${\bf QCM-Transmetteurs}$

 $\begin{array}{ll} \textbf{Question} & \textbf{1} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$

Soit le schéma suivant. Question

 $\begin{array}{ll} \textbf{Question} & \textbf{3} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$

Soit le schéma suivant.

 $\boxed{\mathbf{A}} \ \frac{D_2}{D_1}$

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{Déterminer} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$

Soit le schéma suivant. Question $\frac{\mathbf{4}}{\omega_{20}}$ Déterminer $\frac{\omega_{20}}{\omega_{10}}$

Soit le schéma suivant.

 \mathbf{D}

Question $\frac{5}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

Soit le schéma suivant.

$$\boxed{\mathbf{A}} \ \frac{Z_1}{Z_2}$$

$$\frac{\overline{\mathrm{B}}}{-\frac{Z_1}{Z_2}}$$

$$\begin{array}{c}
\boxed{\mathbf{D}} \\
-\frac{Z_2}{Z_1}
\end{array}$$

Question 6 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Question 7 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Question 8 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

N	V	C)]	Υ	1	•	et	,	r	ı	é	r	10)]	n	1	:												
				•																									

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

+1/4/57+

${\bf QCM-Transmetteurs}$

On note v la vitesse de la charge Question 1 M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

 $\begin{array}{ll} \textbf{Question} & \textbf{3} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$

Soit le schéma suivant.

 $oxed{A} -rac{Z_2}{Z_1}$ $\begin{array}{ccc}
\boxed{D} & v &=& \Sigma_1 \\
& \frac{mZ_2^2}{2Z_1} \omega_{10}^{\mathbf{Question}} & \mathbf{4} \\
& \underline{\omega_{20}} \\
& \underline{\omega_{10}}.
\end{array}$

Soit le schéma suivant.

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{Déterminer} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$ Soit le schéma suivant.

 $\begin{bmatrix} \mathbb{B} \\ -\frac{D_2}{D_1} \end{bmatrix} \quad \begin{bmatrix} \mathbb{C} & \frac{D_1}{D_2} \\ \end{bmatrix} \quad \begin{bmatrix} \mathbb{D} & \frac{D_2}{D_1} \\ \end{bmatrix}$

Question 5 Déterminer $\frac{\check{\omega}_{20}}{}$. ω_{10}

Soit le schéma suivant. Question 7

$$\boxed{\mathbf{A}} \frac{Z_2}{Z_1}$$

On note v la vitesse de la charge Question 6 M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Soit le schéma suivant. Déterminer $\frac{\dot{\omega}_{10}}{}$

Question 8 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Non	ı et pr	énom :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6 : $\boxed{\mathbf{A}} \boxed{\mathbf{B}} \boxed{\mathbf{C}} \boxed{\mathbf{D}}$

Question 7: A B C D

+2/4/53+

${\bf QCM-Transmetteurs}$

Question 1 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 2 Soit le schéma suivant. Déterminer $\frac{\omega_{10}}{\omega_{10}}$.

$$\frac{\overline{A}}{\overline{D}_2} \frac{D_1}{\overline{D}_2} \qquad \overline{\overline{D}} \qquad \overline{\overline{D}} \qquad \overline{\overline{D}} \qquad -\frac{D_1}{\overline{D}_2} \qquad \overline{\overline{D}} \qquad -\frac{D}{\overline{D}}$$

Question 3 Soit le schéma suivant. Déterminer $\frac{\omega_{10}}{\omega_{10}}$.

Question 4 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question 5 Déterminer $\frac{\tilde{\omega}_{20}}{}$.

Soit le schéma suivant. Question 7

$$\boxed{\mathbf{A}} \ \frac{Z_2}{Z_1}$$

$$\begin{bmatrix} B \end{bmatrix} - \frac{Z_2}{Z}$$

 Z_2

$$\boxed{\mathrm{D}} \frac{\mathrm{Z}}{\mathrm{Z}}$$

Question 6 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

$$\begin{array}{ccc}
A & v &= & B \\
\frac{D_1 D_3}{2D} \omega_{10} & & & \\
\end{array}$$

$$v = 0$$

$$\frac{D_1 D_3}{D_2} \omega_{10}$$

$$\frac{C}{D_3}$$

$$\begin{bmatrix} \mathbf{C} \end{bmatrix} v = \begin{bmatrix} D_2 D_3 \\ D_2 \end{bmatrix} \omega_{10}$$

$$v = \boxed{D} v$$

$$\frac{D_2 D_3}{D_2} \omega_{10} = \overline{D}$$

Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

$$\begin{array}{c}
\boxed{\mathbf{A}} \\
\omega_{10} = \\
\underline{N} \\
\underline{-} \omega_{30}
\end{array}$$

$$egin{array}{c} \omega_{10} = \ Z_2^2 \ \overline{NZ} \omega_3 \end{array}$$

$$\omega_{10} = \begin{array}{c} \boxed{\mathbf{C}} \\ \omega_{10} = \\ \frac{Z_2^2}{NZ_1} \omega_{30} \end{array} NZ_1 \omega_{30}$$

Soit le schéma suivant.

$$\omega_{10} = \frac{N}{Z_2} \frac{Z_1}{Z_2} \omega_{30}$$

 $\begin{array}{ll} \textbf{Question} & \textbf{8} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$

$$\boxed{\mathbf{A}} \ \frac{D_2}{D_1}$$

$$\stackrel{\square}{=} \frac{D_1}{D}$$

$$\begin{bmatrix} D \end{bmatrix} - \frac{D_2}{D}$$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

N	0	n	1	ϵ	et	p	r	é	n	ıC)1	r	l	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7 : $\boxed{\mathbf{A}} \boxed{\mathbf{B}} \boxed{\mathbf{C}} \boxed{\mathbf{D}}$

${\bf QCM-Transmetteurs}$

Question1
 ω_{10} Soit le schéma suivant.Question 3
M selon la dire
fonction de ω_1

$$egin{array}{c|cccc} oxed{A} & oxed{B} & oxed{C} rac{Z_2}{Z_1} & oxed{D} rac{Z_1}{Z_2} \ & -rac{Z_2}{Z_1} & \end{array}$$

Question 3 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question 4 Soit le schéma suivant. Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

Question Déterminer ω_{20}

Soit le schéma suivant. Question 7

Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

 $\bigcirc Z_1$

 $2Z_2$

Soit le schéma suivant.

$$\boxed{\mathbf{A}} - \frac{D_1}{D_2}$$

$$\begin{bmatrix} \mathbf{C} \\ -\frac{D_2}{D_1} \end{bmatrix}$$

Question $\frac{8}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Ν	Į)	n	1	(et	,	р	r	é	n	ıC)1	Υ	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2 : A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

${\bf QCM-Transmetteurs}$

On note v la vitesse de la charge **Question** Question 1 M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Question $\frac{3}{\omega_{10}}$. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

Soit le schéma suivant.

В

 $oxed{C}$

 $\begin{array}{c} \textbf{Question} & \textbf{4} \\ \textbf{Distance} & \underline{\omega_{10}} \end{array}$ Soit le schéma suivant. Déterminer

 $\begin{array}{ccc}
\boxed{D} & v &= \\
D_{10} & \frac{D_2}{D_1 D_3} \omega_{10}
\end{array}$

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$ Soit le schéma suivant.

A

 $\begin{array}{ccc} \mathbb{B} \ \frac{Z_2}{Z_1} & \mathbb{C} \\ & -\frac{Z_2}{Z_1} \end{array} \quad \mathbb{D} \ \frac{Z_1}{Z_2}$

 $\boxed{\mathbf{B}} \ \frac{D_1}{D_2} \qquad \boxed{\mathbf{C}} \ \frac{D_2}{D_1}$ A

Question 5 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question 7 Soit le schéma suivant. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

Question 8 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Ν	Į)]	n	1	(et	,	р	r	é	n	ıC)1	Υ	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

+5/4/41+

${\bf QCM-Transmetteurs}$

On note v la vitesse de la charge **Question** Question 1 $\stackrel{f v}{M}$ selon la direction verticale. Exprimer v en Déterminer fonction de ω_{10} (en valeur absolue).

> Poulies – Courroie D_2

 $rac{oldsymbol{3}}{\omega_{10}}$.

Soit le schéma suivant.

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$

Soit le schéma suivant.

Question 4 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Roue et vis sans fin N filets $-rac{Z_2}{Z_1}$

 $2Z_2$

Question 5 Déterminer $\frac{\check{\omega}_{20}}{}$. ω_{10}

Soit le schéma suivant.

$$\boxed{\mathbf{A}} - \frac{Z_2}{Z_1}$$

 $\boxed{\mathbf{D}} \ \frac{Z_1}{Z_2}$

Question 6 Soit le schéma suivant. Déterminer $\frac{\tilde{\omega}_{10}}{\omega_{20}}$.

Question 7 On note v la vitesse de la charge ${\cal M}$ selon la direction horizontale. Exprimer ven fonction de ω_{10} (en valeur absolue). On note mle module des roues dentées.

 $\begin{array}{c}
\boxed{\mathbf{A}} \quad v = \\
\frac{mZ_2}{Z_1}\omega_{10}
\end{array}$ $\begin{array}{c}
\mathbb{B} \ v = \\
0 \ \frac{Z_2}{Z_1} \omega_{10}
\end{array}$

 $\begin{array}{c|c} \hline \mathbf{C} & v & = \\ & \frac{Z_2^2}{2Z_1} \omega_{10} \end{array}$

Question 8 Soit le schéma suivant. $\frac{\widetilde{\omega}_{20}}{\omega_{10}}$ Déterminer

 D_2 $A \frac{D_2}{D_1}$ $B - \frac{D_1}{D_2}$ D_2 D_2

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	et prénom	1:	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

+6/4/37+

 Z_1

${\bf QCM-Transmetteurs}$

Question 1 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question $\frac{\mathbf{3}}{\omega_{10}}$ Déterminer $\frac{\omega_{10}}{\omega_{20}}$ Question

Soit le schéma suivant.

$$Z_2$$

Soit le schéma suivant.

$$\begin{array}{c|c}
\hline
C & \hline
D & \\
-\frac{Z_1}{Z_2} & -\frac{Z_2}{Z_2}
\end{array}$$

Question $\frac{2}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

Question $\frac{4}{\omega_{20}}$.

Soit le schéma suivant.

Question Déterminer ω_{10}

Soit le schéma suivant.

Question 7 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

$$\boxed{\mathbf{A}} \ \frac{D_1}{D_2}$$

 $\begin{array}{c|c}
\hline{\mathbf{A}} & \frac{D_1}{D_2} & \hline{\mathbf{B}} & \hline{\mathbf{C}} & \frac{D_2}{D_1} \\
& -\frac{D_1}{D_2} & \hline{\end{array}$

$$\boxed{\mathbf{C}} \ \frac{D_2}{D_1}$$

$$\begin{array}{c}
\boxed{\mathbf{D}} \\
-\frac{D_2}{D_1}
\end{array}$$

Exprimer ω_{10} en fonction de ω_{30} Question 6 (en valeur absolue).

 $\begin{array}{ll} \textbf{Question} & \textbf{8} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Soit le schéma suivant.

 D_1

$$\omega_{10} = NZ_1\omega_{30}$$

$$\omega_{10} = \frac{N}{\omega_{30}}$$

$$\omega_{10} = \frac{Z_2^2}{Z_2} \omega_{30}$$

$$D_2$$

$$\begin{array}{c|c} \hline B & \frac{D_2}{D_1} & \hline C \\ & -\frac{D_2}{D_1} & \hline D & \frac{D_1}{D_2} \end{array}$$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	et prénom :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2 : A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

QCM - Transmetteurs

 $\begin{array}{c} \textbf{Question} & \textbf{1} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$ Soit le schéma suivant. Question

 $\begin{array}{ll} \textbf{Question} & \textbf{3} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$

Soit le schéma suivant.

$$\boxed{\mathbf{A}} - \frac{Z_2}{Z_1}$$

$$\boxed{\mathrm{B}} \ \frac{Z_2}{Z_1}$$

$$\begin{bmatrix} \mathbf{C} \\ -\frac{Z_1}{Z_2} \end{bmatrix}$$
 $\begin{bmatrix} \mathbf{D} & \frac{Z_1}{Z_2} \end{bmatrix}$ $\begin{bmatrix} \mathbf{A} \\ -\frac{Z_1}{Z_2} \end{bmatrix}$ $\begin{bmatrix} \mathbf{B} & \frac{Z_1}{Z_2} \end{bmatrix}$ $\begin{bmatrix} \mathbf{C} & \frac{Z_2}{Z_1} \end{bmatrix}$

$$\boxed{\mathrm{B}} \ \frac{Z_1}{Z_2}$$

$$oxed{\mathbb{D}} -rac{Z_2}{Z_1}$$

Question 2 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note mle module des roues dentées.

Question 4 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question $\frac{\mathbf{5}}{\omega_{10}}$. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

Soit le schéma suivant. **Question**

 Z_1 \mathbb{Z}_1 \mathbb{Z}_2

$$\boxed{\mathbf{A}} - \frac{Z_1}{Z_2}$$

 $\boxed{\mathrm{B}} \ \frac{Z_1}{Z_2}$

 $\square \frac{Z_2}{Z_1}$

 $\begin{array}{c}
\boxed{\mathbf{D}} \\
-\frac{Z_2}{Z_1}
\end{array}$

Question 6 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

 $\frac{\Delta}{\omega_{10}} = \frac{N}{Z_1} \omega_{30}$

В

 $\frac{\omega_{10}}{\frac{Z_2^2}{NZ_1}}\omega_{30}$

 \mathbf{C}

 $\frac{\omega_{10}}{N} = \frac{N}{Z_1} \frac{Z_1}{Z_2} \omega_{30}$

 $\omega_{10} = NZ_1\omega_{30}$

Question 8 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et 1	prénom:

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

+8/4/29+

QCM - Transmetteurs

 $\begin{array}{c|c} \overline{U} & \overline{U} & \overline{U} \\ \hline \hline 1 & \overline{U} & \overline{U} \\ \hline Z_1 & \overline{U}_2 \\ \hline \end{array}$

$$egin{array}{c|cccc} oxed{A} & & oxed{B} & rac{Z_2}{Z_1} & & oxed{C} & rac{Z_1}{Z_2} & & oxed{D} \ & -rac{Z_2}{Z_2} & & \end{array}$$

Question 2 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

$$egin{array}{c|cccc} ar{
m A} & & ar{
m B} & rac{D_2}{D_1} & & ar{
m C} & rac{D_1}{D_2} & & ar{
m D} \\ & -rac{D_2}{D_1} & & & & -rac{D_1}{D_2} \end{array}$$

$$egin{array}{c|cccc} ar{
m A} & & ar{
m B} & rac{Z_1}{Z_2} & & ar{
m C} & rac{Z_2}{Z_1} & & ar{
m D} \\ & -rac{Z_2}{Z_1} & & & -rac{Z_1}{Z_2} & & \end{array}$$

Question 5 Déterminer $\frac{\tilde{\omega}_{10}}{}$. ω_{20}

Soit le schéma suivant. Question 7

Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

$$\boxed{\mathbf{A}} - \frac{Z_1}{Z_2}$$

Question 6

$$\boxed{\mathrm{B}} \ \frac{Z_1}{Z_2}$$

On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p

$$\begin{array}{c}
C \quad v = \\
\frac{Z_1 p}{2Z_2 \pi} \omega_{10}
\end{array}$$

$$v = \underbrace{Z_1 p}_{2Z_2 \pi} \omega_{10} \quad \frac{2Z_1}{Z_2 p}$$

 $\bigcirc Z_1$

Question 8 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	et prénom :

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7 : $\boxed{\mathbf{A}} \boxed{\mathbf{B}} \boxed{\mathbf{C}} \boxed{\mathbf{D}}$

 $\begin{array}{ll} \textbf{Question} & \textbf{1} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Soit le schéma suivant. Question

$$\boxed{\mathbf{A}} \ \frac{Z_2}{Z_1}$$

$$\begin{array}{c}
\boxed{\mathbf{D}} \\
-\frac{Z_2}{Z_1}
\end{array}$$

Question 2
Déterminer $\frac{\omega_{10}}{\omega_{10}}$ Soit le schéma suivant. Déterminer

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} - \frac{D_1}{D_2}$$

 $\begin{array}{ll} \textbf{Question} & \textbf{3} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$ Soit le schéma suivant.

$$\boxed{\mathbf{A}} \ \frac{Z_1}{Z_2}$$

$$\frac{Z_2}{Z_1}$$

$$\boxed{\mathrm{D}} \ \frac{Z_2}{Z_1}$$

Question 4 On note v la vitesse de la charge ${\cal M}$ selon la direction horizontale. Exprimer ven fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question Déterminer ω_{10} Soit le schéma suivant. Question

Déterminer $\frac{\dot{\omega}_{10}}{}$

Soit le schéma suivant.

$$D_2$$

 $\boxed{\mathbb{B}} \ \frac{D_2}{D_1} \qquad \boxed{\mathbb{C}} \ \frac{D_1}{D_2}$

 $-\frac{D_1}{D_2}$

 $oxed{ ext{A}} rac{Z_1}{Z_2}$

Question 8

 $\begin{array}{c|c}
\hline{\mathbf{B}} & \hline{\mathbf{C}} & \frac{Z_2}{Z_1} \\
-\frac{Z_1}{Z_2} & \end{array}$

On note v la vitesse de la charge

 $\begin{array}{ll} \textbf{Question} & \textbf{6} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$ Soit le schéma suivant.

