Overfitting and Underfitting

Overfitting

Overfitting refers to a model that models the training data too well. Overfitting happens when a model learns the detail and noise in the training dataset to the extent that it negatively impacts the performance of the model.

Sign that the model has Overfitted: High Training data Accuracy & very low Test data Accuracy

X	1	2	3	4	5	6	7	8	9	10
Υ	1.38	101.41	23.34	39.89	55.23	129.91	119.33	221.09	207.43	287.80

Causes for Overfitting:

- 1. Less Data
- 2. Increased Complexity of the model
- 3. More number of layers in Neural Network

Preventing Overfitting by:

- 1. Using more data
- 2. Reduce the number of layers in the Neural network
- 3. Early Stopping •
- 4. Bias Variance Tradeoff
- 5. Use Dropouts

Dropouts are used in DL where some neurons are dropped randomly.

UNDERFITTING

Underfitting

Underfitting happens when the model **does not learn enough** from the data. Underfitting occurs when a machine learning model cannot capture the underlying trend of the data

Sign that the model has Underfitted: Very Low Training data Accuracy

X	-10	-9	-8	-7	 0	 7	8	9	10
Υ	100	81	64	49	 0	 49	64	81	100

Causes for Underfitting:

- 1. Choosing a wrong model
- 2. Less complexity of the model
- 3. Less variance but high bias

Prevent Underfitting by:

- 1. Choosing the correct model appropriate for the problem
- 2. Increasing the complexity of the model
- 3. More number of parameters to the model
- 4. Bias Variance Tradeoff