MATH 417, HOMEWORK 5

CHARLES ANCEL

Exercise 2.4.8. Let $\phi: G \to H$ be a homomorphism of G onto H (that is, ϕ is surjective). If A is a normal subgroup of G, shat that $\phi(A)$ is a normal subgroup of H.

SOLUTION

Let $\phi: G \to H$ be a surjective homomorphism and let A be a normal subgroup of G. We need to show that $\phi(A)$ is a normal subgroup of H.

Normal Subgroups. Recall that a subgroup $A \triangleleft G$ is normal if for all $g \in G$:

$$gAg^{-1} \subseteq A$$
.

Similarly, a subgroup $B \subseteq H$ is normal if for all $h \in H$:

$$hBh^{-1} \subseteq B$$
.

Using the Homomorphism Property. Since ϕ is a homomorphism, it satisfies:

$$\phi(g_1g_2) = \phi(g_1)\phi(g_2)$$
 for all $g_1, g_2 \in G$.

To show that $\phi(A)$ is normal in H, we must show that for any $h \in H$ and any $a' \in \phi(A)$:

$$ha'h^{-1} \in \phi(A)$$
.

Proof.

Let $h \in H$ and $a' \in \phi(A)$. Since ϕ is surjective, there exists some $g \in G$ such that $\phi(g) = h$.

Let $a' \in \phi(A)$. By definition of $\phi(A)$, there exists some $a \in A$ such that $\phi(a) = a'$. Consider:

$$ha'h^{-1} = \phi(g)\phi(a)\phi(g^{-1}).$$

Using the homomorphism property:

$$ha'h^{-1} = \phi(g)\phi(a)\phi(g^{-1}) = \phi(gag^{-1}).$$

Since A is normal in G, we have $gag^{-1} \in A$. Therefore:

$$\phi(gag^{-1}) \in \phi(A).$$

Thus:

$$ha'h^{-1} \in \phi(A).$$

Conclusion. We have shown that for any $h \in H$ and any $a' \in \phi(A)$: $ha'h^{-1} \in \phi(A).$

Therefore, $\phi(A)$ is a normal subgroup of H.

Exercise 2.5.8. Suppose N is a subgroup of a group G and [G:N]=2. Show that N is normal in G.(Hint: use the fact that a subgroup is normal if and only if every left coset is also a right coset.)

SOLUTION

Let N be a subgroup of G such that the index [G:N]=2. We need to show that N is a normal subgroup of G.

Cosets and Index. Since [G:N]=2, N has exactly two cosets in G:

- The coset N.
- Another coset, say gN, where $g \notin N$.

Left and Right Cosets. To show that N is normal in G, we will use the fact that a subgroup is normal if and only if every left coset is also a right coset. Specifically, we need to show that for every $g \in G$:

$$qN = Nq$$
.

Proof.

Let $g \in G$. There are two possible cases for g:

- (1) $g \in N$.
- (2) $g \notin N$.

Case 1: $g \in N$. If $g \in N$, then:

$$gN = N = Ng$$
.

Thus, the left coset gN is equal to the right coset Ng.

Case 2: $g \notin N$. If $g \notin N$, then gN is the other coset of N in G, and since there are only two cosets, we have:

$$gN = G \setminus N$$
.

To show gN = Ng, consider the right coset Ng. Since $g \notin N$, we have:

$$Ng = \{ng \mid n \in N\}.$$

Similarly, since N is the identity left coset and gN is the other coset:

$$gN = \{gn \mid n \in N\}.$$

We need to show that gN = Ng. Consider an arbitrary element $gn \in gN$. We can rewrite gn as $gn = ng' \in Ng$ for some $g' \in N$. Since $gN = G \setminus N$, and similarly for right cosets, the cosets must cover G without overlap:

$$Ng = G \setminus N$$
.

Therefore:

$$gN = Ng$$
.

Conclusion. We have shown that for every $g \in G$:

$$gN = Ng$$
.

Thus, every left coset of N is also a right coset, and N is a normal subgroup of G. \square

Exercise 3. Let D be the symmetry group of the disk, as described in class and in Goodman 2.6. Show that there is a function $\phi: D \to D$ such that $\phi(r_{\theta}) = r_{2\theta}$ and $\phi(j_{\theta}) = j_{2\theta}$ (this means: show that ϕ is well-defined), and that this function ϕ is a homomorphism of groups. Also describe the kernel of ϕ .

