

Report No.: EED32H000644-2 Page 1 of 38

TEST REPORT

Product: Smart Security Light

Trade mark : N/A

Model/Type reference : SPL06-07A1W1-BKT-K1,

SPL06-07A1W1-BKT-M1, SPL06-07A1W1-ORB-M1, SPL08-07A1W1-BKT-M1, SPL06-07A1W1-ORB-M1, SPL09-05A1W1-BKT-M1

Serial number : N/A

Ratings : AC 120V, 60Hz

FCC ID : 2AD7D-SPLX

Report number : EED32H000644-2

Date : May 30, 2015

Regulations : See below

Test Standards	Results
	PASS

Prepared for:

Shenzhen Jiawei Photovoltaic Lighting Co., Ltd. No. 1,2,3,4, Xinfa Industry Zone, Central Community, Pingdi Road, Longgang District, Shenzhen City, Guangdong Province, P.R.China

Prepared by:

Centre Testing International (Shenzhen) Corporation Hongwei Industrial Zone, 70 Area, Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested by։ ___

Reviewed by:

May 30, 2015

Jimmy Li

Lab manager C

Date:

Check No.: 1996241329

TABLE OF CONTENTS

1. CE	RIFICATION INFORMATION				4
2. TES	ST SUMMARY				
3. ME	ASUREMENT UNCERTAINTY				
4. PR	ODUCT INFORMATION				5
5. TES	ST EQUIPMENT LIST				
6. SU	PPORT EQUIPMENT LIST				6
7. 6DI	B BANDWIDTH MEASUREMENT		(c		7
7.1.	LIMITS				-
7.2.	BLOCK DIAGRAM OF TEST SETUP				
7.3.	TEST PROCEDURE				7
7.4.	TEST RESULT		6)		7
8. PO	WER SPECTRAL DENSITY				10
8.1.	LIMITS				10
8.2.	BLOCK DIAGRAM OF TEST SETUR			<u></u>	10
8.3.	TEST PROCEDURE				10
8.4.	TEST RESULT				
9. MA	XIMUM PEAK CONDUCTED OUTPU	T POWER MEAS	SUREMENT		13
9.1.	LIMITS				13
9.2.	BLOCK DIAGRAM OF TEST SETUR				
9.3.	TEST PROCEDURE				
9.4.	TEST RESULT			/	13
10.	CONDUCTED BANDEDGE EMISSION	N MEASUREMEN	NT		16
10.1.	LIMITS				16
10.2.	BLOCK DIAGRAM OF TEST SETUP)			16
10.3.	TEST PROCEDURE				16
10.4.	TEST RESULT				
11. CO	NDUCTED SPURIOUS EMISSION MI	EASUREMENT			18

Page 3 of 38

11.1.	LIMITS				
11.2.	BLOCK DIAGRAM OF TEST SETUP				
11.3.	TEST PROCEDURE				18
11.4.	TEST RESULT				18
12.	RADIATED BANDEDGE EMISSION / RADIATED SP	URIOUS EMI	SSION MEA	SUREMENT	21
12.1.	LIMITS		$(C_{i,j})$		21
12.2.	BLOCK DIAGRAM OF TEST SETUP				
12.3.	TEST PROCEDURE				
12.4.	TEST RESULT				23
40	AC CONDUCTED EMISSION TEST				
13.	AC CONDUCTED EMISSION TEST				26
13.1.	LIMITS				26
13.2.	BLOCK DIAGRAM OF TEST SETUP				
13.3.	PROCEDURE OF CONDUCTED EMISSION TEST				26
13.4.	GRAPHS AND DATA				27
APPENI	DIX 1 PHOTOGRAPHS OF TEST SETUP				29
ADDENI	DIX 2 EXTERNAL PHOTOGRAPHS OF PRODUCT				0.4
APPENI	JIX 2 EXTERNAL PHOTOGRAPHS OF PRODUCT				31
APPENI	DIX 3 INTERNAL PHOTOGRAPHS OF PRODUCT				34
N/A me	eans not applicable.				

Report No. : EED32H000644-2 Page 4 of 38

1. CERTIFICATION INFORMATION

Applicant: Shenzhen Jiawei Photovoltaic Lighting Co., Ltd.

