

CNT803H-36G

GNSS 惯性组合导航定位接收机 V1.02 NOV, 2016

8/F., C1 BUILDING, NANSHAN SILICON VALLEY, SHENZHEN, CHINA WWW.SIMTEEK.COM

修订记录

版本号	修订记录	日期
Ver1.00	初建立	2016年8月
Ver1.01	语言切换至中文简体	2016年11月

免责声明

本文档提供有关深圳市西博泰科电子有限公司产品的信息。本文档并未以暗示、禁止反言或其他形式转让本公司或任何第三方的专利、商标、版权或所有权或其下的任何权利或许可。除西博泰科在其产品的销售条款和条件中声明的责任之外,本公司概不承担任何其它责任,并且,西博泰科对其产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。若不按手册要求连接或操作产生的问题,本公司免责。西博泰科可能随时对产品规格及产品描述作出修改,恕不另行通知。对于本公司产品可能包含某些设计缺陷或错误,一经发现将收入勘误表,并因此可能导致产品与已出版的规格有所差异。如客户索取,可提供最新的勘误表。

目录

1	产品介绍	4
	1.1 概述	4
	<i>1.2</i> 系统原理	5
2	技术指标	7
	2.1 电气特性极大值	7
	2.2运行条件	7
	2.3性能指标	8
	2.3 外形尺寸	9
	2.4接口	9
3	安装	. 11
4	使用说明	. 13
5	固件升级	. 15
6	包装和运输	.19

1 产品介绍

1.1 概述

CNT803H-36G是一款高性能的面向车载导航领域的车载组合导航系统,系统包含同时支持北斗、格洛纳斯和 GPS 的高性能卫星接收机芯片、三轴陀螺仪、三轴加速度传感器等组合导航元器件。 通过在线的自适应组合导航算法, CNT803H-36G 提供实时高精度的车辆定位、测速和测姿信息,在 GNSS 系统的信号精度降低甚至丢失卫星信号时,可不借助里程计信息,利用纯惯性导航技术,在较长时间内单独对汽车载体进行高精度定位、测速和测姿。

产品特点:

✓ 元件选型:高性能三轴陀螺仪和三轴加速度计;

✓ 误差补偿:完成正交误差/温度漂移等误差补偿;

✓ 唯一防盗:每个产品标定参数均不一致防盗版;

✓ 物理尺寸:紧凑模块化设计可节省用户产品空间;

✓ 通信协议:即插即用的标准通信协议 NEMA0183;

✓ 工程安装:无安装角度要求方便用户车载安装;

✓ 亚米级: 支持 RTCM2.3 协议 / 复杂环境亚米级导航;

产品优势:

✓ 陀螺漂移:消除陀螺漂移获高精度姿态航向信息;

✓ 加速噪声:消除震动加速度获高精度速度信息;

✓ 零速修正:零速修正算法可防止导航数据漂移;

✓ 软件算法:基于自适应的扩展卡尔曼滤波算法;

✓ 智能识别:识别并隔离有较大误差的 GNSS 数据;

✓ 摆脱里程计:利用纯惯性导航实现高精度定位;

✓ 导航技术:组合导航和纯惯导航技术自主切换;

CNT803H-36G采用防水,耐高温外壳,ROHS工艺,具备高性价比等特点,可广泛应用于车辆高精度导航、公交车智能交通、车辆远程监控等。

1.2系统原理

图 1-1 系统功能框图

卫星导航系统

卫星导航系统具有实现全球、全天候、高精度的导航等优点;但卫星导航系统容易收到周围环境的影响,例如树木楼房等,造成多路径效应,使得定位结果精度降低甚至丢失,尤其是在隧道等室内环境中,卫星导航系统基本无法使用。 另外,即使在空旷的环境下,当载体速度非常低时,卫星导航系统获得载体方位信息(航向角)也会产生较大误差。

惯性导航系统

惯性导航是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分, 且把它变换到导航坐标中,就能够得到在导航坐标中的速度、偏航角和位置等信息,同时可以获得载体 的载体信息。但惯性导航系统由于陀螺仪零点漂移严重,车辆震动等因素,致使无法通过直接积分加速 度获得高精度的方位和速度等信息,即现有的微惯性导航系统很难长时间独立工作。

