This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

Claim 1 – 21 (Canceled)

Claim 22 (New) An alkyne compound of formula I:

$$R^{1}$$
 $N-X-Y-Z-W-A-B$

wherein

- R¹ and R² together form an alkylene bridge in such a way that R¹R²N- denotes a pyrrolidine group, wherein one or more H atoms are optionally replaced by R¹⁴, and the alkylene bridge is optionally substituted by one or two identical or different carbo- or heterocyclic groups Cy in such a way that the bond between the alkylene bridge and the group Cy is formed
 - via a single or double bond,
 - via a common C atom forming a spirocyclic ring system,
 - via two common, adjacent C and/or N atoms forming a fused bicyclic ring system or
 - via three or more C and/or N atoms forming a bridged ring system,
- X is a single bond or a C_{1-6} -alkylene bridge wherein
 - a -CH₂- group is optionally replaced by -CH=CH- or -C≡C- and/or
 - one or two -CH₂- groups are optionally replaced, independently of one another,
 by -O-, -S-, -(SO)-, -(SO₂)-, -CO- or -NR⁴- in such a way that in each case two
 O, S or N atoms or an O and an S atom are not directly connected to one another, and/or

- two C atoms or one C and one N atom of the alkylene bridge are optionally joined together by an additional $C_{1.4}$ -alkylene bridge, and/or
- a C atom is optionally substituted by R¹⁰ and/or one or two C atoms in each case are optionally substituted with one or two identical or different substituents selected from C₁₋₆-alkyl, C₂₋₆-alkenyl, C₂₋₆-alkynyl, C₃₋₇-cycloalkyl, C₃₋₇-cycloalkyl-C₁₋₃-alkyl, C₄₋₇-cycloalkenyl and C₄₋₇-cycloalkenyl-C₁₋₃-alkyl, while two alkyl and/or alkenyl substituents are optionally joined together, forming a carbocyclic ring system,

and

carbocyclic ring, and

W, Z independently of one another, are a single bond or a C₁₋₄-alkylene bridge, wherein:

a -CH₂- group not adjacent to the -C≡C- group is optionally replaced by -O- or

-NR⁵-,

two adjacent C atoms or one C atom and an adjacent N atom are optionally joined together by an additional C₁₋₄-alkylene bridge, and/or in the alkylene bridge and/or in the additional alkylene bridge a C atom is optionally substituted by R¹⁰ and/or one or two C atoms independently of one another are optionally substituted by one or two identical or different C₁₋₆-alkyl groups, while two alkyl groups are optionally joined together, forming a

- Y is a phenyl ring which is optionally mono- or polysubstituted with R²⁰, and optionally additionally monosubstituted with nitro,
- A is a pyridine ring which is optionally mono- or polysubstituted with R²⁰, and
- has one of the meanings given for Cy or is C_{1-6} -alkyl, C_{1-6} -alkenyl, C_{1-6} -alkynyl, C_{3-7} -cycloalkyl- C_{1-3} -alkyl, C_{3-7} -cycloalkyl- C_{1-3} -alkynyl, wherein one or more C atoms are optionally monoor polysubstituted by halogen and/or optionally monosubstituted by hydroxy or

cyano and/or cyclic groups are optionally mono- or polysubstituted by R²⁰,

wherein

- Cy denotes a carbo- or heterocyclic group selected from one of the following:
 - a saturated 3- to 7-membered carbocyclic group,
 - an unsaturated 4- to 7-membered carbocyclic group,
 - a phenyl group,
 - a saturated 4- to 7-membered or unsaturated 5- to 7-membered heterocyclic group with an N, O or S atom as heteroatom,
 - a saturated or unsaturated 5- to 7-membered heterocyclic group with two or more N atoms or with one or two N atoms and an O or S atom as heteroatoms,
 - an aromatic heterocyclic 5- or 6-membered group with one or more identical or different heteroatoms selected from N, O and/or S,

wherein the above-mentioned 4-, 5-, 6- or 7-membered groups are optionally attached via two common, adjacent C atoms fused to a phenyl or pyridine ring, and

