Lista de Ejercicios para Repaso Experimentos Factoriales con dos Factores en un DCA Prof. Nelfi González Alvarez - Escuela de Estadística UNAL-Medellín

- Para todos los problemas planteados con datos, especifique claramente lo siguiente:

 1. Característica o variable respuesta estudiada y unidad de medida
 - 2. Estructura de tratamientos (factores de diseño controlables, tipos de efectos y niveles)
 - 3. Estructura de diseño (completamente aleatorizada o diseño en bloques)
- 1. Enuncie los modelos ANOVA de dos factores en un DCA balanceado, indique claramente qué representan los términos y variables en dichos modelos, los supuestos y restricciones:
 - a) Con efectos fijos
 - b) Con efectos aleatorios
 - c) Con efectos mixtos
 - i. No restringido
 - ii. Restringido
- 2. Para cada uno de los modelos en 1. dé las expresiones de valores esperados sobre los cuadrados medios (MSA, MSB, MS(AB), MSE) y enuncie los tests de hipótesis en las pruebas ANOVA con sus respectivos estadísticos de prueba, distribución y criterio de rechazo de H0.
- 3. Para cada uno de los modelos en 1. indique cuáles son los parámetros para los cuales nos interesa hacer inferencias, y dé sus respectivos estimadores con sus distribuciones estadísticas.
- **4.** Explique el significado de la interacción en el modelo factorial de efectos fijos, de efectos aleatorios y en el modelo de efectos mixtos, y explique en qué consiste el fenómeno de enmascaramiento.
- 5. Considere el modelo factorial de dos factores de efectos fijos en un diseño DCA. Bajo interacción significativa ¿será apropiado realizar inferencias y comparaciones de medias a nivel de cada factor de manera marginal, bien sea a través de la construcción de intervalos de confianzas para cada media $\mu_{i\bullet}$, $\mu_{\bullet j}$, o mediante comparaciones múltiples como Tukey o contrastes sobre las respectivas medias de nivel en cada factor?
- **6.** Considere el modelo factorial de dos factores de efectos aleatorios en un diseño DCA. Bajo interacción significativa ¿será prudente realizar inferencias sobre componentes de varianza a nivel de cada factor de manera marginal?
- 7. Considere el modelo factorial de dos factores de efectos mixtos en un diseño DCA. Bajo interacción significativa ¿será prudente realizar inferencias y comparaciones de medias a nivel del factor de efectos fijos, bien sea a través de la construcción de intervalos de confianzas para cada media $\mu_{i\bullet}$, o mediante comparaciones múltiples como Tukey o contrastes sobre estas medias? ¿y con relación a la componente de varianza del factor de efectos aleatorios qué?
- 8. Escriba el modelo factorial con tres factores de efectos fijos en un DCA balanceado, sus supuestos y restricciones. Explique el ANOVA con sus respectivas pruebas, sumas de cuadrados, cuadrados medios, estadísticos F₀, valor P. ¿cómo se detecta la presencia de interacción triple? Si la interacción triple es significativa, ¿será apropiado hacer inferencias sobre interacciones dobles y efectos principales? ¿Por qué?
- 9. Se aplican pinturas tapaporos para aeronavales en superficies de aluminio, con dos métodos: inmersión y rociado. La finalidad del tapaporos es mejorar la adhesión de la pintura, y puede aplicarse en algunas partes utilizando cualquiera de los dos métodos. El grupo de ingeniería de procesos responsable de esta operación se encuentra interesado en saber si existen diferencias entre tres tapaporos diferentes en cuanto a sus propiedades de adhesión. Para investigar el efecto que tiene el tipo de pintura tapaporos y el método de aplicación sobre la adhesión de la pintura, se realiza un experimento factorial. Pera ello se pinta tres especímenes con cada tapaporos utilizando cada método de aplicación (inmersión o rociado), después se aplica una capa final de pintura y a continuación se mide la fuerza de adhesión. Los datos de este experimento se muestran a continuación, así como los gráficos para análisis descriptivos (Resultados obtenidos en SAS):

