The Low Mach Number Approximation for Multidimensional Modeling of Type I X-ray Bursts

David J. Lin

Main Project Goals ...

• Develop the Low Mach Number Approximation (LMNA) to study astrophysical deflagrations:

- Sub-sonic flows

M < 0.1

- Strong gravity

 $g \sim 10^{14} \, \text{cm s}^{-2}$

- Large lateral variations $\delta T/T \sim 0.1$

- Simulate Type I X-ray burst (w/ 2D hydro)
 - ... through a complete burst: 1) heating, 2) peak, 3) cooling
 - Quantify:
 - burning front behavior
 - convective dynamics
 - size of thermodynamic fluctuations
 - compositional mixing
 - Calculate approximate light-curves

MXB 1728-34 Light Curve

(High Energy Astronomy Observatory-1 A2)

LMNA Motivation

• Substantial increase in time-step if $M \ll 1.0$

$$\Delta t = \lambda_{CFL} \frac{\Delta x}{(v_{flow} + v_{sound})} \rightarrow \lambda_{CFL} \frac{\Delta x}{(v_{flow})} \quad \text{if p-waves are absent}$$

- Speed up calculations by a factor of 10 or more
- Completely avoid artificial acoustic effects at the boundaries of both the computational domain and the convective layer

LMNA Advai				
	Boussinesq	<u>Implicit</u>	Anelastic	LMNA
Key method:	$\nabla \cdot \vec{v} = 0$	n, n-1	$\nabla \cdot \rho \vec{v} = 0$	$\frac{\partial P}{\partial t} = 0$ (EOS, EOE)
Compressible?	NO	YES	weakly	weakly
Acoustic boundary problems?	NO	YES	NO	NO
Allows for large lateral differences?	NO	YES	NO	YES

LMNA Current Implementations

• Terrestrial:

Fire Dynamics Simulator

National Institute of Standards and Technology (McGratten et al, 2004)

• Astrophysical:

LBNL Alternative LMNA method:

- 1) Evolves density
- 2) Currently neglects reaction, composition, & thermal diffusion
- 3) Allows for time-dependent base state
- 4) We reformulate pressure gradient and buoyancy terms: $\phi = P' gK$

Lawrence Berkeley National Laboratory

(Bell et al., 2004; Zingale, et al., 2005; Almgren et al., 2006a, 2006b)

LMNA Essence

Non-dimensionalizing the Euler momentum equation is instructive:

$$\nabla P = -M^2 \left(\rho \frac{D\vec{v}}{Dt} + F_r^{-1} \rho \, \hat{g} \right)$$

where P, ρ , ∇ , t, \vec{v} are non-dimensionalized quantities, and $M = v_o/v_s$ (Mach Number) $F_r = \frac{(v_o^2/L_o)}{g}$ (Froude Number) $P = P_1(t) + M^2 P_2(\vec{r}, t)$

Perturbatively expand about a time-independent, hydrostatic base state:

$$P(\vec{r},t) = P_{HS}(z) + P'(\vec{r},t)$$

$$P' \sim M^{2}P \quad \circ \quad \bullet \quad \text{Validated ex-post-facto}$$

Euler Equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0$$

$$\rho \frac{D\vec{v}}{Dt} + \nabla P = \rho \vec{g}$$

$$\rho T \frac{DS}{Dt} = \rho c_p \frac{DT}{Dt} - \delta \frac{DP}{Dt}$$

$$\rho = F(T, P, X_l)$$

$$\frac{DX_l}{Dt} = R_l$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0$$

$$\rho \frac{D\vec{v}}{Dt} + \nabla P' = \rho' \vec{g}$$

$$\rho T \frac{DS}{Dt} = \rho c_p \frac{DT}{Dt} - \delta \frac{DP_{HS}}{Dt}$$

$$\rho = F(T, P_{HS}, X_l)$$

$$\frac{DX_l}{Dt} = R_l$$

Essential approximation: $\frac{\partial P}{\partial t} \rightarrow 0$ in the equations of energy and state

$$\frac{\partial P}{\partial t} \rightarrow 0$$

LMNA Evolution Equations

$$\begin{split} \frac{\partial X_{l}}{\partial t} &= -\vec{v} \cdot \nabla X_{l} + R_{l} \\ &\frac{\partial T}{\partial t} = -\vec{v} \cdot \nabla T + \frac{1}{c_{p}} \left(\dot{s} - \frac{\delta}{\rho} w \, \rho_{HS} g + \frac{1}{\rho} \nabla \cdot \kappa \, \nabla T \right) \end{split}$$

 ρ , $e \in EOS(T, P_{HS}, X_1)$

$$\nabla^2 \phi = \frac{\partial^2 \rho}{\partial t^2} - \nabla \cdot \left\{ \nabla \cdot (\rho \vec{v} \vec{v}) \right\} - \left\{ \frac{\partial^2 (gK)}{\partial y^2} \right\}$$

$$\phi = P' - gK$$

$$K = \int_{0}^{z'} \rho'(y, z') dz'$$

$$\frac{\partial(\rho\vec{v})}{\partial t} = -\nabla \cdot (\rho\vec{v}\vec{v}) - \nabla\phi - \left\{\frac{\partial(gK)}{\partial y}\right\}\hat{j}$$

