

Departamento de Informática

Programação Inteira

Métodos Quantitativos LEI 2006/2007

Advertência

- Autores
 - João Moura Pires (jmp@di.fct.unl.pt)
 - Susana Nascimento (snt@di.fct.unl.pt)
- Este material pode ser livremente usado para uso pessoal ou académico e sem qualquer autorização prévia dos autores desde que acompanhado desta declaração dos autores.
- Para uso comercial (por exemplo em cursos pagos) o uso deste material requer a expressa autorização dos autores.

Programação Linear Inteira

- Programação Linear PL
- Programação Linear Inteira PLI (ou apenas PI)
 - PLI = PL + Todas as variáveis **inteiras**
- Programação Linear Binária PLB (ou apenas PB)
 - Caso particular de PI em que o domínio das variáveis é {0, 1}
- Programação Linear Inteira Mista
 - Algumas variáveis são inteiras
 - Algumas variáveis são reais

3

Motivação e diferença

- Variáveis de decisão representam quantidades inteiras
 - Pessoas, máquinas, etc.
- Problemas evolvendo uma várias decisões "sim/não" inter-relacionadas
- O princípio da divisibilidade já não existe.

Um exemplo de Programação Inteira

$$Maximizar Z = 10 x_1 + 15 x_2$$

$$C_1$$
: 282 $x_1 + 400 x_2 \le 2000$

$$\mathbb{C}_2$$
: x_1

$$\leq 5$$

C₂:
$$x_1 \le 5$$

C₃: $4x_1 + 40x_2 \le 140$

$$x_1, x_2 \ge 0$$
 e inteiros

Relaxamento linear

 C_1 : 282 $x_1 + 400 x_2 \le 2000$

$$C_2$$
: $x_1 \le 5$

$$C_3: 4x_1 + 40 x_2 \le 140$$

Arredondar a solução óptima do problema relaxado

X1	X2	Z
2.5	3.3	74
X1	X2	Z
1	2	65
2	3	0.5
2	4	65 80
2 3	3	80 75

7

Solução óptima do ILP

X1 2.5	X2	Z	
2.5	3.3	74	
X1	X2 3	Z	
2	3	65	
X1 2 2	4	Z 65 80	
3	3	75	
3	4	90	
4	2	70	

PL pode dar limite superior?

O óptimo (maximização) do problema de PI é menor ou igual do que o óptimo do problema relaxado (ex: $65 \le 74$)

Primeiras impressões

- PI é muito mais difícil do que PL
 - PL : milhares de variáveis
 - PI: poucas centenas de variáveis
- Para se resolver um problema PI podemos começar por resolver a sua forma relaxada (retirando a restrição de as variáveis serem inteiras)
 - O valor óptimo do problema relaxado é melhor ou igual que o valor óptimo do problema inteiro.
 - Avaliar as soluções inteiras por "arredondamento" de uma solução real.

٥

Um exemplo de decisões do tipo "sim/não"

Uma empresa pretende investir numa nova fábrica em Los Angeles ou em San Francisco (ou em ambas as cidades).

Considera além disso a construção de quando muito um armazém, o qual deverá ficar localizado na mesma cidade onde for construída uma nova fábrica.

O capital disponível para investir é de 10 milhões de dólares

_Var	Questão	Retorno	Investimento
X_1	Fábrica em Los Angeles?	9	6
X_2	Fábrica em San Francisco?	5	3
X_3^-	Armazém em Los Angeles?	6	5
X_4	Armazém em San Francisco?	4	2

^{*} Retorno já inclui o valor do Investimento e estão ambos em milhões de dólares

Um exemplo de decisões do tipo "sim/não" - variáveis binárias -

- $X_j = \{1 \text{ se a decisão } j \text{ for sim; } 0 \text{ se a decisão } j \text{ for não} \}$
- X_3 e X_4 são **mutuamente exclusivas** (apenas um armazém)

$$X_3 + X_4 \le 1$$

- X_3 e X_4 são **decisões contingentes** das decisões de X_1 e X_2 (apenas se constrói um armazém numa cidade onde também se vai construir uma fábrica)
 - Se $X_1 = 0$ então $X_3 = 0$ $X_3 \le X_1$
 - Se $X_2 = 0$ então $X_4 = 0$ $X_4 \le X_2$

11

Um exemplo de decisões do tipo "sim/não" - BIP-

Formular o problema

Maximizar
$$Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$$

$$\begin{array}{cccc} 6x_1 + 3x_2 + 5x_3 + 2x_4 \leq 10 & \text{(investimento)} \\ & x_3 + x_4 \leq 1 & \text{(máximo um armazém)} \\ -x_1 & + x_3 & \leq 0 & \text{(contingência)} \\ & -x_2 & + x_4 \leq 0 & \text{(contingência)} \end{array}$$

e x_i é binário para j = 1, 2, 3, 4

Var	Ret	Inv
X_1	9	6
X_2	5	3
X_3	6	5
X_4	4	2

Ver outros exemplos secção 12.2

- Vamos introduzir variáveis binárias na formulação de modelos de PL ou PI com restrições.
 - Por exemplo, em problemas com variáveis inteiras ou reais com disparidades que envolvem relacções combinatórias de elementos do modelo.
- Vamos discutir alguns casos em que os x_j 's são variáveis de decisão originais, e em que os y_i 's são variáveis binárias auxiliares.
- Modelação de restrições disjuntas
- Funções objectivo com N valores possíveis
- Modelação de Problema de custo fixo
- Outros ...

