Pensamiento numérico - Taller de repaso - Nivel básico

¿Qué es una Relación?

En un corral hay muchas gallinas y pocos gallos; de tal forma que podemos organizarlos en grupos iguales, conservando la **relación** entre gallinas y gallos.

Según el ejemplo d	interior, escribe o	a continuación, lo	que entiendes
por relación:			

Tarea 1: Observa las imágenes y realiza la tarea:

Por medio de una flecha, coloca cada gallo en un galpón de los siguientes; y luego coloca las gallinas una a una hasta que acabes y fíjate que queden en igual cantidad en cada galpón.

Galpón 1	Galpón 2	Galpón 3	Galpón 4

Pensamiento numérico - Taller de repaso - Nivel básico

¿Cuántas gallinas quedaron en cada uno de los 4 galpones? _____
¿Cuántas gallinas en total habían en el Corral? _____
¿Cuántos gallos en total habían en el Corral? _____

Esto nos muestra que en el corral había una relación de 8 gallinas por cada 4 gallos; y eso se puede escribir así:

Y se lee: relación de 8 a 4

Relación entre el total de animales

Pero recordemos que después de la repartición en cada galpón quedaron 2 gallinas y 1 gallo; y eso se puede escribir así:

Y se lee: relación de 2 a 1

Relación entre los animales en cada galpón

Aquí lo importante es que el corral puede conseguir más animales, manteniendo, si lo desea, la misma relación.

Pensamiento numérico - Taller de repaso - Nivel básico

Por ejemplo, cuando tenga en total 18 animales; 12 gallinas y 6 gallos. Observa que la relación se mantiene:

Luego de contar los animales, veo que hay: _____ en total.

Galpón 1	Galpón 2	Galpón 3	Galpón 4	Galpón 5	<i>G</i> alpón 6

La relación total sería de 12:

La relación parcial sería de _____

Tarea 2: Resuelve los interrogantes:

Pensamiento numérico - Taller de repaso - Nivel básico

1.	Si el corral sigue creciendo, ¿Cuántas gallinas tendrían que haber, para que halla 14 gallos, manteniendo la misma relación de 2:1?
	:14
2.	¿Cuántos animales tendría en total la finca?
3.	Si el corral pierde animales, ¿Cuántos gallos tendrían que haber, para que halla 10 gallinas, manteniendo la misma relación de 2:1?
	Con una relación total de 10:
4.	¿Cuántos animales tendría en total la finca?

Pensamiento numérico – Taller de repaso - Nivel básico

5. Si el corral vuelve a crecer, ¿Cuántos gallos tendrían que
haber, para que halla 15 gallinas, manteniendo la mismo
relación de 2:1?
Con una relación total de 15:
6. ¿Cuántos animales tendría en total la finca?
¿Qué cosa extraña encontraste
en el anterior caso?

Volviendo al problema inicial, con 8 gallinas y 4 gallos, en una relación total de 8:4, o en una relación parcial de 2:1.

Que tal si esta vez **no** organizamos los galpones por el número de gallos, sino por el numero de gallinas; es decir, 8 galpones, cada uno con una gallina.

Pensamiento numérico - Taller de repaso - Nivel básico

¿Cómo organizarías los gallos para que fueran repartidos en partes iguales?

Galpón 1	Galpón 2	Galpón 3	Galpón 4	Galpón 5	Galpón 6	Galpón 7	Galpón 8

Ayuda: Que tal si partes los gallos en 2 partes iguales; y vuelves a probar repartiendo los pedazos. Así sí podrías hacer la repartición.

Nota: En ocasiones para poder hacer las reparticiones hay que recurrir a las fracciones, es decir, a partir las cosas.

Es aquí en donde esta relación total de 4 gallos por cada 8 gallinas, que se expresaba así:

4:8 que puede expresarse parcialmente así: 1:2

Pensamiento numérico - Taller de repaso - Nivel básico

Termina expresandose convenientemente así: $\frac{1}{2}$

Cuando se escibe de esta ultima manera se le llama, fracción o relación, y me indica que por cada 1 gallo hay 2 gallinas.

Aquí la fracción sirve para establecer una relación entre una parte (Gallos) y la otra parte (Gallina), del un total de animales.

Esta relación también pudo expresarse en total así:

Pero cuando la fracción se lee como un numero, se siguen las siguientes reglas:

Pensamiento numérico - Taller de repaso - Nivel básico

El signo de arriba llamado Numerador , se lee simplemente, en este caso			
"un". Si fuera 2, se leye	era "dos" y así susesivamente.		
El signo de abajo llama	do Denominador, se lee así:		
Si es 1	"enetero"		
Si es 2	"medio" o "medios"		
Si es 3	"tercio" o "tercios"		
Si es 4	"cuarto" o "cuartos"		
Si es 5	"quinto" o "quintos"		
Si es 6	"sexto" o "sextos"		
Si es 7	"septimo" o "septimos"		
Si es 8	"octavo" o "octavos"		
Si es 9	"noveno" o "novenos"		
Si es 10	"décimo" o "décimos"		
Si es mayor que 10	Se lee el numero y se agrega el termino "avo".		
	Ejemplo: onceavo.		

