《机器学习》课件

主成分分析 (PCA)

PCA降维: Theory

>在变换后的特征空间中,每个特征向量Wi对 应的特征值λi的大小代表该特征向量所描述 的方向上的方差的大小

所吗...

>从W中去掉那些对应较小特征值的特征向量,意味着在信息丢失最小的意义上降维!

PCA降维: Practice

> 按照其所相应的特征值的大小对特征向量排序

>这样头d个对应最大特征值的特征向量构成

变换矩阵W_{nxd}

从n维空间到d维空间的投影 (*d* < *n*)!

$$y = W^{T}(x - \overline{x}) \qquad x = \overline{x} + Wy$$

人脸识别

特征人脸

PCA方法的优缺点

- 》从压缩能量的角度看,PCA方法是最优的。从 高维空间降到低维空间后,它不仅使得和原样 本的均方误差最小,而且变换后的低维空间有 很好的人脸表达能力
- > 但是没有考虑到人脸的类别信息
- >PCA用于人脸识别并不是一个很好的方法,它 只是起了信息压缩减少特征的降维作用,提高 了以后的识别致率。

PCA和LDA产生的两个不同的线性 投影方向

Fisher线性投影方向

Linear Discriminant Analysis (LDA)

м

Fisher方法推导

最大化Fisher的判别准则:

$$J(W) = \frac{tr(W^{T}S_{b}W)}{tr(W^{T}S_{w}W)}$$

为什么这么定义?

线性变换之后使得不同类的样本(平均类间 距离)尽可能远,同类样本(平均类内距离) 尽可能近。

Fisher方法推导

线性变换或者投影之后使得不同类的样本 (平均类间距离) 尽可能远

$$W^{T}(m_{1}-m_{2})(m_{1}-m_{2})^{T}W$$

同类样本(平均类内距离)尽可能近

$$\sum_{i} W^{T} (x^{i} - m_{i})(x^{i} - m_{i})^{T} W$$

M

类间散度矩阵

>Ω_i类与Ω_j类之间的类间散废矩阵,

$$S_B^{(ij)} = \left(\mathbf{m}^{(i)} - \mathbf{m}^{(j)}\right) \left(\mathbf{m}^{(i)} - \mathbf{m}^{(j)}\right)^T$$

▶总的类间散度矩阵:

$$\boldsymbol{S}_{B} = \frac{1}{2} \sum_{i=1}^{M} P\left(\boldsymbol{\Omega}_{i}\right) \sum_{j=1}^{M} P\left(\boldsymbol{\Omega}_{j}\right) \boldsymbol{S}_{B}^{(ij)} = \frac{1}{2} \sum_{i=1}^{M} P\left(\boldsymbol{\Omega}_{i}\right) \sum_{j=1}^{M} P\left(\boldsymbol{\Omega}_{i}\right) \left(\mathbf{m}^{(i)} - \mathbf{m}^{(j)}\right) \left(\mathbf{m}^{(i)} - \mathbf{m}^{(j)}\right)$$

м

类内散度矩阵

>Ω;类的类为散度矩阵,

$$S_{w}^{(i)} = \frac{1}{N_{i}} \sum_{k=1}^{N_{i}} \left(\mathbf{X}_{k}^{(i)} - \mathbf{m}^{(i)} \right) \left(\mathbf{X}_{k}^{(i)} - \mathbf{m}^{(i)} \right)^{T}$$

▶总的类内散度矩阵:

$$S_{w} = \sum_{i=1}^{M} P\left(\Omega_{i}\right) S_{w}^{(i)} = \sum_{i=1}^{M} P\left(\Omega_{i}\right) \frac{1}{N_{i}} \sum_{k=1}^{N_{i}} \left(\mathbf{X}_{k}^{(i)} - \mathbf{m}^{(i)}\right) \left(\mathbf{X}_{k}^{(i)} - \mathbf{m}^{(i)}\right)^{T}$$

Fisher方法推导

最大化如下表达式,可以满足我们的要求:

如何计算?

$$J(W) = \frac{W^T S_b W}{W^T S_w W}$$

$$W^T S_{w} W = c \neq 0$$

定义Lagrange函数为:

$$L(w,\lambda) = W^{T} S_{b} W - \lambda (W^{T} S_{w} W - c)$$

Fisher方法推导

如何计算?

