Best Available Copy

(9) BUNDESREPUBLIK

DEUTSCHLAND

Offenlegungsschrift

® DE 43 35 950 A 1

DEUTSCHES

PATENTAMT

(2) Aktenzeichen: P 43 35 950.7 (2) Anmeldetag: 21. 10. 93

Offenlegungstag:

tag: 27. 4.95

(51) Int. Cl.6:

C 07 D 239/46

C 07 D 251/30 C 07 D 401/12 C 07 D 405/12 C 07 D 409/12 C 07 D 411/12 C 07 D 411/12 C 07 D 411/12 C 07 D 417/12 A 01 N 43/54 A 01 N 43/66 A 01 N 43/74 A 01 N 43/56

// (C07D 401/12,213:06)C07D 251:30 (C07D 405/12,307:06) C07D 239:46 (C07D 409/12,333:06)
C07D 239:46 (C07D 411/12,263:32) C07D 251:30 (C07D 417/12,277:24)C07D 251:30 (C07D 401/14,213:06)C07D 239:46,
233:06 (C07D 403/12,231:12)C07D 239:46 (C07D 413/12,275:02)C07D 239:46

(71) Anmelder:

BASF AG, 67063 Ludwigshafen, DE

(72) Erfinder:

Baumann, Ernst, Dr., 67373 Dudenhofen, DE; Rheinheimer, Joachim, Dr., 67063 Ludwigshafen, DE; Vogelbacher, Uwe Josef, Dr., 67071 Ludwigshafen, DE; Gerber, Matthias, Dr., 67117 Limburgerhof, DE; Rademacher, Wilhelm, Dr., 67117 Limburgerhof, DE; Walter, Helmut, Dr., 67283 Obrigheim, DE; Westphalen, Karl-Otto, Dr., 67346 Speyer, DE

- Derivate von 3-Hydroxycarbonsäuren, deren Herstellung und Verwendung
- Derivate von 3-Hydroxycarbonsäuren der allgemeinen Formel I

$$\begin{array}{c|c}
 & 0 & R^4 \\
 & 1 & CH-Y \\
 & 5 & R
\end{array}$$

$$\begin{array}{c|c}
 & X \\
 & X \\
 & R^3
\end{array}$$

$$\begin{array}{c|c}
 & 1 \\
 & R^3
\end{array}$$

in der die Substituenten folgende Bedeutung haben: R eine Gruppe CHO, eine Gruppe CO₂H oder ein zu CO₂H hydrolysierbarer Rest,

R² Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio:

X Stickstoff oder CR¹⁴, wobei R¹⁴ Wasserstoff bedeutet oder zusammen mit R³ eine 3- bis 4gliedrige Alkylen- oder Alkenylenkette bildet, in der jeweils eine Methylengruppe durch Sauerstoff ersetzt ist;

R³ Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio, oder R³ ist mit R¹⁴ wie oben angegeben zu einem 5- oder 6gliedrigen Ring verknüpft;

R⁴ eine ggf. substituierte Alkyl-, Alkenyl- oder Alkinylgruppe; eine Cycloalkyl- oder Cycloalkenylgruppe, die ein Sauerstoffoder Schwefelatom enthalten kann und ggf. substituiert ist; ggf. substituiertes Phenyl, Naphthyl oder ein ggf. substituiertes Heteroaromat;

oder R4 und R5 bilden zusammen mit dem benachbarten

Kohlenstoffatom einen 3- bis 8gliedrigen Ring, der ein Sauerstoff- oder Schwefelatom enthalten kann und einen bis drei Reste tragen kann;

R⁵ Wasserstoff, Aİkyl, Alkenyl, Alkinyl, Alkylcarbonyl, Alkoxycarbonyl, Halogenalkyl, Cycloalkyl, Alkoxyalkyl, Alkylthioalkyl oder gegebenenfalls substituiertes Phenyl, oder R⁵ ist mit R⁴ wie oben angegeben zu einem Ring verknüpft;

Y Schwefel, Sauerstoff oder eine Einfachbindung; R⁶ die bei R⁴ genannten Reste und ferner eine Aminogruppe -NR¹⁵R¹⁶ oder ein Rest ...

Beschreibung

Die vorliegende Erfindung betrifft Derivate von 3-Hydroxycarbonsäuren der allgemeinen Formel I,

in der die Substituenten folgende Bedeutung haben:

R eine Gruppe CHO, eine Gruppe CO₂H oder ein zu CO₂H hydrolysierbarer Rest;

 R^2 Halogen, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Halogenalkyl $C_1 - C_4$ -Alkoxy, $C_1 - C_4$ -Halogenalkoxy oder $C_1 - C_4$ -Alkylthio:

X Stickstoff oder CR¹⁴, wobei R¹⁴ Wasserstoff bedeutet oder zusammen mit R³ eine 3- bis 4-gliedrige Alkylenoder Alkenylenkette bildet, in der jeweils eine Methylengruppe durch Sauerstoff ersetzt ist;
R³ Halogen, C₁—C₄-Alkyl, C₁—C₄-Halogenalkyl, C₁—C₄-Alkoxy, C₁—C₄-Halogenalkoxy, C₁—C₄-Alkylthio, oder R³ ist mit R¹⁴ wie oben angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft;

 R^4 eine C_1-C_8 -Alkylgruppe, welche ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, Cyano, Hydroxy, C_1-C_4 -Alkylcarbonyl, C_1-C_4 -Alkoxycarbonyl, Phenyl, ein oder mehrfach durch Halogen, Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy und/oder C_1-C_4 -Alkylthio substituiertes Phenyl oder Phenoxy oder ein fünfgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C_1-C_4 -Alkyl, C_1-C_4 -Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C_1-C_4 -Alkyl, C_1-C_4 -Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C_1-C_4 -Alkyl, C_1-C_4 -Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C_1-C_4 -Alkyl, C_1-C_4 -Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C_1-C_4 -Alkyl, C_1-C_4 -Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C_1-C_4 -Alkyl, C_1-C_4 -Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C_1-C_4 -Alkyl, C_1-C_4 -Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C_1-C_4 -Alkyl, C_1-C_4 -Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C_1-C_4 -Alkyl, C_1-C_4 -Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C_1-C_4 -Alkyl, C_1-C_4 -Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C_1-C_4 -Alkyl, C_1-C_4 -Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C_1-C_4 -Alkyl, C_1-C_4 -Halogenatome und/oder einen bis zwei der folgenatome und/oder einen bis zwe

genalkyl, C_1 — C_4 -Alkoxy, C_1 — C_4 -Halogenalkoxy und/oder C_1 — C_4 -Alkylthio; eine C_3 — C_8 -Cycloalkyl- oder C_3 — C_8 -Cycloalkenylgruppe, die ein Sauerstoff- oder Schwefelatom enthalten kann und ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C_1 — C_4 -Alkyl, C_1 — C_4 -Alkoxy, C_1 — C_4 -Alkylthio, C_1 — C_4 -Alkylcarbonyl, C_1 — C_4 -Alkoxycarbonyl oder gegebenenfalls substituiertes Phenyl;

eine C₃—C₆-Alkenyl- oder C₃—C₆-Alkinylgruppe, welche ein bis fünf Halogenatome und/oder einen oder mehrere der folgenden Reste tragen kann: C₁—C₄-Alkyl, C₁—C₄-Alkoxy, C₁—C₄-Alkylthio, Cyano, C₁—C₄-Alkylcarbonyl, C₁—C₄-Alkoxycarbonyl oder gegebenenfalls substituiertes Phenyl;

Phenyl oder Naphthyl, die durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Cyano, Hydroxy, Mercapto, Amino, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkylthio, C_1-C_4 -Alkylamino, Di- $(C_1-C_4$ -alkyl)amino, C_1-C_4 -Alkylcarbonyl oder C_1-C_4 -Alkoxycarbonyl;

ein fünf- oder sechsgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefeloder Sauerstoffatom, welcher einen oder mehrere der folgenden Reste tragen kann: Halogen, Nitro, Cyano, Hydroxy, Mercapto, Amino, C₁—C₄-Alkyl, C₁—C₄-Halogenalkoxy, C₁—C₄-Alkylamino, C₁—C₄-Alkylamino, C₁—C₄-Alkylamino, C₄—C₄-Alkylamino, C₄—C₄

45 C₁—C₄-Alkylthio, C₁—C₄-Alkylamino, Di-(C₁—C₄-alkyl)amino, C₁—C₄-Alkylcarbonyl oder C₁—C₄-Alkoxycarbonyl;

oder R^4 und R^5 bilden zusammen mit dem benachbarten Kohlenstoffatom einen 3- bis 8-gliedrigen Ring, der ein Sauerstoff- oder Schwefelatom enthalten kann und einen bis drei der folgenden Reste tragen kann: Halogen, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy oder C_1-C_4 -Alkylthio;

R⁵ Wasserstoff, C₁—C₄-Alkyl, C₃—C₆-Alkenyl, C₃—C₆-Alkinyl, C₁—C₄-Alkylcarbonyl, C₁—C₄-Alkoxycarbonyl, C₁—C₄-Halogenalkyl, C₃—C₆-Cycloalkyl, C₁—C₄-Alkoxyalkyl, C₁—C₄-Alkylthioalkyl oder gegebenenfalls substituiertes Phenyl, oder R⁵ ist mit R⁴ wie oben angegeben zu einem Ring verknüpft; Y Schwefel, Sauerstoff oder eine Einfachbindung;

R⁶ eine C₁-C₈-Alkylgruppe, welche ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann:

 C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, Cyano, Hydroxy, C_1-C_4 -Alkylcarbonyl, C_1-C_4 -Alkoxycarbonyl, Phenyl, ein oder mehrfach durch Halogen, Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkylthio substituiertes Phenyl oder Phenoxy oder ein fünfgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier

Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C₁—C₄-Alkyl, C₁—C₄-Halogenalkyl, C₁—C₄-Alkoxy, C₁—C₄-Halogenalkoxy und/oder C₁—C₄-Alkylthio; eine C₃—C₆-Cycloalkyl- oder C₃—C₆-Cycloalkenylgruppe, die ein Sauerstoff- oder Schwefelatom enthalten

kann und ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Alkylcarbonyl, C_1-C_4 -Alkoxycarbonyl oder gegebe-

5 nenfalls substituiertes Phenyl;

eine C_3-C_6 -Alkenyl- oder C_3-C_6 -Alkinylgruppe, welche ein bis fünf Halogenatome und/oder einen oder mehrere der folgenden Reste tragen kann: C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, Cyano, C_1-C_4 -Alkylcarbonyl, C_1-C_4 -Alkoxycarbonyl oder gegebenenfalls substituiertes Phenyl;

