Exercices sur les suites Partie 2 2019/2020

Frédéric Junier

Lycée du Parc 1 Boulevard Anatole France 69006 Lyon

9 avril 2020

Plan

Exercices du manuel Barbazo

Table des matières

- Exercice 39 p. 33
- Exercice 40 p. 33
- Exercice 41 p. 33
- Exercice 42 p. 33
- Exercice 43 p. 33
- Exercice 44 p. 33
- Exercice 84 p. 41

Barbazo, exercice 39 p.33

- 39 1. Pour tout $n \in \mathbb{N}$, $u_{n+1} u_n = u_n + n + 3 u_n = n + 3 \ge 0$. On en déduit que pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n \ge 0$, donc la suite (u_n) est croissante.
- 2. Pour tout $n \in \mathbb{N}$, $v_{n+1} v_n = v_n(1 v_n) v_n = -v_n^2 \le 0$. On en déduit que pour tout $n \in \mathbb{N}$, $v_{n+1} v_n \le 0$, donc la suite (v_n) est décroissante.

Barbazo, exercice 40 p.33

- 40 1. Pour tout $n \in \mathbb{N}$, $u_{n+1} u_n = 2 4(n+1) (2 4n)$ = $-4 \le 0$. On en déduit que pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n \le 0$, donc la suite (u_n) est décroissante.
- 2. Pour tout $n \in \mathbb{N}$, $v_{n+1} v_n = 2(n+1)^2 + 3 (2n^2 + 3)$
- $=2n^2+4n+2+3-2n^2-3=4n+2 \ge 0.$

On en déduit que pour tout $n \in \mathbb{N}$, $v_{n+1} - v_n \ge 0$, donc la suite (v_n) est croissante.

- 3. Pour tout $n \in \mathbb{N}$, $w_{n+1} w_n = (n+1)^2 + 2(n+1) (n^2 + 2n)$ = $n^2 + 2n + 1 + 2n + 2 - n^2 - 2n = 2n + 3 \ge 0$. On en déduit que pour tout $n \in \mathbb{N}$, $w_{n+1} - w_n \ge 0$, donc la suite (w_n) est croissante.
- **4.** Pour tout $n \in \mathbb{N}$, $t_{n+1} t_n = 2^{n+1} + 3^{n+1} (2^n + 3^n)$
- $= 2 \times 2^{n} + 3 \times 3^{n} 2^{n} 3^{n} = 2^{n} (2 1) + 3^{n} (3 1)$
- $= 2^n + 2 \times 3^n \ge 0$. On en déduit que pour tout $n \in \mathbb{N}$, $t_{n+1} t_n \ge 0$, donc la suite (t_n) est croissante.

Barbazo, exercice 41 p.33

Pour tout entier naturel n, $u_{n+1} - u_n = (n+1)^2 - 8(n+1) + 2 - (n^2 - 8n + 2)$ $= n^2 + 2n + 1 - 8n - 8 + 2 - n^2 + 8n - 2 = 2n - 7$ Ainsi pour $n \le 3$, $u_{n+1} - u_n \le 0$ puis pour $n \ge 4$, $u_{n+1} - u_n \ge 0$. Donc la suite (u_n) est décroissante jusqu'au rang 4 puis croissante à partir du rang 4.

Barbazo, exercice 42 p.33

- **1.** La raison r = 0,6. r > 0, donc la suite (u_n) est croissante.
- **2.** La raison $r = \frac{2}{3}$. r > 0, donc la suite (v_n) est croissante.
- 3. La raison $r = 1 \sqrt{2}$. r < 0, donc la suite (w_n) est décroissante.
- **4.** La raison $r = 10^{-2}$. r > 0, donc la suite (t_n) est croissante.

Barbazo, exercice 43 p.33 Partie 1

- **1.** La suite (u_n) a pour raison q = 2 et pour premier terme $u_0 = 3$. q > 1 et $u_0 > 0$. La suite est donc croissante.
- **2.** La suite (v_n) a pour raison $q = \frac{4}{5}$ et pour premier terme $v_0 = -1$. 0 < q < 1 et $v_0 < 0$. La suite est donc croissante.

Barbazo, exercice 43 p.33 Partie 2

- 3. La suite (w_n) a pour raison $q = \frac{8}{3}$ et pour premier terme $w_0 = -\frac{2}{3}$. q > 1 et $w_0 < 0$. La suite est donc décroissante.
- **4.** La suite (t_n) a pour raison $q = 10^{-1}$ et pour premier terme $t_0 = 0.5$. 0 < q < 1 et $t_0 > 0$. La suite est donc décroissante.

Barbazo, exercice 44 p.33

le signe de $u_{n+1} - u_n$ ne dépend que du signe de q-1. Or $q-1>0 \Leftrightarrow q>1$. Donc, pour q>1, $u_{n+1}-u_n>0$ et pour 0< q<1, $u_{n+1}-u_n<0$. **2.** Pour q>1, $u_{n+1}-u_n>0 \Leftrightarrow u_{n+1}>u_n$. La suite (u_n) est croissante. Pour 0< q<1, $u_{n+1}-u_n<0 \Leftrightarrow u_{n+1}>u_n$. La suite (u_n) est décroissante.

41. $u_{n+1} - u_n = q^{n+1} - q^n = q \times q^n - q^n = q^n (q-1)$. $q^n > 0$,

Barbazo, exercice 84 p.41 Partie 1

84 1.
$$u_2 = 2 \times u_1 + 1 = 2 \times 1 + 1 = 3$$
.
 $u_3 = 2 \times u_2 + 1 = 2 \times 3 + 1 = 7$.

2.

3. a.
$$v_{n+1} = u_{n+1} + 1 = 2 \times u_n + 1 + 1 = 2 \times (v_n - 1) + 2$$

= $2v_n - 2 + 2 = 2v_n$.

Ainsi, pour tout entier naturel $n \ge 1$, $v_{n+1} = 2v_n$ donc la suite (v_n) est géométrique de raison 2 et de premier terme $v_1 = u_1 + 1 = 1 + 1 = 2$.

Barbazo, exercice 84 p.41 Partie 2

b. (v_n) est une suite géométrique de raison 2 et de premier terme $v_1=2$ donc pour tout entier nature! $n \ge 1$ on a : $v_n=2 \cdot 2^{n-1} = 2^n$. c. Comme pour tout entier nature! $n \ge 1$, on a : $v_n=u_n+1 \leftrightarrow u_n=v_n-1$. On en déduit que pour tout entier nature! $n,u_n=2^n-1$.

Barbazo, exercice 84 p.41 Partie 3

4.
$$u_{n+1} - u_n = 2^{n+1} - 1 - (2^n - 1) = 2^{n+1} - 1 - 2^n + 1$$

= $2^{n+1} - 2^n = 2 \times 2^n - 2^n = 2^n$.

Pour tout entier naturel $n \ge 1, 2^n > 0$. On en déduit que pour tout entier naturel $n \ge 1, u_{n+1} - u_n \ge 0$ soit $u_{n+1} \ge u_n$. La suite (u_n) est croissante.

5.

	A	В
1	n	Un
2	1	1
3	2	3
4	3	7
5	4	15
6	5	31
7	6	63
8	7	127
9	8	255
10	9	511
11	10	1023
12	11	2047
13	12	4095
14	13	8191
15	14	16383
16	15	32767
17	16	65535
18	17	131071
19	18	262143
20	19	524287
21	20	1048575

On conjecture que $\lim_{n\to+\infty} u_n = +\infty$.