

Lecţia 13:

Model checking II: Algorithmi de model checking; SMV

v1.0 (06.05.07)

Gheorghe Stefanescu — Universitatea București

Metode de Dezvoltare Software, Sem.2 Februarie 2007— Iunie 2007

Model checking II

Cuprins:

- Generalitati
- Algorithmul de etichetare
- Corectitudine
- SMV Symbolic Model Verifier
- Concluzii, diverse, etc.

Problema de model checking

Reamintim că problema de rezolvat cu model checking este de tipul

(A) Dat un model \mathcal{M} , o formulă $CTL \phi$, și o stare s, este adevărat $c\breve{a} \mathcal{M}$, $s \models \phi$?

unde

- $-\mathcal{M}$ este un model al sistemului şi s este o stare din model;
- φ este o formulă CTL pe care sistemul ar trebui să o satisfacă

Slide 13.3

Model

Intrebare: Ce model de sistem se folosește?

După cum am spus, dar accentuând faptul că modelul este *finit*:

un sistem este reprezentat printr-un sistem finit de tranziții

Comentarii:

- uzual, avem un *graf* direcționat, etichetat, *uriaş*, adesea cu milioane de stări
- *arborii infiniți* obținuți prin desfășurarea acestor grafuri sunt buni pentru a ne dezvolta intuiția, de a obține rezultate teoretice, dar nu pentru a fi folosiți în calculator

Rezultatul model checking-ului

Date \mathcal{M} , s, ϕ , rezultatul returnat de model checker este

- (1) da: \mathcal{M} , $s \models \phi$; ori
- (2) nu: \mathcal{M} , $s \not\models \phi$

dar, adesea, în ultimul caz multe model checkere returnează și un drum care invalidează \$\psi\$.

Formulare alternativă:

(B) Date un model M şi o formulă CTL φ, găsiţi toate stările s din model care satisfac φ.

Note:

- Aceste două formulări A,B sunt echivalente: dacă avem algorithmi pentru una, avem şi pentru cealaltă.
- In cele ce urmează ne ocupăm de *varianta B*.

Model checking II

Cuprins:

- Generalitati
- Algorithmul de etichetare
- Corectitudine
- SMV Symbolic Model Verifier
- Concluzii, diverse, etc.

Set redus de conectori CTL

Plecăm la drum cu următoarea versiune redusă de conectori CTL

$$\Gamma = \{\bot, \neg, \land, AF, EU, EX\}$$

unde:

- \perp , \neg , şi \wedge sunt utilizați pentru partea propozițională
- AF, EU, și EX sunt utilizați pentru partea temporală

Folosim o procedură (neexplicitată aici) de *preprocesare* care:

- 1. verifică corectitudinea *sintactică* a formulei φ;
- 2. translatează formula într-una TRANSLATE(ϕ) scrisă numai cu conectori din Γ .

In cele ce urmează, presupunem că ϕ este formulă CTL în formatul Γ .

Algorithmul de etichetare

Ideea algorithmului este următoarea:

- 1. descompunem formula φ în bucăți (sub-formule) și aplicăm inducția structurală pentru a eticheta graful cu sub-formulele lui φ (intuitiv, o formulă etichetează un nod din graf dacă și numai dacă este adevărată în acel nod)
- 2. pentru orice astfel de sub-formulă, trecem prin graf spre a găsi valoarea într-o stare în funcție de semnificația conectorului și de valorile de adevăr ale sub-formulelor din care este compusă

Pentru punctul 2, poate fi necesar să ştim valorile sub-formulelor în diferite stări (acest lucru este necesar în cazul operatorilor temporali, dar nu şi pentru cei propoziționali).

