PHYSICS

- One moving electron when comes closer to other stationary electron, then
 its kinetic energy and potential energy respectively _____ and _____.
 - (A) increases, increases
- (B) increases, decreases
- (C) decreases, increases
- (D) decreases, decreases
- 2) An inclined plane of length 5.60 m making an angle of 45° with the horizontal is placed in an uniform electric field E = 100 Vm⁻¹. A particle of mass 1 kg and charge 10⁻² C is allowed to slide down from rest position from maximum height of slope. If the co-efficient of friction is 0.1, the time taken by the particle to reach the bottom is ______.
 - (A) 1 s

(B) 1.41 s

(C) 2s

- (D) None of these
- Charges 1 μc are placed at each of the four corners of a square of side $2\sqrt{2}$ m. The potential at the point of intersection of the diagonals is $(K = 9 \times 10^9 \text{ SI unit})$
 - (A) 18 × 10³ V

(B) 1800 V

- (C) $18\sqrt{2} \times 10^3 \text{ V}$
- (D) None of these K
- A point charge q is situated at a distance r on axis from one end of a thin conducting rod of length L having a charge Q[Uniformly distributed along its length]. The magnitude of electric force between the two is _____.
 - (A) $\frac{KQq}{r^2}$

(B) $\frac{2KQ}{r(r+L)}$

(C) $\frac{\text{KQq}}{r(r-L)}$

(D) $\frac{\text{KQq}}{r(r+L)}$

(Space for Rough Work)

9×10°×10°6×10°

		("VI)2 - A 2	*/ I
4:1	20 X	(-V1)2 = 1 2 2	>*+

- 5) If alpha particle and deutron move with velocity v and 2v respectively, the ratio of their de Broglie wave length will be _____.
 - (A) 2:1

(B) 1:√2

(C) 1:1

- (D) $\sqrt{2}:1$
- 6) de Broglie wave length of atom at TK absolute temperature will be
 - (A) $\frac{h}{\sqrt{3mKT}}$

 $(B) \frac{h}{mKT}$

(C) $\frac{\sqrt{2mKT}}{h}$

- (D) $\sqrt{2mKT}$
- 7) If the wave length of light is 4000A°, then the number of waves in 1 mm length will be _____. \tilde{to}^{9} m $\lambda = 4000$
 - (A) 2500

(B) 25

(C) 250

- (D) 25000
- 8) The frequencies of X rays, γ rays and Ultra violet rays are respectively ρ , q and r then
 - (A) p > q, q > r

(B) p < q, q > r

(C) p < q, q < r

- (D) p > q, q < r
- 9) Photons having energy 1eV and 2.5 eV successively incident on a metal, having work function is 0.5 eV. The ratio of maximum speed of emitted electrons is
 - (A) 2:1

(B) 1:2

(C) 3:1

(D) 1:3

(Space for Rough Work)

W= O.BW

1 my2

2 5

10) A and B are two points on a uniform ring of radius r. The resistance of the ring is R. ∠AOB = θ as shown in the figure. The equivalent resistance between points A & B is ______.

10

(A) $\frac{R(2\pi-\theta)}{4\pi}$

(B) $\frac{R\theta}{2\pi}$

(C) $R\left(1-\frac{\theta}{2\pi}\right)$

(D) $\frac{R}{4\pi^2}(2\pi-\theta)\theta$

11) Two wires of equal length and equal diameter and having resistivities ρ_1 and ρ_2 are connected in series. The equivalent resistivity of the combination is ______.

(A)
$$\frac{\rho_1 + \rho_2}{2}$$

(B)
$$(\rho_1 + \rho_2)$$

(C)
$$\frac{\rho_1 \rho_2}{\rho_1 + \rho_2}$$

(D)
$$\sqrt{\rho_1\rho_2}$$

12) Match the following two columns.

Column I		Column II		
a)	Electrical resistance	p)	$ML^{3}T^{-3}A^{-2}$	
b)	Electrical potential	(p	ML ² T ⁻³ A ⁻²	
c)	Specific resistance	4)	ML ² T ⁻³ A ⁻¹	
d)	Specific conductance	s)	None of these	

- (A) a-q, b-r, c-p, d-s
- (B) a-q, b-s, c-r, d-p
- (C) a-p, b-q, c-s, d-r
- (D) a-p, b-r, c-q, d-s

- 13) Angle of minimum deviation for a prism of refractive index 1.5 is equal to the angle of prism of given prism. Then the angle of prism is (sin 48°36' = 0.75)
 - (A) 80°

(B) 41°24'

(C) 60°

- (D) 82°48'
- 14) A ray of light passes from a medium A having refractive index 1.6 to the medium B having refractive index 1.5. The value of critical angle of medium A is ______.
 - (A) $\sin^{-1}\sqrt{\frac{16}{15}}$

(B) $\sin^{-1}\left(\frac{16}{15}\right)$

(C) $\sin^{-1}\left(\frac{1}{2}\right)$

(D) $\sin^{-1} \left(\frac{15}{16} \right)$

8 =

19) A current of $\frac{25}{\pi}$ Hz frequency is passing through an A.C. circuit having series combination of $R = 100 \Omega$ and L = 2 H, the phase difference between voltage and current is _____

