From Static to dynamics

Faraday's discovery and the birth of electrical engineering

Orsted 1820 and Faraday 1921:

Discovery of the close connection between electricity and magnetism

- Current in a wire <u>creates</u> a <u>magnetic field</u> (compass deviation)
- Wire carrying current in a magnetic field manifests action reaction
- nvolves steady current

- Changing magnetic creates a changing electric field
- **Changing** electric field **creates** a changing magnetic field

Involves varying curren

Can be used to produce WORK

Magnetic field produces mechanical force

Application of Lorentz force

Electromagnetic Motor

Orsted 1820: Current in a wire creates magnetic field

Faraday 1821: Magnetic field **MAY** create an electric field ⇒ Generating thus a current in wire (2)

Nothing appears in wire (2)

No Current without \overrightarrow{E}

A varying current in wire (1)

A varying current $i_2(t)$ appears in wire (2)

Essential feature discovered by Faraday: Time changing processes

Is something missing in this figure? Yes: A second magnetic field is generated by wire (2)

Current induction: Lorentz force was not known to Faraday

 $\overrightarrow{v} = \text{mechanical velocity}$ Current induced by Lorentz force

Concept of motional emf

Why the galvanometer shows a current while it is far from the Lorentz force?

The electrons move by electric repulsion over long distances

First telegraph discovered by Gauss and Weber

Another way of Current induction discovered by Faraday

By shaking the magnet

Relativistic effect

- No current induction if magnet is static
- Current induced by change in magnetic field $\frac{\partial B}{\partial t}$

Concept of **non**motional *emf*

Again why the galvanometer shows a current while it is far from the Lorentz force?

There is a net integrated push around the complete circuit. This net push MUST come from an electric field which then leads to the repulsive push over long distance

Faraday's discovery: emf

Current induced by change in magnetic field

 $\frac{\partial B}{\partial t}$

The current noticed in the loop is due to motion of electrons

- A force has pushed the electrons ⇒
- An electric field has been generated by

From Feynman lecture (Volume II)

GALVANOMETER

1) We switch **ON** the battery

2) We switch **OFF** the battery

$$\vec{E}(t) \propto \frac{\partial \vec{B}(t)}{\partial t}$$

emf can be generated in a wire by:

- Moving mechanically the wire near a magnet or vice versa
- Changing current in a nearby wire

Faraday's rule: Is it the changing magnetic field or changing flux that matters?

$$\frac{\partial \vec{B}(t)}{\partial t} \longleftrightarrow \frac{\partial \Phi}{\partial t}$$

Area kept unchanged

$$\Phi = \int \vec{B} \cdot d\vec{A} = \int \mathbf{B}_{\perp} dA$$

Normal component of \vec{B} integrated over the whole area of the loop

emf: ONLY and ONLY IF the flux is changing with time

- Changing \vec{B}
- Changing \vec{A}
- Changing both \vec{A} and \vec{B}

Motor

The loop rotates due to **Lorentz force**

From Feynman lecture (Volume II)

Current **MUST** be reversed each half-turn otherwise the loop stops rotating

From steady to variable current $I \rightarrow i(t)$

the same line

Alternating current generator

The loop rotates **mechanically**

Induction of an emf: ElectroMotive Force

- Area of the loop is fixed
- The normal component of $\vec{B}(t)$ is changing

Changing flux $\Phi(t)$

Electric field generated in the wire Circulation of $\vec{E}(t)$ along the loop

Generation of an alternating current i(t) with frequency = frequency to the mechanical rotation

From Feynman lecture (Volume II)

Emf = rate of change of magnetic flux through the loop

What matters in the flux is the normal component of the field along the unit vector of the area

From
$$oldsymbol{\phi}_1$$
 to $oldsymbol{\phi}_3$

$$\frac{\partial \Phi}{\partial t} \to E(t) \to emf \to i(t)$$

Lenz's rule

- The induced emf creates a <u>current</u>
- This current generates a <u>magnetic field</u>
- This magnetic field tends to oppose the <u>original one</u>

From Feynman lecture (Volume II)

The polarity of the induced emf is **ALWAYS** such as to oppose the change of the flux of the original magnetic field

$$emf = -N\frac{d\Phi}{dt}$$
 $N = \#$ of turns $\Phi = \text{Flux of B through area A}$
Lenz's law

