Sistemas Interactivos

Mestrado integrado em Engenharia Informática

Ficha Prática #01

José Creissac Campos jose.campos@di.uminho.pt

(v. 1.5)

Conteúdo

1	Obj	ectivos	1
2	KLM	I – Keystroke-level Model	1
	2.1	Operadores tradicionais KLM	1
	2.2	Regras para colocação do operador M	2
	2.3	Ferramentas	2
3	Exercícios		3
	3.1	KLM	3
	3.2	Perfis do Utilizador	5

1 Objectivos

- 1. Aprender e praticar KLM.
- 2. Treinar a definição de perfis de utilizador.

2 KLM – Keystroke-level Model

O KLM é um método baseado no conhecimento empírico do sistema psicomotor humano que permite analisar desempenho na realização de tarefas previamente conhecidas. O método é útil para comparar desempenho previsto de métodos de operação alternativos. Cada tarefa é dividida em operações físicas ao nível do dispositivo (premir uma tecla, mover o rato, premir o botão do rato, etc.) e a cada tipo de operador está associado um tempo de execução. Utilizam-se heurísticas para introduzir operações de "preparação mental" (pausas). Somam-se os tempos dos operadores para obter uma previsão do tempo de execução da tarefa. Na resolução desta ficha considere os operadores apresentados na Seccão 2.1 e as

Na resolução desta ficha considere os operadores apresentados na Secção 2.1 e as regras para colocação do operador de preparação mental (**M**) apresentadas na Secção 2.2.

2.1 Operadores tradicionais KLM

Code	Operation		Time	
	Key press and release (keyboard)	Best Typist (135 wpm)	0.08 seconds	
		Good Typist (90 wpm)	0.12 seconds	
		Poor Typist (40 wpm)	0.28 seconds	
v		Average Skilled Typist (55 wpm)	0.20 seconds	
K		Average Non-secretary Typist (40 wpm)	0.28 seconds	
		Typing Random Letters	0.50 seconds	
		Typing Complex Codes	0.75 seconds	
		Worst Typist (unfamiliar with keyboard)	1.20 seconds	
Р	Point the mouse to an object on screen		1.10 seconds	
В	Button press or release (mouse)		0.10 seconds	
н	Hand from keyboard to mouse or vice versa		0.40 seconds	
М	Mental preparation		1.20 seconds	
T(n)	Type string of characters		n x K seconds	
W(t)	User waiting for the system to resp			

Page 1 of 5

2.2 Regras para colocação do operador M

A partir da codificação com os operadores físicos/respostas do sistema, aplicar a regra 0 abaixo e depois iterar as regras 1 a 4 até a codificação convergir.

Regra 0 Inserir um **M** à frente de todos os **K**s que não sejam parte de argumentos¹ e de todos os **P**s que seleccionam comandos (por oposição a argumentos).

Depois, avaliar a colocação de cada M:

- **Regra 1** Se o operador que se segue a um M for considerado totalmente previsível, remover o M (por exemplo, mover o rato e clicar $PMK \rightarrow PK$).
- **Regra 2** Se uma sequência de **MK**s constitui uma unidade cognitiva (por exemplo, o nome de um comando), remover todos os **M**s excepto o primeiro (por exemplo, o comando /giphy no Discord **MKMKMKMKMKMK** → **MKKKKKK**).
- Regra 3 Se um K é um terminador redundante (por exemplo, o terminador de um comando imediatamente após o terminador de um operando), remover o M à frente do K (no exemplo anterior, se o operando é preencher os quatro digitos de um ano e executar o comando é premir enter KKKKMK² → KKKKK).
- Regra 4 Se um K termina uma string constante (por exemplo, um tab após o nome de um comando), apagar o M à frente do K; mas se o K termina uma string variável (por exemplo, um tab após um argumento) então manter o M.

