UNIVERSIDADE DO ESTADO DE MINAS GERAIS ENGENHARIA DA COMPUTAÇÃO

ERNANE WILLIAM SILVA

TRABALHO

Divinópolis, MG

ERNANE WILLIAM SILVA

TRABALHO

Trabalho de Conclusão de Curso apresentado ao Curso de Engenharia de Computação do Centro Universitário SENAI CIMATEC como requisito parcial para obtenção do grau de Bacharel em Engenharia de Computação.

Orientador: Prof. Dr. Nome do Orientador.

Ernane William Silva

Trabalho

Status Trabalho aprovado.

Local e data de defesa Divinópolis, MG, 6 de novembro de 2017 (Segunda-feira).

Prof.

Doutor em Engenharia Electrotécnica e de Computadores (FEUP/PT) Doutor em Engenharia de Sistemas e Computação (UFRJ/BR) (Orientador UTFPR)

Prof.

Doutor em Engenharia Electrotécnica e de Computadores (FEUP/PT) Doutor em Engenharia de Sistemas e Computação (UFRJ/BR) (Co-orientador UTFPR)

> Prof Presidente banca Doutor Eng. (Presidente da Banca UTFPR)

Prof Banca A
Doutor Eng.
(Membro1 Banca UTFPR)

Prof Banca B Doutor Eng. (Membro2 Banca UTFPR)

Folha de Aprovação assinada encontra-se arquivada na Coordenação do Curso.

AGRADECIMENTOS

Certamente estes parágrafos não irão atender a todas as pessoas que fizeram parte dessa importante fase de minha vida. Portanto, desde já peço desculpas àquelas que não estão presentes entre essas palavras, mas elas podem estar certas que fazem parte do meu pensamento e de minha gratidão.

Agradeço ao meu orientador Prof. Dr. Fulano, pela sabedoria com que me guiou nesta trajetória.

Aos meus colegas de sala.

A Secretaria do Curso, pela cooperação.

Gostaria de deixar registrado também, o meu reconhecimento à minha família, pois acredito que sem o apoio deles seria muito difícil vencer esse desafio.

Em especial, a empresa Overleaf que permitiu, junto ao Prof. Reinaldo, abrir os olhos para a maravilha \LaTeX 2 ε 0 e utilizar a versão 27 do modelo de TCC entitulada GoldenDragon.

Enfim, a todos os que por algum motivo contribuíram para a realização desta pesquisa.

RESUMO

Nos Fundamentos da Aritmética (§68), Frege propõe definir explicitamente o operadorabstração 'o número de...' por meio de extensões e, a partir desta definição, provar o Princípio de Hume (PH). Contudo, a prova imaginada por Frege depende de uma fórmula (BB) não derivável no sistema em 1884. Acreditamos que a distinção entre sentido e referência e a introdução dos valores de verdade como objetos foram motivadas para justificar a introdução do Axioma IV, a partir do qual um análogo de (BB) é provável. Com (BB) no sistema, a prova do Princípio de Hume estaria garantida. Concomitantemente, percebemos que uma teoria unificada das extensões só é possível com a distinção entre sentido e referência e a introdução dos valores de verdade como objetos. Caso contrário, Frege teria sido obrigado a introduzir uma série de Axiomas V no seu sistema, o que acarretaria problemas com a identidade (Júlio César). Com base nestas considerações, além do fato de que, em 1882, Frege provara as leis básicas da aritmética (carta a Anton Marty), parece-nos perfeitamente plausível que estas provas foram executadas adicionando-se o PH ao sistema lógico de Begriffsschrift. Mostramos que, nas provas dos axiomas de Peano a partir de **PH** dentro da conceitografía, nenhum uso é feito de (BB). Destarte, não é necessária a introdução do Axioma IV no sistema e, por conseguinte, não são necessárias a distinção entre sentido e referência e a introdução dos valores de verdade como objetos. Disto, podemos concluir que, provavelmente, a introdução das extensões nos Fundamentos foi um ato tardio; e que Frege não possuía uma prova formal de **PH** a partir da sua definição explícita. Estes fatos também explicam a demora na publicação das Leis Básicas da Aritmética e o descarte de um manuscrito quase pronto (provavelmente, o livro mencionado na carta a Marty).

