COMP2119 Introduction to Data Structures and Algorithms Assignment 1 - Recursion, Mathematical Induction and Algorithm Analysis

Cheng Ho Ming, Eric (3036216734)

September 10, 2024

1 Asymptotic Bounds

$$\begin{array}{l} n^{\pi}, \pi^{n}, n^{n}, \log n, \pi^{\log n}, n^{\log \pi}, \frac{n}{\log \pi}, \frac{n}{\log n}, \frac{n}{\log \log n}, \log \frac{n}{\log \log n}, \\ \pi^{\log(2n)}, n^{\log 2\pi}, \sqrt{\sum_{i=1}^{n} (i+1)}, 1910n! + 316n^{n} \end{array}$$

2 Recurrence Relations

(a)
$$T(n) = T(n-1) + 3$$
 for $n > 0$ $\therefore T(n) = \Theta(n)$
= $T(n-2) + 3 + 3$ for $n > 1$
= ...
= $T(0) + 3n$ for $n > 1$
= $3n$ for $n > 1$

(c) Assume that n is a power of 3, i.e.
$$n=3^k$$
 for $k\in\mathbb{N}$, and $\log_3 n=k$, $\therefore T(n)=\Theta()$ $\therefore T(n)=4T(\frac{n}{3})+1$

(d) Assume that n is a power of 2, i.e.
$$n=2^k$$
 for $k\in\mathbb{N}$, and $\log_2 n=k$, $\therefore T(n)=\Theta()$ $\therefore T(n)=nT(\frac{n}{2})+n-1$

3 Mathematical Induction

- (a) Let f(n) be the predicate " $1*2^1+2*2^2+3*2^3+...+n*2^n=(n-1)2^{n+1}+2$ " for $\forall n\in\mathbb{Z}^+$. For n=1, L.H.S. $=1*2^1$ =2 R.H.S. $=(1-1)2^{1+1}+2$ =2
 - \therefore L.H.S. = R.H.S.
 - $\therefore f(1)$ is true.

4 Algorithm Design