## Giving computers the ability to learn from data

- we have a large amount of structured and unstructured data.
- we are to turn this data into knowledge.
- □ Three different types of machine learning (discussed later)
  - supervised learning: learns a model from labeled training data
  - unsupervised learning
  - reinforcement learning

#### Notations and Conventions

- Iris dataset
  - 150 Iris flowers from three different species
  - o four features



**CH1** 1-2

#### Notations and Conventions

□ feature matrix X: 150 x 4 matrix,  $X \in \mathbb{R}^{150 \times 4}$ 



- subscript j refers to the jth dimension of the training dataset.
- $\mathbf{x}_1^{(150)}$  refers to the first dimension of flower example 150, the sepal length.
- ow: a flower instance and written as a four-dimentional row vector,  $\mathbf{x}^{(i)} \in \mathbf{R}^{1\times 4}$



column: each feature dimension is a 150-dimensional column vector, x<sub>j</sub> ∈ R<sup>150×1</sup>

target variable (here, class labels): 150-dimensional column vector

## Building machine learning systems

 typical workflow for using machine learning in predictive modeling



M. Choi, All Rights Reserved

### Using Python and packages

- install Python from https://www.python.org
- install Jupyter Notebook from

- install Python packages
  - $\circ$  NumPy >= 1.17.4
  - SciPy >= 1.3.1
  - o scikit-learn >= 0.22.0
  - o matplotlib >= 3.1.0
  - o pandas >= 0.25.3
- □ through GitHub at https://github.com/rasbt/python-machine-learning-book-3rd-edition
  - o download all code examples

# <u>Chapter 2:</u> Simple Machine Learning Algorithms for Classification

#### Our goal:

- understanding of machine learning algorithms
- using pandas, NumPy, and Matplotlib
- implementing algorithms using Python

#### Overview:

- Artificial neurons and perceptron
- perceptron neuron algorithm in Python
- Adapative linear neuron and convergence of learning
  - stochastic gradient descent

## Artificial Neuron



input values weight vector

M. Choi, All Rights Reserved

two classes

decision function

perceptron

CH2

1-7



decision function



two linearly separable classes

M. Choi, All Rights Reserved

CH2

1-8

## Perceptron learning rule

- 1. Initialize the weights to small random numbers.
- 2. For each training example,  $x^{(i)}$ :
  - a. Compute the output value,  $\hat{y}$ .
  - b. Update the weights.



M. Choi, All Rights Reserved

## Perceptron learning rule

- Note that the convergence of perceptron is only guaranteed if
  - two classes are linearly separable and
  - learning rate is sufficiently small.



M. Choi, All Rights Reserved

CH2 1-10

# Implementing Perceptron learning algorithm in Python

```
import numpy as np
class Perceptron(object):
   """Perceptron classifier.
   Parameters
   eta : float
    Learning rate (between 0.0 and 1.0)
   n iter : int
     Passes over the training dataset.
   random_state : int
     Random number generator seed for random weight
     initialization.
   Attributes
   w_ : 1d-array
     Weights after fitting.
   errors_ : list
     Number of misclassifications (updates) in each epoch.
   def __init__(self, eta=0.01, n_iter=50, random_state=1):
       self.eta = eta
       self.n_iter = n_iter
       self.random_state = random_state
```

M. Choi, All Rights Reserved

CH2 1-11

```
def fit(self, X, y):
    """Fit training data.
    Parameters
   X : {array-like}, shape = [n_examples, n_features]
     Training vectors, where n_examples is the number of examples and
     n_features is the number of features.
   y : array-like, shape = [n_examples]
     Target values.
    Returns
   self : object
    rgen = np.random.RandomState(self.random.state)
   self.w_ = rgen.normal(loc=0.0, scale=0.01, size=1 + X.shape[1])
   self.errors = []
    for _ in range(self.n_iter):
        errors = 0
        for xi, target in zip(X, y):
           update = self.eta * (target - self.predict(xi))
           self.w_[1:] += update + xi
           self.w_[0] += update
           errors += int(update != 0.0)
       self.errors_.append(errors)
    return self
def net_input(self, X):
    """Calculate net input"""
    return np.dot(X, self.w_[1:]) + self.w_[0]
def predict(self, X):
    """Return class label after unit step"""
    return np.where(self.net_input(X) >= 0.0, 1, -1)
```

M. Choi, All Rights Reserved

CH2 1-12