# Intelligence Artificielle Logique (1/3)

# Bruno Bouzy

http://web.mi.parisdescartes.fr/~bouzy bruno.bouzy@parisdescartes.fr

Licence 3 Informatique
UFR Mathématiques et Informatique
Université Paris Descartes



#### **Motivations**

- Agents fondés sur les connaissances
  - Représentation des connaissances
  - Processus de raisonnement
- Tirer parti de connaissances grâce à une capacité à combiner et recombiner des informations pour les adapter à une multitude de fins.
  - Mathématicien démontre un théorème
  - ightarrow Astronome calcule la durée de vie de la Terre  $\,$
- Environnements partiellement observables: combiner connaissances générales et percepts reçus pour inférer des aspects cachés de l'état courant.
  - Médecin ausculte un patient
    - "John a vu le diamant à travers le carreau et l'a convoité"
    - "John a lancé un caillou à travers le carreau et l'a cassé
    - Connaissances de sens commun



#### **Motivations**

- Agents fondés sur les connaissances
  - Représentation des connaissances
  - Processus de raisonnement
- ⇒ Tirer parti de connaissances grâce à une capacité à combiner et recombiner des informations pour les adapter à une multitude de fins.
  - → Mathématicien démontre un théorème
  - → Astronome calcule la durée de vie de la Terre
- Environnements partiellement observables: combiner connaissances générales et percepts reçus pour inférer des aspects cachés de l'état courant.
  - Médecin ausculte un patient
    - "John a vu le diamant à travers le carreau et l'a convoité"
    - "John a lancé un caillou à travers le carreau et l'a cassé
    - Connaissances de sens commun



#### **Motivations**

- Agents fondés sur les connaissances
  - Représentation des connaissances
  - Processus de raisonnement
- ⇒ Tirer parti de connaissances grâce à une capacité à combiner et recombiner des informations pour les adapter à une multitude de fins.
  - → Mathématicien démontre un théorème
  - → Astronome calcule la durée de vie de la Terre
- ⇒ Environnements partiellement observables : combiner connaissances générales et percepts reçus pour inférer des aspects cachés de l'état courant.
  - → Médecin ausculte un patient
  - → Compréhension du langage naturel :
    - "John a vu le diamant à travers le carreau et l'a convoité"
    - "John a lancé un caillou à travers le carreau et l'a cassé"
    - Connaissances de sens commun



# **Agents logiques**

- Agents fondés sur les connaissances
- Le monde du Wumpus
- Principe généraux de la logique
- Logique propositionnelle
- Schémas de raisonnement en logique propositionnelle
- Agents basés sur la logique propositionnelle
- Conclusion



#### **Agents logiques**

- Agents fondés sur les connaissances
- Le monde du Wumpus
- Principe généraux de la logique
- Logique propositionnelle
- Schémas de raisonnement en logique propositionnelle
- Agents basés sur la logique propositionnelle
- Conclusion



#### Base de connaissances (BC)

- Base de connaissances : ensemble d'énoncés exprimés dans un langage formel
- Les agents logiques peuvent être vus au :
  - niveau des connaissances : ce qu'ils savent, quelle que soit l'implémentation
  - niveau des implémentations : structures de données dans la BC, et les algorithmes qui les manipulent
- Approche déclarative pour construire la base de connaissances
  - Tell : ce qu'ils doivent savoir
  - Ask : demander ce qu'ils doivent faire. La réponse doit résulter de BC



#### Agent basé sur les connaissances

Un agent basé sur les connaissances doit être capable de :

- Représenter les états, les actions
- Incorporer de nouvelles perceptions
- Mettre à jour sa représentation interne du monde
- Déduire les propriétés cachées du monde
- Déduire les actions appropriées



# Exemple simple d'un agent basé sur les connaissances

```
Programme agent basé sur les connaissances
```

```
fonction KB-Agent(percept) retourne action variables statiques : KB, base de connaissances t, compteur initialisé à 0, indique le temps
```

```
Tell(KB, Make-percept-sentence(percept, t)) action \leftarrow Ask(KB, Make-action-query(t)) Tell(KB, Make-action-sentence(action, t)) t \leftarrow t+1 retourner action
```



#### **Agents logiques**

- Agents fondés sur les connaissances
- Le monde du Wumpus
- Principe généraux de la logique
- Logique propositionnelle
- Schémas de raisonnement en logique propositionnelle
- Agents basés sur la logique propositionnelle
- Conclusion



#### Le monde du Wumpus

#### Environnement

- Agent commence en case [1,1]
- Cases adjacentes au Wumpus sentent mauvais
- Brise dans les cases adjacentes aux puits
- Lueur dans la cases contenant de l'or
- Tirer tue le Wumpus s'il est en face
- On ne peut tirer qu'une fois
- S'il est tué, le Wumpus crie
- Choc si l'agent se heurte à un mur
- Saisir l'or si même case que l'agent
- Capteurs: odeur, brise, lueur, choc, cri
- Percepts: liste de 5 symboles
   Ex: [odeur, brise, rien, rien, rien]
- Actions: tourne gauche, tourne droite, avance, attrappe, tire



#### Mesures de performance :

- or : +1000;
- mort : -1000;
- action : -1;
- utiliser la flèche : -10



- Totalement observable
- Déterministe
- Episodique
- Statique
- Discret
- Mono-agent



