

Semiconductors and integrated circuits

Part 2 June 1979

Low-frequency power transistors	
Low-frequency power hybrid modules	

SEMICONDUCTORS AND INTEGRATED CIRCUITS

PART 2 - JUNE 1979

LOW-FREQUENCY POWER TRANSISTORS

DATA HANDBOOK SYSTEM SEMICONDUCTOR INDEX MAINTENANCE TYPE LIST

TYPE NUMBER SURVEY SELECTION GUIDE

GENERAL

TRANSISTOR DATA

MOUNTING INSTRUCTIONS

ACCESSORIES

HYBRID MODULES

DATA HANDBOOK SYSTEM

Our Data Handbook System is a comprehensive source of information on electronic components, subassemblies and materials; it is made up of three series of handbooks each comprising several parts.

ELECTRON TUBES

BLUE

SEMICONDUCTORS AND INTEGRATED CIRCUITS

RED

COMPONENTS AND MATERIALS

GREEN

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

Where ratings or specifications differ from those published in the preceding edition they are pointed out by arrows. Where application information is given it is advisory and does not form part of the product specification.

If you need confirmation that the published data about any of our products are the latest available, please contact our representative. He is at your service and will be glad to answer your inquiries.

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part without the written consent of the publisher.

ELECTRON TUBES (BLUE SERIES)

Part 1a	December 1975	ET1a 12-75	Transmitting tubes for communication, tubes for r.f. heating Types PE05/25 to TBW15/25
Part 1b	August 1977	ET1b 08-77	Transmitting tubes for communication, tubes for r.f. heating, amplifier circuit assemblies
Part 2a	November 1977	ET2a 11-77	Microwave tubes Communication magnetrons, magnetrons for microwave heating, klystrons, travelling-wave tubes, diodes, triodes T-R switches
Part 2b	May 1978	ET2b 05-78	Microwave semiconductors and components Gunn, Impatt and noise diodes, mixer and detector diodes, backward diodes, varactor diodes, Gunn oscillators, sub- assemblies, circulators and isolators
Part 3	January 1975	ET3 01-75	Special Quality tubes, miscellaneous devices
Part 4	March 1975	ET4 03-75	Receiving tubes
Part 5a	March 1978	ET5a 03-78	Cathode-ray tubes Instrument tubes, monitor and display tubes, C.R. tubes for special applications
Part 5b	December 1978	ET5b 12-78	Camera tubes and accessories, image intensifiers
Part 6	January 1977	ET6 01-77	Products for nuclear technology Channel electron multipliers, neutron tubes, Geiger-Müller tubes
Part 7a	March 1977	ET7a 03-77	Gas-filled tubes Thyratrons, industrial rectifying tubes, ignitrons, high-voltage rectifying tubes
Part 7b	May 1979	ET7b 05-79	Gas-filled tubes Segment indicator tubes, indicator tubes, switching diodes, dry reed contact units
Part 8	May 1977	ET8 05-77	TV picture tubes
Part 9	March 1978	ET9 03-78	Photomultiplier tubes; phototubes

SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)

Part 1a	August 1978	SC1a 08-78	Rectifier diodes, thyristors, triacs Rectifier diodes, voltage regulator diodes (> 1,5 W), transient suppressor diodes, rectifier stacks, thyristors, triacs
Part 1b	May 1977	SC1b 05-77	Diodes Small signal germanium diodes, small signal silicon diodes, special diodes, voltage regulator diodes (< 1,5 W), voltage reference diodes, tuner diodes
Part 2	November 1977	SC2 11-77	Low-frequency and dual transistors*
Part 2	June 1979	SC2 06-79	Low-frequency power transistors
Part 3	January 1978	SC3 01-78	High-frequency, switching and field-effect transistors
Part 4a	December 1978	SC4a 12-78	Transmitting transistors and modules
Part 4b	September 1978	SC4b 09-78	Devices for optoelectronics Photosensitive diodes and transistors, light emitting diodes, photocouplers, infrared sensitive devices, photoconductive devices
Part 4c	July 1978	SC4c 07-78	Discrete semiconductors for hybrid thick and thin-film circuits
Part 5a	November 1978	SC5a 11-76	Professional analogue integrated circuits
Part 5b	March 1977	SC5b 03-77	Consumer integrated circuits Radio-audio, television
Part 6	October 1977	SC6 10-77	Digital integrated circuits LOCMOS HE4000B family
Signetic	s integrated circuits	1978	Bipolar and MOS memories Bipolar and MOS microprocessors Analogue circuits

Logic - TTL

^{*} Low-frequency general purpose transistors will be transferred to SC3 later in 1979. The old book SC2 11-77 should be kept until then.

COMPONENTS AND MATERIALS (GREEN SERIES)

	1.1		
Part 1	June 1977	CM1 06-77	Assemblies for industrial use High noise immunity logic FZ/30-series, counter modules 50-series, NORbits 60-series, 61-series, circuit blocks 90-series, circuit block CSA70(L), PLC modules, input/ output devices, hybrid circuits, peripheral devices, ferrite core memory products
Part 2a	October 1977	CM2a 10-77	Resistors Fixed resistors, variable resistors, voltage dependent resistors (VDR), light dependent resistors (LDR), negative temperature coefficient thermistors (NTC), positive temperature coefficient thermistors (PTC), test switches
Part 2b	February 1978	CM2b 02-78	Capacitors Electrolytic and solid capacitors, film capacitors, ceramic capacitors, variable capacitors
Part 3	January 1977	CM3 01-77	Radio, audio, television Components for black and white television, components for colour television
Part 3a	September 1978	CM3a 09-78	FM tuners, television tuners, surface acoustic wave filters
Part 3b	October 1978	CM3b 10-78	Loudspeakers
Part 4a	November 1978	CM4a 11-78	Soft ferrites Ferrites for radio, audio and television, beads and chokes, Ferroxcube potcores and square cores, Ferrocube transformer cores
Part 4b	February 1979	CM4b 02-79	Piezoelectric ceramics, permanent magnet materials
Part 6'	April 1977	CM6 04-77	Electric motors and accessories Small synchonous motors, stepper motors, miniature direct current motors
Part 7	September 1971	CM7 09-71	Circuit blocks Circuit blocks 100 kHz-series, circuit blocks 1-series, circuit blocks 10-series, circuit blocks for ferrite core memory drive
Part 7a	January 1979	CM7a 01-79	Assemblies Circuit blocks 40-series and CSA70 (L), counter modules 50-series, input/output devices
Part 8	June 1979	CM8 06-79	Variable mains transformers
Part 9	March 1976	CM9 03-76	Piezoelectric quartz devices
Part 10	April 1978	CM10 04-78	Connectors

INDEX

INDEX OF TYPE NUMBERS

Data Handbooks SC1a to SC4c

The inclusion of a type number in this publication does not necessarily imply its availability.

type no.	part	section	type no.	part	section	type no.	part	section
AA119	1 b	PC	BA243	1 b	T	BAX15	1 b	WD
AAZ15	1 b	GB	BA244	1 b	T	BAX16	1 b	WD
AAZ17	1 b	GB	BA280	1 b	T	BAX17	1 b	WD
AAZ18	1 b	GB	BA314	1 b	Vrg	BAX18	1 b	WD
AC125	2 .	LF	BA314A	1 b	Vrg	BAX18A	1 b	WD
AC126	2	LF	BA315	1 b	Vrg	BB105A	1 b	Т
AC127	2	LF	BA316	1 b	WD	BB105B	1 b	Т
AC128	2	LF	BA317	1 b	WD	BB105G	1 b	T
AC128/01	2	LF	BA318	1 b	WD	BB106	1 b	T
AC132	2	LF	BA379	1 b	T	BB110B	1 b	T ·
AC187	2	LF	BAS16	4c	Mm	BB110G	1 b	т
AC187/01	2	LF	BAT17	4c	Mm	BB117	1 b	T
AC188	2	LF	BAT18	4c	Mm	BB119	1 b	T
AC188/01	2	LF	BAV10	1 b	WD	BB204B	1 b	T
AF367	3	HFSW	BAV18	1 b	W D	BB204G	1 b	T
BA100	1 b	AD	BAV19	1 b	WD	BB205A	1 b	т
BA102	1 b	T	BAV20	1 b	WD	BB205B	1 b	T
BA145	1a	R	BAV21	1 b	WD	BB205G	1 b	T
BA148	1a	R ·	BAV45	1 b	Sp	BBY31	4c	Mm
BA157	1a	R	BAV70	4c	Mm	BC107	2 .	LF
BA158	1a	R	BAV99	4c	Mm	BC108	2	LF
BA159	1a	R	BAW21A	1 b	WD	BC109	2	LF
BA182	1 b	T	BAW21B	1 b	WD	BC140	2	LF
BA216	1 b	WD	BAW56	4c	Mm	BC141	2	LF
BA217	1ъ	WID .	BAW62	1b	MD .	BC146	2	LF
BA218	1 b	WD	BAX12	1 b	WD	BC147	2	LF
BA219	1 b	WD .	BAX12A	1 b	WD	BC148	2	LF
BA220	1 b	WD	BAX13	1 b	WD	BC149	2	LF
BA221	1 b	WD	BAX14	1 b	WD	BC157	2	LF
BA222	1 b	WD	BAX14A	1 b	WD '	BC158	2	LF

AD = Silicon alloyed diodes

GB = Germanium gold bonded diodes

HFSW = High-frequency and switching transistors

LF = Low-frequency transistors (SC2 11-77)

Mm = Discrete semiconductors for hybrid thick and thin-film circuits

PC = Germanium point contact diodes

R = Rectifier diodes

Sp = Special diodes

T = Tuner diodes

Vrg = Voltage regulator diodes

WD = Silicon whiskerless diodes

INDEX

	type no.	part	section	type no.	part	section	type no.	part	section
	BC159	2	LF	BCW71;R	4c	Mm	BD182	2	P
ı	BC160	2	LF	BCW72:R	4c	Mm	BD183	2	P
	BC161	2	LF	BCX17;R	4c	Mm	BD201	2	P
	BC177	2	LF	BCX18;R	4c	Mm	BD202	2	P
	BC178	2	LF	BCX19;R	4c	Mm	BD203	2	P
Ì	BC179	2	LF	BCX20;R	4c	Mm	BD204	2	P
	BC200	2	LF	BCX51	4c	Mm	BD226	2	P
	BC264A	3	FET	BCX52	4c	Mm	BD227	2	P
	BC264B	3	FET	BCX53	4c	Mm	BD228	2	P
	BC264C	3	FET	BCX54	4c	Mm	BD229	2	P
	BC264D	3	FET	BCX55	4c	Mm	BD230	2	P
1	BC327	2	LF	BCX56	4c	Mm	BD231	2	P
1	BC328	2	LF	BCY3OA	2	LF	BD232	2	P ·
١	BC337	2	LF	BCY31A	2	LF	BD233	2	P
1	BC338	2	LF	BCY32A	2 ·	LF	BD234	2	P
1	BC368	2	LF	BCY33A	2	LF	BD235	2	P
1	BC369	2	LF	BCY34A	2	LF	BD236	2 .	P
1	BC546	2	LF	BCY55	2	DT	BD237	2	P
-	BC547	2	LF	BCY56	2	LF	BD238	2	P
	BC548	2	LF	BCY57	2	LF	BD291	2	P
	BC549	2	LF	BCY58	2	LF	BD292	2	P
	BC550	2	LF	BCY59	2	LF	BD293	2	P
1	BC556	2	LF	BCY70	2	LF	BD294	2	Р .
İ	BC557	2	LF	BCY71	2	LF	BD295	2	P
	BC558	2	LF	BCY72	2	LF	BD296	2	P
	BC559	2	LF	BCY78	2	LF	BD329	2	P
	BC560	2	LF	BCY79	2	LF	BD330	2	P
ı	BC635	2	LF	BCY87	2	DT	` BD331	2	P
	BC636	2	LF	BCY88	2	DT	BD332	2	P.
l	BC637	2	LF	BCY89	2	DT .	BD333 '	2	. P
	BC638	2	LF	BD131	2	P	BD334	2	P .
-	BC639	2	LF	BD132	2	P	BD335	2,	P
	BC640	2	LF	BD133	2	Ρ	BD336	2	P
	BCW29;R	4c	Mm	BD135	2	P	BD337	2	P
	BCW30;R	4c	Mm	BD136	2.	P	BD338	2;	p
	BCW31;R	4c	Mm	BD137	2	P	BD433	2	P
	BCW32;R	4c	Mm	BD138	2	P	BD434	2	P
1	BCW33;R	4c	Mm	BD139	2	P	BD435	2	P
1	BCW69;R	4c	Mm	BD140	2	P	BD436	2	P
ļ	BCW70;R	4c	Mm	BD181	.2	P	BD437	2	P

DT = Dual transistors (SC2 11-77)

FET = Field-effect transistors

LF = Low-frequency transistors (SC2 11-77)

Mm = Discrete semiconductors for hybrid thick and thin-film circuits

= Low-frequency power transistors (SC2 06-79)

type no.	part	section	type no.	part	section	type no.	part	section
type no.	part	section	type no.	—	Section	type no.	part	section
BD438	2	P	BD954	2	P	BDX64	2	P
BD645	2	P	BD955	2	P	BDX64A	2	P
BD646	2	Ρ.	BD956	2	P	BDX64B	2	P
BD647	2	P	BDT62	2	· P	BDX64C	2	P
BD648	2	P.	BDT62A	2	P .	BDX65	2	P
BD649	2	P	BDT62B	2	Р.	BDX65A	2 `	P
BD650	2	P	BDT62C	2	P	BDX65B	2	P
BD651	2	P	BDT63	2	P	BDX65C	2	P .
BD652	2	P	BDT63A	2	P	BDX66	2	P
BD675	2	P		2	P i	BDX66A	2	P
כו סעם	2	r	BDT63B	2	Ρ .	POOVOE	2	P
BD676	. 2	P	BDT63C	2	P	BDX66B	2	P
BD677	2	P	BDT91	2	P	BDX66C	2	Ρ.
BD678	2	P	BDT92	2	P	BDX67	2	P
BD679	2	P	BDT93	2	P	BDX67A	2	P
BD680	2	P	BDT94	2	P	BDX67B	2	P
BD681	2	P	BDT95	2	P	BDX67C	2	P
BD682	2	P	BDT96	2	P	BDX77	2	P .
BD683	2	P	BDV64	2	P	BDX78	. 2	P
BD684	2	P	BDV64A	2	P	BDX91	2	P
BD933	2	P	BDV64B	2	P	BDX92	2	P
BD934	2	P	BDV65	. 2	P	BDX93	2	P
BD935	2	P	BDV65A	2	P	BDX94	2	P
BD936	2	P	BDV65B	2	P	BDX95	2	P
BD937	2 .	P	BDX35	2	P	BDX96	2	P
BD938	2	P	BDX36	2	P	BDY20	2	P
BD939	2	P	BDX37	2	P	BDY90	2	P
BD940	2	P	BDX42	2	P	BDY91	2	P
BD941	2	P	BDX43	2	P	BDY92	2	P
BD942	2	Ρ .	BDX44	2	P	BDY93	2	P
BD943	2	P	BDX45	2	P	BDY94	2	P
DDOAA	٥.	P	DDV46	2	_	BDY96	2	P .
BD944	2	-	BDX46	2	P	_		P P
BD945	2	P	BDX47	2	P	BDY97	2	_
BD946	2	P	BDX62	2	P	BF115	- 3	HFSW
BD947	2	P .	BDX62A	2	P	BF167	3	HFSW
BD948	.2	P	BDX62B	2	P	BF173	3	HFSW
BD949	2	P	BDX62C	2	P	BF177	3	HFSW
BD950	2	P	BDX63	2	P	BF178	. 3	HFSW
BD951	2	P	BDX63A	2	P	BF179	3	HFSW
BD952	2	P	BDX63B	2	P	BF180	3	HFSW
BD953	2	P	BDX63C	2	P	BF181	3	HFSW

HFSW = High-frequency and switching transistors
P = Low-frequency power transistors (SC2 06-79)

FET = Field-effect transistors

HFSW = High-frequency and switching transistors

Mm = Discrete semiconductors for hybrid

 Discrete semiconductors for hybrid thick and thin-film circuits P = Low-frequency power transistors (SC2 06-79)

R = Rectifier diodes

Tra = Transmitting transistors and modules

	type no.	part	section	type no.	part	section	type no.	part	section
	BGY22	4a	Tra	BLX39	4a	Tra	BPX95B	4b	PDT
	BGY 22A	4a	Tra	BLX65	4a	Tra	BR100	1a	Th
	BGY 23	4a	Tra	BLX66	4a	Tra	BR1 01	3	HFSW
	BGY 23A	4a	Tra	BLX67	4a	Tra	BRY39(Th)	1a	Th
	BGY32	4a	Tra	BLX68	4a	Tra	(SCS)	3	HFSW
						. 1	(PUT)	3	HFSW
	BGY33	4a	Tra	BLX69A	4a	Tra			
	BGY 35	4a	Tra	BLX91A	4a	Tra	BRY61	4c	Mm
l	BGY36	4a	Tra	BLX92A	4a	Tra	BSR12;R	4c	Mm
ļ	BGY37	3	HFSW	BLX93A	4a	Tra	BSR30	4c	Mm
	BLV10	4a	Tra	BLX94A	4a	Tra	BSR31	4c	Mm
	BLV11	4a	Tra	BLX95	4a	Tra	BSR32	4c	Mm
	BLV20	4a	Tra	BLX96	4a	Tra	BSR33	4c	Mm
	BLV21	4a	Tra	BLX97	4a	Tra	BSR40	4c	Mm
	BLW29	4a	Tra	BLX98	4a	Tra	BSR41	4c	Mm
	BLW31	4a	Tra	BLY87A	4a	Tra	BSR42	4c	Mm
ļ	BLW32	4a	Tra	BLY87C	4a	Tra	BSR43	4c	Mm
	BLW33	4a	Tra	BLY88A	4a	Tra	BSR56	4c	Mm
	BLW34	4a	Tra	BLY88C	4a	Tra	BSR57	4c	Mm
	BLW60	4a	Tra	BLY89A	4a	Tra	BSR58	4c	Mm
	BLW60C	4a	Tra	BLY89C	4a	Tra	BSS38	3	HFSW
	BLW64	4a	Tra	BLY90	4a	Tra	BSS50	3	HFSW
l	BLW75	4a	Tra	BLY91A	4a	Tra	BSS51	3	HFSW
	BLW76	4a	Tra	BLY91C	4a	Tra	BSS52	3	HFSW
	BLW77	4a	Tra	BLY92A	4a	Tra	BSS60	3	HFSW
	BLW78	4a	Tra	BLY92C	4a	Tra	BSS61	3	HFSW
	BLW79	4a	Tra	BLY93A	4a	Tra	BSS63;R	4c	Mm
	BLW80	4a	Tra	BLY93C	4a	Tra	BSS64;R	4c	Mm
	BLW81	4a	Tra	BLY94	4a	Tra	BSS68	3	HFSW
	BLW82	4a	Tra	BPW22	4b	PDT	BSV15	3	HFSW
	BLW83	4a	Tra	BPW34	4 b	PDT	BS V1 6	3	HFSW
	BLW84	4a	Tra	BPX25	4b	PDT	BSV17	3	HFSW
	BLW85	4a	Tra	BPX29	4 b	PDT	BSV52;R	4c	Mm
	BLW86	4a	Tra	BPX40	4 b	PDT	BSV64	3	HFSW
	BLW87	4a	Tra	BPX41	4b	PDT	BSV78	3	FET
	BLW95	4a	Tra	BPX42	4 b	PDT	BSV79	3	FET
	BLW98	4a	Tra	BPX47A	4b	PDT	BSV80	3	FET
	BLX13	4a	Tra	BPX70	4b	PDT	BS V 81	3	FET
	BLX13C	4a	Tra	BPX71	4b	PDT	BSW41A	3 .	HFSW
	BLX14	4a	Tra	BPX72	4b	PDT	BSW66	3	HFSW
ı	BLX15	4a	Tra	BPX94	4 b	PDT	BSW67	3	HFSW

HFSW = High-frequency and switching transistors

Mm = Discrete semiconductors for hybrid thick and thin-film circuits

PDT = Photodiodes or transistors

Th = Thyristors

Tra = Transmitting transistors and modules

type no.	part	section	type no.	part	section	type no.	part	sectio
BSW68	3	HFSW	BU206	2	P	BY409	1a	R
BSX19	3	HFSW	BU207A	2	P	BY409A	1a	R
BSX20	3	HFSW	BU208A	2	P	BY476	1a	R
BSX21	3	HFSW	BU209A	2	Ρ .	BY476A	1a	R
BSX45	3	HFSW	BU326	2	P	BY477	1a	R
BSX46	3	HFSW	BU326A	2	Ρ .	BY478	1a	R
BSX47	3	HFSW	BU426	2	P	BYW19 *	1a	R
BSX59	3.	HFSW	BU426A	2	P	BYW29 *	. 1a	R
BSX60	3	HFSW	BU433	2	P	BYW30 *	1a	R
BSX61	3	HFSW	BUW84	2	P	BYW31 *	1a	R
BT126	1a	Th	BUW85	2	P	BYW54	1a	R
BT128 *	1a	Th	BUX80	2	P	BYW55	1·a	R
BT129 *	1a	Th	BUX81	2	P	BYW56	1a	R
BT137 *	1a	Tri	BUX82	2	P	BYW92 *	1a	R
BT138 *	1a	Tri	BUX83	2	P	BYX10	1a	R
BT139 *	1a	Tri	BUX84	2.	P	BYX22 *	1a	R
BT151 *	1a	Th	BUX85	2	P	BYX25 *	1a	R
BTW23 *	1a	Th	BUX86	2 .	P	BYX29 *	1a	R
BTW24 *	1a	Th	BUX87	2	P	BYX30 *	1a	R
BTW30 *	1a	Th	BY126	1 a	R	BYX32 *	1a	R
BTW31 *	1a	Th	BY127	. 1a	R	BYX35	1a	R
BTW33 *	1a	Th	BY164	1a	R	BYX36 *	1a	R
BTW34 *	1a	Tri	BY176	1a	R	BYX38 *	1a	R
BTW38 *	1a	Th	BY179	1a	R	BYX39 *	1a	R
BTW40 *	1a	Th	BY184	1a	R	BYX42 *	1a	R
BTW41 *	1a	Tri	BY187	1a	R	BYX45 *	1a	R
BTW42 *	1a	Th	BY188 *	1a	R ,	BYX46 *	1a	R
BTW43 *	1a	Tri	BY206	1a	R	BYX49 *	1a	R
BTW45 *	1a	Th	BY207	1a	R	BYX50 *	1a	R
BTW47 *	1a	Th	BY208 *	1a	R	BYX52 *	1a	R
BTW92 *	1a	Th	BY209	1a	R	BYX55 *	1a	R
BTX18 *	1a	Th	BY223.	1a	R	BYX56 *	1a	R
BTX94 *	1a	Tri	BY224 *	1a	R	BYX71 *	1a	R
BTY79 *	1a	Th	BY225 *	1a	R	BYX90	1a	R
BTY87 *	1a	Th	BY226	1a	R	BYX91 *	1a	R
BTY91 *	1a	Th	BY227	1a	R	BYX96 *	1a	R
BU126	2	P	BY228	1a	R	BYX97 *	1a	R
BU133	2	P .	BY277 *	1a	R	BYX98 *	1a	R
BU204	2	P	BY406	1a	R	BYX99 *	1a	R
BU205	2	P	BY407	1a	R	BZV10	1 b	Vrf

HFSW = High-frequency and switching transistors = Low-frequency power transistors (SC2 06-79) R

= Rectifier diodes

Th = Thyristors

Tri = Triacs

Vrf = Voltage reference diodes

type no.	part	section	type no.	part	section	type no.	part	section
	<u> </u>		+			 	<u> </u>	
BZV11 BZV12	1 b 1 b	Vrf	BZZ24	1a	Vrg	ORP10	4b	I I
		Vrf	BZZ25	1a	Vrg	ORP13	4 b	
BZV13 BZV14	1 b 1 b	Vrf Vrf	BZZ26	1a	Vrg V	ORP23	4 b	Ph
			BZZ27	1a	Vrg	ORP52	4b	Ph
BZV15 *	1a	Vrg	BZZ28	1a	Vrg	ORP60	4b	Ph
BZV38	1 b	Vrf	BZZ29	1a	${ t Vrg}$	ORP61	4b	Ph
BZW10	1a	TS	CNY22	4 b	PhC	ORP62	4 b	Ph
BZW7O *	1a	TS	CNY23	4 b	PhC	ORP66	4 b	Ph
BZW86 *	1a	TS	CNY42	4b	PhC	ORP68	4b	Ph
BZW91 *	1a	TS	CNY43	4 b	PhC	ORP69	4b	Ph
BZW93 *	1a	TS	CNY44	4 b	PhC	OSB9110	1a	St
BZW95 *	1a	TS	CNY46	4 b	PhC	0SB9210	1a	St
BZW96 *	1a	TS	CNY47	4 b	PhC	0SB9310	1a	St
BZX55 *	1 b	Vrg	CNY47A	4 b	PhC	0SB9410	1a	St
BZX61 *	1 b	Vrg	CNY48	4 b	PhC	0SM9110	1a	St
BZX70 *	1a	Vrg	CQY11B	4 b	LED	0SM9210	1a	St
BZX75 *	1 b	Vrg	CQY11C	4b	LED	0SM9310	1a	St
BZX79 *	1b ·	Vrg	CQY24A	4b	LED	0SM9410	1a	St
BZX84 *	4c	Mm	CQY46A	4b	LED	0889110	1a	St
BZX87 *	1 b	Vrg	CQY47A	4b	LED	0889210		St
BZX90	1 b	Vrf	CQY49B	4b	LED	0889310	1a	St
BZX91	1 b	Vrf	CQY49C	4b	LED	0889410	1a	St
BZX92	1 b	Vrf	CQY50	4b	LED	RPY58A	4 b	Ph
BZX93	1 b	Vrf	CQY52	4 b	LED	RPY71	4b	Ph
BZY78	1 b	Vrf	CQY54	4b	LED	RPY76A	4b	I
121 10	ł D	ALI	0 41 74	40	חמט	III TOA	40	+ .
BZY88 *	1 b	Vrg	CQY58	4b	LED	RPY82	4 b	Ph
BZY91 *	1a	٧rg	C QY88	4 b	LED	RPY84	4 b	Ph .
BZY93 *	1a	Vrg	CQY89		LED	RPY85	4 b	Ph
BZY95 *	1a	Vrg	CQY94	4 b	LED	RPY86	4 b	I
BZY96 *	1a.	Vrg	CQY95	4b	LED	RPY87	4b	I
BZZ14	1a	Vrg	CQY96	4b	LED	RPY88	4b	I
BZZ15	1a	Vrg	CQY97	4 b	LED	RPY89	4 b	I
BZZ16	1a	Vrg	0A47	1 b	GB	1 N821	1 b	Vrf
BZZ17	1a	Vrg	0A90	1 b	PC	1 N823	1 b	Vrf
BZZ18	1a	Vrg	0A91	1 b	PC	1 N825	1 b.	Vrf
BZZ19	1a	Vrg	0A95	1 b	PC	1 N827	1 b	Vrf
BZZ2O	1a	Vrg	0A200	1 b	AD	1 N829	1 b	Vrf
BZZ21	1a	Vrg	0A202	1 b	AD	1N914	1 b	WD
BZZ22	1a	Vrg	0M931	2	P	1N914A	1 b	WD
BZZ23	1a	_	1	2	r P	1N914A	1 b	WD WD
04442	ıa	Vrg	OM961	2	r	111916	ΙÞ	WD

AD = Silicon alloyed diodes

GB = Germanium gold bonded diodes

= Infrared devices

LED = Light-emitting diodes

Mm = Discrete semiconductors for hybrid thick and thin-film circuits

= Low-frequency power transistors (SC2 06-79)

PC = Germanium point contact diodes

Ph = Photoconductive devices

PhC = Photocouplers

St = Rectifier stacks

TS = Transient suppressor diodes

Vrf = Voltage reference diodes

Vrg = Voltage regulator diodes

WD = Silicon whiskerless diodes

type no.	part	section	type no.	part	section	type no.	part	sectio
1N916A	1 b	WD	1 N5749B	1 b	Vrg	2N3020	3	HFSW
1N916B	1 b	WD	1 N5750B	1 b	Vrg	2N3055	2	P ·
1 N3879	1a	R	1N5751B	1 b	Vrg	2N3375	4a	Tra
1 N 3 8 8 0	1a	R	1N5752B	1Ъ.	Vrg	2N3442	2	P
1N3881	1a	R	1 N5753B	1 b	Vrg	2N3553	4a	Tra
1N3882	1a	R	1N5754B	1 b	Vrg	2N3632	4a	Tra
1 N 3889	1a	R	1 N5755B	1 b	Vrg	2N3823	3	FET
1 N 3 8 9 0	1a	R	1 N5756B	1 b	Vrg	2N3866	4a	Tra
1 N3891	1a	R	1 N5757B	1 b	Vrg	2N3924	4a	Tra
1 N 3892	1a	R	2N918	3	HFSW	2N3926	4a	Tra
1 N4009	1 b	WD	2N929	2	LF	2N3927	4a	Tra
1N4148	1 b	WD	2N930	2	LF	2N3966	3	FET
1N4150	1 b	WD	2N1613	3	HFSW	2N4030	3	HFSW
1N4151	1 b	WD	2N1711	3	HFSW	2N4031	3	HFSW
1N4154	1ъ	WD	2N1893	3	hfsw	2N4032	. 3	HFSW
1 N4446	1 b	WD ·	2N2218	.3	HFSW	2N4033	3	HFSW
1N4448	1 b	WD	2N2218A	′ 3	HFSW	2N4036	3	HFSW
1 N5060	1 a	R	2N2219	3	HFSW	2N4091	3	FET
1N5061	1a	R	2N2219A	3	HFSW	2N4092	3	FET
1 N5062	1a	R `	2N2221	3	hfsw	2N4093	3	FET
1N5729B	1 b	Vrg	2N2221A	3	HFSW	2N4347	2	P
1 N5730B	1 b	Vrg	2N2222	3	HFSW	2N4391	3	FET
1N5731B	1 b	Vrg	2N2222A	3	HFSW	2N4392	. 3	FET
1N5732B	1 b	Vrg	2N2297	3	HFSW	2N4393	3 .	FET
1 N5733B	1 b	Vrg	2N2368	3	HFSW	2N4427	4a	Tra
1N5734B	1 b	Vrg	2N2369	3	HFSW	2 N 4856	3 .	FET
1 N5735B	1 b	Vrg	2N2369A	3	HFSW	2N4857	3	FET
1 N5736B	1 b	Vrg	2N2483	2	LF	2N4858	3	FET
1N5737B	1 b	Vrg	2N2484	2	LF .	2N4859	3	FET
1N5738B	1 b	Vrg	2N2894	3	HFSW	2N4860	3	FET
1N5739B	1 b	Vrg	2N2894A	3	HFSW	2N4861	3	FET
1 N5740B	1 b	Vrg	2N2904	3.	HFSW	2N5415	3	HFSW
1N5741B	1 b	Vrg	2N2904A	3	HFSW	2N5416	3	HFSW
1N5742B	1 b	Vrg	2N2905	3	HFSW	61SV	4 b	Ι
1 N5743B	1 b	Vrg	2N2905A	3	HFSW	40820	, 3	HFSW
1N5744B	1 b	Vrg	2N2906	. 3	HFSW	40835	3	HFSW
1N5745B	1 b	Vrg	2N2906A	3	HFSW	40838	3	HFSW
1N5746B	1 b	Vrg	2N2907	3	HFSW	56200	3,4a	A
1 N5747B	1 b	Vrg	2N2907A	3	HFSW	56201c	2	A
1 N5748B	1ъ	Vrg	2N3019	3	HFSW	56201 d	2	·A

A = Accessories

FET = Field-effect transistors

HFSW = High-frequency and switching transistors

I = Infrared devices
LF = Low-frequency tr

= Low-frequency transistors (SC2 11-77)

R = Rectifier diodes

Tra = Transmitting transistors and modules

Vrg = Voltage regulator diodes

WD = Silicon whiskerless diodes

P = Low-frequency power transistors (SC2 06-79)

INDEX

type no.	part	section	type no.	part	section	type no.	part	section
56201.j	2	A	56290	1a	HE	56350	1a	DH
56218	3,4a	A	56293	1a	HE	56352	. 2 .	Α
56230	1a	HE	56295	1a	A	56353	2	A
56231	1a	HE	56299	1a	A	56354	2	A
56233	1a	A	56309B	1a	A	56356	3	A
56234	1a	A	56309R	1a	A	56358	1a	A
56245	3,4a	A	56312	1a	DH ·	56359Ъ	2	A
56246	1a t	0	56313	1a	DH ·	56359c	2	A
	4a	A	56314	1a	DH	56359d	2	A
56253	1a	DH	56315	1a	DH	56360a	2	A
56256	1a	DH	56316	1a	A	56363	1a,2	A
56261a	2	A	56318	1a	DH	56364	1a,2	A
56262A	1a	A	56319	1a	DH	56366	1a	Α
56263	1a t	0 '	56326	2.3	A	56367	2	Α .
	4a	A	56333	2,3	A	56368a	2	A
56264A	1a	A	56334	1a	DH	56368ъ	2	A
56268	1a	DH	56337	1a	A	56369	2	A
56271	1a	DH	56339	2	A	56378	2	Α
56278	1a	DH	56348	1a	DH	56379	2	A
56280	1a	DH	56349	1a	DH			

HE = Heatsink extrusions

MAINTENANCE TYPE LIST

The types listed below are included in this handbook only for the first page of the publication. Detailed information will be supplied on request.

BD133	BD232	BU133
BD181	BDY93/94	2N3055
BD182	BDY96/97	2N3442
BD183	BU126	2N4347

TYPE NUMBER SURVEY
SELECTION GUIDE

TYPE NUMBER SURVEY

In this alphanumeric list we present all low-frequency power transistors mentioned in this handbook.

type ni	umber	Ī	P _{tot}	type nui	mber		P _{tot}	
NPN	PNP	envelope	w	NPN	PNP	envelope	W	
BD131	BD132	TO-126	15	BD681	BD682	TO-126	40	
BD133		TO-126	15	BD683	BD684	TO-126	40	
BD135	BD136	TO-126	8	BD933	BD934	TO-220	30	
BD137	BD138	TO-126	8	BD935	BD936	TO-220	30	
BD139	BD140	TO-126	8	BD937	BD938	TO-220	30	
BD181		TO-3	78	BD939	BD940	TO-220	30	
BD182		TO-3	117	BD941	BD942	TO-220	√30	
BD183		TO-3	117	BD943	BD944	TO-220	40	
BD201	BD202	TO-220	60	BD945	BD946	TO-220	40	
BD203	BD204	TO-220	60	BD947	BD948	TO-220	40	
BD226	BD227	TO-126	12,5	BD949	BD950	TO-220	40	
BD228	BD229	TO-126	12,5	BD951	BD952	TO-220	40	
BD230	BD231	TO-126	12,5	BD953	BD954	TO-220	40	
BD232	1.	TO-126	15	BD955	BD956	TO-220	40	
BD233	BD234	TO-126	. 25	BDT63	BDT62	TO-220	90	
BD235	BD236	TO-126	25	BDT63A	BDT62A	TO-220	90	
BD237	BD238	TO-126	25	BDT63B	BDT62B	TO-220	90	
BD291	BD292	SOT-82	60	BDT63C	BDT62C	TO-220	90	
BD293	BD294	SOT-82	60	BDT91	BDT92	TO-220	90	
BD295	BD296	SOT-82	60	BDT93	BDT94	TO-220	90	
BD329	BD330	TO-126	15	BDT95	BDT96	TO-220	90	
BD331	BD332	SOT-82	60	BDV65	BDV64	SOT-93	125	
BD333	BD334	SOT-82	60	BDV65A	BDV64A	SOT-93	125	
BD335	BD336	SOT-82	60	BDV65B	BDV64B	SOT-93	125	
BD337	BD338	SOT-82	60	BDX35		TO-126	15	
BD433	BD434	TO-126	36	BDX36		TO-126	15	
BD435	BD436	TO-126	36	BDX37		* TO-126	15	
BD437	BD438	TO-126	36	BDX42	BDX45	TO-126	5	
BD645	BD646	TO-220	62,5	BDX43	BDX46	TO-126	5	
BD647	BD648	TO-220	62,5	BDX44	BDX47	TO-126	5	
BD649	BD650	TO-220	62,5	BDX63	BDX62	TO-3	90	
BD651	BD652	TO-220	62,5	BDX63A	BDX62A	TO-3	90	
BD675	BD676	TO-126	40	BDX63B	BDX62B	TO-3	90	
BD677	BD678	TO-126	40	BDX63C	BDX62C	TO-3	90	
BD679	BD680	TO-126	40	BDX65	BDX64	TO-3	117	

TYPE NUMBER SURVEY

type nun	nber		P _{tot}	type numl	ber		P _{tot}
NPN	PNP	envelope	w	NPN	PNP	envelope	w.
BDX65A	BDX64A	TO-3	117	BU207A		TO-3	12,5
BDX65B	BDX64B	TO-3	117	BU208A		TO-3	80
BDX65C	BDX64C	TO-3	117	BU209A		TO-3	12,5
BDX67	BDX66	TO-3	150	BU326		TO-3	60
BDX67A	BDX66A	TO-3	150	BU326A	1	TO-3	60
BDX67B	BDX66B	TO-3	150	BU426		SOT-93	70
BDX67C	BDX66C	TO-3	150	BU426A		SOT-93	70
BDX77	BDX78	TO-220	60	BU433		SOT-93	70
BDX91	BDX92	TO-3	90	BUW84		SOT-82	50
BDX93	BDX94	TO-3	90	BUW85		SOT-82	50
BDX95	BDX96	TO-3	90	BUX80		TO-3	100
BDY20		TO-3	115	BUX81		TO-3	100
BDY90	,	TO-3	40	BUX82		TO-3	60
BDY91		T.O-3	40	BUX83		TO-3	60
BDY92		TO-3	40	BUX84		TO-220	40
BDY93		TO-3	30	BUX85		TO-220	40
BDY94		TO-3	30	BUX86		TO-126	20
BDY96		TO-3	40	BUX87		TO-126	20
BDY97	,	TO-3	40	2N3055		TO-3	115
BF419		TO-126	6	2N3442	*	TO-3	117
BF457		TO-126	6	2N4347 .		TO-3	117
BF458		TO-126	6		•		
BF459		TO-126	6		•		
BF469	BF470	TO-126	1,8				*,
BF471	BF472	TO-126	1,8				

TO-3

TO-3

TO-3

TO-3

TO-3

30

10

10

10

30

BU126

BU133

BU204 BU205

BU206

HIGH-VOLTAGE TRANSISTORS

video output - deflection - SMPS

IC	case	pol.			*	collector-	emitter_voltag	e (open base) = V _{CEO} (V)	
Α	Lase	poi.	160	250	300	375	400	450	600	700	800
10	TO-3	N					BUX80	BUX81			
6	TO-3	N				BU326	BU326A	:			
	SOT-93	N				BU426	BU426A				
	SOT-93	N	1	1.0		BU433					
	TO-3	N					BUX82	BUX83			
5	TO-3	· N							BU207A	BU208A	
4	TO-3	N									BU209A
2,5	TO-3	N					.*		BU204	BU205	BU206
2	SOT-82	N				·	BUW84	BUW85			
	TO-220	N	1			-	BUX84	BUX85			
0,5	TO-126	N					BUX86	BUX87	*		
0,1	TO-126	N		BF419		, i	•				
	TO-126	N	BF457	BF458	BF459						
0,05	TO-126	N		BF469	BF471*	*					
-	TO-126	P		BF470	BF472*						

^{*} VCER

N

LOW-VOLTAGE TRANSISTORS

audio - general purpose - switching

IC					collector-er	nitter voltage	(open base) V _{CEO} (V)			
Α	case	pol.	20	22	32	45	60	80	100	120 V	remarks
16	TO-3	N					BDX67 BDX66	BDX67A BDX66A	BDX67B BDX66B	BDX67C BDX66C	Darlingto Darlingto
12	SOT-93	N P					BDV65 BDV64	BDV65A BDV64A	BDV65B BDV64B		Darlingto Darlingto
	TO-3	N P		*			BDX65 BDX64	BDX65A BDX64A	BDX65B BDX64B	BDX65C BDX64C	Darlingto Darlingto
10	TO-220	N P					BDT63 BDT62	BDT63A BDT62A	BDT63B BDT62B	BDT63C BDT62C	
	TO-220	N P					BDT91 BDT92	BDT93 BDT94	BDT95 BDT96		
	TO-3	N .				· ·	BDY92	BDY91	BDY90		
8	TO-220	N P				BD201 BD202	BD203 BD204	BDX77 BDX78	. *		
	TO-220	N P					BD645 BD646	BD647 BD648	BD649 BD650	BD651 BD652	Darlingto Darlingto
	TO-3	N P					BDX63 BDX62	BDX63A BDX62A	BDX63B BDX62B	BDX63C BDX62C	Darlingto Darlingto
	TO-3	N P					BDX91 BDX92	BDX93 BDX94	BDX95 BDX96		
6	SOT-82	N P		- - -	-	BD291 BD292	BD293 BD294	BD295 BD296			
	SOT-82	N P					BD331 BD332	BD333 BD334	BD335 BD336	BD337 BD338	Darlingto Darlingto

April 1979

LOW-VOLTAGE TRANSISTORS

audio - general purpose - switching

· Ic					collector-en	nitter voltage	(open base	V _{CEO} (V)			
Α	case	pol.	20	22	32	45	60	80	100	120 V	remarks
5	TO-220	N P		BD943 BD944	BD945 BD946	BD947 BD948	BD949 BD950	BD951 BD952	BD953 BD954	BD955 BD956	
	TO-126	N N					BDX35 BDX36	BDX37			
4	TO-126	N P		BD433 BD434	BD435 BD436	BD437 BD438			·		
	TO-126	N P				BD675 BD676	BD677 BD678	BD679 BD680	BD681 BD682	BD683 BD684	Darlington Darlington
3	TO-126	N P		-		BD131 BD132					
	TO-126	N. P	BD329 BD330	٠							
	TO-220	N P		-		BD933 BD934	BD935 BD936	BD937 BD938	BD939 BD940	BD941 BD942	
2	TO-126	N P				BD233 BD234	BD235 BD236	BD237 BD238			
1,5	TO-126	N P				BD226 BD227	BD228 BD229	BD230 BD231			
1	TO-126	N P	-			BD135 BD136	BD137 BD138	BD139 BD140			,
	TO-126	N P				BDX42 BDX45	BDX43 BDX46	BDX44 BDX47			

SELECTION GUIDE

TO-126 (SOT-32)

type n	umber	P _{tot}	V _{CEO}
NPN	PNP	w	V
BF469	BF470	1,8	250
BF471	BF472		300
BDX42	BDX45	5	45
BDX43	BDX46		60
BDX45	BDX47		80
BF457 BF458 BF459		6	160 250 300
BD135	BD136	8	45
BD137	BD138		60
BD139	BD140		80
BD226	BD227	12,5	45
BD228	BD229		60
BD230	BD231		80
BD131 BD329 BDX35 BDX36 BDX37	BD132 BD330	15	45 20 60 60 80
BUX86 BUX87		20	400 450
BD233	BD234	25	45
BD235	BD236		60
BD237	BD238		80
BD433	BD434	36	22
BD435	BD436		32
BD437	BD438		45
BD675	BD676	40	45
BD677	BD678		60
BD679	BD680		80
BD681	BD682		100
BD683	BD684		120

SOT-82

type r	number	P _{tot}	V _{CEO}
BUW84 BUW85	·	50	400 450
BD291 BD293 BD295	BD292 BD294 BD296	60	45 60 80
BD331 BD333 BD335 BD337	BD332 BD334 BD336 BD338	60	60 80 100 120

TO-220 (SOT-78)

	umber	P _{tot}	VCEO
NPN	PNP	· W	V
BD933	BD934	30	45
BD935	BD936		60
BD937	BD938		80
BD939	BD940		100
BD943	BD944	40	22
BD945	BD946		32
BD947	BD948		45
BD949	BD950		60
BD951	BD952		80
BD953	BD954		100
BUX84		40	400
BUX85			450
BD201	BD202	60	45
BD203	BD204		60
BDX77	BDX78		80
BD645	BD646	62,5	60
BD647	BD648	ļ ·	′80
BD649	BD650		100
DDGE1	DDGEO		120

TO-220 (SOT-78) continued

type r	number	P _{tot}	VCEO
NPN	PNP	W	V
BDT91	BDT92	90	60
BDT93	BDT94		80
BDT95	BDT96		100
BDT63	BDT62	. 90	60
BDT63A	BDT62A	,	80
BDT63B	BDT62B		100
BDT63C	BDT62C		120

SOT-93

type r	number PNP	P _{tot}	V _{CEO}
BU426 BU426A BU433		70	375 400 375
BDV65 BDV65A BDV65B BDV65C	BDV64 BDV64A BDV64B BDV64C	125	60 80 100 120

TO-3 (SOT-3)

type r	umber	P _{tot}	V _{CEO}
NPN	PNP	W	V
BU204 BU205 BU206		10	600 700 800
BU207A		12,5	600
BU209A	*		800
BDY90 BDY91 BDY92		40	100 80 60
BU326 BU326A		60	375 400
BUX82 BUX83		60	400 450
BU208A		80	700
BDX63 BDX63A BDX63B BDX63C	BDX62 BDX62A BDX62B BDX62C	90	60 80 100 120
BUX80 BUX81		100	400 450
BDX65A BDX65A BDX65B BDX65C	BDX64 BDX64A BDX64B BDX64C	117	60 80 100 120
BDX67 BDX67A BDX67B BDX67C	BDX66 BDX66A BDX66B BDX66C	150	60 80 100 120

TYPE NUMBER SURVEY ACCESSORIES

type number	description	envelope TO-3		
56201c	insulating bushes (up to 500 V)			
56201d	mica washer (up to 500 V)	TO-3		
56201j	insulating bushes (up to 500 V)	TO-3		
56261a	insulating bushes (up to 500 V)	TO-3		
56326	metal washer	SOT-32		
56333	metal washer mica washer insulating bush	SOT-32		
56339	mica washer (500 to 2000 V)	TO-3		
56352	insulating mounting support			
56353	spring clip	SOT-32/SOT-82		
56354	mica insulator	SOT-32/SOT-82		
56359b	mica washer (up to 800 V)	TO-220		
56359c	insulating bush (up to 800 V)	TO-220		
56359d	rectangular insulating washer (up to 1000 V)	TO-220		
56360a	rectangular washer (brass)	TO-220		
56363	spring clip (direct mounting)	TO-220		
56364	spring clip (insulated mounting)	TO-220		
56367	alumina insulator	TO-220		
56368a	mica insulator	SOT-93		
56368b	insulating bush	SOT-93		
56369	mica insulator (up to 2 kV)	TO-220		
56378	mica insulator	SOT-93		
56379	spring clip	SOT-93		

CLIP MOUNTING

envelope	direct mounting		insulated mounting	* *** *** ***
chivelope	clip	mica	clip	
TO-126 (SOT-32)	56353	56354	56353	
SOT-82	56353	56354	56353	
TO-220 (SOT-78)	56363	56369	56364	
SOT-93	56379	56378	56379	

SCREW MOUNTING

envelope	direct mounting		insulated mounting			
	metal washer	mounting material	mica washer	insul. bush	metal washer	mounting material
TO-126 (SOT-32)	56326	МЗ		56333		M2,5
TO-220 (SOT-78) up to 800 V	56360a	M3	56359b	56359c	56360a	мз
up to 1000 V			56359b	56359d	56360a	мз
SOT-93		M4	56368a	56368b		мз
TO-3 (SOT-3) up to 500 V	_	M4	56201d	56201c; 56201j or 56261a		M3
up to 2000 V			56339	56352		МЗ

The accessories mentioned can be supplied on request.

See also chapter Mounting Instructions.

GENERAL

Type designation Rating systems Transistor ratings Letter symbols SOAR curves

PRO ELECTRON TYPE DESIGNATION CODE FOR SEMICONDUCTOR DEVICES

This type designation code applies to discrete semiconductor devices — as opposed to integrated circuits —, multiples of such devices and semiconductor chips.

A basic type number consists of:

TWO LETTERS FOLLOWED BY A SERIAL NUMBER

FIRST LETTER

The first letter gives information about the material used for the active part of the devices.

- A. GERMANIUM or other material with band gap of 0,6 to 1,0 eV.
- B. SILICON or other material with band gap of 1,0 to 1,3 eV.
- C. GALLIUM-ARSENIDE or other material with band gap of 1,3 eV or more.
- R. COMPOUND MATERIALS (e.g. Cadmium-Sulphide).

SECOND LETTER

The second letter indicates the function for which the device is primarily designed.

- A. DIODE; signal, low power
- B. DIODE; variable capacitance
- C. TRANSISTOR; low power, audio frequency (R_{th i-mb} > 15 °C/W)
- D. TRANSISTOR; power, audio frequency (R_{th i-mb} ≤ 15 °C/W)
 - . DIODE: tunnel
- F. TRANSISTOR; low power, high frequency (Rth j-mb > 15 °C/W)
- G. MULTIPLE OF DISSIMILAR DEVICES MISCELLANEOUS; e.g. oscillator
- H. DIODE; magnetic sensitive
- L. TRANSISTOR; power, high frequency (R_{th i-mb} ≤ 15 °C/W)
- N. PHOTO-COUPLER
- P. RADIATION DETECTOR; e.g. high sensitivity phototransistor
- Q. RADIATION GENERATOR; e.g. light-emitting diode (LED)
- R. CONTROL AND SWITCHING DEVICE; e.g. thyristor, low power (R_{th j-mb} > 15 °C/W)
- S. TRANSISTOR; low power, switching ($R_{th\ j-mb} > 15\ ^{o}$ C/W)
- T. CONTROL AND SWITCHING DEVICE; e.g. thyristor, power (R_{th i-mb} ≤ 15 °C/W)
- U. TRANSISTOR; power, switching (R_{th i-mb} ≤ 15 °C/W)
- X. DIODE: multiplier, e.g. varactor, step recovery
- Y. DIODE; rectifying, booster
- Z. DIODE; voltage reference or regulator (transient suppressor diode, with third letter W)

TYPE DESIGNATION

SERIAL NUMBER

Three figures, running from 100 to 999, for devices primarily intended for consumer equipment. One letter (Z, Y, X, etc.) and two figures, running from 10 to 99, for devices primarily intended for industrial/professional equipment.

This letter has no fixed meaning except W, which is used for transient suppressor diodes.

VERSION LETTER

It indicates a minor variant of the basic type either electrically or mechanically. The letter never has a fixed meaning, except letter R, indicating reverse voltage, e.g. collector to case or anode to stud.

SUFFIX

Sub-classification can be used for devices supplied in a wide range of variants called associated types. Following sub-coding suffixes are in use:

- 1. VOLTAGE REFERENCE and VOLTAGE REGULATOR DIODES: ONE LETTER and ONE NUMBER
 - The LETTER indicates the nominal tolerance of the Zener (regulation, working or reference) voltage
 - A. 1% (according to IEC 63: series E96)
 - B. 2% (according to IEC 63: series E48)
 - C. 5% (according to IEC 63: series E24)
 - D. 10% (according to IEC 63: series E12)
 - E. 20% (according to IEC 63: series E6)

The number denotes the typical operating (Zener) voltage related to the nominal current rating for the whole range.

The letter 'V' is used instead of the decimal point.

2. TRANSIENT SUPPRESSOR DIODES: ONE NUMBER

The NUMBER indicates the maximum recommended continuous reversed (stand-off) voltage V_R. The letter 'V' is used as above.

3. CONVENTIONAL and CONTROLLED AVALANCHE RECTIFIER DIODES and THYRISTORS: ONE NUMBER

The NUMBER indicates the rated maximum repetitive peak reverse voltage (V_{RRM}) or the rated repetitive peak off-state voltage (V_{DRM}), whichever is the lower. Reversed polarity is indicated by letter R, immediately after the number.

- 4. RADIATION DETECTORS: *ONE NUMBER*, preceded by a hyphen (–)
 The NUMBER indicates the depletion layer in μm. The resolution is indicated by a version LETTER.
- 5. ARRAY OF RADIATION DETECTORS and GENERATORS: ONE NUMBER, preceded by a stroke (/).

The NUMBER indicates how many basic devices are assembled into the array.

TRANSISTOR RATINGS

The ratings are presented as voltage, current, power and temperature ratings. The list of these ratings and their definitions is given as follows:

Transistor voltage ratings

Collector to base voltage ratings

V_{CBmax} The maximum perm

The maximum permissible instantaneous voltage between collector and base terminals. The collector voltage is negative with respect to base in PNP tran-

sistors and positive with respect to base in NPN types.

V_{CBmax} (IE = 0) The maximum permissible instantaneous voltage between collector and base terminals, when the emitter terminal is open circuited.

Emitter to base voltage ratings

VEBmax

The maximum permissible instantaneous reverse voltage between emitter and base terminal. The emitter voltage is negative with respect to base for PNP

transistor and positive with respect to base for NPN types.

V_{EBmax} (I_C = 0) The maximum permissible instantaneous reverse voltage between emitter and

base terminals when the collector terminal is open circuited.

Collector to emitter voltage ratings

VCEmax The maximum permissible instantaneous voltage between collector and emitter terminals. The collector voltage is negative with respect to emitter in PNP

transistors and positive with respect to emitter in NPN types. This rating is very dependent on circuit conditions and collector current and it is necessary to refer to the curve of VCE versus IC for the appropriate circuit condition

in order to obtain the correct rating.

V_{CEmax} (Cut-off) The maximum permissible instantaneous voltage between collector and emitter terminals when the emitter current is reduced to zero by means of a reverse

emitter base voltage, i.e. the base voltage is normally positive with respect to emitter for PNP transistor and negative with respect to emitter for NPN types.

NOTE: The term "cut-off" is sometimes replaced by $V_{BE} > x$ volts, or $\frac{R_B}{R_E}$, $\leq y$ which are equivalent conditions under which the device may be cut-off.

V_{CEmax} (I_C = x mA) The maximum permissible instantaneous voltage between collector and emitter terminals when the collector current is at a high value, often the max. rated value.

V_{CEmax} (I_B = 0) The maximum permissible instantaneous voltage between collector and emitter terminals when the base terminal is open circuited or when a very high resistance is in series with the base terminal. Special care must be taken to ensure that thermal runaway due to excessive collector leakage current does not occur in

this condition.

Due to the current dependency of VCE it is usual to present this information as a voltage rating chart which is a curve of collector current versus collector to emitter voltage (see Fig. 1).

TRANSISTOR RATINGS

This curve is divided into two areas:

A permissible area of operation under all conditions of base drive provided the dissipation rating is not exceeded (area 1) and an area where operation is allowable under certain specified conditions (area 2). To assist in determining the rating in this second area, further curves are provided relating the voltage rating to external circuit conditions, for example:

$$\frac{R_B}{R_E}$$
 , R_B , Z_{Bg} , V_{BE} , I_B or $\frac{V_{BB}}{R_B}$.

An example of this type of curve is given in Fig. 2 as V_{CE} versus $\frac{R_B}{R_E}$ for two different values of collector current.

 $V_{CE} = 0$ $I_{C} = 0$ $I_{C} = I_{Cmax}$ R_{B}/R_{E}

Fig. 1

Fig. 2.

It should be noted that when R_E is shunted by a capacitor, the collector voltage V_{CE} during switching must be restricted to a value which does not rely on the effect of R_E.

In the case of an inductive load and when an energy rating is given, it may be permissible to operate outside the rated area provided the specified energy rating is not exceeded.

Transistor current ratings

Collector current ratings

I_{Cmax} The maximum permissible collector current. Without further qualification, the

d.c. value is implied.

I_{C(AV)max} The maximum permissible average value of the total collector current

ICM The maximum permissible instantaneous value of the total collector current.

Emitter current ratings

I_{Emax} The maximum permissible emitter current. Without further qualification, the

d.c. value is implied.

I_E(AV)_{max} The maximum permissible average value of the total emitter current.

IER(AV)max The maximum permissible average value of the total emitter current when

operating in the reverse emitter-base breakdown region.

IEM The maximum permissible instantaneous value of the total emitter current.

IERM The maximum permissible instantaneous value of the total reverse emitter

current allowable in the reverse breakdown region.

