MATH 135: Introduction to the Theory of Sets

Jad Damaj

Fall 2022

Contents

1	Intr	oducti	on	
	1.1	August	t 25	
		1.1.1	Introduction	
		1.1.2	Basics	
2	Axi	oms an	nd Operations	
	2.1	August	t 30 [*]	
		2.1.1	Zermelo Fraenkel Axioms of Set Theory	
3	Relations and Functions			
	3.1	Septen	nber 1	
		3.1.1	Relations and Functions	
	3.2		nber 6	
			Functions and Relations	
		3.2.2	Infinite Cartesion Products	
	3.3		nber 8	
		3 3 1	Natural Numbers	

Chapter 1

Introduction

1.1 August 25

1.1.1 Introduction

Foundations of Mathematics: language, axioms, formal proofs

- We focus on the axioms in set theory
- \bullet We use ZFC (Zermelo-Fraenkel + Choice)
- \bullet There is only one primitive notion : \in
- Within the ZFC universe, everything is a set

Course Outline:

- Basic axioms
- Operations, relations, functions
- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$
- carindals
- AC
- ordinals

1.1.2 Basics

Principle of Extensionality: Two sets A, B are the same \leftrightarrow they have the same elements $\forall x (x \in A \leftrightarrow x \in B)$ **Example 1.1.1.** $2, 3, 5 = \{5, 2, 4\} = \{2, 5, 2, 3, 3, 2\}$

Definition 1.1.2. There is a set with no elements, denoted \varnothing

- $\emptyset \neq \{\emptyset\}$
- $A \subseteq B$: A is a subset of $B \leftrightarrow$ each element of A is in B (use \subseteq to denote proper subset)

1.1. AUGUST 25

- $\{2\} \subseteq \{2,3,5\}$ but $\{2\} \notin \{2,3,5\}$
- Power set opertaion: $\mathcal{P}(A) = \{B \mid B \subseteq A\}$

We can define a hierarchy:

$$\begin{array}{l} V_0 = \varnothing, \ V_1 = \mathcal{P}(\varnothing) = \{\varnothing\}, \ V_2 = \mathcal{P}\mathcal{P}(\varnothing) = \{\varnothing, \{\varnothing\}\} \\ V_3 = \mathcal{P}(V_2) = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}, \ V_4, \dots \\ V_{\omega} = \bigcup_{n \in \mathbb{N}} V_n, \ \mathcal{P}(V_{\omega}), \ \mathcal{P}\mathcal{P}(V_{\omega}), \dots, V_{\omega + \omega}, \dots, V_{\omega + \omega + \dots}, \dots, V_{\omega \times \omega}, \dots, V_{\omega^{\omega}} \end{array}$$

Chapter 2

Axioms and Operations

2.1August 30

2.1.1Zermelo Fraenkel Axioms of Set Theory

Setting: in ZFC all objects are sets

Language: contains vocabulary (\in), logical symbols (=, \land , $\lor \exists$, \forall , \neg), variables (x, y, A, B, etc.)

Axiom 2.1.1 (Extensionality Axiom). Two sets are the same if they have the same elements $\forall A, B(\forall x (x \in A \leftrightarrow x \in B) \rightarrow A = B)$

Axiom 2.1.2 (Empty Set Axiom). There is a set with no members, denoted \varnothing $\exists A \forall x (x \notin A)$

Axiom 2.1.3 (Pairing Axiom). For any sets u, v there is a est whose elements are u and v, denoted $\{u, v\}$ $\forall u, v \exists A \forall x (x \in A \leftrightarrow x = u \lor x = v)$

Axiom 2.1.4 (Union Axiom (Preliminary Form)). For any sets a, b there is a set whose elements are elements of a and elements of b, denoted $a \cup b$ $\forall a, b \exists A \forall x (x \in Ax \in u \lor x \in v)$

Axiom 2.1.5 (Powerset Axiom). Each set A, has a power set $\mathcal{P}(A)$. $\forall A \exists B \forall x (x \in B \iff x \subseteq A)$ where $x \subseteq A$ stands for $\forall y (y \in x \rightarrow y \in A)$

Axiom 2.1.6 (Union Axiom). For any set A, there is a set $\bigcup A$ whose members are members of the members of A.

