

INTRODUCTION TO

COMPUTATIONAL TOPOLOGY

HSIEN-CHIH CHANG LECTURE 16, NOVEMBER 4, 2021

DISCRETE MORSE THEORY

TODAY'S GOAL

Introduce a discrete version of the Morse theory that works for complexes

DEFINITIONS

■ Height function h: M -> R

■ Sub-level set $\mathbf{M}_{\leq \mathbf{a}}$: $\mathbf{h}^{-1}(-\infty, \mathbf{a}] = \{\mathbf{x} : \mathbf{h}(\mathbf{x}) \leq \mathbf{a}\}$

Critical points: where the topology changes

DEFINITIONS

-Intuition: Morse function h is not important, only gradient field ∇h

- **-** Discrete gradient $f: K \rightarrow R$
 - For k-simple α and (k+1)-simplex β : $f(\alpha) \geq f(\beta)$
- Discrete Morse function
 - All discrete gradients are unique

DEFINITIONS

- Critical cell
 - Cell with no discrete gradient

-Sub-level set $K_{\leq C}$

 $\{\beta: \beta \text{ in those } \alpha \text{ that } f(\alpha) \leq C\}$

EXAMPLE

• Which one is Morse?

DISCRETE FLOWLINES

-Pairing of neighboring k- and (k+1)-simplex are canceled

PROPOSITION. A vector field is the gradient field of a discrete Morse function iff it is acyclic.

PROPERTIES

- $-K_{\leq b} \simeq K_{\leq a}$ if no critical points in (a, b]
- $\mathbf{K}_{\leq b} \simeq \mathbf{K}_{\leq a} \cup \{k\text{-handle}\}$ if (a,b] has k-dim critical point p

- Collapse (discrete homotopy)
 - If $K' = K \cup \{\alpha, \beta\}$ where β is the face to only α , then K' can be collapsed to K

EXAMPLE

Collapsing the flowlines

DISCRETE MORSE COMPLEX

-MC_k: $\langle k$ -dim critical cells \rangle

Boundary map ∂_k : all (k-1)-dim critical cells reachable by flowlines

[Sousbie 2011

MORSE HOMOLOGY THEOREM [Forman 1998] $MH_n(K) \cong H_n(K) \ \ \text{for any } \underline{\text{complex}} \ \ K$

EXERCISE

INTERMISSION

FOOD FOR THOUGHT.

Forget about homology.

We can use it to simplify complexex!

EVASIVENESS (WHY LOWERBOUND IS HARD)

MOTIVATING PUZZLE

- Question allowed:"Is edge (i,j) in G?"
- Goal:Does G have a cycle?

FORMULATION

- Let $g(x_1, ..., x_E)$ be Boolean function
- Property T
 - g(X) = 0 iff graph X has property T
- Monotone property
 - If graph X has T, subgraph Y of X must be in T

Determine if graph G satisfies T

HOW MANY QS DO YOU NEED?

EVASIVENESS CONJECTURE [Aanderaa-Rosenberg 1973]

If property T is monotone, nontrivial, and symmetric, then T is evasive, i.e. requires $\binom{n}{2}$ questions

TOPOLOGICAL APPROACH

[Kahn-Saks-Sturtevant 1984]

- -Construct complex K_P
 - Add cell σ if σ satisfies P

OBSERVATION

-Guessing algorithm induces discrete gradient field

OBSERVATION

-Critical cells in K_p correspond to graph pairs that require the last question

COUNTING EVADERS

[Forman 2000]

#Evaders under any algorithm is at least $2 \Sigma_k \dim H_k(K_P)$

PROVING LOWERBOUND BY SHOWING Kp NON-TRIVIAL

NEXT TIME.
Almost end of the term. We'll see!