No. 1,2,3,4, Xinfa Industry Zone, Central Community, Pingdi Road, Longgang District, Shenzhen City, Guangdong Province,

P.R.China

Manufacturer: Shenzhen Jiawei Photovoltaic Lighting Co., Ltd. Gaoqiao

Subsidiary

No. 4, Fugao East Road, Gaoqiao Community, Pingdi Road, Longgang District, Shenzhen City, Guangdong Province,

P.R.China

Equipment authorization: Certification

FCC ID: 2AD7D-SPLX

Product: Smart Security Light

Model/Type reference: SPL06-07A1W1-BKT-K1,

SPL06-07A1W1-BKT-M1, SPL06-07A1W1-ORB-M1, SPL08-07A1W1-BKT-M1, SPL06-07A1W1-ORB-M1, SPL09-05A1W1-BKT-M1

NI/A

Trade Name: N/A

Serial Number: N/A

Report Number: EED32H000644-2

Sample Received Date: Jan. 10, 2015

Sample tested Date: Jan. 10, 2015 to Feb. 10, 2015

The above equipment was tested by Centre Testing International (Shenzhen) Corporation for compliance with the requirements set forth in the FCC Rules and the measurement procedure according to ANSI C63.4:2009.

Original FCC ID 2AD7D-SPLXX, Original model number SPL06-07A1W1-BKT-K1, SPL06-07A1W1-BKT-M1, SPL06-07A1W1-ORB-M1, SPL08-07A1W1-BKT-M1, SPL06-07A1W1-ORB-M1, SPL09-05A1W1-BKT-M1 and new FCC ID 2AD7D-SPLX, new model numbers SPL06-07A1W1-BKT-K1, SPL06-07A1W1-BKT-M1, SPL06-07A1W1-ORB-M1, SPL08-07A1W1-BKT-M1, SPL06-07A1W1-ORB-M1, SPL09-05A1W1-BKT-M1 are electrically identical, only FCC ID is different, so data of report EED32H000644-2 for new FCC ID 2AD7D-SPLX are from report EED32H000022-2 for FCC ID 2AD7D-SPLXX.

2. TEST SUMMARY

No.	Test Item	Rule	Result
1	6dB Bandwidth	FCC PART15.247(a)(2)	PASS
2	Transmitter Output Power	FCC PART15.247(b)(3)	PASS
3	Power Spectral Density	FCC PART15.247(e)	PASS
4	Conducted Bandedge Emission / Conducted Spurious Emission	FCC PART15.247(d)	PASS
5	Radiated Bandedge Emission / Radiated Spurious Emission	FCC PART15.247(d)	PASS
6	AC Conducted Emission	FCC PART15.207	PASS
7	Antenna requirements	FCC PART15.203	PASS (See Notes)

Notes: The product uses an internal integral antenna which in accordance with Section 15.203 is considered sufficient to comply with the provisions of this section.

3. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)
Conducted Emission Test	3.2 dB
Radiated Emissions / Bandedge Emission	4.5 dB

4. PRODUCT INFORMATION

Items		Description	
Rating	AC 120V/60Hz		
Type of Modulation	BT4.0/BLE		
Antenna Type	Integral antenna		
Frequency Range	2402 ~ 2480 MHz		
Gain	3dBi		

Report No. : EED32H000644-2 Page 6 of 38

5. TEST EQUIPMENT LIST

Equipment	Manufacturer	Model	Serial No.	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3		06/01/2016
Receiver	R&S	ESCI	100435	07/08/2015
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	618	06/17/2015
Multi device Controller	maturo	NCD/070/10711 112		N/A
Horn Antenna	ETS-LINGREN	3117	00057407	07/07/2015
Microwave Preamplifier	Agilent	8449B	3008A02425	03/19/2016
Spectrum Analyzer	R&S	FSP40	100416	07/06/2015
Receiver	R&S	ESCI	100009	07/19/2015
LISN	R&S	ENV216	100098	07/19/2015

6. SUPPORT EQUIPMENT LIST

Device Type	Brand	Model	Series No.	Data Cable	Remark
					-
		4	((4-)

