莓良心 ichigo 尽梨了 eriri 团不过 yui

七负我 nanami

总结

Solution 简单 NOIP 模拟赛 Day1

JKLover

October 3, 2020

尽梨了 eriri

团不过 yui

七负我 nanami

总结

算法一

dfs 枚举所有分组情况并计算答案,期望得分 20 分。

算法二

若 u, v 被分在同一组中,则对答案有 $w_u + w_v$ 的贡献 (u = v 也算)。 那么就有

$$ans = \left(\sum w_i\right) \cdot {n \brace k} + \sum_{u \neq v} (w_u + w_v) \cdot {n-1 \brace k}$$

$$ans = \left(\sum w_i\right) \cdot \left({n \brack k} + (n-1){n-1 \brack k}\right)$$

其中 $\{{}^{n}_{k}\}$ 是第二类斯特林数,即将 n 个数分为 k 个非空集合的方案数。 若按照递推式计算,时间复杂度 $O(n^2)$,期望得分 40 分。

考虑经典的做法, 利用容斥原理计算第二类斯特林数,

$${n \brace k} = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{i} {k \choose i} (k-i)^{n}$$

直接用快速幂计算每个 $(k-i)^n$, 时间复杂度 $O(n \log n)$, 期望得分 70 到 100 分。 若利用线性筛预处理所有 $(k-i)^n$,时间复杂度 O(n) ,期望得分 100 分。

尽梨了 eriri

团不过 yui

七负我 nanami

总结

算法一

dfs 去哪些商店以及去的顺序,期望得分 20 分。

算法二

考虑如果在时刻 t 在商店 i 购买物品,结束后立即去商店 j 购买物品。那么 j 会因为在 i 处等候而额外花费 $(a_i \cdot t + b_i + 1) \cdot a_j$ 的时间。如果我们将二者交换顺序,在时刻 t 在 j 购买,结束后立即去 i 购买,i 会额外花费 $(a_j \cdot t + b_j + 1) \cdot a_i$ 的时间。若先去 i 比先去 j 更优,就需要满足

$$(a_i \cdot t + b_i + 1) \cdot a_j \le (a_j \cdot t + b_j + 1) \cdot a_i$$

即

$$(b_i+1)\cdot a_j \leq (b_j+1)\cdot a_i$$

可以发现 i 是否比 j 优与当前时刻 t 无关。 于是可以先对所有商店排序,得到序列 p ,那么我们实际去的商店按照时间先后形成的序列一定是 p 的一个子序列。 莓良心 ichigo 尽梨了 eriri

m 7 14

七负我 nanami

算法二

那么我们可以进行 dp ,设 dp(i,j) 表示考虑了序列 p 中前 i 家商店,已经买了 j 个物品花费的最少时间。

转移时考虑是否去第 i 家商店即可,时间复杂度 $O(n^2)$,期望得分 50 分。

尽梨了 eriri 团不过 yui

七负我 nanami

总结

算法二

那么我们可以进行 dp ,设 dp(i,j) 表示考虑了序列 p 中前 i 家商店,已经买了 j 个物品花费的最少时间。

转移时考虑是否去第 i 家商店即可,时间复杂度 $O(n^2)$,期望得分 50 分。

算法三

当没有 $a_i = 0$ 的商店时,可以发现花费的时间是随着去过的商店数目指数级增长的,即最多去 $O(\log T)$ 个商店。

将第二维只开到 $O(\log T)$,这部分的时间复杂度就优化到了 $O(n\log T)$,结合算法二,期望得分 70 分。

IKI over

毒良心 ichigo尽梨了 eriri团不过 yui七负我 nanami总结

算法三

当没有 $a_i = 0$ 的商店时,可以发现花费的时间是随着去过的商店数目指数级增长的,即最多去 $O(\log T)$ 个商店。

将第二维只开到 $O(\log T)$,这部分的时间复杂度就优化到了 $O(n \log T)$,结合算法二,期望得分 70 分。

算法四

按照我们的排序方式, $a_i = 0$ 的商店一定是在序列 p 末尾的。

设共有 $k \cap a_i > 0$ 的商店,对这 $k \cap a_i = 0$ 的商店,对这 $k \cap a_i = 0$ 的商店。 对于每个最终状态 dp(k,j) ,再贪心地按照 b_i 从小到大的顺序检查还能去几个 $a_i = 0$ 的商店。 时间复杂度 $O(n \log n + n \log T)$,期望得会 100 公

