Transfer Learning

Transfer Learning

http://weebly110810.weebly.com/3 96403913129399.html

http://www.sucaitianxia.com/png/cartoon/200811/4261.html

Dog/Cat Classifier

Data not directly related to the task considered

Similar domain, different tasks

Different domains, same task

Why?

http://www.bigr.nl/website/structure/main.php?page=resear chlines&subpage=project&id=64

http://www.spear.com.hk/Translation-company-Directory.html

Task Considered

Data not directly related

Speech Recognition

Image Recognition

Medical Images

Text Analysis

Specific domain

Webpages

Transfer Learning

Example in real life

爆漫王

Transfer Learning - Overview

		Source Data (not directly related to the task)			
		labelled		unlabeled	
Target Data	labelled	Model Fine-tuning			
			Warning: differer different literatur		
	unlabeled				

Model Fine-tuning

One-shot learning: only a few examples in target domain

- Task description
 - Source data: (x^s, y^s) A large amount
 - Target data: (x^t, y^t) Very little
- Example: (supervised) speaker adaption
 - Source data: audio data and transcriptions from many speakers
 - Target data: audio data and its transcriptions of specific user
- Idea: training a model by source data, then finetune the model by target data
 - Challenge: only limited target data, so be careful about overfitting

Conservative Training

Layer Transfer

there is sufficient data)

Layer Transfer

- Which layer can be transferred (copied)?
 - Speech: usually copy the last few layers
 - Image: usually copy the first few layers

Layer Transfer - Image

Jason Yosinski, Jeff Clune, Yoshua Bengio, Hod Lipson, "How transferable are features in deep neural networks?", NIPS, 2014

Layer Transfer - Image

Jason Yosinski, Jeff Clune, Yoshua Bengio, Hod Lipson, "How transferable are features in deep neural networks?", NIPS, 2014

Transfer Learning - Overview

		Source Data (not directly related to the task)			
		labelled	unlabeled		
Target Data	labelled	Fine-tuning Multitask Learning			
	unlabeled				

Multitask Learning

 The multi-layer structure makes NN suitable for multitask learning

Multitask Learning

- Multilingual Speech Recognition

<u>Similar idea in translation</u>: Daxiang Dong, Hua Wu, Wei He, Dianhai Yu and Haifeng Wang, "Multi-task learning for multiple language translation.", ACL 2015

Multitask Learning - Multilingual

Huang, Jui-Ting, et al. "Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers." *ICASSP*, 2013

Progressive Neural Networks

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, Raia Hadsell, "Progressive Neural Networks", arXiv preprint 2016

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A. Rusu, Alexander Pritzel, Daan Wierstra, "PathNet: Evolution Channels Gradient Descent in Super Neural Networks", arXiv preprint, 2017

Transfer Learning - Overview

		Source Data (not directly related to the task)			
		labelled	unlabeled		
Target Data	labelled	Fine-tuning Multitask Learning			
	unlabeled	Domain-adversarial training			

Task description

- Source data: $(x^s, y^s) \longrightarrow$ Training data
- Target data: (x^t) Testing data

Same task, mismatch

Maximize label classification accuracy + minimize domain classification accuracy

Maximize label classification accuracy

Not only cheat the domain classifier, but satisfying label classifier at the same time

Maximize domain classification accuracy

This is a big network, but different parts have different goals.

Yaroslav Ganin, Victor Lempitsky, Unsupervised Domain Adaptation by Backpropagation, ICML, 2015

Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Domain-Adversarial Training of Neural Networks, JMLR, 2016

MNIST SYN NUMBERS SVHN SYN SIGNS SOURCE TARGET MNIST-M **MNIST GTSRB** SVHN **MNIST** SYN NUMBERS **SVHN** SYN SIGNS SOURCE METHOD MNIST-M **MNIST GTSRB** SVHN **TARGET** SOURCE ONLY .5749.8665 .5919 .7400.6078(7.9%).8672 (1.3%).6157 (5.9%) .7635 (9.1%) SA (FERNANDO ET AL., 2013) .**7107** (29.3%) **.8149** (57.9%) .9048 (66.1%) **.8866** (56.7%) PROPOSED APPROACH TRAIN ON TARGET .9891.9244 .9951.9987

Yaroslav Ganin, Victor Lempitsky, Unsupervised Domain Adaptation by Backpropagation, ICML, 2015

Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Domain-Adversarial Training of Neural Networks, JMLR, 2016

Transfer Learning - Overview

		Source Data (not directly related to the task)			
		labelled	unlabeled		
Target Data	labelled	Fine-tuning Multitask Learning			
	Domain-adversarial training Zero-shot learning				

http://evchk.wikia.com/wiki/%E8%8 D%89%E6%B3%A5%E9%A6%AC

- Source data: $(x^s, y^s) \longrightarrow$ Training data
- Target data: (x^t) Testing data

Different tasks

 x^t

 y^s :

cat

dog

•••••

In speech recognition, we can not have all possible words in the source (training) data.

