Программа минимум по электродинамике

Записать формулы и построить графики (без вывода), объяснить используемые в них обозначения: дать требуемые определения

- 1) Запись функции, определяющей зависимость полей и векторных потенциалов гармонической плоской волны в линии передачи от времени t и продольной координаты z. Понятия частоты, временного периода, продольного волнового числа, длины волны, фазовой и групповой скорости.
- 2) Волновое уравнение для векторного потенциала в отсутствие источников при произвольной и гармонической зависимости от времени. Дифференциальное уравнение для функций поперечных координат $\varphi^{(e)}$ и $\varphi^{(m)}$. Понятие поперечного волнового числа.
- 3) Понятие о ТЕ, ТМ и ТЕМ волнах. Импедансная связь поперечных компонент полей. Определение поперечного волнового импеданса.
- 4) Граничные условия для полей и функций $\varphi^{(e)}$ и $\varphi^{(m)}$ в линиях передачи с идеально проводящими границами. Математическая формулировка задачи отыскания собственных волн различных типов в идеальной линии.
- 5) Дисперсионное уравнение для волн в идеальных линиях. Понятие критической частоты и критической длины волны. Графики зависимости полей от продольной координаты в различные моменты времени при частотах, больших или меньших критической. Зависимости длины волны, фазовой и групповой скорости в линии передачи от частоты.
- 6) В каких линиях могут существовать главные (ТЕМ) волны? Поля ТЕМ волны в коаксиальной линии.
- 7) Спектр поперечных волновых чисел прямоугольного волновода. Низшая мода (поперечное волновое число, графики поля, картина силовых линий). Низшая мода круглого волновода (поперечное волновое число, картина силовых линий).
- 8) Причины затухания волн в линиях передачи. Описание затухания, обусловленного потерями энергии в заполняющей среде. Графики зависимости поля в линии передачи с потерями от продольной координаты в различные моменты времени.
- 9) Описание главных волн в линиях передачи в терминах тока и напряжения: определения величин тока и напряжения, погонной емкости и индуктивности, определения волнового сопротивления, импеданса нагрузки, импеданса в любом сечении линии с произвольной нагрузкой на конце.
- 10) Коэффициент отражения волны от нагрузки на конце линии. Понятие согласования линии с нагрузкой.

- 11) Спектр собственных частот идеального прямоугольного резонатора. Низшая мода прямоугольного резонатора (собственная частота, структура поля).
- 12) Причины затухания колебаний в реальных резонаторах. Описание затухания, обусловленного потерями энергии в заполняющей среде. График зависимости поля собственного колебания в реальном резонаторе от времени
- 13) Представление полей, создаваемых в волноводе заданными сторонними токами, в виде суперпозиции полей собственных мод (общий вид формул возбуждения волноводов)
- 14) Представление полей, создаваемых в резонаторе заданными сторонними токами, в виде суперпозиции полей собственных колебаний (общий вид формул возбуждения резонатора). Резонансные свойства полей.
- 15) Способы возбуждения волноводов и резонаторов при помощи штыря и петли.
- 16) Определения дифференциального и полного сечений рассеяния тела. Выражение для амплитуды поля и плотности потока энергии рассеянной волны в дальней зоне через дифференциальное сечение рассеяния.
- 17) Условие применимости приближения геометрической оптики в задачах дифракции.

Задачи № 10.1 (а), 10.2, 10.4(а,б), 10.5(а,б), 10.7, 10.8, 10.16, 10.18(6), 10.19, 10.22, 10.23, 10.31(а,б), 10.33 (резонатор без плазмы), 10.35(а), 10.36, 10.38, 10.48, 11.1(1,2,3) (В.Б. Гильденбург, М.А. Миллер, Сборник задач по электродинамике, 2001 г.).

Для плоской гармонической волны (ТЕМ) функция, определяющая зависимость полей, задается следующим образом

$$\vec{A}^e = \varphi^e(\vec{r}_\perp)e^{-ihz}\vec{z}_0$$

Где \vec{A}^e — векторный потенциал поля, а $\varphi^e(\vec{r}_\perp)$ называется поперечной волновой функцией. Поля \vec{E} и \vec{H} определяются следующим образом

$$\vec{H} = \frac{1}{\mu} \operatorname{rot} \vec{A}^e$$

$$\vec{E} = -\frac{1}{c} \frac{\partial \vec{A}^e}{\partial t} - \nabla \varphi$$

Где φ – скалярный потенциал поля.

