Network Working Group Request for Comments: 923 J. Reynolds
J. Postel
ISI
October 1984

Obsoletes RFCs: 900, 870, 820, 790, 776, 770, 762, 758, 755, 750, 739, 604, 503, 433, 349 Obsoletes IENs: 127, 117, 93

ASSIGNED NUMBERS

Status of this Memo

This memo is an official status report on the numbers used in protocols in the ARPA-Internet community. Distribution of this memo is unlimited.

Introduction

This Network Working Group Request for Comments documents the currently assigned values from several series of numbers used in network protocol implementations. This RFC will be updated periodically, and in any case current information can be obtained from Joyce Reynolds. The assignment of numbers is also handled by Joyce. If you are developing a protocol or application that will require the use of a link, socket, port, protocol, network number, etc., please contact Joyce to receive a number assignment.

Joyce Reynolds
USC - Information Sciences Institute
4676 Admiralty Way
Marina del Rey, California 90292-6695

Phone: (213) 822-1511

ARPA mail: JKREYNOLDS@USC-ISIF.ARPA

Most of the protocols mentioned here are documented in the RFC series of notes. The more prominent and more generally used are documented in the "Internet Protocol Transition Workbook" [33] or in the old "ARPANET Protocol Handbook" [34] prepared by the NIC. Some of the items listed are undocumented. Further information on protocols can be found in the memo "Official ARPA-Internet Protocols" [89].

In all cases the name and mailbox of the responsible individual is indicated. In the lists that follow, a bracketed entry, e.g., [nn,iii], at the right hand margin of the page indicates a reference for the listed protocol, where the number ("nn") cites the document and the letters ("iii") cites the person. Whenever possible, letters are a NIC Ident as used in the WHOIS service.

ASSIGNED NETWORK NUMBERS

The network numbers listed here are used as internet addresses by the Internet Protocol (IP) [33,77]. The IP uses a 32-bit address field and divides that address into a network part and a "rest" or local address part. The division takes 3 forms or classes.

The first type of address, or class A, has a 7-bit network number and a 24-bit local address. The highest-order bit is set to 0. This allows 128 class A networks.

									1										2										3	
0 1	1 2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
+-+-	-+-	+	+-+	+	- -	+-+	+	+	+	+	+	-	+	+	+	+	+	+	+	 	- - +	+	+	+	⊢ – -	 	 	 	⊦ – +	⊢ − +
0		NE.	ГWС	RK	ζ.										L	oca	al	Αc	ddı	ces	SS									
+-+-	-+-	+	+-+	+	-	+-+	 	+	+	+	 	 	+	+	+	+	 	 	+	 	-	 	 	+	-	- - +	- - +	-	⊢ – +	+-+

Class A Address

The second type of address, class B, has a 14-bit network number and a 16-bit local address. The two highest-order bits are set to 1-0. This allows 16,384 class B networks.

Class B Address

The third type of address, class C, has a 21-bit network number and a 8-bit local address. The three highest-order bits are set to 1-1-0. This allows 2,097,152 class C networks.

Class C Address

Note: No addresses are allowed with the three highest-order bits set to 1-1-1. These addresses (sometimes called "class D") are reserved.

One commonly used notation for internet host addresses divides the 32-bit address into four 8-bit fields and specifies the value of each field as a decimal number with the fields separated by periods. This is called the "dotted decimal" notation. For example, the internet address of USC-ISIF.ARPA in dotted decimal is 010.002.000.052, or 10.2.0.52.

The dotted decimal notation will be used in the listing of assigned network numbers. The class A networks will have nnn.rrr.rrr, the class B networks will have nnn.nnn.rrr, and the class C networks will have nnn.nnn.rrr, where nnn represents part or all of a network number and rrr represents part or all of a local address.

There are four catagories of users of Internet Addresses: Research, Defense, Government (Non-Defense), and Commercial. To reflect the allocation of network identifiers among the categories, a one-character code is placed to the left of the network number: R for Research, D for Defense, G for Government, and C for Commercial (see Appendix A for further details on this division of the network identification).

Network numbers are assigned for networks that are connected to the ARPA-Internet and DDN-Internet, and for independent networks that use the IP family protocols (these are usually commercial). These independent networks are marked with an asterisk preceding the number.

The administrators of independent networks must apply separately for permission to interconnect their network with either the ARPA-Internet of the DDN-Internet. Independent networks need not be listed in the working tables of either the ARPA-Internet or DDN-Internet hosts or gateways.

For various reasons, the assigned numbers of networks are sometimes changed. To ease the transition the old number will be listed for a transition period as well. These "old number" entries will be marked with a "T" following the number and preceding the name, and the network name will be suffixed "-TEMP".

Special Addresses:

In certain contexts, it is useful to have fixed addresses with functional significance rather than as identifiers of specific hosts. When such usage is called for, the address zero is to be interpreted as meaning "this", as in "this network". The address of all ones are to be interpreted as meaning "all", as in "all hosts". For example, the address 128.9.255.255 could be

interpreted as meaning all hosts on the network 128.9. Or, the address 0.0.0.37 could be interpreted as meaning host 37 on this network.

Assigned Network Numbers

Class A Networks

*	Internet Address	Name	Network	References
	000.rrr.rrr.rrr		Reserved	[JBP]
R	004.rrr.rrr.rrr	SATNET	Atlantic Satellite N	
		YPG-NET-TEMP	Yuma Proving Grounds	
		EDN-TEMP	DCEC EDN	[EC5]
R	008.rrr.rrr.rrr T	BBN-NET-TEMP	BBN Network	[JSG5]
	010.rrr.rrr.rrr	ARPANET	ARPANET	[7,34,REK2]
D	011.rrr.rrr.rrr	DODIIS	DOD INTEL INFO SYS	[AY7]
С	012.rrr.rrr.rrr	ATT	ATT, Bell Labs	[MH13]
C	014.rrr.rrr.rrr	PDN	Public Data Network	[REK4]
R	018.rrr.rrr.rrr T	MIT-TEMP	MIT Network	[15,88,DDC2]
	022.rrr.rrr.rrr	DISNET	DISNET	[FLM2]
	023.rrr.rrr.rrr	DDN-TC-NET	DDN-TestCell-Network	[DH17]
	024.rrr.rrr.rrr	MINET	MINET	[7,DHH]
	026.rrr.rrr.rrr	MILNET	MILNET	[FLM2]
	027.rrr.rrr.rrr T		•	[RH6]
	028.rrr.rrr.rrr	WIDEBAND	Wide Band Satellite	= =
	032.rrr.rrr.rrr	UCL-TAC	UCL TAC	[PK]
	036.rrr.rrr.rrr T		Stanford University	
	039.rrr.rrr.rrr T		SRI Local Network	[GEOF]
	041.rrr.rrr.rrr	BBN-TEST-A	BBN-GATE-TEST-A	[RH6]
R	044.rrr.rrr.rrr	AMPRNET	Amateur Radio Experi	
	001.rrr.rrr.rrr-00	3.rrr.rrr.rrr	_	[JBP]
	005.rrr.rrr.rrr		Unassigned	[JBP]
	009.rrr.rrr.rrr		Unassigned	[JBP]
	013.rrr.rrr.rrr	. –	Unassigned	[JBP]
	015.rrr.rrr.rrr-01			[JBP]
	019.rrr.rrr.rrr-02	21.rrr.rrr.rrr		[JBP]
	025.rrr.rrr.rrr		Unassigned	[JBP]
	029.rrr.rrr.rrr-03		_	[JBP]
	033.rrr.rrr.rrr-03			[JBP]
	037.rrr.rrr.rrr-03	38.rrr.rrr.rrr	_	[JBP]
	040.rrr.rrr.rrr	1.2	Unassigned	[JBP]
	042.rrr.rrr.rrr-04			[JBP]
	045.rrr.rrr.rrr-12	zo.rrr.rrr.rrr	_	[JBP]
	127.rrr.rrr.rrr		Reserved	[JBP]

Class B Networks

*	Internet Address	Name	Network	References
_	128.000.rrr.rrr		Reserved	[JBP]
D	128.001.rrr.rrr	BBN-TEST-B	BBN-GATE-TEST-B	[RH6]
	128.002.rrr.rrr	CMU-NET	CMU-Ethernet	[HDW2]
	128.002.TTT.TTT	LBL-CSAM	LBL-CSAM-RESEARCH	[JS38]
	128.003.111.111 128.004.rrr.rrr	DCNET		[59,DLM1]
	128.005.rrr.rrr	=	LINKABIT DCNET FORD DCNET	
	128.005.111.111 128.006.rrr.rrr	FORDNET		[59,DLM1]
		RUTGERS	RUTGERS	[CLH3]
	128.007.rrr.rrr	DFVLR	DFVLR DCNET Network	[HDC1]
	128.008.rrr.rrr	UMDNET	Univ of Maryland DCNE	
	128.009.rrr.rrr	ISI-NET	USC-ISI Local Network	
	128.010.rrr.rrr	PURDUE-CS	Purdue Computer Scien	
	128.011.rrr.rrr	BBN-CRONUS	BBN DOS Project	[55,WIM]
	128.012.rrr.rrr	SU-NET	Stanford University N	
	128.013.rrr.rrr	MATNET	Mobile Access Termina	
	128.014.rrr.rrr	BBN-SAT-TEST	BBN SATNET Test Net	[DM11]
	128.015.rrr.rrr	SINET	LLL-S1-NET	[EAK1]
	128.016.rrr.rrr	UCLNET	University College Lo	
	128.017.rrr.rrr	MATNET-ALT	Mobile Access Termina	
	128.018.rrr.rrr	SRINET	SRI Local Network	[GEOF]
	128.019.rrr.rrr	EDN	DCEC EDN	[EC5]
	128.020.rrr.rrr	BRLNET	BRLNET	[7,MJM2]
	128.021.rrr.rrr	SF-PR-1	SF-1 Packet Radio Net	
	128.022.rrr.rrr	SF-PR-2	SF-2 Packet Radio Net	
	128.023.rrr.rrr	BBN-PR	BBN Packet Radio Netw	
R	128.024.rrr.rrr	ROCKWELL-PR	Rockwell Packet Radio	Net [EHP]
	128.025.rrr.rrr	BRAGG-PR	Ft. Bragg Packet Radi	
D	128.026.rrr.rrr	SAC-PR	SAC Packet Radio Netw	ork [BG5]
D	128.027.rrr.rrr	DEMO-PR-1	Demo-1 Packet Radio N	<pre>letwork[LCS]</pre>
D	128.028.rrr.rrr	C3-PR	Testbed Development P	R NET [BG5]
R	128.029.rrr.rrr	MITRE	MITRE Cablenet	[94,APS]
R	128.030.rrr.rrr	MIT-NET	MIT Local Network	[DDC2]
	128.031.rrr.rrr	MIT-RES	MIT Research Network	[DDC2]
R	128.032.rrr.rrr	UCB-ETHER	UC Berkeley Ethernet	[DAM1]
R	128.033.rrr.rrr	BBN-NET	BBN Network	[JSG5]
R	128.034.rrr.rrr	NOSC-LCCN	NOSC / LCCN	[RH6]
R	128.035.rrr.rrr	CISLTESTNET1	Honeywell	[46,47,RK1]
R	128.036.rrr.rrr	YALE-NET	YALE NET	[108,JO5]
D	128.037.rrr.rrr	YPG-NET	Yuma Proving Grounds	[7,BXA]
D	128.038.rrr.rrr	NSWC-NET	NSWC Local Host Net	[RLH2]
	128.039.rrr.rrr	NTANET	NDRE-TIU	[PS3]
R	128.040.rrr.rrr	UCL-NET-A	UCL	[RC7]
	128.041.rrr.rrr	UCL-NET-B	UCL	[RC7]
R	128.042.rrr.rrr	RICE-NET	Rice University [59,108,PGM]
R	128.043.rrr.rrr	CRANET	Canada REF ARPANET	[7,JR17]

