Lecture 11 Real-time Data Warehousing

Summary – last week

How to build a DW

- The DW Project:usual tasks, hardware, software, timeline (phases)
- Data Extract/Transform/Load (ETL):
 - Data storage structures, extraction strategies (e.g., scraping, sniffing)
 - Transformation: data quality, integration
 - Loading:issues, and strategies, (bulk loading for fact data is a must)

– Metadata:

- Describes the contents of a DW, comprises all the intermediate products of ETL,
- Helps for understanding how to use the DW

This week

- Real-time Data Warehousing
 - Real-time Data Processing Challenges
 - Real-time Join Algorithms

- Customer business scenario: a utility company owns plants generating energy
- Existing DW supports planning by recommending:
 - The production capacity
 - The reserve capacity
 - When to buy supplemental energy, as needed

- Each day is pre-planned on historical behavior
 - Peak demand periods are somewhat predictable
- Good planning is important because:
 - Expensive to have unused capacity!
 - Cheaper to buy energy ahead!
- Planning on last week's average is not enough

- Getting more in-time accuracy enhances operational business
 - Compare today's plant output and customer
 consumption volumes to yesterday's or last week's average
 - Know when to purchase additional options or supplies
- Customer Target: have the actual data from the operational environment available for analytics within a 5 minute lag
- Real-time ≠ fast
 - Real time DW has the capability to enforce time constraints

- The most difficult part for complying with the 5 minutes time constraint is the ETL process
 - ETL tools usually operate in batch mode on a certain schedule nightly, weekly or monthly
 - ETL typically involves downtime for the DW during the loading step (usually happens over night)
 - Data is extracted into flat files in the staging area outside
 the DBMS, where it is not available for querying
 - ETL may take hours to finish
- The ETL process needs to be re-designed to meet real-time constraints

Real-time Data Warehousing

• Real-Time Data Warehouse (RTDW) Individual changes occurring on the source systems are immediately forwarded to data warehouse in a best effort strategy.

- RTDW needs Real-Time ETL (Extract, Transform, Load)
- ETL is a data integration layer between multi-data sources and data warehouse.
- Perform Extraction, Transformation and Loading tasks on Near-Real-Time basis

Real-time ETL

Real-time transformation is an important phase in an ETL layer where incoming source updates are transformed into warehouse format in an online fashion.

Real-time ETL (cont'd.)

Transformation examples: Key replacement, enrichment of data

w_key	name
101	Sugar
102	Milk
103	Butter
Data Warehouse	

What is Stream-based Join?

- Stream-based join is an operation to combine the information coming from two or more data sources.
- Data sources can be in the form of streams or persistent data.

- Applications of stream-based join.
 - Enrichment of stream data with master data.
 - Key replacement in data warehouse.
 - Identification of duplicate records.
 - Merging of two or more data streams.

Research Challenges

Challenge I

- Both inputs of the join operator have different arrival rates.
 - The stream input is fast, high volume and has an intermittent nature.
 - Master data input is comparatively slow due to the disk
 I/O cost.
- It creates a bottleneck in join processing. The challenge here is to eliminate this bottleneck.

Challenge 2:

—Stream data is non-uniform therefore, an efficient approach is required to retrieve master data.

Existing Approaches

- Symmetric Hash Join (SHJ)
- Early Hash Join (EHJ)
- X-Join
- Double Pipeline Hash Join (DPHJ)
- Hash Merge Join (HMJ)
- MJoin

Semi-stream joins

- Index Nested Loop Join (INLJ)
- Mesh Join (MESHJOIN)
- Partitioned-based Join
- Semi Stream Index Join (SSIJ)
- Reduced Mesh Join (R-MESHJOIN)
- Hybrid Join (HYBRIDJOIN)
- Cache Join (CACHEJOIN)

Index Nested Loop Join (INLJ)

Issues in INLJ

- INLJ processes only one stream tuple per iteration therefore solution is not practical for fast and huge volume stream data.
- INLJ does not amortize expensive disk reading cost on stream data.
- INLJ does not take into account some common characteristics of stream data e.g. skew in stream data.

MESHJOIN (Mesh Join)

Features

- MESHJOIN (Mesh Join) has been proposed for processing stream data with master data.
- Designed for joining a stream S with disk-based relation R.
- Uses limited memory budget.
- Does not need an index.
- Works for any equijoin.

