

Formelsammlung Qualifikationsprüfung Energieberatung

Formelsammlung Qualifikationsprüfung Energieberatung

Wärmetransport/Wärmeschutz

Wärmemenge	$Q = c \cdot m \cdot \Delta \theta = c \cdot \rho \cdot V \cdot \Delta \theta$	Q: Wärmemenge [Wh]
		c : spez. Wärmekapazität $\left[\frac{Wh}{kg \cdot K}\right]$
	Rohdichte: Dies ist die Masse eines porösen	m: Masse $[kg]$
	Materials bezogen auf das Volumen einschließlich	ρ : Rohdichte $\left[\frac{kg}{m^3}\right]$
	der Poren- und Hohlräume.	V : Volumen $[m^3]$
		$\Delta\theta$: Temperaturdifferenz [<i>K</i>]
Gleichungen zur stationären	$\Phi = A \frac{\lambda}{d} (\theta_{s1} - \theta_{s2})$	Ф: Wärmestrom [W]
Wärmeleitung		A: Bauteilfläche $[m^2]$
	$q = \frac{\Phi}{A}$	λ : Wärmeleitfähigkeit $\left[\frac{W}{m \cdot K}\right]$
		d: Dicke der Bauteilschicht [m]
		$\theta_{s1} - \theta_{s2}$: Temperaturdifferenz an den Oberflächen (Index s = surface) [K]
		q : Wärmestromdichte $\left[\frac{W}{m^2}\right]$
Strahlung	$R + A + T = 1$ bzw. $\rho + \alpha + \tau = 1$	R bzw. ρ: Reflexionsgrad [–]
	Bei opaken (lichtundurchlässigen) Bauteilen gilt:	A bzw. α: Absorptionsgrad [-]
	T= au=0	T bzw. τ : Transmissionsgrad $[-]$
Langwellige Strahlung /	Von einer Oberfläche abgestrahlte Energie:	q: Wärmestromdichte $\left[\frac{W}{m^2}\right]$
Wärmestrahlung	$T_0 \setminus T_0$	ε: Emissionsgrad (bei schwarzem
	$q = \varepsilon \cdot C_{\mathcal{S}} \cdot \left(\frac{T_0}{100}\right)^4$	Körper = 1) [-]
	und $C_S = 5.67 \frac{W}{m^2 K^4}$	C_S : Strahlungskonstante des schwarzen
		Körpers $\left[\frac{W}{m^2K^4}\right]$
		T_0 : Temperatur [K]
Wärmedurchlasswiderstand	$R = \sum_{i=1}^{n} \frac{d_i}{\lambda_i}$	R: Wärmedurchlasswiderstand $\left[\frac{m^2 K}{W}\right]$
(ebenes Bauteil)	$\lambda = \sum_{i=1}^{N} \lambda_i$	d: Schichtdicke [m]
λ_1 λ_2 λ_3 λ_4 \vdots	Hinweis: DIN 4108-02 gibt Mindestwerte für die	λ : Wärmeleitfähigkeit $\left[\frac{W}{mK}\right]$
	Wärmedurchlasswiderstände von Bauteilen an.	

Wärmedurchgangswiderstand	$R_T = R_{se} + R_1 + R_2 + \dots + R_n + R_{si}$	R_T : Wärmedurchgangs-widerstand
(ebenes Bauteil)		$\left[\frac{m^2K}{W}\right]$
R _{se} R ₁ R ₂ R ₃ R ₄ R _{si}		R_{si} : innerer Wärmeübergangs-
		widerstand $\left[\frac{m^2 K}{W}\right]$
		R_{se} : äußerer Wärmeübergangs-
		widerstand. $\left[\frac{m^2K}{W}\right]$
		R_i : Wärmedurchlasswiderstand der i-
		ten Schicht $\left[\frac{m^2K}{W}\right]$
Wärmedurchgangskoeffizient	$U = \frac{1}{R_T} = \frac{1}{R_{si} + R + R_{se}}$	U : Wärmedurchgangskoeffizient $\left[\frac{W}{m^2K}\right]$
(spezifisch bezogen auf 1 m^2)	N _T N _{St} + N + N _{Se}	R_T : Wärmedurchgangs-widerstand
		$\left[\frac{m^2K}{W}\right]$
		R_{si} : innerer Wärmeübergangs-
	1m^2 $\Delta T = 1\text{K}$	widerstand $\left[\frac{m^2K}{W}\right]$
		R_{se} : äußerer Wärmeübergangs-
		widerstand $\left[\frac{m^2K}{W}\right]$
		R : Wärmedurchlasswiderstand $\left[\frac{m^2K}{W}\right]$
Temperaturverlauf in einem	$q = U \cdot (\theta_i - \theta_e) = \frac{(\theta_i - \theta_e)}{R_{si} + \sum \frac{d}{\lambda} + R_{se}}$	q: Wärmestromdichte $\left[\frac{W}{m^2}\right]$
mehrschichtigen Bauteil	$R_{si} + \sum \frac{d}{\lambda} + R_{se}$	θ: Schichttemperatur [°C]
(hier: 3 Schichten)	$\theta_{si} = \theta_i - (R_{si}) \cdot q$	R_{si} : Wärmeübergangs-widerstand
	$\theta_{1/2} = \theta_{si} - (d_1/\lambda_1) \cdot q$	innen $\left[\frac{m^2K}{W}\right]$
	$\theta_{1/2} = \theta_{si} - (d_1/\lambda_1) \cdot q$ $\theta_{2/3} = \theta_{1/2} - (d_2/\lambda_2) \cdot q$	R_{se} : Wärmeübergangs-widerstand
	$\theta_{se} = \theta_{2/3} - (d_3/\lambda_3) \cdot q$	außen $\left[\frac{m^2K}{W}\right]$
		θ_{si} und θ_{se} : Temperaturen an der
	Kontrolle über:	Oberfläche [K]
	$\theta_e = \theta_{se} - (R_{se}) \cdot q$	$\theta_{1/2}$ und $\theta_{2/3}$: Temperaturen an
		Schichtgrenzen [K]
Temperaturfaktor	$f_{\text{red}} = \frac{\theta_{\text{si}} - \theta_{\text{e}}}{\theta_{\text{e}}}$	f_{Rsi} : Temperaturfaktor [-]
	$f_{Rsi} = \frac{\theta_{si} - \theta_e}{\theta_i - \theta_e}$	θ_{si} : Temperatur Oberfläche innen [° \mathcal{C}]
	$\theta_{si} = f_{Rsi} \cdot (\theta_i - \theta_e) + \theta_e$	θ_i : Temperatur Luft innen [° C]
		θ_e : Temperatur Luft außen [° \mathcal{C}]
	1	I and the second