wherein, in the above-mentioned 5-, 6- or 7-membered groups, one or two non-adjacent - CH_2 - groups are optionally replaced, independently of one another, by a -CO-, - $C(=CH_2)$ -, -(SO)- or - (SO_2) - group, and

wherein the above-mentioned saturated 6- or 7-membered groups are optionally present as bridged ring systems with an imino, $(C_{1-4}$ -alkyl)-imino, methylene, $(C_{1-4}$ -alkyl)-methylene or di- $(C_{1-4}$ -alkyl)-methylene bridge, and wherein the above-mentioned cyclic groups are optionally mono- or polysubstituted at one or more C atoms with R^{20} , and, in the case of a phenyl group, they are optionally additionally monosubstituted with nitro, and/or one or more NH groups are optionally substituted with R^{21} ,

- R^4 , R^5 independently of one another have one of the meanings given for R^{17} ,
- R^{10} denotes hydroxy, ω -hydroxy- C_{1-3} -alkyl, C_{1-4} -alkoxy, ω -(C_{1-4} -alkoxy)- C_{1-3} -alkyl, carboxy, C_{1-4} -alkoxycarbonyl, amino, C_{1-4} -alkyl-amino, di-(C_{1-4} -alkyl)-amino,

cyclo- C_{3-6} -alkyleneimino, amino- C_{1-3} -alkyl, C_{1-4} -alkyl-amino- C_{1-3} -alkyl, di- $(C_{1-4}$ -alkyl)-amino- C_{1-3} -alkyl, cyclo- C_{3-6} -alkyleneimino- C_{1-3} -alkyl, amino- C_{2-3} -alkoxy, C_{1-4} -alkyl-amino- C_{2-3} -alkoxy, di- $(C_{1-4}$ -alkyl)-amino- C_{2-3} -alkoxy, cyclo- C_{3-6} -alkyleneimino- C_{2-3} -alkoxy, aminocarbonyl, C_{1-4} -alkyl-aminocarbonyl, di- $(C_{1-4}$ -alkyl)-aminocarbonyl, or cyclo- C_{3-6} -alkyleneimino-carbonyl,