(A) 60°

(B) 90°

(C) 30°

(D) 45°

20) In A.C. circuit having only capacitor, the current

(A) leads the voltage by $\frac{\pi}{2}$ in phase

(B) lags behind the voltage by $\frac{\pi}{2}$ in phase

(2) leads the voltage by π in phase

(D) lags behind the voltage by π in phase

21) An alternating voltage given as $V = 100\sqrt{2} \sin 100t$ volt is applied to a capacitor of 1 μ F. The current reading of the ammeter will be equal to

(A) 20

C=141

(B) 10

(C) 40

V=

(D) 80

22) The distance of the closest approach of an alpha particle fired at a nucleus with kinetic energy K is r_0 . The distance of the closest approach when the α particle is fired at the same nucleus with kinetic energy 2K will be

(A) $4r_0$

(B) $\frac{r_0}{2}$

 $(e) \frac{r_0}{4}$

(D) $2r_0$

(Space for Rough Work)

12m2.

10

- Number of spectral line in hydrogen atom is
 - (A) 8

(B) 6

(C) 15

- (D) a
- A radioactive element X disintegrates successively as under

$$X \xrightarrow{\beta^{-}} X_{1} \xrightarrow{i\beta 0} X_{2} \xrightarrow{\beta^{-}} X_{3} \xrightarrow{\alpha} X_{4}$$

If atomic number and atomic mass number of X are respectively 72 and 180, what are the corresponding values for X₄?

(A) 69, 172

(B) 69, 176

(C) 71, 176

- Ø 70, 172
- The energy released by the fission of one uranium atom is 200 MeV. The number of fission per second required to produce 6.4 W power is
 - (A) 2×10^{11}

(C) 10¹⁰

- (D) 2×10^{10}
- If by successive disintegration of 92 U238, the final product obtained is 26) $_{82}$ Pb²⁰⁶, then how many number of α and β particles are emitted?
 - (A) 6 and 8

(B) 8 and 6

(C) 12 and 6

(D) 8 and 12

(Space for Rough Work)

GUJCET-E-2015 BOOKLET

[9]

- 27) A change of 0.04 V takes place between the base and the emitter when an input signal is connected to the CE transistor amplifier. As a result , 20 μA change take place in the base current and a change of 2 mA takes place in the collector current. Find the input resistance and A.C. current gain.
 - (A) 1kΩ, 100

(B) 2kΩ, 100

- (C) 2kΩ, 200
- (D) 1kΩ, 200
- 28) A plane polarized light is incident normally on a tourmaline plate. Its 15 vectors make an angle of 60° with the optic axis of the plate. Find the percentage difference between initial and final intensities.
 - (A) 50%

(B) 25%

(C) 75%

- (D) 90%
- 29) Light of wave length \(\lambda \) is incident on slit of width d. The resulting diffraction pattern is observed on a screen placed at distance D. The linear width of central maximum is equal to width of the slit, then D = _____
 - (A) $\frac{2\lambda^2}{d}$

(B) $\frac{d^2}{2\lambda}$

(C) $\frac{d}{\lambda}$

(85) $\frac{27}{d}$

30)	In a	N-P-N transistor a onnected to a batter	bout 10^{10} electry. Then $I_E = $	ons ente		r in 2μs	, when it_
	(A)	400	TIT'		AS .	<i>JOS</i> C h	.61
	(B)	200			Que !	0.5 4 10	6. x16
U	(E)	800			100	1/6/10	110 x16
	(D)	1600			(0)	7	5+10
31)	The The	effective length of a	n magnet is 31.4 f it is bent in the	cm and	its pole stre	ength is (0.8 Am. Am².
	(A)	1.2			~8	5.	
((B)	1.6		•		í	
٧	(C)	0.16	HILL BY				U±08
((D)	0.12		7	m=	10 (A)	0.9
32) I	Equa n the	l currents are passin e same direction. Th	g through two v	ery long	g and straigl	nt paralle	el wires
1 8	A)	attract each other			1	1	
(B)	repel each other			1	4	
(C)	lean towards each o	other				
()	D)	neither attract nor re	epel each other				
					- Network		
		(Space	ce for Rough	Work)		

A voltmeter of a very high resistance is joined in the circuit as shown in figure. The voltage shown by this voltmeter will be

G=502 V= 8 R= 3950

A galvanometer of resistance 50 Ω is connected to a battery of 8 V along with a resistance of 3950 Ω in series. A full scale deflection of 30 div is obtained in the galvanometer. In order to reduce this deflection to 15 division, the resistance in series should be

(A) 1950

(A) 5 V

7900 (B)

(C) 2000

7950

At a place on Earth, the vertical component of Earth's magnetic field in /1 times its horizontal component. The angle of dip at this place is

(A) 60°

(B) 30°

(C) 45°

(D) 0°

(Space for Rough Work)

