PSpectRE

Generated by Doxygen 1.7.1

Mon Jun 13 2011 23:00:46

Contents

1	SpectRE - A Spectral Code for Reheating	1
	1.1 References	1
2	energy.tsv	3
3	Running	5
	3.1 Parameters	5
	3.2 Examples	8
4	Output Files	9
5	info.txt	11
6	sf.tsv	13
7	Building	15
	7.1 Make	15
	7.2 Requirements	15
	7.3 Targets	15
	7.4 Variables	16
	7.5 Examples	16
	7.6 Compiler Selection	16
8	Binary Slices	17
0	cnactra tev	10

•	CONTENTS
1	CONTRINTS
1	COMILIMA

10	stats.tsv	21
11	twoptcorr.tsv	23
12	Class Index	25
	12.1 Class Hierarchy	25
13	Class Index	27
	13.1 Class List	27
14	File Index	29
	14.1 File List	29
15	Class Documentation	31
10	15.1 defrost_style_initializer < R > Class Template Reference	31
	15.1.1 Detailed Description	33
	15.1.2 Member Function Documentation	33
		33
	15.1.2.1 sample_grf	
	15.2 energy_outputter< R > Class Template Reference	33
	15.2.1 Detailed Description	35
	15.2.2 Member Function Documentation	35
	15.2.2.1 output	35
	15.3 fft_dft_c2r_3d_plan < R > Class Template Reference	36
	15.4 fft_dft_c2r_3d_plan< double > Class Template Reference	36
	15.5 fft_dft_r2c_3d_plan< R > Class Template Reference	37
	15.6 fft_dft_r2c_3d_plan< double > Class Template Reference	37
	15.7 fft_r2r_1d_plan< R > Class Template Reference	38
	15.8 fft_r2r_1d_plan< double > Class Template Reference	38
	15.9 field< R > Class Template Reference	38
	15.9.1 Detailed Description	40
	15.9.2 Member Data Documentation	40
	15.9.2.1 data	40
	15.10field_size Struct Reference	41

CONTENTS iii

	$15.11gpot_computer < R > Class\ Template\ Reference \qquad . \ . \ . \ . \ . \ . \ . \ .$	41
	15.11.1 Detailed Description	43
	15.11.2 Member Function Documentation	43
	15.11.2.1 compute	43
	$15.12 grad_computer < R > Class \ Template \ Reference \qquad . \ . \ . \ . \ . \ . \ .$	44
	$15.13 grid_funcs < R > Struct \ Template \ Reference \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	45
	$15.14 initializer < R > Class \ Template \ Reference \qquad \dots \qquad \dots \qquad \dots$	48
	$15.15 integrator < R > Class \ Template \ Reference \qquad $	49
	$15.16 keyed_value < K, V > Struct Template Reference \ \ldots \ \ldots \ .$	50
	$15.17 le_style_initializer < R > Class \ Template \ Reference \ . \ . \ . \ . \ . \ .$	51
	$15.18 model < R > Class Template Reference \dots \dots \dots \dots$	53
	$15.19 model_params < R > Struct Template Reference \dots \dots \dots$	55
	15.19.1 Detailed Description	56
	15.19.2 Member Function Documentation	56
	15.19.2.1 adoubledot	56
	15.19.2.2 adoubledot_staggered	57
	15.19.2.3 derivs	57
	15.19.2.4 V	57
	$15.20 nonlinear_transformer < R > Class \ Template \ Reference \ . \ . \ . \ . \ .$	58
	15.21rk4< R > Class Template Reference	59
	15.22rs_init< R > Struct Template Reference	62
	15.23 slice_output_manager < R > Class Template Reference	63
	15.24slice_outputter< R > Class Template Reference	65
	15.25 spectra_outputter < R > Class Template Reference	67
	$15.26 stats_outputter < R > Class \ Template \ Reference \ . \ . \ . \ . \ . \ . \ .$	69
	$15.27 time_state < R > Struct \ Template \ Reference \ \dots \ \dots \ \dots$	71
	$15.28 twoptcorr_outputter < R > Class \ Template \ Reference \ \dots \ \dots$	73
	15.29v_integrator< R > Class Template Reference	75
	15.30 verlet < R > Class Template Reference	76
16	File Documentation	79

iv CONTENTS

16.1 defrost_style_initializer.hpp File Reference	79
16.1.1 Detailed Description	80
16.2 energy_outputter.hpp File Reference	80
16.2.1 Detailed Description	81
16.3 fft.hpp File Reference	81
16.3.1 Detailed Description	83
16.4 field.hpp File Reference	83
16.4.1 Detailed Description	85
16.5 field_size.hpp File Reference	85
16.5.1 Detailed Description	86
16.6 gpot_computer.hpp File Reference	86
16.6.1 Detailed Description	87
16.7 grad_computer.hpp File Reference	87
16.7.1 Detailed Description	89
16.8 grid_funcs.hpp File Reference	89
16.8.1 Detailed Description	90
16.9 initializer.hpp File Reference	90
16.9.1 Detailed Description	91
16.10integrator.hpp File Reference	91
16.10.1 Detailed Description	92
16.11le_style_initializer.hpp File Reference	93
16.11.1 Detailed Description	93
16.12model.hpp File Reference	94
16.12.1 Detailed Description	94
16.13 model_params.hpp File Reference	95
16.13.1 Detailed Description	96
16.14nonlinear_transformer.hpp File Reference	96
16.14.1 Detailed Description	97
16.15pow/pow.hpp File Reference	97
16.15.1 Detailed Description	98
16.16rk4.hpp File Reference	98

CONTENTS

16.16.1 Detailed Description	99
16.17 slice_output_manager.hpp File Reference	99
16.17.1 Detailed Description	100
16.18slice_outputter.hpp File Reference	100
16.18.1 Detailed Description	102
16.19 spectra_outputter.hpp File Reference	102
16.19.1 Detailed Description	102
16.20stats_outputter.hpp File Reference	103
16.20.1 Detailed Description	103
16.21 time_state.hpp File Reference	103
16.21.1 Detailed Description	104
16.22twoptcorr_outputter.hpp File Reference	104
16.22.1 Detailed Description	105
16.23v_integrator.hpp File Reference	105
16.23.1 Detailed Description	106
16.24verlet.hpp File Reference	107
16.24.1 Detailed Description	107

SpectRE - A Spectral Code for Reheating

SpectRE is a pseudo-spectral code for simulating a pair of interacting scalar fields in a self-consistently expanding background. These fields are named phi and chi.

The time-dependent variable-rescaling scheme from LatticeEasy is used to eliminate the first order term from the equations of motion. The fields can be initialized using either the scheme from LatticeEasy or the scheme from Defrost.

- Building
- Running
- Output Files

1.1 References

- Gary Felder and Igor Tkachev. LATTICEEASY: A Program for Lattice Simulations of Scalar Fields in an Expanding Universe. arXiv:hep-ph/0011159v1. http://www.science.smith.edu/departments/Physics/fstaff/gfelder/latticeeasy/
- Andrei V. Frolov. DEFROST: A New Code for Simulating Preheating after Inflation. arXiv:0809.4904v2 [hep-ph]. http://www.sfu.ca/physics/cosmology/defrost/

2	SpectRE - A Spectral Code for Reheating

energy.tsv

energy.tsv is a tab serarated file with the following fields:

- Program time
- Physical time
- Average physical energy (w.r.t. the rescaled length)
- Average energy normalized by the Friedmann equation
- Average normalized ϕ'^2 energy contribution
- Average normalized χ'^2 energy contribution
- Average normalized $\phi \phi'$ energy contribution
- Average normalized $\chi\chi'$ energy contribution
- Average normalized ϕ^2 energy contribution
- Average normalized χ^2 energy contribution
- Average normalized $\nabla \phi$ energy contribution
- Average normalized $\nabla \chi$ energy contribution
- Average normalized potential-energy contribution
- Average physical ϕ'^2 energy contribution
- Average physical χ'^2 energy contribution
- Average physical $\phi \phi'$ energy contribution
- Average physical $\chi\chi'$ energy contribution

