南亞公司

1

設備監控管理優化報告

工務部 彙編 2020年11月23日

報告摘要

- 一、南亞麥寮廠區大型轉機及電力設備329st,建置智能監控系統 ,運轉數據偏離時,自動發送預警至電腦及行動裝置,加速 異常處理及數據分析運用。
- 二、13.8KV高壓馬達及電力設備23st,導入放電檢測技術,早期 檢出運轉中放電,訂定檢修計畫。
- 三、運用數據分析,建立滾動軸承壽命預測模型,優化保養時點 及防止生產中損壞。
- 四、持續進行數位優化,規劃建置保養作業平台,整合ERP、即時 生產管理(RTPMS)與智能監控(iEM)系統,提升作業時效, 預定2021.11.30完成。

RTPMS(Real Time Production Management System即時生產管理系統) iEM(Intelligent Equipment Management智能設備管理)

報告內容

壹、設備監控沿革

2020

南亞麥寮廠區1997年起,推動預知保養;2012年增設即時生產管理系統 (RTPMS);2017年導入智能監控(iEM),整合製程及轉動設備運轉數據;2020年推動數位優化及大數據分析應用。

一、設備分類與監控方式

項次	設備 類別	規劃 數量	完成 數量	設備種類	監控方式	圖示
1	重要轉動設備	275	249	壓縮機渦輪機	(1)線上監控 (2)即時預警	壓縮機
2	電力設備	80	80	高壓馬達 變壓器	(1)線上監控 (2)即時預警 (3)局放檢測	高壓馬達
3	一般設備	7,508	7,508	泵浦 攪拌機	(1)流量、壓力、及電流監控。(2)定期量測	泵浦 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
	合計	7,863	7,837			

- (一)重要轉動及電力設備,壓縮機及高壓馬達等,完成329st線上智能監控 模組,餘26st預定2021.6.30前完成。
- (二)泵浦及攪拌機等一般設備共7,508st,採電腦控管定期量測,數據收集 及分析運用。

- 二、重要設備監控優化
 - (一)作業說明

改善前

改善後

改善前:人員定期至現場量測數據,判斷異常及處理後,電腦傳簽歸檔。

改善後:增設線上監控測點,收集數據建立監控模組,運轉偏離自動發送

預警至電腦及行動裝置,控管異常處理及履歷供後續分析運用。

二、重要設備監控優化

(二)智能監控模組

- 1. 導入製程與設備振動、流量及溫度等監控數據,建立智能監控模組。
- 2.監控數據整合為單一健康趨勢線,簡化監控警報。

- 二、重要設備監控優化
 - (二)智能監控模組
 - 3.監控測點數量

模組類別		化一部	化二部	化三部	合計
重要	數量	52	92	105	249
轉動設備	測點	763	1,050	1,918	3,731
而 L 41 /4	數量	8	34	38	80
電力設備	測點	117	189	545	851
V 71	數量	60	126	143	329
合計	測點	880	1,239	2,463	4,582

已完成329st重要機電設備監控模組建置,連線4,582個監控測點,線上 監控設備運轉趨勢。

二、重要設備監控優化

(三)案例說明:EG3廠壓縮機監控

- 1.B115壓縮機係供環氧乙烷(EO)吸收塔與反應器製程循環氣體使用之單一設備。
- 2.設備規格:

馬達:電壓13.8 KV、功率7,485KW、轉速3,577rpm。

壓縮機:廠牌EBARA、壓力19.09kg/cm²、流量39,000 m³/hr。

3.收集振動、流量及溫度等兩年正常運轉數據建立智能監控模組,可將 各測點檢出之實測值與期望值(正常值)比對,趨勢偏離時自動觸發 預警及通知相關人員。

- 二、重要設備監控優化
 - (三)案例說明:EG3廠壓縮機監控

4.馬達振動異常預警

模型名稱:C-B-115循環氣體壓縮機設備

預警時間:2020-4-13 09:12:14

預警編號:1116-19

健康度值:91.539

序號測點名稱測點描述實測值期望值單位1MLEGP_3FI124-1. PV循環氣體流量707.1771.8T/H

2 MLEGP_3_VI-115-3A.PV 馬達主軸連軸器側...92.969 74.375 μm

Notes系統通知

2020.4.13軸承振動數據偏離,系統自動將關聯測點預警訊息發送至Notes 及手機等行動裝置,保養人員立即進行異常分析與處理對策。

手機裝置通知

- 二、重要設備監控優化
 - (三)案例說明:EG3廠壓縮機監控
 - 5. 異常分析與保養決策

- (1)線上即時監控系統之總振動值92.969um未達設備警戒值100um(原廠保護跳停為135um),免立即停車檢修但需加強監控。
- (2)經頻譜分析及軌跡圖確認,為軸心動平衡不良所致,規劃定檢校正。

