Problem 41. Prove that a solvable simple group is abelian.

Problem 42. Prove that a solvable group that has a composition series is finite.

Problem 45. If $\mathbb{K} \subseteq \mathbb{F}$ is a field extension, $u, v \in \mathbb{F}$, v is algebraic over $\mathbb{K}(u)$, and v is transcendental over \mathbb{K} , then u is algebraic over $\mathbb{K}(v)$.

Problem 46. If $\mathbb{K} \subseteq \mathbb{F}$ is a field extension and $u \in \mathbb{F}$ is algebraic of odd degree over \mathbb{K} , then so is u^2 and $\mathbb{K}(u) = \mathbb{K}(u^2)$.

Problem 47. Let $\mathbb{K} \subseteq \mathbb{F}$ be a field extension. If $X^n - a \in \mathbb{K}[X]$ is irreducible and $u \in \mathbb{F}$ is a root of $X^n - a$ and m divides n, then the degree of u^m over \mathbb{K} is n/m. What is the irreducible polynomial of u^m over \mathbb{K} ?.

Problem 48. Let $\mathbb{K} \subseteq R \subseteq \mathbb{F}$ be an extension of rings with \mathbb{K}, \mathbb{F} fields. If $\mathbb{K} \subseteq \mathbb{F}$ is algebraic, prove that R is a field.

Problem 49. Let $f = X^3 - 6X^2 + 9X + 3 \in \mathbb{Q}[X]$.

- (a) Prove that f is irreducible in $\mathbb{Q}[X]$.
- (b) Let u be a real root of f. Consider the extension $\mathbb{Q} \subseteq \mathbb{Q}(u)$. Express each of the following elements in terms of the basis $\{1, u, u^2\}$ of the \mathbb{Q} -vector space $\mathbb{Q}(u)$:

$$u^4$$
, u^5 , $3u^5 - u^4 + 2$, $(u+1)^{-1}$, $(u^2 - 6u + 8)^{-1}$.

Problem 50. Let $F = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Find $[F : \mathbb{Q}]$ and a basis of \mathbb{F} over \mathbb{Q} .

Proof. To begin, $\sqrt{2}$ and $\sqrt{3}$ are zeros of monic irreducible polynomials x^2-2 and x^2-3 , respectively, over \mathbb{Q} . So $\mathbb{Q}(\sqrt{2})\cong\mathbb{Q}[x]/\langle x^2-2\rangle\cong(\operatorname{Span}_{\mathbb{Q}}\{1,x\}\subseteq\mathbb{Q}[x])\cong\mathbb{Q}[x]/\langle x^2-3\rangle\cong\mathbb{Q}(\sqrt{3})$. So then $\mathbb{Q}(\sqrt{2})=\operatorname{Span}\{1,\sqrt{2}\}$ and $\mathbb{Q}(\sqrt{3})=\operatorname{Span}\{1,\sqrt{3}\}$. Observe.

$$\sqrt{3} = a + b\sqrt{2} \text{ for some } a, b \in \mathbb{Q} \implies 3 = (a + b\sqrt{2})^2 = (a^2 + (2ab)\sqrt{2} + 2b^2) \notin \mathbb{Q},$$

$$\sqrt{2} = a + b\sqrt{3} \text{ for some } a, b \in \mathbb{Q} \implies 2 = (a + b\sqrt{3})^2 = (a^2 + (2ab)\sqrt{3} + 3b^2) \notin \mathbb{Q},$$

$$\sqrt{6} = a + b\sqrt{2} \text{ for some } a, b \in \mathbb{Q} \implies 6 = (a + b\sqrt{2})^2 = (a^2 + (2ab)\sqrt{2} + 2b^2) \notin \mathbb{Q},$$

$$\sqrt{6} = a + b\sqrt{3} \text{ for some } a, b \in \mathbb{Q} \implies 6 = (a + b\sqrt{3})^2 = (a^2 + (2ab)\sqrt{3} + 3b^2) \notin \mathbb{Q}.$$

All of the above are contradictions. So $1,\sqrt{2},\sqrt{3},\sqrt{6}$ must be linearly independent over \mathbb{Q} . Next, $\mathbb{Q}(\sqrt{2},\sqrt{3})=\operatorname{Span}_{\mathbb{Q}(\sqrt{2})}\{1,\sqrt{3}\}=\{\alpha+\beta\sqrt{3}\mid\alpha,\beta\in\mathbb{Q}(\sqrt{2})\}=\{(a+b\sqrt{2})+(c+d\sqrt{2})\sqrt{3}\mid a,b,c,d\in\mathbb{Q}\}=\{a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}\mid a,b,c,d\in\mathbb{Q}\}$. So $\{1,\sqrt{2},\sqrt{3},\sqrt{6}\}$ spans $\mathbb{Q}(\sqrt{2},\sqrt{3})$ and since it's elements are linearly independent over \mathbb{Q} , it must be a basis for $\mathbb{Q}(\sqrt{2},\sqrt{3})$ over \mathbb{Q} .

Thus,

$$\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}\$$
 is a basis for $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q} and $[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = 4$.

