

Seminar Algorithms for Big Data

Fast Random Integer Generation in an Interval Based on a paper of the same title by Daniel Lemire

Lukas Geis Supervised by Dr. Manuel Penschuck

29th February 2024 · Algorithm Engineering (Prof. Dr. Ulrich Meyer)

What is our goal?

What is our goal?

We want to efficiently draw a uniform random integer in an interval.

What is our goal?

We want to efficiently draw a uniform random integer in an interval.

Where do we need this?

What is our goal?

We want to efficiently draw a uniform random integer in an interval.

Where do we need this?

Shuffling

What is our goal?

We want to efficiently draw a uniform random integer in an interval.

Where do we need this?

- Shuffling
- Complex Graph Generators

TBD

TBD

What is our goal?

We want to efficiently draw a uniform random integer in an interval.

Where do we need this?

- Shuffling
- Complex Graph Generators
- Sampling

Table of Contents

- 1 Preliminaries
 - Formal Definition
 - Operations
 - The Naive Approach
- 2 Unbiased Algorithms
 - The OpenBSD Algorithm
 - The Java Algorithm
 - The Bitmask Algorithm
- 3 Lemire's Algorithm
 - Multiply-And-Shift
 - The Algorithm
- **4** Conclusion

Formal Definition

GOETHE UNIVERSITÄT

Setting:

Formal Definition

Setting:

■ Input: upper bound of interval $n \in \mathbb{N}$

Formal Definition

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

But what if we want a random integer in [a, b) for $a, b \in \mathbb{N}$, 0 < a < b instead?

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

But what if we want a random integer in [a, b) for $a, b \in \mathbb{N}$, 0 < a < b instead?

We can map this to our setting by subtracting a!

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

But what if we want a random integer in [a, b) for $a, b \in \mathbb{N}$, 0 < a < b instead?

We can map this to our setting by subtracting a!

■ Set n = b - a and draw a uniform random integer $x \in [0, n)$

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

But what if we want a random integer in [a, b) for $a, b \in \mathbb{N}$, 0 < a < b instead?

We can map this to our setting by subtracting a!

- Set n = b a and draw a uniform random integer $x \in [0, n)$
- Return $x + a \in [a, b)$

Operations

Definition (Common Operations)

■ Integer-Division: $x \div y \qquad \coloneqq |x/y|$

- Integer-Division: $x \div y \qquad \coloneqq |x/y|$
- Remainder-Operation: $x \mod y := x (x \div y)y$

- Integer-Division: $x \div y := |x/y|$
- Remainder-Operation: $x \mod y := x (x \div y)y$
- $x \gg W := x \div 2^W$ Bit-RightShift:

- $x \div y = |x/y|$ ■ Integer-Division:
- $x \mod y \coloneqq x (x \div y)y$ ■ Remainder-Operation:
- $x \gg W := x \div 2^W$ Bit-RIGHTSHIFT:
- $x \ll W := x \cdot 2^W$ Bit-LeftShift:

■ Integer-Division:
$$x \div y := \lfloor x/y \rfloor$$

■ Remainder-Operation:
$$x \mod y := x - (x \div y)y$$

■ Bit-RightShift:
$$x \gg W := x \div 2^W$$

■ Bit-LeftShift:
$$x \ll W := x \cdot 2^W$$

■ Bitwise-And:
$$x \& y$$

■ Integer-Division:
$$x \div y := \lfloor x/y \rfloor$$

■ Remainder-Operation:
$$x \mod y := x - (x \div y)y$$

■ Bit-RightShift:
$$x \gg W := x \div 2^W$$

■ Bit-LeftShift:
$$x \ll W := x \cdot 2^W$$

■ Bitwise-AND:
$$x \& y \to x \mod 2^W \coloneqq x \& (2^W - 1)$$

Definition (Common Operations)

■ Integer-Division:
$$x \div y := \lfloor x/y \rfloor$$

■ Remainder-Operation:
$$x \mod y := x - (x \div y)y$$

■ Bit-RightShift:
$$x \gg W := x \div 2^W$$

■ Bit-LeftShift:
$$x \ll W := x \cdot 2^W$$

■ Bitwise-And:
$$x \& y \to x \mod 2^W \coloneqq x \& (2^W - 1)$$

Definition (Power Remainder)

For $W, n \in \mathbb{N}$, we write \mathcal{R}_n^W for $2^W \mod n$.

