Duality

Lecture 10 and 11

Dept. of Math., SUSTech

2024.03

Vector Spaces

- Linear Functional
- 2 The Null Space and Range of the dual of a Linear Map
- The Matrix of the Dual of a Linear Map
- The Rank of a Matrix
- 6 Homework Assignment 10 and 11

Linear Functional

Linear functions into the scalar field $\mathbb F$ play a special role in linear algebra, and thus they get a special name:

Definition

A linear functional on V is a linear map from V to \mathbb{F} . In other words, a linear functional is an element of $\mathcal{L}(V,\mathbb{F})$.

Example

- 1. Define $\varphi : \mathbb{R}^3 \to \mathbb{R}$ by $\varphi(x,y,z) = 4x 5y + 2z$. Then φ is a linear functional on \mathbb{R}^3 .
- 2. Fix $(c_1, c_2, \dots, c_n) \in \mathbb{F}^n$. Define $\varphi : \mathbb{F}^n \to \mathbb{F}$ by

$$\varphi(x_1, x_2, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n.$$

Then φ is a linear functional on \mathbb{F}^n .

Linear Functionals

Example

- 1. Define $\varphi : \mathscr{P}(\mathbb{R}) \to \mathbb{R}$ by $\varphi(p) = 3p''(5) + 7p(4)$. Then φ is a linear functional on $\mathscr{P}(\mathbb{R})$.
- 2. Define $\varphi : \mathscr{P}(\mathbb{R}) \to \mathbb{R}$ by $\varphi(p) = \int_0^1 p(x) dx$. Then φ is a linear functional on $\mathscr{P}(\mathbb{R})$.

Linear Functionals

The vector space $\mathscr{L}(V,\mathbb{F})$ also gets a special name and special notation:

Definition

The dual space of V, denoted V', is the vector space of all linear functionals on V. In other words, $V' = \mathcal{L}(V, \mathbb{F})$.

Dual Space

The dimension of V' is equal to the dimension of V:

3.95
$$\dim V' = \dim V$$

Suppose V is finite-dimensional. Then V' is also finite-dimensional and $\dim V' = \dim V$.

The proof of this result follows directly from 3.61.

Dual Basis

In the following definition, 3.5 implies that each φ_i is well defined.

3.96 **Definition** dual basis

If v_1, \ldots, v_n is a basis of V, then the **dual basis** of v_1, \ldots, v_n is the list $\varphi_1, \ldots, \varphi_n$ of elements of V', where each φ_j is the linear functional on V such that

$$\varphi_j(v_k) = \begin{cases} 1 & \text{if } k = j, \\ 0 & \text{if } k \neq j. \end{cases}$$

Example

3.97 **Example** What is the dual basis of the standard basis e_1, \ldots, e_n of \mathbf{F}^n ?

Solution For $1 \le j \le n$, define φ_j to be the linear functional on \mathbf{F}^n that selects the j^{th} coordinate of a vector in \mathbf{F}^n . In other words,

$$\varphi_j(x_1,\ldots,x_n)=x_j$$

for $(x_1, \ldots, x_n) \in \mathbf{F}^n$. Clearly

$$\varphi_j(e_k) = \begin{cases} 1 & \text{if } k = j, \\ 0 & \text{if } k \neq j. \end{cases}$$

Thus $\varphi_1, \ldots, \varphi_n$ is the dual basis of the standard basis e_1, \ldots, e_n of \mathbf{F}^n .

Dual basis is a basis of the dual space

The next result shows that the dual basis is indeed a basis. Thus the terminology "dual basis" is justified.

3.98 Dual basis is a basis of the dual space

Suppose V is finite-dimensional. Then the dual basis of a basis of V is a basis of V'.

Proof

Proof Suppose v_1, \ldots, v_n is a basis of V. Let $\varphi_1, \ldots, \varphi_n$ denote the dual basis.

To show that $\varphi_1, \dots, \varphi_n$ is a linearly independent list of elements of V', suppose $a_1, \dots, a_n \in F$ are such that

$$a_1\varphi_1 + \dots + a_n\varphi_n = 0.$$

Now $(a_1\varphi_1 + \cdots + a_n\varphi_n)(v_j) = a_j$ for $j = 1, \dots, n$. The equation above thus shows that $a_1 = \cdots = a_n = 0$. Hence $\varphi_1, \dots, \varphi_n$ is linearly independent.

Now 2.39 and 3.95 imply that $\varphi_1, \ldots, \varphi_n$ is a basis of V'.

dual map

In the definition below, note that if T is a linear map from V to W then T' is a linear map from W' to V'.

3.99 **Definition** dual map, T'

If $T \in \mathcal{L}(V, W)$, then the *dual map* of T is the linear map $T' \in \mathcal{L}(W', V')$ defined by $T'(\varphi) = \varphi \circ T$ for $\varphi \in W'$.

