深度学习与自然语言处理第一次作业

中文信息熵求解

惠仪

SY2202328@buaa.edu.cn

摘要

阅读《An Estimate of an Upper Bound for the Entropy of English》文献学习信息熵的理论计算,利用 17 个文本文档通过分词及单字符两种方式计算中文信息熵,对比并分析两种分词方式及不同的语言模型所得的信息熵。

1 理论方法

1.1 信息熵

对于某一事件,其发生的概率越小信息量越大。用信息量表示一个具体事件 发生所带来的信息,当事件发生概率为100%时,信息量为0。信息熵表示结果 出来之前对可能产生的信息量的期望,在随机事件中,某个事件发生的不确定度 越大熵也就越大,要搞清楚时需要的信息量就越大。具体公式如下所示:

$$h(x) = -\log_2(p(x))$$

$$h(x) = -\sum p(x)\log_2(p(x))$$

其中, p(x)为随机事件 x 的概率。

假设有 $X = \{...X_{-2}, X_{-1}, X_0, X_1, X_2, ...\}$ 是平稳随机过程, p 表示 X 的概率分布, E_n 是 p 的数学期望,则 X 的熵可定义为:

$$H(X) = H(p) = -E_p log(p(X_0|X_{-1}, X_{-2}...)$$

当概率分布 p 无法知道时,可以通过 p 的平稳随机过程 M 来计算熵。在合适的正则条件下,交叉熵为:

$$H(p,M) = \lim_{n \to \infty} - E_p log M(X_0 | X_{-1}, X_{-2}...X_{-n}) = \lim_{n \to \infty} - \frac{1}{n} E_p log M(X_1 X_2...X_n)$$
 对任意模型 M,交叉熵 $H(p,M)$ 是熵 $H(p)$ 的上界,公式为: $H(p) \le H(p,M)$

从文本压缩角度,对于任意编码方式,熵 H(p)是从 p 编码文本一段长字符串的每个符号的平均数的下界,表示为:

$$H(p) \le \lim_{n \to \infty} \frac{1}{n} E_p I(X_1 X_2 \dots X_n)$$

1.2 语言模型 n-gram model

语言模型对字符序列的概率分布进行建模。

- Unigram: 当 N=1 时,模型被称为 unigram,即当前词的概率分布与给定的 历史信息无关。
- bigram: 当 N=2 时,模型被称为 bigram,即当前词的概率分布只与距离最近的词有关。bigram 模型类似于常见的一阶马尔可夫链,公式如下所示:

$$p(w_1|w_{i-1}) = \frac{w_i}{w_{i-1}}$$

● trigram: 当 N=3 时, 模型被称为 trigram, 即当前词的概率分布与距离最近的两个词有关。公式如下:

$$p(w_i|w_{i-1, i-2}) = \frac{p(w_{i-2}w_{i-1}w_i)}{p(w_{i-2}w_{i-1})}$$

其中, $p(w_i|w_{i-1, i-2})$ 表示在已知前面两个字符或词语的情况下,第 i 个字符w_i出现的概率, $p(w_{i-2}w_{i-1}w_i)$ 是前面两个字符和第 i 个字符同时出现的概率, $p(w_{i-2}w_{i-1})$ 表示前面两个字符同时出现的概率。将具体的计数带入后,得到概率公式为:

$$p(w_i|w_{i-1, i-2}) = \frac{count(w_{i-2}w_{i-1}w_i)}{count(w_{i-2}w_{i-1})}$$

2 实验及分析

2.1 数据预处理

首先读取所有的文本文件,根据 cn_stopwords.txt 文件夹,去除整个文本库中符号及及无意义的中文,得到语料库。

```
#读stopwords

f = open('cn_stopwords.txt','r',encoding='utf-8')

stopwords = f.read().splitlines()

xx = '本书来自www.cr173.com免费txt小说下载站'

xx2 = '更多更新免费电子书请关注www.cr173.com'

# 去除符号及中文无意义stopwords

def filter(text):

a = re.sub(xx, '', text)

b = re.sub(xx2, '', a)

pattern = '|'.join(stopwords)

c = re.sub(pattern, '', b)

d = re.sub(r'\*', '', c)

e = re.sub(r'\\n', '', d)

f = re.sub(r'\\n', '', e)

g = re.sub(r'\\n', '', f)

return g
```

