Importing Libraries

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing Datasets

In [2]:

```
df=pd.read_csv("2003.csv")
df
```

Out[2]:

0 0	2003- 03-01 01:00:00	NaN									
			1.72	NaN	NaN	NaN	73.900002	316.299988	NaN	10.550000	55
1 0	2003- 03-01 1:00:00	NaN	1.45	NaN	NaN	0.26	72.110001	250.000000	0.73	6.720000	52.
2 0	2003- 03-01 01:00:00	NaN	1.57	NaN	NaN	NaN	80.559998	224.199997	NaN	21.049999	63.:
3 0	2003- 03-01 01:00:00	NaN	2.45	NaN	NaN	NaN	78.370003	450.399994	NaN	4.220000	67.
4 0	2003- 03-01 01:00:00	NaN	3.26	NaN	NaN	NaN	96.250000	479.100006	NaN	8.460000	95.
243979 0	2003- 10-01 0:00:00	0.20	0.16	2.01	3.17	0.02	31.799999	32.299999	1.68	34.049999	7.:
243980 0	2003- 10-01 0:00:00	0.32	0.08	0.36	0.72	NaN	10.450000	14.760000	1.00	34.610001	7.
243981 0	2003- 10-01 0:00:00	NaN	NaN	NaN	NaN	0.07	34.639999	50.810001	NaN	32.160000	16.
243982 0	2003- 10-01 0:00:00	NaN	NaN	NaN	NaN	0.07	32.580002	41.020000	NaN	NaN	13.
243983 0	2003- 10-01 0:00:00	1.00	0.29	2.15	6.41	0.07	37.150002	56.849998	2.28	21.480000	12.
243984 rows × 16 columns											
	1 decentions to establish									•	

Data Cleaning and Data Preprocessing

In [3]:

df=df.dropna()

In [4]:

```
df.columns
```

```
Out[4]:
```

In [5]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 33010 entries, 5 to 243983
Data columns (total 16 columns):
             Non-Null Count Dtype
    Column
    -----
             -----
---
0
    date
             33010 non-null object
 1
    BEN
             33010 non-null float64
 2
    CO
             33010 non-null float64
 3
    EBE
             33010 non-null float64
 4
    MXY
             33010 non-null float64
 5
             33010 non-null float64
    NMHC
 6
    NO_2
             33010 non-null float64
 7
    NOx
             33010 non-null float64
 8
    OXY
             33010 non-null float64
 9
    0 3
             33010 non-null float64
 10
    PM10
             33010 non-null float64
 11
    PXY
             33010 non-null float64
 12
    S0_2
             33010 non-null float64
 13
    TCH
             33010 non-null float64
 14
             33010 non-null float64
    TOL
15 station 33010 non-null int64
dtypes: float64(14), int64(1), object(1)
memory usage: 4.3+ MB
```

In [6]:

```
data=df[['CO' ,'station']]
data
```

Out[6]:

	СО	station		
5	1.94	28079006		
23	1.27	28079024		
27	1.79	28079099		
33	1.47	28079006		
51	1.29	28079024		
243955	0.41	28079099		
243957	0.60	28079035		
243961	0.82	28079006		
243979	0.16	28079024		
243983	0.29	28079099		

33010 rows × 2 columns

Line chart

In [7]:

```
data.plot.line(subplots=True)
```

Out[7]:

array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

```
In [8]:
```

```
data.plot.line()
```

Out[8]:

<AxesSubplot:>

Bar chart

```
In [9]:
```

```
b=data[0:50]
```

In [10]:

```
b.plot.bar()
```

Out[10]:

<AxesSubplot:>

Histogram

In [11]:

data.plot.hist()

Out[11]:

<AxesSubplot:ylabel='Frequency'>

Area chart

In [12]:

data.plot.area()

Out[12]:

<AxesSubplot:>

Box chart

```
In [13]:
```

```
data.plot.box()
```

Out[13]:

<AxesSubplot:>

Pie chart

In [14]:

