二維點位公差與製程能力

Two-dimensional position tolerances and Process Capability

來新陽¹ 陳文魁 Wen-kuei Chen² 蔡祥智³ ¹中華台北品質學會品研會主任委員²³研究員

摘要

於 ISO 22514-6 第六篇,它的焦點主題是:「多維常態分配之製程能力的統計」。於幾何特性譬如洞孔中心,對洞心位置律定公差,它涉及的產品量測問題需要智能計算。洞心規格帶來傳統紅利型矩形公差帶;從百件產品之量測結果,可以獲得等量機率之橢圓。此際,沒有求取橢圓公差帶之內極限等機率橢圓的算程,智能量測就得止步。本文將以實例,探討常態分配下製程能力高效率演算法之開發,及其背後所需之統計理論。因此,我們可以正式走入 Q4.0 了。

英文關鍵詞: multivariate normal distribution, two-dimensional position tolerances, elliptic tolerance zone, probability contours, Process Capability

中文關鍵詞:多變量常態分配、二維位置公差、橢圓公差區域、等機率曲線、製程能力

日期: 2021 年 10 月 10 日

1.0 序言 Introduction

ISO 於 2013 年發布 ISO 22514-6 第一版,第六篇的焦點主題是:「多維常態分配之製程能力的統計」。於幾何特性譬如洞孔中心,對洞心位置律定公差,它涉及的產品量測問題需要智能計算。洞心規格帶來傳統紅利型矩形公差帶;從百件產品之量測結果,可以獲得等量機率之橢圓。此際,沒有求取橢圓公差帶之內極限等機率橢圓的算程,智能量測就得止步。當然,它將衍生出製程能力之解析無以為繼。

2.0 常態分配 Normal Distriburion

2.1 單維常態家族

任一單維常態母體 $N(\mu,\sigma^2)$ 都懷具兩項母數,平均數 μ 及變異數 σ^2 ,其隨機變數 \tilde{x} 之機率密度函數 f(x)是如下式所示。

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left[\frac{x-\mu}{\sigma}\right]^2}, -\infty < x < +\infty$$

注意,以平均數 μ 為中心,距離c個標準差 σ 之範圍 $\mu \pm c\sigma$ 內決定機率密度曲線所圍面積的大小,示如下圖深綠色區域;換言之,常態機率密度曲線在 $\mu\pm1.96\sigma$ 位數範圍之面積達到0.95。

2.1.1 一般單維常態變數 $\tilde{x} \sim N(\mu, \sigma^2)$

一般單維常態變數具有兩項母數 μ 及 σ 。經由公式 $\tilde{z}=(\tilde{x}-\mu)/\sigma$,吾人可以將一般單維常態變數 \tilde{x} 轉換至標準單維常態變數 $\tilde{z}\sim N(0,1^2)$ 。

2.1.2 標準單維常態變數 *z̃~N*(0,1²)

標準單維常態變數 \tilde{z} 的兩項母數特定是 $\mu=0$ 及 $\sigma=1$,所以它是單維常態變數的特例,其機率密度函數是 $f(z)=e^{-\frac{1}{2}z^2}/\sqrt{2\pi}$;注意,吾人常將標準常態變數的機率密度和累積機率函數分別記作 $\phi(z)$ 和 $\Phi(z)$ 。另外,經由 $\tilde{x}=\mu+\sigma\tilde{z}$,可以將標準單維常態變數轉換成一般單維常態變數 $\tilde{x}\sim N(\mu,\sigma^2)$ 。

2.1.3 單維卡方 $\tilde{z}^2 \sim \chi_1^2$

若 \tilde{z} 是標準單維常態變數,則其平方 \tilde{z}^2 是單自由度的卡方變數。若 \tilde{x} 是單維常態變數,則其標準 化數值之平方 $[(\tilde{x}-\mu)/\sigma]^2$ 亦是單自由度的卡方變數。單自由度卡方變數的機率密度是 $f(u)=u^{-1/2}e^{-u/2}/\sqrt{2\pi}$,式中變數 u>0。當右尾機率達 0.05 時,對應的卡方位值是 3.84,亦即 $\chi^2_{0.05}=3.84$;換言之, $z^2\leq 3.84$ 的機率達 0.95;此際, $(x-\mu)\sigma^{-2}(x-\mu)>3.84$ 。由於 3.84 的平方根是 1.96,故知一般常態變數之數值落入範圍 $\mu-1.96\sigma\leq x\leq \mu+1.96\sigma$ 的機率達 0.95。

2.1.4 單維常態亂數 ũ ∈ [0,1]

如下圖所示,製造齊一亂數 $\tilde{u} \in [0,1]$ 後,若將 u 視作常態左尾累積機率 $\sigma(z)$,則吾人可以利用反函數 $\sigma^{-1}(u)$ 來求取齊一分配的位數 z,並且將它視為單維的標準常態亂數;Excel 提供函數 RAND()可造[0,1]範圍的齊一亂數,故知利用聯合函數 NORMSINV (RAND()),吾人能夠逕自製造單維的標準常態亂數 z。然後,經由轉換公式 $x = \mu + \sigma z$,吾人可以製造一般的單維常態亂數 $\tilde{x} \in N(\mu, \sigma^2)$;惟在Excel 中,只要利用聯合函數 NORMINV(RAND(), μ , σ),吾人就能逕直製造它們。

2.1.5 利用卡方製造單維常態亂數

製造自由度為 1 的卡方亂數 $\chi^2\alpha$,取其平方根 $\chi\alpha$,再乘上 $\{+1,-1\}$ 的亂數,它就是一項標準單維常態 亂數。將齊一亂數 $\tilde{u} \in [0,1]$ 視作卡方右尾累積機率 F(u),逆算自由度 1 的卡方位數 $\alpha = F^{-1}(u)$,該值 之平方根是正值的標準單維常態亂數。於 Excel,利用聯合函數 (IF(RAND() > 0.5, +1 ,-1)) * SQRT(CHIINV(RAND(), 1)),吾人能夠製造單維標準常態亂數。另外,利用公式 $\mu + \sigma$ * (IF(RAND() > 0.5, +1, -1))*SQRT(CHIINV(RAND(), 1)),吾人能夠製造一般單維常態亂數。

2.2 二維常態家族

任何二維常態母體 $N\left([\mu_1,\mu_2],\begin{bmatrix}\sigma_1^2&\sigma_{12}\\\sigma_{21}&\sigma_2^2\end{bmatrix}\right)$ 都懷具五項母數,平均數 μ_1 和 μ_2 、變異數 σ_1^2 、 σ_2^2 及共變 異數 σ_{12} 或 σ_{21} 等;注意,此際 $\sigma_{12}=\sigma_{21}$ 。令共變矩陣 $\mathbf{\mathcal{L}}=\begin{bmatrix}\sigma_1^2&\sigma_{12}\\\sigma_{21}&\sigma_2^2\end{bmatrix}$,二維常態 $\tilde{\mathbf{\mathcal{X}}}=(x_1,x_2)$ 的機率密度 函數 $f(\tilde{\mathbf{\mathcal{X}}})$ 可以示如下式。

$$f(\tilde{\mathbf{x}}) = \frac{1}{2\pi\sqrt{|\dot{\mathbf{z}}|}} e^{-\frac{1}{2}[x_1 - \mu_1, x_2 - \mu_2]\dot{\mathbf{z}}^{-1}\begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}}$$

