

EKSAMEN I MNKKJ 250, KVANTITATIV ANALYSE (3 vekttall)

Tirsdag 11. desember 2001 kl. 0900 - 1400.

Tillatte hjelpemidler: Lommekalkulator. Alle oppgaver skal besvares. Sensurfrist 5. januar 2002.

DATA (for alle oppgavene): Løselighetsproduktene for $Cu(OH)_2$, $Ni(OH)_2$, $Fe(OH)_2$ og $Fe(OH)_3$ er hhv. $1.6\cdot10^{-19}$, $6.6\cdot10^{-18}$, $8.0\cdot10^{-16}$ og $4.0\cdot10^{-38}$. Standard redokspotensialene for reaksjonene $Ni^{2^+} + 2e^- = Ni$ og $Cu^{2^+} + 2e^- = Cu$ er hhv. -0.250 V og +0.337 V. Likevektskonstanten for reaksjonen $NH_3 + H_2O = NH_4^+ + OH^-$ er $1.76\cdot10^{-5}$. Vannets ioneprodukt settes lik $1.0\cdot10^{-14}$.

Oppgave 1.

En vandig løsning inneholder ca 0,01 M toverdig kobber, ca 0,01 M toverdig nikkelioner, og jern i blanding av toverdig og treverdig der totalt jern er ca 0,01 M. Det skal utarbeides en analysemetode for å bestemme konsentrasjonen av disse fire komponentene. Det sees i første omgang bort fra at andre stoffer som kan interferere er til stede.

- a. Forsøksvis bestemmes kobber elektrogravimetrisk, nikkel gravimetrisk, totalt jern gravimetrisk, toverdig jern ved en redokstitrering. Treverdig jern beregnes deretter som en differens. Skisser hvordan disse bestemmelsene utføres.
- b. Hvordan hindrer man at de fire ovenstående ioneslag ikke interfererer gjensidig i analysen? Gi mest mulig konkret informasjon om dette ut fra dataene nedenfor.
- c. Gjør rede for hvilke andre stoffer som kan interferere ved ovennevnte analyse.
- d. Det skal nå utarbeides en alternativ prosedyre for analyse av disse fire komponentene. Denne skal i størst mulig grad bygge på andre kjemiske prinsipper, slik at den egner seg for en uavhengig kvalitetssikring. Skisser en slik alternativ metode.
- e. Gjør rede for hvilke andre stoffer som kan interferere ved bruk av den alternative metoden.
- f. Forsøk å vurdere hvilken av de to metodene som vil være best egnet som primær metode.

Oppgave 2.

- a. Gi en oversikt over de feilkilder man har i gravimetrisk analyse.
- b. Vurder spesielt feilkilder ved gravimetrisk bestemmelse av klorid i en løsning der forskjellige andre stoffer kan være til stede.

Oppgave 3.

Gi en oversikt over analysemetoder der man utnytter forskjellige oksidasjonstrinn av iod. Utdyp en av disse analysemetodene etter eget valg.

Oppgave 4.

- a. Forklar hvorfor kompleksometrisk bestemmelse av metallioner med titrering med EDTA generelt er en lite selektiv metode til å bestemme flere ulike metallioner i samme løsning.
- b. Gi et eksempel på et system der man har to slike ulike metallioner og forklar hvordan man ved maskering kan bestemme begge disse ioneslagene.

Oppgave 5.

En løsning med ca 0,01 M ammoniakk skal bestemmes med syre/basetitrering med standard 0,01 M saltsyre. Beregn pH området rundt ekvivalenspunktet som gir en titrerfeil innenfor $\pm 0,1$ %.