Images and Displays

Lecture 2

Introduction

 Computer graphics: The study of creating, manipulating, and using visual images in the computer.

Computer vision inverts the process Image processing deals with images

What is an image?

- A photographic print?
- Pixels?
- Some numbers in RAM?

with modification

1000 v 1000 407k inc

for facebook

Images Of The Year

An image is:

- A 2D distribution of intensity or color
- A function defined on a two-dimensional plane

$$I:\mathbb{R}^2 o\dots$$

- Note: no mention of pixels yet
- To do graphics, must:
 - represent images—encode them numerically
 - Image files such as jpg, png, svg files
 - display images—realize them as actual intensity distributions

Representative display technologies

Computer displays

- Raster CRT display
- LCD display
- OLED display, DLP projector, ...

Printers

- Laser printer
- Inkjet printer

Cathode ray tube

- First widely used electronic display
 - developed for TV in the 1920s-1930s

LCD flat panel or projection display

- block or transmit light by twisting its polarization
- Intermediate intensity levels possible by partial twist

OLED display

- An OLED is a light-emitting diode
- In low ambient light conditions such as a dark room, an OLED can achieve a much higher contrast ratio than an LCD

A demonstration of a flexible OLED device (from Wikipedia)

DLP projector

Mirror +10 deg

DMD

Wirror +10 deg

Landing Tip

CMOS
Substrate

- Digital light processing
- The image is created by microscopically small mirrors laid out in a matrix on a semiconductor chip, known as a Digital Micromirror Device (DMD)

source unknown]

Color displays (light emiting devices)

- Operating principle: humans are trichromatic
 - match any color with blend of three
 - therefore, problem reduces to producing 3 images and blending
- Additive color

 (as opposed to subtractive c
 - blend images by sum
 - e.g. overlapping projection
 - R, G, B make good primaries

```
R = (1,0,0)
```

$$G=(0,1,0)$$

$$B = (0,0,1)$$

$$Cyan=G+B=(0,1,1)$$

Color displays

interleaved R,G,B pixels (except DLPs)

1&B fig. 2-

Electronic paper (E Ink)

 In an extremely bright condition, E-ink outperforms all light-emitting displays

An e-paper display visible in the sunlight

Laser printer

- Like a photocopier but with laser-scanned raster as source image
- Key characteristics
 - image is binary
 - resolution is high
 - very small, isolated dots are not possible

Inkjet printer

- Liquid ink sprayed in small drops
- Head with many jets scans across paper
- Key characteristics:
 - image is binary (drop or no drop; no partial drops)
 - isolated dots are reproduced well

Digital camera

- A raster input device
- Image sensor contains 2D array of photosensors

Digital camera

Color typically captured using color mosaic

Raster image representation (Pixels as opposed to vectors)

- All these devices suggest 2D arrays of numbers (pixels)
- Big advantage: represent arbitrary images
 - approximate arbitrary functions with increasing resolution
 - works because memory is cheap (brute force approach!)

Datatypes for raster images

- Bitmaps: boolean per pixel (1 bpp):
 - black and white
- Grayscale: integer per pixel:
 - shades of gray; e.g. black-and-white print
 - precision: usually byte (8 bpp); sometimes 10, 12, or 16 bpp
 - E-ink: 4bpp (16 grey levels)
- Color: 3 integers per pixel:
 - full range of displayable color
 - precision: usually byte[3] (24 bpp)
 - sometimes 16 (5+6+5) or 30 or 36 or 48 bpp
 - indexed color (palletized color : usually 8bpp): a fading idea. GIF format

Datatypes for raster images

- Floating point:
 - more precision
 - provides high dynamic range (HDR)

24bpp image

HDR - 72bpp image

Higher bits

Figure 6.26
This histogram reveals that the image is over-exposed.

HDR images are good for post-processing (exposure compensation) - badly taken photos can be recovered

Figure 6.27 A histogram for a properly exposed image should look like this.

exposure: -8 stops

exposure: +0 stops

exposure: +6 stops

Datatypes for raster images

- Floating point:
 - more precision
 - provides high dynamic range (HDR)
 - represent real scenes independent of display
 - becoming the standard intermediate format in graphics processors

Datatypes for raster images

- For color or grayscale, sometimes add alpha channel
 - describes transparency of images
 - more on this in a few lectures

Storage requirements for images

- 1024x1024 image (1 megapixel)
 - bitmap: 128KB
 - grayscale 8bpp: 1MB
 - grayscale 16bpp: 2MB
 - color 24bpp: 3MB
 - floating-point HDR color: 12MB

Image processing

- Color to gray
- Down pixel precision (16bpp → 4bpp)
 - Brute-force
 - Dithering
- Gamma correction

Converting pixel formats

- Color to gray
 - could take one channel (blue, say)
 - leads to odd choices of gray value
 - combination of channels is better
 - but different colors contribute differently to lightness
 - which is lighter, full blue or full green?
 - good choice: gray = 0.2 R + 0.7 G + 0.1 B
 - more on this in color, later on

Same pixel values.

Same luminance?