	B: Método					
A: Tipo tapaporos	1. Inmersión	Total Y _{i1} •	2. Rociado	Total Y _{i2•}	Total Y _{i••}	
1	4.0 4.5 4.3	12.8	5.4 4.9 5.6	15.9	28.7	
2	5.6 4.9 5.4	15.9	5.8 6.1 6.3	18.2	34.1	
3	3.8 3.7 4.0	11.5	5.5 5.0 5.0	15.5	27.0	
		Total $Y_{\bullet 1 \bullet} = 40.2$		Total $Y_{\bullet 2 \bullet} = 49.6$	Total Y • • • = 89.8	

- a) Defina el modelo de análisis de varianza requerido para este problema.
- b) Haga un análisis descriptivo de los datos, tanto para los box-plots, como para los gráficos de perfiles de medias.
- c) Pruebe las hipótesis correspondientes, escriba los estadísticos de prueba y los criterios de decisión. Determine si la interacción es significativa
- d) Si la interacción no es significa, redefina el ANOVA y pruebe la significancia de los factores:

FUENTE	GL	SC	СМ	$\mathbf{F_0}$	
TAPAPORO					
METODO					
ERROR					
TOTAL					
Valores críticos al 5%: F(0.05,1,14)=4.6, F(0.05,2,14)=3.74					

- e) Haga comparaciones por Tukey para cada factor para el modelo final.
- f) Valide supuestos sobre los errores del modelo (varianza cte. y normalidad)
- g) Haga recomendaciones para este problema, según los resultados dados.

<u>Analisis de varianza modelo con interacción</u> Variable dependiente: adhes

Source	DF	Type III SS	Mean Square	F Value	Pr > F
tapaporo	2	4.58111111	2.29055556	27.86	<.0001
metodo	1	4.90888889	4.90888889	59.70	<.0001
tapaporo*metodo	2	0.24111111	0.12055556	1.47	0.2693

Los siguientes resultados fueron obtenidos en modelo sin interacción:

Estimaciones	s e I.	C del	95%	para	Medias	de	niveles	factor	A:	Tapaporo
tapaporo	adhes	LSME	AN	9!	5% Conf:	ider	nce Limit	s		
_										

1	4.783333	4.524032	5.042634
2	5.683333	5.424032	5.942634
3	4.500000	4.240699	4.759301

I.C Tukey del 95% para comparaciones de medias del factor A: Tapaporo Difference Simultaneous 95%

		Difference	Simultaneous 95%				
		Between	Confidence Limits for				
i	j	Means	LSMean(i)-LSMean(j)				
1	2	-0.900000	-1.347492	-0.452508			
1	3	0.283333	-0.164159	0.730826			
2	2	1 102222	0 725041	1 620026			

Estimaciones e I.C del 95% para Medias de niveles factor B: Método

metodo	adnes LSMEAN	95% Confidence	Limits
1	4.466667	4.254948	4.678385
2	5.511111	5.299393	5.722830

I.C Tukey del 95% para comparaciones de medias del factor B: Método Difference Simultaneous 95%

	_	Difference	Simultaneous 95%
		Between	Confidence Limits for
i	j	Means	LSMean(i)-LSMean(j)
1	2	_1 044444	-1 343860 -0 745039

10. Interesa estudiar los efectos del color de la vela (específicamente en los niveles Amarillo, Blanco, Azul y Rosado), de su diámetro (niveles Vela y Velón) y principalmente de la interacción que se da entre estos dos factores, sobre el tiempo promedio en minutos que se demora la vela en consumirse, restringiendo el experimento para la marca de vela "San Cayetano". Los datos recolectados en un DCA fueron los siguientes:

		B: Color				
		1. Amarillo	2. Blanco	3. Azul	4. Rosado	
A: Diámetro	1. Vela	129 110 123 126	144 147 151 166	136 125 123 127	145 146 142 154	
	2. Velón	113 127 93 98	114 110 87 105	114 112 96 120	125 99 114 124	

