

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

(12) Offenlegungsschrift
(10) DE 199 34 510 A 1

(51) Int. Cl. 7:
C 12 Q 1/68

- (71) Anmelder:
Vermicon Engineering & Microbiology AG, 80992 München, DE
- (74) Vertreter:
Maiwald GmbH, 80335 München

- (72) Erfinder:
Beimfohr, Claudia, 80992 München, DE; Snaidr, Jiri, 80992 München, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (54) Verfahren zum Nachweis von Mikroorganismen
(57) Die Erfindung betrifft ein Verfahren zum Nachweis von Mikroorganismen in einer Probe mittels einer Nukleinsäuresonde sowie einen Kit zur Durchführung eines derartigen Verfahrens.

Beschreibung

Der Nachweis von Mikroorganismen erfolgte jahrzehntelang mittels Kultivierung. Hierbei werden Mikroorganismen auf ein künstliches Nährmedium überführt, auf diesem bei einer bestimmten, optimalen Wachstumstemperatur bebrütet und nach Wachstum zu einer Kolonie identifiziert. Die Identifizierung kann mittels biochemischer oder auch physiologischer Merkmale erfolgen. Diese Vorgehensweise besitzt jedoch gravierende Nachteile. Zum einen brauchen viele Bakterienstämme oft mehrere Tage bis sie auf einem künstlichen Medium gewachsen sind. Zum anderen besitzen viele Bakterienarten derart komplexe Ansprüche an die Nährstoffe und die sie umgebenden Bedingungen, dass ein Wachstum auf künstlichen Medien oft unmöglich ist. Aktuelle Untersuchungen belegen, dass bei Umweltproben nur zwischen 0,1 bis 15% aller Bakterien kultivierbar sind. Durch kultivierungsabhängige Verfahren kann dadurch zum einen nur ein Bruchteil aller Bakterien nachgewiesen werden. Zum anderen entspricht die Verteilung der Bakterienpopulationen nach Wachstum auf künstlichen Medien nicht der natürlichen Verteilung in einer Probe. Dies macht nicht nur die Identifizierung bestimmter Bakterienarten unmöglich, sondern verhindert auch noch die exakte Quantifizierung.

Anfang der 90iger Jahre wurde eine Methode entwickelt, die maßgeblich dazu beitragen sollte, neue Einblicke in die tatsächliche Diversität der Bakterien zu erlangen: die FISH-Gensondentechnologie. Die Fluorescent-In-Situ-Hybridisierung stützt sich dabei auf die Erkenntnis, daß bestimmte Bereiche der Ribosomen, die ribosomale RNA (rRNA), konserve, d. h. über die Jahrtausende erhaltene Bereiche aufweisen. Die Ribosomen sind die Orte der Proteinbiosynthese in prokaryontischen und eukaryontischen Zellen. Hier werden die für die Zelle lebensnotwendigen Proteine und Enzyme synthetisiert, die die biochemischen Stoffwechselumsetzungen katalysieren. Ohne diese ständige Synthese wäre kein Leben auf der Erde möglich.

Aufgrund dieser lebensnotwendigen Funktion durften sich die Bestandteile der Ribosomen, ribosomale Proteine und ribosomale RNA (rRNA) nicht allzu vielen Mutationen unterwerfen. Organismen, die durch exogene Einflüsse allzu viele Mutationen innerhalb der Ribosomen erfuhren, wurden eliminiert – nur Organismen mit einer minimalen Veränderung dieser essentiellen Komponente konnten überleben. Diese natürliche Selektion erhielt bis zum heutigen Tage eine nur wenig veränderte Zusammensetzung der Ribosomen. Und doch konnte es innerhalb der Nukleinsäurekomponente der Ribosomen, der rRNA, die sich in ihrer chemischen Zusammensetzung nur in einem einzigen Baustein von der DNA unterscheidet, in bestimmten Teilen zu Mutationen kommen. Aus diesem Grund besteht die rRNA der Prokaryonten aus konservierten und variablen Regionen. Diese Zusammensetzung ermöglicht die Erkennung von stammesgeschichtlichen Zusammenhängen zwischen den einzelnen Organismen. Aussagen über Verwandtschaft können gerade bei den mit wenig unterschiedlich morphologischen Erkennungsmerkmalen ausgestatteten Bakterien nun mit großer Zuverlässigkeit getroffen werden.

