CS 267: Introduction to Data Parallelism Lecture 6

Kathy Yelick

https://sites.google.com/lbl.gov/cs267-spr2019/

Lessons from Today's Lecture

- Data parallelism is beautiful!
- Automatically mapping it to (today's) hardware is hard
- Surprising things you can do with scans
- Many parallel programming models use some data parallel features
 - GPUs
 - MPI collectives
 - Cloud MapReduce
- Useful in designing (nontrivial) parallel algorithms

"Every nontrivial parallel algorithm uses a prefix scan"

Parallel Machines and Programming

These are the natural "abstract" machine models

cost

CS267 Lecture 6 3 02/07/2019

Data Parallel Programming: Unary Operators

Unary operations applied to all elements of an array

```
A = array
B = array
f = square (any unary function, i.e., 1 argument)
B = f(A)
```


Data Parallel Programming: Binary Operators

Binary operations applied to all pairs of elements

```
A = array
B = array
C = array
- or any other binary operator
C = A - B
                         3
                                                             3
                      2
                                  2
                                        2
                                              3
                            0
       A:
                                    - applied to each pair
        B:
                                                             5
                                        -2
                                              3
```

Data Parallel Programming: Broadcast

Broadcast fill a value into all elements of an array

Useful for a*X+Y called axpy, saxpy, daxpy

Data Parallel Programming: Reduce

Reduce an array to a value with + or any associative op

- Associative so we can perform op in any order
- Useful for dot products (ddot, sdot, etc.)

$$b = X^{T}Y = \Sigma_{j} X[j] * Y[j]$$

$$b = dot(X, Y) = sum(X .* Y)$$

$$X: 1 1 1 3 3 2 1$$

$$Y: 1 2 0 2 1 3 1 intermediate products$$

$$Y: dot product$$

$$b: 19$$

$$CS267 Lecture 6$$

7

Data Parallel Programming: Scans

- Fill array with partial reductions any associative op
- Sum scan:

Max scan:

Inclusive and Exclusive Scans

Two variations of a scan, given an input vector $[x_0, x_1, ..., x_{n-1}]$:

inclusive scan includes input x_i when computing output y_i

$$[a_0, (a_0 \otimes a_1), ..., (a_0 \otimes a_1 ... \otimes a_{n-1})]$$

e.g., add_scan_inclusive([1, 0, 3, 0, 2]) \rightarrow [1, 1, 4, 4, 6]

exclusive scan does not x_i when computing output y_i

 $[I, a_0, (a_0 \odot a_1), ..., (a_0 \odot a_1 ... \odot a_{n-2})]$ where I is the identity for \odot

e.g., add_scan_exclusive([1, 0, 3, 0, 2])
$$\rightarrow$$
 [0, 1, 1, 4, 4]

You can get the inclusive version from the exclusive by applying the operation across vectors: X_©Y. You can convert both directions using vector shifts left or right.

Data Parallel Programming: Masks

Can apply operations under a "mask"

Related: Segmented scans to be presented later

Idealized Hardware and Performance Model

SIMD Systems Implemented Data Parallelism

- A large number of (usually) tiny processors.
 - A single "control processor" issues each instruction.
 - Each processor executes the same instruction.
 - Some processors may be turned off on some instructions.
- Originally machines were specialized to scientific computing, few made (CM2, Maspar)

Ideal Cost Model for Data Parallelism

- Machine
 - An unbounded number of processors (p)
 - Control overhead is free
 - Communication is free
- Shows the inherent parallelism (inherent serialization)
- Called the algorithm's "span"
- Defines a lower bound on real machines

CS267 Lecture 6

Cost on Ideal Machine (Span)

Span for unary or binary operations (pleasingly parallel)

$$C = A + B$$

- Even if arrays are not aligned, communication is "free" here
- Reductions and broadcasts

Broadcast and reduction use processor trees

Broadcast of 1 value to p processors with log n span

Reduction of n values to 1 with log n span

02/07/2019

Takes advantage of associativity in +, *, min, max, etc.

15

Can reductions go faster: No, log n lower bound and on any function of n variables!

