ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Insights into the role of singlet oxygen in the photocatalytic hydrogen peroxide production over polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework

Shen Zhao^a, Xu Zhao^{a,b,*}

^a Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China ^b University of Chinese Academy of Sciences, Beijing, 100049, China

ARTICLE INFO

Keywords: Graphitic carbon nitride Polyoxometalates Photocatalytic hydrogen peroxide production Oxygen reduction Singlet oxygen

ABSTRACT

To develop a new strategy of enhancing the photoinduced holes (h⁺) consumption to promote the photoinduced electrons (e $^-$) utilization for O_2 reduction to H_2O_2 and maintaining the chemical stability of g- C_3N_4 -based catalysts, the hybrid catalyst of g-C₃N₄-CoWO has been prepared through the calcination of the graphitic carbon nitride (g-C₃N₄) precursor of 3-amino 1, 2, 4-triazole (3-AT) and the polyoxometalates (POMs) precursor of $(NH_4)_8Co_2W_{12}O_{42}$ $(NH_4-Co_2W_{12})$. The hybrid catalyst of g-C₃N₄-CoWO with well-defined and stable structure exhibits efficient catalytic performance $(9.7 \, \mu mol \, h^{-1})$ for photocatalytic H_2O_2 production in the absence of organic electron donor under visible light. The value of electrons transfer during the oxygen reduction reaction (ORR) process obtained from the Koutecky-Levich plot for g-C₃N₄-CoWO (n = 1.95) is higher than that for g- C_3N_4 (n = 1.18), suggesting that the CoWO incorporated into g- C_3N_4 framework can generate more e^- for O_2 reduction. The superoxide radicals ('O₂-) quantitative and scavenger experiments combined with the electron spin resonance (ESR) results reveal that the negative shifts of the conduction band (CB) level from g-C₃N₄ to g- C_3N_4 -CoWO can enhance the single-electron reduction of O_2 to O_2 -. The h^+ and 1O_2 scavenger experiments results combined with the ESR results demonstrate that the CoWO incorporated into g-C₃N₄ framework can promote the oxidation of 'O₂- to ¹O₂ by h⁺. The ¹O₂ quantitative experiments results indicate that the ¹O₂ can proceed two-electron reduction to H_2O_2 . The enhanced h^+ consumption and the 1O_2 transferred from $^{\cdot}O_2$ - can promote the photocatalytic H₂O₂ production over g-C₃N₄-CoWO. In addition, the recycle experiment results reveal that the heterogeneous g-C₃N₄-CoWO is catalytic stable.

1. Introduction

As a clean environment and green oxidant, hydrogen peroxide $(\mathrm{H}_2\mathrm{O}_2)$ is convenient and safe storage and transportation in liquid form and producing water $(\mathrm{H}_2\mathrm{O})$ as the sole by-product. Therefore, it can be widely utilized in organic synthesis, environmental remediation, disinfection and one-compartment fuel cells alternative to hydrogen (H_2) [1]. However, the anthraquinone method (the Riedl-Pfleiderer process) utilized in industry catalyzed by Pd-based catalysts requires the regeneration of anthrahydroquinone by H_2 [2a], and the direct synthesis of $\mathrm{H}_2\mathrm{O}_2$ with H_2 and O_2 catalyzed by Pd or Au-Pd catalysts should pay more attention to the potentially explosive nature of $\mathrm{H}_2/\mathrm{O}_2$ mixed gases [2b]. A noble metal-free approach capable of producing $\mathrm{H}_2\mathrm{O}_2$ without H_2 is therefore desired.

$$H_2O + 1/2O_2 \rightarrow H_2O_2 \ (\Delta G^o = 117 \text{ kJ·mol}^{-1})$$
 (1)

$$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2 (0.68 \text{ V vs. NHE})$$
 (2)

$$O_2 + e^- \rightarrow O_2^- (-0.13 \text{ V vs. NHE})$$
 (3)

$${}^{\cdot}O_{2}^{-} + 2H^{+} + e^{-} \rightarrow H_{2}O_{2}$$
 (1.44 V vs. NHE) (4)

The photocatalytic H_2O_2 production method through proton-coupled electron transfer (PCET) process can meet the above requirement because it only needs H_2O , dioxygen (O_2) and light (Eq. (1)) [3]. Since the formed 1,4-endoperoxide species on the graphitic carbon nitride (g- G_3N_4) surface actually gets transformed as H_2O_2 molecule, it exhibit efficient performance for photocatalytic H_2O_2 production [[4]]. Generally, the photocatalytic H_2O_2 production over g- G_3N_4 -based catalysts can process either a direct two-electron O_2 reduction (Eq. (2)) [[5]] or a

E-mail address: zhaoxu@rcees.ac.cn (X. Zhao).

^{*}Corresponding author at: Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

sequential two-step single-electron O₂ reduction (Eqs. (3) and (4)) [6]. However, the photoinduced holes (h+) of g-C₃N₄ are less active for water oxidation because of the relative low valence band (VB) potential (Eq. (5)) [7]. The relative low h^+ consumption leads to electron-hole recombination, thus limiting the utilization of e^- for O_2 reduction to H₂O₂. To solve the above problem, two approaches have been adopted: 1) quenching the h⁺ with the addition of organic electron donor to utilize more e for O2 reduction to H2O2 [8]; and 2) positively shifting the VB potential of g-C₃N₄-based catalysts to promote the water oxidation [[5]]. However, the above approaches possess disadvantages: 1) using organic electron donor results in the loss of chemical energy, the introduction of side products, and the increase in cost due to the use of chemicals other than H₂O [5b]; and 2) the positive shifting of the VB potential may generate hydroxyl radical ('OH) [4d,5e], which can tear the heptazine unit directly from g-C₃N₄ to form cyameluric acid and further release nitrates into the aqueous environment [9]. Therefore, it is highly desired to develop a new strategy of enhancing the h+ consumption to promote the e utilization for O2 reduction to H2O2 and maintaining the chemical stability of g-C₃N₄-based catalysts.

$$H_2O + 2 h^+ \rightarrow 1/2O_2 + 2H^+ (1.23 \text{ V vs. NHE})$$
 (5)

$${}^{\circ}O_{2}^{-} + h^{+} \rightarrow {}^{1}O_{2} (0.34 \text{ V vs. NHE})$$
 (6)

Since the oxidation of superoxide radicals (${}^{\cdot}O_2^{-}$) to singlet oxygen $(^{1}O_{2})$ is thermodynamically favored (0.34 V vs NHE), the $^{\cdot}O_{2}^{-}$ can be oxidized by h+ to 1O2 (Eq. (6)) [10]. Furthermore, it has been proved that the 1O2 can promote the H2O2 production in the presence of dissolved organic matter (DOM) as organic electron donors [11]. Negatively shifting the CB potential of g-C₃N₄-based catalysts by incorporating the electrons transfer materials into the g-C₃N₄ framework can enhance the single-electron reduction of O2 to O2 and further promote the photocatalytic H₂O₂ production [6b,6c]. In addition, g- C_3N_4 is chemical stable towards O_2 [9]. Therefore, incorporating the electrons transfer materials into the g-C₃N₄ framework and investigating the ¹O₂ generation from 'O₂ during the photocatalytic H₂O₂ production over g-C₃N₄-based catalysts is essential for enhancing the h⁺ consumption and maintaining the chemical stability of g-C₃N₄based catalysts. As efficient electrocatalysts for hydrogen evolution reaction (HER) and overall water splitting, the polyoxometalates (POMs)-derived metal oxides are capable of accepting, transporting and storing electrons [12]. Therefore, incorporating the POMs-derived metal oxides into g-C₃N₄ framework can generate more e- for O₂ reduction. Herein, the hybrid catalyst of g-C₃N₄-CoWO has been prepared through the calcination of the g-C₃N₄ precursor of 3-amino 1, 2, 4triazole (3-AT) and the POMs precursor of (NH₄)₈Co₂W₁₂O₄₂ (NH₄- Co_2W_{12}). The hybrid catalyst of g-C₃N₄-CoWO with well-defined and stable structure exhibits efficient catalytic performance (9.7 µmol h⁻¹) for photocatalytic H₂O₂ production in the absence of organic electron donor under visible light. The catalytic and characterization results reveal that the incorporation of CoWO into g-C₃N₄ framework can enhance the single-electron reduction of O_2 to $\dot{}\ O_2^-$ and furthermore promote the ${}^{^{1}}O_{2}^{^{-}}$ oxidation to ${}^{^{1}}O_{2}$ by $h^{^{+}}$. The enhanced $h^{^{+}}$ consumption and the ${}^{^{1}}O_{2}$ transferred from ${}^{^{1}}O_{2}^{^{-}}$ can promote the photocatalytic H₂O₂ production over g-C₃N₄-CoWO. In addition, the recycle experiment results reveal that the heterogeneous g-C3N4-CoWO is catalytic stable.

2. Experimental section

2.1. Chemicals

3-amino 1, 2, 4-triazole (3-AT), melamine, urea, cobalt(II) acetate (Co(Ac)₂), ammonium metatungstate ((NH₄)₆H₂W₁₂O₄₀), nitro blue tetrazolium (NBT), 1,3-diphenylisobenzofuran (DPBF), p-benzoquinone (PBQ), L-Histidine (L-His), ammonium oxalate ((NH₄)₂C₂O₄), Rose Bengal (RB), and tris(2,2'-bipyridine)ruthenium dichloride ([Ru

(bpy) $_3$]Cl $_2$ ·6H $_2$ O) were purchased from Alfa Asear company and used as received without further purification. MWCNT (purity > 95%) were purchased from Chengdu Organic Chemicals Co. Ltd, Chinese Academy of Sciences. 5,5-dimethyl-1-pyrroline (DMPO), 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and 2,2,6,6-Tetramethyl-4-piperidone (TEMP) were purchased from Sigma-Aldrich company. (NH $_4$) $_8$ Co $_2$ W $_1$ O $_4$ 2 (NH $_4$ -Co $_2$ W $_1$ O $_2$ 2 [13] were synthesized and characterized in accordance with the literature.

