图论基础

有向图的连通

Lijie Wang

有问图的连通性

连通分支

有向图的连通性

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016-

有向图的连通

Lijie Wang

有向图的连通性

ゲー

由于有向图中边都有方向性,因此有向图结点之间的可达关系仅仅具有自反性和传递性, 而不具有对称性。因此,有向图中的可达关系不是等价关系。

Definition

设 $G = \langle V, E \rangle$ 是一个有向图,

有向图的连通

Lijie Wang

有向图的连通性

ケマハー

由于有向图中边都有方向性,因此有向图结点之间的可达关系仅仅具有自反性和传递性, 而不具有对称性。因此,有向图中的可达关系不是等价关系。

Definition

设 $G = \langle V, E \rangle$ 是一个有向图,

• 略去 G 中所有有向边的方向得无向图是连通图,则称有向图 G 是连通图或称为弱连通图。否则称 G 是非连通图:

有向图的连通

Liiie Wang

有向图的连通性

V= \= /\ --

由于有向图中边都有方向性,因此有向图结点之间的可达关系仅仅具有自反性和传递性, 而不具有对称性。因此,有向图中的可达关系不是等价关系。

Definition

设 $G = \langle V, E \rangle$ 是一个有向图,

- 略去 G 中所有有向边的方向得无向图是连通图,则称有向图 G 是连通图或称为弱连通图。否则称 G 是非连通图;
- 若 G 中任何一对结点之间至少有一个结点到另一个结点是可达的 , 则称 G 是单向 连通图 ;

有向图的连通

Lijie Wang

有向图的连通性

W-127 / 1-

由于有向图中边都有方向性,因此有向图结点之间的可达关系仅仅具有自反性和传递性, 而不具有对称性。因此,有向图中的可达关系不是等价关系。

Definition

设 $G = \langle V, E \rangle$ 是一个有向图,

- 略去 G 中所有有向边的方向得无向图是连通图,则称有向图 G 是连通图或称为弱连通图。否则称 G 是非连通图;
- 若 G 中任何一对结点之间至少有一个结点到另一个结点是可达的 , 则称 G 是单向连通图 ;
- 若 G 中任何一对结点之间都是相互可达的,则称 G 是强连通图。

有向图的连通

Lijie Wang

有向图的连通性

有向图的连通的

Lijie Wang

有向图的连通性

有向图的连通性

Lijie Wang

有向图的连通性

有向图的连通

Lijie Wang

有向图的连通性

有向图的连通的

Lijie Wang

有向图的连通性

有向图的连通的

Lijie Wang

有向图的连通性

连通分支

显然,强连通图必是单向连通图;单向连通图必是(弱)连通图。但反之均不成立。

强连通图的判定

有向图的连通的

Lijie Wang

有向图的连通性

Definition

有向图 G 是强连通图的充分必要条件是 G 中存在一条经过所有结点至少一次的回路。

强连通图的判定

有向图的连通

Lijie Wang

有向图的连通性

:左:高八士

Definition

有向图 G 是强连通图的充分必要条件是 G 中存在一条经过所有结点至少一次的回路。

Proof.

略。

强连通图的判定

有向图的连通

Lijie Wang

有向图的连通性

连通分支

Definition

有向图 G 是强连通图的充分必要条件是 G 中存在一条经过所有结点至少一次的回路。

Proof.

略。

Example

强连通图

回路: $v_1 \rightarrow v_2 \rightarrow v_4 \rightarrow v_3 \rightarrow v_1$

 G_3

单向连通图的判定

有向图的连通

Lijie Wang

有向图的连通性

Definition

有向图 G 是单向连通图的充分必要条件是 G 中存在一条经过所有结点至少一次的通路。

单向连通图的判定

Lijie Wang

有向图的连通性

Definition

有向图 G 是单向连通图的充分必要条件是 G 中存在一条经过所有结点至少一次的通路。

Proof.

略。

单向连通图的判定

有向图的连通

Lijie Wang

有向图的连通性

连涌公支

Definition

有向图 G 是单向连通图的充分必要条件是 G 中存在一条经过所有结点至少一次的通路。

Proof.

