

Tutorial

Synthetic Smart Meter Data Generation using Variational Autoencoders

Kutay Bölat TU Delft

- Generative modelling (reminder)
 - Latent variable models
 - Variational autoencoders
 - Hands-on session

Generative modelling (reminder)

Generative modelling (reminder)

$$\begin{aligned} p_{\text{real-life}}(\mathbf{x}) &\to p_{\text{data}}(\mathbf{x}) = \frac{1}{N} \sum_{\mathcal{X}} \delta(\mathbf{x} - \mathbf{x}_i) \\ & \underset{\theta}{\text{argmin}} \ D_{KL}(p_{\text{data}}(\mathbf{x}) || p_{\theta}(\mathbf{x})) = \underset{\theta}{\text{argmax}} \ \frac{1}{N} \sum_{\mathcal{X}} \log p_{\theta}(\mathbf{x}_i) \end{aligned}$$

Generative modelling (reminder)

Goal: Find a (parameterised) probabilistic model p(x), where x is high-dimensional.

Problem: Finding/learning relations between many features is exceedingly hard (even for very deep and wide neural networks).

$$p(\mathbf{x}) = p(x_1, x_2, x_3, \dots x_d)$$

= $p(x_1)p(x_2|x_1)p(x_3|x_1, x_2) \dots p(x_d|x_1, \dots, x_{d-1})$

Latent variable models

Latent variable models

Idea: Introduce unobserved auxiliary variables (latent variables)

- Observables: $x \in \mathbb{R}^d$
- Latent variables: $\mathbf{z} \in \mathbb{R}^m$

Simplified model structure:

• $p(x) = \int p(x,z)dz = \int p(z) \prod_{i=1}^{d} p(x_i|z) dz$

Motivation:

- 'Meaningful' data tends to reside on a lower dimensional manifold in high-dimensional space.
- Often, known causal relations can simplify the model.

scikit-learn.org/stable/auto examples/manifold/plot compare methods.html

https://www.frontiersin.org/articles/10.3389/fpsyg.2017.00798/full

Latent variable models

Gaussian mixture models

Requires p(x) to be expressive enough to capture non-linearities.

$$p(\mathbf{x}) = \sum_{z} p(\mathbf{x}|z)p(z) = \sum_{z \in \{0,1,2\}} \mathcal{N}(\mathbf{x}|\mathbf{\mu}_z, \mathbf{\Sigma}_z)p(z)$$

Variational autoencoders

FinnoCyPES

Variational autoencoders - Introduction

- Introduced in Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*
 - Over 37000 citations!

- Two interpretations:
 - A probabilistic autoencoder
 - Latent variable models parametrized by NNs

Variational autoencoders – End-result

Intuitive objective:

- **1.** Good reconstruction: $\tilde{x}_i \approx x_i$ (z_i holds important information about x_i)
- **2.** Regularization: $p(z_i|x_i) \approx N(0,I)$ (z_i holds important information about other data points)

$$\mathcal{L}(\phi, \theta, X) = -\underbrace{\frac{1}{NM} \sum_{i,j}^{n,M} \left\| \boldsymbol{x}^{(i)} - \boldsymbol{\mu}_{\theta}(g_{\phi}(\boldsymbol{x}^{(i)}, \boldsymbol{\epsilon}_{j}^{(i)})) \right\|_{2}^{2} - \underbrace{\frac{1}{2} \sum_{k=1}^{m} \left(\mu_{k_{\phi}}(\boldsymbol{x}^{(i)}) \right)^{2} + \left(\sigma_{k_{\phi}}(\boldsymbol{x}^{(i)}) \right)^{2} - 1 - 2 \log \sigma_{k_{\phi}}(\boldsymbol{x}^{(i)})}_{\text{regularization}}$$

Latent variable models - Math

Definitions

- The model is $p_{\theta}(x)$ where $\int_{\mathcal{X}} p_{\theta}(x) dx = 1$ and $p_{\theta}(x) > 0$.
- $p_{\theta}(\mathbf{x}) = \int_{\mathcal{Z}} p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z} = \int_{\mathcal{Z}} p_{\theta}(\mathbf{x}|\mathbf{z}) p_{\theta}(\mathbf{z}) d\mathbf{z}.$