How do we get random numbers?

How do we get random numbers?

■ Generated by Pseudo-Random-Number-Generators (PRNGs)

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

 $rand() \mod n$

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

 $rand() \mod n$

Does this work?

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

 $rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

 $rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

Is this efficient?

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

$rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

Is this efficient?

■ No, we require one expensive integer division operation.

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

$rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

Is this efficient?

■ No, we require one expensive integer division operation.

Is the generated number uniform in [0, n)?

Preliminaries

The Naive Approach

GOETHE UNIVERSITÄT

In general, applying $x \mod n$ to $[0, 2^W)$ yields

In general, applying $x \mod n$ to $[0, 2^W)$ yields

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

Deterministic Mappings

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

Deterministic Mappings

Every deterministic mapping $f: [0, 2^W) \to [0, n)$

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

Deterministic Mappings

Every deterministic mapping $f: [0, 2^W) \to [0, n)$ does not generate uniform random integers in one step

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

Deterministic Mappings

Every deterministic mapping $f:[0,2^W)\to [0,n)$ does not generate uniform random integers in one step whenever n does not divide 2^W .

In general, applying $x \mod n$ to $[0, 2^W)$ yields

$$\underbrace{ \begin{array}{c} 2^W \text{ values} \\ \hline n \text{ values} & n \text{ values} \\ \hline 0, 1, \dots, n-1, \hline 0, 1, \dots, n-1, \dots, \hline 0, 1, \dots, n-1, \\ (2^W \div n) \cdot n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline 0, 1, \dots, n-1, \\ \hline 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline 0, 1, \dots, n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c} n \text{ values} \\$$

We have a leftover interval that introduces bias.

Deterministic Mappings

Every deterministic mapping $f: [0, 2^W) \to [0, n)$ does not generate uniform random integers in one step whenever n does not divide 2^W .

Idea: Use rejection sampling to achieve uniformity!

The OpenBSD Algorithm

GOETHE UNIVERSITÄT

■ Shift the rejection interval to the left:

■ Shift the rejection interval to the left:

Shift the rejection interval to the left:

$$\underbrace{0,1,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{R}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}}$$

Algorithm:

Shift the rejection interval to the left:

$$\underbrace{0,1,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{R}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}}$$

- Algorithm:
 - Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$

■ Shift the rejection interval to the left:

2^W values		
	n values	n values
$0,1,\ldots,\mathcal{R}_n^W-1,\overline{\mathcal{R}_n^W},\ldots,$	$n-1,0,\ldots,\mathcal{R}_n^W-$	$1, \ldots, \mathcal{R}_n^W, \ldots, n-1, 0, \ldots, \mathcal{R}_n^W - 1$
\mathcal{R}_n^W values	$(2^W$	$(n) \cdot n$ values

- Algorithm:
 - Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
 - Return $x \mod n$

The OpenBSD Algorithm

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Efficiency

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Efficiency

We require 2 integer division operations:

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Efficiency

We require 2 integer division operations:

 \blacksquare one for computing \mathcal{R}_n^W

The OpenBSD Algorithm

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Efficiency

We require 2 integer division operations:

- lacksquare one for computing \mathcal{R}_n^W
- \blacksquare and one for computing $x \mod n$.

