

Inspire...Educate...Transform.

Supervised models

Time Series Forecasting

Dr. Anand Jayaraman anand.jayaraman@insofe.edu.in

May 6, 2017

Thanks to Dr.Sridhar Pappu for the material

I thought you guys were supposed to be working on your sales projections for Q3.

© 2012 LeadFormix Inc.

That's exactly what we're doing.

"Prediction is very difficult, especially if it's about the future."

--Niels Bohr, Nobel laureate in Physics

What is Time Series data?

 A sequence of data points in successive order, indexed by time.

$$y_t$$
, y_{t-1} , y_{t-2} , y_{t-3} , y_{t-4} , ...

Eg: Population of the country listed year-wise,
 Temperature in the city listed by the hour,
 Number of iPhones sold listed for each quarter

CSE 7202c

Forecasting

- Factors needed to forecast the next month's stock price of Tata Motors (\hat{y}_{t+1})
 - Current price (y_t)
 - Current Sales, Revenue and profit data (x_1)
 - Sales trend (x_2)
 - Level debt carried by the company (x_3)
 - Competition (x_4)
 - Import/export rules (x_5)
 - Interest rate environment (x_6)
 - US/INR exchange rate (x_7)
 - Tax rates (x_8)
 - Crack down on black money? (x_9)
 - Cost of steel? (x_{10})
 - Number of smart phones sold? (x_{11})

Forecasting

$$\hat{y}_{t+1} = g(t, x_1, x_2, x_3, ..., y_t, y_{t-1}, y_{t-2}, ...)$$

g might be some complex linear or nonlinear function.

Time series forecasting attempts to do same forecast just using the past data of y, without relying on any other external predictors (x_i) .

Typical Time Series

$$\hat{y}_{t+1} = f(t, y_t, y_{t-1}, y_{t-2} \dots)$$

f can be linear or nonlinear function

Why Time Series forecasting?

- Causal independent variables are
 - Unknown to us
 - Not available
 - Might not fit the data well
 - Difficult to forecast

MY HOBBY: EXTRAPOLATING

FORECASTING THROUGH TREND ANALYSIS

Regression with time

$$\hat{y}_{t+1} = f(t)$$

Regression on Time

Use when trend is the most pronounced

Seasonality

Regression Analysis – Linear fit

Quadratic Trend

Seasonal Regression Models

	value of			
Quarter	X_{3t}	X_{4t}	X_{5t}	
1	1	0	0	
2	0	1	0	
3	0	0	1	
4	0	0	0	

Value of

$$Y_t = \beta_0 + \beta_1 X_{1_t} + \beta_2 X_{2_t} + \beta_3 X_{3_t} + \beta_4 X_{4_t} + \beta_5 X_{5_t} + \varepsilon_t$$

where, $X_{1t} = t$ and $X_{2t} = t^2$.

Seasonal Regression Models

Quadratic fit with seasonality

Plotting the fitted data-points separately for each quarter, shows how R manages to do such a good fit. Its basically fitting a quadratic line for each quarter with a different intercept.

Births in NY

>

1958 27.132 24.924 28.963 26.589 27.931 28.009 29.229 28.759 28.405 27.945 25.912 26.619 1959 26.076 25.286 27.660 25.951 26.398 25.565 28.865 30.000 29.261 29.012 26.992 27.897

Seasonal Regression Models

Seasonal Regression Models - Births

31. 1	Data Editor					
File	Edit Help					
	births	time	var3	var4	var5	var6
1	26.663	1				
2	23.598	2				
3	26.931	3				
4	24.74	4				
5	25.806	5				
6	24.364	6				
7	24.477	7				
8	23.901	8				
9	23.175	9				
10	23.227	10				
11	21.672	11				
12	21.87	12				
13	21.439	13				
14	21.089	14				
15	23.709	15				
16	21.669	16				
17	21.752	17				
18	20.761	18				
19	23.479	19				

Seasonal Regression Models - Births

II.	■ Data Editor					
File	File Edit Help					
	births	time	seasonal	var4	var5	
1	26.663	1	1			
2	23.598	2	2			
3	26.931	3	3			
4	24.74	4	4			
5	25.806	5	5			
6	24.364	6	6			
7	24.477	7	7			
8	23.901	8	8			
9	23.175	9	9			
10	23.227	10	10			
11	21.672	11	11			
12	21.87	12	12			
13	21.439	13	1			
14	21.089	14	2			
15	23.709	15	3			
16	21.669	16	4			
17	21.752	17	5			
18	20.761	18	6			
19	23.479	19	7			

Another Simple Way of Incorporating Seasonality

Take the trend prediction and actual prediction.

 Depending on additive or multiplicative model compute the deviation and map it as seasonality effect for each prediction.

 Take averages of the seasonality value. Use this to make future predictions.