2.2. Preparation of g-C₃N₄ [14]

3-AT (6.00 g, 0.07 mol) was placed in a quartz boat and heated under N_2 flow at 550 °C for 4 h at a rate of 3 °C min $^{-1}$. Then, the quartz boat was cooled to room temperature naturally. The obtained product was collected and ground into fine powder for further use. Based on the EA analysis, the formula of g-C₃N₄ was determined to be $C_{1.68}N_4H_{2.02}O_{1.21}$.

2.3. Preparation of CoWO

 NH_4 - Co_2W_{12} (6.00 g, 1.91 mmol) was placed in a quartz boat and heated under N_2 flow at 550 °C for 4 h at a rate of 3 °C min $^{-1}$. Then, the quartz boat was cooled to room temperature naturally. The obtained product was collected and ground into fine powder for further use. Based on the EA and ICP analysis, the formula of CoWO was determined to be $Co_{0.98}W_{6.02}O_{21.06}$.

2.4. Preparation of g-C₃N₄-CoWO

3-AT (4.00 g, 0.05 mol) and NH₄-Co₂W₁₂ (2.00 g, 0.67 mmol) were completely mixed in deionized water and kept stirring for 24 h, and then allowed to remove water at 90 °C. Then the precursors were placed in a quartz boat and heated under N₂ flow at 550 °C for 4 h at a rate of 3°C min⁻¹. Then, the quartz boat was cooled to room temperature naturally. The obtained product was collected and ground into fine powder for further use. Based on the EA and ICP analysis, the formula of g-C₃N₄-CoWO was determined to be C_{1.67}N₄H_{2.01}Co_{0.06}W_{0.37}O_{2.47}. For comparison, g-C₃N₄-Co and g-C₃N₄-WO have been prepared through the same method with the same molar of Co (Co(Ac)2 as precursor) or W ((NH₄)₆H₂W₁₂O₄₀ as precursor) as g-C₃N₄-CoWO. Based on the EA and ICP analysis, the formula of g-C₃N₄-Co and g-C₃N₄-WO were determined to be $C_{1.67}N_4H_{2.01}Co_{0.06}O_{1.29}$ C_{1.67}N₄H_{2.01}W_{0.37}O_{2.43}, respectively. To investigate the effect of precursor, g-C₃N₄-CoWO-Melamine has been prepared through the same method using melamine to instead 3-AT. Based on the EA and ICP analysis, the formula of g-C₃N₄-CoWO-Melamine were determined to be $C_{2.30}N_4H_{1.96}Co_{0.06}W_{0.37}O_{2.47}$.

2.5. Photocatalytic hydrogen peroxide production

The photocatalytic activities were evaluated by the activation of oxygen under light irradiation ($\lambda \ge 420 \, \text{nm}$). A 300 W Xenon lamp (Perfect Light Company, Beijing) was chosen as light source. During each photocatalytic performance, 0.10 g of catalyst was dispersed into 100 ml of water in a container (1 g L^{-1} catalyst). After that, the dispersion was stirred in the dark for 60 min to ensure the adsorptiondesorption equilibrium among the catalyst, dissolved oxygen and water before light irradiation. During the irradiation, 1.50 ml of the suspensions was taken from the reaction cell at given time intervals, and then filtrated to remove the catalysts. The concentrations of H₂O₂ generated were determined by iodometric titration [15]. After completion of the reaction, the catalysts can be recovered by centrifugation, washed with water, and dried at 60 °C in air. To investigate the decomposition behavior of H₂O₂ over the photocatalysts, a catalyst of 1 g L⁻¹ was dispersed in H₂O₂ solution (initial concentration: 1 mM) and irradiated for 60 min under continuous stirring.

Fig. 1. Preparation process of g-C₃N₄-CoWO.

3. Results and discussion

3.1. Preparation of g-C₃N₄-CoWO

As shown in Fig. 1, the hybrid catalyst of g-C₃N₄-CoWO has been prepared through the calcination of the g-C₃N₄ precursor of 3-AT and the POMs precursor of NH₄-Co₂W₁₂. The XRD patterns of NH₄-Co₂W₁₂, CoWO, g-C₃N₄, g-C₃N₄-Co, g-C₃N₄-WO and g-C₃N₄-CoWO are shown in Fig. S1A. The NH₄-Co₂W₁₂ possesses the typical peaks of $[Co_2W_{12}O_{40}]^{8-}$ cluster [13]. The NH₄-Co₂W₁₂ has been completely transformed to the CoWO₄ (JCPDS 15-0867) phase after calcination [16]. The g-C₃N₄ has two distinct diffraction peaks at 13.1° and 27.6°, which correspond to the graphitic materials as the (100) and (002) diffraction planes in JCPDS 87-1526 [17]. For g-C₃N₄-CoWO, the peaks intensities at 13.0° and 27.5° decreases compared with g-C₃N₄ (Fig. S1A), which indicates that the polymeric structure of g-C₃N₄-CoWO is possibly derived from the simultaneous condensation of melamine and NH₄-Co₂W₁₂. In the case of 3-AT (Fig. S1B), melamine-based products are dominant at 350 °C, but tri-s-triazine (melem) starts to generate as a result of melamine rearrangement over 350 °C [18]. With a further increase in the temperature, the condensation of melem to poly-meric networks induces the formation of g-C $_3$ N $_4$ at around 550 °C. For NH $_4$ - Co_2W_{12} (Fig. S1C), the structure of $[Co_2W_{12}O_{40}]^{8-}$ cluster remains untouched at 350 °C, but transforms to the CoWO₄ phase at about 550 °C. The XRD pattern of 3-AT and NH_4 - Co_2W_{12} mixture (the same molar ratio as the preparation of g-C₃N₄-CoWO) reveals that the melamine and CoWO₄ phase peaks disappear with an increase in the calcination temperature (Fig. S1D), and trace peaks of melamine and CoWO are no longer observed. The above results reveal that the CoWO has been well incorporated into the g-C₃N₄ framework without leaving melamine or CoWO unreacted [8b]. Fig. S2 shows the IR spectra of $NH_4\text{-Co}_2W_{12}, \ \, \text{CoWO}, \ \, \text{g-C}_3N_4, \ \, \text{g-C}_3N_4\text{-Co}, \ \, \text{g-C}_3N_4\text{-WO} \ \, \text{and} \ \, \text{g-C}_3N_4\text{-}$ CoWO. The peaks in the range of 1150-1825 cm⁻¹ have been observed in g-C₃N₄, g-C₃N₄-Co, g-C₃N₄-WO and g-C₃N₄-CoWO, which are the typical vibrations of heptazine-based molecular units [19]. The vibrations from 523 to 968 cm⁻¹ corresponding to the chemical bonds of CoWO can be found in both CoWO and g-C₃N₄-CoWO [12]. The above IR results indicate that the structure of g-C₃N₄ and CoWO has been well preserved after incorporation. Thermogravimetry analysis (TGA) curves for g-C₃N₄, CoWO and g-C₃N₄-CoWO in air are shown in Fig. S3. The total weight loss of g-C₃N₄ is 98.59% between 30 and 708 °C due to the direct thermal decomposition of g-C₃N₄. For CoWO, the weight loss in the range of 30-223 °C range (3.96%) corresponds to the loss of physisorbed water. In the case of g-C₃N₄-CoWO, the weight loss in the range of 30-704 °C range (51.28%) is mainly due to the thermal decomposition of g-C₃N₄. The TGA result of CoWO confirms that no lattice oxygen has stripped out of CoWO during the preparation of g-C₃N₄-CoWO, and the TGA result of g-C₃N₄-CoWO reveals that the weight percentage of CoWO for g-C₃N₄-CoWO is about 48.72%. The nitrogen adsorption-desorption isotherms and pore size distribution patterns for CoWO, g-C $_3$ N $_4$, g-C $_3$ N $_4$ -Co, g-C $_3$ N $_4$ -WO and g-C $_3$ N $_4$ -CoWO are shown in Fig. S4. The isotherms for g-C₃N₄, g-C₃N₄-Co, g-C₃N₄-WO and g-C₃N₄-

CoWO (Fig. S4A) show type IV isotherm with a type H3 hysteresis loop. These catalysts present one peak centered at 3.5 nm in a broad pore-size distribution curve (1-100 nm) in Fig. S4B [20]. As listed in Table S1, the higher surface area of g-C₃N₄-CoWO (24.2 m²/g) than that of g-C₃N₄ (6.5 m²/g) reflects a large number of active sites and are thus beneficial for the photocatalytic H₂O₂ production [21]. Furthermore, O2 temperature programmed desorption (O2-TPD) has been performed to detect the changes of oxygen species after incorporation (Fig. S5). The TGA results for CoWO, g-C₃N₄ and g-C₃N₄-CoWO in air reveal that the above catalysts are stable in air below 530 °C (Fig. S3). In O₂-TPD profiles, the signals recorded below 700 °C are generally denoted as αoxygen species and correspond to oxygen species adsorbed on the surface oxygen vacancies, whereas those recorded above 700 °C are known as β-oxygen species related to lattice oxygen, which causes generation of oxygen vacancies and reduced cations. Generally, the amount of α-O₂ can be considered as a measure of the oxygen vacancies, while the amount as well as the onset temperature of β-O₂ desorbed reflects the lattice oxygen mobility [22]. Along with the O₂-TPD curves, it is clearly confirmed that the oxygen desorption peaks of CoWO, g-C₃N₄ and g-C₃N₄-CoWO are mainly attributed to the adsorbed O₂. The g-C₃N₄-CoWO exhibits a stronger O₂-TPD signal than CoWO, g-C₃N₄, indicating that the g-C₃N₄-CoWO possesses a strong ability for O₂ adsorption [23]. The above results reveal that the incorporation of CoWO into g-C₃N₄ framework can enhance the O₂ adsorption ability of CoWO. Fig. S6 shows the zeta potential values of g-C₃N₄ (-15.6 mV), g-C₃N₄-CoWO (-42.1 mV) and CoWO (-54.3 mV) are all negative in water, indicating that the surfaces of these catalysts are negatively charged. It is highly possible that the incorporation of CoWO into g-C₃N₄ framework has greatly changed the surface property of g-C₃N₄ as observed in the decreasing of zeta potential. The g-C₃N₄-CoWO with more negative charge can react with H^+ more easily than g-C₃N₄, and thus promote the photocatalytic H₂O₂ production [15,24]. Combining the EA and ICP analysis in Table S2, the molecular formulas of g-C₃N₄, g-C₃N₄-Co, g-C₃N₄-WO and g-C₃N₄-CoWO can be given as $C_{1.68}N_4H_{2.02}O_{1.21},\ C_{1.67}N_4H_{2.01}Co_{0.06}O_{1.29},\ C_{1.67}N_4H_{2.01}W_{0.37}O_{2.43}\ and$ $C_{1.67}N_4H_{2.01}Co_{0.06}W_{0.37}O_{2.47}$ (47.62 wt% CoWO).

