(19)日本国特許庁 (JP)

(12) 特 許 公 報(B2)

(11)特許出願公告番号

特公平7-47233

(24) (44)公告日 平成7年(1995) 5月24日

(51) Int.Cl.6 識別記号 庁内整理番号 FΙ 技術表示簡所 B 2 3 K 35/34 310 35/22 310 A 512 C 7128-4E H05K 3/34

請求項の数6(全 5 頁)

(21)出願番号 特願昭63-156688 (71)出願人 999999999 古河電気工業株式会社 (22)出願日 昭和63年(1988) 6月27日 東京都千代田区丸の内2丁目6番1号 (71)出顧人 999999999 (65)公開番号 特開平1-157796 ハリマ化成株式会社 (43)公開日 平成1年(1989)6月21日 兵庫県加古川市野口町水足671番地の4 (31)優先権主張番号 特願昭62-228298 (72)発明者 福永 隆男 (32)優先日 昭62(1987) 9月14日 神奈川県平塚市東八幡 5-1-9 古河電 (33) 優先権主張国 日本 (JP) 気工業株式会社平塚事業所内 (72)発明者 中嶋 久雄 神奈川県平塚市東八幡5-1-9 古河電 気工業株式会社平塚事業所内 (74)代理人 弁理士 若林 広志 審査官 日比野 隆治

最終頁に絞く

(54) 【発明の名称】 半田析出用組成物および半田析出方法

1

【特許請求の範囲】

【請求項1】半田合金を構成する金属の中の、イオン化 傾向の最も大きい金属の粉末と、それ以外の金属とカル ボン酸との塩を含むことを特徴とする半田析出用組成

【請求項2】半田合金を構成する金属の中の、イオン化 傾向の最も大きい金属の粉末と、それ以外の金属とカル ボン酸との塩と、溶剤と、粘度保持剤とを混合し、ペー スト状にしたことを特徴とする半田析出用組成物。 【請求項3】半田合金を構成する金属の中の、イオン化 10 Mp:金属Pの原子量 傾向の最も大きい金属の粉末と、それ以外の金属とカル ボン酸との塩で液状のものと、粘度保持剤とを混合し、 ペースト状にしたことを特徴とする半田析出用組成物。 【請求項4】請求項1ないし3のいずれかに記載の組成

物であって、塩の中の金属Sの重量wsと粉末側の金属P

の重量Wpとの比Wp/Wsが、

$$\frac{Ap}{As} + \frac{Mp}{Ms}$$

2

ただし

As:得ようとする半田合金の金属Sの重量部 Ap:得ようとする半田合金の金属Pの重量部 Ms:金属Sの原子量

の値と同等か、それより小さく(金属Pの量が少なく) なっていることを特徴とするもの。

【請求項5】請求項1ないし4のいずれかに記載の半田 析出組成物を、半田を析出させようとする面に付着させ て、加熱することを特徴とする半田析出方法。

【請求項6】請求項5記載の方法であって、半田の析出 により半田付けを行うことを特徴とするもの。

【発明の詳細な説明】

〔産業上の利用分野〕

本発明は、電子部品の半田付け等に好適な半田析出用組 成物と、それを用いた半田析出方法に関するものであ る。

〔従来技術とその課題〕

最近、電子機器の軽薄短小化の要求から、電子部品の表 面実装方式が広く採用されるようになってきている。と の方法は、プリント回路基板のバッド部にクリーム半田 を塗布し、その上に電子部品を載置した後、全体をリフ ロー炉に通してクリーム半田を溶融させ、これによって ブリント回路基板のバッド部に電子部品のリード部を半 田付けするというものである。

これに用いるクリーム半田は、半田合金の粉末とフラッ クスとを粘度調整用のミネラルスピリット等の高沸点溶 剤に分散させて一定を粘度を持たせたものである。

しかしこのクリーム半田を用いる方法は、リードビッチ 線パターンがさらにファイン化されると、ブリッジ (パ ッド部間が半田で導通すること)が多発する傾向があ り、従来の方法では電子回路の高密度化の流れに対応で きなくなる可能性が大きい。

