# 1 Poliovirus

Family: Picornaviridae

'Pico' - Something small

Single-stranded, positive-sense RNA genome

Genome: Enterovirus

Transmits through the intestine

Fecal-oral (or respiratory) transmission

Examples: Poliovirus, Enterovirus D68, Rhinovirus

## 1.1 Picornaviruses

 $\sim 8$  kb genome

Viral genome is 'infectious'

RNA is both mRNA and viral genome

Protein shell instead of lipid envelope (membrane)

Very stable

Host species: Humans and other mammals

3 poliovirus 'serotypes' are all variants that infect people

Disease: Paralysis (non-polio and polio-type), 'summer cold', meningitis, diarrhea

Picornaviruses replicate in close asociation with lipid membranes of host cells

Viral RNA replication machinery associated with membranes

# 1.2 Proteins

Picornaviruses make many individual proteins by breaking up (cleaving) a large 'polyprotein' with a virally-encoded protease



Figure 1: Picornavirus replication

Protease makes a good target for antibodies

## 1.3 Poliovirus (The Disease)

Mostly sporadic infection until 1905 when it became an epidemic

Poliovirus is an enterovirus

Spreads via fecal-oral but can also spread to and infect motor neurons

- 1. Most infections are mild or asymptomatic
- 2. Central nervous system infection in 0.5-1% of cases resulting in paralysis of limbs (Poliomyelitis)

30% of cases are permanent

- 3. 40% of those who recover suffer 'post-polio syndrome' 30-40 years later
- 4. 5-10% of those paralyzed die when breathing muscles become immobile

# 1.4 Poliovirus Replication

- 1. Ingested polio replicates in oropharyngeal and intestinal mucosa
- 2. Excreded in feces over a period of several weeks after infection
- 3. Reaches the blood through the lymph nodes
- 4. In some cases, can enter the central nervous system

Cause of paralytic polio

5. through retrograde axonal transport

Stage blocked by antibodies (maternal or vaccination)

## 1.4.1 Success as a Pathogen

- 1. Only found in humans but is able to infect virtually all people
- 2. No treatment once infected
- 3. HIGHLY contagious

Very stable in the environment (protein shell) and secreted for weeks or longer

4. High number of asymptomatic infections

# 2 Protection Against Polio

1910-1950: Summer in N hemisphere was seen as the season for polio (Due to relative humidity)

Only prevention is avoiding contact or vaccination

→ Closures of pools, schools, and public places

# 2.1 Vaccine Development

#### 2.1.1 HeLa Cells

Henrietta Lacks died in 1951 from an aggressive cervical cancer

Her cells were incredibly robust (immortal)

 $\rightarrow$  Played a key role in dewvelopment of polio vaccines and many other biomedical studies

## 2.1.2 Inactivated Poliovirus Vaccine (IPV)

'Salk' Vaccine available in 1955

Inactivated virus: Killed (no replication)

Made by formalin(formaldehyde)-inactivation of wild type virus

## 2.1.3 Attenuated Oral Poliovirus Vaccine (OPV)

'Sabin' Vaccine available in 1959

Attenuated Virus: Live virus (can replicate)

Just 2 mutations in serotypes 2 and 3 are sufficient for reversion to a virulent virus

Created through 'attenuation'

Attenuation seeks to isolate a virus that induces immunity, but not disease

Attenuating mutations reduce initial viremia (more type for immune system to respond)

- 1. 9 mutations for type 1 poliovirus
- 2. 3 for type 2
- 3. 5 for type 3

## 2.1.4 Reversion of Virulence

Polio virus acquires 2% nucleotiee divergence in the 5 days that it takes the virus to go from the mouth to the gut in one individual

OPV can mutate when it replicates and revert to a viruelent form known as vaccine-derived poliovirus (VDPV)

OPV is no longer used in countries that have eradicated polio

Causes Vaccine-Associated Paralytic Poliomyelitis (VAPP)

## 2.2 Comparing the Vaccines

#### 'Salk' Inactivated Polio Vaccine

Advantages:

1. No viral spread from vaccine

- 2. No risk of vaccine-related poliomyelitis
- 3. Induces serum antibodies that protect against infection of the CNS

#### Disadvantages:

- 1. Does not protect against infection of the intestine
- 2. Vaccinated people can still be infected (but won't get poliomyelitis)
- 3. Does not stop spread
- 4. Needs to be injected (trained personnel)
- 5. Cost (5x that of OPV plus cost of needles and trained health care worker)

#### 'Sabin' Oral Polio Vaccine

#### Advantages:

- 1. Easy to administer without training (oral liquid)
- 2. Cheap: Sabin assigned his rights to the vaccine strains over to the WHO which greatly helped with low-cost availability
- 3. Replication in intestine induces mucosal immunity and prevents new infections
- 4. Virus is shed ('contact immunity')

## Disadvantages:

- 1. Virus is shed: infection of immunocompromised hosts or naïve populations
- 2. But OPV can replicate in a vaccinee which means the virus can mutate
- 3. Reversion to wild-type in gut: non-attenuated strain can infect other people

## 2.3 Poliovirus Eradication

Reasons for vaccine success:

- 1. No animal reservoir
- 2. Two effective vaccines
- 3. Little antigenic variation
- 4. Cheap and easy to deliver OPV

Polio remains epidemic only in Pakistan and Afghanistan

## VDPV in New York

Travel can lead to transmission into countries which have 'eradicated' polio

IPV does not replicate  $\rightarrow$  virus can still replicate and spread

New attenuated poliovirus vaccine may not revert to virulence