MA 101 (Mathematics I)

Multivariable Calculus: Hints / Solutions of Practice Problem Set - 1

1. If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$, then show that $|\|\mathbf{x}\| - \|\mathbf{y}\|| \le \|\mathbf{x} - \mathbf{y}\|$.

Solution: We have $\|\mathbf{x}\| = \|\mathbf{x} - \mathbf{y} + \mathbf{y}\| \le \|\mathbf{x} - \mathbf{y}\| + \|\mathbf{y}\|$ and so $\|\mathbf{x}\| - \|\mathbf{y}\| \le \|\mathbf{x} - \mathbf{y}\|$. Similarly $\|\mathbf{y}\| - \|\mathbf{x}\| \le \|\mathbf{y} - \mathbf{x}\| = \|\mathbf{x} - \mathbf{y}\|$. Therefore $\|\mathbf{x}\| - \|\mathbf{y}\| \le \|\mathbf{x} - \mathbf{y}\|$.

2. If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$, then show that $\|\mathbf{x} + \mathbf{y}\| \|\mathbf{x} - \mathbf{y}\| \le \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$.

Solution: We have $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 + 2\mathbf{x}\cdot\mathbf{y}$ and $\|\mathbf{x} - \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2\mathbf{x}\cdot\mathbf{y}$. Hence $\|\mathbf{x} + \mathbf{y}\|^2 \|\mathbf{x} - \mathbf{y}\|^2 = (\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2)^2 - 4(\mathbf{x}\cdot\mathbf{y})^2 \le (\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2)^2$. Therefore $\|\mathbf{x} + \mathbf{y}\| \|\mathbf{x} - \mathbf{y}\| \le \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$.

3. If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$, then show that $\|\mathbf{x}\| \leq \max\{\|\mathbf{x} + \mathbf{y}\|, \|\mathbf{x} - \mathbf{y}\|\}$.

Solution: If possible, let $\|\mathbf{x}\| > \max\{\|\mathbf{x}+\mathbf{y}\|, \|\mathbf{x}-\mathbf{y}\|\}$. Then $\|\mathbf{x}\| > \|\mathbf{x}+\mathbf{y}\|$ and $\|\mathbf{x}\| > \|\mathbf{x}-\mathbf{y}\|$ and so $2\|\mathbf{x}\| = \|(\mathbf{x}+\mathbf{y}) + (\mathbf{x}-\mathbf{y})\| \le \|\mathbf{x}+\mathbf{y}\| + \|\mathbf{x}-\mathbf{y}\| < \|\mathbf{x}\| + \|\mathbf{x}\| = 2\|\mathbf{x}\|$, which is a contradiction. Hence $\|\mathbf{x}\| \le \max\{\|\mathbf{x}+\mathbf{y}\|, \|\mathbf{x}-\mathbf{y}\|\}$.

4. If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$, then show that $\|\mathbf{x} + \alpha \mathbf{y}\| \ge \|\mathbf{x}\|$ for all $\alpha \in \mathbb{R}$ iff $\mathbf{x} \cdot \mathbf{y} = 0$.

Solution: We first assume that $\mathbf{x} \cdot \mathbf{y} = 0$. If $\alpha \in \mathbb{R}$, then we have

 $\|\mathbf{x} + \alpha \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + 2\mathbf{x} \cdot \alpha \mathbf{y} + \|\alpha \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + 2\alpha \mathbf{x} \cdot \mathbf{y} + |\alpha|^2 \|\mathbf{y}\|^2 = \|\mathbf{x}\|^2 + |\alpha|^2 \|\mathbf{y}\|^2 \ge \|\mathbf{x}\|^2$ and hence $\|\mathbf{x} + \alpha \mathbf{y}\| \ge \|\mathbf{x}\|$.

Conversely, let $\|\mathbf{x} + \alpha \mathbf{y}\| \ge \|\mathbf{x}\|$ for all $\alpha \in \mathbb{R}$. If possible, let $\mathbf{x} \cdot \mathbf{y} \ne 0$. Then $\mathbf{y} \ne \mathbf{0}$ and so $\|\mathbf{y}\| \ne 0$. If $\alpha = -\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{y}\|^2}$, then $\alpha \in \mathbb{R}$ and we have

 $\|\mathbf{x} + \alpha \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + 2\alpha \mathbf{x} \cdot \mathbf{y} + |\alpha|^2 \|\mathbf{y}\|^2 = \|\mathbf{x}\|^2 - \frac{(\mathbf{x} \cdot \mathbf{y})^2}{\|\mathbf{y}\|^2} < \|\mathbf{x}\|^2$. Thus $\|\mathbf{x} + \alpha \mathbf{y}\| < \|\mathbf{x}\|$, which is a contradiction. Therefore $\mathbf{x} \cdot \mathbf{y} = 0$.

5. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ and $\alpha > 0$. Show that $|\mathbf{x} \cdot \mathbf{y}| \le \alpha ||\mathbf{x}||^2 + \frac{1}{4\alpha} ||\mathbf{y}||^2$.

Solution: We have

 $|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| \, ||\mathbf{y}|| = 2\sqrt{\alpha} ||\mathbf{x}|| \, \frac{1}{2\sqrt{\alpha}} ||\mathbf{y}|| \le \left(\sqrt{\alpha} ||\mathbf{x}||\right)^2 + \left(\frac{1}{2\sqrt{\alpha}} ||\mathbf{y}||\right)^2 = \alpha ||\mathbf{x}||^2 + \frac{1}{4\alpha} ||\mathbf{y}||^2.$

6. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$. Show that $\|\mathbf{x}\| - \|\mathbf{y}\| = \|\mathbf{x} - \mathbf{y}\|$ iff $\alpha \mathbf{x} = \beta \mathbf{y}$ for some $\alpha, \beta \geq 0$ with $(\alpha, \beta) \neq (0, 0)$.

Solution: We first assume that $\|\mathbf{x}\| - \|\mathbf{y}\|\| = \|\mathbf{x} - \mathbf{y}\|$. Then $\|\mathbf{x}\| - \|\mathbf{y}\|\|^2 = \|\mathbf{x} - \mathbf{y}\|^2$, which gives $\|\mathbf{x}\| \|\mathbf{y}\| = \mathbf{x} \cdot \mathbf{y}$. So $\|\mathbf{x}\| \|\mathbf{y}\| = |\mathbf{x} \cdot \mathbf{y}|$ and hence by the equality condition in Cauchy-Schwarz inequality, we get $\mathbf{y} = \mathbf{0}$ or $\mathbf{x} = t\mathbf{y}$ for some $t \in \mathbb{R}$. If $\mathbf{y} = \mathbf{0}$, then by taking $\alpha = 0$, $\beta = 1$, we find that $\alpha \mathbf{x} = \beta \mathbf{y}$ and α , $\beta \geq 0$ with $(\alpha, \beta) \neq (0, 0)$. Again, if $\mathbf{y} \neq \mathbf{0}$ and $\mathbf{x} = t\mathbf{y}$, then since we have $\|\mathbf{x}\| \|\mathbf{y}\| = \mathbf{x} \cdot \mathbf{y}$, we obtain $\|t\mathbf{y}\| \|\mathbf{y}\| = t\mathbf{y} \cdot \mathbf{y}$, *i.e.* $|t| \|\mathbf{y}\|^2 = t\|\mathbf{y}\|^2$. Since $\|\mathbf{y}\| \neq 0$, we get |t| = t and hence $t \geq 0$. Taking $\alpha = 1$, $\beta = t$, we find that $\alpha \mathbf{x} = \beta \mathbf{y}$ and

 $\alpha, \beta \geq 0$ with $(\alpha, \beta) \neq (0, 0)$.

Conversely, let $\alpha \mathbf{x} = \beta \mathbf{y}$ for some $\alpha, \beta \ge 0$ with $(\alpha, \beta) \ne (0, 0)$. Then $\alpha \ne 0$ or $\beta \ne 0$. We first assume that $\alpha \ne 0$. Then $\mathbf{x} = t\mathbf{y}$, where $t = \frac{\beta}{\alpha} \ge 0$. Now,

 $\|\mathbf{x}\| - \|\mathbf{y}\|\| = \|\mathbf{t}\mathbf{y}\| - \|\mathbf{y}\|\| = |t - 1| \|\mathbf{y}\|$ and $\|\mathbf{x} - \mathbf{y}\| = \|t\mathbf{y} - \mathbf{y}\| = |t - 1| \|\mathbf{y}\|.$ Therefore $\|\mathbf{x}\| - \|\mathbf{y}\|\| = \|\mathbf{x} - \mathbf{y}\|.$ Similarly we obtain $\|\mathbf{x}\| - \|\mathbf{y}\|\| = \|\mathbf{x} - \mathbf{y}\|$ if we assume that $\beta \neq 0$.

7. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ and r > 0 such that $\mathbf{y} \cdot \mathbf{z} = 0$ for all $\mathbf{z} \in B_r(\mathbf{x})$. Show that $\mathbf{y} = \mathbf{0}$.

Solution: If possible, let $\mathbf{y} \neq \mathbf{0}$. Then $\|\mathbf{y}\| \neq 0$. If $\mathbf{z} = \mathbf{x} + \frac{r}{2\|\mathbf{y}\|}\mathbf{y}$, then $\mathbf{z} \in \mathbb{R}^m$ and since $\|\mathbf{z} - \mathbf{x}\| = \frac{r}{2} < r$, $\mathbf{z} \in B_r(\mathbf{x})$. Hence $\mathbf{y} \cdot \mathbf{z} = 0$ and so $\mathbf{y} \cdot \mathbf{x} + \frac{r}{2\|\mathbf{y}\|}\|\mathbf{y}\|^2 = 0$. Since $\mathbf{x} \in B_r(\mathbf{x})$, $\mathbf{y} \cdot \mathbf{x} = 0$ and so from above, we get $\|\mathbf{y}\| = 0$, which is a contradiction. Therefore $\mathbf{y} = \mathbf{0}$.

8. If $\mathbf{x}_0 \in \mathbb{R}^m$ and r > 0, then determine $\sup\{\|\mathbf{x} - \mathbf{y}\| : \mathbf{x}, \mathbf{y} \in B_r(\mathbf{x}_0)\}$ with justification.

Solution: For all \mathbf{x} , $\mathbf{y} \in B_r(\mathbf{x}_0)$, $\|\mathbf{x} - \mathbf{y}\| \le \|\mathbf{x} - \mathbf{x}_0\| + \|\mathbf{x}_0 - \mathbf{y}\| < r + r = 2r$ and so 2r is an upper bound of $\{\|\mathbf{x} - \mathbf{y}\| : \mathbf{x}, \mathbf{y} \in B_r(\mathbf{x}_0)\}$. Let $\varepsilon > 0$ such that $\varepsilon < r$. Then $\mathbf{x}_0 + (r - \frac{\varepsilon}{3})\mathbf{e}_1$, $\mathbf{x}_0 - (r - \frac{\varepsilon}{3})\mathbf{e}_1 \in \mathbb{R}^m$ and since $\|\mathbf{x}_0 + (r - \frac{\varepsilon}{3})\mathbf{e}_1 - \mathbf{x}_0\| = r - \frac{\varepsilon}{3} < r$, $\|\mathbf{x}_0 - (r - \frac{\varepsilon}{3})\mathbf{e}_1 - \mathbf{x}_0\| = r - \frac{\varepsilon}{3} < r$, we have $\mathbf{x}_0 + (r - \frac{\varepsilon}{3})\mathbf{e}_1$, $\mathbf{x}_0 - (r - \frac{\varepsilon}{3})\mathbf{e}_1 \in B_r(\mathbf{x}_0)$. Also, $\|(\mathbf{x}_0 + (r - \frac{\varepsilon}{3})\mathbf{e}_1) - (\mathbf{x}_0 - (r - \frac{\varepsilon}{3})\mathbf{e}_1)\| = 2r - \frac{2\varepsilon}{3} > 2r - \varepsilon$ and hence $2r - \varepsilon$ is not an upper bound of $\{\|\mathbf{x} - \mathbf{y}\| : \mathbf{x}, \mathbf{y} \in B_r(\mathbf{x}_0)\}$. Therefore $\sup\{\|\mathbf{x} - \mathbf{y}\| : \mathbf{x}, \mathbf{y} \in B_r(\mathbf{x}_0)\} = 2r$.

9. Let $S \subseteq \mathbb{R}^m$ such that $S \subseteq B_r[\mathbf{x}_0]$ for some $\mathbf{x}_0 \in \mathbb{R}^m$ and for some r > 0. Show that S is a bounded set.

Solution: If $\mathbf{x} \in S$, then $\mathbf{x} \in B_r[\mathbf{x}_0]$ and hence $\|\mathbf{x}\| = \|\mathbf{x} - \mathbf{x}_0 + \mathbf{x}_0\| \le \|\mathbf{x} - \mathbf{x}_0\| + \|\mathbf{x}_0\| \le r + \|\mathbf{x}_0\|$. Therefore S is a bounded set in \mathbb{R}^m .

10. Let $\alpha \in (0,1)$ and let $\mathbf{x}_n = \left(n^3 \alpha^n, \frac{1}{n}[n\alpha]\right)$ for all $n \in \mathbb{N}$. (For each $x \in \mathbb{R}$, [x] denotes the greatest integer not exceeding x.) Examine whether the sequence (\mathbf{x}_n) converges in \mathbb{R}^2 . Also, find $\lim_{n \to \infty} \mathbf{x}_n$ if the sequence (\mathbf{x}_n) converges in \mathbb{R}^2 .

Solution: Let $x_n = n^3 \alpha^n$ and $y_n = \frac{1}{n} [n\alpha]$ for all $n \in \mathbb{N}$.

Since $\lim_{n\to\infty} \frac{x_{n+1}}{x_n} = \lim_{n\to\infty} (1+\frac{1}{n})^3 \alpha = \alpha < 1$, the sequence (x_n) converges in \mathbb{R} to 0. Again, since $[n\alpha] \leq n\alpha < [n\alpha] + 1$ for all $n \in \mathbb{N}$, we have $n\alpha - 1 < [n\alpha] \leq n\alpha$ for all $n \in \mathbb{N}$ and so it follows that $\alpha - \frac{1}{n} < y_n \leq \alpha$ for all $n \in \mathbb{N}$. Hence by sandwich theorem, the sequence (y_n) converges in \mathbb{R} to α . Therefore the sequence (\mathbf{x}_n) converges in \mathbb{R}^2 and $\lim_{n\to\infty} \mathbf{x}_n = (0,\alpha)$.

11. Let (\mathbf{x}_n) be a sequence in \mathbb{R}^m such that the series $\sum_{n=1}^{\infty} n^2 ||\mathbf{x}_n||^2$ is convergent. Show that the series $\sum_{n=1}^{\infty} ||\mathbf{x}_n||$ is convergent.

Solution: For all $n \in \mathbb{N}$, using Cauchy-Schwarz inequality, we have $\sum_{k=1}^{n} \|\mathbf{x}_{k}\| = \sum_{k=1}^{n} k \|\mathbf{x}_{k}\| \frac{1}{k} \leq \left(\sum_{k=1}^{n} k^{2} \|\mathbf{x}_{k}\|^{2}\right)^{\frac{1}{2}} \left(\sum_{k=1}^{n} \frac{1}{k^{2}}\right)^{\frac{1}{2}} \leq \left(\sum_{k=1}^{\infty} k^{2} \|\mathbf{x}_{k}\|^{2}\right)^{\frac{1}{2}} \left(\sum_{k=1}^{\infty} \frac{1}{k^{2}}\right)^{\frac{1}{2}} < \infty.$ This shows that the sequence $\left(\sum_{k=1}^{n} \|\mathbf{x}_{k}\|\right)$ of partial sums of the series $\sum_{n=1}^{\infty} \|\mathbf{x}_{n}\|$ of non-negative real

numbers is bounded above and hence the sequence $\left(\sum_{k=1}^{n} \|\mathbf{x}_{k}\|\right)$ converges in \mathbb{R} . Consequently the series $\sum_{n=1}^{\infty} \|\mathbf{x}_{n}\|$ is convergent in \mathbb{R} .

12. Let (\mathbf{x}_n) and (\mathbf{y}_n) be sequences in \mathbb{R}^m such that $\mathbf{x}_n \to \mathbf{x} \in \mathbb{R}^m$ and $\mathbf{y}_n \to \mathbf{y} \in \mathbb{R}^m$. Show that $\mathbf{x}_n + \mathbf{y}_n \to \mathbf{x} + \mathbf{y}$ and $\mathbf{x}_n \cdot \mathbf{y}_n \to \mathbf{x} \cdot \mathbf{y}$.

Solution: Since $\mathbf{x}_n \to \mathbf{x}$ and $\mathbf{y}_n \to \mathbf{y}$, $\|\mathbf{x}_n - \mathbf{x}\| \to 0$ and $\|\mathbf{y}_n - \mathbf{y}\| \to 0$. Hence $\|(\mathbf{x}_n + \mathbf{y}_n) - (\mathbf{x} + \mathbf{y})\| \le \|\mathbf{x}_n - \mathbf{x}\| + \|\mathbf{y}_n - \mathbf{y}\| \to 0$. Therefore $\|(\mathbf{x}_n + \mathbf{y}_n) - (\mathbf{x} + \mathbf{y})\| \to 0$ and so $\mathbf{x}_n + \mathbf{y}_n \to \mathbf{x} + \mathbf{y}$.

Again, $|\mathbf{x}_n \cdot \mathbf{y}_n - \mathbf{x} \cdot \mathbf{y}| = |\mathbf{x}_n \cdot \mathbf{y}_n - \mathbf{x}_n \cdot \mathbf{y} + \mathbf{x}_n \cdot \mathbf{y} - \mathbf{x} \cdot \mathbf{y}| = |\mathbf{x}_n \cdot (\mathbf{y}_n - \mathbf{y}) + (\mathbf{x}_n - \mathbf{x}) \cdot \mathbf{y}|$ $\leq |\mathbf{x}_n \cdot (\mathbf{y}_n - \mathbf{y})| + |(\mathbf{x}_n - \mathbf{x}) \cdot \mathbf{y}| \leq ||\mathbf{x}_n|| ||\mathbf{y}_n - \mathbf{y}|| + ||\mathbf{x}_n - \mathbf{x}|| ||\mathbf{y}|| \text{ for all } n \in \mathbb{N}.$ Since (\mathbf{x}_n) is a convergent sequence in \mathbb{R}^m , (\mathbf{x}_n) is bounded in \mathbb{R}^m . Hence there exists r > 0 such that $||\mathbf{x}_n|| \leq r$ for all $n \in \mathbb{N}$. Therefore $|\mathbf{x}_n \cdot \mathbf{y}_n - \mathbf{x} \cdot \mathbf{y}| \leq ||\mathbf{x}_n|| ||\mathbf{y}_n - \mathbf{y}|| + ||\mathbf{x}_n - \mathbf{x}|| ||\mathbf{y}|| \to 0$ and so $|\mathbf{x}_n \cdot \mathbf{y}_n - \mathbf{x} \cdot \mathbf{y}| \to 0$. Hence $\mathbf{x}_n \cdot \mathbf{y}_n \to \mathbf{x} \cdot \mathbf{y}$.

13. Let $\mathbf{x} \in \mathbb{R}^m$ and let (\mathbf{x}_n) be a sequence in \mathbb{R}^m such that $\|\mathbf{x}_n\| \to \|\mathbf{x}\|$ and $\mathbf{x}_n \cdot \mathbf{x} \to \mathbf{x} \cdot \mathbf{x}$. Show that (\mathbf{x}_n) is convergent.

Solution: Since $\|\mathbf{x}_n - \mathbf{x}\|^2 = \|\mathbf{x}_n\|^2 - 2\mathbf{x}_n \cdot \mathbf{x} + \|\mathbf{x}\|^2 \to \|\mathbf{x}\|^2 - 2\mathbf{x} \cdot \mathbf{x} + \|\mathbf{x}\|^2 = 2\|\mathbf{x}\|^2 - 2\|\mathbf{x}\|^2 = 0$, we have that $\|\mathbf{x}_n - \mathbf{x}\| \to 0$ and hence $\mathbf{x}_n \to \mathbf{x}$. Therefore (\mathbf{x}_n) is convergent in \mathbb{R}^m .

14. State TRUE or FALSE with justification: If \mathbf{x} , $\mathbf{y} \in \mathbb{R}^m$ such that $\mathbf{x} \neq \mathbf{y}$ and $\|\mathbf{x}\| = 1 = \|\mathbf{y}\|$, then it is necessary that $\|\mathbf{x} + \mathbf{y}\| < 2$.

Solution: We have $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 + 2\mathbf{x} \cdot \mathbf{y} = 2 + 2\mathbf{x} \cdot \mathbf{y}$ and $\|\mathbf{x} - \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2\mathbf{x} \cdot \mathbf{y} = 2 - 2\mathbf{x} \cdot \mathbf{y}$. Hence $\|\mathbf{x} + \mathbf{y}\|^2 = 2 + 2 - \|\mathbf{x} - \mathbf{y}\|^2 < 4$, since $\|\mathbf{x} - \mathbf{y}\| > 0$. So $\|\mathbf{x} + \mathbf{y}\| < 2$. Therefore the given statement is TRUE.

15. State TRUE or FALSE with justification: If (\mathbf{x}_n) is a sequence in \mathbb{R}^m such that for each $\mathbf{x} \in \mathbb{R}^m$, $\lim_{n \to \infty} \mathbf{x}_n \cdot \mathbf{x}$ exists (in \mathbb{R}), then $\lim_{n \to \infty} ||\mathbf{x}_n||^2$ must exist (in \mathbb{R}).

Solution: For each $n \in \mathbb{N}$, let $\mathbf{x}_n = \left(x_1^{(n)}, ..., x_m^{(n)}\right)$. By the given condition, $\lim_{n \to \infty} x_j^{(n)} = \lim_{n \to \infty} \mathbf{x}_n \cdot \mathbf{e}_j$ exists (in \mathbb{R}) for j = 1, ..., m. Consequently $\lim_{n \to \infty} \|\mathbf{x}_n\|^2 = \lim_{n \to \infty} \left((x_1^{(n)})^2 + \cdots + (x_m^{(n)})^2\right)$ exists (in \mathbb{R}). Therefore the given statement is TRUE.

16. State TRUE or FALSE with justification: There exists an unbounded sequence (x_n) of distinct real numbers such that the sequence $((x_n, \cos x_n))$ in \mathbb{R}^2 has a convergent subsequence.

Solution: The sequence $(x_n) = (1, \frac{1}{2}, 2, \frac{1}{3}, 3, \frac{1}{4}, \dots)$ in \mathbb{R} is unbounded and its subsequence $(x_{2n}) = (\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots)$ converges in \mathbb{R} . By continuity of the cosine function, the sequence $(\cos x_{2n})$ also converges in \mathbb{R} . Hence the subsequence $((x_{2n}, \cos x_{2n}))$ of the sequence $((x_n, \cos x_n))$ converges in \mathbb{R}^2 . Therefore the given statement is TRUE.

17. Let $S = \{(x,y) \in \mathbb{R}^2 : x \neq y\}$ and let $f: S \to \mathbb{R}$ be defined by $f(x,y) = \frac{x+y}{x-y}$ for all $(x,y) \in S$. Show by using the definition of continuity that f is continuous at (1,2).

Solution: Let $\varepsilon > 0$. For all $(x,y) \in S$, we have $|f(x,y) - f(1,2)| = \left|\frac{x+y}{x-y} + 3\right| = 2\left|\frac{2x-y}{x-y}\right|$. If $(x,y) \in S$ and $\|(x,y) - (1,2)\| = \sqrt{(x-1)^2 + (y-2)^2} < \frac{1}{4}$, then $|x-1| < \frac{1}{4}$ and $|y-2| < \frac{1}{4}$, and so $|x-y| = |1 - ((2-y) + (x-1))| \ge 1 - |(2-y) + (x-1)| \ge 1 - (|2-y| + |x-1|) \ge 1 - (\frac{1}{4} + \frac{1}{4}) = \frac{1}{2}$. Again, if r > 0 and $(x,y) \in S$ such that $\|(x,y) - (1,2)\| = \sqrt{(x-1)^2 + (y-2)^2} < r$, then |x-1| < r and |y-2| < r, and so $|2x-y| = |2(x-1) + 2 - y| \le 2|x-1| + |y-2| < 3r$. Hence if we choose $\delta = \min\{\frac{1}{4}, \frac{\varepsilon}{12}\}$, then $\delta > 0$ and for all $(x,y) \in S$ satisfying $\|(x,y) - (1,2)\| < \delta$, we have $|f(x,y) - f(1,2)| < 12\delta \le \varepsilon$. Therefore f is continuous at (1,2).

18. If $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous and $f(x,y) = x^2 + y^2$ for all $x \in \mathbb{Q}$ and for all $y \in \mathbb{R} \setminus \mathbb{Q}$, then determine $f(\sqrt{2},2)$.

Solution: We know that there exist sequences (x_n) in \mathbb{Q} and (y_n) in $\mathbb{R} \setminus \mathbb{Q}$ such that $x_n \to \sqrt{2}$ and $y_n \to 2$. Hence $(x_n, y_n) \to (\sqrt{2}, 2)$. Since f is continuous at $(\sqrt{2}, 2)$, we have $f(\sqrt{2}, 2) = \lim_{n \to \infty} f(x_n, y_n) = \lim_{n \to \infty} (x_n^2 + y_n^2) = \lim_{n \to \infty} x_n^2 + \lim_{n \to \infty} y_n^2 = 2 + 4 = 6$.

19. Examine the continuity of $f: \mathbb{R}^2 \to \mathbb{R}$ at (0,0), where for all $(x,y) \in \mathbb{R}^2$, $f(x,y) = \begin{cases} xy & \text{if } xy \geq 0, \\ -xy & \text{if } xy < 0. \end{cases}$

Solution: Let $((x_n, y_n))$ be any sequence in \mathbb{R}^2 such that $(x_n, y_n) \to (0, 0)$. Then $x_n \to 0$ and $y_n \to 0$. We have $|f(x_n, y_n)| = |x_n y_n| \to 0$ and hence $f(x_n, y_n) \to 0 = f(0, 0)$. Therefore f is continuous at (0, 0).

20. Examine the continuity of $f: \mathbb{R}^2 \to \mathbb{R}$ at (0,0), where for all $(x,y) \in \mathbb{R}^2$, $f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^4} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$

Solution: Let $\varepsilon > 0$. Then for all $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, we have $|f(x,y) - f(0,0)| = \frac{|x|y^2}{x^2 + y^4} |y| \le \frac{1}{2} |y| \le \frac{1}{2} \sqrt{x^2 + y^2}$. Since f(0,0) = 0, we get $|f(x,y) - f(0,0)| \le \frac{1}{2} \sqrt{x^2 + y^2}$ for all $(x,y) \in \mathbb{R}^2$. Let $\delta = 2\varepsilon$. Then $\delta > 0$ and for all $(x,y) \in \mathbb{R}^2$ with $||(x,y) - (0,0)|| = \sqrt{x^2 + y^2} < \delta$, we have $|f(x,y) - f(0,0)| < \varepsilon$. Therefore f is continuous at (0,0).

21. Examine the continuity of $f : \mathbb{R}^2 \to \mathbb{R}$ at (0,0), where for all $(x,y) \in \mathbb{R}^2$, $f(x,y) = \begin{cases} 1 & \text{if } x > 0 \text{ and } 0 < y < x^2, \\ 0 & \text{otherwise.} \end{cases}$

Solution: Since $\left(\frac{1}{n}, \frac{1}{2n^2}\right) \to (0,0)$ but $f\left(\frac{1}{n}, \frac{1}{2n^2}\right) = 1 \to 1 \neq 0 = f(0,0)$, f is not continuous at (0,0).

22. Determine all the points of \mathbb{R}^2 where $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous, if for all $(x,y) \in \mathbb{R}^2$, $f(x,y) = \begin{cases} \frac{xy}{x-y} & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$

Solution: If $\varphi(x,y) = xy$ and $\psi(x,y) = x - y$ for all $(x,y) \in \mathbb{R}^2$, then as polynomial functions,

 $\varphi, \psi : \mathbb{R}^2 \to \mathbb{R}$ are continuous and $\psi(x,y) \neq 0$ for all $(x,y) \in \mathbb{R}^2$ with $x \neq y$. Hence f is continuous at each $(x,y) \in \mathbb{R}^2$ with $x \neq y$.

Let $x \in \mathbb{R} \setminus \{0\}$. Then $(x + \frac{1}{n}, x) \to (x, x)$ but $f(x + \frac{1}{n}, x) = nx^2 + x \not\to 0 = f(x, x)$. So f is not continuous at (x, x).

Again, $(\frac{1}{n} + \frac{1}{n^2}, \frac{1}{n}) \to (0, 0)$ but $f(\frac{1}{n} + \frac{1}{n^2}, \frac{1}{n}) = 1 + \frac{1}{n} \to 1 \neq 0 = f(0, 0)$. So f is not continuous at (0, 0).

Therefore the set of points of continuity of f is $\{(x,y) \in \mathbb{R}^2 : x \neq y\}$.