由於行列值 $|\mathbf{\acute{\Sigma}}| = (1-\rho^2)\sigma_1^2\sigma_2^2$,故知共變異反矩陣 $\mathbf{\acute{\Sigma}}^{-1} = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{bmatrix}^{-1} = \frac{1}{1-\rho^2} \begin{pmatrix} \sigma_1^{-2} & -\rho/\sigma_1\sigma_2 \\ -\rho/\sigma_1\sigma_2 & \sigma_1^{-2} \end{pmatrix}$ 。 如下圖所示常態機率密度曲面,其任一水平切面都是以平均數 $[\mu_1,\mu_2]$ 為中心的乙式橢圓,位於橢圓之上的任何圖點都具有相同大小的機率密度。換言之,二維常態機率曲面的任一水平橢圓切面,橢圓上的諸多圖點與平均中心的馬氏距離 $(\mathbf{x} - \boldsymbol{\mu})\mathbf{\acute{\Sigma}}^{-1}(\mathbf{x} - \boldsymbol{\mu})$,都是相同的。

給予一項馬氏距離 χ^2 _α,即可在常態曲面上獲得對應的切面橢圓,該曲面之下的投影體積當然都不會大於 1.0。如下圖所示,指定切面橢圓的投影之外的體積 χ^2 _α,計算對應的馬氏距離後,可以獲得攸關的切面橢圓。如以代數式表達,二維常態變數的機率密度函數是如下所示。

$$f(\tilde{\mathbf{x}}) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x_1-\mu_1}{\sigma_1}\right)^2 - 2\rho \times \frac{x_1-\mu_1}{\sigma_1} \times \frac{x_2-\mu_2}{\sigma_2} + \left(\frac{x_2-\mu_2}{\sigma_2}\right)^2\right]}$$

換言之,具有相同馬氏距離 $\left(\frac{x_1-\mu_1}{\sigma_1}\right)^2-2\rho\times\frac{x_1-\mu_1}{\sigma_1}\times\frac{x_2-\mu_2}{\sigma_2}+\left(\frac{x_2-\mu_2}{\sigma_2}\right)^2=(1-\rho^2)\chi^2$ 之諸點會構成常態曲面的一片水平切面。

2.2.1 標準獨立二維常態 $N([0\ 0], \begin{bmatrix} 1\ 0 \\ 0\ 1 \end{bmatrix})$

當乙組二維隨機變數 $Z=(\tilde{z}_1,\tilde{z}_2)$ 的成分是相互獨立的標準常態變數時,標準差 $\sigma_1=\sigma_2=1$,相關係數 $\rho_{12}=0$,這兩項變數的聯合機率是 $f(\tilde{z})=f(\tilde{z}_1)$ $f(\tilde{z}_2)=e^{-\frac{1}{2}[z_1^2+z_2^2]}/2\pi$ 。該聯合機率密度的水平切面是正圓,當切圓之半徑是 χ^2_{α} 時,其正圓方程式是 $Z_1^2+Z_2^2=\chi^2_{\alpha}$ 。

2.2.2 原點獨立二維常態 $N\left([0\ 0], \begin{bmatrix} \sigma_1^2 \ 0 \\ 0 \ \sigma_2^2 \end{bmatrix}\right)$

當懷有平均數 $\mu_1 = \mu_2 = 0$ 之乙組二維常態變數 $\tilde{x} = (x,y)$ 的成分是相互獨立的一般常態變數時,這兩項變數的聯合機率是 $f(\tilde{x}) = f(x) \cdot f(y) = e^{\frac{-1}{2}(x^2/\sigma_1^2 + y^2/\sigma_2^2)}/2\pi\sigma_1\sigma_2$,兩標準差是 σ_1 和 σ_2 ,相關係數 σ_2 0。當 $\sigma_1 > \sigma_2$ 時,該機率密度的切面圖形是正軸橢圓,其方程式是 σ_2 0。當 σ_3 0,而半長軸和半短軸之長度分別是 σ_3 0,以 σ_3 0,當 σ_3 0,圖形是半徑長度達 σ_3 0,可正圓。

其實,當 $\sigma_1 \neq \sigma_2$ 時, $\begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}^{-1} \begin{bmatrix} u \\ v \end{bmatrix} = \chi_{\alpha}^2$ 是正軸橢圓的矩陣形式。若設 $\lambda_1 = \sigma_1^2$ 和 $\lambda_2 = \sigma_2^2$,則 $\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}^{-1} \begin{bmatrix} x \\ y \end{bmatrix} = \chi_{\alpha}^2$,或者 $\mathbf{x} \mathbf{\Lambda}^{-1} \mathbf{x}' = \mathbf{x} \sqrt{\mathbf{\Lambda}}^{-1} \cdot \sqrt{\mathbf{\Lambda}}^{-1} \mathbf{x}' = \chi_{\alpha}^2$,該正軸橢圓的半長軸和半短軸之長度分別 是 $\chi_{\alpha} \sqrt{\lambda_1}$ 和 $\chi_{\alpha} \sqrt{\lambda_2}$;亦即, $\begin{bmatrix} \frac{x}{\sqrt{\lambda_1}}, \frac{y}{\sqrt{\lambda_2}} \end{bmatrix} \begin{bmatrix} \frac{x}{\sqrt{\lambda_1}}, \frac{y}{\sqrt{\lambda_2}} \end{bmatrix}' = \chi_{\alpha}^2$ 。

2.2.3 原點二維常態變數 $N\left(\begin{bmatrix}0 & 0\end{bmatrix},\begin{bmatrix}\sigma_1^2 & \sigma_{12}\\\sigma_{21} & \sigma_2^2\end{bmatrix}\right)$

當懷具平均數 $\mu_1 = \mu_2 = 0$ 的乙組二維隨機變數 $\tilde{\mathbf{x}} = (x_1, x_2)$ 的成分是非獨立常態變數時,它們的聯合機率是 $f(\tilde{\mathbf{x}}) = e^{\frac{-1}{2(1-\rho^2)}(x_1^2/\sigma_1^2 - 2\rho x_1 x_2/\sigma_1 \sigma_2 + x_2^2/\sigma_2^2)}/2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}$,兩標準差是 σ_1 和 σ_2 ,相關係數是 $\rho_{12} \neq 0$ 。此際,機率密度的切面圖形是斜軸橢圓;其實,斜軸橢圓的矩陣形式是 $[x_1 \ x_2]$ \mathbf{z}^{-1} $\begin{bmatrix} x_1 \ x_2 \end{bmatrix} = \chi_{\alpha}^2$,式中共變矩陣 $\mathbf{z} = \begin{bmatrix} \sigma_1^2 \ \sigma_{12} \ \sigma_{21} \ \sigma_2^2 \end{bmatrix}$ 。

2.2.4 一般二維常態變數 $N\left(\left[\mu_1 \ \mu_2\right], \begin{bmatrix} \sigma_1^2 \ \sigma_{12} \\ \sigma_{21} \ \sigma_2^2 \end{bmatrix}\right)$

