Unai Famoso Rodríguez

## Presentación de técnica



### Contextualización

- Se pretende estimar si:
  - la respuesta a la queja será a tiempo (modelos timely)
  - Si el cliente disputara o no (modelos **dispute**).
- Ambos son modelos de clasificación binaria.
- Tras esto se pretende utilizar ambos modelos e introducirlos en una app de *gradio o API* de *FAST API* como prototipo.

|                         | Ej.                                    | Rango                             | Vacios? |
|-------------------------|----------------------------------------|-----------------------------------|---------|
| Complaint ID            | 1291006                                |                                   | No      |
| Product                 | Hipoteca                               | 11                                | No      |
| Sub-product             | Hipoteca asegurada 43                  |                                   |         |
| Issue                   | Tácticas de 90<br>comunicación         |                                   | No      |
| Sub-issue               | Llamadas repetitivas<br>o frecuentes   | 47                                | Si      |
| State                   | TX                                     | 60                                | Si      |
| ZIP code                | 76119.0                                |                                   | Si      |
| Date received'          | 2015-03-19 Desde<br>2015-01<br>2015-03 |                                   | No      |
| Date sent to company    | 2015-03-19                             | Desde<br>2015-01-01<br>2015-03-19 | No      |
| Company response        | Closed with 6 explanation              |                                   | No      |
| Company                 | Premium Asset 1534<br>Services, LLC    |                                   | No      |
| <u>Timely</u> response? | Si                                     |                                   | No      |
| Consumer disputed?      | Si                                     |                                   | Si      |



#### Limpieza y transformaciones en los datos

Para los casos en los que se tenia el ZIP code pero no el estado de procedencia se ha utilizado la API zippotam.

- Para los ZIP vacíos se relleno con el código ZIP 0
- Para los estados desconocidos se relleno con la etiqueta *Unknown*
- Para el resto de las variables se relleno con la etiqueta Unknown or not specified

Para feature engineering se sacaron 3 variables adicionales de las fechas:

- Días de retraso (que no se acabo usando porque empeora los modelos)
- Weekday (En forma de texto el dia que se recibió)
- Holiday (si es día de fiesta o no el día que se recibio. No se acabo usando porque todos son laborables)
- En todos los casos se eliminaron los casos con company response untimely response o in progress
- En el modelo timely se realizo label encoding en dispute one-hot encoding
- Se dividió el *dataset* 80:20 barajados

#### Enfoque de la metodología timely

- Para el modelo se eliminaron
  - Los casos con Company response: in progress, y untimely response
  - Columna: Company
  - Columna: Company response
  - Columna: Complaint ID
  - Columna: Consumer disputed?
  - Columna: ZIP code
  - Columna : Fechas (porque es un rango limitado)
- En feature engineering solo se saco el Estado si esta vacío
- Se codifico en label
- Se hizo resample con ADASYN para evitar desbalanceo
- Se dividió el dataset 80:20 barajados

# Enfoque de la metodología timely

- El modelo que se ha elegido es un *tree* classifier optimizando con grid search el AUC-ROC score:
  - criterion
    - gini
    - entropy
  - max\_Depth= de 1 a40
  - min\_samples\_leaf=de 15 a 30
- El modelo final
  - Criterion: entropy
  - max\_Depth 25
  - min\_samples\_leaf: 15

### Resultados y métricas de evaluación timely

- Buenos estadísticos y equilibrados
- Predice mejor los casos negativos
- No esta demasiado sobreajustado (0.89)
- Aunque modelos con mejores estadísticos
  - Mucho mas pesados
  - Sobreajustado
  - Menos interpretable



| Clase                 | Precisión | Recall | F1-<br>Score | Soporte |
|-----------------------|-----------|--------|--------------|---------|
| No                    | 0.86      | 0.94   | 0.90         | 4990    |
| Yes                   | 0.93      | 0.84   | 0.89         | 4923    |
| Accuracy<br>Total     |           |        | 0.89         | 9913    |
| ROC AUC               |           |        | 0.89         |         |
| Promedio<br>Macro     | 0.90      | 0.89   | 0.89         | 9913    |
| Promedio<br>Ponderado | 0.90      | 0.89   | 0.89         | 9913    |

### Discusión sobre limitaciones y mejoras timely

- •No está en pipeline con preprocesamiento → dificulta implementación
- •No se evaluaron todos los modelos posibles, es posible que se encuentren modelos mas adecuado
- •No tiene una accuracy tan alta (0.89) para fiarse de ella
- Difícil de interpretar por su alta profundidad
- •Es necesario optimizar el umbral para adecuarse a las necesidades de la empresa
- •Seria mas útil se hubiese hecho un modelo de regresión (mas preciso)



# Enfoque en la metodología dispute

- El único modelo tipo de modelos que consiguió aprender algo fueron las redes neuronales
- Para el modelo se eliminaron
  - Los casos con Company response: in progress, y untimely response
  - Columna: Complaint ID
  - Columna: ZIP code
  - Columna : Fechas (porque es un rango limitado)
- Se hizo resampling un oversampler ADASYN para combatir el desbalanceo
- Se dividió el dataset 80:20 barajados

### Enfoque en la metodología dispute

Arquitectura del modelo

1.

- 2. Capa densa (*ReLU*, regularización l2 0.001)
- 3. Batch Normalización

Input Layer

- Dropout (30%)
- 5. Capa densa (Sigmoidea)

- 500 epoch
- Early Stopping (paciencia: 20)
- - monitor = *val\_loss*

  - $min_{lr} = 1e-6$

#### Capas ocultas

256

128

64

32

- Entrenamiento y optimización (maximizar accuracy y AUC-ROC)
  - Batch 64
  - Val 0.20
- ReduceLROnPlateau

  - factor = 0.5
  - paciencia = 10

### Resultados y métricas de evaluación dispute

 Tiene unos buenos estadísticos y bastante equilibrados



| Clase                 | Precisión | Recall | F1-<br>Score | Soporte |
|-----------------------|-----------|--------|--------------|---------|
| No                    | 0.        | 0.94   | 0.90         | 4990    |
| Yes                   | 0.93      | 0.84   | 0.89         | 4923    |
| Accuracy<br>Total     |           |        | 0.89         | 9913    |
| ROC AUC               |           |        | 0.86         |         |
| Promedio<br>Macro     | 0.90      | 0.89   | 0.89         | 9913    |
| Promedio<br>Ponderado | 0.90      | 0.89   | 0.89         | 9913    |

#### Discusión sobre limitaciones y mejoras Dispute

- Predice mejor los casos negativos cuando en este caso queremos los positivos
- No está en pipeline con preprocesamiento → dificulta implementación.
- Demasiadas neuronas: No hay mejoras significativas al usar 64 y 32 neuronas respecto la configuración actual.
- Estructuras no probadas: No se han probado otros tipos de estructuras, como las convolucionales.
- **Sobreajuste**: El modelo está sobreajustado, con una precisión de entrenamiento de 0.96 frente a 0.87 en pruebas.
- Optimización necesaria: según las necesidades de la empresa.
- Datos limitados: Solo se han utilizado 6006 casos, el resto este vacío.
- Datos desbalanceados: Solo el 4% de los casos representan situaciones en las que el consumidor no respondió a tiempo, y todos estos casos se disputaron.
- **Baja interpretabilidad:** red neuronal que al usar exclusivamente *onehot encoding* tiene 952 *features* y no esta integrado en pipeline.
- Necesita la respuesta de la compañía, no puede predecir antes





**Preguntas**