Así, en el caso de la fracción $\frac{3}{8}$ se lee "Tres octavos"

Para el caso de la fracción $\frac{1}{3}$ se lee "Un tercio"

Y para el caso de la fracción $\frac{5}{17}$ se lee "Cinco diescisieteavos"

Pensamiento numérico - Taller de repaso - Nivel básico

En nuestro ejemplo con las gallinas y gallos, leer la fracción $\frac{1}{2}$ como un numero, es decir, "un medio" y significaría que por gada gallina, hay que tomar una porción correspondiente a medio gallo o la parte de una gallo dividido en 2.

Tarea 3: Considera el cambio de situación:	
No sigamos con gallinas y gallos.	
Cambiemos a Circulos y Cuadrados.	
Imaginemos, que nos dicen que la relación de es respectivamente de 1:3. Donde hay 3 vece s circulos.	
Esto significarías que por cada 1 circulo, hay 3 cuadrados. En total 4 figuras.	
Si ampliamos la cantidad guardando la misma relación, podriamos tener 4 circulos, pero tocaría tener entonces 12 cuadrados, para un toatal de 16 figuras:	

Pensamiento numérico - Taller de repaso - Nivel básico

Para estos casos, es facil mantener la relación de 1:3, donde hay 3 veces más cuadrados que circulos.
El problema se genera, cuando queremos mantener la misma relación entre Circulos y Cuadrados de 1:3, pero solo tenemos 1 cuadrado.
Hay que recurrir a $\frac{1}{3}$, es decir, tomar 1 cuadrado y dividir el circulos en 3 partes iguales, para mantener la relación, donde hay 3 veces más cuadrados que circulos. Solo así, habría 3 veces más cuadrado que circulo. Se hace referencia a la parte en blanco.
Si la relación de Circulos y Cuadrados es respectivamente de 4:10. Donde hay más cuadrados que circulos.
Esto significa que en total hay cuadrados y circulos, y en total, hay figuras.
En general esa relación se puede expresar como una fracción así:

Pensamiento numérico - Taller de repaso - Nivel básico

Y esto significa que hay ____ circulos y ____ cuadrados.

Pero eso se puede simplificar, hasta expresar la relación minima, así:

$$\frac{\frac{4}{10}}{\frac{10}{10}} = -$$

Esto significarías que por cada 2 circulo, hay 5 cuadrados. En total 7 figuras.

Observemos que al simplificar, dividimos cada termino entre 2; y el total también se ha dividido entre 2; pasando de 14 a 7.

Ese número fraccionario $\frac{2}{5}$ tiene sentido si consideramos una situación donde tengamos solo un cuadrado, pero esperemos mantener la

Pensamiento numérico - Taller de repaso - Nivel básico

relación: 2:5.

Tomamos las dos figuras y las dividimos entre 5, pero del circulo solo tomamos 2, mientras del cuadrado tomamos todos 5. Manteniendo la relación 2:5.

Tarea 4: Resuelve:

• De una relación de 6:14, donde 6 son soles y 14 son lunas, realiza la gráfica, y expresa la fracción.

• Escribe nuevamente la fracción y Simplifícala.

• Manteniendo la misma relación, considera la situación en donde haya 1 sola luna, y realiza la gráfica.

Tarea 5: Resuelve:

 De una relación de 8:12, donde 8 son manzanas y 12 son peras, realiza la gráfica, y expresa la fracción.

Pensamiento numérico - Taller de repaso - Nivel básico

• Escribe nuevamente la fracción y Simplifícala.

• Manteniendo la misma relación, considera la situación en donde haya 1 sola pera, y realiza la gráfica.

Tarea 6: Resuelve:

• De una relación de 5:20, donde 5 son "Q" y 20 son "P", realiza la gráfica, y expresa la fracción.

• Escribe nuevamente la fracción y Simplifícala.

Pensamiento numérico - Taller de repaso - Nivel básico

 Manteniendo la misma relación, considera la situación en donde haya 1 sola "P", y realiza la gráfica.

Tarea 7: Resuelve:

• De una relación de 3:24, donde 3 son "T" y 24 son "S", realiza la gráfica, y expresa la fracción.

• Escribe nuevamente la fracción y Simplifícala.

 Manteniendo la misma relación, considera la situación en donde haya 1 sola "5", y realiza la gráfica.

