Introduction to bioinformatics (NGS data analysis)

Secondary analysis

Alexander Jueterbock

2016 June

Got your sequencing data - now, what to do with it?

- File size: several Gb
- Number of lines: >1.000.000

```
@MO2443:17:000000000-ABPBW:1:1101:12675:1533 1:N:0:1
TCGATAATTCTTACTTTCTCTCTGGTCTGAGCGTTTCACATCAACGACAAGCTCGA
TTTTTTTTTTTTTTTTT
8B6-@-,CFFED9CFAE@@C6;@,CFEEF9<@6FGGF9F<CC,,CB,@::8CF,6+
,,3733>>00,,,3880,,8*,773333,3,333738,*,,,,,76,,2,,2
0*).1.))(0*)***
@MO2443:17:000000000-ABPBW:1:1101:18658:1535 1:N:0:1
TCCCTAATTCTCTGTCTTCAAATTTTCCTTCTAAATCGTCCCTCGTTTCTACCT
TTTTCTTCTTTTTCT
-<<9-@CCEF9CE-<,,,,,;,,<C,=,6,C9,C<=C,,,;,86C,6:C,,,;<;,,
,,,,5,5:,,9++4,,,:,,,,,,,,38,853,5,,3,,7,,,6,,,,,7,,,,
+0.()+++)11.*)*
                                    4 D > 4 B > 4 B > 4 B > B
```

Before library preparation

What you need to know to steer your way through the analysis

- Research question
 - Identify adaptive genes
 - *De novo* genome assembly
 - Population genetic structure
 - Phylogenetic relation
- Experimental design
 - Number of individuals
 - Treatment of samples (e.g. heat stress)
- Sample collection
 - Samples degraded (e.g. stored in Formalin)
 - Tissue (reproductive, vegetative)

- DNA-seq, RNA-seq, Bis-Seq, Chip-Seq. . .
 - RNA reads (which lack introns) require splice-aware mappers.
 - Bis-seq changes GC ratio (bisulphite converts cytosine to uracil, but leaves 5-methylcytosine unaffected)
 - Chip-Seq enriches binding-sites of DNA-associated proteins
- Pooled samples?
 - Demultiplexing
 - Remove barcodes
- Adapter sequences that have to be trimmed off?
- Targeted coverage

Single- or Paired end sequencing, read length

Library fragment

Adapter Flowcell/bead binding sequences Amplification primers Sequencing primers

Barcodes

Adapter Flowcell/bead binding sequences Amplification primers Sequencing primers Barcodes

Secondary analysis

00000

Single- or paired-end sequencing, read length - why does it matter

Expected read lengths and sequencing qualities for common sequencing platforms

Platform	Max. length	Reads/run	Consideration
Illumina	2×150	5 billion	
HiSeq series			
Illumina	2×300	25 million	
MiSeq series			
Illumina			
NextSeq series	2×150	400 million	
Roche 454	700	0.7 million	High error rate

Primary analysis

- Demultiplexing
- Adapter trimming
- Quality control

File 1 AATTANNNNNNNNNNNNNN File 2 AGTCGNNNNNNNNNNNNNNN File 2 File 3 AATTANNNNNNNNNNNNNN File 1 File 3

File 2

Trimmig: Adapter removal

Mostly 3'adapters disturb assembly and alignment

GATTTGGGGTTCAANNNNNNNATTAGTATCGAT

GATTTGGGGTTCAANNNNNNNATTAGTATCGAT

TTGGGGTTCAANNNNNNNATTAGTATCGAT

GATTTGGGGTTCAANNNNNNNATTAGTATCGAT

ATTTGGGGTTCAANNNNNNNATTAGTATCGAT

GATTTGGGGTTCAANNNNNNNATTAGTATCGAT

```
@HWI-ST141_0365:2:1101:2983:2114#TTAGGC/1
GATTTGGGGTTCAAATTAGTATCGATCAAATAGTAAATCCATTTGTTCAACTC
+
!''*((((***+))%%%++)(%%%%).1***-+*'))**55CCF>>>>>CC
```

- 1 sequence id (specifications can differ slightly between sequencing platforms)
 - = @=instrument name : flowcell lane : tile number: flowcell x coordinate : flowcell y coordinates : #barcode sequence: pair number for paired-end sequencing
- 2 sequence
- 3 + optionally followed by sequence identifier again
- 4 quality scores

Trimmig of low-quality bases

Background information

- Trim bases with a Phred quality score <20
- $Quality = -10 * log_{10}P$

Phred Score	Probability of incorrect base	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%

Secondary analysis

Fastq file contains both sequence reads and base quality scores

```
Fastq file
```

@SEQ_ID

GATTTGGGGTTCAAATTAGTATCGATCAAATAGTAAATCCATTTGTTCAACTC

+

```
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>CC
```

Fasta file

>SEQ_ID

GATTTGGGGTTCAAATTAGTATCGATCAAATAGTAAATCCATTTGTTCAACTC

Base qualities are encoded in ascii format

Background information

ASCII stands for American Standard Code for Information Interchange. An ASCII code is the numerical representation for a character.