- Totalement observable Non. Perception locale uniquement
- Déterministe
- Episodique
- Statique
- Discret
- Mono-agent



- Totalement observable Non. Perception locale uniquement
- Déterministe Oui
- Episodique
- Statique
- Discret
- Mono-agent



- Totalement observable Non. Perception locale uniquement
- Déterministe Oui
- Episodique Non. Séquentiel au niveau des actions
- Statique
- Discret
- Mono-agent



- Totalement observable Non. Perception locale uniquement
- Déterministe Oui
- Episodique Non. Séquentiel au niveau des actions
- Statique Oui. Le Wumpus et les puits ne bougent pas
- Discret
- Mono-agent



- Totalement observable Non. Perception locale uniquement
- Déterministe Oui
- Episodique Non. Séquentiel au niveau des actions
- Statique Oui. Le Wumpus et les puits ne bougent pas
- Discret Oui
- Mono-agent



- Totalement observable Non. Perception locale uniquement
- Déterministe Oui
- Episodique Non. Séquentiel au niveau des actions
- Statique Oui. Le Wumpus et les puits ne bougent pas
- Discret Oui
- Mono-agent Oui. Le Wumpus est une caractéristique de la nature











| 4 | SS SSS S         |                            | Breeze | PIT    |
|---|------------------|----------------------------|--------|--------|
| 3 |                  | Sreeze<br>Stench S<br>Gold | PIT    | Breeze |
| 2 | \$5555<br>Stench |                            | Breeze |        |
| 1 | START            | Breeze /                   | PIT    | Breeze |
|   | - 1              | 2                          | 3      | 4      |











| 4 | SS SSS S         |                            | Breeze | PIT    |
|---|------------------|----------------------------|--------|--------|
| 3 |                  | Sreeze<br>Stench S<br>Gold | PIT    | Breeze |
| 2 | \$5555<br>Stench |                            | Breeze |        |
| 1 | START            | Breeze /                   | PIT    | Breeze |
|   | - 1              | 2                          | 3      | 4      |















| 4 |              |         |    |   |
|---|--------------|---------|----|---|
| 3 | W!           |         |    |   |
| 2 | ok<br>A<br>O | P?      |    |   |
| 1 | ok           | ok<br>B | P? |   |
|   | 1            | 2       | 3  | 4 |

| 4 | SS SSS S            |                            | Breeze | PIT    |
|---|---------------------|----------------------------|--------|--------|
| 3 |                     | Sreeze<br>Stench S<br>Gold | PIT    | Breeze |
| 2 | \$5.555<br>\$Stench |                            | Breeze |        |
| 1 | START               | Breeze /                   | PIT    | Breeze |
|   | 1                   | ,                          | 3      | 4      |



| 4 |              |         |    |   |
|---|--------------|---------|----|---|
| 3 | W!           |         | -  |   |
| 2 | ok<br>A<br>O | ok      |    |   |
| 1 | ok           | ok<br>B | P! |   |
|   | 1            | 2       | 3  | 4 |

| 4 | SS SSSS<br>Stendt S  |                            | Breeze | PIT    |
|---|----------------------|----------------------------|--------|--------|
| 3 | £ 4::                | Sreeze<br>Stench S<br>Gold | PIT    | Breeze |
| 2 | \$5.555<br>Stench \$ |                            | Breeze |        |
| 1 | START                | Breeze                     | PIT    | Breeze |
|   | 1                    | 2                          | 3      | 4      |



| 4 |         |         |    |   |
|---|---------|---------|----|---|
| 3 | W!      | ok      | -  |   |
| 2 | ok<br>O | ok<br>A | ok |   |
| 1 | ok      | ok<br>B | P! |   |
|   | 1       | 2       | 3  | 4 |

| 4 | SS SSSS<br>Stendt |                            | Breeze | PIT    |
|---|-------------------|----------------------------|--------|--------|
| 3 | £ 4::             | Sreeze<br>Stench S<br>Gold | PIT    | Breeze |
| 2 | SS SSSS<br>Stendt |                            | Breeze |        |
| 1 | START             | Breeze /                   | PIT    | Breeze |
|   | 1                 | 2                          | 3      | 4      |





| 4 | \$5555<br>Stendt \$ |                                       | Breeze | PIT    |
|---|---------------------|---------------------------------------|--------|--------|
| 3 | (ii)                | S S S S S S S S S S S S S S S S S S S | PIT    | Breeze |
| 2 | \$5.555<br>\$Stench |                                       | Breeze |        |
| 1 | START               | Breeze /                              | PIT    | Breeze |
|   | 1                   | ,                                     | 3      | 4      |



#### **Agents logiques**

- Agents fondés sur les connaissances
- Le monde du Wumpus
- Principe généraux de la logique
- Logique propositionnelle
- Schémas de raisonnement en logique propositionnelle
- Agents basés sur la logique propositionnelle
- Conclusion



