CMPT-413 Computational Linguistics

Anoop Sarkar http://www.cs.sfu.ca/~anoop

March 26, 2012

1/22

Probabilistic CFG (PCFG)

$$S \rightarrow NP VP 1$$

 $VP \rightarrow V NP 0.9$
 $VP \rightarrow VP PP 0.1$
 $PP \rightarrow P NP 1$
 $NP \rightarrow NP PP 0.25$
 $NP \rightarrow Calvin 0.25$
 $NP \rightarrow monsters 0.25$
 $NP \rightarrow school 0.25$
 $V \rightarrow imagined 1$
 $P \rightarrow in 1$

$$P(input) = \sum_{tree} P(tree \mid input)$$

 $P(Calvin imagined monsters in school) =?$
Notice that $P(VP \rightarrow V NP) + P(VP \rightarrow VP PP) = 1.0$

Probabilistic CFG (PCFG)

3/22

Probabilistic CFG (PCFG)

```
(S (NP Calvin)

(VP (V imagined)

(NP (NP monsters)

(PP (P in)

(NP school)))))

P(tree_1) = P(S \rightarrow NP \ VP) \times P(NP \rightarrow Calvin) \times P(VP \rightarrow V \ NP) \times P(V \rightarrow imagined) \times P(NP \rightarrow NP \ PP) \times P(NP \rightarrow monsters) \times P(PP \rightarrow P \ NP) \times P(P \rightarrow in) \times P(NP \rightarrow school)
= 1 \times 0.25 \times 0.9 \times 1 \times 0.25 \times 0.25 \times 1 \times 1 \times 0.25 = .003515625
```

Probabilistic CFG (PCFG)

```
(S (NP Calvin)

(VP (VP (V imagined)

(NP monsters))

(PP (P in)

(NP school))))

P(tree_2) = P(S \rightarrow NP \ VP) \times P(NP \rightarrow Calvin) \times P(VP \rightarrow VP \ PP) \times P(VP \rightarrow V \ NP) \times P(V \rightarrow imagined) \times P(NP \rightarrow monsters) \times P(PP \rightarrow P \ NP) \times P(P \rightarrow in) \times P(NP \rightarrow school)
= 1 \times 0.25 \times 0.1 \times 0.9 \times 1 \times 0.25 \times 1 \times 1 \times 0.25 = .00140625
```

5/22

Probabilistic CFG (PCFG)

PCFG

- ▶ Central condition: $\sum_{\alpha} P(A \rightarrow \alpha) = 1$
- Called a proper PCFG if this condition holds
- ▶ Note that this means $P(A \to \alpha) = P(\alpha \mid A) = \frac{f(A,\alpha)}{f(A)}$
- $P(T \mid S) = \frac{P(T,S)}{P(S)} = P(T,S) = \prod_i P(RHS_i \mid LHS_i)$

7/22

PCFG

What is the PCFG that can be extracted from this single tree:

```
(S (NP (Det the) (NP man))

(VP (VP (V played)

(NP (Det a) (NP game)))

(PP (P with)

(NP (Det the) (NP dog)))))
```

How many different rhs α exist for A → α where A can be S, NP, VP, PP, Det, N, V, P

PCFG

```
S
     \rightarrow NP VP c = 1 p = 1/1
                                  = 1.0
NP
     → Det NP c = 3 p = 3/6 = 0.5
NP \rightarrow man
                 c = 1 p = 1/6 = 0.1667
NP \rightarrow
         game c = 1 p = 1/6 = 0.1667
NP
                 c = 1 p = 1/6 = 0.1667
          dog
VP
     \rightarrow VP PP c = 1 p = 1/2 = 0.5
VP \rightarrow
        V NP
                 c = 1 p = 1/2 = 0.5
PP \rightarrow
       P NP
                 c = 1 p = 1/1 = 1.0
Det \rightarrow
                 c = 2 p = 2/3 = 0.67
         the
Det \rightarrow
                 c = 1 p = 1/3 = 0.33
            а
V
     \rightarrow played c = 1 p = 1/1 = 1.0
Р
          with
                  c = 1 p = 1/1 = 1.0
```

- We can do this with multiple trees. Simply count occurrences of CFG rules over all the trees.
- A repository of such trees labelled by a human is called a TreeBank.

9/22

Ambiguity

Part of Speech ambiguity

```
saw \rightarrow noun
saw \rightarrow verb
```

- Structural ambiguity: Prepositional Phrases I saw (the man) with the telescope
 - I saw (the man with the telescope)
- Structural ambiguity: Coordination
 - a program to promote safety in ((trucks) and
 (minivans))
 - a program to promote ((safety in trucks) and
 (minivans))
 - ((a program to promote safety in trucks) and
 (minivans))

Ambiguity ← attachment choice in alternative parses

11/22

Parsing as a machine learning problem

ightharpoonup S = a sentence

T = a parse tree

A statistical parsing model defines $P(T \mid S)$

▶ Find best parse: $\underset{T}{\text{arg max}} P(T \mid S)$

$$P(T \mid S) = \frac{P(T,S)}{P(S)} = P(T,S)$$

▶ Best parse: $\underset{T}{\operatorname{arg max}} P(T, S)$

• e.g. for PCFGs: $P(T, S) = \prod_{i=1...n} P(RHS_i \mid LHS_i)$

Adding Lexical Information to PCFG

13/22

Adding Lexical Information to PCFG (Collins 99, Charniak 00)

