03高频功率放大器

● 一堆公式

高频 电子线路(C)

@GhostKING学长

01 电压电流组

电源电压

 V_{CC}

电压降最大值

 $V_{\rm cm}$

ξ

电压利用系数

 $V_{\rm cm} = \xi V_{CC} = V_{CC} - V_{CEmin}$

通角电导值

 $g_1(\theta)$

 $g_1(\theta) = I_{\rm cm1}/I_{C0}$

基频分量

 $I_{\rm cm1}$

 $I_{C0} = i_{cmax}\alpha_0(\theta)$

直流分量

 I_{C0}

查表通角值1

 $\alpha_1(\theta)$

查表通角值0

集电极电流峰值

 i_{cmax}

 $\alpha_0(\theta)$ $i_{cmax} = I_{cm1}/\alpha_1(\theta)$

饱和临界跨导

 g_{cr}

集电极最小瞬时电压

 V_{CEmin}

集电极饱和压降临界值

 $V_{CE(sat)}$

 $V_{CEmin} = V_{CE(sat)} = i_{cmax}/g_{cr}$

高频 电子线路(C)

@GhostKING学长

01 电压电流组

$$V_{\rm cm} = \xi V_{CC} = V_{CC} - V_{CEmin}$$

$$I_{C0} = i_{cmax}\alpha_0(\theta)$$

$$i_{cmax} = I_{cm1}/\alpha_1(\theta)$$

$$g_1(\theta) = I_{\rm cm1}/I_{C0}$$

$$V_{CEmin} = V_{CE(sat)} = i_{cmax}/g_{cr}$$

高频 电子线路(C)

@GhostKING学长

02 功率效率组

直流功率

 P_{D}

输出功率

 P_o

输入功率

 P_i

集电极功率

 $P_{\mathcal{C}}$

集电极效率

 η_{C}

功率增益

 A_{P}

 R_P

回路电阻

电压降最大值

 $V_{\rm cm}$

基频分量

 $I_{\rm cm1}$

$$P_D = P_o + P_C$$

$$P_D = V_{CC}I_{C0}$$

$$P_D = P_o + P_C$$

$$P_o = \frac{1}{2}V_{cm}I_{cm1} = \frac{1}{2} \times \frac{V_{cm}^2}{R_P} = \frac{1}{2}I_{cm1}^2R_P$$

$$\eta_C = P_o/P_D$$

$$\eta_C = P_o/P_D$$

$$P_o = (\frac{\eta_C}{1 - \eta_C})P_C$$

$$\eta_C = \frac{\frac{1}{2}V_{\rm cm}I_{\rm cm1}}{V_{CC}I_{C0}}$$

$$\eta_C = \frac{\frac{1}{2} V_{\rm cm} I_{\rm cm1}}{V_{CC} I_{C0}}$$

$$R_P = \frac{V_{\rm cm}}{I_{\rm cm1}} = \frac{V_{CC} - V_{CEmin}}{I_{\rm cm1}} = \frac{1}{2} \times \frac{V_{\rm cm}^2}{P_o}$$
 $I_{\rm cm1} = \frac{V_{\rm cm}}{R_P} = \frac{2P_o}{V_{cm}}$

$$I_{\rm cm1} = \frac{V_{\rm cm}}{R_P} = \frac{2P_o}{V_{cm}}$$

$$A_P = 10 \lg \frac{P_o}{P_i}$$

高频 电子线路(C)

@GhostKING学长

##高频功率放大器所有公式

$$V_{\text{cm}} = \xi V_{CC} = V_{CC} - V_{CEmin}$$

$$I_{C0} = i_{cmax} \alpha_0(\theta)$$

$$i_{cmax} = I_{\text{cm1}} / \alpha_1(\theta)$$

$$g_1(\theta) = I_{\text{cm1}} / I_{C0}$$

$$V_{CEmin} = V_{CE(sat)} = i_{cmax} / g_{cr}$$

$$R_P = \frac{V_{\text{cm}}}{I_{\text{cm1}}} = \frac{V_{CC} - V_{CEmin}}{I_{\text{cm1}}} = \frac{1}{2} \times \frac{V_{\text{cm}}^2}{P_o}$$

