Simple Harmonic Motion

Turja Roy ID: 2108052

Contents

1	Osc	illation and Vibration					
	1.1	Oscillation					
	1.2	Vibration					
	1.3	Differences between Oscillation and Vibration					
2	Sim	ple Harmonic Motion					
	2.1	Definition					
	2.2	Differential Equation of SHM					
	2.3	Solution of the Differential Equation of SHM					
3	Ene	Energy in SHM					
	3.1	Total Energy of a Vibrating Particle					
	3.2	Average Kinetic Energy					
	3.3	Average Potential Energy					

1 Oscillation and Vibration

1.1 Oscillation

- Oscillation is the repetitive variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states.
- The term vibration is precisely used to describe mechanical oscillation.
- Familiar examples of oscillation include a swinging pendulum and alternating current.

1.2 Vibration

- Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point.
- The word comes from Latin vibrationem ("shaking, brandishing").
- The oscillations may be periodic, such as the motion of a pendulum—or random, such as the movement of a tire on a gravel road.

1.3 Differences between Oscillation and Vibration

- Oscillation is the definite displacement of a body in terms of distance or time, whereas vibration is the movement brought about in a body due to oscillation.
- Oscillation takes place in physical, biological systems, and often in our society, but vibrations is associated with mechanical systems only.
- Oscillation is about a single body, whereas vibration is the result of collective oscillation of atoms in the body.
- All vibrations are oscillations, but not all oscillations are vibrations.

2 Simple Harmonic Motion

2.1 Definition

Definition 2.1.1: Simple Harmonic Motion

Simple harmonic motion is a type of periodic motion where the restoring force is directly proportional to the displacement and acts in the direction opposite to that of displacement.

A particle is said to execute SHM when it will

- (a) Trace and retrace the same path over and over again.
- (b) Change direction at a regular interval of time.
- (c) Move along a straight line.
- (d) Have acceleration proportional to its displacement from the mean position.

A particle which satisfies the condition (a) only is said to execute **periodic motion**. A particle which satisfies condition (a) and (b) is said to execute **vibratory motion**.

Let P be a particle moving on the circumference of a circle of radius r with a uniform velocity v. Let angular velocity be $\omega = v/r$.

Displacement of the particle from the mean position is given by $y=r\sin\omega t$ So, velocity of the particle is given by $v=\frac{dy}{dt}=\omega r\cos\omega t$

And acceleration of the particle is given by $a = \frac{dv}{dt} = -\omega^2 r \sin \omega t = -\omega^2 y$

Angle	Position of vibrating particle	Displacement $y = r \sin \omega t$	Velocity $\frac{\mathrm{d}y}{\mathrm{d}t} = \omega r \cos \omega t$	Acceleration $-\omega^2 r \sin \omega t = -\omega^2 y$
0	О	0	ωr	0
$\pi/2$	X	r	0	$-\omega^2 a$
π	О	0	$-\omega r$	0
$3\pi/2$	Y	-r	0	$\omega^2 r$
2π	О	0	ωr	0

2.2 Differential Equation of SHM

Let y be the displacement of the particle from the mean position at time t, r be the amplitude, and α be the epoch of the vibrating particle

$$y = r\sin\left(\omega t + \alpha\right) \tag{1}$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = r\omega\cos\left(\omega t + \alpha\right) \tag{2}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = -r\omega^2 \sin\left(\omega t + \alpha\right) \tag{3}$$

Hence the differential equation of SHM is

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + \omega^2 y = 0 \tag{4}$$

2.3 Solution of the Differential Equation of SHM

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + \omega^2 y = 0 \tag{5}$$

Here,

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}y} \frac{\mathrm{d}y}{\mathrm{d}t} = v \frac{\mathrm{d}v}{\mathrm{d}y}$$

$$v dv + \omega^2 y dy = 0$$

$$\int v dv + \omega^2 \int y dy = 0$$

$$\frac{v^2}{2} + \frac{\omega^2 y^2}{2} = C'$$

$$\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 + \omega^2 y^2 = C^2$$

At maximum displacement, y=r and $\frac{\mathrm{d}y}{\mathrm{d}t}=0$ So, $C^2=\omega^2r^2$

$$\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \omega^2(r^2 - y^2)$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \omega\sqrt{r^2 - y^2}$$

$$\int \frac{1}{\sqrt{r^2 - y^2}} \, dy = \int \omega \, dt$$

$$\sin^{-1}\frac{y}{r} = \omega t + \alpha$$

$$\boxed{y = r\sin(\omega t + \alpha)}$$
(6)