 $P_h(VB \mid VP, indicated) \times P_l(STOP \mid VP, VB, indicated) \times P_r(NP(difference) \mid VP, VB, indicated) \times P_r(PP(in) \mid VP, VB, indicated) \times P_r(STOP \mid VP, VB, indicated)$

Evaluation of Parsing

Consider a candidate parse to be evaluated against the truth (or gold-standard parse):

```
candidate: (S (A (P this) (Q is)) (A (R a) (T test)))
gold: (S (A (P this)) (B (Q is) (A (R a) (T test))))
```

In order to evaluate this, we list all the constituents

Candidate	Gold
(0,4,S)	(0,4,S)
(0,2,A)	(0,1,A)
(2,4,A)	(1,4,B)
	(2,4,A)

- Skip spans of length 1 which would be equivalent to part of speech tagging accuracy.
- Precision is defined as $\frac{\#correct}{\#proposed} = \frac{2}{3}$ and recall as $\frac{\#correct}{\#in\ gold} = \frac{2}{4}$.
- Another measure: crossing brackets,

candidate: [an [incredibly expensive] coat] (1 CB)
gold: [an [incredibly [expensive coat]]

15/22

Evaluation of Parsing

Bracketing recall $R = \frac{\text{num of correct constituents}}{\text{num of constituents in the goldfile}}$

Bracketing precision $P = \frac{\text{num of correct constituents}}{\text{num of constituents in the parsed file}}$

Complete match = % of sents where recall & precision are both 100%

Average crossing = $\frac{\text{num of constituents crossing a goldfile constituent}}{\text{num of sents}}$

No crossing = % of sents which have 0 crossing brackets

2 or less crossing = % of sents which have \leq 2 crossing brackets

16/22

Statistical Parsing Results

$$F1\text{-score} = 2 \frac{\textit{precision} \cdot \textit{recall}}{\textit{precision} + \textit{recall}}$$

	≤ 100 <i>wds</i>
System	F1-score
Shift-Reduce (Magerman, 1995)	84.14
PCFG with Lexical Features (Collins, 1999)	88.19
PCFG with Lexical Features (Charniak, 1999)	89.54
n-best Re-ranking (Collins, 2000)	89.74
Unlexicalized Berkeley parser (Petrov et al, 2007)	90.10
<i>n</i> -best Re-ranking (Charniak and Johnson, 2005)	91.02
Tree-insertion grammars (Carreras, Collins, Koo,	91.10
2008)	
Ensemble <i>n</i> -best Re-ranking (Johnson and Ural,	91.49
2010) Forcet De repking (Hueng 2010)	01.70
Forest Re-ranking (Huang, 2010)	91.70
Unlabeled Data with Self-Training (McCloskey et al,	92.10
2006)	

17/22

Practical Issues: Beam Thresholding and Priors

- ▶ Probability of nonterminal X spanning j ... k: N[X, j, k]
- Beam Thresholding compares N[X, j, k] with every other Y where N[Y, j, k]
- But what should be compared?
- ▶ Just the *inside probability*: $P(X \stackrel{*}{\Rightarrow} t_j \dots t_k)$? written as $\beta(X, j, k)$
- ▶ Perhaps $\beta(FRAG, 0, 3) > \beta(NP, 0, 3)$, but NPs are much more likely than FRAGs in general

Practical Issues: Beam Thresholding and Priors

► The correct estimate is the *outside probability*:

$$P(S \stackrel{*}{\Rightarrow} t_1 \dots t_{j-1} X t_{k+1} \dots t_n)$$

written as $\alpha(X, j, k)$

▶ Unfortunately, you can only compute $\alpha(X, j, k)$ efficiently after you finish parsing and reach (S, 0, n)

19/22

Practical Issues: Beam Thresholding and Priors

- ▶ To make things easier we multiply the prior probability P(X) with the inside probability
- In beam Thresholding we compare every new insertion of X for span j, k as follows:
 Compare P(X) ⋅ β(X i k) with the most probable Y
 - Compare $P(X) \cdot \beta(X, j, k)$ with the most probable Y $P(Y) \cdot \beta(Y, j, k)$
- Assume Y is the most probable entry in j, k, then we compare

beam
$$\cdot P(Y) \cdot \beta(Y, j, k)$$
 (1)

$$P(X) \cdot \beta(X, j, k) \tag{2}$$

- ▶ If (2) < (1) then we prune X for this span j, k
- beam is set to a small value, say 0.001 or even 0.01.
- ► As the beam value increases, the parser speed increases (since more entries are pruned).
- ► A simpler (but not as effective) alternative to using the beam is to keep only the top *K* entries for each span *j*, *k*

Experiments with Beam Thresholding

21/22

Experiments with Beam Thresholding

