Implantação automatizada de composições de serviços web de grande escala

Leonardo Leite

IME - USP

26 de maio de 2014

Orientador: Marco Aurélio Gerosa

Coorientador: Fabio Kon

Conteúdo

- Introdução
- 2 Definição da pesquisa
- Trabalhos relacionados
- 4 O CHOReOS Enactment Engine
- 6 Avaliação
- 6 Conclusões

Implantação de sistemas

O processo de implantação manual se torna moroso e propenso a erros, principalmente na implantação de sistemas distribuídos.

Implantação de sistemas

Processo de implantação automatizada

- Reprodutível
- Confiável
- Fácil de ser executado

Abordagens

- scripts vs especificação declarativa
- ad-hoc vs baseadas em middleware

Composições de serviços web

- Interfaces acessíveis por máquinas
- Automação de fluxos de negócios
- Coreografias

Composições de serviços web

Desafios na implantação em grande-escala

- Processo
- Falhas
- Disponibilidade
- Escalabilidade
- Heterogeneidade
- Múltiplas organizações
- Adaptabilidade

Virtualização e nuvem na implantação

- Torna implantação facilmente reprodutível
- Não se conhece os IPs antes da implantação
- Servidores são efêmeros

Definição da pesquisa

Contexto

Composições de serviços web de grande escala.

Questão

O quanto e como soluções de implantação baseadas em middleware trazem benefícios nesse contexto quando confrontadas com soluções ad-hoc?

Objetivo

Projetar, implementar e avaliar um middleware que forneça suporte à implantação automatizada de composições de serviços web de grande escala.

Trabalhos relacionados

Trabalhos relacionados

Trabalho	ADL	Escala	Composições	Nuvem	Heterog.
Chef	Х	-	-	-	-
Capistrano	X	-	-	-	-
Nix	X	X	\checkmark	X	-
Darwin/Regis	\checkmark	X	\checkmark	X	Х
Olan	\checkmark	X	\checkmark	X	Х
Quema et al.	\checkmark	\checkmark	\checkmark	X	Х
J2EE app deployment	\checkmark	X	\checkmark	X	Х
Globus Toolkit	\checkmark	X	\checkmark	X	Х
Dynasoar	-	X	X	X	?
Open Knowledge	\checkmark	X	\checkmark	X	Х
TOSCA	\checkmark	X	\checkmark	\checkmark	\checkmark
Juju	-	X	X	\checkmark	\checkmark
Cloud Foundry	-	?	X	\checkmark	\checkmark
Enactment Engine	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

O CHOReOS Enactment Engine

O EE e os modelos de computação nuvem

Ambiente de execução do EE

Estrutura da descrição arquitetural de uma coreografia

Enlace entre serviços

- Serviço A depende de Serviço B
- EE realiza a seguinte invocação ao Serviço A:

```
setInvocationAddress('Airline',
'Nimbus Airline',
['http://nimbus.com/ws/'])
```

Processo de implantação implementado pelo EE

Interface remota

- Criar coreografia
- Obter coreografia
- Implantar coreografia
- Atualizar coreografia

Como abordagens de implantação baseadas em middleware auxiliam o implantador em relação aos desafios listados?

- Processo
- Falhas
- Disponibilidade
- Escalabilidade
- Heterogeneidade
- Múltiplas organizações
- Adaptabilidade

Processo

- Automação
- Interface remota (REST)
- Descrição declarativa
- Infraestrutura virtualizada

Falhas

- Invoker
- Reservoir
- Degradação suave
- Idempotência

Invoker

-task: Callable<T>
-trialTimeout

-triats: int
-pauseBetweenTrials: int

timeUnit: TimeUnit

+invoke(): T

Disponibilidade

- Replicação
- Dados

Escalabilidade

- Concorrência (linguagem declarativa)
- Tratamento de falhas
- Evitar gargalos (Chef Server → Chef Solo)

Heterogeneidade

Pontos de extensão:

- Provedores de infraestrutura
- Políticas de seleção de nós
- Tipos de pacotes
- Tipos de serviços