Используя условие калибровки Лоренца

$$\operatorname{div} \vec{A}^e + \frac{\varepsilon \mu}{c} i\omega \varphi = 0$$

Получим выражения для нахождения полей \vec{E} и \vec{H} в случае гармонической волны:

$$\vec{H} = \frac{1}{\mu} \operatorname{rot} \vec{A}^e$$

$$\vec{E} = \frac{1}{ik_0\varepsilon\mu} (\nabla \operatorname{div} + k^2) \vec{A}^e$$

$$k_0 = \frac{\omega}{c}, \quad k = \frac{\omega}{c} \sqrt{\varepsilon \mu}$$

Понятие частоты ω — равна количеству повторений или возникновения событий (процессов) в единицу времени.

Понятие временного периода $T=\frac{2\pi}{\omega}$ – время, за которое совершается полное колебание.

Понятие продольного волнового числа $h = \frac{2\pi}{\lambda}$ – волновым числом называется быстрота роста фазы волны по пространственной продольной координате.

Понятие длины волны λ – пространственный период колебаний. Расстояние между двумя ближайшими друг к другу точками в пространстве, в которых колебания происходят в одинаковой фазе.

Понятие фазовой v_{Φ} и групповой скорости $v_{\rm rp}$. Фазовая скорость – скорость перемещения поверхности постоянной фазы. Групповая скорость – скорость перемещения квазимонохроматического пакета.

$$v_{\Phi} = \frac{\omega}{h}, \quad v_{\text{rp}} = \frac{\partial \omega}{\partial h} \Big|_{\omega = \omega_0}$$

Где ω_0 – несущая частота группового пакета.

Волновое уравнение для векторного потенциала в случае произвольной зависимости от времени и отсутствия сторонних источников

$$\Delta \vec{A} - \frac{\varepsilon \mu}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = 0$$

Волновое уравнение для векторного потенциала в случае гармонической зависимости от времени и отсутствия сторонних источников

$$\Delta \vec{A} + k^2 \vec{A} = 0$$

$$\frac{\partial}{\partial t} \to i\omega, \quad k^2 = \frac{\omega^2}{c^2} \varepsilon \mu$$

Дифференциальное уравнение для функций поперечных координат $\varphi^{(e)}$ и $\varphi^{(m)}$. Понятие поперечного волнового числа.

$$\vec{A}^e = \varphi^e(\vec{r}_\perp)e^{-ihz}\vec{z}_0$$

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} = \Delta_{\perp} + \frac{\partial^2}{\partial z^2}$$

– для декартовой системы координат.

$$\Delta A_z^e + k^2 A_z^e = \Delta_\perp \varphi^e + (k^2 - h^2) \varphi^e = 0$$

Тогда дифференциальное уравнение для функций поперечных координат $\varphi^{(e)}$ и $\varphi^{(m)}$ выглядит следующим образом

$$\Delta_{\perp} \varphi^{(e,m)} + \varkappa^2 \varphi^{(e,m)} = 0$$

 Γ де \varkappa – поперечное волновое число.

Если функции $\varphi^{(e)}$ и $\varphi^{(m)}$ удовлетворяют двумерному уравнению Гельмгольца, то поля удовлетворяют уравнению Максвелла.

Используем выражения для полей через векторный потенциал

$$\vec{H} = \frac{1}{\mu} \operatorname{rot} \vec{A}^e$$

$$\vec{E} = \frac{1}{k_0 \varepsilon \mu} (\nabla \operatorname{div} + k^2) \vec{A}^e$$

Вычислим $\nabla div \vec{A}^e$ и $rot \vec{A}^e$ при условии $\vec{A}^e = \varphi^e(\vec{r}_\perp) e^{-ihz} \vec{z}_0$

$$\operatorname{div} \vec{A}^e = -ih\varphi^e(\vec{r}_\perp)e^{-ihz}$$

$$\nabla \operatorname{div} \vec{A}^e = (-h^2\varphi^e\vec{z}_0 - ih\nabla_\perp\varphi^e)e^{-ihz}$$

$$\operatorname{rot} \vec{A}^e = [\nabla A_z^e, \vec{z}_0] = [\nabla_\perp\varphi^e, \vec{z}_0]e^{-ihz}$$