The Java Algorithm

The Java Algorithm

GOETHE UNIVERSITÄT

The Java Algorithm

The Java Algorithm

■ Consider $x - (x \mod n)$ for $x \in [0, 2^W)$:

The Java Algorithm

■ Consider $x - (x \mod n)$ for $x \in [0, 2^W)$:

The Java Algorithm

■ Consider $x - (x \mod n)$ for $x \in [0, 2^W)$:

The Java Algorithm

■ Consider $x - (x \mod n)$ for $x \in [0, 2^W)$:

The Java Algorithm

■ Consider $x - (x \mod n)$ for $x \in [0, 2^W)$:

 \blacksquare Map every number to the next-smallest multiple of n

The Java Algorithm

- \blacksquare Map every number to the next-smallest multiple of n
- Only numbers in leftover interval mapped to $2^W \mathcal{R}_n^W > 2^W n$

The Java Algorithm

- \blacksquare Map every number to the next-smallest multiple of n
- Only numbers in leftover interval mapped to $2^W \mathcal{R}_n^W > 2^W n$
- Algorithm:

The Java Algorithm

- \blacksquare Map every number to the next-smallest multiple of n
- Only numbers in leftover interval mapped to $2^W \mathcal{R}_n^W > 2^W n$
- Algorithm:
 - (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$

The Java Algorithm

- \blacksquare Map every number to the next-smallest multiple of n
- Only numbers in leftover interval mapped to $2^W \mathcal{R}_n^W > 2^W n$
- Algorithm:
 - (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
 - (2) Return r if $x r > 2^W n$ else goto (1)

The Java Algorithm

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r > 2^W n$ else goto (1)

The Java Algorithm

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r > 2^W n$ else goto (1)

Efficiency

The Java Algorithm

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r > 2^W n$ else goto (1)

Efficiency

■ At least one integer division operation

The Java Algorithm

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r > 2^W n$ else goto (1)

- At least one integer division operation
- Number of integer divisions operations equal to number of rounds

The Java Algorithm

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r > 2^W n$ else goto (1)

- At least one integer division operation
- Number of integer divisions operations equal to number of rounds
- Return number in round if $x < 2^W \mathcal{R}_n^W$

Unbiased Algorithms

The Java Algorithm

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r > 2^W n$ else goto (1)

- At least one integer division operation
- Number of integer divisions operations equal to number of rounds
- Return number in round if $x < 2^W \mathcal{R}_n^W$
- Happens with probability $\frac{2^W \mathcal{R}_n^W}{2^W} > \frac{1}{2}$

The Java Algorithm

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r > 2^W n$ else goto (1)

- At least one integer division operation
- Number of integer divisions operations equal to number of rounds
- Return number in round if $x < 2^W \mathcal{R}_n^W$
- Happens with probability $\frac{2^W \mathcal{R}_n^W}{2^W} > \frac{1}{2}$
- Expected number of integer division operations is $\frac{2^W}{2^W \mathcal{R}_n^W} < 2$

Unbiased Algorithms

The Bitmask Algorithm

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

 \blacksquare Consider the binary representation of n:

 \blacksquare Consider the binary representation of n:

 \blacksquare Consider the binary representation of n:

$$n \quad \xrightarrow{\text{binary}} \quad \underbrace{0, \dots, 0}_{\text{only 0's}}, \underbrace{1}_{\text{series of 0's and 1's}}^{2^{W-1}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}^{2^1}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}^{2^{1}}$$

■ Every number $x \le n$ only needs the last $\lfloor \log_2 n \rfloor + 1$ bits

 \blacksquare Consider the binary representation of n:

$$n \quad \xrightarrow{\text{binary}} \quad \underbrace{0, \dots, 0}_{\text{only 0's}}, \underbrace{1}_{\text{series of 0's and 1's}}^{2^{W-1}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}^{2^1}$$

- Every number $x \le n$ only needs the last $\lfloor \log_2 n \rfloor + 1$ bits
- Get these bits with a bitwise-AND with

$$2^{\lfloor \log_2 n \rfloor + 1} - 1 \xrightarrow{\text{binary}} \underbrace{0, \dots, 0}_{\text{only 0's}}, \underbrace{1, \dots, 1}_{\text{only 1's}}, \underbrace{1, \dots, 1}_{\text{only 1's}}, \underbrace{1}_{\text{only 1's}}$$

Unbiased Algorithms

The Bitmask Algorithm

GOETHE UNIVERSITÄT

■ How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?

Unbiased Algorithms

The Bitmask Algorithm

GOETHE UNIVERSITÄT

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's!

