

온라인 및 오프라인 레스토랑의 성과에 대한 연구: 단일 브랜드 주방과 멀티 브랜드 주방을 중심으로

2023년 한국생산관리학회 춘계학술대회

강병모(한양대학교 산업데이터엔지니어링학과 석사과정, vio0820@hanyang.ac.kr) 권용우(한양대학교 산업융합학부, rnjs1172@gmail.com) 유승호(한양대학교 산업융합학부 교수, shoyoo@hanyang.ac.kr)

2023.05.12

ER PERKIRD

Base Brand

Multibrand Partner

(testing)

(expanded testing)

용부찜닭 X 삼겹본능 X 공수간 (1844) 031.752.8853

Summary

- ➤ COVID-19 pandemic & 1인 가구 증가→ 배달 서비스의 수요 상승
 - → Multi-brand kitchen과 같은 배달 전문 식당 개수 증가
- ▶ 본 연구 목적: 식당 운영자에게 운영할 식당 유형에 대한 의사결정 도움
 →배달 서비스 여부
 →배달 서비스 운영한다면, Single brand or Multi brand
- ▶ 수학모델링을 통해 5개의 식당 유형을 비교
 - →결정 변수: 음식가격, 매장에 입점되어 있는 브랜드의 수
 - →도출된 결과 Single brand 운영: offline 운영 필수
 - Multi brand 운영: 단일 가맹비 매장 운영
 - →외식업 경영 성과에 도움이 되는 시사점 제공 가능

Introduction

- ✓ Increased use of delivery services during the COVID-19 pandemic
- ✓ Increased use of delivery services due to the rise of single-person households
- ✓ Multi-Brand Kitchen
- ✓ Research question

Model Methodology

- ✓ Mathematical Modeling
- ✓ Result

Further Study

Introduction- Increased use of delivery services during the COVID-19 pandemic

- ➤ COVID-19 대유행은 각 정부가 시행한 격리 정책으로 인해 식료품 배달 서비스에 의존하게 됨(Shaw et al., 2022; Chenarides et al., 2021)
 - → 코로나 이전과 비교했을 때, 배달 서비스 활용 가구수 157% 증가
- ▶ 백신 접종 후, 많은 국가, 도시들이 오프라인 식당 운영을 재개했지만, 형성된 식습관으로 인해 음식 배달을 지속적으로 이용함(Ahuja et al., 2021)
 - → 온라인 배달 시장은 더욱 성장 할 것으로 예측됨

Since pandemic-related lockdowns started in March 2020, the growing fooddelivery business has spiked to new heights in the most mature markets.

Online food delivery

Number of users in the online food delivery market worldwide from 2019 to 2027 (in billions)

Introduction- Increased use of delivery services due to the rise of single-person households

- ➤ 전 세계적으로 선진국의 대도시를 중심으로 1인가구가 증가되고 있음(Euromonitor International, 2014)
 - →한국은 2045년 1인 가구의 수가 810만으로 추정됨
- ➤ 1인 가구는 다인 가구에 비해 음식 배달 서비스를 자주 이용하는 경향이 있음 (Lee, G.L., 2016)
 - →1인 가구의 증가로 배달 시장의 규모가 커지고 있음

Introduction-Multi-Brand Kitchen

- 여러 개의 브랜드를 하나의 매장에서 운영하며 배달을 목적으로 운영되는 공유 주방(Sriram, 2022)
 - →메뉴 피로(적은 메뉴에서 오는 메뉴 싫증)를 퇴치하고 고객 빈도/고객 층 확보 위해 적용
- ▶ 단일 사업자가 여러 개의 브랜드를 혼자 운영하는 시스템
 →운영하는 브랜드에 따라 통합된 가맹비, 브랜드 개수 별 가맹비
- ➤ Rebel(인도) 및 Box8(인도), One Stop Kitchen(미국) 등의 회사가 여러 브랜드를 소유하여 운영

Introduction-Multi-Brand Kitchen

- > 국내에 약 100여개의 Multi-Brand Kitchen을 운영하는 외식 기업들이 존재
 →가맹비, 로열티, 교육비등 감면 정책으로 공격적으로 홍보
- ▶ 국내에서 제일 활발한 프랜차이즈 회사 : 놀부
 - → 놀부 보쌈, 공수간 떡볶이, 진한 설렁탕 담다, 흥부 찜닭, 삼겹본능, 돈까스 본능 등 총 6개 브랜드 보유
 - →2023년 1월 기준 450여개 점포
 - →기존 매장에 브랜드를 추가할 경우, <mark>가맹비</mark>, 교육비 등 면제

HANYANG UNIVERSITY

Introduction- Research question

▶ 온라인 음식배달이 성장하고 있는 시점에서 식당을 운영하려고 하는 운영자는 온라인 음식배달 서비스를 고려한 매장을 운영해야 하는가?