Case

		Time variable	
		(this is created)	Revenues (in
Year	Quarter		\$M)
2008		1	10.2
	II	2	12.4
	Ш	3	14.8
	IV	4	15
2009		5	11.2
	II	6	14.3
	Ш	7	18.4
	IV	8	18


```
Call:
                                  What is the Regression equation?
lm(formula = y \sim x)
                                  y = 10.0393 + 0.9440x
Residuals:
          1Q Median 3Q
   Min
-3.5595 -0.9384 0.4405 1.3265
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.0393 **
                         1.5531
                                6.464
                         0.3076
              0.9440
                                  3.069 0.02196 *
\mathbf{x}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.993 on 6 degrees of freedom
Multiple R-squared: 0.6109, Adjusted R-squared: 0.5461
```

F-statistic: 9.422 on 1 and 6 DF, p-value: 0.02196

http://www.insofe.edu.in

Seasonality: Multiplicative

Time	Observed values TSI* (assuming no impact of cyclicality)	Predicted values (per the regression) T*	SI* = TSI/T
1	10.2	10.983	0.929
2	12.4	11.927	1.040
3	14.8	12.871	1.150
4	15.0	13.815	1.086
5	11.2	14.759	0.759
6	14.3	15.703	0.911
7	18.4	16.647	1.105
8	18.0	17.591	1.023

^{*} T: Trend; S: Seasonal; I: Irregular

Quarterly Seasonality

Time	Average seasonality factor
Q1	$0.844 \left(= \frac{0.929 + 0.759}{2} \right)$
Q2	0.975
Q3	1.127
Q4	1.054

Time	Observed values	Predicted values	SI* = TSI/T
		(per the regression)	
	TSI* (assuming no		
	impact of cyclicality)	T*	
1	10.2	10.983	0.929
2	12.4	11.927	1.040
3	14.8	12.871	1.150
4	15.0	13.815	1.086
5	11.2	14.759	0.759
6	14.3	15.703	0.911
7	18.4	16.647	1.105
8	18.0	17.591	1.023

Computations

• Trend $Y_9 = 10.039 + 0.944(9) = 18.535$

 Corrected for seasonality and randomness: 18.535 * 0.844 = 15.643

Seasonality: Multiplicative

>	<pre>births\$SeasonalFactor <- births\$births/predict(lm1)</pre>
>	<pre>seasonalAdustFactor <- tapply(births\$SeasonalFactor,</pre>
+	births\$seasonal, mean)
>	<pre>birthspr <- predict(lm1)*rep(seasonalAdustFactor,14)</pre>
>	plot(births\$births, type="l")
>	<pre>points(births\$time, birthspr, type="l", col="red", lwd=2)</pre>

births [‡]	time ‡	seasonaf	SeasonalFactor [©]
26.663	1	1	1.2143042
23.598	2	2	1.0729008
26.931	3	3	1.2223736
24.740	4	4	1.1210359
25.806	5	5	1.1673742
24.364	6	6	1.1002941
24.477	7	7	1.1035459
23.901	8	8	1.0757752
23.175	9	9	1.0413570
23.227	10	10	1.0419543
21.672	11	11	0.9705802
21.870	12	12	0.9778208
21.439	13	1	0.9569611
21.089	14	2	0.9397800
23.709	15	3	1.0547879
21.669	16	4	0.9624398
21.752	17	5	0.9645349

Seasonality: Additive

Data Editor

File Edit Help

	births	time	seasonal	mae
1	26.663	1	1	4.70557
2	23.598	2	2	1.603422
3	26.931	3	3	4.899274
4	24.74	4	4	2.671125
5	25.806	5	5	3.699977
6	24.364	6	6	2.220829
7	24.477	7	7	2.29668
8	23.901	8	8	1.683532
9	23.175	9	9	0.920384
10	23.227	10	10	0.9352357
11	21.672	11	11	-0.6569126
12	21.87	12	12	-0.4960608
13	21.439	13	1	-0.9642091
14	21.089	14	2	-1.351357
15	23.709	15	3	1.231494
16	21.669	16	4	-0.8456539
17	21.752	17	5	-0.7998021
18	20.761	18	6	-1.82795
19	23.479	19	7	0.8529014

Additive or Multiplicative

Goodness of Fit

- MSE (Mean square error)
- MAE (Mean absolute error)
- RMSE (Root mean square error)

MAPE (Mean absolute percent error)

- NMSE (Normalized mean square error)
- NMAE (Normalized mean absolute error)
- NMAPE (Normalized mean absolute percent error)

Issues with Regressing on Time

- It is too much of a curve fit for a statistician to sleep well!
- If there is no trend or if seasonality and fluctuations are more important than trend, then the coefficients behave weirdly

TIME SERIES: AUTO REGRESSIVE METHODS

Auto Regressive Methods

$$\hat{y}_{t+1} = f(y_t, y_{t-1}, y_{t-2} \dots)$$

Components of time series

- We use different techniques for time series with different characterstics
 - Trend
 - Seasonal
 - Random stationary

• First we need to identify them

Trend, Seasonality and Randomness

Time Series Descriptive Statistics

 In descriptive statistics covered earlier (central tendencies, measures of variability, skewness, kurtosis, distributions, correlations, etc.), the order of observations in the data was of no consequence.