Fig. 2 shows the C 1 s, N 1 s, Co 2p, W 4f and O 1 s XPS spectra of CoWO, g-C₃N₄ and g-C₃N₄-CoWO. As shown in Fig. 2A, XPS peaks of C 1s for g-C₃N₄ and g-C₃N₄-CoWO can be fitted with three peaks at binding energies of around 283.3, 284.4 and 287.5 eV, which are ascribed to the tertiary carbon C-N₃ groups, the C-NH₂ groups and the C-C groups, respectively [14]. Nevertheless, the XPS peaks of N 1s (Fig. 2B) for g-C₃N₄ can be fitted with three peaks at 398.0, 399.6, and 404.2 eV, which are assigned to the N-(C2), N-(C3), and -NH2, respectively [4b]. The C 1s and N1s XPS results reveal that the primary structure of g-C₃N₄ has been well preserved after incorporation. As shown in Fig. 2C, the asymmetrical Co 2p_{3/2} XPS spectra of CoWO and g-C₃N₄-CoWO can be decomposed into two components at binding energies of 780.1 and 781.9 eV, which correspond to surface Co³⁺ and Co²⁺ species, respectively [25]. The surface Co³⁺/Co²⁺ molar ratio decreases in the following order: $g-C_3N_4$ -CoWO (2.77) > CoWO (1.27). The surface Co^{3+}/Co^{2+} molar ratio is consistent with the catalytic performance because the Co³⁺/Co²⁺ recycle can supply the electrons for oxygen reduction [3a]. In addition, XPS peaks of W 4f (Fig. 2D) for

g-C₃N₄-CoWO can be fitted with two peaks at binding energies of around 34.9 and 37.1 eV (W 4f_{7/2} and W 4f_{5/2}), which are consistent with a W(VI) oxidation state [12]. The Co 2p and W 4f XPS results reveal that the primary structure of CoWO has been well preserved after incorporation. The results in Fig. 2E indicate that O 1s exhibits signals at binding energies of 529.9 and 531.1 eV, which correspond to surface lattice oxygen (O_{latt}) species and surface adsorbed oxygen (O_{ads}) [26]. The surface O_{ads}/O_{latt} molar ratio decreases in the following order: g-C₃N₄-CoWO (1.11) > CoWO (0.79) > g-C₃N₄ (0.33). The XPS O 1s results are consistent with the above O₂-TPD results, which reveal that the incorporation of CoWO into g-C₃N₄ framework can enhance the O₂

Fig. 2. C 1s (A), N 1s (B), Co 2p (C), W 4f (D) and O 1s (E) XPS spectra of g-C₃N₄, CoWO and g-C₃N₄-CoWO.

adsorption ability of CoWO. The above XPS results reveal that the CoWO has been incorporated into g-C₃N₄ framework and the primary structure of g-C₃N₄ and CoWO has been well preserved after incorporation. Furthermore, the incorporation of CoWO into g-C₃N₄ framework can enhance the O₂ adsorption ability of CoWO.

Fig. 3 and S9-S11 are the TEM images of g- G_3N_4 , g- G_3N_4 -Co, g- G_3N_4 -CoWO, which exhibit sheet-like structure [27]. As shown in Fig. 3D, it is clear that the crystalline CoWO are well incorporated into the g- G_3N_4 framework [12]. To investigate the incorporation of CoWO into g- G_3N_4 framework, STEM-Mapping characterization has been performed. As shown in Fig. S14A and B, g- G_3N_4 -CoWO remains the sheet-like structure after incorporation. The elemental mappings of C, N, Co, W and O (Fig. S14C-H) clearly exhibit the CoWO are well incorporated into the g- G_3N_4 framework [8b].

The above characterization results confirm that the CoWO has been incorporated into $g\text{-}C_3N_4$ framework to form the hybrid catalyst of $g\text{-}C_3N_4\text{-}CoWO$. Furthermore, the catalytic performance of $g\text{-}C_3N_4\text{-}CoWO$ should be investigated.

3.2. Catalytic performance of g-C₃N₄-CoWO

The photocatalytic H₂O₂ production over different catalysts has been conducted and monitored in an O2-equilibrated conditions and light irradiation ($\lambda \ge 420$ nm) in the absence of organic electron donor at 25 °C. As shown in Fig. 4A, the H₂O₂ can be rapidly generated over g- C_3N_4 -CoWO and the amounts of formed H_2O_2 can reach 18.7 μ mol in 60 min. For comparison, g-C₃N₄-WO and g-C₃N₄-Co have been prepared through the same method with the same molar of Co (Co(Ac)2 as precursor) or W ((NH₄)₆H₂W₁₂O₄₀ as precursor) as g-C₃N₄-CoWO. The g- C_3N_4 -WO (6.9 μ mol in 60 min) and g- C_3N_4 -Co (1.4 μ mol in 60 min) show lower catalytic performance than g-C₃N₄-CoWO (18.7 µmol in $60\,\text{min}$). The g-C₃N₄-CoWO-IMP through the impregnation method with the same CoWO weight percentage as g-C₃N₄-CoWO also shows lower catalytic performance ($< 0.1 \, \mu mol$ in $60 \, min$). The catalytic performance of individual g- C_3N_4 (< 0.1 μ mol in 60 min) or CoWO ($< 0.1 \,\mu\text{mol}$ in 60 min) is lower than that of g-C₃N₄-CoWO (18.7 μmol in 60 min). The reaction cannot proceed in the absence of catalyst $(< 0.1 \, \mu mol in 60 \, min)$. The above results reveal that the catalytic

Fig. 3. TEM images (A-D) of g-C₃N₄-CoWO.

performance of g-C₃N₄-CoWO (18.7 μ mol in 60 min) is much higher than that of g-C₃N₄-CoWO-IMP (< 0.1 μ mol in 60 min). As shown in Fig. S15, the XRD pattern of g-C₃N₄-CoWO-IMP shows the typical peaks of both g-C₃N₄ and CoWO while the XRD pattern of g-C₃N₄-CoWO

only show the peaks of g- C_3N_4 . The XRD result indicates that the CoWO disperses on the surface of g- C_3N_4 in the g- C_3N_4 -CoWO-IMP and the CoWO has been well incorporated into the g- C_3N_4 framework without leaving melamine or CoWO unreacted in the g- C_3N_4 -CoWO. The incorporation of CoWO into the g- C_3N_4 framework can enhance the O_2 adsorption ability [23] and facilitate the interfacial electrons transfer to O_2 [8b], which can promote the catalytic performance for photocatalytic H_2O_2 production. Fig. S16A shows that the g- C_3N_4 -CoWO exhibits better catalytic performance (18.7 μ mol in 60 min) for the photocatalytic H_2O_2 production than g- C_3N_4 -CoWO-Melamine using melamine to instead 3-AT (7.1 μ mol in 60 min). The CO₂-TPD

(Fig. S16B) and EA (Table S2) results reveal that the g- C_3N_4 -CoWO using 3-AT as precursor can generate more carbon vancies (-NH₂ groups) than g- C_3N_4 -CoWO-Melamine using melamine as precursor [4b,14]. The carbon vacancies can enhance the O_2 adsorption ability [23] and facilitate the interfacial electrons transfer to O_2 [8b], which can promote the catalytic performance for photocatalytic H_2O_2 production. The photocatalytic H_2O_2 production over g- C_3N_4 -WO and g- C_3N_4 -CoWO has been performed under N_2 - and O_2 -equilibrated conditions to investigate the role of O_2 in the photocatalytic H_2O_2 production (Fig. S17 A). Generally, the photoexcited conduction band (CB) electrons can be scavenged by dissolved O_2 under O_2 -equilibrated conditions but the protons should uptake the electrons in the absence of O_2 (N_2 -equilibrated conditions) [8b]. Under N_2 -equilibrated conditions, no H_2O_2 can be formed over both g- C_3N_4 -WO and g- C_3N_4 -CoWO, confirming that the H_2O_2 is generated through the O_2 reduction. Fig. S17B

Fig. 4. Photocatalytic H_2O_2 formation over different catalysts in 60 min (A). Reaction conditions: water (100 ml), catalyst (0.10 g, 1 g L⁻¹), O_2 -equilibrated, λ ≥ 420 nm, 25 °C. Photocatalytic H_2O_2 formation over g- C_3N_4 -WO and g- C_3N_4 -CoWO in 240 min (B). Reaction conditions: water (100 ml), catalyst (0.10 g, 1 g L⁻¹), O_2 -equilibrated, λ ≥ 420 nm, 25 °C. Apparent quantum yield (AQY) of g- C_3N_4 and g- C_3N_4 -CoWO for photocatalytic H_2O_2 production at selected wavelengths (C). Reaction conditions: water (100 ml), g- C_3N_4 or g- C_3N_4 -CoWO (0.10 g, 1 g L⁻¹), O_2 -equilibrated, 25 °C.

