COVID-19 Spike Protein Phylogenetic trees

Ashvin Pidaparti, Bruno Bohn, Carrie Kistler, Kimberly Mandery

Background and Summary of Previous Findings

D614G mutation

Spike specific

Increased prevalence of mutations with higher replication rates and fitness

Image courtesy of the New York Times

Sequences

Queried on NCBI

Spike protein (~1273 aa)

150 sequences:

- 15 states (10 each):
 - 5 before July
 - 5 July and after

Outgroup:

- 7 sequences from China, Jan/Feb 2020

	Selected	Results: 0			PubMed	Download	Align Build Phylogenetic Tree	
apple	Nucleotide (0)		Protein (3,912)	RefSeq Genome (0)				Select Columns
Expand lable		Accession \$	Release Date ≑	Species \$	Length \$	Nuc Completeness \$	Protein \$	Geo Location
Ĭ		QPD95898	2020-12-11	Severe acute respiratory s	1273	complete	surface glycoprotei	n USA: Texas, E
		QPD95910	2020-12-11	Severe acute respiratory s	1273	complete	surface glycoprotei	n USA: Texas, E
		QPD95922	2020-12-11	Severe acute respiratory s	1273	complete	surface glycoprotei	n USA: Texas, E
		QP015025	2020-12-09	Severe acute respiratory s	1273	complete	surface glycoprotei	n USA: Minnesc
		QP015037	2020-12-09	Severe acute respiratory s	1273	complete	surface glycoprotei	n USA: Minnesc
		QP015049	2020-12-09	Severe acute respiratory s	1273	complete	surface glycoprotei	n USA: Minnesc
		QP015061	2020-12-09	Severe acute respiratory s	1273	complete	surface glycoprotei	n USA: Minnesc
		QP015073	2020-12-09	Severe acute respiratory s	1273	complete	surface glycoprotei	n USA: Minneso
		QP015085	2020-12-09	Severe acute respiratory s	1273	complete	surface glycoprotei	n USA: Minneso
		QP015097	2020-12-09	Severe acute respiratory s	1273	complete	surface glycoprotei	n USA: Minneso
		QP015109	2020-12-09	Severe acute respiratory s	1273	complete	surface glycoprotei	n USA: Minneso
		QP015121	2020-12-09	Severe acute respiratory s	1273	complete	surface glycoprotei	n USA: Minnesc
		QP015133	2020-12-09	Severe acute respiratory s	1273	complete	surface glycoprotei	n USA: Minnesc
		QP015145	2020-12-09	Severe acute respiratory s	1273	complete	surface glycoprotei	n USA: Minnesc
		QP015157	2020-12-09	Severe acute respiratory s	1273	complete	surface glycoprotei	n USA: Minnesc
		QP015169	2020-12-09	Severe acute respiratory s	1273	complete	surface glycoprotei	n USA: Minnesc

Sequences

Aligned using Muscle

tried T-Coffee but was ineffective

Alignments

Result Summary | Phylogenetic Tree

Results Viewers | Submission Details

Download Alignment File

Show Colors

>QPL23245.1 | surface glycoprotein [Severe acute respiratory syndrome coronavirus 2] | USA MFVFLVLLPLVSSOCVNLTTRTOLPPAYTNSFTRGVYYPDKVFRSSVLHSTODLFLPFFS NVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIV NNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLE GKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQT XXXXXXXXXXXXXXXXXXPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRRRISN CVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIAD YNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYOAGSTPC NGVEGFNCYFPLOSYGFOPTNGVGYOPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN FNFNGLTGTGVLTESNKKFLPFOOFGRDIADTTDAVRDPOTLEILDITPCSFGGVSVITP GTNTSNQVAVLYQGVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSY ECDIPIGAGICASYOTOTNSPRRARSVASOSIIAYTMSLGAENSVAYSNNSIAIPTNFTI SVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLOYGSFCTOLNRALTGIAVEODKNTOE VFAOVKOIYKTPPIKDFGGFNFSOILPDPSKPSKRSFIEDLLFNKVTLADAGFIKOYGDC LGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAM QMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALN TLVKOLSSNFGAISSVLNDILSRLDKVEAEVOIDRLITGRLOSLOTYVTOOLIRAAEIRA SANLAATKMSECVLGOSKRVDFCGKGYHLMSFPOSAPHGVVFLHVTYVPAOEKNFTTAPA ICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDP LQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDL QELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDD SEPVLKGVKLHYT

>QPL23329.1 | surface glycoprotein [Severe acute respiratory syndrome coronavirus 2] | USA MFVFLVLLPLVSSOCVNLTTRTOLPPAYTNSFTRGVYYPDKVFRSSVLHSTODLFLPFFS NVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTOSLLIV

COVID spike protein Sequence counts by US regions East, Midwest, South, and West, including outgroup China, split into time intervals post July pre July 30 sedneuce conut month (2020)

AIC measures

for finding best evolutionary models to be used in distance matrix calculation

Evolutionary Models

Model selection based on time intervals Pre July and Post July

Model selection based off of US region East Midwest South and West with outgroup China

Conclusions

No pattern in clustering was observed by time period or US region.

UPGMA suggested all **outgroup samples** (China, early 2020) to be **clustered with a large group of other samples**.

This result **suggests genetic variance largely occurred within the US**, without geographic limits.

A larger sample size and more refined sample selection methods are warranted to confirm findings.

