Introduction to Linear Regression Modeling and Hypothesis Testing

Matthew Galbraith Linda Crnic Institute for Down Syndrome

Data Science for Developing Scholars in Down Syndrome Research (DS3) 2025

Code links for this session

https://github.com/DS3-2025/linear_regression_exercise

https://github.com/DS3-2025/HTP_linear_regression_example

Introduction to linear regression modeling

- Linear regression can be used to model a linear relationships between a **response variable** and one (simple regression) or more (multiple regression) **predictor variables**
- The linear relationship (ie straight line) can be described in the form:

$$y = mx + c$$

where y is the response (dependent) variable

m is the gradient (slope) (aka beta 2)

x is the predictor (independent) variable

c is the intercept (aka beta 1)

• The Ordinary Least Squares (OLS) approach finds the **line of best fit** through the data points by minimizing the variance (the sum of squares of the errors)

• The Ordinary Least Squares (OLS) approach finds the line of best fit through the data points by minimizing the variance (the sum of squares of the errors)

Source: https://setosa.io/ev/ordinary-least-squares-regression/index.html

• The Ordinary Least Squares (OLS) approach finds the line of best fit through the data points by minimizing the variance (the sum of squares of the errors)

Source: https://setosa.io/ev/ordinary-least-squares-regression/index.html

• The Ordinary Least Squares (OLS) approach finds the line of best fit through the data points by minimizing the variance (the sum of squares of the errors)

Source: https://setosa.io/ev/ordinary-least-squares-regression/index.html

• The Ordinary Least Squares (OLS) approach finds the line of best fit through the data points by minimizing the variance (the sum of squares of the errors)

- Often, we have more than one independent variable
- Errors are now relative to a plane in 3D space (or greater)

- Often, we have more than one independent variable
- Errors are now relative to a plane in 3D space (or greater)

Linear regression modeling: Assumptions

Assumptions of linear regression

- 1. Linearity: The relationship between the independent variable and the study variable is assumed to be linear.
- 2. Homoscedasticity: The error term (ϵ) is assumed to have a constant variance.
- 3. Independence: We assume observations are independent of each other.
- 4. Normality: Observations are assumed to have a normal distribution.

Significant deviation from these associations may invalidate your results!

Linear regression can be used for both <u>prediction</u> and <u>hypothesis testing</u>

Introduction to Hypothesis Testing and Statistical Inference

Often, we seek to make claims about population parameters with some measure of the plausibility (eg p-value)

- A hypothesis test consists of a test between two competing hypotheses:
 - 1. H₀, the **null** hypothesis eg "There is **NO difference** in the means of Group A and Group B"
 - 2. H_A, the **alternative** hypothesis eg "The means of Group A and Group B **ARE different**"
- A **test statistic** is a *point estimate/sample statistic* formula used for hypothesis testing (eg mean)
- The **null distribution** is the sampling distribution of the test statistic *assuming the null hypothesis* H0H0 *is true*
- A p-value is the probability of obtaining a test statistic just as extreme as or more extreme than the observed test statistic assuming the null hypothesis H_0 is true.
- If the p-value is less than the **significance level** (α), we reject the null hypothesis H₀, otherwise we fail to reject H₀

Introduction to Hypothesis Testing and Statistical Inference

Often, we seek to make claims about population parameters with some measure of the plausibility (eg p-value)

- A hypothesis test consists of a test between two competing hypotheses:
 - 1. H₀, the **null** hypothesis eg "There is **NO difference** in the means of Group A and Group B"
 - 2. H_A, the **alternative** hypothesis eg "The means of Group A and Group B **ARE different**"
- A **test statistic** is a *point estimate/sample statistic* formula used for hypothesis testing (eg mean)
- The **null distribution** is the sampling distribution of the test statistic *assuming the null hypothesis* H0H0 *is true*
- A p-value is the probability of obtaining a test statistic just as extreme as or more extreme than the observed test statistic assuming the null hypothesis H_0 is true.
- If the p-value is less than the **significance level** (α), we reject the null hypothesis H₀, otherwise we fail to reject H₀

In the case of a linear regression model, we can:

- Determine whether a predictor variable has a statistically significant relationship with an outcome variable.
- Estimate the difference between two or more groups.

See worked examples and more details at the accompanying notebook: https://lindeloev.github.io/tests-as-linear

Last updated: 28 June, 2019. Also check out the Python version!

