3 – Geometria do Método Simplex

Conceitos Fundamentais

- $\mathbf{x} \in \mathbf{R}^{\mathsf{n}}$
 - x é um vetor ordenado da forma $x = (x_1, ..., x_n)$, onde $x_i \in R$.
 - x é um ponto do espaço euclidiano n-dimensional.
- Vetor zero: 0 = (0, ..., 0)
- $x \in \mathbb{R}^n$ é não-negativo se $x_i \ge 0$ (i = 1, ..., n) [notação: $x \ge 0$]
 - $x \in \mathbb{R}^n$ é semi-positivo se $x_i \ge 0$ (i = 1, ..., n) e $\exists j \in \{1, ..., n\}$ tal que $x_i > 0$.
 - $x \in R^n$ é positivo se $x_i > 0$ (i = 1, ..., n) [notação: x > 0]
- Seja { x¹, ..., xk } um conjunto de pontos (vetores) em R¹. Uma combinação linear destes pontos é um ponto x da forma:

$$x = \alpha_1 x^1 + ... + \alpha_k x^k$$
, onde $\alpha_i \in R$ (i = 1, ..., k)

Exemplo:

$$x^1 = (1, 0, -1)$$

 $x^2 = (-2, 3, 4)$

Sejam
$$\alpha$$
, $\beta \in \mathbb{R}$. Qualquer ponto da forma: $x = \alpha x^1 + \beta x^2 = (\alpha - 2\beta, 3\beta, -\alpha + 4\beta)$

$$\dot{e}$$
 uma **combinação linear** de x^1 e x^2 .

Por exemplo:

$$\alpha = 2, \beta = 3$$

x = (-4, 9, 10)

vetores

O conjunto de todas as combinações lineares de { x¹, ..., xk } é denominado fecho linear de { x¹, ..., xk }.

Exemplo:
$$x^1 = (-1, -2)$$
.

O **fecho linear** de $\{x^1\}$ é o conjunto de todos os pontos da forma $x = \alpha x^1$, ou seja, a **reta** que une x^1 ao ponto 0 (vetor zero ou origem).

Combinação afim de $\{x^1, ..., x^k\}$: é um ponto da forma $x = \alpha_1 x^1 + ... + \alpha_k x^k$, tal que $\alpha_1 + ... + \alpha_k = 1$ ($\alpha_i \in R$, i = 1, ..., k). Fecho afim de $\{x^1, ..., x^k\}$: é o conjunto de todas as combinações afim de $\{x^1, ..., x^k\}$.

É claro que: Fecho afim de $\{x^1, ..., x^k\}\subseteq$ Fecho linear de $\{x^1, ..., x^k\}$

Exemplo:

$$x^1 = (1, 0, 0)$$

$$x^2 = (0, 1, 0)$$

$$x^3 = (0, 0, 1)$$

Um ponto $x = (\alpha, \beta, \lambda)$ tal que $\alpha + \beta + \lambda = 1$ é uma **combinação afim** de $\{x^1, x^2, x^3\}$.

Fecho afim de $\{x^1, x^2, x^3\}$

Combinação convexa de $\{x^1, ..., x^k\}$: é um ponto da forma $x = \alpha_1 x^1 + ... + \alpha_k x^k$, tal que $\alpha_1 + ... + \alpha_k = 1$ e $\alpha_1, ..., \alpha_k \ge 0$ ($\alpha_i \in R$, i = 1, ..., k). O fecho convexo de $\{x^1, ..., x^k\}$ é o conjunto de todas as combinações convexas de $\{x^1, ..., x^k\}$.

Exemplo:
$$x^1 = (1, 0)$$
, $x^2 = (0, 1)$
Um ponto $x = (\alpha, \beta)$ tal que $\alpha + \beta = 1$, α , $\beta \ge 0$
é uma **combinação convexa** de $\{x^1, x^2\}$

O **fecho convexo** de quaisquer dois pontos x^1 e x^2 em R^n é o conjunto de todos os pontos no **segmento de reta** que une x^1 e x^2 .