 $\forall A \exists B \forall x (x \in B \leftrightarrow \exists y \in A (x \in y))$

Idea for the subset axiom: For any set A, there is a set B whose members are members of A satisfying some property.

2.1. AUGUST 30 135: Set Theory

eg. $B = \{x \in A \mid x \text{ satisfies property } P\} \subseteq A$

Example 2.1.7. $B = \{n \in \mathbb{N} \mid n \text{ cannot be described in less that 20 words}\}$

• let b be the smallest element in B, then b is the smallest element that cannot be described in 20 words.

 \bullet Paradox: need to use formal language to express property P.

Example 2.1.8. Let $B = \{x \mid x \notin x\}$

Question: $B \in B$? $B \in B \leftrightarrow B \notin B$: need to have property be contained in some larger set.

We can now restate the axiom more formally:

Axiom 2.1.9 (Subset Axiom (Scheme)). For each formula $\phi(x)$, there is an axiom: $\forall A \exists B \forall x (x \in B \leftrightarrow x \in A \land \phi(x))$

Example 2.1.10. Suppose there is a set of all sets A. Consider $B = \{x \in A \mid x \notin x\}$. Then $B \in B \leftrightarrow B \notin B$, contradiction. So there can be no such set A.

The language of 1rst order logic for ZFC:

The following are formulas:

- $x = y, x \in y$ atomic formulas
- $(\varphi \wedge \psi), (\varphi \vee \psi), \neg \varphi$ where φ, ψ are formulas
- $\exists v\varphi, \forall x\varphi$

Example 2.1.11. $\varphi(v,w) := (\exists v(v \in x \land \neg v = w)) \to (\forall y(\neg y \in y))$ is a formula

Chapter 3

Relations and Functions

3.1 September 1

3.1.1 Relations and Functions

Ordered Pair: $\langle a, b \rangle = \langle c, d \rangle \leftrightarrow a = c, b = d$

```
Definition 3.1.1. \langle a, b \rangle = \{ \{a\}, \{a, b\} \}
```

```
Cartesian product of A and B, denoted A \times B = \{\langle x, y \rangle x \in A, y \in B\}
Using the subset axiom A \times B = \{z \in \mathcal{PP}(A \cup B) \mid \exists x \in A \exists y \in Bz = \langle x, y \rangle\}
Observation: \langle x, y \rangle \in \mathcal{PP}(C) for x, y \in C
\{x\}, \{x, y\} \in \mathcal{P}(C) so \{\{x\}, \{x, y\}\} \subseteq \mathcal{P}(C) so \{\{x\}, \{x, y\}\} \in \mathcal{PP}(C)
```

Definition 3.1.2. A binary relation is a set R whose elements are ordered pairs.

If $R \subset A \times B$ then R is a relation from $A \to B$.

```
Definition 3.1.3. Given a relation R, dom R = \{x \in \bigcup \bigcup R \mid \exists y \langle x, y \rangle \in R\}, range R = \{y \in \bigcup \bigcup R \mid \exists x \langle x, y \rangle \in R\}, field (R) = \text{dom}(R) \cup \text{range}(R)
```

```
Example 3.1.4. R = \{\langle a,b \rangle, \langle c,d \rangle, \langle e,f \rangle\} = \{\{\{a\}, \{a,b\}\}, \{\{c\}, \{c,d\}\}, \{\{e\}, \{e,f\}\}\}\} \cup R = \{\{a\}, \{a,b\}, \{c\}, \{c,d\}, \{e\}, \{e,f\}\} \cup R = \{a,b,c,d,e,f\}
```

n-ary relations: define *n*-tuple by $\langle a, b, c \rangle = \langle \langle a, b, \rangle, c \rangle$ etc.

```
Definition 3.1.5. A function is a relation F such that \forall x, y, z \ \langle x, y \rangle \in F and \langle x, z \rangle \in F \rightarrow y = z
```

 $\forall x \in \text{dom }(F) \text{ there is } y \text{ such that } \langle x,y \rangle \in F. \text{ If } A = \text{dom}(F), B \supseteq \text{range}(F) \text{ then } F \text{ is said to a funtion from } A \text{ to } B, f: A \to B$

We say that $f: A \to B$ is onto if B = range(F)

Definition 3.1.6. *F* is injective if $\forall x, y, z \ \langle x, z \rangle \in F \land \langle y, z \rangle inF \rightarrow x = y$.

