САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МАТЕМАТИКО-МЕХАНИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ФИЗИЧЕСКОЙ МЕХАНИКИ

МЕТОДЫ ИЗМЕРЕНИЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ СИСТЕМЫ

Отчёт по лабораторной работе №4

«Проверка принципа эквивалентности масс»

Выполнил студент: Невзоров Никита Иванович группа: 23.Б12-мм

Проверил: Профессор Морозов Виктор Александрович

Содержание

1	Вве	дение	2
	1.1	Цель работы	2
	1.2	Задачи работы	2
2	Осн	овная часть	2
	2.1	Теоретическая часть	2
		2.1.1 Принцип эквивалентности масс	2
		2.1.2 Свободное падение тел	2
		2.1.3 Методика измерений	3
		2.1.4 Статистическая обработка данных	3
		2.1.5 Анализ погрешностей	3
	2.2	Экспериментальная установка	4
	2.3	Ход работы	5
	2.4	Обработка данных	5
	2.5	Таблицы	6
3	Pac	чёты	7
	3.1	Вычисление массы шариков	7
	3.2	Расчёт среднего времени полёта	7
4	Pac	чёт погрешностей	7
	4.1	Дисперсия и стандартное отклонение	7
	4.2	Средняя квадратичная погрешность среднего значения	8
	4.3	Погрешность определения ускорения свободного падения	8
5	Pac	чет ускорения свободного падения	9
6	Вын	вод	9

1 Введение

1.1 Цель работы

Экспериментальная проверка принципа эквивалентности масс путём измерения времени свободного падения тел различной массы и определения ускорения свободного падения g для каждого случая.

1.2 Задачи работы

- 1. Проверка принципа эквивалентности масс
- 2. Измерение ускорения свободного падения тел
- 3. Знакомство с методом измерения интервалов времени между импульсами частотомеромхронометром ЧЗ-32
- 4. Определение погрешности косвенных измерений

2 Основная часть

2.1 Теоретическая часть

2.1.1 Принцип эквивалентности масс

• Инертная масса $(M_{\text{ин}})$ - характеризует сопротивление тела изменению его скорости под действием силы:

$$F = M_{\text{MH}} \cdot a \tag{1}$$

• Гравитационная масса $(M_{\rm rp})$ - определяет силу гравитационного взаимодействия:

$$F = \gamma \frac{M_{\rm rp} \cdot M_{\rm 3em, Iu}}{r^2} \tag{2}$$

Принцип эквивалентности, сформулированный Эйнштейном, утверждает, что эти массы равны:

$$M_{\rm MH} = M_{\rm rp} \tag{3}$$

2.1.2 Свободное падение тел

Для тела массой m в поле тяжести Земли:

$$mg = \gamma \frac{m \cdot M_{\text{3емли}}}{R_{\text{3емли}}^2} \tag{4}$$

Отсюда следует, что ускорение свободного падения:

$$g = \gamma \frac{M_{\text{Земли}}}{R_{\text{Земли}}^2} \tag{5}$$

не зависит от массы падающего тела.

2.1.3 Методика измерений

В работе используется установка, где время падения t измеряется при прохождении шариком расстояния h между двумя лазерными лучами. Уравнение движения:

$$h = v_0 t + \frac{gt^2}{2} \tag{6}$$

где:

- $h = (0.272 \pm 0.001)$ м расстояние между лучами
- $v_0 = (1.050 \pm 0.005)\,\mathrm{m/c}$ начальная скорость шарика

Ускорение свободного падения:

$$g = \frac{2(h - v_0 t)}{t^2} \tag{7}$$

2.1.4 Статистическая обработка данных

Для анализа результатов измерений используются следующие статистические методы: Среднее значение:

$$\bar{f} = \frac{1}{n} \sum_{i=1}^{n} f_i \tag{8}$$

Дисперсия и средняя квадратичная погрешность:

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
 (9)

где σ^2 — дисперсия, x_i — результаты измерений, \overline{x} — среднее арифметическое. Средняя квадратичная погрешность:

$$\sigma = \sqrt{\sigma^2} \tag{10}$$

Средняя квадратичная погрешность среднего значения:

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} \tag{11}$$

где $\sigma_{\overline{x}}$ — погрешность среднего значения, n — количество измерений.

