REC'D 0 1 JUL 2004

PCT

WIPO

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 4月23日

出願番号 Application Number:

特願2003-118860

[ST. 10/C]:

[JP2003-118860]

出 願 人 Applicant(s):

東京エレクトロン株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 3月12日

ページ: 1/E

【書類名】

特許願

【整理番号】

JPP031025

【提出日】

平成15年 4月23日

【あて先】

特許庁長官 殿

【国際特許分類】

H01L 21/306

【発明者】

【住所又は居所】

東京都港区赤坂五丁目3番6号 TBS放送センター

東京エレクトロン株式会社内

【氏名】

菱屋 晋吾

【特許出願人】

【識別番号】

000219967

【氏名又は名称】

東京エレクトロン株式会社

【代理人】

【識別番号】

100095407

【弁理士】

【氏名又は名称】

木村 満

【手数料の表示】

【予納台帳番号】

038380

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

9718281

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】

層間絶縁膜の表面改質方法及び表面改質装置

【特許請求の範囲】

【請求項1】

塗布液を塗布して塗布膜が形成された基板を所定の温度で焼成することにより 形成された層間絶縁膜の表面を改質する層間絶縁膜の表面改質方法であって、

前記層間絶縁膜が形成された基板を収容する反応室内を所定の温度に加熱するとともに、前記反応室内に酸化活性ガスを供給する、または、前記層間絶縁膜に紫外線を照射することにより、前記層間絶縁膜の表面を改質する表面改質工程を備える、ことを特徴とする層間絶縁膜の表面改質方法。

【請求項2】

前記層間絶縁膜は、有機官能基を有するポリシロキサンを含む塗布液から形成された低誘電率の層間絶縁膜である、ことを特徴とする請求項1に記載の層間絶縁膜の表面改質方法。.

【請求項3】

前記酸化活性ガスにオゾン、水蒸気、酸素、または、水素及び酸素を用いる、 ことを特徴とする請求項1または2に記載の層間絶縁膜の表面改質方法。

【請求項4】

前記表面改質工程では、前記反応室内を250℃~600℃に加熱するとともに、前記反応室内にオゾンを供給することにより、前記層間絶縁膜の表面を改質する、ことを特徴とする請求項1または2に記載の層間絶縁膜の表面改質方法。

【請求項5】

前記表面改質工程では、前記反応室内を250℃~600℃に加熱するとともに、前記反応室内に水素及び酸素を供給することにより、前記層間絶縁膜の表面を改質する、ことを特徴とする請求項1または2に記載の層間絶縁膜の表面改質方法。

【請求項6】

前記表面改質工程では、前記層間絶縁膜に紫外線を少なくとも10秒照射する ことにより、前記層間絶縁膜の表面を改質する、ことを特徴とする請求項1また は2に記載の層間絶縁膜の表面改質方法。

【請求項7】

前記表面改質工程では、前記層間絶縁膜を、その表面エネルギーが少なくとも 80mN/mとなるように改質する、ことを特徴とする請求項1乃至6のいずれか1項に記載の層間絶縁膜の表面改質方法。

【請求項8】

前記表面改質工程では、前記層間絶縁膜を、その表面における水の表面接触角が40°よりも小さくなるように改質する、ことを特徴とする請求項1乃至7のいずれか1項に記載の層間絶縁膜の表面改質方法。

【請求項9】

塗布液を塗布して塗布膜が形成された基板を所定の温度で焼成することにより 形成された層間絶縁膜の表面を改質する層間絶縁膜の表面改質装置であって、

前記層間絶縁膜が形成された基板を収容する反応室内を所定の温度に加熱する 加熱手段と、

前記反応室内に酸化活性ガスを供給する酸化活性ガス供給手段と、

前記反応室内を所定の温度に加熱するように前記加熱手段を制御するとともに 、前記反応室内に酸化活性ガスを供給するように前記酸化活性ガス供給手段を制 御する制御手段と、

を備えることを特徴とする層間絶縁膜の表面改質装置。

【請求項10】

前記酸化活性ガスは、オゾン、水蒸気、酸素、または、水素及び酸素である、 ことを特徴とする請求項9に記載の層間絶縁膜の表面改質装置。

【請求項11】

前記酸化活性ガス供給手段は、前記反応室内にオゾンを供給し、

前記制御手段は、前記反応室内を250℃~600℃に加熱するように前記加熱手段を制御するとともに、前記反応室内にオゾンを供給するように前記酸化活性ガス供給手段を制御する、ことを特徴とする請求項9に記載の層間絶縁膜の表面改質装置。

【請求項12】

前記酸化活性ガス供給手段は、前記反応室内に水素及び酸素を供給し、

前記制御手段は、前記反応室内を250℃~600℃に加熱するように前記加熱手段を制御するとともに、前記反応室内に前記水素及び酸素を供給するように前記酸化活性ガス供給手段を制御する、ことを特徴とする請求項9に記載の層間絶縁膜の表面改質装置。

【請求項13】

塗布液を塗布して塗布膜が形成された基板を所定の温度で焼成することにより 形成された層間絶縁膜の表面を改質する層間絶縁膜の表面改質装置であって、

前記層間絶縁膜が形成された基板を収容する反応室内を所定の温度に加熱する 加熱手段と、

前記層間絶縁膜に紫外線を照射する紫外線照射手段と、

前記反応室内を所定の温度に加熱するように前記加熱手段を制御するとともに 、前記層間絶縁膜に紫外線を照射するように前記紫外線照射手段を制御する制御 手段と、

を備えることを特徴とする層間絶縁膜の表面改質装置。

【請求項14】

前記制御手段は、前記層間絶縁膜に紫外線を少なくとも10秒照射するように 前記紫外線照射手段を制御する、ことを特徴とする請求項13に記載の層間絶縁 膜の表面改質装置。

