Spam Email Classifier Project
Objective:
Build a machine learning model that classifies emails as spam or not spam.
Dataset:
Used the 'SMS Spam Collection' dataset from UCI repository.
Libraria a Manda
Libraries Used:
- pandas
- sklearn
- matplotlib
- seaborn
Steps:
1. Load and clean data
2. Feature extraction using TF-IDF Vectorizer
3. Train model using Naive Bayes
4. Evaluate performance
Code Summary:
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB

```
Load data
data = pd.read_csv('spam.csv', encoding='latin-1')[['v1', 'v2']]
data.columns = ['label', 'text']
data['label'] = data['label'].map({'ham': 0, 'spam': 1})
Split data
X_train, X_test, y_train, y_test = train_test_split(data['text'], data['label'], test_size=0.2)
Vectorization
tfidf = TfidfVectorizer()
X_train_tfidf = tfidf.fit_transform(X_train)
X_test_tfidf = tfidf.transform(X_test)
Train model
model = MultinomialNB()
model.fit(X_train_tfidf, y_train)
Evaluate
predictions = model.predict(X_test_tfidf)
print(accuracy_score(y_test, predictions))
print(classification_report(y_test, predictions))
```

# Image Classifier for Fruits Project
## Objective:
Build a CNN model to classify fruit images.
## Dataset:
Used a small fruit images dataset with 3 categories: apple, banana, orange.
## Libraries Used:
- tensorflow
- keras
- matplotlib
## Steps:
Load and preprocess image data
2. Build CNN model
3. Train and evaluate model
## Code Summary:
```python
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
Image preprocessing
train_datagen = ImageDataGenerator(rescale=1./255, validation_split=0.2)

```
train_data
                        train_datagen.flow_from_directory('fruits',
                                                                        target_size=(100,
                                                                                                100),
class_mode='categorical', subset='training')
val_data
                       train_datagen.flow_from_directory('fruits',
                                                                        target_size=(100,
                                                                                                100),
class_mode='categorical', subset='validation')
# Build model
model = Sequential([
  Conv2D(32, (3,3), activation='relu', input_shape=(100,100,3)),
  MaxPooling2D(2,2),
  Conv2D(64, (3,3), activation='relu'),
  MaxPooling2D(2,2),
  Flatten(),
  Dense(64, activation='relu'),
  Dense(3, activation='softmax')
])
# Compile and train
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(train_data, validation_data=val_data, epochs=10)
```