Introduction to Radial Basis Functions

Jesse Bettencourt

McMaster University

jessebett@gmail.com
github.com/jessebett

Motivation

Given a set of measurements $\{f_i\}_{i=1}^N$ taken at corresponding data sites $\{x_i\}_{i=1}^N$ we want to find an interpolation function s(x) that informs us on our system at locations different from our data sites.

Motivation

Given a set of measurements $\{f_i\}_{i=1}^N$ taken at corresponding data sites $\{x_i\}_{i=1}^N$ we want to find an interpolation function s(x) that informs us on our system at locations different from our data sites.

Examples of Data Sites and Measurments

1D: A series of temperature measurements over a time period

2D: Surface temperature of a lake based on measurements collected at sample surface locations

3D: Distribution of temperature within a lake

n-D: Machine learning, financial models, system optimization

What makes a good fit?

- ▶ Interpolation: s(x) exactly matches our measurements at our data sites.
- Approximation: s(x) closely matches our measurements at our data sites, e.g. with Least Squares

For today's purposes...

we will only consider interpolation.

▶ Interpolation: $s(x_i) = f_i \ \forall i \in \{0 ... N\}$

Our Problem, Restated

```
Interpolation of Scattered Data Given data (x_i, f_i), i = 1, ..., N, such that x_i \in \mathbb{R}^n, f_i \in \mathbb{R}, we want to find a continuous function s(x) such that s(x_i) = f_i \forall i \in \{0...N\}
```

A Familiar Approach

Convenient Assumtption

Assume s(x) is a linear combination of basis functions ψ_i

$$s(x) = \sum_{i=1}^{N} \lambda_i \psi_i$$

Interpolation as a Linear System

Following this assumption we have a system of linear equations

$$A\lambda = \mathbf{f}$$

where

A is called the interpolation matrix whose entries are given by

$$A_{ii} = \psi_i(x_i), i, i = 1 \dots N$$

$$\lambda = [\lambda_1, \dots, \lambda_N]^T$$

 $\mathbf{f} = [f_1, \dots, f_N]^T$

The Well-Posed Problem

$$A\lambda = f$$

Solving this linear system, thus finding s(x), is only possible if the problem well-posed, i.e., \exists a unique solution

Result from introductory linear algebra:

The problem will be well-posed if and only if the interpolation matrix A is non-singular, i.e., $det(A) \neq 0$.

Note: The non-singularity of A will depend on our choice of basis functions, $\psi_{i=1}^N$

Easily Well-Posed in 1D

In 1D, many choices of basis functions will guarantee a well-posed problem as long as the data-sites are distinct.

Example

We are familiar with polynomial interpolation, interpolating from N data sites with a (N-1)-degree polynomial.

$$\psi_{i=1}^{N} = \{1, x, x^2, x^3, \dots, x^{N-1}\}$$

$$s(x) = -0.02988x^5 + 0.417x^4 - 2.018x^3 + 3.694x^2 - 1.722x - 5.511e^{-14}$$

A Problem in Higher Dimensions

For n-Dimensions where $n \ge 2$ there is no such guarantee.

For any set of basis functions, $\overline{\psi_{i=1}^{N}}$ (chosen independently of the data sites) \exists a set of distinct data sites $\{x_i\}_{i=1}^{N}$ such that the interpolation matrix becomes singular.

Implication: If we choose our basis functions independently of the data, we are not guaranteed a well-posed problem.

Note: This results from the Haar-Mairhuber-Curtis Theorem

A Solution in Higher Dimensions

Implication: If we choose our basis functions independently of the data, we are not guaranteed a well-posed problem.

Solution?

Choose basis functions depending on the data!

Basis Functions Depending on Data

First, consider what we call the basic function

Basis Functions Depending on Data

First, consider what we call the basic function

$$\psi(x) = |x|$$

To produce our set of basis functions, we take translates of the basic function.

$$\psi_i(x) = |x - x_i|, i = 1, \dots, N$$

So each basis function, $\psi_i(x)$, is our basic function shifted so that the center or knot is positioned on a data site, x_i .

Note: It's possible to have other choices of centers, but in most implementations the centers coincide with data sites.

Basis Functions Depending on Data

Each basis function, $\psi_i(x)$, is our basic function shifted so that the center is positioned on a data site, x_i .

$$\psi_i(x) = |x - x_i|, i = 1, \dots, N$$

Radial Basis Functions

$$\psi_i(x) = |x - x_i|, i = 1, \dots, N$$

Notice that $\psi_i(x)$ are radially symmetric about their centers, for this reason we call these functions Radial Basis Functions.

Since the basis functions only depend on distance, the interpolation matrix becomes

$$A = \begin{bmatrix} |x_1 - x_1| & |x_1 - x_2| & \cdots & |x_1 - x_N| \\ |x_2 - x_1| & |x_2 - x_2| & \cdots & |x_2 - x_N| \\ \vdots & \vdots & \ddots & \vdots \\ |x_N - x_1| & |x_N - x_2| & \cdots & |x_N - x_N| \end{bmatrix}$$

called a distance matrix.

The Distance Matrix

Distance matrices, with Euclidean distances, for distinct points in \mathbb{R}^s are always non-singular.

This means that our interpolation problem

$$\begin{bmatrix} ||x_1 - x_1|| & ||x_1 - x_2|| & \cdots & ||x_1 - x_N|| \\ ||x_2 - x_1|| & ||x_2 - x_2|| & \cdots & ||x_2 - x_N|| \\ \vdots & \vdots & \ddots & \vdots \\ ||x_N - x_1|| & ||x_N - x_2|| & \cdots & ||x_N - x_N|| \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_N \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_N \end{bmatrix}$$

is well-posed!

Our interpolant becomes $s(x) = \sum_{i=1}^{N} \lambda_i ||x - x_i||$

Building a Better Basic Function

Basic function

$$\psi_i(x) = ||x - x_i||$$

has a discontinuity in its first derivative at x_i .

This causes the interpolant to have a discontinuous first derivative at each data site.

Obviously not ideal.

Building a Better Basic Function

In 1968, R.L. Hardy showed that we can remedy this problem by changing our basic function to one with continuous derivatives.

Hardy's Multiquadrc Kernel

$$\psi(x) = \sqrt{\epsilon^2 + x^2}$$
 where $\epsilon > 0$.

Note: The case where $\epsilon = 0$ is the previous basic function.

Radial Basis Kernels

As before, we can generate our basis functions by translating Hardy's basic function to center on our data sites.

$$\psi_i(x) = \sqrt{\epsilon^2 + (||x - x_i||)^2}$$

Notice that the Hardy's Multiquadric function is still radially symmetric about its center, making it a Radial Basis Function (RBF). All RBFs are functions only of distance from center,

Radial Basis Kernels

The RBF Method

$$s(x) = \sum_{i=1}^{N} \lambda_i \phi(||x - x_i||)$$

There are a few commonly used RBF Kernels: