

Chapter6: Registers and Counters

Lecture 2- An Introduction to Counters

Engr. Arshad Nazir, Asst Prof Dept of Electrical Engineering SEECS

Objectives

 Study Asynchronous (Ripple) and Synchronous Counters

Fall 2021

Counter

- A special type of register that goes through a prescribed sequence of states upon the application of input pulses
 - > Input pulses: May be clock pulses or originate from some external source
 - > The sequence of states may follow
 - the binary number sequence (\Rightarrow Binary counter) or
 - any other sequence of states
- There are two main categories if counters
 - Ripple counters (Asynchronous Counters)
 - There is no common clock pulse (not synchronous) and the flip-flop output transition of one serves as a source for triggering other flip-flops
 - Synchronous counters
 The CLK inputs of all flip-flops receive a common clock

Example: 4-bit Binary Ripple Counter

- A 4-bit Binary Ripple Up Counter follows the sequence 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, back to 0000, and repeat.
- Count pulse is applied only to A_0 generating the least significant bit of counting sequence. The output state transition of A_0 will be connected with C input of A_1 and trigger it, and so on.
- The flip-flops used in the design of 4-bit Binary Ripple Counters are self-complementing and toggle output state on negative edge of each count pulse.
- The timing diagram of the counter for counting sequence 0000 through 1000 is shown in the next slide.

A_3	A_2	A ₁	A_0
0	A ₂	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	1
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1 1	1	0
1	1	1	1

Fall 2021

Partial Timing of a 4-bit binary ripple counter

Fig. 6-8 4-Bit Binary Ripple Counter

Example: BCD Ripple Counter

- A BCD Ripple Counter follows the sequence 0000, 0001, 0010, 0011, 0100, 0101, 0100, 0111, 1000, 1001, back to 0000 and repeats.
- It can also be constructed using different types of flip-flops such that count pulse is applied to the flip-flop generating the least significant bit of counting sequence and output state transition of one triggers others.

Timing Diagram of BCD Ripple Counter

The BCD Ripple Counter Circuit (with JK FF)

Counting Sequence

1010 (0000)

Fig. 6-10 BCD Ripple Counter

Cascading Counter Stages

Fig. 6-11 Block Diagram of a Three-Decade Decimal BCD Counter

Synchronous Counters

- Synchronous counters are those in which common clock triggers all flip-flops simultaneously.
- In the design of synchronous counters, apply the same procedure of synchronous sequential circuits.
- Design of 4-bit Binary Up Synchronous Counter is much simpler and can be implemented after due scrutiny of counting sequence bits pattern.
- Flip-flops may be positive or negative-edge triggered. $A_0 = 1$ will complement A_1 , $A_0 A_1 = 1$, $A_0 A_1 A_2 = 1$, and $A_0 A_1 A_2 A_3 = 1$ will reset all flip-flops to 0 synchronously.

Fig. 6-12 4-Bit Synchronous Binary Counter

4-bit up/down binary counter

Fig. 6-13 4-Bit Up-Down Binary Counter

BCD Counters

Table 6-5 State Table for BCD Counter

Present State		Next State			Output	Flip-Flop Inputs						
Q ₈	Q ₄	Q ₂	Q ₁	Q ₈	Q ₄	Q ₂	Q_1	y	TQ8	TQ ₄	TQ ₂	TQ_1
0	0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	1	0	0	1	0	0	0	0	1	1
0	0	1	0	0	0	1	1	0	0	0	O	1
0	0	1	1	0	1	0	0	0	0	1	1	1
0	1	0	0	0	1	0	1	0	0	0	0	1
0	1	0	1	0	1	1	0	0	0	0	1	1
0	1	1	0	0	1	1	1	0	0	0	0	1
0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	0	0	1	0	0	0	0	1
1	0	0	1	0	0	0	0	1	1	0 -	0	1

Using map method, we get

$$TQ_1=1;$$

$$Y=Q_8Q_1$$

$$TQ_1=1$$
; $TQ_2=Q_8'Q_1$; $TQ_4=Q_2Q_1$; $TQ_8=Q_8Q_1+Q_4Q_2Q_1$

Fall 2021

4-bit Binary Counter with Parallel Load

Table 6-6Function Table for the Counter of Fig. 6-14

Clear	CLK	Load	Count	Function	
0	X	X	X	Clear to 0	
1	1	1	X	Load inputs	
1	1	0	1	Count next binary state	
1	1	0	0	No change	

Fig. 6-14 4-Bit Binary Counter with Parallel Load

BCD Counter Design Examples

Generate any count sequence using this counter with parallel load i.e BCD counting sequence after states decoding

Fig. 6-15 Two ways to Achieve a BCD Counter Using a Counter with Parallel Load

The End