	Common name	Built-in function in R	Equivalent linear model in R	Exact?	The linear model in words	Icon
Simple regression: Im(y ~ 1 + x)	y is independent of x P: One-sample t-test N: Wilcoxon signed-rank	t.test(y) wilcox.test(y)	Im(y ~ 1) Im(signed_rank(y) ~ 1)	√ for N >14	One number (intercept, i.e., the mean) predicts y (Same, but it predicts the <i>signed rank</i> of y .)	-
	P: Paired-sample t-test N: Wilcoxon matched pairs	t.test(y ₁ , y ₂ , paired=TRUE) wilcox.test(y ₁ , y ₂ , paired=TRUE)	Im(y ₂ - y ₁ ~ 1) Im(signed_rank(y ₂ - y ₁) ~ 1)	√ f <u>or N >14</u>	One intercept predicts the pairwise $y_{z^*}y_1$ differences. - (Same, but it predicts the <i>signed rank</i> of $y_{z^*}y_1$.)	*
	y ~ continuous x P: Pearson correlation N: Spearman correlation	cor.test(x, y, method='Pearson') cor.test(x, y, method='Spearman')	Im(y ~ 1 + x) Im(rank(y) ~ 1 + rank(x))	for N >10	One intercept plus x multiplied by a number (slope) predicts y . - (Same, but with ranked x and y)	نبعلبيسر
	y ~ discrete x P: Two-sample t-test P: Welch's t-test N: Mann-Whitney U	t.test(y ₁ , y ₂ , var.equal=TRUE) t.test(y ₁ , y ₂ , var.equal=FALSE) wilcox.test(y ₁ , y ₂)	$\begin{split} & Im(y\sim 1+G_2)^A\\ & gls(y\sim 1+G_2,\ weights=^B)^A\\ & Im(signed_rank(y)\sim 1+G_2)^A \end{split}$	√ √ for N >11	An intercept for group 1 (plus a difference if group 2) predicts y . - (Same, but with one variance <i>per group</i> instead of one common.) - (Same, but it predicts the <i>signed rank</i> of y .)	+
Multiple regression: Im(y ~ 1 + x ₁ + x ₂ +)	P: One-way ANOVA N: Kruskal-Wallis	aov(y ~ group) kruskal.test(y ~ group)	$\begin{aligned} &\text{Im}(y\sim 1+G_2+G_3++G_N)^A\\ &\text{Im}(\text{rank}(y)\sim 1+G_2+G_3++G_N)^A \end{aligned}$	√ for N >11	An intercept for group 1 (plus a difference if group ≠ 1) predicts y . - (Same, but it predicts the <i>rank</i> of y .)	i
	P: One-way ANCOVA	aov(y ~ group + x)	$Im(y \sim 1 + G_2 + G_3 + + G_N + x)^A$	~	- (Same, but plus a slope on x.) Note: this is discrete AND continuous. ANCOVAs are ANOVAs with a continuous x.	-
	P: Two-way ANOVA	aov(y ~ group * sex)	$Im(y \sim 1 + G_2 + G_3 + + G_N + S_2 + S_3 + + S_K + G_2^*S_2 + G_3^*S_3 + + G_N^*S_K)$	*	Interaction term: changing sex changes the $y \sim group$ parameters. Note: $G_{2 \otimes N}$ is an indicator (0 or 1) for each non-intercept levels of the group variable. Similarly for $S_{2 \otimes N}$ for sex. The first line (with G_0) is main effect of group, the second (with G_0) for sex and the third is the group × sex interaction. For two levels (e.g. male/female), line 2 would just be " S_2 " and line 3 would be S_2 multiplied with each G_0 .	[Coming]
	Counts ~ discrete x N: Chi-square test	chisq.test(groupXsex_table)	Equivalent log-linear model glm(y ~ 1 + G_2 + G_3 + + G_N + S_2 + S_3 + + S_K + G_2 * S_2 + G_3 * S_3 + + G_N * S_K , family=) ^A	*	Interaction term: (Same as Two-way ANOVA.) Note: Run glm using the following arguments: $glm(model, family=poisson())$ As linear-model, the Chi-square test is $log(y) = log(N) + log(\alpha) + log(\beta) + log(\alpha\beta)$ where α and β are proportions. See more info in the accompanying notebook.	Same as Two-way ANOVA
×	N: Goodness of fit	chisq.test(y)	glm(y ~ 1 + G ₂ + G ₃ ++ G _N , family=) ^A	*	(Same as One-way ANOVA and see Chi-Square note.)	1W-ANOVA

List of common parametric (P) non-parametric (N) tests and equivalent linear models. The notation y = 1 + x is R shorthand for y = 1 + b + a + x which most of us learned in school. Models in similar colors are highly similar, but really, notice how similar they *all* are across colors! For non-parametric models, the linear models are reasonable approximations for non-small sample sizes (see "Exact" column and click links to see simulations). Other less accurate approximations exist, e.g., Wilcoxon for the sign test and Goodness-of-fit for the binomial test. The signed rank function is $signed_rank = function(x) sign(x) * rank(abs(x))$. The variables G_i and G_i are "dummy coded" indicator variables (either 0 or 1) exploiting the fact that when G_i are 1 between categories the difference equals the slope. Subscripts (e.g., G_i or G_i or G_i indicate different columns in data. Im requires long-format data for all non-continuous models. All of this is exposed in greater detail and worked examples at https://lindeloev.github.io/tests-as-linear.

A See the note to the two-way ANOVA for explanation of the notation.

B Same model, but with one variance per group: qls(value ~ 1 + G2, weights = varIdent(form = ~1|group), method="ML").

