

FUNDAMENTALS OF DEEP LEARNING

Part 3: Convolutional Neural Networks

AGENDA

Part 1: An Introduction to Deep Learning

Part 2: How a Neural Network Trains

Part 3: Convolutional Neural Networks

Part 4: Data Augmentation and Deployment

Part 5: Pre-trained Models

Part 6: Advanced Architectures

AGENDA – PART 3

- Kernels and Convolution
- Kernels and Neural Networks
- Other Layers in the Model

RECAP OF THE EXERCISE

Trained a dense neural network model

Training accuracy was high

Validation accuracy was low

Evidence of overfitting

Original Image

Original Image

Blur Kernel

.06	.13	.06
.13	.25	.13
.06	.13	.06

Original Image

1	0	1	1	0	1
0	1	0	0	1	0
0	1	1	1	1	0
0	1	1	1	1	0
1	0	1	1	0	1
1	1	0	0	1	1

Convolved Image

Blur Kernel

.06	.13	.06	
.13	.25	.13	
.06	.13	.06	

Original Image

1	0	1	1	0	1
0	1	0	0	1	0
0	1	1	1	1	0
0	1	1	1	1	0
1	0	1	1	0	1
1	1	0	0	1	1

Convolved Image

Blur Kernel

.06	.13	.06	
.13	.25	.13	
.06	.13	.06	

Original Image

1	0	.13	.06	0	1
0	.13	0	0	1	0
0	.06	.13	.06	1	0
0	1	1	1	1	0
1	0	1	1	0	1
1	1	0	0	1	1

Convolved Image

Blur Kernel

	.06	.13	.06
*	.13	.25	.13
ı			

.06

.06

Original Image

1	0	1	1	0	1
0	1	0	0	1	0
0	1	1	1	1	0
0	1	1	1	1	0
1	0	1	1	0	1
1	1	0	0	1	1

Convolved Image

.56	.57	.57	.56
.7	.82	.82	.7
.69	.95	.95	.69
.64	.69	.69	.64

STRIDE

PADDING

Original Image

1	0	1	1	0	1
0	1	0	0	1	0
0	1	1	1	1	0
0	1	1	1	1	0
1	0	1	1	0	1
1	1	0	0	1	1

Zero Padding

0	0	0	0	0	0	0	0
0	1	0	1	1	0	1	0
0	0	1	0	0	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	1	0	1	1	0	1	0
0	1	1	0	0	1	1	0
0	0	0	0	0	0	0	0

PADDING

Original Image

1	0	1	1	0	1
0	1	0	0	1	0
0	1	1	1	1	0
0	1	1	1	1	0
1	0	1	1	0	1
1	1	0	0	1	1

Same Padding

1	1	0	1	1	0	1	1
1	1	0	1	1	0	1	1
0	0	1	0	0	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
1	1	0	1	1	0	1	1
1	1	1	0	0	1	1	1
1	1	1	0	0	1	1	1

KERNELS AND NEURAL NETWORKS

Kernel

W ₁	W ₂	W_3
W ₄	W_5	W_6
W ₇	W ₈	W ₉

KERNELS AND NEURAL NETWORKS

Kernel

W ₁	W ₂	W_3
W ₄	W_5	W_6
W ₇	W ₈	W ₉

KERNELS AND NEURAL NETWORKS

FINDING EDGES

Vertical Edges

1	0	-1
2	0	-2
1	0	-1

Original Image

0	0	0
0	1	0
0	0	0

Horizontal Edges

1	2	1
0	0	0
-1	-2	-1

NEURAL NETWORK PERCEPTION

NEURAL NETWORK PERCEPTION

MAX POOLING

110	2!	56	153	67		
12	. 8	9	88	43	256	153
10	1	5	50	55	23	55
23	9	9	49	23		

DROPOUT

WHOLE ARCHITECTURE

