OBJECTIVE TYPE QUESTIONS

1. (i) Match the correct parts to make a valid statement

a) Binomial distribution applies to	1. rare events
b) Poisson distribution applies to	2. repeated two alternatives
C) The mean of a Hypergeometric distribution	3. 1-6pq npq
d) The moment generating function of negative binomial distribution	4. n. $\frac{M}{N} (1 - \frac{M}{N}) (\frac{N-n}{N-1})$
e) The coefficient of kurtosis of binomial distribution	5. (Q – pe ^t) ^{-r}
f) The variance of geometric	nM
distribution	6. nM N
g) Variance of Hypergeometric distribution	7. $\frac{q}{p^2}$

- 2. Under what conditions binomial distribution tends to
 - I. Poisson distribution
 - II. Normal distribution
 - III. Geometric distribution.
- Give practical examples (one each) where you would expect binomial, Poisson, negative binomial and geometric distribution.
- 3. State the relationship between:
 - I. Mean and variance of Poisson distribution.
 - II. Mean and variance of negative binomial distribution.

- III. Mean and variance of geometric distribution.
- IV. Poisson distribution and binomial distribution.
- V. Hypergeometric distribution and binomial distrilJution.
- 4. Name the discrete distribution for which
 - I. Mean and variance have the same value.
 - II. Mean is greater than the variance.
- 5. State which of the following statements are True and which are False. In case of the false statement, give the correct statement:
 - I. Mean of binomial distribution is 3 and variance is 5.
 - II. Mean of Poisson distribution is 2 and variance is 3.
 - III. The sum of two independent Poisson variates is also a Poisson variate. The result holds for difference also.
 - IV. For a binomial distribution, Mean = Mode = Median
 - V. The Poisson distribution is a limiting case of binomial distribution when $n \rightarrow \infty$, $p \rightarrow 0$, $np \rightarrow m$.
 - VI. Nearly all the distributions are particular cases of Poisson distribution.
 - VII. The sum of two binomial variates is a binomial variate if the variables are independent and have the different probabilities of success.
 - VIII. Negative binomial distribution may be regarded as the generalization of geometric distribution.
- 6. Fill in the blanks:
 - I. The variance of a binomial distribution is
 - II. The characteristic function of negative binomial distribution is
 - III. Poisson distribution is a limiting case of binomial distribution

		under the co	ondition	s				
	IV.	For Poisson distribution all cumulants						
	٧.	Mean> variance for distribution.						
	VI.	For the Poisson distribution, the variance and the third central moment are						
	VII.	Mean < variance for distribution.						
7.	Give	the correct ar	nswer to	e following:				
	I. The mean and variance of negative binomial distribution:							
		 (a) are same. (b) can not be same. (c) are sometimes equal in limiting case as n → ∞ 						
	II.	I. The characteristic function of Poisson distribution P(m) is						
		(a)e ^{m(it-1)} (c) e ^{mit}			(b) e ^{m(e^{it}-1)} (d) none of th	iese.		
	III.	The mean of a Hypergeometric distribution is						
		(a) $\frac{n(M-1)}{(N-1)}$ None of the		$O) \frac{M(M-1)}{N(N-1)}$	(c) $\frac{\text{nM}(M)}{(N-1)}$	<u>-1)</u> (d)		
IV. The mean of the binomial distribution ${}^{10}\text{Cx}(\frac{2}{5})^{\text{X}}(\frac{3}{5})^{10-\text{X}}$								
		2, 10 is						
		(a) 4.	(b) 6,		(c) 5.	(d) 0.		
V. The mean of Poisson variate is								
		(a) greater (c) equal to.			(b) less the (d) twice,	an. its variance.		
8.	=	sing the uniqu	_		n.g.f.'s determine	e the		

a. M (t) =
$$(\frac{1}{2}, \frac{1}{2}e^t)^6$$

b. M (t)=
$$\frac{(1+e^t)^5}{32}$$

c. M (t)=
$$\frac{(1+2e^t)^3}{27}$$

d.
$$M(t) = e^{3(e^{t}-1)}$$

e. M (t) =
$$e^{(e^t-1)/4}$$

f.
$$M(t) = \frac{1}{3} e^{-t} (e^{-t} - \frac{2}{3})^{-1}$$

g. M (t) =
$$4(3e^{-t}-1)^{-2}$$

h. M (t) =
$$(3e^{-t}-2)^{-3\lambda}$$

Ans(8).

 $3,p = \frac{1}{3}$

(a) Binomial, n= 6. p = $\frac{1}{2}$

(c) Binomial, n= 3. p =
$$\frac{2}{3}$$

(e) Poisson,
$$A == \frac{1}{4}$$

(g) Negative binomial with $r = 2,P = = \frac{2}{3}$

Edit with WPS Office

(h) Negative binomial with r =

(f) Geometric with
$$p = \frac{1}{3}$$

(b) Binomial, n= 5. P = $\frac{1}{2}$

(d) Poisson, 1 = 3.

_