

Formula One - Presentation

ACU 2019 Team

Copyright

This document is for internal use only at EPITA http://www.epita.fr>.

Copyright © 2018-2019 Assistants <assistants@tickets.assistants.epita.fr>.

Rules

- You must have downloaded your copy from the Assistants' Intranet https://intra.assistants.epita.fr.
- This document is strictly personal and must **not** be passed on to someone else.
- · Non-compliance with these rules can lead to severe sanctions.

Definitions

Definition

Wikipedia

Dijkstra's algorithm is an algorithm for finding the shortest paths between nodes in a graph, which may represent, for example, road networks. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and published three years later.

About graphs

- · Set of nodes
- Set of edges linking the nodes
- Edges can be directed

Example: graph

Example: weighted graph

Edges can have weights that are used for specific computations.

Vertex	Marked	Cost	Parent
A	F	0	-
В	F	-	-
C	F	-	-
D	F	-	-
E	F	-	-

Vertex	Marked	Cost	Parent
A	F	0	-
В	F	-	-
C	F	-	-
D	F		
E	F	-	-

Vertex	Marked	Cost	Parent
A	T	0	-
В	F	10	A
C	F	-	-
D	F		-
E	F	5	A

Vertex	Marked	Cost	Parent
A	T	0	-
В	F	10	A
C	F	-	-
D	F		
E	F	5	A

Vertex	Marked	Cost	Parent
A	T	0	-
В	F	8	E
C	F	14	E
D	F	7	E
E	T	5	A

Vertex	Marked	Cost	Parent
A	T	0	-
В	F	8	E
C	F	14	E
D	F	7	E
E	T	5	A

Vertex	Marked	Cost	Parent
A	T	0	-
В	F	8	E
C	F	13	D
D	T	7	E
E	T	5	A

Vertex	Marked	Cost	Parent
A	T	0	-
В	F	8	E
C	F	13	D
D	T	7	E
E	T	5	A

Vertex	Marked	Cost	Parent
A	T	0	-
В	T	8	E
C	F	9	В
D	T	7	E
E	T	5	A

Vertex	Marked	Cost	Parent
A	T	0	-
В	T	8	E
C	T	9	В
D	T	7	E
E	T	5	A

Use-case in Formula One

- · Your map grid is your graph.
- · Find the right weight for grass and road.
- · Find the shortest path to the finish line.
- Drive your car along this path

Examples

 Simulations showing Dijkstra's algorithm in action are available here: https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html.

Going further

There are many pathfinding algorithms. You are free to implement whichever you want but make sure it is adapted to your needs.

Shortest path algorithms

- Dijkstra
- Bellman-Ford
- Floyd-Warshall
- ...

Pathfinding

- A*
- Sample
- ...

Any questions?

