Methoden en Statistiek 1

true

8 juli 2020

Contents

V	oorw	oord	7
	Nota	atie	8
	Lice	entie	8
	Ove	r de auteurs	8
D	eel :	I: Methodologie	11
1	Inle	eiding	11
	1.1	Wetenschappelijk onderzoek	11
	1.2	Paradigmata	13
	1.3	Instrumentatie-onderzoek	14
	1.4	Beschrijvend onderzoek	15
	1.5	Experimenteel onderzoek	16
	1.6	Vooruitblik	19
2	Hyl	pothese-toetsend onderzoek	21
	2.1	Inleiding	21
	2.2	Variabelen	22
	2.3	Onafhankelijke en afhankelijke variabelen	23
	2.4	Falsificatie en nul-hypothese	24
	2.5	De empirische cyclus	26
	2.6	Keuzemomenten	33

4 CONTENTS

3	Inte	egriteit	37
	3.1	Inleiding	37
	3.2	Ontwerp	38
	3.3	Proefpersonen en informanten	41
	3.4	Gegevens	42
	3.5	Teksten	44
4	Med	etniveau	47
	4.1	Inleiding	47
	4.2	Nominaal	47
	4.3	Ordinaal	48
	4.4	Interval	48
	4.5	Ratio	49
	4.6	Ordening van meetniveaus	49
5	Vali	iditeit	51
	5.1	Inleiding	51
	5.2	Causaliteit	51
	5.3	Validiteit	52
	5.4	Interne validiteit	53
	5.5	Constructvaliditeit	61
	5.6	Externe validiteit	70
6	Ont	werp	73
	6.1	Inleiding	73
	6.2	Tussen of binnen?	74
	6.3	Het one-shot single-case-ontwerp $\ \ldots \ \ldots \ \ldots \ \ldots$	75
	6.4	Het één-groep-voormeting-nameting-ontwerp	76
	6.5	Het voormeting-nameting-controlegroep-ontwerp $\dots \dots$	77
	6.6	Het Solomon-vier-groepen-ontwerp	79
	6.7	Het nameting-controlegroep-ontwerp	80
	6.8	Factoriële ontwerpen	82

CONTENTS	5
----------	---

	6.9	Afhankelijke- en onafhankelijke-groepen-ontwerp 8	5
	6.10	Onderzoek ontwerpen	6
	6.11	Tenslotte	7
7	Stee	skproeven 9	1
	7.1	Gelegenheidssteekproeven	1
	7.2	Systematische steekproeven	3
	7.3	Aselecte steekproeven	4
	7.4	Steekproefgrootte	5
\mathbf{D}_{i}	eel I	I: Beschrijvende statistiek 10	1
8	Free	quenties 10	1
	8.1	Inleiding	1
	8.2	Frequenties	1
	8.3	Staafdiagrammen	5
	8.4	Histogrammen	5
\mathbf{A}	Wil	lekeurige getallen 10	9

6 CONTENTS

Voorwoord

Data spelen een steeds belangrijker rol, ook in de geesteswetenschappen. De beschikbaarheid van digitale gegevens (o.a. tekst, spraak, video, en gedragsregistraties) leidt tot nieuwe onderzoeksvragen, die vooral met kwantitatieve methoden beantwoord worden. Dit boek biedt onderzoekers en studenten een overzicht en inleiding van de belangrijkste kwantitatieve methoden en statistische technieken in de geesteswetenschappen. Het boek geeft de lezer een stevig methodologisch fundament voor kwantitatief onderzoek, en biedt een inleiding in de meest gebruikte statistische technieken om gegevens te beschrijven en om hypothesen te toetsen. Daarmee is de lezer ook in staat om kwantitatief onderzoek kritisch te beoordelen.

Dit tekstboek wordt gebruikt als leesstof bij de cursus Methoden en Statistiek 1 aan de Universiteit Utrecht. Het boek is tevens bruikbaar voor zelfstudie op inleidend niveau, voor iedereen die meer wil weten over methoden en statistiek.

De hoofdtekst is gevrijwaard van wiskundige afleidingen en formules, die voor geesteswetenschappers immers weinig bruikbaar zijn. De uitleg is vooral conceptueel, en rijk aan voorbeelden van geesteswetenschappelijk onderzoek. Waar nodig worden formules aangeboden in een aparte paragraaf.

Dit boek bevat ook aanwijzingen over hoe de besproken statistische analyses en visualisaties uitgevoerd kunnen worden in twee veelgebruikte programma's, nl. SPSS (versie 22 en later) en R (versie 3.0 en later). Ook deze aanwijzingen staan los van de hoofdtekst, in afzonderlijke paragrafen.

Graag willen we onze mede-docenten danken voor de vele discussies en voorbeelden die op enige wijze verwerkt zijn in dit tekstboek. Onze studenten danken we voor hun nieuwsgierigheid en nauwkeurigheid die geleid heeft tot deze versie van dit tekstboek.

Ook betonen wij grote dank aan Willemijn Heeren, Gerrit Bloothooft, Marijn Struiksma, Margot van den Berg, Els Rose, Tobias Quené en Kirsten Schutter voor hun adviezen, data, en/of commentaar bij eerdere versies.

Utrecht, december 2016 - juli 2020

Hugo Quené, https://www.hugoquene.nl

8 CONTENTS

Huub van den Bergh		

Notatie

In aansluiting op het internationale gebruik en op de conventies van Engelstalige tijdschriften gebruiken we de punt als decimaalteken; we schrijven dus $\frac{3}{2} = 1.5$. Hierbij is een waarschuwing op zijn plaats: het decimale symbool kan verschillen tussen computers, en zelfs tussen programma's op dezelfde computer. Controleer dus welk decimaal symbool gebruikt wordt door (elk programma op) jouw computer.

Licentie

This document is licensed under the *GNU GPL 3* license (for details see https://www.gnu.org/licenses/gpl-3.0.en.html). It was created with the bookdown package (Xie, 2020) in Rstudio.

Over de auteurs

Beide auteurs zijn verbonden aan de Faculteit Geesteswetenschappen van de Universiteit Utrecht. HQ is hoogleraar Kwantitatieve Methoden van Empirisch Onderzoek in de Geesteswetenschappen, en geeft daarnaast leiding aan het Centre for Digital Humanities. HvdB is hoogleraar Didactiek en Toetsing van het Taalvaardigheidsonderwijs, en is daarnaast vaksectievoorzitter Nederlands bij het College voor Toetsen en Examens (CvTE).

Deel I: Methodologie

Chapter 1

Inleiding

In dit tekstboek worden de grondbeginselen, methoden en technieken van empirisch wetenschappelijk onderzoek besproken, zowel in algemene zin als toegespitst op het brede domein van taal en communicatie. We zullen ons bezighouden met vragen als: Wat is een goede onderzoeksvraag? Welke methode is de beste om de onderzoeksvraag te beantwoorden? Hoe kunnen onderzoekers zinnige en valide conclusies trekken uit (statistische analyses van) hun gegevens? In dit tekstboek beperken we ons tot de belangrijkste grondbeginselen, en tot de belangrijkste methoden en technieken. In dit eerste hoofdstuk zullen we een overzicht geven van verschillende typen en vormen van wetenschappelijk onderzoek. In het vervolg van dit tekstboek geven we de meeste aandacht aan methoden van wetenschappelijk onderzoek waarbij empirische observaties uitgedrukt worden in de vorm van getallen (kwantitatief), die geanalyseerd worden met behulp van statistische technieken.

1.1 Wetenschappelijk onderzoek

Om te beginnen moeten we een vraag stellen die terugslaat op de allereerste zin hierboven: wat is eigenlijk wetenschappelijk onderzoek? Wat is het verschil tussen wetenschappelijk en niet-wetenschappelijk onderzoek (bijv. door onderzoeksjournalisten)? Onderzoek dat een wetenschapper uitvoert, hoeft nog geen wetenschappelijk onderzoek te zijn. Evenmin is journalistiek onderzoek per definitie onwetenschappelijk omdat het door een journalist wordt uitgevoerd. In dit tekstboek hanteren we de volgende definitie (Kerlinger and Lee, 2000, p.14):

"Scientific research is systematic, controlled, empirical, amoral, public, and critical investigation of natural phenomena. It is guided by theory and hypotheses about the presumed relations among such phenomena."

Wetenschappelijk onderzoek is systematisch en gecontroleerd. Wetenschappelijk onderzoek is zodanig ontworpen dat we geloof kunnen hechten aan de conclusies, omdat die conclusies goed onderbouwd zijn. Het onderzoek kan door anderen herhaald worden, met (hopelijk) dezelfde resultaten. Deze eis van repliceerbaarheid maakt ook dat wetenschappelijk onderzoek zeer nauwgezet wordt ontworpen en uitgevoerd (zie Hoofdstukken 3 en 6). De sterkste vorm van controle is die van een wetenschappelijk experiment; we besteden daarom in dit tekstboek veel aandacht aan experimenteel onderzoek (§1.5). Mogelijke alternatieve verklaringen voor het onderzochte verschijnsel worden één voor één onderzocht en zo mogelijk uitgesloten, zodat tenslotte slechts één verklaring overblijft (Kerlinger and Lee, 2000). Die verklaring vormt dan onze wetenschappelijk onderbouwde conclusie of theorie over het onderzochte verschijnsel.

Ook wordt in de definitie gesteld dat wetenschappelijk onderzoek empirisch van aard is. De conclusies die de onderzoeker trekt moeten uiteindelijk gebaseerd zijn op (systematische en gecontroleerde) waarnemingen of observaties van een verschijnsel in de werkelijkheid — bijvoorbeeld op de waargenomen inhoud van een tekst, of op het waargenomen gedrag van een proefpersoon. Als die waarneming ontbreekt, dan kunnen de eventuele conclusies niet logisch verbonden worden met de werkelijkheid, waardoor ze geen wetenschappelijke waarde hebben. Vertrouwelijke gegevens uit een onbekende bron, of inzichten verkregen in een droom of in een mystieke beleving, zijn niet empirisch onderbouwd, en kunnen dus niet de basis vormen van een wetenschappelijke theorie.

1.1.1 Theorie

Het doel van wetenschappelijk onderzoek is te komen tot een theorie over een deel van de werkelijkheid. Die theorie is te zien als een coherente en consistente verzameling van "justified true beliefs" (Morton, 2003). In deze overtuigingen, en in de theorie, wordt geabstraheerd van de complexe werkelijkheid van de natuurlijke verschijnselen, naar een abstract mentaal construct, dat uit zijn aard niet rechtstreeks waarneembaar is. Voorbeelden van dergelijke constructen zijn: leesvaardigheid, intelligentie, activatie-niveau, verstaanbaarheid, omvang van iemands actieve woordenschat, schoenmaat, woon-werk-afstand, introvertheid, etc.

Een onderzoeker definieert in een theorie niet alleen verschillende constructen, maar ook specificeert hij de verbanden of relaties tussen deze constructen. Pas wanneer zowel de constructen gedefinieerd zijn als de relaties tussen de constructen gespecificeerd zijn, kan een onderzoeker komen tot een systematische verklaring van het onderzochte verschijnsel. Deze verklaring of theorie kan weer de basis zijn van een voorspelling over het onderzochte verschijnsel: het aantal gesproken talen op de wereld zal verminderen in de 21e eeuw; teksten zonder voegwoorden zullen moeilijker te begrijpen zijn dan teksten met voegwoorden; kinderen die tweetalig opgroeien zullen niet slechter presteren op school dan eentalige kinderen.

Wetenschappelijk onderzoek is er in vele verschillende typen en vormen, die op verschillende manieren ingedeeld kunnen worden. In de volgende sectie 1.2 bespreken we een indeling op basis van paradigma, de manier waarop de onderzoeker tegen de werkelijkheid aankijkt. Onderzoek kan ook ingedeeld worden op een continuüm van 'zuiver theoretisch' naar 'toegepast'. Een derde manier om onderzoek in te delen is gericht op het type onderzoek, bijvoorbeeld instrumentatieonderzoek (§1.3), beschrijvend onderzoek (§1.4), en experimenteel onderzoek (§1.5).

1.2 Paradigmata

Eén criterium om typen onderzoek te onderscheiden is op basis van het gebruikte paradigma, de manier waarop de onderzoeker tegen de werkelijkheid aankijkt. In dit tekstboek besteden we nagenoeg alleen aandacht aan het empirischanalytisch paradigma, omdat dit het meest uitgewerkte en meest invloedrijke paradigma is. Heden ten dage kan deze benadering opgevat worden als 'de' standaardopvatting, waar andere paradigma's zich min of meer tegen afzetten.

Binnen het empirisch-analytische paradigma onderscheiden we twee varianten: het positivisme en het kritisch-rationalisme. Beide stromingen hebben gemeen dat er aangenomen wordt dat er wetmatigheden zijn die 'ontdekt' kunnen worden: verschijnselen kunnen beschreven en verklaard worden in abstracte termen (constructen). Het verschil tussen beide stromingen binnen de empirischanalytische traditie is gelegen in de pretentie van de uitspraken die gedaan worden. Volgens de positivisten is het mogelijk om uitspraken te doen vanuit feitelijke waarnemingen naar een theorie. Op basis van de observaties kunnen we generaliseren naar een algemeen geldende regel, door middel van inductie. (De vogels die ik zie, die hoor ik ook fluiten, dus alle vogels fluiten.)

De tweede stroming is het kritisch-rationalisme. De aanhangers van deze stroming keren zich tegen bovengenoemde inducties: al hoor ik talloze vogels ook fluiten, dan nog kan ik geen zekerheid verkrijgen over de veronderstelde algemene regel. Maar we kunnen het wel omkeren, en proberen aan te tonen dat de veronderstelde algemene regel of hypothese *niet* juist is. Hoe werkt dat? Op basis van de algemeen geldende regel kunnen we voorspellingen afleiden voor specifieke observaties, door middel van deductie. (Als alle vogels fluiten, dan moet het zo zijn dat alle vogels in mijn steekproef fluiten.) Als niet alle vogels in mijn steekproef fluiten, dan is de algemene regel blijkbaar onjuist. Dit wordt het falsificatie-principe genoemd; we bespreken dat uitgebreider in sectie 2.4.

Ook aan het kritisch-rationalisme kleven echter tenminste twee bezwaren. Met het falsificatieprincipe kunnen waarnemingen (empirische feiten, observaties, onderzoeksresultaten) gebruikt worden om theoretische uitspraken te doen (met betrekking tot hypothesen). Strikt genomen moet een veronderstelde algemene regel meteen verworpen worden na één geslaagde falsificatie (een van de vogels in mijn steekproef fluit niet): als theorie en observatie niet overeenstemmen,

dan faalt de theorie, volgens de kritisch-rationalisten. Maar om te komen tot een observatie moet een onderzoeker vele keuzes maken (bijv.: hoe maak ik een goede steekproef, wat is een vogel, hoe bepaal ik of een vogel fluit?), die de geldigheid van de observaties onzeker kunnen maken. Er kan dus ook iets mis zijn met de waarnemingen zelf (horen), of met de operationalisaties van de gebruikte constructen (vogels, fluiten).

Een tweede probleem is dat er in de praktijk eigenlijk zeer weinig theorieën zijn die werkelijk iets uitsluiten. Wanneer er discrepanties waargenomen worden tussen theorie en observaties, dan wordt de theorie bijgeschaafd, zodat de nieuwe observaties toch weer binnen de theorie passen. Theorieën worden dan ook zelden volledig verworpen.

Een tweede paradigma is de kritische benadering. Het kritische paradigma onderscheidt zich van andere paradigmata in de nadruk op maatschappelijke bepaaldheden; 'de' werkelijkheid bestaat niet, ons beeld ervan is een voorlopige, door maatschappelijke oorzaken bepaalde werkelijkheid. Inzicht in de maatschappelijke verhoudingen heeft zelf dus ook invloed op die werkelijkheid. Onze wetenschapsopvatting zoals verwoord in bovengenoemde definities van onderzoek en theorie wordt in het kritische paradigma dan ook afgewezen. Kritische onderzoekers menen dat onderzoeksprocessen niet los gezien kunnen worden van de maatschappelijke context waarin het onderzoek is verricht. Deze laatste visie wordt overigens overgenomen door steeds meer onderzoekers, ook door hen die andere paradigmata aanhangen.

1.3 Instrumentatie-onderzoek

Onderzoek is, zoals gezegd, een gesystematiseerde en gecontroleerde wijze om empirische gegevens te verzamelen en te interpreteren. Onderzoekers streven naar inzicht in natuurlijke verschijnselen, en in de wijze waarop (de constructen van) die verschijnselen met elkaar samenhangen. Een voorwaarde hiervoor is dat de onderzoeker deze verschijnselen daadwerkelijk kan meten, d.i. uitdrukken in een observatie (bij voorkeur in de vorm van een getal). Instrumentatieonderzoek is voornamelijk gericht op de constructie van instrumenten of methoden om verschijnselen, gedrag, vaardigheden, attitudes, etc. meetbaar te maken. De ontwikkeling van goede meetinstrumenten is bepaald geen sinecure: het is ambachtelijk handwerk, waarbij de constructeur vele valkuilen moet zien te vermijden. Het meetbaar maken van verschijnselen, van gedrag of van constructen noemen we de operationalisatie. Een concrete leestoets is bijvoorbeeld op te vatten als een operationalisatie van het abstracte construct 'leesvaardigheid'.

We kunnen een nuttig onderscheid maken tussen het abstracte theoretische construct en het gemeten construct, ofwel een onderscheid tussen: het begrip-zoalsbedoeld en het begrip-zoalsbepaald. Het is uiteraard de bedoeling dat het begrip-zoalsbepaald (de toets, de vragenlijst, de observatie) het begrip-zoalsbedoeld (het theoretische construct) zo goed mogelijk benadert. Indien het

theoretische construct goed wordt benaderd, dan spreken we van een adequate of valide meting.

Bij operationalisatie van een begrip-zoals-bedoeld moeten talloze keuzen gemaakt worden. Zo moet het CITO (Centraal instituut voor toetsontwikkeling) elk jaar tekstbegripstoetsen construeren om de leesvaardigheid van eindexamenkandidaten te meten. Daarvoor moet allereerst een tekst gekozen of geredigeerd worden. Deze tekst mag niet te moeilijk, maar ook niet te makkelijk zijn voor de doelgroep. Voorts mag het onderwerp van de tekst niet al te bekend zijn, omdat anders de bij sommige leerlingen aanwezige algemene kennis kan interfereren met de meningen en standpunten die in de tekst naar voren gebracht worden. Vervolgens moeten de vragen zó ontworpen worden dat de verschillende passages in de tekst aan bod komen. Ook moeten de vragen zó samengesteld zijn dat het theoretische construct 'leesvaardigheid' adequaat geoperationaliseerd wordt. Tot slot moet ook nog rekening gehouden worden met de examens uit voorafgaande jaren; het nieuwe examen mag immers niet al te veel afwijken van oude examens.

Een construct moet dus op de juiste wijze geoperationaliseerd zijn, om observaties te verkrijgen die niet alleen valide zijn (een goede benadering van het abstracte construct, zie Hoofdstuk 5) maar die ook betrouwbaar zijn (ongeveer gelijke observaties bij herhaalde meting, zie Hoofdstuk ??). In ieder onderzoek zijn de validiteit en de betrouwbaarheid van een meting cruciaal; we besteden dan ook twee hoofdstukken aan deze begrippen. Maar in instrumentatieonderzoek zijn deze begrippen zelfs essentieel, omdat dit type onderzoek juist beoogt om valide en betrouwbare instrumenten te leveren, die een goede operationatisatie zijn van het abstracte construct-zoals-bedoeld.

1.4 Beschrijvend onderzoek

Met beschrijvend onderzoek bedoelen we onderzoek dat voornamelijk gericht is op de beschrijving van een bepaald natuurlijk verschijnsel in de werkelijkheid. De onderzoeker richt zich dus vooral op een beschrijving van het verschijnsel: het huidige vaardigheidsniveau, het verloop van een proces of een discussie, de wijze waarop de lessen Nederlands in het voortgezet onderwijs vorm worden gegeven, de politieke voorkeur van stemmers vlak voor verkiezingen, de samenhang tussen het aantal uren zelfstudie en het eindcijfer dat een student behaalt, etc. Kortom, ook de onderwerpen voor beschrijvend onderzoek kunnen zeer divers zijn.

Voorbeeld 1.1: (Dingemanse et al., 2013) hebben opnames van conversaties gekozen of gemaakt in 10 talen. Uit die opgenomen conversaties zijn woorden genomen waarmee een luisteraar om "open verduidelijking" vraagt: woordjes als hè (Nederlands), huh (Engels), ã?

(Siwu). Van deze woorden is de klankvorm en het toonhoogteverloop vastgesteld, met akoestische metingen en met fonetische transcripties door experts. Een conclusie van dit beschrijvende onderzoek luidt dat deze tussenvoegsels in de verschillende talen veel meer op elkaar lijken (in klankvorm en toonhoogteverloop) dan op grond van toeval te verwachten is.

Dit voorbeeld illustreert dat beschrijvend onderzoek niet ophoudt als de gegevens (klankvormen, toonhoogteverloop) beschreven zijn. Vaak zijn verbanden tussen de verzamelde gegevens ook zeer interessant (zie §1.1). Zo wordt in opiniepeilingen naar het stemgedrag bij verkiezingen vaak een verband gelegd tussen het gepeilde stemgedrag enerzijds, en leeftijd, geslacht en opleidingsniveau van de respondent anderzijds. En evenzo wordt in onderwijskundig onderzoek een verband gelegd tussen aantal uren studietijd enerzijds, en studiesucces van de respondent anderzijds. Dit type van beschrijvend onderzoek, waarbij een correlatie wordt vastgesteld tussen mogelijke oorzaken en mogelijke gevolgen, wordt ook aangeduid als correlationeel onderzoek.

Het essentiële verschil tussen beschrijvend en experimenteel onderzoek is gelegen in de vraag naar oorzaak en gevolg. Op basis van beschrijvend onderzoek kan een causaal verband tussen oorzaak en gevolg niet goed vastgesteld worden. Uit beschrijvend onderzoek zou kunnen blijken dat er een samenhang is tussen een bepaald soort voeding en een langere levensduur. Is het voedingspatroon dan ook de oorzaak van de langere levensduur? Dat hoeft bepaald niet het geval te zijn: het is ook mogelijk dat dat soort voeding vooral genuttigd wordt door mensen die relatief hoog opgeleid en welvarend zijn, en door deze andere factoren ook relatief langer in leven zijn¹. Om vast te kunnen stellen of er een causaal verband is, moeten we experimenteel onderzoek opzetten en uitvoeren.

1.5 Experimenteel onderzoek

Experimenteel onderzoek wordt gekenmerkt doordat de onderzoeker een bepaald aspect van de onderzoeksomstandigheden systematisch varieert (Shadish et al., 2002). Het effect van deze manipulatie staat dan centraal in het onderzoek. Een onderzoeker vermoedt bijvoorbeeld dat een bepaalde nieuwe lesmethode zal resulteren in betere prestatie van de leerlingen dan de huidige lesmethode. De onderzoeker wil deze hypothese toetsen door middel van een experimenteel onderzoek. Hij manipuleert het type onderwijs: sommige klassen of groepen krijgen les volgens de nieuwe experimentele lesmethode en andere klassen of

¹Het is zelfs mogelijk dat het onderzochte voedingspatroon de oorzaak is van een relatief *kortere* levensduur, maar dat dit negatieve effect gemaskeerd wordt door de sterkere, positieve effecten van opleidingsniveau en welvaartsniveau op de levensduur.

groepen krijgen les op de traditionele wijze. Het effect van de nieuwe lesmethode wordt geëvalueerd door de prestaties van de twee soorten schoolklassen te vergelijken, na de 'behandeling' met de oude vs. nieuwe lesmethode.

Experimenteel onderzoek heeft als voordeel dat we de onderzoeksresultaten doorgaans mogen interpreteren als het gevolg van de experimentele manipulatie. Omdat de onderzoeker het onderzoek systematisch controleert en slechts één aspect (i.c. de lesmethode) varieert, kunnen eventuele verschillen tussen de prestaties van de twee categorieën alleen toegeschreven worden aan het veranderde kenmerk, i.c. aan de lesmethode. Dit veranderde kenmerk moet dan logischerwijs wel de oorzaak zijn van de geobserveerde verschillen. Experimenteel onderzoek is dus gericht op de evaluatie van causale verbanden.

Deze redenering vereist wel dat proefpersonen (of schoolklassen, in bovenstaand voorbeeld) volgens het toeval, aselect (Eng. 'at random'), worden toegewezen aan de experimentele condities (i.c. de oude of nieuwe lesmethode). Deze aselecte toewijzing (Eng. 'random assignment') is de beste methode om eventuele niet-relevante verschillen tussen de behandelcondities uit te sluiten. dergelijk experiment met aselecte toewijzing van proefpersonen aan condities wordt een gerandomiseerd experiment genoemd (Eng. 'randomized experiment', 'true experiment',). Om bij ons voorbeeld te blijven: als de onderzoeker de oude lesmethode zou inzetten bij jongens, en de nieuwe lesmethode bij meisjes, dan is een eventueel verschil in prestaties niet meer uitsluitend toe te schrijven aan het gemanipuleerde kenmerk (de lesmethode), maar ook aan een niet-gemanipuleerd maar wel relevant kenmerk, hier het geslacht van de leerlingen. Zo'n mogelijk verstorend kenmerk wordt een storende variabele (Eng. 'confound') genoemd. In Hoofdstuk 6 bespreken we hoe we deze storende variabelen kunnen neutraliseren, door random toewijzing van proefpersonen (of schoolklassen) aan de experimentele condities, in combinatie met andere maatregelen.

Er is ook experimenteel onderzoek waarbij een bepaald aspect (zoals lesmethode) wel systematisch varieert, maar waarbij de proefpersonen of schoolklassen niet aselect zijn toegewezen aan de experimentele condities; dit wordt quasi-experimenteel onderzoek genoemd (Shadish et al., 2002). In het bovenstaande voorbeeld is daarvan sprake als de gebruikte lesmethode onderzocht wordt, met gegevens van schoolklassen waarvan niet de onderzoeker maar de docent bepaald heeft of de oude of nieuwe lesmethode gebruikt wordt. Als de nieuwe lesmethode betere prestaties zou opleveren, dan weten we niet met zekerheid dat het verschil in prestaties toe te schrijven is aan de lesmethode. Ook het enthousiasme of de werkstijl van de docent kan een storende variabele zijn geweest in dit quasi-experiment. In dit tekstboek zullen we verschillende voorbeelden van quasi-experimenteel onderzoek tegenkomen.

Binnen het type van experimenteel onderzoek kunnen we een verdere verdeling aanbrengen, tussen laboratoriumonderzoek en veldonderzoek. In beide typen experimenteel onderzoek wordt een aspect van de werkelijkheid gemanipuleerd. Het verschil tussen beide typen onderzoek is gelegen in de mate waarin de

onderzoeker in staat is om allerlei storende aspecten van de werkelijkheid onder controle te houden. In laboratoriumonderzoek kan de onderzoeker zeer exact bepalen onder welke omgevingscondities de observaties worden gedaan, en kan de onderzoeker dus ook vele mogelijke storende variabelen onder controle houden (denk aan verlichting, temperatuur, omgevingslawaai, etc.). In veldonderzoek is dit niet het geval. De onderzoeker is 'in het vrije veld' niet in staat om alle (mogelijk relevante) aspecten van de werkelijkheid volledig onder controle te houden.

Voorbeeld 1.2: Margot van den Berg onderzocht samen met collega's van de Universiteit van Ghana en de Universiteit van Lomé hoe meertalige sprekers hun talen gebruiken als zij eigenschappen zoals kleur, grootte en waarde moeten benoemen door middel van een zogenaamde Director-Matcher task (Van den Berg et al., 2017). In deze taak gaf de ene onderzoeksdeelnemer (de directeur) aanwijzingen aan een ander (de uitvoerder) om een reeks voorwerpen in een bepaalde volgorde neer te zetten. Zo konden in een kort tijdsbestek veel voorkomens van eigenschapswoorden worden verzameld ('Zet de gele auto naast de rode auto maar boven de kleine slipper'). De gesprekken werden opgenomen, uitgeschreven en vervolgens onderzocht op taalkeuze, moment van taalwisseling en type grammaticale constructie. Bij dergelijk veldwerk kunnen echter allerlei nietgecontroleerde aspecten in de omgeving van invloed zijn op de geluidsopnames, en daarmee op de gegevens: "kakelende kippen, een buurman die z'n motor aan het repareren is en 'm om de haverklap moet starten terwijl je een gesprek aan het opnemen bent, keiharde regen op het aluminium dak van het gebouw waar de interviews plaats vinden." (Margot van den Berg, pers.comm.)

Voorbeeld 1.3: Bij het luisteren naar gesproken zinnen kunnen we uit de oogbewegingen van een proefpersoon afleiden, hoe die gesproken zinnen worden verwerkt. In een zgn. 'visual world'-taak krijgen luisteraars een zin te horen (bijv. "Bert zegt dat het konijn is gegroeid"), terwijl ze kijken naar meerdere afbeeldingen op het scherm (meestal 4, bijv. een schelp, pauw, zaag, en wortel). Luisteraars blijken vooral te kijken naar de afbeelding die geassocieerd is aan het woord dat ze op dat moment mentaal verwerken: als ze het woord konijn verwerken, dan kijken ze naar de wortel (exacter gezegd: ze kijken vaker en langer naar de wortel dan naar de andere afbeeldingen). Met een zgn. 'eye tracker' kan worden vastgesteld naar welke positie van het scherm de proefpersoon kijkt (door observatie van de pupillen).

De onderzoeker kan zo dus observeren welk woord op welk moment mentaal verwerkt wordt (Koring et al., 2012). Dergelijk onderzoek kan het beste uitgevoerd worden in een laboratorium, met controle over achtergrondgeluiden, verlichting, en positie van de ogen t.o.v. computerscherm.

Laboratoriumonderzoek en veldonderzoek hebben beide voordelen en nadelen. Het grote voordeel van laboratoriumonderzoek is natuurlijk de mate waarin de onderzoeker allerlei externe zaken onder controle kan houden. In een laboratorium zal het experiment niet vaak verstoord worden door een startende motor of door een regenbui. Dit voordeel van laboratoriumonderzoek is echter ook een belangrijk nadeel, nl. dat het onderzoek plaatsvindt in een min of meer kunstmatige omgeving. Het is dan nog maar de vraag in hoeverre resultaten die onder kunstmatige omstandigheden verkregen zijn, ook zullen gelden in het leven van alledag buiten het laboratorium. Dit laatste is dan ook een punt in het voordeel van veldonderzoek: het onderzoek wordt verricht onder natuurlijke omstandigheden. Het nadeel van veldonderzoek is dan weer dat er in het veld kan van alles gebeuren wat de onderzoeksresultaten beïnvloedt, maar waar de onderzoeker geen controle over kan houden (zie het bovenstaande voorbeeld). De keuze die een onderzoeker maakt tussen beide typen experimenteel onderzoek wordt uiteraard sterk bepaald door de vraagstelling van het onderzoek. Sommige vraagstellingen laten zich beter in laboratoriumsituaties onderzoeken, terwijl andere beter in veldsituaties onderzocht kunnen worden (zoals bovenstaande voorbeelden illustreren).

