

Schletter, Inc.		25° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, P_g =
(ASCE 7-10, Eq. 7.4-1)	18.56 psf	Sloped Roof Snow Load, P _s =
	1.00	I _s =
	0.82	C _s =
	0.90	C _e =
	1 20	C. =

2.3 Wind Loads

Design Wind Speed, V =	140 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 30.77$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.500	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the carracte.

2.4 Seismic Loads

S _s =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_{S} = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	<u>Location</u>	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	622.62	<u>6448.19</u>	k
Compressive Load =	3785.26	<u>4984.13</u>	k
Lateral Load =	343.70	<u>3419.93</u>	k
Moment (Weak Axis) =	0.69	0.30	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 173805.2 in-lbs Resisting Force Required = 2430.84 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4051.40 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding Force = 789.12 lbs Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 1972.80 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 789.12 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

		Ballast	Width	
	<u>35 in</u>	<u>36 in</u>	<u>37 in</u>	38 in
$P_{ftg} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(2.92 \text{ ft}) =$	7560 lbs	7776 lbs	7992 lbs	8208 lbs

ASD LC	1.0D + 1.0S			1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W						
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1261 lbs	1261 lbs	1261 lbs	1261 lbs	1422 lbs	1422 lbs	1422 lbs	1422 lbs	1895 lbs	1895 lbs	1895 lbs	1895 lbs	-278 lbs	-278 lbs	-278 lbs	-278 lbs
F _B	1303 lbs	1303 lbs	1303 lbs	1303 lbs	2048 lbs	2048 lbs	2048 lbs	2048 lbs	2393 lbs	2393 lbs	2393 lbs	2393 lbs	-2968 lbs	-2968 lbs	-2968 lbs	-2968 lbs
F _V	151 lbs	151 lbs	151 lbs	151 lbs	1414 lbs	1414 lbs	1414 lbs	1414 lbs	1161 lbs	1161 lbs	1161 lbs	1161 lbs	-1578 lbs	-1578 lbs	-1578 lbs	-1578 lbs
P _{total}	10123 lbs	10339 lbs	10555 lbs	10771 lbs	11030 lbs	11246 lbs	11462 lbs	11678 lbs	11848 lbs	12064 lbs	12280 lbs	12495 lbs	1289 lbs	1419 lbs	1549 lbs	1678 lbs
M	3080 lbs-ft	3080 lbs-ft	3080 lbs-ft	3080 lbs-ft	3634 lbs-ft	3634 lbs-ft	3634 lbs-ft	3634 lbs-ft	4748 lbs-ft	4748 lbs-ft	4748 lbs-ft	4748 lbs-ft	4890 lbs-ft	4890 lbs-ft	4890 lbs-ft	4890 lbs-ft
е	0.30 ft	0.30 ft	0.29 ft	0.29 ft	0.33 ft	0.32 ft	0.32 ft	0.31 ft	0.40 ft	0.39 ft	0.39 ft	0.38 ft	3.79 ft	3.45 ft	3.16 ft	2.91 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft						
f _{min}	246.6 psf	245.8 psf	245.1 psf	244.3 psf	264.7 psf	263.4 psf	262.1 psf	261.0 psf	272.1 psf	270.6 psf	269.1 psf	267.8 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	335.9 psf	332.6 psf	329.5 psf	326.5 psf	370.0 psf	365.7 psf	361.7 psf	357.9 psf	409.6 psf	404.3 psf	399.3 psf	394.5 psf	136.1 psf	125.5 psf	119.6 psf	116.0 psf

Maximum Bearing Pressure = 410 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 2505.3 \text{ ft-lbs}$

Resisting Force Required = 1717.91 lbs S.F. = 1.67

Weight Required = 2863.19 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D + 0.65625E	+ 0.75S	0.362D + 0.875E			
Width		35 in			35 in		35 in			
Support	Outer	Inner	Outer	Outer	Outer Inner Outer		Outer	Inner	Outer	
F _Y	290 lbs	588 lbs	190 lbs	808 lbs	2127 lbs	731 lbs	120 lbs	172 lbs	21 lbs	
F _V	202 lbs	197 lbs	205 lbs	148 lbs	145 lbs	160 lbs	202 lbs	198 lbs	204 lbs	
P _{total}	9649 lbs	9947 lbs	9549 lbs	9717 lbs	11036 lbs	9640 lbs	2856 lbs	2909 lbs	2757 lbs	
M	800 lbs-ft	787 lbs-ft	810 lbs-ft	596 lbs-ft	596 lbs-ft	635 lbs-ft	799 lbs-ft	785 lbs-ft	804 lbs-ft	
е	0.08 ft	0.08 ft	0.08 ft	0.06 ft	0.05 ft	0.07 ft	0.28 ft	0.27 ft	0.29 ft	
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	
f _{min}	230.3 psf	239.6 psf	226.8 psf	244.3 psf	282.2 psf	239.8 psf	34.9 psf	37.2 psf	31.8 psf	
f _{max}	324.9 psf	332.8 psf	322.7 psf	314.9 psf	352.8 psf	314.9 psf	129.5 psf	130.1 psf	126.9 psf	

Maximum Bearing Pressure = 353 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 32in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	2.912 k	Maximum Axial Load = 4.388 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>39%</u>	Utilization = <u>59%</u>
Diagonal Strut		
Maximum Axial Load =	2.435 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>33%</u>	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ll} \text{Mean Height, h}_{\text{sx}} = & 56.48 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 h_{\text{sx}} \\ 1.130 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.677 \text{ in} \\ \hline 0.677 \leq 1.13, \text{ OK.} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 96 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 265.581 \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 96 \\ \mathsf{J} &= 0.432 \\ &= 168.894 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi b [\mathsf{Bc-1.6Dc^*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb^*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_L} &= 29.1 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 28.0 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in⁴

41.015 mm

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

3.4.18
$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$x = 45.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.599 in³

1.152 k-ft

 $M_{max}St =$

 $\varphi F_L St =$

y = Sx=

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 $L_b = 104.56 \text{ in}$ $L_b = 104.56$ J = 1.08 J = 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.0 \text{ ksi}$ $\phi F_1 =$ 28.9

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
 S1 = 1.1
$$S2 = C_t$$
 S2 = 141.0
$$\varphi F_L = \varphi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

31.1 ksi

 $\phi F_L =$

 $M_{max}Wk =$

3.904 k-ft

3.4.18
$$h/t = 7.4$$
 $h/t = 16.2$ $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$ $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$ $S1 = 35.2$ $S1 = 36.9$ $m = 0.68$ $m = 0.65$ $C_0 = 41.067$ $C_0 = 40$ $Cc = 43.717$ $Cc = 40$ $S2 = \frac{k_1Bbr}{mDbr}$ $S2 = \frac{k_1Bbr}{mDbr}$ $S2 = 73.8$ $S2 = 77.3$ $\phi F_L = 1.3\phi y F c y$ $\phi F_L = 1.3\phi y F c y$ $\phi F_L = 43.2 \text{ ksi}$ $\phi F_L = 29.0 \text{ ksi}$ $\phi F_L = 43.2 \text{ ksi}$ $\phi F_L = 33.32 \text{ ksi}$ $\phi F_L = 43.2 \text{ ksi}$ $\phi F_L = 33.32 \text{ ksi}$ $\phi F_L = 43.2 \text{ ksi}$ $\phi F_L = 33.32 \text{ ksi}$ $\phi F_L = 43.2 \text{ ksi}$ $\phi F_L = 33.32 \text{ ksi}$ $\phi F_L = 43.2 \text{ ksi}$ $\phi F_L = 33.32 \text{ ksi}$

Compression

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$

33.3 ksi

3.323 k-ft

3.4.10

 $\varphi F_L =$

Rb/t =18.1 S1 = 6.87 S2 = 131.3 $\varphi F_L = \varphi c[Bt-Dt^*\sqrt{(Rb/t)}]$ $\varphi F_L =$ 31.09 ksi $\phi F_1 =$ 31.09 ksi $A = 1215.13 \text{ mm}^2$ 1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

24.5

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 28.2 \text{ ksi}$$

$$\varphi F_L St = 28.2 \text{ ksi}$$

$$\varphi F_L St = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$\varphi = 27.5 \text{ mm}$$

0.621 in³

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 24.8 \\ \mathsf{J} &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi \mathsf{b}[\mathsf{Bc-1.6Dc^*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb^*}\sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_L} &= & 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18 h/t = 24.5

$$mDbr$$
 $S1 = 36.9$
 $m = 0.65$
 $C_0 = 27.5$
 $Cc = 27.5$
 $S2 = \frac{k_1 Bbr}{mDbr}$
 $S2 = 77.3$
 $\phi F_L = 1.3 \phi y F c y$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L = 28.2 \text{ ksi}$
 $\phi F_L = 279836 \text{ mm}^4$
 $\phi F_L = 27.5 \text{ mm}$
 $\phi F_L = 27.5 \text{ mm}$

 $M_{max}Wk = 1.460 \text{ k-ft}$

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

Sx =

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \varphi cc = & 0.89749 \\ & \varphi F_L = & (\varphi cc Fcy)/(\lambda^2) \\ & \varphi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{split} \phi F_L W k &= & 28.2 \text{ ksi} \\ ly &= & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ x &= & 27.5 \text{ mm} \\ Sy &= & 0.621 \text{ in}^3 \\ M_{max} W k &= & 1.460 \text{ k-ft} \end{split}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 $L_b =$ 69.80 in $L_b =$ 69.8 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ $\phi F_L =$ 30.0 ksi 30.0

$$5.4.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$3.4.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
Rb/t = 0.0
$$\left(Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$\phi F_L W k = 28.2 \text{ ksi}$$
 $ly = 279836 \text{ mm}^4$
 0.672 in^4
 $x = 27.5 \text{ mm}$
 $Sy = 0.621 \text{ in}^3$
 $M_{max} W k = 1.460 \text{ k-ft}$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.61471 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.80606 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 10.8205 \text{ ksi} \end{array}$$

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF$Cy} \\ \text{$\phi$F}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 10.82 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 11.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc.: HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ		-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-55.176	-55.176	0	0
2	M14	Υ	-55.176	-55.176	0	0
3	M15	Υ	-55.176	-55.176	0	0
4	M16	Υ	-55 176	-55 176	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-111.061	-111.061	0	0
2	M14	٧	-111.061	-111.061	0	0
3	M15	V	-171.639	-171.639	0	0
4	M16	V	-171.639	-171.639	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

_		Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
	1	M13	V	252.41	252.41	0	0
	2	M14	V	191.832	191.832	0	0
	3	M15	V	100.964	100.964	0	0
	4	M16	V	100.964	100.964	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	7.874	7.874	0	0
2	M14	Ζ	7.874	7.874	0	0
3	M15	Ζ	7.874	7.874	0	0
4	M16	Ζ	7.874	7.874	0	0
5	M13	Z	0	0	0	0
6	M14	Ζ	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	708.623	2	1243.031	2	.632	1	.003	1	0	1	0	1
2		min	-869.033	3	-1577.122	3	-43.434	5	229	4	0	1	0	1
3	N7	max	.028	9	1085.391	1	7	12	001	12	0	1	0	1
4		min	235	2	-126.61	3	-264.385	4	527	4	0	1	0	1
5	N15	max	0	4	2911.738	1	0	2	0	9	0	1	0	1
6		min	-2.391	2	-478.939	3	-250.54	4	507	4	0	1	0	1
7	N16	max	2408.79	2	3833.948	2	0	12	0	12	0	1	0	1
8		min	-2630.712	3	-4960.145	3	-43.476	5	231	4	0	1	0	1
9	N23	max	.04	14	1085.391	1	10.733	1	.021	1	0	1	0	1
10		min	235	2	-126.61	3	-256.388	5	514	4	0	1	0	1
11	N24	max	708.623	2	1243.031	2	056	12	0	12	0	1	0	1
12		min	-869.033	3	-1577.122	3	-44.133	5	23	4	0	1	0	1
13	Totals:	max	3823.174	2	10999.549	2	0	9						
14		min	-4369.332	3	-8846.548	3	-897.049	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	69.838	4	433.993	2	-8.22	12	0	15	.179	1	0	4
2			min	4.692	12	-743.679	3	-162.463	1	015	2	.013	12	0	3
3		2	max	64.114	1	302.317	1	-6.652	12	0	15	.109	4	.564	3
4			min	4.692	12	-524.359	3	-124.183	1	015	2	.003	10	327	1
5		3	max	64.114	1	170.867	1	-5.084	12	0	15	.065	5	.932	3
6			min	4.692	12	-305.04	3	-85.904	1	015	2	042	1	537	1
7		4	max	64.114	1	39.417	1	-3.515	12	0	15	.036	5	1.106	3
8			min	4.692	12	-85.72	3	-47.625	1	015	2	101	1	631	1
9		5	max	64.114	1	133.599	3	032	10	0	15	.01	5	1.085	3
10			min	4.692	12	-93.669	2	-31.218	4	015	2	126	1	608	1
11		6	max	64.114	1	352.919	3	28.933	1	0	15	006	12	.868	3
12			min	1.789	15	-225.585	2	-26.059	5	015	2	118	1	467	1
13		7	max	64.114	1	572.238	3	67.212	1	0	15	006	12	.457	3
14			min	-7.663	5	-357.5	2	-23.671	5	015	2	075	1	21	1
15		8	max	64.114	1	791.558	3	105.491	1	0	15	.004	2	.172	2
16			min	-18.153	5	-489.416	2	-21.284	5	015	2	057	4	149	3
17		9	max	64.114	1	1010.877	3	143.77	1	0	15	.113	1	.666	2
18			min	-28.642	5	-621.331	2	-18.897	5	015	2	074	5	95	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	JOPE MEINE														
	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	64.114	1	753.247	2	-5.895	12	.015	2	.257	1	1.277	2
20			min	4.692	12	-1230.197	3	-182.05	1	004	3	.004	12	-1.946	3
21		11	max	64.114	1	621.331	2	-4.326	12	.015	2	.113	4	.666	2
22			min	4.692	12	-1010.877	3	-143.77	1	0	15	002	3	95	3
23		12	max	64.114	1	489.416	2	-2.758	12	.015	2	.057	4	.172	2
24		12	min	4.692	12	-791.558	3	-105.491	1	0	15	006	3	149	3
		40										.027	_		
25		13	max	64.114	1	357.5	2	-1.19	12	.015	2		5	.457	3
26			min	4.692	12	-572.238	3	-67.212	1	0	15	075	1_	21	1
27		14	max	64.114	1	225.585	2	.818	3	.015	2	0	15	.868	3
28			min	3.407	15	-352.919	3	-36.176	4	0	15	118	1_	467	1
29		15	max	64.114	1	93.669	2	9.346	1	.015	2	005	12	1.085	3
30			min	-5.328	5	-133.599	3	-27.164	5	0	15	126	1	608	1
31		16	max	64.114	1	85.72	3	47.625	1	.015	2	002	12	1.106	3
32			min	-15.818	5	-39.417	1	-24.777	5	0	15	101	1	631	1
33		17	max	64.114	1	305.04	3	85.904	1	.015	2	.003	3	.932	3
34			min	-26.307	5	-170.867	1	-22.39	5	0	15	08	4	537	1
35		18	max	64.114	1	524.359	3	124.183	1	.015	2	.052	1	.564	3
36		10	min	-36.796	5	-302.317	1	-20.002	5	0	15	089	5	327	1
37		10				743.679							1		_
		19	max	64.114	1		3	162.463	1	.015	2	.179		0	1
38	N 4 4	4	min	<u>-47.286</u>	5	-433.993	2	-17.615	5	0	15	105	5	0	3
39	M14	1	max	45.684	4	502.636	2	-8.531	12	.013	3	.247	4	0	1
40			min	2.498	12	-600.634	3	-169.367	1	016	2	.015	12	0	3
41		2	max	40.037	1	370.72	2	-6.963	12	.013	3	.169	4	.46	3
42			min	2.498	12	-435.162	3	-131.088	1	016	2	.006	10	388	2
43		3	max	40.037	1	238.804	2	-5.395	12	.013	3	.101	5	.774	3
44			min	2.498	12	-269.69	3	-92.809	1	016	2	017	1	659	2
45		4	max	40.037	1	106.889	2	-3.826	12	.013	3	.057	5	.94	3
46			min	2.498	12	-104.217	3	-61.471	4	016	2	083	1	813	2
47		5	max	40.037	1	61.255	3	75	10	.013	3	.015	5	.959	3
48			min	-4.997	5	-28.907	1	-50.761	4	016	2	114	1	849	2
49		6	max	40.037	1	226.727	3	22.029	1	.013	3	005	12	.831	3
50			min	-15.486	5	-160.357	1	-43.722	5	016	2	112	1	768	2
		7					3				3				
51			max	40.037	1	392.2		60.308	1	.013		005	12	.556	3
52			min	-25.976	5	-291.808	1	-41.334	5	016	2	081	4	57	2
53		8	max	40.037	1	557.672	3	98.587	1	.013	3	.002	10	.134	3
54			min	-36.465	5	-423.258	1_	-38.947	5	016	2	102	4	255	2
55		9	max	40.037	1_	723.145	3	136.866	1	.013	3	.1	1_	.206	1
56			min	-46.954	5	-554.708	1	-36.56	5	016	2	132	5	436	3
57		10	max	70.934	4	686.159	1	-5.584	12	.016	2	.248	4	.757	1
58			min	2.498	12	-888.617	3	-175.145	1	013	3	.003	12	-1.152	3
59		11	max	60.445	4	554.708	1	-4.016	12	.016	2	.168	4	.206	1
60			min	2.498	12	-723.145		-136.866		013	3	002	3	436	3
61		12	max	49.956	4	423.258	1	-2.447	12	.016	2	.098	4	.134	3
62			min	2.498	12	-557.672	3	-98.587	1	013	3	006	3	255	2
63		13	max	40.037	1	291.808	1	879	12	.016	2	.053	5	.556	3
64		10	min	2.498	12	-392.2	3	-62.544	4	013	3	075	1	57	2
65		1.1													
		14	max		1	160.357	1	1.289	3	.016	2	.011	5	.831	3
66		4.5	min	2.498	12	-226.727	3	-51.834	4	013	3	112	1	768	2
67		15	max		1	28.907	1	16.25	1	.016	2	004	12	.959	3
68			min	2.498	12	-61.255	3	-43.962	5	013	3	114	1_	849	2
69		16	max	40.037	1_	104.217	3	54.53	1	.016	2	001	12	.94	3
70			min	974	5	-106.889	2	-41.575	5	013	3	086	4	813	2
71		17	max	40.037	1	269.69	3	92.809	1	.016	2	.005	3	.774	3
72			min	-11.464	5	-238.804	2	-39.188	5	013	3	108	4	659	2
73		18	max		1	435.162	3	131.088	1	.016	2	.082	1	.46	3
74			min	-21.953	5	-370.72	2	-36.801	5	013	3	137	5	388	2
75		19	max		1	600.634	3	169.367	1	.016	2	.216	1	0	1
10		ij	παλ	70.001		300.004	<u> </u>	100.007		.010		.210			<u> </u>

