Homework 13 (Due Nov 10, 2023)

Jack Hyatt MATH 554 - Analysis I - Fall 2023

December 28, 2023

Justify all of your answers completely.

1. (a) Show that the function

$$f(x) = \frac{x}{1+x^2}$$

is Lipschitz on the closed interval [-b, b] for any b > 0.

Proof. Let $x, y \in [-b, b]$. Then

$$|f(x) - f(y)| = \left| \frac{x}{1 + x^2} - \frac{y}{1 + y^2} \right| = \left| \frac{x + xy^2 - y - yx^2}{(1 + x^2)(1 + y^2)} \right|$$
$$= |x - y| \left| \frac{1 - xy}{x^2y^2 + x^2 + y^2 + 1} \right| \le |x - y| |1 - xy| \le |x - y| |1 + b^2|$$

Letting $1+b^2$ be the Lipschitz constant shows that f(x) is Lipschitz on [-b,b].

(b) Use this to give a detailed N, ϵ proof that if $\langle x_n \rangle_{n=1}^{\infty}$ us a sequence of real numbers with $\lim_{n \to \infty} x_n = L$ that

$$\lim_{n\to\infty} \frac{x_n}{x_n^2+1} = \frac{L}{L^2+1}$$

Proof. Assume $\lim_{n\to\infty} x_n = L$.

Then $\exists N \text{ s.t. } n > N \implies |x_n - L| < \frac{\epsilon}{b^2 + 1}$.

Let f(x) be on the interval [-L, L], $\epsilon > 0$, and n > N.

Then

$$|f(x) - f(L)| = \left| \frac{x_n}{x_n^2 + 1} - \frac{L}{L^2 + 1} \right| \le (b^2 + 1)|x_n - L| < (b^2 + 1)\frac{\epsilon}{b^2 + 1}$$

So then

$$\left| \frac{x_n}{x_n^2 + 1} - \frac{L}{b^2 + 1} \right| < \epsilon$$

which proves the limit.

2. Let (A, d_A) and (B, d_B) be metric spaces. Let $E := A \times B$ and d on E by

$$d((a_1,b_1),(a_2,b_2)) = d_A(a_1,a_2) + d_B(b_1,b_2)$$

(a) Prove this is a metric on $E = A \times B$

Proof. Clearly d is symmetric.

Since d_A and d_B are nonnegative, $d = d_A + d_B \ge 0$.

$$d((a_1,b_1),(a_2,b_2)) = 0 \iff d_A(a_1,a_2) + d_B(b_1,b_2) = 0 \iff d_A(a_1,a_2) = 0 \text{ and } d_B(b_1,b_2) = 0 \iff a_1 = a_2 \text{ and } b_1 = b_2.$$

Now to show triangle inequality:

$$d((a_1, b_1), (a_2, b_2)) = d_A(a_1, a_2) + d_B(b_1, b_2)$$

$$\leq d_A(a_1, a') + d_A(a', a_2) + d_B(b_1, b') + d_B(b', b_2)$$

$$= d_A(a_1, a') + d_B(b_1, b') + d_A(a', a_2) + d_B(b', b_2)$$

$$= d((a_1, b_1), (a', b')) + d((a', b'), (a_2, b_2))$$

So all 4 requirements hold for d to be a metric on E.

(b) Prove that if A and B are complete, then so is E.

Proof. Assume both A and B are complete. Then every Cauchy sequence in A and B will converge.

It has been shown previously that if $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$, then $\lim_{n\to\infty} (x_n, y_n) = (x, y)$.

Let $\langle (a_n, b_n) \rangle_{n=1}^{\infty}$ be a Cauchy sequence in E.

So then $\forall \epsilon > 0$, $\exists N$ s.t. $m, \ell > N \implies d((a_m, b_m), (a_\ell, b_\ell)) < \epsilon$. Since $d = d_A + d_B$, then $d_A(a_m, a_\ell), d_B(b_m, b_\ell) \le d((a_m, b_m), (a_\ell, b_\ell))$. So $d_A(a_m, a_\ell), d_B(b_m, b_\ell) < \epsilon$.

So then $\langle a_n \rangle_{n=1}^{\infty}$ and $\langle b_n \rangle_{n=1}^{\infty}$ are Cauchy sequences in A and B respectively.

So then $\langle a_n \rangle_{n=1}^{\infty}$ and $\langle b_n \rangle_{n=1}^{\infty}$ converge since A and B are complete. So then $\langle (a_n, b_n) \rangle_{n=1}^{\infty}$ also converges, meaning E is also complete.

(c) Prove that if A and B are both sequentially compact, then so is E.

Proof. Assume both A and B are seq. compact. Then every sequence in A and B will have a convergent subsequence.

Let $\langle (a_n, b_n) \rangle_{n=1}^{\infty}$ be a sequence in E.

So then $\langle a_n \rangle_{n=1}^{\infty}$ has a convergent subsequence $\langle a_{n_j} \rangle_{j=1}^{\infty}$.

We can't say that $\langle b_{n_j} \rangle_{j=1}^{\infty}$ converges, but since B is seq. compact, can say that there exists $\langle b_{n_{j_k}} \rangle_{k=1}^{\infty}$ that does converge.

 $\langle a_{n_{j_k}} \rangle_{k=1}^{\infty}$ is a subsequence of $\langle a_{n_j} \rangle_{j=1}^{\infty}$, which already converged. So $\langle a_{n_{j_k}} \rangle_{k=1}^{\infty}$ converges too.

So then $\langle (a_{n_{j_k}}, b_{n_{j_k}}) \rangle_{k=1}^{\infty}$ is a convergent subsequence of $\langle (a_n, b_n) \rangle_{n=1}^{\infty}$, proving E is complete.

