Roll. No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute Affiliated to AKTU, Lucknow)

B. Tech

SEM: IV - THEORY EXAMINATION (2021 - 2022)

Subject: Design and Analysis of Algorithm

Max. Marks: 100

Time: 3 Hours

General Instructions:

- 1. The question paper comprises three sections, A, B, and C. You are expected to answer them as directed.
- 2. Section A Question No- 1 is 1 marker & Question No- 2 carries 2 mark each.
- 3. Section B Question No-3 is based on external choice carrying 6 marks each.
- 4. Section C Questions No. 4-8 are within unit choice questions carrying 10 marks each.
- 5. No sheet should be left blank. Any written material after a blank sheet will not be evaluated/checked.

## SECTION A

20

- 1. Attempt all parts:-
- The worst case complexity for insertion sort is (CO1) 1-a.
  - (a) O(n)
  - (b) O(log n)
  - (c) O(nlog n)
  - (d)  $O(n^2)$
- Suppose we are sorting an array of eight integers using heapsort, and we have just finished some heapify (either maxheapify or minheapify) operations. The array now looks like this: 16 14 15 10 12 27 28 How many heapify operations have been performed on root of heap? (CO1)
  - (a) 1
  - (b) 2
  - (c) 3 or 4
  - (d) 5 or 6
- No of fields in a node of Binomial heap are (CO2) 1-c.
  - (a) 4
  - (b) 5
  - (c) 6
  - (d) 7
- Given a heap of n nodes, the maximum number of tree for building the heap is (CO2) 1-d.
  - (a) n
  - (b) n-1
  - (c) n/2
  - (d) log n
- We can solve Single-Source shortest path problem using (CO3)
  - (a) Kruskal's Algorithm
  - (b) Prim's Algorithm
  - (c) Dijkstra's Algorithm
  - (d) Flyod-Warshal Algorithm
- For dense graph which of the following statement is true (CO3)
  - (a)  $V = E^2$
  - (b) E < |V|

|          | $(d) E = V^2$                                                                                                                                                                      |     |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1-g.     | If an optimal solution can be created for a problem by constructing optimal solutions for its subproblems, the problem possesses                                                   |     |
|          | subproblems, the problem possesses property. (CO4)                                                                                                                                 | 1   |
|          | (a) Overlapping subproblems                                                                                                                                                        |     |
|          | (b) Optimal substructure                                                                                                                                                           |     |
|          | (c) Memoization                                                                                                                                                                    |     |
| 1-h.     | (d) Greedy                                                                                                                                                                         |     |
| 1-11,    | Which of the following is true about the time complexity of the recursive solution of the subset sum problem? (CO4)                                                                | 1   |
|          | (a) It has an exponential time complexity                                                                                                                                          |     |
|          | (b) It has a linear time complexity                                                                                                                                                |     |
|          | (c) It has a logarithmic time complexity                                                                                                                                           |     |
| 1-i.     | (d) It has a time complexity of O(n2)                                                                                                                                              |     |
| 1-1.     | Problems that can be solved in polynomial time are known as? (CO5)                                                                                                                 | 1   |
|          | (a) intractable                                                                                                                                                                    |     |
|          | (b) tractable                                                                                                                                                                      |     |
|          | (c) decision                                                                                                                                                                       |     |
|          | (d) complete                                                                                                                                                                       |     |
| 1-j.     | A randomized algorithm uses random bits as input inorder to achieve a good performance over all possible choice of random bits. (CO5)                                              | - 1 |
| CO       | (a) worst case                                                                                                                                                                     |     |
| <b>.</b> | (b) best case                                                                                                                                                                      |     |
|          | (c) average case                                                                                                                                                                   |     |
| •        | (d) none of the mentioned                                                                                                                                                          |     |
|          | mpt all parts:-                                                                                                                                                                    |     |
| 2.a.     | Rank the following functions according to their order of growth. (CO1) n <sup>2</sup> , n, lgn, nlgn, n!, 2 <sup>n</sup> , n <sup>1/2</sup> , n <sup>n</sup> , n <sup>2</sup> logn | 2   |
| 2.b.     | Discuss the applications of Fibonacci Heap (CO2)                                                                                                                                   |     |
| 2.c.     | Explain different types of edges obtained during DFS Traversal on a directed graph (CO3)                                                                                           | 2   |
| 2.d.     | Explain N-Queen problem with its complexity? (CO4)                                                                                                                                 | 2   |
| 2.e.     | Explain Approximation Algorithm. (CO5)                                                                                                                                             | 2   |
|          | SECTION B                                                                                                                                                                          | 2   |
| 3. Answ  | ver any five of the following:-                                                                                                                                                    |     |
| 3-a.     |                                                                                                                                                                                    |     |
|          | Solve the following recurrence relation using master's theorem (CO1) $T(n) = 7T(n/2) + 3n^2 + 2$                                                                                   | 6   |
| 3-b.     | What is a priority queue? Explain key operations of priority queue With the help of an example. (CO1)                                                                              | 6   |
| 3-c.     |                                                                                                                                                                                    | U   |
| 3-d.     | Insert the nodes 15, 13, 12, 16, 19, 23, 5, 8 into empty Red Black Tree (CO2)                                                                                                      | 6   |
|          | Explain the algorithm to delete a given element in a binomial Heap. Give an example for the                                                                                        | 6   |
| 3.e.     | Write algorithm to solve fractional knapsack problem. For the given items, find the optimal solution: W: <6, 2, 4, 3, 5>, P: <12, 10, 9, 9, 5>, capacity of knapsack = 10 (CO3)    | 6   |
| 3.f.     | using dynamic programming. (CO4)                                                                                                                                                   | 6   |
| .g.      | What is randomized algorithms? Explain the concept behind randomized algorithms? (CO5)                                                                                             |     |
| 0        | randomized algorithms? (CO5)                                                                                                                                                       | 6   |