▶ 만약 온라인 음식배달 서비스를 고려한다면, 어떠한 형태의 매장이 이윤을 극대화 시켜주는가?

Model Methodology

- ▶ 본 연구는 온라인 배달의 필요성을 판단하기 위해 5가지의 식당 형태를 수학 모형을 통해 비교함
 - 1. Case SF: Traditional single-brand offline kitchen
 - 2. Case SN: Single-brand online kitchen
 - 3. Case SFN: Single-brand on-offline kitchen
 - 4. Case MN: Multi-brand online kitchen with perbrand n license fees
 - 5. Case M1: Multi-brand online kitchen with one single license fee

- ➢ 음식 가격, 브랜드의 개수를 결정 변수로 하여 수학 모델링 진행
 →브랜드 개수 증가: 메뉴 다양성을 통한 고객 다각화 vs 가맹비 증가, 시장 비효율성 증가
- Single-brand on-offline kitchen(SFN)

$$q_{SFN}=(1- au)lpha-eta p+(au+oldsymbol{\phi})lpha-eta(p+d)$$
, $0< au<1$, $0<\phi<1$
$$\pi_{SFN}=q_{SFN}(p-(c+\eta))-f$$

 $q_{
m SFN}$: Single-brand Kitchen에 대한 수요

 τ : 온라인 고객 선호 비율

α: 식당의 대한 잠재수요

β: 수요의 가격에 대한 민감도

p: 음식 가격 (<mark>결정변수</mark>)

 ϕ : 온라인 판매로 인해 유입된 고객 비율

d: 배달비용

π_{SFN}: SFN의 이익함수

c: 고정비용

 η : 입점 브랜드가 하나 증가할 때마다 발생하는 비효율성

f: 가맹비

Multi-brand Kitchen(MN, M1)

$$q = n(\theta \alpha - \beta(p+d)), 0 < \theta \leq 1$$

$$\pi_{MN} = q(p-(c+\eta n))-nf$$
, $\pi_{M1} = q(p-(c+\eta n))-f$

q: Multi-brand Kitchen에 대한 수요

n: 매장에 입점되어 있는 브랜드의 개수 (결정변수)

 $oldsymbol{ heta}$: 각 브랜드들의 상대적 시장 규모 평균

β: 수요의 가격에 대한 민감도

p: 음식 가격 (결정변수)

d: 배달비용

 π_{MN} : 단일 수수료 주방의 이익함수

 π_{M1} : 다중 수수료 주방의 이익함수

- ➤ Multi-brand Kitchen 운영을 결정할 때, n, p 순서로 결정
 - → 역방향 귀납을 활용하여 p의 최적해를 구하고 n의 최적해를 구함

HANYANG UNIVERSITY

[표 1] 변수 별 최적해 비교

	π^*	q^*	p^*
SF	$\frac{\left[\frac{\alpha^2 - 2\alpha\beta(c+\eta) - 4f\beta}{+\beta^2(c^2 + 2c\eta + \eta^2)}\right]}{4\beta}$	$\frac{\alpha - \beta(c + \eta)}{2}$	$\frac{\alpha + s\beta(c + \eta)}{2\beta}$
SN	$-2\alpha\beta(\phi\eta + \phi c + c + \eta + d + \phi d)$ $[+\alpha^{2}(\phi^{2} + 2\phi + 1) + \beta^{2}(c^{2} + \eta^{2} + d^{2} + 2c\eta)]$ $+2\beta^{2}c(\eta + d + \eta d) - 2\alpha\phi\beta d - 4f\beta$ 4β	$\frac{\alpha(1+\phi)-\beta(c+\eta+d)}{2}$	$\frac{\alpha(1+\phi)+\beta(c+\eta-d)}{2\beta}$
SFN	$\alpha^{2}(1+2\phi^{2}+\phi)$ [+4\beta^{2}(\eta d + cd + 2c\eta + 2c^{2} + \eta^{2} + d^{2})] $\frac{-2\alpha\beta(d+\eta+2(c+c\phi+\eta\phi)+2d\phi) - 8f\beta}{8\beta}$	$\frac{\alpha(1+\phi)-\beta(2(c+\eta)+d)}{2}$	$\frac{\alpha(1+\phi)+\beta(2(c+\eta)-d)}{4\beta}$

