Real Analysis Homework 4

Due Date: October 11

Choose one of the two problems as your homework.

Problem 1

(a) Suppose that $\{E_k\}_{k=1}^{\infty}$ is a countable family of measurable subsets of \mathbb{R}^d and that

$$\sum_{k=1}^{\infty} |E_k| < \infty$$

Let $E = \limsup_{k \to \infty} E_k$. Prove that |E| = 0.

(b) Given an irrational x, one can show (using the pigeonhole principle, for example) that there exists infinitely many fractions $\frac{p}{q}$, with relatively prime integers p and q such that

$$\left| x - \frac{p}{q} \right| \le \frac{1}{q^2}$$

However, prove that the set of those $x \in \mathbb{R}$ such that there exist infinitely many fractions $\frac{p}{q}$, with relatively prime integers p and q such that for every $\epsilon > 0$, one has

$$\left| x - \frac{p}{q} \right| \le \frac{1}{q^{2+\epsilon}}$$

is a set of measure zero.

Problem 2

(a) Let E be a subset of \mathbb{R} with $|E|_e > 0$. Prove that for each $0 < \alpha < 1$, there exists an open interval I so that

$$|E \cap I|_e \ge \alpha |I|_e$$

Loosely speaking, this estimate shows that E contains almost a whole interval.

(b) Suppose E is a measurable subset of \mathbb{R} with |E| > 0. Prove that the **difference set** of E, which is defined by

$$E - E = \{x - y \in \mathbb{R} : x, y \in E\}$$

contains an open interval centered at the origin.