• In time series descriptive statistics, order of observations is of primary importance and so autocorrelations, etc. play a vital role in identifying the models and their characteristics.

 Autocorrelation is a metric that allows us to understand the strength of order in the time-series

AUTOCORRELATION AND PARTIAL AUTOCORRELATION

Autocorrelation (ACF) and Partial ACF (PACF)

- ACF: nth lag of ACF is the correlation between a day and n days before that.
- PACF: The same as ACF with all intermediate correlations removed. It is the $k_{\rm th}$ coefficient of the ordinary least squares regression.

$$[y_t] = \beta_0 + \sum_{i=1}^k \beta_i [y_{t-i}]$$
 where

 $[y_t]$ is the input time series, k is the lag order and β_i is the i_{th} coefficient of the linear multiple regression.

EXCEL ACTIVITY

Autocorrelation (ACF) and Partial ACF (PACF)

See the attached file 01Correlations.xlsx

40

Components of Time Series

- Trend
- Seasonality
- Random component

Seasonality

US Air Carrier Traffic – Revenue Passenger Miles ('000) RPM

ACF and PACF – Idealized Trend, Seasonality and Randomness

ACF and PACF – Idealized Trend

ACF and PACF – Idealized Trend

- ACF is a bar chart of correlation coefficients of the time series and its lags.
- PACF is a plot of the partial correlation coefficients of the time series and its lags.

ACF and PACF – Idealized Seasonality

The best place for students to learn Applied Engineering

http://www.insofe.edu.in

ACF and PACF – Idealized Seasonality

Series growth

ACF and PACF – Idealized Randomness

ACF and PACF – Idealized Randomness

Series growth

ACF and PACF – Idealized Trend, Seasonality and Randomness

Ideal Trend: Decreasing ACF and 1 or 2 lags of PACF

 Ideal Seasonality: Cyclicality in ACF and a few lags of PACF with some positive and some negative

 Ideal Random: A spike may or may not be present; even if present, magnitude will be small

ACF and PACF (Real-world): Decomposing Time Series into the 3 Components

ACF and PACF (Real-world): Decomposing Time Series into the 3 Components – Births in NY

Decomposition of additive time series

ACF and PACF (Real-world): Decomposing Time Series into the 3 Components – Births in NY

US Air Carrier Traffic – Revenue Passenger Miles ('000)

Revenue Passenger Miles: ACF and PACF

ACF and PACF (Real-world): Decomposing Time Series into the 3 Components – Revenue Passenger Miles (RPM)

Decomposition of additive time series

Stationary and Non-Stationary

Stationary data has constant statistical properties –
 mean, variance, autocorrelation, etc. – over time

If the data is stationary, forecasting is easier!

Differencing to convert non-stationary to stationary

EXCEL ACTIVITY

Removing Trend from Data

ACF and PACF of Stationary and Non-Stationary

Price of GE stock is highly correlated with the previous day's value.

ACF and PACF of Stationary and Non-Stationary

Daily changes in GE stock price are essentially random.

61

ACF and PACF of Stationary and Non-Stationary

 Non-stationary series have an ACF that remains significant for half a dozen or more lags, rather than quickly declining to zero.

 You must difference such a series until it is stationary before you can identify the process.

Stationary Model: Moving Averages

Stationary Model: Case 1 – Simple Moving Averages

		2.91304		2.68182		2.49206
14	13	1	12.5	1.5	14.666667	0.66667
13	12	1	15.5	2.5	15	2
12	19	7	16.5	4.5	15.666667	3.66667
19	14	5	14	5	14	5
14	14	0	14	0	15.333333	1.33333
14	14	0	16	2	16.666667	2.66667
14	18	4	18	4	17.666667	3.66667
18	18	0	17.5	0.5	17.333333	0.66667
18	17	1	17	1	14.666667	3.33333
17	17	0	13.5	3.5	15.666667	1.33333
17	10	7	15	2	16	1
10	20	10	19	9	19.333333	9.33333
20	18	2	19	1	19.333333	0.66667
18	20	2	20	2	19	1
20	20	0	18.5	1.5	17.333333	2.66667
20	17	3	16	4	15.333333	4.66667
17	15	2	14.5	2.5	15.666667	1.33333
15	14	1	16	1	15	0
14	18	4	15.5	1.5	15.666667	1.66667
18	13	5	14.5	3.5	16.333333	1.66667
13	16	3	18	5	17	4
16	20	4	17.5	1.5		
20	15	5				
15						
products sold						
Number of	SMA (K=1)	Error	SMA (K=2)	Error	SMA (K=3)	Error