N = # of turns

Lenz's law

Caution! Here the arrows are reversed as it is the south pole of the magnet that is moving in and out

 \Rightarrow Flux increases \Rightarrow B increases by ΔB

The current generated by the emf goes in a direction such as to induce a magnetic field in the opposite direction

⇒ When the flux is decreased the emf is reversed

Towards time dependent Maxwell's equations

$$\vec{\nabla}.\vec{E}(t) = \frac{\rho(t)}{\varepsilon_0}$$

Gauss' law

$$\vec{\nabla}.\vec{B}(t) = 0$$

No magnetic charges

$$\vec{\nabla} \times \vec{E}(t) = -\frac{\partial \vec{B}(t)}{\partial t}$$

Faraday's law (\vec{E} is no longer conservative)

$$\vec{\nabla} \times \vec{B}(t) = \mu_0 \vec{J} + \frac{1}{c^2} \frac{\partial \vec{E}(t)}{\partial t}$$

Ampere's law completed by Maxwell

Faraday's law of induction

Relative motion induces current in the loop

There **MUST** be an induced electric field Along the loop

If no motion of the loop and magnet

- NO change of the flux
- NO electric force
- NO motion of the free charges
- NO current in the loop

Galvanometer

$$\oint \vec{E}_c \cdot d\vec{l} = 0$$

Faraday's law: electromotive force

Motional emf

$$\mathcal{E} = \oint (\vec{v} \times \vec{B}) \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

Non motional emf Faraday's law

$$\mathcal{E} = \oint \vec{E}_{nc} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

Non-electrostatic field

$$\oint \vec{E}_{nc} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

What is the link between these two relationships?

 $\vec{\nabla} \times \vec{E} = -\frac{\partial B}{\partial t}$

Integral form

Faraday's law

Differential form

$$\oint \vec{E}_{nc} \cdot d\vec{l} = -\frac{d\Phi_B}{dt} \qquad + \qquad \oint \vec{E}_c \cdot d\vec{l} = 0$$

$$\oint (\vec{E}_c + \vec{E}_{nc}) \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

$$\vec{E} \text{ (superposition principle)}$$

Gauss's theorem

$$-\frac{d\Phi_{B}}{dt} = -\frac{d}{dt} \iint \vec{B} \cdot d\vec{A} = -\iint \frac{d\vec{B}}{dt} \cdot d\vec{A}$$

$$\oint \vec{E} \cdot d\vec{l} = \iint (\vec{\nabla} \times \vec{E}) \cdot d\vec{A}$$

$$if \frac{\partial \vec{B}}{\partial t} = \vec{0} \Rightarrow \oint (\vec{E}_c + \vec{E}_{nc}) \cdot d\vec{l} = 0$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

True always

$$\vec{\nabla} \times \vec{E} = \vec{0}$$
 Electrostatic

The Heart of Faraday's law of induction

Motional emf

Non motional emf (if we can change B without moving a magnet nor changing the area)

B constant

Part of the circuit is moving $\Rightarrow \vec{v} \times \vec{B} \neq \vec{0}$ $A \text{ changes } \Rightarrow \frac{dA}{dt} = w \frac{dx}{dt}$

A constant

Circuit is immobile $\Rightarrow \vec{v} \times \vec{B} = \vec{0}$ $B \text{ changes } \Rightarrow \frac{dB}{dt} \rightarrow E(t) \rightarrow \vec{F} = q\vec{E}$

In both cases electrons move due to Coulomb force

Motional emf

An electric field is building up inside the conducting bar!

Equilibrium!

$$\vec{F}_B + \vec{F}_E = \vec{0}$$

Equilibrium

$$qvB = qE$$

$$E = vB$$

$$qvB = qE \qquad E = vB \qquad \varphi_{ab} = \varphi_a - \varphi_b = El$$

$$\varphi_{ab} = Blv$$

Motion Motional emf = Potential difference $\mathcal{E} = \varphi_{ab} = Blv$

$$\mathcal{E} = \boldsymbol{\varphi}_{ab} = \boldsymbol{Blv}$$

For **Motional** emf both \boldsymbol{B} and \boldsymbol{v} are required to get a potential difference

BUT a force \vec{F}_{Bx} opposing the motion of the <u>bar</u> is building-up

Work **MUST** be done against this force to keep the bar moving at constant velocity \vec{v}