7. 6DB BANDWIDTH MEASUREMENT

7.1. LIMITS

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

7.2. BLOCK DIAGRAM OF TEST SETUP

7.3. TEST PROCEDURE

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3×RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.4. TEST RESULT

The test data of worst case are below:

Frequency (MHz)	Measured Value (kHz)	Result
2402	690	PASS
2440	684	PASS
2480	696	PASS

Page 8 of 38

Report No.: EED32H000644-2

Please see the following plots (worst case):

Date: 29.JAN.2015 16:16:33

2402MHz

Date: 29.JAN.2015 16:32:26

Report No.: EED32H000644-2

Date: 29.JAN.2015 16:33:06

2480MHz

Report No.: EED32H000644-2 Page 10 of 38

8. POWER SPECTRAL DENSITY

8.1. LIMITS

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.2. BLOCK DIAGRAM OF TEST SETUP

8.3. TEST PROCEDURE

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz.
- d) Set the VBW \geq 3×RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

8.4. TEST RESULT

The test data of worst case are below:

Frequency (MHz)	Measured Value (dBm)	Result
2402	-12.46	PASS
2440	-11.66	PASS
2480	-10.60	PASS

Page 11 of 38

Report No.: EED32H000644-2

Please see the following plots (worst case):

Date: 29.JAN.2015 16:26:25

2402MHz

Date: 29.JAN.2015 16:25:57

Report No.: EED32H000644-2

*RBW 3 kHz *VBW 10 kHz SWT 170 ms Marker 1 [T1]
-10.60 dBm
2.479889000 GHz Ref 20 dBm *Att 30 dB The water the second se Center 2.48 GHz 150 kHz/ Span 1.5 MHz

Page 12 of 38

2480MHz

Report No. : EED32H000644-2 Page 13 of 38

9. MAXIMUM PEAK CONDUCTED OUTPUT POWER MEASUREMENT

9.1. LIMITS

The maximum peak conducted output power of the intentional radiator shall not exceed the following:

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt (30dBm).

9.2. BLOCK DIAGRAM OF TEST SETUP

9.3. TEST PROCEDURE

- a) Set the RBW ≥ DTS bandwidth.
- b) Set the VBW ≥ 3 x RBW
- c) Set span ≥ 3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

9.4. TEST RESULT

The test data of worst case are below:

Frequency (MHz)	Measured Value (dBm)	Result
2402	3.67	PASS
2440	4.56	PASS
2480	5.01	PASS

Page 14 of 38

Report No. : EED32H000644-2

Please see the following plots (worst case):

Date: 29.JAN.2015 16:07:50

2402MHz

Date: 29.JAN.2015 16:27:36

Report No.: EED32H000644-2

Date: 29.JAN.2015 16:28:14

2480MHz

Report No.: EED32H000644-2 Page 16 of 38

10. CONDUCTED BANDEDGE EMISSION MEASUREMENT

10.1. LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

10.2. BLOCK DIAGRAM OF TEST SETUP

10.3. TEST PROCEDURE

- a) Set to the maximum power setting and enable the EUT transmit continuously.
- b) Set RBW = 100 kHz, VBW = 300 kHz (≥ RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- c) Enable hopping function of the EUT and then repeat step a and b.
- d) Measure and record the results in the test report.

10.4. TEST RESULT

Worst case data attached.--- please see the following plots.

400-6788-333

Page 17 of 38

Report No.: EED32H000644-2

Low Band Edge Plot on 2402MHz:

Date: 29.JAN.2015 16:17:39

High Band Edge Plot on 2480MHz:

Date: 29.JAN.2015 16:29:41

11. CONDUCTED SPURIOUS EMISSION MEASUREMENT

11.1. LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

11.2. BLOCK DIAGRAM OF TEST SETUP

11.3. TEST PROCEDURE

- a) The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- b) Set to the maximum power setting and enable the EUT transmit continuously.
- c) Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- d) Measure and record the results in the test report.
- e) The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

11.4. TEST RESULT

Worst case data---Please see the following plots.