Phenyl oder Naphthyl, die durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Cyano, Hydroxy, Mercapto, Amino, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Alkylamino, Di- $(C_1-C_4$ -alkyl)amino, C_1-C_4 -Alkylcarbonyl oder C₁-C₄-Alkoxycarbonyl; ein fünf- oder sechsgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefeloder Sauerstoffatom, welcher einen oder mehrere der folgenden Reste tragen kann: Halogen, Nitro, Cyano, Hydroxy, Mercapto, Amino, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Alkylamino, Di- C_1-C_4 -alkylamino, C_1-C_4 -Alkylamino, C₁-C₄-Alkylamino, C₁-C₄-Alkylamin Wasserstoff; C₁-C₄-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₃-C₈-Cycloalkyl, wobei diese Reste jeweils ein bis fünf Halogenatome und/oder ein bis zwei der folgenden Reste tragen können: C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, $C_1 - C_4$ -Alkylthio, $C_1 - C_4$ -Alkylcarbonyl, $C_1 - C_4$ -Alkoxycarbonyl oder gegebenenfalls substituiertes Phenyl; Phenyl, das durch einen oder mehrere der folgenden Reste substituiert sein kann: Halogen, Nitro, Cyano, Hydroxy, Mercapto, Amino, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Halogenalkyl, $C_1 - C_4$ -Alkoxy, $C_1 - C_4$ -Halogenalkoxy, $C_1 - C_4$ -Alkylthio, $C_1 - C_4$ -Alkylamino, Di- $(C_1 - C_4$ -alkyl)amino, $C_1 - C_4$ -Alkylcarbonyl oder $C_1 - C_4$ -Alkoxycaroder R¹⁵ und R¹⁶ bilden gemeinsam eine zu einem Ring geschlossene, optionell substituierte C₄—C₇-Alkylenkette oder gemeinsam eine zu einem Ring geschlossene, optionell substituierte C3-C6-Alkylenkette mit einem Heteroatom, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff; R⁶ ferner ein Rest OR¹⁷, worin R¹⁷ bedeutet: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₃-C₈-Cycloalkyl, Phenyl oder ein- oder mehrfach durch Halogen, Nitro, Cyano, Hydroxy, Mercapto, Amino, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Alkylamino, Di- C_1-C_4 -alkylamino, C₁—C₄-Alkylcarbonyl oder C₁—C₄-Alkoxycarbonyl substituiertes Phenyl. In der Literatur, z. B. EP-A 347 811, EP-A 400 741, EP-A 409 368, EP-A 481 512, EP-A 517 215, EP-A 541 041, EP-A 548 710 und JP 043 34372-A sind ähnliche Verbindungen beschrieben, deren biologische Wirkung und Selektivität nicht immer befriedigend ist. -- Verbindungen der Struktur I, in denen anstelle der Acyloxygruppe R⁶COO eine Ethergruppe R⁶O vorliegt------ sind Gegenstand der älteren deutschen Anmeldungen DE-A 43 13 412 und 43 13 413. 30 Der Erfindung lag nun die Aufgabe zugrunde, Verbindungen mit verbesserter Selektivität gegenüber Kulturpflanzen und/oder besserer herbizider oder bioregulatorischer Wirkung bereitzustellen. Es wurde gefunden, daß die eingangs definierten Carbonsäurederivate I ausgezeichnete herbizide und pflanzenwachstumsregulierende Eigenschaften haben. Dabei ist der Rest R in Formel I sehr breit variabel. Für die Wirkung kommt es im wesentlichen darauf an, daß der Rest R leicht in die Carbonsäurefunktion überführt wird. So steht R beispielsweise für eine Gruppe 40 Ĉ–R¹ wobei R1 die folgende Bedeutung hat: a) Wasserstoff: 45 b) eine Succinylimidoxygruppe; c) ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat, enthaltend zwei bis drei Stickstoffatome, welcher ein bis zwei Halogenatome und/oder ein bis zwei der folgenden Reste tragen kann: $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Halogenalkyl, $C_1 - C_4$ -Alkoxy, $C_1 - C_4$ -Halogenalkoxy und/oder $C_1 - C_4$ -Alkylthio; d) ein Rest $-(O)_m - NR^7R^8$ in dem m für 0 oder 1 und R7 und R8, die gleich oder unterschiedlich sein können, die folgende Bedeutung haben: C₁-C₄-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₃-C₆-Cycloalkyl, wobei diese Reste jeweils ein bis fünf Halogenatome und/oder ein bis zwei der folgenden Gruppen tragen können: 55 $C_1-C_4-Alkoxy, C_3-C_6-Alkenyloxy, C_3-C_6-Alkinyloxy, C_1-C_4-Alkylthio, C_3-C_6-Alkenylthio, C_3-C_6-Alkenyloxy, C_6-Alkenyloxy, C_6-Alkinyloxy, C_6-Alkylthio, C_7-C_6-Alkenyloxy, C_8-C_6-Alkinyloxy, C$ kinylthio, C_1-C_4 -Halogenalkoxy, C_1-C_4 -Alkylcarbonyl, C_3-C_6 -Alkenylcarbonyl, C_3-C_6 -Alkinylcarbonyl, C_3-C_6 -Alkylcarbonyl, C_3-C_6 nyl, C_1-C_4 -Alkoxycarbonyl, C_3-C_6 -Alkenyloxycarbonyl, C_3-C_6 -Alkinyloxycarbonyl, Di- $(C_1-C_4$ -alkyl)amino, C₃-C₈-Cycloalkyl, Phenyl, ein oder mehrfach durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, $C_1 - C_4 - \text{Halogenalkyl}, C_1 - C_4 - \text{Alkoxy}, C_1 - C_4 - \text{Halogenalkoxy oder } C_1 - C_4 - \text{Alkylthio substituiertes Phenyl};$ Phenyl, das durch einen oder mehrere der folgenden Reste substituiert sein kann: Halogen, Nitro, Cyano, $C_1 - C_4 - Alkyl, C_1 - C_4 - Halogenalkyl, C_1 - C_4 - Alkylthio; \\$ R7 und R8 gemeinsam eine zu einem Ring geschlossene, optionell substituierte C4-C7-Alkylenkette oder gemeinsam eine zu einem Ring geschlossene, optionell substituierte C3-C6-Alkylenkette mit einem Heteroatom, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff; 65 e) R1 ferner eine Gruppe

5

10

15

20

25

30

35

40

45

50

in der R^9 für C_1-C_4 -Alkyl, Phenyl, ein- oder mehrfach durch Halogen, Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy oder C_1-C_4 -Alkylthio substituiertes Phenyl, C_1-C_4 -Halogenalkyl, C_3-C_6 -Alkenyl oder C_3-C_6 -Alkinyl steht, p die Werte 1, 2, 3 oder 4 und k die Werte 0, 1 oder 2 annehmen;

f) einen Rest OR10, worin R10 bedeutet:

i) Wasserstoff, ein Alkalimetallkation, das Äquivalent eines Erdalkalimetallkations, das Ammoniumkation oder ein organisches Ammoniumion:

ii) eine C₃—C₈-Cycloalkylgruppe, welche ein bis drei C₁—C₄-Alkylreste tragen kann;

iii) eine C_1-C_8 -Alkylgruppe, welche ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, Cyano, C_1-C_4 -Alkylcarbonyl, C_3-C_8 -Cycloalkyl, C_1-C_4 -Alkoxycarbonyl, Phenyl, ein- oder mehrfach durch Halogen, Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy und/oder C_1-C_4 -Alkylthio substituiertes Phenyl oder Phenoxy;

iv) eine C_1-C_8 -Alkylgruppe, welche ein bis fünf Halogenatome tragen kann und einen der folgenden Reste trägt: ein 5-gliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome, oder ein 5-gliedriger Heteroaromat, enthaltend ein Stickstoffatom und ein Sauerstoff- oder Schwefelatom, welche ein bis vier Halogenatome und/oder ein bis zwei der folgenden Reste tragen können: Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy und/oder C_1-C_4 -Alkylthio:

v) eine C_2-C_6 -Alkylgruppe, welche in der 2-Position einen der folgenden Reste trägt: C_1-C_4 -Alkoxyimino, C_3-C_6 -Alkenyloxyimino, C_3-C_6 -Halogenalkenyloxyimino oder Benzyloxyimino;

vi) eine C₃—C₆-Alkenyl- oder eine C₃—C₆-Alkinylgruppe, wobei diese Gruppen ihrerseits ein bis fünf Halogenatome tragen können;

vii) ein Phenylrest, welcher ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste tragen kann: Nitro, Cyano, C₁—C₄-Alkyl, C₁—C₄-Halogenalkyl, C₁—C₄-Alköxy, C₁—C₄-Halogenalkoxy und/oder C₁—C₄-Alkylthio;

viii) ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome, welcher ein bis zwei Halogenatome und/oder ein bis zwei der folgenden Reste tragen kann: Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy und/oder C_1-C_4 -Alkylthio;

ix) R^{10} ferner eine Gruppe $-N = CR^{11}R^{12}$, worin R^{11} und R^{12} , die gleich oder verschieden sein können, bedeuten:

 C_1-C_8 -Alkyl, C_3-C_6 -Alkenyl, C_3-C_6 -Alkinyl, C_3-C_8 -Cycloalkyl, wobei die Reste einen C_1-C_4 -Alkoxy-, C_1-C_4 -Alkylthio- und/oder einen Phenylrest tragen können;

Phenyl, das durch einen oder mehrere der folgenden Reste substituiert sein kann:

Halogen, Nitro, Cyano, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Halogenalkyl, $C_1 - C_4$ -Alkoxy, $C_1 - C_4$ -Halogenalkoxy oder $C_1 - C_4$ -Alkylthio:

oder R¹¹ und R¹² bilden gemeinsam eine C₃-C₁₂-Alkylenkette, welche ein bis drei C₁-C₄-Alkylgruppen

g) oder R¹ bildet einen Rest -NH-SO₂-R¹³, in dem R¹³ bedeutet:

 C_1-C_4 -Alkyl, C_3-C_6 -Alkenyl, C_3-C_6 -Alkinyl, C_3-C_8 -Cycloalkyl, wobei diese Reste einen C_1-C_4 -Alkoxy-, C_1-C_4 -Alkylthio- und/oder einen Phenylrest tragen können;

Phenyl, das durch einen oder mehrere der folgenden Reste substituiert sein kann: Halogen, Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy oder C_1-C_4 -Alkylthio.

Die Herstellung der erfindungsgemäßen Verbindungen ist auf verschiedenen Wegen möglich, die im nachfolgenden beschrieben werden.

55

60

Herstellungsweg A

Durch Umsetzung von Epoxiden der allgemeinen Formel II, die bekannt sind oder mit den allgemeinen Fachkenntnissen, ausgehend von bekannten Vorprodukten, hergestellt werden können, mit einer Carbonsäure R⁶COOH erhält man die Alkohole der Formel IV, in der R¹, R⁴, R⁵ und R⁶ die eingangs genannte Bedeutung haben.

Die Reaktion kann auch in Gegenwart eines Verdünnungsmittels erfolgen. Zu diesem Zweck können sämtliche gegenüber den verwendeten Reagenzien inerte Lösungsmittel verwendet werden.

Beispiele für solche Lösungsmittel beziehungsweise Verdünnungsmittel sind Wasser, aliphatische, alicyclische und aromatische Kohlenwasserstoffe, die jeweils gegebenenfalls chloriert sein können, wie zum Beispiel Hexan, Cyclohexan, Petronather, Ligroin, Benzol, Toluol, Xylol, Methylenchlorid, Chloroform, Kohlenstofftetrachlorid, Ethylenchlorid und Trichlorethylen, Ether, wie zum Beispiel Diisopropylether, Dibutylether, Propylenoxid, Dioxan und Tetrahydrofuran, Ketone, wie zum Beispiel Aceton, Methylethylketon, Methylisopropylketon und Methylisobutylketon, Nitrile, wie zum Beispiel Acetonitril und Propionitril, Alkohole, wie zum Beispiel Methanol, Ethanol, Isopropanol, Butanol und Ethylenglycol, Ester, wie zum Beispiel Ethylacetat und Amylacetat, Säureamide, wie zum Beispiel Dimethylformamid und Dimethylacetamid, Sulfoxide und Sulfone, wie zum Beispiel Dimethylsulfoxid und Sulfolan, und Basen, wie zum Beispiel Pyridin.

Die Reaktion wird dabei bevorzugt in einem Temperaturbereich zwischen 0°C und dem Siedepunkt des Lösungsmittels bzw. Lösungsmittelgemisches durchgeführt.

Die Gegenwart eines Reaktionskatalysators kann von Vorteil sein. Als Katalysatoren kommen dabei organische Säuren und anorganische Säuren sowie Lewissäuren in Frage. Beispiele hierfür sind unter anderem Schwefelsäure, Salzsäure, Trifluoressigsäure, Bortrifluorid-Etherat, Titan(IV)-Halogenide und Trimethylsilyltriflat

Die erfindungsgemäßen Verbindungen, in denen Y Sauerstoff bedeutet und die restlichen Substituenten die unter der Formel I genannte Bedeutung haben, können beispielsweise derart hergestellt werden, daß man die Alkohole der Formel IV mit Verbindungen der Formel V, in der W für eine übliche nucleofuge Abgangsgruppe wie Halogen, zum Beispiel Chlor oder Brom, Alkylsulfonyl wie beispielsweise Methylsulfonyl oder Arylsulfonyl wie Phenylsulfonyl, steht, zur Reaktion bringt.

Die Reaktion findet bevorzugt in einem der oben genannten Verdünnungsmittel unter Zusatz einer geeigneten Base, d. h. einer Base, die die Verbindung IV zu deprotonieren vermag, in einem Temperaturbereich von Raumtemperatur bis zum Siedepunkt des Lösungsmittels statt.

Als Base kann ein Alkali- oder Erdalkalimetallhydrid wie Natriumhydrid, Kaliumhydrid oder Calciumhydrid, ein Carbonat, z. B. ein Alkalimetallcarbonat wie Natrium- oder Kaliumcarbonat, ein Alkalimetallhydroxid wie Natrium- oder Kaliumhydroxid, eine metallorganische Verbindung wie Butyllithium oder ein Alkaliamid wie Lithiumdiisopropylamid dienen.

60

Herstellungsweg B

Aus α, β-ungesättigten Carbonsäurederivaten der allgemeinen Formel VI, die bekannt sind oder mit dem allgemeinen Fachwissen, ausgehend von bekannten Vorprodukten, hergestellt werden können, erhält man durch Dihydroxylierung in allgemein bekannter Weise (z. B. J. March, Advanced Organic Chemistry, 2nd ed., 1983, S. 748) die Diole der Formel VII, in der R¹, R⁴ und R⁵ die unter der allgemeinen Formel I genannte Bedeutung haben.

Regioselektive Reaktion der α-Hydroxygruppe in den Diolen der Formel VII mit Verbindungen der Formel V, wie unter Herstellungsweg A beschrieben, liefert die Alkohole der Formel VIII, in der R¹, R², R³, R⁴, R⁵ und X die unter der Formel I genannte Bedeutung haben und Y Sauerstoff bedeutet.

Dabei kann es nötig sein, die β-Hydroxygruppe vor der Umsetzung zu schützen und danach wieder freizusetzen. Dabei kommen alle unter den Reaktionsbedingungen inerten Hydroxyl-Schutzgruppen wie z. B. t-Butyldimethylsilyl oder Tetrahydropyranyl in Frage, wie sie auch in T. W. Greene, Protective Groups in Organic Synthesis, 1981, S. 10, beschrieben werden.

