(21) Application No. 57291/73 (22) Filed 11 Dec. 1973

(31) Convention Application No. 319 949 (32) Filed 29 Dec. 1972 in

(33) United States of America (US)

(44) Complete Specification published 10 Dec. 1975

(51) INT CL² C07D 471/04; Δ61K 31/395//(C07D 471/04, 221/00, 231/00)

(52) Index at acceptance

C2C 1341 1400 140X 1470 1532 1626 214 215 220 226 227 246 247 250 251 252 253 257 25X 25X 25X 25X 25X 355 305 307 313 314 31Y 312 312 312 317 337 360 361 364 365 366 367 368 367 373 456 347 454 450 491 500 507 620 623 624 628 630 650 652 65X 670 672 678 697 790 797 BC LS

(72) Inventors THEODOR DENZEL and HANS HOEHN

(54) DERIVATIVES OF PYRAZOLOPYRIDINE-5-CARBOXYLIC ACIDS AND ESTERS

(71) We, E. R. SQUIBB & SONS, INC., a corporation organised and existing under the laws of the State of Delaware, United States of America, residing at Law-encewill-Princeton Road, Princeton, New Jersey, United States of America, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:

This invention provides amino derivatives of pyrazolo - [3,4 - b] pyridine - 6 - carboxylic acids, esters and salts of these compounds as well as processes for producing them. More specifically, the invention provides compounds of the formula

00 hydrogen, lower alkyl, phenyl or phenyl-lower alkyl; R₂ is hydrogen or lower alkyl; R₃ and R₄ each is hydrogen, lower alkyl, phenyl, R₂, R₇-phenyl-lower alkyl or dilower alkylamino-lower alkyl, or R₃ and R₄ to ogether with the nitrogen to which they are attached form one of the heterocyclic R₂, R₇-pyrrolidino, R₃, R₇-diphydroyridazinyl or R₄, pyrazolyl, A₃, R₂-diphydrogen, lower alkyl, 00 phenyl, phenyl-lower alkyl or halogen; R₃

wherein R is hydrogen or lower alkyl: R, is

R₇ each is hydrogen, lower alkyl, trifluoromethyl or carboxy, R₈ and R₉ each is hydrogen, lower alkyl or hydroxy-lower alkyl, including their physiologically acceptable acid addition saits.

Preferably only one of R₂ and R₇ is trifluoromethyl or carboxy, and preferably only one of R₃ and R₄ is di-lower alkylamino-lower alkyl (preferably only one of the last named group). It is also preferred that not more than one of R₄ and R₅ is a hydroxy-lower alkyl group.

The lower alkyl groups in any of the foregoing radicals are straight or branched chain hydrocarbon groups of up to seven carbon atoms for example, methyl, ethyl, propyl, isopropyl, butyl or t-butyl. The one to four carbon groups are preferred. All four halogens are contemplated but

chlorine and bromine are preferred.

The products of the examples, which are representative of the various compounds of this invention, constitute preferred embodiments. Preferably R, is hydrogen, particularly when R, includes a cyclic substituent. Preferred heterocyclic radicals are those shown in the examples, especially perjentino and piperazino and their methyl and hydroxyethyl derivatives. Itspecially preferred compounds of formula I are those wherein R is hydrogen or lower alkyl, especially ethyl, R, is hydrogen, chyl or buyl, R, is hydrogen or ethyl, and R, is hydrogen or ethyl, and R, is hydrogen, methyl or chlorine.

The compounds of formula I may be produced by the following series of reactions. The symbols in the formulae have the meaning previously described.

[Price 33+1

45

A 5-aminopyrazole of the formula

[produced analogous to the procedure described in Z.f. Chemie 10, 386 (1970)], is made to react with an oxalacetic acid ester of the formula

by heating at a temperature of about 110— 120° C. in an acidic solvent such as acetic acid, analogous to the procedure in Pharmazie, 26, 732 (1971). The resulting compound of the formula

with the hydroxy group in the 4-position is refluxed for several hours with a phosphorus halide such as phosphorus oxychloride to obtain the intermediate of the formula

wherein X is halogen, preferably chlorine or 20 bromine. Instead of halogenating, reaction of the compounds of formula IV with an alkyl halide in the presence of an inorganic base, such as potassium carbonate, produces a compound of the formula

25

30

The products of formula I are then prepared from compounds of formula V or VI by reaction with the appropriate primary or secondary amine of the formula

This reaction is effected by treating the reactants either at room or elevated temperatures. In some cases it may be advantageous to make use of an autoclave.

