NOVEMBER 1983 - REVISED JUNE 1987

- 65.536 x 4 Organization
- Single 5-V Supply (10% Tolerance)
- JEDEC Standardized Pinout
- Pinout Identical to TMS4416 (16K x 4 Dynamic RAM)
- Performance Ranges:

	ACCESS	ACCESS	READ	READ-
	TIME	TIME	OR	MODIFY-
	ROW	COLUMN	WRITE	WRITE
	ADDRESS	ADDRESS	CYCLE	CYCLE
	MAX	MAX	MIN	MIN
TMS4464-10	100 ns	50 ns	200 ns	270 ns
TMS4464-12	120 ns	60 ns	220 ns	295 ns
TMS4464-15	150 ns	75 ns	260 ns	345 ns

- Long Refresh Period . . . 4 ms (Max)
- Low Refresh Overhead Time . . . As Low As 1.3% of Total Refresh Period
- On-Chip Substrate Bias Generator
- All Inputs, Outputs, and Clocks Fully TTL Compatible
- 3-State Unlatched Output
- Early Write or G to Control Output Buffer Impedance
- Page-Mode Operation for Faster Access
- Power Dissipation As Low As:
 - Operating . . . 330 mW (Max)
 - Standby . . . 25 mW (Max) (for 150 ns devices)
- RAS-Only Refresh Mode
- CAS-Before-RAS Refresh Mode
- Available with MIL-STD-883C, Class B Processing and S (-55°C to 110°C) Temperature Ranges (SMJ4464)

N PACKAGE (TOP VIEW)
G 1 U18 VSS DQ1 2 17 DQ4 DQ2 3 16 CAS W 4 15 DQ3 RAS 5 14 A0 A6 6 13 A1 A5 7 12 A2 A4 8 11 A3 VDD 9 10 A7
FM PACKAGE (TOP VIEW)
DQ2 13

PIN	NOMENCLATURE
A0-A7	Address Inputs
CAS	Column-Address Strobe
DQ1-DQ4	Data In Data Out
G	Output Enable
RAS	Row Address Strobe
V _{DD}	5-V Supply
Vss	Ground
₩	Write Enable

description

The TMS4464 is a high-speed, 262,144-bit dynamic random-access memory, organized as 65,536 words of four bits each. It employs state-of-the-art SMOS (scaled MOS) N-channel double-level polysilicon/polycide gate technology for very high performance combined with low cost and improved reliability.

This device features maximum RAS access times of 100 ns, 120 ns, or 150 ns. Power dissipation maximums are 330 mW operating and 25 mW standby for 150-ns devices.

New SMOS technology permits operation from a single 5-V supply, reducing system power supply and decoupling requirements, and easing board layout. Inp. peaks are 125 mA typical, and a -1-V input voltage undershoot can be tolerated, minimizing system noise considerations.

All inputs and outputs, including clocks, are compatible with Series 74 TTL. All address and data-in lines are latched on chip to simplify system design. Data out is unlatched to allow greater system flexibility.

The TMS4464 is offered in 18-pin plastic dual-in-line and 18-lead plastic chip carrier packages. It is guaranteed for operation from 0 °C to 70 °C. The dual-in-line package is designed for insertion in mounting-hole rows on 7.62-mm (300-mil) centers.

operation

address (A0 through A7)

Sixteen address bits are required to decode 1 of 65,536 storage locations. Eight row-address bits are set up on pins A0 through A7 and latched onto the chip by the row-address strobe (RAS). Then the eight column-address bits are set up on pins A0 through A7 and latched onto the chip by the column-address strobe (CAS). All addresses must be stable on or before the falling edges of RAS and CAS. RAS is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. CAS is used as a chip select activating the column decoder and the input and output buffers.

write enable (W)

The read or write mode is selected through the write-enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write-enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} , data out will remain in the high-impedance state for the entire cycle permitting common I/O operation.

data in (DQ1-DQ4)

Data is written during a write or read-modify-write cycle. Depending on the mode of operation, the falling edge of \overline{CAS} or \overline{W} strobes data into the on-chip data latches. These latches can be driven from standard TTL circuits without a pull-up resistor. In an early write cycle, \overline{W} is brought low prior to \overline{CAS} and the data is strobed in by \overline{CAS} with setup and hold times referenced to this signal. In a delayed-write or read-modify-write cycle, \overline{CAS} will already be low, thus the data will be strobed in by \overline{W} with setup and hold times referenced to this signal. In a delayed or read-modify-write cycle, \overline{G} must be high to bring the output buffers to high impedance prior to impressing data on the I/O lines.

