Introduction to software-based microarchitectural side-channel attacks

Introduction

Theory

Basic attacks

Software-based Microarchitectural Fault Attacks

Meltdown & Spectre

Summary

Introduction

Side-channel attacks

Microarchitectural attacks

Introduction
Side-channel attacks

Side-channel attacks

Example of target for side-channel attack

Introduction

Microarchitectural attacks

Microarchitectural attacks

code1a:

mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
.imp code1a

The DRAM cells get permanently damaged if hammered for a long time

Theory

CPU

Cache

DRAM

Theory CPU

Pipelining Branch Prediction and Speculation Multicore

CPU

Architecture of multicore CPU

CPU

Abstract architecture of core and memory organization

CPU

Abstract architecture of core and memory organization

Pipelining. In-Order

Elements of a modern in-order core

Pipelining. Out-of-Order

Elements of a modern out-of-order core

Pipelining. Out-of-Order

Elements of a modern out-of-order core

Branch Prediction and Speculation

get_secret_key() can be executed speculatively

Multicore

Architecture of multicore CPU AMD Bulldozer

Theory

Cache

Types of cache

Two-way set associative cache

Cache replacement policies

Addressing modes

Abstract architecture of core and memory organization

The flow of data through a modern platform

Algorithm of CPU cache

Algorithm of CPU cache

Types of cache

- ▶ Direct-mapped cache
- ► Fully-associative cache
- ▶ 2/4/8/12-way set associative cache

Two-way set associative cache

Cache replacement policies

- ► FIFO
- ► LIFO
- least recently used, LRU
- time aware least recently used, TLRU
- most recently used, MRU
- pseudo-LRU, PLRU
- random replacement, RR
- segment LRU, SLRU
- ▶ least frequently used, LFU
- least frequent recently used, LFRU
- ► LFU with dynamic aging, LFUDA
- ▶ low inter-reference recency set, LIRS
- ► adaptive replacement cache, ARC
- clock with adaptive replacement, CAR
- ▶ multi queue, MQ
- ▶ and etc.

Addressing modes

- ► Virtually indexed, virtually tagged (VIVT)
- ► Physically indexed, virtually tagged (PIVT)
- ► Virtually indexed, physically tagged (VIPT)
- Physically indexed, physically tagged (PIPT)

Theory

DRAM

How DRAM works DRAM organization

How DRAM works

A very simple computer system, with a single DRAM array

How DRAM works

A very simple computer system, with a single DRAM array

DRAM organization

Basic attacks

Cache attacks

Branch-prediction attacks

TLB-based attacks

Exception-based attacks

DRAM-based attacks

Covert channels

Basic attacks Cache attacks

Flush + Reload

Cache attacks

Timing attack — attack exploiting differences in the execution time of an algorithm

- 1. Map binary (e.g., shared object) into address space
- 2. Flush a cache line (code or data) from the cache
- 3. Schedule the victim's program
- 4. Check if corresponding cache line from step 2 has been loaded by the victim's program

Map binary (e.g., shared object) into address space

Flush a cache line (code or data) from the cache

Schedule the victim's program

Check if corresponding cache line from step 2 has been loaded by the victim's program

Cache attacks

- ► Evict + Time
- ▶ Prime + Probe
- ▶ Prime + Abort
- ► Flush + Flush
- Evict + Reload
- ► AnC (ASLR ⊕ Cache)
- and etc.

Basic attacks

Branch-prediction attacks

Branch-prediction attacks

Branch Target Buffer addressing scheme in Haswell processor

Basic attacks
TLB-based attacks

TLB-based attacks

A translation lookaside buffer (TLB) is a memory cache that is used to reduce the time taken to access a user memory location

Basic attacks

Exception-based attacks

Exception-based attacks

- Scheduler interrupts
- ► Instruction aborts
- ► Page faults
- ▶ Behavioral differences (e.g, error code)

Basic attacks

DRAM-based attacks

Reading from DRAM Complex DRAM-based attacks

DRAM bank

2101111 241111	
0123456789	
1234567890	
2345678901	
3456789012	
4567890123	
5678901234	
6789012345	

row buffer

CPU reads row 1, row buffer empty

CPU reads row 1, row buffer now full

Complex DRAM-based attacks

- DRAMA
- ► Row hit (Flush + Reload)
- ► Row miss (Prime + Probe)
- ▶ and etc.

