	Slope (steepness)	Slope (sign)	Coordinates
x-vs-t	SPEED: Skeper slope = Firster motion	DIRECTION: + = one direction - = the other	LDCATION at a given TIME (X,y)
v-vs-t	ALELERATION: steper slope = a faster change in the velocity	+ = velocity is gething more + - = velocity is acthry more -	VELOCITY at a piven TIME (x,y) (t,v)
a-vs-t			ACCELERATION at a given TIME (x,y) (t,a)

Making *v-vs-t* from *x-vs-t*:

1. Identify sections with different slopes

2. The y-axis (v) of the v-vs-t graph will be equal to the slope of the x-vs-t graph for each section

Making *x-vs-t* from *v-vs-t*:

1. Identify sections with different y-axis values (v)

2. The slope (rise/run) of the *x-vs-t* graph will be equal to the y-axis values (v) of the v-vs-t graph for each section (where does it start?)

Finding displacement from *v-vs-t*:

- 1. Draw squares or triangles between the "curve" and the time axis (only between the times you're interested in)
- 2. Find/estimate the area of each shape (negatives matter!)
- 3. Add the areas together
- 4. If you have (or make) the *x-vs-t*, check!

