Numer indeksu:

WZORCOWY

Logika dla informatyków Egzamin poprawkowy (część licencjacka) 18 lutego 2012

Zadanie 1 (1 punkt). Jeśli formuła $(p \Rightarrow q) \Rightarrow ((r \Rightarrow q) \Rightarrow (p \Rightarrow r))$ jest tautologią, to w prostokąt poniżej wpisz słowo "TAUTOLOGIA". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

$$\sigma(p) = \mathsf{T}, \ \sigma(q) = \mathsf{T}, \ \sigma(r) = \mathsf{F}$$

Zadanie 2 (1 punkt). Jeśli formuła $(p \Rightarrow q) \land (q \Rightarrow r) \land (r \Rightarrow \neg p)$ jest sprzeczna, to w prostokąt poniżej wpisz słowo "SPRZECZNA". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

$$\sigma(p) = \mathsf{F}, \, \sigma(q) = \mathsf{F}, \, \sigma(r) = \mathsf{F}$$

Zadanie 3 (1 punkt). Jeśli istnieje formuła zbudowana ze zmiennych zdaniowych, spójników \Rightarrow i \neg oraz nawiasów równoważna formule $p \lor q$, to w prostokąt poniżej wpisz dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE".

$$\neg p \Rightarrow q$$

Zadanie 4 (1 punkt). W prostokąty obok zdań prawdziwych wpisz słowo "TAK". W prostokąty obok zdań fałszywych wpisz słowo "NIE".

1. Formuła $p \vee q$ jest w koniunkcyjnej postaci normalnej.

TAK

2. Formuła $p \vee q$ jest w dysjunkcyjnej postaci normalnej.

TAK

3. Formuła $p \wedge q$ jest w koniunkcyjnej postaci normalnej.

TAK

4. Formuła $p \wedge q$ jest w dysjunkcyjnej postaci normalnej.

TAK

Zadanie 5 (1 punkt). Niech ϕ i ψ oznaczają formuły rachunku kwantyfikatorów, być może zawierające wolne wystąpienia zmiennej x. Jeśli formuła

$$(\forall x \, \phi) \Rightarrow ((\exists x \, \psi) \Rightarrow \exists x \, (\phi \Rightarrow \psi))$$

jest prawem rachunku kwantyfikatorów, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym razie w prostokąt poniżej wpisz odpowiedni kontrprzykład.

TAK

Zadanie 6 (1 punkt). W prostokat poniżej wpisz formułę równoważną formule

$$\neg(\exists x\,(p(x)\vee q(x))\Rightarrow r(x)),$$

w której argumentem spójnika negacji może być jedynie formuła atomowa p(x), q(x) lub r(x).

$$\forall x \, (p(x) \vee q(x)) \wedge \neg r(x)$$

Zadanie 7 (1 punkt). Jeśli dla wszystkich formuł ϕ i ψ logiki pierwszego rzędu formuła

$$(\forall x (\phi \lor \psi)) \Leftrightarrow (\forall x \phi) \lor (\forall x \psi)$$

jest tautologią, to w prostokąt poniżej wpisz słowo "TAUTOLOGIA". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

Niech dziedziną interpretacji będzie zbiór liczb naturalnych i $\phi \equiv (2 \mid x)$ oraz $\psi \equiv (2 \nmid x)$. Wtedy formuła $\forall x \, (2 \mid x) \lor (2 \nmid x)$ jest spełniona, zaś formuła $(\forall x \, (2 \mid x)) \lor (\forall x \, (2 \nmid x))$ — nie.

Zadanie 8 (1 punkt). Jeśli równość $A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$ zachodzi dla dowolnych zbiorów A, B i C, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym razie w prostokąt poniżej wpisz odpowiedni kontrprzykład.

Niech
$$A = \{0, 1\}, B = \{0\}$$
 i $C = \{1\}.$ Wtedy $A \setminus (B \cup C) = \emptyset$, ale $(A \setminus B) \cup (A \setminus C) = \{0, 1\}.$

Zadanie 9 (1 punkt). Jeśli równość $(A \setminus B) \setminus (B \setminus A) = A$ zachodzi dla dowolnych zbiorów A i B, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym razie w prostokąt poniżej wpisz odpowiedni kontrprzykład.

Niech
$$A = B = \{0\}$$
. Wtedy $(A \setminus B) \setminus (B \setminus A) = \emptyset \neq A$.

Zadanie 10 (1 punkt). Jeśli istnieją takie zbiory A, B i C, że $A \setminus B = C$ oraz $A \neq (B \cup C)$, to w prostokąt poniżej wpisz przykład takich trzech zbiorów. W przeciwnym wypadku wpisz słowo "NIE".

Niech
$$A = \emptyset$$
, $B = \{0\}$ i $C = \emptyset$.
Wtedy $A \setminus B = \emptyset = C$, ale $A = \emptyset \neq \{1\} = B \cup C$.