- $$\begin{split} R^{14} & \qquad \text{denotes halogen, $C_{1\text{-}6}$-alkyl, $C_{2\text{-}6}$-alkenyl, $C_{2\text{-}6}$-alkynyl, R^{15}-O, R^{15}-O-CO, R^{15}-CO, R^{15}-CO-O, $R^{16}R^{17}N$, $R^{18}R^{19}N$-CO, R^{15}-O-Cl_{1\text{-}3}$-alkyl, R^{15}-O-CO-Cl_{1\text{-}3}$-alkyl, R^{15}-O-CO-NH- $C_{1\text{-}3}$-alkyl, R^{15}-SO_2-NH-Cl_{1\text{-}3}$-alkyl, R^{15}-CO-Cl_{1\text{-}3}$-alkyl, R^{15}-CO-O-Cl_{1\text{-}3}$-alkyl, $R^{16}R^{17}N$-Cl_{1\text{-}3}$-alkyl, $R^{18}R^{19}N$-CO-Cl_{1\text{-}3}$-alkyl or Cy-Cl_{1\text{-}3}$-alkyl, $R^{16}R^{17}N$-Cl_{1\text{-}3}$-alkyl, $R^{18}R^{19}N$-CO-Cl_{1\text{-}3}$-alkyl or Cy-Cl_{1\text{-}3}$-alkyl, $R^{18}R^{19}N$-CO-Cl_{1\text{-}3}$-alkyl, $R^$$
- R^{15} denotes H, C_{1-4} -alkyl, C_{3-7} -cycloalkyl, C_{3-7} -cycloalkyl- C_{1-3} -alkyl, phenyl, phenyl- C_{1-3} -alkyl, pyridinyl or pyridinyl- C_{1-3} -alkyl,
- $R^{16} \qquad \text{denotes H, C}_{1\text{-}6}\text{-alkyl, C}_{3\text{-}7}\text{-cycloalkyl, C}_{3\text{-}7}\text{-cycloalkyl-C}_{1\text{-}3}\text{-alkyl, C}_{4\text{-}7}\text{-}$ $\text{cycloalkenyl, C}_{4\text{-}7}\text{-cycloalkenyl-C}_{1\text{-}3}\text{-alkyl, }\omega\text{-hydroxy-C}_{2\text{-}3}\text{-alkyl, }\omega\text{-(C}_{1\text{-}4}\text{-alkoxy)-}$ $C_{2\text{-}3}\text{-alkyl, amino-C}_{2\text{-}6}\text{-alkyl, C}_{1\text{-}4}\text{-alkyl-amino-C}_{2\text{-}6}\text{-alkyl, }di\text{-(C}_{1\text{-}4}\text{-alkyl)-amino-C}_{2\text{-}6}\text{-alkyl, }$ $6\text{-alkyl or cyclo-C}_{3\text{-}6}\text{-alkyleneimino-C}_{2\text{-}6}\text{-alkyl, }$
- has one of the meanings given for R 16 or denotes phenyl, phenyl-C $_{1\text{-}3}$ -alkyl, pyridinyl, dioxolan-2-yl, -CHO, C $_{1\text{-}4}$ -alkylcarbonyl, carboxy, hydroxycarbonyl-C $_{1\text{-}3}$ -alkyl, C $_{1\text{-}4}$ -alkoxycarbonyl, C $_{1\text{-}4}$ -alkoxycarbonyl-C $_{1\text{-}3}$ -alkyl, C $_{1\text{-}4}$ -alkylcarbonylamino-C $_{2\text{-}3}$ -alkyl, N-(C $_{1\text{-}4}$ -alkylcarbonyl)-N-(C $_{1\text{-}4}$ -alkyl)-amino-C $_{2\text{-}3}$ -alkyl, C $_{1\text{-}4}$ -alkylsulphonyl, C $_{1\text{-}4}$ -alkylsulphonylamino-C $_{2\text{-}3}$ -alkyl, N-(C $_{1\text{-}4}$ -alkylsulphonyl)-N-(C $_{1\text{-}4}$ -alkyl)-amino-C $_{2\text{-}3}$ -alkyl,
- R^{18} , R^{19} independently of one another are H or C_{1-6} -alkyl,
- R^{20} is halogen, hydroxy, cyano, $C_{1\text{-}6}$ -alkyl, $C_{2\text{-}6}$ -alkenyl, $C_{2\text{-}6}$ -alkynyl, $C_{3\text{-}7}$ -cycloalkyl, $C_{3\text{-}7}$ -cycloalkyl- $C_{1\text{-}3}$ -alkyl, hydroxy- $C_{1\text{-}3}$ -alkyl, R^{22} - $C_{1\text{-}3}$ -alkyl or has one of the

meanings given for R²²,

- $R^{21} \quad \text{is C_{1-4}-alkyl, ω-hydroxy-C_{2-6}-alkyl, ω-C_{1-4}-alkoxy-C_{2-6}-alkyl, ω-C_{1-4}-alkyl-amino-C_{2-6}-alkyl, ω-cyclo-C_{3-6}-alkyleneimino-C_{2-6}-alkyl, phenyl, phenyl-C_{1-3}-alkyl-carbonyl, C_{1-4}-alkyl-carbonyl, C_{1-4}-alkyl-amino-C_{2-6}-alkyl-carbonyl, C_{1-4}-alkyl-carbonyl, and <math display="block">R^{21} = R^{21} R^{21$
- is pyridinyl, phenyl, phenyl-C₁₋₃-alkoxy, OHC, HO-N=HC,

 C₁₋₄-alkoxy-N=HC, C₁₋₄-alkoxy, C₁₋₄-alkylthio, carboxy, C₁₋₄-alkylcarbonyl, C₁₋₄-alkylcarbonyl, aminocarbonyl, C₁₋₄-alkylaminocarbonyl, di-(C₁₋₄-alkyl)-aminocarbonyl, cyclo-C₃₋₆-alkyl-amino-carbonyl, cyclo-C₃₋₆-alkyleneimino-C₂₋₄-alkyl-aminocarbonyl, C₁₋₄-alkyl-sulphonyl, C₁₋₄-alkyl-sulphonylamino, amino,

