

第七章

常微分方程的数值解法(3-4)

第三节 龙格-库塔算法

第四节 单步法的收敛性与稳定性

第3节 龙格(Runge)-库塔(Kutta)方法

由
$$\frac{y(x_{n+1})-y(x_n)}{h} = y'(\xi), (x_n < \xi < x_{n+1}),$$
 得
$$y(x_{n+1}) = y(x_n) + hy'(\xi) = y(x_n) + hf(\xi, y(\xi))$$

记 $K^* = f(\xi, y(\xi))$ 称之为 $[x_n, x_{n+1}]$ 上的平均斜率. 故

$$y(x_{n+1}) = y(x_n) + hK^*$$

只要对 K^* 提供不同的算法,就会得出不同的计算公式.

如取 $K^* = f(x_n, y_n) - x_n$ 处的斜率,则得Euler公式;

则得<mark>改进的Euler公式</mark>,它是利用 x_n , x_{n+1} 两点的斜率值 K_0 , K_1 的算术平均值作为 K^* , 精度 $O(h^3)$ 比Euler方法 $O(h^2)$ 高.

设法在 $[x_n, x_{n+1}]$ 内多预报几个点的斜率,再将它们的加权平均值作

为平均斜率 K^* , 取r+1个点 x_n , $x_n+\lambda_1 h$, $x_n+\lambda_2 h$, \cdots , $x_n+\lambda_r h$.

$$K_0 = f(x_n, y_n), K_1 = f(x_n + \lambda_1 h, y_n + h\mu_{11}K_0),$$

$$K_2 = f(x_n + \lambda_2 h, y_n + h(\mu_{21}K_0 + \mu_{22}K_1)), \dots,$$

$$K_r = f(x_n + \lambda_r h, y_n + h(\mu_{r1}K_0 + \mu_{r2}K_1 + \dots + \mu_{r-1,r-1}K_{r-1})).$$

□ 龙格-库塔公式(R - K公式)

设 $x_{n+1}-x_n=h$, r为正整数, λ_i , A_i 为常数, $i=0,1,\cdots,r$, 则

$$y_{n+1} = y_n + h \sum_{i=0}^r A_i f(x_n + \lambda_i h, y(x_n + \lambda_i h))$$

其中 $\lambda_0 = 0$, 称该公式为龙格-库塔公式.

因为 $y(x_n + \lambda_i h)$ 不方便计算,所以将以上公式改写成为:

$$y_{n+1} = y_n + h \sum_{i=0}^r A_i K_i$$

其中
$$K_0 = f(x_n, y_n), K_i = f(x_n + \lambda_i h, y_n + h \sum_{j=0}^{i-1} \mu_{ij} K_j), i = 1, \dots, r.$$

1. 二阶R - K公式

$$\pi \begin{cases} y_{n+1} = y_n + h(A_0K_0 + A_1K_1) \\ K_0 = f(x_n, y_n) \\ K_1 = f(x_n + \lambda_1 h, y_n + h\mu_{11}K_0) \end{cases}$$
 为二阶 $R - K$ 公式,

① 中点法(修正的Euler法)

取
$$A_0 = 0, A_1 = 1, \lambda_1 = \mu_{11} = \frac{1}{2},$$
 有
$$y_{n+1} = y_n + hf(x_n + \frac{h}{2}, y_n + \frac{h}{2}f(x_n, y_n))$$
 即,
$$\begin{cases} y_{n+1} = y_n + hK_1 \\ K_1 = f(x_n + \frac{1}{2}h, y_n + \frac{h}{2}K_0) \\ K_0 = f(x_n, y_n) \end{cases}$$

② 经典二阶龙格-库塔公式(改进的欧拉公式)

取
$$A_0 = \frac{1}{2}$$
, $A_1 = \frac{1}{2}$, $\lambda_1 = \mu_{11} = 1$, 有
$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_n + h, y_n + hf(x_n, y_n))]$$

即,
$$\begin{cases} y_{n+1} = y_n + \frac{h}{2}(K_0 + K_1) \\ K_1 = f(x_n + h, y_n + hK_0) \\ K_0 = f(x_n, y_n) \end{cases}$$