13

Modelação de restrições disjuntas - apenas 1 de entre 2 restrições -

 Apenas uma de entre duas restrições deve ser satisfeita (embora possam as duas ser satisfeitas)

$$C_1: f_1(x_1, x_2, ..., x_n) \le d_1$$

 $C_2: f_2(x_1, x_2, ..., x_n) \le d_2$

 $C_1 \vee C_2$

• Seja *M* um número inteiro positivo muito grande.

$$C'_1: f_1(x_1, x_2, ..., x_n) \le d_1 + M.y$$

 $C'_2: f_2(x_1, x_2, ..., x_n) \le d_2 + M.(1 - y)$
 $C'_3: y \in \{0, 1\}$

 C_1 , $\wedge C_2$, $\wedge C_3$,

 $y = 0 \Rightarrow$ a restrição C'_2 verifica-se automaticamente $y = 1 \Rightarrow$ a restrição C'_1 verifica-se automaticamente

K de N restrições devem ser satisfeitas

$$\begin{vmatrix} f_1(x_1, x_2, ..., x_n) \le d_1 \\ ... \\ f_N(x_1, x_2, ..., x_n) \le d_N \end{vmatrix}$$

 $(K \le N)$

- K restrições **devem** ser satisfeitas.
- Soluções **podem** satisfazer acidentalmente mais do que *K* restrições

$$f_1(x_1, x_2, ..., x_n) \leq d_1 + M.y_1$$
...
$$f_N(x_1, x_2, ..., x_n) \leq d_N + M.y_N$$

$$\sum_{i=1}^{N} y_i = N - K \text{ N-$K restrições mantêm-se automaticamente eliminadas.}$$

$$y_i \in \{0,1\} \quad (i = 1, ..., N)$$

 $y_i = 0 \Rightarrow$ a restrição *i* mantém-se $y_i = 1 \Rightarrow$ a restrição *i* é automaticamente satisfeita

Objectivo: Escolher uma combinação de K restrições que permita atingir o melhor valor possível da função objectivo (resolver globalmente a formulação inteira do problema).

Funções com N valores possíveis

$$f_1(x_1, x_2, ..., x_n) = d_1$$
 ou d_2 ou ... ou d_N

Asseguram que apenas $um y_i$ tomará o valor 1

$$f(x_1,...,x_n) = \sum_{i=1}^{N} d_i y_i$$

$$\sum_{i=1}^{N} y_i = 1$$

$$y_i \in \{0,1\} \ (i = 1,2,...,N)$$

o tempo de produção pode ser de 18 ou 12 ou 6h /sema $3x_1 + 2x_2 \le 18$, $3x_1 + 2x_2 = 6$ ou 12 ou ... ou 18 $3x_1 + 2x_2 = 18y_1 + 12y_2 + 6y_3$

Alteração no Wyndor Glass Co problem:

e y_i vars. binárias para j = 1, 2, 3

Problema de custo fixo

Um processo produtivo *j* tem duas componentes de custo:

- um custo fixo k_i (quando o processo é utilizado) e mais
- um custo variável proporcional ao número de actividades produzidas x_j , sendo c_i a constante de proporcionalidade (custo unitário).

O custo total da actividade *j* pode ser representado pela função:

$$f_j(x_j) = \begin{cases} k_j + c_j x_j & se \ x_j > 0 \\ 0 & se \ x_j = 0 \end{cases}$$

7

Problema de custo fixo (cont)

• Modelo completo original para *n* actividades

$$Minimizar Z = f_1(x_1) + \dots + f_n(x_n)$$

sujeito a conjunto de restrições lineares

Formulação PLI

Minimizar
$$Z = \sum_{j=1}^{n} (c_j x_j + k_j y_j)$$

sujeito a

restrições lineares originais

$$x_j \le M.y_j \qquad \bullet \qquad \qquad$$
$$y_j \in \{0,1\}$$

Vars. y_j podem ser vistas como decisões contingentes

$$y_j = \begin{cases} 1 & se \, x_j > 0 \\ 0 & se \, x_j = 0 \end{cases}$$

Deverá a actividade j ser considerada? (i.e. $x_j > 0$)

Exemplos de PLI - Selecção de projectos de Investimento (1) -

Dispõe-se de capital D para investir em n projectos.

O projecto j necessita de c_j unidades de capital e tem uma rentabilidade r_i .

Quais os projectos a seleccionar de modo a maximizar a rentabilidade total?

$$\begin{aligned} \textit{Maximizar} \quad Z &= \sum_{j=1}^{n} r_{j}.x_{j} \\ \textit{sujeito} \quad a \quad &\sum_{j=1}^{n} c_{j}.x_{j} \leq D \\ \quad &x_{j} \in \{0,1\} \ (j=1,...,n) \end{aligned}$$

Problema da mochila 0-1 (*Knapsack* 0-1)

(1) - Versão simplificada

19

Exemplos de PLI - Localização de Armazéns -

Um sistema de distribuição tem como principais componentes a localização dos armazéns, os custos de transporte e os centros de exploração.