- With $p_{\theta}(\mathbf{z})$ and $p_{\theta}(\mathbf{x}|\mathbf{z})$ we can generate data!
- ... but learning $p_{\theta}(x|z)$ requires $p_{\theta}(z|x)$
- We will use an **approximate** posterior $q_{\phi}(\mathbf{z}|\mathbf{x})$ (a separate model)

Some useful operations

- $p_{\theta}(x|z)$: Called the **likelihood** or the **inference** model. Very flexible. Can be modelled with a neural network.
- $p_{\theta}(z)$: Called the **prior**. Can be modelled with simple distributions and it transfers prior assumptions to the model.
- $\int_{\mathcal{Z}} ... d\mathbf{z}$: Averaging over latent variables. **Marginalization**. Generally **intractable**, i.e. impossible to compute analytically and extremely expensive to compute numerically.
- Also, we might want to infer (low dimensional) latent variables by looking at (high dimensional) data, i.e.
 compression. This requires us to compute the posterior

$$p_{\theta}(\mathbf{z}|\mathbf{x}) = \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{p_{\theta}(\mathbf{x})} = \frac{p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z})}{\int_{\mathcal{Z}} p_{\theta}(\mathbf{x}, \mathbf{z})d\mathbf{z}}$$

which is also intractable most of the time.

Variational autoencoders – Objective

- Maximum log-likelihood criteria: $\underset{\theta}{\operatorname{argmax}} \mathbb{E}_{p_{data}(x)} \log p_{\theta}(x) = \underset{\theta}{\operatorname{argmax}} \frac{1}{N} \sum_{i=1}^{N} \log p_{\theta}(x_i)$
- $\log p_{\theta}(\mathbf{x}) = \log \left(\frac{p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z})}{p_{\theta}(\mathbf{z}|\mathbf{x})}\right) = \log \left(\frac{p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z})}{p_{\theta}(\mathbf{z}|\mathbf{x})}\frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})}\right) = \log(p_{\theta}(\mathbf{x}|\mathbf{z})) \log\left(\frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z})}\right) + \log\left(\frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z}|\mathbf{x})}\right)$

•
$$\log p_{\theta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{\theta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \log(p_{\theta}(\mathbf{x}|\mathbf{z})) - \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \log\left(\frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z})}\right) + \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \log\left(\frac{q_{\phi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z}|\mathbf{x})}\right)$$

$$= \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \log(p_{\theta}(\mathbf{x}|\mathbf{z})) - D_{KL}\left(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z})\right) + D_{KL}\left(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z}|\mathbf{x})\right)$$

- $\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \log(p_{\theta}(\mathbf{x}|\mathbf{z}))$: Reconstruction log-likelihood
- $D_{KL}\left(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z})\right)$: KL-divergence (discrepancy) between the approx. posterior and the prior
- $D_{KL}\left(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z}|\mathbf{x})\right)$: KL-divergence (discrepancy) between the approx. posterior and the true posterior

Variational autoencoders – Objective

$$\log p_{\theta}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \log(p_{\theta}(\mathbf{x}|\mathbf{z})) - D_{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z}) \right) + D_{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z}|\mathbf{x}) \right)$$

- Remarks:
 - KL-divergence is always positively defined.
 - The only intractable term is $D_{KL}\left(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z}|\mathbf{x})\right)$.
- $\log p_{\theta}(\mathbf{x}) \ge \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \log (p_{\theta}(\mathbf{x}|\mathbf{z})) D_{KL} (q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z})) = ELBO$
- Objective:

$$\phi^*, \theta^* = \operatorname*{argmax}_{\phi, \theta} \mathbb{E}_{p_{data}(\mathbf{x})} \left[\mathbb{E}_{q_{\phi}(\mathbf{Z}|\mathbf{X})} \log \big(p_{\theta}(\mathbf{x}|\mathbf{z}) \big) - D_{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z}) \right) \right]$$
 reconstruction success KL-divergence