4 energy.tsv

- Average physical ϕ^2 energy contribution
- Average physical χ^2 energy contribution
- Average physical $\nabla \phi$ energy contribution
- Average physical $\nabla \chi$ energy contribution
- Average physical potential-energy contribution
- Average physical $\nabla \phi$ x-direction energy contribution
- Average physical $\nabla \chi$ x-direction energy contribution
- Average physical $\nabla \phi$ y-direction energy contribution
- Average physical $\nabla \chi$ y-direction energy contribution
- Average physical $\nabla \phi$ z-direction energy contribution
- Average physical $\nabla \chi$ z-direction energy contribution
- Average physical pressure
- Average w (the e.o.s. parameter)

Running

3.1 Parameters

SpectRE Usage:

- -h: Display usage information and exit
- -r: Use the RK4 integrator (default is the Verlet integrator)
- -l: Use LatticeEasy-style initial conditions (default is DEFROST-style initial conditions)
- -B: The base length scale (default is 1.0 to match LatticeEasy)
- -V: Allow the field variance to change with L
- -e: Use power-law expansion
- -H <name>[,<name>]*: Use homogeneous (zero variance) initial conditions. Field names are:

```
phi
chi
```

- -O: Use out-of-place transforms
- -N <int>: The number of grid points per side of the box

6 Running

- -P <int>: The padding factor used for position-space integration
- -L <real>: The physical size of the box
- -R <int>: The random seed
- -o <dir name>: Set the output directory name
- -t <real>[:<real>]: Set dt with an optional start time in program units
- -T <real>: The final time in program units
- -A <real>: The final scale factor
- -p <name>=<value>[,<name>=<value>]*: Set a parameter value. Valid parameters are:

```
gamma_phi
  gamma_chi
 lambda_phi
 lambda_chi
 m_phi
 m_chi
 phi0
 chi0
 phidot0
 chidot0
  ics_scale
 monodromy_exp_phi
 monodromy_exp_chi
 monodromy_scale_phi
 monodromy_scale_chi
 Н0
 phi0_slice
 chi0_slice
 phidot0_slice
 chidot0_slice
 ics_eff_size
  (a0 can be specified when H0 is specified by appending :\<a0\> to the H0
value;
  Hdot0 can be similarly appended for use with power-law background expans
  (file paths provided for \star\_slice parameters cannot contain comma characte
rs)
  (ics_eff_size is an integer <= N)
```

• -s <name>[,<name>]*: Enable slice output of a variable. Valid variables are:

```
phi
chi
phidot
chidot
V
V_phys
T_phi
T_chi
```

3.1 Parameters 7

```
T_phi_phys
T_chi_phys
G_phi
G_chi
G_phi_phys
G_chi_phys
G_phi_x
G_chi_x
G_phi_phys_x
G_chi_phys_x
G\_phi\_y
G_chi_y
G_phi_phys_y
G_chi_phys_y
G_phi_z
G_chi_z
G_phi_phys_z
G_chi_phys_z
grad_phi_phys_x
grad_chi_phys_x
grad_phi_phys_y
grad_chi_phys_y
grad_phi_phys_z
grad_chi_phys_z
rho
rho_phys
р
p_phys
gpot
```

• -S <name>[=<value>][,<name>[=<value>]]*: Set a slice output option value. Valid options are:

```
dim
length
skip
avg
fullprec
(avg and fullprec do not take a value)
```

• -I <name>=<value>[:<real>][,<name>=<value>[:<real>]]*: Set an output interval with an optional start time. Valid intervals are:

```
scale
energy
spectra
twoptcorr
screen
slice
stats
all
(intervals are specified as a number of iterations)
```

• --long: Run using long-double (extended) precision (this must be the *last* command-line option argument)

8 Running

• @<file name>: The name of a parameters file. The parameters file has the same syntax as the command line except that it may be divided among multiple lines and may contain comment lines which begin with a # character.

The default parameters model a situation generally similar to the default model provided with DEFROST version 1.1.

3.2 Examples

The following runs the model with the default parameters except that it sets a $128^{\circ}3$ grid with dt = 0.0005. Also, -r selects the RK4 integrator (Verlet is default). -l selects LE-style initial conditions. -I all=1 sets all output intervals to 1 time step (the default is 25).

```
./pspectre -N 128 -t 0.0005 -r -l -I all=1
```

The following runs the model with the default parameters and has binary slice outputs for the energy density, pressure and gravitational potential. The slices to have a length of 32 points per side and were constructed by averaging (not skipping) over every eightpoint cube (since the dimension is 3). -P 2 causes the integration over the potential energy to use a $(2N)^3$ grid.

```
./pspectre -P 2 -s rho,p,gpot -S dim=3,length=32,skip=1,avg
```

Output Files

All output files generated by SpectRE are placed into a directory named output-YYYYMMDDHHMMSS where YYYY is the current year, etc.

- info.txt
- sf.tsv
- energy.tsv
- stats.tsv
- spectra.tsv
- twoptcorr.tsv
- Binary Slices

10 Output Files

info.txt

The info.txt contains a human-readable summary of the run parameters (both physical and numerical).

12 info.txt

sf.tsv

sf.tsv is a tab serarated file with the following fields:

- Program time
- Physical time
- a
- H

14 sf.tsv

Building

7.1 Make

Building SpectRE requires GNU make. On systems where GNU make is not the system's default make command, GNU make is often called gmake.

7.2 Requirements

SpectRE should build and run on any POSIX-style operating system, and uses OpenMP for shared-memory parallelism. It requires:

- FFTW 3 or Intel's MKL version 10+.
- G++ (the GNU C++ compiler version 4+) or ICC (the Intel C++ compiler).

7.3 Targets

The following (phony) targets are defined:

- rel Build the release (optimized) spectre executable. This is the default target.
- profile Build the optimized profiling executable spectre-pg.
- debug Build the debug spectre-dbg executable.
- debug-mudflap Build the mudflap-enabled debug executable spectre-dbg-mf.
- doc Build the documentation (doxygen and dot required).

16 Building

• clean - Remove all generated files (including executables) except for the documentation.

- clean-doc Remove the documentation files.
- clean-all A combination of clean and clean-doc.
- dist A combination of clean-all and doc followed by the creation of a source archive.

7.4 Variables

The make file recognizes the following variables which can be specified on the command line prior to or after the target name(s):

- USE_ICC=yes Use the Intel C++ compiler instead of the GNU C++ compiler.
- USE_MKL=yes Use the Intel Math Kernel Libraries intead of FFTW. The MKL FFTW wrapper library is used, which is provided in source form with the MKL installation, and so the MKLROOT environmental variable must be set appropriately.
- USE_LD=yes Enable long-double support (not supported when using MKL). If the fftwl-wisdom utility exists in a directory in the current search path, then long double support is active by default.

7.5 Examples

To build spectre using g++ and FFTW:

make

To build spectre using icc and the MKL:

```
make USE_ICC=yes USE_MKL=yes
```

To build spectre-dbg using icc and FFTW:

```
make USE_ICC=yes debug
```

7.6 Compiler Selection

The name of the compiler used can be overridden by setting the GXX variable. By default, this variable has the value g++ or icc. If an executable called g++-4 is found in the current search path, then it is used in preference to g++.

Binary Slices

Binary slices are optionally generated for many different variables.

Single-precision floating point format is used regardless of the precision used for computation. The "length" parameter indicates the length of the side of the grid from which the slice is taken, **not** the size of the output slice if "skip" is > 0. "skip" is the number of grid points inbetween output points. If averaging is active, the skipped points are averaged over instead of actually being skipped.