- Se x^1 e x^2 são pontos distintos em R^n , $x(\theta) = x^1 + \theta(x^2 x^1)$, $\theta \in R$, corresponde à reta que une x^1 e x^2 . Se $0 \le \theta \le 1$, então $x(\theta)$ é o segmento de reta que une x^1 e x^2 .
- Exemplos de fecho convexo

$$x^1 = (1, 0, 0)$$

 $x^2 = (0, 1, 0)$
 $x^3 = (0, 0, 1)$

$$x^{1} = (1, 3)$$

 $x^{2} = (4, 2)$
 $x^{3} = (3, -2)$
 $x^{4} = (0, -1)$
 $x^{5} = (-2, 1)$

- Seja $x' \in \mathbb{R}^n$, $x' \neq 0$. O raio gerado por x' é o conjunto $\{x \mid x = \alpha x', \alpha \geq 0\}$ (ou seja, é a semireta a partir da origem que passa por x')
- Se x" \in Rⁿ, então o conjunto $\{x \mid x = x" + \alpha x', \alpha \ge 0\}$ é a semireta a partir de x" paralela ao raio gerado por x'.

Em R²

- Um hiperplano em Rⁿ é o conjunto de todos os pontos $x = (x_1, ..., x_n) \in R^n$ que satisfazem uma única equação linear da forma: $a_1x_1 + ... + a_nx_n = b$, onde $a_1, ..., a_n \in R$ e $(a_1, ..., a_n) \neq 0$ (ou seja, existe pelo menos um $a_i \neq 0$, i = 1, ..., n).
- O conjunto de todos os $x \in R^n$ que satisfazem uma inequação da forma: $a_1x_1 + ... + a_nx_n \ge b$ é o conjunto de todos os pontos que pertencem a um dos lados do hiperplano $a_1x_1 + ... + a_nx_n = b$, que é conhecido como semi-espaço.

Em R²

Observação: Uma equação da forma $a_1x_1 + ... + a_nx_n = b$ é equivalente a um par de inequações:

$$a_1x_1 + ... + a_nx_n \ge b$$

 $a_1x_1 + ... + a_nx_n \le b$

Num PPL existem restrições estruturais e restrições de sinal. Cada restrição de sinal é uma inequação e cada restrição estrutural é uma inequação ou um par de inequações (se a restrição for de igualdade). Como vimos, o conjunto de todos os pontos que satisfazem uma inequação é um semi-espaço. Toda solução viável de um PPL deve satisfazer a **todas** suas restrições e, portanto, deve estar em cada um dos respectivos semi-espaços. Logo, num PPL, o **conjunto de soluções viáveis** é a **interseção de um número finito de semi-espaços**.

Um subconjunto K ⊂ Rⁿ é um conjunto convexo se toda combinação convexa de quaisquer dois pontos de K também está em K. Em outras palavras, se K é um conjunto convexo, o segmento de reta que une qualquer par de pontos de K está inteiramente em K.

Exemplos:	
Conjuntos convexos:	
Conjuntos não-convexos:	

 A interseção de um número finito de semi-espaços é conhecido como poliedro convexo.

Da observação anterior, segue que o **conjunto de soluções viáveis** de um PPL é um **poliedro convexo**.

Um poliedro convexo limitado é conhecido como politopo convexo.

Exemplo (em R²):

poliedro convexo

politopo convexo

S \subset Rⁿ é um cone \Leftrightarrow (\forall x \in S \Rightarrow α x \in S, $\alpha \ge 0$)

(ou seja, S é um cone se o raio gerado por qualquer ponto de S está

inteiramente em S)

Exemplo:

um cone
(não-convexo)

 Um cone, que também é um conjunto convexo, é denominado cone convexo.

Notar que:

se S é um cone convexo e x, y \in S, então:

- toda combinação convexa de x e y deve pertencer a S (pois S é um conjunto convexo)
- todo múltiplo não-negativo dessas combinações convexas deve estar em S (pois S é um cone)

ou seja:

S é um cone convexo \Leftrightarrow (\forall x, y \in S \Rightarrow α x + β y \in S, \forall α , β \geq 0)

Um cone poliédrico convexo é um cone convexo formado pela interseção de um número finito de semi-espaços.

Logo: o conjunto de soluções viáveis de um conjunto de restrições da forma $A \times \ge 0$ é um cone poliédrico convexo.

Seja X = $\{x^1, ..., x^k\}$ um conjunto de pontos em Rⁿ. O conjunto $\{x \mid x = \alpha_1 x^1 + ... + \alpha_k x^k, \alpha_1, ..., \alpha_k \ge 0\}$ é conhecido como cone de X e será representado como: cone($\{x^1, ..., x^k\}$) ou cone(X).

Exemplo (em R²):
$$X = \left\{ x^1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, x^2 = \begin{pmatrix} 2 \\ -3 \end{pmatrix}, x^3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, x^4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$$

Para determinar cone(X) devemos:

 plotar cada um dos pontos X e traçar o raio de cada um desses pontos;

cone(X) é o menor ângulo a partir da origem que contém todos

os raios.

