# Convex Unconstrained and Constrained Optimization

José R. Dorronsoro
Dpto. de Ingeniería Informática
Escuela Politécnica Superior
Universidad Autónoma de Madrid

#### Convex Set and Function Basics

Constrained Optimization
 Convex Set and Function Basics
 Lagrangian Optimization
 Duality
 Support Vector Classification

2 Convex Optimization Differentiability of Convex Functions Minimization of Convex Functions Proximal Gradient Projected Gradient

## Learning in Machine Learning

ML models are usually built by the minimization of a function

$$J(w) = \ell(w) + R(w),$$

where  $\ell$  is a loss function, R a regularizer and w varies over fixed set C

- When  $C = \mathbf{R}^d$  and both  $\ell$  and R are differentiable functions, we have to deal with an **unconstrained**, **differentiable** optimization problem
- When C is a proper subset of R<sup>d</sup>, we are dealing with a constrained optimization problem
- Moreover, it is often the case that either ℓ or R, or even both, are not differentiable but then they are assumed to be convex

## Two Key Problems

In Lasso we want to minimize

$$e(w,b) = \frac{1}{2n} \sum_{p} (t^{p} - w \cdot x^{p} - b)^{2} + \alpha \|w\|_{1}$$
$$= \frac{1}{2} \text{mse}(w,b) + \alpha \|w\|_{1},$$

- Here  $\ell = \text{mse}$ , the mean squared error, is differentiable but  $R(w) = ||w||_1 = \sum_{i=1}^{d} |w_i|$  is **convex** but not differentiable
- In support vector classification (SVC) we want to minimize

$$\min_{w,b} f(w,b) = \frac{1}{2} ||w||^2 + C \sum_{1}^{n} \xi^{p} = \frac{1}{2} ||w||^2 + C\ell(w,b)$$

subject to 
$$y^p(w \cdot x^p + b) \ge 1 - \xi^p, \xi^p \ge 0$$

• Here  $R(w) = ||w||_2^2$  (and hence differentiable) but the minimization problem is **constrained** 

## **Optimization Scenarios**

- Therefore, Lasso is an example of an unconstrained, convex minimization problem
- And SVC is an example of a convex, constrained minimization problem
- We thus need fundamentals and techniques to solve constrained problems with non differentiable but at least convex functions
- Moreover, convex functions are in many senses the natural context for minimization problems
- After we review the basics of convex functions, we will consider unconstrained optimization first and then convex optimization
- Reference: parts of Chapters 6, 7, 8, 9, 11 and 12 of Introduction to Nonlinear Optimization, by Amir Beck

#### **Basic Definitions**

• We say that S is a **convex set** if for all  $x, x' \in S$  and  $\lambda \in [0, 1]$ ,

$$\lambda x + (1 - \lambda)x' \in S$$

- We recall/clarify basic definitions to be more precise about the kind of sets we work with
- The interior of a set S ⊂ R<sup>d</sup> is

$$\operatorname{int}(S = \{x \in S : B(x, \delta) \subset S \text{ for some } \delta > 0\}$$

- If S = int(S), we say that S is an **open** set
- The closure of S is  $cl(S) = \{x : S \cap B(x, \delta) \neq \emptyset \text{ for all } \delta > 0\}$ 
  - If S = cl(S), we say that S is a **closed** set
- **Proposition.** *S* is closed iff for any sequence  $\{x_n\} \subset S$  such that  $x_n \to x$ , then  $x \in S$
- The **boundary** of S is  $\partial S = cl(S) int(S)$

#### **Convex Functions**

• Let  $S \subset \mathbf{R}^d$  a non empty closed (nEC) set; a function  $f: S \to \mathbf{R}$  is **convex** if for any  $x, x' \in S$  and  $\lambda \in [0, 1]$ ,

$$f(\lambda x + (1 - \lambda)x') \le \lambda f(x) + (1 - \lambda)f(x')$$

• f is **strictly convex** if for any  $x, x' \in S$  with  $x \neq x'$  and  $\lambda \in (0, 1)$ ,

$$f(\lambda x + (1 - \lambda)x') < \lambda f(x) + (1 - \lambda)f(x')$$

- Convex functions have many nice properties
- Theorem. Let S be a nEC set and f convex on S. Then f is continuous in int(S)
- We define the directional derivative g(x; d) at a point x in the direction d as the limit lim<sub>t↓0</sub> f(x+td)-f(x)/t when it exits
  - IF f is continuously differentiable (i.e, its partials are continuous), then  $g(x; d) = \nabla f(x) \cdot d$
- Theorem. Let S be an nEC open set. Then g(x; d) exists for any x ∈ S and d ∈ R<sup>d</sup>

#### Minima of Convex Functions

- Convex functions may not have a minimum (think of f(x) = x) but when they do, they have nice properties
- Let S be a nEC set, f : S → R a convex function and consider the following problem:

$$\min_{x \in S} f(x) \tag{1}$$

- **Theorem.** Assume  $x^* \in S$  is a local solution of (1). Then  $x^*$  is also a global minimum of (12). Moreover, if f is strictly convex,  $x^*$  is the unique global minimum
  - We know that for some  $\delta > 0$ ,  $f(x) \le f(z)$  for all  $z \in B(x, \delta) \cap S$
  - Now if  $x' \in S$  verifies f(x') < f(x) and  $\lambda$  is small enough, we can get  $z = (1 \lambda)x + \lambda x' \in B(x, \delta) \cap S$ , but then

$$f(z) \le \lambda f(x') + (1 - \lambda)f(x) < f(x)$$

7/82

## Lagrangian Optimization

Constrained Optimization

Convex Set and Function Basics

#### Lagrangian Optimization

Duality
Support Vector Classification

2 Convex Optimization Differentiability of (

Differentiability of Convex Functions Minimization of Convex Functions Proximal Gradient Projected Gradient

## Basics of Lagrange Multipliers

• For  $f, g : \mathbf{R}^2 \to \mathbf{R}$  consider the following minimization problem

$$\min f(x, y) \text{ s.t. } h(x, y) = 0 \tag{2}$$

• Assuming the **implicit function theorem** holds, we can find a function  $y = \phi(x)$  s.t.  $h(x, \phi(x)) = 0$  and, thus, we can write

$$f(x,y)=f(x,\phi(x))=\Psi(x)$$

• At a minimum  $x^*$  with  $y^* = \phi(x^*)$  we thus have

$$0 = \Psi'(x^*) = \frac{\partial f}{\partial x}(x^*, y^*) + \frac{\partial f}{\partial y}(x^*, y^*)\phi'(x^*)$$
 (3)

• But since  $h(x, \phi(x)) = 0$ , we also have

$$0 = \frac{\partial h}{\partial x}(x^*, y^*) + \frac{\partial h}{\partial y}(x^*, y^*)\phi'(x^*) \Rightarrow \phi'(x^*) = -\frac{\frac{\partial h}{\partial x}(x^*, y^*)}{\frac{\partial h}{\partial y}(x^*, y^*)}$$
(4)

## Basics of Lagrange Multipliers II

Putting together (3) and (4) we arrive at

$$0 = \frac{\partial f}{\partial x}(x^*, y^*) \frac{\partial h}{\partial y}(x^*, y^*) - \frac{\partial f}{\partial y}(x^*, y^*) \frac{\partial h}{\partial x}(x^*, y^*)$$

- That is, at  $(x^*, y^*)$ ,  $\nabla f \perp \left(\frac{\partial h}{\partial y}, -\frac{\partial h}{\partial x}\right)$  and, since  $\left(\frac{\partial h}{\partial y}, -\frac{\partial h}{\partial x}\right) \perp \nabla h$ , we have  $\nabla f \parallel \nabla h$ , i.e.  $\nabla f(x^*, y^*) = -\mu^* \nabla h(x^*, y^*)$  for some  $\lambda^* \neq 0$
- Thus, for the Lagrangian

$$L(x, y, \lambda) = f(x, y) + \mu h(x, y),$$

we have that at a minimum  $(x^*, y^*)$  there is a  $\mu^* \neq 0$  s.t.