M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

 Z_2

2

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et prénom	:

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

+10/4/21+

 $\begin{array}{ll} \textbf{Question} & \mathbf{1} \\ \textbf{Déterminer} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$ Question

Soit le schéma suivant. Question $\frac{\mathbf{3}}{\omega_{20}}$ Déterminer $\frac{\omega_{20}}{\omega_{10}}$

Soit le schéma suivant.

$$\boxed{\mathbf{A}} \ \frac{Z_1}{Z_2}$$

$$\begin{bmatrix} \mathbf{B} \end{bmatrix} - \frac{Z_2}{Z}$$

$$\boxed{\mathbf{C}} - \frac{Z_1}{Z_2}$$

$$\overline{\mathbb{D}} \ \frac{Z_2}{Z_1}$$

$$\boxed{\mathbf{A}} \ \frac{D_1}{D_2}$$

$$\boxed{\mathrm{D}} \ \frac{D_2}{D_1}$$

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{Déterminer} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$

Soit le schéma suivant.

Question 4 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

$$\frac{\overline{\mathrm{B}}}{-\frac{Z_1}{Z_2}}$$

$$\boxed{\mathbf{C}} \frac{Z_1}{Z_2}$$

$$\boxed{\mathrm{D}} \frac{Z_2}{Z_1}$$

$$\omega_{10} = 0$$

$$\begin{bmatrix} \mathbf{B} \end{bmatrix}$$
30 $\frac{\mathbf{Z}}{\mathbf{W}}$

$$\boxed{\mathbf{C}}$$

$$\omega_{10} = \frac{N}{Z} \omega_{30}$$

Question 5 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 7 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question 6 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

$$\begin{array}{c|cccc} \hline \mathbf{A} & & \hline \mathbf{B} & & \hline \mathbf{C} & \frac{D_1}{D_2} & & \hline \mathbf{D} & \frac{D_2}{D_1} \\ & -\frac{D_2}{D_1} & & -\frac{D_1}{D_2} & & & \hline \end{array}$$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Ν	Į)	n	1	(et	,	р	r	é	n	ıC)1	Υ	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7 : $\boxed{\mathbf{A}} \boxed{\mathbf{B}} \boxed{\mathbf{C}} \boxed{\mathbf{D}}$

QCM - Transmetteurs

Question1
 ω_{20} Soit le schéma suivant.Question 3
M selon la dir
fonction de ω_1

$$\begin{bmatrix} \mathbf{A} \\ -\frac{Z_2}{Z_1} \end{bmatrix} - \frac{\mathbf{B}}{Z_2}$$

$$\begin{bmatrix} \mathbf{C} \\ \frac{Z_2}{Z_1} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{D} \\ \frac{Z_1}{Z_2} \end{bmatrix}$$

Question 3 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question 5 Déterminer $\frac{\tilde{\omega}_{10}}{}$. ω_{20}

Soit le schéma suivant.

 $egin{array}{cccc} oxed{f A} & rac{Z_2}{Z_1} & oxed{f B} & oxed{f C} & rac{Z_1}{Z_2} \ & -rac{Z_2}{Z_1} & \end{array}$

Question 6 Soit le schéma suivant. Déterminer $\frac{\breve{\omega}_{10}}{}$

 $-\frac{D_1}{D_2} \qquad -\frac{D_2}{D_1} \qquad \boxed{\mathbf{C}} \quad \frac{D_1}{D_2} \qquad \boxed{\mathbf{D}} \quad \frac{D_2}{D_1}$

Question 7 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 8 On note v la vitesse de la charge ${\cal M}$ selon la direction verticale. Exprimer ven fonction de ω_{10} (en valeur absolue).

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et prénom :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2 : A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6 : $\boxed{\mathbf{A}} \boxed{\mathbf{B}} \boxed{\mathbf{C}} \boxed{\mathbf{D}}$

Question 7: A B C D

Soit le schéma suivant. Question $\frac{\mathbf{3}}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$. $\begin{array}{ll} \textbf{Question} & \mathbf{1} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$

Soit le schéma suivant.

$$oxed{oxed{A}} -rac{Z_2}{Z_1}$$

Question 2 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

$$\begin{bmatrix} \mathbf{A} \end{bmatrix}$$
 $-\frac{Z_2}{Z_1}$

$$\boxed{\mathrm{B}} \ \frac{Z_2}{Z_1}$$

Question $\frac{4}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

Soit le schéma suivant.

A

 $\frac{\omega_{10}}{Z_2^2} = \frac{Z_2^2}{NZ_1} \omega$

 $\omega_{10} = NZ_1\omega_{30}$

Question 5 Déterminer $\frac{\check{\omega}_{10}}{}$ ω_{20}

Soit le schéma suivant. Question

Déterminer $\frac{\dot{\omega}_{10}}{}$

Soit le schéma suivant.

$$\boxed{\mathbf{A}} \ \frac{Z_2}{Z_1}$$

$$\frac{\overline{\mathbf{B}}}{-\frac{Z_2}{Z_1}}$$

$$-rac{Z_1}{Z_2}$$

Question 6 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

$$\boxed{\mathbf{A}} \frac{Z_1}{Z_2}$$

$$\begin{bmatrix} \overline{\mathrm{B}} \\ -\frac{Z_2}{Z_1} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{B} & & \mathbf{C} \\ -\frac{Z_2}{Z_1} & & -\frac{Z_1}{Z_2} \end{bmatrix} \qquad \begin{bmatrix} \mathbf{D} & \frac{Z_2}{Z_1} \\ \end{bmatrix}$$

$$\boxed{\mathrm{D}} \ \frac{Z_2}{Z_1}$$

Question 8 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

$$\begin{array}{ccc} v &= & \boxed{\mathbf{C}} & i \\ \frac{D_2 D_3}{D_1} \omega_{10} & \stackrel{?}{\underline{}} \end{array}$$

$$\begin{array}{c|c}
\hline{C} v = \boxed{D} \\
0 & \frac{D_1 D_3}{D_2} \omega_{10}
\end{array}$$

$$\begin{array}{ccc}
D & v &= & \underline{A} \\
\frac{D_1 D_3}{2D_2} \omega_{10}
\end{array}$$

$$\begin{array}{ccc}
\overline{\Lambda} & v &= & [\\
\frac{Z_2 p}{2Z_1 \pi} \omega_{10} & & \\
\end{array}$$

$$\begin{array}{cc}
\overline{S} & v = \\
\frac{Z_2}{Z_1 p} \omega_{10}
\end{array}$$

$$v = \overline{D}$$

$$\frac{Z_1 p}{2Z_2 \pi} \omega_{10}$$

$$\begin{array}{ccc}
D & v &= \\
\frac{2Z_1\pi}{Z_2n}\omega_{10}
\end{array}$$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

No	O.	n	1	e	t	р	r	é	n	ıC)1	n	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 1 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

 $\begin{array}{ll} \textbf{Question} & \textbf{3} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$

Poulies - Courroie

 D_1

1

Soit le schéma suivant.

 $\omega_{10} = NZ_1\omega_{30}$

 $\boxed{\mathrm{B}} \ \frac{D_2}{D_1}$

 D_2

Question 2 Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

Soit le schéma suivant.

 $\begin{array}{ll} \textbf{Question} & \textbf{4} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$

Soit le schéma suivant.

Question 5 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 7 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Soit le schéma suivant.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

No	O.	n	1	e	t	р	r	é	n	ıC)1	n	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

+14/4/5+

Question 1 M selon la direction verticale. Exprimer v en (en valeur absolue). fonction de ω_{10} (en valeur absolue).

On note v la vitesse de la charge **Question 3** Exprimer ω_{10} en fonction de ω_{30}

Soit le schéma suivant.

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Soit le schéma suivant.

 $\begin{array}{c|c} & & & \\ \hline \mathbb{B} & & & \overline{\mathbb{C}} \ \frac{Z_2}{Z_1} & & \overline{\mathbb{D}} \ \frac{Z_1}{Z_2} \\ & -\frac{Z_2}{Z_1} & & & \end{array}$

Question Déterminer ω_{20}

Soit le schéma suivant.

$$\boxed{\mathbf{A}} - \frac{D_1}{D_2}$$

 $\begin{bmatrix} -\frac{D_2}{D_1} \end{bmatrix}$

 $\boxed{\mathbb{C}} \ \frac{D_1}{D_2} \qquad \boxed{\mathbb{D}} \ \frac{D_2}{D_1}$

Question $\frac{6}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$. Soit le schéma suivant.

$$\boxed{\mathbf{A}} \ \frac{Z_1}{Z_2}$$

Question 7 On note v la vitesse de la charge ${\cal M}$ selon la direction horizontale. Exprimer ven fonction de ω_{10} (en valeur absolue). On note mle module des roues dentées.

