Оценка параметров модели случайного процесса нагрузки сервера, обрабатывающего заявки

Владимир Руцкий, 5057/12

Санкт-Петербургский государственный политехнический университет

31 мая 2011

План презентации

- 🚺 Постановка задачи
- Решение в случае бесконечного времени обработки заявки
 - Итеративный метод
 - Оценивание ЕМ-алгоритмом
- 3 Решение в случае конечного времени обработки заявки
 - Метод наименьших квадратов
- Результаты работы

Постановка задачи

Сервер

- Сервер обрабатывает приходящие заявки
- Для обработки заявки используются ресурсы сервера
 - Количество используемых ресурсов сервера загрузка сервера скалярная величина, например процессорное время

Задача

Дан лог загрузки сервера. Необходимо:

- 🚺 идентифицировать моменты прихода заявок,
- Оценить:
 - интенсивность прихода заявок,
 - загрузку сервера в фоновом режиме,
 - использование ресурсов сервера для обработки одной заявки

Математическая модель (1)

Загрузка сервера — случайный процесс $X(t)\colon \mathbb{R} o \mathbb{R}$

Фоновая загрузка сервера

Сумма постоянной загрузки и винеровского процесса (шум):

$$B(t) = m + \sigma \mathcal{W}(t)$$

Загрузка сервера при обработке заявки

Заявка, пришедшая в $t=t_c$, увеличивает загрузку сервера на:

$$K_{t_c}(t) = \mathcal{N}(m_c, \sigma_c^2) \cdot I(t - t_c) \cdot e^{-\lambda_c(t - t_c)}$$

$$\mathrm{I}(x)=\left\{egin{array}{ll} 0, & x<0 \ 1, & x\geqslant 0 \end{array}
ight.$$
 — Функция Хевисайда

Математическая модель (2)

 $T_c = \{t_{c_1}, \dots, t_{c_R}\}$ — множество моментов времени, когда поступили заявки (всего R заявок за время наблюдения за сервером)

Интенсивность поступления заявок

Интервал времени между поступлением двух последовательных заявок распределён экспоненциально:

$$(t_{c_i} - t_{c_{i-1}}) \sim \operatorname{Exp}(\lambda)$$

Общая загрузка сервера

$$X(t) = B(t) + \sum_{t_c \in T_c} K_{t_c}(t)$$

Перейдём к дискретному случайному процессу

$$X(t_i), \quad t_i = t_0 + i \cdot \Delta t \quad (t_0 \, \mathsf{u} \, \Delta t \, \mathsf{даны})$$

Входные данные

Лог загрузки сервера

Траектория $X(t_i)$: $\{x_i \mid i = 1, ..., N\}$

Считаем, что Δt достаточно мало и $t_{c_j}=t_0+i\cdot\Delta t$ — заявки пришли в некоторые наблюдаемые моменты времени t_i .

Без ограничения общности будем рассматривать случай $t_0=0$

Задача

Задача

По траектории $X(t_i)$

- 💵 идентифицировать моменты поступления заявок,
- 2 оценить параметры модели:
 - m, σ параметры фоновой загрузки,
 - λ интенсивность поступления заявок,
 - $\mathit{m}_{c}, \sigma_{c}, \lambda_{c}$ параметры загрузки сервера при обработке заявок

Случай бесконечного времени обработки заявки

$\lambda_c \approx 0$

При поступлении заявки в момент времени t_c загрузка сервера увеличивается на $\Delta x \sim \mathcal{N}(m_c,\sigma_c)$

$$K_{t_c}(t) = \mathcal{N}(m_c, \sigma_c^2) \cdot I(t - t_c)$$

Разностный аналог производной

dX(t)

Рассмотрим ненормированный разностный аналог производной:

$$dX(t) = X(t) - X(t - \Delta t)$$

$\mathrm{d}X(t)$ в момент времени поступления заявки t_c

$$dX(t_c) = \mathcal{N}(m_c, \sigma^2 \Delta t + \sigma_c^2)$$

(при условии, что в момент времени $(t_c - \Delta t)$ заявки не было)

$\mathrm{d}X(t)$ в момент времени отсутствия заявок t

$$dX(t) = \mathcal{N}(0, \sigma^2 \Delta t)$$

(при условии, что в момент времени $(t-\Delta t)$ заявки не было)

Итеративный метод идентификации поступления заявок

Предположим, что в отрезке времени $[t_k, t_{k+n}]$ не пришло ни одной заявки.

Тогда $\mathrm{d} x_k, \ldots, \mathrm{d} x_{k+n}$ — наблюдения $\mathcal{N}(0, \sigma^2 \Delta t) = \mathrm{d} X(t)$. Оценим σ^2 по $[x_k, x_{k+n}]$ (ММП):

$$\Delta t \cdot \widehat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n ((x_{k+i} - x_{k+i-1}) - 0)^2$$

Гипотеза H_0

В отрезке времени $[t_{k+n},t_{k+n}+\Delta t]$ не поступило ни одной заявки

Критерий принятия H_0 с уровнем значимости lpha

Разность значений наблюдений $(x_{k+n+1}-x_{k+n})$ лежит в $(1-\alpha)$ квантиле нормального распределения $\mathcal{N}(0,\widehat{\sigma}^2\Delta t)$:

$$H_0$$
 принимается $\iff (x_{k+n+1} - x_{k+n}) < \mathcal{N}_{1-\alpha}$

ЕМ-алгоритм

Метод наименьших квадратов

Результаты работы (1)

Выводы