Die rRNA der Bakterien lässt sich aufgrund ihrer Größe und ihres spezifischen Gewichtes in drei Klassen einordnen: die 5S, die 16S und die 23S rRNA. Alle drei verschiedenen rRNA können bei entsprechend ansteigender Aussagekraft für die Ermittlung der Phylogenie herangezogen werden.

Die FISH-Gensondentechnologie macht sich die Möglichkeit, die Bakterien aufgrund ihrer rRNA-Zusammensetzung zu unterscheiden, zunutze. Bestimmte Zielstellen auf der rRNA werden verwendet, um spezifische Gensonden zu

erstellen. Diese Gensonden sind nur wenige Bausteine große, künstlich zusammengestellte Abschnitte der Erbsubstanz (DNA). Jede Gensonde hat als "Ziel" eine bestimmte Bakterienart, eine Bakteriengattung oder eine Bakteriengruppe. Koppelt man nun diese Gensonden mit einem Marker-Molekül, einem fluoreszierenden Farbstoff, und bringt diese Sonden in ein Bakteriengemisch ein, so dringen sie in die Zellen ein und heften sich, sofern vorhanden, an ihre spezifischen Zielstellen. Nach einem Waschschritt, bei dem alle ungebundenen Sonden aus den Zellen herausgewaschen werden, können diese spezifisch gebundenen Sonden in den Bakterien detektiert werden. Nach Anregung mit energiereicherem Licht fluoreszieren die Farbstoffe, die an den Gensonden hängen, das Bakterium "leuchtet" im Mikroskop. Werden nun bestimmte Gensonden mit unterschiedlichen Farbstoffen gekoppelt, so kann aufgrund der betreffenden Farbe sofort die Aussage getroffen werden, um welches Bakterium es sich in der Probe handelt.

Ein Nachteil der FISH-Hybridisierung liegt in der aufwendigen Quantifizierung der Methode. So werden unter einem Mikroskop die spezifisch detektierten Bakterienpopulation durch Zählen der Zellen quantifiziert. Nach Ermittlung der Gesamtzahl der Bakterien mit einem Farbstoff, der spezifisch alle Zellen färbt, bzw. der Ermittlung der Gesamtzahl der Zellen, die für Sonden zugänglich sind, kann der Anteil der spezifischen Bakterienpopulation an der jeweiligen Gesamtzahl der Zellen ermittelt werden. Das Auszählen erfordert zusätzlich eine ausreichend gute Ausbildung, da zwischen echten Signalen, die von den spezifisch gebundenen Zellen stammen, und den falschen Signalen (Autofluoreszenz) Unterschiede werden müssen.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Verfügung zu stellen, mit dem Mikroorganismen ohne vorherige Kultivierung nachgewiesen und gegebenenfalls quantifiziert werden können, und das die Nachteile des Standes der Technik überwindet.

Erfindungsgemäß wird diese Aufgabe durch ein Verfahren zum Nachweis von Mikroorganismen in einer Probe mittels einer Nukleinsäuresonde gelöst, wobei das Verfahren folgende Schritte umfasst:

- Fixieren der in der Probe enthaltenen Mikroorganismen
- Immobilisieren der Mikroorganismen auf einer Mikrotiterplatte
- Inkubation der auf der Mikrotiterplatte fixierten und immobilisierten Mikroorganismen mit nachweisbaren Nukleinsäuresondenmolekülen, um eine Hybridisierung herbeizuführen
- Entfernen nicht hybridisierter Nukleinsäuresondenmoleküle
- Detektieren und gegebenenfalls Quantifizieren der Zellen mit hybridisierten Nukleinsäuresondenmolekülen