Choosing a Statistical Test (not exhaustive)

Explore the data

How do the response and predictor relate to each other? Does the relationship appear linear? Consider transforming the data

```
mpg %>%
    ggplot(aes(displ, hwy)) +
    geom_point() +
    theme(aspect.ratio = 1) +
    labs(title = "Displacement vs. Highway mpg (hwy)")
```

Displacement vs. Highway mpg (hwy)


```
mpg %>%
   ggplot(aes(displ, hwy)) +
   geom_point() +
   geom_smooth(method = "lm") +
   theme(aspect.ratio = 1) +
   labs(title = "Displacement vs. Highway mpg (hwy)")
```

Displacement vs. Highway mpg (hwy)


```
mpg %>%
    ggplot(aes(displ, hwy)) +
    geom point() +
    geom smooth(method = "lm") +
    theme (aspect.ratio = 1) +
    labs(title = "Displacement vs. Highway mpg (hwy)")
                  Displacement vs. Highway mpg (hwy)
               40
               30
               20
> lm(hwy ~ displ, data = mpg) %>% summary()
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 35.6977
                         0.7204 49.55
                                          <2e-16 ***
             -3.5306
                        0.1945 -18.15
displ
Residual standard error: 3.836 on 232 degrees of freedom
```

Multiple R-squared: 0.5868, Adjusted R-squared: 0.585

F-statistic: 329.5 on 1 and 232 DF, p-value: < 2.2e-16

```
mpg %>%
   ggplot(aes(log2(displ), log2(hwy))) +
    geom point() +
   geom smooth(method = "lm") +
   theme (aspect.ratio = 1) +
   labs(title = "Displacement vs. Highway mpg (hwy)")
                Displacement vs. Highway mpg (hwy)
             5.5
              5.0
            (km) 4.5
             4.0
             3.5
                   1.0
                              2.0
                                   2.5
                        1.5
                         log2(displ)
 > lm(log2(hwy) \sim log2(displ), data = mpg) %>% summary()
  Coefficients:
             Estimate Std. Error t value Pr(>|t|)
  (Intercept) 5.43041 0.04853 111.90 <2e-16 ***
 <2e-16 ***
 Residual standard error: 0.2276 on 232 degrees of freedom
 Multiple R-squared: 0.6345, Adjusted R-squared: 0.6329
  F-statistic: 402.8 on 1 and 232 DF, p-value: < 2.2e-16
```

We are usually NOT interested in the coefficient (estimate) for the intercept
We are testing against the *null hypothesis that the coefficient (estimate) for a variable of interest is zero*

```
manufacturer model
                                                                      hwy fl
                           displ year
                                         cyl trans
                                                                                 class trans_type
                                                        drv
                                 1999
                                           4 auto(15) f
 1 audi
                a4
                                                                        29 p
                                                                                 compact auto
                                           4 manual(m5) f
 2 audi
                a4
                                 <u>1</u>999
                                                                 21
                                                                       29 p
                                                                                 compact manual
 3 audi
                a4
                                  2008
                                           4 manual(m6) f
                                                                       31 p
                                                                                 compact manual
                                  2008
                                           4 auto(av) f
                                                                 21
                                                                       30 p
 4 audi
                a4
                                                                                 compact auto
                                 1999
                                           6 auto(15) f
                                                                       26 p
 5 audi
                a4
                                                                                 compact auto
                                 <u>1</u>999
                                           6 manual(m5) f
                                                                       26 p
                                                                                 compact manual
 6 audi
                a4
                             3.1 2008
                                                                 18
                                                                       27 p
 7 audi
                a4
                                           6 auto(av) f
                                                                                 compact auto
                            1.8 <u>1</u>999
                                           4 manual(m5) 4
                                                                       26 p
                                                                                 compact manual
 8 audi
                a4 quattro
                                                                 18
 9 audi
                a4 quattro
                                  1999
                                           4 auto(15) 4
                                                                 16
                                                                       25 p
                                                                                 compact auto
                                  2008
                                           4 manual(m6) 4
                                                                                 compact manual
10 audi
                a4 quattro
                                                                        28 p
   with 224 more rows
```

```
mpg %>%
   mutate(trans_type = str_extract(trans, "\\w+(?=\\()")) %>%
   ggplot(aes(trans_type, hwy)) +
   geom point()
```



```
mpg %>%
    mutate(trans_type = str_extract(trans, "\\w+(?=\\()")) %>%
    ggplot(aes(trans_type, hwy, color = trans_type)) +
    geom_sina()
```



```
mpg %>%
    mutate(trans_type = str_extract(trans, "\\w+(?=\\()")) %>%
    ggplot(aes(trans_type, hwy, color = trans_type)) +
    geom_sina() +
    geom_boxplot(notch = TRUE, varwidth = FALSE, outlier.shape = NA, coef =
FALSE, width = 0.2, color = "black", fill = "transparent", size = 0.75) +
    geom_smooth(method = "lm", aes(group = "1"))
```



```
mpg %>%
    mutate(trans_type = str_extract(trans, "\\w+(?=\\()")) %>%
    ggplot(aes(trans_type, log2(hwy), color = trans_type)) +
    geom_sina() +
    geom_boxplot(notch = TRUE, varwidth = FALSE, outlier.shape = NA, coef =
FALSE, width = 0.2, color = "black", fill = "transparent", size = 0.75) +
    geom_smooth(method = "lm", aes(group = "1"))
```



```
mpg %>%
    mutate(trans_type = str_extract(trans, "\\w+(?=\\()")) %>%
    ggplot(aes(trans_type, hwy, color = trans_type)) +
    geom_sina() +
    geom_boxplot(notch = TRUE, varwidth = FALSE, outlier.shape = NA, coef =
FALSE, width = 0.2, color = "black", fill = "transparent", size = 0.75) +
    geom_smooth(method = "lm", aes(group = "1"))
```



```
> mpg %>%
      mutate(trans type = str extract(trans, "\\w+(?=\\()")) %%
      lm(log2(hwy) ~ trans type, data = .) %>%
      broom::tidy()
\# A tibble: 2 \times 5
                    estimate std.error statistic
                                                    p.value
  term
                                                       <dbl>
  <chr>
                       <dbl>
                                  <dbl>
                                            <dbl>
1 (Intercept)
                       4.43
                                0.0289
                                           153. 4.28e-235
                                             4.27 <mark>2.81e- 5</mark>
2 trans typemanual
                       0.216
                                0.0504
```