$$\frac{\partial L(w,\lambda)}{\partial w} = S_b w - \lambda S_w w = 0$$

$$S_b w = \lambda S_w w$$

$$S_w^{-1} S_b w = \lambda w$$

则可以利用线性代数中的方法求解

10

Fisher基本过程

> Fisher的投影方向是下面方程的解:

$$S_w^{-1} S_b w = \lambda w$$

S 的秩最大为N-C,所以当N-C<d时,S 的秩最大为N-C,所以当N-C<d

Fisherface方法 = PCA+Fisher

用PCA降维。运用PCA方法将Sw降至p=N-C维。

$$S_{w} = W_{pca}^{T} S_{w} W_{pca}$$
 $S_{b} = W_{pca}^{T} S_{b} W_{pca}$

$$\boldsymbol{S}_b = \boldsymbol{W}_{pca}^T \boldsymbol{S}_b \boldsymbol{W}_{pca}$$

$$W_{pca} = (u_{pca_1}, u_{pca_2}, u_{pca_p})$$

为S₊最大的前N-C个特征值对应的特征向量。

2. 运用上述Fisher方法求

$$W_{lda} = \arg\max_{W} \frac{tr(W^{T} S_{b} W)}{tr(W^{T} S_{w} W)}$$

最后求出理想的投影矩阵为:

$$W_{opt}^{T} = W_{lda}^{T} W_{pca}^{T}$$

м

参数选取

p = N - C - 10

> 这是因为在训练的人脸图像中可能有些比较相像,Sw的秩不一定能达到最大 (N-C),或者降到N-C维时仍然很接近奇异,所以在PCA方法中采取多降几维。

L = C - 1

➤ 这是因为S_b的秩最大为C-1,前C-1个特征向量已经代表了全部的类间散度的信息,L取太大并不能保留更多的类间散度,反而会保留更多的类内散度,对分类无益。

经典文章结论

- ▶ Belhumeur对用特征脸方法和Fisher脸方法分别 求出来的一些特征脸进行比较后得出结论,认 为特征脸方法很大程度上反映了光照等差异, 而Fisher脸方法则能去掉图像之间的与识别信 息无关的差异。
- > Belhumeur的实验是通过对160幅人脸图像(一共16人,每个人10幅不同条件下的图像)进行测试的,采用特征脸方法的识别率为81%,而采用Fisher脸方法的识别率为99.4%。显然,Fisher脸方法有了很大的改进。

> 简要描述特征脸方法和Fisher脸方法的异同点。

PCA

> Regular PCA:

Find the direction u s.t. projecting n points in d dimensions onto u gives the largest variance.

u is the eigenvector of covariance matrix
 Cu=λu.

м

Kernel PCA

- Kernel PCA is used for:
 - De-noising
 - > Compression
 - Interpretation (Visualization)
 - Extract features for classifiers

Why Use Kernel

Fig. 4. Two-dimensional classification example. (a) Using the second-order monomials x_1^2 , $\sqrt{2} x_1 x_2$ and x_2^2 as features a separation in feature space can be found using a *linear* hyperplane. (b) In input space this construction corresponds to a *nonlinear* ellipsoidal decision boundary (figure from [48]).

Why Use Kernel

■ 涉及 需进 据H 件,

需过 一些典型的核函数

- SVM中不同的内积核函数将形成不同的算法,常用的核函数有三类:
- 多项式核函数 K(x,x_i)=[(x.x_i)+1]^q
- 径向基函数 K(x,x_i) = exp(- |x-x_i|²/
 σ²)
- S形函数 $K(x,x_i) = \tanh(v(x.x_i) + c)$

中 只 。 * *

Hibert

- > Hibert-Schmidt
- > 希尔伯特, D.(Hilbert, David, 1862~1943)德 函数学家
- > 1880年,他不顾父亲让他学法律的意愿,进入哥尼斯堡大学攻读数学。
- > 1893年被任命为正教授
- >1942年成为柏林科学院荣誉院士。
- 》希尔伯特是一位正直的科学家,他敢于公开发表文章悼念"敌人的数学家"达布

10

Kernel PCA

- Extension to feature space:
 - compute covariance matrix based 0-mean data $C = \frac{1}{L} \sum_{\Phi(\mathbf{x}, t) \Phi(\mathbf{x}, t)} D^{T}$

$$C = \frac{1}{l} \sum_{j=1}^{l} \Phi(\mathbf{x}_i) \Phi(\mathbf{x}_j)^T$$

solve ei
$$V = \sum_{i=1}^{l} \alpha_i \Phi(\mathbf{x}_i)^{\text{CV} = \lambda \text{V}}$$

Kernel PCA

Define in terms of dot products:
$$\lambda(\Phi(\mathbf{x}_k) \cdot \mathbf{V}) = (\Phi(\mathbf{x}_k) \cdot C\mathbf{V})$$

where
$$K_{ij} = (\Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j)) = k(\mathbf{x}_i, \mathbf{x}_j)$$

Kernel PCA

- > (1,1) (2,2)(3,3)
- > For example, $k(x_1,x_2)=(1*2+1*2+1)^q$
- $> k(x_1,x_3)=(1*3+1*3+1)^q$
- > $k(\mathbf{x}_2, \mathbf{x}_3) = (2*3+2*3+1)^q$ $K_{ij} = (\Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j)) = k(\mathbf{x}_i, \mathbf{x}_j)$

$$V = \sum_{i=1}^{l} \alpha_i \Phi(\mathbf{x}_i)$$

M

Applications - Kernel PCA

Kernel PCA Pattern Reconstruction via Approximate Pre-Images

B. Schölkopf, S. Mika, A. Smola, G. Rätsch, and K.-R. Müller.

In L. Niklasson, M. Bodén, and T. Ziemke, editors, Proceedings of the 8th International Conference on Artificial Neural Networks, Perspectives in Neural Computing, pages 147-152, Berlin, 1998. Springer Verlag.

