

Разработка программного обеспечения распознавания психоэмоционального возбуждения оператора беспилотного летательного аппарата

Разработал: Семенов Владислав Юрьевич, гр. РП-184 Руководитель: ст. преп. Сукачев Александр Игоревич

Цель и задачи работы

Цель работы – разработка программного обеспечения распознавания психоэмоционального возбуждения оператора видеонаблюдения (в частности, оператора БПЛА).

Задачи, выполняемые в процессе работы:

- 1) Обзор существующих решений в области мониторинга психоэмоционального состояния.
- 2) Разработка собственного системного решения.
- 3) Поиск и предобработка набора обучающих данных.
- 4) Разработка непосредственно программного обеспечения в соответствии с системным решением.

Разработка системного решения

Выбранный метод мониторинга — окулографический (анализ движений глаз). Ряд исследований позволил установить отчетливую взаимосвязь между состоянием возбуждения и характером движения глаз.

Структура разработанной системы

Поиск и предобработка набора обучающих данных

Интерфейс программы для сбора данных

Содержание сѕу-файла

Всего в наборе данных 5220 изображений.

Поиск и предобработка набора обучающих данных

Распределение координат по ячейкам экрана

Расположение лица в кадре

Разработка модуля распознавания лиц

Используется стандартный алгоритм — Mediapipe Face Mesh. Проверка цвета зрачка и уголков глаза:

$$C_{pupil} \leq C_{left\ corner}, C_{pupil} \leq C_{right\ corner}.$$

Проверка соотношения сторон глаза:

$$EAR = \frac{\|P_2 - P_6\| + \|P_3 - P_5\|}{2\|P_1 - P_4\|}.$$

Проверка крайних положений зрачка:

$$k_h = \frac{\left\|P_{pupil} - P_{left\ corner}\right\|}{\left\|P_{pupil} - P_{right\ corner}\right\|}, k_v = \frac{\left\|P_{pupil} - P_{top\ point}\right\|}{\left\|P_{pupil} - P_{bottom\ point}\right\|}.$$

Разработка модуля определения траектории взгляда

Базовая архитектура

«Гибридная» архитектура

Разработка модуля определения траектории взгляда

Полносвязная архитектура

Архитектура для обработки одного глаза

Разработка модуля определения траектории взгляда

Название архитектуры	Количество параметров	Среднеквадратическая ошибка, см	Время обучения, мин
Базовая	297390	1,7	90,5 (30 эпох)
«Гибридная»	4517762	1,7	83,9 (30 эпох)
Один глаз (первая вариация гиперпараметров)	150446	1,8	93,7 (30 эпох)
Один глаз (вторая вариация гиперпараметров)	150446	2,6	92,3 (30 эпох)
Полносвязная (размерность скрытого пространства 256)	37250	8,5	2,5 (20 эпох)
Полносвязная (размерность скрытого пространства 512)	140034	7,6	2,6 (20 эпох)

Архитектура, обрабатывающая один глаз, позволят сократить количество параметров практически в 2 раза при сравнительно малом увеличении ошибки.

Скорость изменения координат взгляда:

$$v_{gaze} = \frac{K_{cm}\sqrt{(x_{new} - x_{old})^2 + (y_{new} - y_{old})^2}}{t}.$$

Расстояние изменения координат взгляда:

$$\Delta_{gaze} = K_{cm}\sqrt{(x_{new} - x_{old})^2 + (y_{new} - y_{old})^2}.$$

Повышенная глазодвигательная активность:

$$\Delta_{gaze} > \Delta_{gaze\ threshold}$$
.