Only decision point is K

Stationary Model: Case 2 – Weighted Moving Averages

$$\widehat{Y}_{t+1} = w_1 Y_t + w_2 Y_{t-1} + \dots + w_k Y_{t-k+1}$$

 Typically we choose a time period of moving average and weights are chosen such that the error is minimized

Stationary Model: Case 2 – Weighted Moving Averages

Number of products sold	WMA (K=1)	Error	WMA (K=2)	Error	WMA (K=3)	Error
15						
20	15	5				
16	20	4	18.3333333	2.33333333		
13	16	3	17.3333333	4.33333333	17.1666667	4.16666667
18	13	5	14	4	15.1666667	2.83333333
14	18	4	16.3333333	2.33333333	16	2
15	14	1	15.3333333	0.33333333	15.1666667	0.16666667
17	15	2	14.6666667	2.33333333	15.1666667	1.83333333
20	17	3	16.3333333	3.66666667	15.8333333	4.16666667
20	20	0	19	1	18.1666667	1.83333333
18	20	2	20	2	19.5	1.5
20	18	2	18.6666667	1.33333333	19	1
10	20	10	19.3333333	9.33333333	19.3333333	9.33333333
17	10	7	13.3333333	3.66666667	14.6666667	2.33333333
17	17	0	14.6666667	2.33333333	15.1666667	1.83333333
18	17	1	17	1	15.8333333	2.16666667
18	18	0	17.6666667	0.33333333	17.5	0.5
14	18	4	18	4	17.8333333	3.83333333
14	14	0	15.3333333	1.33333333	16	2
14	14	0	14	0	14.6666667	0.66666667
19	14	5	14	5	14	5
12	19	7	17.3333333	5.33333333	16.5	4.5
13	12	1	14.3333333	1.33333333	14.6666667	1.66666667
14	13	1	12.6666667	1.33333333	13.6666667	0.33333333
		2.91304348		2.66666667		2.5555556

SMA and WMA – Revenue Passenger Miles

> MAPE-SMA 4.093731 > MAPE-WMA 2.729154

Stationary Model: Case 3 – Exponential Weighted Moving Averages or Exponential Smoothing

Averaging over long periods dampens fluctuations, removing not only the noise but also trend and seasonality.

Moving averages over short recent periods maintains trend and seasonality but determining an optimum number for periods is tricky, even when using metrics like MAE. If averaged over too few periods, irregularities continue to remain and if averaged over long periods, dampening again becomes a problem.

Exponential smoothing **retains all older periods** while giving a greater weight to more recent periods (hence not a MOVING average).

Caution: It doesn't make any one method superior for all situations.

Stationary Model: Case 3 – Exponential Weighted Moving Averages or Exponential Smoothing

$$\widehat{Y}_{t+1} = \widehat{Y}_t + \alpha (Y_t - \widehat{Y}_t)$$

Above equation indicates that the predicted value for time period t+1 (\hat{Y}_{t+1}) is equal to the predicted value for the previous period (\hat{Y}_t) plus an adjustment for the error made in predicting the previous period's value ($\alpha(Y_t - \hat{Y}_t)$).

The parameter α can assume any value between 0 and 1 (0 $\leq \alpha \leq$ 1).

Exponential Smoothing in Other Ways

$$\hat{Y}_{t+1} = \hat{Y}_t + \alpha (Y_t - \hat{Y}_t)$$
 can be rewritten variously as

$$= \alpha Y_t + (1 - \alpha)\hat{Y}_t$$

$$= Y_t - (1 - \alpha)(Y_t - \hat{Y}_t)$$

$$= \alpha Y_t + \alpha (1 - \alpha)Y_{t-1} + \alpha (1 - \alpha)^2 Y_{t-2} + \dots + \alpha (1 - \alpha)^n Y_{t-n} + \dots$$

Exponential Smoothing

$$\widehat{Y}_{t+1} = \widehat{Y}_t + \alpha (Y_t - \widehat{Y}_t) \qquad \alpha = \frac{2}{N+2}$$

- Forecasting at time t+1 requires both the forecasted value and the True Value at time t
- So if you want to forecast more than 1 time period into the future, the best you can do is to use the last available value
- All future predictions are same! This is in accordance with <u>stationary</u> assumption.

