Praktikum Eksplorasi dan Visualisasi Data Pertemuan 2 BENTUK VISUAL DATA DAN RINGKASAN NUMERIK

1. Bentuk Visual Data dan Ringkasan Numerik

- Membuat visualisasi data merupakan bentuk yang paling sederhana dari analisis data eksplorasi. Contoh bentuk visual data adalah daftar tally dan diagram batang dan daun (stem and leaf plot). Bentuk visual data dapat menunjukkan bentuk angkatan
- Ringkasan numerik merupakan ringkasan dari data, harga-harga yang penting dari data, atau gambaran dari data yang berguna untuk estimasi nilai-nilai karakteristik data. Contoh ringkasan numerik adalah jumlah data, rata-rata, median, modus, range, variansi, dan standar deviasi.

2. Daftar Tally

Daftar Tally adalah salah satu cara menyusun angkatan dengan menuliskan garis-garis pada interval-interval yang sudah dibuat sesuai nilai angkatan. Tujuannya untuk melihat pola, keteraturan, dan penyimpangan dari pola data. Berikut adalah kelebihan dan kelemahan dari daftar tally manual.

Kelebihan	Kelemahan
Dapat melihat bentuk distribusi data	Menghilangkan informasi dari data asli
Menghitung frekuensi dengan cepat	
Melihat ada tidaknya data ekstrim/outlier	

Langkah di R

Perlu menginstall package dplyr terlebih dahulu, dengan cara ketik install.packages ("dplyr") kemudian run. Setelah itu panggil library dplyr dengan menuliskan syntax library (dplyr).

```
>taly=mtcars %>% group_by(cyl)%>% tally()%>%
  mutate(Percent=n/sum(n)*100)%>%
  mutate(CumCnt=cumsum(n))%>%
  mutate(CumPct=cumsum(Percent))
>taly
```

Interpretasi

- Nilai minimum data ...
- Nilai maksimum data ...
- Modus ...
- Median ...
- Jangkauan ...
- Jumlah data ...
- Frekuensi Relatif per data (dilihat dari kolom Percent) ...

3. Stem and Leaf Plot

Untuk mengatasi kelemahan yang ada pada daftar tally, digunakan diagram batang dan daun. Dalam Sofware R, Diagram batang dan daun memiliki dua komponen utama, yaitu sebagai berikut.

- Batang : Angka yang memiliki level lebih besar dari angka pada daun (biasanya puluhan/ratusan).
- Daun : Angka yang menunjukkan digit terakhir dari bilangan tersebut (biasanya satuan)

Langkah di R

Usage

```
stem(x, scale = 1, width = 80, atom = 1e-08)
Arguments
x = vector numerik
Scale = mengkontrol panjang plot
width = panjang plot yang diinginkan
atom= toleransi
```

Disarankan, argument yang perlu disesuaikan adalah scale.

Contoh, akan dibuat stem dan leaf plot dari data rivers. Pertama, perlu eksplorasi data dari data rivers.

```
#memanggil data rivers
rivers
#Apa itu data rivers
help("rivers")
#nilai minimum data rivers
```

```
min(rivers)
#nilai max data rivers
max(rivers)
> stem(rivers)
The decimal point is 2 digit(s) to the right of the |
 0 | 4
 2 | 011223334555566667778888899900001111223333344455555666688888999
 4 | 111222333445566779001233344567
 6 | 000112233578012234468
 8 | 045790018
10 | 04507
12 | 1471
14 | 56
16 | 7
18 | 9
20
22 | 25
24 | 3
26
28
30
32
34
36 | 1
```

Gambar 1. Stem and leaf

Gambar 1 kurang merepresentasikan data asli karena dari gambar 1. Tersebut nilai minimum data = 40, padahal aslinya 135. Jadi, perlu mencoba membuat stem and leaf plot yang sesuai.

```
> #scale yang besar dapat meningkatkan panjang batang
> stem(rivers, scale=2)
   The decimal point is 2 digit(s) to the right of the |
    2 | 0112233345555666677788888999
    3 |
        00001111223333344455555666688888999
       111222333445566779
    5 | 001233344567
        000112233578
       012234468
    8 i
        04579
    9 | 0018
   10 |
        045
   11
       07
   12 | 147
   13
       56
   14 |
   15
   16
   17
   18
   19
   20
   21
   22
        25
   23 |
   24
   25
        3
   26
```

Gambar 2. Stem and leaf

Nb. untuk gambar 2. Sedikit kepotong

Gambar 2 lebih representatif data dengan nilai minimum dalam stem and leaf plot gambar 2. sebesar 140.

