[Aula 12] Pipeline do MIPS 3: Solucionando hazards de dados

Prof. João F. Mari joaof.mari@ufv.br

Caminho de dados com pipeline

Revisão – Hazard de dados – solução simples

Revisão – Hazard de dados – encaminhamento

Solução por encaminhamento (forwarding)

- A implementação do encaminhamento necessita de uma forma de identificar o hazard.
- Deve-se coletar o resultado dos registradores de pipeline e realizar o encaminhamento para a ALU que necessita dos dados:
 - Para a ALU, as entradas vem de quaisquer registradores de pipeline ao invés do registrador ID/EX
 - Multiplexadores s\(\tilde{a}\) adicionados nas entradas da ALU para selecionados os dados corretos
 - Adiciona-se um controle de hardware apropriado para controlar os novos multiplexadores
 - Outras unidades funcionais, como DM, necessitam de uma lógica similar
- Com forwarding, é possível atingir um CPI igual a 1 mesmo quando existirem dependências de dados

Caminho de dados após a inclusão do encaminhamento

b. Com forwarding

Caminho de dados após a inclusão do encaminhamento

Controle do MUX	Origem	Explicação
ForwardA = 00	ID/EX	O primeiro operando da ULA vem do banco de registradores.
ForwardA = 10	EX/MEM	O primeiro operando da ULA sofre forwarding do resultado anterior da ULA.
ForwardA = 01	MEM/WB	O primeiro operando da ULA sofre forwarding da memória de dados ou de um resultado anterior da ULA.
ForwardB = 00	ID/EX	O segundo operando da ULA vem do banco de registradores.
ForwardB = 10	EX/MEM	O segundo operando da ULA sofre forwarding do resultado anterior da ULA.
ForwardB = 01	MEM/WB	O segundo operando da ULA sofre forwaring da memória de dados ou de um resultado anterior da ULA.

Caminho de dados após a inclusão do encaminhamento

EX/MEM hazard:

MEM/WB hazard:

Caminho de dados - encaminhamento

Caminho de dados - encaminhamento

Acessos a memória

 Para loads imediatamente seguidos de stores, stalls podem ser evitados adicionando hardware de encaminhamento a partir do registrador MEM/WB para a entrada da memória de dados

- Hardware de detecção de hazard no estágio ID:
 - Insere um stall entre a instrução load e o seu uso.
- Detecção de Hazard ID

```
if (ID/EX.MemRead
and ((ID/EX.RegisterRt = IF/ID.RegisterRs)
or (ID/EX.RegisterRt = IF/ID.RegisterRt)))
stall the pipeline
```

- A primeira linha testa se a instrução no estágio de execução é um lw.
- As duas linhas seguintes verificam se o registrador de destino do lw casa com qualquer registrador fonte da instrução que está no estágio ID (instrução load-use).
- Após uma bolha de um ciclo, a lógica de encaminhamento pode corrigir os hazards de dados restantes.

- A unidade de detecção de hazard controla a escrita para o PC e para os registradores IF/ID (PC.write e IF/ID.write)
 - Objetivo: Impedir que as instruções que estão nos estágios IF e ID caminhem pelo pipeline.
- Insere uma bolha entre a instrução lw e a instrução no estágio ID (isto é, insere uma instrução nop)
 - Os bits de controle nos registradores EX, MEM, WB são setados como 0
 - A instrução após a instrução lw continua sua execução no pipeline

Caminho de dados com detecção de hazards

Caminho de dados com detecção de hazards

Bibliografia

- 1. PATTERSON, D.A; HENNESSY, J.L. **Organização e Projeto de Computadores: A Interface Hardware/Software**. 3a. Ed. Elsevier, 2005.
 - Capítulo 5.
- 2. Notas de aula do prof. Luciano J. Senger:
 - http://www.ljsenger.net/classroom.html
- 3. Notas de aula da Profa. Mary Jane Irwin
 - CSE 331 Computer Organization and Design
 - http://www.cse.psu.edu/research/mdl/mji/mjicourses

FIM

- FIM:
 - Aula 12 Pipeline do MIPS 3: Solucionando hazards de dados
- Próxima aula:
 - Aula 13 Pipeline do MIPS 4: Solucionando hazards de controle