3. Let (E, d) and (E', d') be metric spaces and let $f: E \to E'$ be Lipschitz. Prove if $V \subseteq E'$ is an open set, then

$$U := f^{-1}[V] = \{ p \in E : f(p) \in V \}$$

is also open.

Proof. Let $p \in U$. Then $f(p) \in V$.

Since V is open, that means $\exists r > 0$ s.t. $B(f(p), r) \subseteq V$ by definition of open.

Let M be the Lipschitz constant for f. Let $\delta = r/M$.

If $q \in B(p, \delta)$, then $d(p, q) < r/M \implies Md(p, q) < r$.

Since $d'(f(p), f(q)) \leq Md(p, q)$, we know d'(f(p), f(q)) < r which means $f(q) \in B(f(p), r) \subseteq V$.

So then $q \in B(p, \delta) \implies f(q) \in V \implies q \in U$.

So then $B(p, \delta) \subseteq U$, which means U is open by definition of open.

- 4. Let \mathbb{R}^2 have its usual metric.
 - (a) Let $\vec{a}, \vec{b} \in \mathbb{R}^2$. Prove the map $f : \mathbb{R} \to \mathbb{R}^2$ defined by $f(t) = (1 t)\vec{a} + t\vec{b}$ is Lipschitz.

Proof. Let $x, y \in \mathbb{R}$. Then

$$||f(x) - f(y)|| = ||(1 - x)\vec{a} + x\vec{b} - (1 - y)\vec{a} - y\vec{b}||$$
$$= ||(y - x)\vec{a} + (x - y)\vec{b}|| = |x - y| \cdot ||\vec{b} - \vec{a}||$$

Since $||\vec{b} - \vec{a}|| \ge 0$, f is Lipschitz.

(b) For $\vec{a}, \vec{b} \in \mathbb{R}^2$ define the segment with endpoints \vec{a} and \vec{b} as

$$[\vec{a}, \vec{b}] = \{(1-t)\vec{a} + t\vec{b} : 0 \le t \le 1\}$$

Prove $[\vec{a}, \vec{b}]$ is connected.

Proof. BWOC, let $[\vec{a}, \vec{b}] = A \cup B$ be a disconnection.

Let $A_0 = \{t \in [0,1] : (1-t)\vec{a} + t\vec{b} \in A\}$ and similarly for B_0 .

We can rewrite A_0 as $\{t \in [0,1] : f(t) \in A\}$ and similarly for B_0 .

We know that f is Lipschitz from (a) and since both A and B are open (know from them being a disconnection), Problem 2 tells us that the preimage of A and B through f is also open. So A_0 and B_0 are both open.

Since A and B are disjoint, so will A_0 and B_0 since taking the preimage preserves that property.

Obviously $A_0 \neq \emptyset \neq B_0$ and $A_0 \cup B_0 = [0, 1]$.

So then $A_0 \cup B_0$ is a disconnection of [0,1], which is a contradiction since closed intervals of the reals are connected.

So then the disconnection $A \cup B$ cannot exist, making \vec{a}, \vec{b}] connected.

- 5. Let E be a metric space.
 - (a) Show that if E is compact, then any any collection, \mathcal{F} , of closed subsets of E with the finite intersection property has nonempty intersection. That is if \mathcal{F} has the finite intersection property, then

$$\bigcap \mathcal{F} \neq \emptyset$$

Proof. BWOC, assume \mathcal{F} has the finite intersection property and $\bigcap \mathcal{F} = \emptyset$.

Let $\mathcal{U} = \{F^c : F \in \mathcal{F}\}.$

Since F is closed $\forall F \in \mathcal{F}$, then F^c is open.

Since $\cap \mathcal{F} = \emptyset$, then there does not exist any element that is in all $F \in \mathcal{F}$. So then $\forall x \in E, \exists F \in \mathcal{F} \text{ s.t. } x \in F^c$.

So then \mathcal{U} is an open cover of E.

Since E is compact, then $\exists \{F_1^c, \dots, F_k^c\}$ that is a finite subcover of E.

Since $E = \bigcup_{i=1}^k F_i^c$, then $E^c = (\bigcup_{i=1}^k F_i^c)^c \implies \emptyset = \bigcap_{i=1}^k F_i$.

But that contradicts that \mathcal{F} has the finite intersection property, so $\bigcap \mathcal{F} \neq \emptyset$.

(b) Conversely, show if every collection of closed sets, \mathcal{F} , of E with the finite intersection property has nonempty intersection, then E is compact.

Proof. Let \mathcal{U} be an open cover of E. BWOC, assume \mathcal{U} does not have a finite subcover.

Let $\mathcal{F} := \{U^c : U \in \mathcal{U}\}.$

Since U are open sets, then U^c are closed, meaning \mathcal{F} is a collection of closed sets.

Since no finite subset of \mathcal{U} can cover E, that means for every finite subset $\mathcal{U}_0 \subseteq \mathcal{U}$ there is an element $x \in E$ s.t. $\forall U \in \mathcal{U}_0, x \notin U$. So then $\forall U \in \mathcal{U}_0, x \in U^c$.

So then for any $\mathcal{F}_0 = \mathcal{U}_0$, there exists an element $x \in E$ s.t. $x \in \cap \mathcal{F}_0$. This means \mathcal{F} has the finite intersection property.

Then by our assumption in the problem, $\cap \mathcal{F} \neq \emptyset$. So there is an element in E that is in every element of \mathcal{F} , meaning there is an element of E that is not in every element of U, which contradicts that U is an open cover of E.

So then U must have a finite sub cover, meaning E is compact.