Längenbezogener Wärmedurchgangskoeffizient		Ψ: Längenbezogener Wärmedurchgangskoeffizient $\left[\frac{w}{mK}\right]$ Die durch Wärmebrücken zusätzlich auftretenden Transmissionswärmeverluste werden mit längenbezogenen Wärmedurchgangskoeffizienten energetisch beschrieben.	
Wärmetransferkoeffizient	$H_T = A_e \cdot U_{AW} + \Psi_e \cdot l$	H_T : Wärmetransferkoeffizient $\left[\frac{W}{\kappa}\right]$	
(Modellproblem)	$H_T = A_{i,1} \cdot U_{AW} + A_{i,2} \cdot U_{AW} + \Psi_{i,1} \cdot l + \Psi_{i,2} \cdot l$ A_{e} $\Psi_{i,1}$ $\Psi_{i,2}$ $A_{i,2}$	Ψ: Wärmebrückenverlust-koeffizient $\left[\frac{W}{m\kappa}\right]$ 1. Gleichung: von außen betrachtet 2. Gleichung: von innen betrachtet $Bilanz:$ von außen betrachtet = von innen betrachtet	
Wärmedurchgangskoeffizient transparenter Bauteile	$U_{w} = \frac{A_{g} \cdot U_{g} + A_{f} \cdot U_{f} + l_{g} \cdot \psi_{g}}{A_{g} + A_{f}}$	U: Wärmedurchgangskoeffizient (Fenster, Verglasung, Rahmen) $\left[\frac{w}{m^2 \kappa}\right]$ A_g : Fläche Verglasung $[m^2]$ A_f : Fläche Rahmen $[m^2]$ l_g : Gesamtumfang Verglasung $[m]$ Ψ_g : linearer Wärmebrückenverlustkoeffizient infolge des kombinierten Einflusses von Abstandhalter, Glas und Rahmen $\left[\frac{w}{m\kappa}\right]$	
Wärmetransport aufgrund von Lüftung	$\Phi = \dot{V} \cdot \rho \cdot c \cdot (\theta_1 - \theta_2)$ $(\rho \cdot c)_{Luft} = 0.34 Wh/(m^3 K)$ $\Phi = n \cdot V_{Raum} \cdot \rho \cdot c \cdot (\theta_1 - \theta_2)$ $n = \frac{\dot{V}}{V_{Raum}}$	Φ: Wärmestrom [W] \dot{V} : (Zuluft-)Volumenstrom $\left[\frac{m^3}{h}\right]$ n : Luftwechsel $\left[h^{-1}\right]$ c : spez. Wärmekapazität der Luft $\left[\frac{Wh}{m^3 \cdot K}\right]$	

Feuchtetransport / Feuchteschutz

reuchtetransport / reuchte	SCHULZ	
Mögliche Wasseraufnahme der Luft	25 [g/m³] 20 17,3 g/m³ 15 9,4 g/m³ 9,4 g/m³ 10 5 0 0 5 10 15 20[°C] 25 Lufttemperatur	
Gesetz für ideale Gase	Wasserdampf $\frac{m_D}{V} = \frac{p_D}{R_D \cdot T} = C_D$ Luft $\frac{m_L}{V} = \frac{p_L}{R_L \cdot T}$ Gesamtdruck: $p_{ges} = p_D + p_L$	m : Masse $[kg]$ V : Volumen $[m^3]$ p : Partial- oder Teildruck $[Pa]$ T : absolute Temperatur $[K]$ C_D : Absolute Feuchte / Konzentration $\left[\frac{kg}{m^3}\right]$ R : Gaskonstante $\left[\frac{Pa \cdot m^3}{kg \cdot K}\right]$ Wasserdampf: $R_D = 462 \frac{Pa \cdot m^3}{kg \cdot K}$
Relative Feuchte	$\varphi = \frac{p_D}{p_S}$ Oder $\varphi = \frac{c}{c_S}$	φ : relative Luftfeuchte [-] p_D : Wasserdampfpartialdruck [Pa] p_S : Wasserdampfsättigungsdruck [Pa] c : Wasserdampfkonzentration $\left[\frac{g}{m^3}\right]$ c_S : Sättigungsfeuchte $\left[\frac{g}{m^3}\right]$
Diffusionsäquivalente Luftschichtdicke	$s_d = \mu \cdot d$ (Bei Anstrichen und Folien wird der Wert angegeben)	s_d : Diffusionsäquivalente Luftschichtdicke $[m]$ d : Schichtdicke $[m]$ μ : Wasserdampf-Diffusionswiderstandszahl $[-]$
Oberflächentemperatur im Bereich von Wärmebrücken	$f_{R,si} = \frac{\theta_{si} - \theta_e}{\theta_i - \theta_e}$ Anforderung zur Vermeidung von Schimmelpilz $f_{R,si} \ge 0.7$	$f_{R,si}$: Temperaturfaktor [-]

Vermeidung von	$(109.8 + f \cdot (\theta_i - \theta_a) + \theta_a)^{8.02}$	φ: relative Feuchte
Tauwasserbildung	$\varphi \le \left(\frac{109.8 + f \cdot (\theta_i - \theta_e) + \theta_e}{109.8 + \theta_i}\right)^{8.02} \cdot 100\%$	der Raumluft [%]
	$\operatorname{Mit} \theta_{si} = f \cdot (\theta_i - \theta_e) + \theta_e$	f: Temperaturfaktor [–]
Vermeidung von	$\varphi \le 0.8 \cdot \left(\frac{109.8 + f \cdot (\theta_i - \theta_e) + \theta_e}{109.8 + \theta_i}\right)^{8.02} \cdot 100\%$	θ_i : Raumlufttemperatur [° \mathcal{C}]
Schimmelpilz	$109.8 + \theta_i \qquad) \qquad 100.70$	θ_e : Außenlufttemperatur [° C]
		θ_{si} : raumseitige Oberflächentemperatur [° <i>C</i>]

