Evaluation de la qualité du prétraitement avec PepsNMR - Human Serum dataset

B. Govaerts & M. Martin
May 18, 2018,14:16

Contents

Etude de la répétabilité spectrale d'un prétraitement]
Inertia	2
PCA	
Unsupervised clustering	4
PLS-DA	4
Evaluation de la répétabilité de différentes corrections de la Baseline	8
Fonction de prétraitement depuis la correction de la baseline	Ć
Fonction EvalRepet	
Paramètres de la correction de la baseline λ et p	
Inertia	12
PCA scores plots	1
Clustering	18
PLS-DA	2(

Etude de la répétabilité spectrale d'un prétraitement

```
#====== PARAMETRES A MODIFIER quand vous utilisez MBXUCL
## A. Paramètres globaux liés aux noms et chemin d'accès des dataset
dataname <- "HumanSerum" # nom du jeu de données
## Mettre ici le nom du chemin d'accès du répertoire où sont les spectres prétraités
# spectres prétraités
data.path <- "/Users/manon/Documents/Conférences/RFMF2018/Atelier_PepsNMR/RMD"
# load le fichier .RData créé précédemment
load(file.path(data.path,paste0(dataname,".RData")))
dataset <- Re_Spectrum_data
\# dataset \leftarrow read.table(file = file.path(data.path,pasteO(dataname,"\_Spectra.csv")),
                        sep=";", dec=" ", row.names = 1, header = TRUE,
#
                        check.names =FALSE)
dataset <- as.matrix(dataset)</pre>
## B. Définition des groupes de spectres par sujet.
# group_HS est loadé avec le fichier .RData créé précédemment
```

```
# dataGroup.path <- system.file("extdata", package = "PepsNMR") # données du package PepsNMR
# dir(dataGroup.path) # ce que contient le répertoire data.path
# group_HS <- read.csv(file.path(dataGroup.path, "Group_HS.csv"), header = TRUE, sep = ";")
group <- as.factor(substr(group_HS[,1],4,5)) # donneur comme groupe</pre>
table(group) # fréquences de chaque groupe
## group
## D1 D2 D3 D4
## 8 8 8 8
group_num <- group_HS[,2] # Version numerique des noms de groupes</pre>
table(group_num) # fréquences de chaque groupe
## group_num
## 1 2 3 4
## 8 8 8 8
ls() # éléments dans l'environnement global
## [1] "data.path"
                          "dataname"
                                              "dataset"
## [4] "Fid_info"
                          "group"
                                              "group_HS"
                          "Re_Spectrum_data"
## [7] "group_num"
## C. Setup des paramètres de représentation graphique des paramètres de prétraitement
num.stacked <- 2 # nombre de graphes par sortie graphique
## D. paramètres des méthodes incluses dans le MIC à modifier
ncompPCA = 4 # nombre de composantes en PCA
nClust = 4 # nombre de clusters pour le clustering
nLVPLSDA = 4 # nombre de variables latentes en PLS-DA
```

Inertia

```
# INERTIA
Inertia.res = MBXUCL::Inertia(x = dataset, y = group_num, print = FALSE)
colnames(Inertia.res[["Between_within"]]) <- c("Inertia Between groups", "Inertia Within groups", "Total
pander(Inertia.res[["Between_within"]])</pre>
```

	Inertia Between groups	Inertia Within groups	Total inertia
Value	6457	711.9	7169
Percentage	90.07	9.93	100

pander(Inertia.res[["Per_group"]])

	N	Inertia_group	$Inertia_group100$	Inertia_moy_group
Group 1	8	169.8	23.85	21.22
Group 2	8	256.2	36	32.03
Group 3	8	91.47	12.85	11.43
Group 4	8	194.4	27.3	24.3

	N	Inertia_group	Inertia_group100	Inertia_moy_group
Total	32	711.9	100	NA

PCA

```
# PCA
PCA.res = MBXUCL::SVDforPCA(dataset, ncomp=ncompPCA)
```

Eigenvalues:

```
eigval_mat <- rbind(PCA.res$eigval, PCA.res$var, PCA.res$cumvar)
rownames(eigval_mat) <- c("eigen values", "percentage of variance", "cumulated percentage of variance")
eigval_mat <- round(eigval_mat,2)

pander(eigval_mat[,1:4], caption = "valeurs propres PCA pour les 4 premières CP")</pre>
```