當懷具平均數 μ_1 和 μ_2 的乙組二維隨機變數 $\tilde{\mathbf{X}} = (x_1, x_2)$ 的成分是非獨立常態變數時,這兩項變數的聯合機率是 $f(\tilde{\mathbf{X}}) = e^{\frac{-1}{2(1-\rho^2)}\left(\left[\frac{x_1-\mu_1}{\sigma_1}\right]^2-2\rho\frac{x_1-\mu_1x_2-\mu_2}{\sigma_1}+\left[\frac{x_2-\mu_2}{\sigma_2}\right]^2\right)}/2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}$,兩項標準差是 σ_1 和 σ_2 ,相關係數是 $\rho_{12} \neq 0$; $(x_1-\mu_1, x_2-\mu_2)$ 之一 $x_1-\mu_1 = x_2$ 是該聯合機率密度的切面矩陣之形式。因此,與原點二維常態變數相比,一般二維常態變數的機率切面圖形僅只是前者圖形之中心的 (μ_1,μ_2) 位移,亦即 $(x_1-\mu_1)$ 2 $(x_2-\mu_2)$ 3 $(x_1-\mu_1)$ 3 $(x_2-\mu_2)$ 4 $(x_1-\mu_1)$ 4 $(x_2-\mu_2)$ 5 $(x_1-\mu_1)$ 5 $(x_1-\mu_1)$ 6 $(x_1-\mu_1)$ 6 $(x_1-\mu_1)$ 7 $(x_1-\mu_1)$ 8 $(x_1-\mu_1)$ 9 $(x_1-\mu_1)$ 9

假設斜軸橢圓 $(\mathbf{x}-\boldsymbol{\mu})$ $\dot{\mathbf{\mathcal{L}}}^{-1}(\mathbf{x}-\boldsymbol{\mu})' = \chi_{\alpha}^2$ 之半長軸和半短軸的長度分別是 $\chi_{\alpha}\sqrt{\lambda_1}$ 和 $\chi_{\alpha}\sqrt{\lambda_2}$ 。先從原點正軸橢圓來看,其長軸和短軸的兩頂點分別是 $[\pm\chi_{\alpha}\sqrt{\lambda_1},0]$ 和 $[0,\pm\chi_{\alpha}\sqrt{\lambda_2}]$;若將該橢圓轉軸 φ ,則原點斜軸橢圓之長軸和短軸的兩頂點分別是 $[\pm\chi_{\alpha}\sqrt{\lambda_1}\cos\varphi,\mp\chi_{\alpha}\sqrt{\lambda_1}\sin\varphi]$ 和 $[\pm\chi_{\alpha}\sqrt{\lambda_2}\sin\varphi,\mp\chi_{\alpha}\sqrt{\lambda_2}\cos\varphi]$;然後,再將之移位 (μ_1,μ_2) ,得知一般斜軸橢圓之長軸和短軸的兩處頂點分別是 $[\mu_1\pm\chi_{\alpha}\sqrt{\lambda_1}\cos\varphi,\mu_2\mp\chi_{\alpha}\sqrt{\lambda_1}\sin\varphi]$ 和 $[\mu_1\pm\chi_{\alpha}\sqrt{\lambda_2}\sin\varphi,\mu_2\mp\chi_{\alpha}\sqrt{\lambda_2}\cos\varphi]$ 。

當 $\sigma_1^2 = \sigma_2^2$ 時, $\lambda_1 = \lambda_2$ 及軸角 $\varphi = \pi/4$;當 $\sigma_1^2 > \sigma_2^2$ 時, $\sigma_{12} > 0$ 時,逆時鐘旋轉角度 $\varphi = tan^{-1}(2*\sigma_{12}/(\sigma_1^2-\sigma_2^2))/2$;反之,順時鐘旋轉角度 φ 。

2.2.5 二維卡方 $z_1^2 + z_2^2 \sim \chi_2^2$

若 Z_1 和 Z_2 是兩項獨立標準單維常態變數,則其平方和 $Z_1^2+Z_2^2$ 是雙自由度的卡方變數; χ_2^2 之機率密度是 $f(u)=e^{-u/2}/2$,右尾累積機率是 $R(u)=e^{-u/2}$,式中 u 是正數。另外, $(x-\mu) \not \Sigma^{-1}(x-\mu)$ '也是雙自由度的卡方變數。由於 $\chi_{5\%}^2=5.99$,二維常態機率密度的切面 $(x-\mu) \not \Sigma^{-1}(x-\mu)$ ' ≤ 5.99 的投影佔有二維常態之 95%體積。

2.2.6 利用卡方製造二維常態亂數

製造對應於卡方亂數的兩項標準常態亂數,將之轉軸及平移,吾人可以製造二維常態亂數 $\tilde{x} \sim N(\mu, \dot{\Sigma})$ 。首先,利用共變矩陣 $\dot{\Sigma}$ 算出軸角 ϕ ,利用 ϕ 計算轉軸矩陣 R,進而再算出特徵矩陣 Λ 。接著,製造雙自由度卡方亂數 χ_{α}^2 ,再製造兩項相互獨立的標準單維常態亂數 (z_1, z_2) ,它們符合條件 $z_1^2 + z_2^2 = \chi_{\alpha}^2$ 。最後,計算 $(x, y) = (\mu_1, \mu_2) + (z_1, z_2) \sqrt{\Lambda} P$,它們就是所要求的乙組二維常態亂數。注意,公式 $(z_1, z_2) \sqrt{\Lambda}$ 將正圓圖點 (z_1, z_2) 轉換成正軸橢圓圖點(u, v),公式(u, v) 將正軸橢圓圖點(u, v)轉換成 斜軸橢圓圖點(t, s),公式 $(t, s) + (\mu_1, \mu_2)$ 將斜軸橢圓圖點(t, s)轉換成斜軸橢圓圖點(x, y)。

現在,剩下這項問題:「卡方值特定時,如何製造兩項相互獨立的標準常態亂數?」為了達成前述製造目的,吾人僅需遵照如下的程序:「首先,製造齊一亂數 $\theta \in [0,2\pi]$,然後計算 $z_1 = \chi_\alpha \cos \theta$ 和 $z_2 = \chi_\alpha \sin \theta$ 。」

總之,製造二維常態亂數的訣竅是公式: $(x,v) = (\mu_1,\mu_2) + (z_1,z_2)\sqrt{\Lambda P}$ 。為製造常態母體 $N(\mu,\Sigma)$ 的亂 數,吾人可將程序區分成如下三大階段:●計算共變矩陣 Σ 的轉軸矩陣 P 及特徵矩陣 Λ ;②製造卡方 值及製造符合該值的兩項標準常態亂數 (z_1,z_2) ; $oldsymbol{3}$ 將常態數點轉軸 $\sqrt{\Lambda}P$ 及將中心平移 μ 。

2.3 三維常態家族

2.3.1 標準獨立三維常態
$$N\left(\begin{bmatrix}0 & 0 & 0\end{bmatrix}, \begin{bmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}\right)$$

當三維隨機變數 $\tilde{z}=(\tilde{z}_1,\tilde{z}_1,\tilde{z}_3)$ 的成分變數是相互獨立的標準常態時,它們的聯合機率是 $f(\tilde{z})=$ $\frac{1}{(2\pi)^{3/2}}e^{-\frac{1}{2}[z_1^2+z_2^2+z_3^2]}$ 。該機率密度的水平切面圖形是正球體,當球體之半徑是 χ 時,其**正球體方程式** $\mathcal{L} z_1^2 + z_2^2 + z_3^2 = \chi_{\alpha}^2 \circ$

2.3.2 原點獨立三維常態
$$N\left(\begin{bmatrix}0 & 0 & 0\end{bmatrix}, \begin{bmatrix}\sigma_1^2 & 0 & 0\\0 & \sigma_2^2 & 0\\0 & 0 & \sigma_3^2\end{bmatrix}\right)$$