このため先に、ロジンのマレイン化物またはフマル化物 に錫および鉛を結合させ、加熱により金属成分を遊離し て半田を析出させる有機半田も提案されている(特願昭 61-72044号)。しかしこの有機半田は、金属の含有量 を増すためにロジンをマレイン化またはフマル化してカ ルボン酸を導入し、そこに錫および鉛を導入しているた 30 め、有機溶剤に対する溶解性がきわめて悪い。とのため 粘度調整が難しく、微細な配線パターンに塗布すること が困難である。

〔課題の解決手段とその作用〕

本発明の目的は、上記のような従来技術の問題点に鑑 み、ファインパターンの半田付けあるいは半田バンブ形 成等に適する新しい半田析出用組成物と、それによる半 田析出方法を提供することにある。

ところで、ロジン酸などの有機酸の金属塩を適当な溶媒 (スクワレン等) に溶かして加熱し、その中に上記金属 塩を構成する金属よりイオン化傾向の大きい金属を浸漬 すると、浸漬した金属の表面に上記金属塩を構成する金 属が析出することが既に知られている(特願昭62-1208 63号)。

本発明はこのようなイオン化傾向の差による金属の析出 現象を利用するものである。すなわち、半田合金を構成 する金属の中の、イオン化傾向の最も大きい金属の粉末 と、それ以外の金属とカルボン酸との塩を混合し、これ を半田付けする部分に付着させて加熱すると、半田合金

ニズムは必ずしも明らかではないが、カルボン酸の金属 塩が熱分解して金属イオンが遊離し、その金属イオンが イオン化傾向の差により金属粉末粒子に移行し、置換反 応により金属粒子の表面に金属として析出すると共に、 それらが溶融混合して半田合金となって析出するものと 考えられる。

との方法によると、プリント回路基板のパッド配列部に 非パッド部(非金属部)も含めて本発明の組成物を付着 させ、加熱すると、パッド部のみに選択的に半田を析出 させることができる。この選択的な半田析出は、従来の クリーム半田ではブリッジが発生してしまうような微細 パターンにおいても、全くブリッジを生じさせることな く可能であることが確認された。すなわち本発明の半田 析出用組成物は、ファインパターンへの追従性がきわめ て優れているということである。

本発明の半田析出用組成物がクリーム半田よりファイン パターンへの追従性が良好なのは、加熱により金属粉末 表面より化学反応が起きて非常に活性な表面状態が保た れ、さらに金属粉末含有率が既存のクリーム半田に比べ が0.65mm程度までの配線パターンには対応できるが、配 20 て少ないことから金属粒子の移動性が大きくなるためと 考えられる。既存のクリーム半田の場合は、半田粒子が かなり濃密に含まれており、これが単に熱で溶解するだ けであるので、非パッド部にある半田がパッド部に集ま るのは溶融半田の表面張力によるものであり、バッド部 間隔が狭い場合はどうしてもブリッジが生じ易くなるの である。

> 本発明において析出させようとする半田が例えば錫-鉛 半田である場合、カルボン酸の水素と置換して塩を構成 する金属は鉛であり、金属粉末は錫である。また析出さ せようとする半田が例えばインジウム-錫-鉛半田であ る場合、カルボン酸の水素と置換して塩を構成する金属 は錫および鉛であり、金属粉末はインジウムである。 カルボン酸の水素を半田合金成分のイオン化傾向の小さ い方の金属で置換した塩は、半田合金成分のイオン化傾 向の大きい方の金属の塩を含んでいてもよい。例えば錫 -鉛半田を析出させるためのカルボン酸の鉛塩は、鉛と 共に錫も含むカルボン酸の錫・鉛塩であっても差し支え ない。ただしその中のカルボン酸の錫塩は半田の析出に ほとんど関与しないと考えられる。

