$\ensuremath{\mathsf{CS703}}$ - Optimization and Computing Notes

Nong Minh Hieu^{1,2}

- 1 School of Physical and Mathematical Sciences, Nanyang Technological University (NTU Singapore)
- ² School of Computing and Information Systems, Singapore Management University (SMU - Singapore)

Contents

1	Introduction 1.1 Convex Sets	2
A	List of Definitions	4
В	Important Theorems	4
\mathbf{C}	Important Corollaries	4
D	Important Propositions	4
${f E}$	References	5

1 Introduction

Definition 1.1 (Optimization Problem).

Generally, an optimization problem is defined as follows:

minimize:
$$f_0(x)$$

subject to: $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$. (1)

Where we have:

- 1. $x \in \mathbb{R}^n$ is the optimization variable.
- 2. $f_0: \mathbb{R}^n \to \mathbb{R}$ is the opjective (cost function).
- 3. $f_i: \mathbb{R}^n \to \mathbb{R}$ are inequality constraints.
- 4. $h_i: \mathbb{R}^n \to \mathbb{R}$ are equality constraints.

Definition 1.2 (Convex Optimization Problem).

An optimization problem is a convex optimization problem if:

- 1. f_0, f_1, \ldots, f_m are convex.
- 2. Equality constraints are affine.

The reason why we need convex optimization problems are:

- 1. Convex optimization problems can be solved optimally (no local minima).
- 2. Time required to solve convex optimization problems is polynomial (in terms of number of variables and constraints).

1.1 Convex Sets

Definition 1.3 (Lines).

Let $x_1, x_2 \in \mathbb{R}^n$. A line passing through x_1, x_2 is defined as:

$$L(x_1, x_2) = \left\{ x \in \mathbb{R}^n : x = \theta x_1 + (1 - \theta) x_2, \theta \in \mathbb{R} \right\}.$$
 (2)

When $\theta \in (0,1)$, we restrict the line to the points between x_1 and x_2 (exclusive).

Definition 1.4 (Affine Sets).

An affine set contains its elements' **affine combinations**: If x_1, \ldots, x_k belongs to an affine set A, then it contains the affine combination

$$\sum_{i=1}^{k} \theta_i x_i \in A, \quad \theta_i \in \mathbb{R}, \sum_{i=1}^{k} \theta_i = 1.$$
 (3)

For example,

- 1. An empty set is affine because there is no point.
- 2. A singleton is affine because there is only one point.
- 3. A line (extends indefinitely) is affine.
- 4. Any vector space is affine.
- 5. Linear subspaces of a vector space is affine.

Definition 1.5 (Convex Sets). _

A convex set contains its elements' **convex combinations**: If x_1, \ldots, x_k belongs to an affine set A, then it contains the convex combination

$$\sum_{i=1}^{k} \theta_i x_i \in A, \quad \theta_i \in [0, 1], \sum_{i=1}^{k} \theta_i = 1.$$
 (4)

For example,

- 1. Norm ball $\left\{x:\|x\|\leqslant r\right\}$ for a given norm $\|\cdot\|,$ radius r.
- 2. Hyperplane $\left\{x: a^{\top}x = b\right\}$ for given a, b.
- 3. Halfspace $\{x: a^{\top}x \leq b\}$ for given a, b.
- 4. Affine space $\{x : Ax = b\}$ for given A, b.

Definition 1.6 (Convex Hull). ___

Given a discrete set $C = \{x_1, \dots, x_k\}$. The convex hull of C, denoted $\operatorname{conv}(C)$, is the set of all convex combinations of points in C:

$$\operatorname{conv}(C) = \left\{ \sum_{i=1}^{k} \theta_i x_i : x_i \in C, \theta_i \geqslant 0, \sum_{i=1}^{k} \theta_i = 1 \right\}.$$
 (5)

Convex hulls are always convex.

A List of Definitions

1.1	Definition (Optimization Problem)	 	2
1.2	Definition (Convex Optimization Problem)	 	2
1.3	Definition (Lines)	 	2
1.4	Definition (Affine Sets)	 	2
1.5	Definition (Convex Sets)	 	3
1.6	Definition (Convex Hull)	 	3

- B Important Theorems
- C Important Corollaries
- D Important Propositions

E References