Algorytmy i struktury danych I wykład

Karol Szałowski

2019/2020

karol.szalowski@uni.lodz.pl

Notacja O

Niech f(n) oznacza funkcję opisującą zależność liczby operacji dominujących od rozmiaru danych wejściowych, g(n) pewną funkcję referencyjną

$$f(n) = O(g(n)) \Leftrightarrow \exists_{c>0, n_0>0} \forall_{n>n_0} 0 \leqslant f(n) \leqslant cg(n)$$

Notacja Ω

Niech f(n) oznacza funkcję opisującą zależność liczby operacji dominujących od rozmiaru danych wejściowych, g(n) pewną funkcję referencyjną

$$f(n) = \Omega(g(n)) \Leftrightarrow \exists_{c>0, n_0>0} \, \forall_{n>n_0} \, 0 \leqslant cg(n) \leqslant f(n)$$

Notacja Θ

Niech f(n) oznacza funkcję opisującą zależność liczby operacji dominujących od rozmiaru danych wejściowych, g(n) pewną funkcję referencyjną

$$f(n) = \Theta(g(n)) \Leftrightarrow \exists_{c_1 > 0, c_2 > 0, n_0 > 0} \, \forall_{n > n_0} \, 0 \leqslant c_1 g(n) \leqslant f(n) \leqslant c_2 g(n)$$

Notacje asymptotyczne

Inny sposób określania złożoności asymptotycznej:

$$f(n) = O(g(n)) \Leftrightarrow \lim_{n\to\infty} \frac{f(n)}{g(n)} < \infty$$

•

$$f(n) = \Omega(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$$

$$f(n) = \Theta(g(n)) \Leftrightarrow 0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

Przykład – notacja O

$$f(n) = O(g(n)) \Leftrightarrow \exists_{c>0, n_0>0} \, \forall_{n>n_0} \, 0 \leqslant f(n) \leqslant cg(n)$$

Niech
$$f(n) = \frac{1}{2}n^2 + 2n$$
. Czy $f(n) = \frac{1}{2}n^2 + 2n = O(n^3)$?

Dla $n > n_0 = 1$, c = 1 zachodzi $0 \leqslant \frac{1}{2}n^2 + 2n \leqslant cn^3$.

Przykład – notacja O

$$f(n) = O(g(n)) \Leftrightarrow \exists_{c>0, n_0>0} \forall_{n>n_0} 0 \leqslant f(n) \leqslant cg(n)$$

Niech
$$f(n) = \frac{1}{2}n^2 + 2n$$
. Czy $f(n) = \frac{1}{2}n^2 + 2n = O(n^3)$?

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\frac{1}{2}n^2 + 2n}{n^3} = \lim_{n \to \infty} \frac{\frac{1}{2n} + \frac{2}{n^2}}{1} = 0$$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0\Rightarrow f(n)=\frac{1}{2}n^2+2n=O(n^3)$$

Przykład – notacja Ω

$$f(n) = \Omega(g(n)) \Leftrightarrow \exists_{c>0, n_0>0} \, \forall_{n>n_0} \, 0 \leqslant cg(n) \leqslant f(n)$$

Niech
$$f(n) = \frac{1}{2}n^2 + 2n$$
. Czy $f(n) = \frac{1}{2}n^2 + 2n = \Omega(n)$?

Dla
$$n > n_0 = 1$$
, $c = 1$ zachodzi $0 \leqslant cn \leqslant \frac{1}{2}n^2 + 2n$.

Przykład – notacja Ω

$$f(n) = \Omega(g(n)) \Leftrightarrow \exists_{c>0, n_0>0} \, \forall_{n>n_0} \, 0 \leqslant cg(n) \leqslant f(n)$$

Niech
$$f(n) = \frac{1}{2}n^2 + 2n$$
. Czy $f(n) = \frac{1}{2}n^2 + 2n = \Omega(n)$?

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{\frac{1}{2}n^2+2n}{n}=\lim_{n\to\infty}\frac{\frac{1}{2}n+2}{1}=\infty$$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty\Rightarrow f(n)=\frac{1}{2}n^2+2n=\Omega(n)$$

Przykład - notacja Θ

$$f(n) = \Theta(g(n)) \Leftrightarrow \exists_{c_1 > 0, c_2 > 0, n_0 > 0} \, \forall_{n > n_0} \, 0 \leqslant c_1 g(n) \leqslant f(n) \leqslant c_2 g(n)$$

Niech
$$f(n) = \frac{1}{2}n^2 + 2n$$
. Czy $f(n) = \frac{1}{2}n^2 + 2n = \Theta(n^2)$?