 b_j - quantidades a fornecer a cada cliente (j = 1, ..., n)

 f_i - custos de exploração de armazém (i = 1, ..., m)

 c_{ij} - custos de transporte (de uma unidade de produto), do armazém i para o cliente j

Variáveis de decisão:

 x_{ij} - quantidade a enviar do armazém i para o cliente j

y_i - i-ésimo armazém aberto ou não

Exemplos de PLI - Localização de Armazéns (cont) -

 x_{ij} - quantidade a enviar do armazém i para o cliente j

y_i - i-ésimo armazém aberto ou não Custo total de transporte

Minimizar
$$Z = \sum_{j=1}^{n} \sum_{i=1}^{m} c_{ij}.x_{ij} + \sum_{i=1}^{m} f_{i}.y_{i}$$
 Custo de exploração dos armazéns abertos

Sujeito a $\sum_{j=1}^{n} x_{ij} = b_{j}$ $(j = 1,...,n)$

$$\sum_{i=1}^{n} x_{ij} - y_{i} \sum_{j=1}^{n} b_{j} \leq 0 \quad (i = 1,...,m)$$

$$x_{ij} \geq 0 \quad (i = 1,...,m; \quad j = 1,...,n)$$

$$y_{i} \in \{0,1\} \quad (i = 1,...,m)$$

$$\sum_{j=1}^{n} x_{ij} - y_i \sum_{j=1}^{n} b_j \le 0 \quad (i = 1, ..., m)$$

$$x_{ij} \ge 0 \qquad (i = 1, ..., m; \ j = 1, ..., n)$$

Exemplos de PLI - Localização de Armazéns (cont) -

• O número de unidades entregues a cada cliente *j* deve ser igual às suas necessidades

$$\sum_{i=1}^{m} x_{ij} = b_{j} \quad (j = 1, ..., n)$$

• O número de unidades saídas de cada armazém i deve ser zero quando o armazém não é activado $(y_i = 0)$ e pode ser quando igual às necessidades de todos os clientes.

$$\sum_{j=1}^{n} x_{ij} \le y_i \sum_{j=1}^{n} b_j \quad (i = 1, ..., m)$$

Exemplos de PLI -Fazer Escolhas e variáveis de decisão continuas -

Uma empresa industrial desenvolveu 3 possíveis produtos novos e considera as seguintes restrições:

- a) Evitar diversificação: produzir quando muito 2 novos produtos
- b) Gestão de recursos: embora tenham 2 fábricas capazes de produzir os novos produtos apenas uma delas deverá ser usada.
- c) O tempo de produção nas duas fábricas não é o mesmo, nem a capacidade de produção disponível

			Produto	ı	Horas
		1	2	3	disponíveis
Fábrica	1	3	4	6	30
	2	4	6	2	40
Lucro un	itário	5	7	3	(M\$)
Mercado	Potencial	7	5	9	(unid/semana)

23

Exemplos de PLI -Escolhas e variáveis de decisão continuas (cont) -

• Modelo de PL

Maximizar $Z = 5x_1 + 7x_2 + 3x_3$ sujeito a

 $x_1, x_2, x_3 \ge 0$

 Image: specific control of the property of the property

$$3x_1 + 4x_2 + 6x_3 \le 30$$
 (capacidade de produção da fábrica 1)

$$4x_1 + 6x_2 + 2x_3 \le 40$$
 (capacidade de produção da fábrica 2)

$$x_1$$
 ≤ 7 (mercado potencial para o produto 1)
 x_2 ≤ 5 (mercado potencial para o produto 2)

$$x_3 \le 9$$
 (mercado potencial para o produto 3)

Exemplos de PLI -Escolhas e variáveis de decisão continuas (cont) -

- A restrição a) não foi considerada no modelo PL
 - Apenas duas variáveis (x₁, x₂, x₃) podem ter valores não nulos

$$y_i = 1$$
 (produto i é produzido); $y_i = 0$ (produto i não é produzido);

Novas restrições

$$x_i \le M.y_i$$
 $(i = 1, 2, 3)$ $y_1 + y_2 + y_3 \le 2$ (só serão produzidos até 2 produtos) $y_i \in \{0, 1\}$

25

Exemplos de PLI -Escolhas e variáveis de decisão contínuas (cont) -

- A restrição b) não foi considerada no modelo PL
 - Apenas uma das fábricas deve ser usada, ou seja apenas uma das restrições de capacidade devem ser consideradas

$$3x_1 + 4x_2 + 6x_3 \le 30$$
 (capacidade de produção da fábrica 1) **OU** $4x_1 + 6x_2 + 2x_3 \le 40$ (capacidade de produção da fábrica 2)

$$y_4 = 0$$
 (usar fábrica 1); $y_4 = 1$ (usar fábrica 2);

Novas restrições
$$\begin{vmatrix} 3x_1 + 4x_2 + 6x_3 \le 30 + M.y_4 \\ 4x_1 + 6x_2 + 2x_3 \le 40 + M.(1 - y_4) \\ y_4 \in \{0, 1\} \end{vmatrix}$$