Exponential Smoothing

	Α	В	С	C D E		F	G	
1	Numbe	EMA (K=1)	Error	EMA (K=2)	Error	EMA (K=3)	Error	
2	15							
3	20	=A2*1	=ABS(B3-A3)	=15				
4	16	=A3*\$K\$2+B3*\$L\$2	=ABS(B4-A4)	=A3*\$K\$3+D3*\$L\$3	=ABS(A4-D4)	=AVERAGE(A2:A3)		
5	13	=A4*\$K\$2+B4*\$L\$2	=ABS(B5-A5)	=A4*\$K\$3+D4*\$L\$3	=ABS(A5-D5)	=A4*\$K\$4+F4*\$L\$4	=ABS(A5-F5)	
6	18	=A5*\$K\$2+B5*\$L\$2	=ABS(B6-A6)	=A5*\$K\$3+D5*\$L\$3	=ABS(A6-D6)	=A5*\$K\$4+F5*\$L\$4	=ABS(A6-F6)	
7	14	=A6*\$K\$2+B6*\$L\$2	=ABS(B7-A7)	=A6*\$K\$3+D6*\$L\$3	=ABS(A7-D7)	=A6*\$K\$4+F6*\$L\$4	=ABS(A7-F7)	
8	15	=A7*\$K\$2+B7*\$L\$2	=ABS(B8-A8)	=A7*\$K\$3+D7*\$L\$3	=ABS(A8-D8)	=A7*\$K\$4+F7*\$L\$4	=ABS(A8-F8)	
9	17	=A8*\$K\$2+B8*\$L\$2	=ABS(B9-A9)	=A8*\$K\$3+D8*\$L\$3	=ABS(A9-D9)	=A8*\$K\$4+F8*\$L\$4	=ABS(A9-F9)	
10	20	=A9*\$K\$2+B9*\$L\$2	=ABS(B10-A10)	=A9*\$K\$3+D9*\$L\$3	=ABS(A10-D10)	=A9*\$K\$4+F9*\$L\$4	=ABS(A10-F10)	
11	20	=A10*\$K\$2+B10*\$L\$2	=ABS(B11-A11)	=A10*\$K\$3+D10*\$L\$3	=ABS(A11-D11)	=A10*\$K\$4+F10*\$L\$4	=ABS(A11-F11)	
12	18	=A11*\$K\$2+B11*\$L\$2	=ABS(B12-A12)	=A11*\$K\$3+D11*\$L\$3	=ABS(A12-D12)	=A11*\$K\$4+F11*\$L\$4	=ABS(A12-F12)	
13	20	=A12*\$K\$2+B12*\$L\$2	=ABS(B13-A13)	=A12*\$K\$3+D12*\$L\$3	=ABS(A13-D13)	=A12*\$K\$4+F12*\$L\$4	=ABS(A13-F13)	
14	10	=A13*\$K\$2+B13*\$L\$2	=ABS(B14-A14)	=A13*\$K\$3+D13*\$L\$3	=ABS(A14-D14)	=A13*\$K\$4+F13*\$L\$4	=ABS(A14-F14)	
15	17	=A14*\$K\$2+B14*\$L\$2	=ABS(B15-A15)	=A14*\$K\$3+D14*\$L\$3	=ABS(A15-D15)	=A14*\$K\$4+F14*\$L\$4	=ABS(A15-F15)	
16	17	=A15*\$K\$2+B15*\$L\$2	=ABS(B16-A16)	=A15*\$K\$3+D15*\$L\$3	=ABS(A16-D16)	=A15*\$K\$4+F15*\$L\$4	=ABS(A16-F16)	
17	18	=A16*\$K\$2+B16*\$L\$2	=ABS(B17-A17)	=A16*\$K\$3+D16*\$L\$3	=ABS(A17-D17)	=A16*\$K\$4+F16*\$L\$4	=ABS(A17-F17)	
18	18	=A17*\$K\$2+B17*\$L\$2	=ABS(B18-A18)	=A17*\$K\$3+D17*\$L\$3	=ABS(A18-D18)	=A17*\$K\$4+F17*\$L\$4	=ABS(A18-F18)	
19	14	=A18*\$K\$2+B18*\$L\$2	=ABS(B19-A19)	=A18*\$K\$3+D18*\$L\$3	=ABS(A19-D19)	=A18*\$K\$4+F18*\$L\$4	=ABS(A19-F19)	
20	14	=A19*\$K\$2+B19*\$L\$2	=ABS(B20-A20)	=A19*\$K\$3+D19*\$L\$3	=ABS(A20-D20)	=A19*\$K\$4+F19*\$L\$4	=ABS(A20-F20)	
21	14	=A20*\$K\$2+B20*\$L\$2	=ABS(B21-A21)	=A20*\$K\$3+D20*\$L\$3	=ABS(A21-D21)	=A20*\$K\$4+F20*\$L\$4	=ABS(A21-F21)	
22	19	=A21*\$K\$2+B21*\$L\$2	=ABS(B22-A22)	=A21*\$K\$3+D21*\$L\$3	=ABS(A22-D22)	=A21*\$K\$4+F21*\$L\$4	=ABS(A22-F22)	
23	12	=A22*\$K\$2+B22*\$L\$2	=ABS(B23-A23)	=A22*\$K\$3+D22*\$L\$3	=ABS(A23-D23)	=A22*\$K\$4+F22*\$L\$4	=ABS(A23-F23)	
24	13	=A23*\$K\$2+B23*\$L\$2	=ABS(B24-A24)	=A23*\$K\$3+D23*\$L\$3	=ABS(A24-D24)	=A23*\$K\$4+F23*\$L\$4	=ABS(A24-F24)	
25	14	=A24*\$K\$2+B24*\$L\$2	=ABS(B25-A25)	=A24*\$K\$3+D24*\$L\$3	=ABS(A25-D25)	=A24*\$K\$4+F24*\$L\$4	=ABS(A25-F25)	
26			=AVERAGE(C3:C25)		=AVERAGE(E3:E25)		=AVERAGE(G3:G25)	