A product of formula I wherein R, is hydrogen is produced by a modification of the foregoing procedure. According to this modification, a 5-aminopyrazole of formula II, wherein R, is an arylmethyl group, or a heteromethyl group is used. This starting material has the formula

wherein R_{10} is an aromatic or heterocyclic nucleus such as phenyl, furyl, pyridyl, or pyrimidyl.

This material is processed as described above through the reaction with the oxalacetic acid ester of formula III to obtain a compound of formula IV with a hydroxy group in the 4-position. Then alkylating leads to a compound of the formula

At this point, the compound of formula Va is oxidized with an oxidizing agent such as selenium dioxide in a high boiling solvent such as diethyleneglycol dimethylether at about 160°. This yields a compound of formula VI wherein R, is hydrogen. This product may be treated with a primary or secondary amine as described above.

The bases of formula I form salts by reaction with a variety of inorganic and organic acids providing acid addition salts including, for example, hydrohalides (especially the hydrochloride), sulfate, nitrate, phosphate, oxalate, tartrate, malate, citrate, acetate, ascorbate, succinate, benzenesulfonate, cyclohexanesulfonate, cyclohexanesulfamate and toluenesulfonate. The acid addition salts frequently provide a convenient means for isolating the product, e.g., by forming and precipitating the salt in an appropriate menstruum in which the salt is insoluble, then after separation of the salt, neutralizing with a base such as barium hydroxide or sodium hydroxide, to obtain the free base of formula I. Other salts may then be formed from the free base by reaction with an equivalent of acid.

ester

Compounds of this invention have been found to be central nervous system depressants and may be used as tranquilizers or ataractic agents for the relief of anxiety and tension states, for example, in mice, cats, rats, dogs and other mammalian species, in the same manner as chlordiazepoxide. For this purpose a compound or mixture of compounds of formula I, or non-toxic, physiologically accept-10 able acid addition salt thereof, may be administered orally or parenterally in a pharmaceutical preparation including a solid or liquid carrier, e.g. in a conventional dosage form such as tablet, capsule, or sterile injectable preparation. A single dose, or preferably 2 to 4 divided daily doses, provided on a basis of about 1 to 50 mg. per kilogram per day, preferably about 2 to 15 mg. per kilogram per day, is appropriate. These may be con-20 ventionally formulated in an oral or parenteral dosage form by compounding about 10 to 250 mg, per unit of dosage with conventional vehicle, excipient, binder, preservative, stabilizer, or flavor as called for by accepted

25 pharmaceutical practice. These compounds also increase the intracellular concentration of adenosine - 3',5'cyclic monophosphate, and thus by the administration of about 1 to 100 mg/kg/day, preferably about 10 to 50 mg/kg., in single or two to four divided doses in conventional oral or parenteral dosage forms such as those described above may be used to alleviate the symptoms of asthma.

Compounds of this invention have also been found to have antiinflammatory properties and to be capable of use as antiinflammatory agents, for example, to reduce local inflammatory conditions such as those of an oedema-40 tous nature or resulting from proliferation of connective tissue in various mammalian species such as rats and dogs when given orally in dosages of about 5 to 50 mg/kg/day, preferably 5 to 25 mg/kg/day, in single or 2 to 4 divided doses, as indicated by the carageenan oedema assay in rats. The active substance may be utilized in compositions such as tablets, capsules, solutions or suspensions containing up to about 300 mg. per unit of dosage of a compound or mixture of compounds of formula I or physiologically acceptable acid addition salt thereof. They may be compounded in conventional manner with a physiologically acceptable vehicle or carrier, excipient, binder, preservative, stabilizer or flavor, as called for by accepted pharmaceutical practice. Topical preparations containing about 0.01 to 3 percent by weight of active substance in a lotion, salve or cream may also

The following examples are illustrative of the invention. All temperatures are on the centigrade scale.

