Module 6 – Reasoning and Proof Lesson 1 – Types of Reasoning

Name				
	the blanks.			
1.	Α	_ is a statement that is	assumed true without prod	₫.
2.	Α	_ is a statement that ne	eeds to be proven before it	is accepted.
3.	Two methods that are used	d to prove theorems are	e the	and the
	·			
State v	which property supports the	conclusion made in ea	ich statement.	
1. If A	B = CD, then CD = AB			
2. If C	is between A and T, then A	Q + QT = AT		
3. If A	B = CD + DT and $CD + DT = C$	CT, then AB = CT		
4. If A	C = AB + BC and $BD > AC$, th	en BD > AB + BC		
5. If A	Q = BR, then AQ + CT > BR +	- CT		

Complete the following proof.

Given: AC = BDProve: $\overline{AB} \equiv \overline{CD}$

Statements	Reasons	
1.	1.	
2. AC = AB + BC	2.	
3.	3. Transitive Property of Equality	
4. BD = BC + CD	4.	
5.	5. Addition Property of Equality	
6. AB = CD	6.	
7. <i>Ā</i> B≡ <i>C</i> D	7.	

Properties of Real Numbers

A) Properties of Equality

Reflexive Property
Symmetric Property of Equality
Transitive Property of Equality
Addition Property of Equality
Subtraction Property of Equality
a = a
If a = b, then b = a
If a = b and b = c, then a = c
If a = b and c = d, then a + c = b + d
Subtraction Property of Equality
If a = b and c = d, then a - c = b - d

If a = b and c = d, then ac = bd

B) Properties of Inequality

6) Multiplication Property of Equality

Transitive Property of Inequality
Addition Property of Inequality
Multiplication Property of Inequality
If a > b and b > c, then a > c
If a > b, then a + c > b + c
If a > b and c > 0, then ac > bc
If a > b and c < 0, then ac < bc

Substitution Principle

If a = b than a may be replaced by b in any equations or inequality, or vice versa.

Congruent Segments

If the length of PQ is equal to the length of RS, then PQ is congruent to RS.

Betweenness

Point O is between point B and Y, in symbol B-O-Y, if and only if it satisfies the following conditions:

- B, O, and Y are collinear and distinct points
- BO + OY = BY