

The North Atlantic Multidecadal Oscillation (AMO)

Students: Daniel Tapia-Reyes, Cecilia Florenza-Lamberti, Vanessa Tosello, and Zoé Remita

Advisor: Sally Close

The **cold/warm phases** may last for **20-40 years**.

It has wide **impacts** on the **climate** of the **Northern Hemisphere**: hurricane activity, precipitation patterns, global temperature trends

The AMO is:

- a low-frequency climate cycle,
- characterized by variations in sea surface temperature (SST) over the North Atlantic Ocean.

Objective: calculate the Atlantic Multidecadal Oscillation index in future climate projections

Coupled Model Intercomparison Project (CMIP6)

Collaborative framework involving research centers worldwide for producing climate model simulations.

Includes a variety of **Shared Socioeconomic Pathways (SSP)**:

 Climate scenarios imagining different futures based on global development and greenhouse gas emissions.

Uses an **ensemble approach**:

- Multiple simulations produced for each scenario
- Same model configuration, but different initial conditions

Data

Available in Google Cloud

data ~ 150 YEARS OF DATA

- > 100 models
- > 40 research centers
- > 1000 variables

CMIP6 catalogue: https://storage.googleapis.com/cmip6/cmip6-zarr-consolidated-stores.csv

	activity_id	institution_id	source_id	experiment_id	member_id	table_id	variable_id	<pre>grid_label</pre>	zstore	dcpp_init_year	version
15164	ScenarioMIP	NOAA-GFDL	GFDL-ESM4	ssp245	r1i1p1f1	Omon	zos	gr	gs://cmip6/CMIP6/ScenarioMIP/NOAA-GFDL/GFDL-ES	NaN	2018070
15182	ScenarioMIP	NOAA-GFDL	GFDL-ESM4	ssp245	r1i1p1f1	Omon	zos	gn	gs://cmip6/CMIP6/ScenarioMIP/NOAA-GFDL/GFDL-ES	NaN	2018070
45426	ScenarioMIP	AWI	AWI-CM-1-1-MR	ssp245	r1i1p1f1	Omon	ZOS	gn	gs://cmip6/CMIP6/ScenarioMIP/AWI/AWI-CM-1-1-MR	NaN	2018121
48623	ScenarioMIP	IPSL	IPSL-CM6A-LR	ssp245	r1i1p1f1	Omon	zos	gn	gs://cmip6/CMIP6/ScenarioMIP/IPSL/IPSL-CM6A-LR	NaN	2019011
54792	ScenarioMIP	CNRM-CERFACS	CNRM-CM6-1	ssp245	r1i1p1f2	Omon	zos	gn	gs://cmip6/CMIP6/ScenarioMIP/CNRM-CERFACS/CNRM	NaN	201902
	9777		0.775		977			8777	less.	6707	
507148	ScenarioMIP	MRI	MRI-ESM2-0	ssp245	r2i3p1f1	Omon	zos	gn	gs://cmip6/CMIP6/ScenarioMIP/MRI/MRI-ESM2-0/ss	NaN	2020122
507177	ScenarioMIP	MRI	MRI-ESM2-0	ssp245	r1i3p1f1	Omon	zos	gr	gs://cmip6/CMIP6/ScenarioMIP/MRI/MRI-ESM2-0/ss	NaN	2020122
507204	ScenarioMIP	MRI	MRI-ESM2-0	ssp245	r5i3p1f1	Omon	ZOS	gn	gs://cmip6/CMIP6/ScenarioMIP/MRI/MRI-ESM2-0/ss	NaN	2020122
511873	ScenarioMIP	EC-Earth-Consortium	EC-Earth3-CC	ssp245	r1i1p1f1	Omon	ZOS	gn	gs://cmip6/CMIP6/ScenarioMIP/EC-Earth-Consorti	NaN	202101
514177	ScenarioMIP	CMCC	CMCC-ESM2	ssp245	r1i1p1f1	Omon	zos	gn	gs://cmip6/CMIP6/ScenarioMIP/CMCC/CMCC-ESM2/ss	NaN	202101

Accessing Zarr Datasets with Xarray

Data

- Model (source_id): IPSL-CM6A-LR (Institut Pierre-Simon Laplace)
- **Member** (*member_id*): only one
- Scenarios (experiment_id): SSP1-2.6, SSP3-7.0, SSP5-8.5
- Variables:
 - tos: Sea surface temperature [°C] (monthly time step)
 - tosga: Global Sea Surface Temperature [°C] (monthly time step)
 - o areacello: Grid-Cell Area for Ocean Variables [m²]

Calculate the North Atlantic SST Average

$$A = \frac{\sum sst(x, y) \cdot areacello(x, y)}{total area}$$

- SST: tos variable, which provides SST at each point (x, y) on the grid tic
- areacello: area of each grid cell. Weighting the SST values by the cell area ensures the calculation is accurate and unbiased
- Divide by the total area of the region to compute the average

Components of North Atlantic SST Variability

North Atlantic
Multidecadal
Oscillation

long-term trend of increasing global temperatures

regular annual pattern of SST variation

unpredictable fluctuations

Remove the seasonal cycle

monthly_mean = A.groupby('time.month').mean(dim='time')

A - monthly_mean = AMO + climate change + random variability

Remove the global warming signal

$$A' = A - tosga = AMO + random variable$$

AMO index: apply a 10-years low pass filter

AMO index

Low CO2 emissions

Intermediate CO2 emissions

High CO2 emissions

AMO pattern **Linear Regression with Global SSTA**

In order to remove the signature of the global SSTA change at each point. We fit the North Atlantic SSTA to global SSTA for each grid point to calculate the regression coefficients.

With the coefficients, we estimate SSTA using:

$$SSTA_{estimated}(t, lat, lon) = \beta_1(lat, lon) \cdot SSTA_{global}(t) + \beta_0(lat, lon)$$

2030 2040 2050 2060

We subtract this estimate from the original SSTA.

$$SSTA_{residual} = SSTA_{local} - SSTA_{estimated}$$

This leaves us with an SSTA anomaly relative to the global SSTA change at each point.

AMO pattern Linear regression against the AMO index

To obtain the AMO pattern, we fit the residual SSTA to the AMO index for each grid point, to obtain their coefficients.

$$ext{SSTA}_{ ext{residual}}(t, ext{lat}, ext{lon}) = lpha_1(ext{lat}, ext{lon}) \cdot ext{AMO}_{ ext{index}}(t) + lpha_0(ext{lat}, ext{lon})$$

Results: AMO pattern

A spatial map of coefficients degree = 1 showing how each point in the North Atlantic responds to the AMO index.

Perspectives

Link with the North Atlantic Oscillation (NAO):

- Use PCA (principal component analysis) on sea level pressure in winter
- Calculate NAO for different models and investigate potential covariability with the AMO

Find Common Features Across Models:

- Group models into categories of similar behavior using methods such as:
 - Classification: Identify scenarios based on time series characteristics
 - Clustering: Detect common patterns in AMO spatial variability or indices

Predict the AMO:

- Predict the last third of the AMO time series using earlier parts
- Forecast model behavior under one forcing scenario based on results from another scenario

