				ءَ: ا	$\frac{4t_3)}{t_3}$		t ₃
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3 k^2 (r_3 + 2 r_5) + 4 t_3}{(k + 2 k^3)^2 (r_3 + 2 r_5) t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$\sigma_{1^-\alpha}^{\#1}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$i(3k^2(2r_3+r_5)+2t_2)$ $k(1+k^2)^2(2r_3+r_5)t_2$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
	$_{1}^{#1}$ $\dagger^{\alpha\beta}$	$\frac{#2}{1^+} + \alpha \beta$	$_{1}^{#1}$ $\dagger^{\alpha\beta}$	$\sigma_{1}^{\#1} + \alpha$	$\sigma_{1}^{#2} + \alpha$	$\tau_{1}^{\#1} + ^{lpha}$	$\tau_1^{\#2} + ^{\alpha}$

	#	1	1	3	ω	0 3	2	2	21
Source constraints	SO(3) irreps	$\tau_0^{#2} == 0$	$\tau_{0}^{\#1} - 2 \bar{i} k \sigma_{0}^{\#1} == 0$	$t_1^{\#2}{}^{\alpha} + 2ik \sigma_1^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\sigma_{2^{-1}}^{\#1}\alpha\beta\chi := 0$	$\tau_{2+}^{\#1}\alpha\beta==0$	Total #:

$f_{1}^{\#2}$	0	0	0	$-\frac{2}{3}$ ikt $_3$	$\tfrac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>ئع</u> ع	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	<u>2 i k t 3</u> 3
$f_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{3}\vec{l}\sqrt{2}kt_2$	<i>ikt</i> 2 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#2}{}_+ \alpha eta$	$\frac{\sqrt{2} t_2}{3}$	2 2 3	$-\frac{1}{3}$ \bar{l} kt_2	0	0	0	0
$\omega_1^{\#1}{}_+\alpha_\beta$	$\omega_{1}^{\#1} + \alpha^{\beta} k^{2} (2 r_{3} + r_{5}) + \frac{2t_{2}}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}$ i $\sqrt{2}$ kt ₂	0	0	0	0
	$\alpha\beta$	$\omega_1^{\#2} + \alpha^{eta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}1}}^{\#_1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{#1} + \alpha$	$f_1^{\#2} + \alpha$

_	$\sigma_{0^+}^{\#1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\sharp 1}$ †	0	0	0	$\frac{1}{t_2}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2+\alpha\beta}^{\#1}$	$\omega_{2-\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{\alpha\beta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

	$\omega_0^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\sharp 1}$
$\omega_{0}^{\#1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{\#1}\dagger$	$i\sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{#1}$ †	0	0	0	t_2