Geometriegrößen Wohngebäude - Gebäudenutzfläche	$A_N = 0.32 \frac{1}{m} \cdot V_e$ Wenn die durchschnittliche Geschosshöhe h_G eines Wohngebäudes mehr als 3 m bzw. weniger als 2,5 m beträgt, gilt: $A_N = \left(\frac{1}{h_G} - 0.04m^{-1}\right) \cdot V_e$	A_N : Gebäudenutzfläche $[m^2]$ V_e : beheiztes Gebäudevolumen $[m^3]$ h_G : durchschnittliche Geschossdeckenhöhe $[m]$	
Geometriegrößen Wohngebäude - Luftvolumen	V : Luftvolumen des beheizten Bereichs (netto) • bis zu drei Vollgeschossen: $V = 0.76 \cdot V_e$ • in den übrigen Fällen: $V = 0.8 \cdot V_e$	V : Luftvolumen des beheizten Bereichs (netto) $[m^3]$ V_e : beheiztes Gebäudevolumen $[m^3]$	
Geometriegrößen Wohngebäude - Flächen	$A_{NGF} = 1,1 \cdot A_{wohn}$ Einfamilienhäuser mit beheiztem Keller: $A_{NGF} = 1,1/1,35 \cdot A_{N}$ Einfamilienhäuser ohne beheizten Keller sowie Mehrfamilienhäuser: $A_{NGF} = 1,1/1,2 \cdot A_{N}$	A_{NGF} : Nettogrundfläche $[m^2]$ A_{Wohn} : Wohnfläche nach Wohnflächenverordnung $[m^2]$ A_N : Gebäudenutzfläche $[m^2]$	
Bilanzanteile Nutzenergiebedarf Heizen und Trinkwarmwasser (DIN V 18599)	Q _s Q _{h,b} Q _h	$Q_{h,b}$: Nutzenergiebedarf Heizen $[Wh]$ $Q_{w,b}$: Nutzenergiebedarf Trinkwarmwasser $[Wh]$ Q_T : Transmissionswärmesenken $[Wh]$ Q_V : Lüftungswärmesenken $[Wh]$ Q_S : solare Wärmequellen $[Wh]$ Q_i : interne Wärmequellen $[Wh]$	
Nutzenergiebedarf Heizen (auch Heizwärmebedarf und Nutzwärmebedarf)	$Q_{h,b} = Q_{sink} - \eta \cdot Q_{source}$	$Q_{h,b}$: Nutzenergiebedarf Heizen (als Tageswert) $\left[\frac{kWh}{d}\right]$ Q_{sink} : Summe Wärmesenken $\left[\frac{kWh}{d}\right]$ Q_{source} ; Summe Wärmequellen $\left[\frac{kWh}{d}\right]$ η : Ausnutzungsgrad Wärmequellen $\left[-\right]$	

Nutzenergiebedarf Kühlen	$Q_{c,b} = (1 - \eta) \cdot Q_{source}$	$Q_{h,b}$: Nutzenergiebedarf Kühlen (als		
(auch Kühlbedarf und		Tageswert) $\left[\frac{kWh}{d}\right]$		
Nutzkältebedarf)		Q_{source} ; Summe Wärmequellen $\left[\frac{kWh}{d}\right]$ η : Ausnutzungsgrad Wärmequellen $[-]$		
Transmissionswärmesenken	$Q_T = H_T \left(\theta_i - \theta_e \right) 0,001 t$	Q_T : Transmissionswärmesenken		
Q_T		[kWh/d]		
		H_T : Transmissionswärmetransfer- koeffizient $\left[\frac{W}{K}\right]$		
		θ_e : durchschnittliche monatliche Außentemperatur [° C] θ_i : Bilanz-Innentemperatur der Gebäudezone [° C]		
		t: 24 Stunden pro Tag $[h/d]$ 0,001 Umrechnung: 0,001 kW = 1 W		
Transmissionswärme-	$H_T = \sum (F_{x,i} \cdot U_i \cdot A_i)$	H_T : Transmissionswärmetransfer-		
transferkoeffizient H_T		koeffizient $\left[\frac{W}{K}\right]$		
(ohne Berücksichtigung von		F_x : Temperaturkorrekturfaktor (bei		
Wärmebrücken!)		Bauteilen gegen Außenluft $F_x = 1$) [-]		
		U : Wärmedurchgangskoeffizient $\left[\frac{W}{m^{2} \cdot K}\right]$		
		A: Bauteilfläche $[m^2]$		
Transmissionswärmetransferkoeffizient H_T	$H_T = \sum (F_{x,i} \cdot U_i \cdot A_i) + \Delta U_{WB} \cdot A_{ges}$	ΔU_{WB} : Wärmebrückenkorrekturwert $\left[\frac{W}{m^2 \cdot K}\right]$		
(mit Berücksichtigung von Wärmebrücken!)	A_{ges} ist die Summe aller Bauteilflächen A_i :	$= 0.10 \left[\frac{W}{m^2 \cdot K} \right] $ ohne Nachweis		
warmcorucken:)	$A_{ges} = \sum A_i$	$= 0.05 \left[\frac{W}{m^2 \cdot K} \right] $ mit Nachweis über DIN 4108 Bbl. 2 Kategorie A		
	auf wärmeübertragende Umfassungsfläche bezogener Transmissionswärmeverlust (Anforderungsgröße GEG): $H_{T}{}' = \frac{H_{T}}{A_{ges}}$	$= 0.03 \left[\frac{w}{m^2 \cdot K} \right] \text{ mit Nachweis über}$ $DIN 4108 \text{ Bbl. 2 Kategorie B}$ $< 0.03 \left[\frac{w}{m^2 \cdot K} \right] \text{ mit detailliertem}$ $Nachweis$		
		A_{ges} : gesamte wärmeübertragende Hüllfläche $[m^2]$		

