Autovalores y Autovectores.

José Luis Ramírez B.

March 10, 2025

- 2 Método de las Potencias
 - Método de la Potencia Inversa

• El estudio de los autovalores de sistemas surge por doquier en muchas áreas de la ciencia, ingeniería, economía ...

- El estudio de los autovalores de sistemas surge por doquier en muchas áreas de la ciencia, ingeniería, economía ...
 - Análisis de estructuras

- El estudio de los autovalores de sistemas surge por doquier en muchas áreas de la ciencia, ingeniería, economía ...
 - Análisis de estructuras
 - Diseño de sistemas electrónicos

- El estudio de los autovalores de sistemas surge por doquier en muchas áreas de la ciencia, ingeniería, economía ...
 - Análisis de estructuras
 - Diseño de sistemas electrónicos
 - Análisis de sistemas eléctricos:

- El estudio de los autovalores de sistemas surge por doquier en muchas áreas de la ciencia, ingeniería, economía ...
 - Análisis de estructuras
 - Diseño de sistemas electrónicos
 - Análisis de sistemas eléctricos:
 - Sincronismo del sistema productor

- El estudio de los autovalores de sistemas surge por doquier en muchas áreas de la ciencia, ingeniería, economía ...
 - Análisis de estructuras
 - Diseño de sistemas electrónicos
 - Análisis de sistemas eléctricos:
 - Sincronismo del sistema productor
 - Estabilidad del sistema ante perturbaciones

- El estudio de los autovalores de sistemas surge por doquier en muchas áreas de la ciencia, ingeniería, economía ...
 - Análisis de estructuras
 - Diseño de sistemas electrónicos
 - Análisis de sistemas eléctricos:
 - Sincronismo del sistema productor
 - Estabilidad del sistema ante perturbaciones
 - Planificación nuevo equipo

- El estudio de los autovalores de sistemas surge por doquier en muchas áreas de la ciencia, ingeniería, economía ...
 - Análisis de estructuras
 - Diseño de sistemas electrónicos
 - Análisis de sistemas eléctricos:
 - Sincronismo del sistema productor
 - Estabilidad del sistema ante perturbaciones
 - Planificación nuevo equipo
 - Otros muchos

- El estudio de los autovalores de sistemas surge por doquier en muchas áreas de la ciencia, ingeniería, economía ...
 - Análisis de estructuras
 - Diseño de sistemas electrónicos
 - Análisis de sistemas eléctricos:
 - Sincronismo del sistema productor
 - Estabilidad del sistema ante perturbaciones
 - Planificación nuevo equipo
 - Otros muchos
 - Mercados financieros.

- El estudio de los autovalores de sistemas surge por doquier en muchas áreas de la ciencia, ingeniería, economía ...
 - Análisis de estructuras
 - Diseño de sistemas electrónicos
 - Análisis de sistemas eléctricos:
 - Sincronismo del sistema productor
 - Estabilidad del sistema ante perturbaciones
 - Planificación nuevo equipo
 - Otros muchos
 - Mercados financieros.
- Es también muy importante para analizar el comportamiento de métodos numéricos.

Formulación del Problema.

Definición:

Dada una matriz $A \in \mathbb{C}^{n \times n}$, calcular un valor $\lambda \in \mathbb{C}$ y un vector x no nulo tales que

$$Ax = \lambda x$$

Formulación del Problema.

Definición:

Dada una matriz $A \in \mathbb{C}^{n \times n}$, calcular un valor $\lambda \in \mathbb{C}$ y un vector x no nulo tales que

$$Ax = \lambda x$$

• A λ se le denomina autovalor o valor propio y a x su correspondiente vector propio o autovector.

Formulación del Problema.

Definición:

Dada una matriz $A \in \mathbb{C}^{n \times n}$, calcular un valor $\lambda \in \mathbb{C}$ y un vector x no nulo tales que

$$Ax = \lambda x$$

- A λ se le denomina autovalor o valor propio y a x su correspondiente vector propio o autovector.
- Para que exista una solución distinta de la trivial, x=0, el valor propio λ deberá ser raíz del polinomio de grado n, polinomio característico:

$$\det(A - \lambda I) = 0$$

Definición:

Se denomina espectro de la matriz A , $\sigma(A),$ al conjunto de los valores propios de A. Es decir,

$$\sigma(A) = \{\lambda \in \mathbb{C} : \det(A - \lambda I) = 0\}.$$

Definición:

Se denomina espectro de la matriz A , $\sigma(A)$, al conjunto de los valores propios de A. Es decir,

$$\sigma(A) = \{ \lambda \in \mathbb{C} : \det(A - \lambda I) = 0 \}.$$

Definición:

Se denomina radio espectral, $\rho(A)$, de una matriz A de orden n, al valor máximo de los módulos de los valores propios de la matriz:

$$\rho(A) = \max_{\lambda_i \in \sigma(A)} |\lambda_i|$$

Definición:

Se denomina espectro de la matriz A , $\sigma(A)$, al conjunto de los valores propios de A. Es decir,

$$\sigma(A) = \{\lambda \in \mathbb{C} : \det(A - \lambda I) = 0\}.$$

Definición:

Se denomina radio espectral, $\rho(A)$, de una matriz A de orden n, al valor máximo de los módulos de los valores propios de la matriz:

$$\rho(A) = \max_{\lambda_i \in \sigma(A)} |\lambda_i|$$

• El radio espectral de una matriz es el radio del menor círculo del plano complejo centrado en el origen que contiene a todos los valores propios de la matriz.

• $A y A^t$ poseen los mismos autovalores.

- $A y A^t$ poseen los mismos autovalores.
- $A = A^t$ implica que todos sus autovalores son reales.

- $A y A^t$ poseen los mismos autovalores.
- $A = A^t$ implica que todos sus autovalores son reales.
- A es inversible si y sólo si $\lambda \neq 0, \forall \lambda$ autovalor de A.

- $A y A^t$ poseen los mismos autovalores.
- $A = A^t$ implica que todos sus autovalores son reales.
- A es inversible si y sólo si $\lambda \neq 0, \forall \lambda$ autovalor de A.
- A inversible y λ autovalor de A entonces $1/\lambda$ es autovalor de A^{-1} .

- $A y A^t$ poseen los mismos autovalores.
- $A = A^t$ implica que todos sus autovalores son reales.
- A es inversible si y sólo si $\lambda \neq 0, \forall \lambda$ autovalor de A.
- A inversible y λ autovalor de A entonces $1/\lambda$ es autovalor de A^{-1} .
- $tr(A) = \sum \lambda_i$, $det(A) = \prod \lambda_i$

• Si no se necesita calcular exactamente los valores propios, sino saber, en cierta medida, dónde se encuentran en el plano complejo, existen varias formas de hacerlo.

- Si no se necesita calcular exactamente los valores propios, sino saber, en cierta medida, dónde se encuentran en el plano complejo, existen varias formas de hacerlo.
- La más simple surge de la relación

$$|\lambda| \le ||A||$$

para cualquier norma matricial inducida por una norma vectorial.

- Si no se necesita calcular exactamente los valores propios, sino saber, en cierta medida, dónde se encuentran en el plano complejo, existen varias formas de hacerlo.
- La más simple surge de la relación

$$|\lambda| \le ||A||$$

para cualquier norma matricial inducida por una norma vectorial.

• Los valores propios de una matriz se localizan en el plano complejo, dentro del círculo centrado en el origen de radio $\|A\|$.

Teorema: Círculos de Gershgorin

Sea $A \in \mathbb{C}^{n \times n}$ y definiendo los círculos de Gershgorin como los conjuntos

$$R_{i} = \left\{ z \in \mathbb{C}/|z - a_{ii}| \le \sum_{\substack{j=1\\j \ne i}}^{n} |a_{ij}| \right\}$$

entonces el espectro de A es subconjunto de la unión de los círculos, esto es:

$$\sigma(A) \subseteq \bigcup_{i=1}^{n} R_i = S_R$$

• Escribiendo A = D + P, donde D es diagonal y están los elementos de la diagonal de A, por lo tanto $p_{ii} = 0 \forall i$.

