13.5

Torsion of a curve
Tangential and Normal
Components of Acceleration

Recall:

Length of a curve
$$= \int_{a}^{b} |\mathbf{r}'(t)| dt$$

Arc length function
$$s(t) = \int_{a}^{t} |\mathbf{r}'(u)| du$$
 $\frac{ds}{dt} = |\mathbf{r}'(t)|$

Arc length parametrization $\mathbf{r}(s)$ with $|\mathbf{r}'(s)|=1$

Unit tangent vector
$$\mathbf{T} = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \mathbf{r}'(s)$$

Curvature:
$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \left| \mathbf{r}''(s) \right| = \frac{\left| \mathbf{T}'(t) \right|}{\left| \mathbf{r}'(t) \right|} = \frac{\left| \mathbf{r}'(t) \times \mathbf{r}''(t) \right|}{\left| \mathbf{r}'(t) \right|^3}$$

Arc length function $s(t) = \int |\mathbf{r}'(u)| du$ s measures distance traveled starting at t = a

$$\frac{ds}{dt} = |\mathbf{r}'(t)| \text{ measures speed of motion } \mathbf{r}(s) = \mathbf{r}(t(s)) \text{ "arc length parametrization"}$$

if s is arc length parameter, then
$$\frac{d\mathbf{r}}{ds} = \frac{d\mathbf{r}}{dt} \cdot \frac{dt}{ds} = \frac{\frac{d\mathbf{r}}{dt}}{\frac{ds}{dt}}$$
 hence $|\mathbf{r}'(s)| = \left| \frac{\frac{d\mathbf{r}}{dt}}{|\mathbf{r}'(t)|} \right| = \left| \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} \right| = 1$ "you travel with speed 1"

If s is arc length parameter, then
$$|\mathbf{r}'(s)|=1$$

Assume that t is a parameter with $|\mathbf{r}'(t)|=1$:

If your basepoint is
$$t = 0$$
, then $s(t) = \int_{0}^{t} |\mathbf{r}'(u)| du = \int_{0}^{t} 1 du = t$

So s = t, which means t is already the arclength parameter.

If I assume your basepoint is
$$t = a$$
, then $s(t) = \int_{-\infty}^{t} |\mathbf{r}'(u)| du = \int_{-\infty}^{t} 1 du = t - a$

t is still an arc length parameter, it just measures distance starting at a in either case, distance traveled from $s = \alpha$ to $s = \beta$ is simply $\beta - \alpha$

Examples:

- a) arc length parametrization of a straight line: $\mathbf{r}(s) = \mathbf{r}_0 + s\mathbf{v}$ with $|\mathbf{v}| = \mathbf{1}$
- b) arc length parametrization of a circle $x^2 + y^2 = r^2$: $\mathbf{r}(s) = \langle r\cos(\frac{s}{r}), r\sin(\frac{s}{r}) \rangle$ $0 \le s \le 2\pi r$

curvature at P > curvature at Q

Unit tangent vector
$$\mathbf{T} = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \mathbf{r}'(s)$$

$$\left| \kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \left| \mathbf{T}'(s) \right| \right| \qquad \left| \kappa = \left| \mathbf{r}''(s) \right| \right|$$

curvature measure how quickly we turn if we travel at speed 1

Frenet Frame:

$$\mathbf{T} = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} \qquad \kappa = \left| \frac{d\mathbf{T}}{ds} \right| \qquad \frac{d'\mathbf{\Gamma}}{ds} \quad \text{is also called the } curvature \ vector$$

Principal unit normal:
$$N = \frac{\frac{d\mathbf{I}}{ds}}{\left|\frac{d\mathbf{T}}{ds}\right|} = \frac{\frac{d\mathbf{I}}{dt}}{\left|\frac{d\mathbf{T}}{dt}\right|}$$
(N is only defined when $\kappa \neq 0$!)

since
$$\frac{d\mathbf{T}}{ds} = \frac{d\mathbf{T}}{dt} \cdot \frac{dt}{ds}$$

and $\frac{dt}{ds} > 0$ is a scalar

N is orthogonal to T

since
$$\mathbf{T} \cdot \mathbf{T} = 1$$
, we have $\mathbf{T} \cdot \mathbf{T}' = 0$ or $\mathbf{T} \cdot \mathbf{N} = 0$
a third vector is the **binormal** $\mathbf{B} = \mathbf{T} \times \mathbf{N}$