Jano - Ja

	gate	NOT	of the second	(B)	OR		
	25-10			(D)	NAND		
	(C)	AND		(طال	MAIND		
37)	And	optical fiber car	offer a band v	width of			
,,,	(A)	100 GHz		(B)	100 MHz		
	(C)	750 MHz	* ·	(D)	250 MHz		
38)	To to	ransmit a signal km	Xx108	uency, th	e minimum len	gth of antenna	is
	(A)	25	BXIDS	(B)	20	4	
0.	(C)	50		(D)	75		
39)	pote	ntial of 10 Vol	t. Assuming the	e drop to	simultaneously be spherical, it	f all the charg	ed
39)	pote	ntial of 10 Vol	t. Assuming the	e drop to	simultaneously be spherical, it e drop, then its	f all the charg	ec
39)	pote	ntial of 10 Volumes are made to come Volt.	t. Assuming the	e drop to	be spherical, it	f all the charg	ec
39)	drop	ntial of 10 Volumes are made to come Volt.	t. Assuming the	e drop to one larg	be spherical, it e drop, then its	f all the charg	ed
39)	(A) (C)	ntial of 10 Volumential of 10	t. Assuming the combine to form	(B) (D)	be spherical, it e drop, then its	f all the charg potential will	be
40)	(A) (C) Whe	ntial of 10 Volus are made to come Volt. 40 160 en 10 ¹⁹ electron	t. Assuming the combine to form	(B) (D)	be spherical, in the drop, then its 90	f all the charg potential will	be
40)	(A) (C) Whe	ntial of 10 Volumes are made to come Volt. 40 160 en 10 ¹⁹ electronness, the charge	t. Assuming the combine to form	(B) (rom a no (B)	be spherical, in the drop, then its 90 10 eutral metal pla	f all the charg potential will	be

CHEMISTRY

- 41) Which method is used to get very pure germanium used in semiconductor?
 - (A) vapour phase refining
 - (B) electrolysis
 - (C) liquation
 - (D) zone refining
- 42) Which product will be obtained in the following reaction?

Reaction: $P_{4_{(s)}} + 3NaOH_{(aq)} + 3H_2O_{(l)} \rightarrow \mathbb{Q}^{PH_3}$ +3NaOH₂ PO2

$$PH_{3_{(g)}} + 3NaH_2PO_{2_{(ng)}} \times (B) PH_{3_{(g)}} + 3Na_2HPO_{2_{(ng)}} \times$$

(C)
$$2PH_{3_{(g)}} + 3Na_2HPO_{2_{(uq)}}$$
 (D) $2PH_{3_{(g)}} + 3NaH_2PO_{2_{(uq)}}$

- The molecular formulae for phosgene and tear gas are ____ and respectively.

 - (A) COCl₂ and CCl₂NO₂ × (B) SOCl₂ and CCl₂NO₂ ×
 - (C) COCl₂ and CCl₃NO₂ (D) SOCl₂ and CCl₃NO₂
- 44) Which of the following mixture is called Aquaregia?
 - (A) Three parts of dil. HCl and 1 part of conc. HNO₃
 - (B) Two parts of conc. HCl and two parts of conc. HNO3
 - Three parts of conc. HCl and 1 part of dil. HNO₃
 - Three parts of conc. HCl and 1 part of conc. HNO₃

(B) Benzyl chloride (C) 1 - bromo benzene (D) 3 - chloro cyclo hex-1-ene 46) 50% of the reagent is used for dehydrohalogenation of 6.45 gm CH ₃ CH ₂ Cl. What will be the weight of the main product obtained? [At. mass of H, C and Cl are 1, 12 & 35.5 gm/mole⁻¹ respectively] (A) 1.4 gm (B) 0.7 gm (C) 2.8 gm (D) 5.6 gm 47) Name the following reaction CH ₃ CH ₂ Cl + NaI acceone CH ₃ CH ₂ I + NaCl (A) Frinkel-stein reaction (B) Swartz reaction (C) Wurtz reaction (C) Wurtz reaction (C) Wurtz reaction (D) Hell-Volhard Zelinsky reaction 48) Which reagent is used for bromination of methyl phenyl ether? (A) Br ₂ / CH ₃ COOH (B) Br ₂ / Red P (C) Br ₂ / FeBr ₃ (D) HBr / Δ	45)	Which	ch of the following is allylic halic (1 - bromo ethyl) benzene	de? H ^X	
 (D) 3 - chloro cyclo hex-1-ene 46) 50% of the reagent is used for dehydrohalogenation of 6.45 gm CH₃CH₂Cl. What will be the weight of the main product obtained? [At. mass of H, C and Cl are 1, 12 & 35.5 gm/mole⁻¹ respectively] (A) 1.4 gm (B) 0.7 gm (C) 2.8 gm (D) 5.6 gm 47) Name the following reaction CH₃CH₂Cl + NaI → acetone → CH₃CH₂I + NaCl (A) Frinkel-stein reaction (B) Swartz reaction (C) Wurtz reaction ✓ (D) Hell-Volhard Zelinsky reaction 48) Which reagent is used for bromination of methyl phenyl ether? (A) Br₂/CH₃COOH (B) Br₂/Red P (C) Br₂/FeBr₃ (D) HBr / Δ 		(B)	Benzyl chloride		
 46) 50% of the reagent is used for dehydrohalogenation of 6.45 gm CH₃CH₂Cl. What will be the weight of the main product obtained? [At. mass of H, C and Cl are 1, 12 & 35.5 gm/mole⁻¹ respectively] (A) 1.4 gm (B) 0.7 gm (C) 2.8 gm (D) 5.6 gm 47) Name the following reaction CH₃CH₂Cl+NaI acetone → CH₃CH₂I+NaCl (A) Frinkel-stein reaction (B) Swartz reaction (C) Wurtz reaction → (D) Hell-Volhard Zelinsky reaction 48) Which reagent is used for bromination of methyl phenyl ether? (A) Br₂ / CH₃COOH (B) Br₂ / Red P (C) Br₂ / FeBr₃ (D) HBr / Δ 		(C)			
 What will be the weight of the main product contineed. [At. mass of H, C and Cl are 1, 12 & 35.5 gm/mole⁻¹ respectively] (A) 1.4 gm (B) 0.7 gm (C) 2.8 gm (D) 5.6 gm 47) Name the following reaction CH₃CH₂Cl+NaI acetone → CH₃CH₂I+NaCl (A) Frinkel-stein reaction (B) Swartz reaction (C) Wurtz reaction → (D) Hell-Volhard Zelinsky reaction 48) Which reagent is used for bromination of methyl phenyl ether? (A) Br₂/CH₃COOH (B) Br₂/Red P (C) Br₂/FeBr₃ (D) HBr/Δ 		(D)	3 - chloro cyclo hex-1-ene		
[At. mass of H, C and Cl are 1, 12 & 35.5 gm/mole ⁻¹ respectively] (A) 1.4 gm (B) 0.7 gm (C) 2.8 gm (D) 5.6 gm 47) Name the following reaction CH ₃ CH ₂ Cl+NaI	46)	Wh	at will be the weight of the main	produ	ct obtained.
 (A) 1.4 gm (B) 0.7 gm (C) 2.8 gm (D) 5.6 gm 47) Name the following reaction CH ₃ CH ₂ Cl+NaIacctone		ſAt.	mass of H, C and Cl are 1, 12 &	35.5	gm/mole-1 respectively]
 (C) 2.8 gm (D) 5.6 gm 47) Name the following reaction CH₃CH₂CI+NaIacctone CH₃CH₂I+NaCI (A) Frinkel-stein reaction (B) Swartz reaction (C) Wurtz reaction ≠ (D) Hell-Volhard Zelinsky reaction 48) Which reagent is used for bromination of methyl phenyl ether? (A) Br₂/CH₃COOH (B) Br₂/Red P (C) Br₂/FeBr₃ (D) HBr / Δ 				(B)	0.7 gm
 (A) Frinkel-stein reaction (B) Swartz reaction (C) Wurtz reaction ≠ (D) Hell-Volhard Zelinsky reaction 48) Which reagent is used for bromination of methyl phenyl ether? (A) Br₂ / CH₃COOH (B) Br₂ / Red P (C) Br₂ / FeBr₃ (D) HBr / Δ 		10000000	A Distriction	(D)	5.6 gm
 (A) Frinkel-stein reaction (B) Swartz reaction (C) Wurtz reaction ≠ (D) Hell-Volhard Zelinsky reaction 48) Which reagent is used for bromination of methyl phenyl ether? (A) Br₂ / CH₃COOH (B) Br₂ / Red P (C) Br₂ / FeBr₃ (D) HBr / Δ 					ALL acctone CH CH I + NaCl
 (B) Swartz reaction (C) Wurtz reaction ≠ (D) Hell-Volhard Zelinsky reaction 48) Which reagent is used for bromination of methyl phenyl ether? (A) Br₂ / CH₃COOH (B) Br₂ / Red P (C) Br₂ / FeBr₃ (D) HBr / Δ 	47)	Naı	me the following reaction CH ₃ CH	1 ₂ C1+1	Nat Cli ₃ Cli ₂ 2 + 2 lines
 (C) Wurtz reaction (D) Hell-Volhard Zelinsky reaction 48) Which reagent is used for bromination of methyl phenyl ether? (A) Br₂ / CH₃COOH (B) Br₂ / Red P (C) Br₂ / FeBr₃ (D) HBr / Δ 		(A)	Frinkel-stein reaction		
 (D) Hell-Volhard Zelinsky reaction 48) Which reagent is used for bromination of methyl phenyl ether? (A) Br₂ / CH₃COOH (B) Br₂ / Red P (C) Br₂ / FeBr₃ (D) HBr / Δ 		(B)	Swartz reaction		
 Which reagent is used for bromination of methyl phenyl ether? (A) Br₂/CH₃COOH (B) Br₂/Red P (C) Br₂/FeBr₃ (D) HBr / Δ 		(C)			
(A) Br_2/CH_3COOH (B) $Br_2/RedP$ (C) $Br_2/FeBr_3$ (D) HBr/Δ		(D)) Hell-Volhard Zelinsky reaction	on	
(A) Br_2/CH_3COOH (B) $Br_2/RedP$ (C) $Br_2/FeBr_3$ (D) HBr/Δ	48	w	hich reagent is used for brominat	tion of	methyl phenyl ether?
(B) $Br_2/Red P$ (C) $Br_2/FeBr_3$ (D) HBr/Δ	40,	550.00			
(C) $Br_2/FeBr_3$ (D) HBr/Δ		0.000			
(D) HBr / Δ		3,00	The same of the sa		
		Œ			
		Je			

- 49) Which of the following acid does not have -COOH group?
 - (A) Picric acid

(B) Ethanoic acid

(C) Benzoic acid

- (D) Salicylic acid ~
- Which of the following statement is not correct? 50)
 - (A) Phenol is neutralised by sodium carbonate
 - (B) Phenol is used to prepare analgesic drugs
 - (C) Solubility of phenol in water is more than that of chlorobenzene
 - (D) Boiling point of o-nitrophenol is lower than that of p-nitrophenol
- Total order of reaction $X + Y \rightarrow XY$ is 3. The order of reaction with 51) respect to X is 2. State the differential rate equation for the reaction.

