Dataset: Iris Flower dataset

Note: Only two species of flower are displayed

In favor of null: $log_e(BF_{01}) = -10.86$, sampling = joint multinomial, a = 1.00

Percent

0%

(n = 108)

Black

(n = 286)

Brown

In favor of null: $log_e(BF_{01}) = -57.51$, sampling = joint multinomial, a = 1.00

Hair

(n = 71)

Red

(n = 127)

Blond

Fuel efficiency by type of car transmission

t(18.33) = -3.77, p = 0.001, g = -1.38, $Cl_{95\%}$ [-2.17, -0.51], n = 32

Transmission (0 = automatic, 1 = manual)

In favor of null: $log_e(BF_{01}) = -4.46$, $r_{Cauchy} = 0.71$

 $F(4,47.04) = 3.01, \, p = 0.027, \, \omega_{\rm p}^2 = 0.12, \, {\rm Cl_{99\%}} \, [-0.03, \, 0.31], \, n = 100$

In favor of null: $log_e(BF_{01}) = -2.19$, $r_{Cauchy} = 0.71$

Pairwise comparisons: Games-Howell test; Adjustment (p-value): Benjamini & Hochberg

AIC = 166, BIC = 173, log-likelihood = -78

Summary effect: β = 0.619, Cl_{95%} [0.407, 0.830], z = 5.736, se = 0.108, p = < 0.001

In favor of null: $log_e(BF_{01}) = -2.680$, $d_{mean}^{posterior} = 0.491$, $CI_{95\%}$ [0.147, 0.775] Heterogeneity: Q(4) = 109, p = < 0.001, $\tau_{REML}^2 = 0.056$, $I^2 = 96.81\%$

 \mathbf{X} = correlation non–significant at p < 0.05 Adjustment (p–value): None

 $\mathbf{X} = \text{correlation non-significant at } p < 0.05$ Adjustment (p-value): None

 \mathbf{X} = correlation non–significant at p < 0.01Adjustment (p–value): None

Fuel economy data

 $t(14) = 1.47, p = 0.163, g = 0.36, \text{Cl}_{99\%}$ [-0.33, 1.10], n = 15

Source: EPA dataset on http://fueleconomy.gov

In favor of null: $log_e(BF_{01}) = 0.44$, $r_{Cauchy} = 0.71$

t(59) = 19.05, p = < 0.001, g = 2.43, Cl_{95%} [1.96, 2.99], n = 6012.5 10.0 median = 19.25 7.5 count 5.0 2.5 0.0 10 20 30 **Tooth length**

In favor of null: $log_e(BF_{01}) = -54.54$, $r_{Cauchy} = 0.71$

Note: Iris dataset by Fisher.

In favor of null: $log_e(BF_{01}) = -186.14$, $r_{Cauchy} = 0.80$

$$\chi^2(3)=19.26,\, p=<0.001,\, n=76$$

$$\chi^2(2) = 21.34, p = < 0.001, V_{Cramer} = 0.82, Cl_{95\%} [0.41, 0.68], n = 32$$

Engine 0 = V-shaped 1 = straight

In favor of null: $log_e(BF_{01}) = -10.31$, sampling = independent multinomial, a = 1.00

In favor of null: $log_e(BF_{01}) = -4.34$, $r_{Cauchy} = 0.71$

F(1.65,27.97) = 4.06, p = 0.035, n = 22

Pairwise comparisons: Yuen's trimmed means test; Adjustment (p-value): Holm

14, sampling = joint multinomial $n \neq a \neq dr$. (a) null: $log_e(BF_{01}) = -42.65$, sampling = joint multinomial, a = 1.00

Quality: Very Good

$$\chi^2(18) = 17.95$$
, $p = 0.459$, $V_{\text{Cramer}} = 0.11$, $\text{Cl}_{95\%}$ [0.02, 0.11], $n = 477$

In favor of null: $log_e(BF_{01}) = 4.95$, sampling = poisson, a = 1.00

color

Η

G

Е

D

Quality: Ideal

$$\chi^2(18) = 17.85$$
, $p = 0.466$, $V_{\text{Cramer}} = 0.09$, $\text{Cl}_{95\%}$ [0.02, 0.08], $n = 785$

In favor of null: $log_e(BF_{01}) = 9.05$, sampling = poisson, a = 1.00

X = correlation non-significant at p < 0.05Adjustment (p-value): None

Adjustment (p-value): None

bodywt

vore: omni

sample size:

 $n_{\min} = 11$

nmedian = 17

 $n_{\text{max}} = 20$

= correlation non-significant at p < 0.05</p>
Adjustment (p-value): Holm

X = correlation non-significant at <math>p < 0.05Adjustment (p-value): Holm

cylinder count: 4

cylinder count: 6

In favor of null: $log_e(BF_{01}) = -6.20$, $r_{Cauchy} = 0.71$

In favor of null: $log_e(BF_{01}) = -0.23$, $r_{Cauchy} = 0.71$

cylinder count: 8

In favor of null: $log_e(BF_{01}) = -4.24$, $r_{Cauchy} = 0.71$

am: 0 $\chi^2(2) = 7.68, p = 0.021, n = 19$

am: 1 $\chi^2(2) = 4.77, \, \rho = 0.092, \, n = 13$

Sex: Male
$$\chi^2(3) = 106.05, p = < 0.001, n = 279$$

Sex: Female

$$\chi^2(3) = 84.23, \, p = < 0.001, \, n = 313$$

Quality: Fair

$$\chi^2(42) = 55.71$$
, $p = 0.076$, $V_{\text{Cramer}} = 0.23$, $\text{Cl}_{95\%}$ [0.11, 0.21], $n = 172$

vor of null: $log_e(BF_{01}) = -7.86$, sampling = poisson, a = 1.00

Quality: Very Good

$$\chi^{2}(42) = 64.05, p = 0.016, V_{Cramer} = 0.10, Cl_{95\%} [0.04, 0.08], n = 1187$$

vor of null: $log_e(BF_{01}) = 14.79$, sampling = poisson, a = 1.00

Quality: Ideal

$$\chi^2(42) = 153.32, p = < 0.001, V_{Cramer} = 0.11, Cl_{95\%} [0.07, 0.10], n = 2165$$

or of null: $log_e(BF_{01}) = -25.04$, sampling = poisson, a = 1.00

Cylinder count: 6

Cylinder count: 4

In favor of null: $log_e(BF_{01}) = 0.39$, $r_{Cauchy} = 0.71$

Genre: Drama

In favor of null: $log_e(BF_{01}) = -1.45$, $r_{Cauchy} = 0.71$

All movies have IMDB rating equal to 7.