Span 24.97 GHz

Report No.: EED32H000644-2

Page 19 of 38

Date: 29.JAN.2015 16:21:13

Center 12.515 GHz

2402MHz:

2.497 GHz/

Date: 29.JAN.2015 16:23:00

Page 20 of 38

2480MHz

Report No. : EED32H000644-2 Page 21 of 38

12. RADIATED BANDEDGE EMISSION / RADIATED SPURIOUS EMISSION MEASUREMENT

12.1. LIMITS

The field strength of any emissions, which appear outside of operating frequency band and restricted band specified on 15.205(a), shall not exceed the general radiated emission limits as below.

	/ / /	. ~ 1
Frequency (MHz)	Field strength (μV/m)	Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note: the tighter limit applies at the band edges.

12.2. BLOCK DIAGRAM OF TEST SETUP

For radiated emissions from 9kHz to 30MHz

For radiated emissions from 30 - 1000MHz

Report No. : EED32H000644-2 Page 22 of 38

For radiated emissions from 1GHz to 25GHz

12.3. TEST PROCEDURE

Below 30MHz

- a. The Product is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The maximum values of the field strength are recorded by adjusting the polarizations of the test antenna and rotating the turntable.
- b. For each suspected emission, the Product was arranged to its worst case and then turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- c. The test frequency analyzer system was set to Peak Detect (300Hz RBW in 9kHz to 150kHz and 10kHz RBW in 150kHz to 30MHz) Function and Specified Bandwidth with Maximum Hold Mode.

30MHz ~ 1GHz:

- a. The Product was placed on the non-conductive turntable 0.8m above the ground at a chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 100 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP value (120 kHz RBW): vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Above 1GHz:

- a. The EUT was placed on the non-conductive turntable 0.8 m above the ground at a chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 1MHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.

12.4. TEST RESULT

Below 30MHz:

No emissions were found higher than the background below 30MHz and background is lower than the limit, so it deems to compliance with the limit without recorded.

30MHz \sim 1GHz:

The test data of low channel, middle channel and high channel are almost same in frequency bands 30MHz to 1GHz, and the data of middle channel are chosen as representative in below:

H:

Frequency Level Transd Limit Margin Det. Height Azimut MHz dBµV/m dB dBµV/m dB cm de	∍g
480.080000 35.70 19.8 46.0 10.3 QP 200.0 358.0 491.720000 33.60 20.0 46.0 12.4 QP 200.0 358.0	00 HORIZONTAL 00 HORIZONTAL 00 HORIZONTAL

V:

Frequency MHz	Level dBµV/m			Margin dB		_	Azimuth deg	Polarization
41.640000	25.10	13.8		14.9	~	100.0		VERTICAL
123.120000				10.0	~	100.0		VERTICAL
	30.90	19.2		15.1	~			VERTICAL
480.080000	35.80	19.8	46.0	10.2	QP	100.0	295.00	VERTICAL
491.720000	32.90	20.0	46.0	13.1	QP	100.0	283.00	VERTICAL
891.360000	33.00	26.1	46.0	13.0	QP	200.0	368.00	VERTICAL

Above 1GHz:

Test Results-(Measurement Distance: 3m)_Channel low_2402MHz_GFSK mode:

Frequency Measurement (MHz) (dBuV/m)		Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
2390.0	35.12	74	PK	H	Р
2400.0	50.10	74	PK	Н	Р
2402.0*	85.69		PK	Н	Р
4804.0	40.55	74	PK	Н	Р
2390.0	36.10	74	PK	V	Р
2400.0	51.04	74	PK	V	P
2402.0*	86.22		PK	V	Р
4804.0	41.69	74	PK	V	Р

^{*:} fundamental frequency

Test Results-(Measurement Distance: 3m)_Channel middle_2440MHz_GFSK mode:

Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
2440.0*	85.98	(PK	Н	Р
4880.0	41.98	74	PK	н	Р
2440.0*	87.12		PK	V	Р
4880.0	42.54	74	PK	V	Р

^{*:} fundamental frequency

Test Results-(Measurement Distance: 3m)_Channel high_2480MHz_GFSK mode:

Frequency (MHz)						Antenna (H/V)	Result (P/F)
2480.0*	86.12		PK	Н	Р		
2483.5	43.69	74	PK	Н	Р		
4960.0	42.14	74	PK	Н	Р		
2480.0*	85.22		PK	V	Р		
2483.5	42.89	74	PK	V	P		
4960.0	43.01	74	PK	V	Р		

^{*:} fundamental frequency

Remark:

- 1. The above tables show that the frequencies peak data are all below the average limit, so the average data of these frequencies are deems to fulfill the average limits and not reported.
- 2. No emission found from 18GHz to 25GHz.
- 3. All outside of operating frequency band and restricted band specified are below 15.209.