By expanding equation (6), we get

$$y = r\sin\omega t\cos\alpha + r\cos\omega t\sin\alpha \tag{7}$$

If y = 0 at t = 0, then $\alpha = 0$

$$y = r\sin\omega t \tag{8}$$

If y = r at t = 0, then $\alpha = \pi/2$

$$y = r\cos\omega t \tag{9}$$

Hence, the general solution of the differential equation of SHM is

$$y = A\sin\omega t + B\cos\omega t \tag{10}$$

3 Energy in SHM

3.1 Total Energy of a Vibrating Particle

Kinetic Energy =
$$\frac{1}{2}m\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2$$

= $\frac{1}{2}m\omega^2r^2\cos^2\left(\omega t + \alpha\right)$
Potential Energy = $\frac{1}{2}ky^2$
= $\frac{1}{2}m\omega^2r^2$
= $\frac{1}{2}m\omega^2r^2\sin^2\left(\omega t + \alpha\right)$

Thus, the total energy of the vibrating particle is

$$E = \frac{1}{2}kr^2 = \frac{1}{2}m\omega^2 r^2$$
 (11)

3.2 Average Kinetic Energy

Kinetic energy of the particle is given by

$$K = \frac{1}{2}m\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \frac{1}{2}m\omega^2 r^2 \cos^2(\omega t + \alpha) \tag{12}$$

Hence, average kinetic energy is

$$\overline{K} = \frac{1}{T} \int_0^T K \, dt$$

$$= \frac{1}{T} \int_0^T \frac{1}{2} m \omega^2 r^2 \cos^2 (\omega t + \alpha) \, dt$$

$$= \frac{1}{2} m \omega^2 r^2 \frac{1}{T} \int_0^T \cos^2 (\omega t + \alpha) \, dt$$

$$= \frac{1}{2} m \omega^2 r^2 \frac{1}{T} \int_0^T \frac{1 + \cos 2(\omega t + \alpha)}{2} \, dt$$

$$= \frac{1}{2} m \omega^2 r^2 \frac{1}{T} \left[\frac{t}{2} + \frac{\sin 2(\omega t + \alpha)}{4\omega} \right]_0^T$$

$$= \frac{1}{2} m \omega^2 r^2 \frac{1}{T} \left[\frac{T}{2} + \frac{\sin 2(\omega T + \alpha)}{4\omega} - \frac{\sin 2\alpha}{4\omega} \right]$$

$$= \frac{1}{2} m \omega^2 r^2 \frac{1}{T} \left[\frac{T}{2} + \frac{\sin 2\alpha}{4\omega} - \frac{\sin 2\alpha}{4\omega} \right]$$

$$= \frac{1}{4} m \omega^2 r^2$$

$$\overline{K} = \frac{1}{4} m \omega^2 r^2 = \frac{1}{4} k r^2 = \frac{1}{2} E$$
(13)

3.3 Average Potential Energy

Potential energy of the particle is given by

$$U = \frac{1}{2}ky^2 = \frac{1}{2}m\omega^2 r^2 \sin^2(\omega t + \alpha)$$
(14)

Hence, average potential energy is

$$\overline{U} = \frac{1}{T} \int_0^T U \, dt$$

$$\begin{aligned}
&= \frac{1}{T} \int_{0}^{T} \frac{1}{2} m \omega^{2} r^{2} \sin^{2} (\omega t + \alpha) dt \\
&= \frac{1}{2} m \omega^{2} r^{2} \frac{1}{T} \int_{0}^{T} \sin^{2} (\omega t + \alpha) dt \\
&= \frac{1}{2} m \omega^{2} r^{2} \frac{1}{T} \int_{0}^{T} \frac{1 - \cos 2(\omega t + \alpha)}{2} dt \\
&= \frac{1}{2} m \omega^{2} r^{2} \frac{1}{T} \left[\frac{t}{2} - \frac{\sin 2(\omega t + \alpha)}{4\omega} \right]_{0}^{T} \\
&= \frac{1}{2} m \omega^{2} r^{2} \frac{1}{T} \left[\frac{T}{2} - \frac{\sin 2(\omega T + \alpha)}{4\omega} + \frac{\sin 2\alpha}{4\omega} \right] \\
&= \frac{1}{2} m \omega^{2} r^{2} \frac{1}{T} \left[\frac{T}{2} + \frac{\sin 2\alpha}{4\omega} - \frac{\sin 2\alpha}{4\omega} \right] \\
&= \frac{1}{4} m \omega^{2} r^{2} \end{aligned}$$

$$\overline{U} = \frac{1}{4} m \omega^{2} r^{2} = \frac{1}{4} k r^{2} = \frac{1}{2} E$$
(15)