Dla
$$n > n_0 = 8$$
, $c_1 = \frac{1}{2}$, $c_2 = 1$ zachodzi $0 \leqslant c_1 n^2 \leqslant \frac{1}{2} n^2 + 2n \leqslant c_2 n^2$.

Przykład – notacja Θ

$$f(n) = \Theta(g(n)) \Leftrightarrow \exists_{c_1 > 0, c_2 > 0, n_0 > 0} \, \forall_{n > n_0} \, 0 \leqslant c_1 g(n) \leqslant f(n) \leqslant c_2 g(n)$$
Niech $f(n) = \frac{1}{2} n^2 + 2n$. Czy $f(n) = \frac{1}{2} n^2 + 2n = \Theta(n^2)$?
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\frac{1}{2} n^2 + 2n}{n^2} = \lim_{n \to \infty} \frac{\frac{1}{2} + \frac{2}{n}}{1} = \frac{1}{2}$$

$$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \Rightarrow f(n) = \frac{1}{2} n^2 + 2n = \Theta(n^2)$$

WYDZIAŁ FIZYKI I INFORMATYKI STOSOWANEJ

Przykład – notacja O

40 20

$$f(n) = O(g(n)) \Leftrightarrow \exists_{c>0, n_0>0} \, \forall_{n>n_0} \, 0 \leqslant f(n) \leqslant cg(n)$$

Niech $f(n) = n^2 \log_2 n + \frac{1}{2}n$. Czy $f(n) = n^2 \log_2 n + \frac{1}{2}n = O(n^3)$?

10

Dla $n > n_0 = 1$, c = 1 zachodzi $0 \leqslant n^2 \log_2 n + \frac{1}{2} n \leqslant c n^3$.

WYDZIAŁ FIZYKI I INFORMATYKI STOSOWANEJ Uniwersytet Łódzki

Przykład – notacja Ω

$$f(n) = \Omega(g(n)) \Leftrightarrow \exists_{c>0, n_0>0} \, \forall_{n>n_0} \, 0 \leqslant cg(n) \leqslant f(n)$$

Niech $f(n) = n^2 \log_2 n + \frac{1}{2}n$. Czy $f(n) = n^2 \log_2 n + \frac{1}{2}n = \Omega(n^2)$?

Dla $n>n_0=1$, c=1 zachodzi $0\leqslant cn^2\leqslant n^2\log_2 n+\frac{1}{2}n$.

Notacja Θ

Dla dowolnych funkcji f(n) i g(n) zachodzi:

$$f(n) = \Theta(g(n)) \Leftrightarrow (f(n) = O(g(n)) \land f(n) = \Omega(g(n)))$$

- $n^2-3n+2=\Theta(n^2)$, bo zarówno O, jak i Ω
- $n^2 3n + 2 \neq \Theta(n^3)$, bo tylko O
- $n^2 3n + 2 \neq \Theta(n)$, bo tylko Ω

Przykłady złożoności obliczeniowej (skala liniowa)

Przykłady złożoności obliczeniowej (skala logarytmiczna)

Przykłady złożoności obliczeniowej (podwójna skala logarytmiczna)

Metody projektowania algorytmów

- Metoda zachłanna
- Metoda "dziel i zwyciężaj"
- Metoda dynamiczna

Metoda zachłanna

- Stosowana przy algorytmach optymalizacji.
- Algorytm zachłanny (*greedy algorithm*) w każdym kroku dokonuje zachłannego (lokalnie optymalnego) wyboru rozwiązania częściowego.
- Lokalnie optymalny wybór ⇒ globalnie optymalne rozwiązanie?

Przykład: algorytm zachłanny wydawania reszty (należy wydać konkretną kwotę przy wykorzystaniu jak najmniejszej liczby monet/banknotów o danych nominałach):

- 91 = 50 + 20 + 20 + 1, nominały 50, 20, 10, 5, 2, 1 (rozwiązanie optymalnie)

Metoda "dziel i zwyciężaj"

- Struktura rekurencyjna
- Problem jest dzielony na podproblemy o mniejszym rozmiarze podobne do początkowego problemu.
- Podproblemy są rozwiązywane rekurencyjnie
- Rozwiązania podproblemów są łączone w celu uzyskania rozwiązania całego problemu
- Podproblemy są od siebie niezależne.
 - Dziel: dzielimy problem na podproblemy
 - Zwyciężaj: rozwiązujemy podproblemy rekurencyjnie (chyba że rozmiar problemu jest już tak mały, że można go rozwiązać bezpośrednio-inaczej rekurencja nie zatrzyma się)
 - Połącz: łączymy rozwiązania podproblemów w rozwiązanie problemu
- Metoda zstępująca (top-down).

