PENAKSIRAN

PENAKSIRAN TITIK
PENAKSIRAN SELANG
SELANG KEPERCAYAAN UNTUK RATAAN
SELANG KEPERCAYAAN UNTUK VARIANSI

UTRIWENI MUKHAIYAR

METODE PENAKSIRAN

Penaksiran Titik

Nilai tunggal dari suatu parameter melalui pendekatan metode tertentu.

Contoh 1. Seorang mahasiswa mengulang kuliah Statdas, ketika di awal perkuliahan, memiliki target nilai lulus matkul Statdas adalah A.

Nilai : A = 4

Penaksiran Selang

Nilai sesungguhnya dari suatu parameter berada di selang tertentu.

Contoh 2. Seiring berjalannya waktu, mahasiswa tersebut mengubah target nilai lulus matkul Statdas adalah minimal AB

 $IP : \ge AB = [3.5, 4]$

ILUSTRASI

*Parameter sampel menaksir parameter populasi

PENAKSIRAN TITIK

4

*Statistik yang digunakan untuk mendapatkan taksiran titik disebut **penaksir** atau **fungsi keputusan**.

$$\overline{X} \to \mu$$

$$s^2 \to \sigma^2$$

• Apakah \overline{X} dan s² merupakan penaksir yang baik dan paling efisien bagi μ dan σ^2 ?

PENAKSIR TAKBIAS DAN PALING EFISIEN

5

Definisi

• Statistik $\hat{\Theta}$ dikatakan penaksir takbias parameter θ bila,

$$\mu_{\hat{\Theta}} = E[\hat{\Theta}] = \theta$$

• Dari semua penaksir takbias θ yang mungkin dibuat, penaksir yang memberikan variansi terkecil disebut **penaksir** θ **yang paling efisien**

$$\sigma_{\hat{\Theta}_1}^2 < \sigma_{\hat{\Theta}_2}^2$$

PENAKSIR TAK BIAS UNTUK μ DAN σ^2

6

Misalkan peubah acak $X \sim N(\mu, \sigma^2)$

•
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 penaksir tak bias untuk μ .

•
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
 penaksir takbias untuk σ^2 .

Bukti: dengan menunjukkan bahwa,

$$\Rightarrow E[\overline{X}] = \mu$$

$$E[s^2] = \sigma^2$$

PENAKSIRAN SELANG

7

• Taksiran selang suatu parameter populasi θ :

$$\hat{\theta}_1 < \theta < \hat{\theta}_2$$

- $\hat{\theta_1}$ dan $\hat{\theta_2}$: nilai dari peubah acak $\hat{\Theta}_1$ dan $\hat{\Theta}_2$
 - \times $\hat{\theta}_1$ dan $\hat{\theta}_2$ dicari sehingga memenuhi:

$$P(\hat{\Theta}_1 < \theta < \hat{\Theta}_2) = 1 - \alpha$$

dengan $0 < \alpha < 1$.

taraf/koefisien keberartian

• Selang kepercayaan : perhitungan selipag $<\hat{\theta}_2$ berdasarkan sampel acak.

SKEMA PENAKSIRAN

KURVA NORMAL BAKU (Z~N(0,1)) MENGHITUNG TABEL z

$$\alpha = 5\%$$
 maka $z_{1-\alpha/2} = z_{0.975} = 1.96 \Rightarrow P(Z \le z_{0.975}) = 1 - 0.025 = 0.975$
dan $-z_{1-\alpha/2} = -z_{0.95} = -1.96$.

