Jean Van Schaftingen (Louvain-la-Neuve, Belgium) Semi-classical states for the Choquard equation

Abstract

Joint work with Vitaly MOROZ (Swansea University, United Kingdom). The Choquard equations reads as

$$-\varepsilon^2 \Delta u_{\varepsilon} + V u_{\varepsilon} = \varepsilon^{-\alpha} (I_{\alpha} * |u_{\varepsilon}|^p) |u_{\varepsilon}|^{p-2} u_{\varepsilon} \quad \text{in } \mathbb{R}^N,$$

where $N\geq 1,\ \alpha\in(0,N),\ I_{\alpha}(x)=A_{\alpha}/|x|^{N-\alpha}$ is the Riesz potential and $\varepsilon>0$ is a small parameter. I will present results on the existence of solutions in the semi-classical régime $\varepsilon\to 0$. If the external potential $V\in C(\mathbb{R}^N;[0,\infty))$ has a local minimum and $p\in[2,(N+\alpha)/(N-2)_+)$ then for all small $\varepsilon>0$ the problem has a family of solutions concentrating to the local minimum of V provided that: either $p>1+\max(\alpha,\frac{\alpha+2}{2})/(N-2)_+,$ or p>2 and $\liminf_{|x|\to\infty}V(x)|x|^2>0,$ or p=2 and $\inf_{x\in\mathbb{R}^N}V(x)(1+|x|^{N-\alpha})>0.$ I will explain why the assumptions on the decay of V and admissible range of $p\geq 2$ are optimal. I will give the main ideas on the proof which is based on variational methods and required the development of an adequate penalization technique for nonlocal problems.