

Dr. rer. nat. Johannes Riesterer

Lebesgue Integral

Indikatorfunktion

Für eine Teilmenge $A \subset \mathbb{R}^n$ heißt

$$1_{\mathcal{A}}(x) := \begin{cases} 1 \text{ falls } x \in \mathcal{A} \\ 0 \text{ sonst} \end{cases}$$

Indikatorfunktion.

Lebesgue Integral

Sinnvoller Integralbegriff

Definiere Integral über Funktionen so, dass $\int 1_A d\mu = \mu(A)$

Lebesgue Integral

Treppenfunktion

Eine Funktion

$$\varphi(x) := \sum_{k=1}^{m} c_k 1_{I_k}(x)$$

mit $c_k \in \mathbb{R}$ und $I_k \in \mathbb{I}(n)$ mit $I_i \cap I_h = \emptyset$ für $i \neq j$ heißt Treppenfunktion.

Figure: Quelle: Wikipedia:

Vektorraum der Indikatorfunktionen

Seien $\varphi(x) = \sum_{k=1}^m c_k 1_{I_k}$ und $\psi(x) = \sum_{j=1}^l u_j 1_{I_j}$. Dann definiert $(\varphi + \psi)(x) := \sum_{k=1}^m \sum_{j=1}^l (c_k + u_j) 1_{I_{k,j}}$ mit $I_{k,j} := I_k \cap I_j$ eine Treppenfunktion (nach entsprechender Umnummerierung zu einem einzigen Summenzeichen).

Integral von Treppenfunktionen

Für eine Treppenfunktion $\varphi(x) := \sum_{k=1}^m c_k 1_{I_k}$ definieren wir das Integral durch

$$\int_{\mathbb{R}^n} \varphi d\mu := \sum_{k=1}^m c_k \mu(I_k) .$$

Eigenschaften des Integrals von Treppenfunktionen

Seien $\varphi(x) = \sum_{k=1}^m c_k 1_{I_k}$ und $\psi(x) = \sum_{j=1}^l u_j 1_{I_j}$ zwei Treppenfunktionen. Für das Integral von Treppenfunktionen gilt:

- Ist $\varphi(x) = \psi(x)$ für alle x, dann ist $\int_{\mathbb{R}^n} \varphi d\mu = \int_{\mathbb{R}^n} \psi d\mu$ (Das Integral hängt nicht von der Zerlegung der Treppenfunktion ab und ist wohldefiniert)
- $\bullet \int_{\mathbb{R}^n} \alpha \varphi + \beta \psi d\mu = \alpha \int_{\mathbb{R}^n} \varphi d\mu + \beta \int_{\mathbb{R}^n} \psi d\mu$
- $\bullet \left| \int_{\mathbb{R}^n} \varphi d\mu \right| \leq \int_{\mathbb{R}^n} |\varphi| d\mu$
- Ist $\varphi(x) \leq \psi(x)$ für alle x, so ist $\int_{\mathbb{R}^n} \varphi d\mu \leq \int_{\mathbb{R}^n} \psi d\mu$

Beweis

Der Beweis wird über eine vollständige Induktion geführt. Der Induktionsanfang ist einfach zu zeigen. Wir nehmen an, die Aussage gilt für alle Dimensionen k < n. Zerlege $\mathbb{R}^n = \mathbb{R}^p \times \mathbb{R}^{n-p}$. Jeder Quader $I \in \mathbb{I}(n)$ zerlegt sich damit ebenfalls in ein Produkt $I = I' \times I''$ mit $I' \in \mathbb{I}(p)$ und $I'' \in \mathbb{I}(n-p)$ und für $z=(x,y)\in\mathbb{R}^p\times\mathbb{R}^{n-p}$ gilt $1_I(z)=1_{I'}(x)\cdot 1_{I''}(y)$. Es sei nun $\varphi(z) := \sum_{k=1}^m c_k 1_{l_k}(z)$ eine Treppenfunktion auf $\mathbb{R}^p \times \mathbb{R}^{n-p}$. Für jedes $y \in \mathbb{R}^{n-p}$ definiert $\varphi_y(x) = \sum_{k=1}^m c_k 1_{l_k''}(y) \cdot 1_{l_k'}(x)$ eine Treppenfunktion auf \mathbb{R}^p . Nach Induktionsvoraussetzung hängt das Integral

$$\int_{\mathbb{R}^p} \varphi_y(x) d\mu' = \sum_{k=1}^m c_k \mu'(I'_k) \cdot 1_{I''_k}(y) =: \phi(y)$$

nicht von der Zerlegung der Treppenfunktion ab.