show that under N_2 -equilibrated conditions the H_2 can be detected $g\textsc{-}G_3N_4\textsc{-}WO$ (15.3 $\mu\textsc{mol}$ in 60 min) and $g\textsc{-}G_3N_4\textsc{-}CoWO$ (34.1 $\mu\textsc{mol}$ in 60 min) while under O_2 -equilibrated conditions the H_2 cannot be detected over $g\textsc{-}G_3N_4\textsc{-}WO$ (< 0.1 $\mu\textsc{mol}$ in 60 min) and $g\textsc{-}G_3N_4\textsc{-}CoWO$ (< 0.1 $\mu\textsc{mol}$ in 60 min). Under N_2 -equilibrated conditions the e^- of the CB possess the ability for hydrogen evolution reaction while under O_2 -equilibrated conditions the e^- of the CB are utilized for the O_2 reduction reaction [28].

$$[H_2O_2] = \frac{K_f}{K_d}(1 - e^{K_d t}) \tag{7}$$

The formation and decomposition of H₂O₂ over catalysts proceeds through two competitive pathways owing to the thermodynamic instability of H_2O_2 at room temperature [29]. The K_f and K_d values have been estimated by fitting the data in Fig. 4A according to Eq. (7) and the results are presented in Table S3 [30]. In order to investigate the stability of different catalysts, the reaction time has been extended to 240 min. The maximum amounts of formed H₂O₂ over g-C₃N₄-CoWO and g-C₃N₄-WO can be obtained as 38.8 and 14.4 µmol in 240 min, respectively (Fig. 4B), which gives the H₂O₂ formation rate of 9.7 and $3.6\,\mu mol\,h^{-1}\,$ for g-C_3N_4-CoWO and g-C_3N_4-WO (Table S3). The values of K_f obtained from the photocatalytic H₂O₂ production over different catalysts decrease in the following order: g-C₃N₄-CoWO $(5.2711 \, \mu \text{mol min}^{-1}) > \text{g-C}_3\text{N}_4\text{-WO} \, (1.7709 \, \mu \text{mol min}^{-1}) > \text{g-C}_3\text{N}_4\text{-Co}$ $(0.3444 \, \mu \text{mol min}^{-1}) > \text{g-C}_3 \text{N}_4 - \text{CoWO-IMP} \quad (0.0453 \, \mu \text{mol min}^{-1}) > \text{g-}$ C_3N_4 (0.0313 µmol min⁻¹) > CoWO (0.0222 µmol min⁻¹) > None (0.0109 µmol min⁻¹), which is consistent with the above H₂O₂ formation rate of different catalysts (Fig. 4A).

$$-\frac{dc_t}{dt} = k_0 \tag{8}$$

The photocatalytic H₂O₂ decomposition over different catalysts has been conducted with an initial H2O2 concentration of 1 mM to investigate the decomposition behavior of H₂O₂ in the presence of catalysts. As shown in Fig. S18A, the H₂O₂ decomposes activity of g-C₃N₄-CoWO (75% in 60 min) is higher than those of g-C₃N₄-WO (61% in 60 min), g-C₃N₄-Co (15% in 60 min), g-C₃N₄-CoWO-IMP (9% in 60 min), g-C₃N₄ (6% in 60 min), CoWO (15%) and None (6% in 60 min). Two reasons can be presented for the results that the photocatalytic H₂O₂ production of g-C₃N₄-CoWO is higher than that of g-C₃N₄-WO: 1) the incorporation of CoWO into g-C₃N₄ framework can introduce more negative surface charge as observed in the decreasing of zeta potential from -36.4 mV (g- C_3N_4 -WO) to -42.1 mV (g- C_3N_4 -CoWO). More negative charge can react with H+ more easily and thus promote the photocatalytic H₂O₂ production [15,24]; and 2) the incorporation of CoWO into g-C₃N₄ framework can enhance the O₂ adsorption ability [23] and facilitate the interfacial electrons transfer to O2 [8b].

Since the POMs precursors are $(NH_4)_6H_2W_{12}O_{40}$ and $(NH_4)_8Co_2W_{12}O_{42}$, the catalysts of $g\text{-}C_3N_4\text{-}WO$ and $g\text{-}C_3N_4\text{-}CoWO$ may contain NH_3 residues that can act as the electron donor for the photocatalytic H_2O_2 production. To remove the possible existing NH_3 residues, the catalysts of $g\text{-}C_3N_4\text{-}WO$ and $g\text{-}C_3N_4\text{-}CoWO$ have been dispersed in water after calcination and the suspensions keep stirring for 24 h to prepare the catalysts of $g\text{-}C_3N_4\text{-}WO/H_2O$ and $g\text{-}C_3N_4\text{-}CoWO/H_2O$. The photocatalytic H_2O_2 production over $g\text{-}C_3N_4\text{-}WO/H_2O$, $g\text{-}C_3N_4\text{-}CoWO/H_2O$ ground $g\text{-}C_3N_4\text{-}WO$ and $g\text{-}C_3N_4\text{-}WO$ and $g\text{-}C_3N_4\text{-}CoWO$ has been performed (Fig. S19). The results reveal that the catalytic performance of $g\text{-}C_3N_4\text{-}WO$ and $g\text{-}C_3N_4\text{-}CoWO$ remain unchanged after stirring in water for 24 h and rule out the existence of NH_3 residues in catalysts of $g\text{-}C_3N_4\text{-}WO$ and $g\text{-}C_3N_4\text{-}CoWO$.

It should be noted that under similar reaction conditions over the g-C₃N₄-based catalysts in the absence of organic electron donors, the H₂O₂ formation rate $(9.7 \, \mu \text{mol h}^{-1})$ over g-C₃N₄-CoWO is more than those over g-C₃N₄-BDI₅₀ $(0.5 \, \mu \text{mol h}^{-1})$ [5a], g-C₃N₄-PDI₅₁ $(1.0 \, \mu \text{mol h}^{-1})$ [7], g-C₃N₄-PDI₅₁-rGOs $(1.2 \, \mu \text{mol h}^{-1})$ [4a], g-C₃N₄-NiFeO $(1.8 \, \mu \text{mol h}^{-1})$ [5b], 3DOM g-C₃N₄-PW₁₁ $(2.4 \, \mu \text{mol h}^{-1})$ [5c], g-C₃N₄-

PWO (2.9 μ mol h⁻¹) [6c], oxygen-enriched g-C₃N₄ (5.4 μ mol h⁻¹) [5d] and Cv-g-C₃N₄ (9.2 μ mol h⁻¹) [4b]. Nevertheless, the H₂O₂ formation rate (9.7 μ mol h⁻¹) over g-C₃N₄-CoWO is more than those over TiO₂-CoPi-rGOs (2.3 μ mol h⁻¹) [3a] and CdS-rGOs₂₀ (0.5 μ mol h⁻¹) [3d].

The apparent quantum yields (AQY) of photocatalytic H_2O_2 production have been compared between $g\text{-}C_3N_4$ and $g\text{-}C_3N_4\text{-}CoWO$. Fig. 4C shows that the AQY of $g\text{-}C_3N_4\text{-}CoWO$ in the UV range is 24.8% at 320 nm and 32.2% at 370 nm. In the visible light region, AQY at 420 nm is 15.1%, which is 5 times higher than that for $g\text{-}C_3N_4$ at 420 nm ($\Phi_{420}=2.9\%$). Under similar reaction conditions over the $g\text{-}C_3N_4\text{-}based$ catalysts, the AQY value at 420 nm for $g\text{-}C_3N_4\text{-}CoWO$ ($\Phi_{420}=15.1\%$) is higher than those for $g\text{-}C_3N_4\text{-}PDI_{51}$ ($\Phi_{420}=2.7\%$) [[27]], $g\text{-}C_3N_4\text{-}BDI_{50}$ ($\Phi_{420}=4.8\%$) [5a], $g\text{-}C_3N_4\text{-}PDI_{51}\text{-}rGOs$ ($\Phi_{420}=6.0\%$) [4a], $g\text{-}C_3N_4\text{-}SiW_{11}$ ($\Phi_{420}=6.5\%$) [27b], $g\text{-}C_3N_4\text{-}KPO$ ($\Phi_{420}=8.1\%$) [8b], oxygen-enriched $g\text{-}C_3N_4$ ($\Phi_{420}=10.2\%$) [5d] and holey defective $g\text{-}C_3N_4$ ($\Phi_{420}=11.5\%$) [8d], but inferior to that for $g\text{-}C_3N_4\text{-}KPF_6$ ($\Phi_{420}=24.3\%$) [8e].

The oxygen evolution reaction (OER) and photocatalytic O_2 evolution results in Fig. S20 suggest that the g-C₃N₄-CoWO can act as a catalyst for water oxidation [5b,5c]. Therefore, the relative high H₂O₂ formation rate and AQY value at 420 nm among the reported catalysts make g-C₃N₄-CoWO a promising catalyst for photocatalytic H₂O₂ production in the absence of organic electron donors.

3.3. Structure-catalytic performance relationship of g-C₃N₄-CoWO

Photoelectrochemical characterization should be performed to clarify the reason for the efficient catalytic activity of g-C₃N₄-CoWO. As shown in Fig. S21A, the photo-current densities of the g-C₃N₄-based catalysts decrease in the following order: g-C₃N₄-CoWO (0.57 $(0.33 \mu A cm^{-2}) > g-C_3N_4-Co$ $\mu A \text{ cm}^{-2}$) > g-C₃N₄-WO μ A·cm⁻²) > g-C₃N₄ (0.05 μ A cm⁻²). Photoelectrochemical impedance spectroscopy (EIS) results are shown in Fig. S21B. The diameters of Nyquist semicircle for the g-C₃N₄-based catalysts increase in the following order: $g-C_3N_4$ -CoWO < $g-C_3N_4$ -WO < $g-C_3N_4$ -Co < $g-C_3N_4$. The emission peak appearing at about 543 nm in photoluminescence (PL) spectra of the g-C₃N₄-based catalysts is attributed to the direct electron-hole recombination of band transition. Compared with g-C₃N₄, g-C₃N₄-CoWO possess a much weaker emission peak (Fig. S22A). The above results reveal that the incorporation of CoWO into g-C₃N₄ framework can enhance the charge separation of g-C₃N₄-CoWO.

