Supplementary Information

Tree height and hydraulic traits shape growth responses across droughts in a temperate broadleaf forest

Ian R. McGregor, Ryan Helcoski, Norbert Kunert, Alan J. Tepley, Erika B. Gonzalez-Akre, Valentine Herrmann, Joseph Zailaa, Atticus E.L. Stovall, Norman A. Bourg, William J. McShea, Neil Pederson, Lawren Sack, Kristina J. Anderson-Teixeira

List of Tables

1	Table S1: Species-specific bark thickness regression equations	3
2	Table S2: Species-specific height regression equations	4
3	Table S3: Monthly Palmer Drought Severity Index (PDSI), and its rank among all years	
	between 1950 and 2009 (driest=1), for focal droughts	5
4	Table S4. Individual tests of species traits as drivers of drought resistance, where Rt is used as	
	the response variable	6
5	Table S5. Individual tests of species traits as drivers of drought resistance, where Rt_{ARIMA} is	
	used as the response variable	7
6	Table S6. Summary of top full models for each drought instance, where Rt is used as the	
	response variable.	8
7	Table S7. Summary of top models for each drought instance, where Rt_{ARIMA} is used as the	
	response variable	9
List	of Figures	
1	Figure S1: Map of ForestGEO plot showing TWI and location of cored trees	11
2	Figure S2: Time series of Palmer Drought Severity Index (PDSI) for the 2.5 years prior to	
	each focal drought	12
3	Figure S3: Distribution of independent variables by species. Species that are assigned	
	the same letter are not significantly different from each other with regard to the tested variable.	12
4	Figure S4: Comparison of Rt and Rt_{ARIMA} results, with residuals, for each drought scenario	13
5	Figure S5: PLACEHOLDER	13

While there were several R-packages we used for a specific purpose in our methods, numerous packages were immensely helpful for this research behind the scenes. As in all of science, this study is a representation of the work done by both the authors of this paper as well as countless others. While acknowledging everyone is impossible, we want to at least give thanks to those who made this work possible.

R-packages not already cited in the main manuscript include the following, listed alphabetically by corresponding package name:

Table S1: Species-specific bark thickness regression equations

Species	Equations	\$R^2\$
Carya cordiformis	ln[B] = -1.56 + 0.416*ln[DBH]	0.226
Carya glabra	$\ln[B] = -0.393 + 0.268 \ln[DBH]$	0.040
Carya ovalis	$\ln[B] = -2.18 + 0.651 * \ln[DBH]$	0.389
Carya tomentosa	ln[B] = -0.477 + 0.301*ln[DBH]	0.297
Fagus grandifolia	$\ln[B]=1*\ln[DBH]$	
Fraxinus americana	$\ln[B] = 0.418 + 0.268 \ln[DBH]$	0.256
Juglans nigra	$\ln[B] = 0.346 + 0.279 \ln[DBH]$	0.246
Liriodendron tulipifera	ln[B] = -1.14 + 0.463*ln[DBH]	0.545
Quercus alba	$\ln[B] = -2.09 + 0.637 \ln[DBH]$	0.603
Quercus prinus	ln[B] = -1.31 + 0.528*ln[DBH]	0.577
Quercus rubra	ln[B] = -0.593 + 0.292*ln[DBH]	0.087

Table S2: Species-specific height regression equations

Species	Equations	X.R.2.
Carya cordiformis	ln[H] = 0.332 + 0.808*ln[DBH]	0.874
Carya glabra	$\ln[H] = 0.685 + 0.691 * \ln[DBH]$	0.841
Carya ovalis	$\ln[H] = 0.533 + 0.741 \ln[DBH]$	0.924
Carya tomentosa	$\ln[H] = 0.726 + 0.713 \ln[DBH]$	0.897
Fagus grandifolia	$\ln[H] = 0.708 + 0.662 * \ln[DBH]$	0.857
Liriodendron tulipifera	ln[H] = 1.33 + 0.52*ln[DBH]	0.771
Quercus alba	ln[H] = 0.74 + 0.645*ln[DBH]	0.719
Quercus prinus	ln[H] = 0.41 + 0.757*ln[DBH]	0.886
Quercus rubra	ln[H] = 1.00 + 0.574*ln[DBH]	0.755
all	ln[H] = 0.839 + 0.642*ln[DBH]	0.857