Base current ratings

I_{Bmax} The maximum permissible base current. Without further qualification, the d.c.

value is implied.

IB(AV)max

The maximum permissible average value of the total base current.

IBR(AV)max The maximum permissible average value of the total reverse base current allow-

able in the reverse breakdown region.

IBM The maximum permissible instantaneous value of the total base current. The

rating also includes the switch off current.

IBRM The maximum permissible instantaneous value of the total reverse current

allowable in the reverse breakdown region.

Transistor power ratings

P_{tot} max: The total maximum permissible continuous power dissipation in the transistor and includes both the collector-base dissipation and the emitter-base dissipation. Under steady state conditions the total power is given by the expression:

In order to distinguish between "steady state" and "pulse" conditions the terms "steady state power (P_S) " and "pulse power (P_P) " are often used. The permissible total power dissipation is dependent upon temperature and its relationship is shown by means of a chart as shown in Fig. 3.

Fig. 3.

The temperature may be ambient, case or mounting base temperatures. Where a cooling clip or a heatsink is attached to the device, the allowable power dissipation is also dependent on the efficiency of the heatsink.

The efficiency of this clip or heatsink is measured in terms of its thermal resistance $(R_{th}h)$ normally expressed in degrees centigrade per watt (OC/W). For mounting base rated device, the added effect of the contact resistance $(R_{th}i)$ must be taken into account.

The effect of heatsinks of various thermal resistance and contact resistance is often included in the above chart.

TRANSISTOR RATINGS

Thus for any heatsink of known thermal resistance and any given ambient temperature, the maximum permissible power dissipation can be established. Alternatively, knowing the power dissipation which will occur and the ambient temperature, the nécessary heatsink thermal resistance can be calculated.

A general expression from which the total permissible steady state power dissipation can be calculated is:

$$P_{tot} = \frac{T_j - T_{amb}}{R_{th j-a}}$$

where $R_{th\;j-a}$ is the thermal resistance from the transistor junction to the ambient. For case rated or mounting base rated devices, the thermal resistance $R_{th\;j-a}$ is made up of the thermal resistance junction to case or mounting base ($R_{th\;j-mb}$), the contact thermal resistance ($R_{th\;i}$) and the heatsink thermal resistance $R_{th\;h}$.

For the calculation of pulse power operation P_p , the maximum pulse power is obtained by the aid of a chart as shown in Fig. 4.

Fig. 4.

The general expression from which the maximum pulse power dissipation can be calculated is:

$$P_{p} = \frac{T_{j} - T_{amb} - P_{s} \times R_{th \, j-a}}{Z_{th \, t} + d \, (R_{th \, c-a})}$$

where $Z_{th\,t}$ and d are given in the above chart and $R_{th\,c-a}$ is the thermal resistance between case and ambient for case rated device. For mounting base rated device, it is equal to $R_{th\,h}+R_{th\,i}$ and is zero for free air rated device because the effect of the temperature rise of the case over the ambient for a pulse train is already included in $Z_{th\,t}$.

Temperature ratings

Timax

The maximum permissible junction temperature which is used as the basis for the calculation of power ratings. Unless otherwise stated, the continuous value

is implied.

T_{jmax} (continous operation)

The maximum permissible continuous value.

T_{imax} (intermittent

operation)

The maximum permissible instantaneous junction temperature usually allowed for a total duration of 200 hours.

 T_{mb}

The temperature of the surface making contact with a heatsink. This is confined to devices where a flange or stud for fixing onto a heatsink forms an integral part of the envelope.

Tcase

The temperature of the envelope. This is confined to devices to which may be attached a clip-on cooling fin.

RATING SYSTEMS

The rating systems described are those recommended by the International Electrotechnical Commission (IEC) in its Publication 134.

DEFINITIONS OF TERMS USED

Electronic device. An electronic tube or valve, transistor or other semiconductor device.

Note

This definition excludes inductors, capacitors, resistors and similar components.

Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.

Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms.

Note

Limiting conditions may be either maxima or minima.

Rating system. The set of principles upon which ratings are established and which determine their interpretation.

Note

The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

DESIGN MAXIMUM RATING SYSTEM

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

DESIGN CENTRE RATING SYSTEM

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

LETTER SYMBOLS FOR TRANSISTORS AND SIGNAL DIODES

based on IEC Publication 148

LETTER SYMBOLS FOR CURRENTS, VOLTAGES AND POWERS

Basic letters

The basic letters to be used are:

I, i = current

V, v = voltage

P, p = power.

Lower-case basic letters shall be used for the representation of instantaneous values which vary with time.

In all other instances upper-case basic letters shall be used.

Anode terminal

Average value

Subscripts

(AV), (av)

A, a

, , , , ,			
B, b	Base terminal, for MOS devices: Substrate		
(BR)	Breakdown		
C, c	Collector terminal		
D, d	Drain terminal		
Е, е	Emitter terminal		
F, f	Forward		
G, g	Gate terminal		
K, k	Cathode terminal		
M, m	Peak value		
O, o	As third subscript: The terminal not mentioned is open circuited		
R, r	As first subscript: Reverse. As second subscript: Repetitive.		
	As third subscript: With a specified resistance between the terminal		
	not mentioned and the reference terminal.		
(RMS), (rms)	R.M.S. value		
	(As first or second subscript: Source terminal (for FETS only)		
S, s	As second subscript: Non-repetitive (not for FETS)		
	As third subscript: Short circuit between the terminal not mentioned		
	and the reference terminal		
X, x	Specified circuit		
Z, z	Replaces R to indicate the actual working voltage, current or power		

of voltage reference and voltage regulator diodes.

Note: No additional subscript is used for d.c. values.

Upper-case subscripts'shall be used for the indication of:

a) continuous (d.c.) values (without signal)

Example I_B

b) instantaneous total values

Example in

c) average total values

Example I_{B(AV)}

d) peak total values

Example I_{BM}

e) root-mean-square total values

Example I_{B(RMS)}

Lower-case subscripts shall be used for the indication of values applying to the varying component alone:

a) instantaneous values

Example ib

b) root-mean-square values

Example Ib(rms)

c) peak values

Example I_{bm}

d) average values

Example Ib(av)

Note: If more than one subscript is used, subscript for which both styles exist shall either be all upper-case or all lower-case.

Additional rules for subscripts

Subscripts for currents

Transistors: If it is necessary to indicate the terminal carrying the current, this should be done by the first subscript (conventional current flow from the external circuit into the terminal is positive).

Examples: IB, iB, ib, Ibm

Diodes:

To indicate a forward current (conventional current flow into the anode terminal) the subscript F or f should be used; for a reverse current (conventional current flow out of the anode terminal) the subscript R or r

should be used.

Examples: I_F, I_R, i_F, I_{f(rms)}

Subscripts for voltages

Transistors: If it is necessary to indicate the points between which a voltage is measured, this should be done by the first two subscripts. The first subscript

ured, this should be done by the first two subscripts. The first subscript indicates the terminal at which the voltage is measured and the second the reference terminal or the circuit node. Where there is no possibility of confusion, the second subscript may be omitted.

Examples:
$$V_{BE}$$
, v_{BE} , v_{be} , V_{bem}

Diodes: To indicate a forward voltage (anode positive with respect to o

To indicate a forward voltage (anode positive with respect to cathode), the subscript F or f should be used; for a reverse voltage (anode negative with respect to cathode) the subscript R or r should be used.

Examples:
$$V_F$$
, V_R , v_F , V_{rm}

Subscripts for supply voltages or supply currents

Supply voltages or supply currents shall be indicated by repeating the appropriate terminal subscript.

Note: If it is necessary to indicate a reference terminal, this should be done by a third subscript

Example: V_{CCE}

Subscripts for devices having more than one terminal of the same kind

If a device has more than one terminal of the same kind, the subscript is formed by the appropriate letter for the terminal followed by a number; in the case of multiple subscripts, hyphens may be necessary to avoid misunderstanding.

Examples: I_{B2} = continuous (d.c.) current flowing into the second base terminal

V_{B2-E} = continuous (d.c.) voltage between the terminals of second base and emitter

Subscripts for multiple devices

For multiple unit devices, the subscripts are modified by a number preceding the letter subscript; in the case of multiple subscripts, hyphens may be necessary to avoid misunderstanding.

Examples: I_{2C} = continuous (d.c.) current flowing into the collector terminal of the second unit

V_{1C-2C} = continuous (d.c.) voltage between the collector terminals of the first and the second unit.

Application of the rules

The figure below represents a transistor collector current as a function of time. It consists of a continuous (d.c.) current and a varying component.

LETTER SYMBOLS FOR ELECTRICAL PARAMETERS

Definition

For the purpose of this Publication, the term "electrical parameter" applies to fourpole matrix parameters, elements of electrical equivalent circuits, electrical impedances and admittances, inductances and capacitances.

Basic letters

The following is a list of the most important basic letters used for electrical parameters of semiconductor devices.

B, b = susceptance; imaginary part of an admittance

C = capacitance

G, g = conductance; real part of an admittance

H, h = hybrid parameter

L = inductance

R, r = resistance; real part of an impedance

X, x = reactance; imaginary part of an impedance

Y, y = admittance;

Z, z = impedance;

Upper-case letters shall be used for the representation of:

- a) electrical parameters of external circuits and of circuits in which the device forms only a part;
- b) all inductances and capacitances.

Lower-case letters shall be used for the representation of electrical parameters inherent in the device (with the exception of inductances and capacitances).

Subscripts

General subscripts

The following is a list of the most important general subscripts used for electrical parameters of semiconductor devices:

F, f = forward; forward transfer
I, i (or 1) = input
L, 1 = load
O, o (or 2) = output

P = reverse: reverse

R, r = reverse; reverse transfer S, s = source

Examples: Z_S, h_f, h_F

The upper-case variant of a subscript shall be used for the designation of static (d.c.) values.

Examples: $h_{\rm FE}= {\rm static\ value\ of\ forward\ current\ transfer\ ratio\ in\ common-emitter\ configuration\ (d.c.\ current\ gain)}$

 $R_{\rm R}$ = d.c. value of the external emitter resistance.

Note: The static value is the slope of the line from the origin to the operating point on the appropriate characteristic curve, i.e. the quotient of the appropriate electrical quantities at the operating point.

The lower-case variant of a subscript shall be used for the designation of small-signal values.

Examples: h_{fe} = small-signal value of the short-circuit forward current transfer ratio in common-emitter configuration

 \mathbf{Z}_{e} = \mathbf{R}_{e} + $\mathbf{j}\mathbf{X}_{e}$ = small-signal value of the external impedance

Note: If more than one subscript is used, subscripts for which both styles exist shall either be all upper-case or all lower-case

Examples: h_{FE}, y_{RE}, h_{fe}

Subscripts for four-pole matrix parameters

The first letter subscript (or double numeric subscript) indicates input, output, forward transfer or reverse transfer

$$\begin{array}{c} \text{Examples: } h_{1} \text{ (or } h_{11}) \\ h_{1}^{0} \text{ (or } h_{22}^{2}) \\ h_{1}^{f} \text{ (or } h_{21}^{2}) \\ h_{1}^{r} \text{ (or } h_{12}^{1}) \end{array}$$

A further subscript is used for the identification of the circuit configuration. When no confusion is possible, this further subscript may be omitted.

Examples:
$$h_{fe}$$
 (or h_{21e}), h_{FE} (or h_{21E})

Distinction between real and imaginary parts

If it is necessary to distinguish between real and imaginary parts of electrical parameters, no additional subscripts should be used. If basic symbols for the real and imaginary parts exist, these may be used.

Examples:
$$Z_i = R_i + jX_i$$

 $y_{fe} = g_{fe} + jb_{fe}$

If such symbols do not exist or if they are not suitable, the following notation shall be used:

Examples: Re
$$(h_{ib})$$
 etc. for the real part of h_{ib}
Im (h_{ib}) etc. for the imaginary part of h_{ib}

SAFE OPERATING AREA CURVES

1. D.C. SOAR

The d.c. safe operating area (SOAR) of a transistor is limited on the current axis by $I_{C\,max}$ and on the voltage axis by $V_{C\,EOmax}$. Intersecting these two is a third limit defined by $P_{tot\,max}$. These limits can be superimposed on the normal I_C - $V_{C\,E}$ curve as in $\;$ Fig. 1, but are better shown on a double logarithmic scale as in Fig. 2; the $P_{tot\,max}$ limit then appears as a straight line at 45^0 to the axes.

Fig. 1

Fig. 2. D.C. SOAR curve

For steady state conditions there is a linear relation between the power dissipated at the junction and the temperature difference between junction and mounting base:

$$T_j - T_{mb} = C \cdot P_{tot}$$

where C = Rth i-mb, i.e. the thermal resistance from junction to mounting base.

$$T_j - T_{mb} = P_{tot} \cdot R_{th j-mb}$$
 (1)

In terms of maximum allowable junction temperature eq. (1) can be written as:

$$T_{j \text{ max}} - T_{\text{mb}} = P_{\text{tot max}} \cdot R_{\text{th } j\text{-mb}}$$
 (1a)

The data sheets give an upper limit for $P_{tot\ max}$ which applies up to a temperature T_1 . These relations are shown in Fig. 3 where the upper limit for $P_{tot\ max}$ has been chosen as 100%.

Fig. 3

So far we have discussed only d.c. conditions; it will be obvious that under pulse conditions a higher $P_{tot\ max}$ can be permitted.

2. Extension of the SOAR for pulse power

When pulse power is applied to a transistor the junction temperature will rise in a series of steps until a steady state condition is reached. See Fig. 4. For this steady state, eq. (1) can be modified to:

$$T_{j peak} - T_{mb} = P_{peak} \cdot Z_{th j-mb}$$
 (2)

where $Z_{th\ j-mb}$ is the transient thermal impedance from junction to mounting base and is dependent not only on $R_{th\ j-mb}$, but also on pulse width (t_p) and period (T). $Z_{th\ j-mb}$ is generally published in the form of Fig. 5.

In terms of maximum allowable junction temperature eq. (2) can be written as:

$$T_{j \text{ max}} - T_{mb} = P_{peak \text{ max}} \cdot Z_{th \text{ j-mb}}$$
 (2a)

Fig. 4

Fig. 5

Dividing eq. (2a) by eq. (1a), leads to:

$$P_{\text{peak max}} = P_{\text{tot max}} \frac{R_{\text{th } j\text{-mb}}}{Z_{\text{th } j\text{-mb}}} = P_{\text{tot max}} \cdot M_{p}.$$
 (3)

This means that the $P_{tot\,max}$ curve can be shifted by the factor M_p , see the sloping part of the thick dashed line of Fig. 6. M_p is known as the 'power multiplying factor'. The horizontal part of the dashed line of Fig. 6 is the rating I_{CMmax} ; it is the upper limit of the SOAR for pulse conditions.

In addition to the limits set by the SOAR the average current $I_{\hbox{\scriptsize C(AV)}}$ with an averaging time t_{av} of 50 ms should not exceed the maximum permissible d.c. current $I_{\hbox{\scriptsize Cmax}}.$ Averaging is not necessary when SOAR limits lower than the rated $I_{\hbox{\scriptsize CMmax}}$ are indicated for different pulse durations.

Fig. 6

Second Breakdown

3.1 The phenomenon

Primary breakdown is a sudden increase in I_C as a result of avalanche action within the crystal. If the collector current is increased further a critical condition can be reached at which the voltage across the crystal drops to a very low level. This phenomenon is known as second breakdown. It is initiated by a current concentration that leads to local heating within the crystal. The higher the voltage (before second breakdown) the lower the power at which the concentration occurs. If a single point on the crystal exceeds $T_{j\,max}$, the transistor characteristics may be permanently affected; further current concentration will lead to increased temperature and consequent second breakdown, which will destroy the transistor.

The SOAR curve must define an area that only precludes second breakdown but also the current concentration that precedes it.

$3.2 \; \text{Second breakdown and the d.c. SOAR}$

A transistor's susceptibility to second breakdown is investigated by d.c. loading up to current concentration. With different combinations of $I_{\rm C}$ and $V_{\rm CE}$, points are plotted at which current concentration is observed. A limit is then defined that precludes current concentration. This line lowers the original SOAR curve (see Fig. 7). The final d.c. SOAR curve is that shown in Fig. 8. In general the second breakdown limit is independent of the mounting base temperature

The thermal resistance $R_{th\ j-mb}$ is guaranteed for all IC-VCE combinations within the d.c. SOAR.

Fig. 7

Fig. 8

3.3 Fixing the second breakdown line for pulses, in the SOAR curve

In section 3.1 it was suggested that second breakdown occurs when a single point of the junction (crystal) reaches a critical temperature. It is really the thermal conditions in the crystal itself that determine the point of second breakdown - the thermal resistance (R_{th} crystal) and the thermal impedance (Z_{th} crystal) between the hottest part of the crystal and the rest. Z_{th} crystal is dependent on R_{th} crystal, δ , t_p, and the relation I_C-V_{CE}.

As with $M_{\rm p}$, a multiplying factor M can be derived to fix the second breakdown line for pulse conditions. However, for second breakdown two multiplying factors are given; $M_{\rm V}$ is the voltage multiplying factor at the $I_{\rm Cmax}$ level: $M_{\rm I}$ is the current multiplying factor at the $V_{\rm CEO,max}$ level.*

Knowing δ and t_p , one can find My and MI from two curves published in the data sheets, Figs 9a and 9b being examples. The voltage value at which the d.c. second breakdown line intersects the $I_{C\,max}$ line is then multiplied by My. In Fig. 10 the d.c. intersection is shown as point C, and a new intersection for specific pulse conditions as point C'. In the same way MI is used to find D' from D, which is the point at which the d.c. second breakdown line intersects the $V_{CEO\,max}$ line. The line that passes through C'and D' defines the second breakdown limit for given values of δ and t_p .

^{*} As decided in 1973, MSB(V) is now replaced by MI and MSB(I) by MV. The definitions are unaltered. Most of the graphs in the book have been changed, the remainder will be corrected at the first opportunity.

Fig. 10 V_{CE} (V)

A transistor can be safely operated under pulse conditions within the area boundedby I_{CMmax} , $P_{peak\ max}$, pulse SB limit, and V_{CEOmax} , provided the mounting base temperature does not exceed T_1 . If the mounting base temperature does exceed T_1 , M_p must be reduced by a factor derived from Fig. 3 (see section 1) but M need not be changed.

The SOAR curve for one specific duty cycle (δ) is given in the data sheets, but with the aid of curves Z_{th} , M_V , M_I and the d.c. SOAR, a pulse condition SOAR can be constructed for any duty factor.

4. Example of how to use the published SOAR information

4.1 Statement of the problem

The driver- and output-stage of an audio amplifier are given in Fig. 11. We shall investigate whether the driver transistor TR3 operates safely under worst case conditions.

The loudspeaker impedance is such that worst case conditions occur when the amplifier is overdriven by about 20 times the input signal necessary for full output power at a frequency of 750 Hz. Fig. 12 gives $V_{\rm CE}$ and $I_{\rm C}$ of TR3 under these conditions. The mounting base temperature of TR3 under these conditions is found to be 85 $^{\rm O}{\rm C}$.

Fig. 12a

Fig. 12b

4.2 Information obtained from the published data of TR3

Fig. 13. Safe Operating Area with the transistor forward biased

I Region of permissible d.c. operation

II Permissible extension for repetitive pulse operation.

se. The result is given in Fig. 18.

4.3.1 Plot the power curve obtained by multiplying the two curves of Fig. 12 and construct an equivalent rectangular power pulse with the same peak value and area as the original pul-

Fig. 18

4.3.2 Ascertain $\boldsymbol{t}_p,\ T,\ \delta$ = $^t\boldsymbol{p}/T$ and P peak. The results are:

$$t_p = 75 \,\mu s$$

$$T = \frac{1}{750} = 1.33 \text{ ms}$$

$$\delta = 0.056$$

$$P_{peak} = 17.5 W$$

4.3.3

Refer to Fig. 14 and determine the derating factor for $P_{tot max}$ at 85 ^{0}C . The result is

Refer to Fig. 15 and determine $M_p = \frac{R_{th j-mb}}{Z_{th i-mb}}$ for $t_p = 75 \,\mu s$ and $\delta = 0.056$.

$$R_{th j-mb} = 10 \text{ °C/W}$$

 $Z_{th j-mb} = 2.75 \text{ °C/W}$

$$Z_{\text{th j-mb}} = 2.75 \, ^{\circ}\text{C/W}$$

$$M_p = \frac{10}{2.75} = 3.64$$

4.3.4

Refer to Fig. 16 and 17 and ascertain the $M_{\mbox{\footnotesize{SB}}}$ factors for t_p = 75 μs and δ = 0.056. The results are:

$$M_{V} = 3.6$$

$$M_1 = 2.8$$

4.3.5

Refer to Fig. 13 and construct the pulse extension of the d.c. SOAR for t_p = 75 μs and δ = 0.056 according to the following rules (see Fig. 19).

- Multiply the value of the voltage at point A by the derating factor obtained from Fig. 14 (0.6) and by $M_p = 3.64$ to obtain A'.

$$V_A = 13 V$$

$$V_{\Delta}' = 13 \ V \times 0.6 \times 3.64 = 28.4 \ V$$

- Through point A' construct a line of constant power (45°)

$$P_{\text{peak max}} = 28.4 \times I_{\text{C max}} = 14.2 \text{ W}.$$

- Multiply the value of V_{CE} at point C by $M_V = 3.6$ (see 4.3.4), to obtain C'.
- Multiply the value of I_C at point D by $M_I = 2.8$ (see 4.3.4), to obtain D'.
- Construct a new limit for second breakdown by drawing a line through point C' and D'.
- The SOAR for this particular case is formed by the $I_{\hbox{CM max}}$ line, the maximum peak dissipation line through A', the second breakdown limit line C'- D' and the $V_{\hbox{CEO}}$ line.

4.3.6

Plot the $\rm I_C$ - $\rm V_{CE}$ excursion as found from Fig. 12a and b in Fig. 19 $\,$ and check if every point of this excursion is inside the SOAR.

In this particular example the $P_{peak\ max}$ limit is exceeded, while the SB-limit is not exceeded. A solution for this case is to decrease the mounting base temperature, T_{mb} , by enlarging the heatsink.

4.3.7

The new permissible mounting base temperature, T_{mb max}, can be calculated as follows

$$T_{mb max} = T_{j max} - P_{peak} \cdot Z_{th j-mb}$$

$$P_{\text{peak}} = 17.5 \text{ W (see 4.3.2)}$$

$$Z_{th, i-mb} = 2.75 \, {}^{\circ}C/W$$

Therefore:

$$T_{mb \ max} = 125 - 17.5 \times 2.75 = 77 \, {}^{o}C$$

- I Region of permissible operation up to $T_{mb} = 60$ ^{o}C
- II Permissible extension for t_p = 75 $\mu s,~\delta$ = 0.056 and $T_{\mbox{mb}}$ = 85 $^{\mbox{O}} C$

4.3.8

For calculation of the heatsink the power may be averaged provided the period T does not exceed the thermal time constant of the transistor.

Then
$$T_{mb} - T_{amb} = \delta \cdot P_{peak} \cdot R_{th mb-a}$$

If $T_{\mbox{mb max}}$ and $P_{\mbox{peak}}$ are known, the max. allowable $R_{\mbox{th mb-a}}$ may be calculated with

$$R_{th mb}$$
-a max = $\frac{T_{mb max} - T_{amb}}{\delta \cdot P_{peak}}$

In our example
$$R_{\text{th mb-a max}} = \frac{77 - 25}{0.056 \times 17.5} = 53 \, {}^{\circ}\text{C/W}$$

TRANSISTOR DATA

SILICON PLANAR EPITAXIAL POWER TRANSISTOR

N-P-N transistor in a SOT-32 plastic envelope for general purpose, medium power applications. P-N-P complement is BD132.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)		max.	70 V
Collector-emitter voltage (open base)	v_{CEO}	max.	45 V
Collector current (peak value)	I _{CM}	max.	6 A
Total power dissipation up to T _{mb} = 60 °C	P _{tot}	max.	15 W
Junction temperature	T_{j}	max.	150 °C
D.C. current gain $I_C = 0.5 A$; $V_{CE} = 12 V$	hFE	>	40
Transition frequency at f = 35 MHz I _C = 0,25 A; V _{CE} = 5 V	f _T	,	60 MHz

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-126 (SOT-32).

Collector connected to metal part of mounting surface.

See also chapters Mounting instructions and Accessories.

(1) Within this region the cross-section of the leads is uncontrolled.

RATINGS

From junction to mounting base

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Junction temperature	Τj	max.	150	υC
Storage temperature	T _{stg}	-65 to +		
Total power dissipation up to T _{mb} = 60 °C	P _{tot}	max.		W
Reverse base current (peak value)	-I _{BM}	max.	0,5	Α
Base current (peak value)	^I BM	max.	0,5	Α
Collector current (peak value)	ICM	max.	6	Α
Collector current (d.c.)	IC	max.	3	Α
Emitter-base voltage (open collector)	[∨] EBO	max,	6	٧
Collector-emitter voltage (open base)	VCEO	max.	45	٧
Collector-base voltage (open emitter)	V _{СВО}	max.	70	٧

6 °C/W

R_{th j-mb}

CHARACTERISTICS

T _j = 25 °C unless otherwise specified
Collector cut-off current
I _E = 0; V _{CB} = 50 V
$I_E = 0$; $V_{CB} = 50 \text{ V}$; $T_j = 150 ^{\circ}\text{C}$
Emitter cut-off current
$I_C = 0$; $V_{EB} = 5 V$
Saturation voltages

D.C. current gain

$$I_C$$
 = 0,5 A; V_{CE} = 12 V
 I_C = 2 A; V_{CE} = 1 V
Collector capacitance at f = 1 MHz
 I_E = I_e = 0; V_{CB} = 5 V

ІСВО	< <	5 μΑ
ІСВО	<	500 μA
IEBO	<	5 μΑ
V CEsat	<	0,3 V
V _{BEsat}	< < <	1,2 V
V _{CEsat}	<	0,7 V
VBEsat	<	1,5 V
hFE	>	40
hFE	>	20
$C_{\mathbf{c}}$	<	60 pF
fŢ	>	60 MHz

hFE1/hFE2

1,2

Fig. 2 Safe Operating ARea with the transistor forward biased.

- I Region of permissible d.c. operation.
- II Permissible extension for repetitive pulse operation.
- (1) Ptot max and Ppeak max lines.
- (2) Second breakdown limits (independent of temperature).

Fig. 3 Maximum allowable collector-emitter voltage as a function of base-emitter resistance.

Fig. 4 Pulse power rating chart.

Fig. 5 S.B. voltage multiplying factor at the \hat{I}_{Cmax} level.

Fig. 6 S.B. current multiplying factor at the $V_{\mbox{CEOmax}}$ level.

Fig. 7 Collector-base current (open emitter) as a function of the junction temperature.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

SILICON PLANAR EPITAXIAL POWER TRANSISTOR

P-N-P transistor in a SOT-32 plastic envelope for general purpose, medium power applications. N-P-N complement is BD131.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	-V _{CBO}	max.	45 V
Collector-emitter voltage (open base)	-V _{CEO}	max.	45 V
Collector current (peak value)	-I _{CM}	max.	6 A
Total power dissipation up to T _{mb} = 60 °C	P _{tot}	max.	15 W
Junction temperature	Ti	max.	150 °C
D.C. current gain -I _C = 0,5 A; -V _{CE} = 12 V	hFE	,>	40
Transition frequency at $f = 35 \text{ MHz}$ $-I_C = 0.25 \text{ A}; -V_{CE} = 5 \text{ V}$	f _T	> .	60 MHz

MECHANICAL DATA

Fig. 1 TO-126 (SOT-32)

Collector connected to metal part of mounting surface.

See also chapters Mounting instructions and Accessories.

(1) Within this region the cross-section of the leads is uncontrolled.

Dimensions in mm

DATINGS

-	RATINGS				
	Limiting values in accordance with the Absolute Maximum System (IEC 134)			
	Collector-base voltage (open emitter)	-V _{CBO}	max.	45	٧
	Collector-emitter voltage (open base)	-VCEO	max.	45	V
	Emitter-base voltage (open collector)	~VEBO	max.	4	٧ .
	Collector current (d.c.)	-Ic	max.	. 3	Α
	Collector current (peak value)	-I _{CM}	max.	6	Α
	Base current (peak value)	−¹ _{BM}	max.	0,5	Α .
	Reverse base current (peak value)	+ I _{BM}	max.	0,5	A
	Total power dissipation up to T _{mb} = 60 °C	P _{tot}	max.	15	W
	Storage temperature	T _{stg}	-65 to +	150	oC
	Junction temperature	Tj	max.	150	oC
	THERMAL RESISTANCE				
	From junction to mounting base	R _{th j-mb}	=	6	oC/M
	CHARACTERISTICS			•	
	T _j = 25 °C unless otherwise specified	that it is			: -
	Collector cut-off current	:			
	$I_E = 0; -V_{CB} = 40 \text{ V}$	-I _{CBO}	< .	, 5	μΑ
	$I_E = 0$; $-V_{CB} = 40 \text{ V}$; $T_j = 150 \text{ °C}$	-ICBO	<	500	μΑ
	Emitter cut-off current I _C = 0; -V _{EB} = 3 V	-I _{EBO}	<	5	μΑ
	Saturation voltages				
	$-I_C = 0.5 \text{ A}; -I_B = 50 \text{ mA}$	−VCEsat −VBEsat	<	0,3 1,2	
	-1c = 2 A; -1B = 200 mA	-V _{CEsat}	<	0,7	
		-VBEsat	< ,	1,5	
	D.C. current gain				
	$-1_{C} = 0.5 \text{ A}; -V_{CE} = 12 \text{ V}$	hFE	. >	40	
	$-I_C = 2 A; -V_{CE} = 1 V$	hFE	>	20	
	Transition frequency at f = 35 MHz $-I_C$ = 0,25 A; $-V_{CE}$ = 5 V; T_{amb} = 25 °C	fŢ	>	60	MHz

hFE1/hFE2

1,2

D.C. current gain ratio

of the complementary pairs
-IC = 500 mA; -VCE = 12 V

Fig. 2 Safe Operating ARea with the transistor forward biased.

- I Region of permissible d.c. operation.
- II Permissible extension for repetitive pulse operation.
- (1) Ptot max and Ppeak max lines.
- (2) Second breakdown limits (independent of temperature).

Fig. 3 S.B. voltage multiplying factor at the $-\text{I}_{\mbox{Cmax}}$ level.

Fig. 4 S.B. current multiplying factor at the $-V_{\mbox{CEOmax}}$ level.

Fig. 5 Pulse power rating chart.

Fig. 6 D.C. current gain.

Fig. 7 D.C. current gain ratio.

Fig. 8 Collector-base current (open emitter) as a function of the junction temperature.

Fig. 9.

Fig. 10.

SILICON PLANAR EPITAXIAL POWER TRANSISTOR

N-P-N transistor in a SOT-32 plastic envelope for general purpose, medium power applications.

QUICK REFERENCE DATA									
Collector-base voltage (open emitter)	v_{CBO}	max.	90	V					
Collector-emitter voltage (open base)	v_{CEO}	max.	60	V					
Collector current (peak value)	I_{CM}	max.	6	Α					
Total power dissipation up to T_{mb} = 60 $^{o}\mathrm{C}$	P_{tot}	max.	15	W					
Junction temperature	$T_{\mathbf{j}}$	max.	150	$^{\mathrm{oC}}$					
D.C. current gain $I_C = 0.5 \text{ A}$; $V_{CE} = 12 \text{ V}$	\mathtt{h}_{FE}	>	40						
Transition frequency at $f = 35 \text{ MHz}$ $I_C = 0.25 \text{ A}; V_{CE} = 5 \text{ V}$	\mathbf{f}_{T}	>	60	MHz					

MECHANICAL DATA

TO-126 (SOT-32) Collector connected to metal part of mounting surface Dimensions in mm

For mounting instructions see section Accessories type 56326 for non-insulated mounting and set 56333 for insulated mounting.

¹⁾ Within this region the cross-section of the leads is uncontrolled.

SILICON PLANAR EPITAXIAL POWER TRANSISTORS

General purpose n-p-n transistors in SOT-32 plastic envelope, recommended for driver stages in hi-fi amplifiers and television circuits.

The BD136, BD138 and BD140 are complementary to the BD135, BD137 and BD139 respectively.

QUICK REFERENCE DATA							
			BD 135	BD 137	BD 139		
Collector-base voltage (open emitter)	v_{CBO}	max.	45	60	100 V		
Collector-emitter voltage (open base)	V_{CEO}	max.	45	60	80 V		
Collector-emitter voltage ($R_{BE} = 1 \text{ k}\Omega$)	v_{CER}	max.	45	60	100 V		
Collector current (peak value)	I_{CM}	max.	1,5	1,5	1,5 A		
Total power dissipation up to T _{mb} = 70 °C	P _{tot}	max.	8	8	8 W		
Junction temperature	T_{i}	max.	150	150	150 °C		
D.C. current gain I _C = 150 mA; V _{CE} = 2 V	$h_{ m FE}$	>	40	40	40		
<u> </u>	112	<	250	250	250		
Transition frequency $I_C = 50 \text{ mA}; V_{CE} = 5 \text{ V}$	\mathbf{f}_{T}	typ.	250	250	250 MHz		

MECHANICAL DATA

TO-126 (SOT-32)

Collector connected to metal part of mounting surface Dimensions in mm

For mounting instructions see section Accessories type 56326 for non-insulated mounting and set 56333 for insulated mounting.

¹⁾ Within this region the cross-section of the leads is uncontrolled.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages			BD 135	BD137	BD 139)
Collector-base voltage (open emitter)	v_{CBO}	max.	45	60	100	v
Collector-emitter voltage (open base)	v_{CEO}	max.	45	60	80	\mathbf{v}
Collector-emitter voltage ($R_{BE} = 1 \text{ k}\Omega$)	v_{CER}	max.	45	60	100	v
Emitter-base voltage (open collector)	V_{EBO}	max.	5	5	5	v
Currents				; * * * * * * * * * * * * * * * * * * *		
Collector current (d.c.)	$^{\mathrm{I}}\mathrm{C}$	max.	1,0	1,0	1,0	Α
Collector current (peak value)	I_{CM}	max.	1,5	1,5	1,5	Α
Power dissipation						
Total power dissipation up to T_{mb} = 70 ^{o}C	P_{tot}		ma	x. 8	8 W	
Temperatures	*				*	
Storage temperature	${ m T_{stg}}$		-65	5 to +150) °C	
Junction temperature	Тj		ma	x. 150) °C	
THERMAL RESISTANCE						
From junction to ambient in free air	R _{th j-a}			100	°C/	w/w
From junction to mounting base	R _{th j-m}			10) °C/	/W
From junction to mounting base				10)	°C/

CHARACTERISTICS

 $|I_C| = 150 \text{ mA}; |V_{CE}| = 2 \text{ V}$

T _j = 25 °C unless otherwise specified			
Collector cut-off current			
$I_E = 0$; $V_{CB} = 30 \text{ V}$	ГСВО	<	100 nA
I _E = 0; V _{CB} = 30 V; T _i = 125 °C	ГСВО	<	10 μΑ
Emitter cut-off current			
$I_{C} = 0$; $V_{EB} = 5 V$	^I EBO	<	10 μΑ
Base-emitter voltage			
$I_C = 500 \text{ mA}; V_{CE} = 2 \text{ V}$	V_{BE}	<	1 V
Saturation voltage			
$I_C = 500 \text{ mA}; I_B = 50 \text{ mA}$	V _{CEsat}	< -	0,5 V
D.C. current gain			
$I_C = 5 \text{ mA}$; $V_{CE} = 2 \text{ V}$	hFE	>	25
$I_C = 150 \text{ mA}; V_{CE} = 2 \text{ V}$	hFE	40 to	250.
$I_C = 500 \text{ mA}; V_{CE} = 2 \text{ V}$	hFE	>	25
Transition frequency at f = 35 MHz			
$I_C = 50 \text{ mA}; V_{CE} = 5 \text{ V}$	f⊤	typ	250 MHz
D.C. current gain ratio of matched pairs			
BD135/BD136; BD137/BD138; BD139/BD140			

hFE1/hFE2 < typ

Safe Operating Area with thé transistor forward biased

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation

¹⁾ Independent of temperature

Safe Operating Area with the transistor forward biased

- Region of permissible d.c. operation
- II Permissible extension for repetitive pulsed operation
- III Repetitive pulse operation in this region is allowable, provided $R_{\rm BE} \leq 1~k\Omega$

¹⁾ Independent of temperature

BD135 BD137 BD139

General purpose p-n-p transistors in SOT-32 plastic envelope, recommended for driver stages in hi-fi amplifiers and television circuits.

The BD135, BD137 and BD139 are complementary to the BD136, BD138 and BD140 respectively.

QUICK REFERENCE DATA								
			BD 136	BD138	BD 140)		
Collector-base voltage (open emitter)	-V _{CBO}	max.	45	60	100	v		
Collector-emitter voltage (open base)	$-v_{CEO}$	max.	45	60	80	V .		
Collector-emitter voltage ($R_{BE} = 1 \text{ k}\Omega$)	$-v_{CER}$	max.	45	60	100	\mathbf{v}		
Collector current (peak value)	$-I_{\text{CM}}$	max.	1,5	1,5	1,5	A		
Total power dissipation up to $T_{mb} = 70 {}^{\rm o}{\rm C}$	P_{tot}	max.	8	8	8	w		
Junction temperature	$T_{\mathbf{j}}$	max.	150	150	150	oC		
D.C. current gain $-I_C = 150 \text{ mA}; -V_{CE} = 2 \text{ V}$	$h_{ extsf{FE}}$	> <	40 25 0	40 250	40 250			
Transition frequency $-I_C = 50 \text{ mA}; -V_{CE} = 5 \text{ V}$	$\mathbf{f_{T}}$	typ.	75	75	75	MHz		

MECHANICAL DATA

TO-126 (SOT-32)

Collector connected to metal part of mounting surface

For mounting instructions see section Accessories type 56326 for non-insulated mounting and set 56333 for insulated mounting.

¹⁾ Within this region the cross-section of the leads is uncontrolled.

RATINGS Limiting values in accordance with	the Absol	lute Ma	ximum	System	(IEC	134)
Voltages	•		BD 136	BD138	BD1	40
Collector-base voltage (open emitter)	-V _{CBO}	max.	45	60	10	0 V
Collector-emitter voltage (open base)	$-v_{CEO}$	max.	45	60	8	0 V
Collector-emitter voltage ($R_{BE} = 1 \text{ k}\Omega$)	$-v_{CER}$	max.	45	60	10	0 V
Emitter-base voltage (open collector)	$-v_{EBO}$	max.	5	5		5 V
Currents						
Collector current (d.c.)	-IC	max.	1,0	1,0	1,	0 A
Collector current (peak value)	$-I_{\text{CM}}$	max.	1,5	1,5	1,	5 A
Power dissipation	•					
Total power dissipation up to T_{mb} = 70 °C	P _{tot}	•	m	ax.	8	w
Temperatures						
Storage temperature	$\mathtt{T}_{\mathtt{stg}}$		_	65 to +1	150	oC
Junction temperature	${f T_j}$.m	ax.	150	$^{\mathrm{o}}\mathrm{C}$
THERMAL RESISTANCE						
From junction to ambient in free air	R _{th j-a}]	100	°C/W
From junction to mounting base	R _{th j-m}	ıb .			10	oC\M

75 MHz

CHARACTERISTICS

Т	i =	25	oC	unless	otherwise	specified
---	-----	----	----	--------	-----------	-----------

$$-I_C = 500 \text{ mA}; -V_{CE} = 2 \text{ V}$$

$$-1_C = 500 \text{ mA}; -1_B = 50 \text{ mA}$$

$$-I_C = 5 \text{ mA}; -V_{CE} = 2 \text{ V}$$

 $-I_C = 150 \text{ mA}; -V_{CE} = 2 \text{ V}$

$$-I_C = 500 \text{ mA}; -V_{CE} = 2 \text{ V}$$

$$|I_C| = 150 \text{ mA}; |V_{CF}| = 2 \text{ V}$$

$$-I_{\text{CBO}}$$
 < 10 μ A

typ.

Safe Operating Area with the transistor forward biased

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation

¹⁾ Independent of temperature

Safe Operating Area with the transistor forward biased

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation \(\)
- III Repetitive pulse operation in this region is allowable, provided RBE ≤ 1 k Ω .

¹⁾ Independent of temperature

BD136 BD138 BD140

BD136 BD138 BD140

BD136 BD138 BD140

SILICON DIFFUSED POWER TRANSISTORS

N-P-N transistors in a TO-3 metal envelope for use in hi-fi audio equipment.

The BD181 is intended for 20 W into 4Ω as well as 15 W into 8Ω .

The BD182 is intended for 40 W into 4Ω .

The BD183 is intended for 40 W into 8Ω .

The transistors are also available as matched pairs under the type numbers 2-BD181, 2-BD182 and 2-BD183.

QUICK REFERENCE DATA									
			BD181	BD182	BD183				
Collector-emitter voltage (open base)	v_{CEO}	max.	45	60	80 V				
Collector-emitter voltage ($R_{BE} = 100 \Omega$)	v_{CER}	max.	55	70	85 V				
Collector current (peak value)	I_{CM}	max.	15	15	15 A				
Total power dissipation									
up to $T_{mb} = 25$ ^{o}C	P_{tot}	max.	_	117	117 W				
up to $T_{mb} = 83$ $^{\circ}C$	P _{tot}	max.	7.8		– W				
Junction temperature	T_{j}	max.	200	200	200 °C				
D.C. current gain									
$I_{C} = 3 \text{ A}; V_{CE} = 4 \text{ V}$	${ m h_{FE}}$		20 to 70	-	20 to 70				
$I_C = 4 \text{ A}; V_{CE} = 4 \text{ V}$	${\tt h_{FE}}$		_	20 to 70	_				
Cut-off frequency									
$I_{\rm C} = 0.3 A; V_{\rm CE} = 4 V$	f_{hfe}	>	15	15	15 kHz				

MECHANICAL DATA

Dimensions in mm

Collector connected to envelope

TO-3

For mounting instructions and accessories, see section Accessories.

SILICON EPITAXIAL-BASE POWER TRANSISTORS

N-P-N transistors in a plastic envelope. With their p-n-p complements BD202 and BD204 they are primarily intended for use in hi-fi equipment delivering an output of 15 to 25 W into a 4 Ω or 8 Ω load.

QUICK REFERENCE DATA									
			BD201	BD203					
Collector-emitter voltage (open base)	v_{CEO}	max.	45	60	V				
Collector current (d.c.)	$^{\mathrm{I}}\mathrm{C}$	max.	. 8	8	A				
Total power dissipation up to $T_{mb} = 25$ °C	P_{tot}	max.	60	60	w				
Cut-off frequency I _C = 0, 3 A; V _{CE} = 3 V	fhfe	>	25	25	kHz				

MECHANICAL DATA

Dimensions in mm

TO-220

For mounting instructions and accessories see section Accessories.

BD201 BD203

Voltages			BD201	BD203	
Collector-base voltage (open emitter)	v_{CBO}	max.	60	60	v
Collector-emitter voltage (open base)	v_{CEO}	max.	45	60	v
Emitter-base voltage (open collector)	V_{EBO}	max.	. 5	5	V
Currents					
Collector current (d.c.)	$I_{\mathbf{C}}$		max.	8.	A
Collector current (peak value, $t_p \le 10 \text{ ms}$)	$^{\rm I}$ CM		max.	12	Α
Collector current (non-repetitive peak value, $t_p \le 2 \text{ ms}$)	I_{CSM}		max.	25	Α
Power dissipation					
Total power dissipation up to T _{mb} = 25 °C	P_{tot}		max.	60	·w
Temperatures					
Storage temperature	$T_{ m stg}$		-65 to	+150	oc
Junction temperature	T_{i}		max.	150	00

 $R_{th\ j-mb}$

R_{th j-a}

From junction to mounting base

From junction to ambient in free air

2,08

70

oC/W

°C/W

CHARACTERISTICS	T _j = 25	oC unless o	therwise	specified
Collector cut-off current				
$I_{B} = 0$; $V_{CE} = 30 \text{ V}$	I_{CEO}	<	1	mA
$I_E = 0$; $V_{CB} = 40 \text{ V}$; $T_j = 150 ^{\circ}\text{C}$	I_{CBO}	<	1	mA
Emitter cut-off current				
$I_C = 0$; $V_{EB} = 5 \text{ V}$	I_{EBO}	<	5	mA
Base-emitter voltage 1)				
$I_C = 3 A$; $V_{CE} = 2 V$	V_{BE}	<	1,5	V
Knee voltage 1)				
$I_C = 3 A$; $I_B = value for which$				
I_C = 3,3 A at V_{CE} = 2 V	VCEK	typ.	1	v
Saturation voltage 1)				
$I_C = 3 \text{ A}$; $I_B = 0, 3 \text{ A}$	v_{CEsat}	< ,	1	V
D.C. current gain 1)			*	
BD201; $I_C = 3 \text{ A}$; $V_{CE} = 2 \text{ V}$	hFE	> 2	30	
BD203; $I_C = 2 A$; $V_{CE} = 2 V$	$h_{ m FE}$	>	30	
$I_C = 1 A$; $V_{CE} = 2 V$	h_{FE}	>	30	
Cut-off frequency				
$I_{C} = 0, 3 A; V_{CE} = 3 V$	f _{hfe}	>	25	kHz

 f_{T}

Transition frequency at f = 1 MHz

 I_C = 0,3 A; V_{CE} = 3 V

MHz

 $[\]overline{\mbox{1}_{\mbox{\scriptsize 1}}})$ Measured under pulse conditions: $t_p <$ 300 $\mu \mbox{\scriptsize s},~\delta <$ 2%.

Safe Operating Area with the transistor forward biased

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation

For $P_{tot\ max}$ versus T_{mb} see page 8.

¹⁾ Independent of temperature.

SILICON EPITAXIAL-BASE POWER TRANSISTORS

P-N-P transistors in a plastic envelope. With their n-p-n complements BD201 and BD203 they are primarily intended for use in hi-fi equipment delivering an output of 15 to 25 W into a 4 Ω or 8 Ω load.

QUICK REFERENCE DATA									
			BD202	BD204					
Collector-emitter voltage (open base)	-V _{CEO}	max.	45	60	V				
Collector current (d.c.)	$-I_{\mathbf{C}}$	max.	8	8	A				
Total power dissipation up to T_{mb} = 25 $^{o}\mathrm{C}$	P_{tot}	max.	60	60	W				
Cut-off frequency				·					
$-I_{C} = 0,3 A; -V_{CE} = 3 V$	fhfe	>	25	25	kHz				

MECHANICAL DATA

Dimensions in mm

TO-220

For mounting instructions and accessories see section Accessories.

 $\mbox{\bf RATINGS}$ Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages			BD202	BD204		
Collector-base voltage (open emitter)	-V _{CBO}	max.	60	60	v	
Collector-emitter voltage (open base)	$-v_{CEO}$	max.	45	60 、	v .	
Emitter-base voltage (open collector)	$-v_{EBO}$	max.	5	5	V	
Currents						
Collector current (d.c.)	$-I_{\mathbf{C}}$	max	ι.	8	Α	
Collector current (peak value, $t_p \le 10 \text{ ms}$)	$-I_{CM}$	max	·.	12	Α	
Collector current (non-repetitive peak value, $t_p \le 2$ ms)	-I _{CSM}	max	r .	25	Α .	
Power dissipation						
Total power dissipation up to T_{mb} = 25 ^{o}C	P _{tot}	max	ε	60	W	
Temperatures						
Storage temperature	T_{stg}	· -	-65 to +	150	°C	
Junction temperature	Тj	max	ί.	150	oC	
THERMAL RESISTANCE						
From junction to mounting base	R _{th j-m} i	b =	2	,08	°C/W	
From junction to ambient in free air	R _{th j-a}	· .		70	oC/W	

CHARACTERISTICS		$T_j = 25$ °C unl	less othe	rwise s	specified
Collector cut-off current					
$I_B = 0$; $-V_{CE} = 30 \text{ V}$		$-I_{\text{CEO}}$	<	1	mA
$I_E = 0$; $-V_{CB} = 40 \text{ V}$; $T_j = 150 ^{\circ}\text{C}$		$-I_{CBO}$	< .	1	mA __
Emitter cut-off current					
$I_{C} = 0$; $-V_{EB} = 5 \text{ V}$		-IEBO	<	5	mA
Base-emitter voltage 1)					
$-I_C = 3 A; -V_{CE} = 2 V$		$-v_{BE}$	<	1,5	V
Knee voltage 1)					
$-I_C = 3 A$; $-I_B = value at which$					
$-I_C = 3, 3 \text{ A at } -V_{CE} = 2 \text{ V}$		-V _{CEK}	typ.	1	V
Saturation voltage 1)					
$-I_C = 3 A$; $-I_B = 0, 3 A$		$-v_{\mathrm{CE}\mathrm{sat}}$	< .	1	V
D.C. current gain 1)					
BD202; $-I_C = 3 A$; $-V_{CE} = 2 V$		$\mathtt{h}_{ ext{FE}}$	>	30	
BD204; $-I_C = 2 \text{ A}$; $-V_{CE} = 2 \text{ V}$		$\mathtt{h_{FE}}$	>	30	
$-I_C = 1 A$; $-V_{CE} = 2 V$		$\mathtt{h_{FE}}$	>	30	
Cut-off frequency	<i>y</i>				
$-I_C = 0,3 A; -V_{CE} = 3 V$		$f_{ m hfe}$	>	25	kHz
Transition frequency at f = 1 MHz	•				
$-I_C = 0.3 A; -V_{CE} = 3 V$		$\mathbf{f}_{\mathbf{T}}$	> .	3	MHz

 $^{^{1}\!\!}$) Measured under pulse conditions: $t_{p}<$ 300 μs , $\delta<$ 2%.

Safe Operating Area with the transistor forward biased

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation

For $P_{tot \ max}$ versus T_{mb} see page 8.

¹⁾ Independent of temperature.

BD202 BD204

BD202 BD204

BD202 BD204

3

2 .

0

0

1

5

I_E (A)

4

SILICON PLANAR EPITAXIAL POWER TRANSISTORS

General purpose n-p-n transistors in a SOT-32 plastic envelope especially recommended for television circuits. Their complements are BD227, BD229 and BD231.

QUICK REFERENCE DATA							
			BD226	BD228	BD230		
Collector-base voltage (open emitter)	V_{CBO}	max.	45	60	100	v	
Collector-emitter voltage (open base)	v_{CEO}	max.	45	60	80	V	
Collector-emitter voltage ($R_{BE} = 1 \text{ k}\Omega$)	VCER	max.	45	60	100	V	
Collector current (peak value)	I_{CM}	max.	3	3	3	A	
Total power dissipation up to T _{mb} = 62 °C	P _{tot}	max.	12,5	12,5	12,5	W	
Junction temperature	T_i	max.	150	150	150	$^{\mathrm{oC}}$	
D.C. current gain	, 1	>	40	40	40		
$I_C = 150 \text{ mA}; V_{CE} = 2 \text{ V}$	$^{ m h_{FE}}$	<	250	160	160		
I _C = 1 A; V _{CE} = 2 V Transition frequency	$h_{ m FE}$	>	25	25	25		
$I_C = 50 \text{ mA}$; $V_{CE} = 5 \text{ V}$	\mathbf{f}_{T}	typ.	125	125	125	MH:	

MECHANICAL DATA

TO-126 (SOT-32)

Collector connected to metal part of mounting surface Dimensions in mm

For mounting instructions see section Accessories, type 56326 for non-insulated mounting and type 56333 for insulated mounting.

¹⁾ Within this region the cross-section of the leads is uncontrolled.

•						
RATINGS Limiting values in accordance with	the Absolu	ite Ma	ximum	System	(IEC 1	34)
Voltages	•		BD226	BD228	BD230) - -
Collector-base voltage (open emitter)	v_{CBO}	max.	45	60	100	v
Collector-emitter voltage (open base)	v_{CEO}	max.	45	60	80	V
Collector-emitter voltage ($R_{BE} = 1 \text{ k}\Omega$)	v_{CER}	max.	45	60	100	v
Emitter-base voltage (open collector)	v_{EBO}	max.	. 5	5	5	v
Currents	•					
Collector current (d.c.)	$I_{\mathbf{C}}$	max.		1,5		Α
Collector current (peak value)	I_{CM}	max.		3		Α
Power dissipation						
Total power dissipation up to T_{mb} = 62 ^{o}C	P _{tot}		max.	12,5	•	W
Temperatures			•			
Storage temperature	T _{stg}		-65 to	+150		oC
Junction temperature	$T_{\mathbf{j}}$		max.	150		oC
THERMAL RESISTANCE					•	
From junction to ambient in free air	R _{th j-a}		=	100		°C/W
From junction to mounting base	R _{th j-m}	b	=	7		°C/V

MHz

T _j = 25	°C	unless	otherwi	se specified
	•			•
I _{CBO}	<		100	nA
I_{CBO}	<		10	μА
I_{EBO}	<		10	. μΑ
				,
V_{BE}	<		1,3	\mathbf{v}
v_{CEsat}	<		8,0	V
		BD226	BD228	BD230
$h_{ m FE}$	>	25	25	25
hEE	>	40	40	40
$^{ m h}_{ m FE}$	>	250	25	160 25
	I_{CBO} I_{CBO} I_{EBO} V_{BE} V_{CEsat} h_{FE}	I _{CBO} < I _{CBO} < V _{BE} < V _{CEsat} < h _{FE} > h _{FE} <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 $\mathbf{f}_{\mathbf{T}}$

D.C. current gain ratio of matched pairs

 $I_C = 50 \text{ mA}; V_{CE} = 5 \text{ V}$

BD226/BD227; BD228/BD229;

Transition frequency at f = 35 MHz

BD230/BD231

 $|I_C|$ = 150 mA; $|V_{CE}|$ = 2 V h_{FE1}/h_{FE2} typ. 1,3 1,6

125

 $[\]overline{\mbox{1)}}$ \mbox{V}_{BE} decreases by about 2,3 mV/ o C with increasing temperature.

Safe Operating Area with the transistor forward biased

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation

¹⁾ Independent of temperature

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation
- III Repetitive pulse operation in this region is allowable, provided $R_{BE} \le 1~\text{k}\Omega$

¹⁾ Independent of temperature

7

November 1972

SILICON PLANAR EPITAXIAL POWER TRANSISTORS

General purpose p-n-p transistors in a SOT-32 plastic envelope especially recommended for television circuits. Their complements are BD226, BD228 and BD230.

QUICK REFERENCE DATA								
			BD227	BD229	BD231			
Collector-base voltage (open emitter)	$-v_{CBO}$	max.	45	60	100	v		
Collector-emitter voltage (open base)	-VCEO	max.	45	60	80	v I		
Collector-emitter voltage ($R_{BE} = 1 \text{ k}\Omega$)	$-v_{CER}$	max.	45	60	100	v		
Collector current (peak value)	-I _{CM}	max.	3	3	3	A		
Total power dissipation up to $T_{mb} = 62$ ^{o}C	P _{tot}	max.	12,5	12,5	12,5	w		
Junction temperature	T_i	max.	15 0	150	150	°C]		
D.C. current gain		> '	40	40	40			
$-I_C = 150 \text{ mA}; -V_{CE} = 2 \text{ V}$	$^{ m h_{FE}}$	<	250	160	160			
$-I_C = 1 \text{ A}; -V_{CE} = 2 \text{ V}$	$h_{ m FE}$	> ,	25	25	25			
Transition frequency	· -							
$-I_C = 50 \text{ mA}; -V_{CE} = 5 \text{ V}$	$\mathbf{f}_{\mathbf{T}}$	typ.	50	50	50	MHz		

MECHANICAL DATA

Dimensions in mm

TO-126 (SOT-32)

Collector connected to metal part of mounting surface

For mounting instructions see section Accessories, type 56326 for non-insulated mounting and type 56333 for insulated mounting.

¹⁾ Within this region the cross-section of the leads is uncontrolled.

