15 Lecture 16: Four Fundamental Subspaces

15.1 Dimension of a subspace in \mathbb{R}^n :

The dimension of a subspace V in \mathbb{R}^n , denoted by $\dim(V)$, is the number of vectors in its basis.

Example 15.1. • dim(
$$\mathbb{R}^2$$
) = 2, due to $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^2 .

- $\dim(\mathbb{R}^n) = n$, due to $\{\mathbf{e}_1, \mathbf{e}_2, \dots \mathbf{e}_n\}$ is a basis of \mathbb{R}^n .
- $\dim(\{0\}) = 0$, because there is no vector in its basis.

15.2 Column space

Let **A** be an $m \times n$ matrix. The **column space** of **A**, denoted by $Col(\mathbf{A})$, is a set of all linear combination of column of **A**.

Theorem 5. The column space of an $m \times n$ matrix \mathbf{A} is a subspace of \mathbb{R}^m . The set of pivot columns of \mathbf{A} form a basis of $\operatorname{Col}(\mathbf{A})$ and $\dim(\operatorname{Col}(\mathbf{A})) = \operatorname{rank}(\mathbf{A})$.

Example 15.2. Find a basis of Col(A) with
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Solution: The basis of **A** is the set of pivot columns of **A**. We first row reduce matrix **A**:

$$\mathbf{A} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

From the $nref(\mathbf{A})$, we see that the first and the second column of \mathbf{A} are pivot. Thus, the basis of

$$\operatorname{Col}(\mathbf{A}) \text{ is } \left\{ \begin{bmatrix} 1\\4\\7 \end{bmatrix}, \begin{bmatrix} 2\\5\\8 \end{bmatrix} \right\}.$$

15.3 Null space:

The null space of an $m \times n$ matrix \mathbf{A} , denoted by $\mathrm{Nul}(\mathbf{A})$, is the solution set of the homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$. The dimension of the null space of \mathbf{A} is called the **nullity** of \mathbf{A} .

Theorem 6. The column space of an $m \times n$ matrix **A** is a subspace of \mathbb{R}^m .

Theorem 7. If **A** is an $m \times n$ matrix, then

$$\dim(\operatorname{Col}(\mathbf{A})) + \dim(\operatorname{Nul}(\mathbf{A})) = n.$$

Note that, the nullity of **A** equals the number of free variable of the homogeneous linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$. Thus, the nullity of **A** can be determine using the proto-row-echelon form of **A**. However, to find the basis of Nul(**A**), we must solve the linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$, and then describe the solution in the parametric vector form.

Example 15.3. Find a basis of Nul(A), with
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
.

Solution: We first solve the homogeneous system Ax = 0. Row reducing matrix A gives

$$\begin{bmatrix} \mathbf{A} & \mathbf{0} \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Thus, x_3 is the free variable. The solution is

$$x_1 = x_3$$
, $x_2 = -2x_3$, x_3 is free.

Under the parametric vector form, the solution is

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}.$$

The basis of Nul(**A**) is $\left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \right\}$ and the nullity is 1.

Example 15.4. Find a basis of Nul(A), with
$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \\ -3 & 6 & 1 & 1 & -7 \end{bmatrix}$$
.

Solution: We first solve the linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$. Row reducing the matrix $\begin{bmatrix} \mathbf{A} & \mathbf{0} \end{bmatrix}$ we found

$$\begin{bmatrix} \mathbf{A} & \mathbf{0} \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \end{bmatrix}, \begin{cases} x_1 & -2x_2 & +2x_5 = 0 \\ & x_3 & = 0 \\ & +x_4 & -x_5 = 0 \end{cases}$$

The solution is $x_1 = 2x_2 - 2x_5$, $x_3 = 0$, $x_4 = x_5$, x_2 and x_5 are free. The parametric vector form

of the solution is

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2x_2 - 2x_5 \\ x_2 \\ 0 \\ 0 \\ x_5 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -2 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$$

Thus, as basis of Nul(**A**) is
$$\left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\}.$$

15.4 Row space

The row space of a real $m \times n$ matrix \mathbf{A} , denoted by $\operatorname{Row}(\mathbf{A})$ is the column space of \mathbf{A}^T . That is, the row space is the set of all linear combinations of the rows of \mathbf{A} (transposed to become columns of \mathbf{A}^T).

Note: $rank(\mathbf{A}^T) = rank(\mathbf{A})$. Equivalently, $\dim(\operatorname{Col}(\mathbf{A})) = \dim(\operatorname{Row}(\mathbf{A}))$.

Theorem 8. If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

Remark 15.1. The row space of an $m \times n$ matrix \mathbf{A} is a subspace of \mathbb{R}^n . The set of nonzero row of the pref(\mathbf{A}) forms a basis of $\mathrm{Row}(\mathbf{A})$. Note that, the set of nonzero row of the nref or $rref(\mathbf{A})$ also forms a basis of $\mathrm{Row}(\mathbf{A})$

Example 15.5. Find a basis of Row(A) with
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Solution: We have that

$$\mathbf{A} \sim egin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}.$$

So, a basis of Row(**A**) is
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right\}$$
.

15.5 Left null space

The left null space of the real $m \times n$ matrix **A** written is the null space of \mathbf{A}^t , written $\operatorname{Nul}(\mathbf{A}^T)$. This is a subspace of \mathbb{R}^m .

