Cálculo ($\lambda x.\mathsf{L}x\mathsf{mbd}x$) a

Paradigmas de Lenguajes de Programación

Departamento de Ciencias de la Computación Universidad de Buenos Aires

29 de abril de 2025

Objetivo de la clase

Dada la siguiente expresión:

 $(\lambda x : \mathsf{Bool}.\ \lambda y : \mathsf{Bool} \to \mathsf{Bool}.\ y\ (y\ x))\ ((\lambda z : \mathsf{Bool}.\ \mathsf{true})\ \mathsf{false})\ (\lambda w : \mathsf{Bool}.\ w)$

¿Qué significa esto? ¿Significa algo? ¿Es válido? ¿Es un valor? ¿Cómo nos damos cuenta?

Cálculo lambda $1 \ / \ 20$

Vamos a ver

- Sintaxis del cálculo lambda
- Tipado
- Semántica operacional, estrategias de reducción
- * Extensión de números naturales

Cálculo lambda 2 / 20

Sintaxis

Los tipos del cálculo lambda simplemente tipado con booleanos se definen mediante la siguiente gramática:

$$\sigma ::= \mathsf{Bool} \mid \sigma \to \sigma$$

y sus términos son los siguientes:

$$M ::= x \mid \lambda x : \sigma.M \mid MM \mid \mathsf{true} \mid \mathsf{false} \mid \mathsf{if} \ M \mathsf{ then} \ M \mathsf{ else} \ M$$

donde $x \in \mathcal{X}$, el conjunto de todas las variables. Llamamos \mathcal{T} al conjunto de todos los términos.

Variables libres y ligadas

Las variables libres son todas aquellas fuera del alcance de las λ s. Se define la función fv : $\mathcal{T} \to \mathcal{P}(\mathcal{X})$, que dado un término devuelve un conjunto de las variables libres en él.

$$\begin{aligned} \mathsf{fv}(x) &= \{x\} & \mathsf{fv}(\mathsf{true}) &= \emptyset \\ \mathsf{fv}(\lambda x : \sigma.M) &= \mathsf{fv}(M) \backslash \{x\} & \mathsf{fv}(\mathsf{false}) &= \emptyset \\ \mathsf{fv}(MN) &= \mathsf{fv}(M) \cup \mathsf{fv}(N) & \mathsf{fv}(\mathsf{if}\ M\ \mathsf{then}\ N\ \mathsf{else}\ O) &= \mathsf{fv}(M) \cup \mathsf{fv}(N) \cup \mathsf{fv}(O) \end{aligned}$$

Un término se llama cerrado si no tiene variables libres, es decir, M es cerrado si y sólo si fv $(M)=\emptyset$.

Cálculo lambda 3 / 20

Sintaxis

Asociatividad v precedencia

$$\sigma \to \tau \to \rho = \sigma \to (\tau \to \rho) \neq (\sigma \to \tau) \to \rho$$

$$MNO = (MN)O \neq M(NO)$$

$$\lambda x : \sigma.MN = \lambda x : \sigma.(MN) \neq (\lambda x : \sigma.M)N$$

Las flechas en los tipos asocian a derecha.

La aplicación asocia a izquierda.

El cuerpo de la lambda se extiende hasta el final del término, excepto que haya paréntesis.

Ejercicio: ¿Cuáles de las siguientes expresiones son términos del cálculo lambda? En los casos que sí lo sean, dibujar su árbol sintáctico y marcar las ocurrencias libres de las variables.

- a) $\lambda x : \mathsf{Bool} \to \mathsf{Bool}.x$ true
- b) $x \ u \ \lambda x : \mathsf{Bool} \to \mathsf{Bool}.x \ u$
- c) $(\lambda x : \mathsf{Bool} \to \mathsf{Bool}.x\ y)(\lambda y : \mathsf{Bool}.x)$
- d) $\lambda x : Bool$
- e) $\lambda x.x$

- f) if x then y else λz : Bool.z
- g) $\lambda y : \sigma y$
- h) true false
- i) x M
- i) if x then λx : Bool.x

4 / 20

Tipos: La gramática que define los tipos del cálculo lambda simplemente tipado con booleanos es:

$$\sigma ::= \mathsf{Bool} \mid \sigma \to \sigma$$

Los contextos son conjuntos finitos de asociaciones entre tipos y variables. Por ejemplo:

$$\Gamma_1 = y: \mathsf{Bool} \to \mathsf{Bool} \qquad \Gamma_2 = y: \mathsf{Bool} \to \mathsf{Bool}, x: \mathsf{Bool}$$

son contextos válidos, pero

$$\Gamma_3 = y:\mathsf{Bool} \to \mathsf{Bool}, y:\mathsf{Bool}$$

no lo es.