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

		_		<u> </u>				0		- 0.61					
70	Member	Sec		Axial[lb]		y Shear[lb]								z-z Mome	LC
76	N445	4	min	-32.442	5	-502.636	2	-34.414	5	013	3	168	5	0	3
77	M15	1	max	83.092	5	684.454	2	-8.396	12	.016	2	.314	4	0	2
78			min	-42.293	1	-328.919	3	-169.346	1	011	3	.015	12	0	3
79		2	max	72.602	5	498.691	2	-6.828	12	.016	2	.221	4	.255	3
80			min	-42.293	1	-244.218	3	-131.067	1	011	3	.006	10	526	2
81		3	max	62.113	5	312.928	2	-5.259	12	.016	2	.139	5	.434	3
82			min	-42.293	1	-159.518	3	-92.788	1	011	3	017	1	887	2
83		4	max	51.624	5	127.166	2	-3.691	12	.016	2	.08	5	.538	3
84			min	-42.293	1	-74.817	3	-77.692	4	011	3	083	1	-1.082	2
85		5	max	41.134	5	9.884	3	813	10	.016	2	.024	5	.567	3
86			min	-42.293	1	-58.597	2	-66.982	4	011	3	114	1	-1.113	2
87		6	max	30.645	5	94.585	3	22.05	1	.016	2	005	12	.521	3
88			min	-42.293	1	-244.36	2	-59.902	5	011	3	112	1	978	2
89		7	max	20.156	5	179.286	3	60.329	1	.016	2	005	12	.399	3
90			min	-42.293	1	-430.122	2	-57.515	5	011	3	101	4	678	2
91		8	max	9.666	5	263.986	3	98.608	1	.016	2	.002	10	.202	3
92			min	-42.293	1	-615.885	2	-55.128	5	011	3	136	4	213	2
93		9	max	46	15	348.687	3	136.887	1	.016	2	.1	1	.417	2
94		9	min	-42.293	1	-801.648	2	-52.741	5		3	181	5	07	3
95		10				837.64				011	3			1.212	
		10	max	-3.163	12		1	72.293	2	.011		.311	4		2
96		44	min	-42.293	1	-987.41	2	-175.166	1	016	2	.004	12	418	3
97		11	max	-3.163	12	801.648	2	-4.151	12	.011	3	.217	4	.417	2
98			min	-42.293	1	-348.687	3	-136.887	1	016	2	001	3	07	3
99		12	max	-3.163	12	615.885	2	-2.582	12	.011	3	.133	4	.202	3
100			min	-42.293	1	-263.986	3	-98.608	1	016	2	006	3	213	2
101		13	max	-3.163	12	430.122	2	-1.014	12	.011	3	.073	5	.399	3
102			min	-42.293	1	-179.286	3	-78.802	4	016	2	075	1	678	2
103		14	max	-3.163	12	244.36	2	1.064	3	.011	3	.017	5	.521	3
104			min	-46.659	4	-94.585	3	-68.092	4	016	2	112	1	978	2
105		15	max	-3.163	12	58.597	2	16.229	1	.011	3	004	12	.567	3
106			min	-57.148	4	-9.884	3	-60.145	5	016	2	114	1	-1.113	2
107		16	max	-3.163	12	74.817	3	54.508	1	.011	3	002	12	.538	3
108			min	-67.637	4	-127.166	2	-57.758	5	016	2	109	4	-1.082	2
109		17	max	-3.163	12	159.518	3	92.788	1	.011	3	.004	3	.434	3
110			min	-78.127	4	-312.928	2	-55.371	5	016	2	146	4	887	2
111		18	max	-3.163	12	244.218	3	131.067	1	.011	3	.082	1	.255	3
112			min	-88.616	4	-498.691	2	-52.984	5	016	2	189	5	526	2
113		19	max	-3.163	12	328.919	3	169.346	1	.011	3	.216	1	0	2
114			min	-99.105	4	-684.454	2	-50.597	5	016	2	235	5	0	5
115	M16	1	max	77.924	5	618.918	2	-7.797	12	.01	1	.223	4	0	2
116	IVITO		min	-71.958	1	-275.243		-163.027	1	013	3	.012	12	0	3
117		2	max		5	433.155	2	-6.229	12	.01	1	.15	4	.207	3
118			min	-71.958	1	-190.542	3	-124.748	1	013	3	.004	10	468	2
		2							-			.004			
119		3	max	56.945	5	247.393	2	-4.66	12	.01	3		<u>5</u>	.339	2
120		4	min	-71.958	1	-105.841	3	-86.469	-	013		04		77	
121		4	max	46.456	5	61.63	2	-3.092	12	.01	1	.055	5	.395	3
122			min	<u>-71.958</u>	1	-21.14	3	-54.507	4	013	3	1	1	907	2
123		5	max	35.967	5	63.56	3	308	10	.01	1	.018	5	.376	3
124			min	-71.958	1	-124.133	2	-43.797	4	013	3	126	1	88	2
125		6	max	25.477	5	148.261	3	28.369	1	.01	1	006	12	.282	3
126			min	-71.958	1	-309.895	2	-38.454	5	013	3	118	1	687	2
127		7	max		5	232.962	3	66.648	1	.01	1	005	12	.113	3
128			min	-71.958	1	-495.658	2	-36.067	5	013	3	075	1	329	2
129		8	max	4.499	5	317.663	3	104.927	1	.01	1	.003	2	.194	2
130			min	-71.958	1	-681.421	2	-33.68	5	013	3	083	4	132	3
131		9	max	-3.977	15	402.364	3	143.206	1	.01	1	.111	1	.883	2
132			min		1	-867.184		-31.293	5	013	3	111	5	452	3
									_		_		_		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

100	Member	Sec		Axial[lb]		y Shear[lb]							l .		
133		10	max	-4.671	12	1052.946	2	-6.318	12	.013	3	.256	1	1.736	2
134		4.4	min	-71.958	1_	-487.064	3	-181.485	1	01	1_	.006	12	847	3
135		11	max	-1.87	<u>15</u>	867.184	2	-4.75	12	.013	3	.15	4	.883	2
136		40	min	-71.958	1_	-402.364	3	-143.206	1	01	1	0	3	452	3
137		12	max	-4.671	12	681.421	2	-3.181	12	.013	3	.083	4	.194	2
138		10	min	-71.958	1_	-317.663	3	-104.927	1	01	1	004	3	132	3
139		13	max	-4.671	12	495.658	2	-1.613	12	.013	3	.041	5	.113	3
140			min	-71.958	1_	-232.962	3	-66.648	1	01	1	075	1_	329	2
141		14	max	-4.671	12	309.895	2	.111	3	.013	3	.003	5	.282	3
142			min	-71.958	1_	-148.261	3	-48.568	4	01	1	118	1	687	2
143		15	max	-4.671	12	124.133	2	9.91	1	.013	3	005	12	.376	3
144		1.0	min	-71.958	1_	-63.56	3	-39.533	5	01	1	126	1	88	2
145		16	max	-4.671	12	21.14	3	48.189	1	.013	3	003	12	.395	3
146			min	-72.115	4	-61.63	2	-37.146	5	01	1_	1	1	907	2
147		17	max	-4.671	12	105.841	3	86.469	1	.013	3_	.001	3	.339	3
148			min	-82.604	4	-247.393	2	-34.759	5	01	1_	109	4	77	2
149		18	max	-4.671	12	190.542	3	124.748	1	.013	3	.054	1	.207	3
150			min	-93.094	4	-433.155	2	-32.372	5	01	1_	129	5	468	2
151		19	max		12	275.243	3	163.027	1_	.013	3	.182	1_	0	2
152			min	-103.583	4	-618.918	2	-29.985	5	01	1_	157	5	0	5
153	M2	1	max		2	2.07	4	.51	1	0	3	0	3	0	1
154			min	-1394.536	3	.506	15	-36.684	4	0	4	0	1	0	1
155		2	max	1068.708	2	2.032	4	.51	1	0	3	0	1_	0	15
156			min	-1394.18	3	.497	15	-37.095	4	0	4	012	4	0	4
157		3	max	1069.182	2	1.995	4	.51	1	0	3	0	1	0	15
158			min	-1393.825	3	.489	15	-37.507	4	0	4	024	4	001	4
159		4	max	1069.656	2	1.958	4	.51	1	0	3	0	1	0	15
160			min	-1393.47	3	.48	15	-37.918	4	0	4	036	4	002	4
161		5	max	1070.13	2	1.921	4	.51	1	0	3	0	1	0	15
162			min	-1393.115	3	.471	15	-38.329	4	0	4	048	4	003	4
163		6	max	1070.603	2	1.884	4	.51	1	0	3	0	1	0	15
164			min	-1392.759	3	.462	15	-38.741	4	0	4	06	4	003	4
165		7	max	1071.077	2	1.847	4	.51	1	0	3	0	1	0	15
166			min	-1392.404	3	.454	15	-39.152	4	0	4	073	4	004	4
167		8	max	1071.551	2	1.81	4	.51	1	0	3	.001	1	001	15
168			min	-1392.049	3	.445	15	-39.563	4	0	4	085	4	004	4
169		9	max	1072.025	2	1.773	4	.51	1	0	3	.001	1	001	15
170			min	-1391.693	3	.436	15	-39.975	4	0	4	098	4	005	4
171		10	max	1072.498	2	1.736	4	.51	1	0	3	.001	1	001	15
172				-1391.338	3	.428	15	-40.386	4	0	4	111	4	005	4
173		11		1072.972	2	1.699	4	.51	1	0	3	.002	1	001	15
174				-1390.983	3	.419	15	-40.797	4	0	4	124	4	006	4
175		12		1073.446	2	1.662	4	.51	1	0	3	.002	1	002	15
176				-1390.627	3	.41	15	-41.209	4	0	4	137	4	007	4
177		13		1073.919	2	1.625	4	.51	1	0	3	.002	1	002	15
178		1.0		-1390.272	3	.401	15	-41.62	4	0	4	15	4	007	4
179		14		1074.393	2	1.588	4	.51	1	0	3	.002	1	002	15
180				-1389.917	3	.393	15	-42.031	4	0	4	164	4	008	4
181		15		1074.867	2	1.551	4	.51	1	0	3	.002	1	002	15
182		10		-1389.562	3	.384	15	-42.443	4	0	4	177	4	002	4
183		16		1075.341	2	1.514	4	.51	1	0	3	.002	1	002	15
184		10		-1389.206	3	.372	12	-42.854	4	0	4	191	4	002	4
185		17		1075.814	2	1.477	4	.51	1	0	3	.003	1	009	15
186		17		-1388.851	3	.358	12	-43.265	4	0	4	205	4	002	4
187		18		1076.288	2	1.44	4	.51	1	_	3	.003	1	009	15
188		10		-1388.496	3		12	-43.677	4	0	<u>3</u>				4
		10				.343						219	4	01	_
189		19	шах	1076.762	2	1.403	4	.51	1	0	3	.003	1	002	15

