THYROID
Volume 14, Number 4, 2004

Mary Ann Liebert, Inc.

Thyroxine Plus Low-Dose, Slow-Release Triiodothyronine Replacement in Hypothyroidism: Proof of Principle

G. Hennemann, 1 R. Docter, 2 T.J. Visser, 2 P.T. Postema, 2 and E.P. Krenning 1

Studies in hypothyroid rats show that, when infused with a combination of thyroxine (T4) plus triiodothyronine (T3) to normalize thyrotropin (T5H), euthyroidism in all organs is only ensured when T4 and T3 are administered in a ratio as normally secreted by the rat thyroid. As substitution with T4-only results in an abnormal serum T4/T3 ratio, it is also possible that in humans, euthyroidism does not exist at the tissue level in many organs, considering that iodothyronine metabolism in the human and the rat share many similar mechanisms. Recent reports in which cognitive function and well-being are compared in patients with primary hypothyroidism substituted with T4-only versus substitution with T4 plus T3 result in controversial findings in that either positive or no effects were found. In all these studies T3 was used in the plain form that results in non-physiologic serum T3 peaks. In these studies it is suggested that substitution with T3 should preferably be performed with a preparation that slowly releases T3 to avoid these peaks. In the study reported here we show that treatment of hypothyroid subjects with a combination of T4 plus slow-release T3 leads to a considerable improvement of serum T4 and T3 values, the T4/T3 ratio and serum T5H as compared to treatment with T4-only. Serum T3 administration with slow-release T3 did not show serum peaks, in contrast to plain T3-

Introduction

THE INTRODUCTION OF synthetic levothyroxine for thyroid hormone replacement therapy several decades ago signified an important improvement over the use of desiccated thyroid powder that contained thyroxine (T4) plus triiodothyronine (T₃) in a varying ratio because it was only standardized in its iodine content. Recent interest to return to a now stable T_4/T_3 combination that mimics normal serum thyroid function parameters as closely as possible, stimulated studies comparing the effects of substitution with T4 alone versus a fixed T₄/T₃ combination. These studies showed different results. Thus positive effects on health and well-being (1-3) as well as ineffectiveness (4-6) or even negative effects in some parameters (4) were noted. In two editorials (7,8) the pro and cons of these studies are discussed and suggestions were made for future studies to solve the discrepant findings. One of these recommendations is the use of T₃ in sustained release manner. "Plain" T₃ is rapidly absorbed into the bloodstream and also because of its short half-life of approximately 1 day, results in unwanted nonphysiologic serum peaks (9). Already in 1993 in a review on the use and misuse of thyroid hormone it was stated: "Perhaps the truly ideal substitution therapy for hypothyroidism might be a combination of LTs and LT3 in a carefully determined ratio and in a form in which the LT₃ is slowly absorbed in a time-released form" (10).

In the present study we therefore addressed the following questions: (1) does a once-daily treatment with T_4 and slow-release (SR) T_3 lead to a constant serum T_3 level without peaks and (2) does the use of a combination treatment of T_4 plus SR- T_3 in a specific ratio results in normalization of serum thy-rotropin (TSH) T_4 , and T_3 concentrations? To these ends, patients treated with levothyroxine (LT₄) only for primary hypothyroidism were switched in an open, random, crossover manner to two regimens of substitution with a combination preparation of T_4 + plain (PL) T_3 and T_4 + SR- T_3 .

. Materials and Methods

Patients

Inclusion criteria were: patients of either gender with primary hypothyroidism, using between 100 and 175 μ g LT4 (Thyrax®, Organon BV, The Netherlands), preferably 150 μ g, for at least 3 months. They should otherwise be healthy. Each patient gave written informed consent. Exclusion criteria were: the use of any other medication and age of 80 years and above.

Eighteen patients were selected, fulfilling the inclusion criteria. One patient was excluded because of vaso-vagal col-

¹Department of Nuclear Medicine, ²Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.

lapse after (the first) vena-puncture, 1 patient because of a car accident and subsequently hospitalization during the study, and 1 patient because of improper use of study medication. The 15 included patients consisted of 12 females and 3 males, with a mean age of 50 years (range 26–79 years). Fourteen patients were using 150 μ g LT₄ daily and 1 patient used 125 μ g LT₄ daily. The causes of primary hypothyroidism were: 131 I treatment for Graves' disease, Hashimoto's thyroiditis, congenital hypothyroidism, neck irradiation for Hodgkin's disease and subtotal thyroidectomy for nodular goiter.