1.6 Vooruitblik

Dit tekstboek bestaat uit drie delen. Deel I (hoofdstukken 1 tot en met 7) van dit tekstboek behandelt methoden van onderzoek, en geeft een toelichting bij allerlei termen en begrippen die van belang zijn bij het ontwerpen en opzetten van goed wetenschappelijk onderzoek.

In deel II (hoofdstukken 8 tot en met 12) van het tekstboek behandelen we de beschrijvende statistiek (Eng. 'descriptive statistics') en in deel III (hoofdstukken 13 tot en met 17) behandelen we de elementaire technieken uit de toetsende statistiek (Eng. 'inferential statistics'). Met deze laatste twee delen streven we drie doelen na.

Allereerst willen we dat je in staat bent om artikelen en andere verslagen waarin statistische verwerkings- en toetsingstechnieken zijn gebruikt, kritisch te beoordelen. Ten tweede willen we dat je dat je de noodzakelijke kennis en inzicht hebt in de belangrijkste statistische procedures. Ten derde willen we met deze

statistische delen bereiken dat je in staat bent om zelfstandig statistische bewerkingen uit te voeren voor je eigen onderzoek, bijvoorbeeld voor je stage of eindwerkstuk.

Deze drie doelen zijn geordend in volgorde van belangrijkheid. Wij menen dat een adequate en kritische interpretatie van statistische resultaten en de conclusies die daaraan verbonden kunnen worden van groot belang is voor alle studenten. Om die reden besteden we in dit tekstboek dan ook relatief veel aandacht (in deel I) aan de 'filosofie' of methodologie achter de besproken statistische technieken en analyses. Ook geven we aan hoe je de besproken statistische analyses zelf kunt uitvoeren in SPSS (een populair pakket voor statistische analyses) en in R (een wat moeilijker, maar ook krachtiger en veelzijdiger pakket, met stijgende populariteit). Beide statistische pakketten zijn geïnstalleerd in de computerleerzalen van de Faculteit Geesteswetenschappen. SPSS is beschikbaar via SurfSpot.nl voor een sterk gereduceerde prijs. R is vrijelijk beschikbaar via www.R-project.org. Meer achtergrond over het gebruik van R is te vinden via https://hugoquene.github.io/emlar2020/.

Chapter 2

Hypothese-toetsend onderzoek

2.1 Inleiding

Veel empirisch onderzoek heeft tot doel om verbanden vast te stellen tussen (vermeende) oorzaken en hun (vermeende) gevolgen. De onderzoeker wil weten of de ene variabele van invloed is op de andere. Het onderzoek toetst de hypothese dat er een verband is tussen de vermeende oorzaak en het vermeende gevolg (zie Tabel 2.1). De beste methode om zo'n causaal verband vast te stellen, en dus om de hypothese te toetsen, is het experiment. Een goed opgezet en goed uitgevoerd experiment is de 'gouden standaard' in veel wetenschappelijke disciplines, omdat het goede waarborgen biedt voor de validiteit van de conclusies (zie Hoofdstuk 5. Anders gezegd: de uitkomsten van een goed experiment vormen de sterkst mogelijke evidentie voor een verband tussen de onderzochte variabelen. Zoals besproken in Hoofdstuk 1 zijn er ook vele andere vormen van onderzoek, en kunnen hypotheses ook op andere wijze en volgens andere paradigmata onderzocht worden, maar we beperken ons hier tot experimenteel onderzoek.

Table 2.1: Mogelijke oorzaken en mogelijke gevolgen.

${\rm onderwerp}$	vermeende oorzaak	vermeend gevolg
handel	buitentemperatuur	aantal verkochte ijsjes
zorg	type behandeling	mate van herstel
onderwijs	lesmethode	prestatie in toets
taal	beginleeftijd van onderwijs	mate van taalbeheersing
onderwijs	klassegrootte	schoolprestatie algemeen
zorg	temperatuur	hoogte van malaria-gebieden
taal	leeftijd	spreeksnelheid

onderwerp	vermeende oorzaak	vermeend gevolg
zorg	ligtijd voedsel op grond	mate van bacteriële besmetting

In experimenteel onderzoek wordt het effect onderzocht van een door de onderzoeker gemanipuleerde variabele op een andere variabele. In de inleiding is al een voorbeeld gegeven van een experimenteel onderzoek. Een nieuwe lesmethode werd beproefd door leerlingen te verdelen over twee groepen. De ene groep kreeg les volgens een nieuwe methode, terwijl de andere groep het gebruikelijke onderwijs genoot. De onderzoeker hoopte en verwachtte dat zijn nieuwe lesmethode een gunstig effect zou hebben, d.w.z. dat het zou leiden tot betere prestaties.

In hypothese-toetsend onderzoek wordt nagegaan of de onderzochte variabelen inderdaad met elkaar samenhangen op de verwachte wijze. In deze definitie staan twee termen centraal: 'variabelen' en 'op de verwachte wijze'. Voordat we nader ingaan op experimenteel onderzoek zullen we deze termen nader beschouwen.

2.2 Variabelen

Wat is een variabele? Grofweg is een variabele een eigenschap van objecten of personen die kan variëren, en die dus verschillende waarden kan aannemen. Laten we twee eigenschappen van personen bekijken: het aantal broers en zussen, en het geslacht van de moeder van die persoon. De eerste eigenschap kan variëren tussen personen, en is dus een variabele (tussen personen). De tweede eigenschap kan niet variëren: als er een moeder is, dan is die altijd en per definitie van het vrouwelijke geslacht. De tweede eigenschap is dus niet een variabele, maar een constante eigenschap.

In onze wereld bestaat bijna alles in een variabele hoeveelheid of hoedanigheid of mate. Ook een eigenschap die lastig te definiëren is, zoals de populariteit van een persoon in een groep, kan een variabele vormen. We kunnen immers personen in een groep rangschikken van meer tot minder populair. Voorbeelden van variabelen zijn er te over:

- van *personen*: hun lengte, hun gewicht, schoenmaat, spreeksnelheid, aantal broers en zussen, aantal kinderen, politieke voorkeur, inkomen, geslacht, populariteit in een groep, enz.
- van *teksten*: het totaal aantal woorden ('tokens'), aantal verschillende woorden ('types'), aantal spelfouten, aantal zinnen, aantal leestekens, enz.
- van woorden: de gebruiksfrequentie, aantal lettergrepen, aantal klanken, grammaticale woordsoort, enz.

- van *objecten* zoals auto's, telefoons, enz.: het gewicht, aantal componenten, energieverbruik, kostprijs, enz.
- van *organisaties*: het aantal werknemers, postcode, omzet, aantal burgers of klanten of patiënten of leerlingen, aantal operaties of diploma's of transacties, rechtsvorm, enz.

2.3 Onafhankelijke en afhankelijke variabelen

In hypothese-toetsend onderzoek kennen we twee soorten variabelen: afhankelijke en de onafhankelijke variabele. De onafhankelijke variabele is dat wat het veronderstelde effect teweeg moet brengen. De onafhankelijke variabele is het aspect dat in een onderzoek door de onderzoeker gemanipuleerd wordt. In het voorbeeld waar een experiment uitgevoerd wordt om het effect van een nieuwe lesmethode te evalueren, vormt die lesmethode de onafhankelijke variabele. Wanneer de prestaties van de leerlingen die de nieuwe lesmethode gevolgd hebben vergeleken worden met de prestaties van leerlingen die alleen traditioneel schrijfonderwijs gevolgd hebben, dan neemt de onafhankelijke variabele twee waarden aan. Deze twee waarden (ook wel niveau's genoemd) van de onafhankelijke variabele kunnen we in dit voorbeeld benoemen als "experimenteel" en "controle", of als "nieuw" en "oud". We zouden de waarden van de onafhankelijke variabele ook kunnen uitdrukken als een getal, 1 resp. 0. Deze getallen hebben geen numerieke betekenis (we zouden de waarden ook 17 resp. 23 kunnen noemen), maar worden hier enkel gebruikt als willekeurige etiketten om verschillende groepen te onderscheiden. De gemanipuleerde variabele wordt 'onafhankelijk' genoemd omdat de gekozen (gemanipuleerde) waarden van deze variabele in een onderzoek niet afhankelijk zijn van iets anders: de onderzoeker is onafhankelijk in zijn of haar keuze van de gekozen waarden. Een onafhankelijke variabele wordt ook wel factor of soms predictor genoemd.

Het tweede type variabele is de afhankelijke variabele. De afhankelijke variabele is de variabele waarvoor we het veronderstelde effect verwachten. De onafhankelijke variabele veroorzaakt dus mogelijkerwijs een effect op de afhankelijke variabele, of: men veronderstelt dat de waarde van de afhankelijke variabele afhankelijk is van de waarde van de onafhankelijke variabele — vandaar hun benamingen. De afhankelijke variabele is dus datgene wat we meten of observeren. Een geobserveerde waarde van de afhankelijke variabele wordt ook wel responsie of score genoemd; ook de afhankelijke variabele zelf wordt vaak zo aangeduid. In het voorbeeld waar een experiment uitgevoerd wordt om het effect van een nieuwe lesmethode op de prestaties van leerlingen te evalueren, vormen die prestaties van de leerlingen de afhankelijke variabele. Andere voorbeelden zijn de spreeksnelheid, of de score op een vragenlijst, of het aantal malen dat een product verkocht wordt (zie Tabel 2.1). Kortom, in principe kan elke variabele als afhankelijke variabele gebruikt worden. Het is voornamelijk

de vraagstelling die bepaalt welke afhankelijke variabele gekozen wordt, en hoe deze gemeten wordt.

De onafhankelijke en afhankelijke variabelen dienen we overigens nadrukkelijk niet te interpreteren als 'oorzaak' resp. 'gevolg'. Het doel van het onderzoek is immers om overtuigend aan te tonen dât er een (causaal) verband bestaat tussen de onafhankelijke en de afhankelijke variabele. In Hoofdstuk 5 zullen we echter zien hoe complex dat is.

De onderzoeker varieert de onafhankelijke variabele en observeert of dit resulteert in verschillen in de afhankelijke variabele. Als de waarden van de afhankelijke variabele verschillen voor en na de manipulatie van de onafhankelijke variabele, dan nemen we aan dat dit een gevolg is van de manipulatie van de onafhankelijke variabele. Er is sprake van een relatie tussen beide variabelen. Als de waarde van de afhankelijke variabele niet verschilt onder invloed van de waarden van de onafhankelijke variabele, dan is er geen verband tussen beide variabelen.

Voorbeeld 2.1: (Quené et al., 2012) onderzochten of een glimlach of frons invloed heeft op hoe luisteraars gesproken woorden verwerken. De woorden werden door de computer uitgesproken (gesynthetiseerd) in verschillende fonetische varianten, en wel op zo'n manier dat die woorden klonken alsof ze neutraal, of met een glimlach, of met een frons waren uitgesproken. Luisteraars moesten de woorden zo snel mogelijk classificeren als 'positief' danwel 'negatief' (qua betekenis). In dit onderzoek vormt de fonetische variant (neutraal, glimlach, frons) de onafhankelijke variabele, en de snelheid waarmee de luisteraars oordelen vormt de afhankelijke variabele.

2.4 Falsificatie en nul-hypothese

Het doel van wetenschappelijk onderzoek is om te komen tot een coherente verzameling van "justified true beliefs" (Morton, 2003). Een wetenschappelijke overtuiging moet dus deugdelijk onderbouwd en gerechtvaardigd zijn (en coherent met andere overtuigingen). Hoe komen we tot zo'n goede onderbouwing en rechtvaardiging? Daarvoor moeten we eerst terug naar het zgn. inductieprobleem van (Hume, 1739). Hume constateerde dat het logisch onmogelijk is om een bewering te generaliseren van een aantal specifieke gevallen (de waarnemingen in een onderzoek) naar een algemene regel (alle mogelijke waarnemingen in het universum).

Het probleem met deze generalisatie of inductie zullen we illustreren met de overtuiging 'alle zwanen zijn wit'. Als ik 10 zwanen heb gezien die allemaal wit zijn, dan zou ik dat kunnen beschouwen als een onderbouwing voor deze overtuiging. Deze generalisatie zou echter ook onterecht kunnen zijn: misschien bestaan er ook niet-witte zwanen, al heb ik die niet gezien. Meer algemeen: de inductie van specifieke waarnemingen naar een generalisatie houdt altijd een risico in, en kan niet gedaan worden "met behoud van waarheid". Er zit dus altijd een logische 'sprong' in, waardoor de generalisatie niet zonder risico is. Een regel die wel opgaat voor alle waargenomen specifieke gevallen ('alle zwanen zijn wit') hoeft daarmee nog niet een algemene regel te zijn. Hetzelfde inductieprobleem blijft bestaan als ik 100 of 1000 witte zwanen heb gezien. Maar wat als ik één zwarte zwaan heb gezien? Dan weet ik meteen, met zekerheid, dat de overtuiging dat alle zwanen wit zijn, niet waar is. Dit principe gebruiken we ook in wetenschappelijk onderzoek.

Laten we terugkeren naar ons eerdere voorbeeld waarin we hebben verondersteld dat een nieuwe lesmethode beter is dan een oude lesmethode; deze overtuiging noemen we H1. Laten we deze redenering nu eens omdraaien, en ons baseren op de complementaire overtuiging¹ dat de nieuwe methode niet beter is dan de oude; deze overtuiging noemen we de nul-hypothese of H0. Deze overtuiging H0 'alle methoden hebben gelijk effect' is analoog aan de overtuiging 'alle zwanen zijn wit' uit het voorbeeld in de vorige alinea. Hoe moeten we nu toetsen of de overtuiging of hypothese H0 waar is? Laten we daarvoor een representatieve steekproef van leerlingen trekken (zie Hoofdstuk 7), en laten we de leerlingen volgens het toeval toewijzen aan de nieuwe of oude lesmethode (waarden van onafhankelijke variabele); we observeren vervolgens alle prestaties (afhankelijke variabele) van alle deelnemende leerlingen, volgens hetzelfde protocol voor alle gevallen. Vooralsnog veronderstellen we dat H0 waar is. We verwachten dus ook geen verschil tussen de prestaties van de verschillende groepen leerlingen. Als de leerlingen van de nieuwe methode desalniettemin veel beter blijken te presteren dan de leerlingen van de oude methode, dan vormt dat waargenomen verschil de figuurlijke zwarte zwaan: het gevonden verschil (dat in tegenspraak is met H0) maakt het onwaarschijnlijk dat H0 waar is (mits het onderzoek valide was; meer daarover in het volgende hoofdstuk). Omdat H0 en H1 elkaar uitsluiten, is het dan dus ook erg waarschijnlijk dat H1 wèl waar is. En omdat we onze onderbouwing baseerden op H0 en niet op H1, kunnen sceptici ons niet van partijdigheid beschuldigen: we probeerden immers juist aan te tonen dat er géén verschil was tussen de prestaties van de leerlingen uit de twee groepen.

Deze methode wordt *falsificatie* genoemd, omdat we kennis verwerven door hypothesen te verwerpen (falsifiëren) en niet door hypothesen te aanvaarden (verifiëren). Deze methodologie is ontwikkeld door de wetenschapsfilosoof Karl Popper (Popper, 1935, 1959, 1963). De falsificatie-methode heeft interessante overeenkomsten met de evolutietheorie. Door variatie tussen de individuen kun-

 $^{^1\}mathrm{Twee}$ beweringen zijn complementair als ze elkaar wederzijds uitsluiten, zoals H1 en H0 in dit voorbeeld

nen sommigen zich succesvol voortplanten, terwijl veel anderen voortijdig sterven en/of zich niet voortplanten. Op analoge wijze kunnen sommige tentatieve beweringen niet weerlegd worden, en kunnen deze dus 'overleven' en 'zich voortplanten', terwijl veel andere beweringen weerlegd worden en dus 'sterven'. In de woorden van (Popper, 1963, p.51):

"... to explain (the world) ... as far as possible, with the help of laws and explanatory theories ... there is no more rational procedure than the method of trial and error — of conjecture and refutation: of boldly proposing theories; of trying our best to show that these are erroneous; and of accepting them tentatively if our critical efforts are unsuccessful."

Een goede wetenschappelijke bewering of theorie dient dus falsifieerbaar of weerlegbaar of toetsbaar te zijn (Popper, 1963), d.w.z. het moet mogelijk zijn om de onjuistheid van die bewering of theorie aan te tonen. De wetenschappelijke onderbouwing en daarmee de plausibiliteit van een toetsbare bewering neemt toe, naarmate die bewering vaker en onder meer wisselende omstandigheden bestand is gebleken tegen falsificatie. 'Het klimaat wordt warmer' is een goed voorbeeld van een bewering die steeds beter bestand blijkt te zijn tegen falsificatie, en die daarmee steeds sterker wordt.

Voorbeeld 2.2: 'Alle zwanen zijn wit' en 'de gemiddelde temperatuur van de aarde stijgt sinds 1900' zijn falsifieerbare, en daarom wetenschappelijk bruikbare beweringen. Maar hoe zit dat met de volgende beweringen?

- a. Goud lost op in water.
- b. Zout lost op in water.
- c. Vrouwen praten meer dan mannen.
- d. De muziek van Coldplay is beter dan die van U2.
- e. De muziek van Coldplay verkoopt beter dan die van U2.
- f. Als een patiënt een duiding van de psychoanalyticus afwijst, dan is dat het gevolg van weerstand omdat de duiding van de psychoanalyticus juist is.
- g. De stijging van de gemiddelde temperatuur van de aarde is het gevolg van menselijke activiteiten.

2.5 De empirische cyclus

In het voorafgaande hebben we op een vrij globale manier kennis gemaakt met experimenteel onderzoek. In deze paragraaf beschrijven we het verloop van experimenteel onderzoek meer systematisch. Er zijn in de loop der tijd verschillende schema's opgesteld waarin onderzoek in fasen beschreven wordt. De bekendste van deze schema's is waarschijnlijk wel de empirische cyclus van (De Groot, 1961).

In de empirische cyclus worden vijf onderzoeksfasen onderscheiden: de observatiefase, de inductiefase, de deductiefase, de toetsingsfase en de evaluatiefase. In de laatste fase worden tekortkomingen en alternatieve interpretaties geformuleerd. Dit leidt weer tot nieuw onderzoek, waarin opnieuw de serie fasen kan worden doorlopen (vandaar 'cyclus'). Deze vijf onderzoeksfasen zullen wij één voor één behandelen.

2.5.1 observatie

In deze fase construeert de onderzoeker een probleem. Dat wil zeggen dat de onderzoeker een idee vorm over de mogelijke relaties tussen verschillende (theoretische) concepten of constructen. Deze veronderstellingen worden later uitgewerkt tot meer algemene hypothesen. Veronderstellingen kunnen op duizenden manieren tot stand komen — maar vereisen altijd nieuwsgierigheid van de onderzoeker. De onderzoeker kan een vreemd fenomeen opmerken dat verklaard moet worden, by het fenomeen dat het vermogen om absolute toonhoogte te horen ("absoluut gehoor") veel vaker voorkomt bij Chinezen dan bij Amerikanen (Deutsch, 2006). Ook het systematisch doorzoeken van wetenschappelijke publicaties kan leiden tot veronderstellingen. Soms blijkt dan dat de resultaten van verschillende onderzoeken elkaar tegenspreken, of dat er een duidelijke lacune zit in onze kennis.

Veronderstellingen kunnen ook gebaseerd zijn op case-studies: onderzoeken waarbij één of enkele gevallen intensief bestudeerd en extensief beschreven worden. Zo ontwikkelde Piaget zijn theorie over de verstandelijke ontwikkeling van kinderen op basis van observaties van zijn eigen kinderen in de tijd dat hij werkloos was. Deze observaties vormden later, toen Piaget zijn eigen laboratorium had, aanleiding voor vele experimenten op basis waarvan hij zijn theoretische inzichten kon verdiepen en verifiëren.

Het is belangrijk om te beseffen dat puur onbevangen, objectieve waarneming niet mogelijk is. Waarnemingen zijn altijd min of meer theorie-geladen of kennis-geladen. Als we niet weten waarop we moeten letten, kunnen we ook niet goed waarnemen. Zo kunnen wolken-experts veel meer typen van bewolking onderscheiden en interpreteren dan leken. Voordat er observaties gedaan worden en feiten worden geanalyseerd, is het dus verstandig om eerst een expliciet theoretisch kader aan te brengen, ook al is dit nog rudimentair.

Een onderzoeker komt tot veronderstellingen naar aanleiding van opmerkelijke verschijnselen, case-studies, literatuurstudie, e.d. Er zijn echter geen methodologische richtlijnen over hoe dit proces zou moeten verlopen: het is een creatief proces.

2.5.2 inductie

In de inductiefase wordt de in de observatiefase geopperde veronderstelling gegeneraliseerd. Op grond van specifieke observaties wordt nu een hypothese geopperd waarvan de onderzoeker vermoedt dat die algemeen geldig is. (**Inductie** is de logische stap waarbij een algemene bewering of hypothese wordt afgeleid uit specifieke gevallen: mijn kinderen (hebben) leren praten \rightarrow alle kinderen (kunnen) leren praten.)

Zo kan een onderzoeker uit de observatie dat de vrouwen in zijn/haar omgeving meer praten dan de mannen (meer minuten per etmaal, en meer woorden per etmaal), een algemene hypothese afleiden: H1: vrouwen praten meer dan mannen (zie Voorbeeld 2.2); deze hypothese kan nader ingeperkt worden in tijd en plaats.

De hypothese moet tevens een duidelijk omschreven empirische inhoud hebben, d.w.z. het type of de klasse van observaties moet goed omschreven zijn. Gaat het over alle vrouwen en mannen? Of alleen sprekers van het Nederlands? En hoe zit het met meertalige sprekers? En met kinderen die hun taal nog aan het leren zijn? Die duidelijk omschreven inhoud is nodig om de hypothese te kunnen toetsen (zie subsectie Toetsing hieronder, en zie Hoofdstuk ??).

Tenslotte moet een hypothese ook logisch coherent zijn, d.w.z. de hypothese moet aansluiten bij andere theorieën of hypothesen. Als een hypothese niet logisch coherent is, dan kan zij per definitie niet eenduidig aan de empirie gerelateerd worden, en is zij dus niet goed toetsbaar. Hieruit volgt dat een hypothese niet multi-interpretabel mag zijn: een hypothese moet op zichzelf één en niet meer dan één uitkomst van een experiment voorspellen.

In het algemeen worden drie typen hypothesen onderscheiden (De Groot, 1961):

• Universeel-deterministische hypothesen.

Deze hebben als algemene vorm: alle A's zijn B's. Bijvoorbeeld: alle zwanen zijn wit, alle (volwassen) mensen kunnen spreken. Als een onderzoeker voor één A kan aantonen dat deze niet B is, dan is de hypothese in beginsel gefalsifieerd. Een universeel deterministische hypothese kan nooit geverifieerd worden; een onderzoeker kan alleen een uitspraak doen over de gevallen die hij geobserveerd, dan wel gemeten heeft. Bij een oneindige verzameling, zoals: alle vogels, of alle mensen, of alle kachels, kan dit tot problemen leiden. De onderzoeker weet niet of er misschien één enkel geval bestaat waarin geldt: A is niet B; er is één vogel die niet kan vliegen, et cetera. Over deze andere gevallen kan dus geen uitspraak gedaan worden, waardoor de universele geldigheid van de hypothese nooit volledig 'bewezen' kan worden.

• Deterministische existentiehypothesen.

Deze hebben als algemene vorm: er is tenminste één A die B is. Bijvoorbeeld: er is tenminste één zwaan die wit is, er is tenminste één mens

die kan praten, er is tenminste één kachel die warmte geeft. Als een onderzoeker kan aantonen dat er één A is die B is, dan is de hypothese geverifieerd. Deterministische existentiehypothesen kunnen echter nooit gefalsifieerd worden. Daarvoor zou het nodig zijn om van een oneindige verzameling alle eenheden of individuen te onderzoeken op het al dan niet B zijn, en dat is door de oneindigheid van de verzameling nu juist uitgesloten. Hieruit blijkt tegelijk dat dit type hypothesen geen algemene uitspraken doen, en dat het wetenschappelijk belang ervan niet zo duidelijk is. Je kunt het ook zo zeggen: voor elk specifiek geval A doet een dergelijke hypothese helemaal geen duidelijke voorspelling; een gegeven A zou de gezochte B kunnen zijn, maar dat hoeft helemaal niet. In deze zin voldoet een deterministische existentiehypothese dan ook niet aan ons criterium van falsificatie.

• Probabilistische hypothesen.

Deze hebben als algemene vorm: er zijn relatief meer A's die B zijn, dan niet-A's die B zijn. In de gedragswetenschappen (inclusief taal en communicatie) is dit verreweg het meest voorkomende type hypothese. Bijvoorbeeld: er zijn relatief meer vrouwen die veelpratend zijn dan mannen die veelpratend zijn. Of: er zijn relatief meer hoog-presterende leerlingen bij de nieuwe methode dan bij de oude methode. Of: versprekingen treden relatief vaker op bij het begin dan bij het einde van een woord. Daarmee wordt nog niet aangegeven dat alle vrouwen meer praten dan alle mannen, en evenmin wordt aangegeven dat alle leerlingen met de nieuwe methode beter presteren dan alle leerlingen van de oude methode.

2.5.3 deductie

In deze fase van de empirische cyclus worden specifieke voorspellingen afgeleid uit de algemeen geformuleerde hypothese die is opgezet in de inductiefase. (**Deductie** is de logische stap waarbij een specifieke bewering of voorspelling wordt afgeleid uit een meer algemene bewering: alle kinderen leren praten \rightarrow mijn kinderen (zullen) leren praten.)

Laten we veronderstellen (H1) dat "vrouwen meer praten dan mannen". Uit deze hypothese doen we in deze fase specifieke voorspellingen voor specifieke steekproeven. Wanneer we bijvoorbeeld 40 vrouwelijke en 40 mannelijke docenten Nederlands zouden interviewen, zonder tijdsbeperking, dan luidt de voorspelling op grond van deze H1 dat de vrouwelijke docenten in deze steekproef meer zullen zeggen dan de mannelijke docenten in de steekproef (en dus ook, dat ze een groter aantal lettergrepen zullen spreken in het interview).

Zoals hierboven uitgelegd (§2.4), wordt in het meeste wetenschappelijk onderzoek echter niet de H1 getoetst, maar de logische tegenhanger daarvan, die met H0 wordt aangeduid. Voor de toetsing (in de volgende fase van de empirische cyclus) is het dus gebruikelijk om voorspellingen te toetsen die zijn afgeleid uit

de H0 (!), bijvoorbeeld "vrouwen en mannen produceren even veel lettergrepen in een vergelijkbaar interview".

In de praktijk worden de termen 'hypothese' en 'voorspelling' vaak door elkaar gebruikt, en spreken we vaak over het toetsen van hypothesen. Volgens bovenstaande terminologie toetsen we echter niet de hypothesen, maar leiden we uit de hypothesen voorspellingen af (via deductie), en toetsen we daarna die voorspellingen aan de data.

2.5.4 toetsing

In deze fase verzamelen we empirische observaties en vergelijken we die met de uitgewerkte voorspellingen "onder H0", d.w.z. de voorspellingen als H0 waar zou zijn. In Hoofdstuk ?? zullen we nader ingaan op deze toetsing. Hier introduceren we alleen het algemene principe om nulhypotheses te toetsen. (Naast het hier beschreven conventionele "frequentistische" principe kunnen we ook hypotheses toetsen of vergelijken op een nieuwere "Bayesiaanse" wijze; we bespreken die in §??).

Als de observaties buitengewoon onwaarschijnlijk zijn onder H0, dan zijn er twee logische mogelijkheden. (i) De observaties deugen niet, we hebben fout geobserveerd. Maar als de onderzoeker zijn werk goed gecontroleerd heeft en zichzelf serieus neemt, dan is dat niet waarschijnlijk. (ii) De voorspelling was onjuist, H0 is wellicht niet juist, en moet dus verworpen worden, ten gunste van H1.

In ons voorbeeld hierboven (in de voorgaande subsectie over deductie) hebben we uit H0 (!) de voorspelling afgeleid dat in een steekproef van 40 mannelijke en 40 vrouwelijke docenten, de leden van de twee groepen even veel lettergrepen gebruiken in een gestandaardiseerd interview. We vinden echter dat de mannen meer lettergrepen gebruiken (gemiddeld 4210 lettergrepen) dan de vrouwen (gemiddeld 3926 lettergrepen) (Quené, 2008, p.1112). Hoe waarschijnlijk is dit verschil als de observaties kloppen, en als H0 waar zou zijn? Die kans is zodanig klein dat de onderzoeker H0 verwerpt (zie optie (ii) hierboven), en concludeert dat vrouwen en mannen niet even veel praten, althans in dit onderzoek.

In het bovenstaande voorbeeld worden in de toetsingsfase twee groepen vergeleken, hier mannen en vrouwen. Eén van die twee groepen is vaak een neutrale groep of controle-groep, zoals we al zagen in het eerdere voorbeeld van de nieuwe en oude lesmethode. Waarom maken onderzoekers vaak gebruik van zo'n controle-groep? Stel je eens voor dat we alleen de nieuwe-methode-groep zouden onderzoeken. In de toetsingsfase meten we de prestaties van de leerlingen, en die is ruim voldoende: gemiddeld een 7. Is de nieuwe methode dan een succes? Misschien niet: als de leerlingen volgens de oude methode een 8 zouden behalen, dan zou de nieuwe methode eigenlijk slechter zijn, en zouden we de nieuwe methode beter niet kunnen invoeren. Om daar een zinnige conclusie over te kunnen trekken, is het essentieel om de nieuwe en

oude methoden onderling te vergelijken. Vandaar dat in veel onderzoek een neutrale conditie, nul-conditie, controle-groep, placebo-behandeling, o.i.d, is opgenomen.

Hoe kunnen we nu de kans bepalen op de gevonden observaties, als H0 waar zou zijn? Dat is vaak wat complex, maar we illustreren het hier met een eenvoudig voorbeeld. We gooien kop of munt met een munt. We veronderstellen (H0): de munt is eerlijk, de kans op kop is 1/2 per worp. We gooien $10\times$ met dezelfde munt, en wonderbaarlijk genoeg observeren we alle $10\times$ een kop als uitkomst. De kans dat dit gebeurt, als H0 waar is, is $P=(1/2)^{10}=1/1024$. Als H0 waar zou zijn is deze uitkomst uiterst onwaarschijnlijk (al is de uitkomst niet onmogelijk, want P>0), en daarom verwerpen we H0. We concluderen dus dat de munt waarschijnlijk niet eerlijk is.