Model Name

Schletter, Inc. HCV

.
: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
190			min	-1388.14	3	.329	12	-44.088	4	0	4	233	4	01	4
191	M3	1	max	663.645	2	9.024	4	.233	1	0	12	0	1	.01	4
192			min	-807.796	3	2.135	15	621	5	0	4	015	4	.002	15
193		2	max	663.475	2	8.152	4	.233	1	0	12	0	1	.006	4
194			min	-807.923	3	1.93	15	014	15	0	4	015	4	.001	12
195		3	max	663.305	2	7.28	4	.705	4	0	12	0	1_	.003	2
196			min	-808.051	3	1.725	15	.015	12	0	4	014	4	0	3
197		4	max	663.134	2	6.408	4	1.312	4	0	12	0	1	0	2
198			min	-808.179	3	1.52	15	.015	12	0	4	014	4	002	3
199		5	max	662.964	2	5.536	4	1.919	4	0	12	0	1_	0	15
200			min	-808.307	3	1.315	15	.015	12	0	4	013	5	004	3
201		6	max		2	4.664	4	2.527	4	0	12	00	1_	001	15
202			min	-808.434	3_	1.11	15	.015	12	0	4	012	5	006	6
203		7	max		2	3.792	4	3.134	4	0	12	0	1	002	15
204		_	min	-808.562	3	.905	15	.015	12	0	4	011	5	008	6
205		8	max	662.453	2	2.92	4	3.741	4	0	12	0	1	002	15
206		_	min	-808.69	3	.7	15	.015	12	0	4	009	5	01	6
207		9	max	662.283	2	2.048	4	4.348	4	0	12	.001	1	003	15
208			min	-808.818	3	.495	15	.015	12	0	4	008	5	011	6
209		10	max	662.112	2	1.176	4	4.955	4	0	12	.001	1_	003	15
210			min	-808.945	3	.29	15	.015	12	0	4	005	5	012	6
211		11	max		2	.377	2	5.562	4	0	12	.001	1	003	15
212			min	-809.073	3_	066	3	.015	12	0	4	003	5	012	6
213		12	max		2	12	15	6.169	4	0	12	.001	1	003	15
214			min	-809.201	3	576	3	.015	12	0	4	0	5	012	6
215		13	max	661.601	2	325	15	6.776	4	0	12	.003	4	003	15
216			min	-809.329	3_	-1.441	6	.015	12	0	4	0	12	011	6
217		14	max	661.431	2	53	15	7.384	4	0	12	.007	4	002	15
218			min	-809.456	3_	-2.313	6	.015	12	0	4	0	12	011	6
219		15	max	661.261	2	735	15	7.991	4	0	12	.01	4	002	15
220		1.0	min	-809.584	3	-3.185	6	.015	12	0	4	0	12	009	6
221		16	max	661.09	2	94	15	8.598	4	0	12	.014	4	002	15
222			min	-809.712	3	-4.057	6	.015	12	0	4	0	12	008	6
223		17	max	660.92	2	-1.145	15	9.205	4	0	12	.018	4	001	15
224		4.0	min	-809.84	3	-4.929	6	.015	12	0	4	0	12	005	6
225		18	max	660.75	2	-1.35	15	9.812	4	0	12	.023	4	0	15
226		10	min	-809.968	3	-5.801	6	.015	12	0	4	0	12	003	6
227		19	max	660.579	2	-1.555	15	10.419	4	0	12	.028	4	0	1
228	N44		min	-810.095	3	-6.673	6	.015	12	0	4	0	12	0	1
229	<u>M4</u>	1		1082.325	1	0	1	699	12	0	1	.019	4	0	1
230		2	min		3	0	1	-262.71	4	0	1	0	12	0	1
231		2		1082.495	<u>1</u>	0	1	699 -262.858	12	0	1	0	1	0	1
232		2		-128.782	3	0	•			0		011	12	0	
233 234		3		1082.666 -128.654	1	0	1	699 -263.006	12	0	1	0		0	1
235		4	min		<u>3</u> 1	0	1	699	12	0	1	041 0	12	0	1
		4		1082.836			-					071			
236 237		5		-128.527 1083.006	<u>3</u> 1	0	1	-263.153 699	12	0	1	<u>071</u> 0	12	0	1
		3				0	1	-263.301	4	0	1	102	4	0	1
238 239		6	min	-128.399 1083.177	<u>3</u> 1	0	1	699	12	0	1	102 0	12	0	1
240		0		-128.271	3	0	1	-263.448		0	1	132	4	0	1
241		7		1083.347	<u> </u>		1	699	12		1	132 0	12		1
241		-		-128.143		0	1	-263.596		0	1	162	4	0	1
242		8			<u>3</u> 1	0	1	699	12	0	1	<u>162</u> 0	12	0	1
243		-		1083.517 -128.016		0	1			0	1			0	1
244		9		1083.688	<u>3</u> 1	0	1	- <u>.699</u>	12		1	192 0	12	0	1
245		9					1			0	1	223		0	1
240			THIII	-127.888	J	0		-263.891	4	U		223	4	U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

247	0.47	Member	Sec		Axial[lb]						Torque[k-ft]		1 -			
259			10								_				_	_
250			4.4													
251			11													
252			10								_	•				
253			12									<u> </u>				_
2554			12					•		_		•			_	-
255			13													_
256			11				-									
257			14								_					
258			15								_				_	_
259			10									<u> </u>				_
260			16													
261			10					_			_					_
262			17				_				_					
263			17									<u> </u>				_
264			10					•		_		•			_	-
265			10													_
266			10				-									
268			13								_					
268		M6	1				_	_		_	_			_	_	_
269		IVIO								_						_
270			2													
271											_					
Page 272			2								_					
273									_							
274			1	_										_		
275			_													
276			5													
277									•		_		_			
278			6								_	•				
279										_		<u> </u>			_	
280			7											_		_
281 8 max min 3273.269 / 4385.225 2 2.184 2 0 1 0 1 0 4086 / 4005 2 2 283 9 max 3273.742 2 2.155 2 0 1 0 1 0 1 0 3 284 min -4384.87 3011 3 -40.379 4 0 4099 4006 2 285 10 max 3274.216 2 2.126 2 0 1 0 1 0 1 0 1 0 1 0 3 286 min -4384.515 3033 3 -40.79 4 0 4112 4006 2 287 11 max 3274.69 2 2.097 2 0 1 0 1 0 1 0 1 0 1 0 3 288 min -4384.159 3054 3 -41.201 4 0 4125 4007 2 289 12 max 3275.164 2 2.069 2 0 1 0 1 0 1 0 1 0 3 3 290 min -4383.804 3097 3 -41.613 4 0 4138 4008 2 291 13 max 3275.637 2 2.04 2 0 1 0 1 0 1 0 1 0 1 0											_			_		
282 min -4385.225 3 .011 3 -39.967 4 0 4 086 4 005 2 283 9 max 3273.742 2 2.155 2 0 1 0 1 0 1 0 1 0 1 0 1 0 3 3 284 min -4384.87 3 011 3 -40.379 4 0 4 099 4 006 2 285 10 max 3274.216 2 2.126 2 0 1 0 1 0 3 286 min -4384.515 3 033 3 -40.79 4 0 4 112 4 006 2 287 11 max 3274.69 2 2.097 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0			8								_					
283 9 max 3273.742 2 2.155 2 0 1 0 1 0 1 0 3 284 min -4384.87 3 011 3 -40.379 4 0 4 099 4 006 2 285 10 max 3274.216 2 2.126 2 0 1 0 1 0 1 0 1 0 3 286 min -4384.515 3 033 3 -40.79 4 0 4 112 4 006 2 287 11 max 3274.69 2 2.097 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1									_	_		<u> </u>	_			
Mathematical Property of the Content of the Conte			q	_										_		
285																
286 min -4384.515 3 033 3 -40.79 4 0 4 112 4 006 2 287 11 max 3274.69 2 2.097 2 0 1 0 1 0 1 0 3 288 min -4384.159 3 054 3 -41.201 4 0 4 125 4 007 2 289 12 max 3275.164 2 2.069 2 0 1 0 1 0 1 0 3 007 2 290 min -4383.804 3 076 3 -41.613 4 0 4 138 4 008 2 291 13 max 3275.637 2 2.04 2 0 1 0 1 0 1 0 3 292 1 0 1 0 1			10							-						
287 11 max 3274.69 2 2.097 2 0 1 0 1 0 1 0 3 288 min -4384.159 3 054 3 -41.201 4 0 4 125 4 007 2 289 12 max 3275.164 2 2.069 2 0 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>										4	_					
288 min -4384.159 3 054 3 -41.201 4 0 4 125 4 007 2 289 12 max 3275.164 2 2.069 2 0 1 0 1 0 1 0 1 0 3 290 min -4383.804 3 076 3 -41.613 4 0 4 138 4 008 2 291 13 max 3275.637 2 2.04 2 0 1 0 1 0 1 0 3 292 min -4383.449 3 097 3 -42.024 4 0 4 152 4 008 2 293 14 max 3276.111 2 2.011 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 <td></td> <td></td> <td>11</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>			11			_					_					
289 12 max 3275.164 2 2.069 2 0 1 0 1 0 1 0 3 290 min -4383.804 3 076 3 -41.613 4 0 4 138 4 008 2 291 13 max 3275.637 2 2.04 2 0 1 0 1 0 1 0 1 0 1 0 3 097 3 -42.024 4 0 4 152 4 008 2 2 9 1 0 1																
290 min -4383.804 3 076 3 -41.613 4 0 4 138 4 008 2 291 13 max 3275.637 2 2.04 2 0 1 0 1 0 1 0 3 292 min -4383.449 3 097 3 -42.024 4 0 4 152 4 008 2 293 14 max 3276.111 2 2.011 2 0 1 0 1 0 1 0 3 294 min -4383.093 3 119 3 -42.435 4 0 4 165 4 009 2 295 15 max 3276.585 2 1.982 2 0 1 0 1 0 1 0 3 296 min -4382.738 3 141 3			12													_
291 13 max 3275.637 2 2.04 2 0 1 0 1 0 1 0 3 292 min -4383.449 3 097 3 -42.024 4 0 4 152 4 008 2 293 14 max 3276.111 2 2.011 2 0 1 0 1 0 1 0 3 294 min -4383.093 3 119 3 -42.435 4 0 4 165 4 009 2 295 15 max 3276.585 2 1.982 2 0 1 0 1 0 1 0 3 296 min -4382.738 3 141 3 -42.847 4 0 4 179 4 01 2 297 16 max 3277.059 2 1.953 2 0 1 0 1 0 3 01 2																
292 min -4383.449 3 097 3 -42.024 4 0 4 152 4 008 2 293 14 max 3276.111 2 2.011 2 0 1 0 1 0 1 0 3 294 min -4383.093 3 119 3 -42.435 4 0 4 165 4 009 2 295 15 max 3276.585 2 1.982 2 0 1 0 1 0 1 0 1 0 3 296 min -4382.738 3 141 3 -42.847 4 0 4 179 4 01 2 297 16 max 3277.059 2 1.953 2 0 1 0 1 0 1 0 3 298 min -4382.383 3			13								_	_				
293 14 max 3276.111 2 2.011 2 0 1 0 1 0 1 0 1 0 3 294 min -4383.093 3 119 3 -42.435 4 0 4 165 4 009 2 295 15 max 3276.585 2 1.982 2 0 1 0 1 0 1 0 3 296 min -4382.738 3 141 3 -42.847 4 0 4 179 4 01 2 297 16 max 3277.059 2 1.953 2 0 1 0 1 0 1 0 3 298 min -4382.383 3 162 3 -43.258 4 0 4 193 4 01 2 299 17 max 3277.532 2 1.924 2 0 1 0 1 0 1 0 3 300 min -4382.027 3 184 3 -43.669 4									-42.024	4				4		
294 min -4383.093 3 119 3 -42.435 4 0 4 165 4 009 2 295 15 max 3276.585 2 1.982 2 0 1 0 1 0 1 0 3 296 min -4382.738 3 141 3 -42.847 4 0 4 179 4 01 2 297 16 max 3277.059 2 1.953 2 0 1 0 1 0 1 0 3 298 min -4382.383 3 162 3 -43.258 4 0 4 193 4 01 2 299 17 max 3277.532 2 1.924 2 0 1 0 1 0 3 300 min -4382.027 3 184 3 -43.669 4 </td <td></td> <td></td> <td>14</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td>			14							1		1		1		
295 15 max 3276.585 2 1.982 2 0 1 0 1 0 1 0 3 296 min -4382.738 3 141 3 -42.847 4 0 4 179 4 01 2 297 16 max 3277.059 2 1.953 2 0 1 0 1 0 1 0 1 0 1 0 3 298 min -4382.383 3 162 3 -43.258 4 0 4 193 4 01 2 299 17 max 3277.532 2 1.924 2 0 1 0 1 0 1 0 3 300 min -4382.027 3 184 3 -43.669 4 0 4 207 4 011 2 301 18 max 3278.006 2 1.895 2 0 1 0 1 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-42.435</td><td>4</td><td></td><td>4</td><td></td><td>4</td><td>009</td><td></td></t<>									-42.435	4		4		4	009	
296 min -4382.738 3 141 3 -42.847 4 0 4 179 4 01 2 297 16 max 3277.059 2 1.953 2 0 1 0 1 0 1 0 3 298 min -4382.383 3 162 3 -43.258 4 0 4 193 4 01 2 299 17 max 3277.532 2 1.924 2 0 1 0 1 0 3 300 min -4382.027 3 184 3 -43.669 4 0 4 207 4 011 2 301 18 max 3278.006 2 1.895 2 0 1 0 1 0 1 0 3 302 min -4381.672 3 206 3 -44.081 4 </td <td></td> <td></td> <td>15</td> <td></td> <td></td> <td>_</td> <td></td>			15			_										
297 16 max 3277.059 2 1.953 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 3 298 min -4382.383 3 162 3 -43.258 4 0 4 193 4 01 2 299 17 max 3277.532 2 1.924 2 0 1 0 1 0 1 0 3 300 min -4382.027 3 184 3 -43.669 4 0 4 207 4 011 2 301 18 max 3278.006 2 1.895 2 0 1 0 1 0 1 0 3 302 min -4381.672 3 206 3 -44.081 4 0 4 221 4 012 2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									•							
298 min -4382.383 3 162 3 -43.258 4 0 4 193 4 01 2 299 17 max 3277.532 2 1.924 2 0 1 0 1 0 1 0 3 300 min -4382.027 3 184 3 -43.669 4 0 4 207 4 011 2 301 18 max 3278.006 2 1.895 2 0 1 0 1 0 3 302 min -4381.672 3 206 3 -44.081 4 0 4 221 4 012 2			16			_										
299 17 max 3277.532 2 1.924 2 0 1 0 1 0 1 0 3 300 min -4382.027 3184 3 -43.669 4 0 4207 4011 2 301 18 max 3278.006 2 1.895 2 0 1 0 1 0 1 0 3 302 min -4381.672 3206 3 -44.081 4 0 4221 4012 2									_			<u> </u>		_		
300 min -4382.027 3 184 3 -43.669 4 0 4 207 4 011 2 301 18 max 3278.006 2 1.895 2 0 1 0 1 0 1 0 3 302 min -4381.672 3 206 3 -44.081 4 0 4 221 4 012 2			17													
301														_		
302 min -4381.672 3206 3 -44.081 4 0 4221 4012 2			18								_					
			19											_		