- a) Escriba el modelo ANOVA para este experimento, explique los términos.
- b) Haga un análisis descriptivo de los datos
- c) Calcule el análisis de varianza.
- d) Haga comparaciones de medias por Tukey para los niveles de cada factor y para tratamientos. ¿Es posible concluir a partir de las comparaciones aplicadas marginalmente en cada factor lo mismo que con las comparaciones entre tratamientos?
- e) Pruebe la igualdad de medias de un factor, fijando los niveles del otro.
- f) Realice un análisis de los residuales del modelo completo y valide los supuestos del modelo

ANOVA

The GLM Procedure

Dependent Variable: Tiempo

Source	DF	Type III SS	Mean Square	F Value	Pr > F
diametro	1	6132.781250	6132.781250	57.44	<.0001
color	3	1373.843750	457.947917	4.29	0.0147
diametro*color	3	1429.593750	476.531250	4.46	0.0126

Medias $\mu_{i\bullet}$ factor diámetro e I.C del 95%

	Tiempo		
diametro	LSMEAN	95% Confiden	ce Limits
1	137.125000	131.793696	142.456304
2	109.437500	104.106196	114.768804

Diferencias entre medias $\mu_{i\bullet}$ del factor diámetro e I.C de Tukey del 95%

		Difference	Simultaneous 95%			
		Between	Confidence L	imits for		
i	j	Means	LSMean(i)-L	SMean(j)		
1	2	27.687500	20.147883	35.227117		

Medias $\mu_{\bullet j}$ factor color e I.C. del 95%

	Tiempo		
color	LSMEAN	95% Confider	ce Limits
1	114.875000	107.335397	122.414603
2	128.000000	120.460397	135.539603
3	119.125000	111.585397	126.664603
4	131.125000	123.585397	138.664603

Difference Simultaneous 95%

Difference			Simultane	ous 95%
		Between	Confidence L	imits for
i	j	Means	LSMean(i)-L	SMean(j)
1	2	-13.125000	-27.376661	1.126661
1	3	-4.250000	-18.501661	10.001661
1	4	-16.250000	-30.501661	-1.998339
2	3	8.875000	-5.376661	23.126661
2	4	-3.125000	-17.376661	11.126661
3	4	-12 000000	-26 251661	2 251661

Medias de tratamientos μ_{ij} e IC 95%

		Tiempo		
diametro	color	LSMEAN	95% Confider	ce Limits
1	1	122.000000	111.337391	132.662609
1	2	152.000000	141.337391	162.662609
1	3	127.750000	117.087391	138.412609
1	4	146.750000	136.087391	157.412609
2	1	107.750000	97.087391	118.412609
2	2	104.000000	93.337391	114.662609
2	3	110.500000	99.837391	121.162609
2	4	115.500000	104.837391	126.162609

Diferencia entre medias de tratamiento μ_{ij} y sus I.C Tukey del 95%: Aquí las medias μ_{ij} están enumeradas en los siguientes resultados, como 1,2,...,8, en el orden: μ_{11} , μ_{12} , μ_{13} , μ_{14} , μ_{21} , μ_{22} , μ_{23} , μ_{24} Least Squares Means for Effect diametro*color

	_	Difference	Simultaneous 95%	
		Between	Confidence L	imits for
i	j	Means	LSMean(i)-L	SMean(j)
1	2	-30.00000	-54.197439	-5.802561
1	3	-5.750000	-29.947439	18.447439
1	4	-24.750000	-48.947439	-0.552561
1	5	14.250000	-9.947439	38.447439
1	6	18.000000	-6.197439	42.197439
1	7	11.500000	-12.697439	35.697439
1	8	6.500000	-17.697439	30.697439
2	3	24.250000	0.052561	48.447439
2	4	5.250000	-18.947439	29.447439
2	5	44.250000	20.052561	68.447439
2	6	48.000000	23.802561	72.197439
2	7	41.500000	17.302561	65.697439
2	8	36.500000	12.302561	60.697439
3	4	-19.000000	-43.197439	5.197439
3	5	20.000000	-4.197439	44.197439
3	6	23.750000	-0.447439	47.947439
3	7	17.250000	-6.947439	41.447439
3	8	12.250000	-11.947439	36.447439

