Höhere Analysis I - Abung O1

Markus Pawellek - 144645

Aufgabe 1

Seien
$$X$$
 eine unendliche llenze und $k = \Im(X)$. Seien weiterhin $\mu: A \longrightarrow [0, \infty]$, $\mu(A) = \begin{cases} 0 & : A \text{ ist endlich} \\ \infty & : sonst \end{cases}$

$$\nu: A \longrightarrow [0, \infty], \nu(A) = \begin{cases} 0 & \text{: A ist abtablear} \\ \infty & \text{: sonst} \end{cases}$$

Dann sind u and v additiv.

Beweis:

Es seien
$$A_1,...,A_n$$
 \in A für $n \in \mathbb{N}$ gegeben und paarweise disjunkt. Dann gilt: $(A_1,...,A_n \text{ sind endlich}) \stackrel{(*)}{\Longleftrightarrow} (U_{j=1}^n A_j \text{ ist endlich})$

$$(*) = \lambda (((j=1)A_j)) = 0 = \sum_{j=1}^{n} 0 = \sum_{j=1}^{n} \mu(A_j)$$

Fall Uj=1 Aj ist nicht endlich:

$$= \mu(U_{j=1}^n A_j) = \infty$$

$$(**)$$
 es gibt j'e N , j' $\in N$, sodass $\mu(A_j) = \infty$

$$(\infty + \infty = \infty) \qquad \sum_{j=1}^{n} \mu(A_j) = \infty = \mu(U_{j=1}^n A_j)$$

=> u ist additiv

Weiterhin gilt: (Uj=1 Aj ist abzählbar) <=> (A,1..., An sınd abzöhlbar) (da Vereinigung von überabzählbaren Llengen sonst wieder überabzahlbar wäre)

Des Weiteren gilt:
$$(U_1^{\infty}, h_j)$$
 ist micht abzählbar)

 \iff (es gibt ein $j \in N, j \in h$, sodass A_j micht abzählbar ist)

Fall U_j^{∞}, h_j ist micht abzählbar:

 \implies $v(U_j^{\infty}, A_j^*) = \infty$
 \implies es gibt $j \in N, j \in N$, sodass $v(h_j^*) = \infty$
 $(\infty + \infty - \infty)$ $\sum_{j=1}^{n} v(A_j^*) = \infty = v(U_j^{\infty}, A_j^*)$
 \implies ist additiv

 p ist kein flaß.

Beweits: Sei $\times = N$ and $A = P(N)$. Sei nun eine Folge (A_n) in $A_n = \{n\}$ für alle $n \in N$. Dann gilt:

 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$ für alle $j \in N$
 $A_j \cap A_k = D$
 $A_j \cap A$

v ist ein Maß.

Beweis: Se' $(A_n)_{n \in \mathbb{N}}$ eine Folge in A, wobei alle A_n paarweise disjunkt sind. Fall alle A_n sind abzählbar:

eine abzählbare Vereinigung abzählbarer Mengen ist abzählbar (siehe Analysis I)

$$\longrightarrow$$
 UneN An ist abzählbar \Longrightarrow ν (UneN An) $=$ 0

 $=$ $\sum_{j=1}^{\infty} \nu(A_j)$ da $\nu(A_j) = 0$ für alle $j \in N$

Fall es gibt ein A_n , welches nicht abzählbar ist: $\Rightarrow U_{NEN} A_n$ kann nicht abzählbar sein $\Rightarrow v(U_{nEN} A_n) = \infty$ es gibt je N, sodass A_j nicht abzählbar ist $\Rightarrow v(A_j) = \infty$ $(\infty + \infty = \infty)$ $\sum_{n=1}^{\infty} v(A_n) = \infty = v(U_{nEN} A_n)$ $\Rightarrow v$ ist o-additiv $\Rightarrow ou\beta$ erdem ist O abzählbar $\Rightarrow v(O) = 0 \Rightarrow v$ ist $A_n > 0$

Aufgabe 2

Seien (X, \mathcal{L}) ein messbarer Raum und $f: X \longrightarrow \mathbb{R}$ beschrönkt. $(i) \Longrightarrow (ii):$ Sei f messbar. Aufgabe 4

Sei (X, A) ein messbarer Raum und u: A -> [0,00] erfülle

·) $\mu(A \cup B) = \mu(A) + \mu(B)$ für alle $A_1 B \in A$ mit $A_1 B = B$.

(i) => (ii): Sei u ein Maß. Sei Cha)nell eine Folge in A mit An C Anel für alle ne IXI.

 $B_1 := A_1$ Oann definiert man: Both := Ann An

Bn E A für alle NEIN (da alle An E & und danit auch Anta An E & gelten muss)

=) But Bu = 8 für alle min $\in \mathbb{N}$, $m \neq u$ (Hengen sind poorweise disjuntet] (indulctiv werden alle vorherigen Mengen ausgeschlossen)

=> Uj=1 Bj = Uj=1 Aj für alle nell => Unen Bn = Unen An

u(Uners An) = u(Uners 18n)

 $(o - additivitait) = \sum_{n=1}^{\infty} \mu(B_n) = \lim_{n \to \infty} \sum_{j=1}^{n} \mu(B_j)$

= $\lim_{n\to\infty} \sum_{j=1}^{n} \mu(A_{j} \setminus A_{j-1})$ (hier sei $A_{0} = \emptyset$)

 $\left(\begin{array}{c} (*) \mu(A_j \setminus A_{j-1}) + \mu(A_{j-1}) \\ - \mu(A_j) \end{array} \right)$ $=\lim_{n\to\infty} \sum_{j=1}^{n} \left[\mu(A_{j}^{i}) - \mu(A_{j-1}^{i}) \right]$

 $=\lim_{n\to\infty}\left(\sum_{j=1}^n\mu(A_j)-\sum_{j=1}^n\mu(A_{j-1})\right)$

 $=\lim_{n\to\infty}\left(\mu(A_n)-\mu(\emptyset)\right)=\lim_{n\to\infty}\mu(A_n)$ (Teleskopsumme)

(ii) => (i): es gelte: $\lim_{n\to\infty}\mu(A_n)=\mu(U_{n\in\mathbb{N}}A_n)$ für alle $A_n\in\mathcal{A}$ mit $A_n\in\mathcal{A}_{n+1}$ für alle $n\in\mathbb{N}$

Sei (Bn) eine Folge in A von paarweisen disjunkten Mengen, Dann definiert

A1:= B1 Anti = BATA U An = Until Bi

=> An E & für alle nEN und An C Anth für alle nEN

=> Unein Bn = Unein An

$$(Voraussefrung) = \mu(U_{nefN} A_{n})$$

$$(Voraussefrung) = \lim_{n \to \infty} \mu(A_{n})$$

$$(paarweise disjunlif) = \lim_{n \to \infty} \mu(U_{j=1} B_{j})$$

$$(*) \mu(AUB) = \mu(A) + \mu(B)$$

$$(*) \mu(A) = \mu(A) + \mu(B)$$

$$(*) \mu(A) = \mu(B)$$

$$(*) \mu(A) = \mu(B)$$

$$(*) \mu(B) = \mu(B)$$

=> (wegen $\mu(0) = 0$) μ ist en Ma/3.