```
b.plot.pie(y='station' )
```

<AxesSubplot:ylabel='station'>

Scatter chart

In [15]:

```
data.plot.scatter(x='CO' ,y='station')
```

Out[15]:

<AxesSubplot:xlabel='CO', ylabel='station'>

In [16]:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 33010 entries, 5 to 243983
Data columns (total 16 columns):
              Non-Null Count Dtype
 #
     Column
0
     date
              33010 non-null
                               object
 1
     BEN
              33010 non-null
                               float64
 2
     CO
              33010 non-null
                               float64
 3
     EBE
              33010 non-null
                               float64
 4
     MXY
              33010 non-null
                               float64
 5
     NMHC
              33010 non-null
                               float64
 6
              33010 non-null
                               float64
     NO_2
 7
     NOx
              33010 non-null
                               float64
 8
     0XY
              33010 non-null
                               float64
 9
     0_3
              33010 non-null
                               float64
 10
     PM10
              33010 non-null
                               float64
 11
     PXY
              33010 non-null
                               float64
 12
     SO 2
              33010 non-null
                               float64
 13
     TCH
              33010 non-null
                               float64
```

```
In [17]:
```

```
df.describe()
```

Out[17]:

	BEN	СО	EBE	MXY	NMHC	NO_2
count	33010.000000	33010.000000	33010.000000	33010.000000	33010.000000	33010.000000
mean	2.192633	0.759868	2.639726	5.838414	0.137177	57.328049
std	2.064160	0.545999	2.825194	6.267296	0.127863	31.811082
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.900000	0.430000	1.010000	1.880000	0.060000	34.529999
50%	1.610000	0.620000	1.890000	4.070000	0.110000	55.105000
75%	2.810000	0.930000	3.300000	7.530000	0.170000	76.160004
max	66.389999	7.920000	92.589996	177.600006	2.180000	342.700012
4						>

In [18]:

```
df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3', 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

In [19]:

sns.pairplot(df1[0:50])

Out[19]:

<seaborn.axisgrid.PairGrid at 0x23a3dac3310>

In [20]:

In [21]:

```
sns.heatmap(df1.corr())
```

Out[21]:

<AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

In [22]:

```
In [23]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

```
In [24]:
```

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[24]:

LinearRegression()

In [25]:

```
lr.intercept_
```

Out[25]:

28079000.956622433

In [26]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[26]:

Co-efficient

```
BEN
          1.435520
   CO
        -40.195568
 EBE
         -1.718343
 MXY
          0.167218
NMHC
        157.085159
NO_2
          0.165226
 NOx
         -0.069149
 OXY
         -1.123471
  O_3
          -0.010631
PM10
          -0.061677
 PXY
          1.653670
 SO<sub>2</sub>
          0.859409
 TCH
         36.062127
  TOL
          -0.873464
```

In [27]:

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[27]:

<matplotlib.collections.PathCollection at 0x23a4d7a2670>

ACCURACY

```
In [28]:
```

```
lr.score(x_test,y_test)
```

Out[28]:

0.1665159379212826

In [29]:

```
lr.score(x_train,y_train)
```

Out[29]:

0.18001211504197578

Ridge and Lasso

In [30]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [31]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[31]:

Ridge(alpha=10)

Accuracy(Ridge)

```
In [32]:
rr.score(x_test,y_test)
Out[32]:
0.16649970610262066
In [33]:
rr.score(x_train,y_train)
Out[33]:
0.17891931754207202
In [34]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[34]:
Lasso(alpha=10)
In [35]:
la.score(x_train,y_train)
Out[35]:
0.03581429332066366
```

Accuracy(Lasso)

```
In [36]:
la.score(x_test,y_test)
Out[36]:
0.03428948704282486
```

Elastic Net

```
In [37]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[37]:
```

