數學C第二冊學習評量

(B) 32 × 32 = 92 (x) 為七次多項式

3+3-1-44

第1回 1-1 多項式的四則運算

科 ___年__班 座號: ____ 姓名: _

一、選擇題:(每題10分)

(B) 1.下列何者為x的多項式? (A) $\frac{1}{x}$ (B) 3 (C) |x+3| (D) $\sqrt{2x+5}$ 形如 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ 稱為 x 的多項式 其中n為正整數或0,且 a_n 、 a_{n-1} 、 \cdots 、 a_2 、 a_1 、 a_0 均為實數

1-1 講例 1

(A) 2. 若 $f(x) = 4x^3 + 3x^2 + 2x + 1$, 則 f(x) 的領導係數為何? (A) 4 (B) 3 (C) 2 (D) 1

f(x) 為三次多項式, x^3 項的係數為 4

(| b=0 = | b=0 = a+b+c=2 g= a | b=0 (C) 3. 設 $f(x) = (a+1)x^3 + bx^2 + 4x + 7$ 、 $g(x) = 3x^2 + 4x + c$,且 f(x) = g(x), $a \cdot b \cdot c$ 均為實 1-1 講例 4 數 ,則 abc = ? (A) 84 (B) 21 (C) -21 (D) -84

曾對應同次項係數 $\Rightarrow b=3 \Rightarrow b=3 \Rightarrow abc=-21$ $\circ \quad \forall 1 - x^2 + 4x^2 - 5x^2 + 6x - 7 = 6(x) + (x)^2 + (x)^2$

(D) $4.在 (4x^3 - 3x^2 + 2x - 1)(x^3 - 2x^2 + 3x - 4)$ 的展開式中, x^4 項的係數為何? (A) 17 (B) 18 (C) 19 (D) 20

 $4x^3 \times 3x + (-3x^2)(-2x^2) + 2x \times x^3 = 20x^4$

1-1 講例 7

(B) 5.已知多項式 f(x) 除以 $2x^2 + 3x + 4$ 得商式為 3x - 2,餘式為 1,則 f(1) 為何?

(A) 9 (B) 10 (C) 11 (D) 12

11-1 國際与

1-1 講例 9

解 被除式=除式×商式+餘式

 $f(x) = (2x^2 + 3x + 4)(3x - 2) + 1$ $\Rightarrow f(1) = (2+3+4)(3-2)+1=10$

《 】 置幣醫學 冊二雜 O 舉獎 1.利用綜合除法,求 $3x^3-4x+5$ 除以 x-1 的餘式為 4 1. 3 + 0 - 4 + 5 (基題:(基題10分) + 3 + 3 - 1 1 B) 1. 下列问者為定的多项式? (B) 3 (C) (2+3) (D) (2x+5) 3 + 3 - 1, +42. 若 $f(x) = (2x^3 - 2x^2 + 3x^5 + 1)(1 + 2x + 3x^2)$,則 deg f(x) = 7P.7觀念 第 $3x^5 \times 3x^2 = 9x^7$, f(x) 為七次多項式 Λ) 2 若 $f(x) = 4x^3 + 3x^2 + 2x + 1 + 則 <math>f(x)$ 的領導係數為何? (A) 4 (B) 3 (C) 2 (D) 1 3.設 $f(x)=2+(a-3)x+bx^2+(c+1)x^3$ 為零次多項式, $a \cdot b \cdot c$ 均為實數,則 a+b+c=(a-3=0) (a=3)數(。則) 在6c=? (A) 84 (B) 21 (C)-21 (D)-84

5.設 $f(x) = x^3 + 2x^2 + 3x + 4$ 、 $g(x) = x^2 - 2x - 3$,則 g(x) 除 f(x) 的商式為 x + 4 $x^2 - 2x - 3$ $x^3 + 2x^2 + 3x + 4$ $x^3 - 2x^2 - 3x$

(3) 担信式 = 除式 × 商式 + 除式 (3) = (2) = (2) + 3 x + 4)(3 x - 2) + 1 = 10

(C)

數學C第二冊學習評量

第2回 1-2 餘式定理與因式定理

科 年 班 座號: ____

一、選擇題:(每題10分)

念

(C) 1.下列何者為 $f(x) = 2x^3 + 3x^2 - 11x - 6$ 的因式?