Table 3: valeurs propres PCA pour les 4 premières CP

	PC1	PC2	PC3	PC4
eigen values	5067	1389	330.4	93.69
percentage of variance	70.68	19.38	4.61	1.31
cumulated percentage of	70.68	90.06	94.67	95.98
variance				

PCA score plot for HumanSerum

[[1]]

PCA loadings plot for HumanSerum

Unsupervised clustering

Table 4: Clustering hiérarchique

Dunn index	Davies-Bouldin index	Rand index	Adjusted Rand index
0.8262	0.6712	1	1

PLS-DA

```
PLSDA.res = PLSDA(x = dataset, y = group_num, nLV = nLVPLSDA, drawRMSEP = TRUE)
```

PLS: Cross-validated RMSEP curves 0.30 6.0 0.4 0.6 0.8 0.25 d 0.20 S & & 0.3 HW 0.2 WW 22 22 0.7 0.15 0.2 0.10 0.80 0.1 0.5 0.05 6 8 10 8 10 6 8 10 2 4 4 6 4 **Y4** 0.8 0.3 W 0.2 W 9.0 0.0 6 8

Table 5: Validation PLS-DA

	Y1	Y2	Y3	Y4
RMSEP R2	0.1 0.98	$0.08 \\ 0.99$	$0.1 \\ 0.98$	0.11 0.97
$\mathbf{Q2}$	0.94	0.96	0.95	0.93

```
par(mfrow=c(1,1),xpd=TRUE)
barplot(perf.plsda[1,], beside = TRUE, col="blue", main = "RMSEP")
```

RMSEP

barplot(perf.plsda[2:3,], beside = TRUE, col=c("blue", "red"), main = "R2 and Q2") legend("bottomright", legend = c("R2", "Q2"), col = c("blue", "red"), pch = 15)

R2 and Q2

pander("Q2 cumulé pour toutes les réponses")

 $\mathbf{Q}\mathbf{2}$ cumulé pour toutes les réponses mean(perf.plsda["Q2",])

[1] 0.945

PLS-DA score plot for HumanSerum

[[1]]

PLSDA loadings plot for HumanSerum

Evaluation de la répétabilité de différentes corrections de la Baseline

#====== PARAMETRES A MODIFIER quand vous utilisez MBXUCL

```
## A. Paramètres globaux liés aux noms et chemin d'accès des dataset

dataname <- "HumanSerum" # nom du jeu de données

## Mettre ici le nom du chemin d'accès du répertoire où sont les spectres prétraités

## Mettre ici le nom du chemin d'accès du répertoire où sont les FID

data.path <- system.file("extdata", package = "PepsNMR") # données du package PepsNMR

dir(data.path) # ce que contient le répertoire data.path

## [1] "Group_HS.csv" "HumanSerum"

## B. Définition des groupes de spectres par sujet.

# group_HS <- read.csv(file.path(data.path, "Group_HS.csv"), header = TRUE, sep = ";")

# group <- as.factor(substr(group_HS[,1],4,5)) # donneur comme groupe

# table(group) # fréquences de chaque groupe

# group_num <- group_HS[,2] # Version numerique des noms de groupes

# table(group_num) # fréquences de chaque groupe

## C. Setup des paramètres de représentation graphique des paramètres de prétraitement
```

```
num.stacked <- 2 # nombre de graphes par sortie graphique

## D. paramètres des méthodes incluses dans le MIC à modifier

ncompPCA = 4 # nombre de composantes en PCA

nClust = 4 # nombre de clusters pour le clustering

nLVPLSDA = 4 # nombre de variables latentes en PLS-DA
```

