02/09/2025 - Maternaticas Discretas 1 (Udea)

1. Repas= clase anterior

Tablas de verdad

р	$\neg p$
F	V
V	F

p	q	$p \wedge q$	$p \lor q$	$p \oplus q$	$p \rightarrow q$	$p \leftrightarrow q$
F	F	F	F	F	V	V
F	V	F	V	V	V	F
V	F	F	V	V	F	F
V	V	V	V	F	V	V

Reglas de prioridad

Prioridad	Operador	Asociatividad	Ejemplo con paréntesis
1 (la mas alta)	7	No aplica (unitario)	$\neg p \land q \mapsto ((\neg p) \land q)$
2	٨	Izquierda $(I \rightarrow D)$	$p \land q \land r \mapsto ((p \land q) \land r)$
3	V	Izquierda $(I \rightarrow D)$	$p \lor q \lor r \mapsto ((p \lor q) \lor r)$
4	Ф	Izquierda $(I \rightarrow D)$	$p \oplus q \oplus r \mapsto ((p \oplus q) \oplus r)$
5	→	Derecha $(D \rightarrow I)$	$p \to q \to r \mapsto (p \to (p \to r))$
6 (la mas baja)	\leftrightarrow	Derecha $(D \rightarrow I)$	$p \leftrightarrow q \leftrightarrow r \mapsto (p \leftrightarrow (p \leftrightarrow r))$

Trabajando con tablas de verdad

Para construir una tabla de verdad se siguen los siguientes pasos:

- 1. Identificar las variables proposicionales.
- 2. Determinar el número de filas necesarias (para n variables 2^n columnas).
- Construir las columnas de las variables (Falso = 0; Verdadero = 1).
- 4. Agregar columnas auxiliares si es necesario.

Tip de legibilidad: Cuando la cantidad de columnas es muy grande es útil representar una expresión lógica (con letras minúsculas) con una letra mayúscula.

- Evaluar la expresión lógica paso a paso.
- 6. Revisar y validar la tabla.

nbien vimos: - Clasificación de las proposiciones de Contradicción - Contingencia

- Equivalencia Logica: Per Q es Tantología.

2. Enfoque axio matico

Proposiciones

EnFaque de modelos

Tablors de verdad 1 EnFoque axiomatico Identidades logicas.

Identidades trigonometricas basicas

1. Simplifique: tan3 or cos d csc2d

$$\cos^2\alpha + \sin^2\alpha = 1$$

$$\csc \alpha = \frac{1}{\sin \alpha}$$

$$\sec^2\alpha = 1 + \tan^2\alpha$$

$$\operatorname{ec} \alpha = \frac{1}{\cos \alpha}$$

$$\csc^2\alpha = 1 + \cot^2\alpha$$

$$\cot \alpha = \frac{1}{\tan \alpha} = \frac{\cos \alpha}{\sin \alpha}$$

$$\tan^3 d = \sec (\sec^2 d) = \left(\frac{\sec^3 d}{\csc^3 d}\right) \left(\frac{1}{\sec^3 d}\right) = \frac{\sec d}{(\cos^2 d)} = \frac{1}{\cos^2 d} = \frac{1}{\cos^2 d}$$

- tand. secd

$$tan^3 d C=sd Csc^2 d = \left(\frac{sen^3 d}{cs^2 d}\right) \left(\frac{\Lambda}{sen^2 d}\right)$$

$$= \frac{send}{cos^2 d}$$

Equivalencias Lógicas.

Equivalencias lógicas			
Nombre	Equivalencias		
1. Leyes conmutativas	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$	
2. Leyes asociativas	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	
3. Leyes distributivas	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	
4. Leyes de la identidad	$p \wedge \mathbf{V} \equiv p$	$p \vee \mathbf{F} \equiv p$	
5. Leyes de negación	$p \vee \neg p \equiv \mathbf{V}$	$p \land \neg p \equiv \mathbf{F}$	
6. Ley de la doble negación	$\neg(\neg p) \equiv p$		
7. Leyes de idempotencia	$p \wedge p \equiv p$	$p \lor p \equiv p$	
8. Leyes universales acotadas	$p \vee \mathbf{V} \equiv \mathbf{V}$	$p \wedge \mathbf{F} \equiv \mathbf{F}$	
9. Leyes de De Morgan	$\neg (p \land q) \equiv \neg p \lor \neg q$	$\neg (p \lor q) \equiv \neg p \land \neg q$	
10. Leyes de absorción	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$	
11. Negaciones de V y F	$\neg V = F$	$\neg \mathbf{F} = \mathbf{V}$	

