第九章 代数系统

第一节 二元运算及性质

一、二元运算。

1、**定义:** 设 s为集合,函数 $f: S \times S \rightarrow S$ 称为 S上的二元运算(即 $\forall x, y \in S, x \circ y \in S,$ 运算封闭)

$$n$$
元运算, $f: \underbrace{S \times S \times \cdots \times S}_{n \uparrow} \to S$

掌握 n=1, n=2, 即一元, 二元运算。

一、二元运算。

2、记号:用°,*,•,···等符号表示二元运算, 称为**算符**。

例如:
$$f(\langle x, y \rangle) = z$$
 记为 $x \circ y = z$ (二元运算)
$$f(a) = b$$
 记为 $\circ (a) = b$ (一元运算)

- **例1、**(1)*N*上的加法,乘法都是二元运算, 但减法,除法不是。
 - (2) Z上的加法,乘法,减法都是二元运算, 但除法不是。Z上求相反数的运算是一元运算。
 - (3) 非零实数集 R*上的乘法和除法都是二元运算。 但加法,减法不是,而求倒数是一元运算。
 - (4) $M_n(R)$ 表示所有 n 阶实矩阵的集合 $(n \ge 2)$,则矩阵的加法和乘法都是二元运算。

- (5) 集合S的幂集P(S)上的 $U, \cap, -, \oplus$ 都是二元运算,而绝对补集(S为全集)是一元运算。
- (6) 所有命题公式的集合上的 ∧, ∨, →, ↔ 都是二元运算,而否定¬为一元运算。
- (7) S^{S} 表示集合 S上的所有函数的集合,函数的合成运算。是 S^{S} 上的二元运算。

3、一元,二元运算表。

当 *S* 为有穷集时, *S* 上的一元和二元运算都可以用运算表给出。

例2、(1) 设 $S = \{1,2\}$,给出P(S)上的运算绝对补集~和对称差⊕的运算表。

解: $P(S) = \{\phi, \{1\}, \{2\}, \{1,2\}\}$, "~"为一元运算,

"⊕"为二元运算,其运算表如下:

a_i	$\sim a_i$		φ	(1)	{ 2}	{1,2}
φ	{1,2}	φ	φ	(1)	{2}	{1,2}
{1}	{1,2} {2} {1}	{1}	{1}	ϕ	{1,2}	{2}
{2}	{1}	{ 2}	{ 2}	{1,2}	ϕ	{1}
{1,2}	φ	{1,2}	{1,2}	{2}	{2} {1,2} • • (1)	φ

例2、(2) 设 $S = \{0,1,2,3,4\}$,定义S上的两个二元运算如下:

$$x \circ y = (x + y) \mod 5 \quad (\forall x, y \in S)$$

$$x * y = (xy) \mod 5$$
 $(\forall x, y \in S)$

求运算。和*的运算表。

解: $(x+y) \mod 5$, $(xy) \mod 5$ 分别是x, y的和与积除以5的余数,运算表如下:

0	0	1	2	3	4		*	0	1	2	3	4
0	0	1	2	3	4	·	0	0	0	0	0	0
1	1	2	3	4	0		1	0	1	2	3	4
2	2	3	4	0	1		2	0	2	4	1	3
3	3	4	0	1	2		3	0	3	1	4	2
4	4	0	1	2	3		4	0	4	3	2	1

二、有关运算律。

设。,*是S上的二元运算, $\forall x, y, z \in S$

- 1、若 $x \circ y = y \circ x$,则称 \circ 在S上可交换。 (或称满足**交换律**)
- 2、若 $(x \circ y) \circ z = x \circ (y \circ z)$,则称 \circ 在S上可结合。 (或称满足结合律)

二、有关运算律。

设。,*是S上的二元运算, $\forall x, y, z \in S$

若 $x*(y\circ z)=(x*y)\circ(x*z)$

 $(y \circ z) * x = (y * x) \circ (z * x)$

则称运算*对。是可分配的。

(或称*对。满足分配律)

- **例3、**(1) 普通的加法和乘法在*N*, *Z*, *Q*, *R*上都是可结合的,且是可交换的,乘法对加法是可分配的。
- (2) 矩阵的加法和乘法在 $M_n(R)$ 上是可结合的,加法可交换,但乘法不可交换,乘法对加法是可分配的。