组合导航系统

卫星/惯性组合导航充分利用惯性导航系统和卫星导航系统优点,基于最优估计算法 一卡尔曼滤波算法融合两种导航算法,获得最优的导航结果;尤其是当卫星导航系统无法工作时,利用惯性导航系统使得导航系统继续工作,保证导航系统的正常工作,提高了系统的稳定性和可靠性。 摆脱里程计,常规车载导航系统往往依靠里程计和陀螺仪的 DR 方案,实现汽车复杂环境下的高精度导航定位,里程计信号对于很多汽车后装市场而言,连接非常复杂,而且涉及汽车安全问题。经过多年的研发,在 GNSS 系统的信号精度降低甚至丢失卫星信号时, CNT803H-36G 系统完全摆脱了对里程计依赖,仅仅利用纯惯性导航技术,也可在较长时间内单独对汽车载体进行高精度定位、测速和测姿,与市场上现有的相关产品相比,性能得到了较大地提升。 当然, CNT803H-36G 系统可以连接里程计信号,将会获得更好的性能指标。

车辆姿态角

CNT803H-36G 导航系统利用多年对 MEMS 惯性器件的研究经验,通过自适应滤波算法实现了对陀螺仪漂移和加速度震动信号的滤波,并进一步可以获得高精度的姿态信息,从而可以满足坡道检测等车辆监控和导航应用的各种需求。

GI 导航系统

CNT803H-36G 导航系统提出了卫星导航精度的智能识别算法,基于组合导航提供的高精度导航信息,对卫星导航的定位精度进行识别,如果卫星导航精度较好,则进行组合导航,一旦发现卫星导航信号非常差甚至丢失信号,则进行纯惯性导航。CNT803H-36G 导航系统实现了组合导航和纯惯性导航的自主切换。

2 技术指标

2.1 电气特性极大值

参数	符号	最小值	最大值	单位
供电电压(VCC)	Vcc	-0.3	6.0	V
备份电池电压(VBAT)	Vbat	-0.3	3.6	٧
最大可承受 ESD 水平	VESD(HBM)		2000	٧
操作温度范围	Тор	-30	85	$^{\circ}$
存储温度范围	Tst	-40	125	$^{\circ}$

2.2运行条件

参数	符号	最小值	典型值	最大值	单位
供电电压	Vcc	3.3	5.0	5.5	V
VCC 峰值电流(不包括天线)	Ipeak			200	mA
捕获阶段电流均值*	laq		120		mA
跟踪阶段电流均值*	Itr		100		mA
备份电源	Vbat	1.5	3.0	3.6	V
备份电源(Vbat)电流	lbat		15		υA
上电至首个有效数据时间	Tva			30	秒

^{*} 电流供电不足时可能会导致系统数据不稳定,造成轨迹偏移。

2.3性能指标

里程计时

GNSS 信号丢失时间	接收机定位方式	水平位置	水平速度 1	俯仰横滚角 ¹	航向角 ¹
5 秒	标准定位	1.0-2.0m	0.05m/s	0.3deg	1.0
10 秒	标准定位	1.5-5.5m	N/A	N/A	N/A
30 秒	标准定位	3.0m	N/A	N/A	N/A
60 秒	标准定位	5.0m	0.30m/s	0.4deg	1.0deg

无里程计时

GNSS 信号丢失时间	接收机定位方式	水平位置	水平速度	俯仰横滚角 ¹	航向角 ¹
5 秒	标准定位	2.0-3.5m	0.05m/s	0.5deg	1.0
10 秒	标准定位	10.0m	N/A	N/A	N/A
60 秒	标准定位	25.0m	N/A	N/A	N/A
120	标准定位	60.0m	0.5m/s	1.0deg	2.0deg

^{1.} 一倍标准差(1σ)

GNSS 性能

参数	指标
接收机类型	72 通道 ublox M8 引擎
	GPSL1C/A
	GLONASSL1OF
	BeiDouB1
TTFF	冷启: 27s
	温启: 3s
	热启: 1s
	辅助启动: 5s
灵敏度	跟踪定位: -167dBm
	重捕获: -160dBm
	冷启动: -148dBm
	温启动: -148dBm
	热启动: -156dBm
水平定位精度	自主定位: 2.5m
	SBAS: 2.0m
	地面差分站: <=1.0m
授时精度	RMS: 30ns
	99%: 60ns
速度精度	0.05m/s
航向精度	0.3degrees

操作限制	动态<=4g
	高度<=50,000m
	速度<=500m/s

2.3外形尺寸

表 2-1 外形尺寸

2.4接口

CNT803H-36G 提供多种常见硬件接口,可以支持 TTL、RS232、USB 协议输出,可按实际需求定制。

图 3-2 内置电平转换示意图

常见的接口如下:

1	VCC	Р	RED	Power Supply Voltage (Typ. 5.0V)
2	TXD	0	WHITE	Serial TX Port (GPS to Host)

3	RXD	I	GREEN	Serial RX Port (Host to GPS)
4	GND	G	BLACK	Ground

1. 宝马线插头, TTL 电平

2. 3.5MM 耳机插头, TTL 电平

- 3. MX 插头, RS232 电平
- 4. USB-type A, USB 协议
- 5. Micro-USB, USB协议

3 安装

3.1 坐标系

坐标系如图 5 所示, XYZ(前侧上)轴满足右手定则。

图 4-1 CNT803H-36G 坐标系

3.2 安装方位

CNT803H-36G 安装方式大致如图 4-1 所示,为方便用户车辆安装,没有严格安装角度限制,大致如此即可,即: "前"方向为车辆行驶方向。必须使用底部 3M 胶紧密贴合车体。

CNT803H-36G 系统作为一款高性能的车载组合导航系统,在使用过程中,需要特别注意组合导航系统初始化过程,**建议车辆首先在无遮挡的环境下行驶大约五分钟,然后再进入有遮挡环境下,组合导航系统的定位效果才会好。**

3.3 注意事项

安装准备工作

序号	准备工作	重要性
1	上电前,大致按着图 4-1 安装,无具体安装角度要求;	必须
2	上电前,固定车体和 CNT803H-36G;	必须
3	上电后,不能再移动 CNT803H-36G;	必须
4	车体移动前,确保用户 GPS/BDS/GNSS 系统输出规定的协议	必须

系统初始化

序号	组合导航初始化过程	重要性
1	上电后,静止 10 秒以上,完成导航系统的姿态初始化;	必须
2	汽车移动后,尽量保持 CNT803H-36G 导航系统在空旷的地方行驶一定时间,进行组合导航系统的算法收敛,然后在进入隧道等 复杂环境下进行使用。	尽可能

4 使用说明

5.1 传感标定

由于芯片制造工艺等问题,每个 CNT803H-36G 的各个传感器元件(三轴陀螺仪、三轴加速度计)的零点、灵敏度和温漂等参数都不一样,为了使每个 CNT803H-36G 达到相同的性能指标,出厂前已经对 CNT803H-36G 的各个传感器元件进行了各种误差补偿。·

每个产品的传感器元件标定参数均不一样,如果采用相同的参数,将会造成较大的导航误差,这种唯一性可用于防止了系统盗版,从而提高了用户产品的可靠性。

4.2 诵信接口

CNT803H-36G 系统提供了串口通信,采用 8 位数据位、0 位奇偶校验位,1 位停止位(8-N-1)方式,波特率默认为 9600,可根据用户要求,修改成任何常见波特率。

4.3 通信频率

目前,系统支持输出 1hz 和 5hz 的数据刷新频率,默认频率为 1HZ。

4.4 通信协议

目前,CNT803H-36G 系统输出常见的 NMEA0183 协议,例如: GPGGA、GPRMC,另外,为了输出汽车姿态信息,CNT803H-36G 系统定义了一组通信协议 GPATT。惯导算法由战略合作伙伴"上海航姿测控科技有限公司"提供。推荐使用上海谦逊位置"千寻跬步(FindM)-亚米级高精度定位服务"。

4.5 控制命令

支持通过控制命令实现如下功能:

类型	类型属性	通信协议	默认值	备注
1	log ghigh	实现 5HZ 输出		结果请见输出协议
2	log gpins	使能惯性导航	默认使能	结果请见协议 GPATT
3	log gpgsv	打开		结果请见输出协议
		GPGSV,GPGSA		
4	log g9600	选择 9600	默认 9600	结果请见输出协议

5	log g1152	选择 115200		结果请见输出协议
6	unlog ghigh	实现 1HZ 输出	默认 1HZ	结果请见输出协议
7	unlog gpins	关闭惯性导航		详情请见 GPATT
8	unlog gpgsv	关闭	默认关闭	结果请见输出协议
		GPGSV,GPGSA		

备注:

- (1) 命令全部为小写字母;
- (2) log和 unlog后面有一个空格键。

5 固件升级

为了方便用户使用, CNT803H-36G 支持串口升级固件功能, 具体步骤如下:

5.1WINXP 系统

1、WINXP 系统自带超级终端软件,设置超级终端参数如下图所示:

2、在超级终端设置后,通过键盘输入字符'UPSOFT',进入固件升级菜单,如下图所示:

3、通过键盘输入字符'1',进入固件升级流程,在超级终端菜单中选择"发送文件",并在文件名里面选择待升级固件 bin 文件,在协议栏里面选择 YMODEM,然后点击发送(在升级完毕前请保持电源),过程下图

所示:

发送文件

下载

4、当显示 "ProgrammingCompletedSuccessfully!" 字样时,固件升级成功。

5.2WIN7 系统

Win7系统没有超级终端软件,以下提供了sourceCRT软件进行升级,升级过程和超级终端类似。

1、设置 sourceCRT 通信参数如图所示:

2、sourceCRT设置后,通过键盘输入字符'UPSOFT',进入固件升级菜单,如图所示:

3、通过键盘输入字符'1',进入固件升级流程,在菜单中选择"传输",并在文件名里面选择待升级固件

bin 文件,在协议栏里面选择"发生 YMODEM",然后点击"确定"(在升级完毕前保持电源),过程如图所示:

4、当显示 "ProgrammingCompletedSuccessfully!" 字样时,固件升级成功。

6 包装和运输

CNT803H-36G 采用自封口塑料包装袋单独包装,每 50PCS 一组,外箱 MOQ=300PCS。CNT803H-36G 模块为静电敏感产品,使用时需要特别注意静电防护。

ESD CAUTION

附录:

1 GPGGA

例如: \$GPGGA,062938.00,3110.4700719,N,12123.2657056,E,1,25,0.6,58.9666,M,0.000,M,99,AAAA*50

编号	名称	描述	符号	举例
1	\$GPGGA	Logheader		\$GPGGA
2	utc	UTC 时间(时/分/秒)	hhmmss.ss	202134.00
3	lat	纬度: -90~90度	1111.111111	3110.4693903
4	latdir	纬度方向: N: 北; S: 南	а	N
5	lon	经度: -180~180度	ууууу.уууууу	12123.2621695
6	londir	经度方向: E: 东; W: 西	b	W
7	QF	解状态 0: 无效解; 1: 单点定位解;	q	4
		2: 伪距差分;	-1	
8	satNo.	卫星数	n	14
9	hdop	水平 DOP 值	X.X	1.0
10	alt	高程	h.h	50.22
11	a-units	高程单位	М	М
14	age	差分延迟	dd	1
15	stnID	基站号: 0000-1023, 单机时: AAAA	XXXX	1
16	*XX	Checksum	*hh	
17	[CR][LF]	Sentenceterminator		[CR][LF]

2 GPRMC

例如: \$GNRMC,064401.65,A,3110.4706987,N,12123.2653375,E,0.604,243.2,300713,0.0,W,A*3E

编号	名称	描述	符号	举例
1	\$GPRMC	Log header		\$GPRMC
2	utc	UTC 时间 (时/分/秒)	hhmmss.ss	143550.00
3	Posstatus	解状态: A=有效定位 V=无效定位	A	Α
4	lat	纬度: -90~90 度	1111.111111	3110.4854911
5	latdir	纬度方向: N: 北; S: 南	а	Ν
6	lon	经度: -180~180度	ууууу.ууууууу	12123.9129278
7	londir	经度方向: E: 东; W: 西	р	Е
8	SPEEDIN	地面速率	q	0.29
9	TrackTure	地面航向角	n	108.5
10	Date	UTC 日期	ddmmyy	010909
11	Magvar	磁偏角 (000.0~180.0 度,前导位数不 足则补 0)	0.0	0.0
12	Vardir	磁偏角方向,E(东)或 W(西)	М	М
13	Modeind	模式指示(仅 NMEA0183 3.00 版本输 出,A=自主定位,D=差分,E=估算, N=数据无效)	а	Α
14	*xx	Checksum	*hh	*57
15	[CR][LF]	Sentence terminator		[CR][LF]

3 GPATT

例如: \$GPATT,1.34,p,2.56,r,123.45,y,01*02

编号	名称	描述	符号	举例
1	\$GPATT	Log header		\$GPATT
2	Pitch	俯仰角	ddd.mm	1.34
3	Angle Channel	P:俯仰,r:横滚,y:偏航	Р	p
4	Roll	横滚角	ddd.mm	2.56
5	Angle Channel	P:俯仰,r:横滚,y:偏航	A	r
6	Yaw	偏航角	ddd.mm	132.45
7	Angle Channel	P:俯仰,r:横滚,y:偏航		У
8	State_Flag	算法状态标志	d	详情请见下表 A
9	*xx	Checksum	*hh	*57
10	[CR][LF]	Sentence terminator		[CR][LF]

4State_Flag 各位物理含义说明

位	描述	所需条件
0	准备初始化	系统上电
1	姿态初始化完毕	车静止 5-108,
2	位置速度初始完毕	
3	方向角初始完毕	(1) 车速超过 5m/s
		(2) 卫星为精确解
4	组合导航算法收敛完毕	车辆运动大约 60s 内完成,系统算法收敛。