Generative Models

Michał Stypułkowski

Organizational matters

Email: michal.stypulkowski@tooploox.com

Presence is mandatory. 4 absences are allowed.

You will work in pairs both on presentation and code. Main goal will be to reproduce model from the chosen paper.

What will you learn?

- Read and understand scientific publications
- Ability to transfer theoretical idea into code
- PyTorch
- Public presentation of your results

Generative models - what are they?

There are two main types of models in Machine Learning:

- **discriminative** model of the conditional probability of the target Y, given an observation x $\mathbb{P}(Y|X=x)$
- generative model of the conditional probability of the observable X, given a target y
 - $\mathbb{P}(X|Y=y)$

Cat

Not cat

Generative models - why do we need them?

Generative models - why do we need them?

What I cannot create, I do not understand.

- Richard Feynman

... and they are fun:)

Generating new images

Generating new images

Vector arithmetic for generated samples

Radford A., Metz L. et al., Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, https://arxiv.org/abs/1511.06484

High resolution samples

High resolution samples

Karras T. et al., A Style-Based Generator Architecture for Generative Adversarial Networks, https://arxiv.org/abs/1812.04948

Cartoon Characters

Jin Y. et al., Towards the Automatic Anime Characters Creation with Generative Adversarial Networks, https://arxiv.org/abs/1708.05509

Change of daytime

Sketches to photographs

Pictures translation

Zhu J., Park T. et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, https://arxiv.org/abs/1703.10593

Text to image synthesis

this small bird has a pink breast and crown, and black almost all black with a red primaries and secondaries.

the flower has petals that are bright pinkish purple with white stigma

this magnificent fellow is crest, and white cheek patch.

this white and yellow flower have thin white petals and a round yellow stamen

High-resolution Image Synthesis

Wang T. et al. High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs, https://arxiv.org/abs/1711.11585

GauGAN

Park T. et al. Semantic Image Synthesis with Spatially-Adaptive Normalization, https://arxiv.org/abs/1903.07291

Photos to Emojis

Taigman Y. et al. *Unsupervised Cross-Domain Image Generation*, https://arxiv.org/abs/1611.02200

Photo de-raining

Zhang H. et al. Image De-raining Using a Conditional Generative Adversarial Network, https://arxiv.org/abs/1701.05957

Face aging

Image inpainting

Pathak D. et al. Context Encoders: Feature Learning by Inpainting, https://arxiv.org/abs/1604.07379

Speech synthesis

https://nv-adlr.github.io/WaveGlow

Features disentanglement

Burgess C. et al. *Understanding disentangling in* β -VAE, https://arxiv.org/abs/1804.03599

Point clouds generation

Wu J., Zhang C. et al. Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling, https://arxiv.org/abs/1610.07584

Flows for point cloud generation

Interpolation between objects

Types of generative models

- 1. Classic
 - Gaussian mixture model
 - Hidden Markov model
 - Naive Bayes
- 2. Deep
 - Boltzmann machine
 - Autoregressive models (Pixel CNN/RNN)
 - Variational autoencoders (VAEs)
 - Generative adversarial networks (GANs)
 - Flow-based models

Naive Generation

Simplest generative model for ham or spam messages.

Given the dataset containing ham or spam SMS we are able to learn conditional distributions $\mathbb{P}(word|target)$ by counting occurrences of word in target-type SMS.

We can generate new text given desired target.

What is wrong with this approach?

References

https://en.wikipedia.org/wiki/Generative_model

https://openai.com/blog/generative-models/

What's next?

Date	Topic
08.10.2019	Intro
15.10.2019	Logistic Regression + NN
22.10.2019	PyTorch

Bring your laptops on 22.10.2019 (I'll let you know earlier if there is any computer room available).

Students' first presentation is planned on 05.11.2019.