Die erfindungsgemäßen Verbindungen, in denen Y Sauerstoff bedeutet und die restlichen Substituenten die unter der allgemeinen Formel I genannte Bedeutung haben, können beispielsweise derart hergestellt werden, daß man die Alkohole der allgemeinen Formel VIII umsetzt mit einer auf bekannte Weise aktivierten Carbonsäure R⁶COZ IX, wie z. B. einem Säurehalogenid, insbesondere Säurechlorid, einem Säureimidazolid oder einem Säureanhydrid (d. h. Z ist z. B. Halogen, Imidazolyl oder R⁶COO). Die Reaktion findet bevorzugt in einem der oben genannten Verdünnungsmittel statt. Die Anwesenheit eines Acylierungskatalysators wie z. B. 4-Dimethylaminopyridin kann dabei von Vorteil sein.

Herstellungsweg C

45

50

55

Die erfindungsgemäßen Verbindungen, in denen Y Schwefel bedeutet und die restlichen Substituenten die unter der Formel I angegebene Bedeutung haben, können beispielsweise derart hergestellt werden, daß man Säurederivate der allgemeinen Formel X, die in bekannter Weise, zum Beispiel aus Verbindungen der allgemeinen Formel IV erhältlich sind, und in der R¹⁸ Alkyl, Halogenalkyl oder gegebenenfalls substituiertes Phenyl bedeutet und die übrigen Substituenten die oben angegebene Bedeutung haben, mit Verbindungen der allgemeinen Formel XI, die bekannt sind oder die mit dem allgemeinen Fachwissen hergestellt werden können, und in der R², R³ und X die unter der Formel I angegebene Bedeutung haben, zur Reaktion bringt.

Die Reaktion findet bevorzugt in einem der oben genannten inerten Verdünnungsmittel unter Zusatz einer geeigneten Base, d. h. einer Base, die das Zwischenprodukt XI zu deprotonieren vermag, in einem Temperaturbereich von Raumtemperatur bis zum Siedepunkt des Lösungsmittels statt.

Als Base können neben den oben genannten auch organische Basen wie Triethylamin, Pyridin, Imidazol oder Diazabicycloundecan dienen.

Herstellungsweg D

Verbindungen der Formel I können auch dadurch hergestellt werden, daß man von den entsprechenden Carbonsäuren, d. h. Verbindungen der Formel I, in denen R¹ Hydroxyl bedeutet, ausgeht und diese zunächst auf übliche Weise in eine aktivierte Form wie ein Halogenid, ein Anhydrid oder Imidazolid überführt und dieses dann mit einer entsprechenden Hydroxylverbindung HOR¹0 umsetzt. Diese Umsetzung läßt sich in den üblichen Lösungsmitteln durchführen und wird vorteilhaft in Gegenwart einer Base, wobei die oben genannten in Betracht kommen, vorgenommen. Diese beiden Schritte lassen sich beispielsweise auch dadurch vereinfachen, daß man die Carbonsäure in Gegenwart eines wasserabspaltenden Mittels wie eines Carbodiimids auf die Hydroxylverbindung einwirken läßt.

Herstellungsweg E

10

25

30

Außerdem können Verbindungen der Formel I auch dadurch hergestellt werden, daß man von den Salzen der entsprechenden Carbonsäuren ausgeht, d. h. von Verbindungen der Formel I, in denen R¹ für OM steht, wobei M ein Alkalimetallkation oder das Äquivalent eines Erdalkalimetallkations sein kann. Diese Salze lassen sich mit vielen Verbindungen der Formel R¹—A zur Reaktion bringen, wobei A eine übliche nucleofuge Abgangsgruppe bedeutet, beispielsweise Halogen wie Chlor, Brom, Jod oder gegebenenfalls durch Halogen, Alkyl oder Halogenalkyl substituiertes Aryl- oder Alkylsulfonyl wie z. B. Toluolsulfonyl und Methylsulfonyl oder eine andere äquivalente Abgangsgruppe. Verbindungen der Formel R¹—A mit einem reaktionsfähigen Substituenten A sind bekannt oder nach allgemeinem Fachwissen leicht zugänglich. Diese Umsetzung läßt sich in den üblichen Lösungsmitteln durchführen und wird vorteilhaft in Gegenwart einer Base, wobei die oben genannten in Betracht kommen, vorgenommen.

Im Hinblick auf die biologische Wirkung sind Carbonsäurederivate der Formel I bevorzugt, in der die Substituenten folgende Bedeutung haben:

 \mathbb{R}^1

- a) Wasserstoff; ...-
- b) eine Succinylimidoxygruppe;

c) ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat wie Pyrrolyl, Pyrazolyl, Imidazolyl und Triazolyl, welcher ein bis zwei Halogenatome, insbesondere Fluor oder Chlor und/oder ein bis zwei der folgenden Reste tragen kann:

 C_1-C_4 -Alkyl wie Methyl, Ethyl, 1-Propyl, 2-Propyl, 2-Methyl-2-propyl, 2-Methyl-1-propyl, 1-Butyl, 2-Butyl; C_1-C_4 -Halogenalkyl, insbesondere C_1-C_2 -Halogenalkyl wie beispielsweise Fluormethyl, Difluormethyl, Trifluormethyl, Chlordifluormethyl, Dichlorfluormethyl, Trichlormethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2-Trifluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl und Pentafluorethyl;

C₁—C₄-Halogenalkoxy, insbesondere C₁—C₂-Halogenalkoxy wie Difluormethoxy, Trifluormethoxy, Chlordifluormethoxy, 1-Fluorethoxy, 2-Fluorethoxy, 2,2-Difluorethoxy, 1,1,2,2-Tetrafluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-1,1,2-trifluorethoxy und Pentafluorethoxy, insbesondere Trifluormethoxy;

C₁—C₄-Alkoxy wie Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy, 1,1-Dimethylethoxy, insbesondere Methoxy, Ethoxy, 1-Methylethoxy;

 C_1-C_4 -Alkylthio wie Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio, 1,1-Dimethylethylthio, insbesondere Methylthio und Ethylthio;

d) R¹ ferner ein Rest $-(O)_m - NR^7R^8$, in dem m für 0 oder 1 steht und R⁷ und R⁸, die gleich oder unterschiedlich sein können, die folgende Bedeutung haben: Wasserstoff:

 C_1-C_8 -Alkyl, insbesondere C_1-C_4 -Alkyl wie oben genannt;

C₃—C₆-Alkenyl wie 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1-Dimethyl-2-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-2-propenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 1,2-Dimethyl-4-pentenyl, 1,2-Dimethyl-3-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-3-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Triethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl und 1-Ethyl-2-propenyl, insbesondere 2-Propenyl, 2-Butenyl, 3-Methyl-2-butenyl und 3-Methyl-2-pentenyl:

C₃—C₆-Alkinyl wie 2-Propinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 1-Methyl-2-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 1-Ethyl-3-butinyl, 1-Ethyl-3-butinyl, 1-Ethyl-3-butinyl, 1-Ethyl-3-butinyl, 1-Methyl-2-propinyl und 1-Methyl-2-butinyl, insbesondere 2-Propinyl;

C3-C8-Cycloalkyl, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclohepthyl und Cyclooctyl,

wobei diese Alkyl-, Cycloalkyl-, Alkenyl- und Alkinylgruppen jeweils ein bis fünf, insbesondere ein bis drei Halogenatome, bevorzugt Fluor oder Chlor und/oder ein bis zwei der folgenden Gruppen tragen können: C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Halogenalkoxy wie vorstehend genannt, C_3-C_6 -Alkenyloxy, C_3-C_6 -Alkenylthio, C_3-C_6 -Alkinyloxy, C_3-C_6 -Alkinylthio, wobei die in diesen Resten vorliegenden Alkenyl- und Alkinylbestandteile vorzugsweise den oben genannten Bedeutungen entsprechen;

C₁—C₄-Alkylcarbonyl wie insbesondere Methylcarbonyl, Ethylcarbonyl, Propylcarbonyl, 1-Methylethylcarbonyl, Butylcarbonyl, 1-Methylpropylcarbonyl, 2-Methylpropylcarbonyl, 1,1-Dimethylethylcarbonyl;

C₁—C₄-Alkoxycarbonyl wie Methoxycarbonyl, Ethoxycarbonyl, Propyloxycarbonyl, 1-Methylethoxycarbonyl, Butyloxycarbonyl, 1-Methylpropyloxycarbonyl, 2-Methylpropyloxycarbonyl, 1,1-Dimethylethoxycarbonyl;

 C_3-C_6 -Alkenylcarbonyl, C_3-C_6 -Alkenylcarbonyl, C_3-C_6 -Alkenylcarbonyl und C_3-C_6 -Alkenylcarbonyl, wobei die Alkenyl- bzw. Alkinylreste vorzugsweise, wie voranstehend im einzelnen aufgeführt, definiert sind;

Phenyl, gegebenenfalls ein oder mehrfach substituiert durch Halogen, Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy oder C_1-C_4 -Alkylthio wie beispielsweise 2-Fluorphenyl, 3-Chlorphenyl, 4-Bromphenyl, 2-Methylphenyl, 3-Nitrophenyl, 4-Cyanophenyl, 2-Trifluorethylphenyl, 3-Methoxyphenyl, 4-Trifluorethoxyphenyl, 2-Methylthiophenyl, 2,4-Dichlorphenyl, 2-Methoxy-3-methylphenyl, 2,4-Dimethoxyphenyl, 2-Nitro-5-cyanophenyl, 2,6-Difluorphenyl;

Di-(C₁—C₄-alkyl)amino wie insbesondere Dimethylamino, Dipropylamino, N-Propyl-N-methylamino, N-Propyl-N-ethylamino, Diisopropylamino, N-Isopropyl-N-methylamino, N-Isopropyl-N-propylamino;

 R^7 und R^8 ferner Phenyl, das durch einen oder mehrere der folgenden Reste substituiert sein kann: Halogen, Nitro, Cyano, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Halogenalkyl, $C_1 - C_4$ -Alkoxy, $C_1 - C_4$ -Halogenalkoxy oder $C_1 - C_4$ -Alkylthio, wie im einzelnen oben genannt;

oder R⁷ und R⁸ bilden gemeinsam eine zu einem Ring geschlossene, optionell substituierte C₄—C₇-Alkylenkette, die ein Heteroatom, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff, enthalten kann wie —(CH₂)₄—, —(CH₂)₅—, —(CH₂)₆—, —(CH₂)₇—, —(CH₂)₂—O—(CH₂)₂—, —CH₂—S—(CH₂)₃—, —(CH₂)₂—O—(CH₂)₃—, —CH₂—NH—(CH₂)₂—, —CH₂—CH=CH₂—, —CH=CH—

(CH₂)₃=, wobei als Substituenten insbesondere C₁-C₄-Alkylreste in Betracht kommen; e) R¹ ferner eine Gruppe

5

10

15

20

25

35

40

45

50

55

60

65

in der k die Werte 0, 1 und 2, p die Werte 1, 2, 3 und 4 annehmen kann und R9 für

 C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_3-C_6 -Alkenyl, C_3-C_6 -Alkinyl oder gegebenenfalls substituiertes Phenyl steht, wie insbesondere für \mathbb{R}^7 und \mathbb{R}^8 genannt; f) \mathbb{R}^1 ferner ein Rest $O\mathbb{R}^{10}$, worin \mathbb{R}^{10} bedeutet:

i) Wasserstoff, das Kation eines Alkalimetalls oder das Kation eines Erdalkalimetalls wie Lithium, Natrium, Kalium, Calcium, Magnesium und Barium oder ein umweltverträgliches organisches Ammoniumion wie tert.-C₁-C₄-Alkylammonium oder Ammonium [NH₄+];

ii) $C_3 - C_8$ -Cycloalkyl wie vorstehend genannt, welches ein bis drei $C_1 - C_4$ -Alkylgruppen tragen kann; iii) $C_1 - C_8$ -Alkyl wie insbesondere Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,2-Dimethylpropyl, 1,1-Dimethylpropyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1,1-Dimethylbutyl, 2,2-Dimethylbutyl, 3,3-Dimethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl, 1-Ethyl-2-methylpropyl, welches ein bis fünf Halogenatome, insbesondere Fluor oder Chlor und/oder einen der folgenden Reste tragen kann:

 C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, Cyano, C_1-C_4 -Alkylcarbonyl, C_3-C_8 -Cycloalkyl, C_1-C_4 -Alkoxy-carbonyl, Phenyl, ein- oder mehrfach durch Halogen, Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy und/oder C_1-C_4 -Alkylthio substituiertes Phenyl oder Phenoxy, wie insbesondere oben genannt;

iv) eine C₁—C₈-Alkylgruppe wie vorstehend genannt, welche ein bis fünf, vorzugsweise ein bis drei Halogenatome, insbesondere Fluor und/oder Chlor tragen kann und einen der folgenden Reste trägt: ein 5-gliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome oder ein 5-gliedriger Heteroaromat, enthaltend ein Stickstoffatom und ein Sauerstoff- oder Schwefelatom, wie Pyrazolyl, Imidazolyl, Benzimidazol, Triazolyl, Benztriazolyl, Isooxazolyl, Oxazolyl, Thiazolyl, gebunden über ein C-Atom oder falls möglich N-Atom, wobei der Heteroaromat ein bis vier Halogenatome und/oder ein bis zwei der folgenden Reste tragen kann:

Nitro, Cyano, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Halogenalkyl, $C_1 - C_4$ -Alkoxy, Phenyl, $C_1 - C_4$ -Halogenalkoxy und/oder $C_1 - C_4$ -Alkylthio. Insbesondere seien genannt:

1-Pyrazolyl, 3-Methyl-1-pyrazolyl, 4-Methyl-1-pyrazolyl, 3,5-Dimethyl-1-pyrazolyl, 3-Phenyl-1-pyrazolyl, 4-Phenyl-1-pyrazolyl, 4-Chlor-1-pyrazolyl, 4-Brom-1-pyrazolyl, 1-Imidazolyl, 1-Benzimidazolyl, 1,2,

4-Triazol-1-yl, 3-Methyl-1,2,4-triazol-1-yl, 5-Methyl-1,2,4-triazol-1-yl, 1-Benztriazolyl, 3-Isopropylisoxazol-5-yl, 3-Methylisoxazol-5-yl, Oxazol-2-yl, Thiazol-2-yl, Imidazol-2-yl, 3-Ethylisoxazol-5-yl, 3-Phenylisoxazol-5-yl, 3-tert.-Butylisoxazol-5-yl;

v) eine $C_2 - C_6$ -Alkylgruppe, welche in der 2-Position einen der folgenden Reste trägt: $C_1 - C_4$ -Alkoxyimino, $C_3 - C_6$ -Alkinyloxyimino, $C_3 - C_6$ -Halogenalkenyloxyimino oder Benzyloxyimino;

vi) eine C_3 — C_6 -Alkenyl- oder eine C_3 — C_6 -Alkinylgruppe wie insbesondere oben genannt, wobei diese Gruppen ihrerseits ein bis fünf Halogenatome tragen können;

vii) $\hat{R}^{\hat{1}0}$ ferner ein Phenylrest, welcher ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste tragen kann: Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy und/oder C_1-C_4 -Alkylthio, wie insbesondere oben genannt;

viii) ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome wie Pyrazolyl, Imidazolyl, Benzimidazolyl, Triazolyl, Benztriazolyl, vorzugsweise gebunden über die 1-Position, wobei der Heteroaromat ein bis zwei Halogenatome und/oder ein bis zwei der folgenden Reste tragen kann: $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Halogenalkyl, $C_1 - C_4$ -Alkoxy, Phenyl, $C_1 - C_4$ -Halogenalkoxy und/oder $C_1 - C_4$ -Alkylthio. Insbesondere seien genannt: 1-Pyrazolyl, 3-Methyl-1-pyrazolyl, 4-Methyl-1-pyrazolyl, 3-5-Dimethyl-1-pyrazolyl, 3-Phenyl-1-pyrazolyl, 4-Phenyl-1-pyrazolyl, 4-Chlor-1-pyrazolyl, 4-Brom-1-pyrazolyl, 1-Imidazolyl, 1-Benzimidazolyl, 1,2,4-Triazol-1-yl, 3-Methyl-1,2,4-triazol-1-yl, 5-Methyl-1,2,4-triazol-1-yl, 1-Benztriazolyl, 3,4-Dichlorimidazol-1-yl; ix) R^{10} ferner eine Gruppe

20

25

 $-N = C <_{R^{12}}^{R^{11}}$

worin R¹¹ und R¹², die gleich oder verschieden sein können, bedeuten:

 C_1-C_8 -Alkyl, C_3-C_6 -Alkenyl, C_3-C_6 -Alkinyl, C_3-C_8 -Cycloalkyl, wobei diese Reste eine C_1-C_4 -Al-koxy, C_1-C_4 -Alkylthio und/oder einen gegebenenfalls substituierten-Phenylrest, wie insbesondere - 30 vorstehend genannt, tragen können;

Phenyl, das durch einen oder mehrere der folgenden Reste substituiert sein kann: Halogen, Nitro, Cyano, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Halogenalkyl, $C_1 - C_4$ -Alkoxy, $C_1 - C_4$ -Halogenalkoxy oder $C_1 - C_4$ -Alkylthio, wobei diese Reste insbesondere den oben für R^1 genannten entsprechen;

oder R^{11} und R^{12} bilden gemeinsam eine C_3-C_{12} -Alkylenkette, welche ein bis drei C_1-C_4 -Alkylgruppen tragen und ein Heteroatom aus der Gruppe Sauerstoff, Schwefel und Stickstoff enthalten kann, wie insbesondere bei R^7 und R^8 genannt.

g) R¹ ferner ein Rest -NH-SO₂-R¹³, worin R¹³ bedeutet:

 C_1-C_4 -Alkyl, C_3-C_6 -Alkenyl, C_3-C_6 -Alkinyl, C_3-C_8 -Cycloalkyl wie insbesondere vorstehend für R^1 genannt, wobei diese Reste einen C_1-C_4 -Alkoxy-, C_1-C_4 -Alkylthio- und/oder einen Phenylrest wie oben genannt tragen können;

Phenyl, gegebenenfalls substituiert, insbesondere wie vorstehend genannt;

 R^2 die bei R^1 im einzelnen genannten $C_1 - C_4$ -Alkyl-, $C_1 - C_4$ -Halogenalkyl-, $C_1 - C_4$ -Alkoxy-, $C_1 - C_4$ -Alkylthiogruppen und Halogenatome bedeutet, insbesondere Chlor, Methyl, Methoxy, Ethoxy, Difluormethoxy, Trifluormethoxy, besonders bevorzugt Methoxy; X Stickstoff oder CR^{14} , worin

R¹⁴ bevorzugt Wasserstoff bedeutet oder zusammen mit R³ eine 4- bis 5-gliedrige Alkylen- oder Alkenylenkette bildet, in der jeweils eine Methylengruppe durch Sauerstoff ersetzt ist, wie -CH₂-CH₂-O-, -CH=CH-O-, -CH₂-CH₂-CH₂-O-, -CH=CH-CH₂O-, insbesondere Wasserstoff und -CH₂-CH₂-O-;

 R^3 die bei R^1 genannten C_1-C_4 -Alkyl-, C_1-C_4 -Halogenalkyl-, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy-, C_1-C_4 -Alkylthiogruppen und Halogenatome bedeutet, insbesondere Chlor, Methyl, Methoxy, Ethoxy, Difluormethoxy, Trifluormethoxy, besonders bevorzugt Methoxy, oder mit R^{14} wie oben genannt zu einem 5- oder 6-gliedrigen Ring verknüpft ist:

 R^4 C_1 — C_8 -Alkyl wie bei R^1 im einzelnen genannt, welches ein bis fünf Halogenatome wie Fluor, Chlor, Brom, Jod, insbesondere Fluor und Chlor und/oder einen der folgenden Reste tragen kann: C_1 — C_4 -Alkoxy, C_1 — C_4 -Alkylthio, Cyano, Hydroxy, C_1 — C_4 -Alkylcarbonyl, C_1 — C_4 -Alkoxycarbonyl, Phenoxy, Phenylcarbonyl wie im allgemeinen und besonderen bei R^1 genannt;

 C_1-C_8 -Alkyl wie vorstehend genannt, welches ein bis fünf Halogenatome wie vorstehend genannt, insbesondere Fluor und Chlor, tragen kann und einen ggf. substituierten 5-gliedrigen Heteroaromaten, wie vorstehend für R^1 genannt, trägt;

 C_3-C_8 -Cycloalkyl oder C_3-C_8 -Cycloalkenyl, wobei im gesättigten oder ungesättigten Ring eine Methylengruppe durch ein Sauerstoff- oder Schwefelatom ersetzt sein kann, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclohexyl, Cyclopentyl, Cyclohexyl, Cyclopropenyl, Tetrahydrofuranyl, Tetrahydrothienyl, Tetrahydrothiopyranyl, Dihydrothiopyranyl, Dihydrothiopyranyl, Dihydrothiopyranyl, Wobei die Cycloalkyl- bzw. Cycloalkenylreste substituiert sein können durch ein bis fünf Halogenatome wie vorstehend genannt, insbesondere Fluor oder Chlor und/oder einen der folgenden Reste: C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, Cyano, C_1-C_4 -Alkylcarbonyl, C_1-C_4 -Alkoxycarbonyl oder Phenyl, wie

im allgemeinen und besonderen oben genannt; C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl wie bei R¹ genannt, welche ein bis fünf Halogenatome wie vorstehend genannt, insbesondere Fluor oder Chlor und/oder einen der folgenden Reste tragen können: $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Alkoxy, $C_1 - C_4$ -Alkylthio, Cyano, $C_1 - C_4$ -Alkylcarbonyl, $C_1 - C_4$ -Alkoxycarbonyl oder Phenyl, wie im allgemeinen und besonderen oben genannt; 5 R4 ferner ein 5- oder 6-gliedriges Heteroaryl wie Furyl, Thienyl, Pyrryl, Pyrazolyl, Imidazolyl, Triazolyl, Isoxazolyl, Oxazolyl, Isothiazolyl, Thiazolyl, Thiadiazolyl, Pyridyl, Pyrimidinyl, Pyrazinyl, Pyridazinyl, Triazinyl, beispielsweise 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxazolyl, 3-Isothiazolyl, 4-Isothiazolyl, 5-Isothiazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, 5-Imidazolyl, 2-Pyrryl, 3-Pyrryl, 4-Pyrryl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Pyridyl, 3-Py-10 ridyl, 4-Pyridyl, Oxa-2,4-diazolyl, Oxa-3,4-diazolyl, Thia-2,4-diazolyl, Thia-3,4-diazolyl, und Triazolyl, wobei die Heteroaromaten ein bis fünf Halogenatome wie vorstehend genannt, insbesondere Fluor oder Chlor und/oder einen der folgenden Reste tragen können: Nitro, Cyano, Hydroxy, Mercapto, Amino, C1-C4-Halogenalkyl, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylamino, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Di-C₁-C₄-alkylamino, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl oder Phenyl, wie im allgemeinen 15 und besonderen oben genannt: R⁴ ferner Phenyl oder Naphthyl, die durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Cyano, Hydroxy, Mercapto, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, Amino, C₁-C₄-Alkylamino, Di(C₁-C₄-alkyl)amino, C₁-C₄-Al kylcarbonyl oder C₁-C₄-Alkoxycarbonyl, insbesondere wie vorstehend genannt, sowie 1-Naphthyl, 20 2-Naphthyl, 3-Brom-2-naphthyl, 4-Methyl-1-naphthyl, 5-Methoxy-1-naphthyl, 6-Trifluormethyl-1-naphthyl, 7-Chlor-1-naphthyl, 8-Hydroxy-1-naphthyl; oder R4 bildet mit R5 zusammen mit dem benachbarten Kohlenstoffatom einen 3- bis 8-gliedrigen Ring, der ein Sauerstoff- oder Schwefelatom enthalten kann und unsubstituiert ist oder je nach Ringgröße einen bis drei der folgenden Reste trägt: 25 C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio wie im allgemeinen und besonderen oben genannt; R^5 Wasserstoff, $C_1 - C_4$ -Alkyl, $C_3 - C_6$ -Alkenyl, $C_3 - C_6$ -Alkinyl, $C_1 - C_4$ -Alkylcarbonyl, $C_3 - C_8$ -Cycloalkyl, $C_1 - C_4$ -Halogenalkyl, $C_1 - C_4$ -Alkoxyalkyl, $C_1 - C_4$ -Alkoxyalkyl, $C_1 - C_4$ -Alkylthioalkyl oder Phenyl, oder R⁵ bildet mit R⁴ einen 3- bis 6-gliedrigen Ring wie oben angegeben; 30 Y Schwefel oder Sauerstoff oder eine Einfachbindung; R⁶ C₁-C₈-Alkyl wie bei R¹ im einzelnen genannt, welches ein bis fünf Halogenatome wie Fluor, Chlor, Brom, Jod, insbesondere Fluor und Chlor und/oder einen der folgenden Reste tragen kann: C1-C4-Alkoxy, C₁-C₄-Alkylthio, Cyano, Hydroxy, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, Phenoxy, Pheno nylcarbonyl wie im allgemeinen und besonderen bei R1 genannt; 35 C₁-C₈-Alkyl wie vorstehend genannt, welches ein bis fünf Halogenatome wie vorstehend genannt, insbesondere Fluor und Chlor, tragen kann und einen ggf. substituierten 5-gliedrigen Heteroaromaten, wie vorstehend für R1 genannt, trägt; C₃-C₈-Cycloalkyl oder C₃-C₈-Cycloalkenyl, wobei im gesättigten oder ungesättigten Ring eine Methylengruppe durch ein Sauerstoff- oder Schwefelatom ersetzt sein kann, wie Cyclopropyl, Cyclobutyl, Cyclopen-40 tyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Tetrahydrofuranyl, Tetrahydrothienyl, Tetrahydropyranyl, Tetrahydrothiopyranyl, Cyclopropenyl, Dihydrothiopyranyl, Dihydrothiopyranyl, Dihydrothiopyranyl, Dihydrothiopyranyl, wobei die Cycloalkyl- bzw. Cycloalkenylreste substituiert sein können durch ein bis fünf Halogenatome wie vorstehend genannt, insbesondere Fluor oder Chlor und/oder einen der folgenden Reste: C₁-C₄-Alkyl, C₁--C₄-Alkoxy, C₁--C₄-Alkylthio, Cyano, C₁--C₄-Alkylcarbonyl, C₁--C₄-Alkoxycarbonyl oder Phenyl, wie 45 im allgemeinen und besonderen oben genannt; C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl wie bei R¹ genannt, welche ein bis fünf Halogenatome wie vorstehend genannt, insbesondere Fluor oder Chlor und/oder einen der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Cyano, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl oder Phenyl, wie im allgemeinen und besonderen oben genannt; 50 ein 5- oder 6-gliedriges Hetaryl wie insbesondere bei R4 genannt; R⁶ ferner Phenyl oder Naphthyl, die durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Cyano, Hydroxy, Mercapto, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, Amino, C₁-C₄-Alkylamino, Di-(C₁-C₄-alkyl)amino, C₁-C₄-Alkylcarbonyl oder C₁—C₄-Alkoxycarbonyl, insbesondere wie vorstehend genannt; ein Rest — NR¹⁵R¹⁶, in dem R¹⁵ und R¹⁶, die gleich oder unterschiedlich sein können, bedeuten: 55 Wasserstoff; C₁-C₄-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₃-C₈-Cycloalkyl wie insbesondere bei R¹ genannt, wobei diese Reste ein bis fünf Halogenatome und/oder ein bis zwei der folgenden Reste tragen können: $C_1-C_4-Alkoxy,\ C_1-C_4-Alkylcarbonyl,\ C_1-C_4-Alkylcarbonyl,\ C_1-C_4-Alkoxycarbonyl$ 60 oder gegebenenfalls substituiertes Phenyl wie insbesondere oben genannt; Phenyl, das gegebenenfalls wie bei R1 genannt substituiert ist; oder R¹⁴ und R¹⁵ bilden gemeinsam eine zu einem Ring geschlossene, optionell substituierte C₄-C₇-Alkylenkette oder eine zu einem Ring geschlossene, optionell substituierte C₃-C₆-Alkylenkette mit einem