【請求項15】

前記層間絶縁膜は、有機官能基を有するポリシロキサンを含む塗布液から形成された低誘電率の層間絶縁膜である、ことを特徴とする請求項9乃至14のいずれか1項に記載の層間絶縁膜の表面改質装置。

【請求項16】

前記制御手段は、前記層間絶縁膜を、その表面エネルギーが少なくとも80mN/mとなるように改質する、ことを特徴とする請求項9乃至15のいずれか1項に記載の層間絶縁膜の表面改質装置。

【請求項17】

前記制御手段は、前記層間絶縁膜を、その表面における水の表面接触角が40

。よりも小さくなるように改質する、ことを特徴とする請求項9乃至16のいずれか1項に記載の層間絶縁膜の表面改質装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、層間絶縁膜の表面改質方法及び表面改質装置に関し、特に、低誘電率の層間絶縁膜の表面改質方法及び表面改質装置に関する。

[0002]

【従来の技術】

LSIの高速化に伴い、層間絶縁膜には、その比誘電率を低くすることが求められている。低誘電率の層間絶縁膜を得るには、例えば、基板としての半導体ウエハ上に、低誘電率の材料からなる塗布液をスピンコーティングして塗布膜(SOD (Spin On Dielectrics) 膜)を形成し、形成した塗布膜を焼成することにより形成する方法がある。

[0003]

また、LSIの多層配線化・微細化に伴い、層間絶縁膜には、低誘電率の他に、例えば、ハードマスクと呼ばれる多層配線を構築する上で必要なCVD (Chemical Vapor Deposition) 膜のような、層間絶縁膜の上部に成膜される膜との密着性を有することが求められている。これは、微細化に伴い、両者の接触面積が小さくなったり、アスペクト比が増大したりするため、層間絶縁膜の形成において、形成した塗布膜を単に焼成しただけでは、良好な密着性が得られない場合があるためである。このような場合、CMP (Chemical Mechanical Polishing)工程などで、層間絶縁膜とその上部に成膜される膜との膜剥がれが発生してしまうという問題があった。

[0004]

かかる問題を解決するため、形成された層間絶縁膜の表面に、例えば、プラズマを照射することにより層間絶縁膜の表面を改質し、層間絶縁膜と、その上部に成膜される膜との密着性を向上させることが提案されている(例えば、特許文献 1参照)。

[0005]

【特許文献1】

特開平8-78521号公報

[0006]

【発明が解決しようとする課題】

しかし、層間絶縁膜の表面にプラズマを照射すると、例えば、層間絶縁膜の誘電率が上昇したり、層間絶縁膜の表面が荒れてしまうように、層間絶縁膜の膜特性が劣化するおそれがある。

[0007]

本発明は、上記問題に鑑みてなされたものであり、膜特性の劣化を防止すると ともに、密着性を向上することができる層間絶縁膜の表面改質方法及び表面改質 装置を提供することを目的とする。

また、本発明は、誘電率を維持しつつ、密着性を向上することができる層間絶縁膜の表面改質方法及び表面改質装置を提供することを目的とする。

[0008]

【課題を解決するための手段】

上記目的を達成するため、この発明の第1の観点にかかる層間絶縁膜の表面改 質方法は、

塗布液を塗布して塗布膜が形成された基板を所定の温度で焼成することにより 形成された層間絶縁膜の表面を改質する層間絶縁膜の表面改質方法であって、

前記層間絶縁膜が形成された基板を収容する反応室内を所定の温度に加熱するとともに、前記反応室内に酸化活性ガスを供給する、または、前記層間絶縁膜に紫外線を照射することにより、前記層間絶縁膜の表面を改質する表面改質工程を備える、ことを特徴とする。

[0009]

この構成によれば、基板に形成された層間絶縁膜が酸化活性ガスまたは紫外線により表面改質され、層間絶縁膜の誘電率が維持されるとともに、密着性が向上する。また、層間絶縁膜の膜特性の劣化が防止されるとともに、密着性が向上する。

[0010]

前記層間絶縁膜は、有機官能基を有するポリシロキサンを含む塗布液から形成された低誘電率の層間絶縁膜であることが好ましい。前記酸化活性ガスとして、 例えば、オゾン、水蒸気、酸素、水素及び酸素を用いることが好ましい。

[0011]

前記表面改質工程では、前記反応室内を250℃~600℃に加熱するとともに、前記反応室内にオゾンを供給することにより、前記層間絶縁膜の表面を改質してもよい。

[0012]

前記表面改質工程では、前記反応室内を250℃~600℃に加熱するとともに、前記反応室内に水素及び酸素を供給することにより、前記層間絶縁膜の表面を改質してもよい。

[0013]

前記表面改質工程では、前記層間絶縁膜に紫外線を少なくとも10秒照射する ことにより、前記層間絶縁膜の表面を改質してもよい。

[0014]

前記表面改質工程では、前記層間絶縁膜を、その表面エネルギーが少なくとも 80mN/mとなるように改質することが好ましい。また、前記表面改質工程で は、前記層間絶縁膜を、その表面における水の表面接触角が40°よりも小さく なるように改質することが好ましい。

[0015]