Question $\frac{8}{\omega_{20}}$ Déterminer $\frac{\omega_{20}}{\omega_{10}}$ Soit le schéma suivant.

$$\boxed{\mathbf{A}} \ \frac{D_2}{D_1}$$

 $\begin{array}{c|cccc}
\hline{\mathbf{A}} & \frac{D_2}{D_1} & \hline{\mathbf{B}} & \hline{\mathbf{C}} & \frac{D_1}{D_2} \\
& & -\frac{D_2}{D_1} & \hline{\mathbf{D}}
\end{array}$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	et prénom :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

+15/4/1+

Question 1 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 2 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question 3 Soit le schéma suivant. Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

Question 5 Déterminer $\frac{\widetilde{\omega}_{10}}{}$. ω_{20}

Soit le schéma suivant. Question 7

Question $\frac{\mathbf{6}}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$. Soit le schéma suivant.

Soit le schéma suivant. Déterminer $\frac{\dot{\omega}_{10}}{\omega_{20}}$.

 $\begin{array}{ll} \textbf{Question} & \textbf{8} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$ Soit le schéma suivant.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	et prénom	1:	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

+16/4/57+

Question 1 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Question $\frac{3}{\omega_{10}}$. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

Soit le schéma suivant.

 $\begin{array}{c} D_1 \\ \hline \\ 0 \\ \hline \\ D_2 \\ \end{array}$

 $\begin{array}{ll} \textbf{Question 2} & \text{On note } v \text{ la vitesse de la charge} \\ M \text{ selon la direction verticale. Exprimer } v \text{ en} \\ \text{fonction de } \omega_{10} \text{ (en valeur absolue)}. \end{array}$

Question 5 Déterminer $\frac{\check{\omega}_{20}}{}$. ω_{10}

Soit le schéma suivant. Question 7

Déterminer $\frac{\dot{\omega}_{10}}{}$

 Z_1

Soit le schéma suivant.

$$\boxed{\mathbf{A}} \ \frac{Z_2}{Z_1}$$

$$\boxed{\mathrm{B}} \ \frac{Z_1}{Z_2}$$

On note v la vitesse de la charge Question 6 M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question 8 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note mle module des roues dentées.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

No	O]	n	1	€	et	,	p	r	é	r.	10)]	r	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

 $\begin{array}{ll} \textbf{Question} & \textbf{1} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$

$$\boxed{\mathbf{A}} \ \frac{Z_2}{Z_1}$$

$$\begin{bmatrix} \mathbf{D} \end{bmatrix} - \frac{Z_1}{Z_2}$$

Question 2 Déterminer $\frac{\omega_{20}}{\omega_{20}}$ Soit le schéma suivant. Déterminer ω_{10}

$$\boxed{\mathbf{A}} - \frac{D_2}{D_1}$$

 $\begin{array}{ccc}
 & \overline{D} & \overline{D} & \overline{D} \\
 & -\frac{D_1}{D_2} & \overline{D} & \overline{D} & \overline{D}_1
\end{array}$

Soit le schéma suivant. **Question 3** Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

$$\omega_{10} =$$
 \square

 $\omega_{10} = NZ_1\omega_{30}$

Question 4 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Question 5 Déterminer $\frac{\check{\omega}_{20}}{}$. ω_{10}

Soit le schéma suivant. Question

Déterminer

Soit le schéma suivant.

$$\boxed{\mathbf{A}} \ \frac{Z_1}{Z_2}$$

$$egin{array}{c} {
m C} \\ -rac{Z_1}{Z_2} \end{array}$$

$$A$$

$$-\frac{D_1}{D_2}$$

$$\begin{array}{c|c}
\hline
B \\
-\frac{D_2}{D_1}
\end{array}
\qquad
\begin{array}{c|c}
\hline
C \\
\overline{D_2} \\
\overline{D_1}
\end{array}
\qquad
\begin{array}{c|c}
\hline
D \\
\overline{D_2} \\
\overline{D_2}
\end{array}$$

$$\boxed{\mathbf{C}} \frac{D_2}{D_1}$$

Soit le schéma suivant.

$$\boxed{\mathbb{D}} \ \frac{D_1}{D_2}$$

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

$$\boxed{\mathbf{A}} \ \frac{Z_1}{Z_2}$$

$$\frac{Z}{Z}$$

$$\begin{bmatrix} \mathbf{D} \end{bmatrix} - \frac{Z_1}{Z_2}$$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et prenom :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

+18/4/49+

${\bf QCM-Transmetteurs}$

On note v la vitesse de la charge **Question** Question 1 M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Poulies – Courroie

Déterminer $\frac{3}{\omega_{20}}$ Soit le schéma suivant.

$$egin{array}{c|cccc} ar{
m A} & & & & ar{
m B} & rac{Z_1}{Z_2} & & & ar{
m C} & rac{Z_2}{Z_1} & & ar{
m D} & & & & -rac{Z_1}{Z_2} & & \end{array}$$

 D_2

Question 4 On note v la vitesse de la charge ${\cal M}$ selon la direction horizontale. Exprimer ven

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Soit le schéma suivant.

Question 5 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Question Soit le schéma suivant. Déterminer

Poulies - Courroie D_2

$$\begin{array}{c}
\Delta \\
\omega_{10} = \\
\frac{N}{Z_1}\omega_{30}
\end{array}$$

$$\omega_{10} = Z_2^2$$

$$\omega_{10} = \qquad \omega_{10} = \\ \frac{Z_2^2}{NZ_1}\omega_{30} \qquad NZ_1\omega_{30}$$

$$\omega_{10} = \frac{N}{Z_2} \frac{Z_1}{Z_2} \omega_{30}$$

 $\boxed{\mathbb{B}}_{-\frac{D_1}{D_2}} \quad \boxed{\mathbb{C}} \quad \frac{D_2}{D_1} \quad \boxed{\mathbb{D}} \quad \frac{D_1}{D_2}$ $-\frac{D_2}{D_1}$

 $\begin{array}{ll} \textbf{Question} & \textbf{6} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$

Soit le schéma suivant.

Question 8 On note v la vitesse de la charge ${\cal M}$ selon la direction horizontale. Exprimer ven fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

 $\boxed{\mathbf{A}} \ \frac{D_1}{D_2} \qquad \boxed{\mathbf{B}} \ \frac{D_2}{D_1} \qquad \boxed{\mathbf{C}} \\ -\frac{D_2}{D_1}$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	n et prénom :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QCM - Transmetteurs

Question $\frac{1}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$. Question

Soit le schéma suivant. Question $\frac{4}{\omega_{10}}$ Déterminer $\frac{\omega_{10}}{\omega_{20}}$ Question $\frac{2}{\omega_{10}}$. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

Soit le schéma suivant. Question 3 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

$$\frac{Z_1}{Z_2} \quad \boxed{C} \quad \frac{Z_1}{Z_2} \quad \boxed{D} \quad \frac{Z_2}{Z_1} \quad \frac{\boxed{A} \quad v = \boxed{B} \quad v = \boxed{C} \quad v = \boxed{D} \quad v = \\
\frac{D_1 D_3}{D_2} \omega_{10} \quad \frac{D_2}{D_1 D_3} \omega_{10} \quad \frac{D_2 D_3}{D_1} \omega_{10} \quad \frac{D_1 D_3}{2D_2} \omega_{10}$$

$$\mathbf{Question} \quad \mathbf{4} \quad \text{Soit le schéma suivant.}$$

Soit le schéma suivant.

$$\begin{bmatrix} \mathbf{A} \\ -\frac{Z_2}{Z_1} \end{bmatrix}$$
 $\begin{bmatrix} \mathbf{B} \end{bmatrix} \frac{Z_2}{Z_1}$ $\begin{bmatrix} \mathbf{C} \end{bmatrix} \frac{Z_1}{Z_2}$ $\begin{bmatrix} \mathbf{D} \end{bmatrix}$ $\begin{bmatrix} -\frac{Z_1}{Z_2} \end{bmatrix}$

Question 5 Déterminer $\frac{\tilde{\omega}_{20}}{}$.

Soit le schéma suivant. Question 7

$$\boxed{\mathbf{A}} - \frac{Z_1}{Z_2}$$

 \mathbf{D}

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

 $\omega_{10} =$ $NZ_1\omega_{30}$

Soit le schéma suivant.

 $\begin{array}{ll} \textbf{Question} & \textbf{8} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$

(1) Poulies - Courroie

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	et prénom :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

+20/4/41+

${\bf QCM-Transmetteurs}$

Question 1 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

> $\bigcirc Z_1$ $2Z_2$ Roue et vis sans fin N filets

Question 3 On note v la vitesse de la charge ${\cal M}$ selon la direction horizontale. Exprimer ven fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

$$\begin{array}{c}
\Delta \\
\omega_{10} = \\
\frac{N}{Z_1}\omega_{30}
\end{array}$$

$$\omega_{10} = 0$$

$$NZ_{10} = 0$$

$$\omega_{10} = \frac{Z_2^2}{NZ_2}\omega_{30}$$

$$\mathbb{B}$$
 ω_{10}

$$= \begin{array}{c|c} \hline C & v \\ \hline -\omega_{10} & \overline{Z_2} \\ \hline \end{array}$$

$$\boxed{\mathbf{D}} \begin{array}{l} v = \\ \frac{mZ_2}{Z_1} \omega_{10} \end{array}$$

Question 2 Déterminer $\frac{\overline{\omega}_{20}}{\omega_{10}}$. Soit le schéma suivant.

