■ ■ série de livros didáticos informática ufrgs

Sistemas Operacionais

Rômulo Silva de Oliveira Alexandre da Silva Carissimi Simão Sirineo Toscani

Multiprogramação

- Tornar mais eficiente o aproveitamento dos recursos do computador
- Execução simultânea* de vários programas
 - Diversos programas são mantidos na memória
 - Conceitos necessários à multiprogramação
 - Processo
 - Interrupção
 - Proteção entre processos
- Próprio sistema operacional é um programa

O conceito de processo (1)

- Diferenciação entre o programa e sua execução
- Programa:
 - Entidade estática e permanente
 - Sequência de instruções
 - Passivo sob o ponto de vista do sistema operacional
- Processo:
 - Entidade dinâmica e efêmera
 - Altera seu estado a medida que avança sua execução
 - Composto por programa (código), dados e contexto (valores)

O conceito de processo (2)

- Abstração que representa um programa em execução
- Diferentes instâncias
 - Um programa pode ter várias instâncias em execução, i.e., diferentes processos
 - Mesmo código (programa) porém dados e momentos de execução (contexto) diferentes
- Forma pela qual o sistema operacional "enxerga" um programa e possibilita sua execução
- Processos executam:
 - Programas de usuários
 - Programas do próprio sistema operacional (daemons)

Ciclos de vida de um processo

- Criação
- Execução
- Término

Ciclos de vida de um processo: criação

- Momento da execução
- Chamadas de sistemas
 - e.g.: fork, spawn, etc.
- Podem ser associados a uma sessão de trabalho
 - e.g.: login de usuários: login + senha □ shell (processo)
- Identificado por um número único (PID)

Ciclos de vida de um processo: execução (1)

- Processos apresentam dois ciclos básicos de operação
 - Ciclo de processador
 - Tempo que ocupa a CPU
 - Ciclo de entrada e saída
 - Tempo em espera pela conclusão de um evento (e.g. E/S)
- Primeiro ciclo é sempre de processador
 - Trocas de ciclos por:
 - CPU □ E/S: chamada de sistema
 - E/S □ CPU: ocorrência de evento (interrupção)

Ciclos de vida de um processo: execução (2)

- Processos
 - CPU bound
 - Ciclo de processador >> ciclo de E/S
 - I/O bound
 - Ciclo de E/S >> ciclo de processador
- Sem quantificação exata
- Situação ideal:
 - Misturar processos CPU bound com I/O bound
 - Benefícios a nível de escalonamento

Ciclos de vida de um processo: término

- Final de execução (normal)
- Por erros
 - e.g.: proteção, aritméticos, E/S, tentativa de execução de instruções inválidas, falta de memória, exceder tempo de limite
- Intervenção de outros processos (kill)
- Log off de usuários

Relacionamento entre processos (1)

- Processos independentes
 - Não apresentam relacionamentos com outros processos
- Grupo de processos
 - Apresentam algum tipo de relacionamento
 - e.g. filiação
 - Podem compartilhar recursos
 - Definição de hierarquia

Relacionamento entre processos (2)

- Hierarquia de processos:
 - Processo criador é processo pai
 - Processo criado é processo filho
- Representação através de uma árvore
 - Evolução dinâmica
- Semântica associada: O que fazer na destruição de um processo?
 - Toda a descendência "morre"
 - A descendência é herdada pelo processo "vô"
 - Postergar a destruição efetiva do processo pai até o final de todos processos filhos

Estados de um processo

- Após criado o processo necessita entrar em ciclo de processador
- Hipotéses:
 - Processador não está disponível
 - Vários processos sendo criados
- Que fazer?
 - Criação de uma fila de aptos (p/ espera pelo processador)

Modelo simplificado a dois estados

- Manter uma fila de processos aptos a executar
 - Esperando pelo processador ficar livre
- Escalonador (dispatcher):
 - Atribui o processador a um processo da fila de aptos
 - Pode prevenir um único processo de monopolizar o processador

Limitação do modelo simplificado

- Causas para um processo não executar
 - Esperando pelo processador
 - Aptos para executar
 - Esperando pela ocorrência de eventos externos
 - Bloqueado
- Escalonador não pode selecionar um processo bloqueado, logo modelo a dois estados não é suficiente
 - Criação de novos estados

Modelo de 5 estados (1)

