Guidelines

B.Sc. (H) Computer Science

DSC-03 (Mathematics for Computing)

S.No	Торіс	Reference	
		Table of Content	Book
1	Unit 1- Introduction to Matrix Algebra: Echelon form of a Matrix, Rank of a Matrix, Determinant and Inverse of a matrix, Solution of System of Homogeneous & Non-Homogeneous Equations: Gauss elimination and Gauss Jordan Method.	7.1 7.3 7.4 Pg.282-285 7.5 7.7 Pg 293-295 7.8 Pg 301-304	[2]
2	Unit 2 - Vector Space and Linear Transformation: Vector Space, Sub- spaces, Linear Combinations, Linear Span, Convex Sets (Follow any Book), Linear Independence/Dependence, Basis & Dimension, Linear transformation on finite dimensional vector spaces, Inner Product Space, Schwarz Inequality, Orthonormal Basis, Gram-Schmidt Orthogonalization Process	4.1 – 4.5 (Except Page no. 208 -212) 5.1 – 5.4 7.5	[3]
3	Unit 3 - EigenValue and EigenVector: Characteristic Polynomial, Cayley Hamilton Theorem (Only in numericals), Eigen Value And eigen vector of a matrix, eigenspaces, Diagonalization, Positive Definite Matrices, Applications to Markov Matrices	6.1 Introduction to eigen value (*Refer 4.2 for applications) 6.2 Diagonalization 6.4 Symmetric Matrices Cayley Hamilton Theorem Page no. 384 6.5 Positive Definite Matrices 8.3 Applications of Markov Matrix	[1] [3] [1]
4	Unit 4 - Vector Calculus: Vector Algebra, Laws of Vector Algebra, Dot Product, Cross Product, Vector and Scalar Fields, Ordinary Derivative of Vectors, Space Curves, Partial Derivatives, Del Operator, Gradient of a Scalar Field, Directional Derivative, Gradient of Matrices, Divergence of a Vector Field, Laplacian Operator, Curl of a Vector Field.	9.1 Vectors in 2-Space and 3-Space 9.2 Inner Product (Dot Product) 9.3 Vector Product (Cross Product) 9.4 Vector and Scalar Functions and Their Fields. Vector Calculus: Derivatives 9.7 Gradient of a Scalar Field. Directional Derivative 9.8 Divergence of a Vector Field 9.9 Curl of a Vector Field	[2]

Reference:

- 1. Strang Gilbert, "Introduction to Linear Algebra", 5th Edition, Wellesley-Cambridge Press, 2021.
- 2. Kreyszig Erwin, "Advanced Engineering Mathematics", 10th Edition, Wiley, 2015.
- 3. Stephen Andrilli and David Hecker, "Elementary Linear Algebra", Fourth Edition, Academic Press, 2010, ISBN: 978-0-12-374751-8

^{*} Deisenroth, Marc Peter, Faisal A. Aldo and Ong Chengsoonm "Mathematics for Machine Learning, 1st Edition, Cambridge University Press, 2020.