

Título: "GRAFICOS DE EFECTOS"

N° AFS-TECPETROL-0103-R-0003-E35S ANEXO III GRAFICOS DE EFECTOS

Revisión:

Fecha de emisión:

16-09-19

GRAFICOS DE EFECTOS

ESTACIÓN N°35 SUR EL TORDILLO

ANEXO III - GRÁFICOS DE EFECTOS

Título: "GRAFICOS DE EFECTOS"

N° AFS-TECPETROL-0103-R-0003-E35S ANEXO III GRAFICOS DE EFECTOS

Revisión: A

Fecha de emisión:

16-09-19

1. OBJETO Y ALCANCE

Para efectuar la simulación de los distintos Escenarios de Riesgo propuestos, se ha utilizado el software SCRI-Modelos ® 2.0, de la firma DH S.A. de C.V., el cual a partir de los datos de operación (presión, temperatura y sustancia), caudales de fugas y condiciones meteorológicas del lugar, permite establecer los daños sobre las instalaciones y personas expuestas, mediante la utilización de gráficos y curvas de radiación, concentración explosiva, altura e inclinación de llama, concentración tóxica, etc.

2. LECTURA E INTERPRETACION DE LOS GRAFICOS DE EFECTOS

A continuación, se describen los distintos tipos de gráficos que han sido obtenidos, junto con sus referencias y una breve descripción de cómo se interpretan.

2.1 CONCENTRACION - DISTANCIA

El Gráfico Concentración – Distancia muestra la dispersión de una nube de vapor y/o gas, originada a partir de un dado punto de fuga.

Existen dos valores de concentración de la mezcla de gas, vapor o niebla inflamable con el aire, que resultan de interés:

- Límite Explosivo Superior (LES): valor de concentración de mezcla por encima de la cual no se formará una atmósfera explosiva.
- Límite Explosivo Inferior (LEI): valor de concentración de mezcla por debajo de la cual no se formará una atmósfera explosiva.

El mismo consta de tres áreas sombreadas con distintos colores:

- El sector más interno, de color rojo, indica dónde la concentración de la mezcla de gas o vapor con el aire, es igual o superior al Límite Explosivo Superior (LES).
- El sector intermedio, de color amarillo, indica dónde la concentración de la mezcla de gas o vapor con el aire, se encuentra entre el LES y el LEI.
- El sector más externo, de color verde, indica dónde la concentración de la mezcla de gas o vapor con el aire, se encuentra entre el LEI y el 50% de dicho valor.

Los gráficos Concentración-Distancia son presentados en diferentes capas, se visualizan por el nivel (altura).

A continuación, se muestran gráficos típicos a modo de ejemplo:

Título: "GRAFICOS DE EFECTOS"

N° AFS-TECPETROL-0103-R-0003-E35S ANEXO III GRAFICOS DE EFECTOS

Revisión: A

Fecha de emisión:

16-09-19

Gráfica de Radios de Afectación a la altura de interés (2.00 m) F (Muy Estable) Temp:20.0°C Hum:50 % Viento:1.5 m/s a 10.00 m

REFERENCIAS

50 % del LEI
LEI
LES

Título: "GRAFICOS DE EFECTOS"

N° AFS-TECPETROL-0103-R-0003-E35S ANEXO III GRAFICOS DE EFECTOS

Revisión:

Fecha de emisión:

16-09-19

2.2 GRAFICOS RADIACION - DISTANCIA

Jet Fire Horizontal

El gráfico Radiación – Distancia permite determinar la radiación térmica, en este caso la producida por un incendio tipo Jet Fire en dirección horizontal, la cual es evaluada a una determinada altura (por ejemplo, a nivel del terreno) en función de la distancia.

En el eje de ordenadas se grafica el valor de radiación térmica, en kW/m², y en el eje de abscisas, la distancia en metros desde el punto de fuga, siguiendo la dirección del viento, a los efectos de considerar el caso más desfavorable para la evaluación de las consecuencias.

