$$\begin{split} y &= 0 \text{ für } x < 0 \text{ und } y = 2x \cdot e^{-\frac{ax^2}{2}} \text{ für } x \geq 0. \text{ Sei also nun } x \geq 0. \\ y' &= 2 \cdot e^{-\frac{ax^2}{2}} (1 - ax^2) \\ y'' &= 2ax \cdot e^{-\frac{ax^2}{2}} (ax^2 - 3) \\ y''' &= 2a \cdot e^{-\frac{ax^2}{2}} (6ax^2 - a^2x^4 - 3), \text{ jeweils mit TI89} \end{split}$$

a) Aus y' = 0 folgt x_1 = $a^{-0.5}$. Da y''(x_1) < 0, so H($a^{-0.5}$ | $2a^{-0.5}$ $e^{-0.5}$) Hochpunkt. Tiefpunkte für alle $x \le 0$, y = 0.

Aus y'' = 0 folgt
$$x_2 = \sqrt{\frac{3}{a}}$$
. Da y'''(x_2) $\neq 0$, so W($\sqrt{\frac{3}{a}} \mid 2\sqrt{\frac{3}{a}} \text{ e}^{-1.5}$) Wendepunkt.

b) Skizze für a= 1:

c) $x_1 = a^{-0.5}$ und $y_1 = 2a^{-0.5} e^{-0.5}$. Also $y_1 = 2x_1 e^{-0.5}$. Die Hochpunkte liegen also auf der Geraden mit Gleichung $y = \frac{2}{\sqrt{g}}x$.

d) Nach TI89 (oder direkt) ist
$$2\int x \cdot e^{-\frac{ax^2}{2}} dx = -\frac{2}{a} \cdot e^{-\frac{ax^2}{2}}$$
Also ist der Flächeninhalt $F(a) = \lim_{b \to \infty} \int_0^b 2x \cdot e^{-\frac{ax^2}{2}} dx = \frac{2}{a} \lim_{b \to \infty} (-e^{\frac{-ab^2}{2}} + e^0) = \frac{2}{a}$.

Da nach Voraussetzung $F(a) = a$, so $\frac{2}{a} = a$, also $a = \sqrt{2}$, da $a > 0$.

a) totale Wahrscheinlichkeit

P(einwandfrei) =
$$P(Vertrag) \cdot P(einwandfrei | Vertrag) + P(kein Vertrag) \cdot P(einwandfrei | kein Vertrag)$$

= $2/3 \cdot 0.82 + 1/3 \cdot 0.70 = 0.78$

b) Erwartungswert der Reparaturkosten

$$E = 0.0.70 + 150.0.15 + 250.0.10 + 600.0.05 = 77.50$$
 Fr.

c) Formel von Bayes

$$P(keinVertrag|\ Brennerstreikt) = \frac{P(keinVertrag) \cdot P(Brennerstreikt|\ keinVertrag)}{P(Brennerstreikt)} \\ = \frac{1/3 \cdot 0.30}{1-0.78} \approx \ \textbf{0.45}$$

d) binomische Verteilung, p = 0.7

$$P = \sum_{k=16}^{20} {20 \choose k} p^k (1-p)^{20-k} \approx 0.2375$$
 (mit TI 89)

e) Nullhypothese: P(einwandfrei) = p = 0.78

Testgrösse X: Anzahl einwandfreier Brenner binomisch verteilt→ Normalverteilung

n = 200,
$$\mu$$
 = np = 156, σ = (np(1-p))^{0.5} = 5.86

standardisierte Normalverteilung $u = \frac{x - \mu}{\sigma}$

Einseitiger Test mit Verwerfungsbereich V = $\{0,1, ... x_0\}$

Fehler 1. Art
$$\alpha$$
 = 0.05 \rightarrow Φ (-u₀) = 0.95 \rightarrow u₀ = -1.65 (aus Tabelle) $x_0 = \mu + u_0 \sigma = 146.3$

 $V = \{0,1, ..., 146\}$ Verwerfungsbereich:

Entscheid: Die Nullhypothese wird beibehalten

a) Minimaltransversale mit Fusspunkten $X \in g$ und $Y \in h$

Richtung
$$\vec{a}^* = \begin{pmatrix} 4 \\ 3 \\ -2 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ -8 \\ 4 \end{pmatrix} \rightarrow \vec{a} = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$