この発明の第2の観点にかかる層間絶縁膜の表面改質装置は、

塗布液を塗布して塗布膜が形成された基板を所定の温度で焼成することにより 形成された層間絶縁膜の表面を改質する層間絶縁膜の表面改質装置であって、

前記層間絶縁膜が形成された基板を収容する反応室内を所定の温度に加熱する 加熱手段と、

前記反応室内に酸化活性ガスを供給する酸化活性ガス供給手段と、

前記反応室内を所定の温度に加熱するように前記加熱手段を制御するとともに 、前記反応室内に酸化活性ガスを供給するように前記酸化活性ガス供給手段を制 御する制御手段と、

を備えることを特徴とする。

[0016]

この構成によれば、基板に形成された層間絶縁膜が酸化活性ガスにより表面改質され、層間絶縁膜の誘電率が維持されるとともに、密着性が向上する。また、 層間絶縁膜の膜特性の劣化が防止されるとともに、密着性が向上する。

[0017]

前記酸化活性ガスとしては、例えば、オゾン、水蒸気、酸素、水素及び酸素がある。

[0018]

前記酸化活性ガス供給手段は、前記反応室内にオゾンを供給してもよい。この場合、前記制御手段は、例えば、前記反応室内を250℃~600℃に加熱するように前記加熱手段を制御するとともに、前記反応室内にオゾンを供給するように前記酸化活性ガス供給手段を制御する。

[0019]

前記酸化活性ガス供給手段は、前記反応室内に水素及び酸素を供給してもよい。この場合、前記制御手段は、例えば、前記反応室内を250℃~600℃に加熱するように前記加熱手段を制御するとともに、前記反応室内に前記水素及び酸素を供給するように前記酸化活性ガス供給手段を制御する。

[0020]

この発明の第3の観点にかかる層間絶縁膜の表面改質装置は、

塗布液を塗布して塗布膜が形成された基板を所定の温度で焼成することにより 形成された層間絶縁膜の表面を改質する層間絶縁膜の表面改質装置であって、

前記層間絶縁膜が形成された基板を収容する反応室内を所定の温度に加熱する 加熱手段と、

前記層間絶縁膜に紫外線を照射する紫外線照射手段と、

前記反応室内を所定の温度に加熱するように前記加熱手段を制御するとともに、前記層間絶縁膜に紫外線を照射するように前記紫外線照射手段を制御する制御手段と、

[0021]

この構成によれば、基板に形成された層間絶縁膜が紫外線により表面改質され、層間絶縁膜の誘電率が維持されるとともに、密着性が向上する。また、層間絶縁膜の膜特性の劣化が防止されるとともに、密着性が向上する。

[0022]

前記制御手段は、前記層間絶縁膜に紫外線を少なくとも10秒照射するように 前記紫外線照射手段を制御することが好ましい。また、前記層間絶縁膜は、有機 官能基を有するポリシロキサンを含む塗布液から形成された低誘電率の層間絶縁 膜であることが好ましい。

[0023]

前記制御手段は、前記層間絶縁膜を、その表面エネルギーが少なくとも $80\,\mathrm{m}$ N/mとなるように改質することが好ましい。また、前記制御手段は、前記層間 絶縁膜を、その表面における水の表面接触角が 40° よりも小さくなるように改質することが好ましい。

[0024]

【発明の実施の形態】

以下、本発明の実施の形態にかかる層間絶縁膜の表面改質方法及び表面改質装置について、図1に示すバッチ式縦型熱処理装置を用いた場合を例に説明する。なお、本発明の層間絶縁膜の表面改質方法としては、酸化活性ガスにより層間絶縁膜の表面を改質する場合と、紫外線照射により層間絶縁膜の表面を改質する場合とがあるが、図1では、酸化活性ガスにより層間絶縁膜の表面を改質する場合に用いられる熱処理装置を示している。まず、本実施の形態の熱処理装置1について説明する。

[0025]

図1に示すように、熱処理装置1は、長手方向が垂直方向に向けられた略円筒 状の反応管2を備えている。反応管2は、内管3と、内管3を覆うとともに内管 3と一定の間隔を有するように形成された有天井の外管4とから構成された二重 管構造を有する。内管3及び外管4は、耐熱材料、例えば、石英により形成され

[0026]

外管4の下方には、筒状に形成されたステンレス鋼(SUS)からなるマニホールド5が配置されている。マニホールド5は、外管4の下端と気密に接続されている。また、内管3は、マニホールド5の内壁から突出するとともに、マニホールド5と一体に形成された支持リング6に支持されている。

[0027]

マニホールド5の下方には蓋体7が配置され、ボートエレベータ8により蓋体7は上下動可能に構成されている。そして、ボートエレベータ8により蓋体7が上昇すると、マニホールド5の下方側が閉鎖される。

[0028]

蓋体7には、例えば、石英からなるウエハボート9が載置されている。ウエハボート9は、層間絶縁膜、例えば、有機官能基を有するポリシロキサンからなる絶縁膜のように低誘電率の絶縁膜が形成された半導体ウエハ10(基板)が垂直方向に所定の間隔をおいて複数枚収容可能に構成されている。層間絶縁膜は、例えば、有機官能基を有するポリシロキサンを含む塗布液をスピンコーティングして半導体ウエハ10に塗布膜を形成し、形成した塗布膜を焼成することにより半導体ウエハ10に形成される。

[0029]

反応管2の周囲には、反応管2を取り囲むように断熱体11が設けられている。断熱体11の内壁面には、例えば、抵抗発熱体からなる昇温用ヒータ12が設けられている。この昇温用ヒータ12により反応管2の内部が所定の温度に加熱され、この結果、半導体ウエハ10が所定の温度に加熱される。

[0030]

マニホールド5の側面には、酸化活性ガスを導入する酸化活性ガス導入管13が挿通されている。なお、図1では酸化活性ガス導入管13を一つだけ描いている。酸化活性ガス導入管13は、内管3内を臨むように配設されている。例えば、図1に示すように、酸化活性ガス導入管13は、支持リング6より下方(内管3の下方)のマニホールド5の側面に挿通されている。酸化活性ガス導入管13

