	Coanome e nome:	Matricola:
--	-----------------	------------

Reti di Calcolatori e Reti di Calcolatori I - Prova del giorno 11-02-2014

Compito A

Tempo a disposizione: 80 minuti. Regole del gioco: 1) Libri e quaderni chiusi, vietato scambiare informazioni con altri, vietato usare calcolatrici. 2) Indicare su tutti i fogli, con chiarezza, nome e numero di matricola. 3) Per le risposte usare SOLO GLI SPAZI ASSEGNATI. 4) Le date di vebalizzazione saranno rese note sul sito del corso. Si potrà verbalizzare solo in tali date. Si assume che chi non si presenterà rifiuti il voto.

Tutti gli studenti (270 e 509) devono svolgere tutte le domande.

Esercizio 1 (25%) Considera la rete che segue, dove le diverse lan sono separate da switch. Bridge1 ha 3 porte, mentre Bridge2 ha 4 porte.

1.1 Le Lan A, B e C sono realizzate con una particolare tecnologia a 100 Mbit/sec., denominata Bai3, analoga ad Ethernet, nella quale il pacchetto più corto (tutto compreso) ha 90 bit, il pacchetto più lungo (tutto compreso) ha 990 bit, ed i pacchetti sono spaziati tra loro di almeno 10 bit-time (tempo necessario per trasmettere 10 bit). Quale caratteristica deve avere Bridge1 per essere *full speed*? Si ricorda che un bridge è full speed quando riesce a gestire un numero di pacchetti al secondo pari al numero di pacchetti al secondo che possono essergli consegnati dalle sue interfacce. Mostra i calcoli in modo chiaro.

pacchetto base= pacchetto minimo+inter frame gap = 90 +10 = 100 1Mb=10^6 bit poichè ho una lan a 100Mbit al secondo allora avrò in un secondo 10^8 bit

devo calcolare il numero massimo di pacchetti di dimensione minima che posso formare a 100Mbit ossia 10^8/100bit=10^6

ossia deve gestire 10^6 pack per ogni connessione, se ho 3 connessioni faccio 3 *10^6

1.2 Le Lan D, E e F sono realizzate con una particolare tecnologia a 1.000 Mbit/sec., denominata Qian1, analoga ad Ethernet, nella quale il pacchetto più corto (tutto compreso) ha 900 bit, il pacchetto più lungo (tutto compreso) ha 9.900 bit ed i pacchetti sono spaziati tra loro di almeno 100 bit-time (tempo necessario per trasmettere 100 bit). Quale caratteristica deve avere Bridge2 per essere full speed? Mostra i calcoli in modo chiaro.

1.000 Mbit =10^9 bit

Esercizio 2 (25%) Considera la rete in figura in cui i numeri in grassetto indicano l'indirizzo IP e la netmask attribuiti dall'amministratore alle lan e alle interfacce (es. .9 vuol dire che l'ultimo byte dell'indirizzo ha valore 9). I numeri nei riquadri (es: 0:2) rappresentano l'indirizzo MAC delle interfacce. Le tabelle di instradamento dei router sono mostrate sotto la figura. Le macchine A, B, C e D hanno come router di default rispettivamente routerA, routerB, routerC e routerD.

Ro	uterA	1	Rout	erB		<u>RouterC</u>			<u>RouterD</u>		
<u>Prefisso</u>	<u>Int.</u>	Next Hop	<u>Prefisso</u>	<u>Int.</u>	Next Hop	<u>Prefisso</u>	<u>Int.</u>	Next Hop	<u>Prefisso</u>	Int.	Next Hop
50.50.50.0/24	0:11	d.c.	50.50.50.0/24	0:2	10.10.10.1	50.50.50.0/24	0:4	10.10.20.1	50.50.50.0/24	0:6	10.10.30.1
0/0	0:1	10.10.10.2	100.100.100.0/24	0:21	d.c.	100.100.100.0/24	0:4	10.10.20.1	100.100.100.0/24	0:6	10.10.30.1
			0/0	0:3	10.10.20.2	100.100.0.0/16	0:31	d.c.	100.100.0.0/16	0:6	10.10.30.1
						0/0	0:5	10.10.30.2	100.0.0.0/8	0:41	d.c.
									0/0	0:6	10.10.30.1

2.1 Dopo un lungo periodo di inattività, un utente su A esegue il comando ping verso l'indirizzo IP di B. Supponi che ping comporti l'invio di un solo pacchetto. Elenca i pacchetti che uno sniffer, posto sulla lan di A, vede transitare.

mac dest	mac src	ip sorgente	ip destinatario	tipo pacchetto (uno tra: ARP request, ARP reply, ICMP
		(solo se ip)	(solo se ip)	echo-request, ICMP echo-reply, ICMP errore)
FF:FF	0:19	X	X	arp request
0:19	0:11	X	X	arp reply
0:11	0:19	50.50.50.9	100.100.100.9	icmp echo request
0:19	0:11	100.100.100.9	50.50.50.9	icmp echo reply

2.2 Dopo un lungo periodo di inattività, un utente su A esegue il comando ping verso l'indirizzo IP di D. Supponi che ping comporti l'invio di un solo pacchetto. Elenca i pacchetti che uno sniffer, posto sulla lan di D, vede transitare.

