Nachklausur zur Experimentalphysik 4

Prof. Dr. W. Henning, Prof. Dr. L. Fabbietti Sommersemester 2012 27. September 2012

Zugelassene Hilfsmittel:

- 1 beidseitig handbeschriebenes oder computerbeschrieben DIN A4 Blatt
- 1 nichtprogrammierbarer Taschenrechner

Bearbeitungszeit 90 Minuten. Es müssen nicht alle Aufgaben vollständig gelöst sein, um die Note 1,0 zu erhalten.

Aufgabe 1 (7 Punkte)

Die Fourier-Tansformierte der Ortswellenfunktion $\psi(x)$ ist die Impulswellenfunktion $\hat{\psi}(k)$:

$$\hat{\psi}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx e^{-ikx} \psi(x) \tag{1}$$

Das heißt, das Absolutquadrat $|\hat{\psi}(k)|^2$ gibt die Wahrscheinlichkeitsverteilung für den Impuls $p = \hbar k$ an.

- (a) Zeigen Sie, dass die Wahrscheinlichkeitsverteilung des Impulses sich nicht ändert, wenn die Ortswellenfunktion entlang der x-Achse verschoben wird.
- (b) Zeigen Sie, dass sich die Verteilung der Impulse vorzeicheninvertiert, wenn man die Ortswellenfunktion komplex-konjugiert. Was bedeutet dies physikalisch?
- (c) Wie ändert sich die Impulsverteilung, wenn man die Ortswellenfunktion mit dem Phasenfaktor $e^{i\chi x}$ multipliziert?

Aufgabe 2 (4 Punkte)

- (a) Der Strom $I = qf_{rev}$ wird durch eine sich im Kreis bewegende Ladung q der Frequenz f_{rev} verursacht . Ermitteln Sie den Strom, den ein Elektron auf der ersten Bohrschen Bahn hervorruft.
- (b) Das magnetische Moment einer Stromschleife ist IA, wobei A die Fläche der Schleife ist. Geben Sie das magnetische Moment des Elektrons an, das sich auf der ersten Bohrschen Bahn befindet. Dieses magnetische Moment wird Bohrsches Magneton genannt.

Aufgabe 3 (5 Punkte)

Betrachten Sie ein hypothetisches Wasserstoffatom, in dem das Elektron durch ein K⁻-Teilchen ersetzt ist. Das K⁻-Teilchen ist ein Partikel mit Spin 0 und deshalb ohne eigenes magnetisches

Moment. Das einzige Magnetische Moment dieses Atoms stammt aus der Bahnbewegung des K⁻-Teilchens. Dieses Atom wird in ein Magnetfeld mit $B_z = 1$ T gesetzt.

- (a) Wie verhalten sich die Energielevel des 1s- und den 2p-Zustand?
- (b) In wieviele Linien spaltet sich die $2p \rightarrow 1s$ -Spektrallinie auf?
- (c) Was ist der normierte Abstand $\frac{\Delta\lambda}{\lambda}$ zwischen zwei benachbarten Spektrallinien?

(Hinweis:
$$\frac{\Delta\lambda}{\lambda} = -\frac{\lambda}{hc}\Delta E$$
)

Die Masse des K⁻-Partikels ist $493,7 \text{MeV}/c^2$.

Aufgabe 4 (9 Punkte)

- (a) Beschreiben Sie ein Zweielektronensystem bestehend aus zwei p-Elektronen (np und n'p, mit $n \neq n'$ verschiedene Hauptquantenzahlen) in LS-Kopplung. Skizzieren Sie dazu qualitativ die energetische Lage aller möglichen Terme und benennen Sie die Terme. Geben Sie die Zahl der möglichen magnetischen Unterzustände an!
- (b) Geben Sie die Elektronenkonfigurationen von $_{14}$ Si, $_{15}$ P, $_{16}$ S im Grundzustand an! Skizzieren Sie dabei die Besetzung der Unterschalen. Geben Sie das Termsymbol für den Grundzustand an!
- (c) Was unterscheidet die in Teilaufgabe 2 erhaltenen $_{14}{\rm Si}$ Grundzustandskonfiguration von dem Ergebnis von Teilaufgabe 1.

Aufgabe 5 (4 Punkte)

Die K $_{\alpha}$ -, L $_{\alpha}$ - und M $_{\alpha}$ -Röntgen-Spektrallinien werden bei den Übergängen $n=2 \to n=1$ bzw. $n=3 \to n=2$ bzw. $n=4 \to n=3$ emittiert. Für Calcium (Z=20) sind die Energien dieser drei Übergänge 3,69keV bzw. 0,341keV bzw. 0,024keV.

Wir nehmen an, dass energiereiche Photonen ein Elektron aus der K-Schale von Calcium auslösen. Man berechne die Ionisationsenergien der drei Schalen, sowie die Energien von Auger Elektronen die aus der L-, M- und N-Schale (n=2,3,4) austreten.