- (3) U,∩,⊕在幂集*P*(*S*) 上可结合,可交换, 但是相对补不可结合,不可交换,U和∩ 是互相可分配的。
- (4) A, V 在全体命题公式集合上可结合,可交换, A和 V 是相互可分配的。

三、一些特殊元素。

设。为S上的二元运算,

- 1、**幺元** e : 若 $\exists e \in S$, 对 $\forall x \in S$, $e \circ x = x \circ e = x$ 则称 e 为运算 \circ 的**幺元**。
- 注: (1) 若幺元存在必唯一。
 - (2) 若只有 $e_l \circ x = x$ 或只有 $x \circ e_r = x$,则 $e_l \circ e_r$ 称为左幺元或右幺元。

例如: 在N,Z,Q,R上,加法的幺元是0,乘法的幺元是1。在Z上的减法运算没有幺元,只有右幺元0 (x-0=x)

在 $M_n(R)$ 上,矩阵加法的幺元是n阶0矩阵,矩阵乘法的幺元是n阶单位矩阵。

在幂集P(S)上,运算 \bigcup 的幺元是 ϕ ,运算 \bigcap 的幺元是全集S。

例4、在R*(非零实数集)上定义运算如下:

$$a \circ b = a \quad (\forall a, b \in R^*)$$

则R*中的任何元素都是右幺元,

但没有左幺元 e_l , 使 $e_l \circ b = b (\forall b \in R^*)$,

从而没有幺元。

2、零元 θ : 若 $\exists \theta \in S$, 对 $\forall x \in S$,

 $\theta \circ x = x \circ \theta = \theta$,则称 θ 为运算。的零元。

注: (1) 若零元存在必唯一。

(2) 若只有 $\theta_l \circ x = \theta_l$, 或只有 $x \circ \theta_r = \theta_r$,

则 θ_l , θ_r 分别称为左零元或右零元。

如例 $4(a \circ b = a), R*$ 的任何元素都是左零元,

但没有右零元 θ_r ,从而也没有零元。

例如: 在N, Z, Q, R上加法没有零元, 乘法的零元是0。

在 $M_n(R)$ 上矩阵加法没有零元,矩阵乘法的零元是n 阶0矩阵。

在幂集P(S)上,运算 \bigcup 的零元是S,运算 \bigcap 的零元是 ϕ 。

- 3、**逆元**: 设。为S上的二元运算, $e \in S$ 为运算。的幺元,若对 $x \in S$,存在 $x^{-1} \in S$,使 $x^{-1} \circ x = x \circ x^{-1} = e$,则称 x^{-1} 为x的**逆元**。
- 注: (1) 逆元是针对某个元素 x 而言的 (可能有些元素有逆元,有些没有)
 - (2) 若二元运算。满足结合律且*x*的逆元 存在则必唯一。

- 3、**逆元**: 设。为S上的二元运算, $e \in S$ 为运算。的幺元,若对 $x \in S$,存在 $x^{-1} \in S$,使 $x^{-1} \circ x = x \circ x^{-1} = e$,则称 $x^{-1} \to x$ 的**逆元**。
- 注: (3) 若只有 $x_l^{-1} \circ x = e$ 或只有 $x \circ x_r^{-1} = e$,则 x_l^{-1}, x_r^{-1} 称为左逆元或右逆元。

例如: 普通加法运算在N, Z, Q, R上有幺元0,仅在Z, Q, R上任意元素 $_x$ 有逆元(-x),满足(-x)+x=x+(-x)=0

在N上只有0有逆元0,而其它的自然数就没有逆元。

在 $M_n(R)$ 上矩阵的乘法只有可逆矩阵存在逆元。 幂集P(S)上关于运算 \bigcup 有幺元 ϕ ,但除了 ϕ 外, 其余元素都没有逆元。 **例5、**判断普通的加法和乘法运算在下列集合中 是否二元运算。

(1)
$$S_1 = \{1, 2\}$$

解:加法,乘法都不是二元运算。

$$(2) S_2 = \{0,1\}$$

解:加法不是二元运算,乘法是二元运算。

例5、判断普通的加法和乘法运算在下列集合中 是否二元运算。

(3)
$$S_3 = \{2x | x \in Z^+\}$$

解:加法,乘法都是二元运算。

(4)
$$S_4 = \{2x - 1 | x \in Z^+\}$$

解:加法不是二元运算,乘法是二元运算。

例5、判断普通的加法和乘法运算在下列集合中 是否二元运算。

(5)
$$S_5 = \{x = 2^n, n \in Z^+\}$$

解:加法不是二元运算,乘法是二元运算。

例6、在实数集 R上定义运算*如下: $\forall a,b \in R$ a*b=a+b+2ab

(1) *是 R 上的二元运算吗?

