Demand Propagation Through Traded Risk Factors Yu An and Amy W. Huber

Fifth David Backus Memorial Conference On Macro-finance
Discussion – March 2025

Erik Loualiche¹ – University of Minnesota

¹Prepared with the exceptional assistance of Valentin Haddad

This Discussion

The price impact of flows

- An example
- This paper
- An equivalence result

Why?

- Why do we care about flows for factors?
- Implementation and applications

Estimating impact: an example

Toyota needs to buy FX swaps from GS Yen-USD

- Ask an intermediary say Goldman Sachs (GS)
- Exchange rates adjust based on GS demand curve

Estimating impact: an example

- They need to be willing to take in the flow
- Exchange rates adjust based on GS balance sheet
- Effects on ... price of Yen but also on other currencies and all the other assets held by GS

Supply (Toyota)
$$|_{USD}$$
 = Demand (GS) $(S_{\$}, S_{\$}, S_{\$}, S_{\$}, \ldots)$, other stuff) $|_{USD}$

It's all connected

- When Toyota gets the Yen swap ...
- GS wants to change its Euro position
 - Yen takes balance sheet space
 - Yen comoves with the Euro

elasticity \mathcal{E}

■ To understand the effect we need to understand the whole demand curve of GS

$$\underbrace{\left(\frac{\partial \mathsf{Demand^{GS}}}{\partial \mathbf{S}}\right)}_{} \begin{bmatrix} \Delta S_{\mathbf{Y}} \\ \Delta S_{\mathbf{C}} \\ \vdots \end{bmatrix} = \begin{bmatrix} f_{\mathbf{Y}} \\ f_{\mathbf{C}} \\ \vdots \end{bmatrix} \quad \iff \quad \begin{bmatrix} \Delta S_{\mathbf{Y}} \\ \Delta S_{\mathbf{C}} \\ \vdots \end{bmatrix} = \underbrace{\mathcal{E}^{-1}}_{\text{multiplier } \mathcal{M}} \begin{bmatrix} f_{\mathbf{Y}} \\ f_{\mathbf{C}} \\ \vdots \end{bmatrix}$$

3

This paper

What this multiplier \mathcal{M}

- Inverse of aggregate demand curve ... same information $\mathcal{M} = \mathcal{E}^{-1}$
- How do prices adjust for a given flow?

Standard asset pricing approach to the multiplier

- Demand for assets is mean-variance: $D = -\frac{1}{\gamma} \Sigma^{-1} P + \cdots$
- Multiplier comes from covariance matrix $\mathcal{M} = \gamma \Sigma$
- Factor decomposition of variance

$$\mathcal{M} = \gamma \begin{pmatrix} \sigma_{\mathsf{idio}_1} & & & \\ & \sigma_{\mathsf{idio}_2} & & & \\ & & \ddots & & \\ & & & \sigma_{\mathsf{idio}_N} \end{pmatrix} + \gamma \underbrace{\sum_k b_k b_k^{\mathsf{T}}}_{\mathsf{factor weights } b_k}$$

4

An equivalence result

General matrix multiplier

$$\begin{bmatrix} \Delta S_{\mathbf{Y}} \\ \vdots \end{bmatrix} = \mathcal{M} \begin{bmatrix} f_{\mathbf{Y}} \\ \vdots \end{bmatrix}$$

Multiplier decomposition

A decomposition result in HHHKL (Causal Inference for Asset Pricing, 2025)

- Define factor based quantities and prices
- Exchange rates factors: $S_k^{\text{factor}} = b_k^{\mathsf{T}} \mathbf{S}$
- Flow factors: $f_k^{\text{factor}} = b_k^{\mathsf{T}} \mathbf{f}$
- lacktriangle Idiosyncratic or "relative" prices S_{idio} and flows f_{idio}

An equivalence result

Multiplier decomposition

A decomposition result in HHHKL (Causal Inference for Asset Pricing, 2025)

- Define factor based quantities and prices
- Exchange rates factors: $S_k^{\text{factor}} = b_k^{\mathsf{T}} \mathbf{S}$
- Flow factors: $f_k^{\mathsf{factor}} = b_k^{\mathsf{T}} \mathbf{f}$
- lacktriangle Idiosyncratic or "relative" prices S_{idio} and flows f_{idio}

Simple decomposition

- Set of K meso multipliers and 1 relative multiplier to evaluate price impact
 - Set of K univariate regressions

$$\begin{split} \Delta S_{\text{idio}}^{\text{factor}} &= \widehat{\mathcal{M}} \cdot \Delta f_{\text{idio}} \\ \Delta S_{1}^{\text{factor}} &= \mathcal{M}_{1} \cdot \Delta f_{1}^{\text{factor}} \\ & \vdots \\ \Delta S_{K}^{\text{factor}} &= \mathcal{M}_{K} \cdot \Delta f_{K}^{\text{factor}} \end{split}$$

The important question

What are these factors?

- What are these factors? How do we find the b_k weights?
- This is what Goldman Sachs cares about!
- Factor risk, leverage, duration, regulatory constraints ...

The important question

How do we find these factors?

- Lustig, Roussanov, Verdelhan: Microfounded macro model to uncover the economically important risk in currencies
- Chernov, Dahlquist, Lochstoer: dimension of currencies is small enough that we can look at the whole matrix directly
- **This paper:** focus on component of risks that explain both the cross-section of returns and flows
- Objective is to maximize scaled covariance of dollar flow risk (\mathbf{r}^{T} flow) with factor return ($\mathbf{r}^{\mathsf{T}}b_k$)

$$\max_{b} \ \frac{\operatorname{cov}\left(\mathbf{r}^{\mathsf{T}} \mathsf{flow}, \mathbf{r}^{\mathsf{T}} b\right)}{\operatorname{var}(\mathbf{r}^{\mathsf{T}} b)}$$

It is intuitive ... but does it make sense (and do we care that it does)?

Implementation

How do we identify the multipliers?

- Factors only tell us how to rotate the data
- How do we estimate factor k multiplier \mathcal{M}_k ?
- Require time-series variation in supply along the dimensions of the factors
 - Exogenous Dollar flows, Carry flows, Euro-Yen flows
 - Treasury auctions across central banks

Applications

Why are these multipliers useful?

- Transmission of monetary policy (Loualiche, Pecora, Somogyi, Ward 2025) to exchange rates
- Role of intermediary balance sheets on volatility of exchange rates
- Backout intermediary frictions across currencies (this paper)
- ... across a variety of asset classes (e.g. Haddad Muir)

Final Thoughts

Great Paper! Go read it.

Take away

- New methods to find exchange rates risk factors
- Estimate price impact and substitution in currency markets