data out (DQ1-DQ4)

The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fan-out of two Series 74 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating) state until \overline{CAS} is brought low. In a read cycle the output goes active after the access time interval $t_a(C)$ that begins with the negative transition of \overline{CAS} as long as $t_a(R)$ and $\underline{t_a(G)}$ are satisfied. The output becomes valid after the access time has elapsed and remains valid while \overline{CAS} and \overline{G} are low. \overline{CAS} or \overline{G} going high returns it to a high-impedance state. In a delayed-write or read-modify-write cycle, the output must be put in the high-impedance state prior to applying data to the DQ input. This is accomplished by bringing \overline{G} high prior to applying data, thus satisfying $t_{G}H_{D}$.

output enable (G)

The \overline{G} input controls the impedance of the output buffers. When \overline{G} is high, the buffers will remain in the high-impedance state. Bringing \overline{G} low during a normal cycle will activate the output buffers putting them in the low-impedance state. It is necessary for both \overline{RAS} and \overline{CAS} to be brought low for the output buffers to go into the low-impedance state. Once in the low-impedance state they will remain in the low-impedance state until \overline{G} or \overline{CAS} is brought high.

refresh

A refresh operation must be performed at least once every four milliseconds to retain data. This can be achieved by strobing each of the 256 rows (AO-A7). A normal read or write cycle will refresh all bits in each row that is selected. A RAS-only operation can be used by holding CAS at the high (inactive) level, thus conserving power as the output buffer remains in the high-impedance state.

CAS-before-RAS refresh

The CAS-before-RAS refresh is utilized by bringing CAS low earlier than RAS (see parameter tCLRL) and holding it low after RAS falls (see parameter tRLCHR). For successive CAS-before-RAS refresh cycles, CAS can remain low while cycling RAS. The external address is ignored and the refresh address is generated internally.

hidden refresh

Hidden refresh may be performed while maintaining valid data at the output pin. This is accomplished by holding \overline{CAS} at $\overline{V_{IL}}$ after a read operation and cycling \overline{RAS} after a specified precharge period, similar to a \overline{CAS} -before- \overline{RAS} refresh cycle. The external address is also ignored during the hidden refresh cycles. The data at the output pin remains valid up to the maximum \overline{CAS} low pulse duration, $t_{W(CL)}$.

page mode

Page-mode operation allows effectively faster memory access by keeping the same row address and strobing random column addresses onto the chip. Thus, the time required to set up and strobe row addresses for the same page is eliminated. The maximum number of columns that can be addressed is determined by $t_{W(R)}$, the maximum \overline{RAS} low pulse duration.

power up

To achieve proper device operation, an initial pause of 200 μ s is required after power up, followed by a minimum of eight initialization cycles.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Voltage on any pin including VDD supply (see Note 1)	V to 7 V
Short circuit output current	. 50 mA
Power dissipation	1 W
Operating free-air temperature	to 70°C
Storage temperature range65°C t	o 150°C

[†]Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		MIN	NOM	MAX	UNIT
V _{DD}	Supply voltage	4.5	5	5.5	V
Vss	Supply voltage		0		V
VIH	High-level input voltage	2.4		V _{DD} +1	V
VIL	Low-level input voltage (see Note 2)	-1		8.0	٧
TA	Operating free-air temperature	0		70	°C

NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as maximum, is used in this data sheet for logic voltage levels only.

NOTE 1: All voltage values in this data sheet are with respect to VSS

logic symbol†

¹This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the dual-in-line package.

functional block diagram

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

PARAMETER		TEST	TMS4464-10		TMS4464-12		UNIT
	PARAMETER	CONDITIONS	MIN	MAX	MIN	MAX	UNIT
Voн	High-level output voltage	I _{OH} = -5 mA	2.4		2.4		V
VOL	Low-level output voltage	I _{OL} = 4.2 mA		0.4		0.4	V
ij	Input current (leakage)	V _I = 0 V to 6.5 V, V _{DD} = 5 V, All other pins = 0 V to 6.5 V		± 10		± 10	μΑ
ю	Output current (leakage)	V _O = 0 V to 5.5 V, V _{DD} = 5 V, CAS high, All outputs open		±10		± 10	μΑ
DD1	Average operating current during read or write cycle	t _C = minimum cycle, All outputs open		70		65	mA
I _{DD2}	Standby current	After 1 memory cycle, DQ1-DQ4 held at > 0 V, RAS and CAS high, All outputs open	_	4.5		4.5	mA
¹ DD3	Average refresh current	t_C = minimum cycle, \overline{RAS} low, \overline{CAS} high, All outputs open		58		53	mA
IDD4	Average page-mode current	t _{c(P)} = minimum cycle, RAS low and CAS cycling, All outputs open	·	50		45	mA

