Semantička segmentacija prirodnih scena dubokim neuronskim mrežama

Ivan Borko

Fakultet elektrotehnike i računarstva ivan.borko@fer.hr

16. srpnja 2015.

Sadržaj

- Semantička segmentacija
- 2 Konvolucijske neuronske mreže
- 3 Implementacija
- Testni skupovi
- 6 Rezultati

Semantička segmentacija

Semantička segmentacija

- pridjeljivanje labele svakom pikselu
- spaja klasične probleme detekcije objekata, segmentacije slika i višeklasne klasifikacije
- labele oznake objekata predstavljenih slikom
- primjeri labela:
 - vegetacija
 - vozilo
 - građevina
 - cesta
 - osoba
 - životinja

Semantička segmentacija - primjer

gra**đ**evina

pločnik

Slika: Primjer semantičke segmentacije slike

prometni znak

pješak

Konvolucijske neuronske mreže

Konvolucijske mreže - motivacija

- spadaju u duboke neuronske mreže više od dva skrivena sloja
- ullet računalni vid o veliki ulazni prostor
- veliki broj parametera
 - sporo učenje
 - prenaučenost
- koncepti:
 - konvolucijski sloj
 - operator sažimanja

Konvolucijski sloj

- analiza vidnog korteksa mačaka i ljudi:
 - jednostavne stanice reagiraju na lokalne podržaje
 - kompleksne veća područja i invarijantne na poziciju
- lokalna osjetljivost detekcija objekata i oblika neovisno o poziciji
- konvolucijski operator 1D konvolucija za zvuk, 2D za slike

Slika: Zajedničke težine

Sloj sažimanja

(engl. pooling)

- vrsta nelinearnog poduzorkovanja
- podijeli ulaznu sliku na više nepreklapajućih pravokutnika
- više pristupa
 - sažimanje usprosječivanjem (engl. mean pooling)
 - sažimanje maksimalnog odziva (engl. max pooling)
- važnost
 - smanjuje računsku složenost za gornje slojeve
 - povećava neosjetljivost na translacije u slici

6	4	1	7		
(8)	3	4	6		8
3	8	4	0	aažimania	9
3	(9)	5	$\overline{7}$	sažimanje	

Slika: Primjer sažimanja maksimalnog odziva

Implementacija

Theano

- alat korišten za programsku implementaciju
- služi za definiranje, optimiranje i prevođenje simboličkih izraza u C++ ili CUDA kod
- prednosti:
 - autodiferenciranje automatsko računanje gradijenata
 - paralelno korištenje CPU i GPU (prototipiranje / evaluacija)
 - ullet aritmetička pojednostavljenja, na primjer: $(x\cdot y)/x o y$
 - ugrađene metode za poboljšanje numeričke stabilnosti određenih matematičkih izraza
- mane:
 - težak za učenje
 - otklanjanje grešaka

Pretprocesiranje

Isprobano više metoda:

- YUV kanali umjesto RGB
- Laplaceova piramida
- normalizacija vs normalizacija blokova

Slika: Primjer Laplaceove piramide

Postprocesiranje

- koristi se metoda superpiksela grupiranje piksela po boji ulazne slike
- podešavanje triju parametara

Slika: Segmentacija superpikselima

Arhitektura sustava

Arhitektura mreže

- leakyReLU aktivacijska fukcija
- 3 razine: svaka razina ima 3 sloja koja dijele filtere od 3 konvolucijska sloja
- na kraju je potpuno povezani sloj i sloj multinomijalne regresije koji vrši klasifikaciju određenog piksela

Funkcije gubitka

Negativna log izglednost

$$nII = -\frac{1}{N} \sum_{i=1}^{N} \ln P(Y_i = c_i)$$

Bayesova log izglednost - balansiranje razreda

bayesian_n
$$II = -\frac{1}{N} \sum_{i=1}^{N} \frac{1}{P_{apr}(c_i)} \ln P(Y_i = c_i)$$

N je broj primjera u skupu za učenje, $P_{apr}(c_i)$ je apriorna vjerojatnost klase c_i , Y_i je izlaz mreže.

Testni skupovi

Stanford Background Dataset

- slike vanjskih scena, sakupljene iz raznih skupova podataka
- veličina 320 x 240 piksela
- 715 slika
- 8 semantičkih oznaka

KITTI

- RGB, ali i dubinska komponenta
- 146 označenih: 100 za učenje, 46 za testiranje
- 12 semantičkih oznaka

Slika: Primjer slike i oznake iz skupa KITTI

Rezultati

Rezultati - Stanford Background

Metoda Funkcija troška	Točnost(%)	Točnost razreda(%)	Brzina (sec)
Konv. mreža s 3 razine	75.7	59.3	0.05
negativna log izglednost			
Konv. mreža s 3 razine + <i>superpixels</i>	76.1	59.7	0.11
negativna log izglednost			
Konv. mreža s 3 razine	71.4	64.8	0.05
Bayesova log izglednost			
Konv. mreža s 3 razine + <i>superpixels</i>	74.2	68.1	0.11
Bayesova log izglednost			
Farabet et al. 2013	78.8	72.4	0.6
Farabet et al. 2013 + superpixels	80.4	74.6	0.7
Lempitzky et al. 2011	81.9	72.4	60غ
Munoz et al. 2010	76.9	66.2	12

