Прогнозирование оттока клиентов

Автор: Хабибуллин Салих

1. Цели и задачи проекта.

Отток клиентов - важная задача для любой телекоммуникационной компании, так как конкуренция на привлечение новых клиентов достаточно высока.

Решается задача Бинарной классификации - то есть максимально точно определить относится клиент к оотоку или к не оттоку.

Решением проблемы по удержанию клиентов может быть предложение более удобного тарифа, или скидка на текущий тарифный план.

Это можно сделать прямым обзвоном, или с помощью уведомления от приложения в телефоне, или с помощью чата в мессенджере.

Анализ данных

Отток: 7.44 %

Не отток: 92.56 %

В процентном соотношения для дальнейшего исследования присутствует сильный дисбаланс.

В данных очень много пропущенных значений:

```
In [4]: Image(filename = "features_and_NaNs.jpeg")
Out[4]:
```


2. Методика измерения качества и критерий успеха.

В данной задаче нужно как можно точно определять класс отток - за это отвечает метрика precision, но так как класс отток составляет всего ~7.5% от всего выборки, то есть присутствует явный дисбаланс классов.

Поэтому нужно взять метрику ROC-AUC, которая позволит учитывать несбалансированность классов, долю идентифицированного оттока и долю верных предсказаний с классом отток.

Процесс тестирования полученной модели нужно проводить на отложенной выборке (новых данных), также можно использовать АВ-тестирование.

Критерий успеха - значительно увеличение прибыли относительно уровня, когда не производится работа по удержанию клиентов, или незначительное снижение прибыли относительно уровня, когда есть отток, но была произведена отличная работа по удержанию клиентов.

3. Техническое описание решения.

Были перепробованы разные модели решения:

- 1) Oversampling, Undersampling
- 2) Заполнение пропущенных значений у числовых признаков медианой
- 3) Для категориальных признаков LabelEncoder,
 OneHotEncoder.

- 4) RidgeClassifier, RandomForestClassifier, GradientBoostingClassifier
- 5) GridSearchCV
- 6) Отбор признаков по количеству пропусков

Pipeline:

- 1) Находим и не рассматриваем дальше полностью не заполненные признаки и одиночные признаки.
- 2) Полученные признаки разделяем на числовые и категориальные.
- 3) Отбираем признаки исходя из процентного обладания пропусками в этих признаках.
- 4) Заполняем средним числовые признаки, у категориальных "missing".
- 5) Для итоговой модели используем библиотеку CatBoostClassifier.
- 6) Оцениваем качество по ROC-AUC на отложенной выборке, потом на тестовых данных.
- 7) Подбираемм лучшие параметры для
 CatBoostClassifier с помощью GridSearchSV и интуиции.

Экономическая модель.

(1 - per_churn) N tarif + per_churn N
(percent_back * new_tarif[i] - zatrat)

- (1 per_churn) доля оставшихся клиентов
- N * tarif базовая выручка, когда не было никакого оттока
- per churn * N доля клиентовв-оттока

- per_churn N percent_back * new_tarif[i] новая прибыль от клиентов оттока, которые передумали уходить
- per_churn N zatrat затраты на людей из оттока,
 чтобы попытаться их удержать

Предположим, что прибыль от 1 человека в день и тариф - это одно и тоже.

- tarif тариф
- new_tarif новый тариф для тех людей, которые в группе оттока (чтобы их удержать)
- N общее количесвто клиентов на старте
- per_churn процент оттока

```
In [6]: Image(filename = "picture_1.jpeg")
```

Out[6]:

График зависимости прибыли от 40.0 % вернувшихся клиентов из оттока


```
In [7]: Image(filename = "picture_2.jpeg")
```

Out[7]:

График зависимости прибыли от 70.0 % вернувшихся клиентов из оттока

4. Вывод о качестве модели.

При увеличении качества модели на 1% или 3% будет несильное увеличение прибыли или вообще не будет.

Нужно уменьшить количество ошибок 1-ого и 2-ого рода, чтобы увеличить прибыль (экономический эффект).

```
In [8]: # Наиболее полезные признаки

Image(filename = "таблица).jpeg")
```

Out[8]:

	Importance	Feature
0	23.367443	Var126
1	5.191895	Var189
2	4.413075	Var199
3	3.423151	Var73
4	3.393323	Var113
5	3.204286	Var218
6	2.870235	Var192
7	2.754300	Var81
8	2.505554	Var74
9	2.258471	Var202

```
In [9]: Image(filename = "Mecro).jpeg")
```

Out[9]:

5. Итог работы.

- 1) Нужна большая по размерам выборка.
- 2) Или данные, где будет намного меньше шума (шумовых признаков).
- 3) Иметь возможность тестировать на определённой группе людей в качестве эксперимента.
- 4) Чтобы более качественно получить прибыль от вложенных средств (получить большую отдачу),

нужно уменьшить количество ошибок 1-ого и 2-ого рода.

5) Оценивать прибыль с более реальными параметрами и дополнительными условиями и затратами,

что в итоге позволит судить о том, есть ли положительная динамика от вложения денег в улучшение качества модели.