 C₁₋₄-alkylamino, di-(C₁₋₄-alkyl)-amino, C₁₋₄-alkyl-carbonyl-amino, cyclo-C₃₋₆-alkyleneimino, phenyl-C₁₋₃-alkylamino, N-(C₁₋₄-alkyl)-phenyl-C₁₋₃-alkylamino,

 acetylamino, propionylamino, phenylcarbonyl, phenylcarbonylamino,

 phenylcarbonylmethylamino, hydroxy-C₂₋₃-alkylaminocarbonyl, (4-morpholinyl)carbonyl, (1-pyrrolidinyl)carbonyl, (1-piperidinyl)carbonyl,

 (hexahydro-1-azepinyl)carbonyl, (4-methyl-1-piperazinyl)carbonyl,

 methylenedioxy, or aminocarbonylamino,

while in the above-mentioned groups W, X, Z, R^1 to R^5 and R^{10} and R^{14} to R^{22} one or more C atoms are optionally additionally mono- or polysubstituted by F and/or one or two C atoms, independently of one another, are optionally additionally monosubstituted by Cl or Br and/or one or more phenyl rings, independently of one another, optionally additionally have one, two or three substituents selected from among F, Cl, Br, I, cyano, C_{1-4} -alkyl, C_{1-4} -alkoxy, difluoromethyl, trifluoromethyl, hydroxy, amino, C_{1-3} -alkylamino, di- $(C_{1-3}$ -alkyl)-amino, acetylamino, aminocarbonyl, difluoromethoxy, trifluoromethoxy, amino- C_{1-3} -alkyl, C_{1-3} -alkyl- and di- $(C_{1-3}$ -alkyl)-amino- C_{1-3} -alkyl- and/or are optionally monosubstituted by nitro,

or a tautomer, a diastereomer, an enantiomer, a mixture thereof or a salt thereof.

Claim 23 (New) An alkyne compound according to claim 22, wherein:

- X is a single bond or a C_{1-6} -alkylene bridge, wherein
 - a -CH₂- group is optionally replaced by -CH=CH- or -C≡C- and/or
 - one or two -CH₂- groups independently of one another are optionally replaced by -O-, -S-, -(SO)-, -(SO₂)-, -CO- or -NR⁴- in such a way that two O, S or N atoms or an O and an S atom are not directly joined together,
 - two C atoms or one C and one N atom of the alkylene bridge are optionally joined together by an additional C_{1.4}-alkylene bridge, and/or
 - a C atom is optionally substituted by R^{10} and/or one or two C atoms in each case are optionally substituted with one or two identical or different C_{1-6} -alkyl groups,
- W, Z independently of one another are a single bond or a $C_{1.4}$ -alkylene bridge, wherein a -CH₂- group not adjacent to the -C \equiv C- group is optionally replaced by -O- or -NR⁵-, two adjacent C atoms or a C atom and an adjacent N atom are optionally joined together by an additional $C_{1.4}$ -alkylene bridge, and/or in the alkylene bridge and/or in the additional alkylene bridge a C atom is optionally substituted by R¹⁰ and/or one or two C atoms independently of one another are optionally substituted by one or two identical or different $C_{1.6}$ -alkyl groups, and
- has one of the meanings given for Cy or denotes $C_{1\text{-}6}$ -alkyl, $C_{1\text{-}6}$ -alkenyl, $C_{1\text{-}6}$ -alkynyl, $C_{3\text{-}7}$ -cycloalkyl- $C_{1\text{-}3}$ -alkyl, $C_{3\text{-}7}$ -cycloalkenyl- $C_{1\text{-}3}$ -alkyl, $C_{3\text{-}7}$ -cycloalkyl- $C_{1\text{-}3}$ -alkynyl, wherein one or more C atoms are optionally mono- or polysubstituted by fluorine and cyclic groups are optionally mono- or polysubstituted by R^{20} ,