Bei dieser vorliegenden Erfindung wird unter "Fixieren" von Mikroorganismen eine Behandlung verstanden, mit der die Zellhülle der Mikroorganismen für Nukleinsäuresonden durchlässig gemacht wird. Die Nukleinsäuresonden, die aus einem Oligonukleotid und einem daran gebundenen Marker bestehen, können dann die Zellhülle penetrieren und sich an die der Nukleinsäuresonde entsprechenden Zielsequenz im Zellinneren binden. Die Bindung ist durch eine Ausbildung von Wasserstoffbrücken zwischen komplementären Nukleinsäurestücken zu verstehen. Bei der Hülle kann es sich um eine Lipiddhülle handeln, die einen Virus umgibt, um die Zellwand von Bakterien oder um die Zellmembran eines einzelligen Tierchens. Zur Fixierung wird üblicherweise

eine niederprozentige Paraformaldehydlösung oder eine verdünnte Formaldehydlösung verwendet. Kann die Zellwand trotz dieser Maßnahmen nicht von den Nukleinsäuresonden penetriert werden, so sind dem Fachmann ausreichend weitere Maßnahmen bekannt, die zum gewünschten Ergebnis führen. Dazu zählen beispielsweise Ethanol, Methanol, Mischungen dieser Alkohole, enzymatische Behandlungen oder ähnliches.

Bei der Nukleinsäuresonde im Sinne der Erfindung kann es sich um eine DNA- oder RNA-Sonde handeln, die in der Regel zwischen 12 und 1000 Nukleotide umfassen wird, bevorzugt zwischen 12 und 50, besonders bevorzugt zwischen 17 und 25 Nukleotide. Die Auswahl der Nukleinsäuresonden geschieht nach den Gesichtspunkten, ob eine komplementäre Sequenz in dem nachzuweisenden Mikroorganismus vorliegt. Durch diese Auswahl einer definierten Sequenz kann dadurch eine Bakterienart, eine Bakteriengattung oder eine ganze Bakteriengruppe erfaßt werden. Komplementarität sollte möglichst bei einer Sonde von 15 Nukleotiden über 100% der Sequenz gegeben sein. Bei Oligonukleotiden mit mehr als 15 Nukleotiden sind ein bis mehrere Fehlpaarungsstellen erlaubt. Durch das Einhalten von stringenten Hybridisierungsbedingungen wird gewährleistet, daß das Nukleinsäuresondenmolekül auch tatsächlich mit der Zielsequenz hybridisiert. Moderate Bedingungen im Sinne der Erfindung sind z. B. 0% Formamid in einem Hybridisierungspuffer wie er in Beispiel 1 beschrieben ist. Stringente Bedingungen im Sinne der Erfindung sind beispielsweise 20–80% Formamid im Hybridisierungspuffer. Die Auswahl der jeweiligen Nukleinsäuresonden erfolgt in Abhängigkeit vom nachzuweisenden Mikroorganismus. Die Nukleinsäuresonde kann dabei komplementär zu einer chromosomal oder episomalen DNA sein, aber auch zu einer mRNA oder rRNA des nachzuweisenden Mikroorganismus. Von Vorteil ist es, eine Nukleinsäuresonde zu wählen, die zu einem Bereich komplementär ist, der in einer Kopiezahl von mehr als 1 im nachzuweisenden Mikroorganismus vorliegt. Die nachzuweisende Sequenz liegt bevorzugt 500–100 000 mal pro Zelle vor, besonders bevorzugt 1000–50 000 mal. Aus diesem Grunde wird bevorzugt die rRNA als Zielstelle verwendet, da die Ribosomen in der Zelle als Orte der Proteinbiosynthese viertausendfach in jeder aktiven Zelle vorliegen.

Erfindungsgemäß wird die Nukleinsäuresonde mit dem im obengenannten Sinne fixierten Mikroorganismus inkubiert, um so ein Eindringen der Nukleinsäuresondenmoleküle in den Mikroorganismus und die Hybridisierung von Nukleinsäuresondenmolekülen mit den Nukleinsäuren des Mikroorganismus zu erlauben. Anschließend werden die nichthybridisierten Nukleinsäuresondenmoleküle durch übliche Waschschritte entfernt. Die spezifisch hybridisierten Nukleinsäuresondenmoleküle können anschließend in den jeweiligen Zellen detektiert werden. Voraussetzung hierfür ist, dass die Nukleinsäuresonde über eine z. B. kovalente Bindung mit einem Marker verknüpft ist. Als detektierbare Marker werden fluoreszierende Gruppen wie z. B. CY2, CY3, CY5, FITC, FLUOS, TRITC oder FLUOS-PRIME verwendet, die dem Fachmann alle wohlbekannt sind. Auch chemische Marker, radioaktive Marker oder enzymatische Marker wie Meerrettich-Peroxidase, saure Phosphatase, alkalische Phosphatase, Peroxidase können verwendet werden. Für jedes dieser Enzyme ist eine Reihe von Chromogenen bekannt, die anstelle des natürlichen Substrates umgesetzt werden können, und entweder zu farbigen oder zu fluoreszierenden Produkten umgesetzt werden können.