Numer indeksu:

WZORCOWY

Zadanie 11 (1 punkt). Niech $R = \{\langle n, n+3 \rangle \mid n \in \mathbb{N}\} \cup \{\langle n, n \rangle \mid n \in \mathbb{N}\}$. W prostokąt poniżej wpisz taką formułę ϕ , że $\{\langle n, m \rangle \in \mathbb{N} \times \mathbb{N} \mid \phi\} = RR$.

$$m = n \lor m = n + 3 \lor m = n + 6$$

Zadanie 12 (2 punkty). W pierwszej kolumnie poniższej tabeli są podane definicje dwóch relacji binarnych określonych na zbiorze liczb naturalnych. W kolumnie "porządek?" wpisz słowo "TAK" obok tych relacji, które są relacjami porządku i słowo "NIE" obok tych relacji, które nie są relacjami porządku. W kolumnie "równoważność?" wpisz słowo "TAK" obok tych relacji, które są relacjami równoważności i słowo "NIE" obok tych relacji, które nie są relacjami równoważności. W ostatniej kolumnie podaj definicję relacji RR, gdzie R jest relacją z pierwszej kolumny.

relacja R	porządek?	równoważność?	relacja RR
$R = \{ \langle x, x \rangle \mid x \in \mathbb{N} \}$	TAK	TAK	R
$R = \{ \langle x, y \rangle \in \mathbb{N} \times \mathbb{N} \mid x \neq y \}$	NIE	NIE	$\mathbb{N} \times \mathbb{N}$

Zadanie 13 (1 punkt). Jeśli równość $f^{-1}(Y \setminus Y') = f^{-1}(Y) \setminus f^{-1}(Y')$ zachodzi dla dowolnej funkcji $f: A \to B$ i dowolnych zbiorów $Y, Y' \subseteq B$, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym razie w prostokąt poniżej wpisz odpowiedni kontrprzykład.

TAK

Zadanie 14 (1 punkt). Rozważmy funkcję $f: \mathbb{N} \to \mathbb{N}$ zdefiniowaną wzorem

$$f(n) = 5 \cdot (q(n) + 1) - (r(n) + 1),$$

gdzie q(n) jest częścią całkowitą z dzielenia liczby n przez 5, zaś r(n) — resztą z dzielenia tej liczby przez 5. Jeśli istnieje funkcja odwrotna do funkcji f, to w prostokąt poniżej wpisz wyrażenie definiujące tę funkcję. W przeciwnym przypadku w prostokąt poniżej wpisz słowo "NIE".

$$f^{-1}(n) = f(n)$$

Zadanie 15 (1 punkt). Rozważmy funkcje

$$f: (A^B \times A^C) \to A^{B \times C},$$

$$g : C \to A^B,$$

$$h : B \to A^C$$

oraz elementy $a \in A$, $b \in B$ i $c \in C$. Wpisz słowo "TAK" w prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne i słowo "NIE" w prostokąty obok tych spośród podanych niżej wyrażeń, które są niepoprawne.

2.
$$(f(g(a), h(a)))(b, c)$$
 NIE

3.
$$(f(g(c), h(b)))(b, c)$$
 TAK

4.
$$f(g(b), h(c))$$
 NIE

Zadanie 16 (1 punkt). W prostokąt poniżej wpisz definicję dowolnej funkcji różnowartościowej $f: \mathbb{N} \times \mathbb{N} \to \mathcal{P}(\mathbb{N})$ lub słowo "NIE", jeśli taka funkcja nie istnieje.

$$f(n,m) = \{2n, 2m + 1\}$$

Zadanie 17 (1 punkt). W prostokąt poniżej wpisz definicję jakiejkolwiek funkcji

$$f: (\mathbb{N} \times \mathbb{N})^{\mathbb{N}} \to \mathbb{N}^{(\mathbb{N} \times \mathbb{N})}.$$

$$(f(g))(n,m) = n$$

Zadanie 18 (1 punkt). Jeśli istnieje taki zbiór $X \neq \mathbb{Q}$, że $\mathbb{Q} \subseteq X$ oraz zbiory X i \mathbb{N} są równoliczne, to w prostokąt poniżej wpisz dowolny taki zbiór. W przeciwnym przypadku w prostokąt poniżej wpisz słowo "NIE".

$$\mathbb{Q} \cup \{\sqrt{2}\}$$

Zadanie 19 (1 punkt). Jeśli istnieje relacja liniowego porządku na zbiorze $\mathbb{N} \times \{0,1\}$, to w prostokąt poniżej wpisz dowolną taką relację. W przeciwnym przypadku w prostokąt poniżej wpisz słowo "NIE".

$$\langle n, b \rangle \le \langle m, c \rangle \iff b < c \lor (b = c \land n \le m)$$