Example 1. 4 - Butylamino - 1 - ethyl - 1H - pyrazolo-[3,4 - b] pyridine - 6 - carboxylic acid) 1 - ethyl - 4 - hydroxy - 1H - pyrazolo-[3,4 - b] pyridino - 6 - carboxylic acid ethyl

111 g. of 5 - Amino - 1 - ethylpyrazole (1 mol.) and 210 g. of sodium oxalacetic acid ethyl ester (1 mol.) are refluxed in 1 liter of acetic acid for 5 hours. After this period the acetic acid is removed in vacuo and the residue is treated with water. 1 - Ethyl - 4 - hydroxy-1H - pyrazolo[3,4 - b]pyridine - 6 - carboxylic acid ethyl ester solidifies, is filtered off

and recrystallized from methanol, m.p. 178-180°, yield 198 g. (84%). b) 4 - ethoxy - 1 - ethyl - 1H - pyrazolo-[3,4 - b] pyridine - 6 - carboxylic acid ethyl

23.5 g. of 1 - Ethyl - 4 - hydroxy - 1Hpyrazolo[3,4 - b]pyridine - 6 - carboxylic acid ethyl ester (0.1 mol.) are dissolved in 100 ml. of anhydrous dimethylformamide. 22 g. of potassium carbonate (0.15 mol.) and 19 g. of ethyl iodide (0.12 mol.) are added and the mixture is heated with stirring for 10 hours at 50°. The precipitate is filtered off and the filtrate is treated with water. 4 - Ethoxy-1 - ethyl - 1H - pyrazolo[3,4 - b]pyridine-6 - carboxylic acid ethyl ester solidifies on cooling and is recrystallized from ligroin, m.p.

c) 4 - Butylamino - 1 - ethyl - 1Hpyrazolo [3,4 - b] pyridine - 6 - carboxylic acid ethyl ester

36-38°, yield 19.5 g. (74%).

26.3 g of 4 - Ethoxy - 1 - ethyl - pyrazolo-[3,4 - b]pyridine - 6 - carboxylic acid ethyl ester (0.1 mol.) are refluxed for 10 hours in 50 ml. of n-butylamine. After evaporation of the excess butylamine in vacuo, the residual crystalline 4 - butylamino - 1 -ethyl - pyrazolo-[3,4 - b]pyridine - 6 - carboxylic acid ethyl 105 ester is recrystallized from ligroin, m.p. 69-70°, yield 21 g. (72%).

d) 4 - butylamino - 1 - ethyl - 1Hpyrazolo[3,4 - b] pyridine - 6 - carboxylic

14.5 g of 4 - Butylamino - 1 - ethylpyrazolo [3,4 - b] - pyridine - 6 - carboxylic acid ethyl ester (0.05 mol.) are heated for 10 hours at 80° in an ethanolic solution of 4.2 g. of potassium hydroxide (0.075 mol.). After this period, the mixture is evaporated to dryness, the residue is dissolved in 50 ml. of water and acidified with acetic acid. 4-Butylamino - 1 - ethyl - 1H - pyrazolo[3,4-b]pyridine - 5 - carboxylic acid solidifies, is 120 filtered off and recrystallized from acetic acid, m.p. 195—197°, yield 10.5 g. (80%).

According to the foregoing procedure, the following compounds are prepared:

Example	R ₁	R ₂	R ₃	R,	R _s	R
2	−C₂H₅	CH ₃	H	C₄H₀	Н	C ₂ H ₅
3	$-C_2H_5$	H	CH ₃	CH ₃	Н	C_2H_5
4	-C ₂ H ₅	Н	Н	-⊘	Н	C_2H_5
5	-C ₂ H ₅	Н	Н	- ⊘	Н	Н
6 -	OHZ-{	CH ₃	CH ₂ C	"H ₂ CH ₂ CH ₂ CH ₂ -	Н	C_2H_5
7	$-C_2H_5$	Н	Н	sec. C ₄ H ₉	СН3	C_2H_5
8	-C,H,	Н	Н	sec. C.H.	сн,	Н

Example 9.