Dit roept een belangrijk punt op: wanneer is een uitkomst zò onwaarschijnlijk dat we H0 verwerpen? Welk criterium hanteren we voor de kans op de gevonden observaties als H0 waar zou zijn? Dit is de vraag naar het significantieniveau, d.w.z. het kansniveau waarbij we besluiten de H0 te verwerpen. Dit wordt aangeduid met symbool α . Als in een onderzoek een significantieniveau gehanteerd wordt van $\alpha = 0.05$, dan wordt de H0 verworpen als de kans om deze resultaten te vinden als H0 waar is², kleiner is dan 5%. De uitkomst is dan zo onwaarschijnlijk, dat we ervoor kiezen om H0 te verwerpen (optie (ii) hierboven), d.w.z. we concluderen dat H0 waarschijnlijk niet waar is.

Als we H0 aldus verwerpen, dan lopen we wel een kleine kans dat we eigenlijk met optie (i) te maken hebben: H0 is waar, maar de observaties wijken toevallig sterk af van de voorspelling op basis van H0, en H0 wordt dan ten onrechte verworpen. Dit wordt een Type-I-fout genoemd. Deze fout is vergelijkbaar met de onterechte veroordeling van een onschuldig persoon, of met de onjuiste classificatie van een onschuldig email-bericht als 'spam'. Meestal wordt $\alpha=.05$ gebruikt, maar ook andere significantie-niveau's zijn mogelijk en soms verstandiger.

Merk op dat de significantie betrekking heeft op de kans om de gevonden extreme gegevens (of meer extreme gegevens) te vinden, indien H0 waar is:

significantie =
$$P(\text{data}|\text{H0})$$

De significantie is dus niet de kans dat H0 waar is als je deze gegevens gevonden hebt, P(H0|data), hoewel we deze denkfout vaak tegenkomen.

Bij iedere vorm van toetsing is er ook een kans op de omgekeerde fout, nl. dat we H0 ten onrechte niet verwerpen. Dat wordt een Type-II-fout genoemd: H0 is eigenlijk niet waar (dus H1 is waar) maar H0 wordt desalniettemin niet verworpen. Deze fout is vergelijkbaar met de onterechte vrijspraak van een schuldig persoon, of met het onterecht goedkeuren van een *spam* email-bericht (zie Tabel 2.2).

 $^{^2}$ Vollediger: Als de kans om deze resultaten te vinden, of resultaten die nog meer verschillen van de door H0 voorspelde resultaten, kleiner is dan 5%, dan wordt H0 verworpen.

Table 2.2: Mogelijke uitkomsten van beslissingsprocedure.

werkelijkheid		
	H0 verworpen	H0 niet verworpen
H0 is waar (H1 onwaar)	Type-I-fout (α)	correct
H0 is onwaar (H1 waar)	correct	Type-II-fout (β)
	verdachte veroordeeld	verdachte vrijgesproken
verdachte is onschuldig (H0)	Type-I-fout	correct
verdachte is schuldig	correct	Type-II-fout
	bericht weggegooid	bericht doorgestuurd
bericht is OK (H0)	Type-I-fout	correct
bericht is spam	correct	Type-II-fout

Als we het significantieniveau hoger instellen, bv. $\alpha=.20$, dan is de kans om de H0 te verwerpen dus ook veel groter. In de toetsingsfase verwerpen we immers H0 al indien de kans op deze gegevens (of meer extreme gegevens) kleiner is dan 20%. Een uitkomst van $8\times$ kop in 10 worpen is dan al voldoende om H0 te verwerpen (d.i. om de munt als onzuiver te beoordelen). Er zijn dus meer uitkomsten mogelijk waarbij we H0 zullen verwerpen. Dat hogere significantieniveau houdt dus een groter risico in op een Type-I-fout, en tegelijk een kleiner risico op een Type-II-fout. De afweging tussen de twee typen fouten hangt af van de precieze omstandigheden van het onderzoek, en van de consequenties van de twee typen van fouten. Welke fout is ernstiger: een goed bericht weggooien, of een spambericht doorsturen? De kans op een Type-I-fout (significantieniveau) heeft een onderzoeker in eigen hand. De kans op een Type-II-fout is afhankelijk van drie factoren, en is lastig te bepalen. We zullen dat nader bespreken in Hoofdstuk ??.

2.5.5 evaluatie

Aan het einde van het onderzoek moet de onderzoeker de onderzoeksresultaten evalueren: wat is het nu allemaal waard? Het draait hier niet slechts om de vraag of de onderzoeksresultaten al dan niet ten gunste van de getoetste theorie uitgevallen zijn. Het gaat om een kritische beschouwing van de wijze waarop de data zijn verzameld, de denkstappen, de operationalisatie, de mogelijke alternatieve verklaringen, alsmede de consequenties van de resultaten. De resultaten moeten in een bredere context geplaatst en besproken worden. Wellicht leiden de conclusies ook tot aanbevelingen, bijvoorbeeld voor klinische toepassingen of voor de onderwijspraktijk. Dit is ook het moment om suggesties voor ander of vervolgonderzoek te doen.

In deze fase gaat het primair om de interpretatie van de resultaten, waarbij de onderzoeker als interpretator een belangrijke en persoonlijke rol speelt. Verschillende onderzoekers kunnen dezelfde uitkomsten geheel anders interpreteren. En

soms zijn de resultaten in tegenspraak met wat was voorspeld of gewenst.

2.6 Keuzemomenten

Onderzoek bestaat uit een reeks van keuze-momenten: van de inspirerende observaties in de eerste fase, via de operationele beslissingen in de uitvoering van het onderzoek, tot de interpretatie van de resultaten in de laatste fase. Zelden zal een onderzoeker in staat zijn om altijd de beste keuze te maken, maar hij of zij moet er voor waken dat ergens een slechte keuze gemaakt zou worden. Het hele onderzoek is net zo sterk als de zwakste schakel: de waarde van het hele onderzoek hangt af van de slechtste keuze in de reeks van keuzes. Ter illustratie geven we een beeld van de keuzes die een onderzoeker moet maken tijdens de gehele empirische cyclus.

De eerste keuze die gemaakt moet worden betreft de probleemstelling. Relevante vragen die de onderzoeker op dit moment moet beantwoorden zijn: hoe herken ik een bepaalde onderzoeksvraag, is onderzoek hier het aangewezen middel, is dit idee onderzoekbaar? De beantwoording van dergelijke vragen is van allerlei factoren afhankelijk, zoals mens- en maatschappijvisie, wensen van de opdrachtgever, financiële en praktische mogelijkheden, enz.

De onderzoeksvraag moet wel te beantwoorden zijn met de beschikbare methoden en middelen. Maar binnen die beperking kan de onderzoeksvraag elk aspect van de werkelijkheid betreffen, ongeacht of dit aspect nu irrelevant of belangrijk wordt geacht. Er zijn vele voorbeelden van onderzoek dat aanvankelijk werd afgedaan als irrelevant, maar dat desondanks wel degelijk van wetenschappelijke waarde bleek te zijn, bijvoorbeeld een studie over de vraag "is 'Huh?' a universal word?" (Dingemanse et al., 2013) (Voorbeeld 1.1). Ook bleken ideeën die eerst als onjuist werden afgedaan later toch te kloppen met de werkelijkheid. Zo beweerde Galilei, zogenaamd 'ten onrechte', dat de aarde om de zon draaide. Kortom, onderzoeksvragen moeten niet te snel verworpen worden omdat zij 'nutteloos', een 'open deur', 'irrelevant' of 'triviaal' zouden zijn.

Als de onderzoeker besluit om verder te gaan met het onderzoek, dan is de volgende stap doorgaans literatuurstudie. In de meeste handboeken wordt aanbevolen veel te lezen, maar hoe wordt de literatuur verzameld? Uiteraard moet de relevante onderzoeksliteratuur over het probleemgebied doorgenomen worden. Gelukkig bestaan er tegenwoordig allerlei hulpmiddelen om relevante wetenschappelijke publicaties te vinden. Het is raadzaam om daarvoor de aanwijzingen en zgn. "libguides" te bestuderen die de Universiteitsbibliotheek aanbiedt (zie http://www.uu.nl/bibliotheek, en http://libguides.library.uu.nl). Ook de gids van (Sanders, 2011) bevelen we ten zeerste aan: de gids bevat vele uiterst nuttige aanwijzingen over het opsporen van relevante onderzoeksliteratuur.

In de fase daarna doemen de eerste methodologische problemen op. De onderzoeker moet namelijk de probleemstelling exacter formuleren. Een belangrijke

afweging die hier gemaakt dient te worden is of de probleemstelling wel onderzoekbaar is (§2.4). Een vraag als "wat is het effect van beginleeftijd van leren op de taalvaardigheid in een vreemde taal?" is bijvoorbeeld niet zonder meer onderzoekbaar. Deze vraag moet nader gespecificeerd worden. Cruciale concepten moeten ge(her)definieerd worden: wat is de beginleeftijd van het leren van een vreemde taal? Wat is taalvaardigheid? Wat is een effect? En wat is eigenlijk een vreemde taal? Hoe definieer ik de populatie? De onderzoeker wordt geconfronteerd met allerlei vragen over definities en operationalisatie: Worden begrippen theoretisch of empirisch of pragmatisch gedefinieerd? Welke instrumenten worden gebruikt om de verschillende constructen te meten? Maar ook: hoe ingewikkeld moet het onderzoek worden? Kan het hele onderzoek dan wel tot een goed einde worden gebracht? Op welke wijze moeten de gegevens verzameld worden? Kunnen de gewenste gegevens wel verzameld worden, of zullen respondenten dergelijke vragen nooit (kunnen) beantwoorden? Is de voorgestelde manipulatie ethisch verantwoord? Wat is de afstand tussen het theoretische construct en de wijze waarop dat zal worden gemeten? Wanneer in deze fase iets fout gaat, dan heeft dat direct weerslag op de rest van het onderzoek.

Als er met succes een probleemstelling is geformuleerd en geoperationaliseerd, dan volgt een nadere literatuurverkenning. Dit tweede literatuuronderzoek is veel meer toegespitst op de inmiddels uitgewerkte onderzoeksvraag dan de eerder genoemde, brede literatuurverkenning. Op grond van eerdere publicaties kan de onderzoeker zijn of haar oorspronkelijke probleemstelling heroverwegen. Niet alleen moet de literatuur nu doorgenomen worden met het oog op inhoudelijk theoretische overwegingen, maar ook moet aandacht worden besteed aan voorbeelden van operationalisering van de kernbegrippen. Zijn deze begrippen wel goed geoperationaliseerd, en als er verschillende manieren van operationalisering zijn, wat is dan de ratio achter deze verschillen? En, kunnen de kernbegrippen zo geoperationaliseerd worden dat de afstand tussen het begripzoals-bedoeld en het begrip-zoals-bepaald (nog) kleiner is (§1.3)? De aanwijzingen hierboven voor het zoeken in wetenschappelijke literatuur zijn hier wederom van nut. De onderzoeker dient zich vervolgens (nogmaals) te beraden op het nut van het onderzoek. Afhankelijk van de probleemstelling moeten vragen gesteld worden als: draagt het onderzoek bij aan de kennis op een bepaald gebied, worden door het onderzoek oplossingen gecreëerd voor ervaren knelpunten of problemen, of draagt het onderzoek bij aan te creëren oplossingen? Voldoet de vraagstelling nog aan het oorspronkelijke probleem (of de oorspronkelijke vraagstelling) van de opdrachtgevers? Zijn er voldoende (technische, financiële, praktische) mogelijkheden om het onderzoek uit te voeren?

In de volgende stap moet worden gespecificeerd hoe de gegevens worden verzameld. Dit is een essentiële stap die van invloed is op de rest van het onderzoek; we wijden er daarom een apart hoofdstuk aan (Hoofdstuk 7). Waaruit bestaat de populatie: uit taalgebruikers? leerlingen? tweetalige babies? versprekingen van medeklinkers? zinnen? En hoe moet je een representatieve steekproef of steekproeven trekken uit deze populatie(s)? Hoe groot moet die steekproef dan zijn? Ook moet er in deze fase gekozen worden voor een analysemethode. Het

is zelfs aan te bevelen om in deze fase al een analyseplan te ontwerpen. Welke analyses zullen worden uitgevoerd, welke exploraties van de gegevens worden voorzien?

Met al deze keuzes zijn de voorbereidingen nog niet afgerond. Ook de instrumenten moeten worden gekozen: welke apparatuur, opname-gereedschap, vragenlijsten, enz., worden gebruikt om waarnemingen mee te doen? Bestaan er al geschikte instrumenten? Zo ja, zijn deze dan makkelijk toegankelijk en mogen zij gebruikt worden? Zo nee, dan moeten instrumenten ontwikkeld worden (§1.3). Maar in dat geval neemt de onderzoeker ook de taak op zich om deze instrumenten eerst te beproeven, om na te gaan of de gegevens die met deze instrumenten verkregen worden, voldoen aan de kwaliteitseisen die de onderzoeker zich gesteld heeft, of die in het algemeen aan de instrumenten in wetenschappelijk onderzoek gesteld mogen worden (in termen van betrouwbaarheid en validiteit, zie Hoofdstukken 5 en ??.

Pas nadat ook de instrumenten in gereedheid gebracht zijn begint het eigenlijke empirische onderzoek: de gekozen gegevens van de gekozen steekproef worden verzameld op de gekozen wijze met behulp van de gekozen instrumenten. Ook hierbij zijn er allerlei, vaak praktische problemen waar de onderzoeker tegenaan loopt. Een waar gebeurd voorbeeld: drie dagen nadat een onderzoeker zijn vragenlijst verstuurd had begon een poststaking die twee weken duurde. Helaas had de onderzoeker de respondenten ook twee weken de tijd gegeven om te reageren. Dus toen de poststaking voorbij was, was de inzendtermijn verlopen. Wat moest hij toen? Bij gebrek aan alternatieven besloot de onderzoeker alle 1020 respondenten telefonisch te benaderen met het verzoek de vragenlijst alsnog in te vullen en te retourneren.

Voor de onderzoeker die zich de moeite getroost heeft van te voren een analyseplan op te stellen breekt nu de tijd aan om te oogsten. Eindelijk kunnen de geplande analyses ook uitgevoerd worden. Helaas blijkt de werkelijkheid meestal veel weerbarstiger dan de onderzoeker van te voren had bedacht. Proefpersonen geven onverwachte responsies, of houden zich niet aan de instructies, veronderstelde verbanden blijken niet aanwezig, en onverwachte (en ongewenste) verbanden blijken in sterke mate aanwezig. In latere hoofdstukken zullen we dieper ingaan op analysemethoden en problemen daarbij.

Tenslotte moet de onderzoeker ook rapporteren over het onderzoek. Zonder (adequaat) onderzoeksverslag zijn de gegevens niet toegankelijk en had het onderzoek net zo goed niet uitgevoerd kunnen worden. Dit is een essentiële stap, waarbij onder meer de vraag gesteld dient te worden of het onderzoek op basis van de verslaglegging controleerbaar en repliceerbaar is. Meestal wordt van onderzoeksactiviteiten verslag gedaan in de vorm van een werkstuk, een onderzoeksrapport of een artikel in een wetenschappelijk tijdschrift. Soms wordt van een onderzoek ook verslag gedaan in een meer populair tijdschrift, dat voor een bredere doelgroep bedoeld is dan alleen collega-onderzoekers.

Tot zover een beknopt overzicht van de keuzen die onderzoekers moeten maken

tijdens hun onderzoek. Ieder empirisch onderzoek bestaat uit een aaneenschakeling van problemen, keuzes en beslissingen. De belangrijkste keuzes zijn al gemaakt voordat de onderzoeker begint met gegevens verzamelen.

Chapter 3

Integriteit

3.1 Inleiding

Wetenschappelijk onderzoek heeft de mensheid onmetelijk grote baten opgeleverd, zoals betrouwbare computer-technologie, goede medische zorg, en begrip van andere talen en culturen. Al deze verworvenheden zijn gebaseerd op wetenschappelijk onderbouwde kennis. Onderzoekers produceren kennis, en de vooruitgang en groei van kennis ontstaat omdat onderzoekers voortbouwen op de ervaringen en inzichten van hun voorgangers.

Voorbeeld 3.1: Sir Isaac Newton schreef over zijn wetenschappelijke werk: "If I have seen further it is by standing on (the) shoulders of Giants" (in een brief aan Robert Hooke d.d. 5 Feb 1676¹). Dit beeld is te herleiden tot de middeleeuwse geleerde Bernard de Chartres: "...nos esse quasi nanos gigantum umeris insidentes" (dat wij zijn als dwergen gezeten op de schouders van reuzen) in vergelijking tot geleerden uit de Oudheid. Newton's uitspraak is ook het motto van Google Scholar (scholar.google.com), een zoekmachine voor wetenschappelijke publicaties.

In dit hoofdstuk bespreken we de ethische en morele aspecten van wetenschappelijk onderzoek. Wetenschap is mensenwerk, en het vereist

 $^{^1{\}rm Een}$ kopie van de brief is te lezen via http://digitallibrary.hsp.org/index.php/Detail/Object/Show/object_id/9285; voor achtergrond-informatie zie http://www.bbc.co.uk/worldservice/learningenglish/movingwords/shortlist/newton.shtml.

een goed ontwikkeld beoordelingsvermogen van de onderzoekers. De Nederlandse Gedragscode Wetenschappelijke Integriteit (VSNU, 2018) (http://www.vsnu.nl/wetenschappelijke_integriteit) beschrijft hoe wetenschappelijke onderzoekers (en studenten) zich dienen te gedragen. Volgens deze gedragscode dient wetenschappelijk onderzoek en onderwijs gebaseerd te zijn op de volgende principes:

- · eerlijkheid,
- zorgvuldigheid,
- transparantie,
- onafhankelijkheid, en
- verantwoordelijkheid

In de volgende paragrafen zullen we nagaan hoe we volgens deze principes dienen te handelen bij de verschillende fasen van wetenschappelijk onderzoek. Hoe moeten we op eerlijke, zorgvuldige, transparante, onafhankelijke en verantwoordelijke wijze een onderzoek opzetten, de gegevens verzamelen en verwerken, en verslag doen van het onderzoek? We moeten daarover nadenken nog voor het onderzoek begint, en daarom bespreken we deze onderwerpen aan het begin van deze syllabus, hoewel we ook vooruit zullen wijzen naar termen en begrippen die worden uitgewerkt in volgende hoofdstukken.

3.2 Ontwerp

Weliswaar levert wetenschappelijk onderzoek ons onmetelijk grote baten op, maar daar staan ook aanzienlijke kosten tegenover. De directe kosten zijn o.a. de inrichting en onderhoud van laboratoria, apparatuur en technische ondersteuning, maar ook de loonkosten van de onderzoekers, vergoedingen voor informanten en proefpersonen, reiskosten voor toegang tot bibliotheken, archieven, informanten en proefpersonen, e.d. Deze directe kosten worden doorgaans gefinancierd uit publieke middelen van universiteiten en andere wetenschappelijke instellingen. Daarnaast zijn er indirecte kosten, die voor een deel ten laste komen van de informanten en proefpersonen: tijd en moeite die niet aan iets anders besteed kan worden, verlies van privacy, en mogelijke andere risico's die we nog niet kennen. Een vaak vergeten kostenpost is het verlies van onbevangenheid: een proefpersoon die heeft meegedaan aan een experiment leert daarvan, en reageert daarna misschien anders in een volgend experiment (zie §5.4, onder Geschiedenis). De resultaten uit zo'n volgend experiment zijn daardoor minder goed generaliseerbaar naar andere personen die een andere geschiedenis hebben, en niet eerder aan een onderzoek hebben meegedaan.

3.2. ONTWERP 39

Gezien de grote kosten moet onderzoek zodanig zijn doordacht en ontworpen, dat de verwachte baten redelijkerwijs opwegen tegen de verwachte kosten (Rosenthal and Rosnow, 2008, Ch.3). Als de kans op valide conclusies uit een onderzoek erg klein is, dan is het beter om dat onderzoek niet uit te voeren, en zo de directe en indirecte kosten te besparen.

Voorbeeld 3.2: Stel dat we willen onderzoeken of tweetalige kinderen van 4 jaar oud een cognitief voordeel hebben boven eentalige leeftijdsgenoten. Op grond van eerder onderzoek verwachten we een verschil van tenminste 2 punten (op een 10-punts-schaal) tussen beide groepen (met "pooled standard deviation" $s_p = 4$, dus d = 0.5, zie \S ?? en \S ??).

We vergelijken twee groepen van elk n=4 kinderen. Zelfs als er inderdaad een verschil is van 2 punten tussen de twee groepen (dus als de onderzoekshypothese waar is), dan nog is er in dit onderzoek slechts 51% kans om een significant verschil te vinden: de power is slechts .51 (Hoofdstuk ??), omdat de twee groepen zo weinig proefpersonen bevatten. De vierjarige kinderen en hun ouders kunnen beter andere dingen doen (school, thuis, werk) dan meedoen aan dit onderzoek.

Als er echter n=30 kinderen in elk van de twee groepen zouden meedoen, en als er inderdaad een verschil is van 2 punten tussen de twee groepen (dus als de onderzoekshypothese waar is) dan zou de power .90 zijn. Met grotere groepen hebben we dus een veel betere kans om onze onderzoekshypothese te bevestigen. Dit uitgebreide ontwerp van het onderzoek zal meer kosten (voor de onderzoekers en de kinderen en hun ouders), maar levert vermoedelijk ook veel meer op: een valide conclusie met grote maatschappelijke impact.

Het ontwerp van een onderzoek (zie Hoofdstuk 6) moet zo efficiënt mogelijk zijn, en de onderzoeker moet daarover al in een vroeg stadium nadenken. De efficiëntie hangt ten eerste af van keuzes over hoe de onafhankelijke variabelen worden gevarieerd. Is er een aparte groep proefpersonen voor iedere conditie van de onafhankelijke variabele (condities zijn "between subjects", zoals in voorbeeld 3.2 hierboven? Bij een between-subjects ontwerp met twee groepen zijn er ca $n = (5.6/d)^2$ nodig in elke groep (Gelman and Hill, 2007) (zie §??). Of doen alle proefpersonen mee aan alle condities (condities zijn "within subjects")? Bij een within-subjects ontwerp met twee condities zijn er dan slechts $n = (2.8/d)^2$

proefpersonen nodig in elke conditie, en het onderzoek heeft dan dus minder directe en indirecte kosten voor veel minder proefpersonen. In het algemeen is het daarom beter om indien mogelijk, onafhankelijke variabelen te variëren binnen proefpersonen, en niet tussen proefpersonen. Toch is dat niet altijd mogelijk, ten eerste omdat individuele kenmerken nu eenmaal alleen verschillen tussen proefpersonen (denk aan: mannelijk/vrouwelijk geslacht, wel/niet meertalige jeugd, wel/niet afasie, enz.). Ten tweede moeten we terdege rekening houden met effecten van 'transfer' tussen condities, die de validiteit bedreigen (denk aan: ervaring, leren, vermoeidheid, rijping). We keren hierop terug in §5.3.

Meertaligheid en geslacht zijn kenmerken die alleen tussen personen kunnen variëren. Maar andere condities kunnen ook variëren binnen personen, bijvoorbeeld de dag waarop een cognitieve meting wordt afgenomen. Stel dat we een verschil verwachten van D=2 punten tussen cognitieve metingen afgenomen op maandag of op vrijdag (met s=4 en d=0.5, zie voorbeeld 3.2. Als we de dag van de meting variëren tussen proefpersonen, en dus aparte groepen maken voor de maandag-kinderen en de vrijdag-kinderen, dan zijn er $n=(5.6/0.5)^2=126$ kinderen nodig in iedere groep, dus N=252 kinderen in totaal. Als we de dag van de meting echter variëren binnen proefpersonen, en iedere proefpersoon dus observeren zowel op maandag als op vrijdag, dan zijn er in totaal slechts $N=(2.8/0.5)^2=32$ kinderen nodig. Met het within-subjects ontwerp hoeven we dus veel minder kinderen lastig te vallen met onze cognitieve meting. Wel moeten we terdege rekening houden met leereffecten tussen de eerste en de tweede meting, en daarvoor gepaste maatregelen treffen. We kunnen bijvoorbeeld niet meer dezelfde vragenlijsten afnemen in beide condities.

De efficiëntie van een onderzoek hangt ook af van de afhankelijke variabele, en met name van het meetniveau (Hoofdstuk ??), de nauwkeurigheid, en de betrouwbaarheid van de observaties (Hoofdstuk ??). Hoe lager het meetniveau, des te lager ook de efficiëntie van het onderzoek. En hoe lager de nauwkeurigheid, des te lager ook de efficiëntie van het onderzoek, en des te meer proefpersonen en observaties zijn er nodig om valide conclusies te kunnen trekken.

Stel dat we een verschil willen onderzoeken tussen twee condities binnen proefpersonen, en stel dat het verschil in werkelijkheid 2 punten bedraagt (met $s_D=4$ en d=0.5, zie voorbeeld 3.2). We kijken nu echter niet naar de richting en de grootte van het verschil, maar alleen naar de richting van het verschil tussen de twee observaties per proefpersoon: heeft die proefpersoon een positief of een negatief verschil tussen de eerste en de tweede conditie? Deze binomiale afhankelijke variabele bevat minder informatie dan de oorspronkelijke puntenscore (nl. alleen de richting, en niet de grootte van het verschil), en het onderzoek is daardoor dus minder efficiënt. We hebben daarom in dit specifieke voorbeeld niet 34 maar tenminste 59 proefpersonen nodig.

Onderzoekers zijn dus verantwoordelijk om de kosten en baten van hun onderzoek zorgvuldig en eerlijk af te wegen en te beoordelen, en zij dienen te beschikken over voldoende methodologische bagage om een goed onderzoekson-

twerp (design) te kiezen gezien het tijdsbestek, de mogelijk beschikbare proefpersonen, de meetinstrumenten, enz.

3.3 Proefpersonen en informanten

Wetenschappelijk onderzoek is mensenwerk: onderzoekers zijn ook mensen. Op het gebied van de geesteswetenschappen bestuderen die onderzoekers weer het gedrag en de geestelijke producten van (andere) mensen. Daarvoor gelden wetten, regels, richtlijnen en gedragscodes waaraan onderzoekers (en studenten!) zich dienen te houden, vanuit de eerder genoemde principes van zorgvuldigheid en verantwoordelijkheid. Het onderzoek zelf, en de verzamelde gegevens, mogen geen schade of groot verlies van privacy opleveren voor de deelnemers.

Voor geesteswetenschappelijk onderzoek zijn twee wetten relevant:

- Algemene Verordening Gegevensbescherming (AVG),
 zie https://autoriteitpersoonsgegevens.nl/nl/onderwerpen/avg-europese-privacywetgeving
- Wet Medisch-wetenschappelijk Onderzoek met mensen (WMO), zie http://www.wetten.nl

Het is verplicht om proefpersonen (of hun wettelijke vertegenwoordigers) te vragen om expliciete "informed consent". Dat houdt in dat de proefpersonen eerlijk geïnformeerd worden over het onderzoek, over de baten en kosten daarvan, en over hun beloning, en dat zij daarna (d.i. "informed") expliciet toestemmen in hun deelname ("consent"). Voorbeelden van informed consent (informatiebrieven en toestemmingsverklaringen) zijn te vinden op de website van de Facultaire Ethische Toetsingscommissie (FETC, hieronder nader besproken), via https://fetc-gw.wp.hum.uu.nl/.

Alle gegevens waaruit een individuele persoon te herleiden is, worden beschouwd als "persoonsgegevens", en deze persoonsgegevens mogen alleen worden verzameld en verwerkt conform de AVG. Het is raadzaam om de onderzoeksgegevens zo snel mogelijk los te koppelen van de persoonsgegevens, d.w.z. dat je de gegevens anonimiseert. De koppeling tussen persoonsgegevens en en onderzoeksgegevens (bijv. een lijst met namen van proefpersonen en hun bijbehorende anonieme persoonlijke code) is zelf weer vertrouwelijke informatie die je zorgvuldig moet bewaren en opslaan. Bewaar de persoonsgegevens niet langer dan nodig. De onderzoeksgegevens mag je alleen gebruiken voor het (wetenschappelijke) doel waarmee ze zijn verzameld. Zorg ook dat de proefpersonen niet herkenbaar zijn (gebruik anonieme codes) in verslagen en publicaties over het onderzoek.

Foto's en opnames van personen (audio, video, fysiologische gegevens, EEG) vallen onder het zgn. portretrecht. Foto's en andere identificerende

opnames worden dus als portretten beschouwd. Bij publicatie kan de afgebeelde/weergegeven persoon zich beroepen op het portretrecht, en een schadevergoeding eisen voor het letsel dat hem of haar door die publicatie wordt aangedaan. Als je een herkenbare opname zou willen publiceren, dan moet je dus vooraf expliciete toestemming daarvoor vragen van de opgenomen persoon of zijn wettelijke vertegenwoordiger (zie het bovengenoemde voorbeeld van "informed consent"). Dat geldt ook als je een fragment van zo'n opname laat zien of horen tijdens een conferentie of op een website.

In de wet WMO is vastgelegd dat onderzoek met mensen eerst moet worden goedgekeurd door een speciale commissie; voor de Faculteit Geesteswetenschappen van de Universiteit Utrecht is dat de Medisch-Ethische Toetsingscommissie die valt onder het Universitair Medisch Centrum Utrecht (METC). Die commissie weegt af of de mogelijke baten van het onderzoek redelijkerwijs opwegen tegen de kosten en mogelijke schade voor de proefpersonen.

Het meeste onderzoek op het gebied van talen en communicatie bij de Universiteit Utrecht is vrijgesteld van de tijdrovende toetsing door de METC, maar moet wel verplicht worden voorgelegd aan de **Facultaire Ethische Toetsingscommissie** (FETC), en wel aan de kamer Linguïstiek daarvan. Dat geldt echter niet voor onderzoek door studenten! Op de website van de FETC is meer informatie te vinden: https://fetc-gw.wp.hum.uu.nl/. Overleg bij twijfel altijd met je begeleider of docent. Ethische toetsing is ook verplicht voor studenten en onderzoekers uit andere domeinen (literatuur, geschiedenis, media & cultuur) die van plan zijn onderzoek te verrichten met mensen.

3.4 Gegevens

De verzamelde data of gegevens vormen de onderbouwing voor de conclusies uit wetenschappelijk onderzoek. Die gegevens zijn daarmee van essentieel belang: zonder gegevens geen valide conclusies. Zoals we hierboven zagen (§3.2) zijn die gegevens bovendien zeer kostbaar (in tijd, geld, privacy, enz). We moeten er dus uiterst zorgvuldig mee omgaan. We moeten anderen kunnen overtuigen van de validiteit van onze conclusies op basis van die gegevens, en we moeten de onderliggende gegevens desgevraagd kunnen delen met andere onderzoekers.

