

école———	
normale ———	
supérieure ———	
paris—saclav——	

Étude numérique des équations du groupe de renormalisation non perturbatif

Master 2 Analyse Modélisation Simulation

Gaétan Facchinetti Encadré par : Nicolas Dupuis et Bertrand Delamotte

Laboratoire de Physique Théorique de la Matière Condensée Université Paris-Saclay – École Normale Supérieure Paris-Saclay École Nationale Supérieure des Techniques Avancées - UVSQ

28 septembre 2017

Introduction du problème
 Physique statistique et modèle d'Ising
 Objectifs de l'étude

2. Etude du modèle d'Ising 2D : Mise en équation Le groupe de renormalisation non perturbatif (NPRG) L'équation de l'approximation BMW

3. Etude du modèle d'Ising 2D : Méthodes numériques Discrétisation en temps et en champs Intégration de Gauss Legendre Interpolation de Tchebytchev Vue d'ensemble

4. Etude du modèle d'Ising 2D : Résultats

5. Conclusions

1. Introduction du problème

1. Physique statistique et modèle d'Ising

• Modèle d'Ising 2D carré : N_s spins à une composante sur un quadrillage

Figure – Modèle d'Ising.

ullet Spin et configuration :

$$S_{\mathbf{r}} = -1(\downarrow), +1(\uparrow), \quad \mathcal{M} = \{S_{\mathbf{r}}\}_{\mathbf{r}}$$

• Energie d'une config. $\mathcal{M}:\mathcal{H}(\mathcal{M},b)$

$$\mathcal{H}(\mathcal{M},b) = \sum_{\langle \mathbf{r},\mathbf{r}'\rangle} S_{\mathbf{r}} S_{\mathbf{r}'} - \sum_{\mathbf{r}} b_{\mathbf{r}} S_{\mathbf{r}}$$

ullet Probabilité d'une config. $\mathcal M$:

$$p(\mathcal{M}, b, T) = \frac{1}{\mathcal{Z}(b, T)} \exp\left(-\frac{\mathcal{H}(\mathcal{M}, b)}{k_B T}\right)$$

1. Introduction du problème

1. Physique statistique et modèle d'Ising

• Définition de l'aimantation :
$$m(T,b) = \left\langle \frac{1}{N_s} \sum_{\bf r} S_{\bf r} \right\rangle$$

 \bullet Evolution de m avec la température T: transition de phase

• Fonction de corrélation à deux points :

$$G^{(2)}(\mathbf{r}, \mathbf{r}') = G^{(2)}(\mathbf{r} - \mathbf{r}') = \langle S_{\mathbf{r}} S_{\mathbf{r}'} \rangle$$
 et $\Gamma^{(2)}(\mathbf{r} - \mathbf{r}') \simeq \frac{1}{G^{(2)}(\mathbf{r} - \mathbf{r}')}$

Introduction du problème
 Objectifs de l'étude

- \Rightarrow Calcul de la température critique : T_c
- ⇒ Calcul des exposants critiques

Introduction du problème Objectifs de l'étude

- \Rightarrow Calcul de la température critique : T_c
- ⇒ Calcul des exposants critiques

• Contexte:

Calcul de T_c très complexe : pas de méthode générale. Méthode du Groupe de Renormalisation Non Perturbatif (NPRG) Résolution par approximation BMW (Blaizot - Méndez-Galain - Wschebor) Des codes existants mettent déjà en oeuvre cette résolution

• Objectif:

Calculer de T_c avec la méthode NPRG et l'approximation BMW Benchmarking de l'approximation BMW

- Introduction du problème
 Physique statistique et modèle d'Ising
 Objectifs de l'étude
- 2. Etude du modèle d'Ising 2D : Mise en équation Le groupe de renormalisation non perturbatif (NPRG) L'équation de l'approximation BMW
- 3. Etude du modèle d'Ising 2D : Méthodes numériques Discrétisation en temps et en champs Intégration de Gauss Legendre Interpolation de Tchebytchev Vue d'ensemble
- 4. Etude du modèle d'Ising 2D : Résultats
- 5. Conclusions

2. Etude du modèle d'Ising 2D : Mise en équation
1. Le groupe de renormalisation non perturbatif (NPRG)

• Le principe du NPRG :

2. Etude du modèle d'Ising 2D : Mise en équation 2. L'équation de l'approximation BMW

• L'équation de BMW à résoudre :

Trouver
$$\Gamma^{(2)}$$
 tel que pour tout $(\mathbf{p}, \phi, t) \in [-\pi, \pi]^2 \times \mathbb{R} \times]-\infty, 0],$

$$\partial_t \Gamma^{(2)}(t, \mathbf{p}, \phi) = J_3(t, \mathbf{p}, \phi) \Big(\partial_\phi \Gamma^{(2)}(t, \mathbf{p}, \phi) \Big)^2 - \frac{1}{2} I_2(t, \phi) \, \partial_\phi^2 \Gamma^{(2)}(t, \mathbf{p}, \phi)$$