..Algorithmul de etichetare

Input: un model CTL $\mathcal{M} = (S, \rightarrow, L)$ şi o formulă CTL ϕ (în formatul Γ)

Output: mulțimea stărilor din \mathcal{M} care satisfac ϕ

- 1. ⊥: nici o stare nu este etichetată cu ⊥
- 2. p: etichetăm cu p toate stările s cu $p \in L(s)$
- 3. $\neg \phi_1$: etichetăm s cu $\neg \phi_1$, dacă s nu este deja etichetată cu ϕ_1
- 4. $\phi_1 \wedge \phi_2$: etichetăm s cu $\phi_1 \wedge \phi_2$, dacă s este deja etichetată atât cu ϕ_1 cât și cu ϕ_2
- 5. EX ϕ_1 : etichetăm s cu EX ϕ_1 , dacă unul din succesori este deja etichetat cu ϕ_1

ı

...Algorithmul de etichetare

6 AF ϕ_1 :

- 1. (marcaj iniţial) etichetăm orice s cu AF ϕ_1 , dacă s este deja etichetat cu ϕ_1
- 2. (marcaj repetat) etichetăm orice s cu AF ϕ_1 , dacă toți succesorii lui s sunt deja etichetați cu AF ϕ_1
- 3. repetăm (2) până nu mai sunt modificări

7 $E[\phi_1 \cup \phi_2]$:

- 1. (marcaj inițial) etichetăm orice s cu $E[\phi_1 \cup \phi_2]$, dacă s este deja etichetat cu ϕ_2
- 2. (marcaj repetat) etichetăm orice s cu $E[\phi_1 \cup \phi_2]$, dacă s este deja etichetat cu ϕ_1 și cel puțin unul din succesorii săi este deja etichetat cu $E[\phi_1 \cup \phi_2]$
- 3. repetăm (2) până nu mai sunt modificări

Excluderea mutuală

Verificăm $E[\neg c_2 \cup c_1]$ în modelul MUT2 de excludere mutuală introdus anterior:

EG direct

Operatorul EG poate fi tratat direct astfel:

- 6' EG ϕ_1 :
 - 0. etichetăm *toate* stările s cu EG ϕ_1
 - 1. (de-marcaj iniţial) dacă ϕ_1 nu este satisfăcută în s atunci *stergem* eticheta EG ϕ_1
 - 2. (de-marcaj repetat) *stergem* eticheta EG ϕ_1 din orice stare s, dacă nici unul din succesori nu este marcat cu EG ϕ_1
 - 3. repetăm (2) până nu mai sunt modificări

Această tratare diferită se bazează pe următoarea caracterizare a operatorului EG ca punct fix maximal

$$EG \phi \equiv \phi \wedge EX EG \phi$$

O varianta imbunatatita

Varianta mai performantă:

- Utilizăm EX, EU, și EG în loc de EX, EU, și AF
- Tratăm EX și EU ca înainte
- Pentru EG
 - ne restrângem la stările care satisfac φ
 - găsim componentele tare-conexe maximale SCC (i.e., regiuni în care orice nod este conectat cu orice alt nod din regiune)
 - folosim graful restricţionat dat de SCC-uri

Pseudo-cod

```
function SAT(\phi):
/* precondition: \phi este o formul\( \text{TL} \) arbitrar\( \text{*/} \)
/* postcondition: SAT(\phi) returnează stările care satisfac \phi */
begin function
   case
      \phi este \top: return S
      \phi este \perp: return \emptyset
      \phi este formulă atomică: return \{s \in S : \phi \in L(s)\}
      \phi este \neg \phi_1: return S \setminus SAT(\phi_1)
      \phi este \phi_1 \wedge \phi_2: return SAT(\phi_1) \cap SAT(\phi_2)
      \phi este \phi_1 \lor \phi_2: return SAT(\phi_1) \cup SAT(\phi_2)
      \phi este \phi_1 \rightarrow \phi_2: return SAT(\neg \phi_1 \lor \phi_2)
                                                                                     (...cont.)
```

..Pseudo-cod

```
(...cont.)
      \phi este AX\phi_1: return SAT(\neg EX \neg \phi_1)
      \phi este EX\phi_1: return SAT<sub>EX</sub>(\phi_1)
      \phi este A[\phi_1U\phi_2]: return SAT(\neg(E[\neg\phi_2U(\neg\phi_1 \land \neg\phi_2)] \lor EG\neg\phi_2))
      \phi este E[\phi_1 U \phi_2]: return SAT_{EU}(\phi_1, \phi_2)
      \phi este EF\phi_1: return SAT(E[\top U \phi_1])
      \phi este EG\phi_1: return SAT(\neg AF \neg \phi_1]
      \phi este AF\phi_1: return SAT<sub>AF</sub>(\phi_1)
      \phi este AG\phi_1: return SAT(\neg EF \neg \phi_1)
   end case
end function
```