BD227 BD229 BD231

RATINGS Limiting values in accordance with	n the Absol	ute Ma	ximum	System	(IEC 13	34)
Voltages			BD227	BD229	BD231	
Collector-base voltage (open emitter)	-V _{CBO}	max.	45	60	100	v
Collector-emitter voltage (open base)	-V _{CEO}	max.	45	60	80	V
Collector-emitter voltage ($R_{BE} = 1 \text{ k}\Omega$)	$-v_{\rm CER}$	max.	45	60	100	v
Emitter-base voltage (open collector)	$-v_{EBO}$	max.	5	5	5	v
Currents			· · · · · ·			-
Collector current (d.c.)	-I _C	max.		1,5	٠.	A
Collector current (peak value)	$-I_{CM}$	max.		3		A
Power dissipation						
Total power dissipation up to $T_{mb} = 62 ^{o}\text{C}$	P_{tot}	,	max.	12,5	w	
Temperatures						
Storage temperature	$\mathtt{T}_{\mathtt{stg}}$		-65 t	+150	0(3
Junction temperature	Тj		max.	150	0(C
THERMAL RESISTANCE						
From junction to ambient in free air	R _{th j-a}		=	100	0(C/W
From junction to mounting base	R _{th j-m}	b	=	7	0(C/W
	-					

nΑ

μΑ

μΑ

 $T_i = 25$ °C unless otherwise specified

100

10

10

1,3

0,8

BD227 | BD229 | BD231

25

40

160

25

50

25

40

25

MHz

160

25

40

25

250

ICS		

$$I_E = 0$$
; $-V_{CB} = 30 \text{ V}$
 $I_E = 0$; $-V_{CB} = 30 \text{ V}$; $T_j = 125 \text{ }^{\circ}\text{C}$

$$I_C = 0$$
; $-V_{EB} = 5 V$

Base-emitter voltage 1)
$$-I_C = 1 \text{ A; } -V_{CE} = 2 \text{ V}$$

$$-I_C = 1 \text{ A}; -I_B = 0.1 \text{ A}$$

$$-I_C = 5 \text{ mA;} -V$$

$$-I_C = 5 \text{ mA}; -V_{CE} = 2 \text{ V}$$

$$-I_C = 150 \text{ mA}; -V_{CE} = 2$$

$$-I_C = 150 \text{ mA}; -V_{CE} = 2 \text{ V}$$

$$-I_C = 1 A$$
; $-V_{CE} = 2 V$
Transition frequency at f = 35 MHz

$$-I_C = 50 \text{ mA}; -V_{CE} = 5 \text{ V}$$

D.C. current gain ratio of matched pairs

BD226/BD227; BD228/BD229;

BD230/BD231

BD230/BD231

$$|I_C| = 150 \text{ mA}; |V_{CE}| = 2 \text{ V}$$

1) -V_{BE} decreases by about 2,3 mV/°C with increasing temperature.

 $-I_{CBO}$

-I_{CBO}

-IEBO

 $-V_{BE}$

-V_{CEsat} <

 $h_{\rm FE}$

 $h_{\rm FE}$

 h_{FE}

 $f_{\mathbf{T}}$

< .

<

<

typ.

Safe Operating Area with the transistor forward biased

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation

¹⁾ Independent of temperature

Safe Operating Area with the transistor forward biased

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation
- III Repetitive pulse operation in this region is allowable, provided $R_{BE} \leq 1~k\Omega$

¹⁾ Independent of temperature

BD227_BD229 BD231

6

November 1972

BD227 BD229 BD231

November 1972

BD227 BD229 BD231

10

10³

-I_C (mA)

10²

SILICON DIFFUSED POWER TRANSISTOR

High-voltage n-p-n transistor in a SOT-32 plastic envelope intended for use as line driver in television receivers.

QUICK REFERENCE DATA						
Collector-emitter voltage ($R_{BE} \le 1 \text{ k}\Omega$) peak value	v_{CERM}	max.	500	V		
Collector-emitter voltage (open base)	v_{CEO}	max.	300	\mathbf{v}		
Collector current (d.c.)	$I_{\mathbf{C}}$	max.	0,25	A		
Collector current (peak value, $t_p \le 1 \text{ ms}$)	I_{CM}	max.	1	A		
Total power dissipation up to $T_{mb} = 57,5$ °C	P _{tot}	max.	15	W		
Junction temperature	T_{j}	max.	125	$^{\mathrm{o}}\mathrm{C}$		
D.C. current gain $I_C = 150 \text{ mA}$; $V_{CE} = 5 \text{ V}$	$h_{ m FE}$	>	20			
Transition frequency I _C = 50 mA; V _{CE} = 10 V	f _T	typ.	20	MHz		

MECHANICAL DATA

TO-126 (SOT-32)

Collector connected to metal part of mounting surface

For mounting instructions see section Accessories in handbook SC2, set 56333 for insulated mounting and type 56326 for non-insulated mounting.

¹⁾ Within this region the cross-section of the leads is uncontrolled.

SILICON EPITAXIAL-BASE POWER TRANSISTORS

N-P-N transistors in a SOT-32 plastic envelope intended for use in television and audio amplifier circuits where high peak powers can occur. P-N-P complements are BD234, BD236 and BD238. Matched pairs can be supplied.

QUICK REFERENCE DATA						
			BD233	BD235	BD237	
Collector-base voltage (open emitter)	v_{CBO}	max.	45	60	100	V
Collector-emitter voltage (open base)	v_{CEO}	max.	45	60	80	V
Collector-emitter voltage ($R_{BE} = 1 \text{ k}\Omega$)	v_{CER}	max.	45	60	100	V
Collector current (peak value)	I_{CM}	max.		6		Α
Total power dissipation up to T_{mb} = 25 o C	P_{tot}	max.		25		W
Junction temperature	T_{j}	max.		150		oC
D.C. current gain I _C = 1 A; V _{CE} = 2 V	$h_{ m FE}$	>		25		
Transition frequency $I_C = 250 \text{ mA}$; $V_{CE} = 10 \text{ V}$	f_{T}	>		3		MHz

MECHANICAL DATA

TO-126 (SOT-32)

Collector connected to metal part of mounting surface Dimensions in mm

For mounting instructions see section Accessories, type 56326 for direct mounting and set 56333 for insulated mounting.

¹⁾ Within this region the cross-section of the leads is uncontrolled.

BD233; BD235; BD237

RATINGS	Limiting values	in accordance	with the A	Absolute 1	Maximum :	System	(IEC 134)
---------	-----------------	---------------	------------	------------	-----------	--------	-----------

KATINGS Limiting values in accordance w	im me Ab	sorute	Maximu	ım syste	m (iec	134)
Voltages			BD233	BD235	BD237	
Collector-base voltage (open emitter)	v_{CBO}	max.	45	60	100	v
Collector-emitter voltage (open base)	v_{CEO}	max.	45	60	80	v
Collector-emitter voltage ($R_{BE} = 1 \text{ k}\Omega$)	v_{CER}	max.	45	60	100	\mathbf{v}
Emitter-base voltage (open collector)	v_{EBO}	max.	5	5	5	v
Currents	,	-				
Collector current (d.c.)	${ m I}_{f C}$		max.	2		A
Collector current (peak value)	$^{\mathrm{I}}$ CM		max.	6		A
Power dissipation						
Total power dissipation up to $T_{mb} = 25$ ^{o}C	P_{tot}		max.	25		w
Temperatures						
Storage temperature	$T_{ m stg}$		-65 to	+150		oC .
Junction temperature	$T_{\mathbf{j}}$		max.	150		oC.
THERMAL RESISTANCE						
From junction to ambient in free air	R _{th j-a}		= '	100		°C/\
From junction to mounting base	R _{th j-m}		=	5		°C/\
CHARACTERISTICS	Ţ	$\Gamma_{\rm j} = 25$	oC unle	ss other	wise sp	ecifie
Collector cut-off current		- ,				
$I_E = 0$; $V_{CB} = V_{CBOmax}$	I_{CBO}		<	100		μΑ
$I_E = 0$; $V_{CB} = V_{CBOmax}$; $T_j = 150 \text{ oC}$	I_{CBO}		<	3		mA
Emitter cut-off current						

 I_{EBO}

 $I_C = 0; V_{EB} = 5 V$

$$T_i = 25$$
 °C

Base-emitter voltage I_C = 1 A; V_{CE} = 2 V

Saturation voltage

I_C = 1 A; I_B = 0,1 A

D.C. current gain

 $I_C = 150 \text{ mA}; V_{CE} = 2 \text{ V}$ $I_C = 1 \text{ A}; V_{CE} = 2 \text{ V}$

Transition frequency at f = 1 MHz $I_C = 250 \text{ mA}$; $V_{CE} = 10 \text{ V}$

D.C. current gain ratio of matched pairs

BD233/BD234; BD235/BD236; BD237/BD238

 $|I_C|$ = 150 mA; $|V_{CE}|$ = 2 V Switching times

 $I_{\text{Con}} = 1 \text{ A}$; $I_{\text{Bon}} = -I_{\text{Boff}} = 0.1 \text{ A}$

turn-on time turn-off time V_{BE} < 1,3 V

V_{CEsat} < 0,6 V

h_{FE} 40 to 250 h_{FE} > 25

f_T > 3 MHz

h_{FE1}/h_{FE2} < 1,6

 t_{on} typ 0,3 μ s t_{off} typ 1,1 μ s

Test circuit

Input pulse:

$$t_r = t_f = 15 \text{ ns}$$

 $t_p = 10 \mu s$
 $T = 500 \mu s$

Safe Operating Area with the transistor forward biased

- Region of permissible d.c. operation
- $II \quad Permissible \ extension \ for \ repetitive \ pulse \quad operation$

 $^{^{1}}$) Independent of temperature

BD233; BD235; BD237

BD233; BD235; BD237

BD233; BD235; BC237

BD233; BD235; BD237

SILICON EPITAXIAL-BASE POWER TRANSISTORS

P-N-P transistors in a SOT-32 plastic envelope intended for use in television and audio amplifier circuits where high peak powers can occur. N-P-N complements are BD233, BD235 and BD237. Matched pairs can be supplied.

QUICK REFERENCE DATA							
			BD234	BD236	BD238		
Collector-base voltage (open emitter)	$-v_{CBO}$	max.	45	60	100	v	
Collector-emitter voltage (open base)	$-v_{CEO}$	max.	45	60	80	v	
Collector-emitter voltage ($R_{BE} = 1 \text{ k}\Omega$)	$-v_{CER}$	max.	45	60	100	v	
Collector current (peak value)	-I _{CM}	max.		6		A	
Total power dissipation up to $\rm T_{mb}$ = 25 $\rm ^{o}C$	P_{tot}	max.		25		w	
Junction temperature	$\mathtt{T}_{\mathtt{j}}$	max.		150		°C	
D.C. current gain $-I_C = 1 A$; $-V_{CE} = 2 V$	$h_{ m FE}$	>	-	25			
Transition frequency $-I_C = 250 \text{ mA}$; $-V_{CE} = 10 \text{ V}$	f_{T}	> .		3		MHz	

MECHANICAL DATA

TO-126 (SOT-32)

Collector connected to metal part of mounting surface

February 1979

For mounting instructions see section ${\tt Accessories}$, type 56326 for direct mounting and set 56333 for insulated mounting.

1

¹⁾ Within this region the cross-section of the leads is uncontrolled.

DATENICO I !!+!		41 A 1 1 . 4 . 3 6	C 4 7 7 7 7 10 4
RATINGS Limiting values	in accordance with	The Absolute Maximum:	SVSTem (19.0. 1.34)
THILLIAD ELITICATE TOTAL	, mi decertation with	are reported industriality	0,000111 (1110 101)

RATINGS Limiting values in accordance w	ith the Abs	olute	Maximu	m Syste	m (IEC :	134)
Voltages			BD234	BD236	BD238	
Collector-base voltage (open emitter)	-V _{CBO}	max.	45	60	100	. V
Collector-emitter voltage (open base)	-V _{CEO}	max.	45	60	80	v
Collector-emitter voltage ($R_{BE} = 1 \text{ k}\Omega$)	-V _{CER}	max.	45	- 60	100	v
Emitter-base voltage (open collector)	$-v_{\mathbf{EBO}}$	max.	5	5	5 \	v
Currents					· ·	
Collector current (d.c.)	^{-I}C		max.	2		Α
Collector current (peak value)	$-I_{CM}$		max.	6		A
Power dissipation			,			
Total power dissipation up to T_{mb} = 25 ^{o}C	P _{tot}		max.	25		W
Temperatures						
Storage temperature	$T_{ ext{stg}}$		-65 to	+150		oC
Junction temperature	$T_{\mathbf{j}}$		max.	150		°C
THERMAL RESISTANCE		.*				
From junction to ambient in free air	R _{th j-a}		=	100		oC/W
From junction to mounting base	R _{th j-m}	b	=	5		oC/W
CHARACTERISTICS	Т	j = 25	°C unle	ss other	wise sp	ecified
Collector cut-off current						
$I_E = 0$; $-V_{CB} = -V_{CBOmax}$	-I _{CBO}		<	100	-/	μΑ
$I_E = 0$; $-V_{CB} = -V_{CBOmax}$; $T_j = 150 \text{ oC}$	-I _{CBO}		<	3		mA
Emitter cut-off current						
$I_C = 0$; $-V_{EB} = 5 \text{ V}$	$-I_{EBO}$		<	1		mA

CHARACTERISTICS (continued)

T_i = 25 °C

Base-emitter voltage .

-I_C = 1 A; -V_{CE} = 2 V

-IC = 1 A; -IB = 0,1 A

D.C. current gain
$$-I_C = 150 \text{ mA}$$
; $-V_{CE} = 2 \text{ V}$

$$-I_C = 1 A; -V_{CE} = 2 V$$

Transition frequency at
$$f = 1 \text{ MHz}$$

 $-I_C = 250 \text{ mA}; -V_{CE} = 10 \text{ V}$

$$|I_C| = 150 \text{ mA}; |V_{CE}| = 2 \text{ V}$$

Switching times

-I_{Con} = 1 A; -I_{Bon} = I_{Boff} = 0,1 A

turn-on time turn-off time

Test circuit

$$t_{on}$$
 typ 0,3 μs t_{off} typ 0,7 μs

$$t_r = t_f = 15 \text{ ns}$$

 $t_p = 10 \mu s$
 $T = 500 \mu s$

Safe Operating Area with the transistor forward biased

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation

¹⁾ Independent of temperature.

SILICON EPITAXIAL-BASE POWER TRANSISTORS

General purpose n-p-n transistors in plastic SOT-82 envelopes for clip mounting; can also be soldered or adhesive mounted into a hybrid circuit. Recommended for use with p-n-p complements BD292, 294 and 296 in class-B output stages. In a hi-fi circuit the combinations can deliver 20 W into 4 Ω or 8 Ω load. Matched pairs can be supplied.

QUICK REFERENCE DATA

		BD2	91 BD293	BD295	5
Collector-base voltage (open emitter)	V _{CBO}	max. 45	60	80	٧
Collector-emitter voltage (open base)	v_{CEO}	max. 45	60	80	٧
Collector-current (d.c.)	1 _C	max.	6		Α
Collector-current (peak) $t_p < 10 \text{ ms}; \delta < 0,1$	ICM	max.	10		Α
Base current (d.c.)	ΙΒ	max.	2,5		Α
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.	60		w
D.C. current gain I _C = 1 A; V _{CE} = 2 V	hFE	>	30		
Transition frequency I _C = 300 mA; V _{CE} = 3 V	f _T	>	3		M

MECHANICAL DATA

Fig. 1 SOT-82.

Collector connected to metal part of mounting surface

See also chapters Mounting instructions and Accessories.

(1) Within this region the cross-section of the leads is uncontrolled.

BD291 BD293 BD295

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BD291	BD293	BD29	5
Collector-base voltage (open emitter)	V _{СВО}	max.	45	60	80	_ V
Collector-emitter voltage (open base)	VCEO	max.	45	60	80	٧
Emitter-base voltage	V _{EBO}	max.	5	5	5	٠٧
Collector current (d.c.)	lc	max.		6		Α
Collector current (peak value) $t_D < 10 \text{ ms; } \delta < 0.1$	Ісм	max.	κ΄	10		Α
Base current (d.c.)	IB	max.		2,5		Α
Emitter current (d.c.)	-IE	max.		6		Α
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		60		W
Storage temperature	T _{stg}			-65 to + 1	50	°C
Junction temperature	Τj	max.		150		oC
THERMAL RESISTANCE						
From junction to ambient in free air	R _{thja}	=		100		oC/W
From junction to mounting base	R _{th j-mb}	=		2,08		oC/M

1 V

3 MHz

CHARACTERISTICS

T _j = 25 °C unless otherwise specified
Collector cut-off current
L = 0.1/ = 40.1/ T 450.00

D.C. current gain ratio of matched complementary pairs
$$I_C = 1 \text{ A}$$
; $V_{CE} = 2 \text{ V}$

V_{CEsat}

fт

	typ.	1,3
hFE1/hFE2	<	2,5

^{*} VBE decreases by about 1,8 mV/°C with increasing temperature.

Fig. 2 Safe Operating Area with the transistor forward biased, $T_{mb} \le 25$ °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- (1) P_{tot max} and P_{peak max} lines.
 (2) Second breakdown limits (independent of temperature).

Fig. 3 Power derating curve.

Fig. 4 Pulse power rating chart.

Fig. 5 Second breakdown voltage multiplying factor at the I $_{\mbox{C max}}$ level.

Fig. 6 Second breakdown current multiplying factor at the $V_{\mbox{CEO}\mbox{ max}}$ level.

Fig. 7 Typical collector current.

Fig. 8 Typical d.c. current gain.

Fig. 9 Collector-base current.

Fig. 10 Collector current.

Fig. 11 Base current.

Fig. 12 Collector-emitter saturation voltage.

Fig. 13 Base-emitter saturation voltage.

Fig. 14 Transition frequency.

APPLICATION INFORMATION

Fig. 15 Basic circuit diagram of a 20 W hi-fi amplifier.

Performance at $V_S = 32.4 \text{ V}$; $R_L = 4 \Omega$ (unloaded supply voltage =	38 V)		
Collector quiescent current of BD291 and BD292	ca	typ.	20 mA
Total current drain at Po = 20 W; f = 1 kHz	Is	typ.	1 A
Input impedance	zi	typ.	175 k Ω
Output impedance	z _o	typ.	$50~\text{m}\Omega$
Output power at f = 1 kHz; d _{tot} = 1%	P_{o}	typ.	24 W
Input voltage for P _O = 20 W; f = 1 kHz	V _{i(rms)}	typ.	375 mV

Total harmonic distortion at P _O = 20 W	d _{tot}	typ.	0,06 %	%
Intermodulation distortion at P _o = 20 W	d _{im}	typ.	0,5 %	%
Voltage feedback factor		typ.	52 d	dΒ
Unweighted signal to noise ratio, (ref. to $P_0 = 50 \text{ mW}$)		typ.	75 d	dΒ
Frequency response (-1 dB)		typ. 20 Hz to 75		κHz
Thermal resistance required per output transistor	R _{th i-a}	€	8,65	PC/W

Stable continuous operation is ensured up to an ambient temperature of 50 °C.

Fig. 16 Total harmonic distortion.

APPLICATION INFORMATION (continued)

Fig. 17 Typical value of output power as a function of the frequency.

SILICON EPITAXIAL-BASE POWER TRANSISTORS

General purpose p-n-p transistors in plastic SOT-82 envelopes for clip mounting; can also be soldered or adhesive mounted into a hybrid circuit. Recommended for use with n-p-n complements BD291, 293 and 295 in class-B output stages. In a hi-fi circuit the combinations can deliver 20 W into 4 Ω or 8 Ω load. Matched pairs can be supplied.

QUICK REFERENCE DATA

			BD292	BD294	BD296	
Collector-base voltage (open emitter)	-V _{CBO}	max.	45	60	80	٧
Collector-emitter voltage (open base)	-VCEO	max.	45	60	80	٧
Collector-current (d.c.)	-I _C	max.		6		Α
Collector-current (peak) $t_p < 10 \text{ ms}; \delta < 0,1$	-I _{CM}	max.		10		Α
Base current (d.c.)	–I _B	max.		2,5		Α
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		60		W
D.C. current gain -I _C = 1 A; -V _{CE} = 2 V	h _{FE}	>		30		
Transition frequency -I _C = 300 mA; -V _{CE} = 3 V	fT	>		3		МН

MECHANICAL DATA

Fig. 1 SOT-82.

Collector connected to metal part of mounting surface.

See also chapters Mounting instructions and Accessories.

(1) Within this region the cross-section of the leads is uncontrolled.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BD292	BD294	BD296	
Collector-base voltage (open emitter)	-V _{CBO}	max.	45	60	80	٧
Collector-emitter voltage (open base)	-V _{CEO}	max.	45	60	80	٧
Emitter-base voltage	-V _{EBO}	max.	5	. 5	5	٧
Collector current (d.c.)	-Ic	max.	•	6		Α
Collector current (peak value) $t_D < 10 \text{ ms; } \delta < 0.1$	-ICM	max.		10		A
Base current (d.c.)	−I _B	max.		2,5		Α
Emitter current (d.c.)	ŀΕ	max.		6		Α
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		60		W
Storage temperature	T _{stg}	-	-65	to + 150		оС
Junction temperature	Τj	max.		150		oC .
THERMAL RESISTANCE					1	
From junction to ambient in free air	R _{th j-a}	=		100		oC/W
From junction to mounting base	R _{th i-mb}	=		2,08 \		oC/W

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Collector cut-off current

 $I_E = 0$; $-V_{CB} = 40 \text{ V}$; $T_i = 150 \text{ }^{\circ}\text{C}$

 $I_B = 0; -V_{CE} = 30 \text{ V}$

Emitter cut-off current $I_C = 0; -V_{ER} = 5 V$

Collector-emitter saturation voltage

 $-1_C = 3 A; -1_B = 0.3 A$

Base-emitter voltage * $-I_C = 3 A; -V_{CE} = 2 V$

D.C. current gain ** $-1_{C} = 1 \text{ A}; -V_{CE} = 2 \text{ V}$

 $-I_C = 2 A; -V_{CE} = 2 V: BD294; BD296$

-I_C = 3 A; -V_{CE} = 2 V: BD292

Transition frequency at f = 1 MHz $-I_C = 300 \text{ mA}: -V_{CE} = 3 \text{ V}$ D.C. current gain ratio of

matched complementary pairs $-I_C = 1 A; -V_{CF} = 2 V$

-I_{CBO} 1 mA -ICEO 1 mA

-lEBO 5 mA

1 V −V_{CEsat}

 $-V_{RF}$ 1,5 V 30

hFE hFE 30 30 hFE fΤ 3 MHz

typ. 1,3 hFE1/hFE2 2,5

VBE decreases by about 1,8 mV/°C with increasing temperature.

Measured under pulse conditions; $t_{\rm D}$ < 300 μ s, δ < 2%.

Fig. 2 Safe Operating Area with the transistor forward biased; $T_{mb} \le 25$ °C.

- I Region of permissible d.c. operation.
- 11 Permissible extension for repetitive pulse operation.
- (1) Ptot max and Ppeak max lines.
- (2) Second breakdown limits (independent of temperature).

Fig. 4 Pulse power rating chart.

Fig. 5 Second breakdown voltage multiplying factor at the I_{Cmax} level.

Fig. 6 Second breakdown current multiplying factor at the V_{CEOmax} level.

Fig. 7 Typical collector current.

Fig. 8 Typical d.c. current gain.

7Z67953

Fig. 9 Collector-base current.

Fig. 10 Collector current.

Fig. 11 Base current.

-V_{BEsat} -I_C (A) 10

Fig. 12 Collector-emitter saturation voltage.

Fig. 13 Base-emitter saturation voltage.

Fig. 14 Transition frequency as a function of emitter current.

FOR APPLICATION INFORMATION SEE BD291, BD293 AND BD295.

SILICON PLANAR EPITAXIAL POWER TRANSISTOR

N-P-N transistor in a SOT-32 plastic envelope intended for car-radio output stages. P-N-P complement is BD330. Matched pairs can be supplied.

QUICK REFERENCE DATA								
Collector-emitter voltage ($V_{BE} = 0$)	v_{CES}	max.	32	V				
Collector-emitter voltage (open base)	$v_{\rm CEO}$	max.	20	V				
Collector current (peak value)	I_{CM}	max.	3	A				
Total power dissipation up to T_{mb} = 45 $^{o}\mathrm{C}$	P_{tot}	max.	. 15	W				
Junction temperature	$T_{\mathbf{j}}$	max.	150	$^{\mathrm{o}\mathrm{C}}$				
D.C. current gain $I_C = 0.5 A; V_{CE} = 1 V$	h_{FE}		85 to 375					
Transition frequency $I_C = 50 \text{ mA}; V_{CE} = 5 \text{ V}$	\mathbf{f}_{T}	typ.	130	MHz				

MECHANICAL DATA

Dimensions in mm

TO-126 (SOT-32)

Collector connected to metal part of mounting surface

For mounting instructions see section Accessories, type 56326 for non-insulated mounting and set 56333 for insulated mounting.

 $^{^{}m l}$) Within this region the cross-section of the leads is uncontrolled.

Voltages		,		
Collector-base voltage (open emitter)	v_{CBO}	max.	32	v
Collector-emitter voltage ($V_{BE} = 0$)	v_{CES}	max.	32	V
Collector-emitter voltage (open base)	v_{CEO}	max.	20	\mathbf{v}
Emitter-base voltage (open collector)	v_{EBO}	max.	5	\mathbf{v}
Currents				
Collector current (d.c.)	$I_{\mathbf{C}}$	max.	3	A
Collector current (peak value)	I_{CM}	max.	3	A.
Base current (d.c.)	I_B	max.	1	A
Emitter current (d.c.)	$-I_{\mathbf{E}}$	max.	3	Α .
Power dissipation				•
Total power dissipation up to T_{mb} = 45 °C	P_{tot}	max.	15	W
Temperatures				
Storage temperature	${ m T_{stg}}$	- 65 to	+150	$^{\mathrm{o}}\mathrm{C}$
Junction temperature	${ t T_j}$	max.	150	$^{\mathrm{o}}\mathrm{C}$
THERMAL RESISTANCE				
From junction to mounting base	R _{th j-mb}	=	7	°C/W

R_{th j-a}

From junction to ambient in free air

CHARACTERISTICS	Τ _j = 25 °C ι	ınless othe	rwise sp	ecified
Collector cut-off current				
$I_{\rm E}$ = 0; $V_{\rm CB}$ = 32 V	I_{CBO}	<	10	μA
$I_E = 0$; $V_{CB} = 32 \text{ V}$; $T_j = 150 ^{o}\text{C}$	I_{CBO}	< 1	1	mA
Emitter cut-off current				
$I_C = 0$; $V_{EB} = 5 \text{ V}$	I_{EBO}	<	10	μΑ
Base-emitter voltage				
$I_C = 5 \text{ mA}; V_{CE} = 10 \text{ V}$	V_{BE}	typ.	0,6	·V
$I_C = 2 A$; $V_{CE} = 1 V$	v_{BE}	<	1,2	V
Collector-emitter saturation voltage				
$I_C = 2 A$; $I_B = 0, 2 A$	v_{CEsat}	<	0,5	V
D.C. current gain				
$I_C = 5 \text{ mA}; V_{CE} = 10 \text{ V}$	h_{FE}	>	50	
$I_C = 0.5 A; V_{CE} = 1 V$	$h_{ m FE}$	85	to 375	
$I_C = 2 A$; $V_{CE} = 1 V$	h_{FE}	>	40	
Transition frequency at f = 35 MHz				
$I_C = 50 \text{ mA}$; $V_{CE} = 5 \text{ V}$	\mathbf{f}_{T}	typ.	130	MHz

 $h_{\rm FE1}/h_{\rm FE2}$

D.C. current gain ratio of matched pairs

 $|I_C| = 0, 5 \text{ A}; |V_{CE}| = 1 \text{ V}$

BD329/BD330

Safe Operating ARea with the transistor forward biased

- I Region of permissible d.c. operation
- II Permissible extension for repetive pulse operation

 $^{^{1}}$) $P_{tot\ max}$ and $P_{peak\ max}$ lines.

 $^{^{2}}$) Second-breakdown limits (independent of temperature).

BD329

APPLICATION INFORMATION See next page.

APPLICATION INFORMATION

Basic circuit diagram of a 5,5 W car-radio audio amplifier.

Performance at f = 1 kHz unless otherwise specified

Output power at $d_{tot} = 10\%$	P_{o}	typ.	5,5	W
Input voltage for $P_0 = 5, 5 W$	$V_{i(rms)}$	typ.	20	mV
Input impedance	$z_{\mathbf{i}}$	typ.	20	$\mathbf{k}\Omega$
Collector quiescent current of output transistors	$ I_{CQ} $	typ.	10	mA
Collector current of BC558	$^{-\mathrm{I}}\mathrm{_{C}}$	typ.	28	mA
Collector current of BC548 (pre-amplifier)	$^{ m I}_{ m C}$	typ.	0,5	mA
Total current drain at P = 5,5 W	$I_{\overline{B}}$	typ.	540	mA
Frequency range (-3 dB)	f	75 H	z to 11	kHz

With a heatsink thermal resistance for each output transistor of $40\,^{\circ}\text{C/W}$ the maximum permissible ambient temperature is $60\,^{\circ}\text{C}$.

SILICON PLANAR EPITAXIAL POWER TRANSISTOR

P-N-P transistor in a SOT-32 plastic envelope intended for car-radio output stages. N-P-N complement is BD329. Matched pairs can be supplied.

QUICK REFERENCE DATA								
Collector-emitter voltage ($V_{BE} = 0$)	$^{-\mathrm{V}}\mathrm{CES}$	max.	. 32	V				
Collector-emitter voltage (open base)	$-v_{\mathrm{CEO}}$	max.	20	$\mathbf{V}_{\mathbf{p}}$				
Collector current (peak value)	$-I_{CM}$	max.	3	A				
Total power dissipation up to T_{mb} = 45 ^{o}C	Ptot	max.	15	W				
Junction temperature	$\mathrm{T}_{\mathbf{j}}$	max.	150	$^{\circ}\mathrm{C}$				
D.C. current gain $-I_C = 0.5 \text{ A}; -V_{CE} = 1 \text{ V}$	h_{FE}	85	to 375					
Transition frequency -I _C = 50 mA; -V _{CE} = 5 V	\mathbf{f}_{Γ}	typ.	100	MHz				

MECHANICAL DATA

Dimensions in mm

TO-126 (SOT-32)

Collector connected to metal part of mounting surface

For mounting instructions see section Accessories, type 56326 for non-insulated mounting and set 56333 for insulated mounting.

 $^{^{\}mbox{\scriptsize l}}$) Within this region the cross-section of the leads is uncontrolled.

RATINGS Limiting values in accordance with the A	absolute Maxi	mùm Systen	n (IEC	134)
Voltages				
Collector-base voltage (open emitter)	-v _{CBO}	max.	32	v
Collector-emitter voltage ($V_{BE} = 0$)	-V _{CES}	max.	32	\mathbf{v}
Collector-emitter voltage (open base)	$-v_{CEO}$	max.	20	v
Emitter-base voltage (open collector)	$-v_{EBO}$	max.	, 5	V
Currents				
Collector current (d.c.)	-I _C	max.	3	A
Collector current (peak value)	^{-I}CM	max.	3	A
Base current (d.c.)	-IB	max.	1	A
Emitter current (d.c.)	$I_{\mathbf{E}}$	max.	3	A ·
Power dissipation				
Total power dissipation up to T_{mb} = 45 ^{o}C	P_{tot}	max.	15	W
Temperatures				
Storage temperature	T _{stg}	- 65 to	+150	$^{\mathrm{o}}\mathrm{C}$
Junction temperature	T_j	max.	150	°C
THERMAL RESISTANCE				
From junction to mounting base	R _{th j-mb}	=	7	°C/W

 $R_{th\ j-a}$

oc/W

100

From junction to ambient in free air

CHARACTERISTICS	nless otherwise specified				
Collector cut-off current					
$I_{\rm E}$ = 0; $-V_{\rm CB}$ = 32 V	-I _{CBO}	<	10	μA	
$I_{\rm E}$ = 0; $-V_{\rm CB}$ = 32 V; $T_{\rm j}$ = 150 $^{\rm o}{\rm C}$	-I _{CBO}	<	1	mA	
Emitter cut-off current		•			
$I_C = 0$; $-V_{EB} = 5 \text{ V}$	$-I_{\mathrm{EBO}}$	<	10	μΑ	
Base-emitter voltage					
$-I_C = 5 \text{ mA}; -V_{CE} = 10 \text{ V}$	$-v_{ m BE}$	typ.	0,6	V	
$-I_C = 2 A$; $-V_{CE} = 1 V$	$-v_{ m BE}$	<	1,2	V	
Collector-emitter saturation voltage					
$-I_C = 2 \text{ A}; -I_B = 0,2 \text{ A}$	-V _{CEsat}	< .	0,5	V	
D.C. current gain					
$-I_C = 5 \text{ mA}; -V_{CE} = 10 \text{ V}$	\mathtt{h}_{FE}	>	50		
$-I_C = 0,5 A; -V_{CE} = 1 V$	h_{FE}	. 85	to 375		
$-I_C = 2 \text{ A}; -V_{CE} = 1 \text{ V}$	${\tt h_{FE}}$	> .	40		

 $-I_{\rm C}$ = 50 mA; $-V_{\rm CE}$ = 5 V

$$|I_{C}| = 0,5 \text{ A}; |V_{CE}| = 1 \text{ V}$$

Transition frequency at f = 35 MHz

$$h_{FE1}/h_{FE2}$$
 < 1,6

typ.

 f_{T}

100

MHz

Safe Operating ARea with the transistor forward biased

I Region of permissible d.c. operation II Permissible extension for repetitive pulse operation

¹⁾ Ptot max and Ppeak max lines.

 $^{^{2}}$) Second-breakdown limits (independent of temperature).

FOR APPLICATION INFORMATION SEE BD329.

SILICON DARLINGTON POWER TRANSISTORS

N-P-N epitaxial base transistors in monolithic Darlington circuit for audio output stages and general amplifier and switching applications; plastic SOT-82 envelope for clip mounting; can also be soldered or adhesive mounted into a hybrid circuit. P-N-P complements are BD332, BD334, BD336 and BD338.

QUICK REFERENCE DATA

			BD331	333	335	337	
Collector-base voltage (open emitter)	V _{CBO}	max.	60	80	100	120	٧
Collector-emitter voltage (open base)	V _{CEO}	max.	60	80	100	120	٧
Collector-current (d.c.)	l _C	max.	-		6		A
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.			60		w
Junction temperature	τ_{i}	max.			150		oC
D.C. current gain $I_C = 0.5 A$; $V_{CE} = 3 V$	hFE	typ.		15	500		
I _C = 3,0 A; V _{CE} = 3 V	hFE	>			750		
Transition frequency I _C = 3 A; V _{CE} = 3 V	f _T	typ.			7		MHz

MECHANICAL DATA

Fig. 1 SOT-82.

Collector connected to metal part of mounting surface

See also chapters Mounting instructions and Accessories.

(1) Within this region the cross-section of the leads is uncontrolled.

Fig. 2 Circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BD331	333	335	337	٠,
Collector-base voltage (open emitter)	v_{CBO}	max.	60	80	100	120	V
Collector-emitter voltage (open base)	VCEO	max.	60	80	100	120	٧
Emitter-base voltage (open collector)	VEBO	max.	5	5	- 5	5	٧
Collector current (d.c.)	łc	max.			6		Α .
Collector current (peak value) $t_p \le 10 \text{ ms}; \delta \le 0,1$	^I CM	max.			10		Α .
Base current (d.c.)	l _B	max.		1	50		mA
Total power dissipation up to $T_{mb} = 25$ °C	P _{tot}	max.			30		w
Storage temperature	T _{stg}		-65 to	+ 1	50		оС
Junction temperature *	Tj	max.		1!	50		оС
THERMAL RESISTANCE *							
From junction to mounting base	R _{th j-mb}	=		2,0	80		oC/W
From junction to ambient in free air	R _{th j-a}	=		10	00		oC/W

^{*} Based on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

CHARACTERISTICS

matched pairs $I_C = 3 A; V_{CE} = 3 V$

T _i = 25 °C unless otherwise specified			
Collector cut-off current			
$I_E = 0$; $V_{CB} = V_{CBOmax}$	^I CBO	<	0,2 mA
$I_E = 0$; $V_{CB} = V_{CBOmax}$; $T_j = 150 {}^{\circ}\text{C}$	I _{CBO}	<	2 mA
$I_B = 0$; $V_{CE} = \frac{1}{2} V_{CEOmax}$	ICEO	<	0,5 mA
Emitter cut-off current			
$I_C = 0$; $V_{EB} = 5 V$	[[] EBO	<	5 mA
D.C. current gain *			
$I_C = 0.5 \text{ A}; V_{CE} = 3 \text{ V}$	hFE	typ.	1500
$I_C = 3 \text{ A}; V_{CE} = 3 \text{ V}$	hFE	>	750
I _C = 6 A; V _{CE} = 3 V	hFE	typ.	1500
Base-emitter voltage **			
$I_C = 3 A; V_{CE} = 3 V$	V_{BE}	. <	2,5 V
Collector-emitter saturation voltage			
$I_C = 3 \text{ A}; I_B = 12 \text{ mA}$	v_{CEsat}	<	2 V
Transition frequency			
$I_C = 3 A; V_{CE} = 3 V$	f _T	typ.	7 MHz
Cut-off frequency			`
$I_C = 3 \text{ A}; V_{CE} = 3 \text{ V}$	^f hfe	typ.	60 kHz
Turn-off breakdown energy with inductive load (see Fig. 12)			
-I _{Boff} = 0; I _{Con} = 4,5 A	_		
Diode forward voltage	E(BR)	> ,	50 mJ
I _F = 3 A	٧ _F	typ.	1,8 V
D.C. current gain ratio of complementary			

2,5

hFE1/hFE2

Measured under pulse conditions: $t_p < 300~\mu s,~\delta < 2\%.$ V_{BE} decreases by about 3,8 mV/°C with increasing temperature.

Fig. 3 Safe Operating Area with the transistor forward biased; $\rm T_{mb} \, \leqslant 25$ °C.

- Region of permissible d.c operation
- Permissible extension for repetitive pulse operation
- (1) P_{tot max} and P_{peak max} lines.
 (2) Second breakdown limits (independent of temperature).

Fig. 4 Power derating curve.

Fig. 5 Pulse power rating chart.

Fig. 6 Second breakdown voltage multiplying factor at $I_{\mbox{Cmax}}$ level.

Fig. 7 Second breakdown current multiplying factor at V_{CEOmax} level.

Fig. 8 Collector current.

Fig. 9 Collector-emitter saturation voltage.

Fig. 11 Small signal current gain at $I_C = 3 A$; $V_{CE} = 3 V$.

Fig. 12 Test circuit for turn-off breakdown energy. V_{IM} = 12 V; R_B = 270 Ω .

APPLICATION INFORMATION

Fig. 13 Basic circuit diagram of a 20 W hi-fi amplifier.

Performance at '	√ _R = 43 V	(unloaded suppl	y voltage = 51 V):
------------------	-----------------------	-----------------	--------------------

remormance at VB = 43 V (unloaded supply voltage = 51 V):					
Collector quiescent current of BD331 and BD332	Ica	typ.	20	mA ·	
Total current drain at P _O = 20 W; f = 1 kHz	I _B	typ.	710	mΑ	
Input impedance	zi	typ.	180	$k\Omega$	
Output impedance	z _o	typ.	80	Ωm	
Output power at f = 1 kHz; d _{tot} = 1%	Po	typ.	24	W	
Input voltage for P _O = 20 W; f = 1 kHz	V _{i(rms)}	typ.	375	mV	
Total harmonic distortion at P _o = 20 W	d _{tot} .	typ.	80,0	%	
Intermodulation distortion at P _O = 20 W	d _{im}	typ.	0,2	%	
Heatsink thermal resistance per output transistor	R _{th h-a}	€ ,	6,4	oC/M	

Stable continuous operation is ensured up to an ambient temperature of 50 °C.

March 1979

BD331; 333 BD335; 337

Fig. 14 Output power in relation to reference power.

Fig. 15 Output power in relation to reference power.

Fig. 16 Total harmonic distortion.

SILICON DARLINGTON POWER TRANSISTORS

P-N-P epitaxial base transistors in monolithic Darlington circuit for audio output stages and general amplifier and switching applications; plastic SOT-82 envelope for clip mounting; can also be soldered or adhesive mounted into a hybrid circuit. N-P-N complements are BD331, BD333, BD335 and BD337.

QUICK REFERENCE DATA

			BD332	334	336	338	
Collector-base voltage (open emitter)	-V _{CBO}	max.	60	80	100	120	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	60	80	100	120	٧
Collector-current (d.c.)	-I _C	max.			6		A
Total power dissipation up to $T_{mb} = 25$ °C	P _{tot}	max.		6	30		w
Junction temperature	T_{i}	max.		15	50		oC.
D.C. current gain $-I_C = 0.5 \text{ A}; -V_{CE} = 3 \text{ V}$	hFE	typ.		150	00		
$-I_C = 3.0 \text{ A}; -V_{CE} = 3 \text{ V}$	hFE	>		75	50	`	
Transition frequency -IC = 3 A; -VCE = 3 V	f _T	typ.			7		MHz

MECHANICAL DATA

Fig. 1 SOT-82.

Collector connected to metal part of mounting surface.

Dimensions in mm

See also chapters Mounting instructions and Accessories.

(1) Within this region the cross-section of the leads is uncontrolled.

 R_1 typ. $4 k\Omega$ R_2 typ. 80Ω

Fig. 2 Circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BD332	334	336	338	
Collector-base voltage (open emitter)	-V _{CBO}	max.	60	80	100	120	٧
Collector-emitter, voltage (open base)	-VCEO	max.	60	80	100	120	٧
Emitter-base voltage (open collector)	$-V_{EBO}$	max.	_5	5	5	5	V.
Collector current (d.c.)	-I _C	max.			6		Α
Collector current (peak value) $t_p \le 10 \text{ ms}; \delta \le 0,1$	-ICM	max.			10		A
Base current (d.c.)	-I _B	max.		15	50	,	mA
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		(30		W
Storage temperature	T_{stg}	•	-65 to	+ 19	50		°C
Junction temperature *	Tj	max.		1!	50		оС .
THERMAL RESISTANCE *							
From junction to mounting base	R _{th j-mb}	=		2,0	3 0		°C/W
From junction to ambient in free air	R _{th j-a}	= .		10	00		oC/W

^{*} Based on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

0,2 mA

0,5 mA

2 mA

5 mA

1500

750

1500

2,5 V

2 V

7 MHz

60 kHz

CHARACTERISTICS

Collector cut-off current

T_i = 25 °C unless otherwise specified

IE = 0; $-VCB = -VCBOmax$	-ICBO
$I_E = 0; -V_{CB} = -V_{CBOmax}; T_j = 150 \text{ °C}$	-I _{CBO}

$$-I_C = 0.5 \text{ A}; -V_{CE} = 3 \text{ V}$$

 $-I_C = 3 \text{ A}; -V_{CE} = 3 \text{ V}$

Cut-off frequency
$$-I_C = 3 \text{ A}; -V_{CE} = 3 \text{ V}$$

hFF

hee

hFE

<

<

<

<

typ.

<

<

typ.

typ.

<

۷F

hFE1/hFE2

Measured under pulse conditions: $t_D < 300 \mu s$, $\delta < 2\%$.

V_{BE} decreases by about 3,8 mV/oC with increasing temperature.

Fig. 3 Safe Operating Area with the transistor forward biased; $T_{mb} = 25$ °C.

- Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation
- (1) P_{tot max} and P_{peak max} lines.(2) Second breakdown limits (independent of temperature).

Fig. 5 Pulse power rating chart.

BD332; 334 BD336; 338

Fig. 6 Second breakdown voltage multiplying factor at the I_{Cmax} level.

Fig. 7 Second breakdown current multiplying factor at the V_{CEOmax} level.

 $-I_{\rm C}/-I_{\rm B} = 250$ $T_{\rm j} = 25 \,{}^{\circ}{\rm C}$ -V_{CEsat} (V) 4 $-I_C$ (A) 0 5 10

Fig. 8 Collector current.

Fig. 9 Collector-emitter saturation voltage.

Fig. 10 D.C. current gain.

BD332; 334 BD336; 338

Fig. 11 Small signal current gain.

SILICON EPITAXIAL-BASE POWER TRANSISTORS

N-P-N transistors in a SOT-32 plastic envelope, intended for use in complementary output stages of audio amplifiers up to $15~\mathrm{W}$.

The complementary pairs are BD433/BD434, BD435/BD436 and BD437/BD438.

QUICK REFERENCE DATA							
			BD433	BD435	BD437		
Collector-emitter voltage ($V_{\rm BE}$ = 0)	v_{CES}	max.	22	32	45	v	
Collector-emitter voltage (open base)	$v_{\rm CEO}$	max.	22	32	45	v .	
Collector current (peak value)	I_{CM}	max.	7	7	7	Α	
Total power dissipation up to T_{mb} = 25 $^{o}\mathrm{C}$	P _{tot}	max.	36	36	36	W	
D.C. current gain I _C = 2 A; V _{CE} = 1 V	h_{FE}	> -	50	50	40	•	
Transition frequency $I_C = 250 \text{ mA}$; $V_{CE} = 1 \text{ V}$	f_{T}	>	3	3	3	MHz	

MECHANICAL DATA

Dimensions in mm

TO-126 (SOT-32)

Collector connected to metal part of mounting surface

For mounting instructions see section Accessories, set 56333 for insulated mounting and type 56326 for non-insulated mounting.

¹⁾ Within this region the cross-section of the leads is uncontrolled.

RATINGS Limiting values in accordance w	ith the Ab	solute	Maximu	ım Syste	m (IEC	134)
Voltages			BD433	BD435	BD437	
Collector-base voltage (open emitter)	v_{CBO}	max.	22	32	45	v
Collector-emitter voltage ($V_{BE} = 0$)	v_{CES}	max.	22	32	45	v
Collector-emitter voltage (open base)	v_{CEO}	max.	22	32	45	v
Emitter-base voltage (open collector)	V_{EBO}	max.	5	5	- 5	v
Currents					•	
Collector current (d.c.)	$^{\mathrm{I}}\mathrm{C}$		max.	4		A
Collector current (peak value)	I_{CM}		max.	7		A
Base current (d.c.)	I_B		max.	1,		A
Power dissipation						
Total power dissipation up to T_{mb} = 25 $^{o}\mathrm{C}$	P _{tot}		max.	36		w
Temperatures	·					
Storage temperature	$T_{ ext{stg}}$		-65 to	+150		$^{\mathrm{o}}\mathrm{C}$
Junction temperature	$\mathtt{T_{j}}$		max.	150		$^{\mathrm{o}}\mathrm{C}$
THERMAL RESISTANCE						
From junction to mounting base	R _{th j-m}	b	=	3,5		°C/

 $R_{th j-a}$

From junction to ambient in free air

100

CHARACTERISTICS	•	Γ _j = 25 °C	unless	otherw	ise spe	cified
Collector cut-off current						
$I_E = 0$; $V_{CB} = V_{CBOmax}$	I_{CBO}	<		100		μA
$I_{\rm E}$ = 0; $V_{\rm CB}$ = 10 V; $T_{\rm j}$ = 150 $^{\rm o}$ C	I_{CBO}	<		1		mA
I_E = 0; V_{CB} = V_{CBOmax} ; T_j = 150 o C	I_{CBO}	<		3		mA
Emitter cut-off current						
$I_C = 0$; $V_{EB} = 5 \text{ V}$	I_{EBO}	· <		1		mA
Knee voltage			BD433	BD435	BD437	
$I_C = 2 A$; $I_B = \text{value for which}$ $I_C = 2, 2 A$ at $V_{CE} = 1 V$	v _{CEK}	<	0,8	-	-	v
Base-emitter voltage 1)						
I_C = 10 mA; V_{CE} = 5 V	v_{BE}	typ.	580	580	580	mV
$I_C = 2 A$; $V_{CE} = 1 V$	v_{BE}	<	1,1	1,1	_	V
$I_C = 3 A$; $V_{CE} = 1 V$	v_{BE}	- <	-	-	1,3	\mathbf{v}
Collector-emitter saturation voltage	*					
$I_C = 2 A; I_B = 0, 2 A$	$v_{ ext{CE}sat}$	<	0,5	0,5	_	\mathbf{V}_{i}
$I_C = 3 A$; $I_B = 0, 3 A$	V _{CEsat}	<-	_	_	0,7	v
D.C. current gain						
$I_C = 10 \text{ mA}; V_{CE} = 5 \text{ V}$	\mathtt{h}_{FE}	>	25	25	25	
I_C = 500 mA; V_{CE} = 1 V	\mathtt{h}_{FE}	> <	85 475	85 475	85 375	
$I_C = 2 A$; $V_{CE} = 1 V$	$\mathtt{h_{FE}}$	>	50	- 50	40	
I_C = 3 A; V_{CE} = 1 V	$h_{\rm FE}$	>	_	-	30.	
Transition frequency at f = 1 MHz			***************************************			
$I_{\rm C}$ = 250 mA; $V_{\rm CE}$ = 1 V	$\mathbf{f}_{\mathbf{T}}$	>		3		MHz

 $|I_{C}| = 500 \text{ mA}; |V_{CE}| = 1 \text{ V}$

BD433/BD434 and BD435/BD436

BD437/BD438

 $h_{FE\,1}/h_{FE\,2}~<$ 1,4 $h_{FE\,1}/h_{FE\,2}~<$ 1,8

 $[\]overline{\mbox{1}}$) $\mbox{V}_{\mbox{BE}}$ decreases by typ. 2,3 mV/°C with increasing temperature.

Safe Operating ARea with the transistor forward biased

I Region of permissible d.c. operation

II Permissible extension for repetitive pulse operation

 $^{^{1}}$) Independent of temperature.

BD433; BD435

BD437

APPLICATION INFORMATION

Basic circuit diagram of a 6 W car-radio audio amplifier.

Typical performance:

Output power at d_{tot} = 10% and R_L = 4 Ω	P_{o}	≥ 6	W
Output power at $d_{\mbox{tot}}$ = 10% and $R_{\rm L}$ = $2~\Omega$	$P_{,O}$	8	\mathbf{w}
Input voltage for $P_0 = 5$ W; $R_L = 4$ Ω $P_0 = 5$ W; $R_L = 2$ Ω	V _{i(rms)} V _{i(rms)}	20 15	mV mV
Input impedance	z_{i}	20	$\mathbf{k}\Omega$
Collector quiescent current of output transistors	I _{CQ}	10	mA
Collector current of BC328 ¹)	$-I_C$	50	mA
Total current consumption at $P_0 = 6 W$	I_{tot}	580	mA
Frequency response (-3 dB)		0,1 to 12	kHz
Total thermal resistance per output transistor	R _{th i-a}	max.26,5	OC/W

Stable continuous operation is ensured up to an ambient temperature of 60 $^{\rm O}{\rm C}$

The amplifier is overdrive proof and short circuit proof,

¹⁾ Area of printed wiring copper around collector lead ≈1 cm2.

Basic circuit diagram of a 15 W high quality amplifier.

Typical	performance:
---------	--------------

** *				
Output power at $d_{tot} = 1 \%$	P_{O}	≥ .	15	W
Input voltage for $P_0 = 10 \text{ W}$	$V_{i(rms)}$		360	mV
Input impedance	z_i		100	$k\Omega$
Output impedance	z_0		0,15	Ω
Collector quiescent current of output transistors	Icol		10	mA
Collector current of BD136	$-I_C$	•	72	mA
Collector current of BC149	$I_{\mathbf{C}}$		1,6	mA
Total current consumption at $P_0 = 15 \text{ W}$	Itot		710	mA
Frequency response (-3 dB)		30 Hz t	o 30	kHz
Total thermal resistance per output transistor	R _{th j-a}	max.	18	oC/W
Total thermal resistance of the BD136	R _{th j-a}	max.	44	°C/W
Stable continuous operation is ensured up to an ambient	temperatu	e of 45	°C.	

SILICON EPITAXIAL-BASE POWER TRANSISTORS

P-N-P transistors in a SOT-32 plastic envelope, intended for use in complementary output stages of audio amplifiers up to 15 W.

The complementary pairs are BD433/BD434, BD435/BD436 and BD437/BD438.

QUICK REFER	ENCE DA	TA	-			
		_	BD434	BD436	BD438	
Collector-emitter voltage ($-V_{BE} = 0$)	-V _{CES}	max.	22	32	45	V
Collector-emitter voltage (open base)	$-v_{CEO}$	max.	22	32	45	V.
Collector current (peak value)	$-I_{\mathrm{CM}}$	max.	7	7	7	A
Total power dissipation up to T_{mb} = 25 ^{o}C	P_{tot}	max.	36	36	36	W
D.C. current gain -I _C = 2 A; -V _{CE} = 1 V	$h_{ m FE}$	>	50	50	40	
Transition frequency -I _C = 250 mA; -V _{CE} = 1 V	\mathbf{f}_{T}	>	3	.3	3	MHz

MECHANICAL DATA

TO-126 (SOT-32)

Collector connected to metal part of mounting surface Dimensions in mm

For mounting instructions see section Accessories, set 56333 for insulated mounting and 56326 for non-insulated mounting.

 $^{^{1}}$) Within this region the cross-section of the leads is uncontrolled.

Voltages			BD434	BD436	BD438	
Collector-base voltage (open emitter)	$-v_{CBO}$	max.	22	32	45	v
Collector-emitter voltage $(-V_{BE} = 0)$	-V _{CES}	max.	22	32	45	v
Collector-emitter voltage (open base)	$-V_{CEO}$	max.	22	32	45	V
Emitter-base voltage (open collector)	$-v_{EBO}$	max.	5	5	5	v
Currents			-			,
Collector current (d.c.)	$-I_C$	max.		4		A
Collector current (peak value)	-I _{CM}	max.		7		A
Base current (d.c.)	-I _B	max.		1		Α
Power dissipation	•			•		
Total power dissipation up to $T_{mb} = 25 {}^{o}C$	P _{tot}	max.		36		w
Temperatures	. *					
Storage temperature	${ m T_{stg}}$		-65 to	+150		°C
Junction temperature	T_j	max.		150		°C
THERMAL RESISTANCE						
From junction to mounting base	R _{th j-mb}	=		3,5		°C/W
From junction to ambient in free air	R _{th j-a}	È		100		°C/W

CHARACTERISTICS T_i = 25 °C unless otherwise specified Collector cut-off current $I_E = 0$; $-V_{CB} = -V_{CBOmax}$ 100 μΑ -I_{CBO} < $I_E = 0$; $-V_{CB} = 10 \text{ V}$; $T_i = 150 \text{ }^{\circ}\text{C}$ -I_{CBO} 1 mΑ $I_E = 0$; $-V_{CB} = -V_{CBOmax}$; $T_i = 150 \, {}^{o}C$ -I_{CBO} 3 mA Emitter cut-off current $I_C = 0$; $-V_{EB} = 5 \text{ V}$ -IEBO 1 mA Knee voltage BD434 | BD436 | BD438 $-I_C = 2 A$; $-I_B = value for which$ $-I_C = 2,2 \text{ A at } -V_{CE} = 1 \text{ V}$ v $-v_{CEK}$ 0,8 Base-emitter voltage 1) $-I_C = 10 \text{ mA}; -V_{CE} = 5 \text{ V}$ $-v_{BE}$ 580 580 580 mV typ. $-I_C = 2 A; -V_{CE} = 1 V$ V $-V_{BE}$ < 1, 1 1, 1 $-I_C = 3 A$; $-V_{CE} = 1 V$ 1,3 $-v_{BE}$ Collector-emitter saturation voltage $-I_C = 2 A$; $-I_B = 0, 2 A$ -V_{CEsat} 0, 50,5 V $-I_C = 3 A$; $-I_B = 0, 3 A$ 0.7 -VCEsat D.C. current gain $-I_{C} = 10 \text{ mA}; -V_{CE} = 5 \text{ V}$ 25 25 25 h_{FE} 85 85 85 $-I_C = 500 \text{ mA}; -V_{CE} = 1 \text{ V}$ h_{FE} 475 475 375 $-I_{C} = 2 A$; $-V_{CE} = 1 V$ h_{FE} 50 50 40 $-I_C = 3 A$; $-V_{CE} = 1 V$ 30 h_{FF}

D.C. current gain ratio of the complementary pairs

Transition frequency at f = 1 MHz $-I_C = 250 \text{ mA}; -V_{CE} = 1 \text{ V}$

 $|I_C| = 500 \text{ mA}; |V_{CE}| = 1 \text{ V}$

BD433/BD434 and BD435/BD436

 h_{FE1}/h_{FE2} < 1.4 1,8 $h_{FE1}/h_{FE2} <$

 $f_{\rm T}$

BD437/BD438

MHz

3

^{1) -}VBF decreases by typ. 2,3 mV/°C with increasing temperature.

