

école———	
normale ———	
supérieure ———	
paris—saclav——	

Étude numérique des équations du groupe de renormalisation non perturbatif

Master 2 Analyse Modélisation Simulation

Gaétan Facchinetti Encadré par : Nicolas Dupuis et Bertrand Delamotte

Laboratoire de Physique Théorique de la Matière Condensée Université Paris-Saclay – École Normale Supérieure Paris-Saclay École Nationale Supérieure des Techniques Avancées - UVSQ

28 septembre 2017

Introduction du problème
 Physique statistique et modèle d'Ising
 Objectifs de l'étude

2. Etude du modèle d'Ising 2D : Mise en équation Calcul de la fonction de partition Le NPRG et les équations BMW La résolution en trois étapes

3. Etude du modèle d'Ising 2D : Méthodes numériques Discrétisation en temps et en champs Intégration de Gauss Legendre Interpolation de Tchebytchev

4. Etude du modèle d'Ising 2D : Résultats

5. Conclusions

1. Physique statistique et modèle d'Ising

 \bullet Modèle d'Ising 2D carré : N_s spins à une composante sur un quadrillage

Figure – Modèle d'Ising.

 \bullet Spin et configuration :

$$S_{\mathbf{r}} = -1(\downarrow), +1(\uparrow), \quad \mathscr{M} = \{S_{\mathbf{r}}\}_{\mathbf{r}}$$

- \bullet Energie d'une config. $\mathscr{M}:\mathcal{H}(\mathscr{M},b)$
- \bullet Probabilité d'une config. \mathcal{M} :

$$p(\mathcal{M}, b, T) = \frac{1}{\mathcal{Z}(b, T)} \exp\left(-\frac{\mathcal{H}(\mathcal{M}, b)}{k_B T}\right)$$

• Fonction de partition :

$$\mathcal{Z}(b,T) = \sum_{\mathcal{M}} \exp\left(-\frac{\mathcal{H}(\mathcal{M},b)}{k_B T}\right)$$

- 1. Introduction du problème
 - 1. Physique statistique et modèle d'Ising
- Définition de l'aimantation :

$$m(T,b) = \sum_{\mathcal{M} = \{S_{\mathbf{r}}\}_{\mathbf{r}}} \left\{ p(\mathcal{M}, b, T) \left(\frac{1}{N_s} \sum_{\mathbf{r}} S_{\mathbf{r}} \right) \right\} \propto \partial_T \ln \left(\mathcal{Z} \right)$$

1. Physique statistique et modèle d'Ising

• Définition de l'aimantation :

$$m(T,b) = \sum_{\mathcal{M} = \{S_{\mathbf{r}}\}_{\mathbf{r}}} \left\{ p(\mathcal{M}, b, T) \left(\frac{1}{N_s} \sum_{\mathbf{r}} S_{\mathbf{r}} \right) \right\} \propto \partial_T \ln \left(\mathcal{Z} \right)$$

• Evolution de l'aimantation m(T, b = 0) avec la température T:

Figure – Aimantation m vs T à $b \sim 0$

Invariance par échange de $\hat{\mathbf{e}}_z$ en $-\hat{\mathbf{e}}_z$: $\mathcal{H}(\mathcal{M}, b=0) = \mathcal{H}(-\mathcal{M}, b=0)$ \diamond symétrie \mathbb{Z}_2 $\diamond m(b=0, T=0) = 0$.

1. Physique statistique et modèle d'Ising

• Définition de l'aimantation :

$$m(T,b) = \sum_{\mathcal{M} = \{S_{\mathbf{r}}\}_{\mathbf{r}}} \left\{ p(\mathcal{M}, b, T) \left(\frac{1}{N_s} \sum_{\mathbf{r}} S_{\mathbf{r}} \right) \right\} \propto \partial_T \ln \left(\mathcal{Z} \right)$$

• Evolution de l'aimantation m(T, b = 0) avec la température T:

Figure – Aimantation m vs T à $b\sim 0$

Invariance par échange de
$$\hat{\mathbf{e}}_z$$
 en $-\hat{\mathbf{e}}_z$: $\mathcal{H}(\mathcal{M}, b=0) = \mathcal{H}(-\mathcal{M}, b=0)$ \diamond symétrie \mathbb{Z}_2 $\diamond m(b=0, T=0) = 0$.