Electrochemical rotating disk electrode (RDE) analysis of oxygen reduction reaction (ORR) further investigates the electrons transfer of $\rm O_2$ reduction. Fig. S23

shows the LSV curves of g- C_3N_4 , g- C_3N_4 -Co, g- C_3N_4 -WO and g- C_3N_4 -CoWO measured on RDE in an O2-saturated 0.1 M phosphate buffer solution (pH 7) at different rotating speeds. Fig. 5A summarizes the Koutecky-Levich plots of the data at -0.9 V vs. Ag/AgCl [31]. The n values for the g-C₃N₄-based catalysts decrease in the following order: g- $(n = 1.95) > g-C_3N_4-WO$ C₃N₄-CoWO $(n = 1.73) > g-C_3N_4-Co$ $(n = 1.36) > g-C_3N_4$ (n = 1.18), suggesting that the CoWO combined with g-C₃N₄ can promote the electrons generation. The rotating ring disc electrode (RRDE) of oxygen reduction reaction (ORR) results in Fig. S24-S28 show the values of transferred electron during the ORR decrease in the following order: $g-C_3N_4$ -CoWO (n = 1.95) > $g-C_3N_4$ -WO $(n = 1.73) > g-C_3N_4$ -Co $(n = 1.36) > g-C_3N_4$ (n = 1.18), which is consisted with the above ORR-RDE results. Furthermore, the ORR-RRDE results reveal that the g-C₃N₄-Urea with urea as precursor shows the value of transferred electron during the ORR is 1.68 (Fig. S29). The value of transferred electron during the ORR for the g-C₃N₄ with 3amino 1, 2, 4-triazole (n = 1.18) as precursor is quite different from that for $g-C_3N_4$ -Urea with urea as precursor (n = 1.68) because of the different precursors. In order to investigate the generation of photoinduced electrons (e⁻), electron spin resonance (ESR) analysis with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) as a spin-trapping reagent has been performed over the g-C₃N₄-based catalysts. The

Fig. 5. Koutecky-Levich plots of the ORR data measured by RDE analysis for $g\text{-}C_3N_4$, $g\text{-}C_3N_4$ -Co, $g\text{-}C_3N_4\text{-}WO$ and $g\text{-}C_3N_4\text{-}CoWO$ (Fig. S23) in a buffered solution (pH 7) at a constant potential of -0.9 V vs Ag/AgCl (A); TEMPO spin trapping ESR technique to investigate the generation of photoinduced electrons during the photoreaction over $g\text{-}C_3N_4$, $g\text{-}C_3N_4\text{-}Co$, $g\text{-}C_3N_4\text{-}WO$ and $g\text{-}C_3N_4\text{-}CoWO$ (B).

reduction of TEMPO by electrons produces an ESR silent molecule, TEMPOH, and leads to the reduction of intensity and flatting of ESR spectra [32]. As shown in Fig. 5B, when irradiated for 3 min, all the g-C₃N₄-based catalysts cause the reduction of the TEMPO signal, suggesting the electrons transfer from photoexcited the catalysts to TEMPO. The consumption of TEMPO demonstrates that reactive electrons are generated during photo-excitation of the g-C₃N₄-based catalysts. The reduction of TEMPO signal intensity caused by g-C₃N₄-CoWO is much greater than that by g-C₃N₄, indicating that higher reducing ability of photoexcited g-C₃N₄-CoWO than g-C₃N₄. The above results reveal that the CoWO incorporated into g-C₃N₄ framework can promote the e $^-$ generation.

The ${}^{\circ}O_2^{-}$ concentration has been quantified to investigate the role of the ${}^{\circ}O_2^{-}$ in the photocatalytic H_2O_2 production. Nitro **blue** tetrazolium (NBT) has been chosen as a ${}^{\circ}O_2^{-}$ scavenger because NBT can be reduced by ${}^{\circ}O_2^{-}$ and formed **purple** formazan, which is insoluble in water [33]. Fig. 6A and B show the evolution of NBT disappearance and the subsequent formation of ${}^{\circ}O_2^{-}$ during the photocatalytic H_2O_2 production of different catalysts: 1) only the g-C₃N₄-Co, g-C₃N₄-WO and g-C₃N₄-CoWO produce the ${}^{\circ}O_2^{-}$ during the photocatalytic H_2O_2 production; 2) g-C₃N₄-CoWO produce the most ${}^{\circ}O_2^{-}$ among them. To investigate the role of the ${}^{\circ}O_2^{-}$ in the photocatalytic H_2O_2 production, the scavenger experiments using *p*-benzoquinone (PBQ) over g-C₃N₄-WO (Fig. S30A) and g-C₃N₄-CoWO (Fig. 6C) have been performed: the amounts of the formed H_2O_2 gradually decrease with the increase of the PBQ concentration in the reaction system. It should be noted that no

H₂O₂ has formed over g-C₃N₄-WO (Fig. S30A) and g-C₃N₄-CoWO

(Fig. 6C) when the PBQ concentration reaches 0.40 mM. The above results reveal that no $\rm H_2O_2$ can form when the two-step single-electron $\rm O_2$ reduction reaction has been quenched, and rule out the existence of one-step two-electron $\rm O_2$ reduction reaction over g-C_3N_4-WO and g-C_3N_4-CoWO. ESR analysis with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin-trapping reagent has been performed to confirm the role of the $\rm ^{\rm '}O_2^{\rm -}$ in the photocatalytic $\rm H_2O_2$ production [8a]. Fig. 6D reveal that the signal intensity for the solution obtained by photoreaction over g-C_3N_4-CoWO gradually decreases with the addition of PBQ. The g-C_3N_4-WO has the same trend (Fig. S30B). The $\rm ^{\rm '}O_2^{\rm -}$ quantitative and scavenger experiments results combined with the ESR results reveal that: 1) the $\rm ^{\rm '}O_2^{\rm -}$ is involved in the photocatalytic $\rm H_2O_2$ production over g-C_3N_4-WO and g-C_3N_4-CoWO [6b,6c,34]; and 2) the incorporation of CoWO into the g-C_3N_4 framework can enhance the $\rm ^{\rm '}O_2^{\rm -}$ formation through the single-electron O₂ reduction.

To investigate the role of 1O_2 in the photocatalytic H_2O_2 production, the scavenger experiments using L-Histidine (L-His) over g- C_3N_4 -WO (Fig. S31A) and g- C_3N_4 -CoWO (Fig. 7A) have been performed: the amounts of the formed H_2O_2 gradually decrease with the increase of the L-His concentration in the reaction system. ESR analysis with 2,2,6,6-Tetramethyl-4-piperidone (TEMP) as a spin-trapping reagent has been performed to confirm the role of 1O_2 in the photocatalytic H_2O_2 production [10b]. Fig. 7B reveal that the signal intensity for the solution obtained by photoreaction over g- C_3N_4 -CoWO gradually decreases with the addition of L-His. The g- C_3N_4 -WO has the same trend (Fig. S31B). The $^{\circ}O_2$ concentration over g- C_3N_4 -WO (Fig. S31C) and g- C_3N_4 -CoWO (Fig. 7C) have been quantified with the addition of L-His: the $^{\circ}O_2$

Fig. 6. NBT decomposition during the photoreaction over different catalysts (A) and the $^{\circ}O_2^{-}$ formation during the photoreaction over different catalysts (B). Reaction conditions: water (100 ml), catalyst (0.10 g, 1 g L¹), NBT (0.06 mM), O_2 -equilibrated, $\lambda \geq$ 420 nm, 25 °C. The effect of PBQ on the photocatalytic H₂O₂ production over g-C₃N₄-CoWO (C). Reaction conditions: water (100 ml), g-C₃N₄-CoWO (0.10 g, 1 g L¹), PBQ (0.10, 0.20, 0.30 and 0.40 mM), O₂-equilibrated, $\lambda \geq$ 420 nm, 25 °C. DMPO spin trapping ESR technique to measure $^{\circ}O_2$ - generated photoreaction with the addition of PBQ over g-C₃N₄-CoWO (D).

concentrations over g-C₃N₄-WO and g-C₃N₄-CoWO remain unchanged with the increase of the L-His concentration in the reaction system. ESR analysis with DMPO as a spin-trapping reagent has been performed to confirm the 'O₂ concentration with the addition of L-His [8a]. Fig. 7D reveal that the signal intensity for the solution obtained by photoreaction over g-C₃N₄-CoWO remains unchanged with the addition of L-His. The g-C₃N₄-WO has the same trend (Fig. S31D). ESR analysis with TEMP as a spin-trapping reagent has been performed to investigate the role of 'O₂ in the formation of ¹O₂ [10b]. Fig. 7E reveal that the signal intensity for the solution obtained by photoreaction over g-C₃N₄-CoWO gradually decreases with the addition of PBQ. The g-C₃N₄-WO has the same trend (Fig. S31E). The L-His scavenger experiments and 'O₂ quantitative experiments results combined with the ESR results reveal that: 1) the ¹O₂ is involved in the photocatalytic H₂O₂ production over g-C₃N₄-WO and g-C₃N₄-CoWO; 2) the ¹O₂ has no effect on the formation of 'O2"; and 3) the 'O2" play significant role in the formation of

