Computer Architecture HW 3

111062117, Hsiang-Sheng Huang ${\it April~12,~2025}$

1

A_{invert}	$B_{\mathbf{negate}}$	Operation	Function
0	1	11	add-ext
0	0	11	sub-ext

2

(a)

Iteration	Step	Multiplier	Multiplicant	Product
0	Initial Values	1010	0000 1100	0000 0000
	$0 o exttt{No operation}$	1010	0000 1100	0000 0000
1	Shift left Multiplicant	1010	0001 1000	0000 0000
	Shift right Multiplier	0101	0001 1000	0000 0000
	$1 ightarrow exttt{Product}$ += Multiplicant	0101	0001 1000	0001 1000
2	Shift left Multiplicant	0101	0011 0000	0001 1000
	Shift right Multiplier	0010	0011 0000	0001 1000
	$0 o exttt{No operation}$	0010	0011 0000	0001 1000
3	Shift left Multiplicant	0010	0110 0000	0001 1000
	Shift right Multiplier	0001	0110 0000	0001 1000
4	$1 o exttt{Product}$ += Multiplicant	0001	0110 0000	0111 1000
	Shift left Multiplicant	0001	1100 0000	0111 1000
	Shift right Multiplier	0000	1100 0000	0111 1000

(b)

Iteration	Step	Multiplicand	Product
0	Initial Values	1100	0000 1010
1	$0 o exttt{No operation}$	1100	0000 1010
1	Shift right Product	1100	0000 0101
2	$1 o exttt{prod[left]}$ += Multiplicand	1100	1100 0101
2	Shift right Product	1100	0110 0010
3	$0 o exttt{No operation}$	1100	0110 0010
3	Shift right Product	1100	0011 0001
4	$1 o \mathtt{prod[left]}$ += Multiplicand	1100	1111 0001
4	Shift right Product	1100	0111 1000

(c)

Iteration	Step	Quotient	Divisor	Remainder
0	Initial Values	0000	0101 0000	0000 0111
	Rem -= Div	0000	0101 0000	1011 0111
1	Rem<0 \rightarrow +Div, LSL Q, Q0=0	0000	0101 0000	0000 0111
	Shift Div right	0000	0010 1000	0000 0111
	Rem -= Div	0000	0010 1000	1101 1111
2	Rem<0 \rightarrow +Div, LSL Q, Q0=0	0000	0010 1000	0000 0111
	Shift Div right	0000	0001 0100	0000 0111
	Rem -= Div	0000	0001 0100	1111 0011
3	Rem<0 \rightarrow +Div, LSL Q, Q0=0	0000	0001 0100	0000 0111
	Shift Div right	0000	0000 1010	0000 0111
	Rem -= Div	0000	0000 1010	1111 1101
4	Rem<0 \rightarrow +Div, LSL Q, Q0=0	0000	0000 1010	0000 0111
	Shift Div right	0000	0000 0101	0000 0111
	Rem -= Div	0000	0000 0101	0000 0010
5	Rem \geq 0 \rightarrow LSL Q, Q0=1	0001	0000 0101	0000 0010
	Shift Div right	0001	0000 0010	0000 0010

(d)

Iteration	Step	Remainder (Quotient)	Divisor
0	Initial Values	0000 0111	0101
0	Shift Remainder left	0000 1110	0101
1	Rem[left] -= Div	1011 1110	0101
1	Rem[left] < 0→+Div, LSL Rem, RO=0	0001 1100	0101
2	Rem[left] -= Div	1100 1100	0101
2	Rem[left] < 0→+Div, LSL Rem, RO=0	0011 1000	0101
3	Rem[left] -= Div	1110 1000	0101
3	Rem[left] <0→+Div, LSL Rem, RO=0	0111 0000	0101
4	Rem[left] -= Div	0010 0000	0101
4	Rem[left]≥0→LSL Rem, RO=1	0100 0001	0101
5	Shift Rem[left] right	0010 0001	0101

3

(a)

Iteration	Step	Multiplicand	Product
0	Initial Values	1000	0000 0111 0
1	$10 \rightarrow {\tt Subtract\ multiplicand\ from\ product[8:5]}$	1000	1000 0111 0
1	Arithmetic Shift Right Product	1000	1100 0011 1
2	$11 o exttt{No operation}$	1000	1100 0011 1
	Arithmetic Shift Right Product	1000	1110 0001 1
3	$11 o exttt{No operation}$	1000	1110 0001 1
3	Arithmetic Shift Right Product	1000	1111 0000 1
4	$01 o exttt{Add}$ multiplicand to product[8:5]	1000	0111 0000 1
	Arithmetic Shift Right Product	1000	0011 1000 0

(b)

Iteration	Step	Multiplicand	Product
0	Initial Values	1011	0000 0110 0
1	$00 o exttt{No operation}$	1011	0000 0110 0
1	Arithmetic Shift Right Product	1011	0000 0011 0
2	$10 \rightarrow {\tt Subtract\ multiplicand\ from\ product[8:5]}$	1011	0101 0011 0
	Arithmetic Shift Right Product	1011	0010 1001 1
3	$11 o exttt{No operation}$	1011	0010 1001 1
3	Arithmetic Shift Right Product	1011	0001 0100 1
1	$01 ightarrow exttt{Add}$ multiplicand to product[8:5]	1011	1100 0100 1
4	Arithmetic Shift Right Product	1011	1110 0010 0

4

(a)

$$3A5F8C1B_{16} = 0011\ 1010\ 0101\ 1111\ 1000\ 1100\ 0001\ 1011_2$$

= 979, 340, 315₁₀

If it's an unsigned number, the result is the same as the two's complement. The reason is that the MSB is 0, which indicates a positive number in both representations.