Mais problème:

$$\lim_{N_s \to \infty} \left(\lim_{b \to 0} m \right) = 0 \neq \lim_{b \to 0} \left(\lim_{N_s \to \infty} m \right)$$

1. Physique statistique et modèle d'Ising

• Définition de l'aimantation :

$$m(T,b) = \sum_{\mathcal{M} = \{S_{\mathbf{r}}\}_{\mathbf{r}}} \left\{ p(\mathcal{M}, b, T) \left(\frac{1}{N_s} \sum_{\mathbf{r}} S_{\mathbf{r}} \right) \right\} \propto \partial_T \ln \left(\mathcal{Z} \right)$$

• Evolution de l'aimantation m(T, b = 0) avec la température T:

Figure – Aimantation m vs T à $b\sim 0$

Invariance par échange de
$$\hat{\mathbf{e}}_z$$
 en $-\hat{\mathbf{e}}_z$: $\mathcal{H}(\mathcal{M}, b=0) = \mathcal{H}(-\mathcal{M}, b=0)$ \diamond symétrie \mathbb{Z}_2 $\diamond m(b=0, T=0) = 0$.

Mais problème:

$$\lim_{N_s \to \infty} \left(\lim_{b \to 0} m \right) = 0 \neq \lim_{b \to 0} \left(\lim_{N_s \to \infty} m \right)$$

⇒ Brisure de symétrie & Transition de phase

Introduction du problème
 Objectifs de l'étude

- \Rightarrow Calcul de la température critique : T_c
- ⇒ Calcul des exposants critiques

Introduction du problème
 Objectifs de l'étude

- \Rightarrow Calcul de la température critique : T_c
- ⇒ Calcul des exposants critiques
- \rightarrow Méthode : calcul de la fonction de partition \mathcal{Z}
- \rightarrow Utilisation du NPRG
- \rightarrow Utilisation de l'approximation BMW
- → Benchmarking de l'approximation BMW

Introduction du problème Objectifs de l'étude

- \Rightarrow Calcul de la température critique : T_c
- ⇒ Calcul des exposants critiques
- \rightarrow Méthode : calcul de la fonction de partition \mathcal{Z}
- \rightarrow Utilisation du NPRG
- → Utilisation de l'approximation BMW
- \rightarrow Benchmarking de l'approximation BMW
- Deuxième étude :
 - Ecriture d'un nouveau code pour calculer T_c .
 - ▶ Comparaison à la valeur théorique : benchmarking de la méthode

- Introduction du problème
 Physique statistique et modèle d'Ising
 Objectifs de l'étude
- Etude du modèle d'Ising 2D : Mise en équation Calcul de la fonction de partition Le NPRG et les équations BMW La résolution en trois étapes
- 3. Etude du modèle d'Ising 2D : Méthodes numériques Discrétisation en temps et en champs Intégration de Gauss Legendre Interpolation de Tchebytchev
- 4. Etude du modèle d'Ising 2D : Résultats
- 5. Conclusions

2. Etude du modèle d'Ising 2D : Mise en équation 1. Calcul de la fonction de partition

- \bullet Calcul de T_c pour le modèle d'Ising avec la méthode NPRG et l'approximation BMW. Comparaison avec le résultat du calcul exact.
- Réécriture de la fonction de partition :

$$\mathcal{Z} \propto \int \prod_{\mathbf{r}} d\varphi(\mathbf{r}) \exp\left(-\mathcal{H}[\varphi]\right) ,$$

avec $\varphi \in \mathcal{C}^0(\mathbb{R}^2)$ et l'hamiltonien \mathcal{H} défini par

$$\mathcal{H}[\varphi] = \frac{1}{2} \int_{\mathbf{q}} \hat{\varphi}(\mathbf{q}) \frac{1}{\lambda(\mathbf{q})} \hat{\varphi}(-\mathbf{q}) - \sum_{\mathbf{r}} \ln \left(\cosh(\varphi(\mathbf{r})) \right) ,$$

avec λ une fonction \mathcal{C}^{∞} et la notation

$$\int_{\mathbf{Q}} \dots \equiv \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \dots \, \mathrm{d} \, q_x \mathrm{d} \, q_y \,.$$

• Avec cette notation \mathcal{H} dépend de la température T.

