UNDERSTANDING OF PARKINSON'S DISEASE THROUGH EXPLAINABLE ARTIFICIAL INTELLIGENCE APPLIED TO SPEECH MEASUREMENTS

A DISSERTATION SUBMITTED TO MANCHESTER METROPOLITAN UNIVERSITY

FOR THE DEGREE OF MASTER OF SCIENCE

IN THE FACULTY OF SCIENCE AND ENGINEERING

By

RAMSES MORENO DE LA CRUZ

Department of Computing and Mathematics

WHY...?

- No matter the field or topic, it is very common to see that in a situation of high dimensionality space, some features are dropped or discarded.
- BUT.., WHAT IF in the context of voice biomarkers for the detection and treatment of Parkinson's disease, there are multidimensional and complex interactions that might be missed or overlooked by traditional machine learning models, but could be harnessed by deep learning models, improving the existing performance metrics, insights, and interpretability of the intricate relationships of the features.

AIM

• Provide to healthcare professionals with an effective and easy-to-use technological tool based on machine learning, deep learning, and explainable artificial intelligence that sheds light on the way the models make decisions and describes the most important features related to speech measurements for understanding Parkinson's disease.

WHAT TO DO? → OBJECTIVES

- Literature survey.
- Exploratory Data Analysis.
- Design, build, and run a Machine Learning model (Boosted Trees) and a Deep Learning model (Convolutional Neural Network) for a regression task.
- Apply Explainable Artificial Intelligence technique (Shapley Values).

Non-motor symptoms: mild memory and thinking problems, anxiety, dementia, depression, hallucinations, delusions, loss of sense of smell, and problems sleeping

PARKINSON'S DISEASE

Disorder of the central nervous system caused by the progressive loss of certain neurons and consequently a reduction in dopamine in the brain.

Motor symptoms: tremor, rigidity, bradykinesia (*voice disorders*), and postural instability.

Risk factors: age, sex, heredity.

Voice disorders: changes in the voice can manifest 5 to 7 years before the official diagnosis.

70–89% patients will experience vocal impairment

Format: tabular data

Data type: numeric

DATA SUMMARY

Biomedical voice measurements from subjects with early-stage Parkinson's disease recruited for a six-month trial of a telemonitoring device for remote symptom progression of Parkinson's disease.

Number of rows: 5875

Number of columns: 22

Balanced dataset
No missing values
No data augmentation.

Independent variables: 20

(17 from voice measurement + 3 from demographic information)

Dependent variables: 2

Comparison of Pearson and Spearman Correlation Coefficient Metric Variable Pearson Correlation Metric Variable Spearman Correlation 1.000000 motor_UPDRS 1.000000 motor_UPDRS total_UPDRS 0.947476 total UPDRS 0.957649 0.282680 0.312043 subject 0.209668 subject 0.197384 0.151383 0.149625 Shimmer: APQ11 0.116734 Shimmer: APQ11 0.142993 RPDE 0.103239 Shimmer(dB) 0.122358 Shimmer(dB) 0.091120 0.118600 0.084116 0.117644 Shimmer Shimmer Jitter(%) 0.074269 Jitter(%) 0.114440 0.072014 Shimmer: APQ5 Jitter:PPQ5 0.106485 11 test_time 0.069940 Shimmer: APQ5 0.100105 12 0.095644 Jitter:PPQ5 0.069145 Shimmer: APQ3 13 Shimmer: APQ3 0.066514 Shimmer: DDA 0.095633 14 Shimmer: DDA 0.066514 0.094104 Jitter:DDP 15 0.066099 Jitter: RAP 0.094024 RPDE 16 0.087109 Jitter:DDP 0.063351 Jitter: RAP 0.063341 test_time 0.062601 18 Jitter(Abs) 0.039854 Jitter(Abs) 0.058422 19 -0.050313 sex -0.056787 HNR -0.133199 HNR -0.132891 DFA DFA -0.146948 -0.133771

Figure 3. Comparison of the Pearson and Spearman Correlation Coefficients of the features related to the target variable (motor_UPDRS)

Step	2:	Sp	itti	ing	the
	d	ata	set	t	

Table 5. Data Splitting					
	Percentage of instances	Number of instances			
	from the whole dataset	from the whole dataset			
Data Subset					
Training set	~ 60%	3584			
Validation set	~ 20%	1145			
Test set	~ 20%	1146			
Total	100%	5875			

Figure 4. Pair plot of some features related to the target variable (motor UPDRS)

Step 3: Exploratory Data

Analysis

Step 5.1: Training,
Validation and Testing
(Boosted Trees model and
Convolutional Neural
Network)

Figure 5. Instance of the training set transformed into an image

		Phase	Model	Mean Absolute Error (MAE)	Root Mean Square Error (RMSE)	Mean Square Error (MSE)	Coefficient of Determination (R ²)
			Boosted Trees	1.21	1.66	2.77	0.96
	—	Training	Convolutional Neural Network	6.43	7.66	58.66	-
			Boosted Trees	7.46	-	-	-
	_	Validation	Convolutional Neural Network	7.17	8.70	75.66	-
		Test	Boosted Trees	1.23	2.59	6.70	0.90
			Convolutional Neural Network	6.52	7.64	58.43	-

Figure 14. Mean SHAP Value (Average impact on model output) – Global Impact, Boosted Trees

		Hig
age	- store colorelle (Self-Selector Side Selector ser-	
DFA		_
Jitter(Abs)		
HNR		
Jitter:RAP		-
PPE	*	
	-15 -10 -5 0 5 10 SHAP value (impact on model output)	Lov

Phase	Model	Mean Absolute Error (MAE)	Mean Square Error (RMSE)	Mean Square Error (MSE)	Coefficient of Determination (R ²)
Training	Boosted Trees	1.21	1.66	2.77	0.96
	Boosted Trees (Improved Version)	2.00	2.72	7.42	0.88
Validation	Boosted Trees	7.46	-	-	-
	Boosted Trees (Improved Version)	7.10	-	-	-
Test	Boosted Trees	1.23	2.59	6.70	0.90
	Boosted Trees (Improved Version)	2.31	3.52	12.41	0.81

Step 8: Problems / Recommendations

Main problems:

- 1. Lack of publicly available data.
- Error / issues in the cloud-based platform Google Colaboratory.

Recommendations:

- 1. Data augmentation.
- 2. Pre-trained convolutional neural networks.
- 3. Other approaches for data splitting.
- 4. Different strategies at the moment to transform the tabular data into image.
- 5. Fine-tuning process.
- 6. GPUs.

Step 9: Key Insights / Conclusion

Key Insights:

- 1. The input mismatch (i.e., not the same feature space) in the models may have made the interpretation and comparison of the results difficult.
- 2. The transformation into images, which in this case was through the novel algorithm called "Image Generator for Tabular Data," could potentially introduce some complexity, loss of information, or noise degrading the performance of the convolutional neural network.

Conclusion:

1. The experimental evidence suggests that the Boosted Trees model is more convenient than a convolutional neural network considering several performance metrics, computational resources used, complexity during the fine-tuning process, and interpretability. The context of this conclusion takes into account the conditions of the dataset of biomedical speech measurements of subjects with early-stage Parkinson's disease in tabular format and as images after its respective transformation.