1: 10 points

Zeros found through the solution to the generalized eigenvalue problem are known as invariant zeros because they are unchanged by state feedback u = Kx. To see this, show that

$$\operatorname{rank}\left(\begin{bmatrix}A+BK-sI & B\\ C+DK & D\end{bmatrix}\right)=\operatorname{rank}\left(\begin{bmatrix}A-sI & B\\ C & D\end{bmatrix}\right).$$

$$\begin{bmatrix} A+Bk-sI & B \\ C+Ok & D \end{bmatrix} = \begin{bmatrix} A-sk & B \\ C & D \end{bmatrix} \begin{bmatrix} I & O \\ k & I \end{bmatrix} \quad \begin{array}{c} (A-sk)I+Bk & (A-sk)\cdot O+B\cdot I \\ C\cdot I+D\cdot k & C\cdot O+D\cdot I \end{array}$$

according to google and piazza

the rank of the multiplied matrix is equal to the rank of A if B is of full rank

The second of
$$A+Bk-sI$$
 B is full, it is equal to $r\begin{bmatrix} A-sk & B \\ C & D \end{bmatrix}$ as $r\begin{bmatrix} I & O \\ k & I \end{bmatrix}$ is full because of $I's$

(a) The control structure shown below is called Internal Model Control (IMC). Show that the IMC structure is internally unstable if Q is unstable. Here assume that the model G is identical to the plant G.

(b) Recalling that a feedback system is internally stable \iff all closed loop transfer functions are stable, find the conditions for internal stability of the feedback system shown. How do those simplify if H(s) and $G_1(s)$ are both stable? You can assume that the systems are SISO throughout.

$$u = d + G_1(r - H(n + G_2u))$$

 $b_1(I + G_1G_2b) = d + G_1r - G_1Hn$
 $u = \frac{d + G_1r - G_1Hn}{I + G_1G_2H}$

$$e=r-H(n+G_2(d+G_1e))$$
 $e(1+HG_1G_2)=r-Hn-HG_2d$
 $e=\frac{r-Hn-HG_2d}{1+HG_1G_2}$

$$y = n + G_2(d + G_1(r - H_1))$$

$$y(l + G_1G_2H) = n + G_2d + G_2G_1r$$

$$y = \frac{n + G_2d + G_2G_1r}{l + G_1G_2H}$$

3: 20 points

Consider the plant model

$$G(s) = \frac{s-1}{s(s-2)}.$$

(a) Based on the RHP poles and zeros of the system, and assuming a conventional loop shape, our rules of thumb suggest the bandwidth must be both < 0.5 rad/s and > 1 rad/s. That seems like a problem, but let's see what a synthesis routine can do with this. Use loopsyn to design a controller given a target loopshape of $L_d = \frac{10}{s}$ and plot the achieved sensitivity function and step response. What are the gain and phase margins?

(b) Compute the minimum peak of the sensitivity function. Does your result from Part a match your computation?

min peak =
$$20\log_{10}$$
 (Sensitivity function)
$$\sqrt{\frac{(1+21)^2}{(1-2)^2}} = 3$$

$$20\log_{10}(3)$$

$$= 9.54 dB$$

Results don't match Part a which is expected due to the mismatch bandwidth requirement.