Lüftungswärmesenken Q _V	$Q_V = n \ 0.34 \ V \ (\theta_i - \theta_e) \ 0.001 \ t$	Q_V : Lüftungswärmesenken [kWh/d]
		n : Gesamtluftwechselrate $[h^{-1}]$
	Die Gesamtluftwechselrate n setzt sich zusammen	0,34: Produkt aus Dichte und spez.
	aus:	Wärmekapazität von Luft (ρc_p)
		$\left[\frac{Wh}{m^3 \cdot K}\right]$
	• Luftwechsel durch Infiltration n _{inf} ,	V: Luftvolumen des beheizten
	Luftwechsel durch Fensterlüftung n _{win} Luftwechsel durch Fensterlüftung n _{win} Luftwechsel durch Fensterlüftung n _{win}	Bereichs (netto) $[m^3]$
	• Luftwechsel durch mechanische Lüftung n _{mech}	θ_e : durchschnittliche monatliche
		Außentemperatur [°C]
		θ_i : Bilanz-Innentemperatur der
		Gebäudezone [°C]
		t: 24 Stunden pro Tag $[h/d]$
		0,001 Umrechnung: 0,001 kW = 1 W
Lüftungswärme-	$H_V = n \ 0.34 \ V$	H_V : Lüftungswärmetransfer-
transferkoeffizient H_V		koeffizient $\left[\frac{W}{\kappa}\right]$
		n : Gesamtluftwechselrate $[h^{-1}]$
		0,34: Produkt aus Dichte und spez.
		Wärmekapazität von Luft (ρ c_p)
		$\left[\frac{Wh}{m^3 \cdot K}\right]$
		V: Luftvolumen des beheizten
		Bereichs (netto) $[m^3]$
Luftdichtheitsprüfung	Ϋ́	n ₅₀ : Luftwechselrate bei 50 Pa
(Blower-Door-Test)	$n_{50} = \frac{1}{V_{Geb}}$	Unter-/Überdruck (volumen-
(Blower Boot Test)	Ϋ́	bezogener Leckagestrom) $[h^{-1}]$
	$q_{50} = \frac{v}{A_E}$	q_{50} : Luftdurchlässigkeit bei 50 Pa
		Unter-/Überdruck (hüllflächen-
		bezogener Leckagestrom) $\left[\frac{m}{h}\right]$
		V_{Geb} : Luftvolumen Gebäude $[m^3]$
		A_E : Gebäudehüllfläche
		<i>V</i> : Volumenstrom bei der
		Dichtheitsmessung $\left[\frac{m^3}{h}\right]$
Interne Wärmequellen	$Q_{I,source} = q_I \cdot A_{NGF} 0,001$	$Q_{i,M}$: interne Wärmequellen [kWh]
	$mit q_I = 45 \frac{Wh}{m^2 d} \text{ (EFH)}$	q_I : durchschnittliche tägliche
	nt te	Wärme-abgabe von Personen,
	$und q_I = 90 \frac{Wh}{m^2 d} (MFH)$	Geräten und Beleuchtung bezogen
		auf NGF $\left[\frac{W}{m^2}\right]$
		A_{NGF} : Nettogrundfläche $[m^2]$

Wärmespeicherfähigkeit –	Die Quantifizierung der nutzbaren Wärmeguellen erfol	at über einen Ausnutzungsgrad, der			
	Die Quantifizierung der nutzbaren Wärmequellen erfolgt über einen Ausnutzungsgrad, der				
Ausnutzungsgrad	vom Verhältnis der Wärmequellen zu Wärmesenken abhängig ist. Die wirksame				
	Wärmespeicherfähigkeit kann vereinfacht wie folgt angesetzt werden:				
	• leichte Gebäude mit $C_{wirk} = 50 Wh/(m^2 K) \cdot A_{NGF}$				
	• mittelschwere Gebäude mit $C_{wirk} = 90 Wh/(m^2 K) \cdot A_{NGF}$				
	• schwere Gebäude mit $C_{wirk} = 130 Wh/(m^2 K) \cdot A_{NGF}$				
	leichte Gebäude = Holzbau; mittel = Porenbeton; schwer Kalksandstein oder Beton				
Nutzenergiebedarf	$q_{w,b,a} = 16.5 - (A_{NGF,WE,m} \cdot 0.05) \text{ kWh/(m}^2\text{a})$ $q_{w,b,a}$: Nutzenergiebedarf Trinkwarmwasser				
Trinkwarmwasser	[kWh]				
(jährlicher Wert)	Aber mindestens $q_{w,b,a} = 8.5 \text{ kWh/(m}^2\text{a})$	$A_{NGF,WE,m}$: Nettogrundfläche (NGF) einer			
	mittleren Wohneinheit $[m^2]$				

Heizlast

Norm-Heizlast Gebäude	$\Phi_{\rm HL, Geb} = \sum \Phi_{\rm T, i} + \Phi_{\rm V, Geb}$	Φ _{HL, Geb} : Norm-Heizlast Gebäudes	
Standardverfahren nach DIN EN 12831 Abschnitt 6 (Ohne Berücksichtigung der Aufheizleistung und der Wärmegewinne, Luftwechsel gemäß Tabelle B.5)	$\Phi_{HL, Geb} = \sum \!$	bzw. Gebäudeeinheit $\sum \! \Phi_{T,i} \!\!: \text{Summe der Transmissions-}$ wärmeverluste aller beheizten Räume, ohne Berücksichtigung der übertragenen Wärme innerhalb einer Gebäudeeinheit oder des Gebäudes $\Phi_{V, \text{ Geb}} \!\!: \text{Lüftungswärmeverlust}$ Gebäude $\sum \Phi_{V,i} \!\!: \text{Summe der Lüftungs-}$ wärmeverluste aller beheizten Räume, ohne Berücksichtigung der übertragenen Wärme innerhalb einer Gebäudeeinheit oder des Gebäudes	
Norm-Heizlast eines beheizten	$\Phi_{HL,i}=\Phi_{T,i}+\Phi_{V,i}$	Φ _{HL,i} : Norm-Heizlast eines beheizten	
Raumes	$\Phi_{T,i} = \sum f_x \cdot A_x \cdot U_{x,c} \cdot (\theta_{int,i} - \theta_e)$	Raums (i) [W]	
Vereinfachtes Verfahren für Wohngebäude nach DIN EN 12831 Abschnitt 7 in Verbindung mit DIN / TS 12831-1:2020-04 (ohne zusätzliche Aufheizleistung)	$\Phi_{V,i} = V_i \cdot n_i \cdot 0.34 \cdot (\theta_{int,i} - \theta_e)$ $Gemäß Tabelle 27 kann n_i mit 0.5 h^{-1} angesetzt$ $werden.$	$Φ_{T,i}$: Norm-Transmissionswärmeverlust des beheizten Raums (i) [W] $Φ_{V,i}$ Norm-Lüftungswärmeverlust des beheizten Raums (i) [W] f_x : Temperaturanpassungsfaktor [-] A_x : Fläche Bauelement [m^2] $U_{x,c}$: Wärmedurchgangskoeffizient Bauelement mit Berücksichtigung Wärmebrücken-Korrekturfaktor $\left[\frac{W}{m^2 \cdot K}\right]$ $θ_e$: Norm-Außen-Temperatur [°C] $Ψ_{int, i}$: Norm-Innen-Temperatur [°C] V_i : Innenvolumen den beheizten Raums (i) [m^3] n_i : Luftwechselrate des beheizten Raums (i) [h^{-1}] $0,34$: Produkt aus Dichte und spez. Wärmekapazität von Luft $\left[\frac{Wh}{m^3 \cdot K}\right]$	

Vereinfachte Bilanzierung / überschlägige Berechnungen

Die hier verwendete Methode der vereinfachten Bilanzierung ist angelehnt an das Heizperiodenbilanzverfahren nach EnEV 2007, welches für Nachweise und Energieausweise seit 2009 nicht mehr zulässig ist. Aufgrund seiner geringen Komplexität ist diese aber für überschlägige Berechnungen gut geeignet. Die Hilfsenergie wird in diesem Verfahren nicht berücksichtigt.

