理论课 10 § 4.4-4.4 罗朗(Laurent)级数

- 2018/10/29
- I 组织教学
 - 1、集中学生注意力;
 - 2、清查学生人数;
 - 3、维持课堂纪律;
- 互动提问
- II 复习导入及主要内容
 - 1、上次作业讲评; **问题:**
 - 2、本次主要内容
 - 3、重点:解析函数的重要性质,如何将解析函数展开成罗朗级数.
 - 4、难点:罗朗级数的展开方式和技巧.

III 教学内容及过程

一、 罗朗(Laurent) 级数

若函数 f(z) 在环域内解析,同样也可以展成幂级数,这种环域内定义的幂级数称为罗朗级数.

定理 .30

设函数 f(z) 在圆环域 $r < |z - z_0| < R \ (r \ge 0, R < +\infty)$ 内解析,则 f(z) 在此圆环域内可以唯一地展开为罗朗级数

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n,$$

•

其中, $c_n = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$, $(n = 0, \pm 1, \pm 2, \cdots)$, C 为在 圆环域内绕 z_0 的任意一条简单闭曲线. 显然有 $c_{-1} = \frac{1}{2\pi i} \oint_C f(\zeta) d\zeta$. 等价地, $\oint_C f(\zeta) d\zeta = 2\pi i c_{-1}$.

证: 以点 z_0 为中心,作两个同心圆 $C_1: |z-z_0| = r_1, C_2: |z-z_0| = r_2$,使 $r < r_1 < r_2 < R$. 设点 z 是圆环域 $r_1 < |z-z_0| < r_2$ 内的任意一点,对 $C = C_{22} + C_{12}^- + C_{21} + C_{11}^- = C_2 + C_1^-$,f(z) 在环域内解析,z 是 $\frac{1}{\zeta-z}$ 的奇点,由柯西积分公式(图40),

图 40: 罗朗级数的收敛域

有

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \oint_{C_2} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{\zeta - z} d\zeta,$$

在外环 C_2 上, $|\zeta - z_0| = r_2$, $|\zeta - z_0| > |z - z_0|$,

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0 - (z - z_0)} = \frac{1}{\zeta - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}}$$
$$= \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}}, \left| \frac{z - z_0}{\zeta - z_0} \right| = q_1 < 1,$$

则积分

$$\frac{1}{2\pi i} \oint_{C_2} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \oint_{C_2} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \right] (z - z_0)^n$$
$$= \sum_{n=0}^{\infty} c_n (z - z_0)^n,$$

其中
$$c_n = \frac{1}{2\pi i} \oint_{C_2} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$$
.

在内环
$$C_1$$
 上, $|\zeta - z_0| = r_1$, $|z - z_0| > |\zeta - z_0|$,

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0 - (z - z_0)} = -\frac{1}{z - z_0} \cdot \frac{1}{1 - \frac{\zeta - z_0}{z - z_0}}$$

$$= -\sum_{n=0}^{\infty} \frac{1}{(z - z_0)^{n+1}} (\zeta - z_0)^n$$

$$= -\sum_{n=1}^{\infty} \frac{1}{(z - z_0)^n} (\zeta - z_0)^{n-1}$$

$$= -\sum_{n=1}^{\infty} \frac{1}{(\zeta - z_0)^{-n+1}} (z - z_0)^{-n}, \left| \frac{\zeta - z_0}{z - z_0} \right| = q_2 < 1.$$

则积分

$$-\frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=1}^{\infty} \left[\frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{(\zeta - z_0)^{-n+1}} d\zeta \right] (z - z_0)^{-n}$$
$$= \sum_{n=1}^{\infty} c_{-n} (z - z_0)^{-n}.$$

其中 $c_{-n} = \frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{(\zeta - z_0)^{-n+1}} d\zeta$. 综合上述两个积分, 则

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n + \sum_{n=1}^{\infty} c_{-n} (z - z_0)^{-n}$$
$$= \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n, (r < |z - z_0| < R),$$