- How to implement and train VAEs?
- **Step 1:** Selection of distributions
 - $p_{\theta}(x|z)$: Totally depends on the application. It can be:

```
• p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_{\theta}(\boldsymbol{z}), \boldsymbol{\Sigma}_{\theta}(\boldsymbol{z})) if \mathcal{X} = \mathbb{R}^d

• p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) = Lognormal(\boldsymbol{x}|\boldsymbol{\mu}_{\theta}(\boldsymbol{z}), \boldsymbol{\Sigma}_{\theta}(\boldsymbol{z})) if \mathcal{X} = \mathbb{R}^{+d}

• p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) = Beta(\boldsymbol{x}|\boldsymbol{\beta}_{\theta}(\boldsymbol{z}), \boldsymbol{\alpha}_{\theta}(\boldsymbol{z})) if \mathcal{X} = [0,1]^d

• p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) = Categorical(\boldsymbol{x}|\boldsymbol{P}_{\theta}(\boldsymbol{z})) if \mathcal{X} = \{0,1,...,K\}^d
```

- $q_{\phi}(\mathbf{z}|\mathbf{x})$: Should result in an analytical $D_{KL}\left(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z})\right)$ expression. Also, we must be able to take samples in a "straightforward' manner. (More on this later)
- $p_{\theta}(\mathbf{z})$: Should result in an analytical $D_{KL}\left(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z})\right)$ expression.

- Investigating the ELBO Reconstruction log-likelihood
 - $\mathbb{E}_{p_{data}(x)} \left[\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \log(p_{\theta}(\mathbf{x}|\mathbf{z})) \right] = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)})} \log(p_{\theta}(\mathbf{x}^{(i)}|\mathbf{z}))$ (No closed form expression) $= \frac{1}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} \log(p_{\theta}(\mathbf{x}^{(i)}|\mathbf{z}_{j}^{(i)})), \quad \text{where} \quad \mathbf{z}_{j}^{(i)} \sim q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)})$ (Monte Carlo approximation)
 - Problem: Sampling is not a differentiable operation.
 - Solution: Reparameterization trick (Step 2)
 - $\mathbf{z}_{j}^{(i)} \sim q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)}) \rightarrow \mathbf{z}_{j}^{(i)} = g_{\phi}(\mathbf{x}^{(i)}, \boldsymbol{\epsilon}_{j}^{(i)}), \text{ where } \boldsymbol{\epsilon}_{j}^{(i)} \sim p(\boldsymbol{\epsilon})$
 - This separation should be "straightforward", i.e. computationally cheap.
 - For $q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\phi}(\mathbf{x}), diag(\boldsymbol{\sigma}_{\phi}(\mathbf{x})))$
 - $\mathbf{z}_{j}^{(i)} = \boldsymbol{\mu}_{\phi} (\mathbf{x}^{(i)}) + \boldsymbol{\sigma}_{\phi} (\mathbf{x}^{(i)}) \odot \boldsymbol{\epsilon}_{j}^{(i)}$, where $\boldsymbol{\epsilon}_{j}^{(i)} \sim \mathcal{N}(\boldsymbol{\epsilon} | \mathbf{0}, \mathbf{I})$

Kingma, Diederik P., and Max Welling. "An Introduction to Variational Autoencoders." Foundations and Trends® in Machine Learning, vol. 12, no. 4, 2019, pp. 307–92. Crossref, https://doi.org/10.1561/2200000056.

- Investigating the ELBO KL divergence
 - Step 3: Analytically derive the KL divergence term
 - Let's keep $q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}\big(\mathbf{z}|\boldsymbol{\mu}_{\phi}(\mathbf{x}), diag(\boldsymbol{\sigma}_{\phi}(\mathbf{x}))\big)$ and $p_{\theta}(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\mathbf{0}, \mathbf{I})$

•
$$D_{KL}\left(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z})\right) = \frac{1}{2}\sum_{k=1}^{m}\left(\mu_{k_{\phi}}(\mathbf{x})\right)^{2} + \left(\sigma_{k_{\phi}}(\mathbf{x})\right)^{2} - 1 - 2\log\sigma_{k_{\phi}}(\mathbf{x})$$

- Step 3.5: Put everything together
- For $p_{\theta}\left(\mathbf{x}^{(i)}\middle|g_{\phi}(\mathbf{x}^{(i)}, \boldsymbol{\epsilon}_{j}^{(i)})\right) = \mathcal{N}\left(\mathbf{x}^{(i)}\middle|\boldsymbol{\mu}_{\theta}(g_{\phi}(\mathbf{x}^{(i)}, \boldsymbol{\epsilon}_{j}^{(i)})), \mathbf{I}\right)$, ELBO becomes

