# I-SUNS: Zadanie č.2

Neurónové siete

#### Tomáš Minárik

# Príprava dát

- Najprv sme načítali dáta train.csv, train\_dummy.csv a test\_dummy.csv.
- Z dát načítaných z train.csv sme vytvorili korelačnú maticu.



1.096050e-16 -2.947996e-16 -3.401534e-17 1.908639e-16 1.557147e-15

7.294401e-16 2.078715e-17 4.157431e-17 0.000000e+00 8.314862e-17

at64

Z korelačnej matice sme zistili že s cenou najviac koreluje GrLivArea, GarageCars a GarageArea.

YearBuilt : 0.51 YearRemodAdd: 0.51 TotalBsmtSF : 0.62 1stFlrSF: 0.61 GrLivArea : 0.7 FullBath: 0.58 TotRmsAbvGrd : 0.56 GarageCars : GarageArea : 0.63 SalePrice : 1.0

- Ďalej pracujeme s dátami z train\_dummy.csv a test\_dummy.csv.
- Dáta sme škálovali pomocou StandardScalera.

| MSSubClass     | 55.127660    | MSSubClass    |
|----------------|--------------|---------------|
| LotFrontage    | 70.706383    | LotFrontage   |
| LotArea        | 10257.188298 | LotArea       |
| OverallCond    | 5.579787     | OverallCond   |
| YearBuilt      | 1972.154255  | YearBuilt     |
| YearRemodAdd   | 1985.639362  | YearRemodAdd  |
| MasVnrArea     | 111.120213   | MasVnrArea    |
| BsmtFinSF1     | 451.493617   | BsmtFinSF1    |
| BsmtFinSF2     | 49.026596    | BsmtFinSF2    |
| BsmtUnfSF      | 601.948936   | BsmtUnfSF     |
| dtype: float64 |              | dtype: float@ |

#### Trénovanie

- 1. Rozhodovací strom
- Parametre použité na trénovanie

```
Fitting 5 folds for each of 81 candidates, totalling 405 fits

GridSearchCV(cv=5, estimator=DecisionTreeRegressor(),

param_grid={'max_depth': [2, 6, 8], 'max_leaf_nodes': [5, 20, 100],

'min_samples_leaf': [20, 40, 100],

'min_samples_split': [10, 20, 40]},

scoring='r2', verbose=1)
```

- Najlepšie výsledky dosiahol strom s hyperparametrami:
  - o max\_depth=8
  - o max\_leaf\_nodes=100
  - o min\_samples\_leaf=20
  - min\_samples\_split=20
- Tento strom dosiahol skóre 0.708 na trénovacích dátach.
- Na testovacích dátach dosiahol skóre 0.603 a MSE 0.334



• Na grafe môžeme vidieť že strom dosahuje pomerne dobré výsledky pri nižších hodnotách keďže tie obsahovali najviac záznamov a najhoršie výsledky pri vysokých hodnotách.



#### 2. SVM

• Parametre použité na trénovanie.

```
{'C': [0.1,1, 10, 100], 'gamma': [1,0.1,0.01,0.001], 'kernel': ['rbf', 'poly', 'linear']}
```

• Výsledky gridsearchu.



# param\_kernel

- rbf
- poly
- linear
- Najlepšie výsledky dosiahol model s hyperparametrami
  - o C=10
  - o Gamma=0.001
  - o kernel=rbf
- Tento model dosiahol skóre 0.847 na trénovacích dátach.
- Na testovacích dátach dosiahol skóre 0.881 a MSE 0.1.



- Vo výsledkoch gridsearchu si môžeme všimnúť že pre kernel=linear je skóre vždy okolo 0.75.
- Pri cross validácií kernel=linear vždy dosahoval v jednom prípade skóre 0.897 a pre to sme sa rozhodli vyskúšať aj tento model na testovacích dátach.

```
[CV 1/3] END .....C=0.1, gamma=1, kernel=linear;, score=0.897 total time= 1.1s [CV 2/3] END .....C=0.1, gamma=1, kernel=linear;, score=0.610 total time= 0.7s [CV 3/3] END .....C=0.1, gamma=1, kernel=linear;, score=0.795 total time= 0.9s
```

• Tento model na testovacích dátach dosiahol skóre až 0.921 a MSE 0.066.