其中 $c_n = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$, $(n = 0, \pm 1, \pm 2, \cdots)$. 若令 f(z) = $\phi(z) + \psi(z), \ \phi(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n,$ 函数 $\phi(z)$ 在 $|z - z_0| < R$ 内 解析, 称 $\phi(z)$ 为 f(z) 的罗朗级数的解析部分或称为正则部分. $\psi(z) = \sum_{n=1}^{\infty} c_{-n}(z-z_0)^{-n}$ 称为 f(z) 的罗朗级数的**主要部分**, $\psi(z)$ 在 $|z-z_0| > r$ 内解析.

注解 30 在 f(z) 的罗朗级数中,系数 $c_n = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta-z_0)^{n+1}} d\zeta$ 并 不等于泰勒级数中的高阶导数公式 $\frac{f^{(n)}(z_0)}{n!}$, 因为函数 f(z) 在 C所围的区域内不是处处解析. 在将函数展开成罗朗级数时. 一般 不用系数公式计算. 而常用几何级数、替换法、求导和积分等来计 算.

将函数 $f(z) = \frac{e^z}{z^2}$ 在 $0 < |z| < \infty$ 内展开成罗朗展

解:由定理知:

$$f(z) = \sum_{n = -\infty}^{\infty} c_n z^n,$$

其中 $z_0 = 0$ 是 $f(\zeta) = \frac{e^{\zeta}}{\zeta^2}$ 的奇点, 罗朗展式的系数

$$c_n = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta = \frac{1}{2\pi i} \oint_C \frac{e^{\zeta}}{\zeta^{n+3}} d\zeta$$

围线

$$C: |z| = \rho \ (0 < \rho < \infty), \quad (n = 0, \pm 1, \pm 2, \cdots)$$

当 $n \le -3$ 时, $\frac{1}{\zeta^{n+3}}$ 不存在奇点, $\frac{e^z}{z^2}$ 在圆环内解析, 故由柯西-古萨基本定理知 $c_n = 0$.

当 n > -2 时, 由高阶导数公式知:

$$c_n = \frac{1}{2\pi i} \oint_C \frac{e^{\zeta}}{\zeta^{n+3}} d\zeta = \frac{1}{(n+2)!} \cdot \left[\frac{d^{n+2}}{dz^{n+2}} (e^z) \right]_{z=0} = \frac{1}{(n+2)!},$$

故

$$f(z) = \sum_{n=-2}^{\infty} \frac{z^n}{(n+2)!} = \frac{1}{z^2} + \frac{1}{z} + \frac{1}{2!} + \frac{z}{3!} + \frac{z^2}{4!} + \cdots, 0 < |z| < \infty.$$

解:

$$\frac{e^z}{z^2} = \frac{1}{z^2} \left(1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \frac{z^4}{4!} + \cdots \right) = \frac{1}{z^2} + \frac{1}{z} + \frac{1}{2!} + \frac{z}{3!} + \frac{z^2}{4!} + \cdots$$
$$0 < |z| < \infty.$$

本例中圆环域的中心 z=0 既是各负幂项的奇点, 也是函数 $\stackrel{z}{\hookrightarrow}$ 的奇点.

例 .2

试将函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 在 1) z = 0; 2) z = 1; 3) z = 2 展开成罗朗级数.

解: $f(z) = \frac{1}{(z-1)(z-2)} = \frac{a}{1-z} - \frac{b}{2-z} \Rightarrow a = -1, b = 1$,则 $f(z) = \frac{1}{1-z} - \frac{1}{2-z}$ 有两个奇点,分别为 z = 1, z = 2.