Ebene (h,a):
$$(1 \cdot 1 + 2 \cdot 2) \times + (2 \cdot 2 - 0 \cdot 1) \times + (0 \cdot (-2) - 1 \cdot 2) \times = ?$$

$$5x + 4y - 2z = 5 \cdot 5 + 4 \cdot 0 - 2 \cdot 1 = 23$$

mit g durchstossen
$$5(5+4t)+4(8+3t)-2(-1-2t) = 23$$

 $36 t = -36 \rightarrow t = -1$

Minimaltransversale t:
$$\vec{r} = \begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix} + t \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$

$$1 + 2t = 5$$

mit h schneiden
$$5-2t=t' \rightarrow t=2, t'=1$$

$$1+t=1+2t'$$

Abstand d (g,h) =
$$\overline{XY} = \sqrt{4^2 + 4^2 + 2^2}$$
 = 6

b) Die Kugel hat die Strecke XY als Durchmesser

M (3 / 3 / 2),
$$r_K = 3$$

Gleichung $(x-3)^2 + (y-3)^2 + (z-2)^2 = 9$

c) Der Kreiszylinder hat g als Achse und berührt h in Y, der Radius ist r_Z = 6 Alle Punkte P (x / y / z) der Fläche haben von g den Abstand r_Z G bezeichne den festen Punkt und \vec{b} den Richtungsvektor von g. Dann ist der

Abstand
$$r_z = \frac{|\overline{GX} \times I|}{|\overline{b}|}$$

$$r_{z} = \frac{\left| \overline{G} \vec{X} \times \vec{b} \right|}{\left| \vec{b} \right|}$$

$$6 \cdot \sqrt{29} = \begin{pmatrix} x - 5 \\ y - 8 \\ z + 1 \end{pmatrix} \times \begin{pmatrix} 4 \\ 3 \\ -2 \end{pmatrix}$$
 (mit TI 89)

Zylinder $13x^2 + 20y^2 + 25z^2 - 24xy + 12yz + 16zx + 78x - 188y - 126z - 550 = 0$

d) Der halbe Öffnungswinkel $0 < \phi < 90^\circ$ wird als Winkel zwischen dem Richtungsvektor $\pm \vec{c}$ von h und dem Vektor von der Kegelspitze $S \in h$ zu einem Punkt $T \in g$ gemessen.

$$\begin{split} |\vec{c} \cdot \overrightarrow{S} \vec{T}| &= |\vec{c}| |\overline{S} \vec{T}| \cos \phi \\ &\cos \phi = \frac{\left| 0 \left(5 + 4t - 5 \right) + 1 \left(8 + 3t - 3 \right) + 2 \left(-1 - 2t - 7 \right) \right|}{\sqrt{5} \sqrt{\left(4t \right)^2 + \left(3t + 5 \right)^2 + \left(2t + 8 \right)^2}} \\ &\cos \phi = \frac{t + 11}{\sqrt{5} \sqrt{29t^2 + 62t + 89}} \end{split}$$

t ist nun so zu bestimmen, dass φ minimal wird

Ableitung
$$\frac{d}{dt}\cos\phi = \frac{-36}{\sqrt{5}}\frac{8t+7}{(29t^2+62t+89)^{1.5}} \qquad \text{(mit TI 89)}$$
 Extremstelle
$$t_{\text{Extr}} = \frac{-7}{8}$$
 halbeÖffnung
$$\cos\phi_{\text{Min}} = 0.6$$

$$\phi_{\text{Min}} \approx 53.13^{\circ}$$

Lösungsvariante: ϕ_{Min} ist der Winkel zwischen der Kegelachse h und der Tangentialebene E = (S, g). Sei P(5/8/-1) \in g.

E hat den Normalenvektor
$$\vec{n}_{hilf} = \vec{v}_g \times \overrightarrow{SP} = \begin{pmatrix} 4 \\ 3 \\ -2 \end{pmatrix} \times \begin{pmatrix} 0 \\ -5 \\ 8 \end{pmatrix} = \begin{pmatrix} 14 \\ -32 \\ -20 \end{pmatrix}$$
, also $\vec{n} = \begin{pmatrix} -7 \\ 16 \\ 10 \end{pmatrix}$

Damit
$$\cos \varphi^* = \frac{\begin{pmatrix} -7 \\ 16 \\ 10 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}}{\sqrt{5} \sqrt{405}} = 0.8$$
, also $\varphi_{Min} = 90^\circ - \varphi^* \approx 53.13^\circ$

Lösung Nr 4

- a) Für Fixpunkt: z = (1 i)z 2i, also z = -2. f ist Drehstreckung um P(-2) mit Faktor $k = |1 - i| = \sqrt{2}$ und Drehwinkel $\alpha = \arg(1 - i) = -45^{\circ}$ bzw. 315°.
- b) w = f(z) = g(z), also z^2 (1 -i) z +1.5i = 0. Mit TI 89 folgt z_1 = 1.5(1 i) und z_2 = -0.5(1 i).
- c) z = x + iy. Dann gilt für g: $w = u + iv = x^2 y^2 + 2xyi 0.5i$, also $u = x^2 y^2$ und v = 2xy 0.5.