The following exercise sets up an example which will appear in future problem sets. Here A will be a commutative ring with identity (examples: \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_n .) I'll write

$$C(A) := \{(x, y) \mid x, y \in A, \ x^2 + y^2 = 1\}.$$

For instance, $C(\mathbb{R})$ is the unit circle in \mathbb{R}^2 .

SOLUTION

Structure of the Symmetry Group D. The symmetry group D of the disk consists of:

- Rotations r_{θ} by θ radians.
- Reflections j_{θ} through a line making an angle $\theta/2$ with a fixed axis.

The group operation involves composition of symmetries:

$$r_{\theta}r_{\phi} = r_{\theta+\phi}, \quad j_{\theta}j_{\phi} = r_{\theta+\phi}, \quad r_{\theta}j_{\phi} = j_{\theta+\phi}, \quad j_{\theta}r_{\phi} = j_{\theta-\phi}.$$

Defining the Function ϕ **.** We define the function $\phi: D \to D$ by:

$$\phi(r_{\theta}) = r_{2\theta}, \quad \phi(j_{\theta}) = j_{2\theta}.$$

We need to show that ϕ is well-defined and a homomorphism.

Well-Definedness of ϕ . To show that ϕ is well-defined, we must verify that the function ϕ respects the group structure and produces valid elements of D.

Proof.

Rotations. Consider the rotation r_{θ} :

$$\phi(r_{\theta}) = r_{2\theta}.$$

Reflections. Consider the reflection j_{θ} :

$$\phi(j_{\theta}) = j_{2\theta}$$
.

Homomorphism Property. To show that ϕ is a homomorphism, we must verify that for any $q, h \in D$:

$$\phi(gh) = \phi(g)\phi(h).$$

Consider the cases for rotations and reflections:

• Case 1: $g = r_{\theta}$ and $h = r_{\phi}$:

$$\phi(r_{\theta}r_{\phi}) = \phi(r_{\theta+\phi}) = r_{2(\theta+\phi)} = r_{2\theta+2\phi} = \phi(r_{\theta})\phi(r_{\phi}).$$

• Case 2: $g = j_{\theta}$ and $h = j_{\phi}$:

$$\phi(j_{\theta}j_{\phi}) = \phi(r_{\theta+\phi}) = r_{2(\theta+\phi)} = r_{2\theta+2\phi} = j_{2\theta}j_{2\phi}.$$

• Case 3: $g = r_{\theta}$ and $h = j_{\phi}$:

$$\phi(r_{\theta}j_{\phi}) = \phi(j_{\theta+\phi}) = j_{2(\theta+\phi)} = j_{2\theta+2\phi} = \phi(r_{\theta})\phi(j_{\phi}).$$

• Case 4: $g = j_{\theta}$ and $h = r_{\phi}$:

$$\phi(j_{\theta}r_{\phi}) = \phi(j_{\theta-\phi}) = j_{2(\theta-\phi)} = j_{2\theta-2\phi} = \phi(j_{\theta})\phi(r_{\phi}).$$

In all cases, $\phi(gh) = \phi(g)\phi(h)$, so ϕ is a homomorphism.

Kernel of ϕ . The kernel of ϕ is the set of elements in D that are mapped to the identity element under ϕ . We need to identify these elements:

Proof.

Consider the elements of D:

• For rotations r_{θ} :

$$\phi(r_{\theta}) = r_{2\theta} = e \implies 2\theta = 0 \pmod{2\pi} \implies \theta = 0 \pmod{\pi}.$$

Thus, the rotations in the kernel are r_0 and r_{π} .

• For reflections j_{θ} :

$$\phi(j_{\theta}) = j_{2\theta} = e \implies j_{2\theta} = j_0 \implies \theta = 0 \pmod{\pi}.$$

Thus, the reflections in the kernel are j_0 and j_{π} .