10

- 4. Answer any one of the following:-
- Write the algorithm of Counting sort? Sort the following elements using Counting sort 4-a. algorithm < 4, 8, 4, 2, 9, 9, 6, 2, 9> (CO1)
- Find the time complexity of following recurrence relation using recursion tree (CO1) 4-b.  $T(n)=2T(n^{1/2})+\log n$
- 5. Answer any one of the following:-
- Write algorithm for extracting minimum element in a fibonacci heap. Also give 10 5-a. example? (CO2)
- Using minimum degree 't' as 3, insert following sequence of integers 10, 25,20, 35, 30, 55, 10 5-b. 40, 45, 50, 55, 60, 75, 70, 65, 80, 85 and 90 in an initially empty B-Tree. Give the number of nodes splitting operations that take place (CO2)
- 6. Answer any one of the following:-
- Explain "single-source shortest path" problem. Implement an algorithm to solve single source shortest path problem when edges have positive weight only. Taking vertex 'S' as 6-a. source vertex, solve the problem for the given graph. (CO3)

## **Ouestion Instruction**



Implement Prim's algorithm to find minimum spanning tree. Analyze its time complexity. 10 6-b. Find MST of the given graph using Prim's algorithm. (CO3)

## Question Instruction



| 7. Answer | any one of the following:-                                                                                                                                                                                 | 10   |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 7-a.      | Consider the sum-of-subset problem, $n = 4$ , Sum = 13, and w1 = 3, w2 = 4, w3 = 5 and w4 = 6. Find a solution to the problem using backtracking. Show the state-space tree leading to the solution. (CO4) |      |
| 7-ь.      | Solve the instance of 0/1 knapsack problem using dynamic Programming: n = 4, M = 25, (P1, P2, P3 P4) = (10, 12, 14, 16), (W1, W2, W3, W4) = (9, 8, 12, 14) (CO4)                                           | 10   |
| 8. Answer | any one of the following:-                                                                                                                                                                                 |      |
| 8-a       | Define the following problems related to NPC: (CO5)                                                                                                                                                        | . 10 |
|           | (i) Vertex Cover (ii) Clique (iii) SAT and its variants                                                                                                                                                    | 10   |
| 8-b.      | Explain the KMP String matching algorithm for finding the pattern on a text and analyze the algorithm (COS)                                                                                                | 10   |

Dall Koko colu

Sankero con

inankoro.com

WWW.dllesilonbankoro.com