21	Pions are created in the upper atmosphere when high-energy cosmic rays interact with nuclei. Pions are mesons and they quickly decay to muons. Muons are leptons with a mass of $106\mathrm{MeV/c^2}$. (a) Give a possible quark structure of a pion.	
		(1)
	(b) The equation shows a pion decaying into a muon and an antineutrino.	
	(c) The equation shows a prior decaying the a final and an artificial $\pi^- o \mu^- + \bar{\nu_\mu}$	
	Energy and momentum must be conserved in this decay.	
	Explain two other conservation laws that apply to this decay.	
	Explain two other conservation laws that apply to this decay.	(4)
	Explain two other conservation laws that apply to this decay.	(4)
	Explain two other conservation laws that apply to this decay.	(4)
	Explain two other conservation laws that apply to this decay.	(4)
	Explain two other conservation laws that apply to this decay.	(4)
	Explain two other conservation laws that apply to this decay.	(4)
	Explain two other conservation laws that apply to this decay.	(4)
	Explain two other conservation laws that apply to this decay.	(4)

(c) Calculate the mass, in kg, of a muon.

(3)

Mass of muon =kg

(d)	When at rest, pions have an average lifetime of 26 ns. When produced in the upper			
	atmosphere, high-energy pions have a speed of up to 0.99 c.			
	Explain how the average lifetime of these high-energy pions compares with the lifetime of pions at rest.			
	You do not need to carry out any calculations.	(2)		
		(2)		
	(Total for Question 21 = 10 marks)			