Annuities and Discount Factors

Teng-Jui Lin
Department of Chemical Engineering, University of Washington
Process Design

Annuities give same amount of cash flow for each consecutive year

Ex. Verify that the future value F_n of annuities with each transaction value of A for n consecutive years

is

$$F_n = A\left[rac{(1+i)^n-1}{i}
ight]$$

pash

basis time for future

A

A

A

Fr.,1 Fr.12 Fr.13

Fr. 7

where *i* is the annual interest rate.

- Annuities A series of uniform value cash transactions in consecutive years
- Hint: nth partial sum of geometric series: $S_n = a_1 \frac{1-r^n}{1-r} = a_1^0 + a_1^0 + a_1^0 + a_1^0 + a_1^0$

$$F_{n} = F_{n,1} + F_{n,2} + F_{n,3} + \dots + F_{n,n}$$

$$= A(1+i)^{n} + A(1+i)^{n-1} + A(1+i)^{n-2} + \dots + A(1+i)^{n-2}$$

$$= A \frac{1 - (1+i)^{n}}{1 - (1+i)} = A \frac{1 - (1+i)^{n}}{i}$$

Discount factor converts money value between the past, present, and annuities

Discount factor for converting A to F

$$F_n = A \left[\frac{(1+i)^n - 1}{i} \right]$$

$$\Rightarrow \frac{F_n}{A} = \left[\frac{(1+i)^{n-1}}{i} \right] = f(i,n)$$

Notation

Want know if give in
$$F_n = A \left(\frac{F_n}{A}\right)$$

$$\frac{F_n}{A} = \left(\frac{F_n}{A}, i, n\right) = \frac{F_n}{A}(i, n)$$

Discount factors are derived from known discount factors

Ex. Derive the discount factor for converting A to P.

want
$$\rho = A \left(\frac{\rho}{A}\right)$$

$$\frac{\rho}{A} = \frac{\rho}{A} \frac{1}{A} = \frac{\rho}{A} \frac{F}{A} = \frac{1}{(1+i)^{N}} \left[\frac{(1+i)^{N}-1}{i}\right]$$

$$\frac{\rho}{A} = \frac{\rho}{A} \frac{1}{A} = \frac{\rho}{A} \frac{F}{A} = \frac{1}{(1+i)^{N}} \left[\frac{(1+i)^{N}-1}{i}\right]$$

$$\frac{\rho}{A} = \frac{(1+i)^{N}-1}{i(1+i)^{N}}$$

$$\frac{\rho}{A} = \frac{\rho}{A}$$

$$\frac{\rho}$$

$$\frac{F}{A} = \frac{(1+i)^{N}-1}{i}$$

$$\frac{F}{F} = \frac{(1+i)^{N}}{(1+i)^{N}}$$

$$F = P(i+i)^{N}$$

Common discount factors are tabulated

Turton Table 9.1
$$F = \sqrt{\frac{F}{\rho}}$$

in

	Conversion	Symbol	Common Name	Formula
comp.	P to F	F/P	Single payment compound amount factor	$(1+i)^n$
	F to P	P/F	Single payment present worth factor	$\frac{1}{(1+i)^n}$
	A to F	F/A	Uniform series compound amount factor; Future worth of annuity	$rac{(1+i)^n-1}{i}$
	F to A	A/F	Sinking fund factor	$\frac{1}{(1+i)^n-1}$
	P to A	A/P	Capital recovery factor	$rac{i(1+i)^n}{(1+i)^n-1}$
	A to P	P/A	Uniform series present worth factor; Present worth of annuity	$\cfrac{(1+i)^n-1}{i(1+i)^n}$

Example of using discount factor as a conversion factor

\$200p00

Turton Ex. 9.14 A lottery winner will receive \$200,000/year for the next 20 years. > annuity

- (a) What is the equivalent present value of the winnings if there is a secure investment opportunity providing 7.5% p.a.?
- (b) What rate of return in part (a) would be needed for a present value of \$2.5 million? $\frac{\rho}{R} = \frac{(1+i)^{N}-1}{i(1+i)^{N}}$

(a)
$$A = 200,000$$
 $P = ?$
 $i = 7.5 \% = 0.075$
 $n = 20$

$$P = A \frac{p}{A} = A \frac{(1+i)^{n}-1}{i(1+i)^{n}}$$

$$= (\$200,000) \frac{(1+0.075)^{20}}{0.075(1+0.075)^{20}} = [\$2,038,900]$$

$$7.5'$$

(b)
$$i = ?$$
 $/ P = $2,500,000$
 $/ A = $200,000$
 $h = 20$

$$\frac{\rho}{A} = \frac{(1+i)^{n}-1}{i(1+i)^{n}}$$

$$\frac{2,500,000}{200,000} = \frac{(1+i)^{20}-1}{i(1+i)^{20}}$$

$$\Rightarrow i = 0.0496 = 4.96\%.$$