Study design

Three 6-week periods were discerned. In the first 6 weeks the patients were kept on their LT₄ dose that they were using before. Then patients were switched either to a combination therapy containing 125 μ g T₄ (Thyrax®, Organon BV) and 6 μ g PL-T₃ (inhouse normal release preparation using Cytomel® as T₃ compound) daily, or to a combination therapy containing 125 μ g T₄ and 6 μ g SR-T₃ (inhouse slow-release preparation and using Cytomel® as T₃ compound) The combination treatments were performed in a randomized crossover design. During the sixth week of each study period, one blood sample was taken on day 3, and 5 serial blood samples were taken on day 5 at 8:00.AM (Le., 15 minutes be-

fore ingestion of the medication), and at 09:45, 11:15, 2:15, and 5:15. Mean serum T_4 and T_3 and median serum TSH concentrations were calculated from the fifth day samples. It appeared that the T_4 , T_3 , and TSH values on the third day did not differ significantly from those on the fifth day at time point -15 minutes, indicating that equilibrium was reached. Patients were at rest at least half an hour before each blood sample was taken.

Laboratory methods

Serum T_4 and T_3 were measured by in-house radioimmunoassay (RIA); TSH by Amerlite 30 Amersham, United Kingdom. Within-assay coefficients of variation were 2%-8% for T_4 , 2%-6% for T_3 , and 2-5% for TSH.

Calculations

Statistical analysis was either done with the paired two tailed test for T_4 , T_3 , T_4/T_3 ratios, the maximal concentration of T_3 (C_{\max}), the time of the maximal concentration (t_{\max}), and the area under the T_3 curve from 0 to 24 hours (AUC₀₋₂₄) or with the Mann-Whitney two-tailed test for TSH. The AUC₀₋₂₄, was calculated by means of the linear trapezoidal rule, taking the predose value as the 24-hour point.

FIG. 1. Mean \pm standard error of the mean (SEM) values of serum thyroxine (T₄) (A), triiodothyronine (T₃) (B), and T₄/T₃ (C) ratio and the median \pm SEM of thyro-tropin (TSH) (D) during substitution with T₄, T₄ plus PL-T₃ or T₄ plus SR-T₃ and in controls.

FIG. 2. Mean of serum thyroxine (T₄; A), triiodothyronine (T₃; B) and median thyrotropin (TSH; C) of all subjects, during 9-hours sampling at the fifth day of the sixth treatment week for each of the three regimens.

Results

The values of serum T₄, T₃, T₄/T₃ ratio, and TSH, during the different regimens, are depicted in Figure 1A-D. In Figure 1A, the mean value of T4 during T4-only substitution was not significantly different from the mean T₄ during T₄ + PL-T₃ (p = 0.14), but significantly higher during T₄ + SR-T₃ (p = 0.025) and in controls (p < 0.0001). The values of the combination treatments were not significantly different (p = 0.67). In Figure 1B, the mean serum T₃ during T₄-only treatment was significantly lower than during T4 plus PL-T3 (p = 0.0016), T₄ plus SR-T₃ (p = 0.026) and in controls (p <0.0001). The mean serum T3 during T4 plus PL-T3 was not significantly different from T_4 plus SR- T_3 (p = 0.23). Figure IC shows the mean serum T_4/T_3 ratio that was significantly higher on T_4 -only than on T_4 plus PL- T_3 (p < 0.0001), T_4 plus SR-T₃ (p < 0.0001) and in controls (p < 0.0001), while the T₄/T₃ ratio on T₄ plus PL-T₃ was significantly lower than on T_4 plus SR- T_3 (p = 0.026). In Figure 1D, the median serum TSH on T₄-only treatment was not significantly lower than on T_4 plus PL- T_3 (p=0.11), but significantly lower than on T_4 plus SR- T_3 (p=0.033) and than in controls (p<0.0001), while no significant difference was present between the two combination preparations (p=0.14). TSH concentrations during treatment with T_4 plus PL- T_3 and T_4 plus SR T_3 were significantly lower than in controls (both p<0.0001).

In Figure 2, the mean serum T₄ (Fig. 2A) and T₃ (Fig. 2B) and median TSH (Fig. 2C) are depicted for all subjects for each of the three regimens during the 9-hour sampling on the fifth day of the sixth study week. It can be seen that serum T₄ shows a limited but steady rise during sampling in all three treatments without any significant difference between them. During T₄ plus PL-T₃, serum T₃ shows a considerable peak between 0 and 6 hours, whereas during T₄ plus SR-T₃ no peak is present but a slight rise similar to T₄. No substantial change in T₃ concentrations is seen during T₄-only treatment. The pharmacokinetics of T₃ during both combination treatments are depicted in the Table 1. The data show that the AUC₀₋₂₄ of T₃ during both treatments are virtually

Table 1. Pharmacokinetic Parameters of Triodothyronine (Mean \pm SEM)

Parameter	$T_4 + PLT_3$	$T_4 + SRT_3$	p value
C _{max} (nmol/L) T _{max} (h)	1.83 ± 0.06 3.2 ± 0.56	1.67 ± 0.06 4.97 ± 0.75	0.038 0.032
AUC _{0-24 h} (nmolh/L)	37.97 ± 1.49	36.65 ± 1.43	0.43

T_b, thyroxine; PL-T₃, plain triiodothyronine; SR-T₃, slow-release triiodothyronine; C_{max}, maximal concentration; AUC₀₋₂₄, area under the curve from 0-24 hours; T_{max}, time point of C_{max}.

R

the same, while Cmax and Tmax of T3 during the SR-T3 regimen are significantly lower and later, respectively, than during PL-T₃.

Discussion

Substitution of thyroid function with LT4 in patients with primary hypothyroidism, when titrated to normalize serum T₄, results in a mean serum T₃ level that is lower than normal. However, when T4 is administered in amounts to normalize serum T₃. T₄ parameters will rise to supranormal concentrations (11,12). The reason for this is that the thyroidal contribution to serum T₃, which is approximately 20% of total serum T3 (13), is lacking in patients with absent thyroid function. Thus, in this situation all plasma T3 is derived from T_4 . Hence, in T_4 substitution, more T_4 has to reach the plasma compartment than under normal conditions to ensure normal plasma T₃. Consequently, whatever dose of T₄ is substituted, the serum T_4/T_3 ratio will always be abnormal, that is, elevated. It has been established in rats that the extent to which nuclear receptor-bound T₃ is derived from plasma T₃ and from local T₃ production from T₄ varies among tissues. Thus, for instance, nuclear T3 in cerebral cortex is derived for approximately 80% from local conversion of T4, in pituitary for approximately 50%, in skeletal muscle for approximately 40%, and in liver for only approximately 5% (14,15). When rats are infused with T_4 in combination with T_3 in the same ratio in which they are normally secreted, the euthyroid state in all of the many tissues studied is ensured. Any variation of this ratio leads to tissue hypothyroidism or hyperthyroidism in various organs (16).

Although the exact contribution of the different sources of nuclear T3 in human tissues is unknown, there are many similarities regarding thyroid hormone production and metabolism between rat and humans (17). Therefore, it would not be surprising if a similar situation with regard to the negative tissue effects of an abnormal plasma T4/T3 ratio would exist in humans as well. For instance, when T4 is administered in a dose such that serum T3 is normal, serum T4 parameters will be increased and serum TSH will be suppressed (18) because thyrotropic nuclear T_3 occupancy is

importantly dependent on plasma T4.

The ratio that we used in this study was based on data of thyroid hormone secretion and intestinal absorption in hu 10. Roti E, Minelli R, Gardini E, Braverman LE 1993 The use and mans (19,20). The pharmacokinetics of T3 show that the slow release preparation is indeed slowly releasing T3 in vivo as the 11. Gow SM, Caldwell G, Toft AD, Seth J, Hussey AJ, Sweeting T_{max} occurs significantly later and the C_{max} is significantly lower than in the case of plain T3. The total amount absorbed (see AUC) is the same for both preparations. Despite the fact that thyroid function parameters and the T4/T3 ratios improved substantially in the combination regimens, they were still not normal (Fig. 1). The combination treatment with slowrelease T3 did not result in a serum T3 peak but only in a slow rise of T3 after intake, comparable to that of T4 (Fig. 2a and 2b). The relative variation of TSH in the three regimens is not different and one could wonder why during T4 plus PL-T3 serum TSH fluctuation is not at variance with that in the other two treatments. However, it should be realized that TSH secretion is importantly dependent on serum T_4 (14,15), that may dilute any effect of serum T3 variations.

From this study it is apparent that using a slow-release T₃ preparation, nonphysiologic T₃ peaks are avoided. We suggest that in future studies on the effects of T4 plus T3, only sustained release T3 preparations are being used.

