clocks at A is moved in a closed curve with constant velocity until it returns to A, the journey lasting t seconds, then by the clock which has remained at rest the travelled clock on its arrival at A will be $\frac{1}{2}tv^2/c^2$ second slow. Thence we conclude that a balance-clock⁷ at the equator must go more slowly, by a very small amount, than a precisely similar clock situated at one of the poles under otherwise identical conditions.

§ 5. The Composition of Velocities

In the system k moving along the axis of X of the system K with velocity v, let a point move in accordance with the equations

$$\xi = w_{\xi}\tau, \eta = w_{\eta}\tau, \zeta = 0,$$

where w_{ξ} and w_{η} denote constants.

Required: the motion of the point relatively to the system K. If with the help of the equations of transformation developed in \S 3 we introduce the quantities x, y, z, t into the equations of motion of the point, we obtain

$$x = \frac{w_{\xi} + v}{1 + vw_{\xi}/c^2}t,$$

$$y = \frac{\sqrt{1 - v^2/c^2}}{1 + vw_{\xi}/c^2}w_{\eta}t,$$

$$z = 0.$$

Thus the law of the parallelogram of velocities is valid according to our theory only to a first approximation. We set

$$V^{2} = \left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2},$$

$$w^{2} = w_{\xi}^{2} + w_{\eta}^{2},$$

$$a = \tan^{-1} w_{y}/w_{x},$$

a is then to be looked upon as the angle between the velocities v and w. After a simple calculation we obtain

$$V = \frac{\sqrt{(v^2 + w^2 + 2vw\cos a) - (vw\sin a/c^2)^2}}{1 + vw\cos a/c^2}.$$

 $^{^7\}mathrm{Not}$ a pendulum-clock, which is physically a system to which the Earth belongs. This case had to be excluded.