Two independent samples

11.2.3 of Rice - The non-parametric Mann-Whitney test 07/14/2021

In the previous lecture,

Examples of generalized LRT:

- $\sim \chi^2_
 u$ fits the sampling distribution of $-2\log\lambda(\mathbf{X}_n)$ well;
- Greatly simplifies the derivation of the rejection region.

Independent samples under Normal populations :

Equal variance assumption;

$$\sum_{i=1}^{n} ig(X_i - ar{X}_nig)^2 + \sum_{i=1}^{m} ig(Y_i - ar{Y}_mig)^2 \ \sim \ \sigma^2 \chi_{m+n-2}^2, \ rac{ig(ar{X}_n - ar{Y}_mig) - (\mu_X - \mu_Y)}{S_p \sqrt{rac{1}{n} + rac{1}{m}}} \ \sim \ t_{n+m-2}.$$

Hypothesis tests & confidence intervals.

What if the Normal assumption is not true?

Example 2. Samples of wood were obtained from the core and periphery of a Byzantine church. The date of the wood were determined.

Core		Perij	phery
1294	1251	1284	1274
1279	1248	1272	1264
1274	1240	1256	1256
1264	1232	1254	1250
1263	1220	1242	
1254	1218		
1251	1210		

The ranks of the observations

Example 2. Samples of wood were obtained from the core and periphery of a Byzantine church. The date of the wood were determined.

C	ore	Perip	ohery	_	ر میما
1294	1251	1284	1274		\ ₀ <u>1</u> 121
1279	1248	1272	1264		121 125
1274	1240	1256	1256		127
1264	1232	1254	1250		19.
1263	1220	1242			
1254	1218				
1251	1210				
				1	<i>─</i> ∕
		1		ı	

$$100$$
 1210
 1218
 1220
 1232
 1240
 1242
 1248
 1250
 1251
 1254
 1254
 1255
 1256
 1256
 1263
 1264
 1264
 1272
 1274
 1274
 1279
 1284
 1294
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 19.5
 1

The ranks of the observations

(14+9) = (14+9) = (K

Example 2. Samples of wood were obtained from the core and periphery of a Byzantine church. The date of the wood were determined.

N

- 14 **core** observations $\sim F$
- 9 **periphery** observations $\sim G$

If F=G, every assignment of ranks to the 14+9 observations is equally likely,

5

Mann-Whitney U test

A.k.a. Wilcoxon rank-sum test

$$H_0: F = G \quad ext{versus} \quad H_1: F
eq G$$

Completely separated:
$$R_1 = \frac{n}{2} \hat{i} = \frac{n \ln H}{2}$$

$$R_{2} = \sum_{i=1}^{m+n} i = \sum_{i=1}^{m+n} i = \sum_{i=1}^{n} i =$$

- 1. Calculate the rank sum R_1 and R_2 from the first and second sample respectively. We know $R_1 + R_2 = N(N+1)/2$. $= \sum_{i=1}^{N} i$ where N = N + N.
- 2. The Mann-Whitney U statistic is given by $U = \min\{U_1, U_2\}$:

$$U_1 = mn + rac{n(n+1)}{2}$$
 $\stackrel{\stackrel{\scriptstyle \sim}{\sim}}{\stackrel{\scriptstyle \sim}{\sim}} R_1$ $U_2 = mn + rac{\widetilde{m(m+1)}}{2} - R_2$

UI and Uz should have closer values.

We know $\mathit{U}_1 + \mathit{U}_2 = mn$

3. Find the rejection region using the Table of Critical Values.

1/2 = 2 mn + n(m+1) 2 mn + m(m+1) 2 mn + m(m

- mn

$$U \searrow 0$$
, more evidence against $H_{0.}$

The ranks of the observations

Example 2. Samples of wood were obtained from the core and periphery of a Byzantine church. The date of the wood were determined.

```
We fail to reject the, and canchell that the date of the 1210 1218 1220 1232 1240 1242 1248 1250 1251
                            Periphery wood 3
      Core
            1251
                           1284
 1294
                           1272
 1279
           1248
                           1256
 1274
           1240
                           1254
 1264
           1232
                                                                y=c(1284, 1274, 1272, 1264, 1256, 1256, 1254, 1250, 1242)
 1263
            1220
                          1242
                                                                wilcox.test(x,y)
 1254
           1218
                                                                    Wilcoxon rank sum test with continuity correction
 1251
            1210
                                                              W = 42.5 p-value = 0.2072
R1=147.5
                                                               alternative hypothesis: true location shift is not equal to 0
                                                               Warnina message:
                                                               In wilcox.test.default(x, y) : cannot compute exact p-value with ties
                                                              Compared with p-value=0.21109.
```

Mann-Whitney U test

Example 3. Consider a Phase II clinical trial designed to investigate the effectiveness of a new drug to reduce symptoms of asthma in children.

