

Máster Universitario en Computación Paralela y Distribuida Algoritmos Paralelos Matriciales en Ingeniería

Tema 6.

Resolución de ecuaciones no lineales

Bibliografía

- C.T.Kelley
 "Iterative Methods for Linear and Nonlinear Equations" SIAM, 1995
- J.E.Dennis, R.Schnabel
- "Numerical Methods for Uncostrained Optimization and Nonlinear Equations". Prentice-Hall Series in Computational Mathematics. Cleve Moler Advisor. 1983
- J.Wilkinson "The Algrebraic Eigenvalue Problem". Oxford Univ. Press. 1965

Estructura Prevista de la Parte 3:

Tema 6. Resolución de Ecuaciones No lineales (previo al problema simétrico de valores propios) Tema 7. Resolución de Sistemas Generales No Lineales. Optimización

Resolución de ecuaciones

Objetivo: Encontrar la raíz ξ de f(x), si esta existe.

Descripción del problema:

Hallar soluciones de la ecuación f(x)=0

Ejemplo 1: ecuación de primer grado

$$ax + b = 0$$

despejamos

Ejemplo 2: ecuación de segundo grado;

$$ax^{2} + bx + c = 0$$
despejamos usando la fórmula
$$\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

Descripción del problema

Ejemplo 3: ecuación de quinto grado;

$$ax^{5} + bx^{4} + cx^{3} + dx + e = 0$$

Ejemplo 4: ecuación con funciones no algebraicas

$$\cos(e^x + x) + x = 0$$

Para aquellos problemas para los que no se conozca método analítico para resolver f(x)=0, utilizaremos **Métodos Iterativos**.

Es posible que no exista solución: cos(x)-3=0

IMPORTANTE

¿Valdrán los métodos para ecuaciones que no sean de la forma f(x)=0; Por ejemplo, cos(x)=sen(x)-0.2?

RESPUESTA:

Se resta: cos(x)-sen(x)+0.2=0y a continuación, se aplica alguno de los métodos que se van a estudiar

Métodos Numéricos

Los métodos numéricos para hallar raíces de funciones serán iterativos

Se parará cuando $|f(x_n)| < t$ olerancia, o cuando $|x_{n+1}-x_n| < t$ olerancia o cuando $|x_{n+1}-x_n| / |x_{n+1}| < t$ olerancia

Razón de Convergencia

Si existen dos constantes K y α y un entero N tales que:

$$|x_{n+1} - \xi| \approx K |x_n - \xi|^{\alpha} \quad \text{con} \quad n \ge N$$

diremos que:

la <u>razón de convergencia</u> es, por lo menos, de orden α .

Cuanto mayor sea \alpha y menor sea K, mayor será la velocidad de convergencia

Métodos Cerrados-1

Basados en el teorema de Bolzano:

Si $f(a) \cdot f(b) < 0$, existe al menos un ξ entre a y b tal que $f(\xi) = 0$

Métodos Cerrados-2

Reducción del intervalo que contiene la raíz, asegurándonos de que sigue conteniéndola en cada paso

Método de Bisección

1) Cálculo del punto medio del intervalo: c = (a+b)/2

2) Se prescinde del extremo del intervalo tal que f(extremo)*f(c) > 0

Bisección: Algoritmo

Algoritmo de bisección.

```
    Elegir a,b tales que f(a).f(b) < 0 y ε</li>
    Hacer c = (a+b)/2
    Si |b-c| < ε ⇒ c=solución si no si f(b).f(c) < 0 hacer a = c si no hacer b = c</li>
    Ir a 2.
```


Regula Falsi

Mejora; en lugar de tomar el punto medio del intervalo, tomamos el punto de corte de la recta que pasa por los puntos (a,f(a)) y (b,f(b)), con el eje de las x.

Regula Falsi: Algoritmo

1) Elegir a y b tales que $f(a) \cdot f(b) < 0$ y ϵ .

2) Hacer
$$c = \frac{a \cdot f(b) - b \cdot f(a)}{f(b) - f(a)}$$

3) Si $|b-c| < \epsilon$ ó $|a-c| < \epsilon$ entonces c = solución

si no

si f(b).f(c) < 0hacer a=c

si no

hacer b=c

4) Ir a 2.

