Recall: A CM pair (E,) determines a Shimura datum (T, {h, 3). Let TE = Res E/Q Gm. & determines isom. of R-alg.'s EOR = Cd ([E:Q]=2d), x >> (p(x)) y = \Pare, we get morphism of R-alg.'s () Cd = EBR and thus morphism of real alg. grps. h =: 5 -> There (TE) R, whose image lies in FEE maximal tot: real subficiol. That is, (or maybe e.g.) T -> TC I NE/F Gm -> TF T(Q) = {x & Ex: xx & Qx } so ho: 5 -> TR. Fix 1-tim E-vec. space V and Q-symplectic form 4: VXV -> Q s.t. 4(ex,z) = 4(x, \overline{\sigma}) \forall x_1 \overline{\sigma} \overline{ Renack: Such of always exists. Identify V= E and take F= E max. tot. real subfield. Write E=F(2) W 226F. $\bar{z}=-2$ and we can take $\psi(x,y)=\mathrm{Tr}_{E/Q}(2x\bar{y})$. 1cational # Then, T > GLE(V). Given & ET(Q) and xigeV, y(axiary) = 41x, and y) = (art) y(xig). So, T -> GSp(V, Y). Induces map of Shimura data LT, Ety 3) -> (GSp(V), X). Now, fix OE-lattice LEV s.t. YLL, L) & Z (don't need suff. small if we only (abèlic) (i.e., neat) want bijection - comes in for mobili Prop: YK & T(Af) compact open, suff. small, and stabilizing Î E V, interpretation) T(Q)\ {h_{2}} x T(A_{f})/k is in bij. Y toples {A,i, \, [n]) where: [Note: Last time we discussed Rocati involution] . A ab. vac. / C · i: OE -> End (A) · $\lambda: A \rightarrow A^{\vee}$ polarization · [m] & Iso (TA, î) is k-orbit - Focus more on this!!! [reflex fields] s.t. (1) I has CM type \$. (2) $\forall \kappa \in \mathcal{O}_{\mathbf{E}}: A \xrightarrow{\lambda} A^{\vee}$

ŶA×ŶA Weil ZU)

 $\eta \times \eta$ \downarrow \uparrow \uparrow

(3) n: TA JL is OE-linear and

What is natural field of definition of the moduli problem? Choose alg. closure $\overline{Q} \leq C$.

 $\operatorname{Hom}(E,\mathbb{C})=\operatorname{Hom}(E,\overline{\mathbb{Q}}).$ $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on CM types in $\operatorname{Hom}(E,\mathbb{C}).$

Def: Given CM pair $(E, \overline{\Phi})$, let $G := \{ \sigma \in Gal(\overline{\mathbb{Q}/\mathbb{Q}}) : \overline{\mathbb{E}}^{\sigma} = \overline{\Phi} \}$. Reflex field of $(E, \overline{\Phi})$ is $E_{\overline{\Phi}} := \overline{\mathbb{Q}}^{G_{\overline{\Phi}}}$.

This has distinguished emb. into C, by constauction.

Prop: Ep/Q is finite ext. Moreover,

[Most people take this to be the definition...]

- (1) $E_{\underline{A}}$ is gen. as Q-alg- by image of Q-linear map $E \to \mathbb{C}$, $\alpha \mapsto \sum_{\varphi \in \underline{\Psi}} \varphi(\alpha)$.
- (2) Given α ∈ E, define $p_{\alpha}(x) := \pi (x \varphi(\alpha)) ∈ \overline{\alpha}(x)$. E_{\(\pi\)} is gen. by all coeffs. of all p_{α} as α ∈ E varies.

In particular, pa(x) & Ex[x].

(unique up to unique ison. suitably defined)

(3) F Eq-vec. space \(\frac{1}{4} \) and \(\in \rightarrow \) End \(\frac{1}{4} \) \(\frac{1}{4}

Note: As E⊗C-module, V_▼⊗C ≅ ⊕ C(φ). So, RHS descends to E⊗E_▼.

Note: All three of (1)-(3) can be used to characterize Ex.

Fun fact: Eq is CM! (something like this is true: biquadratic imag. field is CM but not CM type of some field)

Consider

Consider

Peop: Fix $K \leq T(/A_F)$ compact open as before. The functor Y_K : Sch_E_\(\frac{1}{2}\) set defined by taking $Y_K(S)$ as before, so we get typle $(A,i,\lambda,[\eta])$, W extra conditions that $A \to S$ is abelian scheme and $i: O_E \to End(A)$ satisfying: every $\alpha \in O_E$ acts on O_S -module Lie(A) W char. poly. The $\{x-\psi(x)\} \in E_{\overline{\Phi}}[x] \hookrightarrow O_S[x]$. This is rep. by finite étale $E_{\overline{\Phi}}$ -scheme and $Y_K(C) = T(Q) \setminus T(M_F)/K$.

Q: What do me to when not given a CM type?