(A)
$$-\frac{d[X]}{dt} = K[X]^0 [Y]^3$$
 (B) $-\frac{d[X]}{dt} = K[X]^3 [Y]^0$

(B)
$$-\frac{d[X]}{dt} = K[X]^3 [Y]^0$$

(C)
$$-\frac{d[X]}{dt} = K[X]^2[Y]$$
 (D) $-\frac{d[X]}{dt} = K[X][Y]^2$

(D)
$$-\frac{d[X]}{dt} = K[X][Y]^2$$

- 52) $X \xrightarrow{\text{Step-II}} Y \xrightarrow{\text{Step-II}} Z$ is a complex reaction. Total order of reaction is 2 and Step - II is slow step. What is molecularity of Step-II?
 - (A) 2

(C) 3

(D) 4

53) Reaction $3ClO^- \rightarrow ClO_3^- + 2Cl^-$ occurs in following two steps.

- (i) $ClO^- + ClO^- \xrightarrow{K_1} ClO_2^- + Cl^- (Slow step)$
- (ii) $ClO_2^- + ClO^- \xrightarrow{K_2} ClO_3^- + Cl^-$ (Fast step)

then the rate of given reaction = _____.

(A) K₁[ClO⁻]

- (B) K₁ [ClO]²
- (C) $K_2[ClO_2^-][ClO^-]$
- (D) K₂[ClO⁻]³

54) At given temperature and pressure adsorption of which gas of the following will take place the most?

(A) Di oxygen Oz

- (B) Di hydrogen H2
- (C) Ammonia NH3
- (D) Di nitrogen N2

55) Which type of colloid is the dissolution of sulphur (S₈)?

(A) Micelle

- (B) Associated colloid
- (C) Multimolecular colloid
- (D) Macromolecular colloid

56) For Adsorption phenomenon,

- (A) $\Delta H = -ve$, $\Delta S = +ve$
- (B) $\Delta H = +ve$, $\Delta S = -ve$
- $\Delta H = -ve, \Delta S = -ve$
- (D) $\Delta H = +ve$, $\Delta S = +ve$

- 57) Which of the following statement is incorrect for KMnO₄?
 - (A) It is used as antiseptic.
 - (B) It is an oxidising agent.
 - (C) It is used as bleaching agent in textile industries.
 - (D) It is dark purple coloured amorphous substance.
- Which of the following ion has the maximum theoretical magnetic moment?
 - (A) Cr3+

(498) Fe³⁺

(C) Ti3+

- 59) Which of the following oxide has the maximum basicity?
 - (A) Pr₂O₃

(B) La,O,

(C) Sm₂O₃

- (D) Gd₂O₃
- Which of the following spectrochemical series is true? 60)
 - (A) $SCN^- < F^- < NH_3 < en < CO$
 - (B) $SCN^- < NH_3 < F^- < en < CO^-$
 - (C) $SCN^- < F^- < en < NH_3 < CO$
 - (D) $SCN^- < F^- < en < CO < NH_3$

61)	Whic	Which of the following complex is paramagnetic?							
	(A)	[Co(NH ₃) ₆] ³⁺	(B)	[Ni (CO) ₄]					
	(C)	[Ni (CN) ₄] ²⁻	(D)	[NiCl ₄] ²⁻					
62)	Both of N	I [Ni (CO) ₄] and [Ni(CN) ₄] ²⁻ i in these complexes are	are diamag	netic. The types of hybridisation respectively.					
	(A)	sp ³ , dsp ²	(B)	sp ³ , sp ³					
	(C)	dsp ² , sp ³	(D)	dsp², dsp² ✓					
63)		ch of the following order o							
	(A)	CH ₃ ·CH ₂ ·CH.COOH > CH	I₃·ĊH·CH₂·	COOH > CH ₂ ·CH ₂ ·CH ₂ ·COOH					
	(B) (C)	Cl Cl ₃ ·C·COOH > Cl ₂ ·CH·CO H·COOH > CH ₃ COOH >	 Cl C ₆ H ₅ COO	Cl CH₂·COOH H					
	(D)	CH ₃ COOH > CH ₃ ·CH ₂ ·C							
		DI CHES							
64)	. Wh	at is the formula of Acrolei	n?						
	(A)	$CH_2 = CH - CN$							
	(B)	$CH_2 = CH - CHO$							
	(C)	$CH_2 = CH - COOH$							
	(D)	$CH_2 = CH - CONH_2$							
				NAME OF TAXABLE PARTY OF TAXABLE PARTY.					