				TMS4464-15		
	PARAMETER	TEST CONDITIONS		MAX	UNIT	
Vон	High-level output voltage	I _{OH} = -5 mA	2.4		V	
VOL	Low-level output voltage	I _{OL} = 4.2 mA		0.4	V	
lj.	Input current (leakage)	V _I = 0 V to 6.5 V, V _{DD} = 5 V, All other pins = 0 V to 6.5 V		± 10	μА	
10	Output current (leakage)	VO = 0 V to 5.5 V, VDD = 5 V, CAS high, All outputs open		± 10	μА	
^I DD1	Average operating current during read or write cycle	t _c = minimum cycle. All outputs open		60	mA	
¹ DD2	Standby current	After 1 memory cycle, DQ1-DQ4 held at > 0 V, RAS and CAS high, All outputs open		4.5	mA	
I _{DD3}	Average refresh current	t _C = minimum cycle, RAS low, CAS high, All outputs open		48	mA	
I _{DD4}	Average page-mode current	t _{C(P)} = minimum cycle, RAS low, CAS cycling, All outputs open		40	mA	

capacitance over recommended supply voltage range and operating free-air temperature range, f = 1 MHz

	PARAMETER		4464	UNIT
			MAX	OWIT
C _{I(A)}	Input capacitance, address inputs		5	рF
C _{I(RC)}	Input capacitance, strobe inputs		7	рF
C _{r(W)}	Input capacitance, write enable input		7	ρF
Ciro	Output capacitance		7	рF

switching characteristics over recommended supply voltage range and operating free-air temperature range

PARAMETER		TEST CONDITIONS	ALT.	TMS4464-10		TMS4464-12		UNIT
		TEST CONDITIONS	SYMBOL	MIN	MAX	MIN	MAX	UNIT
ta(C)	Access time from CAS	t _{RLCL} ≥ MAX, C _L = 100 pF. Load = 2 Series 74 TTL gates	†CAC		50		60	ns
t _{a(R)}	Access time from RAS	t _{RLCL} = MAX, C _L = 100 pF, Load = 2 Series 74 TTL gates	trac t		100		120	ns
ta(G)†	Access time after \overline{G} low	C _L = 100 pF, Load = 2 Series 74 TTL gates	^t GAC		30		35	ns
t _{dis(CH)}	Output disable time after CAS high	C _L = 100 pF, Load = 2 Series 74 TTL gates	[†] OFF	0	30	0	30	ns
t _{dis} G,	Output disable time after $\overline{\mathbb{G}}$ high	C _L = 100 pF, Load = 2 Series 74 TTL gates	^t G0FF	0	30	0	30	ns

PARAMETER		TEST CONDITIONS	ALT.	TMS4464-15		UNIT
		TEST CONDITIONS	SYMBOL	MIN	MAX	ONIS
[†] a(C)	Access time from CAS	t _{RLCL} ≥ MAX, C _L = 100 pF, Load = 2 Series 74 TTL gates	†CAC		75	ns
t _{a(R)}	Access time from RAS	t _{RLCL} = MAX, C _L = 100 pF, Load = 2 Series 74 TTL gates	†RAC		150	ns
ta(G)↑	Access time after \overline{G} low	C _L = 100 pF, Load = 2 Series 74 TTL gates	†GAC		40	ns
^t dis(CH)	Output disable time after CAS high	C _L = 100 pF, Load = 2 Series 74 TTL gates	^t OFF	0	30	ns
t _{dis(G)}	Output disable time after \overline{G} high	C _L = 100 pF. Load = 2 Series 74 TTL gates	tGOFF	0	30	ns

 $t_{a(C)}$ and $t_{a(R)}$ must be satisfied to guarantee $t_{a(G)}$.