Safe Operating ARea with the transistor forward biased

I Region of permissible d.c. operation

II Permissible extension for repetitive pulse operation

¹⁾ Independent of temperature.

BD438

APPLICATION INFORMATION

For information on a 6 W car-radio amplifier and on a 15 W high quality amplifier see BD433; BD435; BD437.

SILICON DARLINGTON POWER TRANSISTORS

N-P-N epitaxial base transistors in monolithic Darlington circuit for audio output stages and general amplifier and switching applications; TO-220 plastic envelope. P-N-P complements are BD646, BD648, BD650 and BD652. Matched complementary pairs can be supplied.

QUICK REFERENCE DATA

			BD645	647	649	651	
Collector-base voltage (open emitter)	V _{CBO}	max.	80	100	120	140	٧
Collector-emitter voltage (open base)	VCEO	max.	60	80	100	120	٧
Collector current (peak value)	^I CM	max.			12		Α
Total power dissipation up to $T_{mb} \approx 25$ °C	P _{tot}	max.		62	,5		W
Junction temperature	Ti	max.		19	50		00
D.C. current gain: I _C = 0,5 A; V _{CE} = 3 V I _C = 3,0 A; V _{CE} = 3 V	hFE hFE	typ.		150 7!	00 50		
Cut-off frequency: $I_C = 3 A$; $V_{CE} = 3 V$	fhfe	typ.		!	50		kŀ

MECHANICAL DATA

Fig. 1 TO-220AB. Collector connected to mounting base.

10,3

máx

See also chapters Mounting Instructions and Accessories.

CIRCUIT DIAGRAM

Fig. 2 R₁ typ. $4 \text{ k}\Omega$ R₂ typ. 100 Ω

BD645 | 647 | 649 | 651

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

					4			
Collector-base voltage (open emitter)	V _{CBO}	max.	80	100	120	140	V ,	
Collector-emitter voltage (open base)	VCEO	max.	60	80	100	120	٧	
Emitter-base voltage (open collector)	v_{EBO}	max.	5	5	5	5	٧	
Collector current (d.c.)	Ic	max.			8		Α	
Collector current (peak value)	¹ CM	max.		1	2		Α	
Base current (d.c.)	l _B	max.		15	50 1		mΑ	
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		62	,5		W	
Storage temperature	T _{stg}		6	5 to + 15	0		oC.	
Junction temperature *	Тj	max.		15	50		оС	
THERMAL RESISTANCE *								
From junction to mounting base	R _{th j-mb}	=			2 .		oC/W	
From junction to ambient in free air	R _{th j-a}	=		7	0		oC/M	

^{*} Based on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

CHARACTERISTICS

Collector cut-off current

Т	i =	25	οС	unless	otherwise	specified
---	-----	----	----	--------	-----------	-----------

I _E = 0; V _{CBO} = V _{CEOmax}	Ісво	<	0,2 mA
$I_E = 0$; $V_{CB} = \frac{1}{2} V_{CBOmax}$; $T_j = 150 {}^{\circ}\text{C}$	Ісво	<	2 mA

$$I_B = 0$$
; $V_{CE} = \frac{1}{2} V_{CEOmax}$ I_{CEO} < 0,5 mA

Emitter cut-off current
$$I_{C}$$
 = 0; V_{EB} = 5 V I_{EBO} < 5 mA

D.C. current gain (note 1)
$$I_C = 0.5 \text{ A; } V_{CE} = 3 \text{ V}$$
 h_{FE} typ. 1500 $I_C = 3 \text{ A; } V_{CE} = 3 \text{ V}$ h_{FE} > 750

$$I_C$$
 = 3 A; V_{CE} = 3 V V_{BE} < 2,5 V Collector-emitter saturation voltage (note 1) I_C = 3 A; I_B = 12 mA V_{CE} < 2 V

Collector capacitance at
$$f = 1$$
 MHz
$$I_E = I_e = 0; V_{CB} = 10 \text{ V}$$

$$C_c \qquad typ. 75 \text{ pF}$$

Cut-off frequency
$$I_C = 3 \text{ A}$$
; $V_{CE} = 3 \text{ V}$ f_{hfe} typ. 50 kHz

Furn-off breakdown energy with inductive load
$$-I_{Boff} = 0$$
; $I_{CM} = 4,5$ A; $t_{\hat{p}} = 1$ ms; $I_{CM} = 100$ ms; see Fig. 4 $I_{CM} = 100$ ms; $I_{CM} = 100$

D.C. current gain ratio of matched		
complementary pairs		
Ic = 3 A; Vc= = 3 V	h==1/h==2 <	2.5

Small signal current gain
$$I_C = 3 \text{ A}$$
; $V_{CE} = 3 \text{ V}$; $f = 1 \text{ MHz}$ $| h_{fe} |$ typ. 50

- 1. Measured under pulse conditions: $t_{\rm p}$ < 300 μ s, δ < 2%.
- 2. VBE decreases by about 3,6 mV/oC with increasing temperature.

CHARACTERISTICS

 $T_j = 25$ °C unless otherwise specified

Switching times (between 10% and 90% levels)

$$I_{Con} = 3 \text{ A}$$
; $I_{Bon} = -I_{Boff} = 12 \text{ mA}$; $V_{CC} = 10 \text{ V}$

Turn-on time
Turn-off time

 $V_{IM} = 10 V$

 $t_r = t_f = 15 \text{ ns}$ $t_0 = 10 \mu \text{s}$

 $T = 500 \,\mu\text{s}$

R1 = 56Ω R2 = 410Ω

R3 = 560Ω

 $R4 = 3 \Omega$

-V_{BB}= 4 V

Fig. 3 Test circuit switching times.

Diode, forward voltage

V_F typ. 1,2 V

0,5 μs

2,5 µs

Fig. 4 Test circuit for turn-off breakdown energy. V_{IM} = 12 V; R_B = 270 Ω ; T = 100 ms; t_D = 1 ms.

Fig. 5 Safe Operating ARea, T_{mb} = 25 °C

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- (1) Ptot max and Ppeak max lines.(2) Second-breakdown limits (independent of temperature).

Fig. 6 Safe Operating ARea; Tmb = 25 °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- (1) P_{tot max} and P_{peak max} lines.(2) Second-breakdown limits (independent of temperature).

Fig. 7.

Fig. 8 Pulse power rating chart.

Fig. 9.

Fig. 10.

BD645; 647 BD649; 651

Fig. 11 Second breakdown current multiplying factor at the 100 V level.

Fig. 12 Second breakdown current multiplying factor at the 120 V level.

BD645; 647 BD649; 651

Fig. 14.

SILICON DARLINGTON POWER TRANSISTORS

P-N-P epitaxial base transistors in monolithic Darlington circuit for audio output stages and general amplifier and switching applications; TO-220 plastic envelope. N-P-N complements are BD645, BD647, BD649 and BD651. Matched complementary pairs can be supplied.

QUICK REFERENCE DATA

			BD646	648	650	652	
Collector-base voltage (open emitter)	-V _{CBO}	max.	60	80	100	120	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	60	80	100	120	V
Collector current (peak value)	-I _{CM}	max.			12		Α
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		62	,5		W
Junction temperature	Ti	max.		1	50		оС
D.C. current gain: -I _C = 0,5 A; -V _{CE} = 3 V -I _C = 3,0 A; -V _{CE} = 3 V	hFE hFE	typ.		150)0 50		
Cut-off frequency: -I _C = 3 A; -V _{CE} = 3 V	fhfe	typ.		10	00		kHz

MECHANICAL DATA

Fig. 1 TO-220AB.

Collector connected to mounting base.

See also chapters Mounting Instructions and Accessories.

 R_1 typ. $4 k\Omega$ R_2 typ. 80Ω

Fig. 2 Darlington circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

# A 1			BD646	648	3	650	652	
Collector-base voltage (open emitter)	-V _{CBO}	max.	60) 80	0	100	120	٧
Collector-emitter voltage (open base)	-VCEO	max.	60) 80	0	100	120	٧
Emitter-base voltage (open collector)	-V _{EBO}	max.	[5 5	5	5	5	٧٠
Collector current (d.c.)	-Ic	max.		8 12				A
Collector current (peak value)	-I _{CM}	max.		*	150			Α,
Base current (d.c.)	−I _B	max.			8 12 150 62,5 to + 150			mΑ
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.			62,5			W
Storage temperature	T _{stg}		_	-65 to +	150			οС
Junction temperature *	Τj				150			oC .
THERMAL RESISTANCE *								
From junction to mounting base	R _{th j-mb}	="			2			oC/V
From junction to ambient in free air	Rebia	_		-65 to + 150 150 2				oc/v

^{*} Based on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

CHARACTERISTICS

Т	=	25	οС	unless	otherwise	specified
---	---	----	----	--------	-----------	-----------

$$I_E = 0$$
; $-V_{CB} = -V_{CBOmax}$
BD646: $-V_{CB} = 40 \text{ V}$

$$I_C = 0; -V_{EB} = 5 V$$

$$-I_C = 0.5 A; -V_{CF} = 3 V$$

$$-I_C = 3 A; -V_{CE} = 3 V$$

$$-1_{C} = 8 \text{ A}; -V_{CE} = 3 \text{ V}$$

Collector capacitance at
$$f = 1 \text{ MHz}$$

 $I_E = I_e = 0$; $-V_{CB} = 10 \text{ V}$

0,2 mA

hFE

hFE

hee

-VBE

 C_{c}

-V_{CEsat}

<

- 1. Measured under pulse conditions: $t_D < 300 \ \mu s$, $\delta < 2\%$.
- VBE decreases by about 3,6 mV/⁶C with increasing temperature.

CHARACTERISTICS (continued)

```
T<sub>i</sub> = 25 °C unless otherwise specified
```

Switching times (between 10% and 90% levels)

$$-I_{Con} = 3 \text{ A; } -I_{Bon} = I_{Boff} = 12 \text{ mA; } V_{CC} = -10 \text{ V}$$

Turn-on time

Turn-off time

 $-V_{1M} = 10 V$ $t_r = t_f = 15 \text{ ns}$ $t_D = 10 \mu \text{s}$

 $F = 500 \mu s$ $R1 = 56 \Omega$

 $R2 = 410 \Omega$

R3 = 560Ω

 $R4 = 3 \Omega$

 $V_{BB} = 4 V$

Fig. 3 Test circuit.

Diode, forward voltage I_F = 3 A

V_F typ.

typ.

ton

0,2 µs

1,5 µs

1,8 V

Fig. 4 Safe Operating ARea. T_{mb} = 25 °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- (1) P_{tot max} and P_{peak max} lines.
 (2) Second-breakdown limits (independent of temperature).

Fig. 5 Safe Operating ARea. T_{mb} = 25 o C

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- (1) P_{tot max} and P_{peak max} lines.(2) Second-breakdown limits (independent of temperature).

Fig. 6.

Fig. 7 Pulse power rating chart.

BD646; 648 BD650; 652

Fig. 8.

Fig. 9.

Fig. 11.

BD646; 648 BD650; 652

Fig. 13.

Fig. 12.

Fig. 14.

BD646; 648 BD650; 652

SILICON DARLINGTON POWER TRANSISTORS

N-P-N epitaxial-base transistors in monolithic Darlington circuit for audio and video applications; SOT-32 plastic envelope, P-N-P complements are BD676, BD678, BD680, BD682 and BD684.

QUICK REFERENCE DATA

			BD675	677	679	681	683		
Collector-base voltage (open emitter)	V _{CBO}	max.	60	80	100	120	140	٧	
Collector-emitter voltage (open base)	VCEO	max.	45	60	80	100	120	٧	
Collector current (peak value)	Ісм	max.		. 6			5		
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.			40			W	
Junction temperature	Τį	max.			150			οС	
D.C. current gain I _C = 0,5 A; V _{CE} = 3 V I _C = 1,5 A; V _{CE} = 3 V	hFE hFE	typ.	•		1000 750	:			
Cut-off frequency I _C = 1,5 A; V _{CE} = 3 V	f _{hfe}	typ.			60			kH	

MECHANICAL DATA

Fig. 1 TO-126 (SOT-32).

Collector connected to mounting base.

(1) Within this region the cross-section of the leads is uncontrolled.

Accessories: 56326 (washer) or 56353 (clip) for direct mounting.

56333 (washer + mica) or 56353 + 56354 (clip + mica) for insulated mounting.

Dimensions in mm

CIRCUIT DIAGRAM

3 kΩ

Fig. 2 Darlington circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

,			BD675	677	679	681	683	
Collector-base voltage (open emitter)	V _{CBO}	max.	60	80	100	120	140	٧
Collector-emitter voltage (open base)	VCEO	max.	45	60	80	100	120	٧
Emitter-base voltage (open collector)	V_{EBO}	max.	5	5	5	5	5	٧
Collector current (d.c.)	l _C	max.			4			A
Collector current (peak value)	ICM	max.			6			Α
Base current (d.c.)	l _B	max.			100			mA
Total power dissipation up to						. *		
T _{mb} = 25 °C	Ptot	max.			40			W
Storage temperature	Tstg		65	5 to +	150			oC
Junction temperature	Τj	max.	1.		150			oC
THERMAL RESISTANCE			-					
From junction to mounting base	R _{th j-mb}	.=			3,12	•		oc/w
From junction to ambient in free air	R _{th} j-a	<u> </u>			100	,		oC/M
			4					

60 kHz

1,5 V

CHARACTERISTICS

Collector cut-off current

 T_i = 25 °C, unless otherwise specified; where I_C = 1,5 A for BD675 read I_C = 2 A.

IE = 0; VCB = VCEOmax	^I CBO	<	0,2 mA
$I_E = 0$; $V_{CB} = \frac{1}{2} V_{CBOmax}$; $T_{mb} = 150 {}^{\circ}C$	СВО	<	2 mA
10 = 0: Vo= = 1/2 Vo= 0	· lama		0 E m 4

Emitter cut-off current
$$I_{C} = 0$$
; $V_{EB} = 5 \text{ V}$ I_{EBO} < 5 mA D.C. current gain (note 1)

$$I_C = 0.5 \text{ A; } V_{CE} = 3 \text{ V}$$
 h_{FE} typ. 1000
 $I_C = 1.5 \text{ A; } V_{CE} = 3 \text{ V}$ h_{FE} > 750

$$I_C = 4$$
 A; $V_{CE} = 3$ V h_{FE} typ. 500
Base-emitter voltage (notes 1 and 2)
 $I_C = 1,5$ A; $V_{CF} = 3$ V V_{RF} $< 2,5$ V

$$I_C$$
 = 1,5 A; I_B = 6 mA V_{CEsat} < 2,5 V Small signal current gain I_C = 1,5 A; V_{CE} = 3 V; f = 1 MHz $|h_{fe}|$ typ. 50

Cut-off frequency
$$I_C = 1.5 \text{ A; V}_{CE} = 3 \text{ V}$$
fhfe typ.

٧F

typ.

- 1. Measured under pulse conditions: $t_p < 300 \ \mu s$; $\delta < 2\%$.
- 2. VBE decreases by about 3,6 mV/oc with increasing temperature.

CHARACTERISTICS (continued)

Fig. 3 Test circuit for turn-off breakdown energy. V $_{IM}$ = 12 V; R $_{B}$ = 270 $\Omega.$

Fig. 4 Safe Operating ARea. $T_{mb} = 25$ °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- (1) P_{tot max} line.(2) Second-breakdown limits (independent of temperature).

Fig. 5 S.B. voltage multiplying factor at the I_{Cmax} level.

Fig. 6 S.B. current multiplying factor at the $V_{\mbox{CEOmax}}$ levels.

Fig. 11 Pulse power rating chart.

Fig. 12 Small signal current gain. $I_C = 1.5 A$; $V_{CE} = 3 V$.

14.4

Dimensions in mm

BD676; 678 BD680; 682; 684

SILICON DARLINGTON POWER TRANSISTORS

P-N-P epitaxial-base transistors in monolithic Darlington circuit for audio and video applications; SOT-32 plastic envelope. N-P-N complements are BD675, BD677, BD679, BD681 and BD683.

QUICK REFERENCE DATA

			BD676	678	680	682	684	-
Collector-base voltage (open emitter)	V _{CBO}	max.	45	60	80	100	120	V
Collector-emitter voltage (open base)	-vceo	max.	45	60	80	100	120	V
Collector-current (peak value)	−¹cM	max.			6			Α
Total power dissipation up to $T_{mb} = 25$ °C	P_{tot}	max.			40			W
Junction temperature	T_{j}	max.			150	,		оС
D.C. current gain -I _C = 0,5 A; -V _{CE} = 3 V -I _C = 1,5 A; -V _{CE} = 3 V	hFE hFE	typ.			1000 750			* * *,
Cut-off frequency -I _C = 1,5 A; -V _{CE} = 3 V	^f hfe	typ.	-		60	·		kHz

MECHANICAL DATA

Fig. 1 TO-126 (SOT-32).

Collector connected to mounting base.

(1) Within this region the cross-section of the leads is uncontrolled.

See also chapters Mounting Instructions and Accessories.

Fig. 2 Darlington circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BD	376	678	680	682	684	
Collector-base voltage (open emitter)	-V _{CBO}	max.		45	60	80	100	120	٧
Collector-emitter voltage (open base)	-VCEO	max.		45	60	80	100	120	٧
Emitter-base voltage (open collector)	$-V_{EBO}$	max.		5	5	5	5	5	V
Collector current (d.c.)	-Ic	max.				4			A
Collector current (peak value)	-I _{CM}	max.				6			Α
Base current (d.c.)	-I _B	max.				100			mA
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.				40			W
Storage temperature	T _{stg}			-65	to +	150			οС
Junction temperature	Tj	max.				150			°C
THERMAL RESISTANCE									
From junction to mounting base	R _{th j-mb}	= '				3,12			oC/W
From junction to ambient in free air	R _{th j-a}					100			oC/M

50

2,5

60 kHz

CHARACTERISTICS

Collector cut-off current

 $T_j = 25$ °C unless otherwise specified; where $-I_C = 1.5$ A for BD676 read $-I_C = 2$ A.

IE = 0; $-VCB = -VCBOmax$	-1CBO	.<	0,2 mA
$I_E = 0$; $-V_{CB} = -\frac{1}{2} V_{CBOmax}$; $T_{mb} = 150 ^{o}C$	-I _{CBO}	<	2 mA
IO-V 1/ V	1		. 0 = 4

$$I_B$$
 = 0; $-V_{CE}$ = $-\frac{1}{2}$ V_{CEOmax} $-I_{CEO}$ < 0,5 mA Emitter cut-off current

Small-signal current gain
$$-I_C=1,5 \text{ A; } -V_{CE}=3 \text{ V; } f=1 \text{ MHz} \qquad \qquad \left| \begin{array}{c} h_{fe} \end{array} \right| \qquad typ.$$
 Cut-off frequency

complementary pairs	
$-I_C = 1,5 A; -V_{CE} = 3 V$	h _{FE1} /h _{FE2} <
Diode, forward voltage	

Notes

- 1. Measured under pulse conditions: $t_p \!<\! 300~\mu\text{s},\,\delta \!<\! 2\%.$
- 2. VBE decreases by about 3,6 mV/oC with increasing temperature.

BD676; 678 BD680; 682; 684

Fig. 3 Safe Operating ARea. $T_{mb} = 25$ °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- (1) Ptot max line.(2) Second-breakdown limits (independent of temperature).

BD676; 678. BD680; 682; 684

Fig. 4 S.B. voltage multiplying factor at the $-I_{\mbox{Cmax}}$ level.

Fig. 5 S.B. current multiplying factor at the $-V_{\mbox{CEOmax}}$ levels.

BD676; 678 BD680; 682; 684

Fig. 10 Pulse power rating chart.

Fig. 11 Small signal current gain. $-I_C = 1.5 \text{ A}$; $-V_{CE} = 3 \text{ V}$.

Dimensions in mm

SILICON EPITAXIAL BASE POWER TRANSISTORS

N-P-N silicon transistors in a plastic envelope intended for use in output stages of audio and television amplifier circuits where high peak powers can occur.

P-N-P complements are BD934; 936; 938; 940 and 942.

QUICK REFERENCE DATA

			BD933	935	937	939	941		
Collector-base voltage	V _{CBO}	max.	45	60	100	120	140	٧	
Collector-emitter voltage	V _{CEO}	max.	45	60	80	100	120	V	
Collector current (d.c.)	l _C	max.			3			Α	
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		60 80 100		30			W
Junction temperature	T_{j}	max.		30 150				oC	
D.C. current gain I _C = 150 mA; V _{CE} = 2 V I _C = 1 A; V _{CE} = 2 V	hFE hFE	>		150 40 to 250		50			
Transition frequency I _C = 250 mA; V _{CE} = 10 V	fT	·>			3			MHz	

MECHANICAL DATA

Fig. 1 TO-220AB.

Collector connected to mounting base.

See also chapters Mounting instructions and Accessories.

Limiting values in accordance with the Absolu	ute Maximum	System						
		,	BD933	935	937	939	941	
Collector-base voltage (open emitter)	V _{СВО}	max.	45	60	100	120	140	٧
Collector-emitter voltage (open base)	VCEO	max.	45	60	80	100	120	٧
Emitter-base voltage (open collector)	V _{EBO}	max.			- 5			٧
Collector current (d.c.)	IC	max.			3			Α
Collector current (peak value)	^I CM	max.			7			Α
Base current (d.c.)	IB	max.			0,5			Α
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.			30			W
Storage temperature	T _{stg}		-65	5 to +	150			οС
Junction temperature	Τ _j	max.			150			oC
THERMAL RESISTANCE								
From junction to mounting base	R _{th i-mb}	="			4,17			oC/W
From junction to ambient in free air	R _{th j-a}	=			70			oC/W
CHARACTERISTICS								•
T _i = 25 °C unless otherwise specified								
Collector cut-off current								
$I_E = 0$; $V_{CB} = V_{CBOmax}$	¹ СВО	<			0,1			mΑ
$I_E = 0$; $V_{CB} = V_{CBOmax}$; $T_j = 150 ^{\circ}C$	СВО	<			3	•		mΑ
IE = 0; VCE = VCEOmax	CEO	<			0,5			mΑ
Emitter cut-off current								
I _C = 0; V _{EB} = 5 V	IEBO	, <			. 1			mA
D.C. current gain * IC = 150 mA; VCF = 2 V	h i			40 to	250			
ic = 1 A; Vcf = 2 V	hFE :	>	· · · · · · · · · · · · · · · · · · ·	40 (0	25			
Base-emitter voltage **	hFE				- 25			
I _C = 1 A; V _{CE} = 2 V	V _{BE}	<			1,3			V
Collector-emitter saturation voltage *	DC							
I _C = 1 A; I _B = 0,1 A	V CEsat	<	• ''		0,6			V
Transition frequency at f = 1 MHz								
$I_C = 250 \text{ mA}; V_{CE} = 10 \text{ V}$	fΤ	>			3			MHz
Switching times								
I _{Con} = 1 A; I _{Bon} = -I _{Boff} = 0,1 A turn-on time	ton	typ.			0,3			μs
Turn-off time	t _{off}	typ.			1			μs
Tann off time	OTT	Lyp.						μο

^{*} Measured under pulse conditions: tp \leq 300 μ s; δ < 2%. ** VBE decreases by about 2,3 mV/°C with increasing temperature.

Fig. 2 Safe Operating ARea; T_{mb} = 25 °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- (1) P_{tot max} and P_{peak max} lines.(2) Second breakdown limits, independent of temperature.

Fig. 3 Second breakdown voltage multiplying factor at the I_{Cmax} level and second breakdown current multiplying factor at the V_{CEOmax} level.

Fig. 5 Typical collector-emitter saturation voltage as a function of base current with collector current as a parameter. $_{7282153}$

Fig. 6 Typical collector current as a function of base-emitter voltage. $V_{CE} = 2 \text{ V}$; $T_j = 25 \text{ }^{\circ}\text{C}$.

Fig. 7 Typical static forward current transfer ratio as a function of the collector current. V_{CE} = 2 V; T_j = 25 °C.

P-N-P silicon transistors in a plastic envelope intended for use in output stages of audio and television amplifier circuits where high peak powers can occur.

N-P-N complements are BD933; 935; 937; 939 and 941.

QUICK REFERENCE DATA

			BD934	936	938	940	942	
Collector-base voltage	-V _{CBO}	max.	45	60	100	120	140	٧
Collector-emitter voltage	-V _{CEO}	max.	45	60	80	100	120	٧
Collector current (d.c.)	-I _C	max.			3			Α
Total power dissipation up to $T_{mb} = 25^{-0}C$	P _{tot}	max.			30			W
Junction temperature	Τj	max.			150			οС
D.C. current gain -I _C = 150 mA; -V _{CE} = 2 V -I _C = 1 A; -V _{CE} = 2 V	hFE hFE	>		40) to 2 25	50		
Transition frequency -I _C = 250 mA; -V _{CE} = 10 V	fΤ	>			3			MHz

MECHANICAL DATA

Fig. 1 TO-220AB.

Collector connected to mounting base.

See also chapters Mounting instructions and Accessories.

Dimensions in mm

Limiting values in accordance with the Absolut	e Maximum	System ((IEC 134	.)				
			BD934	936	938	940	942	
Collector-base voltage (open emitter)	-V _{CBO}	max.	45	60	100	120	140	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	45	60	80	100	120	٧
Emitter-base voltage (open collector)	-V _{EBO}	max.			5			٧
Collector current (d.c.)	-I _C	max.			3			Α
Collector current (peak value)	-I _{CM}	max.			7			A _.
Base current (d.c.)	-I _B	max.			0,5			Α
Total power dissipation up to T _{mb} = 25 °C	P _{tot} .	max.			30			W
Storage temperature	T _{stg}		65	5 to +	150			oC
➤ Junction temperature	Τj	max.			150			оС
THERMAL RESISTANCE								
From junction to mounting base	R _{th j-mb}	_			4,17			oc/w
From junction to ambient in free air	R _{th j-a}	=			70			oC/W
CHARACTERISTICS								
T _i = 25 °C unless otherwise specified						•		
Collector cut-off current								
$-I_E = 0$; $-V_{CB} = -V_{CBOmax}$	-ICBO	<			0,1			mΑ
$-I_E = 0$; $-V_{CB} = -V_{CBOmax}$; $T_j = 150 ^{\circ}C$	-ICBO	< '			3			mΑ
$I_B = 0$; $-V_{CE} = -V_{CEOmax}$	-ICEO	<			0,5			mΑ
Emitter cut-off current I _C = 0; -V _{FB} = 5 V	-I _{EBO}	<			1			mA
D.C. current gain (note 1)	FBO				•			
-I _C = 150 mA; -V _{CE} = 2 V	hFE			40 to	250			
-I _C = 1 A; -V _{CE} = 2 V	hFE	>			25			
Base-emitter voltage (notes 1 and 2)	· · · ·							
$-I_C = 1 A; -V_{CE} = 2 V$	-V _{BE}	<			1,3			٧
Collector-emitter saturation voltage (note 1)								
$-I_C = 1 A; -I_B = 0,1 A$	-V _{CEsat}	. <			0,6			V
Transition frequency at f = 1 MHz -I _C = 250 mA; -V _{CE} = 10 V	fΤ	>			3			MHz
Switching times								
-I _{Con} = 1 A; -I _{Bon} = I _{Boff} = 0,1 A		turo.			0.2			
turn-on time	ton	typ.			0,3			μs
turn-off time	^t off	typ.			0,7			μs

- 1. Measured under pulse conditions: $t_D \le 300~\mu s$; $\delta < 2\%$. 2. $-V_{BE}$ decreases by about 2,3 mV/OC with increasing temperature.

Fig. 2 Safe Operating ARea; $T_{mb} = 25$ °C.

- Region of permissible d.c. operation.
- II Permissible extension for repetitive pulse operation.
- (1) P_{tot max} and P_{peak max} lines.(2) Second breakdown limits independent of temperature.

BD934; 936 BD938; 940 BD942

Fig. 3 Second breakdown voltage multiplying factor at the I_{Cmax} level and second breakdown current multiplying factor at the V_{CEOmax} level.

Fig. 4 Pulse power rating chart.

BD934; 936 BD938; 940 BD942

Fig. 5 Typical collector-emitter saturation voltage as a function of base current with collector current as a parameter. 7282154

Fig. 6 Typical collector current as a function of base-emitter voltage. $-V_{CE} = 2 \text{ V}$; $T_j = 25 \text{ °C}$.

BD934; 936 BD938; 940 BD942

Fig. 7 Typical static forward current transfer ratio as a function of the collector current. $-V_{CE} = 2 \text{ V}$; $T_j \le 25 \text{ °C}$.

N-P-N silicon transistors in a plastic envelope intended for use in audio output stages and general purpose amplifier applications. P-N-P complements are BD944; 946 and 948.

QUICK REFERENCE DATA

			BD943	945	947	
Collector-base voltage (open emitter)	VCBO	max.	22	32	45	٧
Collector-emitter voltage (open base)	VCEO	max.	22	32	45	٧ .
Collector current (d.c.)	IC	max.		5		Α
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		40		W
Junction temperature	Τį	max.		150		οС
D.C. current gain						
$I_C = 10 \text{ mA}; V_{CE} = 5 \text{ V}$	hFE	>		25		
$I_C = 500 \text{ mA}; V_{CE} = 1 \text{ V}$	hFE		85 1	to 475		
I _C = 2 A; V _{CE} = 1 V	hFE	>	50	50	40	
Transition frequency at f = 1 MHz						
$I_C = 250 \text{ mA; } V_{CE} = 1 \text{ V}$	fΤ	>		3		MHz

MECHANICAL DATA

Fig. 1 TO-220AB.

Collector connected to mounting base.

See also chapters Mounting instructions and Accessories.

Limiting values in accordance with the Absolute	Maximum Syste	em (IEC	134)			3
			BD943	945	947	
Collector-base voltage (open emitter)	V _{CBO}	max.	22	32	45	V ,
Collector-emitter voltage (open base)	VCEO	max.	22	32	45	V
Emitter-base voltage (open collector)	VEBO	max.		5		v .
Collector current (d.c.)	Ic	max.		5		Α
Collector current (peak value)	ICM	max.		- 8		Α,
Base current (d.c.)	I _B	max.		1 .		Α
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		40		W
Storage temperature	T _{stg}		65 to	+ 150	. *	оС
Junction temperature	Tj	max.		150		oC
THERMAL RESISTANCE						•
From junction to mounting base	R _{th j-mb}	=		3,12		oc/w
From junction to ambient in free air	R _{th j-a}	=		70		oC/W
CHARACTERISTICS	•					
T _i = 25 °C unless otherwise specified	•					
Collector cut-off current						
I _E = 0; V _{CB} = V _{CBOmax}	ІСВО	<	*	0,1		mA -
$I_E = 0$; $V_{CB} = V_{CBOmax}$; $T_i = 150 {}^{\circ}C$	ІСВО	<		3		mΑ
15 V; BD943		*				
I _B = 0; V _{CE} = 20 V; BD945 25 V; BD947	CEO	<		0,5		mΑ
Emitter cut-off current						
I _C = 0; V _{EB} = 5 V	IEBO	<-		, 1		mA
D.C. current gain (note 1)						
I _C = 10 mA; V _{CE} = 5 V	pEE	>		25		
I _C = 500 mA; V _{CE} = 1 V	hFE			o 475		
I _C = 2 A; V _{CE} = 1 V	hFE	>	.50	50	40	
I _C = 3 A; V _{CE} = 1 V	pEE	>	-	-	30	
Base-emitter voltage (notes 1 and 2) IC = 2 A; VCE = 1 V	V	<	11	1,1		v .
	V _{BE}	· <	1,1	','	1	-
IC = 3 A; VCE = 1 V	V _{BE}		- -	_	1,3	٧
Collector-emitter saturation voltage (note 1)	V _{CEsat}	<	0.5	0,5	1 _	v
IC = 3 A; I _B = 0,3 A	VCEsat VCEsat	<	_		0,7	•
יט פוס וויי ב	* CESAT			I	","	•

- Measured under pulse conditions; t_p ≤ 300 μs; δ < 2%.
 V_{BE} decreases by about 2,3 mV/°C with increasing temperature.

			BD943	945	947
Knee voltage * I _C = 2 A; I _B value for which I _C = 2,2 A and V _{CE} = 1 V	VCEK	<	0,8		- V
Transition frequency af $f = 1 \text{ MHz}$ $I_C = 250 \text{ mA}$; $V_{CE} = 1 \text{ V}$	fT	· >	. 3	3	3 MHz

Fig. 2 Power derating curve.

^{*} Measured under pulse conditions; $t_p \le 300 \ \mu s$; $\delta < 2\%$.

Fig. 3 Safe Operating ARea, $T_{mb} = 25$ °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- (1) P_{tot max} and P_{peak max} lines.(2) Second-breakdown limits (independent of temperature).

BD943 BD945 BD947

Fig. 4 Pulse power rating chart.

Fig. 5 S.B. voltage multiplying factor at the I_{Cmax} level.

Fig. 6 S.B. current multiplying factor at the $V_{\mbox{CEOmax}}$ level for BD943 and BD945.

Fig. 7 S.B. current multiplying factor at the V_{CEOmax} level for BD947.

BD943 BD945 BD947

Fig. 8 Typical d.c. current gain at V_{CE} = 1 V; T_j = 25 °C.

P-N-P silicon transistors in a plastic envelope intended for use in audio output stages and general purpose amplifiers. N-P-N complements are BD943; 945 and 947.

QUICK REFERENCE DATA

			BD944	946	948	
Collector-base voltage (open emitter)	-V _{CBO}	max.	22	32	45	٧
Collector-emitter voltage (open base)	-V _{CEO}	max.	22	32	45	٧
Collector current (d.c.)	-I _C	max.		5		Α
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		40		W
Junction temperature	T_{j}	max.		150		оС
D.C. current gain	•			+ 1		
$-I_C = 10 \text{ mA; } -V_{CE} = 5 \text{ V}$	hFE	>		25		
$-I_C = 500 \text{ mA}; -V_{CE} = 1 \text{ V}$	hFE		85 t	o 475		
$-1_{C} = 2 \text{ A; } -V_{CE} = 1 \text{ V}$	hEE	>	50	50	40	
Transition frequency at f = 1 MHz $-I_C$ = 250 mA; $-V_{CE}$ = 1 V	f _T	>		3		MHz

MECHANICAL DATA

Fig. 1 TO-220AB.

Collector connected to mounting base.

See also chapters Mounting instructions and Accessories.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BD944	946	948	
Collector-base voltage (open emitter)	-V _{CBO}	max.	22	32	45	٧
Collector-emitter voltage (open base)	-V _{CEO}	max.	22	32	45	٧
Emitter-base voltage (open collector)	-V _{EBO}	max.	e je mene je	5		٧
Collector current (d.c.)	-IC	max.		5		Α
Collector current (peak value)	−¹CM	max.		8		Α
Base current (d.c.)	-1 _B	max.		1		Α
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		40		W
Storage temperature	T _{stg}		-65 to	+ 150	. • 1 **	оС
Junction temperature	Tj	max.		150		оС
THERMAL RESISTANCE						1 .
From junction to mounting base	R _{th j-mb}	=		3,12		oC/M
From junction to ambient (in free air)	R _{th j-a}	-		70		oC/M
CHARACTERISTICS						
T _i = 25 °C unless otherwise specified			1.			
Collector cut-off current						
$I_E = 0$; $-V_{CB} = -V_{CBOmax}$	[−] Iсво	<		0,1		mA
$I_E = 0; -V_{CB} = -V_{CBO_{max}}; T_j = 150 ^{\circ}C$	-ICBO	< ,		3		mΑ
I _B = 0; -V _{CE} = 15 V; BD944						
-V _{CE} = 20 V; BD946	-ICEO	<		0,5		mΆ
-V _{CE} = 25 V; BD948						
Emitter cut-off current						
$-1_{C} = 0; -V_{EB} = 5 V$	-lebo	<		1		mΑ
D.C. current gain (note 1)						
$-I_C = 10 \text{ mA}; -V_{CE} = 5 \text{ V}$	hFE	>		25		
$-I_C = 500 \text{ mA;} -V_{CE} = 1 \text{ V}$	hFE			o 475	مه ا	
$-I_C = 2 A; -V_{CE} = 1 V$	μΕΕ	>	50	50	40	
-I _C = 3 A; -V _{CE} = 1 V	hFE	>	, -	_	30	
Base-emitter voltage (notes 1 and 2) -I _C = 2 A;V _{CE} = 1 V	-V _{BE}	<	1,1	1,1	_	v
-Ic = 3 A; -Vcf = 1 V	-VBE	<	_	_	1,3	V
Collector-emitter saturation voltage (note 1)	*DE	• • • •			',	
-I _C = 2 A; -I _B = 0,2 A	-V _{CEsat}	< .	0,5	0,5	_	V
$-I_C = 3 A; -I_B = 0.3 V$	-V _{CEsat}	<	_	_	0.7	V

- Measured under pulse conditions; t_p ≤ 300 μs; δ < 2%.
 V_{BE} decreases by about 2,3 mV/°C with increasing temperature.

		BD944	946	948
-VCEK	< ,	0,8	_	- v
fτ	>	3	3	3 MHz
	−VCEK fT	-V _{СЕК} < ,		

Fig. 2 Power derating curve.

^{*} Measured under pulse conditions; $t_{\rm p} \le 300~\mu{\rm s};~\delta \le 2\%$.

Fig. 3 Safe Operating ARea, $T_{mb} = 25$ °C.

- Region of permissible d.c operation.
- II Permissible extension for repetitive pulse operation.
- (1) P_{tot max} and P_{peak max} lines.
 (2) Second-breakdown limits (independent of temperature).

BD944 BD946 BD948

Fig. 4 Pulse power rating chart.

Fig. 5 S.B. voltage multiplying factor at the $-I_{\mbox{Cmax}}$ level.

Fig. 6 S.B. current multiplying factor at the -V_{CEOmax} level for BD944/946.

Fig. 7 S.B. current multiplying factor at the $-\mbox{V}_{\mbox{CEOmax}}$ level for BD948.

BD944 BD946 BD948

Fig. 8 Typical d.c. current gain at $-V_{CE}$ = 1 V; T_j = 25 °C.

N-P-N transistors in a plastic TO-220 envelope. With their p-n-p, complements BD950; 952; 954 and 956 they are intended for use in a wide range of power amplifiers and for switching applications.

QUICK REFERENCE DATA

		000-10	00001	100000	00000
V _{СВО}	max.	60	80	100	120 V
VCEO	max.	60	80	100	120 V
lc	max.			5	Α
ICM	max.	*		8	Α
P _{tot}	max.		4	0	W
T_{j}	max.		15	0	oC
hFE	>		4	0	
hFE	>		2	0	
	VCEO IC ICM Ptot T;	VCEO max. IC max. ICM max. Ptot max. Tj max.	VCBO max. 60 VCEO max. 60 IC max. ICM max. Ptot max. Tj max.	VCBO max. 60 80 VCEO max. 60 80 IC max. ICM max. 4 Tot max. 4 Tj max. 15 hFE > 4	VCBO max. 60 80 100 VCEO max. 60 80 100 IC max. 5 ICM max. 8 Ptot max. 40 Tj max. 150 hFE > 40

MECHANICAL DATA

Fig. 1 TO-220AB.

Collector connected to mounting base.

See also chapters Mounting instructions and Accessories.

BD949 | BD951 | BD953 | BD955

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BD949	951	953	955	
Collector-base voltage (open emitter)	V _{CBO}	max.	60	80	100	120	٧
Collector-emitter voltage (open base)	VCEO	max.	60	80	100	120	٧ .
Emitter-base voltage (open collector) .	VEBO	max.			5	•	V
Collector current (d.c.)	lc	max.			5		Α
Collector current (peak value)	ICM	max.			8		Α
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		4	0		w
Storage temperature	T _{stg}			-65 t	o 150		оС
Junction temperature	Tj	max.		15	0		οС
THERMAL RESISTANCE			•				
from junction to mounting base	R _{th j-mb}	=		3,1	2		oC/W
from junction to ambient (in free air)	R _{th j-a}	=		7	0		oC/W
CHARACTERISTICS		: -	٠ ,			,	
T _i = 25 °C unless otherwise specified							
Collector cut-off current							
$I_E = 0$; $V_{CB} = V_{CBO max}$	СВО	<		0,	1		mΑ
I _E = 0; V _{CB} = ½ V _{CBO max} ; T _j = 150 °C I _B = 0; V _{CE} = ½ V _{CEO max}	СВО	< <			2		mA
Emitter cut-off current	CEO			0,	5 .		mA
I _C = 0; V _{FR} = 5 V	lEBO	<			1		mΑ
D.C. current gain (note 1)	LDO				•		
I _C = 0,5 A; V _{CE} = 4 V	hFE	>		4	0		
$I_C = 2 A; V_{CE} = 4 V$	hFE	>		2	0		
Base-emitter voltage (notes 1 and 2)	,						
I _C = 2 A; V _{CE} = 4 V	VBE	<		1,	4		٧
Collector-emitter saturation voltage (note 1)	V -						
I _C = 2 A; I _B = 0,2 A	V _{CEsat}	<			1.		٧
Transition frequency at f = 1 MHz IC = 0,5 A; VCF = 4 V	fT	>			3		MHz
U =7= 177 TUE 1 T							1411.17

⁽¹⁾ Measured under pulse conditions: $t_p \le 300~\mu s$, $\delta < 2\%$. (2) VEB decreases by about 2,3 mV/°C with increasing temperature.

CHARACTERISTICS (continued)

Switching times
(between 10% and 90% levels)
ICon = 1 A; IBon = -IBoff = 0,1 A
Turn-on time
Turn-off time

 t_{on} typ. 0,3 μ s t_{off} typ. 1,5 μ s

Fig. 2 Switching times waveforms.

Fig. 3 Switching times test circuit.

Fig. 4 Safe Operating ARea; $T_{mb} \! \leqslant \! 25$ °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- (1) P_{tot max} and P_{peak max} lines.
 (2) Second-breakdown limit (independent of temperature).

Fig. 5 Power derating curve.

February 1979

BD949; 951 BD953; 955

Fig. 7 S.B. current multiplying factor at the $V_{\mbox{CEO max}}$ level for BD949/951.

Fig. 8 S.B. current multiplying factor at the $V_{\mbox{CEO}\,\mbox{max}}$ level for BD953/955.

BD949; 951 BD953; 955

Fig. 9 S.B. voltage multiplying factor at the $I_{\mbox{\scriptsize C}\mbox{\scriptsize max}}$ level.

Fig. 10 Typical d.c. current gain at $V_{CE} = 4 V$.

Fig. 11 Collector-emitter voltage as a function of base current.

P-N-P transistors in a plastic TO-220 envelope. With their n-p-n complements BD949; 951; 953 and 955 they are intended for use in a wide range of power amplifiers and for switching applications.

QUICK REFERENCE DATA

		RD920	952	954	956	
-V _{CBO}	max.	60	80	100	120	٧
-VCEO	max.	60	80	100	120	٧
-IC	max.			5		Α
-ICM	max.	,		8		A
P _{tot}	max.		4	0.		W
T_j	max.		15	0		οС
hFE	>		4	0		
hFE	>		2	0		
	-VCEO -IC -ICM Ptot Tj	-VCEO maxIC maxICM max. Ptot max. Tj max.	-V _{CBO} max. 60 -V _{CEO} max. 60 -I _C maxI _{CM} max. P _{tot} max. T _j max.	-VCBO max. 60 80 -VCEO max. 60 80 -IC maxICM max. Ptot max. 4 Tj max. 15	-V _{CBO} max. 60 80 100 -V _{CEO} max. 60 80 100 -I _C max. 5 -I _{CM} max. 8 P _{tot} max. 40 T _j max. 150 hFE > 40	-V _{CBO} max. 60 80 100 120 -V _{CEO} max. 60 80 100 120 -I _C max. 5 -I _{CM} max. 8 P _{tot} max. 40 T _j max. 150 hFE > 40

MECHANICAL DATA

Fig. 1 TO-220AB.

Collector connected to mounting base.

4,5 max 5,9 min 15,8 2,4

See also chapters Mounting instructions and Accessories.

Dimensions in mm

7265872.3

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BDOEO	 	•
Collector has valtage (amais antitus)		BD950	952 954 950	_
Collector-base voltage (open emitter)	-V _{CBO}	max. 60	1 1 1) V
Collector-emitter voltage (open base)	-vceo	max. 60) V
Emitter-base voltage (open collector)	~VEBO	max.	5	, V
Collector current (d.c.)	-IC	max.	5	Α
Collector current (peak value)	-ICM	max.	8	Α ,
Total power dissipation up to $T_{mb} = 25$ °C	P _{tot}	max.	40	W
Storage temperature	T _{stg}		-65 to 150	оС
Junction temperature	Τj	max.	150	οС
THERMAL RESISTANCE	•			*
from junction to mounting base	R _{th j-mb}	_	3,12	oc/w
from junction to ambient (in free air)	•	_	70	°C/W
nom janotion to ambient (in nee any	R _{th j-a}		, ,,	-0/11
CHARACTERISTICS		The state of the s		
T _j = 25 °C unless otherwise specified				
Collector cut-off current				
$I_E = 0$; $-V_{CB} = -V_{CBO max}$	-I _{CBO}	<	0,1	mA
$I_E = 0$; $-V_{CB} = -\frac{1}{2} V_{CBO \text{ max}}$; $T_j = 150 \text{ °C}$	-I _{CBO}	<	2	mA
$I_B = 0$; $-V_{CE} = -\frac{1}{2} V_{CEO max}$	-iCEO	< -	0,5	mA
Emitter cut-off current				
$I_C = 0; -V_{EB} = 5 \text{ V}$	-lEBO	< *	1	mΑ
D.C. current gain (note 1)	, L	1	40. %	
-I _C = 0,5 A; -V _{CE} = 4 V -I _C = 2 A; -V _{CE} = 4 V	hfE hfE		40 20	
Base-emitter voltage (notes 1 and 2)	"TE			
-I _C = 2 A; -V _{CE} = 4 V	−V _{BE}	<	1,4	V
Collector-emitter saturation voltage (note 1)	DE .			
$-I_C = 2 A; -I_B = 0,2 A$	-V _{CEsat}	<	1	V
Transition frequency at f = 1 MHz	3=541	•	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
$-1_{C} = 0.5 \text{ A}; -V_{CF} = 4 \text{ V}$	f⊤	>	3	MHz

⁽¹⁾ Measured under pulse conditions: $t_p \le 300~\mu s$, $\delta < 2\%$. (2) VEB decreases by about 2,3 mV/°C with increasing temperature.

CHARACTERISTICS (continued)

Switching times (between 10% and 90% levels) $I_{Con} = 1 A; -I_{Bon} = I_{Boff} = 0,1 A$ Turn-on time

Turn-off time

0,1 μs ton typ. 0,4 µs toff typ.

Fig. 2 Switching times waveforms.

Fig. 3 Switching times test circuit.

 V_{BB}

R1

Fig. 4 Safe Operating ARea; T_{mb} ≤ 25 °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- (1) P_{tot max} and P_{peak max} lines.
 (2) Second-breakdown limit (independent of temperature).

BD950; 952 BD954; 956

Fig. 5 Power derating curve.

Fig. 6 Pulse power rating chart.

BD950; 952 BD954; 956

Fig. 7 S.B. current multiplying factor at the $-V_{\mbox{CEO}\,\mbox{max}}$ level for BD950 and BD952.

Fig. 8 S.B. current multiplying factor at the -V_{CEO max} level for BD954 and BD956.

Fig. 9 S.B. voltage multiplying factor at the $-I_{\mbox{C max}}$ level.

Fig. 10 Typical d.c. current gain at $-V_{CE} = 4 V$.

Fig. 11 Collector-emitter voltage as a function of base current.

SILICON DARLINGTON POWER TRANSISTORS

P-N-P epitaxial base transistors in monolithic Darlington circuit for audio output stages and general amplifier and switching applications. TO-220 plastic envelope. N-P-N complements are BDT63, BDT63A, BDT63B and BDT63C.

QUICK REFERENCE DATA

			00102	, n	0	, .
Collector-base voltage (open emitter)	-V _{CBO}	max.	60	80	100	120 V
Collector-emitter voltage (open base)	-V _{CEO}	max.	60	80	100	120 V
Collector current (d.c.)	-I _C	max.			10	Α
Collector current (peak value) $t_p = 0.3 \text{ ms}; \delta = 10\%$	-I _{CM}	max.			15	A
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.			90	W
Junction temperature	Τ _j	max.		1	50	. oC
D.C. current gain $-I_C = 3 \text{ A}; -V_{CE} = 3 \text{ V}$	hFE	>		10	00	

BDT62

MECHANICAL DATA

Fig. 1 TO-220AB.
Collector connected to mounting base.

See also chapters Mounting instructions and Accessories.

Fig. 2 Circuit diagram.

BDT62 A

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

	*		00102				
Collector-base voltage (open emitter)	-Усво	max.	60	80	100	120	٧
Collector-emitter voltage (open base)	-V _{CEO}	max.	60	80	100	120	V .
Emitter-base voltage (open collector)	-V _{EBO}	max.		,,_	5		٧
Collector current (d.c.)	-Ic	max.		1	0		Α
Collector current (peak value) $t_p = 0.3 \text{ ms}; \delta = 10\%$	-ICM	max.		1	5	,	A
Base current (d.c.)	−l _B	max.		25	0		mA
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		9	0		W
Storage temperature	T _{stg}		<i>i</i>	-65 t	o + 150		oC .
Junction temperature*	Tj	max.		15	0 .		oC
THERMAL RESISTANCE*							
From junction to mounting base	R _{th j-mb}	=		1,3	9		oC/M
From junction to ambient (in free air)	R _{th j-a}	=		. 7	0		oC\M

^{*} Base on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

CHARACTERISTICS

T_i = 25 °C unless otherwise specified.

Collector cut-off current

 $I_E = 0$; $-V_{CB} = -V_{CBOmax}$ $I_E = 0$; $-V_{CB} = -\frac{1}{2}V_{CBOmax}$; $T_i = 150 \text{ oC}$

 $I_B = 0$; $-V_{CE} = -\frac{1}{2}V_{CEOmax}$

Emitter cut-off current

 $I_C = 0; -V_{FB} = 5 V$ Forward bias second-breakdown collector current

 $-V_{CE} = 40 \text{ V}$; t = 0,1 s; non-repetitive (without heatsink)

BDT62 BDT62A, B and C

D.C. current gain*

 $-I_C = 3 A; -V_{CF} = 3 V$

 $-I_C = 10 A; -V_{CE} = 3 V$

Base-emitter voltage* $-I_C = 3 A; -V_{CF} = 3 V$

Collector-emitter saturation voltage*

 $-I_C = 3 A; -I_B = 12 mA$ $-I_C = 8 A; -I_B = 80 mA$

Cut-off frequency

-I_C = 3 A; -V_{CE} = 3 V

Collector capacitance $-V_{CB} = 10 \text{ V; } f = 1 \text{ MHz}$

D.C. current gain ratio of matched complementary pairs

-I_C = 3 A; -V_{CE} = 3 V Small-signal current gain at f = 1 MHz

 $-I_C = 3 A; -V_{CE} = 3 V$

0,2 mA -ICBO -ICBO < 2 mA

0,5 mA -ICÉO

-lEBO 5 mA

0,45 A I(SB)

I(SB) 1,4 A > 1000

hFF typ. 200 hFE -V_{BE} < 2.5 V

 $-V_{CEsat}$ < 2 V -V_{CEsat} 2,5 V

typ. 100 kHz fhfe

 C_{ob} typ. 100 pF

hFE1/hFE2 < 2,5

25 h_{fe} >

CHARACTERISTICS (continued)

Diode, forward voltage

IF = 3 A Switching times

(between 10% and 90% levels)

-I_{Con} = 3 A; -I_{Bon} = I_{Boff} = 12 mA

turn-on time turn-off time

·VCC =

+ V_{BB} R1

R2

R3

R4

tr = tf

10 V

56 Ω

410 Ω

560 Ω

3 Ω

15 ns 10 μs

500 μs

۷F

2 V

Fig. 3 Switching times waveforms.

Fig. 4 Switching times test circuit.

Fig. 5 Power derating curve.

Fig. 6 Safe Operating ARea BDT62; T_{mb} = 25 °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- (1) P_{tot max} and P_{peak max} lines.
 (2) Second-breakdown limits (independent of temperature).

Fig. 7 Safe Operating ARea BDT62A; 62B and 62C; T_{mb} = 25 °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- (1) P_{tot max} and P_{peak max} lines.
 (2) Second-breakdown limits (independent of temperature).

Fig. 8 Pulse power rating chart.

Fig. 9 Typical d.c. current gain at $-V_{CE} = 3 V$.

Fig. 10 S.B. voltage multiplying factor at the IC $_{\mbox{\scriptsize max}}$ level.

Fig. 11 S.B. current multiplying factor at the $V_{\mbox{CEO max}}$ level.

BDT62; 62A BDT62B; 62C

Fig. 12 Typical collector-emitter saturation voltage.

Fig. 13 Typical base emitter voltage as a function of the collector current.

SILICON DARLINGTON POWER TRANSISTORS

N-P-N epitaxial base transistors in monolithic Darlington circuit for audio output stages and general amplifier and switching applications; TO-220 plastic envelope. P-N-P complements are BDT62, BDT62A; BDT62B and BDT62C.

QUICK REFERENCE DATA

			BDT63	A	В	C
Collector-base voltage (open emitter)	v_{CBO}	max.	60	-80	100	120 V
Collector-emitter voltage (open base)	V_{CEO}	max.	60	80	100	120 V
Collector current (d.c.)	lc	max.		1	0	Α
Collector current (peak value) $t_p = 0.3 \text{ ms}; \delta = 10\%$	ІСМ	max.		1	5	Α
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		9	0	W
Junction temperature	Тj	max.		15	0	oC
D.C. current gain I _C = 3 A; V _{CE} = 3 V	hFE	> 1		100	0	

MECHANICAL DATA

Fig. 1 TO-220AB.

Collector connected to mounting base.

See also chapters Mounting instructions and Accessories.

BDT63 |

Fig. 2 Circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-base voltage (open emitter)	V _{CBO}	max.	60	80	100	120	٧
Collector-emitter voltage (open base)	VCEO	max.	60	80	100	120	V.
Emitter-base voltage (open collector)	VEBO	max.			5		٧
Collector current (d.c.)	· Ic	max.	1	. 1	10		Α
Collector current (peak value) $t_p = 0.3 \text{ ms}; \delta = 10\%$	ICM	max.		. 1	15		A
Base current (d.c.)	1 _B	max.		25		mA	
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		. 6	90		W
Storage temperature	T _{stg}			-65 t	o + 150		oC
Junction temperature*	Tj	max.		15	50		oC
THERMAL RESISTANCE *		•					•
From junction to mounting base	R _{th j-mb}	=		1,3	39		oc/w
From junction to ambient (in free air)	R _{th j-a}	= '		7	70		oC/M

^{*} Based on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

 $T_i = 25$ °C unless otherwise specified.

CHARACTERISTICS

Collector cut-off current			
IE = 0; VCB = VCBOmax	Ісво	<	0,2 mA
$I_E = 0$; $V_{CB} = \frac{1}{2}V_{CBOmax}$; $T_j = 150 ^{\circ}C$	ICBO	<	2 mA
IB = 0; VCE = ½VCEOmax	ICEO	<	0,5 mA
Emitter cut-off current			
I _C = 0; V _{EB} = 5 V	l _{EBO}	<	5 mA
Forward-bias second-breakdown collector current V _{CE} = 40 V; t = 0,1 s; non-repetitive			
(without heatsink)	I(SB)	>	2,25 A
D.C. current gain*	. ,		
$I_C = 3 A; V_{CE} = 3 V$	hff	>	1000
I _C = 10 A; V _{CE} = 3 V	hFE	typ.	3000
Base-emitter voltage*	· -		
$I_C = 3 A; V_{CE} = 3 V$	V_{BE}	<	2,5 V

load (Fig. 6)

I _C = 8 A; I _B = 80 mA	
Diode, forward voltage	
I _F = 3 A	
Turn-off breakdown energy with	inductive

-I _{Boff} = 0; L = 5 mH	
Small-signal current gain at f =	1 MHz
IC = 3 A; VCF = 3 V	

Collector-emitter saturation voltage* $I_C = 3 A$; $I_B = 12 mA$

Cut-off frequency
$I_C = 3 A; V_{CE} = 3 V$
Collector capacitance

 $V_{CB} = 10 \text{ V; } f = 1 \text{ MHz}$

D.C. current gain ratio of match	ed
complementary pairs	
$I_0 = 3 \Delta \cdot V_{00} = 3 V$	

V_{CEsat} **V**CEsat 2,5 V ٧F 2 V

E(BR)	>	100 mJ
h _{fe}	>	25

fhfe

 C_{ob}

typ.

