

TSP Varianten

Finn Stutzenstein, Levin Nemesch, Joshua Sangmeister

14. Dezember 2020

Algorithm Engineering - Übung 3

TSP aus der Vorlesung

Gegeben: G = (V, E) ungerichtet, $w_e \ge 0$ Kantengewichte **Gesucht**: Rundtour $E' \subseteq E$, sodass $\sum_{e \in E'} w_e$ minimal ist

min
$$\sum_{e \in E} w_e x_e$$
 s.t.
$$\sum_{e \in \delta(v)} x_e = 2 \qquad \forall v \in V$$

$$\sum_{e \in \delta(W)} x_e \geq 2 \qquad \forall \emptyset \neq W \subset V$$

$$x_e \in \{0,1\} \qquad \forall e \in E$$

1

Asymmetrisches TSP (ATSP)¹

Gegeben: G = (V, A) gerichtet, $w_{ij} \ge 0$ Kantengewichte (i.A. $w_{uv} \ne w_{vu}$, keine Selfloops: $w_{ii} = +\infty$)

Gesucht: Gerichtete Rundtour $A' \subseteq A$, sodass $\sum_{(i,j) \in A'} w_{ij}$ minimal ist

ILP:

- Dantzig-Fulkerson-Johnson Formulierung
- $x_{ij} = 1 \Leftrightarrow \mathsf{Kante}(i,j)$ in der Lösung

 $^{^1}$ Dantzig G., Fulkerson D., Johnson S.: Solutions of a large-scale traveling-salesman problem. (1954) Operation Research 2(4):393–410

Asymmetrisches TSP (ATSP)

min
$$\sum_{i \in V} \sum_{j \in V} w_{ij} x_{ij}$$
 s.t.
$$\sum_{i \in V} x_{ij} = 1 \qquad \forall j \in V$$

$$\sum_{j \in V} x_{ij} = 1 \qquad \forall i \in V$$

$$\sum_{i \in W} \sum_{j \in W} x_{ij} \leq |W| - 1 \qquad \forall \emptyset \neq W \subset V$$

$$x_{ij} \in \{0, 1\} \qquad \forall i, j \in V$$

Bottleneck TSP²

Gegeben: G = (V, E) ungerichtet, $w_e \ge 0$ Kantengewichte **Gesucht**: Rundtour $E' \subseteq E$, sodass $\max_{e \in E'} (w_e)$ minimal ist

ILP:

• $y \in \mathbb{Z}$ zum Messen der teuersten Kante: $y \geq w_e x_e \forall e \in E$

 $^{^2}$ R. S. Garfinkel und K. C. Gilbert. The Bottleneck Traveling Salesman Problem: Algorithms and Probabilistic Analysis. *Journal of the ACM (JACM)* 25.3 (1978), S. 435–448.

Bottleneck TSP

min	У	
s.t.	$\sum_{e \in \delta(v)} x_e = 2$	$\forall v \in V$
	$\sum_{e \in \delta(W)} x_e \ge 2$	$\forall \emptyset \neq W \subset V$
	$y-w_{\mathrm{e}}x_{\mathrm{e}}\geq 0$	$\forall e \in E$
	$x_e \in \{0,1\}$	$orall e \in \mathcal{E}$
	$y\in\mathbb{Z}$	

Equitable TSP³

Gegeben: G = (V, E) ungerichtet, $w_e \ge 0$ Kantengewichte, n gerade.

Gesucht: Zwei perfekte Matchings $M_1, M_2 \subset E$, sodass

- 1. die Vereinigung beider Matchings einen Hamiltonkreis in G bilden und
- 2. $|c(M_1) c(M_2)|$ mit $c(M) = \sum_{e \in M} w_e$ minimal ist.

ILP:

- ullet \mathcal{M} : Menge aller perfekten Matchings von G
- ullet $y_M^1=1$ $(y_M^2=1)$ \Leftrightarrow : Matching $M\in\mathcal{M}$ wird als erstes (zweites) Matching gewählt

 $^{^3}$ J. Kinable, B. Smeulders, E. Delcour und F. C. Spieksma. Exact algorithms for the equitable traveling salesman problem. *European Journal of Operational Research* 261.2 (2017), S. 475 -485.

