Translation d'adresses NAT/PAT Network Address Translation

Xavier Merrheim

Translation d'adresses NAT

- La translation d'adresses est un dispositif où les machines communiquent en interne au sein d'un réseau privé en utilisant une adresse privée.
- Lorsqu'une machine communique avec internet, on lui attribue une adresse publique à la volée, le processus étant transparent pour la machine.
- Ce dispositif est en général assuré par un routeur.
- Il permet d'économiser des adresses IP publiques et améliore également la sécurité.

Différentes variantes NAT ou PAT

- Il existe différentes variantes :
 - Nous parlerons de NAT lorsqu'on fournit au routeur une liste d'adresses publiques utilisables pour communiquer sur Internet.
 - Nous parlerons de PAT lorsque le routeur utilise une seule adresse IP publique qu'il partage avec tout le réseau privé.

NAT

Internet

Serveur S 201.17.87.67

Réseau public

Réseau privé

192.168.1.0 /24

Pool d'adresses :

NAT

de 200.29.1.1 à 200.29.1.254

Réseau privé

- Sur le réseau privé on utilise des adresses réservées qui sont interdites sur Internet.
- Ces adresses appartiennent aux réseaux 10.0.0.0 /8 ou 172.16.0.0 /12 ou 192.168.0.0
- Pour notre exemple, il y a 4 machines A, B, C et D sur le réseau privé et celui-ci est le réseau 192.168.1.0 /24

Pool d'adresses publiques

- Le routeur a à sa disposition un pool d'adresses publiques qu'il va utiliser pour permettre au réseau privé de communiquer avec Internet.
- Ici on imagine qu'on utilise le pool d'adresses de 200.29.1.1 à 200.29.1.254

Fonctionnement (1)

- Imaginons que la machine C d'adresse IP privée 192.168.1.3 communique avec un serveur S situé sur Internet d'adresse IP publique 201.17.87.67.
- C va envoyé un datagramme IP avec
 - adresse IP source: 192.168.1.3
 - adresse IP destination: 201.17.87.67
- Ce datagramme va être envoyé au routeur R

Fonctionnement (2)

- Le routeur va s'apercevoir qu'une machine du réseau privé veut communiquer avec une machine du réseau public. Il est interdit d'utiliser une adresse privée telle que 192.168.1.3 sur internet.
- Le routeur va choisir dans le pool d'adresses publiques une adresse disponible par exemple 200.29.1.12

Fonctionnement (3)

- Le routeur va changer l'adresse IP source du datagramme IP qu'il vient de recevoir.
- Ce datagramme aura donc les caractéristiques suivantes :
 - adresses IP source : 200.29.1.12
 - adresse IP destination: 201.17.87.67
- Ce datagramme va être envoyé sur Internet et va arriver jusqu'au routeur.

Fonctionnement (4)

 Le routeur va mémoriser dans la table de translation la correspondance

IP privée IP publique 192.168.1.3 200.29.1.12

Fonctionnement (5)

- S va recevoir ce datagramme IP. L'adresse IP source est 200.29.1.12.
- Il va donc envoyer une réponse avec les caractéristiques suivantes :
 - adresse IP source : 201.17.87.67
 - adresse IP destination: 200.29.1.12
- Ce datagramme va arriver jusqu'au routeur R

Fonctionnement (6)

- Le routeur va s'apercevoir qu'un datagramme venant du réseau public veut communiquer avec une machine du réseau privé.
- L'adresse IP destination de ce datagramme est 200.29.1.12
- Il va rechercher dans la table de translation l'adresse privée correspondant à l'adresse publique 200.29.1.12. Il va obtenir 192.168.1.3.

Fonctionnement (7)

- Le routeur va changer l'adresse IP de destination du datagramme et la remplacer par 192.168.1.3.
- Ce datagramme aura donc comme caractéristique :
 - adresse IP source : 201.17.87.67
 - adresse IP destination: 192.168.1.3
- Ce datagramme va être envoyé sur le réseau privé et va arriver jusqu'à C.

Point de vue de C

- C a envoyé un datagramme IP avec comme caractéristique:
 - adresse IP source: 192.168.1.3
 - adresse IP destination: 201.17.87.67
- C a reçu en retour un datagramme IP avec comme caractéristique :
 - adresse IP source: 201.17.87.67
 - adresse IP destination: 192.168.1.3
- C a donc l'illusion qu'avec son adresse IP privée, il peut communiquer avec tout Internet.
- Remarque : C ne connait pas son adresse publique ! 14

Point de vue du serveur S

- S a reçu un datagramme IP avec comme caractéristique :
 - adresse IP source : 200.29.1.12
 - adresse IP destination: 201.17.87.67
- S a envoyé en retour un datagramme IP avec comme caractéristique :
 - adresse IP source : 201.17.87.67
 - adresse IP destination: 200.29.1.12
- S a donc l'illusion qu'il a communiquer avec une machine d'adresse IP 200.29.1.12
- Remarque : S ne connait pas l'adresse privée de C !

Economie d'adresse IP

- Si le pool d'adresses est plus petit que le nombre de machines de réseau privé, on économise des adresses IP publiques.
- Attention toutefois au risque qu'une machine ne puisse pas communiquer sur internet en raison du manqque d'adresses publiques.

Amélioration de la sécurité

- Si on dit, par exemple, au routeur de ne pas attribuer d'adresse publique la machine 192.168.1.4 celle-ci ne pourra pas communiquer avec Internet.
- En revanche, il sera difficile de l'attaquer à partir d'Internet!