23. Determine all the points of \mathbb{R}^2 where $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous, if for all $(x,y) \in \mathbb{R}^2$, $f(x,y) = \begin{cases} xy & \text{if } xy \in \mathbb{Q}, \\ -xy & \text{if } xy \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$

Solution: Let $(x,y) \in \mathbb{R}^2$ such that xy = 0 and let $((x_n, y_n))$ be any sequence in \mathbb{R}^2 such that $(x_n, y_n) \to (x, y)$. Then $x_n \to x$ and $y_n \to y$. We have $|f(x_n, y_n)| = |x_n y_n| \to |xy| = 0$ and so $f(x_n, y_n) \to 0 = f(x, y)$. Hence f is continuous at (x, y).

Again, let $(x,y) \in \mathbb{R}^2$ such that $xy \neq 0$. We consider the following two possible cases.

Case (i): $xy \in \mathbb{R} \setminus \mathbb{Q}$.

We can find two sequences (x_n) and (y_n) in \mathbb{Q} such that $x_n \to x$ and $y_n \to y$. Then $((x_n, y_n))$ is a sequence in \mathbb{R}^2 such that $(x_n, y_n) \to (x, y)$ but $f(x_n, y_n) = x_n y_n \to xy \neq -xy = f(x, y)$. Hence f is not continuous at (x, y).

Case (ii): $xy \in \mathbb{Q}$.

Since $x \neq 0$, we can find a sequence (x_n) in $\mathbb{Q} \setminus \{0\}$ and a sequence (y_n) in $\mathbb{R} \setminus \mathbb{Q}$ such that $x_n \to x$ and $y_n \to y$. Then $((x_n, y_n))$ is a sequence in \mathbb{R}^2 such that $(x_n, y_n) \to (x, y)$ but $f(x_n, y_n) = -x_n y_n \to -xy \neq xy = f(x, y)$. Hence f is not continuous at (x, y).

Therefore the set of points of continuity of f is $\{(x,y) \in \mathbb{R}^2 : xy = 0\}$.

24. Let α , β be positive real numbers and let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{|x|^{\alpha}|y|^{\beta}}{x^2 + xy + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Show that f is continuous iff $\alpha + \beta > 2$.

Solution: Let $\alpha + \beta > 2$ and let $((x_n, y_n))$ be any sequence in \mathbb{R}^2 such that $(x_n, y_n) \to (0, 0)$. Then $x_n \to 0$ and $y_n \to 0$. For all $n \in \mathbb{N}$ for which $(x_n, y_n) \neq (0, 0)$, we have

$$0 \le f(x_n, y_n) \le \frac{(x_n^2 + y_n^2)^{\frac{\alpha}{2}} (x_n^2 + y_n^2)^{\frac{\beta}{2}}}{\frac{1}{2} (x_n^2 + y_n^2)} = 2(x_n^2 + y_n^2)^{\frac{1}{2} (\alpha + \beta - 2)} \text{ and since } f(0, 0) = 0,$$

we have $0 \le f(x_n, y_n) \le 2(x_n^2 + y_n^2)^{\frac{1}{2}(\alpha + \beta - 2)}$ for all $n \in \mathbb{N}$. Since $2(x_n^2 + y_n^2)^{\frac{1}{2}(\alpha + \beta - 2)} \to 0$, we get $f(x_n, y_n) \to 0 = f(0, 0)$. This shows that f is continuous at (0, 0). Also, it is clear (by similar arguments given in other examples) that f is continuous at each $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$. Therefore f is continuous.

Conversely, let f be continuous and if possible, let $\alpha + \beta \leq 2$. We have $(\frac{1}{n}, \frac{1}{n}) \to (0, 0)$ but $f(\frac{1}{n}, \frac{1}{n}) = \frac{1}{3}n^{2-(\alpha+\beta)} \not\to 0 = f(0, 0)$ (because for $\alpha + \beta = 2$, $f(\frac{1}{n}, \frac{1}{n}) \to \frac{1}{3}$ and for $\alpha + \beta < 2$, the sequence $(f(\frac{1}{n}, \frac{1}{n}))$ is unbounded). Hence f is not continuous at (0, 0), which is a contradiction. Therefore $\alpha + \beta > 2$.

25. Let S be a nonempty subset of \mathbb{R}^m and let $f_j: S \to \mathbb{R}$ for each $j \in \{1, \dots, k\}$. If $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_k(\mathbf{x}))$ for all $\mathbf{x} \in S$, then show that $f: S \to \mathbb{R}^k$ is continuous at $\mathbf{x}_0 \in S$ iff f_j is continuous at \mathbf{x}_0 for each $j \in \{1, \dots, k\}$.

Solution: We first assume that f is continuous at \mathbf{x}_0 and let (\mathbf{x}_n) be any sequence in S such that $\mathbf{x}_n \to \mathbf{x}_0$. Then $(f_1(\mathbf{x}_n), \dots, f_k(\mathbf{x}_n)) = f(\mathbf{x}_n) \to f(\mathbf{x}_0) = (f_1(\mathbf{x}_0), \dots, f_k(\mathbf{x}_0))$ and hence $f_j(\mathbf{x}_n) \to f_j(\mathbf{x}_0)$ for each $j \in \{1, \dots, k\}$. Consequently f_j is continuous at \mathbf{x}_0 for each $j \in \{1, \dots, k\}$.

Conversely, let f_j be continuous at \mathbf{x}_0 for each $j \in \{1, ..., k\}$ and let (\mathbf{x}_n) be any sequence in S such that $\mathbf{x}_n \to \mathbf{x}_0$. Then $f_j(\mathbf{x}_n) \to f_j(\mathbf{x}_0)$ for each $j \in \{1, ..., k\}$ and hence $f(\mathbf{x}_n) = (f_1(\mathbf{x}_n), ..., f_k(\mathbf{x}_n)) \to (f_1(\mathbf{x}_0), ..., f_k(\mathbf{x}_0)) = f(\mathbf{x}_0)$. Therefore f is continuous at \mathbf{x}_0 .