4	5	39.000000	14.802561	63.197439
4	6	42.750000	18.552561	66.947439
4	7	36.250000	12.052561	60.447439
4	8	31.250000	7.052561	55.447439
5	6	3.750000	-20.447439	27.947439
5	7	-2.750000	-26.947439	21.447439
5	8	-7.750000	-31.947439	16.447439
6	7	-6.500000	-30.697439	17.697439
6	8	-11.500000	-35.697439	12.697439
7	8	-5.00000	-29.197439	19.197439

Resultados para probar la igualdad de medias del factor diámetro en cada nivel del factor color diametro*color Effect Sliced by color for Tiempo

		Sum OI			
color	DF	Squares	Mean Square	F Value	Pr > F
1	1	406.125000	406.125000	3.80	0.0629
2	1	4608.000000	4608.000000	43.16	<.0001
3	1	595.125000	595.125000	5.57	0.0267
4	1	1953.125000	1953.125000	18.29	0.0003

Resultados para probar la igualdad de medias del factor color en cada nivel del factor diámetro diametro \star color Effect Sliced by diametro for Tiempo

		Dum OI			
diametro	DF	Squares	Mean Square	F Value	Pr > F
1	3	2522.250000	840.750000	7.88	0.0008
2	3	281 187500	93 729167	0.88	0 4664

11. El siguiente problema, es un estudio de capacidad o aptitud de instrumentos de medición (calibradores) o también conocido como un estudio de repetibilidad y reproductibilidad (R&R) de instrumentos de medición (calibradores). Se usa un instrumento o calibrador para medir una dimensión crítica de una pieza. <u>Se han seleccionado aleatoriamente 20 piezas del proceso de producción, y tres operadores también escogidos al azar</u> miden dos veces cada pieza con este calibrador. El orden en que se hacen estas mediciones es completamente aleatorizado. **NOTA:** A la componente de la varianza σ² (varianza del error experimental aleatorio) se le llama de manera típica la repetibilidad del instrumento de medición (calibrador), ya que refleja la variación obtenida cuando la misma pieza es medida por el mismo operador.

Num. De la pieza	Operador 1	Operador 2	Operador 3
1	21 20	20 20	19 21
2	24 23	24 24	23 24
3	20 21	19 21	20 22
4	27 27	28 26	27 28
5	19 18	19 18	18 21
6	23 21	24 21	23 22
7	22 21	22 24	22 20
8	19 17	18 20	19 18
9	24 23	25 23	24 24
10	25 23	26 25	24 25
11	21 20	20 20	21 20
12	18 19	17 19	18 19
13	23 25	25 25	25 25
14	24 24	23 25	24 25
15	29 30	30 28	31 30
16	26 26	25 26	25 27
17	20 20	19 20	20 20
18	19 21	19 19	21 23

Num. De la pieza	Operador 1	Operador 2	Operador 3
19	25 26	25 24	25 25
20	19 19	18 27	19 17

- a) ¿Cuáles son los tratamientos en este problema? ¿Son estos tratamientos de efectos fijos o son aleatorios? ¿Cuál es la estructura de diseño?
- b) Haga un análisis descriptivo de los datos.
- c) Escriba el modelo ANOVA apropiado

d) Pruebe la hipótesis de interés sobre la componente de varianza de la interacción entre pieza y operador, al 5% de significancia. **NOTA:** En la salida SAS exhibida a continuación para el modelo de efectos aleatorios, la Tabla ANOVA se muestra en dos partes: la primera para evaluar las componentes de varianza marginales de cada factor y como término de "error" se toma el MS(AB); la segunda parte es para evaluar la componente de varianza debida a la interacción y como "error" se toma al MSE