Regula Falsi Modificada

Si la función es cóncava o convexa en todo el intervalo, el rendimiento de **regula falsi** puede disminuir.

Métodos Abiertos

generamos una sucesión de puntos no basada en el teorema de Bolzano: no siempre convergen

Método de Newton: Interpretación Gráfica

Método de Newton -2

Fórmula:
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- 1) Elegir a, error e I (número máximo de iteraciones).
- 2) Hacer K = 1 (contador de iteraciones).
- 3) Hacer b = a f(a)/f'(a)
- 4) Mientras |a b| > error y I>K hacer:

$$a = b$$

 $b = a - f(a)/f'(a)$
 $K = K+1$

5) Si $K \ge I$ entonces no converge si no entonces b = solución.

Convergencia **cuadrática** Convergencia **no garantizada**

Método de Newton -3

Fórmula:
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Alternativa: Mantener la misma derivada durante varias iteraciones

- 1) Elegir a, error, iter, e I (número máximo de iteraciones).
- 2) Hacer K = 1 (contador de iteraciones).
- 3) Hacer b = a f(a)/f'(a)
- 4) Mientras |a b| > error y I>K hacer:

D=f'(a)
Para i=1,2,...,iter
$$a = b$$

 $b = a - f(a)/D$

Finpara

$$K = K+1$$

5) Si $K \ge I$ entonces no converge si no entonces b = solución.

Convergencia superlineal Convergencia no garantizada

Método de la Secante

Se suele aplicar cuando no está disponible la Derivada para aplicar Newton. Se aplica la misma fórmula que en Regula

Falsi.

DEPARTAMENTO DE SISTANS MAS DE COMPUT MICOS Y COMPU

- 1) Elegir a,b,error e I (número máximo de iteraciones).
- 2) K = 1 (contador de iteraciones).
- 3) Hacer $c = \frac{a f(b) b f(a)}{f(b) f(a)}$
- 4) Mientras |c b| > error y I > k repetir

$$a = b$$

$$b = c$$

$$c = \frac{a f(b) - b f(a)}{f(b) - f(a)}$$

$$K = K + 1$$

5) Si $K \ge I$ entonces no converge si no c = solución.

Método de la secante

Justificación:
$$f'(x_n) = \lim_{a \to x_n} \frac{f(x_n) - f(a)}{x_n - a} \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

Problema:

Como no se requiere que f(b) y f(a) tengan signo distinto, la expresión $c = \frac{a f(b) - b f(a)}{f(b) - f(a)}$ es propensa a sufrir problemas de error de redondeo

Iteración de Laguerre

Solución de ecuaciones polinómicas con raíces reales:

$$f(x) = 0$$
 siendo
$$f(x) \equiv P_n(x) \qquad \text{y} \qquad \left\{\lambda_1, \lambda_2, ..., \lambda_n\right\}$$

las raíces del polinomio.

A partir de una aproximación a la solución, x, obtenemos una nueva aproximación, X, mejor que la anterior.

Paso 1:

Construir una función G(X, x, u) positiva en las raíces y negativa en la aproximación, x, y calcular los puntos de corte, X_1 y X_2 con el eje de abscisas.

Paso 2:

Maximizar/minimizar X₁ y X₂ en función del parámetro u

Paso 3:

Escribir la solución óptima encontrada para X_1 y X_2 en función de x, f(x), f'(x) y f"(x).

Paso 1

G(X, x, u) puede expresarse como una función cuadrática en la variable u

$$G(X) = Au^2 + 2Bu + C$$

Si imponemos

$$G(X) = 0 \Rightarrow Au^2 + 2Bu + C = 0$$

con

$$A(X_1) = (x - X_1)^2 \sum_{i=1}^n \frac{1}{(x - \lambda_i)^2} - 1$$

$$B(X_1) = (x - X_1)^2 \sum_{i=1}^n \frac{-\lambda_i}{(x - \lambda_i)^2} + X_1$$

$$C(X_1) = (x - X_1)^2 \sum_{i=1}^n \frac{\lambda_i^2}{(x - \lambda_i)^2} - X_1^2$$

y expresiones análogas para X₂.

De aquí se puede despejar X_1 y X_2 en función de u, o bien considerar que se han definido de forma implícita en función de u.