Bauteilbezogener, anteiliger	$Q_H = F_x \cdot F_{GT} \cdot A_{Bauteil} \cdot U$ $Q_H : \text{Heizwärmebedarf (Bauteil)} \left[\frac{kWh}{a} \right]$		
Heizwärmebedarf	F_x : Temperaturkorrekturfaktor [-]		
	F_{GT} : Gradtagszahlfaktor $\left[\frac{kKh}{a}\right]$		
		$A_{Bauteil}$: Fläche des zu betrachtenden	
		Bauteils (in Außenmaßen) [m²]	
		U : Wärmedurchgangskoeffizient $\left[\frac{W}{m^2K}\right]$	
Gradtagszahlfaktor	Durchschnittswert für Deutschland, Heizung	gsbetrieb mit Nachabsenkung	
	= 82 kKh/a Länge der Heizperiode 275 Tage	e, Heizgrenztemperatur 15 °C (nicht saniert)	
	= 75 kKh/a Länge der Heizperiode 220 Tage	e, Heizgrenztemperatur 12 °C (teilsaniert)	
	= 66 kKh/a Länge der Heizperiode 185 Tage	e, Heizgrenztemperatur 10 °C (GEG-Standard)	
Temperaturkorrekturfaktor	Nach V DIN 4108-6		
	= 1,0 Außenbauteil, Dach als Systemgrenze		
	= 0,8 oberste Geschossdecke, Abseitenwand		
	= 0,5 Wände und Decken zu unbeheiztren Räumen		
	= 0,6 Unterer Gebäudeabschluss		
	– Kellerdecke/-wände zu unbeheiztem Keller		
	- Fußboden auf Erdreich		
	– Flächen des beheizten Kellers gegen Erdreich		
Äquivalenter U-Wert Fenster /	$U:_{W,eq} = U_W - g \cdot S_F$	$U_{W,eq}$: äquivalenter U-Wert $\left\lceil \frac{W}{m^2K} \right\rceil$	
Bilanzkennwert für transparente Bauteile		U_W : U-Wert Fenster $\left[\frac{W}{m^2K}\right]$	
		g: Gesamtenergiedurchlassgrad [-]	
		S_F : Strahlungsgewinnkoeffizient $\left[\frac{W}{m^2K}\right]$	
Strahlungsgewinnkoeffizient	Nach E DIN/TS 18599-2, Werte für Einfam	l ilienhäuser	
	= 0.9 W/(m ² K) Nordfassade		
	= 1,1 W/(m ² K) Ost-/Westfassade und Dachflächenfenster (Neigung < 15°)		
	= 1,7 W/(m ² K) Südfassade		
Heizenergiebedarf und	$Q_E = Q_H \cdot e$ Q_E : Heizenergiebedarf $\left[\frac{kWh}{a}\right]$		
Heizenergieeinsparung	$\Delta Q_E = Q_{E,IST} - Q_{E,NEU}$	Q_H : Heizwärmebedarf $\left[\frac{kWh}{a}\right]$	
	$\Delta Q_E = Q_{H,IST} \cdot e_{IST} - Q_{H,NEU} \cdot e_{NEU}$	e: Endenergie-Aufwandszahl [-]	
	<u> </u>	1	

	T		1	
Energiebedarf für Heizung und	$Q_E = (Q_H + Q_{TW}) \cdot e$		Q_E : Energiebedarf Heizung und TWW $\left[rac{kWh}{a} ight]$	
Trinkwarmwasserbereitung			Q_H : Heizwärmebedarf $\left[\frac{kWh}{a}\right]$ Q_H : Trinkwarmwasserwärmebedarf $\left[\frac{kWh}{a}\right]$	
			e: Endenergie-Aufwandszahl [-]	
Endenergie-Aufwandszahl	Durchschnittswerte für die Rau	umheizung un	d Warmwasserbe	ereitung (ohne Hilfsenergie)
		Baualter		Aufwandszahl e
	Standardkessel (auch	bis 1986		1,6
	Holzkessel	1987-1994		1,5
		ab 1995		1,4
	Niedertemperaturkessel	bis 1986 ab 1987 - bis 1994		1,4
	Öl/Gas			1,3
	Gas-Brennwert			1,2
	Elektrowärmepumpe			0,4
	Erdreich	ab 1995		0,3
	Elektrowärmepumpe Luft	bis 1994		0,5
		ab 1995		0,4
Primärenergiebedarf für	$Q_P = (Q_H + Q_{TW}) \cdot e_P$	Q_P : Primärenergiebedarf $\left\lceil \frac{kWh}{a} \right\rceil$		giebedarf $\left[\frac{kWh}{a}\right]$
Heizung und Trinkwarmwasserbereitung	Ohne Q_{TW} auch bauteilbezoge anwendbar.	n	Q_H : Heizwärmebedarf $\left[\frac{kWh}{a}\right]$	
	anwendoar.		Q_{TW} : Trinkwar	mwasserwärmebedarf $\left[\frac{kWh}{a}\right]$
		e_P : Primärenergie-Aufwandszahl $[-]$		gie-Aufwandszahl [—]

Sonneneintragskenn-	$S_{vorh} = \frac{\sum_{j} (A_{w,j} \cdot g_{total,j})}{A_{c}}$	S_{vorh} : vorhandener Sonneneintragskennwert [-]
wert DIN 4108-2	$S_{vorh} = {A_G}$	$A_{w,j}$: Fensterfläche des Raumes $[m^2]$
	$g_{total,j} = g \cdot F_c$	$g_{total,j}$: Gesamtenergiedurchlassgrad Glas inkl.
		Sonnenschutz [-]
		g: Gesamtenergiedurchlassgrad Glas [-]
		F _C : Abminderungsfaktor Sonnenschutz [-]
		A_G : Grundfläche des Raumes $[m^2]$
Anforderung nach DIN	$S_{vorh} \leq S_{zul}$	Der maximal zulässige Sonneneintragskennwert
4108-2	$S_{zul} = \sum S_x$	S_{zul} setzt sich zusammen aus:
	$S_{zul} = \sum S_x$	S ₁ Klimaregion, Bauart und Nachlüftung
		S ₂ Fensterflächenanteil
		S ₃ Sonnenschutzglas
		S ₄ Fensterneigung
		S ₅ Orientierung
		S ₆ passive Kühlung

