#### Question 1:



Originally, I couldn't find a way to calculate this inverse, so I tried to use my program that I've added to past assignments (I'll add it to the end) that will find *all* the invertible elements and their inverses, given a modulus. However, running an n<sup>2</sup> algorithm on the number 1.6 billion didn't produce any results in a timely manner.

So, I wrote a different program that, given a number and the modulus, will find the inverse, if it exists, in n time complexity:

```
def findInverse(mod, b):
#Find an inverse of a given number within a given modulus.

for i in range(mod):
    if (b * i) % mod == 1:
        print(i)
        return True

return False

if __name__ == '__main__':
    mod = 1687545040
    b = 2021
    print(findInverse(mod, b))
```

This still took a few minutes, but it worked far quicker than the other to find the inverse.

1401973341 True

As for b = 2020, this same program output no value and returned false. I believe this to mean that 2020 has no inverse given the modulus, meaning that the encrypted message can't be decrypted.

False

I now realize I could have also just used the inv function on the V200.

## Question 2:

2. Seeing as how pkg are primes, if a factor of m, is found, it means that either p or q has been found. This allows us to compromise bobs key by calculating the other por a that we don't have with x, then calculate as above in Q1. The probability would be it if you just blindly guessed. However, you could utilize a prime generating algorithm (see: Sieve of Atkin) and make a more educated guess, dramatically incrusing your chances.

# Question 4:

| 4. | m, = 3\ a, = Z                                          | / [v200] egcd (Mi, mi)                                     |
|----|---------------------------------------------------------|------------------------------------------------------------|
|    | m2=32 q= 12                                             | egch (1056, 31) = [1 -15 511]                              |
|    | m3 = 33 Q3 = 21                                         | egcd (1023, 32) = [1 -1 32]                                |
|    | M= m, m, m, = 31.32.33 = 32, 736                        | egcd(992,33)=[1 -16 481]                                   |
|    | $M_{i} = M_{i} m_{i}$ $M_{i} = \frac{32736}{31} = 1056$ | Y=(2.105615) + (12.10231) +(21.99216) = -377,268 mod 32,73 |
|    | Mz = 327% = 1023                                        | = 15,564 mod 32,736                                        |
|    | M3 = 32736 = 992                                        |                                                            |

| ■ mod( -377268, 32736) | 15564      |
|------------------------|------------|
| mod<-377268,32736>     |            |
| CRYPTO + RAD AUTO      | FUNC 14/30 |

# Question 5:

|    | 1                | All ops are 1, 3 |       |             |                                              |  |  |
|----|------------------|------------------|-------|-------------|----------------------------------------------|--|--|
|    |                  | t(1)             | f(2)  | irreducible |                                              |  |  |
| 5. | X + 1            | 2                | 5 + 2 | 1           | The polynamials are irreducible if they have |  |  |
|    |                  | 3+0              | 6-0   | 0           | no roots in Z3, meaning no Os.               |  |  |
|    | x+ x+1           | 3-0              | 7-1   | 0           | Irreducible Polynomials:                     |  |  |
|    | x2+x+2           | 4-1              | 8-2   | 1           | x +1                                         |  |  |
|    | x2+2x+1          | 4+1              | 9-10  | 0           | x²+x+2                                       |  |  |
|    | $x^{2} + 2x + 2$ | 5+2              | 10 -1 | 1           | x2+2x+2                                      |  |  |

### Question 6:





The last line is  $y_1$  and the third to last line is  $y_2$ .

#### modinv program:

```
# Find all invertible elements and their inverses
# given a modulo.
import math
mod = 1687545040
invertibleAndInverses = {'Invertible': [], 'Inverse': []}
for i in range(mod):
    if math.gcd(i, mod) == 1:
        #A number is invertible if the gcd of the number and the modulo is 1.
        invertibleAndInverses['Invertible'].append(i)
        for j in range(mod):
            if (i * j) % mod == 1:
                #A number's inverse occurs when the number is multiplied by a
number
                #, % 26, and it equals 1.
                invertibleAndInverses['Inverse'].append(j)
                break
# print(f'Invertibles: {invertibleAndInverses["Invertible"]}')
# print(f'Inverses:
                       {invertibleAndInverses["Inverse"]}')
                       {len(invertibleAndInverses["Invertible"])}')
# print(f'Number n:
#Uncomment to write to a file if output is too long.
fileout = open('./output.txt', 'w')
fileout.write(f'Modulo: {mod}\n\n')
fileout.write('%10s' % 'Invertibles')
fileout.write('%10s\n' % 'Inverses')
for i in range(len(invertibleAndInverses['Invertible'])):
    fileout.write('%10d' % invertibleAndInverses['Invertible'][i])
    fileout.write('%10d\n' % invertibleAndInverses['Inverse'][i])
```