Investigating the predictive ability of LSTMs on industrial metal prices

Oliver Boom

Imperial College London

Introduction

- Highly desired information
- Price forecasting is challenging → Non-linear, volatile, dynamic
- Traditional techniques limited \rightarrow ML can address challenges
- Long Short-Term Memory networks (LSTMs) achieve best-inclass results on other sequence predictions problems.
- Limited data, exogenous driving factors. Are LSTMs relevant for this context?

Co-movement of commodities

- Common Factor + Idiosyncratic factor
- Excessive co-movement of prices
- Commodity sub-universe → Industrial Metals

Multi-Task Learning

- Multi-Task Learning: A machine learning framework which aims to leverage shared information between a collection of related tasks to improve the predictive performance in all tasks
- Individual Tasks → Price of individual metals
- Shared layers → Neural network architecture

Benchmarks

 ARIMA forecast - Decomposes signal into different temporal components

ARIMA

- Autoregressive Model → Target depends linearly on it's own previous values
- Moving Average Model → Uses the past errors as explanatory variables in the model
- Naïve forecast Take the price today as the price for the next forecast length

Objectives

- Do LSTMs outperform ARIMA and naïve forecasts?
- Does Multi-Task Leaning outperform single task?
- Does a multi-variate outperform autoregressive?
- Foresight is a collection of tools built to investigate the predictive ability of LSTMs on industrial metal prices

Regression Frameworks

Single Input Single Output Autoregressive

Multi Input Multi Output Autoregressive

Multi Input Single Output Multivariate

Multi Input Multi Output Multivariate

Evaluation Metrics

- Forecast lengths: 1 Week, 1 Month, 1 Quarter, ½ year
- Commodity Selected: Copper
- Multi Task Learning Complex: Copper, Aluminium, Tin, Lead, Nickel

- Mean Squared Error (MSE) → Higher impact of outliers
- Mean Absolute Error (MAE) → More robust to outliers
- Mean Directional Accuracy (MDA)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$
 $MAE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)$

$$MDA = \frac{1}{n} \sum_{i=1}^{n} (sign(Y_i - Y_{i-1})) = sign(\widehat{Y}_i - \widehat{Y}_{i-1}))$$

Preprocessing

Normalization → Log returns vs Scaling

$$\to LR = Log\left(\frac{Y_i}{Y_{i-1}}\right)$$

- Feature Engineering
 - Feature Spawning
 - → Exponentially weighted moving average
 - → Rolling volatility
- PCA → Do LSTMs improve of suffer from the extra variance.

Architecture

Neural Architecture

- Hyperparameter Tuning
- → Begin with simplest model and add complexity
- Window size of inputs
- → How far back is relevant for memory

Results

Ranked for each metric on each forecast length and summed the ranking number

 \rightarrow Low score = Highly ranked

Framework	MAE/MSE Only	All
AR MTL	27	36
MV MTL	24	37
Naïve	17	39
ARIMA	26	40
AR	34	46
MV	40	53

MV MTL LSTM Predictions

Naïve Predictions

What has been learnt?

- Across all metrics LSTMs outperformed benchmarks, but can be framed in different ways (regression only, cumulative sum etc.)
- Multi task is effective over longer time frames
- Multivariate outperforms autoregressive but only in the multi task case.
- Feature spawn not effective for LSTMs but PCA is
- Scaling shown to be more effective than the naturally transforming log returns
- Optimal window size:
 - Short term (1 week-1 month) $\rightarrow \frac{1}{2}$ a year
 - Long term (1 month to half a year) \rightarrow 1 year

Questions