

FUNDAMENTALS OF INFORMATION SCIENCE

Shandong University 2025 Spring

Lecture 2.4: Source Coding (Data Compression)

A Example

$$p_i$$
 Code 1 Code 2 $1/2$ 000 0 $1/4$ 001 10 $1/8$ 010 110 $1/16$ 011 1110 $1/64$ 100 111100 $1/64$ 101 111101 $1/64$ 110 111111 El_i 3 2

$$H(X) = -\sum p_i \log p_i = 2 \text{bits}$$

How to find the best code?

ullet Source code C for a random variable X is

$$C(x): \mathcal{X} \to \mathcal{D}^*$$

 \mathcal{D}^* : set of finite-length strings of symbol from D-ary alphabet \mathcal{D}

- Code length: l(x)
- Example: C(red) = 00, C(blue) = 11, $\mathcal{X} = \{\text{red, blue}\}$, $\mathcal{D} = \{0, 1\}$

Source coding applications

- Magnetic recording: cassette, hardrive, USB...
- Speech compression
- Compact disk (CD)
- Image compression: JPEG

Still an active area of research:

- Solid state hard drive
- Sensor network: distributed source coding

What defines a good code

Non-singular:

$$x \neq x' \Rightarrow C(x) \neq C(x')$$

- ullet non-singular enough to describe a single RV X
- ullet When we send sequences of value of X, without "comma" can we still uniquely decode
- Uniquely decodable if extension of the code is nonsingular

$$C(x_1)C(x_2)\cdots C(x_n)$$

\overline{X}	Singular	Nonsingular	Uniquely	Prefix
		not	decoable	
		uniquely		
		decodable		
1	0	0	10	0
2	0	010	00	10
3	0	01	11	110
4	0	10	110	111

- Uniquely decodable if only one possible source string producing it
- However, we have to look at entire string to determine
- Prefix code (instantaneous code): no codeword is a prefix of any other code

Expected code length

• Expected length L(C) of a source code C(x) for X with pdf p(x)

$$L(C) = \sum_{x \in \mathcal{X}} p(x)l(x)$$

• We wish to construct instantaneous codes of minimum expected length

- By Kraft in 1949
- Coded over alphabet size D
- m codes with length l_1, \ldots, l_m
- The code length of all instantaneous code must satisfy Kraft inequality

$$\sum_{i=1}^{m} D^{-l_i} \le 1$$

- Given l_1, \ldots, l_m satisfy Kraft, can construct instantaneous code
- Can be extended to uniquely decodable code (McMillan inequality)

Proof of Kraft inequality

- Consider *D*-ary tree
- Each codeword is represented by a leaf node
- Path from the root traces out the symbol
- Prefix code: no codeword is an ancestor of any other codeword on the tree
- Each code eliminates its descendants as codewords

- ullet $l_{
 m max}$ be the length of longest codeword
- A codeword at level l_i has $D^{l_{\max}-l_i}$ descendants
- Descendant sets must be disjoint:

$$\sum D^{l_{\max}-l_i} \le D^{l_{\max}}$$

$$\Rightarrow \sum D^{-l_i} \le 1$$

- Converse: if $l_1, \ldots, l_{\text{max}}$ satisfy Kraft inequality, can label first node at depth l_1 , remove its descendants...
- ullet Can extend to infinite prefix code $l_{
 m max} o \infty$

Optimal Expected Code Length

- One application of Kraft inequality
- Expected code length of *D*-ary is lower bounded by entropy:

$$L \geq H_D(X)$$

Proof:

$$L - H_D(X) = \sum_{i} p_i l_i - \sum_{i} p_i \log_D \frac{1}{p_i}$$
$$= D(p||r) + \log_D \frac{1}{c} \ge 0$$
$$r_i = D^{-l_i} / \sum_{i} D^{-l_j}, \quad c = \sum_{i} D^{-l_i} \le 1$$

Summary

- Nonsingular > Uniquely decodable > Instantaneous codes
- Kraft inequality for Instantaneous code
- Entropy is lower bound on expected code length

