

REPASO ISOMORFISMO

Def. Dos **grafos simples** $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ son **isomorfos** $(G_1 \cong G_2)$ si existe una función biyectiva $f : V_1 \rightarrow V_2 / u, v \in V_i$

u y v son adyacentes en G₁ si y sólo si, f(u) y f(v) son adyacentes en G₂.

Una arista/arco $\mathbf{e_i} \in \mathbf{E_1}$ une los vértices $\mathbf{u}, \mathbf{v} \in \mathbf{V_1}$ si y sólo si, la arista/arco correspondiente $\mathbf{e_1'} \in \mathbf{E_2}$ une los vértices $\mathbf{f(u)}, \mathbf{f(v)} \in \mathbf{V_2}$

Elegimos imágenes de vértices de G $f(v_1) = u_1$, $f(v_2) = u_4$, $f(v_3) = u_3$ $f(v_4) = u_2$ es biyectiva entre V_1, V_2

Vemos que **f** preserva la adyacencia:

$$E_1 = \{ \{v_{1,}v_2\}, \{v_{1,}v_3\}, \{v_{2,}v_4\}, \{v_{3,}v_4\} \}$$

$$E_2 = \{ \{u_{1,}u_3\}, \{u_{1,}u_4\}, \{u_{2,}u_3\}, \{u_{2,}u_4\} \}$$

$$\{v_{1,}v_{2}\} \in E_{1} \rightarrow \{u_{1} u_{4}\} \in E_{2}$$

$$\{v_{1,}v_{3}\} \in E_{1} \rightarrow \{u_{1} u_{3}\} \in E_{2}$$

$$\{v_{2,}v_{4}\} \in E_{1} \rightarrow \{u_{2} u_{4}\} \in E_{2}$$

$$\{v_{3,}v_{4}\} \in E_{1} \rightarrow \{u_{2} u_{3}\} \in E_{2}$$

Es suficiente encontrar un isomorfismo entre vértices para asegurar que los grafos son isomorfos.

$$H = (V_2, E_2)$$

2ª elección de vértices:

$$f(v_1) = u_4$$

$$f(v_2) = u_2$$

$$f(v_3) = u_3$$

$$f(v_4) = u_1$$

Vemos que ahora **NO** se preserva adyacencia:

$$E_1 = \{ \{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_4\}, \{v_3, v_4\} \}$$

$$E_2 = \{ \{u_{1,}u_3\}, \{u_{1,}u_4\}, \{u_{2,}u_3\}, \{u_{2,}u_4\} \}$$

$$\{v_{1,}v_{2}\} \in E_{1} \rightarrow \{u_{2} u_{4}\} \in E_{2}$$

$$\{v_{1,}v_{3}\} \in E_{1} \rightarrow \{u_{3} u_{4}\} \notin E_{2}$$

$$\{v_{2,}v_{4}\} \in E_{1} \rightarrow \{u_{1} u_{2}\} \notin E_{2}$$

$$\{v_{3,}v_{4}\} \in E_{1} \rightarrow \{u_{1} u_{3}\} \in E_{2}$$

M° JESÚS CASTEL DE HARO

- 1. G: obtén un subgrafo generador ¿es único?
- 2. H: ¿Es posible encontrar una cadena simple que sea camino, de longitud 3 ?

Si, escribe:

No, pq:

3. G: Es posible encontrar un **3-ciclo** ?

Si 3-ciclo escríbelo:

No 3-ciclo pq:

4. H: Es posible encontrar un **3-circuito** ?

Si 3-circuito escríbelo:

No 3-ciclo pq:

- **5. G**: Determina el conjunto Γ^2 (b)
- **6.** H: Determina el conjunto Γ^2 (b)
- 7. ¿ G y H son conexos? No demuestres, sólo responde SI, NO

Ejercicio5-H1: i) Escribe los vértices a los que alcanza cada uno.

