Topic 1

 \bar{x} - sample statistic

 $\bar{\mu}$ - mean statistic

histogram: # of bins $\approx \sqrt{\# \text{ of observations}}$

sample mean:
$$\bar{x} = \frac{\sum_{i=1}^{n} x}{x_i}$$

sample median: middle value if arranged in increasing order

 1^{st} quartile (Q_1) - 25^{th} percentile 2^{nd} quartile (Q_2) - 50^{th} percentile 5 number summary: Min, Q_1 , Q_2 , Q_3 , Max 3^{rd} quartile (Q_3) - 75^{th} percentile

Box Plot

Measures of spread: IQR $(Q_3 - Q_1)$ and sample variance $(s^2 \text{ or } \sigma^2)$

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$$
 ,where $n-1$ is the degrees of freedom

sample standard deviation: $\sqrt{s^2}$

Trimmed mean: take off from both ends and compute new mean. Example: Sample of 20. 10% trimmed mean \rightarrow take 2 values off from beginning and end so mean of 16 values. Usually to get rid of outliers.

Topic 2

Properties of probability

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A \cap B) = P(A) + P(B) P(A \cup B)$
- $P(A^c) = 1 P(A)$
- Conditional probability of A given B: $P(A|B) = \frac{P(A \cap B)}{P(B)}$
- A and B are independent if $P(A \cap B) = P(A)P(B)$

The reliability of a system is the overall probability of success. P(failure) = 1 - P(success)

$$P(S) = P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= 0.8 + 0.8 - 0.64
= 0.96

Adding more components to a series system results in loss of reliability, vice versa for parallel systems.

Topic 3

discrete random variable takes on a countable number of values probability mass function (pmf) is a distribution of a discrete random variable x

$$f(x) = P(X = x)$$

requirements for pmf: f(x) > 0 for all x, and $\sum_{\text{all } x} f(x) = 1$

cumulative distribution function (cdf): $F(x) = P(X \le x) = \sum_{\text{all } t \le x} f(t)$

Bernoulli random variable: Success = p, failure = 1 - p Example:

$$SSS = p^3$$
 $SFS = p^2(1-p)$ $FFS = p(1-p)^2$ $FFF = (1-p)^3$

Mean of discrete random variable: $\mu_x = E(x) = \sum x \cdot p(x)$ $E(h(x)) = \sum h(x) \cdot f(x)$ is the expected value of h(x) $V(x) = \sigma_x^2 = E(x^2) - (E(x))^2$

Binomial Distribution: Bernoulli trials: each trial can result in one or two outcomes (success or fail), trials are independent

Binomial pmf: probability of any outcome sequence from n Bernoulli trials with x successes and n-x fails

$$f(x) = P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$

Binomial properties: $E(x) = \mu_x = np, \ \sigma_x^2 = np(1-p)$

Poisson Distribution: number of events occurring in an interval where the expected number of events is proportional to the length of the interval

$$f(x) = P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}, \lambda : \text{rate}$$

Poisson properties: $E(x) = \lambda$, $\sigma_x^2 = \lambda$

Topic 4

Probability Density function (pdf): A function f(x) such that for $a \le x \le b$

$$P(a \le x \le b) = \int_a^b f(x) \, dx$$

cdf of X is $F(X) = P(X = x) = \int_{-\infty}^{x} f(t) dt$

$$f(x) = F'(x)$$

$$P(a \le x \le b) = F(b) - F(a)$$

Properties of pdf:

$$E(x) = \int_{a}^{b} x \cdot f(x) dx$$

$$\sigma_{x}^{2} = E(x^{2}) - (E(x))^{2} = \int_{a}^{b} x^{2} \cdot f(x) dx - \mu_{x}^{2}$$

$$E(h(x)) = \int_{a}^{b} h(x) \cdot f(x) dx$$

If it is a *uniform* distribution, then