Тогда получим следующие выражения для комплексных амплитуд полей ТМ волны

$$e^{-ihz} \cdot \begin{cases} E_z = \frac{\varkappa^2}{k_0 \varepsilon \mu} \varphi^e(\vec{r}_\perp) \\ \vec{E}_\perp = -\frac{h}{k_0 \varepsilon \mu} \nabla_\perp \varphi^e(\vec{r}_\perp) \\ \vec{H}_\perp = \frac{1}{\mu} [\nabla_\perp \varphi^e(\vec{r}_\perp, \vec{z}_0)] \\ H_z = 0 \end{cases}$$

 ${
m TM}$ – поперечная магнитная волна. Магнитное поле чисто поперечно пути распространения, но поле $\vec{E}=\vec{E}_{\parallel}+\vec{E}_{\perp}$ имеет продольную и поперечную составляющую.

Уравнения Максвелла симметричны относительно полей, но мы получили неравноправные выражения для векторов. Это объясняется тем, что мы нашли одно из решений. Воспользовавшись принципом двойственности $\vec{E} \to \vec{H}, \ \vec{H} \to -\vec{E},$ можно получить выражения для комплексных амплитуд полей TE волны.

$$e^{-ihz} \cdot \begin{cases} H_z = \frac{\varkappa^2}{k_0 \varepsilon \mu} \varphi^e(\vec{r}_\perp) \\ \vec{H}_\perp = -\frac{h}{k_0 \varepsilon \mu} \nabla_\perp \varphi^e(\vec{r}_\perp) \\ vecE_\perp = -\frac{1}{\varepsilon} [\nabla_\perp \varphi^e(\vec{r}_\perp, \vec{z}_0)] \\ E_z = 0 \end{cases}$$

функция φ не обязана быть такой же, поэтому изменяется верхний индекс на m, эта функция также должна удовлетворять уравнению Гельмгольца

$$\Delta_{\perp} \varphi^m + \varkappa^2 \varphi^m = 0$$

Таким образом для системы уравнений Максвелла возможны два решения ТМ и ТЕ волны. Но есть случай, когда поля чисто поперечны это случай ТЕМ волны. Когда $\varkappa=0$, то есть k=h, продольные компоненты магнитного и электрического полей отсутствуют это и есть ТЕМ волна.

$$e^{-ihz} \cdot \begin{cases} H_z = E_z = 0 \\ \vec{E}_{\perp} = -\frac{1}{\varepsilon \mu} \nabla_{\perp} \varphi(\vec{r}_{\perp}) \\ \vec{H}_{\perp} = \frac{1}{\mu} [\nabla_{\perp} \varphi(\vec{r}_{\perp}, \vec{z}_0)] \end{cases}$$

 φ — поперечная волновая функция, удовлетворяющая уравнению $\Delta \varphi = 0$. Из формул выше видно, что поперечные компоненты полей удовлетворяют импедансному соотношению

$$ec{E}_{\perp} = \eta_{\perp ext{ iny B}} [ec{H}_{\perp}, ec{z}_0]$$

где $\eta_{\perp_{\mathrm{B}}}$ называется поперечным волновым сопротивлением

$$\eta_{\perp_{
m B}} = \sqrt{rac{\mu}{arepsilon}} \left(rac{k}{h}
ight)^{\pm 1}$$

«+» — соответствует волне типа TE, а «-» — волне типа TM. Для TEM волны $\eta_{\perp {\rm B}} = \sqrt{\frac{\mu}{\varepsilon}}$

Рис. 1. Линия передачи

Поперечные волновые функции удовлетворяют двумерному уравнению Гельмгольца

$$\Delta_{\perp} \varphi^{(e,m)} + \varkappa^2 \varphi^{(e,m)} = 0$$

На границе проводящих стенок справедливы следующие граничные условия

$$E_{\tau} = 0|_{S}, \quad B_{n} = 0|_{S}$$

Рассмотрим граничные условия для функций $\varphi^{(e,m)}$ для различных типов волн. Математическая формулировка задачи описания волн в линии передач.

