Dictionaries

The Associative Array

CSCI 3700 — Data Structures and Objects

Department of Computer Science and Information Systems Youngstown State University

Robert W. Kramer

Outline

- Preliminaries
 - Motivation
 - Key-Value Pairs
 - Parallel Arrays
- Dictionary ADT
 - Dictionary Operations
 - Data Limitations
- Implementation
 - Implementation Options
 - Unsorted Dictionary
 - Sorted Dictionary
 - Hashed Dictionary

Motivation

"Uncle Owen, this R2 unit has a bad motivator, look!" — Luke Skywalker

Consider an array...

- Collection of values
- Each value assigned an numeric index

What if a number isn't an appropriate index?

- Players identified by position
- Song music / lyrics identified by title

Dictionaries enable other types of indexing

Key-Value Pairs

Dictionary data is stored using key-value pairs

- Key
 - The identifier used to access values
 - The "index"
- Value
 - The datum that is stored / retrieved
 - The "content"

Parallel Arrays

An alternative to an array of structures (1/3)

Suppose we have a structure with two fields, key and val

Now, consider an array of such structures

dictionary
$$\begin{bmatrix} \text{key: } k_0 \\ \text{val: } v_0 \end{bmatrix}$$
 $\begin{bmatrix} \text{key: } k_1 \\ \text{val: } v_1 \end{bmatrix}$ $\begin{bmatrix} \text{key: } k_2 \\ \text{val: } v_2 \end{bmatrix}$ \cdots $\begin{bmatrix} \text{key: } k_{n-2} \\ \text{val: } v_{n-2} \end{bmatrix}$ $\begin{bmatrix} \text{key: } k_{n-1} \\ \text{val: } v_{n-1} \end{bmatrix}$

Can access pair *i* with **dictionary[i].key** and **dictionary[i].val**

Parallel Arrays

An alternative to an array of structures (2/3)

Can also use two *parallel arrays* to store keys and values:

keys[i] and values[i] are key-value pair i

Parallel Arrays

An alternative to an array of structures (3/3)

Why use parallel arrays?

- More efficient memory allocation(?)
- May be easier to implement than structures
- Syntactically simpler

The Dictionary ADT

Like a conventional dictionary, only more so

A *Dictionary* is a container that supports the following operations:

- insert(k, v)
 - Insert the key-value pair k v into the dictionary
 - Key k must be unique
- remove(k)
 - Remove key-value pair with key k from dictionary
- search(k)
 - Search for key k, return k's value
- update(k, v)
 - Update existing key k's value to v

Key and Value Limitations

Keys have minor limitations

- Must be comparable with ==
- In sorted implementation, must also be comparable with <

Values have no limitations

Dictionary Implementations Choosing a backing store (1/2)

Three methods for storing container data:

- An array
- A linked structure
- A simulated linked structure

For this discussion, we will use parallel arrays

Dictionary Implementation Data arrangement options (2/2)

Three methods for arranging dictionary data within the backing store:

- Unsorted array
- Sorted array
- Hash table

We will examine each of these options

Unsorted Insertion General approach (1/2)

The general approach:

- Perform SEQUENTIALSEARCH to find the key
- If the search is successful, throw an exception
 - Keys must be unique!
- If the the search fails, add key and value to end of list

Unsorted Insertion

The algorithm (2/2)

```
procedure UnsortedInsert(k, v)
        i \leftarrow 0
 2:
        while i < n and keys[i] \neq k do
 3:
            i \leftarrow i + 1
 4:
        end while
 5:
 6.
        if i < n then
            throw DuplicateKeyException(k)
 7:
 8:
        else
            keys[i] \leftarrow k
 9:
             values[i] \leftarrow v
10:
            n \leftarrow n + 1
11:
        end if
12:
13: end procedure
```

Unsorted Removal

The approach, in pictures (1/2)

First, search for the key:

key
$$lackbreak$$
 keys $lackbreak k_0 \ k_1 \ \cdots \ lackbreak k_{i-1} \ k_i \ k_{i+1} \ \cdots \ lackbreak k_{n-2} \ k_{n-1}$

Next, subtract 1 from *n*:

$$\mathsf{keys} \ \boxed{k_0 \ k_1} \ \cdots \ \boxed{k_{i-1} \ k_i \ k_{i+1}} \ \cdots \ \boxed{k_{n-1} \ k_n}$$