- Escribiendo A = D + P, donde D es diagonal y están los elementos de la diagonal de A, por lo tanto $p_{ii} = 0 \forall i$.
- Considerando $\lambda \in \sigma(A)$, $\lambda \neq a_{ii}$ y definiendo la matriz $B_{\lambda} = A \lambda I = (D \lambda I) + P$

- Escribiendo A = D + P, donde D es diagonal y están los elementos de la diagonal de A, por lo tanto $p_{ii} = 0 \forall i$.
- Considerando $\lambda \in \sigma(A)$, $\lambda \neq a_{ii}$ y definiendo la matriz $B_{\lambda} = A \lambda I = (D \lambda I) + P$
- Dado que B es singular, por lo tanto existe un vector no nulo x tal que $B_{\lambda}x = 0$, por lo tanto $((D \lambda I) + P)x = 0$, luego $x = -(D \lambda I)^{-1}Px$ aplicando $\|\cdot\|_{\infty}$ a ambos de la igualdad

$$||x||_{\infty} \le ||(D - \lambda I)^{-1}||_{\infty} ||P||_{\infty} ||x||_{\infty}$$

$$1 \le \|(D - \lambda I)^{-1}\|_{\infty} \|P\|_{\infty} = \sum_{\substack{j=1\\j \ne k}}^{n} \frac{|p_{kj}|}{|a_{kk} - \lambda|} = \sum_{\substack{j=1\\j \ne k}}^{n} \frac{|a_{kj}|}{|a_{kk} - \lambda|}$$

es decir λ satisface la condición de pertenencia al círculo R_k . Por lo tanto si se unen todos los círculos con seguridad los autovalores estarán dentro del conjunto resultante.

Teorema:

A y A^t tienen el mismo espectro (a los circulos de A^t los denotaremos por C_i luego $\bigcup_{i=1}^n C_i = S_C$).

Teorema:

A y A^t tienen el mismo espectro (a los circulos de A^t los denotaremos por C_i luego $\bigcup_{i=1}^n C_i = S_C$).

Teorema:

$$\forall \lambda \in \sigma(A) \to \lambda \in S_R \cap S_C$$

Ejemplo:

• Dada la matriz
$$A = \frac{1}{16} \begin{vmatrix} -8 & -2 & 4 \\ -1 & 6 & 2 \\ 2 & 2 & -10 \end{vmatrix}$$

• Tenemos que $r_1 = 3/8$, $r_2 = 3/16$, $r_3 = 1/4$. Los discos son:

$$R_1 = \{z \in \mathbb{C}/|z + 1/2| \le 3/8\}, \Rightarrow -7/8 \le z \le -1/4$$

$$R_2 = \{z \in \mathbb{C}/|z - 3/8| \le 3/16\}, \Rightarrow 3/16 \le z \le 9/16$$

$$R_3 = \{z \in \mathbb{C}/|z + 5/8| \le 1/4\}, \Rightarrow -7/8 \le z \le -3/8$$

Ejemplo:

- Dada la matriz $A = \frac{1}{16} \begin{bmatrix} -8 & -2 & 4 \\ -1 & 6 & 2 \\ 2 & 2 & -10 \end{bmatrix}$
- Note que $||A|| = (1/16) \max 14, 9, 14 = 7/8$ de modo que los valores propios de A cumplen con $|\lambda| \le 7/8$.

• Tenemos que $r_1 = 3/8$, $r_2 = 3/16$, $r_3 = 1/4$. Los discos son:

$$R_1 = \{z \in \mathbb{C}/|z + 1/2| \le 3/8\}, \Rightarrow -7/8 \le z \le -1/4$$

$$R_2 = \{z \in \mathbb{C}/|z - 3/8| \le 3/16\}, \Rightarrow 3/16 \le z \le 9/16$$

$$R_3 = \{z \in \mathbb{C}/|z + 5/8| \le 1/4\}, \Rightarrow -7/8 \le z \le -3/8$$

Ejemplo:

- Dada la matriz $A = \frac{1}{16} \begin{bmatrix} -8 & -2 & 4 \\ -1 & 6 & 2 \\ 2 & 2 & -10 \end{bmatrix}$
- Note que $||A|| = (1/16) \max 14, 9, 14 = 7/8$ de modo que los valores propios de A cumplen con $|\lambda| \le 7/8$.
- Se Puede mejorar este estimado con el Teorema de Gershgorin.
- Tenemos que $r_1 = 3/8$, $r_2 = 3/16$, $r_3 = 1/4$. Los discos son:

$$R_1 = \{z \in \mathbb{C}/|z + 1/2| \le 3/8\}, \Rightarrow -7/8 \le z \le -1/4$$

$$R_2 = \{z \in \mathbb{C}/|z - 3/8| \le 3/16\}, \Rightarrow 3/16 \le z \le 9/16$$

$$R_3 = \{z \in \mathbb{C}/|z + 5/8| \le 1/4\}, \Rightarrow -7/8 \le z \le -3/8$$

Gershgorin Circles

Figure: Círculos de Gerschgorin para la matriz A.