- Given a function f (x1,...xn) of n input variables and 1 output variable, how fast can we evaluate it in parallel?
- Assume we only have binary operations, one per time step
- After 1 time step, an output can only depend on two inputs
- Use induction to show that after k time units, an output can only depend on 2^k inputs
 - After log₂ n time units, output depends on at most n inputs
- A binary tree performs such a computation

Multiplying n-by-n matrices in O(log n) time

- Use n³ processors
- Step 1: For all $(1 \le i,j,k \le n)$ P(i,j,k) = A(i,k) * B(k,j)
 - cost = 1 time unit, using n^3 processors
- Step 2:" For all $(1 \le i,j \le n)$ $C(i,j) = \sum_{k=1}^{n} P(i,j,k)$ cost = O(log n) time, using n² trees, n³ / 2 processors each

Put a processor at every point in this cube

Related to Communication-Optimal "2.5D" MatMul

"A face"

Processors execute internal sub-cubes

What about Scan (aka Parallel Prefix)?

 Recall: the scan operation takes a binary associative operator

, and an array of n elements

[
$$a_0$$
, a_1 , a_2 , ... a_{n-1}]
and produces the array
[a_0 , ($a_0 \odot a_1$), ... ($a_0 \odot a_1$... $\odot a_{n-1}$)]

Example: add scan of

```
[1, 2, 0, 4, 2, 1, 1, 3] is [1, 3, 3, 7, 9, 10, 11, 14]
```

- Other operators
 - Reals: +, *, min, max
 - · Booleans: and, or
 - Matrices: mat mul

Can we parallelize a scan?

It looks like this:

```
y(0) = 0;
for i = 1:n
y(i) = y(i-1) + x(i);
```

- Takes n-1 operations (adds) to do in serial
- The ith iteration of the loop depends completely on the (i-1)st iteration.

Impossible to parallelize, right?

A clue

Is there any value in adding, say, 5+6+7+8?

If we separately have 1+2+3+4, what can we do?

Suppose we added 1+2, 3+4, etc. pairwise -- what could we do?

Prefix sum in parallel

Algorithm: 1. Pairwise sum 2. Recursive prefix 3. Pairwise sum

CS267 Lecture 6

Parallel prefix cost

Pairwise sum

Recursive prefix

Pairwise sum (update odds)

Time for this algorithm on one processor (work)

- $T_1(n) = n/2 + n/2 + T_1(n/2) = n + T_1(n/2) = 2n 1$ Time on unbounded number of processors (span)
- $T_{\infty}(n) = 2 \log n$

Parallelism at the cost of more work (2x)!

Non-recursive view of parallel prefix scan

Real Hardware (Today)

Vectors use Data Parallelism (at smaller scale)

- Vector instructions operate on a vector of elements
 - These are specified as operations on vector registers

- Old supercomputer vector register: ~32-64 elts
 - The number of elements is larger than the amount of parallel hardware, called vector pipes or lanes, say 2-4
- The hardware performs a full vector operation in
 - #elements-per-vector-register / #pipes
 - E.g., 64 elements in register, but only 8 fp adders to use
 - "Virtualizes" the amount of hardware, which is n

26

Cray X1: Parallel Vector Architecture

Cray combined several technologies in the X1

- 12.8 Gflop/s Vector processors (MSP)
- Shared caches (unusual on earlier vector machines)
- 4 processor nodes sharing up to 64 GB of memory
- Single System Image to 4096 Processors
- Remote put/get between nodes (faster than MPI)

Expensive to design and build, market too small

Vectors use Data Parallelism (at smaller scale)

- SIMD instructions on microprocessors are vectors
 - Shorter than old vector supercomputers (e.g., 256 bits)
 - They don't virtualize the hardware (arithmetic units), so each processor version may require code rewrites
- Reductions and broadcasts are in register
 - Require inside-register data movement
- Assuming vector length (or SIMD width) are small constants → no theoretical speedup
 - But in practice this can make a big different (2-16x...)
 - And algorithms may still be useful
- Revisit these ideas with GPUs

Data parallelism on Distributed Memory

Distributed Memory

Processors execute own instruction stream

Communicate by sending messages

Message time depends on size, but not location

- Today's parallel machines
 - Powerful processors
 - Distributed memory (at scale)
 - Clusters or MPPs (Massively Parallel Processors)
- Need to map n-way parallelism to p-way
 - Attempts to do this automatically
- High Performance Fortran
 - Large effort in the 90s
 - Semi-automatic: Data layout hints were necessary
 - And it was still hard
- But still useful manually

Mapping Data Parallelism to Clusters

Binary and unary operations on MPPs

- If arrays are not "aligned" then communication required
- Reductions and broadcasts

Parallel prefix cost on p processors

Compute local prefix sums in n/p steps

Updates across processors in log p steps

Time for this algorithm in parallel:

• $T_p(n) = O(n/p + log p)$

serial time on each processor

communication and computation up and down the processor tree

The myth of log n

 The log₂ n span is not the main reason for the usefulness of parallel prefix.