は、図示しないマスフローコントローラ等を介して、図示しない所定の酸化活性 ガス供給源に接続されている。酸化活性ガスとしては、例えば、オゾン、水蒸気 、酸素、水素及び酸素がある。酸化活性ガスが水素及び酸素の場合には、酸素と 水素との混合ガスを酸化活性ガス導入管13から供給する場合の他、別々の酸化 活性ガス導入管13から酸素と水素とを供給し、反応管2内で混合する場合とが ある。

[0031]

ここで、紫外線を照射することにより層間絶縁膜の表面を改質する場合に用いられる熱処理装置1では、酸化活性ガス導入管13を設けずに、例えば、断熱体11の内壁面に複数の紫外線ランプからなる紫外線照射装置が設けられる。この場合、紫外線ランプからの紫外線により半導体ウエハ10の層間絶縁膜に紫外線が照射される。

[0032]

マニホールド5の側面には排気口14が設けられている。排気口14は支持リング6より上方に設けられており、反応管2内の内管3と外管4との間に形成された空間に連通する。そして、内管3で発生した排ガス等が内管3と外管4との間の空間を通って排気口14に排気される。また、マニホールド5の側面の排気口14の下方には、パージガスとしての窒素ガスを供給するパージガス供給管15が挿通されている。

[0033]

排気口14には排気管16が気密に接続されている。排気管16には、その上流側から、バルブ17と、真空ポンプ18とが介設されている。バルブ17は、その開度を調整して、反応管2内の圧力を所定の圧力に制御する。真空ポンプ18は、排気管16を介して反応管2内のガスを排気するとともに、反応管2内の圧力を調整する。

[0034]

なお、排気管16には、図示しないトラップ、スクラバー等が介設されており、反応管2から排気された排ガスを、無害化した後、熱処理装置1外に排気するように構成されている。

[0035]

また、ボートエレベータ8、昇温用ヒータ12、酸化活性ガス導入管13、パージガス供給管15、バルブ17、及び、真空ポンプ18には、制御部19が接続されている。制御部19は、マイクロプロセッサ、プロセスコントローラ等から構成され、熱処理装置1の各部の温度、圧力等を測定し、測定データに基づいて、上記各部に制御信号等を出力し、熱処理装置1の各部を、所定のレシピ(タイムシーケンス)に従って制御する。

[0036]

次に、層間絶縁膜の表面改質方法について説明する。層間絶縁膜の表面改質方法は、層間絶縁膜が形成された半導体ウエハ10を収容する反応管2内を所定の温度に加熱するとともに、反応管2内に酸化活性ガスを供給する、または、半導体ウエハ10の層間絶縁膜に紫外線を照射することにより、層間絶縁膜の表面を改質するものである。以下、前述のように構成された熱処理装置1を用いた層間絶縁膜の表面改質方法について説明する。また、以下の説明において、熱処理装置1を構成する各部の動作は、制御部19によりコントロールされている。

[0037]

まず、昇温用ヒータ12により、反応管2内を、所定の温度に加熱する。この温度は、後述するように、使用する酸化活性ガスの種類によって好ましい範囲が異なる。このため、反応管2内を、使用する酸化活性ガスの種類に応じた最適な温度に加熱する。

[0038]

次に、層間絶縁膜が形成された半導体ウエハ10を収容したウエハボート9を 蓋体7上に載置し、ボートエレベータ8により蓋体7を上昇させ、半導体ウエハ 10を反応室内に収容する。なお、この熱処理装置1で塗布膜の焼成を行った場 合(一つの熱処理装置1で塗布膜の焼成と表面改質とを連続処理する場合)には 、この工程は不要である。

[0039]

層間絶縁膜は、例えば、有機官能基を有するポリシロキサンを含む塗布液をスピンコーティングして半導体ウエハ10に塗布膜を形成し、形成した塗布膜を焼

成することにより半導体ウエハ10に形成される。有機官能基を有するポリシロキサンを含む塗布液としては、例えば、有機官能基を有するポリシロキサンが有機溶媒に溶解された溶液がある。また、この溶液中に、界面活性剤等の任意成分が添加されていてもよい。このように形成された層間絶縁膜としては、ポーラスーメチルシルセスキオキサン(ポーラスーMSQ:Porous-Methyl Silsesquioxane)があり、層間絶縁膜には、例えば、20nm以下の分子もしくは原子サイズの空孔が形成されている。

[0040]

続いて、反応管 2 を使用する酸化活性ガスの種類に応じた所定の圧力に維持する。そして、酸化活性ガス導入管 1 3 から、所定の酸化活性ガスを内管 3 内に所定量供給する。内管 3 内に酸化活性ガスが供給されると、層間絶縁膜の表面エネルギー中の極性成分エネルギーが大きくなり、この結果、層間絶縁膜の表面エネルギーが大きくなる。このように、層間絶縁膜の表面エネルギーや大きくなる。このように、層間絶縁膜の表面エネルギー中の極性成分エネルギーが大きくなるのは、酸化活性ガスにより、層間絶縁膜を構成するポーラスーMSQの($Si-CH_3$)の一部が(Si-CO)、(Si-COH)、(Si-O)、(Si-COH)、(Si-O)、(Si-COH)等の極性成分に置換されたためと考えられる。層間絶縁膜の表面エネルギーが大きくなったことにより、層間絶縁膜の密着性能が向上し、その上部に形成される膜、例えば、ハードマスクとの密着性が向上する。

[0041]