1) 在 z = 0 处有三个环: $0 < |z| < 1; 1 < |z| < 2; 2 < |z| < +\infty$,

- ① 在 $0 < |z| < 1, \frac{1}{1-z} = \sum_{n=0}^{\infty} z^n, \frac{1}{2-z} = \frac{1}{2} \cdot \frac{1}{1-\frac{z}{2}} = \sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}},$ 所以 $f(z) = \frac{1}{1-z} \frac{1}{2-z} = \sum_{n=0}^{\infty} (1 \frac{1}{2^{n+1}}) z^n;$
- ② 在 1 < |z| < 2,有 $1/2 < \left|\frac{1}{z}\right| < 1, 1/2 < \left|\frac{z}{2}\right| < 1$,因此有 $\frac{1}{1-z} = -\frac{1}{z} \cdot \frac{1}{1-\frac{1}{z}} = -\sum_{n=0}^{\infty} \frac{1}{z^{n+1}}, \frac{1}{2-z} = \frac{1}{2} \frac{1}{1-\frac{z}{2}} = \sum_{n=0}^{\infty} \frac{z^n}{z^{n+1}},$ 则 $f(z) = \frac{1}{1-z} \frac{1}{2-z} = -\sum_{n=0}^{\infty} \frac{1}{z^{n+1}} \sum_{n=0}^{\infty} \frac{z^n}{z^{n+1}} = -\sum_{n=0}^{\infty} \frac{1}{z^{n+1}} + \frac{z^n}{2^{n+1}};$
- ③ 在 $2 < |z| < +\infty$, 则有 $0 < \left|\frac{1}{z}\right| < \frac{1}{2}$, $0 < \left|\frac{2}{z}\right| < 1$, $\frac{1}{1-z} = -\frac{1}{z}\frac{1}{1-\frac{1}{z}} = -\sum_{n=0}^{\infty} \frac{1}{z^{n+1}}$, $\frac{1}{2-z} = -\frac{1}{z} \cdot \frac{1}{1-\frac{2}{z}} = -\sum_{n=0}^{\infty} \frac{2^n}{z^{n+1}}$, 则 $f(z) = \sum_{n=1}^{\infty} (2^n 1)\frac{1}{z^{n+1}}$.

函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 在 z = 0 展开成罗朗级数为

$$f(z) = \begin{cases} \sum_{n=0}^{\infty} \left(1 - \frac{1}{2^{n+1}}\right) z^n, & 0 < |z| < 1\\ -\sum_{n=0}^{\infty} \frac{1}{z^{n+1}} - \sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}}, & 1 < |z| < 2\\ \sum_{n=1}^{\infty} \left(2^n - 1\right) \frac{1}{z^{n+1}}, & 2 < |z| < +\infty \end{cases}$$
(38)

- 2) 在 z = 1 处有两个环: 0 < |z 1| < 1 与 $1 < |z 1| < +\infty$.
- ① 在 0 < |z-1| < 1, $\frac{1}{1-z} = \frac{1}{1-z}$, $\frac{1}{2-z} = \frac{1}{1-(z-1)} = \sum_{n=0}^{\infty} (z-1)^n$, 所以 $f(z) = \frac{1}{1-z} \frac{1}{2-z} = -\frac{1}{z-1} + \sum_{n=0}^{\infty} (z-1)^n$;
- ② 在 $1 < |z-1| < +\infty, \frac{1}{2-z} = \frac{1}{1-(z-1)} = -\frac{1}{z-1} \cdot \frac{1}{1-\frac{1}{z-1}} = -\sum_{n=0}^{\infty} \frac{1}{(z-1)^{n+1}},$ 所以 $f(z) = \frac{1}{1-z} \frac{1}{2-z} = \sum_{n=1}^{\infty} \frac{1}{(z-1)^{n+1}};$

函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 在 z = 1 展开成罗朗级数为

$$f(z) = \begin{cases} \sum_{n=0}^{\infty} \left(1 - \frac{1}{2^{n+1}}\right) z^n, & 0 < |z-1| < 1\\ \sum_{n=1}^{\infty} \frac{1}{(z-1)^{n+1}}, & 1 < |z-1| < +\infty \end{cases}$$
(39)

