Introduction to Big Data and and Data Analytics

Chapter 5

Key Concepts:

- 1. Introduction to Big Data
- 2. Types of Big Data
- 3. Advantages and Disadvantages of Big Data
- 4. Characteristics of Big Data
- 5. Big Data Analytics
- 6. Working on Big Data Analytics
- 7. Mining Data Streams
- 8. Future of Big Data Analytics

5.1. What is Small Data?

- Datasets that are easily comprehendible by people
- Easily accessible, informative, and actionable.
- Ideal for individuals and businesses to find useful information and make better choices in everyday tasks.
- For example, a small store might track daily sales to decide what products to restock.

5.1. What is Big Data?

- Extremely large and complex datasets that regular computer programs and databases cannot handle.
- It comes from three main sources:
 - transactional data (e.g., online purchases)
 - machine data (e.g., sensor readings)
 - social data (e.g., social media posts)
- Special tools and techniques are required.
- Help organizations find valuable insights hidden in the data, which lead to innovations and better decision-making.
- For example, companies like Amazon and Netflix use Big Data to recommend products or shows based on users' past activities.

Sources of Big Data

5.2. Types of Big Data

Aspect	Structured Data	Semi-Structured Data	Unstructured Data
Definition	Quantitative data with a defined structure	A mix of quantitative and qualitative properties	No inherent structures or formal rules
Data Model	Dedicated data model	May lack a specific data model	Lacks a consistent data model
Organization	Organized in clearly defined columns	Less organized than structured data	No organization exhibits variability over time

Accessibility	Easily accessible and searchable				Accessible but may be harder to analyze	Accessibility depends on the specific data format
Examples	ples Custome informat transacti product o			tories	JSON files, HTML vi	Audio files, images, video files, emails, PDFs, social media posts
	1 2 3 4 5	John David Robert Rick Michael	Age 18 31 51 26 19	Degree B.Sc. Ph.D. Ph.D. M.Sc. B.Sc.	<university> <student id="1"> <name>John</name> <age>18</age> <degree>B.Sc.</degree></student></university>	The university has 5600 students. John's ID is number 1, he is 18 years old and already holds a B.Sc. degree. David's ID is number 2, he is 31 years old and holds a Ph.D. degree. Robert's ID is number 3, he is 51 years old and also holds the same degree as David, a Ph.D. degree.

Advantages of Big Data

Enhanced Decision Making

Data-driven decisions from large, diverse datasets.

Improved Efficiency & Productivity

Identify inefficiencies, streamline processes, optimize resources.

Better Customer Insights

Deeper understanding of behavior, preferences, and needs.

Competitive Advantage

Uncover market trends, identify opportunities, stay ahead.

Innovation & Growth

Develop new products, services, and business models.

Disadvantages of Big Data

Privacy & Security Concerns

Risks of unauthorized access, breaches, and misuse of personal info.

Data Quality Issues

Challenges in ensuring accuracy, reliability, and completeness.

Technical Complexity

Requires specialized skills and expertise for infrastructure and tools.

Regulatory Compliance

Challenges in meeting data protection laws like GDPR.

Cost & Resource Intensiveness

High costs for acquisition, storage, processing, and skilled staff.

Characteristics of Big Data: The 6Vs

Velocity

Speed of data generation, delivery, and analysis (e.g., 40,000 Google searches/sec).

Volume

Huge amount of data generated daily, typically exceeding gigabytes (e.g., 328.77 million TB/day).

Variety

Data in various formats: structured, unstructured, semi-structured (text, images, audio, video).

Veracity

Consistency, accuracy, quality, and trustworthiness of data; requires cleaning.

Value

Business value derived from data analysis; critical for insights.

Variability

Regularity and dependability of data stream structure despite unpredictability.

5.3. Advantages and Disadvantages of Big Data:

Velocity

Velocity refers to the speed at which data is generated, delivered, and analyzed.

g. 5.4 Speed of data generation from various sources

Volume

Every day a huge volume of data is generated as the number of people using online platforms has increased exponentially. Such a huge volume of data is considered Big Data.

Variety

- Big data encompasses data in various formats, including structured, unstructured, semi-structured, or highly complex structured data.
- These can range from simple numerical data to complex and diverse forms such as text, images, audio, videos, and so on.

Veracity

- Veracity is a characteristic in Big Data related to consistency, accuracy, quality, and trustworthiness.
- Not all data that undergoes processing holds value.

Value

- The goal of big data analysis lies in extracting business value from the data.
- Hence, the business value derived from big data is perhaps its most critical characteristic.

Fig. 5.8 The value of Big Data

Variability

 This refers to establishing if the contextualizing structure of the data stream is regular and dependable even in conditions of extreme unpredictability.

- Involves analyzing datasets to uncover insights, trends, and patterns.
- Technologies commonly used in data analytics include statistical analysis software, data visualization tools, and relational database management systems (RDBMS).

- Big data analytics uses advanced analytic techniques against huge, diverse datasets that include
- structured,
- semi-structured, and
- unstructured data,
- from different sources, and
- in various sizes from terabytes to zettabytes.

- Big-Data Analytics encompasses the methodologies, tools, and practices involved in analyzing and managing data, covering tasks such as data collection, organization, and storage.
- The primary objective of data analytics is to utilize statistical analysis and technological methods to uncover patterns and address challenges.
- It provides valuable insights and forecasts that help businesses make informed decisions to improve their operations and outcomes.

- Some of the common types are:
- Descriptive analytics,
- Diagnostic analytics,
- Predictive analytics, and
- Prescriptive analytics

Global Trends of Big Data

Moore's Law:

The exponential growth of computing power as per Moore's Law has enabled the handling and analysis of massive datasets, driving the evolution of Big Data Analytics.

Mobile Computing:

With the widespread adoption of smartphones and mobile devices, access to vast amounts of data is now at our fingertips, enabling real-time connectivity and data collection from anywhere.

Social Networking:

Platforms such as Facebook, Foursquare, and Pinterest facilitate extensive networks of user-generated content, interactions, and data sharing, leading to the generation of massive datasets ripe for analysis.

Cloud Computing:

This paradigm shift in technology infrastructure allows organizations to access hardware and software resources remotely via the Internet on a pay-as-you-go basis, eliminating the need for extensive onpremises hardware and software investments.

Working on Big Data Analytics

1. Gather Data

Collect structured and unstructured data from diverse sources like cloud, mobile apps, IoT sensors.

3. Clean Data

Improve data quality by correcting formatting and eliminating duplicates/irrelevant entries.

Tools: Tableau, Apache Hadoop, Cassandra, MongoDB, SAS.

2. Process Data

Prepare data for accurate results using batch or stream processing.

4. Analyze Data

Turn cleaned data into insights using advanced analytics processes.

Using Orange Data Mining for Big Data Analytics

Mining Data Streams

What is a Data Stream?

A continuous, real-time flow of data from sources like sensors, satellite images, and web traffic.

What is Mining Data Streams?

Extracting patterns and knowledge from real-time data flows without complete storage. Example: Analyzing website traffic spikes for election results.

Future of Big Data Analytics

Instantaneous data processing for immediate insights and actions.

Advanced Predictive Models

Integration of sophisticated ML/Al for precise trend forecasting.

Quantum Computing

Revolutionary processing power to solve complex problems faster.