Dec	Нх	Oct	Cha	r	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	: Нх	Oct	Html C	hr
0	0	000	NUL	(null)	32	20	040		Space	64	40	100	@	0	96	60	140	6#96;	*
1	1	001	SOH	(start of heading)	33	21	041	6#33;	1	65	41	101	a#65;	A	97	61	141	6#97;	a
2	2	002	STX	(start of text)	34	22	042	6#34;	"	66	42	102	a#66;	В	98	62	142	6#98;	b
3	3	003	ETX	(end of text)				6#35;					a#67;					6#99;	C
4	4	004	EOT	(end of transmission)				6#36;					4#68;					6#100;	
5				(enquiry)	37	25	045	6#37;	*				E					6#101;	
6				(acknowledge)				6#38;					6#70;					6#102;	
7				(bell)				6#39;					6#71;					6#103;	
8		010		(backspace)				(6#72;					6#104;	
9		011		(horizontal tab))					6#73;					6#105;	
10		012		(NL line feed, new line)				6#42;					6#74;					6#106;	
11		013		(vertical tab)				6#43;					6#75;					6#107;	
12		014		(NP form feed, new page)				6#44;					a#76;					6#108;	
13	D	015	CR	(carriage return)				6#45;					6#77;					6#109;	
14		016		(shift out)				e#46;					6#78;					6#110;	
15	F	017	SI	(shift in)				6#47;					6#79;					6#111;	
16	10	020	DLE	(data link escape)				6#48;					6#80;					6#112;	
17	11	021	DC1	(device control 1)	49	31	061	6#49;	1	81	51	121	6#81;	Q	113	71	161	6#113;	q
				(device control 2)				2					R					6#114;	
				(device control 3)				6#51;					6#83;					6#115;	
20	14	024	DC4	(device control 4)				6#52;					4#84;					6#116;	
				(negative acknowledge)				6#53;					6#85;					6#117;	
22	16	026	SYN	(synchronous idle)				6#54;					V					6#118;	
23	17	027	ETB	(end of trans. block)				6#55;					6#87;					6#119;	
24	18	030	CAN	(cancel)	56	38	070	8	8	88	58	130	X	Х	120	78	170	6#120;	X
		031		(end of medium)	57	39	071	6#57;	9	89	59	131	6#89;	Y				6#121;	
26	1A	032	SUB	(substitute)				6#58;					Z					6#122;	
		033		(escape)				;					6#91;					6#123;	
		034		(file separator)				4#60;					6#92;					6#124;	
		035		(group separator)				6#61;					6#93;					6#125;	
30	1E	036	RS	(record separator)				>					6#9 4 ;					6#126;	
31	1F	037	US	(unit separator)	63	ЗF	077	?	2	95	5F	137	6#95;	_	127	7F	177	6#127;	DEL
													5.				امما	un Table	e com

Base qualities are encoded in ascii format

ASCII stands for American Standard Code for Information Interchange. An ASCII code is the numerical representation for a character.

<u>Dec</u>	Нх	Oct	Html	Chr
32	20	n4n	a#32;	Snace
			6#33;	_
			a#34;	
			a#35;	
			\$	
			%	=

```
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefghijk
33
              59
                                       104
0.2......41
        Phred+33, raw reads typically (0, 40)
S - Sanger
X - Solexa
          Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
  with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
  (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

Figure: Quality score encodings

Secondary analysis

Quality control tool: FastQC

Informs on:

- Base quality
- Duplication
- Overrepresentation of sequences
 - contamination?
 - adapters?
- GC content (should be around 50%, in Bis-Seq lower)

Quality before trimming

Figure : Base-quality generally decreases with increasing sequencing length

Quality after trimming

Background information

Figure: Quality after trimming

Sequence bias

For example in:

- First bases of Illumina RNAseg due to 'random' hexamer primers for reverse transcription
- RADseq fragments (cutting sites)

Hexamer primers for cDNA synthesis cause sequence bias

Secondary analysis

PCR Duplicates

Background information

Duplicates are generally removed in quantitative analyses (e.g. RNA-seq)

De novo assembly

Task: Look for overlapping regions and create contigs (contiguous sequences)

Secondary analysis

•000000000000

- Genome assembly software
 - SOAP de NOVO
 - Velvet
 - MIRA (we use this one in the course)
- Transcriptome assembly software
 - Review: Martin2011
 - Trinity
 - MIRA

De novo assembly: Step by step

Background information

. Hovo assembly. The Noo methe

N50 is a single measure of the contig length size distribution in an assembly

- Sort contigs in descending length order
- Size of contig above which the assembly contains at least 50% of the total length of all contigs

Figure: From Kane, N.C.

Secondary analysis

0000000000000

Mapping against reference genome/transcriptome

- Main purposes:
 - Identify variants (SNPs, InDels)

Mapping against reference genome/transcriptome

Main purposes:

Quantify gene expression

Secondary analysis

0000000000000

Population 1

Population 2

- Implemented in e.g. BWA, Bowtie2
- Needleman-Wunsch algorithm
- Aligns sequences in their full length
- Used for multiple sequence alignment when sequences are similar

Figure: Global alignment from rosalind.info

Mapping: Global versus local alignment

- Smith-Waterman algorithm
- Clipping of terminal unmatched bases
- Only aligned bases contribute to the alignment's score
- Used to target smaller portions of genes with high similarity

