Gestão Eficiente de Elevadores: Uma Abordagem Concorrente com FIFO e SCAN

Carlos Eduardo da Silva Santos - 119065432 Ian de Andrade Camargo - 118089205 Julia Deroci Lopes - 117257871

Relatório Final Programação Concorrente (ICP-361) — 2024/2

1

1. Descrição do Problema Geral

O problema em questão envolve a simulação de um sistema de elevadores que gerencia requisições de passageiros em um edifício. O objetivo é otimizar o movimento dos elevadores para atender a essas requisições de forma eficiente, utilizando duas abordagens de escalonamento: FIFO (First-In-First-Out) e SCAN.

1.1. Funcionamento da Solução FIFO

Diferente de como cogitamos inicialmente, o FIFO não seria um modelo sequencial, já que usaremos os múltiplos elevadores como sendo cada um uma thread. Nele teremos a ordem de requisições sendo imputadas de forma a escolher o número total de requisições seguido pelas requisições desejadas, como isso os elevadores deverão seguir um padrão similar ao padrão leito/escritor, onde após ter todas as requisições escritas, os elevadores poderão retirar do buffer as mesmas em ordem de chegada, first in first out. Com isso o processo seguiria até concluir a última requisição.

• Entrada: Número de requisições, Andares de origem e destino das requisições, que serão gerados pelos passageiros. Neste caso, todas as requisições são conhecidas e definidas previamente. Exemplo:

```
Quantas requisições você deseja fazer? (Máximo 10): 3
Digite a 1º requisição no formato 'origem,destino': 2,5
Requisição: Passageiro 1 solicitou do andar 2 para o andar 5
Digite a 2º requisição no formato 'origem,destino': 5,7
```

Figure 1. Entrada do FIFO.

• Saída: Mensagens indicando a posição do elevador, requisição do passageiro, entrada e saída do elevador. Exemplo:

```
Elevador 2: Passageiro 1 entrou no elevador no andar 2 com destino ao andar 5
Elevador 1: No andar 3
Elevador 1: No andar 4
Elevador 1: No andar 5
Elevador 1: Passageiro 2 entrou no elevador no andar 5 com destino ao andar 7
```

Figure 2. Saída do FIFO.

1.2. Funcionamento da Solução SCAM

A implementação SCAN permite que múltiplos elevadores processem requisições simultaneamente. Esta abordagem minimiza o tempo de espera dos passageiros, já que mais de uma requisição pode ser atendida ao mesmo tempo, reduzindo a sobrecarga em um único elevador e melhorando a experiência do usuário.

- Entrada: O Número de requisições, Andares de origem e destino das requisições são gerados de forma automática pela função make_request, usando números aleatórios para determinar o andar de origem e destino. Além disso, as requisições surgem de forma aleatória, ao contrário da FIFO, que todas as requisições são conhecidas previamente
- Saída: Mensagens indicando a posição do elevador, requisição do passageiro, entrada e saída do elevador. Similar a saída do FIFO, porém optamos por colocar cores para ajudar na visualização do funcionamento do algoritmo. Exemplo:

```
Requisição: Passageiro 2 solicitou do andar 36 para o andar 15
Elevador 3: No andar 4
Elevador 1: No andar 4
Elevador 2: No andar 4
Elevador 3: No andar 5
Elevador 1: No andar 5
Elevador 2: No andar 5
Elevador 2: No andar 5
Requisição: Passageiro 3 solicitou do andar 19 para o andar 42
```

Figure 3. Saída do SCAM.

2. Projeto da Solução Concorrente

Divisão da Tarefa Principal: A solução será dividida em múltiplas threads, onde cada thread representará um elevador. Cada elevador irá:

- Processar requisições em sua própria fila.
- Mover-se entre os andares conforme as requisições.