wherein

- $R^{10} \hspace{0.5cm} is \hspace{0.1cm} hydroxy, \hspace{0.1cm} \omega\text{-hydroxy-} C_{1\text{-}3}\text{-alkyl}, \hspace{0.1cm} C_{1\text{-}4}\text{-alkoxy}, \hspace{0.1cm} \omega\text{-}(C_{1\text{-}4}\text{-alkyl})\text{-amino}, \hspace{0.1cm} cyclo\text{-}C_{3\text{-}6}\text{-alkyleneimino}, \hspace{0.1cm} amino\text{-}C_{1\text{-}3}\text{-alkyl}, \hspace{0.1cm} cyclo\text{-}C_{3\text{-}6}\text{-alkyleneimino}, \hspace{0.1cm} amino\text{-}C_{1\text{-}3}\text{-alkyl}, \hspace{0.1cm} cyclo\text{-}C_{3\text{-}6}\text{-alkyleneimino}, \hspace{0.1cm} amino\text{-}C_{1\text{-}3}\text{-alkyl}, \hspace{0.1cm} cyclo\text{-}C_{3\text{-}6}\text{-alkyleneimino}, \hspace{0.1cm} amino\text{-}C_{2\text{-}3}\text{-alkoxy}, \hspace{0.1cm} cyclo\text{-}C_{3\text{-}6}\text{-alkyleneimino}, \hspace{0.1cm} cyclo\text{-}C_{3\text{-}6}\text{-}C_{3\text$
- $$\begin{split} R^{14} & \quad \text{is halogen, $C_{1\text{-}6}$-alkyl, R^{15}-O, R^{15}-O-CO, R^{15}-CO, R^{15}-CO-O, $R^{16}R^{17}N$, $R^{18}R^{19}N$-CO, } \\ & \quad R^{15}$-O-C_{1\text{-}3}$-alkyl, R^{15}-O-CO-C_{1\text{-}3}$-alkyl, R^{15}-CO-C_{1\text{-}3}$-alkyl, $R^{16}R^{17}N$-C_{1\text{-}3}$-alkyl, $R^{18}R^{19}N$-CO-C_{1\text{-}3}$-alkyl or Cy-C_{1\text{-}3}$-alkyl, } \end{split}$$
- R^{15} is H, $C_{1\text{-}4}$ -alkyl, $C_{3\text{-}7}$ -cycloalkyl, $C_{3\text{-}7}$ -cycloalkyl- $C_{1\text{-}3}$ -alkyl, phenyl or phenyl- $C_{1\text{-}3}$ -alkyl,
- $R^{17} \quad \text{ has one of the meanings given for } R^{16} \text{ or is phenyl, phenyl-} C_{1\text{-}3}\text{-}alkyl, C_{1\text{-}4}\text{-}alkylcarbonyl, hydroxycarbonyl-} C_{1\text{-}3}\text{-}alkyl, C_{1\text{-}4}\text{-}alkylcarbonylamino-} C_{2\text{-}3}\text{-}alkyl, N-(C_{1\text{-}4}\text{-}alkylcarbonyl)-N-(C_{1\text{-}4}\text{-}alkyl)-amino-} C_{2\text{-}3}\text{-}alkyl, \\ C_{1\text{-}4}\text{-}alkylsulphonyl, C_{1\text{-}4}\text{-}alkylsulphonylamino-} C_{2\text{-}3}\text{-}alkyl \text{ or } \\ N-(C_{1\text{-}4}\text{-}alkylsulphonyl)-N(-C_{1\text{-}4}\text{-}alkyl)-amino-} C_{2\text{-}3}\text{-}alkyl, \\ \end{cases}$
- R^{20} is halogen, hydroxy, cyano, $C_{1\text{-}6}$ -alkyl, $C_{3\text{-}7}$ -cycloalkyl, $C_{3\text{-}7}$ -cycloalkyl- $C_{1\text{-}3}$ -alkyl, hydroxy- $C_{1\text{-}3}$ -alkyl, R^{22} - $C_{1\text{-}3}$ -alkyl or has one of the meanings given for R^{22} , and
- $R^{22} \quad \text{is phenyl, phenyl-C_{1-3}-alkoxy, C_{1-4}-alkoxy, C_{1-4}-alkylthio, carboxy, C_{1-4}-alkylcarbonyl, C_{1-4}-alkoxycarbonyl, aminocarbonyl, C_{1-4}-alkylaminocarbonyl, $di-(C_{1-4}$-alkyl)-aminocarbonyl, $cyclo-C_{3-6}$-alkyleneimino-carbonyl, C_{1-4}-alkyl-sulphonyl, C_{1-4}-alkyl-sulphonylamino, amino, C_{1-4}-alkylamino, $di-(C_{1-4}$-alkyl)-amino, $cyclo-C_{3-6}$-alkyleneimino, phenyl-C_{1-3}-alkylamino, $N-(C_{1-4}$-alkyl)-phenyl-C_{1-3}-alkylamino, acetylamino,$