Since the oxidation of 'O2- to 1O2 (0.34 V vs NHE) is thermodynamically favored, the O_2 can be oxidized by h^+ to O_2 [10]. To investigate the role of h+ in the photocatalytic H2O2 production, the scavenger experiments using ammonium oxalate ((NH₄)₂C₂O₄) over g-C₃N₄-WO (Fig. S34A) and g-C₃N₄-CoWO (Fig. 8A) have been performed. The amounts of the formed H2O2 gradually increase with the increase of the (NH₄)₂C₂O₄ concentration in the reaction system because more e - can be utilized for the O2 reduction to H2O2 using (NH₄)₂C₂O₄ as the electron donor [35]. ESR analysis with TEMP as a spin-trapping reagent has been performed to investigate the role of h+ in the formation of ¹O₂ [10b]. Fig. 8B reveal that the signal intensity for the solution obtained by photoreaction over g-C₃N₄-CoWO gradually decreases with the addition of (NH₄)₂C₂O₄. The g-C₃N₄-WO has the same trend (Fig. S34B). The 'O2 concentration over g-C3N4-WO (Fig. S34C) and g-C₃N₄-CoWO (Fig. 8C) have been quantified with the addition of (NH₄)₂C₂O₄. The 'O₂ concentrations over g-C₃N₄-WO and g-C₃N₄-CoWO increase with the increase of the (NH₄)₂C₂O₄ concentration in the reaction system because more e- can be utilized for the O2 reduction to ${}^{\cdot}O_2^{-}$ using $(NH_4)_2C_2O_4$ as the electron donor [35]. ESR analysis with DMPO as a spin-trapping reagent has been performed to confirm the 'O₂ concentration with the addition of (NH₄)₂C₂O₄ [8a]. Fig. 8D reveal that the signal intensity for the solution obtained by photoreaction over g-C₃N₄-CoWO gradually increase with the addition of (NH₄)₂C₂O₄. The g-C₃N₄-WO has the same trend (Fig. S34D). The (NH₄)₂C₂O₄ scavenger experiments and 'O₂ quantitative experiments results combined with the ESR results reveal that ${}^{\cdot}O_2^{}$ can be obtained through the single-electron O₂ reduction reaction and the 'O₂ can be thus oxidized by h^+ to 1O_2 .

Fig. 9A shows that g-C₃N₄-WO and g-C₃N₄-CoWO can produce almost the same amounts of $\rm H_2O_2$ in water and ethanol. The electron-donating reaction can alternatively occur through the 'OH-mediated process where 'OH forms as a result of H₂O or a surface-bound OH group reaction with a valence band hole and then reacts with organic electron donors through hydrogen abstraction [36]. The 'OH reaction pathway is important for compounds with α -hydrogens such as ethanol. The above results reveal that the ethanol is inefficient electron donors because 'OH formation is fairly small [35]. $^1\rm O_2$ can undergo radiative decay around 1270 nm, and the

near-infrared emission was commonly used for determining quantum yields in solution [37]. Herein, by taking Rose Bengal (RB) as a standard photosensitizer, the 1O_2 quantum yields of g-C₃N₄-WO and g-C₃N₄-CoWO were evaluated by the formula of $\Phi_{Cat.} = \Phi_{RB}(I_{Cat.}/I_{RB})$. The integral areas of 1O_2 luminescence produced by g-C₃N₄-WO and g-C₃N₄-CoWO can be obtained through Fig. 9B. Based on the value for $\Phi_{RB} = 0.86$ in ethanol, $\Phi(g\text{-C}_3\text{N}_4\text{-WO})$ and $\Phi(g\text{-C}_3\text{N}_4\text{-CoWO})$ is estimated to be 0.89 and 0.64, respectively. The slightly shift of 1O_2 spectra between g-C₃N₄-WO and g-C₃N₄-CoWO and RB as shown in Fig. 9B may derive from their various surface environments, which is a common phenomenon in luminescence.[38] In order to quantify the 1O_2

concentration, 1,3-diphenylisobenzofuran (DPBF) has been used as the ¹O₂ trapping agent [39]. Fig. 9C and D show the evolution of DPBF disappearance and the subsequent formation of ¹O₂ during the photocatalytic H₂O₂ production of g-C₃N₄-WO and g-C₃N₄-CoWO in ethanol: 1) the g-C₃N₄-WO and g-C₃N₄-CoWO can produce the ¹O₂ during the photocatalytic H₂O₂ production; 2) g-C₃N₄-CoWO produce the most ¹O₂ among them. As shown in Figs. 9E and S38A, the amounts of H₂O₂ in ethanol have been found to be essentially the same as the amounts of formed ¹O₂ in ethanol over g-C₃N₄-WO and g-C₃N₄-CoWO. The slope values of these above lines is close to 1, indicating that ¹O₂ can proceed two-electron reduction to H_2O_2 [40]. To investigate the role of the O_2 in the photocatalytic 1O2 formation, the scavenger experiments for DPBF decomposition using PBQ over g-C₃N₄-WO (Fig. S38B) and g-C₃N₄-CoWO (Fig. S37) have been performed: the amounts of the formed ¹O₂ gradually decrease with the increase of the PBQ concentration over g-C₃N₄-WO (Fig. S38C) and g-C₃N₄-CoWO (Fig. 9F). Combined with the above (NH₄)₂C₂O₄ scavenger experiments (Fig. 8A) and the ESR results (Fig. 8B), the PBQ scavenger experiments for ¹O₂ results confirm that 'O₂ can be obtained through the single-electron O₂ reduction reaction and the O_2 can be thus oxidized by h^+ to O_2 [10].

The Mott-Schottky plots of $g-C_3N_4$, $g-C_3N_4-C_0$, $g-C_3N_4-WO$ and $g-C_3N_4-C_0$ at varied frequencies (1.0, 1.5 and 2.0 kHz) exhibit positive slopes (Fig. S39), suggestive of their n-type semiconductor features [41]. A flat band potential of -0.11, -0.25, -0.61 and -0.85 V vs. normal hydrogen electrode (NHE) has been obtained for $g-C_3N_4$, $g-C_3N_4-C_0$, $g-C_3N_4-WO$ and $g-C_3N_4-C_0$, respectively [42]. In n-type semiconductors, the flat-band potential is approximately at the CB potential [43]. Therefore, the CB potentials of $g-C_3N_4$, $g-C_3N_4-C_0$, $g-C_3N_4-WO$ and $g-C_3N_4-C_0$ WO are -0.11, -0.25, -0.61 and -0.85 V vs. NHE. From the Tauc plots (Fig. S22C), the band gap of $g-C_3N_4$, $g-C_3N_4-C_0$, $g-C_3N_4-WO$ and $g-C_3N_4-C_0$ WO are 2.51, 2.48, 2.44 and 2.40 eV, respectively [44]. Combining the Mott-Schottky measurements and Tauc plots results, the valence band (VB) positions of $g-C_3N_4$, $g-C_3N_4-C_0$, $g-C_3N_4-WO$ and $g-C_3N_4-C_0$, $g-C_3N_4-WO$ and $g-C_3N_4-C_0$, $g-C_3N_4-WO$ and $g-C_3N_4-C_0$, $g-C_3N_4-C_0$, g-C

As shown in Fig. S40, a negative shift of 0.74 V for the CB level from g-C₃N₄ to g-C₃N₄-CoWO has been observed. The negative shift of the CB level in g-C₃N₄-CoWO can promote the e⁻ generation, which is consistent with the Koutecky-Levich plots and ESR-TEMPO results [6b,6c,34]. Moreover, the CB level in g-C₃N₄-CoWO (-0.85 V vs. NHE) has sufficient potential difference (0.72 V) from the single-electron reduction of O₂ to 'O₂- (-0.13 V vs. NHE), confirming 'O₂- quantitative and scavenger experiments results (Eq. (4)). The h⁺ and ¹O₂ scavenger experiments results demonstrate that 'O₂- can be oxidized by h⁺ to ¹O₂ (0.34 V vs NHE, Eq. (6)) [10]. The ¹O₂ quantitative experiments results indicate that the ¹O₂ can proceed two-electron reduction to H₂O₂ [40] (Eq. (9)). The incorporation of CoWO into g-C₃N₄ framework can enhance the single-electron reduction of O₂ to 'O₂- and furthermore promote the 'O₂- oxidation to ¹O₂ by h⁺.

$${}^{1}O_{2} + 2H^{+} + 2e^{-} \rightarrow H_{2}O_{2}$$
 (9)

3.4. Recycle of heterogeneous g-C₃N₄-CoWO

It is essential to confirm the catalysis of g- C_3N_4 -CoWO is truly heterogeneous for photocatalytic H_2O_2 production. When the reaction time arrives at 30 min, g- C_3N_4 -CoWO has been removed from the reaction system by filtration, and the reaction is allowed to proceed with the filtrate under the same conditions. As shown in Fig. S41A, no new H_2O_2 forms and the formed H_2O_2 starts to decompose under the same conditions. Furthermore, the ICP-AES result reveals no Co and W leaching in the filtrate. The above results rule out the contribution of Co and W species leached into the reaction solution for the observed catalytic results and confirms the g- C_3N_4 -CoWO is truly heterogeneous for photocatalytic H_2O_2 production.

Fig. 7. The effect of L-His on the photocatalytic H₂O₂ production over g-C₃N₄-CoWO (A). Reaction conditions: water (100 ml), g-C₃N₄-CoWO $(0.10 \,\mathrm{g}, 1 \,\mathrm{g} \,\mathrm{L}^{-1})$, L-His (0.10, 0.20, 0.30)and 0.40 mM), O₂-equilibrated, $\lambda \ge 420$ nm, 25 °C. TEMP spin trapping ESR technique to measure 102 generated photoreaction with the addition of L-His over g-C3N4-CoWO (B). The effect of L-His on 'O2- formation during the photoreaction over g-C₃N₄-CoWO Reaction conditions: water (100 ml), g-C₃N₄-CoWO $(0.10 \,\mathrm{g}, 1 \,\mathrm{g} \,\mathrm{L}^{-1})$, L-His (0.10, 0.20, 0.30)and 0.40 mM), NBT (0.06 mM), O2-equilibrated, $\lambda \ge 420 \,\text{nm}$, 25 °C. DMPO spin trapping ESR technique to measure 'O2- generated photoreaction with the addition of L-His over g-C₃N₄-CoWO (D). TEMP spin trapping ESR technique to measure 1O2 generated photoreaction with the addition of PBQ over g-C₃N₄-CoWO (E).

