QuantumData Protection

Danae Townsend, Jordi Bru, Ignasi Juez, Mariona Jaramillo

Index

- 1 Introduction
- 2- Quantum computing
- 3 Quantum computing in cryptography
- 4 Quantum computing in encrypted data
- 5 Quantum computing in machine learning
- 6 Conclusions

- Why do we need quantum computers?
- Supercomputers vs quantum computers

Qubits are the basic unit of information in quantum

Qubits are the basic unit of information in quantum and have the following important properties:

Superposition

Qubits are the basic unit of information in quantum and have the following

important properties:

- Superposition
- Entanglement
- No cloning theorem

Quantum computing

- A new approach
 - Conventional vs quantum
 - faster & efficient
- n qubits -> 2^n states
 - complex problems solving

Quantum communication

- A new way of communicating
- Quantum channels immune to eavesdropping
- Secure and private

Quantum communication

Quantum teleportation

- Transmit quantum states over long distances
- Two parties of entangled particles
 - One measures the quantum state
 - The other operates on the measurement done
 - Quantum state is 'teleported'

Quantum communication

Entanglement swapping

• A solution to long distance communication

Source: Quantum repeaters.

Source: Quantum repeaters.

Quantum computing in cryptography

Quantum computing in cryptography

How RSA Encryption Works

QKD

Distribution

- Distribution
- Sifting

- Distribution
- Sifting
- Error estimation and correction

- Distribution
- Sifting
- Error estimation and correction
- Privacy amplification

Quantum computing in encrypted data

Cryptography	Encryption
Science Encrypting and decrypting Communication practices/techniques Data confidentiality, integrity and authentication	Information Private Cannot be observed Unreadable Unauthorized people

Quantum security systems - quantum **cryptography** protocols - secure and reliable communication and transmission of **information**

Homomorphic and quantum encryption

- Credit card information
- Passwords
- Personal information
- Unencrypted files

Homomorphic and quantum encryption

Classic homomorphic

- Technique.
- Mathematical operations.
- result unreadable unless it is decrypted.

Homomorphic and quantum encryption

Quantum homomorphic

- Theoretically possible. Not practical.
- Suggest a trade-off:
 - Photonic quantum processors
 - Perfect privacy is not required
 - Maximum amount of information is small

Client-server quantum protocol

Client encrypts and sends. Server executes quantum gates sequentially

Client-server quantum protocol

Requires **one** round off classical communication (**non-Clifford gate - non easily invertible** - loss information - Complex and advance operations)

Client-server quantum protocol

Encrypted qubits are returned to the client for **decryption**. Server does not acquire **knowledge**. Use **fewer** qubits.

Potential risks

- Environmental factors: Alteration in the information.
 - Changes in the environment, magnetic coupling.
 - Isolated and controlled.

Current developments

TLS protocol - RSA are vulnerable

IBM:

- Key Encapsulation Mechanisms (KEM)
- Digital signature schemes

The National Institute of Standards and Technology (NIST): "protocols are quantum secure".

Quantum safe TLS

Quantum computing in machine learning

Quantum support vector machine (QSVM)

Quantum computing in machine learning

- Quantum support vector machine
 (QSVM)
- Optimization problems: Quantum
 Approximate Optimization Algorithm
 (QAOA)

Quantum computing in machine learning

- Quantum support vector machine (QSVM)
- Optimization problems: Quantum Approximate Optimization Algorith (QAOA)
- 3. Quantum **neural** networks

References

IBM, Quantum Computing [Online; accessed 17th April 2023 https://www.ibm.com/topics/quantum-computing]

Allende, M., 2022. TECNOLOGÍAS CUÁNTICAS: Una oportunidad transversal e interdisciplinar para la transformación digital y el impacto social.

Israel Physical Society. (n.d.). What are Quantum Computing and Quantum Communication? [Online].

Available: https://www.ippi.org.il/what-are-quantum-computing-and-quantum-communication/

S. V. D. Ruiz, B. F. A. Minga, J. D. C. Soto and E. F. M. Zambrano, "Impact of quantum computing on current technologies," 2022 17th Iberian Conference on Information Systems and Technologies (CISTI), Madrid, Spain, 2022, pp. 1-12, doi: 10.23919/CISTI54924.2022.9820248.

"Cryptography Engineering: Design Principles and Practical Applications" by Bruce Schneier, Niels Ferguson, and Tadayoshi Kohno

https://www.ibm.com/topics/quantum-safe-cryptography

Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Quantum cryptography Rev. Mod. Phys, 4 41.1-41.8

M. Ogburn, C. Turner y P. Dahal, "Homomorphic Encryption", Procedia Comput. Sci., vol. 20, pp. 502–509, 2013. [En línea]. Disponible: https://doi.org/10.1016/j.procs.2013.09.310

Zeuner, J., Pitsios, I., Tan, SH. et al. Experimental quantum homomorphic encryption. npj Quantum Inf 7, 25 (2021).

Thanks for your attention

Jordi Bru

jordi.bru@estudiantat.upc.edu

Danae Townsend

danae.townsend@estudiantat.upc.edu

Mariona Jaramillo

mariona.jaramillo@estudiantat.upc.edu

Ignasi Juez

ignasi.juez@estudiantat.upc.edu