- 1. Recall that if X is a "nice" (meaning connected, locally path connected and semi-locally simply connected) topological space with basepoint x_0 , then connected, based covering spaces of X are in 1–1 correspondence with subgroups of $\pi_1(X,x_0)$. For such a space X, let $p:\widetilde{X}\to X$ be a universal covering map, and let $A\subset X$ be a "nice" subspace. Let $\widetilde{A} \subset \widetilde{X}$ be a path component of the preimage $p^{-1}(A)$. Prove that, with suitable choices of basepoints, the restriction $p: \widetilde{A} \to A$ is the covering space of A corresponding to the kernel of the map $\pi_1(A) \to \pi_1(X)$ induced by inclusion.
- 2. a) For each n > 0, let S^n have the CW structure with a single 0-cell and a single n-cell. Describe a CW structure on the product $S^n \times S^m$, and use it to compute the homology groups $H_i(S^n \times S^m)$.
- b) Let X be the space obtained from $S^1 \times S^2$ by attaching a 2-cell along a map $\partial D^2 \to$ $S^1 \times \{pt\}$ of degree k. Describe a CW structure on X and use it to find the homology groups of X.
- 3. Let $f: S^n \to S^n$ be a continuous map that is homotopic to a constant map. Prove that there exists $x \in S^n$ with f(x) = x, and also a point $y \in S^n$ with f(y) = -y.
- 4. Let M be a smooth, oriented manifold without boundary and $f: M \to \mathbb{R}$ a smooth map. For $t \in \mathbb{R}$ a regular value of f, prove that the submanifold $Y = f^{-1}(t)$ of M is orientable.
- 5. Let M be a smooth manifold covered by two open connected sets, $M = U_1 \cup U_2$. Suppose ω is a 1-form on M and $f_i:U_i\to\mathbb{R}$ are smooth maps such that $\omega_{U_i}=df_i,\ i=1,2$ Prove that if $U_1 \cap U_2$ is connected then there is a smooth function $f: M \to \mathbb{R}$ such that $\omega = df$. Find an example of a manifold $M = U_1 \cup U_2$ where $U_1 \cap U_2$ is not connected, and this conclusion does not hold.
- 6. Prove that the orthogonal group O(n) (consisting of $n \times n$ real matrices whose rows are orthonormal) is a manifold. What is its dimension?
- 7. Let A and B each be copies of a Möbius band, and let $X = A \cup B$ be the space obtained by identifying the boundary circles of A and B.
 - a) Find a presentation for the fundamental group of X.
 - b) Compute the homology groups of X with \mathbb{Z} coefficients and with coefficients in $\mathbb{Z}/2\mathbb{Z}$.
- 8. Consider the Möbius band M with boundary curve γ . Denote the two circles in the wedge sum $S^1 \vee S^1$ by a, b, and consider a continuous map $\partial M \longrightarrow S^1 \vee S^1$ which sends γ to the word ab^2ab . Does f admit an extension to M?

A possible alternative to one of the above problems:

9. Let $f: A \longrightarrow B$ be a chain map. Denoting the differential in the chain complexes A, B by d^A , d^B respectively, the mapping cone $C(\bar{f})$ is defined as the chain complex

$$\ldots \longrightarrow A_{n+1} \oplus B_n \longrightarrow A_n \oplus B_{n-1} \longrightarrow A_{n-1} \oplus B_{n-2} \longrightarrow \ldots$$

with the differential

$$\begin{pmatrix} -d_{n+1}^A & 0 \\ f_{n+1} & d^B b_n \end{pmatrix}.$$

with the differential $\begin{pmatrix} -d_{n+1}^A & 0 \\ f_{n+1} & d^B b_n \end{pmatrix}.$ Prove that if f,g are chain homotopic, then C(f),C(g) are chain homotopy equivalent.