18 Binary Slices

spectra.tsv

spectra.tsv is a tab serarated file with the following fields:

- Program time
- Physical time
- Bin number
- Grid points per bin
- Physical bin momentum
- Total program-unit phi momentum
- Total program-unit chi momentum
- Total physical phi momentum
- Total physical chi momentum

20 spectra.tsv

stats.tsv

stats.tsv is a tab serarated file with the following fields:

- Program time
- Physical time
- Mean of phi in program units
- Variance of phi in program units
- Mean of chi in program units
- Variance of chi in program units
- Mean of phi
- Variance of phi
- Mean of chi
- Variance of chi
- Mean of phidot in program units
- Variance of phidot in program units
- Mean of chidot in program units
- Variance of chidot in program units
- Mean of phidot (rescaled time)
- Variance of phidot (rescaled time)
- Mean of chidot (rescaled time)

22 stats.tsv

- Variance of chidot (rescaled time)
- Mean of phidot
- Variance of phidot
- Mean of chidot
- Variance of chidot

twoptcorr.tsv

twoptcorr.tsv is a tab serarated file with the following fields:

- Program time
- Physical time
- Length-bin number
- Length grid points
- Program-unit length
- Physical length
- Program-unit phi two-point correlation
- Program-unit chi two-point correlation
- Physical phi two-point correlation
- Physical chi two-point correlation

24 twoptcorr.tsv

Class Index

12.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

energy_outputter $\langle R \rangle$
$fft_dft_c2r_3d_plan < R > \ \dots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$fft_dft_c2r_3d_plan < double > \dots $
$fft_dft_r2c_3d_plan < R > \dots \dots$
$fft_dr_r^2c_3d_plan < double > \dots 37$
$fft_r2r_1d_plan < R > \dots \dots \dots 38$
$fft_r2r_1d_plan < double > \dots 38$
field < R >
field_size
$gpot_computer < R > \dots \dots$
grad_computer< R >
grid_funcs < R >
initializer $\langle R \rangle$
$defrost_style_initializer < R > \dots \dots$
$le_style_initializer < R > \dots \dots$
integrator $\langle R \rangle$
rk4< R >
$verlet < R > \dots \qquad \qquad$
keyed_value< K, V >
$model < R > \dots \qquad 50$
<u>–1</u>
nonlinear_transformer $\langle R \rangle$
$rs_init < R > \dots \dots$
slice_output_manager $\langle R \rangle$
slice_outputter $< R > \dots \dots$

nd	le:
n	ıd

spectra_outputter< F	? >																67
stats_outputter < R >	٠.																69
$time_state < R > $.																	71
twoptcorr_outputter<	< R	. >	>														73
v_integrator < R >																	75

Class Index

13.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

$defrost_style_initializer < R > (DEFROST-style initial conditions)$	31
energy_outputter $\langle R \rangle$ (Outputter for the energy TSV file)	33
$fft_dft_c2r_3d_plan < R > \dots$	36
fft_dft_c2r_3d_plan< double >	36
$fft_dft_r2c_3d_plan < R > \dots$	37
fft_dft_r2c_3d_plan< double >	37
$fft_r^2r_1d_plan < R > \dots$	38
fft_r2r_1d_plan< double >	38
field < R > (A three-dimensional scalar field in both position and momentum)	
space)	38
field_size	41
$gpot_computer < R > (Computer of the gravitational potential from the en-$	
ergy density of the phi and chi fields)	41
$grad_computer < R > \dots \dots \dots \dots \dots$	44
grid_funcs< R >	45
initializer< R >	48
integrator < R >	49
keyed_value < K, V >	50
le_style_initializer< R >	51
$model < R > \dots \dots \dots \dots$	53
$model_params < R > (Static model parameters)$	55
nonlinear_transformer< R >	58
rk4< R >	59
$rs_init < R > \dots$	62
slice_output_manager < R >	63

28	Class Index

slice_outputter < R	>																6
spectra_outputter<	\mathbf{R}	>															6
stats_outputter < R	. >																6
time_state < R >																	7
twoptcorr_outputte	er<	R	>														7
v_integrator < R >																	7
$verlet < R > \dots$																	7

Chapter 14

File Index

14.1 File List

Here is a list of all documented files with brief descriptions:

defrost_style_initializer.hpp (DEFROST-style initial conditions)	79
energy_outputter.hpp (Outputter for the energy TSV file)	80
fft.hpp (FFT wrappers)	81
field.hpp (Three-dimensional scalar fields)	83
field_size.hpp (Field grid size and derived size-related quantities)	85
<pre>gpot_computer.hpp (Gravitational-potential computations)</pre>	86
<pre>grad_computer.hpp (Computation of the gradient in Fourier space)</pre>	87
grid_funcs.hpp (Grid point functions used for slice output, etc)	89
initializer.hpp (Generic field-initialization)	90
integrator.hpp (Generic time-step evolution)	91
le_style_initializer.hpp (LatticeEasy-style initialization)	93
model.hpp (A particular simulated situation)	94
model_params.hpp (The physical model parameters)	95
nonlinear_transformer.hpp (Momentum-space representations of nonlinear	
field terms)	
rk4.hpp (Fourth-order Runge–Kutta (RK4) integrator)	
slice_output_manager.hpp (Field slice output manager)	
slice_outputter.hpp (Outputter for the file slices)	
spectra_outputter.hpp (Outputter for the spectra TSV file)	
stats_outputter.hpp (Outputter for the stats TSV file)	
time_state.hpp (Time-varying model parameters)	
twoptcorr_outputter.hpp (Outputter for the twoptcorr TSV file)	
v_integrator.hpp (Integrate the potential energy over the field)	
verlet.hpp (Second-order Verlet integrator)	107

30	File Index

pow/ <mark>pow.hpp</mark> (Ter	np	late	e fu	ınc	tioı	n to) (coı	mp	ute	th	ıe	int	ege	er	por	we	r	of	its	S	arg	gu-		
ment) .																								 9	97

Chapter 15

Class Documentation

15.1 defrost_style_initializer $\langle R \rangle$ Class Template Reference

DEFROST-style initial conditions.

#include <defrost_style_initializer.hpp>

Inheritance diagram for defrost_style_initializer < R >:

Collaboration diagram for defrost_style_initializer< R >:

Public Member Functions

- defrost_style_initializer (field_size &fs_, model_params< R > &mp_, field< R > &phi_, field< R > &chi_, field< R > &chi_, field< R > &chidot_, R adot_)
- virtual void initialize ()

Initialize the phi, phidot, chi and chidot fields.

Protected Member Functions

void sample_grf (field < R > &fld, R gamma, R m2eff)
 Sample a Gaussian random field.

Protected Attributes

- field_size & fs
- model_params< R > & mp
- field < R > & phi
- field < R > & phidot
- field< R > & chi
- field < R > & chidot
- R adot

15.1.1 Detailed Description

template<typename R> class defrost style initializer< R>

DEFROST-style initial conditions.

15.1.2 Member Function Documentation

15.1.2.1 template<typename $R > \text{void defrost_style_initializer} < R$ >::sample_grf (field< R > & fld, R gamma, R m2eff) [protected]

Sample a Gaussian random field.

Random Gaussian-mode amplitudes b_k are chosen such that $\langle b_k b_{k'}^* \rangle = \delta(k - k')$ using the Box-Muller transformation. The kernel function is defined as:

$$\zeta(r) = \frac{1}{\sqrt{\pi}} \int dk \, k^2 (k^2 + m_{\text{eff}})^{\gamma} \frac{\sin(kr)}{kr} e^{-k^2/q^2}$$

q is chosen to be some scale below the Nyquist frequency.

Parameters

fld The field into which to store the random field sample.

gamma The $(k^2 + m^2)$ exponent.

m2eff The effective mass.

References field< R >::data, field< R >::ldl, and field< R >::mdata.

Referenced by defrost_style_initializer< R >::initialize().

The documentation for this class was generated from the following files:

- defrost_style_initializer.hpp
- defrost_style_initializer.cpp

15.2 energy_outputter < R > Class Template Reference

Outputter for the energy TSV file.

#include <energy_outputter.hpp>

Collaboration diagram for energy_outputter < R >:

Public Member Functions

- energy_outputter (field_size &fs_, model_params< R > &mp_, time_state< R > &ts_, field< R > &phi_, field< R > &chi_, field< R > &phidot_, field< R > &chidot_)
- void output (bool no_output=false)

Compute the integrated energy density and write it to the file.

Public Attributes

• R avg_rho_phys

The average energy density in physical units.

• R avg_rho

The average energy density normalized by the Friedmann equation.