Simple linear regression gives (very) similar result to a t-test:

```
mpg %>%
    mutate(trans_type = str_extract(trans, "\\w+(?=\\()")) %>%
    ggplot(aes(trans_type, hwy, color = trans_type)) +
    geom_sina() +
    geom_boxplot(notch = TRUE, varwidth = FALSE, outlier.shape = NA, coef =
FALSE, width = 0.2, color = "black", fill = "transparent", size = 0.75) +
    geom_smooth(method = "lm", aes(group = "1"))
```



```
mpg %>%
    mutate(trans_type = str_extract(trans, "\\w+(?=\\()")) %>%
    ggplot(aes(trans_type, log2(hwy), color = trans_type)) +
    geom_sina() +
    geom_boxplot(notch = TRUE, varwidth = FALSE, outlier.shape = NA, coef =
FALSE, width = 0.2, color = "black", fill = "transparent", size = 0.75) +
    geom_smooth(method = "lm", aes(group = "1"))
```


1. Check for outliers

- Extreme outlier = 3x interquartile range below or above the first and third quartiles, respectively (below Q1 3*IQR or above Q3 + 3*IQR)
- rstatix::identify_outliers() or mutate(extreme = rstatix::is_extreme)
- Be careful: check how many data points would be removed (per group)!

```
msd data %>%
  inner join(meta data) %>%
  group by (Analyte, Karyotype) %>%
  mutate(extreme = rstatix::is extreme(log2(CalcConcMean AfterImputation)))
응>응
  ungroup() %>%
  filter(extreme == TRUE) %>%
  count(Analyte, name = "n extreme") %>%
  arrange (-n extreme)
                                               AfterImputation)
# A tibble: 36 \times 2
   Analyte
              n extreme
                  <int>
   <chr>
 1 Eotaxin-3
                     12
 2 TP-10
                      11
 3 IL-1RA
 4 MCP-1
 5 MCP-4
 6 TARC
 7 VEGF-C
 8 MDC
```

9 Eotaxin

10 IFN-gamma

... with 26 more rows

2. Check for normality

- Plot the data!!
- Shaprio-Wilk test (stringent but can identify worst offenders)
- rstatix::shapiro test()
- Q-Q plots

```
msd data full %>%
  group by (Analyte) %>%
  mutate(extreme = rstatix::is extreme(log2 concentration)) %>%
  filter(extreme != TRUE) %>% # exclude extreme outliers
  group by (Analyte) %>%
  rstatix::shapiro test(log2 concentration) %>%
  arrange(p)
\# A tibble: 54 \times 4
   Analyte
               variable
                                   statistic
   <chr>
               <chr>
                                       <dbl>
                                                <dbl>
 1 IL-3
               log2 concentration
                                       0.827 3.40e-15
               log2 concentration
 2 IL-13
                                       0.880 5.13e-12
               log2 concentration
 3 VEGF-C
                                       0.905 1.33e-10
               log2 concentration
                                      0.936 2.70e- 8
 4 IFN-gamma
               log2 concentration
 5 IFN-beta
                                       0.940 4.17e- 8
 6 IL-9
               log2 concentration
                                       0.945 1.26e- 7
               log2 concentration
 7 PlgF
                                       0.946 2.07e- 7
 8 IFN-alpha2a log2 concentration
                                       0.953 9.84e- 7
               log2 concentration
 9 TSLP
                                       0.953 1.04e- 6
               log2 concentration
10 TNF-beta
                                       0.954 1.15e- 6
# ... with 44 more rows
```


Using a Nest-Map-Unnest approach

3. Assemble data for regression analysis

- Select variables
- Filter outliers
- Check/filter by minimum sample number
- Check >1 level for all categorical variables
- Nest the data by feature/analyte

```
regressions dat <- msd data full %>%
 select(RecordID, LabID, Sex, Age, BMI, Anti IFNa2 titer, Sample source, Experiment, Analyte, log2 concentration) %>%
  # filter outliers
 group by (Analyte) %>% # using both groupings here for categorical testing
 mutate(extreme = rstatix::is extreme(log2 concentration)) %>%
 filter(extreme != TRUE) %>% # remove extreme outliers
  ungroup() %>%
  # check minimum N
 group by (Analyte) %>% # CHECK CORRECT GROUPING
 add count(Sex) %>% # count by EACH categorical variable
 filter(n >= 10) %>% # require at least NN samples in each category # CURRENTLY KEEPING 23 of 30 clusters
 mutate( # count number of levels for EACH categorical variable
   # autoAb levels = autoAb %>% fct drop() %>% levels() %>% length(),
   Sex levels = Sex %>% fct drop() %>% levels() %>% length()
  ) 응>응
 filter(Sex levels > 1) %>% # need to require >1 level for each categorical level or lm() gives error
 select(-Sex levels) %>%
  ungroup() %>%
 nest(data = c(RecordID, LabID, Sex, Age, BMI, Anti IFNa2 titer, Sample source, Experiment, log2 concentration, extreme, n))
```