..Pseudo-cod

```
function SAT_{EX}(\phi):

/* pre: \phi este o formulă CTL arbitrară */

/* post: SAT_{EX}(\phi) returnează stările care satisfac EX \phi */

local var X, Y

begin

X := SAT(\phi);

Y := \{s_0 \in S : s_0 \rightarrow s_1, \text{ pentru un } s_1 \in X\};

return Y

end
```


..Pseudo-cod

```
function SAT<sub>AF</sub>(\phi):
/* pre: \phi este o formul\( \text{CTL arbitrar\( \text{a} \) } / \)
/* post: SAT_{AF}(\phi) returnează stările care satisfac AF \phi */
local var X, Y
begin
   X := S;
   Y := SAT(\phi);
   repeat until X = Y
      begin
         X := Y;
         Y := Y \cup \{s \in S : \text{ pentru toți } s' \text{ cu } s \rightarrow s', \text{ avem } s' \in Y\};
      end
   return Y
end
```


...(pseudo-code)

```
function SAT<sub>EU</sub>(\phi):
/* pre: \phi este o formul\( \text{CTL arbitrar\( \text{a} \) } / \)
/* post: SAT_{EU}(\phi, \psi) returnează stările care satisfac E[\phi U \psi] */
local var W, X, Y
begin
   W := SAT(\phi);
   X := S;
   Y := SAT(\psi);
   repeat until X = Y
      begin
         X := Y;
         Y := Y \cup (W \cap \{s \in S : \text{ există } s' \text{ cu } s \rightarrow s' \text{ și } s' \in Y\};
      end
   return Y
end
```


Problema "exploziei starilor"

Comentarii:

- algorithmul de etichetare este destul de eficient [linear în mărimea modelului]
- ... dar modelul însuşi poate fi larg, exponențial în numărul de componente (rulând în paralel 10 thread-uri, fiecare cu 10 stări obținem un sistem cu $10^{10} = 10,000,000,000$ stări!)
- problema *exploziei stărilor* se referă la tendința spațiului stărilor de a deveni foarte mare
- curent, problema este *nerezolvată* (în cazul general)

Tehnici de tratare a "exploziei starilor"

Comentarii: Există tehnici puternice pentru a trata anumite cazuri particulare, e.g.:

- 1. *structuri de date eficiente* exemplu: *OBDD-uri* (diagrame de decizie ordonate binare); OBDD-urile sunt utilizate pentru a reprezenta mulțimi de stări, nu stări individuale)
- 2. *abstracție* se poate face abstracție de variabile din model irelevante pentru formula verificată
- 3. *reducere parțial ordonată* execuții diferite pot fi echivalente din punctul de vedere al formulei verificate; aceasta tehnică verifică formula pe o singură execuție dintr-o astfel de clasă
- 4. *inducție* se folosește dacă avem un număr mare de procese *identice*
- 5. *compunere* se încearcă spargerea problemei în bucăți mici, care să se trateaze separat

Model checking II

Cuprins:

- Generalitati
- Algorithmul de etichetare
- Corectitudine
- SMV Symbolic Model Verifier
- Concluzii, diverse, etc.

Puncte fixe

Definiții, convenții:

- Fie S o mulțime de stări și $F : \mathcal{P}(S) \to \mathcal{P}(S)$ o funcție.
- F se numeşte *monotonă* dacă: $X \subseteq Y$ implică $F(X) \subseteq F(Y)$.
- Un $X \in \mathcal{P}(S)$ se numeşte *punct fix* dacă: F(X) = X.
- Notăm $F^k(X) = F(F(...F(X)...))$, unde F se aplică de k ori.
- F se numește continuă dacă

$$F(\bigcup X_i) = \bigcup F(X_i)$$

pentru orice secvență crescătoare $X_0 \subseteq X_1 \subseteq X_2 \dots$

teorema lui Kleene

Teorema Kleene:

- O funcție monotonă și continuă are un cel mai mic punct fix, notat $\mu Z.F(Z)$, și un cel mai mare punct fix, notat $\nu Z.F(Z)$.
- Următoarele formule pot fi folosite spre a le calcula:

$$\mu Z.F(Z) = \emptyset \cup F(\emptyset) \cup F(F(\emptyset)) \cup \dots$$

şi

$$vZ.F(Z) = S \cap F(S) \cap F(F(S)) \cap \dots$$

In particular, dacă *S* este finită, să zicem cu *n* elemente, continuitatea nu este necesară. Intr-adevăr,

Puncte fixe in multimi finite

Teoremă: Dacă S are n elemente și F este monotonă, atunci

$$\mu Z.F(Z) = F^n(\emptyset)$$
 si $\nu Z.F(Z) = F^n(S)$

Dem.:

- (1) Clar, $\emptyset \subseteq F^1(\emptyset)$
 - Aplicând F obţinem $F^1(\emptyset) \subseteq F^2(\emptyset)$
 - Repetând, obţinem : $\emptyset \subseteq F^1(\emptyset) \subseteq F^2(\emptyset) \subseteq ... \subseteq F^{n+1}(\emptyset)$
 - Lanţul de incluziuni nu poate fi mereu strict, deci la un pas '⊆' este egalitate.
 - Concluzie: există $0 \le i_0 \le n$ cu $F^{i_0}(\emptyset) = F(F^{i_0}(\emptyset))$, adică $F^{i_0}(\emptyset)$ este punct fix

..Puncte fixe in multimi finite

- (2) $F^{i}(\emptyset)$ este mai mic decât orice alt punct fix:
 - Fie *X* punct fix
 - Cum $\emptyset \subseteq X$, aplicând F obţinem $F(\emptyset) \subseteq F(X) = X$
 - Repetând, obţinem $F^k(\emptyset) \subseteq X$ penru orice k, deci $F^{i_0}(\emptyset) \subseteq X$.
- (3) Cazul celui mai mare punct fix este similar, dar se începe cu *S* (nu cu 0) și se inversează incluziunile.

Corectitudinea lui SAT_{EU}

Notăm cu $[\![\phi]\!]$ mulțimea stărilor care satisfac ϕ și cu F aplicația

$$Z \mapsto \llbracket \psi \rrbracket \cup (\llbracket \phi \rrbracket \cap \{s : \text{ există } s' \text{ cu } s \to s' \text{ şi } s' \in Z\}$$

Teoremă: Dacă F este ca mai sus şi n = |S|, atunci:

- (1) F este monotonă
- (2) $[E[\phi \cup \psi]]$ este cel mai mic punct fix al lui F
- (3) $[E[\phi \cup \psi]] = F^{n+1}(\emptyset)$

Dem:

(1) Aplicația $H(Z) = \{s : \text{ există } s' \text{ cu } s \rightarrow s' \text{ și } s' \in Z \}$ este monotonă. F se obține din H prin intersecții și reuniuni, deci este și ea monotonă.

.. Corectitudinea lui SAT_{EU}

- (2) Analizând stările $F^k(\emptyset)$ observăm că
 - $F^0(\emptyset)$ conţine stările din $[\![\psi]\!]$;
 - $F^1(\emptyset)$ conține stările din $[\![\psi]\!]$, ori pe cele din $[\![\psi]\!]$ care au tranziții (într-un pas) la strări din $[\![\psi]\!]$;

— . . .

In general,

 $F^k(\emptyset)$ conține acele stări care au un drum de lungime cel mult k la o stare din $[\![\psi]\!]$ trecând numai prin stări din $[\![\psi]\!]$

Deci reuniunea tuturor $F^k(\emptyset)$ dă $[E[\phi \cup \psi]]$.

Stim că lanţul $F^k(\emptyset)$ este crescător şi $F^{n+1}(\emptyset)$ este punct fix, deci reuniunea tuturor $F^k(\emptyset)$ este $F^{n+1}(\emptyset)$.

(3) Este deja demonstrat în (2).

