An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

[Hongmungwan : Kaggle Study Group] 에서 참여 중인 프로젝트를 위해 공부했던 'ViT(Vision transformer)' 내용에 대해 정리 하고자 한다. 이번 포스팅에서는 'ViT'를 제안한 An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale 논문 내용을 바탕으로 참고 자료와 함께 다시 정리 하였다.

1. Introduction

- NLP의 Transformer에서 모델 수정을 최소화하면서 표준 Transofrmer를 이미지에 직접 적용
- Image를 작은 patch로 분할하고, 이러한 patch를 linear ebedding 의 sequence를 transformer의 input으로 사용
- mid-size scale dataset에서는 ResNet 등 기존 CNN base model 보다 좋은 성능을 보이지 않음

Equivariance or Locality 즉, CNN 고유의 Inductive bais를 고려할수 있는 기능이 transformer에는 없기 때문에 불충분한 양의 데이터셋에서는 일반화가 잘 되지 않는 문제점 존재

→ large scale dataset으로 pre-train 이후 fine-tuning 할때 좋은 성능을 보임 (ImageNet, CIFAR-100 benchmark에서 SOTA 달성)

2. Related Work

- Image에 대한 self-attention의 단순한 적용은 각 pixel이 다른 모든 pixel들에 attend될 것을 요구
- pixel 수에 대해 quodratic한 복잡도를 가지며 이로인해 현실적인 다양한 input size로 의 확장은 어려움
- Transformer를 image processing에 적용하기 위해 approximation 방법들이 시도됨 (local self-attention, sparse attention, applying it in blocks of varying size, etc.)
- CNN과 self-attention을 결합하는 시도의 연구들도 다수
- Image resolution과 color space를 줄인 image pixel들에 transformer를 적용한
 Generative model
 - → a.k.a iGPT (ViT와 가장 유사한 방법의 연구)

3. Method

- model 설계시 original transformer와 최대한 유사하게 구성함
 - \rightarrow 쉽게 확장 가능한 original transformer 구조와 효율적인 구현을 바로 사용할수 있기 때문

[그림 1] ViT(Vision Transformer) architecture

▼ Vision Transformer architecture

Patch Embedding

- 。 3차원인 Image($x\in\mathbb{R}^{H imes W imes X}$, (H: Height, W: Width, C: Channel))를 2 차원 Image patch($x_p\in\mathbb{R}^{N imes (P^2\cdot C)}$) 로 flatten
- P는 각 패치의 가로/세로에 해당하는 크기, N = HW/P2 으로 Image patch 개수 이자 input sequence의 length

[그림 2] Exemple Convert to 2D image patch

(** <u>출처 : Yeongmin's Blog - Vision</u>

Transformer Review)

- Transformer 인코더는 batch size, sequence length, hidden size 과 같은
 모양의 입력을 사용
- \circ Image patch $(P^2\cdot C)$ 를 학습가능한 parameter $(E\in\mathbb{R}^{(P^2\cdot C) imes D}$ 를 이용하여 D 크기의 vector로 linear projection (선형변환) (D: latent vector size)

Classification token

Embedding된 patch 맨 앞에 하나의 학습 가능한 형태의 [class] token 벡터를 추가

(BERT [CLS] token과 같은 기능)

 \circ 임베딩벡터($z_0^0=x_{class}$)는 Transformer의 여러 encoder층을 거쳐 최종 output(z_L^0)으로 나왔을 때, 이미지에 대한 1차원 representation vector로 써의 역할을 수행

(sequence의 첫번째 위치에 추가함)

- image representation vector 위에 classification head를 붙여서 사용하는데,
 Pre-train 에서는 하나의 hidden layer를 가지는 MLP로 구현되고, fine-tuning에는 단일 linear layer로 구성
- Trainable position embeddings