Table S3: Monthly Palmer Drought Severity Index (PDSI), and its rank among all years between 1950 and 2009 (driest=1), for focal droughts.

year	month	PDSI	rank
1966	May	-2.98	2
	June	-3.40	2
	July	-4.08	2
	August	-4.82	1
1977	May	-2.96	3
	June	-3.28	3
	July	-3.61	3
	August	-3.68	3
1999	May	-3.63	1
	June	-4.21	1
	July	-4.53	1
	August	-4.64	2

Table S4. Individual tests of species traits as drivers of drought resistance, where Rt is used as the response variable.

		all droughts		1966		1977		1999	
variable	category	$\Delta { m AICc}$	coefficients						
xylem porosity	R	-0.80	0.0630	2.29**	0.190	1.92*	-0.152	3.36**	0.1500
	D/SR		0.0000		0.000		0.000		0.0000
PLA		6.70	-0.0140	9.13**	-0.025	-0.32	-0.010	-0.95	-0.0070
LMA		-2.01	0.0002	-1.9	0.001	-1.68	-0.002	-2.03	0.0003
π_{tlp}		1.33	-0.1740	-1.65	-0.107	1.23*	-0.245	-0.1	-0.1690
WD		-1.97	-0.0310	-1.26	-0.206	-1.44	-0.154	0.66	0.2720

Variable abbreviations are as in Table 2. $\Delta AICc$ is the AICc of a model excluding the trait minus that of the model including it.

^{*} $\Delta {\rm AICc} > 1$: variable meets $\Delta {\rm AICc}$ criterion for inclusion in full model

^{**} $\Delta AICc > 2$: variable is considered significant as an individual predictor (and meets $\Delta AICc$ criterion for inclusion in full model)

Table S5. Individual tests of species traits as drivers of drought resistance, where Rt_{ARIMA} is used as the response variable.

		all o	all droughts		1966		1977		1999	
variable	category	$\Delta { m AICc}$	coefficients							
xylem porosity	R	-1.46	0.0430	0.95	0.1520	2.84**	-0.171	2.27**	0.155	
	D/SR		0.0000		0.0000		0.000		0.000	
PLA	,	4.5**	-0.0120	10.15**	-0.0240	-0.9	-0.008	-1.67	-0.005	
LMA		-1.99	-0.0003	-2.02	0.0005	-0.42	-0.003	-1.9	0.001	
π_{tlp}		0.41	-0.1500	-1.94	-0.0530	-0.53	-0.179	0.04	-0.200	
WD		-1.94	-0.0400	-0.08	-0.3040	-1.57	-0.142	0.83	0.316	

Variable abbreviations are as in Table 2. $\Delta AICc$ is the AICc of a model excluding the trait minus that of the model including it.

^{**} $\Delta AICc > 2$: variable considered significant as an individual predictor

Table S6. Summary of top full models for each drought instance, where Rt is used as the response variable.

drought	$\Delta { m AICc}$	R^2	Intercept	ln[H]	ln[TWI]	ln[H]*ln[TWI]	PLA	π_{tlp}
all	0.000	0.12	1.131	-0.057	-0.086	-	-0.012	-0.113
	0.583	0.11	1.423	-0.055	-0.086	-	-0.013	-
	0.726	0.12	1.537	-0.202	-0.326	0.082	-0.012	-0.114
	1.352	0.11	1.826	-0.198	-0.324	0.081	-0.013	-
1966	0.000	0.25	1.622	-0.135	-	-	-0.025	-
1977	0.000	0.22	0.503	-	-0.144	-	-	-0.24
	0.908	0.21	1.069	-	-0.144	-	-	-
	0.988	0.22	0.568	-0.03	-0.139	-	-	-0.246
	1.144	0.24	0.684	-	-0.142	-	-0.007	-0.204
	1.267	0.22	1.211	-	-0.141	-	-0.01	-
1999	0.000	0.18	1.061	-	-0.102	-	-	-
	0.023	0.19	0.659	-	-0.101	-	-	-0.169
	0.954	0.19	1.157	-	-0.1	-	-0.007	-
	1.513	0.21	0.783	-	-0.1	-	-0.005	-0.145
	1.803	0.18	1.024	0.013	-0.103	-	-	-
	1.901	0.19	0.635	0.011	-0.102	-	-	-0.166