(A) x + 1 (B) x + 2 (C) 2x + 1 (D) x - 3

f(-1) = -2 + 3 + 11 - 6 ≠ 0 ⇒ x + 1 不是 f(x) 的因式 $f(-2) = -16 + 12 + 22 - 6 \neq 0 \Rightarrow x + 2$ 不是 f(x) 的因式 $f(\frac{-1}{2}) = \frac{-1}{4} + \frac{3}{4} + \frac{11}{2} - 6 = 0 \Rightarrow 2x + 1 \neq f(x)$ 的因式 $f(3) = 54 + 27 - 33 - 6 \neq 0 \Rightarrow x - 3$ 不是 f(x) 的因式

(B) 2.已知 $f(x) = 2x^3 + ax^2 + bx + 6$, 其中 $a \cdot b$ 為整數,則下列何者不可能是 f(x) 之因式?

(A) 3x+9 (B) 2x+5 (C) x-6 (D) 2x-3

解 設 px-q 為 f(x) 的整係數一次因式且 $p \cdot q$ 互質 $q \mid 6 \Rightarrow q = \pm 1 \cdot \pm 2 \cdot \pm 3 \cdot \pm 6$

故 f(x) 可能的整係數一次因式有 $x\pm1$ 、 $x\pm2$ 、 $x\pm3$ 、 $x\pm6$ 、 $2x\pm1$ 、 $2x\pm3$ (註: 3x + 9 = 3(x + 3)) 4. 若 x + x + 2 為 x + ax + bx - 2 的因式・ a、b 均為質數・則 a + b =

(A) 3.以 x-3 除 $f(x)=x^3-2x^2+4$ 的餘式為何? (A) 13 (B) 26 (C) 39 (D) 49 [1-2 講例 1] f(3) = 27 - 18 + 4 = 13

(D) 4.已知 $f(x) = x^4 - 6x^3 + 6x^2 - 7x + 7$, f(x) 除以 x - 5 的餘式為何?

(A) 17 (B) 10 (C) 3 (D) -3

1-6+6-7+7 $\frac{+5-5+5-10}{1-1+1-2,-3}$

5.已积加、n為整數、数 $f(x) = mx^3 + nx^2 + 2x + 3$ 、哲子(定)除以至一种解式為6、且x + 1為

(A) 5.已知 $f(x) = x^{2020} + 5x^{20} - 8x + 7$, f(x) 除以 x - 1 的餘式為何?

f(1)=1+5-8+7=5

第:

二、選擇趣:(母題10分)

2.已知多項式 f(x) 除以 x-1 得餘式為 -2,除以 x+2 得餘式為 7,則 f(x) 除以

2.已知多項式
$$f(x)$$
 除以 $x-1$ 得餘式為 -2 ,除以 $x+2$ 得餘式為 $1-2$ 講例 $(x-1)(x+2)$ 的餘式為 $x-1$ 的 為實數

$$f(x) = (x-1)(x+2) \times Q(x) + (ax+b)$$

説
$$f(x)$$
 除政 $(x-1)(x-2)$
: 被除式 = 除式 × 商式 + 餘式
: $f(x) = (x-1)(x+2) \times Q(x) + (ax+b)$
: $f(x) = (x-1)(x+2) \times Q(x) + (ax+b)$
則 $\begin{cases} f(1) = -2 \\ f(-2) = 7 \end{cases}$ $\begin{cases} a+b=-2 \\ -2a+b=7 \end{cases}$ $\begin{cases} a=-3 \\ b=1 \end{cases}$

3.已知多項式 f(x) 除以 $x^2 + 3x - 10$ 的餘式為 -2x + 3,則 f(-5) = 13 。 ● 近 px-q 為 f(x) 的整像数一次国式且 p·q 写到

解被除式=除式×商式+餘式

$$f(x) = (x^2 + 3x - 10) \times Q(x) + (-2x + 3)$$

被除式=除式×商式+餘式

$$f(x)=(x^2+3x-10)\times Q(x)+(-2x+3)$$

 $\Rightarrow f(-5)=(25-15-10)\times Q(-5)+(10+3)=0\times Q(-5)+13=13$

根子(x) 可能的整修数一次因式有次主1~x主2~x±5~x±6、2x±1、2x±3 4. 若 x^2+x+2 為 x^3+ax^2+bx-2 的因式, $a \cdot b$ 均為實數,則 $a+b=_1$