KURVA T-STUDENT ($T \sim T_V$) MENGHITUNG TABEL t

 $\alpha = 5\%$ dan n = 10 maka $t_{\alpha/2;n-1} = t_{0,025;9} = 2,262 \Rightarrow P(T \le t_{0,025}) = 0,025$ dan $-t_{\alpha/2;n-1} = -t_{0,025;9} = -2,262$

• Kasus 1 populasi,
$$\sigma^2$$
 diketahui
$$P\left(-z_{1-\frac{\alpha}{2}} < Z < z_{1-\frac{\alpha}{2}}\right) = 1-\alpha$$

$$TLP: \left| \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = Z \sim N(0,1) \right|$$

$$P\left(\overline{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \right) = 1-\alpha$$

SK (1- α) untuk μ jika σ^2 diketahui :

$$\overline{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

• Kasus 1 populasi,
$$\sigma^2$$
 tidak diketahui
$$P\left(-t_{\frac{\alpha}{2}} < T < t_{\frac{\alpha}{2}}\right) = 1 - \alpha$$

$$\frac{\bar{X} - \mu}{s / \sqrt{n}} \sim t_{n-1}$$

$$P\left(\bar{X} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} < \mu < \bar{X} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}\right) = 1 - \alpha$$

SK (1- α) untuk μ jika σ^2 tidak diketahui :

$$\bar{X} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} < \mu < \bar{X} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

CONTOH 1

Survey tentang waktu maksimum pemakaian komputer (jam) dalam seminggu di 50 buah Warnet di Kota Bandung diketahui berdistribusi normal dengan simpangan baku 10 jam, dan rata-rata pemakaian maksimum adalah 55 jam. Dengan menggunakan taraf keberartian 2% carilah selang kepercayaannya!

CONTOH 2

• Survey tentang waktu maksimum pemakaian komputer (jam) dalam seminggu di 50 buah Warnet di Kota Bandung diketahui **berdistribusi normal**. Rata-rata pemakaian maksimum adalah 55 jam dengan simpangan baku 10 jam. Dengan menggunakan taraf keberartian 2% carilah selang kepercayaannya!

Dapatkah Anda membedakan contoh 1 dengan contoh 2?

ANALISIS CONTOH

	Contoh 1	Contoh 2		
Diketahui :	$n=50$, $\bar{X}=55$, $\sigma=10$	$n = 50$, $\bar{X} = 55$, $S = 10$		
Ditanya :	SK 98% untuk μ (α = 0,02)	SK 98% untuk μ (α = 0,02) kasus menaksir μ dengan σ^2 tidak diketahui,		
Jenis kasus :	kasus menaksir μ dengan σ^2 diketahui,			
Jawab:	$z_{1-\alpha/2} = z_{0,99} = 2,33$	$t_{\alpha/2;n-1} = t_{0,01;49} = 2,326$		
	$\overline{X} - z_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$	$\overline{X} - t_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}} < \mu < \overline{X} + t_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}$		

SOLUSI CONTOH 1 DAN 2 SELANG KEPERCAYAAN UNTUK μ

1. Jika σ^2 diketahui.

$$55 - 2,33 \frac{10}{\sqrt{50}} < \mu < 55 + 2,33 \frac{10}{\sqrt{50}}$$

 $51,705 < \mu < 58,295$

2. Jika σ^2 tidak diketahui.

$$55 - 2,326 \frac{10}{\sqrt{50}} < \mu < 55 + 2,326 \frac{10}{\sqrt{50}}$$

 $51,711 < \mu < 58,290$

 μ_1 - μ_2 17

KASUS 2 POPULASI

1. SK (1- α) untuk (μ_1 - μ_2) jika σ_1^2 dan σ_2^2 diketahui

$$(X_1 - \overline{X}_2) - Z_{1-\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} < \mu_1 - \mu_2 < (X_1 - \overline{X}_2) + Z_{1-\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

$$\mu_1$$
- μ_2 18

KASUS 2 POPULASI

2. SK (1- α) untuk (μ_1 - μ_2) jika σ_1^2 , σ_2^2 tidak diketahui dan $\sigma_1^2 \neq \sigma_2^2$

$$(\overline{X}_1 - \overline{X}_2) - t_{\nu;\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} < \mu_1 - \mu_2 < (\overline{X}_1 - \overline{X}_2) + t_{\nu;\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