Exemplos de PLI -Escolhas e variáveis de decisão contínuas (cont) -

Maximizar
$$Z = 5x_1 + 7x_2 + 3x_3$$
 sujeito a $3x_1 + 4x_2 + 6x_3 - M.y_4 \le 30$ (capacidade da fábrica 1) $4x_1 + 6x_2 + 2x_3 + M.y_4 \le 40 + M$ (capacidade da fábrica 2) $x_1 \le 7; x_2 \le 5; x_3 \le 9$ (mercado potencial) $x_1 \le M y_1; x_2 \le M y_2; x_3 \le M y_3;$ $y_1 + y_2 + y_3 \le 2$ (até 2 produtos) $x_1, x_2, x_3 \ge 0$ (variáveis reais de decisão) $y_1 \in \{0, 1\}$ (j= 1,2,3,4) (variáveis binárias auxiliares)

27

Introdução à resolução de problemas de Programação Linear Inteira

- Introdução
- Branch and Bound (caso binário)
- Pesquisa de soluções quasi-óptimas
- Branch and Bound (caso mixto)
- Aspectos complementares
 - Pre-processamento dos problemas
 - Branch and Cut
- Algumas referências
- Exercícios

Alguns enganos

- Problemas puros de PLI têm um número finito de soluções (inteiras) enquanto PL têm um número infinito.
 - O número de soluções a considerar cresce exponencialmente com o número de variáveis. (Ex: com n variáveis binárias -2ⁿ soluções distintas a considerar).
- A remoção de algumas soluções (as soluções não inteiras) torna o problema mais fácil
 - Pelo contrário, é porque todas as soluções estão presentes em PL que se pode garantir que um dos vértices da região admissível é uma solução óptima. Esta é a razão da eficiência do SIMPLEX.

29

PLI v.s. PL

- Dado um problema de PLI, o correspondente problema de PL é referido como **relaxamento linear.**
- Em geral resolver um problema PLI é muito mais difícil do que resolver o seu relaxamento linear
- A ideia central de muitos algoritmos é resolver um problema de PLI através da resolução de uma sequência de relaxamentos lineares de partes do problema original

Factores da complexidade computacional

- Para um problema de PLI os factores determinantes são
 - Número de variáveis inteiras
 - Alguma estrutura especial
- Para um problema de PL o número de restrições é muito mais importante do que o número de variáveis

31

Casos particulares

- Embora em geral não aconteça, um caso particular em que um problema PLI não é mais difícil do que a seu relaxamento linear é quando as soluções deste último satisfazem as restrições inteiras.
- Casos especiais de PL em que devido à sua estrutura particular se garante soluções óptimas inteiras:
 - Minimun cost flow problem (com parâmetros inteiros)
 - Problema de transporte (transportation problem)
 - Problema de afectação (assignment problem)
 - Problema do caminho mais curto (shortest-path problem)
 - Problema do fluxo máximo (maximum flow problem)

Arredondar as soluções do relaxamento linear

- O arredondamento de uma solução óptima do relaxamento linear de um problema de PLI pode (frequentemente) não pertencer à região admissível do problema PLI.
- Mesmo quando o arredondamento de uma solução óptima do relaxamento linear está na região admissível não existe garantia de que ela seja óptima para o problema PLI.
- O arredondamento pode ser adequado em problemas de grande dimensão em que os valores das variáveis são grandes e o arredondamento produz erros pequenos

33

Um exemplo do arredondamento

Branch and Bound (Partição e Avaliação)

- Três Fases
 - Dividir o problema original em subproblemas mais simples de resolver (*Branching*).
 - Avaliar os subproblemas de forma a determinar qual é na melhor das hipóteses o valor do óptimo (*Bounding*).
 - Eliminar os subproblemas que não podem de certeza conduzir a uma solução óptima (*Fathoming*).

Como o problema de BIP puro tem um nº finito de soluções admissíveis, então deve usar-se procedimento de enumeração para encontrar uma solução óptima.

O Branch and Bound é um método de divisão e conquista

26

Exemplo a desenvolver no BB

Maximizar
$$Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$$
 sujeito a

$$6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$$

$$x_3 + x_4 \le 1$$

$$-x_1 + x_3 \le 0$$

$$-x_2 + x_4 \le 0$$

 $x_i = 1, 2, 3, 4$

O valor óptimo do problema de PLIB terá Z≤16

A solução óptima do relaxamento linear do problema é: $(x_1, x_2, x_3, x_4) = (5/6, 1, 0, 1)$ e o valor de Z = 16.5

Partição (branching)

- Dividir um problema num conjunto de subproblemas (mais pequenos que o problema original)
- A divisão é feita criando uma partição do conjunto de soluções fazíveis
 - Partição a partir de variáveis binárias {soluções com $x_i = 0$ }; {soluções com $x_i = 1$ }
 - Partição a partir de variáveis inteiras
 - a) {soluções com $x_i \le a$ }; {soluções com $x_i \ge a + 1$ }
 - b) {soluções com $x_i = 0$ }; ...; {soluções com $x_i = n$ }
- Existem métodos sofisticados para a selecção da variável de partição (branching variable)
 - Por simplificação, vamos seleccionar pela ordem das variáveis: x_1, x_2, x_3, \dots

