2 pages 1

```
Source | Model | Option | Model_Option | Help on fd methods | Archived Tests
```

fd_explicit_bs

Input parameters:

Output parameters:

- Price
- Delta

```
/*Memory Allocation*/
```

/*Space localisation/*

Define the integration domain D = [-l, l] using inequality there.

/*Space Step/*

Define the space step $h = \frac{2l}{M}$.

/*Peclet Condition*/

If $|r - \delta|/\sigma^2$ is not small, then a more stable finite difference approximation is used. there.

/*Stability Condition Time Step*/

This stability condition is given there The Time Step number is given by M.

```
/*"Probabilities" associated to point/* cf. there
```

/*Terminal Values/*

Put the value of the payoff saved in Obst into a vector P which will be used to save the option value.

2 pages 2

/*Finite difference Cycle/*

At any time step, described by the loop in the variable *TimeIndex*, we have to solve explicitly the equation cf. there

/*Splitting for American case*/

For American options, we compare at each time step the solution in S with the payoff function saved in Obst. We save the result in P there.

```
/*Price*/
/*Delta*/
/*Memory Desallocation*/
```