D	128.044.rrr.rrr	WSMR-NET	White Sands Network	[TBS]
С	128.045.rrr.rrr	DEC-WRL-NET	DEC WRL Network	[108,RKJ2]
	128.046.rrr.rrr	Unassigned	Unassigned	[JBP]
D	128.047.rrr.rrr	TACTNET	Tactical Packet Net	[6,KTP]
C*	128.048.rrr.rrr	UCDLA-NET	UCDLA MELVYL Network	[7,CXL]
R	128.049.rrr.rrr	NOSC-ETHER	NOSC Ethernet	[108,RLB3]
G	128.050.rrr.rrr	COINS Network	COINS On-Line Intel No	et [RLS6]
G	128.051.rrr.rrr	COINSTNET	COINS TEST NETWORK	[RLS6]
R	128.052.rrr.rrr	MIT-AI-NET	MIT AI NET	[108,MDC]
R	128.053.rrr.rrr	SAC-PR-2	SAC PRNET Number 2	[BG5]
R	128.054.rrr.rrr	UCSD	UC San Diego Network	[108,GH29]
	128.055.rrr.rrr-12	28.063.rrr.rrr	Unassigned	[JBP]
R	128.064.rrr.rrr-12	28.079.rrr.rrr	Net Dynamics Exp	[ZSU]
	128.080.rrr.rrr-19	01.254.rrr.rrr	Unassigned	[JBP]
	191.255.rrr.rrr		Reserved	[JBP]

Class C Networks

*	Internet Address		Network	References
_	192.000.000.rrr		Reserved	[JBP]
R	192.000.001.rrr	BBN-TEST-C	BBN-GATE-TEST-C	[RH6]
	192.000.002.rrr-19	92.000.255.rrr	Unassigned	[JBP]
R	192.001.000.rrr-19	92.003.255.rrr	BBN local networks	[SGC]
	192.004.000.rrr-19	92.004.255.rrr	Bellcore-Net	[108,PXK]
R	192.005.001.rrr		Honeywell	
R	192.005.002.rrr	WISC	Univ of Wisconsin Madi	son [RS23]
С	192.005.003.rrr	HP-DESIGN-AIDS	S HP Design Aids	[NXK]
С	192.005.004.rrr	HP-TCG-UNIX	Hewlett Packard TCG Un	ix [NXK]
R	192.005.005.rrr	DEC-MRNET	DEC Marlboro Ethernet	[101,KWP]
R	192.005.006.rrr	DEC-MRRAD	DEC Marlboro Developmt	
R	192.005.007.rrr	CIT-CS-NET	Caltech-CS-Net	
	192.005.008.rrr	WASHINGTON	University of Washingt	
R	192.005.009.rrr	AERONET	Aerospace Labnet	
	192.005.010.rrr	ECLNET	USC-ECL-CAMPUS-NET	
	192.005.011.rrr	CSS-RING	SEISMIC-RESEARCH-NET	
	192.005.012.rrr	UTAH-NET	UTAH-COMPUTER-SCIENCE-	
	192.005.013.rrr	GSWDNET	Compion Network	
	192.005.014.rrr	RAND-NET	RAND Network NYU Network	[108,JDG]
	192.005.015.rrr	NYU-NET		
	192.005.016.rrr	LANL-LAND	Los Alamos Dev LAN	
	192.005.017.rrr	NRL-NET	Naval Research Lab	
	192.005.018.rrr	IPTO-NET	ARPA-IPTO Office Net	
	192.005.019.rrr	UCIICS	UCI-ICS Res Net	[MTR]
	192.005.020.rrr	CISLTTYNET	Honeywell	[RK1]
	192.005.021.rrr	BRLNET1	BRLNET1	[7,MJM2]
	192.005.022.rrr	BRLNET2	BRLNET2	[7,MJM2]
D	192.005.023.rrr	BRLNET3	BRLNET3	[7,MJM2]

D 192.005.024.rrr	BRLNET4	BRLNET4	[7,MJM2]
D 192.005.025.rrr	BRLNET5	BRLNET5	[7,MJM2]
D 192.005.026.rrr	NSRDCOA-NET	NSRDC Office Auto Net	[TC4]
D 192.005.027.rrr	DTNSRDC-NET	DTNSRDC-NET	[TC4]
R 192.005.028.rrr	RSRE-NULL	RSRE-NULL	[NM]
R 192.005.029.rrr	RSRE-ACC	RSRE-ACC	[NM]
R 192.005.030.rrr	RSRE-PR	RSRE-PR	[NM]
R*192.005.031.rrr	SIEMENS-NET	Siemens Research Netw	ork [PXN]
R 192.005.032.rrr	CISLTESTNET2	Honeywell	[46,47,RK1]
R 192.005.033.rrr	CISLTESTNET3	Honeywell	[27,28,RK1]
R 192.005.034.rrr	CISLTESTNET4	Honeywell	[27,28,RK1]
R 192.005.035.rrr	RIACS	USRA	[108,RLB1]
R 192.005.036.rrr	CORNELL-CS	CORNELL CS Research	[108,DK2]
R 192.005.037.rrr	UR-CS-NET	U of R CS 3Mb Net	[58,LB1]
R 192.005.038.rrr	SRI-C3ETHER	SRI-AITAD C3ETHERNET	[108,BG5]
R 192.005.039.rrr	UDEL-EECIS	Udel EECIS LAN	[102,CC2]
R 192.005.040.rrr	PUCC-NET-A	PURDUE Comp Cntr Net	[JRS8]
D 192.005.041.rrr	WISLAN	WIS Research LAN	[94,JRM1]
D 192.005.042.rrr	AFDSC-HYPER	AFDSC Hypernet	[MCSJ]
R 192.005.043.rrr	CUCSNET	Columbia CS Net	[108,LH2]
R 192.005.044.rrr	Farber-PC-Net	Farber PC Network	[DJF]
R 192.005.045.rrr	AIDS-NET	AI&DS Network	[108,HA]
R 192.005.046.rrr	NTA-RING	NDRE-RING	[PS3]
R 192.005.047.rrr	NSRDC	NSRDC	[PXM]
R 192.005.048.rrr	PURDUE-CS-IL	Purdue CS IL Ethernet	
R 192.005.049.rrr	UCSF	Univ of Calif, San Fr	an[102,TF6]
R 192.005.050.rrr	CTH-CS-NET	Chalmers CSN Net	[102,UXB]
R 192.005.051.rrr	Theorynet	Cornell Theory Center	[108,AB13]
R 192.005.052.rrr	NLM-ETHER	NLM-LHNCBC-ETHERNET	[77,JA1]
R 192.005.053.rrr	UR-CS-ETHER	U of R CS 10Mb Net	[58,LB1]
R 192.005.054.rrr	AERO-A6	Aerospace	[2,LCN]
R*192.005.055.rrr	UCLA-CECS	UCLA-CECS Network	[108,RBW]
C 192.005.056.rrr	TARTAN-NET	Tartan Labs	[SXB]
R 192.005.057.rrr	UDEL-CC	UDEL Comp Center	[102,RR18]
R 192.005.058.rrr	CSNET-PDN	CSNET X.25 Network	[52,RDR4]
R*192.005.059.rrr	Inria SM90	Inria GIP SM-90	[MXS]
R*192.005.060.rrr	SM90 X1	Inria SM-90 exp. 1	[MXS]
R*192.005.061.rrr	SM90 X2	Inria SM-90 exp. 2	[MXS]
R*192.005.062.rrr	LITP SM90	LITP SM-90	[MXS]
R 192.005.064.rrr	AMES-NAS-NET	NASA ARC NAS LAN	[101,MF31]
R 192.005.065.rrr	NPRDC-Ether	NPRDC TRCF Ethernet	[LRB]
R 192.005.066.rrr	HARV-NET	Harvard Comp Sci Net	[SXB1]
R 192.005.067.rrr	CECOM-ETHER	CECOM ADDCOMPE ETHER	[102,GIH]
R 192.005.068.rrr	AERO-130	AEROSPACE-130	[LCN]
R 192.005.069.rrr	UIUC-NET	Univ of IL at Urbana	[108,AXC]
G 192.005.070.rrr	CELAN	COINS Exper. LAN	[MXM]
R 192.005.071.rrr	SAC-ETHER	SAC C3 Ethernet	[108,BG5]
R*192.005.072.rrr-19	02.005.087.rrr	U Chicago	[TXN]

