EE301: Electromagnetic Waves Tutorial 6 - Part B

October 11, 2018

Problem 1: Smith chart

A lossless line having an air dielectric has a characteristic impedance, Z_0 of 400Ω . The line is operating at 200MHz and input impedance, $Z_{in}=(200-j200)\Omega$. Use analytic methods and the Smith chart to find:

- (a) Input admittance
- (b) Input VSWR
- (c) Load impedance if the line is 1m long
- (d) VSWR at the load
- (e) The distance from the load to nearest voltage maximum

Problem 1a: Analytical solution

(a) Input admittance

$$Y_{in} = \frac{1}{Z_{in}}$$

$$\implies Y_{in} = \frac{1}{200 - j200} = (2.5 \times 10^{-3} + j2.5 \times 10^{-3}) \text{°U}$$

Problem 1a: Solution

Figure: Input admittance calculation using Smith chart

Problem 1b: Analytical solution

(b) Input VSWR

Input reflection coefficient,
$$\Gamma_{in} = \frac{Z_{in} - Z_0}{Z_{in} + Z_0}$$

$$\implies \Gamma_{in} = -0.2 + j0.4 = 0.447 \angle 116.56^{\circ}$$

Input VSWR,
$$VSWR_{in} = \frac{1+|\Gamma_{in}|}{1-|\Gamma_{in}|}$$

$$\implies VSWR_{in} = 2.617$$

Problem 1b: Solution

Figure: Input VSWR calculation using Smith chart

Problem 1c: Analytical solution

(c) Load impedance

Input impedance,
$$Z_{in} = Z_0 \frac{Z_L + jZ_0 tan(\beta I)}{Z_0 + jZ_L tan(\beta I)}$$

$$\Longrightarrow$$
 Load impedance, $Z_L = Z_0 \frac{Z_{in} - jZ_0 tan(\beta I)}{Z_0 - jZ_{in} tan(\beta I)}$

$$Z_L = (1040 + j69.8)\Omega$$

Problem 1c: Solution

Figure: Load impedance calculation using Smith chart

Problem 1c: Solution

Figure: Load impedance calculation using Smith chart

Problem 1d: Analytical solution

(d) VSWR at the load

Load reflection coefficient,
$$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0}$$

$$\implies \Gamma_L = 0.446 - j0.268 = 0.447 \angle 3.45^{\circ}$$

Load VSWR,
$$VSWR_L = \frac{1+|\Gamma_L|}{1-|\Gamma_L|}$$

$$\implies VSWR_I = 2.617$$

Problem 1e: Analytical solution

(e) Nearest voltage maximum

$$I_{max} = -\frac{\phi}{2\beta} = -\frac{\lambda\phi}{4\pi} = -7.2$$
mm

Note: ϕ should be in radian

Problem 1e: Solution

Figure: Distance to the nearest voltage maximum

THANK YOU