Tangente à une courbe et nombre dérivé.

Dans un repère orthogonal, notons \mathcal{F} la parabole représentant la fonction f définie par $f(x)=x^2$ et A le point de \mathcal{F} d'abscisse 2.

A. Approche géométrique: utilisons géogébra.

- 1. Construire la parabole \mathcal{F} puis placer le point d'abscisse 2.
- 2. Créer un curseur de nom h pour h compris entre -2 et 2 avec incrément de 0,01.
- 3. Créer le point B d'abscisse 2+h de \mathcal{P} .
- 4. Créer la droite (AB).
- 5. A l'aide de la souris, manipuler le curseur h.

Comment évolue le point B lorsque h s'approche de 0?

Plus B est proche de A, plus la droite (AB) semble répondre à l'idée que l'on se fait d'une tangente : une droite qui « touche » une courbe en un seul point.

La tangente apparaît comme la position limite des sécantes (AB) lorsque B se rapproche de A.

B. limite de coefficients directeurs.

- 1. Démontre que le coefficient directeur t(h) de la droite (AB) est tel que: $t(h) = \frac{f(2+h) f(2)}{h}$
- 2. Compléter le tableau suivant:

h	-2	-1	-0,5	-0,2	-0,03	0,04	0,1	0,5	1	2
f(2+h)	(n)									
t(h)										

3. Comment semble évoluer t(h) lorsque h tend vers 0 ?

Nous écrirons $\lim_{h\to 0} t(h) = \dots$

Remarque: Le quotient
$$\frac{f(2+h)-f(2)}{h}$$
 s'appelle le taux

d'accroissement de f entre 2 et 2+h.

Ici, lorsque h tend vers 0, ce taux tend vers un nombre réel noté f'(2).

- 4. a. Tracer la courbe représentative de la fonction f.
 - b. Tracer la droite Δ qui passe par A et qui a pour coefficient directeur le nombre 4.
- 5. Donner une équation de Δ .

Tangente à une courbe et nombre dérivé.

Dans un repère orthogonal, notons \mathcal{P} la parabole représentant la fonction f définie par $f(x)=x^2$ et A le point de \mathcal{P} d'abscisse 2.

- A. Approche géométrique: utilisons géogébra.
 - 1. Construire la parabole \(\mathcal{P}\) puis placer le point d'abscisse 2.
 - 2. Créer un curseur de nom h pour h compris entre -2 et 2 avec incrément de 0.01.
 - 3. Créer le point B d'abscisse 2+h de \mathcal{P} .
 - 4. Créer la droite (AB).
 - 5. A l'aide de la souris, manipuler le curseur h.

Comment évolue le point B lorsque h s'approche de 0?

Plus B est proche de A plus la droite (AB) semble répond.

Plus B est proche de A, plus la droite (AB) semble répondre à l'idée que l'on se fait d'une tangente : une droite qui « touche » une courbe en un seul point.

La tangente apparaît comme la position limite des sécantes (AB) lorsque B se rapproche de A.

- B. limite de coefficients directeurs.
 - 1. Démontre que le coefficient directeur t(h) de la droite (AB) est tel que: $t(h) = \frac{f(2+h) f(2)}{h}$
 - 2. Compléter le tableau suivant:

h	-2	-1	-0,5	-0,2	-0,03	0,04	0,1	0,5	1	2
f(2+h)										
t(h)										

3. Comment semble évoluer t(h) lorsque h tend vers 0 ?

Nous écrirons $\lim_{h\to 0} t(h) = \dots$

Remarque: Le quotient
$$\frac{f(2+h)-f(2)}{h}$$
 s'appelle le taux

d'accroissement de f entre 2 et 2+h.

Ici, lorsque h tend vers 0, ce taux tend vers un nombre réel noté f'(2).

- 4. a. Tracer la courbe représentative de la fonction f.
 - b. Tracer la droite Δ qui passe par A et qui a pour coefficient directeur le nombre 4.
- 5. Donner une équation de Δ .