Math 536 Homework 1 Spring 2016 Due: Friday, January 22

1. Suppose that H and N are subgroups of a group G and that N is normal in G. Prove that HN is a subgroup of G. (Here HN is the subset of G of all elements of the form $\{h \cdot n : h \in H, n \in N\}$). If H is also normal, then show that HN is a normal subgroup of G. (You may *not* use any results on page 94 of Dummit and Foote for this.)

1. Let G be a group, and let H_1, \ldots, H_k be subgroups of G. We say that G is an internal direct product of the subgroups H_i if the map

$$(h_1,\ldots,h_k)\mapsto h_1h_2\cdots h_k:H_1\times H_2\times\cdots\times H_k\to G$$

is an isomorphism of groups. This means that each element g of G can be written uniquely in the form $g = h_1 \cdot h_2 \cdot \dots \cdot h_k$, $h_i \in H_i$, and if $g = h_1 h_2 \cdot \dots \cdot h_k$ and $g' = h'_1 h'_2 \cdot \dots \cdot h'_k$, then

$$gg' = (h_1h'_1)(h_2h'_2)\dots(h_kh'_k).$$

Prove that a group G is a direct product of subgroups H_1, H_2 if and only if

- (a) $G = H_1 H_2$
- (b) $H_1 \cap H_2 = \{e\}$, and
- (c) every element of H_1 commutes with every element of H_2 .
- 8. Let N be a normal subgroup of G of index n. Show that if $g \in G$, then $g^n \in N$. Give an example to show that this may be false when N is not normal.
- \mathcal{A} . Suppose a group G contains a subgroup H in its center (hence H is normal) such that G/H is cyclic. Show that G is commutative.
- 5. Let G be a group of order 2p, p an odd prime. Show that G is cyclic or dihedral. (Recall that the dihedral group D_n of order 2n is given by generators and relations

$$D_n = \langle a, b : e = a^n = b^2 = baba \rangle.)$$

Math 536 Homework 2 Spring 2016 Due: Friday, January 29

- Y. Show that a finite group can't be equal to the union of the conjugates of a proper subgroup.
- 2. Let G be the group of invertible 4×4 matrices over the complex numbers, and let M be the set of all 4×4 complex matrices.
 - (a) Consider the action of $G \times G$ on M given by (g,h) acts on m by the matrix multiplication gmh^{-1} . Describe the orbits of this action.
 - (b) Consider the action of G on M by conjugation: g acts on m by the matrix multiplication gmg^{-1} . For what λ and μ are the two matrices below in the same orbit?

$$\begin{pmatrix}
0 & -1 & 0 & 0 \\
1 & 2 & 0 & 0 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 3
\end{pmatrix}
\quad
\begin{pmatrix}
1 & \mu & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \lambda & \mu \\
0 & 0 & 0 & 3
\end{pmatrix}$$

- Show that a group of order 2m, m odd, contains a subgroup of index 2. (Hint: You may use Cayley's theorem, Corollary 4, page 120 in Dummit and Foote, or Jacobson, Corollary on page 38.)
 - A. Let K be a conjugacy class of a finite group G contained in a normal subgroup H of G. Prove that K is a union of k conjugacy classes of equal size in H, where $k = (G: H \cdot C_G(x))$ for any $x \in K$.
 - 5. Let N be a normal subgroup of a group G. Suppose that there exists a subgroup K of G with $N \cap K = \{1\}$ and $G = N \cdot K$.

Any such K is called a *complement to* N *in* G.

- (a) Given G and N, is the complement K to N in G unique?
- (b) Is K unique up to conjugation in G? N_{\bullet}
- (c) Is K unique up to isomorphism?

Math 536 Homework 3 Spring 2016 Due: Friday, February 5

- ✓1. Construct all semidirect products of C_p by C_p for p prime. Here C_p denotes the cyclic group with p elements.
- \checkmark 2. Let H_8 be the quaternion group of order 8, i.e. the group with presentation

$$< a, b: a^4 = 1, a^2 = b^2, b^{-1}ab = a^{-1} > .$$

Show that H_8 is **not** a semidirect product of a group of order 4 by a group of order 2.