65)	What is IU	JPAC name for isoph	thalic acid?	
		zene - 1, 2 dicarboxyl		(LEARO) (5)
	7	zene - 1, 3 dicarboxyl		
		zene - 1, 4 dicarboxyl		
		zene - 1, 5 dicarboxyl		
66)	What is th	ne name for red azo d	ye?	
		napthyl azo benzene		
	(B) p-h	nydroxy azo benzene		The second second section (Con-
	(C) p - a	amino azo benzene		
	(D) p-1	N, N dimethyl amino	azo benzene	
67)	Which of	the following is not	formed by Sa	andmayer reaction?
	(A) C ₆ H	LI HOODING HOL	(B)	C ₆ H ₅ Cl
	(C) C ₆ H	I_Br	(D)	C ₆ H ₅ CN
	0		nindox	
68)	For whic	h vitamin liver is not	the source?	
	(A) Vita	amin - B ₂	(B)	Vitamin - B ₁
	(C) Vita	amin - B ₁₂	(D)	Vitamin - H

69)		which of the following comed by $C_1 - O - C_4$ chain.	pound, all th	ne monosaccharide units are no
	(A)	Lactose	(B)	Maltose
	(C)	Cellulose	JD)	Amylopectin
70)		ich of the following pomerisation reaction?	olymer is f	formed by cationic addition
	(A)	Poly styrene	(B)	Butyl rubber
	(C)	Teflon	(D)	PVC
71)	Whi			pigment?
	(A)	Neoprene	(B)	Buna - S
	(C)	Teflon	(D)	Orlon
(2)	Тор			anism, which substance is used?
	(A)	Arneto	(B)	Aspartame
,	(C)	Salt of sorbic acid	(D)	Tetrazine

	JA)	Metal deficiency defect						
	(B)	Metal excess defect						
	(C)	Displacement defect						
	(D)	Impurity defect						
<i>J</i> 74)	Wh	ich of the following substance p	ossess	antiferromagnetic property?				
2011	(A)	CrO ₂	(B)	Fe ₃ O ₄				
	(C)	H ₂ O	(D)	MnO				
75)	cons wha	boiling points for aqueous solustant temperature. If 3 gm of until tis the weight of sucrose dissolute a - 60 gm/mole, sucrose = 342 gm/m	rea is o					
	(A)	17.1 gram	(B)	3.0 gram				
	(C)	6.0 gram	(D)	34.2 gram				
76)	Which option is inconsistant for Raoult's law?							
	(A)	The change in heat of dilution	for sol	ution = 0				
	(B)	Volume of liquid solvent + v solution.	olume	of liquid solute = volume of				
_	(e)	Solute does not undergo associ	ation in	n solution				
	(D)	Solute undergoes dissociation i	n solut	ion				

73) Which of the following defect is seen in FeO?

		· (Space	e for Rough V	Vork)		
	(C)	29.25 gm	(D)	5.85 gm		
	(A)	117 gm	(B)	58.5 gm		
80)	Alur is pa	electrolytic cells co minium chloride are co assed through them, w m of Aluminium is ob	nnected in series. That will be the v	f same amount of electric designs of Nickel obtains	ctric current ained when	
,	(G)	B > C > A	(D)	C > A > B		
	100.55	A > B > C		C > B > A		
79)		value of E_{red}^{o} for meta respectively. State that.	e correct order fo	or their ability to act	t and -0.46	loure cosil
(/			A B	c .	
	(Ø)	the colour of red or	blue litmus does	not change		
	(C)	remains colourless v	with phenolphtha	lein		
	(B)	turns red litmus into	blue			
	(A)	turns blue litmus int	o red			
78)		resulting solution ob cous solution of NaCl		of electrolysis of co	oncentrated	
	(D)	Osmotic pressure	+			
	(C)	Depression of freez	ing point			
	(B)	Lowering of vapour	pressure +			
1,	(A)	Elevation in boiling	point			
77)		ich colligative propert ne substances like pro			cular weight	

BIOLOGY

	l) In w	hich field application of bio	technology	occurs?
	(A)	Bio-medicine	• ***	
	(B)	Agriculture		
	(C)	Environmental field-	21	
	(D)	All of the above		
82	2)	shows anti-allergic and	anti-inflam	nmatory effect.
	JAJ	Glucocorticoids		
	(B)	Mineralocorticoids		*
	(C)	Sexcorticoids *		
	(D)	Noradrenaline		
83	3) Duri	ing the process of decomposi vert into inorganic ions and	tion in whi	ch stage complex organic matter ngi?
	(A)	Mineralization	(B)	Catabolism
	(C)	Fragmentation	(D)	All of the above
84	4) How	much amount of volume o	f air is in l	ungs FRC?
/	(A)	2100 ml to 2500 ml <	(B)	1500 ml to 1600 ml
	(C)	2500 ml to 3000 ml	(D)	1600 ml to 2100 ml
		(Space for	Dough V	Mork)

85) What indicated "A" in given figure?

- (A) Glycocidic bond
- (B) Peptide bond ⊁

(C) Disulfide bond

- (D) Hydrophobic bond ⊁
- 86) What is total diastolic time of ventricle in cardiac cycle?
 - (A) 0.40 second
- (B) 0.30 second

(C) 0.50 second

- (D) 0.10 second
- Which amino acid determines by four genetic codes?
 - (A) Proline (Pro)

(B) Leucine (Leu)

(C) Serine (Ser)

(D) Tyrosine (Tyr)

Which is the inhibitory hormone of GH?

