Définition 21.32 - endomorphisme nilpotent

Soit E un espace vectoriel. On dit qu'un endomorphisme de E est nilpotent s'il existe $n \in \mathbb{N}^*$ tel que $u^n = 0_{\mathcal{L}(E)}$. L'entier n est alors appelé indice de nilpotence de u.

Définition 21.41 - polynôme minimal

L'ensemble I des polynômes annulateur d'un endomorphisme u forme un idéal de $\mathbb{K}[X]$. Comme $\mathbb{K}[X]$ est principal, il existe un unique polynôme unitaire $D \in \mathbb{K}[X]$ tel que :

$$I = D\mathbb{K}[X]$$

Ce polynôme D est appelé $polynôme \ minimal$ de u. Il n'existe que si u admet au moins un polynôme annulateur non nul.

Définition 21.48 - endomorphisme diagonalisable, valeurs propres

Un endomorphisme u de E est diagonalisable s'il existe une base $(b_i)_{i\in I}$ de E et une famille $(\lambda_i)_{i\in I}$ de scalaires telles que :

$$\forall i \in I, u(b_i) = \lambda_i b_i$$

les λ_i sont appelés valeurs propres de u.