References

- 1. Saravannan S, Chau W.-F, Roberts N, Vedhare K, Greenwood R, Dayan CM 2002 Psychological well-being in patients on "adequate" doses of L-thyroxine: Results of a large, controlled community-based questionnaire study. Clin Endocrinol 57:577-585.
- 2. Bunevicius R, Kazanavicius G, Zalinkevicius R, Prange AJ Jr 1999 Effects of thyroxine as compared with thyroxine plus triiodothyronine in patients with hypothyroldism. N Engl J Med 340:424-429.
- Bunevicius R, Prange AJ 2002 Mental improvement after replacement therapy with thyroxine plus triiodothyronine: Relationship to cause of hypothyroidism. Int J Neuropsychopharmacol 3:167-174.
- 4, Walsh JP, Shiels L, Lim EM, Bhagat CI, Ward LC, Stuckey BG, Dhaliwal SS, Chew GT, Bhagat MC, Cussons AJ 2003 Combined thyroxine/liothyronine treatment does not improve well-being, quality of life, or cognitive function compared to thyroxine alone: A randomized controlled trial in patients with primary hypothyroidism. J Clin Endocrinol Metab 88:4543-4550.
- 5. Sawka AM, Gerstein HC, Marriott MJ, MacQueen GM, Joffe RT 2003 Does a combination regimen of thyroxine (T4) and 3,5,3'-trilodothyronine improve depressive symptoms better than T4 alone in patients with hypothyroidism? Results of a double-blind, randomized, controlled trial. J Clin Endocrinol Metab 88:4551-4555.
- Clyde PW, Harari AE, Getka JE, Shakir KMM 2003 Combined levothyroxine plus liothyronine compared with levothyroxine alone in primary hypothyroidism. A randomized controlled trial. JAMA 280:2952-2958.
- 7. Kaplan MM, Same DH, Schneider AB 2003 Editorial: In search of the impossible dream? Thyroid hormone replacement therapy that treats all symptoms in all hypothyroid patients. J Clin Endocrinol Metab 88:4540-4542
- 8: Cooper DS 2003 Combined T4 and T3 therapy—Back to the drawing board. JAMA, 290-3002-3004.
- 9. Surks MI, Schadlow AR, Oppenheimer JH 1972 A new radioimmunoassay for plasma L-triiodothyronine: measurements in thyroid disease and in patients maintained on hormonal replacement. J Clin Invest 5:3104-3113.
- misuse of thyroid hormone. Endocr Rev 14:401-423.
- VM, Beckett GJ 1987 Relationship between pituitary and other target organ responsiveness in hypothyroid patients receiving thyroxine replacement. J Clin Endocrinol Metab 64:361-370.
- 12. Fish LH, Schwartz HL, Cavanaugh J, Steffes MW, Bantle JP, Oppenheimer JH 1987 Replacement dose, metabolism, and bloavailability of levothyroxine in the treatment of hypothyroidism. Role of triiodothyronine in pituitary feedback in humans. N Engl J Med 26:764-770.

13. Pilo A, Iervasi G, Vitek F, Ferdeghini M, Cazzuola F, Bianchi R 1990 Thyroidal and peripheral production of 3,5,3'-triiodothyronine in humans by multicompartmental analysis.

Am J Physiol 259:E715-726.

14. Larsen PR, Silva JE, Kaplan MM 1981 Relationships between circulating and intracellular thyroid hormones: physiological and clinical implications. Endocr Rev 2:87-102.

15. van Doom J, Roelfsema F, van der Heide D 1985 Concen-

, HYPOTHYROIDISM TREATED WITH T₄ PLUS SLOW-RELEASE T₃

- trations of thyroxine and 3,3',5-triiodothyronine at 34 sites in euthyroid rats as determined by an isotopic equilibrium method. Endocrinology 117:201-208.
- Escobar-Morreale HF, del Rey FE, Obregon MJ, de Escobar GM 1996 Only the combined treatment with thyroxine and triiodothyronine ensures euthyroidism in all tissues of the thyroidectomized rat. Endocrinology 137:2490-2502.
- Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR 2002 Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodelodinases. Endocr Rev 23:38–89.
- Biondi B, Fazio S, Carella C, Amato G, Cittadini A, Lupoli G, Sacca L, Bellastella A, Lombardi G 1993 Cardiac effects of long term thyrotropin-suppressive therapy with levothyroxine. J Clin Endocrinol Metab 77:334–338.
- Hennemann G. 1986 Thyroid hormone deiodination in healthy man. In: Hennemann G (ed) Thyroid Hormone Metabolism. Marcel Dekker, Inc, New York, pp 277-295.
- Hays MT 1988 Thyroid hormone and the gut. Endocr Res 14:203-224.

Address reprint requests to: G. Hennemann Vijverweg 32 3062 JP Rotterdam The Netherlands

E-mail: g@hen.demon.nl