21-S-6-ZA-55 Solution

Question: The truss structure shown has a pin at point C and is acted on by two forces F_A and F_B at points A and B respectively. If $F_A N$, $F_B N$, and θ° , find the required type of support at point D without over constraining the system, assuming the maximum force pin C can handle without deforming is $F_{max} N$ in each direction.

Solution:

We can take the sum of forces of the system to find the reaction forces on the pin at point C, assuming the system is in equilibrium.

$$\Sigma F_{x} = -F_{A} + F_{B} cos\theta + R_{X} = 0$$

$$\Sigma F_{y} = F_{B} sin\theta - R_{Y} = 0$$

$$R_{_{Y}} = F_{_{B}} sin\theta$$

$$R_{_{X}} = F_{_{A}} - F_{_{B}} cos\theta$$

If $|R_x| <= F_{max}$ and $|R_y| <= F_{max}$ then no support is required. If $|R_x| <= F_{max}$ and $|R_y| > F_{max}$ then a roller support is required. If $|R_x| > F_{max}$ then a pin support is required.