4 sec.Butylamino - IH - pyrazolo [3,4 - b]pyridine - 6 - carboxylic acid ethyl ester
a) 1 - Furfuryl - 4 - hydroxy - IHpyrazolo [3,4 - b] pyridine - 6 - carboxylic
acid ethyl ester

163 g. of 5 - amino - 1 - furfurylpyrazole (1 mol.) and 210 g. of sodium oxalaccia caid 10 ethyl ester (1 mol.) are refluxed in 1 liter of acetic acid for 3 hours. The solvent is distilled off and the residue is treated with water. 1 - Furfuryl 4 - hydroxy - 1H-pyrazolo (3,4 - b) pyridine - 6 - carboxylic acid ethyl ester crystallizes and is filtered off then recrystallized from methanol, m.p. 220—221°, yield 190 g. (73%).

b) Ethoxy - 1 - furfuryl - 1H - pyrazolo-[3,4 - b] pyridine - 6 - carboxylic acid ethyl ester 28.7 g, of 1 - furfuryl - 4 - hydroxy - 1H-

pynzzolo[3,4 b]pyridine ethyl ester (L) mol.) are dissolved in 100 ml of dimethylformamide. 22 g. of potssium carbonate (0.15 50 ml.) and 19 g. of ethyl iodide (0.12 mol.) are added and the mixture is heated with stirring for 10 hours at 60°. The precipitate is filtered off, the filtrate is treated with water. 4. Ethoxy 1 - furfuryl - 11 pynzzolo-30 [3,4 - b]pyridine - 6 - carboxylic acid ethyl

20

ester solidifies on cooling and is recrystallized from methanol, m.p. 45—47°, yield 21.5 g. (68%).

c) 4 - Ethoxy - 1H - pyrazolo [3,4 - b]pyridine - 6 - carboxylic acid ethyl ester. 3.2 g. of 4 - Ethoxy - 1 - furfuryl - 1H-

pyrazolo [3,4 - b] pyridine - 6 - carboxylic acid ethyl ester (0.01 mol.) and 1.5 g, of selenium dioxide (0.013 mol.) are heated in 10 ml. of diethyleneglycol dimethylether for 15 hours at 160°. The solution is filtered hot and the filtrate is cooled in an ice bath. 4 Ethoxy - 1H - pyrazolo [3,4 - b] pyridine - 6 carboxylic acid ethyl ester crystallizes and is recrystallized from butyl alcohol, yield 1.5 g. (64%).

d) 4 - sec.Butylamino - 1H - pyrazolo-[3,4 - b] pyridine -6 - carboxylic acid ethyl

2.5 g. of 4 - Ethory - 1H - pyrazolo [34bl)pyridine - 6 - carboxylic acid ethyl estre (0.01 mol.) are refluxed for 24 hours with 10 ml. of sec. burylamine. After this time, water is added and the crystalline 4-sec. burylamino - 1H - pyrazolo [3,4 - b] pyridine - 6carboxylic acid ethyl ester is filtered off then recrystallized from butanol, m.p. 158—160°, yield 2.2 x. (83%).

5

Example 10.

4 - Butylamino - I - ethyl - 5 - methylpyrazolo[3,4 - b] pyridine - 6 - carbozylic acid
ethyl ester

a) 1 - Ethyl - 4 - hydroxy - 5 - methylpyrazolo[3,4 - b] pyridine - 6 - carboxylic acid ethyl ester

111 g. of 5 - Amino - ethylpyrazole (1 mol.) and 202 g. of oxalopropionic acid ethyl ester (1 mol.) are heated in 1 liter of acetic acid

for 3 hours under reflux. The solvent is distilled off and the residue is recrystallized from ethanol, yield 185 g. of 1 - ethyl - 4 hydroxy - 5 - methylpyrazolo[3,4 - b]pyridine-15 6 carboxylic acid ethyl ester (68%), m.p. 201—203°

b) 4 - Ethoxy - 1 - ethyl - 5 - methylpyrazolo[3,4 - b] pyridine - 6 - carboxylic acid ethyl ester

