SVKM's NMIMS

MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING / SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING

Academic Year: 2021-22

Programme: B. Tech / MBA Tech (Computer)

Year: II

Semester: IV

Subject: Design and Analysis of Algorithms

Marks: 100

Waiks. 100

Time: 10.00 am to 1.00 pm

Durations: 3 (hrs)
No. of Pages: 3

Final Examination

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is provided for their use.

- 1) Question No. _1__ is compulsory.
- 2) Out of remaining questions, attempt any __4__ questions.
- 3) In all ___5_ questions to be attempted.
- 4) All questions carry equal marks.

Date: 18 April 2022

- 5) Answer to each new question to be started on a fresh page.
- 6) Figures in brackets on the right hand side indicate full marks.
- 7) Assume Suitable data if necessary.

Q1			
CO-1; SO- 1; BL-1	a.	What is Algorithm? Define any four characteristics that must be satisfied by an Algorithm.	[05]
CO-2; SO- 1; BL-2	b.	Explain the general method for Divide and Conquer approach. State the control abstraction for divide and conquer strategy.	[05]
CO-3; SO- 6; BL-2	c.	Explain the algorithm for the fractional knapsack problem.	[05]
CO-4; SO- 1; BL-1	d.	Draw portion of the solution tree to the 4-Queens problem generated during backtracking.	[05]
Q2 CO-1; SO-1; BL-2	a.	Discuss best case, worst case and average case in terms of asymptotic notations for computing time complexity of a function with suitable example.	[10]
Q2 CO-4; SO-6; BL-3	b.	Solve the following multistage graph problem to find minimum cost path from node 1 to node 12, using dynamic programming approach.	[10]

Q5	a.	Interpret the algorithm for Job Sequencing with deadlines by taking suitable	[10]
CO-3; SO- 1; BL-6		example.	
Q5	b.	Consider an instance of Sum of Subset problem where, $w = \{5, 7, 10, 12, 15, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10$	[10]
CO-4; SO-		18, 20} and m = 35. Find all possible subsets of 'w' that sum to 'm' using	#09) (8
6; BL-3		backtracking algorithm. Draw the state space tree that is generated.	
Q6 '	a.	Explain Master's Theorem to solve recurrences. Solve following recurrence	[10]
CO1-; SO-		relation using Master's Theorem.	
1; BL-1	,	$T(n) = \sqrt{2} T\left(\frac{n}{2}\right) + \log n$	
Q6	b.	What is longest common subsequence (LCS) problem? Find the LCS for the	[10]
CO-4; SO- 1; BL-2		strings "spanking" and "amputation" using dynamic programming.	