R 192.005.088.rrr YALE-EE-NET	YALE-EE-NET [108,AG22]
R 192.005.089.rrr UTEXAS-NET	U. Texas Austin Net [108,JSQ1]
R 192.005.090.rrr HARV-ETHER	Harvard CS Ethernet [SXB1]
R 192.005.091.rrr PURDUE-ECN1	Purdue ECN [30,49,GG11]
R 192.005.092.rrr BRAGG-ETHER	SRI Bragg Ether [103,GIH]
R 192.005.093.rrr SRI-DEMO	SRI Ether Demo [103,GIH]
R*192.005.094.rrr SDCRDCF-10MB	SDC R&D primary net [108,DJV1]
R*192.005.095.rrr SDCRDCF-3MB	SDC R&D old net [58,DJV1]
R*192.005.096.rrr UBC-CS-NET	UBC Comp Sci Net [108,PXB]
R*192.005.097.rrr UCLA-CS-LNI	UCLA CS LNI Network [RBW]
R*192.005.098.rrr UCLA-PIC	UCLA PIC Network [108,RBW]
R 192.005.099.rrr SPACENET	S-1 Workstation Network[108,TXW]
R 192.005.100.rrr PURDUE-ECN2	Purdue ECN [30,49,GG11]
R 192.005.101.rrr PUCC-GW-NET	Purdue Gateway Network [JRS8]
R 192.005.102.rrr PUCC-RHF-NET	PUCC RHF Based Net [JRS8]
C*192.005.102.111 FOCC KIR NET	
R 192.005.104.rrr TMC-INET	Tymnet NTD Ethernet [SMF] Thinking Machines [108,BJN1]
R 192.005.104.111 IMC-INET	CCA Ethernet1 (POND) [108,AL6]
	Bitstream Type Foundry [108,PXA] IBM PASC Ethernet [108,GXL]
R*192.005.108.rrr PASC-BB	IBM PASC Broadband [50,GXL]
192.005.109.rrr-192.005.255.rrr	
C*192.006.000.rrr-192.006.255.rrr	
C*192.007.000.rrr-192.007.255.rrr	
C*192.008.000.rrr-192.008.255.rrr	
C*192.009.000.rrr-192.009.255.rrr	-
C*192.010.000.rrr-192.010.040.rrr	-
R 192.010.041.rrr SCRC-ETHERNET	
C*192.010.042.rrr-192.010.255.rrr	
C*192.011.000.rrr-192.011.255.rrr	ATT, Bell Labs [MH12]
C*192.012.000.rrr CADMUS-ETHERNI	ET CADMUS-NET [MS9]
C*192.012.001.rrr CADMUS-EXP-1	CADMUS-NET-EXP-1 [MS9]
C*192.012.002.rrr CADMUS-EXP-2	CADMUS-NET-EXP-2 [MS9]
C*192.012.003.rrr FLAIR	Fairchild AI Lab Net [108,AMS1]
C*192.012.004.rrr SCG-NET	Hughes SCG Net [108,MXP]
R 192.012.005.rrr AIC-LISPMS	SRI-AIC-LispMachNet [108,PM4]
R 192.012.006.rrr NPS-C2	NPS-C2 [108,AW9]
R 192.012.007.rrr NYU-CS-ETHER	NYU CompSci Ethernet [108,LOU]
D 192.012.008.rrr PICANET1	Picatinny Arsenal LAN1[108,RFD1]
R 192.012.009.rrr CADRE-NET	Decision Systems Lab [SM6]
R 192.012.010.rrr CORNELL-ENG	Cornell-Engineering [108,BN9]
R 192.012.011.rrr MIT-36	MIT Building 36 [108,RH60]
R 192.012.012.rrr WISC-ETHER	Wisconsin Ether Net [108,CBP]
R 192.012.013.rrr JHU-NET1	JHU-NET1 [108,MO14]
R 192.012.013.111 ONO NETT	JHU-NET2 [108,M014]
R 192.012.014.111	BNL Brooknet III [108,GC]
	SRI-SURAN-EN [108,BP17]
G 192.012.017.rrr LLL-TIS-NET	LLL-TIS-NET [101,105,GP10]

R	192.012.018.rrr	CIT-CS-10NET	Caltech 10Meg EtherNet	[107,AD22]
R	192.012.019.rrr	CIT-NET	Caltech Campus Net	[107,AD22]
R	192.012.020.rrr	CIT-SUN-NET	Caltech Sun Net	[107,AD22]
R	192.012.021.rrr	CIT-PHYSCOMP	Caltech Phys Comp Net	[107,AD22]
R	192.012.022.rrr	UTCSRES	UTCS Net Research	[108,JSQ1]
R	192.012.023.rrr	UTCSTTY	UTCS TTY Kludgenet	[108,JSQ1]
R	192.012.024.rrr	MICANET	MITRE (Experimental)	[JN2]
R	192.012.025.rrr	CSS-GRAMINAE	CSS Workstation Net	[53,RR2]
R	192.012.026.rrr	BBN-NETR	Net-R Testbed at BBN	[91,CP10]
R	192.012.027.rrr	UR-LASER	UR Laser Energetics	[108,WXL]
	192.012.028.rrr-19	92.012.255.rrr	Unassigned	[JBP]
D	192.013.000.rrr-19	92.014.255.rrr	DODIIS Subnetworks	[AY5]
	192.015.000.rrr-22	23.255.254.rrr	Unassigned	[JBP]
	223.255.255.rrr		Reserved	[JBP]

Other Reserved Internet Addresses

*	Internet Address	Name	Network	References
-				
	224.000.000.000-25	55.255.255.255	Reserved	[JBP]

Network Totals

Assigned for t	he ARPA	-Internet	and the	DDN-Internet
Class	А	В	С	Total
Research	6	53	854	913
Defense	5	12	523	540
Government	0	2	2	4
Commercial	2	1	3	6
Total	13	68	1382	1463
Allocated for	Interne	t and Inde	ependent	Uses
Class	А	В	С	Total
Research	6	53	1139	1198
Defense	5	12	523	540
Government	0	2	2	4
Commercial	2	2	1545	1549
Total	13	69	3209	3291
Maximum Allowe	d			
Class	А	В	С	Total
Research	8	1024	65536	66568
Defense	24	3072	458752	461848
Government	24	3072	458752	461848
Commercial	74	9214	1114137	1123394
Total	126	16382	2097150	2113658

ASSIGNED VERSION NUMBERS

In the Internet Protocol (IP) [33,77] there is a field to identify the version of the internetwork general protocol. This field is 4 bits in size.

Assigned Internet Version Numbers

Decimal	Keyword	Version	References
0		Reserved	[JBP]
1-3		Unassigned	[JBP]
4	IP	Internet Protocol	[31,71,JBP]
5	ST	ST Datagram Mode	[34,JWF]
6-14		Unassigned	[JBP]
15		Reserved	[JBP]

ASSIGNED PROTOCOL NUMBERS

In the Internet Protocol (IP) [33,77] there is a field, called Protocol, to identify the the next level protocol. This is an 8 bit field.

Assigned Internet Protocol Numbers

Decimal	Keyword	Protocol	References
0		Reserved	[JBP]
1	ICMP	Internet Control Message	[69,JBP]
2		Unassigned	[JBP]
3	GGP	Gateway-to-Gateway	[45,MB]
4		Unassigned	[JBP]
5	ST	Stream	[37,JWF]
6	TCP	Transmission Control	[33,78,JBP]
7	UCL	UCL	[PK]
8	EGP	Exterior Gateway Protocol	[93,DLM1]
9	IGP	any private interior gateway	[JBP]
10	BBN-RCC-MON	BBN RCC Monitoring	[SGC]
11	NVP-II	Network Voice Protocol	[16,SC3]
12	PUP	PUP	[11,HGM]
13	ARGUS	ARGUS	[RWS4]
14	EMCON	EMCON	[BN7]
15	XNET	Cross Net Debugger	[43,JFH2]
16	CHAOS	Chaos	[NC3]
17	UDP	User Datagram	[33,76,JBP]
18	MUX	Multiplexing	[17,JBP]
19	DCN-MEAS	DCN Measurement Subsystems	[DLM1]
20	HMP	Host Monitoring	[4,RH6]
21	PRM	Packet Radio Measurement	[ZSU]
22	XNS-IDP	XEROX NS IDP	[109,LLG]
23	TRUNK-1	Trunk-1	[BML]
24	TRUNK-2	Trunk-2	[BML]
25	LEAF-1	Leaf-1	[BML]
26	LEAF-2	Leaf-2	[BML]
27	RDP	Reliable Data Protocol	[106,RH6]
28-60		Unassigned	[JBP]
61		any host internal protocol	[JBP]
62	CFTP	CFTP	[38,HCF2]
63		any local network	[JBP]
64	SAT-EXPAK	SATNET and Backroom EXPAK	[DM11]
65	MIT-SUBNET	MIT Subnet Support	[NC3]
66	RVD	MIT Remote Virtual Disk Protocol	[MBG]
67	IPPC	Internet Pluribus Packet Core	[DM11]
68		any distributed file system	[JBP]
69	SAT-MON	SATNET Monitoring	[DM11]

70		Unassigned	[JBP]
71	IPCV	Internet Packet Core Utility	[DM11]
72-75		Unassigned	[JBP]
76	BR-SAT-MON	Backroom SATNET Monitoring	[DM11]
77		Unassigned	[JBP]
78	WB-MON	WIDEBAND Monitoring	[DM11]
79	WB-EXPAK	WIDEBAND EXPAK	[DM11]
80-254		Unassigned	[JBP]
255		Reserved	[JBP]

ASSIGNED PORT NUMBERS

Ports are used in the TCP [33,78] to name the ends of logical connections which carry long term conversations. For the purpose of providing services to unknown callers, a service contact port is defined. This list specifies the port used by the server process as its contact port. The contact port is sometimes called the "well-known port".

To the extent possible, these same port assignments are used with the UDP [33,76].

The assigned ports use a small portion of the possible port numbers. The assigned ports have all except the low order eight bits cleared to zero. The low order eight bits are specified here.

Port Assignments:

Decimal	Keyword	Description	References
0		Reserved	[JBP]
1 – 4		Unassigned	[JBP]
5	RJE	Remote Job Entry	[13,34,JBP]
7	ECHO	Echo	[67,JBP]
9	DISCARD	Discard	[66,JBP]
11	USERS	Active Users	[62,JBP]
13	DAYTIME	Daytime	[65,JBP]
15	NETSTAT	Who is up or NETSTAT	[JBP]
17	OUOTE	Quote of the Day	[72,JBP]
19	CHARGEN	Character Generator	[64,JBP]
20	FTP	File Transfer [Default Data]	[33,68,JBP]
21	FTP	File Transfer [Control]	[33,68,JBP]
23	TELNET	Telnet	[84,JBP]
25	SMTP	Simple Mail Transfer	[33,74,JBP]
27	NSW-FE	NSW User System FE	[18,RHT]
29	MSG-ICP	MSG ICP	[60,RHT]
31	MSG-AUTH	MSG Authentication	[60,RHT]
33		Unassigned	[JBP]
35		any printer server	[JBP]
37	TIME	Time	[80,JBP]
39	RLP	Resource Location Protocol	[1,MA]
41	GRAPHICS	Graphics	[34,98,JBP]
42	NAMESERVER	Host Name Server	[33,71,JBP]
43	NICNAME	Who Is	[33,42,JAKE]
44	MPM-FLAGS	MPM FLAGS Protocol	[JBP]
45	MPM	Message Processing Module [recv]	[70,JBP]
46	MPM	MPM [default send]	[76,JBP]
47	NI-FTP	NI FTP	[104,SK]

