Uebungsblatt 5 "Mustererkennung"

J. Cavojska, N. Lehmann, R. Toudic01.06.2015

Inhaltsverzeichnis

1	Schnitte von zwei Gaußkurven	2
2	Klassifikation mit Fisher-Diskriminante	5

1 Schnitte von zwei Gaußkurven

$$f_1(x, \mu_1, \sigma_1) = \frac{1}{\sqrt{2\pi\sigma_1}} \cdot e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}$$
$$f_2(x, \mu_2, \sigma_2) = \frac{1}{\sqrt{2\pi\sigma_2}} \cdot e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}}$$

Eigenschaften von Dichtfunktionen f_i für $\sigma_i > 0$ mit $i \in \mathbb{N}$:

- f_i ist achsensymmeterisch um μ_i
- f_i hat zwei Wendepunkte: $\mu_i \sigma_i$ und $\mu_i + \sigma_i$
- f_i hat genau ein Maxima bei μ_i
- f_i ist stetig / für jede reelle Zahl definiert
- $f_i(x, \mu_i, \sigma_i) > 0$

Eigenschaften von Dichtfunktionen f_i für $\sigma_i = 0$ mit $i \in \mathbb{N}$:

- f_i ist nicht definiert
- \bullet philosophische Betrachtung: f_i ist eine Konstante!?

Eigenschaften von Dichtfunktionen f_i für $\sigma_i < 0$ mit $i \in \mathbb{N}$:

• f_i ist nicht definiert in \mathbb{R} (, aber in \mathbb{C})

Schnittpunkte von f_1 und f_2 bestimmen durch Gleichsetzung:

$$\begin{split} f_1(x,\mu_1,\sigma_1) &= f_2(x,\mu_2,\sigma_2) \\ \frac{1}{\sqrt{2\pi\sigma_1}} \cdot e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} &= \frac{1}{\sqrt{2\pi\sigma_2}} \cdot e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}} \\ \frac{1}{\sqrt{2\pi\sigma_2}} \cdot e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} &= e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}} \\ \frac{\sqrt{2\pi\sigma_2}}{\sqrt{2\pi\sigma_1}} \cdot e^{-\frac{(x-\mu_1)^2}{2\sigma_2^2}} &= e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}} \\ \frac{\sqrt{2\pi\sigma_2}}{2\sigma_2^2} &= e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2} + \frac{(x-\mu_1)^2}{2\sigma_1^2}} \\ \frac{\sqrt{\sigma_2}}{\sqrt{\sigma_1}} &= e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2} + \frac{(x-\mu_1)^2}{2\sigma_1^2}} \\ \frac{1}{2\sigma_1^2} &\Leftrightarrow \\ \ln\left(\frac{\sqrt{\sigma_2}}{\sqrt{\sigma_1}}\right) &= -\frac{(x-\mu_2)^2}{2\sigma_2^2} + \frac{(x-\mu_1)^2}{2\sigma_1^2} \\ \frac{2\sigma_2^2 \cdot \ln\left(\frac{\sqrt{\sigma_2}}{\sqrt{\sigma_1}}\right) &= -(x-\mu_2)^2 + \frac{2\sigma_2^2(x-\mu_1)^2}{2\sigma_1^2} \\ \frac{2\sigma_1^2}{2\sigma_1^2} &\Leftrightarrow \\ 2\sigma_1^2\sigma_2^2 \cdot \ln\left(\frac{\sqrt{\sigma_2}}{\sqrt{\sigma_1}}\right) &= -\sigma_1^2(x-\mu_2)^2 + \sigma_2^2(x-\mu_1)^2 \\ \frac{2\sigma_1^2\sigma_2^2 \cdot \ln\left(\frac{\sqrt{\sigma_2}}{\sqrt{\sigma_1}}\right) &= -\sigma_1^2(x^2-2x\mu_2+\mu_2^2) + \sigma_2^2(x-\mu_1)^2 \\ \frac{2\sigma_1^2\sigma_2^2 \cdot \ln\left(\frac{\sqrt{\sigma_2}}{\sqrt{\sigma_1}}\right) &= -\sigma_1^2(x^2-2x\mu_2+\mu_2^2) + \sigma_2^2(x^2-2x\mu_1+\mu_1^2) \\ \frac{2\sigma_1^2\sigma_2^2 \cdot \ln\left(\frac{\sqrt{\sigma_2}}{\sqrt{\sigma_1}}\right) &= -\sigma_1^2(x^2-2x\mu_2+\mu_2^2) + \sigma_2^2(x^2-2x\mu_1+\mu_1^2) \\ \frac{2\sigma_1^2\sigma_2^2 \cdot \ln\left(\frac{\sqrt{\sigma_2}}{\sqrt{\sigma_1}}\right) &= -\sigma_1^2x^2+2x\mu_2\sigma_1^2 - \mu_2^2\sigma_1^2 + \sigma_2^2x^2 - 2x\mu_1\sigma_2^2 + \mu_1^2\sigma_2^2 \\ \frac{2\sigma_1^2\sigma_2^2 \cdot \ln\left(\frac{\sqrt{\sigma_2}}{\sqrt{\sigma_1}}\right) &= -\sigma_1^2x^2+2x\mu_2\sigma_1^2 - \mu_2^2\sigma_1^2 + \sigma_2^2x^2 - 2x\mu_1\sigma_2^2 + \mu_1^2\sigma_2^2} \\ \frac{2\sigma_1^2\sigma_2^2 \cdot \ln\left(\frac{\sqrt{\sigma_2}}{\sqrt{\sigma_1}}\right) &= -\sigma_1^2x^2+2x\mu_2\sigma_1^2 - \mu_2^2\sigma_1^2 + \sigma_2^2x^2 - 2x\mu_1\sigma_2^2 + \mu_1^2\sigma_2^2} \\ \frac{2\sigma_1^2\sigma_2^2 \cdot \ln\left(\frac{\sqrt{\sigma_2}}{\sqrt{\sigma_1}}\right) &= -\sigma_1^2x^2+2x\mu_2\sigma_1^2 - \mu_2^2\sigma_1^2 + \sigma_2^2x^2 - 2x\mu_1\sigma_2^2 + \mu_1^2\sigma_2^2} \\ \frac{2\sigma_1^2\sigma_2^2 \cdot \ln\left(\frac{\sqrt{\sigma_2}}{\sqrt{\sigma_1}}\right) &= -\sigma_1^2x^2+2x\mu_2\sigma_1^2 + \sigma_2^2x^2 - 2x\mu_1\sigma_2^2 + \mu_1^2\sigma_2^2} \\ \frac{2\sigma_1^2\sigma_2^2 \cdot \ln\left(\frac{\sqrt{\sigma_2}}{\sqrt{\sigma_1}}\right) &= -\sigma_1^2x^2+2x\mu_2\sigma_1^2 + \sigma_2^2x^2 - 2x\mu_1\sigma_2^2 + \mu_1^2\sigma_2^2} \\ \frac{2\sigma_1^2\sigma_2^2 \cdot \ln\left(\frac{\sqrt{\sigma_2}}{\sqrt{\sigma_1}}\right) &= -\sigma_1^2x^2+2x\mu_2\sigma_1^2 + \sigma_2^2x^2 - 2x\mu_1\sigma_2^2 + \mu_1^2\sigma_2^2} \\ \frac{2\sigma_1^2\sigma_2^2 \cdot \ln\left(\frac{\sqrt{\sigma_2}}{\sqrt{\sigma_1}}\right) &= -\sigma_1^2x^2+2x\mu_2\sigma_1^2 + \sigma_2^2x^2 - 2x\mu_1\sigma_2^2 + \mu_1^2\sigma_2^2} \\ \frac{2\sigma_1^2\sigma_2^2 \cdot \ln\left(\frac{\sqrt{\sigma_2}}{\sqrt{\sigma_1}}\right) &= -\sigma_1^2x^2+2x\mu_2\sigma_1^2 + \sigma_2^2x^2 - 2x\mu_1\sigma_2^2 + \mu_1^2\sigma_2^2} \\ \frac{2\sigma_1^2\sigma_2^2 \cdot \ln\left(\frac{\sqrt{\sigma_2}}{\sqrt{\sigma_1}}\right) &= -\sigma_1^2x^2+2x\mu_2\sigma_1^2 + \sigma_2^2x^2 - 2x\mu_1\sigma_2^2} \\ \frac{2\sigma_1^2$$