(b)

$$B7D4E2C9_{16} = 1011\ 0111\ 1101\ 0100\ 1110\ 0010\ 1100\ 1001_2 \\ = -1, 210, 785, 079_{10}$$

If it's a unsigned number, the result is **NOT** same as the two's complement. The reason is that the MSB is 1, which indicates a negative number in two's complement representation.

(c)

(i)

 $3A5F8C1B_{16} = 0011\ 1010\ 0101\ 1111\ 1000\ 1100\ 0001\ 1011_2$

Sign	Exponent (8 bits)	Fraction (23 bits)
0	01110100	101111111000110000011011

• Sign: 0 (positive)

• Exponent: $01110100_2 = 116_{10}$, which is 116 - 127 = -11

• Significand: $1+2^{-1}+2^{-3}+2^{-4}+2^{-5}+2^{-6}+2^{-7}+2^{-8}+2^{-12}+2^{-13}+2^{-19}+2^{-21}+2^{-22}\approx 1.746094$

Representation: $1.746094 \times 2^{-11} \approx 8.53 \times 10^{-4}$

(ii)

 $B7D4E2C9_{16} = 1011\ 0111\ 1101\ 0100\ 1110\ 0010\ 1100\ 1001_2$

Sign	Exponent (8 bits)	Fraction (23 bits)
1	01101111	10101001110001011001001

• Sign: 1 (negative)

• Exponent: $01101111_2 = 111_{10}$, which is 111 - 127 = -16

• Significand: $1+2^{-1}+2^{-3}+2^{-5}+2^{-8}+2^{-9}+2^{-10}+2^{-11}+2^{-14}+2^{-15}+2^{-17}+2^{-20}+2^{-23} \approx 1.664$

Representation: $-1.664 \times 2^{-16} \approx -2.54 \times 10^{-5}$

5

(a)

(i)

$$X = 60.4375_{10} = 111100.0111_2 = 1.111000111_2 \times 2^5$$

In IEEE 754 single precision:

• Sign bit: 0 (positive)

• Exponent: $5 + 127 = 132_{10} = 10000100_2$

• Fraction: 111000111_2 followed by zeros

(ii)

$$Y = -5.3125_{10} = -101.0101_2 = -1.010101_2 \times 2^2$$

In IEEE 754 single precision:

- Sign bit: 1 (negative)
- Exponent: $2 + 127 = 129_{10} = 10000001_2$
- Fraction: 010101₂ followed by zeros

(b)

Multiply $X \times Y$:

- Sign bit: $0 \oplus 1 = 1$ (result is negative)
- Exponents: 5 + 2 = 7
- Significands: $1.111000111_2 \times 1.010101_2 = 10.100000100010011_2 = 1.0100000100010011_2 \times 2^1$

Final exponent: 7 + 1 = 8

Biased exponent: $8 + 127 = 135 = 10000111_2$

IEEE 754 representation: 1 10000111 01000001000100110000000

6

(a)

- Sign bit: 0
- Exponent: 1 255 = -254
- Fraction: 000000₂

So $a_0 = 0$ 000000001 000000 $_2 = 1 \times 1.000000_2 \times 2^{-254}$

(b)

(i)

- Sign bit: 0
- Exponent: -254
- Fraction: 1111111_2

So $a_1 = 0$ 000000000 1111111₂ = 0.1111111₂ × $2^{-254} = 1.11111_2 \times 2^{-255}$

(ii)

• Sign bit: 0

• Exponent: -254

• Fraction: 111110₂

So $a_2 = 0$ 000000000 1111110₂ = 0.1111110₂ × $2^{-254} = 1.1111_2 \times 2^{-255}$

(c)

(i)

$$a_1 - a_0 = 1.000000 \times 2^{-254} - 1.111111 \times 2^{-255}$$

$$= 1.000000 \times 2^{-254} - 0.111111 \times 2^{-254}$$

$$= 0.000001 \times 2^{-254}$$

$$= 2^{-260}$$

(ii)

$$a_1 - a_2 = 1.11111 \times 2^{-255} - 1.11110 \times 2^{-255}$$

= 0.00001×2^{-255}
= 2^{-260}

(d)

• Sign bit: 1

• Exponent: $011110110_2 = 246_{10}$, so the exponent is 246 - 255 = -9

• Fraction: 100111₂

So the binary number is 1 011110110 100111 $_2 = -1.100111_2 \times 2^{-9}$

(e)

To find the nearest representation of, we need to convert it to binary. For integer part:

$$1 = 1.000000_2$$

For fractional part:

$$0.31 = 0.010011_2$$

So $U = 1.010011_2 \times 2^0$.

The actual decimal number represented by U is $1.010011_2 = 1.3125$.

7

Statements (b), (d), (e) are incorrect.

- (b) is incorrect because floating point addition is not associative. In this case, (x+y)+z=0+z=1.0, but $x+(y+z)\approx x+y\approx 0$ since z is negligible compared to y.
- (d) is incorrect because increasing the exponent size increases the range of representable numbers, not their accuracy. Accuracy (precision) is improved by increasing the fraction part.
- (e) is incorrect because the bias scheme in IEEE 754 is used to simplify comparison between floating point numbers, not to increase the maximum representable value.