解: 因 $a*b=a+b+2ab \in R$,是二元运算。

(2) *在 R 上满足交换律,结合律吗?

解:因 a*b=b*a,满足交换律, (a*b)*c=a*(b*c),满足结合律。

例6、在实数集 R上定义运算*如下: $\forall a,b \in R$ a*b=a+b+2ab

(3) R关于*有幺元,零元吗?

解: 因对 $\forall a \in R$, a*0=0*a=a, 故0为幺元,

因
$$a*(-\frac{1}{2})=(-\frac{1}{2})*a=-\frac{1}{2}$$
,故 $-\frac{1}{2}$ 为零元。

例6、在实数集 R上定义运算*如下: $\forall a,b \in R$ a*b=a+b+2ab

(4) R关于*每个元素有逆元吗?

解: $\forall a \in R$ 且 $a \neq -\frac{1}{2}$,有

$$\left(-\frac{a}{1+2a}\right)*a = a*\left(-\frac{a}{1+2a}\right) = 0$$

故 $a \neq -\frac{1}{2}$ 时, $a^{-1} = -\frac{a}{1+2a}$, $a = -\frac{1}{2}$ 时,无逆元。

例7、设 $A = \{a,b,c,d\}$,二元运算。和*如下表定义,问运算。和*是否可交换的;是否有零元;是否有幺元;如果有幺元,指出哪些元素有逆元;逆元是什么?

解: 运算。可交换,没有零元,a是幺元,a,b,c,d都有逆元,且 $a^{-1}=a,c^{-1}=c$ b,d互为逆元。

解:运算*不可交换, a 是左零元, b是幺元, 只有b有逆元, $b^{-1} = b$,由于c*d = b,故 c是d的左逆元, d是c的右逆元,

解: 但它们的逆元都不存在。

四、其它一些运算律和特殊元素。(了解)

1、设∘和*都是<math>S上的可交换的二元运算,

若
$$\forall x, y \in S$$
,

$$x*(x\circ y)=x$$

$$x \circ (x * y) = x$$

则称。和*满足吸收律。

四、其它一些运算律和特殊元素。(了解)

2、设。是 S上的二元关系,

若 $\forall x, y, z \in S$ (x 不是零元)

满足: (1) 若 $x \circ y = x \circ z$,则 y = z

(2) 若 $y \circ x = z \circ x$,则 y = z

就称运算。满足消去律。

四、其它一些运算律和特殊元素。(了解)

3、幂等元。

设。是S上的二元运算,对 $x \in S$,

若S上所有元素都是幂等元,

则称运算。满足**幂等律**。

例如: P(S) 上的运算 \bigcap 和 \bigcup ,全体命题公式集合上的运算 \bigvee 和 \bigwedge 都满足吸收律,又分别满足幂等律,但都不满足消去律 (如 $A\bigcap B = A\bigcap C$,不一定有B = C)。

N,Z,Q,R上的加法运算都不满足幂等律,但它们都有幂等元, 幺元就是幂等元。

第二节 代数系统及其子代数 和积代数

内容:代数系统,子代数,积代数。

重点: 掌握代数系统,

子代数的有关概念。

了解: 积代数的概念。

一、代数系统。

1、定义: 非空集合S和S上的k个运算

$$f_1, f_2, \dots, f_k$$
 (其中 f_i 为 n_i 元运算, $i = 1, 2, \dots, k$)

组成的系统称为一个代数系统, 简称代数,

记作
$$\langle S, f_1, f_2, \dots, f_k \rangle$$
。

例如: $\langle N, + \rangle$, $\langle Z, +, \bullet \rangle$, $\langle R, +, \bullet \rangle$, $\langle M_n(R), +, \bullet \rangle$, $\langle P(S), \cup, \cap, \sim \rangle$ 都是代数系统。