#### Principe généraux de la logique

- Logique : langage formel permettant de représenter des informations à partir desquelles on peu tirer des conclusions
- La syntaxe désigne les phrases (ou énoncés) bien formées dans le langage
- La **sémantique** désigne la signification, le sens de ces phrases
- Par exemple, dans le langage arithmétique :
  - x + y = 4 est une phrase syntaxiquement correcte
  - x4y+= n'en est pas une
  - $\mathbf{e} = \mathbf{e} + \mathbf{e} + \mathbf{e} + \mathbf{e}$  est une phrase syntaxiquement correcte mais sémantiquement incorrecte
  - x + y = 4 est vraie ssi x et y sont des nombres, et que leur somme fait 4
  - x + y = 4 est vraie dans un monde où x = 1 et y = 3
  - x + y = 4 est fausse dans un monde où x = 2 et y = 1



#### Relation de conséquences

- Relation de conséquences : un énoncé découle logiquement d'un autre énoncé :  $\alpha \models \beta$
- $\alpha \models \beta$  est vraie si et seulement si  $\beta$  est vraie dans tous mondes où  $\alpha$  est vraie
  - Si  $\alpha$  est vraie,  $\beta$  doit être vraie
  - Par exemple,  $(x + y = 4) \models (x + y \le 4)$
- Bases de connaissances = ensemble d'énoncés. Une BC a un énoncé pour conséquence :  $BC \models \alpha$
- La relation de conséquences est une relation entre des énoncés (la syntaxe) basée sur la sémantique



#### Les modèles

- Les logiciens pensent en terme de modèles, qui sont des mondes structurés dans lesquels la vérité ou la fausseté de chaque énoncé peut être évaluée
- m est un modèle de l'énoncé  $\alpha$  si  $\alpha$  est vraie dans m
- $M(\alpha)$  est l'ensemble de tous les modèles de  $\alpha$
- $BC \models \alpha$  si et seulement si  $M(BC) \subseteq M(\alpha)$





# Relation de conséquences dans le monde du Wumpus

- Situation après avoir effectué
  - Rien en [1,1]
  - Droite
  - Brise en [2,1]
- Considérer les modèles possible pour la base de connaissances en ne considérant que les puits
- $2^3 = 8$  modèles possibles





# Modèles du monde du Wumpus





# Modèles du monde du Wumpus



• BC = règles du monde Wumpus + observations



# Modèles du monde du Wumpus



- ullet BC = règles du monde Wumpus + observations
- $\alpha_1 =$  "[1,2] est sans puits"



# Modèles du monde du Wumpus



- BC = règles du monde Wumpus + observations
- $\alpha_1 =$  "[1,2] est sans puits"
- $BC \models \alpha_1$ , prouvé par vérification des modèles (model checking)



# Modèles du monde du Wumpus



- BC = règles du monde Wumpus + observations
- $\alpha_2 =$  "[2,2] est sans puits"
- $BC \not\models \alpha_2$



#### Inférence logique

- $KB \vdash_i \alpha$  : l'énoncé  $\alpha$  est dérivé de KB par la procédure i
- Validité (soundness) : i est valide si, lorsque  $KB \vdash_i \alpha$  est vrai, alors  $KB \models \alpha$  est également vrai
- Complétude (completness) : i est complète si, lorsque  $KB \models \alpha$  est vrai, alors  $KB \vdash_i \alpha$  est également vrai
- Une procédure valide et complète permet de répondre à toute question dont la réponse peut être déduite de la base de connaissances



#### **Agents logiques**

- Agents fondés sur les connaissances
- Le monde du Wumpus
- Principe généraux de la logique
- Logique propositionnelle
- Schémas de raisonnement en logique propositionnelle
- Agents basés sur la logique propositionnelle
- Conclusion



#### Logique propositionelle - syntaxe

- Logique propositionnelle = logique très simple
- Un énoncé est un énoncé atomique ou un énoncé complexe
- Un symbole propositionnel est une proposition qui peut être vraie ou fausse P, Q, R...
- Enoncés atomiques : un seul symbole propositionnel, vrai ou faux. Appelé aussi un littéral
- Enoncés complexes :
  - Si E est un énoncé,  $\neg E$  est un énoncé (négation)
  - Si  $E_1$  et  $E_2$  sont des énoncés,  $E_1 \wedge E_2$  est un énoncé (conjonction)
  - Si  $E_1$  et  $E_2$  sont des énoncés,  $E_1 \vee E_2$  est un énoncé (disjonction)
  - Si  $E_1$  et  $E_2$  sont des énoncés,  $E_1 \Rightarrow E_2$  est un énoncé (implication)
  - Si  $E_1$  et  $E_2$  sont des énoncés,  $E_1 \Leftrightarrow E_2$  est un énoncé (équivalence)



#### Logique propositionelle - sémantique

- Un modèle : une valeur de vérité (vrai ou faux) pour chaque symbole propositionnel
  - 3 symboles propositionnels  $P_{1,1}$ ,  $P_{2,2}$  et  $P_{3,1}$
  - $m_1 = \{P_{1,1} = Faux, P_{2,2} = Faux, P_{3,1} = Vrai\}$
- n symboles propositionnels =  $2^n$  modèles possibles
- ullet Règles pour évaluer un énoncé en fonction d'un modèle m:

```
\neg E
 est vrai ssi E est faux
E_1 \land E_2 est vrai ssi E_1 est vrai et E_2 est vrai
E_1 \lor E_2 est vrai ssi E_1 est vrai ou E_2 est vrai
E_1 \Rightarrow E_2 est vrai ssi E_1 est faux ou E_2 est vrai
E_1 \Rightarrow E_2 est faux ssi E_1 est vrai et E_2 est faux
E_1 \Leftrightarrow E_2 est vrai ssi E_1 \Rightarrow E_2 est vrai et E_2 \Rightarrow E_1 est vrai
```