$$\nabla L(x^*, y^*, \lambda^*) = \nabla f(x^*, y^*) + \mu^* \nabla h(x^*, y^*) = 0$$
 (5)

## Basics of Lagrange Multipliers III

Graphically we have



• Thus a way to solve (2) is to define its Lagrangian and solve simultaneously (5) and the constraint h(x, y) = 0

## An Example: Maximum Entropy

• If  $P = (p_1, ..., p_K)$  is a probability distribution, its entropy  $H(p_1, ..., p_K)$  is defined as

$$H(p_1,\ldots,p_K) = -\sum_{1}^{K} p_i \log p_i$$

- -H is a convex function on  $(p_1, \ldots, p_K)$  and, hence, H has a unique maximum
- To find it
  - We define a constrained minimization problem

$$\max -H(p_1,\ldots,p_K) \ \text{ s.t. } \sum_i p_i=1,$$

- Build its Lagrangian  $L(P) = \sum_{i=1}^{M} p_i \log p_i + \lambda (1 \sum_{i=1}^{M} p_i)$ ,
- Solve  $\frac{\partial}{\partial p} L(P) = 0$
- Plug the solutions back into the constraint  $\sum p_i = 1$  and solve the equations

## **Inequality Constrained Minimization**

• Consider for f,  $g_i$  being  $C^1$  the problem

$$\min f(x) \text{ s. t. } g_i(x) \le 0, \ i = 1, \dots, m$$
 (6)

- An x that verifies the constraints is said to be feasible
- A feasible  $x^*$  is a **local minimum** of (6) if there is a  $\delta > 0$  s.t.  $f(x^*) \le f(x)$  for all  $x \in B(x^*, \delta) \cap \{g_i \le 0, i = 1, ..., m\}$
- **Proposition.** Assume  $x^*$  is a local minimum of (6) and let  $A(x^*) = \{i : g_i(x^*) = 0\}$  be the set of **active constraints**. Then, there is no  $d \in \mathbf{R}^d$  s.t.  $\nabla f(x^*) \cdot d < 0$  and  $\nabla g_i(x^*) \cdot d < 0$  for all  $i \in A(x^*)$ 
  - If such a **descent direction** d exists, we will have for t small,

$$f(x^* + td) < f(x^*), \ g_i(x^* + td) < g_i(x^*) \le 0;$$

hence,  $x^*$  won't be a minimum

This is the key for the Fritz John conditions

#### The Fritz John Conditions

• **Theorem.** Let  $x^*$  be a local minimum of (6). There is a  $\lambda_0$  and  $\lambda_i \geq 0$ ,  $1 \leq i \leq m$ , not all 0, s.t.

$$\lambda_0 \nabla f(x^*) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x^*) = 0,$$
$$\lambda_i g_i(x^*) = 0$$
 (7)

- Notice that if  $i \notin A(x^*)$ ,  $g_i(x^*) < 0$  and, hence,  $\lambda_i = 0$
- We try to get x\* by solving (7)
- But if  $\lambda_0 = 0$ , then the  $\nabla g_i(x^*)$  would be linearly dependent
  - But this may very well happen when  $x^*$  is not a local minimimum
  - And we wouldn't get any information about f
- Thus, to exploit (7) to get a global minimum, we must enforce  $\lambda_0 \neq 0$
- The simplest way is to ensure this is to assume that the  $\nabla g_i(x^*)$  are linearly independent

#### The KKT Conditions

• Theorem. KKT Conditions. Let  $x^*$  be a local minimum of (6) and assume that  $\{\nabla g_i(x^*): i \in A(x^*)\}$  are linearly independent. Then, there are  $\lambda_i \geq 0$ ,  $1 \leq i \leq m$ , not all 0 s.t.

$$\nabla f(x^*) + \sum_{1}^{m} \lambda_i \nabla g_i(x^*) = 0,$$
  
 $\lambda_i g_i(x^*) = 0$ 

- Just notice that the Fritz John conditions (7) must hold, but if  $\lambda_0 = 0$ , the  $\nabla g_i(x^*)$  would be linearly dependent.
- Thus, we must have λ<sub>0</sub> ≠ 0 and we just have to divide by λ<sub>0</sub> to arrive at (8)

#### **General Constrained Minimization**

Consider the following minimization problem

min 
$$f(x)$$
 s. t.  $g_i(x) \le 0, i = 1,..., m$   
 $h_j(x) = 0, j = 1,..., p$  (8)

with f and the  $g_i$ ,  $h_i$  being  $C^1$  functions

 Theorem. KKT Conditions. Let x\* be a local minimum of (8) and assume that

$$\{\nabla g_i(x^*): i \in A(x^*)\} \cup \{\nabla h_i(x^*): 1 \le j \le p\}$$

are linearly independent. Then, there are  $\lambda_i \geq 0$ ,  $1 \leq i \leq m$ , not all 0, and  $\mu_1, \ldots, \mu_p$  s.t.

$$\nabla f(x^*) + \sum_{1}^{m} \lambda_i \nabla g_i(x^*) + \sum_{1}^{p} \mu_j \nabla h_j(x^*) = 0,$$
$$\lambda_i g_i(x^*) = 0 \qquad (9)$$

## Regular and KKT Points

- To lighten the statements we define regular and KKT points
- We say that a feasible point x is regular if

$$\{\nabla g_i(x): i \in A(x)\} \cup \{\nabla h_j(x): 1 \le j \le p\}$$

are linearly independent

- We say that a feasible point x is a KKT point if conditions (9) hold at x
- We can thus rewrite the previous theorem as stating that, under its conditions, if a minimum point x\* is regular, then it is a KKT point
- The KKT conditions give us a set of equations that a minimum must verify
  - Again, we can try to solve them and check then that the solution is indeed a minimum

#### The Convex Case

- Until now we have just seen necessary conditions; in the convex case they are also sufficient
- Theorem. If in Problem (8) we assume f and the g<sub>i</sub> to be C<sup>1</sup> and convex and the h<sub>j</sub> to be affine, then a regular KKT point x\* is an optimum of Problem (8)
- · This is the situation in several key problems in ML
  - The constrained versions of Ridge and Lasso, with Lagrangians

$$L(w,\lambda) = \frac{1}{2} \mathsf{mse}(w) + \frac{\lambda}{2} (\|w\|_2^2 - \rho)$$
  
$$L(w,\lambda) = \frac{1}{2} \mathsf{mse}(w) + \lambda (\|w\|_1 - \rho)$$

- Notice that dropping the  $\rho$  term we get their standard unconstrained versions
- The primal and dual versions of support vector classification and regression

#### The Slater Conditions

- Checking the regularity of a given point may be hard in general
- Slater's conditions simplify this for the convex case
- We say that a feasible point x verifies the Slater conditions for problems (6) and (8) if g<sub>i</sub>(x) < 0 for all i = 1,...,m</li>
- Theorem. Let x\* be a solution for Problem (6) with f and g<sub>i</sub> being C<sup>1</sup> and the g<sub>i</sub> also convex and assume the problem has a Slater point. Then x\* is a KKT point
- Theorem. Let x\* be a solution for Problem (8) where we assume the f and g<sub>i</sub> to be C<sup>1</sup> and convex, and the h<sub>j</sub> affine. Then, if the problem has a Slater point, an optimum is also a KKT point

## An Example

Consider the following problem:

min 
$$f(x, y) = x^2 + 2y^2 + 4xy$$
  
s.t.  $x + y = 1$   
 $x > 0, y > 0.$ 

- Here f is not convex, we have two convex inequality constraints and an affine equality one and there are Slater points
- To solve it we just need a KKT point and to get it
  - We write first the Lagrangian with inequality multipliers say α, β, and then its KKT conditions
  - Then we consider separately the cases  $(\alpha=\beta=0)$ ,  $(\alpha>0,\beta=0)$ ,  $(\alpha=0,\beta>0)$  and  $(\alpha>0,\beta>0)$  to identify KKT points
  - We determine which one of them is the optimum