```
tccCAGTTATGTCAGgggacacgagcatgcagagac
aattgccgccgtcgttttcagCAGTTATGTCAGatc
```

Secondary analysis

Figure: Local alignment from rosalind.info

Splice-aware alignment of RNAseq reads

Figure: Adapted from Haas2010

Output format of most alignment programs

- Header lines preceded by @
- One tab-delimited line per read

Figure: Example from http://samtools.sourceforge.net/SAM1.pdf

- SAM files are large
- BAM: Compressed binary versions, not human-readable

Mapping: Mandatory fields in SAM files

Col	Field	Type	Regexp/Range	Brief description
1	QNAME	String	[!-?A-~]{1,255}	Query template NAME
2	FLAG	$_{ m Int}$	[0,2 ¹⁶ -1]	bitwise FLAG
3	RNAME	String	* [!-()+-<>-~][!-~]*	Reference sequence NAME
4	POS	Int	[0,2 ³¹ -1]	1-based leftmost mapping POSition
5	MAPQ	Int	[0,2 ⁸ -1]	MAPping Quality
6	CIGAR	String	* ([0-9]+[MIDNSHPX=])+	CIGAR string
7	RNEXT	String	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next read
8	PNEXT	Int	[0,2 ³¹ -1]	Position of the mate/next read
9	TLEN	Int	[-2 ³¹ +1,2 ³¹ -1]	observed Template LENgth
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33

Secondary analysis

0000000000000

Explanation of the flag field (click here: Link1, Link2)

Mapping: CIGAR string in SAM files

Op	BAM	Description
M	0	alignment match (can be a sequence match or mismatch)
I	1	insertion to the reference
D	2	deletion from the reference
N	3	skipped region from the reference
S	4	soft clipping (clipped sequences present in SEQ)
H	5	hard clipping (clipped sequences NOT present in SEQ)
P	6	padding (silent deletion from padded reference)
=	7	sequence match
X	8	sequence mismatch

Secondary analysis 0000000000000

Secondary analysis

0000000000000

Variant calling

Consistent mismatches in the alignment indicate:

- Single Nucleotide Polymorphisms (SNPs)
- Insertions/Deletions (InDels)

Identified SNPs vary between programs/algorithms

Venn diagram of the number of SNPs (coverage >400) called with four programs from the same alignment file (ddRAD tags mapped against the genome of Guppy).

Secondary analysis

000000000000000

Secondary analysis

0000000000000

VCF file format

Variant call format

- described in http://www.1000genomes.org/node/101
- informs on location and quality of each SNP

VCF file information

Figure: VCF file info from http://vcftools.sourceforge.net/VCF-poster.pdf

Phased alleles are on the same chromosome strand

VCF file information

Secondary analysis

0000000000000

Figure: VCF file info from http://vcftools.sourceforge.net/VCF-poster.pdf

Phased alleles are on the same chromosome strand

Secondary analysis

Figure: Log2 fold-change of expression over the mean of counts normalized by size factors. Differentially expressed genes (p<0.1) are red.

From the DESeq2 R package documentation

Clustering

Figure: Multivariate grouping of stressed (W) and control (C) seagrass samples. Most variation is explained by the first principle component

Visualizing differential expression

Figure: Heatmap of functions that were differentially expressed between Atlantic and Mediterranean seagrass samples. 4 D > 4 A > 4 B > 4 B >

Based on Vitti2012

Outlier detection

Eukaryote genome annotation

Identify the streuture and functional role

Secondary analysis

Gene ontologies

Figure: GO terms of unigenes in a moth genome

 Background information

Cloud of GO term enrichments

mitochondrial membrane omanization establishment of protein localization to...lyrosine metabolic process extracellular matrix organization riboflavin metabolic process flavin-containing compound biosynthetic .. potassium ion transmembrane transport organic hydroxy compound metabolic proce... organic hydroxy compound metabolic procession response to chemical stimulus cellulose metabolic process cell wall organization cell growth cell wall biogeness external encapsulating structure organiz... alcohol metabolic process cellular homeostasis celular biogenic amine biosynthetic pro-

response to stimulus

cell wall organization or biogenesis cell wall modification cellular carbohydrate biosynthetic proce... glucan biosynthetic processing transports across metabolic process cellulose biosynthetic process drug transmembrane transport polyamine biosynthetic process polyol metabolic processed wall assembly outer mitochondrial membrane organizatio Cellular potassium ion transport flavin-containing compound metabolic pro... protein import into mitochondrial outer ... extracellular structure organization

Figure: Term cloud of heat-responsive functions in seagrass

Secondary analysis

References