MAP 569 Machine Learning II

Christophe Giraud

PC1

Supervised Classification

Supervised Classification

SPAM filter

- 2 Image recognition: automatic postal ZIP reading
- Medical diagnosis: cancers, alzheimer, etc
- In silico chemometrics: research of some medicine
- Ad-online, recommandation, etc

http://c-command.com/spamsieve/

- SPAM filter
- Image recognition: automatic postal ZIP reading
- Medical diagnosis: cancers, alzheimer, etc
- In silico chemometrics: research of some medicine
- Ad-online, recommandation, etc

- SPAM filter
- Image recognition: automatic postal ZIP reading
- Medical diagnosis: cancers, alzheimer, etc
- In silico chemometrics: research of some medicine
- Ad-online,
 recommandation, etc.

Correct & Incorrect answers

7 2 1 / 0 4 1 / 4 8 5 9
0 6 9 0 1 5 9 7 3 5 4
9 6 6 5 4 0 7 4 0 1
3 1 3 4 7 2 7 1 2 1
1 7 4 2 3 5 5 1 2 4 4
6 3 5 5 6 6 0 4 1 9 9 5
7 8 9 3 7 4 6 4 3 8 0
7 0 2 9 1 7 3 3 2 9 7
1 1 6 2 7 9 8 4 7 7 3 6 1

- SPAM filter
- 2 Image recognition: automatic postal ZIP reading
- Medical diagnosis: cancers, alzheimer, etc
- In silico chemometrics: research of some medicine
- Ad-online, recommandation, etc

- SPAM filter
- 2 Image recognition: automatic postal ZIP reading
- Medical diagnosis: cancers, alzheimer, etc
- In silico chemometrics: research of some medicine
- Ad-online, recommandation, etc

- SPAM filter
- 2 Image recognition: automatic postal ZIP reading
- Medical diagnosis: cancers, alzheimer, etc
- In silico chemometrics: research of some medicine
- Ad-online, recommandation, etc

Framework

Observations: data points $X_i \in \mathcal{X}$ with labels $Y_i \in \{-1, 1\}$ for i = 1, ..., n.

Objective: predict the class of a new data point x.

Formalization

Classifier

Any (measurable) function $h: \mathcal{X} \to \{-1, 1\}$.

Risk

Probability of misclassification: $R(h) = \mathbb{P}(h(X) \neq Y)$

Bayes classifer

Check that the classifier $h_*(x) = \mathrm{sign}\left(\mathbb{P}\left[Y=1|X=x]-1/2\right)$ fulfills

$$R(h_*) = \min_h R(h).$$

Statistical issue

The distribution of (X, Y) is unknown. We only have an i.i.d. sample $(X_i, Y_i)_{i=1,\dots,n}$.

Parametric modeling

Modeling 1: parametric modeling of the distribution of (X, Y)

Example: Gaussian mixture

Model

- $\mathbb{P}(Y_i = k) = \pi_k$, for k = -1, 1
- Distribution $(X_i|Y_i=k) = \mathcal{N}(\mu_k, \Sigma_k)$, for k=-1,1.

Gaussian mixture

Christophe Giraud

Exercise

- \bigcirc What is the distribution of X?
- Prove that the Bayes classifier is given by

$$h_*(x) = \operatorname{sign}(\pi_1 g_1(x) - \pi_{-1} g_{-1}(x)), \quad x \in \mathbb{R}^p.$$

3 Prove that when $\Sigma_{-1} = \Sigma_1 = \Sigma$, the condition $\pi_1 g_1(x) > \pi_{-1} g_{-1}(x)$ is equivalent to

$$(\mu_1 - \mu_{-1})^T \Sigma^{-1} \left(x - \frac{\mu_1 + \mu_{-1}}{2} \right) > \log(\pi_{-1}/\pi_1).$$

Interpret geometrically this result.

7 / 14

Gaussian mixture

Bayes Classifier

When $\Sigma_{-1} = \Sigma_1 = \Sigma$ we have

$$h_*(x) = 1 \iff \left(x - \frac{\mu_1 + \mu_{-1}}{2}\right)^T \Sigma^{-1}(\mu_1 - \mu_{-1}) > \log(\pi_{-1}/\pi_1).$$

In pratice: we estimate μ_{-1}, μ_1 and Σ by MLE

Mahalanobis distance

Exercise (continued)

• If $\pi_1 = \pi_{-1}$, check that

$$\mathbb{P}(h_*(X) = 1 | Y = -1) = \Phi(-d(\mu_1, \mu_{-1})/2)$$

where Φ is the cumulative distribution function of a standard Gaussian and $d(\mu_1, \mu_{-1})$ is the Mahalanobis distance defined by

$$d(\mu_1, \mu_{-1})^2 = (\mu_1 - \mu_{-1})^T \Sigma^{-1} (\mu_1 - \mu_{-1}).$$

② When $\Sigma_1 \neq \Sigma_{-1}$, what is the nature of the frontier between $\{h_*=1\}$ and $\{h_*=-1\}$?

Semi-parametric modeling

Bayes claissifier:
$$h_*(x) = \operatorname{sign} (\mathbb{P}[Y = 1|X = x] - 1/2)$$

Modeling 2: modeling of the conditional distribution of Y given X

Logistic regression

$$\mathbb{P}\left[Y=1|X=x\right] = \frac{\exp\left(\langle \beta^*, x \rangle\right)}{1 + \exp\left(\langle \beta^*, x \rangle\right)}$$

Bayes classifier

$$h_*(x) = 1 \iff \langle \beta^*, x \rangle > 0$$

10/14

Logistic regression

LDA versus Logistic regression

Maximum likelihood estimation

Conditional likelihood of Y given X

$$\widehat{\beta} \in \operatorname*{argmax}_{\beta \in \mathbb{R}^d} \prod_{i: Y_i = 1} \left(\frac{\exp\left(\langle \beta, x_i \rangle \right)}{1 + \exp\left(\langle \beta, x_i \rangle \right)} \right) \prod_{i: Y_i = -1} \left(\frac{1}{1 + \exp\left(\langle \beta, x_i \rangle \right)} \right)$$

Logistic classifier

$$\widehat{h}_{\mathsf{logistic}}(x) = \mathrm{sign}\left(\langle \widehat{eta}, x \rangle\right) \text{ for all } x \in \mathbb{R}^d.$$

Synthetic data

- $\beta^* = (3, 0, -4, 0, 0.1)$
- x_{ij} i.i.d. standard Gaussian
- n = 50

```
> fit <- glm(y ~ pred1 + pred2 + pred3 + pred4 + pred5,
data=simulatedata, family=binomial())
> summary(fit)
```

```
Estimate
               Std. Error
                         z value
                                 Pr(>|z|)
pred1
      3.3233
                1.2205
                         2.723
                                0.00647
pred2
     -0.6257
                0.7885
                         -0.794 0.42745
pred3
     -4.7686
                2.0019
                         -2.382 0.01722
pred4
     -1.7596
                1.1080
                         -1.588
                                 0.11227
pred5
     -0.5450
                0.7805
                         -0.698
                                 0.48498
```

Variable Selection

When $p \approx n$ or $p \gg n$,

- we cannot trust asymptotics
- we cannot implement model selection to select active variables

$$\Longrightarrow \widehat{\beta} \in \operatorname*{argmin}_{\beta} \left\{ \sum_{i=1}^{n} \ell \left(y_{i} (x_{i}^{T} \beta) \right) + \lambda |\beta|_{1} \right\}$$