Gambar 3. Stem and leaf

Gambar 3. Juga representatif dengan nilai minimum dalam stem and leaf ini sebesar 100

Interpretasi

- Nilai minimum data ...
- Nilai maksimum data ...
- Jangkauan ...
- Sebaran/Bentuk distribusi data
 - a. Normal, simetris/mendekati simetris, data berbentuk lonceng
 - b. Menceng kiri/menjurai kebawah, banyak nilai rendah yang menyebar
 - c. Menceng kanan/mejurai keatas, banyak nilai tinggi yang menyebar

4. Ringkasan Numerik

Ringkasan numerik merupakan ringkasan dari data, harga-harga yang penting dari data, atau gambaran dari data yang berguna untuk estimasi nilai-nilai karakteristik data. Contoh ringkasan numerik adalah jumlah data, rata-rata, median, modus, range, variansi, dan standar deviasi.

A. Ukuran Pusat

Ukuran pusat menunjukkan letak dimana data berpusat. Pusat memberikan gambaran terhadap harga-harga suatu angkatan. Misal apabila pusatnya A, pastilah angka-angka angkatan tersebut kisar pada A, sebagian lebih dari A, dan sebagian lagi kurang dari A.

♦ Mean (Rata-rata)

Mean adalah ukuran pusat yang menjumlahkan semua datum kemudian dibagi banyaknya observasi yang sama banyak kemudian dibagi banyaknya observasi. Secara matematis ditulis sebagai berikut :

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Median

Median adalah nilai yang membagi data menjadi 2 bagian dengan observasi yang sama banyak setelah data diurutkan dari kecil ke besar (sebaliknya). Secara matematis ditulis sebagai berikut :

$$Median(x) = \frac{x_{\frac{n}{2}} + x_{\frac{n}{2}+1}}{2}$$

Kuartil

Kuartil adalah harga yang membagi data menjadi 4 bagian dengan observasi sama banyak setelah data diurutkan dari kecil ke terbesar.

* Rata-rata tengah

Rata-rata tengah adalah rata-rata dari observasi yang terletak di antara kuartil 1 dan kuartil 3 tidak termasuk kuartil 1 dan kuartil 3 tersebut.

Modus

Modus adalah harga yang muncul dengan frekuensi paling banyak. Suatu data bisa memiliki hanya satu modus, atau lebih dari 2 modus, bahkan tidak mempunyai modus atau dapat dikatakan semua observasi adalah modus.

B. Ukuran Sebaran

Ukuran sebaran menunjukkan sebaran atau penyimpangan data di sekitar pusat. Jika sebaran rendah berarti berarti data terletak di sekitar pusat dan jika sebaran tinggi berarti data terletak jauh dari data pusat yang artinya pusat kurang mewakili data dengan baik.

* Range (Jangkauan)

Range adalah selisih bilangan terbesar dengan bilangan terkecil. Secara matematis ditulis sebagai berikut :

$$Range = x_A - x_B$$

dengan:

 x_A : bilangan terbesar x_B : bilangan terkecil

Variansi atau ragam

Dalam teori dan statistik dan statistika probabilitas, arti varians adalah pengukuran sebaran antar angka dalam suatu kumpulan data. Secara kasar variansi menyatakan besarnya ukuran data dilihat dari seberapa besar harga masing-masing observasi berbeda dari rata-ratanya. Secara matematis ditulis sebagai berikut :

$$Var(x) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$$

Standar deviasi

Standar deviasi adalah harga yang menunjukkan seberapa besar variasi (seperti penyebaran, penyebaran, penyebaran,) dari mean yang ada. Standar deviasi merupakan akar kuadrat dari variansi. Secara matematis ditulis sebagai berikut :

$$Sd = \sqrt{Var(x)}$$

Membuat Ringkasan Numerik dengan Software R

Sintaks:

Panggil Library
library(openxlsx)

Baca Data

mydata <- read.xlsx("D:\\Kuliah\\Praktikum Eksplorasi dan Visualisasi Data\\Pertemuan 2\\Salary.xlsx")

Cek sebagian data

head(mydata)
tail(mydata)

Output:

>	head (r	mydata		
	Miami	Chica		

Miami Chica	go New_York	Kansas	San_Diego	Seatle	Alabama		
Florida Hawaii Oklahoma							
1 1669 53	17 3969	6311	8880	9640	3298		
5717 9855	9956						
2 3942 77	65 8928	8641	9142	3691	7645		
7364 9300	4208						
3 4052 76	8910	2898	7285	9883	6244		
2173 9180	4990						
4 5815 95	18 7802	4238	9242	9838	7887		
5901 4019							
5 5988 87	38 5567	6296	2805	2783	6415		
9591 8892	8596						
6 1735 93	8899	6579	3430	8913	2709		
6319 7598 4114							
Houston Ph	iladelphia '	Vancouve	er Columbus	Jackso	onville		
Quincy Rial	to Tyler						
1 5974.328	1407.9602	6529.53	5 6926.686	5 20	034.812		
5529.464 5009.362 2406.617							
2 6006.458	1329.9584	6382.15	62 6999.062	2 19	902.363		
5345.986 5132.836 2365.163							
3 5995.788	1207.1781	6606.46	7008.310	19	997.279		
5484.380 4983.634 2604.558							
4 6044.749	969.3006	6610.14	4 6914.276	5 21	134.064		
5422.736 5020.320 2518.289							
5 6005.720	1202.0131	6516.97	1 6999.237	19	952.759		
5539.946 5145	.099 2359.4	94					

6 6015.944 1336.4004 6611.654 7003.036 1956.609

Renton Akron

5331.071 4926.597 2500.843

1 5601.283 3867.284

2 5044.464 3360.151

3 5490.345 3664.315

4 5527.736 3344.308

5 5807.649 3600.703

6 5531.366 3441.459

> tail(mydata)

Miami Chicago New_York Kansas San_Diego Seatle Alabama Florida Hawaii Oklahoma

4495	4497	602	5	7901	1622	8249	6215	8702
3633	3984	78	372					
4496	1076	513	9	5711	2533	9384	4705	8029
6584	3576	9	915					
4497	4544	480	1	6721	3423	5007	5448	4624
	5617							
	3540			5843	7320	3179	9197	1970
	4246							
4499				5966	7464	3244	6207	4746
	9744							
				9326	2138	8335	7290	2181
9897		81			77	Q - 1l	T1	
Ouin	ноиston y Rial				Vancouver	Columbus	Jacksonv	lile
	_		_		6624.423	68/11 //73	1935	8/18
	570 5073				0024.425	0041.475	1755	.010
					6563.881	6942.651	1970	. 636
	978 4986				0000.001	0312.001	1370	• 000
	5965.747				6466.868	7022.289	2015	.304
	406 4985							
4498	6003.057		1335	.931	6511.885	7013.256	1996	.260
5406.	180 4825	.094	2375	.920				
4499	5956.670		1280	.753	6523.053	6873.514	1976	.089
5428.	695 4896	.370	2554	.379				
4500	6037.146		1337	.640	6347.547	6963.469	1965	.910
5391.	792 4995	.259	2559	.574				
	Renton							
	5159.303							
	5388.325							
	5487.839							
	5538.823							
	5491.020							
4500	5239.734	3568	3.908					