1-2 習題 7

$$\frac{1}{1+1+2}\frac{1-1}{1+a} + \frac{1}{a} +$$

$$(a-1) + (b-2) - 2$$

 $\begin{cases} (a-1)-(-1)=0\\ (b-2)-(-1)=0 \end{cases} \Rightarrow \begin{cases} a=0\\ b=1 \end{cases} \Rightarrow a+b=1$

 $\frac{-1}{9}$ + 已和 $f(x) = x^4 - 6x^2 + 6x^2 - 7x + 7$) 解以 $\frac{-2}{9}$ 解以 $\frac{-2}{9}$ 的解文 為何?

5.已知 $m \cdot n$ 為整數, 設 $f(x) = mx^3 + nx^2 + 2x + 3$, 若f(x) 除以x - 1 得餘式為6, 且x + 1

$$f(x)$$
 的因式,則 $f(2) = 15$ 。
$$\begin{cases} f(1) = 6 \\ f(-1) = 0 \end{cases} \Rightarrow \begin{cases} m+n+2+3=6 \\ -m+n-2+3=0 \end{cases} \Rightarrow \begin{cases} m=1 \\ n=0 \end{cases} \Rightarrow f(x) = x^3 + 2x + 3 \Rightarrow f(2) = 8 + 4 + 3 = 15 \end{cases}$$

數學C第二冊學習評量

第3回 1-3 分式與根式的運算

一、選擇題:(每題10分)

(D) 1.設
$$\frac{3x-1}{(x-1)^2} = \frac{A}{x-1} + \frac{B}{(x-1)^2}$$
, 其中 $A \cdot B$ 均為實數,則 $AB = ?$ (A) -6 (B) -3 (C) 3 (D) 6 第1章自我評量 12

解等式兩邊同乘以
$$(x-1)^2$$
 得 $(x-1)^2$ 和 $(x-1)^2$ 得 $(x-1)^2$ 得 $(x-1)^2$ 和 $(x-1)^2$ 得 $(x-1)^2$ 和 $(x-1)^$

 $\Rightarrow 3x - 1 = Ax + (-A + B)$

$$\Rightarrow \begin{cases} A=3 \\ -A+B=-1 \end{cases} \Rightarrow \begin{cases} A=3 \\ B=2 \end{cases} \Rightarrow AB=6$$

(A) 2.設
$$\frac{x^2+3x+4}{(x+1)(x^2+2x+3)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+2x+3}$$
, 其中 $A \cdot B \cdot C$ 均為實數,則 $A+B+C=?$

(A) 2 (B) 1 (C) 0 (D) -1

 $x^{2} + 3x + 4 = A(x^{2} + 2x + 3) + (Bx + C)(x + 1) \cdots 1$

$$x=-1$$
 代入①得 $1-3+4=A(1-2+3) \Rightarrow 2=2A \Rightarrow A=1$

故
$$x^2 + 3x + 4 = (x^2 + 2x + 3) + (Bx + C)(x + 1)$$

對應 x^2 項係數 $\Rightarrow 1 = 1 + B \Rightarrow B = 0$

對應常數項 $\Rightarrow 4=3+C \Rightarrow C=1$

因此 A+B+C=1+0+1=2) + $2\times 2\times 2\times 2=(2\times 2)=2\times 2=(2\times 2)=2$

(C)
$$3. \sqrt{8} + \sqrt[3]{-8} + \frac{1}{\sqrt{2} - 1} = ?$$
 (A) $\sqrt{2} - 3$ (B) $\sqrt{2} - 1$ (C) $3\sqrt{2} - 1$ (D) $3\sqrt{2} + 1$ [1-3 講例 $5 \cdot 6$]

$$\sqrt{8} + \sqrt[3]{-8} + \frac{1}{\sqrt{2} - 1} = \sqrt{2^3} + \sqrt[3]{(-2)^3} + \frac{1 \times (\sqrt{2} + 1)}{(\sqrt{2} - 1)(\sqrt{2} + 1)} = 2\sqrt{2} + (-2) + \sqrt{2} + 1 = 3\sqrt{2} - 1$$

