Generalized Additive Models

David L Miller

Overview

- What is a GAM?
- What is smoothing?
- How do GAMs work? (Roughly)

From GAMs to GLMs and LMs

(Generalized) Linear Models

Models that look like:

$$y_i = \beta_0 + x_{1i}\beta_1 + x_{2i}\beta_2 + ... + \epsilon_i$$

(describe the response, y_i , as linear combination of the covariates, x_{ji} , with an offset)

We can make $y_i \sim$ any exponential family distribution (Normal, Poisson, etc).

Error term ϵ_i is normally distributed (usually).

Why bother with anything more complicated?!

Is this relationship linear?

A linear model...

```
lm(y \sim x1 + poly(x1, 2), data=dat)
```

Is this relationship linear? Maybe?

What can we do?

```
lm(y \sim x1 + poly(x1, 2), data=dat)
```

Adding a quadratic term?

Is this sustainable?

- Adding in quadratic (and higher terms) can make sense
- This feels a bit ad hoc
- Better if we had a **framework** to deal with these issues?

[drumroll]

Generalized Additive Models

"gam"

- 1. Collective noun used to refer to a group of whales, or rarely also of porpoises; a pod.
- 2. (by extension) A social gathering of whalers (whaling ships).

(via Nat Kelly, Australian Antarctic Division)

Generalized Additive Models

- Generalized: many response distributions
- Additive: terms add together
- Models: well, it's a model...

What does a model look like?

$$y_i = \beta_0 + \sum_j s_j(x_{ji}) + \epsilon_i$$

where $\epsilon_i \sim N(0, \sigma^2)$, $y_i \sim Normal$ (for now)

Remember that we're modelling the mean of this distribution!

Call the above equation the linear predictor

Okay, but what about these "s" things?

- Think s=smooth
- Want to model the covariates flexibly
- Covariates and response not necessarily linearly related!
- Want some "wiggles"

Okay, but what about these "s" things?

- Think s=smooth
- Want to model the covariates flexibly
- Covariates and response not necessarily linearly related!
- Want some "wiggles"

What is smoothing?

Straight lines vs. interpolation

- Want a line that is "close" to all the data
- Don't want interpolation –
 we know there is "error"
- Balance between interpolation and "fit"

Splines

- Functions made of other, simpler functions
- Basis functions $b_k(x)$, estimate β_k

•
$$s(x) = \sum_{k=1}^{K} \beta_k b_k(x)$$

Design matrices

- We often write models as $X\beta$
 - X is our data
 - lacksquare are parameters we need to estimate
- For a GAM it's the same
 - X has columns for each basis, evaluated at each observation (row)
 - again, this is the linear predictor

Measuring wigglyness

- Visually:
 - Lots of wiggles == NOT SMOOTH
 - Straight line == VERY SMOOTH
- How do we do this mathematically?
 - Derivatives!
 - (Calculus was a useful class afterall!)

Wigglyness by derivatives

What was that grey bit?

$$\int_{\mathbb{R}} \left(\frac{\partial^2 f(x)}{\partial x^2} \right)^2 dx$$

- Turns out we can always write this as $\boldsymbol{\beta}^{T}S\boldsymbol{\beta}$, so the $\boldsymbol{\beta}$ is separate from the derivatives
- Call S the penalty matrix
- Different penalties lead to difference $f s \Rightarrow$ different $b_k(x) s$

Making wigglyness matter

- $\beta^T S \beta$ measures wigglyness
- "Likelihood" measures closeness to the data
- Penalise closeness to the data...
- Use a smoothing parameter to decide on that trade-off...
- Estimate the β_k terms but penalise objective
 - "closeness to data" + penalty

Smoothing parameter

Smoothing parameter selection

- ullet Many methods: AIC, Mallow's C_p , GCV, ML, REML
- Recommendation, based on simulation and practice:
 - Use REML or ML
 - Reiss & Ogden (2009), Wood (2011)

Maximum wiggliness

- We can set basis complexity or "size" (k)
 - Maximum wigglyness
- Smooths have effective degrees of freedom (EDF)
- EDF < k
- Set k "large enough"
 - Penalty does the rest

More on this in a bit...

Response distributions

- Exponential family distributions are available
- Normal, Poisson, binomial, gamma, quasi etc (?family)
- Tweedie and negative binomial
- Plus more! (More on that in a bit)

GAM summary

- Straight lines suck we want wiggles
- Use little functions (basis functions) to make big functions (smooths)
- Need to make sure your smooths are wiggly enough
- Use a penalty to trade off wiggliness/generality