Question $\frac{4}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

Soit le schéma suivant.

$$\triangle$$
 $\frac{Z_1}{Z_2}$

$$\begin{array}{ccc}
\boxed{A} & \frac{Z_1}{Z_2} & \boxed{B} & \boxed{C} & \frac{Z_2}{Z_1} \\
& & -\frac{Z_2}{Z_1} & \boxed{C}
\end{array}$$

$$\boxed{\mathrm{C}} \ \frac{Z_2}{Z_1}$$

$$\begin{bmatrix} \mathbf{D} \end{bmatrix} - \frac{Z_1}{Z_2}$$

$$\boxed{\mathbf{A}} \ \frac{D_1}{D_2}$$

$$\frac{\mathbb{B}}{-\frac{D_2}{D_1}}$$

$$\boxed{\mathbf{C}} \frac{D}{D}$$

Question Déterminer ω_{20}

Soit le schéma suivant. Question 7

Déterminer $\frac{\dot{\omega}_{20}}{}$

Soit le schéma suivant.

$$\begin{bmatrix} \mathbf{A} \\ -\frac{D_1}{D_2} \end{bmatrix} \quad \begin{bmatrix} \mathbf{B} \end{bmatrix} \frac{D_1}{D_2} \quad \begin{bmatrix} \mathbf{C} \end{bmatrix} \frac{D_2}{D_1}$$

$$\boxed{\mathbf{C}} \ \frac{D_2}{D_1}$$

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question 8 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

No): (C	n	1	e	t	р	r	é	n	ıC)1	n	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

QCM - Transmetteurs

 $\begin{array}{ll} \textbf{Question} & \textbf{1} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Soit le schéma suivant.

$$egin{array}{cccc} ar{
m A} & rac{Z_2}{Z_1} & ar{
m B} & ar{
m C} & & & \\ & -rac{Z_2}{Z_2} & & -rac{Z_1}{Z_2} & & \end{array}$$

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Soit le schéma suivant.

Soit le schéma suivant. Question Déterminer

$$\begin{bmatrix} \mathbf{B} \\ -\frac{Z_2}{Z_1} \end{bmatrix} - \frac{\mathbf{C}}{Z_2} \begin{bmatrix} \mathbf{D} \\ \overline{Z_2} \end{bmatrix} = \begin{bmatrix} \mathbf{A} \\ -\frac{D_2}{D_1} \end{bmatrix} \begin{bmatrix} \mathbf{B} \\ \overline{D_2} \\ -\frac{D_2}{D_1} \end{bmatrix} \begin{bmatrix} \mathbf{D} \\ \overline{D_2} \end{bmatrix} \begin{bmatrix} \mathbf{D} \\ -\frac{D_1}{D_2} \end{bmatrix}$$

Question 4 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Soit le schéma suivant.

Question

Déterminer $\frac{\dot{\omega}_{20}}{}$

Question 5 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

$$\begin{bmatrix} \mathbf{B} \\ -\frac{Z_1}{Z_2} \end{bmatrix} - \frac{\mathbf{C}}{Z_1} \begin{bmatrix} \mathbf{D} \\ \frac{Z_2}{Z_2} \end{bmatrix}$$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et prénor	n:	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2 : A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

+22	/4/	/33+
-----	-----	------

${\bf QCM-Transmetteurs}$

Question 2 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

$$\begin{array}{c|cccc}
\hline{\mathbf{A}} & & \overline{\mathbf{B}} & & \overline{\mathbf{C}} & \frac{D_2}{D_1} & & \overline{\mathbf{D}} & \frac{D_1}{D_2} \\
& -\frac{D_1}{D_2} & & -\frac{D_2}{D_1} & & & & \overline{\mathbf{D}} & \frac{D_2}{D_2}
\end{array}$$

Question 5 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Question 7 Soit le schéma suivant. Déterminer $\frac{\dot{\omega}_{20}}{\omega_{10}}$.

 Z_1

 $\begin{array}{ll} \textbf{Question} & \textbf{6} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Soit le schéma suivant.

Soit le schéma suivant.

 D_1 (1) Poulies – Courroie

 D_2

 $\begin{array}{c|c}
\hline
\mathbf{B} \\
-\frac{Z_1}{Z_2}
\end{array}
\qquad
\begin{array}{c}
\hline
\mathbf{C} \quad \frac{Z_1}{Z_2}
\end{array}
\qquad
\begin{array}{c}
\hline
\mathbf{D} \quad \frac{Z_2}{Z_1}$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

No): (C	n	1	e	t	р	r	é	n	ıC)1	n	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

${\bf QCM-Transmetteurs}$

On note v la vitesse de la charge **Question 3** Question 1 fonction de ω_{10} (en valeur absolue). On note p fonction de ω_{10} (en valeur absolue). le pas de la vis.

On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en M selon la direction verticale. Exprimer v en

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{Déterminer} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$ Soit le schéma suivant.

Question 4 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 5 Déterminer $\frac{\tilde{\omega}_{10}}{}$. ω_{20}

Soit le schéma suivant. Question

Déterminer

Soit le schéma suivant.

 D_1 Poulies - Courroie D_2

$$\begin{bmatrix} \mathbf{B} \end{bmatrix} - \frac{Z_2}{Z_2}$$

$$egin{array}{c|c} \hline {
m B} & \hline {
m C} & rac{Z_2}{Z_1} & \hline {
m D} & \hline {
m -}rac{Z_1}{Z_2} & \hline \end{array}$$

 $\begin{array}{c|cccc}
\hline \mathbf{A} & & \hline \mathbf{B} & \frac{D_1}{D_2} & & \hline \mathbf{C} & & \hline \mathbf{D} & \frac{D_2}{D_1} \\
& -\frac{D_1}{D_2} & & & -\frac{D_2}{D_1} & & \\
\end{array}$

Question $\frac{\mathbf{6}}{\omega_{20}}$ Déterminer $\frac{\omega_{20}}{\omega_{10}}$

Soit le schéma suivant.

 $\begin{array}{ll} \textbf{Question} & \textbf{8} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$ Soit le schéma suivant.

$$\begin{bmatrix} \mathbf{B} \end{bmatrix} - \frac{D_2}{D_1}$$

 $\begin{array}{c|cccc} \hline \mathbf{A} & \frac{D_1}{D_2} & & \hline \mathbf{B} & & \hline \mathbf{C} & & \hline \mathbf{D} & \frac{D_2}{D_1} \\ & & -\frac{D_2}{D_1} & & -\frac{D_1}{D_2} & & & \hline \end{array}$

$$\boxed{\mathbb{D}} \ \frac{D_2}{D_1}$$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Ν	Į)	n	1	(et	,	р	r	é	n	ıC)1	Υ	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2 : A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6 : $\boxed{\mathbf{A}} \boxed{\mathbf{B}} \boxed{\mathbf{C}} \boxed{\mathbf{D}}$

Question 7: A B C D

+24	/4/	25+
-----	-----	-----

${f QCM-Transmetteurs}$

Question 1 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

> $\bigcirc Z_1$ $2Z_2$ Roue et vis sans fin N filets

Question 3 On note v la vitesse de la charge ${\cal M}$ selon la direction horizontale. Exprimer ven fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

 $\begin{array}{c}
C \\
\omega_{10} = \\
NZ_1\omega_{30}
\end{array}$

 $\begin{array}{l} \omega_{10} = \begin{array}{c} \textbf{Question} & \textbf{4} \\ \frac{N}{Z_2} \frac{Z_1}{Z_2} \overset{\text{D\'eterminer}}{\omega_{30}} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$

Soit le schéma suivant.

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$ Soit le schéma suivant.

 $\begin{array}{c|c} \mathbf{E} & \mathbf{Z}_2 \\ \hline \mathbf{B} & \mathbf{Z}_2 \\ \hline \mathbf{Z}_1 \end{array} \qquad \begin{array}{c} \mathbf{C} & \mathbf{Z}_1 \\ \hline \mathbf{Z}_2 \end{array} \qquad \begin{array}{c} \mathbf{D} \\ -\mathbf{Z}_2 \\ \hline \mathbf{Z}_1 \end{array}$

Question 5 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en Déterminer fonction de ω_{10} (en valeur absolue).

Question

Soit le schéma suivant.

Question 6 On note v la vitesse de la charge Question M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m Déterminer le module des roues dentées.

 $\frac{8}{\omega_{20}}$ Soit le schéma suivant.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Ν	Į)]	n	1	(et	,	р	r	é	n	ıC)1	Υ	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

${\bf QCM-Transmetteurs}$

Soit le schéma suivant. Question $\frac{\mathbf{3}}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$. $\begin{array}{ll} \textbf{Question} & \textbf{1} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$

$$\boxed{\mathbf{A}} - \frac{D_1}{D_2}$$

Question $\frac{2}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$. Soit le schéma suivant.

$$\boxed{\mathbf{A}} - \frac{D_1}{D_2}$$

Soit le schéma suivant.