20 24.9 g. of 1 - Ethyl - 4 - hydroxy - 5-methylpyrazolo[3,4 - b]pyridine - 6 - carboxylic acid ethyl ester (0.1 mol.), 22 g. of potassium carbonate (0.15 mol.) and 23 g. of ethyl iodide are heated in 150 ml. of dimethyl-

formamide for 10 hours at 60° with continuous stirring. The excess potassium carbonate and potassium iodide are filtered off and water is added to the filtrate. 4 - Ethoxy-1 - ethyl - 5 - methylpyrazolo[3,4 - b]-

1 - etnyl - 5 - methylpyrazolo[3,4 - b]pyridine - 6 - carboxylic acid ethyl ester 30 solidifies and is recrystallized from methanol, yield 21.5 g. (78%), m.p. 54—56°.

c) 4 - Butylamino - 1 - ethyl - 5 - methylpyrazolo [3,4 - b] pyridine - 6 - carboxylic acid ethyl ester 2.8 g. of 4 - Ethoxy - 1 - ethyl - 5 - methyl-

pyrazolo[3,4 - b]pyridine - 6 - carboxylic caid ethyl ester (0.01 mol.) and 10 ml. of n-butylamine are heated in an autoclave at 160° for 8 hours. After this time, the excess butylamine is evaporated and the residue is recrystallized from methand, yield 2.2 g. (72%), m.p. 78—80°. TOhe hydrochloride salt is formed by adding to a solution containing 1 g. of this product in 10 ml. of ether, with cooling, 1 ml. of an alcoholic solution of

hydrochloric acid.

The following additional products are made
by the procedure of Example 1, 9 or 10:

	×	C,H,-	C2Hs-		C,H,	C,H,	Сди	C,H,	С2Н5	C ₂ H ₅		C ₂ H ₅	C ₂ H ₅		Н	C,H,
8,	R,		Н		CH,	Н	\Diamond	Н	\	СұН		Н	н		\Diamond	H
	Z.	CH,-CH,-C,H,	-tHC		н	-CH ₂ -	сн,-сн,-	Н	Н			ا	.H	Н0-	н	H
	R,	-²нэ-•нэ	-KH2-KH2-KH2-KH3-	CH,	-(CH ₂) ₃ N(C ₂ H ₅) ₂	-сн-сн-сн-сн-сн-	CH3-CH2-	-(CH ₂) ₂ N(C ₂ H ₅) ₂	Н	CH, CH, C=CH-C=N-	-CH2-CH2-CH2-	-CH2-CH2-N-CH2-CH2-	CH2-CH2-OH	н	-(CH ₂),CH ₃	
	R,	CH3-	Н		Н	Н	Сди	Н	СН,	H		CH,	Н		н	H
	R	CH3-CH3-	CH ₁ -CH ₂ -		CH3-CH3-	CH3-CH3-	CH,-CH ₂ -	CH3-CH2-	CH3-CH2-	CH3-CH3-		CH ₃ CH ₂ -	CH ₃ -CH ₂ -		CH3-CH2-	СН3
	Example	11	12		13	1,4	15	16	17	18		19	20		21	22

TABLE (Continued)

	R	Н	C,Hs	С,Н,	СдИв	н	C,H,	C2Hs-	C ₂ H ₈ -	C,H,c	C,H,-	C,H,-
	Rs	сн,	Н	н	Н	cH,	Q40-	сн₃	Н	н	Н	н
	¥,	н	-H-	н	Н	Н	Н	Н	н	Н	Н	H
(Commune)	R,	-(CH ₂),CH ₃	-CH-C-C-C-NH- CH, CH,	-(CH ₂),CH ₃	Q.s	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CH, CH,-CH,	_\-\-	() div-div-	-CH(CH ₄) ₂	–(СН ₂),СН,	-(CH ₂) ₃ CH ₃
	R ₂	Н	Н	Н	н	Н	н	н	н	Н	Н	сн,–
	ĸ,	CH,	CH ₃ -CH ₂ -	-410-410-	CH3-CH3-	CH3-CH3-	CH3-CH2-	CH,-CH,-	CH3-CH2-	CH ₁ -	CH,→CH,−	\Diamond
	Example	23	24	25	26	27	28	29	30	31	32	33

