Physique E34 MPI 2023

Proposition de corrigé

Vivre dans l'espace

Partie I - Se libérer de l'attraction terrestre

I. 1 - L'attraction gravitationnelle terrestre

Q1.

Définition d'un référentiel galiléen : cours

Plusieurs réponses possibles : référentiel

- dans lequel la loi de Newton est vérifiée
- le principe d'inertie s'applique (en le citant)
- système soumis à une force résultante nulle animé d'un mouvement rectiligne uniforme

Condition(s) pour considérer le référentiel terrestre comme galiléen : cours

Echelles spatiale et temporelle suffisamment faibles : localisation et durée << 24h...

Q2. Expression de la force gravitationnelle terrestre : cours

 $\overrightarrow{F}_G = -G \frac{mM_T}{r^2} \overrightarrow{e}_r$

Energie potentielle gravitationnelle : cours

 $E_p(r) = -G\frac{mM_T}{r} + \underbrace{E_p(\infty)}_{=0}$

Dépendance en r : cours

La force gravitationnelle ne dépend que de r et elle est conservative.

→ Ses primitives ne dépendent aussi que de r.

Q3.

Signification physique d'un mouvement qualifié de " lié " : cours Plusieurs réponses possibles :

- énergie mécaniques < 0, avec schéma
- distance au foyer centre de force bornée en valeur supérieure
- etc.

Valeur maximale de l'énergie mécanique E_m : cours

De la même façon, avec ou sans schéma :

 $E_m max = 0$, mouvement parabolique (ici)

Q4.

Vitesse v_{lib} : cours

Condition pour "soustraire":

On se place à la <u>surface terrestre</u> $r = R_T$: $E_m = 0 = E_c + E_p(R_T)$

Expression:

Ainsi :
$$v_{lib} = \sqrt{\frac{2GM_T}{R_T}}$$

AN (non demandée) : $v_{lib} = 11 \, km.s^{-1}$

I. 2 - Tir d'un boulet de canon

Q5.

Analyse dimensionnelle : méthode

$$[F_f] \stackrel{def}{=} MLT^{-2} \stackrel{ici}{=} [\gamma]L^2T^{-2}$$

Ainsi :
$$[\gamma] = M \frac{LT^{-2}}{L^2T^{-2}} \Rightarrow [\gamma] = \frac{M}{L}$$

Dimension du paramètre ℓ_{f} : méthode

De façon immédiate : $[\ell_f] = L$

Q6.

Hauteur maximale h_{max} puis retombée. : méthode

S'il n' a pas de frottements :

Conservation énergie mécanique, $E_c \searrow \Leftrightarrow E_p \nearrow$

D'où $\exists h_{max}$ quand v s'annule.

La présence de frottements causent de la dissipation et diminuent l'énergie mécanique, ce qui diminue aussi la hauteur maximale atteinte.

Inversion

Quand v=0, mouvement se fait ensuite en sens inverse : le boulet "tombe", attiré vers le sol.

Si on remarque que la vitesse initiale du boulet est inférieure à la vitesse de libération, alors le mouvement est lié, et le boulet ne peut échapper à l'attraction terrestre, a fortiori en présence de frottements.

Q7.

PFD correctement appliqué (système bien défini + schéma) : méthode

$$m \frac{d\overrightarrow{v}}{dt} = -\frac{m}{\ell_f} |\overrightarrow{v}| \overrightarrow{v} + m \overrightarrow{g}$$
 On simplifie par m ensuite.

Phase ascendante

$$\overrightarrow{v} = v\overrightarrow{u}_z$$

Ainsi :
$$\frac{dv}{dt} = -\frac{1}{\ell_f}v^2 - g$$

D'où l'équation différentielle :
$$\frac{dv}{dt} + \frac{1}{\ell_f}v^2 = -g \text{ (1)}$$

Phase descendante

$$\overrightarrow{v} = -v\overrightarrow{u}_z$$

Ainsi :
$$\frac{dv}{dt} = \frac{1}{\ell_f}v^2 - g$$

D'où l'équation différentielle :
$$\frac{dv}{dt} - \frac{1}{\ell_f}v^2 = -g \text{ (2)}$$

Q8.