	J	K	L			
k	(2/(K+1)	1-[2/(K+1)]			
1	L	1	=1-K2			
2	2	=2/(J3+1)	=1-K3			
3	3	=2/(J4+1)	=1-K4			
4	1	=2/(J5+1)	=1-K5			

$$\hat{Y}_{t+1} = \alpha Y_t + (1 - \alpha)\hat{Y}_t$$

Exponential Smoothing

	Α	В	С	D	Е	F	G	Н	1
1	Number of	EMA (K=1)	Error	EMA (K=2)	Error	EMA (K=3)	Error	EMA (K=4)	Error
2	15								
3	20	15	5	15					
4	16	20	4	18.3333333	2.33333	17.5			
5	13	16	3	16.7777778	3.77778	16.75	3.75	17	
6	18	13	5	14.2592593	3.74074	14.875	3.125	15.4	2.6
7	14	18	4	16.7530864	2.75309	16.4375	2.4375	16.44	2.44
8	15	14	1	14.9176955	0.0823	15.21875	0.21875	15.464	0.464
9	17	15	2	14.9725652	2.02743	15.109375	1.890625	15.2784	1.7216
10	20	17	3	16.3241884	3.67581	16.054688	3.945313	15.96704	4.03296
11	20	20	0	18.7747295	1.22527	18.027344	1.972656	17.580224	2.41978
12	18	20	2	19.5915765	1.59158	19.013672	1.013672	18.548134	0.54813
13	20	18	2	18.5305255	1.46947	18.506836	1.493164	18.328881	1.67112
14	10	20	10	19.5101752	9.51018	19.253418	9.253418	18.997328	8.99733
15	17	10	7	13.1700584	3.82994	14.626709	2.373291	15.398397	1.6016
16	17	17	0	15.7233528	1.27665	15.813354	1.186646	16.039038	0.96096
17	18	17	1	16.5744509	1.42555	16.406677	1.593323	16.423423	1.57658
18	18	18	0	17.524817	0.47518	17.203339	0.796661	17.054054	0.94595
19	14	18	4	17.8416057	3.84161	17.601669	3.601669	17.432432	3.43243
20	14	14	0	15.2805352	1.28054	15.800835	1.800835	16.059459	2.05946
21	14	14	0	14.4268451	0.42685	14.900417	0.900417	15.235676	1.23568
22	19	14	5	14.1422817	4.85772	14.450209	4.549791	14.741405	4.25859
23	12	19	7	17.3807606	5.38076	16.725104	4.725104	16.444843	4.44484
24	13	12	1	13.7935869	0.79359	14.362552	1.362552	14.666906	1.66691
25	14	13	1	13.264529	0.73547	13.681276	0.318724	14.000144	0.00014
26			2.913043		2.56867		2.49091		2.3539

$$\widehat{Y}_{t+1} = \widehat{Y}_t + \alpha (Y_t - \widehat{Y}_t)$$

$$\alpha = \frac{2}{K+1}$$

SMA, WMA and Exponential Smoothing – RPM

> MAPESMA 4.093731 > MAPEWMA 2.729154 > MAPEEMA 2.541979

ADDING TREND AND SEASONALITY TO MOVING AVERAGE PROCESSES

Holt-Winters Method

- This method separates the forecast into 3 components Base Level + Trend + Seasonal
- It updates each of the level using a Exponential smoothing with a different smoothing factor.

 The algorithm computes the best possible smoothing factors based on the given data and does subsequent predictions using fitted smoothing constants.