Schließlich ist es möglich, die Nukleinsäuresondenmoleküle so zu gestalten, daß an ihrem 5'- oder 3'-Ende eine weitere zur Hybridisierung geeignete Nukleinsäuresequenz vor-

handen ist. Diese Nukleinsäuresequenz umfaßt wiederum ca. 15 bis 1000, bevorzugt 15–50 Nukleotide. Dieser zweite Nukleinsäurebereich kann wiederum von einer Oligonukleotidsonde erkannt werden, die durch eines der oben erwähnten Mittel nachweisbar ist.

Eine weitere Möglichkeit besteht in der Kopplung der nachweisbaren Nukleinsäuresondenmoleküle mit einem Hapten. Nach Ablösung der Nukleinsäuresondenmoleküle von der Zielnukleinsäure können die nunmehr separat vorliegenden Nukleinsäuresondenmoleküle mit das Hapten erkennenden Antikörpern in Kontakt gebracht werden. Als Beispiel für solch ein Hapten kann Digoxigenin angeführt werden. Dem Fachmann sind über die angegebenen Beispiele auch noch weitere wohlbekannt.

Im Gegensatz zum herkömmlichen FISH-Verfahren werden jedoch die Mikroorganismen nach dem erfindungsgemäßen Verfahren nicht auf einem Objektträger immobilisiert, sondern auf einer Mikrotiterplatte oder auf einem anderen geeigneten Träger, der das Immobilisieren von mehreren, räumlich voneinander getrennten Mikroorganismen erlaubt. Dies hat gravierende Vorteile. Zum einen ist die Durchführung der FISH-Hybridisierung dank der vorliegenden Erfindung erstmals automatisierbar. Alle Reaktionsschritte können in der Mikrotiterplatte von stattfinden gehen.

Zum anderen ist die in der Praxis oft mühevolle Quantifizierung nun deutlich erleichtert. In der Praxis wurden die positiven Zellen, also die Zellen, die spezifisch gebundene Nukleinsäuresondenmoleküle, die mit einem Markermolekül versehen sind, enthalten, gezählt und diese Zahl mit der Gesamtzellzahl verglichen. Bei dieser Erfindung können die Mikroorganismen in einem geeigneten Auswertegerät, z. B. Fluorometer oder Chemoluminometer, durch die ausstrahlende Fluoreszenz oder Chemoluminiszenz quantifiziert werden.

Die Durchführung der FISH-Hybridisierung geschieht im Stand der Technik ausschließlich auf Objektträgern. Auch das Immobilisieren von Mikroorganismen auf Filtern und die daran anschließende FISH Hybridisierung sind bereits in einschlägiger, dem Fachmann bekannter Literatur beschrieben worden. Die Möglichkeit, den Nachweis von Mikroorganismen mittels Immobilisieren der Mikroorganismen auf einer Mikrotiterplatte oder eines anderen geeigneten Trägers im Rahmen eines automatisierbaren und schnellen Verfahrens durchzuführen, ist neu.

Die Vielzahl möglicher Markierungen ermöglicht auch den gleichzeitigen Nachweis von zwei oder mehreren sich überlappenden oder auch nicht überlappenden Populationen. So kann z. B. durch die Verwendung von zwei verschiedenen Fluoreszenzmarkern neben Legionella pneumophila auch Legionella feeleii nachgewiesen werden.

Der mittels des erfindungsgemäßen Verfahrens nachzuweisende Mikroorganismus kann ein prokaryontischer oder eukaryontischer Mikroorganismus sein. In den meisten Fällen wird es erwünscht sein, einzellige Mikroorganismen nachzuweisen. Diese einzellige Mikroorganismen können auch in größeren Aggregaten, sogenannten Filamenten, vorliegen. Relevante Mikroorganismen sind hierbei v. a. Hefen, Algen, Bakterien oder Pilze.

