Produces as results (assuming appropriate input):

1	2	3
-2	0	2
1	0	1
-1	2	-3
-1	3	
-2	2	
2	1	
1	10	
6	-4	
1	4	
-9	-2	

Note that the index types for arrays A, B, and C in the above program are fixed. If we could write a generalized matrix—multiply subprogram for a library, we need a facility to provide for adjustable index types. Pascal provides conformant—array parameters for this purpose (see Section 11.A.2); and Program 11.4, MatrixMul2, illustrates their use.

6.B. String Types

Strings were defined earlier as sequences of characters enclosed in apostrophes (Section 1.E). Strings consisting of a single character are the constants of the standard type Char (Section 2.D); those of N characters (N > 1), are constants of a type defined by:

```
packed array [1..N] of Char
```

Such a type is called a string type.

The assignment

```
A := E
```

where array variable \mathbb{A} and expression \mathbb{E} have any string types with the same number of components is valid. Similarly, the relational operators (=, <>, <, >, <=, and <=) may be used to compare any two strings that have the same number of components; the ordering considers the first