## CS 5/7350 – Test 3 May 11, 2022

Name:

| • Th             | nis exam is closed book and closed notes.                                                                    |
|------------------|--------------------------------------------------------------------------------------------------------------|
| • No             | o cell phones, or other electronics except for non-graphing calculator.                                      |
|                  | encil and/or pen and non-graphing calculator only are permitted. No aring of calculators                     |
| • It             | is 3 hours in duration plus time for scanning and uploading, etc.                                            |
|                  | ou should have 14 problems. Pay attention to the point value of each oblem and dedicate time as appropriate. |
|                  |                                                                                                              |
|                  |                                                                                                              |
|                  |                                                                                                              |
|                  |                                                                                                              |
|                  |                                                                                                              |
|                  |                                                                                                              |
|                  |                                                                                                              |
|                  |                                                                                                              |
|                  |                                                                                                              |
| On my honor, I h | have neither given nor received unauthorized aid on this exam.                                               |
|                  |                                                                                                              |
|                  | SIGNED:                                                                                                      |
|                  |                                                                                                              |
|                  | DATE:                                                                                                        |
|                  |                                                                                                              |

## CS 5/7350 – Test 3 May 11, 2022

| ID: |  |  |
|-----|--|--|

[+7 pts extra credit due to max quiz score for CS5350 Students]

- 1. [11 pts] Consider the following NP completeness questions. Answer them with the best answer of "some" "all" "none" or "unknown"
  - (i) Which Problems in NP are also in P? ("some" "all" "none" or "unknown")
  - (ii) Which Problems in P are also in NP? ("some" "all" "none" or "unknown")
  - (iii) Which Problems in NP-Hard are also in NP? ("some" "all" "none")
  - (iv) Which Problems in NP-Complete are in NP-Hard ( "some" "all" "none" or "unknown")
  - (v) If someone can solve an NP-Complete problem in Polynomial Time, then all NP and all NP-Hard problems can be solved in polynomial time. (true or false)
  - (vi) If someone can solve an NP-Complete problem in Polynomial Time, then all NP and all NP-Complete problems can be solved in polynomial time. (true or false)
  - (vii) At least 1 NP problem has a known solution to solve it in polynomial time? (True or False)
  - (viii) All NP-Complete problems are in P ("true" "false" or "unknown")
  - (ix) Which NP-Hard Problems are also NP-Complete? ("some" "all" "none" or "unknown")
  - (x) To show a problem, Q, is NP-Complete, you must show Problem Q is NP and that a solver for another NP-Hard problem can solve problem Q as well. (True or False)
  - (xi) To show a problem, Q, is NP-Complete, you must show Problem Q is NP and that a solver for problem Q can solve another NP-Hard problem. (True or False)

- 2. [6 pts] Consider an LZW compression scenario with a dictionary that contained 1024 entries. In this dictionary, entries 0-255 were the standard ASCII values and entries 256-1023 were the dynamic part of the dictionary. This compression was able to compress a file of 1000kB to 750kB:
  - (i) What is one reason that a larger dictionary of size 2048 with dynamic entries from 256-2047 might cause the file to compress SMALLER than 750kB?

(ii) What is one reason that a larger dictionary of size 2048 with dynamic entries from 256-2047 might cause the file to compress LARGER than 750kB

3. [6 pts] You have a tree with the following in-order and pre-order traversals. Draw the tree:

IN ORDER: LVYTXZWPQRM PRE ORDER: LPXYVTWZMQR

| 4. [6 pts] You have 3 dice. Each one is different |
|---------------------------------------------------|
|---------------------------------------------------|

- Die #1 has sides { 0, 1, 2 } with a
- Die #2 has sides { 1, 2, 3 } with a
- Die #3 has sides {0, 1} with a
  - (i) Fill in the table for the dynamic programming algorithm to solve the problem.
  - (ii) What is the probability of rolling a 0?
  - (iii) What is the probability of rolling a 3?
  - (iv) What is the probability of rolling a 6?

- 5. [6 pts] Answer the following questions.:
  - (i) A program requires 5s to attack an encryption key of 128 bits. If the running time is  $\Theta$  (2<sup>n</sup>) about how many <u>years</u> would it take to brute force attack an encryption key of 256 bits? (note there are about 32 million seconds in a year)
  - (ii) A program requires 5s to attack an encryption key of 128 bits. If you have access to a quantum computer where the running time is  $\Theta$  (n<sup>2</sup>) about how many **seconds** would it take to brute force attack an encryption key of 256 bits?
- 6. [6 pts] Use the DGT algorithm discussed in class to determine how to represent the value 1023 using the number system  $\beta=5$ , D = { -2, -1, 0, 1, 7 }. Show your work.