einen Rest OR^{17} , wobei R^{17} C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_3-C_6 -Alkenyl, C_3-C_6 -Alkinyl, C_3-C_6 -Alkinyl, C_3-C_6 -Cycloalkyl oder gegebenenfalls substituiertes Phenyl, wie insbesondere bei R^1 genannt, bedeutet.

Heteroatom, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff, wie insbesondere bei R7 und

43 35 950 A1 DE

Besonders bevorzugt sind Verbindungen der Formel I, in der R2 und R3 für Methoxy und X für CH stehen. R1 steht vorzugsweise für eine Gruppe OR10, besonders bevorzugt OH (oder ein Salz der Carbonsäure). Der Rest R⁵ bedeutet vorzugsweise einen niedermolekularen Alkylrest, z. B. C₁—C₄-Alkyl, insbesondere Methyl. Der Rest R4 steht vorzugsweise für einen ggf. substituierten Phenyl- oder Heteroarylrest oder für C₁-C₄-Alkyl. Der Rest R⁶ ist ausgesprochen breit variierbar. Wesentlich für die biologische Aktivität ist die Acyloxyverknüpfung. Beispielsweise sind aromatische Reste wie ggf. substituiertes Phenyl, C1-C6-Alkyl- oder Alkoxyreste oder Benzyloxy zu nennen.

In der folgenden Tabelle sind beispielhaft einige der bevorzugten Verbindungen aufgeführt (Abkürzungen: cy

= cyclo, i = iso, s = sekundär, t = tertiär).

10

15

20

25

e a - vestimina ma ..----- 30

35

40

45

50

55

60

DE 43 35 950 A1

							,							_		
					⊁	0	0	0	0	ន	ည	0	0	0	0	0
5					×	СН	нэ	H2-	N	СН	N	СН	СН	СН	; но	СН .
10					R ³	оснз	оснз	O-CH2-CH2-	оснз	OCH ₃	оснз	осн	осн3	OCH ₃	оснз	оснз
15						Ü				J)	J	J))	Ĭ
20					R2	ОСН3	ОСН3	OCH ₃	ОСН3	OCH ₃	ОСН3	OCH ₃	OCH ₃	OCH3	OCH ₃	осн
25	(٠		Methy1	Met'hy1	Methy1	Methyl	Methyl	Methyl	Methyl	Methyl	Ethy1	Propyl	i-Propyl
30			Н		 % . − . 86	Me	Me	Me	Me.	Me	Me	Me	Me	ద	Pr(1-1
35		R 2	.×.	_R 3	R5	Methy1	Methy1	Methy1	Methy1	Methy1	Methy1	Methy1	H	1-Propyl	Methyl	
40	H H	N	4	Z												– (CH ₂) 5–
45	er Formel	.	- CH-Y-	\ \ \ \ \ \ \ \ \ \ \ \ \ \) -
50	Tabelle: Verbindungen der		R6_C_O_C_	ά. C	R4	Pheny1	Pheny1	Pheny1	Pheny1	Pheny1	Pheny1	Methyl	Pheny1	Phenyl	Methy1	
55	Verbir		R ₂													
60	Tabelle:				\mathbb{R}^1	OCH ₃	용	HO	ЮН	НО	НО	Ж	HO.	НО	но	Ю

K.	K ³	ξ. 2	R6.	R ²	R3	×	×
НО	Pheny1	Methy1	n-Buty1	оснз	ОСН3	СН	0
НО	2-Thienyl	Methyl	s-Butyl	OCH ₃	оснз	СН	0
НО	Pheny 1	Methy1	i-Butyl	OCH ₃	осн	СН	0
осн3	2-Fluorphenyl	Ethyl	t-Butyl	оснз	осн	СН	0
OC2H5	3-Chlorphenyl	Propy1	cy-Propyl	OCH ₃	осн3	Z	0
ON (CH ₃) ₂	4-Brompheny1	i-Propy1	cy-Butyl ·	CF3	CF3	НЭ	S
ON=C(CH ₃) ₂	2-Thienyl	Methy1	cy-Pentyl	OCF3	OCF ₃	СН	0
NHSO ₂ C ₆ H ₅	3-Thienyl	Methy1	cy-Hexyl	CH ₃	CH3	НЭ	0
NHPheny1	2-Fury1	Methy1	Pheny1	C1	C]	НЭ	0
OMa	3-Fury1	Methy1	2-Methylphenyl	оснз	O-CH2CH2-	H2-	S
0-сн2-с≡сн	Phenyl	Ethy1	3-Chlorphenyl	оснз	CF3	СН	0
НО	Phenyl	Propy1	4-Bromphenyl	оснз	OCF3	СН	0
осиз	Phenyl	1-Propyl	Benzyl	оснз	CH3	CH	0
OC2H5	Phenyl	Methy1	2-Thienyl	осн	Cl	CH	ß
ON (CH ₃) ₂	2-Methylphenyl	Methy1	3-Furyl	оснз	оснз	CH	0
ON=C(CH ₃) ₂	3-Methoxyphenyl	Methy1	2-Pyridiyl	оснз	оснз	CH	0
NHSO ₂ C ₆ H ₅	4-Nitrophenyl	Methy1	3-Pyridyl	ОСН3	OCH ₃	СН	0
NHPheny1	Methy1	Methy1	4-Pyridyl	CF3	CF_3	z	S
ONa	Methy1	Methy1	2-Thiazolyl	OCF3	OCF3	Z	0
O-CH ₂ -C≡CH	Methy1	Methyl	4-Oxazolyl	CH ₃	СН3	Z	0
55 60	40 45 50	35	25	15	10	5	

	X	0	0	0	0	0	ß	ß	S	0	0	0	0	0	0	0	ຜ	ß
5	×	Z	CH ₂	N	Z	N	СН	СН	Z	СН	СН	СН	СН	2H2-	N	N	СН	СН
10	R ³	CI	0-СН ₂ -СН ₂	OCF3	CH_3	C1	осн ³	оснз	€н⊃о	CF_3	ocF_3	осн3	осн ³	-сн ₂ -сн ₂ -	€н20	OCH3 -	оснз	оснз
15																		
20	R ²	CI	OCH ₃	OCH ₃	OCH ₃	OCH ₃	OCH ₃	оснз	OCH ₃	CF3	OCF3	оснз	оснз	оснз	оснз	оснз	оснз	осн3
25		5-Pyrazolyl	3-Isothiazolyl	4~Isoxazolyl	5-Imidazolyl	1	Propargy1	:hy1	1)2	$N(CH_3)(C_2H_5)$		(°)	eny l	ızyl	N (CH ₃) Pheny L	ıtyl		
30 _	₉ स	5-Py	3-IS	4-ISC	5-Im	Allyl	Prope	Naphthy1	N(CH3)2	N (CH ₃		- Aurenti	NHPheny1	NHBenzyl	N (CH ₃	NHtButyl	OCH ₃	$0C_2H_5$
35	R5	Methy1	Methy1	Methyl	Methy1	Methyl	Methy1	Ethyl	Propyl	1-Propyl	Methyl	Methyl	Methy1	Methyl '	Methyl	Methyl	Methy1	Methy1
40						1pheny1	aminophenyl											
45					typheny1	ormethy		coly1	coly1	51y1	oly1							
50	R ⁴	Methy1	Phenyl	Phenyl	2-Hydroxyphenyl	3-Trifluormethylphenyl	4-Dimethyl	3-Imidazol	4-Imidazol	2-Pyrazoly	4-Pyrazoly	Pheny1	Phenyl	Phenyl	Phenyl	Pheny1	Phenyl	Phenyl
55																		
60	\mathbb{R}^1	ЮН	осн	ON (CH ₃) 2	ON=C (CH3) 2	NHSO ₂ C ₆ H ₅	NHPheny1	ONa	0-сн2-с≡сн	но	осн ₃	осн ₃	НО	НО	НО	но	но	но

Pheny1 Methy1 O-CH(CH3)2 OCH3	\mathbb{R}^1	R4	R5	ਸ6	R2	R ³	×	χ
Phenyl Phenyl O-CH(CH ₃) ₂ OCH ₃ Phenyl H O-C(CH ₃) ₃ OCH ₃ Phenyl i-Propyl O-CH ₃ -C ₆ H ₅ OCH ₃ -(CH ₂) ₅ Methyl O-CH ₃ -C ₆ H ₅ OCH ₃ -(CH ₂) ₅ Methyl O-CH ₃ -C ₆ H ₅ OCH ₃ Phenyl Methyl O-CH ₃ -CH=CH ₂ OCH ₃ D-CH ₃ D-CH ₂ -CH=CH ₂ OCH ₃ D-CH ₃ D-CH ₃ D-CH ₃ D-CH ₃ D				-				
Phemy1	НО	Phenyl	Methy1	0-сн (сн ₃) ₂	осн	оснз	СН	0
Phenyl 1-Propyl 0-C#3-C#45 0CH3	НО	Pheny 1	н	O-C(CH ₃) ₃	оснз	осн3	СН	0
Methyl	НО	Phenyl	i-Propyl	O-CH2-C6H5	оснз	осн3	СН	0
- (CH ₂) ₅ Phenyl Phenyl 2-Thienyl Phenyl 2-Thienyl Phenyl 3-Fluorphenyl 3-Chlorphenyl Bthyl 3-Chlorphenyl 1-Propyl 3-Chlorphenyl CH ₃) ₂ 4-Bromphenyl Dropyl 3-Chlorphenyl CH ₃) ₂ 4-Bromphenyl Dropyl Nul Nul CH ₃) ₂ 3-Chlorphenyl Dropyl Nul Nul CE ₃ (CH ₃) ₂ 3-Thienyl Methyl CE ₃ (CH ₃) ₂	НО	Methyl	Methy1	0-С6н5	оснз	оснз	CH	0
Phenyl Methyl 2-Thienyl OCH3	НО	- (CH ₂) ₅ -		O-CH2-CH=CH2	оснз	осн3	СН	0
2-Thienyl Methyl 2-Nitrophenyl OCH3 Phenyl A-Tiluorphenyl OCH3 2-Fluorphenyl Ethyl 4-Tilluormethyl OCH3 5 3-Chlorphenyl Propyl 2-Methoxyphenyl CF3 H3)2 4-Bromphenyl i-Propyl 3-Methylthiophe- CF3 (CH3)2 2-Thienyl Methyl Trifluormethyl OCF3	НО	Phenyl	Methy1	O-CH2-CECH	оснз	оснз	СН	0
Phenyl Methyl 3-Fluorphenyl OCH3 2-Fluorphenyl Ethyl 4-Trifluormethyl- OCH3 3-Chlorphenyl Propyl 2-Methoxyphenyl CF3 H3)2 4-Bromphenyl i-Propyl 3-Methylthiophe- CF3 (CH3)2 2-Thienyl Methyl Trifluormethyl OCF3	ЮН	2-Thienyl	Methyl	2-Nitrophenyl	осн3	оснз	СН	0
2-Fluorphenyl Ethyl 4-Trifluormethyl- OCH3 3-Chlorphenyl Propyl 2-Methoxyphenyl CF3 H3)2 4-Bromphenyl i-Propyl 3-Methylthiophe- CF3 (CH3)2 2-Thienyl Methyl Trifluormethyl OCF3	НО	Pheny1	Methyl	3-Fluorphenyl	осн3	осн3	СН	0
3-2 4-Bromphenyl i-Propyl 3-Methylthiophe- CF3 CH3)2 2-Thienyl Methyl Trifluormethyl OCF3	оснз	2-Fluorphenyl	Ethyl	luormethyl	оснз	оснз	æ	0
4-Bromphenyl i-Propyl 3-Methylthiophe- GF3 2-Thienyl Methyl Trifluormethyl OCF3	OC2H5	3-Chlorphenyl	Propy1	2-Methoxyphenyl	CF3	CF3	Z	0
2-Thienyl Methyl Trifluormethyl OCF3	ON (CH ₃) ₂	4-Bromphenyl	i-Propyl	3-Methylthiophe- nyl	CF3	CF3	СН	ໝ
	ON=C (CH3) 2	2-Thienyl	Methyl	Trifluormethyl	OCF3	OCF3	СН	0
255 330 40 455 555	60	45 50	35	25	15	10	5	

and and the second second is a second

Die Verbindungen I bzw. die sie enthaltenden herbiziden Mittel sowie deren umweltverträgliche Salze von Alkalimetallen und Erdalkalimetallen können in Kulturen wie Weizen, Reis und Mais, Soja und Baumwolle, Unkräuter und Schadgräser sehr gut bekämpfen, ohne die Kulturpflanzen zu schädigen, ein Effekt, der vor allem auch bei niedrigen Aufwandmengen auftritt.