2.1. FIFO

- Número Máximo de Passageiros por Elevador: As requisições são tratadas individualmente, então o limite de passageiros é 1.
- Número de Elevadores (Threads): Utilizamos 2, 3 e 4 elevadores em nossos testes, configurados pela constante MAX_ELEVATORS.
- Número de Andares: Utilizamos 10 e 50 andares em nossos testes, configurados pela constante MAX_FLOORS
- Número Máximo de Requisições: Utilizamos 10 e 50 andares em nossos testes, configurados pela constante MAX_REQUEST
- Movimentação: O deslocamento entre os andares usa sleep(1) para simular o tempo necessário para o elevador se movimentar.
- *Embarque/Desemparque:* O embarque e desembarque é simulado utilizando sleep(4), para refletir a duração mais realista dessas ações.
- Sincronização: Utilizamos Mutex para proteger o acesso à fila centralizada request_queue. Apenas uma thread pode modificar a fila por vez. Além disso, utiliza variáveis de condição para coordenar o estado entre os elevadores e as requisições geradas.

2.2. SCAN

- Número Máximo de Passageiros por Elevador: Cada elevador pode transportar até 4 passageiros simultaneamente, definido pela constante MAX_PASSENGERS o início do código.
- Número de Elevadores (Threads): Utilizamos 2, 3 e 4 elevadores em nossos testes, configurados pela constante MAX_ELEVATORS.
- Número de Andares: Utilizamos 10 e 50 andares em nossos testes, configurados pela constante MAX_FLOORS
- Número Máximo de Requisições: Utilizamos 10 e 50 andares em nossos testes, configurados pela constante MAX_REQUEST
- Movimentação: O deslocamento entre os andares usa sleep(1) para simular o tempo necessário para o elevador se movimentar.
- *Embarque/Desemparque:* O embarque e desembarque é simulado utilizando sleep(4), para refletir a duração mais realista dessas ações.
- Sincronização: Cada andar possui um mutex individual. Isso garante que múltiplos elevadores não acessem as requisições do mesmo andar ao mesmo tempo. Além disso, protege o array floor_buffers e o contador request_counts de cada andar.
- Temporizador de requisição: Cada requisição poderá ocorrer no intervalo de 0 à 4 segundos, permitindo que as requisições possam ser mais espalhadas pelo processo, ou até mesmo serem simultânea, essa simulação é feita usando sleep(rand()%4+1).

3. Testes de Corretude

Modificações na variação no número de requisições, para garantir que o gerenciamento da fila funcione adequadamente independente das requisições e elevadores utilizados. Para isso realizamos testes, variando a quantidade de requisições entre 3, 5, 7 por cinco vezes cada. Os testes foram feitos seguindo a ordem de testar o SCAN primeiro, onde seriam geradas requisições aleatórias, seguido da inserção dessas mesmas requisições no modelo FIFO, para que os testes tivessem a maior paridade possível.

É importante ressaltar que apesar de terem sido utilizadas as mesmas requisições para ambos os modelos, o teste como dito anteriormente não é totalmente parelho, visto as diferenças de como as requisições são chamadas no SCAN em comparação com o FIFO.

Abaixo as tabelas com os tempos de processamento obtidos nos testes:

Tempo de Execução (Processamento) em um Prédio de 10 andares - FIFO									
N° Elevadores (Threads)	2			3			4		
Requisições	3	5	7	3	5	7	3	5	7
1	58,77799	88,0493	98,8865	30,1619	61,1375	155,69	34,276	64,12	75,8431
	9	81	12	19	35	1248	971	0105	58
2	118,2705	74,6513	108,756	27,5627	53,0281	70,000	37,065	65,01	80,6415
	43	14	536	27	99	391	556	8172	60
3	101,1773	63,9899	115,227	24,1824	53,3633	70,780	35,004	55,42	80,4250
	54	55	779	95	76	225	965	9486	28
4	51,12186	134,533	93,8230	28,0707	54,2041	70,874	32,546	65,15	76,4820
	2	673	68	94	98	797	352	3080	90
5	68,03010	133,344	89,2137	23,5613	64,8369	69,951	29,493	60,43	74,4476
	6	793	71	50	71	872	945	0221	78
Média	79,47557	98,9138	101,181	26,7078	57,3140	87,459	33,677	62,03	77,5679
	28	232	5332	57	558	7066	5578	02128	028

Figure 4. Tabela Tempo de Execução (FIFO 10 andares).

