MATH 601 (DUE 10/9)

HIDENORI SHINOHARA

Contents

1.	Modules	1
2.	Rings of Fractions	1
3.	Quadratic Equation	2
4.	Factorization in Integral Domains	2

1. Modules

Exercise. (Problem 1) For each of the \mathbb{Z} -modules listed in the handout, answer the questions in the handout.

Proof.

(a) $M = \mathbb{Z}^3 \times \mathbb{Z}/86\mathbb{Z}$.

Solve this problem!

(b) $M = \prod_{n>1} \mathbb{Z}/n\mathbb{Z}$.

Solve this problem!

(c) $\underline{M} = \mathbb{Z}[1/p] \subset \mathbb{Q}$.

Solve this problem!

(d) $M = \mathbb{Q}/\mathbb{Z}_{(p)}$.

Solve this problem!

2. Rings of Fractions

Exercise. (Problem 3) Let $T \subset R$ be the subset consisting of all nonzero divisors.

- \bullet Show that T is a multiplicative set.
- Let $s \in T$ and let $S = \{1, s, s^2, s^3, \dots\} \subset T$. Show that the following rings are isomorphic: $S^{-1}R$, the subring $R[1/s] \subset T^{-1}R$, and the quotient ring R[x]/(sx-1).

Proof.

- Prove this!
- Prove this!

3. QUADRATIC EQUATION

Exercise. (Problem 20)

Exercise. (Problem 21)

Exercise. (Problem 22)

4. Factorization in Integral Domains

Exercise. (Problem 5)

- Let k be a field and let $a \in k$. Construct a k-algebra isomorphism, $k[x,y]/(x-a) \to k[y]$. Justify your answer.
- Let $f(x,y) \in k[x,y]$. What is the image of f(x,y) under the above isomorphism?

Proof.

- Let ϕ be defined such that $\phi(f(x,y)+(x-a))=f(a,y)$.
 - Well-defined? Let f(x,y) + (x-a) = g(x,y) + (x-a). Then g(x,y) = f(x,y) + h(x,y)(x-a).

$$\phi(g(x,y) + (x - a)) = \phi((f(x,y) + h(x,y)(x - a)) + (x - a))$$

$$= f(a,y) + h(a,y)(a - a)$$

$$= f(a,y)$$

$$= \phi(f(x,y)).$$

-k-algebra homomorphism? Let $c \in k, f, g \in k[x, y]$ be given.

$$\begin{split} \phi(c(f+(x-a)) &= \phi(cf+(x-a)) \\ &= cf(a,y) \\ &= c\phi(f+(x-a)). \\ \phi((f+g)+(x-a)) &= (f+g)(a,y) \\ &= f(a,y)+g(a,y) \\ &= \phi(f+(x-a))+\phi(g+(x-a)). \\ \phi((fg)+(x-a)) &= (fg)(a,y) \\ &= f(a,y)g(a,y) \\ &= \phi(f+(x-a))\phi(g+(x-a)). \end{split}$$

• $\phi(f(x,y) + (x-a)) = f(a,y)$.