propionylamino, phenylcarbonyl, phenylcarbonylamino, phenylcarbonylmethylamino, hydroxyalkylaminocarbonyl, (4-morpholinyl)carbonyl, (1-pyrrolidinyl)carbonyl, (1-piperidinyl)carbonyl, (hexahydro-1-azepinyl)carbonyl, (4-methyl-1-piperazinyl)carbonyl, methylenedioxy, aminocarbonylamino or alkylaminocarbonylamino.

Claim 24 (New) An alkyne compound according to claim 22, wherein X is -CH₂-, -CH₂-CH₂- or -CH₂-CH₂- and

when Y is bonded to X via a C atom, X may also be $-CH_2-C\equiv C$ -, $-CH_2-CH_2-O$ -, $-CH_2-CH_2-NR^4$ - or 1,3-pyrrolidinylene, where the pyrrolidinylene group is linked to Y via the imino group, and

wherein, in X, a C atom is optionally substituted by R^{10} , and/or one or two C atoms in each case are optionally substituted by one or two identical or different substituents selected from C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{2-6} -alkynyl, C_{3-7} -cycloalkyl, C_{3-7} -cycloalkyl- C_{1-3} -alkyl, C_{4-7} -cycloalkenyl and C_{4-7} -cycloalkenyl- C_{1-3} -alkyl, wherein two alkyl and/or alkenyl substituents are optionally joined together forming a carbocyclic ring system, and, additionally

wherein one or more C atoms are optionally mono- or polysubstituted by F and/or in each case one or two C atoms independently of one another are optionally monosubstituted by Cl or Br.

Claim 25 (**New**) An alkyne compound according to claim 22, wherein W and/or Z, independently of one another are a single bond, -CH₂-, -CH₂-CH₂-, -CH₂-CH₂- or cyclopropylene,

W is additionally selected from -CH₂-O-, -CH₂-CH₂-O-, -CH₂-NR⁴- or -CH₂-CH₂-NR⁴- and

Z is additionally selected from -O-CH₂-, -O-CH₂-CH₂-, -NR⁴-CH₂- or -NR⁴-CH₂- CH_{2} -,

wherein a C atom is optionally substituted by R^{10} , and/or one or two C atoms independently of one another are each optionally substituted by one or two identical or different C_{1-4} -alkyl groups, and

one or more C atoms are optionally mono- or polysubstituted by F and/or one or two C atoms are optionally monosubstituted independently of one another by Cl or Br.

Claim 26 (New) An alkyne compound according to claim 22, wherein W and/or Z independently of one another are a single bond or are selected from -CH₂-, -CH₂-CH₂-, -CH₂-CH(CH₃)-, -CH₂-C(CH₃)₂-, -CH(CH₃)-CH₂-, -C(CH₃)₂-CH₂-, cyclopropylene, -CH₂-CH(R¹⁰)-, and -CH(R¹⁰)-CH₂-,

W is additionally selected from -CH₂-O- or -CH₂-NR⁴- and

Z is additionally selected from -O-CH₂- or -NR⁴-CH₂-,

wherein one or more C atoms are optionally mono- or polysubstituted by F and/or one or two C atoms are optionally monosubstituted independently of one another by Cl or Br.