.. Corectitudinea lui SAT_{EU}

Observația finală este că SAT_{EU} folosește un proces iterativ echivalent, mai simplu și mai rapid:

In loc de

$$F^{k+1}(\emptyset)$$
= $\llbracket \psi \rrbracket \cup (\llbracket \phi \rrbracket \cap \{s : \text{ există } s' \text{ cu } s \to s' \text{ şi } s' \in F^k(\emptyset)\}$

se folosește procesul iterativ

$$F_1^{k+1}(\emptyset)$$

$$= F_1^k(\emptyset) \cup (\llbracket \phi \rrbracket) \cap \{s : \text{ există } s' \text{ cu } s \to s' \text{ şi } s' \in F_1^k(\emptyset)\}$$

SAT_{EG}

```
function SAT_{EG}(\phi):
/* pre: \phi este o formul\( \text{CTL arbitrar\( \text{a} \) } / \)
/* post: SAT_{EG}(\phi) returnează stările care satisfac EG \phi */
local var X, Y
begin
   X := \emptyset;
   Y := SAT(\phi);
   repeat until X = Y
      begin
         X := Y;
         Y := Y \cap \{s \in S : \text{ există } s' \text{ cu } s \rightarrow s' \text{ şi } s' \in Y\};
      end
   return Y
end
```


Corectitudinea lui SAT_{EG}

Notăm cu $[\![\phi]\!]$ mulțimea stărilor care satisfac ϕ și cu G aplicația

$$Z \mapsto \llbracket \phi \rrbracket \cap \{s \colon \text{există } s' \text{ cu } s \to s' \text{ şi } s' \in Z\}$$

Teoremă: Dacă F este ca mai sus şi n = |S|, atunci:

- (1) G este monotonă
- (2) $[EG \phi]$ este cel mai mare punct fix al lui G
- $(3) [[EG \phi]] = G^{n+1}(S)$

Demonstrația este similară cu cea din cazul precedent.

.. Corectitudinea lui SAT_{EG}

In fine, în loc de procesul iterativ

$$G^{k+1}(S) = \llbracket \phi \rrbracket \cap \{s : \text{ există } s' \text{ cu } s \to s' \text{ şi } s' \in G^k(S)\}$$

algoritmul pentru SAT_{EG} folosește un proces iterativ mai simplu, anume

$$G_1^{k+1}(S) = G^k(S) \cap \{s : \text{ există } s' \text{ cu } s \to s' \text{ şi } s' \in G^k(S)\}$$

Model checking II

Cuprins:

- Generalitati
- Algorithmul de etichetare
- Corectitudine
- SMV Symbolic Model Verifier
- Concluzii, diverse, etc.

SMV - Symbolic Model Verifier

SMV (Symbolic Model Verifier) a fost unul din primele model checkere. Se bazează pe CTL, a fost introdus la începului anilor 1990 și a avut un mare impact în domeniul verificării

- SMV a fost dezvoltat la CMU, vezi www.cs.cmu.edu/~modelcheck/smv.html
- conține un limbaj pentru a descrie modele (diagrame)
- poate verifica validitatea formulelor CTL în astfel de modele
- rezultatul este fie *true*, fie *un trace* care arată *de ce este formula falsă*

SMV - Sintaxa

SMV - Sintaxa (informal)

- programele SMV constă din unul ori mai multe module (unul din ele trebuie sa fie **main**)
- fiecare modul declară variabile și le asignează valori
- asignările folosesc două cuvinte cheie:
 - initial (spre a indica starea inițială) și
 - next (spre a indica următoare stare din diagrma de tranziții)
- asignările pot fi nedeterministe acest lucru este indicat folosind notația de mulțime {...} (se alege un element din această mulțime)

..SMV - Sintaxa

(...cont.)