Avec les notations

$$J_{n}(t, \mathbf{p}, \phi) = \int_{\mathbf{q}} \partial_{t} \mathcal{R}(t, \mathbf{q}) G(t, \mathbf{p} + \mathbf{q}, \phi) G^{n-1}(t, \mathbf{q}, \phi),$$

$$I_{n}(t, \phi) = J_{n}(t, \mathbf{p} = 0, \phi).$$

$$G(t, \mathbf{q}, \phi) = \frac{1}{\Gamma^{(2)}(t, \mathbf{q}, \phi) + \mathcal{R}(t, \mathbf{q})} \qquad (propagateur)$$

$$\mathcal{R}(t, \mathbf{q}) \in \mathcal{C}^{\infty}(\mathbb{R}^{3}) \qquad (régulateur)$$

- Condition initiale : en t = 0, dépend de la température T.
- Détermination de T_c : calcul de $\Gamma^{(2)}$ en $t \to -\infty$

- Introduction du problème
 Physique statistique et modèle d'Ising
 Objectifs de l'étude
- Etude du modèle d'Ising 2D : Mise en équation
 Le groupe de renormalisation non perturbatif (NPRG
 L'équation de l'approximation BMW
- 3. Etude du modèle d'Ising 2D : Méthodes numériques Discrétisation en temps et en champs Intégration de Gauss Legendre Interpolation de Tchebytchev Vue d'ensemble
- 4. Etude du modèle d'Ising 2D : Résultats
- 5. Conclusions

3. Etude du modèle d'Ising 2D : Méthodes numériques 1. Discrétisation en temps et en champs

Objectif : discrétiser et faire des calculs sur la fonction

$$(t, q_x, q_y, \phi) \to \Gamma^{(2)}(t, q_x, q_y, \phi)$$

- ullet Discrétisation en temps t:
 - \diamond Grille de points $\{t_n\}_n$ régulièrement espacés.
 - $\diamond \, \text{Sch\'ema d'Euler explicite} : \partial_t \Gamma^{(2)}(t,\ldots) = \left(\Gamma^{(2)}(t_n,\ldots) \Gamma^{(2)}(t_{n-1},\ldots)\right)/\delta t$
- Discrétisation en champ ϕ :
 - \diamond Grille de points $\{\phi_n\}_n$ régulièrement espacés.
 - \diamond Calcul des dérivées $\partial_{\phi}\Gamma^{(2)}(...,\phi)$ avec des schémas à 5 points.

3. Etude du modèle d'Ising 2D : Méthodes numériques 2. Intégration de Gauss Legendre

• Calcul des intégrales :

$$\begin{split} J_3(t,p_x,p_y,\phi) &= \int_{[-\pi,\pi]^2} \frac{\partial_t \mathcal{R}(t,q_x,q_y)}{\Gamma^{(2)}(t,p_x+q_x,p_y+q_y,\phi) + \mathcal{R}(t,q_x,q_y)} \\ &\qquad \times \left\{ \frac{1}{\Gamma^{(2)}(t,q_x,q_y,\phi) + \mathcal{R}(t,q_x,q_y)} \right\}^2 \mathrm{d}q_x \mathrm{d}q_y \\ I_2(t,\phi) &= \int_{[-\pi,\pi]^2} \partial_t \mathcal{R}(t,q_x,q_y) \left\{ \frac{1}{\Gamma^{(2)}(t,q_x,q_y,\phi) + \mathcal{R}(t,q_x,q_y)} \right\}^2 \mathrm{d}q_x \mathrm{d}q_y \end{split}$$

• Premier problème :

FIGURE – Représentation de $\partial_t \mathcal{R}(t_1, q_x, q_y)$, $\partial_t \mathcal{R}(t_2, q_x, q_y)$, avec $t_2 < t_1$

La solution : Utiliser des variables $(\tilde{q}_x, \tilde{q}_y) = (e^{-t}q_x, e^{-t}q_y)$.

3. Etude du modèle d'Ising 2D : Méthodes numériques 2. Intégration de Gauss Legendre

- Quadrature de Gauss-Legendre :
- \diamond Utilisation de $\{\xi_i\}_i$ points d'intégrations de Gauss-Legendre (zéros du polynômes de Legendre d'ordre n_{gl}) sur [-1,1] et $\{w_i\}_i$ les poids associés :

$$\begin{split} I_2(t,\phi) &\simeq \pi^2 \sum_{i=1}^{n_{gl}} \sum_{j=1}^{n_{gl}} w_i w_j \partial_t \mathcal{R}(t,q_i,q_j) \left\{ \frac{1}{\Gamma^{(2)}(t,q_i,q_j,\phi) + \mathcal{R}(t,q_i,q_j)} \right\}^2 \\ \text{Avec } q_i &= \frac{\pi}{2} \left(\xi_i + 1 \right) \end{split}$$

