## ICMC - Instituto de Ciências Matemáticas e da Computação BCC - Bacharelado em Ciências de Computação

Aluno: Bernardo Marques Costa Número USP: 11795551 Docente: Leonardo Pereira

Disciplina: Laboratório de Introdução a Ciência da Computação II

# RELATÓRIO 4 - ORDENAÇÃO DE PALAVRAS

### Introdução

Neste trabalho é apresentado a comparação entre os algoritmos de ordenação: **bubblesort**, **insertion sort** e **merge sort** no que se refere a ordenação de matrizes (vetores de palavras).

É fornecido ao programa 1 dos 4 arquivos: 14k.txt, 29k.txt, 58k.txt e 116k.txt. Cada um contém um número total de palavras próximo ao valor descrito no título.

Para a parte do relatório, é feito a análise da média de 10 execução de cada um dos algoritmos para cada um das quantidades possíveis de inputs, comparando o valor do tempo e a complexidade dos algoritmos estudados.

#### **Bubblesort**

Após executar o programa, obtemos um arquivo CSV que contém a seguinte tabela:

|   | Number | of | Inputs | Time       |
|---|--------|----|--------|------------|
| 0 |        |    | . 14   | 1.997850   |
| 1 |        |    | 29     | 9.563426   |
| 2 |        |    | 58     | 43.276890  |
| 3 |        |    | 116    | 165.308141 |

Como podemos ver, o número de inputs cresce, aproximadamente, de 2 em dois. Considerando a complexidade do algoritmo bubblesort de  $O(n^2)$ , podemos observar que o tempo também cresce proporcionalmente com  $2^2$ 

#### Insertion sort

Após executar o programa, obtemos a seguinte tabela de dados:

|   | Number | of | Inputs | Time       |
|---|--------|----|--------|------------|
| 0 |        |    | 14     | 1.568970   |
| 1 |        |    | 29     | 7.416694   |
| 2 |        |    | 58     | 38.049748  |
| 3 |        |    | 116    | 148.138092 |

O algoritmo insertion sort possui uma complexidade e tempos de execução muito semelhantes ao bubblesort, tendo uma complexidade  $O(n^2)$ , sendo sutilmente mais otimizado

# Mergesort

contrário algoritmos Αo dos anteriores, podemos observar que o tempo de execução é muito menor, e seu crescimento não é exponencial. fato, podemos observar como pela complexidade do mergesort, temos  $O(n \cdot \log n)$  como a função big O do algoritmo de merge sort

|   | Number | of | Inputs | Time     |
|---|--------|----|--------|----------|
| 0 |        |    | 14     | 0.005418 |
| 1 |        |    | 29     | 0.010603 |
| 2 |        |    | 58     | 0.022643 |
| 3 |        |    | 116    | 0.057575 |

# Gráficos







### Conclusão

Como podemos observar a partir do tempo e da construção dos gráficos, temos uma leve otimização do bubble sort para o insertion sort e uma gigantesca diferença de tempo entre os dois primeiros algoritmos e o merge sort, em que o valor correspondente ao tempo de execução cai de vários segundos para menos de 1 segundo.

Assim, o método de divisão e conquista do mergesort aumenta consideravelmente a eficácia de ordenação, em comparação aos métodos sequenciais estudados agora.