LMNA Model Specifications

- Split, explicit, finite-difference scheme
- Grid: 2D, uniform (1:1), staggered, Cartesian
- Space: central and upwind differencing
- Time: forward Euler, CFL = 0.5 (2D)
- Input physics:
 - thermal diffusion (opacity routines: Iben, 1975; Christy, 1966; Weaver, 1978)
 - realistic equation of state (tabulated Helmholtz EOS: Timmes & Swesty, 2000)
 - 3α $(3_2^4 He \rightarrow_6^{12} C)$ burner (Fushiki & Lamb, 1987)
 - strong gravity ($g = 2 \times 10^{14} \text{ cm s}^{-2}$)
- Language: Intel Fortran 90
- Parallelism: Message Passing Interface (MPI)
- Computing: Hydra (NU Applied Math) 32 node cluster

Neutron Star Initial Model

• 10³ cm of upper neutron star envelope

$$M_{NS} = 1.4 {\rm M}_{\odot}$$
, $R_{NS} = 10^6 \, cm$

- 1 cm zone⁻¹ resolution
- hydrostatic & thermal equilibrium
- mass accretion rate:

$$\dot{m} = 5 \times 10^{-9} M_{\odot} yr^{-1} cm^{-2}$$

- pressure scale height
 ~ 200 cm
- 1D diffusional-thermal evolution through multiple burst cycles
- initially sub-adiabatic

2D Complete Burst Model

- 386 x 200 zones 1930 x 1000 cm
- 5 cm zone⁻¹
- Plane parallel approx.
- Initial ρ perturbation Gaussian, 10 -6 ρ , centered, σ = 50 cm
- EGR_{init}= $7x10^{14}$ erg g⁻¹ s⁻¹

NS surface

lateral periodicity

$$T, \rho, X_1, v, K: 0 \text{ grad}$$

$$Neumann\left(\frac{\partial \phi}{\partial z} = 0\right)$$

$$w, C.T. = 0$$

Neutron Star Envelope Type I X-ray Burst Sequence

386x200 5 cm/zone

LMNA Model

Burst Evolution: Global Diagnostics

- EGR_{peak} $\sim 2x10^{19}$ erg g⁻¹ s⁻¹ (t_{peak} = 1.572 s)
- $T_{peak} \sim 1.7 \times 10^9 \text{ K}$
- $\bullet \quad \mathbf{M}_{\text{peak}} = 0.085$
- Consumed ~75% of fuel

Convective Layer Expansion Speeds

- Convective layer expands due to thermal diffusion of heat from bursting layer
- Lower boundary velocity $\sim 10^2 \, \text{cm s}^{-1}$
- Upper boundary velocity $\sim 10^4 \text{ cm s}^{-1}$

Velocity Correlation, Gradients

Velocity correlations help quantify the extent and evolution of the convective layer:

$$W_{(corr)} = \frac{\langle w_k w_{ref} \rangle}{\langle w_k \rangle^{1/2} \langle w_{ref} \rangle^{1/2}}$$

 $k_{ref} = center \ of \ conv. \ layer \ at \log EGR = 16$

Actual temperature gradient:

$$\nabla = \left(\frac{\partial \ln T}{\partial \ln P}\right)_{actual}$$

Adiabatic temperature gradient:

$$\nabla_{ad} = \left(\frac{\partial \ln T}{\partial \ln P}\right)_{S}$$

Ledoux temperature gradient:

$$\nabla_L = \nabla_{ad} + \frac{c_1}{c_2} \left(\frac{\partial \ln \mu}{\partial \ln P} \right)$$

Velocity Correlation, Gradients

Log EGR 18

Lateral (V) Correlations

Thermodynamic Fluctuations I

• Fluctuations in temperature *T* and composition *Y* are calculated from lateral averages:

$$d(A)_{j,k} = A_{j,k} - A_{k \text{ ave}} \qquad A_{k \text{ ave}} = \frac{\sum_{j=1}^{J_{max}-1} A_{j,k}}{J_{max}-1}$$

$$\underline{d(T)}$$
 $\underline{d(Y)}$

Upflows:
$$> 0$$
 < 0

Downflows:
$$<0$$
 > 0

• Complementary behavior between T and Y always holds!

$$-0.10 < d(T)/T < +0.10$$
 $-0.02 < d(Y)/Y < +0.02$

Neutron Star Envelope d(T) & d(Y) log EGR = 18.5 (t = 1.559-1.563)