Metoda dynamiczna

- Problem jest dzielony na podproblemy o mniejszym rozmiarze podobne do początkowego problemu.
- Podproblemy nie są od siebie niezależne.
- Podejście "dziel i zwyciężaj" powodowałoby wielokrotne niezależne rozwiązywanie tych samych problemów, co byłoby nieefektywne.
- Zamiast tego każdy z podproblemów jest rozwiązywany jednokrotnie, a rozwiązanie jest zapamiętywane w tablicy.
- Metoda wstępująca (bottom-up).

"Dziel i zwyciężaj"

• Obliczanie wartości symbolu Newtona:

$$C(n,m) = \binom{n}{m} = \frac{n!}{m!(n-m)!}$$

$$C(n, m) = C(n-1, m) + C(n-1, m-1)$$
 $C(n, n) = 1$ $C(n, 0) = 1$

BinomCoeff(n,m)

Wejście: n, m; $0 \le m \le n$

Wyjście: C(n, m)

1: **if** m = n **or** m = 0 **then**

2: return 1

3: **else**

4: **return** BinomCoeff(n - 1, m) + BinomCoeff(n - 1, m - 1)

5: end if

"Dziel i zwyciężaj"

• Obliczanie wartości symbolu Newtona:

$$C(n,m) = \binom{n}{m} = \frac{n!}{m! (n-m)!}$$

$$C(n,m) = C(n-1,m) + C(n-1,m-1) \qquad C(n,n) = 1 \qquad C(n,0) = 1$$

$$C(5,2) = C(4,2) + C(4,1)$$

$$C(4,2) = C(3,2) + C(3,1)$$

$$C(3,2) = \underbrace{C(2,2)}_{=1} + C(2,1)$$

$$C(2,1) = \underbrace{C(1,1)}_{=1} + \underbrace{C(1,0)}_{=1}$$

$$C(3,1) = C(3,1) + \underbrace{C(3,0)}_{=1}$$

"Dziel i zwyciężaj"

• Obliczanie wartości symbolu Newtona:

$$C(n,m) = \binom{n}{m} = \frac{n!}{m! (n-m)!}$$

$$C(n,m) = C(n-1,m) + C(n-1,m-1) \qquad C(n,n) = 1 \qquad C(n,0) = 1$$

$$C(3,2) \qquad C(3,1) \qquad C(3,0) \qquad C(3,1)$$

$$C(2,2) \qquad C(2,1) \qquad C(2,1) \qquad C(2,0)$$

$$C(1,1) \qquad C(1,0) \qquad C(1,0) \qquad C(1,0)$$

• $2\binom{n}{m}-1$ wywołań rekurencyjnych

"Dziel i zwyciężaj" -- programowanie dynamiczne

• Obliczanie wartości symbolu Newtona:

$$C(n,m) = \binom{n}{m} = \frac{n!}{m! (n-m)!}$$

BinomCoeff(n,m)

```
Wejście: n, m; 0 \le m \le n
Wyjście: C(n, m)
 1: for i = 0 to n do
       for j = 0 to min(i, m) do
 2:
         if j = 0 or j = i then
 3:
            B[i][j] \leftarrow 1
 4:
         else
 5:
            B[i][j] \leftarrow B[i-1][j] + B[i-1][j-1]
 6:
 7:
       end for
 8:
 9: end for
10: return B[n][m]
```


"Dziel i zwyciężaj" — programowanie dynamiczne

• Obliczanie wartości symbolu Newtona:

$$C(n,m) = \binom{n}{m} = \frac{n!}{m!(n-m)!}$$

B[0][0]=1		
B[1][0]=1	B[1][1]=1	
B[2][0]=1	B[2][1]=2	B[2][2]=1
B[3][0]=1	B[3][1]=3	B[3][2]=3
B[4][0]=1	B[4][1]=4	B[4][2]=6
B[5][0]=1	B[5][1]=5	B[5][2]=10

