Part III-B: Artificial Intelligence Outline

Lecture by 熊庆宇 Note by THF

2024年11月4日

目录

0.1	0.0.3	监督学习 归一化 · 决策树 · 学习 ··														 	 	 	2 4 4 5	
Lectu	re 12																			10.31
			材	【器气	学习	 	自然 土交	语	言如 体计	上理		写 识 人再	[别 字识别	;i]	•					
机装	器学习的	四个部分	} :			(æ	TT.	,											
						Į	A:	Ta Ala Ex	sk gori peri	thr	n ce									

Example. 人脸识别:

A: 线性回归

E: 以标定身份的人脸图片数据

P: 人脸识别准确率

P: Performance

机器学习的基本过程

从给定的数据中学习规律 → 学习方法, 建立模型 → 预测 → 测试匹配度

机器学习分类

0.0.1 监督学习

Definition. 根据已知的输入和输出训练模型,预测未来输出

监督学习的数据存在样本标签,有训练集和测试集

Example. 学习书籍内容,设定标签: 艺术/政治/科学等,找出训练文字和标签的映射关系

Notation. 分类方法: *K-nearest neighbour*, 决策树, 支持向量机, 朴素贝叶斯 回归方法: 线性、树、支持向量回归, 集成方法

基本思路

找到与新输入的待预测样本最临近的 K 个样本,判断这 K 个样本中绝大多数的所属类别作为分类结果输出

K-nearest neighbor

条件:已经具有较大的样本量

Notation. KNN 算法的基本要素: 距离度量、K 值、分类决策规则

距离度量

Notation. KNN 算法能够分类:特征空间内的样本点之间的距离能够反映样本特征的相似程度

设有两个样本点 x_i, x_j , 以 n 维向量空间作为特征空间,将这两个点表示为:

$$egin{aligned} oldsymbol{x}_i, oldsymbol{x}_j \in oldsymbol{X}. \ oldsymbol{x}_i = \left(x_i^1, x_i^2, \dots, x_i^n
ight)^T. \ oldsymbol{x}_j = \left(x_j^1. x_j^2, \dots, x_j^n
ight)^T. \end{aligned}$$

特征点之间的距离定义为:

$$L_{p}\left(oldsymbol{x}_{i},oldsymbol{x}_{j}
ight)=\left(\sum_{l=1}^{n}\left|x_{i}^{l}-x_{j}^{l}\right|^{p}
ight)^{rac{1}{p}}.$$

Example. 代人 p=2 , 易得 $L_2(x_i,x_j)$ 为平面上两点间的距离公式,该距离又称为欧氏距离:

$$L_2(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{(x_{i_1} - x_{j_1})^2 + (x_{i_2} - x_{j_2})^2}.$$

代入 p=1: $L_1(x_i,x_j)$ 称为曼哈顿距离:

K 值的选择

使用交叉验证方法确定最合适的 K 值

Lecture 13

KNN 算法的局限

• 对参数选择很敏感

Lecture 13

• 计算量大

当 K 值较小: 易发生过拟合, 受噪声影响较大

当 K 值太大: 无法区分不同样本

0.0.2 归一化

表 1: 分类

W = 717C									
样本名	x_1	x_2	x_3	类型	S_n 距离				
S_1	39	0	21	K_1	$\sqrt[3]{4133} \approx 16.05$				
S_2	3	5	65	K_2	$6\sqrt[3]{5^2}\sqrt[3]{19} \approx 46.81$				
S_3	21	17	5	K_1	$2\sqrt[3]{3^2}\sqrt[3]{14} \approx 10.03$				
			•						
S_n	23	3	17	?	0				

特征值标准一致时无需归一化

Notation. 欧几里得距离:

$$S = \sqrt{\sum_{i=1}^{n} \left(x_i^{(P)} - x_i^{(Q)}\right)^2}.$$

曼哈顿距离:

$$S = \sum_{i=1}^{n} \left| x_i^{(P)} - x_i^{(Q)} \right|.$$

切比雪夫距离:

$$S = \max_{l} \left(\left| x_i^{(P)} - x_i^{(Q)} \right| \right).$$

0.0.3 决策树

Definition. 树形结构,由节点和边组成

基本思想:一个 if-then 的规则集合可以分为树形或细胞型

Example. ID3 算法

0.1 无监督学习

Notation. 区别:有监督学习中提供样本的标签,无监督学习中机器自行提取样本的相似性

通过样本可以提取颜色、纹理、频率等特征

无监督函数通过定义相似度计算函数来提取特征的相似性,根据选择的相似度函数来分类

Notation. K-均值聚类算法

监督学习补充: 线性回归 Linear regression

Definition. 回归与分类:挖掘和学习输出变量和输入变量之间的潜在关系模型 回归为连续、分类为离散

Example. 高尔顿提出衰退 (regression, 回归) 效应,指出:

$$y = 33.73 + 0.516 \frac{x_1 + x_2}{2}.$$

其中 x_1, x_2 为父母身高 (单位: inch), y 为经过回归后的下一代身高

Notation. 最小二乘法: 求出使残差平方和最小的 a, b