Vitesse limite asymptotique v_{lim} : analyse de documents

La courbe 4 montre que $v \rightarrow v_{lim}$ dans la phase descendante.

Ce qui est confirmer par la partie rectiligne de la fin de la courbe 5

Phase ascendante : analyse de documents

Ces caractéristiques n'apparaissent pas pour la phase ascendante

Justification: interprétation

Cela se confirme sur les 2 équations différentielle.

Une vitesse limite v_{lim} impose $\frac{dv}{dt} = 0$ ce qui conduit à une solution pour (2) $(v^2 > 0)$, mais pas pour (1) $(v^2 < 0)$

Q9.

Vitesse v_{lim} en fonction des données du problème : analyse d'équation différentielle

Immédiat à partir de (2) : $\frac{dv}{dt} = 0 \Leftrightarrow \frac{1}{\ell_f}v^2 = g$

Soit: $v_{lim} = \sqrt{g\ell_f}$

Q10.

Régime transitoire et régime permanent : analyse

On peut définir le régime permanent quand la vitesse limite est atteinte, soit dans la phase descendante uniquement.

Temps caractéristique τ du régime transitoire : analyse

Nature du mouvement lors du régime permanent descendant : réflexion

Mouvement rectiligne uniforme de vitesse de norme v_{lim} : $\overrightarrow{v} = -v_{lim} \overrightarrow{u}_z$

Q11.

Phase ascendante: analyse

Phase descendante: analyse

On peut aussi mettre en évidence graphiquement ℓ_f

Q12.

Expression de $v_+(t)$: calcul

Phase ascendante

$$\frac{dv}{dt} = -\frac{1}{\ell_f}v^2 - g \Leftrightarrow \ell_f \frac{dv}{dt} = -v^2 - g\ell_f = -(v^2 + v_{lim}^2)$$

Soit:
$$\frac{dv}{v^2 + v_{lim}^2} = -\frac{dt}{\ell_f}$$

$$\frac{1}{v_{\mathit{lim}}^2}\frac{dv}{(v/v_{\mathit{lim}})^2+1}=-\frac{dt}{\ell_f} \text{ ou encore } : \frac{dv}{(v/v_{\mathit{lim}})^2+1}=-v_{\mathit{lim}}^2\frac{dt}{\ell_f}$$

On pose :
$$\widetilde{v} = v/v_{lim}$$
 et $\tau = \frac{v_{lim}}{\ell_f} = \sqrt{\frac{g}{\ell_f}}$, puis $\widetilde{t} = t/\tau$

L'équation différentielle simplifiée s'écrit : $\frac{d\widetilde{v}}{\widetilde{v}^2 + 1} = -d\widetilde{t}$

Grâce au formulaire, on résout : $\arctan \widetilde{v} = -\widetilde{t} + cte$

t=0 :
$$v = v_0$$
 et $\widetilde{v}_0 = \frac{v_0}{v_{lim}} \longrightarrow cte = \arctan \widetilde{v}_0$

d'où, en notation réduite :

$$\arctan \widetilde{v}_{+} = \arctan \widetilde{v}_{0} - \widetilde{t} \quad | \text{OU} | \quad \widetilde{v}_{+} = \tan \left(\widetilde{v}_{0} - \tan(\widetilde{t}) \right)$$

Expression de v_(t): calcul

Phase descendante

$$\frac{dv}{dt} = \frac{1}{\ell_f} v^2 - g \Leftrightarrow \ell_f \frac{dv}{dt} = v^2 - g\ell_f = v^2 - v_{lim}^2$$

