Design Flow

- توصیف نیازمندیهای سیستم:
 - ☐ نیازمندی اصلی: عملکرد مطلوب ☐
 - چکار کند (نه آنکه چگونه انجام دهد)
 - بعداً به تدریج
 - هزينهٔ قابل قبول
 - نحوهٔ ارتباط با محیط
 - تعداد و نوع درگاهها
 - سرعت قابل قبول
 - توان مصرفی قابل قبول
 - لزوم تخمین مناسب و واقعبینانه
 المنافع الم
- نیازهای فعلی + کمی حاشیه اطمینان برای ارتقا

• طراحی معماری سطح سیستم:

- □ مجموعه اجزای اصلی سیستم و نحوه ارتباط آنها با یکدیگر و نیز با خارج از سیستم
 - □ از چه بلوکهای آمادهای استفاده شود
 - پردازنده؟ یا همه سختافزاری؟
 - □ نیاز به حافظهٔ خارجی؟ چقدر؟
 - □ ارتباط با بيرون با RS232 يا يروتكل سريعتر؟

• انتخاب تراشه:

- □ فناوری برنامهریزی
- میزان منابع منطقی
- ميزان حافظهٔ داخلي

- نوع امکانات داخلی
- بلوکهای محاسباتی
- بلوکهای ارتباط سریال سریع
 - بلوک پردازندهٔ سخت

	Spartan-6	Artix-7	Kintex-7	Virtex-7	Kintex UltraScale	Virtex UltraScale
Logic Cells	147,443	215,360	477, 760	1,954,560	1,160,880	4,407,480
BlockRAM	4.8Mb	13Mb	34Mb	68Mb	76Mb	115Mb
DSP Slices	180	740	1,920	3,600	5,520	2,880
Transceiver Count	8	16	32	96	64	104
Transceiver Speed	3.2 Gb/s	6.6 Gb/s	12.5 Gb/s	28.05 Gb/s	16.3 Gb/s	32.75 Gb/s
Total Transceiver Bandwidth (full duplex)	50 Gb/s	211 Gb/s	800 Gb/s	2,784 Gb/s	2,086 Gb/s	5,101 Gb/s
I/O Pins	576	500	500	1,200	832	1,456

Spartan 6

ر

ی

ح

• تراشههای یک خانواده

Device	Logic Celis ⁽¹⁾	Configurable Logic Blocks (CLBs)				Block RAM Blocks			Memory	Fadasias	Maximum	Total	Max
		Slices ⁽²⁾	Flip-Flops	Max Distributed RAM (Kb)	DSP48A1 Slices ⁽³⁾	18 Kb ⁽⁴⁾	Max (Kb)	CMTs ⁽⁵⁾	Controller	Endpoint Blocks for PCI Express	GTP Transceivers	I/O Banks	User
XC6SLX4	3,840	600	4,800	75	8	12	216	2	0	0	0	4	132
XC6SLX9	9,152	1,430	11,440	90	16	32	576	2	2	0	0	4	200
XC6SLX16	14,579	2,278	18,224	136	32	32	576	2	2	0	0	4	232
XC6SLX25	24,051	3,758	30,064	229	38	52	936	2	2	0	0	4	266
XC6SLX45	43,661	6,822	54,576	401	58	116	2,088	4	2	0	0	4	358
XC6SLX75	74,637	11,662	93,296	692	132	172	3,096	6	4	0	0	6	408
XC6SLX100	101,261	15,822	126,576	976	180	268	4,824	6	4	0	0	6	480
XC6SLX150	147,443	23,038	184,304	1,355	180	268	4,824	6	4	0	0	6	576
XC6SLX25T	24,051	3,758	30,064	229	38	52	936	2	2	1	2	4	250
XC6SLX45T	43,661	6,822	54,576	401	58	116	2,088	4	2	1	4	4	296
XC6SLX75T	74,637	11,662	93,296	692	132	172	3,096	6	4	1	8	6	348
XC6SLX100T	101,261	15,822	126,576	976	180	268	4,824	6	4	1	8	6	498
XC6SLX150T	147,443	23,038	184,304	1,355	180	268	4,824	6	4	1	8	6	540

• انتخاب تراشه:

- 🗖 نیاز به تخمین مساحت مورد نیاز
 - بر اساس تجربهٔ قبلی
 - تعداد و نوع درگاهها
 - استاندارد پشتیبانی شده
- خصوصیات الکتریکی (قدرت راهاندازی)
 - 🗖 سرعت تراشه
- تراشههای یکسان با درجهٔ سرعت (speed grade) متفاوت
 - 🗖 توان مصرفی
 - مثال: Xilinx CPLD) CoolRunner