- \diamond Utilisation des symétries de $\Gamma^{(2)}$ pour réduire les calculs.
- Second problème : le calcul de $J_3(t,p_x,p_y,\phi)$ avec cette technique
 - \diamond Necessité d'intégrer des fonctions de (p_x+q_x,p_y+q_y)
 - $\diamond p_j = \frac{\pi}{2} (\xi_j + 1), q_i = \frac{\pi}{2} (\xi_i + 1) \rightarrow \text{on ne connait pas } \Gamma^{(2)}(t, q_i + p_j, ...)$
 - \diamond La solution : interpoler $\Gamma^{(2)}$

3. Etude du modèle d'Ising 2D : Méthodes numériques 3. Interpolation de Tchebytchev

• Interpolation de Tchebytchev en deux dimensions :

On note maintenant $\{x_n\}_{n\in [\![1,n_c]\!]}$ l'ensemble des n_c racines dans [-1,1] du polynôme de Tchebytchev d'ordre n_c .

On introduit :
$$\mathcal{F} = \left\langle \Gamma^{(2)} \left(t_i, \pi x_m, \pi x_n, \phi_j \right) \right\rangle_{m,n}$$
 \Rightarrow Approximation de rang faible de \mathcal{F} par élimination gaussienne

1: Initialisation :
$$\mathcal{E}^{0} = \mathcal{F}$$
; $\mathcal{F}_{0} = 0$; $k = 1$;
2: while $\|\mathcal{E}^{k}\|_{\infty} < \varepsilon \|\mathcal{E}^{0}\|_{\infty}$ do
3: $(i_{k}, j_{k}) = \operatorname{argmax}_{(i,j)} \left\{ \left| \mathcal{E}_{i,j}^{k-1} \right| \right\}$
4: $\mathcal{C}_{j}^{k} = \mathcal{E}_{i_{k},j}^{k}$; $\mathcal{R}_{i}^{k} = \mathcal{E}_{i,j_{k}}^{k}$; $d_{k} = \mathcal{E}_{i_{k},j_{k}}^{k}$
5: $\mathcal{E}_{i,j}^{k} = \mathcal{E}_{i,j}^{k-1} - d_{k}^{-1} \mathcal{C}_{j}^{k} \mathcal{R}_{i}^{k}$
6: $\mathcal{F}_{i,j}^{k} = \mathcal{F}_{i,j}^{k-1} + d_{k}^{-1} \mathcal{C}_{j}^{k} \mathcal{R}_{i}^{k}$
7: end while

$$\mathcal{F} \simeq \sum_{j=1}^{Q} d_j \mathcal{C}^j \mathcal{R}^j \Rightarrow f(x,y) \simeq \sum_{j=1}^{Q} d_j c^j(y) r^j(x)$$

3. Etude du modèle d'Ising 2D : Méthodes numériques 4. Vue d'ensemble

- Introduction du problème
 Physique statistique et modèle d'Ising
 Objectifs de l'étude
- Etude du modèle d'Ising 2D : Mise en équation
 Le groupe de renormalisation non perturbatif (NPRG)
 L'équation de l'approximation BMW
- 3. Etude du modèle d'Ising 2D : Méthodes numériques Discrétisation en temps et en champs Intégration de Gauss Legendre Interpolation de Tchebytchev Vue d'ensemble
- 4. Etude du modèle d'Ising 2D : Résultats
- 5. Conclusions

4. Etude du modèle d'Ising 2D : Résultats

Figure – Évolution de η en fonction de t pour différentes valeurs de la températue T.

• Encadrement de la température critique

$$2.350 < T_c^{BMW} < 2.375 (1)$$

• Comparaison à la température théorique attendue $T_c^{exact} \simeq 2.269$

$$err = \frac{|T_c^{BMW} - T_c^{exact}|}{T_c^{exact}} \sim 4\%$$
 (2)

- Introduction du problème
 Physique statistique et modèle d'Ising
 Objectifs de l'étude
- Etude du modèle d'Ising 2D : Mise en équation
 Le groupe de renormalisation non perturbatif (NPRG)
 L'équation de l'approximation BMW
- 3. Etude du modèle d'Ising 2D : Méthodes numériques Discrétisation en temps et en champs Intégration de Gauss Legendre Interpolation de Tchebytchev Vue d'ensemble
- 4. Etude du modèle d'Ising 2D : Résultats

5. Conclusions

5. Conclusions

- Première étude :
 - ♦ Réorganisation du code
 - ♦ Réécriture de la méthode de quadrature
 - Quelques changements sans résultats conséquents
- Seconde étude (Ising 2D) :
 - ♦ Mise en place de différentes techniques numériques
 - \diamond Tentative de résolution de problèmes de temps de calculs
 - \diamond Résultats pour une première série de test : erreur de 4 %
 - Résultats contrastée car erreurs numériques
- \Rightarrow Calcul de T_c possible avec cette méthode!