また、紫外線を照射することにより層間絶縁膜の表面を改質する場合には、熱処理装置1の内部に設けられた図示しない紫外線ランプから紫外線が半導体ウエハ10の層間絶縁膜に照射され、層間絶縁膜の表面エネルギーが大きくなる。

[0042]

層間絶縁膜の表面改質終了後、バルブ17の開度を制御しつつ、真空ポンプ18を駆動させて、反応管2内のガスを排気管16に排出する。また、反応管2内の圧力を常圧に戻し、ボートエレベータ8により蓋体7を下降させることにより、半導体ウエハ10をアンロードする。

[0043]

次に、本実施の形態の効果を確認するため、ポーラスーMSQからなる層間絶

縁膜が形成された半導体ウエハ10を、所定の温度に加熱された熱処理装置1(反応管2)内に収容した後、酸化活性ガスとしてのオゾン、水蒸気、酸素、また は、水素及び酸素を供給して層間絶縁膜の表面を改質した場合、及び、紫外線を 照射して層間絶縁膜の表面を改質した場合について、層間絶縁膜の密着性及び表 面エネルギーに関する測定を行った。

[0044]

層間絶縁膜を改質処理した後の層間絶縁膜の表面エネルギーは、接触角法を用いて測定を行った。接触角法は、層間絶縁膜上に液体を滴下し、この液体の玉(滴)と層間絶縁膜表面との接触角を測定する方法である。図2(a)に純水による接触角と層間絶縁膜の表面エネルギーとの関係を示し、図2(b)に純水による接触角と層間絶縁膜の表面エネルギー中の極性成分エネルギーとの関係を示す。

[0045]

層間絶縁膜の表面エネルギーの算出には、Owens-Wendtの方法による固体表面自由エネルギー(表面エネルギー)算出方法を参考にした。この方法は、表面張力の異なる液体を用いて、各液体での接触角を測定し、Dupre-Youngの式から分散成分、極性成分、水素結合成分を算出し、さらに、拡張Fowkes式を用いて、分散成分と極性成分と水素結合成分から表面エネルギー(表面張力)を導き出している。今回は、表面張力の異なる液体として、純水とエチレングリコールとジョードメタンを用いて実施した。

[0046]

図2 (a)に示すように、純水による接触角と層間絶縁膜の表面エネルギーとは相関関係があり、表面エネルギーが大きくなると純水による接触角が小さくなる。これは、図2 (b)に示すように、純水による接触角と層間絶縁膜の表面エネルギー中の極性成分エネルギーとに相関関係があり、極性成分エネルギーが大きくなると純水による接触角が小さくなるためである。また、層間絶縁膜上にハードマスクを成膜してCMP (Chemical Mechanical Polishing)テストを行い、膜剥がれが発生し難くなる層間絶縁膜の表面エネルギーを求めたところ、表面エネルギーが80mN/m以上であることが好ましく、100mN/m以上であ

ることがさらに好ましいことが確認できた。このため、層間絶縁膜の密着性能が向上し、その上部に形成される膜、例えば、ハードマスクとの密着性を向上させるには、純水による接触角が40°以下となるように改質することが好ましく、20°以下となるように改質することがさらに好ましい。

[0047]

以下、オゾンによる層間絶縁膜の表面改質、水蒸気による層間絶縁膜の表面改質、水素及び酸素による層間絶縁膜の表面改質、酸素による層間絶縁膜の表面改質、紫外線による表面改質の順に説明する。

[0048]

(オゾンによる層間絶縁膜の表面改質)

本例では、酸化活性ガス導入管13からのオゾン供給時間を1分、反応管2内の圧力を133Pa(1Torr)、オゾン量を25g/Nm3として、反応管2内の温度を200℃(比較例2)、250℃(実施例1)、及び、300℃(実施例2)に設定し、オゾンによる層間絶縁膜の表面改質を行った場合の層間絶縁膜の純水による接触角を測定した。図3(a)にオゾンによる層間絶縁膜の表面改質の条件を示し、図3(b)に表面改質した層間絶縁膜の純水による接触角を示す。また、表面改質した層間絶縁膜上にハードマスクを成膜してCMPテストを行った。この結果(膜剥がれが発生せず密着性を有する場合を「○」、膜剥がれが発生し密着性を有しない場合を「×」)を図3(a)に示す。さらに、表面改質しない場合(比較例1)についても層間絶縁膜の純水による接触角及びCMPテストを行い、この結果を図3中に示す。

[0049]

図3に示すように、反応管 2 内の温度が 250 ℃以上の場合(実施例 1)には、層間絶縁膜の純水による接触角が 40° 以下になり、CMPテストの結果も良好であった。特に、反応管 2 内の温度が 300 ℃の場合(実施例 2)には、層間絶縁膜の純水による接触角が 20° 以下まで小さくなり、CMPテストの結果も良好であった。このため、オゾンによる層間絶縁膜の表面改質により、層間絶縁膜の密着性能が向上し、ハードマスクとの密着性が向上することが確認できた。

[0050]

一方、反応管 2 内の温度が 2 0 0 $\mathbb C$ の場合(比較例 2)には、層間絶縁膜の純水による接触角が 4 0 $\mathbb C$ 以下にならず、 $\mathbb C$ $\mathbb C$ $\mathbb C$ 以下にならず、 $\mathbb C$ $\mathbb C$

[0051]

ところで、ポーラスーMSQを用いるデバイス世代では、高温熱処理は好まれないことから、反応管 2 内の温度は 600 $\mathbb C$ 以下であることが好ましく、 400 $\mathbb C$ 以下であることがさらに好ましい。このため、オゾンによる層間絶縁膜の表面改質における反応管 2 内の温度は、 600 $\mathbb C$ 以下、さらに好ましくは 200 $\mathbb C$ \sim 400 $\mathbb C$ $\mathbb C$