2 V

50 kHz

^{*} Measured under pulse conditions; t_p < 300 μ s; δ < 2%.

CHARACTERISTICS (continued)

Switching times
(between 10% and 90% levels)
ICon = 3 A; IBon = -IBoff = 12 mA
turn-on time
turn-off time

Vcc

R1

R2

R3

R4

tr = tf

56 Ω

560 Ω

3 Ω

15 ns

10 μs 500 μs

Ω

Fig. 3 Switching times waveforms.

Fig. 4 Switching times test circuit.

Fig. 5 Power derating curve.

Fig. 6 Turn-off breakdown energy with inductive load.

 $V_{IM} = 12 \text{ V; } R_B = 270 \Omega; \delta = \frac{t_p}{T} \times 100\% = 1\%; I_{CC} = 6,3 \text{ A}.$

10²

lc (A)

Fig. 7 Safe Operating ARea; $T_{mb} = 25$ °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- (1) Ptot max and Ppeak max lines.
 (2) Second-breakdown limits (independent of temperature).

Fig. 8 Pulse power rating chart.

Fig. 9 Typical d.c. current gain at V_{CE} = 3 V.

Fig. 10 S.B. voltage multiplying factor at the $I_{\mbox{\scriptsize C}\mbox{\scriptsize max}}$ level.

Fig. 11 S.B. current multiplying factor at $V_{\mbox{CEO}}$ level = 60 V and 100 V.

Fig. 12 Typical collector-emitter saturation voltage.

Fig. 13 Typical base-emitter voltage as a function of the collector current.

SILICON EPITAXIAL BASE POWER TRANSISTORS

N-P-N transistors in a plastic envelope intended for use in audio output stages and general amplifier and switching applications.

P-N-P complements are BDT92, BDT94 and BDT96.

QUICK REFERENCE DATA

BDT		T91	BDT93	BDT95	_	
Collector-base voltage (open emitter)	V _{СВО}	max.	60	80	100	V
Collector-emitter voltage (open base)	VCEO	max.	60	- 80	100	V
Collector current (d.c.)	Ic	max.		10		Α
Collector current (peak value)	ICM	max.		20		Α
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		90		W
Junction temperature	T _i	max.		150		оС
D.C. current gain 1 _C = 4 A; V _{CE} = 4 V 1 _C = 10 A; V _{CE} = 4 V	hFE hFE	>		20 to 20 5	0	
Transition frequency I _C = 0,5 A; V _{CE} = 10 V	fΤ	>		4		MHz

MECHANICAL DATA

Fig. 1 TO-220AB.

Collector connected to mounting base.

top view

Dimensions in mm

RATINGS

		В	DT91	BDT93	BDT95	
Collector-base voltage (open emitter)	V _{CBO}	max.	60	80	100	V
Collector-emitter voltage (open base)	V _{CEO}	max.	60	80	100	V
Emitter-base voltage (open collector)	VEBO	max.		7		٧
Collector current (d.c.)	lc	max.		10		Α
Collector current (peak value)	ICM	max.		20		Α
Base current (d.c.)	J _B .	,max.	•	4		Α
Total power dissipation up to $T_{mb} = 25$	°C P _{tot}	max.		90		W
Storage temperature	T_{stg}			-65 to +1	50	оС
Junction temperature	T_{j}	max.		150		oC.
THERMAL RESISTANCE						
From junction to mounting base	R _{th j-mb}	´ =		1,39		oC/M
From junction to ambient (in free air)	R _{th j-a}	= .		70		oC/W
CHARACTERISTICS		¥ .				
T _i = 25 °C unless otherwise specified	•			•		
Collector cut-off current						
I _E = 0; V _{CB} = V _{CBOmax}	СВО	_		0,1		mA
I _E = 0; V _{CB} = ½V _{CBOmax} ; T _j = 150 I _B = 0; V _{CE} = V _{CEOmax}	OV ICBO	< < <		5 1		mA mA
Emitter cut-off current	, CEO					
I _C = 0; V _{EB} = 7 V	I _{EBO}	<		1		mA
D.C. current gain (note 1)	. — -					
$I_C = 4 A$; $V_{CE} = 4 V$	hFE	_		20 to 20	00	
I _C = 10 A; V _{CE} = 4 V	pEE	>		5		
Base-emitter voltage (notes 1 and 2) $I_C = 4 A$; $V_{CF} = 4 V$	V	< -		1,6		V .
Collector-emitter saturation voltage (no	V _{BE}			1,0		•
IC = 4 A; IB = 0,4 A	V _{CEsat}	<		1		V
I _C = 10 A; I _B = 3,3 A	VCEsat	< -		3		V
Transition frequency at f = 1 MHz						
I _C = 0,5 A; V _{CE} = 10 V	fT	>		4		MHz
Cut-off frequency				20		uù-
I _C = 0,5 A; V _{CE} = 10 V	^f hfe	>		20		kHz

^{1.} Measured under pulse conditions: $t_p \le 300 \ \mu s$; $\delta \le 2\%$. 2. VBE decreases by about 2,3 mV/°C with increasing temperature.

Second-breakdown collector current

 V_{CE} = 60 V; t_p = 0,1 s Switching times (between 10% and 90% levels) I_{Con} = 4 A; I_{Bon} = $-I_{Boff}$ = 0,4 A Turn-on time 1_(SB) < 1,5 A

SD)

 t_{on} typ. 0,3 μ s t_{off} typ. 1,5 μ s

Fig. 2 Switching times waveforms.

Fig. 3 Switching times test circuit.

Fig. 4 Safe Operating ARea; Tmb = 25 °C.

- 1 Region of permissible d.c. operation.
- II Permissible extension for repetitive pulse operation.
- (1) P_{tot max} and P_{peak max} lines.(2) Second-breakdown limits (independent of temperature).

Fig. 5 Power derating curve.

Fig. 6 Pulse power rating chart.

Fig. 7 S.B. current multiplying factor at the $V_{\mbox{CEOmax}}$ level.

Fig. 8 S.B. voltage multiplying factor at the $I_{\mbox{Cmax}}$ level.

Fig. 9 Typical d.c. current gain at $V_{CE} = 4 V$.

Fig. 10 Typical collector-emitter saturation voltage. T_{mb} = 25 °C.

SILICON EPITAXIAL BASE POWER TRANSISTORS

P-N-P transistors in a plastic envelope intended for use in audio output stages and general amplifier and switching applications.

N-P-N complements are BDT91, BDT93 and BDT95.

QUICK REFERENCE DATA

	BDT92		T92	BDT94	BDT96	
Collector-base voltage (open emitter)	-V _{CBO}	max.	60	80	100	٧
Collector-emitter voltage (open base)	-V _{CEO}	max.	60	80	100	V
Collector current (d.c.)	$-I_{\mathbb{C}}$	max.		10	•	Α
Collector current (peak value)	-ICM	max.		20		Α
Total power dissipation up to $T_{mb} = 25$ °C	P_{tot}	max.	·	90		W
Junction temperature	Тj	max.		150		oC
D.C. current gain $-I_C = 4 A; -V_{CE} = 4 V$ $-I_C = 10 A; -V_{CE} = 4 V$	hFE hFE	>		20 to 200 5		
Transition frequency -I _C = 0,5 A; -V _{CE} = 10 V	fŢ	>		4		MHz

MECHANICAL DATA

Fig. 1 TO-220AB.

3,5 max ont tinned on tinn

2,54 2,54

0,9 max (3x)

(2x)

Mounting instructions and Accessories.

top view

March 1979

RATINGS

Limiting values in accordance with the Absolute I	Maximum Sys	stem (IEC 13	4)	
		BDT92	BDT94	BDT96
Collector-base voltage (open emitter)	-V _{CBO}	max. 60	80	100 V
Collector-emitter voltage (open base)	-V _{CEO}	max. 60	80	100 V
Emitter-base voltage (open collector)	-V _{EBO}	max.	7	V ,
Collector current (d.c.)	-Ic	max.	10	Α
Collector current (peak value)	-I _{CM}	max.	20	Α
Base current (d.c.)	−l _B	max.	. 4	` A
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.	90	W
Storage temperature	T _{stg}		-65 to +	150 °C
Junction temperature	T _j	max.	150	oC.
THERMAL RESISTANCE				
From junction to mounting base	R _{th j-mb}	=	1,39	°C/W
From junction to ambient (in free air)	R _{th j-a}	= .	70	oC/M
CHARACTERISTICS				
T _j = 25 ^o C unless otherwise specified				
Collector cut-off current				
I _E = 0; -V _{CB} = -V _{CBOmax}	-ICBO	<i>></i>	0,1 5	mA mA
$I_E = 0$; $-V_{CB} = -\frac{1}{2}V_{CBOmax}$; $T_j = 150 ^{\circ}C$ $I_B = 0$; $-V_{CE} = -V_{CEOmax}$	−lceo −lceo	< < <	1	mA
Emitter cut-off current				
$I_C = 0; -V_{EB} = 7 V$	-lEBO	< .	1	mA
D.C. current gain (note 1)	h		20 to 20	, · M
-I _C = 4 A; -V _{CE} = 4 V -I _C = 10 A; -V _{CE} = 4 V	hFE hFE	>	5	,
Base-emitter voltage (notes 1 and 2)				
-1 _C = 4 A; -V _{CE} = 4 V	$-V_{BE}$	<	1,6	V .
Collector-emitter saturation voltage (note 1)	*			
$-1_{C} = 4 \text{ A}; -1_{B} = 0.4 \text{ A}$	^{−V} CEsat	<	1 3	V V
$-I_C = 10 \text{ A}; -I_B = 3.3 \text{ A}$	-V _{CEsat}		3	v
Transition frequency at $f = 1$ MHz $-I_C = 0.5$ A; $-V_{CE} = 10$ V	fT	¹ >	4	MHz
Cut-off frequency				1-11
$-1_{C} = 0.5 \text{ A}; -V_{CE} = 10 \text{ V}$	^f hfe	>	20	kHz

^{1.} Measured under pulse conditions: $t_p \le 300~\mu s$; $\delta \le 2\%$. 2. VBE decreases by about 2,3 mV/°C with increasing temperature.

0,6 A

Second-breakdown collector current

$$-V_{CE} = 60 \text{ V}; t_p = 0.1 \text{ s}$$

-¹(SB) <

Switching times

(between 10% and 90% levels)

 $-I_{Con} = 4 A; -I_{Bon} = +I_{Boff} = 0.4 A$

Turn-on time Turn-off time t_{on} typ. 0,3 μs t_{off} typ. 1,5 μs

Fig. 2 Switching times waveforms.

Fig. 3 Switching times test circuit.

Fig. 4 Safe Operating ARea; T_{mb} = 25 °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- Ptot max and Ppeak max lines. Second-breakdown limits (independent of temperature).

Fig. 5 Power derating curve.

Fig. 6 Pulse power rating chart.

Fig. 7 S.B. current multiplying factor at the $V_{\mbox{CEOmax}}$ level.

Fig. 8 S.B. voltage multiplying factor at the $\iota_{\mbox{Cmax}}$ level.

Fig. 9 Typical d.c. current gain at $-V_{CE} = 4 V$.

Fig. 10 Typical collector-emitter saturation voltage. $T_{mb} = 25$ °C.

SILICON DARLINGTON POWER TRANSISTORS

P-N-P epitaxial base transistors in monolithic Darlington circuit for audio output stages and general amplifier and switching applications. N-P-N complements are BDV65, BDV65A and BDV65B. Matched complementary pairs can be supplied.

QUICK REFERENCE DATA

			BDV64	BDV64A	BDV64B
Collector-base voltage (open emitter)	-V _{CBO}	max.	. 60	80	100 V
Collector-emitter voltage (open base)	-V _{CEO}	max.	60	80	100 ∨
Collector current (peak value)	−¹ _{CM}	max.		20	Α
Total power dissipation up to $T_{mb} = 25$ °C	P _{tot}	max.		125	W
Junction temperature	Ti	max.		150	oC.
D.C. current gain -I _C = 1 A; -V _{CE} = 4 V -I _C = 5 A; -V _{CE} = 4 V	h _{FE}	typ.		1500 1000	
Cut-off frequency -I _C = 5 A; -V _{CE} = 4 V	fhfe	typ.		100	kHz

MECHANICAL DATA

Fig. 1 SOT-93.

Collector connected to mounting base.

Accessories supplied on request: 56368 (see also data sheet Mounting instructions SOT-93).

CIRCUIT DIAGRAM

Fig. 2 R1 typical 5 k Ω R2 typical 80 Ω .

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BI	DV64	BDV64A	BDV	64B	
Collector-base voltage (open emitter)	-V _{CBO}	max.	60	80		100	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	60	80		100	V
Emitter-base voltage (open collector)	-V _{EBO}		5	5		5	V
 Collector current (d.c.)	−lc	max.	. '	12			Α :
 Collector current (peak value)	-I _{CM}	max.		20			Α
Base current (d.c.)	−l _B	max.		0,5			Α
Total power dissipation up to T _{mb} = 25 °C	P_{tot}	max.		125			W·
Storage temperature	T _{stg}			- 65 to +	150		oC
Junction temperature	Tj	max.		150	- 1 -		oC*
THERMAL RESISTANCE							
From junction to mounting base	D	-		1			OC/M*

From junction to mounting base

 $R_{th j-mb} = 1$ °C/W

^{*} Based on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

400 μA

2 mA

1 mA

5 mA

2,5 V**

2 V

200 pF

100 kHz

1,8 V

0.5 µs

1,0 µs

2,0 µs

1500

1000

1000

-1CBO

-ICBO

-lceo

-lebo

hFE

hFE

hFE

-VBE

 C_{c}

fhfe

٧F

ton

toff

tf

 $-V_{CEsat}$

<

<

typ.

typ.

>

<

<

typ.

typ.

typ.

tvp.

typ.

typ.

CHARACTERISTICS

T_i = 25 °C unless otherwise specified.

Collector cut-off currents

$$I_E = 0$$
; $-V_{CB} = -V_{CBOmax}$

$$I_E = 0; -V_{CB} = -V_{CBOmax}$$

 $I_E = 0; -V_{CB} = -\frac{1}{2} V_{CBOmax}; T_j = 150 {}^{\circ}C$

$$I_B = 0$$
; $-V_{CE} = -\frac{1}{2} V_{CEOmax}$

$$-I_C = 10 \text{ A}; -V_{CE} = 4 \text{ V}$$

Base-emitter voltage*

$$-1_{C} = 5 \text{ A}; -V_{CE} = 4 \text{ V}$$

$$-I_C = 5 \text{ A}$$
; $-I_B = 20 \text{ mA}$
Collector capacitance at $f = 1 \text{ MHz}$

$$I_E = I_e = 0$$
; $-V_{CB} = 10 \text{ V}$

$$-I_C = 5 \text{ A}; -V_{CE} = 4 \text{ V}$$

$$-|Con| = 5 \text{ A:} -|Ron| = |Rott| = 20$$

$$-I_{Con} = 5 \text{ A; } -I_{Bon} = I_{Boff} = 20 \text{ mA; } V_{CC} = -16 \text{ V}$$

^{** -}VBF decreases by about 3,6 mV/OC with increasing temperature.

Fig. 3 Waveforms showing t_{on} ; $t_s + t_f = t_{off}$.

^{*} Measured under pulse conditions: $t_p < 300 \,\mu s$; $\delta < 2\%$.

Fig. 4 Switching times test circuit; V_{CC} = -16 V; V_{IM} = 16,5 V; t_r = t_f = 15 ns; t_p = 10 μ s; T = 500 μ s.

Fig. 5 Safe Operating ARea; $T_{mb} \le 25$ °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- (1) P_{tot max} and P_{peak max} lines.
 (2) Second breakdown limits (independent of temperature).

Fig. 6.

Fig. 9 S.B. current multiplying factor at the $-V_{\mbox{CEOmax}}$ level (100 V).

Fig. 12 Typical values; $-V_{CE} = 4 V$.

SILICON DARLINGTON POWER TRANSISTORS

N-P-N epitaxial base transistors in monolithic Darlington circuit for audio output stages and general amplifier and switching applications. P-N-P complements are BDV64, BDV64A and BDV64B. Matched complementary pairs can be supplied.

QUICK REFERENCE DATA

		BE	V65	BDV65A	BDV65B	
Collector-base voltage (open emitter)	v_{CBO}	max.	60	80	100	V
Collector-emitter voltage (open base)	VCEO	máx.	60_	80	100	V
Collector current (peak value)	^I CM	max.		20		Α -
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		125		W
Junction temperature	T _i	max.		150		oC .
D.C. current gain I _C = 1 A; V _{CE} = 4 V I _C = 5 A; V _{CE} = 4 V	hFE hFE	typ.		1500 1000		
Cut-off frequency IC = 5 A; VCE = 4 V	f _{hfe}	typ.		70		kHz

MECHANICAL DATA

Fig. 1 SOT-93. Collector connected to mounting-base.

Accessories supplied on request: 56368 (see also data sheet Mounting instructions SOT-93).

Dimensions in mm

CIRCUIT DIAGRAM

Fig. 2. R1 typical 5 k Ω R2 typical 80 Ω .

BDV65B

BDV65A

BDV65

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-base voltage (open emitter)	V _{CBO}	max.	60	80	100 V	
Collector-emitter voltage (open base)	v_{CEO}	max.	60	80	100 V	
Emitter-base voltage (open collector)	v_{EBO}	max.	5	5	5 V	
Collector current (d.c.)	I _C	max.		12	A	
Collector current (peak value)	^I CM	max.		20	. A	
Base current (d.c.)	I _B	max.		0,5	Α	
Total power dissipation up to $T_{mb} = 25$ °C	P_{tot}	max.		125	W	
Storage temperature	T _{stg}			- 65 to + 150	oC	
Junction temperature	Τj	max.		150	oC,	ŧ
THERMAL RESISTANCE						
From junction to mounting base	R _{th} j-mb	= '		1	oC/	W*

^{*} Based on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

400 µA

2 mA

1 mA

5 mA

2.5 V**

2 V

1,2 V

0,5 µs

1,5 µs

2,5 µs

1500

1000

1750

1_{CBO}

ICBO

CEO

I_EBO

hFE

hFF

hFE

VBE

VCEsat

 C_{c}

fhfe

۷F

ton

toff

tf

<

typ.

typ.

<

<

typ.

typ.

typ.

typ.

typ.

typ.

CHARACTERISTICS

T_i = 25 °C unless otherwise specified.

Collector cut-off	currents
IE = 0; V _{CB} =	
I _E = 0; V _{CB} =	${}^{1/2}V_{CBOmax}; T_j = 150 {}^{o}C$

Fall time Turn-off time

* Measured under pulse conditions:
$$t_p < 300~\mu s;\, \delta < 2\%.$$

Fig. 3 Waveforms showing t_{on} ; $t_s + t_f = t_{off}$.

Fig. 4 Switching times test circuit; V_{CC} = 16 V; V_{IM} = 16,5 V; t_r = t_f = 15 ns; t_p = 10 μ s; T = 500 μ s.

Turn-off breakdown energy with inductive load (see also Fig. 5).

 $I_{Con} = 6.3 \text{ A}; -I_{Boff} = 0; t_p = 1 \text{ ms}; T = 100 \text{ ms}$

 $E_{(BR)} > 100 \text{ mJ}$

Fig. 5 Test circuit; V_1 = 12 V; R_B = 270 Ω .

Fig. 6 Safe Operating ARea; $T_{mb} \le 25$ °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation
- (1) P_{tot max} and P_{peak max} lines.(2) Second breakdown limits (independent of temperature).

Fig. 7.

Fig. 8 Heating-up curve.

BDV65 BDV65A BDV65B

Fig. 10 S.B. current multiplying factor at the $V_{\mbox{\footnotesize{CEO}}\mbox{\footnotesize{max}}}$ level (100 V).

Fig. 13 Typical values; $V_{CE} = 4 V$.

SILICON PLANAR EPITAXIAL POWER TRANSISTORS

N-P-N transistors in TO-126 plastic envelopes intended for high current switching applications, e.g. inverters, and switching regulator circuits.

QUICK REFERENCE DATA

			BDX35	BDX36	BDX3	7
Collector-base voltage (open emitter)	V _{СВО}	max.	100	120	120	v
Collector-emitter voltage (open base)	v_{CEO}	max.	60	60	80	V
Collector current (peak value)	I _{CM}	max.	10	10	10	Α
Total power dissipation up to T _{mb} = 75 °C	P _{tot}	max.	15	15	15	w
D.C. current gain I _C = 0,5 A; V _{CE} = 10 V	hFE	>	45	45	45	
Collector-emitter saturation voltage I _C = 5 A; I _B = 0,5 A	V _{CEsat}	< 1	0,9	0,7	0,9	V
Turn-off time $I_{Con} = 5 A$; $I_{Bon} = -I_{Boff} = 0.5 A$	^t off	typ.	350	350	350	ns

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-126 (SOT-32) Collector connected to the metal part of the mounting surface

(1) Within this region the cross-section of the leads is uncontrolled. See also chapters Mounting instructions and Accessories.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages			BDX35	BDX36	BDX37
Collector-base voltage (open emitter)	V _{СВО}	max.	100	120	120 V
Collector-emitter voltage (VBE = 0)	V _{CES}	max.	100	120	120 V
Collector-emitter voltage (open base)	VCEO	max.	60	60	80 V
Emitter-base voltage (open collector)	V _{EBO}	max.	-	5	v
Collector current (d.c.)	lc	max.		5	Α
Collector current (peak value)	Icm	max.	. %	10	Α
Base current (d.c.)	IB	max.		1	Α
Base current (peak value)	I _{BM}	max.		2	Α
Reverse base current (peak value)	-I _{BM}	max.		2	A
Total power dissipation up to T _{mb} = 75 °C up to T _{amb} = 25 °C	P _{tot} P _{tot}	max. max.		15 1,25	W
Storage temperature	T_{stg}		-	-65 to + 1	50 °C
Junction temperature	T_j	max.		150	οС
	•				

THERMAL RESISTANCE

From junction to mounting base	R _{th j-mb} =	5	oC/M
From junction to ambient in free air	R _{th j-a} =	100	oC/W

Silicon planar epitaxial power transistors

BDX35 BDX36 BDX37

10 μA

50 µA

10 µA

50 µA

5 nA

10 µA

1 mA

CHARACTERISTICS

$T_{i} = 25$	OC unless	otherwise	specified
•			
A 11 .			

Collector cut-off current

IE = 0; VCB = 80 V IE = 0; VCB = 80 V; Ti = 100 °C

IE = 0; VCB = 100 V

IE = 0; VCB = 100 V; Ti = 100 °C

Emitter cut-off current IC = 0; VEB = 4 V

 $I_C = 0; V_{EB} = 5 V$ D.C. current gain

 $I_C = 0.5 A; V_{CE} = 10 V$

Collector-emitter saturation voltage

 $I_C = 5 A$; $I_B = 0.5 A$

 $I_C = 7 A$; $I_B = 0.7 A$ $I_C = 10 A$; $I_B = 1 A$

Base-emitter saturation voltage $I_C = 5 A$; $I_B = 0.5 A$

 $I_C = 7 A$; $I_B = 0.7 A$ IC = 10 A; IB = 1 A

Collector capacitance at f = 1 MHz I_E = I_e = 0; V_{CB} = 10 V Transition frequency at f = 35 MHz

 $I_C = 0.5 A$; $V_{CE} = 5 V$; $T_{amb} = 25 °C$

Turn-off time $I_C = 5 A$; $I_{Bon} = -I_{Boff} = 0.5 A$ BDX35 1CBO BDX35 Ісво BDX36/37 Ісво BDX36/37 CBO

BDX36

BDX36

BDX36

^IEBO ^IEBO hFE

hFE

BDX35/36 BDX37 **HFE**

BDX35/37 **V**CEsat **VCEsat** BDX35/37 **VCEsat** V_{CEsat}

V_{BEsat} BDX35/37 **VBEsat**

fΤ

toff

V_{BEsat} $C_{\mathbf{c}}$

1,6 V < typ. < .

typ.

typ.

<

< <

typ.

< .

<

typ.

typ.

<

<

45 to 450

130

80

0,9 V

0,7 V

1,2 V

1,5 V

100 MHz

350 ns

800 ns

Fig. 2 Safe Operating Area with the transistor forward biased.

- Region of permissible d.c. operation
- Il Permissible extension for repetitive pulse operation.

¹⁾ Independent of temperature.

Fig. 3 Power derating curve.

Fig. 4 Pulse power rating chart.

Fig. 5 S.B. voltage multiplying factor at the $I_{\mbox{\scriptsize Cmax}}$ level.

Fig. 6 S.B. current multiplying factor at the $\ensuremath{\text{V}_{\text{CEOmax}}}$ level.

Fig. 7 Collector-emitter saturation voltage as a function of the collector current.

Fig. 8 Base-emitter saturation voltage as a function of the collector current.

Fig. 10 $\,$ D.C. current gain as a function of collector current.

N-P-N SILICON PLANAR DARLINGTON TRANSISTORS

Silicon n-p-n planar Darlington transistors for industrial switching applications, e.g. print hammer, solenoid, relay and lamp driving. Encapsulated in a TO-126 plastic envelope with collector connected to the heatsink.

P-N-P complements are BDX45, BDX46 and BDX47 respectively.

QUICK REFERENCE DATA

			BDX42	BDX43	BDX44
Collector-base voltage (open emitter)	V _{CBO}	max.	60	80	100 V
Collector-emitter voltage	VCER	max.	45	60	80 V
Collector current	l _C	max.	1	1	1 A
Total power dissipation up to T _{amb} = 25 °C up to T _{mb} = 100 °C	P _{tot} P _{tot}	max. max.	1,25 5	1,25 5	1,25 W 5 W
D.C. current gain I _C = 500 mA; V _{CE} = 10 V	hFE	>	2000	2000	2000
Collector-emitter saturation voltage $I_C = 1 A$; $I_B = 1 mA$	VCEsat	<	· _	1,6	- V
$I_C = 1 A; I_B = 4 mA$	V _{CEsat}	<	1,6	_	1,6 V
Turn-off time $I_C = 500 \text{ mA}$; $I_{Bon} = -I_{Boff} = 0.5 \text{ mA}$	t _{off}	typ.	1500	1500	1500 ns

MECHANICAL DATA

Fig. 1 TO-126.

Collector connected to the metal part of mounting surface.

Dimensions within this zone are uncontrolled.
 See also chapters Mounting Instructions and Accessories.

Fig. 2 Circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BDX42	BDX43	BDX44	
Collector-base voltage (open emitter)	V _{CBO}	max.	60	80	100	٧
Collector-emitter voltage *	VCER	max.	45	60	80	٧.
Emitter-base voltage (open collector)	V _{EBO}	max.		5		V
Collector current (d.c.)	I _C	max.		1		Α
Collector current (peak)	I CM	max.		2		Α
Base current (d.c.)	iB	max.		0,1		Α
Total power dissipation up to T _{amb} = 25 °C up to T _{mb} = 100 °C	P _{tot} P _{tot}	max. max.		1,25 5		W W
Storage temperature	T _{stg}		-69	5 to + 150		οС
Junction temperature **	Тj	max.		150		oC
THERMAL RESISTANCE **						
From junction to ambient	R _{th j-a}	= .		100		oC/W
From junction to mounting base	R _{th j-mb}			10		oC/M

^{*} External RBE not to exceed value shown in Fig. 12.

^{**} Based on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

N-P-N silicon planar Darlington transistors

BDX42 BDX43 BDX44

10 μA

10 µA

10 µA

10 µA

1000

2000

1,3 V

1,6 V

1,6 V

1,3 V

1,8 V

1,6 V

1,9 V

2,2 V

CHARACTERISTICS

Tj =	= 25	оC	unless	otherwise	specified
------	------	----	--------	-----------	-----------

Collector cut-off current

 $V_{BE} = 0$; $V_{CE} = 45 \text{ V}$

 $V_{BF} = 0$; $V_{CF} = 60 \text{ V}$

 $V_{BF} = 0; V_{CF} = 80 \text{ V}$

Emitter cut-off current $I_C = 0; V_{EB} = 4 V$

D.C. current gain $I_C = 150 \text{ mA}; V_{CF} = 10 \text{ V}$

 $I_C = 500 \text{ mA}$; $V_{CE} = 10 \text{ V}$ Collector-emitter saturation voltage

 $I_C = 500 \text{ mA}$; $I_B = 0.5 \text{ mA}$

 $I_C = 1 A; I_B = 1 mA$

 $I_C = 1 A; I_B = 4 mA$ $I_C = 500 \text{ mA}$; $I_B = 0.5 \text{ mA}$; $T_i = 150 \text{ °C}$

 $I_C = 1 A$; $I_B = 1 mA$; $T_i = 150 °C$

 $I_C = 1 A$; $I_B = 4 mA$; $T_i = 150 °C$ Base-emitter saturation voltage

 $I_C = 500 \text{ mA}$; $I_B = 0.5 \text{ mA}$

 $I_C = 1 A; I_B = 1 mA$

 $I_{C} = 1 A$; $I_{B} = 4 mA$ Small signal current gain $I_C = 500 \text{ mA}$; $V_{CE} = 5 \text{ V}$; f = 35 MHz

Switching times (see also Fig. 3 and Fig. 4) $I_C = 500 \text{ mA}$; $I_{Bon} = -I_{Boff} = 0.5 \text{ mA}$ Turn-on time Turn-off time

 $I_C = 1 A$; $I_{Bon} = -I_{Boff} = 1 mA$ Turn-on time

Turn-off time

BDX42 CES BDX43 CES CES

<

<

<

<

>

>

<

<

<

<

<

BDX44

IEBO hFE

hFE V_{CFsat}

BDX43 V_{CEsat} BDX42, 44 V_{CFsat} BDX43

BDX42, 44

BDX43

BDX42, 44

V_{CEsat} V_{CEsat} V_{CEsat}

ton

toff

ton

toff

< V_{BEsat} <**VBEsat**

< **VBEsat** < hfe typ.

2,2 V 10

400 ns typ. 1500 ns typ.

400 ns

1500 ns

typ.

typ.

Fig. 3 Test circuit for 500 mA switching.

Fig. 4 Switching waveforms.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

BDX42 BDX43 BDX44

Fig. 12.

Silicon p-n-p planar Darlington transistors for industrial switching applications, e.g. print hammer, solenoid, relay and lamp driving. Encapsulated in a TO-126 plastic envelope with collector connected to the heatsink.

N-P-N complements are BDX42, BDX43 and BDX44 respectively.

QUICK REFERENCE DATA

			BDX45	BDX46	BDX47
Collector-base voltage (open emitter)	-V _{CBO}	max.	60	80	100 V
Collector-emitter voltage	-V _{CER}	max.	45	60	80 V
Collector current	-IC	max.	- 1	1	- 1 A
Total power dissipation up to T _{amb} = 25 °C up to T _{mb} = 100 °C	P _{tot} P _{tot}	max. max.	1,25 5	1,25 5	1,25 W 5 W
D.C. current gain -I _C = 500 mA; -V _{CE} = 10 V	hFE	· >	2000	2000	2000
Collector-emitter saturation voltage $-I_C = 1 A$; $-I_B = 1 mA$ $-I_C = 1 A$; $-I_B = 4 mA$	−VCEsat −VCEsat	< <	- 1,6	1,6 -	– V 1,6 V
Turn-off time $-I_C = 500 \text{ mA}$; $-I_{Bon} = I_{Boff} = 0.5 \text{ mA}$	^t off	typ.	1500	1500	1500 ns

MECHANICAL DATA

Fig. 1 TO-126.

Collector connected to the metal part of mounting surface.

(1) Dimensions within this zone are uncontrolled

See also chapters Mounting Instructions and Accessories.

Fig. 2 Circuit diagram.

BDX45 | BDX46 | BDX47

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-base voltage (open emitter)	-V _{CBO}	max.	60	80	100 V
Collector-emitter voltage *	-V _{CER}	max.	45	60	80 V
Emitter-base voltage (open collector)	-V _{EBO}	max.		5	v
Collector current (d.c.)	-IC	max.		1 '	Α
Collector current (peak)	-ICM	max.		2	Α
Base current (d.c.)	-I _B	max.		0,1	Α
Total power dissipation up to T _{amb} = 25 °C up to T _{mb} = 100 °C	P _{tot}	max. max.		1,25 5	W W
Storage temperature	T _{stg}		-65 to	+ 150	°C
Junction temperature **	Тj	max.		150	, oC
THERMAL RESISTANCE **					
From junction to ambient	R _{th j-a}	= ,		100	oc/w
From junction to mounting base	R _{th j-mb}	•		10	oc/M

2

^{*} External RBE not to exceed value shown in Fig. 12.

^{**} Based on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

CHARACTERISTICS

T_i	=	25	οС	unless	otherwise	specified
-------	---	----	----	--------	-----------	-----------

,			-	
Collector	cut-off	current		

$$V_{BE} = 0$$
; $-V_{CE} = 45 \text{ V}$
 $V_{BE} = 0$: $-V_{CE} = 60 \text{ V}$

$$V_{BE} = 0; -V_{CE} = 60 \text{ V}$$

$$-I_C = 150 \text{ mA}; -V_{CE} = 10 \text{ V}$$

 $-I_C = 500 \text{ mA}; -V_{CE} = 10 \text{ V}$

$$-I_C = 500 \text{ mA}; -I_B = 0.5 \text{ mA}$$

 $-I_C = 1 \text{ A}; -I_B = 1 \text{ mA}$

$$-1_{C} = 1 \text{ A}; -1_{B} = 1 \text{ mA}$$

$$-I_C = 500 \text{ mA}; -I_B = 0.5 \text{ mA}; T_j = 150 \text{ °C}$$

 $-I_C = 1 \text{ A}; -I_B = 1 \text{ mA}; T_i = 150 \text{ °C}$

$$-I_C = 1 \text{ A}; -I_B = 4 \text{ mA}; T_j = 150 ^{\circ}\text{C}$$

Base-emitter saturation voltage

Base-emitter saturation voltage
$$-I_C = 500 \text{ mA}$$
; $-I_B = 0.5 \text{ mA}$

$$-1_C = 500 \text{ mA}; -1_B = 0.5 \text{ mA}$$

 $-1_C = 1 \text{ A}; -1_B = 1 \text{ mA}$

$$-I_C = 1 \text{ A}; -I_B = 4 \text{ mA}$$

$$-I_C = 500 \text{ mA}; -V_{CE} = 5 \text{ V}, f = 35 \text{ MHz}$$

Switching times (see also Fig. 3 and Fig. 4)

Switching times (see also Fig. 3 and Fig. 4)

$$-I_C = 500 \text{ mA}; -I_{Bon} = I_{Boff} = 0,5 \text{ mA}$$

Turn-off time

BDX47

BDX46

-ICES

-IEBO

10 µA

ton

toff

typ.

typ.

400 ns

1500 ns

Fig. 3 Test circuit for 500 mA switching.

Fig. 4 Switching waveforms.

Fig. 5.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

SILICON DARLINGTON POWER TRANSISTORS

P-N-P epitaxial base transistors in monolithic Darlington circuit for audio output stages and general amplifier and switching applications: TO-3 envelope, N-P-N complements are BDX63, BDX63A, BDX63B and BDX63C. Matched complementary pairs can be supplied.

QUICK REFERENCE DATA

			BDX62	62A	62B	62C
Collector-base voltage (open emitter)	−V _{CBO}	max.	60	80	100	120 V
Collector-emitter voltage (open base)	-VCEO	max.	60	80	100	120 V
Collector current (peak value)	-ICM	max.			. A	
Total power dissipation up to $T_{mb} = 25$ °C	P _{tot}	max.		. 9	90	W
Junction temperature	Tj	max.		. 20	00	oC
D.C. current gain -I C = 0,5 A; -V CE = 3 V -I C = 3,0 A; -V CE = 3 V Cut-off frequency	hFE hFE	typ.		150 100		
-1C = 3 A; -VCE = 3 V	fhfe	typ.		10	00	kHz

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-3.
Collector connected to case.

See also chapters Mounting instructions and Accessories.

Fig. 2 Circuit diagram.

-V_{CBO} max.

-V_{CEO} max.

-VFRO max.

 R_1 typ. $6 k\Omega$ R_2 typ. 80Ω

62B

100

100

62C

120 V

120 V

5 V

BDX62

60

60

5

62A

80

80

5

RATINGS

Collector-base voltage (open emitter)

Collector-emitter voltage (open base)

Emitter-base voltage (open collector)

Limiting values in accordance with the Absolute Maximum System (IEC 134)

	LDO			5
Collector current (d.c.)	-Ic	max.	8	Α
Collector current (peak value)	-ICM	max.	12	A
Base current (d.c.)	−l _B	max.	150	mA
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.	90	W
Storage temperature	T_{stg}		-65 to +200	oC
Junction temperature*	τ_{j}	max.	200	oC
THERMAL RESISTANCE*				
From junction to mounting base	R _{th j-ml}) =	1,94	oc/w

^{*} Based on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

CHARACTERISTICS

Collector cut-off current

T_i = 25 °C unless otherwise specified.

$I_E = 0$; $-V_{CB} = -V_{CBOmax}$	
$I_E = 0$; $-V_{CB} = 40 \text{ V}$; $T_i = 200 \text{ °C}$; BDX	62

$$I_E = 0$$
; $-V_{CB} = 50 \text{ V}$; $T_j = 200 \text{ °C}$; BDX62A

$$I_E = 0; -V_{CB} = 60 \text{ V}; T_j = 200 \text{ °C}; BDX62B$$

$$I_E = 0$$
; $-V_{CB} = 70 \text{ V}$; $T_j = 200 \text{ °C}$; BDX62C

$$I_B = 0$$
; $-V_{CE} = -\frac{1}{2}V_{CEO}$
Emitter cut-off current

$$I_C = 0; -V_{EB} = 5 \text{ V}$$

$$-I_C = 0.5 \text{ A}; -V_{CE} = 3 \text{ V}$$

 $-I_C = 3 \text{ A}; -V_{CE} = 3 \text{ V}$

$$-I_C = 8 A; -V_{CE} = 3 V$$

$$-I_C = 3 \text{ A}; -V_{CE} = 3 \text{ V}$$

Collector capacitance at
$$f = 1 \text{ MHz}$$

 $I_E = I_e = 0$; $-V_{CB} = 10 \text{ V}$

$$I_E = I_e = 0$$
; $-V_{CB} = 10 \text{ V}$
Cut-off frequency

$$-I_C = 3 \text{ A}; -V_{CE} = 3 \text{ V}$$

-ICBO

100 kHz

<

<

$$C_{\rm C}$$
 typ. 100 pF $f_{\rm hfe}$ typ. 100 kH

fhfe

- 1. Measured under pulse conditions: $t_p < 300 \ \mu s$, $\delta < 2\%$.
- VBE decreases by about 3,6 mV/°C with increasing temperature.

CHARACTERISTICS (continued)

Switching times
(between 10% and 90% levels)

-ICon = 3 A; -IBon = IBoff = 12 mA
turn-on time
turn-off time

 t_{on} typ. 0,5 μ s t_{off} typ. 2,5 μ s

Fig. 3 Switching times waveforms.

Fig. 4 Switching times test circuit.

Diode forward voltage IF = 3 A

V_F typ. 1,8 V

Fig. 5 Safe Operating ARea; T_{mb} = 25 °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- (1) P_{tot max} and P_{peak max} lines.
 (2) Second-breakdown limits (independent of temperature).

Fig. 6 Safe Operating ARea; $T_{mb} = 25$ °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation. П
- (1) P_{tot max} and P_{peak max} lines.
 (2) Second-breakdown limits (independent of temperature).

10⁵ typ. values -V_{CE} = 3 V

10⁴ T_j = 150 °C

10² 10⁻¹ 1 -I_C (A) 10

Fig. 7 Power derating curve.

Fig. 8 D.C. current gain.

Fig. 9 Pulse power rating chart.

BDX62; 62A BDX62B; 62C

Fig. 10 S.B. voltage multiplying factor at the $I_{\mbox{\footnotesize{Cmax}}}$ level.

Fig. 11 S.B. current multiplying factor at the $V_{\mbox{CEO}}$ 100 V and 60 V level.

Fig. 12.

Fig. 13.

SILICON DARLINGTON POWER TRANSISTORS

N-P-N epitaxial base transistors in monolithic Darlington circuit for audio output stages and general amplifier and switching applications; TO-3 envelope, P-N-P complements are BDX62, BDX62A, BDX62B and BDX62C. Matched complementary pairs can be supplied.

QUICK REFERENCE DATA

		BDX63	63A	63B	63C	
V _{CBO}	max.	80	100	120	140	V
VCEO	max.	60	80 100 120			V
¹ CM	max.		12			Ą
P _{tot}	max.		ç	90		N -
T _i	max.		200			oC .
hFE	typ.		150	00		
hFE	>		100	00		
^f hfe	typ.		10	00		kHz
	VCEO ICM Ptot Tj hFE hFE	VCEO max. ICM max. Ptot max. Tj max. hFE typ. hFE >	VCBO max. 80 VCEO max. 60 ICM max. Ptot max. Tj max. hfE typ. hfE >	VCBO max. 80 100 VCEO max. 60 80 ICM max. 5 Tj max. 20 hFE typ. 150 hFE > 100	VCBO max. 80 100 120 VCEO max. 60 80 100 ICM max. 12 Ptot max. 90 7 Tj max. 200 hFE typ. 1500 hFE > 1000	VCBO max. 80 100 120 140 VCEO max. 60 80 100 120 ICM max. 12 12 Ptot max. 90 10 Tj max. 200 0 hFE typ. 1500 hFE > 1000

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-3. Collector connected to case.

See also chapters Mounting instructions and Accessories.

R1 typ. $8 \text{ k}\Omega$ R2 typ. 100Ω

Fig. 2 Circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BDX63	63A	63B	63C	
Collector-base voltage (open emitter)	V _{CBO} .	max.	80	100	120	140	٧
Collector-emitter voltage (open-base)	VCEO	max.	60	80	100	120	V
Emitter-base voltage (open collector)	V_{EBO}	max.	5	5	5	5	V
Collector current (d.c.)	Ic	max.		8			Α
Collector current (peak value)	ICM	max.		1	2		Α
Base current (d.c.)	I _B	max.		0		mA 🕟	
Total power dissipation up to $T_{mb} = 25$ °C	P _{tot}	max.		9	0		w
Storage temperature	T _{stg}		-65	to +20	0		oC
Junction temperature*	T_{j}	max.		20	10		oC
THERMAL RESISTANCE *							
From junction to mounting base	$R_{th j\text{-}mb}$	=		1,9	4		oC/M

^{*} Based on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

CHARACTERISTICS

T	=	25	oC	unless	otherwise	specified

$$I_B = 0$$
; $V_{CE} = \frac{1}{2}V_{CEOmax}$

$$I_C = 0; V_{EB} = 5 \text{ V}$$

D.C. current gain (note 1)
$$I_C = 0.5 A; V_{CF} = 3 V$$

$$I_E = I_e = 0; V_{CB} = 10 \text{ V}$$

 $h_{FE1}/h_{FE2} <$

2,5

- 1. Measured under pulse conditions: $t_{\rm p}\,{<}\,300~\mu{\rm s},\,\delta\,{<}\,2\%.$
- 2. V_{RF} decreases by about 3,6 mV/oC with increasing temperature.

CHARACTERISTICS (continued)

Switching times
(between 10% and 90% levels)
ICon = 3 A; IBon = -IBoff = 12 mA
turn-on time
turn-off time

 t_{on} typ. 0,5 μ s t_{off} typ. 2,5 μ s

Fig. 3 Switching time waveforms.

Fig. 4 Switching times test circuit.

Diode, forward voltage I_F = 3 A

V_F typ. 1,2 V

Fig. 5 Test circuit for turn-off breakdown energy. V_{IM} = 12 V; R_B = 270 Ω ; I_C = 4,5 A; t_p = 1 ms; δ = 1%.

Fig. 6 Safe Operating ARea, $T_{mb} \le 25$ °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- Ptot max and Ppeak max lines. Second-breakdown limits (independent of temperature).

Fig. 7 Safe Operating ARea, $T_{mb} \le 25$ °C.

- Region of permissible d.c. operation.
- П Permissible extension for repetitive pulse operation.
- (1)
- Ptot max and Ppeak max lines. Second-breakdown limits (independent of temperature). (2)

Fig. 8 Power derating curve.

Fig. 9 D.C. current gain.

Fig. 10 Pulse power rating chart.

BDX63; 63A BDX63B; 63C

Fig. 11 S.B. voltage multiplying factor at the $I_{\mbox{\footnotesize{Cmax}}}$ level.

Fig. 12 S.B. current multiplying factor at the $V_{\mbox{\footnotesize{CEO}}}$ 100 V and 60 V level.

Fig. 13 Small-signal current gain at $I_C = 3$ A; $V_{CE} = 3$ V.

SILICON DARLINGTON POWER TRANSISTORS

P-N-P epitaxial base transistors in monolithic Darlington circuit for audio output stages and general amplifier and switching applications; TO-3 envelope. N-P-N complements are BDX65, BDX65A, BDX65B and BDX65C. Matched complementary pairs can be supplied.

QUICK REFERENCE DATA

			BDX64	64A	64B	64C
Collector-base voltage (open emitter)	-V _{CBO}	max.	60	80	100	120 V
Collector-emitter voltage (open base)	-VCEO	max.	60	80	100	120 V
Collector current (peak value)	^{−1} CM	max.			Α	
Total power dissipation up to						
T _{mb} = 25 °C	P _{tot}	max.		117		W
Junction temperature	τ_{j}	max.		200		, oC
D.C. current gain						
-I _C = 1 A; -V _{CE} = 3 V	hFE	typ.		150	00	
$-1_{C} = 5 \text{ A}; -V_{CE} = 3 \text{ V}$	hFE	>		100	00	
Cut-off frequency	•					
-I _C = 5 A; -V _{CE} = 3 V	^f hfe	typ.		8	30	kHz

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-3.

Collector connected to case.

See also chapters Mounting instructions and Accessories.

Fig. 2 Circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BDX64	64A	64B	64C	
Collector-base voltage (open emitter)	−V _{CBO}	max.	60	80	100	120	٧
Collector-emitter voltage (open base)	-VCEO	max.	60	80	100	120	٧
Emitter-base voltage (open collector)	-V _{EBO}	max.	5	5	5	5	٧ .
Collector current (d.c.)	-I _C	max.		•	12		Α
Collector current (peak value)	-I _{CM}	max.	•	•	16		Α
Base current (d.c.)	-1 _B	max.		200			mA ·
Total power dissipation up to				٠,		•	
$T_{mb} = 25 {}^{\circ}C$	P _{tot}	max.		11	17		W
Storage temperature	T _{stg}			–65 t	o + 200	1	оС
Junction temperature*	T_{j}	max.		20	00		оС
THERMAL RESISTANCE*							
From junction to mounting base	R _{th j-mb}	=		. 1	,5		oC/W

^{*} Based on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

0.4 mA

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Collector cut-off current	
$I_E = 0$; $-V_{CB} = -V_{CBOmax}$	

$$I_E = 0$$
; $-V_{CB} = 40 \text{ V}$; $T_j = 200 ^{\circ}\text{C}$: BDX64

$$-I_C = 5 \text{ A}; -I_B = 20 \text{ mA}$$

Collector capacitance at
$$f = 1$$
 MHz
 $I_E = I_e = 0$; $-V_{CB} = 10$ V

$$-I_C = 5 \text{ A}$$
; $-V_{CE} = 3 \text{ V}$; $f = 1 \text{ MHz}$
D.C. current gain ratio of

- 1. Measured under pulse conditions: $t_{\rm p}$ < 300 μ s, δ < 2%.
- 2. -V_{RF} decreases by about 3,6 mV/°C with increasing temperature.

CHARACTERISTICS (continued)

Diode, forward voltage

Switching times

(between 10% and 90% levels)

 $-I_{Con} = 5 A; -I_{Bon} = I_{Boff} = 20 mA$ turn-on time

turn-off time

1,8 V

Fig. 3 Switching times waveforms.

Fig. 4 Switching times test circuit.

Fig. 5 Safe Operating ARea; $T_{mb} \le 25$ °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- (1) P_{tot max} and P_{peak max} lines.
 (2) Second-breakdown limits (independent of temperature).

Fig. 6 Safe Operating ARea; $T_{mb} \le 25$ °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- (1) Ptot max and Ppeak max lines.
 (2) Second-breakdown limits (independent of temperature).

Fig. 7 Power derating curve.

Fig. 8 Pulse power rating chart.

Fig. 9 S.B. voltage multiplying factor at the $-I_{\mbox{C}\mbox{ max}}$ level.

Fig. 10 S.B. current multiplying factor at $-\mathrm{V}_{\mbox{CEO}}$ 100 V and 60 V level.

Fig. 11 D.C. current gain.

Fig. 12 Small-signal current gain.

Fig. 13 Typical collector current.

Fig. 14 Typical collector-emitter saturation voltage.

Dimensions in mm

SILICON DARLINGTON POWER TRANSISTORS

N-P-N epitaxial base transistors in monolithic Darlington circuit for audio output stages and general amplifier and switching applications; TO-3 envelope. P-N-P complements are BDX64, BDX64A, BDX64B and BDX64C. Matched complementary pairs can be supplied.

QUICK REFERENCE DATA

			BDX65	65A	65B	65C	
Collector-base voltage (open emitter)	v_{CBO}	max.	80	100	120	140	٧
Collector-emitter voltage (open base)	v_{CEO}	max.	60	80	100	120	٧
Collector current (peak value)	Ісм	max.			16	·	A
Total power dissipation up to $T_{mb} = 25$ °C	P _{tot}	max.		1	17		w
Junction temperature	Τį	max.		20	00		оС
D.C. current gain $I_C = 1 A$; $V_{CE} = 3 V$	h _{FE}	typ.		150	00		
I _C = 5 A; V _{CE} = 3 V	hFE	> .		100	00		
Cut-off frequency I _C = 5 A; V _{CE} = 3 V	^f hfe	typ.		. !	50		kHz

MECHANICAL DATA

Fig. 1 TO-3.

Collector connected to case.

See also chapters Mounting instructions and Accessories.

R1 typ. $5 \text{ k}\Omega$ R2 typ. 80Ω

Fig. 2 Circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BDX65	65A	65B	65C	
Collector-base voltage (open emitter)	V _{CBO}	max.	80	100	120	140	v
Collector-emitter voltage (open base)	V _{CEO}	max.	60	80	100	120	V
Emitter-base voltage (open collector)	v_{EBO}	max.	5	5	5	5	٧
Collector current (d.c.)	lc .	max.		,	12		Α
Collector current (peak value)	¹ CM	max.		,	16		Α
Base current (d.c.)	I _B	max.	200				mΑ
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		1	17		w
Storage temperature	T _{stg}		-65	to + 20	00		оС
Junction temperature*	Tj	max.	*	20	00		оС
THERMAL RESISTANCE *							
From junction to mounting base	R _{th j-mb}	=		1	,5		oC/M

^{*} Based on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

0,4 mA

CHARACTERISTICS

T	=	25	οС	unless	otherwise	specified
---	---	----	----	--------	-----------	-----------

Collector cut-off current	
$I_E = 0$; $V_{CB} = V_{CEOmax}$	СВО
) - 0. V - 1/ V . T - 000 00	

$$I_E = 0$$
; $V_{CB} = \frac{1}{2} V_{CBOmax}$; $T_j = 200 \, ^{\circ}C$ I_{CBO} < 3 mA
 $I_B = 0$; $V_{CE} = \frac{1}{2} V_{CEOmax}$ I_{CEO} < 1 mA

Emitter cut-off current $I_C \approx 0$; $V_{EB} \approx 5 \text{ V}$

$$I_{C} = 0$$
; $V_{EB} = 5 \text{ V}$ $I_{EBO} < 5 \text{ m/}$ D.C. current gain (note 1)

IC = 1 A; VCE = 3 V BDX65; 65A; 65B BDX65C

Base-emitter voltage (notes 1 and 2)

 $I_C = 5 A; I_B = 20 mA$

Collector capacitance at f = 1 MHz $I_E = I_e = 0$; $V_{CB} = 10 \text{ V}$

Cut-off frequency

IC = 5 A; VCE = 3 V Turn-off breakdown energy with inductive load (Fig. 5) $-I_{Boff} = 0$; $I_{Con} = 6.3 A$

D.C. current gain ratio of complementary matched pairs $I_C = 5 A; V_{CE} = 3 V$

< 5 mA

<

hFE tvp. 1500 1250 hFE typ. > 1000 hFE 1250 hFF typ.

600 hFE typ. V_{BE} < 2,5 V

2 V < V_{CEsat} C_{C} typ. 200 pF

fhfe 50 kHz typ. 100 mJ E(BR) >

hFE1/hFF2 2.5

Notes

2. VBE decreases by about 3,6 mV/oc with increasing temperature.

^{1.} Measured under pulse conditions: $t_p < 300 \ \mu s$, $\delta < 2\%$.

Diode, forward voltage

1F = 5 A

Switching times

(between 10% and 90% levels)

 $I_{Con} = 5 A$; $I_{Bon} = -I_{Boff} = 20 mA$

Turn-on time

Turn-off time

٧F

ton

toff

typ.

typ.

typ.

1,2 V

1 μs

2,5 µs

Fig. 3 Switching times waveforms.

Fig. 4 Switching times test circuit.

Fig. 5 Test circuit for turn-off breakdown energy. V_{IM} = 12 V; R_B = 270 Ω ; I_C = 6,3 A; δ = 1%.

Fig. 6 Power derating curve.

Fig. 7 Safe Operating ARea at $T_{mb}\!\leqslant\!25$ °C of BDX65.

- I Region of permissible d.c. operation.
- II Permissible extension for repetitive pulse operation.
- (1) P_{tot max} and P_{tot peak max} lines.
- (2) Second-breakdown limits (independent of temperature).

Fig. 8 Safe Operating ARea at $T_{mb}\!\leqslant\!25\,^{o}\text{C}.$

- I Region of permissible d.c. operation.
- II Permissible extension for repetitive pulse operation.
- (1) Ptot max and Ptot peak max lines.
- (2) Second-breakdown limits (independent of temperature).

Fig. 9 Pulse power rating chart.

Fig. 10 Typical collector current.

Fig. 11 Typical collector-emitter saturation voltage.

Fig. 12 S.B. voltage multiplying factor at the I_{Cmax} level.

Fig. 13 S.B. current multiplying factor at $V_{\mbox{CEO}}$ 100 V and 60 V level.

Fig. 14 Typical d.c. current gain BDX65; 65A and 65B.

Fig. 15 Typical d.c. current gain for BDX65C.

Fig. 16 Typical small-signal current gain for BDX65; 65A and 65B.

Fig. 17 Typical small-signal current gain for BDX65C.

SILICON DARLINGTON POWER TRANSISTORS

P-N-P epitaxial base transistors in monolithic Darlington circuit for audio output stages and general amplifier and switching applications; TO-3 envelope. N-P-N complements are BDX67, BDX67A, BDX67B and BDX67C. Matched complementary pairs can be supplied.

QUICK REFERENCE DATA

		ВС	X66	66A	66B	66C	_
Collector-base voltage (open emitter)	$-v_{CBO}$	max.	60	80	100	120	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	60	80	100	120	V .
Collector current (peak value)	-I _{CM}	max.		- 20	Ď		Α
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		150)		W
Junction temperature	Τį	max.		200)		oC
D.C. current gain -I _C = 1 A; -V _{CE} = 3 V -I _C = 10 A; -V _{CE} = 3 V	hFE hFE	typ.		2000	_		
Cut-off frequency 	^f hfe	typ.		60)		kHz

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-3.

See also chapters Mounting instructions and Accessories.

