,(2), מבנים אלגבריים - 03 מתרון מטלה

2025 באפריל 27

שאלה 1

 p^n מסדר מסדר הציקלוטומי ויהי הפולינום יהי חיהי וי $n\in\mathbb{N}$ ו ויהי יהי יהי

$$\frac{x^{p^n} - 1}{x^{p^{n-1}} - 1} \in \mathbb{Q}[x]$$

'סעיף א

נראה שזהו אכן פולינום.

בפרט בהצבה $(1+x+\cdots+x^{n-1})(x-1)=x^n-1$ ניזכר בזהות $x^{p^{n-1}}-1|x^{p^n}-1$ הנכונה לכל $x^{p^n-1}-1|x^{p^n}-1|$ הנכונה לכל בפרט בהצבה $(x^{p^n})^k-1=(1+x^{p^n}+\cdots+(x^{p^n})^{k-1})(x^{p^n}-1)$

$$\frac{x^{p^{n+1}}-1}{x^{p^n}-1}=1+x^{p^n}+\cdots+\left(x^{p^n}\right)^{p-1}$$

ובפרט זהו פולינום כפי שרצינו להראות. נבחין שעבור n=0 הטענה שרצינו להראות מהזהות ובפרט זהו פולינום או

טעיף ב׳

נוכיח שהפולינום הוא אי־פריק על־ידי שימוש בקריטריון אייזנשטיין.

, ונקבל, x=y+1 נציב שירות, ישירות, להשתמש ולכן לא נוכל הם 1 ולכן הפולינום מקדמי כלל מקדמי הוכחה.

$$\frac{x^{p^n}-1}{x^{p^{n-1}}-1} = \frac{(y+1)^{p^n}-1}{(y+1)^{p^{n-1}}-1} = 1 + (y+1)^{p^n} + \dots + (y+1)^{(p-1)p^n} = \sum_{i=1}^{p-1} \sum_{j=0}^{ip^n} \binom{ip^n}{j} y^j = \sum_{i=j/p^n}^{(p-1)p^n} \sum_{i=j/p^n}^{p-1} \binom{ip^n}{j} y^j$$

ולכן המקדם של $i<(p-1)p^n$ אבל $i<(p-1)p^n$ לכל $p\mid a_i$ ולכן המקדם בפרט בפרט בפרט , כאשר בפרט בפרט , כאשר אב' אב' אב' הוא אולכן המקדם של $i<(p-1)p^n$ אבל המקדם של הואר בפרט בפרט בפרט בפרט האפולינום הציקלוטומי מסדר p^n אי־פריק. בפרט וקריטריון אייזנשטיין חל וגורר שהפולינום הציקלוטומי מסדר p^n אי־פריק.

שאלה 2

 $\mathbb Q$ נפרק את לפולינומים אי־פריקים לפולינומים לפולינומים א $f(x)=x^4+4\in\mathbb Q[x]$ נפרק את נפרק את $\omega=e^{\frac{2\pi i}{4}}=e^{\frac{1}{2}\pi i}=\frac{1+i}{\sqrt{2}}$ נסמן ל- σ , נסמן נבחין נבחין כי מעל

$$f(x) = (x - \sqrt{2})(x - \omega\sqrt{2})(x - \omega^2\sqrt{2})(x - \omega^3\sqrt{2}i)$$

כלומר השורשים של f הם $\omega^i\sqrt{2}$ הם $\omega^i\sqrt{2}$ הוא מכפלת חלק מהגורמים הללו, ולכן $g\in\mathbb{Q}[x]$ כלומר השורשים של $\omega^i\sqrt{2}$ הם $\omega^i\sqrt{2}$ הבירופים הללו. כלל הפולינומים מסדר $\omega^i\sqrt{2}$ הם מכפלות של $\omega^i\sqrt{2}$ ולכן נוכל להסיק ישירות שאינם פירוק של $\omega^i\sqrt{2}$ המיק את $\omega^i\sqrt{2}$ באופן דומה לא יתכן שיהיה פולינום מחלק מדרגה ω^i , אחרת נקבל שאיברו החופשי הוא ω^i עבור ω^i כלשהו. נותר אם כן לבדוק את ω^i באופן דומה לא יתכן שיהיה פולינומים שלא משלימים ל ω^i בחזקה זוגית, אחרת האיבר החופשי שלהם יהיה מרוכב ובפרט לא רציונלי, ונשאר לבדוק שני פולינומים בלבד,

$$(x - \omega\sqrt{2})(x - \omega^3\sqrt{2}) = x^2 - \sqrt{2}(\omega + \omega^3)x + 2$$

אבל מתקיים,

$$\omega + \omega^3 = \frac{i+1+(-1+i)}{\sqrt{2}} = \sqrt{2}$$

, אבור המקרה השני נקבל, עבור $x^4+4=(x^2-2x+2)(x^2+2x+2)$ שירה נקבל שירה מבדיקה עבור $x^4+4=(x^2-2x+2)(x^2+2x+2)$

$$(x - \sqrt{2})(x - \omega^2 \sqrt{2}) = x^2 - \sqrt{2}(1 + \omega^2)x + 2$$

. כלומר המקדם אל וזהו $\sqrt{2}(i+1)$ הוא x של מספר המקדם כלומר

שאלה 3

, ושהקבוצה שונים [$\mathbb{Q}(\sqrt{p_1},\dots,\sqrt{p_n}):\mathbb{Q}]=2^n$ שר בראה שונים. בראשוניים $p_1,\dots,p_n\in\mathbb{N}$ יהיו

$$\mathcal{B} = \left\{ \sqrt{\prod_{i \in S} p_i} \middle| S \subseteq \{1, \dots, n\} \right\}$$

 \mathbb{Q} מעל $\mathbb{Q}(\sqrt{p_1},\ldots,\sqrt{p_n})$ מעל היא בסיס ל-

הוכחה. אנו יודעים שמתקיים,

$$[\mathbb{Q}(\sqrt{p_1},\ldots,\sqrt{p_n}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{p_1}):\mathbb{Q}]\cdots[\mathbb{Q}(\sqrt{p_1},\ldots,\sqrt{p_n}):\mathbb{Q}(\sqrt{p_1},\ldots,\sqrt{p_{n-1}})]$$

, מהווה כל ראשוני מינימלי מהווה הווה $f_i(x)=x^2-p_i$ הפולינום מהפולינום

$$\left[\mathbb{Q}(\sqrt{p_1},\ldots,\sqrt{p_i}):\mathbb{Q}(\sqrt{p_1},\ldots,\sqrt{p_{i-1}})\right]=2$$

 $\mathbb{Q}(\sqrt{p_1},\dots,\sqrt{p_n}):\mathbb{Q}=2^n$ לכל i. נסיק אם כך אם לכל