- La matriz A es no singular ya que el cero esta fuera de los círculos.
- Hay un autovalor en R_2 y los otros dos están en $R_1 \cup R_3$.
- Se puede hacer el mismo análisis para la matriz A^t y obtener otra familia de círculos R'_1, R'_2, R'_3 .

$$A^{t} = \frac{1}{16} \begin{bmatrix} -8 & -1 & 2\\ -2 & 6 & 2\\ 4 & 2 & -10 \end{bmatrix}$$

• Se tiene que $r'_1 = r_1$, $r'_2 = r_2$, $r'_3 = r_3$. Los discos son:

$$\begin{split} R_1' &= \{z \in \mathbb{C}/|z+1/2| \leq 3/16\}, \Rightarrow -11/16 \leq z \leq -5/16 \\ R_2' &= \{z \in \mathbb{C}/|z-3/8| \leq 1/4\}, \Rightarrow 1/8 \leq z \leq 5/8 \\ R_3' &= \{z \in \mathbb{C}/|z+5/8| \leq 3/8\}, \Rightarrow -1 \leq z \leq -1/4 \end{split}$$

Círculos de Gershgorin - A y A^t

- (a) Círculos de Gershgorin para A (b) Círculos de Gershgorin para A^t

Figure: Círculos de Gershgorin para $A ext{ y } A^t$

• Se sabe que los autovalores de A y A^t coinciden, por tanto la intersección de $(R_1 \bigcup R_2 \bigcup R_3) \bigcap (R'_1 \bigcup R'_2 \bigcup R'_3)$ nos da un refinamiento.

- Se sabe que los autovalores de A y A^t coinciden, por tanto la intersección de $(R_1 \bigcup R_2 \bigcup R_3) \bigcap (R'_1 \bigcup R'_2 \bigcup R'_3)$ nos da un refinamiento.
- Unión de círculos de A:
 - $R_1: [-7/8, -1/4]$
 - $R_2: [3/16, 9/16]$
 - $R_3:[-7/8,-3/8]$

Union: $[-7/8, -1/4] \cup [3/16, 9/16]$

- Se sabe que los autovalores de A y A^t coinciden, por tanto la intersección de $(R_1 \cup R_2 \cup R_3) \cap (R'_1 \cup R'_2 \cup R'_3)$ nos da un refinamiento.
- Unión de círculos de A:
 - $R_1: [-7/8, -1/4]$
 - $R_2: [3/16, 9/16]$
 - $R_3: [-7/8, -3/8]$

Union: $[-7/8, -1/4] \cup [3/16, 9/16]$

- Unión de círculos de A^t :
 - $R'_1:[3/16,9/16]$
 - $R'_2:[1/8,5/8]$
 - $R'_2: [3/16, 9/16]$

Union: $[-1, -1/4] \cup [1/8, 5/8]$

• Intersección de las uniones: $[-7/8, -1/4] \cup [3/16, 9/16]$.

- Intersección de las uniones: $[-7/8, -1/4] \cup [3/16, 9/16]$.
- Esto significa que todos los autovalores de A y A^t deben estar contenidos en los intervalos [-7/8, -1/4] (negativos) y [3/16, 9/16] (positivos).

- Intersección de las uniones: $[-7/8, -1/4] \cup [3/16, 9/16]$.
- Esto significa que todos los autovalores de A y A^t deben estar contenidos en los intervalos [-7/8, -1/4] (negativos) y [3/16, 9/16] (positivos).
- No hay autovalores en los intervalos [-1, -7/8) ni (9/16, 5/8].

- Intersección de las uniones: $[-7/8, -1/4] \cup [3/16, 9/16]$.
- Esto significa que todos los autovalores de A y A^t deben estar contenidos en los intervalos [-7/8, -1/4] (negativos) y [3/16, 9/16] (positivos).
- No hay autovalores en los intervalos [-1, -7/8) ni (9/16, 5/8].
- La matriz A no es simétrica , ya que los radios de los discos de A y A^t son diferentes.