	×	СДН	C,H,	Н	C,H,s	C,H,	С,Н,
	Rs	H	CH,	H	н	CH,	сн,
	Ŗ,	н	н	н	н	Н	Н
rapide (Continued)	z,	\Diamond	\$ C S	£	coo _n	-(СН ₂),СН,	–(CH ₂),CH ₃
	R ₂	н	н	×	н	CH ₃ -	Н
	Rt	CH3-(CH2)3-	CH3-CH2-	СН,-СН,-	сн,-сн,-	CH ₃ (CH ₂) ₃ -	\Diamond
	Example	34	35	36	37	38	39

.

c

4 - Butylamino - 5 - chloro - 1 - ethyl - 1Hpyrazolo [3,4 - b] pyridine - 5 - carboxylic acid ethyl ester

5 1) 5 - Chloro - 1 - ethyl - 4 - hydroxy-1H - pyrazolo[3,4 - b] pyridine - 6 - carboxylic acid ethyl ester

111 g of 5 - Amino - 1 - ethyl - pyrazole (1 Mol) and 222 g of chloro-oxalo acetic acid, ethyl ester are refluxed in 1 ltr. of acetic acid for 4 hours. The acetic acid is removed in vacuo, and the solid residue is recrystallized from methanol. Yield 211 g (78%), mp. 183—1849.

15 2) 5 - Chloro - 4 - ethoxy - 1 - ethyl-IH - pyraxolo [3,4 - b] pyridine - 6 - carboxylic acid, ethyl ester 26.9 g of 5 - Chloro - 1 - ethyl - 4 - hydroxy-

1H - pyrazolo[3,4 - b]pyridine - 6 - carboxylic acid, ethyl ester (0.1 Mol) are dissolved in 100 ml of DMF, 21 g of Potassiumcarbonate (0.15 Mol) and 18.6 g of ethyl iodide (0.12 Mol) are added and he mixture is kept at 60° with stirring for 10 hours. The undissolved material is filtered off and 25 water is added. The 5 - chloro - 4 - ethoxy-1 - ethyl - 1H - pyrazolo[3,4 - b]pyridine-6 - carboxylic acid ethyl ester solidifies and is recrystallized from petrol ether. Yield 20.5 g

3) 4 - Butylamino - 5 - chloro - 1 - ethyl-1H - pyrazolo[3,4 - b] pyridine - 6 - carboxylic acid ethyl ester

(69%), m.p. 36-37°.

2.9g of 5 - Chloro - 4 - ethoxy - 1ethyl - 1H - pyrazolo[3,4 - b] pyridine - 6carboxylic acid, ethyl ester (0.01 Mol) are refluxed in 10 ml of n-burylamine for 48 hours. The excess amine is distilled off and the residue is recrystallized from petrol ether.

Yield 2.5 g (78%), m.p. 71—73°.

According to the foregoing procedure the following compounds have been prepared:

Example	R,	R ₂	R ₃	R ₄	R ₅	R
.41	C ₂ H ₅	Н	Н	H	Cl	C ₂ H ₅
.42	C ₂ H ₅	CH ₃	C ₄ H ₉	H	Cl	C ₂ H ₅
43	-СН СН,	Н	C₃H,	н	Br	C ₂ H ₅
.44	C ₂ H ₅	Н	\bigcirc	Н	Cl	C ₂ H ₅
,45	C ₂ H ₅	H	-CH ₂ -CH ₂ -CH ₂ -	-CH ₂ CH ₂ -	Cl	C ₂ H ₅
.46	C ₂ H ₅	СН3	(O)	н	Br	C ₂ H ₅
.47	C ₂ H ₅	Н	C ₂ H ₅	C ₂ H ₈	Cl	C ₂ H ₅

WHAT WE CLAIM IS:— 1. A compound of the formula

wherein R is hydrogen or lower alkyl; R, is hydrogen, lower alkyl, phenyl or phenyl-lower slyl; R, is hydrogen or lower alkyl; R, and S, each is hydrogen, lower alkyl; R, and K,-phenyl, R_o, R,-phenyl-lower alkyl or dilower alkylamino-lower alkyl, or R_o and R, together with the nitrogen to which they are attached form one of the heterocyclics R_o S, P,-pyrroliding, R_o R_o-piperiding, R_o R_o- pymazolyl, R., R.,-dihydropymdazinyl or R., R.,-piperazinyl; R., is hydrogen, lower alky, phenyl, phenyl, phenyl, phenyl, phenyl, phenyl-lower alkyl, or halogen; R., and R., each is hydrogen, lower alkyl, trifluoromethyl or carboxy; R., and R., each is hydrogen, lower alkyl, or hydroxyl-lower alkyl, or such a compound in the form of a physiologically acceptable acid addition salt.

