Sensing

HOW DO YOU MAKE A ROBOT "SEE"?

WHAT SENSORS ARE ESSENTIAL FOR A ROBOT?

WHAT'S SENSOR FUSION?

DOESN'T THE MICROSOFT KINECT SOLVE EVERYTHING?

Perception is hard!

- "In robotics, the easy problems are hard and the hard problems are easy"
 - S. Pinker. The Language Instinct. New York: Harper Perennial Modern Classics, 1994

create a machine with some "common sense": very HARD

The Summer Vision Project

Author(s)

Papert, Seymour A.
MIT - MASSACHUSETTS INSTITUTE OF TECHNOLOGY
1966

Abstract

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. [...] the construction of a system complex enough to be real landmark in the development of "pattern recognition".

[...]

The primary goal of the project is to construct a system of programs which will divide a vidisector picture into regions such as likely objects, likely background areas and chaos.

 $[\ldots]$

The final goal is OBJECT IDENTIFICATION which will actually name objects by matching them with a vocabulary of known objects.

Sensors for Mobile Robots

- Why should a robotics engineer know about sensors?
 - Is the key technology for perceiving the environment
 - Understanding the physical principle enables appropriate use
- Understanding the physical principle behind sensors enables us:
 - To properly select the sensors for a given application
 - To properly model the sensor system, e.g. resolution, bandwidth, uncertainties
 - To define the needs in collaboration with sensor system suppliers

Objectives

Motivation Dimensions Non-imaging Vision -depth -cues Al

- List at least one advantage and disadvantage of common robotic sensors: GPS, INS, ultrasonics, laser stripers, IR, IR rangers, laser rangers, computer vision
- If given a small interleaved RGB image and a range of color values for a region, be able to extract color affordances using 1) threshold on color and 2) a color histogram
- Be able to construct an occupancy grid and use polar plots for reactive navigation
- Define each of the following terms in one or two sentences: proprioception, exteroception, exproprioception, proximity sensor, logical sensor, false positive, false negative, hue, saturation, image, pixel, image function, computer vision, GPS-denied area
- Describe the three types of behavioral sensor fusion: fission, fusion, fashion

Return to Layers

Motivation Dimensions Non-imaging Vision -depth -cues Al

- In behavioral layer, sensing...
 - Supports a behavior
 - Releases a behavior
- In deliberative layer, sensing...
 - Recognizes and aids with reasoning about objects
 - Builds world model
- In distributed layer, social sensing...
 - Is sensitive to proximity and targets affect

Robotics | challenges and drivers of technology

- The challenges
 - Seeing, feeling and understanding the world
 - Dealing with uncertain and only partially available information
 - Act appropriately onto the environment

- Laser time-of-flight sensors
- Cameras and IMUs combined with required calculation power
- Torque controlled motors, "soft" actuation
- New materials

Autonomous Mobile Robots

Perception | definition

Sensors = sensors provide the raw data

 Sensing = sensing is the combination of the algorithm(s) and sensor(s) that produces a percept

 Sensor fusion = the sensing mechanism which allow multiple sensors to produce (higher level) percepts and world models

Sensors | common sensors and their use in mobile robotics

- Tactile sensors or bumpers
 - Detection of physical contact, security switches
- **GPS**
 - Global localization and navigation
- Inertial Measurement Unit (IMU)
 - Orientation and acceleration of the robot
- Wheel encoders
 - Local motion estimation (odometry)
- Laser scanners
 - Obstacle avoidance, motion estimation, scene interpretation (road detection, pedestrians)
- Cameras
 - Texture information, motion estimation, scene interpretation

Ways of Organizing Sensors

Motivation Dimensions Non-imaging Vision -depth -cues Al

- 3 Types of Perception
 - Proprioceptive =

sensing stimuli that are produced and perceived within an organism especially those connected with the position and movement of the body.

- Exteroceptive = sensing stimuli that are external to an organism
- Exproprioceptive =

The sense of the position of external objects relative to parts of the body

Ways of Organizing Sensors

Motivation Dimensions Non-imaging Vision -depth -cues Al Input

Output

- Active vs. passive
 - § Passive sensors
 - · energy coming for the environment
 - § Active sensors
 - · emit their proper energy and measure the reaction
 - · better performance, but some influence on environment
- Image vs. non-image
- Matrix vs. non-matrix

General Classification (1)

General classification (typical use)	Sensor Sensor System	PC or EC	A or P
Tactile sensors (detection of physical contact or closeness; security switches)	Contact switches, bumpers Optical barriers Noncontact proximity sensors	EC EC EC	P A A
Wheel/motor sensors (wheel/motor speed and position)	Brush encoders Potentiometers Synchros, resolvers Optical encoders Magnetic encoders Inductive encoders Capacitive encoders	PC PC PC PC PC PC	P P A A A A
Heading sensors (orientation of the robot in relation to a fixed reference frame)	Compass Gyroscopes Inclinometers	EC PC EC	P P A/P

A, active; P, passive; P/A, passive/active; PC, proprioceptive; EC, exteroceptive.

14 General Classification (2)

General classification (typical use)	Sensor Sensor System	PC or EC	A or P
Ground-based beacons (localization in a fixed reference frame)	GPS Active optical or RF beacons Active ultrasonic beacons Reflective beacons	EC EC EC EC	A A A
Active ranging (reflectivity, time-of-flight, and geo- metric triangulation)	Reflectivity sensors Ultrasonic sensor Laser rangefinder Optical triangulation (1D) Structured light (2D)	EC EC EC EC	A A A A
Motion/speed sensors (speed relative to fixed or moving objects)	Doppler radar Doppler sound	EC EC	A A
Vision-based sensors (visual ranging, whole-image analysis, segmentation, object recognition)	CCD/CMOS camera(s) Visual ranging packages Object tracking packages	EC	P