		1	Anteiliger Sonneneintragskennwert S_X						
Nutzung Klimaregion ^a			Wohngebäude			Nichtwohngebäude			
			Α	В	С	Α	В	С	
	Nachtlüftung und Baua	rt							
	Nachtlüftung Bauart ^b								
		leicht	0,071	0,056	0,041	0,013	0,007	0,000	
	ohne	mittel	0,080	0,067	0,054	0,020	0,013	0,006	
		schwer	0,087	0,074	0,061	0,025	0,018	0,011	
S_1	erhöhte Nachtlüftung ^c	leicht	0,098	0,088	0,078	0,071	0,060	0,048	
		mittel	0,114	0,103	0,092	0,089	0,081	0,072	
	$mit n \ge 2 h^{-1}$	schwer	0,125	0,113	0,101	0,101	0,092	0,083	
	hohe Nachtlüftung ^d	leicht	0,128	0,117	0,105	0,090	0,082	0,074	
		mittel	0,160	0,152	0,143	0,135	0,124	0,113	
	mit $n \ge 5 \text{ h}^{-1}$:	schwer	0,181	0,171	0,160	0,170	0,158	0,145	
Grundflächenbezogener Fensterflächenanteil $f_{\mathrm{WG}}^{\mathrm{e}}$									
S_2	$S_2 = a - (b \cdot f_{WG})$	а	0,060 0,030						
	32 - a - (b ')WG)	b	0,231 0,1			0,115			
S_3	Sonnenschutzglas ^{f,i}								
03	Fenster mit Sonnenschutzglasf	0,03							
	Fensterneigung ^{g,i}								
S ₄	$0^{\circ} \le \text{Neigung} \le 60^{\circ} \text{ (gegenübe)}$	-0,035 f _{neig}							
	Orientierung ^{h,i}								
S ₅	Nord-, Nordost- und Nordwest soweit die Neigung gegenübe > 60° ist sowie Fenster, of Gebäude selbst verschattet sin	+0,10 f _{nord}							
	Einsatz passiver Kühlung								
	Bauart								
S_6	leicht		0,02						
	mittel		0,04						
	schwer	0,06							

Eanstarfläch anantaile	Δ	f . Crundflächenherzegener
Fensterflächenanteile	$f_{WG} = \frac{A_W}{A}$	f_{WG} : Grundflächenbezogener
	A_G	Fensterflächenanteil (-)
	$f_{neig} = \frac{A_{w,neig}}{A_{v,neigmt}}$	A_w : Fensterfläche
	w,yesunt	A_G : Nettogrundfläche
	$f_{nord} = \frac{A_{W,nord}}{A_{W,gesamt}}$	$A_{W,neig}$: geneigte Fensterfläche
		$A_{W,gesamt}$: gesamte Fensterfläche
		$A_{W,nord}$: Nord-, Nordost-, Nordwest- orientierte Fensterfläche
Wirksame Wärmespeicherfähigkeit	$C_{wirk} = \Sigma(c_i \cdot \rho_i \cdot d_i \cdot A_i)$	C_{wirk} : wirksame Wärmespeicherfähigkeit [Wh/K]
	Leichte Bauart: $\frac{c_{wirk}}{A_G} < 50 \frac{Wh}{m^2 K}$	c: wirksame Wärmekapazität [Wh/(kgK)]
	Mittlere Bauart: $50 \frac{Wh}{m^2 \kappa} \le \frac{c_{wirk}}{A_G} \le 130 \frac{Wh}{m^2 \kappa}$	ρ: Rohdichte [kg/m³]
	Schwere Bauart: $\frac{C_{wirk}}{A_G} > 130 \frac{Wh}{m^2 K}$	d: wirksame Schichtdicke [m]
		A: Bauteilfläche [m²]

Heizungstechnik, Hydraulik, Wärmepumpen, Photovoltaik, Solarthermie

Wärmemenge /	$Q = c \cdot m \cdot \Delta \theta = c \cdot \rho \cdot V \cdot \Delta \theta$	Q: Wärmemenge [Wh]
Gespeicherte Wärme		c: spez. Wärmekapazität $\left[\frac{Wh}{ka\cdot K}\right]$
	Hinweis zur Rohdichte: Dies ist die Masse eines	m: Masse $[kg]$
	porösen Materials bezogen auf das Volumen	
	einschließlich der Poren- und Hohlräume.	$ \rho $: Dichte $\left[\frac{kg}{m^3}\right]$
		V : Volumen $[m^3]$
		$\Delta\theta$: Temperaturdifferenz [K]
Wärmeleistung	$\Phi = P = \frac{Q}{t}$	$\Phi = P$: Leistung [W]
	t l	Q: Energie, Wärme [Wh]
		t: Zeit [h]
mittlere logarithmische	$\Lambda \theta = \frac{\theta_v - \theta_r}{2}$	$\Delta\theta_m$: mittlere logarithmische
Temperaturdifferenz	$\Delta\theta_m = \frac{\theta_v - \theta_r}{\ln\frac{\theta_v - \theta_i}{\theta_r - \theta_i}}$	Temperaturdifferenz [°C]
		θ_{v} : Vorlauftemperatur [° <i>C</i>]
		θ_r : Rücklauftemperatur [° C]
		θ_i : Rauminnentemperatur [° C]
Umrechnung	$\frac{\Phi_{alt}}{\Phi_{neu}} = \left[\frac{\Delta\theta_{m,alt}}{\Delta\theta_{m,neu}}\right]^n$	$\Delta\theta_m$: mittlere logarithmische
Wärmeleistung	$\Phi_{neu} - \left[\Delta\theta_{m,neu}\right]$	Temperaturdifferenz [°C]
Heizkörper		ϕ : abgegebenen Leistung [W]
		n: Heizkörperexponent [-]
Wärmeerzeugung	$\eta_g = \frac{\phi_{ab,g}}{\phi_{zu,g}} = 1 - q_a - q_s$	$η_g$: Heizkesselwirkungsgrad [-]
Wirkungsgrad	$\phi_{zu,g}$	$\phi_{ab,g}$: abgegebenen Leistung $[W]$
		$\phi_{zu,g}$: zugeführte Leistung $[W]$
		q_a : Abgasverlust
		q_s : Strahlungsverlust
Wärmeerzeugung	$\eta_a = \frac{Q_{ab,g}}{Q_E} = \frac{1}{e}$	η_a : Jahresnutzungsgrad
Jahresnutzungsgrad	$Q_E - Q_E$	$Q_{ab,g}$: Jahresnutzwärmeabgabe $[Wh]$
		Q_E : Endenergiebedarf Brennstoff [Wh]
		e: Erzeugeraufwandszahl
Wärmeerzeugung	$q_B = \frac{t_L}{t_V}$	q_B : Betriebsbereitschaftsverlust [-]
Betriebsbereitschaftsfaktor	$\int_{0}^{AB} t_{V}$	t_L : Betriebszeit [min]
		t_V : Messzeit [min]
Pumpe	$P_{Hyd} = \Delta p \cdot \dot{V}$	P_{Hyd} : hydraulische Leistung [W]
Hydraulische Leistung		\dot{V} : Volumenstrom $\left[\frac{m^3}{h}\right]$
		Δp : Druckdifferenz im Rohrnetz [Pa]
		ap. Drackamerenz ini Romnetz [1 tt]

