Indian Institute of Information Technology Sri City, Chittoor

Theory of Computation – Spring 2023 End Examination

Duration: 90 Minutes Maximum Marks: 60

· It is a closed book exam.

No electronic devices, books, any kind of material is allowed.

- 1. (a) Show that $A_{TM} \leq_m HALT_{TM}$ where $A_{TM} = \{ < M, w > | M \ accepts \ w \}$ and $HALT_{TM} = \{ < M, w > | M \ halts \ on \ w \}$. You need to give a clear and precise mapping reducibility from A_{TM} to $HALT_{TM}$ [8 Mark]
 - (b) Design Turing Machine for the following language $L = \{a^nb^n | n \ge 1\}$. [6 Mark]
 - (c) Which of the following problems are decidable or undecidable? [6 Mark]
 - (i) Given NFAs N1 and N2, is L(N1) ∩ L(N2)=Ø?
 - (ii) If L is a recursive language, is the complement of L is recursive?
 - (iii) Given a Turing Machine M, does L(M)=∅?
 - (iv) Given a CFG G= (V, T, P, S) and a string $x \in \Sigma^*$, does $x \in L(G)$?
 - (v) Does a Turing Machine halt on taking particular input?
 - (vi) Given a Turing machine M, decide if M takes more than 90 steps on every input string w?
 - 2. (a) Disprove $(A \le B) \Rightarrow (A \le_m B)$. You need to give a counter-example such that LHS is true but RHS is false. [7 Marks]
 - (b) Prove or disprove $(A \leq_m B) \Rightarrow (A \leq B)$. Your answer should be sound and precise. Unnecessary writings may attract negative marks. [7 Marks]
 - (c) Prove or disprove $((A \leq_m B) \text{ and } B \text{ is } Regular) \Rightarrow (A \text{ is } Regular)$. Your answer should be sound and precise. Unnecessary writings may attract negative marks. [6 Marks]
 - 3. (a). Prove that the set B of all infinite binary sequences is uncountable. [10 Marks]
 - (b). Prove that the set L of all languages over the alphabet Σ is uncountable. [10 Marks]