3.2. SEPTEMBER 6 135: Set Theory

Definition 3.1.7. For a set A, relations F, G

- (a) inverse $F^{-1} = \{ \langle y, x \rangle | \langle x, y \rangle \in F \}$
- (b) composition: $G \circ F = \{\langle x, z \rangle | \exists y \langle x, y \rangle \in F, \langle y, z \rangle \in G\}$
- (c) restriction: $F \upharpoonright_A \{\langle x, y \rangle \in F \mid x \in A\}$
- (d) image of A under F, $F[A] = \{y \mid \exists x \in A \langle x, y \rangle \in F\} = \operatorname{range}(F \upharpoonright_A)$

Example 3.1.8. If F is a function, F^{-1} may not be a function. F^{-1} is a function $\leftrightarrow F$ is one to one.

Example 3.1.9. $F^{-1} \circ F = \{\langle x, x \rangle \mid x \in \text{dom}(F)\}$ if F is one to one More generally, $F^{-1} \circ F = \{\langle x, z \rangle \mid \exists y \in \text{range } F \langle x, y \rangle, \langle z, y \rangle \in F\}.$

3.2 September 6

3.2.1 Functions and Relations

Theorem 3.2.1. Let $F: A \to B$ with $A \neq \emptyset$

- (a) There is a function $G: B \to A$ such that $G \circ F = \mathrm{id}_A \leftrightarrow F$ is one to one.
- (b) There is a function $G: B \to A$ such that $F \circ F = \mathrm{id}_B \leftrightarrow F$ is onto.

Proof. (a) Suppose there is such a G. Take a_1, a_2 such that $F(a_1) = F(a_2)$, then $a_1 = G \circ F(a_1) = G \circ F(a_2) = a_2$

Conversely, suppose F is one to one. We want to define $G: B \to A$ given $b \in B$, let G(b)=the unique $a \in A$ such that F(a) = b if $b \in \operatorname{range}(F)$. If $b \notin \operatorname{range}(F)$, let $G(b) = a_0$ with $a_0 \in A$ arbitrary (exists since A nonempty)

(b) Suppose that $G: B \to A$, with $F \circ G = \mathrm{id}_B$ Want to show $\forall b \in B \exists a \, F(a) = b$ Take $a = G(b) \to F(a) = F(G(b)) = b$

Conversely, suppose F is onto. We want to define G, given $b \in B$ want to define G(b) such that F(G(b)) = b, equivalently, want $G(b) \in F^{-1}(\{b\})$. Since F is onto $F^{-1}(\{b\})$ is nonempty. Let G(b) be any element of $F^{-1}(b)$, equivalently $G \subseteq F^{-1}$ and $dom(G) = B = dom(F^{-1})$.

Example 3.2.2. Suppose $A = \mathbb{N}$, let $G = \{(b, a) \in B \times \mathbb{N} : a \text{ is least satisfying } f(a) = b\}$

• Don't have a method to specify such elements in gneral.

Axiom 3.2.3 (Axiom of Choice - Form I). For every relation R, there is a function $G \subseteq R$ with dom(G) = dom(R)

3.2.2 Infinite Cartesion Products

 $A \times B = \{ \langle x, y \rangle \in \mathcal{PP}(A \cup B) \mid x \in A \land y \in B \}$

3.3. SEPTEMBER 8 135: Set Theory

Definition 3.2.4. Let M be a function with domain I such that for every $i \in I$, H(i) is a set. Let

$$\underset{i \in I}{\times} H(i) - \{f : I \to \bigcup H(i) \mid f(i) \in H9 = (i)\}$$

Example 3.2.5. Let ω_g be $\{G \subseteq \mathbb{R} \mid 0 \neq G, G \cup \{0\} \text{ is closed under addition } \}$

 $\times_{G \in \omega_g} = \times_{G \in \omega_g} H(G)$ is a function such that for each $G \in \omega_g$, you get an element of G.