TM

$$\Delta_{\perp} \varphi^e + \varkappa^2 \varphi^e = 0$$

 $\varphi^e|_L = 0$ Условие Дирихле.

$$\Delta_\perp \varphi^m + \varkappa^2 \varphi^m = 0$$
 $\frac{\partial \varphi^m}{\partial n}|_L = 0$ Условие Неймана. Где \vec{n} – нормаль к контуру L на границе поперечного сечения.

TEM

$$\Delta_{\perp}\varphi=0$$

$$\varphi|_{L_i} = C_i$$

Таким образом описание волн в линии передач сводится к двумерной задачи Гельмгольца с следующими граничными условиями на контуре, охватывающим поперечное сечение волновода.

Дисперсионное соотношение

$$\varkappa^2 = k^2 - h^2 = \frac{\omega^2}{c^2} \varepsilon \mu - h^2$$

Где \varkappa – поперечное волновое число, а h - продольное волновое число.

Рис. 2. Зависимость реальной части поперечного волнового числа от частоты

Любая мода в линии передачи характеризуется поперечным волновым числом, а поперечное волновое число определяет продольное.

Можем ввести критическую длину волны (продольное волновое число h равно нулю):

$$\varkappa^{2} = \frac{\omega^{2}}{c} \varepsilon \mu$$

$$\omega_{cr} = \frac{\varkappa c}{\sqrt{\varepsilon \mu}}$$

$$\lambda = \frac{2\pi c}{\omega_{cr}} = \frac{2\pi}{\varkappa \sqrt{\varepsilon \mu}}$$

 $\omega < \omega_{cr}$ дисперсионное уравнения не имеет действительных решений – режим нераспространяющейся волны.

При $\omega > \omega_{cr}$ – режим распространяющейся волны.

Бегучести нет. Зависимость экспоненциальная

1) Длина волны в волноводе (подразумевают линию передачи или трубу, когда говорят волновод)

$$\lambda_v = \frac{2\pi}{h} = \frac{2\pi}{\sqrt{k^2 - \varkappa^2}} = \frac{2\pi}{k} \frac{1}{\sqrt{1 - \frac{\varkappa^2}{k^2}}} = \frac{\lambda_0}{\sqrt{1 - \frac{\omega_c r^2}{\omega}}} > \lambda_0$$

Рис. 3. Распространение волны (h > 0)

Рис. 4. Режим нераспространения (h < 0)

Рис. 5. Экспоненциальное нарастание амплитуды (при h < 0)

Когда $\omega \to \omega_{cr} \ \lambda_v \to \infty$

 λ_0 - длина волны в пространстве без волновода в той же среде.

 λ_v - пространственный период.

2) Фазовая скорость - скорость перемещения плоскости постоянной фазы. Поверхность постоянной фазы - это когда фаза константа.

$$faza = \omega t - hz + \varphi_0$$

При данном времени можно найти координату:

$$z = \frac{\omega t + \varphi_0}{h}$$

Координата будет перемещаться со скоростью:

$$v_f = \frac{\omega}{h}$$

$$v_f = \frac{\omega}{\sqrt{k^2 - \varkappa^2}} = \frac{\omega}{k} \frac{1}{\sqrt{1 - \frac{k^2}{\varkappa}}} = \frac{\omega}{k} \frac{1}{\sqrt{1 - \frac{\omega_{cr}^2}{\omega}^2}} > v_f^{(0)}$$

$$v_f^{(0)} = \frac{c}{\varepsilon \mu} = \frac{\omega}{k}$$

Фазовая скорость может быть больше скорости света.

3) Групповая скорость - скорость перемещения квазимонохроматического волнового пакета.

Пакет движется со скоростью $v_{gr} = \frac{\partial \omega}{\partial k}|_{\omega=\omega_0}$ – это при малом или отсутствующем поглощении.(В пространстве, а не в линии передачи).

При большом поглощении это понятие теряет смысл.

По мере перемещения по волноводу форма сигнала будет меняться.