[0052]

オゾンによる層間絶縁膜の表面改質における反応管 2 内の圧力は、0.3 Pa (0.003 Torr) ~ 101 k Pa (常圧) であることが好ましく、0.3 Pa (0.003 Torr) ~ 6.65 k Pa (50 Torr) であることがさらに好ましい。熱処理装置 1 の最小圧力が0.3 Pa程度であり、オゾンは高圧力側では失活してゆく傾向にあり、処理温度が高温になるほどこの傾向が顕著になるためである。また、反応管 2 内の温度が300 Cの場合、オゾンの酸化力を十分に発揮するには、6.65 k Pa (50 Torr) 以下であることが好ましいためである。

[0053]

オゾンによる層間絶縁膜の表面改質におけるオゾン供給時間は、60分以下であることが好ましく、30分以下であることがさらに好ましく、10分以下であることが最も好ましい。ポーラスーMSQを用いるデバイス世代における一般的な膜の焼成処理時間は30分~60分であり、実際の生産性を考慮したものであ

る。また、オゾンによる層間絶縁膜の表面改質におけるオゾン量は、 $200 \, \mathrm{g/Nm^3}$ 以下であることが好ましく、 $100 \, \mathrm{g/Nm^3}$ 以下であることがさらに好ましい。

[0054]

(水蒸気による層間絶縁膜の表面改質)

本例では、反応管 2 内の圧力を常圧として、反応管 2 内の温度を 5 0 0 ℃、酸化活性ガス導入管 1 3 からの水蒸気供給時間を 3 0 分に設定した場合(実施例 3)と、反応管 2 内の温度を 4 0 0 ℃、酸化活性ガス導入管 1 3 からの水蒸気供給時間を 1 5 分に設定した場合(比較例 3)とについて、水蒸気による層間絶縁膜の表面改質を行い、層間絶縁膜の純水による接触角を測定した。図 4 (a) に水蒸気による層間絶縁膜の表面改質の条件を示し、図 4 (b) に表面改質した層間絶縁膜の純水による接触角を示す。

[0055]

図4に示すように、反応管2内の温度が500℃、酸化活性ガス導入管13からの水蒸気供給時間が30分の場合(実施例3)には、層間絶縁膜の純水による接触角が十分に小さくなった。このため、水蒸気による層間絶縁膜の表面改質により、層間絶縁膜の密着性能が向上し、ハードマスクとの密着性が向上すると考えられる。

[0056]

また、反応管 2 内の温度が 400 ℃、酸化活性ガス導入管 13 からの水蒸気供給時間が 15 分の場合(比較例 3)には、層間絶縁膜の純水による接触角が 40 。以下にならないため、ハードマスクとの密着性は向上しないと考えられる。このため、水蒸気による層間絶縁膜の表面改質では、反応管 2 内の温度を 500 ℃付近まで上昇させる必要があることが確認できた。

[0057]

(水素及び酸素による層間絶縁膜の表面改質)

本例では、反応管2内の圧力を133Pa(1Torr)として、反応管2内の温度、酸化活性ガス導入管13からの水素及び酸素の供給時間、水素の割合(水素混合比)を変化させた場合(実施例4~実施例10)について、水素及び酸

素による層間絶縁膜の表面改質を行い、層間絶縁膜の純水による接触角を測定した。なお、本例では、別々の酸化活性ガス導入管13から酸素と水素とを供給し、反応管2内で混合した。図5(a)に水素及び酸素による層間絶縁膜の表面改質の条件を示し、図5(b)に表面改質した層間絶縁膜の純水による接触角を示す。

[0058]

図5に示すように、反応管2内の温度を360℃~400℃、酸化活性ガス導入管13からの水素及び酸素の供給時間を1分~10分、水素混合比を5%~66%に変化させた場合(実施例4~実施例10)、層間絶縁膜の純水による接触角が十分に小さくなった。このため、水素及び酸素による層間絶縁膜の表面改質により、層間絶縁膜の密着性能が向上し、ハードマスクとの密着性が向上すると考えられる。

[0059]

また、好ましい温度範囲を確認するため、反応管 2 内の温度を 2 5 0 \mathbb{C} とした場合について同様の表面改質を行ったところ、層間絶縁膜の純水による接触角は十分に小さくなった。このため、水素及び酸素による層間絶縁膜の表面改質における反応管 2 内の温度は、6 0 0 \mathbb{C} 以下、さらに好ましくは、2 5 0 \mathbb{C} \mathbb

[0060]

水素及び酸素による層間絶縁膜の表面改質における反応管 2内の圧力は、0. 3 Pa(0. 003 Torr)~101 k Pa(常圧)であることが好ましく、0. 3 Pa(0. 003 Torr)~0. 3 k Pa(3 Torr)であることがさらに好ましい。熱処理装置 1 の最小圧力が 0. 3 Pa程度であり、水素及び酸素処理の酸化力は 0. 3 k Paより高くすると弱くなるためである。

[0061]

水素及び酸素による層間絶縁膜の表面改質におけるガス供給時間は、60分以下であることが好ましく、30分以下であることがさらに好ましく、10分以下であることが最も好ましい。ポーラス-MSQを用いるデバイス世代における一般的な膜の焼成処理時間は30分~60分であり、実際の生産性を考慮したもの

である。また、水素の混合比は、0.001%~99%であることが好ましく、5%~66%であることがさらに好ましい。極微量の水素の添加により処理中にラジカルが発生し、このラジカルにより表面改質処理が可能になるためである。

