	1.	4		DRG.	h H	9, Chite	Du Coyen			
a	mul			19		7 7 000	y a soft			1
	P	R	Q	$P \rightarrow R$	$R \rightarrow Q$	$P \rightarrow (R \rightarrow Q)$	$IP \rightarrow (R \rightarrow O) \rightarrow (D \rightarrow D)$			1
	0	0	0	1	1	1	$[P \rightarrow (R \rightarrow Q) \rightarrow (P \rightarrow R)]$	A	A	
	0	0	1	1	1	1		1	0	1
	0	1	0	1	0	1	1	1	0	7
	0	1	1	1	0	1	1	1	0	1
	1	1	T	1	1	1	1	1	0	×
		0	0	0	1	1	0	1	0	1
1	1	0	1	0	1	1	0	1	0	1
1	1	1	0	1	0	0	1	1	0	
1	1	1	1	1	1	1		1	0	-
+			- 1	- 1		-	1	1	0	
-	MA	10	. 40	1 1/10						

СКНФ(А) нет

0	((P~a)1P)-sā	P	Q	\bar{P}	\bar{Q}	P~Q	$((P^Q) \wedge \bar{P})$	В	B
		0	0	1	1	1	1	1	0
		0	1	1	0	0	0	1	0
		1	0	0	1	0	0	1	0
		1	1	0	0	1	0	1	0
		1	7	U	0	-			

СДНФ(В) = $\overline{PQ} \vee \overline{PQ} \vee P\overline{Q} \vee PQ$

СКНФ(В) нет

		0.	(5	->	41	~ (4	~ 至1		
	-0	1	(X			$\bar{X} \rightarrow \bar{Y}$	Y~Z	C	C
	X	Y	Z	\bar{X}	Ÿ	$\frac{X \rightarrow I}{1}$	1	1	0
-	0	0	0	1	1	1	0	0	1
	0	0	1	1	1	0	0	1	0
	0	1	0	1	0	0	1	0	1
The second	0	1	1	1	0	1	1	1	0
	1	0	0	0	1	1	0	0	1
	1	0	1	0	1	1	0	0	1
	1	1	0	0	0	1	1	1	0
	1	1	1	0	0	1			

СДНФ(C) = $\overline{XYZ} \lor \overline{P}Y\overline{Z} \lor X\overline{YZ} \lor XYZ$

 $\mathsf{CKH}\Phi(\mathsf{C}) = \overline{C} \underline{\mathcal{H}} \Phi(\overline{C}) = \overline{\bar{x}} \overline{\bar{y}} z \vee \bar{x} y \overline{z} \vee x \overline{y} z \vee x y \overline{z} = (x \vee y \vee \bar{z})(x \vee \bar{y} \vee z)(\bar{x} \vee y \vee \bar{z})(\bar{x} \vee \bar{y} \vee z)$

2) (ボーンダ) -> ((ソハヹ)-> (メハヹ))

						- V	YAZ	ΧΛΖ	$(Y \wedge Z) \rightarrow (X \wedge$	D	D
	X	Y	Z	X	Y	$\bar{X} \to Y$	1712		Z)		1
							0	0	1	1	0
1	0	0	0	1	1	1	0	0	1	1	0
1	0	0	1	1	1	1	0	0	1	1	0
L	2	1	0	1	0	0	0	0	0	1	0
	5	1	1	1	0	0	1	0	1	1	0
H		0	0	0	1	1	0	0	1	1	10
H	-	0	1	0	1	1	0	1	1	1	0
	-	0	1	0	-	1	0	0	1	1	U
1		1	0	0	0	1	1	1	1	1	0
1		1	1	0	0	1	-				

СДНФ(D) = $\overline{XYZ} \lor \overline{XY}Z \lor \overline{XZ}Y \lor \overline{X}YZ \lor X\overline{Y}\overline{Z} \lor X\overline{Y}Z \lor XY\overline{Z} \lor XYZ$ CKHQ(0) mem

Bagasine e.

a) (A VB) (Ā VB

CKHΦ(D) HET

 $\overline{(A \vee B)}(\bar{A} \vee \bar{B}) = (\bar{A} \wedge \bar{B})(\bar{A} \vee \bar{B})$

A	В	Ā	\bar{B}	$\bar{A} \wedge \bar{B}$	$\bar{A} \vee \bar{B}$	F	\bar{E}
0	0	1	1	1	1	1	0
0	1	1	0	0	1	0	1
_1	0	0	1	0	1	0	1
1	1	0	0	0	0	0	1