Juicios de tipado: Un juicio de tipado es la relación $\Gamma \vdash M : \tau$ y se lee "en el contexto Γ , M es de tipo τ ". Por ejemplo:

$$\begin{aligned} \{x : \mathsf{Bool} \to \mathsf{Bool}\} \vdash x : \mathsf{Bool} \to \mathsf{Bool} \\ \vdash \mathsf{true} : \mathsf{Bool} \\ \{f : \mathsf{Bool} \to \mathsf{Bool}, x : \mathsf{Bool}\} \vdash fx : \mathsf{Bool} \end{aligned}$$

son juicios de tipado válidos.

Cálculo lambda 5 / 20

Sistema de tipado

Los juicios de tipado $\Gamma \vdash M : \tau$ válidos se pueden derivar mediante el siguiente sistema de reglas de deducción:

$$\frac{\Gamma, x : \tau \vdash X : \tau}{\Gamma, x : \tau \vdash X : \tau} \quad \frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x : \tau . M : \tau \to \sigma} \quad \text{T-Abs} \qquad \frac{\Gamma \vdash M : \tau \to \sigma}{\Gamma \vdash M N : \sigma} \quad \text{T-App}$$

Cálculo lambda 6 / 20

Ejercicio: chequeo de tipos

Derivar los siguientes juicios de tipado, o explicar por qué no son válidos.

- a) $\vdash (\lambda x : \mathsf{Bool}.\lambda y : \mathsf{Bool}.\mathsf{if}\ x \mathsf{ then true else } y) \mathsf{ false } : \mathsf{Bool} \to \mathsf{Bool}$
- b) $\{x : \mathsf{Bool}\} \vdash \mathsf{true} : \mathsf{Bool}$
- c) \vdash if x then x else z: Bool
- d) $\{x : \mathsf{Bool}\} \vdash \mathsf{if}\ x \mathsf{ then } x \mathsf{ else } (\lambda y : \mathsf{Bool}.y) : \mathsf{Bool} \to \mathsf{Bool}$

Cálculo lambda 7 / 20

Ejercicio: chequeo de tipos con incógnitas

Derivar un juicio de tipado para el siguiente término:

 $\lambda x : \rho . \lambda y : \sigma . \lambda z : \tau . x(xyz)$ (identificando qué tipos pueden ser τ , σ y ρ)

Ejercicio: tipos habitados

Decimos que un tipo τ está habitado si existe un término M tal que el juicio $\vdash M : \tau$ es derivable.

Demostrar si los siguientes tipos están habitados (para cualquier σ, τ, ρ):

- a) $\sigma \rightarrow \tau \rightarrow \sigma$
- b) $(\tau \to \rho) \to (\sigma \to \tau) \to (\sigma \to \rho)$
- c) $\sigma \rightarrow \tau$

Cálculo lambda 8 / 20

Semántica operacional

Consiste en un conjunto de reglas que definen la relación de reducción \to entre términos. Cuando $M \to N$, decimos que M reduce o reescribe a N.

Formas normales

Un término es o está en forma normal cuando no existe ninguna regla que lo reduzca a otro.

Determinismo

Decimos que la reducción está determinada (hay determinismo) cuando cada término que no está en forma normal tiene una única forma de reducir.

Estrategias de reducción

Para implementar un lenguaje, necesitamos una relación de reducción que esté determinada. Existen estrategias call-by-name y call-by-value. En la parte práctica de la materia vamos a usar la estrategia **call-by-value**, y en particular nos va a interesar mantener el determinismo de las reglas de reducción.

Cálculo lambda 9 / 2

Semántica operacional

La siguiente gramática de valores y las reglas de reducción definen la estrategia call-by-value.

$$V ::= \mathsf{true} \mid \mathsf{false} \mid \lambda x : \sigma.M$$

$$(\lambda x:\sigma.M)V\to M\{x:=V\} \qquad \qquad (\textit{E-AppAbs o }\beta)$$
 if true then M else $N\to M$
$$\qquad \qquad (\textit{E-IfTrue})$$
 if false then M else $N\to N$
$$\qquad \qquad (\textit{E-IfFalse})$$

Si $M \to N$, entonces:

$$MO \to NO \\ VM \to VN \\ \text{if M then O else P} \qquad \qquad \begin{array}{c} (\textit{E-App}_1 \circ \mu) \\ (\textit{E-App}_2 \circ \nu) \\ \end{aligned}$$

Cálculo lambda 10 / 20

Semántica operacional

Valores

Los valores son los resultados esperados de los programas. Se definen como los términos cerrados y bien tipados V producidos por la gramática de valores.