GOETHE UNIVERSITÄT

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's!

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's!

$$n \quad \xrightarrow{\text{binary}} \quad \underbrace{\underbrace{0}_{, \dots, 0}^{2^{W-1}}, \underbrace{0}_{l \text{ 0's}}^{2^{\lfloor \log_2 n \rfloor}}, \underbrace{0}_{l, \dots, \underbrace{0}_{l}}^{2^{1}}, \underbrace{0}_{l \text{ 0'1}}^{2^{0}}, \underbrace{0}_{l \text{ 1's}}^{2^{0}}$$

$$|\log_2 n| = W - \ell - 1$$

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's!

$$n \quad \xrightarrow{\text{binary}} \quad \underbrace{0,\dots,0}_{\ell \text{ 0's}}, \underbrace{1}_{1},\underbrace{0/1,\dots,0/1}_{\text{series of 0's and 1's}},\underbrace{0/1,\dots,0/1}_{\text{series of 0's and 1's}}$$

GOETHE UNIVERSITÄT

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's!

$$n \xrightarrow{\text{binary}} \underbrace{0, \dots, 0}_{\ell \text{ 0's}}, \underbrace{1}_{\text{series of 0's and 1's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}, \underbrace{0}_{\ell \text{ 0's}}$$

- Algorithm:

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's!

$$n \xrightarrow{\text{binary}} \underbrace{0, \dots, 0}_{\ell \text{ 0's}}, \underbrace{1}_{\text{series of 0's and 1's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}, \underbrace{0}_{\ell \text{ 1}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}$$

- Algorithm:
 - (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's!

$$n \xrightarrow{\text{binary}} \underbrace{0, \dots, 0}_{\ell \text{ 0's}}, \underbrace{1}_{\text{series of 0's and 1's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}, \underbrace{0}_{\ell \text{ 1}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}$$

- Algorithm:
 - (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's!

$$n \xrightarrow{\text{binary}} \underbrace{0, \dots, 0}_{\ell \text{ 0's}}, \underbrace{1}_{\text{series of 0's and 1's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}, \underbrace{0}_{\ell \text{ 1}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}$$

- Algorithm:
 - (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
 - (3) Return b if b < n else goto (2)

Unbiased Algorithms

The Bitmask Algorithm

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

Efficiency

 \bullet b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} - 1 < 2n$

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

Efficiency

■ b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} - 1 < 2n$ success probability at least $\approx \frac{1}{2}$

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

- b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1 < 2n$ success probability at least $\approx \frac{1}{2}$
- At most ≈ 2 rounds in expectation

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

- b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1 < 2n$ success probability at least $\approx \frac{1}{2}$
- At most ≈ 2 rounds in expectation
- No integer division at all

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

- b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1 < 2n$ success probability at least $\approx \frac{1}{2}$
- At most ≈ 2 rounds in expectation
- No integer division at all
- Computation of leading 0's requires clz instruction/algorithm

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

- b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1 < 2n$ success probability at least $\approx \frac{1}{2}$
- At most ≈ 2 rounds in expectation
- No integer division at all
- Computation of leading 0's requires clz instruction/algorithm
- Roughly as expensive as a div instruction

Lemire's Algorithm

$$({\tt rand()} \cdot n) \gg W$$

$$(\mathtt{rand()} \cdot n) \div 2^W$$

$$(\underbrace{\mathtt{rand()}}_{\in [0,2^W)} \cdot n) \div 2^W$$

$$\underbrace{\left(\mathtt{rand}\left(\right)\cdot n\right)}_{\in\left[0,n\cdot2^{W}\right)}\div2^{W}$$

$$\underbrace{(\mathtt{rand}()\cdot n)}_{\in [0,n\cdot 2^W)} \div 2^W$$

$$n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$$

$$\underbrace{(\mathtt{rand}()\cdot n)}_{\in [0,n\cdot 2^W)} \div 2^W$$

- $n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$
- 2W bits enough to represent rand() $\cdot n$

■ Map rand() to [0, n) divisionless with $(rand() \cdot n) \gg W$:

$$\underbrace{(\mathtt{rand}()\cdot n) \div 2^W}_{\in [0,n)}$$

- $n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$
- 2W bits enough to represent rand() $\cdot n$

■ Map rand() to [0, n) divisionless with $(rand() \cdot n) \gg W$:

$$\underbrace{(\mathtt{rand}()\cdot n) \div 2^W}_{\in [0,n)}$$

- $n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$
- 2W bits enough to represent rand() $\cdot n$

Is this uniform?