# **Duality**

Constrained Optimization

Convex Set and Function Basics Lagrangian Optimization

Duality

Support Vector Classification

2 Convex Optimization Differentiability of (

Minimization of Convex Functions
Proximal Gradient
Projected Gradient

## The Lagrangian and the Dual Problem

Consider the following minimization problem

min 
$$f(x)$$
 s. t.  $g_i(x) \le 0, i = 1,..., m$   
 $h_i(x) = 0, i = 1,..., p$ 

• We define for  $\lambda_i \geq 0$ ,  $\mu_j$ ,  $1 \leq i \leq m$ ,  $1 \leq j \leq p$ , the **Lagrangian** as

$$L(x,\lambda,\mu) = f(x) + \sum_{i} \lambda_{i} g_{i}(x) + \sum_{j} \mu_{j} h_{j}(x)$$

- Notice that at a feasible x we have  $L(x, \lambda, \mu) < f(x)$
- We define the **dual function** with domain dom  $(q) = \mathbf{R}_+^m \times \mathbf{R}^p$  as

$$q(\lambda,\mu)=\min_{x}L(x,\lambda,\mu)$$

• Then the dual problem is

$$\max_{(\lambda,\mu)\in\text{dom }(q)}q(\lambda,\mu)\tag{10}$$

## Weak Duality

- Proposition. dom(q) is a convex set and q a concave function
  - Hence, -q is convex
- Theorem. Weak Duality If f\* and q\* are optimal values for problems (8) and (10), respectively, then q\* ≤ f\*
  - Just notice that for any  $(\lambda, \mu) \in \text{dom }(q)$

$$q(\lambda, \mu) = \min_{x} L(x, \lambda, \mu) \le \min_{x \text{ feasible}} L(x, \lambda, \mu)$$
  
 $\le \min_{x \text{ feasible}} f(x) = f^*$ 

and, hence,  $q^* \leq f^*$ 

## **Strong Duality**

- In general, there is no guarantee that  $f^* = q^*$ ; however, this is so in the convex case
- **Theorem. Strong Duality** Consider problem (6) where f and the  $g_i$  are  $C^1$  and convex and there is a Slater point. Then, if  $f^*$  is the optimal value of (6), (10) has an optimal value  $q^*$  and  $q^* = f^*$
- Theorem. Strong Duality II Consider problem (8) where f and the  $g_i$  are  $C^1$  and convex, and the  $h_j$  are affine. Then, if there is a Slater point and  $f^*$  is the optimal value of (8), (10) has an optimal value  $q^*$  and  $q^* = f^*$

#### And So What?

- Notice that the dual constraints will be in most cases much simpler that the primal ones
- If we can compute the dual function and strong duality holds, it will be worth our while to
  - Try first to solve the dual problem (10) to get optimum  $\lambda^*, \mu^*$
  - Try then to get a primal optimum solution x\* and its value f\* from the dual solution
- Usually, once we have got the dual solutions λ\*, μ\*, we may try
  to exploit the KKT conditions to derive from them a primal
  solution x\*
- This is precisely the approach followed for support vector machines
- We review them following the previous duality approach to constrained minimization

# Support Vector Classification

Constrained Optimization

Convex Set and Function Basics Lagrangian Optimization Duality

Support Vector Classification

2 Convex Optimization

Differentiability of Convex Functions Minimization of Convex Functions Proximal Gradient Projected Gradient

## Revisiting the Classification Problem

Basic problem: binary classification of a sample

$$S = \{(x^p, y^p), 1 \le p \le N\}$$

with *d*–dimensional  $x^p$  patterns and  $y^p = \pm 1$ 

We assume that S is linearly separable: for some w, b

$$w \cdot x^p + b > 0$$
 if  $y^p = 1$ ;  
 $w \cdot x^p + b < 0$  if  $y^p = -1$ 

- More concisely, we want  $y^p(w \cdot x^p + b) > 0$
- How can we find a pair w, b so that the model generalizes well?

# Margins and Generalization

 Intuitively, we will have good generalization if (w, b) has a large margin



But, how can we ensure a maximum margin?

## Learning and Margins

- If we assume w "points" to the positive patterns, we have  $y^p(w \cdot x^p + b) = |w \cdot x^p + b|$
- The margin  $\gamma = \gamma(w)$  is precisely the minimum distance between the sample S and  $\pi$ , i.e.,

$$\gamma = m(w, b, S) = \min_{p} d(x^{p}, \pi) = \min_{p} \frac{y^{p}(w \cdot x^{p} + b)}{\|w\|}$$

- Notice that  $(\lambda w, \lambda b)$  give the same margin than (w, b); we can thus normalize (w, b) as we see fit
- For instance, taking ||w|| = 1 we have

$$\gamma(w) = \min_{p} \frac{y^{p}(w \cdot x^{p} + b)}{\|w\|} = \min_{p} y^{p}(w \cdot x^{p} + b)$$

## Hard Margin SVC

But we will work with the following normalization of w, b

$$\min_{p} y^{p}(w \cdot x^{p} + b) = 1$$

- Since S is finite, we will have  $y^{p_0}(w \cdot x^{p_0} + b) = 1$  for some  $p_0$
- For a pair w, b so normalized we then have

$$m(w,b) = \min_{p} \left\{ \frac{y^{p}(w \cdot x^{p} + b)}{\|w\|} \right\} = \frac{y^{p_{0}}(w \cdot x^{p_{0}} + b)}{\|w\|} = \frac{1}{\|w\|}$$

- Thus, we work with these w and maximize  $1/\|w\|$ , i.e., **minimize**  $\|w\|$  or, the simpler  $\frac{1}{2}\|w\|^2$
- We arrive to the hard margin SVC primal problem is

$$\min_{w,b} \frac{1}{2} ||w||^2 \text{ s.t. } y^p(w \cdot x^p + b) \ge 1$$

### **Slacks**

- However: linearly separable samples are very infrequent
- What can we do?
- First step: make room for non linearly separable problems



#### Linear SVMs for Non Linear Probems

- Thus we no longer require perfect classification but allow for slacks or even errors in some patterns
- More precisely, we relax the previous requirement  $y^{\rho}(w \cdot x^{\rho} + b) \ge 1$  to

$$y^p(w \cdot x^p + b) \ge 1 - \xi_p$$

where we impose a new constraint  $\xi_p \geq 0$ 

- Notice that if  $\xi_p \geq 1$ ,  $x^p$  will not be correctly classfied
- Thus, we allow for defective clasification but we also penalize it

## L<sub>k</sub> Penalty SVMs

• New primal problem: for  $K \ge 1$  consider the cost function

$$\min_{\boldsymbol{w},\boldsymbol{b},\boldsymbol{\xi}} \frac{1}{2} \|\boldsymbol{w}\|^2 + \frac{C}{K} \sum \xi_p^K$$

now subject to  $y^p(w \cdot x^p + b) \ge 1 - \xi_p, \, \xi_p \ge 0$ 

- Simplest choice K = 2:  $L_2$  (i.e., square penalty) SVMs
  - Easy to work out but usually worse models that are not sparse
- Usual (and best) choice K = 1
  - We will concentrate on it
- Notice that if  $C \to \infty$  we recover the previous slack-free approach