Gráfica de Radiación contra Distancia a nivel de piso.

1: "Escenario para Jet Fire" (Hum=50% a 20.0 °C)

Título: "GRAFICOS DE EFECTOS"

N° AFS-TECPETROL-0103-R-0003-E35S ANEXO III GRAFICOS DE EFECTOS

Revisión: A

Fecha de emisión:

16-09-19

Pool Fire

El gráfico Radiación – Distancia permite determinar la radiación térmica producida por un incendio tipo charco (Pool Fire), medida una determinada altura (por ejemplo a nivel del terreno), en función de la distancia.

En el eje de ordenadas se grafica el valor de radiación térmica, en kW/m², y en el eje de abscisas, la distancia en metros medida desde el centro del charco (*), siguiendo la dirección del viento, a los efectos de considerar el caso más desfavorable para la evaluación de las consecuencias.

Gráfica de Radiación contra Distancia a nivel de piso.

(*) A veces, dependiendo del escenario, puede ser conveniente graficar la radiación del pool fire en función de la distancia medida desde el punto de fuga.

Título: "GRAFICOS DE EFECTOS"

N° AFS-TECPETROL-0103-R-0003-E35S ANEXO III GRAFICOS DE EFECTOS

Revisión:

Fecha de emisión:

16-09-19

2.4 GRAFICOS FRENTE DE LLAMA - DISTANCIA

En el gráfico Frente de llama – Distancia se muestra el alcance del frente de llama de la onda explosiva, al producirse la deflagración de la nube de vapor o gas. Se asume que la ignición tiene lugar en el frente de la nube (área del LEI) del gráfico de dispersión.

Gráfica de Radios de Afectación

^(*) Los valores de referencia se determinan de acuerdo al tipo de estudio de radicación que se quiera estudiar, el valor de referencia de distancia es tomado a nivel del suelo.

Título: "GRAFICOS DE EFECTOS"

N° AFS-TECPETROL-0103-R-0003-E35S ANEXO III GRAFICOS DE EFECTOS

Revisión:

Fecha de emisión:

16-09-19

3. SUSTANCIAS Y PRODUCTOS

Las principales sustancias de esta planta, son las que se listan a continuación, con sus características más relevantes, desde el punto de vista de su peligrosidad:

TABLA I - GAS NATURAL (METANO)

CARACTERISTICAS		MAGNITUD
Límites explosivos (% de volumen en aire)		
• Inferior	(LEI)	4,4
Superior	(LES)	17,0
Punto de inflamación	(°C)	
Punto de ebullición	(°C)	- 162
Temperatura de ignición	(°C)	537
Densidad del gas relativa al aire		0,55

CLASE DE TEMPERATURA	GRUPO	
T1	IIA	

Título: "GRAFICOS DE EFECTOS"

N° AFS-TECPETROL-0103-R-0003-E35S ANEXO III GRAFICOS DE EFECTOS

Revisión:

Fecha de emisión:

16-09-19

TABLA II – PETRÓLEO

CARACTERISTICAS		MAGNITUD	
Límites explosivos (% de volumen en aire)			
Inferior	(LEI)	1,1	
Superior	(LES)	6	
Punto de inflamación	(°C)	< -20	
Punto de ebullición	(°C)		
Temperatura de ignición	(°C)	+93	
Densidad del gas relativa al aire		0,9036	

CLASE DE TEMPERATURA	GRUPO
T1	IIA

Título: "GRAFICOS DE EFECTOS"

N° AFS-TECPETROL-0103-R-0003-E35S ANEXO III GRAFICOS DE EFECTOS

Revisión:

Fecha de emisión:

16-09-19

4. ALGUNAS CONSIDERACIONES SOBRE LOS VIENTOS.

Se determinó la dirección de los vientos predominantes y las velocidades promedios tomando los datos de TuTiempo tomados de la Estación Meteorológica del Aeródromo de Comodoro Rivadavia, provincia del Chubut.