13. AC CONDUCTED EMISSION TEST

13.1. LIMITS

Limits for Class B digital devices

Frequency range	Limits dB(μV)								
(MHz)	Quasi-peak	Average							
0,15 to 0,50	66 to 56	56 to 46							
0,50 to 5	56	46							
5 to 30	60	50							

NOTE: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz.

13.2. BLOCK DIAGRAM OF TEST SETUP

13.3. PROCEDURE OF CONDUCTED EMISSION TEST

- a. The Product was placed on a nonconductive table above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).
- b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

13.4. GRAPHS AND DATA

Product: Smart Security Light Model/Type reference: SPL06-07A1W1-BKT-K1

Power : AC 120V, 60Hz Temperature : 21° C Mode : BT Humidity : 52°

L:

No.	Freq.		ling_Le dBuV)	vel	Correct Factor	Measurement (dBuV)		Limit (dBuV)		Margin (dB)				
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	39.42		31.59	9.90	49.32		41.49	65.99	55.99	-16.67	-14.50	Р	
2	0.5100	39.08		28.37	9.90	48.98		38.27	56.00	46.00	-7.02	-7.73	Р	
3	0.9100	31.72		18.37	9.90	41.62		28.27	56.00	46.00	-14.38	-17.73	Р	
4	1.0140	32.02		14.06	9.90	41.92		23.96	56.00	46.00	-14.08	-22.04	Р	
5	1.2620	30.80		20.48	9.90	40.70		30.38	56.00	46.00	-15.30	-15.62	Р	
6	1.6300	31.54		21.17	9.90	41.44		31.07	56.00	46.00	-14.56	-14.93	Р	
7	23.9780	29.35		26.96	10.32	39.67		37.28	60.00	50.00	-20.33	-12.72	Р	

Page 28 of 38

N	
v	

No.	Freq.	Reading_Level (dBuV)		vel	Correct Factor	Measurement (dBuV)		ent	Limit (dBuV)		Margin (dB)			
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1539	39.65		32.59	9.90	49.55		42.49	65.78	55.78	-16.23	-13.29	Р	
2	0.5180	37.80		26.65	9.90	47.70		36.55	56.00	46.00	-8.30	-9.45	Р	
3	0.9100	27.89		15.61	9.90	37.79		25.51	56.00	46.00	-18.21	-20.49	Р	
4	1.0060	30.98		15.81	9.90	40.88		25.71	56.00	46.00	-15.12	-20.29	Р	
5	1.2579	27.67		15.48	9.90	37.57		25.38	56.00	46.00	-18.43	-20.62	Р	
6	23.9780	32.38		26.29	10.32	42.70		36.61	60.00	50.00	-17.30	-13.39	Ρ	

Page 29 of 38

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

TEST SETUP OF RADIATED EMISSION (30MHz-1GHz)

TEST SETUP OF RADIATED EMISSION (above 1GHz)

Page 30 of 38

Report No.: EED32H000644-2

400-6788-333

Hotline

Page 31 of 38

Report No.: EED32H000644-2

APPENDIX 2 EXTERNAL PHOTOGRAPHS OF PRODUCT

External View of product-1

External View of product-2

Page 32 of 38

External View of product-3

External View of product-4

Page 33 of 38

External View of product-5

External View of product-6

Report No. : EED32H000644-2 Page 34 of 38

APPENDIX 3 INTERNAL PHOTOGRAPHS OF PRODUCT

Internal View of product-1

Internal View of product-2

Internal View of product-3

Internal View of product-4

Page 36 of 38

Internal View of product-5

Internal View of product-6

Internal View of product-7

Internal View of product-8

Report No.: EED32H000644-2 Page 38 of 38

Internal View of product-9

Internal View of product-10

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.