Finally, copy the key and value from position n into position i:

keys
$$\begin{bmatrix} k_0 & k_1 \end{bmatrix} \cdots \begin{bmatrix} k_{i-1} & k_n & k_{i+1} \end{bmatrix} \cdots \begin{bmatrix} k_{n-1} & k_n \end{bmatrix}$$

Unsorted Removal

The algorithm (2/2)

```
procedure UnsortedRemove(k)
        i \leftarrow 0
 2:
        while i < n and keys[i] \neq k do
 3:
            i \leftarrow i + 1
 4.
        end while
 5:
 6.
        if i < n then
            n \leftarrow n - 1
 7:
            keys[i] \leftarrow keys[n]
8:
            values[i] \leftarrow values[n]
 9:
        else
10:
            throw KeyNotFoundException(k)
11:
        end if
12:
13: end procedure
```

Unsorted Search and Update Even closer to Sequential Search (1/3)

Search is exactly SEQUENTIALSEARCH

Update is very similar

- On successful search, store new value in position i
- No value returned

Both throw an exception if key is not found

Unsorted Search

The search algorithm (2/3)

```
procedure UnsortedSearch(k)
 2:
       i \leftarrow 0
       while i < n and keys[i] \neq k do
 3:
           i \leftarrow i + 1
 4.
       end while
 5:
 6:
       if i < n then
           return values[i]
 7:
       else
 8:
9.
           throw KeyNotFoundException(k)
       end if
10:
11: end procedure
```

Unsorted Update

The update algorithm (3/3)

```
procedure Unsorted Update (k, v)
 2:
        i \leftarrow 0
        while i < n and keys[i] \neq k do
 3:
            i \leftarrow i + 1
 4.
        end while
 5:
 6:
        if i < n then
            values[i] \leftarrow v
 7:
        else
 8:
9.
            throw KeyNotFoundException(k)
        end if
10:
11: end procedure
```

Analysis of Operations How much time do the operations need?

All operations utilize a sequential search

Keys are unordered, so no better search can be used

The four Dictionary operations are in O(n)

The common operations are all in O(1)

Sorted Insert The process (1/2)

List must always be sorted! Given a key-value pair k, v:

Move elements > k over to make room

Sorted Insert The algorithm (2/2)

```
1: procedure SortedInsert(v, k)
                    ▶ Same as FORGETFULBINARYSEARCH through end of loop
        if keys[low] = k then
 2:
 3:
            throw DuplicateKeyException(k)
        else
 4:
 5:
           i \leftarrow n-1
                                                           ▶ Move larger keys over
           while j >= 0 and keys[j] > k do
 6:
 7:
               keys[i+1] \leftarrow keys[i]
                values[i+1] \leftarrow values[i]
 8:
 g.
            end while
10:
            keys[i+1] \leftarrow k
                                                          ▶ Key and value go here
11:
            values[j+1] \leftarrow v
12:
            n \leftarrow n + 1
        end if
13:
14: end procedure
```

Sorted Removal The process (1/2)

Use binary search to find k:

Move elements > k over to cover k and its value:

Sorted Removal The algorithm (2/2)

```
1: procedure SortedInsert(v, k)
                   ▶ Same as FORGETFULBINARYSEARCH through end of loop
2:
       if keys[low] = k then
3:
           n \leftarrow n - 1
4:
           for j \leftarrow low to n-1 do
               keys[i] \leftarrow keys[i+1]
5:
               values[i] \leftarrow values[i+1]
6:
7:
           end for
8.
       else
9:
           throw KeyNotFoundException(k)
10:
       end if
11: end procedure
```

Sorted Search and Update The process (1/3)

Similar to process for unsorted dictionaries

- Search is just FORGETFULBINARYSEARCH
- Update is similar
 - Store new value instead of returning it
- Both throw exception if key not found

Sorted Search The algorithm (2/3)

```
1: procedure SORTEDSEARCH(k)
2:
        low \leftarrow 0
3:
        high \leftarrow n-1
4:
        while low < high do
            mid \leftarrow \frac{low + high}{2}
5:
6:
            if keys[mid] < k then
7:
                low \leftarrow mid + 1
8:
            else
9:
                high \leftarrow mid
            end if
10:
11:
        end while
12:
        if keys[low] = k then
13:
            return values[low]
14:
        else
15:
            throw KeyNotFoundException(k)
        end if
16:
17: end procedure
```