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

004	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]					LC
304	N 4 7	4	min	-4381.317	3	227	3	-44.492	4	0	4_	235	4	012	2
305	<u>M7</u>	1		2279.285 -2433.109	2	9.023	6	0	1	0	1_1	0	1	.012	2
306		2	min		3	2.118	15	891	5	0	4	015	1	0	3
307		2		2279.115 -2433.236	2	8.151	6 1E	0	1	0	1_4	0		.009	2
308		2	min		3	1.913 7.279	15	284	5	0	<u>4</u> 1	015	1	002	3
309		3		2278.944 -2433.364	2		6 15	.379	<u>4</u> 1	0	4	0	_	.006	3
310		4	min		3	1.709		0		0	_ 4 _	015 0	1	004	_
311		4		2278.774 -2433.492	3	6.407	6 15	.986	<u>4</u> 1	0	4	_	4	.003	3
312			min			1.504		•		-	_ 4 _	015 0		006 0	
313		5		2278.604 -2433.62	3	5.535 1.299	6 15	1.593	4	0	4	014	4	007	3
315		6	_	2278.433	2	4.663	6	2.2	4	0	1	014	1	007	15
316		0	min	-2433.747	3	1.094	15	0	1	0	4	013	4	008	3
317		7		2278.263	2	3.791	6	2.807	4	0	1	013	1	002	15
318			min	-2433.875	3	.889	15	0	1	0	4	012	4	002	3
319		8		2278.093	2	2.919	6	3.414	4	0	1	0	1	009	15
320		0	min	-2434.003	3	.684	15	0	1	0	4	01	4	002	4
321		9	_	2277.922	2	2.12	2	4.021	4	0	1	0	1	003	15
322		9	min	-2434.131	3	.371	12	0	1	0	4	009	4	011	4
323		10		2277.752	2	1.441	2	4.629	4	0	1	0	1	003	15
324		10	min	-2434.258	3	022	3	0	1	0	4	007	4	012	4
325		11		2277.581	2	.761	2	5.236	4	0	1	0	1	003	15
326			min	-2434.386	3	532	3	0.230	1	0	4	004	5	012	4
327		12		2277.411	2	.082	2	5.843	4	0	1	0	1	003	15
328		12	min	-2434.514	3	-1.041	3	0	1	0	4	002	5	012	4
329		13		2277.241	2	341	15	6.45	4	0	1	.001	4	003	15
330		13	min	-2434.642	3	-1.551	3	0.43	1	0	4	0	1	011	4
331		14	max		2	546	15	7.057	4	0	1	.004	4	002	15
332		17	min	-2434.769	3	-2.313	4	0	1	0	4	0	1	011	4
333		15	max	2276.9	2	751	15	7.664	4	0	1	.008	4	002	15
334		10	min	-2434.897	3	-3.185	4	0	1	0	4	0	1	009	4
335		16	max	2276.73	2	956	15	8.271	4	0	1	.012	4	002	15
336		10	min	-2435.025	3	-4.057	4	0.271	1	0	4	0	1	008	4
337		17		2276.559	2	-1.161	15	8.878	4	0	1	.016	4	001	15
338		- '	min	-2435.153	3	-4.929	4	0.070	1	0	4	0	1	005	4
339		18		2276.389	2	-1.366	15	9.485	4	0	1	.02	4	0	15
340			min	-2435.28	3	-5.801	4	0	1	0	4	0	1	003	4
341		19		2276.219	2	-1.571	15	10.093	4	0	1	.025	4	0	1
342				-2435.408	3	-6.673	4	0	1	0	4	0	1	0	1
343	M8	1		2908.672	1	0	1	0	1	0	1	.017	4	0	1
344				-481.239	3	0	1	-252.147	4	0	1	0	1	0	1
345		2		2908.842	1	0	1	0	1	0	1	0	1	0	1
346				-481.111	3	0	1	-252.295	4	0	1	012	4	0	1
347		3	max	2909.013	1	0	1	0	1	0	1	0	1	0	1
348				-480.983	3	0	1	-252.443	4	0	1	041	4	0	1
349		4		2909.183	1	0	1	0	1	0	1	0	1	0	1
350				-480.856	3	0	1	-252.59	4	0	1	07	4	0	1
351		5		2909.353	1	0	1	0	1	0	1	0	1	0	1
352				-480.728	3	0	1	-252.738	4	0	1	099	4	0	1
353		6		2909.524	1	0	1	0	1	0	1	0	1	0	1
354				-480.6	3	0	1	-252.885	4	0	1	128	4	0	1
355		7		2909.694	1	0	1	0	1	0	1	0	1	0	1
356				-480.472	3	0	1	-253.033	4	0	1	157	4	0	1
357		8		2909.864	1	0	1	0	1	0	1	0	1	0	1
358				-480.344	3	0	1	-253.181	4	0	1	186	4	0	1
359		9		2910.035	1	0	1	0	1	0	1	0	1	0	1
360				-480.217	3	0	1	-253.328	4	0	1	215	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	TOPC MICHIE		,000		<u> </u>		<u>., </u>								
	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
361		10	max	2910.205	1	0	1	0	1	0	1	0	1	0	1 1
362				-480.089	3	0	1	-253.476	4	0	1	244	4	0	1
363		11		2910.375	1	0	1	0	1	0	1	0	1	0	1
364				-479.961	3	0	1	-253.624	4	0	1	273	4	0	1
365		12		2910.546	1	0	1	0	1	0	1	0	1	0	1
366		12			3	0	1	-253.771	4	0	1	302	4	0	1
		40		-479.833			_			_					_
367		13		2910.716	1_	0	1	0	1	0	1	0	1	0	1
368			_	-479.706	3	0	1_	-253.919	4	0	1_	332	4	0	1
369		14		2910.886	_1_	0	1	0	_1_	0	_1_	0	1_	0	1
370			min	-479.578	3	0	1	-254.067	4	0	1	361	4	0	1
371		15	max	2911.057	1_	0	1	0	1_	0	1	0	1	0	1
372			min	-479.45	3	0	1	-254.214	4	0	1	39	4	0	1
373		16	max	2911.227	1	0	1	0	1	0	1	0	1	0	1
374			min	-479.322	3	0	1	-254.362	4	0	1	419	4	0	1
375		17		2911.397	1	0	1	0	1	0	1	0	1	0	1
376				-479.195	3	0	1	-254.509	4	0	1	448	4	Ö	1
377		18		2911.568	1	0	1	0	1	0	1	0	1	0	1
378		10		-479.067	3	0	1	-254.657	4	0	1	478	4	0	1
		40					-		_ 4 _	1	1	i	1	<u> </u>	
379		19		2911.738	1_	0	1_	0		0	<u> </u>	0		0	1
380	1440		min	-478.939	3	0	1	-254.805	4_	0	1	507	4	0	1
381	M10	1		1068.235	2	1.98	6	036	12	0	1_	0	4	0	1
382				-1394.536	3	.446	15	-36.975	4	0	5	0	3	0	1
383		2	max	1068.708	2	1.943	6	036	12	0	<u>1</u>	0	10	0	15
384			min	-1394.18	3	.437	15	-37.386	4	0	5	012	4	0	6
385		3	max	1069.182	2	1.906	6	036	12	0	1	0	10	0	15
386			min	-1393.825	3	.429	15	-37.797	4	0	5	024	4	001	6
387		4	max	1069.656	2	1.869	6	036	12	0	1	0	10	0	15
388				-1393.47	3	.42	15	-38.209	4	0	5	036	4	002	6
389		5	max		2	1.832	6	036	12	0	1	0	12	0	15
390			min	-1393.115	3	.411	15	-38.62	4	0	5	048	4	002	6
391		6		1070.603	2	1.795	6	036	12	0	1	0	12	0	15
		O		-1392.759			_								
392					3	.402	15	-39.031	4	0	5	061	4	003	6
393		7		1071.077	2	1.758	6	036	12	0	_1_	0	12	0	15
394				-1392.404	3	.394	15	-39.443	4	0	5	073	4	004	6
395		8		1071.551	2_	1.721	6	036	12	0	_1_	0	12	0	15
396				-1392.049	3	.385	15	-39.854	4	0	5	086	4	004	6
397		9	max	1072.025	2	1.684	6	036	12	0	1	0	12	001	15
398			min	-1391.693	3	.376	15	-40.265	4	0	5	099	4	005	6
399		10	max	1072.498	2	1.647	6	036	12	0	1	0	12	001	15
400				-1391.338	3	.368	15	-40.677	4	0	5	112	4	005	6
401		11		1072.972	2	1.61	6	036	12	0	1	0	12	001	15
402				-1390.983	3	.359	15	-41.088	4	0	5	125	4	006	6
403		12		1073.446	2	1.573	6	036	12	0	<u> </u>	0	12	001	15
404		14		-1390.627		.35	15	-41.499	4	0	5	138		006	6
		10			3								4		
405		13		1073.919	2	1.536	6	036	12	0	1	0	12	002	15
406				-1390.272	3	.341	15	-41.911	4	0	5	151	4	007	6
407		14		1074.393	2	1.499	6	036	12	0	1_	0	12	002	15
408			_	-1389.917	3	.333	15	-42.322	4_	0	5	165	4	007	6
409		15		1074.867	2	1.462	6	036	12	0	1	0	12	002	15
410			min	-1389.562	3	.324	15	-42.733	4	0	5	178	4	008	6
411		16	max	1075.341	2	1.425	6	036	12	0	1	0	12	002	15
412				-1389.206	3	.315	15	-43.145	4	0	5	192	4	008	6
413		17		1075.814	2	1.388	6	036	12	0	1	0	12	002	15
414				-1388.851	3	.307	15	-43.556	4	0	5	206	4	009	6
415		18		1076.288	2	1.351	6	036	12	0	1	0	12	003	15
416		10		-1388.496	3	.298	15	-43.967	4	0	5	22	4	002	6
417		19			2					0	<u> </u>		12		
41/		19	ппах	1076.762		1.314	6	036	12	U		0	<u> </u>	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

440	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]				z-z Mome	LC
418	N444	4		-1388.14	3	.289	15	-44.379	4	0	5_	234	4	009	6
419	M11	1_	max	663.645	2	8.964	6	015	12	0	1_	0	12	.009	6
420		2	min	-807.796	3	2.094	15	65	5	0	4	015	4	.002	15
421		2	max	663.475	2	8.092	6	015	12	0	1_4	0	12	.006	2
422		2	min	-807.923	3	1.889	15	233	1_4	0	<u>4</u> 1	015	12	.001	12
423		3	max	663.305	2	7.22	6 1E	.574	4_	0		0		.003	2
424		4	min	-808.051	3_	1.684	15	233	1_	0	4	015	4	0	3
425		4	max	663.134	2	6.348	6	1.181	4	0	1_	0	12	0	2
426		_	min	-808.179	3	1.479	15	233	1_	0	4	014	4	002	3
427		5	max	662.964	2	5.476	6	1.788	4	0	1_	0	12	001	15
428			min	-808.307	3	1.274	15	233	1_	0	4	014	4	004	4
429		6	max	662.794	2	4.604	6	2.395	4_	0	1	0	12	002	15
430		_	min	-808.434	3	1.069	15	233	1_	0	4	013	4	007	4
431		7	max	662.623	2	3.732	6	3.002	4_	0	1_	0	12	002	15
432			min	-808.562	3	.864	15	233	1_	0	4_	011	4	009	4
433		8	max	662.453	2	2.86	6	3.609	4_	0	1	0	12	002	15
434			min	-808.69	3	.659	15	233	_1_	0	4	01	4	01	4
435		9	max	662.283	2	1.988	6	4.216	_4_	0	1_	0	12	003	15
436			min	-808.818	3	.454	15	233	1_	0	4	008	4	011	4
437		10	max	662.112	2	1.116	6	4.823	_4_	0	_1_	0	12	003	15
438			min	-808.945	3	.249	15	233	1_	0	4	006	4	012	4
439		11	max	661.942	2	.377	2	5.43	_4_	0	1_	0	12	003	15
440			min	-809.073	3	066	3	233	<u>1</u>	0	4_	003	4	012	4
441		12	max	661.772	2	161	15	6.038	4	0	1_	0	12	003	15
442			min	-809.201	3	629	4	233	1_	0	4	001	1	012	4
443		13	max	661.601	2	366	15	6.645	4_	0	_1_	.003	5	003	15
444			min	-809.329	3	-1.501	4	233	1_	0	4	002	1	012	4
445		14	max	661.431	2	571	15	7.252	4	0	1_	.006	5	003	15
446			min	-809.456	3	-2.373	4	233	1	0	4	002	1	011	4
447		15	max	661.261	2	776	15	7.859	4	0	1	.009	5	002	15
448			min	-809.584	3	-3.245	4	233	1	0	4	002	1	009	4
449		16	max	661.09	2	981	15	8.466	4	0	1	.013	5	002	15
450			min	-809.712	3	-4.117	4	233	1	0	4	002	1	008	4
451		17	max	660.92	2	-1.186	15	9.073	4	0	1	.017	5	001	15
452			min	-809.84	3	-4.989	4	233	1	0	4	002	1	006	4
453		18	max	660.75	2	-1.391	15	9.68	4	0	1	.022	5	0	15
454			min	-809.968	3	-5.861	4	233	1	0	4	002	1	003	4
455		19	max	660.579	2	-1.596	15	10.287	4	0	1	.027	5	0	1
456			min	-810.095	3	-6.733	4	233	1	0	4	002	1	0	1
457	M12	1	max	1082.325	1	0	1	11.074	1	0	1	.018	5	0	1
458			min	-128.91	3	0	1	-256.38	4	0	1	001	1	0	1
459		2	max	1082.495	1	0	1	11.074	1	0	1	0	10	0	1
460			min	-128.782	3	0	1	-256.528	4	0	1	011	4	0	1
461		3	max	1082.666	1	0	1	11.074	1	0	1	.001	1	0	1
462			min	-128.654	3	0	1	-256.676	4	0	1	041	4	0	1
463		4		1082.836	1	0	1	11.074	1	0	1	.002	1	0	1
464				-128.527	3	0	1	-256.823	4	0	1	07	4	0	1
465		5		1083.006	1	0	1	11.074	1	0	1	.004	1	0	1
466				-128.399	3	0	1	-256.971	4	0	1	1	4	0	1
467		6		1083.177	1	0	1	11.074	1	0	1	.005	1	0	1
468				-128.271	3	0	1	-257.119		0	1	129	4	0	1
469		7		1083.347	1	0	1	11.074	1	0	1	.006	1	0	1
470				-128.143	3	0	1	-257.266		0	1	159	4	0	1
471		8		1083.517	1	0	1	11.074	1	0	1	.007	1	0	1
472				-128.016	3	0	1	-257.414	4	0	1	188	4	0	1
473		9		1083.688	1	0	1	11.074	1	0	1	.009	1	0	1
474				-127.888	3	0	1	-257.561	4	0	1	218	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	HOPE MICHIE			<u> </u>											
	Member	Sec	1	Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1083.858	_1_	0	1	11.074	1	0	1	.01	1	0	1
476			min	-127.76	3	0	1	-257.709	4	0	1	247	4	0	1
477		11	max	1084.028	1	0	1	11.074	1	0	1	.011	1	0	1
478				-127.632	3	0	1	-257.857	4	0	1	277	4	0	1
479		12		1084.199	1	0	1	11.074	1	0	1	.012	1	0	1
480		12		-127.505	3	0	1	-258.004	4	0	1	307	4	0	1
481		13		1084.369	1	0	1	11.074	1	0	1	.014	1	0	1
482		13			3		1		4		1		4	0	1
		4.4		-127.377		0	•	-258.152		0		336			
483		14		1084.539	1_	0	1_	11.074	1	0	1	.015	1	0	1
484		4.5		-127.249	3	0	1_	-258.3	4_	0	1	366	4	0	1
485		15		1084.71	_1_	0	_1_	11.074	1	0	1	.016	1	0	1
486				-127.121	3	0	_1_	-258.447	4	0	1_	396	4	0	1
487		16		1084.88	_1_	0	_1_	11.074	_1_	0	_1_	.018	1_	0	1
488				-126.994	3	0	1_	-258.595	4	0	1	425	4	0	1
489		17		1085.051	<u>1</u>	0	_1_	11.074	_1_	0	_1_	.019	1_	0	1_
490			min	-126.866	3	0	1_	-258.743	4	0	1	455	4	0	1
491		18	max	1085.221	1	0	1	11.074	1	0	1	.02	1	0	1
492			min	-126.738	3	0	1	-258.89	4	0	1	485	4	0	1
493		19	max	1085.391	1	0	1	11.074	1	0	1	.021	1	0	1
494			min	-126.61	3	0	1	-259.038	4	0	1	514	4	0	1
495	M1	1		162.468	1	743.618	3	47.239	5	Ö	1	.179	1	0	15
496	IVII		min	-17.615	5	-433.067	2	-64.016	1	0	3	105	5	015	2
497		2	max	163.18	1	742.473	3	48.699	5	0	1	.139	1	.256	1
498			min	-17.283	5	-434.594	2	-64.016	1	0	3	076	5	466	3
		2							•	-		076			
499		3	max		3	552.411	2	14.409	5_	0	3_	0.45	1	.514	1
500		_		-324.539	2	-560.908	3	-63.684	1_	0	2	045	5	912	3
501		4		526.097	3	550.884	2	15.869	5	0	3	.06	1_	.187	1
502				-323.827	2	-562.053	3	-63.684	_1_	0	2	036	5	563	3
503		5	max	526.631	3_	549.357	2	17.329	5	0	3	.021	1	005	15
504			min	-323.115	2	-563.198	3	-63.684	1_	0	2	026	5	214	3
505		6	max	527.165	3	547.83	2	18.789	5	0	3	001	12	.136	3
506			min	-322.403	2	-564.344	3	-63.684	1	0	2	019	1	51	2
507		7	max	527.699	3	546.303	2	20.249	5	0	3	002	15	.486	3
508			min	-321.691	2	-565.489	3	-63.684	1	0	2	058	1	85	2
509		8	max		3	544.776	2	21.709	5	0	3	.011	5	.838	3
510				-320.979	2	-566.634	3	-63.684	1	0	2	098	1	-1.188	2
511		9		541.818	3	45.683	2	55.451	5	0	9	.063	1	.978	3
512				-253.335	2	.458	15	-103.768	1	0	3	132	5	-1.357	2
513		10	max		3	44.156	2	56.911	5	0	9	0	10	.955	3
514		10			2	007	5		1	0	3	098	4	-1.384	2
		11		-252.623		42.629	2	<u>-103.768</u> 58.371		_	9	005	_	.933	
515		11		542.886	3_				5_1	0	3	005	12		3
516		40		-251.911	2	-1.918	4	-103.768	1	0			4	-1.411	2
517		12		556.247	3_	369.15	3	148.52	5_	0	2	.096	1	.816	3
518		4.0		-184.183	2	-640.684	2	-61.5	1_	0	3	237	5	-1.252	2
519		13		556.781	3_	368.005	3	149.98	5	0	2	.058	1_	.588	3
520				-183.471	2	-642.211	2	-61.5	1_	0	3	144	5	853	2
521		14		557.315	3	366.86	3	151.44	5	0	2	.02	1_	.36	3
522				-182.759	2	-643.738	2	-61.5	1_	0	3	051	5	454	2
523		15	max	557.849	3	365.714	3	152.901	5	0	2	.044	5	.132	3
524				-182.047	2	-645.265	2	-61.5	1	0	3	018	1	079	1
525		16		558.383	3	364.569	3	154.361	5	0	2	.139	5	.347	2
526				-181.335	2	-646.792	2	-61.5	1	0	3	056	1	094	3
527		17		558.917	3	363.424	3	155.821	5	0	2	.235	5	.748	2
528		.,		-180.623	2	-648.319	2	-61.5	1	0	3	095	1	32	3
529		18	max		5	621.267	2	-4.672	12	0	5	.211	5	.376	2
530		10		-163.734	1	-274.213	3	-105.068	4	0	2	137	1	157	3
531		10		29.984	5		2		12	0	5	.157	5		3
UUU		ıЭ	шах	29.904	ິນ	619.74		-4.672	12	U	<u>ე</u>	107	_ ວ_	.013	<u> </u>