ElasticNet()

```
In [38]:
en.coef
Out[38]:
                 , -0.30198222, 0.
                                                         , 0.1508955 ,
                                            , -0.
array([-0.
        0.1595836 , -0.07058833, -1.16189269, -0.0381492 ,
                                                            0.06219809,
        0.28440877, 0.75964187, 1.61387558, -0.44919497])
In [39]:
en.intercept_
Out[39]:
28079037.37589473
In [40]:
prediction=en.predict(x_test)
In [41]:
en.score(x_test,y_test)
Out[41]:
0.04941857713580211
```

Evaluation Metrics

```
In [42]:
```

In [43]:

```
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
```

28.823269020775424 1156.459493859106 34.006756591287946

Logistic Regression

```
from sklearn.linear_model import LogisticRegression
```

```
In [45]:
feature_matrix.shape
Out[45]:
(33010, 14)
In [46]:
target_vector.shape
Out[46]:
(33010,)
In [47]:
from sklearn.preprocessing import StandardScaler
In [48]:
fs=StandardScaler().fit_transform(feature_matrix)
In [49]:
logr=LogisticRegression(max_iter=10000)
logr.fit(fs,target_vector)
Out[49]:
LogisticRegression(max_iter=10000)
In [50]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [51]:
prediction=logr.predict(observation)
print(prediction)
[28079035]
In [52]:
logr.classes_
Out[52]:
array([28079006, 28079024, 28079035, 28079099], dtype=int64)
In [53]:
logr.score(fs,target_vector)
Out[53]:
0.7584974250227204
```

```
In [54]:
logr.predict_proba(observation)[0][0]
Out[54]:
2.3306153265290618e-23
In [55]:
logr.predict_proba(observation)
Out[55]:
array([[2.33061533e-23, 1.44436075e-55, 1.00000000e+00, 6.68457491e-16]])
Random Forest
In [56]:
from sklearn.ensemble import RandomForestClassifier
In [57]:
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
Out[57]:
RandomForestClassifier()
In [58]:
parameters={'max_depth':[1,2,3,4,5],
            'min_samples_leaf':[5,10,15,20,25],
            'n_estimators':[10,20,30,40,50]
}
In [59]:
from sklearn.model_selection import GridSearchCV
grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
Out[59]:
GridSearchCV(cv=2, estimator=RandomForestClassifier(),
             param_grid={'max_depth': [1, 2, 3, 4, 5],
                          'min_samples_leaf': [5, 10, 15, 20, 25],
                          'n_estimators': [10, 20, 30, 40, 50]},
             scoring='accuracy')
In [60]:
grid_search.best_score_
Out[60]:
0.7293464034866008
```

In [61]:

rfc_best=grid_search.best_estimator_

In [62]:

```
from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b','c','d'],f
```