- Intersección de las uniones: $[-7/8, -1/4] \cup [3/16, 9/16]$.
- Esto significa que todos los autovalores de A y A^t deben estar contenidos en los intervalos [-7/8, -1/4] (negativos) y [3/16, 9/16] (positivos).
- No hay autovalores en los intervalos [-1, -7/8) ni (9/16, 5/8].
- La matriz A no es simétrica , ya que los radios de los discos de A y A^t son diferentes.
- Todos los autovalores son reales, debido a que los discos están contenidos en la recta real.

- Intersección de las uniones: $[-7/8, -1/4] \cup [3/16, 9/16]$.
- Esto significa que todos los autovalores de A y A^t deben estar contenidos en los intervalos [-7/8, -1/4] (negativos) y [3/16, 9/16] (positivos).
- No hay autovalores en los intervalos [-1, -7/8) ni (9/16, 5/8].
- La matriz A no es simétrica , ya que los radios de los discos de A y A^t son diferentes.
- Todos los autovalores son reales, debido a que los discos están contenidos en la recta real.
- La matriz es invertible, ya que 0 no está en ningún disco de Gerschgorin.

• El objetivo de este método es hallar λ_1 autovalor de A y un autovector x asociado a λ_1 .

- El objetivo de este método es hallar λ_1 autovalor de A y un autovector x asociado a λ_1 .
- Supongamos que $A \in \mathbb{R}^{n \times n}$ posee n autovalores $\lambda_1, \lambda_2, \ldots, \lambda_n$ y n autovectores asociados $v^{(1)}, v^{(2)}, \ldots, v^{(n)}$, tales que:

$$|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$$

entonces, $|\lambda_1| > |\lambda_j| \forall j = 2, ..., n$ y $\{v^{(j)}\}$ es un conjunto de vectores linealmente independientes.

$$x = \sum_{j=1}^{n} \alpha_j v^{(j)}$$

$$x = \sum_{j=1}^{n} \alpha_j v^{(j)}$$
$$Ax = \sum_{j=1}^{n} \alpha_j A v^{(j)} = \sum_{j=1}^{n} \alpha_j \lambda_j v^{(j)}$$

$$x = \sum_{j=1}^{n} \alpha_j v^{(j)}$$

$$Ax = \sum_{j=1}^{n} \alpha_j A v^{(j)} = \sum_{j=1}^{n} \alpha_j \lambda_j v^{(j)}$$

$$A^2x = A(Ax) = \sum_{j=1}^{n} \alpha_j \lambda_j A v^{(j)} = \sum_{j=1}^{n} \alpha_j \lambda_j^2 v^{(j)}$$

$$x = \sum_{j=1}^{n} \alpha_j v^{(j)}$$

$$Ax = \sum_{j=1}^{n} \alpha_j A v^{(j)} = \sum_{j=1}^{n} \alpha_j \lambda_j v^{(j)}$$

$$A^2x = A(Ax) = \sum_{j=1}^{n} \alpha_j \lambda_j A v^{(j)} = \sum_{j=1}^{n} \alpha_j \lambda_j^2 v^{(j)}$$

$$A^kx = A^{(k-1)}(Ax) = \sum_{j=1}^{n} \alpha_j \lambda_j^k v^{(j)}$$

• Dado que

$$|\lambda_1| > |\lambda_j| \forall j = 2, \dots, n \Rightarrow \left| \frac{\lambda_j}{\lambda_1} \right| < 1 \Rightarrow \left| \frac{\lambda_j}{\lambda_1} \right|^k \xrightarrow{\forall j = 2, \dots, n} 0$$

$$\sum_{j=1}^{n} \alpha_j \lambda_j^k v^{(j)} = \lambda_1^k \sum_{j=1}^{n} \alpha_j \left| \frac{\lambda_j}{\lambda_1} \right|^k v^{(j)} \Rightarrow \lim_{k \to \infty} A^k x = \lim_{k \to \infty} \alpha_1 \lambda_1^k v^{(1)}$$

• Dado que

$$|\lambda_1| > |\lambda_j| \forall j = 2, \dots, n \Rightarrow \left| \frac{\lambda_j}{\lambda_1} \right| < 1 \Rightarrow \left| \frac{\lambda_j}{\lambda_1} \right|^k \xrightarrow{\forall j = 2, \dots, n} 0$$

$$\sum_{j=1}^{n} \alpha_j \lambda_j^k v^{(j)} = \lambda_1^k \sum_{j=1}^{n} \alpha_j \left| \frac{\lambda_j}{\lambda_1} \right|^k v^{(j)} \Rightarrow \lim_{k \to \infty} A^k x = \lim_{k \to \infty} \alpha_1 \lambda_1^k v^{(1)}$$

• Esta sucesión converge a cero si $|\lambda_1| < 1$ y diverge si $|\lambda_1| > 1$ siempre que $\alpha_1 \neq 0$.