[표 2] 변수 별 최적해 비교

 π^*

MN

$$2(\beta d + c) - 2\theta \alpha + (\beta^{2}(d(d + 2c) + c^{2} - 2\theta \alpha \beta(d + c) + \theta^{2}\alpha^{2} + 12f\beta)^{\frac{1}{2}})$$

$$(-\beta^{2}(c^{2} + 2cd) + 2\theta \alpha \beta c + \beta c(\beta^{2}(d^{2} + 2cd + c^{2}) - 2\theta \alpha \beta(d + c) + \theta^{2}\alpha^{2} + 12f\beta)^{\frac{1}{2}}$$

$$-\beta^{2}d^{2} + 2\theta \alpha \beta d + \beta d(\beta^{2}(d^{2} + 2cd + c^{2} - 2\theta \alpha \beta(c + d) + \theta^{2}\alpha^{2} + 12f\beta)^{\frac{1}{2}} - \theta^{2}\alpha^{2}$$

$$-\theta \alpha(\beta^{2}(d^{2} + 2cd + c^{2}) - 2\theta \alpha \beta(d + c) + \theta^{2}\alpha^{2} + 12f\beta)^{\frac{1}{2}} + 12f\beta))$$

$$\frac{-\theta \alpha(\beta^{2}(d^{2} + 2cd + c^{2}) - 2\theta \alpha \beta(d + c) + \theta^{2}\alpha^{2} + 12f\beta)^{\frac{1}{2}}}{54\beta^{2}\eta}$$

M1

$$\frac{\left[\frac{-\theta\alpha(\theta^{2}\alpha^{2}-3\theta\alpha\beta(c+d)+3\beta^{2}(c^{2}+2cd+d^{2}))}{\beta^{2}(\beta(c(c^{2}+3cd+3d^{2})+d^{3})+27f\eta)}\right]}{27\beta^{2}\eta}$$

[표 3] 변수 별 최적해 비교

$$\text{MN} \begin{bmatrix} ((2(\beta(c+d)) - \theta\alpha + (\beta^2(d^2 + 2cd + c^2)) & (-\beta(c-5d) - 5\theta\alpha \\ -2\theta\alpha\beta(c+d) + \theta^2\alpha^2 + 12f\beta)^{\frac{1}{2}} \\ (-\beta(c+d) + \theta\alpha + (\beta^2(d(d+2c) + c^2)) & [+\alpha^2 - 2\theta\alpha\beta(c+d)] \\ -2\theta\alpha\beta(c+d) + \theta^2\alpha^2 + 12f\beta)^{\frac{1}{2}})) & \frac{+\theta^2\alpha^2 + 12f\beta)^{\frac{1}{2}}}{-6\beta} & \frac{\theta^2 + \alpha^2 + 12f\beta)^{\frac{1}{2}}}{-3\beta\eta} \end{bmatrix}$$

$$\text{M1} \qquad \frac{\left(-\theta\alpha + \beta(c+d)\right)^2}{9\beta\eta} \qquad \frac{\beta(c-2d) + 2\theta\alpha}{3\beta} \qquad \frac{-\theta\alpha + \beta(c+d)}{3\beta\eta}$$

Fig 2. β 변화에 따른 주방 형태별 분석 (△: single-offline, ▲: single-online, x: single-on&offline, ○: multi-single fee, ●: multi-multiple fee)

Fig 4. d 변화에 따른 주방 형태별 분석 (△: single-offline, ▲: single-online, x: single-on&offline, ○: multi-single fee, ●: multi-multiple fee)

Fig 6. f 변화에 따른 주방 형태별 분석 (△: single-offline, ▲: single-online, x: single-on&offline, ○: multi-single fee, ●: multi-multiple fee)

HANYANG UNIVERSITY

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7

(b) φ변화에 따른 최적 브랜드 개수

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7

(a) ϕ 변화에 따른 최적 가격

Fig 8. ϕ 변화에 따른 주방 형태별 분석 (△: single-offline, ▲: single-online, x: single-on&offline, ○: multi-single fee, ●: multi-multiple fee)