37

Exemplo de partição binária

Maximizar
$$Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$$

$$6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$$

$$x_3 + x_4 \le 1$$

$$-x_1 + x_3 \le 0$$

$$-x_2 + x_4 \le 0$$

$$x_3 \text{ binária } (j=1,2,3,4)$$

$$X_1 = 1$$

$$X_1 = 0$$
Subproblema 1
$$X_1 = 0$$

$$X_1 = 0$$
Subproblema 2
$$Maximizar Z = 9 + 5x_2 + 6x_3 + 4x_4$$

$$3x_2 + 5x_3 + 2x_4 \le 4$$

$$x_3 + x_4 \le 1$$

$$x_3 \le 1$$

$$-x_2 + x_4 \le 0$$

$$X_1 = 0$$

$$X_2 + 6x_3 + 4x_4$$

$$3x_2 + 5x_3 + 2x_4 \le 10$$

$$x_3 + x_4 \le 1$$

$$x_3 + x_4 \le 0$$

Bounding (avaliação)

- Para cada um dos subproblemas é necessário obter uma avaliação de qual é o melhor valor que o óptimo pode ter (um majorante nos problemas de maximização e um minorante nos problemas de minimização - em qualquer dos casos é um limite - (bound)).
- A forma de o fazer é resolver uma forma relaxada do problema e que seja de fácil resolução. Embora se possa considerar outras formas de relaxamento o mais usual é considerar o relaxamento linear (i.e. relaxar as restrições que impõem que variáveis sejam inteiras).
- e usar o simplex para resolver o correspondente problema de PL.

39

Exemplo de avaliação

Fathoming (conquistar)

- Vamos designar por Z* o valor da melhor solução inteira até aí encontrada e por semente (incumbent) essa solução (ou seja, Z* é o valor de Z da semente)
- Um subproblema pode ser "conquistado" se:
 - **F(1)** A estimativa do óptimo (obtida por resolução do relaxamento linear) for pior que Z^* (se bound $\leq Z^*$ para maximização).
 - **F(2)** Se a região admissível for vazia.
 - F(3) For encontrada uma solução inteira cujo óptimo seja melhor que a melhor solução inteira encontrada até então (Z^*) .

A pesquisa é conduzida pela solução óptima retendo para exploração os problemas que possam ter solução admissível melhor que a solução corrente.

41

Fathoming: exemplo

Estrutura geral do BB

• Inicialização

 $Z^* = -\infty$; Resolver o relaxamento linear do problema original e repetir as iterações se não existir solução inteira

- Passos de cada iteração
 - 1 Branching: Escolha de um problema; escolha de uma variável
 - 2 *Bounding*: Determinação das estimativas por resolução de relaxamento linear. Se necessário actualizar Z*
 - 3 Fathoming: Determinar quais os problemas a eliminar.
- Parar quando não existirem mais subproblemas. A semente actual é a solução óptima. Senão, repetir.

43

Passos de cada iteração do BB

- Passos de cada iteração
 - 1 *Branching*: entre os subproblemas em aberto escolher o que foi criado mais recentemente (em caso de empate escolher o de melhor (maior) "bound" (estimativa). Escolher uma variável para realizar a partição.
 - 2 *Bounding*: Para cada novo subproblema obter uma estimativa pela resolução do correspondente relaxamento linear, com arredondamento por defeito.
 - 3 *Fathoming*: Para cada novo problema aplicar as 3 regras deste passo e eliminar todos os problemas que tenham sido conquistados

BB: continuar o exemplo **4ª Iteração**

Solução final será $Z^*=14$ (que é melhor do que $Z^*=9$)

47

BB: terminar o exemplo

```
Subproblema 3 Z \le 13

Maximizar Z = 9 + 6x_3 + 4x_4
5x_3 + 2x_4 \le 4
x_3 + x_4 \le 1
x_3 \le 1
x_4 \le 0

0 \le x_j \le 1 (j=3, 4)

(1, 0, 4/5,0), Z = 13.8
```

- Bound= 13 ≤ Z*= 14, e portanto este subproblema agora é conquistado (F(1)).
- O problema termina com a semente (1, 1, 0, 0) e $Z^* = 14$

Variantes do BB - PLIB

- As variantes do branch and bound têm a haver de como é que cada um dos passos 'branching', 'bound' e 'fathoming' são explorados.
- Considerem-se algumas variantes

Opções ao BB - PLIB

Branching

- Seleccionar o subproblema mais recente
 - Para ser mais eficiente o processo de recalcular a nova solução do relaxamento linear. Continuar a execução do simplex em vez de recomeçar do início.
- Seleccionar o subproblema com melhor estimativa
 - Porque tende a mais rapidamente encontrar melhores estimativas e dessa forma eliminar mais subproblemas (diminuir a parte visitada da árvore de pesquisa)
- Efectuar a partição
 - Qual é a variável a seleccionar?
 - Como particionar no caso de variáveis não binárias?

51

Opções ao BB - PLIB (cont)

Bounds

- A forma habitual de cálculo de estimativas é através do relaxamento linear e usar o simplex.
- Alternativas podem ser usadas tais como relaxamento Lagrangiano
 - Deita-se fora o conjunto total de restrições funcionais $Ax \le b$
 - A função objectivo max Z= cx é substituída por max $Z_R= cx \lambda (Ax b)$
 - O valor de $Z_R \acute{e}$ um limite válido.