2.3 Ferramentas

Para resolver os exercícios de KLM pode recorrer a uma das seguintes alternativas:

- Calculadora com funcionalidades essenciais, disponível em: http://www.di. uminho.pt/~jfc/KLMcalc/
- A ferramenta Cogulator, disponível em: http://cogulator.io/
- A ferramenta CogTool, disponível em: https://github.com/cogtool/ (irá necessitar de Java SE 6)

¹A definição original das regras tinha em consideração uma linguagem de comandos, mas pode ser generalizada para interfaces gráficas. Nesse contexto, o preenchimento de campos numéricos ou de texto de um formulário são considerados *argumentos*.

²Uma vez que o ano é considerado um argumento, não houve lugar à colocação de **M**s nos **K** que o representam, durante a aplicação da regra 0.

3 Exercícios

3.1 KLM

- 1. Considere pretende apagar um ficheiro. Considere ainda que:
 - o ficheiro e caixote do lixo estão visíveis,
 - que o cursor do rato deve terminar na posição em que inicialmente estava,
 - que a mão do utilizador já está colocada no rato e deve continuar lá no final da operação,
 - e que o utilizador é average non-secretary typist.

A alternativa de arrastar o ficheiro para o caixote do lixo pode ser caracterizada pela string **MPBMPBMP** a que corresponde um tempo total de 7,1s:

- P apontar para o ficheiro
- **B** premir o botão do rato
- P arrastar para o caixote do lixo
- B largar o botão do rato
- P apontar para a posição inicial.

Considere agora que existe uma opção no menu para apagar o ficheiro (o ficheiro deve primeiro ser seleccionado e depois a opção do menu escolhida).

- (a) Determine se a opção de utilizar o menu será mais rápida que a opção de arrastar para o caixote do lixo.
- (b) Sabendo que se pretende acrescentar um atalho (^D) à opção de apagar do menu, avalie se a sua implementação tornará a interface mais rápida.

Com base no resultado, avalie o impacto de utilizar atalhos numa interface.

- 2. Considere a Figura 1 retirada dos slides da primeira aula. Considere ainda uma interface alternativa em que os números são preenchidos em campos de *input* textuais (e posteriormente validados pelo sistema).
 - (a) Realize uma análise comparativa das duas interfaces, utilizando KLM e assumindo um utilizador "average non-secretary typist". Pode simplificar a análise considerando apenas o preenchimento de NIF e nome.
 - (b) Consegue identificar algum problema adicional na introdução do NIB?

Page 3 of 5

Figura 1: Exemplo de formulário

- 3. Considere o exemplo da inserção de publicações ilustrado nos vídeos fornecidos. Faça uma análise KLM das duas alternativas ilustradas (inserção publicação a publicação vs. inserção de até cinco publicações de cada vez). Para tal, considere:
 - a inserção de duas publicações numa lista que já ultrapassa o tamanho do éran;
 - uma scroll constant \$ de 2,6s (relembre que o botão adicionar está no fim da página);
 - os seguintes tamanhos para as strings com que os campos do formulário de cada publicação vão ser preenchidos³ (uma vez que serão iguais nas duas análises, podem até ser removidas da análise):
 - referência T(10)
 - ano T(4)
 - URL T(30)
 - item bibliográfico T(90)

³Nos vídeos está a ser utilizado *copy&paste*, pode considerar essa alternativa se preferir

- que o primeiro campo (referência) fica automaticamente seleccionado e que se pode avançar entre os campos de input com Tab;
- que o sistema demora em média 20s a responder **W(20)**.

Avalie ainda qual seria o impacto de não ter programado a navegação por Tabs e/ou a selecção automática do primeiro campo de texto.

3.2 Perfis do Utilizador

- 1. Considere que pretende desenvolver um sistema informático para um restaurante.
 - Trabalhando em grupo, definam dois elementos do grupo como os clientes alvo. Os retsantes elementos do grupo deverão então desenvolver o perfil desses clientes.
- 2. Repita agora o exercício considerando um sistema a desenvolver à sua escolha.