Das erfindungsgemäße Verfahren kann vielfältig angewendet werden. Umweltproben können auf das Vorhandensein von Mikroorganismen untersucht werden. Diese Proben können hierzu aus Luft, Wasser oder aus dem Boden entnommen sein.

Ein weiteres Anwendungsgebiet für das erfindungsgemäße Verfahren ist die Kontrolle von Lebensmitteln. In bevorzugten Ausführungsformen werden die Lebensmittelproben aus Milch oder Milchprodukten (Joghurt, Käse, Quark, Butter, Buttermilch), Trinkwasser, Getränken (Limonaden,

Bier, Säfte), Backwaren oder Fleischwaren entnommen. Für den Nachweis von Mikroorganismen in Lebensmitteln kann u. U. eine Kultivierung notwendig sein, um sicherzustellen, dass nur lebende und damit vermehrungsfähige Mikroorganismen nachgewiesen werden.

Das erfindungsgemäße Verfahren kann weiter zur Untersuchung medizinischer Proben eingesetzt werden. Es ist für die Untersuchung von Gewebeproben, z. B. Biopsiematerial aus der Lunge, Tumor- oder entzündliches Gewebe, aus Sekreten wie Schweiß, Speichel, Sperma und Ausfluß aus der Nase, Harnröhre oder Vagina sowie für Urin- oder Stuhlproben geeignet.

Ein weiteres Anwendungsgebiet für das vorliegende Verfahren ist die Untersuchung von Abwässern, z. B. Belebtschlamm, Faulschlamm oder anaerobem Schlamm. Darüber hinaus ist das Verfahren geeignet, Biofilme in industriellen Anlagen zu analysieren, sowie auch sich natürlicherweise bildende Biofilme oder sich bei der Abwasserreinigung bildende Biofilme zu untersuchen. Auch die Untersuchung pharmazeutischer und kosmetischer Produkte, z. B. Salben, Cremes, Tinkturen, Säfte, Lösungen, Tropfen etc. ist mit dem erfindungsgemäßen Verfahren möglich.

Durch das erfindungsgemäße Verfahren kann die In-Situ-Hybridisierung in der Praxis etabliert werden. Bei Verwendung von Fluoreszenzmolekülsonden müsste als Auswerteeinheit zur Quantifizierung ein Mikrotiter-Fluorometer benutzt werden, das im Vergleich zu einem Epifluoreszenzmikroskop, das zur Durchführung des herkömmlichen FISH-Verfahrens geeignet ist und mit welchem ausreichend gute In-Situ-Hybridisierungsergebnisse erzielt werden können, sowohl in der Anschaffung als auch im Unterhalt wesentlich kostengünstiger ist. Darüber hinaus muß bei der Verwendung von CY5-Sonden eine hochwertige CCD-Kamera eingesetzt werden, was das Verfahren des Standes der Technik zusätzlich kostenintensiv macht. Aus diesem Grund stellt das erfindungsgemäße Verfahren eine wesentlich preisgünstiger Meßmethode dar, als die zeitaufwendige Quantifizierung am Epifluoreszenzmikroskop. Überdies sind die laufenden Kosten geringer, da die Xenonbogenlampe des Fluorometers eine wesentlich längere Lebensdauer besitzt als die Quecksilberhochdrucklampe eines Epifluoreszenzmikroskops. Ebenfalls sind die Personalkosten geringer. Bei der quantitativen Analyse einer Umweltprobe mittels des herkömmlichen Verfahrens nimmt der Einsatz mehrerer Sonden mehrere Tage in Anspruch. Das erfindungsgemäße Verfahren erledigt diese Aufgabe innerhalb weniger Stunden. Hybridisierung benötigt ca. 2–3 Stunden, die Quantifizierung nur wenige Minuten. Die Quantifizierung beim erfindungsgemäßen Verfahren kann überdies auch von ungeschulten Kräften durchgeführt werden. Zusätzlich verkürzt der Einsatz von Mikrotiterplatten den Zeitaufwand bei der Durchführung von Hybridisierungsreaktionen erheblich. Können beim Einsatz von Objektträgern auf jedem Objektträger nur einzelne Reaktionen durchgeführt werden, so können beim Einsatz von Mikrotiterplatten bis zu Hundert oder mehr Reaktionen auf einem Träger erfolgen.