500

0.1 0.2 0.3 0.4 0.5 0.6 0.7

(c) ϕ 변화에 따른 최적 수요

0.1 0.2 0.3 0.4 0.5 0.6 0.7

 $(d) \phi$ 변화에 따른 최적 이익

2000

1000

Fig 9. θ 변화에 따른 주방 형태별 분석 (△: single-offline, ▲: single-online, x: single-on&offline, ○: multi-single fee, ●: multi-multiple fee)

Fig 10. 잠재 수요의 변화에 따른 최적 이익의 비교 (△: single-offline, ▲: single-online, x: single-on&offline, ○: multi-single fee,

•: multi-multiple fee)

- 1. Single brand 운영: offline 운영 필수
 →Online 운영 집중은 이익 손실 야기
- 2. Single brand 운영: 초기 offline 매장에 집중
 →대부분의 single brand 매장 on-offline 병행
 →고객의 잠재수요가 충분히 클 경우
 →online 운영 통해 이익 개선 효과
 →고객의 잠재수요가 작을 경우
 →offline 집중 통해 이익 개선 효과
- 3. Multi brand 운영 : 잠재수요 충분히 클 때
 →항상 단일 가맹비 운영이 유리함

[표4] 식당의 잠재수요 변화에 따른 식당 유형간 이익비교

	식당 유형 이익 순서
식당의 잠재수요가 작은 경우	SF>SFN>SO>M1>MN
식당의 잠재수요가 큰 경우	M1>MN>SFN>SF>SO

[표5] 음식가격에 대한 민감도 변화에 따른 식당 유형간 이익비교

	식당 유형 이익 순서
음식가격에 대한 민감도가 작은 경우	M1>MN>SFN>SF>SO
음식가격에 대한 민감도가 큰 경우	SF>SFN>SO>M1>MN

[표6] 식당 고정비용 변화에 따른 식당 유형간 이익비교

	식당 유형 이익 순서
식당의 고정비용이 적은 경우	M1>MN>SFN>SF>SO
식당의 고정비용이 큰 경우	SF>SFN>SO>M1>MN

[표7] 배달료 변화에 따른 식당 유형간 이익비교

	식당 유형 이익 순서
배달료가 적은 경우	M1>MN>SFN>SF>SO
배달료가 큰 경우	SF>SFN>SO>M1>MN

[표8] 브랜드 추가 비효율성 변화에 따른 식당 유형간 이익비교

	식당 유형 이익 순서
브랜드 추가 비효율성이 작은 경우	M1>SFN>SO>SF>MN
브랜드 추가 비효율성이 큰 경우	SFN>SF>M1>SO>MN

[표9] 가맹비 변화에 따른 식당 유형간 이익비교

	식당 유형 이익 순서
가맹비가 적은 경우	M1>MN>SFN>SF>SO
가맹비가 큰 경우	M1>SFN>SF>SO>MN

[표10] 온라인 고객 선호도 변화에 따른 식당 유형간 이익비교

	식당 유형 이익 순서
온라인 고객 선호도가 작은 경우	M1>SFN>SF>SO>MN
온라인 고객 선호도가 큰 경우	M1>SF>SFN>SO>MN

[표11] 온라인 고개 유입 변화에 따른 식당 유형간 이익비교

	식당 유형 이익 순서
온라인 고객 유입이 작은 경우	M1>SF>SFN>SO>MN
온라인 고객 유입이 큰 경우	M1>SFN>SF>SO>MN

[표12] 각 브랜드들의 상대적 시장 규모 평균 변화에 따른 식당 유형간 이익비교

	식당 유형 이익 순서
브랜드의 상대적 시장 규모가 작은 경우	SFN>SF>SO>M1>MN
브랜드의 상대적 시장 규모가 작은 경우	M1>MN>SFN>SO>SF

- 1. Single brand 운영: 반드시 offline 운영 필수 → Online 운영 집중은 이익 손실 야기
- 2. Multi brand 운영: 반드시 단일 가맹비 매장 운영 필수 →항상 단일 가맹비 매장 > 다중 가맹비 매장

Further Study

- 배달 접근성을 비롯한 다양한 결정변수를 추가가능
 - →배달 접근성: 가게가 어디에 위치해 있는가 (ex. 대로변 vs 골목)
 - →배달 접근성 높을 때 장점: 고객들 노출될 상승→주문 건수 향상 단점: 임대료 상승
- ▶ 의사결정권자: 식당 운영자→ 외식 기업 운영자 or 배달 플랫폼→외식 기업과 배달 플랫폼을 player로 참여
 - → 공급망 관리 관점으로 발전 가능