PistonMass

Piston with an inertia load

Component description

Pneumatic piston with an inertia load. The chamber volumes are not included in the model but can be considered outside the model.

Variables and parameters

```
In[521]:= inputParameters = {
         {A1, 0.001, double, "m2", "Piston area 1"},
         {A2, 0.001, double, "m2", "Piston area 2"},
         {SL, 0.5, double, "m", "Stroke"},
         {Cip, 0., double, "m3/(s Pa)", "Leak coeff."},
         {bp, 30., double, "N/m/s", "Visc. friction coeff."},
         {mL, 10., double, "kg", "Inertia"},
         {bL, 0., double, "Ns/m", "Viscous friction coefficient of load"},
         {fc, 30., double, "N", "Dry friction (+/-)"},
         {bfc, 1., double, "", "Numerical friction factor."},
         {xmin, 0., double, "m", "Limitation on stroke"},
         {xmax, 0.5, double, "m", "Limitation on stroke"},
         {patm, 100 000., double, "Pa", "Ambient pressure"},
         {R, 287., double, "J/Kg K", "Gas constant"},
         {cv, 718, double, "J/Kg K", "heatcoeff"}
          };
In[522]:= nodeConnections = {
         PneumaticQnode[1, 100000., "pneumatic port 1"],
         PneumaticQnode[2, 100000., "pneumatic port 2"],
         MechanicQnode[mp, 0., "mechanical node"]};
```

The system of equations

ln[532]:= qm1e = -qm2;

In[535]:= cp = cv + R;

ln[533] = q1e = qm1 / rho1;q2e = qm2 / rho2;

```
p1e = c1 + Zc1qm1;
In[523]:=
            p2e = c2 + Zc2 qm2;
            fmpe = cmp + Zcmp vmp;
      The generated piston force
ln[526]:= fg = A1 p1e - A2 p2e - (A1 - A2) patm;
      Dry friction is modelled with a small linear region for low speeds for numerical reasons
In[527]:= Bf = bfc mL / mTimestep;
In[528]:= fre = limit[Bf vmp, -fc, fc];
In[529] := T0 = 1.;
      Differential algebraic equations
In[530]:= rho1 := \frac{p1}{R(T1 + T0)};
      rho2 := \frac{p2}{R(T2 + T0)};
```

```
In[536]:= systemEquationsDA := {
        mL der[vmp] + (bp + bL) vmp + fre == (fg - fmpe),
        der[xmp] == vmp,
        qm1 = -(A1 \text{ rho1 vmp} + Cip * (p1 - p2)),
        qm2 == (A2 \text{ rho2 vmp} + Cip * (p1 - p2)),
        dE1 = qm1 cp T1,
        dE2 = qm2 cp T2
```

Boundaries

```
In[537]:= systemBoundaryEquations = {
          p1 == (c1 + Zc1 dE1),
          p2 == (c2 + Zc2 dE2),
          fmp == cmp + Zcmp vmp
        };
      The vector of independent variables of the system are
In[538]:= systemVariables = {vmp, xmp, qm1, qm2, dE1, dE2, p1, p2, fmp};
      Limitations
In[539]:= variable2Limits = {{xmp, vmp, xmin, xmax}};
In[540]:= Compgen[file]
```