Homework 2

Math 126

Due September 24, 2021 by 5pm

Name:

Topics covered: complex exponential, logarithm, trig; holomorphic functions, Cauchy-Riemann equations

Instructions:

- This assignment must be typed in LaTeX and submitted on Gradescope by the due date. The Gradescope entry code is V8XWRG
- If you collaborate with other students (which is encouraged!), please mention this near the corresponding problems.
- If you are stuck please ask for help (from me or your classmates). Occasionally problems may require ingredients not discussed in the course.
- You may freely use any fact proved in class. In general, you should provide proof for facts that you use that were not proved in class.

Problem 1. Determine all the solutions to $z^3 + 1 = 0$ and also $z^4 + 1 = 0$. Draw them in the complex plane.

Solution. \Box

Problem 2. Derive a formula for $\sin(4\theta)$ in terms of $\sin(\theta)$ and $\cos(\theta)$.

Solution. \Box

Problem 3. Define z^w where $z, w \in \mathbb{C}$ as $e^{w \log(z)}$. There is not well defined because $\log(z)$ is ambiguous. Show that we can resolve this issue if we assume that either z > 0 is real or w is an integer.

 \square

Problem 4. Derive the Cauchy–Riemann equations in polar coordinates.¹

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$

 \Box

Problem 5. Consider the function $tan(z) = \frac{\sin(z)}{\cos(z)}$.

- (a) For which z is tan(z) undefined?
- (b) What can you say about the value of tan(z) when z has large positive/negative imaginary part?
- (c) Find a vertical line in the complex plane on which $1/\tan(z)$ is bounded. ²

 \Box

Problem 6. Write $z = re^{i\theta}$ with $\theta \in (0, 2\pi)$, and define

$$f(re^{i\theta}) = \sqrt{r}e^{i\theta/2}$$
 and $g(re^{i\theta}) = \log(r) + i\theta$.

Prove that f and g are holomorphic functions defined on $\mathbb{C} \setminus [0, \infty)$.

 \Box

¹Hint: This is an application of the chain rule.

²The following fact from analysis may be useful: a continuous function on a closed interval is bounded.