Ejercicio: ¿Cuáles de los siguientes términos son valores?

- a) if true then $(\lambda x : \mathsf{Bool}.x)$ else $(\lambda x : \mathsf{Bool}.\mathsf{false})$
- b) λx : Bool.false
- c) $(\lambda x : Bool.x)$ false

- d) true
- e) if x then true else false
- f) $\lambda x : \mathsf{Bool.}(\lambda y : \mathsf{Bool.}x)$ false
- g) $\lambda x : \mathsf{Bool} \to \mathsf{Bool}.x$ true

Ejercicio: ¿Cuál es el resultado de evaluar las siguientes expresiones? ¿El resultado es siempre un valor? Escribir la reducción paso por paso.

- a) $((\lambda x : \mathsf{Bool}.\lambda y : \mathsf{Bool}.\mathsf{if}\ x \mathsf{\ then\ true\ else}\ y) \mathsf{\ false})$ true
- b) $(\lambda x : \mathsf{Bool}.\lambda y : \mathsf{Bool} \to \mathsf{Bool}.y(yx))((\lambda z : \mathsf{Bool}.\mathsf{true}) \; \mathsf{false})(\lambda w : \mathsf{Bool}.w)$

Cálculo lambda 11 / 20

Determinismo

Ejercicio: Probar que la semántica operacional de cálculo lambda con booleanos, con la estrategia call-by-value, está determinada.

Es decir, probar que si $M o M_1$ y $M o M_2$, entonces $M_1 = M_2$.

Cálculo lambda $12 \ / \ 20$

Extensión con números naturales

Sintaxis y tipado

Se extienden las gramáticas de términos y tipos de la siguiente manera:

$$\begin{split} \sigma ::= \dots \mid \mathsf{Nat} \\ M ::= \dots \mid \mathsf{zero} \mid \mathsf{succ}(M) \mid \mathsf{pred}(M) \mid \mathsf{isZero}(M) \end{split}$$

Se extiende el sistema de tipado con las siguientes reglas:

$$\frac{\Gamma \vdash M : \mathsf{Nat}}{\Gamma \vdash \mathsf{zero} : \mathsf{Nat}} \ \ T\text{-}\mathit{Zero} \quad \frac{\Gamma \vdash M : \mathsf{Nat}}{\Gamma \vdash \mathsf{succ}(M) : \mathsf{Nat}} \ \ T\text{-}\mathit{Succ}$$

$$\frac{\Gamma \vdash M : \mathsf{Nat}}{\Gamma \vdash \mathsf{pred}(M) : \mathsf{Nat}} \ \ T\text{-}\mathit{Pred} \quad \frac{\Gamma \vdash M : \mathsf{Nat}}{\Gamma \vdash \mathsf{isZero}(M) : \mathsf{Bool}} \ \ T\text{-}\mathit{IsZero}$$

Cálculo lambda 13 / 20

Extensión con números naturales

Semántica operacional

Se extienden los valores de la siguiente manera:

$$V ::= \ldots \mid \mathsf{zero} \mid \mathsf{succ}(V)$$

Además, usamos la notación \underline{n} para $\operatorname{succ}^n(\operatorname{zero})$ con $n \geq 0$. Se extiende la semántica operacional con las siguientes reglas:

$$\begin{aligned} \mathsf{pred}(\mathsf{succ}(V)) &\to V & (\textit{E-PredSucc}) \\ \mathsf{isZero}(\mathsf{zero}) &\to \mathsf{true} & (\textit{E-IsZero}_0) \\ \mathsf{isZero}(\mathsf{succ}(V)) &\to \mathsf{false} & (\textit{E-IsZero}_n) \end{aligned}$$

Si $M \to N$, entonces:

$$\begin{split} \operatorname{succ}(M) &\to \operatorname{succ}(N) & (\textit{E-Succ}) \\ \operatorname{pred}(M) &\to \operatorname{pred}(N) & (\textit{E-Pred}) \\ \operatorname{isZero}(M) &\to \operatorname{isZero}(N) & (\textit{E-IsZero}) \end{split}$$

