AtSNP Infrastructure

a case study for searching billions of records while providing significant cost savings over cloud providers

Christopher Harrison, Sündüz Keleş, Rebecca Hudson, Sunyoung Shin and Inês Dutra

Paper accepted to: The 4th IEEE International Workshop on High-Performance Big Data, Deep Learning, and Cloud Computing @The 32nd IEEE International Parallel and Distributed Processing Symposium (IPDPS 2018)

The atSNP story

- Hallway conversation
- Want to put 2TB of data on the web
- Have an another dataset to put online in the future
- Post-Doc will work with you
- Let me know what you need

What is at SNP

- Software developed to evaluate SNP-Transcription factors-DNA interactions
- 115,500 CPU hours to compute SNP to Position Weight Matrix (Big Data)
 - Computed using HTCondor UW-CHTC and OSG
 - Wanted to make this compute power available to researchers without this amount of compute at hand
- Calculate p-values
- Determine SNP-PWM motif's
- Motif images for each of the 307 bill (+)
 - Originally a PNG for each SNP-PWM
 - Would have consumed 3.7Petabytes

TATTCTCCTCCTCAAA

Best Match with the SNP Allele

TATTCTCTTTTCTTCTTCAAA

Best Match with the SNP Allele

TATTCTCTTTTCTTTTCTTAAA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

GCCACGCCCCCTCAAA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Best Match with the Reference Allele

SP4 2 Motif Scan for rs115414042

SNP

(+)

Ref

Constraints

- Cost
- Supportability (personal time, monitoring, domain knowledge)
- Speed to implementation
- Data center rackspace
- Query result times

Feasibility Candidates

- Objective: use a DB with a large usage and support base
- Cassandra
 - NoSQL known for quick access and search
- MySQL (or MariaDB)
 - Oldie and goodie
- Elasticsearch
 - Indexes log data
- Others
 - We needed quick turn around and widely supported platforms

Infrastructure for our initial feasibility testing

Cassandra

Pro's

- Fast searches
- Fast imports (ETL) (14,664records/sec)
- Auto rebalancing on node failure

Con's

- No range query support*
- No team domain expertise

MySQL (MariaDB)

Pro's

- Team domain expertise
- Range query support

Con's

- Slow ETL (ETL 1023records/sec)
- Partitioning of data across systems manually
- Auto rebalancing on node failure

Elasticsearch

Pro's

- Range queries
- Reasonable Load times (ETL- 11,944records/sec)
- Auto rebalancing on node failure

Con's

- No domain expertise
- Data loading took longer than Cassandra

Results of final infrastructure

- Final results proved elasticsearch was a viable option for
 - loading
 - searching
 - and retrieving of data
- Scale-out infrastructure
 - Can add more nodes as data needs change/grow
 - Response time is critical for genomics data searches
 - Future improvements can be easily integrated
- Cost
 - Amazon, \$0.135/GB/Month
 - Our final cost \$0.039/GB/Month
 - 3.4x Cost Savings over Amazon

Key Contributions

- Feasibility testing is important for application infrastructure deployments
- Cloud providers are not always the lowest cost provider
- NoSQL databases are great for scalability and work for genomic data stores
- atSNP website:
 - http://atsnp.biostat.wisc.edu
- System engineers are rockstars

Acknowledgements

- NIH Big Data to Knowledge (BD2K) Initiative under Award Number U54 AI117924
- Center for Predictive Computational Phenotyping
- University of Wisconsin Madison
 - School of Medicine and Public Health
 - Department of Biostatistics and Medical Informatics
- My Family