Palavras-chave: Palavras-chave

ABSTRACT

In The Foundations of Arithmetic (§68), Frege proposes to define explicitly the abstraction operator 'the number of...' by means of extensions and, from this definition, to prove Hume's Principle (HP). Nevertheless, the proof imagined by Frege depends on a formula (**BB**), which is not provable in the system in 1884. We believe that the distinction between sense and reference as well as the introduction of Truth-Values as objects were motivated in order to justify the introduction of Axiom IV, from which an analogous of (BB) is provable. With (BB) in the system, the proof of HP would be guaranteed. At the same time, we realize that a unified theory of extensions is only possible with the distinction between sense and reference and the introduction of Truth-Values as objects. Otherwise, Frege would have been obliged to introduce a series of **Axioms V** in his system, what cause problems regarding the identity (Julius Caesar). Based on these considerations, besides the fact that in 1882 Frege had proved the basic laws of Arithmetic (letter to Anton Marty), it seems perfectly plausible that these proofs carried out by adding **HP** to the Begriffsschrift's logical system. We show that in the proofs of Peano's axioms from **HP** within the begriffsschrift, (**BB**) is not used at all. Thus, the introduction of Axiom IV in the system is not necessary and, consequently, neither the distinction between sense and reference nor the introduction of Truth-Values as objects. From these findings we may conclude that probably the introduction of extensions in The *Foundations* was a late act; and that Frege did not hold a formal proof of **HP** from his explicit definition. These facts also explain the delay in the publication of the Basic Laws of Arithmetic and the abandon of a manuscript almost finished (probably the book mentioned in the letter to Marty).

Keywords: Keywords

LISTA DE ILUSTRAÇÕES

Figura 1 — A boat	20
Mapa 1 - A boat	20
Desenho 1 – A boat	21
Figura 2 – The same cup of coffee. Two times	21
Figura 3 – The same cup of coffee. Two times	22
Figura 4 – The same cup of coffee. Again	22
Figura 5 – The same cup of coffee. Multiple times	23

LISTA DE TABELAS

Tabela 1 – Um Exemplo de tabela alinhada que pode ser longa ou curta, con-	
forme padrão IBGE	15
Tabela 2 – Níveis de investigação	15
Tabela 3 – Materiais utilizados no desenvolvimento do sistema	17

LISTA DE QUADROS

LISTA DE ABREVIATURAS E SIGLAS

IoT Internet-of-Things		14
-------------------------------	--	----

LISTA DE EXCERTOS DE CÓDIGO-FONTE

Código 1	_	Caption2 do	quadro	 		 •	 	•	 ٠	•		 •	 •	19	1

SUMÁRIO

1	INTRODUÇÃO	14
1.1	SEÇÃO SECUNDÁRIA1	14
1.2 1.2.1	SEÇÃO SECUNDÁRIA2	
2	FUNDAMENTAÇAO TEÓRICA	16
3	MATERIAIS E MÉTODOS	17
4	RESULTADOS	24
5	CONCLUSÃO	25
6	TRABALHOS FUTUROS	26
6.1	LIMITAÇÕES	26
	REFERÊNCIAS	27
	APÊNDICES	28
	APÊNDICE A – NOME APÊNDICE 1	29
	APÊNDICE B – NOME APÊNDICE 2	30
	ANEXOS	31
	ANEXO A – NOME ANEXO 1	32
	ANEXO B – NOME ANEXO 2	33
	ANEXO C – NOME ANEXO 3	34

1 INTRODUÇÃO

O que [...] acarretaria problemas com a identidade (Júlio César). Com base nestas considerações, além do fato de que, em 1882, Frege provara as leis básicas da aritmética (carta a Anton Marty), parece-nos, Internet-of-Things (IoT).

1.1 SEÇÃO SECUNDÁRIA1

dsdsds

1.2 SEÇÃO SECUNDÁRIA2

plausível que estas provas foram executadas adicionando-se o **PH** ao sistema lógico de Begriffsschrift. Mostramos que, nas provas dos axiomas de Peano a partir de **PH** dentro da conceitografia, nenhum uso é feito de (**BB**). Destarte, não é necessária a introdução.