Claim 27 (New) An alkyne compound according to claim 22, wherein B is phenyl, thienyl, furanyl, C_{1-6} -alkyl, C_{1-6} -alkenyl, C_{1-6} -alkynyl, C_{3-7} -cycloalkyl- C_{1-3} -alkyl, C_{3-7} -cycloalkyl- C_{1-3} -alkyl, C_{3-7} -cycloalkyl- C_{1-3} -alkynyl, wherein one or more C atoms are optionally mono- or polysubstituted by fluorine, and the abovementioned cyclic groups are optionally mono- or polysubstituted by R^{20} at one or more C atoms, and in the case of a phenyl group is additionally optionally monosubstituted by nitro.

Claim 28 (New) An alkyne compound according to claim 22, wherein R²⁰ are independently F, Cl, Br, I, OH, cyano, methyl, difluoromethyl, trifluoromethyl, ethyl, n-propyl, iso-propyl, methoxy, difluoromethoxy,

trifluoromethoxy, ethoxy, n-propoxy or iso-propoxy.

Claim 29 (New) An alkyne compound according to claim 22 selected from the following:

- (1) [(R)-1-(2-{4-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-phenoxy}-ethyl)-pyrrolidin-2-yl]-methanol
- (2) N-{4-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-phenyl}-2-pyrrolidin-1-yl-propionamide
- (3) 5-(4-bromo-phenyl)-2-[4-(4-pyrrolidin-1-ylmethyl-phenyl)-but-1-ynyl]-pyridine
- (4) 5-(4-chloro-phenyl)-2-{4-[4-((S)-2-methoxymethyl-pyrrolidin-1-ylmethyl)-phenyl]-but-1-ynyl}-pyridine
- (5) 5-(4-chloro-phenyl)-2-{4-[4-(2-methyl-pyrrolidin-1-ylmethyl)-phenyl]-but-1-ynyl}-pyridine
- (6) 5-(4-chloro-phenyl)-2-[4-(4-pyrrolidin-1-ylmethyl-phenyl)-but-1-ynyl]-pyridine
- (7) 5-(4-chloro-phenyl)-2-{4-[2-(2,6-dimethyl-piperidin-1-yl)-ethoxy]-3-methyl-phenylethynyl}-pyridine
- (8) methyl 5-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-2-(2-pyrrolidin-1-ylethoxy)-benzoate
- (9) 5-(4-chloro-phenyl)-2-[3-methyl-4-(2-pyrrolidin-1-yl-ethoxy)-phenylethynyl]-pyridine
- (10) 5-(4-chloro-phenyl)-2-[3-(4-pyrrolidin-1-ylmethyl-phenoxy)-prop-1-ynyl]-pyridine
- (11) [(S)-1-(2-{4-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-2-methyl-phenoxy}-ethyl)-pyrrolidin-2-yl]-methanol

- (12) 5-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-2-(2-pyrrolidin-1-yl-ethoxy)-phenylamine
- (13) 1-(4-{4-[5-(4-chloro-phenyl)-pyridin-2-yl]-but-3-ynyl}-benzyl)-pyrrolidin-3-ylamine
- (14) 2-[3-bromo-4-(2-pyrrolidin-1-yl-ethoxy)-phenylethynyl]-5-(4-chloro-phenyl)-pyridine
- (15) 5-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-N-methyl-2-(2-pyrrolidin-1-ylethoxy)-benzamide
- (16) {4-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-phenyl}-(2-pyrrolidin-1-ylethyl)-amine
- (17) {5-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-pyridin-2-yl}-methyl-(2-pyrrolidin-1-yl-ethyl)-amine
- (18) tert-butyl [1-(2-{4-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-phenoxy}-ethyl)-pyrrolidin-3-yl]-carbaminate
- (19) 5-(4-chloro-phenyl)-2-[3-methoxy-4-(2-pyrrolidin-1-yl-ethoxy)-phenylethynyl]-pyridine
- (20) 5-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-2-(2-pyrrolidin-1-yl-ethoxy)-benzaldehyde O-methyl-oxime
- (21) 1'-{5-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-pyridin-2-yl}[1,3']bipyrrolidinyl
- (22) 5-(4-chloro-phenyl)-2-[3-chloro-4-(2-pyrrolidin-1-yl-ethoxy)-phenylethynyl]-pyridine
- (23) (S)-1-(2-{4-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-2-methyl-phenoxy}-ethyl)-pyrrolidin-3-ol
- (24) [1-(2-{4-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-2-methyl-phenoxy}-ethyl)-piperidin-4-yl]-pyridin-2-yl-amine
- (25) 5-(4-bromo-phenyl)-2-[4-(2-pyrrolidin-1-yl-ethoxy)-phenylethynyl]-pyridine