Die zorgvuldigheid vereist dus in ieder geval dat we zo snel mogelijk voldoende reservekopieën maken, en die bewaren op verschillende veilige plaatsen. Bedenk eens wat er zou gebeuren als een brand of overstroming je werkplek of woning zou vernietigen, of als tijdens je scriptie-project je laptop wordt gestolen (waar gebeurd!). Heb je dan goede en recente kopieën van de gegevens elders opgeslagen? Voor kopieën en 'backups' kun je goed gebruik maken van een afdoende beveiligde "cloud service"².

 $^{^2}$ Medewerkers van de UU kunnen Surf
Drive (https://www.surfdrive.nl) gebruiken om gegevens veilig en makkelijk te bewaren op een beveiligde netwerk-schijf.

De zorgvuldigheid vereist ook dat we goed bijhouden wat de gegevens voorstellen, en hoe ze zijn verzameld. Gegevens zonder bijbehorende beschrijving zijn nagenoeg waardeloos voor wetenschappelijk onderzoek. Charles Darwin noteerde nauwkeurig welke vogel op welk van de Galapagos-eilanden welke vorm van snavel had, en deze observaties vormden later (deel van) de onderbouwing van zijn evolutie-theorie. Houd dus een logboek bij (op papier of digitaal) waarin je alle stappen van je onderzoek beschrijft, en eventueel motiveert. Noteer ook merk en type en instellingen van de gebruikte apparatuur, en noteer versie-nummer en instellingen van de gebruikte software. Houd bij welke bewerkingen je op de gegevens hebt toegepast, en waarom, en in welk bestand welke gegevens zijn opgeslagen.

Als je werkt met geditigaliseerde data (bv in Excel of SPSS of R), houd dan ook zorgvuldig bij welke variabelen in welke kolom is opgeslagen, in welke eenheden, en met welke codes.

Voorbeeld 3.3: Het bestand http://tinyurl.com/nj4pjaq bevat gegevens van 80 sprekers van het Nederlands, ten dele ontleend aan het Corpus Gesproken Nederlands (CGN). De eerste regel bevat de namen van de variabelen. Iedere volgende regel correspondeert met één spreker. De gegevens op iedere regel zijn gescheiden door spaties. De eerste kolom bevat de anonieme identificatie-code van de spreker volgens het CGN. In de vijfde kolom staat de regio van herkomst van de spreker gecodeerd, als één letterteken, met de codes W Randstad, M Midden-Nederland, N Noord-Nederland, S Zuid-Nederland) (Quené, 2008). Door de zorgvuldige annotatie zijn deze gegevens nog goed bruikbaar, ook al zijn ze ruim 20 jaar geleden verzameld door collega-onderzoekers.

Gegevens blijven het intellectuele eigendom van degene die ze heeft verzameld. Gebruik van andermans data zonder bronvermelding kan beschouwd worden als diefstal, of als plagiaat.

Fraude met gegevens (gegevens fabriceren of verzinnen, in plaats van observeren) is uiteraard strijdig met meerdere principes uit de bovengenoemde gedragscode (VSNU, 2018). Fraude schaadt het wederzijds vertrouwen waarop wetenschap is gebaseerd. Het misleidt andere onderzoekers die voortbouwen op de fictieve resultaten, en onderzoeksgeld voor die frauduleuze onderzoekslijn wordt weggezogen uit ander, niet frauduleus onderzoek — kortom, een wetenschappelijke doodzonde. Als je wilt overleggen over vragen of dilemma's hierover, neem dan contact op met prof.dr. Josine Blok, vertrouwenspersoon wetenschappelijke integriteit van de Faculteit Geesteswetenschappen (j.h.blok@uu.nl).

3.5 Teksten

Wetenschappelijk onderzoek wordt pas echt nuttig, als de resultaten ervan verspreid worden. Onderzoek dat niet wordt gerapporteerd, zou net zo goed niet kunnen zijn uitgevoerd, en de kosten van dat onderzoek zijn dan feitelijk tevergeefs geweest. Een belangrijk deel van het wetenschappelijk werk bestaat daarom uit verslaglegging ervan. Publicaties (en octrooien) vormen een zeer belangrijk deel van de "output" van wetenschappelijk onderzoek. Onderzoekers worden gemeten naar het aantal publicaties, en naar de "impact" daarvan (het aantal malen dat die publicaties weer geciteerd worden door anderen die erop voortbouwen). Mede gezien de grote belangen dienen we dus zorgvuldig om te gaan met teksten van anderen en van onszelf.

De onderzoekers die betrokken zijn bij een onderzoek, moeten met elkaar overleggen wie de auteurs van het verslag of van de publicatie zullen zijn, en in welke volgorde. Mede-auteurs van een wetenschappelijk verslag moeten voldoen aan drie voorwaarden (Office of Research Integrity, 2012, Ch.10). Ten eerste moeten zij een substantiële wetenschappelijke bijdrage hebben geleverd aan één of meer fasen in het onderzoek: het oorspronkelijke idee bedenken, het onderzoek opzetten en ontwerpen, de gegevens verzamelen, en de gegevens analyseren en interpreteren. Ten tweede moeten ze hebben meegewerkt aan het verslag, als schrijver en/of als commentator. Ten derde moeten ze instemmen met de definitieve tekst van het verslag (meestal impliciet, soms expliciet), en tevens instemmen met hun mede-auteurschap daarvan. De auteurs doen er goed aan om af te spreken in welke volgorde hun namen vermeld worden. Meestal correspondeert die volgorde met het afnemend belang en de afnemende omvang van de respectievelijke bijdragen van de auteurs. Als de eindverantwoordelijke hoofd-onderzoeker tevens mede-auteur is, dan wordt deze vaak als laatste genoemd.

Voorbeeld 3.4: Student-assistent A heeft geholpen bij het verzamelen van de gegevens, maar deze assistent heeft geen andere bijdragen geleverd, en weet niet goed waar het onderzoek eigenlijk over gaat. A hoeft geen mede-auteur te worden van het verslag, maar de auteurs dienen de bijdrage van A wel te beschrijven en te erkennen in hun verslag.

Student B heeft één van de delen van een onderzoeksproject uitgevoerd onder begeleiding van onderzoeker C. Deze begeleider C heeft het hele project bedacht, maar B heeft literatuur verzameld, een deelonderzoek opgezet en uitgevoerd, data verzameld, geanalyseerd en geïnterpreteerd, en daarvan verslag gedaan in een werkstuk. Student B en begeleider C zijn daarom beiden mede-auteurs van een

3.5. TEKSTEN 45

publicatie over B's deel van het onderzoeksproject. Zij spreken af in welke volgorde de auteurs genoemd worden. Omdat student B het belangrijkste was voor dit werk, en C de eindverantwoordelijke was, spreken zij af dat B de eerste auteur wordt en C de tweede en laatste.

Onderzoekers bouwen voort op het werk van hun voorgangers (zie voorbeeld 3.1). Dat kan ook gelden voor hun redeneringen, en zelfs hun teksten, maar daarbij moeten we dan altijd correct verwijzen naar de juiste bron, d.w.z. naar het werk van die voorgangers. Anders is immers niet meer te onderscheiden wie verantwoordelijk is voor welke gedachte of tekstfragment. Plagiaat is "het overnemen van stukken, gedachten, redeneringen van anderen en deze laten doorgaan voor eigen werk" (Van Dale, 12e druk). Ook deze vorm van fraude is een wetenschappelijke doodzonde, waar krachtige sancties op kunnen volgen. De Faculteit Geesteswetenschappen van de UU zegt daarover het volgende:

"Van plagiaat is sprake bij het in een scriptie of ander werkstuk gegevens of tekstgedeelten van anderen overnemen zonder bronvermelding. Onder plagiaat valt onder meer:

- het knippen en plakken van tekst van digitale bronnen zoals encyclopedieën en digitale tijdschriften zonder aanhalingstekens en verwijzing;
- het knippen en plakken van teksten van het internet zonder aanhalingstekens en verwijzing;
- het overnemen van gedrukt materiaal zoals boeken, tijdschriften en encyclopedieën zonder aanhalingstekens en verwijzing;
- het opnemen van een vertaling van bovengenoemde teksten zonder aanhalingstekens en verwijzing;
- het parafraseren van bovengenoemde teksten zonder (deugdelijke) verwijzing: parafrasen moeten als zodanig gemarkeerd zijn
 (door de tekst uitdrukkelijk te verbinden met de oorspronkelijke auteur in tekst of noot), zodat niet de indruk wordt gewekt
 dat het gaat om eigen gedachtegoed van de student;
- het overnemen van beeld-, geluids- of testmateriaal van anderen zonder verwijzing en zodoende laten doorgaan voor eigen werk;
- het zonder bronvermelding opnieuw inleveren van eerder door de student gemaakt eigen werk en dit laten doorgaan voor in het kader van de cursus vervaardigd oorspronkelijk werk, tenzij dit in de cursus of door de docent uitdrukkelijk is toegestaan;

- het overnemen van werk van andere studenten en dit laten doorgaan voor eigen werk. Indien dit gebeurt met toestemming van de andere student is de laatste medeplichtig aan plagiaat;
- ook wanneer in een gezamenlijk werkstuk door een van de auteurs plagiaat wordt gepleegd, zijn de andere auteurs medeplichtig aan plagiaat, indien zij hadden kunnen of moeten weten dat de ander plagiaat pleegde;
- het indienen van werkstukken die verworven zijn van een commerciële instelling (zoals een internetsite met uittreksels of papers) of die tegen betaling door iemand anders zijn geschreven."

http://students.uu.nl/praktische-zaken/regelingen-en-procedures/fraude-en-plagiaat

Bij plagiaat van eigen werk worden de teksten of gedachten niet overgenomen van anderen maar van één van de auteurs. Over dit zelf-plagiaat wordt verschillend gedacht; het is echter raadzaam om in voorkomende gevallen wel de bron te vermelden, vanuit de principes van zorgvuldigheid, betrouwbaarheid, controleerbaarheid, en verantwoordelijkheid.

Een verwijzing of citatie of referentie is een verkorte bronvermelding in de tekst; in dit boek ben je er al vele tegengekomen. Aan het einde van de tekst volgt dan de volledige lijst van bronnen, meestal aangeduid als bronvermeldingen, geraadpleegde bronnen, referenties, literatuur, of bibliografie ("boekbeschrijving"). Een foutieve bronvermelding kan worden beschouwd als plagiaat (Universiteits-bibliotheek, Vrije Universiteit Amsterdam, 2015) omdat de lezer niet verwezen wordt naar de juiste bron. Onderzoekers dienen hun bronnen daarom op correcte wijze te vermelden. Daarvoor bestaan verschillende conventies, afhankelijk van het vakgebied. Meestal zal een docent aangeven volgens welke stijl of conventie je je bronnen moet vermelden. In dit boek volgen we zoveel mogelijk de stijl van de (American Psychological Association, 2010), die gebruikelijk is in de sociale wetenschappen en een deel van de geesteswetenschappen.

De regels voor bronvermelding zijn soms ingewikkeld. Bovendien moeten de auteurs zorgen dat de citaties in de tekst overeenkomen met de lijst van referenties. Deze taken kunnen beter worden bijgehouden door een zgn. "reference manager", een programma dat referenties of bronvermeldingen verzamelt en op de juiste wijze invoegt in de tekst. Een overzicht van zulke programma's is te vinden via https://en.wikipedia.org/wiki/Comparison_of_reference_management_software. Voor dit tekstboek is gebruik gemaakt van Zotero, gecombineerd met BibTeX.

Chapter 4

Meetniveau

4.1 Inleiding

In Hoofdstuk 2 maakten we al kennis met variabelen: eigenschappen die verschillende waarden kunnen aannemen. De waarde van een variabele is dus een aanduiding van een eigenschap, of kwaliteit, of hoedanigheid, van een object of persoon. Als het gaat om een afhankelijke variabele, dan wordt die waarde ook aangeduid als score of responsie, vaak aangeduid met symbool Y. De wijze waarop een kenmerk wordt uitgedrukt in een (gemeten) waarde, noemen we het meetniveau van de variabele; het meetniveau is dus een eigenschap of kenmerk van de variabele zelf! We onderscheiden vier meetniveau's, in toenemende niveau's van informativiteit: nominaal, ordinaal, interval, ratio. Bij de eerste twee meetniveau's worden alleen discrete categorieën onderscheiden, zonder of met ordening. Bij de laatste twee meetniveau's worden getalswaarden gebruikt, zonder of met nulpunt. We zullen de meetniveau's hieronder nader bespreken. Inzicht in het meetniveau van een variabele is van belang voor de interpretatie van de scores op een variabele en — zoals we later zullen zien — voor de keuze van de juiste statistische toets om een onderzoeksvraag te beantwoorden.

4.2 Nominaal

We spreken van een nominale variabele (of nominaal meetniveau) als een kenmerk gecategoriseerd wordt in afzonderlijke (discrete) categorieën, waarbij er niet een ordening is tussen de categorieën. Bekende voorbeelden zijn o.a. de nationaliteit van een proefpersoon, het merk van een auto, de kleur van iemands ogen, de smaak van een bak schepijs, je woonsituatie (bij gezin van herkomst, op kamers, zelfstandig, samenwonend, anders), enz. De scores kunnen alleen gebruikt worden om de categorieën te onderscheiden (de uitspraak "vanille is

anders dan aardbei" is wel zinnig). We kunnen wel tellen hoe vaak iedere categorie voorkomt, maar er is geen interpreteerbare rangorde (de uitspraak "vanille is groter dan aardbei" is onzinnig), en we kunnen ook niet rekenen met de gemeten waarden van een nominale variabele. We kunnen dus wel de meest voorkomende nationaliteit vaststellen, maar we kunnen niet de gemiddelde nationaliteit uitrekenen.

4.3 Ordinaal

Er is sprake van een ordinale variabele (of van een ordinaal meetniveau) als een kenmerk gecategoriseerd wordt in afzonderlijke categorieën, waarbij er wel een rangorde is tussen de categorieën. Bij een ordinale variabele weten we echter niets over de afstand tussen de verschillende categorieën. Bekende voorbeelden zijn o.a. schooltype (VMBO, HAVO, VWO, ...), antwoord op een schaalvraag (mee eens, neutraal, niet mee eens), positie op een ranglijst, volgorde van afvallen bij een talentenjacht, kledingmaat (XS, S, M, L, XL, ...), of militaire rang (soldaat, majoor, generaal, ...). Ook hier kunnen we wel tellen hoe vaak iedere categorie voorkomt, en we kunnen ook de rangorde zinnig interpreteren (wie als laatste afvalt presteert beter dan wie als eerste afvalt, maat L is groter dan M, een generaal is de baas van een majoor). We kunnen echter niet rekenen met de gemeten waarden van een ordinale variabele. We kunnen wel de meest verkochte kledingmaat vaststellen, maar we kunnen niet de gemiddelde verkochte kledingmaat uitrekenen¹.

4.4 Interval

Er is sprake van een interval-variabele (of van een interval-meetniveau) als een kenmerk uitgedrukt wordt in een getal op een continue schaal, waarbij deze schaal niet een nulpunt heeft. Door de schaal weten we bij een interval-variabele ook wat de afstanden of intervallen zijn tussen de verschillende waarden. Bekende voorbeelden zijn o.a. temperatuur in graden Celcius (het nulpunt is arbitrair), of jaartal (idem). We kunnen tellen hoe vaak iedere categorie voorkomt, we kunnen de rangorde zinnig interpreteren (het jaar 1999 in onze gregoriaanse kalender ging vooraf aan het jaar 2000), en we kunnen ook de intervallen zinnig interpreteren (van 1918 tot 1939 is net zo lang als van 1989 tot 2010). We kunnen wel rekenen met de waarden van een interval-variabele, maar de enige zinnige bewerkingen zijn optellen en aftrekken. Daarmee kunnen we wel een gemiddelde berekenen, bijv. het gemiddelde jaar waarin de personen in een steekproef hun eerste mobiele telefoon begonnen te gebruiken.

¹Als de helft van de respondenten *mee eens* antwoordt, en de andere helft *niet mee eens*, dan kunnen we niet zinnig concluderen dat de responsies gemiddeld *neutraal* zouden zijn.

4.5. RATIO 49

4.5 Ratio

Het vierde en hoogste meetniveau is het ratio-niveau. Er is sprake van een ratio-variabele (of van een ratio-meetniveau) als een kenmerk uitgedrukt wordt in een getal op een continue schaal, waarbij deze schaal wel een nulpunt heeft. Door de schaal weten we bij een ratio-variabele wat de afstanden of intervallen zijn tussen de verschillende waarden. Bovendien weten we door het nulpunt wat de verhoudingen of ratio's zijn tussen de verschillende waarden. Bekende voorbeelden zijn o.a. temperatuur in graden Kelvin (vanaf het absolute nulpunt), de responsietijd² in duizendsten van een seconde (ms), je lengte in cm, je leeftijd in jaren, het aantal gemaakte fouten in een toets, enz. Bij een ratio-variabele kunnen we tellen hoe vaak iedere categorie voorkomt, we kunnen de rangorde zinnig interpreteren (iemand van 180 cm is langer dan iemand van 179 cm), we kunnen intervallen zinnig interpreteren (de toename in leeftijd van 12 naar 18 is tweemaal zo groot als de toename van 9 naar 12), en we kunnen ook verhoudingen tussen de waarden zelf zinnig interpreteren (een leeftijd van 24 is tweemaal zo oud als een leeftijd van 12). We kunnen rekenen met de waarden van een interval-variabele, en daarbij kunnen we niet alleen optellen en aftrekken maar ook delen en vermenigvuldigen. Ook hier is het mogelijk om een gemiddelde te berekenen, bijv. de gemiddelde leeftijd waarop de personen in een steekproef hun eerste mobiele telefoon begonnen te gebruiken.

4.6 Ordening van meetniveaus

De meetniveaus zijn hierboven besproken in toenemende informativiteit of sterkte. Een nominale variabele bevat het minste informatie en geldt als het laagste meetniveau, en een ratio-variabele bevat het meeste informatie en geldt als het hoogste meetniveau.

Het is altijd mogelijk om gegevens gemeten op een hoger meetniveau te interpreteren alsof ze op een lager niveau zijn gemeten. Als we bijvoorbeeld het maandinkomen van de personen in een steekproef hebben gemeten op ratio-niveau (in \in), dan kunnen we daar probleemloos een ordinale variabele van maken (minder dan modaal, van modaal tot tweemaal modaal, meer dan tweemaal modaal). We gooien daarbij informatie weg: de oorspronkelijke meting in \in bevat meer informatie dan de daaruit afgeleide classificatie in drie geordende categorieën.

Natuurlijk is het omgekeerde niet mogelijk: een variabele van een laag meetniveau kunnen we niet interpreteren op een hoger niveau. We zouden dan informatie achteraf moeten toevoegen die we niet hebben verzameld bij de oorspronkelijke meting van die variabele. Het is dus zaak om de relevante variabelen te meten of te observeren op het juiste meetniveau. Stel je voor dat we de

 $^{^2\}mathrm{Het}$ nulpunt is het moment van de gebeurten
is waarop de proefpersoon moet reageren.

lichaamslengte van volwassen mannen en vrouwen willen vergelijken. Als we de lichaamslengte meten op ordinaal meetniveau (met drie categorieën kort, middelmatig en lang gelijkelijk gedefinieerd voor alle personen), dan kunnen we dus niet de gemiddelde lichaamslengte uitrekenen, en we kunnen ook niet een statistische toets gebruiken die refereert aan het gemiddelde van de lichaamslengte. Dat hoeft geen probleem te zijn, maar het is wel goed om vooraf te doordenken wat de consequenties zijn van de keuze voor een bepaald meetniveau.

Chapter 5

Validiteit

5.1 Inleiding

Experimenteel onderzoek heeft tot doel om hypotheses te toetsen. Ook in ander, niet-experimenteel onderzoek kunnen hypotheses worden getoetst, maar we beperken ons hier voor de helderheid tot experimenteel onderzoek, d.w.z. onderzoek waarin het experiment als methode wordt gebruikt. In experimenteel onderzoek wordt getracht causale verbanden aannemelijk te maken. Als de resultaten van een experimenteel onderzoek de onderzoekshypothese bevestigen (d.w.z. de nulhypothese wordt verworpen), dan is het aannemelijk dat een verandering in de onafhankelijke variabele de oorzaak (Latijn: causa) is voor een verandering of effect in de afhankelijke variabele. Zo kunnen we na experimenteel onderzoek met enige zekerheid concluderen, bijvoorbeeld, dat een verschil in behandeling na een herseninfarct de oorzaak is, of een belangrijke oorzaak is, van een verschil in taalvaardigheid van een patiënt zoals geobserveerd 6 maanden na een herseninfarct. Het experiment heeft aannemelijk gemaakt dat er een causaal of oorzakelijk verband is tussen de behandelingsmethode (onafhankelijke variabele) en de resulterende taalvaardigheid (afhankelijke variabele).

5.2 Causaliteit

Een causaal of oorzakelijk verband tussen twee variabelen is iets anders dan een 'gewoon' verband of samenhang tussen twee variabelen. Als twee verschijnselen met elkaar samenhangen, hoeft het ene niet de oorzaak van het andere te zijn. Een eerste voorbeeld zien we bij de samenhang tussen de lengte van personen en hun gewicht: lange mensen zijn over het algemeen zwaarder dan korte mensen (en omgekeerd: korte mensen zijn over het algemeen lichter

dan lange mensen). Is er nu sprake van een causale relatie tussen lengte en gewicht? Wordt het ene kenmerk (deels) veroorzaakt door het andere? Nee, in dit voorbeeld is er wel samenhang maar geen causaal verband tussen de kenmerken: zowel lengte als gewicht worden "veroorzaakt" door andere variabelen, o.a. genetische eigenschappen en voedingspatronen. Een tweede voorbeeld is de samenhang tussen motivatie en taalvaardigheid van iemand die een vreemde taal leert: hoog gemotiveerde studenten leren een nieuwe vreemde taal beter en vlotter dan laag gemotiveerde studenten, maar ook hier is niet duidelijk wat de oorzaak en wat het gevolg is.

Een causaal verband is een speciale vorm van samenhang. Een causaal verband is een verband tussen twee twee verschijnselen of kenmerken, waarbij bovendien voldaan moet zijn aan een aantal extra voorwaarden (Shadish et al., 2002). Ten eerste moet de oorzaak aan het gevolg vooraf gaan (na behandeling treedt verbetering op). Ten tweede moet het gevolg niet optreden als de oorzaak niet aanwezig was (zonder behandeling geen verbetering). Bovendien moet het gevolg — althans in theorie — altijd optreden als de oorzaak aanwezig is (behandeling resulteert altijd in verbetering). Ten derde kunnen we geen andere plausibele verklaring vinden voor het optreden van het gevolg, behalve de mogelijke oorzaak. Als we het causale mechanisme kennen (we snappen waarom behandeling de oorzaak is van verbetering), dan zijn we beter in staat om mogelijke andere plausibele verklaringen uit te sluiten. Helaas is dat bij de gedragswetenschappen, inclusief de taalwetenschap, echter zelden het geval. We constateren wel dat een behandeling resulteert in verbetering, maar de theorie die oorzaak (behandeling) en gevolg (verbetering) verbindt is zelden compleet en vertoont belangrijke lacunes. Dat betekent dat we goede voorzorgen moeten treffen in onze onderzoeksmethoden, teneinde mogelijke alternatieve plausibele verklaringen voor de gevonden effecten uit te sluiten.

5.3 Validiteit

Een bewering of conclusie is valide als de bewering waar (true) en gerecht-vaardigd (justified) is. Een ware uitspraak correspondeert met de werkelijkheid: de bewering ieder kind leert ten minste een taal is waar, omdat de bewering de werkelijkheid goed weergeeft. Een gerechtvaardigde bewering ontleent geldigheid aan de empirische evidentie waarop die bewering is gebaseerd: ieder kind dat wij hebben geobserveerd, of dat anderen hebben geobserveerd, leert een taal of heeft een taal geleerd (behalve bijzondere gevallen voor wie een aparte verklaring nodig is). De rechtvaardiging van een bewering is sterker naarmate de methode van (directe of indirecte) observatie sterker is en meer zekerheid biedt. Dit houdt ook in dat de validiteit van een bewering niet een categoriale eigenschap is (wel/niet valide) maar een gradueel kenmerk: een bewering kan meer of minder valide zijn.

Aan de validiteit van een bewering kunnen drie verschillende aspecten worden

onderscheiden.

- 1. In hoeverre zijn de conclusies over de relaties tussen de afhankelijke en de onafhankelijke variabele geldig? Deze vraag heeft betrekking op de *interne* validiteit.
- 2. In hoeverre zijn de uitwerkingen, operationaliseringen, van de afhankelijke en onafhankelijke variabele adequaat? Deze vraag heeft betrekking op de constructvaliditeit.
- 3. In hoeverre kunnen de conclusies gegeneraliseerd worden naar andere proefpersonen, stimuli, condities, situaties, observaties? Deze vraag heeft betrekking op de externe validiteit.

Deze drie vormen van validiteit zullen wij in de navolgende paragrafen toelichten.

5.4 Interne validiteit

Het is vanzelfsprekend de bedoeling om in een experimenteel onderzoek zoveel mogelijk alternatieve verklaringen voor de onderzoeksresultaten uit te sluiten. Er moet immers aangetoond worden dat er een causaal verband is tussen twee variabelen X en Y, en daarbij moeten storende factoren zoveel mogelijk onder controle gehouden worden. Laten we eens kijken naar voorbeeld 5.1 hieronder.

Voorbeeld 5.1: (Verhoeven et al., 2004) onderzochten o.a. de hypothese dat ouderen (boven de 45 jaar) langzamer spreken dan jongeren (onder de 40 jaar). Om dat te onderzoeken werd spraak opgenomen van 160 sprekers, gelijk verdeeld over de twee leeftijdsgroepen, in een interview van ongeveer 15 minuten. Na fonetische analyse van de articulatiesnelheid blijkt dat de "jongeren" relatief snel spreken met 4.78 lettergrepen per seconde, en de "ouderen" aanzienlijk langzamer, met 4.52 lettergrepen per seconde (Verhoeven et al., 2004, p.302). We concluderen dat de hogere leeftijd de oorzaak is van het lagere spreektempo bij de oudere sprekers — maar is die conclusie terecht?

Deze vraag naar de rechtvaardiging van de conclusie is een vraag naar de interne validiteit van het onderzoek. De interne validiteit heeft betrekking op de relaties tussen gemeten of gemanipuleerde variabelen, en is onafhankelijk van

de (theoretische) constructen die de verschillende variabelen representeren (vandaar de term 'interne validiteit'). Of, anders gezegd: de vraag naar de interne validiteit is een vraag naar mogelijke alternatieve verklaringen voor de gevonden onderzoeksresultaten. Veel van de mogelijke alternatieve verklaringen kunnen worden ondervangen door de manier waarop de gegevens worden verzameld. We bespreken hieronder de meest in het oog lopende bedreigingen van de interne validiteit (Shadish et al., 2002).

1. Geschiedenis is een bedreiging van de interne validiteit. Het begrip 'geschiedenis' omvat o.a. gebeurtenissen die hebben plaatsgevonden tussen of tijdens een voormeting en een nameting; het gaat dan om gebeurtenissen die geen deel uitmaken van de experimentele manipulatie (de onafhankelijke variabele), maar die wel van invloed zouden kunnen zijn op de afhankelijke variabele. Een hittegolf, bijvoorbeeld, kan van invloed zijn op het gedrag van de proefpersonen tijdens een onderzoek.

In een laboratorium wordt de 'geschiedenis' onder controle gehouden door de proefpersonen af te sluiten van invloeden van buitenaf (zoals een hittegolf), of door afhankelijke variabelen te kiezen die nauwelijks beïnvloed kunnen worden door externe factoren. In onderzoek buiten het laboratorium, waaronder veldonderzoek, is het veel lastiger en vaak zelfs onmogelijk om invloeden van buitenaf onder controle te houden. In het volgende voorbeeld wordt dit duidelijk.

Voorbeeld 5.2: In een onderzoek worden twee methoden vergeleken om leerlingen een vreemde taal te leren spreken, i.c. Nieuw-Grieks. De eerste groep moet Griekse woordjes en grammatica leren in een klaslokaal, gedurende enkele weken. De tweede groep gaat in diezelfde periode op een studiereis naar Griekenland, waar leerlingen moeten converseren in de doeltaal. De totale tijd besteed aan het taalvaardigheidsonderwijs is voor beide groepen gelijk. Na afloop blijkt de taalvaardigheid van de tweede groep groter dan die van de eerste groep. Wordt dat verschil in de afhankelijke variabele inderdaad veroorzaakt door de lesmethode (onafhankelijke variabele)?

2. Rijping is de natuurlijke veroudering of rijping van proefpersonen tijdens een onderzoek. Als de proefpersonen gedurende een onderzoek ouder worden, zich ontwikkelen, meer ervaren of sterker worden, èn als deze rijping niet is opgenomen in de onderzoeksvraag, dan vormt rijping een bedreiging van de interne validiteit. In experimenten waarin reactietijden worden gemeten, bijvoorbeeld, zien we meestal dat de reactietijden

van een proefpersoon sneller worden gedurende het experiment, als gevolg van training en oefening. We kunnen de interne validiteit dan beschermen tegen dit leer-effect, door de stimuli voor iedere proefpersoon in een andere willekeurige volgorde aan te bieden.

Meestal is er sprake van rijping doordat de proefpersonen vele malen achtereen dezelfde taak uitvoeren of dezelfde vragen beantwoorden. Rijping kan echter ook optreden wanneer proefpersonen hun antwoorden kenbaar moeten maken op een juist niet gebruikelijke manier, bv. door een ongewone vraagstelling, of in een ongebruikelijke vorm van meerkeuze-vragen. Bij de eerste paar keer dat een proefpersoon dan vragen beantwoordt, kan de wijze van beantwoorden interfereren met het antwoord zelf. Achteraf kunnen we een vergelijking maken tussen bv. het eerste kwart en het laatste kwart van de antwoorden, om zo te bekijken of er een mogelijk effect was van ervaring, d.w.z. van rijping.

3. Ook de **instrumentatie** of instrumenten die voor een onderzoek gebruikt worden, kunnen een bedreiging vormen voor de interne validiteit. Verschillende instrumenten die worden geacht hetzelfde construct te meten, moeten ook gelijke metingen produceren. En hetzelfde instrument moet ook gelijke metingen produceren onder verschillende omstandigheden. Voor computer-gestuurde experimenten is dat meestal geen probleem. Maar bij vragenlijsten, of bij de beoordeling van schrijfopdrachten, kan de interne validiteit wel worden bedreigd.