2. A compound as in Claim 1 wherein R is hydrogen or lower alkyl, R₂ is hydrogen, ethyl or butyl, R₂ is hydrogen or methyl, R₃ is ethyl, propyl or butyl, R₄ is hydrogen or ethyl and R₂ is hydrogen or methyl.

3. A compound as in Claim 1 wherein R, R₁ and R₃ each is lower alkyl, and R₂, R₄ and R₅ each is hydrogen.

 A compound as in Claim 3 wherein R and R₁ each is ethyl and R₂ is butyl. 1,417,489

5. A compound as in Claim 1 wherein R and Ra each is lower alkyl and R, Ra Ra and R each is hydrogen.

6. A compound as in Claim 5 wherein R is ethyl and Ra is butyl. 7. A compound as in Claim 1 wherein R and R₂ each is lower alkyl and R₁, R₂, R₄

10

and R, each is hydrogen. 8. A compound as in Claim 7 wherein R

is ethyl and R3 is butyl. 9. A compound as in Claim 1 wherein R, R1, R2 and R2 each is lower alkyl and R2 and R. each is hydrogen.

10. A compound as in Claim 9 wherein R 15 and R1 each is ethyl, R3 is butyl and R5 is methyl.

11. A process for the production of a compound of the formula

20 wherein R is hydrogen or lower alkyl; R, is hydrogen, lower alkyl, phenyl or phenyl-lower alkyl; R2 is hydrogen or lower alkyl; R3 and R, each is hydrogen, lower alkyl, phenyl, R, R,-phenyl, Ro, R,-phenyl-lower alkyl or di-

25 lower alkylamino-lower alkyl, or R3 and R4 together with the nitrogen to which they are attached from one of the heterocyclics $R_{\rm s}$, $R_{\rm s}$ - pyrrolidino, $R_{\rm s}$ - piperidino, $R_{\rm s}$, $R_{\rm s}$ - pyrazolyl, R_s,

30 R₉ - dihydropyridazinyl or R_s, R,-R₅ is hydrogen, piperazinyl; lower alkyl, phenyl, phenyl-lower alkyl or halogen; R₆ and R₇ each is hydrogen, lower alkyl, trifluoremethyl or carboxy, R, and R, 35 each is hydrogen, lower alkyl or hydroxy-lower alkyl, or such a compound in the form of a physiologically acceptable acid addition salt,

which comprises reacting a compound of the

formula

wherein R, R1, R2 and R3 have the same meaning as defined above and X is chlorine or bromine, with an amine of the formula

wherein R₂ and R₄ have the same meaning

as defined above. 12. A compound according to claim 1 as

named in any of the Examples. 13. A process according to claim 11 substantially as hereinbefore described in any of

the Examples. 14. A compound according to claim 1 when prepared by a process according to claim 11 or 13.

15. A pharmaceutical preparation comprising a compound according to any one of claims 1 to 10, 12 or 14 and a pharmaceutical carrier.

16. A pharmaceutical preparation according to claim 15 wherein the carrier is solid. 17. A pharmaceutical preparation according to claim 15 wherein the carrier is liquid and contains a preservative, stabilizer or flavour.

18. A pharmaceutical preparation according to claim 15 in the form of a tablet, capsule or sterile injectable preparation.

> For the Applicants, D. YOUNG & CO., Chartered Patent Agents, 9 & 10 Staple Inn, Londoni, WC1V 7RD.

Printed for Her Majesty's Stationery Office by the Courier Press, Leamington Spa, 1975. Published by the Patent Office, 25 Southampton Buildings, London, WCZA 1AY, from which copies may be obtained.