1 Theory

We define $r = ||\mathbf{r} - \mathbf{r}'||$, and $\Delta n(\mathbf{r}) = n(\mathbf{r}) - n_0$, and n_0 the density (given in dft.in) of the homogeneous fluid of reference, e.g., 0.0332891 molecule per Å³ for water.

We also define $n(\mathbf{r}) = \int \rho(\mathbf{r}, \mathbf{\Omega}) d\mathbf{\Omega}$. We have

$$F_{exc} = -\frac{1}{2}k_BT \iint \Delta n\left(\mathbf{r}\right) \Delta n\left(\mathbf{r}'\right) c\left(r\right) d\mathbf{r} d\mathbf{r}', \qquad (1)$$

Now, we consider the convolution in the right hand side of the equation, $\gamma \equiv (\Delta n * c)$, that can be computed much efficiently than in $O(N^2)$ by fast Fourier transform in $O(N \log N)$.

2 Algo

Algorithm 1 energy nn cs.f90

Inputs:

- $\rho(\mathbf{r},\Omega)$
- $c_s(k)$, with $k \equiv ||\mathbf{k}||$
- functions to Fast Fourier Transform (FFT) and inverse Fast Fourier Transform (FFT $^{-1}$)
- n_0 , the density of the homogeneous fluid of reference
- \bullet T the temperature in Kelvin
- k_B the Boltzmann constant.

Output:

• F_{exc} , The part of the excess free energy that is due to the density-density coupling.

$$\Delta n(\mathbf{r}) \leftarrow \int \rho(\mathbf{r}, \mathbf{\Omega}) d\mathbf{\Omega} - n_0$$
 (2)

$$\hat{\Delta n} \leftarrow FFT \left[\Delta n \right] \tag{3}$$

$$\hat{\gamma} \leftarrow \hat{\Delta n} \cdot \hat{c} \tag{4}$$

$$\gamma \leftarrow FFT^{-1}[\hat{\gamma}] \tag{5}$$

$$F_{exc} \leftarrow -\frac{1}{2}k_BT \int \Delta n\left(\mathbf{r}\right) \cdot \gamma\left(\mathbf{r}\right) d\mathbf{r}$$
 (6)