CLAIMS

Having thus described our invention, what we claim as new and desire to secure by Letters Patent is as follows:

1. A method for using future behavior of a battery of probes to forecast and 1 2 diagnose network performance, comprising the steps of: 3 consolidating normal network data and data returned from a battery of 4 EPP probes into a single model matrix, a probe data set in said returned data 5 including at least a time of said probe and a user performance measure; 6 predicting a future value of said user performance measure from 7 predictor variables in said single model matrix, values of said predictor 8 variables being lagged from said probe time by a prediction horizon; 9 generating an alarm signal if said predicted future value of the 10 performance measure is above a threshold value; 11 observing an actual value of said performance measure at the predicted 12 time, said alarm signal being FALSE if the actual value is below a lower 13 alarm threshold and an alarm signal being MISSED if no alarm signal was 14 generated and the actual value is above an upper alarm threshold; and 15 setting by trial and error said threshold value and said prediction 16 horizon to achieve a rate of said false alarms below a specified limit. 1 2. The method of claim 1, wherein said predicting step further comprises the 2 steps of: 3 reducing a dimensionality of said single model matrix by performing 4 stepwise linear regression, at each step adding a most significant network 5 node and deleting a least significant network node, a standard F test providing 6 a significance statistic, until no addition or deletion is significant;

, 4

7	fitting functions of said predictor variables to an additive model; and		
8	generating from said additive model an estimated mean of said future		
9	value of said user performance measure of said EPP probe, an estimated		
10	variance of said estimated mean, and for each predictor variable an estimated		
l 1	variance of an estimated contribution to said future value of said predictor		
12	variable.		
1	3. The method of claim 1, further comprising the step of deriving a control		
2	scheme for said EPP probe by selecting coefficients for a formula for said		
3	alarm threshold, said alarm threshold formula including a constant term, a		
4	seasonality term and a term containing an estimated standard deviation of said		
5	future value of said user performance measure, wherein a rate of said missed		
6	alarms in said trial and error setting step is determined to be acceptable.		
1	4. The method of claim 1, wherein said model matrix includes for each		
2	EPP probe		
3	said user performance measure is a response time Y ;		
4	said time of said probe is a time t when said response time Y was		
5	observed;		
6	said prediction horizon has a value h ; and		
7	wherein for each of said predictor variables said lagged value is taken		
8	at, or most recently prior to, time $t - h$.		
1	5. The method of claim 1, further comprising the steps of:		
2	obtaining a list of models, one for each said linear regression step, a		
3	model for a last step providing a selected subset of predictor variables;		

4	using a partial stepwise additive procedure to further reduce said			
5	dimensionality, said dimensionality being the number of a plurality of said			
6	network nodes; and			
7	determin	ing a scale of EPP probe values, said scale being ordered by		
8	predictive power	;		
1	6. The meth	nod of claim 1, further comprising the step of		
2	determining interaction terms for said additive model, said interaction terms			
3	being a function of more than one predictor variable.			
1	7. The meth	nod of claim 3, wherein said step of deriving a control scheme		
2	uses profile curves, said profile curves reflecting expected values of said user			
3	performance me	asure based on normally observed regularities in variation of		
4	values of said user performance measure.			
1	8. The meth	nod of claim 7, wherein said normally observed regularities		
2	include variation	ns in a weekly cycle and variations in a daily cycle.		
1	9. The meth	nod of claim 1, further comprising the step of presenting a		
2	graphical summary of unfavorable predictors in response to triggering of said			
3	alarm threshold.			
1	10. The meth	nod of claim 2, further comprising the steps of		
2	determin	ing whether said additive model is adequate and triggering a		
3	model alarm if s	aid additive model is determined not to be adequate; and		
4	identifyii	ng elements of said additive model whose characteristics		
5	triggered said model alarm, said identifying step being initiated by said model			
6	alarm.			