ALCANZA		
$\mathbf{v_1}$		
$\mathbf{v_2}$		
V ₃	todos	
V_4		
v ₅		
v ₆		

- j) ¿Están conectados los vértices v₁ y v₅ ?
- k) ¿Cualquier par de vértices está conectado?
- I) ¿El grafo es conexo?

Ejercicio5-H1: h) Escribe los vértices a los que alcanza cada uno.

ALCANZA	
V ₁	$\mathbf{v}_2 \mathbf{v}_3 \mathbf{v}_4 \mathbf{v}_5$
V ₂	V ₄
V ₃	$\mathbf{v_1} \mathbf{v_2} \mathbf{v_4} \mathbf{v_5}$
V_4	V ₂
V ₅	$\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3 \mathbf{v}_4$

- i) ¿Están conectados los vértices v₁ y v₅ ?
- j) ¿Cualquier par de vértices está conectado?
- k) ¿El grafo es conexo?

$$G = (V,E), u, v \in V$$

GND: u ALCANZA a v si existe una <u>cadena</u> de u a v .

GD: u ALCANZA a v si existe una Cadena dirigida de u a v

- >> Las cadenas pueden ser de cualquier longitud
- >> Todo vértice se alcanza a sí mismo con una cadena de longitud cero

CÁLCULO de los vértices a los que alcanza el vértice v con una cadena:

- de long $0 \rightarrow \Gamma^0(v) = \{v\}$ (por definición)
- de long 1 $\rightarrow \Gamma(v) = \{ u \in V / \{u,v\} \in E \}$ (adyacentes)
- de long 2 $\rightarrow \Gamma^2(v) = \Gamma(\Gamma(v))$

- de long p $\rightarrow \Gamma^p(v) = \Gamma(\Gamma^{p-1}(v)), p \le n$

- La longitud máxima de la cadena será: **p = n.**

Ejercicio6-H1: Sea A matriz de adyacencia de un grafo G = (V,E), $V = \{v_1, v_2, v_3, v_4\}$

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- a) Usando los conjuntos $\Gamma^{p+1}(v_i)$ calcula los vértices a los que $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ al canza el vértice v_1 mediante una cadena de longitud 2.
 b) ¿Cuál es la longitud máxima que existe entre los vértices de este grafo para determinar el alcance de cada uno?
 c) Calcula la $CC(v_1)$. c) Calcula la CC(v₁).
 - d) Según el resultado de c) ¿puedes decir si el grafo es conexo?

a) Vértices a los que alcanza **v** con cadenas:

- de long 0
$$\rightarrow \Gamma^0(v_1) = \{v_1\}$$
 (por definición)
- de long 1 $\rightarrow \Gamma(v) = \{u \in V / \{u,v\} \in E\} \rightarrow \Gamma(v_1) = \{v_2\}$ (adyacentes)
- de long 2 $\rightarrow \Gamma^2(v) = \Gamma(\Gamma(v))$ $\rightarrow \Gamma^2(v_1) = \Gamma(\Gamma(v_1)) = \Gamma(v_2) = \{v_1, v_3\}$

b) La longitud máxima es de 4 (nº de vértices)

Ejercicio5-H1: i) Escribe los vértices a los que alcanza cada uno.

ALCANZA	
V ₁	
V ₂	
V ₃	todos
\mathbf{v}_4	
v ₅	
v ₆	

- j) ¿Están conectados los vértices v₁ y v₅ ?
- k) ¿Cualquier par de vértices está conectado?
- I) ¿El grafo es conexo?

Vértices Conectados

Ejercicio5-H1: h) Escribe los vértices a los que alcanza cada uno.

ALCANZA		
$\mathbf{v_1}$	$\mathbf{v_2} \mathbf{v_3} \mathbf{v_4} \mathbf{v_5}$	
V ₂	V_4	
v ₃	$\mathbf{v_1} \mathbf{v_2} \mathbf{v_4} \mathbf{v_5}$	
\mathbf{v}_4	v ₂	
v ₅	$\mathbf{v_1} \mathbf{v_2} \mathbf{v_3} \mathbf{v_4}$	

i) ¿Están conectados los vértices v₁ y v₅ ? NO

j) ¿Cualquier par de vértices está conectado? NO

k) ¿El grafo es conexo? NO

$$G = (V,E), u, v \in V$$

GND: u ALCANZA a v si existe una cadena de u a v.

GD: u ALCANZA a v si existe una Cadena dirigida de u a v

>> Las cadenas pueden ser de cualquier longitud

>> Todo vértice **se alcanza a sí mismo** con una cadena de **longitud cero**

Los vértices u, v están CONECTADOS si existe un camino de u a v y viceversa

>> Cuando existe un camino entre cualquier par de vértices <u>distintos</u> del grafo el grafo es **CONEXO**

- >> Un grafo es conexo si todo par de vértices está conectado.
- >> Un GD es débilmente conexo si es conexo su GND asociado
- >> Un grafo que **no es conexo** es la unión de dos o más subgrafos conexos que no tienen vértices en común >> **COMPONENTES CONEXAS (CC)** del grafo.
- $>> \forall v_i$ CC(v_i): mayor subgrafo conexo del grafo que contiene a v_i
- $>> CC(v_i)$: vértices a los que **alcanza vi** $(R(v_i))$ y los que **lo alcanzan** a él $(Q(v_i))$.

$$CC(v_i) = R(v_i) \cap Q(v_i)$$

- >> Cuando todos los vértices pertenecen a la misma CC, el grafo es conexo.
 - Arr R: Matriz de **accesibilidad** Arr Q: Matriz de **acceso Q** = R^T

$$R = [r_{ij}] / r_{ij} = \begin{cases} 1 & \text{si } v_i \text{ alcanza a } v_j \\ 0 & \text{en otro caso} \end{cases}$$

Cálculo de R

$$R(\mathbf{v}_i) = \{\mathbf{v}_i\} \cup \Gamma(\mathbf{v}_i) \cup \Gamma^2(\mathbf{v}_i) \dots \cup \Gamma^p(\mathbf{v}_i),$$

$$\Gamma^{p+1}(\mathbf{v}_i) \subseteq \{\mathbf{v}_i\} \cup \Gamma(\mathbf{v}_i) \cup \Gamma^2(\mathbf{v}_i) \dots \cup \Gamma^p(\mathbf{v}_i), \ p \le n.$$

Fila i de R >> $R(v_i) \rightarrow v$ értices a los que alcanza v_i mediante:

- cadena long
$$0 \rightarrow \Gamma^0(\mathbf{v}) = \{ \mathbf{v}_i \}$$

- cadena de long 2
$$\rightarrow \Gamma^2(v) = \Gamma(\Gamma(v))$$

...

- cadena de long p
$$\rightarrow \Gamma^{p}(v) = \Gamma(\Gamma^{p-1}(v))$$

- Como máximo calcular hasta **p = n.**

Antes de estudiar conexión calcula $R(v_1)$

Esta parte vale para Ejercicio 7

$$\Gamma(\mathsf{v}_1) = \{\mathsf{v}_2, \mathsf{v}_3\}$$

$$\Gamma^{2}(v_{1}) = \Gamma(\Gamma(v_{1})) = \Gamma(v_{2}, v_{3}) = \Gamma(v_{2}) \cup \Gamma(v_{3}) = \{v_{4}, v_{5}\}$$

Compruebo $\Gamma^2(v_1) = \{v_4, v_5\} \subseteq \{v_1\} \cup \{v_2, v_3\}$

$$\Gamma^{3}(v_{1}) = \Gamma(\Gamma^{2}(v_{1})) = \Gamma(v_{4}, v_{5}) = \Gamma(v_{4}) \cup \Gamma(v_{5}) = \{v_{2}, v_{1}, v_{4}\}$$