(B) 4. 若
$$\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}$$
 的整數部分為 a ,則 $a=$? (A) 10 (B) 11 (C) 12 (D) 13

$$\frac{(\sqrt{7} + \sqrt{5})(\sqrt{7} + \sqrt{5})}{(\sqrt{7} - \sqrt{5})(\sqrt{7} + \sqrt{5})} = \frac{7 + 2\sqrt{35} + 5}{2} = \frac{12 + 2\sqrt{35}}{2} = 6 + \sqrt{35}$$
 [1-3 講例 6、第 1 章自我評量 15]

 $::5 < \sqrt{35} < 6 \Rightarrow 11 < 6 + \sqrt{35} < 12$

 $\therefore \alpha = 11$

7

(B) 5.已知
$$\sqrt{(-3)^2} = a \cdot \sqrt[3]{(-2)^3} = b$$
,則 $a+b=$? (A) 5 (B) 1 (C) -1 (D) -5

1-3 講例 5

$$(-3)^2 = \sqrt{9} = 3 \cdot \sqrt[3]{(-2)^3} = -2$$

$$a + b = 3 + (-2) = 1$$

二、填充題: (每格 10 分)

1. 設
$$x \neq -3$$
、 -1 、4、 化簡 $\frac{x^2-9}{x^2-3x-4} \times \frac{x+1}{x+3} = \frac{x-3}{x-4}$

(1-3) 3x-1-2 (1-3) 1x (1-1) 1 2. 化簡 $\sqrt{8} - \sqrt{18} + \sqrt{32} - \sqrt{50} = -2\sqrt{2}$ ° 原式 = $\sqrt{2^3} - \sqrt{2 \times 3^2} + \sqrt{2^5} - \sqrt{2 \times 5^2} = 2\sqrt{2} - 3\sqrt{2} + 4\sqrt{2} - 5\sqrt{2} = -2\sqrt{2}$

3. 設 $x \neq -3$ 、 -2、 0, 化簡 $\frac{x^2 + x}{x^2 + 5x + 6} + \frac{x}{x + 3} = \frac{x + 1}{x + 2}$ 。

(1-3 講例 2)

(1-3 講例 2) 爾式 = $\frac{x(x+1)}{(x+2)(x+3)} \times \frac{x+3}{x} = \frac{x+1}{x+2}$ => f(-3)=(25-15-16-17) (1+160+21) (1+160) (1+1

4. 化簡 $\sqrt{5-2\sqrt{6}} = \sqrt{3}-\sqrt{2}$ ° 1-3 講例 7 $\sqrt{5-2\sqrt{6}} = \sqrt{(3+2)-2\sqrt{3}\times 2} = \sqrt{(\sqrt{3})^2-2\times\sqrt{3}\times\sqrt{2}+(\sqrt{2})^2}$ $=\sqrt{(\sqrt{3}-\sqrt{2})^2}=\sqrt{3}-\sqrt{2}$ $=\sqrt{($

 $0.8 + \sqrt{-8} + \sqrt{2} + \sqrt{-2} + \sqrt{(-2)^2} + \sqrt{(2-1)(2+1)} = 2\sqrt{2} + (-2) + \sqrt{2} + 1 = 3\sqrt{2} - 1$

5. 化簡 $\sqrt{8+2\sqrt{15}} \times \sqrt{8-2\sqrt{15}} = 2$ 。 OI (A) $\sqrt{8-8}$ [1-3 講例 5] $\sqrt{8+2\sqrt{15}} \times \sqrt{8-2\sqrt{15}} = \sqrt{(8+2\sqrt{15})(8-2\sqrt{15})}$ $=\sqrt{8^2-(2\sqrt{15})^2}$ $= \sqrt{64-60}$ $= \sqrt{4} = 2$

(8) 3日知 ((-3)2= (4-2)2 = (4-2)2 = (4-2)2 = (4-3)2 (8) (4-1) (0-1) (0-5) (1-3)4113

數學

(C)

(]