Term Project

디지털 통신에서 M-ary phase shift keying (M-PSK) 또는 M-ary quadrature amplitude modulation (M-QAM) 은 log₂M bit의 정보를 전송하기 위하여 사용하는 변조 (modulation) 방식이다. (M=2, 4, 8, 16, ...) 구체적으로 송신단(transmitter)에서는 log₂M bit의 정보를 M-PSK 또는 M-QAM 방식을 사용하여 변조하고 변조된 신호가 전송된다. 참고로 변조 방식은 송신해야 하는 정보량과 채널 상태에 따라 결정된다.

어떠한 디지털 통신 시스템에서, 송신단에서 사용할 수 있는 변조 방식은 아래 6가지 경우가 있다고 가정하자. 즉 송신단은 6가지의 변조방식 중 하나를 선택해서 정보를 전송해야 한다. 만약 2 bit 정보가 전송될 경우 변조방식은 QPSK를 사용해야 하며, 전송될 수 있는 신호는 1+j, 1-j, -1+j, -1-i 중 하나이다.

Department of Information and Telecommunications Engineering, Kyungsik Min

수신단에서 정보를 획득하기 위해서는 수신 신호의 복조(demodulation)를 수행해야 한다. 복조를 수행하기 위해서는 신호 송신 시 어떤 변조 방식이 사용되었는지 알아야 한다. 이를 위해선 정보 전송에 사용된 변조 방식을 송신단에서 수신단으로 알려줘야 한다. 하지만, 송신단에서 변조 방식을 전달하지 않을 경우 수신단에서는 변조 방식을 스스로 파악해야 신호 복조 및 정보획득이 가능하다. 만일 수신단에서 수신 신호의 변조 방식을 분류할 수 있는 딥러닝 모델을 가지고 있다면 변조 방식을 송신단으로부터 전달받지 않더라도 수신 신호를 통해 변조방식을 예측한 후 정보를 수신할 수 있다.

본 Term Project프로젝트에서는 변조 방식에 따른 수신 신호로 정의되어 있는 학습 데이터를 활용하여 변조 방식을 분류하는 모델을 만들고, 학습된 모델이 변조 방식을 올바르게 분류하는지 테스트한다.

1. 모델 생성 및 학습

학습 데이터 'training_data.csv'를 활용하여 수신 신호에 따른 변조 방식을 분류하는 딥러닝 모델을 생성하라.

- feature는 각 행의 첫 번째와 두 번째 값, label은 세 번째 값이다.
- label은 변조 방식을 의미하며 각 숫자의 정의는 다음과 같다.
 - . 0: BPSK, 1: QPSK, 2: 8PSK, 3: 16 QAM, 4: 64 QAM, 5: 256 QAM
- 모델 설계 시 딥러닝 알고리즘과 hyperparameter, optimizer 등은 자율적으로 선택한다. 단, 사용 가능한 모델은 수업 시간에 학습한 모델(Logistic classification, DNN, CNN, RNN, LSTM)로 제한된다.

2. 모델 성능 평가

학습된 모델을 사용하여 test 데이터 'test data.csv'를 사용하여 분류 성능을 예측하라.

- 데이터 구성은 학습 데이터와 동일하다.

3. 평가 기준

- (1) test 데이터의 예측 정확도
- (2) 주어진 hyperparameter 기준 모델 학습 속도
- (3) 발표
- * 각 기준 별 점수는 추후 공지

4. 평가 일정

Source code due date: 12/1(일) 오후 11:59 (LMS 제출)

Presentation date: 12/3(화) 오전 9:30~12:20 (별도 자료 제출 없음)

※ 주의사항

- 1. 소스 코드는 12/1(일) 오후 11:59까지 LMS에 제출해 주기 바랍니다.
- 2. 발표를 위해 PPT를 준비해 주기 바랍니다. PPT에는 모델 설계 방식, hyper parameter 및 학습 방식 설명, 학습 및 예측 결과, 결과에 대한 분석이 상세히 작성되어야 합니다.
- 3. 발표는 12/3(화) 오전 9시 30분부터 IT307호에서 진행되며, 발표 5분 내외와 질의응답 5분 내외로 진행됩니다. 발표 순서는 임의로 결정되며 12/2(월)에 LMS에 공지될 예정입니다.