https://github.com/savthe/discrete_math

Расширение полей

- **1.** Являются ли полями кольца $\mathbb{Q}[\xi]$, в которых a) $\xi^3 + 1 = 0$, б) $\xi^3 + 2 = 0$?
- 2. Найдите степень расширения
- а) $[\mathbb{Q}[\sqrt{5}]:\mathbb{Q}]$ б) $[\mathbb{Q}[i,\sqrt{2}]:\mathbb{Q}]$ в) $[\mathbb{R}:\mathbb{Q}]$
- 3. В поле $\{a+b\sqrt{3}: a,b\in\mathbb{Q}\}$ найдите элемент, обратный к $2+3\sqrt{3}$.
- **4.** В поле $\{a + b\sqrt{5} : a, b \in \mathbb{Q}\}$ найдите элемент, обратный к $1 \sqrt{5}$.
- **5.** Постройте поле из 9 элементов. Покажите, что оно содержит простое подполе. Найдите степень расширения данного поля над простым подполем. Приведите 3 примера выбора базиса расширения. Найдите элемент порядка 4 и постройте его минимальный многочлен.
- **6.** Постройте поле, с помощью присоединения корня многочлена $x^2 5$ к $\mathbb Q$ и найдите обратный элемент к $-3\sqrt{5}$.
- 7. Рассмотрим поле $\mathbb Q$ и присоединим к нему $\sqrt{2}$, а к полученному полю $\mathbb Q[\sqrt{2}]$ присоединим число i. Докажите, что данное поле можно получить присоединением к $\mathbb Q$ числа $\sqrt{2}+i$.
- **8.** Определите размерность пространства $\mathbb{Q}[\sqrt{5}+i]$ над полем \mathbb{Q} и найдите какой-нибудь его базис.