Original data tibble:

```
msd_data_full
   RecordID
              LabID
                        In_ArayaEtAl2021 ExperimentID Analyte units concentration N_Imputed_Repli... Experiment PlateName
                                    <dbl> <chr>
                                                                                 <dbl>
                                        1 MSD_P4C_09012... FGF (b... pg/mL
1 INVAB226VEU HTP0591A
                                                                                 5.00
                                                                                                                  6 Plate_29...
                                                                                 6.52
2 INVAB226VEU HTP0591A
                                        1 MSD_P4C_09012... PlGF
                                                                                                                  6 Plate_29...
 3 INVAB226VEU HTP0591A
                                        1 MSD_P4C_09012... Tie-2
                                                                               <u>4</u>790.
                                                                                                                  6 Plate_29...
                                                                 pg/mL
4 INVAB226VEU HTP0591A
                                        1 MSD_P4C_09012... VEGF-C pg/mL
                                                                                 25.4
                                                                                                                  6 Plate_29...
5 INVAB226VEU HTP0591A
                                        1 MSD_P4C_09012... VEGF-D pg/mL
                                                                                756.
                                                                                                                  6 Plate_29...
6 INVAB226VEU HTP0591A
                                                                                96.3
                                        1 MSD_P4C_09012... VEGFR-... pg/mL
                                                                                                                  6 Plate_29...
                                                                               181.
7 INVAB226VEU HTP0591A
                                        1 MSD_P4C_09012... Eotaxin pg/mL
                                                                                                                  6 Plate_ZB...
                                        1 MSD_P4C_09012... Eotaxi... pg/mL
                                                                                20.6
8 INVAB226VEU HTP0591A
                                                                                                                  6 Plate_ZB...
                                                                                                                  6 Plate_2B...
9 INVAB226VEU HTP0591A
                                        1 MSD_P4C_09012... IP-10 pg/mL
                                                                                489.
10 INVAB226VEU HTP0591A
                                        1 MSD_P4C_09012... MCP-1 pg/mL
                                                                               112.
                                                                                                                  6 Plate_ZB...
   with 12,302 more rows, and 23 more variables: PlateBarcode <chr>, Plate_Num <chr>, script <chr>,
   Date_exported <dbl>, Data_contact <chr>, Comments <lgl>, FamilyID <chr>, Event_name <fct>, Sex <fct>,
   Karyotype <fct>, Age <dbl>, Sample_source <chr>, BMI <dbl>, CollabID <chr>, Anti_IFNa2_titer <dbl>,
   Anti_IFNw_titer <dbl>, Neutralization_IFNa2_10_ng <chr>, Neutralization_IFNw_10_ng <chr>, IFNa2_auto <lgl>,
   IFNw_auto <lgl>, autoAb <lgl>, batch <dbl>, log2_concentration <dbl>
```

Nested data tibble:

```
regressions_dat
# A tibble: 54 x Z
  Analyte
                 data
   <chr>
                 st>
 1 FGF (basic)
                 <tibble [228 x 11]>
2 PlgF
                 <tibble [225 x 11]>
3 Tie-2
                 <tibble [228 x 11]>
4 VEGF-C
                 <tibble [220 x 11]>
5 VEGF-D
                 <tibble [227 x 11]>
 6 VEGFR-1/Flt-1 <tibble [228 x 11]>
7 Eotaxin
                 <tibble [223 x 11]>
                 <tibble [221 x 11]>
 8 Eotaxin-3
 9 IP-10
                 <tibble [220 x 11]>
10 MCP-1
                 <tibble [223 x 11]>
 ... with 44 more rows
```

Using a Nest-Map-Unnest approach

4. Run linear regression per feature – all at once

```
    purrr::map()
        (see also furrr::future_map() for parallelization)
    broom::tidy()
    broom::glance()
    broom::augment()
```

SIMPLE LINEAR REGRESSION

```
regressions_simple <- regressions_dat %>%
  mutate(
    fit = map(data, ~ lm(log2_concentration ~ log2(Anti_IFNa2_titer), data = .x)),
    tidied = map(fit, broom::tidy), # see ?tidy.lm
    glanced = map(fit, broom::glance), # see ?glance.lm
    augmented = map(fit, broom::augment) # see ?augment.lm
)

# MULTPLE LINEAR REGRESSION
regressions_multi_SexAge <- regressions_dat %>%
    mutate(
    fit = map(data, ~ lm(log2_concentration ~ log2(Anti_IFNa2_titer) + Sex + Age, data = .x)),
    tidied = map(fit, broom::tidy), # see ?tidy.lm
    glanced = map(fit, broom::glance), # see ?glance.lm
    augmented = map(fit, broom::augment) # see ?augment.lm
```