當懷有平均數 $\mu_1=\mu_2=\mu_3=0$ 之三維常態變數 $ilde{w}=(t,u,v)$ 的成分變數是相互獨立的一般常態時,這 三項變數的聯合機率是 $f(\tilde{w}) = e^{\frac{-1}{2}(t^2/\sigma_1^2 + u^2/\sigma_2^2 + v^2/\sigma_3^2)}/2\pi\sqrt{2\pi}\sigma_1\sigma_2\sigma_3$ 。該機率密度的切體圖形是正軸橢 體,其方程式是 $t^2/\sigma_1^2 + u^2/\sigma_2^2 + v^2/\sigma_3^2 = \chi_\alpha^2$,而半長軸和半短軸之長度分別是 $\chi_\alpha \sigma_1$ 、 $\chi_\alpha \sigma_2$ 和 $\chi_\alpha \sigma_3$ 。

其實,
$$\begin{bmatrix} t & u & v \end{bmatrix}$$
 $\begin{bmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_3^2 \end{bmatrix}$ $\begin{bmatrix} t \\ u \\ v \end{bmatrix}$ = χ_{α}^2 是正軸橢體的矩陣形式。若設 $\lambda_1 = \sigma_1^2 \cdot \lambda_2 = \sigma_2^2$ 和 $\lambda_3 = \sigma_3^2$,則

體,其方程式是
$$t^2/\sigma_1^2 + u^2/\sigma_2^2 + v^2/\sigma_3^2 = \chi_\alpha^2$$
,而半長軸和半短軸之長度分別是 $\chi_\alpha \sigma_1 \cdot \chi_\alpha \sigma_2 \pi \chi_\alpha \sigma_3$ 。
其實, $[t\ u\ v]\begin{bmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_3^2 \end{bmatrix}^{-1}\begin{bmatrix} t \\ u \\ v \end{bmatrix} = \chi_\alpha^2$ 是正軸橢體的矩陣形式。若設 $\lambda_1 = \sigma_1^2 \cdot \lambda_2 = \sigma_2^2 \pi \lambda_3 = \sigma_3^2$,則 $[t\ u\ v]\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}^{-1}\begin{bmatrix} t \\ u \\ v \end{bmatrix} = \chi_\alpha^2$,或者 $w \Lambda^{-1} w' = \chi_\alpha^2$,該正軸橢體的半長軸和半短軸之長度分別是 $\chi_\alpha \sqrt{\lambda_1} \cdot \chi_\alpha \sqrt{\lambda_2} \pi \chi_\alpha \sqrt{\lambda_3}$ 。

2.3.3 原點三維常態變數
$$N\left(\begin{bmatrix}0 & 0 & 0\end{bmatrix}, \begin{bmatrix}\sigma_1^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_2^2 & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_3^2\end{bmatrix}\right)$$

當懷具平均數 $\mu_1=\mu_2=\mu_3=0$ 的三維隨機變數 $\tilde{\pmb{x}}=\{x_1,x_2,x_3\}$ 的成分變數是非獨立常態時,這三項變

數的聯合機率是
$$f(\hat{\mathbf{x}}) = e^{\frac{-1}{2}[x_1 \ x_2 \ x_3] \hat{\mathbf{z}}^{-1}[x_1 \ x_2 \ x_3]'}/(2\pi)^{3/2} \sqrt{|\hat{\mathbf{z}}|}$$
。此際,機率密度的切體圖形是斜軸橢體;
其實,斜軸橢體的矩陣形式是 $[x_1 \ x_2 \ x_3] \hat{\mathbf{z}}^{-1} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \chi_{\alpha}^2$,式中 $\hat{\mathbf{z}} = \begin{bmatrix} \sigma_1^2 \ \sigma_{12} \ \sigma_{13} \ \sigma_{21} \ \sigma_2^2 \ \sigma_{23} \ \sigma_{31} \ \sigma_{32} \ \sigma_3^2 \end{bmatrix}$ 係共變異矩陣。

2.3.4 一般三維常態變數
$$N\left([\mu_1 \ \mu_2 \ \mu_3], \begin{bmatrix} \sigma_1^2 \ \sigma_{12} \ \sigma_{13} \\ \sigma_{21} \ \sigma_2^2 \ \sigma_{23} \\ \sigma_{31} \ \sigma_{32} \ \sigma_3^2 \end{bmatrix} \right)$$

當懷具平均數 $\mu_1 \cdot \mu_2$ 和 μ_3 的三維隨機變數 $\tilde{\mathbf{X}}(x_1,x_2,x_3)$ 的成分變數是非獨立常態時,這三項變數的聯 合機率是 $f(\tilde{x}) = e^{\frac{-1}{2}(x-\mu)\dot{\Sigma}^{-1}(x-\mu)'}/(2\pi)^{3/2}\sqrt{|\dot{\Sigma}|}$;機率密度之切體的矩陣形式是 $(x-\mu)\dot{\Sigma}^{-1}(x-\mu)' =$ χ^2_{α} ,式中共變矩陣 $\mathbf{\Sigma} = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_2^2 & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_3^2 \end{bmatrix}$ 。因此,與原點三維常態變數相比,一般三維常態變數的機率切

體圖形僅只是前者圖形之中心的[μ1,μ2,μ3]位移。

2.3.5 三維卡方 $z_1^2 + z_2^2 + z_3^2 \sim \chi_3^2$

若 z_1 、 z_2 和 z_3 是三項獨立標準單維常態變數,則其平方和 $z_1^2+z_2^2+z_3^2$ 是三自由度的卡方變數,而 χ_3^2 之機率密度是 $f(u)=\sqrt{u}e^{-u/2}/\sqrt{2\pi}$, u>0。另外, $(x-\mu)$ $\dot{\Sigma}^{-1}(x-\mu)$ '也是三自由度的卡方變數。由於 $\chi_{3,0.05}^2=7.81$,三維常態機率密度的切面 $(x-\mu)\dot{\Sigma}^{-1}(x-\mu)$ '≤7.81 的投影佔有 0.95 體積。

2.3.6 利用卡方製造三維常態亂數

製造對應於卡方亂數的三項標準常態亂數,將之轉軸及平移,吾人可以製造三維常態亂數 $\tilde{x} \sim N(\mu, \dot{\Sigma})$;注意,製造三維常態亂數的訣竅是公式: $(x_1, y_2) = (\mu_1, \mu_2, \mu_3) + (z_1, z_2, z_3) \sqrt{\Lambda P}$ 。為製造常態母體 $N(\mu, \dot{\Sigma})$ 的亂數,吾人可將程序區分成如下三大階段: $\mathbf{0}$ 計算共變矩陣 $\dot{\Sigma}$ 的特徵矩陣 \dot{P} 及對角矩陣 Λ ; $\mathbf{0}$ 製造自由度三的卡方值及製造符合該值的三項標準常態亂數 (z_1, z_2, z_3) ; $\mathbf{0}$ 將常態數點轉軸 $\sqrt{\Lambda P}$ 及將中心平移 μ 。

