HOMEWORK 5 SOLUTIONS
February 25, 2019

(x³+2)(x³-2)

 $=(x+3/2)(x^2-3/2x+3/4)(x-3/2)$ §13.4 #4 Determine the splitting field and its degree over \mathbb{Q} for $x^6 - 4$.

Proof. (Thomas) Let $p = 4^{1/6}$ and $w = e^{\frac{2*\pi * i}{6}}$ and observe that over \mathbb{C} , $x^6 - 4 = (x - (x^2 + 3))$

 $p)(x-wp)(x-w^2p)(x-w^3p)(x-w^4p)(x-w^5p).$ Then the splitting field of x^6-4 is $F=\mathbb{Q}(p,wp,w^2p,w^3p,w^4p,w^5p)=\mathbb{Q}(4^{1/6},e^{\frac{2\pi i}{6}}4^{1/6},e^{\frac{(2)2\pi i}{6}}4^{1/6},e^{\frac{(3)2\pi i}{6}}4^{1/6},e^{\frac{(4)2\pi i}{6}}4^{1/6},e^{\frac{(5)2\pi i}{6}}4^{1/6}).$ Note that $4^{\frac{1}{6}} = 2^{\frac{1}{3}}$ and that $(4^{\frac{1}{6}})^5 * w4^{\frac{1}{6}} = w$ so $w \in F$. Then we can express every basis element of F as a vector space as a \mathbb{Q} -linear combination of $2^{\frac{1}{3}}$ and w so $F = \mathbb{Q}(2^{\frac{1}{3}}, w)$. Note that $\mathbb{Q}(2^{\frac{1}{3}})$ is the splitting field for x^3-2 which is irreducible by Eisenstein with 2 and that $w \notin \mathbb{Q}(2^{\frac{1}{3}})$ so $[\mathbb{Q}(2^{\frac{1}{3}})(w):\mathbb{Q}(2^{\frac{1}{3}})] = \phi(6) = 2$ so the degree of F is (3)(2) = 6.

§13.5 #5 For any prime p and any nonzero $a \in \mathbb{F}_p$ prove that $x^p - x + a$ is irreducible and separable over \mathbb{F}_p . [For the irreducibility: One approach—prove first that if α is a root then $\alpha+1$ is also a root. Another approach—suppose it's reducible and compute derivatives.

Proof. (Thomas) Let $f(x) = x^p - x + a$. We will show that if α is a root then $\alpha + 1$ is also a root. Observe that $f(\alpha+1)=(\alpha+1)^p-(\alpha+1)+a=\alpha^p+1^p-\alpha-1+a=\alpha^p-\alpha+a=f(\alpha)$. It follows inductively that if f(x) has a root in \mathbb{F}_p then f(x) has p distinct roots in \mathbb{F}_p since \mathbb{F}_p has characteristic p. Then we see that every root of f(x) in \mathbb{F}_p is distinct and thus f(x) is sep@rable.

Suppose for the sake of contradiction that f(x) is reducible over \mathbb{F}_p . Then $f(x) = f_1(x) \dots f_n(x)$ for irreducible $f_i(x)$ and assume WQLOG that each $f_i(x)$ is monic. Note that n > 1 since f(x)is reducible. Then let α_1 be a root of $f_1(x)$ and note that $f_1(x)$ is the minimimal polynomial of α_1 since otherwise it would be reducible (since minimal polynomials divide any polynomial that shares a root). Similarly, $f_2(x)$ is the minimal polynomial of some α_2 . Note that $\alpha_1 = \alpha_2 + \alpha_3$ for some $\alpha_3 \in \mathbb{F}_p$ since any root is simply a translation of every other root by the seperability proof above. Then $f_1(x+\alpha_3)$ has α_2 as a root and is the minimal polynomial of α_2 since shifting a polynomial does not affect reducibility. But this means that $deg(f_1) = deg(f_2)$. Since $f_1(x), f_2(x)$ may be any factors of f(x) up to ordering, we see that every divisor of f(x)7 has the same degree. Since the degree of f(x) is p, a prime, we see that every factor of f(x)is linear and f(x) has a root in \mathbb{F}_p . Let b be a root of f(x) in \mathbb{F}_p . Note that since $b \in \mathbb{F}_p$, b is a root of $x^p - x$ so $b^p - b = 0$. Then $0 = f(b) = b^p - b + a = a$ which is a contradiction since $a \neq 0$. It follows then that f(x) does not have any roots in \mathbb{F}_p , and we see that f(x) cannot factor linearly which is a contradiction so we see f(x) is irreducible over \mathbb{F}_p .