• Eliminação

 Quando o relaxamento linear tem uma solução inteira então ela também é óptima para o problema inteiro. Com o método do relaxamento Lagrangiano é necessária uma análise mais cuidada

Uma ou todas as soluções óptimas

- Quando há empates na solução óptima:
 - Nesse caso é desejável identificar todas as soluções óptimas para escolher a melhor
- A regra 3 para teste de eliminação de um problema passa a ser:
 - Estimativa do subproblema é pior que Z* (em vez de pior ou igual)
- Quando a solução é inteira e Z = Z* então deve-se guardar mais essa nova semente (mantendo todas as outras). Além disso é necessário determinar se a solução inteira encontrada para esse subproblema é única ou se existem outras.
- Quando não existirem mais problemas então todas as sementes actuais são soluções óptimas

53

Procura de soluções quasi-óptimas - maximização -

• Em muitos problemas reais basta determinar as soluções perto do óptimo → soluções quasi-óptimas.

Procura de soluções quasi-óptimas - maximização -

- O que é uma solução quasi-óptima
 - Se Z** é o valor (desconhecido) de uma solução óptima então uma solução de valor Z é quasi-óptima se

$$(1 - \alpha) Z^{**} \leq Z$$

onde α é um valor menor que 1.

 Se fosse conhecido que o valor de Z de uma nova semente (Z*) satisfaz (1 - α) Z** ≤ Z* então o algoritmo poderia terminar com esta semente.

55

Procura de soluções quasi-óptimas - maximização - (cont)

• O teste para eliminar um subproblema passaria a ser

$$(1 - \alpha)$$
 bound $\leq Z^*$

onde bound é o valor óptimo do relaxamento linear do subproblema

Novas regras:

- 2-Se a região admissível for vazia.
- 3-For encontrada uma solução inteira cujo óptimo for melhor que a melhor solução inteira até então encontrada (Z^*).
- 1-A estimativa do óptimo (obtida por resolução do relaxamento linear) for pior que $Z^*/(1-\alpha)$

Branch and Bound para PLI-mista

57

Branch and Bound para PLI-mista

Maximizar
$$\sum_{j=1}^{n} c_j x_j$$

sujeito a
$$\sum_{j=1}^{n} a_{ij} x_j \text{ para } i = 1,..., m$$

$$e$$

$$x_j \ge 0 \text{ para } j = 1,...n$$

$$x_j \text{ inteiros para } j = 1,...I : I \le n$$

As primeiras I variáveis são inteiras

Escolha da variável de partição

- Depois de escolhido um problema para dividir em subproblemas é necessário escolher uma variável para realizar a partição.
 - De entre as variáveis inteiras
 - ✓ Escolher uma de entre aquelas cujo valor da solução do relaxamento linear não é inteiro.
- Exemplo:
 - Solução do relaxamento linear do problema a dividir em subproblemas é (1, 2.3, 0, 5.2, 10.2, ...) devendo ser inteiras as 4 primeiras variáveis. Poderiam ser escolhidas para variáveis de partição x_2 ou x_4 .

59

Modo de realizar a partição

- Seja
 - $-x_i$ a variável escolhida para partição
 - $-x_j^*$ o valor (não inteiro) da variável x_j da solução óptima do relaxamento linear do problema a subdividir.
- Partição em dois subproblemas
 - Problema 1: $x_j \le \lfloor x_j^* \rfloor$ Problema 2: $x_j \ge \lfloor x_j^* \rfloor + 1$ Cada uma destas desigualdades torna-se numa restrição adicional

• Exemplo
$$-x^{*}_{j}=3.1/2$$
- Problema 1: $x_{j} \le 3$
- Problema 2: $x_{j} \ge 4$

Cálculo das estimativas (bounding)

- No caso BIP (se os coeficientes de Z fossem todos inteiros) a estimativa resulta do arredondamento do valor óptimo real do relaxamento linear.
- A existência de variáveis contínuas não permite garantir soluções óptimas de valor inteiro pelo que neste caso não se pode arredondar
 - Ex: se a solução óptima do relaxamento linear é Z = 22.25 então a estimativa será $Z \le 22.25$.

61

Novas sementes

- Teremos uma nova semente quando a solução do relaxamento linear de um problema for tal que os valores de todas as variáveis inteiras forem inteiros e o valor Z for melhor do que Z* (i.e. superior no caso de maximização)
- Exemplo com 3 variáveis inteiras e 2 contínuas)
 Z* = 9.1
 - -(1, 0, 2, 3.51.2)/Z = 9
 - -(1, 0, 2.1, 3.5 1.2)/Z = 10.2
 - -(1, 0, 2, 3.5 1.2) / Z = 9.8 Nova semente
 - -(1,0.5,2,41)/Z=12

Um exemplo

Maximizar
$$Z = 4x_1 - 2x_2 + 7x_3 - x_4$$

sujeito a $x_1 + 5x_3 \le 10$
 $x_1 + x_2 - x_3 \le 1$
 $x_1 - 6x_1 - 5x_2 \le 0$
 $x_1 + 2x_3 - 2x_4 \le 3$

$$x_i \ge 0 \ (i = 1, 2, 3, 4)$$

 $x_i \text{ inteiro } (i = 1, 2, 3)$
 $Z^* = -\infty$
 $(5/4, 3/2, 7/4, 0) / 14.25$

Qualquer das três variáveis inteiras pode ser usada para partição

63

Primeira partição

Pre-processamento do problema

- Eliminação de variáveis
 - Identificar variáveis cujo valor pode ser fixado por ser o único que pode pertencer à região de soluções admissíveis
 - ✓ Redução da árvore de pesquisa
- Eliminar restrições redundantes
 - Identificar as restrições que estão automaticamente satisfeitas se as outras restrições forem satisfeitas
 - ✓ Reduz o número de restrições e melhora o desempenho do SIMPLEX sobre os problemas de relaxamento linear
- Constrangimento de restrições
 - Tornar certas restrições mais estritas de forma a diminuir a região admissível do relaxamento sem eliminar soluções inteiras.

