

ETC4500/ETC5450 Advanced R programming

Week 4: Debugging and profiing

- 1 Debugging
- 2 Styling
- 3 Profiling
- 4 Efficiency
- 5 Caching

- 1 Debugging
- 2 Styling
- 3 Profiling
 - 4 Efficiency
- 5 Caching

- 1 Debugging
- 2 Styling
- 3 Profiling
- 4 Efficiency
- 5 Caching

What's a bug?

An incorrect, unexpected, or unintended behaviour of code.

Why do we call it a bug?

Why not a mistake? A glitch? An oopsie-daisy?

What's a bug?

On September 9, 1947, a real moth was found causing a malfunction in the Harvard Mark II computer. This incident was recorded in the logbook with the note "First actual case of bug being found."

Overall debugging strategy

Ask for help

- Ask an LLM (OpenAI, Claude, ...)
- Ask a search engine (Google, Bing, DuckDuckGo, ...)
- Ask the community (Stack Overflow / Posit Community, ...)

Fix it yourself

- Update your software / R packages
- Create a minimal reproducible example
- Explore code to find where the error is
- Create a unit tests with expected behaviour
- Fix and test it

Debugging tools in R

- traceback: prints out the function call stack after an error occurs; does nothing if there's no error.
- debug: flags a function for "debug" mode which allows you to step through execution of a function one line at a time.
- undebug: removes the "debug" flag from a function.
- browser: pauses execution of a function and puts the function in debug mode.
- trace: allows you to insert code into a function at a specific line number.
- untrace: removes the code inserted by trace.
- recover: allows you to modify the error behaviour so that you can browse the function call stack after an error occurs.

Traceback

```
f <- function(a) g(a)
g <- function(b) h(b)
h <- function(c) i(c)
i <- function(d) {
   if (!is.numeric(d)) stop("`d` must be numeric", call. = FALSE)
   d + 10
}
> f("a")
```

```
Function of the state of the st
```

Traceback

```
f <- function(a) g(a)
g <- function(b) h(b)
h <- function(c) i(c)
i <- function(d) {
   if (!is.numeric(d)) stop("`d` must be numeric", call. = FALSE)
   d + 10
}</pre>
```

Traceback

```
f <- function(a) g(a)
g <- function(b) h(b)
h <- function(c) i(c)</pre>
i <- function(d) {</pre>
  if (!is.numeric(d)) stop("`d` must be numeric", call. = FALSE)
  d + 10
f("a")
#> Error: `d` must be numeric
traceback()
#> 5: stop("`d` must be numeric", call. = FALSE) at debugging.R#6
#> 4: i(c) at debugging.R#3
#> 3: h(b) at debugging.R#2
#> 2: g(a) at debugging.R#1
#> 1: f("a")
```

Interactive debugging

Using browser()

```
i <- function(d) {
  browser()
  if (!is.numeric(d)) stop("`d` must be numeric", call. = FALSE)
  d + 10
}</pre>
```

- Setting breakpoints
 - Similar to browser() but no change to source code.
 - Set in RStudio by clicking to left of line number, or pressing Shift+F9.
- options(error = browser)

Interactive debugging

Debugging commands:

- n: Next line (step over).
- **s**: Step into function.
- **c**: Continue to next breakpoint.
- f: Finish the current function.
- **0**: Quit debugging.
- where: Show the call stack.
- help: Help with these debugging commands.

Interactive debugging

- debug():inserts a browser() statement at start of function.
- undebug(): removes browser() statement.
- debugonce(): same as debug(), but removes browser()
 after first run.

Demo

Let's fix a real, unsolved bug.

#mitchelloharawild/distributional/issues/133

```
distributional::dist_normal() * 2
#> Error in .mapply(get(op), list(x = vec_data(x), y = y)): argument "MoreArgs" is managed to the second to the secon
```

The debugging workflow

- Create a reprex that demonstrates the problem as a comment in the issue.
- Fix the problem in the package code.
- Add a comment to the issue explaining the bug and the fix, including a link to the commit containing the fix.
- Add unit test(s) to the package that confirms the problem is fixed.
- Close the issue.

Exercises

What's wrong with this code?

```
# Multivariate scaling function
mvscale <- function(object) {</pre>
  # Remove centers
  mat <- sweep(object, 2L, colMeans(object))</pre>
  # Scale and rotate
  S <- var(mat)
  U <- chol(solve(S))</pre>
  z <- mat %*% t(U)
  # Return orthogonalized data
  return(z)
mvscale(mtcars)
```

Error in mat %*% t(U): requires numeric/complex matrix/vector arguments

Example

Common error messages

- could not find function "xxxx"
- object xxxx not found
- cannot open the connection / No such file or directory
- missing value where TRUE / FALSE needed
- unexpected = in "xxxx"
- attempt to apply non-function
- undefined columns selected
- subscript out of bounds
- object of type 'closure' is not subsettable
- \$ operator is invalid for atomic vectors
- list object cannot be coerced to type 'double'
- arguments imply differing number of rows
- non-numeric argument to binary operator

Common warning messages

- NAs introduced by coercion
- replacement has xx rows to replace yy rows
- number of items to replace is not a multiple of replacement length
- the condition has length > 1 and only the first element will be used
- longer object length is not a multiple of shorter object length
- package is not available for R version xx

Asking for help

To get useful help, it is important that you ask a **good question**. Consider answering these two equivalent questions, which is easier to understand and why?

