2009-MA-1-12

EE24BTECH11066 - YERRA AKHILESH

- 1) The dimension of the vector space $V = \{A = (a_{ij})_{n \times n} : a_{ij} \in \mathbb{C}, a_{ij} = -a_{ji}\}$ over the [2009-MA]
 - a) n^2

- b) $n^2 1$ c) $n^2 n$ d) $\frac{n^2}{2}$
- 2) The minimal polynomial associated with the matrix $\begin{pmatrix} 0 & 0 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$ is
 - a) $x^3 x^2 2x 3$

b) $x^3 - x^2 + 2x - 3$

- c) $x^3 x^2 3x 3$ d) $x^3 x^2 + 3x 3$
- 3) For the function $f(z) = \sin\left(\frac{1}{\cos\left(\frac{1}{z}\right)}\right)$, the point z = 0 is

[2009-MA]

1

a) a removable singularity

c) an essential singularity

b) a pole

- d) a non-isolated singularity
- 4) Let $f(z) = \sum_{n=0}^{15} z^n$ for $z \in \mathbb{C}$. If C : |z i| = 2 then $\oint_C \frac{f(z)}{(z-i)^1 5} =$ [2009-MA]
 - a) $2\pi i (1 + 15i)$ b) $2\pi i (1 15i)$ c) $4\pi i (1 + 15i)$

- d) $2\pi i$
- 5) For what values of α and β , the quadrature formula $\int_{1}^{1} f(x) dx \approx \alpha f(-1) + f(\beta)$ is exact for all polynomials of degree ≤ 1 ?

- a) $\alpha = 1, \beta = 1$ b) $\alpha = -1, \beta = 1$ c) $\alpha = 1, \beta = -1$ d) $\alpha = -1, \beta = -1$
- 6) Let $f:[0,4] \to \mathbb{R}$ be a three times continuously differential function. Then the value of f[1, 2, 3, 4] is [2009-MA]
 - a) $\frac{f''(\xi)}{3}$ for some $\xi \in (0,4)$ b) $\frac{f''(\xi)}{6}$ for some $\xi \in (0,4)$ c) $\frac{f'''(\xi)}{3}$ for some $\xi \in (0,4)$ d) $\frac{f'''(\xi)}{6}$ for some $\xi \in (0,4)$

- 7) Which one of the following is TRUE?

[2009-MA]

- a) Every linear programming problem has a feasible solution.
- b) If a linear programming problem has an optimal solution then it is unique.
- c) The union of two convex sets is necessarily convex.
- d) Extreme points of the disk $x^2 + y^2 \le 1$ are the points on the circle $x^2 + y^2 = 1$.

8) The dual of the linear programming problem:

[2009-MA]

Minimize $\mathbf{c}^{\mathrm{T}}\mathbf{x}$ subject to $A\mathbf{x} \ge b$ and $\mathbf{x} \ge 0$ is

- a) Maximize $\mathbf{b}^{\mathsf{T}}\mathbf{w}$ subject to $A^{\mathsf{T}}\mathbf{w} \ge c$ and $\mathbf{w} \ge 0$
- b) Maximize $\mathbf{b}^{\mathsf{T}}\mathbf{w}$ subject to $A^{\mathsf{T}}\mathbf{w} \leq c$ and $\mathbf{w} \geq 0$
- c) Maximize $\mathbf{b}^{\mathrm{T}}\mathbf{w}$ subject to $A^{\mathrm{T}}\mathbf{w} \leq c$ and \mathbf{w} is unrestricted
- d) Maximize $\mathbf{b}^{\mathrm{T}}\mathbf{w}$ subject to $A^{\mathrm{T}}\mathbf{w} \geq c$ and \mathbf{w} is unrestricted
- 9) The resolvent kernel for the integral equation $u(x) = F(x) + \int_{log2}^{x} e^{(t-x)}u(t) dt$ is [2009-MA]

a) $\cos(x-t)$ b) 1 c) $e^{(t-x)}$ d) $e^{2(t-x)}$

- 10) Consider the metrics $d_2(f,g) = \left(\int_a^b |f(t) g(t)|^2 dt\right)^{\frac{1}{2}}$ and $d_{\infty}(f,g) = \sup_{t \in [a,b]} |f(t) g(t)|$ on the space X = C[a,b] of all real valued continuous functions on [a,b]. Then which of the following is TRUE?
 - a) Both (X, d_2) and (X, d_{∞}) are complete.
 - b) (X, d_2) is complete but (X, d_{∞}) is NOT complete.
 - c) (X, d_{∞}) is complete but (X, d_2) is NOT complete.
 - d) Both (X, d_2) and (X, d_{∞}) are NOT complete.
- 11) A function $f: \mathbb{R} \to \mathbb{R}$ need NOT be Lebesgue measurable if [2009-MA]
 - a) f is monotone
 - b) $\{x \in \mathbb{R} : f(x) \ge \alpha\}$ is measurable for each $\alpha \in \mathbb{Q}$
 - c) $\{x \in \mathbb{R} : f(x) = \alpha\}$ is measurable for each $\alpha \in \mathbb{R}$
 - d) For each open set G in \mathbb{R} , $f^{-1}(G)$ is measurable
- 12) Let $\{e_n\}_{n=1}^{\infty}$ be an orthonormal sequence in a Hilbert space H and let $x \neq 0 \in H$. Then [2009-MA]
 - a) $\lim \langle x, e_n \rangle$ does not exist
 - b) $\lim_{x \to \infty} \langle x, e_n \rangle = ||x||$
 - c) $\lim_{n \to \infty} \langle x, e_n \rangle = 1$
 - d) $\lim_{x \to \infty} \langle x, e_n \rangle = 0$