How we solve this problem in speech recognition?

Representing each class by its attributes

class

Training

Database

attributes

	furry	4 legs	tail	•••
Dog	0	0	0	
Fish	Χ	Χ	0	
Chimp	0	Χ	X	

sufficient attributes for one to one mapping

Representing each class by its attributes

sufficient attributes for one to one mapping

Attribute embedding

f(*) and g(*) can be NN. Training target:

 $f(x^n)$ and $g(y^n)$ as close as possible

What if we don't have database

Attribute embedding + word embedding

$$f^*,g^* = arg \min_{f,g} \sum_n \|f(x^n) - g(y^n)\|_2 \quad \text{Problem?}$$

$$f^*,g^* = arg \min_{f,g} \sum_n \max\left(0,k-f(x^n)\cdot g(y^n) + \max_{m\neq n} f(x^n)\cdot g(y^m)\right)$$
 Margin you defined
$$+ \max_{m\neq n} f(x^n)\cdot g(y^m)$$
 Zero loss:
$$k-f(x^n)\cdot g(y^n) + \max_{m\neq n} f(x^n)\cdot g(y^m) < 0$$

$$\underline{f(x^n)\cdot g(y^n)} - \max_{m\neq n} f(x^n)\cdot g(y^m) > k$$

$$f(x^n) \text{ and } g(y^n) \text{ as close} \qquad f(x^n) \text{ and } g(y^m) \text{ not as close}$$

Convex Combination of Semantic Embedding

Only need off-the-shelf NN for ImageNet and word vector

Test Image	ConvNet	DeViSE	ConSE(10)

Example of Zero-shot Learning

Training

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat. Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation, arXiv preprint 2016

Example of Zero-shot Learning

Transfer Learning - Overview

		Source Data (not directly related to the task)			
		labelled	unlabeled		
Target Data	labelled	Fine-tuning Multitask Learning	Self-taught learning Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, Andrew Y. Ng, Self-taught learning: transfer learning from unlabeled data, ICML, 2007		
	unlabeled	Domain-adversarial training Zero-shot learning	Different from semi- supervised learning Self-taught Clustering Wenyuan Dai, Qiang Yang, Gui-Rong Xue, Yong Yu, "Self- taught clustering", ICML 2008		

Self-taught learning

- Learning to extract better representation from the source data (unsupervised approach)
- Extracting better representation for target data

O .Tr				
Domain	Unlabeled data	Labeled data	Classes	Raw features
Image	10 images of outdoor	Caltech101 image classifi-	101	Intensities in 14x14 pixel
classification	scenes	cation dataset		patch
Handwritten char-	Handwritten digits	Handwritten English char-	26	Intensities in 28x28 pixel
acter recognition	("0"-"9")	acters ("a"-"z")		character/digit image
Font character	Handwritten English	Font characters ("a"/"A" –	26	Intensities in 28x28 pixel
recognition	characters ("a"-"z")	("z"/"Z")		character image
Song genre	Song snippets from 10	Song snippets from 7 dif-	7	Log-frequency spectrogram
classification	genres	ferent genres		over 50ms time windows
Webpage	100,000 news articles	Categorized webpages	2	Bag-of-words with 500 word
classification	(Reuters newswire)	(from DMOZ hierarchy)		vocabulary
UseNet article	100,000 news articles	Categorized UseNet posts	2	Bag-of-words with 377 word
classification	(Reuters newswire)	(from "SRAA" dataset)		vocabulary

Acknowledgement

- 感謝 劉致廷 同學於上課時發現投影片上的錯誤
- 感謝 John Chou 發現投影片上的錯字

Appendix

More about Zero-shot learning

- Mark Palatucci, Dean Pomerleau, Geoffrey E. Hinton, Tom M. Mitchell, "Zero-shot Learning with Semantic Output Codes", NIPS 2009
- Zeynep Akata, Florent Perronnin, Zaid Harchaoui and Cordelia Schmid, "Label-Embedding for Attribute-Based Classification", CVPR 2013
- Andrea Frome, Greg S. Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Marc'Aurelio Ranzato, Tomas Mikolov, "DeViSE: A Deep Visual-Semantic Embedding Model", NIPS 2013
- Mohammad Norouzi, Tomas Mikolov, Samy Bengio, Yoram Singer, Jonathon Shlens, Andrea Frome, Greg S. Corrado, Jeffrey Dean, "Zero-Shot Learning by Convex Combination of Semantic Embeddings", arXiv preprint 2013
- Subhashini Venugopalan, Lisa Anne Hendricks, Marcus Rohrbach, Raymond Mooney, Trevor Darrell, Kate Saenko, "Captioning Images with Diverse Objects", arXiv preprint 2016