- 3) 在 z = 2 处, 有两环, 0 < |z 2| < 1, |z 2| > 1.
- ① 在环域 0 < |z 2| < 1 内,

$$\frac{1}{1-z} = -\frac{1}{(z-2)+1} = -\sum_{n=0}^{\infty} (-1)^n (z-2)^n,$$
$$f(z) = \frac{1}{z-2} - \sum_{n=0}^{\infty} (z-2)^n.$$

② 在环域 |z-2| > 2, $0 < \frac{1}{|z-2|} < \frac{1}{2}$,

$$\frac{1}{1-z} = -\frac{1}{1+(z-2)} = -\frac{1}{z-2} \cdot \frac{1}{1+\frac{1}{z-2}} = -\sum_{n=0}^{\infty} (-1)^n \frac{1}{(z-2)^{n+1}},$$

所以

$$f(z) = \frac{1}{z-2} - \sum_{n=0}^{\infty} (-1)^n \frac{1}{(z-2)^{n+1}} = -\sum_{n=1}^{\infty} (-1)^n \frac{1}{(z-2)^{n+1}}.$$

函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 在 z=2 展开成罗朗级数为

$$f(z) = \begin{cases} \frac{1}{z-2} - \sum_{n=0}^{\infty} (z-2)^n, & 0 < |z-2| < 1\\ -\sum_{n=1}^{\infty} (-1)^n \frac{1}{(z-2)^{n+1}}, & |z-2| > 2 \end{cases}$$
(40)

注解 31 本例中圆环域的中心 z=0 是各负幂项的奇点, 但却不是函数 $f(z)=\frac{1}{(z-1)(z-2)}$ 的奇点.

例 .3

将 $\frac{\sin z}{z}$ 在 $z_0 = 0$ 的去心邻域内 (|z| > 0) 展开成罗 即级数.

解: 由 $\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$,可得

$$f(z) = \frac{\sin z}{z} = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n+1)!},$$

= $\frac{1}{z} \left[z - \frac{1}{3!} z^3 + \frac{1}{5!} z^5 - \dots + (-1)^n \frac{z^{2n+1}}{(2n+1)!} + \dots \right]$
 $0 < |z| < \infty.$

例 .4

将 $[z(z-2)]^{-1}$ 在 $z_0=2$ 的去心邻域内展开成罗朗 级数.

解: 在 0 < |z-2| < 2 内, 即 $r_1 = 0, r_2 = 2$, 罗朗级数为

$$f(z) = \frac{1}{z(z-2)} = \frac{1}{z-2} \cdot \frac{1}{2+(z-2)}$$

$$= \frac{1}{z-2} \left[\frac{1}{2} \cdot \frac{1}{1+\frac{z-2}{2}} \right] = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} (z-2)^{n-1}$$

$$= \frac{1}{2(z-2)} - \frac{1}{2^2} + \frac{z-2}{2^3} + \cdots$$

例 .5

将函数 $f(z)=z^3e^{\frac{1}{z}}$ 在 $0<|z|<\infty$ 内展开成罗朗 展式.

解: 函数 $f(z) = z^3 e^{\frac{1}{z}}$ 在 $0 < |z| < \infty$ 内是处处解析的. 我们知道, e^z 在复平面内的展开式是:

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots + \frac{z^n}{n!} + \dots,$$

而 $\frac{1}{z}$ 在 $0 < |z| < \infty$ 解析, 所以把上式中的 z 代换成 $\frac{1}{z}$, 可得 $e^{\frac{1}{z}} = \sum_{n=0}^{\infty} \frac{1}{n!z^n}$. 两边乘以 z^3 , 即得所求的罗朗展开式:

$$z^{3}e^{\frac{1}{z}} = z^{3}\left(1 + \frac{1}{z} + \frac{1}{2!z^{2}} + \frac{1}{3!z^{3}} + \frac{1}{4!z^{4}} + \cdots\right)$$

$$= z^{3} + z^{2} + \frac{z}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots$$

$$= \sum_{n=0}^{\infty} \frac{z^{3-n}}{n!}.$$

例 .6

函数 $f(z) = \frac{z^2 - 2z + 5}{(z - 2)(z^2 + 1)}$ 在以下圆环域 (1) 1 < |z| < 2; (2) $0 < |z - 2| < \sqrt{5}$ 内的罗朗展开式.