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
532			min	-163.022	1	-275.358	3	-103.608	4	0	2	182	1	01	1
533	M5	1	max	364.088	1	2460.337	3	86.305	5	0	1	0	1	.029	2
534			min	11.79	12	-1502.367	2	0	1	0	4	215	4	0	15
535		2	max	364.8	1	2459.192	3	87.765	5	0	1	0	1	.962	2
536			min	12.146	12	-1503.894	2	0	1	0	4	161	4	-1.518	3
537		3	max		3	1497.525	2	56.477	4	0	4	0	1	1.863	2
538			min	-1046.712	2	-1662.384	3	0	1	0	1	107	4	-2.998	3
539		4	max		3	1495.998	2	57.937	4	0	4	0	1	.952	1
540			min	-1046	2	-1663.529	3	0	1	0	1	072	4	-1.966	3
541		5	max	1625.9	3	1494.471	2	59.397	4	0	4	0	1	.06	1
542		<u> </u>	min	-1045.288	2	-1664.674	3	0	1	0	1	035	4	934	3
543		6		1626.434	3	1492.944	2	60.857	4	0	4	.002	4	.1	3
544			min	-1044.576	2	-1665.819	3	00.037	1	0	1	0	1	921	2
545		7		1626.968	3	1491.417	2	62.317	4	0	4	.04	4	1.134	3
				-1043.864	2	-1666.964	3		1		1		1		2
546		0	min					0		0		0	_	-1.847	
547		8	max		3	1489.89	2	63.777	4	0	4	.079	4	2.169	3
548			min	-1043.152	2	-1668.11	3	0	1	0	1	0	1_	-2.772	2
549		9	max	1644.28	3	154.432	2	185.247	4	0	1	0	1_	2.504	3
550			min	-897.684	2	.461	15	0	1	0	1	2	4	-3.169	2
551		10		1644.814	3	152.905	2	186.707	4	0	1	0	_1_	2.415	3
552			min	-896.972	2	0	15	0	1	0	1	084	4	-3.264	2
553		11	max	1645.348	3	151.378	2	188.167	4	0	1	.032	_4_	2.326	3
554			min	-896.26	2	-1.717	6	0	1	0	1	0	1_	-3.359	2
555		12	max	1662.573	3	1049.451	3	205.644	4	0	1	0	1	2.035	3
556			min	-750.959	2	-1799.04	2	0	1	0	4	337	4	-3	2
557		13	max	1663.107	3	1048.306	3	207.104	4	0	1	0	1	1.384	3
558			min	-750.247	2	-1800.567	2	0	1	0	4	209	4	-1.883	2
559		14	max	1663.641	3	1047,161	3	208.564	4	0	1	0	1	.734	3
560			min	-749.535	2	-1802.094	2	0	1	0	4	08	4	765	2
561		15	max	1664.175	3	1046.015	3	210.024	4	0	1	.05	4	.354	2
562			min	-748.823	2	-1803.621	2	0	1	0	4	0	1	0	15
563		16		1664.709	3	1044.87	3	211.484	4	0	1	.181	4	1.474	2
564		1.0	min	-748.111	2	-1805.148	2	0	1	0	4	0	1	564	3
565		17		1665.243	3	1043.725	3	212.945	4	0	1	.313	4	2.595	2
566		11/	min	-747.399	2	-1806.675	2	0	1	0	4	.515	1	-1.213	3
567		18	max		12	2110.69	2	0	1	0	4	.326	4	1.327	2
568		10	min	-363.692	1	-973.4	3	-25.504	5	0	1	0	1	631	3
569		19		-12.635	12	2109.163	2	0	1	0	4	.311	4	.02	1
		19	max		1				5		1		1		_
570	MO	4	min	-362.98	•	<u>-974.545</u>	3	-24.044		0		0		026	3
571	<u>M9</u>	1	max		1	743.618	3	70.031	4	0	3	013	12	0	15
572		0	min		12	-433.067		4.692	12	0	4	179	10	015	2
573		2	max		1	742.473	3	71.491	4	0	3	01	12	.256	1
574			min	8.576	12	-434.594		4.692	12	0	4	139	1_	466	3
575		3		525.563	3	552.411	2	63.684	1	0	2	007	12	.514	1
576			min		2	-560.908	3	4.654	12	0	3	1	1_	912	3
577		4		526.097	3	550.884	2	63.684	1	0	2	005	12	.187	1
578			min		2	-562.053	3	4.654	12	0	3	06	1_	563	3
579		5		526.631	3	549.357	2	63.684	1_	0	2	002	12	005	15
580				-323.115	2	-563.198	3	4.654	12	0	3	033	4	214	3
581		6	max	527.165	3	547.83	2	63.684	1	0	2	.019	1	.136	3
582				-322.403	2	-564.344	3	4.654	12	0	3	012	5	51	2
583		7		527.699	3	546.303	2	63.684	1	0	2	.058	1	.486	3
584			min		2	-565.489		4.654	12	0	3	.003	15	85	2
585		8		528.233	3	544.776	2	63.684	1	0	2	.098	1	.838	3
586			min		2	-566.634	3	4.654	12	0	3	.007	12	-1.188	2
587		9		541.818	3	45.683	2	103.768	1	0	3	004	12	.978	3
588			min		2	.473	15	7.146	12	0	9	155	4	-1.357	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	542.352	3	44.156	2	103.768	1	0	3	.001	1	.955	3
590			min	-252.623	2	.012	15	7.146	12	0	9	097	4	-1.384	2
591		11	max	542.886	3	42.629	2	103.768	1	0	3	.065	1	.933	3
592			min	-251.911	2	-1.799	6	7.146	12	0	9	053	5	-1.411	2
593		12	max	556.247	3	369.15	3	172.115	4	0	3	006	12	.816	3
594			min	-184.183	2	-640.684	2	3.988	12	0	2	274	4	-1.252	2
595		13	max	556.781	3	368.005	3	173.575	4	0	3	004	12	.588	3
596			min	-183.471	2	-642.211	2	3.988	12	0	2	166	4	853	2
597		14	max	557.315	3	366.86	3	175.035	4	0	3	001	12	.36	3
598			min	-182.759	2	-643.738	2	3.988	12	0	2	058	4	454	2
599		15	max	557.849	3	365.714	3	176.495	4	0	3	.051	4	.132	3
600			min	-182.047	2	-645.265	2	3.988	12	0	2	.001	12	079	1
601		16	max	558.383	3	364.569	3	177.955	4	0	3	.161	4	.347	2
602			min	-181.335	2	-646.792	2	3.988	12	0	2	.004	12	094	3
603		17	max	558.917	3	363.424	3	179.415	4	0	3	.272	4	.748	2
604			min	-180.623	2	-648.319	2	3.988	12	0	2	.006	12	32	3
605		18	max	-8.153	12	621.267	2	72.051	1	0	2	.262	4	.376	2
606			min	-163.734	1	-274.213	3	-79.589	5	0	3	.009	12	157	3
607		19	max	-7.797	12	619.74	2	72.051	1	0	2	.223	4	.013	3
608			min	-163.022	1	-275.358	3	-78.129	5	0	3	.012	12	01	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.21	2	.01	3	1.434e-2	2	NC	1	NC	1
2			min	703	4	051	3	006	2	-3.343e-3	3	NC	1	NC	1
3		2	max	0	1	.136	3	.021	1	1.549e-2	2	NC	4	NC	2
4			min	703	4	.004	15	014	5	-2.992e-3	3	1029.284	3	9000.816	1
5		3	max	0	1	.288	3	.049	1	1.664e-2	2	NC	5	NC	2
6			min	703	4	.002	15	018	5	-2.641e-3	3	566.776	3	3876.137	1
7		4	max	0	1	.383	3	.073	1	1.779e-2	2	NC	5	NC	3
8			min	703	4	006	9	014	5	-2.29e-3	3	442.856	3	2635.774	1
9		5	max	0	1	.409	3	.083	1	1.895e-2	2	NC	5	NC	3
10			min	703	4	004	9	005	5	-1.939e-3	3	417.372	3	2291.587	1
11		6	max	0	1	.369	3	.079	1	2.01e-2	2	NC	5	NC	3
12			min	703	4	.002	15	0	10	-1.589e-3	3	457.677	3	2425.27	1
13		7	max	0	1	.275	3	.06	1	2.125e-2	2	NC	4	NC	2
14			min	704	4	.004	15	004	10	-1.238e-3	3	589.734	3	3195.435	1
15		8	max	0	1	.255	2	.032	1	2.24e-2	2	NC	4	NC	2
16			min	704	4	.006	15	008	10	-8.869e-4	3	941.24	3	6013.901	1
17		9	max	0	1	.331	2	.031	3	2.355e-2	2	NC	4	NC	1
18			min	704	4	.008	15	016	2	-5.361e-4	3	1579.993	2	9333.725	3
19		10	max	0	1	.365	2	.031	3	2.471e-2	2	NC	5	NC	1
20			min	704	4	009	3	021	2	-1.852e-4	3	1236.932	2	9401.639	3
21		11	max	0	12	.331	2	.031	3	2.355e-2	2	NC	4	NC	1
22			min	704	4	.008	15	016	2	-5.361e-4	3	1579.993	2	9333.725	3
23		12	max	0	12	.255	2	.032	1	2.24e-2	2	NC	4	NC	2
24			min	704	4	.006	15	011	5	-8.869e-4	3	941.24	3	6013.901	1
25		13	max	0	12	.275	3	.06	1	2.125e-2	2	NC	4	NC	2
26			min	704	4	.004	15	004	5	-1.238e-3	3	589.734	3	3195.435	1
27		14	max	0	12	.369	3	.079	1	2.01e-2	2	NC	5	NC	3
28			min	704	4	.002	15	0	10	-1.589e-3	3	457.677	3	2425.27	1
29		15	max	0	12	.409	3	.083	1	1.895e-2	2	NC	5	NC	3
30			min	704	4	004	9	.002	10	-1.939e-3	3	417.372	3	2291.587	1
31		16	max	0	12	.383	3	.073	1	1.779e-2	2	NC	5	NC	3
32			min	704	4	006	9	.002	10	-2.29e-3	3	442.856	3	2635.774	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r LC (n) L/y Ratio LC (n) L/z Ratio LC
33		17	max	0	12	.288	3	.049	1 1.664e-2 2 NC 5 NC 2
34			min	704	4	.001	15	0	10 -2.641e-3 3 566.776 3 3876.137 1
35		18	max	0	12	.136	3	.023	4 1.549e-2 2 NC 4 NC 2
36			min	704	4	.003	15	002	10 -2.992e-3 3 1029.284 3 7967.475 4
37		19	max	0	12	.21	2	.01	3 1.434e-2 2 NC 1 NC 1
38			min	704	4	051	3	006	2 -3.343e-3 3 NC 1 NC 1
39	M14	1	max	0	1	.406	3	.009	3 8.064e-3 2 NC 1 NC 1
40			min	527	4	627	2	005	2 -6.162e-3 3 NC 1 NC 1
41		2	max	0	1	.635	3	.013	1 9.278e-3 2 NC 5 NC 1
42			min	527	4	864	2	022	5 -7.214e-3 3 811.149 2 9697.719 5
43		3	max	0	1	.837	3	.037	1 1.049e-2 2 NC 5 NC 2
44			min	527	4	-1.077	2	027	5 -8.266e-3 3 426.973 2 5146.003 1
45		4	max	0	1	.991	3	.06	1 1.17e-2 2 NC 15 NC 3
46			min	527	4	-1.249	2	019	5 -9.318e-3 3 308.71 2 3226.914 1
47		5	max	0	1	1.087	3	.072	1 1.292e-2 2 NC 15 NC 3
48			min	527	4	-1.371	2	005	5 -1.037e-2 3 258.111 2 2680.978 1
49		6	max	0	1	1.123	3	.07	1 1.413e-2 2 NC 15 NC 3
50			min	527	4	-1.44	2	0	10 -1.142e-2 3 236.115 2 2754.837 1
51		7	max	0	1	1.108	3	.054	1 1.534e-2 2 NC 15 NC 2
52			min	527	4	-1.462	2	003	10 -1.247e-2 3 229.965 2 3551.42 1
53		8	max	0	1	1.059	3	.04	4 1.656e-2 2 NC 15 NC 2
54			min	<u>527</u>	4	<u>-1.449</u>	2	007	10 -1.353e-2 3 233.712 2 4713.208 4
55		9	max	0	1	1.002	3	.027	4 1.777e-2 2 NC 15 NC 1
<u>56</u>		4.0	min	527	4	-1.42	2	014	2 -1.458e-2 3 242.186 2 6753.536 4
57		10	max	0	1	.974	3	.027	3 1.899e-2 2 NC 15 NC 1
58		4.4	min	<u>527</u>	4	-1.403	2	019	2 -1.563e-2 3 247.484 2 NC 1
59		11	max	0	12	1.002	3	.027	3 1.777e-2 2 NC 15 NC 1
60		40	min	<u>527</u>	4	-1.42	2	022	5 -1.458e-2 3 242.186 2 9571.036 5
61		12	max	0	12	1.059	3	.029	1 1.656e-2 2 NC 15 NC 2
62		40	min	528	4	<u>-1.449</u>	2	026	5 -1.353e-2 3 233.712 2 6546.685 1
63		13	max	0	12	1.108	3	.054	1 1.534e-2 2 NC 15 NC 2
64		4.4	min	<u>528</u>	4	<u>-1.462</u>	2	017	5 -1.247e-2 3 229.965 2 3551.42 1
65		14	max	0	12	1.123	3	.07	1 1.413e-2 2 NC 15 NC 3 5 -1.142e-2 3 236.115 2 2754.837 1
66		4.5	min	528	4	-1.44	2	002	
67 68		15	max	0 528	12	1.087 -1.371	3	.072 .001	1 1.292e-2 2 NC 15 NC 3 10 -1.037e-2 3 258.111 2 2680.978 1
		16	min	<u>526</u> 0	12	<u>-1.371</u> .991	3	.06	1 1.17e-2 2 NC 15 NC 3
69 70		10	max	528	4	-1.249	2	.001	10 -9.318e-3 3 308.71 2 3226.914 1
71		17		<u>526</u> 0	12	.837	3	.042	4 1.049e-2 2 NC 5 NC 2
72		17	max	528	4	-1.077	2	0	10 -8.266e-3 3 426.973 2 4477.625 4
73		18	max	0	12	.635	3	.028	4 9.278e-3 2 NC 5 NC 1
74		10	min	528	4	864	2	002	10 -7.214e-3 3 811.149 2 6617.468 4
75		19	max	0	12	.406	3	.002	3 8.064e-3 2 NC 1 NC 1
76		13	min	528	4	627	2	005	2 -6.162e-3 3 NC 1 NC 1
77	M15	1	max	0	12	.416	3	.008	3 5.172e-3 3 NC 1 NC 1
78	IVITO		min	429	4	626	2	005	2 -8.358e-3 2 NC 1 NC 1
79		2	max	0	12	.581	3	.014	1 6.045e-3 3 NC 5 NC 1
80			min	429	4	907	2	031	5 -9.624e-3 2 683.837 2 6574.95 5
81		3	max	0	12	.732	3	.038	1 6.917e-3 3 NC 5 NC 2
82			min	429	4	-1.155	2	039	5 -1.089e-2 2 362.654 2 5113.178 1
83		4	max	0	12	.855	3	.06	1 7.79e-3 3 NC 15 NC 3
84			min	429	4	-1.349	2	029	5 -1.215e-2 2 265.426 2 3209.382 1
85		5	max	0	12	.945	3	.072	1 8.663e-3 3 NC 15 NC 3
86			min	429	4	-1.476	2	01	5 -1.342e-2 2 225.799 2 2666.425 1
87		6	max	0	12	1.470	3	.07	1 9.535e-3 3 NC 15 NC 3
88		Ĭ	min	429	4	-1.534	2	0	10 -1.468e-2 2 211.369 2 2737.579 1
89		7	max	0	12	1.023	3	.055	1 1.041e-2 3 NC 15 NC 2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	<u>Sec</u>		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90			min	<u>429</u>	4	<u>-1.532</u>	2	003	10 -1.595e-2	2	211.931	2	3520.619	
91		8	max	0	12	1.021	3	.049	4 1.128e-2	3	NC	<u>15</u>	NC	2
92			min	429	4	<u>-1.488</u>	2	006	10 -1.721e-2	2	222.767	2	3851.313	
93		9	max	0	12	1.007	3	.035	4 1.215e-2	3	NC 000 440	<u>15</u>	NC F007 C00	1
94		40	min	429	4	-1.431	2	013	2 -1.848e-2	2	238.418	2	5327.622	4
95		10	max	0	1	.998	3	.025	3 1.303e-2	3	NC 247.542	<u>15</u>	NC NC	1
96		11	min	429	1	<u>-1.402</u>	3	018	2 -1.974e-2	3	247.513 NC	<u>2</u> 15	NC NC	1
97 98			max	0 429	4	1.007 -1.431	2	.025 03	3 1.215e-2 5 -1.848e-2	2	238.418		6903.271	5
99		12		<u>429</u> 0	1	1.021	3	.03	1 1.128e-2	3	NC	15	NC	2
100		12	max min	429	4	-1.488	2	035	5 -1.721e-2	2	222.767	2	5783.17	5
101		13	max	0	1	1.023	3	.055	1 1.041e-2	3	NC	15	NC	2
102		13	min	429	4	-1.532	2	024	5 -1.595e-2	2	211.931	2	3520.619	
103		14	max	0	1	1	3	.07	1 9.535e-3	3	NC	15	NC	3
104		17	min	429	4	-1.534	2	003	5 -1.468e-2	2	211.369	2	2737.579	1
105		15	max	0	1	.945	3	.072	1 8.663e-3	3	NC	15	NC	3
106		10	min	429	4	-1.476	2	.002	10 -1.342e-2	2	225.799	2	2666.425	1
107		16	max	0	1	.855	3	.06	1 7.79e-3	3	NC	15	NC	3
108			min	429	4	-1.349	2	.001	10 -1.215e-2	2	265.426	2	3209.382	1
109		17	max	0	1	.732	3	.054	4 6.917e-3	3	NC	5	NC	2
110			min	429	4	-1.155	2	0	10 -1.089e-2	2	362.654	2	3494.776	
111		18	max	0	1	.581	3	.037	4 6.045e-3	3	NC	5	NC	1
112			min	429	4	907	2	002	10 -9.624e-3	2	683.837	2	5008.655	4
113		19	max	0	1	.416	3	.008	3 5.172e-3	3	NC	1	NC	1
114			min	429	4	626	2	005	2 -8.358e-3	2	NC	1	NC	1
115	M16	1	max	0	12	.188	2	.007	3 9.864e-3	3	NC	1_	NC	1
116			min	132	4	147	3	005	2 -1.225e-2	2	NC	1	NC	1
117		2	max	0	12	.073	1	.021	1 1.09e-2	3	NC	4	NC	2
118			min	132	4	102	3	022	5 -1.294e-2	2	1440.339	2	9089.26	1
119		3	max	0	12	.012	9	.049	1 1.193e-2	3	NC	_5_	NC	2
120			min	132	4	069	3	028	5 -1.364e-2	2	806.217	2	3888.22	1
121		4	max	0	12	.005	4	.073	1 1.297e-2	3	NC	5	NC	3
122		_	min	132	4	<u>107</u>	2	023	5 -1.433e-2	2	649.576	2	2632.242	1
123		5	max	0	12	.006	4	.084	1 1.4e-2	3_	NC 040.50	5_	NC 0070 440	3
124		_	min	132	4	109	2	<u>011</u>	5 -1.502e-2	2	646.52	2	2278.419	1
125		6	max	0	12	.019	9	.08	1 1.503e-2	3	NC 700 C40	5	NC 744	3
126		7	min	132	12	106 .077	3	.002	10 -1.571e-2 1 1.607e-2	3	786.618 NC	2	2396.741	2
127 128		/	max	0	4		3	.061	1 1.607e-2 10 -1.647e-2	<u>3</u>	1288.617	2	NC 3122.222	4
129		8	min max	132 0	12	159 .176	1	001 .034	1 1.71e-2	3	NC	1	NC	2
130		0	min	132	4	219	3	005	10 -1.723e-2					
131		9	max	0	12	.264	1	.022	3 1.813e-2	3	NC	4	NC	1
132			min	132	4	27	3	011	2 -1.8e-2	1	1554.177	3	8422.924	
133		10	max	0	1	.304	1	.022	3 1.917e-2	3	NC	5	NC	1
134		10	min	132	4	293	3	016	2 -1.876e-2	1	1314.967	3	NC	1
135		11	max	0	1	.264	1	.022	3 1.813e-2	3	NC	4	NC	1
136			min	132	4	27	3	016	5 -1.8e-2	1	1554.177	3	NC	1
137		12	max	0	1	.176	1	.034	1 1.71e-2	3	NC	1	NC	2
138			min	132	4	219	3	017	5 -1.723e-2	1	2654.435	3	5689.416	
139		13	max	0	1	.077	1	.061	1 1.607e-2	3	NC	3	NC	2
140			min	132	4	159	3	008	5 -1.647e-2	1	1288.617	2	3122.222	1
141		14	max	0	1	.019	9	.08	1 1.503e-2	3	NC	5	NC	3
142			min	132	4	106	3	.002	10 -1.571e-2	2	786.618	2	2396.741	1
143		15	max	0	1	.005	6	.084	1 1.4e-2	3	NC	5	NC	3
144			min	132	4	109	2	.003	10 -1.502e-2	2	646.52	2	2278.419	
145		16	max	0	1	.004	13	.073	1 1.297e-2	3	NC	5	NC	3
146			min	132	4	107	2	.003	10 -1.433e-2	2	649.576	2	2632.242	1