Out[62]:

```
[\text{Text}(2166.9, 1993.2, 'NOx <= 39.615 \mid ngini = 0.749 \mid nsamples = 14618 \mid nvalue)]
= [5175, 5852, 6009, 6071]\nclass = d'),
 Text(1060.2, 1630.8000000000000, 'SO 2 <= 6.335 \setminus ini = 0.489 \setminus ini = 
2790\nvalue = [193, 3065, 647, 552]\nclass = b'),
 Text(595.2, 1268.4, 'CO <= 0.335\ngini = 0.205\nsamples = 1794\nvalue =
[82, 2557, 190, 49] \setminus class = b'),
 Text(297.6, 906.0, 'MXY <= 1.275\ngini = 0.475\nsamples = 635\nvalue = [8
0, 713, 190, 43]\nclass = b'),
 Text(148.8, 543.599999999999, 'NO 2 <= 11.755 \cdot min = 0.197 \cdot msamples = 4
14\nvalue = [9, 593, 41, 21]\nclass = b'),
 Text(74.4, 181.199999999999, 'gini = 0.025\nsamples = 192\nvalue = [1,
316, 1, 2] \setminus class = b'),
 Text(223.20000000000000, 181.1999999999982, 'gini = 0.334 \nsamples = 222
\nvalue = [8, 277, 40, 19] \setminus class = b'),
 samples = 221\nvalue = [71, 120, 149, 22]\nclass = c'),
 Text(372.0, 181.199999999999, 'gini = 0.087\nsamples = 45\nvalue = 63,
0, 3, 0] \setminus ass = a'),
 Text(520.800000000001, 181.199999999999, 'gini = 0.586\nsamples = 176
\nvalue = [8, 120, 146, 22] \setminus class = c'),
 Text(892.800000000001, 906.0, 'PXY <= 1.215\ngini = 0.009\nsamples = 115
9\nvalue = [2, 1844, 0, 6]\nclass = b'),
 Text(744.0, 543.599999999999, 'MXY <= 1.115\ngini = 0.007\nsamples = 112
8\nvalue = [0, 1804, 0, 6]\nclass = b'),
 Text(669.6, 181.1999999999982, 'gini = 0.0\nsamples = 906\nvalue = [0, 1
449, 0, 0]\nclass = b'),
 Text(818.400000000001, 181.199999999982, 'gini = 0.033\nsamples = 222
\nvalue = [0, 355, 0, 6] \setminus class = b'),
 samples = 31\nvalue = [2, 40, 0, 0]\nclass = b'),
 Text(967.2, 181.1999999999982, 'gini = 0.0\nsamples = 16\nvalue = [0, 2
2, 0, 0]\nclass = b'),
 Text(1116.0, 181.199999999999, 'gini = 0.18\nsamples = 15\nvalue = [2,
18, 0, 0]\nclass = b'),
 Text(1525.2, 1268.4, 'EBE <= 0.615\ngini = 0.706\nsamples = 996\nvalue =
[111, 508, 457, 503]\nclass = b'),
 Text(1264.800000000002, 906.0, 'NMHC <= 0.035\ngini = 0.524\nsamples = 2
62\nvalue = [0, 170, 235, 16]\nclass = c'),
 Text(1190.4, 543.59999999999, 'gini = 0.0\nsamples = 111\nvalue = [0,
0, 172, 0]\nclass = c'),
 51\nvalue = [0, 170, 63, 16]\nclass = b'),
 Text(1264.800000000000, 181.1999999999982, 'gini = 0.313\nsamples = 115
\nvalue = [0, 152, 23, 11]\nclass = b'),
 Text(1413.600000000001, 181.1999999999982, 'gini = 0.509\nsamples = 36
\nvalue = [0, 18, 40, 5] \setminus class = c'),
 Text(1785.600000000001, 906.0, '0_3 <= 95.375\ngini = 0.692\nsamples = 7
34\nvalue = [111, 338, 222, 487]\nclass = d'),
 Text(1636.800000000000, 543.59999999999, 'NMHC <= 0.025\ngini = 0.683
\nsamples = 628\nvalue = [111, 204, 212, 454]\nclass = d'),
 Text(1562.4, 181.199999999999, 'gini = 0.578\nsamples = 139\nvalue = [1
10, 13, 98, 7]\nclass = a'),
 Text(1711.2, 181.199999999999, 'gini = 0.56\nsamples = 489\nvalue = [1,
191, 114, 447]\nclass = d'),
 Text(1934.4, 543.599999999999, 'PM10 <= 21.82\ngini = 0.389\nsamples = 1