Soit:
$$\frac{dv}{v^2 - v_{tot}^2} = -\frac{dt}{\ell_f}$$

$$\frac{1}{v_{lim}^2}\frac{dv}{(v/v_{lim})^2-1}=-\frac{dt}{\ell_f} \text{ ou encore } : \frac{dv}{(v/v_{lim})^2-1}=-v_{lim}^2\frac{dt}{\ell_f}$$

On pose :
$$\widetilde{v} = v/v_{lim}$$
 et $\tau = \frac{\ell_f}{v_{lim}} = \sqrt{\frac{g}{\ell_f}}$, puis $\widetilde{t} = t/\tau$

L'équation différentielle simplifiée s'écrit : $\frac{d\tilde{v}}{\tilde{v}^2-1} = -d\tilde{t}$

Grâce au formulaire, on résout : $argtanh \tilde{v} = \tilde{t} + cte$

$$t = t(h_{max}) : v = 0 \text{ et} \longrightarrow cte = -\widetilde{t_{max}}$$

d'où, en notation réduite : $\left| \text{argtanh } \widetilde{v}_{-} = \widetilde{t} - \widetilde{t_{max}} \right| \text{ ou } \left| \widetilde{v}_{-} = \tanh \left(\widetilde{t} - \widetilde{t_{max}} \right) \right|$

$$\operatorname{argtanh} \widetilde{v}_{-} = \widetilde{t} - \widetilde{t_{max}}$$

$$\widetilde{V}_{-} = \tanh\left(\widetilde{t} - \widetilde{t_{max}}\right)$$

Q13.

Recoupement des résultats : réflexion

Les solutions mathématiques confirment les observations :

Phase ascendante

Existence d'une date pour laquelle v_+ s'annule.

Phase descendante

Asymptote pour la phase descendante, temps caractéristique.

RT: évolution de v_{-}

 $RP: v_{-} = cte = v_{lim}$

Q14.

Valeurs graphiques v_{lim} , τ *et* ℓ_f : lecture de documents

$$v_{lim} \sim 160 \; m.s^{-1}$$

$$\tau \sim 15 \ s$$
 —

$$v_{lim} \sim 160 \ m.s^{-1} \ | \ \tau \sim 15 \ s \ | \ \longrightarrow \ | \ \ell_f = 2,4 \ km.s^{-1} \sim g\tau^2 = 2,25 \ km.s^{-1}$$

: cohérent

Q15.

Hypothèse de l'uniformité de l'accélération de la pesanteur : réflexion

Le système monte jusqu'à 4 km, on peut s'attendre à une variation de l'attraction gravitationnelle, mais cela reste toutefois négligeable : 4 km ≪ 6400 km

Forme quadratique de la force de frottement : réflexion

La forme quadratique semble bien adaptée à un système se déplaçant dans l'air.

La distance sur laquelle la force de frottement serait linéaire, au voisinage de h_{max} , est négligeable à la lecture des graphiques.

Partie II - Étude d'une station spatiale

II. 1 - Référentiel en orbite terrestre

Q16.

Forces (nom et expression): cours

Attraction gravitationnelle terrestre : $\overrightarrow{F}_G = -G \frac{mM_T}{(R_T + h)^2} \overrightarrow{e}_r$

Force d'inertie d'entrainement due au caractère non galiléen du référentiel de la capsule : $\overrightarrow{F}_e = -m \overrightarrow{a}_{cap}$, \overrightarrow{a}_{cap} est l'accélération du mouvement de translation circulaire.

Comme les dimensions de la capsule sont \ll à l'altitude h, on suppose que \overrightarrow{a}_{cap} est uniforme à l'échelle de la capsule.

Remarque : la force complémentaire est nulle ici ← translation circulaire.

Q17.

Définition: cours

La force d'inertie d'entrainement compense exactement l'attraction gravitationnelle.

A l'équilibre dans ce référentiel, la réaction de tout support s'annule. On "flotte".