Fonction de prétraitement depuis la correction de la baseline

```
# Paramètres de la baseline qu'on veut faire varier
all_cond_BC <- expand.grid(lambda = c(1e5, 1e6, 1e7, 1e8), p = c(0.1, 0.05, 0.01))
pander(all_cond_BC, caption = "Paramètres de correction de la baseline à faire varier")
BCconditions <- paste(paste("L:", all_cond_BC$lambda), paste("p:", all_cond_BC$p), sep=" ")
## PepsNMR prétraitement
# Lecture des Fids
fidList <- ReadFids(path = file.path(data.path, dataname), subdirs = FALSE)</pre>
# créer la matrice spectrale
Fid_data <- fidList[["Fid_data"]]</pre>
# créer la matrice d'infos sur les paramètres d'acquisition
Fid_info <- fidList[["Fid_info"]]</pre>
# réarranger les noms de ligne dans Fid_data et Fid_info pour les
# rendre plus lisibles
rownames(Fid_data) <- substr(rownames(Fid_data),1,5)</pre>
rownames(Fid_data) <- sub("-","", rownames(Fid_data))</pre>
rownames(Fid_info) <- rownames(Fid_data)</pre>
# GroupDelayCorrection
Fid_data_GDC <- GroupDelayCorrection(Fid_data, Fid_info)</pre>
# Solvent Suppression
Fid data SS <- SolventSuppression(Fid data GDC, returnSolvent = FALSE)
# Apodization
Fid_data_Apod <- Apodization(Fid_data_SS, Fid_info)</pre>
# FourierTransform
Spectrum_data_FT <- FourierTransform(Fid_data_Apod, Fid_info)</pre>
# ZeroOrderPhaseCorrection
Spectrum_data_ZOPC <- ZeroOrderPhaseCorrection(Spectrum_data_FT)</pre>
# InternalReferencing
Spectrum_data_IR <- InternalReferencing(Spectrum_data_ZOPC, Fid_info)</pre>
#====== After Alignement pre-processing
AfterAlign_preprocess <- function(lambda.bc , p.bc) {
## Baseline correction avec les paramètres lambda.bc et p.bc à faire varier
```

```
Spectrum_data <- BaselineCorrection(Spectrum_data_IR, lambda.bc = lambda.bc,</pre>
                                     p.bc = p.bc)
## Suppression des valeurs négatives
Spectrum_data <- NegativeValuesZeroing(Spectrum_data)</pre>
## Alignement - Warping
Spectrum_data <- Warping(Spectrum_data,reference.choice = "before")</pre>
## WindowSelection
Spectrum_data <- WindowSelection(Spectrum_data, from.ws = 10, to.ws = 0.2)</pre>
# Bucketing avec le Window selection intégré
Spectrum_data <- Bucketing(Spectrum_data, intmeth = "t", mb=500)</pre>
## Suppression des régions non informatives
Spectrum_data <- RegionRemoval(Spectrum_data, typeofspectra ="serum")</pre>
## Normalisation
Spectrum_data <- Normalization(Spectrum_data, type.norm="mean")</pre>
# Exportation des résultats
Re_Spectrum_data=Re(Spectrum_data)
return(Re_Spectrum_data)
}
# application de la fonction AfterAlign_preprocess sur les spectres
# prétraités jusqu'à InternalReferencing avec les différents parmaètres de
# la correction de la baseline
res_Preprocessing <- mapply(FUN = AfterAlign_preprocess, lambda.bc=all_cond_BC$lambda,
       p.bc=all_cond_BC$p, SIMPLIFY=FALSE)
```