解:对于复函数

$$f(z) = \frac{z^2 - 2z + 5}{(z - 2)(z^2 + 1)}$$

可令

$$f(z) = \frac{a}{z - 2} + \frac{bz + c}{z^2 + 1}.$$

整理后得

$$\begin{cases} a+b=1, \\ c-2b=-2, \\ a-2c=5 \end{cases}$$

求解得 a = 1, b = 0, c = -2, 则

$$f(z) = \frac{1}{z-2} - \frac{2}{z^2+1}.$$

(1) 当 f(z) 在 $r_1 = 1 < |z| < 2 = r_2$ 内时, $\frac{1}{4} < \frac{1}{|z^2|} = \frac{1}{|z|^2} < 1$,

$$\begin{split} f(z) &= \frac{1}{2\left(\frac{z}{2}-1\right)} - \frac{2}{z^2\left(1+\frac{1}{z^2}\right)} = -\frac{1}{2} \cdot \frac{1}{1-\frac{z}{2}} - \frac{2}{z^2} \cdot \frac{1}{1-\left(-\frac{1}{z^2}\right)} \\ &= -\frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n - \frac{2}{z^2} \cdot \sum_{n=0}^{\infty} (-1)^n \left(\frac{1}{z^2}\right)^n \\ &= 2 \sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{z^{2n}} - \sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}}. \end{split}$$

(2) 当 f(z) 在 $0 < |z-2| < \sqrt{5}$ 内时, 且有 $|z-2| < |2 \pm i|$

$$f(z) = \frac{1}{z-2} - \frac{2}{z^2+1} = \frac{1}{z-2} - i\left(\frac{1}{z+i} - \frac{1}{z-i}\right)$$

$$= \frac{1}{z-2} - i\left[\frac{1}{(z-2) + (i+2)} - \frac{1}{(z-2) + (2-i)}\right]$$

$$= \frac{1}{z-2} + i\left[\frac{1}{(2-i)\left(1 + \frac{z-2}{2-i}\right)} - \frac{1}{(2+i)\left(1 + \frac{z-2}{2+i}\right)}\right]$$

$$= \frac{1}{z-2} + i\left[\frac{1}{2-i}\sum_{n=0}^{\infty} (-1)^n \left(\frac{z-2}{2-i}\right)^n\right]$$

$$- \frac{1}{2+i}\sum_{n=0}^{\infty} (-1)^n \left(\frac{z-2}{2+i}\right)^n\right]$$

$$= \frac{1}{z-2} + i\sum_{n=0}^{\infty} (-1)^n (z-2)^n \left[\frac{1}{(2-i)^{n+1}} - \frac{1}{(2+i)^{n+1}}\right]$$

整理后得

$$f(z) = \frac{1}{z-2} - \frac{2}{z^2+1}$$

$$= \frac{1}{z-2} + i \sum_{n=0}^{\infty} (-1)^n \cdot \left[(2+i)^{n+1} - (2-i)^{n+1} \right] \cdot \frac{(z-2)^n}{5^{n+1}}.$$

例.7

求下列各积分

1)
$$\oint_{|z|=3} \frac{1}{z(z+1)(z+4)} dz$$
; 2) $\oint_{|z|=2} \frac{ze^{\frac{1}{z}}}{1-z} dz$.