現在,剩下這項問題:「給予自由度為三的特定卡方值,如何製造三項相互獨立的標準常態亂數?」為了達成前述製造目的,吾人僅須遵照如下的程序:「首先,令 $r_1 = \sqrt{\chi_\alpha^2}$,製造仰角亂數 $\theta_1 \in [0,2\pi]$,用以計算**仰高** $y_1 = r_1 \sin \theta_1 \pi r_2 = r_1 |\cos \theta_1|$;然後,再製造轉角亂數 $\theta_2 \in [0,2\pi]$,用以計算**横長** $y_2 = r_2 \sin \theta_2$ 和**縱長** $y_3 = r_2 \cos \theta_2$;最後,隨機調整 (y_1,y_2,y_3) 位置以獲得三維亂數 (z_1,z_2,z_3) 。」

3.0 實例 Example

3.1 另件製程 Part Process

於製程取來乙只另件,量測其鑽孔的中心點。示如〔圖一〕,X-軸標稱值(nominal value)是 80mm及 Y-軸是-116.5mm。給定孔洞直徑是 Ø 50mm,公差 ± 0.05 mm。

另件量測數目是 n = 100。規格界限(Specification limits): Lx = 79.750; Ly = -116.750; Ux = 80.250; Uy = -116.250。從產製另件獲得了示如〈表一〉的一百組數值。

〈表一〉測出之數值及算出的離心距離

Nr.	D 值	X-座標	Y-座標	N	r. D值	X-座標	Y-座標	Nr.	D 值	X-座標	Y-座標
1	0.038	79.976	-116.470	3	6 0.090	79.995	-116.410	71	0.107	79.986	-116.394
2	0.094	79.993	-116.406	3	7 0.097	80.002	-116.403	72	0.073	80.016	-116.429
3	0.086	80.031	-116.420	3	0.113	80.027	-116.390	73	0.069	79.995	-116.431
4	0.041	79.968	-116.475	3	0.021	79.995	-116.520	74	0.108	79.975	-116.395
5	0.105	79.973	-116.399	4	0.085	80.010	-116.416	75	0.118	79.965	-116.387
6	0.092	79.983	-116.410	4	0.110	80.005	-116.390	76	0.122	79.971	-116.382
7	0.099	80.008	-116.401	4	2 0.081	80.004	-116.419	77	0.119	79.978	-116.383
8	0.086	80.014	-116.415	4	3 0.055	79.966	-116.457	78	0.118	79.999	-116.382
9	0.075	80.020	-116.428	4	1 0.097	80.013	-116.404	79	0.024	80.008	-116.477
10	0.076	79.979	-116.427	4	5 0.078	80.021	-116.425	80	0.094	80.005	-116.406
11	0.064	79.978	-116.440	4	6 0.118	79.989	-116.383	81	0.056	80.007	-116.444
12	0.086	80.016	-116.416	4	7 0.111	79.988	-116.390	82	0.093	80.032	-116.413