- Executando (Running)
- Apto (Ready)
- Bloqueado (Blocked)
- Criação (New)
- Destruição (Exit)

Modelo a 5 estados (2)

Necessidade de filas

Processos suspensos

- Processador é mais rápido que operações de E/S
 - Possibilidade de todos processos estarem bloqueados esperando por E/S
- Liberar memória ocupada por estes processos
 - Transferidos para o disco (swap)
- Estado bloqueado assume duas situações:
 - Bloqueado com processo em memória
 - Bloqueado com processo no disco
- Necessidade de novos estados
 - Bloqueado, suspenso (Blocked, suspend)
 - Apto, suspenso (Ready, suspend)

Razões para suspender um processo

- Swapping:
 - SO necessita liberar memória para executar um novo processo
- Solicitação do usuário
 - Comportamento típico de depuradores
- Temporização:
 - Processo deve ter sua execução interrompida por um certo período de tempo
- Processo suspender outro processo
 - e.g. sincronização

Diagrama de estados de processos

Sistemas Operacionais

19

Suporte de hardware à multiprogramação

- O compartilhamento de recursos comuns implica em garantir que a execução incorreta de um programa não influencie a execução de outro programa
- A implementação da multiprogramação explora características do hardware dos processadores
- Mecanismos básicos:
 - Dois modos de operação
 - Interrupção
 - Proteção de periféricos, memória e processador

Modos de operação do processador

- Arquitetura de processadores oferecem mecanismos para diferenciar pelo menos dois modos diferentes de operação
 - Modo supervisor (privilegiado/protegido)
 - Possibilita a execução de todas as instruções do processador
 - Modo de execução sistema operacional
 - Modo usuário
 - Certas instruções (privilegiadas) não podem ser executadas
 - Modo de execução dos processos usuários
- Chaveamento de modos:
 - Interrupção (modo usuário □ modo protegido)
 - Instrução (modo protegido □ modo usuário)

Mecanismo de interrupção (1)

- Sinaliza a ocorrência de algum evento
- Provoca a execução de uma rotina especial
 - Tratador de interrupção
- Ciclo de execução de uma interrupção
 - Prepara a transferência de controle para o tratador (salvamento do contexto de execução)
 - Desvia controle para tratador
 - Retorna execução (restaura contexto de execução)

Mecanismo de interrupção (2)

- Tipos de interrupção
 - Hardware: ocorrência de evento externo
 - Software: execução de uma instrução específica
 - Exceção: erros de execução (overflow, undeflow...)
- Identificadas por um número
 - Vetor de interrupção
- Prioridades
- Instruções privilegiadas

Proteção de periféricos

- Instruções de E/S são privilegiadas
- Como processos usuários realizam operações de E/S já que estas são instruções privilegiadas?
 - Chamadas de sistema

Chamada de sistema

- Método empregado para um processo usuário solicitar serviços ao sistema operacional.
 - Normalmente baseada em interrupções de software (traps)
 - Aciona a rotina de tratamento de interrupção
 - Identifica serviço requisitado
 - Verifica validade dos parâmetros
 - Executa o serviço
 - Retorna ao processo do usuário

Proteção de memória (1)

- Necessário para evitar que usuário corrompa espaços de memória nãopertencentes a seus processos
- Baseado em facilidades da arquitetura do processador:
 - Registrador de base
 - Registrador de limite
- Faixa de endereçamento fora da área delimitada pelos registradores base e limite é protegida
- Possível proteger dispositivos de E/S quando a técnica E/S mapeada em memória é empregada

Proteção de memória (2)

Sistemas Operacionais

27

Proteção do processador

- Para garantir a execução do sistema operacional uma interrupção de tempo (timer) ocorre periodicamente
- Interrupção de tempo:
 - Empregada para implementar multiprogramação
 - Mantém contabilização de tempo para o sistema operacional (relógio)
- Instruções relacionadas com a programação do tempo são privilegiadas

Para praticar

Explore o comando ps e htop do linux para verificar como os processos se comportam!

Leituras complementares

- R. Oliveira, A. Carissimi, S. Toscani; <u>Sistemas Operacionais</u>. Editora Bookman, 2010.
 - Capítulo 2.
- A. Silberchatz, P. Galvin <u>Operating System Concepts.</u> 4th edition._Addison-Wesley.
 - Seções 2.1, 2.2, 2.5, 4.1, 4.2 e 4.300