Sie können beispielsweise in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen, auch hochpro-

zentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Die Verbindungen I eignen sich allgemein zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen. Als inerte Zusatzstoffe kommen u. a. Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z. B. Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoron oder stark polare Lösungsmittel, wie N,N-Dimethylformamid, Dimethylsulfoxid,

N-Methylpyrrolidon oder Wasser in Betracht.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Dispersionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substrate als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z. B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen, sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenol-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxypropylen, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Sub-

stanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z. B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 95 Gew.%, vorzugsweise zwischen 0,5 und 90 Gew.%, Wirkstoff. Die Wirkstoffe werden dabei in einer Reinheit von 90 bis 100%, vorzugsweise 95 bis 100%

(nach NMR-Spektrum) eingesetzt. Beispiele für Formulierungen sind:

_____30

40

45

50

55

60

65

I. 20 Gewichtsteile der Verbindung Nr. 1.001 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen alkyliertem Benzol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Ausgie-Ben und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0.02 Gew.% des Wirkstoffs enthält.

II. 20 Gewichtsteile der Verbindung Nr. 1.001 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen der Lösung der Lösu

teilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.

III. 20 Gewichtsteile des Wirkstoffs Nr. 1.001 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.

IV. 20 Gewichtsteile des Wirkstoffs Nr. 1.001 werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalin-α-sulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20 000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.% des Wirkstoffs enthält.

V. 3 Gewichtsteile des Wirkstoffs Nr. 1.001 werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.% des Wirkstoffs enthält.

VI. 20 Gewichtsteile des Wirkstoffs Nr. 1.001 werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkohol-polyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondensates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

Die Applikation kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse

43 35 950 DE

Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).

Die Aufwandmengen an Wirkstoff betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachs-

tumsstadium 0,001 bis 5 kg/ha, vorzugsweise 0,01 bis 2 kg/ha aktive Substanz (a.S.).
In Anbetracht der Vielseitigkeit der Applikationsmethoden können die erfindungsgemäßen Verbindungen bzw. sie enthaltende Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden. In Betracht kommen beispielsweise folgende Kulturen:

10

15

20

25

30

35

40

45

50

55

60

Botanischer Name

Allium cepa
Ananas comosus

Arachis hypogaea
Asparagus officinalis
Beta vulgaris spp. altissima
Beta vulgaris spp. rapa
Brassica napus yar. napus
Brassica napus var. napobrassica
Brassica rapa var. silvestris

Camellia sinensis
Carthamus tinctorius
Carya illinoinensis
Citrus limon
Citrus sinensis

Coffea arabica (Coffea canephora, Coffea liberica)

Cucumis sativus
Cynodon dactylon
Daucus carota
Elaeis guineensis
Fragaria vesca

Glycine max

Gossypium hirsutum (Gossypium arboreum, Gossypium

herbaceum, Gossypium vitifolium)

Helianthus annuus Hevea brasiliensis

Hordeum vulgare
Humulus lupulus
Ipomoea batatas
Juglans regia

Lens culinaris
Linum usitatissimum
Lycopersicon lycopersicum

Malus spp.

Manihot esculenta

Medicago sativa

Musa spp.

Nicotiana tabacum (N. rustica)

Olea europaea
Oryza sativa
Phaseolus lunatus
Phaseolus vulgaris
Picea abies
Pinus spp.

Pisum sativum
Prunus avium
Prunus persica
Pyrus communis
Ribes sylvestre

Ricinus communis
Saccharum officinarum
Secale cereale
Solanum tuberosum

60 Sorghum bicolor (S. vulgare)

Theobroma cacao
Trifolium pratense
Triticum aestivum
Triticum durum
Vicia faba

Vicia faba Vitis vinifera Zea mays

Deutscher Name

Küchenzwiebel Ananas Erdnuß Spargel Zuckerrübe Futterrübe Raps Kohlrübe Rübsen Teestrauch

Saflor — Färberdistel Pekanußbaum

Zitrone

Apfelsine, Orange

Kaffee Gurke Bermudagras Möhre Ölpalme Erdbeere Sojabohne Baumwolle

Sonnenblume Parakautschukbaum

Gerste
Hopfen
Süßkartoffeln
Walnußbaum
Linse
Faserlein
Tomate
Apfel
Maniok
Luzerne

Obst- und Mehlbanane

Tabak Ölbaum Reis Mondbohne Buschbohne Rotfichte Kiefer Gartenerbse Süßkirsche Pfirsich Birne

Rote Johannisbeere Rizinus Zuckerrohr Roggen Kartoffel Mohrenhirse Kakaobaum Rotklee Weizen Hartweizen Pferdebohnen Weinrebe Mais

Die Verbindungen der Formel I können praktisch alle Entwicklungsstadien einer Pflanze verschiedenartig beeinflussen und werden deshalb als Wachstumsregulatoren eingesetzt. Die Wirkungsvielfalt der Pflanzenwachstumsregulatoren hängt ab vor allem

- a) von der Pflanzenart und -sorte,
- b) vom Zeitpunkt der Applikation, bezogen auf das Entwicklungsstadium der Pflanze und von der Jahreszeit.
- c) von dem Applikationsort und -verfahren (z. B. Samenbeize, Bodenbehandlung, Blattapplikation oder Stamminjektion bei Bäumen),
- d) von klimatischen Faktoren, z.B. Temperatur, Niederschlagsmenge, außerdem auch Tageslänge und Lichtintensität,

15

20

35 .

65

- e) von der Bodenbeschaffenheit (einschließlich Düngung),
- f) von der Formulierung bzw. Anwendungsform des Wirkstoffs und schließlich
- g) von der angewendeten Konzentration der aktiven Substanz.

Aus der Reihe der verschiedenartigen Anwendungsmöglichkeiten der Pflanzenwachstumsregulatoren der Formel I im Pflanzenanbau, in der Landwirtschaft und im Gartenbau, werden einige nachstehend erwähnt.

A. Mit den erfindungsgemäß verwendbaren Verbindungen läßt sich das vegetative Wachstum der Pflanzen stark hemmen, was sich insbesondere in einer Reduzierung des Längenwachstums äußert.

Die behandelten Pflanzen weisen demgemäß einen gedrungenen Wuchs aus; außerdem ist eine dunklere Blattfärbung zu beobachten.

Als vorteilhaft für die Praxis erweist sich eine verminderte Intensität des Wachstums von Gräsern sowie lageranfälligen Kulturen wie Getreide, Mais, Sonnenblumen und Soja. Die dabei verursachte Halmverkürzung und Halmverstärkung verringern oder beseitigen die Gefahr des "Lagerns" (des Umknickens) von Pflanzen unter ungünstigen Witterungsbedingungen vor der Ernte.

Wichtig ist auch die Anwendung von Wachstumsregulatoren zur Hemmung des Längenwachstums und zur zeitlichen Veränderung des Reifeverlaufs bei Baumwolle. Damit wird ein vollständig mechanisiertes Beernten dieser wichtigen Kulturpflanze ermöglicht.

Bei Obst- und anderen Bäumen lassen sich mit den Wachstumsregulatoren Schnittkosten einsparen. Außerdem kann die Alternanz von Obstbäumen durch Wachstumsregulatoren gebrochen werden.

Durch Anwendung von Wachstumsregulatoren kann auch die seitliche Verzweigung der Pflanzen vermehrt oder gehemmt werden. Daran besteht Interesse, wenn z. B. bei Tabakpflanzen die Ausbildung von Seitentrieben (Geiztrieben) zugunsten des Blattwachstums gehemmt werden soll.

Mit Wachstumsregulatoren läßt sich beispielsweise bei Winterraps auch die Frostresistenz erheblich erhöhen. Dabei werden einerseits das Längenwachstum und die Entwicklung einer zu üppigen (und dadurch besonders frostanfälligen) Blatt- bzw. Pflanzenmasse gehemmt. Andererseits werden die jungen Rapspflanzen nach der Aussaat und vor dem Einsetzen der Winterfröste trotz günstiger Wachstumsbedingungen im vegetativen Entwicklungsstadium zurückgehalten. Dadurch wird auch die Frostgefährdung solcher Pflanzen beseitigt, die zum vorzeitigen Abbau der Blühhemmung und zum Übergang in die generative Phase neigen. Auch bei anderen Kulturen, z. B. Wintergetreide, ist es vorteilhaft, wenn die Bestände durch Behandlung mit den erfindungsgemäßen Verbindungen im Herbst zwar gut bestockt werden, aber nicht zu üppig in den Winter hineingehen. Dadurch kann der erhöhten Frostempfindlichkeit und — wegen der relativ geringen Blatt- bzw. Pflanzenmasse — dem Befall mit verschiedenen Krankheiten (z. B. Pilzkrankheit) vorgebeugt werden.

B. Mit den Wachstumsregulatoren lassen sich Mehrerträge sowohl an Pflanzenteilen als auch an Pflanzeninhaltsstoffen erzielen. So ist es beispielsweise möglich, das Wachstum größerer Mengen an Knospen, Blüten, Blättern, Früchten, Samenkörnern, Wurzeln und Knollen zu induzieren, den Gehalt an Zucker in Zuckerrüben, Zuckerrohr sowie Citrusfrüchten zu erhöhen, den Proteingehalt in Getreide oder Soja zu steigern oder Gummibäume zum vermehrten Latexfluß zu stimulieren.

Dabei können die Verbindungen der Formel I Ertragssteigerungen durch Eingriffe in den pflanzlichen Stoffwechsel bzw. durch Förderung oder Hemmung des vegetativen und/oder des generativen Wachstums verursachen.

C. Mit Pflanzenwachstumsregulatoren lassen sich schließlich sowohl eine Verkürzung bzw. Verlängerung der Entwicklungsstadien als auch eine Beschleunigung bzw. Verzögerung der Reife der geernteten Pflanzenteile vor oder nach der Ernte erreichen.

Von wirtschaftlichem Interesse ist beispielsweise die Ernteerleichterung, die durch das zeitlich konzentrierte Abfallen oder Vermindern der Haftfestigkeit am Baum bei Citrusfrüchten, Oliven oder bei anderen Arten und Sorten von Kern-, Stein- und Schalenobst ermöglicht wird. Derselbe Mechanismus, d. h. die Förderung der Ausbildung von Trenngewebe zwischen Frucht-, bzw. Blatt- und Sproßteil der Pflanze ist auch für ein gut kontrollierbares Entblättern von Nutzpflanzen wie beispielsweise Baumwolle wesentlich.

D. Mit Wachstumsregulatoren kann weiterhin der Wasserverbrauch von Pflanzen reduziert werden. Durch den Einsatz der erfindungsgemäßen Substanzen läßt sich die Intensität der Bewässerung reduzieren und damit eine kostengünstigere Bewirtschaftung durchführen, weil u. a.

- die Öffnungsweite der Stomata reduziert wird,
- eine dickere Epidermis und Cuticula ausgebildet werden,
- die Durchwurzelung des Bodens verbessert wird und
- das Mikroklima im Pflanzenbestand durch einen kompakteren Wuchs günstig beeinflußt wird.

Besonders gut eignen sich sich Verbindungen I zur Halmverkürzung von Kulturpflanzen wie Gerste, Raps und Weizen.

Die erfindungsgemäß zu verwendenden Wirkstoffe der Formel I können den Kulturpflanzen sowohl vom Samen her (als Saatgutbeizmittel) als auch über den Boden, d. h. durch die Wurzel sowie — besonders bevorzugt — durch Spritzung über das Blatt zugeführt werden.

Die Aufwandmenge an Wirkstoff ist infolge der hohen Pflanzenverträglichkeit nicht kritisch. Die optimale Aufwandmenge variiert je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadien.

Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0.001 bis 50 g, vorzugsweise 0.01 bis 10 g, je Kilogramm Saatgut benötigt.

Für die Blatt- und Bodenbehandlung sind im allgemeinen Gaben von 0.001 bis 10 kg/ha, bevorzugt 0.01 bis 3 kg/ha, insbesondere 0.01 bis 0.5 kg/ha als ausreichend zu betrachten.