dimana
$$v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}}$$

$$\mu_1$$
- μ_2

KASUS 2 POPULASI

3. SK (1- α) untuk (μ_1 , μ_2) jika σ_1^2 , σ_2^2 tidak diketahui dan $\sigma_1^2 = \sigma_2^2$

$$(\overline{X}_1 - \overline{X}_2) - t_{v;\alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} < \mu_1 - \mu_2 < (\overline{X}_1 - \overline{X}_2) + t_{v;\alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

dimana
$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$
 dan $v = n_1 + n_2 - 2$

atau
$$S_p^2 = \frac{\left(\sum_{1}^{n_1} X_1^2 - \left(\sum_{1}^{n_1} X_1\right)^2 / n_1\right) + \left(\sum_{1}^{n_2} X_2^2 - \left(\sum_{1}^{n_2} X_2\right)^2 / n_2\right)}{n_1 + n_2 - 2}$$

$$= \frac{JK_{X_1X_1} - JK_{X_2X_2}}{n_1 + n_2 - 2}$$

PENGAMATAN BERPASANGAN

Ciri-ciri:

- Setiap satuan percobaan mempunyai sepasang pengamatan
- Data berasal dari satu populasi yang sama

Contoh

- Produksi minyak sumur A pada tahun 1980 dan 2000
- Penentuan perbedaan kandungan besi (dalam ppm) beberapa sampel zat, hasil analisis X-ray dan Kimia

 μ_D

SK untuk selisih pengamatan berpasanga \bar{m} dengan rataan dan simpangan baku S_d :

$$\bar{d} - t_{n-1;\underline{\alpha}} \frac{S_d}{\sqrt{n}} < \mu_D < \bar{d} + t_{n-1;\underline{\alpha}} \frac{S_d}{\sqrt{n}}$$

dimana $\mu_d = \mu_1 - \mu_2$ dengan n: banyaknya pasangan.

 \overline{d} merupakan **rata-rata** dari selisih 2 kelompok data.

KURVA KHI KUADRAT ($X \sim \chi_{\nu}^{2}$) MENGHITUNG TABEL χ^{2}

ı		Tingkat signifikansi (α)						
ı	ν	0.3	0.25	0.2	0.1	0.05	0.025	0.02
ı	1	1.074	1.323	1.642	2.706	3.841	5.024	5.412
ı	2	2.408	2.773	3.219	4.605	5.991	7.378	7.824
ı	3	3.665	4.108	4.642	6.251	7.815	9.348	9.837
ı	4	4.878	5.385	5.989	7.779	9.488	11.143	11.668
ı	5	6.064	6.626	7.289	9.236	11.070	12.833	13.388
ı	6	7.231	7.841	8.558	10.645	12.592	14.449	15.033
ı	7	8.383	9.037	9.803	12.017	14.067	16.013	16.622
ı	8	9.524	10.219	11.030	13.362	15.507	17.535	18.168
	9	10.656	11.389	12.242	14.684	16.919	19.023	19.679
ı	10	11.781	12.549	13.442	15.987	18.307	20.483	21.161
L	11	12.899	13.701	14.631	17.275	19.675	21.920	22.618
1								

$\alpha = 5\%$ dan $n = 10$ maka,	$\chi^2_{\frac{\alpha}{2},n-1} \neq \chi^2_{0,025;9} = 19,023$
-----------------------------------	--

$$\chi^2_{1-\frac{\alpha}{2},n-1} = \chi^2_{0,975;9} = 2,7$$

	Tingk at signifik ansi (α.					
ν	0.995	0.99	0.98	0.975	0.95	0.9
	0.555	0.55		0.875	0.55	0.5
1	0.000	0.000	0.001	0.001	0.004	0.016
2	0.010	0.020	0.040	0.051	0.103	0.211
3	0.072	0.115	0.185	0.216	0.352	0.584
4	0.207	0.297	0.429	0.484	0.711	1.064
5	0.412	0.554	0.752	0.831	1.145	1.610
6	0.676	0.872	1.134	1.237	1.635	2.204
7	0.989	1.239	1.564	1.690	2.167	2.833
8	1.344	1.646	2.032	2.180	2.733	3.490
9	1.735	2.088	2.532	2.700	3.325	4.168
10	2.156	2.558	3.059	3.247	3.940	4.865
11	2.603	3.053	3.609	3.816	4.575	5.578