$$P_D = P_o + P_C$$

$$P_D = V_{CC} I_{C0}$$

$$P_O = \frac{1}{2} V_{\text{cm}} I_{\text{cm1}} = \frac{1}{2} \times \frac{V_{\text{cm}}^2}{R_P} = \frac{1}{2} I_{\text{cm1}}^2 R_P$$

$$P_O = (\frac{\eta_C}{1 - \eta_C}) P_C$$

$$\eta_C = P_o / P_D$$

$$\eta_C = \frac{1}{2} V_{\text{cm}} I_{\text{cm1}}$$

$$\eta_C = \frac{1}{2} V_{\text{cm}} I_{\text{cm1}}$$

$$I_{\text{cm1}} = \frac{V_{\text{cm}}}{R_P} = \frac{2P_o}{V_{\text{cm}}}$$

$$A_P = 10 \lg \frac{P_o}{P_i}$$

高频 电子线路(C)

@GhostKING学长

习题 15

高频 电子线路(C)

有一硅NPN型高频功率管3DA1做成的谐振功率放大器,已知 V_{CC} =24V, P_o =2W, P_i =0.1W,工作频率1MHz, f_T =70MHz, I_{CM} =750mA, $V_{CE(sat)}$ \geq 1.5V, α_0 (70°)=0.253, α_1 (70°)=0.436。求解回路电阻、直流功率、集电极功率、集电极效率和功率增益。

高频 电子线路(C)

@GhostKING学长

习题 15

高频 电子线路(C)

$$V_{cm} = V_{CC} - V_{CEmin}$$
 $A_P = 10 \lg \frac{P_o}{P_i}$

有一硅NPN型高频功率管3DA1做成的谐振功率放大器,已知 $\mathbf{V}_{\mathbf{CC}}$ =24V, $\mathbf{P}_{\mathbf{o}}$ =2W, $\mathbf{P}_{\mathbf{i}}$ =0.1W,工作频率1MHz, $\mathbf{f}_{\mathbf{T}}$ =70MHz, $\mathbf{I}_{\mathbf{CM}}$ =750mA, $\mathbf{V}_{\mathbf{CE}(\mathbf{sat})}$ \geq 1.5V, α_0 (70°)=0.253, α_1 (70°)=0.436。求解 $\mathbf{R}_{\mathbf{P}}$ 、 $\mathbf{P}_{\mathbf{D}}$ 、 $\mathbf{P}_{\mathbf{C}}$ 、 $\mathbf{\eta}_{\mathbf{C}}$ 和 $\mathbf{A}_{\mathbf{P}}$ 。

$$V_{CEmin} = V_{CE(sat)}$$
 $I_{cm1} = V_{cm}/R_P$ $R_P = \frac{1}{2} \times \frac{V_{cm}^2}{P_o}$ $\eta_C = P_o/P_D$ $i_{cmax} = I_{cm1}/\alpha_1(\theta)$ $I_{C0} = i_{cmax}\alpha_0(\theta)$ $P_D = V_{CC}I_{C0}$ $P_D = P_o + P_C$

@GhostKING学长

高频 电子线路(C)

@GhostKING学长

习题 15

高频 电子线路(C)

有一硅NPN型高频功率管3DA1做成的谐振功率放大器,已知 V_{CC} =24V, P_o =2W, P_i =0.1W,工作频率1MHz, f_T =70MHz, I_{CM} =750mA, $V_{CE(sat)}$ \geq 1.5V, α_0 (70°)=0.253, α_1 (70°)=0.436。求解 R_P 、 P_D 、 P_C 、 η_C 和 A_P 。

$$\mathbf{M}: V_{CEmin} = V_{CE(sat)} = 1.5V$$

$$V_{cm} = V_{CC} - V_{CEmin} = 24 - 1.5 = 22.5 V$$

$$R_P = \frac{1}{2} \times \frac{V_{cm}^2}{P_o} = \frac{1}{2} \times \frac{22.5^2}{2} = 126.5 \,\Omega$$

$$I_{cm1} = \frac{V_{cm}}{R_P} = \frac{22.5}{126.5} = 178 \, mA$$

$$i_{cmax} = \frac{I_{cm1}}{\alpha_1(\theta)} = \frac{178}{0.436} = 408 \ mA$$

$$I_{C0} = i_{cmax}\alpha_0(\theta) = 408 \times 0.253 = 103 \, mA$$

$$P_D = V_{CC}I_{C0} = 24 \times 0.103 = 2.472 W$$

$$P_C = P_D - P_o = 2.472 - 2 = 0.472 W$$

$$\eta_C = \frac{P_o}{P_D} = \frac{2}{2.472} = 81\%$$

$$A_P = 10 \lg \frac{P_o}{P_i} = 13 \ dB$$

高频 电子线路(C)

