МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Вятский государственный университет»

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

ИССЛЕДОВАНИЕ УСИЛИТЕЛЬНЫХ КАСКАДОВ НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ

Отчет по лабораторной работе №4 по дисциплине «Метрология, стандартизация и сертификация» Вариант 2

Выполнил студент группы ИВТ-32	/Рзаев А. Э./
Проверил доцент кафедры ЭВМ	/Скворцов А. А./

1 Цель работы

Цель работы – изучение работы усилительных каскадов на биполярных транзисторах, определение основных параметров и их расчет по постоянному току.

2 Выполнение задания

2.1 Расчеты для схемы с общим эмиттером

Исходные данные:

$$E = 12 B$$

$$R_1 = R_2 = 2.7 \text{ кОм}$$

$$R_3 = 200 \text{ kOm}$$

$$R_{\kappa} = 3.9 \text{ kOm}$$

$$R_H = 3 \text{ kOm}$$

$$C_1 = C_2 = 22 \text{ MK}\Phi$$

$$C_9 = 22 \text{ MK}\Phi$$
.

Значение выходного напряжения при $U_{\text{вх}} = 0.1 \; \text{В}$ и $f = 1 \; \text{к}\Gamma$ ц:

$$U_{BHX} = 67.5 \text{ MB}.$$

Схема измерения представлена на рисунке 1.

Рисунок 1 — Схема усилительного каскада с общим эмиттером

Рисунок 2 — Схема усилительного каскада с ОЭ для измерения тока коллектора

Устанавливаем $U_{\text{вх}} = 0$ В и определяем значения тока коллектора при различных значениях коэффициента усиления β .

Таблица 1 – Зависимость тока коллектора от коэффициента усиления в схеме с ОЭ

β	0.7β	0.8β	0.9β	β	1.1β	1.2β	1.3β
I_k , MKA	25,98	26,05	26,11	26,16	26,20	26,23	26,26

Устанавливаем $U_{\rm Bx} = 0 {\rm B}$ и определяем значения тока коллектора при различных значениях температуры.

Таблица 2 – Зависимость тока коллектора от температуры в схеме с ОЭ

Taominga 2 Sabrenmoeth fora Romertopa of Temperatyph b exeme e SS									
T, °C	-20	-10	0	10	20	30	40	50	60
I_k , мкА	25,78	25,86	25,94	26,02	26,11	26,19	26,27	26,35	26,44

Коэффициент усиления каскада с общим эмиттером:

$$K_{U_{09}} = \frac{U_{\text{вых}}}{U_{\text{вх}}} = \frac{67.5 \text{ MB}}{100 \text{ MB}} = 0.675.$$

Рисунок 3 — График зависимости тока коллектора от коэффициента усиления в схеме с ОЭ

Рисунок 4 — График зависимости тока коллектора от температуры в схеме с $O\Theta$

2.2 Расчеты для схемы с общим коллектором

Исходные данные:

$$E = 12 B$$

$$R_1 = R_2 = 2.7 \text{ кОм}$$

$$R_3 = 0.68 \text{ kOm}$$

$$R_{\rm H} = 3 \text{ kOm}$$

$$C_1 = C_2 = 22 \text{ MK}\Phi.$$

Значение выходного напряжения при $U_{\rm BX}=1~{\rm B}$ и f = 1 кГц: $U_{\rm BMX}=700$ мВ.

Схема измерения представлена на рисунке 5.

Рисунок 5 – Схема усилительного каскада с общим коллектором

Устанавливаем $U_{BX}=0$ В и определяем значения тока коллектора при различных значениях коэффициента усиления β .

Рисунок 6 — Схема усилительного каскада с ОК для измерения тока коллектора

Таблица 3 — Зависимость тока коллектора от коэффициента усиления в схеме с OK

β	0.7β	0.8β	0.9β	β	1.1β	1.2β	1.3β
I_k , MA	7,084	7,143	7,189	7,226	7,258	7,285	7,306

Устанавливаем $U_{\text{вх}} = 0 \ \text{В}$ и определяем значения тока коллектора при различных значениях температуры.

Таблица 4 – Зависимость тока коллектора от температуры в схеме с ОК

1						1 71				
	T, °C	-20	-10	0	10	20	30	40	50	60
	I_k , мА	7,150	7,166	7,182	7,198	7,216	7,232	7,249	7,265	7,283

Коэффициент усиления каскада с общим эмиттером:

$$K_{U_{
m OK}} = rac{U_{
m \scriptscriptstyle BMX}}{U_{
m \scriptscriptstyle BX}} = rac{700\
m {MB}}{1000\
m {MB}} = 0.7.$$

Рисунок 7 — График зависимости тока коллектора от коэффициента усиления в схеме с ОК

Рисунок 8 — График зависимости тока коллектора от температуры в схеме с ${\rm OK}$

3 Выводы

В ходе данной лабораторной работы были изучены схемы усилительных каскадов на биполярных транзисторах, а именно схемы с общим эмиттером и общим коллектором. Для каждой схемы были определены коэффициенты усиления в соответствии с моделью транзистора и параметров схем. Также для каждой схемы были построены графики зависимостей тока коллектора от значений коэффициента усиления и температуры. Было выяснено, что сила тока пропорциональна температуре и коэффициенту усиления.