Compruebo $\Gamma^3(v_1) = \{v_{2_1}, v_{1_2}, v_4\} \subseteq \{v_1\} \cup \{v_{2_1}, v_3\} \cup \{v_{4_2}, v_5\}$

$$R(v_1) = \{v_1\} \cup \Gamma(v_1) \cup \Gamma^2(v_1) \cup \Gamma^3(v_1) = \{v_1, v_2, v_3, v_4, v_5\}$$

Ejercicio7-H1: Estudia si el grafo Z es conexo

Partir de

$$R(v_1) = \{v_1\} \cup \Gamma(v_1) \cup \Gamma^2(v_1) \cup \Gamma^3(v_1) = \{v_{1,} v_2, v_{3,} v_{4,} v_5\}$$

Sigue con resto de vértices R(v₂)

2º Aplica algoritmo para calcular CC

Iteración 1:

1:
$$i \leftarrow 1$$
, $V^{(1)} = \{v_1, v_2, v_3, v_4, v_5\}$

2: Elegir : **v**₂

3:
$$R(v_2) \cap Q(v_2) = \{v_2, v_4\} \cap \{v_1, v_2, v_3, v_4, v_5\} = \{v_2, v_4\}$$

$$V^{(2)} = V^{(1)} \sim R(v_2) \cap Q(v_2) = \{v_1, v_3, v_5\}$$

4: Ir paso 2

Iteración 1:

2: Elegir vértice q no esté en CC(v₂): v₁

3:
$$R(v_1) \cap Q(v_1) = \{v_1, v_2, v_3, v_4, v_5\} \cap \{v_1, v_3, v_5\} = \{v_1, v_3, v_5\}$$

$$V^{(3)} = V^{(2)} \sim R(v_1) \cap Q(v_1) = \{ \}$$

4.
$$V^{(3)} = \{\} \rightarrow PARAR$$

Algoritmo

- 1. Inicializar i \leftarrow 1, $V^{(1)} = V$.
- 2. Tomar $v_{i \in V^{(i)}}$.
- 3. Calcular $R(v_i) \cap Q(v_i)$ Hacer $V^{(i+1)} = V^{(i)} \sim R(v_i) \cap Q(v_i)$ $i \leftarrow i + 1$
- 4. Si $V^{(1)} = 0 \rightarrow Stop$ en otro caso, volver a 2.

$$R = \left[\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{array} \right]$$

$$Q = R^T$$

Componentes Conexas

$$Z' = (V', E') / V' = \{v_2, v_4\}$$

 $Z'' = (V'', E'') / V'' = \{v_1, v_3, v_5\}$

ALGORITMO 1 para calcular la CC((v_i)

$$G = (V, E)$$

- 1. Inicializar i \leftarrow 1, $V^{(1)} = V$.
- 2. Tomar $v_{i \in V^{(i)}}$.
- 3. Calcular $R(v_i) \cap Q(v_i)$

Hacer
$$V^{(i+1)} = V^{(i)} \sim R(v_i) \cap Q(v_i)$$

$$i \leftarrow i + 1$$

4. Si $V^{(1)} = 0 \rightarrow Stop$

en otro caso, volver a 2.

ALGORITMO 2 para calcular la CC((v_i)

- Calcular producto R 🚫 Q
- Para v_i seleccionar columnas que tienen un 1 en la fila i
- Dichas columnas son vértices de la CC(v_i), ya que...

Un elemento de R⊗Q es 1 sii,

v_i y **v**_j son **mutuamente alcanzables**.