Good

§14.1 #1 (a) Show that if the field K is generated over F by the elements $\alpha_1, \ldots, \alpha_n$ then an automorphism σ of K fixing F is uniquely determined by $\sigma(\alpha_1), \ldots, \sigma(\alpha_n)$. In particular show that an automorphism fixes K if and only if it fixes a set of generators for K.

Proof. (Thomas) Let $x \in K$ and note that $x = \frac{f(\alpha_1, \dots, \alpha_n)}{g(\alpha_1, \dots, \alpha_n)}$ for $g \neq 0$. Then $\sigma(x) = \sigma(\frac{f(\alpha_1, \dots, \alpha_n)}{g(\alpha_1, \dots, \alpha_n)}) = \sigma(f(\alpha_1, \dots, \alpha_n))\sigma(g(\alpha_1, \dots, \alpha_n))^{-1} =$

 $f(\sigma(\alpha_1),\ldots,\sigma(\alpha_n))g(\sigma(\alpha_1),\ldots,\sigma(\alpha_n))^{-1} = \frac{f(\sigma(\alpha_1),\ldots,\sigma(\alpha_n))}{g(\sigma(\alpha_1),\ldots,\sigma(\alpha_n))}$ since σ is an automorphism (respecting addition and multiplication) that fixes F. Thus σ is entirely determined

by $\sigma(\alpha_1), \ldots, \sigma(\alpha_n)$. It follows immediately that if an automorphism fixes the generators of K, it fixes K. Since

an automorphism that fixes K fixes the generators of K, we see that an automorphism fixes K if and only if it fixes a set of generators for K.

(b) Let $G \leq \operatorname{Gal}(K/F)$ be a subgroup of the Galois group of the extension K/F and suppose $\sigma_1, \ldots, \sigma_k$ are generators for G. Show that the subfield E/F is fixed by G if and only if it is fixed by the generators $\sigma_1, \ldots, \sigma_k$.

Proof. (Thomas) Suppose the subfield E/F is fixed by G. Then since the generators of G are in G, we see that E/F is fixed by the generators $\sigma_1, \ldots, \sigma_k$.

Suppose E/F is fixed by the generators $\sigma_1, \ldots, \sigma_k$ of G. Then choose $g \in G$ and note that g is a product of the generators of G so g fixes E/F.

§14.1 #2 Let τ be the map $\tau: \mathbb{C} \to \mathbb{C}$ defined by $\tau(a+bi) = a-bi$ (complex conjugation). Prove that τ is an automorphism of \mathbb{C} .

Proof. (Thomas) Let $x, y \in \mathbb{C}$ and note that $\tau(xy) = \overline{xy} = \overline{xy} = \tau(x)\tau(y)$ and that $\tau(x+y) = \overline{xy} = \overline{xy} = \tau(x)\tau(y)$ $\overline{x+y} = \overline{x} + \overline{y} = \tau(x) + \tau(y)$ so τ is operation preserving and is thus a homomorphism.

Note that $\tau(\tau(z)) = \tau(\bar{z}) = z$ so $\tau = \tau^{-1}$ and τ is a bijection.

Then τ is an isomorphism from $\mathbb C$ to $\mathbb C$ and is thus an automorphism.

§14.1 #3 Determine the fixed field of complex conjugation on \mathbb{C} .

Solution: The fixed field of complex conjugation on \mathbb{C} is the real line \mathbb{R} . For $x \in \mathbb{R}$, we have that $x = x + 0i \in \mathbb{C}$, so $\tau(x) = \tau(x + 0i) = x - 0i = x$, so τ fixes \mathbb{R} . Moreover, for $a + bi \in \mathbb{C} \setminus \mathbb{R}$, we have that $b \neq 0$, and as 1, i form a basis for \mathbb{C} , $\tau(a+bi) = a-bi \neq a+bi$. Therefore, τ fixes only the real line \mathbb{R} .

§14.1 #5 Determine the automorphisms of the extension $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}(\sqrt{2})$ explicitly.