جريان طراحي

- انتخاب تراشه:
- □ موجود بودن در بازار هنگام پایان پروژه (و قدری بعد از آن)
 - انتخاب جدیدترها
- نه جدیدترین (مشکلات و ضعفها مشخص شوند + قیمت پایین بیاید)
 - □ دقیقاً متناسب با نیازمندیها؟
 - قدری حاشیهٔ اطمینان برای توسعه و ارتقا
 - − حاشيهٔ اطمينان بيش از حد ← بالا رفتن هزينه
 - → (بر خلاف ASIC)، تأثیر مستقیم در هزینهٔ محصول

انتخاب بستهبندی (Package)

- دسترسی به پایههای تراشه بر روی بورد به طور مستقیم برای بررسی سیگنال با اسیلوسکوپ
 - مناسب برای نمونهٔ اولیه
 - نویزپذیری کمتر (فاصلهٔ پایهها)

Ball-Grid Array:BGA

- اندازهٔ کوچکتر یکیج
 - انتشار حرارت بهتر
- مناسب برای تولید انبوه

جريان طراحي

• انتساب یایهها:

- بر اساس طرح کلی بورد
 - محل قرارگیری PLD
- محل قرارگیری سایر تراشهها
 - يايهها 🗖
- − عاممنظوره ← انتخابهای متعدد
- خاصمنظوره: 🛨 انتخابهای معدود
 - کلاک سراسری
 - بازنشانی (reset) سراسری
- ل لزوم أشنایی با ساختار تراشهها، وظایف پایهها، امکانات پایهها (مقاومت بالابر، درین باز، ارتباط سریال با سرعت بسیار بالا، ...)

جريان طراحي

- انتساب یایهها:
- در مراحل گوناگون تغییر می کند
- اما نیاز به یک تصمیم اولیه بر اساس اطلاعات اولیه \Box

تیم طراحی درون تراشه

تیم طراحی بورد

- محل قرارگیری اجزای داخل تراشه
 - مسيريابي أسان اتصالات داخلي
 - سرعت کلاک

- محل قرار گیری تراشهها روی بورد
- مسیریابی آسان اتصالات روی بورد
- (signal integrity) تمامیت سیگنال

- رابطهٔ انتخاب بستهبندی با انتساب پایهها:
 - عیرقابل تغییر پس از قرارگیری روی بورد BGA □
 - − ← انتساب حساب شدهٔ پایهها
 - انتساب چند پایهٔ اضافی برای تغییرات بعدی 🖵

ساخت بورد

جريان طراحي

• مستندسازی پروژه:

- در حین انجام پروژه:
- مقاوم در برابر تغییرات پرسنل
- آگاهی تیمها از فعالتهای یکدیگر
 - آگاهی افراد یک تیم از یکدیگر
- ثبت روند انجام پروژه + تحلیل تصمیمات

• تحلیل پروژه:

- پس از اتمام پروژه
- 🗖 بررسی نقاط ضعف و قوت
- □ استفاده از آنها در پروژههای آتی
 - پهبود سیستم در آینده

توصيف نيازمنديهاي سيستم

• توصيف طرح:

□ سطح انتقال ثبات:

- کمیتهٔ استاندارد VHDL؛ «سطحی از توصیف طرح دیجیتال که در آن رفتار کلاکدار طرح برحسب انتقال دادهها بین عناصر حافظه در مدارهای ترتیبی و مدارهای ترکیبی، که میتوانند نمایندهٔ هر مدار منطقی محاسباتی یا منطقی باشند، بیان میشود» میشود»

• **توصيف طرح:**- سطح انتقال ثبات:

```
تركيبي
```

```
process (A, B, C, D)
begin
   if (A = "1101") then
      OUTPUT <= A;
   elsif (C = "0110") then
      OUTPUT <= B;
   else
      OUTPUT <= D;
   end if;
end process;
```



```
• توصيف طرح:

سطح انتقال ثبات:

توصيف ثبات
```

```
process (CLK, RST)
begin
   if (RST = '1') then
      Q <= '0';
   elsif (CLK`event and CLK= '1')
      Q \leq D;
   end if;
end process;
```



```
process (CLK, RST)
begin
  if (RST = '1') then
    DATA <= 0;
  elsif (CLK`event and CLK= '1')
    DATA <= A + B;
  end if;
end process;</pre>
```

```
process (CLK, RST)
begin
  if (RST = '1') then
    STATE <= ST1;
  elsif (CLK`event and CLK= '1')
    case STATE is
    when ST1 => STATE <= ST2;
    when ST2 => STATE <= ST3;
    when ST3 => STATE <= ST1;
  end if;
end process;</pre>
```