Observation: If one of the H(i) is \varnothing , then $\times_{i \in I} H(i) = \varnothing$

Axiom 3.2.6 (Axiom of Choice - Form II). If H is a function with domain I such that $H(i) \neq \emptyset \ \forall i \in I$, then $\times_{i \in I} H(i) \neq \emptyset$

(ACI) \rightarrow (ACII): We are given H with $H(i) \neq \emptyset$ for all i. Want $f: I \rightarrow H(i)$ with $f(i) \in H(i) \ \forall i \in I$. Let $R = \{\langle i, h \rangle \in I \times \bigcup_{i \in I} H(i) \mid h \in H(i) \}$. dom(R) = I, since $H(i) \neq \emptyset$ there is $h \in H(i)$ so $\langle i, h \rangle \in R$. BY ACI, there is $F \subseteq R$ with dom(F)=dom(R) = I. $\forall i, \langle i, f(i) \rangle \in R$ so $f(i) \in H(i)$

3.3 September 8

3.3.1 Natural Numbers

Idea: each natural number is the set of all the previous numbers. $0 = \emptyset, 1 = \{\emptyset\}, 2 = \{\emptyset, \{\emptyset\}\}, \dots, n = \{0, 1, \dots, n-1\}, \dots$

Definition 3.3.1. The successor of a set a is defined as $a^+ = a \cup \{a\}$

Definition 3.3.2. A set I is inductive if $\emptyset \in I$ and $\forall a \in I, a^+ \in I$

Definition 3.3.3. a is a natural number if it belongs to all inductive sets, $\forall I(I \text{ inductive} \rightarrow a \in I)$

If I is any inductive set, let $\omega = \{a \in I \mid a \text{ belongs to all inductive sets}\}$ =the minimal inductive set. Observation: ω is inductive because \varnothing is in all inductive sets and if n belongs to all inductive sets then so does n^+

Axiom 3.3.4 (Ifinity Axiom). There is an inductive set.

Inductivion Principle: If $A \subseteq \omega$ is inductive set $A = \omega$

Example 3.3.5. Every natural number is 0 or the succesor of some natural number.

Let $A = \{n \in \omega \mid n = 0 \vee \exists m \in \omega \ n = m^+\}$. A is inductive so $A = \omega$

Definition 3.3.6. A set A is transitive if one of the following equivalent conditions holds:

- if $x \in a \in A$, then $x \in A$
- $\bigcup A \subseteq A$

3.3. SEPTEMBER 8 135: Set Theory

- if $a \in A$, then $a \subseteq A$
- $A \in \mathcal{P}(A)$

Example 3.3.7. Transitive sets includ \emptyset , each natural number, ω, V_{ω}

Claim: $A = \{n \in \omega \mid n \text{ is transitive }\}$ is inductive (implies all nautrual numbers are transitiev)

- Base: $0 \in A$ since \emptyset is transitive
- Inductive Step: Suppose $n \in A$ transitive, want to show n^+ is transitive. Consider $x \in a \in n^+ = n \cup \{n\}$. If a = n, $x \in n \subseteq n^+$. If $a \in n$, $x \in a \in so$ by transitivity $x \in n^+$ so $x \in n^+$

Theorem 3.3.8. If a is tansitive, then $\bigcup a^+ = a$

Proof. (
$$\supseteq$$
) $a = \bigcup \{a\} \subseteq \bigcup (a \cup \{a\} = \bigcup a^+) \ (a \in a^+ \text{ so } a \subseteq \bigcup a^+)$
(\subseteq) Take $x \in \bigcup a^+$, then let $b \in a^+$ with $x \in b$. If $b = a$, $x \in a$. If $b \in a$, $x \in b \in a$ so $x \in a$.

• If a, b transitive and $a^+ = b^+$ then $a = \bigcup a^+ = \bigcup b^+ = b$ so successor function is one to one on transitive sets, more specifically ω .

Fix a number $k \in \omega$. Consdier the following functions:

- $A_k : \omega \to \omega$ by $A_k(0) = 0$, $A_k(n^+) = A_k(n)^+$
- $M_k : \omega \to \omega$ by $M_k(0) = 0$, $M_k(n^+) = A_k(M_k(n))$