Equitable TSP

$$\begin{aligned} & \min & \left| \sum_{M \in \mathcal{M}} c(M) y_M^1 - \sum_{M \in \mathcal{M}} c(M) y_M^2 \right| \\ & \text{s.t.} & \sum_{M \in \mathcal{M}} y_M^1 = 1 \\ & \sum_{M \in \mathcal{M}} y_M^2 = 1 \\ & \sum_{M \in \mathcal{M}: e \in M} y_M^1 + \sum_{M \in \mathcal{M}: e \in M} y_M^2 \leq 1 & \forall e \in E \end{aligned}$$

$$\begin{aligned} & \sum_{M \in \mathcal{M}: e \in M} y_M^1 + \sum_{M \in \mathcal{M}: e \in M} y_M^2 \leq 1 & \forall w \in V, |S| \geq 3 \end{aligned}$$

$$\begin{aligned} & y_M^1 \in \{0, 1\} & \forall M \in \mathcal{M} \\ & y_M^2 \in \{0, 1\} & \forall M \in \mathcal{M} \end{aligned}$$

7

Multiples TSP⁴

Gegeben: G = (V, A), $w_{ij} \ge 0$ Kantengewichte, Depot $d \in V$, m Verkäufer **Gesucht**: m Touren mit jeweils mindestens 3 Knoten, die alle d beinhalten. Die Gesamtwegkosten müssen minimal sein. Jeder Knoten (außer d) muss in genau einer Tour sein. *Anmerkung*: Single Depot-Variante; Ein Depot pro Verkäufer möglich (Multi Depot-Variante) **ILP**:

- $x_{ij} = 1 \Leftrightarrow \mathsf{Kante}(i,j)$ in der Lösung
- u_i: Anzahl der besuchten Knoten vom Depot zu i für jeden Verkäufer (also Position von i in der Tour)
- $V' = V \setminus \{1\}$, Knoten 1 ist das Depot

⁴Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. *Omega*, 34(3) (2006), pp. 209–219.

Multiples TSP

min	$\sum_{i \in V} \sum_{j \in V} w_{ij} x_{ij}$	
s.t.	$\sum_{j\in V'} x_{1j} = \sum_{i\in V'} x_{i1} = m$	
	$\sum_{i\in V'} x_{ij} = 1$	$\forall j \in V'$
	$\sum_{j\in V'} x_{ij} = 1$	$\forall i \in V'$
	$x_{1i} + x_{i1} \leq 1$	$\forall i \in V'$
	$u_i - u_j + (n-m)x_{ij} \leq n-m-1$	$\forall i \neq j \in V'$
	$x_{ij} \in \{0,1\}$	$\forall i,j \in V$

Prizecollecting TSP⁵

Gegeben: G = (V, E) ungerichtet, $w_e \ge 0$ Kantengewichte, p_i Knotenprofite, P_{min} zu erreichenden Minimalprofit, $d \in V$ Depot

Gesucht: Rundtour $E' \subseteq E$ über Auswahl an Knoten $V' \subseteq V$, sodass $\sum_{e \in E'} w_e$ minimal ist und $\sum_{v \in V'} p_v \ge P_{min}$ gilt

ILP:

- ullet Ordnungsvariablen $x_{ij}=1 \quad \Leftrightarrow \quad \mathsf{Nach} \; \mathsf{Knoten} \; i \; \mathsf{folgt} \; \mathsf{Knoten} \; j \; (i
 ightarrow j)$
- *u_i*: Position von Knoten *i* in der Tour
- $V' = V \setminus \{1\}$, Knoten 1 ist das Depot

⁵Vansteenwegen P., Gunawan A.: Orienteering Problems. *EURO Advanced Tutorials on Operational Research* (2019)

Prizecollecting TSP

min
$$\sum_{i \in V} \sum_{j \in V} w_{ij} x_{ij}$$
s.t.
$$\sum_{j \in V'} x_{1j} = \sum_{i \in V'} x_{i1} = 1$$

$$\sum_{i \in V} x_{ik} = \sum_{j \in V} x_{kj} \le 1 \qquad \forall k \in V'$$

$$\sum_{i \in V} \sum_{j \in V} p_i x_{ij} \ge P_{min}$$

$$u_i - u_j + 1 \le (n-1)(1 - x_{ij}) \qquad \forall i, j \in V'$$

$$x_{ij} \in \{0, 1\} \qquad \forall i, j \in V$$

Multi-Objective TSP⁶

Gegeben: G = (V, E) ungerichtet, $d \ge 1$, $w_e \in \mathbb{N}^d$ Kantengewichte

Gesucht: Rundtouren $E_{nd} = \{E' \subseteq E\}$, sodass $\sum_{e \in E'} w_e, E' \in E_{nd}$ nicht-dominiert ist

ILP:

 Constraints wie normales TSP, Zielfunktion mehrkriteriell (Streng genommen kein ILP)

$$\begin{array}{ll} \min_{\preceq} & \sum_{e \in E} w_e x_e & \in \mathbb{N}^d \\ \\ \text{s.t.} & \sum_{e \in \delta(v)} x_e = 2 & \forall v \in V \\ \\ \sum_{e \in \delta(W)} x_e \geq 2 & \forall \emptyset \neq W \subset V \\ \\ x_e \in \{0,1\} & \forall e \in E \end{array}$$

⁶T. Lust und J. Teghem. The Multiobjective Traveling Salesman Problem: A Survey and a New Approach. *Advances in Multi-Objective Nature Inspired Computing* (2010), S. 119–141.