

DISTA

Corso: Analisi Numerica

Docente: Roberto Piersanti

Calcolo degli autovalori e fondamenti della matematica numerica Lezione 4.3a

Il metodo delle potenze

Calcolo degli autovalori di una matrice

Calcolo degli autovalori da un punto di vista numerico

$$A\mathbf{x} = \lambda \mathbf{x}$$

- Primo metodo numerico: metodo delle potenze
 - ✓ Ipotesi del metodo delle potenze
 - ✓ L' algoritmo del metodo delle potenza
 - ✓ Descrizione geometrica
 - ✓ Convergenze e velocità di convergenza

Metodo delle potenze

$$A\mathbf{x} = \lambda \mathbf{x}$$

Determina gli autovalori $\lambda \in \mathbb{C}$ estremi di A :

- autovalore di modulo massimo
- autovalore di modulo minimo
- autovalore in modulo più vicino a $\mu\in\mathbb{C}$
- ➤ Ipotesi (1., 2., 3.)del metodo delle potenze:
 - 1. La matrice A sia diagonalizzabile

$$\exists X \in \mathbb{R}^{n \times n} \text{ t.c. } X^{-1}AX = \Lambda$$
$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n) \quad \lambda(\Lambda) = \lambda(A)$$

2. Matrice di trasformazione Xè la matrice degli autovettori

Matrice di trasformazione X è la **matrice degli autovettori** ADefinizione di autovettore:

$$A\mathbf{x}^{(k)} = \lambda_k \mathbf{x}^{(k)}$$

 $A\mathbf{x}^{(k)} = \lambda_k \mathbf{x}^{(k)}$ $\mathbf{x}^{(k)}$ autovettore λ_k autovalore

$$X = \begin{pmatrix} x_1^{(k)} \\ \dots & \vdots \\ x_n^{(k)} \end{pmatrix} \qquad \text{Nella colonna k-esima } \\ \text{II k-esimo autovettore}$$

Gli autovalori di A sono **ordinati in modo decrescente**: 3.

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| > \cdots \ge |\lambda_n|$$

Esiste un autovalore dominante

Sotto queste tre condizioni

1.
$$\exists X \in \mathbb{R}^{n \times n} \text{ t.c. } X^{-1}AX = \Lambda$$
 $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$
2. $X = (\dots, \mathbf{x}^{(k)}, \dots)$ $A\mathbf{x}^{(k)} = \lambda_k \mathbf{x}^{(k)}$
3. $|\lambda_1| > |\lambda_2| > |\lambda_3| > \dots > |\lambda_n|$

Si può costruire il seguente metodo numerico

dato
$$\mathbf{q^{(0)}}$$
 t.c. $\|\mathbf{q^{(0)}}\|_2 = 1$

$$k = 1, 2, \dots \begin{cases} \mathbf{z}^{(k)} = A\mathbf{q}^{(k-1)} \\ \mathbf{q}^{(k)} = \frac{\mathbf{z}^{(k)}}{\|\mathbf{z}^{(k)}\|_2} \end{cases}$$

$$\lambda^{(k)} = \mathbf{q^{(k)}}^T A\mathbf{q}^{(k)}$$

> Evoluzione geometrica del metodo delle potenze

$$\mathbf{q}^{(0)} \in \mathbb{R}^n$$
 $\mathbf{q}^{(1)} = A\mathbf{q}^{(0)}$ $\mathbf{q}^{(2)} = A\mathbf{q}^{(1)}$ $\mathbf{q}^{(2)} = A(A\mathbf{q}^{(0)}) = A^2\mathbf{q}^{(0)}$

Continuando iterativamente

$$\mathbf{q}^{(k)} = A^k \mathbf{q}^{(0)}$$

Genera una successione di vettori tramite applicazioni successive di Aal vettore iniziale ${\bf q}^{({\bf 0})}$

> Evoluzione geometrica del metodo delle potenze

$$\mathbf{q}^{(\mathbf{0})} \in \mathbb{R}^n \quad \mathbf{q}^{(k)} = A^k \mathbf{q}^{(0)}$$

Genera una successione di vettori tramite applicazioni successive di A al vettore iniziale ${\bf q}^{({\bf 0})}$

Quoziente di Rayleigh