Datos reportados por la estación meteorológica: 878600

Latitud: -45.78 | Longitud: -67.5 | Altitud: 58

AÑO	T. MÁX	T. MÍN	V. MEDIA VIENTO	RACHAS MÁX
2008	39 °C	-5 °C	21 km/h	135 km/h
2009	36 °C	-6 °C	24 km/h	124 km/h
2010	35 °C	-4 °C	24 km/h	139 km/h
2011	36 °C	-4 °C	21 km/h	120 km/h
2012	40 °C	-6 °C	22 km/h	117 km/h
2013	37 °C	-4 °C	21 km/h	124 km/h
2014	35 °C	-6 °C	21 km/h	115 km/h
2015	36 °C	-2 °C	21 km/h	128 km/h
2016	36 °C	-2 °C	17 km/h	115 km/h
2017	35 °C	-3 °C	21 km/h	118 km/h
2018	40 °C	-5 °C	20 km/h	115 km/h
Valores Promedio	37 °C	-4 °C	21 km/h	123 km/h
			6 m/s	

Distribución de la dirección del viento en (%%)

Los vientos máximos son en general provenientes de los cuadrantes O y SO, que como se puede observar en la tabla, entre ambos suman el 51 % de los días del año. El resto de los días podrán provenir de diferentes cuadrantes.

Título: "GRAFICOS DE EFECTOS"

N° AFS-TECPETROL-0103-R-0003-E35S ANEXO III GRAFICOS DE EFECTOS

Revisión: A

Fecha de emisión:

16-09-19

Si se realiza un promedio de la velocidad del viento en las direcciones más frecuentes, y sin considerar los días de calma, se obtiene una velocidad media de 6 m/s.

5. REPORTES DEL SOFTWARE - RESULTADOS OBTENIDOS

Se analizaron los siguientes Escenarios de riesgo, para determinar la afectación a las instalaciones cercanas.

Se agrega los resultados obtenidos por el software, de acuerdo al modelo matemático cargado.

Nº	TAG	DESCRIPCIÓN	ESCENARIO DE EVENTO EVALUADO
1		Colector de Ingreso de Pozos	1.A Se considera una pérdida de la fase liquida, con posterior llama (POOL FIRE), a una Presión de 8 kg/cm2, por orificio 16 mm
	SC- 15101005/00400 - SC 450-003.762 - SG - SG 0506		2.A Se considera una pérdida de la fase Gaseosa, con posterior llama (JET FIRE), a una Presión de 8 Bar, por orificio 16 mm
2		Separador de Bifásico	2.B Se considera una pérdida de la fase Gaseosa, sin encendido (FLASH FIRE), a una Presión de 8 Bar, por orificio 16 mm
			2.C Se considera una pérdida de la fase Liquida, con encendido (POOL FIRE), a una Presión de 8 Bar, por orificio 10 mm
2	3 TK-	Tanque de almacenamiento de Hidrocarburo. Tanque Control	3.A Incendio en el interior del tanque
3			3.B Colapso del tanque e Incendio en el recinto
4	TIC 250 C4 Tand	Tanque de almacenamiento de Hidrocarburo. Tanque Control	4.A Incendio en el interior del tanque
4	TK-353-C1		4.B Colapso del tanque e Incendio en el recinto
5	TK 359 G1	K-35S-G1 Tanque de almacenamiento de Hidrocarburo. Tanque Trasvase	5.A Incendio en el interior del tanque
3	j [K-355-G]		5.B Colapso del tanque e Incendio en el recinto
6		Bomba Stork N° 1726 Bomba Stork N° 1526 Bomba Stork N° 1525	6A Se considera una pérdida de producto, con encendido (POOL FIRE), a una Presión de 40 Bar, por orificio 8 mm
7		Cámara Principal de Desagote	7.A Incendio en el interior de la Cámara
8		Colector General de Salida	8.A Se considera una pérdida de Liquido, con encendido (POOL FIRE), a una Presión de 40 Bar, por orificio 8 mm