Protected Attributes

- field_size & fs
- $model_params < R > \& mp$
- time_state< R > & ts
- field < R > & phi
- field< R > & chi
- field < R > & phidot
- field < R > & chidot
- v_integrator< R > vi
- std::ofstream of

15.2.1 Detailed Description

template<typename R> class energy_outputter< R>

Outputter for the energy TSV file.

15.2.2 Member Function Documentation

 $15.2.2.1 \quad template < typename \ R > void \ energy_outputter < R > ::output \ (\ bool \ no_output = \texttt{false} \)$

Compute the integrated energy density and write it to the file.

Parameters

no_output If true the result is not output to the file.

References energy_outputter< R >::avg_rho, and energy_outputter< R >::avg_rho_phys.

The documentation for this class was generated from the following files:

- energy_outputter.hpp
- energy_outputter.cpp

15.3 fft_dft_c2r_3d_plan< R > Class Template Reference

template<typename R> class fft_dft_c2r_3d_plan< R>

The documentation for this class was generated from the following file:

• fft.hpp

15.4 fft_dft_c2r_3d_plan< double > Class Template Reference

Public Types

• typedef fftw_complex_t

Public Member Functions

- **fft_dft_c2r_3d_plan** (int n0, int n1, int n2, complex_t *in, double *out, bool estimate=true)
- void **construct** (int n0, int n1, int n2, complex_t *in, double *out, bool estimate=true)
- void execute ()
- bool constructed ()

Protected Attributes

• fftw_plan plan

$template <> class\ fft_dft_c2r_3d_plan < double >$

The documentation for this class was generated from the following file:

• fft.hpp

15.5 fft_dft_r2c_3d_plan< R > Class Template Reference

template<typename R> class fft_dft_r2c_3d_plan< R>

The documentation for this class was generated from the following file:

• fft.hpp

15.6 fft_dft_r2c_3d_plan< double > Class Template Reference

Public Types

• typedef fftw_complex_t

Public Member Functions

- **fft_dft_r2c_3d_plan** (int n0, int n1, int n2, double *in, complex_t *out, bool estimate=true)
- void execute ()
- void **construct** (int n0, int n1, int n2, double *in, complex_t *out, bool estimate=true)
- bool constructed ()

Protected Attributes

• fftw_plan plan

$template <> class\ fft_dft_r2c_3d_plan < double >$

The documentation for this class was generated from the following file:

• fft.hpp

15.7 fft_r2r_1d_plan< R > Class Template Reference

template<typename R> class fft_r2r_1d_plan< R>

The documentation for this class was generated from the following file:

• fft.hpp

15.8 fft_r2r_1d_plan< double > Class Template Reference

Public Member Functions

- **fft_r2r_1d_plan** (int n, double *in, double *out, fft_r2r_kind kind, bool estimate=true)
- void **construct** (int n, double *in, double *out, fft_r2r_kind kind, bool estimate=true)
- void execute ()
- bool constructed ()

Protected Attributes

• fftw_plan plan

template<> class fft_r2r_1d_plan< double >

The documentation for this class was generated from the following file:

• fft.hpp

15.9 field < R > Class Template Reference

A three-dimensional scalar field in both position and momentum space.

#include <field.hpp>

Collaboration diagram for field < R >:

Public Types

• typedef fft_dft_r2c_3d_plan< R >::complex_t complex_t

Public Member Functions

- **field** (field_size &fs_, bool oop=false, const char *name_=0)
- **field** (const char *name_=0)
- void **construct** (field_size &fs_, bool oop=false)
- void **divby** (R v)
- void **switch_state** (field_state state_, bool mmo=false)
- bool is_in_place ()

Public Attributes

- field_size **fs**
- R * data

The position-space data.

• int ldl

The length of the last dimension of the data array.

• int pldl

The length of the last dimension of the padded data array.

- fft_dft_c2r_3d_plan< R >::complex_t * mdata

 The momentum-space data.
- const char * name

Protected Member Functions

- void pad_momentum_grid ()
- void unpad_momentum_grid ()

Protected Attributes

- field state state
- fft_dft_r2c_3d_plan< R > p2m_plan
- fft_dft_c2r_3d_plan< $R > m2p_plan$
- fft_dft_r2c_3d_plan< R > padded_p2m_plan
- fft_dft_c2r_3d_plan< R > padded_m2p_plan
- fft_dft_c2r_3d_plan< R >::complex_t * mdata_saved

15.9.1 Detailed Description

template<typename R> class field< R>

A three-dimensional scalar field in both position and momentum space.

15.9.2 Member Data Documentation

15.9.2.1 template<typename R>R* field< R>::data

The position-space data.

Note

The inner (z) dimension is padded to a size of 2*(fs.n/2+1).

 $Referenced\ by\ defrost_style_initializer < R > :: sample_grf().$

The documentation for this class was generated from the following files:

- field.hpp
- field.cpp

15.10 field_size Struct Reference

Public Member Functions

- **field_size** (int n_=0, int n_pad_factor_=1)
- void calculate_size_totals ()

Public Attributes

- int **n**
- int n_pad_factor
- int total_gridpoints
- int total_padded_gridpoints
- int total_momentum_gridpoints
- int total_padded_momentum_gridpoints
- int power_length

The documentation for this struct was generated from the following file:

• field_size.hpp

15.11 gpot_computer < R > Class Template Reference

Computer of the gravitational potential from the energy density of the phi and chi fields.

```
#include <gpot_computer.hpp>
```

Collaboration diagram for gpot_computer < R >:

Public Member Functions

- gpot_computer (field_size &fs_, model_params< R > &mp_, time_state< R > &ts_, field< R > &phi_, field< R > &chi_, field< R > &phidot_, field< R > &chidot_, grad_computer< R > &gc_)
- void compute (field_state final_state=position, bool grad_computed=false) *Compute gpot.*

Public Attributes

• field< R > gpot

The gravitational potential field.

Protected Attributes

- field_size & fs
- field_size upfs
- model_params< R > & mp
- time_state< R > & ts
- field < R > & phi
- field < R > & chi

- field < R > & phidot
- field < R > & chidot
- grad_computer< R > & gc

15.11.1 Detailed Description

template<typename R> class gpot_computer< R>

Computer of the gravitational potential from the energy density of the phi and chi fields.

15.11.2 Member Function Documentation

15.11.2.1 template < typename R > void gpot_computer < R >::compute (field_state final_state = position, bool grad_computed = false)

Compute gpot.

Parameters

final_state The final state of gpot.

grad_computed True if the gradient fields have already been computed (otherwise
 gc.compute() is called).

References gpot_computer < R >::gpot.

The documentation for this class was generated from the following files:

- gpot_computer.hpp
- gpot_computer.cpp

15.12 grad_computer< R > Class Template Reference

Collaboration diagram for grad_computer < R >:

Public Member Functions

- grad_computer (field_size &fs_, model_params< R > &mp_, field< R > &phi_, field< R > &chi_)
- void **compute** (field_state final_state=position)

Public Attributes

- field < R > phigradx
- field < R > chigradx
- field < R > phigrady
- field< R > chigrady
- field < R > phigradz
- $\bullet \ \, \textbf{field} {<} \, R > \textbf{chigradz} \\$

Protected Attributes

- field_size & fs
- field_size upfs
- model_params< R > & mp
- field < R > & phi
- field < R > & chi

template<typename R> class grad_computer< R>

The documentation for this class was generated from the following files:

- grad_computer.hpp
- · grad_computer.cpp

15.13 grid_funcs< R > Struct Template Reference

Static Public Member Functions

- static R compute_energy_scaling (model_params< R > &mp, time_state< R > &ts)
- static R **compute_phi** (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R compute_chi (field_size &fs, model_params< R > &mp, time_state<
 R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R **compute_phidot** (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R compute_chidot (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R compute_gpot (field_size &fs, model_params< R > &mp, time_state
 R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R compute_V_phys (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R compute_V (field_size &fs, model_params < R > &mp, time_state < R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R **compute_T_phi_phys** (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R compute_T_phi (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R **compute_T_chi_phys** (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R chigradz, R chigradz, R gpot)