[0062]

(酸素による層間絶縁膜の表面改質)

本例では、反応管 2 内の圧力を常圧、酸化活性ガス導入管 1 3 からの酸素供給時間を 3 0 分として、反応管 2 内の温度を 3 0 0 ℃(比較例 4)、4 0 0 ℃(比較例 5)、5 0 0 ℃(実施例 1 1)、及び、6 0 0 ℃(実施例 1 2)に設定し、酸素による層間絶縁膜の表面改質を行った場合の層間絶縁膜の純水による接触角を測定した。図 6 (a) に酸素による層間絶縁膜の表面改質の条件を示し、図 6 (b) に表面改質した層間絶縁膜の純水による接触角を示す。

[0063]

図6に示すように、反応管2内の温度が500℃以上の場合(実施例11,12)には、層間絶縁膜の純水による接触角が十分に小さくなった。このため、酸素による層間絶縁膜の表面改質により、層間絶縁膜の密着性能が向上し、ハードマスクとの密着性が向上すると考えられる。一方、反応管2内の温度が400℃以下の場合(比較例4,5)には、層間絶縁膜の純水による接触角が40°以下にならず、ハードマスクとの密着性は向上しないと考えられる。このため、酸素による層間絶縁膜の表面改質では、反応管2内の温度を500℃付近まで上昇させる必要があることが確認できた。

[0064]

(紫外線による層間絶縁膜の表面改質)

本例では、層間絶縁膜への紫外線照射時間を大気雰囲気中、室温(約25℃)下で10秒(実施例13)、及び、30秒(実施例14)に設定し、紫外線による層間絶縁膜の表面改質を行った場合の層間絶縁膜の純水による接触角を測定した。図7(a)に紫外線による層間絶縁膜の表面改質の条件を示し、図7(b)に表面改質した層間絶縁膜の純水による接触角を示す。

[0065]

図7に示すように、紫外線照射時間を10秒以上にすること(実施例13,1

4)により、層間絶縁膜の純水による接触角が40°以下になった。特に、紫外線照射時間が30秒の場合(実施例14)には、層間絶縁膜の純水による接触角が20°以下まで小さくなった。このため、紫外線による層間絶縁膜の表面改質により、層間絶縁膜の密着性能が向上し、ハードマスクとの密着性が向上すると考えられる。また、紫外線照射時間は、10秒以上にすることが好ましく、30秒以上にすることがさらに好ましい。

[0066]

紫外線による層間絶縁膜の表面改質における処理雰囲気は大気中もしくは酸素を含んだ雰囲気であることが好ましい。酸素を含んだ雰囲気であれば、紫外線照射により酸素ラジカルあるいはオゾンが発生するためである。このため、紫外線による層間絶縁膜の表面改質における反応管2内の温度は、600℃以下、さらに好ましくは400℃以下である。同様の理由により、紫外線による層間絶縁膜の表面改質における反応管2内の圧力は、0.3Pa(0.003Torr)~101kPa(常圧)であることが好ましい。

[0067]

次に、本発明の表面改質により層間絶縁膜の膜特性が劣化しているか否かを確認するため、表面改質した層間絶縁膜の誘電率を測定した。図8に、実施例1により表面改質した層間絶縁膜と、表面改質をしていない比較例1の層間絶縁膜について、その誘電率を測定した結果を示す。図8に示すように、実施例1による表面改質を行っても、層間絶縁膜の誘電率がほとんど変化していないことが分かる。このため、本発明の表面改質は、誘電率を維持しつつ、密着性を向上することができることが確認できた。また、層間絶縁膜の表面を観察したところ、層間絶縁膜の表面に、問題を生じるような荒れは発生していなかった。このため、本発明の表面改質は、膜特性の劣化を防止するとともに、密着性を向上することができることが確認できた。

[0068]

以上説明したように、本実施の形態によれば、所定の温度に加熱された反応管 2内に酸化活性ガスを供給する、または、紫外線を照射することにより、層間絶 縁膜の誘電率を維持しつつ、密着性を向上することができる。また、膜特性の劣

[0069]

なお、本発明は、上記の実施の形態に限られず、種々の変形、応用が可能である。以下、本発明に適用可能な他の実施の形態について説明する。

[0070]

上記実施の形態では、有機官能基を有するポリシロキサンを含む塗布液をスピンコーティングして半導体ウエハ10に塗布膜を形成し、形成した塗布膜を焼成することにより形成された層間絶縁膜の場合を例に本発明を説明したが、本発明はこれに限定されるものではなく、各種の層間絶縁膜に適用することが可能である。ただし、低誘電率の層間絶縁膜の場合に、上部に形成される膜との膜剥がれが発生しやすいことから、本発明の層間絶縁膜は低誘電率の層間絶縁膜であることが好ましい。また、低誘電率の層間絶縁膜は、ポーラスーMSQに限定されるものではなく、各種の低誘電率の層間絶縁膜に適用することが可能である。

[0071]

また、本発明は、有機官能基を有するポリシロキサンを含む塗布液をスピンコーティングして半導体ウエハ10に塗布膜を形成し、形成した塗布膜を焼成することにより形成された層間絶縁膜に対する改質として示しているが、例えば、バッチ式縦型熱処理装置1を用いて、塗布膜の焼成を実施した後に連続して改質処理を実施することも可能である。

[0072]

本実施の形態では、バッチ式熱処理装置について、反応管2が内管3と外管4 とから構成された二重管構造のバッチ式縦型熱処理装置1の場合を例に本発明を 説明したが、本発明はこれに限定されるものではなく、例えば、内管3を有しな い単管構造のバッチ式熱処理装置に適用することも可能である。