Ejercicio8-H1: Calcula la $CC(v_1)$ de un grafo G cuya matriz de accesibilidad es R, haciendo el producto $R(v_1) \otimes Q(v_1)$

$$R = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \quad R \otimes Q = R \otimes R^{T} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$v_1 \rightarrow (1,1,1,1,1) \otimes (1,0,1,0,1) = (1,0,1,0,1)$$

$$CC(v_1) = (R(v_1) \cap Q(v_1) = \{v_1, v_3, v_5\}$$

Calcula las CCs de un grafo G / $R(v_1) \otimes Q(v_1)$

$$R \otimes Q = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Fila 1: $(1,0,0,0,0,0) >> \{v_1\}$

Fila 2: $(0,1,0,0,0,0) >> \{v_2\}$

Fila 3: $(0,0,1,0,0,0) >> \{v_3\}$

Fila 4: $(0,0,0,1,0,1) >> \{v_4, v_6\}$

Fila 5: $(0,0,0,0,1,0) >> \{v_5\}$

Fila 6: $(0,0,0,1,0,1) >> \{v_4, v_6\}$

CC de G: $\{v_1\} \quad \{v_2\} \quad \{v_3\} \quad \{v_4, v_6\} \quad \{v_5\}$

2. RECORRIDOS de GRAFOS POR ARISTAS

Nos vamos con Euler...

Pasamos por todas ?

¿ qué es una ARISTA DE CORTE

Arista de corte {5, 7}

Ejercicio1-H2: Si es posible escribe

a) un tour; b) un tour euleriano c) un camino euleriano d) ¿grafo euleriano?

Tour: x t y z x y t z x

¿ Tiene TE / CE ? no

TE: te₃ye₄ze₁xe₆ye₅ze₂t

GRAFO EULERIANO

¿ Tiene CE? no

Sea G un grafo conexo.

>> TOUR: cadena cerrada que atraviesa cada arista de G al menos una vez.

>> TOUR EULERIANO (TE) :tour que atraviesa cada arista exactamente una vez.

GRAFO EULERIANO: grafo que contiene un tour euleriano

>> CAMINO EULERIANO (CE): cadena simple que atraviesa cada arista exactamente una vez.

Ejercicio2-H2: Si es posible escribe

a) un tour; b) un tour eulerian c) un camino euleriano d) ¿grafo euleriano?

¿ Tiene TE / CE ?

CE: be₁ae₂fe₃ee₄be₅ce₆de₇e

¿ Camino euleriano

camino?

NO

vértices.

Camino: <u>no repite vértices</u>

Camino Euleriano: no repite aristas

pero pasa por todas aunque <u>repita</u>

RESULTADOS de Euler para GND

Th-1E Sea G = (V, E), **GND** y **CONEXO**.

- G es euleriano sii no tiene vértices de grado impar.
- G contiene un camino euleriano sii tiene exactamente 2 vértices de grado impar.

el problema de los puentes de Euler...

No tiene solución

No es Euleriano

No tiene camino-E

¿ Son G-Eulerianos? ¿ Tienen Camino-Euleriano?

para que un grafo sea euleriano es necesario, que el grafo sea conexo.

→ G no tiene CE

G no es conexo \rightarrow no es GE

H es conexo y todos sus vértices tienen grado par

Which of the grafs in Figure have an Euler tour? Of those that do not, which have an Euler trail?

Se verifica Th1E

TE: a b e c d e a

→ GE

No tiene TE

→ no GE

→ No tiene CE

No tiene TE → no GE
2 Vértices b, d grado impar
→ tiene CE
CE: dabcdb

RESULTADOS de Euler para GD

Th-2E: G = (V, E), GD y débilmente conexo.

- 1. G es euleriano sii, $\forall v, d_e(v) = d_s(v)$
- 2. G contiene un camino euleriano sii

$$d_e(v) = d_s(v), \forall v \neq p, q$$

$$d_e(p) = d_s(p) - 1$$
, $d_e(q) = d_s(q) + 1$

p : vértice inicial del camino.

q: vértice final del camino

Cómo <u>calcular</u> un tour o un camino euleriano

Algoritmo de Fleury

GND, Si el <u>grafo es euleriano</u>, a partir de un vértice cualquiera de G, construiremos una cadena simple de forma que **no se repitan aristas** y **no** se elijan aristas de corte.

