

SUMÁRIO

O QUE VEM POR AÍ?	3
HANDS ON	4
SAIBA MAIS	5
O QUE VOCÊ VIU NESTA AULA?	10
REFERÊNCIAS	. 11

O QUE VEM POR AÍ?

Ainda no universo de redes não supervisionadas, chegou o momento de aprender Redes Adversárias Generativas (GANs)! Essas redes são consideradas generativas porque elas criam novos dados, e adversárias porque são arquiteturas de redes neurais profundas compostas por duas redes colocadas uma contra a outra. Nesta aula, você aprenderá a sua arquitetura e como funciona essa rede criativa! Vamos lá?

HANDS ON

Vamos criar a sua primeira rede neural adversária? Utilizaremos, nesta aula, <u>a</u> <u>base de dados</u> do famoso conjunto de dados de dígitos escrito às mãos, o MNIST.

O código desta aula você encontra no github da nossa turma.

SAIBA MAIS

ENTENDENDO AS REDES ADVERSÁRIAS GENERATIVAS (GANS)

As redes Adversárias Generativas possuem um grande potencial, pois são capazes de gerar novos dados a partir de um conjunto de dados treinados. Podemos treinar essa rede para criar, por exemplo, novas imagens, músicas, falas, prosas, tratar resoluções de imagens e vídeos e muito mais. Uma das suas utilidades também pode ser criar novas imagens a partir de um conjunto de dados real para criar mais amostras de dados ao treinar uma rede neural convolucional. Veja na figura 1 e 2 algumas imagens geradas por rede adversária generativa.

Figura 1 - Imagem gerada por uma rede GAN, criada a partir do texto "Teddy bears trabalhando em pesquisa de inteligência artificial debaixo d'água com tecnologia dos anos 90".

Fonte: Didática Tech (s.d.)

Figura 2 - Dois dos nus gerados por GANs. Imagens de <u>Robbie Barrat</u> Fonte: Deep Learning Book (s.d.)

As redes GANs podem criar dados fakes, assim como validar a veracidade de dados. A GANs também é muito utilizada para recriar partes de imagens, como por exemplo, se temos uma imagem de um cachorro pela metade, ela tem o poder de completá-la. Falando ainda do uso da rede em imagens, a Pixar, uma grande empresa que trabalha com animações, utiliza muito as redes GANs para aumento de resolução de imagens. Para quem não conhece as redes Adversárias Generativas, até parece mágica, não é mesmo? Mas nessa aula desvendaremos alguns truques da GANs, mergulhando na matemática e modelagem por trás desses modelos.

ENTENDENDO O FUNCIONAMENTO DA GANS

Você aprendeu, na aula de redes não supervisionadas, que algoritmos discriminativos tentam criar classes ou grupos a partir de dados de entrada, ou seja, mapeiam recursos para criar rótulos utilizando correlação. Os algoritmos generativos fazem justamente o oposto, eles tentam prever os recursos (dados) com um determinado rótulo. Por exemplo, se um e-mail é classificado como spam, qual é a probabilidade de palavras que formam esse e-mail serem spam? Os algoritmos discriminativos se preocupam com a correlação entre x e y, modelos generativos se preocupam em como você irá obter x.

Basicamente, as GANs são compostas por duas redes, a **geradora** e a **discriminante**. São chamadas de adversárias, porque elas tentam "jogar" uma com a

outra o tempo todo. A rede geradora tenta enganar a rede discriminante gerando dados fakes semelhantes aos dados reais.

Figura 3 - Arquitetura redes GANs. Fonte: Deep Learning Book (s.d.)

Utilizaremos como exemplo a clássica base de dígitos gerados à mão do MNIST. O objetivo da rede discriminate, aqui, é reconhecer que os dígitos gerados à mão são os mais próximos possíveis dos verdadeiros números. A rede geradora tenta criar novas imagens fakes com a esperança de torná-las autênticas também (mesmo sendo falsas). O funcionamento da rede consiste nas seguintes etapas: o gerador considera números aleatórios e retornam uma imagem (ou seja, cria uma imagem fake), a imagem gerada é inserida no discriminador ao lado do fluxo de imagens verdadeiras geradas, o discriminador obtém imagens reais e falsas, retornando a probabilidade e realizando previsões de imagens falsas geradas pela rede generativa.

