PHYS 250 Homework 8

Due: 7 April 2025

Problem 1. (20 points) Consider the ellipse given by

$$14x_1^2 - 4x_1x_2 + 11x_2^2 = 25.$$

This ellipse is shown at the right. We want to find the principle axes of this ellipse represented by x'_1 and x'_2 in the figure. In this problem all calculations can and must be done by hand unless otherwise noted.

(i) We may write the equation for the ellipse as a matrix equation of the form

$$\boldsymbol{x}^\mathsf{T} \mathsf{A} \boldsymbol{x} = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} a_{00} & a_{01} \\ a_{01} & a_{11} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 25.$$

Notice that I have written A as a symmetric matrix. Write down the matrix A.

- (ii) Calculate the eigenvalues, λ_n , of A. Clearly show how you calculate the eigenvalues. [Note: Despite how it may appear, the coefficients of the ellipse have been chosen to lead to simple eigenvalues.]
- (iii) Calculate the eigenvectors, v_n , of A. Remember that eigenvectors are normalized so that $|v_n| = 1$. [Note: Again, the coefficients have been chosen so that the eigenvectors will have "simple" values.]
- (iv) Construct B from the eigenvectors as the columns in this matrix. Since A is symmetric, B should be orthogonal. This means $B^{-1} = B^{T}$. To show this calculate the product $B^{T}B$. [Note: What should the answer be? Make sure your answer agrees with this.]
- (v) Show that B diagonalizes the matrix A. To do this, calculate the product B^TAB. [Note: What diagonal matrix should this product produce? Make sure your answer agrees with this.]
- (vi) The matrix B is a rotation matrix that transforms between the two coordinate systems shown in the figure. Recall that $x' = B^T x$. Determine the angle, θ , between the original x_1 -axis and the new x'_1 -axis.
- (vii) Finally, write the ellipse in standard form in terms of the principle axes

$$\left(\frac{x_1'}{\alpha_1}\right)^2 + \left(\frac{x_2'}{\alpha_2}\right)^2 = 1.$$

In other words, determine α_1 and α_2 .

Problem 2. (10 points) [Ill conditioned matrices.] Even when a matrix is not singular it can still be difficult to work with numerically. The condition number of a matrix, A, is denoted by $\kappa(A)$. If κ is large we call the matrix *ill conditioned*. Roughly, if the condition number is of the form $\kappa(A) \sim 10^k$ then we expect to lose up to k digits of accuracy in addition to the normal loss of accuracy in an algorithm involving A. We will calculate the condition number as

$$\kappa(\mathsf{A}) = \frac{\max{(|\lambda(\mathsf{A})|)}}{\min{(|\lambda(\mathsf{A})|)}},$$

[†]This is not the most general definition but is sufficient for our purposes.

where $\lambda(A)$ are the eigenvalues of A. The Hilbert matrix is an example of a non-singular but ill conditioned matrix. It has elements $A_{ij} = 1/(i+j+1)$ so that $A_{00} = 1$, $A_{01} = 1/2$, etc. In python we may easily construct this matrix by hand but we do not need to! We can instead use scipy.linalg.hilbert(). [Note: A number of other, standard matrices are defined too.]

- (i) Calculate the condition number $\kappa(A)$ for the 10×10 Hilbert matrix. Since A is symmetric you should use scipy.linalg.eigh for this purpose.
- (ii) Calculate the inverse of A and determine the maximum absolute error in $\mathsf{A}^{-1}\mathsf{A}-\mathsf{I}.$
- (iii) An alternative way to calculate the inverse is to use the matrix of eigenvectors, B. Since A is symmetric we know that $B^\mathsf{T}AB = D$ is the diagonal matrix of the eigenvalues. With this we may calculate the inverse as

$$\mathsf{A}^{-1} = \mathsf{B}\mathsf{D}^{-1}\mathsf{B}^\mathsf{T}.$$

Using this expression repeat the previous part. We should find in these two parts that the maximum error is huge compared to the expected numerical error. [Hint: Calculating the inverse of a diagonal matrix is very easy to do analytically. Do not calculate it numerically!]