- \circ 각 패치의 위치 정보를 제공하기 위해 추가적인 각 위치별로 학습 가능한 positional embedding $\quad (E_{pos} \in \mathbb{R}^{(N+1) imes D})$ 사용
- 논문에서 2D image patch의 상대적인 위치를 인코딩 할 수 있는 Advanced positional embed-ding 방식을 시도해봤지만 눈에 띄는 성능 향상을 관찰하지 못했다고 함

Transformer encoder

 MSA(Multi-head self-attention) layer와, MLP(Multi Layer Perceptron) 가 교차로 입력

▼ 모든 block에 LN(Layer normalization) 적용하며, 모든 block이후에 residual connection

•
$$z_0 = [x_{class}; x_p^1 E; x_p^2 E; ...; x_p^n E] + E_{pos}$$

•
$$z'_{l} = MSA(LN(z_{l-1})) + z_{l-1}$$

•
$$z_l = MLP(LN(z'_l)) + z'_l$$

•
$$y = LN(z_L^0)$$

[그림 3] Transformer Encoder

▼ Hybrid architecture

 CNN feature map을 transformer encoder의 input sequence로 사용하는 방법도 실험 진행

(feature map의 결과를 flattening 한 뒤, Trasnformer의 차원으로 projecting)

• 즉 CNN위에 Transformer encoder를 쌓은 구조

3.1 Train method

▼ Fine-tuning

- large dataset으로 pre-train하고, 이를 downstream task에 fine-tuning
- BERT의 LM을 이용한는 방법과 동일

▼ higher resolution fine-tuning

- patch size (P×P)는 유지하고, Transformer input sequence length(N)를 늘리는 방향
- 어떠한 input sequence length에 대해서 처리 할 수 있으나, Pretrain된 postion embedding을 사용하지 못함 (diff. shape)
 - 2D interporation 방식으로 원본 이미지 위치에 따라 Pretraied position embedding을 늘림

4. Experiments & Result

- ResNet 구조로 supervised transfer learning을 수행한 BiT(Big Transfer),
 EfficientNet구조로 ImageNet, JFT-300M를 semi-supervised learning한 Noisy
 Student 두 SoTA 방식을 비교
- 대부분 기존 SoTA를 능가하거나 비슷한 성능을 보이나, 학습 시간의 경우 ViT가 앞도 적으로 적게 걸림

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21K (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Table 2: Comparison with state of the art on popular image classification benchmarks. We report mean and standard deviation of the accuracies, averaged over three fine-tuning runs. Vision Transformer models pre-trained on the JFT-300M dataset outperform ResNet-based baselines on all datasets, while taking substantially less computational resources to pre-train. ViT pre-trained on the smaller public ImageNet-21k dataset performs well too. *Slightly improved 88.5% result reported in Touvron et al. (2020).

[그림 4] experiments Benchmark Dataset

- 사전학습 데이터량에 따른 성능 비교 실험 진행
- 데이터의 양이 작을 경우 큰 모델(ViT-L)이 작은 모델(ViT-B)보다 성능이 떨어짐

(few-shot의 경우도 동일함)

• 즉, 모델 크기의 이점을 완전히 가져가려면 그만큼 많은 데이터가 필요

Figure 3: Transfer to ImageNet. While large ViT models perform worse than BiT ResNets (shaded area) when pre-trained on small datasets, they shine when pre-trained on larger datasets. Similarly, larger ViT variants overtake smaller ones as the dataset grows.

Figure 4: Linear few-shot evaluation on ImageNet versus pre-training size. ResNets perform better with smaller pre-training datasets but plateau sooner than ViT, which performs better with larger pre-training. ViT-b is ViT-B with all hidden dimensions halved.

[그림 5] Experiments diff. Pretrain Dataset size

5. Reference

- [1] An Image is Worth 16*16 Words: Transformers for Image Recognition at Scale, ICLR 2021
- [2] Vision Transformer Review
- [3] Vision Transformer(ViT) 논문리뷰