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die Verbindungen der Formel 1 mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner Diazine, 4H-3,1-Benzoxazinderivate, Benzothiadiazinone, 2,6-Dinitroaniline, N-Phenylcarbamate, Thiolcarbamate, Halogencarbonsäuren, Triazine, Amide, Harnstoffe, Diphenylether, Triazinone, Uracile, Benzofuranderivate, Cyclohexan-1,3-dionderivate, die in 2-Stellung z. B. eine Carboxy- oder Carbimino-Gruppe tragen, Chinolincarbonsäurederivate, Imidazolinone, Sulfonamide, Sulfonylharnstoffe, Aryloxy- bzw. Heteroaryloxy-phenoxypropionsäuren sowie deren Salze, Ester und Amide und andere in Betracht.

Außerdem kann es von Nutzen sein, die Verbindungen der Formel I allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.

Synthesebeispiele

Beispiel 1

3-Acetoxy-3-phenyl-2-hydroxybuttersäuremethylester

19,2 g (100 mmol) 3-Phenyl-2,3-epoxybuttersäuremethylester werden in 50 ml Eisessig gelöst und 2 Stunden bei 100°C gerührt. Nach dem Abkühlen wird das Lösungsmittel weitgehend entfernt, der Rückstand in Essigester aufgenommen und mit Wasser gewaschen. Nach Trocknen und Einengen verbleiben 20,2 g eines farblosen Öls.

Ausbeute: 80,1%

25

30

35

40

50

60

Beispiel 2

3-Acetoxy-3-phenyl-3-(4,6-dimethoxypyrimidin-2-yl)oxybuttersāuremethylester

15,8 g (62,6 mmol) 3-Acetoxy-3-phenyl-2-hydro-buttersäuremethylester (Bsp. 1) werden in 80 ml DMF gelöst, mit 4,3 g (31,3 mmol) Kaliumcarbonat und 13,7 g (62,6 mmol) 4,6-Dimethoxy-2-methylsulfonylpyrimidin versetzt und 6 Stunden bei 60°C gerührt. Der entstandene Niederschlag wird abgesaugt, mit Wasser und Ether gewaschen und getrocknet. Es verbleiben 3,2 g eines weißen Pulvers.

Ausbeute: 12,4%, Fp.: 153°C(Z)

Beispiel 3

3-Acetoxy-3-phenyl-2-(4,6-dimethoxypyrimidin-2-yl)oxybuttersäure

3,9 g (10 mmol) 3-Acetoxy-3-phenyl-2-(4,6-dimethoxypyrimidin-2-yl)oxybuttersäuremethylester (Bsp. 2) werden in 100 ml Methanol/THF 1:1 gelöst und mit 4,0 g (10 mmol) 10%iger Natronlauge versetzt. Man rührt 2 Tage bei Raumtemperatur, engt ein und nimmt den Rückstand in Wasser auf. Nach Extraktion mit Essigester wird die wäßrige Phase mit 10%iger Salzsäure auf pH 2 gestellt und der gebildete Niederschlag abgesaugt.

Beispiel 4

3-Hydroxy-3-methyl-2-(4,6-dimethoxypyrimidin-2-yl)oxybuttersäureethylester

16.2 g (100 mmol) 3-Methyl-2,3-dihydroxybuttersäureethylester werden in 100 ml DMF gelöst, mit 6,9 g (50 mmol) Kaliumcarbonat und 21,8 g (100 mmol) 4,6-Dimethoxy-2-methylsulfonylpyrimidin versetzt und 12 Stunden bei 60°C gerührt. Nach dem Abkühlen gießt man auf 600 ml Eiswasser und extrahiert mit Essigester. Nach Trocknen und Einengen verbleiben 26,3 g eines schwach gelben Öls. Ausbeute: 87,7%

Beispiel 5

3-Hydroxy-3-methyl-2-(4,6-dimethoxypyrimidin-2-yl)oxybuttersäure

5 g (16,7 mmol) 3-Hydroxy-3-methyl-2-(4,6-dimethoxypyrimidin-2-yl)oxybuttersäureethylester (Bsp. 4) werden in 50 ml Methanol gelöst, mit 20 g (50 mmol) 10% iger Natronlauge versetzt und 3 Stunden bei Raumtemperatur gerührt. Nach Einengen wird in Wasser aufgenommen, mit 10% iger Salzsäure auf pH 2 gebracht und mit Essigester extrahiert. Nach Trocknen und Einengen wird der Rückstand mit Ether versetzt und der gebildete Niederschlag abgesaugt. Es verbleiben 13 g eines weißen Pulvers. Ausbeute: 28,6%, Fp.: 127—129°C

Beispiel 6

3-Benzoyloxy-3-methyl-2-(4,6-dimethoxypyrimidin-2-yl)oxybuttersäure

2,7 g (10 mmol) 3-Hydroxy-3-methyl-2-(4,6-dimethoxypyrimidin-2-yl)oxybuttersäure (Bsp. 5) werden in 50 ml Dichlormethan gelöst, mit 0,8 g (10 mmol) Pyrimidin und 14 g (10 mmol) Benzoylchlorid versetzt. Nach 24 Stunden Rühren bei Raumtemperatur wird mit Wasser gewaschen, die organische Phase getrocknet und eingeengt. Es verbleibt ein klares Öl, das langsam erstarrt.

Beispiel 7

3-tert. Butyloxycarbonyloxy-3-methyl-2-(4,6-dimethoxypyrimidin-2-yl)oxybuttersäure

2,7 g (10 mmol) 3-Hydroxy-3-methyl-2-(4,6-dimethoxypyrimidin-2-yl)oxybuttersäure (Bsp. 5) werden in 20 ml Essigester gelöst, mit 2,6 g (12 mmol) Di-tert. Butyldicarbonat und einer Spatelspitze 4-(Dimethylamino)pyridin versetzt und 12 Stunden bei Raumtemperatur gerührt. Man wäscht mit Wasser, trocknet die organische Phase und destilliert das Lösungsmittel ab. Es verbleibt ein schwach gelbes Öl.

Beispiel 8

3-Acetoxy-3-phenyl-2-[(4,6-dimethoxypyrimidin-2-yl)thio]buttersäuremethylester

6,3 g (25 mmol) 3-Acetoxy-3-phenyl-2-hydroxybuttersäuremethylester (Bsp. 1) werden in 50 ml Dichlormethan gelöst, 3 g (30 mmol) Triethylamin zugegeben und unter Rühren 3,2 g (28 mmol) Methansulfonsäurechlorid zugetropft. Man rührt 24 Stunden bei Raumtemperatur, wäscht mit Wasser, trocknet über Natriumsulfat und engt im Vakuum ein. Der Rückstand wird in 100 ml DMF aufgenommen und bei 0°C zu einer Suspension von 12,9 g (75 mmol) 4,6-Dimethoxypyrimidin-2-thiol und 8,4 g (100 mmol) Natriumhydrogencarbonat in 100 ml DMF getropft. Nach 2 Stunden Rühren bei Raumtemperatur und weiteren 2 Stunden bei 60°C gießt man auf 1 l Eiswasser und saugt den entstandenen Niederschlag ab.

Analog den obigen Beispielen wurden alle in Tabelle 1 genannten Verbindungen hergestellt.

10

15

20

30

35

40

45

50

55

60

Tabelle 1

10

15

20

25

30

35

40

45

50

55

Nr.	R ⁶	R ⁴	R ⁵	R1	Y	Diaste- reomere	Fp.	[ºC]	
1.001	CH ₃	C ₆ H ₅	CH ₃	OCH ₃	0	1:0	153	(Z.)	
1.002	CH ₃	C ₆ H ₅	CH ₃	ОН	0				
1.003	CH ₃	C ₆ H ₅	СН3	OCH ₃	s				
1.004	CH ₃	C ₆ H ₅	СН3	ОН	S				
1.005	СН3	CH ₃	CH ₃	ОН	0				
1.006	C ₆ H ₅	CH ₃	CH ₃	ОН	0				
1.007	C (CH ₃) ₃	CH ₃	CH ₃	ОН	0				
1.008	OCH ₂ C ₆ H ₅	CH ₃	CH ₃	ОН	0	w			ĺ
1.009	OC (CH ₃) ₃	CH ₃	CH ₃	ОН	0				ĺ
1.010	CF ₃	CH ₃	CH ₃	ОН	0				
1.011	C ₂ H ₅	C ₆ H ₅	CH ₃	OCH ₃	0				i
1.012	C ₂ H ₅	C ₆ H ₅	СН3	ОН	0				i
1.013	C ₆ H ₅	C ₆ H ₅	CH ₃	OCH ₃	0				
1.014	C ₆ H ₅	C ₆ H ₅	СН3	ОН	0				
1.015	C (CH ₃) ₃	C ₆ H ₅	СН3	OCH ₃	0				
1.016	C (CH ₃) ₃	C ₆ H ₅	СН3	ОН	0				
1.017	OCH ₂ C ₆ H ₅	.C ₆ H ₅	CH ₃	OCH ₃	0			•	
1.018	OCH ₂ C ₆ H ₅	C ₆ H ₅	CH ₃	ОН	0				
1.019	OC (CH ₃) ₃	C ₆ H ₅	CH ₃	OCH ₃	0				
1.020	OC (CH ₃) ₃	C ₆ H ₅	CH ₃	ОН	0				
1.021	CH ₂ C ₆ H ₅	C ₆ H ₅	CH ₃	OCH ₃	0				
1.022	CH ₂ C ₆ H ₅	C ₆ H ₅	CH ₃	ОН	0				

Anwendungsbeispiele

Die herbizide Wirkung der 3-Hydroxycarbonsäurederivate der allgemeinen Formel I ließ sich durch Gewächshausversuche zeigen:

Als Kulturgefäße dienten Plastiktöpfe mit lehmigem Sand mit etwa 3,0% Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.

Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern, und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.

Zum Zweck der Nachauflaufanwendung werden die Testpflanzen je nach Wuchsform erst bis zu einer

Wuchshöhe 3 bis 15 cm angezogen und erst dann mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Testpflanzen werden dafür entweder direkt gesät und in den gleichen Gefäßen aufgezogen oder sie werden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt. Die Aufwandmenge für die Nachauflaufbehandlung beträgt 0,125 bzw. 0,06 kg/ha a.S.

Die Pflanzen wurden artenspezifisch bei Temperaturen von 10 bis 25°C bzw. 20 bis 35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.

Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.

Patentansprüche

10

25

30

45

1. Derivate von 3-Hydroxycarbonsäuren der allgemeinen Formel I,

in der die Substituenten folgende Bedeutung haben:

R eine Gruppe CHO, eine Gruppe CO₂H oder ein zu CO₂H hydrolysierbarer Rest;

 R^2 Halogen, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Halogenalkyl, $C_1 - C_4$ -Alkoxy, $C_1 - C_4$ -Halogenalkoxy oder $C_1 - C_4$ -Alkylthio;

X Stickstoff oder CR¹⁴, wobei R¹⁴ Wasserstoff-bedeutet-oder-zusammen mit R³ eine 3- bis 4-gliedrige-Alkylen- oder Alkenylenkette bildet, in der jeweils eine Methylengruppe durch Sauerstoff ersetzt ist; R³ Halogen, C₁-C₄-Alkyl, C₁-

thio, oder R^3 ist mit R^{14} wie oben angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft; R^4 eine C_1-C_8 -Alkylgruppe, welche ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C_1-C_4 -Alkylcarbonyl, C_1-C_4 -Alkylthio, Cyano, Hydroxy, C_1-C_4 -Alkylcarbonyl, C_1-C_4 -Alkoxycarbonyl, Phenyl, ein oder mehrfach durch Halogen, Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkylthio substituiertes Phenyl oder Phenoxy oder ein fünfgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy und/oder C_1-C_4 -Alkylthio;

eine C_3-C_8 -Cycloalkyl- oder C_3-C_8 -Cycloalkenylgruppe, die ein Sauerstoff- oder Schwefelatom enthalten kann und ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C_1-C_4 -Alkyl, C_1-C_4 -Alkylthio, C_1-C_4 -Alkylcarbonyl, C_1-C_4 -Alkoxycarbonyl oder gegebenenfalls substituiertes Phenyl;

eine C_3 — C_6 -Alkenyl- oder C_3 — C_6 -Alkinylgruppe, welche ein bis fünf Halogenatome und/oder einen oder mehrere der folgenden Reste tragen kann:

 C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, Cyano, C_1-C_4 -Alkylcarbonyl, C_1-C_4 -Alkoxycarbonyl oder gegebenenfalls substituiertes Phenyl;

Phenyl oder Naphthyl, die durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Cyano, Hydroxy, Mercapto, Amino, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Halogenalkyl, $C_1 - C_4$ -Alkylthio, $C_1 - C_4$ -Alkylamino, Di- $(C_1 - C_4$ -Alkyl)amino, $C_1 - C_4$ -Alkylcarbonyl oder $C_1 - C_4$ -Alkoxycarbonyl;

ein fünf- oder sechsgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefeloder Sauerstoffatom, welcher einen oder mehrere der folgenden Reste tragen kann: Halogen, Nitro, Cyano, Hydroxy, Mercapto, Amino, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkylthio, C_1-C_4 -Alkylamino, Di- $(C_1-C_4$ -Alkyl)amino, C_1-C_4 -Alkylcarbonyl oder C_1-C_4 -Alkylcarbonyl;

oder R^4 und R^5 bilden zusammen mit dem benachbarten Kohlenstoffatom einen 3- bis 8-gliedrigen Ring, der ein Sauerstoff- oder Schwefelatom enthalten kann und einen bis drei der folgenden Reste tragen kann: Halogen, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Halogenalkyl, $C_1 - C_4$ -Alkoxy, $C_1 - C_4$ -Halogenalkoxy oder $C_1 - C_4$ -Alkylthio;