- se poate folosi cunstrucția case
 - condiţiile din faţa lui ':' se parsează de sus în jos şi prima găsită adevărată se execută
 - se poate folosi o variantă *default* (care este mereu adevarată, notată cu 1) uzual pusă ultima în instrucțiunea **case**
- un modul poate avea specificaţii proprii care trebuiesc verificate, scrise în sintaxa CTL (dar cu &, |, ->, ! în loc de $\land, \lor, \rightarrow, \lnot$)

SMV, exemplul 1

Exemplul 1, destul de tipic, este următorul:

- modelează o parte a unui sistem care trece de la ready la busy, fie din cauze interne (invizibile în model), fie din cauza unei cereri request;
- sistemul trece din busy în ready în mod nedeterminist (fară un motiv vizibil)
- în acest model, verificăm formula

```
AG(request -> AF status = busy)
```


...(SMV, 1st example)

```
MODULE main
VAR
   request : boolean;
   status : {ready,busy};
ASSIGN
   init(status) := ready;
   next(status) :=
      case
        request: busy;
        1 : \{ready, busy\};
     esac;
SPEC
   AG(request -> AF status = busy)
```


Al doilea program, folosind mai multe module, este următorul:

- programul modelează un contor de la 000 la 111
- un modul counter_cell este instanţiat de trei ori cu numele bit0, bit1, bit2
- counter_cell are un parametru formal
- punctul '.' se foloseşte pentru a accesa o valoare particulară dintr-o instanță (m. v denotă variabila v din modulul m)
- verificăm formula

AG AF bit2.carry_out


```
MODULE main
VAR
   bit0 : counter_cell(1);
   bit1 : counter_cell(bit0.carry_out);
   bit2 : counter_cell(bit1.carry_out);
SPEC
   AG AF bit2.carry_out
MODULE counter_cell(carry_in)
VAR
   value: boolean;
ASSIGN
   init(value) := 0;
   next(value) := value + carry_in mod 2;
DEFINE
   carry_out := value & carry_in;
```


Notă:

- instrucțiunea define se folosește pentru a evita creștea spațiului stărilor
- efectul său se poate obține și cu:

```
VAR
    carry_out : boolean;
ASSIGN
    carry_out := value & carry_in;
```


Compunere sincrona vs. asincrona

Execuții:

- In lipsa altor specificări, modulele SMV se compun *sincron*:
 - la fiecare ciclu de ceas, fiecare modul execută o tranziție (folosită în special pentru verificarea de hardware)
- Modulele din SMV se pot compune şi *asincron*
 - la fiecare ciclu de ceas, SMV alege aleator un modul şi execută o tranziție de acolo

(folosită în special pentru verificarea de programe paralele ori protocoale de comunicare)

SMV, exemplul 3 - Excluderea Mutuala

Am văzut anterior un model CTL pentru 'excluderea mutuala' - aici dăm o implementare SMV. Noile caracteristici sunt:

- există un modul main cu (1) o variabilă turn care determină care proces intră în secțiunea sa critică și (2) două instanțieri ale modulului prc
- datorită variabilei turn sistemul de tranziții este un pic mai complicat
- o caracteristică importantă este prezenţa instrucţiunii **fairness**: ea conţine o formulă CTL φ şi restricţionează căutarea la drumurile în care φ este true de o infinitate de ori (running este un cuvânt cheie SMV care indică faptul că respectivul modul este selectat de o infinitate de ori)


```
MODULE main
   VAR
     pr1 : process prc(pr2.st, turn, 0);
     pr2 : process prc(pr1.st, turn, 1);
     turn : boolean;
   ASSIGN
     init(turn) := 0;
   --safety
   SPEC AG! ((pr1.st = c) \& (pr2.st = c))
   --liveness
   SPEC AG((pr1.st = t) -> AF (pr1.st = c))
   SPEC AG((pr2.st = t) -> AF (pr2.st = c))
   --no strict sequencing
   SPEC EF(pr1.st = c \& E[pr1.st = c U]
           (!pr1.st = c \& E[! pr2.st = c U pr1.st = c])])
```



```
MODULE prc(other-st, turn, myturn)
   VAR
      st : \{n, t, c\};
   ASSIGN
      init(st) := n;
     next(st) :=
        case
           (st = n) : \{t, n\};
           (st = t) & (other-st = n) : c;
           (st = t) & (other-st = t) & (turn = myturn) : c;
          (st = c) : \{c, n\};
          1 : st;
        esac;
     next(turn) :=
        case
          turn = myturn & st = c : !turn;
          1 : turn;
        esac;
   FAIRNESS running
   FAIRNESS ! (st = c)
```