1.2.1 Seção Terciária

- a) linha 1:
 - subalinea 1;
 - subalinea 2;
- b) linha 2:
 - subalinea 1;
 - subalinea 2;
- c) linha 3:
 - subalinea 1;
 - subalinea 2;
- d) linha 4.

Tabela 1 – Um Exemplo de tabela alinhada que pode ser longa ou curta, conforme padrão IBGE.

Nome	Nascimento	Documento
Maria da Silva	11/11/1111	111.111.111-11

Fonte: Produzido pelos autores

Nota: Esta é uma nota, que diz que os dados são baseados na regressão linear.

Anotações: Uma anotação adicional, seguida de várias outras.

Tabela 2 – Níveis de investigação.

Nível de Investi- gação	Insumos	Sistemas de Investigação	Produtos
Meta-nível	Filosofia da Ciência	Epistemologia	Paradigma
Nível do objeto	Paradigmas do metanível e evidências do nível inferior	Ciência	Teorias e modelos
Nível inferior	Modelos e métodos do nível do objeto e problemas do nível inferior	Prática	Solução de problemas

2 FUNDAMENTAÇÃO TEÓRICA

$$a = \frac{N}{A} \tag{2.1}$$

The equation $\sigma = ma$ follows easily.

follows easily.

The equation $\sigma = ma$

Ilustrações ABNT NBR 14724:2011:

Qualquer que seja o tipo de ilustração, sua identificação aparece na parte superior, precedida da palavra designativa (desenho, esquema, fluxograma, fotografia, gráfico, mapa, organograma, planta, quadro, retrato, figura, imagem, entre outros), seguida de seu número de ordem de ocorrência no texto, em algarismos arábicos, travessão e do respectivo título.

Após a ilustração, na parte inferior, indicar a fonte consultada (elemento obrigatório, mesmo que seja produção do próprio autor), legenda, notas e outras informações necessárias à sua compreensão (se houver). A ilustração deve ser citada no texto e inserida o mais próximo possível do trecho a que se refere.

3 MATERIAIS E MÉTODOS

O sistema foi desenvolvido na forma de aplicação *web*. Para isso, foram utilizadas os materiais descritos na Tabela 3.

Tabela 3 – Materiais utilizados no desenvolvimento do sistema

Material	Versão	Disponível em	Aplicação
Anacha TamCat	8.5	http://tomcat.apache	Container de Servlets que implementa as tecnologias Java, funciona como um
Apache TomCat	6.5	org/	servidor para aplicações em Java.
			Ferramenta rápida de criação de diagramas,
Axure RP	8.1	https://www.axure.com/	wireframes, protótipos e especificações para
			websites.
Dootstaan	0.0.0	lattice // crattle cratestice in a crac/	Framework de estilizações de páginas por meio de
Bootstrap	3.3.6	http://getbootstrap.com/	Cascading Style Sheets (CSS).
	3		Linguagem que serve para
		https://www.w3.org/css/	"descrever" a
CSS			aparência/estilo de uma
			página web por meio de folhas de estilo em
			cascata.
			Para mapeamento objeto
Hibernate	5.1.0	http://hibernate .org/	relacional e persistência
			de dados.
			Linguagem de marcação
HTML	5.0	https://www.w3.org/	de textos utilizada para
		html/	desenvolvimento de
			interfaces de aplicações.
		(Continua na página seguinte

Tabela 3 – na página anterior

Material	Versão	Disponível em	Aplicação
Java EE	8.0	http://www.oracle.com/ technetwork/java/java- ee/ downloads/index.html	Linguagem para desenvolvimento da aplicação.
JQuery	2.2.4	https://jquery.com/	Biblioteca JavaScript utilizada no desenvolvimento da interface.
Maven	4.0	https://maven.apache org/	Modelagem do projeto e gerenciamento de dependências.
MySQL Server	5.7	https://dev.mysql.com/ downloads/mysql/	Sistema de gerenciamento de banco de dados (SGBD), que utiliza a linguagem Structured Query Language (SQL).
MySQL Workbench	6.3	https://dev.mysql.com/ downloads/mysql/	Modelagem do Banco de Dados do Sistema.
NetBeans	8.1	https://netbeans.org/	Integrated Development Environment (IDE) para desenvolvimento da aplicação.
VRaptor IV	4.2.0	http://www.vraptor.org/	Framework para desenvolvimento ágil de sistemas web com a linguagem de programação Java.