 $v_{gr} = \frac{\partial \omega}{\partial h}|_{\omega = \omega_0}$ - формула для волновода.

Главные (TEM) волны в линиях передачи с идеальными границами У TEM-волн поперечное волновое число $\varkappa = 0$:

$$\varkappa = 0 \Rightarrow h = k = \frac{\omega}{c} \sqrt{\varepsilon \mu}$$

Поля таких воли выражаются следующим образом через функцию φ :

$$\begin{split} \vec{E}_{\perp} &= -\frac{1}{\sqrt{\varepsilon\mu}} \nabla_{\perp} \varphi \\ \vec{H}_{\perp} &= -\frac{1}{\mu} [\nabla_{\perp} \varphi, \vec{z}_0] \end{split}$$

вдоль одиночного проводника TEM-волна с конечной энергией распространятся не может. Распространение возможно, если количество проводников будет больше одного. Например, в линии из двух проводников (рис. 6) ТЕМ-волна уже возможна.

Рис. 6. Закрытая линия из двух проводников

 ${
m TEM}$ -волна в идеальной линии передачи возможна, если число проводников ≥ 2 . Например, в коаксиальной линии (рис. 7) ${
m TEM}$ -волна возможна.

Рис. 7. Поле в коаксиальном кабеле

Спектр поперечных волновых чисел прямоугольного волновода. Поперечные волновые числа появляются как собственные числа решения уравнения Гельмгольца с граничными условиями прямоугольного волновода. Спектр найденных таким образом собственных чисел описывается формулой

$$\varkappa_{mn}^2 = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2$$

Здесь m, n – индексы моды, a, b – размеры сечения волновода. Для однозначности мы всегда считаем, что a>b.

Низшая мода. По определению, такой модой называется мода с наименьшим поперечным волновым числом. Так как мы предполагали a > b, очевидно, наименьшее возможное нетривиальное поперечное волновое число будет при m = 1, n = 0:

$$\varkappa_{10}^2 = \frac{\pi^2}{a^2}$$

Заметим, что это возможно только для ТЕ-волн, так как решение ТМ-волн не позволяет занулить m, n одновременно (это приведет к тривиальной поперечной волновой функции). Так что низшая мода прямоугольного волновода — TE_{10} .

Рис. 8. Структура полей \vec{E} и \vec{H} моды TE_{10} (\vec{H} изображено пунктиром)

Низшая мода круглого волновода . Она определяется так же, но решение уравнения идет в бесселевых функциях, и поэтому поперечное волновое число имеет другой вид, и низшей модой будет TE_{11} :

$$\varkappa_{11} = \frac{\mu_{11}}{a},$$

где μ_{11} – значение аргумента функции Бесселя J_1 при 1-м нуле своей прозводной. При этом график моды будет похож на график в прямоугольном волноводе: его можно получить чисто геометрически, постепенно сминая границы волновода, делая его более круглым. Говоря более точно, топологически эти моды подобны.

Рис. 9. Структура полей \vec{E} и \vec{H} моды TE_{11} круглого волновода (\vec{H} изображено пунктиром)

Причины затухания волн в линиях передачи. В реальных линиях передачи волна распространяется с затуханием за счет ∂syx причин: $nomepu\ s\ заполняющей\ soлновод\ cpede$ и $nomepu\ s\ cmenkax\ soлноводa$. Мы их учитываем по-отдельности: решаем задачу о потерях в среде, считая стенки $\sigma=\infty$, и наоборот.

Описание затухания, обусловленного потерями энергии в заполняющей среде. Чтобы учесть потери в среде, подставим комплексную диэлектрическую проницаемость в дисперсионное уравнение:

$$\varepsilon_k = \varepsilon' - i \frac{4\pi\sigma}{\omega} \quad \to \quad h^2 = \frac{\omega^2}{c^2} \varepsilon \mu - \varkappa$$

Расчеты проводятся при $\mu=1$. Волновое число становится комплесным h=h'+ih'', и в случае малых потерь можно найти h'', которое определяет затухание. Для частот, далеких от критической,

$$h'' = rac{arepsilon'' k_0^2}{2h'},$$
 где $h' = \sqrt{rac{\omega^2}{c^2} arepsilon' - arkappa^2}$

При $\omega > \omega_{\rm cr}$ амплитуда волны уменьшается в e раз на расстоянии $L = (h'')^{-1}$. Нетрудно нарисовать графики: это будет сдвигающаяся волна с огибающей в виде спадающей экспоненты.