Model Name

Schletter, Inc.HCV

TICV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
147		17	max	0	1	.012	9	.049	1	1.193e-2	3	NC	_5_	NC	2
148			min	132	4	069	3	.001	10	-1.364e-2	2	806.217	2	3888.22	1
149		18	max	0	1	.073	1	.031	4	1.09e-2	3	NC	4_	NC	2
150		40	min	132	4	102	3	001	10	-1.294e-2	2	1440.339	2	6113.093	
151		19	max	0	1	.188	2	.007	3	9.864e-3	3	NC	1_	NC NC	1
152	MO	4	min	132	4	147	3	005	2	-1.225e-2	2	NC NC	1_	NC NC	1
153	<u>M2</u>	1	max	.007	2	.009	2	.008	1	2.276e-3	5	NC	1_	NC 404 500	2
154		_	min	009	3	015	3	<u>661</u>	4	-1.863e-4	1_	7475.926	2	104.599	4
155		2	max	.007	2	.008	2	.008	1	2.299e-3	5_4	NC	1	NC 442.040	2
156		-	min	009	3	<u>014</u>	3	607	4	-1.759e-4	1_	8671.147	2	113.919	4
157		3	max	.006	2	.007	2	.007	1	2.321e-3	5	NC NC	1_	NC	2
158		4	min	008	3	014	3	<u>553</u>	4	-1.655e-4	1_	NC NC	1_	124.993	4
159		4	max	.006	2	.005	2	.006	1	2.343e-3	5_1	NC NC	1	NC 420.20	1
160		-	min	008	3	013	3	5	4	-1.551e-4	_1_	NC NC		138.28	4
161 162		5	max	.006	3	.004	3	.006	1	2.365e-3	<u>5</u> 1	NC NC	1	NC 154.403	4
		6	min	007		013		448	4	-1.447e-4	-		1		
163		6	max	.005	3	.003	3	.005	1	2.387e-3	5	NC NC	1	NC	1
164		7	min	007	_	012		397	4	-1.343e-4	1_		_	174.231	4
165		+ ′	max	.005	2	.002	2	.004	1	2.41e-3	5_4	NC NC	<u>1</u> 1	NC 400,000	1
166 167		0	min	006	2	012 .001	2	347 .004	4	-1.239e-4	1_	NC NC	1	198.992 NC	1
168		8	max	.004 006	3		3	3	1 4	2.433e-3	4	NC NC	1	230.487	4
		9	min	006 .004	2	011	2		1	-1.135e-4	1_	NC NC	1	NC	
169		9	max	00 4	3	0 01	3	.003 255		2.458e-3 -1.031e-4	4	NC NC	1	271.425	4
170		10	min						1		<u> </u>	NC NC	1	NC	1
171 172		10	max	.004 005	3	0 01	3	.003 212	4	2.484e-3 -9.268e-5	<u>4</u> 1	NC NC	1	326.053	4
173		11	min	.003	2	<u>01</u> 0	15	.002	1		4	NC NC	1	NC	1
174		+ ' '	max	003	3	009	3	172	4	2.509e-3 -8.228e-5	1	NC NC	1	401.335	4
175		12	min	.003	2	<u>009</u> 0	15	.002	1	2.534e-3	4	NC NC	1	NC	1
176		12	max min	004	3	008	3	136	4	-7.188e-5	1	NC NC	1	509.358	4
177		13	max	.002	2	<u>008</u> 0	15	.001	1	2.559e-3	4	NC NC	1	NC	1
178		13	min	003	3	007	3	103	4	-6.148e-5	1	NC	1	672.643	4
179		14	max	.002	2	<u>007</u> 0	15	0	1	2.584e-3	4	NC	1	NC	1
180		14	min	003	3	006	3	074	4	-5.108e-5	1	NC	1	937.255	4
181		15	max	.002	2	000	15	074	1	2.61e-3	4	NC	1	NC	1
182		13	min	002	3	005	3	049	4	-4.068e-5	1	NC	1	1410.174	
183		16	max	.002	2	<u>003</u> 0	15	043	1	2.635e-3	4	NC	1	NC	1
184		10	min	002	3	004	3	029	4	-3.028e-5	1	NC	1	2390.37	4
185		17	max	<u>002</u> 0	2	004	15	029	1	2.66e-3	4	NC	1	NC	1
186		17	min	001	3	003	3	014	4	-1.988e-5	1	NC	1	5006.37	4
187		18	max	0	2	<u>003</u> 0	15	0	1	2.685e-3		NC	1	NC	1
188		10	min	0	3	001	6	004	4	-9.478e-6	1	NC	1	NC	1
189		19	max	0	1	0	1	<u>.00-</u>	1	2.711e-3	4	NC	1	NC	1
190		10	min	0	1	0	1	0	1	-5.302e-7	3	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	0	3	NC	1	NC	1
192	IVIO	1	min	0	1	0	1	0	1	-5.626e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.015	4	8.626e-5	4	NC	1	NC	1
194			min	0	2	003	6	0	3	1.389e-6	12	NC	1	NC	1
195		3	max	0	3	001	15	.029	4	7.351e-4	4	NC	1	NC	1
196			min	0	2	005	6	0	3	2.791e-6	12	NC	1	NC	1
197		4	max	.001	3	002	15	.042	4	1.384e-3	4	NC	1	NC	1
198			min	001	2	008	6	0	3	4.193e-6	12	NC	1	NC	1
199		5	max	.002	3	002	15	.054	4	2.033e-3	4	NC	1	NC	1
200			min	001	2	011	6	0	12	5.595e-6		8984.265	6	9560.104	
201		6	max	.002	3	003	15	.065	4	2.682e-3	4	NC	2	NC	1
202			min	002	2	014	6	0	12	6.997e-6		7238.336	6	8970.067	
203		7	max	.003	3	004	15	.076	4	3.33e-3	4	NC	5	NC	1
		-				_			-			_		_	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	I.C.	x Rotate [r	I.C.	(n) L/v Ratio	I.C.	(n) I /z Ratio	10
204	Wichibei		min	002	2	016	6	0	12	8.399e-6	12	6189.035	6	8966.399	
205		8	max	.003	3	004	15	.086	4	3.979e-3	4	NC	5	NC	1
206			min	003	2	018	6	0	12	9.801e-6	12	5541.403	6	9482.736	
207		9	max	.004	3	004	15	.096	4	4.628e-3	4	NC	5	NC	1
208			min	003	2	02	6	0	12	1.12e-5	12	5156.773	6	NC	1
209		10	max	.004	3	005	15	.105	4	5.277e-3	4	NC	5	NC	1
210			min	003	2	021	6	0	12	1.261e-5	12	4967.672	6	NC	1
211		11	max	.004	3	005	15	.114	4	5.926e-3	4	NC	5	NC	1
212			min	004	2	021	6	0	12	1.401e-5	12	4946.078	6	NC	1
213		12	max	.005	3	004	15	.123	4	6.574e-3	4_	NC	5_	NC	1
214			min	004	2	02	6	0	12	1.541e-5	12	5092.648	6	NC	1
215		13	max	.005	3	004	15	.132	4	7.223e-3	4_	NC	5_	NC	1
216			min	004	2	<u>019</u>	6	0	12	1.681e-5	12	5438.333	6	NC	1
217		14	max	.006	3	004	15	14	4	7.872e-3	4_	NC	5	NC	1
218		4.5	min	005	2	017	6	0	12	1.821e-5	12	6060.589	6	NC	1
219		15	max	.006	3	003	15	.15	4	8.521e-3	4	NC	3	NC	1
220		4.0	min	005	2	014	6	0	12	1.962e-5	12	7131.75	6	NC NC	1
221		16	max	.007	3	002	15	.16	4	9.17e-3	4	NC	1	NC NC	1
222		47	min	005	2	011	6	0	12	2.102e-5	12	9069.696	<u>6</u>	NC NC	1
223 224		17	max min	.007 006	3	001 008	15	17 0	12	9.819e-3 2.242e-5	<u>4</u> 12	NC NC	1	NC NC	1
225		18	max	.007	3	008 0	15	.182	4	1.047e-2	4	NC NC	1	NC NC	1
226		10	min	006	2	005	1	0	12	2.382e-5	12	NC	1	NC	1
227		19	max	.008	3	<u>003</u>	5	.195	4	1.112e-2	4	NC	1	NC	1
228		13	min	006	2	002	1	0	12	2.522e-5	12	NC	1	NC	1
229	M4	1	max	.003	1	.002	2	0	12	1.069e-4	1	NC	1	NC	3
230	IVIT		min	0	3	008	3	195	4	-3.603e-4	5	NC	1	127.008	4
231		2	max	.002	1	.006	2	0	12	1.069e-4	1	NC	1	NC	3
232			min	0	3	008	3	18	4	-3.603e-4	5	NC	1	138.175	4
233		3	max	.002	1	.005	2	0	12	1.069e-4	1	NC	1	NC	3
234			min	0	3	007	3	164	4	-3.603e-4	5	NC	1	151.461	4
235		4	max	.002	1	.005	2	0	12	1.069e-4	1	NC	1	NC	2
236			min	0	3	007	3	148	4	-3.603e-4	5	NC	1	167.417	4
237		5	max	.002	1	.005	2	0	12	1.069e-4	1	NC	1	NC	2
238			min	0	3	006	3	133	4	-3.603e-4	5	NC	1	186.791	4
239		6	max	.002	1	.004	2	0	12	1.069e-4	1	NC	1	NC	2
240			min	0	3	006	3	118	4	-3.603e-4	5	NC	1	210.622	4
241		7	max	.002	1	.004	2	0	12	1.069e-4	_1_	NC	_1_	NC	2
242			min	0	3	005	3	103	4	-3.603e-4	5	NC	1	240.385	4
243		8	max	.002	1	.004	2	0	12	1.069e-4	_1_	NC	_1_	NC	2
244			min	0	3	005	3	089	4	-3.603e-4	<u>5</u>	NC	1_	278.229	4
245		9	max	.001	1	.003	2	0	12	1.069e-4	1_	NC	1	NC	2
246		4.0	min	0	3	005	3	076	4	-3.603e-4	5_	NC	1_	327.39	4
247		10	max	.001	1	.003	2	0	12	1.069e-4	_1_	NC	1	NC	2
248		4.4	min	0	3	004	3	063	4	-3.603e-4	5	NC	1_	392.929	4
249		11	max	.001	1	.003	2	0	12	1.069e-4	_1_	NC	1	NC 400,400	1
250		40	min	0	3	004	3	<u>051</u>	4	-3.603e-4	5	NC NC	1_	483.123	4
251		12	max	.001	1	.002	2	0	12	1.069e-4	1	NC NC	1	NC C40 204	1
252		40	min	0	3	003	3	041	4	-3.603e-4	5	NC NC	1_	612.291	4
253		13	max	0	1	.002	2	0	12	1.069e-4	1	NC NC	1	NC	1
254		1.4	min	0	3	003	3	031	4	-3.603e-4	5	NC NC	1	807.012	4
255		14	max	0	1	.002	2	0	12	1.069e-4		NC NC	1	NC	1
256		15	min	0	3	002	3	022	4	-3.603e-4	5	NC NC	1	1121.356	
257		15	max	0	3	.001	3	0	12	1.069e-4		NC NC	<u>1</u> 1	NC 1670.076	1
258 259		16	min	0		002	2	015	4	-3.603e-4	<u>5</u>	NC NC	<u>1</u> 1	1679.976	
		10	max		1	.001		0	12	1.069e-4			_	NC	1
260			min	0	3	001	3	009	4	-3.603e-4	5	NC	1	2827.463	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
261		17	max	0	1	0	2	0	12	1.069e-4	1	NC	1	NC	1
262			min	0	3	0	3	004	4	-3.603e-4	5	NC	1	5841.543	4
263		18	max	0	1	0	2	0	12	1.069e-4	1	NC	1	NC	1
264			min	0	3	0	3	001	4	-3.603e-4	5	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.069e-4	1	NC	1	NC	1
266			min	0	1	0	1	0	1	-3.603e-4	5	NC	1	NC	1
267	M6	1	max	.022	2	.032	2	0	1	2.379e-3	4	NC	3	NC	1
268			min	029	3	044	3	667	4	0	1	2179.272	2	103.54	4
269		2	max	.021	2	.029	2	0	1	2.399e-3	4	NC	3	NC	1
270			min	028	3	042	3	613	4	0	1	2388.454	2	112.767	4
271		3	max	.019	2	.026	2	0	1	2.419e-3	4	NC	3	NC	1
272			min	026	3	04	3	559	4	0	1	2640.058	2	123.73	4
273		4	max	.018	2	.023	2	0	1	2.439e-3	4	NC	3	NC	1
274			min	024	3	037	3	505	4	0	1	2945.955	2	136.883	4
275		5	max	.017	2	.021	2	0	1	2.459e-3	4	NC	3	NC	1
276			min	023	3	035	3	452	4	0	1	3322.617	2	152.846	4
277		6	max	.016	2	.018	2	0	1	2.479e-3	4	NC	3	NC	1
278			min	021	3	032	3	401	4	0	1	3793.433	2	172.475	4
279		7	max	.015	2	.016	2	0	1	2.499e-3	4	NC	3	NC	1
280			min	019	3	03	3	351	4	0	1	4392.533	2	196.989	4
281		8	max	.013	2	.013	2	0	1	2.519e-3	4	NC	_1_	NC	1
282			min	018	3	027	3	303	4	0	1	5171.326	2	228.169	4
283		9	max	.012	2	.011	2	0	1	2.539e-3	4	NC	<u>1</u>	NC	1
284			min	016	3	025	3	257	4	0	1	6210.245	2	268.699	4
285		10	max	.011	2	.009	2	0	1	2.559e-3	4	NC	_1_	NC	1
