数值分析一理论作业一

- 1. 考虑和指区间为[1.5,3.5]的二谷法、以下问题中"区间"指二合区间。
 - (1) 彩水造循环磨时的区间宽度
 - Sol: 设第n太循环站区间宽度为[ln,un], 则 lo=1.5, lo=3.5, lo=3.
 - (2) 末极与区间中点的距离的上界。

Sol: $r \in [l_n, M_n]$, $\forall n$: $\sup_{x \in [l_n, l_n]} |r - \frac{l_n + l_n}{2}| = \frac{l_n - l_n}{2} = 2^{-n}$

2. 考虑初始区间为 [a_0,b_0] 的 = $a_0>0$. 证明: 是實法求得的根的相对误差不超过 ϵ . 只要要循环 $n > \frac{\log(b_0-a_0)-\log\epsilon-\log a_0}{\log 2}$ -1 次.

$$\frac{|r-r_n|}{r} = \frac{\sum^{-(n+1)}(b_0-a_0)}{r} = \frac{\sum^{-(n+1)}(b_0-a_0)}{a_0} \leq \varepsilon.$$

$$|r| = \frac{\sum^{-(n+1)}(b_0-a_0)}{a_0} \leq \varepsilon.$$

$$|r| = \frac{\log (b_0-a_0) - \log \varepsilon - \log a_0}{\log 2}$$

$$|r| = \frac{\log (b_0-a_0) - \log \varepsilon - \log a_0}{\log 2}$$

3. 对多项式方程 $P(x) = 4x^3 - 2x^2 + 3 = 0$, $x_0 = -1$, 进行 4 步 中 被 迭代, 并将结果 列 在 表格中.

Sol:	P(N)	$=4x^3-2x^2+3$, $P^1(x)=12x^2-4x$.			
	'n	n	Xn	PCXN	þ'(xn)
	8	10	1 -1	-3	16
		1	- 0. 8125	-0.465820	11.1719
	4]	2	-0.770804	-0.020138	10.2129
	1	3 /	-0.768832	-0.000044	10.1686
	1	4	-0.7688 > 8	-2×10-10	10.1685

4. 考虑牛顿活的一个爱神: Xn+1= Xn- f(xn) · 求 C和 s 使得 en+1= Cens. 其中 en 是第 n 步进代时牛顿汽的误差, s 是常数, C 可能依赖 Xn、f、f、f、

 $|X_{n+1}| = |X_n - \frac{f(x_n)}{f'(x_0)}| = |X_{n+1}| - |X_{n+1}| - |X_n - |X_n - |X_n| = |X_n - |X_n - |X_n| = |X_n - |X_n - |X_n - |X_n| = |X_n - |X_n - |X_n| = |X_n - |$

即变种牛顿进代注是一阶收敛的

55. $\chi \in (-\overline{3}, \overline{3})$ 时, 速代 $\chi_{n+1} = \tan^{-1} \chi_n$ 是否收敛?

PF: 参 $\chi \in (-\overline{3}, 0)$ 时 $\chi < \tan^{-1} \chi \in \chi_n$ の、 即連載 只有一个不动点 ひ.

当 $\chi_{\epsilon} (-\overline{3}, 0)$ 时 $\chi < \tan^{-1} \chi < 0$. 即 $\chi_n < \chi_{n+1} < 0$, ∀n.

中華调有界定理知 | inn χ_n 存在.

当 $\chi_{\epsilon} (0, \overline{3})$ 时 $\chi > \tan^{-1} \chi > 0$. 即 $\chi_n > \chi_{n+1} > 0$, ∀n.

中華调有界定理知 | inn χ_n 存在.

因此, 进代收敛.

6. 设 P>1. 求连续函数 $\chi_n = \overline{p} + \overline{p}$

7. 在第2题中, 若 Qo. < 0 < bo. 结论量会发生什么变化? 无论循环多少次,都无法保证相对误差. 因为 | V | 可任意小. lug₂ bo-Qo E|r| 可捷大. 事实上, 当根 Y=D时, 相对误差将无意义.