Modéliser les systèmes asservis dans le but de prévoir leur comportement

Chapitre 1 - Stabilité des systèmes

Sciences Industrielles de

l'Ingénieur

Machine de rééducation SysReeduc

CCP PSI 2013

Savoirs et compétences :

Res2.C7: stabilité des SLCI: marges de stabilité (de gain et de phase)

Mise en situation

Éléments de modélisation

Question 1 À partir des équations proposées, déterminer les fonctions de transfert K_1 , K_2 , $H_3(p)$, $H_4(p)$, K_5 , K_6 , K_7 , K_8 et K_9 .

Correction

On a:

- $u_m(t) = e(t) + Ri(t) \Rightarrow U_m(p) = E(p) + RI(p)$ et $C_{M1}(p) = k_t I(p)$ donc $K_2 = \frac{k_t}{R}$;
- $E(p) = k_e \Omega_m(p)$ et donc $K_7 = k_e$;
- $(M+m)r\rho_1p\Omega_m(p) = \frac{C_{M1}(p)}{\rho_1r} F_p(p) \Leftrightarrow (M+m)r^2\rho_1^2p\Omega_m(p) = C_{M1}(p) \rho_1rF_p(p)$ et donc $K_9 = \rho_1r$ et $H_3(p) = \frac{1}{(M+m) r^2 \rho_1^2 p};$
- $H_4(p)$ permet d'obtenir une position à partir d'une vitesse. Il s'agit donc d'un intégrateur et $H_4(p) = \frac{1}{r}$;
- un codeur incrémental avec 1 émetteur-récepteur permet de détecter les fentes et les « non fentes » donc ici 1000 informations par tour. Avec un second émetteur, on double la résolution soit 2000 informations pour un tour soit $K_8 = \frac{2000}{2\pi}$;
 • en utilisant le réducteur et le poulie courroie, on a directement $K_5 = \rho_1$ et $K_6 = r$ (à convertir en mètres);
- enfin, K_1 convertit des mètres en incréments. X_c est la consigne que doit respectée X. Pour avoir un asservissement précis, il faut donc $\varepsilon = 0$ et $X = X_c$ soit $\varepsilon = 0 = K_1 X_C - K_8 \theta_m = K_1 X_C - K_8 \frac{X}{K_5 K_6}$. Au final, $K_1 = \frac{K_8}{K_5 K_c}.$

Question 2 Montrer que le schéma-blocs peut être mis sous la forme suivante. On exprimera A, B et D en fonction des paramètres du système r, ρ_1 , k_t , k_e , R, M, m et K_8 .

Correction

On montre
$$A = \frac{K_8}{k_e}$$
, $B = \frac{R(m+M)r^2\rho_1^2}{k_e k_t}$ et $D = \frac{r^2\rho_1^2 R}{K_8 k_t}$.

Correction proportionnelle

On suppose que $C(p) = K_c$.

Question 3 Exprimer ε_x en fonction des deux entrées F_p et X_c et des constantes A, B, D et K_c .

Correction

On a
$$\varepsilon_{x}(p) = X_{C}(p) - X(p) = X_{C}(p) - \left(\left(C(p)\varepsilon_{x}(p) - F(p)D\right) \frac{A}{p\left(Bp+1\right)}\right)$$

$$\Leftrightarrow \varepsilon_{x}(p) \left(1 + \frac{AC(p)}{p\left(Bp+1\right)}\right) = X_{C}(p) + \frac{AF(p)D}{p\left(Bp+1\right)}$$

$$\Leftrightarrow \varepsilon_{x}(p) \left(\frac{p\left(Bp+1\right) + AC(p)}{p\left(Bp+1\right)}\right) = X_{C}(p) + \frac{AF(p)D}{p\left(Bp+1\right)} \Leftrightarrow \varepsilon_{x}(p) = \frac{p\left(Bp+1\right)}{p\left(Bp+1\right) + AC(p)} X_{C}(p) + \frac{AF(p)D}{p\left(Bp+1\right) + AC(p)}$$

$$\Leftrightarrow \varepsilon_{x}(p) = \frac{p\left(Bp+1\right)}{p\left(Bp+1\right) + AK_{C}} X_{C}(p) + \frac{AD}{p\left(Bp+1\right) + AK_{C}} F(p)$$

Question 4 Tracer le diagramme de Bode de la FTBO du système pour $K_C = 1$ et donner les marges. Le cahier des charges est-il vérifié?

Question 5 Déterminer l'écart de position ε_x en réponse à deux échelons d'intensité F_0 pour la force du patient et X_0 pour le déplacement. Conclure quant au respect du cahier des charges.