Графики зависимости поля в линии передачи с потерями от продольной координаты в различные моменты времени. Здесь синим цветом показан график в следущий момент времени, желтым - в предыдущий, зеленым - огибающая (экспонента).

Рис. 10. Затухание поля в линии передачи

Описание главных волн в линиях передачи в терминах тока и напряжения.

В системе проводников, когда их количество больше или равно двум, могут распространяться главные (TEM) волны. Именно их, в случае двухпроводной линии, можно описать с помощью телеграфных уравнений:

$$\begin{cases} \frac{\partial I}{\partial z} = -C \frac{\partial V}{\partial t} \\ \frac{\partial V}{\partial z} = -\frac{L}{c^2} \frac{\partial I}{\partial t} \end{cases}$$

Они были написаны раньше, чем уравнения Максвелла. Они не дают информации о поле во всем пространстве, а оперируют только интегральными характеристиками: током V(z,t) и напряжением $I(z,t)^1$. Здесь введен ряд понятий, которые надо раскрыть подробнее.

Погонные емкость C, **индуктивность** L. Они вводятся как емкость (индуктивность) на единицу длины, или, выражаясь физически более верно, это отношение емкости (индуктивности) бесконечно малого отрезка двухпроводной линии к её длине. Так же вводится nosonhui 3apsd Q.

Напряжение. По определению, напряжение в двухпроводной линии, в которой распространяется главная волна, будет интеграл

$$V(z) = \int_{(1)}^{(2)} E_l \, \mathrm{d}l,$$

где интегрирование ведется в плоскости сечения $z={\rm const}$ от одного провода до другого, и не зависит от формы контура. Такое возможно в случае потенциальных полей: поле же главной волны в поперечном сечении потенциально ($\vec{E}=-{\rm grad}\,\varphi$). Хотя в целом оно не потенциально:

$$\operatorname{rot} \vec{E} = \operatorname{rot} \left[\nabla_{\perp} \varphi(\vec{r}_{\perp}) \cdot e^{-ihz} \right]$$

Ток. Ток в сечении двухпроводной линии есть отношение количества заряда, проходящего в единицу времени через сечение $z=\mathrm{const}$ одного провода, к единице времени $(I=\mathrm{d}Q\,/\,\mathrm{d}t).$

 $^{^1\}Pi$ родифференцировав второе уравнение по z и первое по t, и подставив первое во второе, мы получим волновое уравнение.

Волновое сопротивление (характеристический импеданс). В терминах тока и сопротивления, это есть отношение напряжения бегущей волны к току бегущей волны в одном сечении. Выражение можно получить, подставив $V = V_0 \cdot e^{i(\omega t \pm kz)}$, $I = I_0 \cdot e^{i(\omega t \pm kz)}$ в волновое уравнение:

$$Z_{\scriptscriptstyle
m B} = \left| rac{V_{
m der}(z)}{I_{
m der}(z)}
ight| = rac{1}{c} \sqrt{rac{L}{C}}$$

Импеданс нагрузки. Он вводится как отношение напряжения на нагрузке к току в нагрузке:

 $Z_{\scriptscriptstyle \mathrm{H}} = rac{V_{\scriptscriptstyle \mathrm{H}}}{I_{\scriptscriptstyle \mathrm{H}}}$

Импеданс в произвольном сечении линии. Он определяется как Z(z) = V(z)/I(z), и с этим тесно связана формула пересчета импеданса, а именно, можно узнать импеданс в любом сечении линии, зная волновой импеданс и импеданс произвольной нагрузки на конце. Тогда, считая положение нагрузки в z=0, формула принимает вид

 $Z(z=-L) = Z_{\rm\scriptscriptstyle B} \frac{Z_{\rm\scriptscriptstyle H} + i Z_{\rm\scriptscriptstyle B} \operatorname{tg} k L}{Z_{\rm\scriptscriptstyle B} + i Z_{\rm\scriptscriptstyle H} \operatorname{tg} k L}$