Mencari Mean

rataMiami <- mean(mydata\$Miami)
rataMiami</pre>

Output:

```
> rataMiami
[1] 3504.3528888888891
# Mencari Median
medianMiami <- median(mydata$Miami)</pre>
medianMiami
Output:
> medianMiami
[1] 3495.5
# Mencari Kuartil
# Kuartil 1
Q1 Miami = quantile(mydata$Miami, prob=0.25)
Q1 Miami
Output:
> Q1 Miami
    25%
2272.75
# Kuartil 2
Q2 Miami = quantile(mydata$Miami, prob=0.50)
Q2 Miami
Output:
> Q2 Miami
   50%
3495.5
# Kuartil 3
Q3 Miami = quantile(mydata$Miami, prob=0.75)
Q3 Miami
Output:
> Q3 Miami
    75%
4746.25
# Modus
Modus <-function(x) {</pre>
```

```
u <- unique(x)
tab <- tabulate(match(x,u))
u[tab ==max(tab)]
}
Modus(mydata$Miami)</pre>
```

Output:

```
[1] 1669 3942 4052 5815 5988 1735 2697 5434 4166 5105 4503
 [12] 4529 1784 2497 3998 2558 5925 3408 2548 2186 2818 5419
 [23] 1976 2387 2808 5863 3947 5972 1770 4628 3518 1529 3127
 [34] 4026 3215 1934 3993 4149 1375 5367 2989 3798 2636 5632
 [45] 1268 2596 2409 2104 2090 4848 5922 5761 2069 1462 5746
 [56] 2106 2617 1750 1856 1238 1326 2063 4332 3525 3080 4346
 [67] 5275 4801 2018 2888 5908 5152 1840 2961 4911 4284 4997
 [78] 4728 5812 3421 2623 1289 3848 4150 1388 5660 1176 3619
 [89] 1005 1403 4038 3894 1810 2611 3180 2405 3747 5760 2127
[100] 1589 4805 2435 4347 2516 5380 4130 5463 3431 2984 3244
[111] 4098 4287 3168 4673 4681 2362 1211 4920 4639 4761 3882
[122] 3489 1028 1153 1936 5946 5735 4162 1963 4029 1121 2663
[133] 3444 1079 4873 2809 1621 5033 2374 3141 4482 2954 1160
[144] 2211 2878 4976 2015 4879 4770 1977 5222 2217 1230 4593
[155] 3745 1466 3202 5203 2074 3125 1415 4384 1032 2072 5952
[166] 3115 1706 5109 3331 5785 4269 2438 1046 4169 5528 5605
[177] 4160 3475 3937 4869 1642 5051 2930 2308 5667 2202 3716
[188] 5845 4461 4577 1129 3396 2267 3502 5664 2142 2578 5241
[199] 1389 4843 2428 3414 4746 1181 4887 2275 5999 3351 5733
[210] 3289 4254 4560 5217 5702 4941 3876 5398 2396 5443 5251
[221] 4592 4237 5644 5803 1132 4798 3372 4687 5649 1518 5255
```

```
options(digits = 20)
varian Miami
Output:
> varian Miami
[1] 2067827.339767158
# Standar Deviasi
sd Miami <- sd(mydata$Miami)</pre>
sd Miami
Output:
> sd Miami
[1] 1437.9942071396388
country <- c("Miami")</pre>
ringkasan <- data.frame(country,</pre>
                          meanSallary = mean(mydata$Miami),
                          MedianSallary=median(mydata$Miami),
                          01 =
quantile (mydata$Miami, prob=0.25),
Q3=quantile (mydata$Miami, prob=0.75),
                          variansi = var(mydata$Miami),
                          Std dev=sd(mydata$Miami),
                          IQR=IQR (mydata$Miami),
                          min=min(mydata$Miami),
                          max=max(mydata$Miami),
                          row.names = NULL)
Ringkasan
Output:
```

```
> ringkasan
country meanSallary MedianSallary Q1 Q3 variansi Std_dev IQR min max
l Miami 3504.353 3495.5 2272.75 4746.25 2067827 1437.994 2473.5 1000 5999
```

Latihan:

1. Salah satu ukuran pemusatan data adalah trirata. Trirata Disebut juga rata-rata berbobot karena menunjukkan bobot dari kuartil bawah dan kuartil atas dan median. Secara matematis ditulis sebagai berikut:

$$Trirata = \frac{Q1 + Q3 + 2 Median}{4}$$

Buatlah sintaks yang dapat menghitung trirata. Jalankan sintaks tersebut lalu interpretasikan hasilnya!