• Dado que

$$|\lambda_1| > |\lambda_j| \forall j = 2, \dots, n \Rightarrow \left| \frac{\lambda_j}{\lambda_1} \right| < 1 \Rightarrow \left| \frac{\lambda_j}{\lambda_1} \right|^k \xrightarrow{\forall j = 2, \dots, n} 0$$

$$\sum_{j=1}^{n} \alpha_j \lambda_j^k v^{(j)} = \lambda_1^k \sum_{j=1}^{n} \alpha_j \left| \frac{\lambda_j}{\lambda_1} \right|^k v^{(j)} \Rightarrow \lim_{k \to \infty} A^k x = \lim_{k \to \infty} \alpha_1 \lambda_1^k v^{(1)}$$

- Esta sucesión converge a cero si $|\lambda_1| < 1$ y diverge si $|\lambda_1| > 1$ siempre que $\alpha_1 \neq 0$.
- De esta última expresión se obtiene la manera de escalar las potencias de $A^k x$ para que el límite sea finito y distinto de cero.

• Para escalar las potencias se inicia eligiendo un vector $x^{(0)}$ tal que $x_{p_0}^{(0)} = 1 = ||x^{(0)}||_{\infty}$.

- Para escalar las potencias se inicia eligiendo un vector $x^{(0)}$ tal que $x_{p_0}^{(0)} = 1 = ||x^{(0)}||_{\infty}$.
- Sea $y^{(1)} = Ax^{(0)} = \sum_{j=1}^{n} \alpha_j \lambda_j v^{(j)}$ y sea $\mu^{(1)} = y_{p_0}^{(1)}$, eventualmente $\mu^{(k)} \to \lambda_1$

$$\mu^{(1)} = y_{p_0}^{(1)} = \frac{y_{p_0}^{(1)}}{x_{p_0}^{(0)}}$$

$$= \frac{\alpha_1 \lambda_1 v_{p_0}^{(1)} + \sum_{j=2}^n \alpha_j \lambda_j v_{p_0}^{(j)}}{\alpha_1 v_{p_0}^{(1)} + \sum_{j=2}^n \alpha_j v_{p_0}^{(j)}} = \lambda_1 \left(\frac{\alpha_1 v_{p_0}^{(1)} + \sum_{j=2}^n \alpha_j \left| \frac{\lambda_j}{\lambda_1} \right| v_{p_0}^{(j)}}{\alpha_1 v_{p_0}^{(1)} + \sum_{j=2}^n \alpha_j v_{p_0}^{(j)}} \right)$$

• Sea p_1 el entero más pequeño tal que $|y_{p_1}^{(1)}| = ||y^{(1)}||_{\infty}$ y sea

$$x^{(1)} = \frac{y^{(1)}}{y_{p_1}^{(1)}} = \frac{Ax^{(0)}}{y_{p_1}^{(1)}} \Rightarrow ||x^{(1)}||_{\infty} = 1 = |x_{p_1}^{(1)}|$$

• Sea p_1 el entero más pequeño tal que $|y_{p_1}^{(1)}| = ||y^{(1)}||_{\infty}$ y sea

$$x^{(1)} = \frac{y^{(1)}}{y_{p_1}^{(1)}} = \frac{Ax^{(0)}}{y_{p_1}^{(1)}} \Rightarrow ||x^{(1)}||_{\infty} = 1 = |x_{p_1}^{(1)}|$$

• Se define a continación

$$y^{(2)} = Ax^{(1)} = \frac{A^2x^{(0)}}{y_{p_1}^{(1)}}$$

• Sea p_1 el entero más pequeño tal que $|y_{p_1}^{(1)}| = ||y^{(1)}||_{\infty}$ y sea

$$x^{(1)} = \frac{y^{(1)}}{y_{p_1}^{(1)}} = \frac{Ax^{(0)}}{y_{p_1}^{(1)}} \Rightarrow ||x^{(1)}||_{\infty} = 1 = |x_{p_1}^{(1)}|$$