Die Parallele zur imaginären Achse durch P(2 + i) hat die Gleichung u = 2. Also gilt für alle gesuchten Punkte Z(z) die Gleichung $\frac{x^2}{2} - \frac{y^2}{2} = 1$. Die Punkte liegen daher auf der Hyperbel mit Mittelpunkt (0/0) und Halbachsen a = b = $\sqrt{2}$:

d) Für den Mittelpunkt M(w) der Strecke AB gilt: $w = 0.5((1 - i)z - 2i + 3(1 + i)\bar{z} - 4)$ Mit z = x + iy folgt w = u + iv = 2x + 2y - 2 + i (x - y - 1), also u = 2x + 2y - 2 und v = x - y - 1. Daraus folgt x = 0.25 (u + 2v + 4) und y = 0.25 (u - 2v)Mit $|z| = \sqrt{2}$, also $x^2 + y^2 = 2$ folgt $(u + 2)^2 + 4(v + 1)^2 = 16$, d.h.

M bewegt sich auf der Ellipse mit Mittelpunkt (-2 | -1) und Halbachsen a=4 und b=2.

a) Aus $f = f^{-1}$ folgt $f^{2} = I$ (Identität)

f²:
$$x'' = a (ax - 3y) - 3(x + (a - 4) y) = (a^2 - 3) x + (-6a + 12) y$$

 $y'' = ax - 3y + (a - 4) (x + (a - 4) y) = (2a - 4) x + (a^2 - 8a + 13) y$

Damit 2a - 4 = 0, also a = 2

Kontrolle: 4 - 3 = 1, -12 + 12 = 0, 4 - 16 + 13 = 1, also tatsächlich folgt $f^2 = I$ (Identität)

f:
$$x' = 2x - 3y$$

 $y' = x - 2y$

Abbildungsdeterminante = -1. Da $\binom{2-1}{1} \mid \mid \binom{-3}{-2-1}$, so ist f perspektive Affinität mit Achse s: x - 3y = 0 und Affinitätsrichtung r $\mid \mid \binom{1}{1}$. f ist Affinspiegelung (Winkel $\alpha = \angle$ (r,s) = 26.57°)

b)
$$y' - xy \cos x = 0$$
, also $\frac{dy}{dx} = xy \cos x$
$$\int \frac{dy}{y} = \int x\cos x \ dx$$
, also $\ln |y| = \cos x + x\sin x + C_1$, $C_1 \in \mathbb{R}$ (Integration mit TI89)
$$|y| = C_2 e^{\cos x + x \sin x} \quad \text{mit } C_2 \ge 0$$

$$y = f(x) = C e^{\cos x + x \sin x} \quad mit \quad C \in \mathbb{R}$$

(Die Kontrolle mit TI89 mit deSolve ist möglich!)

c) Beh.:
$$s_n = \sum_{i=1}^n \frac{i-1}{i!} = 1 - \frac{1}{n!}$$
 für alle $n \in \mathbb{N}$ (*) (direkt mit TI89)

Beweis:

I Verankerung: (*) gilt für n = 1:
$$s_1 = \frac{0}{1!} = 0 = 1 - \frac{1}{1!}$$

II Ind.vor.: (*) gelte für n = k, d.h.
$$s_k = \sum_{i=1}^k \frac{i-1}{i!} = 1 - \frac{1}{k!}$$

Zu zeigen: Dann gilt (*) auch für n = k+1, d.h. $s_{k+1} = \sum_{i=1}^{k+1} \frac{i-1}{i!} = 1 - \frac{1}{(k+1)!}$

In der Tat:
$$s_{k+1} = s_k + \frac{k+1-1}{(k+1)!} = 1 - \frac{1}{k!} + \frac{k}{(k+1)!} = 1 - \frac{k+1-k}{(k+1)!} = 1 - \frac{1}{(k+1)!}$$

Aus I und II folgt die Behauptung.