Pumpe	P_{ab}	η: Pumpenwirkungsgrad
Wirkungsgrad	$\eta = \frac{P_{ab}}{P_{zu}}$	P_{ab} : abgegebenen Leistung [W]
Wilkungograd		P_{zu} : zugeführte Leistung [W]
Arbeit/Energie	$W = P \cdot t$	[P]: Leistung [W]
		W: elektrische / mechanische Energie [Wh]
		[t]: Zeit [h]
Wärmepumpe	$COP = \epsilon = \frac{P_{ab}}{P_{ZIL}} = \frac{\dot{Q}_H}{P_{el}}$	$COP = \epsilon$: Leistungszahl
Leistungszahl		P_{ab} bzw. \dot{Q}_H : abgegebenen Leistung [W]
Carnot –Wirkungsgrad	$\eta_C = \frac{T_o - T_u}{T_c}$	P_{zu} bzw. P_{el} : zugeführte Leistung [W]
	1	T_o : Kondensationstemperatur [K]
	$COP_{max} = \epsilon_C = \frac{1}{\eta_C}$	T_u : Verdampfungstemperatur [K]
		$\eta_{\mathcal{C}}$: Carnotwirkungsgrad
	$COP = \nu \cdot \epsilon_C = \nu \cdot \frac{1}{\eta_C} = \nu \cdot \frac{1}{\frac{T_o - T_u}{T_o}}$	$COP_{max} = \epsilon_C$: Carnot Leistungszahl
	10	ν: Gütegrad
Wärmepumpe	$JAZ = \beta_{JAZ} = \frac{Q_{ab,g}}{Q_{b,f}} = \frac{Q_H}{W_{cl}}$	$JAZ = \beta_{JAZ}$: Jahresarbeitszahl
Jahresarbeitszahl	$Q_{h,f}$ W_{el}	$Q_{ab,g}$ $bzw.$ Q_H : Jahresnutzwärmeabgabe
		[Wh]
		$Q_{h,f}$ bzw. W_{el} : Antriebs- und Hilfsenergie
		[Wh]
Wärmepumpe	$\dot{Q}_{K} = \dot{Q}_{H} - P_{el}$	Q _K : Kälteleistung [W]
Kälteleistung	$\dot{Q}_{K} = \dot{Q}_{H} - \frac{\dot{Q}_{H}}{GOR}$	P_{ab} bzw. \dot{Q}_H : abgegebenen Leistung [W]
	$Q_{K} = Q_{H} - \frac{1}{COP}$	P_{zu} bzw. P_{el} : zugeführte Leistung [W]
		$COP = \epsilon$: Leistungszahl
Photovoltaik	$Q_{f,prod,PV,i} = \frac{E_{sol} \cdot P_{pk} \cdot f_{perf}}{I_{rof}}$	$Q_{f,prod,PV,i}$: monatliche Netto-Strom-
PV-Ertrag nach 18599	I_{ref}	produktion der PV-Anlage [kWh]
-		E_{sol} : monatliche solare Bestrahlungsenergie
		$\left[\frac{kWh}{m^2}\right]$
		P_{pk} : Peakleistung unter
		Standardtestbedingungen [kW]
		f_{perf} : Systemleistungsfaktor [-]
		I_{rev} : Referenzsolarbestrahlungsstärke
		$\left[=1\frac{kW}{m^2}\right]$

Solarthermie	$Q_{Speicher} = U_A \cdot (\theta_i - \theta_e) \cdot \Delta t$	$Q_{Speicher}$: jährlicher Wärmeverlust des
Speicherwärmeverlust	$U \cdot A = U_A$	Speichers [kWh/a]
•		U_A : Wärmedurchgangskoeffizient über die
		Speicheroberfläche gemittelt $\left[\frac{W}{K}\right]$
		A : Speicheroberfläche $[m^2]$
		t: Zeit [h]
		θ_i : Speichertemperatur [K]
		θ_e : Umgebungstemperatur [K]
Solarthermie	$A_{kol} = \frac{f_{sav} \cdot Q_{ref}}{G \cdot \eta_{nutz}}$	A_{kol} : Kollektorfläche $[m^2]$
Auslegung der	$A_{kol} = \frac{1}{G \cdot \eta_{nutz}}$	f_{sav} : Solare Deckungsrate [%]
Kollektorfläche		Q_{ref} : Wärmebedarf des Referenzmodells
	Mit:	ohne Solaranlage $[kWh/a]$
		G: hemisphärische Solarstrahlung auf die
	$Q_{ref} = Q_{TWW} + Q_{RH} + Q_{Spverl} + Q_{Zirk}$	geneigte Fläche $[kWh/(m^2a)]$
	$\begin{aligned} Q_{ref} &= Q_{TWW} + Q_{RH} + Q_{Spverl} + Q_{Zirk} \\ Q_{Zirk} &= l_{Zirk} \cdot Q_{Verl} \cdot t_L \\ \eta &= \frac{Q_{sol}}{G \cdot A_{kol}} \\ f_{sav} &= \frac{Q_{sol}}{Q_{ref}} \end{aligned}$	η_{nutz} : Systemnutzungsgrad [%]
	0	Q_{TWW} : Wärmebedarf Warmwasserbereitung
	$\eta = \frac{Q_{sol}}{G \cdot A_{kol}}$	[kWh/a]
	0	Q_{RH} : Wärmebedarf Raumheizung $[kWh/a]$
	$f_{sav} = \frac{Q_{sol}}{Q_{ref}}$	Q_{Spverl} : Speicherverluste Referenzspeicher
	₹1ej	[kWh/a]
		Q_{Zirk} : Wärmeverluste
	Hinweise:	Zirkulationsleitungsbetrieb [kWh/a]
	Der Wärmebedarf des Referenzmodells ohne	l_{Zirk} : Zirkulationsleitungslänge $[m]$
	Solaranlage Q_{Ref} wird auch als Q_{CONV} bezeichnet	Q_{Verl} : längenbezogener Wärmeverlust
		Zirkulationsleitung $[W/m]$
	Alle Anwendungen auf den Jahreswärmeverbrauch	t_L : Betriebszeit $[h]$
	hochrechnen.	Q_{sol} : Solareintrag eingesparte Nutzenergie
		durch die Solaranlage $[kWh/a]$