## The L<sub>1</sub> Primal Problem

The soft margin or L<sub>1</sub> SVC primal problem is

$$\min_{w,b,\xi} \frac{1}{2} \|w\|^2 + C \sum \xi_p$$

subject to  $y^p(w \cdot x^p + b) \ge 1 - \xi_p, \, \xi_p \ge 0$ 

- Notice that the loss and the constraints are convex and a Slater point will exist
- Thus  $w^*, b^*, \xi^*$  will be a minimum iff it is a KKT point
- However, we will pursue duality to solve it
- The L<sub>1</sub> Lagrangian is here

$$L(\mathbf{w}, \mathbf{b}, \xi, \alpha, \beta) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{p} \xi_p - \sum_{p} \alpha_p \left[ y^p (\mathbf{w} \cdot \mathbf{x}^p + \mathbf{b}) - 1 + \xi_p \right] - \sum_{p} \beta_p \xi_p$$

with  $\alpha_p, \beta_p \geq 0$ 

## Reorganizing the Lagrangian

• We reorganize the L<sub>1</sub> Lagrangian as

$$L(w, b, \xi, \alpha, \beta) = w \cdot \left(\frac{1}{2}w - \sum \alpha_{p}y^{p} x^{p}\right) + \sum \xi_{p}(C - \alpha_{p} - \beta_{p}) - b \sum \alpha_{p}y^{p} + \sum \alpha_{p}$$

- To get the dual function we solve  $\nabla_w L = 0$ ,  $\frac{\partial L}{\partial b} = 0$ ,  $\frac{\partial L}{\partial \mathcal{E}_0} = 0$
- The w and b partials yield

$$w = \sum \alpha_p y^p x^p, \ \sum \alpha_p y^p = 0$$

- The b term drops from the Laplacian and the w term simplifies
- Moreover, once we get the optimal  $\alpha^*$ , we can also get the **optimal**  $w^* = \sum_{p} \alpha_p^a y^p x^p$

#### The L<sub>1</sub> SVM Dual

• From  $\frac{\partial L}{\partial \xi_p} = C - \alpha_p - \beta_p = 0$  we see that

$$C = \alpha_p + \beta_p$$

- The  $\xi_p$  terms also drop from the Laplacian
- Substituting things back into the Lagrangian we arrive at the L<sub>1</sub> dual function

$$\Theta(\alpha, \beta) = \sum_{p} \alpha_{p} - \frac{1}{2} \mathbf{w} \cdot \sum_{p} \alpha_{p} \mathbf{y}^{p} \mathbf{x}^{p}$$
$$= \sum_{p} \alpha_{p} - \frac{1}{2} \alpha^{\tau} \mathbf{Q} \alpha$$

subject to  $\sum_{p} \alpha_{p} y^{p} = 0$ ,  $\alpha_{p} + \beta_{p} = C$ , plus  $\alpha_{p} \geq 0$ ,  $\beta_{p} \geq 0$  (and both  $\leq C$ )

# Simplifying the L<sub>1</sub> Dual

- In fact, we can drop  $\beta$ 
  - Notice that we already have that  $\Theta(\alpha, \beta) = \Theta(\alpha)$
  - It is also clear that the constraints on  $\alpha, \beta$  can be reduced to  $0 \le \alpha_p \le C$
- Thus, we get a much simpler version of the dual problem

$$\min_{\alpha} \ \frac{1}{2} \alpha^{\tau} Q \alpha - \sum_{p} \alpha_{p}$$

subject to 
$$\sum \alpha_p y^p = 0$$
,  $0 \le \alpha^p \le C$ ,  $1 \le p \le N$ 

• This is a constrained minimization problem with simple **box** constraints and a harder **linear** one  $\sum \alpha_p y^p = 0$ 

## Relevant and Irrelevant Samples

Recall our previous picture



 We can expect some patterns to influence the final model but others to be irrelevant

#### KKT Conditions for $L_1$ SVMs

The complementary slackness conditions are now

$$\alpha_p^* \left[ y^p (w^* \cdot x^p + b^*) - 1 + \xi_p^* \right] = 0$$
  
 $\beta_p^* \xi_p^* = 0$ 

- And also recall that  $\alpha_p^* + \beta_p^* = C$
- Now, if  $\xi_p^* > 0$ , then  $\beta_p^* = 0$  and, therefore,  $\alpha_p^* = C$ 
  - We say that such an x<sup>p</sup> is at bound
- Also, if  $0 < \alpha_p^* < C$ , then  $\beta_p^* > 0$  and  $\xi_p^* = 0$ 
  - Thus, if  $0 < \alpha_p^* < C$ ,  $y^p(w^* \cdot x^p + b^*) = 1$  and  $x^p$  lies in one of the support hyperplanes  $w^* \cdot x + b^* = \pm 1$
  - We can obtain  $b^* = y^p w^* \cdot x^p$  from any supporting  $x^p$
  - If needed, we can then derive  $\xi_p^* > 0$ , since then  $\alpha_p^* = C$  and

$$\xi_p^* = 1 - y^p (w^* \cdot x^p + b^*)$$

## The SMO Algorithm

- The simplest way to handle the equality constraint is
  - Start with an  $\alpha^0$  that verifies it
  - Update  $\alpha^t$  to  $\alpha^{t+1} = \alpha^t + \rho_t d^t$  with a direction  $d^t$  that also verifies it
  - Then  $\sum_{p} \alpha_{p}^{t+1} y^{p} = \sum_{p} \alpha_{p}^{t} y^{p} + \rho_{t} \sum_{p} d_{p}^{t} y^{p} = 0$
- Simplest choice: select  $L_t$ ,  $U_t$  so that  $d^t = y^{L_t}e_{L_t} y^{U_t}e_{U_t}$  is a maximal **descent direction**
- Since  $\nabla \Theta(\alpha^t) \cdot d^t = y^{L_t} \nabla \Theta(\alpha^t)_{L_t} y^{U_t} \nabla \Theta(\alpha^t)_{U_t}$ , the straightforward choice is

$$L_t = \arg\min_{p} y^p \nabla \Theta(\alpha^t)_p, \quad U_t = \arg\min_{q} y^q \nabla \Theta(\alpha^t)_q$$

- This is the basis of the Sequential Minimal Optimization (SMO), the standard algorithm for the general case
  - Effective but also quite costly

## Good Option, But ...

- L<sub>1</sub> SVMs are (relatively) sparse, i.e., the number of non-zero multipliers should be 
   « N
- The bound  $\alpha_p^* = C$  for  $\xi_p^* > 0$  limits the effect of not correctly classified patterns
- And usually L<sub>1</sub> SVMs are much better than, say, L<sub>2</sub> SVMs
- But still they are linear ...
- We must thus somehow introduce some kind of non-linear processing for SVMs to be truly effective
  - To do so, one observes that SVCs and SMO only require to compute dot products
  - This and the Kernel Trick leads to the very powerful kernel SVMs
  - Although probably not for big data problems as their training cost is  $\Omega(N^2)$

## Differentiability of Convex Functions

Constrained Optimization
 Convex Set and Function Basics
 Lagrangian Optimization
 Duality
 Support Vector Classification

2 Convex Optimization Differentiability of Convex Functions Minimization of Convex Functions Proximal Gradient Projected Gradient

#### Recall ...

• We say that S is a **convex set** if for all  $x, x' \in S$  and  $\lambda \in [0, 1]$ ,

$$\lambda x + (1 - \lambda)x' \in S$$

• Let  $S \subset \mathbf{R}^d$  a nEC set; a function  $f : S \to \mathbf{R}$  is **convex** if for any  $x, x' \in S$  and  $\lambda \in [0, 1]$ ,

$$f(\lambda x + (1 - \lambda)x') \le \lambda f(x) + (1 - \lambda)f(x')$$

• f is **strictly convex** if for any  $x, x' \in S$  with  $x \neq x'$  and  $\lambda \in (0, 1)$ ,

$$f(\lambda x + (1 - \lambda)x') < \lambda f(x) + (1 - \lambda)f(x')$$

#### Differentiable Convex Functions I

• **Definition.** Let S be an nEC open set. We say that  $f: S \to \mathbf{R}$  is **differentiable** at  $x \in S$  if there exists a vector  $\nabla f(x)$  such that for any  $z \in S$ 

$$f(z) = f(x) + \nabla f(x) \cdot (z - x) + ||z - x|| \alpha(x; z - x)$$
 (11)

such that  $\lim_{z\to x} \alpha(x; z-x) = 0$ 

- Equation (11) is called the **first order Taylor expansion** of f at x
- **Theorem.** Let S be an nEC open set and f convex and continuously differentiable in S. Then, for any  $x, x' \in S$   $f(x') \ge f(x) + \nabla f(x) \cdot (x' x)$ 
  - Notice that

$$f(\lambda x' + (1 - \lambda)x) = f(x + \lambda(x' - x)) \le \lambda f(x') + (1 - \lambda)f(x)$$

and, hence,

$$\frac{f(x+\lambda(x'-x))-f(x)}{\lambda}\leq f(x')-f(x)$$

• Now the right hand side limit when  $\lambda \to 0$  is  $\nabla f(x) \cdot (x' - x)$ 