As ferramentas descritas na Tabela 3 foram utilizadas em algum ou ambos ciclos de desenvolvimento.

Após a configuração do Hibernate foram criadas as classes de modelo conforme o diagrama de entidade-relacionamento, apresentado , juntamente com as anotações necessárias utilizadas pelo Hibernate para realizar o mapeamento das classes, como apresentado no .

Código 1 – Caption2 do quadro

```
1 @Entity
2 public class Questao implements Serializable {
3
4
       @GeneratedValue(strategy = GenerationType.IDENTITY)
5
       private Integer id;
6
7
       @Column(length = 5000)
8
       private String enunciado;
9
10
       @Column(length = 3000)
11
       private String alternativaA;
12
13
       @Column(length = 3000)
14
       private String alternativaB;
15
16
       @Column(length = 3000)
17
       private String alternativaC;
18
19
       @Column(length = 3000)
       private String alternativaD;
20
21
22
       private Integer alternativaCorreta;
23
24 }
```

O apresenta uma parte da classe LoginController.java. O uso dos padrões do framework pode ser visto nas anotações acima dos métodos públicos, que indicam o método de requisição conforme a semântica dos métodos do *HyperText Transfer Protocol* (HTTP) (Get, Post, Put, *Patch*, *Delete*, *Head*, *Options*, *Connect* e *Trace*), requisições enviadas que não sejam do mesmo tipo anotado no método são rejeitadas automaticamente.

No texto, use assim: Figure 1 shows a boat.

Figure 1 shows a boat.

Figure 1 shows a boat.

Figura 1 – A boat.

Fonte: Autor.

Mapa 1 – A boat.

Desenho 1 – A boat.

Fonte: Autor.

Figura 2 – The same cup of coffee. Two times.

Figura 3 – The same cup of coffee. Two times.

Fonte: Autor.

(b) More coffee.

(a) Coffee.

Figura 4 – The same cup of coffee. Again.

(a) Tasty coffee.

(b) Too much coffee.

Figura 5 – The same cup of coffee. Multiple times.

(d) Too much coffee.

4 RESULTADOS

(SANTIAGO; SANTOS, 2014)

5 CONCLUSÃO

6 TRABALHOS FUTUROS

6.1 LIMITAÇÕES

REFERÊNCIAS

SANTIAGO, Maria Elizabete Villela; SANTOS, Renata dos. Google drive como ferramenta de produção de textos em aulas de inglês instrumental. **Intercâmbio. Revista do Programa de Estudos Pós-Graduados em Linguística Aplicada e Estudos da Linguagem. ISSN 2237-759X**, v. 29, 2014. páginas 24

glossario.tex3-pos-textuaisglossario.tex

APÊNDICE A - NOME APÊNDICE 1

Texto ou documento elaborado pelo autor, a fim de complementar sua argumentação, sem prejuízo da unidade nuclear do trabalho.

APÊNDICE B - NOME APÊNDICE 2

Texto ou documento elaborado pelo autor, a fim de complementar sua argumentação, sem prejuízo da unidade nuclear do trabalho.

ANEXO A - NOME ANEXO 1

Um anexo é um documento que não foi elaborado pelo autor, ou seja, o autor apenas anexa. Anexos podem ser tabelas, mapas, diagramas, *datasheets*, manuais e etc.

ANEXO B - NOME ANEXO 2

Um anexo é um documento que não foi elaborado pelo autor, ou seja, o autor apenas anexa. Anexos podem ser tabelas, mapas, diagramas, *datasheets*, manuais e etc.

ANEXO C - NOME ANEXO 3

O autor pode anexar um PDF, traduzido como formato portátil de documento.

Pode-se fazer uma descrição sucinta do arquivo anexado.