Justification: réflexion

Le mouvement de la capsule est dû à la force centrale d'attraction gravitationnelle exercée par la Terre.

L'accélération de la capsule est donc égale au champ gravitationnel à l'altitude h.

- ⇒ Les 2 forces précédentes qui s'exerce sur le système se compensent.
- ⇔ la capsule est en "chute libre", comme tout ce qui est à l'intérieur ↔ "impesanteur"

II. 2 - La station orbitale

Q18.

Sensation de pesanteur artificielle : question ouverte

La station est en mouvement de rotation uniforme par rapport à son environnement supposé galiléen ici.

Pour un point M dans la capsule la force d'entrainement est radiale, vers l'extérieur

Bilan des forces à l'équilibre

A l'équilibre dans la station, la réaction de la paroi compense la force d'inertie d'entrainement, force axifuge jouant le rôle de "poids".

Q19.

Orientation de \overrightarrow{g}_a : réflexion

 $\overrightarrow{g}_a = \Omega^2 R_S \overrightarrow{e}_r$ En supposant ℓ suffisamment $\ll R_S$ pour que g_a soit uniforme.

Figures 10 bis et 11 bis : réflexion

La tête est vers l'axe de rotation, d'où le choix du design B.

Q20.

Relation: réflexion

Valeur de Ω : AN

$$\Omega = \sqrt{\frac{g}{R_S}}$$

AN: $\Omega \sim 0,3 \, rad.s^{-1}$

Q24.

Raison pour laquelle la pesanteur artificielle n'est pas utilisée : culture L'intérêt est justement d'étudier des phénomènes en impesanteur!

Partie III - Peser la Terre

III. 1 - Principe

Q22.

" Peser un astre " : cours + culture

Ce qui est caractéristique d'un objet est sa masse, liée à la quantité de matière contenue.

Le poids dépend du lieu via la valeur du champ de pesanteur local, donc directement lié à un attracteur. Il diffère d'une planète à l'autre.

Q23.

Schéma clair de l'ellipse trajectoire : cours

Schéma

Points particuliers P, A et foyer O

Distances r_P et r_A

Demi-grand axe a en fonction de r_P et r_A: cours

$$a = \frac{r_P + r_A}{2}$$

Q24.

Expression de Y et X : réflexion

D'après la troisième loi de Képler (donnée) :

$$a^3 = \frac{GM_T}{4\pi^2} T^2$$

D'où : $Y = a^3$

Expression de M_T : calcul immédiat :

$$M_T = \alpha \frac{4\pi^2}{G}$$

III. 2 - Étude de données orbitales

Q25.

Fonction de ce morceau de code : cours

Création d'une <u>liste</u> n_sat de 9 éléments

La liste contient numéros des satellites (premier élément de la liste DATA)

Q26.

Instructions pour extraire la liste T_sat : méthode

Q27.

Fonction demiGrandAxe(DATA): méthode

Q28.

Écrire la Fonction XY : méthode

```
def XY(T_sat, a_sat) :
    X = (np.array(T_sat))**2
    Y = (np.array(a_sat))**3
    return (X,Y)
```

Q29.

Tableau [alpha, beta] des paramètres de la régression linéaire : méthode

```
alpha = np.polyfit(X,Y,1)
beta = np.polyfit(X,Y,0)
```

Ordonnée à l'origine beta : Réflexion

La relation entre X et Y étant linéaire, on s'attend à avoir beta = 0.

Q30.

Expliciter les termes : méthode

 $\mathbf{A} = X$

 $\mathbf{B} = \mathbf{Y}$

 $\mathbf{C} = [\min(X), \max(X)]$

 $\mathbf{D} = [alpha*min(X) + beta, alpha*max(X) + beta]$

 $E = a^3$ (km^3)

F = \$T^2\$ (\$minute^2\$)

Q31.