• Um conjunto de vetores $\{x^1, ..., x^k\}$ é linearmente dependente \Leftrightarrow $\exists \alpha_1, ..., \alpha_k \in \mathbb{R}$, com $(\alpha_1, ..., \alpha_k) \neq 0$, tal que $\alpha_1 x^1 + ... + \alpha_k x^k = 0$. Caso contrário, o conjunto de vetores é linearmente independente.

Algoritmo para Testar a Independência Linear

Seja X = $\{x^1, ..., x^k\}$ um conjunto de vetores em R^m , onde $x^j = (a_{1j}, ..., a_{mj})^T$ (j = 1, ..., k). Qualquer vetor de X pode ser expresso como uma combinação linear dos vetores do próprio conjunto X, ou

$$x^{1} = 1x^{1} + 0x^{2} + \dots + 0x^{k}$$

$$x^{j} = 0x^{1} + \dots + 1x^{j} + \dots + 0x^{k}$$

$$x^{k} = 0x^{1} + \dots + 1x^{k}$$

Isto pode ser representado, convenientemente, pela seguinte tabela:

	X ¹	•••	χ ^j		X ^k					
	1	•••	0	•••	0	a ₁₁	a ₂₁	 a_{j1}	 a_{m1}	(vetor x1)
matriz	0		1		0	a _{1j}	a _{2j}	 a _{jj}	 a _{mj}	(vetor x ^j)
identidade de ordem k	0		0		1	a _{1k}	a_{2k}	 a_{jk}	 a_{mk}	(vetor xk)

- O algoritmo para verificar se os vetores do conjunto {x¹, ..., xk} são linearmente independentes considera, a cada passo, uma linha da tabela. Essa linha será denominada linha do pivô.
- Se, para a linha do pivô, todos os elementos do lado direito da tabela forem iguais a zero, os elementos do lado esquerdo são os coeficientes da expressão que representa o vetor zero como uma combinação linear de x¹, ..., x^k.
- Caso contrário, escolher um elemento diferente de zero da linha do pivô. A coluna deste elemento será denominada coluna do pivô. Efetuar operações de pivotamento de modo a transformar a coluna do pivô em uma coluna da matriz identidade I^k.

Exemplo – Verificar se os vetores a seguir são linearmente independentes:										
$x^1 = (0,1,2,0,1)$	X^1	X^2	X ³	X ⁴						
$x^2 = (1,0,1,1,0)$ $x^3 = (1,1,1,1,1)$	1	0	0	0	0	1	2	0	1	
$x^4 = (2,2,4,2,2)$	0	1	0	0	1	0	1	1	0	
	0	0	1	0	1	1	1	1	1	
	0	0	0	1	2	2	4	2	2	

1º passo (1ª linha):	X^1	\mathbf{x}^2	X^3	X ⁴					
	1	0	0	0	0	1	2	0	1
	0	1	0	0	1	0	1	1	0
	0	0	1	0	1	1	1	1	1
	0	0	0	1	2	2	4	2	2
2º passo (2ª linha):	X^1	\mathbf{X}^2	\mathbf{X}^3	X ⁴					
	1	0	0	0	0	1	2	0	1
	0	1	0	0	1	0	1	1	0
	-1	0	1	0	1	0	-1	1	0
	-2	0	0	1	2	0	0	2	0
3º passo (3ª linha):	X^1	\mathbf{x}^2	\mathbf{x}^3	X^4					
	1	0	0	0	0	1	2	0	1
	0	1	0	0	1	0	1	1	0
	-1	-1	1	0	0	0	-2	0	0
	-2	-2	0	1	0	0	-2	0	0

Logo: o vetor **zero** pode ser expresso como: $-1x^1 - 1x^2 - 1x^3 + 1x^4$, ou seja, $-x^1 - x^2 - x^3 + x^4 = 0$. Portanto, os vetores x^1 , x^2 , x^3 e x^4 são **linearmente dependentes**. Notar que se um conjunto de vetores é LD, então qualquer vetor pode ser escrito como uma **combinação linear** dos demais. Exemplo: $x^4 = x^1 + x^2 + x^3$

- Seja $A = (a_{ii})$ uma matriz $m \times n$. Vamos usar a seguinte notação:
 - $A_{i.} \equiv i$ -ésima linha de $A \equiv (a_{i1}, ..., a_{1n})$
 - $A_{ij} \equiv j$ -ésima coluna de $A \equiv (a_{1j}, ..., a_{mj})^T$
- Seja R um subconjunto de linhas de A. R é denominado subconjunto linearmente independente máximo de linhas de A se R satisfaz as seguintes propriedades:
 - R é um conjunto de vetores linearmente independentes
 - R contém todas as linhas de A, ou
 a inclusão em R de qualquer outra linha de A não presente em R, torna R um conjunto de vetores linearmente dependentes.