■ Map rand() to [0, n) divisionless with $(rand() \cdot n) \gg W$:

$$\underbrace{(\mathtt{rand}()\cdot n) \div 2^W}_{\in [0,n)}$$

- $n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$
- 2W bits enough to represent rand() $\cdot n$

Is this uniform?

■ Mapping is deterministic!

■ Map rand() to [0, n) divisionless with $(rand() \cdot n) \gg W$:

$$\underbrace{(\mathtt{rand}()\cdot n) \div 2^W}_{\in [0,n)}$$

- $n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$
- 2W bits enough to represent rand() $\cdot n$

Is this uniform?

- Mapping is deterministic!
- \blacksquare Mapping can not be uniform for all n!

 \blacksquare Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n

- Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n
- Every integer in the ith interval $[i \cdot 2^W, (i+1) \cdot 2^W)$ is mapped to i by $\gg W$

- Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n
- Every integer in the i^{th} interval $[i \cdot 2^W, (i+1) \cdot 2^W)$ is mapped to i by $\gg W$
- Define the restricted i^{th} interval as $[i \cdot 2^W + \mathcal{R}_n^W, (i+1) \cdot 2^W)$

- Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n
- Every integer in the i^{th} interval $[i \cdot 2^W, (i+1) \cdot 2^W)$ is mapped to i by $\gg W$
- Define the restricted i^{th} interval as $[i \cdot 2^W + \mathcal{R}_n^W, (i+1) \cdot 2^W)$
- This interval has size

$$(i+1)\cdot 2^W - \left(i\cdot 2^W + \mathcal{R}_n^W\right) = 2^W - \mathcal{R}_n^W$$

- Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n
- Every integer in the i^{th} interval $[i \cdot 2^W, (i+1) \cdot 2^W)$ is mapped to i by $\gg W$
- Define the restricted i^{th} interval as $[i \cdot 2^W + \mathcal{R}_n^W, (i+1) \cdot 2^W)$
- This interval has size

$$(i+1)\cdot 2^W - \left(i\cdot 2^W + \mathcal{R}_n^W\right) = 2^W - \mathcal{R}_n^W$$

which is divisible by n

- Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n
- Every integer in the i^{th} interval $[i \cdot 2^W, (i+1) \cdot 2^W)$ is mapped to i by $\gg W$
- Define the restricted i^{th} interval as $[i \cdot 2^W + \mathcal{R}_n^W, (i+1) \cdot 2^W)$
- This interval has size

$$(i+1) \cdot 2^W - (i \cdot 2^W + \mathcal{R}_n^W) = 2^W - \mathcal{R}_n^W$$

which is divisible by n

• Every restricted i^{th} interval has the same number of multiples of n

- Split $[0, n \cdot 2^W)$ into intervals $[i \cdot 2^W, (i+1) \cdot 2^W)$ for i < n
- Every integer in the i^{th} interval $[i \cdot 2^W, (i+1) \cdot 2^W)$ is mapped to i by $\gg W$
- Define the restricted i^{th} interval as $[i \cdot 2^W + \mathcal{R}_n^W, (i+1) \cdot 2^W)$
- This interval has size

$$(i+1) \cdot 2^W - (i \cdot 2^W + \mathcal{R}_n^W) = 2^W - \mathcal{R}_n^W$$

which is divisible by n

- Every restricted i^{th} interval has the same number of multiples of n
- We can make Multiply-And-Shift uniform by rejecting multiple of n in every restricted ith interval

When do we reject $x := rand() \cdot n$?

When do we reject $x := rand() \cdot n$?