49	LOGIN	Login Host Protocol	[PHD1]
51	LA-MAINT	IMP Logical Address Maintenance	[57,AGM]
53	DOMAIN	Domain Name Server	[PM1]
55	ISI-GL	ISI Graphics Language	[10,RB6]
57		any private terminal access	[JBP]
59		any private file service	[JBP]
61	NI-MAIL	NI MAIL	[8,SK]
63	VIA-FTP	VIA Systems - FTP	[DXD]
65		Unassigned	[JBP]
67		Unassigned	[JBP]
69	TFTP	Trivial File Transfer	[33,87,KRS]
71	NETRJS	Remote Job Service	[12,34,RTB]
72	NETRJS	Remote Job Service	[12,34,RTB]
73	NETRJS	Remote Job Service	[12,34,RTB]
74	NETRJS	Remote Job Service	[12,34,RTB]
75		any private dial out service	[JBP]
77		any private RJE service	[JBP]
79	FINGER	Finger	[34,40,KLH]
81		HOSTS2 Name Server	[EAK1]
83	HOSTS2-NS	MIT ML Device	[DPR]
85	MIT-ML-DEV	MIT ML Device	[DPR]
87	MIT-ML-DEV	Any Private Terminal Link	[JBP]
89	SU-MIT-TG	SU/MIT Telnet Gateway	[MRC]
91	MIT-DOV	MIT Dover Spooler	[EBM]
93	DCP	Device Control Protocol	[DT15]
95	SUPDUP	SUPDUP	[21,MRC]
97	SWIFT-RVF	Swift Remote Vitural File Protocol	[MXR]
99	METAGRAM	Metagram Relay	[GEOF]
101	HOSTNAME	NIC Host Name Server	[33,41,JAKE]
103		Unassigned	[JBP]
105	CSNET-NS	Mailbox Name Nameserver	[96,MHS1]
107	RTELNET	Remote Telnet Service	[73,JBP]
109	POP	Post Office Protocol	[110,JKR1]
111	SUNRPC	SUN Remote Procedure Call	[DXG]
113	AUTH	Authentication Service	[99,MCSJ]
115	SFTP	Simple File Transfer Protocol	[54,MXL]
116		Unassigned	[JBP]
117	UUCP-PATH	UUCP Path Service	[32,MAE]
118-129		Unassigned	[JBP]
131		Unassigned	[JBP]
132-223		Reserved	[JBP]
224-241		Unassigned	[JBP]
243	SUR-MEAS	Survey Measurement	[9,AV]
245	LINK	LINK	[14,RDB2]
247-255		Unassigned	[JBP]
		~	

ASSIGNED AUTONOMOUS SYSTEM NUMBERS

The Exterior Gateway Protocol (EGP) [93,90] specifies that groups of gateways may form autonomous systems. The EGP provides a 16-bit field for identifying such systems. The values of this field are registered here.

Autonomous System Numbers:

Decimal	Name	References
0	Reserved	[JBP]
1	The BBN Gateways	[MB]
2	DCN-AS	[DLM1]
3	The MIT Gateways	[LM8]
4	ISI-AS	[JKR1]
5	Symbolics	[CH2]
6	HIS-Multics	[BIM,RK1]
7	UK-MOD	[RNM1]
8	RICE-AS	[PGM]
9	CMU-ROUTER	[MA]
10	CSNET-PDN-AS	[RDR4]
11	HARVARD	[SXB1]
12	NYU-DOMAIN	[EF5]
13	BRL-AS	[RBN1]
14	COLUMBIA-GW	[BC14]
15	NET DYNAMICS EXP	[ZSU]
16	LBL	[WG]
17	PURDUE-CS	[KCS1]
18	UTEXAS	[JSQ1]
19	CSS-DOMAIN	[RR2]
20	UR	[LB16]
21	RAND	[JDG]
22	NOSC	[RLB3]
23	RIACS-AS	[DG28]
24	AMES-NAS-GW	[MF31]
25	UCB	[MK17]
26	CORNELL	[BN9]
27	UMDNET	[JWO1]
28	DFVLR-SYS	[HDC1]
29	YALE-AS	[JG46]
30	SRI-AICnet	[PM4]
31	CIT-CS	[AD22]
32	STANFORD	[PA5]
33	DEC-WRL-AS	[RKJ2]
34	UDEL-EECIS	[MMM]
35	MICATON	[JN2]
36-65534	Unassigned	[JBP]

Assigned Nu	umbers	
Autonomous	System	Numbers

RFC 923

65535 Reserved

[JBP]

ASSIGNED ARPANET LOGICAL ADDRESSES

The ARPANET facility for "logical addressing" is described in RFC 878 [56]. A portion of the possible logical addresses are reserved for standard uses.

There are 49,152 possible logical host addresses. Of these, 256 are reserved for assignment to well-known functions. Assignments for well-known functions are made by Joyce Reynolds. Assignments for other logical host addresses are made by the NIC.

Logical Address Assignments:

Decimal	Description	References
0	Reserved	[JBP]
1	The BBN Gateways	[MB]
2-255	Unassigned	[JBP]
256	Reserved	[JBP]

ASSIGNED ARPANET LINK NUMBERS

The word "link" here refers to a field in the original ARPANET Host/IMP interface leader. The link was originally defined as an 8-bit field. Later specifications defined this field as the "message-id" with a length of 12 bits. The name link now refers to the high order 8 bits of this 12-bit message-id field. The Host/IMP interface is defined in BBN Report 1822 [7].

The low-order 4 bits of the message-id field are called the sub-link. Unless explicitly specified otherwise for a particular protocol, there is no sender to receiver significance to the sub-link. The sender may use the sub-link in any way he chooses (it is returned in the RFNM by the destination IMP), the receiver should ignore the sub-link.

Link Assignments:

Decimal	Description	References
0	Reserved	[JBP]
1-149	Unassigned	[JBP]
150	Xerox NS IDP	[109,LLG]
151	Unassigned	[JBP]
152	PARC Universal Protocol	[11,HGM]
153	TIP Status Reporting	[JGH]
154	TIP Accounting	[JGH]
155	Internet Protocol [regular]	[33,77,JBP]
156-158	Internet Protocol [experimental]	[33,77,JBP]
159	Figleaf Link	[JBW1]
160-195	Unassigned	[JBP]
196-247	Experimental Protocols	[JBP]
248-255	Network Maintenance	[JGH]

IEEE 802 SAP NUMBERS OF INTEREST

Many of the networks of all classes are IEEE 802 Networks. These systems use a Service Access Point field in much the same way the ARPANET uses the "link" field. For further information and SAP number assignments, please contact: Mr. Maris Graube, Chairman, IEEE 802, c/o Tektronix, P.O. Box 500, D/S 50-473, Beaverton, Oregon, 97077.

Assignments:

Service Access Point	Description	References
decimal binary		
96 01100000	DOD IP	[33,76,JBP]

ETHERNET NUMBERS OF INTEREST

Many of the networks of all classes are Ethernets (10Mb) or Experimental Ethernets (3Mb). These systems use a message "type" field in much the same way the ARPANET uses the "link" field.

If you need an Ethernet number, contact the XEROX Corporation, Office Products Division, Network Systems Administration Office, 333 Coyote Hill Road, Palo Alto, California, 94304.

Assignments:

Ethernet		Exp.	Exp. Ethernet		Description	References
decimal	Hex	deci	 mal	octal		
						5 d a 1
512	0200	5	12	1000	XEROX PUP	[1,HGM]
1536	0600	15	36	3000	XEROX NS IDP	[109,LLG]
2048	0800	5	13	1001	DOD IP	[33,77,JBP]
2049	0801	_		-	X.75 Internet	[LLG]
2050	0802	_		-	NBS Internet	[LLG]
2051	0803	-		-	ECMA Internet	[LLG]
2052	0804	_		-	Chaosnet	[LLG]
2053	0805	_		-	X.25 Level 3	[LLG]
2054	0806	-		-	ARP	[61,DCP1]
2076	081C	_		-	Symbolics Private	[DCP1]
32771	8003	_		-	Cronus VLN	[100,DT15]
32772	8004	_		-	Cronus Direct	[100,DT15]
32774	8006	_		-	Nestar	[LLG]
32784	8010	_		-	Excelan	[]
32821	8035	_		-	Reverse ARP	[36,JCM]
36864	9000	-		-	Loopback	[LLG]

The standard for transmission of IP datagrams over Ethernets and Experimental Ethernets is specified in RFC 894 [48] and RFC 895 [63] respectively.

ASSIGNED ADDRESS RESOLUTION PROTOCOL PARAMETERS

The Address Resolution Protocol (ARP) specified in RFC 826 [61] has several parameters. The assigned values for these parameters are listed here.

Assignments:

Operation Code (op)

- 1 REQUEST
- 2 REPLY

Hardware Type (hrd)

Type	Description	References
1	Ethernet (10Mb)	[JBP]
2	Experimental Ethernet (3Mb)	[JBP]
3	Amateur Radio AX.25	[PXK]

Protocol Type (pro)

Use the same codes as listed in the section called "Ethernet Numbers of Interest".

ASSIGNED PUBLIC DATA NETWORK NUMBERS

One of the Internet Class A Networks is the international system of Public Data Networks. This section lists the mapping between the Internet Addresses and the Public Data Network Addresses (X.121).

Assignments:

Internet	Public Data No	et	Description	References
014.000.000.000			Reserved	[JBP]
014.000.000.001	3110-317-00035	00	PURDUE-TN	[CAK]
014.000.000.002	3110-608-00027	00	UWISC-TN	[CAK]
014.000.000.003	3110-302-00024	00	UDEL-TN	[CAK]
014.000.000.004	2342-192-00149	23	UCL-VTEST	[PK]
014.000.000.005	2342-192-00300	23	UCL-TG	[PK]
014.000.000.006	2342-192-00300	25	UK-SATNET	[PK]
014.000.000.007	3110-608-00024	00	UWISC-IBM	[MHS1]
014.000.000.008	3110-213-00045	00	RAND-TN	[MO2]
014.000.000.009	2342-192-00300	23	UCL-CS	[PK]
014.000.000.010	3110-617-00025	00	BBN-VAN-GW	[JD21]
014.000.000.011	2405-015-50300	00	CHALMERS	[UXB]
014.000.000.012	3110-713-00165	00	RICE	[PAM6]
014.000.000.013	3110-415-00261	00	DECWRL	[PAM6]
014.000.000.014	3110-408-00051	00	IBM-SJ	[SA1]
014.000.000.015	2041-117-01000	00	SHAPE	[PG3]
014.000.000.016	2628-153-90075	00	DFVLR	[HDC1]
014.000.000.017	3110-213-00032	00	ISI-VAN-GW	[JD21]
014.000.000.018-0)14.255.255.254		Unassigned	[JBP]
014.255.255.255			Reserved	[JBP]

The standard for transmission of IP datagrams over the Public Data Network is specified in RFC 877 [52].

ASSIGNED TELNET OPTIONS

The Telnet Protocol has a number of options that may be negotiated. These options are listed here. "Official ARPA-Internet Protocols" [89] provides more detailed information.