 R^5 Wasserstoff, $C_1 - C_4$ -Alkyl, $C_3 - C_6$ -Alkenyl, $C_3 - C_6$ -Alkinyl, $C_1 - C_4$ -Alkylcarbonyl, $C_1 - C_4$ -Alkoxycarbonyl, $C_1 - C_4$ -Halogenalkyl, $C_3 - C_6$ -Cycloalkyl, $C_1 - C_4$ -Alkoxyalkyl, $C_1 - C_4$ -Alkylthioalkyl oder gegebenenfalls substituiertes Phenyl, oder R^5 ist mit R^4 wie oben angegeben zu einem Ring verknüpft; Y Schwefel oder Sauerstoff oder eine Einfachbindung;

 R^6 eine $C_1 - C_8$ -Alkylgruppe, welche ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann:

 C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, Cyano, Hydroxy, C_1-C_4 -Alkylcarbonyl, C_1-C_4 -Alkoxycarbonyl, Phenyl, ein oder mehrfach durch Halogen, Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy,

C₁—C₄-Halogenalkoxy und/oder C₁—C₄-Alkylthio substituiertes Phenyl oder Phenoxy oder ein fünfgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann:

 C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy und/oder C_1-C_4 -Alkylthio; eine C_3-C_8 -Cycloalkyl- oder C_3-C_8 -Cycloalkenylgruppe, die ein Sauerstoff- oder Schwefelatom enthalten kann und ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Alkylcarbonyl, C_1-C_4 -Alkoxycarbonyl oder gegebenenfalls substituiertes Phenyl;

eine C₃-C₆-Alkenyl- oder C₃-C₆-Alkinylgruppe, welche ein bis fünf Halogenatome und/oder einen oder mehrere der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Cyano, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl oder gegebenenfalls substituiertes Phenyl;

Phenyl oder Naphthyl die durch einen oder mehrere der folgenden Perte substituierte sein kännen. Halogen

Phenyl oder Naphthyl, die durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Cyano, Hydroxy, Mercapto, Amino, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Halogenalkyl, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Alkylamino, $C_1 - C_4$ -Alkyl, oder $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Alkyl, oder $C_1 - C_4$ -Alkoxycarbonyl;

15 C₁-C₄-Alkoxycarbonyl;

5

10

20

25

30

35

40

50

55

60

ein fünf- oder sechsgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefeloder Sauerstoffatom, welcher einen oder mehrere der folgenden Reste tragen kann: Halogen, Nitro, Cyano, Hydroxy, Mercapto, Amino, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Halogenalkyl, $C_1 - C_4$ -Alkylthio, $C_1 - C_4$ -Alkylamino, Di- $(C_1 - C_4$ -Alkylamino, $C_1 - C_$

ein Rest - NR¹⁵R¹⁶, in dem R¹⁵ und R¹⁶, die gleich oder unterschiedlich sein können, bedeuten:

 C_1-C_4 -Alkyl, C_3-C_6 -Alkenyl, C_3-C_6 -Alkinyl, C_3-C_8 -Cycloalkyl, wobei diese Reste jeweils ein bis fünf Halogenatome und/oder ein bis zwei der folgenden Reste tragen können: C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Alkylcarbonyl, C_1-C_4 -Alkoxycarbonyl oder gegebenenfalls substituiertes Phenyl;

Phenyl, das durch einen oder mehrere der folgenden Reste substituiert sein kann: Halogen, Nitro, Cyano, Hydroxy, Mercapto, Amino, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Halogenalkyl, $C_1 - C_4$ -Alkoxy, $C_1 - C_4$ -Alkylthio, $C_1 - C_4$ -Alkylamino, $D_1 - C_4$ -Alkylamino, $D_1 - C_4$ -Alkylcarbonyl oder $C_1 - C_4$ -Alkylcarbonyl;

programme programme in the first war as

oder R¹⁵ und R¹⁶ bilden gemeinsam eine zu einem Ring geschlossene, optionell substituierte C₄—C₇-Alkylenkette oder gemeinsam eine zu einem Ring geschlossene, optionell substituierte C₃—C₆-Alkylenkette mit einem Heteroatom, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff; R⁶ ferner ein Rest OR¹⁷, worin R¹⁷ bedeutet:

Wasserstoff, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_3-C_6 -Alkenyl, C_3-C_6 -Alkinyl, C_3-C_6 -Cycloalkyl, Phenyl oder ein- oder mehrfach durch Halogen, Nitro, Cyano, Hydroxy, Mercapto, Amino, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkylamino, C_1-C_4 -Alkylamino, C_1-C_4 -Alkylamino, C_1-C_4 -Alkylamino, C_1-C_4 -Alkylamino, C_1-C_4 -Alkylcarbonyl oder C_1-C_4 -Alkoxycarbonyl substituiertes Phenyl.

2. Derivate von 3-Hydroxycarbonsäuren der Formel I, gemäß Anspruch 1, in der R für eine Gruppe

O || C-R¹

steht, wobei R1 die folgende Bedeutung hat:

a) Wasserstoff;

b) eine Succinylimidoxygruppe;

c) ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat, enthaltend zwei bis drei Stickstoffatome, welcher ein bis zwei Halogenatome und/oder ein bis zwei der folgenden Reste tragen kann: C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy und/oder C_1-C_4 -Alkylthio;

d) ein Rest $-(O)_m - NR^7R^8$,

in dem m für 0 oder 1 und R⁷ und R⁸, die gleich oder unterschiedlich sein können, die folgende Bedeutung haben:

Wasserstoff;

 C_1-C_4 -Alkyl, C_3-C_6 -Alkenyl, C_3-C_6 -Alkinyl, C_3-C_6 -Cycloalkyl, wobei diese Reste jeweils ein bis fünf Halogenatome und/oder ein bis zwei der folgenden Gruppen tragen können: C_1-C_4 -Alkoxy, C_3-C_6 -Alkenyloxy, C_3-C_6 -Alkinyloxy, C_1-C_4 -Alkylthio, C_3-C_6 -Alkenylthio, C_3-C_6 -Alkinyloxy, C_1-C_4 -Alkylcarbonyl, C_3-C_6 -Alkenyloxycarbonyl, C_3-C_6 -Alkinyloxycarbonyl, C_3-C_6 -Alkylamino, C_3-C_6 -Cycloalkyl, Phenyl, ein oder mehrfach durch Halogen, Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy oder C_1-C_4 -Alkylthio substituiertes Phenyl;

Phenyl, das durch einen oder mehrere der folgenden Reste substituiert sein kann: Halogen, Nitro, Cyano, C_1 — C_4 -Alkyl, C_1 — C_4 -Halogenalkyl, C_1 — C_4 -Alkoxy, C_1 — C_4 -Halogenalkoxy oder C_1 — C_4 -Alkylthio:

R⁷ und R⁸ gemeinsam eine zu einem Ring geschlossene, optionell substituierte C₄-C₇-Alkylenkette oder gemeinsam eine zu einem Ring geschlossene, optionell substituierte C₃-C₆-Alkylenkette mit

einem Heteroatom, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff; e) \mathbb{R}^1 ferner eine Gruppe

in der R^9 für C_1-C_4 -Alkyl, Phenyl, ein- oder mehrfach durch Halogen, Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy oder C_1-C_4 -Alkylthio substituiertes Phenyl, C_1-C_4 -Halogenalkyl, C_3-C_6 -Alkenyl oder C_3-C_6 -Alkinyl steht, p die Werte 1, 2, 3 oder 4 und k die Werte 0, 1 oder 2 annehmen;

5

30

35

40

45

50

f) einen Rest OR¹⁰, worin R¹⁰ bedeutet:

i) Wasserstoff, ein Alkalimetalikation, das Äquivalent eines Erdalkalimetalikations, das Ammoniumkation oder ein organisches Ammoniumion;

ii) eine C₃—C₈-Cycloalkylgruppe, welche ein bis drei C₁—C₄-Alkylreste tragen kann;

iii) eine C_1-C_8 -Alkylgruppe, welche ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, Cyano, C_1-C_4 -Alkylcarbonyl, C_3-C_8 -Cycloalkyl, C_1-C_4 -Alkoxycarbonyl, Phenyl, ein- oder mehrfach durch Halogen, Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy und/oder C_1-C_4 -Alkylthio substituiertes Phenyl oder Phenoxy;

iv) eine C_1-C_8 -Alkylgruppe, welche ein bis fünf Halogenatome tragen kann und einen der folgenden Reste trägt: ein 5-gliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome, oder ein 5-gliedriger Heteroaromat, enthaltend ein Stickstoffatom und ein Sauerstoff- oder Schwefelatom, welche ein bis vier Halogenatome und/oder ein bis zwei der folgenden Reste tragen können: Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy und/oder C_1-C_4 -Alkylthio;

v) eine C_2-C_6 -Alkylgruppe, welche in der 2-Position einen der folgenden Reste trägt: C_1-C_4 -Alkoxyimino, C_3-C_6 -Alkenyloxyimino, C_3-C_6 -Halogenalkenyloxyimino oder Benzyloxyimino; vi) eine C_3-C_6 -Alkenyl- oder eine C_3-C_6 -Alkinylgruppe, wobei diese Gruppen ihrerseits ein bis

fünf Halogenatome tragen können;

vii) ein Phenylrest, welcher ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste tragen kann: Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy und/oder C_1-C_4 -Alkylthio;

viii) ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome, welcher ein bis zwei Halogenatome und/oder ein bis zwei der folgenden Reste tragen kann: Nitro, Cyano, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Halogenalkyl, $C_1 - C_4$ -Alkoxy, $C_1 - C_4$ -Halogenalkoxy und/oder $C_1 - C_4$ -Alkylthio;

ix) R10 ferner eine Gruppe

$$-N = C < \frac{R^{11}}{R^{12}}$$

worin R¹¹ und R¹², die gleich oder verschieden sein können, bedeuten:

 $C_1 - C_8$ -Alkyl, $C_3 - C_6$ -Alkenyl, $C_3 - C_6$ -Alkinyl, $C_3 - C_8$ -Cycloalkyl, wobei die Reste einen $C_1 - C_4$ -Alkoxy-, $C_1 - C_4$ -Alkylthio- und/oder einen Phenylrest tragen können;

Phenyl, das durch einen oder mehrere der folgenden Reste substituiert sein kann:

Halogen, Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy oder C_1-C_4 -Alkylthio;

oder R^{11} und R^{12} bilden gemeinsam eine C_3-C_{12} -Alkylenkette, welche ein bis drei C_1-C_4 -Alkylgruppen tragen kann;

g) oder R¹ bildet einen Rest -NH-SO₂-R¹³, in dem R¹³ bedeutet:

 $C_1 - C_4$ -Alkyl, $C_3 - C_6$ -Alkenyl, $C_3 - C_6$ -Alkinyl, $C_3 - C_8$ -Cycloalkyl, wobei diese Reste einen $C_1 - C_4$ -Alkoxy-, $C_1 - C_4$ -Alkylthio- und/oder einen Phenylrest tragen können;

Phenyl, das durch einen oder mehrere der folgenden Reste substituiert sein kann: Halogen, Nitro, Cyano, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Halogenalkyl, $C_1 - C_4$ -Alkoxy, $C_1 - C_4$ -Halogenalkoxy oder $C_1 - C_4$ -Alkylthio

3. Carbonsäurederivate der Formel I gemäß den Ansprüchen 1 und 2, in der R² und R³ für Methoxy, X für CH, R¹ für einen Rest — OR¹⁰ stehen und R⁴, R⁵, R⁶ und Y die in Ansprüch 1 genannte Bedeutung haben.

4. Carbonsäurederivate der Formel I gemäß den Ansprüchen 1 und 2, in der R¹ für —OH, R² und R³ für Methoxy, X für CH, Y für Sauerstoff, R⁵ für Methyl stehen und R⁴ und R⁶ die in Anspruch 1 genannte Bedeutung haben.

5. Herbizides Mittel, enthaltend eine Verbindung der Formel I gemäß den Ansprüchen 1-4 und übliche inerte Zusatzstoffe.

6. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge einer Verbindung der Formel I gemäß den Ansprüchen 1-4 auf die Pflanzen oder deren Lebensraum einwirken läßt.

7. Mittel zur Beeinflussung des Pflanzenwachstums, enthaltend eine Verbindung der Formel I gemäß den Ansprüchen 1-4 und übliche inerte Zusatzstoffe.

8. Verfahren zur Regulierung des Pflanzenwachstums, dadurch gekennzeichnet, daß man eine bioregulatorisch wirksame Menge einer Verbindung der Formel I gemäß den Ansprüchen 1—4 auf die Pflanzen oder deren Lebensraum einwirken läßt.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.