NCEA Level 3 Calculus (Integration)

16. Anti-differentiation

A few weeks ago, it was hinted that finding area was in some way the inverse to finding slope. In last week's questions, the curtain was pulled back a little further when we calculated an area function for a variable endpoint, took the derivative, and got the original function back. Next week, all will be revealed; but first, we need to do a little bit more work. This week, we're going to look at anti-differentiation: finding the original function given its derivative.

Example. One antiderivative of $y' = 3x^2 + 4$ is $x^3 + 4x$. Another is $x^3 + 4x + 1$. A third is $x^3 + 4x + 7$. Obviously every function of the form $y = x^3 + 4x + C$ for some constant C will differentiate to the given y', so we must remember always to make this clear.

We also call antiderivatives **indefinite integrals**, and in this notation the above example is

$$\int 3x^2 + 4 \, \mathrm{d}x = x^3 + 4x + C.$$

Example. The most general antiderivative of $\sin x$ is $-\cos x + C$.

Example. The most general antiderivative of $\tan x$ is $-\ln|\cos x| + C$.

Example. $\int \frac{1}{x+3} dx = \ln|x+3| + C$.

Example. $\int \tan^2 \theta \, d\theta = \int \sec^2 \theta - 1 \, d\theta = \tan \theta - \theta + C$. Example. $\int \frac{2x}{x^2+1} \, dx = \ln |x^2+1| + C$. Example. $\int Ke^{Kx} \, dx = e^{Kx} + C$ for all constants K.

Questions

- 1. A In each case, find the most general antiderivative.
 - (a) f(x) = 2x
 - (b) $f(x) = x^{-3}$
 - (c) f(x) = 0
 - (d) $f(x) = \sec^2(x) + \sqrt{x}$
 - (e) $f(x) = x\sqrt{x}$
 - (f) $f(t) = \sin t \cos t$
- 2. A Verify the above examples by differentiation.
- 3. A Show that $\int 3x^2 + 4x + 5 + 2e^{2x} dx = x^3 + 2x^2 + 5x + e^{2x} + C$
- 4. A Find y' when $y = 3 + \sin(2x + 4)$ and hence find $\int 2\cos(2x + 4) dx$.
- 5. A If $\frac{dy}{dt} = 1.5\sqrt{t}$ and y(4) = 10, find y(t) exactly.
- 6. M Find f if $f''(x) = 12x^2 + 6x 4$, f(0) = 4, f(1) = 1.
- 7. A The velocity of a particle is given by v(t) = 2t + 1. Find its position at t = 4 if its position at t = 0 is
- 8. M The acceleration of a particle is given by $a(t) = 10 \sin t + 3 \cos t$. At t = 0, its position is x = 0; at $\overline{t} = 2\pi$, its position is x = 12. Find its position at $t = \frac{\pi}{2}$.
- 9. A Find all functions g such that $g'(x) = 4\sin x + \frac{2x^5 \sqrt{x}}{x}$.

10. $\[\underline{\mathsf{M}} \]$ For each function, sketch an antiderivative passing through (0,0):