Holt-Winters Method

Additive Seasonality

$$\hat{Y}_t = E_{t-1} + T_{t-1} + S_{t-p}$$

$$\widehat{Y}_{t+n} = E_t + nT_t + S_{t+n-p}$$

Multiplicative Seasonality

$$\hat{Y}_t = (E_{t-1} + T_{t-1})S_{t-p}$$

$$\widehat{Y}_{t+n} = (E_t + nT_t)S_{t+n-p}$$

The 3 smoothing equations are:

$$E_t = \alpha (Y_t - S_{t-p}) + (1 - \alpha)(E_{t-1} + T_{t-1})$$

$$T_t = \beta (E_t - E_{t-1}) + (1 - \beta) T_{t-1}$$

$$S_t = \gamma (Y_t - E_t) + (1 - \gamma) S_{t-p}$$

$$E_t = \alpha \frac{Y_t}{S_{t-p}} + (1 - \alpha)(E_{t-1} + T_{t-1})$$

$$T_t = \beta (E_t - E_{t-1}) + (1 - \beta) T_{t-1}$$

$$S_t = \gamma \frac{Y_t}{E_t} + (1 - \gamma) S_{t-p}$$

Holt-Winters Method

- 3 components Trend (T), Seasonality(S) and Base Level/Expectation(E).
- 3 weights smoothing parameters are used to update components at each period.
- Initial values for Base Level/Expectation and trend components are obtained using linear regression on time.
- Initial values for seasonal component are obtained from a dummy variable regression using de-trended data.
- In the Expectation equation, the series is seasonally adjusted by subtracting the seasonal component.

Holt-Winters Additive Seasonal Model

SSE = 103627

Holt-Winters Multiplicative Seasonal Model

SSE = 49816

Holt-Winters Method: Only Randomness

Holt-Winters filtering

birthsforecast\$SSE [1] 281.8759

85

Holt-Winters Method: All Components

Holt-Winters filtering

> birthsforecast\$SSE [1] 90.94058

86

CSE 7202c

Holt-Winters Method: All Components

```
Holt-Winters exponential smoothing with trend and additive seasonal component.
call:
HoltWinters(x = birthstimeseries)
Smoothing parameters:
 alpha: 0.4823655
 beta: 0.02988495
 gamma: 0.563186
Coefficients:
           [,1]
    28.04366357
     0.04199921
b
   -0.78546221
s2
   -2.19944507
s3
     0.87813012
s4
    -0.65164728
s 5
     0.63427267
56
     0.21182821
     2.23177191
s7
58
     2.17167733
59
     1.52077678
s10 1.16900861
s11 -0.97500043
s12 -0.18636055
> birthsforecast$fitted
             xhat
                     level
                                   trend
                                               season
Jan 1947 23.13579 23.81055 -0.1567618007 -0.51798958
Fab 1047 31 03000 33 03531
                            A 101771006A
```


Holt-Winters Method: Forecasting with No Trend and Seasonality

Forecasts from HoltWinters

Holt-Winters Method: Forecasting

Forecasts from HoltWinters

Residual Plots are useful

```
> resids <- birthstimeseries- birthsforecast$fitted[,1]
> plot(resids)
> pacf(resids)
> |
```

Series resids

If the residuals are random and have no auto-correlation, then it means all useful information has been extracted. If the residuals show auto-correlation, it means more extractable information exists in the residual.

AR, MA AND ARIMA MODELS

AR(p) models

Auto-regressive model of order p

$$\hat{y}_t = \alpha + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \dots + \beta_p y_{t-p}$$

• We find the best value of parameters (β_1 , β_2 ,...) that minimize the errors in forecast of \hat{y}_t .

• The order of the model p is determined based on the number beyond which PACF terms are zero.

Moving Average or MA(q) models

- Model attempts to predict future values using past error in predictions $\varepsilon_1 = \hat{y}_1 y_1$
- So MA(2) model is

$$\hat{y}_t = \mu + \phi_1 \varepsilon_{t-1} + \phi_2 \varepsilon_{t-2}$$

Where, μ is the average value of the time series

- Again, the parameters (ϕ_1, ϕ_2) are determined so that prediction error is minimized.
- The number of terms, q, is determined from the ACF plot. Its the maximum lag beyond which the ACF is 0

ARMA(p,q) model

- Combines both AR(p) and MA(q) models
- For eg: a ARMA(2,1) model is

$$\hat{y}_t = \alpha + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \phi_1 \varepsilon_{t-1}$$

ARIMA(p,d,q) Model

- p is the number of autoregressive terms (a linear regression of the current value of the series against one or more prior values of the series)
 - Maximum lag beyond which PACF is 0
- d is the number of non-seasonal differences (order of the differencing) used to make the time series stationary
- q is the number of past prediction error terms used for the future forecasts.

