CPSC 121 - PREDICATE LOGIC I SOLUTIONS

Problem 1. Let K(x) be the statement "x can speak Klingon" and let M(x) be the statement "x knows the computer language Malbolge (mah-leh-bol-djeh)". Express each of the following sentences in terms of K(x), M(x), quantifiers and logical connectives. The domain for quantifiers, denoted by S, consists of all students at your school.

- (1) There is a student at your school who can speak Klingon and who knows Malbolge.
- (2) There is a student at your school who can speak Klingon but doesn't know Malbolge.
- (3) Every student at your school can speak Klingon or knows Malbolge.
- (4) No student at your school can speak Klingon or knows Malbolge.
- (5) Students who know Malbolge do not speak Klingon.

Solution.

- (1) $\exists x \in S, K(x) \land M(x)$
- (2) $\exists x \in S, K(x) \land \sim M(x)$
- (3) $\forall x \in S, K(x) \vee M(x)$
- (4) $\sim \exists x \in S, K(x) \vee M(x)$
- (5) $\forall x \in S, M(x) \to \sim K(x)$

Problem 2. For these questions, translate English sentences to predicate logic, and translate predicate logic statements to (naturally sounding) English. Use the following domain and predicates:

- A: the domain of all animals
- \bullet C(x): x is a cheetah
- T(x): x is a turtle
- P(x): x is a pigeon
- R(x,y): x runs faster than y
- F(x): x can fly
- B(x): x is blue
- G(x): x is green
- E(x,y): x wants to eat y
- a) $\exists x \in A, G(x) \land P(x)$

Solution: There exists a green pigeon.

b) $\exists x \in A, P(x) \land G(x)$

Solution: There exists a green pigeon.

c) $\exists x \in A, P(x) \to G(x)$

Solution: There is an animal that if it is a pigeon then it is green. Note, this statement is trivially true if there is a non-pigeon in the set of animals, A, even though there may be no green pigeons.

d) $\forall x \in A, P(x) \to G(x)$

Solution: All pigeons are green.

e) $\forall x \in A, G(x) \to P(x)$

Solution: All green animals are pigeons.

f) $\forall x \in A, G(x) \land P(x)$

Solution: All animals are green pigeons.

g) $\exists x \in A, \exists y \in A, (E(x,y) \land R(x,y))$

Solution: There is an animal that wants to eat another animal and can run faster than that animal.

h) Cheetahs run faster than turtles.

Solution: $\forall x \in A, \forall y \in A, (C(x) \land T(y)) \rightarrow R(x,y)$

i) There is a turtle that runs faster than some cheetah.

Solution: $\exists x \in A, \exists y \in A, C(x) \land T(y) \land R(y, x)$

j) There are no blue cheetahs.

Solution:
$$\sim (\exists x \in A, B(x) \land C(x))$$

Or equivalently,
$$\forall x \in A, \sim (B(x) \land C(x))$$

k) No turtle can outrun a cheetah.

Solution:
$$\sim (\exists x \in A, \exists y \in A, T(x) \land C(y) \land R(x,y))$$

1) Cheetahs that want to eat all blue pigeons can fly.

Solution:
$$\forall x \in A, (C(x) \land (\forall y \in A, (P(y) \land B(y)) \rightarrow E(x,y))) \rightarrow F(x)$$

m) Flying blue turtles want to eat green cheetahs and can run faster than pigeons.

Solution:
$$\forall x \in A, (B(x) \land F(x) \land T(x)) \rightarrow (\forall y \in A, (G(y) \land C(y)) \rightarrow E(x,y)) \land (\forall z \in A, P(z) \rightarrow R(x,z))$$