2、代数常数 (特异元素)。

在某些代数系统中对于给定的二元运算存在 幺元或零元,它们对该系统的性质起着重要作 用,称为**代数常数(特异元素)**。

例如: $\langle Z, + \rangle$ 的幺元0,也可记为 $\langle Z, +, 0 \rangle$, $\langle P(S), U, \cap, \sim \rangle$ 中 \cup 和 \cap 的幺元分别为 ϕ 和 S, 同样可记为 $\langle P(S), U, \cap, \sim, \phi, S \rangle$ 。

二、子代数系统。

1、**定义:** 设 $V = \langle S, f_1, f_2, \dots, f_k \rangle$ 是代数系统, $B \subseteq S \coprod B \neq \phi$,若 B 对运算 f_1, f_2, \dots, f_k 都是封闭的,且B和S含有相同的代数常数,则称 $\langle B, f_1, f_2, \dots, f_k \rangle$ 为V 的**子代数系统**,简称子代数。

例如: $\langle N, + \rangle$ 是 $\langle Z, + \rangle$ 的子代数, $\langle N, +, 0 \rangle$ 是 $\langle Z, +, 0 \rangle$ 的子代数, $(N, +, 0) \rangle$ 是 $\langle Z, +, 0 \rangle$ 的子代数, $(Z, +, 0) \rangle$ 的子代数, $(Z, +, 0) \rangle$ 的子代数, $(Z, +, 0) \rangle$ 因代数常数 $0 \notin N - \{0\}$ 。

2、平凡子代数,真子代数。

设
$$V' = \langle B, f_1, f_2, \cdots, f_k \rangle$$
是代数系统
$$V = \langle S, f_1, f_2, \cdots, f_k \rangle$$
 的子代数,当 $B = S$ 和
$$B = \{V \text{中的代数常数}\}$$
 时,称为**平凡子代数** (分别是最大和最小的子代数),

当 $B \subset S$ 时,称V为V的真子代数。

例1、设 $V = \langle Z, +, 0 \rangle$,令 $nZ = \{nz | z \in Z\}, n \text{ 为自然数,}$ 那么 $\langle nZ, +, 0 \rangle$ 是V的子代数。

证明: $\forall nz_1, nz_2 \in nZ$, $z_1, z_2 \in Z$, 则 $nz_1 + nz_2 = n(z_1 + z_2) \in nZ$ 即 nZ 对+封闭,又 $0 = n \cdot 0 \in nZ$,所以 $\langle nZ, +, 0 \rangle$ 是V的子代数。

例1、设 $V = \langle Z, +, 0 \rangle$,令 $nZ = \{nz | z \in Z\}, n \text{ 为自然数,}$ 那么 $\langle nZ, +, 0 \rangle$ 是V的子代数。

证明: 当
$$n=1$$
时, $nZ=Z$, 当 $n=0$ 时, $0Z=\{0\}$,

它们是 V 的平凡子代数,而其它的子代数都是 V 的非平凡的真子代数。

例1、设 $V = \langle Z, +, 0 \rangle$,令 $nZ = \{nz | z \in Z\}$,n 为自然数,那么 $\langle nZ, +, 0 \rangle$ 是V的子代数。

当
$$n=1$$
时, $nZ=Z$,

它们是V的平凡子代数,而其它的子代数都是V的非平凡的真子代数。

三、积代数。

设 $V_1 = \langle S_1, \circ \rangle$, $V_2 = \langle S_2, * \rangle$ 是代数系统, 其中。和*是二元运算, $\diamondsuit S = S_1 \times S_2$, 对 $\forall \langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle \in S_1 \times S_2$ $\langle x_1, y_1 \rangle \cdot \langle x_2, y_2 \rangle = \langle x_1 \circ x_2, y_1 * y_2 \rangle$ 则 $\langle S, \bullet \rangle$ 为代数系统,称为 V_1, V_2 的**积代数**, $V_1 \times V_2$

例如: $V_1 = \langle Z, + \rangle$, $V_2 = \langle M_3(R), \bullet \rangle$, V_1 和 V_2 的积代数为 $V_1 \times V_2 = \langle Z \times M_3(R), \bullet \rangle$, 其中运算。为二元运算, $\forall \langle z_1, M_1 \rangle, \langle z_2, M_2 \rangle \in Z \times M_3(R)$ $\langle z_1, M_1 \rangle \circ \langle z_2, M_2 \rangle = \langle z_1 + z_2, M_1 \bullet M_2 \rangle$