• Se define a continación

$$y^{(2)} = Ax^{(1)} = \frac{A^2x^{(0)}}{y_{p_1}^{(1)}}$$

• Sea

$$\mu^{(2)} = y_{p_1}^{(2)} = \frac{y_{p_1}^{(2)}}{x_{p_1}^{(1)}} = \frac{\lambda_1^2 \left(\frac{\alpha_1 v_{p_1}^{(1)} + \sum_{j=2}^n \alpha_j \left| \frac{\lambda_j}{\lambda_1} \right|^2 v_{p_1}^{(j)}}{y_{p_1}^{(1)}} \right)}{\lambda_1 \left(\frac{\alpha_1 v_{p_1}^{(1)} + \sum_{j=2}^n \alpha_j \left| \frac{\lambda_j}{\lambda_1} \right| v_{p_1}^{(j)}}{y_{p_1}^{(1)}} \right)}{\lambda_1 \left(\frac{\alpha_1 v_{p_1}^{(1)} + \sum_{j=2}^n \alpha_j \left| \frac{\lambda_j}{\lambda_1} \right| v_{p_1}^{(j)}}{y_{p_1}^{(1)}} \right)}{\lambda_1 \left(\frac{\alpha_1 v_{p_1}^{(1)} + \sum_{j=2}^n \alpha_j \left| \frac{\lambda_j}{\lambda_1} \right| v_{p_1}^{(j)}}{y_{p_1}^{(1)}} \right)}$$

• Así sucesivamente. Los sucesivos vectores $x^{(k)}$, $y^{(k)}$ y los escalares $\mu^{(k)}$ siendo

$$y^{(k)} = Ax^{(k-1)}$$

$$\mu^{(k)} = y_{p_{k-1}}^{(k)} = \lambda_1 \left(\frac{\alpha_1 v_{p_{k-1}}^{(1)} + \sum_{j=2}^n \alpha_j \left| \frac{\lambda_j}{\lambda_1} \right|^k v_{p_{k-1}}^{(j)}}{\alpha_1 v_{p_{k-1}}^{(1)} + \sum_{j=2}^n \alpha_j \left| \frac{\lambda_j}{\lambda_1} \right|^{k-1} v_{p_{k-1}}^{(j)}} \right)$$

у

$$x^{(k)} = \frac{y^{(k)}}{y_k^{(k)}} = \frac{A^k x^{(0)}}{y_{p_1}^{(1)} y_{p_2}^{(2)} \cdots y_{p_k}^{(k)}}$$

donde p_k es el entero más pequeño para el cual $|y_{p_k}^{(k)}| = ||y^{(k)}||_{\infty}$.

• De esta manera, se tiene que:

$$\lim_{k \to \infty} \mu^{(k)} = \lambda_1$$
$$x^{(0)} = \alpha_1 v^{(1)} + \alpha_2 v^{(2)} + \dots + \alpha_n v^{(n)}$$

• De esta manera, se tiene que:

$$\lim_{k\to\infty}\mu^{(k)}=\lambda_1$$

$$x^{(0)} = \alpha_1 v^{(1)} + \alpha_2 v^{(2)} + \dots + \alpha_n v^{(n)}$$

• Suponiendo que $\alpha_1 \neq 0$ entonces del método de la potencia se obtiene $\mu^{(k)} \to \lambda_1$ y $x^{(k)} \to x$ autovector asociado a λ_1 .

• De esta manera, se tiene que:

$$\lim_{k \to \infty} \mu^{(k)} = \lambda_1$$

$$x^{(0)} = \alpha_1 v^{(1)} + \alpha_2 v^{(2)} + \dots + \alpha_n v^{(n)}$$

- Suponiendo que $\alpha_1 \neq 0$ entonces del método de la potencia se obtiene $\mu^{(k)} \to \lambda_1$ y $x^{(k)} \to x$ autovector asociado a λ_1 .
- La velocidad de convergencia del método depende de la magnitud del cociente $\frac{\lambda_2}{\lambda_1}$. Cuanto más cercano a 1 sea el cociente más lenta será la convergencia.