286			min	015	3	022	3	214	4	0	1_	7641.034	2	322.782	4
287		11	max	.01	2	.007	2	0	1	2.578e-3	4	NC	_1_	NC	1
288			min	013	3	02	3	174	4	0	1_	9692.049	2	397.315	4
289		12	max	.008	2	.005	2	0	1	2.598e-3	4	NC	1	NC	1
290			min	011	3	017	3	137	4	0	1	NC	1_	504.262	4
291		13	max	.007	2	.004	2	0	1	2.618e-3	4	NC	_1_	NC	1
292			min	01	3	015	3	104	4	0	1_	NC	1_	665.922	4
293		14	max	.006	2	.003	2	0	1	2.638e-3	_4_	NC	_1_	NC	1_
294			min	008	3	012	3	074	4	0	1_	NC	1_	927.904	4
295		15	max	.005	2	.002	2	0	1	2.658e-3	4	NC	1_	NC	1
296			min	006	3	01	3	049	4	0	1_	NC	1_	1396.124	4
297		16	max	.004	2	0	2	0	1	2.678e-3	4	NC	1_	NC	1
298			min	005	3	007	3	029	4	0	_1_	NC	_1_	2366.586	
299		17	max	.002	2	0	2	0	1	2.698e-3	4	NC	1_	NC	1
300			min	003	3	005	3	014	4	0	<u>1</u>	NC	1_	4956.618	
301		18	max	.001	2	0	2	0	1	2.718e-3	4	NC	_1_	NC	1
302		1.0	min	002	3	002	3	004	4	0	1_	NC	1_	NC NC	1
303		19	max	0	1	0	1	0	1	2.738e-3	4_	NC	1_	NC NC	1
304			min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306			min	0	1	0	1_	0	1	-5.683e-4	4	NC	1_	NC	1
307		2	max	.001	3	0	15	.015	4	6.146e-5	4	NC	1	NC NC	1
308			min	<u>001</u>	2	004	3	0	1	0	_1_	NC	1_	NC NC	1
309		3	max	.003	3	001	15	.029	4	6.912e-4	4_	NC	1_	NC NC	1
310			min	002	2	007	3	0	1	0	1_	NC NC	1_	NC NC	1
311		4	max	.004	3	002	15	.042	4	1.321e-3	4	NC	1	NC 0057.747	1
312			min	<u>004</u>	2	01	3	0	1	0	_1_	NC	1_	9657.717	4
313		5	max	.005	3	003	15	.054	4	1.951e-3	4	NC	1_	NC NC	1
314			min	005	2	013	3	0	1	0	1_	8274.487	3	8225.401	4
315		6	max	.007	3	003	15	066	4	2.58e-3	4	NC	1	NC	1
316			min	006	2	016	3	0	1	0	1	6969.224	3	7587.477	4
317		7	max	.008	3	004	15	.076	4	3.21e-3	4	NC	<u>1</u>	NC	_1_

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio		(n) L/z Ratio	
318			min	007	2	018	3	0	1	0	<u>1</u>	6184.595	3	7423.431	4
319		8	max	.009	3	004	15	.087	4	3.84e-3	4	NC	2	NC	1
320			min	009	2	02	3	0	1	0	<u>1</u>	5541.347	4_	7635.217	4
321		9	max	.011	3	005	15	096	4	4.47e-3	4	NC	2	NC To 4	1
322		40	min	01	2	021	3	0	1	0	<u>1</u>	5156.725	4_	8236.791	4
323		10	max	.012	3	005	15	.105	4	5.099e-3	4	NC 4007.000	5_	NC	1
324		4.4	min	011	2	021	3	0	1	0	1_	4967.629	4_	9346.487	4
325		11	max	.013	3	005	15	114	4	5.729e-3	4	NC 40.40.007	5_	NC NC	1
326		40	min	012	2	021	4	0	1	0	1_	4946.037	4_	NC NC	1
327		12	max	.015	3	005	15	.122	4	6.359e-3	4	NC FOOD COD	5	NC NC	1
328		40	min	014	2	021	4	0	1	0	1_	5092.608	4_	NC NC	1
329		13	max	.016	3	005	15	.13	4	6.989e-3	4	NC 5400,000	5	NC NC	1
330		4.4	min	015	2	02	3	0	1	0	1_	5438.292	4_	NC NC	1
331		14	max	.017	3	004	15	.139	4	7.618e-3	4	NC	2	NC NC	1
332		4.5	min	016	2	018	3	0	1	0	1_1	6060.545	4_	NC NC	1
333		15	max	.019	3	004	15	.147	4	8.248e-3	4	NC	1_	NC NC	1
334		4.0	min	017	2	016	3	0	1	0	1_	7131.699	4_	NC NC	1
335		16	max	.02	3	003	15	.156	4	8.878e-3	4	NC	1_	NC NC	1
336		47	min	019	2	014	3	0	1	0	1_1	9069.632	4_	NC NC	1
337		17	max	.021	3	002	15	.166	4	9.507e-3	4	NC NC	1	NC NC	1
338		40	min	02	2	011	3	0	1	0	1_1	NC NC	_	NC NC	•
339		18	max	.023	3	001	15	.176	4	1.014e-2	4	NC NC	1_1	NC NC	1
340		40	min	021	2	008	3	0	1	0	1_1	NC NC	1_	NC NC	1
341		19	max	.024	3	0	10	.188	4	1.077e-2	4	NC	1_	NC NC	1
342	MO	4	min	022	2	005	2	0	1	0	<u>1</u> 1	NC NC	1_1	NC NC	1
343	<u>M8</u>	1	max	.007	1	.021		0		_	<u> </u>	NC NC	1_	NC	
344		2	min	001	3	024	2	188 0	1	-4.978e-4	4	NC NC	1_	131.813 NC	4
345			max	.007	3	.02 023		173	4	0	1_1		1		1
346		3	min	001	1		3		1	-4.978e-4 0	<u>4</u> 1	NC NC	1	143.418 NC	1
347		3	max	.006 001	3	.019 022	3	<u> </u>	4	-4.978e-4	4	NC NC	1	157.223	4
349		4	min	.006	1	.018	2	136 0	1	0	1	NC NC	1	NC	1
350		4	max	0	3	02	3	143	4	-4.978e-4	4	NC NC	1	173.802	4
351		5	max	.005	1	.017	2	143 0	1	0	_ 4 _	NC NC	1	NC	1
352		5	min	.005	3	019	3	128	4	-4.978e-4	4	NC	1	193.932	4
353		6	max	.005	1	.015	2	<u>120</u> 0	1	0	1	NC	1	NC	1
354		0	min	0	3	018	3	113	4	-4.978e-4	4	NC	1	218.693	4
355		7	max	.005	1	.014	2	0	1	0	1	NC	1	NC	1
356			min	0	3	01 4	3	099	4	-4.978e-4	4	NC	1	249.616	4
357		8	max	.004	1	.013	2	033	1	0	1	NC	1	NC	1
358			min		3	015	3	086		-4.978e-4		NC	1	288.936	
359		9	max	.004	1	.012	2	0	1	0	1	NC	1	NC	1
360		 	min	0	3	014	3	073	4	-4.978e-4	4	NC	1	340.014	4
361		10	max	.003	1	.011	2	0	1	0	1	NC	1	NC	1
362		10	min	0	3	012	3	061	4	-4.978e-4	4	NC	1	408.108	4
363		11	max	.003	1	.01	2	0	1	0	1	NC	1	NC	1
364			min	0	3	011	3	049	4	-4.978e-4	4	NC	1	501.82	4
365		12	max	.003	1	.008	2	0	1	0	1	NC	1	NC	1
366		12	min	0	3	009	3	039	4	-4.978e-4	4	NC	1	636.028	4
367		13	max	.002	1	.003	2	<u>.059</u>	1	0	1	NC	1	NC	1
368			min	0	3	008	3	03	4	-4.978e-4	4	NC	1	838.35	4
369		14	max	.002	1	.006	2	0	1	0	1	NC	1	NC	1
370		1	min	0	3	007	3	021	4	-4.978e-4	4	NC	1	1164.973	
371		15	max	.002	1	.005	2	0	1	0	1	NC	1	NC	1
372		'	min	0	3	005	3	014	4	-4.978e-4	4	NC	1	1745.431	4
373		16	max	.001	1	.003	2	0	1	0	1	NC	1	NC	1
374		· ·	min	0	3	004	3	008	4	-4.978e-4	4	NC	1	2937.822	
U, T			1111111			.00-		.000		1.07 00 T		110		2001.022	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
375		17	max	0	1	.002	2	0	1	0	1_	NC NC	1	NC 0070.045	1
376		10	min	0	3	003	3	004	4	-4.978e-4	4_	NC	1_	6070.015	
377		18	max	0	1	.001	2	0	1	0	1_	NC	1	NC NC	1
378		1.0	min	0	3	001	3	001	4	-4.978e-4	4_	NC	1_	NC	1
379		19	max	0	1	0	1	0	1	0	_1_	NC	1_	NC	1
380			min	0	1	0	1	0	1	-4.978e-4	4_	NC	1_	NC	1
381	M10	1_	max	.007	2	.009	2	0	12	2.363e-3	4_	NC	1	NC	2
382		+_	min	009	3	015	3	<u>665</u>	4	1.476e-5	12	7475.926	2	103.85	4
383		2	max	.007	2	.008	2	0	12	2.382e-3	4_	NC	1_	NC	2
384			min	009	3	014	3	<u>611</u>	4	1.396e-5	12	8671.147	2	113.104	4
385		3	max	.006	2	.007	2	0	12	2.401e-3	4	NC	1	NC 1011	2
386		-	min	008	3	014	3	<u>557</u>	4	1.315e-5	12	NC	1_	124.1	4
387		4	max	.006	2	.005	2	0	12	2.421e-3	4	NC	1	NC	1
388			min	008	3	013	3	503	4	1.235e-5	12	NC	1	137.293	4
389		5	max	.006	2	.004	2	0	12	2.44e-3	4_	NC	1_	NC	1
390			min	007	3	013	3	<u>451</u>	4	1.155e-5	12	NC	1_	153.304	4
391		6	max	.005	2	.003	2	0	12	2.459e-3	4	NC	1	NC 1	1
392		+	min	007	3	012	3	399	4	1.075e-5	12	NC	1_	172.992	4
393		7	max	.005	2	.002	2	0	12	2.479e-3	_4_	NC	1_	NC	1
394			min	006	3	012	3	35	4	9.944e-6	12	NC	1_	197.581	4
395		8	max	.004	2	.001	2	0	12	2.498e-3	4_	NC	1	NC NC	1
396		_	min	006	3	<u>011</u>	3	302	4	9.142e-6	12	NC	1_	228.857	4
397		9	max	.004	2	0	2	0	12	2.517e-3	4	NC	1_	NC	1
398			min	005	3	01	3	256	4	8.34e-6	12	NC	1_	269.511	4
399		10	max	.004	2	0	2	0	12	2.536e-3	4_	NC	1_	NC	1
400			min	005	3	01	3	213	4	7.537e-6	12	NC	1_	323.762	4
401		11	max	.003	2	001	2	0	12	2.556e-3	_4_	NC	_1_	NC	1
402			min	004	3	009	3	173	4	6.735e-6	12	NC	1_	398.526	4
403		12	max	.003	2	002	2	0	12	2.575e-3	_4_	NC	1_	NC	1
404			min	004	3	008	3	137	4	5.933e-6	12	NC	_1_	505.81	4
405		13	max	.002	2	002	15	0	12	2.594e-3	4_	NC	1	NC	1
406		+	min	003	3	007	3	103	4	5.13e-6	12	NC	1_	667.985	4
407		14	max	.002	2	002	15	0	12	2.613e-3	4_	NC	1_	NC	1
408		-	min	003	3	006	3	074	4	4.328e-6	12	NC	1_	930.817	4
409		15	max	.002	2	001	15	0	12	2.633e-3	4	NC	1_	NC To t	1
410		1.0	min	002	3	005	3	<u>049</u>	4	3.424e-6	10	NC	1_	1400.594	4
411		16	max	.001	2	001	15	0	12	2.652e-3	4	NC	1	NC NC	1
412		-	min	002	3	004	4	029	4	2.508e-6	10	NC	1_	2374.406	
413		17	max	0	2	0	15	0	12	2.671e-3	4_	NC	1_	NC	1
414		1.0	min	001	3	003	4	014	4	1.592e-6	10	NC	1_	4973.957	4
415		18		0	2	0	15	0	12		4	NC	_1_	NC NC	1
416		40	min	0	3	002	4	004	4	6.752e-7	10	NC NC	1_	NC NC	1
417		19	max	0	1	0	1	0	1	2.71e-3	4_	NC NC	1	NC NC	1
418	B 4 4 4		min	0	1	0	1	0	1	-9.226e-7	1_	NC NC	1_	NC NC	1
419	<u>M11</u>	1_	max	0	1	0	1	0	1	1.456e-6	1_	NC	1_	NC NC	1
420			min	0	1	0	1	0	1	-5.616e-4	4_	NC	1_	NC NC	1
421		2	max	0	3	0	15	.015	4	7.622e-5	_5_	NC	1	NC NC	1
422			min	0	2	003	4	0	1	-2.129e-5	_1_	NC	1_	NC NC	1
423		3	max	0	3	001	15	.028	4	7.1e-4	4_	NC	1_	NC NC	1
424			min	0	2	006	4	0	1	-4.403e-5	1_	NC NC	1_	NC NC	1
425		4	max	.001	3	002	15	.041	4	1.346e-3	4_	NC	1	NC NC	1
426			min	001	2	009	4	0	1	-6.677e-5	1	NC	1_	NC	1
427		5	max	.002	3	003	15	.054	4	1.982e-3	_4_	NC	_1_	NC	1
428			min	001	2	012	4	0	1	-8.952e-5	1_	8615.912	4	9058.911	4
429		6	max	.002	3	004	15	.065	4	2.617e-3	4_	NC	2	NC	1
430			min	002	2	015	4	0	1	-1.123e-4	1_	6968.443	4_	8456.237	
431		7	max	.003	3	004	15	.076	4	3.253e-3	4	NC	5	NC	_1_

