(1) Our focus this week is two-fold:	on ${\bf arc\ lengths}$ and ${\bf vector\text{-}valued}$	functions. First, we spend some
time talking about a quick and dirty	derivation of the arc-length formula ((this is just meant as a heuristic!).

(2) Now, let's talk about **vector-valued functions** i.e. functions $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n, n \geq 2$, that take on vector values. So much can be said about these functions, but on the auspicious occasion of π -day, we focus on one idea:

An inversion problem

When can we conclude that **F** is the gradient of some real-valued function $f: \mathbb{R}^n \to \mathbb{R}$?

Why care about this? Well, consider the differentiable functions $f: \mathbb{R}^3 \to \mathbb{R}$. These have gradients $\nabla f(x)$ defined at each point. Therefore, we can define the vector-valued function $\nabla f: \mathbb{R}^3 \to \mathbb{R}^3$, taking $x \mapsto \nabla f(x)$. This means that, for every differentiable function, there is a corresponding vector-valued function.

A natural question to ask, then, is the 'inversion' - if I gave you a vector-valued function $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$, can you give me a function whose gradient is \mathbf{F} ?

The answer is no!

(Def. 1) For n-dimensions, let $\nabla = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}...\frac{\partial f}{\partial x_n}\right]$. We call this the 'del' operator. For example, in $\mathbb{R}^3, \nabla = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right]$. We'll use it in this form herein.

(**Def. 2**) Thinking of ∇ as a vector, we can dot it and cross it with other vectors in \mathbb{R}^3 . Let's do this with a vector-valued function, \mathbf{F} , to derive the **divergence** and **curl** of a vector-valued function.

$$\operatorname{div} \mathbf{F}_{(x,y,z)} = \nabla \cdot \mathbf{F}_{(x,y,z)}$$
$$\operatorname{curl} \mathbf{F}_{(x,y,z)} = \nabla \times \mathbf{F}_{(x,y,z)}$$

Given these ideas¹, we have the following theorem.

(Th. 1 (Gradients are curl-free)) If $\nabla \times \mathbf{F} \neq 0$, then **F** is not the gradient of any function.

An easy proof involving brute computation can be found in Dr. Wang's lecture notes on divergence and curl. .

 $^{^1}$ We won't consider deeply into what these notions signify, because we'll do so later in the course. For the curious, however, I suggest 3Blue1Brown's video.

There is a more intuitive condition to check. Suppose that **F** is the gradient of some function f, i.e. $\nabla f = [\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}] = [F_1, F_2, F_3]$. Then, since mixed partials are equal, we'd have that $\frac{\partial f}{\partial x \partial y} = \frac{\partial F_1}{\partial y} = \frac{\partial f}{\partial y \partial x} = \frac{\partial F_1}{\partial x}$.

Therefore, if mixed partials are unequal, i.e. $\frac{\partial F_1}{\partial y} \neq \frac{\partial F_1}{\partial x}$, then F can't be a gradient. Thus, we get the following...

(Th. 2 (Identity of mixed partials)) If $\frac{\partial F_1}{\partial y} \neq \frac{\partial F_2}{\partial x}$, then **F** is not the gradient of any function.

(3) Unfortunately, most vector fields are not gradients. However, there is a weaker sense in which this is possible - specifically, it may be that vector fields are gradients of a function along some path...

(**Def. 3**) Given $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$, if there is a path $\mathbf{c}: \mathbb{R} \to \mathbb{R}^n$ such that $\mathbf{c}'(t) = \mathbf{F}(\mathbf{c}(t))$, then \mathbf{c} is called a flow line for \mathbf{F} .

Q1. The **arc-length** function, s(t), for a path c(t) is given by $s(x) = \int_{t_0}^{x} ||c'(t)|| dt$. It represents the distance travelled until time x. Suppose you are walking on a helix staircase, so that your path is $c(t) = (\cos(t), \sin(t), t)$. Compute s(x) as you walk along this path.

Q2. Consider $f(x,y) = x^2 + y^2$. Sketch f, the gradient vector field of f, and some additional flow lines. What do you observe?

Q3. Is the curl of **F** perpendicular to **F**? Consider $\mathbf{F} = (-y, x, 1)$.