13 0.067 79.990 -116.434 48 0.057 79.987 -116.445 83 0.139 79.958 -116.386 14 0.120 79.992 -116.380 49 0.101 80.012 -116.400 84 0.122 79.990 -116.378 15 0.103 79.999 -116.397 50 0.067 80.017 -116.435 85 0.126 79.994 -116.374 16 0.119 80.016 -116.382 51 0.099 80.000 -116.401 86 0.089 80.029 -116.416 17 0.086 80.038 -116.423 52 0.101 79.995 -116.399 87 0.110 80.000 -116.416 18 0.118 80.018 -116.384 54 0.086 80.002 -116.414 89 0.121 80.000 -116.477 19 0.118 80.071 -116.406 55 0.095 80.068 -116.433 90 0.131 79.992												
15 0.103 79.999 -116.397 50 0.067 80.017 -116.435 85 0.126 79.994 -116.374 16 0.119 80.016 -116.382 51 0.099 80.000 -116.401 86 0.089 80.029 -116.416 17 0.086 80.038 -116.423 52 0.101 79.995 -116.399 87 0.110 80.000 -116.416 18 0.118 80.018 -116.383 53 0.139 79.999 -116.361 88 0.084 80.010 -116.417 19 0.116 80.005 -116.384 54 0.086 80.002 -116.414 89 0.121 80.000 -116.379 20 0.118 80.071 -116.406 55 0.095 80.068 -116.433 90 0.131 79.992 -116.369 21 0.072 79.941 -116.458 56 0.103 79.990 -116.397 91 0.122 79.992	13	0.067	79.990	-116.434	48	0.057	79.987	-116.445	83	0.139	79.958	-116.368
16 0.119 80.016 -116.382 51 0.099 80.000 -116.401 86 0.089 80.029 -116.416 17 0.086 80.038 -116.423 52 0.101 79.995 -116.399 87 0.110 80.000 -116.390 18 0.118 80.018 -116.383 53 0.139 79.999 -116.361 88 0.084 80.010 -116.417 19 0.116 80.005 -116.384 54 0.086 80.002 -116.414 89 0.121 80.000 -116.379 20 0.118 80.071 -116.406 55 0.095 80.068 -116.433 90 0.131 79.992 -116.369 21 0.072 79.941 -116.458 56 0.103 79.990 -116.397 91 0.122 79.992 -116.378 22 0.097 79.984 -116.404 57 0.178 80.035 -116.395 93 0.092 79.990	14	0.120	79.992	-116.380	49	0.101	80.012	-116.400	84	0.122	79.990	-116.378
17 0.086 80.038 -116.423 52 0.101 79.995 -116.399 87 0.110 80.000 -116.390 18 0.118 80.018 -116.383 53 0.139 79.999 -116.361 88 0.084 80.010 -116.417 19 0.116 80.005 -116.384 54 0.086 80.002 -116.414 89 0.121 80.000 -116.379 20 0.118 80.071 -116.406 55 0.095 80.068 -116.433 90 0.131 79.992 -116.369 21 0.072 79.941 -116.458 56 0.103 79.990 -116.397 91 0.122 79.992 -116.378 22 0.097 79.984 -116.404 57 0.178 80.035 -116.395 93 0.092 79.990 -116.439 23 0.029 79.986 -116.418 59 0.182 79.978 -116.319 94 0.086 79.986	15	0.103	79.999	-116.397	50	0.067	80.017	-116.435	85	0.126	79.994	-116.374
18 0.118 80.018 -116.383 53 0.139 79.999 -116.361 88 0.084 80.010 -116.417 19 0.116 80.005 -116.384 54 0.086 80.002 -116.414 89 0.121 80.000 -116.379 20 0.118 80.071 -116.406 55 0.095 80.068 -116.433 90 0.131 79.992 -116.369 21 0.072 79.941 -116.458 56 0.103 79.990 -116.397 91 0.122 79.992 -116.378 22 0.097 79.984 -116.404 57 0.178 80.035 -116.325 92 0.062 79.990 -116.439 23 0.029 79.986 -116.475 58 0.107 79.980 -116.395 93 0.098 79.999 -116.402 24 0.093 80.043 -116.418 59 0.182 79.978 -116.319 94 0.086 79.986	16	0.119	80.016	-116.382	51	0.099	80.000	-116.401	86	0.089	80.029	-116.416
19 0.116 80.005 -116.384 54 0.086 80.002 -116.414 89 0.121 80.000 -116.379 20 0.118 80.071 -116.406 55 0.095 80.068 -116.433 90 0.131 79.992 -116.369 21 0.072 79.941 -116.458 56 0.103 79.990 -116.397 91 0.122 79.992 -116.378 22 0.097 79.984 -116.404 57 0.178 80.035 -116.325 92 0.062 79.990 -116.439 23 0.029 79.986 -116.475 58 0.107 79.980 -116.319 94 0.086 79.996 -116.402 24 0.093 80.043 -116.418 59 0.182 79.978 -116.319 94 0.086 79.986 -116.402 25 0.047 80.027 -116.538 60 0.099 80.000 -116.401 95 0.097 79.986 -116.404 26 0.090 80.031 -116.415 61	17	0.086	80.038	-116.423	52	0.101	79.995	-116.399	87	0.110	80.000	-116.390
20 0.118 80.071 -116.406 55 0.095 80.068 -116.433 90 0.131 79.992 -116.369 21 0.072 79.941 -116.458 56 0.103 79.990 -116.397 91 0.122 79.992 -116.378 22 0.097 79.984 -116.404 57 0.178 80.035 -116.325 92 0.062 79.990 -116.439 23 0.029 79.986 -116.475 58 0.107 79.980 -116.395 93 0.098 79.999 -116.402 24 0.093 80.043 -116.418 59 0.182 79.978 -116.319 94 0.086 79.986 -116.415 25 0.047 80.027 -116.538 60 0.099 80.000 -116.401 95 0.097 79.986 -116.404 26 0.090 80.005 -116.403 62 0.133 79.995 -116.420 96 0.092 80.020	18	0.118	80.018	-116.383	53	0.139	79.999	-116.361	88	0.084	80.010	-116.417
21 0.072 79.941 -116.458 56 0.103 79.990 -116.397 91 0.122 79.992 -116.378 22 0.097 79.984 -116.404 57 0.178 80.035 -116.325 92 0.062 79.990 -116.439 23 0.029 79.986 -116.475 58 0.107 79.980 -116.395 93 0.098 79.999 -116.402 24 0.093 80.043 -116.418 59 0.182 79.978 -116.319 94 0.086 79.986 -116.415 25 0.047 80.027 -116.538 60 0.099 80.000 -116.401 95 0.097 79.986 -116.404 26 0.090 80.031 -116.415 61 0.080 79.995 -116.420 96 0.092 80.020 -116.410 27 0.097 80.005 -116.403 62 0.133 79.996 -116.367 97 0.095 79.984	19	0.116	80.005	-116.384	54	0.086	80.002	-116.414	89	0.121	80.000	-116.379
22 0.097 79.984 -116.404 57 0.178 80.035 -116.325 92 0.062 79.990 -116.439 23 0.029 79.986 -116.475 58 0.107 79.980 -116.395 93 0.098 79.999 -116.402 24 0.093 80.043 -116.418 59 0.182 79.978 -116.319 94 0.086 79.986 -116.415 25 0.047 80.027 -116.538 60 0.099 80.000 -116.401 95 0.097 79.986 -116.404 26 0.090 80.031 -116.415 61 0.080 79.995 -116.420 96 0.092 80.020 -116.410 27 0.097 80.005 -116.403 62 0.133 79.996 -116.367 97 0.095 79.984 -116.406 28 0.122 80.024 -116.430 64 0.107 79.948 -116.406 99 0.132 79.981 -116.369 30 0.094 80.006 -116.406 65	20	0.118	80.071	-116.406	55	0.095	80.068	-116.433	90	0.131	79.992	-116.369
23 0.029 79.986 -116.475 58 0.107 79.980 -116.395 93 0.098 79.999 -116.402 24 0.093 80.043 -116.418 59 0.182 79.978 -116.319 94 0.086 79.986 -116.415 25 0.047 80.027 -116.538 60 0.099 80.000 -116.401 95 0.097 79.986 -116.404 26 0.090 80.031 -116.415 61 0.080 79.995 -116.420 96 0.092 80.020 -116.410 27 0.097 80.005 -116.403 62 0.133 79.996 -116.367 97 0.095 79.984 -116.406 28 0.122 80.024 -116.380 63 0.088 80.000 -116.412 98 0.133 79.980 -116.369 29 0.081 80.040 -116.430 64 0.107 79.948 -116.406 99 0.132 79.981	21	0.072	79.941	-116.458	56	0.103	79.990	-116.397	91	0.122	79.992	-116.378
24 0.093 80.043 -116.418 59 0.182 79.978 -116.319 94 0.086 79.986 -116.415 25 0.047 80.027 -116.538 60 0.099 80.000 -116.401 95 0.097 79.986 -116.404 26 0.090 80.031 -116.415 61 0.080 79.995 -116.420 96 0.092 80.020 -116.410 27 0.097 80.005 -116.403 62 0.133 79.996 -116.367 97 0.095 79.984 -116.406 28 0.122 80.024 -116.380 63 0.088 80.000 -116.412 98 0.133 79.980 -116.369 29 0.081 80.040 -116.430 64 0.107 79.948 -116.406 99 0.132 79.981 -116.369 30 0.094 80.006 -116.406 65 0.101 80.015 -116.400 100 0.058 80.033 -116.452 31 0.099 79.982 -116.408 67	22	0.097	79.984	-116.404	57	0.178	80.035	-116.325	92	0.062	79.990	-116.439
25 0.047 80.027 -116.538 60 0.099 80.000 -116.401 95 0.097 79.986 -116.404 26 0.090 80.031 -116.415 61 0.080 79.995 -116.420 96 0.092 80.020 -116.410 27 0.097 80.005 -116.403 62 0.133 79.996 -116.367 97 0.095 79.984 -116.406 28 0.122 80.024 -116.380 63 0.088 80.000 -116.412 98 0.133 79.980 -116.369 29 0.081 80.040 -116.430 64 0.107 79.948 -116.406 99 0.132 79.981 -116.369 30 0.094 80.006 -116.406 65 0.101 80.015 -116.400 100 0.058 80.033 -116.452 31 0.099 79.986 -116.402 66 0.081 79.990 -116.413 -116.413 -116.452 32 0.094 79.942 -116.405 68 0.067 80.004 <td>23</td> <td>0.029</td> <td>79.986</td> <td>-116.475</td> <td>58</td> <td>0.107</td> <td>79.980</td> <td>-116.395</td> <td>93</td> <td>0.098</td> <td>79.999</td> <td>-116.402</td>	23	0.029	79.986	-116.475	58	0.107	79.980	-116.395	93	0.098	79.999	-116.402
26 0.090 80.031 -116.415 61 0.080 79.995 -116.420 96 0.092 80.020 -116.410 27 0.097 80.005 -116.403 62 0.133 79.996 -116.367 97 0.095 79.984 -116.406 28 0.122 80.024 -116.380 63 0.088 80.000 -116.412 98 0.133 79.980 -116.369 29 0.081 80.040 -116.430 64 0.107 79.948 -116.406 99 0.132 79.981 -116.369 30 0.094 80.006 -116.406 65 0.101 80.015 -116.400 100 0.058 80.033 -116.452 31 0.099 79.986 -116.402 66 0.081 79.990 -116.420 90 0.058 80.033 -116.452 32 0.094 79.982 -116.408 67 0.087 80.009 -116.413 90 90 90 90 90 90 90 90 90 90 90 90	24	0.093	80.043	-116.418	59	0.182	79.978	-116.319	94	0.086	79.986	-116.415
27 0.097 80.005 -116.403 62 0.133 79.996 -116.367 97 0.095 79.984 -116.406 28 0.122 80.024 -116.380 63 0.088 80.000 -116.412 98 0.133 79.980 -116.369 29 0.081 80.040 -116.430 64 0.107 79.948 -116.406 99 0.132 79.981 -116.369 30 0.094 80.006 -116.406 65 0.101 80.015 -116.400 100 0.058 80.033 -116.452 31 0.099 79.986 -116.402 66 0.081 79.990 -116.420 0.058 80.033 -116.452 32 0.094 79.982 -116.408 67 0.087 80.009 -116.413 0.000 <td>25</td> <td>0.047</td> <td>80.027</td> <td>-116.538</td> <td>60</td> <td>0.099</td> <td>80.000</td> <td>-116.401</td> <td>95</td> <td>0.097</td> <td>79.986</td> <td>-116.404</td>	25	0.047	80.027	-116.538	60	0.099	80.000	-116.401	95	0.097	79.986	-116.404
28 0.122 80.024 -116.380 63 0.088 80.000 -116.412 98 0.133 79.980 -116.369 29 0.081 80.040 -116.430 64 0.107 79.948 -116.406 99 0.132 79.981 -116.369 30 0.094 80.006 -116.406 65 0.101 80.015 -116.400 100 0.058 80.033 -116.452 31 0.099 79.986 -116.402 66 0.081 79.990 -116.420 90 0.087 80.009 -116.413 90 9	26	0.090	80.031	-116.415	61	0.080	79.995	-116.420	96	0.092	80.020	-116.410
29 0.081 80.040 -116.430 64 0.107 79.948 -116.406 99 0.132 79.981 -116.369 30 0.094 80.006 -116.406 65 0.101 80.015 -116.400 100 0.058 80.033 -116.452 31 0.099 79.986 -116.402 66 0.081 79.990 -116.420 90 -116.413	27	0.097	80.005	-116.403	62	0.133	79.996	-116.367	97	0.095	79.984	-116.406
30 0.094 80.006 -116.406 65 0.101 80.015 -116.400 100 0.058 80.033 -116.452 31 0.099 79.986 -116.402 66 0.081 79.990 -116.420 9 9 -116.420 9 116.413 10 10 0.058 80.033 -116.452 32 0.094 79.982 -116.408 67 0.087 80.009 -116.413 10 10 0.058 80.033 -116.452 33 0.111 79.942 -116.405 68 0.067 80.004 -116.433 10 10 0.058 80.033 -116.452 34 0.135 79.975 -116.367 69 0.130 79.960 -116.376 10 10 0.058 80.033 -116.452	28	0.122	80.024	-116.380	63	0.088	80.000	-116.412	98	0.133	79.980	-116.369
31 0.099 79.986 -116.402 66 0.081 79.990 -116.420 9 32 0.094 79.982 -116.408 67 0.087 80.009 -116.413 9 33 0.111 79.942 -116.405 68 0.067 80.004 -116.433 9 34 0.135 79.975 -116.367 69 0.130 79.960 -116.376 9	29	0.081	80.040	-116.430	64	0.107	79.948	-116.406	99	0.132	79.981	-116.369
32 0.094 79.982 -116.408 67 0.087 80.009 -116.413	30	0.094	80.006	-116.406	65	0.101	80.015	-116.400	100	0.058	80.033	-116.452
33 0.111 79.942 -116.405 68 0.067 80.004 -116.433 -116.433 34 0.135 79.975 -116.367 69 0.130 79.960 -116.376 -116.376	31	0.099	79.986	-116.402	66	0.081	79.990	-116.420				
34 0.135 79.975 -116.367 69 0.130 79.960 -116.376	32	0.094	79.982	-116.408	67	0.087	80.009	-116.413				
	33	0.111	79.942	-116.405	68	0.067	80.004	-116.433				
35 0.103 80.014 -116.398 70 0.121 80.007 -116.379	34	0.135	79.975	-116.367	69	0.130	79.960	-116.376				
	35	0.103	80.014	-116.398	70	0.121	80.007	-116.379				