- (A) Parathormone ⊀
- Insulin X
- Somatostatin 7
- Testosterone

Na₂HPO₄ +
$$\frac{X}{\mu_2 co_3}$$
 $\rightarrow \frac{Y}{\mu_2 \mu_3}$ + NaH₂PO₄

- (A) $X = H_2CO_3$, $Y = NaH_2CO_3$
- (B) $X = NaHCO_3$, Y = NaCl
 - (C) $X = NaHCO_3$, $Y = H_2CO_3$
- $(D)'X = H_2CO_3$, $Y = NaHCO_3$

How many molecules of ATP and NADPH are require in formation of two molecules of glucose? How many Calvin cycles are required?

- (A) 18 ATP, 12 NADPH, 6 Calvin cycles
- 36 ATP, 24 NADPH, 12 Calvin cycles
- 36-ATP, 24 NADPH, 6 Calvin cycles
 - (D) 24 ATP, 36 NADPH, 12 Calvin cycles

		(Space	for Rou	gh V	Vork)	-
	(C)	Bacillus thrunegenesis		(D)	Agro bacterium	
	(A)	Thermus aquaticus	-	(B)	E.Coli /	
94)	DNA	A polymerase enzyme is				
	(C)	Silk worms		(D)	All of the above	
1	(A)	Drossophilla		(B)	Beetles	
93)	Whi	ch is Gynandromorph ty	pe of ani	mal?		
	(C)	Scala Media		(D)	Tectorial membrane	
	(A)	Macula of Utricle		(B)	Reissner's membrane	
92)	Whi	ch part is not included in	n Coehlea	r duc	et?	
	(D)	A is wrong and R is co	orrect			
	(C)	A is correct and R is w	rong			
	(B)	A and R both are corre	ect. R is ex	cplan	ation of A	
	(A)	A and R both are corre	ect but R i	s not	explanation of A	
/	R-	DNA fingerprint is us Huntigton's disease, A			ent of inherited disorders like I Sickle cell'anemia.	
91)	A -	The DNA fingerprint i person.	s the same	e for	every cell, tissue and organ of a	

95) Match the column I, II and III

Column I

Column II

Column III

- P) Trichomoniasis
- i) Herpes Simplex
- x) Pain in lower abdomen

- Q) Syphilis
- ii) Neisseria gonorrhoeae
- y) Inflammation and itching in and around vagina

- R) Gonorrhoea
- iii) Treponema Pallidium
- z) Patchy hair loss

- S) Genital herpes
- iv) Trichomonas Vaginalis
- w) Feeling of uneasiness

$$(B)'$$
 (P - iv - y) (Q - iii - z) (R - ii - x) (S - i - w)

(C)
$$(P - iv - x) (Q - i - w) (R - ii - y) (S - iii - z)$$

- 96) What is the height and weight of twelve weeks old human embryo?
 - (A) 7.5 cm, 14 gram
- (B) 7.5 cm, 650 gram
- (C) 42 cm, 1800 gram
- (D) 32 cm, 650 gram X

Assertion A: Restriction endonuclease recognize short palindromic sequence and cut at specific sites.

Reason - R: When a restriction endonuclease acts on Palindrome, it cleaves both the strands of DNA molecule.

- (A) A and R are both correct but R is not explanation of A
- (B) A and R are both correct. R is explanation of A
 - (C) A is correct and R is wrong
 - (D) A is wrong and R is correct

	Column I	matching column I, Column II	Column III
	(Name)	(Enzyme)	(Function)
i)	Gastric Juice	P) Chymo- trypsinogen	A) Dipeptide convert into amino acid
ii)	Intestinal Juice	Q) Ptylin	 B) Proteoses convert into small polypeptides
iii)	Saliva	R) Renin	 C) Casein convert into paracasein
iv)	Pancreatic juice	S) Erepsin	D) Conversion of starch into maltose

(Space for Rough Work)

GUJCET-E-2015 BOOKLET (

99) Write the correct sequence of genetic diversity.

- (A) Population → Species → Chromosomes → Genes → Nucleotides
- Kingdom → Population → Species → Genes → Chromosome* → Nucleotides ×
- Species → Genes → Population → Chromosomes → Nucleotides ←
- √D) Kingdom → Species → Chromosomes → Genes → Nucleotides

100) Match the column I and II and select the correct option.

Column I

Column II (concentration of DDT in ppm)

- A) Zooto Plankton
- P) 0.003 ppm
- Small fishes B)
- Q) 2 ppm

C) Water

- R) 25 ppm
- Fish eating birds D)
- S) 0.04 ppm
- Big fishes E)
- T) 0.5 ppm

R

- A В
- E D

- S (A)
- P Q
- (B)
- P R
- (C)-S
- R

C

Q

- (D)

T

T

T

- 101) Which of the following disease shows the blockage of kidney tubules and causes severe back pain?
 (A) Kidney failure
 (B) Renal calculi
 (C) Uremia
 (D) Nephritis
- 102) During photorespiration which compounds are formed having 2C and 3C respectively in Peroxisome?
 - (A) Glycine, Glycerate
 - (B) Glycolate, Glycine
 - (C) Serine, Glycine
 - (D) Phosphoglycerate, Glycolate
- 103) During rainy season wooden doors and windows are not properly closed. Why?
 - (A) Diffusion
 - (B) Plasmolysis
 - (C) Osmosis
 - (D) Imbibition