Коэффициент отражения волны от нагрузки на конце линии. Это может быть коэффициент отражения по току или по напряжению. Обычно, когда не упоминается чего, считается, что напряжения. По определению, это

$$\Gamma = rac{V_{
m orp}}{V_{
m nag}} = ({
m ec}$$
ли посчитать $) = rac{Z_{
m H} - Z_{
m B}}{Z_{
m H} + Z_{
m B}}$

Понятие согласования линии с нагрузкой. Линия называется согласованной, если нет отраженной волны: $\Gamma=0$. Для этого нужно, чтобы было $Z_{\rm H}=Z_{\rm B}$.

Спектр собственных частот идеального прямоугольного резонатора. Его можно найти, если взять прямоугольный волновод и металлизировать сечения нулей электрического поля, удовлетворив граничному условию $E_{\tau}=0$:

$$\omega_{mnp} = \frac{\pi c}{\sqrt{\varepsilon \mu}} \sqrt{\frac{m^2}{a^2} + \frac{n^2}{b^2} + \frac{p^2}{L^2}},$$

где a>b – размеры поперечного сечения, L – длина резонатора.

Низшая мода прямоугольного резонатора. Если b < a, b < L, то низшей модой будет TE_{101} :

$$\omega_{101} = \frac{c}{\sqrt{\varepsilon\mu}} \sqrt{\left(\frac{\pi}{a}\right)^2 \left(\frac{\pi}{L}\right)^2}$$

Надо заметить, что TE/TM здесь условно, так как зависит от выбора осей. Пусть ребро a вдоль $x,\,b$ вдоль $y,\,L$ вдоль z. Структура поля тогда

$$\vec{E} = \vec{y_0} E_0 \sin\left(\frac{\pi}{a}x\right) \sin\left(\frac{\pi}{L}z\right) e^{i\omega_{101}t}$$

Причины затухания колебаний в реальных резонаторах. Как и в случае линии передачи, причин две: потери в заполняющей среде (комплексная ε) и потери в стенках ($\sigma \neq \infty$).

Затухание за счет потерь в заполнении. Чтобы его найти, нужно действовать стандартно: представить $\varepsilon = \varepsilon' + i\varepsilon''$, аналогично $\mu = \dots$ Связь частот определяется формулой

$$\omega = \frac{\omega^{(0)}}{\sqrt{\varepsilon \mu}},$$

где $\omega^{(0)}$ – спектр незаполненного резонатора. Отсюда найдется ω'' ($\omega=\omega'+i\omega''$), и тогда затухание будет происходить как

$$E, H \sim e^{i\omega t} \sim e^{i\omega' t} \cdot e^{-i\omega'' t}$$

При $\mu=1$ оказывается, что $\omega''\sim -\varepsilon''$. Это не ошибка, так как $\varepsilon''<0$.

График собств. колебаний в реальном резонаторе от времени. Для прямоугольного резонатора можно построить $\operatorname{Re} E_x(t)$, это будет синусоида, вписанная в огибающую – убывающую экспоненту:

Рис. 11. Затухание поля в резонаторе со временем

Рис. 12. Заданные источники тока в ЛП

Представление полей в ЛП как суперпозицию мод. Пусть в волноводе в области от z_1 до z_2 заданы токи \vec{j}^e и \vec{j}^m . Тогда поля вне области источников тока можно найти как суперпозицию собственных мод волновода:

$$\vec{E}(z > z_2) = \sum_{p=1}^{\infty} a_p \vec{E}_p$$

$$\vec{E}(z < z_1) = \sum_{p=1}^{\infty} a_{-p} \vec{E}_{-p},$$

где p - индекс моды в волноводе. коэффициента a_p и a_{-p} находятся следующим образом:

$$a_{p} = \frac{1}{N_{p}} \int_{V} \left[(\vec{j}^{e}, \vec{E}_{-p}) - (\vec{j}^{m}, \vec{H}_{-p}) \right] dV$$

$$a_{-p} = \frac{1}{N_{p}} \int_{V} \left[(\vec{j}^{e}, \vec{E}_{p}) - (\vec{j}^{m}, \vec{H}_{p}) \right] dV,$$

где N_p - это норма моды $p,\,N_p=\pm 4\Pi_p,$ где Π_p - мощность моды типа p.

