Name -> Vyay Singh Roll 100-) 1961192 Sec -) C Assignment-1 Ang-I Asymptotic notations are the mathematical notations used to describe the running time of an algo when the i/p tends towards a particular value or a limiting value. There are mainly 3 asymptotic notation. a) Big-0 notation => It represents the upper bound of running time of an algo. This notation is called as upper bound of the algo or a worst case of an algo-o(g(n))= & b(n) there exist positive constants c'el no such that o < b(n) h(n) = 3/09 n + 100 g(h) = logh. 3 logn + 100 <= C * log (n) · c = 1 < 0 & n>2 (undefined at nel)

Big omega (2) notation=) It represents the lower bound of the running time of an algo. This notation is known as low-bound of an algo, or best case of an algor So (q(n)) = of b(n): there exist (thre constant X Elmor such that o Leg (n) < b(n) + n, n> no. $\frac{1}{2}(n) = 3n + 2$ cy (n) 4 b [c = constant, g(n)=n] $\frac{cn = 3n + 2}{cn - 3n + 2}$ $\frac{cn - 3n + 2}{n (c - 3) + 2}$ $\frac{cn - 3n + 2}{n (c - 3) + 2}$ $\frac{eg(n)}{n - 2}$ cn ≤ 3n+2 if we assume c= le, then no=2, c=4, No= 2 c) Theta (8) notation =) It endose the bundion from above El below. Since, it proposents the upper al louges bound of running time of an algo. This is known as tight bounds of an algo, or an arrange case of algo-

 $\theta\left(g(n)\right) = \sqrt{b(n)}$ there exid positive cont $0 \le c_1 \cdot c_2 \cdot 2l \cdot no \cdot such that$ $0 \le c_1 \cdot x \cdot g(n) \le b(n) \le c_2 \cdot x \cdot g(n) + n > no$ $e_{0}g_1$ $b(n) = 5 n^3 + 1b n^2 + 3n + 8$

 $5n^{3} \leq (n^{3} + 16n^{2} + 3n + 8)$ $5n^{3} \leq 6n \leq 32n^{3}$ $c_{1} = 5, \quad c_{2} = 32, \quad n_{0} = 1$ $6(n) \leq 3(n^{3})$

And 3 = 2, 4, 8, 16, ... k term. n $Con = an^{n-1}$

Chn = 1 (2) K-1
h = 2 K-1

 $log_2 n = (K-1) log_2 2$ $K = log_2 n + 1$ $o(n) = log_n$

T(n) = 3T(n-1)

Ans-13

T(n-1) = 3 T(n-2) $T(n) = 3 \times 3 T(n-2) T(n-2) = 3 T(n-3)$

$$T(n) = 3 \times 3 \times 3 T (n-3)$$
 $T(n) = 3^3 T (n-3)$
 $T(n-3) = 3T (n-4)$
 $T(n) = 3^3 \times 3 T (n-4)$
 $T(n) = 3^4 \times T (n-4)$

$$T(n) = 3T(n-i) \cdot \cdot \cdot \cdot (i)$$
 $[T(0)=1]$
 $T(n-i) = T(0)$
 $n-i = 0$
 $n = i$

Putting
$$n=1$$
 in eq($\frac{1}{2}$);
$$T(n) = 3^n T(n-n)$$

$$T(n) = 3^n T(0) \qquad [T(0)=1]$$

$$T(n) = 0(3^n)$$

Ay
$$yy$$

$$T(n) = 2T(n-1)-1$$

$$T(n-1) = 2T(n-2)-1$$

$$T(n) = 2\times(2T(n-2)-1)-1$$

$$T(n) = 2^2T(n-2)-2-1$$

$$T(n-2) = 2T(n-3)-1$$

$$T(n) = 2^{2} (2T(n-3)-1) - 2-1$$

$$T(n) = 2^{3} T(n-3) - 2^{2} - 2-1$$

$$T(n) = 2^{3} (2T(n-u)-1) - 2^{2} - 2-1$$

$$T(n) = 2^{4} T(n-u) - 2^{3} - 2^{2} - 2-1$$

$$T(n-i) = T(0)$$

$$n-i = 0$$

$$n = i$$

$$T(n) = 2^n T(0) - (1+2+2^2+2^3+00.2^{n+1})$$

$$T(n) = 2^{n} (1) - (1+2+2^{2}+...2^{n-1})$$

 $T_{n} = 2^{n}-1(2^{n-1}-1)$

$$T(n) = 2^{n} - 2^{nd} + 1$$

$$T(n) = 2^{nd} (2-1) + 1$$

$$T(n) = 0(2^{n})$$

		A					
25 1	. 2	-					
Am-25	Do of Steps	5.	ű				
-	(K)						
	0	0					
		1	2				
	3	3	3				
	3		4				
	5	10	5				
		15	6				
	0	21	7				
	9		3				
	Kstep	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
- 1.1 - AL-1							
T(n) = o(k)							
= 6,1,3,6,6,,n							
	01 - 12-2	. 1 . 15 . 15 . 1	1				
$S_{N} = 1 + 3 + 6 + 10 + 15 + 3 + 6 + 10 + 3 + 6 + (N-1) + N$							
	8n 1+3	+67 (07)	- (n) +n				
0=1+2+3+4+5+							
	N=1+2+3+4+". KStep						
$N = K \left[2(1) + (K-1) \right]$							
2							
$2n = k \left[2+k-1\right]$							
$\frac{2n = k^2 + k}{2n = k^2 + k}$							
$2n = (\kappa + 1)^2 - (1)$							
2n - (n/2) (2)							
$2n+(1)^{2}$							
		2).					

