KON 317 Otomatik Kontrol Sistemleri - Soru 2:

Bu soruya ilişkin cevabınızı ninova üzerinden yüklemek için toplam 30 dk süreniz vardır. Her cevap kağıdında isminizin ve imzanızın bulunması şarttır. Aşağıda belirtildiği şekliyle üreteceğiniz koda göre çözeceğiniz soru ve parametresi belirlenecektir. Kod üretirken hata yapmanız durumunda çözümünüz geçersiz sayılacaktır. Başarılar dilerim.

Dr. Sıddık Murat Yeşiloğlu

Öğrenci numaranızın son 3 hanesinden Z_1 ve Z_2 kodlarını üretmeniz gerekiyor.

$1 \le z_2 \le 2$ ise şu soruyu çözün:

Şekil 1'de yay sabiti K_L olan bir yayla tavana asılmış M_L kütleli blok dönel hareketi doğrusal harekete çeviren kramayer dişlisi üzerinden sabit uyarmalı ve fırçalı bir doğru akım motoru ile düşey yönde tahrik ediliyor. Kramayer dişlisinin dönel kısmını oluşturan bloğun yarıçapı $r_d=z_1$ metre olarak veriliyor. Girişi doğru akım motorunun giriş gerilimi $E_a(s)$ ve çıkışı bloğun düşey konumu X(s) olacak şekilde sistemin detaylı blok diyagramını çizin ve gerekli tüm işlemlerinizi açık olarak gösterin.

Şekil 1

$3 \le z_2 \le 4$ ise şu soruyu çözün:

Şekil 2'de yay sabiti K_L olan bir yaya bağlı eylemsizliği J_L ve taban yarıçapı r_L olan silindiri döndüren sabit uyarmalı ve fırçalı doğru akım motoru veriliyor. Silindire dolanmış olan ipin kütlesi ve kalınlığı ihmal edilecektir. Bu ipe bağlı olan bloğun kütlesi M_L olup düşey doğrultuda hareket ettirilmektedir. Silindirin yarıçapı $r_L=z_1$ metre olarak veriliyor. Girişi doğru akım motorunun giriş gerilimi $E_a(s)$ ve çıkışı bloğun düşey konumu X(s) olacak şekilde sistemin detaylı blok diyagramını çizin ve gerekli tüm işlemlerinizi açık olarak gösterin.

Şekil 2

$5 \le z_2 \le 6$ ise şu soruyu çözün:

Şekil 3'de eylemsizliği J_L olan silindiri bir dişli üzerinden döndüren sabit uyarmalı ve fırçalı doğru akım motoru veriliyor. Dişlinin çevirme oranı ü $=\frac{N_1}{N_2}=2z_1$ olarak veriliyor. Girişi doğru akım motorunun giriş gerilimi $E_a(s)$ ve çıkışı silindirin açısı $\theta_L(s)$ olacak şekilde sistemin detaylı blok diyagramını çizin ve gerekli tüm işlemlerinizi açık olarak gösterin.

Şekil 3

$7 \le z_2 \le 8$ ise şu soruyu çözün:

Şekil 4'de eylemsizlikleri J_1 ve J_2 olan iki silindirin dönüş açıları üçlü dişli üzerinden birbirine bağlanmıştır. İdeal olduğu varsayılan ve eylemsizlikleri ihmal edilen dişlilerin çevirme oranları ü $_{1,2}=\frac{N_1}{N_2}=2z_1$ ve ü $_{2,3}=\frac{N_2}{N_3}=3z_1$ olarak veriliyor. Sistemin girişi, J_1 eylemsizlikli bloğa uygulanan tork ve sistemin çıkışı da $\theta_2(s)$ olacak şekilde sistemin detaylı blok diyagramını çizin ve gerekli tüm işlemlerinizi açık olarak gösterin.

$9 \le z_2 \le 10$ ise şu soruyu çözün:

Şekil 5'deki sistemde parametreler şu şekilde veriliyor:

 $K_1 = K_2 = K_3 = z_1$ Newton/metre

 $B_1 = B_2 = B_3 = 2z_1$ Newton saniye/metre

 $M_1 = M_2 = M_3 = 3z_1 \text{Kg}$

Girişi F(s) kuvveti, ve çıkışı $X_3(s)$ konumu olacak şekilde sistemin detaylı blok diyagramını çizin ve gerekli tüm işlemlerinizi açık olarak gösterin.

Şekil 5