

Sheet 6 Signal Space Representation

Problem 1

- 1 In Fig.1, it displays the waveforms of four signals $s_1(t)$, $s_2(t)$, $s_3(t)$, and $s_4(t)$.
 - (a) Use Gram-Schmidt orthogonalization procedure; find an orthonormal basis for this set of signals.
 - (b) Construct the corresponding signal-space diagram.

Problem 2

(115.1*)*

- 2- i- using the Gram-Schmidt orthogonalization procedure, find a set of orthonormal basis fuction to represent the three signals s_1 (t), s_2 (t), and s_3 (t) shown in the Fig.2.
 - ii- Express each of these signals in terms of the set of basic functions found in part(a).

Problem 3

3- The basis signals of a 3-dimensional signal space are given by:

$$\Phi_1(t) = p(t), \ \Phi_2(t) = p(t - T_0), \ \text{and} \ \Phi_3(t) = p(t - 2T_0)$$

Where:
$$p(t) = \frac{1}{\sqrt{T_o}} \{ u(t) - u(t - T_o) \}$$

Sketch the waveforms of the signals represented by (1,1,0), (2,-1,1), (3,2,-1/2), and (-1/2,-1,1) in this space.

Problem 4

- 4- If p(t) is as in problem 3 and $\Phi_k(t) = p[t (k-1)T_0], k = 1,2,3,4,5$.
 - a) Sketch the signals represented by (-1,2,3,1,4), (2,1,-4,-4,2), (3,-2,3,4,1), and (-2,4,2,2,0) in this space.
 - b) Find the energy of each signal.
 - c) Find the pairs of signals that are orthogonal.