•
$$\mathcal{L}(\phi, \theta, X) = -\frac{1}{NM} \sum_{i,j}^{n,M} \| \mathbf{x}^{(i)} - \boldsymbol{\mu}_{\theta}(g_{\phi}(\mathbf{x}^{(i)}, \boldsymbol{\epsilon}_{j}^{(i)})) \|_{2}^{2} - \frac{1}{2} \sum_{k=1}^{m} (\mu_{k}_{\phi}(\mathbf{x}^{(i)}))^{2} + (\sigma_{k}_{\phi}(\mathbf{x}^{(i)}))^{2} - 1 - 2\log\sigma_{k}_{\phi}(\mathbf{x}^{(i)})$$

reconstruction error

KL-divergence

• Step 4: Replace all the parameterized functions with neural networks

$$\mathcal{L}(\phi, \theta, X) = -\frac{1}{NM} \sum_{i,j}^{n,M} \left\| \mathbf{x}^{(i)} - \boldsymbol{\mu}_{\theta}(g_{\phi}(\mathbf{x}^{(i)}, \boldsymbol{\epsilon}_{j}^{(i)})) \right\|_{2}^{2} - \frac{1}{2} \sum_{k=1}^{m} \left(\mu_{k_{\phi}}(\mathbf{x}^{(i)}) \right)^{2} + \left(\sigma_{k_{\phi}}(\mathbf{x}^{(i)}) \right)^{2} - 1 - 2 \log \sigma_{k_{\phi}}(\mathbf{x}^{(i)})$$

Step 5: Let your favourite DL library (PyTorch, Tensorflow) does its magic.

- Investigating the ELBO Overall
 - $\mathcal{L}(\phi, \theta, X) = -\frac{1}{NM} \sum_{i,j}^{n,M} \left\| \boldsymbol{x}^{(i)} \boldsymbol{\mu}_{\theta} \left(g_{\phi} \left(\boldsymbol{x}^{(i)}, \boldsymbol{\epsilon}_{j}^{(i)} \right) \right) \right\|_{2}^{2} \frac{1}{2} \sum_{k=1}^{m} \left(\mu_{k\phi} \left(\boldsymbol{x}^{(i)} \right) \right)^{2} + \left(\sigma_{k\phi} \left(\boldsymbol{x}^{(i)} \right) \right)^{2} 1 2 \log \sigma_{k\phi} \left(\boldsymbol{x}^{(i)} \right)$
 - $-\mathcal{L}(\phi, \theta, X)$ is pretty much identical to "Autoencoder/Reconstruction Loss" + "KL regularization"
 - Maximizing ELBO (minimizing $-\mathcal{L}(\phi, \theta, X)$) encourages
 - Inputs and outputs to be the same as much as possible
 - $\mu_{k_{\phi}}(x^{(i)})$ s to be close to 0 as much as possible
 - $\sigma_{k_{\phi}}(x^{(i)})$ s to be close to 1 as much as possible

An important remark

- We use p(z) for two reasons in practice:
 - 1. Regularizing the latent encodings **during training**.
 - 2. Generating new data during inference.

 For generating synthetic data, we DO NOT have any access to original data or their latent encodings!

Image data (MNIST)

Reconstruction

github.com/clementchadebec/benchmark_VAE

Image data (MNIST)

Samples

github.com/clementchadebec/benchmark_VAE

Image data (CelebA)

Original

Reconstruction

Image data (CelebA)

Samples

github.com/clementchadebec/benchmark_VAE

Variational autoencoders - Extensions

Conditional VAE

- $p_{\theta}(x) \rightarrow p_{\theta}(x|y)$
- ELBO: $\mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y})} \log(p_{\theta}(\boldsymbol{x}|\boldsymbol{z},\boldsymbol{y})) D_{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{y}) \parallel p_{\theta}(\boldsymbol{z},\boldsymbol{y}))$

ijdykeman.github.io/ml/2016/12/21/cvae.html

- Data representation
 - Daily snapshots

- Conditions
 - Months and days of the week
 - Circular transform

github.com/kabolat/innocypes-summer-school_synthetic-data-tutorial

Thanks for your attention!

Any questions?

Kutay Bölat

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 956433.

