What's a Minterm?

- Otherwise known as a standard product
- Possible AND combinations of n variables
- Example? For two variables a and b:

а	b	minterm	
0	0	a'b'	m _o
0	1	a'b	m ₁
1	0	ab'	m ₂
1	1	ab	m ₃

What's a Maxterm?

- Otherwise known as a standard sum
- Possible OR combinations of n variables
- Example? For two variables a and b:

а	b	Maxterm	
1	1	a' + b'	M ₃
1	0	a' + b	M ₂
0	1	a + b'	M ₁
0	0	a + b	Mo

Minterms & Functions

- Given a truth table, a function can be put into algebraic form by OR-ing all of the minterms that have a 1 in the result column
- Example? F = (ab') + (a'b)

а	b	minterm		F
0	0	a'b'	m _o	0
0	1	a'b	m ₁	1
1	0	ab'	m ₂	1
1	1	ab	m ₃	0

ANY Boolean function can expressed this way

Maxterms & Functions

- Given a truth table, a function can be put into algebraic form by AND-ing all of the maxterms that have a 0 in the result column
- Example? F = (a+b)(a'+b')

а	b	minterm		maxterm		F
0	0	a'b'	m _o	a+b	Mo	0
0	1	a'b	m ₁	a+b'	M ₁	1
1	0	ab'	m ₂	a'+b	M ₂	1
1	1	ab	m ₃	a'+b'	M ₃	0

ANY Boolean function can expressed this way

Canonical Form

- Boolean functions expressed algebraically as either...
 - A sum of minterms
 - A product of maxterms

Canonical Form -> Complements

- The Complement for Sum of Minterms is...
 - ...the sum of minterms missing from the original function
 - Two-variable example (4 minterms)?

$$F = \sum (0, 2)$$
 so $F' = \sum (1, 3)$

- Converting to a Product of Maxterms?
 - Remember that any minterm is the complement of its corresponding maxterm (e.g. $m_0' = M_0$)
 - So, using the example above:

$$F = \sum (0,2)$$
 so $F' = \sum (1,3)$ so $(F')' = \prod (1,3)$

Canonical Form - Examples

а	b	С	minterm		F
0	0	0	a'b'c'	m _o	0
0	0	1	a'b'c	m ₁	1
0	1	0	a'bc'	m ₂	0
0	1	1	a'bc	m ₃	0
1	0	0	ab'c'	m ₄	1
1	0	1	ab'c	m ₅	1
1	1	0	abc'	m ₆	0
1	1	1	abc	m ₇	0

Sum of Minterms?
$$F = m_1 + m_4 + m_5 = \sum (1, 4, 5)$$

Product of Maxterms?
$$F = M_0 \cdot M_2 \cdot M_3 \cdot M_6 \cdot M_7 = \prod (0,2,3,6,7)$$

Table 2.3 *Minterms and Maxterms for Three Binary Variables*

			Minterms		Maxte	erms
X	y	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

Table 2.4
Functions of Three Variables

X	y	z	Function f_1	Function f_2
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7$$

$$f_1' = x'y'z' + x'yz' + x'yz + xy'z + xyz'$$

$$f_1 = (x + y + z)(x + y' + z)(x' + y + z')(x' + y' + z)$$

$$= M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6$$

$$f_2 = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7$$

$$f_2 = (x + y + z)(x + y + z')(x + y' + z)(x' + y + z)$$

$$= M_0 M_1 M_2 M_4$$