Lagrangian density

$$\frac{2}{3}t_3 \ \omega_{\kappa}^{\alpha l} \ \omega_{\kappa\alpha}^{\kappa} + \frac{2}{3}t_2 \ \omega_{\kappa}^{\kappa\lambda} \ \omega_{\kappa\lambda}^{l} + \frac{1}{3}t_2 \ \omega_{\kappa\lambda}^{l} \ \omega_{\kappa\lambda}^{l} + f^{\alpha\beta} \ \tau_{\alpha\beta} + \\ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi}^{} - \frac{1}{2}r_3 \partial_{l}\omega^{\kappa\lambda}_{\kappa} \partial^{l}\omega_{\lambda}^{\alpha}_{\alpha}^{} - r_5 \partial_{l}\omega^{\kappa\lambda}_{\kappa} \partial^{l}\omega_{\lambda}^{\alpha}_{\alpha}^{} + \frac{1}{2}r_3 \partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta} \partial_{\kappa}\omega^{\theta\kappa\lambda}^{} - \\ r_5 \partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta} \partial_{\kappa}\omega^{\theta\kappa\lambda}^{} - \frac{1}{2}r_3 \partial_{\theta}\omega_{\lambda}^{\alpha}_{\alpha} \partial_{\kappa}\omega^{\theta\kappa\lambda}^{} + r_5 \partial_{\theta}\omega_{\lambda}^{\alpha}_{\alpha} \partial_{\kappa}\omega^{\theta\kappa\lambda}^{} - \frac{1}{2}r_3 \partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta} \partial_{\kappa}\omega^{\kappa\lambda\theta}^{} - \\ r_5 \partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta} \partial_{\kappa}\omega^{\kappa\lambda\theta}^{} + r_3 \partial_{\theta}\omega_{\lambda}^{\alpha}_{\alpha} \partial_{\kappa}\omega^{\kappa\lambda\theta}^{} + 2r_5 \partial_{\theta}\omega_{\lambda}^{\alpha}_{\alpha} \partial_{\kappa}\omega^{\kappa\lambda\theta}^{} + \\ \frac{1}{6}t_2 \partial^{\alpha}f_{\theta\kappa}\partial^{\kappa}f_{\alpha}^{\theta}^{} - \frac{1}{6}t_2 \partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\theta}^{} + \frac{1}{6}t_2 \partial^{\alpha}f_{\kappa}^{\lambda}\partial^{\kappa}f_{\alpha\lambda}^{} - \frac{2}{3}t_3 \omega_{\kappa\alpha}^{\alpha}\partial^{\kappa}f_{\alpha}^{l}^{} - \\ \frac{2}{3}t_3 \omega_{\kappa\lambda}^{\lambda} \partial^{\kappa}f_{\alpha}^{} - \frac{4}{3}t_3 \partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f_{\alpha}^{l}^{} + \frac{2}{3}t_3 \partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\alpha}^{} + \frac{1}{3}t_2 \omega_{\theta\kappa}\partial^{\kappa}f_{\kappa}^{}^{} + \\ \frac{2}{3}t_2 \omega_{l\kappa\theta}\partial^{\kappa}f_{\alpha}^{} - \frac{1}{3}t_2 \omega_{\thetal\kappa}\partial^{\kappa}f_{\lambda\alpha}^{} - \frac{1}{6}t_2 \partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\alpha}^{} + \frac{1}{6}t_2 \partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}^{} + \\ \frac{2}{3}t_3 \omega_{\kappa\lambda}^{\lambda}\partial^{\kappa}f_{\kappa}^{} - \frac{1}{6}t_2 \partial^{\alpha}f_{\kappa}\partial^{\kappa}f_{\lambda\alpha}^{} - \frac{1}{6}t_2 \partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}^{} + \frac{1}{6}t_2 \partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}^{} + \\ \frac{2}{3}t_3 \partial^{\alpha}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\kappa}^{} - \frac{1}{6}t_2 \partial^{\alpha}f_{\kappa}\partial^{\kappa}f_{\lambda\alpha}^{} - \frac{1}{6}t_2 \partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}^{} + \frac{1}{6}t_2 \partial_{\kappa}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda}^{} + \\ \frac{2}{3}t_3 \partial^{\alpha}f_{\lambda}^{\lambda}\partial^{\kappa}f_{\lambda\kappa}^{} - 4r_3 \partial^{\beta}\omega_{\kappa}^{\lambda\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{} - \frac{1}{2}r_3 \partial_{\alpha}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega_{\kappa}^{} + \\ r_5 \partial_{\alpha}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega_{\lambda}^{} - 4r_3 \partial^{\beta}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega_{\kappa}^{} - r_5 \partial_{\theta}\omega_{\lambda}^{\alpha}\alpha\partial^{\lambda}\omega_{\kappa}^{} + \\ r_5 \partial_{\alpha}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega_{\lambda}^{} - \frac{1}{2}r_3 \partial_{\alpha}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega_{\kappa}^{} - r_5 \partial_{\theta}\omega_{\lambda}^{\alpha}\alpha\partial^{\lambda}\omega_{\kappa}^{} + \\ r_5 \partial_{\alpha}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega_{\lambda}^{} - \frac{1}{2}r_3 \partial_{\alpha}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega_{\lambda}^{} - r_5 \partial_{\theta}\omega_{\lambda}^{\alpha}\alpha\partial^{\lambda}\omega_{\kappa}^{} + \\ r_5 \partial_{\alpha}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega_{\lambda}^{} - \frac{1}{2}r_3 \partial_{\alpha}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega_{\lambda}^{} - r_5 \partial_{\alpha}\omega_{\lambda}^{}\omega_{\lambda}^{} - r_5 \partial_{\alpha}\omega_{\lambda}^{}\omega_{\lambda}^{} + r_5 \partial_{\alpha}\omega_{\lambda}^{}\omega_{\lambda}^{} + r_5$$

Quadratic pole

Pole residue: $-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$

Polarisations: 2

(No massive particles)

Unitarity conditions

 $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$