Beweis

 $\phi(y)$ ist wiederum eine Treppenfunktion auf \mathbb{R}^{n-p} und nach Induktionsvoraussetzung hängt das Integral

$$\int_{\mathbb{R}^{n-\rho}} \phi(y) d\mu'' = \sum_{k=1}^m c_k \mu'(I_k') \cdot \mu''(I_k'')(y)$$

nicht von der Zerlegung der Treppenfunktion ab. Somit gilt

$$\int_{\mathbb{R}^{n-\rho}} \int_{\mathbb{R}^{\rho}} \varphi_{y}(x) d\mu' d\mu'' = \sum_{k=1}^{m} c_{k} \mu'(I'_{k}) \cdot \mu''(I''_{k})(y)$$
$$= \sum_{k=1}^{m} c_{k} \mu(I_{k}) = \int_{\mathbb{R}^{n}} \varphi(z) d\mu.$$

Die linke Seite hängt damit nicht von der Zerlegung der Treppenfunktion ab und alle Behauptungen können so auf den Fall n=1 zurückgeführt werden.

Lebesgue Integral

Satz von Fubini für Treppenfunktionen

Es gilt

$$\int_{\mathbb{R}^n} \varphi(x,y) d\mu = \int_{\mathbb{R}^{n-p}} \left(\int_{\mathbb{R}^p} \varphi(x,y) d\mu' \right) d\mu''$$

Beweis

Folgt direkt aus Beweis des letzten Satzes.

Lebesgue Integral

Hüllreihe

Eine Hüllreihe zu einer Funktion $f: \mathbb{R}^n \to \mathbb{R}$ ist eine Reihe $\phi(x) := \sum_{k=1}^{\infty} c_k 1_{I_k}(x)$ mit den folgenden Eigenschaften:

- $c_k \in \mathbb{R}$ sind positive reelle Zahlen $c_k > 0$.
- $I_k \subset \mathbb{R}^n$ sind offene Quader.
- Für alle $x \in \mathbb{R}^n$ gilt $|f(x)| \le \phi(x)$.

Inhalt einer Hüllreihe

Der Inhalt einer Hüllreihe $\phi(x) := \sum_{k=1}^{\infty} c_k 1_{I_k}(x)$ ist definiert durch

$$I(\phi) := \sum_{k=1}^{\infty} c_k \ \mu(I_k) \ .$$

Lebesgue Integral

L^1 -Halbnorm

Die L^1 -Halbnorm einer Funktion $f:\mathbb{R}^n\to\mathbb{R}$ ist definiert durch das Infimum der Inhalte der Hüllreihen zu f

$$||f||_1 := \inf \bigg\{ I(\phi) \mid \phi \text{ ist H\"ullreihe zu } f \bigg\}$$
 .

Rechenregeln für Hüllfunktionen

Für $f, g : \mathbb{R}^n \to \mathbb{R}$ und $c \in \mathbb{R}$ gilt:

- $||cf||_1 \leq |c|||f||_1$.
- $||f + g||_1 \le ||f||_1 + ||g||_1$
- Aus $f(x) \le g(x)$ für alle x folgt $||f||_1 \le ||g||_1$.

Beweis

- Für eine Hüllreihe φ von f ist $|c| \cdot \varphi$ eine Hüllreihe von $c \cdot f$.
- Da $|f+g| \le |f| + |g|$ folgt Behauptung aus (iii) und der verallgemeinerten Dreiecksungleichung.
- Hüllreihen sind immer größer-gleich der Funktion und damit haben größere Funktionen größere Hüllreihen.

Verallgemeinerte Dreiecksungleichung

Für nicht negative Funktionen $f_k:\mathbb{R}^n o \mathbb{R}_{\geq 0}$ gilt

$$\left|\left|\sum_{k=1}^{\infty} f_k\right|\right|_1 \leq \sum_{k=1}^{\infty} ||f_k||_1.$$