Múltiplas organizações

- Serviços legados
- Implantação multi-nuvem
- Federação

Adaptabilidade

- Atualização das composições
- Migração de serviços
- Replicação de serviços
- Implantação de infraestrutura de monitoramento

Avaliação

Comparação EE vs ad-hoc

EE

Desenvolvimento: 45 min

Execução: 4 min

Tamanho: 180 LoC Java

ad-hoc

Desenvolvimento: 9 horas

• Execução: 60 min

Tamanho: 100 LoC Shell Script, 220 LoC Java, e 85 LoC Ruby

Dificuldades da abordagem ad-hoc

- Muitas tecnologias
- Replicação de código
- Passos manuais
- Erros de digitação
- Pouca paralelização

Solução *ad-hoc* até poderia ficar melhor... mas poderia ficar quase tão complexa quanto o próprio EE!

Análise de desempenho

Cenário	Composições	Tamanho	Nós	Serviços/Nós
1	10	10	9	11 ou 12
2	10	100	90	11 ou 12
3	100	10	90	11 ou 12
4	10	10	5	20

Análise de desempenho

Topografia da composição sintética utilizada nos experimentos

Análise de desempenho

Tempo	Composições	Serviços	
(s)	com sucesso	com sucesso	
467.9 ± 34.8	10.0 ± 0	$100.0 \pm 0 \ (100\%)$	
1477.1 ± 130.0	9.3 ± 0.3	$999.3 \pm 0.4 \ (99.9\%)$	
1455.2 ± 159.1	98.9 ± 0.8	$998.5 \pm 1.3 \ (99.9\%)$	
585.2 ± 38.1	10.0 ± 0.1	$100.0\pm0.1\;(100\%)$	
	$\begin{array}{c} \text{(s)} \\ 467.9 \pm 34.8 \\ 1477.1 \pm 130.0 \\ 1455.2 \pm 159.1 \end{array}$	$\begin{array}{ccc} \text{(s)} & \textit{com sucesso} \\ 467.9 \pm 34.8 & 10.0 \pm 0 \\ 1477.1 \pm 130.0 & 9.3 \pm 0.3 \\ 1455.2 \pm 159.1 & 98.9 \pm 0.8 \end{array}$	

Análise de escalabilidade

Efetividade do tratamento de falhas

Cada execução: 1 composição de 100 serviços

Conclusões

Contribuições

- A implementação de um middleware que possibilita a implantação automatizada de composições de serviços.
- Uma comparação, baseada na literatura e em evidências empíricas, entre soluções de implantação automatizada com abordagens ad-hoc e baseadas em middleware.

Publicações

SBRC

Leonardo Leite, Nelson Lago, Marco Aurélio Gerosa e Fabio Kon. Um Middleware para Encenação Automatizada de Coreografias de Serviços Web em Ambientes de Computação em Nuvem. Em *31º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos*, 2013.

MiniPlop Brasil

Leonardo Leite. Fábrica dinâmica de dublês: testando classes que possuem dependências não injetáveis. Em *Miniconferência Latino-Americana de Linguagens de Padrões para Programação*, 2013.

SOCA

Leonardo Leite, Gustavo Oliva, Guilherme Nogueira, Marco Aurélio Gerosa, Fabio Kon e Dejan Milojicic. A systematic literature review of service choreography adaptation. Service Oriented Computing and Applications, 3(7):201–218, 2013.

Trabalhos futuros

- Análise multivariável de fatores que influenciam a escalabilidade
- Experimentos com desenvolvedores
- Algoritmos adaptativos para tratamento de falhas
- Federação de instâncias do EE
- Utilização de um balanceador de carga
- Utilização de um barramento de serviços
- Atualização dinâmica de composições de serviços

Obrigado!

Leonardo Alexandre Ferreira Leite

http://www.ime.usp.br/~leofl leofl@ime.usp.br

CHOReOS Enactment Engine

http://ccsl.ime.usp.br/EnactmentEngine https://github.com/choreos/enactment_engine