例如:
$$V_1 = \langle Z, + \rangle$$
, $V_2 = \langle M_3(R), \bullet \rangle$,

$$V_1$$
和 V_2 的积代数为 $V_1 \times V_2 = \langle Z \times M_3(R), \circ \rangle$,

$$V_1$$
有代数常数 0 , V_2 有代数常数 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,

$$V_1 \times V_2$$
有代数常数 $\left\langle 0, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\rangle$ 。

第五章 小结与例题

一、二元运算及其性质。

1、基本概念。

一元运算和二元运算;二元运算的结合律, 交换律,分配律,幂等律,吸收律,消去律;二 元运算的特殊元素: 幺元,零元,逆元;一元运 算和二元运算的运算表。

- 一、二元运算及其性质。
 - 2、运用。
- (1) 判断给定的二元运算是否满足结合律,交换律,分配律,幂等律,吸收律,消去律等。
- (2) 求幺元,零元,逆元。
- (3) 列出一元运算和二元运算的运算表。

二、代数系统及其子代数和积代数。

1、基本概念。

代数系统; 子代数; 积代数。

2、运用。

判断代数系统的子集能否构成子代数系统。

- **例1、**数的加,减,乘,除是否为下述集合上的二元运算。
 - (1) 实数集 R

解:加、减、乘是二元运算,除不是二元运算。

(2) 非零实数集 $R^* = R - \{0\}$

解:加、减不是二元运算,乘、除是二元运算。

- **例1、**数的加,减,乘,除是否为下述集合上的二元运算。
 - (3) 正整数集 Z+

解:加、乘是二元运算,减、除不是二元运算。

$$(4) A = \{ 2n + 1 | n \in Z \}$$

解:乘是二元运算,加、减、除都不是二元运算。

例1、数的加,减,乘,除是否为下述集合上的二元运算。

$$(5) B = \left\{ 2^n \middle| n \in Z \right\}$$

解:乘、除是二元运算,

加、减不是二元运算。

- **例2、**正整数集 Z^+ 上的二元运算*表示两个数的最小公倍数。
 - (1) 求4*6 解: 4*6=12
 - (2) 问*在 Z⁺上满足交换律,结合律, 幂等律吗?

解:因对任意的正整数 x, y, z

有 x*y=y*x, (x*y)*z=x*(y*z), x*x=x 故*满足交换律, 结合律, 幂等律。

- **例2、**正整数集 Z^+ 上的二元运算 *表示两个数的最小公倍数。
 - (3) 求幺元,零元。
- **解:** 因 x*1=1*x=x , 故1是幺元, 不存在零元。
 - (4) Z+中任意元都有逆元吗?
- 解: Z^+ 中只有1有逆元,其它元素都没有逆元。

例3、在有理数集Q上定义二元运算*,

$$\forall x, y \in Q \not\exists x * y = x + y - xy$$

解:
$$2*(-5) = 2 + (-5) - 2 \times (-5) = 7$$

$$7 * \frac{1}{2} = 7 + \frac{1}{2} - 7 \times \frac{1}{2} = 4$$

例3、在有理数集 Q上定义二元运算*,

$$\forall x, y \in Q \not\equiv x * y = x + y - xy$$

(2) *在Q上满足结合律吗?

解:对任意的 $x, y, z \in Q$

$$(x * y) * z = x + y + z - xy - xz - yz + xyz$$

$$x * (y * z) = x + y + z - xy - xz - yz + xyz$$

故*满足结合律。

例3、在有理数集 Q上定义二元运算*,

$$\forall x, y \in Q \stackrel{f}{=} x * y = x + y - xy$$

(3) 求幺元。

解:对任意的 $x \in Q$

$$x * 0 = x + 0 - x \bullet 0 = x$$

$$0 * x = 0 + x - 0 \bullet x = x$$

故0是幺元。

例3、在有理数集Q上定义二元运算*,

$$\forall x, y \in Q \stackrel{f}{=} x * y = x + y - xy$$

(4) Q中哪些元素存在逆元?