Options	Name	References
0	Binary Transmission	[82,JBP]
1	Echo	[83,JBP]
2	Reconnection	[5,JBP]
3	Suppress Go Ahead	[86,JBP]
4	Approx Message Size Negotiation	[34,JBP]
5	Status	[85,JBP]
6	Timing Mark	[87,JBP]
7	Remote Controlled Trans and Echo	[79,JBP]
8	Output Line Width	[3,JBP]
9	Output Page Size	[4,JBP]
10	Output Carriage-Return Disposition	[22,JBP]
11	Output Horizontal Tab Stops	[26,JBP]
12	Output Horizontal Tab Disposition	[25,JBP]
13	Output Formfeed Disposition	[23,JBP]
14	Output Vertical Tabstops	[28,JBP]
15	Output Vertical Tab Disposition	[27,JBP]
16	Output Linefeed Disposition	[24,JBP]
17	Extended ASCII	[105,JBP]
18	Logout	[19,MRC]
19	Byte Macro	[29,JBP]
20	Data Entry Terminal	[31,JBP]
22	SUPDUP	[21,20,MRC]
22	SUPDUP Output	[39,MRC]
23	Send Location	[51,EAK1]
24	Terminal Type	[97,MHS1]
25	End of Record	[75,JBP]
255	Extended-Options-List	[81,JBP]

OFFICIAL MACHINE NAMES

These are the Official Machine Names as they appear in the NIC Host Table. Their use is described in RFC 810 [35].

ALTO AMDAHL-V7 BURROUGHS-B/29 C/30 C/70 CADLINC CADR CDC-173 DEC-10 DEC-1050 DEC-1080 DEC-1090 DEC-1090B DEC-1090T DEC-2020T DEC-2040 DEC-2040T DEC-2050T DEC-2060 DEC-2060T DEC-FALCON DPS8/70M FOONLY-F2 FOONLY-F3 FOONLY-F4 H-316 H-60/68 H-68 H-68/80 H-89 HONEYWELL-DPS-8/70M IBM-158 IBM-360/67 IBM-370/3033 IBM-4341 IBM-PC IMSAI K102 LSI-11 LSI-11/23 M6800 MAXC MLC

NAS-AS/5 ONYX-09001 ONYX-28000 PDP-11 PDP-11/34 PDP-11/40 PDP-11/44 PDP-11/45 PDP-11/50 PDP-11/70 PERQ PLURIBUS ROLM-1666 SMI SUN-150 SYMBOLICS-3600 UNIVAC-1100 VAX-11/730 VAX-11/750 VAX-11/780 VAX-11/785 XEROX-8010

OFFICIAL SYSTEM NAMES

These are the Official System Names as they appear in the NIC Host Table. Their use is described in RFC 810 [35].

ASP

AUGUST

BKY

CCP

DOS/360

ELF

EPOS

EXEC-8

GCOS

GPOS

ITS

INTERCOM

INTERLISP

KRONOS

MCP

MOS

MPX-RT

MULTICS

MVT

NOS

NOS/BE

OS/MVS

OS/MVT

RIG

RSX-11M

RT11

SCOPE

SIGNAL

SINTRAN

TENEX

TOPS-10

TOPS-20

TSS

UNIX

VM/370

VM/CMS

VMS

WAITS

XDE

OFFICIAL PROTOCOL AND SERVICE NAMES

These are the Official Protocol Names. Their use is described in greater detail in RFC 810 [35].

ARGUS - ARGUS Protocol

AUTH - Authentication Service BBN-RCC-MON - BBN RCC Monitoring

BR-SAT-MON - Backroom SATNET Monitoring

CFTP - CFTP

- CHAOS Protocol CHAOS

- CHAOS Protocol
- Character Generator Protocol
- DCNET Time Server Protocol
- CSNET Mailbox Nameserver Protocol
- Daytime Protocol
- DCN Measurement Subsystems Protocol
- Device Control Protocol
- Discard Protocol
- Domain Name Server
- Echo Protocol
- Exterior Gateway Protocol
- Emission Control Protocol CHARGEN CLOCK

CSNET-NS

DAYTIME

DCN-MEAS

DCP

DISCARD DOMAIN ECHO

EGP EMCON - Emission Control Protocol

- Finger Protocol FINGER

FTP - File Transfer Protocol GGP - Gateway Gateway Protocol
GRAPHICS - Graphics Protocol
HMD

HMP - Host Monitoring Protocol
HOST2-NS - Host2 Name Server
HOSTNAME - Hostname Protocol
ICMP

- Internet Control Message Protocol - Interior Gateway Protocol ICMP

IGP

ΙP

IPCU TPPC ISI-GL LA-MAINT

- Interior Gateway Protocol
- Internet Protocol
- Internet Packet Core Utility
- Internet Pluribus Packet Core
- ISI Graphics Language Protocol
- IMP Logical Address Maintenance
- Leaf-1 Protocol
- Leaf-2 Protocol
- Link Protocol
- Login Host Protocol
- Metagram Relay
- MIT ML Device
- MIT Subnet Support
- MIT Dover Spooler
- Internet Message Protocol
- MP Flags Protocol LEAF-1 LEAF-2 LINK LOGIN METAGRAM MIT-ML-DEV MIT-SUBNET MIT-DOV

MPM

- MP Flags Protocol MPM-FLAGS

MSG-AUTH - MSG Authentication Protocol

MSG-ICP - MSG ICP Protocol

Multiplexing ProtocolHost Name Server MUX NAMESERVER

- Network Standard Text Editor NETED

NETRJS

NI-FTP

NI-MAIL NICNAME

- Remote Job Service
- NI File Transfer Protocol
- NI Mail Protocol
- Who Is Protocol
- NSW User System Front End
- Network Voice Protocol NSW-FE NVP-II - Post Office Protocol POP PRM - Packet Radio Measurement

PUP - PUP Protocol

QUOTE - Quote of the Day Protocol - Reliable Data Protocol RDP

- Remote Job Entry RJE

- Remote Job Entry
RLP - Resource Location Protocol
RTELNET - Remote Telnet Service
RVD - Remote Virtual Disk Protocol
SAT-EXPAK - Satnet and Backroom EXPAK
SAT-MON - SATNET Monitoring
SFTP - Simple File Transfer Protocol
SMTP - Simple Mail Transfer Protocol
ST - Stream Protocol

- Stream Protocol

ST - Stream Protocol

SU-MIT-TG - SU/MIT Telnet Gateway Protocol

SUNRPC - SUN Remote Procedure Call

SUPDUP - SUPDUP Protocol

SUR-MEAS - Survey Measurement

SWIFT-RVF - Remote Virtual File Protocol

TCP - Transmission Control Protocol

TCP

TELNET

TFTP

TIME TRUNK-1 TRUNK-2

UCL

UDP USERS UUCP-PATH

VIA-FTP

- Remote Virtual File Protocol
- Transmission Control Protocol
- Telnet Protocol
- Trivial File Transfer Protocol
- Time Server Protocol
- Trunk-1 Protocol
- Trunk-2 Protocol
- University College London Protocol
- User Datagram Protocol
- Active Users Protocol
- UUCP Path Service
- VIA Systems-File Transfer Protocol
- Wideband EXPAK
- Wideband Monitoring
- Cross Net Debugger
- Xerox NS IDP WB-EXPAK WB-MON XNET

XNS-IDP

OFFICIAL TERMINAL TYPE NAMES

These are the Official Terminal Type Names. Their use is described in RFC 884 [97].

ADDS-CONSUL-980

ADDS-REGENT-100

ADDS-REGENT-20

ADDS-REGENT-200

ADDS-REGENT-25

ADDS-REGENT-40

ADDS-REGENT-60

AMPEX-DIALOGUE-80

ANDERSON-JACOBSON-630

ANDERSON-JACOBSON-832

ANDERSON-JACOBSON-841

ANN-ARBOR-AMBASSADOR

ARDS

BITGRAPH

BUSSIPLEXER

CALCOMP-565

CDC-456

CDI-1030

CDI-1203

COMPUCOLOR-II

CONCEPT-100

DATA-100

DATA-GENERAL-6053

DATAGRAPHIX-132A

DATAMEDIA-1520

DATAMEDIA-1521

DATAMEDIA-2500

DATAMEDIA-3025

DATAMEDIA-3025A

DATAMEDIA-3045

DATAMEDIA-3045A

DATAMEDIA-DT80/1

DATAPOINT-2200

DATAPOINT-3000

DATAPOINT-3300

DATAPOINT-3360

DEC-DECWRITER-I

DEC-DECWRITER-II

DEC-GT40

DEC-GT40A

DEC-GT42

DEC-LA120

DEC-LA30

DEC-LA36 DEC-LA38 DEC-VT05 DEC-VT100 DEC-VT132 DEC-VT50 DEC-VT50H DEC-VT52 DELTA-DATA-5000 DELTA-TELTERM-2 DIABLO-1620 DIABLO-1640 DIGILOG-333 DTC-300S EDT-1200 EXECUPORT-4000 EXECUPORT-4080 GENERAL-TERMINAL-100A HAZELTINE-1500 HAZELTINE-1510 HAZELTINE-1520 HAZELTINE-2000 HP-2621 HP-2621A HP-2621P HP-2626 HP-2626A HP-2626P HP-2640 HP-2640A HP-2640B HP-2645 HP-2645A HP-2648 HP-2648A HP-2649 HP-2649A IBM-3101 IBM-3101-10 IBM-3275-2 IBM-3276-2 IBM-3276-3 IBM-3276-4 IBM-3277-2 IBM-3278-2 IBM-3278-3

IBM-3278-4

```
IBM-3278-5
IBM-3279-2
IBM-3279-3
IMLAC
INFOTON-100
INFOTONKAS
ISC-8001
LSI-ADM-3
LSI-ADM-31
LSI-ADM-3A
LSI-ADM-42
MEMOREX-1240
MICROBEE
MICROTERM-ACT-IV
MICROTERM-ACT-V
MICROTERM-MIME-1
MICROTERM-MIME-2
NETRONICS
NETWORK-VIRTUAL-TERMINAL
OMRON-8025AG
PERKIN-ELMER-1100
PERKIN-ELMER-1200
PLASMA-PANEL
QUME-SPRINT-5
SOROC
SOROC-120
SOUTHWEST-TECHNICAL-PRODUCTS-CT82
SUPERBEE
SUPERBEE-III-M
TEC
TEKTRONIX-4010
TEKTRONIX-4012
TEKTRONIX-4013
TEKTRONIX-4014
TEKTRONIX-4023
TEKTRONIX-4024
TEKTRONIX-4025
TEKTRONIX-4027
TELERAY-1061
TELERAY-3700
TELERAY-3800
TELETEC-DATASCREEN
TELETERM-1030
TELETYPE-33
TELETYPE-35
TELETYPE-37
TELETYPE-38
TELETYPE-43
```

TELEVIDEO-912 TELEVIDEO-920 TELEVIDEO-920B TELEVIDEO-920C TELEVIDEO-950 TERMINET-1200 TERMINET-300 TI-700 TI-733 TI-735 TI-743 TI-745 TYCOM UNIVAC-DCT-500 VIDEO-SYSTEMS-1200 VIDEO-SYSTEMS-5000 VISUAL-200 XEROX-1720 ZENITH-H19 ZENTEC-30