Bij veel onderzoek worden observaties gedaan zowel voorafgaand aan een behandeling, als na afloop daarvan. Daarbij kan dezelfde toets gebruikt worden, maar dan kan er een leer-effect optreden (zie hierboven). Onderzoekers gebruiken daarom vaak verschillende toetsen bij de voormeting en de nameting, maar daarbij kan er wel een instrumentatie-effect optreden. De onderzoeker moet de mogelijke voor- en nadelen tegen elkaar afwegen.

Voorbeeld 5.3: (Rijlaarsdam, 1986) onderzocht het effect van 'peer evaluation' op de kwaliteit van schrijfproducten. De opzet van zijn onderzoek was (enigszins vereenvoudigd) als volgt: eerst schrijven de leerlingen een opstel over onderwerp A, dan volgt het schrijfonderwijs inclusief 'peer evaluation', waarna nogmaals een opstel geschreven wordt over onderwerp B. De schrijfproducten van voormeting en nameting worden beoordeeld, waarna getoetst wordt of de gemiddelde prestaties verschillen tussen voormeting en nameting.

In dit onderzoek vormt niet alleen de interventie (schrijfonderwijs) een duidelijk verschil tussen de voormeting en de nameting, maar

ook het onderwerp van de schrijfopdracht (A of B) vormt een verschil. Het is twijfelachtig of met beide schrijfopdrachten wel precies hetzelfde wordt gemeten. Dit verschil in instrumentatie bedreigt de interne validiteit, omdat er op verschillende momenten misschien een (deels) verschillend aspect van de schrijfvaardigheid is gemeten. De instrumentatie (hier: het verschil in onderwerpen van de schrijfopdrachten) geeft een plausibele alternatieve verklaring voor een verschil in schrijfvaardigheid, naast of in plaats van de onafhankelijke variabele (hier: het tussentijdse schrijfonderwijs).

4. Een volgende bedreiging van de interne validiteit staat bekend als het effect van **regressie naar het gemiddelde**. Regressie naar het gemiddelde kan een rol spelen zodra het onderzoek gericht is op speciale groepen, bijvoorbeeld slechte lezers, slechte schrijvers, maar evenzo: goede lezers, goede schrijvers, etc. We geven eerst een voorbeeld, omdat het verschijnsel niet direct intuïtief duidelijk is.

Voorbeeld 5.4: Er is enige controverse over het gebruik van illustraties in kinderboeken. Sommigen menen dat in boeken waarmee kinderen leren lezen geen (of zo min mogelijk) illustraties mogen voorkomen: illustraties leiden de aandacht af van te leren kenmerken van woorden. Anderen menen dat in illustraties wezenlijke informatie weergegeven kan worden: illustraties dienen als extra informatiebron.

(Donald, 1983) onderzocht de invloed van illustraties bij een tekst op het begrip van die tekst. De onderzoeker selecteerde 120 leerlingen (uit 1868 leerlingen) uit de derde en zesde groep van het basisonderwijs; 60 uit elk van beide groepen. Volgens de prestaties op een eerder afgenomen leestoets bleken van de 60 leerlingen per klas er 30 als slechte en 30 als goede lezers geclassificeerd te kunnen worden. Elke leerling kreeg dezelfde tekst te zien, aangeboden met of zonder illustraties (onafhankelijke variabele), zie Tabel 5.1.

De resultaten bleken goeddeels de tweede hypothese te ondersteunen: illustraties bevorderen het begrip van de tekst, ook bij onervaren lezers. De slechtere lezers begrepen de tekst met illustraties beter, en ook jongere lezers ondervonden voordeel van de illustraties.

Table 5.1: Aanbiedingscondities in het onderzoek van Donald (1983).

groep	leesvaardigheid	conditie	\overline{n}
3	slecht	zonder	15
3	slecht	met	15
3	goed	zonder	15
3	goed	met	15
6	slecht	zonder	15
6	slecht	met	15
6	goed	zonder	15
6	goed	met	15

Wat is er nu mis met dit onderzoek? Het antwoord is gelegen in de manier waarop leerlingen zijn geselecteerd. Lezers werden ingedeeld als 'slecht' of 'goed' op basis van een leesvaardigheidstoets, maar hun prestaties op die toets worden altijd beïnvloed door toevallige factoren, die niets met leesvaardigheid te maken hebben: Tom voelde zich niet lekker, daarom heeft hij deze toets slecht gemaakt, Sarah was met haar gedachten elders, Niels had last van zijn knie, Julie was enorm gemotiveerd en heeft zichzelf overtroffen. Met andere woorden: de leesvaardigheid is niet geheel betrouwbaar gemeten. Dit betekent (1) dat de slechte lezers die toevallig boven hun niveau gepresteerd hebben, ten onrechte niet bij de slechte lezers ingedeeld werden, maar deel uitmaakten van de groep goede lezers; en omgekeerd (2) dat goede lezers die bij deze toets toevallig onder hun niveau gepresteerd hebben, ten onrechte als slechte lezers bestempeld werden. Onder de slechte lezers zitten dus altijd ook een paar lezers die helemaal zo slecht nog niet zijn, en onder de goede lezers zitten ook een paar lezers die eigenlijk niet zo goed zijn.

Wanneer de eigenlijk-goede lezers, die ten onrechte geclassificeerd zijn als nietgoede lezers, een tweede leestoets maken (nadat zij een tekst met of zonder illustraties bestudeerd hebben), dan zullen zij meestal weer op hun gewone hoge niveau presteren. Een hogere score op de tweede toets (de nameting) kan dus een artefact zijn van de selectiemethode. Hetzelfde geldt, mutatis mutandis, voor de eigenlijk-slechte lezers die ten onrechte geselecteerd zijn als niet-slechte lezers. Wanneer deze leerlingen een tweede leestoets maken, dan zullen ook zij meestal weer op hun gewone (lage) niveau presteren. De score op de nameting ligt voor hen dus lager dan de score op de voormeting.

Voor het aangehaalde onderzoek van betekent dit dat het geconstateerde verschil tussen slechte en goede lezers deels toevallig is. Ook als de onafhankelijke variabele geen effect heeft, zal de groep 'goede' lezers bij de tweede leestoets gemiddeld slechter presteren, en zal de groep 'slechte' lezers bij de tweede leestoets gemiddeld beter presteren. Met andere woorden: het verschil tussen de twee groepen is bij de nameting minder groot dan bij de voormeting, als gevolg van

toevallige variatie: regressie naar het gemiddelde. Het zal duidelijk zijn dat onderzoeksresultaten getroebleerd kunnen worden door dit verschijnsel. Zoals we hierboven zagen kan een experimenteel effect afgezwakt worden of verdwijnen als gevolg van regressie naar het gemiddelde; omgekeerd kan regressie naar het gemiddelde ten onrechte aangezien worden als een experimenteel effect (Retraction Watch, 2018).

In het algemeen kan regressie naar het gemiddelde optreden als er een classificatie gemaakt wordt op basis van een voormeting, waarvan de scores samenhang vertonen met de scores van de nameting (zie Hoofdstuk ??). Als er geen enkele correlatie is tussen voormeting en nameting, dan speelt regressie naar het gemiddelde zelfs de hoofdrol: een verschil tussen voormeting en nameting is dan alleen het gevolg van regressie naar het gemiddelde. Als er perfecte correlatie is, dan speelt regressie naar het gemiddelde geen enkele rol, maar dan is ook de voormeting niet informatief, want immers geheel (achteraf) te voorspellen uit de nameting.

Regressie naar het gemiddelde kan een alternatieve verklaring bieden voor de vermeende grote toename van scores tussen voormeting en nameting voor een lage prestatiegroep (bv. slechte lezers), ten opzichte van een kleinere toename voor een hoge prestatiegroep (bv. goede lezers). Omgekeerd kan het ook een alternatieve verklaring bieden voor de vermeende afname van scores tussen voormeting en nameting voor een hoge prestatiegroep (bv. goede lezers), ten opzichte van een lage prestatiegroep (bv. slechte lezers).

Het is beter om de groepen *niet* samen te stellen op basis van een van de uitkomsten van een van de metingen (voormeting of nameting), maar op basis van een ander, onafhankelijk criterium. De proefpersonen van beide groepen zullen dan zullen bij de voormeting ongeveer gemiddeld scoren, en het effect van regressie naar het gemiddelde is dan klein. In alle groepen zullen dan ongeveer evenveel proefpersonen zitten met een door het toeval iets te hoge als met een iets te lage uitgevallen score, zowel bij de voormeting als bij de nameting.

5. Een vijfde bedreiging van de interne validiteit is **selectie**. Hiermee doelen we (voornamelijk) op een zodanige verdeling van proefpersonen over verschillende condities dat deze bij aanvang van het onderzoek niet gelijkwaardig zijn. Wanneer bijvoorbeeld in de experimentele conditie alle slimme proefpersonen zitten, terwijl in de controleconditie alleen de domme leerlingen terecht gekomen zijn, dan kan een effect niet zonder meer aan de manipulatie van de onafhankelijke variabele toegeschreven worden. Het verschil in aanvangsniveau (hier: in intelligentie) levert dan een plausibele alternatieve verklaring die de interne validiteit bedreigt.

Voorbeeld 5.5: Voor een eerlijke vergelijking tussen scholen van hetzelfde schooltype (VMBO, HAVO, VWO, etc) moeten we rekening

houden met verschillen tussen scholen in hun ingangsniveau van de leerlingen. Stel dat school A leerlingen heeft met ingangsnivo 50, en eindexamennivo 100 (op een willekeurige schaal). School B heeft leerlingen met ingangsnivo 30, en eindexamennivo 90 (op dezelfde schaal). Is school B slechter dan A (want lager eindnivo), of is school B beter dan A (want kleiner verschil in eindnivo)?

In veel onderwijskundig onderzoek is het onmogelijk om leerlingen van verschillende klassen op basis van het toeval aan condities toe te wijzen — dit wordt wel aselecte toewijzing genoemd. Dit kan namelijk onoverkomelijke organisatorische problemen met zich meebrengen. Deze organisatorische problemen omvatten meer dan alleen het (aselect) splitsen van de klas, hoewel dit vaak al lastig te realiseren is. Ook moet de onderzoeker rekenschap afleggen van mogelijke overdrachtseffecten tussen de condities: de leerlingen praten met elkaar, leren elkaar misschien zelfs wel de essentialia van de experimentele conditie(s). Het uitblijven van een effect zou dan op tenminste één alternatieve manier verklaard kunnen worden. Vanwege de geschetste problematiek worden vaak complete schoolklassen toegewezen aan een van de condities. Maar klassen bestaan uit een aantal leerlingen van dezelfde school. Bij de keuze van leerlingen, en hun ouders, voor een school treedt zelf-selectie op (in het Nederlandse onderwijssysteem), waardoor er verschillen zijn in uitgangspositie tussen condities (d.w.z. tussen klassen binnen condities). Eventuele gevonden verschillen tussen condities zouden dus ook door zelfselectie van leerlingen naar scholen veroorzaakt kunnen zijn.

Hierboven is al de meest eenvoudige manier aangegeven om verschillende condities een gelijk aanvangsniveau te geven: wijs de leerlingen aselect, volgens toeval, 'at random', toe aan de condities. Deze methode staat bekend als randomisatie (Shadish et al., 2002, p.294 ff). We kunnen bijvoorbeeld randomiseren door leerlingen een willekeurig (random) nummer te geven (zie Appendix A) en daarna de 'even leerlingen' aan de ene conditie en de 'oneven leerlingen' aan de andere conditie toe te wijzen. Bij aselecte toewijzing van proefpersonen aan condities berusten alle verschillen tussen de proefpersonen in de verschillende condities op toeval, en worden die verschillen dus uitgemiddeld. Naar alle waarschijnlijkheid zijn er dan geen systematische verschillen tussen de onderscheiden groepen of condities. Dit geldt echter alleen indien de groepen groot genoeg zijn.

Randomisatie, de aselecte toewijzing van proefpersonen aan condities, moet onderscheiden worden van de aselecte steekproeftrekking uit een populatie (zie §7.3). Bij aselecte steekproeftrekking gaat het om de willekeurige selectie van proefpersonen uit de populatie van mogelijke proefpersonen naar de steekproef; we streven er dan naar dat de steekproef of steekproeven lijken op de populatie waaruit die getrokken is/zijn. Bij randomisatie gaat het om de willekeurige toewijzing van de proefpersonen uit de steekproef aan de verschillende condities van het onderzoek; we streven er dan naar dat de steekproeven lijken op elkaar.

Een tweede methode om twee gelijke groepen te creëren is *matching*. Bij matching worden proefpersonen eerst gemeten op een aantal relevante variabelen. Daarna worden koppels gevormd die een gelijke score op deze variabelen hebben. Van deze koppels wordt er één aan de ene conditie en één aan de andere conditie toegewezen. Matching heeft echter verschillende bezwaren. Ten eerste kan regressie naar het gemiddelde een rol gaan spelen. Ten tweede is matching, wanneer de proefpersonen op meerdere variabelen gematcht moeten worden, zeer bewerkelijk, en is een grote groep potentiële proefpersonen vereist. Ten derde wordt bij matching alleen rekening gehouden met variabelen die de onderzoeker relevant acht, en niet met andere onbekende variabelen. Bij randomisatie wordt niet alleen gerandomiseerd naar die relevante variabelen, maar ook naar andere eigenschappen die mogelijk een rol zouden kunnen spelen zonder dat de onderzoeker zich dat realiseert. Kortom, de relatief eenvoudige randomisatie is verre te prefereren boven matching.

6. Uitval van respondenten is de laatste bedreiging van interne validiteit. In sommige gevallen begint een onderzoeker met veel proefpersonen. Gedurende het onderzoek vallen echter proefpersonen uit. Zolang het percentage uitvallers beperkt blijft, is er geen probleem. Maar er ontstaat wel een probleem, als de uitval selectief is voor één van de onderscheiden condities. Is dat laatste wel het geval, dan kan er over die conditie niet veel meer gezegd worden. Het probleem van uitval speelt vooral een rol bij longitudinaal onderzoek. Dit is onderzoek waarbij een beperkte groep respondenten gedurende een langere periode gevolgd wordt. Men heeft daarbij echter te maken met mensen die verhuizen, of overlijden gedurende het experiment, of participanten die niet meer willen meewerken, enz. Dit kan een enorme reductie van het aantal respondenten teweeg brengen.

Hierboven hebben we een aantal veel voorkomende problemen besproken die de interne validiteit van een onderzoek kunnen bedreigen. De lijst is echter niet uitputtend! Elk type onderzoek heeft zo z'n eigen problemen, en het is de taak van de onderzoeker om alert te zijn op mogelijke bedreigingen van de interne validiteit. Probeer daartoe plausibele verklaringen te bedenken die een eventueel effect ook, of zelfs beter zouden kunnen verklaren dan de te onderzoeken oorzaak. De onderzoeker moet dus denken als zijn eigen scepticus, die geenszins overtuigd is dat de onderzoekte factor werkelijk de oorzaak is van het gevonden effect. Welke mogelijke alternatieve verklaringen zijn er volgens die scepticus, en hoe zou de onderzoeker die bedreigingen voor de validiteit kunnen wegnemen door de opzet van het onderzoek? Dat vereist goed inzicht in de logische relaties tussen de onderzoeksvragen, de onderzochte variabelen, de resultaten, en de conclusie.

5.5 Constructvaliditeit

In een experimenteel onderzoek wordt een onafhankelijke variabele gemanipuleerd. Dit kan, afhankelijk van de vraagstelling, op vele manieren. Evenzo kan de wijze waarop de afhankelijke variabele(n) gemeten wordt op verschillende manieren vorm gegeven worden. De manier waarop de onafhankelijke en de afhankelijke variabelen vorm gegeven worden noemen we de operationalisatie van deze variabelen. De leesvaardigheid van leerlingen kan bijvoorbeeld geoperationaliseerd worden als (a) hun score op een tekstbegriptoets met open vragen; (b) hun score op een tekstbegriptoets met meerkeuzevragen; (c) hun score op een zgn. cloze-toets (ontbrekend woord invullen); of (d) als de mate waarin geschreven instructies uitgevoerd kunnen worden. Meestal zijn er heel veel manieren om een variabele te operationaliseren, en zelden volgt uit een theorie één dwingende beschrijving voor de wijze van operationalisatie van de onafhankelijke of de afhankelijke variabelen. Constructvaliditeit, of begripsvaliditeit, heeft betrekking op de mate waarin de operationalisatie van zowel de afhankelijke variabele(n) als de onafhankelijke variabele(n) een adequate afspiegeling is (zijn) van de theoretische constructen waar het onderzoek zich op richt. Met andere woorden: zijn de onafhankelijke en de afhankelijke variabelen goed gerelateerd aan de theoretische concepten waar het onderzoek op gericht is?

Voorbeeld 5.6: De taalontwikkeling van babies en peuters is lastig te observeren, en al helemaal als het gaat om de auditieve en perceptieve ontwikkeling van deze proefpersonen die nog niet of nauwelijks zelf spreken. Een veel gebruikte methode is het Head Turn Preference Paradigm (Johnson and Zamuner, 2010). Bij deze methode kijkt de baby eerst naar een groen knipperend licht recht voor zich. Als de aandacht van het kind zo is gevangen, dooft vervolgens het groene licht en begint een rood licht te knipperen, aan de linker of rechter zijde van de proefpersoon. Het kind draait dan zijn of haar hoofd om het knipperende licht te zien. Vervolgens wordt er een spraakgeluidsbestand afgespeeld, via een luidspreker vlak bij het knipperende licht aan de zijkant. De afhankelijke variabele is de periode waarin het kind zijwaarts blijft kijken (met minder dan 2 s onderbreking). Daarna begint een nieuwe aanbiedingscyclus. De kijktijd wordt opgevat als een indicatie voor de mate van voorkeur van het kind voor de gesproken stimulus.

De interpretatie van de verkregen kijktijden is echter lastig, omdat kinderen nu eens voorkeur hebben voor nieuwe geluidsstimuli (bv zinnen in een onbekende taal), en dan weer juist aan bekende stimuli (bv grammaticale vs ongrammaticale zinnen). Zelfs als de stimuli

nauwkeurig zijn afgestemd op het ontwikkelingsniveau van de proefpersoon, is het lastig om de afhankelijke variabele (kijktijd) goed te relateren aan het bedoelde theoretische construct (voorkeur van kind).

Voorbeeld 5.7: Zoals hierboven aangegeven kan het begrip leesvaardigheid op allerlei manieren worden geoperationaliseerd. Volgens sommigen kan leesvaardigheid niet goed gemeten worden met behulp van meerkeuzevragen (Houtman 1986, Shohamy 1984). Bij meerkeuzevragen worden de antwoorden zeer sterk beïnvloed door andere zaken zoals algemene ontwikkeling, gokvaardigheid, ervaring met eerdere toetsen, en door de vraagstelling zelf, zoals geïllustreerd in deze vraag:

Wie van de volgende personen heeft de afgelopen jaren een autobiografie gepubliceerd?

- a. Jeanne d'Arc (algemene ontwikkeling)
- b. mijn buurvrouw (vraagstelling, ervaring)
- c. Malala Yousafzai
- d. Alexander Graham Bell (algemene ontwikkeling)**

Deze vraag is duidelijk niet construct-valide voor het meten van kennis over autobiografieën.

Uiteraard gelden bovengenoemde problemen met de constructvaliditeit niet alleen voor schriftelijke vragen of meerkeuzevragen, maar ook voor mondelinge vragen aan proefpersonen.

Voorbeeld 5.8: Als we ouders mondeling de vraag stellen Hoe vaak leest U uw kind eigenlijk voor? dan wekken we met die vraag al de suggestie dat voorlezen wenselijk is. De ouders zouden hun voorleesgedrag wel eens kunnen overschatten. We meten dus niet alleen het construct 'voorleesgedrag', maar ook het construct 'neiging tot sociaal wenselijke antwoorden' (zie hierna).

Een notoir lastig construct om te operationaliseren is schrijfvaardigheid. Wat is een goed en wat is een slecht schrijfproduct? En wat is dan eigenlijk schrijfvaardigheid? Kan schrijfvaardigheid gemeten worden door een telling van relevante inhoudselementen in een tekst, moeten er zinnen of woorden geteld worden, of misschien vooral connectieven (dus, want, omdat, hoewel, enz), moeten er oordelen van lezers verzameld worden over de geschreven tekst (t.a.v. doelgerichtheid, publiekgerichtheid, stijl), of moet er één oordeel van lezers verzameld worden over de globale kwaliteit, moeten er spelfouten geteld worden, etc? De problemen bij de operationalisatie komen voort uit een gebrek aan theorie over schrijfvaardigheid, waaruit een definitie voor de kwaliteit van schrijfproducten afgeleid zou kunnen worden (Van den Bergh and Meuffels, 1993). Kritiek op onderzoek naar schrijfvaardigheid is daarom makkelijk, maar alternatieve operationalisaties van het construct zijn moeilijk.

Een ander lastig construct is de verstaanbaarheid van gesproken zinnen. Verstaanbaarheid ('intelligibility') kan op diverse manieren worden geoperationaliseerd. De eerste mogelijkheid is dat de onderzoeker de woorden of zinnen uitspreekt en dat de proefpersoon die naspreekt, waarbij fouten in de reproductie geteld worden; een nadeel hierbij is dat er nauwelijks controle is over de model-uitspraak van de onderzoeker. Een tweede mogelijkheid is dat de woorden of zinnen vooraf worden opgenomen en verder dezelfde procedure wordt gevolgd; een nadeel blijft dat de responsies worden beïnvloed door kennis van de wereld, grammaticale verwachtingen, bekendheid met de spreker of zijn taalgebruik, enz. De meest betrouwbare methode is die van de zgn. 'speech reception threshold' (Plomp and Mimpen, 1979) beschreven in het volgende voorbeeld. Deze methode heeft echter als nadeel dat ze tijdrovend is, niet goed automatisch afgenomen kan worden, en dat er veel stimulusmateriaal (spraakopnamen) nodig is (zijn) voor een enkele meting.

Voorbeeld 5.19: We laten een lijst van 13 gesproken zinnen horen, gemaskeerd met ruisgeluid. De verhouding tussen spraak en ruis (speech-to-noise ratio, SNR) wordt uitgedrukt in dB. Bij 0 dB SNR zijn spraak en ruis even luid, bij +3 dB SNR is de spraak 3 dB luider dan de ruis, bij -2 dB SNR is de spraak 2 dB zachter dan de ruis, etc. Na iedere zin moet de luisteraar de aangeboden zin naspreken. Als dat foutloos gebeurt, dan wordt voor de volgende zin de SNR met 2 dB verlaagd (minder spraak of meer ruis); als de responsie fout was, dan wordt voor de volgende zin de SNR met 2 dB verhoogd (meer spraak of minder ruis). Na een paar zinnen is er weinig variatie meer in SNR, en schommelt de SNR rond een optimum. De gemiddelde SNR over de laatste 10 aangeboden zinnen vormt de 'speech reception threshold' (SRT). Deze SRT is ook op te vatten als de SNR waarbij de helft van de zinnen goed wordt verstaan.

Tot nog toe hebben we het gehad over problemen met betrekking tot de constructvaliditeit van de afhankelijke variabelen. Maar ook de operationalisatie van de onafhankelijke variabele staat vaak ter discussie. De onderzoeker heeft immers vele keuzes moeten maken tijdens de operationalisering van zijn onafhankelijke variabele (zie §2.6), en de gemaakte keuzes zijn vaak wel aanvechtbaar

Een onderzoek is niet constructvalide, of niet begripsvalide, als de operationalisaties van de afhankelijke variabelen de toets der kritiek niet kunnen doorstaan. Een onderzoek is ook niet constructvalide, als de onafhankelijke variabele niet een valide operationalisatie is van het-theoretische-begrip-zoals-bedoeld. Als die operationalisatie niet valide is, dan wordt er dus eigenlijk iets anders gemanipuleerd dan de bedoeling was. In dat geval is de relatie tussen de afhankelijke variabele en de gemanipuleerde onafhankelijke variabele zoals bedoeld niet eenduidig meer. Eventuele geobserveerde verschillen in de afhankelijke variabele hoeven niet alleen veroorzaakt te worden door de onafhankelijke variabele zoals bedoeld, maar kunnen ook beïnvloed zijn door andere factoren. Een bekend effect in dit opzicht is het zogenaamde Hawthorne-effect.

Voorbeeld 5.10: De directie van de Hawthorne Works Factory (Western Electric Company) in Cicero (Illinois), USA, was gealarmeerd door slechte bedrijfsresultaten. Een team onderzoekers nam de gang van zaken onder de loep, waarbij ongeveer alles werd onderzocht: werktijden, beloning, pauzes, verlichting, verwarming, werkoverleg, management, enz. De resultaten van dat onderzoek (uit 1927) wezen uit dat de productiviteit enorm was gestegen – maar dat er geen verband was met een van de onafhankelijke variabelen. De toename van productiviteit werd uiteindelijk toegeschreven aan de grotere aandacht voor de werknemers.

Het Hawthorne-effect houdt dus in dat een verandering in gedrag niet samenhangt met de manipulatie van enige onafhankelijke variabele, maar dat die verandering van gedrag het gevolg is van een psychologisch verschijnsel: proefpersonen die weten dat ze worden geobserveerd, doen meer hun best om gewenst gedrag te vertonen.

Voorbeeld 5.11: (Richardson et al., 1978) vergeleken de effectiviteit van twee methoden ter verbetering van de leesvaardigheid van slechte lezers. De leerlingen werden geselecteerd op basis van hun scores op drie toetsen. De 72 geselecteerde leerlingen werden aselect toegewezen aan één van de twee methode-condities (gestructureerd leesonderwijs versus geprogrammeerde instructie). In de eerste conditie werd het gestructureerde leesonderwijs verzorgd door vier docenten, die aan een klein groepje (van vier leerlingen) les gaven. In feite is de leerling-docent-ratio dus 1 : 1. In de tweede conditie (geprogrammeerde instructie) bemoeiden de docenten zich zo min mogelijk met de leerlingen. Het experiment nam 75 sessies van 45 minuten in beslag. Na de tweede observatie bleek dat de leerlingen die volgens de eerste (gestructureerde) methode les gekregen hadden, beter vooruit waren gegaan dan de leerlingen die met behulp van de tweede methode (geprogrammeerde instructie) les gekregen hadden.

Tot zover is er geen probleem met dit onderzoek. Er ontstaat pas een probleem als we zouden concluderen dat de gestructureerde methode beter is dan de geprogrammeerde instructie. Een alternatieve verklaring, die in dit onderzoek niet uitgesloten kan worden, is dat het gevonden effect niet (alleen) het gevolg is van de methode, maar (ook) een gevolg is van de grotere individuele aandacht in de eerste conditie (gestructureerd leesonderwijs).

Net zoals bij de interne validiteit kan ook bij de construct- of begripsvaliditeit een aantal validiteitbedreigende factoren genoemd worden.

1. Een eerste bedreiging van de begripsvaliditeit is mono-operationalisatie. In veel onderzoeken wordt de afhankelijke variabele slechts op één manier geoperationaliseerd. De proefpersonen hoeven slechts één taak uit te voeren, bv. één auditieve taak met reactietijdmetingen (over meerdere aanbiedingen), of één vragenlijst (met meerdere vragen). Het onderzoek staat of valt dan met deze specifieke operationalisatie van de afhankelijke variabele. Over de validiteit van deze specifieke operationalisatie zijn dan geen verdere gegevens voorhanden. De onderzoeker laat in zo'n geval ruimte voor twijfel. Strikt genomen moeten we de onderzoeker immers op zijn woord geloven omtrent de validiteit van zijn operationalisering. Dergelijk onderzoek kan veel beter worden uitgevoerd. De onderzoeker moet dan het te meten construct op verschillende manieren operationaliseren, bv. door meerdere auditieve taken te laten uitvoeren, met niet alleen reactietijdmetingen maar ook met tellingen van foutieve responsies. Of de onderzoeker laat niet alleen een vragenlijst invullen, maar observeert

het bedoelde construct ook d.m.v. andere taken en observatiemethoden. Wanneer de prestaties op de verschillende typen responsies in hoge mate samenhangen, kan daarmee aangetoond worden dat al deze toetsen hetzelfde construct vertegenwoordigen. We noemen dit convergente validiteit. Er is sprake van convergente validiteit als de prestaties op instrumenten die hetzelfde theoretische construct vertegenwoordigen, in hoge mate samenhangen (convergeren).

Het is echter niet voldoende om te laten zien dat toetsen die hetzelfde concept of construct beogen te meten, inderdaad convergent valide zijn. Daarmee is immers nog niet aangetoond wat dit construct is, en evenmin of het gemeten construct wel het bedoelde construct is. Hebben we wel echt 'vloeiendheid' van de spreker gemeten, met meerdere methoden, of hebben we eigenlijk steeds het construct 'aandacht' of 'spreeksnelheid' gemeten? En hebben we wel echt 'mate van tekstbegrip' gemeten, met verschillende convergente methoden, of hebben we eigenlijk steeds het construct 'faalangst' gemeten? Om de construct-validiteit te waarborgen moet eigenlijk ook worden aangetoond dat de operationalisaties divergent valide zijn ten opzichte van operationalisaties die een ander aspect of een ándere (verwante) vaardigheid beogen te meten. Kortom de onderzoeker moet kunnen aantonen dat de prestaties op instrumenten (operationalisaties) die één vaardigheid (construct) vertegenwoordigen in hoge mate samenhangen (convergeren), terwijl de prestaties op instrumenten die verschillende vaardigheden vertegenwoordigen juist lage samenhang vertonen (divergeren). Pas dan heeft de onderzoeker aannemelijk gemaakt dat de specifieke operationalisaties inderdaad constructvalide zijn.

2. Ook de verwachtingen van de onderzoeker — die zich uiten in bewust èn onbewust gedrag — kunnen de constructvaliditeit van een onderzoek bedreigen. De onderzoeker is ook een mens, en is dus niet immuun voor de invloed van zijn of haar eigen verwachtingen op de uitkomsten van het onderzoek. Na afloop van het experiment is de invloed van de onderzoeker helaas moeilijk te achterhalen.

Voorbeeld 5.12:Kluger Hans was een paard dat kon rekenen. Als aan Kluger Hans gevraagd werd hoeveel is 4+4?, dan stampte het paard 8 maal met zijn rechter voorhoef, als gevraagd werd hoeveel is 3-1?, dan stampte Hans twee maal met zijn voorhoef. Kluger Hans baarde veel opzien en werd onderwerp van verschillende studies. Een commissie stelde in 1904 vast dat Kluger Hans inderdaad kon rekenen (en communiceren met mensen). Later constateerde een lid van de onderzoekscommissie, Carl Stumpf, samen met zijn assistent Oskar Pfungst, echter: "...het paard laat verstek gaan, als de oplossing van de gestelde opgave aan geen van de aanwezigen bekend is" (Pfungst,

1907, p.185, vert. HQ), of als het de persoon die de oplossing weet niet kan zien. "Es bedarf also optischer Hilfen" (idem). Na nauwkeurige observaties bleek dat de baas van Kluger Hans (en andere aanwezigen) zich een heel klein beetje ontspande zodra Hans het juiste aantal malen met zijn rechter voorpoot gestampt had. Dit onopzettelijke teken was voor Kluger Hans voldoende aanleiding om het stampen te staken (d.i. om zijn rechter voorhoef op de grond te houden), teneinde daarna zijn beloning van wortels en brood in ontvangst te nemen (Pfungst, 1907) (Watzlawick, 1977, p.38–47).