		Column I		Column II		Column III
		Sickle Cell Anaemia	i)	Due to recessive PP genes	P)	Arrangement of Valine in place of Glutamic acid
	B)	Phenyl Ketonuria	ii)	Due to absence of homogentisic oxidase enzyme	Q)	Inborn error of metabolism
	C)	Alkaptonuria	iii)	Follows Mendelian Principles	R)	Urine turns black when exposed to air
		Thalassaemia		by homozygous recessive genes		The required haemoglobin is not generated in the blood
	(A)	(A - iv - P) (B - i -	Q) (C	C - ii - R) (D - iii - S)		
1	(B)	(A - ii - S) (B - iii -	R) (0	C - i - Q) (D - iv - P)	-	
•	(C)	(A - iv - P) (B - iii -	R) (C - i - S) (D - ii - R)		
	(D)	(A - iii - R) (B - i -				

105) Which of the following is the symptom of Ulcerative colitis?

- (A) Difficulty in swallowing
- (B) Watery stools containing blood and mucus
- (C) Loss of appetite
- (D) Eyes turn yellow

106) Which one is not cranial bone?

(K) Zygometic

(B) Frontal

(C) Temporal

(D) Sphenoid

107)

In this process which of the following play important role?

(A) Chlorophyll

(B) Light energy

- (C) Ca++, Mn++, Cl
- (D) All of the above

108) Which of the following is correct trend of succession in Hydroseric succession?

- (A) Phytoplankton → Reed swamp → Rooted submerged → Sedge medow
- (B)/ Phytoplankton \rightarrow Rooted submerged \rightarrow Reed swamp \rightarrow Sedge medow
- (C) Phytoplankton → Sedge medow → Reed swamp → Root submerged
- (D) Rooted submerged → Phytoplankton → Reed swamp → Sedge medow

109) On which surface of cell Donnan equilibrium occur?

(A) Tonoplast

(B) Cell wall

(C) Plasma membrane

(D) Nuclear membrane

110) Which type of gene regulate sex-determination in Spinach plant?

(A) Heterozygous genes

(B) Homozygous genes

-(C) Single gene

(D) Multiple genes

111) When the respiratory substances are more than one then which respiratory substrates are not used?

(A) Pure Protein

(B) Lipid

(C) Carbohydrate

(D) (A) and (B) both

112) State the condition of muscle contraction in following diagram.

- (A) Resting potential
- (B) Contraction
- (C) Maximally contracted
- (D) None

113) How many years are considered in one minute in Geological clock?

- (A) 1,87,500,000 years
- (B) 52000 years

(C) 3,25,000 years

(D) 1,90,000 years

Which structure is formed at the time of exchange of gamete nuclei in given animal during sexual reproduction.

- (A) Cytoplasmic filaments
- (B) Plasmodesmata

- (C) Internal tubule
- (的) Cytoplasmic bridge

115) Name the plant shows adventive embryonic cells.

- (A) Citrus and Mango
- (B) Sunflower and Mango /
- (C) Lemon and Maize
- (D) Lemon and Palms

116)	During respiration	Charles to be
------	--------------------	---------------

- (A) 2 PGAL during glycolysis and 4 Pyruvic acid are produced in Kreb's cycle
- (B) 2 PGAL during glycolysis and none of the PGAL produced in Kreb's cycle
- (C) 2 PGAL during glycolysis and 2 Pyruvic acid are produced in Kreb's cycle
 - (D) PGAL is not produced during respiratory events
- 117) Which of the following function is performed by collecting tubule of kidney?
 - (A) In the maintenance of pH and ionic balance of blood by the secretion of H⁺ and K⁺ ions X
 - (B) Maintenance of pH of blood and removal of Na+ and K+ ions
 - (C)/ Absorption of glucose and ammonia from the blood
 - (D) None of above
- 118) A Nerve fibre can become excited through touch, smell, pressure and chemical changes and there is a change in polarity.
 - R It is called active potential.
 - (A) A and R both are correct but A is not correct explanation of R.
 - (B) A and R both are correct and A is correct explanation of R.
 - (C) A is correct and R is wrong
 - (D) A is wrong and R is correct

119) Select proper option, by matching column I, II and III.

Column III Column II Column I (Activation product) (Roman Numerical (Common Name) Designation) i) Convertin (x) I P) Prothrombin g ii) Fibrin 'y) V O) Proconvertin iii) Thrombin z) II R) Fibrinogen 5 iv) Accelerin w) VII S) Proaccelerin -(A) (P-w-ii) (Q-z-iii) (R-y-iv) (S-x-i)(B) (P-z-iii) (Q-w-i) (R-y-ii) (S-x-iv) (C) (P-z-iii) (Q-w-ii) (R-x-iv) (S-y-i) x (D) (P-z-iii) (Q-w-i) (R-x-ii) (S-y-iv)

- 120) What is "A" and "B" in given diagram?
 - (A) A = RNA Primer

B = DNA Helicase

(B) A = RNA Primer

B = RNA Helicase

(C) A = Single strand Binding Protein

B = DNA Helicase

(D) A = Lagging strand

B = Movement of Helicase

