TAHMİN-HİPOTEZ TESTİ-GÜVEN ARALIĞI

	Kitle	Örneklem		
Ortalama	μ	X		
Varyans	σ^2	S^2		
	Parametre	Tahmin Edici		
	(Tahmin Edilen)	(İstatistik)		

İki türlü tahmin vardır.

- 1) Nokta tahmini: Bir kitle parametresini tahmin etmek için kullanılan örnek istatistiğinin değerine nokta tahmini adı verilir.
- 2) Aralık tahmini: Bir parametrenin aralık tahmini, parametreyi tahmin etmek için kullanılan değerleri içeren bir aralıktır.

Bir parametrenin bir aralık tahminin **güven düzeyi**, parametreyi kapsama olasılığıdır. $1 - \alpha$ ile gösterilir. Burada α anlamlılık düzeyi adını alır.

Tahminin güven düzeyini kullanarak bir parametre için belirlenen aralığa **güven aralığı** denir. En çok kullanılan güven aralıkları %90, %95 ve %99' dır.

Güven Aralığı

1. Kitle Varyansı σ^2 Biliniyor

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right), \quad Z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

$$P\left(-Z_{T(\alpha/2)} \le Z \le Z_{T(\alpha/2)}\right) = 1 - \alpha$$

$$\begin{split} P\left(-Z_{T(\alpha/2)} &\leq \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} \leq Z_{T(\alpha/2)}\right) = 1 - \alpha \\ P\left(\bar{x} - Z_{T(\alpha/2)} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x} + Z_{T(\alpha/2)} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha & \longrightarrow \quad (1 - \alpha) \text{ g\"{u}ven d\"{u}zeyinde} \\ \mu \text{ için g\"{u}ven aralığı} \end{split}$$

Kitle Varyansı σ^2 Bilinmiyor (n < 30)

$$t = \frac{\bar{x} - \mu}{s/\sqrt{n}} \sim t_{n-1} \quad (s^2 \text{\"orneklem varyans})$$

$$P\left(-t_{T(\alpha/2, n-1)} \leq t \leq t_{T(\alpha/2, n-1)}\right) = 1 - \alpha$$

$$P\left(-t_{T(\alpha/2, n-1)} \leq \frac{\bar{x} - \mu}{s/\sqrt{n}} \leq t_{T(\alpha/2, n-1)}\right) = 1 - \alpha$$

$$P\left(\bar{x} - t_{T\left(\frac{\alpha}{2}, n-1\right)} \frac{s}{\sqrt{n}} \leq \mu \leq \bar{x} + t_{T(\alpha/2, n-1)} \frac{s}{\sqrt{n}}\right) = 1 - \alpha \longrightarrow (1 - \alpha) \text{ g\"uven d\"uzeyinde } \mu \text{ için g\"uven aralığı}$$

Not: n > 30 olduğunda t istatistiği yerine z istatistiği kullanılır.

TABLE 2 STUDENT'S I-DISTRIBUTION CRITICAL POINTS

d.f.	.250 .	.100	.050	.025	.010	.00833	.00625	.005
1	1.000	3.078	6.314	12.706	31.821	38.190	50.923	63.657
2	.816	1.886	2.920	4.303	6.965	7.649	8.860	9.925
3	.765	1.638	2.353	3.182	4.541	4.857	5.392	5.841
4	.741	1,533	2.132	2.776	3.747	3.961	4.315	4,604
5	.727	1.476	2.015	2.571	3.365	3.534	3.810	4.032
6	.718	1.440	1.943	2.447	3.143	3.287	3.521	3.707
7	.711	1,415	1.895	2.365	2.998	3.128	3.335	3.499
8	.706	1.397	1.860	2.306	2,896	3.016	3.206	3.355
9	.703	1.383	1.833	2.262	2.821	2.933	3.111	3.250
10	.700	1.372	1.812	2.228	2.764	2.870	3.038	3.169
11	.697	1.363	1.796	2.201	2.718	2.820	2.981	3.106
12	.695	1.356	1.782	2.179	2.681	2,779	2.934	3.055
13	.694	1.350	1.771	2.160	2.650	2.746	2.896	3.012
. 14	.692	1.345	1.761	2.145	2.624	2.718	2.864	2.977
15	.691	1.341	1.753	2,131	2.602	2.694	2.837	2.947
16	.690	1.337	1.746	2.120	2.583	2.673	2.813	2.921
17	.689	1.333	1.740	2,110	2.567	2.655	2.793	2.898
18	.688	1.330	1.734	2.101	2.552	2.639	2.775	2.878
19	.688	1.328	1.729	2.093	2.539	2.625	2.759	2.861
20	.687	1.325	1.725	2.086	2.528	2.613	2.744	2.845
21	.686	1.323	1.721	2.080	2.518	2.601	2.732	2.831
22	.686	1.321	1.717	2.074	2.508	2.591	2.720	2.819
23	.685	1.319	1.714	2.069	2.500	2.582	2.710	2.807
24	.685	1.318	1.711	2.064	2.492	2.574	2.700	2.797
25	.684	1.316	1.708	2.060	2.485	2.566	2:692	2.787
26	.684	1.315	1.706	2,056	. 2.479	2.559	2.684	2.779
27	.684	1.314	1.703	2.052	2.473	2.552	2.676	2.771
28	:683	1.313	1.701	2.048	2.467	2.546	2.669	2.763
29	.683	1.311	1.699	2.045	2.462	2.541	2.663	2,756
30	.683	1.310	1.697	2.042	2.457	2.536	2.657	2.750
40	.681	1.303	1.684	2.021	2.423	2.499	2.616	2.704
60	.679	1.296	1.671	2.000	2.390	2.463	2.575	2.660
120	.677	1.289	1.658	1.980	2.358	2.428	2.536	2.617
00	.674	1.282	1.645	1.960	2.326	2.394	2.498	2.576

