AMALTHEAREU 2016 SHAPE RETRIEVALONTHE WAVELET DENSITY HYPERSPHERE

Glizela Taino Washington University in St. Louis

Yixin Lin Duke

Mark Moyou Adrian M. Peter

ABSTRACT

A novel solution for shape retrieval is presented. Shapes are represented as probability densities; specifically, we expand the square-root of the density in a multiresolution wavelet basis. Under this model, each density (of a corresponding shape) is mapped to a unit hypersphere. The ensuing geometry is used to create hierarchical representations of shape categories and perform shape warping---increasing retrieval speed and accuracy.

CONTRIBUTIONS

- Optimized performance of 2D multiresolution wavelet density estimator
- Improved shape similarity metric using linear assignment and multiresolution wavelets
- Implemented hierarchical clustering algorithm on highdimensional unit hypersphere and analyzed algorithmic complexity

APPROACH

WAVELET DENSITY ESTIMATION

Wavelets are crucial mathematical functions that form an orthonormal basis for probability density functions. Given a point-set representation of a shape, we use a constrained maximum likelihood approach to estimate the coefficients of the wavelet density basis expansion in eq. (1).

$$\sqrt{p(\mathbf{x})} = \sum_{j_0, \mathbf{k}} \alpha_{j_0, \mathbf{k}} \phi_{j_0, \mathbf{k}}(\mathbf{x}) + \sum_{j \ge j_0, \mathbf{k}} \sum_{w=1}^{3} \beta_{j, \mathbf{k}}^w \psi_{j, \mathbf{k}}^w(\mathbf{x})$$
(1)

APPROACH & RESULTS

WDE OPTIMIZATION

Fig. 2 OPTIMIZATION TIMING RESULTS

Wavelet density estimation (WDE) involves estimating the wavelet 100% coefficients (α and β in eq.1) which is a computationally expensive task. FASTER Through parallelization we were able to significantly improve the algorithm's run time.

APPROACH & RESULTS

HIERARCHICAL SHAPE RETRIEVAL

Hierarchical clustering uses different levels of abstraction to group similar shapes together. Using spherical k-means, a recursive tree structure on the cluster centers is formed on the hypersphere---the means of one level form the children of the higher level--increasing retrieval speed and accuracy.

APPROACH & RESULTS

LINEAR ASSIGNMENT

Fig. 5 WARPING FROM SOURCE TO TARGET

By warping two shapes together, the distance between similar shapes decreases and dissimilar shapes increases, respectively. To perform this warping, we use a constrained linear assignment objective function, where lambda regularizes the amount of warping. As lambda decreases, the amount of warping increases.

Fig. 6 ACCURACY WITH VARYING LAMBDA

REFERENCES

- Adrian M Peter and Anand Rangarajan. Maximum likelihood wavelet density estimation with applications to image and shape matching. IEEE Transactions on Image Processing, 17(4):458-468,
- Adrian M. Peter, Anand Rangarajan, and Jeffrey Ho. Shape lane rouge: Sliding wavelets for indexing and retrieval. IEEE Conference on Computer Vision and Pattern Recognition. 1–8., 2008.
- Liu, Meizhu, et al. "Shape retrieval using hierarchical total Bregman soft clustering." IEEE Transactions on pattern analysis and machine intelligence 34.12 (2012): 2407-2419.