سطوح تجريد

سنتز:


```
process (A, B, C, D)
begin
   if (A = "1101") then
      OUTPUT <= A;
   elsif (C = "0110") then
      OUTPUT <= B;
   else
      OUTPUT <= D;
   end if;
end process;</pre>
```


- تبدیل به معادلات بولین و تعدادی بلوک مشخص (ضرب)
 - پهینهسازی مستقل از فناوری
- ☐ نگاشت فناوری (تبدیل به منابع سختافزاری موجود) оитрит ﴿
 - LUT، ضرب كننده، ...
 - پهینهسازی وابسته به فناوری

• فهرست اتصالات (netlist)

سنتز:

- □ استفادهٔ مناسب از منابع سختافزاری: □ کتابخانهٔ macro-blockها
 - دیکودر
 - جمع کننده
 - پردازندهٔ نرم: سنتزشده
- lacktrightlgraphaابزار تولید پودمان (CoreGen)
 - FIFO -
 - CORDIC-

- محدودیت (constraints)
 - حداقل فركانس كلاك
- نوع كد كردن حالات **FSM**
- رجوع به datasheet تراشه

- فرمت فهرست اتصالات:
 - ابزار: حاص ابزار:
 - NGC:Xilinx-
 - VQM:Altera-
 - استاندارد:
- (Electronic Data Interchange Format) EDIF -
 - قابلیت import و export کردن به ابزارهای دیگر

درستىسنجي

- درستی سنجی پس از سنتز:
 - سبیهسازی:
 - Testbench -
- اعمال ورودیها و تحلیل خروجیها (دادههای پیش از سنتز)
 - تفاوت با شبیه سازی پیش از سنتز: اطلاعات بسیار بیشتر
 - ← کندتر
 - علت نیاز به شبیه سازی پیش از سنتز؟
 - علت نیاز به شبیهسازی پس از سنتز؟
 - طراح بداند چه تولید شده؛ مطلوب؟

درستىسنجى

```
process (SELECT, A, B)
begin
...
   if SELECT = `1` then
      Z <= A;
   end if;
...
end process;</pre>
```

```
process (A, B)
begin
if SELECT = `1` then
     Z <= A;
   else
     Z <= B;
end process;</pre>
```

• درستی سنجی پس از سنتز:

- □ نیاز به شبیهسازی پس از سنتز
 - توليد لچ
- اجتناب از تفاوت نتایج پیش و پس از سنتز
- لزوم وارد کردن کردن همهٔ سیگنالهای خوانده شده در لیست حساسیت برای مدارهای ترکیبی

درستىسنجى

- درستی سنجی پس از سنتز:
 - تحلیل مدار 🔲
 - تحلیل زمانی: تخمینی
 - تحلیل توان مصرفی: تخمینی

Timing constraint: NET "reset_IBUF" MAXDELAY = 3.5 ns;

1 net analyzed, 1 failing net detected.

1 timing error detected.

Maximum net delay is 3.984ns.

.....

Slack:	-0.484ns reset_IBUF		
Error:	3.984ns delay exceeds 3.500	Ons timing constraint by 0.484ns	
From	To I	Delay(ns)	
N15.I	OLOGIC X0Y28.SR	3.548	
N15.I	OLOGIC_X12Y30.SR	3.121	
N15.I	OLOGIC X0Y24.SR	3.540	
N15.I	OLOGIC X12Y38.SR	3.037	

جایابی و مسیریابی

- نگاشت بلوکهای متصل به هم در نت لیست به بلوکهای منطقی نزدیک در

PLD

- کاهش تأخیر
- افزایش احتمال موفقیت مسیریاب

جايابي

• ورودی جایابی: نتلیست

تأثير جايابي روى موفقيت مسيريابي

☐ تنظیم میزان تالاش توسط طراح (effort level یا opt_level)

مسیریابی (Routing)

• مسیریابی:

- تعیین مسیرها
- تعیین نقاط برنامهریزی اتصالات
 - سوييچ
 - MUX -
- ☐ جایابی و مسیریابی: بسیار زمانبر

درستی سنجی بعد از چینش

• شبیهسازی بعد از چینش (post-layout simulation)

🗖 لزوم

- اطلاعات کامل طرح (شامل طول سیمها، تعداد سوییچهای موجود در مسیر)
 - تأخيرهای دقيق (حداقل فرکانس کلاک)
 - توان مصرفی دقیق

جایابی و مسیریابی

تعیین جای مشخص برای بلوکهای منطقی

place_cell div_cntr_15889 SLICE_X49Y60/D6LUT