Sina Weibo as a Corpus for Studying Public Opinions

Christine Kuang, Siqi Wu, and Angie Zhu

Department of Statistics, UC Berkeley

May 3, 2012

Further Work

Outline

- **■** Introduction
- 2 Processing
- 3 EDA
- **4** Classification
 - LASSO
- **5** Further Work

Introduction

- Opinions on microblogging and social networking websites
- Sina Weibo 新浪微博 is the largest microblogging website: accounted for 65% of China's microblog market as of December 2011
- Study public opinions using Sina Weibo as a corpus for a given topic

Topic

- Internet censorship in China
- Time sensitive
- Processing is topic-dependent
- Hot topic is preferred
- Chosen topic: Han Han 韩寒

Background

- HAN Han 韩寒 (born 23 September 1982) is a Chinese best-selling author, professional rally driver, and wildly popular blogger
- Published his first novel *Triple Gate* 三重门 at age of 17
- High school dropout

Photograph by Tony Law / Redux, Source:

http://www.time.com/time/magazine/article/

0,9171,1931619,00.html

Background

- Ghostwriting allegation against Han from January 2012
- FANG Zhouzi 方舟子, a scientific author and anti-fraud crusader, created widespread debate on the internet
- 光明与磊落
- Han received a death threat on April 15, 2012

Data Collection

- Topic searching via API: only the latest results are returned up to 30 each time
- Collected on April 16 and 17, 2012

Characteristics of Chinese Language

- No explicit delimiter
- Ambiguities in phrases
 - Context ambiguition: e.g., 他好吃
 - Word definition ambiguition: e.g., 打
- Out-of-vocabulary words
- No 1-to-1 correspondence between traditional and simplified Chinese

Characteristics of Sina Weibo Posts

Pre-tagging Processing

Tagging

- Process: tagged 3000 total posts with four categories
- Examples:

Positive 支持韩寒! Support Han Han!
Negative 看到韩寒就恶心。Feel nauseous when I see
Han Han.

- Limitations:
 - Subjective responses: e.g., "that wasn't too bad"
 - Uncertain tags
 - Quotes
 - Posts without subjects
 - Posts that just mention opposing author

Pre-segmentation Processing

Segmentation

Conjunction Rules

Stop Words and Punctuation Elimination

EDA

■ ≥ 10

Word frequency

- **Extract** the word frequency vector x_i from the i-th post
- Construct the word frequency matrix $X = (x_1, ..., x_n)^T$. This will be our design matrix.

Word frequency visualization: matrix plot

Co-occurrance

Co-occurrance

Introduction

Further Work

■ Fact: if $x \in \mathbb{R}^p$ follows $N(\mu, \Sigma)$, then for $i \neq j$

$$(\mathbf{x}_i \perp \mathbf{x}_j) \mid \{\mathbf{x}_{\mathsf{all but } (i,j)}\} \text{ iff } (\Sigma^{-1})_{ij} = 0$$

- This motivates us to estimate Σ^{-1} .
- Let $x_1, x_2, ... x_n$ be IID $N(\nu, \Sigma)$ data. The joint likelihood of the data is

$$f(x_1, ..., x_n | \mu, \Sigma) = \frac{1}{(2\pi \det(\Sigma))^{n/2}} \exp\left\{-\frac{1}{2} \sum_{i=1}^n (x_i - \mu)^T \Sigma^{-1} (x_i - \mu)\right\}.$$

Sparse graphical models (cont'd)

■ Log-likelihood:

$$I(\mu, \Sigma^{-1}) = -\frac{n}{2} \log \det (\Sigma) - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu)$$

■ Do a maximum likelihood estimation (optimize over μ and $S = \Sigma^{-1}$; easy to see that the MLE for μ is \bar{x}):

$$\max_{S} \left\{ \frac{n}{2} \log \det \left(S \right) - \frac{1}{2} \sum_{i=1}^{n} (x_i - \bar{x})^T S(x_i - \bar{x}) \right\}$$

Further Work

Sparse graphical models (cont'd)

Here comes the trace trick $\sum_{i=1}^{n} (x_i - \mu)^T S(x_i - \mu) = \mathbf{Tr}(\sum_{i=1}^{n} (x_i - \mu)(x_i - \mu)^T S) = n\mathbf{Tr}(\hat{\Sigma}S)$. We end up with the optimization problem for fitting a Gaussian graphical model:

$$\max_{S} \left\{ \log \det \left(\mathcal{S} \right) - \mathbf{Tr} \left[\hat{\Sigma} \mathcal{S} \right] \right\}$$

■ Fitting a sparse Gaussian graphical model:

$$\max_{S} \left\{ \log \det S - \mathbf{Tr} \left[\hat{\Sigma} S \right[-\lambda ||S||_1 \right]$$

where $||S||_1 = \sum_{i,j} |s_{ij}|$. See, e.g. Banerjee et al. (2007) and Friedman et al. (2007).