Fuente Cuadrados Medios Esperados

pieza Var(Error) + 2 Var(pieza*operador) + 6 Var(pieza)

operador Var(Error) + 2 Var(pieza*operador) + 40 Var(operador)

pieza*operador Var(Error) + 2 Var(pieza*operador)

		Suma de	Cuadrados		
Fuente	DF	cuadrados	medios	F-Valor	Pr > F
pieza	19	1116.758333	58.776754	46.81	< .0001
operador	2	1.950000	0.975000	0.78	0.4672
Error	38	47.716667	1.255702		
Error: MS(pieza*operador	-)				

Suma de Cuadrados DF cuadrados medios F-Valor Fuente 1.255702 pieza*operador 47.716667 0.76 0.8187 38 Error: MS(Error) 60 99.500000 1.658333

e) Si la interacción no es significativa, redefina el ANOVA, y pruebe de nuevo las hipótesis correspondientes.

Fuente pieza operador	Cuadrados Medios Esperados Tipo III Var(Error) + 6 Var(pieza) Var(Error) + 40 Var(operador)			
FUENTE	GL	SC	CM	F0
PIEZA				
OPERADOR				
ERROR				
TOTAL				
Valores críticos al 5%: F(0.05,19,98)=1.69, F(0.05,2,98)=3.09				

- f) Estime las componentes de varianza significativas en el modelo final.
- g) Halle las proporciones de varianza e interprete según el problema. Tenga cuidado con componentes no significativas ¿será que su estimación se admite diferente de cero o será que debe darse como cero?
- h) Valide los supuestos sobre los errores.
- i) Dé conclusiones acerca del problema y recomendaciones para una mejor medición de las piezas.

12. Un fabricante de automóviles desea estudiar los efectos de las diferencias entre conductores (factor A) y de las diferencias entre carros (factor B) sobre el consumo de gasolina. <u>Cuatro conductores fueron seleccionados aleatoriamente; también cinco carros del mismo modelo con transmisión manual fueron seleccionados aleatoriamente de la línea de ensamble.</u> Cada conductor condujo cada vehículo dos veces en un campo de prueba de 40 millas y fueron registradas las millas por galón consumidas. Los datos son los siguientes:

	Carro						
Conductor	j=1	j=1 j=2 j=3 j=4 j=5					
i=1	25.3	28.9	24.8	28.4	27.1		
P-1	25.2	30.0	25.1	27.9	26.6		
i=2	33.6	36.7	31.7	35.6	33.7		
I=2	32.9	36.5	31.9	35.0	33.9		
i=3	27.7	30.7	26.9	29.7	29.2		
1=3	28.5	30.4	26.3	30.2	28.9		
:_4	29.2	32.4	27.7	31.8	30.3		
i=4	29.3	32.4	28.9	30.7	29.9		

- a) ¿Cuáles son los tratamientos en este problema? ¿Son estos tratamientos de efectos fijos o son aleatorios? ¿Cuál es la estructura de diseño?
- b) Haga un análisis descriptivo de los datos.
- c) Pruebe si el desempeño relativo de los conductores con relación a los cambios en los vehículos no varía de forma congruente (es decir, si σ²αβ>0), use un nivel de significancia del 5% ¿Qué se concluye? **NOTA:** En la salida SAS exhibida a continuación para el modelo de efectos aleatorios, la Tabla ANOVA se muestra en dos partes: la primera para evaluar las componentes de varianza marginales de cada factor y como término de "error" se toma el MS(AB); la segunda parte es para evaluar la componente de varianza debida a la interacción y toma como "error" al MSE

Procedimiento GLM

Fuente Cuadrados medios esperados

Tests de hipótesis para el análisis del modelo anova de efectos aleatorios Variable dependiente: consumo gasol