Dynamic RAMs

65.536-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY

timing requirements over recommended supply voltage range and operating free-air temperature range (see Note 3)

	-	ALT.	TMS4464-10		TMS4	464-12	
		SYMBOL	MIN	MAX	MIN	MAX	UNIT
t _{c(P)}	Page-mode cycle time	tPC	100		120		ns
t _c (PM)	Page-mode cycle time (read-modify-write cycle)	[†] PCM	170		195		ns
t _{c(rd)}	Read cycle time [†]	tRC	200		220		ns
t _c (W)	Write cycle time	tWC	200		220		ns
tc(rdW)	Read-write/read-modify-write cycle time	t _{RWC}	270		295		ns
tw(CH)₽	Pulse duration, CAS high (page mode)	tCP	40		50		ns
tw(CH)	Pulse duration, CAS high (non-page mode)	[†] CPN	25		25		ns
tw(CL)	Pulse duration, CAS low ‡	^t CAS	50	10,000	60	10,000	ns
tw(RH)	Pulse duration, RAS high	tRP	90		90		ns
tw(RL)	Pulse duration, RAS low §	†RAS	100	10,000	120	10,000	ns
t _W (W)	Write pulse duration	tWP	30		30		ns
tt	Transition times (rise and fall) for RAS and CAS	t _T	3	50	3	50	ns
t _{su(CA)}	Column-address setup time	t _{ASC}	0		0		ns
t _{su(RA)}	Row address setup time	tASR	0		lo		ns
t _{su(D)}	Data setup time	tDS	0		0		ns
t _{su(rd)}	Read-command setup time	†RCS	0		0		ns
t _{su} (WCL)	Early write-command setup time before CAS low	twcs	0		0		ns
t _{su(WCH)}	Write-command setup time before CAS high	^t CWL	30		35		ns
t _{su(WRH)}	Write-command setup time before RAS high	tRWL	30		35		ns
th(CLCA)	Column-address hold time after CAS low	^t CAH	15		20		ns
th(RA)	Row-address hold time	†RAH	15		15		ns
th(RLCA)	Column-address hold time after RAS low	†AR	65		80		ns
th(CLD)	Data hold time after CAS low	tDH	30		30		ns
th(RLD)	Data hold time after RAS low	t _{DHR}	80		90		ns
t _h (WLD)	Data hold time after W low	t _{DH}	30		30		ns
^t h(CHrd)	Read-command hold time after CAS high	<u>tRC</u> H	0		.0		ns
th(RHrd)	Read-command hold time after RAS high	tRRH	10		10		ns
th(CLW)	Write-command hold time after CAS low	tWCH	30		30		ns
th(RLW)	Write-command hold time after RAS low	†WCR	80		90		ns

Continued next page.

NOTE 3: Timing measurements are referenced to VIL MAX and VIH MIN.

^TAll cycle times assume $t_t = 5$ ns.

[‡]In a read-modify-write cycle, tcLWL and tsutWCH) must be observed. Depending on the user's transition times, this may require additional CAS low time (tw(CL)).

In a read-modify-write cycle, tRLWL and tsulWRH) must be observed. Depending on the user's transition times, this may require additional RAS low time (tw(RL)).

timing requirements over recommended supply voltage range and operating free-air temperature range (continued) (see Note 3)

		ALT.	TMS44	164-10	TMS44	164-12	
		SYMBOL	MIN	MAX	MIN	MAX	UNIT
tRLCHR	Delay time, RAS low to CAS high	[†] CHR	20		25		ns
^t RLCH	Delay time, RAS low to CAS high	tCSH	100		120		ns
^t CHRL	Delay time, CAS high to RAS low	tCRP	0		0		ns
^t RHCL	Delay time, RAS high to CAS low 9	^t RPC	0		0		ns
tCLRH	Delay time, CAS low to RAS high	tRSH	50		60		ns
tCLWL	Delay time, CAS low to W low (read-modify-write cycle only) #	tCWD	85		95		ns
tCLRL	Delay time, CAS low to RAS low *	tCSR	10		10		ns
tRLCL	Delay time, RAS low to CAS low (maximum value specified only to guarantee access time)	^t RCD	25	50	25	60	ns
tRLWL	Delay time, RAS low to W low (read-modify-write cycle only) #	tRWD	135		155		ns
^t GHD	Delay time, \overline{G} high before data applied at DQ	tGDD	30		30		ns
t _{rf}	Refresh time interval	tREF		4		4	ms

NOTE 3: Timing measurements are referenced to V_{IL} MAX and V_{IH} MIN. $^{\mathbf{f}}$ $\overline{\text{CAS}}$ -before $\overline{\text{RAS}}$ refresh option only. $^{\#}$ $\overline{\text{G}}$ must disable the output buffers prior to applying data to the device.

timing requirements over recommended supply voltage range and operating free-air temperature range (continued) (see note 3)