Überdies ist das Verfahren automatisierbar, wodurch die Personalkosten drastisch gesenkt werden können.

Bei dem erfindungsgemäßen Verfahren ist aber auch neben der Verwendung von Fluorometern oder anderen Quantifizierungssystemen auch die Verwendung von Mikroskopen möglich. Zu diesem Zwecke muß das "Welt", also die Aussparung in der Mikrotiterplatte nicht abgerundet sondern flach sein. Zur Auswertung kann auch ein inverses Mikroskop benutzt werden, welches das Aufbringen eines Deckglases auf die immobilisierten und hybridisierten Zellen vermeidet.

Erfindungsgemäß wird weiterhin ein Kit zur Durchfüh-

rung des Verfahrens zum schnellen und automatisierbaren Nachweis von Mikroorganismen in einer Probe zur Verfügung gestellt. Der Kit umfaßt als wichtigsten Bestandteil eine für den jeweils nachzuweisenden Mikroorganismus

spezifische Oligonukleotidsonde. Weiterhin umfaßt er mindestens einen Hybridisierungs- und einen Waschpuffer. Die Wahl des Hybridisierungspuffers hängt in erster Linie von der Länge der verwendeten Nukleinsäuresonden ab. Beispiele für Hybridisierungsbedingungen sind in Stahl D. A. & Amann R. (1991) Development and application of nucleic acid probes in bacterial systematics. In: E. Stackebrandt and M. Goodfellow, Ed., Sequencing and hybridization techniques in bacterial systematics, pp. 205–248. John Wiley and Sons, Chichester, England.

In einer bevorzugten Ausführungsform enthält der Kit spezifische Sonden zum Nachweis von Mikroorganismen, die im Abwasser von Abwasserreinigungsanlagen vorkommen.

Das folgende Beispiel soll der Erläuterung der Erfindung dienen und ist nicht in einschränkender Weise zu deuten.

Nachweis von Bakterien des Types PPx3 in einer Abwasserprobe:

Das nachfolgende Beispiel, vom Anmelder auch als "Power-FISH-Verfahren" bezeichnet, dient der qualitativen Analyse von Bakterien, die dem filamentösen Bakterienfaden PPx3 zugeordnet werden können. Die Identifizierung erfolgt in wenigen Stunden. Der Bakterienfaden konnte bisher nicht kultiviert werden und war aus diesem Grunde einer Identifizierung bislang nicht zugänglich.

Das Grundprinzip läßt sich folgendermaßen darstellen. Filamentöse Bakterien in Abwasserproben werden durch gegen rRNA-gerichtete fluoreszenzmarkierte Oligonukleotidsonden spezifisch erfaßt. Nach entsprechend stringenten Waschschriften werden die gebundenen Sonden in den Bakterien in einem Mikrotiterfluorometer quantifiziert. Durch die Höhe des erhaltenen Signals kann eine Aussage darüber getroffen werden, ob in der Abwasserprobe PPx3-Filamente vorhanden waren oder nicht.

In einem ersten Schritt wird die Abwasserprobe zum Abtöten der darin enthaltenen Mikroorganismen und um die Zellen für Oligonukleotidsonden zugänglich zu machen, fixiert. Ein Aliquot der Abwasserprobe wird in das Welt einer Mikrotiterplatte eingefüllt und die Zellen werden durch Hitze im Welt immobilisiert. Nach der Immobilisierung unterlaufen die Zellen einen Dehydratisierungsschritt. Anschließend wird ein Hybridisierungspuffer eingefüllt und entsprechende Mengen an spezifischen fluoreszenzmarkierten Oligonukleotidsonden zugegeben. Bei der anschließenden Inkubation können unter ausreichend stringenten Bedingungen die Oligonukleotidsonden spezifisch an ihre Zielstellen im Bakterienfaden PPx3 binden. Beim anschließenden Waschschritt werden die nicht gebundenen Sonden wieder entfernt. Für eine Detektion im Mikroskop werden die Zellen getrocknet und mit einem Antifading-Reagenz überstrichen. Das Auflegen eines Deckglases ermöglicht das Betrachten mit einem gängigen Mikroskop. Ohne das Auflegen eines Deckglases ist nur das Betrachten mit einem inversen Mikroskop möglich. Zur Quantifizierung in einem Fluorometer werden die Zellen in etwas Wasser aufgenommen und in einem Mikrotiterplatten-Fluorometer quantifiziert.