Précaution(s) l'élève a-t-il oubliée(s) : pratique

Pas de légendes sur les axes

Problème de conversion d'unités

Q32.

Seuls 4 points semblent apparaître : réflexion

Certaines données sont très proches et ne se distinguent pas compte-tenu de l'échelle des axes.

III. 3 - Précision du résultat

Q33.

N lim: réflexion

On peut prendre 1000 à 10000 valeurs pour une bonne statistique.

Q34.

Identification des termes : réflexion

$$G = H = I = []$$

$$L = N_sim$$

 $\mathbf{M} = \text{np.array}(a_\text{sat})$

 $\mathbf{N} = \text{np.array}(T_sat)$

$$O = a tir^{**}3$$

$$\mathbf{Q} = \mathbf{Y}_{tir}$$

$$\mathbf{R} = \mathbf{X}_{\mathbf{tir}}$$

$$S = P$$

$$U = O$$

$$V = p[0]$$

$$W = p[1]$$

$$Z = (4*(np.pi**2)/G)*p[0]$$

AA = Stockage pour la statistique

Q35.

Instructions pour obtenir la masse M_T, u_M,beta_sim, u_beta : méthode

```
M_T = np.mean(list_MT)
u_M = np.std(list_MT, axis=0,ddof=1)
beta_sim = np.mean(list_beta)
u_beta = np.std(list_beta, axis=0,ddof=1)
```

Q36.

Analyse de la simulation numérique

Résultat à retenir de la simulation numérique : $M_T = 5.97581 e + 24 (u_M = 7.7 e + 20)$

On prend l'intervalle de confiance à 2 σ

Pour la donnée calculée : $M_T \in [M_T - 2u_T, M_T + 2u_T] = [59742.7, 59773.5]$

Pour la donnée publiée : $M_T \in [M_T - 2u_T, M_T + 2u_T] = [59710.5, 59734.1]$

Les 2 intervalles n'ont pas d'intersection commune.

On peut aussi évaluer l'écart normalisé : $z = \frac{|M_T - M_T|}{\sqrt{u_T^2 + u_M^2}}$

On obtient Z = 3.7 > 2.

Les résultats ne sont pas compatibles à 2 $\sigma...$

Partie IV - Stocker l'énergie électrique

IV. 1 - Etude cristallographique du nickel

Q37.

Ondes cohérentes et $\omega_1 = \omega_2 = \omega$: cours

Même source primaire à l'infini et division de front d'onde.

La fréquence de la source primaire est conservée.

On peut aussi mentionner la condition de cohérence spatiale, mais ce n'est pas exigé.

Q38.

Différence de marche δ + schéma : méthode

$$\delta = (BD) + (DC) = 2a\sin\theta$$

$$\delta = 2\pi a \sin \theta$$

Expression de $\Delta \varphi(M)$: cours

$$\Delta \varphi(\mathsf{M}) = 2\pi \frac{\delta}{\lambda}$$

$$\Delta \varphi(M) = 4\pi \frac{a \sin \theta}{\lambda}$$

Q39.

Expression de l'intensité lumineuse $I(\theta)$: méthode

Résultat :
$$I(\theta) = 2s_0^2 (1 + \cos(\Delta \varphi(M)))$$

$$I(\theta) = 2s_0^2 \left(1 + \cos(4\pi \frac{a \sin \theta}{\lambda}) \right)$$

Q40.

Intensité maximale: méthode

I est maximal quand $cos(\Delta \varphi(M))$ vaut 1

Soit quand $\Delta \varphi(M) = 2p\pi$, p étant entier.

Ainsi :
$$\sin \theta_p = p \frac{\lambda}{2a}$$

Valeur du paramètre de maille a : calcul

Les mesures des angles θ_p permettent d'obtenir a.

Q41.

Montage d'optique : cours

"Objet" à l'infini = faisceau // → lentille CV

Ecran au foyer image de la lentille CV

Schéma

Q42.