DOCUMENTS

- [1] Accetta, Mike, "Resource Location Protocol", RFC 887, Carnegie-Mellon University, December 1983.
- [2] Aerospace, Internal Report, ATM-83(3920-01)-3, 1982.
- [3] ARPANET Protocol Handbook, "Telnet Output Line Width Option", NIC 20196, November 1973.
- [4] ARPANET Protocol Handbook, "Telnet Output Page Size Option", NIC 20197, November 1973.
- [5] ARPANET Protocol Handbook, "Telnet Reconnection Option", NIC 15391, August 1973.
- [6] BBN Proposal No. P83-COM-40, "Packet Switched Overlay to Tactical Multichannel/Satellite Systems".
- [7] BBN, "Specifications for the Interconnection of a Host and an IMP", Report 1822, Bolt Beranek and Newman, Cambridge, Massachusetts, revised, December 1981.
- [8] Bennett, C., "A Simple NIFTP-Based Mail System", IEN 169, University College, London, January 1981.
- [9] Bhushan, A., "A Report on the Survey Project", RFC 530, NIC 17375, June 1973.
- [10] Bisbey, R., D. Hollingworth, and B. Britt, "Graphics Language (version 2.1)", ISI/TM-80-18, USC/Information Sciences Institute, July 1980.
- [11] Boggs, D., J. Shoch, E. Taft, and R. Metcalfe, "PUP: An Internetwork Architecture", XEROX Palo Alto Research Center, CSL-79-10, July 1979; also in IEEE Transactions on Communication, Volume COM-28, Number 4, April 1980.
- [12] Braden, R., "NETRJS Protocol", RFC 740, NIC 42423, November 1977.
- [13] Bressler, B., "Remote Job Entry Protocol", RFC 407, NIC 12112, October 72.
- [14] Bressler, R., "Inter-Entity Communication -- An Experiment", RFC 441, NIC 13773, January 1973.

- [15] Clark, D., "Revision of DSP Specification", Local Network Note 9, Laboratory for Computer Science, MIT, June 1977.
- [16] Cohen, D., "Specifications for the Network Voice Protocol", RFC 741, ISI/RR 7539, USC/Information Sciences Institute, March 1976.
- [17] Cohen, D. and J. Postel, "Multiplexing Protocol", IEN 90, USC/Information Sciences Institute, May 1979.
- [18] COMPASS, "Semi-Annual Technical Report", CADD-7603-0411, Massachusetts Computer Associates, 4 March 1976. Also as, "National Software Works, Status Report No. 1," RADC-TR-76-276, Volume 1, September 1976. And COMPASS. "Second Semi-Annual Report," CADD-7608-1611, Massachusetts Computer Associates, August 1976.
- [19] Crispin, Mark, "Telnet Logout Option", Stanford University-AI, RFC 727, April 1977.
- [20] Crispin, Mark, "Telnet SUPDUP Option", Stanford University-AI, RFC 736, October 1977.
- [22] Crocker, D., "Telnet Output Carriage-Return Disposition Option", RFC 652, October 1974.
- [24] Crocker, D., "Telnet Output Linefeed Disposition", RFC 658, October 1974.

- [27] Crocker, D., "Telnet Output Vertical Tab Disposition Option", RFC 657, October 1974.

- [29] Crocker, D.H. and R.H. Gumpertz, "Revised Telnet Byte Marco Option", RFC 735, November 1977.
- [30] Croft, W. J., "Unix Networking at Purdue", USENIX Conference, 1980.
- [31] Day, John, "Telnet Data Entry Terminal Option", RFC 732, September 1977.
- [32] Elvy, Marc A., "UUCP Path Service", RFC 915, Harvard University, October 1984.
- [33] Feinler, E., "Internet Protocol Transition Workbook", Network Information Center, SRI International, March 1982.
- [34] Feinler, E. and J. Postel, eds., "ARPANET Protocol Handbook", NIC 7104, for the Defense Communications Agency by SRI International, Menlo Park, California, Revised January 1978.
- [35] Feinler, E., K. Harrenstien, and Z. Su, "DoD Internet Host Table Specification", RFC 810, SRI International, March 1982.
- [36] Finlayson, R., T. Mann, J. Mogul, and M. Theimer, "A Reverse Address Resolution Protocol", RFC 903, Stanford University, June 1984.
- [37] Forgie, J., "ST A Proposed Internet Stream Protocol", IEN 119, M.I.T. Lincoln Laboratory, September 1979.
- [38] Forsdick, H., "CFTP", Network Message, Bolt Beranek and Newman, January 1982.
- [39] Greenberg, B., "Telnet SUPDUP-OUTPUT Option", RFC 749, MIT-Multics, September 1978.
- [40] Harrenstien, K., "Name/Finger", RFC 742, NIC 42758, December 1977.
- [41] Harrenstien, K., V. White, and E. Feinler, "Hostnames Server", RFC 811, SRI International, March 1982.
- [42] Harrenstien, K., and V. White, "Nicname/Whois", RFC 812, SRI International, March 1982.
- [43] Haverty, J., "XNET Formats for Internet Protocol Version 4", IEN 158, October 1980.

- [44] Hinden, Robert M., "A Host Monitoring Protocol", RFC 869, Bolt Beranek and Newman, December 1983.
- [45] Hinden, R., and A. Sheltzer, "The DARPA Internet Gateway", RFC 823, September 1982.
- [46] Honeywell CISL, Internal Document, "AFSDSC Hyperchannel RPQ Project Plan".
- [47] Honeywell CISL, Internal Document, "Multics MR11 PFS".
- [48] Hornig, C., "A Standard for the Transmission of IP Datagrams over Ethernet Networks, RFC 894, Symbolics, April 1984.
- [49] Hwang, Kai, W. J. Croft and G. H. Goble, "A Unix-Based Local Computer Network with Load Balancing", IEEE Computer, April 1982.
- [50] IBM Corporation, "Technical Reference Manual for the IBM PC Network", 6322505, IBM, Boca Raton, Florida, 1984.
- [51] Killian, E., "Telnet Send-Location Option", RFC 779, April 1981.
- [52] Korb, John T., "A Standard for the Transmission of IP Datagrams Over Public Data Networks", RFC 877, Purdue University, September 1983.
- [53] Leffler, Samuel J., et al., "4.2bsd Network Implementation Notes", University of California, Berkeley, July 1983.
- [55] Macgregor, W., and D. Tappan, "The CRONUS Virtual Local Network", RFC 824, Bolt Beranek and Newman, August 1982.
- [56] Malis, Andrew G. "The ARPANET 1822L Host Access Protocol", RFC 878, BBN-CC, Cambridge, December 1983.
- [57] Malis, A., "Logical Addressing Implementation Specification", BBN Report 5256, pp 31-36, May 1983.
- [58] Metcalfe, R.M. and D.R. Boggs, "Ethernet: Distributed Packet Switching for Local Computer Networks", Communications of the ACM, 19 (7), pp 395-402, July 1976.

- [59] Mills, D., "DCN Local Network Protocols", RFC 891, Linkabit, December 1983.
- [60] NSW Protocol Committee, "MSG: The Interprocess Communication Facility for the National Software Works", CADD-7612-2411, Massachusetts Computer Associates, BBN 3237, Bolt Beranek and Newman, Revised December 1976.
- [61] Plummer, D., "An Ethernet Address Resolution Protocol or Converting Network Protocol Addresses to 48-bit Ethernet Addresses for Transmission on Ethernet Hardware", RFC 826, MIT-LCS, November 1982.
- [62] Postel, J., "Active Users", RFC 866, USC/Information Sciences Institute, May 1983.
- [63] Postel, J., "A Standard for the Transmission of IP Datagrams over Experimental Ethernet Networks, RFC 895, USC/Information Sciences Institute, April 1984.
- [65] Postel, J., "Daytime Protocol", RFC 867, USC/Information Sciences Institute, May 1983.
- [67] Postel, J., "Echo Protocol", RFC 862, USC/Information Sciences Institute, May 1983.
- [68] Postel, J., "File Transfer Protocol", RFC 765, IEN 149, USC/Information Sciences Institute, June 1980.
- [69] Postel, J., "Internet Control Message Protocol DARPA Internet Program Protocol Specification", RFC 792, USC/Information Sciences Institute, September 1981.
- [70] Postel, J., "Internet Message Protocol", RFC 759, IEN 113, USC/Information Sciences Institute, August 1980.
- [71] Postel, J., "Name Server", IEN 116, USC/Information Sciences Institute, August 1979.
- [72] Postel, J., "Quote of the Day Protocol", RFC 865, USC/Information Sciences Institute, May 1983.

- [73] Postel, J., "Remote Telnet Service", RFC 818, USC/Information Sciences Institute, November 1982.
- [74] Postel, J., "Simple Mail Transfer Protocol", RFC 821, USC/Information Sciences Institute, August 1982.
- [75] Postel, J., "Telnet End of Record Option", RFC 885, USC/Information Sciences Institute, December 1983.
- [76] Postel, J., "User Datagram Protocol", RFC 768 USC/Information Sciences Institute, August 1980.
- [77] Postel, J., ed., "Internet Protocol DARPA Internet Program Protocol Specification", RFC 791, USC/Information Sciences Institute, September 1981.
- [78] Postel, J., ed., "Transmission Control Protocol DARPA Internet Program Protocol Specification", RFC 793, USC/Information Sciences Institute, September 1981.
- [79] Postel, J. and D. Crocker, "Remote Controlled Transmission and Echoing Telnet Option", RFC 726, March 1977.
- [80] Postel, J., and K. Harrenstien, "Time Protocol", RFC 868, USC/Information Sciences Institute, May 1983.
- [81] Postel, J. and J. Reynolds, "Telnet Extended Options List Option", RFC 861, USC/Information Sciences Institute, May 1983.
- [82] Postel, J. and J. Reynolds, "Telnet Binary Transmission", RFC 856, USC/Information Sciences Institute, May 1983.
- [83] Postel, J. and J. Reynolds, "Telnet Echo Option", RFC 857, USC/Information Sciences Institute, May 1983.
- [84] Postel, J., and J. Reynolds, "Telnet Protocol Specification", RFC 854, USC/Information Sciences Institute, May 1983.
- [85] Postel, J. and J. Reynolds, "Telnet Status Option", RFC 859, USC/Information Sciences Institute, May 1983.
- [86] Postel, J. and J. Reynolds, "Telnet Suppress Go Ahead Option", RFC 858, USC/Information Sciences Institute, May 1983.
- [87] Postel, J. and J. Reynolds, "Telnet Timing Mark Option", RFC 860, USC/Information Sciences Institute, May 1983.

