Contents

1	Decidability	2
	Acceptance problem for DFAs	3
	Acceptance problem for NFAs	3
	Generation problem for Regular Expressions	3
	Emptiness problem for DFAs	4
	Equality problem for CFGs	4
	Co-Turing Recognizability	4
2	The Next Section	F

1 Decidability

Hello welcome to the section.

Corollary 1.1. A language is decidable if \exists a non deterministic Turing Machine that recognizes it.

Theorem 1.2. A language is Turing Recognizable if and only if some enumerator enumerates it.

Theorem 1.3. The class of Fontext Free Languages is a proper subset of the Turing Recognizable languages.

Hilbert's 10th Problem: Given a polynomial with integer coeficients, does there exist an integer root to that polynomial.

 $D = \{p | \text{p is a polynomial over one variable} \}$ $F = \{p | \text{p is a polynomial over one or more variables} \}$

Theorem 1.4. The class of Turing Recognizable Languages is closed under \cup .

Proof. Let A, B be Turing Recognizable Languages.

 \exists Turing Machines $M_A, M_B, L(M_A) = A, L(M_B) = B$.

We want Turing Machine M such that $L(M) = A \cup B$

On input w, M does:

1. run M_A and M_B in parallel on w

-if M_A or M_B then halt and accept

-if M_A and M_B then halt and reject

Claim.
$$L(M) = A \cup B$$

Let
$$w \in L(M)$$
 $w \in A \cup B$ etc.....

Definition 1.5. An algorithm is a well defined sequence of steps to perform a computation.

Definition 1.6. A Universal Turing Machine (u) is a Turing Machine that can simulate running any Turing Machine on an input string. \diamond

Acceptance problem for DFAs

Definition 1.7. The acceptance problem for Deterministic Finite Automata is $A_{DFA} = \{ \langle M, w \rangle | M \text{ is a } DFA \text{ and } w \in L(M) \}. \diamond$

Theorem 1.8. A_{DFA} is decidable.

Proof. On an input $\langle M, w \rangle$, X does:

- 1. Simulate running M for |w| transitions.
- 2. If M is in an accept state, halt and accept.
- 3. Halt and reject.

$$\langle M, w \rangle \in A_{DFA} \Rightarrow L(M) \Rightarrow X$$
 Halt and accept $\Rightarrow \langle M, w \rangle \in L(X)$

$$\langle M, w \rangle \in L(X) \Rightarrow w \in L(M) \Rightarrow \langle M, w \rangle \in A_{DFA}$$

$$M = (Q, \Sigma, \delta, q_0, F)$$

$$|Q| < \infty$$

$$|\Sigma| < \infty$$

$$|\delta| < \infty$$

Therefore X decides A_{DFA} .

Acceptance problem for NFAs

Definition 1.9. The acceptance problem for Non-deterministic Finite Automata is $A_{NFA} = \{ \langle M, w \rangle | M \text{ is a } NFA \text{ and } w \in L(M) \}.$

Theorem 1.10. A_{NFA} is decidable.

Proof. On an input $\langle M, w \rangle$, Y does:

- 1. Construct DFA M' such that L(M') = L(M).
- 2. Call Turing Machine X with input $\langle M, w \rangle$ and return what it returns.

Let $\langle M, w \rangle \in A_{NFA} \Rightarrow w \in L(M) \Rightarrow L(M') \Rightarrow \langle M', w \rangle \in A_{DFA} \Rightarrow Y$ accepts $\langle M, w \rangle \Rightarrow \langle M, w \rangle \in L(Y)$

$$< M, w > \in L(Y) \Rightarrow < M', w > \in L(X) = A_{DFA} \Rightarrow w \in L(M') = L(M) \Rightarrow < M, w > \in A_{NFA}$$

$$M = (Q, \Sigma, \delta, q_0, F)$$

$$|Q| < \infty$$

$$\mathcal{P}(Q) < \infty$$

$$|\Sigma| < \infty$$

$$|\delta| < \infty$$

Therefore Y decides A_{NFA} .

Generation problem for Regular Expressions

Definition 1.11. The generation problem for regular expressions $A_{rex} = \{ \langle R, w \rangle | R \text{ is a regular expression and } w \in L(R) \}.$

Theorem 1.12. A_{rex} is decidable.

 \Diamond

Proof. On an input $\langle M, w \rangle$, Z does:

- 1. Construct NFA N such that L(N) = L(R).
- 2. Call Turing Machine Y with input $\langle N, w \rangle$ and return what it returns.

Want to prove that $L(Z) = A_{rex}$.

Therefore Y decides A_{NFA} .

Emptiness problem for DFAs

Definition 1.13. The emptiness problem for DFAs is $E_{DFA} = \{ \langle M \rangle | M \text{ is a DFA} \text{ and } L(M) = \emptyset \}.$

Theorem 1.14. E_{DFA} is decidable.

Theorem 1.15. There are languages that are not Turing recognizable.

- There are a countably infinite number of Turing machines
- We want to show there are an uncountable number of languages over $\{0,1\}$

Theorem 1.16. Every context free language is decidable.

Equality problem for CFGs

Definition 1.17. The equality problem for context free grammars is

Theorem 1.18. EQ_{CFG} is not decidable.

Co-Turing Recognizablilty

Definition 1.19. A language is called Co-Turing recognizable if some Turing machine recognizes its complement.

Theorem 1.20. A language is decidable if and only if it is both Turing recognizable and Co-Turing recognizable.

Corollary 1.21. A_{TM} is not co-Turing Recognizable.

2 The Next Section

Hello this is another section.