M.Sc. in ,Transportation Systems'

Applied Statistics in Transport

Exercises: Correlation, Regression

 The university in A-city has collected the following data on the intelligence quotient (IQ, X_i) and the weekly hours of watching TV (Y_i) for a sample of 10 persons. Please analyse the relationship between those two variables. Give reasons for the measure you have chosen and interpret your results.

IQ, X _i	Hours of TV per Week, Yi	
106	7	
86	0	
100	27	
101	50	
99	28	
103	29	
97	20	
113	12	
112	6	
110	17	

2. The originating traffic of a region depends on several variables. Please check whether the originating traffic can be explained with the help of simple linear regression as a function of the number of registered passenger cars.

X number of registered passenger cars [1,000 cars]

Y originating traffic [1,000 veh./16h]

The following table shows the observations for 10 regions:

i	Xi	y i
1	0.3	1.1
2	0.4	2.4
3	1.1	3.5
4	0.8	4.1
5	0.7	2.3
6	1.6	3.6
7	1.1	4.6
8	1.3	3.5
9	1.7	3.8
10	1.4	3
Total	10.4	31.9

Determine the correlation coefficient; compute the coefficients of the regression line and the coefficient of determination.