IIIT-Bangalore, Mathematics for ML (GEN 512) Assignment Set 5

(Pseudoinverse and Linear Transformation)

- 1. Try the following problems from the Book (by Gilbert Strang, 4th Edition) Problem Set 7.3, Page 406-407-Problem nos.-1, 2, 4, 5, 6, 7, 8, 9, 15.
- 2. Let $T: V \to W$ be a linear transformation between the vector spaces V and W (over \mathbb{R}). Then prove prove the following properties:
 - (a) T is injective if and only if $KerT = \{0\}$.
 - (b) If $KerT = \{0\}$, then the images of a linearly independent set of vectors in V are linearly independent in W.
- 3. Prove that the mapping $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x,y,z) = (x+z,y+z), (x,y,z) \in \mathbb{R}^3$ is linear. Describe KerT and ImT and find their dimensions.
- 4. Prove that the linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x,y,z) = (x+y,y+z,z+x), $(x,y,z) \in \mathbb{R}^3$ is one-to-one and onto.
- 5. Determine the linear mapping $T : \mathbb{R}^3 \to \mathbb{R}^2$ which maps the basis vectors (1,0,0), (0,1,0) (0,0,1) of \mathbb{R}^3 to the vectors (1,1), (2,3), (-1,2) respectively. Find T(1,2,0).
- 6. A linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^2$ is defined by $T(x_1, x_2, x_2) = (3x_1 2x_2 + x_3, x_1 3x_2 2x_3), (x_1, x_2, x_3) \in \mathbb{R}^3$. Find the matrix of T relative to
 - (a) the ordered based (1,0,0), (0,1,0), (0,0,1) of \mathbb{R}^3 and (1,0), (0,1) of \mathbb{R}^2 .
 - (b) the ordered based (0,1,1), (1,0,1), (1,1,0) of \mathbb{R}^3 and (1,0), (0,1) of \mathbb{R}^2 .