- static R compute_T_chi (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R chigradz, R chigradz, R gpot)
- static R **compute_G_phi_phys** (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R compute_G_phi (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R compute_G_chi_phys (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R chigradz, R chigradz, R gpot)
- static R **compute_G_chi** (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R compute_G_phi_phys_x (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R compute_G_phi_x (field_size &fs, model_params < R > &mp, time_state < R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R chigradz, R chigradz, R gpot)
- static R compute_G_chi_phys_x (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R chigradz, R chigradz, R gpot)
- static R compute_G_chi_x (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R compute_G_phi_phys_y (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R chigradz, R chigradz, R gpot)
- static R compute_G_phi_y (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R compute_G_chi_phys_y (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R chigradz, R chigradz, R gpot)
- static R compute_G_chi_y (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R compute_G_phi_phys_z (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R chigradz, R chigradz, R gpot)
- static R compute_G_phi_z (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)

- static R **compute_G_chi_phys_z** (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R compute_G_chi_z (field_size &fs, model_params < R > &mp, time_state < R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R compute_grad_phi_phys_x (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigrady, R chigradz, R gpot)
- static R compute_grad_chi_phys_x (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigrady, R chigradz, R chigradz, R gpot)
- static R compute_grad_phi_phys_y (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigrady, R phigrady, R phigrady, R chigrady, R chigradz, R gpot)
- static R compute_grad_chi_phys_y (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigrady, R chigradz, R gpot)
- static R compute_grad_phi_phys_z (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R compute_grad_chi_phys_z (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigrady, R chigradz, R chigradz, R gpot)
- static R compute_rho_phys (field_size &fs, model_params < R > &mp, time_state < R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R compute_rho (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R compute_p_phys (field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)
- static R compute_p (field_size &fs, model_params< R > &mp, time_state< R
 > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)

$template < typename \ R > struct \ grid_funcs < R >$

The documentation for this struct was generated from the following files:

- grid_funcs.hpp
- grid_funcs.cpp

15.14 initializer < R > Class Template Reference

Inheritance diagram for initializer < R >:

Public Member Functions

• virtual void **initialize** ()=0

$template {<} typename~R {>}~class~initializer {<}~R {>}$

The documentation for this class was generated from the following file:

• initializer.hpp

15.15 integrator < R > Class Template Reference

Inheritance diagram for integrator < R >:

Public Member Functions

- virtual void step ()=0
- virtual void **initialize** ()=0

Static Public Member Functions

• static void **avg_gradients** (field_size &fs, model_params< R > &mp, field< R > &phi, field< R > &chi, R &avg_gradient_phi, R &avg_gradient_chi)

$template {<} typename \ R {>} \ class \ integrator {<} \ R {>}$

The documentation for this class was generated from the following files:

- integrator.hpp
- integrator.cpp

15.16 keyed_value < K, V > Struct Template Reference

Collaboration diagram for keyed_value < K, V >:

Public Member Functions

- keyed_value (V &v, K ik, V dv, const char *kn, const char *vn)
- void advance (K k)
- void add_value (K start_key, V value_)
- void finalize_values ()
- void **summary** (std::ostream &os)

Public Attributes

- V & value
- const K initial_key
- const V default_value

Protected Attributes

- const char * key_name
- const char * value_name
- std::vector< std::pair< K, V >> values

template<typename K, typename V> struct keyed_value< K, V>

The documentation for this struct was generated from the following file:

• time_state.hpp

15.17 le_style_initializer< R > Class Template Reference

Inheritance diagram for le_style_initializer< R >:

Collaboration diagram for le_style_initializer< R >:

Public Member Functions

- le_style_initializer (field_size &fs_, model_params< R > &mp_, field< R > &phi_, field< R > &chi_, field< R > &chidot_, R adot_, R len0)
- virtual void initialize ()

Protected Member Functions

- void **set_mode** (field< R > &fld, field< R > &flddot, R m_fld_eff, int px, int py, int pz, int idx, bool real=false)
- void **initialize_field** (field< R > &fld, field< R > &flddot, R m_fld_eff)

Protected Attributes

- field_size & fs
- model_params< R > & mp
- field < R > & phi
- field < R > & phidot
- field< R > & chi
- field < R > & chidot
- R adot
- R fluctuation_amplitude

template<typename R> class le_style_initializer< R>

The documentation for this class was generated from the following files:

- le_style_initializer.hpp
- le_style_initializer.cpp

15.18 model < R > Class Template Reference

Collaboration diagram for model < R >:

Public Member Functions

- model (int argc, char *argv[])
- void run ()

Protected Member Functions

- void **set_output_directory** (const char *uodn)
- void write_info_file ()
- void set_initial_conditions ()
- void evolve (integrator < R > *ig)
- void load_initial_slice_file (std::string &ifn, field< R > &fld, R pf)
- void private_allocate ()
- void private_set_sf_info()

- void **private_evolve** (int counter)
- void **private_info_file_output** (std::ofstream &info_file)

Protected Attributes

- field size fs
- model_params< R > mp
- time_state < R > ts
- bool use verlet
- bool le_init
- bool homo_ic_phi
- bool homo_ic_chi
- int seed
- Rtf
- int scale_interval
- int energy_interval
- int spectra_interval
- int screen_interval
- int slice interval
- int stats_interval
- int twoptcorr_interval
- keyed_value< R, int > scale_intervals
- keyed_value< R, int > energy_intervals
- keyed_value< R, int > spectra_intervals
- keyed_value< R, int > screen_intervals
- keyed_value< R, int > slice_intervals
- keyed_value< R, int > stats_intervals
- keyed_value< R, int > twoptcorr_intervals
- field < R > phi
- field < R > phidot
- **field**< R > **chi**
- field < R > chidot
- grad_computer< R > * gc
- gpot_computer< R > * gpotc
- slice_output_manager< R > * som
- R ics_scale
- R len0
- bool vvwl
- R af
- bool external_H0
- std::string phi0_slice
- std::string chi0_slice

- std::string phidot0_slice
- std::string chidot0_slice
- std::string start_wd
- int ics eff size
- R phidot0pr
- R chidot0pr

template<typename R> class model< R>

The documentation for this class was generated from the following files:

- model.hpp
- model.cpp

15.19 model_params< R > Struct Template Reference

Static model parameters.

#include <model_params.hpp>

Public Member Functions

- void calculate_derived_params (bool report=false)
- R V (R phi, R chi, R a_t)

Returns the value of the field potential at a point given the values of the fields at that point.

• void derivs (R phi, R chi, R phidot, R chidot, R chi2phi, R phi2chi, R phi3, R chi3, R phi5, R chi5, R phi_md, R chi_md, R a_t, R adot_t, R addot_t, R mom2, R &dphidt, R &dchidt, R &dchidt, R &dchidotdt)

This is where the equations of motion for the fields are actually evaluated.

- R adoubledot_pwr_exp (R t, R a_t, R adot_t)
- R adoubledot (R t, R a_t, R adot_t, R avg_gradient_phi, R avg_gradient_chi, R avg_V)

Returns the second time derivative of the scale factor in program units.

R adoubledot_staggered (R t, R dt, R a_t, R adot_t, R avg_gradient_phi, R avg_gradient_chi, R avg_V)

Returns the second time derivative of the scale factor in program units at a half-timestep.

Public Attributes

- R gamma_phi
- R gamma_chi
- R lambda_phi
- R lambda_chi
- R g
- R m_phi
- R m_chi
- R md_e_phi
- R md_e_chi
- R md_c_phi
- R md c chi
- R md_s_phi
- R md_s_chi
- R len
- R phi0
- R chi0
- R phidot0
- R chidot0
- R rescale_A
- R rescale_B
- R rescale_s
- R rescale_r
- R **dp**
- bool pwr_exp
- R pwr_exp_G

15.19.1 Detailed Description

template<typename R> struct model_params< R>

Static model parameters.

15.19.2 Member Function Documentation

15.19.2.1 template<typename R> R model_params< R>::adoubledot (R t, R a_t, R adot_t, R avg_gradient_phi, R avg_gradient_chi, R avg_V) [inline]

Returns the second time derivative of the scale factor in program units.

See equation 6.26 of the LatticeEasy manual.