- [88] Reed, D., "Protocols for the LCS Network", Local Network Note 3, Laboratory for Computer Science, MIT, November 1976.
- [89] Reynolds, J. and J. Postel, "Official ARPA-Internet Protocols", RFC 924, USC/Information Sciences Institute, October 1984.
- [90] Rosen, E., "Exterior Gateway Protocol" RFC 827, Bolt Beranek and Newman, October 1982.
- [91] Saltzer, J.H., "Design of a Ten-megabit/sec Token Ring Network", MIT Laboratory for Computer Science Technical Report.
- [92] Scott, Walter S., "2.9bsd/TIS Network Implementation", Lawrence Livermore National Laboratory, September 1984.
- [93] Seamonson, L.J., and E.C. Rosen, "STUB" Exterior Gateway Protocol", RFC 888, BBN Communications Corporation, January 1984.
- [94] Skelton, A., S. Holmgren, and D. Wood, "The MITRE Cablenet Project", IEN 96, April 1979.
- [95] Sollins, K., "The TFTP Protocol (Revision 2)", RFC 783, MIT/LCS, June 1981.
- [96] Solomon, M., L. Landweber, and D. Neuhengen, "The CSNET Name Server", Computer Networks, v.6, n.3, pp. 161-172, July 1982.
- [97] Solomon, M., and E. Wimmers, "Telnet Terminal Type Option", RFC 884, University of Wisconsin, Madison, December 1983.
- [98] Sproull, R., and E. Thomas, "A Networks Graphics Protocol", NIC 24308, August 1974.
- [99] StJohns, Mike, "Authentication Service", RFC 912, TPSC, September 1984.
- [100] Tappan, D.C., "The CRONUS Virtual Local Network", RFC 824, Bolt Beranek and Newman, Inc., August 1982.
- [101] "The Ethernet, a Local Area Network: Data Link Layer and Physical Layer Specification", AA-K759B-TK, Digital Equipment Corporation, Maynard, MA.

- [102] "The Ethernet A Local Area Network", Version 1.0, Digital Equipment Corporation, Intel Corporation, Xerox Corporation, September 1980.
- [103] "The Ethernet, A Local Area Network: Data Link Layer and Physical Layer Specifications", Digital, Intel and Xerox, November 1982.
- [104] The High Level Protocol Group, "A Network Independent File Transfer Protocol", INWG Protocol Note 86, December 1977.
- [105] Tovar, "Telnet Extended ASCII Option", RFC 698, Stanford University-AI, July 1975.
- [106] Velten, David, Robert Hinden, and Jack Sax, "Reliable Data Protocol", RFC 908, BBN Communications Corporation, July 1984.
- [107] Whelan, D., "The Caltech Computer Science Department Network", 5052:DF:82, Caltech Computer Science Department, 1982.
- [108] XEROX, "The Ethernet, A Local Area Network: Data Link Layer and Physical Layer Specification", X3T51/80-50, Xerox Corporation, Stamford, CT., October 1980.
- [109] XEROX, "Internet Transport Protocols", XSIS 028112, Xerox Corporation, Stamford, Connecticut, December 1981.
- [110] Reynolds, J., "Post Office Protocol", RFC 918, USC/Information Sciences Institute, October 1984.

PEOPLE

[AB13]	Alison Brown	CORNELL	alison@CORNELL.ARPA
[AD22]	Arlene DesJardins	CIT	arlene@CIT-20.ARPA
[AG22]	Alfred Ganz	YALE	GANZ@YALE.ARPA
[AGM]	Andy Malis	BBN	Malis@BBN-UNIX.ARPA
[AL6]	Alexis Layton	CCA	alex@CCA-UNIX.ARPA
[APS]	Anita Skelton	MITRE	skelton@MITRE.ARPA
[AP]	Alan Parker	NRL	parker@NRL-CSS.ARPA
[AV]	Al Vezza	MIT	AV@MIT-XX.ARPA
[AW9]	Albert Wong	NPS	AWong@USC-ISI.ARPA
[AXC]	Albert Cheng	UIUC	acheng.uiuc@CSNET-RELAY.ARPA
[AXG]	Atul Garg	HP	none
[AY5]	Akiharu Yasuda	DODIIS	dia@PAXRV-NES.ARPA
[BC14]	Robert Cattani	Columbia	Cattani@COLUMBIA-20.ARPA
[BG5]	Bob Gilligan	SRI	Gilligan@SRI-KL.ARPA
[BIM]	Benson I. Margulies	Honeywell	Margulies@CISL.ARPA
[BJN1]	Bruce Nemnich	TMC	BJN@MIT-MC.ARPA
[BML]	Barry Leiner	ARPA	Leiner@USC-ISIA.ARPA
[BN7]	Bich T. Nguyen	SRI	btn@SRI-TSC.ARPA
[BN9]	Bill Nesheim	CORNELL	bill@CORNELL.ARPA
[BP17]	Bobbi Phillips	SRI	bobbi@SRI-TSC.ARPA
[BXA]	Bobby W. Allen	YPG	WYMER@OFFICE.ARPA
[CAK]	Chris Kent	PURDUE	Kent@PURDUE.ARPA
[CBP]	Brian Pinkerton	Wisconson	Brian@WISC-RSCH.ARPA
[CC2]	Chase Cotton	UDEL	Cotton@UDEL-EE.ARPA
[CH2]	Charles Hornig	Symbolics	Hornig@MIT-MC.ARPA
[CJW2]	Cliff Weinstein	LL	cjw@LL-11.ARPA
[CLH3]	Charles Hedrick	RUTGERS	Hedrick@RUTGERS.ARPA
[CMR]	Craig Rogers	ISI	Rogers@USC-ISIB.ARPA
[CP10]	Craig Partridge	BBN	craig@BBN-UNIX.ARPA
[CXL]	Clifford A. Lynch	UCB	UCDLA@BBNCCY.ARPA
[DAM1]	David A. Mosher	UCB	Mosher@BERKELEY.ARPA
[DCP1]	David Plummer	MIT	DCP@MIT-MC.ARPA
[DT15]	Dan Tappan	BBN	Tappan@BBNG.ARPA
[DDC2]	Dave Clark	MIT-LCS	Clark@MIT-MULTICS.ARPA
[DG28]	David L. Gehrt	RIACS	Dave@RIACS.ARPA
[DH17]	Douglas Hirsch	BBN	hirsch@BBN-UNIX.ARPA
[DHH]	Doug Hunt	BBN	DHunt@BBN-UNIX.ARPA
[DJF]	David J. Farber	U of Del.	Farber@UDEL-EE.ARPA
[DJV1]	Darrel J. Van Buer	SDC	vanbuer@ISI-VAXA.ARPA
[DK2]	Dean B. Krafft	CORNELL	Dean@CORNELL.ARPA
[DLM1]	David Mills	LINKABIT	Mills@USC-ISID.ARPA
[DM11]	Dale McNeill	BBN	mcneill@BBN-UNIX.ARPA
[DPR]	David Reed	MIT-LCS	DPR@MIT-XX.ARPA
[DSW]	Dan Whelan	Caltech	Dan@CIT-20.ARPA
[DXD]	Dennis J.W. Dube	VIA System	msnone
[DXG]	David Goldberg	SMI	sun!dg@BERKELEY.ARPA

[EAK1]	Earl Killian	LLL	EAK@MIT-MC.ARPA
[EBM]	Eliot Moss	MIT	EBM@MIT-XX.ARPA
[EC5]	Ed Cain	DCEC	cain@EDN-UNIX.ARPA
[EF5]	Ed Franceschini	NYU	Franceschini@NYU.ARPA
[EHP]	Ed Perry	SRI	Perry@SRI-KL.ARPA
[FAS]	Fred Segovich	Compion	fred@COMPION-VMS.ARPA
[FLM2]	F. Lee Maybaum	MILNET	Maybaum@DDN1
[GEOF]	Geoff Goodfellow	SRI	Geoff@DARCOM-KA.ARPA
[GC]	Graham Campbell	BNL	gc@BNL.ARPA
[GG11]	George Goble	Purdue	ghg@PURDUE.ARPA
[GH29]	Gregory Hidley	UCSD	hidley@NOSC.ARPA
[GIH]	Glenn I. Hastie II	SRI	Hastie@SRI-SPAM.ARPA
[GP10]	George Pavel	LLNL	liaison@LLL-TIS.ARPA
[GXL]	Guillermo A. Loyola	IBM	Loyola%ibm-sj@CSNET-RELAY.ARPA
[HA]	Howard Alt	AIDS	alt@AIDS-UNIX.ARPA
[HCF2]	Harry Forsdick	BBN	Forsdick@BBNG.ARPA
[HDC1]	Horst Clausen	DFVLR	Clausen@USC-ISID.ARPA
[HDW2]	Howard Wactlar	CMU	Wactlar@CMU-CS-A.ARPA
[HGM]	Hallam Murray	PARC	Murray.PA@PARC-MAXC.ARPA
[HM]	Hank Magnuski		JOSE@PARC-MAXC.ARPA
[JA1]	Jules P. Aronson	NLM	Aronson@NLM-MCS.ARPA
[JAKE]	Jake Feinler	SRI	Feinler@SRI-KL.ARPA
[JAR4]	Jim Rees	WASHINGTO	N JIM@WASHINGTON.ARPA
[JAW3]	Jil Westcott	BBN	Westcott@BBNF.ARPA
[JBP]	Jon Postel	ISI	Postel@USC-ISIF.ARPA
[JBW1]	Joseph Walters, Jr.	BBN	JWalters@BBN-UNIX.ARPA
[JC11]	Jim Clifford	LANL	jrc@LANL.ARPA
[JCM]	Jeff Mogul	STANFORD	Mogul@SU-SCORE.ARPA
[JD21]	Jonathan Dreyer	BBN	JDreyer@BBN-UNIX.ARPA
[JDG]	Jim Guyton	RAND	guyton@RAND-UNIX.ARPA
[JEM]	Jim Mathis	SRI	Mathis@SRI-KL.ARPA
[JFH2]	Jack Haverty	BBN	Haverty@BBN-UNIX.ARPA
[JGH]	Jim Herman	BBN	Herman@BBN-UNIX.ARPA
[JG46]	Jonathan Goodman	YALE	Goodman@YALE.ARPA
[JKR1]	Joyce K. Reynolds	ISI	JKREYNOLDS@USC-ISIF.ARPA
[JN2]	Jose Nabielsky	MITRE	jnd@MITRE.ARPA
[JO5]	John O'Donnell	YALE	ODonnell@YALE.ARPA
[JR17]	John L. Robinson	CANADA	DREO-CRC@USC-ISID.ARPA
[JRM1]	John Mullen	MITRE	Mullen@MITRE.ARPA
[JRS8]	Jeffrey R. Schwab	PURDUE	jrs@PURDUE.ARPA
[JS38]	Joseph Sventek	LBL	j@LBL-CSAM.ARPA
[JSG5]	Jon Goodridge	BBN	jsg@BBN-UNIX.ARPA
[JSQ1]	John S. Quarterman	UT	jsq@UT-SALLY.ARPA
[JWF]	Jim Forgie	LL	Forgie@BBNC.ARPA
[JWO1]	James W. O'Toole	UMD	james@MARYLAND.ARPA
[KCS1]	Kevin C. Smallwood	PURDUE	kcs@PURDUE.ARPA
[KLH]	Ken Harrenstien	SRI	KLH@NIC.ARPA
[KRS]	Karen Sollins	MIT	Sollins@MIT-XX.ARPA