		ALT.	TMS4464-15		
		SYMBOL	MIN	MAX	UNIT
t _C (P)	Page-mode cycle time	tPC	145		ns
t _{c(PM)}	Page-mode cycle time (read-modify-write cycle)	^t PCM	230		ns
t _{c(rd)}	Read cycle time [†]	tRC	260		ns
t _c (W)	Write cycle time	twc	260		ns
t _{c(rdW)}	Read-write/read-modify-write cycle time	tRWC	345		ns
tw(CH)P	Pulse duration, CAS high (page mode)	tCP	60		ns
tw(CH)	Pulse duration, CAS high (non-page mode)	tCPN	25		ns
tw(CL)	Pulse duration, CAS low [‡]	tCAS	75	10,000	ns
tw(RH)	Pulse duration, RAS high	tRP	100		ns
tw(RL)	Pulse duration, RAS low [§]	tRAS	150	10,000	ns
tw(W)	Write pulse duration	twp	45		ns
tt	Transition times (rise and fall) for RAS and CAS	tΤ	3	50	ns
t _{su(CA)}	Column-address setup time	tASC	0		ns
t _{su(RA)}	Row address setup time	tASR	0		ns
t _{su(D)}	Data setup time	tDS	0		ns
tsuirdi	Read-command setup time	tRCS	0		ns
t _{su(WCL)}	Early write-command setup time before CAS low	twcs	0		ns
t _{su} (WCH)	Write-command setup time before CAS high	tCWL	45		ns
tsu(WRH)	Write-command setup time before RAS high	tRWL	45		ns
th(CLCA)	Column-address hold time after CAS low	tCAH	25		ns
th(RA)	Row-address hold time	^t RAH	15		ns
th(RLCA)	Column-address hold time after RAS low	tAR	100		ns
th(CLD)	Data hold time after CAS low	^t DH	45		ns
th(RLD)	Data hold time after RAS low	t _{DHR}	120		ns
th(WLD)	Data hold time after \overline{W} low	tDH	45		ns
th(CHrd)	Read command hold time after CAS high	tRCH	0		ns
^t h(RHrd)	Read-command hold time after RAS high	^t RRH	10		ns
th(CLW)	Write-command hold time after CAS low	tWCH	45		ns
th(RLW)	Write-command hold time after RAS low	twcn	120		ns

Continued next page.

NOTE 3: Timing measurements are referenced to VIL MAX and VIH MIN.

[†]All cycle times assume tt = 5 ns.

this a read-modify-write cycle, t_{CLWL} and t_{su{WCH}} must be observed. Depending on the user's transition times, this may require additional CAS low time (t_{w(CL)}).

In a read-modify-write cycle, t_{RLWL} and t_{su(WRH)} must be observed. Depending on the user's transition times, this may require additional RAS low time (t_{w(RL)}).

timing requirements over recommended supply voltage range and operating free-air temperature range (concluded) (see Note 3)

		ALT.	TMS4464-15		
		SYMBOL	MIN	MAX	UNIT
^t RLCHR	Delay time, RAS low to CAS high	t _{CHR}	30		ns
^t RLCH	Delay time, RAS low to CAS high	tCSH	150		ns
^t CHRL	Delay time, CAS high to RAS low	[†] CRP	0		ns
†RHCL	Delay time, RAS high to CAS low	tRPC	О		ns
[†] CLRH	Delay time, CAS low to RAS high	trsh	75		ns
†CLWL	Delay time, CAS low to W low (read-modify-write cycle only) #	tCWD	110		ns
^t CLRL	Delay time, CAS low to RAS low 9	t _{CSR}	20		ns
[†] RLCL	Delay time, RAS low to CAS low (maximum value specified only to guarantee access time)	^t RCD	25	75	ns
^t RLWL	Delay time, RAS low to W low (read-modify-write cycle only) #	†RWD	185		ns
^t GHD	Delay time, \overline{G} high before data applied at DQ	tGDD	30		ns
t _{rf}	Refresh time interval	tREF		4	ms

NOTE 3: Timing measurements are referenced to V_{IL} MAX and V_{IH} MIN. \P CAS-before-RAS refresh option only. \P must disable the output buffers prior to applying data to the device.

read cycle timing

early write cycle timing

write cycle timing

read-write/read-modify-write cycle timing

page-mode read cycle timing

NOTE 4: A write cycle or read-modify write cycle can be intermixed with read cycles as long as the write and read-modify-write timing specifications are not violated.

page-mode write cycle timing

TEXAS INSTRUMENTS
POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

RAS-only refresh cycle timing

hidden refresh cycle timing

CAS-before-RAS refresh cycle timing