#### Differentiable Convex Functions II

- For functions of a single variable the previous theorem means that the graph of f is above its tangent at any point x
- The previous is also sufficient and, moreover, if *f* is strictly convex, the inequality is strict
- Theorem. Let S be an nEC open set and f differentiable in S.
   Then f is convex iff for any x, x' ∈ S,

$$(\nabla f(x) - \nabla f(x')) \cdot (x - x') \ge 0$$

- Just apply the previous theorem at x and x'
- For functions of a single variable this means that the derivative f' is monotonously increasing
- Because of this we will say that the gradient of a convex function is monotone

#### Differentiable Convex Functions III

• Theorem. Let  $f: U \in \mathbf{R}^d \to \mathbf{R}$  be twice differentiable on the open set U. Then if  $B(x,r) \subset U$  and  $z \in B(x,r)$ , then

$$f(z) = f(x) + \nabla f(x) \cdot (z - x) + \frac{1}{2}(z - x)^t Hf(x)(z - x) + o(\|z - x\|^2),$$

with Hf(x) the Hessian of f at x

- **Definition.** We say that a square matrix Q is **semidefinite positive** if  $w^t Q w \ge 0$  for all w. If, moreover,  $w^t Q w > 0$  for all  $w \ne 0$ , we say that Q is **definite positive**
- We relate next convexity to the Hessians being positive definite
- **Theorem.** Let  $f: U \in \mathbf{R}^d \to \mathbf{R}$  be twice differentiable on the open convex set U. Then f is convex on U iff Hf(x) is semidefinite positive for any  $x \in U$ . Moreover, if Hf(x) is definite positive for all  $x \in U$ , f is strictly convex
  - Notice that  $f(x) = x^4$  is strictly convex, but  $f''(x) = 12x^2$  and f''(0) = 0
- Much of the above extends to non-differentiable convex functions following an appropriate point of view

## **Compact Subsets**

- We say that S is **bounded** if  $S \subset B(0, R)$  for some R > 0
- We say that S is a compact set if it is bounded and closed
- We state next two key results that we will use later on
- Proposition: If S is a compact set, any sequence {x<sub>n</sub>} ⊂ S has a convergent subsequence {x<sub>nk</sub>}
  - I.e., there are an  $\{x_{n_k}\} \subset \{x_n\}$  and  $x \in S$  such that  $\lim_{k \to \infty} x_{n_k} = x$
- Weierstrass Theorem: If S is a compact set and f : S ⊂ R<sup>d</sup> → R
  is continuous, then f has a maximum and a minimum on S

## The Projection Theorem

• Theorem. Let S be a non emtpy convex (nEC) set. Then, for any  $y \notin S$ , there is a unique  $x \in cl(S)$  such that

$$||x - y|| \le ||x' - y||$$
 for any other  $x' \in S$ 

- To prove the existence, choose any z ∈ S and define
   S<sub>z</sub> = {x' ∈ cl(S) : ||x' y|| ≤ ||z y||.
- Then S<sub>z</sub> is closed and bounded, and since f(z) = ||z − y|| is continuous, Weierstrass' theorem ensures the existence of a minimum point x
- Uniqueness is slightly more involved but essentially elementary
- We will call the unique x the **projection**  $P_S(y)$
- An important property of  $P_S(y)$  is the following
- Theorem. Let S be a nCE set. Then for any  $y \notin S$ ,  $x = P_S(y)$  iff  $(y x) \cdot (x' x) \le 0$  for all  $x' \in S$

## The Supporting Hyperplane

- Theorem. Let S be a nEC set and  $x \in \partial S$ . Then there exists a vector  $p \in \mathbb{R}^d$  such that  $p \cdot (x' x) \le 0$  for any  $x' \in cl(S)$ .
  - Since  $x \in \partial S$ , there is a sequence  $y_k \subset cl(S)^c$  such that  $y_k \to x$  and, by the Projection Theorem, if  $x_k = P_S(y_k)$  and  $p_k = \frac{y_k x_k}{\|y_k x_k\|}$ , then  $p_k \cdot (x' x_k) \le 0$  for any  $x' \in cl(S)$
  - Now, the sequence p<sub>k</sub> lies in a compact subset and if {p<sub>kj</sub>} is a convergent subsequence tends to some p, then, for any x' ∈ cl(S),

$$p\cdot(x'-x)=\lim_{j}p_{k_{j}}\cdot(x'-x_{k_{j}})\leq0$$

- We will call the hyperplane  $H = \{z : p \cdot (z x) = 0\}$  the supporting hyperplane
- We can reformulate the previous theorem as saying that for a closed nEC set and x ∈ ∂S there is a hyperplane H that supports S at x

## Subgradients and Subdifferentials

- In fact, much of the above extends to this case if we look at gradients in an appropriate way
- **Definition.** Let  $f: S \to \mathbf{R}$  with S an nEC open set. We say that  $\xi \in \mathbf{R}^d$  is a **subgradient** at  $x \in S$  if for any  $x' \in S$ ,  $f(x') \ge f(x) + \xi \cdot (x' x)$
- **Definition.** The subset  $\partial f(x) = \{\xi : \xi \text{ is a subgradient of } f \text{ at } x\}$  is called the **subdifferential** of such an f at x
- Our next goal is to show that for such an f and  $x \in S$ ,  $\partial f(x) \neq \emptyset$
- **Definition.** Let  $f: S \to \mathbf{R}$  with S an nEC open set. The **epigraph** of f is the set  $epi(f) = \{(x, t) : x \in S, t \ge f(x)\}$
- Proposition. Let f: S → R with S an nEC open set. Then f is convex iff epi(f) is convex

## An Example

• Consider f(x) = |x|



- It is convex and differentiable in all R but 0
- At 0 we have  $\partial f(0) = [-1, 1]$
- Its epigraph is obviously convex

# Existence of Subgradients and Subdifferentials

- **Theorem.** Let  $f: S \to \mathbf{R}$  be a convex function on the nEC open set S. Then, for all  $x \in \text{int}(S)$ ,  $\partial f(x) \neq \emptyset$ 
  - Since  $(x, f(x)) \in \partial epi(f)$ , there is a hyperplane  $f(x) + \xi(x' x)$  that supports epi(f) at (x, f(x)). But then  $\xi \in \partial f(x)$
- This has a converse result
- **Theorem.** Let  $f: S \to \mathbf{R}$  with S an nEC open set. Then, if for all  $x \in int(S)$ ,  $\partial f(x) \neq \emptyset$ , f is a convex function
- Things are much simpler for differentiable functions
- Theorem. Let  $f: S \to \mathbf{R}$  be a convex function on the nEC open set S. If f is differentiable at  $x \in int(S)$ , then  $\partial f(x) = \{\nabla f(x)\}$