Placebo	7	5	6	4	12	_
New Drug	3	6	4	2	1	<u></u>

^{*}the number of episodes of shortness of breath over a 1 week period following receipt of assigned treatment.

Ho:
$$F = G$$
 Vs. $H_1 : F \neq G$

Obs: 1 2 3 4 4 5 6 6 7 12

Rant: 1 2 3 4.5 4.5 6 7.5 7.5 9 10

 $R_1 = 4.5 + 6 + 7.5 + 9 + 10 = 37$
 $R_2 = 1 + 2 + 3 + 4.5 + 7.5 = 18$

$$U_1 = 5x5 + \frac{5x6}{2} - 37 = 3$$
.
 $U_2 = 5x5 + \frac{5x6}{2} - 18 = 22$

$$U=\min_{x\in \mathbb{R}} \{u_1,u_2\}=3.$$
 $R=\{u_1=2\}, we fail to \}$

Comparing paired samples

11.3 of Rice

07/14/2021

Paired samples

Example 4. Blood samples from n=10 people were sent to each of two laboratories (Lab 1 and Lab 2) for cholesterol determinations. Is there a statistically significant difference at the α =0.01 level, in the (population) mean cholesterol levels reported by Lab 1 and Lab 2?

Subject	Lab1	Lab2	Diff
1	(296)	(318)	-22
2	268	287	-19
:	:	:	:
10	262	285	-23
£ .	$\overline{x}_1 = 260.6$	$\bar{x}_2 = 275$	$\overline{d} = -14.4$
			$s_d = 6.77$
	1	1	

Can't assume independence between two samples.

 $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \sim N \begin{pmatrix} \mu x \\ \mu y \end{pmatrix} \begin{pmatrix} bx^2 & bxby \\ bxby & by \end{pmatrix}$

Theorem C. Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be i.i.d observations from a bivariate Normal distribution with parameters $\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho$. Consider

The rejection region of the LRT is equivalent to $H_1: \mu_X \neq \mu_Y$.

$$R = \left\{ rac{\left|ar{D}_n
ight|}{\sqrt{rac{1}{n}S_D^2}} \geq c
ight\}.$$

$$\begin{array}{l}
\mu_X \neq \mu_Y. \\
\alpha = P(P|H_0) = P(\sqrt{\frac{15}{15}}) \geq C(H_0) \\
= C = \pm_{n-1} (4/2).
\end{array}$$

$$C_{i} = X_{i} - Y_{i}, \ ar{D}_{n} = rac{1}{n} \sum_{i=1}^{n} D_{i}, \ S_{D}^{2} = rac{1}{n-1} \sum_{i=1}^{n} \left(D_{i} - ar{D}_{n}\right)^{2}.$$

$$ext{Under } H_0,\, T(\mathbf{X}_n) = rac{ar{D}_n}{\sqrt{rac{1}{n}S_D^2}} \sim t_{n-1}.$$

$$Di = xi - \gamma i \qquad N(ux - u\gamma, bx^2 + b\gamma^2 - 2\rho b \times b\gamma)$$

$$EDi = Exi - E \gamma i = Mx - U\gamma$$

$$\begin{array}{lll}
vaw (Di) &=& cov (Xi - Ti), Xi - Ti) \\
&=& cov (Xi, Xi) + cov (Ti, Yi) - z cov (Xi, Ti) \\
&=& 6x^{2} + 6y^{2} - 2 \cdot 6x6y
\end{array}$$

$$= 6x^{2} + 6y^{2} - 2 \cdot 6x \cdot 6y$$

$$= 6x^{2} + 6y^{2} - 2 \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} + 6y^{2} - 2} \cdot 6x \cdot 6y$$

$$= \frac{1}{6x^{2} +$$

Theorem C. Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be i.i.d observations from a bivariate Normal distribution with parameters μ_X , μ_Y , σ_X^2 , σ_Y^2 , ρ . Consider

 $H_0: \mu_X = \mu_Y \quad \text{versus} \quad H_1: \mu_X \neq \mu_Y.$

The rejection region of the LRT is equivalent to

$$R = \left\{rac{\left|ar{D}_n
ight|}{\sqrt{rac{1}{n}S_D^2}} \geq c
ight\}.$$

$$\left\{egin{aligned} D_i = X_i - Y_i, \ ar{D}_n = rac{1}{n} \sum_{i=1}^n D_i, \ S_D^2 = rac{1}{n-1} \sum_{i=1}^n \left(D_i - ar{D}_n
ight)^2. \end{aligned}
ight\}$$

$$ext{Under } H_0,\, T(\mathbf{X}_n) = rac{ar{D}_n}{\sqrt{rac{1}{n}S_D^2}} \sim t_{n-1}.$$