Question 4 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

 $\begin{array}{ccc} & \boxed{\mathbf{C}} & \boxed{\mathbf{D}} \\ \omega_{10} = & \omega_{10} = \\ \frac{Z_2^2}{NZ_1} \omega_{30} & NZ_1 \omega_{30} \end{array}$

Question 5 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question 7 Soit le schéma suivant. Déterminer $\frac{\omega_{20}}{\ldots}$.

Question 8 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Ν	Į)]	n	1	(et	,	р	r	é	n	ıC)1	Υ	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7 : $\boxed{\mathbf{A}} \boxed{\mathbf{B}} \boxed{\mathbf{C}} \boxed{\mathbf{D}}$

+26/4	/17+
-------	------

${\bf QCM-Transmetteurs}$

 $\begin{array}{ll} \textbf{Question} & \textbf{1} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$

$$\boxed{\mathbf{A}} - \frac{Z_1}{Z_2}$$

Question $\frac{2}{\omega_{10}}$. Déterminer $\frac{\omega_{10}}{\omega_{20}}$. Soit le schéma suivant.

Soit le schéma suivant. Question 3 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

 $\omega_{10} =$ $NZ_1\omega_{30}$

Soit le schéma suivant. Question 4 Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

Question Déterminer ω_{10} Soit le schéma suivant. Question 7

Déterminer $\frac{\dot{\omega}_{20}}{}$

Soit le schéma suivant.

$$\boxed{\mathbf{A}} \ \frac{D_2}{D_1}$$

$$\begin{bmatrix} \mathbf{B} \end{bmatrix} - \frac{D_2}{D_1}$$

$$\begin{array}{c|c}
\hline
B & \hline
C \\
-\frac{D_2}{D_1} & -\frac{D_1}{D_2}
\end{array}$$

$$oxed{ f D} rac{D_1}{D_2} \qquad oxed{f A} rac{Z_2}{Z_1}$$

$$\boxed{\mathbf{A}} \ \frac{Z_2}{Z_1}$$

$$\begin{bmatrix} \mathbf{B} \\ -\frac{Z_1}{Z_2} \end{bmatrix} \quad \begin{bmatrix} \mathbf{C} \end{bmatrix} \frac{Z_1}{Z_2} \quad \begin{bmatrix} \mathbf{D} \end{bmatrix}$$

Question 6 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Question 8 On note v la vitesse de la charge ${\cal M}$ selon la direction horizontale. Exprimer ven fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	et préno	m :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

${\bf QCM-Transmetteurs}$

 $\begin{array}{ll} \textbf{Question} & \textbf{1} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Soit le schéma suivant. Question $\frac{\mathbf{3}}{\omega_{10}}$ Déterminer $\frac{\omega_{10}}{\omega_{20}}$

$$\boxed{\mathbf{A}} - \frac{D_1}{D_2}$$

Question $\frac{2}{\omega_{10}}$. Déterminer $\frac{\omega_{10}}{\omega_{20}}$. Soit le schéma suivant.

$$\boxed{\mathbf{A}} \ \frac{Z_1}{Z_2}$$

Soit le schéma suivant.

$$\frac{\Delta}{Z_1}$$
 $\frac{Z}{Z}$

Question 4 On note v la vitesse de la charge ${\cal M}$ selon la direction horizontale. Exprimer ven fonction de ω_{10} (en valeur absolue). On note ple pas de la vis.

Question 5 Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

Soit le schéma suivant.

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 7 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

N	J	Э:	n	1	(et	,	p	r	é	n	ıC)1	r	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

+28	11	/0.
+28	/4	/9+

${\bf QCM-Transmetteurs}$

 $\begin{array}{c} \textbf{Question} & \textbf{1} \\ \textbf{Déterminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Soit le schéma suivant. Question $\frac{\mathbf{3}}{\omega_{10}}$. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

$$\frac{\boxed{\mathbf{A}}}{-\frac{D_2}{D_1}}$$

 $\frac{D_1}{D_2}$

Question $\frac{2}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$. Soit le schéma suivant.

$$\boxed{\mathbf{A}} \ \frac{D_2}{D_1}$$

 $\begin{array}{c|cccc} \hline \mathbf{A} & \frac{D_2}{D_1} & & \hline \mathbf{B} & & \hline \mathbf{C} \\ & -\frac{D_2}{D_1} & & -\frac{D_1}{D_2} \end{array}$

Soit le schéma suivant.

A В

 $\boxed{ ext{C}} \; rac{Z_1}{Z_2} \qquad \boxed{ ext{D}} \; rac{Z_2}{Z_1}$

Question $\frac{4}{\omega_{10}}$. Déterminer $\frac{\omega_{10}}{\omega_{20}}$. Soit le schéma suivant.

A

Question 5 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question 7 Soit le schéma suivant. Déterminer $\frac{\omega_{20}}{\langle v|_{10} \rangle}$.

 $egin{array}{c|ccccc} \overline{\mathbf{A}} & \overline{\mathbf{B}} & \overline{Z_2} & \overline{\mathbf{C}} & \overline{Z_1} & \overline{\mathbf{D}} \\ -\overline{Z_2} & \overline{Z_1} & \overline{Z_2} & \overline{Z_2} & \overline{Z_2} & \overline{Z_2} \end{array}$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Ν	Į)]	n	1	(et	,	р	r	é	n	ıC)1	Υ	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

${\bf QCM-Transmetteurs}$

Question 1 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

 $\frac{\mathbf{3}}{\omega_{10}}$ Question Déterminer

Soit le schéma suivant.

Question 2 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

$$\begin{array}{c|c}
\hline
B & \hline
C & \hline
D & \overline{D_2} \\
-\frac{D_2}{D_1} & -\frac{D_1}{D_2} & \hline
\end{array}$$

Soit le schéma suivant.

$$\begin{array}{c|cccc}
\hline \mathbf{A} & \frac{D_1}{D_2} & \hline \mathbf{B} & \hline \mathbf{C} & \frac{D_2}{D_1} & \hline \mathbf{D} & \\
& -\frac{D_1}{D_2} & \hline \mathbf{C} & \frac{D_2}{D_1} & \hline
\end{array}$$

Question 5 Déterminer $\frac{\tilde{\omega}_{10}}{}$.

Soit le schéma suivant. Question 7

Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

$$\boxed{\mathbf{A}} - \frac{Z_1}{Z_2}$$

 $\begin{array}{ll} \textbf{Question} & \textbf{6} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Soit le schéma suivant.

 $\omega_{10} = \qquad \qquad \omega_{10} = \\ \frac{N}{Z_2} \frac{Z_1}{Z_2} \omega_{30} \qquad NZ_1 \omega_{30}$

Question 8 On note v la vitesse de la charge ${\cal M}$ selon la direction horizontale. Exprimer ven fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et prénom :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2 : A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7 : [A] [B] [C] [D]

+30/4/1+

QCM - Transmetteurs

Question 3 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

$$\boxed{\mathbf{A}} - \frac{D_1}{D_2}$$

Question 2

(en valeur absolue).

 $\boxed{\mathbf{B}} \ \frac{D_1}{D_2}$

Ī

$$\begin{bmatrix} D_2 \\ -D_2 \end{bmatrix}$$

Exprimer ω_{10} en fonction de ω_{30}

 $\omega_{10} = \frac{N}{Z_1} \frac{Z_1}{Z_2} \omega_{30}$

В

 $\omega_{10} = \frac{Z_2^2}{NZ_1}\omega_{30}$

 $\omega_{10} =$

 $\begin{array}{c}
\hline{D}\\
\omega_{10} =
\end{array}$

 $\omega_{10} = NZ_1\omega_{30}$

$$\begin{bmatrix} \overline{B} \\ -\overline{Z_2} \end{bmatrix} = \begin{bmatrix} \overline{Z_1} \\ -\overline{Z_2} \end{bmatrix}$$

Question Déterminer ω_{20}

Soit le schéma suivant.

$$\boxed{\mathbf{A}} - \frac{D_2}{D_1}$$

 $\underbrace{\frac{D_1}{D_2}} \quad \boxed{\mathbb{D}} \quad \underbrace{\frac{D_1}{D_2}} \quad \boxed{\mathbb{D}} \quad \underbrace{\frac{D_2}{D_1}}$

 $\begin{array}{ll} \textbf{Question} & \textbf{6} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$ Soit le schéma suivant.

Question 7 On note v la vitesse de la charge ${\cal M}$ selon la direction horizontale. Exprimer ven fonction de ω_{10} (en valeur absolue). On note ple pas de la vis.