• Un processus récursif simple permet d'évaluer un énoncé. Par exemple :

$$\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = Vrai \land (Faux \lor Vrai) = Vrai \land Vrai = Vrai$$



# Table de vérité des connecteurs logiques

| Р    | Q    | $\neg P$ | $P \wedge Q$ | $P \lor Q$ | $P \Rightarrow Q$ | $P \Leftrightarrow Q$ |
|------|------|----------|--------------|------------|-------------------|-----------------------|
| vrai | vrai | faux     | vrai         | vrai       | vrai              | vrai                  |
| vrai | faux | faux     | faux         | vrai       | faux              | faux                  |
| faux | vrai | vrai     | faux         | vrai       | vrai              | faux                  |
| faux | faux | vrai     | faux         | faux       | vrai              | vrai                  |



# Base de connaissances du monde du Wumpus (simplifié)

- $P_{i,j}$  vrai s'il y a un puits en [i,j]
- $B_{i,j}$  vrai s'il y a une brise en [i,j]
- Base de connaissances :
  - $R_1 : \neg P_{1,1}$
  - Brise ssi puits dans une case adjacente :

 $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$ 

 $R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$ 

- $R_4$  :  $\neg B_{1,1}$
- $R_5$  :  $B_{2,1}$
- BC :  $R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5$



# Base de connaissances du monde du Wumpus (simplifié)

• 7 symboles propositionnels :  $2^7 = 128$  modèles possibles

| $B_{1,1}$ | $B_{2,1}$ | $P_{1,1}$ | $P_{1,2}$ | $P_{2,1}$ | P <sub>2,2</sub> | $P_{3,1}$ | $R_1$ | R <sub>2</sub> | R <sub>3</sub> | R <sub>4</sub> | R <sub>5</sub> | ВС          |
|-----------|-----------|-----------|-----------|-----------|------------------|-----------|-------|----------------|----------------|----------------|----------------|-------------|
| faux      | faux      | faux      | faux      | faux      | faux             | faux      | vrai  | vrai           | vrai           | vrai           | faux           | faux        |
| faux      | faux      | faux      | faux      | faux      | faux             | vrai      | vrai  | vrai           | faux           | vrai           | faux           | faux        |
| :         | :         | :         | :         | : .       | :                | :         | :     | :              | :              | :              | :              | :           |
| faux      | vrai      | faux      | faux      | faux      | faux             | faux      | vrai  | vrai           | faux           | vrai           | vrai           | faux        |
| faux      | vrai      | faux      | faux      | faux      | faux             | vrai      | vrai  | vrai           | vrai           | vrai           | vrai           | <u>vrai</u> |
| faux      | vrai      | faux      | faux      | faux      | vrai             | faux      | vrai  | vrai           | vrai           | vrai           | vrai           | <u>vrai</u> |
| faux      | vrai      | faux      | faux      | faux      | vrai             | vrai      | vrai  | vrai           | vrai           | vrai           | vrai           | <u>vrai</u> |
| faux      | vrai      | faux      | faux      | vrai      | faux             | faux      | vrai  | faux           | faux           | vrai           | vrai           | faux        |
| :         | :         | :         | :         | :         | :                | :         | :     |                | :              | :              | :              | :           |
| vrai      | vrai      | vrai      | vrai      | vrai      | vrai             | vrai      | faux  | vrai           | vrai           | faux           | vrai           | faux        |



## Inférence par énumération

#### Enumération en profondeur d'abord de tous les modèles

```
fonction TT-Entails(KB, \alpha) retourne vrai ou faux
     variables statiques : KB, base de connaissances
                            \alpha. requête, énoncé propositionnel
     symboles \leftarrow liste de symboles propositionnels dans KB et \alpha
     retourner TT-Check-All(KB, \alpha, symboles, [])
fonction TT-Check-All(KB, \alpha, symboles, modele) retourne vrai ou faux
     si Empty?(symboles) alors
         si PL-True?(KB, modele) alors retourner PL-True?(\alpha, modele)
         sinon retourner vrai
     sinon faire
         P \leftarrow \text{First}(symboles); reste \leftarrow \text{Rest}(symboles)
         retourner TT-Check-All(KB, \alpha, reste, Extend(P, vrai, modele))
                    et TT-Check-All(KB, \alpha, reste, Extend(P, faux, modele))
```



# Inférence par énumération

- Algorithme valide et complet
- Pour *n* symboles :
  - complexité temporelle en O(2<sup>n</sup>)
  - complexité spatiale en O(n)



#### **Equivalence logique**

 Deux énoncés sont logiquement équivalents si et seulement s'ils sont vrais dans les même modèles :

