или наконец,

Умножив полученное неравенство на n, мы и получим неравество (1).

$$l_{AC} + l_{A_1C} < \frac{2}{3}AA_1 + \frac{1}{3}LL_1]$$

Дальнейшее исследование основного неравенства

Нами установлено, что число π лежит в первой трети интервала (p_n, q_n) . Вычисления показывают² (см. таблицы 1, 2), что это отношение длин, т.е. значения дробей

$$(q_n - \pi)/(\pi - p_n).n - 3, 6, 12, 24.$$

достаточно близки к 2. На основании этих вычислений мы с большой степенью уверенности можем предположить, что в действительности имеет место соотношение

$$\lim_{n \to \infty} \frac{(q_n - \pi)}{\pi - p_n} = 2$$

Для доказательства соотношения(5) заметим, что (рис.9)

 $p_n=n\cdot sinrac{\pi}{n},q_n=n\cdot tgrac{\pi}{n},n\geq 3,$ и, следовательно,

$$\frac{(q_n - \pi)}{\pi - p_n} = \frac{1}{\cos \frac{\pi}{n}} \cdot \frac{n \sin \frac{\pi}{n} - \cos \frac{\pi}{n}}{\pi - n \sin \frac{\pi}{n}}$$

Для анализа полученного выражения нам понядобятся неравенства

$$x - \frac{x^3}{6} < \sin x < x - \frac{x^3}{6} + \frac{x^5}{120}.$$

x > 0. (6)

значельно улучшающие известное не-

Таблица 1

n	p_n	c_n
3	2,59807621	5,19615242
6	3,0000000	3,46410161
12	3,10582854	3,21539030
24	3,13262861	$3,\!15965994$
48	3,13935020	3,14608621
96	3,14103195	3,14271459
192	3,1455760	3,14187304
384	3,14158389	3,14161017
768	3,14158389	3,14161017
1536	3,14159046	3,14159703
3072	3,14159210	3,14159374

 $Puc.\ 9$ равенство sinx < x при x > 0. Чтобы доказать левое неравенство в (6), по ложим

$$f(x) = \sin x - x + \frac{x^3}{6}$$

Тогда имеем

$$g_1(x) = f'(x) = \cos x - 1 + \frac{x^2}{2},$$

 $g_2(x) = g'_2(x) = -\sin x + x.$

Так как sinx < x при x > 0 получим $g_2(x) > 0$ при x > 0. Тем самым функция $g_1(x)$ возрастает при x > 0. Но $g_1(x) = 0$ и, следовательно, $g_1(x) > 0$ при x > 0. Функция $g_1(x)$ является производной для функции f(x), для которой также f(0) = 0. Но при x > 0 имеем $g_1(x) > 0$, поэтому функция f(x) также возрастает и, следовательно, принимает только положительные значения, т.е. f(x) > 0 при x > 0, что и утверждалось.

Аналогично устанавливается правая часть неравенства (6), а также неравенства

$$1 - \frac{x^2}{2} < \cos x < 1 - \frac{x^2}{2} + \frac{x^4}{24}.$$

$$x > 0, \quad (7)$$

(Докажите их самостоятельно!)

Таблица 2

n	$q_n - \pi)/(\pi - p_n)$
3	3,78012440
6	2,27772383
12	2,06345553
24	2,01552959
48	2,00386204
96	2,00096424
192	2,00024098
384	2,0006024
768	2,0000150
1536	2,0000376
3072	2,0000094

Из неравенств (6) и (7) вытекают следующие приближенные формулы:

$$sin\frac{\pi}{n} \approx \frac{\pi}{n} - \frac{\pi^3}{6n^3}, cos\frac{\pi}{n} \ asymp1 - \frac{\pi^2}{2n^2}.$$

Следовательно,

$$\frac{(q_n - \pi)}{\pi - p_n} = 2 \cdot \left(1 - \frac{\pi^2}{2n^2}\right)^{-1}$$

Что и завершает доказательство соотношения (5), так как $\frac{\pi^2|}{2n^2}$ стремится к нулю при $n \to \infty$.

Равенство (5) позволяет сделать следующий качественный вывод:число π , находясь при любом $n \geq 3$ в интервале $(p_n, \frac{2}{3}p_n + \frac{1}{3}q_n)$, при всех достаточно больших значениях n ближе к правому концу этого интервала, чем к левому.

Формула Гюйгенса и её эффективность

Архимед использовал для вычисле-

ния числа π приближенную формулу

 $\pi = p, n \ge 3$. Гюйгенс в своей работе, получил другую приближенную формулу $\pi = \frac{2}{3}p_n + \frac{1}{2}q_n, n \ge 3$,т.е. взял в качестве приближения для числа π правую часть неравенства (1). Большую эффективность формулы Гюйгенса по сравнению с формулой Архимеда можно обнаружить непосвычислениями редственными микрокалькуляторе (см. табл. 1,3). Отметим, что провести такие вычисления увлекательная и непростая задача. Можно сравнить эффективность формулу Архимеда и Гюйгенса другим методом, не производя конкретных

вычислений для p_n и q_n . Можно ис-

пользовать так называемые априорные оценки для точности этих формул,

т.е. такие неравенства, которые позво-

Таблица 3

n	$\frac{2}{3}p_n + \frac{1}{2}q_n, n \ge 3$
3	3,464101615137
6	3,154700538379
12	3,142349130544
24	3,14639056219
48	3,14595540408
96	3,14159283380
192	3,141592664850
384	3,141592654293
768	3,141592653633
1536	3,141592653592
3072	3,141592653589