 $\begin{array}{ll} \textbf{Question} & \textbf{8} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$ Soit le schéma suivant.

$$\boxed{\mathbf{A}} - \frac{Z_1}{Z_2}$$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et	prénom :

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7 : [A] [B] [C] [D]

+31/4/57+

${\bf QCM-Transmetteurs}$

On note v la vitesse de la charge **Question 3** Question 1 M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m fonction de ω_{10} (en valeur absolue). le module des roues dentées.

On note v la vitesse de la charge M selon la direction verticale. Exprimer v en

Soit le schéma suivant.

 $\begin{array}{ll} \textbf{Question} & \textbf{4} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Soit le schéma suivant.

Question 5 Déterminer $\frac{\check{\omega}_{10}}{}$.

Soit le schéma suivant. Question

$$\boxed{\mathbf{A}} - \frac{Z_2}{Z_1}$$

Question $\frac{\mathbf{6}}{\omega_{20}}$ Déterminer $\frac{\omega_{20}}{\omega_{10}}$. Soit le schéma suivant.

Soit le schéma suivant. Déterminer

 $\begin{array}{c|c}
\hline{\mathbf{A}} & \frac{D_2}{D_1} & \hline{\mathbf{B}} & \hline{\mathbf{C}} & \frac{D_1}{D_2} \\
& -\frac{D_1}{D_2} & \hline{\end{array}$

Question 8 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Ν	Į)]	n	1	(et	,	р	r	é	n	ıC)1	Υ	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2 : A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7 : [A] [B] [C] [D]

${\bf QCM-Transmetteurs}$

Question 1 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p fonction de ω le pas de la vis.

Question 3 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 2 Soit le schéma suivant. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

 $\begin{array}{c} D_1 \\ \hline \\ 0 \\ D_2 \\ \end{array}$

Question 5 Déterminer $\frac{\widetilde{\omega}_{10}}{}$. ω_{20}

Soit le schéma suivant. Question 7

Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

$$\boxed{\mathbf{A}} - \frac{Z_1}{Z_2}$$

 $\begin{array}{ll} \textbf{Question} & \textbf{6} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$ Soit le schéma suivant.

$$\boxed{\mathbf{A}} - \frac{D_2}{D_1}$$

 $\frac{\omega_{10}}{N} = \frac{N}{Z_1} \omega_{30}$

Question $\frac{8}{\omega_{10}}$ Déterminer $\frac{\omega_{10}}{\omega_{20}}$ Soit le schéma suivant.

 $\boxed{\mathbb{B}} \ \frac{Z_2}{Z_1} \qquad \boxed{\mathbb{C}} \ \frac{Z_1}{Z_2} \qquad \boxed{\mathbb{D}}$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et	prénom :

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

QCM - Transmetteurs

Question 2 Soit le schéma suivant. Déterminer $\frac{\omega_{20}}{\omega_{20}}$.

$$\begin{array}{c|cccc} & & & & & & & & & & & \\ \hline A & \frac{Z_2}{Z_1} & & & & & & & & \\ \hline -\frac{Z_1}{Z_2} & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ \hline -\frac{D_2}{D_1} & & & & \\ \end{array}$$

Question 3 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

$$\begin{bmatrix} \mathbf{A} \\ -\frac{D_2}{D_1} \end{bmatrix} \quad \begin{bmatrix} \mathbf{B} \end{bmatrix} \quad \frac{D_1}{D_2} \quad \begin{bmatrix} \mathbf{C} \\ -\frac{D_1}{D_2} \end{bmatrix} \quad \begin{bmatrix} \mathbf{D} \end{bmatrix} \quad \frac{D_2}{D_1}$$

Question 5 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en Déterminer fonction de ω_{10} (en valeur absolue).

Question

Soit le schéma suivant.

 $\boxed{\mathbb{C}} \ \frac{Z_2}{Z_1} \qquad \boxed{\mathbb{D}} \ \frac{Z_1}{Z_2}$

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p Déterminer le pas de la vis.

 $\frac{8}{\omega_{10}}$ Question

Soit le schéma suivant.

$$egin{array}{ccccc} \overline{Z}_1 & \overline{\mathbb{C}} & \overline{Z}_1 & \overline{\mathbb{C}} & \overline{Z}_1 & \overline{\mathbb{C}} \end{array}$$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

No): (C	n	1	e	t	р	r	é	n	ıC)1	n	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2 : A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

${\bf QCM-Transmetteurs}$

Soit le schéma suivant. Question $\frac{\mathbf{3}}{\omega_{20}}$ Déterminer $\frac{\omega_{20}}{\omega_{10}}$ Question $\frac{1}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

$$\boxed{\mathbf{A}} \ \frac{D_1}{D_2}$$

Question 2 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

D

Soit le schéma suivant.

$$\boxed{\mathbf{A}} \ \frac{Z_1}{Z_2}$$

 $\begin{array}{c} \textbf{Question} & \textbf{4} \\ \textbf{Déterminer} & \frac{\omega_{20}}{} \end{array}$ Déterminer

Soit le schéma suivant.

$$\triangle$$
 $\frac{Z_1}{Z_2}$

Question 5 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 7 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Question 6 Soit le schéma suivant. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

 D_1 eiounoj - salinod D_2 D_2

Question 8 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et prénor	n:	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

QCM - Transmetteurs

 $\begin{array}{ll} \textbf{Question} & \textbf{1} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$

Soit le schéma suivant. Question 3 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

 $\bigcirc Z_1$

$$\boxed{\mathbf{A}} \ \frac{Z_1}{Z_2}$$

$$egin{array}{cccc} ar{\mathbf{A}} & \dfrac{Z_1}{Z_2} & & ar{\mathbf{B}} & & ar{\mathbf{C}} & \dfrac{Z_2}{Z_1} \\ & & -\dfrac{Z_2}{Z_1} & & \end{array}$$

Roue et vis sans fin N filets

Soit le schéma suivant.

 $NZ_1\omega_{30}$

Question $\frac{Z_1}{Z_2}$ Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

Question 2 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

$$\begin{array}{c|c}
\underline{A} & v = \\
\frac{Z_2}{Z_1} \omega_{10}
\end{array}$$

$$\underline{Z_2}$$
 $\boxed{\mathbf{C}}$ $\underline{Z_2}$

Question 5 Déterminer $\frac{\check{\omega}_{20}}{}$. ω_{10}

Soit le schéma suivant. Question 7

$$\boxed{\mathbf{A}} \ \frac{Z_2}{Z_1}$$

 $\begin{array}{c|c}
\hline
B & \hline
C \\
-\frac{Z_2}{Z_1} & -\frac{Z_1}{Z_2}
\end{array}$

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note ple pas de la vis.

$$\begin{array}{c}
A \quad v = \\
\frac{Z_2}{Z_m} \omega_{10}
\end{array}$$

Soit le schéma suivant. Déterminer $\frac{\dot{\omega}_{20}}{}$

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} - \frac{Z_1}{Z_2}$$

 $\begin{array}{ll} \textbf{Question} & \textbf{8} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$ Soit le schéma suivant.

$$\mathbb{B} \frac{D_1}{D_2}$$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Ν	[()]	Υ	1	(et	,	p	r	é	r	10)1	r	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6 : $\boxed{\mathbf{A}} \boxed{\mathbf{B}} \boxed{\mathbf{C}} \boxed{\mathbf{D}}$

Question 7: A B C D

Question 1 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Question 3 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 5 Déterminer

Soit le schéma suivant. Question 7

 ω_{10}

 $\boxed{\mathbf{B}} \ \frac{D_1}{D_2} \qquad \boxed{\mathbf{C}} \ \frac{D_2}{D_1}$

 $\frac{D_1}{D_2}$

 $\begin{array}{ll} \textbf{Question} & \textbf{6} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$ Soit le schéma suivant.

Déterminer $\frac{\dot{\omega}_{10}}{\omega_{20}}$.

Soit le schéma suivant.

Question $\frac{8}{\omega_{10}}$. Déterminer $\frac{\omega_{10}}{\omega_{20}}$. Soit le schéma suivant.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

No	O]	n	1	€	et	,	p	r	é	r.	10)]	r	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7 : $\boxed{\mathbf{A}} \boxed{\mathbf{B}} \boxed{\mathbf{C}} \boxed{\mathbf{D}}$

Question 2 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question 3 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Question 5 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Question 7 On note v la vitesse de la charge ${\cal M}$ selon la direction horizontale. Exprimer ven fonction de ω_{10} (en valeur absolue). On note mle module des roues dentées.

$$\frac{\Delta}{\omega_{10}} = \frac{N}{Z_1} \omega_{30}$$

$$\begin{array}{c}
B \\
\omega_{10} = \\
\frac{N}{Z_1} \frac{Z_1}{Z_2} \omega
\end{array}$$

$$\begin{array}{c|c} & \boxed{\mathbf{C}} & \boxed{\mathbf{D}} \\ \omega_{10} = & \omega_{10} = \\ \frac{N}{Z_2} \frac{Z_1}{Z_2} \omega_{30} & NZ_1 \omega_{30} \end{array}$$

$$\omega_{10}=rac{Z_2}{NZ_2}\omega_{30}$$

$$\begin{array}{c}
B \quad v = \\
\frac{Z_2}{Z_1} \omega_{10}
\end{array}$$

$$\begin{array}{ccc}
\boxed{\mathbf{C}} & v &= & \boxed{\mathbf{D}} \\
& \frac{mZ_2^2}{2Z_1} \omega_{10}
\end{array}$$

$$\begin{array}{c|c}
\hline{D} & v &= \\
mZ_2 \\
IO & \overline{Z_1} \omega_1
\end{array}$$

Question $\frac{\mathbf{6}}{\omega_{20}}$ Déterminer $\frac{\omega_{20}}{\omega_{10}}$

Soit le schéma suivant.