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$



#### Validité et satisfiabilité

- Un énoncé est valide s'il est vrai dans tous les modèles. On dit aussi tautologie
  - Exemples : vrai;  $A \lor \neg A$ ;  $A \Rightarrow A$ ;  $(A \land (A \Rightarrow B)) \Rightarrow B$
- Théorème de la déduction :

$$KB \models \alpha$$
 si et seulement si  $(KB \Rightarrow \alpha)$  est valide



#### Validité et satisfiabilité

- Un énoncé est valide s'il est vrai dans tous les modèles. On dit aussi tautologie
  - Exemples : vrai;  $A \lor \neg A$ ;  $A \Rightarrow A$ ;  $(A \land (A \Rightarrow B)) \Rightarrow B$
- Théorème de la déduction :

$$KB \models \alpha$$
 si et seulement si  $(KB \Rightarrow \alpha)$  est valide

- Un énoncé est satisfiable s'il est vrai dans certains modèles
  - Exemples :  $A \vee B$ ; C
- Un énoncé est insatisfiable s'il n'est vrai dans aucun modèle
  - Exemple :  $A \wedge \neg A$
- Satisfiabilité :

$$KB \models \alpha$$
 si et seulement si  $(KB \land \neg \alpha)$  est insatisfiable



## **Agents logiques**

- Agents fondés sur les connaissances
- Le monde du Wumpus
- Principe généraux de la logique
- Logique propositionnelle
- Schémas de raisonnement en logique propositionnelle
- Agents basés sur la logique propositionnelle
- Conclusion



#### Méthodes de preuve

Les méthodes de preuves sont de deux principaux types :

- Application des règles d'inférence
  - Génération légitime (valide) de nouveaux énoncés à partir de ceux que l'on a déjà
  - Preuve : séquence d'applications des règles d'inférence
  - Nécessite la transformation des énoncés en forme normale
- Vérification des modèles (Model checking)
  - Enumération de la table de vérité (toujours exponentiel en n)
  - Amélioré par backtracking (Davis-Putnam-Logemann-Loveland (DPLL))
  - Recherche heuristique dans l'espace d'état (valide mais incomplet)



# Schémas de raisonnement en logique propositionnelle

Modus Ponens :

$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$$

• Elimination de la conjonction :

$$\frac{\alpha \wedge \beta}{\alpha}$$

Elimination de l'équivalence :

$$\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}$$

$$\frac{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}{\alpha \Leftrightarrow \beta}$$



- $R_1 : \neg P_{1,1}; R_2 : B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}); R_3 : B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1});$  $R_4: \neg B_{1,1}; R_5: B_{2,1}$
- On veut prouver  $\neg P_{1,2}$  (pas de puits en [1,2])



- $R_1 : \neg P_{1,1}; R_2 : B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}); R_3 : B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1});$  $R_4: \neg B_{1,1}; R_5: B_{2,1}$
- On veut prouver  $\neg P_{1,2}$  (pas de puits en [1,2])
- Elimination de l'équivalence à R<sub>2</sub> :  $R_6: (B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$



- $R_1: \neg P_{1,1}; R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}); R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1});$  $R_4: \neg B_{1,1}; R_5: B_{2,1}$
- On veut prouver  $\neg P_{1,2}$  (pas de puits en [1,2])
- Elimination de l'équivalence à R<sub>2</sub> :  $R_6: (B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$
- Elimination de la conjonction à R<sub>6</sub> :

$$R_7: (P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}$$



- $R_1: \neg P_{1,1}; R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}); R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1});$  $R_4: \neg B_{1,1}; R_5: B_{2,1}$
- On veut prouver  $\neg P_{1,2}$  (pas de puits en [1,2])
- Elimination de l'équivalence à R<sub>2</sub> :  $R_6: (B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$
- Elimination de la conjonction à R<sub>6</sub> :

$$R_7: (P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}$$

Equivalence logique des contraposées :

$$R_8: \neg B_{1,1} \Rightarrow \neg (P_{1,2} \vee P_{2,1})$$



- $R_1: \neg P_{1,1}; R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}); R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1});$  $R_4: \neg B_{1,1}; R_5: B_{2,1}$
- On veut prouver  $\neg P_{1,2}$  (pas de puits en [1,2])
- Elimination de l'équivalence à R<sub>2</sub> :  $R_6: (B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$
- Elimination de la conjonction à R<sub>6</sub> :

$$R_7: (P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}$$

Equivalence logique des contraposées :

$$R_8: \neg B_{1,1} \Rightarrow \neg (P_{1,2} \vee P_{2,1})$$

Modus Ponens avec R<sub>8</sub> et R<sub>4</sub>:

$$R_9: \neg (P_{1,2} \vee P_{2,1})$$



- $R_1: \neg P_{1,1}; R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}); R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1});$  $R_4: \neg B_{1,1}; R_5: B_{2,1}$
- On veut prouver  $\neg P_{1,2}$  (pas de puits en [1,2])
- Elimination de l'équivalence à R<sub>2</sub> :  $R_6: (B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$
- Elimination de la conjonction à R<sub>6</sub> :

$$R_7: (P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}$$

Equivalence logique des contraposées :

$$R_8: \neg B_{1,1} \Rightarrow \neg (P_{1,2} \vee P_{2,1})$$

Modus Ponens avec R<sub>8</sub> et R<sub>4</sub>:

$$R_9: \neg (P_{1,2} \vee P_{2,1})$$

Règle de De Morgan :

$$R_{10}: \neg P_{1,2} \wedge \neg P_{2,1}$$



# Résolution: exemple

• Pas de brise en [1,2]; on ajoute les règles suivantes dans la base de connaissance :