Equivalencias lógicas con condicionales		
$p \to q \equiv \neg p \lor q$		
$p \to q \equiv \neg q \to \neg p$		
$p \vee q \equiv \neg p \rightarrow q$		
$p \land \neg q \equiv \neg (p \to \neg q)$		
$\neg(p \to q) \equiv p \land \neg q$		
$(p \to q) \land (p \to r) \equiv p \to (q \land r)$		
$(p \to r) \land (q \to r) \equiv (q \lor r) \to r$		
$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$		
$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$		
$p \lor (p \land q) \equiv p$		

Equivalencias lógicas con bicondicionales		
$p \leftrightarrow q \equiv (p \to q) \lor (q \to p)$		
$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$		
$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$		
$\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q$		

3. Demostración de equivalencias logicas usando el cufoque axiomático.

Enfoque de Modelos

Tabla de verdad:

A=Bes una tentología

Enfoque axionatico

A = B

Se parte de un lado o de algo que es verdad para llegar al otro lado mediante

transformaciones logias aplicando Equivalencias logias

Nombre	Equivalencia lógica		
Conmutatividad	$P \wedge Q \equiv Q \wedge P$	$P \lor Q \equiv Q \lor P$	
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$	
Distributividad	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$	
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$	
Doble negación	$\neg(\neg P) \equiv P$		
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$	
Identidad	$P \wedge V \equiv P$	$P \vee F \equiv P$	
Dominación	$P \wedge F \equiv F$	$P \lor V \equiv V$	
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$	
Complemento	$P \wedge \neg P \equiv F$	$P \vee \neg P \equiv V$	
Implicación	$P \to Q \equiv \neg P \lor Q$		
Contrarrecíproco	$P \to Q \equiv \neg Q \to \neg P$		
Equivalencia	$P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$		

Procedimiento

Justificacion

Operación Lagica

Identidad aplicada

Ejemplos

- Demuestre mediante el uso de identidades lógicas demuestre la ley de la absorción para el Y
- 2. Demuestre que $\neg (p \lor (\neg p \land q))$ es lógicamente equivalente a $\neg p \land \neg q$
- 3. Pruebe la siguiente equivalencia lógica: $\neg(\neg p \land q) \land (p \lor q) \equiv p$
- 4. Demuestre que $(p \land q) \rightarrow (p \lor q)$ es una tautología.
- 5. Considerar el siguiente argumento: "Si la ley no fue aprobada, entonces la constitución del país queda sin modificaciones. Si la constitución del país queda sin modificaciones no se puede elegir nuevos diputados. O se eligen nuevos diputados o el informe del presidente del país se retrasará. El informe no se retrasó un mes. Por lo que la ley fue aprobada". Verificar su validez por la prueba formal de validez.

	N (N)	₽ (√)
Nombre	Fauivalen	icia lógica
Conmutatividad	$P \wedge O \equiv O \wedge P$	$P \lor Q \equiv Q \lor P$
Asociatividad	$P \wedge (Q \wedge R) = (P \wedge Q) \wedge R$	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
Distributividad	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$
Doble negación	$\neg (\neg P)$	$() \equiv P$
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$
Identidad	$P \wedge V \equiv P$	$P \vee F \equiv P$
Dominación	$\overline{P \wedge F} \equiv F$	$P \vee V \equiv V$
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \vee (P \wedge Q) \equiv P$
Complemento	$(P \land \neg P \equiv F)$	$P \lor \neg P \equiv V$
Implicación	$P \to Q \equiv \neg P \lor Q$	
Contrarrecíproco	$P \rightarrow Q \equiv \neg Q \rightarrow \neg P$	
Equivalencia	$P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$	

Justificación

Tavea: Demostrar usando tables de verdad

E TPANTAPA

Ley de Morgan para el O(V)

E TPANTAPA

Ley de Morgan para el y(N)

E TPANTAPA

Ley de la doble regacion

E TPANTAPA

Ley de la doble regacion

E TPANTAPA

Ley del complemento para el y(N)

E TPANTAPA

Ley de la Tdentidad para o(V)