 $\begin{array}{ll} \textbf{Question} & \textbf{8} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$ Soit le schéma suivant.

 $egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} -rac{Z_1}{Z_2} \end{array} \end{array}$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et	prénom :

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2 : A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7 : $\boxed{\mathbf{A}} \boxed{\mathbf{B}} \boxed{\mathbf{C}} \boxed{\mathbf{D}}$

 $\begin{array}{ll} \textbf{Question} & \mathbf{1} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Question Soit le schéma suivant.

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$ Soit le schéma suivant.

Soit le schéma suivant. Question Déterminer

 $\boxed{\mathbf{A}} \ \frac{D_1}{D_2}$

Question 4 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note ple pas de la vis.

 $\begin{array}{lll} \textbf{Question 5} & \text{On note } v \text{ la vitesse de la charge} & \textbf{Question} & \textbf{7} \\ M \text{ selon la direction verticale. Exprimer } v \text{ en} & \text{Déterminer } \frac{\omega_{10}}{\omega_{20}} \\ \text{fonction de } \omega_{10} \text{ (en valeur absolue)}. \end{array}$

Question 7 Soit le schéma suivant. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

Question 8 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

$$egin{array}{ccccc} ar{\mathbf{A}} & \dfrac{Z_1}{Z_2} & & ar{\mathbf{B}} & & \mathbf{C} \\ & -\dfrac{Z_2}{Z_1} & & -\dfrac{Z_1}{Z_2} & & ar{\mathbf{D}} & \dfrac{Z_2}{Z_1} \end{array}$$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et 1	prénom:

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6 : [A] [B] [C] [D]

Question 7: A B C D

${\bf QCM-Transmetteurs}$

Question $\frac{1}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$. Question

Soit le schéma suivant. Question

 $\begin{array}{ll} \textbf{Question} & \textbf{3} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$

Soit le schéma suivant.

$$-rac{Z_1}{Z_2}$$
 $\stackrel{\textstyle\square}{=}$ $rac{Z_1}{Z_2}$ $\stackrel{\textstyle\square}{=}$ $rac{Z_2}{Z_1}$ $\stackrel{\textstyle\square}{=}$ $rac{Z_2}{Z_1}$ $-rac{Z_2}{Z_1}$

 Z_1

$$\begin{array}{c|c}
\hline{\mathbf{B}} & \hline{\mathbf{C}} & \overline{Z_2} \\
-\overline{Z_1} & \overline{Z_2}
\end{array}$$

$$\boxed{\mathrm{D}} \ \frac{Z_1}{Z_2}$$

Question 2 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note mle module des roues dentées.

Soit le schéma suivant.

$$\begin{array}{c}
C \quad v = \\
\frac{mZ_2}{Z_2}\omega_{10}
\end{array}$$

$$\boxed{\mathbf{A}} \ \frac{D_1}{D_2}$$

$$\mathbb{B} \frac{D}{D}$$

$$\begin{array}{c}
\boxed{D} \\
-\frac{D_2}{D_1}
\end{array}$$

Question Déterminer ω_{20}

Soit le schéma suivant.

Question 7 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Poulies – Courroie

 D_2

$$\boxed{\mathbf{A}} \ \frac{D_2}{D_1}$$

$$\begin{array}{ccc}
 & \underline{D}_2 \\
 & \underline{D}_1 \\
 & \underline{D}_2 \\
 & \underline{D}_1
\end{array}$$

$$\frac{\mathbb{D}}{-\frac{D_2}{D_1}}$$

On note v la vitesse de la charge Question 6 M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question 8 Déterminer $\frac{\omega_{20}}{\omega_{20}}$ Soit le schéma suivant.

$$\begin{array}{c}
B \quad v = \\
\frac{Z_1 p}{2Z_2 \pi} \omega_{10}
\end{array}$$

$$\overline{\mathbb{C}} v = \overline{\mathbb{D}}$$

$$\frac{Z_2 p}{2Z_1 \pi} \omega_{10}$$

$$\begin{array}{c}
\boxed{D} \ v = \\
\frac{Z_2}{Z_1 n} \omega_{10}
\end{array}$$

$$\frac{Z_1}{Z_2}$$

2

$$\frac{Z_1}{Z_2}$$

 Z_2

$$\frac{Z_2}{Z_1}$$
 $\mathbb{D} \frac{Z_2}{Z_1}$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Ν	Į)	n	1	(et	,	р	r	é	n	ıC)1	Υ	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7 : $\boxed{\mathbf{A}} \boxed{\mathbf{B}} \boxed{\mathbf{C}} \boxed{\mathbf{D}}$

+40/4/21+

$$\frac{\boxed{\mathbf{A}}}{-\frac{D_2}{D_1}}$$

 $\overline{\mathbf{B}} \frac{D_2}{D_1}$

 $\boxed{\mathbb{C}} \frac{D_1}{D_2}$

D $-\frac{D}{D}$

Question 2 Soit le schéma suivant. Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

$$\boxed{\mathbf{A}} - \frac{Z_2}{Z_1}$$

 $oxed{ ext{C}} -rac{Z_1}{Z_2}$

 $\boxed{\mathrm{D}} \ \frac{Z_1}{Z_2}$

Question 3 Soit le schéma suivant. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

$$\begin{bmatrix} rac{Z_2}{Z_1} & & \mathbb{B} \\ & -rac{Z_2}{Z_1} \end{bmatrix}$$

 $\begin{bmatrix} \mathbf{C} \\ -\frac{Z_1}{Z_2} \end{bmatrix}$

 $\boxed{\mathrm{D}} \ \frac{Z_1}{Z_2}$

Question 4 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 5 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Question 7 Soit le schéma suivant. Déterminer $\frac{\dot{\omega}_{10}}{}$

$$\begin{array}{c} \boxed{\mathbf{A}} \\ \omega_{10} = \\ \frac{N}{Z} \omega_{30} \end{array}$$

 $\omega_{10} = \omega_{10} = \frac{N}{Z_1} \frac{Z_1}{Z_2} \omega_{30} \qquad NZ_1 \omega_{30}$

Soit le schéma suivant.

 Z_1

$$\begin{array}{c}
\boxed{D} \\
-\frac{Z}{Z}
\end{array}$$

Question 8 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Ν	Į)	n	1	(et	,	р	r	é	n	ıC)1	Υ	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2 : A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7 : $\boxed{\mathbf{A}} \boxed{\mathbf{B}} \boxed{\mathbf{C}} \boxed{\mathbf{D}}$

+41/4/17+

On note v la vitesse de la charge **Question 3** Question 1 M selon la direction horizontale. Exprimer v en M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p fonction de ω_{10} (en valeur absolue). le pas de la vis.

On note v la vitesse de la charge

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$

$$D_1$$

$$O = \text{Points}$$

$$D_2$$

$$D_2$$

$$\begin{array}{c|cccc}
\hline
A & & & & \hline
B & & & \hline
C & \frac{D_2}{D_1} & & \hline
D & \frac{D_1}{D_2}
\end{array}$$

Question 4 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 5 Déterminer $\frac{\check{\omega}_{20}}{}$.

Soit le schéma suivant. Question

$$\boxed{\mathbf{A}} - \frac{Z_2}{Z_1}$$

Question 6 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Soit le schéma suivant. Déterminer

 $\begin{array}{c|c}
\hline
B & \hline
C & \hline
D & \overline{D}_1 \\
-\frac{D_2}{D_1} & -\frac{D_1}{D_2}
\end{array}$

 $\begin{array}{ll} \textbf{Question} & \textbf{8} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$ Soit le schéma suivant.

 $\begin{bmatrix} \mathbf{A} \\ -\frac{Z_1}{Z_2} \end{bmatrix} - \frac{\mathbf{E}}{Z_1} \begin{bmatrix} \mathbf{C} \\ \frac{Z_2}{Z_1} \end{bmatrix} \begin{bmatrix} \mathbf{D} \\ \frac{Z_1}{Z_2} \end{bmatrix}$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

No)]	n	1	ϵ	et	р	r	é	n	ıC)1	n	l	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C D

Question 2: A B C D

Question 3: A B C D

Question 4: A B C D

Question 5: A B C D

Question 6: A B C D

Question 7: A B C D