Compare the relative efficiency between

$$\frac{\bar{X}_{n} - \bar{Y}_{n} \text{ (independent samples)}}{\sqrt{\alpha v (\bar{D}_{h})}} = \frac{\frac{1}{n} (bx^{2} + by^{2} - 2f bxby)}{\sqrt{\alpha v (\bar{X}_{h} - \bar{Y}_{h})}} = \frac{\frac{1}{n} (bx^{2} + by^{2} - 2f bxby)}{\sqrt{\alpha v (\bar{X}_{h})} + \sqrt{\alpha v (\bar{Y}_{h})}} = \frac{\frac{1}{n} (bx^{2} + by^{2} - 2f bxby)}{\frac{bx^{2}}{n}} = \frac{1}{n} (bx^{2} + by^{2} - 2f bxby)$$

Corollary C. Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be i.i.d observations from a bivariate Normal distribution with parameters $\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho$. The LRTs with significance level α for the following hypotheses can be derived.

$$H_0:\, \mu_X=\mu_Y \quad \leftrightarrow \quad H_1:\, \mu_X
eq \mu_Y. \quad \Longleftrightarrow \quad$$

$$R = \left\{ rac{\left|ar{D}_n
ight|}{\sqrt{rac{1}{n}S_D^2}} \geq t_{n-1}(lpha/2)
ight\}$$

$$H_0: \, \mu_X = \mu_Y \quad \leftrightarrow \quad H_1: \, \mu_X > \mu_Y. \, \iff$$

$$R = \left\{rac{ar{D}_n}{\sqrt{rac{1}{n}S_D^2}} \geq t_{n-1}(lpha)
ight\}$$

$$H_0: \mu_X = \mu_Y \quad \leftrightarrow \quad H_1: \mu_X < \mu_Y. \iff$$

$$R = \left\{rac{ar{D}_n}{\sqrt{rac{1}{n}S_D^2}} egin{array}{c} ar{ar{lpha}} - t_{n-1}(lpha)
ight\}$$

Lab2

318

Diff

-22

Example 4 *cont'd*. Blood samples from n=10 people were sent to each of two laboratories (Lab 1 and Lab 2) for cholesterol determinations. Is there a statistically significant difference at the α =0.01 level, in the (population) mean cholesterol levels reported by Lab 1 and Lab 2?

	. I	290	910	-22	
	2	268	287	-19	
	:	:	:	:	
	10	262	285	-23	
		$\overline{x}_1 = 260.6$	$\overline{x}_2 = 275$	$\overline{d} = -14.4$	
A VI	14L)	1	\uparrow	$s_d = 6.77$	
-67) 67	3		1	,	7
p-value.			1 /		$5b^2$
-	22*	pt (- 6.7	3, df	=9)	4
=	= 8.6 x	10-5	e 0.0	(/	

Lab1

206

Subject

$$H_0: \mu_X = \mu_Y \qquad \leftrightarrow \qquad H_1: \mu_X \neq \mu_Y.$$

$$T = \frac{\sqrt{10} \times (-14.4)}{6.77} = -6.73$$

$$t_9(\alpha/2) = t_9(0.01/2) = 3.2498$$

$$2 = \begin{cases} |T| > 3.2498 \end{cases}$$
 Therefore, we reject the and conclude that there is enough evidence to support H2.

Example 5. A study is run to evaluate the effectiveness of an exercise program in reducing systolic blood pressure in patients with pre-hypertension (defined as a systolic blood pressure between 120-139 mmHg or a diastolic blood pressure between 80-89 mmHg).

Patient	Systolic Blood Pressure Before Exercise Program	Systolic Blood Pressure After Exercise Program	Difference (Before-After)
1	125	118	7
2	132	134	-2
3	138	130	8
4	120	124	-4
5	125	105	20
6	127	130	-3
7	136	130	6
8	139	132	7
9	131	123	8
10	132	128	4
11	135	126	9
12	136	140	-4
13	128	135	-7
14	127	126	1
15	130	132	-2

$$H_0: \mu_X = \mu_Y \quad \leftrightarrow \quad H_1: \mu_X \neq \mu_Y.$$

$$T = \frac{\sqrt{15} \times 3.2}{7.09} = 1.747$$
 $t_{14}(\alpha/2) = t_{14}(0.05/2) = 2.145$
 $0 > \begin{cases} 1 < 7 \\ 2 < 145 \end{cases}$

We fail to reject Ito, and conclude that there is not enough evedlence $S_0 = 7.09$ of mound difference. 15

$W + +W - = \frac{1}{2}i = \frac{N(M+1)}{2}i + 0 =$

MUH); HO: F=G v3. H1: F#

Paired samples - Nonparametric method

Ho:
$$F = G$$
 vs. Hi: $F = G$
 $R = \{ W + \} Ci \} = \{ G \}$

\downarrow	1	\	L		4
Before	After	Difference	Difference	Rank	Signed Rank
25	27	2	2	2	()
29	25	-4	4	3	-3)
60	59	-1	1	1	-1
27	37	10	10	4	1 4 -

Wilcoxon signed rank test:

Calculate the differences, $Y_i - X_i$, and the absolute values of the differences and rank the latter.