Access results by unnesting!

```
regressions_simple
# A tibble: 54 × 6
                                               tidied
   Analyte
                                       fit
                                                                 glanced
                                                                                    augmented
                  data
   <chr>
                                       t> <list>
                                                                 st>
                                                                                     st>
                  st>
 1 FGF (basic)
                  <tibble [228 x 11]> <lm>
                                               <tibble [2 x 5]> <tibble [1 x 11]> <tibble [228 x 9]>
 2 PlGF
                  <tibble [225 x 11]> <lm>
                                               <tibble [2 x 5]> <tibble [1 x 11]> <tibble [225 x 9]>
 3 Tie-2
                  <tibble [228 × 11]> <lm>
                                               <tibble [2 x 5]> <tibble [1 x 11]> <tibble [228 x 9]>
 4 VEGF-C
                  <tibble [220 × 11]> <lm>
                                               <tibble [2 x 5]> <tibble [1 x 11]> <tibble [220 x 9]>
 5 VEGF-D
                  <tibble [227 x 11]> <lm>
                                               <tibble [2 x 5]> <tibble [1 x 11]> <tibble [227 x 9]>
 6 VEGFR-1/Flt-1 <tibble [228 × 11]> <lm>
                                               <tibble [2 x 5]> <tibble [1 x 11]> <tibble [228 x 9]>
 7 Eotaxin
                  <tibble [223 x 11]> <lm>
                                               <tibble [2 \times 5]> <tibble [1 \times 11]> <tibble [223 \times 9]>
                                               <tibble [2 x 5]> <tibble [1 x 11]> <tibble [221 x 9]>
 8 Eotaxin-3
                  <tibble [221 x 11]> <lm>
 9 IP-10
                  <tibble [220 x 11]> <lm>
                                               <tibble [2 x 5]> <tibble [1 x 11]> <tibble [220 x 9]>
                  <tibble [223 x 11]> <lm>
10 MCP-1
                                               <tibble \lceil 2 \times 5 \rceil >  <tibble \lceil 1 \times 11 \rceil >  <tibble \lceil 223 \times 9 \rceil > 
# ... with 44 more rows
```

broom::tidy(): Model stats

```
regressions_simple %>% unnest(tidied)
 A tibble: 108 x 10
                                   fit
                                                                 estimate std.error statistic
                                                                                                p.value glanced augmented
   Analyte
               data
                                          term
                                                                                        <db1>
                                                                                                  <dbl> <list>
               st>
                                   st> <chr>
                                                                              <dbl>
                                                                                                                 st>
 1 FGF (basic) <tibble [228 x 11]> <lm>
                                          (Intercept)
                                                                   1.26
                                                                             0.304
                                                                                        4.15 4.66e
                                                                                                        <tibble> <tibble>
 2 FGF (basic) <tibble [228 x 11]> <lm>
                                          log2(Anti_IFNa2_tite...
                                                                             0.0801
                                                                                              6.57e
                                                                                                        <tibble> <tibble>
 3 PlGF
               <tibble [225 x 11]> <lm>
                                          (Intercept)
                                                                   3.01
                                                                             0.128
                                                                                       23.4
                                                                                              5.17e
                                                                                                        <tibble> <tibble>
 4 PlGF
               <tibble [225 x 11]> <lm>
                                          log2(Anti_IFNa2_tite...
                                                                             0.0338
                                                                                        0.343 7.32e
                                                                  0.0116
                                                                                                        <tibble> <tibble>
 5 Tie-2
               <tibble [228 x 11]> <lm>
                                          (Intercept)
                                                                  12.5
                                                                             0.0908
                                                                                              5.15e
                                                                                                        <tibble> <tibble>
                                                                                      138.
 6 Tie-2
               <tibble [228 x 11]> <lm>
                                          log2(Anti_IFNa2_tite...
                                                                             0.0240
                                                                                              4.41e
                                                                                                        <tibble> <tibble>
 7 VEGF-C
               <tibble [220 x 11]> <lm>
                                                                                              5.23e
                                          (Intercept)
                                                                   5.15
                                                                             0.291
                                                                                       17.7
                                                                                                        <tibble> <tibble>
 8 VEGF-C
               <tibble [220 x 11]> <lm>
                                          log2(Anti_IFNa2_tite...
                                                                  0.0616
                                                                             0.0772
                                                                                        0.799 4.25e
                                                                                                        <tibble> <tibble>
 9 VEGF-D
               <tibble [227 x 11]> <lm>
                                          (Intercept)
                                                                   9.22
                                                                             0.123
                                                                                       74.8 6.01e
                                                                                                        <tibble> <tibble>
10 VEGF-D
               <tibble [227 x 11]> <lm>
                                          log2(Anti_IFNa2_tite...
                                                                  0.0455
                                                                             0.0325
                                                                                        1.40 1.64e
                                                                                                        <tibble> <tibble>
 ... with 98 more rows
```