386x200 5 cm/zone

LMNA Model

Thermodynamic Fluctuations II

• Fluctuations in adiabaticity SAd and Ledoux excess SLed:

$$SAd_{j,k} = \nabla_{(j,k)} - \nabla_{ad(j,k)}$$
 $SLed_{j,k} = \nabla_{(j,k)} - \nabla_{L(j,k)}$

$$-0.25 < SAd < +0.25$$
 $-0.25 < SLed < +0.25$

- SAd is not obviously correlated with any instantaneous values
- SAd correlations with total time-integrated Δ in $\partial/\partial z$ due to:
 - Yadvection: strong correlation
 - Tadvection: strong correlation
 - burning: minor role
 - diffusion: negligible

Neutron Star Envelope SAd & SLed log EGR = 18.5 (t = 1.559-1.564s)

386x200 5 cm/zone

LMNA Model

Tracer Particle Analysis

Quantify transport of material through convective boundaries:

770 tracer particles (2 per lateral position)
5 representative EGR levels (16, 17, 18, 18.5, 19)
Several convective times
Forward Euler with 2D linear interpolation

Blue = lowest particle position Red = highest particle position

Reproducible results with extended domain (386x205)

Bottom-, Top- penetration: 770 particle max/min position limits

For each EGR level, Study A's initial placement is 1 zone higher than Study B's

Tracer Analysis Findings

Log EGR	Under-penetration	Over-penetration
16	None	None
17	5 cm (1/40)	None
18	10 cm (1/20)	None
18.5	20 cm (1/10)	40 cm (1/5)
19	60 cm (1/3)	Indeterminate

- Under-, over-penetration are relatively *rare* events: < 15%
- Under-, over-penetration events are temporary and spatially limited
- Bottom-, top-penetration are very sensitive to initial placement
- Vertical flows stop while lateral flows dominate at convective boundaries
- Convective modes are necessary but not sufficient for penetration to occur

Non-Local Convection

• Mixing Length Theory: a *local* theory of convection commonly used as a model for convection in simulations

$$l = \alpha H_{P} \qquad w \propto \alpha^{2} \Delta \nabla$$

$$\Delta \nabla = \nabla - \nabla_{ad} \qquad T' \propto \alpha T \Delta \nabla$$

$$F_{conv} \propto \frac{w'}{\alpha}$$

$$F_{conv}^{2} \propto \alpha T'^{3}$$

- No consistent value of α can be determined from these relationships
- Practical value of $\alpha \sim 1$ to 2

• Present results suggest our simulated convection is non-local

Fluxes

• Fluxes: nuclear (F_{nuc}) , radiative (F_{rad}) , advective (F_{adv})

$$F_{nuc} = \int_{0}^{z_{top}} \rho \dot{s}_{3\alpha} dz$$

$$\frac{\partial F_{adv}}{\partial z} = w \left(\rho c_{p} \frac{\partial T}{\partial z} - \delta \frac{\partial P}{\partial z} \right)$$

$$F_{adv}(z') = \int_{0}^{z'} \frac{\partial F_{adv}}{\partial z} dz$$

- Light-curves cannot be accurately calculated wth current model, because the surface of star is not presently modeled
- Significant differences between 1D and 2D flux behavior, attributable to convective energy transport in 2D
- 1D models need to properly account for the effects of convection in order to produce more realistic light-curves

Model	Rise time (s)	Fall time (s)
1D	0.030	0.032
2D	0.103	0.014

$$F_{Edd} = 2.5 \times 10^{25} \text{ erg s}^{-1} \text{ cm}^{-2}$$

Rise time = t (Edd) to t (peak) Fall time = t (e^{-1} peak) to t (peak)

Nuclear Flux

2D burst significantly delayed and greater in magnitude due to:

- i) convective cooling
- ii) convective modification of ∇
- iii) convective mixing of fuel

LMNA Model Validation

- Rigorous testing of separate modules for consistency (e.g. advection, burning, diffusion, elliptic solver, parallelism, etc)
- Refinements: spatial and temporal resolution, domain sizes:

The Present

Computational

- LMNA model successfully implemented in 2D
- LMNA verified by zone, time, domain refinements
- LMNA applied to model
 Type I X-ray burst in a 2D patch
- Computational time savings about a factor of 10-100 compared to fully explicit Eulerian methods

Astrophysical

- Burning layer relatively stationary
- ✓ Decidedly subsonic (M < 0.10)
- Convection self-organizes into Benard-like cells which fill up the convective layer:
 - height of major cells = height of layer
 - superadiabatic on average
 - vertically expands due to thermal diffusion, facilitates mixing from radiative regions
 - mixing is very efficient within it
 - limited penetration through convective boundaries on convective time-scales
 - > $\nabla_{\rm ad} < \nabla < \nabla_{\rm L}$
 - > $\nabla \sim \nabla_{L}$ at convective boundaries
- Convective dynamics significantly affects energy transport

The Future

Computational

- → Time-dependent base state
- → 3D
- → Rotation
- → Additional nuclear burning networks
- → Other coordinate systems
- → Adaptive gridding
- → Turbulence model

Astrophysical

- → Astophysical deflagrations:
 - > Type I X-ray bursts
 - Pre-ejection stage of classical novae
 - Pre-detonation stage of supernovae
 - Hydrodynamics and burning in cores of main sequence stars