MESHJOIN Components

MESHJOIN Operation

- Size of stream-buffer = w tuples
- Size of disk-buffer = b pages
- Iterations required to bring all of R into memory = k (in this example k=4)

Problem in MESHJOIN

Problem I

- Due to unnecessary dependency, memory distribution among the join components is not optimal.
- Problem 2
- The performance of the algorithm is inversely proportional to the size of master data.
- Problem 3
- Can not deal with intermittency in stream data.
- Problem 4
- Typical characteristics of stream data such as non-uniform data are not considered.

Solutions

We propose following novel algorithms to solve the highlighted problems.

- Reduced Mesh Join (R-MESHJOIN):- clarifies the dependency among the components more appropriately.
- Hybrid Join (HYBRIDJOIN):- introduces an index-based strategy to access the master data.
- Cache Join (CACHJOIN):- considers nonuniform characteristic in stream data.

R-MESHJOIN (Reduced Mesh Join)

- Number of logical partitions in disk-buffer= I
- Size of each logical partition (pages) = b_p
- Size of disk-buffer (pages)= b
- Iteration required to load entire disk-based relation into memory=k

HYBRIDJOIN (Hybrid Join)

3 CACHEJOIN (Cache Join)

Experimental Setup

- Hardware specifications
 - Pentium-core-i5, 8G main memory, 500G
 HDD
- Synthetic dataset
 - Size of master data R, 100 million tuples (~11.18GB)
 - Size of each disk tuple, 120 bytes
 - Size of each stream tuple, 20 bytes
 - Size of each pointer in queue, 12 bytes
 - Based on Zipf's Law with skew of 0 to 1

Experimental Setup (cont'd.)

TPC-H dataset

- Create the datasets using a scale factor of 100
- Uses table Customer as our master data table with each tuple of 223 bytes
- Uses table Order as our stream data table with each tuple of 138 bytes

Real dataset

- Size of master data, 20 million tuples
- Size of each master as well as stream tuple is 128 bytes
- Source url: http://cdiac.ornl.gov/ftp/ndp026b/

Evaluation metrics

 We calculate confidence interval by considering 95% accuracy rate.

Performance Comparisons

Performance comparisons with 95% confidence interval while R=100 million tuples and **M** varies in percentage of **R**.

Performance comparisons with 95% confidence interval while M~I.2G and **R varies.**

Performance comparisons with 95% confidence interval while M~I.2G, R=I00 million tuples and skew varies.

Role of Cache Module in Performance

Total number of stream tuples processed through cache module in 4000 iterations.

Conclusions

- Stream processing has become a novel field in the area of data management due to its infinite characteristics.
- Stream-based join operators perform a key role in processing of stream data.
- A number of algorithms were designed to process semi-stream data however, they suffer with some limitations.
- We addressed these limitations in our research by presenting three novel algorithms.
- Our experimental evaluation proved the contribution of each algorithm in terms of performance.

About Me

Publications

Published <u>one</u> book, <u>six</u> peer-reviewed journal articles, about <u>thirty</u> core-ranked conference and workshop papers, and <u>three</u> book chapters

- Professional Activities.
 - Keynote speaker, ICDIM'13
 - General track chair, ICDIM'13
 - Editorial member in IJES & JCI
 - PC member in ACSE, ADC, DOLAP, and DASFAA
- Student's Supervision
 - Supervising <u>three</u> Master and <u>two</u> PhD students

My Research

- Data stream processing in real-time Databases and Data Warehouses
- Research with Stream processing in Cloud collaboration of Computing AUT & UoA Prof. Gillian Dobbie
- Dr. Gerald Weber Big Data Management Dr. Christof Lutteroth
- Natural Language Processing and Research with collaboration of **Object Modelling** AUT & Birmingham University, UK Dr. Behzad Bordbar, Dr. Imran S. Bajwa

Gillian Dobbie

Research in AUT

Shoba Tegginmath

Prof. Albert Yeap, Dr. Russel Pears

Shoba Tegginmath

Open Research Issues

Data Stream Processing

- Consider many-to-many equijoins
- Dealing with non-equijoins
- Parallelization of semi-stream joins
- Semi-stream joins in cloud computing
- Semi-stream joins on mobile and embedded platforms

Other Research Areas

- Big Data Management and Knowledge Engineering
- Data Mining

Summary

- Real-time DW
 - Real-time ETL
 - Joins to process stream data
 - MESHJOIN
 - Problems in MESHJOIN
 - R-MESHJOIN
 - HYBRIDJOIN
 - CACHEJOIN
 - Performance comparisons
 - My research

Next Lecture

- Big Data
 - Real-time Data ProcessingChallenges
 - Real-time Join Algorithms