2. 三阶R-K公式

$$\begin{cases} y_{n+1} = y_n + h(A_0K_0 + A_1K_1 + A_2K_2) \\ K_0 = f(x_n, y_n) \\ K_1 = f(x_n + \lambda_1 h, y_n + \mu_{10}K_0) \\ K_2 = f(x_n + \lambda_2 h, y_n + \mu_{20}hK_0 + \mu_{21}hK_1) \end{cases}$$

类似于N = 2的推导方法,要截断误差达到 $O(h^4)$,可得到

$$A_0 + A_1 + A_2 = 1$$
, $\lambda_1 = \mu_{10}$, $\lambda_2 = \mu_{20} + \mu_{21}$
 $A_1\lambda_1 + A_2\lambda_2 = \frac{1}{2}$, $A_1\lambda_1^2 + A_2\lambda_2^2 = \frac{1}{3}$, $A_2\lambda_2\mu_{21} = \frac{1}{6}$

同样,解不唯一。

$$\mathfrak{M}A_0 = A_2 = \frac{1}{6}, A_1 = \frac{2}{3}, \lambda_1 = \frac{1}{2}, \lambda_2 = 1, \mu_{10} = \frac{1}{2}, \mu_{20} = -1, \mu_{21} = 2$$

得到经典三阶R - K公式

$$\begin{cases} y_{n+1} = y_n + \frac{h}{6}(K_0 + 4K_1 + K_2) & y_{n+1} = y_n + \frac{h}{6}(K_0 + 2K_1 + 2K_2 + K_4) \\ K_0 = f(x_n, y_n) & K_0 = f(x_n, y_n) \\ K_1 = f(x_n + \frac{1}{2}h, y_n + \frac{1}{2}K_0) & K_1 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_0) \\ K_2 = f(x_n + h, y_n - hK_0 + 2hK_1) & K_2 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_1) \\ K_3 = f(x_n + h, y_n + hK_2) & K_4 = f(x_n + h, y_n + hK_2) \end{cases}$$

3. 四阶R - K公式

类似于二阶、三阶,我们直接给出经典四阶R - K公式

例2: 用经典的龙格-库塔方法 $\begin{cases} \frac{dy}{dx} = y - \frac{2x}{y}, x \in [0, 1] \\ y(0) = 1 \end{cases}$

解: 经典的四阶龙格-库塔公式:

$$\begin{cases} y_{n+1} = y_n + \frac{h}{6}(K_0 + 2K_1 + 2K_2 + K_4) \\ K_0 = y_n - \frac{2x_n}{y_n}, & K_1 = y_n + \frac{h}{2}K_0 - \frac{2(x_n + \frac{h}{2})}{y_n + \frac{h}{2} \cdot K_0} \end{cases}$$

$$K_2 = y_n + \frac{h}{2}K_1 - \frac{2(x_n + \frac{h}{2})}{y_n + \frac{h}{2} \cdot K_1}$$

$$K_3 = y_n + hK_2 - \frac{2(x_n + h)}{y_n + hK_2}$$

x_n	0.1	0.2	0.3	0.4	0.5
y_n	1.0954	1.1832	1.2649	1.3416	1.4142
	-				

x_n	0.6	0.7	0.8	0.9	1.0
y_n	1.4832	1.5492	1.6125	1.6733	1.7321

同保留5位的精确值完全一致: $y = \sqrt{2x+1}$

x_n	0.1	0.2	0.3	0.4	0.5
y_n	1.0954	1.1832	1.2649	1.3416	1.4142

$\boldsymbol{x_n}$	0.6	0.7	0.8	0.9	1.0
y_n	1.4832	1.5492	1.6125	1.6733	1.7321

第4节 单步法的收敛性和稳定性

单步法: y_{n+1} 的计算公式只与 y_n 有关。

一、单步法的相容性和收敛性

初值问题
$$\begin{cases} \frac{dy}{dx} = f(x,y) \\ y(x_0) = y_0 \end{cases}$$
 数值解
$$\begin{cases} y_{n+1} = y_n + h\varphi(x_n,y_n,h) \\ y(x_0) = y_0 \end{cases}$$