Basic attacks
Covert channels

Covert channels

Covert channels

- ► Cache-based covert channels (shared libraries)
- ► Row miss attack (DRAM)
- ► Thermal covert channels
- Radio covert channels

Software-based Microarchitectural Fault Attacks Rowhammer

Software-based Microarchitectural Fault Attacks

Software-based microarchitectural fault attacks do not require physical access, but instead only some form of code execution on the target system

Software-based Microarchitectural Fault Attacks

Rowhammer

Rowhammer. Exploitation primitives

Variations of Rowhammer

Rowhammer. Exploitation primitives

- ► Fast uncached memory access
- ► Physical memory massaging
- Physical memory addressing

Variations of Rowhammer

- ► Flip Feng Shui targeted Rowhammer
- ► Throwhammer remote Rowhammer
- ▶ Nethammer better remote Rowhammer
- Drammer, RAMpage exploitation ARM-based hardware
- ► Glitch better exploitation ARM-based hardware

Meltdown & Spectre

Derived attacks and not only Abstract example of exploitation

Meltdown & Spectre

Derived attacks and not only

Derived attacks and not only

Spectre-NG

- ► MeltdownPrime & SpectrePrime
- SgxPectre
- ► SMM Speculative Execution Attacks
- BranchScope
- LazyFP
- **.**..

Derived attacks and not only

- ► Spectre 1.1, 1.2 (Speculative Buffer Overflows)
- SpectreRSB
- NetSpectre
- ► L1TF (Foreshadow)
- ▶ and etc.

TotalMeltdown? and other patches...

Agenda

Meltdown & Spectre
Abstract example of exploitation

The four components of speculation techniques

1. Speculation primitive

The four components of speculation techniques

1. Speculation primitive

- Bypass out of bounds checks
- ► Training of branch predictor
- Speculatively read an earlier value of the data
- Pending exceptions
- Exploit branch history table
- Exploit the Return Stack Buffer
- Speculatively write to register (buffer overflow)

Microarchitecture - ?

Type of BP

Algorithm of BP

Environment of BP

Foundation of tower speculative-based attack

- 1. Speculation primitive
- 2. Windowing gadget

- 1. Speculation primitive
- 2. Windowing gadget

- Non-cached loads
- Dependency chain of loads
- Dependency chain of integer ALU operations

Tower speculative-based attack

- 1. Speculation primitive
- 2. Windowing gadget
- 3. Disclosure gadget

- 1. Speculation primitive
- 2. Windowing gadget
- 3. Disclosure gadget

- ► ASLR
- ► CFI
- ► SMAP
- ► DEP/NX
- retpoline
- ▶ and others.

- 1. Speculation primitive
- 2. Windowing gadget
- 3. Disclosure gadget
- 4. Disclosure primitive

- 1. Speculation primitive
- 2. Windowing gadget
- 3. Disclosure gadget
- 4. Disclosure primitive
- Architecture of cache
- ► Replacement policies
- Exclusive and inclusive
- ► Type of cache attack
- Noise
- High-resolution timer
- and etc.

Babel tower speculative-based attack

Agenda

► Software-based microarchitectural attacks become a very popular

- ► Software-based microarchitectural attacks become a very popular
- ▶ Requires **a lot of resources** to develop working exploit

- ► Software-based microarchitectural attacks become a very popular
- Requires a lot of resources to develop working exploit
- Microarchitectural attacks may be automated

- ► Software-based microarchitectural attacks become a very popular
- Requires a lot of resources to develop working exploit
- Microarchitectural attacks may be automated
- Many attacks have not yet been published

- ► Software-based microarchitectural attacks become a very popular
- Requires a lot of resources to develop working exploit
- Microarchitectural attacks may be automated
- Many attacks have not yet been published
- Countermeasures come with a performance impact

Questions?