Algorithm 1: Algoritmo de Potencia.

```
input : A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^n, Número máximo de iteraciones N,
            tolerancia TOL.
output: autovalor aproximado \mu y autovector asociado x con
            ||x||_{\infty} = 1.
Hallar p \text{ con } 1 \leq p \leq n \text{ tal que } |x_p| = ||x||_{\infty}
x = \frac{\omega}{}
for k \leftarrow 1 to N do
     y \leftarrow Ax; \mu \leftarrow y_n
     Hallar p \text{ con } 1 \leq p \leq n \text{ tal que } |y_p| = ||y||_{\infty}
     if y_n = 0 then
           Salida (autovalor, autovector) = (0, x); Seleccionar nuevo x v
             reiniciar; EXIT
     err \leftarrow ||x - y/y_p||_{\infty}; x = \frac{y}{y_p}
     if err < TOL then
           Salida (\mu,x) EXIT
```

Sea la matriz
$$A = \begin{pmatrix} 4 & -1 & 1 \\ -1 & 3 & -2 \\ 1 & -2 & 3 \end{pmatrix}$$
 y el vector $x^{(0)} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

Se obtienen los siguientes resultados:

k	0	1	2	3	 14
$x^{(k)}$	$\left(\begin{array}{c}1\\0\\0\end{array}\right)$	$ \left(\begin{array}{c} 1\\ -0.25\\0.25 \end{array}\right) $	$ \left(\begin{array}{c} 1\\ -0.5\\0.5 \end{array}\right) $	$ \left(\begin{array}{c} 1\\ -0.70\\0.70 \end{array}\right) $	 $ \left(\begin{array}{c} 1\\ -0.9998\\0.9998 \end{array}\right) $
$\mu^{(k)}$	_	4	4.5	5.0	 5.9993

Parece que el valor propio dominante va a ser $\lambda=6$ y su vector propio asociado (1,-1,1).

Teorema:

Si λ es un autovalor de la matriz A entonces λ^{-1} es autovalor de A^{-1}

Teorema:

Si λ es un autovalor de la matriz A entonces λ^{-1} es autovalor de A^{-1}

Demostración:

Por ser λ un autovalor de A y sea x el autovector asociado, se cumple que

$$Ax = \lambda x \Rightarrow x = A^{-1}\lambda x \Rightarrow \lambda^{-1}x = A^{-1}x$$

por lo tanto λ^{-1} es autovalor de A^{-1} .

• Consideraremos que los autovalores de A (A matriz invertible) pueden ser ordenados de manera que se cumpla:

$$0 < |\lambda_n| < |\lambda_{n-1}| \le \dots \le |\lambda_2| \le |\lambda_1|$$

• Consideraremos que los autovalores de A (A matriz invertible) pueden ser ordenados de manera que se cumpla:

$$0 < |\lambda_n| < |\lambda_{n-1}| \le \dots \le |\lambda_2| \le |\lambda_1|$$

 Por el teorema anterior se puede verificar que también se cumplirá:

$$|\lambda_n^{-1}| > |\lambda_{n-1}^{-1}| \ge \cdots \ge |\lambda_2^{-1}| \ge |\lambda_1^{-1}| > 0$$

• Consideraremos que los autovalores de A (A matriz invertible) pueden ser ordenados de manera que se cumpla:

$$0 < |\lambda_n| < |\lambda_{n-1}| \le \dots \le |\lambda_2| \le |\lambda_1|$$

 Por el teorema anterior se puede verificar que también se cumplirá:

$$|\lambda_n^{-1}| > |\lambda_{n-1}^{-1}| \ge \dots \ge |\lambda_2^{-1}| \ge |\lambda_1^{-1}| > 0$$

• Por lo que si aplicamos el método de la potencia a A^{-1} , obtendremos el valor $\frac{1}{|\lambda_n|}$; y así obtener el valor de λ_n , el menor valor propio de A.

Consideraciones

ullet Calcular la inversa de A es muy costoso, por lo tanto en su lugar se resolverá un sistema lineal de la manera siguiente:

Consideraciones

- Calcular la inversa de A es muy costoso, por lo tanto en su lugar se resolverá un sistema lineal de la manera siguiente:
- la iteración del método de la potencia aplicado a la matriz A^{-1} tiene la forma:

$$z^{(k)} = A^{-1}q^{(k-1)}$$

Consideraciones

- Calcular la inversa de A es muy costoso, por lo tanto en su lugar se resolverá un sistema lineal de la manera siguiente:
- la iteración del método de la potencia aplicado a la matriz A^{-1} tiene la forma:

$$z^{(k)} = A^{-1}q^{(k-1)}$$

• pero esto es equivalente a resolver el sistema lineal

$$Az^{(k)} = q^{(k-1)}$$