- 1) If **A** is nonsingular, explain why $det(A^{-1}) = 1/det(A)$.
- **2)** If **A** is $n \times n$, explain why $\det(\alpha A) = \alpha^n \det(A)$ for all scalars α .
- 3) Find all the matrix solutions of the matrix equation $X^2 = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ where a is any number different from 0.
- **4)** Compute the determinant of the following matrix theoretically. In addition, obtain it by the MATLAB or Python.

5) Given the matrix A, find $det(A^{-1}A^TA)$.

$$\mathbf{A} = \left(\begin{array}{ccc} 2 & 0 & 3 \\ 0 & 7 & 0 \\ 4 & 0 & 5 \end{array} \right)$$

6) Pick any numbers that add to x + y + z = 0. Find the angle between your vector v = (x, y, z) and the vector w = (z, x, y). Explain why $v \cdot w / ||v|| ||w||$ is always $-\frac{1}{2}$.