Cálculo lambda 14 / 20

Extensión con números naturales

Ejercicio

- a) Esta extensión ¿mantiene las propiedades de determinismo, preservación de tipos y progreso?
- b) ¿Qué términos representan las expresiones $\underline{0}$, $\underline{1}$ y $\underline{2}$? ¿Cómo reducen?
- c) Demostrar los siguientes juicios de tipado, o explicar por qué no son válidos:

```
* \vdash (\lambda x : \mathsf{Nat.succ}(x)) \mathsf{zero} : \mathsf{Nat}
```

- * $x : \mathsf{Bool} \vdash \mathsf{succ}(\mathsf{zero}) : \mathsf{Nat}$
- * $x : \mathsf{Bool} \vdash \mathsf{if} \ x \mathsf{ then} \ x \mathsf{ else} \mathsf{ zero} : \mathsf{Nat}$
- d) Escribir la reducción paso por paso de los siguientes términos:
 - * isZero(succ(pred(succ(zero))))
 - * isZero(pred(succ(pred(zero))))
 - * isZero(pred(succ(pred(x))))

Regla opcional si queremos recuperar la propiedad de Progreso:

$$\mathsf{pred}(\mathsf{zero}) \to \mathsf{zero}$$
 (*E-Pred*₀)

Notar que esto cambia la semántica.

Cálculo lambda 15 / 20

Simplificando la escritura

Podemos definir macros para expresiones que vayamos a utilizar con frecuencia. Por ejemplo:

$$\stackrel{\text{def}}{\leftarrow} \lambda x$$
: Bool. λy : Bool.if x then y else false

Cálculo lambda 16 / 20

Cambiando reglas semánticas

Supongamos que agregamos la siguiente regla para las abstracciones:

Si $M \to N$, entonces:

$$\lambda x \colon \tau . M \to \lambda x \colon \tau . N \tag{\zeta}$$

Ejercicio

1. Repensar el conjunto de valores para respetar esta modificación, pensar por ejemplo si λx : Bool Jd_{Bool} true es o no un valor. λx : Bool Δx ?

$$V ::= \mathsf{true} \mid \mathsf{false} \mid \lambda x \colon \sigma.F \mid 0 \mid \mathsf{succ}(V), \mathsf{donde} \mathsf{F} \mathsf{es} \mathsf{una} \mathsf{forma} \mathsf{normal}.$$

2. ¿Qué reglas deberían modificarse para no perder el determinismo?

$$(\lambda x : \sigma.F)V \to F\{x := V\} \tag{\beta}$$

3. Utilizando la nueva regla y los valores definidos, reducir la expresión: $\lambda z \colon \mathsf{Nat} \to \mathsf{Nat}.(\lambda x \colon \mathsf{Nat} \to \mathsf{Nat}.x \ 23) \lambda z \colon \mathsf{Nat}.0$

Cálculo lambda 17 / 20

Cambiando reglas semánticas

Supongamos que agregamos la siguiente regla para las abstracciones:

Si
$$M \to N$$
, entonces:

$$\lambda x \colon \tau.M \to \lambda x \colon \tau.N \tag{\zeta}$$

Ejercicio

3. Utilizando la nueva regla y los valores definidos, reducir la expresión:

$$\begin{array}{l} \lambda z \colon \mathsf{Nat} \to \mathsf{Nat}.(\lambda x \colon \mathsf{Nat} \to \mathsf{Nat}.x \ \underline{23}) \lambda z \colon \mathsf{Nat}.\underline{0} \\ \to_{\zeta,\beta} \lambda z \colon \mathsf{Nat} \to \mathsf{Nat}.(\lambda z \colon \mathsf{Nat}.\underline{0}) \ \underline{23} \\ \to_{\zeta,\beta} \lambda z \colon \mathsf{Nat} \to \mathsf{Nat}.\underline{0} \end{array}$$

¿Qué se puede concluir? ¿Tiene sentido o no agregar esta regla?

Cálculo lambda 18 / 20

Para la próxima clase: extensiones

Intenten hacer los ejercicios 20 y 21 de la guía 4 (extensiones con pares y uniones disjuntas) para la próxima clase práctica.

Cálculo lambda 19 / 20

Continuará... $(\lambda x : Clase.fin \ x)$ (Cálculo Lambda I)