Deep Learning with ML.NET

Clemente Giorio Gianni Rosa Gallina

SPONSOR

Object Detection

Source: Images from wikimedia

Overview of Object Detection Vision Task

Overview of Object Detection Vision Task

Image Classification

Output: Class – Person

Object Detection

Output:

Bounding box – pc,x,y,w,h Class – Person, Sports Ball, Tennis Racket Confidence – 0.95, 0.91, 0.90

What is ML.NET and how does it work?

Code workflow

ONNX

ONNX – Key Benefits

Interoperability

Hardware Access

ONNX

YOLO Bounding boxes + confidence Final detections $S \times S$ grid on input

Class probability map

YOLO

YOLO

YOLO

YOLOv5

YOLOv5 – Pretrained Checkpoints

Model	size (pixels)	mAP ^{val} 0.5:0.95	mAP ^{val} 0.5	Speed CPU b1 (ms)	Speed V100 b1 (ms)	Speed V100 b32 (ms)	params (M)	FLOPs @640 (B)
YOLOv5n	640	28.0	45.7	45	6.3	0.6	1.9	4.5
YOLOv5s	640	37.4	56.8	98	6.4	0.9	7.2	16.5
YOLOv5m	640	45.4	64.1	224	8.2	1.7	21.2	49.0
YOLOv5I	640	49.0	67.3	430	10.1	2.7	46.5	109.1
YOLOv5x	640	50.7	68.9	766	12.1	4.8	86.7	205.7
YOLOv5n6	1280	36.0	54.4	153	8.1	2.1	3.2	4.6
YOLOv5s6	1280	44.8	63.7	385	8.2	3.6	12.6	16.8
YOLOv5m6	1280	51.3	69.3	887	11.1	6.8	35.7	50.0
YOLOv5l6	1280	53.7	71.3	1784	15.8	10.5	76.8	111.4
YOLOv5x6 + TTA	1280 1536	55.0 55.8	72.7 72.7	3136	26.2	19.4	140.7	209.8

YOLOv5x6

NETR®N

ends (1) ends (1) ends (1) ends (1) axes $\langle 1 \rangle$ axes (1) axes (1) axes (1) steps (1) steps $\langle 1 \rangle$ steps (1) steps (1) Slice Slice Slice Slice Mul starts $\langle 1 \rangle$ starts (1) starts (1) starts (1) ends (1) ends (1) ends (1) ends (1) B = 2 B = 2 B = 2 B = 2 axes (1) axes $\langle 1 \rangle$ axes (1) axes $\langle 1 \rangle$ steps (1) steps (1) steps (1) steps (1) Mul Sub Sub Mul Mul Mul B = 2 B = 2B = 2 B = 2B = 0.5B = 0.5B = 0.5B = 0.5Add Add Pow Pow Add Pow Pow **B** (1×3×40×40×2) **B** (1×3×20×20×2) B (1×3×80×80×2) Y = 2 B (1×3×160×160×2) Y = 2 Y = 2Y = 2Slice Slice Slice Slice Mul Mul Mul Mul Mul Mul starts (1) starts (1) starts $\langle 1 \rangle$ starts (1) ends (1) ends (1) ends (1) ends (1) B = 32 **B** (1×3×40×40×2) B = 64 **B** (1×3×20×20×2) B = 16 **B** (1×3×80×80×2) B = 8 **B** (1×3×160×160×2) axes (1) axes (1) axes (1) axes $\langle 1 \rangle$ steps $\langle 1 \rangle$ steps $\langle 1 \rangle$ steps (1) steps (1) Concat Concat Concat Concat Reshape Reshape Reshape Reshape shape (3) shape (3) shape (3) shape (3) Concat 1×102000×85

output

https://github.com/lutzroeder/netron

Demo

.NET 6.0

IMAGE ANALYTICS ONNX TRANSFORMER

△ Solution 'BallDetectorOnnxDemo' (2 of 2 projects) ▲ A C# Deltatre.BallDetector.Onnx.Demo ▶ ₽₽ Dependencies ▲ A B Assets ▶ A ModelWeights ▲ △ ☐ Extensions ▶ A C# RectangleExtensions.cs ▲ A I MLModels ▲ Abstract ▶ A C# YoloModel.cs ▶ A C# Yolov5l6Model.cs ▶ A C# Yolov5IModel.cs ▶ A C# Yolov5m6Model.cs A C# Yolov5mModel.cs ▶ A C# Yolov5n6Model.cs ▶ A C# Volov5nModel.cs A C# Volov5s6Model.cs ▶ A C# Yolov5sModel.cs ▶ A C# Yolov5x6Model.cs ▶ A C# Yolov5xModel.cs ▲ A Model ▶ A C# ImageData.cs ▶ A C# ImagePrediction.cs ▶ A C# YoloLabel.cs A C# Volol abelKind.cs b A C# VoloParser.cs ▶ A C# YoloPrediction.cs ▶ A C# OnnxRuntimeModelScorer.cs ▶ A C# OnnxTransformModelScorer.cs ▲ △ C# Deltatre.BallDetector.Onnx.Demo.CLI ▶ ₽☐ Dependencies ▶ a ☐ SampleData

▶ A C# Program.cs

Other Frameworks

TorchSharp: https://github.com/dotnet/TorchSharp

TensorFlow.NET: https://github.com/SciSharp/TensorFlow.NET

Training-Fine Tuning

Demo - Training

.NET 6.0

IMAGE ANALYTICS CLASSIFICATION TRAINER/SCORER

Thank You!

EUXαριστώ Salamat Po شكراً வின்பி மின்பி கிறிப்பி கிறிப்பில் Teşekkürler 谢谢 விவபிவிவிற்ப் Obrigado விவபிவிற்ப் Obrigado விவியில் Terima Kasih Dziękuję Hvala Köszönöm Tak Dank u wel ДЯКУЮ Tack Mulţumesc спасибо Danke Cám ơn Gracias 多謝晒 Ďakujem תודה நன்றி Děkuji 감사합니다

Questions?

Useful links

- https://github.com/deltatrelabs/deltatre-net-conf-2022-mlnet
- https://github.com/ultralytics/yolov5/releases
- https://github.com/lutzroeder/netron
- https://github.com/daquexian/onnx-simplifier
- https://docs.microsoft.com/en-us/dotnet/machine-learning/tutorials/image-classification
- https://docs.microsoft.com/en-us/dotnet/machine-learning/tutorials/object-detection-onnx
- https://pytorch.org/
- https://www.tensorflow.org/
- https://github.com/dotnet/TorchSharp
- https://github.com/SciSharp/TensorFlow.NET
- https://docs.microsoft.com/en-us/dotnet/machine-learning/

About us

Clemente Giorio

R&D Senior Software Engineer @ deltatre

- Augmented/Mixed/Virtual Reality
- Artificial Intelligence, Machine Learning, Deep Learning
- Internet of Things
- Hybrid Clusters
- Multimodal Tracking

About us

Microsoft Microsoft

Programming in C#

CERTIFIED

Solutions Developer

Windows Store Apps Using C# Web Applications

R&D Technical Lead @ deltatre

- Al, Machine Learning, Deep Learning on multimedia content
- Virtual/Augmented/Mixed Reality
- Immersive video streaming & 3D graphics for sport events
- Cloud solutions, web backends, serverless, video workflows
- Mobile apps dev (Windows / Android / Xamarin)
- End-to-end solutions with Microsoft Azure

SPONSOR