Correction
$$\begin{aligned} &\text{On a}: \varepsilon_x = \lim_{p \to 0} p \varepsilon_x(p) = \lim_{p \to 0} p \left(\frac{p \left(Bp + 1 \right)}{p \left(Bp + 1 \right) + AK_C} \frac{X_0}{p} + \frac{AD}{p \left(Bp + 1 \right) + AK_C} \frac{F_p}{p} \right) \\ &= \lim_{p \to 0} \frac{p \left(Bp + 1 \right)}{p \left(Bp + 1 \right) + AK_C} X_0 + \frac{AD}{p \left(Bp + 1 \right) + AK_C} F_p \\ &= \frac{D}{K_C} F_p \\ \text{L'écart en position n'est donc pas nul.} \end{aligned}$$

Correction proportionnelle intégrale

On suppose maintenant que $C(p) = K_i \left(1 + \frac{1}{T_i p} \right)$

Question 6 Exprimer ε_x en fonction des deux entrées F_p et X_c et des constantes A, B, D et K_i .

Correction

$$\varepsilon_{x}(p) = \frac{p\left(Bp+1\right)}{p\left(Bp+1\right) + AK_{i}\left(1 + \frac{1}{T_{i}p}\right)} X_{C}(p) + \frac{AD}{p\left(Bp+1\right) + AK_{i}\left(1 + \frac{1}{T_{i}p}\right)} F(p)$$

Question 7 Déterminer l'écart de position ε_x en réponse à deux échelons d'intensité F_0 pour la force du patient et X_0 pour le déplacement. Conclure quant au respect du cahier des charges.

Correction

$$\begin{split} \varepsilon_{x} &= \lim_{p \to 0} p \left(\frac{p \left(Bp + 1 \right)}{p \left(Bp + 1 \right) + AK_{i} \left(1 + \frac{1}{T_{i}p} \right)} \frac{X_{0}}{p} + \frac{AD}{p \left(Bp + 1 \right) + AK_{i} \left(1 + \frac{1}{T_{i}p} \right)} \frac{F_{0}}{p} \right) \\ &= \lim_{p \to 0} \frac{p T_{i} p \left(Bp + 1 \right)}{p T_{i} p \left(Bp + 1 \right) + AK_{i} \left(T_{i}p + 1 \right)} X_{0} + \frac{AD T_{i} p}{T_{i} p p \left(Bp + 1 \right) + AK_{i} \left(T_{i}p + 1 \right)} F_{0} = 0. \end{split}$$

Question 8 Déterminer la fonction de transfert en boucle ouverte du système FTBO(p) = $\frac{X(p)}{\varepsilon_x(p)}$ en supposant que $F_p = 0$.

Correction
$$FTBO(p) = \frac{A}{p(Bp+1)} K_i \left(1 + \frac{1}{T_i p} \right) = \frac{A}{p(Bp+1)} K_i \frac{1 + T_i p}{T_i p}.$$

Question 9 Déterminer la valeur T_i permettant d'assurer la marge de phase pour la pulsation au gain unité souhaitée (pulsation pour laquelle le gain en décibel est nul).

Correction

On souhaite que pour $\omega = 50 \,\text{rad s}^{-1}$, $\varphi(\omega) = -135^{\circ}$.

$$\arg(\text{FTBO}(j\omega)) = \arg\left(\frac{A}{p(Bp+1)}K_i\frac{1+T_ip}{T_ip}\right) = -180 - \arg((Bp+1)) + \arg(1+T_ip)$$

= $-180 - \arctan B\omega + \arctan T_i\omega$ En $\omega = 50 \operatorname{rad s^{-1}}$ on a alors $-180 - \arctan 0.5 + \arctan 50 T_i = -135 \Leftrightarrow \arctan 50 T_i = -135 + 180 + \arctan 0.5 = 74$. D'où $T_i = 0.05 \operatorname{s}$.

Question 10 Déterminer K_i permettant d'assurer la pulsation au gain unité souhaitée.

Correction

On souhaite que $|FTBO(i\omega)| = 1$ pour $\omega = 50 \, \text{rad s}^{-1}$.

$$|\text{FTBO}(j\omega)| = \left| \frac{A}{p(Bp+1)} K_i \frac{1 + T_i p}{T_i p} \right| = A K_i \frac{1}{\omega \sqrt{B^2 \omega^2 + 1}} \frac{\sqrt{1 + T_i^2 \omega^2}}{T_i \omega} = \frac{A K_i}{T_i \omega^2} \frac{\sqrt{1 + T_i^2 \omega^2}}{\sqrt{B^2 \omega^2 + 1}}.$$

On a donc $K_i = \frac{T_i \omega^2 \sqrt{B^2 \omega^2 + 1}}{A \sqrt{1 + T_i^2 \omega^2}} = 0.0077 \text{ Vm}^{-1}.$

On donne sur le document réponse la réponse temporelle du système à une entrée de type échelon unitaire sur le déplacement ($F_p = 0$) ainsi que le diagramme de Bode de la FTBO.

Question 11 Conclure quant au respect du cahier des charges sur le reste des critères énoncés. Faire apparaître sur le document réponse les grandeurs mesurées.

Correction

• Ecart de position : nul ⇒ Exigence OK.

