VJEROJATNOST I STATISTIKA

Dodatni zadaci za 12. tjedan (23. i 24. predavanje)

11 Intervalne procjene

- **Zadatak 1.** (a) Definirajte kvantil jedinične normalne razdiobe u_p reda p.
 - (b) Dokažite da za kvantile jedinične normalne razdiobe vrijedi $u_p = -u_{1-p}$.
 - (c) Odredite kojeg su reda kvantili $u_p = -0.484$ i $u_p = 0.484. \label{eq:up}$
 - (d) Koristeći Tablicu 4. za kvantile normalne razdiobe izračunajte u_p za p=0.2.
 - (e) Izračunajte kvantile u_p za p=0.813 i p=0.233 koristeći isključivo Tablicu 1. jedinične normalne razdiobe (za funkciju Φ^*).

Rješenje. (a) Općenito, kvantil reda p je realni broj x_p za koji vrijedi

$$F(x_p) = \int_{-\infty}^{x_p} f(t) \, \mathrm{d}t = p.$$

Kvantil reda p jedinične normalne razdiobe označavamo s u_p , te je

$$\Phi(u_p) = \int_{-\infty}^{u_p} \varphi(t) \, \mathrm{d}t = p.$$

(b) Gustoća $\varphi(t)$ jedinične normalne razdiobe je parna funkcija zbog čega vrijedi

$$1 - p = 1 - \int_{-\infty}^{u_p} \varphi(t) dt = \int_{u_p}^{\infty} \varphi(t) dt = \int_{-\infty}^{-u_p} \varphi(t) dt = \Phi(-u_p).$$

Budući da je u_{1-p} jedinstveni realni broj za kojeg vrijedi

$$\Phi(u_{1-p}) = \int_{-\infty}^{u_{1-p}} \varphi(t) dt = 1 - p,$$

zaključujemo da je $u_{1-p} = -u_p$.

(c) Ovdje tražimo p takav da je $p = \Phi(u_p)$. U prvom dijelu je

$$p = \Phi(u_p) = \frac{1}{2}[1 + \Phi^*(u_p)] = \frac{1}{2}[1 + \Phi^*(-0.484)] = \frac{1}{2}[1 - \Phi^*(0.484)] = \frac{1}{2}[1 - 0.37161] = 0.3143,$$

dok je u drugom dijelu

$$p = \Phi(u_p) = \frac{1}{2}[1 + \Phi^*(u_p)] = \frac{1}{2}[1 + \Phi^*(0.484)] = 0.6857.$$

(d) U Tablici 4. se ne pojavljuje vrijednost p=0.2. Međutim, u (b) dijelu zadatka smo dokazali da vrijedi $u_p=-u_{1-p}$. Stoga je

$$u_{0,2} = -u_{0,8} = -0.84162.$$

(e) Slično kao u (c) dijelu zadatka korisitimo vezu između funkcija Φ i Φ^* , te definiciju kvanitla $p = \Phi(u_p)$, a zatim čitamo ogovarajuću vrijednost iz Tablice 1. Za p = 0.813 imamo

$$0.813 = \Phi(u_{0.813}) = \frac{1}{2} [1 + \Phi^*(u_{0.813})] \implies \Phi^*(u_{0.813}) = 0.626 \implies u_{0.813} = 0.889.$$

Za p = 0.233 imamo

$$0.233 = \Phi(u_{0.233}) = \frac{1}{2} [1 + \Phi^*(u_{0.233})] \implies \Phi^*(u_{0.233}) = -0.534 \implies \Phi^*(-u_{0.233}) = 0.534$$
$$\implies -u_{0.233} = 0.729 \implies u_{0.233} = -0.729.$$

- **Zadatak 2.** Iz populacije koja se podvrgava normalnoj razdiobi sa standardnom devijacijom $\sigma=1$ i nepoznatim očekivanjem izvučen je uzorak volumena n=16. Za koji nivo pouzdanosti p je duljina intervala povjerenja reda p za očekivanje jednaka 0.823?
 - **Rješenje.** Za nivo pouzdanosti p, interval pvojerenja za očekivanje a normalne razdiobe uz poznatu disperziju σ^2 je

$$\mathbf{P}\left(\overline{x} - u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \le a \le \overline{x} + u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = p,$$

gdje je $\alpha = 1 - p$ nivo značajnosti. Duljina ovog intervala jednaka je

$$0.823 = 2u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} = \frac{1}{2} u_{1-\alpha/2}.$$

Iz $u_{1-\alpha/2} = 1.646$ slijedi p = 0.9.