15.19.2.2 template<typename R> R model_params< R
>::adoubledot_staggered (R t, R dt, R a_t, R adot_t, R
avg_gradient_phi, R avg_gradient_chi, R avg_V) [inline]

Returns the second time derivative of the scale factor in program units at a half-timestep.

See equation 6.35/6.36 of the LatticeEasy manual.

15.19.2.3 template<typename R> void model_params< R>::derivs (R phi, R chi, R phidot, R chidot, R chi2phi, R phi2chi, R phi3, R chi3, R phi5, R chi5, R phi_md, R chi_md, R a_t, R adot_t, R addot_t, R mom2, R & dphidt, R & dchidt, R & dphidotdt, R & dchidotdt)
[inline]

This is where the equations of motion for the fields are actually evaluated.

The first and second time derivatives of the fields are computed in accordance with the Klein-Gordon equation, which is written in program units and transformed to momentum-space. Note that the choice of program units has eliminated the first-time-derivative term from the second-time-derivative equation.

15.19.2.4 template<typename R> R model_params< R>::V(R phi, R chi, R a_t) [inline]

Returns the value of the field potential at a point given the values of the fields at that point.

The field values are sent in program units, and the potential is returned in program units. This is equation 6.5 from the LatticeEasy manual.

The documentation for this struct was generated from the following file:

model_params.hpp

Collaboration diagram for nonlinear_transformer< R >:

Public Member Functions

- nonlinear_transformer (field_size &fs_, model_params< $R > \&mp_$, time_state< $R > \&ts_$)
- void **transform** (field< R > &phi, field< R > &chi, R a_t, field_state final_state=momentum)

Public Attributes

- field< R > phi2chi
- field < R > chi2phi
- field < R > phi3
- field < R > chi3
- field < R > phi5
- field < R > chi5
- $field < R > phi_md$
- $field < R > chi_md$

Protected Attributes

- field_size & fs
- field_size upfs
- $model_params < R > \& mp$
- time_state < R > & ts

$template < typename \ R > class \ nonlinear_transformer < R >$

The documentation for this class was generated from the following files:

- nonlinear_transformer.hpp
- nonlinear_transformer.cpp

15.21 rk4 < R > Class Template Reference

Inheritance diagram for rk4< R >:

Collaboration diagram for rk4< R >:

Public Member Functions

- rk4 (field_size &fs_, model_params< R > &mp_, time_state< R > &ts_-, field< R > &phi_, field< R > &phidot_, field< R > &chi_, field< R
- virtual void step ()
- virtual void initialize ()

Protected Member Functions

- void substep_scale (R fac, field< R > &phip, field< R > &chip, R ap, R adotp, R ptp, R &an, R &adotn, R &ptn, R &dan, R &dadotn, R &dptn, R &avg_gradient_phi, R &avg_gradient_chi)
- void **substep** (R fac, field< R > &phip, field< R > &chip, field< R > &phidotp, field< R > &chin, field< R > &chin, field< R > &chin, field< R > &phin, field< R > &chin, field< R > &phin, field< R > &chin, field< R > &chin, field< R > &chin, R &chin, R

Protected Attributes

- field_size & fs
- field_size upfs
- $model_params < R > \& mp$

- time_state < R > & ts
- field < R > & phi
- field < R > & phidot
- field < R > & chi
- field < R > & chidot
- field < R > phi1
- field < R > phidot1
- field < R > chi1
- field < R > chidot1
- field< R > phi2
- field < R > phidot2
- field < R > chi2
- field < R > chidot2
- field < R > phi3
- field < R > phidot3
- field < R > chi3
- field < R > chidot3
- nonlinear_transformer< R > nlt
- v_integrator< R > vi
- R a1
- R a2
- R a3
- R a4
- R adot1
- R adot2
- R adot3
- R adot4
- R pt1
- R pt2
- R pt3
- R pt4

template<typename R> class rk4< R>

The documentation for this class was generated from the following files:

- rk4.hpp
- rk4.cpp

$15.22 \quad rs_init < R > Struct \ Template \ Reference$

Collaboration diagram for rs_init< R >:

Public Member Functions

- rs_init (R m, R B, R s, R r, R A, const std::string &d)
- bool **operator**< (const rs_init &rs) const

Public Attributes

- R mag
- R rescale_B
- R rescale_s
- R rescale_r
- R rescale_A
- std::string desc

template<typename R> struct rs_init< R>

The documentation for this struct was generated from the following file:

• model_params.hpp

15.23 slice_output_manager< R > Class Template Reference

Collaboration diagram for slice_output_manager < R >:

Public Types

• typedef slice_outputter< R >::var_func var_func

Public Member Functions

- slice_output_manager (field_size &fs_, model_params< R > &mp_, time_state< R > &ts_, field< R > &phi_, field< R > &chi_, field< R > &phidot_, field< R > &chi_, field< R > &phidot_, field< R > &chidot_, grad_computer< R > &gc_, gpot_computer< R > &gpotc_, int slicedim_=3, int slicelength_=0, int sliceskip_=1, bool sliceaverage_=true, bool sliceflt_=true)
- void add_outputter (std::string varname, var_func vf)
- void output ()

Protected Attributes

• field_size & fs

- field_size upfs
- $model_params < R > \& mp$
- time_state< R > & ts
- field < R > & phi
- field < R > & chi
- field < R > & phidot
- field < R > & chidot
- grad_computer < R > & gc
- $gpot_computer < R > & gpotc$
- int slicedim
- int slicelength
- int sliceskip
- bool sliceaverage
- bool sliceflt
- int bin_idx
- std::vector< slice_outputter< R > * > outputters

template<typename R> class slice_output_manager< R>

The documentation for this class was generated from the following files:

- slice_output_manager.hpp
- slice_output_manager.cpp

15.24 slice_outputter < R > Class Template Reference

Collaboration diagram for slice_outputter< R >:

Public Types

• typedef R(* var_func)(field_size &fs, model_params< R > &mp, time_state< R > &ts, R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)

Public Member Functions

- slice_outputter (field_size &fs_, model_params< R > &mp_, time_state< R > &ts_, int slicelength_, std::string varname_, var_func vf_, bool flt_=true)
- void **begin** (int bin_idx)
- void flush ()
- void advance ()
- void **accumulate** (R phi, R chi, R phidot, R chidot, R phigradx, R chigradx, R phigrady, R chigrady, R phigradz, R chigradz, R gpot)

Protected Attributes

- field_size & fs
- model_params< R > & mp
- time_state < R > & ts
- int slicelength
- std::string varname
- var_func vf
- R * buffer
- float * bufferf
- std::ofstream of
- int cp
- int cn
- bool flt

$template {<} typename \ R {>} \ class \ slice_outputter {<} \ R >$

The documentation for this class was generated from the following files:

- slice_outputter.hpp
- slice_outputter.cpp

$\begin{array}{ll} \textbf{15.25} & \textbf{spectra_outputter} < R > \textbf{Class Template Reference} \\ & \textbf{ence} \end{array}$

Collaboration diagram for spectra_outputter< R >:

Public Member Functions

- spectra_outputter (field_size &fs_, model_params< R > &mp_, time_state< R > &ts_, field< R > &phi_, field< R > &chi_)
- void output ()

Protected Attributes

- field_size & fs
- model_params< R > & mp
- time_state < R > & ts
- field < R > & phi
- field < R > & chi
- std::ofstream of
- R * phi_total
- R * chi_total
- int * counts

$template < typename R > class spectra_outputter < R >$

The documentation for this class was generated from the following files:

- spectra_outputter.hpp
- spectra_outputter.cpp

15.26 stats_outputter < R > Class Template Reference

Collaboration diagram for stats_outputter< R >:

Public Member Functions

• stats_outputter (field_size &fs_, model_params< R > &mp_, time_state< R > &ts_, field< R > &phi_, field< R > &chi_, field< R > &phidot_, field< R

- > &chidot_)
- void output ()

Protected Member Functions

- void **compute** (field< R > &fld1, field< R > &fld2, R &fld1_mean, R &fld2_mean, R &fld1_var, R &fld2_var)
- void **compute_cov** (field< R > &fld, field< R > &flddot, R &fld_flddot_cov)