Method to find the basis of $Nul(\mathbf{A}^T)$:

- Standard method (follow the definition): Solve the homogeneous system $\mathbf{A}^T \mathbf{x} = \mathbf{0}$ and to similarly as finding basis of $\text{Nul}(\mathbf{A})$.
- An alternate method: Row reduce the matrix $\begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix}$ to the matrix of the form $\begin{bmatrix} \operatorname{rref}(\mathbf{A}) & \mathbf{B} \end{bmatrix}$. A basis of $\operatorname{Nul}(\mathbf{A}^T)$ consists of $m rank(\mathbf{A})$ last columns of \mathbf{B}^T (i.e., $m rank(\mathbf{A})$ last row of \mathbf{B})

Example 15.6. Find a basis of $Nul(\mathbf{A}^T)$, with $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$

Solution: We row reduce the matrix $\begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix}$ and obtain

$$\begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 4 & 5 & 6 & 0 & 1 & 0 \\ 7 & 8 & 9 & 0 & 0 & 1 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 0 & -1 & 0 & -8/3 & 5/3 \\ 0 & 1 & 2 & 0 & 7/3 & -4/3 \\ 0 & 0 & 0 & 1 & -2 & 1 \end{bmatrix}$$

 $rank(\mathbf{A}) = 2$, so the last row of the matrix $\mathbf{B} := \begin{bmatrix} 0 & -8/3 & 5/3 \\ 0 & 7/3 & -4/3 \\ 1 & -2 & 1 \end{bmatrix}$ forms the basis of $Nul(\mathbf{A}^T)$.

Thus the basis is $\left\{ \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix} \right\}$

Example 15.7. Find the basis of four subspace $Col(\mathbf{A})$, $Nul(\mathbf{A})$, $Row(\mathbf{A})$, $Nul(\mathbf{A}^T)$ for the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix}$$

Solution:

We start by row reducing matrix $\begin{bmatrix} \mathbf{A} & \mathbf{I}_3 \end{bmatrix}$

$$\begin{bmatrix} \mathbf{A} & \mathbf{I}_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 & 1 & 0 & 0 \\ 5 & 6 & 7 & 8 & 0 & 1 & 0 \\ 9 & 10 & 11 & 12 & 0 & 0 & 1 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & 0 & -1 & -2 & 0 & -5/2 & 3/2 \\ 0 & 1 & 2 & 3 & 0 & 9/4 & -5/4 \\ 0 & 0 & 0 & 0 & 1 & -2 & 1 \end{bmatrix}.$$

We see that $\text{rref}(\mathbf{A}) = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, which gives:

- Columns 1 and 2 of **A** are pivots, so, basis for Col(**A**) is $\left\{ \begin{bmatrix} 1 \\ 5 \\ 9 \end{bmatrix}, \begin{bmatrix} 2 \\ 6 \\ 10 \end{bmatrix} \right\}$ and $rank(\mathbf{A}) = 2$.
- The solution to the system $\mathbf{A}\mathbf{x} = \mathbf{0}$ is $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_3 + 2x_4 \\ -2x_3 3x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix}$. Thus

the basis of Nul(**A**) is $\left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix} \right\}$

- Basis of Row(**A**) is $\left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \\ -2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix} \right\}$ (nonzero rows of rref(**A**)).
- Basis for Nul(\mathbf{A}^T) is the last $m rank(\mathbf{A}) = 3 2 = 1$ last row of the matrix $\mathbf{B} = \begin{bmatrix} 0 & -5/2 & 3/2 \\ 0 & 9/4 & -5/4 \\ 1 & -2 & 1 \end{bmatrix}$. Thus, the basis of Nul(\mathbf{A}^T) is $\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$

Example 15.8. Find the basis of four subspace $Col(\mathbf{A})$, $Nul(\mathbf{A})$, $Row(\mathbf{A})$, $Nul(\mathbf{A}^T)$ for the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 5 & 6 \\ 9 & 10 \end{bmatrix}$$

Solution: We row reduce matrix $\begin{bmatrix} \mathbf{A} & \mathbf{I}_3 \end{bmatrix}$

$$\begin{bmatrix} \mathbf{A} & \mathbf{I}_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 0 & 0 \\ 5 & 6 & 0 & 1 & 0 \\ 9 & 10 & 0 & 0 & 1 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 0 & 0 & -5/2 & 3/2 \\ 0 & 1 & 0 & 9/4 & -5/4 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix}.$$

We see that
$$\text{rref}(\mathbf{A}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
, which gives:

- Both columns of **A** are pivots, so, basis for Col(**A**) is $\left\{ \begin{bmatrix} 1 \\ 5 \\ 9 \end{bmatrix}, \begin{bmatrix} 2 \\ 6 \\ 10 \end{bmatrix} \right\}$ and $rank(\mathbf{A}) = 2$.
- The nullity of **A** is zeros, so $Nul(\mathbf{A}) = \{0\}$. The basis of **A** is an empty set.
- Basis of Row(**A**) is $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ (nonzero rows of rref(**A**)).
- Basis for Nul(\mathbf{A}^T) is the last $m rank(\mathbf{A}) = 3 2 = 1$ last row of the matrix $\mathbf{B} = \begin{bmatrix} 0 & -5/2 & 3/2 \\ 0 & 9/4 & -5/4 \\ 1 & -2 & 1 \end{bmatrix}$. Thus, the basis of Nul(\mathbf{A}^T) is $\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$

The relation between these four subspace

Table of Fundamental Subspaces for an $m \times n$ Matrix A with $r = \operatorname{rank}(A)$

Name	Notation	Standard Basis	Dimension
column space	col(A)	pivot columns of A	r
null space	$\mathrm{nul}(A)$	basic solutions of $A\mathbf{x} = 0$	n-r
row space	row(A)	nonzero rows of $rref(A)$	r
left null space	$\mathrm{nul}(A^T)$	last m - r rows of W $rref([A I]) = [rref(A) W]$	m-r

Please see the lecture note on Canvas for more references