〔圖一〕量測任務是孔洞之中心位置

這百組孔心的座標數值,其散布示如〔圖二〕;這些孔心,位置散布大多向上偏離目標中心是 $(X_0,Y_0)=(80,-116.5)$,平均中心是 $(\bar{X},\bar{Y})=(79.999,-116.408)$ 。

[圖二] 孔洞中心點的散布圖

示如〔圖三〕,孔洞前二十組數值之X-軸與Y-軸的 \bar{X} 與R管制圖。X座標與Y座標的R管制圖,兩者皆都呈現穩定。X座標的 \bar{X} 管制圖地 20 點逸出管制界線,Y座標的 \bar{X} 管制圖串點卻呈現偏向下側。

[圖三] 孔洞前二十組數值之 X-軸與 Y-軸的 \bar{X} & R 管制圖

示如〔圖四〕,計有兩圖:孔洞百筆離心距離的直方圖與機率圖。相較於常態密度曲線,直方圖 呈現左偏;檢視規格,這百點的離心距離全數符合規格。檢視機率圖,這百點的中心確有顯著偏離 目標中心。

[圖四]百筆離心距離之 $ar{X}$ &R 管制圖

考量百筆離心距離,其公式是

$$D = \sqrt{(x - x_0)^2 + (y - y_0)^2}$$

示如〔圖五〕,孔洞之中心位置之前二十筆之離心距離,形成離心距離 D 之 \bar{X} 與 R 管制圖;R 管制圖呈現穩定。D 值管制圖串點也呈現偏向下側。

[圖五]百筆 D 值之直方圖與機率圖

3.2 另件統計量 Part Statistics

示如〈表二〉,計算 D 值、X 座標及 Y 座標等三變數的統計量:包括樣本數、最小值、最大值、全距數、平均數 X、分位數 $X_{0.135\%}$ 、中央數、分位數 $X_{99.865\%}$ 、眾位數、標準差、變異數、標準誤、峰度、偏態。全距數是最小值與最大值之差;樣本數是 n,標準差是 $\hat{\sigma}$ 時,標準誤 $\hat{\sigma}$ $\hat{\sigma}$ $\hat{\sigma}$ $\hat{\sigma}$ $\hat{\sigma}$ 數等於變數之 50% 分位數 $X_{50\%}$ 。

D		X- A	坚標	<i>Y</i> -座標		
樣本數	100	樣本數	100	樣本數	100	
最小值	0.021	最小值	79.941	最小值	-116.538	
最大值	0.182	最大值	80.071	最大值	-116.319	
全距數	0.162	全距數	0.130	全距數	0.219	
平均數	0.096	平均數	79.999	平均數	-116.408	
$X_{0.135\%}$	0.021	中間值	79.941	中間值	-116.536	
中央數	0.097	中央數	79.999	中央數	-116.406	
眾位數	0.086	眾位數	79.990	眾位數	-116.406	
<i>X</i> _{99.865%}	0.182	中間值	-116.320	中間值	0.094	
標準差	0.028	標準差	0.023	標準差	0.033	
變異數	0.001	變異數	0.001	變異數	0.001	
標準誤	0.003	標準誤	0.002	標準誤	0.003	
峰度	1.228	峰度	0.981	峰度	3.232	
偏態	-0.096	偏態	0.270	偏態	-0.931	

〈表二〉D值、X座標及Y座標等變數的計算統計量

根據〈表二〉,X座標數值之分配稍稍右偏,及Y座標數值之分配左偏;比起常態,前項分配稍稍 陡峭,後項分配極為陡峭。另外,D值之分配尚屬對稱,比起常態其型態極為陡峭。