Access results by unnesting!

```
regressions_simple
# A tibble: 54 × 6
                                            tidied
   Analyte
                                     fit
                                                             glanced
                                                                               augmented
                 data
   <chr>
                                     t> <list>
                                                             st>
                                                                               st>
                 st>
 1 FGF (basic)
                 <tibble [228 x 11]> <lm>
                                            <tibble [2 x 5]> <tibble [1 x 11]> <tibble [228 x 9]>
2 PlGF
                 <tibble [225 x 11]> <lm>
                                            <tibble [2 x 5]> <tibble [1 x 11]> <tibble [225 x 9]>
3 Tie-2
                 <tibble [228 × 11]> <lm>
                                            <tibble [2 x 5]> <tibble [1 x 11]> <tibble [228 x 9]>
 4 VEGF-C
                 <tibble [220 x 11]> <lm>
                                            <tibble [2 x 5]> <tibble [1 x 11]> <tibble [220 x 9]>
5 VEGF-D
                 <tibble [227 x 11]> <lm>
                                            <tibble [2 x 5]> <tibble [1 x 11]> <tibble [227 x 9]>
 6 VEGFR-1/Flt-1 <tibble [228 × 11]> <lm>
                                            <tibble [2 x 5]> <tibble [1 x 11]> <tibble [228 x 9]>
 7 Eotaxin
                 <tibble [223 x 11]> <lm>
                                            <tibble [2 x 5]> <tibble [1 x 11]> <tibble [223 x 9]>
 8 Eotaxin-3
                 <tibble [221 x 11]> <lm>
                                            <tibble [2 x 5]> <tibble [1 x 11]> <tibble [221 x 9]>
9 IP-10
                 <tibble [220 x 11]> <lm>
                                            <tibble [2 x 5]> <tibble [1 x 11]> <tibble [220 x 9]>
10 MCP-1
                 <tibble [223 × 11]> <lm>
                                            <tibble [2 x 5]> <tibble [1 x 11]> <tibble [223 x 9]>
# ... with 44 more rows
```

broom::glance():
Model metrics

```
regressions_simple %>% unnest(glanced)
  A tibble: 54 x 16
                                       r.squared adj.r.squared sigma statistic p.value
                                                                                         df logLik
   Analyte
               data
                        fit tidied
                                                                                                     AIC
                                                                                                           BIC deviance
                        <dbl> <dbl>
                                                                         <dbl>
                                                                                <dbl> <int>
                                                                                             <dbl> <dbl> <dbl>
               st>
                                                                                                                  <dbl>
 1 FGF (basic)
               <tibble> <lm> <tibble> 0.000876
                                                                                0.657
                                                                                                    800. 811.
                                                                                                                  435.
                                                              1.39
                                                                       0.198
 2 PlgF
               <tibble> <lm> <tibble>
                                       0.000529
                                                              0.583
                                                                       0.118
                                                                                0.732
                                                                                                    400.
                                                                                                          410.
                                                                                                                   75.8
3 Tie-2
               <tibble> <lm> <tibble> 0.00263
                                                              0.415
                                                                       0.595
                                                                                0.441
                                                                                                    250. 260.
                                                                                                                   38.9
4 VEGF-C
               <tibble> <lm> <tibble> 0.00292
                                                              1.31
                                                                       0.638
                                                                                0.425
                                                                                                    748. 758.
                                                                                                                  375.
5 VEGF-D
               <tibble> <lm> <tibble> 0.00861
                                                              0.563
                                                                       1.95
                                                                                0.164
                                                                                                    387. 398.
                                                                                                                   71.3
                                                      0.00420
6 VEGFR-1/Flt... <tibble> <lm> <tibble> 0.000613
                                                              0.406
                                                                       0.139
                                                                                0.710
                                                                                                    240. 251.
                                                                                                                   37.3
               <tibble> <lm> <tibble> 0.00176
                                                                                0.534
7 Eotaxin
                                                              0.692
                                                                       0.389
                                                                                                    473. 483.
                                                                                                                  106.
8 Eotaxin-3
               <tibble> <lm> <tibble> 0.00849
                                                      0.00396
                                                              0.616
                                                                       1.87
                                                                                0.172
                                                                                                    417. 427.
                                                                                                                   83.Z
9 IP-10
               <tibble> <lm> <tibble> 0.00432
                                                                       0.946
                                                                                0.332
                                                                                                    555. 565.
                                                                                                                  156.
                                                              0.846
10 MCP-1
               <tibble> <lm> <tibble> 0.000113
                                                                       0.0250
                                                              0.465
                                                                                0.874
                                                                                                    295. 305.
                                                                                                                   47.7
 ... with 44 more rows, and 2 more variables: df.residual <int>, augmented <list>
```