Lüftung

Wärmetransport	$\Phi = \dot{V} \cdot \rho \cdot c \cdot (\theta_1 - \theta_2)$	Φ: Wärmestrom [W]
aufgrund von Lüftung	$(\rho \cdot c)_{Luft} = 0.34 Wh/(m^3 K)$	\dot{V} : (Zuluft-)Volumenstrom $\left[\frac{m^3}{h}\right]$
	$\Phi = n \cdot V_{Raum} \cdot \rho \cdot c \cdot (\theta_1 - \theta_2)$	c : spez. Wärmekapazität $\left[\frac{Wh}{kg \cdot K}\right]$
	$n = \frac{\dot{V}}{V_{Raum}}$	$ \rho$: Dichte $\left[\frac{kg}{m^3}\right]$
	V Raum	V : Volumen $[m^3]$
		$\Delta \theta$: Temperaturdifferenz [K]
		n : Luftwechsel $[h^{-1}]$
Spezifische Ventilatorleistung	$P_{SFP} = rac{P}{\dot{V}} = rac{\Delta p}{\eta_{tot}}$	P_{SFP} : spezifische Ventilatorleistung $\left[\frac{W \cdot s}{m^3}\right]$
ventuatorieistung	100	P: elektrische Wirkleistung des
		Ventilatormotors [W]
		V: Nennluftvolumenstrom durch Ventilator
		$\left[\frac{m^3}{s}\right]$
		Δp : Gesamtdruckerhöhung des Ventilators
		[Pa]
		η_{tot} : Gesamtwirkungsgrad von Ventilator,
		Motor und Antrieb in eingebautem Zustand
		[-]
Rückwärmzahl	$\Phi = \frac{t_{22} - t_{21}}{t_{11} - t_{21}}$	Ф: Rückwärmzahl
	$t_{11} - t_{21}$	(Temperaturänderungsgrad) [-]
		t_{11} : Temperatur der Abluft
		t_{21} : Temperatur der Außenluft
		t_{22} : Temperatur der Zuluft
Wärmebereitstellungsgrad	$\eta'_{WRG} = \frac{Q_{22} - Q_{21}}{Q_{11} - Q_{21}}$	η'_{WRG} : Wärmebereitstellungsgrad
	$Q_{11} - Q_{21}$	Q_{11} : Abluft – Wärmeinhalt
		Q_{22} : Zuluft – Wärmeinhalt
		Q ₂₁ : Außenluft – Wärmeinhalt
Heizleistung zur	$\dot{Q_H} = \dot{m_L} \cdot \Delta h = \dot{m_L} \cdot (h_2 - h_1)$	Q_H : Heizleistung
Erwärmung feuchter Luft		\dot{m}_L : Luft-Massenstrom $[kg/h]$
(siehe Mollier-Diagramm)		Δh : Enthalpie - Differenz
		h_1 : Enthalpie an Punkt 1

Beleuchtung

Lichtausbeute	$\eta = rac{\phi}{P_{el}}$	η : Lichtausbeute $\left[\frac{lm}{W}\right]$
	i el	φ: Lichtstrom [lm]
		P_{el} : elektrische Leistung [W]
Summe der	$P = n \cdot P_L \cdot k_{BG}$	P: Summe der Systemleistung aller
Systemleistung		Leuchten im Berechnungsbereich [W]
		n: Anzahl der Leuchten [-]
		P_L : elektrische Leistung der Lampen $[W]$
		k_{BG} : Faktor zur Ermittlung der
		Systemleistung aus der Leistungsaufnahme
		der Lampe
Spezifische Leistung von	$p_{j,Ist} = \frac{P_{j,Ist}}{A_i}$	$p_{j,lst}$: spezifische installierte Leistung für
Leuchten	$P_{j,lst} - A_{j}$	Beleuchtung im Berechnungsbereich j $\left[\frac{W}{m^2}\right]$
		$P_{j,lst}$: Summe der Systemleistung aller
		Leuchten im Berechnungsbereich j [W]
		A_j : Fläche des Berechnungsbereichs j $[m^2]$
Spezifische elektrische	$p = p_{lx} \cdot \overline{E}_m \cdot k_{WF} \cdot k_A \cdot k_L \cdot k_{VB}$	p : spez. elektrische Bewertungsleistung $\left[\frac{w}{m^2}\right]$
Bewertungsleistung		p_{lx} : Bezugswert der spez. elektrische
		Bewertungsleistung $\left \frac{W}{m^2 \cdot lx} \right $
		\bar{E}_m : Wartungswert der Beleuchtungsstärke $[lx]$
		k_{WF} : Anpassungsfaktor zur Berücksichtigung des Wartungsfaktors [-]
		k_A : Minderungsfaktor Bereich Sehaufgabe $[-]$
		k_L : Anpassungsfaktor für nicht stabförmige Leuchtstofflampen $[-]$
		k_{VB} : Anpassungsfaktor zur
		Berücksichtigung der Beleuchtung vertikaler Flächen[-]

Impressum

Herausgeber

Bundesamt für Wirtschaft und Ausfuhrkontrolle Leitungsstab Presse- und Öffentlichkeitsarbeit Frankfurter Str. 29 - 35 65760 Eschborn

http://www.bafa.de/

Referat: 511

E-Mail: qualifikationspruefung-energieberatung@bafa.bund.de

Das Bundesamt für Wirtschaft und Ausfuhrkontrolle ist mit dem audit berufundfamilie für seine familienfreundliche Personalpolitik ausgezeichnet worden. Das Zertifikat wird von der berufundfamilie GmbH, einer Initiative der Gemeinnützigen Hertie-Stiftung, verliehen.

Die vorliegende Formelsammlung stellt eine Hilfestellung für die Qualifikationsprüfung Energieberatung dar. Für die Prüfung könnten zusätzliche Formeln und Konstanten erforderlich sein.