				*
mac dest	mac src	ip sorgente	ip destinatario	tipo pacchetto (uno tra: ARP request, ARP reply, ICMP
		(solo se ip)	(solo se ip)	echo-request, ICMP echo-reply, ICMP errore)
FF:FF	0:41	Χ	X	arp request
0:41	0:49	Χ	X	arp reply
0:49	0:41	50.50.50.9	100.0.0.9	icmp echo request
0:41	0:49	100.0.0.9	50.50.50.9	icmp echo reply
i pacchetti da	a A a D transitano	comunque	poichè router C li	instrada sulla 0.0/0 e D li riconoscerà come propri
successivan	nente		•	

2.3 Dopo un lungo periodo di inattività, un utente su B esegue il comando ping verso l'indirizzo IP di C. Supponi che ping comporti l'invio di un solo pacchetto. Elenca i pacchetti che uno sniffer, posto sulla lan di B, vede transitare.

pring compo	orti i mvio di un se	no pacenetto. L	renea i pacenetti ene	c uno sinner, posto suna ian ui B, vede transitare.
mac dest	mac src	ip sorgente	ip destinatario	tipo pacchetto (uno tra: ARP request, ARP reply, ICMP
		(solo se ip)	(solo se ip)	echo-request, ICMP echo-reply, ICMP errore)
FF:FF	0:29	X	X	arp request
0:21	0:29	Х	Х	arp reply
0:21	0:29	100.100.100.9	100.100.0.9	icmp echo request
0:29	0:21	100.100.0.9	100.100.100.9	icmp echo reply

2.4 Dopo un lungo periodo di inattività, un utente su D esegue il comando ping verso l'indirizzo IP di C. Supponi che ping comporti l'invio di un solo pacchetto. Elenca i pacchetti che uno sniffer, posto sulla lan di D, vede transitare.

mac dest	mac src	ip sorgente (solo se ip)	ip destinatario (solo se ip)	tipo pacchetto (uno tra: ARP request, ARP reply, ICMP echo-request, ICMP echo-reply, ICMP errore)
FF:FF	0:49	X	X	arp request
0:49	0:41	X	X	arp reply
0:41	0:49	100.0.0.9	100.100.0.9	icmp echo request
0:49	0:41	100.100.0.9	100.0.0.9	icmp echo reply

2.5 Il gestore della rete, non molto soddisfatto della situazione, modifica il prefisso della lan di D in **100.100.100.0/25** lasciando inalterato il quarto byte degli indirizzi della lan e lasciando inalterate le tabelle d'instradamento.

Dopo un lungo periodo di inattività, un utente su D esegue il comando ping verso l'indirizzo IP di C. Supponi che ping comporti l'invio di un solo pacchetto. Elenca i pacchetti che uno sniffer, posto sulla lan di B, vede transitare.

	mac dest	mac src	ip sorgente	ip destinatario	tipo pacchetto (uno tra: ARP request, ARP reply, ICMP	
ı			(solo se ip)	(solo se ip)	echo-request, ICMP echo-reply, ICMP errore)	
	FF:FF	0:21	X	Х	arp request	
	0:21	0:29	X	Х	arp reply	
	0:29	0:21	100.100.100.9	100.100.0.9	icmp echo reply	
	sulla lan di E	vedremo solo			viene fatta correttamente da D, ma, poiche la tabella di C è	scorre
	ping sarà	inoltrato su	router b e, di	conseguenza, nella	sua lan adiacente.	

etta il

2.6 Nella stessa situazione dell'esercizio **2.5**, dopo un lungo periodo di inattività, un utente su A esegue il comando ping verso l'indirizzo IP di D. Supponi che ping comporti l'invio di un solo pacchetto. Elenca i pacchetti che uno sniffer, posto sulla lan di A, vede transitare.

mac dest	mac src	ip sorgente (solo se ip)	ip destinatario (solo se ip)	tipo pacchetto (uno tra: ARP request, ARP reply, ICMP echo-request, ICMP echo-reply, ICMP errore)
FF:FF	0:19	X	X	arp request
0:19	0:11	X	Х	arp reply
0:11	0:19	50.50.50.9	100.100.100.9	icmp echo request
0:19	0:11	100.100.100.9	50.50.50.9	icmp echo reply
poichè lo	sniffer si trova	sulla lan A	non mi accorgerò	mai dell'errore. Sarà sempre pcB a rispondere alla mia

poichè lo sniffer si trova sulla lan A non mi accorgerò mai dell'errore. Sarà sempre pcB a rispondere alla mia richiesta avendo l'unica ip che matcha con l'ip destinatario ==> una lan con netmask /25 e una con /24 risultano identiche per un utente con valori del quarto byte pari a 9 (sono entrambi ammessi nella lan a seguito dell' And bit a bit)