#### Moreau-Rockafellar Theorem

 Theorem. Let f, g: S → R, with S an nEC open set, be two convex functions. Then, as subsets,

$$\partial f(x) + \partial g(x) = \partial (f+g)(x)$$

for any  $x \in S$ 

- Often one allows convex functions to take a  $+\infty$  value, although never  $-\infty$ 
  - We use this relaxation to extend any convex function initially defined on a subset S to the entire R<sup>d</sup> by setting f(x) = +∞ for x ∉ S
  - For such an f we define  $dom(f) = \{x \in \mathbf{R}^d : f(x) < +\infty\}$
  - In this case there is a more general version of Moreau-Rockafellar
- Theorem. Let  $f,g: \mathbf{R}^d \to (-\infty,+\infty]$  be two convex functions. Then, as subsets,  $\partial f(x) + \partial g(x) \subset \partial (f+g)(x)$  for any  $x \in S$  Moreover, if  $\operatorname{int}(\operatorname{dom}(f)) \cap \operatorname{int}(\operatorname{dom}(g)) \neq \emptyset$ ,  $\partial (f+g)(x) \subset \partial f(x) + \partial g(x)$

#### Minimization of Convex Functions

Constrained Optimization
 Convex Set and Function Basics
 Lagrangian Optimization
 Duality
 Support Vector Classification

2 Convex Optimization Differentiability of Convex Functions Minimization of Convex Functions Proximal Gradient Projected Gradient

#### Recall: Minima of Convex Functions

- Convex functions may not have a minimum (think of f(x) = x) but when they do, they have nice properties
- Let S be a nEC set, f : S → R a convex differentiable function and consider the following problem:

$$\min_{x \in S} f(x) \tag{12}$$

- Theorem. Assume  $x^* \in S$  is a local solution of (12). Then  $x^*$  is also a global minimum of (12) Moreover, if f is strictly convex,  $x^*$  is the unique global minimum
  - We know that for some  $\delta > 0$ ,  $f(x) \le f(z)$  for all  $z \in B(x, \delta)$
  - Now if  $x' \in S$  verifies f(x') < f(x) and  $\lambda$  is small enough, we can get  $z = \lambda x' + (1 \lambda)x \in B(x, \delta) \cap S$ , but then

$$f(z) \le \lambda f(x') + (1 - \lambda)f(x) < f(x)$$

•

## Minima and Subgradients

- **Theorem.** Let S be a nEC set and  $f: S \to \mathbf{R}$  a convex function. Then,  $x^* \in S$  solves (12) iff there is a  $\xi \in \partial f(x^*)$  such that  $\xi \cdot (x x^*) \geq 0$  for any other  $x \in S$ 
  - The sufficiency is essentially obvious: since f is convex and  $\xi \in \partial f(x^*)$ , we have for any other  $x \in S$ ,

$$f(x) \ge f(x^*) + \xi \cdot (x - x^*) \ge f(x^*)$$

- Necessity is harder as we have to deal with a general convex S
  and the minimum x\* may be in its boundary ∂S
- The preceding result simplifies for differentiable functions
- Theorem. Let S be a nEC set and  $f: S \to \mathbf{R}$  a convex differentiable function. Then,  $x^* \in S$  solves (12) iff  $\nabla f(x^*) \cdot (x x^*) \ge 0$  for any other  $x \in S$

#### Fermat's Theorem

- Fermat's Theorem. Let S be an open nEC set and  $f: S \to \mathbf{R}$  a convex function. Then,  $x^* \in S$  solves (12) iff  $0 \in \partial f(x^*)$ 
  - The sufficiency is again obvious: if  $0 \in \partial f(x^*)$ , for any other x

$$f(x) \ge f(x^*) + 0 \cdot (x - x^*) = f(x^*)$$

• So is here the necessity: if  $x^*$  is a global minimum, for any  $x \in S$ ,

$$f(x) \ge f(x^*) = f(x^*) + 0 \cdot (x - x^*),$$

and, thus,  $0 \in \partial f(x^*)$ 

- Again the preceding simplifies for differentiable functions
- Theorem. Let S be an open nEC set and  $f: S \to \mathbf{R}$  a convex differentiable function. Then,  $x^* \in S$  solves (12) iff  $\nabla f(x^*) = 0$

## Examples

- Consider again f(x) = |x|;
  - It has a minimum at 0 and  $0 \in \partial f(0)$
- A second example is the hinge loss  $h(x) = \max\{-x, 0\}$ , with minima in the set  $M = [0, \infty)$ 
  - Here  $0 \in \partial h(0) = [-1, 0]$  and  $\partial h(x) = \{0\}$  if x > 0
- A third example are the ReLU activations r(x) = max{0, x} used in DNNs
  - By the way, DNNs do not bother much with differentiability niceties

## **Towards the Proximal Operator**

- The preceding shows that convex functions are the **natural ones** to study function minimization
- In fact, one can aim to derive general algorithms to find their minima, in contrast to the situation for general functions
- The tool to achieve this is the proximal operator
- If a convex f has a minimum at x, we have 0 ∈ λ∂f(x) for all λ > 0 and, thus,

$$0 \in \partial \lambda f(x) \text{ iff } x \in x + \lambda \partial f(x) = (I + \lambda \partial f)(x) \tag{13}$$

• Thus, if we could invert  $I + \lambda \partial f$ , the minimum will verify

$$x = (I + \lambda \partial f)^{-1}(x)$$

that is, x is a **fixed point** of  $(I + \lambda \partial I)^{-1}$ 

# Back to |x|

• The minimum of |x| is 0, we have  $0 \in \partial |\cdot|(0)$  and also

$$(I + \lambda \partial |\cdot|)(x) = x - \lambda \text{ if } x < 0$$
  
=  $[-\lambda, \lambda] \text{ if } x = 0$   
=  $x + \lambda \text{ if } x > 0$ 

• Although not a function,  $I + \lambda \partial |\cdot|$  is increasing, and we can invert it by flipping it around the y = x line, to get

$$(I + \lambda \partial |\cdot|)^{-1}(y) = y + \lambda \text{ if } y < -\lambda$$
  
= 0 if y = 0  
= y - \lambda if y < \lambda

• Or just  $(I + \lambda \partial |\cdot|)^{-1}(y) = \operatorname{sign}(y)[|y| - \lambda]_+ = \operatorname{soft}_{\lambda}(y)$ 

## **Monotone Operators**

- We could invert  $I + \lambda \partial |\cdot|$  because it is essentially a monotone function
- The set-valued operator  $T: R^d \to 2^{R^d}$  is called **monotone** if for all  $x_1, x_2, \xi_1 \in T(x_1), \xi_2 \in T(x_2)$  we have  $(\xi_1 \xi_2) \cdot (x_1 x_2) \ge 0$ .
- **Theorem.** If f is a convex function,  $\partial f$  is a monotone operator
  - This follows from the subgradient's definition: take x<sub>1</sub>, x<sub>2</sub>, ξ<sub>1</sub> ∈ T(x<sub>1</sub>), ξ<sub>2</sub> ∈ T(x<sub>2</sub>); then

$$f(x_2) \geq f(x_1) + \xi_1 \cdot (x_2 - x_1)$$
  
$$f(x_1) \geq f(x_2) + \xi_2 \cdot (x_1 - x_2) = f(x_2) - \xi_2 \cdot (x_2 - x_1)$$

and just add these two inequalities

## Inverting $I + \lambda \partial f$

• While in principle,  $(I + \lambda \partial I)^{-1}$  is defined as a set function:

$$(I + \lambda \partial f)^{-1}(x) = \{z : x \in (I + \lambda \partial f)(z)\},\$$

it is actually a standard point function

- **Theorem.** The set function  $(I + \lambda \partial f)^{-1}$  is a single valued function
  - This follows from the monotonicity of  $\partial f$
  - First, if  $(I + \lambda \partial f)^{-1}$  is not single valued, there are two  $z, z' \in (I + \lambda \partial f)^{-1}(x)$ , that is, there are  $\xi, \xi' \in \partial f(x)$  such that

$$x = z + \lambda \xi = z' + \lambda \xi'$$
  $\Rightarrow$   $z - z' + \lambda(\xi - \xi') = 0$   
 $\Rightarrow$   $z - z' = -\lambda(\xi - \xi')$ 

