Nonlinear Waves Problems 2.9 & 2.11

Michael Nameika

2.9 Consider the equation

$$u_t + uu_x = 1$$
, $-\infty < x < \infty$, $t > 0$.

(a) Find the general solution.

Soln. By method of characteristics, we wish to solve the following system of ODEs:

$$\frac{dx}{ds} = u$$
$$\frac{dt}{ds} = 1$$
$$\frac{du}{ds} = 1.$$

From these equations, we can immediately see $u(s)=s+c_1$ and $t(s)=s+c_2$. From these two equations, we have $s=t-c_2$ and so $u=t-c_2+c_1=\tilde{c}$ with $\tilde{c}=c_1-c_2$. That is, u-t= constant. And from $\frac{dx}{ds}$, we find $x(s)=\frac{t^2}{2}+\tilde{c}t+c_3$, where $c_1,c_2,c_3\in\mathbb{R}$. Further, adding and subtracting $\frac{s^2}{2}$ from x(s) gives us $x(s)=-\frac{s^2}{2}+su+c_3\implies x+\frac{s^2}{2}-su=c_3$. Relating the constants \tilde{c} and c_3 with some arbitrary function g, we have $g(c_3)=\tilde{c}\implies u-t=g\left(x+\frac{t^2}{2}-tu\right)$. Assuming initial condition u(x,0)=f(x), it is easy to see

$$u = t + f\left(x + \frac{t^2}{2} - tu\right).$$

(b) Discuss the solution corresponding to: $u = \frac{1}{2}t$ when $t^2 = 4x$.

Soln. Not a solution.

(c) Discuss the solution corresponding to: u = t when $t^2 = 2x$.

Soln. From our work in determining the characteristics in part (a), we can see that the case u = t corresponds to $\tilde{c} = 0$ and $t^2 = 2x$ implies $c_3 = 0$. This also corresponds to the case f(x) = 0 and so we can conclude u = t on the curve $t^2 = 2x$.

2.11 Find the solution of the equation

$$yu_x - xu_y = 0,$$

corresponding to the data u(x,0) = f(x). Explain what happens if we give u(x(s),y(s)) = f(s) along the curve defined by $\{s: x^2(s) + y^2(s) = a^2\}$.

Soln. By method of characteristics, we wish to solve the following set of differential equations:

$$\frac{dx}{ds} = y$$
$$\frac{dy}{ds} = -x$$
$$\frac{du}{ds} = 0.$$

From this system, we conclude $u = c_1 \in \mathbb{R}$, $x = A_1 \cos(s) + A_2 \sin(s)$, and $y = B_1 \cos(s) + B_2 \sin(s)$. From the initial condition u(x,0) = f(x), we take $x_0 = A_1$, $y_0 = 0$. Solving for the constants A_1, A_2, B_1, B_2 yields $A_1 = t$, $A_2 = 0$, $B_1 = 0$, $B_2 = t$. Giving $x = A_1 \cos(s)$ and $y = A_1 \sin(s)$.

1

Thus $x^2 + y^2 = A_1^2 = \text{constant}$. Therefore the characteristics are circles centered at the origin, and u = constant on these characteristics. Further, we can relate the constants t^2 and c_1 by an arbitrary function $g(A_1^2) = c_1$, so that

$$u(x,y) = g(x^2 + y^2).$$

By our initial condition u(x,0) = f(x), we have

$$\begin{split} g(x^2) &= f(x) \\ \Longrightarrow f\left(\pm\sqrt{x}\right) &= g(x) \\ \Longrightarrow f\left(\pm\sqrt{x^2+y^2}\right) &= g(x^2+y^2). \end{split}$$

Thus the general solution to this PDE is given as

$$u(x,y) = f\left(\sqrt{x^2 + y^2}\right).$$

Now, on the characteristic $\{s: x^2(s) + y^2(s) = a^2\}$, we have u(x(s), y(s)) = f(s) = f(a).