Esercizio 3 (25%) Un utente, volendo approfondire quanto accada per la posta elettronica diretta al dipartimento di computer science di Princeton esegue il comando seguente.

```
gdb@vm:~$ dig +trace -t MX cs.princeton.edu
     ; <<>> DiG 9.7.3 <<>> +trace -t MX cs.princeton.edu
     ;; global options: +cmd
3.
4.
                               343370
                                        ΙN
                                                NS
                                                         1.root-servers.net.
5.
                               343370
                                        IN
                                                NS
                                                         m.root-servers.net.
6.
                               343370
                                        IN
                                                NS
                                                         a.root-servers.net.
7.
                               343370
                                        IN
                                                NS
                                                         b.root-servers.net.
8.
                               343370
                                        IN
                                                NS
                                                         c.root-servers.net.
9.
                               343370
                                        ΙN
                                                NS
                                                         d.root-servers.net.
10.
                               343370
                                        IN
                                                NS
                                                         e.root-servers.net.
11.
                               343370
                                        IN
                                                NS
                                                         f.root-servers.net.
12.
                               343370
                                        ΙN
                                                NS
                                                         g.root-servers.net.
13.
                               343370
                                                NS
                                        IN
                                                         h.root-servers.net.
14.
                               343370
                                                NS
                                        IN
                                                         i.root-servers.net.
15.
                               343370
                                        IN
                                                NS
                                                         j.root-servers.net.
16.
                               343370
                                        ΙN
                                                NS
                                                         k.root-servers.net.
     ;; Received 512 bytes from 193.204.161.85#53(193.204.161.85) in 12 ms
17.
18.
                               172800
     edu.
                                       ΙN
                                                NS
                                                         a.edu-servers.net.
```

Cogn	ome e nome				.iviatricola.	•
19.	edu.	172800	TN	NS	c.edu-servers.net.	
20.	edu.	172800		NS	g.edu-servers.net.	
21.	edu.	172800		NS	1.edu-servers.net.	
22.	edu.	172800	IN	NS	f.edu-servers.net.	
23.	edu.	172800		NS	d.edu-servers.net.	
24.	;; Received 269 bytes	from 192.	5.5.24	11#53(f.r	oot-servers.net) in 8 ms	
25.	princeton.edu.		IN	NS	ns2.fast.net.	
26.	princeton.edu.	172800	IN	NS	ns1.fast.net.	
27.	princeton.edu.	172800	IN	NS	dns.princeton.edu.	
28.	princeton.edu.	172800	IN	NS	dikahble.princeton.edu.	
29.	princeton.edu.	172800	IN	NS	adns1.ucsc.edu.	
30.	princeton.edu.		IN	NS	adns2.ucsc.edu.	
31.					edu-servers.net) in 176 ms	
32.	cs.princeton.edu.	21600	IN	MX	2 mail.cs.princeton.edu.	
33.	cs.princeton.edu.	21600	IN	NS	ns2.fast.net.	
34.	cs.princeton.edu.	21600	IN	NS	adns1.ucsc.edu.	
35.	cs.princeton.edu.	21600	IN	NS	ns3.fast.net.	
36.	cs.princeton.edu.	21600	IN	NS	adns2.ucsc.edu.	
37.	cs.princeton.edu.	21600	IN	NS	dns2.cs.princeton.edu.	
38.	cs.princeton.edu.	21600	IN	NS	dns1.cs.princeton.edu.	
39.	cs.princeton.edu.	21600	IN	NS	nsl.fast.net.	
40.	;; Received 296 bytes	110m 128.	114.10	0.100#53	(adns1.ucsc.edu) in 220 ms	
	ièf.root-servers.neteg					
3.2 Chi	ièg.edu-servers.net equ	ale ruolo svo	lge nell:	a guery?		
012 011	g, caa servers, mee e qu	are ruore site	180 11011	a query.		
3.3 Chi	i è adns1.ucsc.edu e quale 1	ruolo svolge 1	nella qu	ery?		
	1			<u>. J</u>		
3.4 Des	scrivi in dettaglio cosa si può c	omprendere (dal cont	enuto della	riga 32 della risposta alla query.	
2.5 Day	ramivi in dattaglia assa si nuà a	omprandara	dal aant	anuta dalla	righe da 33 a 39 della risposta alla query.	
3.5 Des	scrivi ili dellagilo cosa si puo c	omprendere (uai com	enuto dene	figue da 55 à 59 dena fisposta ana query.	
3.6 Chi	i è 193.204.161.85 e quale	ruolo svolge	nella qu	iery?		
	1	3-				

Cognome e nome.
Esercizio 4 (25%) Rispondi alle seguenti domande su TCP.
4.1 A cosa servono la source port e la destination port?
4.1 A cosa servono la source port e la destination port:
4.2 A cosa serve il campo window?
The first serve in earlies window.
4.3 Qual è la funzione dei bit syn e fin?
4.4 Cosa succede quando TCP è nello stato timed wait? A cosa serve lo stato timed wait?
4.5 Mostra un esempio di situazione nella quale TCP utilizza nell'header il campo "opzioni".

Cognome e nome:	Matricola:
Oughonic Chomic.	IVIAII

USA QUESTO FOGLIO PER LA BRUTTA COPIA. <u>NON</u> PUOI STACCARLO.