Ejercicio 2:

La implementación de las clases NodoArbol, ArbolBinarioBusqueda y ArbolAVL se basa en la bibliografía proporcionada por la cátedra. Sin embargo, en el módulo ArbolAVL, realicé modificaciones para habilitar la búsqueda y visualización de temperaturas por rango.

Luego, en la aplicación principal, he creado una instancia llamada base_datos de la clase Temperaturas_DB. He utilizado esta instancia para agregar, consultar y eliminar medidas de temperatura, además de realizar consultas en rangos de fechas y mostrar los resultados.

Complejidades de las funciones de Temperaturas_DB

Función	Complejidad	Descripción
guardar_temperatura	O(log n)	Inserta un nodo en el árbol AVL, con una complejidad promedio de O(log n) debido al equilibrio del árbol.
devolver_temperatura	O(log n)	Busca un nodo por fecha en el árbol AVL, con una complejidad promedio de O(log n) gracias al equilibrio del árbol.
max_temp_rango	O(log n + k)	Busca y encuentra la temperatura máxima en un rango de fechas. Requiere buscar el nodo inicial (O(log n) en promedio) y recorrer 'k' nodos en el rango.
min_temp_rango	O(log n + k)	Busca y encuentra la temperatura mínima en un rango de fechas. Implica buscar el nodo inicial (O(log n) en promedio) y recorrer 'k' nodos en el rango.
temp_extremos_rango	O(log n + k)	Busca y encuentra tanto la temperatura mínima como la máxima en un rango de fechas. Requiere buscar el nodo inicial (O(log n) en promedio) y recorrer 'k' nodos en el rango.

borrar_temperatura	O(log n)	Elimina una temperatura por fecha, implicando una búsqueda del nodo (O(log n) en promedio) y la operación de eliminación en el árbol AVL equilibrado.
devolver_temperaturas	O(log n + k)	Busca y recupera todas las temperaturas en un rango de fechas. Requiere buscar el nodo inicial (O(log n) en promedio) y recorrer 'k' nodos en el rango.
cantidad_muestras	O(1)	Devuelve la cantidad de muestras en la base de datos y no implica operaciones en el árbol. La complejidad es constante, O(1).

Un árbol AVL es una estructura de datos de búsqueda que mantiene su equilibrio para garantizar un rendimiento eficiente en las operaciones de búsqueda, inserción y eliminación. Sin embargo, en el peor de los casos,cuando el rango abarca todo el conjunto de datos, las operaciones que buscan o recorren un rango pueden degradarse a una eficiencia de O(n). Esta situación es más probable en operaciones como max_temp_rango, min_temp_rango, temp_extremos_rango y devolver_temperaturas.