- 3. For each odd prime p construct a nonabelian group G of order p^3 and exponent p as a semidirect product.
- Let T be a group of order 12 which is generated by two elements s and t such that $s^6 = 1$ and $t^2 = s^3 = (st)^2$. Prove that such a group T exists by constructing it as a semidirect product of \mathbb{Z}_3 by \mathbb{Z}_4 .
 - 5. Find composition series for the following groups:
 - \checkmark (a) the quaternion group H_8 ;
 - $\sqrt{(b)}$ the dihedral group D_6 ; and
 - (c) $A_4 \times A_4$.

We say that a finite group is **solvable** if the group has a normal series for which each of the consecutive quotients is abelian.

 \checkmark 6. Show that every subgroup and every quotient group of a solvable group is solvable.

Math 536 Homework 4 Spring 2016 Due: Friday, February 12

V1. Let $\beta: B \to C$ be a surjective homomorphism of abelian groups. Show that if F is free abelian and $\alpha: F \to C$ is any homomorphism, then there exists a homomorphism $\gamma: F \to B$ making the diagram below commute, i.e. such that $\beta\gamma = \alpha$. (We say that F has the *projective property*.)

- **∨** 2. Use the previous exercise to deduce the following: If H is a subgroup of an abelian group G and G/H is free abelian, then H is a direct summand of G, that is there exists a subgroup K of G (with $K \cong G/H$) such that $G \cong H \oplus K$.
- $\sqrt{3}$. Suppose G is a finitely generated abelian group. Show that there exist finitely generated free abelian groups F_1, F_2 such that $G \cong F_1/F_2$.
- $\sqrt{4}$. Let G be the abelian group defined by generators x, y, and z and relations

$$15x + 3y = 0$$
$$3x + 7y + 4z = 0$$
$$18x + 14y + 8z = 0.$$

Express G as a direct product of two cyclic groups.

- \checkmark 5. Let G be the group \mathbb{Q}/\mathbb{Z} .
 - (a) Prove that every finitely generated subgroup of G is cyclic.
 - (b) Show that for every positive integer t, G has a unique cyclic subgroup of order t.

Math 536 Homework 5 Spring 2016 Due: Friday, February 26

- \nearrow Show that A_6 has no subgroup of order 72.
- 2. For which primes p and positive integers n is every p-Sylow subgroup of the symmetric group S_n commutative?
- 3. How many elements of order 7 must there be in a simple group of order 168?
- Suppose that a finite group G has only one Sylow p-subgroup for each $p \mid |G|$. Show that G is a direct product of its Sylow p-subgroups.
- Let H be a normal subgroup of a finite group G, and assume that |H| = p. Prove that H is contained in every p-Sylow subgroup of G.

Math 536 Homework 6 Spring 2016 Due: Friday, March 4

 $\sqrt{\mathcal{L}}$ Count the number of prime ideals in the ring

$$\mathbb{Z}[x,y]/(6,(x-2)^2,y^6)$$

and give an explicit set of generators for each. Which of these contain the class of x? (The whole ring is not considered a prime ideal.)

- Describe the maximal ideals \mathfrak{m} of the polynomial ring $\mathbb{Z}[x]$ in one variable over the integers that contain the integer 30 and the polynomial $x^2 + 1$. Give explicitly two generators for each such maximal ideal \mathfrak{m} , and prove that the ideals that you found are maximal. How many such maximal ideals are there?
 - ✓ ¾. Let R be a commutative ring with 1, and let $I \subseteq R$ be an ideal.
 - (a) The radical \sqrt{I} of I is defined to be the set

$$\sqrt{I} = \{ a \in R : a^n \in I \text{ for some } n > 0 \text{ (depending on } a) \}$$

Prove that \sqrt{I} is an ideal and that R/\sqrt{I} has no nonzero nilpotents. (An element $x \in R$ is nilpotent if there exists some positive integer m such that $x^m = 0$.)

