Nonnegative Matririx Factorization (NNMF)

Note Title

* What is NNMF?

- a type of low-rank approximation of a given matrix $A \in \mathbb{R}^{m \times n}$ where aij ≥ 0 vi, vj.
- Factors must be nonnegative
- Certain applications (e.g., text mining, chemometrics, etc.) require nonnegativity in all the factors involved.
- SVD, PCA cannot be used because they involve negative coefficients, negative entries in the factors (i.e., entries of U, V etc.)

* NNMF Objective

Given a nonnegative matrix $A \in \mathbb{R}^{m \times n}$ and k < min(m,n), find nonregative matrices $W \in \mathbb{R}^{m \times k}$, $H \in \mathbb{R}^{k \times n}$ to minimize the objective function

 $J_{NNMF}(W,H) := \frac{1}{2} || A - WH ||_{F}^{2}$

The product WH is called an (approximate) NNMF of A.

The choice of k is critical in practice, but often k (min (m, n) \Rightarrow a compressed approx. of A.

* Numerical Approaches for NNMF

- · Minimization of JNNMF is difficult:
 - Many local minima exist in JNNMF in both W&H.
 - Lack of a unique solution Consider D∈ IRKXK, non regative and nonsingular, and suppose D'is also nonnegative (e.g., D could be diag (di,..., dk) with dj>0 1 ≤ j ≤ k.) Then if WH is an NNMF of A, so is WDD'H.
- · Many algorithms have been proposed. We'll discuss only one of them based on the so-called alternating Least Squares (ALS)

algorithm (ALS-NNMF)

rand(m,k) · Initialize W by W=rand(m,k).

returns For j=1: maxiter

rendon

Solve for H in WWH=WA.

Set all negative entrés of H to 0.

· Solve for Win HHTWT=HAT.

. Set all negative entries of W to O.

are uniformly distributed

matrix whee

entries

on the unit

interval (0,1)

Compare it with "randn" : the standard normal distribution!

Notes: (1) Convergence is not quaranteed yet this algorithm usually works in practice.

(2) $W^TWH = W^TA$, $HH^TW^T = HA^T$ one just a bunch of normal egn's, e.g., $W^TW h_i = W^TA_i$, i = 1:n. $HH^TW^T = HA^T$ comes from the following: $||A - WH||_F \rightarrow min$. $\Leftrightarrow ||A^T - H^TW^T||_F \rightarrow min$.

 $\Leftrightarrow ((H^{T})^{T}H^{T})W^{T} = (H^{T})^{T}A^{T}$ $\Leftrightarrow HH^{T}W^{T} = HA^{T}.$

(3) Random initialization like the original algorithm may not be efficient. We can use the following algorithm to initialize the matrix W:

 Compute the first k singular values and the corresponding vectors by [U,S,V] = SVds(A,k);

· Then do the following: W(:,1) = U(:,1);

end

The reasoning behind this initialization is the following:

Good exercise.

If A is nonnegative, then its first singular vectors U, & D, are also nonnegative. So, it's good to use W(:,1) = W, and $H(1,:) = \psi_{i}^{T}$

Unfortunately, uz, &z contains negative entries due to the orthogonality WITW2, BIL b2. So, construct C= W2 42, and set all the negative entries of C to 0. Then this C is nonnegative, so can compute the first singular

vectors of this C, which are nonnegative and good approximations to U2, &2. Then set the first left singular vector as the 2nd column of W. We can repeat this procedure

Example: Problem 2 of HW#1.

Consider the following set of terms (words) and documents (or rather book titles):

	Terms		Documents
T1:	Book (Handbook, BOOK)	D1:	The Princeton Companion to Mathematics
T2:	Equation (Equations)	D2:	NIST Handbook of Mathematical Functions
T3:	Function (Functions)	D3:	Table of Integrals, Series, and Products
T4:	Integral (Integrals)	D4:	Linear Integral Equations
T5:	Linear	D5:	Proofs from THE BOOK
T6:	Mathematics (Mathematical)	D6:	The Book of Numbers
T7:	Number (Numbers)	D7:	Number Theory in Science and Communication
— T8:	Series	D8:	Green's Functions and Boundary Value Problems
		D9:	Discourse on Fourier Series
		D10:	Basic Linear Partial Differential Equations
		D11:	Mathematical Physics, An Advanced Course

Term-Document Matrix

		D_1	D_2	D_3	D_4	D_5	D_6	D_7	D_8	D_9	D_{10}	D_{11}	
	T_1	0	1	0	0	1	1	0	0	0	0	0	
	T_2	0	0	0	1	0	0	0	0	0	1	0	
	T_3	0	1	0	0	0	0	0	1	0	0	0	
Δ=	T_4	0	0	1	1	0	0	0	0	0	0	0	
	T_5	0	0	0	1	0	0	0	0	0	1	0	
	T_6	1	1	0	0	0	0	0	0	0	0	1	
	T_7	0	0	0	0	0	1	1	0	0	0	0	
	T_8	0	0	1	0	0	0	0	0	1	0	0	

Let's compute the NNMF of A with k=3, using MATLAB:

$$\gg [W,H] = nnmf(A,3);$$

The resulting matrices are:

$$W = \begin{bmatrix} 1.4366 & 0.0016 & 0 \\ 0 & 1.4181 & 0 \\ 0.9536 & 0 & 0 \\ 0 & 0.6530 & 0.8984 \\ 0 & 1.4181 & 0 \\ 1.2931 & 0 & 0.0023 \\ 0.4829 & 0.0076 & 0 \\ 0 & 0 & 1.3883 \end{bmatrix} \begin{array}{c} \mathbf{T1} \\ \mathbf{T2} \\ \mathbf{T3} \\ \mathbf{T4} \\ \mathbf{T5} \\ \mathbf{T6} \\ \mathbf{T7} \\ \mathbf{T8} \\ \end{array}$$

Let's interpret the results!

W3 has large entries corresponding to T4 (Integral/Integrals) and T8 (Series).

The responses of the documents to evision the 3rd row of H.

You can see that D3 and D9 have high responses, which are reasonable:

D3 = Table of Integrals, Series, and Products

D9 = Discourse on Fourier Series

Exercise: Do interpret W, and W2 yourself!