P.PORTO

ESCOLA Superior De Tecnologia E gestão Tipo de Prova: Teste Modelo

Curso: LEI/LSIRC

Unidade Curricular: Álgebra Linear e

Geometria Analítica

Ano Letivo 2021/2022 Data: 28/11/2021 Hora: 10:00 Duração: 1h e 15m

Observações:

Para a realização da prova de avaliação o aluno pode usar:

- · máquina de calcular não gráfica;
- · formulário A4 manuscrito pelo aluno que está a realizar a prova (só frente).

Na resposta às questões deve apresentar todos os cálculos que efetuar e todas as justificações necessárias.

- 1. Dada a matriz $F=\left[egin{array}{cc} x & 5 \\ y & 1 \end{array}
 ight]$ com $x,y\in\mathbb{R}$, determine os valores de x,y tal que $F^2=I_2$.
- 2. Sendo $A=\left[\begin{array}{ccc}1&2&1\\-1&1&-1\end{array}\right]$ e $B=\left[\begin{array}{ccc}1&-1\\1&1\\1&1\end{array}\right]$, resolva a equação matricial:

$$\left(B^T A^T X\right)^T = \left[\begin{array}{cc} 4 & 8 \\ -1 & 3 \end{array}\right].$$

- 3. Considere a matriz $A=\left[egin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & a & 1 \\ 1 & b & 1 & 1 \end{array}\right]$, com $a,b\in\mathbb{R}$.
 - (a) Discuta a caraterística da matriz A em função dos parâmetros a e $b \in \mathbb{R}$.
 - (b) Considerando a=b=0, calcule:
 - i. Adj(A).
 - ii. A^{-1} .
- 4. Utilizando as propriedades dos determinantes mostre que:

$$\begin{vmatrix} 1 & 0 & -1 & 0 \\ 1 & \alpha & \alpha^2 + \beta & \alpha\beta \\ 0 & 1 & \alpha & \beta \\ 1 & \alpha & \alpha^2 + \beta & \alpha + \alpha\beta \end{vmatrix} = \alpha(-1 - \beta).$$

- 5. Considere o sistema de equações lineares $\left\{\begin{array}{l} x+y+2z=\alpha\\ x+2z=\beta\\ 2x+y+\beta^2z=\beta+1 \end{array}\right., \text{em que }\alpha$ e β são parâmetros reais.
 - (a) Discuta o sistema de equações lineares em função dos parâmetros reais α e β .
 - (b) Considerando $\beta = 2$, resolva o sistema homogéneo associado.
 - (c) Considerando $\alpha = \beta = 1$, resolva o sistema.

ESTGF-PR05-Mod013V2 Página1de1