Experiment #4 – Accelerator and Wrappers

Ava Mirmohammadmahdi 810199501 Nesa Abbasi 810199457

1. Exponential Engine

'timescale ins/ins

module ExpTM();

mire [15:0] fractionalPart;

mire [15:0] fractionalPart;

mire [15:0] str

reg [25:0] %;

Fig. 1 Verilog Testbench

Fig. 2 Simulation

Input $0x8000 \rightarrow 0x0A5E3$

Input $0xCCC \rightarrow 0x233F7$

Input $0x3333 \rightarrow 0x13581$

Input $0xFD70 \rightarrow 0x2B01E5$

Input $0x028F \rightarrow 0x10000$

The difference is because of the exponential engine.

1.2 Flow Summary Successful - Tue May 17 05:52:58 2022 Flow Status 12.1 Build 177 11/07/2012 SJ Web Edition Quartus II 64-Bit Version Revision Name ExpAcc Top-level Entity Name ExpEngine Family Cyclone II EP2C20F484C7 Device Timing Models Total logic elements 102 / 18,752 (< 1 %) Total combinational functions 100 / 18,752 (< 1 %) Dedicated logic registers 61 / 18,752 (< 1 %) Total registers 61 Total pins 38 / 315 (12%) Total virtual pins 0 Total memory bits 0 / 239,616 (0%) Embedded Multiplier 9-bit elements 2/52(4%) 0/4(0%) Total PLLs

Fig. 3 Synthesis result

1.3 | Slow Model Fmax Summary | Fmax | Restricted Fmax | Clock Name | Note | | | 113.22 MHz | 113.22 MHz | clk | |

Fig. 4 Maximum frequency

2. The Wrapper Controller

2.1

Fig. 5 State Diagram

Fig. 6 Controller Verilog

2.2

Fig. 7 Rom IP

```
WIDTH=16;
DEPTH=8;
ADDRESS_RADIX=HEX;
DATA_RADIX=HEX;
CONTENT BEGIN
00 : 8000;
01 : CCCC;
02 : 3333;
03 : FD70;
04 : 028F;
05 : 0000;
06 : 0000;
07 : 0000;
END;
```

Fig. 8 Mif File

Fig. 9 FIFO IP

Fig. 10 The accelerator block diagram

Fig. 11 Accelerator Testbench

Fig. 12 Complete pulse on signal "start"

Fig. 13 Simulation result

3.Implementing Accelerator on FPGA

3.1

Flow Summary

Flow Status Successful - Sat Jun 18 20:19:05 2022 Quartus Prime Version 20.1.0 Build 711 06/05/2020 SJ Lite Edition Revision Name Accelerator Top-level Entity Name Accelerator Family Cyclone IV E Total logic elements 135 / 6,272 (2 %) 83 Total registers Total pins 23 / 92 (25 %) Total virtual pins 0 Total memory bits 272 / 276,480 (< 1 %) Embedded Multiplier 9-bit elements 2 / 30 (7 %) Total PLLs 0/2(0%) Device EP4CE6E22C6 Timing Models Final

Fig. 14 Synthesis report

3.2

We connected Done signal to LED 9, Start pin to SW9 and Read to SW0. We read the results one by one by setting SW0 to one. After LED9 turned on.

3.3

```
module Final(input [15:0] in, output [6:0] HEX0, HEX1, HEX2, HEX3);

Hexdisplav HD1 (in[3:0], HEX0);

Hexdisplav HD2 (in[7:4], HEX1);

Hexdisplav HD3 (in[11:8], HEX2);

Hexdisplav HD4 (in[15:12], HEX3);

endmodule
```

Fig. 15 Converter for 7 Segment display

To convert data for 7 segment display, we omitted 2 least significant bits.

3.4

Fig. 16 First output

18 bits binary → Omit 2 least significant bits → Hex $0110100110000010111 \rightarrow 011010011000001041 \rightarrow 6982$

Fig. 17 Second output 18 bits binary \rightarrow Omit 2 least significant bits \rightarrow Hex 100011100110110011 \rightarrow 1000111001101100+ 8E6C

Fig. 18 Third output 18 bits binary \rightarrow Omit 2 least significant bits \rightarrow Hex 010011100010101000 \rightarrow 010011100010101000 \rightarrow 4E2A

Fig. 19 Fourth output 18 bits binary \rightarrow Omit 2 least significant bits \rightarrow Hex 101011000011101001 \rightarrow 10101100001110100+ AC3A

Fig. 20 Fifth output 18 bits binary \rightarrow Omit 2 least significant bits \rightarrow Hex 010000001010001111 \rightarrow 010000001010001141 \rightarrow 40A3

18 bits binary \rightarrow Omit 2 least significant bits \rightarrow Hex 00111111111111111 \rightarrow 001111111111111 \rightarrow 3FFF

If we convert our 18 bit input from hex to binary and ommit 2 least significant bits of it and then convert it to hex the output is the same as we ecpected.