Protected Attributes

- field_size & fs
- model_params< R > & mp
- time_state < R > & ts
- field < R > & phi
- field< R > & chi
- field < R > & phidot
- field < R > & chidot
- std::ofstream of

template<typename R> class stats_outputter< R>

The documentation for this class was generated from the following files:

- stats_outputter.hpp
- stats_outputter.cpp

15.27 time_state< R > Struct Template Reference

Collaboration diagram for time_state< R >:

Public Member Functions

- void advance ()
- void add_dt (R start_time, R dt_)
- void finalize_dts ()
- void **dt_summary** (std::ostream &os)

Static Public Member Functions

• static R default_dt ()

Public Attributes

- R t
- R physical_time
- R a

- R adot
- R addot
- R dt

Protected Attributes

• $keyed_value < R, R > dtm$

$template\!<\!typename\;R\!>\!struct\;time_state\!<\!R>$

The documentation for this struct was generated from the following file:

• time_state.hpp

$\begin{array}{ll} \textbf{15.28} & \textbf{twoptcorr_outputter} < R > \textbf{Class Template Ref} \\ & \textbf{erence} \end{array}$

Collaboration diagram for twoptcorr_outputter< R >:

Public Member Functions

- twoptcorr_outputter (field_size &fs_, model_params< R > &mp_, time_state< R > &ts_, field< R > &phi_, field< R > &chi_)
- void output ()

Protected Attributes

- field_size & fs
- field_size upfs
- model_params< R > & mp
- time_state < R > & ts
- field < R > & phi
- field< R > & chi
- std::ofstream of
- $R * phi_total$
- R * chi_total
- int * counts
- int dmax
- field < R > corr

$template {<} typename \ R {>} \ class \ twoptcorr_outputter {<} \ R {>}$

The documentation for this class was generated from the following files:

- twoptcorr_outputter.hpp
- twoptcorr_outputter.cpp

15.29 v_integrator < R > Class Template Reference

Collaboration diagram for v_integrator < R >:

Public Member Functions

- v_integrator (field_size &fs_, model_params< R > &mp_)
- R integrate (field < R > &phi, field < R > &chi, R a_t)

Protected Attributes

- field_size & fs
- model_params< R > & mp
- R * y_integral
- R * z_integral

$template {<} typename \ R {>} \ class \ v_integrator {<} \ R {>}$

The documentation for this class was generated from the following files:

- v_integrator.hpp
- v_integrator.cpp

$15.30 \quad verlet < R > Class \ Template \ Reference$

Inheritance diagram for verlet < R >:

Collaboration diagram for verlet < R >:

Public Member Functions

• verlet (field_size &fs_, model_params< R > &mp_, time_state< R > &ts_-, field< R > &phi_, field< R > &phidot_, field< R > &chi_, field<

- virtual void step ()
- virtual void initialize ()

Protected Attributes

- field_size & fs
- field_size upfs
- $model_params < R > \& mp$
- time_state < R > & ts
- field < R > & phi
- field < R > & phidot
- field < R > & chi
- field < R > & chidot
- field < R > phiddot
- field< R > phidot_staggered
- field < R > chiddot
- field< R > chidot_staggered
- nonlinear_transformer< R > nlt
- v_integrator< R > vi
- R addot
- R adot_staggered
- R dptdt
- R ddptdt
- R dptdt_staggered

template<typename R> class verlet< R>

The documentation for this class was generated from the following files:

- verlet.hpp
- verlet.cpp

Chapter 16

File Documentation

16.1 defrost_style_initializer.hpp File Reference

DEFROST-style initial conditions.

```
#include "field_size.hpp"
#include "model_params.hpp"
#include "field.hpp"
#include "initializer.hpp"
```

Include dependency graph for defrost_style_initializer.hpp:

Classes

class defrost_style_initializer< R >
 DEFROST-style initial conditions.

16.1.1 Detailed Description

DEFROST-style initial conditions.

16.2 energy_outputter.hpp File Reference

Outputter for the energy TSV file.

```
#include "field.hpp"
#include "model_params.hpp"
#include "time_state.hpp"
```

```
#include "v_integrator.hpp"
#include <iostream>
#include <fstream>
```

Include dependency graph for energy_outputter.hpp:

Classes

class energy_outputter< R >
 Outputter for the energy TSV file.

16.2.1 Detailed Description

Outputter for the energy TSV file.

16.3 fft.hpp File Reference

FFT wrappers.

#include <fftw3.h>

Include dependency graph for fft.hpp:

This graph shows which files directly or indirectly include this file:

Classes

- class fft_r2r_1d_plan< R >
- class fft_r2r_1d_plan< double >
- class fft_dft_c2r_3d_plan< R >
- class fft_dft_c2r_3d_plan< double >
- class fft_dft_r2c_3d_plan< R >
- class fft_dft_r2c_3d_plan< double >

Enumerations

• enum fft_r2r_kind {

```
r2hc = FFTW_R2HC, hc2r = FFTW_HC2R, dht = FFTW_DHT, redft00 =
FFTW_REDFT00,

redft10 = FFTW_REDFT10, redft01 = FFTW_REDFT01, redft11 = FFTW_-
REDFT11, rodft00 = FFTW_RODFT00,

rodft10 = FFTW_RODFT10, rodft01 = FFTW_RODFT01, rodft11 = FFTW_-
RODFT11 }
```

Functions

```
    template<typename R > R * fft_malloc (size_t sz)
    template<>> double * fft_malloc< double > (size_t sz)
    template<typename R > void fft_free (R *ptr)
    template<>> void fft_free< double > (double *ptr)
```

16.3.1 Detailed Description

FFT wrappers.

16.4 field.hpp File Reference

Three-dimensional scalar fields.

```
#include "fft.hpp"
#include "field_size.hpp"
#include <cmath>
```

Include dependency graph for field.hpp:

This graph shows which files directly or indirectly include this file:

Classes

• class field< R >

A three-dimensional scalar field in both position and momentum space.

Enumerations

enum field_state { uninitialized, position, momentum, padded_position, padded_momentum }

16.4.1 Detailed Description

Three-dimensional scalar fields.

16.5 field_size.hpp File Reference

Field grid size and derived size-related quantities.

#include <cmath>

Include dependency graph for field_size.hpp:

This graph shows which files directly or indirectly include this file:

Classes

• struct field_size

16.5.1 Detailed Description

Field grid size and derived size-related quantities.

16.6 gpot_computer.hpp File Reference

Gravitational-potential computations.

```
#include "field_size.hpp"
#include "model_params.hpp"
#include "time_state.hpp"
#include "field.hpp"
#include "grad_computer.hpp"
```

Include dependency graph for gpot_computer.hpp:

This graph shows which files directly or indirectly include this file:

Classes

• class gpot_computer< R >

Computer of the gravitational potential from the energy density of the phi and chi fields.

16.6.1 Detailed Description

Gravitational-potential computations.

16.7 grad_computer.hpp File Reference

Computation of the gradient in Fourier space.

```
#include "field_size.hpp"
#include "model_params.hpp"
#include "field.hpp"
```

Include dependency graph for grad_computer.hpp:

This graph shows which files directly or indirectly include this file:

Classes

• class grad_computer< R >

16.7.1 Detailed Description

Computation of the gradient in Fourier space.

16.8 grid_funcs.hpp File Reference

Grid point functions used for slice output, etc.

```
#include "pow/pow.hpp"
#include "model_params.hpp"
#include "field_size.hpp"
#include "time_state.hpp"
#include <cmath>
```

Include dependency graph for grid_funcs.hpp:

Classes

• struct grid_funcs< R >

16.8.1 Detailed Description

Grid point functions used for slice output, etc.

16.9 initializer.hpp File Reference

Generic field-initialization.

#include "field.hpp"

Include dependency graph for initializer.hpp:

This graph shows which files directly or indirectly include this file:

Classes

• class initializer< R >

16.9.1 Detailed Description

Generic field-initialization.

16.10 integrator.hpp File Reference

Generic time-step evolution.

```
#include "field_size.hpp"
#include "model_params.hpp"
#include "field.hpp"
```

Include dependency graph for integrator.hpp:

This graph shows which files directly or indirectly include this file:

Classes

• class integrator< R >

16.10.1 Detailed Description

Generic time-step evolution.