Lecture 2.5: Shannon Codes and Huffman Codes

Optimal Code Length

- Encode source X with pdf p_i
- ullet Find code length l_i to minimize expected code length L
- Uniquely decodable code should satisfy Kraft-McMillan inequality

$$\begin{aligned} & \underset{i=1}{\text{minimize}}_{l_i} & & \sum_{i=1}^{m} p_i l_i \\ & \text{subject to} & & \sum_{i=1}^{m} D^{-l_i} \leq 1. \end{aligned}$$

Optimization with Constraints(KKT conditions)

minimize
$$f(x)$$

subject to $h_1(x) = 0, h_2(x) = 0, ..., h_m(x) = 0$
 $g_1(x) \le 0, g_2(x) \le 0, ..., g_r(x) \le 0$

Its Lagrangian function

$$L(x, \lambda, u) = f(x) + \sum_{i=1}^{m} \lambda_{i=1}^{m} h_i(x) + \sum_{j=1}^{r} u_j g_j(x).$$

The optimal solution x* satisifies

$$\nabla_x L(x^*, \lambda^*, u^*) = 0,$$

 $u_j^* \ge 0, \quad j = 1, ..., r.$
 $u_j^* = 0, \quad \forall g_j(x) < 0.$

Shannon Codes

- solution to optimal code length problem $l_i^* = -\log_D p_i$
- consider code length $l_i = -\lceil \log_D p_i \rceil$
- this satisfies Kraft inequality

$$\sum D^{-\lceil \log_D(1/p_i) \rceil} \le \sum D^{\log_D p_i} = \sum_i p_i = 1$$

we can construct a instantaneous code from Kraft

Shannon Codes

expected code length of roof code

$$\sum p_i \lceil \log_D(1/p_i) \rceil < \sum p_i (\log_D(1/p_i) + 1) = H_D(X) + 1$$

- we have shown that $L \ge H_D(X)$ $(D(p||q) \ge 0$ and Kraft inequality)
- the expected code length of roof code at most one bit more than optimal code
- optimal code must be better than roof code.
- ullet expected length of optimal code L^*

$$H_D(X) \le L^* < H_D(X) + 1$$

Shannon Codes

Sometimes "roof" can be quite bad

- ullet code a biased coin flip with p=1/4 using binary code
- $l_1 = \lceil \log_2 1/p \rceil = 2$, $l_2 = \lceil \log_2 1/(1-p) \rceil = \lceil 0.415 \rceil = 1$
- C(1) = 01, C(2) = 1, L = 1.25
- ullet but obviously C(1)=0 and C(2)=1 is better, with L=1
- if send 100 symbols using roof code, we will use $0.25 \times 100 = 25$ extra bits, that is 25% more than needed!

Huffman Codes (1952)

 The optimal (shortest expected length) prefix code for a given distribution

•
$$H(X) \le L < H(X) + 1$$

David Huffman, 1925 - 1999

(David Huffman, in term paper for MIT graduate class, 1951)

- Start from small probabilities
- Form a tree
- Assign 0 to higher branch, 1 to lower branch

- Binary alphabet D=2
- Expected code length

$$L = \sum p_i l_i = (0.25 + 0.25 + 0.2) \times 2 + 3 \times 0.3 = 2.3$$

• Entropy $H(X) = \sum p_i \log(1/p_i) = 2.3$ bits

Codeword Length	Codeword	X	Probability
2	01	1	0.25
2	10	2	0.25 0.25 0.3 0.45
2	11	3	0.2 / 0.25 / 0.25
3	000	4	0.15/\ 0.2/
3	001	5	$0.15^{/}$

Reduction

20 Questions

20 Questions

- Determine the value of a random variable X
- ullet Know distribution of the random variable p_1,\ldots,p_m
- Want to ask minimum number of questions
- Receive "yes", "no" answer

20 Questions

index 1 2 3 4 5
$$p_i$$
 .25 .25 .2 .15 .15

- Native approach
- Start with asking the most likely outcome:

```
"Is X = 1"?
"Is X = 2"?
```