Paso 2

Para optimizar X₁ y X₂ imponemos sobre

$$Au^2 + 2Bu + C = 0$$

las condiciones

$$\frac{dX_1}{du} = 0 \quad y \quad \frac{dX_2}{du} = 0$$

Las derivadas se calculan de forma implícita. Se obtiene como u_{opt} el valor:

$$u_{opt} = -\frac{B}{A}$$

y para X₁ y X₂ valores que se pueden obtener de

$$AC - B^2 = 0$$

Es decir:

$$X_1 = X_1(x, \lambda_1, \lambda_2, ..., \lambda_n)$$

$$X_2 = X_2(x, \lambda_1, \lambda_2, ..., \lambda_n)$$

Paso 3

Por último basta poner $\lambda_1, \lambda_2, ..., \lambda_n$ en función de f(x), f'(x) y f''(x) .

Puesto que $f(x) = a_n \prod_{i=1}^n (x - \lambda_i)$ derivando y operando se tiene

$$\sum_{i=1}^{n} \frac{1}{(x - \lambda_i)^2} = \left[\frac{f'(x)}{f(x)} \right]^2 - \frac{f''(x)}{f(x)}$$

$$\sum_{i=1}^{n} \frac{\lambda_i^2}{(x - \lambda_i)^2} = x^2 \left(\left[\frac{f'(x)}{f(x)} \right]^2 - \frac{f''(x)}{f(x)} \right) - 2x \left(\frac{f'(x)}{f(x)} \right) + n$$

$$\sum_{i=1}^{n} \frac{-\lambda_i}{(x - \lambda_i)^2} = -x \left(\left[\frac{f'(x)}{f(x)} \right]^2 - \frac{f''(x)}{f(x)} \right) + \left(\frac{f'(x)}{f(x)} \right)$$

Por último, sustituyendo en

$$AC - B^2 = 0$$

se tiene

$$X = x - \frac{n}{\left(\frac{f'(x)}{f(x)}\right) \mp \sqrt{(n-1)^2 \left(\frac{f'(x)}{f(x)}\right)^2 - n(n-1) \left(\frac{f''(x)}{f(x)}\right)}}$$

Esta es la iteración de Laguerre que converge de forma cúbica a la solución de la ecuación polinómica si existe solución, el punto inicial está lo suficientemente próximo a la solución, y existen las derivadas.

Interpolación racional

Idea: Aproximar f(x) por una función racional lo más parecida posible

$$f(x) \cong \varphi(x) = \frac{K_1 x + K_2}{(x - a)(x - b)}$$

Conociendo dos puntos más se puede calcular K₁ y K₂

$$\varphi(a_1) = \frac{K_1 a_1 + K_2}{(a_1 - a)(a_1 - b)} \qquad \varphi(b_1) = \frac{K_1 b_1 + K_2}{(b_1 - a)(b_1 - b)}$$

O bien

$$\begin{cases} K_1 a_1 + K_2 = \alpha_1 & \text{con} \\ K_1 b_1 + K_2 = \alpha_2 \end{cases} \begin{cases} \alpha_1 = f(a_1)(a_1 - a)(a_1 - b) \\ \alpha_2 = f(b_1)(b_1 - a)(b_1 - b) \end{cases}$$

Por tanto

$$\begin{cases} K_1 = \frac{\alpha_1 - \alpha_2}{a_1 - b_1} \\ K_2 = \alpha_1 - K_1 a_1 \end{cases}$$

Si se aproxima $f(x) = \varphi(x)$ se puede tomar $\varphi(c) = 0$

para averiguar el nuevo punto de corte

Algoritmo

Elegir a_1 y b_1 tales que $f(a_1)f(b_1) < 0$

Calcular K_1 y K_2

Repetir

$$c = {-K_2 / \atop K_1}$$

Si $f(c)f(b_1) > 0$

entonces

$$b_1 = c$$

en otro caso

$$a_1 = c$$

Recalcular K_1 y K_2

hasta que $|b_1 - a_1| < \cot a$

Ventajas:

Convergencia muy rápida porque la aproximación al a función es muy buena

Inconveniente:

Sólo es útil con este tipo de funciones

Ejercicios propuestos

- Escribir un programa en Matlab que calcule las raices de una función polinómica de grado m, utilizando:
- 1. Método de bisección
- 2. Método "Regula falsi"
- 3. Método de Newton
- 4. Método "chord" (Newton con derivada constante)