16.11 le_style_initializer.hpp File Reference

LatticeEasy-style initialization.

```
#include "field_size.hpp"
#include "model_params.hpp"
#include "field.hpp"
#include "initializer.hpp"
#include <cmath>
```

Include dependency graph for le_style_initializer.hpp:

Classes

ullet class le_style_initializer< R >

16.11.1 Detailed Description

LatticeEasy-style initialization.

16.12 model.hpp File Reference

A particular simulated situation.

```
#include "field_size.hpp"
#include "model_params.hpp"
#include "time_state.hpp"
#include "field.hpp"
#include "integrator.hpp"
#include "slice_output_manager.hpp"
#include "grad_computer.hpp"
#include "gpot_computer.hpp"
Include dependency graph for model.hpp:
```


Classes

• class model < R >

16.12.1 Detailed Description

A particular simulated situation.

16.13 model_params.hpp File Reference

The physical model parameters.

```
#include "pow/pow.hpp"
#include <iostream>
#include <string>
#include <set>
#include <cmath>
```

Include dependency graph for model_params.hpp:

This graph shows which files directly or indirectly include this file:

Classes

- struct rs_init< R >
- struct model_params< R >

 ${\it Static model parameters.}$

Functions

```
• template<typename R > bool operator< (const rs_init< R > &rs1, const rs_init< R > &rs2)
```

16.13.1 Detailed Description

The physical model parameters.

16.14 nonlinear_transformer.hpp File Reference

Momentum-space representations of nonlinear field terms.

```
#include "field_size.hpp"
#include "model_params.hpp"
#include "field.hpp"
#include "time_state.hpp"
```

Include dependency graph for nonlinear_transformer.hpp:

This graph shows which files directly or indirectly include this file:

Classes

• class nonlinear_transformer< R >

16.14.1 Detailed Description

Momentum-space representations of nonlinear field terms.

16.15 pow/pow.hpp File Reference

Template function to compute the integer power of its argument.

This graph shows which files directly or indirectly include this file:

16.15.1 Detailed Description

Template function to compute the integer power of its argument.

16.16 rk4.hpp File Reference

Fourth-order Runge-Kutta (RK4) integrator.

```
#include "field_size.hpp"
#include "model_params.hpp"
#include "time_state.hpp"
#include "field.hpp"
#include "integrator.hpp"
#include "nonlinear_transformer.hpp"
#include "v_integrator.hpp"
```

Include dependency graph for rk4.hpp:

Classes

• class rk4< R >

16.16.1 Detailed Description

Fourth-order Runge-Kutta (RK4) integrator.

16.17 slice_output_manager.hpp File Reference

Field slice output manager.

```
#include "field_size.hpp"
#include "model_params.hpp"
#include "time_state.hpp"
#include "field.hpp"
#include "slice_outputter.hpp"
#include "grad_computer.hpp"
#include "gpot_computer.hpp"
#include <string>
#include <vector>
```

Include dependency graph for slice_output_manager.hpp:

This graph shows which files directly or indirectly include this file:

Classes

• class slice_output_manager< R >

16.17.1 Detailed Description

Field slice output manager.

16.18 slice_outputter.hpp File Reference

Outputter for the file slices.

```
#include "field_size.hpp"
#include "model_params.hpp"
#include "time_state.hpp"
#include "field.hpp"
#include <string>
#include <iostream>
#include <fstream>
```

Include dependency graph for slice_outputter.hpp:

This graph shows which files directly or indirectly include this file:

Classes

• class slice_outputter< R >

16.18.1 Detailed Description

Outputter for the file slices.

16.19 spectra_outputter.hpp File Reference

Outputter for the spectra TSV file.

```
#include "field.hpp"
#include "model_params.hpp"
#include "time_state.hpp"
#include <iostream>
#include <fstream>
```

Include dependency graph for spectra_outputter.hpp:

Classes

• class spectra_outputter< R >

16.19.1 Detailed Description

Outputter for the spectra TSV file.

16.20 stats_outputter.hpp File Reference

Outputter for the stats TSV file.

```
#include "field.hpp"
#include "model_params.hpp"
#include "time_state.hpp"
#include <iostream>
#include <fstream>
```

Include dependency graph for stats_outputter.hpp:

Classes

• class stats_outputter< R >

16.20.1 Detailed Description

Outputter for the stats TSV file.

16.21 time_state.hpp File Reference

Time-varying model parameters.

```
#include <vector>
#include <utility>
#include <iostream>
```

Include dependency graph for time_state.hpp:

This graph shows which files directly or indirectly include this file:

Classes

- struct keyed_value< K, V >
- struct time_state< R >

16.21.1 Detailed Description

Time-varying model parameters.

16.22 twoptcorr_outputter.hpp File Reference

Outputter for the twoptcorr TSV file.

#include "field.hpp"

```
#include "model_params.hpp"
#include "time_state.hpp"
#include <iostream>
#include <fstream>
```

Include dependency graph for twoptcorr_outputter.hpp:

Classes

• class twoptcorr_outputter< R >

16.22.1 Detailed Description

Outputter for the twoptcorr TSV file.

16.23 v_integrator.hpp File Reference

Integrate the potential energy over the field.

```
#include "field_size.hpp"
#include "model_params.hpp"
#include "field.hpp"
```

Include dependency graph for v_integrator.hpp:

This graph shows which files directly or indirectly include this file:

Classes

 $\bullet \ class \ v_integrator < R >$

16.23.1 Detailed Description

Integrate the potential energy over the field.

16.24 verlet.hpp File Reference

Second-order Verlet integrator.

```
#include "field_size.hpp"
#include "model_params.hpp"
#include "time_state.hpp"
#include "field.hpp"
#include "integrator.hpp"
#include "nonlinear_transformer.hpp"
#include "v_integrator.hpp"
```

Include dependency graph for verlet.hpp:

Classes

• class verlet< R >

16.24.1 Detailed Description

Second-order Verlet integrator.

Index

adoubledot	grid_funcs, 45
model_params, 56	grid_funcs.hpp, 89
adoubledot_staggered	
model_params, 56	initializer, 48
	initializer.hpp, 90
compute	integrator, 49
gpot_computer, 43	integrator.hpp, 91
data	keyed_value, 50
field, 40	3 — /
defrost_style_initializer, 31	le_style_initializer, 51
sample_grf, 33	le_style_initializer.hpp, 93
defrost_style_initializer.hpp, 79	- , -
derivs	model, 53
model_params, 57	model.hpp, 94
	model_params, 55
energy_outputter, 33	adoubledot, 56
output, 35	adoubledot_staggered, 56
energy_outputter.hpp, 80	derivs, 57
	V, 57
fft.hpp, 81	model_params.hpp, 95
fft_dft_c2r_3d_plan, 36	— 1
$fft_dft_c2r_3d_plan < double >, 36$	nonlinear_transformer, 58
fft_dft_r2c_3d_plan, 37	nonlinear_transformer.hpp, 96
fft_dft_r2c_3d_plan< double >, 37	
fft_r2r_1d_plan, 38	output
$fft_r2r_1d_plan < double >, 38$	energy_outputter, 35
field, 38	
data, 40	pow/pow.hpp, 97
field.hpp, 83	
field_size, 41	rk4, 59
field_size.hpp, 85	rk4.hpp, 98
	rs_init, 62
gpot_computer, 41	
compute, 43	sample_grf
gpot_computer.hpp, 86	defrost_style_initializer, 3
grad_computer, 44	slice_output_manager, 63
grad_computer.hpp, 87	slice_output_manager.hpp, 99

INDEX 109

```
slice_outputter, 65
slice_outputter.hpp, 100
spectra_outputter, 67
spectra_outputter.hpp, 102
stats_outputter, 69
stats_outputter.hpp, 103
time_state, 71
time_state.hpp, 103
twoptcorr_outputter, 73
twoptcorr_outputter.hpp, 104
V
     model_params, 57
v_integrator, 75
v_integrator.hpp, 105
verlet, 76
verlet.hpp, 107
```