Using ARIMA to forecast

Using ARIMA to forecast

Let us see what the forecast looks like if we use Arima(3,1,0) model

Forecasts from ARIMA(3,1,0)

Model Selection

- The number of parameters (p,d,q) needed to fit, depends on the dataset
- There are techniques that automate model selection

 auto.Arima command in R picks the best p,d & q parameters for ARIMA(p,d,q)

Auto.Arima: Annual Flow in River Nile

Auto.Arima: Annual Flow in River Nile

```
> # Fit auto.arima to the first 96 points
> fitNile <- auto.arima(Nile[1:96])</pre>
> fitNile
Series: Nile[1:96]
ARIMA(1,1,1)
Coefficients:
         ar1
                  ma1
      0.2389
              -0.8711
s.e. 0.1214
               0.0585
sigma^2 estimated as 20372:
                              log likelihood=-605.59
              AICc=1217.44
                              BIC=1224.84
AIC=1217.17
> #Now we predict last 4 points using the fit
> plot(forecast(fitNile,h=4))
> lines(97:100,Nile[97:100],col="red")
```

Forecasts from ARIMA(1,1,1)

100

Model Identification

- Before Automated functions were available, one used to use ACF plots to determine the best value of (p,d,q) for a given dataset
- Box–Jenkins Methodology: Model identification and model selection
 - Make sure variables are stationary. Difference as necessary to get a constant mean and transformations to get constant variance.
 - Check for seasonality: Decays and spikes at regular intervals in ACF plots.
- Parameter estimation
 - Compute coefficients that best fit the selected model.
- Model checking
 - Check if residuals are independent of each other and constant in mean and variance over time (white noise).

Model Selection

- Check ACF, PACF
- Identify important lag periods
- Create a data frame (table)
 with these past lag values as
 independent variables and
 value to be predicted as
 dependent variable
- Perform autoregression (AR models)
- To incorporate randomness, use MA

SHAPE	INDICATED MODEL			
Exponential, decaying to zero	Autoregressive model. Use the partial autocorrelation plot to identify the order of the autoregressive model.			
Alternating positive and negative, decaying to zero	Autoregressive model. Use the partial autocorrelation plot to help identify the order.			
One or more spikes, rest are essentially zero	Moving average model, order identified by where plot becomes zero.			
Decay, starting after a few lags	Mixed autoregressive and moving average model.			
All zero or close to zero	Data is essentially random.			
High values at fixed intervals	Include seasonal autoregressive term.			
No decay to zero	Series is not stationary.			

- Non-seasonal ARIMA models are denoted ARIMA(p,d,q)
- Seasonal ARIMA (SARIMA) models are denoted ARIMA(p,d,q)(P,D,Q)_m, where m refers to the number of periods in each season and (P,D,Q) refer to the autoregressive, differencing and moving average terms of the seasonal part of the ARIMA model.

Birth Timeseries: Stationary?

Differencing once vs twice

Seasonal ARIMA Model

```
Series: birthstimeseries
ARIMA(2,1,2)(1,1,1)[12]
Coefficients:
               ar2
                        ma1 ma2
        ar1
                                      sar1
                                              sma1
     0.6539 -0.4540 -0.7255 0.2532 -0.2427 -0.8451
s.e. 0.3004 0.2429 0.3228 0.2879 0.0985
                                            0.0995
sigma^2 estimated as 0.3918: log likelihood=-157.45
AIC=328.91 AICc=329.67 BIC=350.21
```


Seasonal ARIMA Model - Forecast

Forecasts from ARIMA(2,1,2)(1,1,1)[12]

Time Series Model Building Using ARIMA

108

Time Series Model Building Using ARIMA

A nice summary of rules for identifying ARIMA models

http://people.duke.edu/~rnau/arimrule.htm

Time Series Model Building Using ARIMA - RPM

Time Series Model Building Using ARIMA - RPM Auto ARIMA

```
Series: milestimeseries
ARIMA(1,0,1)(0,1,1)[12] with drift
Coefficients:
                                   drift
                 ma1
                         sma1
        ar1
     0.9078 -0.2093 -0.7266 110280.44
     0.0364
              0.0885 0.0682
                                31856.26
s.e.
sigma^2 estimated as 3.901e+12: log likelihood=-2994.93
AIC=5999.86
             AICc=6000.19
                            BIC=6016.04
```


Time Series Model Building Using ARIMA -

RPM Residuals

$$Q^* = n(n+2) \sum_{k=1}^{h} \frac{r_k^2}{n-k}$$

h is the maximum lag being considered n is the # of observations r_k is the autocorrelation

If residuals are white noise (purely random), then Q^* has a χ^2 distribution

Series milestimeseries\$residuals

Box-Ljung test

data: milestimeseries\$residuals
X-squared = 15.288, df = 20, p-value = 0.7597

Time Series Model Building Using ARIMA - RPM Forecast

Forecasts from ARIMA(1,0,1)(0,1,1)[12] with drift

Forecast using Holt-Winters - RPM

Forecasts from HoltWinters

Caution: Forecasting is Risky!

"Prediction is very difficult, especially if it's about the future."

--Niels Bohr, Nobel laureate in Physics

Resources

https://www.otexts.org/fpp

An good open online book on Forecasting methods and practices

- http://a-little-book-of-r-for-timeseries.readthedocs.io/en/latest/src/timeseries.html A short condensed summary on time-series
- https://www.analyticsvidhya.com/blog/2015/12/completetutorial-time-series-modeling/ A short tutorial on using ARIMA models