2. Syafa sedang melakukan evaluasi untuk melihat Salary yang didapatkan penduduk di 20 kota di negara Amerika selama 1 bulan terakhir. Oleh karena itu, ia mengumpulkan sebanyak 4500 sample dari setiap kotanya. Sebelum melakukan analisis ia ingin mengetahui ringkasan numerik dari pendapatan tiap kotanya. Ringkasan numerik yang dibutuhkan adalah rata-rata, median, Kuartil 1, Kuartil 2, Variansi, Standar Deviasi, IQR, Min, Max. bantulah Syafa untuk mengumpulkan ringkasan numerik dari pendapatan 20 kota tersebut.(data tersedia di *Salary.xlsx*) (bebas menggunakan library apapun selama hasil yang diharapkan terpenuhi)

Output yang diharapkan:

```
meanSallary MedianSallary
                                                                                      03 variansi Std dev
   Country
                                                                                                                                IOR
                                                                                                                                                      max
                                                                                               <u>37</u>498.
1 Akron
                                <u>3</u>648.
                                                          <u>3</u>646. <u>3</u>518. <u>3</u>779.
                                                                                                                                        <u>3</u>010. <u>4</u>236.
                                                                                                              <u>2</u>394.
                                                                                                                          <u>4</u>188.
                                                                                                                                       <u>1</u>751
2 Alabama
                                                          <u>5</u>952. <u>3</u>828. <u>8</u>016. 5<u>729</u>277.
3 Chicago
                                <u>6</u>006.
                                                          <u>5</u>996. <u>4</u>015. <u>8</u>003. 5<u>342</u>661.
                                                                                                                           <u>3</u>988.
                                                                                                                                        <u>2</u>000
4 Columbus
                                                          <u>6</u>955. <u>6</u>917. <u>6</u>992.
                                                                                                                 55.2
                                                                                                                              74.1
                                                                                                                                                  7153.
                                                          5972 3917. 7945. 5387594. 6248 4365. 8118. 4775113.
                                <u>5</u>962.
                                                                                                                                       <u>1</u>952
5 Florida
                                                                                                                                                   9999
                                                                                                                                       <u>2</u>451
                                <u>6</u>241.
6 Hawaii
                                                                                                              <u>2</u>185.
                                                                                                                          <u>3</u>754.
                                                                                                                                                   <u>9</u>999
                                                                                                                              68.4 <u>5</u>824.
7 Houston
                                <u>6</u>000.
                                                          <u>6</u>000. <u>5</u>965. <u>6</u>034.
                                                                                                 <u>2</u>585.
                                                                                                                  50.8
                                                                                                                                                   <u>6</u>167.
8 Jacksonv~
                                 2004.
                                                           <u>2</u>004. <u>1</u>970. <u>2</u>038.
                                                                                                 <u>2</u>437.
                                                                                                                  49.4
                                                                                                                              67.2
                                                                                                                                       <u>1</u>831.
                                                                                                                                                   <u>2</u>164.
                                <u>5</u>721.
                                                          <u>5</u>706. <u>3</u>612. <u>7</u>840. 6<u>014</u>230.
                                                                                                              <u>2</u>452.
                                                                                                                          <u>4</u>228.
                                                                                                                                                   <u>9</u>996
9 Kansas
                                                                                                                                       <u>1</u>500
0 Miami
                                <u>3</u>504.
                                                          <u>3</u>496. <u>2</u>273. <u>4</u>746.
                                                                                           2067827.
                                                                                                              <u>1</u>438.
                                                                                                                          2474.
                                                                                                                                        1000
                                                                                                                                                   <u>5</u>999
                                                          <u>6</u>766. <u>5</u>110. <u>8</u>379.
1 New York
                                <u>6</u>753.
                                                                                           3<u>530</u>671.
                                                                                                              <u>1</u>879.
                                                                                                                           \frac{1}{3}270.
                                                                                                                                                   <u>9</u>999
                                                                                                                                        3501
                                                          6514 4830. 8234.
1245. 1162. 1331.
5421. 5362. 5483.
                                <u>6</u>532.
                                                                                                                                       <u>3</u>126
2 Oklahoma
                                                                                           3909055.
                                                                                                              1977.
                                                                                                                                                   9999
                                 <u>1</u>246.
                                                                                                                                                   <u>1</u>734.
<u>5</u>740.
                                                                                               <u>15</u>337.
3 Philadel~
                                                                                                                             168.
                                                                                                                                        <u>5</u>051.
4 Quincy
                                 <u>5</u>422.
                                                                                                 <u>8</u>567.
                                                                                                                             121.
                                 <u>5</u>445.
                                                          <u>5</u>442. <u>5</u>334.
                                                                                               <u>27</u>277.
                                                                                                                             223.
                                                                                                                                        <u>4</u>882. <u>6</u>166.
                                                                                                 <u>6</u>349.
6 Rialto
                                <u>4</u>992.
                                                          <u>4</u>993. <u>4</u>938. <u>5</u>046.
                                                                                                                                        <u>4</u>744.
                                                                                                                                                  <u>5</u>281.
                                                                                                                          <u>3</u>798.
                                                                                                                                       <u>2</u>500
<u>2</u>251
   San Diego
                                <u>6</u>309.
                                                          <u>6</u>338 <u>4</u>411. <u>8</u>208.
                                                                                            4<u>734</u>549.
                                                                                                                                                   <u>9</u>999
                                                           6184. 4225. 8102. 5<u>029</u>893.
                                                                                                                          <u>3</u>878.
   Seatle
                                6170.
                                                                                                                                                  9999
                                                                                                              2243.
                                <u>2</u>457.
                                                                                                                                       <u>2</u>125.
                                                                                                                                                  <u>2</u>796.
                                                           <u>2</u>455. <u>2</u>396. <u>2</u>519.
                                                                                                 8298.
                                                                                                                  91.1
                                                                                                                            123.
  Tyler
   Vancouver
                                 6541.
                                                           <u>6</u>541. <u>6</u>490.
                                                                                6591.
                                                                                                 5779.
                                                                                                                  76.0
                                                                                                                            101.
                                                                                                                                        6244.
                                                                                                                                                  6843.
```