El proceso finaliza cuando se agotan todas las aristas obteniendo un **tour euleriano.**

Si el grafo contiene un <u>camino euleriano</u> comenzaremos con un vértice de **grado impar** siguiendo el proceso descrito.

ALGORITMO de FLEURY para GND

- Paso 1. i \leftarrow 1; Gi = G. Iniciar cadena $\mathbf{T} = \mathbf{\Phi}$. Elegir v/ d(v) es impar; ecc otro v \in V. Etiquetar v: local.
- Paso 2. No hay arista incidente con v → parar T es CE o TE.
- Paso 3. Sólo hay 1 arista incidente con v / e = {v,u}
 - \rightarrow Eliminar e $E_{i+1} = E_i \{e\}$
 - \rightarrow Eliminar v $V_{i+1} = V_i \{v\}$
- Paso 4. Hay más de 1 arista incidente con v, elegir e = $\{v,u\}$ no de corte \rightarrow Eliminar e $E_{i+1} = E_i \{e\}$
- Paso 5. Añadir e = {v,u} a la cadena T = T U {e}.

 Etiquetar u como local.

 Hacer i ← i +1, y volver paso 2

Aplicación del Algoritmo de FLEURY para encontrar TE /CE en GND

1º GND >> OK 2º Conexo >> OK

se comprueban condiciones de Th-1E

Th-1E: Sea G, GND y CONEXO.

- TE sii no tiene vértices de grado impar.
- CE sii tiene exactamente 2 vértices _de grado impar.

Se cumple Th-1E-1 → existe TE

Lo buscamos...

P1: $i \leftarrow 1$, **T** = Φ

Vértice local: **v**₄

P4: aristas incidentes a v4: e_2 , e_3 , e_9 e_{10} .

Eliminar: e₃

P5: añadir e_3 al tour $\rightarrow T = e_3$

Vértice local: **v**₃

i ← 2

P3: aristas incidentes a v_3 : e_4

Eliminar: e₄ Eliminar: v₃

P5: añadir e_4 al tour \rightarrow $T = e_3 e_4$

Vértice local: **v**₇

 $i \leftarrow 3$

P3: aristas incidentes a v_7 : e_{10}

Eliminar: e₁₀ Eliminar: v₇

P5: añadir $e1_0$ al tour \rightarrow $T = e_3 e_4 e_{10}$

Vértice local: **v**₄

i ← 4

P4: aristas incidentes a v_4 : e_2, e_9 Eliminar: e_9

P5: añadir **e**₉ al tour →

 $T = e_3 e_4 e_{10} e_9$

Vértice local: **v**₆

i ← 5

i ← 5

P4: aristas incidentes a v_6 : e_6 , e_7 , e_8

Eliminar: e₇

P5: añadir **e**₇ al tour →

 $T = e_3 e_4 e_{10} e_9 e_7$

Vértice local: **v**₂

i ← 6

 G_5 : e_5 e_6 e_7 e_8 e_6 e_7

P4: aristas incidentes a v_2 : e_6 , e_1 , e_2

!cuidado! e₂ arista de corte

llegamos a v₄ y ¿cómo salimos?