To investigate the stability of heterogeneous g- C_3N_4 -CoWO, the photocatalytic H_2O_2 production has been recycled for six times under the same conditions. Fig. S41B shows the catalytic performance is almost unchanged and the catalyst recovery can reach above 98% even

after six times. The XRD and IR results of the fresh and used $g\text{-}C_3N_4\text{-}CoWO$ exhibit almost the same typical peaks (Fig. S42). The STEM-Mapping results of the used $g\text{-}C_3N_4\text{-}CoWO$ (Fig. S43) indicate that the sheet-like structure and the CoWO incorporated into $g\text{-}C_3N_4$ framework

Fig. 8. The effect of $(NH_4)_2C_2O_4$ on the photocatalytic H2O2 production over g-C3N4-CoWO (A). Reaction conditions: water (100 ml), $g-C_3N_4$ -CoWO (0.10 g, $1 g L^{-1}$), (NH₄)₂C₂O₄ (0.05, 0.10, 0.15 and 0.20 mM), O_2 -equilibrated, $\lambda \ge 420$ nm, 25 °C. TEMP spin trapping ESR technique to measure 102 generated photoreaction with the addition of $(NH_4)_2C_2O_4$ over g- C_3N_4 -CoWO (B). The effect of (NH₄)₂C₂O₄ on 'O₂- formation during the photoreaction over g-C₃N₄-CoWO Reaction conditions: water (100 ml), g-C₃N₄-CoWO $(0.10 \,\mathrm{g}, \ 1 \,\mathrm{g \, L^{-1}}), \ (\mathrm{NH_4})_2 \mathrm{C}_2 \mathrm{O}_4 \ (0.05, \ \mathrm{CoWO})$ 0.10, 0.15 and 0.20 mM), NBT (0.14 mM), O2equilibrated, $\lambda \ge 420 \, \text{nm}$, 25 °C. DMPO spin trapping ESR technique to measure 'O2- generated photoreaction with the addition of $(NH_4)_2C_2O_4$ over g- C_3N_4 -CoWO (D).

Fig. 9. Photocatalytic H2O2 formation over g-C₃N₄-WO and g-C₃N₄-CoWO in ethanol in 60 min (A). Reaction conditions: ethanol (100 ml), g-C₃N₄-WO or g-C₃N₄-CoWO (0.10 g, 1 g L^{-1}), O₂-equilibrated, $\lambda \ge 420 \text{ nm}$, $25 \,^{\circ}\text{C}$. ${}^{1}O_{2}$ emission at $\sim 1270 \,\mathrm{nm}$ induced by the commercial Rose Bengal, g-C3N4-WO and g-C₃N₄-CoWO in ethanol under excitation with a 530 nm light (B). DPBF decomposition during the photoreaction over g-C3N4-WO and g-C3N4-CoWO in ethanol and the 1O2 formation during the photoreaction over g-C₃N₄-WO and g-C₃N₄-CoWO in ethanol (D). Reaction conditions: ethanol (100 ml), g-C₃N₄-WO or g-C₃N₄-CoWO $(0.10 \,\mathrm{g},\ 1 \,\mathrm{g}\,\mathrm{L}^{-1})$, DPBF $(0.20 \,\mathrm{mM})$, O₂-equilibrated, $\lambda \ge 420 \,\text{nm}$, 25 °C. Dependence of H₂O₂ formation on formed ¹O₂ over g-C₃N₄-CoWO in ethanol (E) and 1O2 formation during the photoreaction with the addition of PBQ over g-C₃N₄-CoWO in ethanol (F). Reaction conditions: ethanol (100 ml), g-C3N4-CoWO (0.10 g, 1 g L⁻¹), PBQ (0.10, 0.20, 0.30 and 0.40 mM), DPBF (0.20 mM), O2-equilibrated, $\lambda > 420 \text{ nm}$, $25 \,^{\circ}\text{C}$.

are retained after reaction. The EA and ICP results in Table S2 also reveal that the composition of the used $g\text{-}C_3N_4\text{-}CoWO$ remains unchanged. The above results indicate that the heterogeneous $g\text{-}C_3N_4\text{-}CoWO$ is catalytic stable.

4. Conclusions

In summary, to develop a new strategy of enhancing the h+ consumption to promote the e^- utilization for O_2 reduction to $\mathrm{H}_2\mathrm{O}_2$ and maintaining the chemical stability of g-C₃N₄-based catalysts, the hybrid catalyst of g-C₃N₄-CoWO has been prepared through the calcination of the g-C₃N₄ precursor of 3-AT and the POMs precursor of NH₄-Co₂W₁₂. The hybrid catalyst of g-C₃N₄-CoWO with well-defined and stable structure exhibits efficient catalytic performance (9.7 µmol h⁻¹) for photocatalytic H₂O₂ production in the absence of organic electron donor under visible light. Four reasons have been presented for the efficient catalytic performance of g-C₃N₄-CoWO from the catalytic and characterization results: 1) the O2-TPD and XPS O 1 s results reveal that the incorporation of CoWO into g-C₃N₄ framework can enhance the O₂ adsorption ability of CoWO; 2) the Koutecky-Levich plots and the ESR results suggest that the CoWO incorporated into g-C₃N₄ framework can promote the e generation for O₂ reduction; 3) the 'O₂- quantitative and scavenger experiments results combined with the ESR results reveal that the negative shifts of the CB level from g-C₃N₄ to g-C₃N₄-CoWO can enhance the single-electron reduction of O₂ to 'O₂-; and 4) the h⁺ and ¹O₂ scavenger experiments results combined with the ESR results demonstrate that the CoWO incorporated into g-C₃N₄ framework can promote the oxidation of ${}^{\cdot}O_2$ - to ${}^{1}O_2$ by h^+ . The ${}^{1}O_2$ quantitative experiments results indicate that the 102 can proceed two-electron

reduction to H_2O_2 . The enhanced h^+ consumption and the 1O_2 transferred from $^{\circ}O_2$ - can promote the photocatalytic H_2O_2 production over g-C₃N₄-CoWO. In addition, the recycle experiment results reveal that the heterogeneous g-C₃N₄-CoWO is catalytic stable.

Acknowledgments

This work is supported by the National Natural Science Foundations of China (Grant Nos. 21777176, 21707154, 51578532) and the Chinese Academy of Sciences (QYZDB-SSW-DQC018).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2019.02.031.

References

- [1] (a) J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro, Angew. Chem. 118 (2006) 7116–7139. Angew. Chem. Int. Ed. 45 (2006) 6962-6984;
 - (b) R. Hage, A. Lienke, Angew. Chem. 118 (2006) 212–229. Angew. Chem. Int. Ed. 45 (2006) 206-222.
 - (c) S.A. Mousavi Shaegh, N.T. Nguyen, S.M. Mousavi Ehteshami, S.H. Chan, Energy Environ. Sci. 5 (2012) 8225–8228.
- [2] (a) F. Sandelin, P. Oinas, T. Salmi, J. Paloniemi, H. Haario, Ind. Eng. Chem. Res. 45 (2006) 986–992;
 - (b) J.K. Edwards, G.J. Hutchings, Angew. Chem. 120 (2008) 9332–9338. Angew. Chem. Int. Ed. 47 (2008) 9192-9198.
- [3] (a) G.H. Moon, W. Kim, A.D. Bokare, N.E. Sung, W. Choi, Energy Environ. Sci. 7 (2014) 4023–4028;
 - (b) K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Nat. Comm. 7 (2016) 11470;
 (c) M. Jakešová, D.H. Apaydin, M. Sytnyk, K. Oppelt, W. Heiss, N.S. Sariciftci,