#### 3. RandomForest

 Na trénovanie boli použité rovnaké parametre ako pri rozhodovacom strome len s pridaním n\_estimators.

```
{'n_estimators' : [20, 40, 60, 80, 100],
  "min_samples_split": [10, 20, 40],
  "max_depth": [2, 6, 8],
  "min_samples_leaf": [20, 40, 100],
  "max_leaf_nodes": [5, 20, 100],
}
```

- Najlepšie výsledky dosiahol model s hyperparametrami:
  - o max\_depth=8
  - o max\_leaf\_nodes=100
  - o min\_samples\_leaf=20
  - o min\_samples\_split=10
  - o n\_estimators=100
- Tento model dosiahol skóre 0.759 na trénovacích dátach.
- Na testovacích dátach dosiahol skóre 0.773 a MSE 0.191.



• Najdôležitejšie vstupné parametre.

### 4. Záver

 Najlepší model bol SVM, ktorý pre kernel=rbf dosiahol skóre 0.881 a pre kernel=linear až 0.921.

#### Redukcia dimenzie

1. Závislosť ceny od GrLivArea, GarageArea a 1stFlrSF



- Keďže parametre do grafu sme vyberali podľa korelačnej matice tak môžeme jasne vidieť ako jedným smerom narastá cena.
- Môžeme vidieť 2 výnimky ktoré majú najväčšiu rozlohu ale nemajú vysokú cenu. Ide o záznamy ktoré v danom čase ešte neboli dostavané.

#### 2. Redukcia na 3 dimenzie



• Aj napriek tomu že sme redukovali 255 stĺpcov na 3 tak stále môžeme vidieť ako rastie cena.

# Redukcia na x dimenzií

- Najprv vybrali stĺpce ktorých korelácia s cenou bola abs(corr) >= 0.1.
- Z 255 stĺpcov nám zostalo 121.
- Keďže najlepšie dopadlo SVM budeme používať model kde kernel=rbf aj kernel=linear.

1. X=5

• Rbf







- 2. X=10
- Rbf







- 3. X=25
- Rbf







- 4. X=50
- Rbf







5. X=100

Rbf







# Zhrnutie

| Kernel | N   | R2       | Time     |
|--------|-----|----------|----------|
| Rbf    | 5   | 0.860306 | 0.119794 |
| Linear | 5   | 0.835253 | 0.076579 |
| Rbf    | 10  | 0.881531 | 0.124930 |
| Linear | 10  | 0.863507 | 0.084409 |
| Rbf    | 25  | 0.886372 | 0.150794 |
| Linear | 25  | 0.867297 | 0.162252 |
| Rbf    | 50  | 0.890400 | 0.139008 |
| Linear | 50  | 0.880188 | 0.209399 |
| Rbf    | 100 | 0.924029 | 0.136797 |
| Linear | 100 | 0.918055 | 0.352890 |

Vzťah skóre a n

Rbf





Pre obidva modely je vývoj skóre vzhľadom na veľkosť n približne rovnaký.

# Vzťah skóre a času



Pri linear môžeme vidieť že čím je vyššie skóre tým rastie aj čas trénovania.

Pri rbf trvá trénovanie približne rovnaký čas keďže rozdiel medzi najdlhším a najkratším trénovaním je len 0.03 sekundy.

EDA



Najväčšia časť záznamov sa nachádza v rozsahu od 120k do 139.99k (156)

Len 1.1%(10) záznamov je drahšia ako 500k a 5.2%(49) lacnejšia ako 100k.

# Rozdelenie roku výstavby



Môžeme vidieť že od roku 1985 počet postavených domov rastie.

Máme 10 záznamov, ktoré boli postavené pred rokom 1900.

Závislosť ceny od GrLivArea, 1stFlrSF a 2ndFlrSF



Môžeme vidieť že najrýchlejší nárast ceny je pri rozlohe druhého poschodia.

Tak isto môžeme vidieť pád na konci pri GrLivArea a 1stFISF. Ten je spôsobený dvomi záznamami, ktoré boli spomenuté už pri redukcií dimenzií.

Najdrahší a najlacnejší dom predaný v danom roku



Môžeme vidieť že najdrahší dom bol predaný v roku 2007 a najlacnejší v roku 2006.

# Záver

Najúspešnejší model bol SVM s hyperparametrami c=10, gamma=0.001a kernel=rbf. Dáta pre tento model boli najprv za pomoci korelačnej matice zredukované na 121 stĺpcov a následne ešte zredukované pomocou PCA na 100 stĺpcov. Tento model dosiahol skóre 0.924.