Vorname:
Name:
Aufgabe 1: Welchen Typ haben die folgenden Haskell-Ausdrücke? • $(\ x\ y \to x + y)$ • $(\bmod 3)$ • $(1:[2,3]):[]$ • $(\ x\ y \to [y \mid (y, _) \leftarrow xs])$
Aufgabe 2: Welchen Wert haben die folgenden Haskell-Ausdrücke?
• ausdruck1 = let $f = x y \rightarrow mod x y$ in $f = 2 3$
0 avadrusk2 - //vs
ausdruck2 = (\xs → [x x ← xs , 2 * x + 1 < 10]) [10,91]
Aufgabe 3: Schreiben Sie eine Funktion (verketten :: [[Int]] → [Int]), die eine Liste von Listen als Eingabe nimmt und als Ergebnis die Liste aller Elemente (in der gleichen Reihenfolge)
Aufgabe 3: Schreiben Sie eine Funktion (verketten :: [[Int]] → [Int]), die eine Liste von Listen als Eingabe nimmt und als Ergebnis die Liste aller Elemente (in der gleichen Reihenfolge) zurückliefert.
Aufgabe 3: Schreiben Sie eine Funktion (verketten :: [[Int]] → [Int]), die eine Liste von Listen als Eingabe nimmt und als Ergebnis die Liste aller Elemente (in der gleichen Reihenfolge) zurückliefert. Zum Beispiel: soll der Aufruf (verketten [[4 , 2] , [3]]) zur Liste [4 , 2 , 3] ausgewertet werden.
 Aufgabe 3: Schreiben Sie eine Funktion (verketten :: [[Int]] → [Int]), die eine Liste von Listen als Eingabe nimmt und als Ergebnis die Liste aller Elemente (in der gleichen Reihenfolge) zurückliefert. Zum Beispiel: soll der Aufruf (verketten [[4 , 2] , [3]]) zur Liste [4 , 2 , 3] ausgewertet werden. a) Definieren Sie diese Funktion mit Hilfe Mustervergleich (Pattern-Matching).
 Aufgabe 3: Schreiben Sie eine Funktion (verketten :: [[Int]] → [Int]), die eine Liste von Listen als Eingabe nimmt und als Ergebnis die Liste aller Elemente (in der gleichen Reihenfolge) zurückliefert. Zum Beispiel: soll der Aufruf (verketten [[4 , 2] , [3]]) zur Liste [4 , 2 , 3] ausgewertet werden. a) Definieren Sie diese Funktion mit Hilfe Mustervergleich (Pattern-Matching).
 Aufgabe 3: Schreiben Sie eine Funktion (verketten :: [[Int]] → [Int]), die eine Liste von Listen als Eingabe nimmt und als Ergebnis die Liste aller Elemente (in der gleichen Reihenfolge) zurückliefert. Zum Beispiel: soll der Aufruf (verketten [[4 , 2] , [3]]) zur Liste [4 , 2 , 3] ausgewertet werden. a) Definieren Sie diese Funktion mit Hilfe Mustervergleich (Pattern-Matching).
 Aufgabe 3: Schreiben Sie eine Funktion (verketten :: [[Int]] → [Int]), die eine Liste von Listen als Eingabe nimmt und als Ergebnis die Liste aller Elemente (in der gleichen Reihenfolge) zurückliefert. Zum Beispiel: soll der Aufruf (verketten [[4 , 2] , [3]]) zur Liste [4 , 2 , 3] ausgewertet werden. a) Definieren Sie diese Funktion mit Hilfe Mustervergleich (Pattern-Matching).
 Aufgabe 3: Schreiben Sie eine Funktion (verketten :: [[Int]] → [Int]), die eine Liste von Listen als Eingabe nimmt und als Ergebnis die Liste aller Elemente (in der gleichen Reihenfolge) zurückliefert. Zum Beispiel: soll der Aufruf (verketten [[4 , 2] , [3]]) zur Liste [4 , 2 , 3] ausgewertet werden. a) Definieren Sie diese Funktion mit Hilfe Mustervergleich (Pattern-Matching).
 Aufgabe 3: Schreiben Sie eine Funktion (verketten :: [[Int]] → [Int]), die eine Liste von Listen als Eingabe nimmt und als Ergebnis die Liste aller Elemente (in der gleichen Reihenfolge) zurückliefert. Zum Beispiel: soll der Aufruf (verketten [[4 , 2] , [3]]) zur Liste [4 , 2 , 3] ausgewertet werden. a) Definieren Sie diese Funktion mit Hilfe Mustervergleich (Pattern-Matching).

Aufgabe 4: Betrachten Sie die folgenden data-Deklarationen:

data Baum = Blatt Int | Knoten Int [Baum]
data Liste = Leer | Num Int Liste

a)	Definieren Sie eine Funktion, die die Anzahl von Zahlen, die in einem Baum gespeicher
	sind, zurückliefert.

Aufgabe 5: Seien die Funktionen add und add' definiert durch:

add
$$0 \ y = y$$

add $x \ y = (add \ (x - 1) \ y) + 1$
add' $0 \ y = y$
add' $x \ y = add' \ (x - 1) \ (y + 1)$

b)

Die beiden Funktionen addieren jeweils zwei natürliche Zahlen.

a)	Erläutern Sie mit Hilfe des Substitutionsmodels die Berechnungsprozesse, die bei der
	Auswertung von (add 2 3) und (add' 2 3) in Haskell erzeugt werden.

Sind diese Prozesse rekursiv oder iterativ?