Eliminação de variáveis (PIB)

- Se um valor de uma variável não poder satisfazer uma restrição, quaisquer que sejam os valores das outras variáveis, então a variável só pode ter o outro valor.
- Procedimentos/regras
 - Numa restrição ≤ procurar a variável de maior coeficiente positivo; e se a soma desse coeficiente com qualquer coeficiente negativo for maior que o lado direito da desigualdade então essa variável pode ser fixada em ZERO.
 - etc.

Um problema com 2756 variáveis conseguiram fixar 1341 variáveis

69

Exemplos de eliminação de variáveis binárias

```
• 3x_1 \le 2 \Rightarrow x_1 = 0, pois 3(1) > 2
```

•
$$5x_1 + x_2 - 2x_3 \le 2 \implies x_1 = 0$$
, pois $5(1) + 1(0) - 2(1) > 2$

•
$$3x_1 + x_2 - 2x_3 \ge 2 \implies x_1 = 1$$
, pois $3(\mathbf{0}) + 1(1) - 2(\mathbf{0}) < 2$

•
$$x_1 + x_2 - 2x_3 \ge 1$$
 $\Rightarrow x_3 = 0$, pois $1(1) + 1(1) - 2(1) < 1$

•
$$3x_1 + x_2 - 3x_3 \ge 2 \implies x_1 = 1$$
, pois $3(\mathbf{0}) + 1(1) - 3(0) < 2$
 $\Rightarrow x_3 = 0$, pois $3(1) + 1(1) - 3(1) < 2$

•
$$3x_1 - 2x_2 \le -1$$
 $\Rightarrow x_1 = 0$, pois $3(1) - 2(1) > -1$
 $\Rightarrow x_2 = 1$, pois $3(0) - 2(0) > -1$

Propagar a eliminação de variáveis

- $3x_1 + x_2 2x_3 \ge 2 \implies x_1 = 1$, pois 3(0) + 1(1) 2(0) < 2 então
- $x_1 + x_4 + x_5 \le 1$ $\Rightarrow x_4 = 0, x_5 = 0$

...

71

Eliminação de restrições redundantes

- Existe uma restrição sobre as variáveis binárias:
 - $-x_i \in \{0, 1\}$
- Qualquer restrição funcional que restrinja os valores de uma variável a um conjunto de valores que contenha (ou seja igual a) {0, 1} é uma restrição redundante
- Exemplos:
 - $-3x_1 + 2x_2 \le 6$ é redundante pois $3(1) + 2(1) \le 6$ / idem (0,0), ...
 - $-3x_1 2x_2 \le 3$ é redundante pois 3(1) $-2(0) \le 3$ / idem (1,1), ...
 - $-3x_1 2x_2 \ge -3$ é redundante pois 3(0) 2(1) ≥ -3 / idem (0,0), ...

Restringir as restrições

Consideremos um exemplo:

Maximize
$$Z = 3x_1 + 2x_2$$
 sujeito a

$$2x_1 + 3x_2 \le 4$$

e

 x_1 e x_2 binárias

Relaxamento Linear

Maximize
$$Z = 3x_1 + 2x_2$$
 sujeito a

$$2x_1 + 3x_2 \le 4$$

$$0 \le x_1 \le 1 \\
0 \le x_2 \le 1$$

$$0 \le x_2 \le$$

O problema PIB tem 3 soluções admissíveis (0,0), (1,0), (0,1).

Solução óptima é $(x_1^*, x_2^*) = (1,0) \text{ com } Z^* = 3$

Restringir as restrições (cont)

Restringir as restrições (cont)

Este exemplo mostra como é que restringir uma restrição reduz a região admissível (i.e. Espaço de pesquisa), sem eliminar as soluções admissíveis do problema BIP.

Procedimento para restringir restrições ≤

Seja a restrição $a_1x_1 + ... + a_nx_n \le b$

- -1 Calcula-se S = soma dos a_i positivos
- -2 Identificar qualquer $a_i \neq 0$ tal que $S < b + |a_i|$
 - (a) Se não existir, parar; não é possível restringi-la
 - (b) Se $a_i > 0$ seguir para 3
 - (c) Se $a_i < 0$ seguir para 4
- $-3 (a_j > 0)$ Calcular $a_j^* = S b$ e $b^* = S a_j$. $a_j \leftarrow a_j^*$; $b \leftarrow b^*$
- -4 (a_i < 0) Aumentar o valor de a_i segundo a_i ← b S;
- Voltar ao passo 1.