a) Das Fixieren der Zellen kann wie folgt durchgeführt werden:
Vorbereitung der Fixierungslösung:
Zugabe von 3 g Paraformaldehyd zu 30 ml auf 60°C erhitztes H_2O_{bdest} und anschließend tropfenweise Zugabe von 1 M NaOH bis zum vollständigen Lösen des Paraformaldehyds. Anschließend Hinzufügen von 16,6 ml 3 × PBS (PBS-

65

Stammlösung: 200 mM Na₂HPO₄ und 200 mM Na₂HPO₄, pH-Wert = 7,2–7,4; 3 × PBS-Lösung: 390 mM NaCl und 30 mM Na₂PO₄ (PBS-Stammlösung); pH = 7,2–7,4). Abkühlen der Lösung auf ca. 20°C. Einstellen des pH-Wertes mit 1 M HCl auf 7,2–7,4. Sterilfiltration der fertigen PFA-Lösung über einen 0,2 µm-Filter. Die Lösung kann bei –4°C für ca. eine Woche aufbewahrt werden. Alternativ kann die Lösung für mehrere Monate eingefroren werden.

Zum eigentlichen Fixieren der Zellen werden drei Teile der gekühlten Fixierungslösung mit einem Teil der Zellsuspension vermischt und 1–6 Stunden inkubiert. Nach Zentrifugation von 2 ml dieser Suspension wird das entstandene Pellet mit 1 ml 1×PBS gewaschen (1 × PBS: 130 mM NaCl und 10 mM PBS-Stammlösung). Nach einem weiteren Zentrifugationsschritt wird das Pellet in 250 µl 1 × PBS vollständig resuspendiert und mit demselben Volumen eiskaltem Ethanol vermischt. Die Lagerung der fixierten Zellen erfolgt bei –20°C.

Die Immobilisierung der Zellen auf einer Mikrotiterplatte erfolgt durch Aufbringen von 1–20 µl der Zellen in das Welt einer Mikrotiterplatte aufgebracht und anschließendes Immobilisieren durch Erwärmung für 20 min bei 80°C.

Zur Dehydratation werden 100 µl 50%iger Ethanol in das Welt aufgebracht. Nach 3 min wird der Ethanol entfernt und 100 µl 80%iger Ethanol aufgebracht. Nach abermals 3minütiger Inkubation wird auch dieser Ethanol entfernt und 100 µl 100%iger Ethanol aufgebracht. Nach 3 Minuten Entfernung von diesem Ethanol und Lufttrocknung der Zellen.

Für die Hybridisierung werden folgende Puffer verwendet:

5

10

15

30

35

40

45

50

55

60

65

Hybridisierungspuffer

Formamid	700 µl	
5 M NaCl	360 µl	
1 M Tris/HCl	40 µl	
10% SDS	2 µl	
H ₂ O _{bidest}	auf 2 ml auffüllen	

Waschpuffer

1 M Tris/HCl, pH 8,0	100 µl	
10% SDS	5 µl	
5 M NaCl	70 µl	
0,5 M EDTA	50 µl	
H ₂ O _{bidest}	auf 5 ml auffüllen	

24 µl des Hybridisierungspuffers werden in das Welt pipettiert und 3 µl (Konz. 50 ng/µl) des fluoreszenzmarkierten Oligonukleotids dazugemischt. Über die Mikrotiterplatte wird eine abdichtende Folie gespannt. Die Mikrotiterplatte wird für 1,5 Stunden bei 46°C inkubiert. Anschließend werden in das Welt 100 µl Waschpuffer hinzugegeben, abgenommen und abermals 100 µl Waschpuffer hinzugegeben. Nach Inkubation für 20 min wird der Waschpuffer abgenommen und die Zellen luftgetrocknet.