26. Examine the continuity of $f: \mathbb{R}^2 \to \mathbb{R}^2$ at (0,0), where for all $(x,y) \in \mathbb{R}^2$, $f(x,y) = \begin{cases} \left(\frac{x^3}{x^2+y^2}, \sin(x^2+y^2)\right) & \text{if } (x,y) \neq (0,0), \\ (0,0) & \text{if } (x,y) = (0,0). \end{cases}$

Solution: For all $(x, y) \in \mathbb{R}^2$, let $\varphi(x, y) = \sin(x^2 + y^2)$ and $\psi(x, y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$ Since $\varphi : \mathbb{R}^2 \to \mathbb{R}$ is a composition of a polynomial function and the sine function, both of

Again, let $\varepsilon > 0$. Then for all $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, we have $|\psi(x,y) - \psi(0,0)| = \frac{x^2}{x^2 + y^4} |x| \le |x| \le \sqrt{x^2 + y^2}$.

which are continuous, φ is continuous at (0,0).

Since $\psi(0,0) = 0$, we get $|\psi(x,y) - \psi(0,0)| \le \sqrt{x^2 + y^2}$ for all $(x,y) \in \mathbb{R}^2$. Let $\delta = \varepsilon$. Then $\delta > 0$ and for all $(x,y) \in \mathbb{R}^2$ with $||(x,y) - (0,0)|| = \sqrt{x^2 + y^2} < \delta$, we have $|\psi(x,y) - \psi(0,0)| < \varepsilon$. Therefore ψ is continuous at (0,0).

Consequently (by Ex.17 of Practice Problem Set - 1) f is continuous at (0,0).

27. If $f, g : S \subseteq \mathbb{R}^m \to \mathbb{R}^k$ are continuous at $\mathbf{x}_0 \in S$ and if $\varphi(\mathbf{x}) = f(\mathbf{x}) \cdot g(\mathbf{x})$ for all $\mathbf{x} \in S$, then show that $\varphi : S \to \mathbb{R}$ is continuous at \mathbf{x}_0 .

Solution: Let (\mathbf{x}_n) be any sequence in S such that $\mathbf{x}_n \to \mathbf{x}_0$. Since f and g are continuous at \mathbf{x}_0 , $f(\mathbf{x}_n) \to f(\mathbf{x}_0)$ and $g(\mathbf{x}_n) \to g(\mathbf{x}_0)$. Hence (by Ex.9 of Practice Problem Set - 1) $\varphi(\mathbf{x}_n) = f(\mathbf{x}_n) \cdot g(\mathbf{x}_n) \to f(\mathbf{x}_0) \cdot g(\mathbf{x}_0) = \varphi(\mathbf{x}_0)$. Therefore φ is continuous at \mathbf{x}_0 .

28. Let $f: S \subseteq \mathbb{R}^m \to \mathbb{R}^k$ be continuous at $\mathbf{x}_0 \in S^0$ and let $f(\mathbf{x}_0) \neq \mathbf{0}$. Show that there exists r > 0 such that $f(\mathbf{x}) \neq \mathbf{0}$ for all $\mathbf{x} \in B_r(\mathbf{x}_0)$.

Solution: Since $\mathbf{x}_0 \in S^0$, there exists s > 0 such that $B_s(\mathbf{x}_0) \subseteq S$. Again, since $f(\mathbf{x}_0) \neq \mathbf{0}$, $\frac{1}{2} \| f(\mathbf{x}_0) \| > 0$. By the continuity of f at \mathbf{x}_0 , there exists $\delta > 0$ such that $\| f(\mathbf{x}) - f(\mathbf{x}_0) \| < \frac{1}{2} \| f(\mathbf{x}_0) \|$ for all $\mathbf{x} \in S$ satisfying $\| \mathbf{x} - \mathbf{x}_0 \| < \delta$. Taking $r = \min\{s, \delta\} > 0$, we find that $\| f(\mathbf{x}) - f(\mathbf{x}_0) \| < \frac{1}{2} \| f(\mathbf{x}_0) \|$ for all $\mathbf{x} \in B_r(\mathbf{x}_0)$. If possible, let $f(\mathbf{x}) = \mathbf{0}$ for some $\mathbf{x} \in B_r(\mathbf{x}_0)$. Then from above, we get $\| f(\mathbf{x}_0) \| < \frac{1}{2} \| f(\mathbf{x}_0) \|$, which is not true. Therefore $f(\mathbf{x}) \neq \mathbf{0}$ for all $\mathbf{x} \in B_r(\mathbf{x}_0)$.

29. Let S be an open subset of \mathbb{R}^m and let $f: S \to \mathbb{R}^k$ and $g: S \to \mathbb{R}^k$ be continuous at $\mathbf{x}_0 \in S$. If for each $\varepsilon > 0$, there exist $\mathbf{x}, \mathbf{y} \in B_{\varepsilon}(\mathbf{x}_0)$ such that $f(\mathbf{x}) = g(\mathbf{y})$, then show that $f(\mathbf{x}_0) = g(\mathbf{x}_0)$.

Solution: By the given condition, for each $n \in \mathbb{N}$, there exist \mathbf{x}_n , $\mathbf{y}_n \in B_{\frac{1}{n}}(\mathbf{x}_0)$ such that $f(\mathbf{x}_n) = g(\mathbf{y}_n)$. So $\|\mathbf{x}_n - \mathbf{x}_0\| < \frac{1}{n} \to 0$ and $\|\mathbf{y}_n - \mathbf{x}_0\| < \frac{1}{n} \to 0$. Hence $\mathbf{x}_n \to \mathbf{x}_0$ and $\mathbf{y}_n \to \mathbf{x}_0$. Since f and g are continuous at \mathbf{x}_0 , $f(\mathbf{x}_n) \to f(\mathbf{x}_0)$ and $g(\mathbf{y}_n) \to g(\mathbf{x}_0)$. Therefore $f(\mathbf{x}_0) = g(\mathbf{x}_0)$.