References I

Daniel Gruss

Software-based Microarchitectural Attacks.

Moritz Lipp, Daniel Gruss

ARMageddon: Cache Attacks on Mobile Devices.

D. Page

MASCAB: a Micro-Architectural Side-Channel Attack Bibliography.

Pessl P., Gruss D. and others

DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks.

Bos H., Fratantonio Y. and others

Drammer: Determenistic Rowhammer Attacks on Mobile Platforms.

Microsoft

Mitigating speculative execution side channel hardware vulnerabilities.

References II

- Google Project Zero Reading privileged memory with a side-channel.
- Daniel Gruss, Moritz Lipp KASLR is Dead: Long Live KASLR.
- Daniel Gruss, Clémentine Maurice and others Flush+Flush: A Fast and Stealthy Cache Attack.
- Fangfei Liu, Yuval Yarom and others Last-Level Cache Side-Channel Attacks are Practical.
- Caroline Trippel, Daniel Lustig, Margaret Martonosi

 MeltdownPrime and SpectrePrime: Automatically-Synthesized Attacks Exploiting

 Invalidation-Based Coherence Protocols.

References III

- Michael Schwarz, Clémentine Maurice, Daniel Gruss, Stefan Mangard Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript.
- Moritz Lipp, Misiker Tadesse Aga and others Nethammer: Inducing Rowhammer Faults through Network Requests.
- Andrei Tatar, Radhesh Krishnan and others Throwhammer: Rowhammer Attacks over the Network and Defenses.
- Giovanni Camurati, Sebastian Poeplau and others Screaming Channels: When Electromagnetic Side Channels Meet Radio Transceivers.
- Julian Stecklina, Thomas Prescher
 LazyFP: Leaking FPU Register State using Microarchitectural Side-Channels.
- Mordechai Guri, Assaf Kachlon and others

 GSMem: Data Exfiltration from Air-Gapped Computers over GSM Frequencies.

References IV

- Dean Sullivan, Orlando Arias, Travis Meade, Yier Jin Microarchitectural Minefields: 4K-Aliasing Covert Channel and Multi-Tenant Detection in IaaS Clouds.
- Gras B., Razavi K., Bosman E., Bos H., Giuffrida C. ASLR on the Line: Practical Cache Attacks on the MMU.
- wan Schaik S., Giuffrida C., Bos H., Razavi K.

 Malicious Management Unit: Why Stopping Cache Attacks in Software is Harder Than You
 Think.
- Daniel Gruss, Anders Fogh and others Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR.
- Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh and others Spectre Returns! Speculation Attacks using the Return Stack Buffer.

References V

- Giorgi Maisuradze, Christian Rossow ret2spec: Speculative Execution Using Return Stack Buffers.
- Guoxing Chen, Sanchuan Chen and others SgxPectre Attacks: Leaking Enclave Secrets via Speculative Execution.
- Moritz Lipp, Michael Schwarz and others Meltdown.
- Paul Kocher, Daniel Genkin and others Spectre Attacks: Exploiting Speculative Execution.
- ARM Whitepaper Cache Speculation Side-channels.
- Michael Schwarz, Martin Schwarzl, Moritz Lipp, Daniel Gruss NetSpectre: Read Arbitrary Memory over Network.

References VI

- Sophia D'Antoine Out-of-Order Execution and Its Applications.
- Vladimir Kiriansky, Carl Waldspurger Speculative Buffer Overflows: Attacks and Defenses.
- Gras B., Razavi K., Bos H., Giuffrida C. Translation Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks.
- Craig Disselkoen, David Kohlbrenner, Leo Porter, Dean Tullsen

 Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using Intel TSX.
- Moritz Lipp, Michael Schwarz Meltdown & Spectre Side-channels considered hARMful.
- Jon Masters
 Exploiting modern microarchitectures: Meltdown, Spectre, and other attacks.

References VII

Moritz Lipp Cache attacks on ARM.

N. Evtyushkin D., Ponomarev D., Abu-Ghazaleh N.

Jump over ASLR: attacking branch predictors to bypass ASLR.