Mesure des angles : TP

L'appareil utilisé en TP pour mesurer des angles est un goniomètre

Q43.

Paramètre de maille a : méthode

Comme déjà vu : $a = \frac{\lambda}{2 \sin \theta}$

Valeur: AN

$$a = 353 \ pm$$

Ordre de grandeur habituel pour les mailles cristallines : centaines de pm

IV. 2 - Accumulateur cadmium-nickel

Q44.

Demi-équations électroniques. Identifier les oxydants et les réducteurs : cours

$$\underbrace{Ni^{2+}}_{ox} + 2e = \underbrace{Ni}_{red}$$

$$\underbrace{Cd^{2+}}_{ox} + 2e = \underbrace{Cd}_{red}$$

Q45.

Echelle les potentiels standards E°de chaque couple : méthode

Equation de la réaction d'oxydo-réduction : cours

$$Ni^{2+} + Cd = Ni + Cd^{2+}$$

Q46.

Pôle positif et pôle négatif : cours

Quand la pile débite les électrons vont du Ni vers le Cd.

Pôle + électrode de Ni

Pôle - : électrode de Cd

Potentiels d'électrode E₁ et E₂ : méthode

$$E_1 = E_1^o + \frac{0,06}{2} \log c_1 \qquad E_1 = -0,28 \ V$$

$$E_2 = E_2^o + \frac{0,06}{2} \log c_2 \qquad E_2 = -0,49 \ V$$

$$E_1 = -0,28 V$$

$$E_2 = E_2^o + \frac{0.06}{2} \log c$$

$$E_2 = -0,49 \ V$$

Différence de potentiel U mesurée par un volt-mètre : méthode

$$U = E_1 - E_2$$

$$U = E_1 - E_2 \qquad U = 0,21 \ V$$

Q47.

Sens de l'intensité i du courant électrique : cours

L'intensité va de l'électrode de Cd (2) vers l'électrode de Ni (1).

Q48.

Potentiels d'électrode quand la pile cesse de débiter : cours

La pile cesse de débiter quand U = 0, soit : $E_1 = E_2$

Composition de chaque bêcher : méthode

On en déduit : $0 = \left(E_1^o + \frac{0.06}{2}\log[Ni^{2+}]_{eq}\right) - \left(E_2^o + \frac{0.06}{2}\log[Cd^{2+}]_{eq}\right)$

Or $c1_{eq} = c_1 - x$ et $c2_{eq} = c_2 + x$

Par suite : $E_1^o - E_2^o = -0.03 \log \frac{c_1 - x}{c_2 + x}$

Soit: $\frac{E_1^o - E_2^o}{0,03} = \log \frac{c_2 + x}{\underbrace{c_1 - x}_{Q_{reac}}} = 5,3$

La réaction est quasi-totale \longrightarrow On en déduit : $x \sin c_1$

Par suite : $[Ni^{2+}] \sim 0$ et $[Cd^{2+}] \sim c_2 + c_1 = 5, 1.10^{-2} \ mol.L^{-1}$

Q49.

Durée de fonctionnement de la pile : méthode

 $\Delta t = \frac{Q}{i} \qquad \text{Avec } Q = x \, 2F \, V$

AN : $\Delta t \sim 2.10^4 \text{ s}$, soit $\sim 5\text{h}$.

Q50.

Définir un milieu basique : cours

Milieu de pH > 7

Q51.

Déterminer les nombres d'oxydation des éléments Ni et Cd dans les espèces : cours

 $no(Ni(OH)_{2(s)}) = +II$ $no(Ni_2O_{3(s)}) = +III$

 $no(Cd_{(s)}) = 0 no(Cd(OH)_{2(s)}) = +II$

Equation de la réaction : méthode

 $Ni_2O_3 + Cd + 3H_2O = 2Ni(OH)_2 + Cd(OH)_2$