@GhostKING学长

习题 16

高频 电子线路(C)

有一谐振功率放大器,已知 V_{CC} =24V, P_o =5W, ξ =1, I_{CO} =250mA。求解 P_D 、 $η_C$ 、 R_P 、 I_{cm1} 、 $g_1(\theta)$ 。

高频 电子线路(C)

@GhostKING学长

习题 16

高频 电子线路(C)

有一谐振功率放大器,已知 V_{CC} =24V, P_o =5W, ξ =1, I_{CO} =250mA。求解 P_D 、 η_C 、 R_P 、 I_{cm1} 、 $g_1(\theta)$ 。

解:
$$V_{cm} = \xi V_{CC} = 1 \times 24 = 24 V$$

$$R_P = \frac{1}{2} \times \frac{V_{cm}^2}{P_o} = \frac{1}{2} \times \frac{24^2}{5} = 57.6 \,\Omega$$

$$I_{cm1} = \frac{V_{cm}}{R_P} = \frac{24}{57.6} = 0.417 A$$

$$g_1(\theta) = \frac{I_{\text{Cm1}}}{I_{C0}} = 1.67$$

$$P_D = V_{CC}I_{C0} = 24 \times 0.25 = 6 W$$

$$\eta_C = \frac{P_o}{P_D} = \frac{5}{6} = 83.3\%$$

高频 电子线路(C)

@GhostKING学长

习题 17

高频 电子线路(C)

有一晶体管谐振功率放大器,已知 P_o =60W, V_{CC} =12.5V,集电极效率为60%。求解管耗(集电极功率)和直流分量值。

高频 电子线路(C)

@GhostKING学长

习题 17

高频 电子线路(C)

有一晶体管谐振功率放大器,已知 P_0 =60W, V_{CC} =12.5V,集电极效率为60%。求解管耗(集电极功率)和直流分量值。

$$\mathbf{M}: \quad \eta_C = \frac{P_o}{P_D} = \frac{60}{P_D} = 0.6$$

解得
$$P_D = 100 W$$

$$P_D = V_{CC}I_{C0} = 12.5 \times I_{C0} = 100$$

解得
$$I_{C0} = 8A$$

高频 电子线路(C)

@GhostKING学长

习题 18

高频 电子线路(C)

有一3DA4做成的谐振功率放大器,已知 V_{CC} =24V, g_{cr} =0.8A/V, f_{T} =100MHz, i_{Cmax} =2.2A, α_0 (70°)=0.253, α_1 (70°)=0.436。求解 P_D 、 η_C 、 P_o 、 P_C 、 R_P 。

高频 电子线路(C)

@GhostKING学长

习题 18

高频 电子线路(C)

有一3DA4做成的谐振功率放大器,已知 V_{CC} =24V, g_{cr} =0.8A/V, f_{T} =100MHz, i_{Cmax} =2.2A, α_0 (70°)=0.253, α_1 (70°)=0.436。求解 P_D 、 η_C 、 P_o 、 P_C 、 R_P 。

 $\mathbf{M}: V_{CEmin} = \frac{i_{cmax}}{g_{cr}} = \frac{2.2}{0.8} = 2.5 V$

$$V_{\rm cm} = V_{CC} - V_{CEmin} = 24 - 2.75 = 21.25 V$$

$$i_{cmax} = \frac{I_{cm1}}{\alpha_1(\theta)} = \frac{I_{cm1}}{0.436} = 2.2$$

解得 $I_{cm1} = 0.96 A$

$$R_P = \frac{V_{\rm cm}}{I_{\rm cm1}} = \frac{21.25}{0.96} = 22.1 \,\Omega$$

$$I_{C0} = i_{cmax}\alpha_0(\theta) = 2.2 \times 0.253 = 0.557 A$$

$$P_D = V_{CC}I_{C0} = 13.36 W$$

$$P_o = \frac{1}{2} V_{\rm cm} I_{\rm cm1} = 10.2 \ W$$

$$P_C = P_D - P_o = 3.16 W$$

$$\eta_C = \frac{P_o}{P_D} = 76.3\%$$