 $1\cdot 1_I$ ist eine Hüllreihe von 1_i und damit gilt $||1_I|| \leq \mu(I)$. Sei $\phi(x) = \sum_k c_k 1_{I_k}$ eine Hüllreihe von 1_i und $\epsilon > 0$. Da $\phi(x) \geq 1$ gibt es für jedes x einen Index N(x) mit $\sum_{k=1}^{N(x)} c_k 1_{I_k} \geq 1 - \epsilon$. Da die I_k offen sind, gibt es für jedes x eine Umgebung U(x), so dass letztere Gleichung gilt. Da \overline{I} kompakt ist (beschränkt und abgeschlossen), überdecken endlich viele $U(x_1), \cdots, U(x_n)$ den Quader I. Mit $N := \max\{N(x_1), \cdots, N(x_n) \text{ folgt } \sum_{k=1}^{N} c_k 1_{I_k} \geq (1-\epsilon)1_I$. Aus den Rechenregeln für Treppenfunktionen (iii) folgt

$$I(\phi) = \sum_k c_k \mu(I_k) \geq \sum_{k=1}^N c_k \mu(I_k) \geq (1-\epsilon)\mu(I)$$
.

Mit $\epsilon \to 0$ folgt $I(\phi) \ge \mu(i)$ und damit insgesamt die Behauptung.

Lebesgue Integral

Norm und Integral

Für jede Treppenfunktion φ auf \mathbb{R}^n gilt

$$||\varphi||_1 = \int |\varphi| d\mu$$
.

Lebesgue Integral

Integrierbare Funktionen

Eine Funktion $f: \mathbb{R}^n \to \mathbb{R}$ heißt integrierbar, falls eine Folge von Treppenfunktionen φ_k existiert mit

$$||f-\varphi_k||_1 \to 0$$
 für $k \to \infty$.

Integrierbare Funktionen

- Die reelle Zahlenfolge $\int \varphi_k d\mu$ ist eine Cauchyfolge und damit konvergent.
- Der Grenzwert ist unabhängig von der Folge φ_k .

Für Treppenfunktionen ψ und ξ gilt

$$\left| \int \psi d\mu - \int \xi d\mu \right| \le \int |\psi - \xi| d\mu = ||\psi - \xi||_1$$

$$\le ||\psi - f||_1 + ||f - \xi||_1$$

woraus die Behauptungen folgen.

Lebesgue Integral

Integral und Norm

Ist f über \mathbb{R}^n integrierbar, so auch |f| und es gilt

$$\left| \int f d\mu \right| \leq \int |f| d\mu = ||f||_1 \ .$$

Beweis

Sei f integrierbar und φ_k eine Folge von Treppenfunktionen mit $||f-\varphi_k||_1 \to 0$. Aus $||f|-|\varphi_k|| \le |f-\varphi|$ ergibt sich wegen der Monotonie der L^1 -Norm

$$||f| - |\varphi_k||_1 \le ||f - \varphi_k||_1$$
.

Damit gilt $||f| - |\varphi_k||_1 \to 0$ und somit ist |f| integrierbar und mit der Abschätzung von Beträgen für Treppenfunktionen gilt

$$\left| \int f d\mu \right| = \left| \lim_{k} \int \varphi_{k} d\mu \right| \leq \int |\varphi_{k}| d\mu = \int |f| d\mu$$

und damit der erste Teil der Behauptung. Mit der Dreiecksungleichung erhalten wir

$$||f|| - ||f - \varphi||_1 \le ||\varphi_k||_1 \le ||f||_1 + ||f - \varphi_k||_1$$

und wegen $||\varphi_k||_1 = \int |\varphi_k| d\mu \to \int |f| d\mu$ folgt die Behauptung.

Rechenregeln

Sind f und g integrierbar, so gilt

• $\alpha f + \beta g \text{ mit } \alpha, \beta \in \mathbb{R} \text{ ist integrierbar mit}$

$$\int lpha {\it f} + eta {\it gd} \mu = lpha \int {\it fd} \mu + eta \int {\it gd} \mu \; .$$

- Aus $f(x) \le g(x)$ für alle $x \in \mathbb{R}^n$ folgt $\int f d\mu \le \int g d\mu$.
- Ist g zusätzlich beschränkt, so ist auch $f \cdot g$ integrierbar.

- Sind ϕ_k und ψ_k approximierende Folge von Treppenfunktionen von f und g, so ist $\alpha\phi_k+\beta\psi_k$ eine approximierende Folge von $\alpha f+\beta g$.
- Es ist $\int (g f) d\mu = ||g f||_1 \ge 0$.

Lebesgue Integral

Min Max

Ist f integrierbar, so auch $f^+ := \max(f,0)$ und $f^- := \min(f,0)$. Damit ist $f = f^+ + f^-$ genau dann integrierbar, wenn f^+ und f^- integrierbar sind. Da $-f^- \ge 0$ ist, kann man sich in Beweisen häufig auf den Fall $f \ge 0$ beschränken.

