PH C240B: Assignment 3

Rachael Phillips 11/9/2017

Problem 1

Show the CAR condition, $x \to Pr(O = o|X = x)$ for $x \in C(o)$ is constant implies $Pr(X = x|O = o) = Pr(X = x|x \in C(o))$. You may assume all random variables here are discrete for simplicity.

Intuitively, the CAR assumption says that the observation of O = o is not influenced by the specific value of X in $\mathcal{C}(O)$ which was taken, only by the fact that X did take a value in $\mathcal{C}(O)$. Thus, the CAR condition is equivalent to

$$Pr(O = o|X = x) = Pr(O = o|X \in C(O))$$
 for all $o, x \in C(o)$

which can be rewritten as,

$$Pr(O = o | X = x \text{ and } X \in C(O)) = Pr(O = o | X \in C(O)) \text{ for all } x \in C(O)$$
.

clearly identifying the conditional independence assumption: given $X \in \mathcal{C}(O)$, the events X = x and O = o are conditionally independent. By symmetry of conditional independence we have,

$$Pr(X = x | O = o \text{ and } X \in \mathcal{C}(O)) = Pr(X = x | X \in \mathcal{C}(O))$$
.

But, since the former is equal to Pr(X = x | O = o), we have that CAR is equivalent to

$$Pr(X = x | O = o) = Pr(X = x | X \in \mathcal{C}(O))$$
 for all $x \in \mathcal{C}(o)$.

So we see that this conditional probability of the full data, X, given O is only dependent the distribution of P_X Thus the observation of O = o tells us no more, in the sense of what is now the conditional distribution of X, than the obvious $X \in \mathcal{C}(O)$

Here, we prove the factorization of the likelihood as it will come in handy in Problem 2 and in Problem 3.

CAR involves the conditional probability of O given X so, since O is a function of C and X, CAR places an assumption on the conditional probability of C given X, the censoring mechanism, where $C|X \sim G(.|X)$. X is given so the randomness is only through C which is why the conditional probability only depends on G. Obviously, Pr(O = o|X = x) = 0 if $x \notin C(O)$ and if C(O) is a coarsening of X. Thus,

$$p(o) = P(O = o) = \int_{x \in C(o)} P(O = o | X = x) dP_X(x)$$

Since P(O = o|X = x) is constant for $x \in C(o)$, P(O = o|X = x) is only a function of O and it depends on the censoring mechanism, G, as explained above. It follows that

$$p(o) = P(O = o) = h_G(o) \int_{x \in C(o)} dP_X(x)$$

for $h_G(o) = P_G(O = o|X)$. We also see that $\int_{x \in \mathcal{C}(o)} dP_X(x)$ is just the probability that X falls in the coarsening, $\mathcal{C}(O)$. So,

$$p(o) = P(O = o) = h_C(o)Q_X(o)$$

for $Q_X(o) = P_X(\mathcal{C}(o))$, the full-data probability measure for the set $\mathcal{C}(O)$, the P_X -factor.

We have shown that we have a factorization of the likelihood under CAR which is that the density of o is the parameter of the full-data (defining P_X for the coarsenings) times the parameter of the censoring mechanism. That is, $p = Q_X h_G$. This factorization will come in handy when solving the log-likelihood we obtain $log(Q_X) + log(h_G)$ so we can maximize the likelihood separately depending on our parameter of interest.

Problem 2

Let $P_{X,\epsilon}$ be a path through P_X , the distribution of the full data, X, and having score $S_1(X)$. This then defines a path $P_{P_{X,\epsilon},G}$ through the observed data distribution, P_{P_XG} . Show that the scores generated by these paths are $E[S_1(X)|O=o]$.

$$\begin{split} \frac{d}{d\epsilon}logdP_{P_{X,\epsilon}G}/dP_{P_XG}|_{\epsilon=0} &= \frac{d}{d\epsilon}logdP_{P_{X,\epsilon}G}|_{\epsilon=0} \\ &= \int \frac{dP(O=o|X=x)S_1(x)dP(x)d\nu(x)}{dP_{P_XG}(o)} \\ &= \int S_1(x)dP(x|O=o)d\nu(x) \\ &= E\big[S_1(X)|O=o\big] \ . \end{split}$$

Problem 3

Let G_{ϵ} be a path through G, the distribution of the censoring time, C, given X, having score $S_2(C, X)$. This then defines a path $P_{P_XG_{\epsilon}}$ through the observed data distribution, P_{P_XG} . Show that the scores generated by these paths are $E[S_2(C, X)|O=o]$.

$$\begin{split} \frac{d}{d\epsilon}logdP_{P_XG_{\epsilon}}/dP_{P_XG}|_{\epsilon=0} &= \frac{d}{d\epsilon}logdP_{P_XG_{\epsilon}}|_{\epsilon=0} \\ &= \int \frac{S_2(c,x)dP(O=o|X=x)dP(x)d\nu(x)}{dP_{P_XG_{\epsilon}}(o)} \\ &= \int S_2(c,x)dP(x|O=o)d\nu(x) \\ &= E\big[S_2(C,X)|O=o\big] \;. \end{split}$$

Problem 4

This problem involves simulating data under a general Cox model. Let's make the assumption we have a conditional hazard of death at time, t, given by $\lambda(t|X) = \lambda_0(t)exp(f_{\beta}(X))$ where X is a set of covariates and f_{β} is a function indexed by β , say finite dimensional. Assume the baseline hazard is $\lambda_0(t) = exp(rt)$ for positive r. Given X, what is the distribution of death times? Prove your answer.

Problem 5

Complete the first problem from LabCox in the lab section of the files on bCourses.

Bonus

Assume a CAR model for full data consisting of survival time, censoring time, the continuous baseline covariates and randomly assigned treatment indicator. We have observed data min(T,C), Δ along with the covariates and treatment indicator. Someome receives a data set of 1000 independent subjects drawn from this model from an RCT and runs a Cox Proportional hazards regression with treatment as the only covariate, showing a significantly negative coefficient. Can you convince this person he may be wrong via simulation? Explain how you set up your simulation and turn in your code to show the results.