- Portanto, se R é um subconjunto LI máximo de linhas de A, então toda linha de A pode ser expressa como uma combinação linear de linhas de R. Neste caso, o número de linhas de R é conhecido como posto (ou rank) da matriz A.
- O mesmo procedimento visto anteriormente para verificar a dependência linear de vetores pode ser usado para determinar o rank de uma matriz. Para isto, basta considerar que os vetores são as linhas da matriz.

Exemplo – Determinar para a matriz A abaixo:

- a) o rank de A
- b) R, um subconjunto LI máximo de linhas de A
- c) uma expressão para as demais linhas como uma combinação linear de linhas de R

$$A = \begin{bmatrix} 1 & 2 & -1 & 1 & 0 & -2 \\ 2 & 4 & -2 & 2 & 0 & -4 \\ 0 & 0 & 3 & 1 & 2 & 2 \\ 2 & 4 & 1 & 3 & 2 & -2 \\ 1 & -1 & -1 & 1 & -2 & 1 \end{bmatrix}$$

_A ₁ .	A ₂ .	A ₃ .	A ₄ .	A ₅ .						
1	0	0	0	0		2	-1	1	0	-2
0	1	0	0	0	2	4	-2	2	0	-4
0	0	1	0	0	0	0	3	1	2	2
0	0	0	1	0	2	4	1	3	2	-2
0	0	0	0	1	1	-1	-1	1	-2	1
Δ.	Δ.	Δ.	•	•	I					
A ₁ .	A ₂ .	A ₃ .	A ₄ .	A ₅ .						
1	0	0	0	0	1	2	-1	1	0	-2
-2	1	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	3	1	2	2
-2	0	0	1	0	0	0	3	1	2	2
-1	0	0	0	1	0	-3	0	0	-2	3
A_1 .	A ₂ .	A ₃ .	A ₄ .	A ₅ .						
1	0	-1	0	0	1	2	-4	0	-2	-4
-2	1	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	3	1	2	2
-2	0	-1	1	0	0	0	0	0	0	0
-1	0	0	0	1	0	(-3)	0	0	-2	3

A ₁ .	A ₂ .	A ₃ .	A ₄ .	A ₅ .						
1/3	0	-1	0	2/3	1	0	-4	0	-10/3	-2
-2	1	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	3	1	2	2
									0	
1/3	0	0	0	-1/3	0	1	0	0	2/3	-1

Logo:

a)
$$rank = 3$$

b)
$$R = \{ A_1, A_3, A_5, \}$$

c)
$$-2A_1 + A_2 = 0 \Rightarrow A_2 = 2A_1$$

 $-2A_1 - A_3 + A_4 = 0 \Rightarrow A_4 = 2A_1 + A_3$

Observação: Na discussão anterior fez-se referência apenas às linhas de A e, desse modo, o número de linhas de R poderia ser denominado de **rank-linha** de A. O **rank-coluna** de A pode ser definido analogamente, substituindo-se a palavra "linha" pela palavra "coluna" (que é equivalente ao rank-linha de A^{T}). O rank-linha e o rank-coluna de qualquer matriz **são iguais** e são denominados apenas de **rank**. Se A é de ordem m × n, seu rank r é tal que r \leq m (rank-linha) e r \leq n (rank-coluna).

Generalizando: Seja $F = \{A^1, ..., A^k\}$ um conjunto não-vazio de vetores em R^n . Um subconjunto $E \subset F$ é um **subconjunto LI máximo** de F se:

a) E é LI

b) (E = F) ou (
$$\forall$$
 A^j \in F\E, E \cup { A^j } $\acute{\text{e}}$ LD)

Sistemas de Equações Lineares

Seja um sistema de m equações com n incógnitas da forma A x = b, onde A é uma matriz m × n, b é um vetor-coluna m × 1 e x é um vetor-coluna n × 1 de incógnitas.

$$\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{vmatrix} \begin{vmatrix} x_1 \\ \vdots \\ x_n \end{vmatrix} = \begin{vmatrix} b_1 \\ \vdots \\ b_m \end{vmatrix}$$

Este sistema pode ser escrito como:

$$\begin{array}{ccc} a_{11}x_1+\cdots+a_{1n}x_n=b_1\\ &\vdots\\ a_{m1}x_1+\cdots+a_{mn}x_n=b_m \end{array} \quad \text{ou seja:} \quad \sum_{j=1}^n A_{\cdot j}x_j=b$$