Tempo de Execução (Processamento) em um Prédio de 50 andares - FIFO							
N° Elevadores (Threads)	3						
Requisições	3	5	7				
1	106,356039	194,359856	252,844906				
2	123,066111	167,479778	229,172871				
3	100,763395	111,527841	262,983515				
4	78,158505	141,876924	198,438381				
5	73,487243	113,358216	191,542927				
Média	96,3662586	145,720523	226,99652				

Figure 5. Tabela Tempo de Execução (FIFO 50 andares).

Tempo de Execução (Processamento) em um Prédio de 10 andares - SCAN									
N° Elevadores (Threads)	2			3			4		
Requisições	3	5	7	3	5	7	3	5	7
1	18,00255	33,0114	40,0238	21,0026	25,0128	53,0244	18,007	29,00	36,004
	4	71	30	56	76	41	643	3513	219
2	24,00354	26,0047	37,0105	24,0050	28,0044	47,0334	19,004	37,00	38,013
	5	43	34	91	70	46	449	7479	205
3	22,03929	22,0123	37,0040	25,0041	24,0031	30,0082	15,005	35,00	32,004
	0	39	33	16	74	01	040	3590	799
4	15,00380	29,0076	33,0063	17,0030	36,0242	39,0058	22,007	26,00	33,022
	6	10	34	81	29	99	652	2358	109
5	19,00214	34,0087	28,0051	23,0021	39,0089	33,0046	20,003	25,00	43,007
	1	30	96	52	26	23	315	8396	111
Média	19,61026	28,8089	35,0099	22,0034	30,4107	40,4153	18,805	30,40	36,410
	72	786	854	192	35	22	6198	50672	2886

Figure 6. Tabela Tempo de Execução (SCAN 10 andares).

Tempo de Execução (Processamento) em um Prédio de 50 andares - SCAN						
N° Elevadores (Threads)	3					
Requisições	3	5	7			
1	96,017006	96,016957	105,019178			
2	94,011364	101,022296	108,024187			
3	65,022953	75,008774	110,016417			
4	57,010273	97,022542	109,041125			
5	54,010880	76,011045	109,025091			
Média	73,2144952	89,0163228	108,2251996			

Figure 7. Tabela Tempo de Execução (SCAN 50 andares).

4. Avaliação de Desempenho

Para começarmos a avaliar o desempenho dos modelos, nós utilizamos o método de cálculo de aceleração, e eficiência que foi aprendida durante o período, para fazermos a comparação entre os modelo FIFO e SCAN. O código para cálculo de tempo, foi feito utilizando a biblioteca "timer.h" também utilizada durante o período em um dos laboratórios.

Com esses resultados obtidos, geramos gráficos que deixassem claros quais foram os ganhos, e qual modelo melhor servia ao nosso propósito. Como dito anteriormente, foram feitos testes para 2, 3, 4 threads/elevadores, onde cada thread será testada cinco vezes, com requisições variando entre 3, 5, 7.

4.1. Aceleração/eficiência SCAN

$$A(n,t) = \frac{T_{FIFO}(n,t)}{T_{SCAN}(n,t)}$$

$$E(n,t) = \frac{A(n,t)}{t}$$

4.2. Aceleração/eficiência FIFO

$$A(n,t) = \frac{T_{SCAN}(n,t)}{T_{FIFO}(n,t)}$$

$$E(n,t) = \frac{A(n,t)}{t}$$

4.3. Especificações da Máquina

A máquina utilizada na realização dos testes possui as seguintes configurações:

• Sistema Operacional: Linux Mint 21 Cinnamon

• Versão do Cinnamon: 5.4.12

• Kernel do Linux: 5.15.0-101-generic

• Processador: 13ª geração Intel® Core™ i5-13500, com 14 núcleos

5. Discussão dos Resultados

Nesta seção, discutem-se os resultados obtidos a partir das análises realizadas ao longo deste trabalho.