1 (JZ)[X]

Solution: Notice that $\mathbb{Q}(\sqrt[4]{2})$ is the splitting field for the irreducible polynomial $x^2 - \sqrt{2}$ in $\mathbb{Q}(\sqrt{2})$, so $[\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}(\sqrt{2})]=2$. So the automorphism group has precisely two elements, the identity automorphism, and σ with $\sigma(\sqrt[4]{2}) = -\sqrt[4]{2}$. Let k be a field.

 $\S 14.1 \# 6$ Let k be a field.

(a) Show that the mapping $\varphi: k[t] \to k[t]$ defined by $\varphi(f(t)) = f(at+b)$ for fixed $a, b \in k$, $a \neq 0$ is an automorphism of k[t] which is the identity on k.

Proof. First, note that as a subset of k[t], k is the set of constant polynomials, so as changing the variable in a constant polynomial does not affect it, φ fixes k.

Next, notice that φ has a natural inverse $\varphi^{-1}(f(t)) = f\left(\frac{t-b}{a}\right)$, which is well-defined as $a \neq 0$, so f must be a bijection.

Choose $f, g \in k[t]$. Then

$$\varphi((f+g)(t)) = (f+g)(at+b) = f(at+b) + g(at+b) = \varphi(f(t)) + \varphi(g(t)).$$

Similarly,

$$\varphi((f \cdot g)(t)) = (f \cdot g)(at+b) = f(at+b)g(at+b) = \varphi(f(t))\varphi(g(t)).$$

Therefore, φ is a ring automorphism of k[t].

(b) Conversely, let φ be an automorphism of k[t] which is the identity on k. Prove that there exist $a, b \in k$ with $a \neq 0$ such that $\varphi(f(t)) = f(at + b)$ as in (a).

For quite. That exercise was a field.

That exercise was a field.

This is a trul f(t) = f(t) above, the action of g(t) = f(t) is determined f(t) = f(t), the ideal generated by f(t) = f(t).

Proof. As t, 1 generate k[t], by exercise 14.1 #1 above, the action of φ on k[t] is determined entirely by its action on t and 1. That is, k[t] = (t, 1), the ideal generated by t and 1. By hypothesis, $\varphi(1) = 1$.

If the degree of $\varphi(t) = 0$, then $\varphi(k[t]) = k$, which is not an automorphism. Moreover, the degree of every element in $\varphi(k[t])$ is divisible by the degree of $\varphi(t)$, so if that degree is bigger than 1, then there are no linear polynomials in $\varphi(k[t])$. Thus, $\varphi(t)$ must be a linear polynomial, i.e., $\varphi(t) = at + b$ for $a, b \in k, a \neq 0$.

 $\sqrt{2}$ Make explicit using the Theorem of the Primitive Element that $\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2},\sqrt{3})$.

Proof. The field $\mathbb{Q}(\sqrt{2},\sqrt{3})$ has 4 distinct \mathbb{Q} -embeddings into $\overline{\mathbb{Q}}$, which are:

$$\sigma_1: \sqrt{2} \mapsto \sqrt{2}, \qquad \sqrt{3} \mapsto \sqrt{3};$$

$$\sigma_2: \sqrt{2} \mapsto -\sqrt{2}, \qquad \sqrt{3} \mapsto \sqrt{3};$$

$$\sigma_3: \sqrt{2} \mapsto \sqrt{2}, \qquad \sqrt{3} \mapsto -\sqrt{3};$$

$$\sigma_4: \sqrt{2} \mapsto -\sqrt{2}, \qquad \sqrt{3} \mapsto -\sqrt{3}.$$

By the Theorem of the Primitive Element, it is sufficient to show that $\{\sigma_i(\sqrt{2}+\sqrt{3}) \mid i=1,2,\ldots,n\}$ $1, \ldots, 4$ contains 4 distinct elements. So, observe that

$$\sigma_1(\sqrt{2} + \sqrt{3}) = \sqrt{2} + \sqrt{3}
\sigma_2(\sqrt{2} + \sqrt{3}) = -\sqrt{2} + \sqrt{3}
\sigma_3(\sqrt{2} + \sqrt{3}) = \sqrt{2} - \sqrt{3}
\sigma_4(\sqrt{2} + \sqrt{3}) = -\sqrt{2} - \sqrt{3},$$

which are 4 distinct elements. Thus, $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

Good

Better wording:

If the olegree of $\varphi(t) > 1$, then $t \in Im(\varphi)$.