2.1.5 Анализ погрешностей

Погрешность определения д вычисляется как погрешность косвенного измерения:

$$\Delta g = \sqrt{\frac{1}{9} \left(\frac{\partial g}{\partial h} \Delta h\right)^2 + \frac{1}{9} \left(\frac{\partial g}{\partial v_0} \Delta v_0\right)^2 + \left(\frac{\partial g}{\partial t} \Delta t\right)^2}$$
 (12)

Где частные производные:

$$\frac{\partial g}{\partial h} = +\frac{2}{t^2},\tag{13}$$

$$\frac{\partial g}{\partial v_0} = -\frac{2}{t},\tag{14}$$

$$\frac{\partial g}{\partial t} = \frac{2(v_0 t - 2h)}{t^3}. (15)$$

2.2 Экспериментальная установка

- Лазерный генератор ЛГ с системой призм
- Фотодиод ФД с усилителем
- Частотомер Ч3-32
- Трубка с шариками (алюминий, латунь, сталь, дерево, плексиглас, свинец)

Рис. 1: Схема экспериментальной установки

Рис. 2: Фото экспериментальной установки

2.3 Ход работы

- 1. Включение лазера, частотомера и усилителя
- 2. Проверка работоспособности установки
- 3. Проведение серии измерений (30 раз для каждого материала)
- 4. Фиксация времени падения в таблицу
- 5. Выключение оборудования

2.4 Обработка данных

Для обработки результатов измерений была разработана программа на С++:

Листинг 1: Вычисление среднего значения

```
double sum = 0.0;
for (int i = 0; i < n; i++) {
    sum += frequencies[i];
}
double mean_f = sum / n;</pre>
```

Листинг 2: Вычисление дисперсии

```
double variance = 0.0;
for (int i = 0; i < n; i++) {
    double dev = freq[i] - mean_f;
    variance += dev * dev;
}
variance /=(n-1);
```

Листинг 3: Вычисление средней квадратичной погрешности

```
double std_dev = sqrt(variance);
```

Листинг 4: Вычисление средней квадратичной погрешности среднего значения

```
double std_err = std_dev / sqrt(n);
```

Листинг 5: Вычисление ускорения свободного падения

```
for (int i = 0; i < n; ++i) {
    double t;
    std::cout << "Enter time t" << i+1 << endl;
    std::cin >> t;

double g = 2 * (h - v0 * t) / (t * t);

printf("| %2d | %9.3f | \n", i+1, t, g);
}
```

Листинг 6: Вычисление погрешности определения д

```
double dg_dh = 2.0 / (t * t);
double dg_dv0 = -2.0 / t;
double dg_dt = 2.0 * (1.050 * t - 2 * 0.272) / (t * t * t);

double term1 = (1.0 / 9.0) * (dg_dh * delta_h) * (dg_dh * delta_h);
double term2 = (1.0 / 9.0) * (dg_dv0 * delta_v0) * (dg_dv0 * delta_v0);

double term3 = (dg_dt * delta_t) * (dg_dt * delta_t);
double delta_g = sqrt(term1 + term2 + term3);
```

2.5 Таблицы

 Таблица 1: Время падения шарика от верхнего луча до нижнего для различных материалов

3						
$N_{ar{f 0}}$ Π/Π	Алюминий	Латунь	Сталь	Дерево	Плексиглас	Свинец
	t, мс	t, мс				
1	153,192	152,821	153,121	155,177	153,990	153,692
2	153,631	153,164	153,010	154,119	153,843	152,736
3	153,175	153,062	152,926	154,383	153,959	153,207
4	152,782	$153,\!217$	152,666	153,796	153,970	153,666
5	153,228	$153,\!255$	152,636	153,752	$153,\!593$	154,070
6	153,265	$153,\!687$	152,708	154,313	153,735	153,190
7	153,344	$153,\!432$	152,727	154,138	$153,\!874$	154,205
8	153,246	154,067	152,630	154,283	$153,\!601$	152,034
9	152,601	$153,\!468$	152,747	154,148	$153,\!567$	152,680
10	153.977	$152,\!873$	152,653	154,230	153,737	153,402
11	152,915	152,726	152,752	154,498	$154,\!155$	153,633
12	152,988	153,048	152,612	154,429	153,980	154,105
13	153,580	$153,\!115$	153,783	153,834	154,013	154,038
14	152,962	$153,\!345$	152,952	154,638	154,010	153,091
15	$152,\!589$	153,443	154,063	154,184	$153,\!898$	153,579
16	153,284	153,060	152,769	154,888	$154,\!392$	152,579
17	152,690	$152,\!897$	153,088	155,121	$153,\!559$	153,734
18	152,881	153,067	$152,\!649$	155,344	$153,\!951$	152,956
19	152,682	153,143	152,777	154,119	$155,\!011$	153,204
20	153,003	$153,\!056$	152,774	152,762	153,935	153,806
21	152,846	$153,\!358$	153,694	155,029	$154,\!337$	153,717
22	154,139	$152,\!686$	$153,\!256$	154,500	153,800	154,463
23	152,717	$153,\!393$	152,704	154,004	153,103	153,150
24	153,182	$153,\!341$	$152,\!598$	154,212	$153,\!402$	152,903
25	153,444	152,997	152,748	153,979	$153,\!517$	153,415
26	152,854	$153,\!269$	152,736	153,906	$152,\!659$	153,221
27	153,312	153,137	152,982	$154,\!257$	$153,\!291$	152,936
28	152,818	$153,\!137$	153,754	154,902	$153,\!415$	152,844
29	152,928	153,099	152,761	154,557	$153,\!825$	153,241
30	153,818	153,934	152,856	153,049	153,516	153,310

