Exercises on second order statistics

Note: all random vectors are assumed of finite variance and zero mean.

1. For any two random vectors X,Y compute the minimum error of the linear estimation of X from Y:

$$\sigma_{min}^2 = \min_G E \parallel X - GY \parallel^2$$

2. Suppose Y = HX + W with (W, X) independent. Compute

$$\hat{G} = \underset{G}{argmin} E \parallel X - GY \parallel^{2}$$

3. Take $X = X_{1:N}$, $W = W_{1:N}$ where the sequence (X_n) is binary ± 1 i.i.d., (W_n) is gaussian with variance β . Give the expression of \hat{G} in this case.

4. Suppose $(X,Y) \sim N(0,\Gamma)$ with

$$\Gamma = \left[\begin{array}{cc} R_X & R_{XY} \\ R_{YX} & R_Y \end{array} \right]$$

Show that $X|Y \sim N(\hat{X}, R_e)$ with $\hat{X} = R_{XY}R_Y^{-1}Y$ and $R_e = R_X - R_{XY}R_Y^{-1}R_X$

5. Now (X_n) is a Markov sequence such that $X_n = -X_{n-1}$ with probability ε independently from $X_{1:n-1}$. Compute the auto-correlation function $\gamma_X(k) = E(X_n X_{n-k})$. Explicit the structure of the correlation matrix R_X . Compute the spectrum density function of (X_n) .

spectrum density function of (X_n) . 6. Denote $L_{X|Y} = E(XY^T)E(YY^T)^{-1}$. Prove the following properties and interpret in terms of estimation:

- (a) $L_{AX|Y} = AL_{AX|Y}$
- (b) $L_{X|AY} = L_{X|Y}$

(c) If $Y = (Y_1, Y_2)$ with (Y_1, Y_2) uncorrelated, $L_{X|Y} = L_{X|Y_1} + L_{X|Y_2}$.

7. The sequence (X_n) is AR-m:

$$X_n = a_1 X_{n-1} + \dots + a_m X_{n-m} + U_n$$

where (U_n) is i.i.d. Compute the spectrum density of (X_n) .