Slide 13.44

CS-21xx / Metode de Dezvoltare Software, Sem.2 / G Stefanescu

Exculdere mutuală în SMV:

ABP: Alternating Bit Protocol

Prezentare:

- ABP (Alternating Bit Protocol) este un protocol care transmite corect date prin canale defecte (ce pot pierde ori duplica datele)
- ABP folosește două astfel de canale defecte între expeditor și destinatar: unul pentru a trimite *datele*, celălalt pentru *confirmări*
- în cazul unei transmisii eronate, data se *retransmite*;
- pentru a-şi atinge scopul, APB ţine socoteala acestor transmisii repetate folosind un *bit de control* care se complementează când se trece de la o dată la alta
- expeditorul anexează bitul său de control la dată și o *retirimite* până ce primește *bitul înapoi* pe canalul de confirmare

Fogura descrie structura protocolului ABP:

S: sender

ackChan: oneBitChan

R: receiver

```
00 MODULE sender (ack)
01 VAR
02
     st : {sending, sent};
03
     message : boolean;
04
     sbit : boolean;
05 ASSIGN
06
     init(st) := sending;
07
     next(st) :=
08
        case
09
          ack = sbit & !(st = sent) : sent;
10
          1 : sending;
11
        esac;
12
     next(message) :=
13
        case
          st = sent : \{0, 1\};
15
          1 : message;
16
        esac;
   next(sbit) :=
18
        case
19
                       !sbit;
          st = sent :
20
               sbit;
21
        esac;
22 FAIRNESS running
23 SPEC AG AF st = sent
```

```
24 MODULE receiver (message, sbit)
25 VAR
26
            {receiving, received};
27
     ack : `boolean;
28
     rbit : boolean;
29 ASSIGN
30
     init(st) := receiving;
31
     next(st) :=
32
33
34
35
36
        case
          sbit = rbit & !(st = received) : received;
                receiving;
        esac;
     next(ack) :=
37
        case
38
          st = received : sbit;
39
          1 : ack;
40
        esac;
41
     next(rbit) :=
42
        case
43
          st = received : !rbit;
44
                rbit;
45
        esac;
46 FAIRNESS running
   SPEC AG AF st = received
```

Slide 13.49

CS-21xx / Metode de Dezvoltare Software, Sem.2 / G Stefanescu

```
48 MODULE oneBitChan(input)
49 VAR
50 output : boolean;
51 ASSIGN
52 next(output) := {input, output};
53 FAIRNESS running
54 FAIRNESS (input = 0 \rightarrow AF output = 0) & (input = 1
55
     \rightarrow AF output = 1)
56
57 MODULE twoBitChan(input1, input2)
58 VAR
59
     output1 : boolean;
     output2: boolean;
60
61 ASSIGN
next(output2) := \{input2, output2\};
63 next(output1) :=
64
        case
          input2 = next(output2) : input1;
1 : {input1, output1};
65
66
67
        esac;
68 FAIRNESS running
69 FAIRNESS (input 1 = 0 \rightarrow AF output 1 = 0) & (input 1 = 1
     -> AF output1 = 1) & (input2 = 0 -> AF output2 = 0)
70
71
     & (input2 = 1 \rightarrow AF output2 = 1)
```

Slide 13.50

CS-21xx / Metode de Dezvoltare Software, Sem.2 / G Stefanescu

```
72 MODULE main
73 VAR
     S: process sender(ackChan.output);
75
     R: process receiver (msgChan.output1, msgChan.output2);
76 msgChan: process twoBitChan(S.message, S.sbit);
     ackChan: process oneBitChan(R.ack);
78 ASSIGN
79
     init(S.sbit) := 0;
init(R.rbit) := 0;
81 init(R.ack) := 1;
init (msgChan.output2) := 1;
83
     init(ackChan.output) := 1;
84 SPEC AG(S.st = sent & S.message = 1 \rightarrow msgChan.output1 = 1)
```


Model checking II

Cuprins:

- Generalitati
- Algorithmul de etichetare
- Corectitudine
- SMV Symbolic Model Verifier
- Concluzii, diverse, etc.

Concluzii, diverse, etc.

a se insera...