Asking for help

urgent help needed with assignment error

My code doesn't work. Please help i need it working for my assignment asap!

```
data <- read.csv("C://Users/James/Downloads/project-a9j-
2020a/files/survey_data.csv") data %>% filter(y == "A") %>%
ggplot(aes(y = y, x = temperature)) + geom_line()
```

Asking for help

@ Error with dplyr filter(): "object not found"

I'm trying to filter a dataset in dplyr, but I'm getting an error that I don't understand. Here's my code and error message:

```
survey <- data.frame(x = c(1, 2, 3), y = c("A", "B", "C"))
survey %>% filter(y == "A")
```

Error: Error in filter(y == "A") : object 'y' not
found

I expected it to return rows where y is "A". How should I fix this?

A minimal reproducible example (MRE) is essential for effectively communicating problems with code.

The process of creating a MRE might also help you resolve the problem yourself!

Minimal

Minimising code and data makes it easier to find the problem.

- Remove unnecessary code
 - Include as little code as possible to show the problem.
- Use small datasets

Prefer built-in datasets or small example datasets.

- Avoid external dependencies
 - Remove unused packages or files irrelevant to the

Reproducible

Required packages

If external packages are needed, include loading the packages in your MRE.

Used datasets

If you can't use built-in datasets, provide a minimal dataset with data.frame() or dput().

Set random seeds

If your problem includes randomisation, include

Examples

Clearly state the issue

Explain what you expect versus what happens.

Ensure clarity

Add code comments to highlight your intention and the problem.

reprex

The **reprex** package helps create minimal reproducible examples.

- Results are saved to clipboard in form that can be pasted into a GitHub issue, Stack Overflow question, or email.
- reprex::reprex(): takes R code and outputs it in a markdown format.
- Append session info with reprex(..., session_info = TRUE).
- Use the RStudio addin.

reprex as a debugging tool

Creating increasingly minimal reproducible examples can be a useful debugging tool.

Let's look at this bug:

#tidyverts/fabletools/issues/350

```
library(fpp3)
us_change %>%
  pivot_longer(c(Consumption, Income), names_to = "Time Series") %>%
  autoplot(value)
#> Error in `not_tsibble()`:
#> ! x is not a tsibble.
```

Exercises

Create a Minimal Reproducible Example (MRE) for this code:

```
library(tidyverse)
library(rainbow)

survey_data <- read.csv("https://arp.numbat.space/week4/survey_data.csv")

survey_data |>
    select(-RespondentID) |>
    group_by(Gender) |>
    count(Satisfaction)
```

https://arp.numbat.space/week4/survey_dplyr_bug.R

Non-interactive debugging

- Necessary for debugging code that runs in a non-interactive environment.
- Is the global environment different? Have you loaded different packages? Are objects left from previous sessions causing differences?
- Is the working directory different?
- Is the PATH environment variable, which determines where external commands (like git) are found, different?
- Is the R_LIBS environment variable, which determines where library() looks for packages, different?

Non-interactive debugging

dump.frame() saves state of R session to file.

```
# In batch R process ----
dump and guit <- function() {</pre>
  # Save debugging info to file last.dump.rda
  dump.frames(to.file = TRUE)
  # Ouit R with error status
  q(status = 1)
options(error = dump_and_quit)
# In a later interactive session ----
load("last.dump.rda")
debugger()
```

Last resort: print(): slow and primitive.

Other tricks

- sink(): capture output to file.
- options(warn = 2): turn warnings into errors.
- rlang::with_abort():turn messages into errors.
- If R or RStudio crashes, it is probably a bug in compiled code.
- Post minimal reproducible example to Posit Community or Stack Overflow.

- 1 Debugging
- 2 Styling
- 3 Profiling
- 4 Efficiency
- 5 Caching

Style guides

Tidyverse

https://style.tidyverse.org/

Google

https://google.github.io/styleguide/Rguide.html

Indentation

- Use **2 spaces** per indentation level.
- Add spaces around operators: $x \leftarrow y + z$.

Naming (functions, arguments, objects)

Be brief but descriptive with object names.

Use a consistent naming convention:

- camelCase
- snake_case
- PascalCase

Design

- Modularity: Create re-usable parts for maintainability and scalability.
- **Simplicity**: Keep the interface intuitive and easy to use with straightforward interactions.
- **Flexibility**: Allow adaptability to different use cases and user preferences.
- **Feedback**: Provide clear and timely feedback to inform users of actions, errors, and system states.

Automatic styling

- styler: https://styler.r-lib.org/
- air: https://posit-dev.github.io/air/

These can be configured to automatically style your code when you save.

You can also check your code for common problems with lintr.

Outline

- 1 Debugging
- 2 Styling
- 3 Profiling
- 4 Efficiency
- 5 Caching

Profiling functions

- Rprof(): records every function call.
- summaryRprof(): summarises the results.
- profvis(): visualises the results.