略。

Example

单向连通图

通路: $v_3 \rightarrow v_1 \rightarrow v_2 \rightarrow v_4$

邻接矩阵判定法

有向图的连通

Lijie Wang

有向图的连通性

连通分支

由邻接矩阵 A, 求出可达性矩阵 P,

• 有向线图 G 是强连通图当且仅当它的可达性矩阵 P 的所有元素均为 1;

邻接矩阵判定法

有向图的连通

Lijie Wang

有向图的连通性

连通分支

由邻接矩阵 A, 求出可达性矩阵 P,

- 有向线图 G 是强连通图当且仅当它的可达性矩阵 P 的所有元素均为 1;
- 有向线图 G 是单向连通图当且仅当它的可达性矩阵 P 及其转置矩阵 P^T 经过布尔加运算后所得的矩阵 $P' = P \lor P^T$ 中除主对角元外其余元素均为 1;

邻接矩阵判定法

有向图的连通

Lijie Wang

有向图的连通性

连通分支

由邻接矩阵 A, 求出可达性矩阵 P,

- 有向线图 G 是强连通图当且仅当它的可达性矩阵 P 的所有元素均为 1;
- 有向线图 G 是单向连通图当且仅当它的可达性矩阵 P 及其转置矩阵 P^T 经过布尔加运算后所得的矩阵 $P' = P \lor P^T$ 中除主对角元外其余元素均为 1;
- 有向线图 G 是弱连通图当且仅当它的邻接矩阵 A 及其转置矩阵 A^T 经布尔加运算所得的矩阵 $A' = A \lor A^T$ 作为邻接矩阵而求得的可达性矩阵 P' 中所有元素均为 1.

有向图的连通

Lijie Wang

有向图的连通性

连通分支

Definition

在有向图 $G = \langle V, E \rangle$ 中,设 G' 是 G 的子图,如果

有向图的连通的

Lijie Wang

有向图的连通性

连通分支

Definition

在有向图 $G = \langle V, E \rangle$ 中,设 G' 是 G 的子图,如果

● G' 是强连通的(单向连通的、弱连通的);

有向图的连通性

Lijie Wang

有向图的连通性

连通分支

Definition

在有向图 $G = \langle V, E \rangle$ 中,设 G' 是 G 的子图,如果

- G' 是强连通的(单向连通的、弱连通的);
- 对任意 $G'' \subseteq G$, 若 $G' \subset G''$, 则 G'' 不是强连通的(单向连通的、弱连通的);

有向图的连通

Lijie Wang

有向图的连通性

连通分支

Definition

在有向图 $G = \langle V, E \rangle$ 中,设 G' 是 G 的子图,如果

- G' 是强连通的(单向连通的、弱连通的);
- 对任意 $G'' \subseteq G$, 若 $G' \subset G''$, 则 G'' 不是强连通的(单向连通的、弱连通的);

那么称 G 为 G 的强连通分支(单向连通分支、弱连通分支),或称为强分图(单向分图、弱分图)。

• 弱连通分支也就是忽略边的方向所对应的无向图的连通分支;

有向图的连通

Lijie Wang

有向图的连通性

连通分支

Definition

在有向图 $G = \langle V, E \rangle$ 中,设 G' 是 G 的子图,如果

- G 是强连通的(单向连通的、弱连通的);
- 对任意 $G'' \subseteq G$, 若 $G' \subset G''$, 则 G'' 不是强连通的(单向连通的、弱连通的);

- 弱连通分支也就是忽略边的方向所对应的无向图的连通分支;
- 注意把握(强、单向、弱)连通分支的极大性特点,即任意增加一个结点或一条边就不是(强、单向、弱)连通的了。

有向图的连通

Lijie Wang

有向图的连诵性

有向图的连通

Lijie Wang

有向图的连通性

Example

有向图的连通

Lijie Wang

有向图的连通性

- {*v*₂} , {*v*₆} , {*v*₁, *v*₃, *v*₄, *v*₅, *v*₇} 导出 的子图是强连通分支;
- {v₁, v₂, v₃, v₄, v₅, v₇}, {v₁, v₃, v₄, v₅, v₆, v₇} 导出的子图是单 向连通分支;

有向图的连通

Lijie Wang

有向图的连通性

- {*v*₂} , {*v*₆} , {*v*₁, *v*₃, *v*₄, *v*₅, *v*₇} 导出 的子图是强连通分支;
- {v₁, v₂, v₃, v₄, v₅, v₇},
 {v₁, v₃, v₄, v₅, v₆, v₇} 导出的子图是单 向连通分支;
- 该图自身即是弱连通分支.