T(n) = T(n-(n-1)) + n3 + (n-1)2+ (n-2)2+ ... t (n-(n-1))2 I(n) = I(1) = n2 + (n-1)2 + (n-2)2 + 00-+12 T(n) = 1+12+22+32+...+2 T(n) = h(n+1)(n+1) $T(n) = O(n^3)$ AL)9 0 (n/n) AND Ib c>1 then the experiential ch box outgrows any term, So that array is nk is o (cm) Au) 1 = 0, 1, 3, b, 10, 15, " " j = 0,1,2,3,4,5,6,00°. So, i will go on till hist general
formula bor koth torm is h= k(k+1) · · · T. C= OVI Th) = T (n1) + T (n-2)+C And-)12 T(n-2 2 T(n-1) T(n) = 2T (n+)+C T(n)=2T(n-2)+C T(n) = 2(2+(n-2)+c)+c T(n) = 22T (n-2) + 2 C+C T(n-2) = 2T(n-3) + c

$$T(n) = 2^3 (2T(n-3) + b) + 2C+C$$

 $T(n) = 2^3 T(n-3) + 2^2 C + 2C+C$

General Term:

$$T(n) = 2^{1} T(n-i) + (2^{0} + 2^{1} + 2^{2} + \cdots + 2^{i-1})c$$

n-i =0 いこう

$$T(n) = 2^n T(0) + (2^0 + 2^1 + 2^2 + \dots + 2^{n-1})(1)$$

$$T(n) = 2^{n} (1+c)-c$$
 $T(n) = 0 (2^{n})$

big (6)

F2 F, F2 F3 F.

The max depth is proportional to N, Mena
the space complexity of bibonacci
recursive is O(m).

AND 3 Void bun ()

int inj;

bor (i=1; i <= n; i+i)

por (j=0; j <= n; j = j*2)

print (ee x);

print (ee x);

b) void bun (int n)

sint 1, j, k s

bor (i=0; i <= n; i+4)

bor (j=0; j <= ~; j++;

2 print (ee * 11);

Divoid Siever of Endostheres (int in) membet (prime, true, size of (prime)) bor lint p=2; pxp (=n; p++) ib (prime [p] = tue) bor (int i=p*p; i =n; it=p) 2 prime [i] = false; box (int p=2 3 p (= n; p++) if (prime [p]) Cout Kp K endly Ay-114 T(1) = CT(n/2)=T(n/8) + T(n/4) + C(n2)

 $T(n) = T(n/ip) + 2T(n/b) + c(n^2/1b)$ $+ n^2/4 + n^2$

T(n/4) T(n/2)

(m/16) Th/8) T (m/8) T (m/6

2

(b) 1, log (log(n)), Togn, logn, log(2n) 109 (n!) 3 log (n) 2 n , 2 n , 2 m , n s log(n) nlogen, 8n2, 7n3. 824. nl Am 219 Linear Search (A, Key) compto, Fto bor i=1 to A length comp to comp +1 ib A[i]= Key print ee Element bound? 16 F==0 print ee Element not bound" print comp Any no I terative method of injection cost INSERTION_SORT (A) for j=2 to A length Key = A[i] while i>o and A [i] = key Afiti] =A[i] a = i -

A [i +i] = key.

Recussive Method of insection sold-INSERTION SORT (A,W) ib n El INSERTION_SORT (A, L-1) Key= Art [n-1] j = n-2; while j >0 and Afi] > Key A [i+i] = A[i]. j=j-1 A[i+i] = key Insertion cost coiside one input element per iteration & projecuse a partial solution without couside ving buture elements. Other sorting algorithm that can be discussed in lectures out. Bubble sorting Selection sorting Quick Sort Heap Sort Counting soct

Beto 21	4	Best	Average	Word			
		Cose	Care	Core			
	Bubble sod	(N) (D)	0 (N2)	0 (05)			
	Selection sort	N(N2)	Q(N5)	O(05)			
	1 isertion sof	W (n)	8 (N2)	0 (05)			
	Merge sort	N (Wood)	O (NOGN)	O(N)logn			
	Keap sort	N (Nlogh)	O (Nogh)	O(Nlogh)			
	quick sort	DO(NIOgN)	O (N logh)	Q (05)			
	Courting sout	(N+W)	10 (N+K)	0(0+1)			
Any-122		In Place	Stable	Online			
	Bubble cont	Yes	Yes	Yes			
	Twestion soll	Yel	Yes	Yes			
	Selection cont	Ves	No	Yel			
	Merge sort	100	Ye	Yes			
	Quick sout	. Yes	Mo	Yes			
	Heap sox	Yel	No	Yes			
	Count cout		Yes	Yes			
		8					
ANJ-123	Linear Search						
	Linear SEARCH (A, Key)						
	bound to bor fi=1 to N						
	ib A[i] = = key						
	bound & 1						

print ee Element found" break if found ==0 print 66 Glement not found" Time complexity - o(n) Space Complexity - O(1) Binary Search (Herative) BINARY- SEARCH (A, beg, end, key) while beg Lend mid = be gt (end - beg) if mid = = key return mid ib Almid] Krey beg = midtl ib A [mid] > key end = mid-1 returnt Time complexity - 0 (1092n) Space complexity- of)

Binary Search (Recuesian)

RTNARY SEARCH (A, beg, end, key)

ib end > beg

mid = (beg tend)(2

ib A[mid] == item

else if A [mid] (item
return BINARY STARCH (A, midt);
end, key)
else
return BINARY_SEARCH (A, beg;
mid-1, end)
return-1

Space complexity - O(1).

T(m) = T(m2) +c

AN 124

1 3

-