Therefore, the kernel of ϕ is:

$$\ker(\phi) = \{r_0, r_{\pi}, j_0, j_{\pi}\}.$$

Conclusion. The function $\phi: D \to D$ defined by $\phi(r_{\theta}) = r_{2\theta}$ and $\phi(j_{\theta}) = j_{2\theta}$ is well-defined and is a homomorphism of groups. The kernel of ϕ is:

$$\ker(\phi) = \{r_0, r_{\pi}, j_0, j_{\pi}\}.$$

Exercise 4. Given $(x_1, y_1), (x_2, y_2) \in C(A)$, define

$$(x_1, y_1) \oplus (x_2, y_2) := (x_1x_2 - y_1y_2, x_1y_2 + y_1x_2).$$

Show that this always takes values in C(A), and that (C(A)), \oplus is an abelian group.

SOLUTION

Let C(A) be defined as:

$$C(A) := \{(x, y) \mid x, y \in A, \ x^2 + y^2 = 1\}.$$

We define the operation \oplus on C(A) by:

$$(x_1, y_1) \oplus (x_2, y_2) := (x_1x_2 - y_1y_2, x_1y_2 + y_1x_2).$$

Values in C(A). To show that $(x_1, y_1) \oplus (x_2, y_2)$ always takes values in C(A), we need to verify that:

$$(x_1x_2 - y_1y_2)^2 + (x_1y_2 + y_1x_2)^2 = 1.$$

Proof.

Let $(x_1, y_1), (x_2, y_2) \in C(A)$. Then:

$$x_1^2 + y_1^2 = 1$$
 and $x_2^2 + y_2^2 = 1$.

Consider the new pair $(x_1x_2 - y_1y_2, x_1y_2 + y_1x_2)$:

$$(x_1x_2 - y_1y_2)^2 + (x_1y_2 + y_1x_2)^2 = x_1^2x_2^2 - 2x_1x_2y_1y_2 + y_1^2y_2^2$$

$$+ x_1^2y_2^2 + 2x_1y_2y_1x_2 + y_1^2x_2^2$$

$$= x_1^2x_2^2 + y_1^2y_2^2 + x_1^2y_2^2 + y_1^2x_2^2$$

$$= x_1^2(x_2^2 + y_2^2) + y_1^2(x_2^2 + y_2^2)$$

$$= x_1^2 \cdot 1 + y_1^2 \cdot 1$$

$$= x_1^2 + y_1^2$$

$$= 1.$$

Thus, $(x_1x_2 - y_1y_2, x_1y_2 + y_1x_2) \in C(A)$.

Abelian Group Structure. We need to show that $(C(A), \oplus)$ is an abelian group.

Proof.

Closure. From the previous proof, we have shown that $(x_1, y_1) \oplus (x_2, y_2) \in C(A)$ for all $(x_1, y_1), (x_2, y_2) \in C(A)$.

Associativity. We need to show that \oplus is associative:

$$((x_1, y_1) \oplus (x_2, y_2)) \oplus (x_3, y_3) = (x_1, y_1) \oplus ((x_2, y_2) \oplus (x_3, y_3)).$$

Compute both sides:

$$((x_1, y_1) \oplus (x_2, y_2)) \oplus (x_3, y_3) = (x_1x_2 - y_1y_2, x_1y_2 + y_1x_2) \oplus (x_3, y_3)$$
$$= ((x_1x_2 - y_1y_2)x_3 - (x_1y_2 + y_1x_2)y_3,$$
$$(x_1x_2 - y_1y_2)y_3 + (x_1y_2 + y_1x_2)x_3).$$

$$(x_1, y_1) \oplus ((x_2, y_2) \oplus (x_3, y_3)) = (x_1, y_1) \oplus (x_2x_3 - y_2y_3, x_2y_3 + y_2x_3)$$
$$= (x_1(x_2x_3 - y_2y_3) - y_1(x_2y_3 + y_2x_3),$$
$$x_1(x_2y_3 + y_2x_3) + y_1(x_2x_3 - y_2y_3)).$$

Both expressions simplify to the same result using distributivity.

Identity Element. The identity element is (1,0) since:

$$(x,y) \oplus (1,0) = (x \cdot 1 - y \cdot 0, x \cdot 0 + y \cdot 1) = (x,y).$$

Inverses. The inverse of (x, y) is (x, -y) since:

$$(x,y) \oplus (x,-y) = (x \cdot x - y \cdot (-y), x \cdot (-y) + y \cdot x) = (x^2 + y^2, 0) = (1,0).$$

Commutativity. We need to show that \oplus is commutative:

$$(x_1, y_1) \oplus (x_2, y_2) = (x_2, y_2) \oplus (x_1, y_1).$$

Compute both sides:

$$(x_1x_2 - y_1y_2, x_1y_2 + y_1x_2) = (x_2x_1 - y_2y_1, x_2y_1 + y_2x_1).$$

Both expressions are the same, showing commutativity.