[KTP]	Kenneth T. Pogran	BBN	Pogran@BBN-UNIX.ARPA
[KWP]	Kevin W. Paetzold	DEC	Paetzold@DEC-MARLBORO.ARPA
[LB1]	Liudvikas Bukys	ROCHESTER	Bukys@ROCHESTER.ARPA
[LCN]	Lou Nelson	AEROSPACE	Lou@AEROSPACE.ARPA
[LCS]	Lou Schreier	SRI	Schreier@USC-ISID.ARPA
[LH2]	Lincoln Hu	COLUMBIA	Hu@COLUMBIA-20.ARPA
[LLG]	Larry Garlick	XEROX	Garlick@PARC-MAXC.ARPA
[LOU]	Lou Salkind	NYU	Salkind@NYU.ARPA
[LM8]	Liza Martin	MIT-LCS	Martin@MIT-XX.ARPA
[LRB]	Larry Bierma	NPRDC	Bierma@NPRDC.ARPA
[MA]	Mike Accetta	CMU	Accetta@CMU-CS-A.ARPA
[MAB4]	Mark Brown	USC	Mark@USC-ECLB.ARPA
[MAE]	Marc A. Elvy	Harvard	Elvy@HARVARD.ARPA
[MBG]	Michael Greenwald	MIT-LCS	Greenwald@MIT-MULTICS.ARPA
[MB]	Michael Brescia	BBN	Brescia@BBN-UNIX.ARPA
[MCSJ]	Mike StJohns	AFDSC	StJohns@MIT-MULTICS.ARPA
[MDC]	Martin D. Connor	MIT AI	Marty@MIT-MC.ARPA
[MF31]	Martin J. Fouts	NASA-Ames	nep.fouts@AMES-AMELIA.ARPA
[MH12]	Mark Horton	ATT	mark@BERKELEY.ARPA
[MHS1]	Marvin Solomon	WISC	Solomon@UWISC.ARPA
[MJM2]	Mike Muuss	BRL	Mike@BRL.ARPA
[MK17]	Mike Karels	UCB	Karels@UCB-ARPA.ARPA
[MO2]	Michael O'Brien	RAND	OBrien@RAND-UNIX.ARPA
[MO14]	Michael O'Donnel	JHU	Odonnel%jhu@CSNET-RELAY.ARPA
[MRC]	Mark Crispin	Stanford	Admin.MRC@SU-SCORE.ARPA
[MS9]	Martin Schoffstall	CADMUS	cadmus!schoff@SEISMO.ARPA
[MTR]	Marshall Rose	Irvine	MRose.UCI@RAND-RELAY.ARPA
[MXL]	Mark Lottor	MIT	MKL@MIT-XX.ARPA
[MXM]	Marc M. Meilleur	COINS	COINS@USC-ISI.ARPA
[MXP]	Michael K. Peterson	HUGHES	scgvaxd!mkp@CIT-VAX.ARPA
[MXR]	Mark A. Rosenstein	MIT	mar@MIT-BORAX.ARPA
[MXS]	Marc Shapiro	INRIA	Shapiro@CMU-CS-C.ARPA
[NC3]	J. Noel Chiappa	MIT	JNC@MIT-XX.ARPA
[MMM]	Mike Minnich	UDELEE	MMinnich@UDEL-EE.ARPA
[NXK]	Neil Katin	HP	hpda.neil@BERKELEY.ARPA
[PA5]	Philip Almquist	Stanford	Almquist@SU-SCORE.ARPA
[PAM6]	Paul McNabb	RICE	pam@PURDUE.ARPA
[PG3]	Phill Gross	LINKABIT	gross@DCN7.ARPA
[PGM]	Paul G. Milazzo	RICE	Milazzo@RICE.ARPA
[PHD1]	Pieter Ditmars	BBN	pditmars@BBN-UNIX.ARPA
[PK]	Peter Kirstein	UCL	Kirstein@USC-ISIA.ARPA
[PM1]	Paul Mockapetris	ISI	Mockapetris@USC-ISIF.ARPA
[PM4]	Paul Martin	SRI	PMartin@SRI-AI.ARPA
[PS3]	Paal Spilling	NDRE	Paal@NTA-VAX.ARPA
[PXA]	Phillip G. Apley		PGA@MIT-OZ.ARPA
[PXB]	Pat Boyle	UBC	boyle.ubc@CSNET-RELAY.ARPA
[PXK]	Philip R. Karn, Jr.		allegra!karn@BERKELEY.ARPA
[PXM]	Pat Marques	NSRDC	marques@DTRC.ARPA

_			
[PXN]	Peter Nellessen	SIEMENS	crtvax!pn@CMU-CS-SPICE.ARPA
[RA11]	Rick Adams	CCI	rlgvax!ra@SEISMO.ARPA
[RB6]	Richard Bisbey	ISI	Bisbey@USC-ISIB.ARPA
[RBN1]	Ronald Natalie, Jr.	BRL	ron@BRL-TGR.ARPA
[RBW]	Richard B. Wales	UCLA	wales@UCLA-LOCUS.ARPA
[RC7]	Robert Cole	UCL	robert@UCL-CS.ARPA
[RDB2]	Robert Bressler	BBN	Bressler@BBN-UNIX.ARPA
[RDR4]	Dennis Rockwell	BBN	DRockwell@BBN-UNIX.ARPA
[REK2]	Robert Kahn	ARPA	Kahn@USC-ISIA.ARPA
[RF1]	Randy Frank	UTAH	Frank@UTAH-20.ARPA
[RFD1]	Robert F. Donnelly	ARDC	donnelly@ARDC.ARPA
[RH6]	Robert Hinden	BBN	Hinden@BBN-UNIX.ARPA
[RH60]	Roger Hale	MIT	Network%MIT-BUGS@MIT-MC.ARPA
[RHT]	Robert Thomas	BBN	BThomas@BBNG.ARPA
[RK1]	Richard Kovalcik	Honeywell	Kovalcik@MIT-MULTICS.ARPA
[RKJ2]	Richard Johnsson	DEC	johnsson@DECWRL.ARPA
[RLB1]	Bob Brown	USRA	rlb@AMES-VMSB.ARPA
[RLB3]	Ronald L. Broersma	NOSC	Ron@NOSC.ARPA
[RLH2]	Ronald L. Hartung	NSWC	ron@NSWC-WO.ARPA
[RLS6]	Ronald L. Smith	COINS	COINS@USC-ISIA.ARPA
[RNM1]	Neil MacKenzie	RSRE	T45@USC-ISID.ARPA
[RR2]	Raleigh Romine	Teledyne	romine@SEISMO.ARPA
[RR18]	Ron Reisor	UDEL	ron.udel-cc-relay@UDEL.ARPA
[RS23]	Russel Sandberg	WISC	root@UWISC.ARPA
[RTB]	Bob Braden	UCLA	Braden@USC-ISIA.ARPA
[RWS4]	Robert W. Scheifler	ARGUS	RWS@MIT-XX.ARPA
[SA1]	Sten Andler	ARPA a	andler.ibm-sj@CSNET-RELAY.ARPA
[SC3]	Steve Casner	ISI	Casner@USC-ISIB.ARPA
[SGC]	Steve Chipman	BBN	Chipman@BBNA.ARPA
[SK]	Steve Kille	UCL	UKSAT@USC-ISID.ARPA
[SM6]	Sean McLinden	DSL	SMcLinden@CADRE.ARPA
[SMF]	Steven M. Feldman	TYMNET	feldman%ucbarpa@BERKELEY.ARPA
[SXB]	Steve Byrne	TARTAN	Byrne@CMU-CS-C.ARPA
[SXB1]	Scott Bradner	HARVARD	bradner@HARV.10.ARPA
[SXM]	Scott Marcus		none
[TBS]	Claude S. Steffey	WSMR	csteffey@WSMR70A.ARPA
[TC4]	Tony Cincotta	DTNSRDC	tony@NALCON.ARPA
[TF6]	Thomas Ferrin	UCSF	ucsfcgl!tef@BERKELEY.ARPA
[TW11]	Tom Wadlow	LLL	TAW@S1-A.ARPA
[TXN]	Todd Nugent		Nugent@ANL-MCS.ARPA
[UXB]	Ulf Bilting	CHALMERS	bilting@PURDUE.ARPA
[WG]	Wayne Graves	LBL	wayne@LBL-CSAM.ARPA
[WIM]	William Macgregor	BBN	macq@BBN.ARPA
[WIW]	Bill Joy	SMI	sun!wnj@BERKELEY.ARPA
[WXL]	William Lampeter	UR	bill@ROCHESTER.ARPA
[ZSU]	Zaw-Sing Su	SRI	ZSu@SRI-TSC.ARPA
[450]	Zaw-billy bu	DIVI	ADM-19C.AVLA

APPENDIX A

Network Numbers

The network numbers in class A, B, and C network addresses are allocated among Research, Defense, Government (Non-Defense) and Commercial uses.

Class A (highest-order bit 0)

Research allocation:	8
Defense allocation:	24
Government allocation:	24
Commercial allocation:	94
Reserved Addresses: (0, 127)	
Total	128

Class B (highest-order bits 1-0)

Research allocation:	1024
Defense allocation:	3072
Government allocation:	3072
Commercial allocation:	12286
Reserved Addresses: (0,	16383)
Total	16384

Class C (highest-order bits 1-1-0)

Research allocation: 65536

Defense allocation: 458725

Government allocation: 458725

Commercial allocation: 1572862

Reserved Addresses: (0, 2097151)

Total 2097152

Class D (highest-order bits 1-1-1)

All addresses in this class are reserved for future use.

Within the Research community, network identifiers will only be granted to applicants who show evidence that they are acquiring standard Bolt Beranek and Newman gateway software or have implemented or are acquiring a gateway meeting the Exterior Gateway Protocol requirements. Acquisition of the Berkeley BSD 4.2 UNIX software might be considered evidence of the latter.

Experimental networks which later become operational need not be renumbered. Rather, the identifiers could be moved from Research to Defense, Government or Commercial status. Thus, network identifiers may change state among Research, Defense, Government and Commercial, but the number of identifiers allocated to each use must remain within the limits indicated above. To make possible this fluid assignment, the network identifier spaces are not allocated by simple partition, but rather by specific assignment.

Protocol Identifiers

These assignments are shared by the four communities.

Port Numbers

These assignments are shared by the four communities.

ARPANET Link Numbers

These assignments are shared by the four communities.

IP Version Numbers

These assignments are shared by the four communities.

TCP, IP and Telnet Option Identifiers

These assignments are shared by the four communities.

Implementation:

Joyce Reynolds is the coordinator for all number assignments.