Eliminar: e₁

P5: añadir **e₁** al tour →

 $T = e_3 e_4 e_{10} e_9 e_7 e_1$

Vértice local: **v**₁

i ← 7

i ← 7

P3: aristas incidentes a v_1 : e_5

Eliminar: e₅

Eliminar: v₁

P5: añadir e_5 al tour \rightarrow

 $T = e_3 e_4 e_{10} e_9 e_7 e_1 e_5$

Vértice local: **v**₅

i **←** 8

P3: aristas incidentes a v_5 : e_8

Eliminar: e₈

Eliminar: v₅

P5: añadir e_8 al tour \rightarrow

 $T = e_3 e_4 e_{10} e_9 e_7 e_1 e_5 e_8$

Vértice local: **v**₆

i ← 9

P3: aristas incidentes a v_6 : e_6

Eliminar: e₆ Eliminar: v₆

P5: añadir e_6 al tour \rightarrow

$$T = e_3 e_4 e_{10} e_9 e_7 e_1 e_5 e_8 e_6$$

Vértice local: **v**₂

i ← 10

P3: aristas incidentes a v_2 : e_2

Eliminar: e₂ Eliminar: v₂

P5: añadir **e₂** al tour →

 $T = e_3 e_4 e_{10} e_9 e_7 e_1 e_5 e_8 e_6 e_2$

 G_{11} :

Si las aristas tuvieran un coste calcular un TE es equivalente a calcular un tour de mínimo coste:

Problema del cartero chino : recorrer todas las calles sin repetir

ALGORITMO de FLEURY para GD

Método

- → 1° comprobar Th-2E
- → Si Th-2E.1 → G es euleriano → elegir vértice cualquiera y construir cadena sin repetir arcos y sin elegir arcos que al eliminarlos aumente el número de CC del GND asociado. .
- ⇒ Si Th-2E-2 ⇒ G tiene camino euleriano ⇒ comenzar con el vértice \mathbf{v} tal que $d_e(\mathbf{v}) = d_s(\mathbf{v}) 1$, y seguir el proceso.

Aplicación del Algoritmo de FLEURY para encontrar TE /CE en GD

GD y débilmente conexo

Verifica:

$$d_e(\mathbf{v_i}) = d_s(\mathbf{v_i})$$
 para todo vi, $i \neq 1, 6$
 $d_e(\mathbf{v_6}) = d_s(\mathbf{v_6}) - 1,$
 $1 = 2 - 1$

$$d_e(v_1) = d_s(v_1) + 1,$$

2 = 1 +1

Por Th-2E-2,

T tiene un camino euleriano que comienza en v₆ y termina en v₁

Euler trails and Euler tours.

FLEURY'S ALGORITHM:

Iteration 1: T= e₄

Iteration 2: $T = e_4 e_{12}$

Iteration 3: $T = e_4 e_{12} e_9$

Iteration 4: $T = e_4 e_{12} e_9 e_5$

Iteration 5: $T = e_4 e_{12} e_9 e_5 e_2$

Iteration 6:

 $T = e_4 e_{12} e_9 e_5 e_2 e_8$

Iteration 7:

 $T = e_4 e_{12} e_9 e_5 e_2 e_8 e_3$

At this point, if we choose the arc e_{13} , this arc is a cut edge of undirected the associated graph. Then, we have to choose e_3 .

Euler trail

Iteration 8: $T = e_4 e_{12} e_9 e_5 e_2 e_8 e_3 e_{11}$

Iteration 9: $T = e_4 e_{12} e_9 e_5 e_2 e_8 e_3 e_{11} e_{10}$

Iteration 10: $T = e_4 e_{12} e_9 e_5 e_2 e_8 e_3 e_{11} e_{10} e_{13}$

> Iteration 11: $T = e_4 e_{12} e_9 e_5 e_2 e_8 e_3 e_{11} e_{10} e_{13} e_7$

Iteration 12: $T = e_4 e_{12} e_9 e_5 e_2 e_8 e_3 e_{11} e_{10} e_{13} e_7 e_6$

Iteration 13: $T = e_4 e_{12} e_9 e_5 e_2 e_8 e_3 e_{11} e_{10} e_{13} e_7 e_6 e_1$

Aplicación del Algoritmo de FLEURY para encontrar TE /CE en GD

Etapa crítica:

Iteration 5:

 $T = e_4 e_{12} e_9 e_5 e_2$

Iteration 7:

 $T = e_4 e_{12} e_9 e_5 e_2 e_8 e_3$