• Say n = 1,000,000p (1,000,000 elements per proc)

• Cost =
$$(2000000 \text{ adds})$$
 + $(\log_2 P \text{ message passings})$

fast & embarrassingly parallel

(2000000 local adds are serial for each processor, of course)

Key to implementing data parallel algorithms on clusters, SMPs, MPPs, i.e., modern supercomputers

Data Parallelism is an Elegant Programming Model

- Strict data parallelism has serial semantics:
 - E.g., no difference from executing A+B one element at a time or in parallel
- Reductions also preserve serial semantics for truly associative operations:
 - + * min, etc. on integers and more;
 - some differences for floating point due to order of evaluation (but can be deterministic, i.e., the same result every time)
- Easy to understand and reason about
- "In spirit" in MPI collectives, CUDA, MapReduce...

Limitations:

- Some algorithms (e.g., adaptive) don't fit easily
- Non-trivial to implement on some hardware

Scans are useful for many things (partial list here)

- Reduction and broadcast in O(log n) time
- Parallel prefix (scan) in O(log n) time
- Adding two n-bit integers in O(log n) time
- Multiplying n-by-n matrices in O(log n) time
- Inverting n-by-n triangular matrices in O(log² n) time
- Inverting n-by-n dense matrices in O(log² n) time
- Evaluating arbitrary expressions in O(log n) time
- Evaluating recurrences in O(log n) time
- "2D parallel prefix", for image segmentation (Catanzaro & Keutzer)
- Sparse-Matrix-Vector-Multiply (SpMV) using Segmented Scan
- Parallel page layout in a browser (Leo Meyerovich, Ras Bodik)
- Solving n-by-n tridiagonal matrices in O(log n) time
- Traversing linked lists
- Computing minimal spanning trees
- Computing convex hulls of point sets...

Application: Stream Compression

Given an array of 0/1 flags

and an array (stream) of values

compress into

Step 1: Compute an exclusive add scan of flags:

• Step 2: "Scatter" values into result at index, masked by flags

CS267 Lecture 6

Application: Radix Sort

input

odds = last bit of each element

evens = complement of odds (last bit = 0)

epos = exclusive sum scans of evens

totalEvens = broadcast last element

indx = constant array of 0..n

oddpos = indx - epos + totalEvens

pos = if evens then esum else oddpos

Using two masked assignments

Scatter input using pos as index

Repeat with next bit to left until done

Application: Radix Sort

Sort on least significant bit

XX0 < XX1 (evens before odds)

$$Bit_2=0$$
 $Bit_2=1$

Sort on next bit X0X < X1X

$$Bit_1=0$$
 $Bit_1=1$

Sort on next bit

$$Bit_0=0$$
 $Bit_0=1$

Each step maintains the ordering unless, they have to switch based on the current bit

Application: Adding n-bit integers in O(log n) time

- Computing sum s of two n-bit binary numbers, a and b
 - a = a[n-1] a[n-2]...a[0] and b = b[n-1] b[n-2]...b[0]
 - s = a+b = s[n] s[n-1]...s[0] (use carry-bit array c = c[n-1]...c[0] c[-1])
- Formula

Example

Challenge: compute all c[i] in O(log n) time via parallel prefix

Application: Adding n-bit integers in O(log n) time

Recall carry bit calculation

```
 c[-1] = 0 \qquad ... \ rightmost \ carry \ bit \\ for \ i = 0 \ to \ n-1 \\ c[i] = ( \ (a[i] \ xor \ b[i]) \ and \ c[i-1] ) \ or \ ( \ a[i] \ and \ b[i] ) ... \ next \ carry \ bit
```

Compute all c[i] in O(log n) time via parallel prefix

```
for all (0 <= i <= n-1) p[i] = a[i] xor b[i] ... propagate bit for all (0 <= i <= n-1) g[i] = a[i] and b[i] ... generate bit  \begin{bmatrix} c[i] \end{bmatrix} = \begin{bmatrix} (p[i] \text{ and } c[i-1]) \text{ or } g[i] \end{bmatrix} = \begin{bmatrix} p[i] \\ 0 \end{bmatrix} \begin{bmatrix} g[i] \end{bmatrix} * \begin{bmatrix} c[i-1] \end{bmatrix} = M[i] * \begin{bmatrix} c[i-1] \end{bmatrix} \end{bmatrix} 
= M[i] * M[i-1] * ... M[0] * \begin{bmatrix} 0 \\ 1 \end{bmatrix} 
... evaluate M[i] * M[i-1] * ... * M[0] by parallel prefix ... 2-by-2 Boolean matrix multiplication is associative
```