06\nvalue = [0, 134, 10, 33]\nclass = b'),
 Text(1860.000000000000, 181.199999999982, 'gini = 0.147\nsamples = 15
\nvalue = [0, 0, 2, 23]\nclass = d'),
 Text(2008.800000000000, 181.199999999982, 'gini = 0.216\nsamples = 91
\nvalue = [0, 134, 8, 10] \setminus class = b'),
 Text(3273.600000000004, 1630.800000000002, 'MXY <= 7.255\ngini = 0.736
```

```
\nsamples = 11828\nvalue = [4982, 2787, 5362, 5519]\nclass = d'),
 Text(2678.4, 1268.4, 'SO_2 <= 6.695\ngini = 0.728\nsamples = 8060\nvalue
= [2023, 2523, 3764, 4368]\nclass = d'),
 Text(2380.8, 906.0, 'MXY <= 2.895\ngini = 0.625\nsamples = 1602\nvalue =
[687, 1308, 464, 74]\nclass = b'),
 Text(2232.0, 543 59999999999, 'PXY <= 1.185\ngini = 0.45\nsamples = 894
\nvalue = [160, 1013, 220, 21]\nclass = b'),
 Text(2157.600000000004, 181.1999999999982, 'gini = 0.384\nsamples = 830
\nvalue = 154, 1010, 128 20 \nclass = b'),
 3, 92, 1\nclass = c'),
 Tex_{(2529.60000000000004)}, 543. 99999999999999999999999999, 'NOx = 107.8\ightharpoonup ini = 0.0009\n
samples = 708 \ln 4 = [527, 295, 244, 53] \ln 2 = a'),
 Text(2455.2000000000003, 181.19999999999982, 'gini = 0.696 \nsamples = 549
\nvalue = [318, 278, 224, 53]\nc1ass = a'),
 Text(2604.0, 181.1999999999999, 'gini = 0.267\nsamples = 159\nvalue = /[2
09, 17 20 01\nclass=a'\)
 Text(2976.0, 906.0, 'MXY <= 1.105\ngini = 0.683\nsamples = 6458\nvalue =
[1336, 1215, 3300, 4294]\nclass = d'),
 Text(2827.200000000003, 543.59999999999, 'EBE <= 1.055\ngini = 0.541\n
 amples = 354\nvalue = [76, 76, 359, 46]\nclass = c'),
6, 73, 170, 43]\nclass = c'),
 Text(2901.600000000004, 181.1999999999982, 'gini = 0.06\nsamples = 125
\https://pyalue = [0, 3, 189, 3]\nclass = c'), \https://pyalue = [0, 678\nsamples = 610]
4\nvalue = [1260, 1139, 2941, 4248]\nclass = d'),
Linear Regression:0.18001211304187578gini = 0.635\nsamples = 3922\nvalue =
[686, 552, 1764, 3158]\nclass = d'),
 Text(3199.2000000000003, 181.1999999999982, 'gini = 0.724\nsamples = 218
Regression:0.63581429332066366class = c'),
 Text(3868.8, 1268.4, 'EBE <= 3.255\ngini = 0.644\nsamples = 3768\nvalue =
Lasso, Redress 797:0.03428948704282486),
 Text(3571.2000000000003, 906.0, 'TCH <= 1.325 \ngini = 0.631 \nsamples = 40
8\nvalue = [119, 1, 292, 233]\nclass = c'),
Elastic Net Regression 0.0494385771,3580211 <= 8.165\ngini = 0.435\nsamples = 92

    \text{(nvalue = [98, 0, 36, 5]} \\
    \text{(nvalue = a'),}

\nvalue = [92, 0, 19, 0] \setminus ass = a'),
samples = 316\nvalue = [21, 1, 256, 228]\nclass = c'),
From the open deta mesoan conclude the property of the contraction of 
regression types, 80, 8]\nclass = c'),
 Text(3794.4, 181.199999999999, 'gini = 0.537\nsamples = 261\nvalue = [1
9, 0, 176, 220]\nclass = d'),
 Text(4166.400000000001, 906.0, 'TCH <= 1.335\ngini = 0.624\nsamples = 336
0\nvalue = [2840, 263, 1306, 918]\nclass = a'),
 Text(4017.600000000004, 543.59999999999, 'NMHC <= 0.055\ngini = 0.196
\n = 639 \quad = [910, 5, 102, 4] \quad = a'),
 Text(3943.2000000000003, 181.1999999999982, 'gini = 0.065\nsamples = 165
```