Neural networks: practical guide

Pavel Ostyakov

How to improve training of NNs?

Learning Rate Scheduling

ReduceLROnPlateau

Reduce learning rate when a metric has stopped improving.

- It's easy to tune scheduling parameters
- It works always

CyclicLR

Triangular schedule

Triangular schedule with fixed decay

Triangular schedule with exponential decay

How to train a large network in 5 minutes?

Warmup

Learning rate

Optimizers

Adam

SGD

- Usually starting with Ir=1e-4 works well => no parameters for tuning
- Better for training from scratch
- Faster convergence

- More parameters for tuning: Ir, momentum, is nesterov
- Usually better for small tuning
- Sometimes gives better accuracy

Adam SGD

- Usually starting with Ir=1e-4 works well => no parameters for tuning
- Better for training from scratch
- Faster convergence

- More parameters for tuning: Ir, momentum, is nesterov
- Usually better for small tuning
- Sometimes gives better accuracy

Conclusion: use Adam

The main secret

A good deep learning engineer is a good coder

An example of a well-organized pipeline

7 436 commits	№ 1 branch	♦ 0 releases	22 1 contributor		
Branch: master ▼ New pull request		Create new file	Upload files	Find file	Clone or download ▼
PavelOstyakov Fix make lgbm				Latest com	mit d98f5f1 6 days ago
bin	Fix train script				a month ago
doodle	Some fixes from doodle				a month ago
inclus	Fix & added new config				a month ago
protein protein	Fix make lgbm				6 days ago
solver	Fix input_channels				15 days ago
gitignore	Working on Pipeline				3 months ago
README.md	Initial commit				3 months ago

How to speed up convergence

How to speed up convergence

- Start from a small image size
- Gradually increase it during training
- Coordinate this procedure with Ir scheduling

Data augmentation

- Works always and everywhere
- To speed up convergence increase probability of augmentations step-by-step during training
- Again, coordinate it with Ir scheduling
- At the finish, turn off augmentations and tune your model a little bit

MixUp

$$\tilde{x} = \lambda x_i + (1 - \lambda) x_j,$$

$$\tilde{y} = \lambda y_i + (1 - \lambda) y_j,$$

$$\lambda \sim \text{Beta}(\alpha, \alpha)$$

We already have a model, how to improve an accuracy of predictions?

1. Use test time augmentation (TTA)

- Use augmentations which were used during training
- Simply average all predictions
- TTA-10 is very fast but it can significantly improve accuracy
- TTA-128 still makes sense

2. Apply k-nearest neighbors algorithm

- 1. Extract features from the network for validation set
- 2. Build index (use NMSLIB)
- 3. During inference extract features for the test data and find their neighbors
- 4. Use some heuristics to improve score

3. Adapt predictions for a test distribution

- Tuning the last layer to perform better on another target's distribution
- Fix predictions having prior knowledge

Key takeaways from supervised tasks

- Image size 224x224 usually is enough
- Usually training two models and ensemble them is faster than training one strong single model
- However, to get a high result we need several diversified strong models

To be continued...