- (b) Let $R = \mathbb{Z}$ and fix an integer $m \geq 2$. What is the radical $\sqrt{(m)}$ of the ideal generated by the integer m?
- (c) Let $R = \mathbb{Q}[x, y]$, the ring of polynomials in two variables with rational coefficients, and let $I = (x^2, y^5)$ be the ideal generated by x^2 and y^5 . Find \sqrt{I} .
- Assume that R is a domain, and let \mathfrak{p} be a prime ideal of R. Let $S := R \mathfrak{p}$. Show that S is a multiplicative subset of R. Let $R_{\mathfrak{p}} := S^{-1}R$. Show that the ring $R_{\mathfrak{p}}$ has a unique maximal ideal, consisting of all elements a/s with $a \in \mathfrak{p}$ and $s \notin \mathfrak{p}$. (A ring R which is commutative and has a unique maximal ideal is called a *local ring*.)
- \checkmark Let $f:A\to A'$ be a surjective homomorphism of rings (with identity), and assume that A is local, $A'\neq 0$. Show that A' is local.

Math 536 Homework 7 Spring 2016 Due: Friday, March 18

Let D be an integer ≥ 1 and let R be the set of all elements $a + b\sqrt{-D}$ with $a, b \in \mathbb{Z}$.

- \checkmark (a) Show that R is a ring.
- \mathcal{J} (b) Let $N: R \to \mathbb{Z}$ be the norm map, i.e. the map given by

$$N(a+b\sqrt{-D}) = (a+b\sqrt{-D})(a-b\sqrt{-D})$$

Show that for $u, v \in R$ we have N(uv) = N(u)N(v).

V(c) Show that $u \in R$ is a unit if and only if $N(u) = \pm 1$.

- $\sqrt{(d)}$ Show that if $D \ge 2$, then the only units in R are ± 1 .
- \checkmark (e) Show that $3, 2 + \sqrt{-5}, 2 \sqrt{-5}$ are irreducible elements in $\mathbb{Z}[\sqrt{-5}]$
- \checkmark (f) Use the above elements to prove that $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.
- $\sqrt{(g)}$ Are the elements $3, 2 + \sqrt{-5}, 2 \sqrt{-5}$ prime in the ring R?
- 2. Let R be the following subring of the complex numbers:

$$R = \{a + b \frac{(1 + \sqrt{-19})}{2} : a, b \in \mathbb{Z}\}.$$

Show that R is not a Euclidean domain. (*Hint:* First show that the only units of Rare ± 1 . Then, assuming by contradiction that R has a Euclidean function δ , let x be a nonzero nonunit of R minimizing δ and consider R/xR.)

 \mathscr{X} . Determine the irreducible elements of $\mathbb{Z}[i]$. In particular, determine which integers are irreducible in $\mathbb{Z}[i]$. (You may not use any results of Dummit and Foote, pages 289-291.)

 \mathcal{K} Show that $\mathbb{Z}[\sqrt{2}]$ is a Euclidean domain with respect to the function $\delta(m+n\sqrt{2})=0$

Math 536 Homework 8 Spring 2016 Due: Friday, March 25

(Euclid's algorithm for finding the gcd.) Let a_1, a_2 be nonzero elements of a Euclidean domain R. Define a_i and q_i recursively by $a_1 = q_1 \cdot a_2 + a_3, a_i = q_i a_{i+1} + a_{i+2}$ where $\delta(a_{i+2}) < \delta(a_{i+1})$. Show that there exists an n such that $a_n \neq 0$ but $a_{n+1} = 0$, and that $\gcd(a_1, a_2) = a_n$. Also use the equations to obtain an expression for the gcd in the form $xa_1 + ya_2$.