- 3. Jumlah kunjungan wisatawan nusantara adalah jumlah perjalanan kurang dari 6 bulan yang dilakukan oleh penduduk dalam wilayah Indonesia dengan tujuan bukan untuk bekerja atau sekolah. Indikator ini digunakan untuk mengetahui preferensi wisatawan domestik terhadap objek wisata domestik sebagai bentuk kontribusi dalam mendukung kemajuan sektor pariwisata Indonesia. Buatlah steam and leaf plot untuk mengetahui:
 - a. Jumlah minimum dan maksimum perjalanan wisatawan
 - b. Tentukan jangkauan dari data (selisih data maksimum dan minimum) kemudian dugalah apakah jumlah perjalanan antar provinsi dikatakan heterogen? Jelaskan alasanmu.

c. Bagaimana sebaran data dari jumlah kunjungan wisatawan di Indonesia tahun 2019? Apakah mendukung kesimpulan poin b? Jelaskan alasanmu

(Digunakan data P-2.xlsx)

- 4. Buatlah daftar tally pada data CO2 kolom conc. Conc adalah konsentrasi karbondioksida (mL/L). Kemudian jawab pertanyaan berikut,
 - Nilai minimum data ...
 - Nilai maksimum data ...
 - Modus ...
 - Median ...
 - Jangkauan ...
 - Jumlah data ...
 - Frekuensi Relatif perdata (dilihat dari kolom Percent) ...

NB. data CO2 adalah salah satu data yang disediakan R. untuk memanggil nya tinggal ketik CO2 atau juga bisa menyimpan CO2 ke dalam suatu objek.