Models are ranked by AICc. Shown are all models whose AICc value falls within 2.0 (Δ AICc<1) of the best model (bold). R^2 refers to conditional R^2 .

Table S7. Summary of top models for each drought instance, where Rt_{ARIMA} is used as the response variable.

drought	$\Delta {\rm AICc}$	R^2	Intercept	ln[H]	ln[TWI]	ln[H]*ln[TWI]	PLA	π_{tlp}	(1 sp)[novariables]
.,						0.1.10	0.010		
all	0.000	0.09	1.125	-0.307	-0.506	0.140	-0.012		
	0.425	0.10	0.879	-0.310	-0.508	0.140	-0.011	-0.096	
	1.208	0.09	0.424	-0.060	-0.100		-0.012		
	1.695	0.10	0.178	-0.061	-0.100		-0.011	-0.095	
1966	0.000	0.23	1.660	-0.154			-0.024		
	1.393	0.23	1.735	-0.152	-0.047		-0.024		
	1.457	0.23	1.859	-0.152			-0.025	0.078	
1977	0.000	0.16	1.130		-0.180				
1311	0.424	0.16	2.453	-0.461	-0.896	0.250			
	0.424	0.17	0.720	-0.401	-0.179	0.200		-0.173	
	0.922	0.17	2.040	-0.466	-0.898	0.251		-0.180	
	0.927	0.17	1.248	0.100	-0.177	0.201	-0.008	0.100	
	1.322	0.17	2.569	-0.461	-0.893	0.250	-0.008		
	1.709	0.15	1.183	-0.020	-0.177	0.200	0.000		
1999	0.000	0.20	0.563		-0.076			-0.200	
1333	0.064	0.19	0.421		-0.010			-0.202	
	0.127	0.18	1.036		-0.077			0.202	
	0.256	0.18	1.000		0.011				0.899
	1.777	0.20	0.529	0.016	-0.078			-0.195	0.000
	1.797	0.20	1.101	0.010	-0.076		-0.004	0.200	
	1.815	0.18	0.986	0.018	-0.079		0.001		
	1.838	0.20	0.972	0.010	0.010		-0.005		
	1.933	0.19	0.391	0.012			0.000	-0.199	
	1.979	0.21	0.612		-0.075		-0.002	-0.190	
	1.999	0.21	0.482		3.0,0		-0.002	-0.190	

Models are ranked by AICc. Shown are all models whose AICc value falls within 2.0 (Δ AICc<1) of the best model (bold). R^2 refers to conditional R^2 .

Allaire J, Xie Y, McPherson J, Luraschi J, Ushey K, Atkins A, Wickham H, Cheng J, Chang W, Iannone R. **2020**. *Rmarkdown: Dynamic documents for r*.

R Core Team. **2020**. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Wickham H. 2019. Stringr: Simple, consistent wrappers for common string operations.

Xie Y. **2020**. Knitr: A general-purpose package for dynamic report generation in r.

Figure S1: Map of ForestGEO plot showing TWI and location of cored trees

Figure S2: Time series of Palmer Drought Severity Index (PDSI) for the 2.5 years prior to each focal drought

Figure S3: **Distribution of independent variables by species.** Species that are assigned the same letter are not significantly different from each other with regard to the tested variable.

Figure S4: Comparison of Rt and Rt_{ARIMA} results, with residuals, for each drought scenario

Figure S5: **PLACEHOLDER**