- If $T \in \mathcal{L}(V, W)$ and $\varphi \in W'$, then $T'(\varphi)$ is defined above to be the composition of the linear maps φ and T.
- Thus $T'(\varphi)$ is indeed a linear map from V to \mathbb{F} ; in other words, $T'(\varphi) \in V'$.
- Can you verify that T' is indeed a linear map from W' to V'?

Example

3.100 **Example** Define $D: \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ by Dp = p'.

• Suppose φ is the linear functional on $\mathcal{P}(\mathbf{R})$ defined by $\varphi(p) = p(3)$. Then $D'(\varphi)$ is the linear functional on $\mathcal{P}(\mathbf{R})$ given by

$$(D'(\varphi))(p) = (\varphi \circ D)(p) = \varphi(Dp) = \varphi(p') = p'(3).$$

In other words, $D'(\varphi)$ is the linear functional on $\mathcal{P}(\mathbf{R})$ that takes p to p'(3).

• Suppose φ is the linear functional on $\mathcal{P}(\mathbf{R})$ defined by $\varphi(p) = \int_0^1 p$. Then $D'(\varphi)$ is the linear functional on $\mathcal{P}(\mathbf{R})$ given by

$$(D'(\varphi))(p) = (\varphi \circ D)(p) = \varphi(Dp) = \varphi(p') = \int_0^1 p' = p(1) - p(0).$$

In other words, $D'(\varphi)$ is the linear functional on $\mathcal{P}(\mathbf{R})$ that takes p to p(1) - p(0).

Algebraic properties of dual maps

The first two bullet points in the result below imply that the function that takes T to T' is a linear map from $\mathcal{L}(V,W)$ to $\mathcal{L}(W',V')$. In the third bullet point below, note the reversal of order from ST on the left to T'S' on the right.

3.101 Algebraic properties of dual maps

- (S+T)' = S' + T' for all $S, T \in \mathcal{L}(V, W)$.
- $(\lambda T)' = \lambda T'$ for all $\lambda \in \mathbb{F}$ and all $T \in \mathcal{L}(V, W)$.
- (ST)' = T'S' for all $T \in \mathcal{L}(U, V)$ and all $S \in \mathcal{L}(V, W)$.

annihilator

Our goal in this subsection is to describe null T' and range T' in terms of range T and null T. To do this, we will need the following definition.

3.102 **Definition** annihilator, U^0

For $U \subset V$, the *annihilator* of U, denoted U^0 , is defined by

$$U^0 = \{ \varphi \in V' : \varphi(u) = 0 \text{ for all } u \in U \}.$$

Example

Suppose U is the subspace of $\mathscr{P}(\mathbb{R})$ consisting of all polynomial multiples of x^2 . If φ is the linear functional on $\mathscr{P}(\mathbb{R})$ defined by $\varphi(p)=p'(0)$, then $\varphi\in U^0$.

Examples

3.104 **Example** Let e_1, e_2, e_3, e_4, e_5 denote the standard basis of \mathbf{R}^5 , and let $\varphi_1, \varphi_2, \varphi_3, \varphi_4, \varphi_5$ denote the dual basis of $(\mathbf{R}^5)'$. Suppose

$$U = \operatorname{span}(e_1, e_2) = \{(x_1, x_2, 0, 0, 0) \in \mathbf{R}^5 : x_1, x_2 \in \mathbf{R}\}.$$

Show that $U^0 = \text{span}(\varphi_3, \varphi_4, \varphi_5)$.

Annihilator is a subspace; The dimension of the the annihilator

3.105 The annihilator is a subspace

Suppose $U \subset V$. Then U^0 is a subspace of V'.

Proof Clearly $0 \in U^0$ (here 0 is the zero linear functional on V), because the zero linear functional applied to every vector in U is 0.

Suppose $\varphi, \psi \in U^0$. Thus $\varphi, \psi \in V'$ and $\varphi(u) = \psi(u) = 0$ for every $u \in U$. If $u \in U$, then $(\varphi + \psi)(u) = \varphi(u) + \psi(u) = 0 + 0 = 0$. Thus $\varphi + \psi \in U^0$.

Similarly, U^0 is closed under scalar multiplication. Thus 1.34 implies that U^0 is a subspace of V'.

Dimension of the annihilator

You should construct the proof outlined in the paragraph above, even though a slicker proof is presented here.

3.106 Dimension of the annihilator

Suppose V is finite-dimensional and U is a subspace of V. Then

$$\dim U + \dim U^0 = \dim V.$$

Proof. Let $i \in \mathcal{L}(U, V)$ be the inclusion map defined by

$$i(u) = u$$
, for $u \in U$.