- E.D. Głowacki, Adv. Funct. Mater. 26 (2016) 5248-5254;
- (d) S. Thakur, T. Kshetri, N.H. Kim, J.H. Lee, J. Catal. 345 (2017) 78-86;
- (e) D. Shao, L. Zhang, S. Sun, W. Wang, ChemSusChem 11 (2018) 527-531;
- (f) S. Fukuzumi, Y.M. Lee, W. Nam, Chem. Eur. J. 24 (2018) 5016-5031.
- [4] (a) Y. Kofuji, Y. Isobe, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, J. Am. Chem. Soc. 138 (2016) 10019-10025;
 - (b) S. Li, G. Dong, R. Hailili, L. Yang, Y. Li, F. Wang, Y. Zeng, C. Wang, Appl. Catal. B: Environ. 190 (2016) 26-35;
 - (c) H. Ou, P. Yang, L. Lin, M. Anpo, X. Wang, Angew. Chem. 129 (2017)
 - 11045-11050. Angew. Chem. Int. Ed. 56 (2017) 10905-10910;
 - (d) L. Yang, G. Dong, D.L. Jacobs, Y. Wang, L. Zang, C. Wang, J. Catal. 352 (2017) 274-281.
- [5] (a) Y. Kofuji, S. Ohkita, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, ACS Catal. 6 (2016) 7021-7029;
 - (b) R. Wang, K. Pan, D. Han, J. Jiang, C. Xiang, Z. Huang, L. Zhang, X. Xiang, ChemSusChem 9 (2016) 2470-2479;
 - (c) S. Zhao, X. Zhao, H. Zhang, J. Li, Y. Zhu, Nano Energy 35 (2017) 405-414; (d) Z. Wei, M. Liu, Z. Zhang, W. Yao, H. Tan, Y. Zhu, Energy Environ. Sci. 11 (2018) 2581-2589:
 - (e) Z. Zhu, H. Pan, M. Murugananthan, J. Gong, Y. Zhang, Appl. Catal. B: Environ. 232 (2018) 19-25.
- [6] (a) O. Jung, M.L. Pegis, Z. Wang, G. Banerjee, C.T. Nemes, W.L. Hoffeditz, J.T. Hupp, C.A. Schmuttenmaer, G.W. Brudvig, J.M. Mayer, J. Am. Chem. Soc. 140 (2018) 4079-4084
 - (b) S. Zhao, T. Guo, X. Li, T. Xu, B. Yang, X. Zhao, Appl. Catal. B: Environ. 224 (2018) 725-732:
 - (c) S. Zhao, X. Zhao, J. Catal. 366 (2018) 98-106;
 - (d) X. Guo, X. Li, X.C. Liu, P. Li, Z. Yao, J. Li, W. Zhang, J.P. Zhang, D. Xue, R. Cao, Chem. Commun. 54 (2018) 845-848.
- [7] Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, Angew. Chem. 126 (2014) 13672-13677. Angew. Chem. Int. Ed. 53 (2014) 13454-13459
- [8] (a) Y. Shiraishi, Y. Kofuji, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, ACS Catal. 5 (2015) 3058-3066;
 - (b) G.H. Moon, M. Fujitsuka, S. Kim, T. Majima, X. Wang, W. Choi, ACS Catal. 7 (2017) 2886–2895;
 - (c) Y. Zheng, Z. Yu, H. Ou, A.M. Asiri, Y. Chen, X. Wang, Adv. Funct. Mater. 28 (2018) 1705407;
 - (d) L. Shi, L. Yang, W. Zhou, Y. Liu, L. Yin, X. Hai, H. Song, J. Ye, Small 14 (2018) 1703142:
 - (e) S. Kim, G.H. Moon, H. Kim, Y. Mun, P. Zhang, J. Lee, W. Choi, J. Catal, 357 (2018) 51-58.
- [9] J. Xiao, Q. Han, Y. Xie, J. Yang, Q. Su, Y. Chen, H. Cao, Environ. Sci. Technol. 51 (2017) 13380-13387.
- [10] (a) D.T. Sawyer, Acc. Chem. Res. 14 (1981) 393-400:
 - (b) J.A. Rengifo-Herrera, K. Pierzchała, A. Sienkiewicz, L. Forró, J. Kiwi, C. Pulgarin, Appl. Catal. B: Environ. 88 (2009) 398-406;
 - (c) A.V. Demvanenko, A.S. Bogomolov, N.V. Dozmorov, A.I. Svvatova, A.P. Pyryaeva, V.G. Goldort, S.A. Kochubei, A.V. Baklanov, J. Phys. Chem. C 123 (2019) 2175-2181.
- [11] (a) R.M. Cory, K. McNeill, J.P. Cotner, A. Amado, J.M. Purcell, A.G. Marshall, Environ. Sci. Technol. 44 (2010) 3683-3689:
 - (b) Y. Zhang, K.A. Simon, A.A. Andrew, R. Del Vecchio, N.V. Blough, Environ. Sci. Technol. 48 (2014) 12679-12688.
- [12] (a) Y. Huang, J. Ge, J. Hu, J. Zhang, J. Hao, Y. Wei, Adv. Energy Mater. 8 (2018) 1701601
 - (b) J. Hou, B. Zhang, Z. Li, S. Cao, Y. Sun, Y. Wu, Z. Gao, L. Sun, ACS Catal. 8 (2018) 4612-4621
- [13] L.C.W. Baker, T.P. McCutcheon, J. Am. Chem. Soc. 78 (1956) 4503-4510.
- [14] G.P. Mane, S.N. Talapaneni, K.S. Lakhi, H. Ilbeygi, U. Ravon, K. Al-Bahily, T. Mori, D.H. Park, A. Vinu, Angew. Chem. 129 (2017) 8601-8605. Angew. Chem. Int. Ed. 56 (2017) 8481-8485.
- [15] M. Teranishi, R. Hoshino, S.I. Naya, H. Tada, Angew. Chem. 128 (2016) 12965-12969. Angew. Chem. Int. Ed. 55 (2016) 12773-1277
- [16] G. He, J. Li, W. Li, B. Li, N. Noor, K. Xu, J. Hu, I.P. Parkin, J. Mater. Chem. A 3 (2015) 14272-14278.
- [17] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8 (2009) 76-80.

- [18] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Müller, R. Schlögl, J.M. Carlsson, J. Mater. Chem. 18 (2008) 4893-4908.
- [19] (a) J. Zhou, W. Chen, C. Sun, L. Han, C. Qin, M. Chen, X. Wang, E. Wang, Z. Su, ACS Appl. Mater. Interfaces 9 (2017) 11689-11695; (b) H. Wang, C. Wang, Y. Yang, M. Zhao, Y. Wang, Catal. Sci. Technol. 7 (2017) 405-417.
- [20] (a) Y. Zhu, M. Zhu, L. Kang, F. Yu, B. Dai, Ind. Eng. Chem. Res. 54 (2015) 2040-2047;
 - (b) H. Wang, M. Zhao, Q. Zhao, Y. Yang, C. Wang, Y. Wang, Ind. Eng. Chem. Res. 56 (2017) 2711–2721.
- [21] Y. Sun, I. Sinev, W. Ju, A. Bergmann, S. Dresp, S. Kühl, C. Spöri, H. Schmies, H. Wang, D. Bernsmeier, B. Paul, R. Schmack, R. Kraehnert, B.R. Cuenya, P. Strasse, ACS Catal. 8 (2018) 2844-2856.
- [22] J. Chen, W. Shi, X. Zhang, H. Arandiyan, D. Li, J. Li, Environ. Sci. Technol. 45 (2011) 8491-8497.
- [23] C. Liu, L. Jing, L. He, Y. Luan, C. Li, Chem. Comm. 50 (2014) 1999-2001.
- [24] X. Liu, A. Jin, Y. Jia, T. Xia, C. Deng, M. Zhu, C. Chen, X. Chen, Appl. Surf. Sci. 405 (2017) 359–371.
- [25] S. Zhao, F. Hu, J. Li, ACS Catal. 6 (2016) 3433-3441.
- [26] H. Huang, D.Y.C. Leung, ACS Catal. 1 (2011) 348-354.
- [27] (a) J. Liu, S. Xie, Z. Geng, K. Huang, L. Fan, W. Zhou, L. Qiu, D. Gao, L. Ji, L. Duan, L. Lu, W. Li, S. Bai, Z. Liu, W. Chen, S. Feng, Y. Zhang, Nano Lett. 16 (2016)
 - (b) S. Zhao, X. Zhao, S. Ouyang, Y. Zhu, Catal. Sci. Technol. 8 (2018) 1686–1695.
- [28] Y. Su, L. Zhang, W. Wang, D. Shao, ACS Sustain. Chem. Eng. 6 (2018) 8704–8710.
- [29] V. Maurino, C. Minero, G. Mariella, E. Pelizzetti, Chem. Commun. (2005)
- [30] (a) N. Kaynan, B.A. Berke, O. Hazut, R. Yerushalmi, J. Mater. Chem. A 2 (2014) 13822-13826;
 - (b) H.I. Kim, O.S. Kwon, S. Kim, W. Choi, J.H. Kim, Energy Environ. Sci. 9 (2016) 1063-1073.
- [31] (a) H. Sheng, H. Ji, W. Ma, C. Chen, J. Zhao, Angew. Chem. 125 (2013) 9868–9872. Angew. Chem. Int. Ed. 52 (2013) 9686-9690; (b) Y. Liu, H. Liu, C. Wang, S.X. Hou, N. Yang, Environ. Sci. Technol. 47 (2013) 13889-13895.
- [32] W. He, H. Jia, J. Cai, X. Han, Z. Zheng, W.G. Wamer, J.J. Yin, J. Phys. Chem. C 120 (2016) 3187-3195.
- [33] (a) S. Obregón, Y. Zhang, G. Colón, Appl. Catal. B: Environ. 184 (2016) 96-103; (b) Z. Wei, D. Liu, W. Wei, X. Chen, Q. Han, W. Yao, X. Ma, Y. Zhu, ACS Appl. Mater. Interfaces 9 (2017) 15533-15540.
- [34] (a) A.J. Hoffman, E.R. Carraway, M.R. Hoffmann, Environ. Sci. Technol. 28 (1994) 776-785: (b) G.L. Chai, Z. Hou, T. Ikeda, K. Terakura, J. Phys. Chem. C 121 (2017) 14524-14533.
- [35] W.C. Hou, Y.S. Wang, ACS Sustain. Chem. Eng. 5 (2017) 2994-3001.
- [36] (a) E.R. Carraway, A.J. Hoffman, M.R. Hoffmann, Environ. Sci. Technol. 28 (1994) 786-793:
- (b) W. Choi, M.R. Hoffmann, Environ. Sci. Technol. 29 (1995) 1646–1654.
 [37] H. Wang, X. Yang, W. Shao, S. Chen, J. Xie, X. Zhang, J. Wang, Y. Xie, J. Am. Chem. Soc. 137 (2015) 11376-11382.
- [38] (a) M. Kořinek, R. Dědic, A. Svoboda, J. Hála, J. Fluoresc. 14 (2004) 71–74;
 (b) P. Bilski, B. Zhao, C.F. Chignell, Chem. Phys. Lett. 458 (2008) 157–160.
- [39] J. Wang, D. Liu, Y. Zhu, S. Zhou, S. Guan, Appl. Catal. B: Environ. 231 (2018) 251-261.
- [40] (a) G.G. Kramarenko, S.G. Hummel, S.M. Martin, G.R. Buettner, Photochem. Photobiol, 82 (2006) 1634-1637;
 - (b) S.A. Khorobrykh, M. Karonen, E. Tyystjärvi, FEBS Lett. 589 (2015) 779-786; (c) H. Mattila, S. Khorobrykh, V. Havurinne, E. Tyystjärvi, J. Photochem. Photobiol. B: Biol. 152 (2015) 176-214.
- [41] C. Zhao, H. Luo, F. Chen, P. Zhang, L. Yi, K. You, Energy Environ. Sci. 7 (2014) 1700-1707
- [42] R.L. Spray, K.J. McDonald, K.S. Choi, J. Phys. Chem. C 115 (2011) 3497–3506.
- [43] K. Gelderman, L. Lee, S.W. Donne, J. Chem. Educ. 84 (2007) 685.
- [44] (a) B. Li, Y. Zhao, S. Zhang, W. Gao, M. Wei, ACS Appl. Mater. Interfaces 5 (2013) 10233-10239
 - (b) J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.T. Lee, J. Zhong, Z. Kang, Science 347 (2015) 970–974.