Tablica: Rezultati na Stanford Background skupu podataka

Rezultati - KITTI

Metoda Funkcija troška	Točnost(%)	Točnost razreda(%)	Brzina (sec)
Konv. mreža s 3 razine (RGB)	73.6	42.4	0.05
negativna log izglednost			
Konv. mreža s 3 razine (RGB) + superpixels	75.1	43.1	0.11
negativna log izglednost			
Konv. mreža s 3 razine (RGB)	69.8	55.3	0.05
Bayesova log izglednost			
Konv. mreža s 3 razine (RGBD)	78.5	45.8	0.05
negativna log izglednost			
Konv. mreža s 3 razine (RGBD) + superpixels	79.1	46.1	0.11
negativna log izglednost			
Ros et al. 2015	81.1	58.0	0.46

Tablica: Rezultati na KITTI skupu podataka

Zaključak

U okviru ovog rada implementiran je sustav koji postiže rezultate usporedive s najboljim implementacijama. Konvolucijske neuronske mreže su se pokazale kao dobar model za semantičku segmentaciju.

The End

Neuronske mreže - uvod

umjetni neuroni: perceptron

- linearni klasifikator
- aktivacijska funkcija: logistički sigmoid

Izlaz

$$P(Y = 0 | \boldsymbol{x}, \boldsymbol{w}, b) = \sigma(\sum_{j=0}^{N} w_j \cdot x_j + b)$$
 (1)

$$\sigma$$
 – logistička funkcija, $\sigma(x) = \frac{1}{1+e^{-x}}$

Slika: Perceptron

Neuronske mreže

- povezivanje više neurona u slojeve
- modeliranje kompleksnih nelinearnih zavisnosti
- ulazni sloj, skriveni sloj, izlazni sloj
- učenje algoritmom unazadne propagacije (engl. backpropagation)
- negativne kritike
 - zapinjanje u lokalnim optimumima
 - nestajući gradijenti (engl. vanishing gradient)
- duboke mreže
- state-of-the-art u većini primjera računalnog vida

Konvolucijski operator

Slika: Konvolucija kroz više kanala¹

 $^{^{1}} https://developer.apple.com/\ library/ios/documentation/Performance/Conceptual/\ vImage/Art/kernel_convolution.jpg$

Prikaz konvolucije s više kanala

Aktivacijske funkcije

- logistička sigmoid funkcija
- hiperbolna tangens funkcija
- ReLU funkcije (engl. Rectified Linear Unit)
 - rješava problem zasićenja gradijenata
 - više vrsta: standardne, leaky, ...

Slika: ReLU funkcije

Regularizacija

- sprječava prenaučenost
- korištene tehnike
 - L_2 regularizacija, $L_2(\mathbf{w}) = \|\mathbf{w}\|_2 = \sum_{i=1}^n w_i^2$
 - umjetno povećanje skupa za učenje (slučajne transformacije)
 - translacije slike po x ili y osi za neki malen pomak, na primjer 5% slike
 - \bullet rotacije slike za kut od $\pm 7\deg$
 - skaliranje (uvećavanje ili smanjivanje) slike za neki faktor koji je obično u raponu od <0.9,1.1>
 - \bullet smik slike za kut od $\pm 5\deg$
 - dropout "isključivanje" neurona

Dropout

Slika: Dropout

Učenje u dva koraka

- učenje konvolucijskih slojeva klasifikacija pojedinog piksela samo slojem logističke (multinomijalne) regresije
- ② učenje klasifikatora učenje potpuno povezanog sloja i sloja logističke (multinomijalne) regresije dodanih na konvolucije

Konfiguracijska programske implmentacije

- JSON format
- konfiguracija parametara mreže

```
"evaluation": {
    "batch-size": 4
"network":
    "layers": [16, 64, 256, 1000],
    "loss": "negative_log_likelihood",
    "builder-name": "build multiscale".
    "seed": 23451
"training":
    "optimization": "rms",
    "optimization-params": {
        "learning-rate": 0.0002,
        "momentum": 0.9
    "epochs": -1,
    "learning-rate-decrease-params": {
        "no-improvement-epochs": 4,
        "min-learning-rate": 0.00001
```

Primjer mreže

- LeNet je primjer često citirane konvolucijske mreže
- neuron (m-1) sloja povezan samo sa prostorno bliskim neuronima m-tog sloja
- u početnim se slojevima izmjenjuju slojevi maksimalnog odziva i konvolucijski slojevi
- zadnji dio je potpuno povezani sloj na čije su ulaze spojeni izlazi zadnjeg sloja maksimalnog sažimanja

Slika: LeNet mreža