 $R_{11} : \neg B_{12}$ 

 $R_{12}: B_{1,2} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{1,3})$ 

• Même processus que pour obtenir R<sub>10</sub> :

 $R_{13}: \neg P_{22}$ 

 $R_{14}: \neg P_{1.3}$ 

• Elimination de la double implication en  $R_3$  + Modus ponens avec  $R_5$ :

 $R_{15}: P_{1.1} \vee P_{2.2} \vee P_{3.1}$ 

• Règle de résolution :  $\neg P_{2,2}$  dans  $R_{13}$  se résoud avec  $P_{2,2}$  dans  $R_{15}$  :

 $R_{16}: P_{1,1} \vee P_{3,1}$ 

•  $\neg P_{1,1}$  dans  $R_1$  se résoud avec  $P_{1,1}$  dans  $R_{16}$ :

 $R_{17}: P_{3.1}$ 



#### Résolution

- Forme normale conjonctive (CNF): conjonction de disjonctions de littéraux.
  - Une disjonction de littéraux est une clause
  - Exemple :  $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$
- Résolution unitaire. Chaque l est un littéral,  $l_i$  et  $\neg l_i$  sont des littéraux complémentaires :

$$\frac{I_1 \vee \ldots \vee I_i \vee \ldots \vee I_k, \ \neg I_i}{I_1 \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_k}$$

• Résolution. Chaque *I* est un littéral,  $m_i = \neg I_i$ :

$$\frac{l_1 \vee \ldots \vee l_i \vee \ldots \vee l_k, \quad m_1 \vee \ldots \vee m_j \vee \ldots \vee m_n}{l_1 \vee \ldots \vee l_{i+1} \vee \ldots \vee l_k \vee m_1 \vee \ldots \vee m_{i-1} \vee m_{i+1} \vee \ldots \vee m_n}$$

La résolution est valide et complète pour la logique propositionnelle



#### Transformation d'un énoncé en CNF

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

1. Elimination de  $\Leftrightarrow$ : remplacement de  $\alpha \Leftrightarrow \beta$  par  $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$ 

$$(B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$

2. Elimination de  $\Rightarrow$ : remplacement de  $\alpha \Rightarrow \beta$  par  $\neg \alpha \lor \beta$ 

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$$

3. Déplacer ¬ "à l'intérieur" en utilisant les règles de Morgan et la double négation :

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$$

4. Appliquer la loi de distributivité sur ∧ et ∨

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$



#### Algorithme de résolution

• Démonstration par l'absurde : pour montrer  $KB \models \alpha$ , on montre que  $KB \land \neg \alpha$  n'est pas satisfiable

```
Algorithme de résolution fonction PL-Resolution(KB, \alpha) retourne vrai ou faux
clauses \leftarrow \text{ensemble de clauses dans la représentation CNF de } KB \land \neg \alpha
nouveau \leftarrow \{\}
loop do
pour chaque C_i, C_j dans clauses faire
resolvants \leftarrow \text{PL-Resoud}(C_i, C_j)
si resolvants \text{ contient la clause vide alors retourner } vrai
nouveau \leftarrow nouveau \cup resolvants
si nouveau \subseteq clauses \text{ alors retourner } faux
clauses \leftarrow clause \cup nouveau
```



#### Clauses de Horn

- Clauses de Horn : disjonction de littéraux dont un au maximum est positif
  - $(\neg L_{1,1} \lor \neg Brise \lor B_{1,1})$  est une clause de Horn
  - $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})$  n'est pas une clause de Horn
- Toute clause de Horn peut s'écrire sous la forme d'une implication avec
  - Prémisse = conjonction de littéraux positifs
  - Conclusion = littéral positif unique
  - $(\neg L_{1,1} \lor \neg Brise \lor B_{1,1}) = ((L_{1,1} \land Brise) \Rightarrow B_{1,1})$
- Clauses définies : clauses de Horn ayant exactement un littéral positif
- Littéral positif = tête; littéraux négatifs = corps de la clause
- Fait = clause sans littéraux négatifs



#### Formes de Horn

- Forme de Horn : BC = conjonction de clauses de Horn
- Modus Ponens pour les clauses de Horn :

$$\frac{\alpha_1,\ldots,\alpha_n \quad (\alpha_1\wedge\ldots\wedge\alpha_n)\Rightarrow\beta}{\beta}$$

- Ce Modus Ponens peut être utilisé pour le chaînage avant ou chaînage arrière
- Ces algorithmes sont très naturels et sont réalisés en temps linéaire



#### Chaînage avant

- Idée : appliquer toutes les règles dont les prémisses sont satisfaits dans la base de connaissances
- Ajouter les conclusions de ces règles dans la base de connaissances, jusqu'à ce que la requête soit satisfaite
- Le chaînage avant est valide et complet pour les bases de connaissances de Horn



