Assignment#4 CS207 Fall 2023

Ben Chen(12212231)

December 16, 2023

PROBLEM 1. Given the function table, design a 4-bit register with four DFF and 4X1 MUX whose mode selection inputs are S_1 and S_0 .

SOLUTION. According to the description of operations, we can derive the function table as follows

Table 1: Function Table of 4-bit Register

Mo	ode		Output			Register
S_1	S_0	A_3	A_2	A_1	A_0	Operation
0	0	A_3	A_2	A_1	A_0	No change
0	1	A_3'	A_2'	A'_1	A'_0	Complement
1	0	0	0	0	0	Reset
1	1	I_3	I_2	I_1	I_0	Load Parallel

And to design the circuit, we first connect the input wires to the port 3 of each multiplexer to load the data in parallel, and then connect the s_0 to the port 2 of each multiplexer to have the register reset, and put the output wire back to the port 1 with inverter to get the complement and port 0 to have the register unchanged of each multiplexer.

PROBLEM 2. Design a sequence generator to generate the sequence 1011110.

Solution. The bit length is 7, so we need 4 DFFs since 3 DFFs will lead to duplicate state. And we can derive the state table as follows

CLK	Z	Q_3	Q_2	Q_1	Q_0
↑	0	1	0	1	1
↑	1	0	1	0	1
↑	1	1	0	1	0
↑	1	1	1	0	1
↑	1	1	1	1	0
↑	0	1	1	1	1
↑	1	0	1	1	1

And we can derive the Karnaugh map as follows

00 00	§ 00	01	11	10
00	X	X	X	X
01	X	1	1	X
11	X	1	0	1
10	X	X	0	1

so we can derive the simplified equations as follows

$$Z = Q_3' + Q_1' + Q_0'$$

And the logic diagram will be

PROBLEM 3. Design a synchronous counter using DFFs that has the following sequence:

$$0010,0110,1001,1000,1100,1101$$

From the undesired states the counter must go back on the next clock pulse.

SOLUTION. From the sequence, we can derive the state diagram as follows

and then we can derive the state table as follows

	Presen	t State			Next	State	
Q_3	Q_2	Q_1	Q_0	Q_3	Q_2	Q_1	Q_0
0	0	1	0	0	1	1	0
0	1	1	0	1	0	0	1
1	0	0	1	1	1	0	1
1	1	0	1	1	1	0	0
1	1	0	0	1	0	0	0
1	0	0	0	0	0	1	0
0	0	0	0	0	0	1	0
0	0	0	1	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	0	1	0
0	1	0	1	0	0	1	0
0	1	1	1	0	0	1	0
1	0	1	0	0	0	1	0
1	0	1	1	0	0	1	0
1	1	1	0	0	0	1	0
1	1	1	1	0	0	1	0

And we can derive the Karnaugh maps for each DFF as follows

00 5 5 5 5 6	§ 00	01	11	10
00	0	0	0	1
01	0	0	0	0
11	0	1	0	0
10	0	1	0	0

Q3Q3 Q3Q3 00	§ 00	01	11	10
00	1	1	1	1
01	1	1	1	0
11	0	0	1	1
10	1	0	1	1

00	§ 00	01	11	10
00	0	0	0	0
01	0	0	0	1
11	0	0	0	0
10	0	1	0	0

so the simplified state equations for each DFF will be

$$Q_3(t+1) = Q_3 Q_2 Q_1' + Q_3 Q_1' Q_0 + Q_3' Q_2 Q_1 Q_0'$$

$$Q_2(t+1) = Q_3 Q_1' Q_0 + Q_3' Q_2' Q_1 Q_0'$$

$$Q_1(t+1) = Q_2' Q_0' + Q_3' Q_1' + Q_3' Q_0 + Q_3' Q_2'$$

$$Q_0(t+1) = Q_3' Q_2 Q_1 Q_0' + Q_3 Q_2' Q_1' Q_0$$

Since in DFF the excitation is equivelant to the state equation, we skip the input equations. To draw the logic diagram, we connect the input components based on the excitation to the D port of each DFF.

And the logic diagram will be like

PROBLEM 4. Design a counter with T flip-flops that goes through the following binary repeated sequence: 0, 1, 3, 7, 6, 4. Derive the input equations for the FFs. Show that when binary states 010 and 101 are considered as don't care conditions, the counter may not operate properly.

SOLUTION. From the sequence, we can derive the state diagram as follows.

and then we can derive the state table as follows

Pre	esent St	tate	N	ext Sta	ıte	JK	FF Inp	outs
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	T_2	T_1	T_0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	1	0
0	1	0	X	X	X	X	X	X
0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0	0
1	0	1	X	X	X	X	X	X
1	1	0	1	0	0	0	1	0
1	1	1	1	1	0	0	0	1

And we can derive the Karnaugh maps for each TFF as follows

5, 6	§ 00	01	11	10
0	1	0	0	X
1	0	X	1	0

If we count the don't care conditions, the simplified input equation will be

$$Q_2(t+1) = Q_2 Q_1' + Q_2' Q_1 = Q_2 \oplus Q_1$$

$$Q_1(t+1) = Q_1 Q_0' + Q_1 Q_0' = Q_1 \oplus Q_0$$

$$Q_0(t+1) = Q_2 Q_0 + Q_2' Q_0' = (Q_2 \oplus Q_0)'$$

and the state table will be turned into

Pre	sent St	tate	N	ext Sta	ıte	JK	FF Inp	outs
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	T_2	T_1	T_0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	1	0
0	1	0	1	0	1	1	1	1
0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0	0
1	0	1	0	1	0	1	1	1
1	1	0	1	0	0	0	1	0
1	1	1	1	1	0	0	0	1

From the state table we could see clearly that if we treat 010 and 101 as don't care condition, the counter will be trapped in a infinite loop between 010 and 101 when we encounter either of the states. Therefore we shall assign 011 to the next state of state 010, and 110 to that of 101 to enable the counter with

self-correction. So the state table, Kmaps and simplified equation will be

Pre	esent S	tate	N	ext Sta	ıte	JK	FF Inp	outs
$\overline{Q_2}$	Q_1	Q_0	Q_2	Q_1	Q_0	T_2	T_1	T_0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	1	0
0	1	0	0	1	1	0	0	1
0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0	0
1	0	1	1	1	0	0	1	1
1	1	0	1	0	0	0	1	0
1	1	1	1	1	0	0	0	1

5, 6	§ 00	01	11	10
0	0	0	1	0
1	1	0	0	0

5,5 5,6	§ 00	01	11	10
0	0	1	0	0
1	0	1	0	1

6,6 6,6	§ 00	01	11	10
0	1	0	0	1
1	0	1	1	0

$$Q_2(t+1) = Q_2 Q_1' Q_0' + Q_2' Q_1 Q_0$$

$$Q_1(t+1) = Q_1'Q_0 + Q_2Q_1Q_0'$$

$$Q_0(t+1) = Q_2Q_0 + Q_2'Q_0' = (Q_2 \oplus Q_0)'$$

and finally we can draw the logic diagram based on the equations

