

planetmath.org

Math for the people, by the people.

properties of a function

Canonical name PropertiesOfAFunction
Date of creation 2013-03-22 16:21:38
Last modified on 2013-03-22 16:21:38

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 24

Author CWoo (3771) Entry type Definition Classification msc 03E20

Related topic PropertiesOfFunctions

Let X, Y be sets and $f: X \to Y$ be a function. For any $A \subseteq X$, define

$$f(A) := \{ f(x) \in Y \mid x \in A \}$$

and any $B \subseteq Y$, define

$$f^{-1}(B) := \{ x \in X \mid f(x) \in B \}.$$

So f(A) is a subset of Y and $f^{-1}(B)$ is a subset of X.

Let A, A_1, A_2, A_i be arbitrary subsets of X and B, B_1, B_2, B_j be arbitrary subsets of Y, where i belongs to the index set I and j to the index set J. We have the following properties:

- 1. If $A_1 \subset A_2$, then $f(A_1) \subseteq f(A_2)$. In particular, $f(A) \subseteq f(X)$.
- 2. $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$. More generally, $f(\bigcup_i A_i) = \bigcup_i f(A_i)$.
- 3. $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$. The equality fails in the example where f is a real function defined by $f(x) = x^2$ and $A_1 = \{1\}$, $A_2 = \{-1\}$. Equality occurs iff f is one-to-one:

Suppose f(x) = f(y) = z. Pick $A_1 = \{x\}$ and $A_2 = \{y\}$. Then $f(A_1 \cap A_2) = f(A_1) \cap f(A_2) = \{z\} \neq \emptyset$. This means that $A_1 \cap A_2 \neq \emptyset$. Since both A_1 and A_2 are singletons, $A_1 = A_2$, or x = y.

Conversely, let's show that f is one-to-one then $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$. To do this, we only need to show the right hand side is included in the left, and this follows since if $x \in f(A_1) \cap f(A_2)$ then for some $a_1 \in A_1$ and $a_2 \in A_2$ we have $x = f(a_1) = f(a_2)$. As f is one-to-one, $a_1 = a_2$ and so a_1 lies in $A_1 \cap A_2$ and x is in $f(A_1 \cap A_2)$.

More generally, $f(\bigcap_i A_i) \subseteq \bigcap_i f(A_i)$.

4. $f(A_1) - f(A_2) \subseteq f(A_1 - A_2)$: If $y \in f(A_1) - f(A_2)$, then y = f(x) for some $x \in A_1$. If $x \in A_2$, then $y = f(x) \in f(A_2)$ as well, a contradiction. So $x \in A_1 - A_2$, and $y = f(x) \in f(A_1 - A_2)$. The inequality is strict in the case when $f : \mathbb{Z} \to \mathbb{Z}$ given by f(x) = 1, and $A_1 = \mathbb{Z}$ and $A_2 = \{2\}$.

- 5. $A \subseteq f^{-1}f(A)$. Again, one finds that equality fails for the real function $f(x) = x^2$ by selecting $A = \{1\}$. Equality again holds iff f is injective:
 - Suppose $x \in f^{-1}f(A)$. By definition this means that f(x) = f(a) for some $x \in A$, and since f is injective we have $x = a \in A$. It follows that $f^{-1}f(A) \subseteq A$. Converly, if f(x) = f(y) = z, then $\{x,y\} = f^{-1}f(\{x,y\}) = f^{-1}(\{z\})$. On the other hand $\{x\} = f^{-1}f(\{x\}) = f^{-1}(\{z\})$. So $\{x,y\} = \{x\}$, x = y.
- 6. If $B_1 \subseteq B_2$, then $f^{-1}(B_1) \subseteq f^{-1}(B_2)$. In particular, $f^{-1}(B) \subseteq f^{-1}(Y)$.
- 7. $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$. More generally, $f^{-1}(\bigcup_j B_j) = \bigcup_j f^{-1}(B_j)$.
- 8. $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$. More generally, $f^{-1}(\bigcap_j B_j) = \bigcap_j f^{-1}(B_j)$.
- 9. $f^{-1}(Y B) = X f^{-1}(B)$. As a result, $f^{-1}(B_1 B_2) = f^{-1}(B_1) f^{-1}(B_2)$.
- 10. $ff^{-1}(B) \subseteq B$. Yet again, one finds that equality fails for the real function $f(x) = x^2$ by selecting B = [-1, 1]. Equality holds iff f is surjective:
 - Suppose f is onto. Pick any $y \in B \subset Y$. Then y = f(x) for some $x \in X$. In other words, $x \in f^{-1}(B)$ and hence $y = f(x) \in ff^{-1}(B)$. Now suppose the converse, then pick B = Y, and we have $Y = ff^{-1}(Y) = f(X)$.
- 11. Combining ?? and ??, we have that $ff^{-1}f(A) = f(A)$ and $f^{-1}ff^{-1}(B) = f^{-1}(B)$. Let's show the first equality:

From ??,
$$A \subseteq f^{-1}f(A)$$
, so that $f(A) \subseteq ff^{-1}f(A)$ (by 1). Set $B = f(A)$. Then by ??, $ff^{-1}f(A) = ff^{-1}(B) \subseteq B = f(A)$.

Remarks.

• $f^{-1}f$ and ff^{-1} the compositions of the function and its inverse as defined at the beginning of the entry, so that $f^{-1}f(A) = f^{-1}(f(A))$ and $ff^{-1}(B) = f(f^{-1}(B))$.

• From the definition above, we see that a function $f:X\to Y$ induces two functions [f] and $[f^{-1}]$ defined by

$$[f]: 2^X \to 2^Y$$
 such that $[f](A) := f(A)$ and

$$[f^{-1}]: 2^Y \to 2^X$$
 such that $[f^{-1}](B) := f^{-1}(B)$.

The last property $\ref{eq:condition}$ says that [f] and $[f^{-1}]$ are quasi-inverses of each other.

ullet f is a bijection iff [f] and $[f^{-1}]$ are inverses of one another.