2. Etude du modèle d'Ising 2D : Mise en équation 2. Le NPRG et les équations BMW

• L'équation de flot BMW à résoudre :

Trouver
$$\Gamma^{(2)}$$
 tel que pour tout $(\mathbf{p}, \phi, t) \in [-\pi, \pi]^2 \times \mathbb{R} \times]-\infty, 0],$

$$\partial_t \Gamma^{(2)}(t, \mathbf{p}, \phi) = J_3(t, \mathbf{p}, \phi) \Big(\partial_\phi \Gamma^{(2)}(t, \mathbf{p}, \phi) \Big)^2 - \frac{1}{2} I_2(t, \phi) \, \partial_\phi^2 \Gamma^{(2)}(t, \mathbf{p}, \phi)$$

Avec les notations

$$J_{n}(t, \mathbf{p}, \phi) = \int_{\mathbf{q}} \partial_{t} \mathcal{R}(t, \mathbf{q}) G(t, \mathbf{p} + \mathbf{q}, \phi) G^{n-1}(t, \mathbf{q}, \phi),$$

$$I_{n}(t, \phi) = J_{n}(t, \mathbf{p} = 0, \phi).$$

$$G(t, \mathbf{q}, \phi) = \frac{1}{\Gamma^{(2)}(t, \mathbf{q}, \phi) + \mathcal{R}(t, \mathbf{q})} \qquad (propagateur)$$

$$\mathcal{R}(t, \mathbf{q}) \in \mathcal{C}^{\infty}(\mathbb{R}^{3}) \qquad (régulateur)$$

- Condition initiale : en t = 0, dépend de \mathcal{H} et donc de T.
- Détermination de T_c : calcul de $\Gamma^{(2)}$ en $t \to -\infty$

2. Etude du modèle d'Ising 2D : Mise en équation

3. La résolution en trois étapes

• Problème :

FIGURE – Représentation de $\partial_t \mathcal{R}(t_1, q_x, q_y)$, $\partial_t \mathcal{R}(t_2, q_x, q_y)$, avec $t_2 < t_1$

$$I_n, J_n \propto \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \partial_t \mathcal{R}(t, q_x, q_y) \times ... dq_x dq_y$$

- Changement de système d'équation (pour $t < t_a$):
 Utilisation des variables $\tilde{\mathbf{q}} = e^{-t}\mathbf{q} = (e^{-t}q_x, e^{-t}q_y)$
- Changement de système d'équation (pour $t < t_b < t_a$):
 Passage à un système d'équations totalement adimensionné.
 Recherche d'une solution particulière dite "de point fixe".

- Introduction du problème
 Physique statistique et modèle d'Ising
 Objectifs de l'étude
- Etude du modèle d'Ising 2D : Mise en équatior Calcul de la fonction de partition Le NPRG et les équations BMW La résolution en trois étapes
- 3. Etude du modèle d'Ising 2D : Méthodes numériques Discrétisation en temps et en champs Intégration de Gauss Legendre Interpolation de Tchebytchev
- 4. Etude du modèle d'Ising 2D : Résultats
- 5. Conclusions

3. Etude du modèle d'Ising 2D : Méthodes numériques 1. Discrétisation en temps et en champs

Objectif : discrétiser et faire des calculs sur des fonctions

$$(t, q_x, q_y, \phi) \rightarrow f(t, q_x, q_y, \phi)$$

- \bullet Discrétisation en temps t:
 - \diamond Grille de points $\{t_n\}_n$ régulièrement espacés.
 - \diamond Schéma d'Euler explicite : $\partial_t f(t,...) = (f(t_n,...) f(t_{n-1},...)) / \delta t$
- Discrétisation en champ ϕ :
 - \diamond Grille de points $\{\phi_n\}_n$ régulièrement espacés.
 - \diamond Calcul des dérivées $\partial_{\phi} f(..., \phi)$ avec des schémas à 5 points.

3. Etude du modèle d'Ising 2D : Méthodes numériques 2. Intégration de Gauss Legendre

- Calcul des intégrales : quadrature de Gauss-Legendre
 - ♦ On cherche à calculer :

$$K(t,\phi) = \int_{-a}^{a} \int_{-a}^{a} f(t,q_x,q_y,\phi) dq_x dq_y$$

 \diamond Utilisation de $\{\xi_i\}_i$ points d'intégrations de Gauss-Legendre (zéros du polynômes de Legendre d'ordre n_{gl}) sur [-1,1] et $\{w_i\}_i$ les poids associés :

$$K(t,\phi) \simeq a^2 \sum_{i=1}^{n_{gl}} \sum_{i=1}^{n_{gl}} w_i w_j f(t, a\xi_i, a\xi_j, \phi)$$

- ♦ Utilisation des symétries des fonctions pour réduire les calculs.
- Problème : le calcul de J_n(t, p_x, p_y, φ) = ∫ g(t, p_x + q_x, p_y + q_y, φ)
 On ne connait g qu'au point de discrétisation des fonctions inconnues.
 - \diamond Si $q_x=a\xi_i$ et $p_x=a\xi_j,$ générallement $p_x+q_x\neq a\xi_m \ \forall m\in [\![1,n_{gl}]\!]$

- 3. Etude du modèle d'Ising 2D : Méthodes numériques
 - 3. Interpolation de Tchebytchev

3. Etude du modèle d'Ising 2D : Méthodes numériques 3. Interpolation de Tchebytchev

• Interpolation de Tchebytchev en deux dimensions :

Soit f une fonction de deux variables de $[a,b]^2$ dans \mathbb{R} . On note $\{x_n\}_{n\in [\![1,n_c]\!]}$ l'ensemble des n_c racines du polynôme de Tchebytchev d'ordre n_c .