Input toy data:

```
3 point sources
(100 points each)
with Gaussian noise
\sigma = 0.1
(-0.5, -0.1)
(0,0.7)
(0.5, 0.1)
```

Using RBF

Applications - Kernel PCA Compare to the linear PCA

Fisher Linear Discriminant

Finds a direction w, projected on which the classes are "best" separated

m

Fisher Linear Discriminant

> Equivalent to finding w which maximizes:

$$J(\mathbf{w}) = \frac{\mathbf{w}^T S_B \mathbf{w}}{\mathbf{w}^T S_W \mathbf{w}}$$

where

$$S_B = (\mathbf{m}_1 - \mathbf{m}_2)(\mathbf{m}_1 - \mathbf{m}_2)^T$$

$$S_W = \sum_{i=1,2} \sum_{\mathbf{x} \in \mathcal{X}_i} (\mathbf{x} - \mathbf{m}_i)(\mathbf{x} - \mathbf{m}_i)^T$$

м

Kernel Fisher Discriminant

$$J(\mathbf{w}) = \frac{\mathbf{w}^T S_B^{\Phi} \mathbf{w}}{\mathbf{w}^T S_W^{\Phi} \mathbf{w}}$$

where
$$S_B^{\Phi} = (\mathbf{m}_1^{\Phi} - \mathbf{m}_2^{\Phi})(\mathbf{m}_1^{\Phi} - \mathbf{m}_2^{\Phi})^T$$

$$S_W^{\Phi} = \sum_{i=1,2} \sum_{\mathbf{x} \in \mathcal{X}_i} (\Phi(\mathbf{x}) - \mathbf{m}_i^{\Phi})(\Phi(\mathbf{x}) - \mathbf{m}_i^{\Phi})^T$$

$$\mathbf{m}_i^{\Phi} = \frac{1}{l_i} \sum_{j=1}^{l_i} \Phi(\mathbf{x}_i^j)$$

Kernel Fisher Discriminant

> From the theory of reproducing kernels:

$$\mathbf{w} = \sum_{i=1}^{l} \alpha_i \Phi(\mathbf{x}_i)$$

Substituting it into the J(w) reduces the problem to maximizing:

$$J(W) = \frac{W^T K_b W}{W^T K_w W}$$

Kernel Fisher Discriminant

$$\mathbf{K}_{\scriptscriptstyle w} = \sum_{\scriptscriptstyle i=1}^{\scriptscriptstyle C} p(\varpi_i) E(\eta_j - m_i) (\eta_j - m_i)^T \; , \label{eq:kw}$$

$$\mathbf{K}_b = \sum_{i=1}^{C} p(\varpi_i)(m_i - \overline{m})(m_i - \overline{m})^T ,$$

$$\eta_j = (k(x_1, x_j), k(x_2, x_j), ..., k(x_n, x_j))^T$$

$$m_i = (\frac{1}{n_i} \sum_{j=1}^{n_i} k(x_1, x_j), \frac{1}{n_i} \sum_{j=1}^{n_i} k(x_2, x_j), ..., \frac{1}{n_i} \sum_{j=1}^{n_i} k(x_n, x_j))^T$$

Details refer to b. zhang's cvpr 2005 paper

Kernel Fisher Discriminant Toy Example

the feature value (indicated by grey level) and contour lines of identical feature value. Each class consists of two noisy parabolic shapes mirrored at the x and 9 axis respectively. We see, that the KFD feature discriminates the two classes in a nearly optimal way, whereas the Kernel PCA features, albeit describing interesting properties of the data set, do not separate the two classes well

Applications - Fisher Discriminant Analysis

Fisher Discriminant Analysis with Kernels S.Mika et. al.

In Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas, editors, Neural Networks for Signal Processing IX, pages 41-48. IEEE, 1999.

Applications - Fisher Discriminant Analysis

- Input (USPS handwritten digits):
 - > Training set: 3000

- Constructed:
 - > 10 class/non-class KFD classifiers
 - Take the class with maximal output

0	0	0	0	0
/	/	/	/	/
			2 2	
			3	
4	4	4	4	4
5	5	5	5	5
6		6		
1	7	7	7	7
8			8	
9	9	9	9	9

100

Applications - Fisher Discriminant Analysis

- > Results:
 - 3.7% error on a ten-class classifier Using RBF with $\sigma = 0.3*256$

Compare to 4.2% using SVM

> KFDA vs. SVM

> PCA

Fisher Discriminant Analysis or LDA

Kernel PCA

Kernel Fisher Discriminate Analysis (KFDA)