

DE1484

In the Claims:

Claim 1. (Amended) A method for identification, comprising the steps of:

(a) generating system parameters G_1, G_2, P and \hat{e} and storing the system parameters in a memory by a system administrator, wherein G_1 and G_2 are cyclic groups of order m , P is a generator on the cyclic group G_1 , \hat{e} is a bilinear map defined as

$$\hat{e}: G_1 \times G_1 \mapsto G_2;$$

(b) generating a private key $\langle a, b, c \rangle$ and a public key v and storing the public key v in the memory by a prover or the system administrator, wherein a, b and c are randomly chosen in Z_m^* where Z_m^* is a multiplicative group of order m ;

(c) generating random numbers $r_1, r_2, r_3 \in Z_m^*$ for obtaining an evidence (x, Q) and sending the evidence (x, Q) to a verifier by the prover;

(d) receiving the evidence (x, Q) , selecting a randomly selected number $\omega \in Z_m^*$ to obtain a query R , storing the evidence (x, Q) and the randomly selected number ω in the memory and sending the query R to the prover by the verifier;

(e) receiving the query R , computing a temporary value S to obtain a response Y and sending the response Y to the verifier by the prover; and

(f) determining a legitimacy of the prover by employing the system parameters G_1, G_2, P and \hat{e} , the public key v , the evidence (x, Q) and the randomly selected number ω by the verifier.

DE1484

Claim 2. (Original) The method of claim 1, wherein, in the step (b), the public key

$$v = \hat{e}(P, P)^{abc}$$

v is obtained by

Claim 3. (Original) The method of claim 2, wherein, in the step (c), the evidence

$$x = \hat{e}(P, P)^{r_1 r_2 r_3}$$

(x, Q) includes a first evidence value and a second

$$Q = r_1 r_2 r_3 P$$

evidence value

Claim 4. (Original) The method of claim 3, wherein, in the step (d), the query R is

$$R = \omega P$$

obtained by

Claim 5. (Original) The method of claim 4, wherein, in the step (e), the temporary

$$S = r_1 r_2 r_3 R$$

value S is obtained by and the response Y is obtained by

$$Y = abcP + (a+b+c)S$$

Claim 6. (Original) The method of claim 5, wherein the verifier determines the legitimacy of the prover by verifying

DE1484

$$\begin{aligned}\hat{e}(Y, P) &= \hat{e}(abcP + (a+b+c)S, P) \\&= \hat{e}(abcP + (a+b+c)r_1r_2r_3R, P) \\&= \hat{e}(abcP + (a+b+c)r_1r_2r_3\omega P, P) \\&= \hat{e}((abc + (a+b+c)r_1r_2r_3\omega)P, P) \\&= \hat{e}(P, P)^{abc + (a+b+c)r_1r_2r_3\omega} \\&= \hat{e}(P, P)^{abc} \cdot \hat{e}(P, P)^{(a+b+c)r_1r_2r_3\omega} \\&= \hat{e}(P, P)^{abc} \cdot \hat{e}(P, r_1r_2r_3P)^{(a+b+c)\omega} \\&= \hat{e}(P, P)^{abc} \cdot \hat{e}(P, Q)^{(a+b+c)\omega} \\&= \hat{e}(P, P)^{abc} \cdot \hat{e}((a+b+c), PQ)^{\omega} \\&= \hat{e}(P, P)^{abc} \cdot \hat{e}(aP+bP+cP, Q)^{\omega} \\&= v \cdot \hat{e}(aP+bP+cP, Q)^{\omega}\end{aligned}$$

Claim 7. (Amended)

A method for identification, comprising the steps of:

(a) generating system parameters G_1, G_2, P and \hat{e} and storing the system parameters in a memory by a system administrator, wherein G_1 and G_2 are cyclic groups of order m , P is a generator on the cyclic group G_1 , \hat{e} is a bilinear map defined as