Opposite force
$$\vec{F}_{Bx} = -quB\vec{\imath}$$

Work done per unit charge against this force must be

$$\frac{\Delta W}{q} = -\int_{x}^{x+\Delta x} -uB\vec{\imath}.\,dx\vec{\imath}$$

$$\frac{\Delta W}{q} = -\Delta \varphi = \varphi_{ab} = -\int_{x}^{x+\Delta x} -uBdx = uB\Delta x$$

$$\Delta x = v\Delta t$$

$$\Delta x = \frac{v\Delta l}{u}$$

$$\Delta l = u\Delta t$$

$$\Delta x = \frac{v\Delta l}{u}$$

$$\Delta x = \frac{v\Delta l}{u}$$

Motional emf found in slide # 22

This work is useless because the circuit is **not complete!**

The circuit is complete and the bar moves at constant velocity

The charges will **no longer accumulate** at the ends of the bar and a current is generated Counterclockwise: The motion of the charges in the circuit is due to coulomb repulsion

Question: Why putting a resistance R in the circuit?

Answer: To reduce the current to a minimum in order to avoid generating an important magnetic field which may then disturb the external one

Remember: In electrostatic the test charge must be weak enough to avoid perturbing the source

The circuit is complete and the bar moves at constant velocity

Moving rod = source of electromotive force

Faraday's law: electromotive force

The magnetic flux changes because the area of the circuit is changing

$$\Phi_B = \vec{B} \cdot \vec{A} = -Blx \qquad \qquad \frac{d\Phi_B}{dt} = \frac{d}{dt}(-Blx) = -Bl\frac{dx}{dt} \qquad \qquad \frac{d\Phi_B}{dt} = -Blv$$

$$\frac{d\Phi_B}{dt} < 0$$

The closed path for the charges is <u>aefb</u>

From slides # 17

$$\varepsilon = -\frac{d\Phi_B}{dt}$$

The magnetic field generated by the induced current opposes the original

The electromotive force

Conventional positive trigonometry orientation

Right hand rule

$$\vec{F}_{By} = q\vec{v} \times \vec{B} = qv\vec{i} \times B(-\vec{k})$$
$$= qvB\vec{j}$$

 $\vec{F}_B \parallel d\vec{l}$ along the moving rod

The only contribution is along the moving bar

$$\mathcal{E} = \oint \frac{\vec{F}_{By}}{q} \cdot d\vec{l} = \oint vB\vec{J} \cdot dy$$

Stationary closed conducting path (coil)

Genius conjecture of Faraday

Electromotive force for both motional and non motional case

$$\mathcal{E} = \oint (\vec{v} \times \vec{B}) . d\vec{l}$$

For motional electromotive force

$$\mathcal{E} = -\frac{d\boldsymbol{\Phi}_{\boldsymbol{B}}}{d\boldsymbol{t}} = \oint_{\Gamma} \vec{E}_{nc}.\,d\vec{l}$$

For non-motional electromotive force: Faraday's law

Lenz's law

Lenz's law and sign convention for emf

 \overrightarrow{B}_{ind}

Induced emf \Rightarrow induces current \Rightarrow induces $\overrightarrow{B}_{ind} \Rightarrow$ opposing the cause of the effect

dt

 $\overrightarrow{\textbf{\textit{B}}}$ increasing

$$\frac{d\Phi_B}{dt} < 0$$

 $\overrightarrow{\boldsymbol{B}}$ decreasing

$$\frac{d\Phi_B}{dt} > 0$$

Summarizing Faraday's law

$$\mathcal{E} = -\frac{d\Phi_B}{dt}$$

$$\oint \vec{E}_{nc} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

$$\oint (\vec{E}_c + \vec{E}_{nc}) \cdot d\vec{l} =$$

+ Gauss's theorem

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Varying magnetic field gives rise to an induced electric field

Maxwell

Remarkable symmetry of nature

Varying electric field field gives rise to an induced magnetic field

Varying electric field field gives rise to an induced magnetic field

$$\vec{\nabla} \times \vec{B}(t) = \mu_0 \vec{J}$$

Ampere's law

$$\vec{\nabla} \times \vec{B}(t) = \mu_0 \vec{J} + \frac{1}{c^2} \frac{\partial \vec{E}(t)}{\partial t}$$

Maxwell's law

The term that brings symmetry

Displacement current or how Maxwell saved Ampere's law

This is not a closed loop **BUT** a current **i(t)** flows in the circuit Clearly no electron is jumping from one plate to the other!