时间复杂度 $O(n \log n + n \log T)$, 期望得分 100 分。

为了模拟 NOIP ,没有开子任务,所以一些假的乱搞做法可能也可以得到一些分数。

尽梨了 eriri 团不过 yui

七负我 nanami

算法一

dfs 枚举所有情况,期望得分 20 分。

七负我 nanami

算法二

考虑在限定每堆石子数目互不相同的前提下,用所有方案数减去先手必败的方案数。

设 $p(i) = (2^n - 1)^{\underline{i}}$,即 i 堆石子的总方案数。

设 f(i) 表示 i 堆石子时先手必败的方案数。

我们考虑让前 i-1 堆石子任意取,通过调整最后一堆石子的数目使得异或和为 0 ,方案数为 p(i-1) 。

若前 i-1 堆石子异或和为 0 ,因为最后一堆不能取 0 ,这种情况是不合法的,方案数为 f(i-1) 。

若前 i-1 堆石子中,有 i-2 堆石子异或起来是 0 ,那么最后一堆石子就只能和另一堆石子数目相同,也是不合法的,方案数为 $(i-1)\cdot(2^n-i+1)\cdot f(i-2)$ 。于是得到 $f(i)=p(i-1)-f(i-1)-(i-1)\cdot(2^n-i+1)\cdot f(i-2)$,边界为 f(1)=f(2)=0 ,直接 O(n) 递推即可。

可能存在一些其他容斥做法,根据实现优劣可以得到不同的分数。

JKLover

莓良心 ichigo 尽梨了 eriri

七负我 nanami

算法一

暴力(如小范围内枚举分母,对分子 dfs),期望得分 20 分。随机乱搞,贪心乱搞,根据实现优劣可以获得 20 到 100 分。

莓良心 ichigo尽梨了 eriri团不过 yui

七负我 nanami

算法一

暴力(如小范围内枚举分母,对分子 dfs),期望得分 20 分。随机乱搞,贪心乱搞,根据实现优劣可以获得 20 到 100 分。

算法二

当图为以 1 为中心的菊花图时,收益是 $t_1 \cdot (x - t_1)$,令 $t_1 = x/2$ 即可。结合算法一,期望得分 40 分。

算法三

注意到,若 u,v 之间没有边,记 s_u,s_v 分别表示与 u,v 相连的点的 t 之和。则 u,v 的总贡献应当是 $\frac{1}{2}(s_u\times t_u+s_v\times t_v)$ 。这意味着在保持 t_u+t_v 不变时,让 t_u 或 t_v 中的一者为 0 答案不会变劣。那么一定有一种最优解是满足所有 t>0 的点之间两两有边,即它们的导出子图在原图上形成了一个团。设这个团有 k 个点,不难发现令每个点 $t=\frac{x}{k}$ 最优,此时答案为 $x^2\times\frac{k(k-1)}{2k^2}$ 。可以看出答案是关于 k 递增的,我们需要在图中找出一个最大团。枚举点集的每个子集,并检验导出子图是否为团,时间复杂度 $O(2^n\cdot n)$,期望得分 70 分。

毎良心 ichigo尽梨了 eriri团不过 yui七负我 nanami

算法四

使用 meet in the middle + 状压 dp 搜索图中的最大团,时间复杂度 $O(2^{n/2} \cdot n)$,期望得分 100 分。

具体地,取 p=n/2,对前 p 个点,预处理 f(S) 表示点集 S 的导出子图的最大团大小,对后 n-p 个点,枚举一个集合 T,若点集 T 的导出子图是团,并且 T 中所有点邻居的交与前 p 个点交集为 S ,就找到了一个大小为 |T|+f(S) 的团。

算法五

使用 Bron-Kerbosch 算法搜索图中的最大团,时间复杂度 $O(3^{n/3})$,期望得分 100 分。

也存在一些随机化算法能够以较大概率找出最大团,此处不详细展开。

莓良心 ichigo 尽梨了 eriri

七负我 nanami

L VLTX, IIaliai

总结

本套题综合考察了多种 NOIP 常见的知识点,相信能给拼搏于逐梦之路上的你, 提供一个有力的援助。