Представление полей в резонаторе как суперпозицию мод Пусть в резонаторе с идеально проводящими стенками заданы токи $\vec{j}^e e^{i\omega t}$ и $\vec{j}^m e^{i\omega t}$. Тогда вне области источников тока можно найти поля как суперпозицию собственных мод резонатора:

$$ec{E} = \sum_{p=1}^{\infty} e_p ec{E}_p + ec{E}_{\scriptscriptstyle \Pi}$$
 $ec{H} = \sum_{p=1}^{\infty} h_p ec{H}_p + ec{H}_{\scriptscriptstyle \Pi},$

р – индекс собственной моды резонатора.

Сумма это вихревая часть поля, а $E_{\rm n}$ – потенциальная часть поля. Решения для первого и второго слагаемого рассматриваются отдельно. Для потенциальной части необходимо решить задачу Пуассона для φ^e и φ^m с гран. условиями

$$\Delta \varphi^e = -\frac{4\pi}{\varepsilon} \rho^e, \ \varphi^e \bigg|_S = 0$$
$$\Delta \varphi^m = -\frac{4\pi}{\mu} \rho^m, \ \frac{\partial \varphi^e}{\partial n} \bigg|_S = 0$$

Коэффициенты e_p и h_p ищутся следующим образом:

$$e_{p} = \frac{1}{N_{p}} \left(\frac{i}{\omega^{2} - \omega_{p}^{2}} \right) \int_{V} \left(\omega \left(\vec{j}^{e}, \vec{E}_{p} \right) - \omega_{p} \vec{j}^{m} \vec{H}_{p} \right) dV$$
$$h_{p} = \frac{1}{N_{p}} \left(\frac{i}{\omega^{2} - \omega_{p}^{2}} \right) \int_{V} \left(\omega_{p} \left(\vec{j}^{e}, \vec{E}_{p} \right) - \omega \vec{j}^{m} \vec{H}_{p} \right) dV,$$

 ω — частота источника, ω_p — собственная частота резонатора, N_p — норма собственного колебания

$$N_p = \frac{1}{4\pi} \int_V \varepsilon \left(\vec{E}_p \right)^2 dV = -\frac{1}{4\pi} \int_V \mu \left(\vec{H}_p \right)^2 dV =$$

Способы возбуждения волноводов и резонаторов при помощи штыря и петли. Основной идеей является расположение возбуждающего элемента таким образом, чтобы порождаемое им поле совпадало с полем одной из мод резонатора (или волновода). Возмущение будет минимальным, если располагать штырь или петлю в точке, где соответствующее поле максимально. Так, в случае прямоугольного волновода петлю лучше располагать вблизи его стенки, поскольку там поле \vec{H} принимает наибольшее значение

Дифференциальное и полное сечения рассеяния тела.

$$\sigma_{\mathrm{диф\Phi}} = rac{1}{S_{\mathrm{пад}}} rac{\mathrm{d}P}{\mathrm{d}\Omega},$$

где S— плотность потока падающей энергии (вектор Пойтинга), $\mathrm{d}P = S_{\mathrm{рассеяния}}\,\mathrm{d}\sigma$ — дифференциал мощности, Ω — телесный угол.

 $\sigma_{\rm дифф}$ – площадка, через которую проходит столько энергии, сколько переизлучается в единице телесного угла в данном направлении.

$$\int_{0}^{4\pi} \frac{\mathrm{d}P}{\mathrm{d}\Omega} \, \mathrm{d}\Omega = P_{\text{полн}}$$

 $P_{\text{полн}}$ – полный поток энергии, средний по времени, исходящий от тела.

$$\sigma_{\text{полн}} = \frac{P_{\text{полн}}}{S_{\text{пал}}}$$

 $\sigma_{\text{полн}}$ указывает на полную рассеивающую способность тела.

Приближение геометрической оптики. Геометрическая оптика не работает в случае если:

- 1) задача на границе света и тени
- 2) задача на ребре или отверстии задача в области каустики

Во всех других случай г.о. можно применять, если характерный размер тела много больше длины волны.

$$L \gg \lambda$$