• But since  $\partial f$  is monotone, we arrive at z = z', as we have

$$0 \le (z - z') \cdot (\xi - \xi') = -\frac{\|z - z'\|^2}{\lambda}$$

# Understanding the Proximal Operator

- We call  $(I + \partial I)^{-1}(x)$  the **proximal operator** prox<sub>I</sub>
- · An equivalent and slightly more practical definition is

$$prox_f(x) = \arg\min_{u} \left\{ f(u) + \frac{1}{2} ||u - x||^2 \right\}$$
 (14)

- Notice that p is the minimum of (14) iff  $0 \in p x + \partial f(p)$  iff  $x \in (I + \partial f)(p)$  iff  $p = (I + \partial f)^{-1}(x)$
- For a  $C^1$  function f,  $p = p_{\lambda}(x) = \text{prox}_{\lambda f}(x)$  solves the equation

$$\lambda \nabla f(p) + p - x = 0$$
, that is,  $p = x - \lambda \nabla f(p)$ 

• Thus, in this case, the proximal corresponds to an **implicit** gradient descent with step  $\lambda$ 

#### **Fixed Points**

- The following theorem re-states much of the preceding
- Theorem. Let S be an open nEC set and  $f: S \to \mathbf{R}$  a convex function. Then,  $x^* \in S$  solves (12) iff x is a fixed point of  $(I + \partial \lambda f)^{-1}$
- This suggests to try to obtain fixed points of an operator T is to start from some  $x_0$  and study the convergence of the iterations  $x_{k+1} = T(x_k)$
- We say that the operator T is contractive if there is a λ < 1 such that for all x, x', ||T(x) T(x')|| ≤ λ||x x'||</li>
- In other words, T is Lipschitz with a constant  $\lambda < 1$

#### Picard's Theorem

- **Picard's Theorem.** If T is a contractive operator, the sequence  $x_{k+1} = T(x_k)$  converges to the unique fixed point of T
  - The key is that contractivity implies that  $x_k$  is a Cauchy sequence
  - First is easy to see that  $x_n$  is bounded, i.e.,  $||x_n|| \le R$  for some R
  - For any pair n, k consider  $||x_{n+k} x_n||$ ; we have

$$||x_{n+k} - x_n|| \le \lambda ||x_{n-1+k} - x_{n-1}|| \le \lambda^2 ||x_{n-2+k} - x_{n-2}|| \le \dots$$
  
$$\le \lambda^n ||x_k - x_0|| \le 2\lambda^n R$$

and now is easy to check the Cauchy's sequence definition

•  $x_n$  has thus a limit  $x^*$  but then  $\lim T(x_n) = \lim x_{n+1} = x^*$ 

## Non Expansive Operators

- Unfortunately, prox<sub>f</sub> is not contractive
  - It it were so, it would have a unique fixed point, i.e., f would have a unique minimum
  - On the other hand, if f is **strictly convex**, prox<sub>f</sub> is contractive
- In general the proximal operator satisfies a milder condition
- Definition. An operator T is is firmly non expansive if

$$||T(x_1) - T(x_2)||^2 \le (x_1 - x_2) \cdot (T(x_1) - T(x_2))$$

- It follows from this that  $||T(x_1) T(x_2)|| \le ||x_1 x_2||$ , i.e., T is Lipschitz with constant 1
- Proposition. The proximal operator is firmly non expansive
- We cannot use Picard's theorem to arrive at a fixed point but we still have
- **Proposition.** If the convex f has a minimum, the sequence  $prox_{\lambda f}(x_k)$  converges to a minimizer of f

## The Proximal Algorithm

- In fact, a more general result holds
- **Theorem.** Let the convex function  $f : \mathbf{R}^d \to \mathbf{R}$  have a minimum. Then, for any sequence  $\lambda_k$  such that  $\sum_k \lambda_k = \infty$ , the sequence

$$x_{k+1} = (I + \lambda_k \partial f)^{-1}(x_k)$$

converges to a minimizer x\* of f

- Thus, if for a convex f we can compute its proximal, we have a general algorithm to find a minimizer
- However, computing prox<sub>f</sub> for a general convex f is quite difficult and/or costly

## Computing the Proximal Operator

- In some cases the definition  $(I + \partial f)^{-1}(x)$  makes it easy to compute the prox<sub>f</sub> operator
- Also, when f(x, y) separates as f(x, y) = g(x) + h(y), its proximal also separates as

$$prox_f(u, v) = (prox_g(u), prox_h(v))$$
 (15)

- In general, the alternative definition (14) allows the computation of the proximal operator as a minimization problem
- But although amenable to an algorithmic resolution, it is in general still quite a difficult problem

# Takeaways on Convex Minimization

- Convex functions only have global minima (if they do)
- Even when non differentiable, they have subgradients
- A convex f has a minimum at x\* on an open convex set iff 0 ∈ ∂f(x\*) and, moreover, iff

$$x^* = (I + \lambda \partial f)^{-1} (x^*) = \operatorname{prox}_{\lambda f} (x^*)$$

- Thus, we can in principle minimize convex functions by finding iteratively fixed points of prox
- In fact, the sequence obtained iterating from an initial point converges to a minimum x\*
- Bu this is practical provided prox can be computed without much work ... which is often not the case

#### **Proximal Gradient**

Constrained Optimization
 Convex Set and Function Basics
 Lagrangian Optimization
 Duality
 Support Vector Classification

2 Convex Optimization

Differentiability of Convex Functions Minimization of Convex Functions

**Proximal Gradient** 

Projected Gradient

# Minimizing Sums of Convex Functions

 A frequent situation is to solve for f, g both convex with f also C<sup>1</sup> (i.e., continuous with continuous partials), problems of the form

$$\min_{\mathbf{x} \in \mathbf{R}^d} F(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x}) \tag{16}$$

• We know that  $x^*$  solves (16) iff for any  $\lambda > 0$ 

$$0 \in \lambda \partial (f+g)(x^*) = \lambda \nabla f(x^*) + \lambda \partial g(x^*)$$

or, in other words, there is a  $\xi \in \partial g(x^*)$  s.t.  $0 = \lambda \nabla f(x^*) + \lambda \xi$ 

But then we have

$$0 = \lambda \nabla f(x^*) - x^* + x^* + \lambda \xi \in \lambda \nabla f(x^*) - x^* + (I + \lambda \partial g)(x^*)$$
, i.e.

$$x^* - \lambda \nabla f(x^*) \in (I + \lambda \partial g)(x^*)$$

Or, equivalently

$$x^* = (I + \lambda \partial g)^{-1}(x^* - \lambda \nabla f(x^*)) = \operatorname{prox}_{\lambda g}(x^* - \lambda \nabla f(x^*))$$

#### The Proximal Gradient Method

 This leads to the Proximal Gradient Method with iterations of the form

$$x_{k+1} = \operatorname{prox}_{\lambda_k g}(x_k - \lambda_k \nabla f(x_k)) \tag{17}$$

• **Theorem.** Assume that  $\nabla f$  is Lipschitz with constant L. Then, for any  $\lambda < \frac{1}{L}$ , the iterations (17) with  $\lambda_k = \lambda$  verify  $F(x_k) \to F^*$ , with  $F^*$  the minimum of (16) and, moreover

$$F(x_k) - F^* = O\left(\frac{1}{k}\right)$$

- Notice that for g = 0, (17) reduces to gradient descent, and for f = 0 to proximal minimization
- The Lasso problem is a particular case of the above