<u>Hipotez-Hipotez Testi:</u>

Geçerliliği olasılık esaslarına göre araştırılabilen ve karar verebilmek için öne sürülen varsayımlara istatistikte **"hipotez"** denir. Hipotezlerin örneklem yardımıyla incelenmesine **"hipotez testi"** denir.

Yokluk – Alternatif Hipotez:

 $H_0 \rightarrow \text{yokluk hipotezi}$

 H_1 ya da $H_s \rightarrow$ alternatif ya da seçenek hipotez

Örneğin,

Tek yönlü hipotez,

$$H_0$$
: $\mu = 5$ ya da H_0 : $\mu = 5$

$$H_1$$
: $\mu < 5$ H_1 : $\mu > 5$

İki yönlü hipotez

$$H_0: \mu = 5$$

$$H_1: \mu \neq 05$$

Kitle Ortalaması İçin Hipotez Testi

1. Kitle Varyansı σ^2 Biliniyor

1) Hipotez kurulur.

$$H_0: \mu = \mu_0$$

$$H_1: \mu < \mu_0, \ \mu > \mu_0, \ \mu \neq \mu_0$$

2) Test istatistiği hesaplanır.

$$Z_H = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

3) Kritik bölgeye göre hipotez red edilir ya da red edilemez.

$$H_0: \mu = \mu_0$$

 $H_1: \mu < \mu_0$

$$H_0: \mu = \mu_0$$

 $H_1: \mu > \mu_0$

$$H_0: \mu = \mu_0$$

$$H_1: \mu \neq \mu_0$$

 $Z_H < -Z_{T(\alpha)}$ ise H_0 red edilir

 $Z_H > Z_{T(\alpha)}$ ise H_0 red edilir $Z_H < -Z_{T(\alpha/2)}$

$$Z_H < -Z_{T(\alpha/2)}$$
 ya da $Z_H > Z_{T(\alpha/2)}$ ise H_0 red edilir

 $Z_{T(\alpha)}$: $1 - \alpha$ olasılığına karşı gelen tablo değeri

$$\begin{split} P\left(-Z_{T(\alpha/2)} &\leq \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} \leq Z_{T(\alpha/2)}\right) = 1 - \alpha \\ P\left(\bar{x} - Z_{T(\alpha/2)} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x} + Z_{T(\alpha/2)} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha & \longrightarrow \quad (1 - \alpha) \text{ güven düzeyinde} \\ \mu \text{ için güven aralığı} \end{split}$$

2. Kitle Varyansı σ^2 Bilinmiyor (n < 30)

1) Hipotez kurulur.

$$\begin{split} &H_0 ; \mu = \mu_0 \\ &H_1 ; \mu < \mu_0, \; \mu > \mu_0, \; \mu \neq \mu_0 \end{split}$$

2) Test istatistiği hesaplanır.

$$t_H = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

3) Kritik bölgeye göre hipotez red edilir ya da red edilemez.

$$H_{0}: \mu = \mu_{0} \qquad \qquad H_{0}: \mu = \mu_{0} \qquad \qquad H_{0}: \mu = \mu_{0} \qquad \qquad H_{1}: \mu \neq \mu_{0}$$

$$H_{1}: \mu \neq \mu_{0} \qquad \qquad H_{1}: \mu \neq \mu_{0}$$

$$A/2 \qquad \qquad -t_{T(\alpha, n-1)} \qquad \qquad t_{T(\alpha, n-1)} \qquad t_{T(\alpha, n-1)} \qquad t_{T(\frac{\alpha}{2}, n-1)} t_{T(\frac{\alpha}{2}, n-1)}$$

$$t_{H} < -t_{T(\alpha, n-1)} \text{ ise } H_{0} \text{ red} \qquad t_{H} > t_{T(\frac{\alpha}{2}, n-1)} \text{ ise } H_{0} \text{ red}$$

$$t_{H} > t_{T(\frac{\alpha}{2}, n-1)} \text{ ise } H_{0} \text{ red}$$

Not: n > 30 olduğunda t istatistiği yerine z istatistiği kullanılır.