BinomCoeff(n,m)

```
Wejście: n, m; 0 \le m \le n

Wyjście: C(n, m)

1: for i = 0 to n do

2: for j = 0 to \min(i, m) do

3: if j = 0 or j = i then

4: B[i][j] \leftarrow 1

5: else

6: B[i][j] \leftarrow B[i-1][j] + B[i-1][j-1]

7: end if

8: end for

9: end for

10: return B[n][m]
```


"Dziel i zwyciężaj" → programowanie dynamiczne

• Obliczanie wartości symbolu Newtona:

$$C(n,m) = \binom{n}{m} = \frac{n!}{m!(n-m)!}$$

BinomCoeff(n,m)

```
Wejście: n, m; 0 \le m \le n
Wyjście: C(n, m)
 1: B[0] \leftarrow 1
 2: for i = 1 to n do
       if i \leq m then
 3:
          B[i] \leftarrow 1
 4:
       end if
 5:
       for j = \min(i - 1, m) downto 1 do
 6:
          B[j] \leftarrow B[j] + B[j-1]
 7:
       end for
 8:
 9: end for
10: return B[m]
```


"Dziel i zwyciężaj" — programowanie dynamiczne

• Obliczanie wartości symbolu Newtona:

$$C(n,m) = \binom{n}{m} = \frac{n!}{m!(n-m)!}$$

B[0]=1		
B[0]=1	B[1]=1	
B[0]=1	B[1]=2	B[2]=1
B[0]=1	B[1]=3	B[2]=3
B[0]=1	B[1]=4	B[2]=6
B[0]=1	B[1]=5	B[2]=10

BinomCoeff(n,m)

```
Wejście: n, m; 0 \le m \le n

Wyjście: C(n, m)

1: B[0] \leftarrow 1

2: for i = 1 to n do

3: if i \le m then

4: B[i] \leftarrow 1

5: end if

6: for j = \min(i - 1, m) downto 1 do

7: B[j] \leftarrow B[j] + B[j - 1]

8: end for

9: end for

10: return B[m]
```


"Dziel i zwyciężaj" — programowanie dynamiczne

• Obliczanie wartości symbolu Newtona:

$$C(n,m) = \binom{n}{m} = \frac{n!}{m!(n-m)!}$$

C(5,2)

B[0][0]=1		
B[1][0]=1	B[1][1]=1	
B[2][0]=1	B[2][1]=2	B[2][2]=1
B[3][0]=1	B[3][1]=3	B[3][2]=3
B[4][0]=1	B[4][1]=4	B[4][2]=6
B[5][0]=1	B[5][1]=5	B[5][2]=10

C(5,2)

B[0]=1		
B[0]=1	B[1]=1	
B[0]=1	B[1]=2	B[2]=1
B[0]=1	B[1]=3	B[2]=3
B[0]=1	B[1]=4	B[2]=6
B[0]=1	B[1]=5	B[2]=10

Metody analizy algorytmów

 $\mathcal{T}(n)$ – czas potrzebny dla wykonania pewnego algorytmu

 $T(n) \propto$ liczba operacji dominujących

Analiza równań rekurencyjnych:

- Metoda podstawień (Substitution)
- Metoda drzew rekurencyjnych (Recurrence-tree)
- Metoda rekurencji uniwersalnej (Master method)

Metoda podstawień

Przykład 1:

$$T(n) = \begin{cases} 1, & n = 1 \\ T(n-1) + n, & n > 1 \end{cases}$$

• Zgadujemy:

$$T(n) = O\left(n^2\right)$$

- Czy $T(n) \le cn^2$ dla pewnego c > 0 oraz $n \ge n_0$?
- ullet Załóżmy, że jest to spełnione dla T(n-1): $T(n-1) \leqslant c(n-1)^2$.

$$T(n) = T(n-1) + n \le c(n-1)^2 + n = cn^2 - 2cn + c + n =$$

= $cn^2 + c(1-2n) + n$

$$cn^2+c(1-2n)+n\leqslant cn^2$$
 jeżeli $c(1-2n)+n\leqslant 0\Rightarrow c\geqslant \frac{n}{2n-1}=\frac{1}{2-\frac{1}{n}}$, co zachodzi dla $n\geqslant 1$ i $c\geqslant 1$

• Dla n=1: $T(1)=1\leqslant c\cdot 1^2=c$. Można wybrać dowolne $c\geqslant 1$.