R1 typ. $3 k\Omega$ R2 typ. 80Ω

BDX66 | 66A | 66B | 66C

Fig. 2 Circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-base voltage (open emitter)	-V _{CBO}	max.	60	80	100	120 V
Collector-emitter voltage (open-base)	-V _{CEO}	max.	60	80	100	120 V
Emitter-base voltage (open collector)	-V _{EBO}	max.	5	5	5	5 V
Collector current (d.c.)	-Ic	max.			16	Α `
Collector current (peak value)	-ICM	max.			20	A
Base current	−I _B	max.		;	250	mA
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.			150	W
Storage temperature	T _{stg}			65 to +	200	oC
Junction temperature*	Тj	max.			200	oC
THERMAL RESISTANCE *						
From junction to mounting base	Rth i-mh	= '		1	,17	oc/w

From	junction	to	mounting	base
------	----------	----	----------	------

Based on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

CHARACTERISTICS

T_i = 25 °C unless otherwise specified.

Collector cut-off current $I_E = 0$; $-V_{CB} = -V_{CBOmax}$

 $I_E = 0$; $-V_{CB} = 40 \text{ V}$; $T_i = 200 \text{ °C}$; BDX66

 $I_E = 0$; $-V_{CB} = 50 \text{ V}$; $T_i = 200 \text{ °C}$; BDX66A

 $I_E = 0$; $-V_{CB} = 60 \text{ V}$; $T_i = 200 \text{ °C}$; BDX66B

 $I_E = 0; -V_{CB} = 70 \text{ V}; T_i = 20 \text{ °C}; BDX66C$

 $I_B = 0$; $-V_{CE} = -\frac{1}{2}V_{CEOmax}$

Emitter cut-off current $I_C = 0; -V_{EB} = 5 V$

D.C. current gain * $-I_C = 1 A; -V_{CE} = 3 V$

 $-I_C = 10 A; -V_{CE} = 3 V$

 $-I_C = 16 A; -V_{CE} = 3 V$ Base-emitter voltage *

 $-I_C = 10 A; -V_{CE} = 3 V$

Collector-emitter saturation voltage * $-I_C = 10 A; -I_B = 40 mA$

Collector capacitance at f = 1 MHz

 $I_E = I_e = 0$; $-V_{CB} = 10 V$

Cut-off frequency $-I_C = 5 A; -V_{CE} = 3 V$

Small-signal current gain $-I_C = 5 A; -V_{CE} = 3 V; f = 1 MHz$

D.C. current gain ratio of complementary matched pairs

 $-I_C = 10 A; -V_{CF} = 3 V$ Diode, forward voltage

IF = 10 A

< -ICBO 1 mA

-ICBO < 5 mA

-ICEO < 3 mA

-IEBO 5 mA

typ.

2000

2,5 V

1000 hFE >

hFE

-VBE

hFE 1000 typ.

< < 2 V -V_{CEsat}

 C_c 300 pF typ.

60 kHz fhfe typ. 50 hfe typ.

hFE1/hFE2 < 2,5

۷F typ. 2 V

* Measured under pulse conditions: $t_p < 300 \,\mu s$, $\delta < 2\%$.

T_j = 25 °C unless otherwise specified (between 10% and 90% levels)

 t_{on} typ. 1 μ_s t_{off} typ. 3,5 μ_s

Fig. 3 Switching times waveforms.

Fig. 4 Switching times test circuit.

Fig. 5 Safe Operating ARea with the transistor forward biased.

- I Region of permissible d.c. operation.
- II Permissible extension for repetitive pulse operation.
- (1) Independent of temperature.

Fig. 6 Safe Operating ARea.

- Region of permissible d.c. operation.
- II Permissible extension for repetitive pulse operation.
- (1) Ptot max and Ptot peak max lines. (2) Second breakdown limits (independent of temperature).

Fig. 7 Power derating curve.

BDX66; 66A BDX66B; 66C

Fig. 9 S.B. voltage multiplying factor at the $I_{\mbox{Cmax}}$ level.

Fig. 10 S.B. current multiplying factor at the $V_{\mbox{CEOmax}}$ level.

Fig. 11 D.C. current gain.

Fig. 12 Collector-emitter saturation voltage.

Fig. 13 Base-emitter saturation voltage.

-I_C (A)

20

 $T_{amb} = 25$ °C

BDX66; 66A BDX66B; 66C

Fig. 14 Typical base-emitter voltage.

Fig. 15 Small-signal current gain.

SILICON DARLINGTON POWER TRANSISTORS

N-P-N epitaxial base transistors in monolithic Darlington circuit for audio output stages and general amplifier and switching applications; TO-3 envelope. P-N-P complements are BDX66, BDX66A, BDX66B and BDX66C. Matched complementary pairs can be supplied.

QUICK REFERENCE DATA

			BDX67	67A	67B	67C	
Collector-base voltage (open emitter)	V _{CBO}	max.	80	100	120	140	٧
Collector-emitter voltage (open base)	V _{CEO}	max.	60	80	100	120	٧
Collector current (peak value)	^I CM	max.		:	20		Α .
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		1!	50		w
Junction temperature	Τį	max.		20	00		oC.
D.C. current gain I _C = 1 A; V _{CE} = 3 V	hFE	typ.		13!		•	
I _C = 10 A; V _{CE} = 3 V	hFE	>		100	00		
Cut-off frequency IC = 5 A; VCE = 3 V	^f hfe	typ.	2	į	50		kHz

MECHANICAL DATA

Fig. 1 TO-3.

Collector connected to case.

Dimensions in mm

See also chapters Mounting instructions and Accessories.

R1 typ. $3 k\Omega$ R2 typ. 80Ω

Fig. 2 Circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		•					
			BDX67	67A	67B	67C	
Collector-base voltage (open emitter)	V _{CBO}	max.	80	100	120	140	٧
Collector-emitter voltage (open base)	V _{CEO}	max.	60	80	100	120	٧
Emitter-base voltage (open collector)	V _{EBO}	max.	5	5	5	5	٧
Collector current (d.c.)	Ic	max.			16		Α
Collector current (peak value)	¹ CM	max.			20		Α
Base current (d.c.)	IB	max.		2	50		mΑ
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		. 1	50		w
Storage temperature	T _{stg}		6!	5 to + 2	00		οС
Junction temperature *	Tj	max.		2	00		οС
THERMAL RESISTANCE *							
From junction to mounting base	R _{th j-mb}	= .	,	1,	17		oC/

^{*} Based on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

CHARACTERISTICS

I_F = 10 A

T_i	≈ 2	5 °C	unless	otherwise	specified
-------	-----	------	--------	-----------	-----------

,			•
Collector	cut-off	current	

$I_E = 0$; $V_{CB} = V_{CEOmax}$	^I CBO	<	1 mA
$I_E = 0$; $V_{CB} = \frac{1}{2} V_{CBOmax}$; $T_j = 200 \text{ oC}$	^I CBO	<	5 mA
$I_D = 0$: $V_{CC} = \frac{1}{2} V_{CC}$	loco	<i>_</i>	3 mΔ

Emitter-cut-off current
$$I_{C}=0$$
; $V_{EB}=5$ V I_{EBO} $<$ 5 mA D.C. current gain * $I_{C}=1$ A; $V_{CE}=3$ V I_{FE} typ. 1350

Fase-entitler voltage
$$I_{C} = 10 \text{ A}$$
; $V_{CE} = 3 \text{ V}$ $V_{BE} < 2.5 \text{ V}$ Collector-emitter saturation voltage * $I_{C} = 10 \text{ A}$; $I_{B} = 40 \text{ mA}$ $V_{CEsat} < 2 \text{ V}$

Collector capacitance at f = 1 MHz
$$I_E = I_e = 0$$
; $V_{CB} = 10 \text{ V}$ C_c typ. 300 pF Cut-off frequency

Cut-off frequency			
$I_C = 5 A; V_{CE} = 3 V$	^f hfe	typ.	50 kHz
Turn-off breakdown energy with inductive load			
$-I_{Boff} = 0$; $I_{Con} = 7.8 A$; see Fig. 5	E(BR)	> ,	150 mJ

Small-signal current gain			
$I_C = 5 A; V_{CE} = 3 V; f = 1 MHz$	h _{fe}	typ.	20

D.C. current gain ratio of		
complementary matched pairs	**	
$I_C = 10 A; V_{CE} = 3 V$	hFE1/hFE2 <	2,5
Diodo forward voltage		

٧F

typ.

2,5 V

^{*} Measured under pulse conditions: $t_p < 300 \mu s$, $\delta < 2\%$.

T_j = 25 °C unless otherwise specified

Switching times

(between 10% and 90% levels)

Icon = 10 A; IBon = -IBoff = 40 mA;

turn-on time

turn-off time

 t_{on} typ. 1 μ s t_{off} typ. 3,5 μ s

Fig. 3 Switching times waveforms.

Fig. 4 Switching times test circuit.

Fig. 5 Test circuit for turn-off breakdown energy. V_{IM} = 12 V; R_B = 270 Ω ; I_C = 7,8 A; t_p = 1 ms; δ = 1%.

Fig. 6 Safe Operating ARea at T_{mb} = 25 °C of BDX67.

- I Region of permissible d.c. operation.
- I Permissible extension for repetitive pulse operation.
- (1) Ptot max and Ptot peak max lines.
- (2) Second breakdown limits (independent of temperature).

Fig. 7 Safe Operating ARea at $T_{mb} = 25$ °C.

- I Region of permissible d.c. operation.
- II Permissible extension for repetitive pulse operation.
- (1) Ptot max and Ptot peak max lines.
- (2) Second breakdown limits (independent of temperature).

Fig. 8 Power derating curve.

Fig. 9 Pulse power rating chart.

Fig. 10 S.B. voltage multiplying factor at the $I_{\mbox{Cmax}}$ level.

Fig. 11 S.B. current multiplying factor at the $V_{\mbox{CEOmax}}$ level.

Fig. 12 D.C. current gain.

Fig. 13 Collector-emitter saturation voltage.

Fig. 14 Base-emitter saturation voltage.

Fig. 15 Typical base-emitter voltage at I_C = 10 A and I_C = 0,5 A.

Fig. 16 Small-signal current gain.

SILICON EPITAXIAL-BASE POWER TRANSISTOR

 $N\mbox{-P-N}$ transistor in a plastic envelope, intended for industrial amplifier and switching applications. P-N-P complement is BDX78.

QUICK REFERENCE DATA					
Collector-emitter voltage (open base)	v_{CEO}	max.	80	V	
Collector current (d.c.)	$I_{\mathbf{C}}$	max.	8	A	
Total power dissipation up to T_{mb} = 25 $^{o}\mathrm{C}$	P _{tot}	max.	60	W	
D.C. current gain I _C = 2 A; V _{CE} = 2 V	\mathtt{h}_{FE}	> ,	30		
Cut-off frequency I _C = 0, 3 A; V _{CE} = 3 V	^f hfe	>	25	kHz	

MECHANICAL DATA

Dimensions in mm

TO-220

For mounting instructions and accessories see section Accessories.

	•	
	•	

2

From junction to ambient in free air

the way to be a second of the		•		
RATINGS Limiting values in accordance with	the Absolute M	aximum Sys	tem (IEC	134)
Voltage				
Collector-base voltage (open emitter)	v_{CBO}	max.	100	V
Collector-emitter voltage (open base)	v_{CEO}	max.	80	V
Emitter-base voltage (open collector)	v_{EBO}	max.	5	V
Current				
Collector current (d.c.)	$I_{\mathbf{C}}$	max.	8	Α
Collector current (peak value, t _p ≤ 10 ms)	$I_{\mathbf{CM}}$	max.	12	A
Collector current (non-repetitive peak value, t _p ≤2 ms)	I _{CSM}	max.	25	A
Temperature				
Storage temperature	$T_{ ext{stg}}$	-65	to +150	$^{\mathrm{o}}\mathrm{C}$
Junction temperature	Tj	max.	150	$^{\circ}C$
Power dissipation				
Total power dissipation up to $T_{mb} = 25$ ^{o}C	P _{tot}	max.	60	w
THERMAL RESISTANCE				
From junction to mounting base	R _{th j-mb}	=	2,08	°C/W

 $R_{th\ j-mb}$

R_{th j-a}

70

oC/W

CHARACTERISTICS	$T_i = 25$ OC unless otherwise specified					
Collector cut-off current			•			
$I_B = 0$; $V_{CE} = 30 \text{ V}$	ICEO	<	1	mA		
I_E = 0; V_{CB} = 40 V; T_j = 150 $^{\rm o}{\rm C}$	I_{CBO}	<	1	mA		
Emitter cut-off current						
$I_C = 0$; $V_{EB} = 5 V$	I_{EBO}	<	5	mA		
Base-emitter voltage 1)						
$I_C = 3 A$; $V_{CE} = 2 V$	V_{BE}	<	1,5	$^{\prime}$ $^{\prime}$ $^{\prime}$		
Knee voltage 1)	**					
$I_C = 3 A$; $I_B = value for which$						
I_{C} = 3, 3 A at V_{CE} = 2 V	v_{CEK}	typ.	1	V		
Saturation voltage 1)						
$I_C = 3 A$; $I_B = 0, 3 A$	v_{CEsat}	<	• 1	V		
D.C. current gain 1)						
$I_C = 2 A$; $V_{CE} = 2 V$	${\tt h_{FE}}$	> '	30			
Cut-off frequency	1					
$I_C = 0, 3 A; V_{CE} = 3 V$	fhfe	>	25	kHz		
Transition frequency at f = 1 MHz						

 \mathbf{f}_{T}

 $-I_E$ = 0,3 A; V_{CB} = 3 V

MHz

¹⁾ Measured under pulse conditions: $t_p < 300~\mu s,~\delta < 2\%.$

Safe Operating Area with the transistor forward biased

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation

¹⁾ Independent of temperature.

7

SILICON EPITAXIAL-BASE POWER TRANSISTOR

P-N-P transistor in a plastic envelope, intended for industrial amplifier and switching applications. N-P-N complement BDX77.

QUICK REFERENCE DATA						
Collector-emitter voltage (open base)	-V _{CEO}	max.	80	v		
Collector current (d.c.)	^{-I}C	max.	8	A		
Total power dissipation up to T_{mb} = 25 $^{o}\mathrm{C}$	P _{tot}	max.	60	W		
D.C. current gain -I _C = 2 A; -V _{CE} = 2 V	${ t h_{FE}}$	>	30			
Cut-off frequency -I _C = 0,3 A; -V _{CE} = 3 V	^f hfe	>	25	kHz		

MECHANICAL DATA

Dimensions in mm

TO-220

Collector connected to mounting base

For mounting instructions and accessories see section Accessories.

RATINGS Limiting values in accordance with	the Absolute N	Maximum Syste	m (IEC	134)
Voltage				
Collector-base voltage (open emitter)	-V _{CBO}	max.	80	v
Collector-emitter voltage (open base)	-V _{CEO}	max.	80	V
Emitter-base voltage (open collector)	$-v_{EBO}$	max.	5	V
Current				
Collector current (d.c.)	-I _C	max.	8	Α
Collector current (peak value, t _p ≤ 10 ms)	$-I_{\mathrm{CM}}$	max.	12	Α
Collector current (non-repetitive peak value, $t_p \le 2 \text{ ms}$)	-I _{CSM}	max.	25	A
Temperature				
Storage temperature	$\mathrm{T}_{ ext{stg}}$	- 65 to	o +150	o _C
Junction temperature	$T_{\mathbf{j}}$	max.	150	°C
Power dissipation				
Total power dissipation up to T_{mb} = 25 $^{o}\mathrm{C}$	P_{tot}	max.	60	w

THERMAL RESISTANCE					
From junction to mounting base	R _{th} j-mb	=	2,0	38	o _{C/W}
From junction to mounting base in free air	R.,	=		70	°C/W

CHARACTERISTICS	$T_j = 25$ °C u	nless otherwi	se spe	cified
Collector cut-off current				
$I_B = 0$; $-V_{CE} = 30 \text{ V}$	-I _{CEO}	< .	1	mA
$I_E = 0$; $-V_{CB} = 40 \text{ V}$; $T_j = 150 ^{\circ}\text{C}$	-I _{CBO}	< 1	1	mA
Emitter cut-off current				
$I_C = 0$; $-V_{EB} = 5 \text{ V}$	-I _{EBO}	<	5	mA
Base-emitter voltage 1)				
$-I_C$ = 3 A; $-V_{CE}$ = 2 V	$-v_{BE}$	<	1,5	V
Knee voltage 1)				
$-I_C = 3 A$; $-I_B = value at which$				
$-I_C$ = 3, 3 A at $-V_{CE}$ = 2 V	-V _{CEK}	typ.	1	V
Saturation voltage 1)				
$-I_C = 3 A; -I_B = 0, 3 A$	-V _{CEsat}	<	1	v .
D.C. current gain 1)				
$-I_C = 2 A$; $-V_{CE} = 2 V$	h_{FE}	>	30	
Cut-off frequency				
$-I_C = 0, 3 A; -V_{CE} = 3 V$	^f hfe	>	25	kHz

 $f_{\mathbf{T}}$

 $\frac{\text{Transition frequency}}{I_{E}} \text{ = 0,3 A; -V}_{CB} = 3 \text{ V}$

 MHz

¹⁾ Measured under pulse conditions: $t_p < 300 \, \mu s, \, \delta < 2\%$.

Safe Operating Area with the transistor forward biased

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation

 $^{^{1}}$) Independent of temperature.

SILICON POWER TRANSISTORS

N-P-N transistors in TO-3 envelope for audio output stages and general amplifier and switching applications. P-N-P complements are BDX92, BDX94 and BDX96.

QUICK REFERENCE DATA							
			BDX91	BDX93	BDX95		
Collector-base voltage (open emitter)	V _{CBO}	max.	60	80	100	v	
Collector-emitter voltage (open base)	v_{CEO}	max.	60	80	100	v	
Collector current (peak value)	$^{\mathrm{I}}$ CM	max.		12		A	
Total power dissipation up to $T_{mb} = 25$ °C	P _{tot}	max.		90		w	
Junction temperature	$^{\mathrm{T}}{}_{\mathrm{j}}$	max.		200		°C	
D.C. current gain $I_C = 3$ A; $V_{CE} = 2$ V	$h_{ extbf{FE}}$	>		20		·	
Transition frequency $I_C = 1 A; V_{CE} = 10 V$	$f_{\mathbf{T}}$	>		4		MHz	

MECHANICAL DATA

Dimensions in mm

TO-3

Collector connected to envelope

For mounting instructions and accessories see section Accessories.

RATINGS Limiting values in	accordance with the A	Absolute Maximum System (IEC 134)
----------------------------	-----------------------	-----------------------------------

KATINGS Limiting values in accordance	with the Ar	solute 1	viaximum	System	(IEC I	34)
Voltages			BDX91	BDX93	BDX9	95
Collector-base voltage (open emitter)	v_{CBO}	max.	60	80	100	v
Collector-emitter voltage (open base)	v _{CEO}	max.	60	80	100	v
Emitter-base voltage (open collector)	V _{EBO}	max.	5	5	5	v
Currents				•		
Collector current (d.c.)	$^{ m I}_{ m C}$	max.		8		A
Collector current (peak value)	I _{CM}	max.	-	12		A
Power dissipation						
Total power dissipation up to $T_{mb} = 25$ °C	P _{tot}	max.	,	. 90		w
Temperatures		,				
Storage temperature	${\rm T_{stg}}$		- 65 t	o +200		°C
Junction temperature	Tj	max.		200		°C
THERMAL RESISTANCE						
From junction to mounting base	R _{th j-n}	nb =		1,94		°C/W

CHARACTERISTICS	$T_j = 25$ OC unless	otherwise	specified	
Collector cut-off current				
$I_E = 0$; $V_{CB} = V_{CBOmax}$	I_{CBO}	<	0, 1	mA
$I_E = 0$; $V_{CB} = 30 \text{ V}$; $T_j = 200 ^{\circ}\text{C}$: BDX91)			
$I_E = 0$; $V_{CB} = 40 \text{ V}$; $T_j = 200 ^{\circ}\text{C}$: BDX93	I _{CBO}	<	2	mA
$I_E = 0$; $V_{CB} = 50 \text{ V}$; $T_j = 200 ^{\circ}\text{C}$: BDX95) .			
$I_B = 0$; $V_{CE} = V_{CEOmax}$	I_{CEO}	<	1	mA
Emitter cut-off current				
$I_C = 0;$ $V_{EB} = 5 V$	I_{EBO}	<	1	mA
D.C. current gain 1)				
$I_C = 3 A$; $V_{CE} = 2 V$	h_{FE}	>	20	
$I_C = 5 A; V_{CE} = 2 V$	$^{ m h_FE}$	>	10	*
Base-emitter voltage 1)				
$I_C = 3 A$; $V_{CE} = 2 V$	v_{BE}	<	1, 4	v
Collector-emitter saturation voltage 1)				
$I_C = 3 \text{ A}; I_B = 0, 3 \text{ A}$	v_{CEsat}	<	0,8	V
$I_C = 5 A$; $I_B = 1 A$	v_{CEsat}	<	1	v
Base-emitter saturation voltage 1)				
$I_C = 3 A$; $I_B = 0, 3 A$	v_{BEsat}	<	1,5	V
$I_C = 5 A$; $I_B = 1 A$	v_{BEsat}	<	2	V
Small-signal current gain at f = 1 kHz				
$I_C = 0, 5 A; V_{CE} = 10 V$	h _{fe}	>	40	
Transition frequency				

 $I_{C} = 1 A; V_{CE} = 10 V$

MHz

 $[\]overline{l}$) Measured under pulse conditions: $t_p <$ 300 $\mu s,~\delta < 2\%.$

CHARACTERISTICS (continued)

 $T_i = 25$ o C unless otherwise specified

Switching times (between 10% and 90% levels)

$$I_{Con} = 3 \text{ A}; I_{Bon} = -I_{Boff} = 0, 3 \text{ A}; V_{CC} = 30 \text{ V}$$

→ Turn-on time

 $t_{\rm On}$ typ. $0.2~\mu s$

Turn-off time

typ. 1,2 μs

Test circuit

 $V_{IM} = 55 \text{ V}$ $t_r = t_f = 15 \text{ ns}$

 $t_p = 10 \ \mu s$

 $T = 500 \, \mu s$

Typical small-signal current gain as a function of collector current; $V_{\mbox{CE}}$ = 2 V.

Safe Operating ARea with the transistor forward biased

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation

¹⁾ Ptot max and Ppeak max lines.

 $^{^{2}}$) Second-breakdown limits (independent of temperature).

BDX91 BDX93 BDX95

7

SILICON POWER TRANSISTORS

P-N-P transistors in TO-3 envelope for audio output stages and general amplifier and switching applications. N-P-N complements are BDX91, BDX93 and BDX95.

QUICK REFERENCE DATA											
			BDX92	BDX94	BDX96						
Collector-base voltage (open emitter)	-V _{CBO}	max.	60	80	100	V					
Collector-emitter voltage (open base)	-V _{CEO}		60	80	100	v					
Collector current (peak value)	$-I_{CM}$	max.		12		A					
Total power dissipation up to $T_{mb} = 25$ ^{o}C	P _{tot}	max.		90		w .					
Junction temperature	T _j	max.		200		°C					
D.C. current gain											
$-I_C = 3$ A; $-V_{CE} = 2$ V	h_{FE}	>		20							
Transition frequency											
$-I_{C} = 1 \text{ A}; -V_{CE} = 10 \text{ V}$	f _T	>		4		MHz					

MECHANICAL DATA

Dimensions in mm

TO-3

Collector connected to envelope

For mounting instructions and accessories see section Accessories.

 ${f RATINGS}$ Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages			•	BDX96	,
			DDA94	BDX90	
Collector-base voltage (open emitter)	CBO max.	60	80	100	V
Collector-emitter voltage (open base) -V		60	80	100	v
Emitter-base voltage (open collector) -V		5	5	5	V
Currents	, ₁₀ 2				Λ.
Collector current (d.c.)	max.		8		Α
Collector current (peak value)	max.		12		Α
Power dissipation					
Total power dissipation up to $T_{mb} = 25$ °C P_{tot}	max.		90		w
Temperatures					
Storage temperature T _{sts}	r	-65 to +200			$^{\mathrm{o}}\mathrm{C}$
Junction temperature T_j	max.		200	•	oC ,
THERMAL RESISTANCE	a.		÷		
From junction to mounting base $$R_{\mbox{\scriptsize th}}$$	R _{th j} -mb		1,94		

 $f_{\mathbf{T}}$

Transition frequency

 $-I_C = 1 A; -V_{CE} = 10 V$

MHz

 $[\]overline{\mbox{1}}$) Measured under pulse conditions: $t_p <$ 300 $\mu \mbox{s}, ~\delta <$ 2%.

CHARACTERISTICS (continued)

 $T_i = 25$ °C unless otherwise specified

Switching times (between 10% and 90% levels)

$$-I_{\text{Con}} = 3 \text{ A}; -I_{\text{Bon}} = I_{\text{Boff}} = 0, 3 \text{ A}; V_{\text{CC}} = -30 \text{ V}$$

→ Turn-on time

 $t_{\rm on}$ typ. $0, 2 \mu s$ $< 1 \mu s$

→ Turn-off time

 $t_{\rm off}$ typ. 1 μs 2 μs

Test circuit

 V_{IM} = 55 V $t_r = t_f = 15 \text{ ns}$ t_p = 10 μs T = 500 μs

Typical small-signal current gain as a function of collector current; $-V_{\rm CE}$ = 2 V.

Safe Operating ARea with the transistor forward biased

I Region of permissible d.c. operation

 $\hbox{II Permissible extension for repetitive pulse operation}\\$

¹⁾ P and P peak max lines.

²⁾ Second-breakdown limits (independent of temperature).

BDX92 BDX94 BDX96

 $N\mbox{-P-N}$ transistor in a TO-3 metal envelope, intended for use in linear applications such as hi-fi amplifiers and signal processing circuits.

QUICK REFERENCE DATA							
Collector-base voltage (open emitter)	v_{CBO}	max. 100	V				
Collector-emitter voltage (open base)	$v_{\rm CEO}$	max. 60	V				
Collector current (peak value)	I_{CM}	max. 15	Α				
Total power dissipation up to T_{mb} = 25 °C	P _{tot}	max. 115	W				
Junction temperature	T_{j}	max. 200	oC				
D.C. current gain I _C = 4 A; V _{CE} = 4 V	h_{FE}	20 to 70					
Transition frequency at f = 1 MHz I _C = 1 A; V _{CE} = 4 V	${ m f_{T}}$	typ. 1	MHz				

MECHANICAL DATA

Dimensions in mm

Collector connected to envelope TO-3

For mounting instructions and accessories, see section Accessories.

 $\pmb{RATINGS} \ Limiting \ values \ in \ accordance \ with \ the \ Absolute \ Maximum \ System \ (IEC 134)$

•		-		
Voltages				
Collector-base voltage (open emitter)	$v_{ ext{CBO}}$	max.	100	v
Collector-emitter voltage (open base)	v_{CEO}	max.	60	v 1)
Collector-emitter voltage (R_{BE} = 100 Ω)	V _{CER}	max.	70	v 1)
Emitter-base voltage (open collector)	v_{EBO}	max.	7	\mathbf{v}
Currents	are the second			
Collector current (d.c.)	$I_{\mathbf{C}}$	max.	15	A
Collector current (peak value)	I_{CM}	max.	15	Α
Emitter current (peak value)	$-I_{EM}$	max.	15	A
Power dissipation	9			
Total power dissipation up to T_{mb} = 25 $^{\rm o}$	C P _{tot}	max.	115	w
Temperatures				
Storage temperature	${ m T_{stg}}$	-65 to	+200	°C
Junction temperature	$\mathbf{T_{j}}$	max.	200	°C
THEDMAI DESIGNANCE				

THERMAL RESISTANCE

From junction to ambient in free air $R_{th j-a} = 40 \text{ oC/W}$ From junction to mounting base $R_{th j-mb} = 1,5 \text{ oC/W}$

 $¹⁾I_{C} = 0.2 A$

		· · · · · · · · · · · · · · · · · · ·
CHARACTERISTICS	$T_j = 25$ °C unless oth	nerwise specified
Collector cut-off currents		
I _E = 0; V _{CB} = 100 V	$I_{ m CBO}$	typ. $3 \mu A$ < $5 mA$
$-V_{BE}$ = 1.5 V; V_{CE} = 100 V	I_{CEX}	typ. 4 μ A < 5 mA
$-V_{BE} = 1.5 \text{ V}; V_{CE} = 100 \text{ V}; T_j = 150 ^{\circ}\text{C}$	I_{CEX}	typ. 0.3 mA < 10 mA
Emitter cut-off current		
I _C = 0; V _{EB} = 7 V	${ m I}_{ m EBO}$	typ. 1 nA < 5 mA
Base-emitter voltage		
I _C = 4 A; V _{CE} = 4 V	$V_{ m BE}$	typ. 1.1 V < 1.8 V
Collector-emitter saturation voltage		
$I_{C} = 4 \text{ A}; I_{B} = 0.4 \text{ A}$	v_{CEsat}	typ. 0.4 V < 1.1 V
Knee voltage		• '
I_C = 10 A; I_B = value for which I_C = 11 A at V_{CE} = 5 V	v_{CEK}	< 3.0 V
D.C. current gain		
$I_C = 4 \text{ A; } V_{CE} = 4 \text{ V}$	${\sf h_{FE}}$	20 to 70
Collector capacitance at f = 1 MHz		
$I_{E} = I_{e} = 0; V_{CB} = 20 \text{ V}$	$C_{\mathbf{c}}$	typ. 250 pF
Transition frequency at f = 1 MHz		
I _C = 1 A; V _{CE} = 4 V	$^{ m f}{}_{ m T}$	typ. 1 MHz
Cut-off frequency		
I _C = 1 A; V _{CE} = 4 V	f _{hfe}	typ. 9 kHz
		•

CHARACTERISTICS (continued)

T_j = 25 °C unless otherwise specified

Switching times

$$I_C$$
 = 4 A; I_B = $-I_{BM}$ = 400 mA
Delay time
Rise time
Storage time
Fall time

typ. 0.4 td μs t_r typ. μs typ.

 $t_{\mathbf{S}}$

tf

Test circuit:

Pulse generator:

Pulse duration

Rise time

 \leq 10 t_r ns

10 μs Oscilloscope:

Rise time

 $t_{\mathbf{r}}$ ≤ 10 ns

 μs

typ. 2.5 μs

Input resistance Ω

- I Region of permissible operation under all base-emitter conditions provided no limiting values are exceeded.
- II Additional region of operation when the transistor is cut-off with -VBE $\leq 1.5 \ V$.
- III Operation during switching off is allowed, provided the transistor is cut-off with $-V_{BE} \le 1.5 \text{ V}$ and the transient energy does not exceed 75 mWs.

High-speed switching n-p-n transistors in a metal envelope intended for use in converters, inverters, switching regulators and switching control amplifiers.

QUICK REFERENCE DATA							
		В	DY90	BDY91	BDY92		
Collector-base voltage (open emitter)	v_{CBO}	max.	120	100	80 V		
Collector-emitter voltage (open base)	v_{CEO}	max.	100	80	60 V		
Collector current (peak value)	I_{CM}	max.	15	15	15 A		
Total power dissipation up to T_{mb} =75 o C	P_{tot}	max.	40	40	40 W		
Collector-emitter saturation voltage I_C = 10 A; I_B = 1 A	V _{CEsat}	. <	1.5	1.5	1.0 V		
Fall time $I_C = 5.0 \text{ A}; I_B = -I_{BM} = 0.5 \text{A}$ $V_{CC} = 30 \text{ V}$	t_f	<	0.2	0.2	0.2 μs		
Transition frequency at f = 5 MHz I_C = 0.5 A; V_{CE} = 5 V	$f_{\mathbf{T}}$	typ.	70	70	70 MHz		

MECHANICAL DATA

Collector connected to case

TO-3

Dimensions in mm

For mounting instructions and accessories, see section Accessories.

 ${f RATINGS}$ Limiting values in accordance with the Absolute Maximum System (IEC 134)

KATINGS Limiting values in accordance wi	muie Abst	orare M	axiiiiu	iii systeiii	(150 134
Voltages (See also pages 4, 5 and 6)		BI	OY90	BDY91	BDY92
Collector -base voltage (open emitter)	v_{CBO}	max.	120	100	80 7
Collector-emitter voltage ($V_{EB} = 1.5 \text{ V}$)	VCEX	max.	120	100	80 7
Collector-emitter voltage (open base)	v_{CEO}	max.	100	80	60 7
Emitter-base voltage (open collector)	v_{EBO}	max.	6	6	6 7
Currents					
Collector current (d.c.)	$I_{\mathbf{C}}$		max.	10) A
Collector current (peak value)	I_{CM}		max.	1	5 A
Base current (d.c.)	I_B		max.	:	2 A
Base current (peak value)	I_{BM}		max.	;	3 A
Emitter current (d.c.)	$-I_{\mathbf{E}}$		max.	1.	I A
Emitter current (peak value)	-I _{EM}		max.	15	5 A
Power dissipation					
Total power dissipation up to $T_{\mbox{\scriptsize mb}}\mbox{=}75\mbox{\rm }^{\mbox{\scriptsize o}}\mbox{C}$	P _{tot}		max.	4	w
Temperatures					
Storage temperature	T_{stg}		-6	5 to + 17	5 °C
Junction temperature	$T_{\mathbf{j}}$		max.	17	5 °C
THERMAL RESISTANCE		-			
From junction to mounting base	R _{th j} .	-mb	=	2.5	°C/W
CHARACTERISTICS	Tj =	25°C u	nless	otherwise	specifie
Collector cut-off current					
$V_{EB} = 1.5 \text{ V}; V_{CE} = V_{CEXmax};$					
$T_{mb} = 150^{\circ}C$	ICEX		<	3	B mA
Saturation voltages					
$I_C = 5 A$; $I_B = 0.5 A$	V _{CE}	sat	< <		5 V 2 V
BDY90	v_{BEs}				
$I_C = 10 \text{ A}; I_B = 1 \text{ A}$ BDY91	V _{CE}	sat	<	1.5	5. V
BDY92	CE	sat	<	1.0	V -
BDY90 to 92	v_{BEs}	sat	<	1.5	v

CHARACTERISTICS (continued)

D. C. current gain

$$I_C = 1 A$$
; $V_{CE} = 2 V$

$$I_C = 5 A$$
; $V_{CE} = 5 V$

$$I_C = 10 \text{ A}; V_{CE} = 5 \text{ V}$$

Transition frequency at f = 5 MHz

$$I_C = 0.5 \text{ A}; V_{CE} = 5 \text{ V}$$

Switching times

Turn on time

$$I_C = 5 \text{ A}$$
; $I_B = -I_{BM} = 0.5 \text{ A}$

$$V_{CC} = 30 \text{ V}$$

Turn off time

$$I_C = 5 \text{ A}$$
; $I_B = -I_{BM} = 0.5 \text{ A}$

$$V_{CC} = 30 \text{ V storage time}$$

fall time

Test circuit

Pulse generator:

Rise time
$$t_r < 50$$
 ns Fall time $t_f < 50$ ns

$T_i = 25$ °C unless otherwise specified

 $h_{\rm FE}$

30 to 120

$$t_{\rm f}$$
 < 0.2 $\mu {\rm s}$

Pulse duration 20 μs = 0.02Duty cycle

Safe Operating Area (Regions I and II forward biased)

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation
- III Repetitive pulse operation in this region is allowable, provided $-V_{\rm BE} \ge 1.5~\rm V$

For Ptot max versus Tmb see page 10.

¹⁾ Independent of temperature

APPLICATION INFORMATION

Typical operation in a 250 W d.c. to d.c. converter with two BDY92 transistors

Each transistor is mounted on a heatsink of $R_{\mbox{th }h\mbox{-}a}$ = 15 $^{o}\mbox{C/W}$

$$I_S = 10, 5 A$$

$$V_O = 240 \text{ V}$$

$$P_O = 250 \text{ W}$$
 $n = 84 \%$

$$f = 28,5 \text{ kHz}$$

·Losses at PO = 250 W

In transistors 2 x 6 W In diodes 2 x 2 W In transformers 8 W

Circuit losses 14 W

Transformer data

T₁ = Ferroxcube core E55 material 3E1

Cat. No. 4332 020 34900

 $n_1 + n_1'$ is bifilarly wound

 $n_1 = n_1' = 9 \text{ turns}, \phi 1, 4 \text{ mm}$

 $n_2 = n_2 = 85 \text{ turns}, \ \phi \ 0.5 \text{ mm}$

 T_2 = Ferroxcube core H16 material 3E2 Cat. No. 4322 020 33030

 $n_S + n_S'$ is bifilarly wound

 $n_S = n_S = 4 \text{ turns}, \ \phi 0,7 \text{ mm}$

 $n_p = 24 \text{ turns}, \phi 0, 3 \text{ mm}$

High voltage, high speed switching n-p-n power transistors in a TO-3 envelope, intended for use in converters, inverters, switching regulators and motor control systems.

QUICK REFERENCE DATA								
			BDY93	BDY94				
Collector-emitter peak voltage (V_{BE} = 0)	v_{CESM}	max.	750	750	v			
Collector-emitter voltage ($R_{BE} = 100 \Omega$)	v_{CER}	max.	450	400	v			
Collector-emitter voltage (open base)	v_{CEO}	max.	350	300	v			
Collector current (d.c.)	I_C	max.	4	4	A			
Collector current (peak value)	I_{CM}	max.	7	7	A			
Total power dissipation up to $T_{ m mb}$ = 75 °C	P _{tot}	max.	30	30	w			
Collector-emitter saturation voltage $I_C = 2,5 \text{ A}$; $I_B = 0,5 \text{ A}$	V _{CEsat}	<	1,5	1,5	V			
Fall time $I_C = 2.5 \text{ A}$; $I_{B1} = 0.5 \text{ A}$; $-I_{B2} = 1 \text{ A}$	t_f	typ.	0,4	0,5	μs			

MECHANICAL DATA

Dimensions in mm

Collector connected to case

TO-3

For mounting instructions and accessories, see section Accessories.

High voltage, high speed switching n-p-n power transistors in a TO-3 envelope, intended for use in converters, inverters, switching regulators and motor control systems.

QUICK REFERENCE DATA								
			BDY96	BDY97				
Collector-emitter peak voltage ($V_{BE} = 0$)	v_{CESM}	max.	750	750	V·			
Collector-emitter voltage (R_{BE} = 100 Ω)	v_{CER}	max.	450	400	v			
Collector-emitter voltage (open base)	v_{CEO}	max.	350	300	v			
Collector current (d.c.)	$\mathbf{I}_{\mathbf{C}_{i}}$	max.	10	10	Α			
Collector current (peak value)	I_{CM}	max.	15	15	A			
Total power dissipation up to $T_{ m mb}$ = 90 °C	P _{tot}	max.	40	40	w			
Collector-emitter saturation voltage $I_C = 5 A$; $I_B = 1 A$	$v_{ m CEsat}$	<	1,5	1,5	v			
Fall time $I_C = 5 A; I_{B1} = 1 A; -I_{B2} = 2 A$	^t f	typ.	0,3	0,4	μs			

MECHANICAL DATA

Dimensions in mm

TO-3

Collector connected to case

For mounting instructions and accessories, see section $\mbox{\sc Accessories}$

Ξ

HIGH-VOLTAGE TRANSISTOR

Silicon n-p-n transistor in TO-126 plastic envelope intended for use as a driver for line output transistors in colour tv receivers.

QUICK REFERENCE DATA

GOIOR HEI EHENGE DATA				
Collector-base voltage (open emitter)	V _{CBO}	max.	300	٧
Collector-emitter voltage (open base)	V _{CEO}	max.	250	V
Collector current (peak value)	^I CM	max.	300	mΑ
Total power dissipation up to T _{mb} = 90 °C	P _{tot}	max.	6	W
Junction temperature	Τį	max.	150	oC
D.C. current gain	•			
$I_C = 20 \text{ mA}; V_{CE} = 10 \text{ V}$	hFE	typ.	45	
Storage time	t _s	typ.	0.5	μs

MECHANICAL DATA

Dimensions in mm

Fig.1 TO-126 (SOT-32)

Collector connected to mounting base

(1) Within this region the cross-section of the leads is uncontrolled

See also chapters Mounting Instructions and Accessories.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-base voltage (open emitter)	V _{CBO}	max.	300	V
Collector-emitter voltage (R _{BE} \leq 1 k Ω)	VCER	max.	300	V
Collector-emitter voltage (open base)	V _{CEO}	max.	250	V
Emitter-base voltage (open collector)	VEBO	max.	5	V
Collector current (continuous)	Ic	max.	100	mA
Collector current (peak value) *	^I CM	max.	300	mΑ
Total power dissipation up to T _{mb} = 90 °C	P _{tot}	max.	6	W
up to T _{amb} = 70 °C	P _{tot}	max.	0.8	W
Storage temperature	T _{stg}	−65 t	o +150	oC
Operating junction temperature	T_{j}	max.	150	OC
THERMAL RESISTANCE				
From junction to mounting base	R _{th i-mb}	= '.	10	oC/M
From junction to ambient	R _{th j-a}	=	100	oC/M

^{*} Precautions should be taken during switch-on of the BF419 where an overshoot of current is likely to occur. The amplitude of the overshoot depends on the relative magnitude of stray external capacities to the transistor collector capacity. It is desirable to keep the stray capacities to a minimum by short lead lengths etc. so as to minimise the area of the switching path.

CHARACTERISTICS

T_i = 25 °C

Collector cut-off current		_	F 0	
$I_E = 0$; $V_{CB} = 250 \text{ V}$	CBO	< .	50	nΑ
Emitter cut-off current	•			
$I_C = 0$; $V_{EB} \approx 3 \text{ V}$	^I EBO	<	50	nΑ
D.C. current gain				
$I_C = 20 \text{ mA}; V_{CE} = 10 \text{ V}$	hFE	typ.	45	
Collector-emitter saturation voltage				
I _C = 200 mA; I _B = 20 mA *	V _{CEsat}	<	11	V
Collector output capacitance at f = 1 MHz				
$I_E = 0$; $V_{CB} = 30 \text{ V}$	С _{Тс}	<	4.5	рF
Storage time	•			
(in the typical circuit below)	to	tvn.	0.5	иѕ

The BF419 is controlled to V_{CEsat} max. 11.0 V and is thermally stable under all operating conditions where T_j max of 150 $^{\circ}$ C is not exceeded. For the typical circuit shown below, a heatsink is not required for operation with T_{amb} \leq 70 $^{\circ}$ C.

Fig.2 Typical circuit.

RB is chosen so that the end-of-scan base current for the BU208A is 1.4 A under nominal conditions. Typical value of RB is 0.5 Ω plus 0.1 Ω lead resistance.

Fig.3 Safe Operating AReas with the transistor forward biased.

Fig. 9.

SILICON PLANAR TRANSISTORS

for video output stages

N-P-N transistors in a SOT-32 plastic envelope intended for video output stages in black-and-white and in colour television receivers.

QUICK REFERENCE DATA

	100		BF457	BF458	BF459	
Collector-base voltage (open emitter)	v_{CBO}	max.	160	250	300	٧
Collector-emitter voltage (open base)	v_{CEO}	max.	160	250	300	٧
Collector current (peak value)	СМ	max.		300		mΑ
Total power dissipation up to T _{mb} = 90 °C	P _{tot}	max.		6		W
Junction temperature	τ_{i}	max.		150		oC
D.C. current gain at $T_j = 25$ °C $I_C = 30$ mA; $V_{CE} = 10$ V	hFE	>		26		
Transition frequency $I_C = 15 \text{ mA; } V_{CE} = 10 \text{ V}$	fT	typ.		90		MHz
Feedback capacitance at f = 1 MHz $I_E = 0$; $V_{CB} = 30 \text{ V}$	C _{re}	<		3,5		pF

MECHANICAL DATA

Dimensions in mm

TO-126 (SOT-32)

Collector connected to metal part of mounting surface 7,8 max → 3,75 3,2 3,0 11,1 max 2,54 (1) 15,3 min 7Z 59324.2 0,88 4,58 2,29

(1) Within this region the cross-section of the leads is uncontrolled.

For mounting instructions see section Accessories type 56326 for non-insulated mounting and type 56333 for insulated mounting.

RATINGS Limiting values in accordance with the	Absolute Maxis	mum Syste	m (I	EC134)
Voltage	BF 457 B	F458 BF	459	
Collector-base voltage (open emitter) V _{CBO}	max. 160	250	300	V
Collector-emitter voltage (open base) $V_{ m CEO}$	max. 160	250	300	V
Emitter-base voltage (open collector) $V_{\mbox{EBO}}$	max. 5	5	5	V
Current	?	,		
Collector current (d.c.)	$^{ m I}_{ m C}$	max.	100	mÄ
Collector current (peak value)	$^{\mathrm{I}}$ CM	max.	300	m A
Base current (d.c.)	$I_{\mathbf{B}}$	max.	50	mA
Power dissipation				:
Total power dissipation up to T_{mb} = 90 ^{o}C	P_{tot}	max.	6	W
Temperature				
Storage temperature	T_{stg}	− 55 to +	150	°C
Junction temperature	T_{j}	max.	150	°C
THERMAL RESISTANCE	•			
From junction to ambient	R _{th j-a}	=	104	°C/W
From junction to mounting base	R _{th} j-mb	. =	10	oC/W

CHARACTERISTICS

 $T_i = 25$ OC unless otherwise specified

Collector cut-off current

$$I_E$$
 = 0; V_{CB} = 100 V for BF457

$$I_E = 0$$
; $V_{CB} = 200 \text{ V for BF458}$
 $I_E = 0$; $V_{CB} = 250 \text{ V for BF459}$

$$I_{CBO}$$

50

Emitter cut-off current

$$I_C = 0$$
; $V_{EB} = 3 \text{ V}$

$$I_{\text{EBO}}$$

n A

$$I_{C} = 30 \text{ mA}; V_{CE} = 10 \text{ V}$$

50

Collector-emitter saturation voltage

$$I_C = 30 \text{ mA}; I_B = 6 \text{ mA}$$

High frequency knee voltage at
$$T_j = 150$$
 °C

$$I_C = 50 \text{ mA}$$

$$v_{CEK}$$

The high frequency knee voltage of a transistor is that value of the collector-emitter voltage at which the small signal gain, measured in a practical circuit, has dropped to 80% of the gain at $m V_{CE}$ = 50 V. A further reduction of the collector-emitter voltage results in a rapid increase of the distortion of the signal.

Transition frequency at f = 100 MHz

$$I_C = 15 \text{ mA}; V_{CE} = 10 \text{ V}$$

$$f_{\mathbf{T}}$$

typ.

90 MHz

Feedback capacitance at f = 1 MHz

$$I_E = 0; V_{CR} = 30 \text{ V}$$

$$C_{re}$$

3,5 pF

Output capacitance at f = 1 MHz $I_{\rm F} = 0$; $V_{\rm CB} = 30 \text{ V}$

$$C_{oe}$$

SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors in plastic envelope intended for class-B video output stages in television receivers and for high-voltage i.f. output stages.
P-N-P complements are BF470 and BF472 respectively.

QUICK REFERENCE DATA

		BF46	39 BF47	<u>'1</u>
Collector-base voltage (open emitter)	v_{CBO}	max. 250	300	V
Collector-emitter voltage open base $R_{BF} = 2.7 \text{ k}\Omega$	V _{CEO} V _{CER}	max. 250 max. –	300	V V
Collector current (peak value)	ICM	max.	100	mΑ
Total power dissipation up to $T_{mb} \le 114$ °C	P _{tot}	max.	1,8	W
Junction temperature	Τį	max.	150	oC
D.C. current gain $I_C = 25 \text{ mA}$; $V_{CE} = 20 \text{ V}$	hFE	>	50	
Transition frequency I _C = 10 mA; V _{CE} = 10 V	fT	>	60	MHz
Feedback capacitance at f = 0,5 MHz I _E = 0; V _{CB} = 30 V	C _{re}	<	1,8	pF

MECHANICAL DATA

Fig. 1 TO-126 (SOT-32).

Collector connected to mounting base

For mounting instructions
see Handbook section Accessories
type 56326 for direct mounting
type 56353 for insulated mounting
types 56353 and 56354 for direct and insulated clip mounting.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BF469	BF47	1
Collector-base voltage (open emitter)	V _{CBO}	max.	250	300	٧
Collector-emitter voltage $R_{BE} = 2.7 \ k\Omega$ open base	V _{CER} V _{CEO}	max.	_ 250	300	V V
Emitter-base voltage (open collector)	V_{EBO}	max.	9	5	V .
Collector current (d.c.)	ιc	max.	50)	mΑ
Collector current (peak value)	1 _{CM}	max.	100) '	mΑ
Total power dissipation up to T _{mb} = 114 °C *	P _{tot}	max.	1,8	3	W
Storage temperature	T _{stg}		65 to +	150	oC
Junction temperature	τ_j	max.	150)	oC
THERMAL RESISTANCE					
From junction to mounting base	R _{th j-mb}	=	20)	oC/W
From junction to ambient in free air *	Rth i-a	=	100) .	oc/w

 $^{^{\}star}$ Transistor mounted on a printed-circuit board, maximum lead length 4 mm, mounting pad for collector lead minimum 10 mm imes 10 mm.

CHARACTERISTICS

1	j =	25	оC	unless	otherwise	specific
---	-----	----	----	--------	-----------	----------

Collector cut-off current				
I _E = 0; V _{CB} = 200 V	Ісво	< .	10	nΑ
$R_{BE} = 2.7 \text{ k}\Omega; V_{CE} = 200 \text{ V}; T_j = 150 \text{ °C}$	CER	<	10	μΑ
Emitter cut-off current			•	
$I_{C} = 0; V_{EB} = 5 V$	¹ EBO	· <	10	μA

D.C. current gain $I_C = 25 \text{ mÅ}; V_{CE} = 20 \text{ V}$ hFE 50 High-frequency knee voltage at T: = 150 °C*

IC = 52 mV	V _{CEK}	typ.	20	٧
Transistion frequency I _C = 10 mA; V _{CE} = 10 V	f _T	, >.	60	МН
Feedback capacitance at f = 0,5 MHz I _E = 0; V _{CB} = 30 V	C _{re}	· <	1,8	рF
E 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-16		.,9	μ.

Ηz Feedback time constant at f = 10,7 MHz** $-1_E = 10 \text{ mA}; V_{CB} = 20 \text{ V}$ r_{bb}'C_{b'c} 90 ps

which the small-signal gain, measured in a practical circuit, has dropped to 80% of the gain at V_{CE} = 50 V. A further reduction of the collector-emitter voltage results in a rapid increase of the distortion of the signal.

The high-frequency knee voltage of a transistor is that value of the collector-emitter voltage at

 $r_{bb}'C_{b'c} = \frac{|h_{rb}|}{\omega}$

Fig. 2 Safe Operating ARea at T_{mb} = 114 °C.

- I Region of permissible d.c. operation.
- II Permissible extension for repetitive pulse operation.
- (1) $P_{tot \, max}$ and $P_{peak \, max}$ lines.
- (2) Second breakdown limits (independent of temperature).

BF469 BF471

Fig. 5 $V_{CE} = 20 \text{ V}; T_j = 25 ^{\circ}\text{C}$.

Fig. 6 $I_C = 25 \text{ mA}$; $V_{CE} = 20 \text{ V}$.

Fig. 8 $f_M = 35 \text{ MHz}$; $T_{amb} = 25 \text{ °C}$.

Fig. 9 $V_{CE} = 20 \text{ V}$; $T_{amb} = 25 \text{ °C}$.

SILICON PLANAR EPITAXIAL TRANSISTORS

P-N-P transistors in a plastic envelope intended for class-B video output stages in television receivers and for high-voltage i.f. output stages.

N-P-N complements are BF469 and BF471 respectively.

QUICK REFERENCE DATA

		BF47	0 BF47	2
Collector-base voltage (open emitter)	-V _{CBO}	max. 250	300	V
Collector-emitter voltage open base	-V _{CEO}	max. 250	-	V
$R_{BE} = 2.7 k\Omega$	-V _{CER}	max	300) V
Collector current (peak value)	-¹cм	max.	100	mΑ
Total power dissipation up to T _{mb} = 114 °C	P _{tot}	max.	1,8	W
Junction temperature	T_{j}	max.	150	oC.
D.C. current gain $-I_C = 25 \text{ mA}; -V_{CE} = 20 \text{ V}$	hFE	>	50	
Transition frequency $-I_C = 10 \text{ mA}; -V_{CE} = 10 \text{ V}$	fŢ	>	60	MHz
Feedback capacitance at f = 0,5 MHz I _E = 0; -V _{CB} = 30 V	C _{re}	<	1,8	pF

MECHANICAL DATA

Fig. 1 TO-126 (SOT-32).

Collector connected to mounting base.

2,7 max 3,75 3,2 3,0 3,75 3,75 3,75 11,1 max 15,3 min 7259324.2

For mounting instructions see Handbook section Accessories type 56326 for direct mounting type 56333 for insulated mounting types 56353 and 56354 for direct a

types 56353 and 56354 for direct and insulated clip mounting.

Dimensions in mm

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BF470	BF472	2
Collector-base voltage (open emitter)	-V _{CBO}	max. 250	300	V
Collector-emitter voltage $R_{BE} = 2.7 \text{ k}\Omega$ open base	−Vcer −Vceo	max. – max. 250	300	V V
Emitter-base voltage (open collector)	-V _{EBO}	max.	5	٧
Collector current (d.c.)	-IC	max.	50	mA
Collector current (peak value)	-I _{CM}	max. 10	00	mA.
Total power dissipation up to T _{mb} = 114 °C *	P _{tot}	max. 1	,8	W
Storage temperature	T _{stq}	−65 to	+ 150	οС
Junction temperature	Тj	max. 15	iO	oC
THERMAL RESISTANCE				
From junction to mounting base From junction to ambient in free air *	R _{th j-mb} R _{th i-a}	= 2 = 10	20 00	oC/M

^{*} Transistor mounted on a printed-circuit board, maximum lead length 4 mm; mounting pad for collector lead minimum 10 mm \times 10 mm.

CHARACTERISTICS

Collector cut-off current

T_i = 25 °C unless otherwise specified

$I_E = 0$; $-V_{CB} = 200 \text{ V}$ $R_{BE} = 2.7 \text{ k}\Omega$; $-V_{CE} = 200 \text{ V}$; $T_j = 150 \text{ °C}$	ICBO ICER	< <	10 10	nΑ μΑ
Emitter cut-off current $I_C = 0$; $-V_{EB} = 5 V$	-1ЕВО	<	10	μΑ
D.C. current gain $-I_C = 25 \text{ mA}; -V_{CE} = 20 \text{ V}$	hFE	>	50	
High-frequency knee voltage at $T_j = 150 {}^{\circ}\text{C*}$ -I _C = 25 mA	-V _{CEK}	typ.	20	V
Transition frequency -IC = 10 mA; -VCE = 10 V	fT	>	60	MHz
Feedback capacitance at $f = 0.5 \text{ MHz}$ $I_E = 0$; $-V_{CB} = 30 \text{ V}$	C _{re}	<	1,8	pF
Feedback time constant at f = 10,7 MHz** I _E = 10 mA; -V _{CB} = 20 V	r _{bb} ,C _{b,c}	<	90	ps

^{*} The high-frequency knee voltage of a transistor is that value of the collector-emitter voltage at which the small-signal gain, measured in a practical circuit, has dropped to 80% of the gain at -V_{CE} = 50 V. A further reduction of the collector-emitter voltage results in a rapid increase of the distortion of the signal.

^{**} $r_{bb}'C_{b'c} = \frac{|h_{rb}|}{\omega}$.

10³

1_C (mA)

Fig. 2 Safe Operating ARea at T_{mb} = 114 °C .

- Region of permissible d.c. operation.
- II Permissible extension for repetitive pulse operation.
- (1) Ptot max and Ptot peak max lines.
- (2) Second breakdown limits (independent of temperature).

Fig. 6 $-V_{CE} = 20 \text{ V}$; $-I_{C} = 25 \text{ mA}$.

Fig. 7
$$I_E = 0$$
; $f = 1 \text{ MHz}$; $T_j = 25 \text{ }^{\circ}\text{C}$.

Fig. 8 $f_M = 35 \text{ MHz}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$.

10⁴
I_{CBO}
(nA)
10³

10²

10

50 1 Fig. 10 $-V_{CB} = 200 \text{ V}$.

Fig. 9 $-V_{CE} = 20 \text{ V}$; $T_{amb} = 25 \text{ °C}$.

SILICON DIFFUSED POWER TRANSISTOR

High voltage, high speed switching n-p-n power transistor intended for use in the switched mode power supply of 90° and 110° colour television receivers.