解:对任意的 $x \in Q$,设 x^{-1} 是x的逆元,则

$$0 = x * x^{-1} = x + x^{-1} - x \cdot x^{-1}$$

解得:
$$x^{-1} = \frac{x}{x-1}$$
 $(x \neq 1)$

即 $x \neq 1$ 时,有逆元 $\frac{x}{x-1}$

$$(1) x * y = |x - y|$$

解:可交换;但不可结合,

如:
$$(1*2)*3 = ||1-2|-3| = 2$$

$$\overline{m} \quad 1*(2*3) = |1-|2-3| = 0,$$

即 $(1*2)*3 \neq 1*(2*3)$; 无幺元。

(2)
$$x * y = \sqrt{x^2 + y^2}$$

解:可交换,

可结合,

无幺元。

(3)
$$x * y = x + 2y$$

解:不可交换,

如
$$2*1=2+2=4$$
, $1*2=1+4=5$ 即 $2*1 \neq 1*2$ 。

(3)
$$x * y = x + 2y$$

解:不可结合,

如
$$1*(2*3) = 17$$
, $(1*2)*3 = 11$ 即 $1*(2*3) \neq (1*2)*3$,
无幺元。

(4)
$$x * y = \frac{1}{2}(x + y)$$

解:可交换,不可结合,

如
$$(2*4)*6=4\frac{1}{2}$$
 , $2*(4*6)=3\frac{1}{2}$ 即 $(2*4)*6\neq 2*(4*6)$,无幺元。

例5、设 $V_1 = \langle S_1, \circ \rangle$, $V_2 = \langle S_2, * \rangle$,其中 $S_1 = \{a, b, c, d\}$, $S_2 = \{0, 1, 2, 3\}$,*和。如下:

(1) 7满足交换律吗?

解:由于运算表关于主对角线对称, 所以。是可交换的。 例5、设 $V_1 = \langle S_1, \circ \rangle$, $V_2 = \langle S_2, * \rangle$,其中 $S_1 = \{a,b,c,d\}$, $S_2 = \{0,1,2,3\}$,*和。如下:

0	а	Ь	С	d
а	а	Ь	с	d
Ь	ь	Ь		d
С	с	d	С	d
d	d	d	d	d

(2) *V*₁有幺元、零元吗?

解: V_1 有幺元a,零元d。

例5、设 $V_1 = \langle S_1, \circ \rangle$, $V_2 = \langle S_2, * \rangle$, 其中 $S_1 = \{a, b, c, d\}$, $S_2 = \{0, 1, 2, 3\}$, *和。如下:
 a
 a
 b
 c
 d

 b
 b
 d
 d
 d

 c
 c
 d
 c
 d

 d
 d
 d
 d
 d
 d
 $A_3 = \{a, c, d\}$, $\Box \langle A_1, \circ \rangle$, $\langle A_2, \circ \rangle, \langle A_3, \circ \rangle$ 是否为代数 系统 / 的子代数?

解:由于 A_1, A_2, A_3 都是 S_1 的非空子集,其中 A_1, A_3 对运算。是封闭的,故 $\langle A_1, \circ \rangle$, $\langle A_3, \circ \rangle$ 是 V_1 的子代数。

例5、设 $V_1 = \langle S_1, \circ \rangle$, $V_2 = \langle S_2, * \rangle$, 其中 $S_1 = \{a, b, c, d\}$, $S_2 = \{0, 1, 2, 3\}$, *和。如下:

 o
 a
 b
 c
 d

 a
 a
 b
 c
 d

 b
 b
 c
 d
 d

 c
 c
 d
 d
 d

 d
 d
 d
 d
 d

 d
 d
 d
 d
 d

 d
 d
 d
 d
 d

 d
 d
 d
 d
 d

 d
 d
 d
 d
 d

 d
 d
 d
 d
 d

 d
 d
 d
 d
 d

 d
 d
 d
 d
 d

 d
 d
 d
 d
 d

 d
 d
 d
 d
 d

 e
 c
 d
 d
 d

 e
 e
 d
 d
 d

 e
 e
 e
 e
 e
 e

 e
 e
 e
 e
 e
 e
 e

 e
 e
 e
 e
 e
 e</th

解: 但A, 对运算。不封闭,

如 $b \circ c = d \notin A_2$, 故 $\langle A_2, \circ \rangle$ 不是 V_1 的子代数。