• $x \in [i \cdot 2^W + \mathcal{R}_n^W, (i+1) \cdot 2^W)$ for some i < n

GOETHE UNIVERSITÄT

The Algorithm - Rejection

When do we reject $x := rand() \cdot n$?

- $x \in [i \cdot 2^W + \mathcal{R}_n^W, (i+1) \cdot 2^W)$ for some i < n
- Applying $x \mod 2^W$ to any i^{th} interval yields

When do we reject $x := rand() \cdot n$?

- $x \in [i \cdot 2^W + \mathcal{R}_n^W, (i+1) \cdot 2^W)$ for some i < n
- Applying $x \mod 2^W$ to any i^{th} interval yields

When do we reject $x := rand() \cdot n$?

- $x \in [i \cdot 2^W + \mathcal{R}_n^W, (i+1) \cdot 2^W)$ for some i < n
- Applying $x \mod 2^W$ to any i^{th} interval yields

$$\underbrace{0,1,\dots,\mathcal{R}_n^W-1}_{\text{rejected part}},\underbrace{\mathcal{R}_n^W,\dots,n,\dots,2^W-1}_{\text{restricted }i^{\text{th}}\text{ interval}}$$

• We reject x if $x \mod 2^W < \mathcal{R}_n^W$

$$\mathbf{1} \ \overline{\mathcal{R}_n^W \leftarrow 2^W \bmod n}$$

/* Compute rejection threshold */

1 $\mathcal{R}_n^W \leftarrow 2^W \mod n$ 2 while $true \operatorname{do}$

/* Compute rejection threshold */

 $\mathbf{1} \ \overline{\mathcal{R}_n^W \leftarrow 2^W \bmod n}$

/* Compute rejection threshold */

- 2 while true do
- $x \leftarrow \text{rand()}$


```
1 \overline{\mathcal{R}_n^W} \leftarrow 2^W \mod n /* Compute rejection threshold */
2 while true do
3 | x \leftarrow \text{rand}()  /* Use 2W bits for representation */
```



```
1 \mathbb{R}_n^W \leftarrow 2^W \mod n /* Compute rejection threshold */
2 while true do
3 | x \leftarrow \text{rand}()
4 | m \leftarrow x \cdot n /* Use 2W bits for representation */
5 | l \leftarrow m \& (2^W - 1) /* m \mod 2^W */
```



```
1 \overline{\mathcal{R}_n^W} \leftarrow 2^W \mod n /* Compute rejection threshold */
2 while true do
3 | x \leftarrow \text{rand}()
4 | m \leftarrow x \cdot n | /* Use 2W bits for representation */
5 | l \leftarrow m \& (2^W - 1) | /* m \mod 2^W */
6 | if l \ge \mathcal{R}_n^W then
```



```
1 \overline{\mathcal{R}_n^W} \leftarrow 2^W \mod n /* Compute rejection threshold */
2 while true do
3 | x \leftarrow \text{rand}()
4 | m \leftarrow x \cdot n | /* Use 2W bits for representation */
5 | l \leftarrow m \& (2^W - 1) | /* m \mod 2^W */
6 | if l \ge \mathcal{R}_n^W then
7 | return m \gg W
```


Conclusion

expected number of integer division operations maximum number of Unbiased? integer division operations

Conclusion

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	X

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	Х
Multiply-and-Shift	0	0	X

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	X
Multiply-and-Shift	0	0	X
OpenBSD	2	2	/

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	X
Multiply-and-Shift	0	0	X
OpenBSD	2	2	✓
Java	$\frac{2^W}{2^W - (2^W \mod n)}$	∞	✓

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	X
Multiply-and-Shift	0	0	X
OpenBSD	2	2	✓
Java	$\frac{2^W}{2^W - (2^W \mod n)}$	∞	✓
Bitmask	0	0	/

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	×
Multiply-and-Shift	0	0	X
OpenBSD	2	2	✓
Java	$\frac{2^W}{2^W - (2^W \mod n)}$	∞	✓
Bitmask	0	0	✓
Lemire	$\frac{n}{2W}$	1	✓

End of Talk