Conclusion. The set C(A) with the operation \oplus forms an abelian group:

$$(C(A), \oplus)$$
 is an abelian group.

Exercise 5. Show that $\phi(t) := (\cos t, \sin t)$ defines a homomorphism $\phi : (\mathbb{R}, +) \to (C(\mathbb{R}), \oplus)$. Show that this homomorphism is surjective and determine its kernel.

SOLUTION

Let $\phi: \mathbb{R} \to C(\mathbb{R})$ be defined by:

$$\phi(t) := (\cos t, \sin t).$$

We need to show that ϕ is a homomorphism, that it is surjective, and determine its kernel.

Homomorphism Property. To show that ϕ is a homomorphism, we must verify that for any $t_1, t_2 \in \mathbb{R}$:

$$\phi(t_1+t_2)=\phi(t_1)\oplus\phi(t_2).$$

Recall the operation \oplus in $C(\mathbb{R})$:

$$(x_1, y_1) \oplus (x_2, y_2) := (x_1x_2 - y_1y_2, x_1y_2 + y_1x_2).$$

Proof.

Consider $\phi(t_1+t_2)$:

$$\phi(t_1 + t_2) = (\cos(t_1 + t_2), \sin(t_1 + t_2)).$$

Using the angle addition formulas:

$$\cos(t_1 + t_2) = \cos t_1 \cos t_2 - \sin t_1 \sin t_2,$$

$$\sin(t_1 + t_2) = \sin t_1 \cos t_2 + \cos t_1 \sin t_2.$$

Compute $\phi(t_1) \oplus \phi(t_2)$:

$$\phi(t_1) = (\cos t_1, \sin t_1), \quad \phi(t_2) = (\cos t_2, \sin t_2).$$

$$\phi(t_1) \oplus \phi(t_2) = (\cos t_1 \cos t_2 - \sin t_1 \sin t_2, \cos t_1 \sin t_2 + \sin t_1 \cos t_2).$$

Compare the results:

$$\phi(t_1 + t_2) = (\cos t_1 \cos t_2 - \sin t_1 \sin t_2, \cos t_1 \sin t_2 + \sin t_1 \cos t_2) = \phi(t_1) \oplus \phi(t_2).$$

Thus, ϕ preserves the group operation, and ϕ is a homomorphism.

Surjectivity. To show that ϕ is surjective, we need to show that for any $(x,y) \in C(\mathbb{R})$, there exists $t \in \mathbb{R}$ such that $\phi(t) = (x,y)$.

Proof.

Let $(x,y) \in C(\mathbb{R})$. By definition, (x,y) satisfies:

$$x^2 + y^2 = 1.$$

Choose $t \in \mathbb{R}$ such that:

$$\cos t = x$$
, $\sin t = y$.

Since (x, y) lies on the unit circle, there exists such t. Thus:

$$\phi(t) = (\cos t, \sin t) = (x, y).$$

Therefore, ϕ is surjective.

Kernel of ϕ . The kernel of ϕ is the set of elements in \mathbb{R} that are mapped to the identity element in $C(\mathbb{R})$ under ϕ . The identity element in $C(\mathbb{R})$ is (1,0).

Proof.

Determine the kernel of ϕ :

$$\ker(\phi) = \{ t \in \mathbb{R} \mid \phi(t) = (1,0) \}.$$

$$\phi(t) = (\cos t, \sin t) = (1, 0) \implies \cos t = 1 \text{ and } \sin t = 0.$$

The solutions to $\cos t = 1$ and $\sin t = 0$ are:

$$t = 2k\pi$$
 for some $k \in \mathbb{Z}$.

Thus:

$$\ker(\phi) = \{2k\pi \mid k \in \mathbb{Z}\}.$$

Conclusion. The function $\phi(t) := (\cos t, \sin t)$ defines a homomorphism $\phi: (\mathbb{R}, +) \to (C(\mathbb{R}), \oplus)$ that is surjective. The kernel of ϕ is:

$$\ker(\phi) = \{2k\pi \mid k \in \mathbb{Z}\}.$$