Exemplo:
$$\begin{vmatrix} 2 & -3 & 4 & x_1 \\ 6 & 5 & -7 & x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} 8 \\ 4 \end{vmatrix}$$
ou seja:
$$2x_1 - 3x_2 + 4x_3 = 8$$

$$6x_1 + 5x_2 - 7x_3 = 4$$
Logo:
$$\begin{vmatrix} 2 \\ 6 \end{vmatrix} x_1 + \begin{vmatrix} -3 \\ 5 \end{vmatrix} x_2 + \begin{vmatrix} 4 \\ -7 \end{vmatrix} x_3 = \begin{vmatrix} 8 \\ 4 \end{vmatrix}$$

Portanto, o sistema tem uma solução se o **vetor b** puder ser escrito como uma **combinação linear** das **colunas de A**.

Note que, se o sistema tem solução, o rank da **matriz aumentada** (A b) é igual ao rank de A, pois a coluna b pode ser escrita como uma **combinação linear** das demais.

- O sistema é consistente se tiver uma solução. Do contrário, o sistema é inconsistente.
- Seja r = rank(A) (ou seja, r = rank(A b)). Se r = m, todas as linhas do sistema são LI (ou seja, não existem equações redundantes). Se r < m, então o sistema tem (m − r) equações redundantes (que podem ser eliminadas e o sistema passará a ter apenas r equações). Como A_{m×n}, r ≤ m e r ≤ n. Logo, todo sistema consistente é equivalente a um sistema onde o número de equações (r) é menor ou igual ao número de incógnitas.

O conjunto de restrições estruturais de um PPL na **forma padrão** constitui um sistema de equações lineares. Logo, podemos admitir que o número de restrições é **menor ou igual** ao número de variáveis.

O mesmo algoritmo visto anteriormente pode ser usado para resolver um sistema de equações lineares, partindo-se da seguinte tabela:

x_1	 $\mathbf{X}_{\mathbf{j}}$	 \mathbf{x}_{n}	b
a ₁₁	 a_{1j}	 a _{1n}	b ₁
a_{i1}	 $egin{array}{c} {\sf x}_{ m j} \\ {\sf a}_{ m 1j} \\ {\sf a}_{ m ij} \end{array}$	 a _{in}	b _i
•••			•••
a_{m1}	 a_{mj}	 a_{mn}	b_{m}

- Cada iteração do algoritmo considera uma linha da tabela (linha do pivô). Se, para a linha do pivô, todos os coeficientes em ambos os lados da tabela são iguais a zero, esta linha corresponde a uma equação redundante e pode ser eliminada.
- Se, para a linha do pivô, todos os coeficientes do lado esquerdo são iguais a zero, mas o coeficiente do lado direito é diferente de zero, esta linha corresponde a uma equação inconsistente e o sistema não terá solução.
- Caso contrário, escolher, na linha do pivô, um dos coeficientes diferentes de zero do lado esquerdo da tabela. A coluna correspondente a este elemento é denominada coluna do pivô. A variável correspondente à coluna do pivô é conhecida como variável dependente (ou variável básica).
- Ao final, os vetores-coluna correspondentes às variáveis dependentes (tomados em uma ordem conveniente) formam uma matriz identidade de ordem r. Uma solução para o sistema pode ser obtida atribuindo-se valores arbitrários para as variáveis independentes (por exemplo, todas iguais a zero) e obtendo, a partir da tabela final, os valores das variáveis dependentes.

$$2x_1 - 3x_2 + 4x_3 = 8$$

 $6x_1 + 5x_2 - 7x_3 = 4$

$$\begin{array}{c|ccccc} x_1 & x_2 & x_3 & b \\ \hline 1 & -3/2 & 2 & 4 \\ 0 & 14 & -19 & -20 \\ \end{array}$$

- Logo: x_1 e x_2 são as variáveis dependentes. Portanto, uma solução possível para o sistema é: $x_3 = 0$, $x_1 = 13/7$ e $x_2 = -10/7$.
- Portanto, o vetor b pode ser escrito como:

$$\left|\begin{array}{c|c} 8 \\ 4 \end{array}\right| = 13/7 \left|\begin{array}{c|c} 2 \\ 6 \end{array}\right| - 10/7 \left|\begin{array}{c|c} -3 \\ 5 \end{array}\right|$$

Observação: Este algoritmo não garante que a solução do sistema seja não-negativa. Portanto, este algoritmo não pode ser aplicado diretamente para determinar uma solução viável para um PPL na forma padrão.