1 Overview (1) 대회 소개

대회 목표

- CT 데이터를 통해 신장, 신장암, 그 외 3가지를 완벽하게 분리하는 Segmentation 모델 개발

Kidney & Tumor Semantic Segmentation

Kidney : 초록색 영역Tumor : 빨간색 영역그 외 : 검정색 영역

1 Overview (2) 입력 데이터

입력값으로 제공된 데이터는 3D CT 데이터. 1 case는 총 64개의 영상 단면으로 구성되어 있음.

* shape: (64, 512, 512, 1)

INPUT

- train: 100 case (100*64 samples)

- test: 83 case (83*64 samples)

LABEL

- train: 100*64 samples

- test: 83 * 64 samples

2. Solution (1) 2nd Solution

[Model]

- UnetPlusPlus + EfficientNetB8
- 5 Fold with Group KFold by UserID
- Augmentation

2. Solution 2. (1) 2nd Solution

[Parameter]

Parameter	Best	Try
Optimizer	AdamP (learning rate : 1e-3)	Adam, AdamW, SGD
Scheduler	Polynomial Decay (1e-3 → 1e-6)	None, Cosine Annealing, Cosine Annealing with WarmUp Restar t
Epochs	30	10-100
Batch Size	3-6	1-9
Loss	Cross Entropy	Binary Cross Entropy, Only 1,2 CE
Metrics	Only 1,2 Dice Similarity Coefficient	0,1,2 Dice Similarity Coefficient
Saved	validation score 1,2 DSC Avera ge	

2. Solution 1. (1) 2nd Solution

[Inference]

Test 데이터를 추론 시 조금 더 유연한 예측을 할 수 있도록 probability threshold를 낮춤

Ex)

softmax output : [0.1, 0.6, 0.3]

threshold: 0.25 Prediction: 1,2

None, Kidney, Tumor 중 1개가 아닌 여러 class로 예측 할 수도 있기 때문에 Kidney와 Tumor가 겹치는 부분이 있을 수 있음. 10개 모델의 예측들을 soft ensemble하여 threshold를 적용한 결과를 최종 제출. (threshold=0.25)

[Two-Stage Coarse to Fine Architecture]

[Cropping 3D ROI and Resize]

- Due to the variant image scale in images taken from different CT machines,
 - we cropped 3D ROIs of left and right kidneys centered at binary segmentation results from the coarse network
 - then, we resized cropped kidney volumes to 160x160

[Multi-level Contrast Input]

- Due to the variant contrast range in images taken from different CT machines,
 - we generated multiple-level of contrast from each image and concatenated them
 - DICOM window level and width = (0, 1024), (0, 512), (0,256)
 - e.g. 160x160 -> 160x160x3

(0, 512)

(0, 256)

[Customized loss function]

- Our model did satisfying job for segmenting the kidney and tumor together
 - BUT, finding a right shape for tumor was challenging
 - Kidney pixels were dominant over tumor in CT images
- To address this issue, we introduced a customized loss function
 - Weighted categorical crossentropy + soft dice similarity loss
 - As applying more weight on tumor, the model acted more sensitively on the class during training
 - Weight factors:
 - Background : Kidney : Tumor = 1 : 1 : 1.5

[Training Details]

- Image Augmentation
 - HorizontalFlip, VerticalFlip, ShiftScaleRotate, Rotate, GaussNoise, RandomBrightnessContrast
- Epoch: 100
- Optimizer : Adam
- Learning Rate: 1e-3
- Activation Function : Softmax
- classes: 3
- All Training Image (No Validation)

Eb6_check_saved-model-092--0.02_160.csv

0.82213

0.82213

10 days ago by HappySuya

Eb6_check_saved-model-092--0.02_160.csv