40 本発明の半田析出用組成物は、カルボン酸と半田合金成 分のイオン化傾向の小さい方の金属との塩を溶剤に溶か し、これに半田合金成分のイオン化傾向の大きい方の金 属の粉末と、粘度保持剤を加えることによりペースト状 にすることができる。またカルボン酸の金属塩が液状で ある場合には、それに金属粉末と、粘度保持剤を加える とによりペースト状にすることができる。このペースト 状半田析出用組成物は、従来のクリーム半田と同様にス クリーン印刷やディスペンサー等により半田付け部へ供 給するととが可能である。

が析出し、半田付けが行えるのである。半田析出のメカ 50 また本発明の半田析出用組成物の塩と金属粉末の比率

は、得ようとする半田合金の成分比率によって当然異なってくるが、本発明の半田析出用組成物は半田の析出過程で塩から遊離した金属イオンと粉末側の金属原子との置換反応が起こるので、両金属の重量と原子量を考慮する必要がある。すなわち本発明の半田析出用組成物の塩と金属粉末の比率は、塩の中の金属Sの重量wsと粉末側の金属Pの重量woとの比wo/wsが、

$$\frac{Ap}{As} + \frac{Mp}{Ms}$$

ただし

As:得ようとする半田合金の金属Sの重量部 Ap:得ようとする半田合金の金属Pの重量部

Ms:金属Sの原子量

Mp:金属Pの原子量

の値と同等にしておくことが望ましい。このような比率にしておけば、金属塩と金属粉末の反応が終了した状態で、所望の成分比率の半田を析出させることができる。例えば錫-鉛の62:38共晶半田を析出させる場合は、塩の中の鉛の重量と錫粉末の重量の比が10:22になるように塩と錫粉末を混合すればよい。

しかし本発明はこのような成分比に限定されるものではない。 wh/wsを上記の値より小さく (金属Pの量が少なく) しても加熱時間をコントロールすることにより所望の半田組成を得ることが可能である。 すなわち粉末側の金属の量を少なくしておいて置換反応が適当に進んだところで加熱を停止し、反応をストップさせてしまうのである。 このようにすれば粉末側の金属の量が少なくても所望の成分比率の半田を析出させることができる。またこのほか例えば錫メッキが施されている箇所に錫ー鉛半田を析出させるときは、その錫メッキも置換反応に

寄与することになるので、錫粉末の量は前記の望ましい

比率に基づく量より少なくするととができる。カルボン酸の金属塩に、金属粉末を混入するには三通りの方法がある。これを錫一鉛半田の場合について説明すると、第一の方法は、カルボン酸の鉛塩を加熱溶融させた状態で錫粉末を混入する方法であり、第二の方法はカルボン酸の鉛塩を適当な溶剤に溶かして錫粉末を混入する方法であり、第三の方法はカルボン酸の鉛塩が液状の40場合で、そのまま錫粉末を混入する方法である。第一の方法で得た組成物は、カルボン酸鉛塩の溶融温度(例えばロジン酸鉛塩の場合は140~150°C)に加熱した状態で、半田を析出させようとする金属面に付着させる必要がある。第二、第三の方法で得た組成物は粘度保持剤を加えて粘度をベースト状に調整できるので、通常のクリーム半田と同じ方法で、半田を析出させようとする金属面に付着させることができる。

このようにして半田析出用組成物を付着させた後、185~260℃好ましくは185~225℃に加熱すると、金属面に

錫-鉛半田を析出させることができる。

本発明において金属と塩を構成するカルボン酸としては、炭素数1~40のモノまたはジカルボン酸を使用することができる。これを例示すると、ぎ酸、酢酸、プロピオ酸等の低級脂肪酸、カプロン酸、カプリル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレン酸、リノール酸、等の動植物油脂から得られる脂肪酸、2・2ジメチルベンタン酸、2エチルヘキサン酸、イソノナン酸、2・2ジメチルオクタン酸、n・ウンデカン酸等の有機合成反応から得られる各種合成酸、ピマル酸、アピエチン酸等の樹脂酸、石油から得られるナフテン酸等のモノカルボン酸とトール油脂肪酸または大豆脂肪酸から合成して得られるダイマ一酸、ロジンを二量化させた重合ロジン等のジカルボン酸などであり、これらを二種以上含むものでもよい。