| 7. | <ul><li>String A h</li><li>String B h</li><li>String C h</li></ul> | ave two strings, A and B. as a length of 11. as a length of 8. as an unknown length. est Common Subsequence between String A and C is 5.           |
|----|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (i)                                                                | What is the minimum length of String C?                                                                                                            |
|    | (ii)                                                               | What is the maximum length of String C?                                                                                                            |
|    | (iii)                                                              | What is the minimum length of the Levensthein Edit Distance of String A and String C?                                                              |
|    | (iv)                                                               | What is the maximum length of the Levensthein Edit Distance of String A and String B?                                                              |
| 8. |                                                                    | ram takes 10 seconds to process a data set of 1000 items using an algorithm You want to process a data set of 10,000 items.                        |
|    | (i)                                                                | How long would it take to process these 100,000 items on a computer that is 5 times faster using the algorithm that is $\Theta$ (n <sup>3</sup> )? |
|    | (ii)                                                               | How long would it take to process these 100,000 items if the computer is the same speed, but the algorithm is $\Theta$ (n <sup>2</sup> ) instead?  |

| L 1    | its Compute the following. Assume Graph G has $ V $ vertices and each edge has a weight $w'$ . Give your answers in terms of "V" and " $w$ " as appropriate. |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i)    | If Graph G is a cycle, what is the maximum flow between any two vertices?                                                                                    |
| (ii)   | If Graph G is complete, what is the maximum flow between any two vertices?                                                                                   |
| (iii)  | If Graph G is a tree, what is the maximum flow between any two vertices?                                                                                     |
| (iv)   | If Graph G is a cycle, the value of the minimum spanning tree of graph G is?                                                                                 |
| (v)    | If Graph G is complete, the value of the minimum spanning tree of graph G is?                                                                                |
| (vi)   | If Graph G is a tree, the value of the minimum spanning tree of graph G is?                                                                                  |
| (vii)  | If Graph G is a cycle, for what values of $ V $ does graph G have an Euler Tour?                                                                             |
| (viii) | If Graph G is complete, for what values of  V  does graph G have an Euler Tour?                                                                              |
| (ix)   | If Graph G is a tree, for what values of $ V $ does graph G have an Euler Tour?                                                                              |
|        |                                                                                                                                                              |
|        |                                                                                                                                                              |

10.[5 pts] Argue that the problem, S, of sorting an unsorted array of integers of length greater than 100 elements is at least as hard - and maybe even harder - than the problem, L, of finding the median of the same array.

| 11. [9 pts] A message contains the following number of each symbol: |
|---------------------------------------------------------------------|
| 30 A's, 14 B's, 6 C's, 4 D's, 3 E's, 3 F's, 2 G's, 1 H and 1 K.     |
| Create a Huffman coding for each symbol:                            |
|                                                                     |
|                                                                     |
|                                                                     |
|                                                                     |
|                                                                     |
|                                                                     |
|                                                                     |
|                                                                     |
| How many bits are in the entire Huffman coded message?              |
|                                                                     |
| How much entropy does each "C" have?                                |
|                                                                     |
|                                                                     |

12. [6 pts] Consider the following graph. When necessary for the algorithm, use vertex C as the starting vertex:



- (i) Give a smallest last vertex ordering for the graph. Circle in your ordering the first vertex you wrote down for that ordering.
- (ii) What is the edge you would choose 3<sup>rd</sup> when finding a minimum spanning tree with Kruskal's algorithm?
- (iii) What is the edge you would choose 3<sup>rd</sup> when finding a minimum spanning tree with Prim's algorithm?
- 13. [4 pts] Two people need to establish a secret key for encrypting communications. They agree to use a Diffie-Hellman key exchange with a modulus of 11 and decide on 2 as the base. Person A chooses a random value performs the appropriate computations and sends the value 5 to person B. Person B chooses a random value of 3 and performs the appropriate computations:
  - a. What is the value Person B sends to Person A
  - b. What is the shared secret key between Person A and Person B

- 14. [8 pts] Consider an RSA encryption system that has a public key of 339251 for the value e and 748081 for the value of the modulus N. You also saw a message that had been encrypted by the public key. The value of this encrypted message is 2.
  - (i) You are able to factor N=748081 into the product of two prime numbers 853 \* 877. What is the value of the private key? Show your work including the table for computing the Extended Euclidean Algorithm.
  - (ii) What was the original message before encryption? (Give an integer)

15. [4 pts] Using  $n_0$  equal to 10, show that  $f(n) = 6n^3 + 2n^2 + 4n + 1$  is  $\Theta(n^3)$ .

```
LZW ENCODE:

set w = NIL
loop
  read a character k
  if wk exists in the dictionary
      w = wk
  else
      output the code for w
      add wk to the dictionary
      w = k
endloop
```

## LZW DECODE:

```
read a character k
entry = dictionary entry for k
output entry
w = entry
loop
   read a character k
   entry = dictionary entry for k
   output entry
   add w + first char of entry to the dictionary
   w = entry
endloop
```

## **Scratch Paper**