EQUATIONS - WEEK 3

1. Equations involving polynomials

Video links

- Linear and quadratic equations
- Polynomials of degree 3 and higher

An equation of degree 2 written in standard form

$$(1.1) ax^2 + bx + c = 0$$

can be solved using the quadratic formula. We assume here that $a \neq 0$, otherwise the equation would be of degree 1.

Quadratic formula

The discriminant D of the 2nd degree equation (1.1) is defined by

$$D = b^2 - 4ac.$$

- If D < 0, then equation (1.1) has no solutions.
- If D = 0, then equation (1.1) has one solution:

$$x = -\frac{b}{2a}.$$

• If D > 0, then equation (1.1) has two solutions:

$$x = \frac{-b + \sqrt{D}}{2a}$$
 and $x = \frac{-b - \sqrt{D}}{2a}$.

The quadratic formula can be derived as follows. First multiply equation (1.1) by 4a:

$$4a^2x^2 + 4abx + 4ac = 0$$

Now bring the constant term to the right-hand side, and complete the square,

$$4a^{2}x^{2} + 4abx = -4ac$$
 \Leftrightarrow $(2ax + b)^{2} - b^{2} = -4ac$ \Leftrightarrow $(2ax + b)^{2} = b^{2} - 4ac = D.$

The left-hand side is a square, which can never be negative. So if D < 0, there are no solutions. If $D \ge 0$ we can take square roots to obtain

$$2ax + b = \sqrt{D}$$
 or $2ax + b = -\sqrt{D}$.

In both equations bring b to the right-hand side,

$$2ax = -b + \sqrt{D}$$
 or $2ax = -b - \sqrt{D}$,

and divide by a,

$$x = \frac{-b + \sqrt{D}}{2a}$$
 or $x = \frac{-b - \sqrt{D}}{2a}$.

Note that if D=0 these two solutions are the same. So in this case there is only one solution.

1

2. Equations involving rational functions and square roots

Video links

- Equations involving rational functions
- Equations involving square roots

The strategie for solving equations involving rational functions is:

- Multiply both sides of the equation by the common denominators of both the left-hand and right-hand side of the equation.
- Solve the simpler equation involving polynomials.
- Check all possible solutions in the original equation.

This can be summarized as:

Simplify, Solve and Check!

Example 2.1. We solve the equation

$$\frac{1}{x} + \frac{2}{1+x} = 2.$$

Multiply both sides of the equation by the common denominator x(1+x):

$$1 + x + 2x = 2x(1+x) \iff 2x^2 - x - 1 = 0.$$

Factor this to (2x+1)(x-1)=0 which leads to the solutions $x=-\frac{1}{2}$ and x=1. Checking both in the original equation shows that both are valid solutions.

Equations involving square roots (or other radicals):

- First try to isolate the square root (or other radical).
- Take the square (or another appropriate power) on both sides of the equation.
- Solve the simpler equation involving polynomials.
- Check all possible solutions in the original equation.

So again:

Simplify, Solve and Check!

Example 2.2. We solve the equation

$$\sqrt{x-1} + 3 = x.$$

Isolating the square root gives: $\sqrt{x-1} = x-3$. Squaring both sides of this equation leads to $x-1=(x-3)^2$ which simplifies to $x^2-7x+10=0$. Factor this to (x-2)(x-5)=0 which leads to the possible solutions x=2 or x=5. Checking both in the original equation shows that x=2 is *not* a valid solution, while x=5 is. So, x=5 is the only solution.

3

3. Overview of strategies

Video links

• Strategies for equation solving

•
$$AB = 0 \implies A = 0$$
 or $B = 0$

•
$$AB = AC \implies A = 0 \text{ or } B = C$$

•
$$A^2 = B^2 \implies A = B \text{ or } A = -B$$

•
$$|A| = |B| \implies \pm A = \pm B$$

Example 3.1.

$$(x+2)(x-6) = 0.$$

This holds whenever x + 2 = 0 or x = 6 = 0. So, the solutions are x = -2 and x = 6.

Example 3.2.

$$(x+2)^2 = (2x+1)^2.$$

This holds whenever x + 2 = 2x + 1 or x + 2 = -(2x + 1). So, the solutions are x = -1 and x = 1.

Example 3.3.

$$|x| = |2x - 1|$$
.

Distinguish between the following four possibilities:

1.
$$x = 2x - 1$$
 gives $x = 1$

2.
$$x = -(2x - 1)$$
 gives $x = \frac{1}{3}$

3.
$$-x = 2x - 1$$
 gives $x = \frac{1}{3}$

4.
$$-x = -(2x - 1)$$
 gives $x = 1$

Checking both possible solutions $x = \frac{1}{3}$ and x = 1 shows that both are valid solutions.

Alternatively, we may use that

$$|x| = \begin{cases} x & x \ge 0 \\ -x & x \le 0 \end{cases}$$
 and $|2x - 1| = \begin{cases} 2x - 1 & x \ge \frac{1}{2} \\ -(2x - 1) & x \le \frac{1}{2} \end{cases}$

and distinguish between the following three possibilities:

- (1) For $x \leq 0$ we have: -x = -(2x 1). This leads to x = 1 which is not on
- the interval $(-\infty, 0]$. (2) For $0 \le x \le \frac{1}{2}$ we have: x = -(2x 1). This leads to $x = \frac{1}{3}$ which is on the interval $\left[0, \frac{1}{2}\right]$.
- (3) For $x \ge \frac{1}{2}$ we have: x = 2x 1. This leads to x = 1 which is on the interval $\left[\frac{1}{2},\infty\right)$.

Again, we conclude that $x = \frac{1}{3}$ and x = 1 are the only solutions.