Pensamiento numérico - Taller de repaso - Nivel básico

Fracción	Razón	Porcentaje	Gráfica	Amplificación
$\frac{1}{2}$	0,5	50%		$\frac{50}{100}$
$\frac{1}{3}$		33,3%		
$\frac{1}{4}$				
$\frac{1}{5}$				$\frac{20}{100}$
$\frac{1}{6}$		16,6%		
$\frac{1}{7}$				
$\frac{1}{8}$				
1 9		11,1%		$\frac{11,1}{100}$
$\frac{1}{10}$				

EQUIVALENCIA Y ORDEN: LA ENSEÑANZA DE LA COMPARACIÓN DE FRACCIONES

Ordenar fracciones de igual denominador

- 1. Comparar fracciones obtenidas por iteración de una fracción unitaria.
- 2. Comparar fracciones con igual denominador y numerador cualquiera.
- 3. Comparar el tamaño de dos números mixtos cuya parte fraccionaria tenga el mismo denominador.

Pensamiento numérico - Taller de repaso - Nivel básico

1. En las siguientes construcciones pictóricas, representa las respectivas fracciones unitarias.

Pensamiento numérico - Taller de repaso - Nivel básico

2. En las siguientes rectas numéricas, representa las respectivas fracciones unitarias, tratando de recordar la representación correspondiente en el punto anterior.

Pensamiento numérico - Taller de repaso - Nivel básico

3. Ahora que ya conoces las escalas que utilizaste, representa nuevamente las fracciones en las siguientes rectas numéricas utilizando las escalas que estás presentan. Y en la última recta representa todas las fracciones que están en las rectas de arriba.

Pensamiento numérico - Taller de repaso - Nivel básico

4. Si perder de vistas las rectas anteriores, responde las siguientes preguntas utilizando los signos: > (Mayor que), < (Menor que) o = (Igual) de acuerdo a cada situación.

a.
$$\frac{1}{2}$$
 — $\frac{2}{2}$

b.
$$\frac{2}{3}$$
 ____ $\frac{1}{3}$

c.
$$\frac{3}{4}$$
 ____ $\frac{2}{4}$

d.
$$\frac{3}{5}$$
 ____ $\frac{3}{5}$

e.
$$\frac{3}{6}$$
 ____ $\frac{1}{6}$

f.
$$\frac{1}{7}$$
 ____ $\frac{2}{3}$

g.
$$\frac{3}{8}$$
 ____ $\frac{6}{8}$

h.
$$\frac{0}{9}$$
 ____ $\frac{2}{9}$

i.
$$\frac{1}{2}$$
 --- $\frac{2}{3}$

j.
$$\frac{1}{2}$$
 ____ $\frac{2}{4}$

k.
$$\frac{2}{3}$$
 ____ $\frac{4}{6}$

I.
$$\frac{2}{3}$$
 ____ $\frac{5}{6}$

m.
$$\frac{2}{7}$$
 — $\frac{4}{9}$

n.
$$\frac{5}{8}$$
 — $\frac{3}{4}$

0.
$$\frac{2}{3}$$
 — $\frac{6}{9}$

p.
$$\frac{1}{2}$$
 ____ $\frac{5}{10}$

q.
$$\frac{3}{10}$$
 --- $\frac{1}{3}$

r.
$$\frac{2}{9}$$
 — $\frac{1}{4}$

Pensamiento numérico - Taller de repaso - Nivel básico

Recuerde que un número mixto está formado por una parte entera y una fracción unitaria. Así $3\frac{2}{5}$ es un número mayor que 3, pero menor que 4. Puesto que al tener como parte entera a 3, este número estará ubicado en la recta numérica después del 3; pero como su otra parte es una fracción unitaria, esto querrá decir que no llegará a 4. Para graficarlos tenemos que tomar la unidad (distancia) entre 3 y 4 y dividirla en 5 partes, tomando solo dos de ellas, y justo en ese punto ubicaremos la expresión $3\frac{2}{5}$.

5. Con base en lo anterior, responde las siguientes preguntas utilizando los signos: > (Mayor que), < (Menor que) o = (Igual) de acuerdo a cada situación.

a.
$$2\frac{2}{5}$$
 ____ $2\frac{1}{5}$

s.
$$1\frac{1}{3}$$
 ____ $1\frac{2}{3}$

b.
$$3\frac{1}{4}$$
 ____ $3\frac{3}{4}$

c.
$$1\frac{2}{5}$$
 ____ $1\frac{1}{5}$

d.
$$1\frac{2}{6}$$
 ____ $1\frac{4}{6}$

e.
$$1\frac{1}{7}$$
 ____ $1\frac{2}{7}$

f.
$$1\frac{5}{8}$$
 ____ $2\frac{7}{8}$

g.
$$2\frac{2}{9}$$
 ____ $3\frac{5}{9}$

h.
$$3\frac{1}{2}$$
 ____ $3\frac{2}{3}$

i.
$$2\frac{1}{2}$$
 ___ $1\frac{2}{4}$

j.
$$3\frac{2}{3}$$
 ____ $2\frac{4}{6}$

k.
$$2\frac{2}{3}$$
 ____ $2\frac{5}{6}$

1.
$$1\frac{2}{7}$$
 ___ $1\frac{4}{9}$

m.
$$2\frac{5}{8}$$
 ____ $2\frac{3}{4}$