Sorted Update The algorithm (3/3)

```
procedure Sorted Update (k, v)
2:
        low \leftarrow 0
3:
        high \leftarrow n-1
4:
        while low < high do
             mid \leftarrow \frac{low + high}{2}
5:
6:
             if keys[mid] < k then
7:
                 low \leftarrow mid + 1
8:
             else
                 high \leftarrow mid
9:
10:
             end if
11:
        end while
12:
        if keys[low] = k then
             values[low] \leftarrow v
13:
14:
        else
15:
             throw KeyNotFoundException(k)
16:
        end if
17: end procedure
```

34 / 46

Sorted Dictionary Analysis

- Insert: O(n)
 - O(n) to move elements
- Remove: O(n)
 - $O(\lg n)$ to search
 - O(n) to move elements
- Search and update: $O(\lg n)$
- Common operations are still all in O(1)

A Problem

An issue with deletion from a hash table (1/2)

Start with a set of inserted keys that all collide:

$$h h + 1 h + 2 h + 3 h + 4$$
keys · · · $k_0 k_1 k_2 k_3 k_4 \cdot \cdot$

Now, delete k_1 :

Searching for k_4 fails if we stop at any gap:

keys
$$\cdots$$
 k_0 k_1 k_2 k_3 k_4 k_4 probes: $1^{\rm st}$ $2^{\rm nd}$

A Problem

An issue with deletion from a hash table (2/2)

Searching for k_4 succeeds if we continue past deletions:

keys
$$\cdots$$
 k_0 k_1 k_2 k_3 k_4 k_4 k_5 probes: 1^{st} 2^{nd} 3^{rd} 4^{th} 5^{th}

Use a third array status to indicate whether a location is:

- unused
- in use
- previously used but deleted

Hash Dictionary Insert The process (1/2)

All hash operations use the same basic process:

- \bullet Hash k to get starting position
- Probe until k found or proper gap found
- Perform appropriate action

Note

This presentation uses linear probe

Hash Dictionary Insert

The algorithm (2/2)

```
1: procedure HashInsert(k, v)
        i \leftarrow Hash(k)
3:
        while status[i] = IN_{-}USE do
            if keys[i] = k then
4:
5:
                throw DuplicateKeyException(k)
            end if
6:
7:
            i \leftarrow (i+1) \mod TABLE\_SIZE
8.
        end while
        keys[i] \leftarrow k
9:
10:
        values[i] \leftarrow v
11:
        status[i] \leftarrow IN_{-}USE
12: end procedure
```

Hash Table Remove, Search and Update

All use almost identical process

Differ in how to proceed when key is found:

- Remove sets *status*[*i*] to *DELETED*
- Search returns values[i]
- Update sets values[i] to v

Hash Table Removal

```
1: procedure HASHREMOVE(k)
       i \leftarrow Hash(k)
 2:
       while status[i] \neq UNUSED do
 3:
           if status[i] = IN\_USE and keys[i] = k then
 4:
               status[i] \leftarrow DELETED
 5:
 6:
               return
           end if
 7:
           i \leftarrow (i+1) \mod TABLE\_SIZE
 8:
 9:
       end while
       throw KeyNotFoundException(k)
10:
11: end procedure
```

Hash Table Search

```
1: procedure HASHSEARCH(k)
       i \leftarrow Hash(k)
       while status[i] \neq UNUSED do
3:
          if status[i] = IN\_USE and keys[i] = k then
4:
              return values[i]
5:
          end if
6:
          i \leftarrow (i+1) \mod TABLE\_SIZE
7:
       end while
8:
       throw KeyNotFoundException(k)
9:
10: end procedure
```

Hash Table Update

```
1: procedure HASHUPDATE(k, v)
       i \leftarrow Hash(k)
 2:
       while status[i] \neq UNUSED do
 3:
           if status[i] = IN\_USE and keys[i] = k then
 4:
               values[i] \leftarrow v
 5:
 6:
               return
           end if
 7:
           i \leftarrow (i+1) \mod TABLE\_SIZE
 8:
 9:
       end while
       throw KeyNotFoundException(k)
10:
11: end procedure
```

Hash Dictionary Analysis

Remember the two assumptions about hashing:

- Keys are spread evenly by hash function
- Table doesn't get too full

If these assumptions are valid, then all hash dictionary operations are in $\mathcal{O}(1)$

Summary

- Dictionaries store key-value pairs
- Three common methods for implementing backing store
- Three methods for implementing a dictionary
 - Unsorted list
 - Sorted list
 - Hash table