在分词时,分别以字符或词语为单位,构建两种方式。根据语料库得到单个的字符,根据 jieba 库的精确模式得到不重复的分词。

```
#处理文本,不同的分词方式
#以单个字为单位处理
word = [word <mark>for</mark> word <mark>in</mark> alltext]
#jieba分词,以词语为单位处理
word = jieba.lcut(alltext)
```

2.2 信息熵计算

以 Trigram 模型为例进行解释,首先计算词组的数量。

```
#数量
count_tri = {}
for i in range(len(word) - 2):
    count_tri[word[i], word[i + 1]_word[i+2]] = count_tri.get((word[i], word[i + 1]_word[i+2]), 0) + 1
```

之后结合条件概率计算信息熵。

```
tr_entropy = 0

word_num = sum(count_tri.values())

for i in count_tri.keys():
    prob = count_tri[i]/word_num
    con_prob = count_tri[i]/count_bi[(i[0])_(i[1])]
    tr_entropy -= prob*math.log(con_prob_2)
    print("三元模型的中文信息熵为: {:.2f}".format(tr_entropy))

return count_tri_tr_entropy
```

2.3 实验结果

1. 根据模型计算整个语料库的信息熵如表 1 所示。

 分词
 单字

 一元
 13.88
 9.96

 二元
 6.18
 7.02

 三元
 1.00
 3.49

表1 语料库的信息熵

2.根据模型计算单个文本的信息熵。

通过 jieba 分词构建词语为单位的信息熵如表 2 所示。

	一元	二元	三元
1	4.58	0.00	0.00
2	12.42	1.66	0.08
3	12.79	3.91	0.43
4	12.37	3.72	0.45
5	13.02	4.41	0.56
6	13.20	4.52	0.56
7	13.14	4.32	0.46

表 2 词语为单位的信息熵

8	11.19	2.70	0.27
9	12.94	3.72	0.38
10	12.47	4.69	0.72
11	12.63	4.56	0.72
12	10.25	1.72	0.23
13	12.27	3.33	0.30
14	12.14	2.76	0.23
15	12.72	3.77	0.38
16	10.98	2.10	0.19
17	12.89	4.69	0.66

构建单字符为单位的信息熵如表 3 所示。

表 3 字符为单位的信息熵

	一元	二元	三元
1	5.53	0.39	0.03
2	10.01	4.26	0.66
3	9.76	5.58	1.86
4	9.44	5.36	1.81
5	9.71	5.97	2.27
6	9.79	6.10	2.34
7	9.76	5.95	2.19
8	9.23	4.07	1.21
9	9.76	5.66	1.79
10	9.56	6.04	2.37
11	9.52	5.83	2.35
12	8.78	3.10	0.85
13	9.52	5.07	1.63
14	9.50	4.79	1.30
15	9.63	5.55	1.86
16	9.21	3.65	0.90
17	9.67	6.00	2.40

2.3 实验分析

- 1. 从整个语料库的结果可以看出,不论是分词还是以字为单位的方式,一元、二元、三元模型的信息熵递减,表明以一个单位来预测下一个单位的信息不确定度最大,当前序提供一定的信息时更容易预测。
- 2. 在整个语料库进行比较时,以词语为单位的一元模型信息熵要高于单字,分析原因是词语的搭配方式及应用文章中的语义环境更丰富,因此在以一个词语预测时比单个字的不确定度要大。当前面的词语越多时,语义的信息越多,不确定度减小,因此二元、三元模型的信息熵要低于单个字。
- 3. 在单个小说文本的对比数据中,第一个文本是小说的题目汇总,因此数据与 其余区别较大。对于不同的文本,同样的模式下信息熵的计算结果差距不大,且 呈现出相同的规律。单个文本与整个语料库的信息熵结果对比时,单个文本的信 息熵小于整个语料库,但结果的规律一致。

3 参考文献

- [1] 机器学习入门: 重要的概念---信息熵(Shannon's Entropy Model) 知乎 (zhihu.com)
- $[2] \ https://www.zhihu.com/question/35383385/answer/2284821767$