30. If $S = \{(x, y) \in \mathbb{R}^2 : x + y \ge 2\}$, then determine (with justification) S^0 .

Solution: Let $(x_0, y_0) \in S$ with $x_0 + y_0 > 2$. Let $r = \frac{x_0 + y_0 - 2}{\sqrt{2}} > 0$ and let $(x, y) \in B_r((x_0, y_0))$. Then $||(x, y) - (x_0, y_0)|| = \sqrt{(x - x_0)^2 + (y - y_0)^2} < r$. By Cauchy-Schwarz inequality, we have $x_0 - x + y_0 - y \le \sqrt{(x_0 - x)^2 + (y_0 - y)^2} \sqrt{1^2 + 1^2} < \sqrt{2}r = x_0 + y_0 - 2$. Hence x + y > 2 and so $(x, y) \in S$. Thus $B_r((x_0, y_0)) \subseteq S$ and therefore $(x_0, y_0) \in S^0$. Now, let $(x_0, y_0) \in S$ such that $x_0 + y_0 = 2$ and if possible, let $(x_0, y_0) \in S^0$. Then there

Now, let $(x_0, y_0) \in S$ such that $x_0 + y_0 = 2$ and it possible, let $(x_0, y_0) \in S$. Then there exists r > 0 such that $B_r((x_0, y_0)) \subseteq S$. Since $\|(x_0 - \frac{r}{2}, y_0) - (x_0, y_0)\| = \|(-\frac{r}{2}, 0)\| = \frac{r}{2} < r$, $(x_0 - \frac{r}{2}, y_0) \in B_r((x_0, y_0))$. However, $(x_0 - \frac{r}{2}, y_0) \notin S$, since $x_0 - \frac{r}{2} + y_0 = 2 - \frac{r}{2} < 2$. Thus we get a contradiction. Hence $(x_0, y_0) \notin S^0$.

Therefore $S^0 = \{(x, y) \in \mathbb{R}^2 : x + y > 2\}.$

31. If $S = \{(x_1, \dots, x_m) \in \mathbb{R}^m : x_m = 1\}$, then determine (with justification) S^0 .

Solution: If possible, let $S^0 \neq \emptyset$. Then there exists $\mathbf{x} = (x_1, \dots, x_m) \in S^0$ and hence there exists r > 0 such that $B_r(\mathbf{x}) \subseteq S$. If $\mathbf{y} = (x_1, \dots, x_{m-1}, x_m + \frac{r}{2})$, then $\|\mathbf{y} - \mathbf{x}\| = \frac{r}{2} < r$ and so $\mathbf{y} \in B_r(\mathbf{x})$. But $\mathbf{y} \notin S$, because $x_m + \frac{r}{2} = 1 + \frac{r}{2} \neq 1$. Thus we get a contradiction. Therefore $S^0 = \emptyset$.

32. If $\mathbf{x} \in \mathbb{R}^m$ and r > 0, then determine (with justification) all the interior points of $B_r[\mathbf{x}]$.

Solution: Let $\mathbf{y} \in B_r(\mathbf{x})$. Then $\|\mathbf{y} - \mathbf{x}\| < r$. If $s = r - \|\mathbf{y} - \mathbf{x}\|$, then s > 0. Let $\mathbf{z} \in B_s(\mathbf{y})$. Then $\|\mathbf{z} - \mathbf{y}\| < s$ and so $\|\mathbf{z} - \mathbf{x}\| = \|\mathbf{z} - \mathbf{y} + \mathbf{y} - \mathbf{x}\| \le \|\mathbf{z} - \mathbf{y}\| + \|\mathbf{y} - \mathbf{x}\| < s + \|\mathbf{y} - \mathbf{x}\| = r$. Hence $\mathbf{z} \in B_r[\mathbf{x}]$ and so $B_s(\mathbf{y}) \subseteq B_r[\mathbf{x}]$. Therefore $\mathbf{y} \in (B_r[\mathbf{x}])^0$.

Again, let $\mathbf{y} \in B_r[\mathbf{x}]$ such that $\|\mathbf{y} - \mathbf{x}\| = r$. If possible, let $\mathbf{y} \in (B_r[\mathbf{x}])^0$. Then there exists s > 0 such that $B_s(\mathbf{y}) \subseteq B_r[\mathbf{x}]$. Now, $\mathbf{y} + \frac{s}{2r}(\mathbf{y} - \mathbf{x}) \in B_s(\mathbf{y})$, since

 $\|\mathbf{y} + \frac{s}{2r}(\mathbf{y} - \mathbf{x}) - \mathbf{y}\| = \frac{s}{2r}\|\mathbf{y} - \mathbf{x}\| = \frac{s}{2} < s$, but $\mathbf{y} + \frac{s}{2r}(\mathbf{y} - \mathbf{x}) \notin B_r[\mathbf{x}]$, because

 $\|\mathbf{y} + \frac{s}{2r}(\mathbf{y} - \mathbf{x}) - \mathbf{x}\| = (1 + \frac{s}{2r})\|\mathbf{y} - \mathbf{x}\| = r + \frac{s}{2} > r$. Thus we get a contradiction. Hence $\mathbf{y} \notin (B_r[\mathbf{x}])^0$.

Therefore $(B_r[\mathbf{x}])^0 = B_r(\mathbf{x})$.

33. Examine whether $\{(x,y) \in \mathbb{R}^2 : 0 < x < y\}$ is an open set in \mathbb{R}^2 .

Solution: Let $S = \{(x,y) \in \mathbb{R}^2 : 0 < x < y\}$ and let $(x_0,y_0) \in S$. If $r = \min \{x_0, \frac{y_0 - x_0}{\sqrt{2}}\}$, then r > 0. Let $(x,y) \in B_r((x_0,y_0))$. Then $||(x,y) - (x_0,y_0)|| = \sqrt{(x-x_0)^2 + (y-y_0)^2} < r$. Hence $x_0 - x \le |x - x_0| < r \le x_0$ and so x > 0. Also, using Cauchy-Schwarz inequality, we have $x - x_0 + y_0 - y \le \sqrt{(x-x_0)^2 + (y_0-y)^2} \sqrt{1^2 + 1^2} < \sqrt{2}r \le y_0 - x_0$ and hence x - y < 0, *i.e.*

x < y. Thus $(x, y) \in S$ and so $(x_0, y_0) \in S^0$. Since $(x_0, y_0) \in S$ is arbitrary, it follows that S is an open set in \mathbb{R}^2 .