Reg. No.						

Question Paper Code 11020

B.E / B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2021

Fourth Semester

Information Technology

MA8391 - Probability and Statistics

(Regulations 2017)

(Use of Statistical Tables is permitted)

Duration: 3 Hours Max. Marks 100

Answer ALL Questions

PART-A $(10 \times 2 = 20 \text{ Marks})$

		K-Level	CO No.
1.	If X is uniformly distributed over $(0,10)$ then find $P(3 < X < 8)$.	К3	CO2
2.	If a random variable X has the MGF $M_X(t) = \frac{2}{2-t}$ then find Var(X).	К3	CO2
3.	The joint p.d.f of two-dimensional random variable (X, Y) is given by $f(x, y) = ke^{-(x+y)}, x, y \ge 0$ Find the value of K.	К3	CO2
4.	State Central Limit Theorem.	K1	CO2
5.	State the uses of χ^2 - test.	K1	CO4
6.	What is Type I and Type II errors?	K1	CO4
7.	What do you understand by Design of an experiment?	K1	CO5
8.	Why a 2*2 Latin square is not-possible?	K2	CO5
9.	State the advantages of Statistical Quality Control.	K1	CO6
10.	Ten units were inspected for non-confirming welds with the total no. of defects as 360. Find UCL and LCL.	К3	CO6

$PART - B (5 \times 16 = 80 \text{ marks})$

11. There are 4 candidates for the office of the highway commissioner. The i respective probabilities that they will be selected are 0.3, 0.2, 0.4 & 0.1 8 **K**3 CO₁ and the probabilities for a project's approval are 0.35, 0.85, 0.45 & 0.15, depending on which of the 4 candidates is selected. What is the probability of the project getting approval? A machine manufacturing screws is known to produce 5% defective. In a random sample of 15 screws, what is the probability that there are (i) 8 exactly 3 defectives (ii) at least 3 defectives? **K**3 CO₂ OR A random variable *X* has the following probability function CO₁

8 **K**3 P(X = x) = 0 a 2a 2a 3a a 2 2a² 7a² + a Find (i) a (ii) P(X < 4) (iii) Find P(1.5 < X < 4.5/X > 2)

CO₂

If the probability that an applicant for a driver's licence will pass the ii road test on any given trial is 0.8, what is the probability that he will 8 **K**3 finally pass the test (i) on the 4th trial (ii) in fewer than 4 trials?

12. If the Joint PDF of (X,Y) is given by $f(x,y) = e^{-(x+y)}, x > 0, y > 0$ 8 **K**3 CO₃ Prove that X and Y are uncorrelated

 $f(x, y) = \begin{cases} \frac{1}{8}(6 - x - y) & 0 < x < 2, 2 < y < 4 \\ 0 & elsewhere \end{cases}$ find (i) $P(X < 1 \cap Y < 3)$ and (ii) P(X < 1 / Y < 3). ii 8 **K**3 CO₃

The lifetime of a certain brand of an electric bulb may be considered a b) 8 **K**3 CO₂ RV with mean 1200h and standard deviation 250h. Find the Probability, using central limit theorem, that the average lifetime of 60 bulbs exceeds1250 h

If X and Y are independent random variables with pdf e^{-x} , $x \ge 0$ and e^{-y} , $y \ge 0$ respectively, find the density functions of $U = \frac{X}{X+Y}$ and V = X+Y. Are U and V independent? 8 **K**3 CO₃

The means of two large samples of 1000 and 2000members are 67.5 13. 8 **K**3 CO₄ inches and 68 inches respectively. Can the samples be regarded as drawn from the same population of standard deviation 2.5 inches?

ii In 120 throws of single die, the following distribution of faces were 8 K3 observed

Faces	1	2	3	4	5	6
Frequency	30	25	18	10	22	15

Can you say that the die is biased?

OR

b) Two random samples drawn from normal populations are

8 K3 CO4

CO₄

Sample I	20	16	26	27	23	22	18	24	25	19		
Sample II	27	33	42	35	32	34	38	28	41	43	30	37

Obtain estimates of the variances of the populations and test whether the two populations have the same variance

When 10 oil tins are taken at random & automatic filling machine, the mean weight of ten tin is 15.8 kg and S.D is 0.5 kg. Thus, the sample mean differs significantly from the intended weight of 16 kg.

8 K3 CO4

14. a) Analyse the following by Latin square experiment.

16 K3 CO5

A12	D20	C16	B10
D18	A14	B11	C14
B12	C15	D19	A13
C16	B11	A15	D20

OR

b) 16 K3 CO5

The following table shows the lives in hours of four brands of electric lamps brand.

	1610						1800	
	1580							
C	1460	1550	1600	1620	1640	1660	1740	1820
D	1510	1520	1530	1570	1600	1680		

Perform an analysis of variance and test the homogeneity of the mean of the four brands of lamps 15. a) Samp le Mean Rang

K3 CO6

Draw the appropriate mean and range charts and each of size five. Comment on the state of control of the process

OR

b) Construct a control chart for defectives for the following data:

Sample	1	2	3	4	5	6	7	8	9	10
No.										
No.	90	65	85	70	80	80	70	95	90	75
Inspect										
ed										
No. of	9	7	3	2	9	5	3	9	6	7
Defecti										
ves										

K3 CO6