- 二、重要設備監控優化
 - (三)案例說明:EG3廠壓縮機監控
 - 6.檢修執行
 - (1)定檢進行動平衡校正,不平衡量由532g降低為9.93g。

項次	不平衡量	改善前	改善後
1	負載側	496	7.29
2	自由側	532	9.93

(2)總振動值由檢修前99.159um降至27.760um,軌跡圖及振動恢復正常。

三、高壓電力設備

(一)局部放電檢測優化

改善前

檢測絕緣數據

拆檢線圈狀態

改善後

運轉中

檢測放電趨勢

分析傳簽控管

改善前:高壓馬達線圈帶電部位,局部放電為線圈絕緣損毀主因,定檢時

均須停車量測絕緣,因定檢時間急迫,影響檢修品質。

改善後:導入局部放電檢測儀可於設備運轉中量測線圈放電值,可早期

判定及洽原廠擬訂完整檢修計畫,提升檢修時效。

三、高壓電力設備

(二)檢測架構說明

- 高壓馬達接線箱增設局部放電感測器,運轉中可於接線盒量測放電 脈衝訊號。
- 2.由相位圖譜判定放電部位及放電趨勢,縮短檢測週期並提早擬定檢修計畫。

三、高壓電力設備

(三)化工群高壓設備

廠別	監控項目	設備明細	數量(st)	
	13.8KV壓縮機高壓馬達	A-B115 \ A-B411 \ AB451	3	
EG1	高壓變壓器	A-HVSWGR-TR-E1 \ A-MVSWGR-TR-E2 \ A-MVSWGR-TR-E3 \ A-B-MV13.8KV-A1 \ A-B-MV3.45KV-A2	5	
	13.8KV高壓縮機壓馬達	B-B115 \ B-B411 \ B-B451	3	
EG2	高壓變壓器	B-HVSWGR-TR-E1 > B-MVSWGR-TR-E2 > B-MVSWGR-TR-E3 > B-B-MV13.8KV-A1 > B-B-MV3.45KV-A2	5	
EG3		C-B115 、 C-B411 、 C-B451	3	
EG4	13.8KV壓縮機高壓馬達	D-B115 \ D-B411 \ D-B451	3	
MA		C-111	1	
合計				

13.8KV高壓馬達、變壓器設備共計23st,已裝設局部放電感測器及電腦控管定期量測。

三、高壓電力設備

(四)案例說明:局部放電監控

放電集中於相位0度及180度 位置:聯接處、出線端 根源:機械振動、電應力

1.EG1廠B115空壓機馬達定期量測,發現R相放電趨勢持續上升至1,093mV

-3000

- ,放電集中於相位0度及180度判斷馬達出線端異常。
- 2.出線端增加高壓套管強化絕緣,修復後放電值回復正常數值(733mV), 趨勢穩定。

一、監控模組建立

- (一)轉動設備滾動軸承監控均以總振動值及劣化加速度(gE)為主,將數據 建立監控模組,可進行趨勢分析及異常診斷。
- (二)因欠缺大量異常數據,以既有數據直接套用大數據演算法(如Lasso、Ridge、XGBoost及隨機森林),建立壽命預測模型效果不佳,本部另導入迴歸方程式運用。

gE(g Envelope): 軸承劣化加速度單位。

二、劣化加速度及壽命趨勢圖

- (一)國際文獻依軸承加速度值劣化趨勢,區分剩餘壽命如右圖。
- (二)檢討以迴歸方程式,導入轉動設備之等效動負荷及4個階段劣化 加速度值,可計算軸承剩餘壽命。

國際文獻: Technical Associates Analysis I(來源:美國振動分析技術學會)

三、迴歸方程式檢討建立

- (一)結合軸承原廠額定壽命、劣化加速度值及等效動負荷等關鍵因子,導入 迴歸方程式如下(劣化階段③為例)。
- (二)於RTPMS監控頁面顯示剩餘壽命天數,供製程與保養人員監控運用。