(b) Compute the gcd of the following two polynomials in $\mathbb{Q}[X]$:

$$f = X^3 + X^2 + X - 3$$
, $g = X^6 - X^5 + 6X^2 - 13X + 7$.

 \mathcal{Z} . Let R be a principal ideal domain, and let I, J be two nonzero ideals of R. Show that

$$IJ = I \cap J$$

if and only if I + J = R.

8. Let $R = \mathbb{Z}[\sqrt{-5}]$. On Homework 7 we proved that R is not a UFD. Let a = 6, and $b = 2 + 2\sqrt{-5}$. Show that the greatest common divisor of a and b does not exist.

 \mathcal{A} : (a) Is $X^6 + X^3 + 1$ irreducible in $\mathbb{Q}[X]$?

(b) Is $X^2 + Y^2 - 1$ irreducible in $\mathbb{Q}[X, Y]$?

Frove that if R is a domain which is not a field, then R[X] is not a PID.

8. Let F be a field, and f(x) an irreducible polynomial in F[x]. Show that f(x) is irreducible in F(t)[x], t an indeterminate. Here F(t) is the quotient field of F[t].

This, we have

Thu

R: integral domain.

Then RTX7:PID (=) R: field

Math 536 Homework 9 Spring 2016 Due: Friday, April 8

- \mathcal{X} . Suppose that R is a commutative ring with identity such that every submodule of every free R-module is free. Show that R is a PID.
- Let $R := \mathbb{Z}[X]$. Give an example of a finitely generated R-module that does not decompose into a finite direct sum of cyclic R-modules.
- \mathcal{X} . Let M be the module generated over $\mathbb{Q}[x]$ by the generators a, b satisfying the relations

$$(x-1)a + (x-1)b = 0$$

$$(x4 - 1)a + (x4 + x3 + x2 - x - 2)b = 0$$

Decompose M as a direct sum of cyclic $\mathbb{Q}[x]$ -modules.

- 4. Let \mathbb{F}_2 be the field with 2 elements and let $R = \mathbb{F}_2[X]$. List, up to isomorphism, all R-modules with 8 elements.
- Show that for a noncommutative ring R, we can have $R^m \cong R^n$ for distinct integers m, n, so free modules over noncommutative need not have a well-defined rank. (Hint: Let k be a field and let V be the polynomial ring in one variable over k. Then V is an infinite-dimensional vector space over k. Let R be the endomorphism ring of V, $R = \operatorname{End}_k(V)$, and show that R has the desired property.)

Math 536 Homework 10 Spring 2016 Due: Friday, April 15

- \checkmark 1. Let R be a domain containing a field k as a subring. Suppose that R is a finite dimensional vector space over k under the ring multiplication. Show that R is a field.
- $\sqrt{2}$. Construct a splitting field for X^5-2 over \mathbb{Q} . What is its degree over \mathbb{Q} ?
- (a) Let F be a finite field of characteristic p. Show that the cardinality of F, |F|, is a power of p, $|F| = q = p^m$ for some integer $m \ge 1$.
 - (b) Show that F is a splitting field for $f(X) = X^q X$.
 - (c) Show that any other finite field with $q = p^m$ elements is isomorphic to F.

Please do not use Dummit and Foote, pages 549-551, for this problem.

- Let E be a splitting field of $x^{35} 1$ over \mathbb{F}_8 . Determine the cardinality of E and make a diagram showing all subfields of E and the inclusions between them.
- Let f(X) be an irreducible polynomial in F[X], where F has characteristic p > 0. Show that f(X) can be written as $f(X) = g(X^{p^e})$ where g(X) is irreducible and separable. Deduce that every root of f(X) has the same multiplicity p^e in any splitting field.
- \vee 6. Let E, F be two finite extensions of a field k, contained in a larger field K. Show that

$$[EF:k] \leq [E:k][F:k].$$

Here EF denotes the *compositum* of E and F in K, which is the smallest subfield of K containing both E and F.