〔実施例〕

実施例1

ロジン酸の鉛塩を140~150°Cに加熱して溶融させ、これ 20 に錫粉末を混入して(ロジン酸の鉛塩10gに対し錫粉末5 gの割合)半田析出用組成物を得た。この組成物を、絶 縁基板上に形成した銅箔パターンに錫メッキを施した試 験基板に、加熱溶融状態で付着させた後、冷却固化さ せ、その後200°Cで2分間加熱して、上記銅箔パターン 上に半田を析出させた。

実施例2

実施例1と同じ試験基板に、ロジン酸の錫・鉛塩に錫粉末を混入した組成物(錫:鉛=6:4、ロジン酸錫・鉛塩10gに対し錫粉末5gの割合)を加熱溶融状態で付着させた30後、冷却固化させ、その後200°Cで2分間加熱して、半田を析出させた。

比較例1

銀粉末を混入しないこと以外は実施例2と同じ条件で半 田を析出させた。

1

以上の結果を表-1に示す。

表

		半田析出状況
実施例 1	ロジン酸鉛塩+錫粉末	©
実施例 2	ロジン酸錫・鉛塩+錫粉末	0
比較例1	ロジン酸錫・鉛塩	Δ

- ◎:析出量多く、パターン追従性良好
- 〇:析出量やや多く、パターン追従性良好
- △:析出量少ない

前記実施例で使用した錫粉末は福田金属箔粉(株)製のSn-S-200(片状粉)であるが、このほか同社製のSn-At-250(針状粉)、Sn-At-W-250(不規則状粉)を使用した結果でも、半田の折出状況に差異は見られなかった。

50 本発明の半田析出方法を例えば電子部品の半田付けに適

用する場合は、図-1に示すようにプリント回路基板1 の、錫メッキ3を施したパッド部2に、電子部品4の、 錫メッキ6を施したリード部5を接触させ、その部分に 図-2に示すようにロジン酸鉛塩に錫粉末を混入した組 成物7を付着させた後、加熱すれば、図-3に示すよう に半田8がフィレット状に析出し、パッド部2とリード 部5を半田付けすることができる。

次にペースト状の半田析出用組成物を使用した場合につ いて説明する。

*内容量4 & のミキサーに、カルボン酸の鉛塩と、溶剤、 ゲル化剤(粘度保持剤)を仕込み、180°Cに昇温後、30 分間撹拌して溶解し、その後30℃まで自然冷却してか ら、錫粉末を加えて30分間混練する、という方法で、表 -2 に示す実施例11~18のペースト状の半田析出用組成 物を得た。

ナフテン酸鉛は常温で液状であるので、溶剤を加えてい ない。

表

2

		実11	実12	実13	実14	実15	実16	実17	実18
カルポン酸の鉛塩	酢酸鉛(Pb 54%) ナフテン酸鉛(Pb 24%) ロジン酸鉛(Pb 15%) 重合ロジン酸鉛(Pb 10%)	25	55	60 .	63	48	30	59	40
溶剤	ブチルカルピトール スクアレン	24		18	21		9		26
粘度保持剤	カスターワックス ガムロジン	2 19	1 14	2	1	2 12	1	2 15	2 25
錫粉末		30	30	20	15	38	60	24	7

