Saudi Arabia – Math Camp
Day 4 (Part 1) - Level 4
Geometry - Inversion

Instructor: Regis Barbosa

Theorem. (Feuerbach's theorem) The nine-point circle of triangle is tangent to the incircle and all three excircles.

More Problems

- 12. (IMO/1985) A circle with center O passes through points A and C and intersects the sides AB and BC of the triangle ABC at points K and N, respectively. The circumscribed circles of the triangles ABC and KBN intersect at two distinct points B and M. Prove that $\angle OMB = 90^{\circ}$.
- 13. (Cono Sur/2010) The incircle of triangle ABC touches sides BC, AC, and AB at D, E, and F respectively. Let ω_a , ω_b and ω_c be the circumcircles of triangles EAF, DBF, and DCE, respectively. The lines DE and DF cut ω_a at $E_a \neq E$ and $F_a \neq F$, respectively. Let r_A be the line E_aF_a . Let r_B and r_C be defined analogously. Show that the lines r_A , r_B , and r_C determine a triangle with its vertices on the sides of triangle ABC.
- 14. (Japan/2009) Let Γ be the circumcircle of a triangle ABC. A circle with center 0 touches to line segment BC at P and touches the arc BC of Γ which doesn't have A at Q. If $\angle BAO = \angle CAO$, then prove that $\angle PAO = \angle QAO$.
- 15. (IMO/2015) Let ABC be an acute triangle with AB > AC. Let Γ be its circumcircule, H its orthocenter and F the foot of the altitude from A. Let M be the midpoint of BC. Let Q be the point on Γ such that $\angle HQA = 90^\circ$, and let K be the point on Γ such that $\angle HKQ = 90^\circ$. Assume that the points A, B, C, K and Q are all different, and lie on Γ in this order.

Prove that the circumcircles of triangles KQH and FKM are tangent to each other.