[0073]

また、本発明はバッチ式熱処理装置に限定されるものではなく、例えば、図9に示すような枚葉式の熱処理装置であってもよい。図9では、紫外線照射により層間絶縁膜の表面を改質する場合に用いられる熱処理装置を示している。図9に示すように、熱処理装置51内の載置部52上に、層間絶縁膜が形成された半導

体ウエハ53が載置される。半導体ウエハ53は、載置部52内に配設されたヒータ54により所定の温度に設定される。熱処理装置51の上部には、複数の紫外線ランプを備える紫外線照射部55が設けられ、紫外線照射部55から半導体ウエハ53に紫外線が照射される。この紫外線により、半導体ウエハ53に形成された層間絶縁膜が表面改質され、層間絶縁膜の誘電率を維持しつつ、密着性を向上することができる。

[0074]

上記実施の形態では、酸化活性ガスに、オゾン、水蒸気、酸素、水素及び酸素 を用いた場合を例に本発明を説明したが、酸化活性ガスは、層間絶縁膜の表面エネルギー中の極性成分エネルギーを大きくすることができるものであればよい。

[0075]

【発明の効果】

以上説明したように、本発明によれば、誘電率を維持しつつ、密着性を向上することができる。

【図面の簡単な説明】

【図1】

本発明の実施の形態の熱処理装置を示す図である。

【図2】

(a) は、純水による接触角と層間絶縁膜の表面エネルギーとの関係を示すグラフであり、(b) は、純水による接触角と層間絶縁膜の表面エネルギー中の極性成分エネルギーとの関係を示すグラフである。

【図3】

(a) は、オゾンによる層間絶縁膜の表面改質の条件を示す図であり、(b) は、層間絶縁膜の純水による接触角を示すグラフである。

【図4】

(a)は、水蒸気による層間絶縁膜の表面改質の条件を示す図であり、(b)は、表面改質した層間絶縁膜の純水による接触角を示すグラフである。

【図5】

(a)は、水素及び酸素による層間絶縁膜の表面改質の条件を示す図であり、(

b)は、表面改質した層間絶縁膜の純水による接触角を示すグラフである。

【図6】

(a)は、酸素による層間絶縁膜の表面改質の条件を示す図であり、(b)は、表面改質した層間絶縁膜の純水による接触角を示すグラフである。

【図7】

(a) は、紫外線による層間絶縁膜の表面改質の条件を示す図であり、(b) は、表面改質した層間絶縁膜の純水による接触角を示すグラフである。

【図8】

表面改質した層間絶縁膜の誘電率を示すグラフである。

【図9】

本発明の他の実施の形態の熱処理装置を示す図である。

【符号の説明】

- 1 熱処理装置
- 2 反応管
- 3 内管
- 4 外管
- 5 マニホールド
- 6 支持リング
- 7 蓋体
- 8 ボートエレベータ
- 9 ウエハボート
- 10 半導体ウエハ
- 11 断熱体
- 12 昇温用ヒータ
- 13 酸化活性ガス導入管
- 14 排気口
- 15 パージガス供給管
- 16 排気管
- 17 バルブ

ページ: 23/E

- 18 真空ポンプ
- 19 制御部

【図1】

【図2】

【図3】

種類 No. 温度 時間 圧力 実施例3 水蒸気 500℃ 常圧 30分 (a) 比較例1 表面改質せず 比較例3 水蒸気 400℃ 15分 常圧

【図4】

種類 No. 温度 時間 圧カ 実施例3 水蒸気 500℃ 30分 常圧 (a) 比較例1 表面改質せず 比較例3 水蒸気 400℃ 15分 常圧

(a)

No.	種類	温度	時間	圧力	水素混合比
実施例4	H2+O2	360°C	2分	133Pa	5%
実施例5	H2+O2	360°C	1分	133Pa	10%
実施例6	H2+O2	400℃	1分	133Pa	10%
実施例7	H2+O2	360°C	10分	133Pa	33%
実施例8	H2+O2	400℃	1分	133Pa	33%
実施例9	H2+O2	360℃	10分	133Pa	66%
実施例10	H ₂ +O ₂	400°C	1分	133Pa	66%
比較例1	表面改質せず				

【図6】

(a)

No.	種類	温度	時間	圧力		
実施例11	O ₂	500℃	30分	常圧		
実施例12	O 2	600℃	30分	常圧		
比較例1	表面改質せず					
比較例4	O 2	300℃	30分	常圧		
比較例5	O 2	400℃	30分	常圧		

【図7】

(a)

No.	種類	照射時間	
実施例13	紫外線	10秒	
実施例14	紫外線	30秒	
比較例1	表面改質せず		

【図9】

【書類名】 要約書

【要約】

【課題】 誘電率を維持しつつ、密着性を向上することができる層間絶縁膜の表面改質方法及び表面改質装置を提供する。

【解決手段】 熱処理装置1の反応管2内を昇温用ヒータ12により所定の温度に加熱する。次に、層間絶縁膜が形成された半導体ウエハ10を収容したウエハボート9を蓋体7上に載置し、ボートエレベータ8により蓋体7を上昇させ、半導体ウエハ10を反応室内に収容する。続いて、反応管2を使用する酸化活性ガスの種類に応じた所定の圧力に維持し、酸化活性ガス導入管13から、所定の酸化活性ガスを内管3内に所定量供給する。

【選択図】 図1

特願2003-118860

出願人履歷情報

識別番号

[000219967]

1. 変更年月日 [変更理由]

2003年 4月 2日 住所変更

住所氏名

東京都港区赤坂五丁目3番6号