B is orthogonal to **T** and **N** and of unit length:
$$|\mathbf{B}| = |\mathbf{T}| |\mathbf{N}| \sin(\frac{\pi}{2}) = 1$$

Altogether, we have *Frenet frame* (or TNB frame) **T,N,B**

They are all of unit length and orthogonal to each other (like i, j, k)

they form a moving frame: http://en.wikipedia.org/wiki/Frenet_frame

Torsion:

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| \qquad \mathbf{N} = \frac{\frac{d\mathbf{T}}{ds}}{\left| \frac{d\mathbf{T}}{ds} \right|} \qquad = \frac{1}{\kappa} \frac{d\mathbf{T}}{ds} \qquad \text{or} \quad \frac{d\mathbf{T}}{ds} = \kappa \mathbf{N}$$

$$\mathbf{B} = \mathbf{T} \times \mathbf{N}$$

Claim:
$$\frac{d\mathbf{B}}{ds}$$
 is parallel to N:

$$\mathbf{B} \cdot \mathbf{B} = 1 \implies 2 \frac{d\mathbf{B}}{ds} \cdot \mathbf{B} = 0$$

$$\mathbf{B} \cdot \mathbf{T} = 0 \implies \mathbf{0} = \frac{d\mathbf{B}}{ds} \cdot \mathbf{T} + \mathbf{B} \cdot \frac{d\mathbf{T}}{ds} = \frac{d\mathbf{B}}{ds} \cdot \mathbf{T} + \mathbf{B} \cdot \kappa \mathbf{N} = \frac{d\mathbf{B}}{ds} \cdot \mathbf{T}$$

Since
$$\frac{d\mathbf{B}}{ds} \cdot \mathbf{B} = 0$$
 and $\frac{d\mathbf{B}}{ds} \cdot \mathbf{T} = 0$ we see $\frac{d\mathbf{B}}{ds}$ is a multiple of **N**

This multiple (up to sign) is called torsion:

$$\boxed{\frac{d\mathbf{B}}{ds} = -\tau \, \mathbf{N}} \qquad \mathbf{Or} \qquad \boxed{\tau = -\frac{d\mathbf{B}}{ds} \cdot \mathbf{N}}$$

 ${\bf B}$ is the normal vector to the plane spanned by ${\bf T}$ and ${\bf N}$

$$\frac{d\mathbf{B}}{ds}$$
 measure the "tilt" of this plane since $\frac{d\mathbf{B}}{ds} = -\tau \, \mathbf{N}$ we also have $\left| \frac{d\mathbf{B}}{ds} \right| = |\tau|$

 τ (up to sign) measures the magnitude of the tilt

Example: a circle of radius r: $\mathbf{r}(t) = \langle r\cos(t), r\sin(t), 0 \rangle$

arc length parametrization: $\mathbf{r}(s) = \langle r\cos(\frac{s}{r}), r\sin(\frac{s}{r}), 0 \rangle$

$$\mathbf{T} = \mathbf{r}'(s) = \langle -\sin(\frac{s}{r}), \cos(\frac{s}{r}), 0 \rangle \qquad \frac{d\mathbf{T}}{ds} = \langle -\frac{1}{r}\cos(\frac{s}{r}), -\frac{1}{r}\sin(\frac{s}{r}), 0 \rangle$$

$$\mathbf{N} = \frac{\frac{d\mathbf{T}}{ds}}{\left|\frac{d\mathbf{T}}{ds}\right|} = \langle -\cos(\frac{s}{r}), -\sin(\frac{s}{r}), 0 \rangle$$

$$K = \left|\frac{d\mathbf{T}}{ds}\right| = \frac{1}{r}$$

$$B = T \times N = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -\sin(\frac{s}{r}) & \cos(\frac{s}{r}) & 0 \\ -\cos(\frac{s}{r}) & -\sin(\frac{s}{r}) & 0 \end{vmatrix} = \left(\sin^2(\frac{s}{r}) + \cos^2(\frac{s}{r})\right)\mathbf{k} = \mathbf{k}$$

$$\tau = -\frac{d\mathbf{B}}{ds} \cdot \mathbf{N} = 0$$

for every plane curve $\mathbf{B} = \mathbf{T} \times \mathbf{N} = \mathbf{k}$ and torsion $\tau = 0$!