有向图的连通性

Lijie Wang

有向图的连通性

有向图的连通

Lijie Wang

有向图的连通性

连通分支

{v₁}, {v₂}, {v₃}, {v₄},
 {v₅, v₆, v₆, v₆, vȝ} 导出的子图是强连通分支;

有向图的连通

Lijie Wang

有向图的连通性

- {v₁}, {v₂}, {v₃}, {v₄},
 {v₅, v₆, v₆, vォ} 导出的子图是强连通分支;
- {*v*₁, *v*₂, *v*₄} , {*v*₁, *v*₃, *v*₄} , {*v*₅, *v*₆, *v*₇} 导出的子图是单向连通分支;

有向图的连通

Lijie Wang

有向图的连通性

连通分支

Example

- {v₁}, {v₂}, {v₃}, {v₄},
 {v₅, v₆, v₆, vォ} 导出的子图是强连通分支;
- {v₁, v₂, v₄}, {v₁, v₃, v₄}, {v₅, v₆, v₇} 导出的子图是单向连通分支;
- {*v*₁, *v*₂, *v*₃, *v*₄} , {*v*₅, *v*₆, *v*₇} 导出的子 图是弱连通分支.

有向图的连通性

Lijie Wang

有向图的连通性

连通分

Theorem

在有向图 $G = \langle V, E \rangle$ 中,它的每一个结点位于且仅位于一个强(弱)连通分支中,至少位于一个单向连通分支中。

有向图的连通性

Lijie Wang

连诵分支

Theorem

在有向图 $G = \langle V, E \rangle$ 中,它的每一个结点位于且仅位于一个强(弱)连通分支中,至少位于一个单向连通分支中。

Theorem

在有向图 $G = \langle V, E \rangle$ 中,它的每一条边至多在一个强连通分支中;至少在一个单向连通分支中;在且仅在一个弱连通分支中。

有向图的连通性

Lijie Wang

连诵分支

Theorem

在有向图 $G = \langle V, E \rangle$ 中,它的每一个结点位于且仅位于一个强(弱)连通分支中,至少位于一个单向连通分支中。

Theorem

在有向图 $G = \langle V, E \rangle$ 中,它的每一条边至多在一个强连通分支中;至少在一个单向连通分支中;在且仅在一个弱连通分支中。

• 弱连通分支: 图的不互连部分

有向图的连通性

Lijie Wang

有向图的连通性

连通分支

Theorem

在有向图 $G = \langle V, E \rangle$ 中,它的每一个结点位于且仅位于一个强(弱)连通分支中,至少位于一个单向连通分支中。

Theorem

在有向图 G=<V,E>中,它的每一条边至多在一个强连通分支中;至少在一个单向连通分支中;在且仅在一个弱连通分支中。

- 弱连通分支: 图的不互连部分
- 强连通分支: 出度为 0 或入度为 0 的结点, 极大回路,…

有向图的连通的

Lijie Wang

有向图的连通性

连通分支

Theorem

在有向图 $G = \langle V, E \rangle$ 中,它的每一个结点位于且仅位于一个强(弱)连通分支中,至少位于一个单向连通分支中。

Theorem

在有向图 $G = \langle V, E \rangle$ 中,它的每一条边至多在一个强连通分支中;至少在一个单向连通分支中;在且仅在一个弱连通分支中。

- 弱连通分支: 图的不互连部分
- 强连通分支: 出度为 0 或入度为 0 的结点, 极大回路,…
- 单向连通分支: 极大通路

Lijie Wang

有向图的连通性

连通分支

THE END, THANKS!