Math 536 Homework 11 Spring 2016 Due: Friday, April 22

- 1. Give explicit generators for the subfields of \mathbb{C} which are splitting fields of the following polynomials over \mathbb{Q} , and find the degree of each such splitting field.
 - (a) $(X^3-2)(X^2-2)$
 - (b) $X^2 + X + 1$
 - (c) $X^6 1$
 - (d) $X^6 8$
 - (e) $X^8 + 16$
- 2. Let p be a prime number, let $q = p^n$, and let F be a splitting field of the polynomial $f(X) = X^q X \in \mathbb{F}_p[X]$. Prove that F has exactly $q = p^n$ elements.

(This shows that for each integer n, there exists a field F with p^n elements. On the last homework we already showed that such a field, if it exists, is unique up to isomorphism.)

- 3. Let ζ be a primitive 7-th root of unity, say $\zeta = e^{2\pi i/7}$. In this exercise we will analyze the extension $\mathbb{Q}[\zeta]/\mathbb{Q}$.
 - (a) Show that the extension $\mathbb{Q}[\zeta]/\mathbb{Q}$ is a Galois extension. What is $Gal(\mathbb{Q}[\zeta]/\mathbb{Q})$?
 - (b) Show that the automorphism σ of \widehat{E} which sends ζ to ζ^3 generates $\operatorname{Gal}(\mathbb{Q}[\zeta]/\mathbb{Q})$.
 - (c) What is the subfield of $\mathbb{Q}[\zeta]$ that is fixed by the subgroup $\langle \sigma^2 \rangle$ of $Gal(\mathbb{Q}[\zeta]/\mathbb{Q})$?
- 4. Compute the Galois group of a splitting field for X^5-2 over $\mathbb Q.$
- 5. Let $K = \mathbb{Q}(\sqrt{a})$ where $a \in \mathbb{Z}$, a < 0. Show that K cannot be embedded in any extension L of \mathbb{Q} with $\operatorname{Gal}(L/\mathbb{Q})$ cyclic and of order divisible by 4.

Math 536 Homework 12 Spring 2016 Due: Friday, April 29

- 1. It is a fact that, if p is prime, then S_p is generated by a transposition and a p-cycle.
 - (a) Show that if a polynomial $f(x) \in \mathbb{Q}[x]$ is irreducible of prime degree p and has exactly p-2 real roots, then its Galois group is S_p . Use Sylow (or Canely).
 - (b) Find the Galois group G of $f(x) = x^5 6x + 3$ over Q. (Hints: a) Find a transposition in the Galois group. b) Use calculus to analyze the graph of f(x).
 - 2. What is the Galois group of the splitting field of each of the following polynomials?
 - (a) $X^3 X 1$ over \mathbb{Q} .
 - (b) $X^3 10$ over \mathbb{Q} .
 - (c) $X^3 10$ over $\mathbb{Q}(\sqrt{2})$.
 - (d) $X^3 10$ over $\mathbb{Q}(\sqrt{-3})$. C_3
 - (e) $X^3 X 1$ over $\mathbb{Q}(\sqrt{-23})$
 - 3. Let p be an odd prime, and let ζ be a primitive p-th root of unity in \mathbb{C} (for example, take $\zeta = e^{2\pi i/p}$). Let $E = \mathbb{Q}[\zeta]$, and let $G = \operatorname{Gal}(E/\mathbb{Q})$. Show that $G = (\mathbb{Z}/p\mathbb{Z})^*$. Let H be the subgroup of index 2 in G. Put $\alpha := \sum_{i \in H} \zeta^i$ and $\beta := \sum_{i \in G-H} \zeta^i$. Show:
 - \checkmark (a) α and β are fixed by H;

His unique since (Z/pH) * : cyclic.

 $\sqrt{(b)}$ if $\sigma \in G - H$, then $\sigma \alpha = \beta, \sigma \beta = \alpha$.