QUICK REFERENCE DATA

Collector-emitter voltage ($V_{BE} = 0$) (peak value)	VCESM	max.	750 V
Collector current (peak value)	¹ CM	max.	6 A
Total power dissipation up to $T_{mb} = 50$ °C	P _{tot}	max.	30 W
Collector-emitter saturation voltage I _C = 2,5 A; I _B = 0,25 A	V _{CEsat}	<	10 V
Fall time $I_{CM} = 2.5 \text{ A}; I_{B(end)} = 0.25 \text{ A}$	t _f	typ.	0,15 μs

MECHANICAL DATA

Collector connected to case.

Dimensions in mm

TO-3

For mounting instructions and accessories, see section Accessories.

SILICON DIFFUSED POWER TRANSISTOR

High voltage n-p-n power transistor intended for general purpose applications.

QUICK REFERENCE DATA						
Collector-emitter voltage ($V_{\mbox{\footnotesize{BE}}}$ = 0) (peak value)	VCESM	max.	750	V		
Collector current (peak value)	$^{\mathrm{I}}\mathrm{CM}$	max.	6	A		
Total power dissipation up to $T_{mb} = 50 {}^{\circ}\text{C}$	P _{tot}	max.	30	w		
Collector-emitter saturation voltage $I_C = 2.5 \text{ A}$; $I_B = 0.25 \text{ A}$	${ m v}_{ m CE\ sat}$	<	10	v		
Fall time $I_{CM} = 2.5 \text{ A}$; $I_{B1} = -I_{B2} = 0.5 \text{ A}$; $V_{CC} = 125 \text{ V}$	^t f	typ.	0.5	μs		

MECHANICAL DATA

Dimensions in mm

Collector connected to case

TO-3

For mounting instructions and accessories, see section Accessories.

SILICON DIFFUSED POWER TRANSISTORS

High-voltage, high-speed switching n-p-n transistors in a metal envelope intended for use in horizontal deflection circuits of television receivers.

QUICK REFERENCE DATA								
			BU204	BU205	BU206			
Collector -emitter voltage ($V_{BE} = 0$, peak value)	V _{CESN}	M max.	1300	1500	1700	v		
Collector current (d.c.)	$^{\mathrm{I}}\mathrm{C}$	max.	2,5	2,5	2,5	Α		
Total power dissipation up to $T_{mb} = 90$ ^{o}C	P_{tot}	max.	10	10	10	w		
D.C. current gain $I_C = 2 A$; $V_{CE} = 5 V$	\mathtt{h}_{FE}	>	2	2	1,8			
Fall time $I_{CM} = 2 A$; $I_{B(end)} = 1 A$	tf	typ.	0,75	0,75	0,75	μs		

MECHANICAL DATA

TO-3

Collector connected

to case

For mounting instructions and accessories see section Accessories.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Territor Limiting values in accorda	ilice with ti	10 11000	race ivia.	tillialli Dy	dictii (i	LC104)
Voltage			BU204	BU205 ·	BU206	
Collector-emitter voltage ($V_{BE} = 0$, peak value)	v _{CESM}	max.	1300	1500	1700	v
Collector-emitter voltage (RBE \leq 100 Ω , peak value)	V _{CERM}	max.	1300	1500	1700	\mathbf{v}
Collector-emitter voltage (open base)	v_{CEO}	max.	600	700	800	V .
Current						
Collector current (d.c.)	$^{\mathrm{I}}\mathrm{C}$	max.		2,5		Α .
Collector current (peak value)	I_{CM}	max.		3		Α
Base current (peak value)	I_{BM}	max.		2,5		Α
Reverse base current (d.c. or average over any 20 ms period)	-I _B (AV)	max.		100	•	mA
Reverse base current (peak value)1)	-I _{BM}	max.	•	1,5		Α
Power dissipation						
Total power dissipation up to $T_{mb} = 90$ °C	P _{tot}	max.		10		w
Temperature						
Storage temperature	$T_{ extsf{stg}}$,	- 65	to +115		°C
Junction temperature	$T_{\mathbf{j}}$	max.		115		°C
THERMAL RESISTANCE						
From junction to mounting base	R _{th j-mb}	max.		2,5		oC/W

¹⁾ Turn -off current.

CHARACTERISTICS

 T_i = 25 o C unless otherwise specified

Collector cut-off current

$V_{BE} = 0$; $V_{CE} = V_{CESMmax}$	¹ CES <	1	mA
D.C. current gain		BU204 BU205	BU206

 $+V_{EBO}$

 V_{BEsat}

$$I_{C} = 2 \text{ A}; V_{CE} = 5 \text{ V}$$
 $h_{FE} > 2$ 2 1,8

typ.

<

Emitter-base voltage

$$I_C = 0; I_E = 10 \text{ mA}$$

 $I_C = 0; I_E = 100 \text{ mA}$

Saturation voltage

$$I_{C} = 2 \text{ A}; I_{B} = 1, 1 \text{ A}$$
 $I_{C} = 2 \text{ A}; I_{B} = 1 \text{ A}$

1,5

7

1,5

V_{CEO} (V)

7Z62340

Oscilloscope display for VCEOsust

Test circuit for V_{CEOsust}

0

CHARACTERISTICS (continued)

 $T_i = 25$ OC unless otherwise specified

Transition frequency at f = 5 MHz

7,5 . f_{T} typ. MHz

Collector capacitance at f = 1 MHz

 $I_E = I_e = 0$; $V_{CB} = 10 \text{ V}$

 $\mathbf{C}_{\mathbf{c}}$ 65 pF typ.

Switching times (in horizontal deflection circuit)

 $I_{CM} = 2 \text{ A}; I_{B(end)} = 1 \text{ A}; L_{B} = 25 \mu\text{H}$

Fall time

Storage time

0,75 t_f typ. μs 10 t_s . typ. μs

Safe Operation Area with the transistor forward biased.

- I Region of permissible d.c. operation.
- II Permissible extension for repetitive pulse operation.
- III Repetitive pulse operation in this region is allowable, provided RBE \leq 100 Ω ; $t_p \leq$ 20 μ s; $\delta \leq$ 0, 25.

Note

Information on picture tube arcing is available.

¹⁾ Independent of temperature.

Safe Operation Area with the transistor forward biased.

- I Region of permissible d.c. operation.
- II Permissible extension for repetitive pulse operation.
- III Repetitive pulse operation in this region is allowable, provided RBE $\leq 100~\Omega;~t_p \leq 20~\mu s;~\delta~\leq 0,25.$

Note

Information on picure tube arcing is available.

¹⁾ Independent of temperature.

Safe Operating Area with the transistor forward biased.

- I Region of permissible d.c. operation.
- II Permissible extension for repetitive pulse operation.
- III Repetitive pulse operation in this region is allowable, provided $R_{BE} \leq 100~\Omega;~t_p \leq 20~\mu s;~\delta \leq 0,25$.

Note

Information on picture tube arcing is available.

¹⁾ Independent of temperature.

June 1972

SILICON DIFFUSED POWER TRANSISTORS

High-voltage, high-speed switching n-p-n transistors in a metal envelope intended for use in horizontal deflection circuits of colour television receivers.

QUICK REFERENCE DATA

Collector-emitter voltage (V _{RF} = 0,			BU207A	BU209A		
peak value)	V _{CESM}	max.	1500	1700	٧	
Collector current (d.c.)	1 _C	·max.	5	4	A	
Total power dissipation up to T _{mb} = 95 °C	P _{tot}	max.	12,5	12,5	w	
Collector-emitter saturation voltage $I_C = 4.5 \text{ A}$; $I_B = 2 \text{ A}$	V _{CEsat}	< 1	5		V	
$I_C = 3 A; I_B = 1,3 A$	V _{CEsat}	<		5	٧	
Fall time I _{CM} = 4,5 A; I _{B(end)} = 1,8 A	t _f	typ.	0,9		μs	
I _{CM} = 3 A; I _{B(end)} = 1,3 A	tf	typ.		0,7	μs	_

MECHANICAL DATA

TO-3

Collector connected to case.

Dimensions in mm

See also chapters Mounting instructions and Accessories.

BU207A BU209A

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BU207A	BU209A	<u> </u>
VCESM	max.	1500	1700	V
VCERM	max.	1500	1700	V
VCEO	max.	600	800	V
l _C	max.	5	4	Α
СМ	max.	7,5	6	Α
IBM	max.	4	. 4	Α
− ^I B(AV)	max.	10	0	mA
-I _{BM}	max.	3,	5	Α
P _{tot}	max.	12,	·. 5	W
T _{stg}		-65 to + 11	5	оС
Тј	max.	11	5	оС
R _{th j-mb}	=	1,	6	oC/W
	VCERM VCEO IC ICM IBM -IB(AV) -IBM Ptot Tstg Tj	VCERM max. VCEO max. IC max. ICM max. IBM max. -IB(AV) maxIBM max. Ptot max. Tstg Tj max.	VCESM max. 1500 VCERM max. 1500 VCEO max. 600 IC max. 5 ICM max. 7,5 IBM max. 4 -IBM max. 10 -IBM max. 3, Ptot max. 12, Tstg -65 to + 11 Tj max. 11	VCESM max. 1500 1700 VCERM max. 1500 1700 VCEO max. 600 800 IC max. 5 4 ICM max. 7,5 6 IBM max. 4 4 -IBM max. 100 -IBM max. 3,5 Ptot max. 12,5 Tstg -65 to + 115 Tj max. 115

^{*} Turn-off current.

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Collector	cut-off current	
V _{BE} =	0; V _{CE} = V _{CESMmax}	

D.C. current gain I_C = 4,5 A; V_{CE} = 5 V

$$I_C = 3.0 A; V_{CE} = 5 V$$

Emitter-base voltage I_C = 0; I_E = 10 mA

$$I_C = 0$$
; $I_E = 100 \text{ mA}$

Saturation voltage I_C = 4,5 A; I_B = 2 A

$$I_C = 3.0 \text{ A}; I_B = 1.3 \text{ A}$$

$$I_C = 4.5 A; I_B = 2 A$$

I_C = 3,0 A; I_B = 1,3 A Collector-emitter sustaining voltage I_B = 0; I_C = 100 mA; L = 25 mH

¹ CES	< '	1,	mΑ	
		BU207A	BU209A	
hFE	>	2,25	_	
hFE	>	-	2,25	
+ V _{EBO}	>	5	5	v
+ V _{EBO}	typ.	7	7	٧
V _{CEsat}	<	5	_	V
V CEsat	<	_	5	V
V_{BEsat}	<	1,5	_	
V_{BEsat}	<	-	1,5	Ņ
V _{CEOsust}	>	600	800	v

Oscilloscope display for VCEOsust

Test circuit for V_{CEOsust}.

CHARACTERISTICS (continued)

T_j = 25 °C unless otherwise specified

Transition frequency at f = 5 MHz $I_C = 0,1$ A; $V_{CE} = 5$ V Collector capacitance at f = 1 MHz $I_E = I_e = 0$; $V_{CB} = 10$ V Switching times (in line deflection of

 $I_{CM} = 4.5 \text{ A}; I_{B(end)} = 1.8 \text{ A}$

I_{CM} = 3,0 A; I_{B(end)} = 1,3 A

 $I_E = I_e = 0$; $V_{CB} = 10 \text{ V}$ Switching times (in line deflection circuit) $L_B = 10 \,\mu\text{H}$ $I_{CM} = 4.5 \,\text{A}$; $I_{B(end)} = 1.8 \,\text{A}$ $I_{CM} = 3.0 \,\text{A}$; $I_{B(end)} = 1.3 \,\text{A}$

 t_{f} typ. 0,9 t_{f} typ. — t_{s} typ. 10 t_{s} typ. —

fΤ

 C_{c}

typ.

typ.

7.

125

BU207A

MHz

pF

μs

μs

BU209A

0,7 μs

10 μs

Safe Operating ARea with the transistor forward biased.

- I Region of permissible d.c. operation.
- II Permissible extension for repetitive pulse operation.
- III Repetitive pulse operation in this region is permissible, provided R_{BE} \leq 100 Ω ; t_p \leq 20 μ s; δ \leq 0,25.

Notes

Information on picture tube arcing is available.

(1) Independent of temperature.

Safe Operating ARea with the transistor forward biased.

- 1 Region of permissible d.c. operation.
- II Permissible extension for repetitive pulse operation.
- III Repetitive pulse operation in this region is permissible, provided R_{BE} \leq 100 Ω ; t_p \leq 20 μ s; δ \leq 0,25.

Notes

Information on picture tube arcing is available.

(1) Independent of temperature.

SILICON DIFFUSED POWER TRANSISTOR

High-voltage, high-speed switching n-p-n transistor in a metal envelope intended for use in horizontal deflection circuits of colour television receivers.

QUICK REFERENCE DATA

Collector-emitter voltage (V _{BE} = 0, peak value)	V _{CESM}	max.	1500	V
Collector current (d.c.)	I _C	max.	5	Α .
Total power dissipation up to T _{mb} = 25 °C	P_{tot}	max.	80	W
Collector-emitter saturation voltage $I_C = 4,5 A$; $I_B = 2 A$	V _{CEsat}	<	1	V
Fall time $I_{CM} = 4.5 \text{ A}$; $I_{B(end)} = 1.4 \text{ A}$	tf	typ.	0,7	μs

MECHANICAL DATA

Fig. 1 TO-3.

Collector connected to case.

For mounting instructions and accessories see Handbook section Accessories.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

VCESM	max.	1500	.V
		4	
[∨] CERM	max.	1500	V
VCEO	max.	700	٧
IC	max.	5	Α
^I CM	max.	7,5	Α
ICSM	max.	15	Α.
^I BM	max.	4	Α
-IB(AV)	max.	100	mΑ
−lBW	max.	4	Α
P _{tot}	max.	80	W
T_{stg}	-65 to	+ 115	οС
$\tau_{\rm j}$	max.	115	oC
	IC ICM ICSM IBM -IB(AV) -IBM Ptot Tstg	VCERM max. VCEO max. IC max. ICM max. ICSM max. IBM maxIB(AV) maxIBM max. Ptot max. Tstg -65 to	VCERM max. 1500 VCEO max. 700 IC max. 5 ICM max. 7,5 ICSM max. 15 IBM max. 4 IB(AV) max. 100IBM max. 4 Ptot max. 80 Tstg65 to + 115

From junction to mounting base $R_{th\ j-mb}$ max. 1,12 °C/W

^{*} Turn-off current.

1,5 V

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Collector cut-off current
V _{BE} = 0; V _{CE} = V _{CESMmax}
D.C. current gain

$$I_C = 4,5 \text{ A}; I_B = 2 \text{ A}$$

Collector-emitter sustaining voltage
 $I_B = 0; I_C = 100 \text{ mA}; L = 25 \text{ mH}$

< **VCEOsust** > 700 V

V_{BEsat}

Fig. 2 Oscilloscope display for VCEOsust-

Fig. 3 Test circuit for VCEOsust.

CHARACTERISTICS (continued)

Transition frequency at f = 5 MHz $I_C = 0.1 A$; $V_{CE} = 5 V$ fΤ 7 MHz typ. Collector capacitance at f = 1 MHz $I_E = I_e = 0$; $V_{CB} = 10 \text{ V}$ \dot{C}_{c} 125 pF typ. Switching times (in line deflection circuit) $L_B = 6 \mu H; -V_{IM} = 4 V;$ $I_{CM} = 4.5 \text{ A}; I_{B(end)} = 1.4 \text{ A}$ $(-dI_{B}/dt = 0.6 \text{ A}/\mu\text{s})$ 0,7 μs typ. ŧf 6,5 µs t_{S} typ.

Fig. 4 Switching times.

Fig. 5 Safe Operating ARea with the transistor forward biased. $T_{mb} \le 25$ °C.

- Region of permissible d.c. operation.
- II Permissible extension for repetitive pulse operation.
- III Repetitive pulse operation in this region is permissible,
- provided RBE \leq 100 Ω ; t_p \leq 20 μ s; δ \leq 0,25. IV Transient I_C/V_{CE} limit, e.g. during picture tube flashover (less than 10 line periods);

for VCE less than 700 V then t_p less than or equal to 25 μs for V_{CE} greater than 700 V then t_p less than 5 μ s.

Notes

- 1. Ptot max and Ppeak max lines.
- 2. Second-breakdown limits (independent of temperature).

Fig. 6 Collector-emitter saturation voltage.

Fig. 7 Base-emitter saturation voltage.

Fig. 8 D.C. current gain. $V_{CE} = 5 \text{ V}$; $T_j = 25 \text{ °C}$.

APPLICATION INFORMATION - HORIZONTAL DEFLECTION CIRCUIT WITH BU208A *

In designing horizontal deflection circuits, allowance has to be made for component and operating spreads in order not to exceed any Absolute Maximum Rating. Extensive analysis has shown that, for the peak collector current and the collector-emitter voltage of the output transistor, the total allowance need not be higher than 25%, and the following recommended base-drive and heatsink conditions are based on this figure.

To simplify the presentation, the design curves given refer to nominal conditions. Where the collector current will be modulated by the E-W correction circuit, the average value of the peak collector current applies provided the modulation is less than \pm 10%.

To obtain a short fall time and minimum turn-off dissipation with a high-voltage transistor, the storage time must be sufficiently long and, during turn-off, the negative base-emitter voltage must be sufficiently high. Both requirements can easily be realized by including a small coil in series with the base of the output transistor. However, to reduce base current variations, a series base resistor is also added to most designs. This has the disadvantage of reducing the energy in the base inductance during turn-off, which in turn reduces the negative base-emitter voltage and with large resistor values may lead to an insufficient negative voltage for correct device turn-off. This can be improved by shunting the base resistor by a diode and/or a capacitor. Instead of giving various detailed base circuits based on these considerations, it is a more direct approach to specify the recommended —dig/dt, see Fig. 11.

Fig. 9 Simplified horizontal deflection circuit.

Detailed Application Information is available.

APPLICATION INFORMATION (continued)

The maximum transistor dissipation largely depends on the tolerances in the drive conditions. The dissipation given in Fig. 12 allows for base current and $-dl_B/dt$ tolerances in the order of \pm 20%. The curve applies for a limit-case transistor at a mounting base temperature of 100 °C.

The thermal resistance for the heatsink can be calculated from $R_{th\ mb-a} = \frac{100 - T_{amb\ max}}{P_{tot\ max}}$ in which

 $T_{amb\ max}$ is the maximum ambient temperature of the transistor. In order to assure a value of thermal resistance at which thermal stability is ascertained, the minimum value for T_{amb} in the above equation is 45 °C.

Fig. 10 Fundamental waveforms.

Fig. 11 Nominal end value of the base current and its rate of fall during turn-off as a function of nominal peak collector current to obtain, for a typical transistor, the recommended storage time of 6,5 μ s. (During the storage time and the decay time of the collector current the negative turn-off drive voltage ($-V_{IM}$) must be > 4 V.)

Fig. 12 Continuous lines are maximum values; T_{mb} = 100 °C; δ = 0,18; base tolerances \pm 20%.

Total dissipation of a limit-case transistor under maximum operating conditions for 625 and 819 lines ($T_{\rm mb}$ = 100 °C).

The dashed line gives the total dissipation of a typical transistor under nominal conditions $(T_{mb} = 50 \text{ }^{\circ}\text{C})$.

SILICON DIFFUSED POWER TRANSISTORS

High-voltage, high-speed switching n-p-n power transistors in TO-3 envelopes, intended for use in the switched-mode power supply of 90° and 110° colour television receivers.

QUICK REFERENCE DATA

			BU326	В	U326A	
Collector-emitter voltage (V _{BE} = 0; peak value)	VCESM	max.	800		900	ν
Collector-emitter voltage (open base)	VCEO	max.	375		400	V
Collector current (d.c.)	Ic	max.		6		Α
Collector current (peak value; tp < 2 ms)	CM	max.		8		Α
Total power dissipation up to T _{mb} = 50 °C	P _{tot}	max.		60		W
Collector-emitter saturation voltage $I_C = 2.5 \text{ A}$; $I_B = 0.5 \text{ A}$	V _{CEsat}	<		1,5		٧
Fall time I _{Con} = 2,5 A; I _{Bon} = 0,5 A; —I _{Boff} = 1 A	, t _f	typ.	. (),3		μs

MECHANICAL DATA

Fig. 1 TO-3.

Collector connected to case.

See also chapters Mounting instructions and Accessories.

Dimensions in mm

RATINGS -

Limiting values in accordance with the Absolute Maximum System (IEC 134)

	nam System	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	BU326	BU326A	
Collector-emitter voltage (V _{BE} = 0; peak value)	VCESM	max.	800	900	v
Collector-emitter voltage (open base)	VCEO	max.	375	400	ν
Collector current (d.c.)	lC	max.		6	Α
Collector current (peak value; tp < 2 ms)	I _{CM}	max.		8	A
Base current (d.c.)	l _B	max.		2	A
Base current (peak value)	^I BM	max.		3	Α
Reverse base current (d.c. or average over any 20 ms period)	−l _B (AV)	max.	0,	1 .	Α
Reverse base current (peak value; turn-off current)	−l _{BM}	max.		3	· A
Total power dissipation up to T _{mb} = 50 °C	P _{tot}	max.	6	0	w
Storage temperature	T _{stg}	_	-65 to + 15	0	oC
Junction temperature	T _j	max.	15	0	оС
THERMAL RESISTANCE					
From junction to mounting base	R _{th j-mb}	=	1,6	5	oC/W
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Collector cut-off current *					
V _{BE} = 0; V _{CEM} = V _{CESMmax}	[[] CES	<		1	mΑ
$V_{BE} = 0$; $V_{CEM} = V_{CESMmax}$; $T_j = 125 ^{\circ}C$	ICES	<		2	mA
Emitter cut-off current		<		•	•
I _C = 0; V _{EB} = 10 V	IEBO		. !	0	mA
Saturation voltages I _C = 2,5 A; I _B = 0,5	V _{CEsat}	<	1	5	V
·C =/4 / 1/ ·B = 4/4	VBEsat	<	1,		V
I _C = 4 A; I _B = 1,25 A	VCEsat	<		3	٧ .
	V BEsat	<	1,	.6	V
Collector-emitter sustaining voltage (see Figs 2 and 3)				_	
I _{Boff} = 0; I _C = 0,1 A; L = 25 mH BU326 BU326A	VCEOsust	>	37	b 0	V
D.C. current gain	VCEOsust		-		. •
I _C = 0,6 A; V _{CE} = 5 V	hee	typ.	3	0	
Transition frequency at f = 1 MHz					Mila
I _C = 0,2 A; V _{CE} = 10 V	fT	typ.		6	MHz

^{*} Measured with a half sine-wave voltage (curve tracer).

+50V 100-200Ω hor. oscilloscope vert.

Fig. 2 Oscilloscope display for V_{CEOsust}.

Fig. 3 Test circuit for VCEOsust

Fig. 4 Waveforms.

Fig. 6 Safe Operating ARea.

- Region of permissible d.c. operation
- Permissible extension for repetitive pulse operation
- III Area of permissible operation during turn-on in
- single-transistor converters, provided R_{BE} \leq 100 Ω and t_D \leq 0,6 μ s
- IV Repetitive pulse operation in this region is permissible, provided $V_{BE} \le 0$ and $t_p \le 2$ ms
- (1) P_{tot max} and P_{peak max} lines.
 (2) Second-breakdown limits (independent of temperature).

Fig. 7 Power derating curve.

Fig. 8 Pulse power rating chart.

Fig. 9 S.B. voltage multiplying factor at the $I_{\mbox{\footnotesize Cmax}}$ level.

Fig. 10 S.B. current multiplying factor at the $\rm V_{\hbox{\footnotesize CEO}{max}}$ level.

Fig. 11 D.C. current gain.

Fig. 12 Base-emitter saturation voltage.

Fig. 13 Collector-emitter saturation voltage.

APPLICATION INFORMATION BU326A (detailed information on request)

Important factors in the design of SMPS circuits are the power losses and heatsink requirements of the supply output transistor and the base drive conditions during turn-off. In SMPS circuits for CTV receivers the duty factor of the collector current generally varies between 0,35 and 0,6.

The operating frequency lies between 15 kHz and 35 kHz and the shape of the collector current varies from rectangular in a forward converter to a sawtooth in a flyback circuit.

As the BU326A will mainly be used in flyback converters the information on optimum base drive and device dissipation given in the graphs on page 10 is concentrated on this application. In these figures I_{CM} represents the highest repetitive peak collector current that can occur in the given circuit, e.g. during overload.

The total power dissipation for a limit-case transistor is given in Fig. 18 which applies for a mounting base temperature of 100 °C. The required thermal resistance for the heatsink can be calculated from

$$R_{th\ mb\text{-a}\ max}\ * = \frac{T_{mb\ max} - T_{amb\ max}}{P_{tot}}$$

* Including additional thermal resistances resulting from mounting hardware.

To ensure thermal stability the thermal resistance of the heatsink used must not exceed the values plotted in Fig. 19.

A practical SMPS output circuit for an output power in the order of 180 W is given in Fig. 15.

At a collector current of 2,5 A and a base current of 0,25 A in this circuit the following turn-off times can be expected.

Storage time Fall time

$$T_{mb} = 25 \, ^{\circ}\text{C}$$
 = 100 $^{\circ}\text{C}$
 t_s typ. 1,4 < 20 μs
 t_f typ. 0,15 < 0,5 μs

Fig. 14 Relevant waveforms of switching transistor.

Fig. 15 Practical SMPS output circuit.

TR1 = BU326A

T1 (driver transformer): Core U20; n1 = 400 turns; n2 = 25 turns

total inductance in base circuit \approx 4,5 μ H

T2 (output transformer): $L_p = 6 \text{ mH}$

v_{CE(t1)} < 500 V (see Fig. 14)

Next page:

Fig. 16 Recommended nominal "end" value of the base current versus maximum peak collector current.

Fig. 17 Minimum required base inductance and recommended negative drive voltage versus maximum peak collector current.

Fig. 18 Maximum total power dissipation of a limit-case transistor if the base current is chosen in accordance with Fig. 16.

Fig. 19 Maximum permissible thermal resistance of the heatsink versus maximum peak collector current to ensure thermal stability.

Note: For all curves the duty factor $\delta = 0.5$, as shown in Fig. 14.

BU326 BU326A

SILICON DIFFUSED POWER TRANSISTORS

High voltage, high speed switching n-p-n power transistor in plastic SOT-93 envelope, intended for use in the switched-mode power supply of 90° and 110° colour television receivers.

QUICK REFERENCE DATA

			BU426	426A	433	
Collector-emitter voltage (V _{BE} = 0; peak value)	V _{CESM}	max.	800	900	800	٧
Collector-emitter voltage (open base)	VCEO	max.	375	400	375	٧
Collector current (d.c.)	Ic	max.		6		Α
Collector current (peak value) t _p = 2 ms	Ісм	max.		8		A
Total power dissipation up to T _{mb} = 73 °C	P_{tot}	max.		70		W
Collector-emitter saturation voltage $I_C = 2,5 \text{ A}; I_B = 0,5 \text{ A}$	V _{CEsat}	< 1		1,5		٧
Fall time $I_{Con} = 2.5 \text{ A}; I_{Bon} = 0.5 \text{ A}; -I_{Boff} = 1 \text{ A}$	t _f	typ.	0,3	0,3	0,45	μ

MECHANICAL DATA

Fig. 1 SOT-93.

Collector connected to mounting base

See also chapters Mounting instructions and Accessories.

Dimensions in mm

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Limiting values in accordance with the Absolute N	laximum Syste	m (IEC	134)			
			BU426	426A	433	
Collector-emitter voltage (V _{BE} = 0, peak value)	VCESM	max.	800	900	800 V	
Collector-emitter voltage (open base)	VCEO	max.	375	400	375 V	
Collector current (d.c.)	¹c .	max.		6	Α	
Collector current (peak value) $t_p < 2 \text{ ms}$	¹ CM	max.		8	A	
Base current (d.c.)	1 _B	max.		2	Α	
Base current (peak value)	Івм	max.		3	Α	
Reverse base current (d.c. or average over any 20 ms period)	-I _B (AV)	max.		100	mA	
Reverse base current (peak value)*	-IBM	max.		3	Α	
Total power dissipation up to T _{mb} = 73 °C	P _{tot}	max.		70	W	
Storage temperature	T_{stg}		65 to	+ 150	oC	
Junction temperature	Tj	max.		150	° C	
THERMAL RESISTANCE						
From junction to mounting base	R _{th j-mb}	=		1,1	oC/V	٧
CHARACTERISTICS	.* ·					
T _i = 25 °C unless otherwise specified						
Collector cut-off current **						
V _{CEM} = 900 V; V _{BE} = 0	ICES	<		1	mA	
$V_{CEM} = 900 \text{ V}; V_{BE} = 0; T_j = 125 ^{\circ}\text{C}$	CES	<		2	mA	
D.C. current gain I _C = 0,6 A; V _{CE} = 5 V; BU426; BU426A	hFE	typ.		30 60		
I _C = 0,6 A; V _{CE} = 5 V; BU433	hFE	typ.		40		
Emitter cut-off current I _C = 0; V _{EB} = 10 V	I _{EBO}	<	7	10	mA	
Transition frequency at f = 1 MHz I _C = 0,2 A; V _{CE} = 10 V	f _T	typ.		6	MHz	

^{*} Turn-off current.

^{**} Measured with a half sine-wave voltage (curve tracer).

CHARACTERISTICS (continued)

T_i = 25 °C unless otherwise specified

Emitter cut-off current

 $I_C = 0$; $V_{EB} = 10 \text{ V}$

Saturation voltages

 $I_C = 2.5 A$; $I_B = 0.5 A$

 $I_C = 4 A$; $I_B = 1,25 A$

Collector-emitter sustaining voltage

 $I_C = 100 \text{ mA}$; $I_{Boff} = 0$; L = 25 mH; BU426; BU433

 $I_C = 100 \text{ mA}$; $I_{Boff} = 0$; L = 25 mH; BU426A

< **IEBO** 10 mA

VCEsat 1,5 V < -1,4 V **VBEsat**

< 3 V **V**CEsat V_{BEsat} 1,6 V

375 V **VCEOsust VCEOsust** 400 V

Fig. 2 Oscilloscope display for V_{CEOsust}.

Fig. 3 Test circuit for VCEOsust-

CHARACTERISTICS (continued)

Switching times (between 10% and 90% levels)

$$I_{Con}$$
 = 2,5 A; V_{CC} = 250 V

Turn-on time

0,6 μs typ. 2 μs Storage time ts < 3,5 µs BU426; 426A 0,3 μς typ. tf Fall time 0,45 μs typ. Turn-off time $(t_{off} = t_s + t_f)$ BU433 tf < 0,7 μs 0,7 µs typ. **BU433** tf Fall time, T_{mb} = 95 °C < 1,0 μs BU426; 426A t_{f} < 0,75 µs

0,5 µs

typ.

 t_{on}

Fig. 4 Waveforms.

Fig. 5 Test circuit.

Fig. 6 Safe Operating ARea.

- I Region of permissible d.c. operation.
- II Permissible extension for repetitive pulse operation.
- III Area of permissible operation during turn-on in single-transistor converters, provided R_{BE} \leq 100 Ω and t_p \leq 0,6 μ s.
- IV Repetitive pulse operation in this region is permissible, provided $V_{BE} \le 0$ and $t_D \le 2$ ms.
- (1) Ptot max and Ppeak max lines.
- (2) Second-breakdown limits (independent of temperature).

Fig. 8 Pulse power rating chart.

Fig. 9 S.B. voltage multiplying factor at the $I_{\mbox{Cmax}}$ level.

Fig. 10 S.B. current multiplying factor at the VCEOmax level.

Fig. 11 D.C. current gain BU426 and BU426A.

Fig. 12 Base-emitter saturation voltage for BU426 and BU426A.

Fig. 13 Collector-emitter saturation voltage for BU426 and BU426A.

Fig. 14 D.C. current gain for BU433;

Fig. 15 Base-emitter saturation voltage for BU433; T_i = 25 °C.

Fig. 16 Typical (----) and maximum (- - -) values collector-emitter saturation voltage for BU433; $T_{j} = 25 \, {}^{\circ}\text{C}.$

APPLICATION INFORMATION (detailed information on request)

Important factors in the design of SMPS circuits are the power losses and heatsink requirements of the supply output transistor and the base drive conditions during turn-off. In SMPS circuits for CTV receivers the duty factor of the collector current generally varies between 0,35 and 0,6.

The operating frequency lies between 15 kHz and 35 kHz and the shape of the collector current varies from rectangular in a forward converter to a sawtooth in a flyback circuit.

All these variables influence the collector dissipation, so that a simple presentation of the design information is only possible if the information is restricted to the main application area of the relevant transistor type. Therefore, as the BU426 or BU426A will mainly be used in flyback converters and the BU433 in forward SMPS, the information of Figs 19, 20, 21 and 22, 23, 24 is based on these applications:

The total power dissipation for a limit-case transistor BU426 or BU433 is given in Figs 21 and 24, which apply for a mounting base temperature of 100 °C. The required thermal resistance for the heatsink can be calculated from:

$$R_{th mb-a max}^* = \frac{T_{mb max} - T_{amb max}}{P_{tot}}$$

* Including additional thermal resistances resulting from mounting hardware.

To ensure thermal stability minimum value of T_{amb} in this equation is 40 °C. As indicated, the BU433 will mainly be used in (non-isolated) forward converters, where the turn-off losses are limited by the maximum collector emitter voltage (\approx 300-350 V). The rate-of-rise of the voltage during turn-off must be below 1000 V/ μ s. Application of this transistor in low-power flyback converters is also possible, provided that the rate-of-rise is limited to 500 V/ μ s. For the BU426(A) a rate-of-rise of 1000 V/ μ s is permissible. Practical SMPS output circuits for an output power in the order of 180 W are given in Figs 19 and 22. At a collector current of 2,5 A and a base current of 0,25 A in these circuits the following turn-off times can be expected.

	T_{mb}				
		25 °C	100 °C		
BU426 (426A)	Storage time ts	typ. 1,4	< 2,0 μs		
	Fall time t _f	0,15	< 0,5 μs		
BU433	Storage time t _s	typ. 1,4	< 2,0 μs		
	Fall time t _f	0,18	< 0,6 μs		

Fig. 17 Relevant waveforms of switching transistor.

Fig. 18 Minimum required base inductance and recommended negative drive voltage versus maximum peak collector current.

T1 (driver transformer)
core U20; n1 = 400 turns
n2 = 25 turns

 $L_{ ext{Btot}} \approx 4.5 \, \mu \text{H}$

T2 (output transformer)

 $L_p = 6 \text{ mH}$

 $V_{CE(t1)} < 500 V$ (see Fig. 17)

Fig. 20 Recommended nominal "end" value of the base current versus maximum peak collector current.

Fig. 21 Maximum total power dissipation of a limit-case transistor of the base current is chosen in accordance with Fig. 20.

Fig. 22 Practical output circuit of a forward SMPS with BU433.

T (driver transformer): Core U20 n1 = 400 turns; n2 = 25 turns $L_{Btot} \approx$ 4,5 μH

Fig. 23 Recommended nominal "end" value of the base current versus maximum peak collector current.

Fig. 24 Maximum total power dissipation of a limit-case transistor if the base current is chosen in accordance with Fig. 23.

SILICON DIFFUSED POWER TRANSISTORS

High-voltage, high-speed, glass-passivated n-p-n power transistors in SOT-82 envelopes, intended for use in converters, inverters, switching regulators, motor control systems and switching applications.

QUICK REFERENCE DATA

			BUW84	BUW85		
Collector-emitter voltage (V _{BE} = 0, peak value)	VCESM	max.	800	1000	٧	
Collector-emitter voltage (open base)	VCEO	max.	400	450	٧	
Collector current (d.c.)	IC	max.	:	2	Α	
Collector current (peak value) t _p = 2 ms	ICM	max.		3	A	
Total power dissipation up to T _{mb} = 45 °C	P _{tot}	max.	50)	W	
Collector-emitter saturation voltage I _C = 1 A; I _B = 0,2 A	V _{CEsat}	<	;	3	V	
Fall time $I_{Con} = 1 \text{ A}$, $I_{Bon} = 0.2 \text{ A}$; $-I_{Boff} = 0.4 \text{ A}$	tf	typ.	0,4	1	μs	

MECHANICAL DATA

Fig. 1 SOT-82.

Collector connected to mounting base.

For mounting instructions see Handbook section Accessories.

Accessories: 56353 and 56354.

(1) Within this region the cross-section of the leads is uncontrolled.

Dimensions in mm

BUW84 BUW85

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BU	W84	В	UW85	
Collector-emitter voltage (V _{BE} = 0, peak value) Collector-emitter voltage (open base)	V _{CESM}	max.	800 400		1000 450	
Collector current (d.c.)	Ic	max.		2		Α
Collector current (peak value) t _D = 2 ms	Ісм	max.		3		Α
Base current (d.c.)	I _B	max.	0.	75		A
Base current (peak value)	IBM	max.		1		Α
Reverse base current (peak value) *	-I _{BM}	max.		1		A
Total power dissipation up to T _{mb} = 45 °C	P _{tot}	max.		50		W
Storage tamperature	T _{stg}	· —6	5 to +1	50		оС
Junction temperature	Τj	max.	1	50		oC
THERMAL RESISTANCE						•
From junction to mounting base	R _{th j-mb}	= '	:	2,1		oc/w
From junction to ambient in free air	R _{th j-a}	=	1	00		oC/M
CHARACTERISTICS						
T _i = 25 °C unless otherwise specified						
Collector cut-off current **						
V _{CEM} = V _{CESMmax} ; V _{BE} = 0	ICES	<	2	200		μΑ
$V_{CEM} = V_{CESMmax}$; $V_{BE} = 0$; $T_j = 125 {}^{\circ}C$	ICES	<		1,5		mΑ
D.C. current gain I _C = 0,1 A; V _{CE} = 5 V	hFE	typ.		50		

^{*} Turn-off current.

** Measured with a half sine-wave voltage (curve tracer).

T_i = 25 °C unless otherwise specified

Emitter cut-off current

I_C = 0; V_{EB} = 5 V Saturation voltages

 $I_C = 0.3 \text{ A}; I_B = 30 \text{ mA}$ $I_C = 1 \text{ A}; I_B = 0.2 \text{ A}$

 $I_C = 1 \text{ A}$; $I_B = 0.2 \text{ A}$ Collector-emitter sustaining voltage $I_C = 100 \text{ mA}$; $I_{Boff} = 0$; L = 25 mH

 IEBO
 1
 mA

 VCEsat
 < 1,5</td>
 V

 VCEsat
 < 3</td>
 V

 VBEsat
 < 1,1</td>
 V

 BUW84
 BUW85

400

450

V_{CEOsust}>

Fig. 2 Oscilloscope display for sustaining voltage.

Fig. 3 Test circuit for V_{CEOsust}.

T_i = 25 °C unless otherwise specified

Transition frequency at f = 1 MHz	
$I_C = 0.2 A; V_{CE} = 10 V$	
Switching times	

 $I_{Con} = 1 \text{ A; } V_{CC} = 250 \text{ V}$ $I_{Bon} = 0.2 \text{ A; } -I_{Boff} = 0.4 \text{ A}$

Turn-on time

Turn-off: Storage time

Fall time

Fall time, Tmb = 95 °C

typ. 0,2 μs ton 0,5 μs

typ. 2 μs <

tf typ. $0,4 \mu s$

3,5 µs

< 1,4 µs

Fig. 4 Waveforms.

Fig. 5 Test circuit.

Fig. 6 Safe Operating ARea at $T_{mb} \le 25$ °C of BUW84.

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation
- III Area of permissible operation during turn-on in single transistor converters, provided RBE \le 100 Ω and tp \le 0,6 μs
- IV Repetitive pulse operation in this region is permissible, provided $V_{BE} \le 0$ and $t_p \le 2$ ms
- (1) Ptot max line.
- (2) Second-breakdown limits (independent of temperature).

Fig. 7 Safe Operating ARea at $T_{mb} \le 25$ °C of BUW85.

- Region of permissible d.c. operation
- Permissible extension for repetitive pulse operation
- III Area of permissible operation during turn-on in single transistor converters, provided RBE \le 100 Ω and tp \le 0,6 μs
- IV Repetitive pulse operation in this region is permissible, provided VBE

 0 and tp

 2 ms

⁽¹⁾ Ptot max line.

⁽²⁾ Second-breakdown limits (independent of temperature).

Fig. 8.

Fig. 9.

Fig. 12 S.B. voltage multiplying factor at the $I_{\mbox{Cmax}}$ level.

Fig. 14.

10

SILICON DIFFUSED POWER TRANSISTORS

High-voltage, high-speed switching n-p-n power transistors in TO-3 envelopes, intended for use in converters, inverters, switching regulators and motor control systems.

QUICK REFERENCE DATA						
			BUX 80	BUX81		
Collector-emitter voltage (V _{BE} = 0, peak value)	v_{CESM}	max.	800	1000	V	
Collector-emitter voltage ($R_{BE} = 50 \Omega$)	v_{CER}	max.	500	500	v	
Collector-emitter voltage (open base)	v_{CEO}	max.	400	450	V	
Collector current (d.c.)	$I_{\mathbf{C}}$	max.	. 1	0	A	
Collector current (peak value) $t_p = 2 \text{ ms}$	I_{CM}	max.	. 1	5	A	
Total power dissipation up to T_{mb} = 40 °C	P _{tot}	max.	10	0	w	
Collector-emitter saturation voltage I _C = 5 A; I _B = 1 A	v_{CEsat}	<	1,	5	v	
Fall time $I_{Con} = 5 A$; $I_{Bon} = 1 A$; $-I_{Boff} = 2 A$	tf	typ.	0,	3	μѕ	

MECHANICAL DATA

Dimensions in mm

TO-3 Collector connected to case

For mounting instructions and accessories see section Accessories in handbook SC2.

 ${f RATINGS}$ Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages					
Collector-emitter voltage	i.		BUX 80	BUX 81	• '
$(V_{BE} = 0, peak value)$	v_{CESM}	max.	800	1000	V
Callantan amittan maltana					*
Collector-emitter voltage ($R_{RE} = 50 \Omega$)	VCER	max.	500	500	v
Collector-emitter voltage (open base)	VCEO	max.	400	450	v
Currents					
Collector current (d.c.)	$I_{\mathbf{C}}$	max.	1	0	Α
Collector current (peak value)					
$t_p = 2 \text{ ms}$	$^{\mathrm{I}}\mathrm{CM}$	max.	1	5	A
Base current (d.c.)	I_{B}	max.		4	A
Base current (peak value)	I _{BM}	max.	,	6	Α
Reverse base current (d.c. or average					
over any 20 ms period)	^{-I} B(AV)	max.	10	0	mA
Reverse base current (peak value) 1)	-I _{BM}	max.	1	6.	Α
Power dissipation					
Total power dissipation up to T_{mb} = 40 °C	P_{tot}	max.	10	0	W
Temperatures					
Storage temperature	${ m T_{stg}}$	-65	to +15	0	$^{\circ}\mathrm{C}$
Junction temperature	$T_{\mathbf{j}}$	max.	15	0	oC.
THERMAL RESISTANCE					
From junction to mounting base	R _{th j-mb}	= '	. 1,	1 .	oC/W
CHARACTERISTICS	$T_{j} = 25 \circ 0$	C unless	otherw	ise spe	cified
Collector cut-off current 2)					
$V_{CEM} = V_{CESMmax}; V_{BE} = 0$	ICES	<		1	mA
$V_{CEM} = V_{CESMmax}; V_{BE} = 0; T_j = 125$ °C	ICES	< '		3	mA
D.C. current gain					
$I_{C} = 1, 2 \text{ A}; V_{CE} = 5 \text{ V}$	$h_{ m FE}$	typ.	- 3	0 -	

¹⁾ Turn-off current.

 $^{^{2}}$) Measured with a half sine wave voltage (curve tracer).

Emitter	cut-of:	f current	

$I_{\mathbf{C}}$	= 0	; Vr	R =	10	V

I_{EBO}

 $T_1 = 25$ °C unless otherwise specified

mA

Saturation voltages

$$I_{C} = 5 \text{ A}; I_{B} = 1 \text{ A}$$

VCEsat

V_{BE} sat

1,5

10

V

 $I_C = 8 A$; $I_B = 2,5 A$

VBE sat v_{CEsat}

1,4 3

V 1,8 V

Collector-emitter sustaining voltages

 $I_C = 100 \text{ mA}$; $I_{Boff} = 0$; L = 25 mH

 $I_C = 100 \text{ mA}$; $R_{BE} = 50 \Omega$; L = 15 mH

BUX 80 BUX 81

400 450 V_{CEOsust} VCERsust 500 500 V

Oscilloscope display for sustaining voltages

30-60Hz

Test circuit for $V_{\mbox{CEO}\,\mbox{sust}}$

Test circuit for V_{CERsust}

 $T_1 = 25$ OC unless otherwise specified

Transition frequency at f = 1 MHz

$$I_{C} = 0.2 \text{ A}; V_{CE} = 10 \text{ V}$$

 f_{T} typ. 6 MHz

Switching times

 $I_{Con} = 5 A$; $V_{CC} = 250 V$ $I_{Bon} = 1 A$; $-I_{Boff} = 2 A$

 $I_{Bon} = IA$; $-I_{Boff} = 2A$ Turn-on time

Turn-off: Storage time

Fall time

Fall time, $T_{mb} = 95$ °C

typ. 0,35 μs < 0,5 μs

 $\mathsf{t}_{\mathbf{s}}$

 $t_{\mathbf{f}}$

typ. 2,5 μs

< 3,5 μs typ. 0,3 μs

t_f < 0,8 μs

Safe Operating ARea

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation
- III Area of permissible operation during turn-on in single-transistor converters, provided R_{BE} \leq 100 Ω and t_p \leq 0,6 μs
- IV Repetitive pulse operation in this region is permissible, provided $V_{BE} \leq 0$ and $t_p \leq 2~ms$

¹⁾ Ptot max and Ppeak max lines.

²⁾ Second-breakdown limits (independent of temperature).

Safe Operating ARea

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation
- III Area of permissible operation during turn-on in single-transistor converters, provided $R_{BE} \le 100~\Omega$ and $t_p \le 0.6~\mu s$
- IV Repetitive pulse operation in this region is permissible, provided $V_{\mbox{\footnotesize{BE}}} \leq 0$ and $t_{\mbox{\footnotesize{D}}} \leq 2$ ms

¹⁾ $P_{tot \ max}$ and $P_{peak \ max}$ lines.

²⁾ Second-breakdown limits (independent of temperature).

BUX80 BUX81

BUX80 BUX81

APPLICATION INFORMATION ON BUX80 (detailed information on request)

Important factors in the design of SMPS circuits are the power losses and heatsink requirements of the supply output transistor and the base drive conditions during turn-off. In SMPS circuits with mains isolation the duty factor of the collector current generally varies between 0,25 and 0,5.

The operating frequency lies between 15 kHz and 50 kHz and the shape of the collector current varies from rectangular in a forward converter to a sawtooth in a flyback circuit.

As the BUX80 will mainly be used in forward or push-pull converters the information on optimum base drive and device dissipation given in the graphs on page 12 is concentrated on this application. In these figures I_{CM} represents the highest repetitive peak collector current that can occur in the given circuit, e.g. during overload.

The total power dissipation for a limit-case transistor is given in Fig. 5 which applies for a mounting base temperature of 100 °C. The required thermal resistance for the heatsink can be calculated from

$$R_{th\ mb-a} = \frac{100 - T_{amb\ max}}{P_{tot}}$$

To ensure thermal stability the minimum value of Tamb in the above equation is 40 °C.

A practical SMPS output circuit for an output power in the order of 400 W is given in Fig. 2.

At a collector current of 5 A and a base current of 1 A in this circuit the following turn-off times can be expected.

Storage time . Fall time

;	T _{mb}	$T_{mb} = 25 ^{\circ}C$ 100		
ts	typ	2	2,7	μ
tf	typ	0,18	0,5	μ

Fig. 1 Relevant waveforms of switching transistor.

Fig. 2 Practical SMPS output circuit.

T1 (output transformer): Core U64; n1 = n3 = 56 turns; n2 = 17 turns T2 (base current transformer): Core U20; n1 = 5 turns; n2 = 25 turns

 $v_{CE(t1)} < 300 V$ (see Fig. 1)

Fig. 5.

Fig. 3 Recommended nominal "end" value of the base current versus maximum peak collector current.

Fig. 4 Minimum required base inductance and recommended negative drive voltage versus maximum peak collector current.

Fig. 5 Maximum total power dissipation of a limit-case transistor if the base current is chosen in accordance with Fig. 3. Solid lines for transformer drive and dotted lines for collector-coupled current drive.

SILICON DIFFUSED POWER TRANSISTORS

High-voltage, high-speed switching n-p-n power transistors in TO-3 envelopes, intended for use in converters, inverters, switching regulators and motor control systems.

QUICK REFERENCE DATA						
			BUX82	BUX83		
Collector-emitter voltage (VBE = 0, peak value)	V _{CESM}	max.	800	1000	V	
Collector-emitter voltage (RBE = 100Ω)	v_{CER}	max.	500	500	$\mathbf{v}_{\mathbf{v}}$	
Collector-emitter voltage (open base)	$v_{\rm CEO}$	max.	400	450	\mathbf{V}	
Collector current (d.c.)	$I_{\mathbf{C}}$	max.		6	Α	
Collector current (peak value) t _p = 2 ms	I_{CM}	max.	,	. 8	A	
Total power dissipation up to T_{mb} = 50 ^{o}C	P_{tot}	max.		60	w	
Collector-emitter saturation voltage $I_C = 2, 5 A; I_B = 0, 5 A$	VCEsat	<	. 1	., 5 ·	V .	
Fall time $I_{Con} = 2,5 A; I_{Bon} = 0,5 A; -I_{Boff} = 1 A$	t _f	typ.	. 0), 3	μs	

MECHANICAL DATA

Dimensions in mm

TO-3 Collector connected to case

For mounting instructions and accessories see section Accessories in handbook SC2.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

RATINGS Limiting values in accordance with the A	bsolute Max	mum S	System	(IEC 1	34)
Voltages		_			
Collector-emitter voltage		-		BUX8	-
(V _{BE} = 0, peak value)	v_{CESM}	max.	800	1000	V
Collector-emitter voltage			•		
$(R_{BE} = 100 \Omega)$	v_{CER}	max.	500	500	V
Collector-emitter voltage (open base)	v_{CEO}	max.	400	450	V
Currents					
Collector current (d.c.)	$I_{\mathbf{C}}$	max.		6	A
Collector current (peak value)					
$t_p = 2 \text{ ms}$	I_{CM}	max.		8	Α
Base current (d.c.)	$I_{\mathbf{B}}$	max.		2	Α
Base current (peak value)	I_{BM}	max.		3	Α
Reverse base current (d.c. or average over any 20 ms period)	-I _B (AV)	max.	10	0	mA
Reverse base current (peak value) 1)	$^{-1}\mathrm{BM}$	max.		3	A
Power dissipation					
Total power dissipation up to $T_{mb} = 50$ °C	P_{tot}	max.	6	0	w
Temperatures	•		,		
Storage temperature	$T_{ m stg}$	-65	to +15	0	$^{\mathrm{o}}\mathrm{C}$
Junction temperature	$\mathbf{T_{j}}$.	max.	15	0	oC
THERMAL RESISTANCE					
From junction to mounting base	R _{th j-mb}	=	1,6	5	^o C/W
CHARACTERISTICS	$T_j = 25$ OC u	nless	otherwi	se spe	cified
Collector cut-off current ²)					
$V_{CEM} = V_{CESMmax}; V_{BE} = 0$	I_{CES}	<		1	mA
$V_{CEM} = V_{CESMmax}$; $V_{BE} = 0$; $T_j = 125$ °C	$I_{\rm CES}$	<	•	2	mA
D.C. current gain					
$I_C = 0, 6 A; V_{CE} = 5 V$	h_{FE}	typ.	3	0	

¹⁾ Turn-off current.

²⁾ Measured with a half sine wave voltage (curve tracer).

CHARACTERISTICS	(continued)
-----------------	-------------

Emitter	cut-off	current

$$I_{\rm C}$$
 = 0; $V_{\rm EB}$ = 10 V

Saturation voltages

$$I_C = 2,5 \text{ A}; I_B = 0,5 \text{ A}$$

$$I_C = 4 \text{ A}; I_B = 1,25 \text{ A}$$

$$I_{C}$$
 = 100 mA; I_{Boff} = 0; L = 25 mH
 I_{C} = 100 mA; R_{BE} = 100 Ω ; L = 15 mH

$$T_i = 25$$
 °C unless otherwise specified

V_{CEsat} < 1,5 V

 $V_{BE \ sat}$ < 1,4 V

 $V_{BE sat}$ < 1,6 V

500

3

500

V

 $V_{\rm CEOsust}$ > $\frac{\rm BUX\,82}{400}$ $\frac{\rm BUX\,83}{450}$

>

VCEsat

 $v_{CERsust}$

Oscilloscope display for sustaining voltages

Test circuit for VCEOsust

Test circuit for VERsust

 $T_1 = 25$ OC unless otherwise specified

Transition frequency at f = 1 MHz

 $1_{C} = 0, 2 \text{ A}; V_{CE} = 10 \text{ V}$

fT

 t_S

 t_f

 t_f

680

680 µF

7273191.1

100Ω

T.U.T.

typ.

MHz

Switching times

 I_{Con} = 2, 5 A; V_{CC} = 250 V

 $I_{Bon} = 0, 5 A; -I_{Boff} = 1 A$

Turn-on time

Turn-off: Storage time

Fall time

Fall time, $T_{mb} = 95$ °C

typ. ton

typ.

0,3 μs 0,5 μs

 μs

3, 5 μs

0,3 typ. μ s μs

V_{CC} 250 V

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation
- III Area of permissible operation during turn-on in single-transistor converters, provided RBE $\leq 100~\Omega$ and $t_p \leq 0,6~\mu s$
- IV Repetitive pulse operation in this region is permissible, provided $V_{\rm BE} \le 0$ and $t_p \le 2$ ms

¹⁾ Ptot max and Ppeak max lines.

²⁾ Second-breakdown limits (independent of temperature).

Safe Operating ARea

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation
- III Area of permissible operation during turn-on in single-transistor converters, provided $R_{BE} \le 100~\Omega$ and $t_p \le 0,6~\mu s$
- IV Repetitive pulse operation in this region is permissible, provided $V_{BE} \leq 0$ and $t_p \leq 2~ms$

¹⁾ Ptot max and Ppeak max lines.

²⁾ Second-breakdown limits (independent of temperature).

BUX82 BUX83

APPLICATION INFORMATION ON BUX82 (detailed information on request)

Important factors in the design of SMPS circuits are the power losses and heatsink requirements of the supply output transistor and the base drive conditions during turn-off. In SMPS circuits with mains isolation the duty factor of the collector current generally varies between 0,25 and 0,5.

The operating frequency lies between 15 kHz and 50 kHz and the shape of the collector current varies from rectangular in a forward converter to a sawtooth in a flyback circuit.

Information on optimum base drive and device dissipation of the BUX82 in a flyback converter is given in Figs 3 to 5. Figs 6 to 8 apply to a forward converter. In these figures I_{CM} represents the highest repetitive peak collector current that can occur in the given circuit, e.g. during overload.

The total power dissipation for a limit-case transistor is given in Figs 5 and 8 which applies for a mounting base temperature of 100 °C. The required thermal resistance for the heatsink can be calculated from

$$R_{th mb-a} = \frac{100 - T_{amb max}}{P_{tot}}$$
.

To ensure thermal stability the minimum value of Tamb in the above equation is 40 °C.

A practical forward converter output circuit for an output power in the order of 200 W is given in Fig. 2.

At a collector current of 2,5 A and a base current of 0,5 A in this circuit the following turn-off times can be expected.

Storage time Fall time

t _s	$T_{mb} = 25 ^{\circ}C$		100 °C	
	typ	1,9 0,17	2,7 0,7	 μs
4	typ	0,17	0,7	μs

Fig. 1 Relevant waveforms of switching transistor.

Fig. 2 Practical forward converter SMPS output circuit. T1 (driver transformer): Core U20; n1 = 75 turns; n2 = 20 turns T2 (output transformer): Core E55; n1 = n2 = 72 turns; n3 = 19 turns $v_{CE(t1)} < 300 \text{ V}$ (see Fig. 1)

Fig. 5.