			Cuadrados		
Fuente	DF	Tipo III SS	medios	F-Valor	Pr > F
conductor	3	280.284750	93.428250	458.26	<.0001
carro	4	94.713500	23.678375	116.14	<.0001
Error	12	2.446500	0.203875		
Error: MS(conductor*ca	rro)				
			Cuadrados		
Fuente	DF	Tipo III SS	medios	F-Valor	Pr > F
conductor*carro	12	2.446500	0.203875	1.16	0.3715
Error: MS(Error)	20	3.515000	0.175750		

d) Pruebe separadamente para cada factor si aportan significativamente a la varianza total del consumo de gasolina en millas por galón ¿Qué se puede concluir? Tenga en cuenta que si la interacción no es significativa debe reformular el modelo sin interacción y recalcular la ANOVA:

Fuente	DF	Sumas Cuadrados	Cuadrados Medios	F_0	Valor Crítico al 5%	Decisión sobre H0
Conductor	3				F(0.05,3,32)=2,901	
Carro	4				F(0.05,4,32)=2.668	
Error						
Total						

- e) Estime las componentes de varianza, que crea necesarias en el modelo final.
- f) Halle las proporciones de varianza en el modelo final e interprételas a la luz del problema.
- g) Valide los supuestos del error en el modelo final.
- h) Dé recomendaciones para el problema, si lo que se quiere es disminuir el consumo de gasolina.

13. Se sabe que la variación en la resistencia de los especímenes de prueba, está asociado con el método de fraguado y de mezcla usados para construirlos. Un ingeniero civil realizó un experimento para calificar las diferencias entre un conjunto de métodos de fraguado conforme sus efectos sobre la resistencia de los especímenes de prueba y para determinar hasta qué grado el tipo de mezcla afecta las comparaciones entre los métodos de fraguado. A continuación, se muestran los datos del coeficiente de ruptura (psi) de los especímenes (Nota: Resultados fueron obtenidos con SAS).

	B: Método de fraguado					
A: Tipo de Mezcla	1. Presión Estática	2. Amasado Normal	3. Amasado lento	4. Amasado Muy lento		
1. Basalto	68 63 65	126 128 133	93 101 98	56 59 57		
2. Silícea	71 66 66	107 110 116	63 60 59	40 41 44		

a) Defina el modelo de análisis de varianza requerido para este problema.

b) Haga un análisis descriptivo de los datos, tanto para los box-plot, como para los gráficos de perfiles de medias.

c) Pruebe las hipótesis correspondientes, escriba los estadísticos de prueba y los criterios de decisión. Determine si la interacción es significativa.

Source	DF	Type III SS	Mean Square	F Value	Pr > F
mezcla	1	1734.00000	1734.00000	182.53	<.0001
fraguado	3	16243.50000	5414.50000	569.95	< .0001
mezcla*fraguado	3	1145.00000	381.66667	40.18	<.0001
Error	16	152.00000	9.50000		
Corrected Total	23	19274.50000			

d) Qué tipo de mezcla tiene como resultado los especímenes más resistentes para cada método de fraguado?

Least Squares Means

		Sum of			
fraguado	DF	Squares	Mean Square	F Value	Pr > F
1	1	8.166667	8.166667	0.86	0.3676
2	1	486.000000	486.000000	51.16	<.0001
3	1	2016.666667	2016.666667	212.28	< .0001
4	1	368.166667	368.166667	38.75	<.0001

mezcla*fraguado Effect Sliced by fraguado for rest

	mezcia*ii	aguado Effect	Sinced by	mezcia	for rest	
		Sum of				
mezcla	DF	Squares	Mean	Square	F Value	e Pr > F
1	3	9660.250000	3220.	.083333	338.96	<.0001
2	3	7728.250000	2576.	.083333	271.17	7 <.0001

e) La Resistencia del espécimen construido con basalto y amasado normal es mayor a los especímenes construidos con roca silícea y amasado normal? (A continuación vea las medias muestrales de tratamientos)