2. Restore the signs of the differences to the ranks, obtaining signed ranks.

3. Calculate W_{+} , the sum of those ranks that have positive signs. For the table, this sum is $W_{+} = 2 + 4 = 6$.

wilcox.test(x,y, paired=TRUE)

After - Betone

W+ dil 11/2

If F = G, we expect half of the differences to be positive half to be negative, and W_+ won't be too small or too large.

Paired samples - Nonparametric method

Example 6. Consider a clinical investigation to assess the effectiveness of a new drug designed to reduce repetitive behaviors in children affected with autism.

Child	Before Treatment	After 1 Week of Treatment	Difference (Before-After)	
1	85	75	10	
2	70	50	20	
3	40	50	-10	
4	65	40	25	
5	80	20	60	
6	75	65	10	•
7	55	40	15	
8	20	25	-5	

^{*} A score of 0 = no repetitive behavior, while a score of 100 = constant repetitive behavior.

* A score of 0 = no repetitive behavior, while a score of 100 = constant repetitive behavior
$$dr + 1$$
 $dr + 1$ $dr + 1$

 $W_{+} = 3 + 3 + 5 + 6 + 7 + 8 = 32$, $W_{-} = 1 + 3 = 4,$ \subset $R = \{W_{-} \le 6\}.$ We reject the null hypothesis

and conclude that

17

Paired samples - Nonparametric method

 $\omega + + \omega = \frac{n \ln 1}{2}$ $\omega = \frac{n \ln 1}{2}$

Example 6. Consider a clinical investigation to assess the effectiveness of a new drug designed to reduce repetitive behaviors in children affected with autism.

Child	Before Treatment	After 1 Week of Treatment	Difference (Before-After)
1	85	75	10
2	70	50	20
3	40	50	-10
4	65	40	25
5	80	20	60
6	75	65	10
7	55	40	15
8	20	25	-5

^{*} A score of 0 = no repetitive behavior, while a score of 100 = constant repetitive behavior.

$$W_{+}=3+3+5+6+7+8=32$$
 $W_{-}=1+3=4,$
 $R=\{W_{-}\leq 6\}.$

> wilcox.test(x,y,pair=TRUE, alternative='greater')
Wilcoxon signed rank test with continuity correction

data: x and y
V = 32, p-value = 0.02874
alternative hypothesis: true location shift is greater than 0

Warning message:
In wilcox.test.default(x, y, pair = TRUE, alternative = "greater")
 cannot compute exact p-value with ties

Ho: F=G US. H1: F+G

Paired samples - Nonparametric method

Example 5 cont'd. A study is run to evaluate the effectiveness of an exercise program in reducing systolic blood pressure in patients with pre-hypertension (defined as a systolic blood pressure between 120-139 mmHg or a diastolic blood pressure between 80-89 mmHg).

Patient	Systolic Blood Pressure Before Exercise Program	Systolic Blood Pressure After Exercise Program	Difference (Before-After)
1	125	118	7
2	132	134	-2
3	138	130	8
4	120	124	-4
5	125	105	20
6	127	130	-3
7	136	130	6
8	139	132	7
9	131	123	8
10	132	128	4
11	135	126	9
12	136	140	-4
13	128	135	-7
14	127	126	1
15	130	132	-2

```
W_{+}=89, \epsilon d=0.0
                         W_{-} = 31,
              R = \{W_+ < 25 \text{ or } W_- < 25\}.
   We fail to reject to
  x<-c(125,132,138,120,125,127,136,139,131,132,135,136,128,127
 > y<-c(118,134,130,124,105,130,130,132,123,128,126,140,135,126,132)
 > wilcox.test(x,y,pair=TRUE)
        Wilcoxon signed rank test with continuity correction
data: x and y
V = 89) p-value = 0.1048 > < = 0.0
alternative hypothesis: true location shift is not equal to 0
 Warning message:
In wilcox.test.default(x, y, pair = TRUE) :
  cannot compute exact p-value with ties
```

Compared with p-value=0.1025.

Tomorrow ...

- Midterm review
- Go over a Practice Midterm