解:

1. 函数 $f(z) = \frac{1}{z(z+1)(z+4)}$ 的奇点有 $z_1 = 0, z_2 = -1, z_3 = -4$, 在圆环域 1 < |z| < 4 内处处解析,且 |z| = 3,在此圆环域内,所以 f(z) 在此圆环域内罗朗展开式的系数 c_{-1} 乘以 $2\pi i$ 即为所求积分值.令

$$f(z) = \frac{a}{z} + \frac{b}{z+1} + \frac{c}{z+4}$$

$$= \frac{(z^2 + bz + 4)a + b(z^2 + 4z) + c(z^2 + z)}{z(z+1)(z+4)}$$

$$= \frac{(a+b+c)z^2 + (5a+4b+c)z + 4a}{z(z+1)(z+4)}$$

整理后得

$$\begin{cases} a+b+c=0, \\ 5a+4b+c=0, \\ 4a=1 \end{cases}$$

求解得 $a = \frac{1}{4}, b = -\frac{1}{3}, c = \frac{1}{12},$ 则

$$f(z) = \frac{1}{4z} - \frac{1}{3(z+1)} + \frac{1}{12(z+4)}$$

$$= \frac{1}{4z} - \frac{1}{3z(1+\frac{1}{z})} + \frac{1}{48(\frac{z}{4}+1)}$$

$$= \frac{1}{4z} - \frac{1}{3z} + \frac{1}{3z^2} - \dots + \frac{1}{48} \left(1 - \frac{z}{4} + \frac{z^2}{16} - \dots \right).$$

由此可见, $c_{-1} = \frac{1}{4} - \frac{1}{3} = -\frac{1}{12}$, 从而

$$\oint_{|z|=3} \frac{1}{z(z+1)(z+4)} dz = 2\pi i \left(-\frac{1}{12} \right) = -\frac{\pi i}{6}.$$

解: 使用如下指令求解分解后的系数:

syms z,factor(1/(z*(z+1)*(z+4)),z)
collect(a/z+b/(z + 1)+ c/(z + 4))
a=1/4
5*a + 4*b + c
a + b + c
b=-1/3
c=1/12
collect(1/(4*z)-1/(3*(z+1))+1/(12*(z+4)))

 $a = \frac{1}{4}, b = -\frac{1}{3}, c = \frac{1}{12}.$

● 使用以前的知

识, $\oint_{|z|=3} \frac{1}{z+1} dz$ 如何计算?

$$\oint_{|z|=3} \frac{1}{z(z+1)(z+4)} dz = \frac{1}{4} \oint_{|z|=3} \frac{1}{z} dz - \frac{1}{3} \oint_{|z|=3} \frac{1}{z+1} dz + \frac{1}{12} \oint_{|z|=3} \frac{1}{z+4} dz$$
$$= 2\pi i \left(\frac{1}{4} - \frac{1}{3} + 0\right) = -\frac{\pi}{6} i.$$

2. 函数 $f(z) = \frac{ze^{\frac{1}{z}}}{1-z}$ 在 $1 < |z| < \infty$ 内处处解析, |z| = 2, 在此圆环域内, 把此函数在圆环域 $1 < |z| < \infty$ 内展开得

$$f(z) = \frac{e^{\frac{1}{z}}}{-\left(1 - \frac{1}{z}\right)}$$

$$= -\left(1 + \frac{1}{z} + \frac{1}{z^2} + \cdots\right)\left(1 + \frac{1}{z} + \frac{1}{2!z^2} + \cdots\right)$$

$$= -\left(1 + \frac{2}{z} + \frac{5}{2z^2} + \cdots\right).$$

故 $c_{-1} = -2$,从而

$$\oint_{|z|=2} \frac{ze^{\frac{1}{z}}}{1-z} dz = 2\pi i \, c_{-1} = -4\pi i.$$

IV 课堂小结

在这节课中, 我们学习了罗朗展开定理和函数展开成罗朗级数的方法. 将函数展开成罗朗级数是本节的重点和难点.

教 案 纸

 7,5
V 布置作业
1、教材习题四 P141: 6 1)、3); 8; 11 1)、2); 12 1)、2)、3)、4); 16; 19 1)、2)、3)、4).
1)(2)(0)(1).