Example: Compute **T,N,B** of the circular helix: $\mathbf{r}(t) = \langle a\cos(t), a\sin(t), bt \rangle$

$$\mathbf{r}'(t) = \langle -a\sin(t), a\cos(t), b \rangle$$
 hence $\mathbf{T} = \frac{\langle -a\sin(t), a\cos(t), b \rangle}{\sqrt{a^2 + b^2}}$

$$\frac{d\mathbf{T}}{dt} = \frac{\langle -a\cos(t), -a\sin(t), 0\rangle}{\sqrt{a^2 + b^2}} \qquad \left| \frac{d\mathbf{T}}{dt} \right| = \frac{1}{\sqrt{a^2 + b^2}} \sqrt{\left(a^2\cos^2(t) + a^2\sin^2(t)\right)} = \frac{a}{\sqrt{a^2 + b^2}}$$

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{a}{\sqrt{a^2 + b^2}} \cdot \frac{1}{\sqrt{a^2 + b^2}}$$
 curvature $\kappa = \frac{a}{a^2 + b^2}$

principle unit normal
$$\mathbf{N} = \frac{\frac{d\mathbf{I}}{dt}}{\left|\frac{d\mathbf{T}}{dt}\right|} = \langle -\cos(t), -\sin(t), 0 \rangle$$

binormal
$$\mathbf{B} = \mathbf{T} \times \mathbf{N} = \frac{1}{\sqrt{a^2 + b^2}} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -a\sin(t) & a\cos(t) & b \\ -\cos(t) & -\sin(t) & 0 \end{vmatrix} = \frac{1}{\sqrt{a^2 + b^2}} (b\sin(t)\mathbf{i} - b\cos(t)\mathbf{j} + a\mathbf{k})$$

What is the torsion of the circular helix?

circular helix:
$$\mathbf{r}(t) = \langle a\cos(t), a\sin(t), bt \rangle$$

$$\mathbf{T} = \frac{\langle -a\sin(t), a\cos(t), b\rangle}{\sqrt{a^2 + b^2}} \qquad \mathbf{N} = \langle -\cos(t), -\sin(t), 0\rangle$$

$$\mathbf{N} = \langle -\cos(t), -\sin(t), 0 \rangle$$

$$\mathbf{B} = \frac{1}{\sqrt{a^2 + b^2}} \langle -b\sin(t), -b\cos(t), a \rangle \qquad \qquad \kappa = \frac{a}{a^2 + b^2}$$

$$\tau = -\frac{d\mathbf{B}}{ds} \cdot \mathbf{N}$$
 but t is not arc length parameter s!

we need a formula for the torsion in a general parameter t

$$\tau = \frac{\begin{vmatrix} \dot{x} & \dot{y} & \dot{z} \\ \vdots & \ddot{y} & \ddot{z} \\ \hline |\mathbf{v} \times \mathbf{a}|^2 \end{vmatrix}}{|\mathbf{v} \times \mathbf{a}|^2} = \frac{\mathbf{r}'(t) \cdot (\mathbf{r}''(t) \times \mathbf{r}'''(t))}{|\mathbf{r}'(t) \times \mathbf{r}''(t)|^2}$$
 a computation shows that for the helix we have:
$$\tau = \frac{b}{a^2 + b^2}$$

$$\tau = \frac{b}{a^2 + b^2}$$
 http://en.wikipedia.org/wiki/Frenet_frame

a computation shows

-0.5

$$\tau = \frac{b}{a^2 + b^2}$$

15

10

Decompose the acceleration vector $\mathbf{a} = \mathbf{r}''(t)$

use $\mathbf{v} = \mathbf{r}'$ and $\mathbf{a} = \mathbf{r}''$

$$\mathbf{a} = a_{\mathbf{T}}\mathbf{T} + a_{\mathbf{N}}\mathbf{N}$$

$$\mathbf{v} = \left| \mathbf{r}' \right| \mathbf{T} = \frac{ds}{dt} \mathbf{T}$$

$$\mathbf{v'} = \frac{d^2s}{dt^2}\mathbf{T} + \frac{ds}{dt}\mathbf{T'}$$

$$\Gamma + \frac{ds}{dt} \mathbf{T}$$

$$\mathbf{a} = \frac{d^2s}{dt^2}\mathbf{T} + \frac{ds}{dt}()$$

$$S + \frac{ds}{dt} \left(\kappa \frac{ds}{dt} \mathbf{N} \right)$$

$$\mathbf{a} = \frac{d^2s}{dt^2}\mathbf{T} + \frac{ds}{dt}\left(\kappa \frac{ds}{dt}\mathbf{N}\right)$$
$$\mathbf{a} = \frac{d^2s}{dt^2}\mathbf{T} + \kappa \left(\frac{ds}{dt}\right)^2\mathbf{N}$$