5.1. Análise de Aceleração

No sistema FIFO, as requisições são atendidas na ordem em que chegam, sem priorizar nenhum elevador sobre outro. A aceleração aqui é mais difícil de observar, pois o sistema FIFO pode levar a um desempenho subótimo quando o número de requisições aumenta e se tem um número muito grande de andares, já que as requisições podem ser atendidas de forma mais lenta, especialmente quando há congestionamento entre as threads/elevadores.

Analisando os valores do gráfico 9, podemos observar uma diminuição na aceleração conforme o número de requisições aumenta. Isso indica que, para um número maior de requisições e andares, o sistema FIFO começa a perder eficiência, provavelmente devido ao aumento da sobrecarga de controle e à possibilidade de congestionamento das requisições em um número limitado de threads.

Porém a aceleração aumenta ligeiramente à medida que o número de requisições cresce quando se tem poucos andares, como mostra o gráfico 8,, mas os valores são bastante baixos, indicando que o sistema FIFO não se beneficia muito da adição de mais threads.

Figure 8. Gráfico de Aceleração (FIFO 10 andares).

Figure 9. Gráfico de Aceleração (FIFO 50 andares).

O sistema SCAN permite que múltiplos elevadores processem requisições simultaneamente, o que pode resultar em um comportamento mais eficiente, pois as requisições são atendidas de forma mais dinâmica.

Observamos os gráficos 10 e 11 que a aceleração aumenta com o número de requisições e o número de andares. Esse comportamento é característico de sistemas com maior controle sobre a direção do movimento e onde a sobrecarga de gerenciar as requisições é mais bem distribuída. O sistema SCAN parece se beneficiar mais da adição de requisições e andares, pois a movimentação ordenada dos elevadores permite que o desempenho melhore com o aumento de andares e requisições.

Figure 10. Gráfico de Aceleração (SCAN 10 andares).

Figure 11. Gráfico de Aceleração (SCAN 50 andares).

5.2. Análise de Eficiência

No sistema FIFO a eficiência diminui à medida que o número de requisições aumenta. Isso indica que o sistema FIFO não está conseguindo aproveitar bem seus recursos com o aumento das requisições, provavelmente devido a uma sobrecarga na gestão das requisições em fila, que pode causar lentidão no processamento, como é possível observar nos gráficos 12 e 13

Figure 12. Gráfico de Eficiência (FIFO 10 andares).

Figure 13. Gráfico de Eficiência (FIFO 50 andares).

No sistema SCAN a eficiência aumenta à medida que o número de requisições e andares aumentam. Isso sugere que o sistema SCAN está se tornando mais eficiente à medida que mais requisições são processadas e se tem um maior número de andares, aproveitando melhor os recursos, como é possível observar nos gráficos 14 e 15.

Figure 14. Gráfico de Eficiência (SCAN 10 andares).

Figure 15. Gráfico de Eficiência (SCAN 50 andares).

6. Referências

Nosso trabalho toma como referência os livros [1], [2] e o vídeo mostrando a simulação de elevadores utilizando multithreads [3]. Além do código desenvolvido e disponibilizado por nós no repositório [4].

- [1] Peter Pacheco. An Introduction to Parallel Programming. Elsevier, 2011. s.l.
- [2] Randal E. Bryant and David R. O'Hallaron. Computer systems: a programmer's perspective. Pearson, Boston, 3rd edition, 2016.
- [3] YouTube. Vídeo sobre elevadores com programação paralela. Disponível em: https://www.youtube.com/watch?v=xKjRKND1ABg. Acesso em: 23 out. 2024.
- [4] Julia Deroci Carlos Eduardo and Ian Camargo. Elevadores. Disponível em: https://github.com/iancbr/Elevadores/tree/main, 2024. Acessado em: 27 nov. 2024.