Aufgabe 6 (4 Punkte)

Die Hauptfrequenz für die Absorption von Licht durch HCl (Rotationsspektrum) liegt bei $f=8,66\cdot 10^{13}$ Hz und die Absorptionspeaks der anderen Rotationen unterscheiden sich jeweils um $\Delta f=6\cdot 10^6$ Hz. Mit diesen Informationen, berechnen Sie

- (a) die Nullpunktsenergie für HCl.
- (b) das Trägheitsmoment von HCl.
- (c) den Abstand der Atome im Equilibrium.

Hinweis: $m_{Cl} = 35u$

Aufgabe 7 (4 Punkte)

Ein Behälter enthält Wasserstoff (H_2) mit einem Druck von einer Atmosphäre bei einer Temperatur von 300K. Bei dieser Temperatur folgt Wasserstoff der Boltzmann-Verteilung. Wie weit muss das Wasserstoffgas heruntergekühlt werden, damit die Boltzmann-Verteilung nicht mehr angewandt werden darf und Quanteneffekte wichtig werden?

Hinweis: Setzen Sie die de Broglie-Wellenlänge, mit dem mittleren Abständen der Moleküle gleich, die Sie aus der idealen Gasgleichung erhalten. Kürzen Sie Potenzen per Hand falls Sie Taschenrechnerprobleme haben.

Aufgabe 8 (5 Punkte)

Betrachten Sie ein System von N Teilchen mit nur zwei Energiezustände $E_0=0$ und $E_1=\varepsilon$. Die Verteilungsfunktion dieses Systems ist $f_i=Ce^{-\frac{E_i}{kT}}$.

- (a) Berechnen Sie C?
- (b) Berechnen Sie die durchschnittliche Energie $\langle E \rangle$ und zeigen Sie, dass

$$\langle E \rangle \xrightarrow{T \to 0} 0$$
 und $\langle E \rangle \xrightarrow{T \to \infty} \frac{\varepsilon}{2}$ (2)

(c) Zeigen Sie, dass die Wärmekapazität dieses Systems

$$C_V = Nk \left(\frac{\varepsilon}{kT}\right)^2 \frac{e^{-\frac{\varepsilon}{kT}}}{\left(1 + e^{-\frac{\varepsilon}{kT}}\right)^2} \text{ist.}$$
 (3)

Konstanten

Physikalische Konstanten

Größe	Symbol, Gleichung	Wert
Vakuumlichtgeschwindigkeit	С	$2,9979 \cdot 10^8 \mathrm{ms}^{-1}$
Plancksche Konstante	h	$6,6261 \cdot 10^{-34} \mathrm{Js} = 4,1357 \cdot 10^{-15} \mathrm{eVs}$
Red. Plancksche Konstante	$\hbar = h/2\pi$	$1,0546 \cdot 10^{-34} \mathrm{Js}$
Elektr. Elementarladung	e	$1,6022 \cdot 10^{-19} \mathrm{C}$
Boltzmann-Konstante	$k_{ m B}$	$1,3807 \cdot 10^{-23} \mathrm{JK^{-1}} = 8,617 \cdot 10^{-5} \mathrm{eVK^{-1}}$
Magnetische Feldkonstante	μ_0	$4\pi \cdot 10^{-7} \mathrm{VsA^{-1}m^{-1}}$
Elektrische Feldkonstante	$\varepsilon_0 = 1/\mu_0 c^2$	$8,8542 \cdot 10^{-12} \mathrm{AsV^{-1}m^{-1}}$
Elektronruhemasse	$m_{ m e}$	$9{,}1094 \cdot 10^{-31} \mathrm{kg} = 0{,}5110 \mathrm{MeV}/c^2$
(Anti-)Protonruhemasse	$m_{ar{ ext{p}}, ext{p}}$	$1,6726 \cdot 10^{-27} \mathrm{kg} = 938,2720 \mathrm{MeV}/c^2$
Neutronruhemasse	$m_{ m n}$	$1,6749 \cdot 10^{-27} \mathrm{kg} = 939,5653 \mathrm{MeV}/c^2$
Atomare Masseneinheit	amu	$1,6605 \cdot 10^{-27} \mathrm{kg}$
Avogadro-Zahl	N_A	$=6.023\cdot 10^{23}$
Bohr'scher Radius	$a_0 = \frac{4\pi\epsilon_0\hbar^2}{e^2m_o}$	$5,29 \cdot 10^{-11} \mathrm{m}$
Bohr'sches Magneton	μ_B	$9,2741 \cdot 10^{-24} \mathrm{JT^{-1}} = 5,7884 \cdot 10^{-5} \mathrm{eVT^{-1}}$
Kernmagneton	μ_K	$= 5,0508 \cdot 10^{-27} \mathrm{J/T} = 3,152 \cdot 10^{-14} \mathrm{MeV/T}$
Magnetisches Moment des Protons:	μ_P	$2,79\mu_{K}$
Feinstrukturkonstante	$1/\alpha$	137,036
Rydbergsche Konstante	R_{∞}	$13,6057\mathrm{eV}$