Figura 4 - Funcionamento de uma rede GAN. Fonte: Deep Learning Book (s.d.) Podemos dizer que a rede geradora é uma rede neural convolucional inversa. Enquanto um classificar padrão reduz a amostragem para produzir a probabilidade, o gerador pega um vetor de ruído aleatório e faz o upsample (operação usada para aumentar o tamanho espacial de um tensor de saída) para uma imagem. O primeiro joga fora os dados por meio de técnicas de downsampling (processo de redução do tamanho espacial (resolução) de um tensor de saída) e o segundo gera novos dados. Ambas as redes (geradora e discriminante) utilizam a função de custo para tentar minimizar o erro. À medida que o discriminador muda seu comportamento, o gerador também muda e vice-versa.

Figura 5 - Exemplo funcionamento rede GANs Fonte: Laura Martinez Molera (2021)

A MATEMÁTICA DE GANS

O Discriminador e o Gerador jogam um jogo minimax para dois jogadores, com a função de valor V(G, D). Portanto, a função Objetivo Minimax é:

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

Figura 6 - Função Minimax. Fonte: Shweta Goyal (2019)

A função D() nos fornece uma estimativa da probabilidade de que a amostra que lhe foi apresentada seja realmente um dado de treinamento X. No caso do Gerador, o nosso objetivo é minimizar a expressão log(1 - D(G(z))), o que significa que, quando o valor de D(G(z)) for alto, isso indica que D está quase certo de que G(z) é igual a X. Isso, por sua vez, faz com que 1 - D(G(z)) seja muito baixo, e nosso objetivo é reduzi-lo ainda mais.

Para o Discriminador, queremos maximizar tanto D(X) quanto 1 - D(G(z)). Em outras palavras, queremos que o Discriminador seja o mais competente possível em identificar dados reais (X) como reais e dados gerados (G(z)) como falsos. Assim, quando o Discriminador está em seu estado ideal, a probabilidade D(X) deve ser 0,5, o que significa que ele não pode distinguir com confiança entre as duas classes.

No entanto, o nosso objetivo final é treinar o Gerador G de tal forma que ele produza resultados que confunda completamente o Discriminador D. Queremos que o Discriminador não seja capaz de discernir entre as amostras reais (X) e as amostras geradas (G(z)), o que é um indicador de que o Gerador melhorou e produz resultados cada vez mais realistas.

O QUE VOCÊ VIU NESTA AULA?

Nessa aula, você aprendeu como são complexas as redes neurais adversárias e como funciona a sua arquitetura por trás da mágica.

O que achou do conteúdo? Conte-nos no Discord! Estamos disponíveis na comunidade para fazer networking, tirar dúvidas, enviar avisos e muito mais. Participe!

REFERÊNCIAS

Deep Learning Book. Introdução às Redes Adversárias Generativas (GANs – Generative Adversarial Networks), [s.d.]. Disponível em: https://www.deeplearningbook.com.br/introducao-as-redes-adversarias-generativas-generative-adversarial-networks/. Acesso: 31 out. 2023.

Didática Tech. O que são GAN's – Redes adversárias generativas, [s.d.]. Disponível em: https://didatica.tech/introducao-a-gans-redes-adversarias-generativas/. Acesso em: 31 out. 2023.

GOODFELLOW, lan et al. Generative adversarial nets. Advances in neural information processing systems, 2014. Disponível em: https://arxiv.org/pdf/1406.2661.pdf. Acesso: 31 out. 2023.

GOYAL, Shweta. GANs — A Brief Introduction to Generative Adversarial Networks, 2019. Disponível em: https://medium.com/analytics-vidhya/gans-a-brief-introduction-to-generative-adversarial-networks-f06216c7200e. Acesso: 31 out. 2023.

MOLERA, Laura Martinez. Synthetic Image Generation using GANs. Disponível em: https://blogs.mathworks.com/deep-learning/2021/12/02/synthetic-image-generation-using-gans/. Acesso: 31 out. 2023.

PALAVRAS-CHAVE

Palavras-chave: GANs, rede geradora, rede discriminate.