Sparse graphical models v.s. co-occurence

Classification

- $\mathbf{x}_i \in R^p$ be the *i*-th row of $X \in R^{3000 \times 795}$
- y_i the corresponding category. Assume $y_i \in \{-1, +1\}$, where the +1 can have the following meanings:
 - positive opinion towards Han Han;
 - negative opinion towards Han Han;
 - netural or unidentifiable opinion;
 - spam.
- Two classification methods: LASSO and I_1 -norm SVM.

■ The Lasso approach (Tibshirani, (1996)):

$$\hat{\beta}(\lambda) = \arg\min_{\beta} \frac{1}{2} ||\mathbf{y} - (\beta_0 + \mathbf{X}\beta)||_2^2 + \lambda ||\beta||_1$$

The classifier:

$$\mathsf{class}(x) = \mathbf{sign}(\beta_0 + x^T \beta) \in \{-1, +1\}$$

- Four models for each category for classification
- General overview of method
- General overview of application to data
 - for 4 categories
 - 10 fold CV
 - Frequency matrix is 3000×795
 - classification error

Choosing λ : cross-validation

- Three different ways to look at coefficients
- Why: can look at the classifier:

$$\mathsf{class}(x) = \mathbf{sign}(\beta_0 + x^T \beta) \in \{-1, +1\}$$

- Absolute value: most relevant/predictive words
- Positive: more likely to classify the post in +1 category (all other covariates being fixed)
- Negative: less likely to be in -1 category

Positive v.s. Nonpositive classification result

- \blacksquare +1: positive opinion;
- -1: non-positive opinion, including negative, neutral and spam.

Word	Absolute Coef.	Word	Positive Coef.	Word	Negative Coef.
加油	0.820	加油	0.820	样子	-0.396
(keep going)		(keep going)		(manner)	
韩少	0.644	韩少	0.644	恋	-0.344
(Master Han)		(Master Han)		(love)	
成熟	0.546	成熟	0.546	发表	-0.336
(mature)		(mature)		(announce)	
顶	0.533	顶	0.533	道理	-0.336
(support)		(support)		(rational)	
宽容	0.518	宽容	0.518	利益	-0.335
(tolerant)		(tolerant)		(benefit)	

LASSO word images for the positive v.s. nonpositive classification.

Negative v.s. Nonnegative classification result

- \blacksquare +1: negative opinion;
- -1: non-negative opinion, including positive, neutral and spam.

Word	Absolute Coef.	Word	Positive Coef.	Word	Negative Coef.
讨厌	0.481	讨厌	0.481	支持	-0.008
(hate)		(hate)		(support)	
无耻	0.412	无耻	0.412	不	0.000
(shameless)		(shameless)		(no)	
恶心	0.395	恶心	0.395	人	0.000
(disgusting)		(disgusting)		(people/person)	
骗子	0.380	骗子	0.380	说	0.000
(liar)		(liar)		(say)	
扁	0.353	扁	0.353	方舟子	0.000
(beat up)		(beat up)		(FangZhouZi)	

LASSO word images for the negative v.s. negative classification.

Introduction

Standard support vector machine

- Again, linear decision function $f(x) = \beta_0 + \beta x$;
- The classifier Class(x) = sign(f(x)).
- The support vector machine (SVM) (see, e.g. Hastie et al 2001):

$$\min_{\beta_0,\beta} \sum_{i=1}^n (1 - y_i f(x_i))_+ + \frac{\lambda}{2} ||\beta||_2,$$

where $z_+ = \max(0, z)$.

/₁-Norm Support Vector Machine

■ Replacing the I_2 -norm by I_1 -norm yields the sparse SVM (Zhu et al 2003):

$$\min_{\beta_0,\beta} \left\{ \sum_{i=1}^{n} (1 - y_i(\beta_0 + \beta^T x_i))_+ + \lambda ||\beta||_1 \right\}.$$

/₁-Norm Support Vector Machine

Positive v.s. Nonpositive classification result

- \blacksquare +1: positive opinion;
- -1: non-positive opinion, including negative, neutral and spam.
- Cross validation result:
 - training sample misclassification rate: 16.9%
 - testing sample misclassification rate: 28.2%

/₁-Norm Support Vector Machine

Negative v.s. Nonnegative classification result

- \blacksquare +1: negative opinion;
- -1: non-negative opinion, including positive, neutral and spam.
- Cross validation result:
 - training sample misclassification rate: 6.4%
 - testing sample misclassification rate: 11.5%

1-Norm Support Vector Machine

LASSO v.s. /1-norm SVM

Further Work