Displacement current or how Maxwell saved Ampere's paradoxical law

Disk crossed by the wire

No electron moving through the surface thus **NO** magnetic field ?

$$\oint \vec{B}(t).\,d\vec{l}=0$$

Disk **NOT** crossed by the wire

Cylinder open on the left hand side = Maxwell's surface.

The wire does not cross Maxwell's surface

3D open surface for Maxwell's law

Through Maxwell's surface a flux $\Phi_E(t)$ is building-up

$$Q(t) = CV(t) = \frac{\varepsilon_0 A}{d} E(t) d = \varepsilon_0 AE(t) = \varepsilon_0 \Phi_E(t)$$

d

$$i(t) = \frac{dQ(t)}{dt} = \varepsilon_0 \frac{d\Phi_E(t)}{dt}$$

$$i_D(t)$$

Maxwell's genius idea

$$i_D(t) = \varepsilon_0 \frac{d\Phi_E(t)}{dt}$$

Final step: Fourth Maxwell's equation

$$\oint \vec{B}(t) \cdot d\vec{l} = \mu_0 I_{encl} = \mu_0 [i_c(t) + i_D(t)]_{encl}$$

Continuity

$$i_D(t)=0$$

$$i_D(t) \neq 0$$

$$\vec{E}(t) = 0$$
 $\vec{E}(t) \neq 0$ $\vec{E}(t) = 0$

$$\vec{E}(t) = 0$$

What is the major outcome of Maxwell's contribution?

Time-varying field of either kind induces a field of the other kind in neighboring region

Waves

Towards the prediction of electromagnetic **disturbances** consisting of \vec{E} and \vec{B} and propagating in free space without requiring any medium

How did Maxwell's correct Ampere?

$$\vec{\nabla} \times \vec{B}(t) = \mu_0 \vec{J} + \left(\frac{1}{c^2} \frac{\partial \vec{E}(t)}{\partial t} \right)$$

Ampere's law ...

... completed by Maxwell

$$\oint \vec{B}(t) \cdot d\vec{l} = \mu_0 I_{encl} = \mu_0 [i_c(t) + i_D(t)]_{encl}$$

$$\oint \vec{B}(t) \cdot d\vec{l} - \mu_0 i_D(t)_{encl} = \mu_0 i_c(t)_{encl}$$

$$i_D(t) = \varepsilon_0 \frac{d\Phi_E(t)}{dt} \qquad \oint \vec{B}(t) \cdot d\vec{l} - \mu_0 \varepsilon_0 \frac{d\Phi_E(t)}{dt} = \mu_0 i_c(t)_{encl}$$

Stoke's theorem

+

Gauss's theorem

$$\oint \vec{B} \cdot d\vec{l} = \iint (\vec{\nabla} \times \vec{B}) \cdot d\vec{A}$$

$$\mu_0 \varepsilon_0 \frac{d\Phi_E}{dt} = \mu_0 \varepsilon_0 \frac{d}{dt} \iint \vec{E} \cdot d\vec{A} = \mu_0 \varepsilon_0 \iint \frac{d\vec{E}}{dt} \cdot d\vec{A}$$

$$\vec{\nabla} \times \vec{B} - \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t} = \mu_0 \vec{J}$$

This is all the story with Maxwell's equations

$$\vec{\nabla}.\vec{E}(t) = \frac{\rho(t)}{\varepsilon_0}$$

Gauss' law

$$\vec{\nabla}.\vec{B}(t) = 0$$

No magnetic charges

$$\vec{\nabla} \times \vec{E}(t) = -\frac{\partial \vec{B}(t)}{\partial t}$$

Faraday's law

$$\vec{\nabla} \times \vec{B}(t) = \mu_0 \vec{J} + \frac{1}{c^2} \frac{\partial \vec{E}(t)}{\partial t}$$

Ampere's law completed by Maxwell

In electric field, the stored energy is:

$$U = \frac{\varepsilon_0}{2} \int E^2 dV$$

$$\frac{\varepsilon_0}{2} E^2 = energy \ density$$
 All space

Slide #29 X_Lecture not given_Current resistance & Electromotive force

In a magnetic field, the stored energy stored:

$$U = \frac{1}{2\mu_0} \int B^2 dV$$

$$\frac{1}{2\mu_0} B^2 = energy \ density$$
 All space