#### Chaînage avant

#### Chaînage avant

fonction PL-FC-Entails(KB, q) retourne vrai ou faux

#### variables locales :

compteur table indexée par clause, initialement le nombre de prémisses infer table, indexée par symbole, chaque entrée initialement à faux agenda liste de symboles, initialement symboles vrais dans KB

tant que agenda n'est pas vide faire

$$p \leftarrow \mathsf{Pop}(\mathit{agenda})$$

si p = q alors retourner vrai

si non infer[p] alors faire

$$infer[p] \leftarrow vrai$$

pour chaque clause de Horn c dans laquelle la prémisse p apparait

#### faire

$$\begin{aligned} & \textit{compteur}[c] \leftarrow \textit{compteur}[c] - 1 \\ & \textit{si compteur}[c] = 0 \text{ alors faire } \mathsf{Push}(\mathsf{Head}[c], \textit{agenda}) \end{aligned}$$

retourner faux



#### Chaînage avant : exemple

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$





#### Preuve de complétude

- La procédure de chaînage avant permet d'obtenir tout énoncé atomique pouvant être déduit de KB
  - L'algorithme atteint un point fixe au terme duquel aucune nouvelle inférence n'est possible
  - 2. L'état final peut être vu comme un **modèle** *m* dans lequel tout symbole inféré est mis à *vrai*, tous les autres à *faux*
  - 3. Toutes les clauses définies dans la KB d'origine sont vraies dans m
  - 4. Donc m est un modèle de KB
  - 5. Si  $KB \models q$  est vrai, q est vrai dans tous les modèles de KB, donc dans m



# Chaînage arrière

- Idée : Partir de la requête et rebrousser chemin
  - Vérifier si q n'est pas vérifiée dans la BC
  - Chercher dans la BC les implications ayant q pour conclusion, et essayer de prouver leurs prémisses
- Eviter les boucles : vérifier si le nouveau sous-but n'est pas déjà dans la liste des buts à établir
- Eviter de répéter le même travail : vérifier si le nouveau sous-but a déjà été prouvé vrai ou faux



# Chaînage arrière

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$





## Chaînage avant vs chaînage arrière

- Chaînage avant : raisonnement piloté par les données
  - Conclusions à partir de percepts entrants
  - Pas toujours de requête spécifique en tête
  - Beaucoup de conséquences déduites, toutes ne sont pas utiles ou nécessaires
- Chaînage arrière : raisonnement piloté par le but
  - Répondre à des questions spécifiques
  - Se limite aux seuls faits pertinents
  - La complexité du chaînage arrière peut être bien inférieure à une fonction linéaire à la taille de la base de connaissances



# Algorithmes efficaces d'inférence propositionnelle

Deux familles d'algorithmes efficaces pour l'inférence propositionnelle :

- Exploration par backtracking
  - Algorithme DPLL (Davis, Putnam, Logemann, Loveland)
- Algorithmes de recherche locale incomplète
  - Algorithme WalkSAT



## **Algorithme DPLL**

- Cet algorithme détermine si un énoncé logique en CNF est satisfiable
- Améliorations par rapport à l'énumération de la table de vérité
  - Elagage
    - Une clause est vraie si l'un des littéraux est vrai
    - Un énoncé est faux si l'une des clauses est fausse
  - Heuristique des symboles purs
    - Un symbole pur est un symbole qui apparait toujours avec le même "signe" dans toutes les clauses
    - $(A \lor \neg B) \land (\neg B \lor \neg C) \land (C \lor A)$ . A et B sont purs, C est impur
    - Instancier les littéraux des symboles purs à vrai
  - Heuristique de la clause unitaire
    - Clause unitaire : clause qui ne contient qu'un littéral
    - Ce littéral doit être vrai



## **Algorithme DPLL**

#### Algorithme DPLL

```
fonction DPLL-Satisfiable?(s) retourne vrai ou faux
     entrées : s, un énoncé propositionnel
     C \leftarrow ensemble des clauses dans la représentation CNF de s
     S \leftarrow liste des symboles propositionnels dans s
     retourner DPLL(C, S, [])
fonction DPLL(C, S, modele) retourne vrai ou faux
     si toute clause de C est vraie dans modele alors retourner vrai
     si une clause de C est fausse dans modele alors retourner faux
     P, valeur \leftarrow Find-Pure-Symbol(S, C, modele)
     si non nul(P) alors retourner DPLL(C, S \setminus P, Extend(P, valeur, modele))
     P, valeur \leftarrow Find-Unit-Clause(C, modele)
     si non nul(P) alors retourner DPLL(C, S \setminus P, Extend(P, valeur, modele))
     P \leftarrow \mathsf{First}(S); reste \leftarrow \mathsf{Rest}(S)
     retourner DPLL(C, reste, Extend(P, vrai, modele))
                ou DPLL(C, reste, Extend(P, faux, modele))
```



## Algorithme WalkSAT

- Algorithme de recherche locale incomplète
- Chaque itération : sélection d'une clause non satisfaite et un symbole à "basculer"
- Choix du symbole à basculer :
  - Fonction d'évaluation : heuristique Min-Conflicts qui minimise le nombre de clauses non satisfaites
  - Etape de parcours aléatoire qui sélectionne le symbole au hasard