Profiling

Where are the bottlenecks in your code?

```
library(profvis)
library(bench)
f <- function() {</pre>
  pause(0.1)
  g()
  h()
g <- function() {</pre>
  pause(0.1)
  h()
h <- function() {</pre>
  pause(0.1)
```

Profiling

```
tmp <- tempfile()
Rprof(tmp, interval = 0.1)
f()
Rprof(NULL)
writeLines(readLines(tmp))
#> sample.interval=100000
#> "pause" "g" "f"
#> "pause" "h" "g" "f"
#> "pause" "h" "f"
```

Profiling

source(here::here("week4/profiling-example.R"))
profvis(f())

Microbenchmarking

```
system.time()
x <- rnorm(1e6)
system.time(min(x))
  user system elapsed
 0.002 0.000 0.001
system.time(sort(x)[1])
  user system elapsed
 0.093 0.011 0.104
system.time(x[order(x)[1]])
  user system elapsed
 0.088
        0.000 0.088
```

Microbenchmarking

bench::mark()

```
bench::mark(
 min(x),
 sort(x)[1],
 x[order(x)[1]]
# A tibble: 3 x 6
  expression
                   min
                         median `itr/sec` mem alloc `gc/sec`
  <bch:expr>
            <bch:tm> <bch:tm>
                                   <dbl> <bch:bvt>
                                                    <dbl>
1 \min(x)
               1.34ms
                       1.79ms
                                   548.
                                               0B
                                                     0
2 sort(x)[1] 65.74ms 72.01ms 13.4 11.44MB 10.0
3 \times [order(x)[1]] 50.3ms 54.52ms
                                    18.1 3.81MB
                                                     5.17
```

Microbenchmarking

- mem_alloc tells you the memory allocated in the first run.
- n_gc tells you the total number of garbage collections over all runs.
- n_itr tells you how many times the expression was evaluated.
- Pay attention to the units!

Exercises

What's the fastest way to compute a square root? Compare:

```
sqrt(x)
x^0.5
exp(log(x) / 2)
```

Use system.time() find the time for each operation.

Repeat using bench::mark(). Why are they different?

Outline

- 1 Debugging
- 2 Styling
- 3 Profiling
- 4 Efficiency
- 5 Caching

Vectorization

- Vectorization is the process of converting a repeated operation into a vector operation.
- The loops in a vectorized function are implemented in C instead of R.
- Using map() or apply() is **not** vectorization.
- Matrix operations are vectorized, and usually very fast.

Exercises

Write the following algorithm to estimate $\int_0^1 x^2 dx$ using vectorized code

Monte Carlo Integration

- a. Initialise: hits = 0
- for i in 1:N
 - Generate two random numbers, U_1 , U_2 , between 0 and 1
 - If $U_2 < U_1^2$, then hits = hits + 1
- c end for
- d. Area estimate = hits/N

Outline

- 1 Debugging
- 2 Styling
- 3 Profiling
- 4 Efficiency
- 5 Caching

Caching: using rds

```
if (file.exists("results.rds")) {
  res <- readRDS("results.rds")
} else {
  res <- compute_it() # a time-consuming function
    saveRDS(res, "results.rds")
}</pre>
```

Caching: using rds

```
if (file.exists("results.rds")) {
  res <- readRDS("results.rds")
} else {
  res <- compute_it() # a time-consuming function
    saveRDS(res, "results.rds")
}</pre>
```

Equivalently...

```
res <- xfun::cache_rds(
  compute_it(), # a time-consuming function
  file = "results.rds"
)</pre>
```

Caching: using rds

```
compute <- function(...) {</pre>
   xfun::cache_rds(rnorm(6), file = "results.rds", ...)
compute()
[1] -0.316 -0.242 1.320 0.226 2.059 0.353
compute()
[1] -0.316 -0.242 1.320 0.226 2.059 0.353
compute(rerun = TRUE)
compute()
[1] -1.186 1.554 -1.367 -0.502 -1.532 0.544
```

Caching: Rmarkdown

```
'``{r import-data, cache=TRUE}
d <- read.csv('my-precious.csv')
'``
{r analysis, dependson='import-data', cache=TRUE}
summary(d)
'``</pre>
```

- Requires explicit dependencies or changes not detected.
- Changes to functions or packages not detected.
- Good practice to frequently clear cache to avoid problems.
- targets is a better solution: Week 8

Caching: Quarto

```
···{r}
#| label: import-data
  cache: true
d <- read.csv('my-precious.csv')</pre>
· · · {r}
#| label: analysis
#| dependson: import-data
  cache: true
summary(d)
```

- Same problems as Rmarkdown
- targets is a better solution: Week 8

Caching: memoise

library(memoise)

[1] 4

Caching stores results of computations so they can be reused.

```
sq <- function(x) {</pre>
  print("Computing square of 'x'")
  x * * 2
memo_sq <- memoise(sq)</pre>
memo sa(2)
[1] "Computing square of 'x'"
[1] 4
memo_sq(2)
```

Exercises

Use bench::mark() to compare the speed of sq() and
memo_sq().