	Least Squares	Means
mezcla	fraguado	rest LSMEAN
1	1	65.333333
1	2	129.000000
1	3	97.333333
1	4	57.333333
2	1	67.666667
2	2	111.000000
2	3	60.666667
2	4	41.666667

f) Valide supuestos sobre los errores del modelo (varianza cte. y normalidad)

Test	Sta	tistic	p Valu	ıe
Shapiro-Wilk	W	0.951019	Pr < W	0.2850
Kolmogorov-Smirnov	D	0.176584	Pr > D	0.0507
Cramer-von Mises	W-Sq	0.106082	Pr > W-Sq	0.0902
Anderson-Darling	A-Sq	0.540144	Pr > A-Sq	0.1521

- g) Haga recomendaciones para este problema, según los resultados dados.
- 14. Un fabricante se encontraba desarrollando un nuevo espectrofotómetro de uso en laboratorios clínicos. El proceso de desarrollo estaba en la etapa piloto de ensamble, luego de la cual debería evaluarse el desempeño de cada máquina en la línea de producción. <u>Una componente critica del desempeño de instrumentos es la uniformidad de las mediciones de un día a otro entre las maquinas.</u> En este caso específico, el científico que desarrolló el instrumento deseaba saber si la variabilidad de las mediciones entre máquinas operadas durante varios días estaba dentro de los estándares aceptables para las aplicaciones clínicas. Cada día se prepararon 8 muestras de suero del mismo reactivo y se asignaron al azar dos muestras de suero a cada máquina cada día. A continuación, se muestran las observaciones de niveles de triglicéridos (mg/dl) en las muestras de suero (Resultados exhibidos fueron obtenidos en SAS).

	Máquina							
Día	1	2	3	4				
1	142.3 144.0	148.6 146.9	142.9 147.4	133.8 133.2				
2	134.9 146.3	145.2 146.3	125.9 127.6	108.9 107.5				
3	148.6 156.5	148.6 153.1	135.5 138.9	132.1 149.7				
4	152.0 151.4	149.7 152.0	142.9 142.3	141.7 141.2				

- a) ¿Qué tipos de efectos tienen los factores Día y Máquina? ¿cuál es la estructura de diseño? Escriba el modelo ANOVA apropiado.
- b) Haga un análisis descriptivo de los datos.

c) Pruebe la hipótesis de componente de varianza de interacción entre pieza y operador, al 5% y las demás hipótesis de interés.

Source dia maquina dia*maquina	Var(Error) Var(Error)		(quina) + 8 Var((quina) + 8 Var(
Source dia	DF 3	Type III SS 1334.463437	Mean Square 444.821146	F Value 5.09	Pr > F 0.0248
maquina	3	1647.278438	549.092813	6.29	0.0137
Error: MS(dia*maquina)	9	786.035312	87.337257		
Source	DF	Type III SS	Mean Square	F Value	Pr > F
dia*maquina Error: MS(Error)	9 16	786.035312 286.325000	87.337257 17.895313	4.88	0.0029

- d) Estime las componentes de varianza significativas.
- e) Halle las proporciones de varianza e interprételas según el problema.
- f) Valide los supuestos sobre los errores.

g) Dé conclusiones acerca del problema y recomendaciones para una mejor medición de las piezas.

Referencias: Ejercicios tomados de:

- [1] Gutiérrez Pulido, H. y De la Vara Salazar, R. (2004). Análisis y Diseño de Experimentos. McGraw-Hill.
- [2] Kuehl, R. O. (2001). Diseño de Experimentos. Principios estadísticos de diseño y análisis de investigación, 2ª edición, Thomson Learning.
- [3] Montgomery, D. C. y Runger, G. C. (1996). Probabilidad y Estadística Aplicadas a la Ingeniería. McGraw-Hill.
- [4] Neter, J., Kutner, M. H., Nachtsheim, C. J. and Wasserman, W. (1996). Applied Linear Statistical Models, 4th Edition. IRWIN.
- [5] Walpole, R. E., Myers, R. H. y Myers, S. L. (1999). Probabilidad y Estadística para Ingeniero, 6ª edición, Pearson Education.