Recall:
$$|\mathbf{r}'| = \frac{ds}{dt}$$
 $\mathbf{T} = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$ $\mathbf{N}(t) = \frac{\mathbf{T}'}{|\mathbf{T}'|}$ $\kappa = \frac{|\mathbf{T}'|}{|\mathbf{r}'|}$

hence
$$\mathbf{T'} = |\mathbf{T'}| \mathbf{N} = \kappa |\mathbf{r'}| \mathbf{N} = \kappa \frac{ds}{dt} \mathbf{N}$$

$$a_{\mathbf{T}} = \frac{d^2 s}{dt^2} \qquad a_{\mathbf{N}} = \kappa \left(\frac{ds}{dt}\right)^2$$

$$a_{\mathbf{r}} = \frac{d}{dt}(|\mathbf{r}'|) \qquad a_{\mathbf{N}} = \kappa |\mathbf{r}'|^2$$

$$\kappa |\mathbf{r'}|^2$$

$$\mathbf{a} = a_{\mathbf{T}} \mathbf{T} + a_{\mathbf{N}} \mathbf{N}$$

tangential acceleration: $a_{\rm T} = \frac{d^2s}{dt^2} = \frac{d}{dt}(|\mathbf{r}'|)$

normal acceleration:
$$a_{N} = \kappa \left(\frac{ds}{dt}\right)^{2} = \kappa |\mathbf{r}'|^{2}$$

if a car travels along a curve, it feels an internal acceleration of $\frac{d^2s}{dt^2}$

and a force of magnitude $ma_{\mathbf{N}} = m\kappa |\mathbf{r}'|^2$ (centrifugal force)

large curvature (tight curve) and large speed² = problems!

if you travel at unit speed, then $a_T = 0$, and force $= m\kappa$

other formulas:

$$a_{\mathbf{T}} = \mathbf{a} \cdot \mathbf{T} = \frac{\mathbf{a} \cdot \mathbf{v}}{|\mathbf{v}|} = \frac{\mathbf{r}' \cdot \mathbf{r}''}{|\mathbf{r}'|} \qquad a_{\mathbf{N}} = \mathbf{a} \cdot \mathbf{N} = \frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|} = \frac{|\mathbf{r}' \times \mathbf{r}''|}{|\mathbf{r}'|} \quad \text{(try to show this....)}$$
also useful:
$$\mathbf{a} \cdot \mathbf{a} = a_{\mathbf{T}}^2 + a_{\mathbf{N}}^2 \qquad a_{\mathbf{N}} = \sqrt{|\mathbf{a}|^2 - a_{\mathbf{T}}^2}$$

Example: A car travels along a track of radius r with velocity a

$$a_{\mathbf{r}} = \frac{d}{dt}(|\mathbf{r}'|) = 0$$
 $a_{\mathbf{N}} = \kappa |\mathbf{r}'|^2 = \frac{1}{r}a^2$

13.6

Acceleration in Polar Coordinates

Newton's law of gravitation (1687):

$$\mathbf{F} = \frac{GmM}{|\mathbf{r}|^2} \frac{\mathbf{r}}{|\mathbf{r}|}$$

Inverse square law

r is the vector from the center of the sun to the planet

M is the mass of the sun

m is the mass of the planet

G is the gravitational constant

$$G = 6.674 \times 10^{-11} N \ m^2 kg^{-2} \ (from 1798)$$

$$\mathbf{F} = m\mathbf{a} \implies \mathbf{a} = \mathbf{r}'' = -\frac{GM}{|\mathbf{r}|^2} \frac{\mathbf{r}}{|\mathbf{r}|}$$

$$\frac{d}{dt} (\mathbf{r} \times \mathbf{r}') = \mathbf{r}' \times \mathbf{r}' + \mathbf{r} \times \mathbf{r}'' = \mathbf{r} \times \mathbf{r}'' = 0$$

since **r**" is parallel to **r** by Newton's law

hence $\mathbf{r} \times \mathbf{r}'$ is a constant vector \mathbf{C}

in particular $\mathbf{r} \cdot \mathbf{C} = 0$

 \Rightarrow the planet moves in a plane orthogonal to $\mathbb{C}!$