Fonction EvalRepet

```
ClustMIC.res = MBXUCL::ClustMIC(Intensities = Re_Spectrum_data, nClust = nClust,
                                 Trcl = groupN, Dendr = FALSE)
# PLS-DA
PLSDA.res = PLSDA(x = Re_Spectrum_data, y = groupN,
                  nLV = nLVPLSDA, drawRMSEP = FALSE)
scoresPLS12 <- DrawScores(PLSDA.res, drawNames=TRUE, type.obj = "PLSDA",</pre>
        createWindow=FALSE, main = pasteO("PLSDA score plot for ", dataname),
        color = group, pch = group, axes = c(1,2)
loadingsPLS12 <- DrawLoadings(PLSDA.res, type.obj = "PLSDA",</pre>
        createWindow=FALSE, main = pasteO("PLSDA loadings plot for", dataname),
        axes = c(1:2), loadingstype="l", num.stacked = 2)
return(list(scores12=scores12,scores34=scores34,
            Inertia.res=Inertia.res,
            ClustMIC.res=ClustMIC.res,
            PLSDA.res=PLSDA.res,
            scoresPLS12=scoresPLS12,
            loadingsPLS12=loadingsPLS12))
}
# Application de la fonction EvalRepet à toutes les matrices spectrales
# contenues dans res_Preprocessing et prétraitées avec des paramètres
# de correction de la baseline différents -----
res.EvalRepet <- lapply(res_Preprocessing, FUN=EvalRepet, group = group,</pre>
                        groupN = group_num, nClust=4, nLVPLSDA=4)
names(res.EvalRepet) <- BCconditions</pre>
# Arrangement des sorties de la fonction EvalRepet ------
res.inertia <- sapply(res.EvalRepet, function(x) x[["Inertia.res"]][["Between_within"]]["Percentage",])
colnames(res.inertia) <- BCconditions</pre>
rownames(res.inertia) <- c("Inertia Between groups", "Inertia Within groups", "Total inertia")
res.inertia <- round(res.inertia,2)</pre>
# PCA
PCAscores12 <- lapply(res.EvalRepet, function(x) x[["scores12"]])</pre>
names(PCAscores12) <- BCconditions</pre>
# clustering
res.clustering <- sapply(res.EvalRepet, function(x) x[["ClustMIC.res"]])
colnames(res.clustering) <- BCconditions</pre>
dimnam <- dimnames(res.clustering)</pre>
res.clustering <- matrix(data = unlist(res.clustering),</pre>
                         ncol = length(BCconditions), dimnames = dimnam,
```

```
byrow = FALSE)
res.clustering <- res.clustering[c(1,3,5,7),]
rownames(res.clustering) <- c("Dunn index", "Davies-Bouldin index", "Rand index", "Adjusted Rand index"
res.clustering <- round(res.clustering,2)

# PLS-DA
Q2_PLS <- sapply(res.EvalRepet, function(x) x[["PLSDA.res"]][["Q2"]])
Q2cum_PLS <- round(colMeans(Q2_PLS),2)

PLSscores12 <- lapply(res.EvalRepet, function(x) x[["scoresPLS12"]])
names(PLSscores12) <- BCconditions</pre>
```

Paramètres de la correction de la baseline λ et p

```
pander("lambda.bc (L) and p.bc (p) values for Baseline Correction")
lambda.bc (L) and p.bc (p) values for Baseline Correction
pander(all_cond_BC)
```

lambda	p
1e+05	0.1
1e + 06	0.1
1e+07	0.1
1e+08	0.1
1e + 05	0.05
1e + 06	0.05
1e + 07	0.05
1e + 08	0.05
1e + 05	0.01
1e + 06	0.01
1e + 07	0.01
1e+08	0.01

Inertia

```
pander(res.inertia)
```

Table 7: Table continues below

	L: 1e+05 p: 0.1	L: 1e+06 p: 0.1
Inertia Between groups	84.76	86.22
Inertia Within groups	15.24	13.78
Total inertia	100	100

Table 8: Table continues below

	L: 1e+07 p: 0.1	L: 1e+08 p: 0.1
Inertia Between groups	87.49	89.2

	L: 1e+07 p: 0.1	L: 1e+08 p: 0.1
Inertia Within groups	12.51	10.8
Total inertia	100	100

Table 9: Table continues below

	L: $1e+05$ p: 0.05	L: 1e+06 p: 0.05
Inertia Between groups	85.16	86.72
Inertia Within groups	14.84	13.28
Total inertia	100	100

Table 10: Table continues below

	L: $1e+07$ p: 0.05	L: $1e+08 p: 0.05$
Inertia Between groups	88.26	89.82
Inertia Within groups	11.74	10.18
Total inertia	100	100