Used in all computers to -- Carry look-ahead addition

This idea is used in all hardware

Even going back to Babbage

Segmented Scans

Inputs = value array, flag array, associative operator ⊕

Inclusive segmented sum scan

Flags are sometimes done with Boolean and switch points

Result

1	3	3	7	12	6	13	8
---	---	---	---	----	---	----	---

SpMV in Compressed Sparse Row (CSR) Format

SpMV: y = y + A*x

Sparse matrices: only store, do arithmetic, on nonzero entries CSR format is simplest one of many possible data structures for A

Matrix-vector multiply kernel: y(i) ← y(i) + A(i,j) × x(j)

```
for each row i
  for k=ptr[i] to ptr[i+1]-1 do
    y[i] = y[i] + val[k]*x[ind[k]]
```

SPMV (Segmented Suffix Scan)

Sparse Matrix-Vector Multiplication (SPMV)

Y = SUMS(PTR)

Segmented Operations for Sparse Matrix Computation on Vector Multiprocessors . Guy E. **Blelloch**, Michael A. **Heroux**, and Marco Zagha. CMU-CS-93-173

Application: Fibonacci via Matrix Multiply Prefix

$$\mathbf{F_{n+1}} = \mathbf{F_n} + \mathbf{F_{n-1}}$$

Can compute all F_n by matmul prefix on

then select the upper left entry

Slide source: Alan Edelman

Lexical analysis (tokenizing, scanning)

Given a language of:

- Identifiers: string of chars
- Strings: in double quotes
- Ops: +,-,*,=,<,>,<=, >=

TABLE I. A Finite-State Automaton for Recognizing Tokens

Old		Character Read												
State	A	В		Υ	z	+		*	<	>	=	"	Space	New line
N	Α	Α		Α	Α	*	*	*	<	<	*	Q	N	N
Α	Z	Z		Z	Z	*	*	*	<	<	*	Q	N	N
Z	Z	Z		Z	Z	*	*	*	<	<	*	Q	N	N
*	Α	Α		Α	Α	*	*	*	<	<	*	Q	N	N
<	Α	Α		Α	Α	*	*	*	<	<	=	Q	N	N
=	Α	Α		Α	Α	*	*	*	<	<	*	Q	N	N
Q	S	S		S	S	S	S	S	S	S	S	Ε	S	S
S	S	S		s	S	S	S	S	S	S	S	E	S	S
Ε	Ε	Ε		Ε	Ε	*	*	*	<	<	*	S	N	N

Lexical analysis

- Replace every character in the string with the array representation of its state-to-state function (column).
- Perform a parallel-prefix operation with ⊕ as the array composition. Each character becomes an array representing the state-to-state function for that prefix.
- Use initial state (row 1) to index into these arrays.

CS267 Lecture 6 47

Inverting Dense n-by-n matrices in O(log² n) time

- Lemma 1: Cayley-Hamilton Theorem
 - expression for A⁻¹ via characteristic polynomial in A
- Lemma 2: Newton's Identities
 - Triangular system of equations for coefficients of characteristic polynomial, where matrix entries = s_k
- Lemma 3: $s_k = trace(A^k) = \sum_{i=1}^{n} A^i_i$ [i,i]
- Csanky's Algorithm (1976)
 - 1) Compute the powers A², A³, ...,Aⁿ⁻¹ by parallel prefix cost = O(log² n)
 - 2) Compute the traces $s_k = \text{trace}(A^k)$ cost = O(log n)
 - 3) Solve Newton identities for coefficients of characteristic polynomial cost = O(log² n)
 - 4) Evaluate A⁻¹ using Cayley-Hamilton Theorem cost = O(log n)

Completely numerically unstable

Lessons from Data Parallel Languages

- Sequential semantics (or nearly) is very nice
 - Debugging is much easier without non-determinism
 - Correctness easier to reason about
- Cost model is independent of number of processors
 - How much inherent parallelism
- Need to "throttle" parallelism
 - n >> p can be hard to map, especially with nesting
 - Memory use is a problem

See: Blelloch "NESL Revisited", Intel Workshop 2006