Een misschien vergelijkbaar, recenter geval is dat van Alex, een papegaai met bijzondere cognitieve gaven, zie o.a. (Boswall, zj) en (Ale, 2015).

Het beroemde voorbeeld van Kluger Hans illustreert hoe subtiel de invloed van een onderzoeker of proefleider op het te onderzoeken object kan zijn. Deze invloed bedreigt natuurlijk de constructvaliditeit. Het is daarom beter als de onderzoeker niet ook zelf fungeert als experimentator¹ of proefleider. Studies waarin de onderzoeker zelf optreedt als behandelaar of docent of beoordelaar, kunnen worden bekritiseerd omdat de (verwachtingen van de) onderzoeker de uitkomsten kunnen beïnvloeden, waardoor de constructvaliditeit van de onafhankelijke variabele wordt bedreigd. Onderzoekers kunnen zich wel verweren tegen deze 'experimenter bias'. In het Head Turn Preference Paradigm (voorbeeld 5.6), bijvoorbeeld, is het gebruikelijk dat de experimentator niet weet uit welke groep een proefpersoon afkomstig is, en dat de experimentator niet hoort welk geluidsbestand wordt aangeboden (Johnson and Zamuner, 2010, p.74).

3. Een derde bedreiging van de constructvaliditeit kan samengevat worden onder de term *motivatie*. Aan de bedreiging van de validiteit door motivatie zitten tenminste twee kanten. Als (ten minste) één van de condities in een onderzoek erg belastend of vervelend is, dan kunnen de proefpersonen gedemotiveerd raken en zich minder inspannen bij hun taken. Ze presteren dan minder, maar dit is een effect van (gebrek aan) motivatie, en niet een direct effect van de onafhankelijke variabele (hier: conditie). Het effect hoeft dan niet veroorzaakt te worden door de manipulatie van het bedoelde construct, maar door de onbedoelde manipulatie van de *motivatie* van de proefpersonen. Ook het omgekeerde kan natuurlijk een bedreiging van de constructvaliditeit vormen. Indien van één van de condities een extra motiverende werking op de proefpersonen heeft, dan kan een eventueel effect toegeschreven worden aan motivationele aspecten. Ook dan kan er sprake zijn van een effect van een onbedoeld gemanipuleerde variabele.

¹De experimentator is degene die een experiment afneemt bij een proefpersoon. De experimentator kan een andere persoon zijn dan de onderzoekers die de onderzoekshypothesen hebben opgesteld en/of proefpersonen hebben gerecruteerd.

4. Een vierde bedreiging van de validiteit heeft te maken met de keuze uit de vele mogelijke waarden van een onafhankelijke variabele, d.w.z. de 'dosering' ervan. Als de onafhankelijke variabele is 'het aantal keren dat een gedicht ter voorbereiding mag worden doorgelezen', moet de onderzoeker bepalen hoeveel keer de proefpersonen het gedicht mogen doorlezen: één, twee, drie of meer keren? Als de onafhankelijke variabele is 'de tijd die de proefpersonen mogen studeren', dan moet de onderzoeker kiezen hoe lang de proefpersonen mogen leren: vijf minuten, een kwartier, twee uur? De onderzoeker maakt een keuze uit de dosering van de onafhankelijke variabele 'leertijd'. Op grond van deze dosering kan de onderzoeker concluderen dat de afhankelijke variabele niet beïnvloed wordt door de onafhankelijke variabele. In feite moet de onderzoeker echter concluderen dat er geen verband lijkt tussen de gekozen dosering van de onafhankelijke variabele, en de afhankelijke variabele. Een mogelijk effect wordt verhuld door de keuze van de dosering (waarden) van de onafhankelijke variabele.

Voorbeeld 5.13: Als een personenauto en een voetganger botsen, loopt de voetganger een risico te overlijden. Dat overlijdensrisico is relatief gering (kleiner dan 20%) bij botsingssnelheden tot ca 50 km/u. Als we ons onderzoek naar het verband tussen botsingssnelheid en overlijdensrisico zouden beperken tot deze lage 'doseringen' van botsingssnelheden, dan zouden we wellicht concluderen dat de botsingssnelheid géén invloed heeft op het overlijdensrisico voor de voetganger. Dat zou een foutieve conclusie zijn (van welk type?), want bij hogere botsingssnelheden neemt het overlijdensrisico voor de voetganger toe tot bijna 100% (Rosén et al., 2011; SWOV, 2012).

5. Een vijfde bedreiging van de constructvaliditeit wordt veroorzaakt door de sturende werking van de voormeting. In veel studies wordt de afhankelijke variabele herhaaldelijk gemeten, zowel voor als na manipulatie van de afhankelijke variabele: de zgn. voormeting en nameting. De aard en inhoud van de voormeting kunnen echter sporen nalaten bij de proefpersoon. Zo kan de proefpersoon zijn onbevangenheid verliezen, waardoor het effect van de onafhankelijke variabele (bv. behandeling) wordt verkleind. Een eventueel verschil in scores tussen de experimentele condities kan dus op meerdere manieren worden verklaard. De verklaring kan immers liggen in een effect van alleen de onafhankelijke variabele, maar kan ook liggen in een effect van de combinatie van voormeting en onafhankelijke variabele. Bovendien kan de afwezigheid van een effect soms worden verklaard door het feit dat een voormeting is verricht (zie het Solomon vier-groepen-ontwerp, in Hoofdstuk 6, voor een onderzoeksontwerp dat hiermee rekening houdt).

Voorbeeld 5.14: We kunnen de effecten van twee behandelingen vergelijken in een experiment waarin de deelnemers volgens het toeval in twee groepen worden ingedeeld. De eerste groep (E) krijgt eerst een voormeting, dan een behandeling, en dan een nameting. De tweede groep (C) krijgt geen voormeting, en ook geen behandeling, maar alleen een nameting, die voor deze groep de enige meting is.

Als we bij de nameting een verschil vinden tussen de twee groepen, dan is dat niet zonder meer toe te schrijven aan het verschil in behandeling. Het verschil zou ook, of mede, veroorzaakt kunnen zijn door de sturende werking van de voormeting, by als gevolg van de sturende woordkeuze of zinsbouw van de vragen of opdrachten in de voormeting. Misschien hebben de deelnemers in groep E iets geleerd in de voormeting, d.w.z. *niet* in de behandeling, waardoor ze beter of anders presteren in de nameting dan de deelnemers in groep C.

6. Een ander probleem dat van invloed kan zijn op de constructvaliditeit is sociaal wenselijk antwoorden. Dat is niets anders dan dat mensen geneigd zijn een antwoord geven, dat in de gegeven sociale situatie wenselijk is, en dat hen dus niet in de problemen brengt of tot gezichtsverlies leidt. Een voorbeeld kan dit verduidelijken.

Voorbeeld 5.15: Bij peilingen voor verkiezingen zijn respondenten geneigd om sociaal wenselijk te antwoorden, en dat geldt ook voor de vraag of de respondent überhaupt zal gaan stemmen (Karp and Brockington, 2005). De neiging tot het sociaal wenselijke antwoord ("ja, ik ga stemmen") is sterker naarmate respondenten hoger zijn opgeleid, en dus is de overschatting van het opkomst-percentage groter voor hoger-opgeleiden dan voor lager-opgeleiden. Dat heeft weer gevolgen voor de uitslagen van de peilingen van de verschillende partijen, omdat de populariteit van de politieke partijen verschillend is voor kiezers van verschillend opleidingsniveau.

Dit effect heeft mede gezorgd voor de overschatting van het aantal Clintonstemmers, en onderschatting van het aantal Trump-stemmers, bij de peilingen voorafgaand aan de Amerikaanse presidentsverkiezing in 2016. 7. Een laatste probleem met betrekking tot de constructvaliditeit kan aangeduid worden als: een beperkte generaliseerbaarheid over constructen. Bij de presentatie van onderzoeksresultaten worden regelmatig opmerkingen gemaakt als: 'Ja, ik ben het eens met uw conclusie dat X van invloed is op Y, maar hoe zit het met...'. Op de puntjes kan dan van alles ingevuld worden: de toepasbaarheid bij andere doelgroepen, of in andere genres, of in andere talen, etc. Deze aspecten zijn weliswaar van belang, maar spelen in het onderzoek zelf niet direct een rol: we hebben het onderzoek immers uitgevoerd met een bepaalde selectie van doelgroep, genre, talen, etc.

Toch bevelen we wel aan om zulke vragen over generaliseerbaarheid onder ogen te zien. Zijn de conclusies eveneens van toepassing op een andere doelgroep of taal? Waarom wel of niet? Welke andere factoren zouden de generalisatie kunnen beïnvloeden? Zou een gunstig effect voor de ene groep of taal ook kunnen uitpakken als een ongunstig effect voor een andere groep of taal die buiten het onderzoek is gevallen?

5.6 Externe validiteit

Op basis van de gegevens die zijn verzameld kan een onderzoeker — als het goed is — de conclusie trekken: in dit onderzoek geldt dat.... Het is echter zelden de bedoeling van een onderzoeker om conclusies te trekken die alleen gelden voor één onderzoek. Een onderzoeker wil niet aantonen dat tweetaligheid een gunstige invloed heeft op de taalontwikkeling van de steekproef van onderzoekte kinderen. Een onderzoeker wil conclusies trekken als: tweetaligheid heeft een gunstige invloed op de taalontwikkeling van kinderen. De onderzoeker wil generaliseren. In het dagelijks leven doen we hetzelfde: we proeven één hapje soep uit een hele pan, en op grond daarvan doen we een uitspraak over die hele pan soep. We gaan er van uit dat onze bevindingen op basis van dat ene hapje gegeneraliseerd mogen worden naar de hele pan, en dat het niet nodig is om de hele pan leeg te eten voordat we er een uitspraak over kunnen doen.

De vraag of een onderzoeker de resultaten kan en mag generaliseren is de vraag naar de externe validiteit van een onderzoek (Shadish et al., 2002). Generalisatie heeft betrekking op o.a.

- eenheden: zijn de resultaten ook geldig voor andere elementen (bv. scholen, personen, teksten) uit de populatie, die niet aan het onderzoek deelnamen?
- behandelingen: zijn de resultaten ook geldig voor andere behandelingen die lijken op de specifieke condities in dit onderzoek?
- situaties: zijn de resultaten ook geldig buiten de specifieke context van dit onderzoek?

• tijden: zijn de resultaten van dit onderzoek ook geldig op andere tijdstippen?

Bij externe validiteit maken we een onderscheid tussen (1) de generalisatie naar een beoogde specifieke doelgroep, situatie en tijd, en (2) de generalisatie over andere doelgroepen, situaties en tijden. Het generaliseren naar en over zijn twee aspecten van de externe validiteit die goed uit elkaar gehouden moeten worden. Het generaliseren naar een doelgroep of populatie, van personen en vaak ook van taalmateriaal, heeft te maken met de representativiteit van de gebruikte steekproef; in hoeverre is de steekproef een goede afspiegeling van de populatie (van personen, van woorden, van relevante mogelijke zinnen)? Het generaliseren naar is dus direct verbonden met het onderzoeksdoel; pas als er gegeneraliseerd kan worden naar gedefinieerde populaties kan een onderzoeksdoel bereikt zijn. Het generaliseren over doelgroepen heeft te maken met de mate waarin de geformuleerde conclusies geldig zijn voor te onderscheiden deelpopulaties. We illustreren dit met een voorbeeld.

Voorbeeld 5.16: (Lev-Ari and Keysar, 2010) onderzochten of luisteraars minder geloof hechten aan sprekers met een vreemd buitenlands accent in de uitspraak van het Engels. Voor de stimuli lieten ze zinnen uitspreken (bv. A giraffe can hold more water than a camel) door verschillende sprekers zonder enig accent, met licht accent, of met sterk accent. Luisteraars (moedertaal-sprekers van het Engels) gaven aan in welke mate ze dachten dat de gesproken zin waar was. De resultaten lieten zien dat de luisteraars de zinnen beoordeelden als minder waar, als de zin was gesproken door een spreker met een vreemd buitenlands accent.

We mogen aannemen dat deze uitkomst gegeneraliseerd kan worden *naar* de beoogde doelgroep, nl. alle moedertaal-luisteraars van het Amerikaans Engels. Deze generalisatie kan worden gemaakt ondanks de mogelijkheid dat verschillende luisteraars misschien in verschillende mate beïnvloed werden door het buitenlandse accent van de spreker.

Wellicht zou een latere analyse kunnen laten zien dat er verschil is tussen vrouwelijke en mannelijke luisteraars. Het is denkbaar dat vrouwen en mannen verschillen in hun gevoeligheid voor het accent van de spreker. Zo'n (denkbeeldige) uitkomst zou laten zien dat er niet gegeneraliseerd mag worden over deel-populaties binnen de doelgroep, hoewel er wel gegeneraliseerd kon worden naar de doelgroep.

In het (toegepast) taalwetenschappelijk onderzoek proberen onderzoekers doorgaans om tegelijkertijd te generaliseren naar twee populaties van eenheden, nl. van personen (c.q. scholen of families) en stimuli (woorden, zinnen, teksten, enz). We willen aannemelijk maken dat de resultaten niet alleen geldig zijn voor de onderzochte taalgebruikers, maar ook voor andere taalgebruikers. Tegelijkertijd willen we ook aannemelijk maken dat de resultaten niet alleen geldig zijn voor de onderzochte stimuli, maar ook voor andere vergelijkbaar taalmateriaal waaruit de steekproef van stimuli is getrokken. Die gelijktijdige generalisatie vereist een complex onderzoeksontwerp, doordat er herhaalde observaties zijn binnen proefpersonen (meerdere oordelen van eenzelfde proefpersoon) en binnen stimuli (meerdere oordelen over dezelfde stimulus). Stimuli, proefpersonen en condities worden vervolgens slim gecombineerd om de interne validiteit zo goed mogelijk te beschermen. Uiteraard vereist de generalisatie naar ander taalmateriaal wel, dat de stimuli willekeurig zijn geselecteerd uit de (soms oneindig grote) populatie van al het mogelijke taalmateriaal (zie Hoofdstuk 7).

Chapter 6

Ontwerp

6.1 Inleiding

Veel van de problemen met validiteit, die we bespraken in Hoofdstuk 5, kunnen voorkomen worden door goede gegevens op een goede manier te verzamelen. Het ontwerp (Eng. "design") van een onderzoek geeft aan volgens welk schema of plan de gegevens verzameld zullen worden. Als we een goed en sterk ontwerp gebruiken, dan kunnen we daarmee al veel mogelijke bedreigingen voor de validiteit neutraliseren. Dat maakt ons onderzoek sterker. Het is dus raadzaam om een onderzoeksontwerp vooraf heel goed te doordenken! Uiteraard moet het ontwerp nauw aansluiten bij de vraagstelling: de gegevens uit het onderzoek moeten de onderzoeker immers in staat stellen om een valide antwoord te geven op de onderzoeksvraag.

De onderzoeksontwerpen die we in dit hoofdstuk bespreken vormen slechts een beperkte selectie uit de mogelijke ontwerpen. Sommige ontwerpen bespreken we vooral om aan te geven wat er mis kan gaan bij een "zwak" ontwerp; andere ontwerpen zijn juist populair omdat ze relatief "sterk" onderzoek mogelijk maken.

Een onderzoeksontwerp is opgebouwd uit verschillende elementen:

• tijd, meestal afgebeeld als verstrijkend in de leesrichting. De tijdsvolgorde is van belang om een causaal verband vast te stellen: eerst de oorzaak, daarna het gevolg (§5.2). De tijdsvolgorde is echter een noodzakelijke voorwaarde, maar niet een voldoende voorwaarde om een causaal verband vast te stellen. Anders gezegd, ook als het gevolg (bv. herstel) inderdaad optreedt na de oorzaak (bv. behandeling), dan houdt dat niet in dat de behandeling ook inderdaad het herstel heeft veroorzaakt. Misschien is het herstel wel spontaan opgetreden, of is het herstel het gevolg van een andere oorzaak waar het onderzoek niet op gericht was.

Voorbeeld 6.1: Stel je Gus voor: als iemand last heeft van brandneteluitslag, of een insectenbeet, of eczeem, of een blauwe plek, dan spuit Gus er wat Glassex op — en na een paar dagen is de aandoening verdwenen. Gus is ervan overtuigd dat zijn Glassex-behandeling de oorzaak is van de genezing. Maar dit is een misvatting die bekend staat als "post hoc ergo propter hoc" (na iets dus als gevolg van iets). De aandoening zou hoogstwaarschijnlijk ook goed zijn genezen zonder de Glassex-behandeling. De genezing bewijst dus niet dat de Glassex-behandeling noodzakelijk is. (Dit voorbeeld is ontleend aan de speelfilm My Biq Fat Greek Wedding, 2004).

• groepen van eenheden (bv. proefpersonen), doorgaans correspondeert een groep met een regel in het ontwerp.

- behandeling, meestal afgebeeld als X. Een behandeling kan ook bestaan uit het ontbreken van een behandeling ("control"), of uit het aanbieden van de niet-experimentele, gebruikelijke behandeling ("usual care").
- observatie, meestal afgebeeld als 0.
- de toewijzing van proefpersonen aan groepen of behandelcondities kan op verschillende manieren gebeuren. Meestal doen we dat aselect (willekeurig, at random, hieronder aangegeven met R), omdat daarmee de validiteit meestal het beste beschermd wordt.

6.2 Tussen of binnen?

Voor het onderzoeksontwerp is het van groot belang of een onafhankelijke variabele gevarieerd wordt tussen proefpersonen of binnen proefpersonen. Voor veel taalkundig onderzoek, waarbij meerdere teksten of zinnen of woorden worden aangeboden als stimuli, geldt hetzelfde voor het onderscheid tussen stimuli of binnen stimuli.

Individuele variabelen van de proefpersonen, zoals diens geslacht (man, vrouw) of meertaligheid, kunnen normaliter alleen variëren tussen proefpersonen: eenzelfde proefpersoon kan niet meedoen aan beide geslachts-groepen van een onderzoek, en ééntalige proefpersonen kunnen niet meedoen in de groep van meertalige proefpersonen. Maar bij andere variabelen, die betrekking hebben op de wijze waarop stimuli worden verwerkt, is dat wel mogelijk. Dezelfde proefpersoon kan schrijven met zijn linkerhand en met zijn rechterhand, of kan geobserveerd worden voorafgaand aan en volgend op een behandeling. De onderzoeker moet dan in het onderzoeksontwerp kiezen op welke wijze de behandelingen en observaties worden gecombineerd. We komen daarop terug in §6.9.

6.3 Het one-shot single-case-ontwerp

Dit is een zwak ontwerp, waarbij er slechts éénmaal observaties worden gedaan, na een behandeling. Dit onderzoeksontwerp heeft het volgende schema:

X O

We zouden bijvoorbeeld kunnen tellen, voor alle eindwerkstukken van studenten van een bepaald opleiding van een bepaald cohort, hoeveel fouten (van een bepaald type) er in die eindwerkstukken voorkomen. Dat is wel een beetje interessant, maar wetenschappelijk zijn deze gegevens echter van weinig waarde. Er kan geen enkele vergelijking gemaakt worden met andere gegevens (van andere studenten, en/of andere werkstukken van dezelfde studenten). Het is niet mogelijk om een valide conclusie te trekken over mogelijke effecten van de "behandeling" (studie, X) op de observaties (aantal fouten, 0).

Soms worden de gegevens uit een one-shot-single-case-onderzoek geforceerd vergeleken met andere gegevens, bijvoorbeeld met norm-resultaten voor een grote controlegroep. Stel je voor dat we willen onderzoeken of een nieuwe methode van taalonderwijs leidt tot betere taalvaardigheid in de doeltaal. Na een cursus met de nieuwe lesmethode meten we de taalvaardigheid, en vergelijken die met de eerder gepubliceerde resultaten van een controlegroep die de traditionele lesmethode heeft gebruikt. Deze aanpak wordt veelvuldig toegepast, maar er zijn desalniettemin diverse factoren die de validiteit bedreigen (zie §5.4): o.a. geschiedenis (de nieuwe proefpersonen hebben een andere geschiedenis en levensloop gehad dan de controlegroep uit het verleden), rijping (de nieuwe proefpersonen zijn misschien verder of minder ver ontwikkeld dan de controlegroep), instrumentatie (de toets is mogelijk niet even geschikt voor personen onderwezen met de nieuwe lesmethode als met de traditionele methode), en uitval (de uitval van proefpersonen voorafgaand aan de observatie is niet bekend, noch voor de traditionele methode noch voor de nieuwe methode).

Voorbeeld 6.2: Een interviewer kan zgn. 'gesloten' vragen stellen met slechts enkele mogelijke antwoorden (welk van de drie groentesoorten vind je het lekkerst, doperwtjes of sperziebonen of broccoli?), of 'open' vragen waarin de mogelijke antwoorden niet worden beperkt door de vraagstelling (welke groente vind je het lekkerst?). Er is ook een derde categorie, nl. open vragen met voorbeeld-antwoorden (welke groente vind je het lekkerst, bijvoorbeeld doperwtjes of sperziebonen of...?). Het is echter niet duidelijk of deze voorbeeld-antwoorden wel of niet een sturend effect hebben, d.w.z. of ze meer vergelijkbaar zijn met gesloten of met open vragen. (Houtkoop-Steenstra, 1991)

bestudeerde opgenomen gesprekken tussen artsen en hun patiënten. De artsen stelden regelmatig open vragen met voorbeeldantwoorden. Meestal bleken de patiënten zo'n vraag *niet* als sturend op te vatten; zij vatten de vraag vooral op als een verzoek om te vertellen.

Dit onderzoek is te beschouwen als een one-shot-single-case-ontwerp, zonder vergelijking met gegevens uit andere condities. De conclusies zijn weliswaar gebaseerd op empirische observaties, maar we weten niet wat de geïnterviewde geantwoord zou hebben als de vraag anders gesteld zou zijn.

Ondanks al deze bezwaren kan een one-shot-case onderzoek wel van nut zijn in de observatiefase van de empirische cyclus, wanneer het gaat om het opdoen van ideeën en het formuleren van (globale) hypothesen, die later goed getoetst kunnen worden.

6.4 Het één-groep-voormeting-nameting-ontwerp

Bij het één-groep-voormeting-nameting-ontwerp worden gegevens verzameld van één groep. Op het eerste tijdstip (meestal aangeduid als T1, maar soms als T0) wordt een eerste meting uitgevoerd (voormeting, O1), vervolgens wordt de groep aan de experimentele behandeling blootgesteld, en tenslotte wordt op een later tijdstip (T2) een tweede meting uitgevoerd (nameting, O2). In schema ziet een één-groep-voormeting-nameting-ontwerp er als volgt uit:

01 X 02

De behandeling X varieert dus niet: iedereen krijgt dezelfde behandeling, want er is slechts één groep. Het tijdstip van de meting, meestal aangeduid als voormeting T0 (01) en nameting T1 (0), varieert binnen proefpersonen.

Dit ontwerp is over het algemeen beter beter dan het vorige one-shot-case-ontwerp én beter dan helemaal geen gegevens. Toch beschouwen wij het als een zwak onderzoeksontwerp, omdat diverse bedreigingen van de validiteit niet goed ondervangen worden (zie §5.4). Een eventueel verschil tussen 02 en 01 kan niet uitsluitend toegeschreven worden aan de tussenliggende behandeling X: dit effect kan ook het gevolg zijn van rijping (de verbetering is het gevolg van rijping van de proefpersonen) of van geschiedenis (de verbetering is het gevolg van een of meerdere gebeurtenissen anders dan X die zijn opgetreden tussen de tijdstippen van 01 en 02). Als de behandeling X of de nameting 02 afhankelijk is van de score op de voormeting 01, dan kan ook de regressie naar het gemiddelde de validiteit bedreigen. Kortom, aan dit onderzoeksontwerp kleven diverse bezwaren, omdat de hypothese over het effect van de onafhankelijke variabele niet zonder meer op valide wijze beantwoord kan worden.

6.5 Het voormeting-nameting-controlegroepontwerp

De bovengenoemde problemen kunnen voor een deel ondervangen worden door een controlegroep toe te voegen aan het ontwerp; we krijgen dan een voormetingnameting-controlegroep-ontwerp. Er zijn dan dus twee groepen van elementen (proefpersonen). In schema wordt dat weergegeven door twee regels. Dit onderwerp wordt zeer vaak gebruikt. Waar mogelijk proberen onderzoekers de twee groepen zo vergelijkbaar mogelijk te maken, door de proefpersonen aselect (at random, willekeurig, volgens toeval) toe te wijzen aan de twee groepen. In schema ziet dit model er als volgt uit (de R staat voor random toewijzing aan de twee groepen):

R 01 X 02 R 03 04

Dit onderzoeksontwerp is populair, omdat het veel mogelijke bedreigingen van de interne validiteit kan ondervangen (zie §5.4). Het effect van de manipulatie of behandeling (X) wordt geëvalueerd door een vergelijking van de twee verschillen (02–01) en (04–03). Dit onderzoeksontwerp heeft eigenlijk niet één maar twee onafhankelijke variabelen, die van invloed kunnen zijn op de metingen: (1) de manipulatie of behandeling, X of niet-X, variërend tussen proefpersonen, en (2) het tijdstip van de meting, meestal aangeduid als voormeting T0 en nameting T1, variërend binnen proefpersonen.

In dit ontwerp wordt wel rekening gehouden met de effecten van geschiedenis, althans voor zover die effecten voor beide groepen in gelijke mate zijn opgetreden. Er wordt geen rekening gehouden met gebeurtenissen die slechts één van de groepen (condities) hebben beïnvloed. Als er wel zo'n gebeurtenis is geweest voor de ene groep en niet voor de andere groep, dan kan dat verschil in geschiedenis dus ook verantwoordelijk zijn voor een ongelijk verschil tussen voormeting en nameting in de ene groep ten opzichte van de andere groep.

De bedreiging van de interne validiteit door rijping kan in dit onderzoeksontwerp makkelijk opgevangen worden. Een effect van rijping komt immers naar verwachting in beide groepen in gelijke mate tot uiting, en kan daarom niet van invloed zijn op het verschil tussen (02–01) en (04–03). Natuurlijk gaan we er hierbij vanuit dat de voormetingen voor de twee groepen resp. de nametingen voor de twee groepen op hetzelfde tijdstip zijn afgenomen.

Ook een storend effect van instrumentatie wordt geneutraliseerd, als aan de eisen voor vergelijkbare afnamecondities voldaan wordt, en als gemeten wordt met hetzelfde instrument, zoals hetzelfde apparaat of computerprogramma of gedrukte toets. Wanneer echter observatoren of beoordelaars ingeschakeld moeten worden, zoals bij onderzoek naar de schrijfvaardigheid, dan wordt de instrumentatie een moeilijker factor. Het is dan van groot belang dat deze

beoordelaars *niet* weten door welke proefpersonen of onder welke conditie de te beoordelen producten of responsies tot stand zijn gekomen. Anders zouden hun verwachtingen (onbewust en onbedoeld) een rol kunnen spelen bij het tot stand komen van hun oordeel. In dat geval zou niet een effect van de onafhankelijke variabele aangetoond worden, maar een effect van de vooringenomenheid van beoordelaars.

Ook het probleem van regressie naar het gemiddelde speelt in dit ontwerp een kleinere rol. Indien de proefpersonen aselect zijn toegewezen aan de twee groepen, én de gegevens van alle proefpersonen gelijktijdig in een analyse betrokken worden, dan speelt regressie naar het gemiddelde geen enkele rol. In beide groepen treedt immers regressie naar het gemiddelde op, en naar verwachting in gelijke mate, waardoor dat niet van invloed is op de analyse van het verschil tussen (02–01) en (04–03).

Selectie van proefpersonen wordt in dit onderzoeksontwerp uitgesloten door de steekproef van proefpersonen aselect te kiezen uit de populatie, en door daarna de proefpersonen wederom aselect toe te wijzen aan de twee groepen of condities. Natuurlijk geldt hier de wet van de grote getallen: als een grotere steekproef aselect wordt gesplitst in twee groepen, dan is ook de kans groter dat de twee groepen gelijkwaardig zijn, ten opzichte van een kleinere steekproef.

Uitval kan wel degelijk een oorzaak zijn voor een verschil tussen (02–01) en (04–03). Deze voor de validiteit bedreigende factor is moeilijk te beheersen. We kunnen proefpersonen immers niet dwingen om aan een onderzoek te blijven meewerken, of om niet te verhuizen, of niet te overlijden. Uitval kan dus een probleem zijn, zeker wanneer er een verschil in uitval is tussen de twee groepen of condities. Het is goed gebruik om de uitval te melden in het onderzoeksverslag, en de mogelijke gevolgen ervan te bespreken.

Met dit voormeting-nameting-controlegroep-ontwerp kunnen de verschillende factoren die de interne validiteit bedreigen dus redelijk goed beheerst worden. Maar hoe zit het met de constructvaliditeit (zie §5.5)? Deze bedreigingen hebben we niet eerder aangeroerd bij het one-shot-case-ontwerp en het ééngroep-voormeting-nameting-ontwerp, omdat bij deze onderzoeksontwerpen de interne validiteit al twijfelachtig was.

Niet alle aspecten van de constructvaliditeit hebben echter repercussies op het onderzoeksontwerp. Sommige aspecten met betrekking tot de wijze van operationalisatie, zoals convergente en divergente validiteit, zijn niet relevant voor de keuze van het onderzoeksontwerp. Maar andere aspecten zijn wel relevant: de verwachtingen van de onderzoeker, aandacht, motivatie, en de sturende werking van de voormeting.

Het voormeting-nameting-controlegroep-onderzoeksontwerp biedt voor geen van deze vier bedreigingen van de constructvaliditeit adequate waarborgen. De verwachtingen van de onderzoeker kunnen in zowel de experimentele als de controle-conditie een (verschillende) rol spelen, omdat in beide condities op twee tijdstippen gemeten wordt. Bovendien kan een eventueel verschil tussen

(02–01) en (04–03) ook te wijten zijn aan de (extra) aandacht die aan de experimentele conditie besteed is: het zgn. Hawthorne-effect (zie Voorbeeld 5.10 in Hoofdstuk 5). Dit effect speelt vooral een rol als de proefpersonen in de ene conditie (groep) meer aandacht krijgen dan in de andere, zoals in het onderstaande voorbeeld.