#### The Lasso Problem

Recall that in Lasso we want to minimize

$$e(w,b) = \frac{1}{2n} \sum_{p} (t^{p} - w \cdot x^{p} - b)^{2} + \alpha \|w\|_{1}$$
$$= \frac{1}{2} mse(w,b) + \alpha \|w\|_{1},$$

with  $mse\ C^1$  and  $\|\cdot\|_1$  convex but not differentiable at 0

- We will assume x, y to be centered to ensure b = 0 and then work just with e(w)
- Then,  $w^*$  is optimal for e iff  $0 \in \frac{\lambda}{2} \nabla mse(w^*) + \lambda \alpha \partial \| \cdot \|_1(w^*)$  for all  $\lambda > 0$  or, equivalently,

$$w^* - \frac{\lambda}{2} \nabla mse(w^*) \in (I + \lambda \alpha \partial \| \cdot \|_1)(w^*)$$

• That is,  $\mathbf{w}^* = (I + \lambda \alpha \partial \|\cdot\|_1)^{-1} (\mathbf{w}^* - \frac{\lambda}{2} \nabla mse(\mathbf{w}^*))$ 

# Solving Lasso

 Now, if X is the n × d sample matrix and Y the n × 1 target vector, we have

$$mse(w) = \frac{1}{n} ||Xw - Y||^2 = \frac{1}{n} (w^t X^t - Y^t) (Xw - Y)$$
$$= \frac{1}{n} (w^t X^t X w - 2w^t X^t Y + Y^t Y)$$

The gradient is thus

$$G = \nabla mse(w) = \frac{2}{n}(X^tXw - X^tY) = \frac{2}{n}X^t(Xw - Y),$$

and, componentwise,  $G_j = \frac{2}{n} \sum_{1}^{n} x_j^{\rho} (x^{\rho} \cdot w - y^{\rho}), \quad 1 \leq j \leq d$ 

• Now  $||w||_1 = \sum_{i=1}^{d} |w_i|$  separates as a sum of single valued functions and by (15),

$$\left[\mathsf{prox}_{\lambda\|\cdot\|}(z)\right]_i = \mathsf{sign}(z_i)\left[|z_i| - \lambda\right]_+ = \mathsf{soft}_{\lambda}(z_i), \ \ 1 \leq i \leq d$$

#### Proximal Gradient for Lasso

· Putting all this together, we have

$$w_{k+1} = \mathbf{soft}_{\lambda\alpha} \left( w^k - \frac{\lambda}{n} X^t (Xw^k - Y) \right)$$

with  $\mathbf{soft}_{\mu}(z)_i = soft_{\mu}(z_i)$ 

- This is known as the ISTA algorithm and has a convergence rate of O(1/k)
- If known, one chooses λ = ½, with L the Lipschitz constant of ∇mse(w)
- However, for the Lasso specific case, the GLMNet algorithm is more efficient

#### **Lasso Variants**

- Lasso's advantage: thresholding forces non relevant coefficients to zero
  - It can be used for feature selection
- However, Lasso models often underperform ridge regression
- Solution: Elastic Nets, which minimizes

$$e_{EN}(w) = mse(w) + \frac{\alpha_2}{2} ||w||^2 + \alpha_1 ||w||_1$$

ISTA's iteration is now

$$w_{k+1} = \mathsf{soft}_{rac{lpha_1}{L}} \left( w_k - rac{1}{L} \left( 
abla \mathit{mse}(w_k) + lpha_2 w_k 
ight) 
ight)$$

- Other, related algorithms are group Lasso, fused Lasso, as well as logistic regression variants for classification
- They are all linear models
  - Also often used for feature selection
  - But weaker than MLPs or kernel SVMs

## **Projected Gradient**

Constrained Optimization
 Convex Set and Function Basics
 Lagrangian Optimization
 Duality
 Support Vector Classification

2 Convex Optimization

Differentiability of Convex Functions
Minimization of Convex Functions
Proximal Gradient

**Projected Gradient** 

#### Minimization over Convex Sets

For f a C<sup>1</sup> function and a closed nEC S, consider the problem

$$\min_{x \in C} f(x) \tag{18}$$

• Defining i(x) = 0 if  $x \in C$  and  $+\infty$  if  $x \notin C$ , we can write (18) as

$$\min_{\mathbf{x} \in \mathbf{R}^d} f(\mathbf{x}) + \imath(\mathbf{x}) \tag{19}$$

• Thus, if f is convex,  $x^*$  solves (19) iff for all  $\lambda > 0$ 

$$x^* = \operatorname{prox}_{\lambda_{I_C}}(x^* - \lambda \nabla f(x^*))$$

- We need to compute prox<sub>1</sub>
- Proposition. We have  $prox_{\lambda_{i_C}}(x) = P_C(x)$ 
  - Just use the characterization (14) of the proximal operator
- Proposition. If f is convex, x\* solves (19) iff

$$x^* = P_C(x^* - \lambda \nabla f(x^*))$$

## **Projected Gradient**

 The previous results lead us to the Projected Gradient algorithm to solve (18)

#### **Algorithm 1:** Projected Gradient Algorithm.

```
1 function projected_gradient (\epsilon, x_0) is
2 k = 0
3 for k = 1, 2, \dots do
4 | choose a step \lambda_k
5 x_{k+1} = P_C(x_k - \lambda_k \nabla f(x_k))
6 if ||x_{k+1} - x_k|| \le \epsilon then
7 | return x_{k+1}
8 | end
9 | end
10 end
```

 It has the convergence properties of the Proximal Gradient algorithm

#### Have We Finished?

- Yes if we could compute projections over general convex sets
  - But this is easy only for particular sets
- If  $C = B(x, \delta)$  and  $z \notin B(x, \delta)$ ,  $P_C(z) = x + \delta \frac{z x}{\|z x\|}$ 
  - This is relevant for the constrained formulation of Ridge regression

$$\min_{w,b} \mathsf{mse}(w,b) \text{ s.t. } ||w||_2 \leq \rho$$

- If C is the positive orthant  $C = \{x : x_i \ge 0, \ 1 \le i \le d\},\ P_C(x)_i = \max\{0, x_i\}$ 
  - This is relevant for homogeneous support vector classification (next)
- But it is much harder to compute the projection on the 1-norm ball
  - This is needed for constrained Lasso

$$\min_{w,b} \mathsf{mse}(w,b) \text{ s.t. } \|w\|_1 \leq \rho$$

- Trying to solve Lasso this way won't be easier than by ISTA
- The same is true for  $P_C$  on a general convex C and we need new ideas to solve (18) in practice

## Homogeneous SVC

- For homogeneous SVMs without the b term, the linear constraint disappears
- And so does the equality constraint  $\sum_{p} \alpha_{p} y^{p} = 0$
- The dual problem is thus

$$\Theta(\alpha, \beta) = \sum_{p} \alpha_{p} - \frac{1}{2} \mathbf{w} \cdot \sum_{p} \alpha_{p} y^{p} x^{p}$$
$$= \sum_{p} \alpha_{p} - \frac{1}{2} \alpha^{\tau} Q \alpha$$

subject to 
$$0 \le \alpha_p \le C, 0 \le \beta_p \le 0$$

- That is, we have box constraints and projecting on their constraint region is very easy
- We can thus solve the homogeneous dual by projected gradient descent

# Projected Gradient Descent for Homogeneous SVC

- Here we can simply apply gradient descent and clip it if needed
- The gradient of Θ is just

$$\nabla\Theta = Q\alpha - 1$$

with 1 the all ones vector and we can solve it by **projected** gradient descent

- Projected (i.e., clipped) descent:
  - At step t update first  $\alpha^t$  to  $\alpha'$  as  $\alpha'_p = \alpha^t_p \rho \left( (Q\alpha^t)_p 1 \right)$  for an appropriate step  $\rho$
  - And then clip  $\alpha'$  as  $\alpha_n^{t+1} = \min\{\max\{\alpha_n', 0\}, C\}$
- But usually homogeneous SVMs give poorer results
  - And if sample size N is large, Q will be huge and each step very costly