

Universidade Federal de Itajubá Instituto de Física e Química (IFQ)

2024.4

Informações da disciplina

Disciplina: QUI055 - Química Orgânica II (T01)

Créditos: 64 horas

Sala: X1104

Dia/hora: SEG – SEX, 13:30 – 15:20 e 15:50 – 17:40

Pré-requisitos: Química Orgânica I (QUI035)

Informações do professor

Nome: Lucas Raposo Carvalho

Sala: Sala C2248, Instituto de Física e Química, 2º andar.

E-mail: lucasraposo@unifei.edu.br

Breve descrição da disciplina 1

Pretende-se preparar os alunos de Química Bacharelado e Licenciatura em conceitos essenciais de Química Orgânica que serão úteis em situações acadêmicas e profissionais futuras. De modo geral, a disciplina abordará a Química de Alcenos e Alcinos, de sistemas conjugados, de sistemas aromáticos, de álcoois e éteres, reações de oxidação e redução e ácidos carboxílicos e derivados. Em específico, a disciplina abordará (i) uma breve revisão de reações de eliminação – desidroalogenação e desidratação –, (ii) hidrogenação catalítica, (iii) reações de adição a alcenos e alcinos – e.g., adição de X₂, HX, H₂O, oximercuração, hidroboração, carbenos, diidroxilação-syn e clivagem oxidativa –, (iv) reações de oxidação e redução, (v) compostos organometálicos de lítio e magnésio e suas reações, (vi) reatividade de compostos carbonílicos e reações de substituição nucleofílica no carbono acílico.

2 Objetivos da disciplina

Ao final da disciplina, espera-se que o aluno possua as seguintes habilidades/compentências:

- Relembrar e fixar conceitos de reações de eliminação e competição entre substituição e eliminação;
- Identificar condições da hidrogenação catalítica de alcenos e alcinos para adição syn e anti de H_2 ;

- Entender a reatividade de sistemas π de alcenos e alcinos do ponto de vista orbitalar;
- Entender os padrões físico-química envolvidos na reatividade da ligação dupla e tripla
 C-C com uma série de eletrófilos
- Saber as principais condições reacionais e estratégias de adição às ligações C=C e C≡C;
- Entender compostos conjugados, especialmente dienos, do ponto de vista orbitalar;
- Saber analisar, do ponto de vista da físico-quimica, aspectos do controle cinético e termodinâmico da adição a dienos conjugados;
- Saber identificar aromaticidade em compostos orgânicos e suas consequências na estabilidade e reatividade;
- Identificar diferentes tipos de reações de substituição eletrofílica e nucleofílica aromática ($S_EAr\ e\ S_NAr$);
- Desenvolver a habilidade de trabalhar com grupos diretores e modulares de reações aromáticas e prever reatividades em reações sucessivas;
- Saber as principais reações de produção e a partir de álcoois e éteres, inclusive grupos protetores e reações de epóxidos;
- Entender aspectos básicos de oxidações e reduções em compostos orgânicos;
- Saber as principais condições de oxidação de álcoois e reduções de compostos carbonílicos e entender as diferentes reatividades dos oxidantes e redutores;
- Compreender a reatividade de compostos organometálicos de lítio e magnésio;
- Entender a reatividade de compostos carbonílicos do ponto de vista orbitalar;
- Saber as principais condições de reações de substituição nucleofílica no carbono acílico e a reatividade relativa dos diferentes derivados de ácido carboxílico.

3 Formas de avaliação

Os alunos serão avaliados por provas $(4 \times 2.5 \text{ pontos})$. As provas (P1, P2, P3 e P4) terão conteúdo *cumulativo*, conforme mostra o calendário.

4 Calendário

SEGUNDA	Terça	Quarta	QUINTA	SEXTA
Data: 6/1 1	Data: 7/1 2	Data: 8/1 3	Data: 9/1 4	Data: 10/1 5
		Ementa, datas e	1. Alcenos e	2. Adição à
		informações.	alcinos	C=C
		1. Alcenos e		
		alcinos		
Data: 13/1 6	Data: 14/1 7	Data: 15/1 8	Data: 16/1 9	Data: 17/1 10
2. Adição à	2. Adição à	P1: Módulos	3. Alcenos	4. Química de
C = C	C=C	1 e 2	conjugados	aromáticos
Data: 20/1 11	Data: 21/1 12	Data: 22/1 13	Data: 23/1 14	Data: 24/1 15
4. Química de	4. Química de	4. Química de	P2: Módulos	5. Álcoois e
aromáticos	aromáticos	aromáticos	1 a 4	éteres
Data: 27/1 16	Data: 28/1 17	Data: 29/1 18	Data: 30/1 19	Data: 31/1 20
5. Álcoois e	P3: Módulos	6. Oxidações,	6. Oxidações,	6. Oxidações,
éteres	1 a 5	reduções e	reduções e	reduções e
		RLi/RMgX	RLi/RMgX	RLi/RMgX
Data: 3/2 21	Data: 4/2 22	Data: 5/2 23	Data: 6/2 24	Data: 7/2 25
7. Ácidos e	P4: Módulos			
derivados	1 a 7			

5 Ementa

5.1 Módulo 1. Química de alcenos e alcinos

Módulo com revisões e conteúdos novos. Tópicos incluem (i) discussão de reações de desidroalogenação de haletos de alquila e desidratação de álcoois, (ii) revisão de reações de substituição, eliminação, regio- e estereoquímica, e competições, (iii) síntese de alcinos com dialetos vicinais e geminais e (iv) hidrogenação catalítica syn e anti.