 \Leftrightarrow

 \Leftrightarrow

 $2\sigma_1^2\sigma_2^2 \cdot \ln\left(\frac{\sqrt{\sigma_2}}{\sqrt{\sigma_1}}\right) + \mu_2^2\sigma_1^2 - \mu_1^2\sigma_2^2 = x^2(\sigma_2^2 - \sigma_1^2) + 2x\mu_2\sigma_1^2 - 2x\mu_1\sigma_2^2$

$$2\sigma_1^2 \sigma_2^2 \cdot \ln\left(\frac{\sqrt{\sigma_2}}{\sqrt{\sigma_1}}\right) + \mu_2^2 \sigma_1^2 - \mu_1^2 \sigma_2^2 = x^2 (\sigma_2^2 - \sigma_1^2) + 2x(\mu_2 \sigma_1^2 - \mu_1 \sigma_2^2) \quad \Leftrightarrow \\ \frac{2\sigma_1^2 \sigma_2^2 \cdot \ln\left(\frac{\sqrt{\sigma_2}}{\sqrt{\sigma_1}}\right) + \mu_2^2 \sigma_1^2 - \mu_1^2 \sigma_2^2}{\sigma_2^2 - \sigma_1^2} = x^2 + \frac{2x(\mu_2 \sigma_1^2 - \mu_1 \sigma_2^2)}{\sigma_2^2 - \sigma_1^2}$$

Ab hier gibt es zwei Möglichkeiten, die Gleichung zu lösen...

- 1. quadratische Ergänzung mit dem Term $\left(\frac{2(\mu_2\sigma_1^2-\mu_1\sigma_2^2)}{\sigma_2^2-\sigma_1^2}\right)^2$ und umformen nach x
- 2. Term umformen und die P-Q-Formel verwenden

Wir haben uns für die 2. Option entschieden:

$$x^{2} + \frac{2x(\mu_{2}\sigma_{1}^{2} - \mu_{1}\sigma_{2}^{2})}{\sigma_{2}^{2} - \sigma_{1}^{2}} - \frac{2\sigma_{1}^{2}\sigma_{2}^{2} \cdot \ln\left(\frac{\sqrt{\sigma_{2}}}{\sqrt{\sigma_{1}}}\right) + \mu_{2}^{2}\sigma_{1}^{2} - \mu_{1}^{2}\sigma_{2}^{2}}{\sigma_{2}^{2} - \sigma_{1}^{2}} = 0 \quad \Leftrightarrow \quad x^{2} + x \cdot \underbrace{\frac{2\mu_{2}\sigma_{1}^{2} - 2\mu_{1}\sigma_{2}^{2}}{\sigma_{2}^{2} - \sigma_{1}^{2}}}_{P} - \underbrace{\frac{2\sigma_{1}^{2}\sigma_{2}^{2} \cdot \ln\left(\frac{\sqrt{\sigma_{2}}}{\sqrt{\sigma_{1}}}\right) + \mu_{2}^{2}\sigma_{1}^{2} - \mu_{1}^{2}\sigma_{2}^{2}}_{Q}}_{Q}$$

Nun können wir die quadratische Gleichung mit der P-Q-Formel lösen. Zur Erinnerung: Die P-Q-Formel lautet: $x_{1/2} = -\frac{P}{2} \pm \sqrt{\left(\frac{P}{2}\right)^2 - Q}$.

$$x_{1} = 4 \cdot \frac{\mu_{1}\sigma_{2}^{2} - \mu_{2}\sigma_{1}^{2}}{\sigma_{1}^{2} - \sigma_{2}^{2}} + \sqrt{\left(\frac{2\mu_{2}\sigma_{1}^{2} - 2\mu_{1}\sigma_{2}^{2}}{\sigma_{2}^{2} - \sigma_{1}^{2}}\right)^{2} + \frac{2\sigma_{1}^{2}\sigma_{2}^{2} \cdot \ln\left(\frac{\sqrt{\sigma_{2}}}{\sqrt{\sigma_{1}}}\right) + \mu_{2}^{2}\sigma_{1}^{2} - \mu_{1}^{2}\sigma_{2}^{2}}{\sigma_{2}^{2} - \sigma_{1}^{2}}}$$

$$x_{2} = 4 \cdot \frac{\mu_{1}\sigma_{2}^{2} - \mu_{2}\sigma_{1}^{2}}{\sigma_{1}^{2} - \sigma_{2}^{2}} - \sqrt{\left(\frac{2\mu_{2}\sigma_{1}^{2} - 2\mu_{1}\sigma_{2}^{2}}{\sigma_{2}^{2} - \sigma_{1}^{2}}\right)^{2} + \frac{2\sigma_{1}^{2}\sigma_{2}^{2} \cdot \ln\left(\frac{\sqrt{\sigma_{2}}}{\sqrt{\sigma_{1}}}\right) + \mu_{2}^{2}\sigma_{1}^{2} - \mu_{1}^{2}\sigma_{2}^{2}}{\sigma_{2}^{2} - \sigma_{1}^{2}}}$$

2 Klassifikation mit Fisher-Diskriminante