Problem 51. Let \mathbb{K} be a field. In the field $\mathbb{K}(X)$, let $u = X^3/(X+1)$. What is $[\mathbb{K}(X) : \mathbb{K}(u)]$?

Proof. $(\mathbb{K}(u))(x) = \left\{\frac{f(x)}{g(x)} \mid f,g \in \mathbb{K}(u)[t]\right\}$ and then $u = \frac{x^3}{x+1} \implies u(x+1) - x^3 = ux + u - x^3 = 0 \implies x^3 - ux - u = 0$. So x is a zero of the polynomial $t^3 - ut - u$ over $\mathbb{K}(u)$. This means that the degree of x over K(u), or equivalently, $[\mathbb{K}(x) : \mathbb{K}(u)]$ must divide 3. Therefore, $[\mathbb{K}(x) : \mathbb{K}(u)] \in \{1,3\}$. Suppose $[\mathbb{K}(x) : \mathbb{K}(u)] = 1$, then $\mathbb{K}(x) = \mathbb{K}(u)$ and $x = \frac{f(u)}{g(u)}$ for some $f(u), g(u) \neq 0$ coprime over $\mathbb{K}(u)$. Observe.

$$x^{3} - ux - u = \left(\frac{f(u)}{g(u)}\right)^{3} - u\left(\frac{f(u)}{g(u)}\right) - u = 0 \text{ and } f(u)^{3} - uf(u)g(u)^{2} - ug(u)^{3} = 0. \text{ So then}$$

$$f(u)^{3} = uf(u)g(u)^{2} + ug(u)^{3} = ug(u)^{2}(f(u) + g(u))$$

$$\implies 3\deg(f(u)) = 1 + 2\deg(g(u)) + \max\{\deg(f(u)), \deg(f(u))\}.$$

Let $a = \deg(f(u)), b = \deg(g(u))$ and note that both belong to \mathbb{Z}^+ . We get the following cases:

$$\begin{cases} 3a = 1 + 2b + a \\ \text{or} \end{cases} \implies \begin{cases} 2a = 1 + 2b \\ \text{or} \end{cases} \implies \begin{cases} 2(a+b) = 1 \\ \text{or} \end{cases} \implies \begin{cases} (a+b) = \frac{1}{2} \\ \text{or} \end{cases}$$

$$3a = 1 + 2b + b \end{cases} \implies \begin{cases} 3a = 1 + 2b \\ \text{or} \end{cases} \implies \begin{cases} (a+b) = \frac{1}{2} \\ \text{or} \end{cases}$$

$$3a = 1 + 2b + b \end{cases} \implies \begin{cases} (a+b) = \frac{1}{2} \\ \text{or} \end{cases}$$

Both of the above are contradictions. So $[\mathbb{K}(x) : \mathbb{K}(u)] = 3$.

Problem 52. Let $\mathbb{K} \subseteq \mathbb{F}$ be a field extension. If $u, v \in \mathbb{F}$ are algebraic over \mathbb{K} of degrees m and n, respectively, then $[\mathbb{K}(u,v):\mathbb{K}] \leq mn$. If m and n are relatively prime, then $[\mathbb{K}(u,v):\mathbb{K}] = mn$.

Proof. $\mathbb{K}(u)$ and $\mathbb{K}(v)$ have bases $\mathcal{B}_u = \{1, \dots, u^{m-1}\}$ and $\mathcal{B}_v = \{1, \dots, v^{n-1}\}$, respectively, over \mathbb{K} . Also, $\mathbb{K}(u,v) = \operatorname{Span}_{\mathbb{K}_u} \mathcal{B}_v = \{\sum_{i=0}^{n-1} a_i u^i \mid a_0, \dots, a_{n-1} \in \mathbb{K}(u)\} = \operatorname{Span}_{\mathbb{K}} \mathcal{B}_u \mathcal{B}_v$. So $\mathcal{B}_u \mathcal{B}_v$ span $\mathbb{K}(u,v)$ over \mathbb{K} . Therefore, $[\mathbb{K}(u,v):\mathbb{K}] = |\mathcal{B}_m \mathcal{B}_n| \leq |\mathcal{B}_u||\mathcal{B}_v| = mn$.

Suppose gcd(m,n) = 1. Since $\mathbb{K}(u,v) \supseteq \mathbb{K}(u) \supseteq \mathbb{K}$, by the Tower Law we have:

$$[\mathbb{K}(u,v):\mathbb{K}] = [\mathbb{K}(u,v):\mathbb{K}(u)][\mathbb{K}(u):\mathbb{K}] = [\mathbb{K}(u,v):\mathbb{K}(v)][\mathbb{K}(v):\mathbb{K}].$$

Therefore, $[\mathbb{K}(u):\mathbb{K}]=m$ and $[\mathbb{K}(v):\mathbb{K}]=n$ both divide $[\mathbb{K}(u,v):\mathbb{K}]$, which means it is a multiple of both m and n. Well, since $\mathrm{lcm}(m,n)=\frac{mn}{\gcd(m,n)}=mn$ and $[\mathbb{K}(u,v):\mathbb{K}]\leq mn$, it must be the case that in fact $[\mathbb{K}(u,v):\mathbb{K}]=mn$.