Beweis

Es ist $\max(f,0) = \frac{1}{2}(f+|f|)$ und $\min(f,0) = \frac{1}{2}(f-|f|)$ und die Behauptung folgt aus den Rechenregeln.

Integration über Teilmengen

Für eine Teilmenge $A \subset \mathbb{R}^n$ und eine Funktion $f: A \to \mathbb{R}$ heißt

$$f_A(x) := \begin{cases} f(x) & \text{für } x \in A \\ 0 & \text{für } x \in \mathbb{R}^n \setminus A \end{cases}$$

die triviale Fortsetzung von f auf \mathbb{R}^n . f heißt integrierbar über A, falls f_A über \mathbb{R}^n integrierbar ist und in diesem Fall bezeichnen wir mit

$$\int_{A} f(x) d\mu := \int f_{A}(x) d\mu$$

als das Integral von f über A.

Kleiner Satz von B. Levi

Zu $f:\mathbb{R}^n \to \mathbb{R}$ gebe es eine monoton wachsende Folge φ_k von Treppenfunktionen mit

- Für alles $x \in \mathbb{R}^n$ git $\lim_{k \to \infty} \varphi(x) = f(x)$. f ist also die punktweise gebildete Grenzfunktion der φ_k .
- Die reelle Folge der Integrale $\int \varphi_k d\mu$ ist beschränkt.

Dann ist f integrierbar und es gilt

$$\int f d\mu = \lim_{k o \infty} \int \varphi_k d\mu \ .$$

Aus $f-\varphi_k=\sum_{i=k}^\infty (\varphi_{k+1}-\varphi_k)$ folgt mit der verallgemeinerten Dreiecksungleichung und dem Satz über Norm und Integration

$$||f - \varphi_k||_1 \leq \sum_{i=k}^{\infty} \int |\varphi_{i+1} - \varphi_i| d\mu = \sum_{i=k}^{\infty} \left(\int \varphi_{i+1} d\mu - \int \varphi_i d\mu \right).$$

Die Folge $\int \varphi_k$ ist monoton wachsend und beschränkt und damit konvergent. Bezeichnen wir mit I den Grenzwert, so folgt $||f-\varphi_k||_1 \leq I - \int \varphi_k d\mu$. Also gilt $||f-\varphi_k||_1 \to 0$ für $k \to \infty$ und damit ist f integrierbar und mit der Definition des Integrals folgt die Behauptung.

Lebesgue Integral

Offene Mengen

Eine Menge $U \subset \mathbb{R}^n$ heißt offen, falls für alle $a \in U$ ein Radius r > 0 existiert, so dass der Ball

 $B_r(a) := \{x \in \mathbb{R}^n \mid ||x - a|| \le r\} \subset U \text{ in } U \text{ enthalten ist.}$

Lebesgue Integral

Stetige Funktionen auf offenen Mengen sind integrierbar

Sei $U \subset \mathbb{R}^n$ offen und beschränkt und $f: U \to \mathbb{R}$ stetig und beschränkt. Dann ist f über U integrierbar.

Da U offen ist, kann man man um jeden Punkt $a \in U$ einen Würfel $W_r(a)$ finden, dessen Mittelpunkt a und dessen Kantenlänge r eine rationale Zahl ist. Damit kann man zu Punkten a_1, \dots, a_n Würfel wählen, so dass $W_r(a_i) \cap W_r(a_i) = \emptyset$ für $i \neq j$ und mit $m_i := \min\{f(x) | x \in W_r(a_i)\}$ Hüllreihen $\psi_{a_1,\dots,a_n} := \sum_{i=1}^n m_i 1_{W_r(a_i)}$ konstruieren mit $\psi \leq f$. Bezeichnen wir mit $\mathcal{T} := \{\psi_k\}$ die abzählbare Menge dieser Treppenfunktionen, so ist $f = \sup\{\psi \mid \psi \in \mathcal{T}\}$ und $\varphi_k := \max\{\psi_1, \cdots, \psi_k\}$ eine monoton wachsende Treppenfunktion mit $\varphi_k \to f$. Da U beschränkt ist, gibt es eine Quader I mit $U \subset I$ und mit $M := \max f$ ist $\int \varphi_k d\mu \leq M\mu(I)$ beschränkt. Mit dem Satz von B. Levi folgt die Behauptung.