SHANGHAI JIAOTONG UNIVERSITY X071571: OPTIMIZATION METHODS

Problem Set 2

Problem 1. Let $f: C \to \mathbb{R}$ be a convex function defined on an open convex set $C \subset \mathbb{R}^n$. Show that for every $x_0 \in C$ there is an affine function g such that $g(x_0) = f(x_0)$ and $g \leq f$. We say that a convex function can be minorized by an affine function at every point.

Problem 2. Prove the following:

- Let A be a symmetric matrix. Prove that the function $f_A(x) = x^T A x$ is convex if and only if A is positive semi-definite.
- Prove the strict convexity of the function $f(x) = \log\left(\frac{1}{1-\|x\|^2}\right)$ on the set dom(f) = $\{x \in \mathbb{R}^n : ||x|| < 1\}.$

Problem 3. Let f be the Kullbak-Leibler divergence between $u, v \in (\mathbb{R}_{>0})^n$ given by

$$D_{KL}(u, v) = \sum_{i=1}^{n} (u_i \log \frac{u_i}{v_i} - u_i + v_i)$$

- Prove that $D_{KL}(u,v)$ is convex on $(\mathbb{R}_{>0})^n \times (\mathbb{R}_{>0})^n$.
- Prove that $D_{KL}(u,v) \geq 0$ for all $u,v \in (\mathbb{R}_{>0})^n$, called the information inequality.
- Prove that $D_{KL}(u,v)=0$ if and only if u=v.

Problem 4. For $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ let $f_{x,v}: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ be the function defined by

$$f_{x,v}(t) = f(x+tv), \quad x, v \in \mathbb{R}^n.$$

Prove that f is convex if and only if $f_{x,v}$ is convex for any $x,v \in \mathbb{R}^n$.

Problem 5. Prove that the functions

- $f(X) = \log \det(X)$, $dom(f) = \mathbb{S}_{++}^n = \{\text{symmetric positive definite matrices}\}$. [Hint: Use Problem 4]
- $g(x) = (x_1 \cdots x_n)^{1/n}$, $dom(g) = (\mathbb{R}_{>0})^n$

are concave

Problem 6. Prove the following inequalities:

- $\sqrt{ab} \le \frac{a+b}{2}$, for $a, b \ge 0$. The Holder inequality:

$$\sum_{i=1}^{n} x_i y_i \le (|x_i|^p)^{1/p} (|y_i|^q)^{1/q},$$

where 1/p + 1/q = 1.

[Hint: Use the Jensen inequality]

Problem 7. Using Fenchel's inequality, show that for any c > 0 and any $s, x \in \mathbb{R}^n$, one has

$$c||x||^2 + \frac{1}{c}||s||^2 \ge 2\langle s, x \rangle.$$

Problem 8. Compute the conjugate of the following functions:

- The standard norm on \mathbb{R}^n : f(x) = ||x||.
- Maximum function: $f(x) = \max_{i=1,\dots,n} x_i$ on \mathbb{R}^n .
- Piecewise-linear function on \mathbb{R} : $f(x) = \max_{i=1,\dots,m} (a_i x + b_i)$ on \mathbb{R} . You can assume that the a_i 's are sorted in increasing order, i.e., $a_1 \leq \dots \leq a_m$, and that none of the functions $a_i x + b_i$ is redundant, i.e. for each i there is at least one x with $f(x) = a_i x + b_i$.

Problem 9. Support function calculus. The *support function* of a set $C \subset \mathbb{R}^n$ is defined as $S_C(y) = \sup\{\langle y, x \rangle | x \in C\}$.

- (1) Show that S_C is a convex function.
- (2) Show that $S_{A+B} = S_A + S_B$.
- (3) Show that $S_{A\cup B} = \max\{S_A, S_B\}$.
- (4) Let B be closed and convex. Show that $A \subset B$ if and only if $S_A(y) \leq S_B(y)$ for all y.

Problem 10. Properties of conjugate functions.

- Conjugate of convex plus affine function. Define $g(x) = f(x) + c^T x + d$, where f is convex. Express g^* in terms of f^* (and c, d).
- Conjugate and minimization. Let f(x,z) be convex in (x,z) and define $g(x) = \inf_z f(x,z)$. Express the conjugate g^* in terms of f^* . As an application, express the conjugate of $g(x) = \inf_z \{h(z) | Az + b = x\}$, where h is convex, in terms of h^* , A and b.