Интерфейс калибровки

```
Начало нового сеанса: 11.01.2024
время, координата X (см), координата Y (см), изменение расстояния (см)
22:07:41 и 823 мсек,11.596,11.466,0
22:07:41 и 902 мсек,11.726,11.596,0.183848
22:07:41 и 997 мсек,13.78,11.154,2.10102
22:07:42 и 95 мсек,12.376,11.336,1.41575
22:07:42 и 183 мсек,12.298,11.102,0.246658
22:07:42 и 299 мсек,12.376,11.622,0.525817
22:07:42 и 392 мсек,12.896,13.312,1.76819
22:07:42 и 487 мсек,12.87,15.028,1.7162
22:07:42 и 599 мсек,12.714,15.262,0.281233
22:07:42 и 701 мсек, 20.566, 17.576, 8.18587
22:07:42 и 789 мсек,21.528,17.862,1.00361
22:07:42 и 914 мсек, 20.618, 18.122, 0.946414
22:07:42 и 999 мсек, 20.826, 18.356, 0.313081
22:07:43 и 98 мсек, 22.256, 18.694, 1.4694
22:07:43 и 208 мсек,18.98,17.758,3.40709
22:07:43 и 314 мсек,19.734,17.914,0.769969
22:07:43 и 408 мсек,23.296,20.904,4.65059
22:07:43 и 494 мсек, 20.54, 19.812, 2.96446
22:07:43 и 606 мсек,21.892,20.384,1.46802
22:07:43 и 708 мсек, 21.164, 20.358, 0.728464
22:07:43 и 796 мсек, 21.398, 20.644, 0.369529
22:07:43 и 920 мсек, 22.126, 20.722, 0.732167
22:07:44 и 7 мсек,21.528,20.878,0.618013
22:07:44 и 101 мсек, 22.75, 21.216, 1.26788
22:07:44 и 220 мсек,21.84,20.722,1.03544
22:07:44 и 316 мсек,14.872,20.722,6.968
22:07:44 и 413 мсек,14.404,20.618,0.479416
Окончание сеанса
```

Содержание файла журнала

Интерфейс тестирования

Интерфейс тестирования (лицо или глаза не распознаны)

Интерфейс тестирования (повышенная глазодвигательная активность)

Выводы

Таким образом, было разработано программное обеспечение распознавания психоэмоционального возбуждения оператора БПЛА.

В ходе выполнения ВКР было разработано системное решение, выполнен сбор обучающих данных данных, разработаны следующие:

- распознавания лиц,
- определения траектории взгляда,
- анализа движений глаз.

Хотя нейронная сеть не превосходит базовый аналог по точности, она позволяет почти в 2 раза сократить количество параметров при незначительном росте ошибки.

Разработанная система носит сугубо рекомендательный характер — окончательное решение обязан принимать специалист по мониторингу психоэмоционального состояния.

Публикации по теме ВКР

Р.В. Кузьменко, А.И. Сукачев, Е.А. Сукачева, В.Ю. Семенов

Анализ требований, предъявляемых к системам мониторинга психоэмоционального состояния оператора видеонаблюдения

Принята к публикации в журнале «Вестник Воронежского института ФСИН России»

Спасибо за внимание

Обзор существующих решений

Метод мониторинга	Примеры разработок	Достоинства	Недостатки
Пупиллометрия, анализ движений глаз	Исследование сотрудников Сегедского университета. Нейронная сеть iTracker. Модуль оценки усталости Google Research	Признанная эффективность метода при диагностике патологических состояний и нарушений психики	Невозможность качественной дифференциации психоэмоциональных состояний. В случае пупиллометрии — организационные трудности при мониторинге. В случае анализа движений глаз — отсутствие эталонной траектории движения взгляда видеооператора
Метод виброизображений	Система Vibralmage	Универсальность метода. Возможность распознавания широкого спектра состояний (психические, эмоциональные состояния, наличие заболеваний и т.д.) и их дифференциации	Непрозрачность технологии. Отсутствие независимых проверок качества и работоспособности
Анализ движений тела, мультимодальные системы	Алгоритм CABERA. Сети каскадного внимания	Учет различных аспектов получаемых фото- и видеоизображений. Возможность включения в состав мультимодальной системы всех рассмотренных ранее методов	Сложность системы. Необходимость правильного отбора наиболее эффективных методов распознавания психоэмоционального состояния при проектировании мультимодальных систем