On introduit:

$$\mathcal{F} = \left(\left(f\left(\frac{a+b}{2} + x_m \frac{b-a}{2}, \frac{a+b}{2} + x_n \frac{b-a}{2} \right) \right) \right)_{m,n}$$

 \Rightarrow Approximation de rang faible de cette matrice

3. Etude du modèle d'Ising 2D : Méthodes numériques 3. Interpolation de Tchebytchev

• Interpolation de Tchebytchev en deux dimensions :

Algorithme d'approximation par élimination Gaussienne

1: Initialisation :
$$\mathcal{E}^{0} = \mathcal{F}$$
; $\mathcal{F}_{0} = 0$; $k = 1$;
2: while $\|\mathcal{E}^{k}\|_{\infty} < \varepsilon \|\mathcal{E}^{0}\|_{\infty}$ do
3: $(i_{k}, j_{k}) = \operatorname{argmax}_{(i,j)} \left\{ \left| \mathcal{E}_{i,j}^{k-1} \right| \right\}$
4: $\mathcal{C}_{j}^{k} = \mathcal{E}_{i_{k},j}^{k}$; $\mathcal{R}_{i}^{k} = \mathcal{E}_{i,j_{k}}^{k}$; $d_{k} = \mathcal{E}_{i_{k},j_{k}}^{k}$
5: $\mathcal{E}_{i,j}^{k} = \mathcal{E}_{i,j}^{k-1} - d_{k}^{-1} \mathcal{C}_{j}^{k} \mathcal{R}_{i}^{k}$
6: $\mathcal{F}_{i,j}^{k} = \mathcal{F}_{i,j}^{k-1} + d_{k}^{-1} \mathcal{C}_{j}^{k} \mathcal{R}_{i}^{k}$
7: end while

$$\mathcal{F} \simeq \sum_{j=1}^{Q} d_j \mathcal{C}^j \mathcal{R}^j \Rightarrow f(x, y) \simeq \sum_{j=1}^{Q} d_j c^j(y) r^j(x)$$

- Introduction du problème
 Physique statistique et modèle d'Ising
 Objectifs de l'étude
- Etude du modèle d'Ising 2D : Mise en équatior Calcul de la fonction de partition Le NPRG et les équations BMW La résolution en trois étapes
- 3. Etude du modèle d'Ising 2D : Méthodes numériques Discrétisation en temps et en champs Intégration de Gauss Legendre Interpolation de Tchebytchev
- 4. Etude du modèle d'Ising 2D : Résultats
- 5. Conclusions

4. Etude du modèle d'Ising 2D : Résultats

FIGURE – Évolution de η_k en fonction de t pour différentes valeurs de la températue T.

• Encadrement de la température critique

$$2.350 < T_c^{BMW} < 2.375 (1)$$

• Comparaison à la température théorique attendue $T_c^{th} \simeq 2.269$

$$err = \frac{|T_c^{BMW} - T_c^{th}|}{T_c^{th}} \sim 4\%$$
 (2)

- Introduction du problème
 Physique statistique et modèle d'Ising
 Objectifs de l'étude
- Etude du modèle d'Ising 2D : Mise en équatior Calcul de la fonction de partition Le NPRG et les équations BMW La résolution en trois étapes
- 3. Etude du modèle d'Ising 2D : Méthodes numériques Discrétisation en temps et en champs Intégration de Gauss Legendre Interpolation de Tchebytchev
- 4. Etude du modèle d'Ising 2D : Résultats

5. Conclusions

5. Conclusions

- Première étude :
 - ♦ Réorganisation du code
 - ♦ Réécriture de la méthode de quadrature
 - \diamond Quelques changements sans résultats conséquents
- Seconde étude (Ising 2D) :
 - ♦ Mise en place de différentes techniques numériques
 - ♦ Tentative de résolution de problèmes de temps de calculs
 - \diamond Résultats pour une première série de test : erreur de 4 %
 - ♦ Résultats contrastée car erreurs numériques