其中 $\varphi(x,y,h)$ 称为增量函数。

显示单步法

欧拉公式: $\varphi(x_n, y_n, h) = f(x_n, y_n)$

改进的欧拉公式:

$$\varphi(x_n, y_n, h) = \frac{1}{2} [f(x_n, y_n) + f(x_n + h, y_n + hf(x_n, y_n))]$$

定义1. 设初值问题为 $y' = f(x, y), y(x_0) = y_0$, 显示单步法数值

解的增量函数为 $\varphi(x,y,h)$, 若

$$\lim_{h\to 0}\varphi(x,y,h)=f(x,y)$$

则称单步法数值解与初值问题是相容的。

例如欧拉公式方法与初值问题是相容的, 因为

$$\varphi(x, y, h) \equiv f(x, y)$$

又如当 $f(x,y) \in C[a,b]$, 改进欧拉公式方法与初值问题相容

$$\lim_{h\to 0} \varphi(x,y,h) = \lim_{h\to 0} \frac{1}{2} [f(x,y) + f(x+h,y+hf(x,y))] = f(x,y).$$

定义2. 设初值问题为 $y' = f(x,y), y(x_0) = y_0$,某种显示单步法 $y_{n+1} = y_n + h\varphi(x_n, y_n, h)$ 产生的近似解为 $\{y_n\}$,若对任意固定的 $x_n = x_0 + nh$ 均有 $\lim_{h\to 0} y_{n+1} = y(x_n)$,则称该单步法是收敛的。

定义1 先假设 $y(x_k) = y_k$, 再估计误差

$$R_{k+1,h} = y(x_{k+1}) - [y(x_k) + h\varphi(x_k, y(x_k), h)]$$

这种误差称为单步迭代法在 x_{k+1} 的局部截断误差.

定义3 误差 $e_{k+1,h} = y(x_{k+1}) - [y(x_k) + h\varphi(x_k, y_k, h)]$

这种误差称为单步迭代法在 x_{k+1} 的整体截断误差.

定理1. 设初值问题对应的单步法 $y_{n+1} = y_n + h\varphi(x_n, y_n, h)$ 是p阶的,且函数 φ 满足对y的Lipschitz条件,即存在常数L > 0,使得

 $|\varphi(x, y_1, h) - \varphi(x, y_2, h)| \le |y_1 - y_2|, y_1, y_2$ 为任意实数,

则该单步法是收敛的,且整体截断误差 $y(x_n) - y_n = O(h^p)$.

证明

注:整体截断误差= $O(h^{-1})$ ×局部截断误差。

二、单步法的稳定性

定义3. 对单步法 $y_{n+1} = y_n + h\varphi(x_n, y_n, h)$ 应用实验方程 $y' = \lambda y$,

如果 $y_{n+1} = g(\lambda h)y_n$, 当 $|g(\lambda h)| < 1$ 时, 则称该单步法是绝对

稳定的,在复平面上复变量 λh 满足 $|g(\lambda h)| < 1$ 的区域,称为该

单步法的绝对稳定域,它与实轴的交集称为绝对稳定区间。

初值问题y' = f(x, y), 实验方程 $y' = \lambda y$, 即 $f(x_n, y_n) = \lambda y_n$.

欧拉公式 $y_{n+1} = y_n + hf(x_n, y_n) = y_n + \lambda hy_n = (1 + \lambda h)y_n$,

所以 $g(\lambda h) = 1 + \lambda h$

改进欧拉公式:

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_n + h, y_n + hf(x_n, y_n))]$$

利用龙格-库塔迭代方法,即

$$K_0 = f(x_n, y_n) = \lambda y_n$$

$$K_1 = f(x_n + h, y_n + hK_0) = \lambda(y_n + h\lambda y_n) = (\lambda + h\lambda^2)y_n$$

$$y_{n+1} = y_n + \frac{h}{2}(K_0 + K_1) = y_n + \frac{h}{2}[\lambda y_n + (\lambda + h\lambda^2)y_n]$$
$$= [1 + \lambda h + \frac{(h\lambda)^2}{2}]y_n$$

所以
$$g(\lambda h) = 1 + \lambda h + \frac{(h\lambda)^2}{2}$$