- (26) 5-(2,4-dichloro-phenyl)-2-[4-(4-pyrrolidin-1-ylmethyl-phenyl)-but-1-ynyl]-pyridine
- (27) 5-(4-chloro-phenyl)-2-[4-(2-pyrrolidin-1-yl-ethoxy)-phenylethynyl]-pyridine
- (28) 5-(4-chloro-phenyl)-2-{4-[2-(2-methyl-pyrrolidin-1-yl)-ethoxy]-phenylethynyl}-pyridine
- (29) 5-(4-chloro-phenyl)-2-{4-[4-(4-pyrrolidin-1-yl-piperidin-1-ylmethyl)-phenyl]-but-1-ynyl}-pyridine
- (30) 5-(4-methoxy-phenyl)-2-[4-(4-pyrrolidin-1-ylmethyl-phenyl)-but-1-ynyl]-pyridine
- (31) 5-(3,4-difluoro-phenyl)-2-[4-(4-pyrrolidin-1-ylmethyl-phenyl)-but-1-ynyl]-pyridine
- (32) 5-(4-chloro-phenyl)-2-{4-[4-((R)-2-methoxymethyl-pyrrolidin-1-ylmethyl)-phenyl]-but-1-ynyl}-pyridine
- (33) {5-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-pyridin-2-yl}-(2-pyrrolidin-1-ylethyl)-amine
- (34) (R)-1-(2-{4-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-2-methyl-phenoxy}-ethyl)-pyrrolidin-3-ol
- (35) 5-(4-chloro-phenyl)-2-[3-ethynyl-4-(2-pyrrolidin-1-yl-ethoxy)-phenylethynyl]-pyridine
- (36) 5-(3,4-dichloro-phenyl)-2-[4-(4-pyrrolidin-1-ylmethyl-phenyl)-but-1-ynyl]-pyridine
- (37) 5-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-2-(2-pyrrolidin-1-yl-ethoxy)-benzaldehyde-oxime
- (38) [1-(2-{4-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-2-methyl-phenoxy}-ethyl)-pyrrolidin-3-yl]-dimethyl-amine
- (39) 5-(4-chloro-phenyl)-2-[3-fluoro-4-(2-pyrrolidin-1-yl-ethoxy)-phenylethynyl]-

pyridine

(40) 5-(4-chloro-phenyl)-2-[4-(3-piperidin-1-yl-pyrrolidin-1-yl)-phenylethynyl]-pyridine

(41) 5-(4-chloro-phenyl)-2-[4-(3-pyrrolidin-1-yl-propyl)-phenylethynyl]-pyridine

including a tautomer, a diastereomer, an enantiomer, a mixture thereof or a salt thereof.

Claim 30 (New) An alkyne compound according to claim 22, which is in a physiologically acceptable salt form.

Claim 31 (New) A composition comprising at least one alkyne compound according to claim 22, together with one or more inert carriers and/or diluents.

Claim 32 (New) A method for influencing the eating behavior of a mammal comprising administering thereto one or more alkyne compounds according to claim 22.

Claim 33 (New) A method for reducing the body weight and/or for preventing an increase in the body weight of a mammal comprising administering thereto one or more alkyne compounds according to claim 22.

Claim 34 (New) A method for modulating MCH activity in a mammal comprising administering thereto one or more alkyne compounds according to claim 22.

Claim 35 (New) A method for treating a urinary problem selected from urinary incontinence, overactive bladder, urgency, nycturia and enuresis, in a mammal comprising administering thereto one or more alkyne compounds according to claim 22.

Claim 36 (New) An alkyne compound of claim 26, wherein R^4 is -H, methyl, ethyl or propyl, and R^{10} is -OH, N-pyrrolidinyl, amino-ethoxy, C_{1-4} -alkyl-amino-ethoxy, or di- $(C_{1-4}$ -alkyl)-amino-ethoxy.