Een derde bedreiging van de constructvaliditeit van een onderzoek is de *motivatie*. Soms kan één van de condities zo demotiverend werken dat de proefpersonen in deze conditie niet meer serieus aan het onderzoek meewerken. Net als bij aandacht gaat het niet zozeer om de aantrekkelijkheid van één van de condities, maar om de verschillen in aantrekkelijkheid tussen de onderzoekscondities.

In het voormeting-nameting-controlegroep-ontwerp kan de constructvaliditeit tevens bedreigd worden door de sturende werking van de voormeting. Door een voormeting (01 en 03) kunnen de proefpersonen zich van bepaalde aspecten van het onderzoek (meer) bewust worden, waardoor zij zich daarna niet meer als naïeve proefpersonen gedragen. De voormeting kan dan als een soort manipulatie beschouwd worden (zie Voorbeeld 6.3 hieronder).

6.6 Het Solomon-vier-groepen-ontwerp

Het Solomon-vier-groepen-ontwerp wordt veel minder vaak gebruikt dan het voormeting-nameting-controlegroep-ontwerp. Toch verdient dit ontwerp duidelijk de voorkeur boven het voormeting-nameting-controlegroep-ontwerp. Met name bedreigingen van de constructvaliditeit worden in dit ontwerp beter onder controle gehouden.

In het Solomon-vier-groepen-ontwerp worden vier condities onderscheiden. De proefpersonen worden aselect toegewezen aan een van deze vier condities. In de eerste twee condities wordt eerst een voormeting gehouden, waarna één van de groepen aan de experimentele behandeling blootgesteld wordt. Daarna volgt voor beide groepen een nameting. Tot zover is het Solomon-vier-groepen-ontwerp dus exact gelijk aan het voormeting-nameting-controlegroep-ontwerp. In de derde en vierde conditie wordt echter géén voormeting gehouden. In de ene conditie worden de proefpersonen wel aan de experimentele behandeling blootgesteld, maar in de andere conditie niet. Tot slot maken deze beide groepen weer een nameting. Schematisch kan het Solomon-vier-groepen-ontwerp als volgt weergegeven worden:

Het Solomon-vier-groepen-ontwerp is dus een uitbreiding van het voormetingnameting-controlegroep-ontwerp met twee groepen, die niet meedoen met de voormeting. Door de twee extra condities zonder voormeting kan rekening gehouden worden met de sturende werking van de voormeting: die sturende werking is immers niet aanwezig in de derde en vierde groep. Bovendien wordt het effect van de manipulatie van de onafhankelijke variabele X verschillende malen getoetst, in de vier vergelijkingen van 02 en 01, 02 en 04, 05 en 06, en (02–01) en (04–03). Het effect van de mogelijk sturende voormeting wordt getoetst in de twee vergelijkingen van 02 en 05, en 04 en 06. We kunnen dus in één onderzoek zowel een effect van de behandeling als van de voormeting aantonen. Daarvoor moeten we echter wel twee extra groepen proefpersonen inzetten (ten opzichte van het voormeting-nameting-controlegroep-ontwerp).

Voorbeeld 6.3: In een onderzoek (Ayres et al., 2000) werd het effect onderzocht van een gewenningstraining (X) op de angst om in het openbaar te spreken. Spreekangst werd gemeten door de proefpersoon eerst een toespraak te laten houden, en daarna twee vragenlijsten over spreekangst te laten invullen. Bij elkaar vormt dat één meting. De gewenningstraining voor de ene groep bestond uit het bekijken van een trainingsvideo van ca 20 minuten; de tweede groep kreeg in plaats daarvan een pauze van dezelfde duur. Het onderzoek gebruikte een Solomon-vier-groepen-ontwerp om een mogelijk sturende werking van de voormeting te kunnen onderzoeken. Het is immers mogelijk dat de voormeting (waarvan een spreekbeurt deel uitmaakt) zelf al een training vormt voor de proefpersonen, zodat de gunstige effecten na de "behandeling" X (gewenningstraining) niet toegeschreven kunnen worden aan die behandeling, maar (mede) aan die voormeting. De resultaten lieten echter zien dat de gewenningstraining inderdaad een sterk (gunstig) effect had op de spreekangst, en dat de voormeting alleen (dus zonder behandeling) geen enkel effect had op de mate van spreekangst bij de proefpersonen.

6.7 Het nameting-controlegroep-ontwerp

In heel veel onderzoekingen wordt een voormeting uitgevoerd, omdat de onderzoekers willen onderbouwen dat de twee (of meer) onderzoeksgroepen niet van elkaar verschillen bij de aanvang van het onderzoek. Toch is die voormeting niet een essentieel onderdeel van een adequaat onderzoeksontwerp. Als de groepen voldoende groot zijn, en als de proefpersonen (of andere onderzoekseenheden) geheel volgens het toeval zijn toegewezen aan de groepen, dan zijn

de twee groepen op statistische gronden al goed vergelijkbaar. Als we bijvoorbeeld 100 proefpersonen geheel volgens het toeval verdelen over 2 groepen, dan is de kans buitengewoon klein dat de twee groepen zouden verschillen in de voormeting. In veel van dit soort gevallen kan dan ook volstaan worden met een nameting-controlegroep-ontwerp, schematisch weergegeven als volgt:

X 05 06

Dit ontwerp is echter alleen adequaat indien de groepen voldoende groot zijn, en indien de proefpersonen aselect zijn toegewezen aan de condities. Als dat niet mogelijk is, dan voldoet dit ontwerp ook niet.

Voorbeeld 6.4: In vervolg op het onderzoek van (Houtkoop-Steenstra, 1991) (Voorbeeld 6.2) onderzochten (Wijffels et al., 1992) in hoeverre vragen met danwel zonder voorbeeldantwoorden in een mondeling (telefonisch) vraaggesprek als sturend werden opgevat. Hiertoe werden vijf vragen geconstrueerd over criminaliteit. Van elke vraag werden twee versies geconstrueerd: één met en één zonder voorbeeldantwoorden. Aan elke respondent (van een steekproef van 50) werden twee of drie vragen gesteld met voorbeeldantwoorden, en twee of drie vragen zonder voorbeeldantwoorden. De toedeling van vragen met en zonder voorbeeldantwoorden was gerandomiseerd, en daardoor mogen we aannemen dat de groep respondenten die een bepaalde vraag met voorbeeldantwoorden kreeg niet verschilt van de groep respondenten die dezelfde vraag zonder voorbeeldantwoorden kreeg. Als beide groepen dezelfde (soort) antwoorden geven, dan hebben de voorbeeldantwoorden blijkbaar geen sturend effect, maar indien de respondenten vaak antwoorden met de gegeven voorbeeldantwoorden dan hebben de voorbeelden blijkbaar wel een sturend effect. Bij analyse bleek dat voor vier van de vijf vragen een dergelijk sturend effect inderdaad optrad.

De twee onderzoeken van (Houtkoop-Steenstra, 1991) en (Wijffels et al., 1992) illustreren hoe wetenschappelijke kennis zich ontwikkelt. (Houtkoop-Steenstra, 1991) constateert dat de vakliteratuur zich voornamelijk bezig heeft gehouden met schriftelijke interviews, en vraagt zich af of de effecten bij mondelinge 'face-to-face'-interviews hetzelfde zijn. Zij concludeert dat voorbeeldantwoorden niet sturend werken in deze 'face-to-face'-gesprekken. (Wijffels et al., 1992) onderzoeken dezelfde hypothese in een experiment, met mondelinge interviews per telefoon, en zij concluderen dat voorbeeldantwoorden wel degelijk sturend werken in deze telefonische gesprekken.

6.8 Factoriële ontwerpen

Tot nog toe hebben we het gehad over experimentele onderzoeksontwerpen waarbij één onafhankelijke variabele gemanipuleerd wordt. Veel onderzoekers zijn echter (ook) geïnteresseerd in de effecten van de gelijktijdige manipulatie van meerdere onafhankelijke variabelen. Ontwerpen waarin meerdere factoren gelijktijdig variëren noemen we factoriële ontwerpen. We kwamen deze al tegen bij het voormeting-nameting-controlegroep-ontwerp (§6.5 waar zowel de tijd als de behandeling varieert.

Voorbeeld 6.5: (Drake and Ben El Heni, 2003) onderzochten de waarneming van muzikale structuur. Die waarneming kan indirect gemeten worden door de luisteraar te vragen om mee te tikken met de muziek. Als een luisteraar de muzikale structuur niet begrijpt of herkent, is hij geneigd mee te tikken met iedere tel (analytisch luisteren). Naarmate een luisteraar de muzikale structuur beter begrijpt en herkent, is hij meer geneigd om mee te tikken met hogere nivo's (synthetisch of voorspellend luisteren): hij tikt dan niet bij iedere tel, maar by 1× per maat of per muzikale frase. De tijdsafstand ('inter-onset-interval', IOI) tussen de tikken vormt aldus een indicatie van de waargenomen muzikale structuur. Aan het onderzoek van deden twee groepen luisteraars mee, in Frankrijk en in Tunesië¹. Alle proefpersonen luisterden naar 12 muziekstukken, waarvan 6 afkomstig uit de Franse en 6 uit de Tunesische muzikale culturen (de muziekstukken waren verschillend qua maatsoorten, tempi, en mate van bekendheid). De resultaten zijn grafisch samengevat in Figuur 6.1.

Uit deze resultaten blijkt dat er géén verschil optreedt tussen de groepen (Franse vs Tunesische luisteraars; de twee groepen hebben gemiddeld dezelfde IOI), en dat er ook géén verschil optreedt tussen de muzieksoorten (Franse vs Tunesische muziekstukken; de twee muzieksoorten resulteren in gemiddeld dezelfde IOI). Hebben de twee onafhankelijke variabelen dan geen enkel effect? Toch wel! De Franse luisteraars bleken langere IOI's tussen tikken te produceren als ze naar Franse muziek luisterden, terwijl de Tunesische luisteraars daarentegen langere IOI's produceerden als ze naar Tunesische muziek luisterden. Alle luisteraars blijken dus langere IOI's te produceren als ze luisteren naar een muzieksoort die voor hen bekend is, en kortere IOI's als ze luisteren naar een onbekende muzieksoort.

¹Merk op dat proefpersonen niet aselect zijn toegewezen aan een van deze groepen, en dat dit dus strikt genomen een quasi-experimenteel onderzoek is (zie Hoofdstuk 1).

Figure 6.1: Figure 6.1: Gemiddelde tijdsafstand tussen tikken (IOI, in ms) voor twee groepen luisteraars en twee muzieksoorten (ontleend aan Drake & Ben El Heni, 2003, Fig.2).

concluderen dat de luisteraars beter in staat zijn om muzikale structuur te herkennen en te begrijpen in muziek van hun eigen muzikale cultuur dan in die van een andere cultuur. Dit patroon van resultaten is een klassiek kruislings interactie-effect, waarbij het effect van de ene onafhankelijke variabele precies tegengesteld is in de verschillende condities van de andere onafhankelijke variabele.

Als er een interactie-effect blijkt op te treden, dan is het zinloos om een eventueel hoofdeffect te interpreteren. Dat werd al geïllustreerd in Voorbeeld 6.5 hierboven: we kunnen niet concluderen dat er géén verschil is tussen de muzieksoorten. Maar de grootte (en richting) van het verschil is afhankelijk van de andere onafhankelijke variabele(n), nl. van de groep/nationaliteit van de luisteraars. Veel onderzoek is er juist op gericht om interactie-effecten aan te tonen; niet de hoofdeffecten maar hun interactie vormt het onderwerp van onderzoek, net als in het bovenstaande voorbeeld 6.5.

Een factorieel onderzoeksontwerp is lastig om schematisch weer te geven, omdat er meerdere onafhankelijke variabelen (met elk weer meerdere niveaus) in voorkomen. We zouden deze schematisch kunnen representeren door de manipulatie, die we voorheen aangeduid hebben met een X, te indiceren. De eerste index (subscript) geeft dan het niveau aan voor de eerste onafhankelijke variabele of factor, en de tweede index geeft het niveau aan van de tweede factor. Het ontwerp van voorbeeld 6.5 wordt dan als volgt schematisch weergegeven:

```
R X_{1,1} 01
R X_{1,2} 02
R X_{2,1} 03
R X_{2,2} 04
```

Het is vaak verleidelijk om meerdere factoren te combineren in één groot factorieel onderzoeksontwerp, zodat we kunnen onderzoeken hoe al die factoren op elkaar inwerken (interageren). Toch is het verstandig om dat *niet* te doen, en om het aantal factoren beperkt te houden. Ten eerste, zoals we later zullen zien, moet het aantal observaties ongeveer gelijke tred houden met het aantal verschillende combinaties van factoren. Als je meer combinaties van factoren toevoegt, dan zijn er daardoor ook veel meer proefpersonen nodig (of andere eenheden). Ten tweede is het moeilijker te garanderen dat alle combinaties van factoren perfect vergelijkbaar zijn (Shadish et al., 2002, p.266): zijn Tunesische deelnemers die in Tunesië luisteren naar Tunesische muziek wel goed vergelijkbaar met Franse deelnemers die in Frankrijk luisteren naar Franse muziek? De vergelijkbaarheid van combinaties wordt lastiger, naarmate er meer combinaties van factoren in het onderzoek voorkomen. Ten derde zijn interacties notoir moeilijk te interpreteren, en dat wordt eveneens lastiger naarmate de

interacties complexer zijn, en meer factoren omvatten. Om al deze redenen is het beter om effecten van meerdere factoren te bestuderen in verschillende afzonderlijke onderzoeken (Quené, 2010).

We zullen later terugkomen op de analyse en interpretatie van gegevens uit factoriële onderzoeksontwerpen (Hoofdstuk ??). Voorlopig concentreren we ons op ontwerpen met slechts één onafhankelijke variabele.

6.9 Afhankelijke- en onafhankelijke-groepenontwerp

In het begin van dit hoofdstuk hebben we gesproken over de manipulatie van een onafhankelijke variabele tussen danwel binnen proefpersonen (). In de meeste van de voorafgaande onderzoeksontwerpen werd voor elke waarde van de onafhankelijke variabele(n) een afzonderlijke groep geformeerd; we noemen dat een onafhankelijke-groepen-ontwerp. De onafhankelijke variabele varieert tussen proefpersonen.

Sommige onafhankelijke variabelen kunnen echter ook gevarieerd worden binnen proefpersonen. We meten dan herhaaldelijk bij (binnen) dezelfde proefpersonen uit dezelfde groep, onder verschillende condities van de onafhankelijke variabele. In het onderstaande voorbeeld wordt de onafhankelijke variabele 'taal' (moedertaal of vreemde taal) gevarieerd binnen proefpersonen. We noemen dat een afhankelijke-groepen-ontwerp.

Voorbeeld 6.6: (De Jong et al., 2015) onderzochten de vloeiendheid van de spraak van proefpersonen in hun moedertaal (Turks) en in een vreemde taal (Nederlands). De proefpersonen voerden eerst een aantal spreektaken uit in hun moedertaal, en enkele weken later in het Nederlands. Eén van de afhankelijke variabelen was het aantal gevulde pauzes (bijv. eh, ehm) per seconde spraak: hoe meer pauzes, hoe minder vloeiend. De sprekers bleken meer pauzes te produceren (d.w.z. minder vloeiend te spreken) in de vreemde taal dan in hun moedertaal, zoals ook te verwachten is. Eén van de doelen van het onderzoek was overigens om te onderzoeken in hoeverre individuele verschillen in vloeiendheid in de vreemde taal te herleiden zijn naar individuele verschillen in vloeiendheid in de moedertaal. De samenhang tussen de twee metingen bleek hoog (correlatie r = 0.73, meer hierover in Hoofdstuk ??. Sprekers die veel pauzeren in de vreemde taal, doen dat vaak ook in hun moedertaal. De onderzoekers bepleiten dat met deze correlatie rekening gehouden moet worden bij het aanleren en toetsen van spreekvaardigheid in een vreemde taal.

Het hier beschreven onderzoeksontwerp ziet er in schema als volgt uit:

X1 01 X2 02

Ondanks de vele mogelijke bedreigingen van de interne validiteit (o.a. geschiedenis, rijping, sturende werking van de voormeting) is zo'n ontwerp in veel gevallen nuttig. In het bovenstaande voorbeeld is het essentieel dat *dezelfde* proefpersonen spreektaken uitvoeren in beide talen (condities) — de onderzoeksvragen zijn niet met een andere methode te beantwoorden.

6.10 Onderzoek ontwerpen

Een onderzoeker die een onderzoek wil uitvoeren, moet bepalen op welke wijze hij zijn gegevens gaat verzamelen: hij moet een keuze maken voor een bepaald onderzoeksontwerp. Soms kan een standaard-ontwerp gekozen worden, zoals een van de hierboven behandelde ontwerpen. In andere gevallen zal de onderzoeker zelf het ontwerp moeten opstellen. Het ontwerp moet uiteraard goed aansluiten bij de onderzoeksvraag (Levin, 1999), en het moet zoveel mogelijk storende variabelen uitsluiten die de validiteit zouden kunnen bedreigen. Het ontwerpen van onderzoek is een vak dat onderzoekers al doende leren. In het onderstaande voorbeeld proberen we weer te geven welke redenering en argumenten een rol spelen bij de ontwikkeling van een onderzoeksontwerp.

Stel je voor dat we willen onderzoeken of de vorm waarin toetsvragen gesteld worden, als open vs. gesloten vragen, van invloed is op de scores op die toets. In een eenvoudig ontwerp nemen we eerst een toets af met open vragen, en daarna een vergelijkbare toets met gesloten vragen, bij dezelfde respondenten. Als de samenhang tussen de scores hoog genoeg is, dan wordt geconcludeerd dat beide toetsen hetzelfde meten, en dat de prestatie niet wezenlijk beïnvloed wordt door de vorm waarin de vragen worden gesteld. Schematisch is dit ontwerp als volgt weer te geven:

Open 01 Gesloten 02

Dit onderzoeksontwerp heeft echter diverse zwakke punten. Ten eerste is het onverstandig om eerst alle toetsen met open vragen op het eerste tijdstip af te nemen, en vervolgens alle toetsen met gesloten vragen op het tweede tijdstip. De prestaties op de tweede toets worden immers altijd beïnvloed door volgordeeffecten (transfer): de respondenten hebben iets onthouden en dus geleerd van de eerste meting. Deze transfer werkt nu altijd dezelfde kant op, met daardoor (vermoedelijk) relatief hogere prestaties bij de toets met gesloten vragen (op het tweede tijdstip). Het is dus beter om de toetsen met open en gesloten vragen at random te verdelen over het eerste en tweede tijdstip van afname.

Ten tweede kunnen alle respondenten beïnvloed zijn door eventuele gebeurtenissen tussen de twee tijdstippen (geschiedenis), bijvoorbeeld door een relevante instructie over het onderwerp van de toets. Omdat er geen controle-groep is, kan met zo'n effect geen rekening worden gehouden.

Een derde probleem is gelegen in de wijze waarop van bevindingen naar conclusie wordt geredeneerd. Zoals gezegd, houdt die redenering in dat, als de samenhang tussen de scores hoog genoeg is, dan beide toetsen hetzelfde meten. Als je daarover nadenkt, dan ben je het misschien met ons eens dat dat een vreemde redenering is. De onderzoeksvraag is eigenlijk, of de samenhang in prestaties op verschillende toetsen met verschillende vraagvormen even hoog is als de samenhang in prestaties op verschillende toetsen met dezelfde vraagvormen, waarvan we immers aannemen dat die hetzelfde meten. Daarmee hebben we in feite een controle-groep gedefinieerd, nl. respondenten die op beide tijdstippen toetsen maken met dezelfde vraagvorm. Voor alle zekerheid voegen we niet één maar twee controle-groepen toe, met open resp. gesloten toetsvragen op beide tijdstippen.

We hebben het ontwerp zo in tenminste twee opzichten verbeterd: (1) de toetsen zijn gerandomiseerd over de opname-tijdstippen, en (2) er zijn relevante controle-groepen toegevoegd. Schematisch ziet het onderzoeksontwerp er nu als volgt uit:

Exp. groep 1	Open	01	Gesloten	02
Exp. groep 2	Gesloten	03	Open	04
Controlegroep 1	Open	05	Open	05
Controlegroep 2	Gesloten	07	Gesloten	06

Voor alle vier de groepen kan nu de samenhang tussen de prestaties op het eerste en tweede tijdstip bepaald worden. Vervolgens kunnen we deze samenhangresultaten uit de vier groepen vergelijken, en daarmee de onderzoeksvraag beantwoorden. Dit voorbeeld laat goed zien dat de conclusies die je uit de onderzoeksresultaten kunt trekken, direct afhankelijk zijn van het gekozen ontwerp (Levin, 1999). In het eerste ontwerp leidt een lage gevonden samenhang tot de conclusie dat de twee onderzochte toetsvormen niet een beroep doen op dezelfde intellectuele vaardigheden bij de respondenten. In het tweede ontwerp hoeft dezelfde lage samenhang in de derde groep (experimentele groep 1) echter niet tot dezelfde uitkomst te leiden! De conclusie hangt immers mede af van de mate van samenhang gevonden in de andere groepen.

6.11 Tenslotte

Ondanks alle beschikbare boeken, handleidingen, websites, en ander instructiemateriaal komen wij nog te vaak onderzoek tegen waar methodologisch iets mis is in de onderzoeksvragen, operationalisatie, onderzoeksopzet,

steekproeftrekking, en/of dataverwerking. Die problemen veroorzaken niet alleen een verspilling van tijd, geld en energie, maar ze resulteren ook in kennis die minder betrouwbaar, valide en robuust is dan mogelijk. De onderstaande 'checklist' voor goed onderzoek (deels ontleend aan https://www.linkedin.com/groups/4292855/4292855-6093149378770464768) kan veel ellende in latere stadia van een onderzoek voorkomen.

- 1. Denk goed na over je onderzoeksvragen, en formuleer ze helemaal uit. Als de vragen niet helder geformuleerd zijn, of als er veel deelvragen zijn, denk dan verder na.
- 2. Prioriteer de onderzoeksvragen. Dit helpt bij het maken van keuzes in onderzoeksontwerp, steekproeftrekking, operationalisatie, e.d.
- 3. Denk goed na over het ontwerp van het onderzoek. Volgens de overlevering levert ieder uur nadenken over je onderzoeksontwerp een toekomstige besparing van ongeveer 10 uren tijdens de data-analyse en interpretatie. Anders gezegd: een uur minder nadenken over je ontwerp kost je later 10 uur extra werk.
- 4. Bedenk ook alternatieve onderzoeksontwerpen, en denk na over de voordelen en nadelen van de diverse mogelijke ontwerpen.
- 5. Stel je de toekomst voor: je hebt het onderzoek uitgevoerd, de gegevens zijn geanalyseerd, en je hebt het verslag of de scriptie of het artikel geschreven. Welke boodschap wil je overbrengen op de lezers van dat verslag? Hoe draagt het onderzoeksontwerp bij aan die boodschap? Wat zou je kunnen veranderen in je ontwerp om die boodschap nog duidelijker te maken? Bedenk waar je naar toe wilt, niet alleen waar je nu staat.
- 6. Schrijf een onderzoeksplan, waarin je de verschillende methodologische aspecten beschrijft. Beargumenteer en expliciteer je onderzoeksvragen, onderzoeksontwerp, steekproef, meetmethode, data-verzameling, meetinstrumenten (bv. vragenlijst, software), andere benodigdheden (bv. laboratorium, vervoer), en statistische verwerking. Onderdelen van dit onderzoeksplan zijn later herbruikbaar in het onderzoeksverslag. Maak daarbij ook een tijdsplanning: wanneer zullen welke mijlpalen zijn bereikt?
- 7. Schrijf uit hoe je de verzamelde gegevens statistisch zult analyseren, nog voordat je begint met de eigenlijke data-verzameling. Wees daarbij weer zo expliciet mogelijk (in een script, stappenplan, o.i.d.). Maak een minidataverzameling van een redelijk aantal fictieve observaties of werkelijke observaties uit de pilot-fase van het onderzoek, en analyseer deze gegevens alsof het de definitieve data-verzameling betreft. Maak eventueel aanpassingen in je onderzoeksplan.

8. Als je eenmaal doende bent gegevens te verzamelen, maak dan geen wijzigingen meer in het onderzoeksplan. Houd je aan dat plan en aan de bijbehorende tijdsplanning. Analyseer de gegevens op de wijze zoals vastgelegd in het (aangepaste) onderzoeksplan. Bespreek eventuele problemen die tijdens het onderzoek optraden wel in het onderzoeksverslag. Als er grote problemen optreden, breek dan het onderzoek af, en overweeg een verbeterde versie van je onderzoek.

Chapter 7

Steekproeven

Voor de generalisatie van de uitkomsten van een onderzoek naar de doelgroep of de steekproef, is de kwaliteit van de steekproef bepalend. Is de steekproef een adequate afspiegeling van de populatie? Om een extreem voorbeeld te geven: als een steekproef bestaat uit meisjes in de groep 8 van het basisonderwijs, dan kunnen de resultaten niet goed gegeneraliseerd worden naar de populatie van alle basisschoolleerlingen, want deze steekproef vormt geen goede afspiegeling van de populatie basisschoolleerlingen (die immers bestaat uit jongens en meisjes van alle groepen).

Afhankelijk van de methode die de onderzoekers gebruiken om de proefpersonen te selecteren, kunnen er vele soorten steekproeven onderscheiden worden. In dit hoofdstuk maken we een grove indeling in: (1) gelegenheidssteekproeven, (2) systematisch getrokken steekproeven, en (3) aselect of willekeurig ('at random') getrokken steekproeven. Voor een verdere verdieping in de wijze waarop steekproeven getrokken kunnen worden en de problemen die daarbij een rol spelen verwijzen we naar standaardwerken hierover (Cochran, 1977; Thompson, 2012).

7.1 Gelegenheidssteekproeven

In veel sociaalwetenschappelijk onderzoek wordt gewerkt met steekproeven die zich nu eenmaal aandienen, zogenaamde gelegenheidssteekproeven. De onderzoeker voert het experiment uit met personen die hem min of meer toevallig ter beschikking staan. Voor sommige onderzoeken wordt gebruik gemaakt van al dan niet betaalde vrijwilligers. In andere onderzoeken worden studenten ingezet, die in het kader van hun studie verplicht zijn een aantal uren als proefpersoon aan onderzoek mee te werken, of soms moeten de studenten van een collega van de onderzoeker deelnemen aan het onderzoek. Een dergelijke steekproef is

niet zonder gevaren. De onderzoeker heeft de mate van generaliseerbaarheid naar de populatie op geen enkele manier meer in de hand. Natuurlijk heeft de onderzoeker wel een populatie op het oog, en zal hij proefpersonen uit het onderzoek weren die geen deel uit maken van de beoogde populatie (zoals nietmoedertaal-sprekers), maar de onderzoeker kan geen uitspraken doen over de representativiteit van de steekproef.

Met name in de psychologie heeft deze wijze van gelegenheidssteekproeftrekking ('convenience sampling') aanleiding gegeven tot verhitte discussies. Uit een telling bleek bijvoorbeeld dat 67% van de steekproeven uit gepubliceerde Amerikaanse psychologische studies uitsluitend bestond uit bachelor-studenten uit cursussen Psychologie aan Amerikaanse universiteiten (Henrich et al., 2010). Dergelijke steekproeven zijn natuurlijk verre van representatief. Gevolg daarvan is dat de op deze gegevens gebaseerde theorieën slechts een beperkte geldigheid hebben: de theorieën zouden vooral gelden voor het type personen (westers, jong, hoog opgeleid, blank) dat ook in de steekproeven sterk vertegenwoordigd is (Henrich et al., 2010). Ook in taalwetenschappelijk onderzoek is de steekproef van proefpersonen meestal een gelegenheidssteekproef. Kinderen die deelnemen als proefpersoon hebben vaak hoogopgeleide ouders (niet zelden zelf taalkundig geschoold, dus vermoedelijk bovengemiddeld verbaal begaafd), en volwassen proefpersonen zijn vaak studenten uit de omgeving van de onderzoekers, en dus ook bovengemiddeld hoog opgeleid en verbaal begaafd.

Ondanks de steekhoudende bezwaren die tegen dit type steekproef naar voren gebracht worden, dwingen de praktische omstandigheden vaak tot het gebruik van een zich aandienende gelegenheidssteekproef. Wij bevelen dan aan om na te gaan in hoeverre deze gelegenheidssteekproef zich onderscheidt van de populatie waarover de onderzoeker wil generaliseren. Tot slot van deze bespreking van zich aandienende steekproeven een voorbeeld over de gevaren van dit type steekproef.

Voorbeeld 7.1: Enige tijd geleden was er op televisie een wedstrijd te zien over wie van een negental kandidaten het beste kon zingen. De kijkers mochten hun voorkeur telefonisch kenbaar maken. Voor alle negen kandidaten was een aparte telefoonlijn geopend. Voor elke beller kreeg een kandidaat één punt. Degene die de meeste punten binnen een bepaalde tijdlimiet verzameld had was de winnaar. De reactie van het publiek was overweldigend: in grote delen van Nederland was het telefoonnet volledig overbezet. Al snel bleek één van de kandidaten een flinke voorsprong te hebben. In de loop van de avond werd deze voorsprong echter steeds kleiner. Uiteindelijk scheelde het nog maar enkele bellers met nummer twee. Opvallend was overigens dat naarmate de avond vorderde de verschillen tussen de deelnemers (relatief) steeds kleiner werden.

We kunnen deze stemprocedure beschouwen als een trekking van een steekproef van bellers c.q. stemmers. Deze steekproef is echter verre van representatief. Als veel kiezers willen stemmen op één kandidaat, dan zal de telefoonlijn voor die kandidaat overbezet raken. Dus: de zangers die veel bellers trekken, zullen relatief minder stemmen krijgen dan zangers die weinig bellers trekken, omdat de telefoonlijnen van de laatsten niet overbezet zullen zijn. Juist bij de populairste kandidaten is de kans het grootst dat een kiezer zijn stem niet kan laten gelden. In werkelijkheid zal er dus een veel groter verschil zijn in aantal stemmen per kandidaat, dan de organisator gemeten heeft. De organisator heeft deze systematische vertekening (bias) van de resultaten helaas zelf veroorzaakt, door voor elk van de negen kandidaten een eigen telefoonlijn te openen. De gegevens hadden veel representatiever kunnen zijn, als de organisator negen telefoonlijnen had geopend, met één gemeenschappelijk toegangsnummer. De steekproef van bellers die hun stem kunnen uitbrengen is dan representatief voor de populatie van alle bellers, en dat was nu niet het geval.

7.2 Systematische steekproeven

Wanneer de elementen in de steekproefruimte (d.i. de verzameling van mogelijke elementen in een steekproef) op de een of andere manier systematisch geordend zijn, dan kan met behulp van een systematische trekkingsprocedure van steekproefelementen een redelijk representatieve steekproef verkregen worden. Een ordening kan zijn bijvoorbeeld een namenlijst.