- **Zadatak 3.** Broj pristiglih automobila na naplatne kućice je Poissonova slučajna varijabla $\mathcal{P}(\lambda)$. Bilježen je broj pristiglih automobila u svakom satu tijekom jednog dana i dobivena je srednja vrijednost $\overline{x} = 66$. Odredite 90%-tni interval povjerenja za parametar λ .
 - **Rješenje.** Interval povjerenja reda p za parametar λ Poissonove razdiobe je

$$\mathbf{P}\left(|\overline{x} - \lambda| < u_{1-\alpha/2}\sqrt{\frac{\lambda}{n}}\right) = p.$$

Da bismo odredili rubove ovog intervala moramo riješiti kvardatnu nejednadžbu

$$(\overline{x} - \lambda)^2 < \frac{u_{1-\alpha/2}^2}{n}\lambda.$$

Ako uzmemo u obzir da je $n=24,\,\overline{x}=66,\,p=0.9$ i $u_{1-\alpha/2}=u_{0.95}=1.64485,$ dobivamo

$$(\lambda - 66)^2 < 0.1127\lambda,$$

odnosno

$$\lambda \in (63.328, 68.784).$$

- Zadatak 4. Na uzorku od 200 vatrenih navijača, njih 108 je izjavilo da su zadovoljni izbornikovim izborom igrača za svjetsko prvenstvo u nogometu.
 - (a) Odredite 95% interval povjerenja za postotak zadovoljnih navijača.
 - (b) S kojom najvećom pouzdanošću (na temelju dobivenog uzorka) će najmanje polovica navijača biti zadovoljna izborom igrača za reprezentaciju?

(c) Koliko najmanje navijača trebamo ispitati da s pouzdanošću 95% najmanje polovica navijača bude zadovoljna izborom igrača za reprezentaciju?

Rješenje. Vjerojatnost izračunata iz uzorka da navijač bude zadovoljan je

$$\widehat{p} = \frac{108}{200} = 0.54.$$

Interval povjerenja reda p za vjerojatnost p_A događaja A je

$$\mathbf{P}(p_1 \le p_A \le p_2) = p,$$

pri čemu je

$$p_{1,2} = \widehat{p} \mp u_{1-\alpha/2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}.$$

(a) Za $u_{1-\alpha/2} = u_{0.975} = 1.95996$ i n = 200 dobivamo

$$p_A \in [0.471, 0.609].$$

(b) Trebamo pronaći p za koji je

$$\mathbf{P}(0.5 \le p_A \le p_2) = p.$$

Vrijedi

$$0.5 = p_1 = \widehat{p} - u_{1-\alpha/2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}},$$

odnosno,

$$u_{1-\alpha/2} = \frac{\hat{p} - 0.5}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} = 1.135.$$

Sada je

$$1 - \alpha/2 = \Phi(u_{1-\alpha/2}) = \Phi(1.135) = \frac{1}{2}[1 + \Phi^*(1.135)] \implies p = 1 - \alpha = \Phi^*(1.135) = 0.74.$$

(c) Polazimo od iste formule kao u (b) dijelu zadatka

$$p_1 = \widehat{p} - u_{1-\alpha/2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}},$$

ali uz poznate vrijednosti

$$p_1 = 0.5$$
, $p = 0.95$, $\alpha = 0.05$, $u_{1-\alpha/2} = u_{0.975} = 1.95996$

i nepoznati n. Nakon sređivanja i uvrštavanja dobivamo

$$n = \frac{u_{1-\alpha/2}^2}{\widehat{p} - p_1} \widehat{p} (1 - \widehat{p}) = 596.38.$$

Budući da se ovdje radi o broju ispitanika a p_1 je veći kako n raste, uzimamo n=597.