• Expected number of binary questions = 2.55

20 Questions

- If we can ask any question of the form "is $X \in A$ "
- Huffman code

- Q1: is X = 2 or 3?
- ullet Q2: if answer "Yes": is X = 2; if answer "No": if X = 1 and so on.
- E(Q) = 2.3 = H(X)

Huffman Codes and Shannon Codes

- Shannon code $l_i = \lceil \log 1/p_i \rceil$
- Shannon code can be much worse than Huffman code (last lecture)
- Shannon code can be shorter than Huffman code:

$$(1/3, 1/3, 1/4, 1/12)$$
 result in Huffman code length $(2, 2, 2, 2)$ or $(1, 2, 3, 3)$; but $\lceil \log 1/p_3 \rceil = 2$

Huffman code is shorter an average

$$\sum p_i l_i$$
, Huffman $\leq \sum p_i l_i$, Shannon

but $l_{i,\text{Huffman}} \leq l_{i,\text{Shannon}}$ may not be true

Optimality of Huffman Codes

- Huffman code is not unique: investing the bits or exchanging two codewords of the same length
- Proof based on the following lemmas
- (1) if $p_j \geq p_k$, then $l_j \leq l_k$
- (2) Two longest codewords are of the same length
- (3) Two longest codewords differ only in the last bit

Optimality of Huffman Codes

Proof idea

- Induction
- Consider we have found optimal codes for

$$C_m^*(p) = (p_1, \dots, p_m)$$

$$C_{m-1}^*(p') = (p_1, \dots, p_{m-2}, p_{m-1} + p_m)$$

Optimality of Huffman Codes

• First, $p' \to p$: expand the last codewords $C^*_{m-1}(p')$ for $p_{m-1}+p_m)$ by adding 0 and

$$L(p) = L^*(p') + p_{m-1} + p_m$$

• Then, $p \to p'$: merging the codeswords for the two lowest-probability symbols

$$L(p') = L^*(p) - p_{m-1} - p_m$$

• $L(p') + L(p) = L^*(p') + L^*(p)$, since $L^*(p') \le L(p')$, $L^*(p) \le L(p)$

$$L^*(p') = L(p'), \quad L^*(p) = L(p)$$

Optimality of Huffman Codes

• Huffman code has shortest average code length in that

$$L_{\mathsf{Huffman}} \leq L$$

for any prefix code.

$$H(X) \le L_{\mathsf{Huffman}} < H(X) + 1$$

ullet Redundancy = average Huffman codeword length - H(X)

SUMMARY

- Roof code: a simply construction, incurs at most 1 bit overhead per symbol
- Huffman code is a "greedy" algorithm that it combines two least likely symbols at each stage
- This local optimality ensures global optimality

Lecture 2.6: Universal Lossless Compression

Universal Source Coding

For many practical situations, the probability distribution underlying the source may be unknown

- First estimate the distribution, and then compress
- One-pass (or online) algorithm

Dictionaries for Compression

- Dates to invention of the telegraph, companies were charged by the number of letters used → codebooks for the frequently used phrases
- greetings telegrams that are popular in India

Example: "25:Merry Christmas" and "26:May Heaven's choicest blessings be showered on the newly married couple."

The idea of adaptive dictionary-based schemes were explored by Lempel and Ziv. Two distinct methods LZ77 and LZ78.

LZ 77

Finding the longest match within a window of past symbols and represents the string by a pointer to location of the match within and the length of the match.

Compress x₁, x₂, ..., x_n, window size W

if find $x_{j}, x_{j+1}, ..., x_{j+k} = x_{i}, x_{i+1}, ..., x_{i+k}$ in window W, write

$$x_i, x_{i+1}, ..., x_{i+k} \rightarrow (1, location, length)$$

else

$$x_i \rightarrow (0, x_i)$$

LZ 77 Example

String ABBABBABBBAABABA, W=4

The string is parsed:

the sequence of "pointers":

$$(0,A),(0,B),(1,1,1),(1,3,6),(1,4,2),(1,1,1),(1,3,2),(1,2,2)$$

A simple variant - asympotically optimal.