Tópico principal	Duração pretendida
Formação de alcenos e alcinos e hidrogenação	2 dias (4 aulas)

5.2 Módulo 2. Reações de adição a compostos insaturados

Tópicos incluem (i) descrição orbitalar e termodinâmica da reatividade de sistemas π , (ii) mecanismo geral de adição, (iii) adição de X_2 , HX e H_2O , (iv) aspectos de regioquímica e estereoquímica, (v) hidratações alterantivas (oximercuração e hidroboração), (vi) adição de carbenos, (vii) reações de 1,2-diidroxilação e (viii) clivagem oxidativa de alcenos e alcinos.

Tópico principal	Duração pretendida
Reatividade de sistemas π na presença de eletrófilos	3 dias (6 aulas)

5.3 Módulo 3. Alcenos conjugados

Tópicos incluem (i) discussão orbitalar de sistemas π conjugados, especialmente do buta-1,3-dieno, e (ii) controle cinético e termodinâmico de adições eletrofílicas à sistemas conjugados.

Tópico principal	Duração pretendida
Aspectos orbitalares e reatividade de sistemas conjugados	1 dia (2 aulas)

5.4 Módulo 4. Química de aromáticos

Tópicos incluem (i) identificação de sistemas aromáticos, anti-aromáticos e não-aromáticos utilizando orbitais moleculares, diagramas de Frost e regra de Hückel, (ii) reações de substituição eletrofílica aromática (halogenação, nitração, sulfonação e reações de Friedel-Crafts), (iii) grupos diretores e moduladores, (iv) reações de substituição nucleofílica aromática e (v) reações de cadeia lateral.

Tópico principal	Duração pretendida	
Aromaticidade e reações de sistemas aromáticos	4 dias (8 aulas)	

5.5 Módulo 5. Álcoois e éteres

Tópicos incluem (i) reações de produção de álcoois a partir de alcenos, (ii) reações a partir de álcoois, (iii) reações de produção de éteres, (iv) reações a partir de éteres, (v) grupos protetores com funções éter, (vi) síntese de epóxidos e (vi) aberturas de epóxidos.

Tópico principal	Duração pretendida
Estratégias sintéticas de álcooiss e éteres	2 dias (4 aulas)

5.6 Módulo 6. Oxidações, reduções e organometálicos

Tópicos incluem (i) identificação de processos de oxidação e redução em espécies orgânicas, (ii) obtenção de álcoois por redução de compostos carbonílicos, (iii) oxidação de álcoois, (iv) reatividade relativas de agentes oxidantes e redutores, (v) compostos organometálicos de lítio (RLi) e magnésio (RMgX) e (vi) reatividade de RLi e RMgx como bases, com epóxidos e com carbonilas.

Tópico principal	Duração pretendida
Reações de oxidação e redução, organilítios e organomagnésios	2 dias (4 aulas)

5.7 Módulo 7. Ácidos carboxílicos e derivados

Tópicos incluem (i) identificação de funções e reatividade geral, (ii) reação geral de substituição nucleofílica no carbono acílico em meio básico e meio ácido, (iii) reatividade relativa de derivados de ácido carboxílico e (iv) reações importantes representativas

Tópico principal	Duração pretendida
Reações de S_NAc e reatividade relativa	1 dia (2 aulas)

6 Bibliografia principal

1. SOLOMONS, T. W. G.; FRYHLE, C. B.; SNYDER, S. A. *Química Orgânica*, vol. 1 e vol. 2, 12^a Ed. (2018). Editora LTC, ISBN 978-8521635475. 656 pp. (vol. 1) e 600 pp. (vol. 2).

7 Bibliografia complementar

- 1. CLAYDEN, J.; GREEVES, N.; WARREN, S. *Organic Chemistry*, 2^a Ed. (2012). Editora Oxford University Press, ISBN 978-0199270293. 1260 pp.
- 2. KLEIN, D. *Química Orgânica*, vol. 1 e vol. 2, 2ª Ed. (2016). Editora LTC, ISBN 978-8521631057. 722 pp. (vol. 1) e 680 pp. (vol. 2);

- 3. BRUICE, P. Y. $Qu\'imica~Org\^anica$, vol. 1 e vol. 2, 4^a Ed. (2006). Editora Pearson Universidades, ISBN 978-8576050049. 704 pp. (vol. 1) e 704 pp. (vol. 2);
- 4. FLEMING, I. Molecular Orbitals and Organic Chemical Reactions, Student Edition (2010). Wiley, ISBN 978-0470746592. 384 pp.
- 5. ANSLYN, E. V.; DOUGHERTY, D. A.; Modern Physical Organic Chemistry (2005). Editora University Science, ISBN 978-1891389313. 1104 pp.