Die Auswertung erfolgt wie folgt. Zur mikroskopischen Betrachtung werden die Zellen mit einem Antifading-Reagenz überschichtet und mit einem inversen Epifluoreszenzmikroskop betrachtet. Zur Betrachtung mit einem Auflichtepifluoreszenzmikroskop wird auf die Zellen ein Deckglas gelegt. Für die Auswertung in einem Fluorometer werden auf die getrockneten Zellen 100 µl deionisiertes Wasser hinzugegeben und das Welt in einem Mikrotiterplattenlesegerät ausgewertet.

Patentansprüche

1. Verfahren zum Nachweis von Mikroorganismen in einer Probe mittels einer Nukleinsäuresonde, umfassend die folgenden Schritte:

- Fixieren der in der Probe enthaltenen Mikroorganismen
- Immobilisieren der Mikroorganismen auf einer Mikrotiterplatte
- Inkubation der auf der Mikrotiterplatte fixierten und immobilisierten Mikroorganismen mit nachweisbaren Nukleinsäuresondenmolekülen, um eine Hybridisierung herbeizuführen
- Entfernen nicht hybridisierter Nukleinsäuresondenmoleküle
- Detectieren und gegebenenfalls Quantifizieren der Zellen mit hybridisierten Nukleinsäuresondenmolekülen.

2. Verfahren nach Anspruch 1, worin die Nukleinsäuresonde komplementär zu einer chromosomal oder episomalen DNA, einer mRNA oder rRNA eines nachzuweisenden Mikroorganismus ist.

3. Verfahren nach Anspruch 1 oder 2, worin die Nukleinsäuresonde kovalent mit einem detektierbaren Marker verbunden ist.

4. Verfahren nach Anspruch 3, worin der Marker ausgewählt ist aus der Gruppe bestehend aus

- Fluoreszenzmarker
- Chemilumineszenzmarker
- Radioaktiver Marker
- enzymatisch aktive Gruppe
- Hapten
- durch Hybridisierung nachweisbare Nukleinsäure.

5. Verfahren nach einem der Ansprüche 1 bis 4, worin der Mikroorganismus ein einzelliger Mikroorganismus ist.

6. Verfahren nach einem der Ansprüche 1 bis 5, worin der Mikroorganismus eine Hefe, ein Bakterium, eine Alge oder ein Pilz ist.

7. Verfahren nach Anspruch 6, worin der Mikroorganismus ein Abwasserorganismus ist.

8. Verfahren nach einem der Ansprüche 1 bis 7, worin die Probe eine Umweltprobe ist, die aus Wasser, Boden oder Luft entnommen ist.

9. Verfahren nach einem der Ansprüche 1 bis 7, worin die Probe eine Lebensmittelprobe ist.

10. Verfahren nach Anspruch 9, worin die Probe aus Milch oder Milchprodukten, Trinkwasser, Getränken, Backwaren oder Fleischwaren entnommen ist.

11. Verfahren nach einem der Ansprüche 1 bis 7, worin die Probe eine medizinische Probe ist.

12. Verfahren nach Anspruch 11, worin die Probe aus Gewebe, Sekreten oder Stuhl entnommen ist.

13. Verfahren nach einem der Ansprüche 1 bis 7, worin die Probe aus Abwasser entnommen ist.

14. Verfahren nach Anspruch 13, worin die Probe aus Belebtschlamm, Faulschlamm oder anaeroben Schlamm entnommen ist.

15. Verfahren nach einem der Ansprüche 1 bis 7, worin die Probe aus einem Biofilm entnommen ist.

16. Verfahren nach Anspruch 15, worin der Biofilm aus einer industriellen Anlage stammt, bei der Abwasserreinigung gebildet wurde oder ein natürlicher Biofilm ist.

17. Verfahren nach einem der Ansprüche 1 bis 7, worin die Probe einem pharmazeutischen oder kosmetischen Produkt entnommen ist.

18. Kit zur Durchführung des Verfahrens nach einem
der Ansprüche 1 bis 17, umfassend
 a) mindestens einen Hybridisierungspuffer und
 b) mindestens eine Nukleinsäuresonde.
19. Kit nach Anspruch 18, enthaltend spezifische Son-
den zum Nachweis von Bakterien, die im Abwasser
vorkommen.

10

15

20

25

30

35

40

45

50

55

60

65