Lempel-Ziv-Welch (1977, 78, 84)

- Variant of LZ78
- Widely used, sometimes in combination with Huffman (gif, tiff, png, pdf, zip, gzip, ...)
- Patents have expired --- much confusion and distress over the years around these and related patents
- Theoretical performance: Under appropriate assumptions on the source, asymptotically attains the lower bound H on compression performance

Lempel-Ziv-Welch (1977, 78, 84)

"Universal lossless compression of sequential (streaming) data by adaptive variable-length coding"

- Universal: doesn't need to know source statistics in advance. Learns source characteristics in the course of building a dictionary for sequential strings of symbols encountered in the source text
- Compresses streaming text to sequence of dictionary addresses --these are the codewords sent to the receiver
- Variable length source strings assigned to fixed length dictionary addresses (codes)
- Starting from an agreed core dictionary of symbols, receiver builds up a dictionary that mirrors the sender's, with a one-step delay, and uses this to exactly recover the source text (lossless)
- Regular resetting of the dictionary when it gets too big allows adaptation to changing source characteristics

Lempel-Ziv-Welch (1977, 78, 84)

- Algorithm first developed by Ziv and Lempel (LZ88, LZ78), later improved by Welch.
- As message is processed, encoder builds a "string table" that maps symbol sequences to an N-bit fixedlength code. Table size = 2^N
- Transmit table indices, usually shorter than the corresponding string → compression!
- Note: String table can be reconstructed by the decoder using information in the encoded stream the table, while central to the encoding and decoding process, *is never transmitted*!

First 256 table entries hold all the one-byte strings (e.g., ASCII codes).

Remaining entries are filled with sequences from the message.
When full, reinitialize table...

Try out LZW on

abcabcabcabcabcabc

(You need to go some distance out on this to encounter the special case discussed later.)

LZW Encoding

S=string, c=symbol (character) of text

- 1. If S+c is in table, set S=S+c and read in next c.
- 2. When S+c isn't in table: send code for S, add S+c to table.
- 3. Reinitialize S with c, back to step 1.

Example Encoding

"abbbabbbab..."

- 1. Read a; string = a
- Read b; ab not in table
 output 97, add ab to table, string = b
- 3. Read b; bb not in table output 98, add bb to table, string = b
- 4. Read b; bb in table, string = bb
- 5. Read a; bba not in tableoutput 257, add bba to table, string = a
- 6. Read b, ab in table, string = ab
- 7. Read b, abb not in table output 256, add abb to table, string = b
- 8. Read b, bb in table, string = bb
- 9. Read a, bba in table, string = bba
- 10. Read b, bbab not in table output 258, add bbab to table, string = b

Encoder Notes

- The encoder algorithm is greedy it's designed to find the longest possible match in the string table before it makes a transmission.
- The string table is filled with sequences actually found in the message stream. No encodings are wasted on sequences not actually found in the input data.
- Note that in this example the amount of compression increases as the encoding progresses, i.e., more input bytes are consumed between transmissions.
- Eventually the table will fill and then be reinitialized, recycling the N-bit codes for new sequences. So the encoder will eventually adapt to changes in the probabilities of the symbols or symbol sequences.

LZW Decoding

```
Read CODE
STRING = TABLE[CODE] // translation table

WHILE there are still codes to receive DO
    Read CODE from encoder
    IF CODE is not in the translation table THEN
        ENTRY = STRING + STRING[0]
    ELSE
        ENTRY = get translation of CODE
    END
    output ENTRY
    add STRING+ENTRY[0] to the translation table
    STRING = ENTRY

FND
```

(Ignoring special case in IF):

- 1. Translate received code to output the corresponding table entry E=e+R (e is first symbol of entry, R is rest)
- 2. Enter S+e in table.
- 3. Reinitialize S with E, back to step 1.

Concluding

- LZW is a good example of compression or communication schemes that "transmit the model" (with auxiliary information to run the model), rather than "transmit the data"
- There's a whole world of lossy compression!

SUMMARY

- LZW Code as an example of universal compression
- Lossy compression vs. Lossless compression