1	11. The method of claim 10, further comprising the steps of:		
2	selecting a new predictive model from a battery of recovery models;		
3	and		
4	building said new predictive model over time as data is accumulated		
5	for said predictor variables.		
1	12. The method of claim 1, wherein a predictive model is developed for a		
2	plurality of prediction horizons, one model at a time.		
1	13. A system for using future behavior of a battery of probes to forecast and		
2	diagnose network performance, comprising:		
3	a single model matrix comprising normal network data and responses		
4	to a battery of probes;		
5	profile curves corresponding to said battery, said profile curves		
6	reflecting expected response times based on recent history of said probes;		
7	an additive model that predicts the behavior of a function of said		
8	probes at a future time, said function being defined in terms of predictor		
9	variables in said model matrix, said function being selected by advanced		
10	statistical methods, and said additive model being applied cyclically to reduce		
11	a variable space of said predictor variables in said single model matrix;		
12	alarm thresholds based on deviation between said profile curves and		
13	behavior predicted by said additive model, said alarm thresholds being		
14	selected to assure a predictably low rate of false alarms; and		
15	a graphical summary of unfavorable predictors in response to		
16	triggering of said alarm threshold.		

1

2	a monitor for determining whether said additive model is adequate,
3	said monitor triggering a model alarm if said additive model is determined not
4	to be adequate; and
5	a diagnostic for identifying elements of said additive model whose
6	characteristics triggered said model alarm, said diagnostic being initiated by
7	said model alarm.
1	15. A system as in claim 13, wherein said cyclic application of said model
2	uses an F statistic to control addition and deletion of variables in said variable
3	space.
1	16. A system as in claim 13, wherein said cyclic application of said model
2	uses a subset of variables determined by a stepwise linear regression (SLR).
1	17. A commutant involumental contains for uning future helication of a hottom, of
1	17. A computer implemented system for using future behavior of a battery of
2	probes to forecast and diagnose network performance, comprising:
3	computer code for consolidating normal network data and data
4	returned from a battery of EPP probes into a single model matrix, a probe data
5	set in said returned data including at least a time of said probe and a user
6	performance measure;
7	computer code for predicting a future value of said user performance
8	measure from predictor variables in said single model matrix, values of said
9	predictor variables being lagged from said probe time by a prediction horizon;
10	computer code for generating an alarm signal if said predicted future
11	value of the performance measure is above a threshold value;
12	computer code for observing an actual value of said performance
13	measure at the predicted time, said alarm signal being FALSE if the actual
14	value is below a lower alarm threshold and an alarm signal being MISSED if

15	no alarm signal was generated and the actual value is above an upper alarm
16	threshold; and
17	computer code for setting by trial and error said threshold value and
18	said prediction horizon to achieve a rate of said false alarms below a specified
19	limit.
1	18. The computer implemented system of claim 17, wherein said computer
2	code for predicting further comprises:
3	computer code for reducing a dimensionality of said single model
4	matrix by performing stepwise linear regression, at each step adding a most
5	significant network node and deleting a least significant network node, a
6	standard F test providing a significance statistic, until no addition or deletion
7	is significant;
8	computer code for fitting functions of said predictor variables to an
9	additive model; and
10	computer code for generating from said additive model an estimated
11	mean of said future value of said user performance measure of said EPP
12	probe, an estimated variance of said estimated mean, and for each predictor
13	variable an estimated variance of an estimated contribution to said future
14	value of said predictor variable.
1	10. The computer implemented existent of claim 17. forther commissions
1	19. The computer implemented system of claim 17, further comprising
2	computer code for deriving a control scheme for said EPP probe by selecting
3	coefficients for a formula for said alarm threshold, said alarm threshold
4	formula including a constant term, a seasonality term and a term containing an
5	estimated standard deviation of said future value of said user performance
6	measure, wherein a rate of said missed alarms in said trial and error setting

step is determined to be acceptable.

7

1	20.	The computer implemented system of claim 18, further comprising:
2		computer code for determining whether said additive model is
3	adequa	ate and for triggering a model alarm if said additive model is determined
4	not to	be adequate; and
5		computer code for identifying elements of said additive model whose
6	charac	teristics triggered said model alarm, said identifying step being initiated
7	by said	d model alarm.