Fig. 3 Recommended nominal "end" value of the base current versus maximum peak collector current in a **flyback** converter.

Fig. 4 Minimum required base inductance and recommended negative drive voltage versus maximum peak collector current.

Fig. 5 Maximum total power dissipation of a limit-case transistor if the base current is chosen in accordance with Fig. 3.

Fig. 6.

Fig. 8.

Fig. 7.

Fig. 6 Recommended nominal "end" value of the base current versus maximum peak collector current in a **forward** converter.

Fig. 7 Minimum required base inductance and recommended negative drive voltage versus maximum peak collector current.

Fig. 8 Maximum total power dissipation of a limit-case transistor if the base current is chosen in accordance with Fig. 6.

SILICON DIFFUSED POWER TRANSISTORS

High-voltage, high-speed, glass-passivated n-p-n power transistors in TO-220 envelopes, intended for use in converters, inverters, switching regulators, motor control systems and switching applications.

QUICK REFERENCE DATA

			BUX84 B	UX85	
Collector-emitter voltage (VBE = 0, peak value)	V _{CESM}	max	800	1000	٧
Collector-emitter voltage (open base)	v_{CEO}	max	400	450	٧
Collector current (d.c.)	Ic	max	2		Α
Collector current (peak value) t _p = 2 ms	I _{CM}	max	3		Α
Total power dissipation up to T _{mb} = 50 °C	Ptot	max	40		W
Collector-emitter saturation voltage I _C = 1 A; I _B = 0,2 A	V _{CEsat}	<	3		v
Fall time I _{Con} = 1 A; I _{Bon} = 0,2 A; -I _{Boff} = 0,4 A	t _f	typ	0,4		μs

MECHANICAL DATA

TO-220 Collector connected to mounting base

For mounting instructions and accessories see section Accessories (Handbook SC2).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages		D.	IVOA I DI IVO	r
Collector-emitter voltage	.,		JX84 BUX8	_
(V _{BE} = 0, peak value)	VCESM	max 8	1	
Collector-emitter voltage (open base)	VCEO	max 4	100 450	V
Currents				
Collector current (d.c.)	I _C	max	2	Α
Collector current (peak value)	•			
t _p = 2 ms	ICM	max	3	A
Base current (d.c.)	ΙΒ	max	0,75	Α
Base current (peak value)	^I вм	max	. 1	Α
Reverse base current (peak value) *	-I _{BM}	max	1	A
Power dissipation				
Total power dissipation up to $T_{mb} = 50$ °C	P _{tot}	max	40	W
Temperatures				
Storage temperature	T_{stg}	65 t	o +150	оС
Junction temperature	Тj	max	150	οС
THERMAL RESISTANCE				
From junction to mounting base	R _{th j-mb}	= .	2,5	oC/W
From junction to ambient in free air	R _{th j-a}	=	70	oC/M
CHARACTERISTICS	T _j = 2	5 °C un	less otherwis	e specified
Collector cut-off current **				
V _{CEM} = V _{CESMmax} ; V _{BE} = 0	ICES	<	200	μΑ
$V_{CEM} = V_{CESMmax}$; $V_{BE} = 0$; $T_j = 125$ °C	ICES	< ,	1,5	mA
D.C. current gain		**		
I _C = 0,1 A; V _{CE} = 5 V	hFE	typ	50	•

^{*} Turn-off current.

^{**} Measured with a half sine-wave voltage (curve tracer).

CHARACTERISTICS (continued)

T_i = 25 °C unless otherwise specified

Emitter cut-off current

I_{EBO} < 1 mA

Saturation voltages

$$I_C = 0.3 \text{ A}; I_B = 30 \text{ mA}$$

 $I_C = 1 \text{ A}; I_B = 0.2 \text{ A}$

$$V_{CEsat}$$
 < 1,0 V_{BEsat} < 1,1 V

Collector-emitter sustaining voltage

Oscilloscope display for sustaining voltage.

Test circuit for V_{CEOsust}.

CHARACTERISTICS (continued)

 $T_j = 25$ °C unless otherwise specified

Transition frequency at f = 1 MHz

 $I_C = 0.2 A$; $V_{CE} = 10 V$

f_T typ 20 MHz

Switching times

I_{Con} = 1 A; V_{CC} = 250 V I_{Bon} = 0,2 A; -I_{Boff} = 0,4 A

Turn-on time

typ 0,2 μs ton < 0,5 μs typ 2 μs

Turn-off: Storage time

Fall time

Fall time, T_{mb} = 95 °C

 $t_{\rm f}$ typ 0,4 $\mu {\rm s}$ $t_{\rm f}$ < 1,4 $\mu {\rm s}$

3,5° µs

Safe Operating ARea

- Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation
- III Area of permissible operation during turn-on in single transistor converters, provided RBE \leq 100 Ω and $t_{p} \leq$ 0,6 μs
- IV Repetitive pulse operation in this region is permissible, provided $V_{BE} \leq 0$ and $t_p \leq 2$ ms

P_{tot max} and P_{peak max} lines.
 Second-breakdown limits (independent of temperature).

Safe Operating ARea

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation
- III Area of permissible operation during turn-on in single transistor converters, provided R_{BE} \leq 100 Ω and t_p \leq 0,6 μ s
- IV Repetitive pulse operation in this region is permissible, provided VBE \leq 0 and t_D \leq 2 ms

Notes

- 1. Ptot max and Ppeak max lines.
- 2. Second-breakdown limits (independent of temperature).

Silicon diffused power transistors

BUX84 BUX85

Silicon diffused power transistors

BUX84 BUX85

APPLICATION INFORMATION ON BUX84 (detailed information on request)

Important factors in the design of SMPS circuits are the power losses and heatsink requirements of the supply output transistor and the base drive conditions during turn-off. In most SMPS circuits with mains isolation the duty factor of the collector current generally varies between 0,25 and 0,5.

The operating frequency lies between 15 kHz and 50 kHz and the shape of the collector current varies from rectangular in a forward converter to a sawtooth in a flyback circuit.

Information on optimum base drive and device dissipation of the BUX84 in a flyback converter is given in Figs 3 to 5. Figs 6 to 8 apply to a forward converter. In these figures I_{CM} represents the highest repetitive peak collector current that can occur in the given circuit, e.g. during overload.

The total power dissipation for a limit-case transistor is given in Figs 5 and 8 which apply for a mounting base temperature of 100 °C. The required thermal resistance for the heatsink can be calculated from

$$R_{th mb-a} = \frac{100-T_{amb max}}{P_{tot}}$$
.

To ensure thermal stability the minimum value of T_{amb} in the above equation is 40 °C.

A practical SMPS output circuit for an output power in the order of 50 W is given in Fig. 2.

At a collector current of 0,7 A and a base current of 70 mA in this circuit the following turn-off times can be expected.

Storage time Fall time

	T _{mb}	= 25 °C	100 °C	
t _s	typ	2,2	2,8	μs
	typ	0,25	0,85	μs

Fig. 1 Relevant waveforms of switching transistor.

Fig. 2 Practical SMPS output circuit.

T1 (driver transformer): Core U15; n1 = 360 turns; n2 = 60 turns total inductance in base circuit \approx 15 μ H T2 (output transformer): Core E55; primary inductance L_p = 16 mH n1 = 116 turns; n2 = 12 turns

 $v_{CE(t1)}$ < 300 V (see Fig. 1)

g. 3.

Fig. 5.

Fig. 3 Recommended nominal "end" value of the base current versus maximum peak collector current in a flyback converter.

Fig. 4 Minimum required base inductance and recommended negative drive voltage versus maximum peak collector current.

Fig. 5 Maximum total power dissipation of a limit-case transistor if the base current is chosen in accordance with Fig. 3. Solid lines for IC1/ICM = 0,4 and dotted lines for IC1/ICM = 0.

Fig. 6.

Fig. 8.

Fig. 6 Recommended nominal "end" value of the base current versus maximum peak collector current in a forward converter.

Fig. 7 Minimum required base inductance and recommended negative drive voltage versus maximum peak collector current.

Fig. 8 Maximum total power dissipation of a limit-case transistor if the base current is chosen in accordance with Fig. 6.

SILICON DIFFUSED POWER TRANSISTORS

High-voltage, high-speed, glass-passivated n-p-n power transistors in SOT-32 envelopes, for use in converters, inverters, switching regulators, motor control systems and switching applications.

QUICK REFERENCE DATA

			BUX86	BUX87	
Collector-emitter voltage (V _{BE} = 0, peak value)	v_{CESM}	max	800	1000	٧
Collector-emitter voltage (open base)	VCEO	max	400	450	٧
Collector current (d.c.)	lc	max	0,5	5	Α
Collector current (peak value): tp = 2 ms	CM	max	1	l	Α
Total power dissipation up to $T_{mb} = 60$ °C	P _{tot}	max	20) 🦾	W
Collector-emitter saturation voltage: $I_C = 0.2 \text{ A}$; $I_B = 20 \text{ mA}$	V CEsat	<	3	3	V
Fall time: $I_{Con} = 0.2 \text{ A}$; $I_{Bon} = 20 \text{ mA}$; $-I_{Boff} = 40 \text{ mA}$	t _f	typ	0,4	ļ	μs

MECHANICAL DATA

Dimensions in mm

TO-126 (SOT-32)

Collector connected to metal part of mounting surface

Accessories: 56326 (washer) or 56353 (clip) for direct mounting and 56353 + 56354 (package) for insulated mounting.

^{*} Within this region the cross-section of the leads is uncontrolled.

	Voltages		- 1	BUX86	BUX87	
	Collector-emitter voltage (V _{BE} = 0, peak value)	VCESM	max	800	1000	V
	Collector-emitter voltage (open base)	VCEO	max	400	450	V .
	Currents					
	Collector current (d.c.)	lc	max	0,	5	A
	Collector current (peak value): t _p = 2 ms	ICM	max	•	1	Α
	Base current (d.c.)	I _B	max	0,2	2 .	Α .
	Base current (peak value)	^I BM	max	0,3	3	A
	Reverse base current (peak value) (note 1)	-I _{BM}	max	0,3	3	Α
	Power dissipation			•		
	Total power dissipation up to T _{mb} = 60 °C	P _{tot}	max	20)	W ,
	Temperatures					
	Storage temperature	T _{stg}	-65	to +150)	οС
	Junction temperature	Тj	max	150)	oC .
	THERMAL RESISTANCE	۵.			٠.	
	From junction to mounting base	R _{th j-mb}	÷	4,5	5	oc/W
,	From junction to ambient in free air	R _{th j-a}	=	100	כ	oC/M
	CHARACTERISTICS	T _j = 2	:5 °C ι	unless of	herwise	specified
	Collector cut-off current (note 2)					
	V _{CEM} = V _{CESMmax} ; V _{BE} = 0	^I CES	<	100	כ	μΑ
	$V_{CEM} = V_{CESMmax}$; $V_{BE} = 0$; $T_j = 125$ °C	CES	<		1	mÁ
	D.C. current gain					
	$I_C = 50 \text{ mA}; V_{CE} = 5 \text{ V}$	hFE	typ	50	י י	

^{1.} Turn-off current

^{2.} Measured with a half sine-wave voltage (curve tracer).

CHARACTERISTICS (continued)

T_i = 25 °C unless otherwise specified

Emit	tter	cut-off	current

$I_C = 0$; $V_{EB} = 5 V$	EBO	<	1	mA
Saturation voltage				
I _C = 0,1 A; I _B = 10 mA	V _{CEsat}	<	1,5	٧
I _C = 0,2 A; I _B = 20 mA	V _{CEsat}	<	3	٧
I _C = 0,2 A; I _B = 20 mA	· V _{BEsat}	<	1,0	V

Collector-emitter sustaining voltages

			-	_	
I _C = 100	mA, I	Boff =	0; L	= 25	mΗ

Oscilloscope display for sustaining voltage

Test circuit for V_{CEOsust}

CHARACTERISTICS (continued)

T_i = 25 °C unless otherwise specified

Transition frequency at f = 1 MHz

 $I_C = 50 \text{ mA}; V_{CE} = 10 \text{ V}$

f_T typ 20 MHz

Switching times

I_{Con} = 0,2 A; V_{CC} = 250 V I_{Bon} = 20 mA; -I_{Boff} = 40 mA

Turn-on time

Turn-off: Storage time

Fall time

Fall time, Tmb = 95 °C

 $t_{
m on} \begin{tabular}{lll} typ & 0,25 & \mu s \\ 0,5 & \mu s \\ t_{
m s} & typ & 2 & \mu s \\ t_{
m s} & < & 3,5 & \mu s \\ t_{
m f} & typ & 0,4 & \mu s \\ \end{tabular}$

1,3 µs

<

Waveform

Test circuit

 $t_p = 20 \mu s$ T = 2 ms V_{IM} = 15 V

Safe Operating ARea

- I Region of permissible d.c. operation
- 11 Permissible extension for repetitive pulse operation
- III Area of permissible operation during turn-on in single-transistor converters, provided RBE \le 100 Ω and tp \le 0,6 μs
- IV Repetitive pulse operation in this region is permissible, provided VBE \leq 0 and t_D \leq 2 ms

Notes

- 1. Ppeak max lines.
- 2. Second-breakdown limits (independent of temperature).

Safe Operating ARea

- Region of permissible d.c. operation
- Il Permissible extension for repetitive pulse operation
- III Area of permissible operation during turn-on in single-transistor converters, provided R_{BE} \leq 100 Ω an t_p \leq 0,6 μ s
- IV Repetitive pulse operation in this region is permissible, provided $V_{BE} \le 0$ and $t_p \le 2$ ms

Notes

- $\begin{array}{l} {\rm 1.\;P_{peak\;max}\;lines.} \\ {\rm 2.\;Second\text{-}breakdown\;limits\;(independent\;of\;temperature).} \end{array}$

BUX86 BUX87

BUX86 BUX87

APPLICATION INFORMATION ON BUX86 (detailed information on request)

Important factors in the design of SMPS circuits are the power losses and heatsink requirements of the supply output transistor and the base drive conditions during turn-off. In SMPS circuits with mains isolation the duty factor of the collector current generally varies between 0,25 to 0,5.

The operating frequency lies between 15 kHz and 50 kHz and the shape of the collector current varies from rectangular in a forward converter to a sawtooth in a flyback circuit.

As the BUX86 will mainly be used in low-power flyback converters the information on optimum base drive and device dissipation given in the graphs on page 13 is concentrated on this application. In these figures I_{CM} represents the highest repetitive peak collector current that can occur in the given circuit, e.g. during overload.

The total power dissipation for a limit-case transistor is given in Fig. 5 which applies for a mounting base temperature of 100 °C. The required thermal resistance for the heatsink can be calculated from

$$R_{th mb-a} = \frac{100 - T_{amb max}}{P_{tot}}$$

To ensure thermal stability the minimum value of T_{amb} in the above equation is 40 °C.

A practical SMPS output circuit for an output of power in the order of 15 W is given in Fig. 2.

At a collector current of 200 mA and a base current of 20 mA in this circuit the following turn-off times can be expected.

Storage time Fall time

	T_{mb}	= 25 °C	100 °C	
t _s	typ	1,3 0.2	1,8 0.8	μs μs

Fig. 1 Relevant waveforms of switching transistor.

Fig. 2 Practical SMPS output circuit.

T1 (output transformer): Core U20; primary inductance L_p = 23 mH n1 = 252 turns; n2 = 27 turns; n3 = 22 turns

 $v_{CE(t1)} < 300 V$ (see Fig. 1)

Fig. 5.

Fig. 3 Recommended nominal "end" value of the base current versus maximum peak collector current.

Fig. 4 Minimum required base inductance and recommended negative drive voltage versus maximum peak collector current.

Fig. 5 Maximum total power dissipation of a limit-case transistor if the base current is chosen in accordance with Fig. 3. Solid lines for $I_{C1}/I_{CM} = 0.4$ and dotted lines for $I_{C1}/I_{CM} = 0$.

SILICON DIFFUSED POWER TRANSISTOR

N-P-N transistor in a TO-3 metal envelope, intended for use in linear applications such as hi-fi amplifiers and signal processing circuits. Matched pairs are available.

QUICK REFERENCE DATA						
Collector-base voltage (open emitter)	V _{CBO}	max. 100 V				
Collector-emitter voltage (RpE = 100Ω)	v_{CER}	max. 70 V				
Collector current (d.c.)	$I_{\mathbf{C}}$.	max. 15 A				
Total power dissipation up to T _{mb} = 25 °C	P_{tot}	max.115 W				
Junction temperature	$T_{\mathbf{j}}$	max. 200 °C				
D.C. current gain I _C = 4 A; V _{CE} = 4 V	\mathtt{h}_{FE}	20 to 70				
Transition frequency at f = 1 MHz I_C = 1 A; V_{CE} = 4 V	f_{T}	> 0.8 MHz				

MECHANICAL DATA

Dimensions in mm

Collector connected to envelope TO-3

For mounting instructions and accessories, see section $\mbox{Accessories}$.

SILICON DIFFUSED POWER TRANSISTORS

N-P-N transistors in a TO-3 metal envelope, intended for use in a wide variety of linear power applications in audio amplifiers, converters, voltage regulators, power supplies, etc.

QUICK REFERENCE DATA						
en e			2N3442	2N4347		
Collector-base voltage (open emitter)	V_{CBO}	max.	160	140	V	
Collector-emitter voltage (open base)	$v_{\rm CEO}$	max.	140	120	V	
Collector current (d.c.)	$^{\mathrm{I}}\mathrm{C}$	max.		10	A	
Total power dissipation up to T_{mb} = 25 o C	P_{tot}	max.		117	w	
Junction temperature	Тj	max.		200	°C	
D.C. current gain I _C = 3 A; V _{CE} = 4 V: 2N3442 I _C = 2 A; V _{CE} = 4 V: 2N4347	$h_{ m FE}$		20 t	o 70	,	

MECHANICAL DATA

Dimensions in mm

Collector connected to envelope TO-3

For mounting instructions and accessories, see section Accessories.

MOUNTING INSTRUCTIONS

=

GENERAL NOTE ON FLAT HEATSINKS

All înformation on thermal resistances of the accessories combined with flat heatsinks is valid for square heatsinks of 1,5 mm blackened aluminium.

For a few variations the thermal resistance may be derived as follows:

a. Rectangular heatsinks (sides a and 2a)

When mounted with long side horizontal, multiply by 0,95. When mounted with short side horizontal, multiply by 1,10.

b. Unblackened or thinner heatsinks

Multiply by the factor B given below as a function of the heatsink size A.

MOUNTING INSTRUCTIONS FOR SOT-32 AND SOT-82 ENVELOPES

GENERAL DATA AND INSTRUCTIONS

General rules

- 1. First fasten the devices to the heatsink before soldering the leads.
- 2. Avoid axial stress to the leads.
- 3. Keep mounting tool (e.g. screwdriver) clear of the plastic body.

Heatsink requirements

Minimum thickness: 2 mm.

Flatness in the mounting area: 0,02 mm maximum per 10 mm.

Mounting holes must be deburred and should also be perpendicular to the plane of the heatsink, within 10° tolerance for M2,5 thread and within 2° tolerance for M3 thread. If the hole in the heatsink is threaded, it should be counter-sunk and free of burrs.

Heatsink compound

Values of the thermal resistance from mounting base to heatsink (R_{th mb-h}) given for mounting with heatsink compound refer to the use of a metallic oxide-loaded compound. Ordinary silicone grease is not recommended.

For insulated mounting, the compound should be applied to the bottom of both device and insulator.

Mounting methods for power transistors

- 1. Clip mounting (SOT-32 and SOT-82)
 - Mounting by means of spring clip offers:
 - a. A good thermal contact under the crystal area.
 - b. Safe insulation for mains and high voltage operation
- M2,5 and M3 screw mounting. (SOT-32 only).

The spacing washer should be inserted between screw head and body.

Mounting torque for screw mounting:

Minimum torque (for good heat transfer)

0,4 Nm (4 kgcm)

Maximum torque (to avoid damaging the device)

0,6 Nm (6 kgcm)

N.B. when the driven nut or screw is in direct contact with a toothed lock washer the torques are as follows:

Minimum torque (for good heat transfer)

0,55 Nm (5,5 kgcm)

Maximum torque (to avoid damaging the device)

0.80 Nm (8.0 kgcm)

3. Body mounting (SOT-82).

A SOT-82 envelope can be adhesive mounted or soldered into a hybrid circuit.

For soldering a copper plate or an anodized aluminium plate with copper layer is recommended. When adhesive mounting is applied also a ceramic substrate may be used.

Pre-heating

For good soldering and avoiding damage to the SOT-82 device pre-heating is recommended to a temperature ≤ 165 °C at a duration ≤ 10 s.

Solderina

Recommended metal-alloy of solder paste (85% metal weight)

a. 62 Sn/36 Pb/2 Ag or b. 60 Sn/40 Pb.

Maximum soldering temperature ≤ 250 °C (soldering plate)

Soldering cycle duration: a without pre-heating ≤ 14 s.

b with pre-heating

Thermal data from mounting base to heatsink

R_{th mb-h} (°C/W)

	•	nounting insulated		nounting insulated
SOT-32, with heatsink compound SOT-32, without heatsink compound	1,0 3,0	3,0 6,0	0,5 1,0	3,0 6,0
SOT-82, with heatsink compound SOT-82, without heatsink compound	0,4 2,0	2,0 5,0	_ _	

Lead bending

Maximum permissible tensile force on the body, for 5 seconds is 20 N (2 kgf).

The leads can be bent through 90° maximum, twisted or straightened. To keep forces within the abovementioned limits, the leads are generally clamped near the body, using pliers. The leads should neither be bent nor twisted less than 2,4 mm from the body.

Lead soldering

For devices with a maximum junction temperature ≤ 150 °C.

- a. Dip or wave soldering
 - Temperature ≤ 260 °C at a distance from the body > 5 mm and for a total contact time with soldering bath or waves < 7 s.
- b. Hand soldering

Temperature at a distance from the body > 3 mm for a total contact time < 5 s is < 275 °C or < 250 °C for a total contact time of < 10 s.

The body of the device must be kept clear of anything with a temperature > 200 °C. Avoid any force on body and leads during or after soldering; do not correct the position of the device or of its leads after soldering.

INSTRUCTIONS FOR CLIP MOUNTING

Direct mounting with clip 56353

- 1. Place the device on the heatsink, applying heatsink compound to the mounting base.
- Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 10° to 30° to the vertical (see Figs 1 and 2).
- 3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the heatsink. The clip should bear on the plastic body (see Fig. 3).

20 10° 15 7278762

Fig. 1 Heatsink requirements.

Fig. 2 Mounting spring clip.

Fig. 3 Position of transistor (top view).

Insulated mounting with clip 56353 and mica 56354 (up to 1000 V insulation)

- Place the device with the insulator on the heatsink, applying heatsink compound to the bottom of both device and insulator.
- 2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 10° to 30° to the vertical (see Figs 4 and 5).
- 3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the heatsink. The clip should bear on the plastic body (Fig. 6). There should be minimum 3 mm distance between the device and the edge of the insulator for adequate creepage.

Fig. 4 Heatsink requirements.

Fig. 5 Mounting. (1) spring clip 56353.

Fig. 6 Position of transistor (top view).

INSTRUCTIONS FOR SCREW MOUNTING

Direct mounting with screw and spacing washer

Fig. 7 Assembly through heatsink with nut.

Fig. 9 Assembly into tapped heatsink.

Fig. 8 Heatsink requirements.

Fig. 10 Heatsink requirements.

INSTRUCTIONS FOR SCREW MOUNTING Insulated mounting with 56333 (up to 250 V)

Fig. 11 Assembly through heatsink with nut.

Fig. 13 Assembly with tapped heatsink.

Fig. 12 Heatsink requirements.

Fig. 14 Heatsink requirements.

MOUNTING INSTRUCTIONS FOR TO-220 ENVELOPES

GENERAL DATA AND INSTRUCTIONS

General rules

- 1. First fasten the devices to the heatsink before soldering the leads.
- 2. Avoid axial stress to the leads.
- 3. Keep mounting tool (e.g. screwdriver) clear of the plastic body.
- 4. The rectangular washer may only touch the plastic part of the body; it should not exert any force on that part (screw mounting).

Heatsink requirements

Flatness in the mounting area: 0,02 mm maximum per 10 mm. Mounting holes must be deburred, see further mounting instructions.

Heatsink compound

Values of the thermal resistance from mounting base to heatsink (R_{th mb-h}) given for mounting with heatsink compound refer to the use of a metallic oxide-loaded compound. Ordinary silicone grease is not recommended.

For insulated mounting, the compound should be applied to the bottom of both device and insulator.

Mounting methods for power transistors

1. Clip mounting

Mounting by means of spring clip offers:

- a. A good thermal contact under the crystal area, and slightly lower R_{th mb-h} values than screw mounting.
- b. Safe insulation for mains operation.
- 2. M3 screw mounting

It is recommended that the rectangular spacing washer is inserted between screw head and mounting tab.

Mounting torque for screw mounting:

(For thread-forming screws these are final values. Do not use self-tapping screws.)

Minimum torque (for good heat transfer)

Maximum torque (to avoid damaging the device)

0,55 Nm (5,5 kgcm)

0,80 Nm (8,0 kgcm)

N.B.: When a nut or screw is not driven direct against a curved spring washer or lock washer (not for thread-forming screw), the torques are as follows:

Minimum torque (for good heat transfer)

0,4 Nm (4 kgcm)

Maximum torque (to avoid damaging the device)

0,6 Nm (6 kgcm)

N.B.: Data on accessories are given in separate data sheets.

The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet providing that eyelet rivets of soft material are used, and the press forces are slowly and carefully controlled so as to avoid shock and deformation of either heatsink or mounting tab.

Thermal data			ip Inting	screw mounting	
From mounting base to heatsink			•		
with heatsink compound, direct mounting	R _{th} mb-h	=	0,3	0,5	oC/M
without heatsink compound, direct mounting	R _{th mb-h}	=	1,4	1,4	oC/M
with heatsink compound and 0,1 mm					
maximum mica washer	R _{th mb-h}	· =	2,2	_ `	oC/W
with heatsink compound and 0,25 mm					
maximum alumina insulator	R _{th mb-h}	= ,	8,0	_	oC/M
with heatsink compound and 0,05 mm mica washer					
insulated up to 500 V	R _{th mb-h}	=	_	1,4	oC/W
insulated up to 800 V/1000 V	Rth mb-h	= ,		1,6	oC/M
without heatsink compound and 0,05 mm mica washer					
insulated up to 500 V	R _{th mb-h}	€ .		3,0	oc/w
insulated up to 800 V/1000 V	R _{th mb-h}	=	_	4,5	oC/W

Lead bending

Maximum permissible tensile force on the body, for 5 seconds is 20 N (2 kgf).

The leads can be bent through 90° maximum, twisted or straightened. To keep forces within the abovementioned limits, the leads are generally clamped near the body, using pliers. The leads should neither be bent nor twisted less than 2,4 mm from the body.

Soldering

Lead soldering temperature at > 3 mm from the body; $t_{sld} < 5$ s:

Devices with T $_{j~max} \leqslant$ 175 °C, soldering temperature T $_{sld~max}$ = 275 °C. Devices with T $_{j~max} \leqslant$ 110 °C, soldering temperature T $_{sld~max}$ = 240 °C.

Avoid any force on body and leads during or after soldering: do not correct the position of the device or of its leads after soldering.

It is not permitted to solder the metal tab of the device to a heatsink, otherwise its junction temperature rating will be exceeded.

INSTRUCTIONS FOR CLIP MOUNTING

Direct mounting with clip 56363

- 1. Place the device on the heatsink, applying heatsink compound to the mounting base.
- 2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 10° to 30° to the vertical (see Figs. 1 and 2).
- 3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the heatsink. The clip should bear on the plastic body, not on the tab (see Fig. 2a).

Fig. 1 Heatsink requirements.

Fig. 2 Mounting. (1) spring clip.

Fig. 2a Position of transistor (top view).

Insulated mounting with clip 56364

With the insulators 56367 or 56369 insulation up to 2 kV is obtained.

- Place the device with the insulator on the heatsink, applying heatsink compound to the bottom of both device and insulator.
- 2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 10° to 30° to the vertical (see Figs 3 and 4).
- 3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the heatsink. The clip should bear on the plastic body, not on the tab. There should be minimum 3 mm distance between the device and the edge of the insulator for adequate creepage.

Fig. 3 Heatsink requirements.

Fig. 4 Mounting. (1) spring clip.

(2) insulator 56369 or 56367.

Fig. 4a Position of transistor (top view).

INSTRUCTIONS FOR SCREW MOUNTING

Direct mounting with screw and spacing washer

· through heatsink with nut

Fig. 5 Assembly.

(1) M3 screw.

- (2) rectangular washer (56360a).
- (3) toothed lock washer.
- (4) M3 nut.
- (5) heatsink.
- (6) plain washer.

Fig. 6 Heatsink requirements.

Fig. 8 Heatsink requirements.

Fig. 7 Assembly.

- (1) M3 screw.
- (2) rectangular washer 56360a.
- (5) heatsink.

Insulated mounting with screw and spacing washer (not recommended where mounting tab is on mains voltage)

• through heatsink with nut

Dimensions in mm

Fig. 9 Assembly.

- (1) M3 screw.
- (2) rectangular washer 56360a.
- (3) toothed lock washer.
- (4) M3 nut.

- (5) heatsink.
- (6) mica insulator 56359b.
- (7) insulating bush 56359c.
- (8) plain washer.

Fig. 10 Heatsink requirements for 500 V insulation.

Fig. 11 Heatsink requirements for 800 V insulation.

• into tapped heatsink

Fig. 12 Assembly.

- (1) M3 screw.
- (2) rectangular washer 56360a.
- (3) rectangular insulation bush 56359d.
- (4) mica insulator 56359b.
- (5) heatsink.

Fig. 13 Heatsink requirements for 500 V insulation.

Fig. 14 Heatsink requirements for 1000 V insulation.

MOUNTING INSTRUCTIONS FOR SOT-93 ENVELOPES

GENERAL DATA AND INSTRUCTIONS

General rule

Avoid any sudden forces on leads and body; these forces, such as from falling on a hard surface, are easily underestimated.

Heatsink requirements

Flatness in the mounting area: 0,02 mm maximum per 10 mm.

The mounting hole must be deburred.

Heatsink compound

The thermal resistance from mounting base to heatsink ($R_{th\ mb-h}$) can be reduced by applying a metallic-oxide heatsink compound between the contact surfaces. For insulated mounting the compound should be applied to the bottom of both device and insulator.

Maximum play

The bush or the washer may only just touch the plastic part of the body, but should not exert any force on that part. Keep mounting tool (e.g. screwdriver) clear of the plastic body.

Mounting torques

		d mounting).

Minimum torque (for good heat transfer)

Maximum torque (to avoid damaging the device)

0,4 Nm (4 kgcm) 0,6 Nm (6 kgcm)

For M4 screw (direct mounting only):

Minimum torque (for good heat transfer)

0,4 Nm (4 kgcm)

Maximum torque (to avoid damaging the device)

1,0 Nm (10 kgcm)

Note: The M4 screw head should not touch the plastic part of the envelope.

Lead bending

Maximum permissible tensile force on the body for 5 s

20 N (2 kgf)

No torsion is permitted at the emergence of the leads.

Bending or twisting is not permitted within a lead length of 0,3 mm.

The leads can be bent through 90° maximum, twisted or straightened; to keep forces within the above-mentioned limits, the leads are generally clamped near the body.

N.B.: Data on accessories are given in separate data sheets.

Soldering

Recommendations for devices with a maximum junction temperature rating \leq 175 °C:

a. Dip or wave soldering

Maximum permissible solder temperature is 260 $^{\rm oC}$ at a distance from the body of > 5 mm and for a total contact time with soldering bath or waves of < 7 s.

b. Hand soldering

The summer of sheets

Maximum permissible temperature is 275 $^{\circ}$ C at a distance from the body of > 3 mm and for a total contact time with the soldering iron of < 5 s.

The body of the device must not touch anything with a temperature > 200 °C.

It is not permitted to solder the metal tab of the device to a heatsink, otherwise the junction temperature rating will be exceeded.

Avoid any force on body and leads during or after soldering; do not correct the position of the device or of its leads after soldering.

i hermai data			clip unting	screw mounting
Thermal resistance from mounting base to heatsink				
direct mounting				
with heatsink compound	R _{th mb-h}	=	0,3	0,3 °C/W
without heatsink compound	Ŕ _{th mb-h}	=	1,5	0,8 °C/W
with 0,05 mm mica washer				
with heatsink compound	R _{th mb-h}	=	0,8	0,8 °C/W
without heatsink compound	R _{th mb-h}	=	3,0	2,2 °C/W

INSTRUCTIONS FOR CLIP MOUNTING

Direct mounting with clip 56379

- 1. Place the device on the heatsink, applying heatsink compound to the mounting base.
- 2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 10° to 20° to the vertical (see Fig. 1b).
- 3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the heatsink. The clip should bear on the plastic body, not on the tab (see Fig. 1(c)).

Fig. 1a Heatsink requirements.

Fig. 1b Mounting. (1) = spring clip 56379.

Fig. 1c Position of the device.

Insulated mounting with clip 56379

With the mica of package 56368 insulation up to 1 kV is obtained.

- 1. Place the device with the insulator on the heatsink, applying heatsink compound to the bottom of both device and insulator.
- 2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 10° to 20° to the vertical (see Figs 2a and 2b).
- 3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the heatsink. The clip should bear on the plastic body, not on the tab (see Fig. 2c). There should be minimum 3 mm distance between the device and the edge of the insulator for adequate creepage.

Fig. 2a Heatsink requirements.

Fig. 2b Mounting.

- (1) = spring clip 56379
- (2) = insulator 56378

Fig. 2c Position of the device.

INSTRUCTIONS FOR SCREW MOUNTING

Direct mounting

Where vibrations are to be expected the use of a lock washer or of a curved spring washer is recommended, with a plain washer between aluminium heatsink and spring washer.

Insulated screw mounting with nut; up to 800 V.

Fig. 3 Mica insulator. The axial deviation (α) between SOT-93 and mica should not exceed 5° .

Fig. 4 Assembly. See also Fig. 3.

- (1) M3 screw
- (2) plain washer
- (3) insulating bush (56368b)
- (4) mica insulator (56368a)
- (5) lock washer
- (6) M3 nut

120 Ø4±0,1. 7275326.1

Fig. 5 Heatsink requirements up to 800 V insulation.

Insulated screw mounting with tapped hole; up to 800 V.

Fig. 6 Assembly. See also Fig. 3.

Fig. 7 Heatsink requirements up to 800 V insulation.

- (1) M3 screw
- (2) plain washer
- (3) insulating bush (56368b) (4) mica insulator (56368a)
- (5) lock washer

Insulated screw mounting with insert nut; up to 500 V

Fig. 8 Assembly and heatsink requirements for 500 V insulation. See also Fig. 3.

(56368b)

- (1) M3 screw
- (2) plain washer
- (3) insulating bush
- (4) mica insulator (56368a)
- (5) lock washer

MOUNTING INSTRUCTIONS FOR TO-3 ENVELOPES

GENERAL DATA AND INSTRUCTIONS

Instructions for direct mounting.

Mounting instructions for up to 500 V insulation.

Using insulating bushes 56201c and mica washer 56201d.

Using insulating bushes 56201j or 56261a and mica washer 56201d.

Mounting instructions for 500 to 2000 V insulation.

Using mounting support 56352 and mica washer 56339.

Flatness in the mounting area: 0,05 mm per 40 mm

Mounting holes must be deburred.

Mounting torques

Minimum torque (for good heat transfer)

0.4 Nm (4 kgcm)

Maximum torque (to avoid damaging the transistor)

0,6 Nm (6 kgcm)

N.B.: When the driven nut or screw is in direct contact with a toothed lock washer (e.g. Fig. 10), the torques are as follows:

Minimum torque

0,55 Nm (5,5 kgcm)

Maximum torque

0,8 Nm (8 kgcm)

Thermal data

The thermal resistance from mounting base to heatsink (R_{th mb-h}) can be reduced by applying a heat conducting compound between transistor and heatsink. For insulated mounting the compound should be applied to the bottom of both device and insulator.

From mounting base to heatsink without heatsink compound
with heatsink compound

	Direct mounting	Insulated		
	Direct mounting	500 V mica	2000 V mica	
R _{th mb-l}	0,6	1,0	1,25	oC/W
R _{th mb-l}	0,1	0,3	0,5	oC/W

INSTRUCTIONS FOR DIRECT MOUNTING

The transistors should be mounted with M4 screws, see Figs 1 and 2. Minimum heatsink thickness (for good heat transfer) 1,5 mm. Hole pattern: Fig. 3.

A heatsink with tapped holes or insert nuts can also be used, but a torque washer is necessary between metal washer and transistor. See Fig. 4.

Figs 1 and 2. Direct mounting with nuts

Legend for all figures: (1) = screw (2) = TO-3 thick base (3, 15 mm) (2)(3) = TO-3 thick or thin base (3) = TO-3 thin base (1.6 mm) (4) = mica (5) = heatsink (6)= insulating bush (7) = metal washer (8) = soldering tag = lock washer (9) (10)= nut (11)= tapped hole (12) = insert nut Dimensions in mm

Fig. 3. Hole pattern for direct mounting with nuts

Fig. 4 Direct mounting with tapped holes or insert nuts.

MOUNTING INSTRUCTIONS FOR UP TO 500 V INSULATION

Using insulating bushes 56201c and mica washer 56201d

For the component arrangement with minimum heatsink thickness see Figs 5 and 6. For hole pattern and shape of holes see Figs 7 and 8.

The accessories can also be used for thinbase transistors on a 2,5 mm heatsink provided with M3 insert nuts in an arrangement like Figs 10 and 12.

Using insulating bushes 56201j or 56261a and mica washer 56201d

For an arrangement with M3 screws and nuts see Fig. 9, mounting holes are given in Figs 7 and 8. The accessories can also be used in combination with M3 screws and heatsinks provided with tapped holes or insert nuts. Lock washers are necessary between screw-head and metal washer, see Fig. 10. For an assembly drawing with tapped holes see Fig. 11, with insert nuts see Fig. 12.

MOUNTING INSTRUCTIONS FOR UP TO 500 V INSULATION (continued)

Figs 5 and 6. Insulated mounting (500 V) with 56201c and 56201d

Heatsink thickness: 1,5 to 2,5 mm for thick-base TO-3

2 to 2,5 mm for thin-base TO-3

For legend see page 2.

Fig. 7. Hole pattern for 500 V insulation, nut fastening

Fig. 8. Shape of hole for 500 V insulation, nut fastening

MOUNTING INSTRUCTIONS TO-3

MOUNTING INSTRUCTIONS TO-3

MOUNTING INSTRUCTIONS FOR UP TO 500 V INSULATION (continued)

Fig. 11 Assembly (partial) for Fig. 10 - tapped holes.

Q minimum 2 mm for thick-base TO-3 (with 56261a).

Q minimum 3 mm for thin-base TO-3 (with 56261a).

Q minimum 2 mm for thin-base TO-3 (with 56201j).

Fig. 12 Assembly (partial) for Fig. 10 - insert nuts and thick-base TO-3.

Q minimum 2 mm for thick-base TO-3 (with 56261a). Q minimum 3 mm for thin-base TO-3 (with 56261a).

Q minimum 3 mm for thin-base TO-3 (with 56201a).

^{*} Thickness approximately 0,6 mm, outer diameter 7,5 mm.

Legend for all figures:

	(1)	screw.
	(2)	TO-3 thick base (3,15 mm).
	(2) (3)	TO-3 thick or thin base.
	(3)	TO-3 thin base (1,6 mm).
į	(4)	mica.
	(5)	heatsink.
	(6)	insulating bush.
	(7)	metal washer.
	(8)	soldering tag.
	(9)	lock washer.
	(10)	nut.
	(11)	tapped hole.
	(12)	insert nut.

MOUNTING INSTRUCTIONS FOR 500 V TO 2000 V INSULATION (Thick-base TO-3 only)

Dimensions in mm

Using mounting support 56352 and mica washer 56339

The transistor should be mounted with M3 screws. For component arrangement see Figs 13 and 14. For hole pattern see Fig. 15. Thickness of heatsink 2,5 mm to 3 mm.

MOUNTING INSTRUCTIONS TO-3

MOUNTING INSTRUCTIONS FOR 500 V TO 2000 V INSULATION (continued)

→ Figs 13 and 14 Insulated mounting (500 V - 2000 V, thick-base TO-3) with mica **56339** and mounting support **56352**.

For legend see page 2 or 7.

Fig. 15 Hole pattern for Figs 13 and 14.

ACCESSORIES

TYPE NUMBER SURVEY ACCESSORIES

type number	description	envelope
56201c	insulating bushes (up to 500 V)	TO-3
56201d	mica washer (up to 500 V)	TO-3
56201j	insulating bushes (up to 500 V)	TO-3
56261a	insulating bushes (up to 500 V)	TO-3
56326	metal washer	SOT-32
56333	metal washer mica washer insulating bush	SOT-32
56339	mica washer (500 to 2000 V)	TO-3
56352	insulating mounting support	
56353	spring clip	SOT-32/SOT-82
56354	mica insulator	SOT-32/SOT-82
56359b	mica washer (up to 800 V)	TO-220
56359c	insulating bush (up to 800 V)	TO-220
56359d	rectangular insulating washer (up to 1000 V)	TO-220
56360a	rectangular washer (brass)	TO-220
56363	spring clip (direct mounting)	TO-220
56364	spring clip (insulated mounting)	TO-220
56367	alumina insulator	TO-220
56368a	mica insulator	SOT-93
56368b	insulating bush	SOT-93
56369	mica insulator (up to 2 kV)	TO-220
56378	mica insulator	SOT-93
56379	spring clip	SOT-93

CLIP MOUNTING

envelope	direct mour	nting	insulated mounting			
	clip	mica	clip			
TO-126 (SOT-32)	56353	56354	56353			
SOT-82	56353	56354	56353			
TO-220 (SOT-78)	56363	56369	56364			
SOT-93	56379	56378	56379			

SCREW MOUNTING

envelope	direct mo	direct mounting		insulated mounting		
	metal washer	mounting material	mica washer	insul. bush	metal washer	mounting material
TO-126 (SOT-32)	56326	МЗ	-	56333		M2,5
TO-220 (SOT-78)	56360a	M3	500501	50050		
up to 800 V up to 1000 V			56359b 56359b	56359c 56359d	56360a 56360a	M3 M3
SOT-93	_	M4	56368a	56368b		- мз
TO-3		M4				
(SOT-3) up to 500 V			56201d	56201c; 56201j or 56261a	·	M3
up to 2000 V			56339	56352		мз

The accessories mentioned can be supplied on request.

See also chapter Mounting Instructions.

56201c

2 INSULATING BUSHES

Two insulating bushes for up to 500 V insulation of TO-3 envelopes.

MECHANICAL DATA

TEMPERATURE

Maximum permissible temperature

T_{max} 150 °C

Dimensions in mm

Dimensions in mm

56201d

MICA WASHER

Mica washer for up to 500 V insulation of TO-3 envelopes.

MECHANICAL DATA

ACCESSORIES

56201j

2 INSULATING BUSHES

Two insulating bushes for up to 500 V insulation of TO-3 envelopes.

MECHANICAL DATA

Dimensions in mm

TEMPERATURE

Maximum permissible temperature

T_{max} 150 °C

56261a

2 INSULATING BUSHES

6.5

Two insulating bushes for up to 500 V insulation of TO-3 envelopes.

Ø 3,8

Ø 6,5 ~

MECHANICAL DATA

Dimensions in mm

TEMPERATURE

Maximum permissible temperature

T_{max} 150 °C

56326

WASHER

Flat metal washer for direct mounting of envelope SOT-32 (TO-126).

MECHANICAL DATA

Dimensions in mm

56333

Mounting accessories for insulated mounting of envelope SOT-32 (TO-126); the set consists of a metal washer, a mica washer and an insulating bush.

MECHANICAL DATA

Dimensions in mm

Metal washer.

Mica washer.

Insulating bush.

TEMPERATURE

Maximum permissible temperature

T_{max} = 150 °C

56339

MICA WASHER

Mica washer for 500 to 2000 V insulation of TO-3 envelopes, for which it should be combined with mounting support 56352.

MECHANICAL DATA

Dimensions in mm

56352

MOUNTING SUPPORT

Mounting support for 500 to 2000 V insulation of thick-base TO-3 envelopes, for which it should be combined with mica washer 56339.

MECHANICAL DATA

Dimensions in mm

TEMPERATURE

Maximum permissible temperature

T_{max}

125 °C

56353

CLIP

for SOT-32 and SOT-82 envelopes

MECHANICAL DATA

Dimensions in mm

Spring clip suitable for heatsink of 1,5 to 2 mm. See mounting instructions SOT-32/SOT-82 envelopes.

56354

MICA INSULATOR

for SOT-32 and SOT-82 envelopes

MECHANICAL DATA

Dimensions in mm

See also chapter Mounting Instructions.

56359b

MICA WASHER

for TO-220 envelopes (up to 800 V)

MECHANICAL DATA

0,05±0,01 Dimensions in mm

56359c

INSULATING BUSH

for TO-220 envelopes (up to 800 V)

MECHANICAL DATA

Dimensions in mm

TEMPERATURE
Maximum permissible temperature

T_{max} = 150 °C

56359d

RECTANGULAR INSULATING WASHER

for TO-220 envelopes (up to 1000 V)

MECHANICAL DATA

Dimensions in mm

TEMPERATURE

Maximum permissible temperature

T_{max} = 150 °C

56360a

RECTANGULAR WASHER

for direct and insulated mounting of TO-220 envelopes

MECHANICAL DATA

material: brass.

Dimensions in mm

Dimensions in mm

Dimensions in mm

56363

SPRING CLIP

for direct mounting of TO-220 envelopes

MECHANICAL DATA

material: steel, zinc-chromate passivated.

56364

SPRING CLIP

for insulated mounting of TO-220 envelopes

MECHANICAL DATA

material: steel, sinc-chromate passivated.

56367

ALUMINA INSULATOR

for insulating mounting of TO-220 envelopes

MECHANICAL DATA

Dimensions in mm

* Because alumina is brittle, extreme care must be taken when mounting devices not to crack the alumina, particularly when used without heatsink compound.

56368a

MICA INSULATOR

for insulated screw mounting of SOT-93 envelopes

MECHANICAL DATA

Dimensions in mm

56368b

INSULATING BUSH

for insulated screw mounting of SOT-93 envelopes

MECHANICAL DATA

Dimensions in mm

TEMPERATURE

Maximum permissible temperature

T_{max} = 150 °C

56369

MICA INSULATOR

for insulated clip mounting of TO-220 envelopes (up to 2 kV)

MECHANICAL DATA

Dimensions in mm

ACCESSORIES

56378

MICA INSULATOR for SOT-93 clip mounting

MECHANICAL DATA

Dimensions in mm

56379

SPRING CLIP

for direct and insulated mounting of SOT-93 envelopes

MECHANICAL DATA

Dimensions in mm

material: CrNi steel NLN-939; thickness 0,4 ± 0,04.

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

HYBRID INTEGRATED CIRCUIT HI-FI AUDIO POWER AMPLIFIERS

The OM931 and OM961 are thin-film hybrid integrated circuit hi-fi audio amplifiers for sinusoidal output power up to 60 W. The modules offer maximum design possibilities regarding amplification, ripple rejection, stability for complex loads, etc. The amplifiers have built-in short-circuit protection (SOAR protected), and are especially designed for low transient and harmonic distortion. All built-in resistors are dynamically adjusted for optimum performance over a wide temperature range.

QUICK REFERENCE DATA

Sinusoidal output power for $d_{tot} < 0.2 \%$		0	M931	OM961
$f = 20 \text{ Hz to } 20 \text{ kHz}$ $R_1 = 4 \Omega$	D	> 30 M	at + 23 \/	> 60 W at ± 31 V
$R_{\Gamma} = 8 \Omega$	P _o			> 60 W at ± 31 V
Total harmonic distortion P _O = 1 W; f = 1 kHz	d _{tot}	typ.	0,02	0,02 %

Fig. 1 Outline; dimensions in mm.

Fig. 2 Circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Symmetrical supply voltage	OM931	٧s	max.	±40 V
	OM961	v_{S}	max.	±45 V
Operating mounting base temperature		T_{mb}	max.	95 °C
Storage temperature		T_{stg}	-30 to	+100 °C

in the circuit of Fig. 3.			ОМ931		ОМ961		
Symmetrical supply voltage	VS	typ.	±23	±26	±31	±35	٧
Total supply current (zero signal)	Itot	typ.	;	80	1	00	mΑ
Sinusoidal output power for $d_{tot} < 0.2 \%$ f = 20 Hz to 20 kHz (Federal Trade Commission, U.S.A.)							
$R_L = 4 \Omega$	Po	>	30	_	60	-	W*
$R_L = 8 \Omega$	P_{o}	>		30	_	60	W*
Clipping level at $f = 1 \text{ kHz}$; $R_L = 4 \Omega$; $d_{tot} = 0.7\%$	P_{O}	typ.		 40		75	w
Total harmonic distortion $P_0 = 1 \text{ W}$; $f = 1 \text{ kHz}$	d _{tot}	typ.	0,	02	0,	,02	%
Intermodulation distortion at $f_1 = 250$ Hz and $f_2 = 8$ kHz; amplitude ratio $V_{f1}/V_{f2} = 4/1$				•		٠.	
$P_0 = 1 \text{ W}$	dim	typ.	0,	05	0,	,05	%
P _o = rated value	d _{im}	typ.	C),1	1	0,1	%
Input sensitivity for P _O = rated value	Vi	typ.	0,7	1	1	1,4	V
Input impedance determined by input circuitry				R;	typ	. 10	kΩ
Open loop gain				G,	typ	. 80	dB
Closed loop gain				G,			dB
Frequency response $P_0 = \text{rated value} -10 \text{ dB } (-1 \text{ dB})$				f		Hz to 40	kHz
Power bandwidth (-3 dB)				fp	20	Hz to 40	kHz
Signal-to-noise ratio (unweighted) $P_0 = 50 \text{ mW}$; wide band							dB

Signal-to-noise ratio (weighted)

 $P_0 = 50 \text{ mW}$; A-curve

D.C. output offset voltage

Ripple rejection

87 dB

±20 mV

65 dB

0,05 Ω

S/N

 v_{off}

RR

typ.

typ.

typ.

 \geqslant

Output impedance R_{o}

^{*} Po is stated as rated value.

APPLICATION INFORMATION

Fig. 3 Example of an amplifier with external components.

List of components:

List of components:		
R1 = 10 $k\Omega$ (0,25 W)	$C1 = 47 \mu F (10 V)$	$L = 4 \mu H$
$R2 = 4.7 k\Omega (0.25 W)$	C2 = 270 pF (10%)	
$R3 = 300 \Omega (0.25 W)$	C3 = 120 pF (10%)	$R_1 = 4 \text{ or } 8 \Omega$
R4 = 680 Ω (0,25 W)	$C4 = 100 \mu\text{F}$	
$R5 = 10 k\Omega (0.25 W)$	$C5 = 470 \mu\text{F}$	
$R6 = 22 \Omega (0.5 W)$	C6 = 100 nF	
$R7 = 2.2 \Omega (0.25 W)$	$C7 = 10 \mu\text{F} (63 \text{V})$	
R8 = 10 Ω (0,5 W)	$C8 = 10 \mu\text{F} (63 \text{V})$	
	CO = 1 "E /63 \/\	

MOUNTING RECOMMENDATIONS

The modules are delivered with leads in SIL (single in-line) but leads may also be bent to DIL (dual in-line).

Fig. 4:
a. Single in-line (SIL) leads.
b. Dual in-line (DIL) leads.

Thermal resistance values from heatsink to ambient for various heatsink lengths (a):

$$\begin{split} &R_{\mbox{th h-a}} = 1,4 \ ^{\mbox{oC/W: a}} = 50 \ \mbox{mm} \\ &R_{\mbox{th h-a}} = 1,0 \ ^{\mbox{oC/W: a}} = 75 \ \mbox{mm} \\ &R_{\mbox{th h-a}} = 0,8 \ ^{\mbox{oC/W: a}} = 90 \ \mbox{mm} \end{split}$$

Fig. 5 Example of a heatsink to be used for the module; dimensions in mm.

PRINTED-CIRCUIT BOARDS for OM931 and OM961

Fig. 6 Component side of SIL-version showing component layout.

Fig. 7 Component side of DIL-version; for component layout see Fig. 6.

Dimensions in mm

Fig. 8 Track side of SIL-version.

Fig. 9 Track side of DIL-version.

LOW-FREQUENCY POWER TRANSISTORS

TYPE NUMBER SURVEY SELECTION GUIDE

GENERAL

TRANSISTOR DATA

MOUNTING INSTRUCTIONS

ACCESSORIES

HYBRID MODULES

•	_		

Argentina: FAPESA I.y.C., Av. Crovara 2550, Tablada, Prov. de BUENOS AIRES, Tel. 652-7438/7478.

Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 427 08 88.

Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 62 91 11.

Belgium: M.B.L.E., 80, rue des Deux Gares, B-1070 BRUXELLES, Tel. 523 00 00.

Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Fari Alima, 1735 SAO PAULO, SP, Tel. (011) 211-2600.

Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.

Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-40 01. Colombia: SADAPES.A., P.O. Box 9805, Calle 13, No. 51 + 39, BOGOTA D.E. 1., Tel. 600 600.

Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KØBENHAVN NV., Tel. (01) 69 16 22.

Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 1 72 71.

France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.

Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-1.

Greece: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 915 311.

Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. NT 24 51 21.

India: PEICO ELECTRONICS & ELECTRICALS LTD., Band Box House, 254-D, Dr. Annie Besant Rd., Prabhadevi, BOMBAY-25-DD, Tel. 457 311-5. Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Division, 'Timah' Building, Jl. Jen. Gatot Subroto, P.O. Box 220, JAKARTA, Tel. 44 163.

Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 69 33 55.

Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6994.

Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bidg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611,

(IC Products) SIGNETICS JAPAN, LTD, TOKYO, Tel. (03)230-1521.

Korea: PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tel. 794-4202. Malaysia: PHILIPS MALAYSIA SDN. BERHAD, Lot 2, Jalan 222, Section 14, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 77 44 11.

Netherlands: PHILIPS NEDERLAND B.V., Afd. Elonco, Boschdijk 525, 5600 PD EINDHOVEN, Tel. (040) 79 33 33.

New Zealand: PHILIPS ELECTRICAL IND. LTD., Elcoma Division, 2 Wagener Place, St. Lukes, AUCKLAND, Tel. 867 119.

Norway: NORSK A/S PHILIPS, Electronica, Sørkedalsveien 6, OSLO 3, Tel. 46 38 90. Peru: CADESA, Rocca de Vergallo 247, LIMA 17, Tel. 62 85 99.

Mexico: ELECTRONICA S.A. de C.V., Varsovia No. 36, MEXICO 6, D.F., Tel. 533-11-80.

Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. 86-89-51 to 59.

Portugal: PHILIPS PORTUGESA S.A.R.L., Av. Eng. Duharte Pacheco 6, LISBOA 1, Tel. 68 31 21.

Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., P.O.B. 340, Toa Payoh CPO, Lorong 1, Toa Payoh, SINGAPORE 12, Tel. 53 88 11.

South Africa: EDAC (Pty.) Ltd., 3rd Floor Rainer House, Upper Railway Rd. & Ove St., New Doornfontein, JOHANNESBURG 2001, Tel. 614-2362/9.

Spain: COPRESA S.A., Balmes 22, BARCELONA 7, Tel. 301 63 12.

Sweden: A.B. ELCOMA, Lidingövägen 50, S-115 84 STOCKHOLM 27, Tel. 08/67 97 80.

Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. 01/43 22 11.

Taiwan: PHILIPS TAIWAN LTD., 3rd Fl., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. 5513101-5.

Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9.

Turkey: TÜRK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL, Tel. 43 59 10.

United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633.

United States: (Active devices & Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000.

(Passive devices) MEPCO/ELECTRA ING., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.

(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.

Uruguay: LUZILECTRON S.A., Rondeau 1567, piso 5, MONTEVIDEO, Tel. 943 21.

Venezuela: IND. VENEZOLANAS PHILIPS S.A., Elcoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, CARACAS, Tel. 36 05 11.

A13

º 1979 N.V. Philips' Gloeilampenfabrieken

This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part, without the written consent of the publisher.

Printed in The Netherlands

9398 106 40011