loss:</pre>	0.0087	<pre>- binary_accuracy:</pre>	0.9973
Epoch 5/10							
16376/16376	[]		17s	<pre>1ms/sample - loss:</pre>	0.0075	binary_accuracy:	0.9972
Epoch 6/10							
	[=====]		17s	<pre>1ms/sample - loss:</pre>	0.0099	<pre>- binary_accuracy:</pre>	0.9965
Epoch 7/10							
	[=====]		17s	1ms/sample - loss:	0.0081	<pre>- binary_accuracy:</pre>	0.9974
Epoch 8/10							
The second secon	[=====]		19s	1ms/sample - loss:	0.0039	<pre>- binary_accuracy:</pre>	0.9988
Epoch 9/10							
The second secon	[=====]		17s	1ms/sample - loss:	0.0063	<pre>- binary_accuracy:</pre>	0.9977
Epoch 10/10							
	[=====]						
4094/4094 [=] -	. 19	s 266	ius/sample – loss:	0.4479 ·	<pre>- binary_accuracy:</pre>	0.9477

Results of using three hidden layers

Fake News detection using MLP

- 1. One word embedding Layer
- Three fully connected hidden layers using Rectified Linear Unit Function (ReLU)
- One output layer using sigmoid activation function

Binary_accuracy: 94.77%

RNN

Applications: machine translation, image captioning, language modeling

- ++pros: memorize the results of previous computations and use it in the current computation
- --cons: vanishing gradient problem
- •LSTM (long short-term memory networks)[1]
- •ResNets (residual networks)[2]
- •GRU (gated-recurrent networks)[3]

LSTM

GPU: DUAL-RTX2080TI-O11G TensorFlow 2.0

	Accuracy
train	0.9745
validation	0.9735

LSTM + Attention

- +accuracy improved
- time consuming

	LSTM	Attention
train	0.9745	0.9991
val	0.9735	0.9985

Improvement for RNN

- Using pre-trained embeddings
- More STOA models, such us BERT(Bidirectional Encoder Representations from Transformers)
- Combination models, such us RNN combine CNN

Resources:

glove.840B.300d - https://nlp.stanford.edu/projects/glove/ paragram_300_sl999 - https://cogcomp.org/page/resource_view/106 wiki-news-300d-1M - https://fasttext.cc/docs/en/english-vectors.html

CNN for Sentence Classification

- Filters move in 1D space
- Preserve space information
- A global max pooling layer
- Dropout for regularization

Source: https://arxiv.org/pdf/1408.5882.pdf

CNN Results

Training finished in 80s. Test accuracy: 0.967663

Zi Li

Gradient-weighted Class Activation Mapping

- Global average of the gradients of class scores w.r.t feature maps.
- Generate CAM that has the same size as the feature map.
- Visualize as a coarse heat map

$$L_{\text{Grad-CAM}}^{c} = ReLU \underbrace{\left(\sum_{k} \alpha_{k}^{c} A^{k}\right)}_{\text{linear combination}}$$

(c) Grad-CAM 'Cat'

(h) Guided Backprop 'Dog'

(i) Grad-CAM 'Dog'

Source: https://arxiv.org/pdf/1610.02391.pdf

Fake News Detection Weihan Song Zi Li Haoru Xiao Hayden Chen Jiangiu Bai Yao Wang

october 29 2016 top five donors clinton campaig democratic candidate hillary clinton's presidentia capitalist haim saban israeli american media tyco whether american people ready connect dots in I guess jews connected dots already they grasp ag jews general jewish oligarchs particular draw nec

reopen investigation hillary clinton's use private email ser ficials come forward new details recently discovered evidence mails after new evidence discovered while director comev

thers expect hillary clinton's coronation; cern considering clinton's war driven rhe aleppo however everyone preparing war ie major threats face ever increasing desire

omes absolutely impossible do nations rise towards showdown russia she wants bac den strange change environment as wond ibly donbass ukraine the 2003 invasion cla

ook obstruction justice you see federal obstruction re well hillary clinton inner circle told federal ding cbs isn't confirms fbi found emails computer a reid november 3 2016 cbs news confirms fbi emails er handed fbi this clinton team claimed emails handed

ny copyring everything went at tracinges their data cent merly senior official nsa says probably intelligence worl t hacker collective planet they take less want want 5 ot did people – email servers – copies everything and yet ers one fbi bothered call him 6 julian assange front man s doesn' t work himself he' s manning switches lots pe c happening pacticity years so say held cone coriously

mpovich this continu N court november 2

around 2016 election r netflix ceo future includes change http https www youtube com watc light hillary clinton talks dead people whi gain mention msm latest keep operation ru

julian assange october surprise revealed 10 28 20

october surprise complacent mainstream media

ngredients research see really themicals free open source you the post hillary clinton talks to dead peop independent investigative news

ts news please share like

Conclusion

In this project, we:

- 1. Investigate different types of machine learning methods in fake news detection given the same fake news dataset.
- 2. Train a number of classical classification models as baseline model and compare their results.
- 3. Present three Deep learning methods for fake news detection and evaluate their performance.

Q&A

Thank You!