DE1484

$\hat{e}: G_1 \times G_1 \mapsto G_2$

(b) generating a private key $\langle a_1, a_2, \dots, a_n \rangle$ and a public key v and storing the public key v in the memory by a prover or the system administrator, wherein a_1, a_2, \dots, a_n are randomly chosen in Z_m^* where Z_m^* is a multiplicative group of order m ;

(c) generating random numbers $r_1, r_2, \dots, r_n \in Z_m^*$ for obtaining an evidence (x, Q) and sending the evidence (x, Q) to a verifier by the prover;

(d) receiving the evidence (x, Q) , selecting a randomly selected number $\omega \in Z_m^*$ to obtain a query R , storing the evidence (x, Q) and the randomly selected number ω in the memory and sending the query R to the prover by the verifier;

(e) receiving the query R , computing a temporary value S to obtain a response Y and sending the response Y to the verifier by the prover; and

(f) determining a legitimacy of the prover by employing the system parameters G_1, G_2, P and \hat{e} , the public key v , the evidence (x, Q) and the randomly selected number ω by the verifier.

Claim 8. (Original) The method of claim 7, wherein, in the step (b), the public key v is obtained by $v = \hat{e}(P, P)^{a_1 a_2 \dots a_n}$.

Claim 9. (Original) The method of claim 8, wherein, in the step (c), the evidence (x, Q) includes a first evidence value $v = \hat{e}(P, P)^{r_1 r_2 \dots r_n}$ and a second evidence value $Q = r_1 r_2 \dots r_n P$.

DE1484

Claim 10. (Original) The method of claim 9, wherein, in the step (d), the query R is

$$R =_0 P$$

obtained by

Claim 11. (Original) The method of claim 10, wherein, in the step (e), the temporary value S is obtained by $S = r_1r_2\dots r_n R$ and the response Y is obtained by $Y = a_1a_2\dots a_n P + (a_1+a_2+\dots+a_n)S$

Claim 12. (Original) The method of claim 11, wherein the verifier determines the legitimacy of the prover by verifying

$$\begin{aligned} \hat{e}(Y, P) &= \hat{e}(a_1a_2\dots a_n P + (a_1+a_2+\dots+a_n)S, P) \\ &= \hat{e}(a_1a_2\dots a_n P + (a_1+a_2+\dots+a_n)r_1r_2\dots r_n R, P) \\ &= \hat{e}(a_1a_2\dots a_n P + (a_1+a_2+\dots+a_n)r_1r_2\dots r_n \omega P, P) \\ &= \hat{e}((a_1a_2\dots a_n + (a_1+a_2+\dots+a_n)r_1r_2\dots r_n \omega)P, P) \\ &= \hat{e}(P, P)^{a_1a_2\dots a_n + (a_1+a_2+\dots+a_n)r_1r_2\dots r_n \omega} \\ &= \hat{e}(P, P)^{a_1a_2\dots a_n} \cdot \hat{e}(P, P)^{(a_1+a_2+\dots+a_n)r_1r_2\dots r_n \omega} \\ &= \hat{e}(P, P)^{a_1a_2\dots a_n} \cdot \hat{e}(P, r_1r_2\dots r_n P)^{(a_1+a_2+\dots+a_n)\omega} \\ &= \hat{e}(P, P)^{a_1a_2\dots a_n} \cdot \hat{e}(P, Q)^{(a_1+a_2+\dots+a_n)\omega} \\ &= \hat{e}(P, P)^{a_1a_2\dots a_n} \cdot \hat{e}((a_1+a_2+\dots+a_n), PQ)^\omega \\ &= \hat{e}(P, P)^{a_1a_2\dots a_n} \cdot \hat{e}(a_1P+a_2P+\dots+a_nP, Q)^\omega \\ &= v \cdot \hat{e}(a_1P+a_2P+\dots+a_nP, Q)^\omega. \end{aligned}$$