5. Aikake Information Criterion (AIC) comparison

- Decrease in AIC = better model
- Threshold at 2/5/10

```
simple_glance %>% select(Analyte, AIC1 = AIC) %>%
  inner_join(multi_SexAge_glance %>% select(Analyte, AIC2 = AIC)) %>%
  mutate(AIC_diff = AIC1 - AIC2) %>%
  arrange(-AIC_diff) %>%
  mutate(Analyte = fct_inorder(Analyte)) %>%
  ggplot(aes(Analyte, AIC_diff)) +
  geom_hline(yintercept = 0) +
  geom_hline(yintercept = 10, linetype = 2) +
  geom_point() +
  theme(axis.text.x = element_blank(), axis.ticks.x = element_blank()) + # turn off
with too many
  labs(title = "simple - SexAge") +
  geom_text_repel(data = . %>% slice_max(AIC_diff, n = 5), aes(label = Analyte), xlim
  = c(10, NA), size = 3)
```


6. Assemble regression results table

- Exclude intercept rows (usually)
- Multiple hypothesis correction (line in bold below)

```
lm results simple <- regressions simple %>%
  unnest(tidied) %>%
  select(Analyte, term, estimate, p.value) %>%
  group by (Analyte) %>%
  dplvr::summarize(
   Analyte = first(Analyte),
    # log2 denom = first(estimate), # check for transformation and adjust accordingly
    \# log2 num = nth(estimate, n = 2) + log2 denom, \# check for transformation and
adjust accordingly
    log2FoldChange = nth(estimate, n = 2), # check for transformation and adjust
accordingly; equivalent to difference between level 2 and level 1 ie y = B0 + B1x
    FoldChange = 2^log2FoldChange, # check for transformation and adjust accordingly
    pval = nth(p.value, n = 2)
  ) 응>응
  ungroup() %>%
  arrange(pval) %>%
  mutate(BHadj pval = p.adjust(pval, method = "BH", n = length(pval))) %>%
  select(
    Analyte,
    # log2 denom,
    # log2 num,
    FoldChange,
    log2FoldChange,
    pval,
    BHadj pval,
    everything()
```

```
tibble: 108 \times 4
   Analyte
                                        estimate
                                                   p.value
               term
   <chr>>
                <chr>>
                                           <dbl>
                                         1.26
                                                4.66e
 1 FGF (basic) (Intercept)
 2 FGF (basic) log2(Anti_IFNa2_titer)
                                                 6.57e
 3 PlgF
               (Intercept)
                                         3.01
                                                5.17e
 4 PlgF
               log2(Anti_IFNa2_titer)
                                         0.0116 7.32e
 5 Tie-2
               (Intercept)
                                         12.5
                                                 5.15e
 6 Tie-2
               log2(Anti_IFNa2_titer)
                                                 4.41e
 7 VEGF-C
               (Intercept)
                                         5.15
                                                5.23e
 8 VEGF-C
               log2(Anti_IFNa2_titer)
                                         0.061<u>6</u> 4.25e
 9 VEGF-D
               (Intercept)
                                         9.22 6.01e
10 VEGF-D
               log2(Anti_IFNa2_titer)
                                         0.0455 1.64e
# ... with 98 more rows
```

```
lm_results_simple
# A tibble: 54 x 5
               FoldChange log2FoldChange
   Analyte
                                           pval BHadj_pval
                                    <dbl> <dbl>
   <chr>>
                                                      <dbl>
 1 IL-2
                    1.12
                                  0.169 0.0329
                                                      0.629
 2 IL-17A
                    1.07
                                  0.0991 0.0369
                                                      0.629
 3 VEGF-A
                    0.947
                                                      0.629
                                         0.0463
 4 IL-1alpha
                    1.13
                                  0.174 0.0466
                                                      0.629
 5 IFN-alpha2a
                    1.07
                                                      0.679
                                  0.100 0.0782
 6 IFN-beta
                                                      0.679
                    1.13
                                  0.172 0.0856
                                                      0.679
 7 IL-10
                    1.06
                                  0.0815 0.121
 8 IL-4
                                                      0.679
                    1.06
                                  0.0831 0.130
 9 TARC
                    0.947
                                         0.155
                                                      0.679
10 IL-16
                    1.03
                                  0.0448 0.159
                                                      0.679
# ... with 44 more rows
```

Volcano plot:

Diff. cytokine abund. in T21 vs. Controls

Plot individual features:

```
msd SourceSexAge adj %>%
  filter(Analyte %in% c("CRP", "IL-22", "SAA", "IL-10", "IL-10")) %>%
 inner join(meta data) %>%
 mutate( # to control order of facets
   Analyte = fct relevel(Analyte, c("CRP", "IL-22", "SAA", "IL-10"))
   ) 응>응
 group by (Analyte, Karyotype) %>%
 mutate(extreme = rstatix::is extreme(log2(Abundance adj))) %>%
  ungroup() %>%
  filter(extreme == FALSE) %>%
 ggplot(aes(Karyotype, log2(Abundance adj), color = Karyotype)) +
 geom sina(size = 0.75) +
 geom boxplot(notch = TRUE, varwidth = FALSE, outlier.shape = NA, coef =
FALSE, width = 0.3, color = "black", fill = "transparent", size = 0.75) +
  facet wrap(~ Analyte, scales = "free y", nrow = 1) +
  scale color manual(values = standard colors) +
 labs(
   title = "MSD (SexAgeSource adjusted, no extreme)",
    x = NULL
  theme (
   aspect.ratio = 1.3,
   axis.text.x = element blank(),
   legend.position = "bottom"
```

MSD (SexAgeSource adjusted, no extreme)