Exemplo de restringir uma restrição

•
$$2x_1 + 3x_2 \le 4$$
 $(a_1 = 2, a_2 = 3, b = 4)$
 $S = 2 + 3 = 5$

$$a_1$$
 e a_2 satisfazem $S < b + |a_i|$. Escolhemos $a_1 - a_1^* = 5 - 4 = 1$; $b^* = 5 - 2 = 3$; $b \leftarrow 3$, $a_1 \leftarrow 1$

•
$$x_1 + 3x_2 \le 3 \ (a_1 = 1, a_2 = 3, b = 3)$$

 $S = 1 + 3 = 4$

$$a_2$$
 satisfaz $S < b + |a_2|$.
 $-a_2^* = 4 - 3 = 1$; $b^* = 4 - 3 = 1$; $b \leftarrow 1$, $a_2 \leftarrow 1$

•
$$x_1 + 1x_2 \le 1$$
 $(a_1 = 1, a_2 = 1, b = 1)$
S = 1 + 1 = 2. Nenhum a_i satisfaz $S < b + |a_i|$.

77

Exemplo de restringir uma restrição

Vamos restringir uma restrição

$$4x_1 - 3x_2 + x_3 + 2x_4 \le 5$$

$$S = 4 + 1 + 2 = 7$$
; $b = 5$; $S < b + |a_j|$ para $a_1 e a_2$
 $a_1^* = S - b = 2$; $b^* = S - a_1 = 7 - 4 = 3$

$$2x_1 - 3x_2 + x_3 + 2x_4 \le 3$$

$$2x_1 - 3x_2 + x_3 + 2x_4 \le 3$$
 $S = 2 + 1 + 2 = 5; b = 3;$ $S < b + |a_j| \text{ para } a_2$
$$a_2^* = b - S = 3 - 5 = -2$$

- $2x_1 2x_2 + x_3 + 2x_4 \le 3$
- $1 \text{Calcula-se } S = \text{soma dos } a_i \text{ positivos}$
 - 2 Identificar qualquer $a_i \neq 0$ tal que $S < b + |a_i|$ (a) Se não existir, parar; não é possível restringi-la (b) Se $a_i > 0$ seguir para 3
 - (c) Se $a_i < 0$ seguir para 4
 - 3 Calcular $a_i^* = S b$ e $b^* = S a_i$. $a_i \leftarrow a_i^*$; $b \leftarrow b^*$
 - 4 Aumentar o valor de a_i segundo a_i ← b S;

Geração de planos de corte para BIP

- Um plano de corte para um problema de PLI é uma nova restrição funcional que reduz a região admissivel para o correspondente relaxamento linear sem eliminar qualquer solução admissível do problema **PLI**
- A restrição de uma restrição existente é um caso particular de um plano de corte.
- Exemplo: $x_1 + x_2 \le 1$ é um plano de corte para o problema PLI anterior.
- O objectivo da técnica é acelarar o processo do Branch and Bound e encontrar uma solução óptima para o problema PIB

Um procedimento para a geração de planos de corte caso binário

- Escolher uma restrição na forma ≤ com apenas coeficientes não negativos
- Encontrar um grupo de *N* variáveis (cobertura mínima) tais que:
 - a restrição seja violada se as variáveis do grupo tomarem o valor 1 e todas as outras o valor 0
 - mas a restrição fica satisfeita se o valor de qualquer das variáveis do grupo de cobertura mínima mudar de 1 para 0.
- O plano de corte tem a forma

Soma das variáveis (de cobertura mínima) ≤ N -1

81

Um procedimento para a geração de planos de corte caso binário (exemplo)

- Restrição: $6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$
- Cobertura mínima
 - $-\{x_1, x_2, x_4\}$ pois 6(1) + 3(1) + 5(0) + 2(1) = 11 > 10, mas se qualquer destas variáveis toma o valor 0, a restrição é satisfeita.
 - $-\{x_1, x_3\}$ pois 6(1) + 3(0) + 5(1) + 2(0) = 11 > 10, mas se qualquer destas variáveis toma o valor 0, a restrição é satisfeita.
 - $\{x_1, x_2, x_3\}$ ou $\{x_1, x_3, x_4\}$ não são coberturas mínimas, pois quando x_2 (ou x_4) passam de 1 para 0 a restrição continua a não ser satisfeita.

Um procedimento para a geração de planos de corte caso binário (exemplo - cont)

- Restrição: $6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$
- Planos de corte
 - $\{x_1, x_2, x_4\}$ N = 3 $x_1 + x_2 + x_4 \le 2$
 - $\{x_1, x_3\}$ N = 2 $x_1 + x_3 \le 1$

83

O que se ganha com os planos de corte?

O que se ganha com os planos de corte?

- Um grande aumento da eficiência do branch & bound
 - Obtenção de melhores estimativas
 - Mais cedo se obtêm soluções inteiras
 - Mais problemas podem ser eliminados
 - Menor árvore de pesquisa
- Os planos de corte podem ser aplicados em cada nó
- Existem outras técnicas de corte

Algumas referências de produtos

- Optimization Software Library (OSL) IBM
- CPLEX- Large-Scale Mathematical Programming Software for Optimization (http://www.cplex.com/)
- MINTO, a Mixed INTeger Optimizer (http://akula.isye.gatech.edu/~mwps/projects/minto.html)

87

Exercícios para resolver

- Para familiarizar:
 - 12.1-1, 12.1-2
- Interpretação
 - -12.2-2, 12-2-3
- Entender o modelo PLI e PLIB
 - 12.2-4, 12.2-6, 12-3-4
- Outros
 - 12.3-8, 12.3-10, 12.3-11
- · Branch and Bound
 - 12.4-1, 12.4-1, 12.5-1, 12.5-2 12.6-1, 12.6-2