## Algorithme WalkSAT

#### Algorithme WalkSAT

fonction WALKSAT(clauses, p, max\_flips) retourne un modèle satisfiable ou erreur

entrées : clauses, un ensemble de clauses

p probabilité de choisir le parcours aléatoire

max\_flips le nombre de "bascules" autorisées avant de renoncer

 $\textit{modele} \leftarrow \textit{affectation al\'eatoire de } \textit{vrai}/\textit{faux} \textit{ des symboles dans } \textit{clauses}$ 

pour i = 1 à  $max_flips$  faire

si modele satisfait clauses alors retourner modele

 $\mathit{clause} \leftarrow \mathsf{une}$  clause sélectionnée au hasard parmi les  $\mathit{clauses}$  fausses de  $\mathit{modele}$ 

avec la probabilité p basculer dans modele la valeur d'un symbole selectionné au hasard dans clause

sinon basculer le symbole dans *clause* qui maximise le nombre de clauses satisfaites

retourner erreur



### Problèmes de satisfiabilité difficiles

- Soit l'énoncé 3-CNF généré aléatoirement suivant :  $(\neg D \lor \neg B \lor C) \land (B \lor \neg A \lor \neg C) \land (\neg C \lor \neg B \lor E) \land (E \lor \neg D \lor B) \land (B \lor E \lor \neg C)$
- 16 des 32 affectations possibles sont des modèles de cet énoncé
  - → en moyenne 2 tentatives aléatoires pour trouver un modèle
- Problème difficile : augmenter le nombre de clauses en laissant fixe le nombre de symboles
  - → Problème plus contraint
- m nombre de clauses, n nombre de symboles
- Problèmes difficiles : ratio aux alentours de  $\frac{m}{n} = 4.3$  : **point critique**



#### Problèmes de satisfiabilité difficiles





#### Problèmes de satisfiabilité difficiles

 Temps d'execution médian sur 100 énoncés 3-CNF aléatoires satisfiables avec n=50





## **Agents logiques**

- Agents fondés sur les connaissances
- Le monde du Wumpus
- Principe généraux de la logique
- Logique propositionnelle
- Schémas de raisonnement en logique propositionnelle
- Agents basés sur la logique propositionnelle
- Conclusion



# Agents basés sur la logique propositionnelle dans le monde du Wumpus

- ¬P<sub>1.1</sub>
- $\circ$   $\neg W_{1}$  1
- $B_{x,y} \Leftrightarrow (P_{x,y+1} \vee P_{x,y-1} \vee P_{x+1,y} \vee P_{x-1,y})$
- $S_{x,y} \Leftrightarrow (W_{x,y+1} \vee W_{x,y-1} \vee W_{x+1,y} \vee W_{x-1,y})$
- $W_{1,1} \vee W_{1,2} \vee \ldots \vee W_{4,4}$
- $\neg W_{1,1} \lor \neg W_{1,2}$
- $\neg W_{1,1} \lor \neg W_{1,3}$
- . . . .
- ⇒ 64 symboles propositionnels distincts; 155 énoncés



retourner A

# Agents basés sur la LP dans le monde du Wumpus

```
fonction PL-Wumpus-Agent(percept) retourne une action
     entrées : percept : une liste [odeur, brise, lueur]
     var. statiques : KB, contenant au départ la "physique" du monde du Wumpus
; x, y, O la position de l'agent (1, 1, droite) au départ ; V un tableau indiquant les
cases visitées, initiallement à faux ; A action la plus récente de l'agent, initialement
à nul; P séquence d'actions, initialement vide
     si odeur alors Tell(KB, S_{x,y}) sinon Tell(KB, \neg S_{x,y})
     si brise alors Tell(KB, B_{x,y}) sinon Tell(KB, \neg B_{x,y})
     si lueur alors A ← ramasser
     sinon si P n'est pas vide alors A \leftarrow Pop(P)
      sinon si pour une case voisine [i,j], Ask(KB, (\neg P_{i,j} \land \neg W_{i,j}) est vrai ou
                 pour une case voisine [i, j], Ask(KB, P_{i,j} \vee W_{i,j}) est faux
      alors P \leftarrow A^*(\text{Route-Problem}([x, y], O, [i, j], V)); A \leftarrow \text{Pop}(P)
      sinon A \leftarrow un déplacement choisi de manière aléatoire
```



# Limitation de l'expressivité de la logique propositionnelle

- La base de connaissances doit contenir des énoncés pour représenter "physiquement" toute case
- A chaque temps t et pour chaque localisation [x, y], on a

$$L_{x,y}^t \wedge droite^t avance^t \Rightarrow L_{x+1,y}^t$$

Prolifération très rapides des clauses



## **Agents logiques**

- Agents fondés sur les connaissances
- Le monde du Wumpus
- Principe généraux de la logique
- Logique propositionnelle
- Schémas de raisonnement en logique propositionnelle
- Agents basés sur la logique propositionnelle
- Conclusion



#### **Conclusion**

- Les agents logiques appliquent l'inférence sur une base de connaissances pour déduire de nouvelles informations et prendre une décision
- Concepts basiques de la logique
  - Syntaxe : structure formelle des énoncés
  - Sémantique : vérité de chaque énoncé dans un modèle
  - Conséquence : vérité nécessaire d'un énoncé par rapport à un autre
  - Inférence : dérivation de nouveaux énoncés à partir d'anciens
  - Validité : l'inférence ne dérive que des énoncés qui sont des conséquences
  - Complétude : l'inférence dérive tous les énoncés qui sont des conséquences
- La résolution est complète pour la logique propositionnelle
- Les chaînages avant et arrière sont linéaire en temps, et complets pour les clauses de Horn
- La logique propositionnelle manque de pouvoir d'expression