Cloud Resource Management

Introduction

- 1. Cloud is multi-tenant by its very nature with QoS guarantees for different applications and different programming frameworks
 - Computational resources are CPUs, memory footprint, network bandwidth and latency and must be accounted for when scheduling resources
 - Look at state-of-the-art for managing cloud resources

Resource Management for the Cloud

- 1. Context and terminologies
 - Resources in the context of cloud applications
 - CPU
 - Memory footprint and effective memory access time
 - Storage (bandwidth, latency)
 - Network (bandwidth, latency)
 - Resource utilization
 - Percent time a resource is actively used
 - An application may use all or most of the resources
 - Begs the questions
 - Which resoure's utilization is more important?
 - Should we optimize for one or multiple resources' utilization?
 - Basics
 - CPU scheduling in traditional OS
 - * Focus on CPU utilization
 - * FCFS (first come first served), SJF (shortest job first), Round-robin, SRTF (shortest remaining time first), priority queues, multi-level priority queues...
 - Fairness
 - * User's perception of resource allocation policy
 - * e.g., round-robin gives a feeling of fairness if all processes are created equal; Each process gets 1/N processor resource, where N= number of processes
 - What if all processes are not created equal?
 - * "Fair sharing" takes into account priorities; you get what you pay for
 - Variants of fair sharing
 - Equal share
 - Max-min fairness
 - Weight max-min fairness
 - How do we extend "fair sharing" to the cloud?
 - Need to consider all the resources, not just CPU
 - Computations running in data centers are not all uniform
 - Data intensive workloads (health informatics)
 - Compute intensive workloads (ML algorithms)
 - Network intensive workloads (Netflix)

Fair Share Schedulers

- 1. Hadoop
 - Uses max-min scheduling
 - K-slots per machine (CPU + memory)
 - * A slot is a fraction of the machine's resources
 - A job may consist of a number of tasks
 - Assign one task per slot
 - Apply max-min fairness in mapping tasks to slots

- Could result in under-utilization of slot resources or over-utilization, e.g. memory thrashing
 - If a task needs 128 MB, it will lead to thrashing in the above example
 - If it only needs 32 MB then half the allocation is wasted
- 2. Dominant Resource Fairness (DRF)
 - Takes a holistic view of a machine's resources
 - Total resource of a machine: 10 CPUs and 4 GB
 - Task needs: 2 CPUs, 1 GB
 - * Dominant resource of task 1 is memory
 - * If task 1 is allocated a slot on this machine its "dominant resource share" is 25%
 - DRF uses max-min fairness to dominant shares
 - System: 9 CPUs + 18 GB
 - A: each task 1 CPU + 4 GB (dominant: memory)
 - B: each task 3 CPU + 1 GB (dominant: CPU)
 - Equalize allocation for A and B on dominant shares
 - * Each gets 2/3 of the dominant share

Mesos

- 1. Challenge for resource sharing in the cloud
 - Applications use a variety of frameworks
 - Map-reduce Dryad, Spark, Pregel
 - Apps written in different frameworks need to share the data center resources simultaneously
 - 1000s of nodes, hundreds of "jobs", each with millions of (small duration) tasks

- Need to maximize utilization while meeting Qos needs of the apps
- 2. Traditional approach to resource sharing
 - Static partitioning (cluster with 9 machines)
 - Each framework gets 3 machines
- 3. Optimal approach
 - Global schedule
 - Inputs: Requirements of frameworks, resource availability, policies (e.g., fair sharing)
 - Output: Global schedule for all the tasks
 - Not practical: Too complex
 - * Not scalable to the size of cluster and number of tasks
 - * Difficult to implement in the presence of failures
 - Mesos goal
 - Dynamic partitioning leading to high utilization
- 4. Mesos approach: Fine-grained resource sharing
 - A thin layer (a la micro-kernel) allocation module between the scheduler of the frameworks and the physical resources

- 5. Mesos: Resource offers
 - Make offers to the frameworks
 - Framework assigns tasks based on the offer
 - Framework can reject the offer if it does not meet its needs
 - Solution may not be optimal but resource management decisions can be at a fine grain and quick

Hadoop YARN

- 1. YARN: Yet Another Resource Navigator
 - Similar goal to Mesos
 - Resource sharing of the cluster for multiple frameworks
 - Mesos if "offer" based from allocation module to the application frameworks
 - YARN is "request" based from the frameworks to the resource manager
- 2. YARN background
 - Traditional Hadoop (open source implementation of map-reduce)
 - Job-tracker/Task-tracker organization
 - Poor cluster utilization
 - * Distinct map/reduce slots
- 3. YARN details
 - Client submits app to resource manager (RM)
 - RM launches application master (AM) in a container
 - AM registers with RM at boot-up, requests application containers (ACs) to RM
 - RM allocates ACs in concert with the node manager (NM)
 - AM contacts the NM to launch its ACs
 - Upon application completion, AM shuts down
 - YARN can implement different scheduling policies
 - FCFS, fair, capacity

Google Borg Resource Manager

- 1. Google's Resource Manager
 - Similar in spirit to Yahoo's YARN and Mesos

- Provide data center resources for a variety of applications, written in a variety of frameworks, running simultaneously
- 2. Borg terminologies
 - Cluster: A set of machines in a building
 - Site: Collections of buildings
 - Cell: A subset of machines in a single cluster
 - Unit of macro resource management
- 3. Borg priority bands
 - Production jobs
 - Higher priority jobs (e.g., long-running server jobs)
 - Non-production jobs
 - Most batch jobs (e.g., web crawler)
 - Production jobs higher priority
 - Non-overlapping "priority bands"
 - Monitoring, production, batch, best-effort
- 4. Borg architecture and scheduling
 - BorgMaster: Per cell resource manager
 - Borglet: Agent process per machine in cell
 - Scheduler
 - High-low priority jobs
 - Round robin within a band
 - Consults BorgMaster for resources
 - BorgMaster
 - * Feasibility checking
 - * Scoring
 - Tasks
 - * Run in containers

Google Borg

5. Kubernetes

- An open-source resource manager derived from Borg
 - Runs on Google cloud
 - Uses Docker containers
 - * Resource isolation
 - * Execution isolation

Mercury

- 1. Mercury background
 - Framework for integrated centralized and distributed scheduling
 - Centralized schedulers
 - Mesos, YARN, Borg
 - Pro: Simplifies cluster management via centralization
 - Con: Single choke point -> Scalability and latency concerns
 - Distributed schedulers
 - Independent scheduling decision making by jobs
 - * Allows jobs to directly place tasks at worker nodes -> less latency
 - Con
 - * Not globally optimal
- 2. Mercury insight
 - Combine virtues of both centralized and distributed
 - Resource guarantees of "centralized"
 - Latency for scheduling decisions of "distributed"

- Application choice
 - Trade performance guarantees of allocation latency
- 3. Mercury architecture
 - Central scheduler
 - Policies/guarantees
 - Slower decision making
 - Distributed scheduler
 - Fast/low-latency decisions
 - AM specifies resource type
 - Guaranteed containers
 - Queueable containers

Mercury

Conclusion

- 1. Cloud resource management technologies are not unique from what occurs in distributed systems
 - Scale at which these algorithms must operate and QoS requirements make building such software a non-trivial engineering exercise