単位は重量%

これらの組成物について次の評価を行った。比較のため 市販のクリーム半田についても同様の評価を行った(比 較例11)。

① 印刷性

標準スクリーン〔膜厚200μm、0.3×10mmパターン(ピ いて連続印刷し、かすれ及びブリッジの有無を調べた。 かすれ及びブリッジなしを〇、有りを×とした。

② ファインパターン追従性

銅張りガラスエポキシ板を、0.15mmピッチのTAB (テー プ オートメーテッド ボンディング) 用キャリアテー プのアウターリードと同じビッチにパターニングして錫 メッキを施したプリント回路基板に、ペースト状半田析 出用組成物を塗布し、TAB部品を仮固定した。これを220 *Cのホットブレート上で10分間加熱した後、クロロセン※ ※中に90秒間浸漬して洗浄し、評価基板を得た。この評価 基板を倍率100倍の実体顕微鏡で観察し、0.15mmピッチ のTABアウターリード間のブリッジの有無を調べた。ブ リッジなしを〇、ブリッジ有りを×とした。

③ 接合性

ッチ0.65mm)を有するステンレス製メタルマスク〕を用 30 上記評価基板のTABアウターリード全ピン (300本) につ いて、ブリント回路基板との接合の有無を調べた。全ビ ン接合しているものを○、一部でも未接合があるものを ×とした。

② 洗浄性

上記評価基板上の残渣の有無を調べた。残渣なしを〇、 残渣少しありを△とした。

これらの評価結果と析出した半田合金の組成を表-3に 示す。

麦

3

	実11	実12	実13	実14	実15	実16	実17	実18	出11
印刷性	0	0	0	0	0	0	0	0	0
ファインパターン追従性	0	0	0	0	0	0	0	0	×
接合性	0	0	0	0	0	0	0	0	0
洗净性	0	0	0	0	0	0	0	0	Δ
析出半田合金組成(重量%) Sn Pb	<u>62</u> 38	<u>63</u> 37	<u>62</u> 38	64 36	7 <u>3</u> 27	<u>86</u> 14	<u>53</u> 47	<u>54</u> 46	<u>63</u> 37

9

これらの検討結果によれば、本発明の半田析出用組成物は、従来のクリーム半田に比べ、ファインバターン追従性にすぐれ、洗浄性もよいことが分かる。

次に本発明に係るペースト状半田析出用組成物につき、印刷後、高温に加熱したときのダレについて検討した。高温におけるダレを無くすには、アルミナ、シリカゲル、ホワイトカーボンなどの粉体を混入することも検討したが、それよりセルロースを混入することの方が有効であることが確認された。例えばナフテン酸鉛(Pb24%)48.5重量%、カスターワックス1.2重量%、ガムロジン12.1重量%、セルロース11.5重量%、錫粉末26.7重量%からなる半田析出用組成物は、25°Cにおける粘度が120万cpsあり、220°Cに加熱しても溶融ダレの生じない*

*ものであった。

〔発明の効果〕

以上説明したように本発明によれば、ファインパターン 追従性にすぐれた半田析出用組成物を得ることができ、 これを用いればリードピッチの極めて小さい電子部品の 表面実装が可能となる。したがって電子機器の高密度 化、小型化に大きく貢献できるものである。

10

【図面の簡単な説明】

図-1ないし図-3は本発明の方法を電子部品を半田付 10 けに適用した例を示す説明図である。

1:プリント回路基板、2:パッド部、3:錫メッキ、4:電子部品、5:リード部、6:錫メッキ、7:ロジン酸の鉛塩と錫粉の組成物、8:半田。

【第1図】

【第2図】

【第3図】

フロントページの続き

(72)発明者 小林 健造

神奈川県横浜市西区岡野2-4-3 古河

電気工業株式会社横浜研究所内

(72)発明者 河野 政直

兵庫県加古川市新神野4丁目10番2号

(72)発明者 入江 久夫

兵庫県高砂市米田町神爪423番地

(72)発明者 井上 良

兵庫県姫路市別所町佐土845番地

(56)参考文献 特公 平2-56197 (JP, B2)