3 Расчёты

3.1 Вычисление массы шариков

Масса шариков вычисляется по формуле:

$$m = V \cdot \rho \tag{16}$$

где:

- ρ плотность вещества шарика (из таблицы 2)
- \bullet V объём шарика, вычисляемый по формуле объёма шара:

$$V_{\text{mapa}} = \frac{4}{3}\pi R^3 \tag{17}$$

Радиус шарика $R = 0.5 \,\mathrm{MM} = 0.5 \times 10^{-3} \,\mathrm{M}$.

Таблица 2: Плотность материалов шариков

$N_{\overline{0}}$ Π/Π	Вещество	Плотность, 10^3кг/м^3
1	Дерево (берёза)	0,7
2	Плексиглас	1,18
3	Дюралюминий	2,79
4	Сталь	7,9
5	Латунь	8,5
6	Свинец	11,34

3.2 Расчёт среднего времени полёта

Среднее значение времени полёта для каждого материала вычисляется как:

$$\bar{t} = \frac{1}{n} \sum_{i=1}^{n} t_i \tag{18}$$

где t_i – результаты отдельных измерений времени полёта и n - количество измерений (30).

4 Расчёт погрешностей

4.1 Дисперсия и стандартное отклонение

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (t_i - \bar{t})^2 \tag{19}$$

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (t_i - \bar{t})^2}$$
 (20)

Таблица 3: Среднее время полёта шариков

Материал	t, MC
Алюминий	153.100
Латунь	153.158
Сталь	152.942
Дерево	154.383
Плексиглас	153.793
Свинец	153.401

4.2 Средняя квадратичная погрешность среднего значения

$$\sigma_{\bar{t}} = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (t_i - \bar{t})^2}$$
 (21)

Таблица 4: Стандартное отклонение и погрешность среднего

Материал	σ (MC)	$\sigma_{\bar{t}}$ (MC)
Алюминий	0.295	0.054
Латунь	0.266	0.049
Сталь	0.233	0.042
Дерево	0.348	0.064
Плексиглас	0.363	0.066
Свинец	0.483	0.088

4.3 Погрешность определения ускорения свободного падения

$$\Delta g = \sqrt{\frac{1}{9} \left(\frac{\partial g}{\partial h} \Delta h\right)^2 + \frac{1}{9} \left(\frac{\partial g}{\partial v_0} \Delta v_0\right)^2 + \left(\frac{\partial g}{\partial t} \Delta t\right)^2}$$
 (22)

Частные производные:

$$\frac{\partial g}{\partial h} = +\frac{2}{t^2},\tag{23}$$

$$\frac{\partial g}{\partial v_0} = -\frac{2}{t},\tag{24}$$

$$\frac{\partial g}{\partial t} = \frac{2(v_0 t - 2h)}{t^3}. (25)$$

Таблица 5: Погрешности ускорения свободного падения

· ·	-
Материал	$\Delta g~({ m M/c^2})$
Алюминий	0.038
Латунь	0.037
Сталь	0.037
Дерево	0.038
Плексиглас	0.038
Свинец	0.040

5 Расчет ускорения свободного падения

$$g = \frac{2(h - v_0 t)}{t^2} \tag{26}$$

где:

- $h = (0.272 \pm 0.001)$ м расстояние между лучами
- $v_0 = (1.050 \pm 0.005)\,\mathrm{m/c}$ начальная скорость шарика

Таблица 6: Ускорение свободного падения

Материал	$g~({ m m/c^2})$
Алюминий	9.426
Латунь	9.466
Сталь	9.568
Дерево	9.318
Плексиглас	9.381
Свинец	9.438

Основной источник систематических ошибок эксперимента связан с влиянием сопротивления воздуха, величина которого зависит от массы шариков.

6 Вывод

В ходе выполнения работы мной был проверен принцип эквивалентности масс путём измерения времени свободного падения тел различной массы. Было проанализировано различие в ускорении свободного падения для тел одинакового размера, но разной плотности, определены погрешности косвенных измерений, также было проведено ознакомление с методом измерения временных интервалов между импульсами при помощи частотомера-хронометра ЧЗ-32.

Список литературы

[1] https://github.com/st117161/Workshop4