Thus i' is a linear map from V' to U'. The Fundamental Theorem of Linear Maps (3.22) applied to i' shows that

$$\dim \operatorname{range} i' + \dim \operatorname{null} i' = \dim V'.$$

Proof

However, null $i'=U^0$ (as can be seen by thinking about the definitions) and $\dim V'=\dim V$ (by 3.95), we can rewrite the equation above as

$$\dim \operatorname{range} i' + \dim U^0 = \dim V.$$

If $\varphi \in U'$, then φ can be extended to a linear functional φ on V (see, for example, Exercise 11 in Section 3.A). The definition of i' shows that $i'(\varphi) = \varphi$. Thus $\varphi \in \text{range } i'$, which implies that range i' = U'. Hence dim range $i' = \dim U' = \dim U$, and the displayed equation above becomes the desired result.

The null space of T'

The proof of part (a) of the result below does not use the hypothesis that *V* and *W* are finite-dimensional.

3.107 The null space of T'

Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Then

- (a) null $T' = (\text{range } T)^0$;
- (b) $\dim \operatorname{null} T' = \dim \operatorname{null} T + \dim W \dim V$.

T surjective is equivalent to T' injective

The next result can be useful because sometimes it is easier to verify that T' is injective than to show directly that T is surjective.

3.108 T surjective is equivalent to T' injective

Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Then T is surjective if and only if T' is injective.

Proof. The map $T \in \mathcal{L}(V, W)$ is surjective if and only if range T = W, which happens if and only if (range T) $^0 = \{0\}$, which happens if and only if null $T' = \{0\}$ [By 3.107(a)], which happens if and only if T' is injective.

The range of T'

The range of T'

3.109 The range of T'

Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Then

- (a) $\dim \operatorname{range} T' = \dim \operatorname{range} T;$
- (b) range $T' = (\text{null } T)^0$.

T injective is equivalent to T' surjective

The next result should be compared to 3.108.

3.110 T injective is equivalent to T' surjective

Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Then T is injective if and only if T' is surjective.

Proof The map $T \in \mathcal{L}(V, W)$ is injective if and only if null $T = \{0\}$, which happens if and only if (null T)⁰ = V', which happens if and only if range T' = V' [by 3.109(b)], which happens if and only if T' is surjective.

The matrix of the Dual of a Linear Map

We define the transpose of a matrix

3.111 **Definition** transpose, A^t

The *transpose* of a matrix A, denoted A^{t} , is the matrix obtained from A by interchanging the rows and columns. More specifically, if A is an m-by-n matrix, then A^{t} is the n-by-m matrix whose entries are given by the equation

$$(A^{\mathsf{t}})_{k,j} = A_{j,k}.$$

The Transpose of the Product of Matrices

The transpose of the product of matrices

3.113 The transpose of the product of matrices

If A is an m-by-n matrix and C is an n-by-p matrix, then

$$(AC)^{\mathsf{t}} = C^{\mathsf{t}} A^{\mathsf{t}}.$$

Matrices

3.114 The matrix of T' is the transpose of the matrix of T

Suppose $T \in \mathcal{L}(V, W)$. Then $\mathcal{M}(T') = (\mathcal{M}(T))^{t}$.

Proof. Let $A = \mathcal{M}(T)$ and $C = \mathcal{M}(T')$. Suppose $1 \le j \le m$ and $1 \le k \le n$. From the definition of $\mathcal{M}(T')$ we have

$$T'(\phi_j) = \sum_{r=1}^n C_{r,j} \varphi_r.$$

The left side of the equation above equals $\phi \circ T$. Thus applying both sides of the equation above to v_k gives

$$(\phi_j \circ T)(v_k) = \sum_{r=1}^n C_{r,j} \varphi_r(v_k) = C_{k,j}.$$

Matrices

We also have

$$(\phi_j \circ T)(\nu_k) = \phi_j(T\nu_k) = \phi_j\left(\sum_{r=1}^m A_{r,k}w_r\right) = A_{j,k}.$$

Comparing the last line of the last two sets of equations, we have

$$C_{k,j} = A_{j,k}$$
.

Thus $C = A^t$. In other words, $M(T') = (M(T))^t$, as desired.

Row Rank and Column Rank

3.115 **Definition** row rank, column rank

Suppose A is an m-by-n matrix with entries in \mathbf{F} .

- The *row rank* of A is the dimension of the span of the rows of A in $\mathbb{F}^{1,n}$.
- The *column rank* of A is the dimension of the span of the columns of A in $\mathbb{F}^{m,1}$.

Rank

3.117 Dimension of range T equals column rank of $\mathcal{M}(T)$

Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Then dim range T equals the column rank of $\mathcal{M}(T)$.

Row rank equals column rank

3.118 Row rank equals column rank

Suppose $A \in \mathbf{F}^{m,n}$. Then the row rank of A equals the column rank of A.

Rank

The last result allows us to dispense the terms "row rank" and "column rank" and just use the simpler term "rank"

3.119 **Definition** rank

The *rank* of a matrix $A \in \mathbb{F}^{m,n}$ is the column rank of A.

Homework Assignment 10 and 11

3.F: 6, 8, 15, 22, 29, 31, 34, 36.