SELANG KEPERCAYAAN (1- α) UNTUK σ^2

23

Kasus 1 populasi

$$P\left(\chi_{1-\frac{\alpha}{2}}^{2} < \chi^{2} < \chi_{\frac{\alpha}{2}}^{2}\right) = 1 - \alpha$$

$$\chi^{2} = \frac{(n-1)s^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$$

$$P\left(\frac{(n-1)s^{2}}{\chi_{\alpha/2}^{2}} < \sigma^{2} < \frac{(n-1)s^{2}}{\chi_{1-\alpha/2}^{2}}\right) = 1 - \alpha$$

SK $(1 - \alpha)$ 100% untuk σ^2 :

$$\frac{(n-1)s^{2}}{\chi_{(n-1);\frac{\alpha}{2}}^{2}} < \sigma^{2} < \frac{(n-1)s^{2}}{\chi_{(n-1);1-\frac{\alpha}{2}}^{2}}$$

KURVA FISHER (F Nilai kritis distribusi F f 0.025(V1,V2) MENGHITUNG TAE V2

$$\alpha = 5\%$$
, $n_1 = 10 \text{ dan } n_2 = 9 \text{ maka}$, $f_{\frac{\alpha}{2};n_1-1,n_2-1} = f_{0,025;9,8} = 4,36 \text{ dan}$

$$f_{1-\frac{\alpha}{2};n_1-1,n_2-1} = \frac{1}{f_{\frac{\alpha}{2};n_2-1,n_1-1}} = \frac{1}{f_{0,975;8,9}} = \frac{1}{4,1} = 0,24$$

SELANG KEPERCAYAAN (1- α) UNTUK σ_1^2 / σ_2^2

Kasus 2 populasi

$$P\left(f_{1-\frac{\alpha}{2};v_{1},v_{2}} < F < f_{\frac{\alpha}{2};v_{1},v_{2}}\right) = 1 - \alpha$$

$$\downarrow F = \frac{\sigma_{2}^{2}s_{1}^{2}}{\sigma_{1}^{2}s_{2}^{2}} \sim f_{\frac{\alpha}{2},v_{1},v_{2}}$$

$$P\left(\frac{s_{1}^{2}}{s_{2}^{2}} \frac{1}{f_{\frac{\alpha}{2};v_{1},v_{2}}} < \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} < \frac{s_{1}^{2}}{s_{2}^{2}} f_{\frac{\alpha}{2};v_{2},v_{1}}\right) = 1 - \alpha$$

SK $(1 - \alpha) 100\%$ untuk σ_1^2 / σ_2^2 :

$$\frac{s_1^2}{s_2^2} \frac{1}{f_{\frac{\alpha}{2};\nu_1,\nu_2}} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{s_1^2}{s_2^2} f_{\frac{\alpha}{2};\nu_2,\nu_1}$$

REFERENSI

- Devore, J.L. and Peck, R., Statistics The Exploration and Analysis of Data, USA: Duxbury Press, 1997.
- Pasaribu, U.S., 2007, Catatan Kuliah Biostatistika.
- Wild, C.J. and Seber, G.A.F., Chance Encounters A first Course in Data Analysis and Inference, USA: John Wiley&Sons,Inc., 2000.
- Walpole, Ronald E. Dan Myers, Raymond H., *Ilmu Peluang dan Statistika untuk Insinyur dan Ilmuwan*, Edisi 4, Bandung: Penerbit ITB, 1995.
- Walpole, Ronald E. et.al., *Probability & Statistics for Enginerrs & Scientists*, Eight edition, New Jersey: Pearson Prentice Hall, 2007.