Use (a) and (b) to show that α and β are roots of the polynomial $X^2 + X + \alpha \beta \in \mathbb{Q}[X]$. Compute $\alpha\beta$ and show that the fixed field of H is $\mathbb{Q}[\sqrt{p}]$ when $p \equiv 1 \mod 4$ and $\mathbb{Z}[\sqrt{-p}]$ when $p \equiv 3 \mod 4$.

- 4. Let $M = \mathbb{Q}[\sqrt{2}, \sqrt{3}]$ and $E = M[\sqrt{(\sqrt{2}+2)(\sqrt{3}+3)}]$ (subfields of \mathbb{R}).
- $\sqrt{(a)}$ Show that M is Galois over \mathbb{Q} with Galois group the Klein 4-group $C_2 \times C_2$.
- (b) Show that E is Galois over $\mathbb Q$ with Galois group the quaternion group.

itij=0, some iett (=) - 1 is non-squere mod P.

Math 536 Spring 2016 Practice Problems

Prove that K is Galois over $\mathbb Q$ and determine its Galois group. Give explicit generators for all intermediate fields F with $\mathbb Q \subset F \subset K$.

You may use the fact that $(1 \pm \sqrt{-3})/2$ are the primitive sixth roots of unity.

- \checkmark 3. Let $f(x) = x^8 1$. Find the Galois group of f(x) over each of the following fields:
 - (a) The rational field Q. CzxCz
 - (b) The field $\mathbb{Q}(i)$. \mathcal{C}_{\geq}
 - (c) The field \mathbb{F}_3 of three elements. $\mathcal{C}_{\mbox{\cline}}$.
- \checkmark 4. Construct an extension field K of \mathbb{Q} such that K/\mathbb{Q} is Galois with Galois group the cyclic group of order 5.
- \checkmark 5. Suppose that $\alpha \in \mathbb{C}$ with $\alpha^n = a \in \mathbb{Q}$ and such that $\mathbb{Q}[\alpha] \supseteq \mathbb{Q}$ is Galois. Further suppose that F is the field containing \mathbb{Q} generated by all the roots of unity in $\mathbb{Q}[\alpha]$. Show that $Gal(\mathbb{Q}[\alpha]:F)$ is a cyclic group.
- ✓ 6. Let R denote the ring $\mathbb{Q}[x]$, and let N denote the R-module $R/(x^2+1)$. Further suppose that M and M' are finitely generated R-modules such that

$$M \oplus N \cong M' \oplus N$$
.

Prove that $M \cong M'$ as R-modules.

- Let K be a splitting field of $x^{48} 1$ over \mathbb{F}_9 , the field with 9 elements. Determine the cardinality of K and make a diagram showing all subfields of K and the inclusions between them. |K| = 8|.

 (b) How many roots does $(x^2 5)(x^3 7)$ have in K?
- ✓ 8. Let K be a field, and let L be an extension field of K. Let $u \in L$, and assume that the minimal polynomial of u over K is $x^n a$ for some $a \in K$. Let n = md for positive integers m, d.
 - \checkmark (a) Show that $[K(u^m):K]=d$.
 - \checkmark (b) What is the minimal polynomial of u^m over K? X^d .
 - (a) How many monic irreducible factors does $X^{255} 1 \in \mathbb{F}_2[X]$ have and what are their degrees? 35, 1 of deg 1, 1 of deg 2, 3 of deg 4, 30 of deg 8.

 (b) How many monic irreducible factors does $X^{255} 1 \in \mathbb{Q}[X]$ have and what are their degrees? 8 $\leftarrow X^{9} 1 = \pi \mathcal{F}_2(X)$

their degrees? $8. \leftarrow X^n = T \mathcal{L}_d(X)$ $|F_{24}| = |\phi(d)| = |\phi(d)|$ $|F_{32}| = |\phi(d)| = |\phi(d)|$ $|F_{32}| = |\phi(d)| = |\phi(d)|$