

Universidad Francisco de Paula Santander

Ocaña - Colombia Vigilada Mineducación

Docente: WILDER ANDRÉS DUARTE NEIRA Ingeniero de Sistemas Esp. en Auditoría de Sistemas

waduarten@ufpso.edu.co / 316-866-7751

MARATÓN

Fundada el 18 de julio de 1974

BÚSQUEDA LINEAL

También llamada búsqueda secuencial. Es la más intuitiva que existe.

Este algoritmo compara uno a uno los elementos del arreglo indicando si el número buscado existe, hasta encontrarlo o recorrerlo por completo. En éste caso no se ordenará la lista de elementos.

En este caso es importante conocer la cantidad de elementos donde voy hacer la búsqueda.

BÚSQUEDA LINEAL

BÚSQUEDA BINARIA

Este algoritmo permite buscar de una manera más eficiente un dato dentro de un arreglo, para hacer esto se determina el elemento central del arreglo y se compara con el valor que se está buscando, si coincide termina la búsqueda y en caso de no ser así se determina si el dato es mayor o menor que el elemento central, de esta forma se elimina una mitad del arreglo junto con el elemento central para repetir el proceso hasta encontrarlo o tener solo un elemento en el arreglo.

Para poder aplicar este algoritmo se requiere que el arreglo este ordenado. Esta basado en el paradigma divide y vencerás.

BÚSQUEDA BINARIA

En el gráfico que se incluye a continuación, vemos qué pasa cuando se busca el valor 18 en la lista [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23].

BÚSQUEDA LINEAL VS BÚSQUEDA BINARIA

n	$\log_2 n$
1	0
2	1
4	2
8	3
16	4
32	5
64	6
128	7
256	8
512	9
1024	10
1,048,576	20
2,097,152	21

Compara n contra $\log_2 n$ a continuación:

Fundada el 18 de julio de 1974

BÚSQUEDA LINEAL

```
function linearSearch(value, list) {
01
         let found = false;
02
03
         let position = -1;
         let index = 0;
04
05
         while(!found && index < list.length) {</pre>
06
             if(list[index] == value) {
07
                 found = true;
08
                  position = index;
09
              } else {
10
                 index += 1;
11
12
13
         return position;
14
15 }
```


BÚSQUEDA BINARIA

```
function binarySearch(value, list) {
02
         let first = 0; //left endpoint
         let last = list.length - 1; //right endpoint
04
         let position = -1;
05
         let found = false;
06
         let middle;
97
         while (found === false && first <= last) {</pre>
08
             middle = Math.floor((first + last)/2);
09
             if (list[middle] == value) {
10
                 found = true;
11
12
                 position = middle;
             } else if (list[middle] > value) { //if in lower half
13
14
                 last = middle - 1;
15
             } else { //in in upper half
                 first = middle + 1;
16
17
18
         return position;
19
20
```