Voorbeeld 7.2:Laten we even aannemen dat we een onderzoek willen doen naar de taalvaardigheid van derdeklassers in het voortgezet onderwijs. De gehele populatie van derdeklassers is echter veel te groot om van alle derdeklassers de taalvaardigheid te meten (lezen, schrijven, spreken, en luisteren). In de derde klas zitten namelijk ongeveer 200.000 leerlingen. Er moet dus een steekproef genomen worden. Op het Ministerie van Onderwijs, Cultuur en Wetenschappen is een registratiesysteem beschikbaar waarin een lijst met de namen van alle scholen met derde klassen is opgenomen. Een voor de hand liggende werkwijze is nu deze lijst te nemen en elke 100ste school van die lijst in de steekproef op te nemen. Deze werkwijze resulteert vermoedelijk in een tamelijk representatieve steekproef.

Twee factoren kunnen echter roet in het eten gooien bij zo'n systematische steekproef: ten eerste de responsiegraad. Als een aanzienlijk deel van de

aangeschreven scholen geen medewerking verleent, dan hebben we in feite te maken met zelf-selectie (zie §5.4 punt 5) en dus met een zichzelf aandienende gelegenheidssteekproef (zie §7.1). Dat is een ongewenste situatie, want de scholen die wel meewerken hebben vermoedelijk een grotere 'plichtsgetrouwheid' dan de weigerende scholen of dan de gemiddelde school. Bovendien kunnen de leerlingen op de responderende en niet-responderende scholen van elkaar verschillen (zie §5.4 punt 5). De uiteindelijke steekproef is dan misschien niet meer representatief voor de populatie van alle derdeklassers. Het gevolg daarvan is weer dat de gemeten resultaten slecht generaliseerbaar zijn naar andere derdeklassers van andere scholen.

De tweede factor die de representativiteit van een systematische steekproef kan beïnvloeden is de storende trendwerking. Er is sprake van een storende trendwerking wanneer populatie-elementen met een bepaald relevant kenmerk meer kans hebben in de steekproef terecht te komen dan populatie-elementen die dit kenmerk niet hebben. In ons voorbeeld van de meting van de taalvaardigheid van derdeklassers hebben we met de storende trendwerking te maken. Niet alle leerlingen hebben namelijk een gelijke kans om in de steekproef te komen. Immers, elke individuele school (niet: leerling) heeft dezelfde kans als elke andere school om in de steekproef terecht te komen. Het gevolg is dat er relatief meer derdeklassers in de steekproef zullen komen van kleine scholen met relatief weinig leerlingen, en omgekeerd relatief minder derdeklassers van grote scholen met relatief veel leerlingen. Derdeklassers van grote scholen zijn ondervertegenwoordigd. Is dat erg? Misschien wel, want de taalvaardigheid (afhankelijke variabele) wordt deels beïnvoed door de vorm van onderwijs, en die onderwijsvorm wordt weer beïnvloed door de grootte van de school. De hierboven beschreven steekproef is dus niet representatief voor de populatie van derdeklassers. Wederom is het gevolg dat de gemeten resultaten slecht generaliseerbaar zijn naar andere derdeklassers van andere scholen.

7.3 Aselecte steekproeven

De hierboven beschreven storende trendwerking kunnen we voorkomen door random of aselecte steekproeftrekking. Aselecte steekproeftrekking kan op diverse manieren gebeuren, waarvan we er hier drie bespreken.

De eerste vorm is simple random sampling: hierbij krijgen alle elementen van de populatie een gelijke kans om getrokken te worden. Dit kan bijvoorbeeld gerealiseerd worden door alle elementen van een random nummer te voorzien en dan, afhankelijk van de gewenste steekproefgrootte, steeds het n-de element te selecteren. Voor de selectie van getallen staan de onderzoeker tabellen met toevalsgetallen ter beschikking (zie Appendix A). Ook rekenmachines, computers, spreadsheet-programma's e.d. kunnen random getallen genereren. (Het verdient aanbeveling om zulke random getallen te gebruiken, want een door mensen geconstrueerde "random" volgorde is niet werkelijk "random".) Een voorwaarde

voor de toepassing van deze methode is echter wel dat de elementen van de populatie (steekproefruimte) vooraf geregistreerd zijn (of worden), zodat ze op enigerlei wijze van een nummer voorzien kunnen worden.

Voorbeeld 7.3: We willen een steekproef trekken van n=400 basisscholen. Dit is ongeveer 4% van de populatie van basisscholen. We vragen daarom bij het Ministerie van Onderwijs, Cultuur en Wetenschappen een lijst met alle 9000 basisscholen op; deze lijst vormt de steekproefruimte. Vervolgens voorzien we alle basisscholen van een volgnummer $(1,2,3,\ldots,9000)$. Tenslotte selecteren we alle basisscholen waarvan de laatste twee cijfers toevallig 36 of 43 of 59 of 70 zijn (zie Appendix A, eerste kolom, laatste twee cijfers). Met deze procedure selecteren we volgens het toeval 4 van de 100 mogelijke laatste-twee-cijfer-combinaties, ofwel 4% van de scholen.

De tweede vorm van aselecte steekproeftrekking is stratified random sampling. Daarvan is sprake als we van elk populatie-element de waarde van een kenmerk weten (bv. religieuze denominatie), en als we zorgen dat in de steekproef de elementen evenredig verdeeld zijn volgens dit kenmerk. We verdelen de steekproef daarvoor in zogenaamde 'strata' of lagen (Lat. stratum, 'bedekking, laag', verwant aan Ned. straat, 'verharde weg'). Terug naar de basisschool om het een en ander te verhelderen. Om welke reden dan ook zijn we er nu in geïnteresseerd de steekproef (nog steeds 4% van de populatie van basisscholen) zo te maken dat openbare, katholieke en protestante scholen in gelijke mate vertegenwoordigd zijn. We stellen daarom drie lijsten op: voor alle drie de schooltype een aparte lijst. Binnen iedere lijst gaan we net zo te werk als bij simple random sampling. Uiteindelijk worden de drie deel-steekproeven van de drie strata gecombineerd.

Met quota sampling gaan we nog een stapje verder dan bij 'stratified random sampling': we verdisconteren nu ook het feit dat we weten wat de verdeling is van een bepaald kenmerk (bv denominatie) in de populatie. Uit de lijst met basisscholen zou hebben kunnen blijken dat 35% van de scholen openbaar is, 31% katholiek, 31% protestant en dat 3% een andere signatuur heeft. We trekken uit de steekproefruimte nu meerdere aselecte 'stratified' steekproeven, en wel zo dat de verhouding van scholen in de strata een juiste afspiegeling vormt van de verhoudingen van dit kenmerk in de steekproefruimte (35:31:31:3).

7.4 Steekproefgrootte

Als je verschillende onderzoeksartikelen leest, dan is één van de eerste zaken die opvalt de enorme variatie in aantallen respondenten. In sommige onderzoeken

worden enkele duizenden proefpersonen betrokken en in andere slechts enkele tientallen of soms nog minder. We zullen hier twee aspecten bespreken die van invloed zijn op de vereiste grootte van de steekproef: de homogeniteit van de populatie, en de aard van de steekproeftrekking. In volgende hoofdstukken zullen we nog twee andere aspecten bespreken die eveneens van invloed zijn op de gewenste steekproefgrootte, nl. de gewenste precisie (effectgrootte, §??) en de gewenste kans om een effect aan te tonen als dat in de populatie ook daadwerkelijk aanwezig is (power, §??).

Voorbeeld 7.4: Wanneer auto's getest worden (in een tijdschrift of op televisie), dan wordt van een type auto slechts één exemplaar getest. De resultaten van dit testexemplaar worden zonder voorbehoud gegeneraliseerd naar alle auto's van hetzelfde type en merk. Dit is mogelijk omdat de populatie auto's waarnaar gegeneraliseerd wordt bijzonder homogeen is: de fabrikant streeft er immers naar om de verschillende exemplaren zo gelijk mogelijk op de markt te brengen.

De vereiste steekproefgrootte hangt ten eerste af van de homogeniteit van de populatie. Als een populatie homogeen is, zoals de auto's in voorbeeld 7.4 hierboven, dan kunnen we met een kleine steekproef volstaan. Anders is het wanneer we bijvoorbeeld de conversatiepatronen van kleuters willen analyseren. In de conversatiepatronen van kleuters treffen we grote verschillen aan; er is een zeer grote variatie in conversatiepatronen. (Sommige kinderen praten voluit, en andere zwijgen vooral. Bovendien zijn er grote individuele verschillen in taalontwikkeling tussen kinderen.) Om een goed beeld te krijgen van de taalontwikkeling van kleuters, hebben we daarom een veel grotere steekproef nodig. De grootte van de benodigde steekproef neemt dus toe naarmate de populatie waarna gegeneraliseerd moet worden minder homogeen (heterogener) is.

Ten tweede hangt de vereiste steekproefgrootte ook af van de aard van de steekproef. Als er in een populatie duidelijke strata aanwezig zijn, maar we passen – om welke reden dan ook – geen 'stratified' of 'quota sampling' toe, dan hebben we een grotere steekproef nodig dan wanneer we dit wel zouden doen. Immers, bij deze laatste twee methoden zorgt de onderzoeker zelf voor een gelijke dan wel evenredige vertegenwoordiging van strata in de steekproef, maar bij 'simple random sampling' wordt dat aan het toeval overgelaten. We doen dan dus een beroep op de "wet van de grote getallen" om te zorgen dat er voldoende elementen uit de verschillende strata in de steekproef terecht komen, om generalisatie van de resultaten naar die verschillende strata te rechtvaardigen. Uiteraard werkt die wet alleen bij een voldoende grote steekproef! Bij

een kleine steekproef weten we allerminst zeker dat de verschillende strata in voldoende mate in de steekproef vertegenwoordigd zijn.

Als we, om naar het basisschool-voorbeeld terug te keren, drie basisscholen zouden selecteren volgens 'simple random sampling', dan bestaat natuurlijk een kans dat dit precies één openbare, één katholieke en één protestante school oplevert in deze steekproef. Maar ook andere uitkomsten zijn zeer reëel, en zelfs meer waarschijnlijk. Bij 'stratified' en 'quota sampling' hebben we gegarandeerd van elke denominatie één element (school) in onze steekproef. Onze basis voor generalisatie is beter, en de externe validiteit is dus sterker.

Na al deze behartenswaardige aanbevelingen wordt het tijd om te bespreken hoe we onderzoeksgegevens goed kunnen beschrijven en analyseren om onze onderzoeksvragen te beantwoorden. Dat gebeurt in het volgende deel van dit boek.

Deel II: Beschrijvende statistiek

Chapter 8

Frequenties

8.1 Inleiding

Bij de analyse van gegevens wordt vaak een onderscheid gemaakt tussen kwalitatieve danwel kwantitatieve methoden. Bij de eerste methode worden waarnemingen (bijv. antwoorden in interviews) gerepresenteerd in woorden, en bij de tweede methode worden waarnemingen (bijv. spreekpauzes in interviews) gerepresenteerd in getallen. Naar onze mening bestaat het verschil tussen kwalitatieve en kwantitatieve methoden dus uit de aard van de representatie van de observaties, en daarmee uit de wijze van argumentatie op grond van die observaties. Soms is het ook mogelijk om dezelfde gegevens (bijv. interviews) zowel kwalitatief als kwantitatief te analyseren. De kwantitatieve methode heeft als grote voordelen dat de gegevens relatief eenvoudig samengevat kunnen worden (daarover gaat dit deel van de syllabus), en dat het relatief makkelijk is om zinvolle conclusies te trekken op basis van de observaties.

8.2 Frequenties

Kwantitatieve gegevens kunnen op allerlei manieren gerapporteerd worden. De eenvoudigste manier zou zijn om de ruwe gegevens te rapporteren, bij voorkeur gesorteerd naar de waarde van de geobserveerde variabele. Nadeel daarvan is dat een eventueel patroon in de observaties niet goed zichtbaar wordt.

Voorbeeld 8.1: Studenten (N = 50) in een eerstejaars cursus rapporteerden de volgende waarden voor hun schoenmaat, een variabele van het interval-meetniveau:

Table 8.1: Frequentieverdeling van fonologische klasse van spraakklanken in het *Corpus Gesproken Nederlands* (C=consonant=medeklinker, V=vocaal=klinker).

hoofdklasse	onderklasse	aantal
C	plos	585999
\mathbf{C}	fric	426097
\mathbf{C}	liq	249275
$^{\mathrm{C}}$	nas	361742
\mathbf{C}	glide	146344
V	lang	365887
V	kort	428832
V	schwa	341260
V	diph	61638
V	rest	1146

Eén van de studenten heeft geen antwoord opgegeven; dit ontbrekende antwoord is hier aangegeven als ??.

Meestal is het inzichtelijker en efficiënter om de observaties samen te vatten en te rapporteren in de vorm van de *frequentie* van elke waarde. Die frequentie geeft het *aantal* observaties met een bepaalde waarde, of met een waarde in een bepaald interval of klasse. Om de frequentie te verkrijgen *tellen* we dus het aantal observaties met een bepaalde waarde, of het aantal observaties in een bepaald interval. Deze frequenties worden gerapporteerd in een tabel. Zo'n tabel wordt een frequentieverdeling genoemd (frequency distribution).

Tabel 8.1 geeft als eerste voorbeeld een frequentieverdeling van een discrete variabele van *nominaal* meetniveau, nl. de fonologische klasse van spraakklanken in het Nederlands (Luyckx et al., 2007).

Tabel 8.2 geeft als tweede voorbeeld een frequentieverdeling van een continue variabele van *interval* meetniveau, nl. de al eerder genoemde schoenmaat van eerstejaars studenten (Voorbeeld 8.1).

Table 8.2: Frequentieverdeling van zelfgerapporteerde schoenmaten van N=50 studenten in een eerstejaars cursus (zie Voorbeeld 8.1 hierboven).

Schoenmaat	36	37	38	39	40	41	42	43	44	??
Aantal	2	6	6	19	6	5	2	2	1	1

Als een numerieke variabele heel veel verschillende waarden kan aannemen, dan wordt de frequentieverdeling op deze manier toch groot en onoverzichtelijk. We voegen dan waarden in een bepaald interval bij elkaar, en maken daarna een frequentieverdeling over dat geringere aantal intervallen of klassen.

Voorbeeld 8.2: Toen Koningin Beatrix voor het laatst de Troonrede voorlas, op 18 september 2012, pauzeerde ze daarbij $305\times$. De frequentieverdeling van de duur van de pauze (gemeten in seconden) is weergegeven in Tabel 8.3.

Table 8.3: Frequentieverdeling van de duren van spreekpauzes (in seconden) in de Troonrede van 18 september 2012, voorgelezen door Koningin Beatrix (N=305).

Interval	Aantal
4.50-4.99	1
4.00 – 4.49	0
3.50 – 3.99	2
3.00 – 3.49	7
2.50 – 2.99	4
2.00 – 2.49	25
1.50 – 1.99	32
1.00 – 1.49	16
0.50 – 0.99	67
0.00 – 0.49	151

8.2.1 Intervallen

Voor een variabele van nominaal en ordinaal meetniveau gebruiken we doorgaans de oorspronkelijke categorieën om de frequentieverdeling te maken (zie

Tabel @??tab:klankfreq)), al is het wel mogelijk om categorieën samen te voegen. Voor een variabele van interval- of ratio-meetniveau kan een onderzoeker zelf het aantal intervallen in de frequentieverdeling kiezen. Soms is dat niet nodig, bijvoorbeeld omdat de variabele een overzichtelijk aantal verschillende discrete waarden heeft (zie Tabel @??tab:schoenmaat)). Maar soms sta je als onderzoeker voor de keuze hoeveel intervallen te onderscheiden, en hoe de grenzen van die intervallen te bepalen (zie Tabel 8.3). Daarbij gelden dan de volgende aanbevelingen (Ferguson and Takane, 1989, Ch.2):

- Zorg dat alle observaties (d.w.z. het gehele bereik) vallen binnen ruwweg 10 tot 20 intervallen.
- Zorg dat alle intervallen even breed zijn.
- Laat de ondergrens van het eerste of tweede interval samenvallen met de breedte van de intervallen (zie Tabel 8.3: ieder interval is 0.50 s breed, en de ondergrens van het tweede interval is ook 0.50).
- Orden de intervallen in een frequentieverdeling van beneden naar boven in toenemende volgorde (d.i. van boven naar beneden in afnemende volgorde, Eng. descending), zie Tabel 8.3).

Naarmate we de intervallen breder maken, verliezen we meer informatie over de precieze verdeling binnen elk interval.

8.2.2 SPSS

```
Analyze > Descriptive Statistics > Frequencies...

Selecteer variabele (sleep naar paneel "Variable(s)").

Vink aan: Display frequency tables.

Kies Format, kies: Order by: Descending values.

Bevestig met OK.
```

8.2.3 R

```
enq2011 <- read.table(
    file=url("http://www.hugoquene.nl/R/enq2011.txt"),
    header=TRUE )
table( enq2011$schoen, useNA="ifany" )</pre>
```

De uitvoer van bovenstaande table commando is weergegeven in Tabel 8.2. De code NA (Not Available) wordt in R gebruikt om ontbrekende gegevens aan te duiden.

```
table( cut( troon2012, breaks=seq(from=0,to=5,by=0.5) ) )
```

Ontleed deze opdracht van de binnenste haakjes naar buiten: (i) seq: maak een reeks (sequence) van 0 tot 5 (eenheden, hier: seconden) in stappen van 0.5 seconden, (ii) cut: hak de afhankelijke variabele dur op in intervallen op basis van deze reeks, (iii) table: maak een frequentieverdeling van deze intervallen.

De uitvoer van deze opdracht is weergegeven (in aangepaste vorm) in Tabel 8.3.

8.3 Staafdiagrammen

Een staafdiagram (Eng. 'bar chart') is de grafische weergave van de frequentieverdeling van een discrete, categorische variabele (van nominaal of ordinaal meetniveau). Een staafdiagram is opgebouwd uit rechthoeken. Alle rechthoeken zijn even breed, en de hoogte van de rechthoek correspondeert met de frequentie van die categorie. De oppervlakte van iedere rechthoek correspondeert dus ook met de frequentie van die categorie. In tegenstelling tot een histogram sluiten de rechthoeken *niet* op elkaar aan langs de horizontale as, om aan te geven dat we te maken hebben met discrete categorieën.

Een staafdiagram helpt ons om in één oogopslag de belangrijkste kenmerken te bepalen van de verdeling van een discrete variabele: de meest kenmerkende (meest voorkomende) waarde, en de spreiding over categorieën. Voor de klankfrequenties in het Nederlands (Figuur 8.1) zien we dat bij de medeklinkers de plosieven het meeste voorkomen, dat bij de klinkers de korte klinkers het meeste voorkomen, dat tweeklanken weinig gebruikt worden (zgn. diphthongs, de klinkers in ei, ui, au), en dat er meer medeklinkers dan klinkers gesproken worden.

Tip: Vermijd schaduwen en andere 3D-effecten in een staafdiagram! De breedte en hoogte van een rechthoek wordt daardoor minder goed leesbaar, en de zichtbare oppervlakte van een beschaduwde rechthoek of van een balk correspondeert niet meer goed met de frequentie.

8.4 Histogrammen

Een histogram is de grafische weergave van een frequentieverdeling van een continue, numerieke variabele (van interval- of ratio-meetniveau). Een histogram is opgebouwd uit rechthoeken. De breedte van elke rechthoek correspondeert met de intervalbreedte (een rechthoek kan ook 1 eenheid breed zijn) en de hoogte correspondeert met de frequentie van dat interval of van die waarde.

Klankfrequenties in het Nederlands (N=2968220 spraakklanken)

Figure 8.1: Staafdiagram van de frequentieverdeling van fonologische klasse van spraakklanken in het Corpus Gesproken Nederlands (C=consonant=medeklinker, V=vocaal=klinker).

De oppervlakte van iedere rechthoek correspondeert dus met de frequentie. In tegenstelling tot een staafdiagram sluiten de rechthoeken op elkaar aan langs de horizontale as.

Een histogram helpt ons om in één oogopslag de belangrijkste kenmerken te bepalen van de verdeling van een continue variabele: de meest kenmerkende (meest voorkomende) waarde, de mate van spreiding, het aantal pieken in de frequentieverdeling, de ligging van die pieken, en eventuele uitbijters (zie §??). Voor de pauzes in de Troonrede van 2012 (Figuur 8.2) zien we dat de meeste pauzes tussen 0.25 en 0.75 s duren (vermoedelijk zijn dat adempauzes), dat er twee pieken zijn in de verdeling (de tweede piek ligt bij 2 s), en dat er één extreem lange pauze is (met een duur van bijna 5 s).

Tip: Vermijd schaduwen en andere 3D-effecten in een histogram! De breedte en hoogte van een rechthoek wordt daardoor minder goed leesbaar, en de zichtbare oppervlakte van een beschaduwde rechthoek of van een balk correspondeert niet meer goed met de frequentie.

8.4.1 SPSS

Analyze > Descriptive Statistics > Frequencies...

Selecteer variabele (sleep naar paneel "Variable(s)").

Troonrede 2012 (N=305 pauzes)

Figure 8.2: Histogram van de duren van spreekpauzes (in seconden) in de Troonrede van 18 september 2012, voorgelezen door Koningin Beatrix (N=305).

Kies Charts, kies daarna Chart type: Bar chart voor een staafdiagram of Chart type: Histogram voor een histogram (zie bovenstaande tekst voor het verschil tussen deze opties). Bevestig met OK.

8.4.2 R

Een staafdiagram zoals Figuur 8.1 maak je in R met de volgende commando's:

Een histogram zoals in Figuur 8.2 maak je in Rmet de volgende commando's:

Appendix A

Willekeurige getallen

Table A.1: Onderstaande tabel bevat 200 willekeurige getallen tussen 0 en 9999.

2836 264 6789 1483 3459 9200 4996 3761 699	5622
1943 6034 8838 1349 8750 3181 8799 4525 6536	5111
7259 8030 5709 8334 3526 2768 6296 8335 6350	6192
570 8266 9050 7771 3 7983 1871 3927 5549	1487
1241 2273 505 8816 4786 533 9347 888 3728	4135
6688 9456 2880 4616 7698 2955 9597 9188 8932	5605
1325 1294 8001 1814 5020 9470 8702 4083 6452	2863
6196 5085 9961 5306 1660 1809 8405 2019 2710	1368
1577 5112 874 6909 4126 8473 2065 1511 4778	4440
5778 1207 3337 1888 1420 6917 4160 2682 5263	5926
6635 1887 8836 2940 2404 7017 3119 3699 2529	8663
6813 5759 3314 6929 5238 6008 5900 8485 5938	5642
5208 2391 8324 6888 9449 2577 7859 176 1650	8389
5446 4412 9857 9535 2794 7883 4119 6439 8082	7918
2984 2126 9506 2188 9762 9775 4213 7624 4520	1086
371 4559 12 718 8403 8150 6533 3741 6279	8546
4669 1053 3343 4889 9088 9188 8093 9496 8806	923
4070 3408 8102 3012 9706 771 8296 3094 148	7244
4867 6267 1225 6539 7958 7217 7833 728 1610	5284
4665 1912 5320 8563 1365 3834 1818 7791 7704	2460

Bibliography

- (2015). Alex Foundation.
- American Psychological Association (2010). Publication Manual of the American Psychological Association. American Psychological Association, Washington, D.C., 6th edition.
- Ayres, J., Hopf, T., and Will, A. (2000). Are reductions in CA an experimental artifact? A Solomon four-group answer. *Communication Quarterly*, 48(1):19–26.
- Boswall, J. (z.j.). Alex, the talking parrot.
- Cochran, W. (1977). Sampling Techniques. Wiley, New York, 3e edition.
- De Groot, A. (1961). Methodologie: Grondslagen van onderzoek en denken in de gedragswetenschappen. Mouton, 's-Gravenhage.
- De Jong, N. H., Groenhout, R., Schoonen, R., and Hulstijn, J. H. (2015). Second language fluency: Speaking style or proficiency? Correcting measures of second language fluency for first language behavior. *Applied Psycholinguistics*, 36(2):223–243.
- Deutsch, D. (2006). The enigma of absolute pitch. Acoustics Today, 2:11–19.
- Dingemanse, M., Torreira, F., and Enfield, N. (2013). Is "huh?" a universal word? conversational infrastructure and the convergent evolution of linguistic items. *PLOS One*, 8(11):e78273.
- Donald, D. (1983). The use and value of illustrations as contextual information for readers at different progress and developmental levels. *British Journal of Educational Psychology*, 53(2):175–185.
- Drake, C. and Ben El Heni, J. (2003). Synchronizing with music: Intercultural differences. *Annals of the New York Academy of Sciences*, 999(1):429–437.
- Ferguson, G. A. and Takane, Y. (1989). Statistical Analysis in Psychology and Education. McGraw-Hill, New York, 6e edition.

112 BIBLIOGRAPHY

Gelman, A. and Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge.

- Henrich, J., Heine, S. J., and Norenzayan, A. (2010). The weirdest people in the world? *Behavioral and Brain Sciences*, 33(2-3):61–83.
- Houtkoop-Steenstra, H. (1991). Hoe een gesloten vraag toch open kan zijn. Tijdschrift voor Taalbeheersing, 13(3):185–196.
- Hume, D. (1739). A Treatise on Human Nature.
- Johnson, E. K. and Zamuner, T. (2010). Using infant and toddler testing methods in language acquisition research, chapter 4, pages 73–93. John Benjamins, Amsterdam.
- Karp, J. A. and Brockington, D. (2005). Social desirability and response validity: A comparative analysis of overreporting voter turnout in five countries. Journal of Politics, 67(3):825–840.
- Kerlinger, F. N. and Lee, H. B. (2000). Foundations of Behavioral Research. Harcourt College Publishers, Fort Worth, 4th edition.
- Koring, L., Mak, P., and Reuland, E. (2012). The time course of argument reactivation revealed: Using the visual world paradigm. *Cognition*, 123(3):361–379.
- Lev-Ari, S. and Keysar, B. (2010). Why don't we believe non-native speakers? The influence of accent on credibility. *Journal of Experimental Social Psychology*, 46(6):1093–1096.
- Levin, I. P. (1999). Relating Statistics and Experimental Design: An introduction. Sage University Papers Series on Quantitative Applications in the Social Sciences; 07-125. Sage, Thousand Oaks, CA.
- Luyckx, K., Kloots, H., Coussé, E., and Gillis, S. (2007). Klankfrequenties in het Nederlands. Academia Press.
- Morton, A. (2003). A Guide through the Theory of Knowledge. Blackwell, Malden, MA, 3e edition.
- Office of Research Integrity (2012). Responsible conduct of research training.
- Pfungst, O. (1907). Das Pferd des Herrn von Osten (Der kluge Hans): Ein Beitrag zur experimentellen Tier- und Menschen-Psychologie. J. A. Barth, Leipzig.
- Plomp, R. and Mimpen, A. M. (1979). Improving the reliability of testing the speech reception threshold for sentences. *International Journal of Audiology*, 18(1):43–52.

BIBLIOGRAPHY 113

Popper, K. (1935). Logik der Forschung. Zur Erkentnistheorie der modernen Naturwissenschaft. Julius Springer, Wien.

- Popper, K. (1959). The logic of scientific discovery. Routledge, London.
- Popper, K. (1963). Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge and Kegan Paul, London.
- Quené, H. (2008). Multilevel modeling of between-speaker and within-speaker variation in spontaneous speech tempo. *Journal of the Acoustical Society of America*, 123(2):1104–1113.
- Quené, H. (2010). How to design and analyze language acquisition studies, pages 269–287. Benjamins, Amsterdam.
- Quené, H., Semin, G. R., and Foroni, F. (2012). Audible smiles and frowns affect speech comprehension. *Speech Communication*, 54(7):917–922.
- Retraction Watch (2018). The "regression to the mean project:" what researchers should know about a mistake many make. Technical report.
- Richardson, E., DiBenedetto, B., Christ, A., Press, M., and Winsberg, B. G. (1978). An assessment of two methods for remediating reading deficiencies. *Reading Improvement*, 15(2):82.
- Rijlaarsdam, G. (1986). Effecten van leerlingrespons op aspecten van stelvaardigheid. PhD thesis.
- Rosenthal, R. and Rosnow, R. L. (2008). Essentials of Behavioral Research: Methods and Data Analysis. McGraw Hill, Boston, 3e edition.
- Rosén, E., Stigson, H., and Sander, U. (2011). Literature review of pedestrian fatality risk as a function of car impact speed. *Accident Analysis and Prevention*, 43(1):25–33.
- Sanders, E. (2011). Eerste Hulp bij e-Onderzoek voor studenten in de geesteswetenschappen: Slimmer zoeken, slimmer documenteren. Early Dutch Books Online.
- Shadish, W. R., Cook, T. D., and Campbell, D. T. (2002). Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Wadsworth, Belmont, CA.
- SWOV (2012). De relatie tussen snelheid en ongevallen.
- Thompson, S. K. (2012). *Sampling*. Wiley series in probability and statistics. John Wiley, Hoboken, NJ, 3e edition.
- Universiteitsbibliotheek, Vrije Universiteit Amsterdam (2015). Webcursus informatievaardigheden algemeen niveau b.

114 BIBLIOGRAPHY

Van den Berg, M., Amuzu, E. K., Essizewa, K., Yevudey, E., and Tagba, K. (2017). Crosslinguistic effects in adjectivization strategies in Suriname, Ghana and Togo. In Cutler, C., Vrzić, Z., and Angermeyer, P., editors, Language Contact in Africa and the African Diaspora in the Americas: in honor of John V. Singler, pages 343–362. Benjamins, s.l.

- Van den Bergh, H. and Meuffels, B. (1993). Schrijfvaardigheid. In Braet, A. and Van de Gein, J., editors, *Taalbeheersing als tekstwetenschap: terreinen en trends*. ICG, Dordrecht.
- Verhoeven, J., De Pauw, G., and Kloots, H. (2004). Speech rate in a pluricentric language: A comparison between Dutch in Belgium and the Netherlands. Language and Speech, 47(3):297–308.
- VSNU (2018). Nederlandse gedragscode wetenschappelijke integriteit. Technical report, VSNU.
- Watzlawick, P. (1977). Is 'werkelijk' waar? Spraakverwarring, zinsbegoocheling en onvoorstelbare werkelijkheid. Van Loghum Slaterus, Deventer.
- Wijffels, J., van den Bergh, H., and van Dillen, S. (1992). Het sturend effect van vragen met voorbeeldantwoorden. *Tijdschrift voor Taalbeheersing*, 14(2):136–147.
- Xie, Y. (2020). bookdown: Authoring Books and Technical Documents with R Markdown. R package version 0.18.