Table 11: Table continues below

	L: $1e+05$ p: 0.01	L: $1e+06$ p: 0.01
Inertia Between groups	86.7	88.03
Inertia Within groups	13.3	11.97
Total inertia	100	100

	L: 1e+07 p: 0.01	L: $1e+08 p: 0.01$
Inertia Between groups	89.54	90.07
Inertia Within groups	10.46	9.93
Total inertia	100	100

Inertia Between groups

PCA scores plots

pander("PCA scores plots")

PCA scores plots

PCAscores12

\$`L: 1e+05 p: 0.1`

\$`L: 1e+06 p: 0.1`

\$`L: 1e+07 p: 0.1`

##

\$`L: 1e+08 p: 0.1`

\$`L: 1e+05 p: 0.05`

\$`L: 1e+06 p: 0.05`

##

\$`L: 1e+07 p: 0.05`

\$`L: 1e+08 p: 0.05`

\$`L: 1e+05 p: 0.01`

##

\$`L: 1e+06 p: 0.01`

\$`L: 1e+07 p: 0.01`

\$`L: 1e+08 p: 0.01`

Clustering

pander("clustering")

clustering

pander(res.clustering)

Table 13: Table continues below

1a + 07 m. 0 1
1e+07 p: 0.1
0.64
0.8
1
1

Table 14: Table continues below

	L: 1e+08 p: 0.1	L: $1e+05$ p: 0.05
Dunn index	0.73	0.49
Davies-Bouldin index	0.64	0.96

	L: 1e+08 p: 0.1	L: 1e+05 p: 0.05
Rand index	1	0.97
Adjusted Rand index	1	0.91

Table 15: Table continues below

	L: $1e+06$ p: 0.05	L: 1e+07 p: 0.05
Dunn index	0.64	0.68
Davies-Bouldin index	0.84	0.76
Rand index	1	1
Adjusted Rand index	1	1

Table 16: Table continues below

	L: $1e+08 p: 0.05$	L: 1e+05 p: 0.01
Dunn index	0.89	0.68
Davies-Bouldin index	0.7	0.85
Rand index	1	1
Adjusted Rand index	1	1

Table 17: Table continues below

	L: 1e+06 p: 0.01	L: 1e+07 p: 0.01
Dunn index	0.68	0.77
Davies-Bouldin index	0.69	0.7
Rand index	1	1
Adjusted Rand index	1	1

	L: 1e+08 p: 0.01
Dunn index	0.83
Davies-Bouldin index	0.67
Rand index	1
Adjusted Rand index	1

Indices de clustering

PLS-DA

pander("PLS-DA Q2cum")

PLS-DA Q2cum

pander(Q2cum_PLS)

Table 19: Table continues below

L: $1e+05$ p: 0.1	L: 1e+06 p: 0.1	L: 1e+07 p: 0.1	L: 1e+08 p: 0.1
0.93	0.92	0.93	0.95

Table 20: Table continues below

L: $1e+05 p: 0.05$	L: $1e+06$ p: 0.05	L: $1e+07$ p: 0.05	L: $1e+08$ p: 0.05
0.95	0.93	0.93	0.94

L: 1e+05 p: 0.01	L: 1e+06 p: 0.01	L: 1e+07 p: 0.01	L: 1e+08 p: 0.01
0.95	0.93	0.94	0.93

```
par(mar=c(6,2,2,2))
barplot(Q2cum_PLS, main = "Q2 moyen pour toutes les réponses", col="blue", las=2)
```


pander("PLS-DA scores plots")

PLS-DA scores plots

PLSscores12

\$`L: 1e+05 p: 0.1`

##

\$`L: 1e+06 p: 0.1`

\$`L: 1e+07 p: 0.1`

##

\$`L: 1e+08 p: 0.1`

\$`L: 1e+05 p: 0.05`

\$`L: 1e+06 p: 0.05`

##

\$`L: 1e+07 p: 0.05`

\$`L: 1e+08 p: 0.05`

\$`L: 1e+05 p: 0.01`

##

\$`L: 1e+06 p: 0.01`

\$`L: 1e+07 p: 0.01`

\$`L: 1e+08 p: 0.01`