3.3 孔洞位置統計量 Hole Position Statistics

假設二維變數遵循常態分配: $\tilde{x} \sim N(\mu, \Sigma)$ 。首先,利用共變矩陣 Σ 算出轉軸角度 φ ,利用 φ 計算轉軸矩陣 R,進而再算出特徵矩陣 Λ 。接著,製造雙自由度卡方亂數 χ^2_α ,再製造兩項相互獨立的標準單維常態亂數 (z_1, z_2) ,它們符合條件 $z_1^2 + z_2^2 = \chi^2_\alpha$ 。最後,計算 $(x, y) = (\mu_1, \mu_2) + (z_1, z_2) \sqrt{\Lambda} P$,它們就是所要求的乙組二維常態亂數。注意,公式 $(z_1, z_2) \sqrt{\Lambda}$ 將正圓圖點 (z_1, z_2) 轉換成正軸橢圓圖點(u, v),公式(u, v) P 將正軸橢圓圖點(u, v)轉換成斜軸橢圓圖點(t, s)转換成斜軸橢圓圖點(x, y)。

以向量表示,洞孔之目標中心是 $X_0 = (X_0, Y_0) = (80, -116.5)$,計算的平均中心是 $\hat{\mu} = (\bar{X}, \bar{Y}) = (79.999, -116.408)$ 。計算之共變異矩陣(Variance-covariance matrix)是

$$\hat{\mathbf{\Sigma}} = \begin{bmatrix} 0.0005 & -0.0001 \\ -0.0001 & 0.0011 \end{bmatrix}$$

 $\hat{\Sigma}$ 的反矩陣是

$$\hat{\mathbf{\Sigma}}^{-1} = \begin{bmatrix} 0.991 & 0.135 \\ -0.135 & 0.991 \end{bmatrix}$$

 $\hat{\Sigma}$ 的特徵向量是 $\hat{\lambda}$ = [0.0005, 0.0011]。

示如〔圖六〕,該等機率曲線所圍成區域是橢圓,它是孔洞中心之 95%信賴區間;此際, $\alpha=5\%$, $\chi^2_{\alpha}=5.99$ 及 $\chi_{\alpha}=2.45$ 。

[圖六]孔洞中心等機率曲線圍成之95%橢圓信賴區域

示如〔圖七〕,它呈現多條等機率曲線所圍成的多項橢圓信賴區域。當 $\alpha=5\%$ 時, $\chi_{\alpha}^2=5.99$ 及 $\chi_{\alpha}=2.45$;當 $\alpha=1\%$ 時, $\chi_{\alpha}^2=9.21$ 及 $\chi_{\alpha}=3.03$;當 $\alpha=0.1\%$ 時, $\chi_{\alpha}^2=13.82$ 及 $\chi_{\alpha}=3.72$;當 $\alpha=0.01\%$ 時, $\chi_{\alpha}^2=18.42$ 及 $\chi_{\alpha}=4.29$ 。

[圖七]孔洞中心多條等機率曲線圍成多項橢圓信賴區域

3.4 製程能力 \hat{P}_{pk}

檢視[圖七],我們有待尋求最大橢圓區域,讓它完全落入紅色之規格圓形區域。顯然,最大等機率橢圓會與正圓在上側相切。為求取該相切橢圓,我們需要乙套智能算程。

利用如下微軟 Excel 規劃求解(Solver),開發智能算程。首先,於儲存格\$AA\$11 設定顯著機率 α 的放大初值 A 為 100,而於儲存格\$X\$11 讓 α = $A/10^6$ = 0.01%;此際 χ^2 = 18.42, χ = 4.29。每 5°安排一點,讓規格正圓與信賴橢圓各產生完整 72 圖點;計算這 72 組圖點之距離,於儲存格\$AB\$12 計算平方總和等於 1.6969。於規劃求解輸入盤,設定 72 條限制式,讓各筆距離之數值都必須小於或等於規格半徑 \emptyset = 0.25。利用 $A \ge 1$ 來設定算程的誤差水準。

設定目	標式:①	\$AB\$12		1
至:	● 最大值(M) ○ 最小(N)	○ 値:仏	0.25	
藉由變	更變數儲存格:(<u>B</u>)			
\$AA\$1	11			1
設定限	制式:(<u>U</u>)			
	11 >= 1 3:\$AB\$85 <= Ø		^	新增(<u>A</u>)

示如〔圖八〕,求解後,顯著機率 $\alpha=0.0000094$ 。此際, $\chi^2={\rm CHIINV}(\alpha,2)=23.15$,及 $\chi=4.81$ 。所以,利用常態分配函數,算出製程能力 $\hat{P}_{\rm pk}$ 等於 1.48。

[圖八] 製程能力 Ppk 之等機率圖

3.5 製程能力 \hat{P}_{p}

檢視〔圖八〕,不考慮準確度時,我們必須讓規格正圓與信賴橢圓同心,尋求其中最大橢圓區域,讓橢圓內切正圓。顯然,最大等機率橢圓之長軸長度理當等於孔洞的目標半徑。已知, $\lambda_1=0.0005$ 和 $\lambda_2=0.0011$,使得 $MAX(\lambda_1,\lambda_2)=0.0011$ 。當目標 $r_0=0.25$,求解 $\chi=r_0/\sqrt{MAX(\lambda_1,\lambda_2)}=7.58$;所以,對應的卡方 $\chi^2=57.51$ 。

示如〔圖九〕顯著機率 $\alpha = 1$ - CHISQ.DIST(χ^2 ,2,1) = 3.26 E-13。所以,製程能力 \hat{P}_p 等於 2.43。

 $\hat{P}_p = \Phi^{-1}(1-\alpha/2)/3 = NORM.S.INV(1-\alpha/2)/3 = 2.43$

[圖九] 製程能力 Pp 之等機率圖

4.0 結論 CONCLUSION

本篇論文提供智能算程,用以計算另件之幾何位置的製程能力。ISO 於 2013 年發布 ISO 22514-6 第一版,第六篇的焦點主題是:「多維常態分配之製程能力的統計」。於幾何特性譬如洞孔中心,對洞心位置律定公差,它涉及的產品量測問題需要智能計算。洞心規格帶來傳統紅利型矩形公差帶。

REFERENCES

- [1] Chen Wen-Kuei., Cheng-Feng Hu, Is the Isoplot an Ellipse? A Study on Isoplot for the Measurement System Analysis. *Quality Engineering*. 2014, 26 (3)
- [2] ISO/IEC Guide 99:2007, International vocabulary of metrology Basic and general concepts and associated terms (VIM)
- [3] ISO 1101, Geometrical product specifications (GPS) Geometrical tolerancing Tolerances of form, orientation, location and run-out
- [4] ISO/TR 22514-4, Statistical methods in process management Capability and performance Part 4: Process capability estimates and performance measures

- [5] ISO/TR 22514-6, Statistical methods in process management Capability and performance Part 6: Process capability statistics for characteristics following a multivariate normal distribution
- [6] Taam W., Subbaiah P., Liddy J.W. A note on Multivariate Capability Indices. *J. Appl. Stat.* 1993, 20 pp. 339–351
- [7] Wang F.K., Hubele N.F., Lawrence F.P., Miskulin J.D. Shahriari, H. Comparison of three Multivariate Process Capability Indices. *Journal of Quality Technology*. 2000, 32 (3) pp. 263–275