代碼	說明	單位
h	剩餘壽命	hr
С	基本動額定負荷	kN
Р	等效動負荷	kN
n	轉速	rpm
k	軸承常數(滾珠或滾子)	-
gE值	劣化加速度值	gE

運轉 階段	劣化加速度 (gE值)	佔額定 壽命比率	額定壽命比率迴歸方程式
正常運轉	0→0.2	1→0.8	1 - 1× gE值
階段 ①	0.2→0.5	0.2 > 0.1	1.26667 - 2.33333×gE值
階段(2)	0.5→1	0.1→0.05	0.15 - 0.1×gE值
階段③	1→30	0.05→0.01	0.05138 - 0.00138×gE值
階段 4	30以上	0.01→0	0.025 - 0.0005×gE值

計算式關鍵因子

各階段對應迴歸方程式

四、案例說明:EG1廠P476A馬達監控

- 1.P476A為EG1廠液氧重要循環泵浦,若發生非預期停機,將造成EG1廠 氧氣失壓,並連鎖氧氣混合站乙烯/氧氣停止進料。
- 2.馬達:100KW、380V、4,100~6900 rpm(變頻)、滾動軸承:7213、6210
- 3.以馬達電流、軸承加速度值及出入口壓力等測點,運轉數據建立監控 模組。

四、案例說明:EG1廠P476A馬達監控

(二)異常分析與保養決策

- 1.馬達軸承劣化加速度值於3/5上升至1.24gE觸發預警,導入預測模型計算剩餘壽命259天(預測損壞日期11/18),7/8定檢前可正常運轉。
- 2.定檢前加速度值上升至1.75 gE,剩餘壽命剩132天,更新軸承後劣化加速度值降至0.04gE恢復正常。

2/22 3/23 4/22 5/22 6/21 7/21 8/20 9/19 gE振動趨勢圖

$$500 \times \left[\left(\frac{10^6}{500 \times 60 \times 4510} \right)^{\frac{1}{3}} \times \frac{67}{3.04} \right]^{3} \times (0.05138 - 0.00138 \times 1.24)$$

=6,206小時

=259天

註:預測公式已建置於RTPMS伺服器, 每8小時自動計算乙次。

3/5剩餘壽命計算

- 四、案例說明:EG1廠P476A馬達監控
 - (三)即時生產管理系統顯示剩餘壽命

線上監控轉機之即時生產管理系統,畫面增設顯示剩餘壽命天數,供製程監控及保養人員運用。

肆、設備監控管理成效

建立重要設備智能監控預警及電腦管理機制,強化偏離數據原因分析及控管檢修品質,避免機台發生非計畫性停機及過度保養,近六年故障率由0.112 降至0.045%(2020年統計至10月底)。

伍、未來強化方向

一、儀器檢測功能整合

擬新購整合各項功能之防爆、防水及防摔多合一行動裝置,並增設無線網路 以利自動上傳巡檢資料,減少人工作業,確保數據正確及提昇作業效率。

伍、未來強化方向

二、保養作業平台建置

- (一)改善前人員需至各系統單獨查詢以人工輸入各項數據。
- (二)建置保養作業平台串聯各作業系統,加速數位優化及數據整合 運用,減省人工作業提升作業效率,預定2021.11.30完成。

MOS:保養外包作業系統(Maintenance Outsourcing System)

報告完畢

恭請指導

附件一、專有名詞中英文對照表

項次	英文縮寫	英文全名	中文名稱	説明
1	RTPMS	Real Time Production Management System	即時生產管理系統	製程及設備即時數據管理的網頁
2	iEM	Intelligent Equipment Management	智能設備管理	設備趨勢管理所使用之軟體名稱
3	gE	gE(g Envelope)	包絡加速度值	軸承劣化加速度單位
4	Lasso	Lasso Regression Model	套索迴歸模型	當自變數之間有共線性現象,加入 L1正則項,改進線性迴歸模型。
5	XGBoost	eXtreme Gradient Boosting Model	極限梯度提升模型	決策樹演算法集大成的最終學習 模型。
6	Ridge	Ridge Regression Model	脊迴歸模型	當自變數之間有共線性現象,加入 L2正則項,改進線性迴歸模型。
7	EO	Ethylene Oxide	環氧乙烷	有機化合物,主要用來製造乙二醇。
8	MOS	Maintenance Outsourcing System	保養外包作業系統	主要是用來連接ERP及行動裝置的 系統平台。
9	ERP	Enterprise Resource Planning	企業資源規劃系統	利用模組化的方式,整合企業營運 資料