 $CДНФ(E) = \overline{AB}$

СКНФ(E) = $CДНФ(E) = (\bar{A}B) \lor (A\bar{B}) \lor (AB) = (A \lor \bar{B})(\bar{A} \lor B)(\bar{A} \lor \bar{B})$

O) (A -> B) (A -> C)

-	A	В	C	\bar{B}	$A \rightarrow \bar{B}$	$A \rightarrow C$	F	\bar{F}		
	0	0	0	1	1	1	1	0		
(0	0	1	1	1	1	1	0		
_ (0	1	0	0	1	1	1	0		
_()	1	1	0	1	` 1	1	0		
_1		0	0	1	1	0	0	1		
_ 1		0	1	1	1	1	1	0		
1		1	0	0	0	0	0	1		
1		1	1	0	0	1	1	0		
All and a second										

СКНФ(F) = $\overline{CДНФ(F)} = \overline{(AB\overline{C})} \vee (AB\overline{C}) = (\overline{A} \vee B \vee C)(\overline{A} \vee \overline{B} \vee C)$

	12-1-	1
$(A \rightarrow B) (B \rightarrow A) (AVB)$ $(A \rightarrow B) (B \rightarrow A)$	G	G
O/ (AVB) (A	0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1
0 0 1 0 0	0	1
0 1 1 1	1	0
1 0 1		
1 1 1		

$${\sf C}$$
ДН ${\Phi}({\sf G}) = {\sf A}{\sf B}$ ${\sf C}$ КН ${\Phi}({\sf G}) = {\sf C}$ ДН ${\Phi}({\sf G}) = ({\sf A}{\sf B}) \vee ({\sf A}{\sf B}) \vee ({\sf A}{\sf B}) = ({\sf A}\vee{\sf B})({\sf A}\vee{\sf B})({\sf A}\vee{\sf B})$

1	un				$(A \rightarrow B)(B \rightarrow \bar{A})$	H	H
Δ	В	Ā	$A \rightarrow B$	$B \rightarrow \bar{A}$	$(A \rightarrow B)(B \rightarrow A)$	0	1
0	0	1	1	1	1	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	0
1	1	0	1	0			

сдн
$$\Phi(H) = \overline{AB} \vee \overline{AB}$$

СДПФ(П)

СКНФ(Н) =
$$\overline{CДН\Phi(E)} = \overline{(AB)} \vee \overline{(AB)} = (\overline{A} \vee B)(\overline{A} \vee \overline{B})$$

	11				Pallageron e-		1
1			$P \rightarrow \bar{Q}$	$P \rightarrow R$	Α	Ā	
P	R	Q	1	1	1	0	
0	0	1	1	1	1	0	1
0	0	0	1	1	1	0	1
0	1	1	1	1	1	0	1
0	1	0	1	1	1	1	1
1	0	1	1	0	U	1	4
1	0	0	0	0	0	1	4
1	U	0	1	1	1	0	-
1	1	1		1	0	1	
1	1	0	0	1			

СДНФ(H) = $\overline{PRQ} \vee \overline{PRQ} \vee$

СКНФ(H) = $\overline{CДН\Phi(E)} = \overline{(PRQ) \lor (PRQ)} \lor (PRQ) = (PVR) \lor (PRQ) \lor (PRQ) = (PVR) \lor ($

	-	es	(P	~ 9) -	-> 10.		THIE	
	Р	R	Q	P~Q	PAR	R)		
	0	0	0	1	1 // K	A	Ā	
	0	0	1	0	0	0	1	
	0	1	0	1	0	1	0	
	0	1	1		0	0	1	
	1			0	0	1	0	
		0	0	0	0	1	0	
-	1	0	1	1	0	0	1	
	1	1	0	0	1	1	7	-
	1	1	1	1	1	1	0	
_			-		1	1	0	

СДНФ(H) = $\overline{PR}Q \vee \overline{P}RQ \vee P\overline{RQ} \vee PR\overline{Q} \vee PRQ$

СКНФ(H) = $CДНФ(\overline{E}) = (\overline{P}\overline{R}\overline{Q})v(\overline{P}R\overline{Q}) \vee (P\overline{R}Q) = (P \vee R \vee Q)(P \vee \overline{R} \vee Q)(\overline{P} \vee R \vee \overline{Q})$