Up is easy; down loses information—be careful

8 bpp (256 grays)

[photo: Phili Greenspun]

Up is easy; down loses information—be careful

5 bpp (32 grays)

Up is easy; down loses information—be careful

photo: Philip Greenspun]

Up is easy; down loses information—be careful

hoto: Philip eenspun]

Converting pixel precision

Up is easy; down loses information—be careful

Up is easy; down loses information—be careful

Lacks gradation

Dithering

- When decreasing bpp, we quantize
- Make choices consistently: banding artifacts
 - I = 0 if I < 0.5
 - I = 1 if I > = 0.5
- Instead, be inconsistent—dither
 - turn on some pixels but not others in gray regions
 - a way of trading spatial for tonal resolution

Laser printed image WITHOUT dithering

Dithering methods

- Ordered dither
 - produces larger dots
 - laser printer
- Diffusion dither
 - takes advantage of devices that can reproduce isolated dots
 - inkjet, screen

Ordered Dither example

Produces regular grid of compact dots

Diffusion dither

Produces scattered dots with the right local density

Pixel Values vs Light Intensity

- What do the numbers in images (pixel values) mean?
 - they determine how bright that pixel is
 - bigger numbers are (usually) brighter
- Is a pixel with value 200 twice as bright as another pixel with value 100?

 Something like this if the blue boxed region look brighter than the red box (n=128:)

- Why?
 - Boxed region: I=0.5 (Imax+Imin)
 - I(128) < 0.5 (Imax + Imin)

Pixel

What do the numbers in images (pixel values) mean?

- they determine how bright that pixel is
 - bigger numbers are (usually) brighter
- Transfer function: function that maps input pixel value to luminance of displayed image

$$I = f(n)$$
 $f: [0, N] \rightarrow [I_{\min}, I_{\max}]$

- What determines this function?
 - physical constraints of device or medium
 - desired visual characteristics

Constraints on transfer function (for light-emitting displays)

- Maximum displayable intensity, I_{max}
 - how much power can be channeled into a pixel?
 - LCD: backlight intensity, transmission efficiency (<10%)
 - projector: lamp power, efficiency of imager and optics
- Minimum displayable intensity, I_{\min}
 - light emitted by the display in its "off" state
 - e.g. stray electron flux in CRT, polarizer quality in LCD

Viewing flare, k: light reflected by the display

- very important factor determining image contrast in practice
 - 5% of I_{max} is typical in a normal office environment [sRGB spec]
 - much effort to make very black CRT and LCD screens
 - all-black decor in movie theaters

Dynamic range

- Dynamic range $R_d = I_{\text{max}} / I_{\text{min}}$, or $(I_{\text{max}} + k) / (I_{\text{min}} + k)$
 - determines the degree of image contrast that can be achieved
 - a major factor in image quality
- Ballpark values
 - Desktop display in typical conditions: 20:1
 - Photographic print: 30:1
 - Desktop display in good conditions: 100:1
 - Desktop display in a dark room: 1000:1 ~ inf:1
 - Photographic transparency (directly viewed): 1000:1
 - High dynamic range display in good conditions: 10,000:1 (very bright white)

Transfer function shape

- Desirable property: the change from one pixel value to the next highest pixel value should not produce a visible contrast
 - otherwise smooth areas of images will show visible bands
- What contrasts are visible?
 - rule of thumb: under good conditions we can notice a 2% change in intensity
 - therefore we generally need smaller quantization steps in the darker tones than in the lighter tones
 - most efficient quantization is logarithmic

an image with severe banding

How many levels are needed?

- Ideal case: exponential quantization
 - Depends on dynamic range
 - 2% steps are most efficient:

$$0 \mapsto I_{\min}; 1 \mapsto 1.02I_{\min}; 2 \mapsto (1.02)^2I_{\min}; \dots$$

- log 1.02 is about 1/120, so 120 steps are needed for 10 times intensity
- → 240 steps are needed for 100:1 dynamic range
- Moral: 8 bits is just barely enough for low-end applications
 - even if we are careful about quantization

Intensity quantization in practice

- $I(n) = (n/N) I_{\text{max}}$ Option 1: linear quantization
 - pro: simple, convenient, amenable to arithmetic
 - con: requires more steps (wastes memory)
 - need 12 bits for any useful purpose; more than 16 for HDR
- Option 2: Ideal exponential quantization
 - $I(n) = (1.02)^n I_{min}$ - Too expensive
- Option 3: power-law quantization $I(n) = (n/N)^{\gamma} I_{\max}$
 - pro: fairly simple, approximates ideal exponential quantization
 - con: need to linearize before doing pixel arithmetic
 - con: need to agree on exponent (standard gamma: 2.2)
- 8 bits are OK for many applications
 Cornell CS4620 Fall 2008 Lecture 2

Option3: Gamma quantization

Close enough to ideal perceptually uniform exponential

Gamma correction

- Sometimes (often, in graphics) we have computed intensities a that we want to display linearly
- In the case of an ideal monitor with zero black level, $I(n) = (n/N)^{\gamma}$

(where $N = 2^n - 1$ in n bits). Solving for n:

$$n = Na^{\frac{1}{\gamma}}$$

- This is the "gamma correction" recipe that has to be applied when computed values are converted to 8 bits for output
 - failing to do this (implicitly assuming gamma = 1) results in dark, oversaturated images

Gamma correction

corrected for γ lower than display

OK

corrected for γ higher than display