

TrenchT2[™] GigaMOS[™] HiperFET[™] Power MOSFET

IXFK520N075T2 IXFX520N075T2

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions	Maximum F	Ratings
V _{DSS}	$T_J = 25^{\circ}\text{C to } 175^{\circ}\text{C}$	75	V
V _{DGR}	$T_J = 25^{\circ}\text{C to } 175^{\circ}\text{C}, R_{GS} = 1M\Omega$	75	
V _{GSS}	Continuous	± 20	V
V _{GSM}	Transient	± 30	
I _{D25} I _{L(RMS)}	$T_{\rm C}=25^{\circ}{\rm C}$ (Chip Capability)	520	A
	External Lead Current Limit	160	A
	$T_{\rm C}=25^{\circ}{\rm C}$, Pulse Width Limited by $T_{\rm JM}$	1350	A
I _A	T _c = 25°C	200	A
E _{AS}	T _c = 25°C	3	J
P_{D}	T _C = 25°C	1250	W
T _J		-55 +175	°C
T _{JM}		175	°C
T _{stg}		-55 +175	°C
T _L	Maximum Lead Temperature for Soldering 1.6 mm (0.062in.) from Case for 10s	300 260	°C °C
M _d	Mounting Torque (TO-264)	1.13/10	Nm/lb.in
F _c	Mounting Force (PLUS247)	20120 /4.527	N/lb
Weight	TO-264	10	g
	PLUS247	6	g

Symbol (T _J = 25°C U	Test Conditions Inless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max	
BV _{DSS}	$V_{GS} = 0V, I_D = 3mA$	75			V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 8mA$	2.5		5.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 150^{\circ}C$			25 2	μA mA
R _{DS(on)}	V _{GS} = 10V, I _D = 100A, Notes 1 & 2			2.2	mΩ

 $V_{DSS} = 75V$ $I_{D25} = 520A$ $R_{DS(on)} \le 2.2m\Omega$

TO-264 (IXFK)

PLUS247 (IXFX)

G = Gate D = DrainS = Source Tab = Drain

Features

- International Standard Packages
- High Current Handling Capability
- Fast Intrinsic Diode
- Avalanche Rated
- Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- DC-DC Converters and Off-Line UPS
- Primary-Side Switch
- High Speed Power Switching Applications

Symbol	Test Conditions Cha		acteristic Values		
$T_{\rm J} = 25^{\circ}$ C, t	Unless Otherwise Specified)	Min.	Тур.	Max.	
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, \text{ Note } 1$	65	105	S	
C _{iss}			41	nF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		4150	pF	
C _{rss}			530	pF	
R_{gl}	Gate Input Resistance		1.36	Ω	
t _{d(on)}			48	ns	
t _r	Resistive Switching Times		36	ns	
t _{d(off)}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 200A$ $R_{G} = 1\Omega$ (External)		80	ns	
t _f	$n_{\rm G} = 152 \text{(External)}$		35	ns	
$Q_{g(on)}$			545	nC	
Q _{gs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_D = 0.5 \cdot I_{DSS}$		177	nC	
Q_{gd}			135	nC	
\mathbf{R}_{thJC}				0.12 °C/W	
R _{thCS}			0.15	°C/W	

Source-Drain Diode

Symbol $(T_J = 25^{\circ}C, V)$	Test Conditions Ch Unless Otherwise Specified) Mi	aracteristi n. Typ.	c Value Max.	
I _s	$V_{GS} = 0V$		520	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{JM}}$		1600	Α
V _{SD}	$I_F = 100A, V_{GS} = 0V, Note 1$		1.25	V
t _{rr}	$I_{_{\rm F}} = 150 {\rm A}, \ V_{_{\rm GS}} = 0 {\rm V}$ -di/dt = $100 {\rm A}/\mu {\rm s}$ $V_{_{\rm R}} = 37.5 {\rm V}$	7 357	150	ns A nC

Notes 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

2. Includes lead resistance.

SYM	INCH	INCHES MILLIMET		METERS
STIVI	MIN	MAX	MIN	MAX
Α	.190	.205	4.83	5.21
Α1	.090	.100	2.29	2.54
A2	.075	.085	1.91	2.16
b	.045	.055	1.14	1.40
b2	.075	.087	1.91	2.20
b4	.115	.126	2.92	3,20
С	.024	.031	0.61	0.80
D	.819	.840	20.80	21.34
D1	.650	.690	16.51	17.53
D2	.035	.050	0.89	1.27
Ε	.620	.635	15.75	16.13
E1	.545	.565	13.84	14.35
е	.215 BSC		5.45	BSC
L	.780	.810	19.81	20.57
L1	.150	.170	3.81	4.32
Q	.220	.244	5.59	6.20
R	.170	.190	4.32	4.83

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

180

160

140

t -- Nanoseconds 100 80 60

40

20 0

25

35

45

vs. Junction Temperature $R_G = 1\Omega$, $V_{GS} = 10V$ $V_{DS} = 37.5V$ I_D = 200A I_D = 100A

Fig. 13. Resistive Turn-on Rise Time

tr-Nanoseconds 115 125

105

vs. Drain Current 180 $R_G = 1\Omega$, $V_{GS} = 10V$ 160 V_{DS} = 37.5V 140 T_J = 125°C 100 80 60 40 $T_J = 25^{\circ}C$ 20 0 40 60 80 100 120 140 200 I_D - Amperes

Fig. 14. Resistive Turn-on Rise Time

vs. Gate Resistance 600 $t_{d(off)}$ 500 $T_J = 125^{\circ}C, \ V_{GS} = 10V$ $I_D = 200A$

65

75

T_J - Degrees Centigrade

Fig. 15. Resistive Turn-on Switching Times

85

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 17. Resistive Turn-off Switching Times

Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance

Fig. 19. Maximum Transient Thermal Impedance