Commandes CISCO (1)

- Imaginons que R soit un routeur CISCO.
- Pour chaque interface du routeur, il faudra indiquer si elle est connectée au réseau public ou privé.
- Dans le mode config-if, on tapera :
 - ip nat inside si l'interface est connectée au réseau privé
 - ip nat outside si l'interface est connectée au réseau public

Commandes CISCO (2)

Pour la translaation d'adresses, il faudra procéder en 3 étapes :

- Définir une access-list définie par un numéro regroupant toutes les adresses du réseau privé
- Définir un pool d'adresses en indiquant la première et la dernière adresse du pool
- Associer l'access-list au pool.

Configuration de R

```
enable
configure terminal
interface fastethernet 0/0
ip address 192.168.1.254 255.255.255.0
ip nat inside
no shutdown
exit
interface fastethernet 0/1
ip address 202.12.57.83 255.255.255.0
ip nat outside
no shutdown
exit
access-list 1 permit 192.168.1.0 0.0.0.255
ip nat pool toto 200.29.1.1 200.29.1.254 netmask 255.255.255.0
ip nat inside source list 1 pool toto
exit
                                                                 20
disable
```

PAT

192.168.1.0 /24

Plus de pool

- La translation d'adresses de type PAT n'utilise plus un pool d'adresse publique.
- Toutes les machines du réseau privé vont utiliser l'adresse publique de R ici 202.12.57.83
- Pour distinguer les machines du réseau privé, on utilisera les ports TCP

Fonctionnement (1)

- Imaginons que la machine C d'adresse IP privée 192.168.1.3 communique avec un serveur web S situé sur Internet d'adresse IP publique 201.17.87.67.
- C va envoyé un datagramme IP avec
 - adresse IP source: 192.168.1.3
 - port TCP source 2000
 - adresse IP destination: 201.17.87.67
 - Port TCP destination: 80
- Ce datagramme va être envoyé au routeur R

Fonctionnement (2)

- Le routeur va s'apercevoir qu'une machine du réseau privé veut communiquer avec une machine du réseau public.
- Le routeur va choisir un port TCP libre pour l'adresse IP publique 202.12.57.83

Fonctionnement (3)

- Le routeur va changer l'adresse IP source et le port TCP source du datagramme IP qu'il vient de recevoir.
- Ce datagramme aura donc les caractéristiques suivantes :
 - adresses IP source : 202.12.57.83
 - Port TCP source 3000
 - adresse IP destination: 201.17.87.67
 - Port TCP desstination 80
- Ce datagramme va être envoyé sur Internet et va arriver jusqu'au routeur.

Fonctionnement (4)

 Le routeur va mémoriser dans la table de translation la correspondance

protocole-IP privée-port protocole-IP publique-port TCP 192.168.1.3:2000 TCP 202.12.57.83:3000

Fonctionnement (5)

- S va recevoir ce datagramme IP.
- Il va donc envoyer une réponse avec les caractéristiques suivantes :
 - adresse IP source : 201.17.87.67
 - port TCP source 80
 - adresse IP destination: 202.12.57.83
 - Port TCP destination 3000
- Ce datagramme va arriver jusqu'au routeur R

Fonctionnement (6)

 Le routeur va s'apercevoir qu'un datagramme venant du réseau public veut communiquer avec une machine du réseau privé.

- Il va rechercher dans la table de translation l'adresse privée et le port de TCP correspondant à TCP 202.12.57.83:3000
- II va obtenir TCP 192.168.1.3:2000

Fonctionnement (7)

- Le routeur va changer l'adresse IP de destination et le port TCP du datagramme.
- Ce datagramme aura donc comme caractéristique :
 - adresse IP source: 201.17.87.67
 - port TCP source 80
 - adresse IP destination: 192.168.1.3
 - port TCP destination 2000
- Ce datagramme va être envoyé sur le réseau privé et va arriver jusqu'à C.

Commandes CISCO (2)

Pour la translaation d'adresses, il faudra procéder en 3 étapes :

- Définir une access-list définie par un numéro regroupant toutes les adresses du réseau privé
- Définir un pool d'adresses en indiquant la première et la dernière adresse du pool
- Associer l'access-list au pool.

Commandes CISCO PAT

Pour la translation d'adresses, il faudra procéder en 2 étapes :

- Définir une access-list définie par un numéro regroupant toutes les adresses du réseau privé
- Associer l'access-list au l'interface en utilisant le mot clé overload.

Commandes CISCO (2)

Pour la translaation d'adresses, il faudra procéder en 3 étapes :

- Définir une access-list définie par un numéro regroupant toutes les adresses du réseau privé
- Définir un pool d'adresses en indiquant la première et la dernière adresse du pool
- Associer l'access-list au pool.

Configuration de R

enable configure terminal interface fastethernet 0/0 ip address 192.168.1.254 255.255.255.0 ip nat inside no shutdown exit interface fastethernet 0/1 ip address 202.12.57.83 255.255.255.0 ip nat outside no shutdown exit access-list 1 permit 192.168.1.0 0.0.0.255 ip nat inside source list 1 interface fastethernet 0/1 overload exit disable

Economie d'adresses IP

On n'utilise qu'une seule adresse IP publique

Limitation

- Il y a au total 2¹⁶=65536 ports TCP
- Toutes les machines du réseau privé se partagent ces ports.
- Il est envisageable d'avoir une centaine de machines sur le réseau privé (il y aura 655 ports TCP par machines) mais pas des milliers sinon le nombre de ports TCP sera insuffisant.

Conclusion

- PAT et NAT a permis d'économiser les adresses IP.
- Il a été indispensable à cause de la pénurie d'adresses IP version 4
- Il a retardé la migration vers IP version 6!
- Il y a tant d'adresses IP version 6, qu'il n'est pas recommandé d'utiliser NAT/PAT dans cette version d'IP.