Model Name

Schletter, Inc. HCV

TICV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

422	Member	Sec	min	x [in]	LC 2	y [in]	LC 4	z [in]	LC 1	x Rotate [r	LC 1	(n) L/y Ratio 5976.861	LC 4		
432		8	min max	002 .003	3	018 005	15	.086	4	3.889e-3	4	NC	5	8396.734 NC	1
434		0	min	003	2	003	4	0	1	-1.577e-4	1	5365.112	4	8801.737	4
435		9	max	.004	3	005	15	.095	4	4.525e-3	4	NC	5	NC	1
436		3	min	003	2	021	4	0	1	-1.805e-4	1	5003.302	4	9738.298	4
437		10	max	.004	3	005	15	.104	4	5.161e-3	4	NC	5	NC	1
438		10	min	003	2	022	4	001	1	-2.032e-4	1	4828.374	4	NC	1
439		11	max	.004	3	005	15	.113	4	5.796e-3	4	NC	5	NC	1
440			min	004	2	022	4	002	1	-2.26e-4	1	4814.549	4	NC	1
441		12	max	.005	3	005	15	.122	4	6.432e-3	4	NC	5	NC	1
442		12	min	004	2	021	4	002	1	-2.487e-4	1	4963.437	4	NC	1
443		13	max	.005	3	005	15	.13	4	7.068e-3	4	NC	5	NC	1
444		1.0	min	004	2	02	4	003	1	-2.715e-4	1	5305.925	4	NC	1
445		14	max	.006	3	005	15	.139	4	7.704e-3	4	NC	5	NC	1
446			min	005	2	018	4	003	1	-2.942e-4	1	5918.197	4	NC	1
447		15	max	.006	3	004	15	.148	4	8.34e-3	4	NC	3	NC	1
448			min	005	2	016	4	004	1	-3.169e-4	1	6969.147	4	NC	1
449		16	max	.007	3	003	15	.157	4	8.975e-3	4	NC	1	NC	1
450			min	005	2	013	4	005	1	-3.397e-4	1	8867.865	4	NC	1
451		17	max	.007	3	002	15	.167	4	9.611e-3	4	NC	1	NC	1
452			min	006	2	009	4	006	1	-3.624e-4	1	NC	1	NC	1
453		18	max	.007	3	002	15	.178	4	1.025e-2	4	NC	1	NC	1
454			min	006	2	005	4	007	1	-3.852e-4	1	NC	1	NC	1
455		19	max	.008	3	0	10	.191	4	1.088e-2	4	NC	1	NC	1
456			min	006	2	002	1	008	1	-4.079e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.006	2	.008	1	-7.275e-6	12	NC	1_	NC	3
458			min	0	3	008	3	191	4	-4.003e-4	4	NC	1	129.984	4
459		2	max	.002	1	.006	2	.007	1	-7.275e-6	12	NC	1_	NC	3
460			min	0	3	008	3	175	4	-4.003e-4	4	NC	1	141.417	4
461		3	max	.002	1	.005	2	.007	1	-7.275e-6	12	NC	_1_	NC	3
462			min	0	3	007	3	16	4	-4.003e-4	4	NC	1	155.019	4
463		4	max	.002	1	.005	2	.006	1	-7.275e-6	12	NC	_1_	NC	2
464			min	0	3	007	3	145	4	-4.003e-4	4_	NC	1_	171.354	4
465		5	max	.002	1	.005	2	.005	1	-7.275e-6	12	NC	_1_	NC	2
466			min	0	3	006	3	13	4	-4.003e-4	4_	NC	_1_	191.189	4
467		6	max	.002	1	.004	2	.005	1	-7.275e-6	<u>12</u>	NC	1	NC	2
468		-	min	0	3	006	3	11 <u>5</u>	4	-4.003e-4	4	NC	1_	215.587	4
469		7	max	.002	1	.004	2	.004	1	-7.275e-6	12	NC	1	NC	2
470			min	0	3	005	3	101	4	-4.003e-4	4	NC NC	1_	246.057	4
471		8	max	.002	1	.004	2	.004	1	-7.275e-6	12	NC	<u>1</u> 1	NC 004 004	2
472			min	0	3	005	3	087		-4.003e-4		NC NC	_	284.801	4
473		9	max	.001	1	.003	2	.003	1	-7.275e-6		NC	1	NC 225.42	2
474		10	min	0	3	005	3	074	4	-4.003e-4		NC NC	1_	335.13	4
475		10	max	.001	3	.003	2	.003 062	1	-7.275e-6		NC	<u>1</u> 1	NC	2
476 477		11	min	.001	1	004 .003	2	.002	1	-4.003e-4 -7.275e-6	4	NC NC	1	402.227 NC	1
477		11	max min	0	3	003	3	05	4	-4.003e-4	<u>12</u> 4	NC NC	1	494.565	4
479		12	max	.001	1	.002	2	.002	1	-7.275e-6		NC	1	NC	1
480		12	min	0	3	003	3	04	4	-4.003e-4	4	NC	1	626.804	4
481		13	max	0	1	.002	2	.001	1	-7.275e-6		NC	1	NC	1
482		13	min	0	3	003	3	03	4	-4.003e-4	4	NC	1	826.154	4
483		14	max	0	1	.002	2	<u>03</u> 0	1	-7.275e-6		NC	1	NC	1
484		14	min	0	3	002	3	022	4	-4.003e-4	4	NC	1	1147.976	
485		15	max	0	1	.002	2	<u>022</u> 0	1	-7.275e-6		NC	1	NC	1
486		13	min	0	3	002	3	014	4	-4.003e-4	4	NC	1	1719.887	4
487		16	max	0	1	.002	2	0	1	-7.275e-6	12	NC	1	NC	1
488		1.0	min	0	3	001	3	009	4	-4.003e-4		NC	1	2894.691	4
TUU			11/01/1	J	J	.001	J	.000	т_	T.0000 4		110	_	2007.001	

Model Name

: Schletter, Inc. : HCV

HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
489		17	max	0	1	0	2	0	1	-7.275e-6	12	NC	1_	NC	1
490			min	0	3	0	3	004	4	-4.003e-4	4	NC	1	5980.57	4
491		18	max	0	1	0	2	0	1	-7.275e-6	12	NC	1	NC	1
492			min	0	3	0	3	001	4	-4.003e-4	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-7.275e-6	12	NC	1	NC	1
494			min	0	1	0	1	0	1	-4.003e-4	4	NC	1	NC	1
495	M1	1	max	.01	3	.21	2	.704	4	8.341e-3	1	NC	1	NC	1
496			min	006	2	051	3	0	12	-1.814e-2	3	NC	1	NC	1
497		2	max	.01	3	.102	2	.683	4	7.769e-3	4	NC	5	NC	1
498			min	006	2	024	3	006	1	-9.003e-3	3	1262.68	2	NC	1
499		3		.01	3	.015	3	.66	4	1.389e-2	4	NC	5	NC	1
		-	max							1.3096-2					
500		-	min	006	2	012	2	008	1	-1.646e-4	1_	611.031	2	6139.082	5
501		4	max	.01	3	.077	3	.637	4	1.2e-2	4_	NC	<u>15</u>	NC	1
502			min	006	2	139	2	008	1	-4.165e-3	3	388.41	2	4436.998	
503		5	max	.01	3	.155	3	.613	4	1.01e-2	_4_	NC	15	NC	1
504			min	006	2	271	2	005	1	-8.23e-3	3	281.849	2	3572.722	5
505		6	max	.01	3	.239	3	.589	4	1.256e-2	2	8299.51	<u>15</u>	NC	1
506			min	006	2	398	2	002	1	-1.229e-2	3	222.895	2	3041.89	5
507		7	max	.009	3	.318	3	.563	4	1.675e-2	2	7014.126	15	NC	1
508			min	005	2	511	2	0	3	-1.636e-2	3	187.983	2	2660.378	4
509		8	max	.009	3	.385	3	.538	4	2.094e-2	2	6252.448	15	NC	1
510			min	005	2	6	2	0	12	-2.042e-2	3	167.289	2	2367.333	4
511		9	max	.009	3	.428	3	.512	4	2.342e-2	2	5853.434	15	NC	1
512		Ť	min	005	2	657	2	0	1	-2.089e-2	3	156.488	2	2164.94	4
513		10	max	.009	3	.444	3	.482	4	2.476e-2	2	5731.345	15	NC	1
514		10	min	005	2	675	2	0	10	-1.894e-2	3	153.314	2	2095.645	_
515		11	max	.009	3	.434	3	.449	4	2.611e-2	2	5853.136	15	NC	1
					2		2	_		-1.7e-2				2124.048	1
516		40	min	005		<u>656</u>		0	12		3	156.998	2		
517		12	max	.008	3	.398	3	.414	4	2.493e-2	2	6251.74	15	NC	1
518		40	min	005	2	<u>598</u>	2	0	1	-1.466e-2	3	168.79	2	2251.788	
519		13	max	.008	3	.339	3	.373	4	2.e-2	2	7012.744	<u>15</u>	NC	1
520			min	005	2	505	2	0	1	-1.173e-2	3	191.533	2	2655.682	4
521		14	max	.008	3	.264	3	.328	4	1.506e-2	2	8296.981	<u>15</u>	NC	1
522			min	005	2	388	2	0	12	-8.798e-3	3	230.328	2	3577.894	4
523		15	max	.008	3	.18	3	.282	4	1.013e-2	2	NC	15	NC	1
524			min	005	2	259	2	0	12	-5.868e-3	3	296.862	2	5812.16	4
525		16	max	.007	3	.091	3	.237	4	8.939e-3	4	NC	15	NC	1
526			min	005	2	128	2	0	12	-2.938e-3	3	419.411	2	NC	1
527		17	max	.007	3	.005	3	.196	4	1.014e-2	4	NC	5	NC	1
528			min	005	2	007	2	0	12	-7.614e-6	3	679.582	2	NC	1
529		18	max	.007	3	.096	2	.161	4	6.549e-3	2	NC	5	NC	1
530			min	005	2	073	3	0	12		3	1435.023	2	NC	1
531		19	max	.007	3	.188	2	.132	4	1.304e-2	2	NC	1	NC	1
532		1.0	min	005	2	147	3	0	1	-4.473e-3	3	NC	1	NC	1
533	M5	1	max	.031	3	.365	2	.704	4	0	1	NC	1	NC	1
534	IVIO		min	021	2	009	3	0	1	-1.086e-5	4	NC	1	NC	1
		2		.031		.178	2	-	_	7.111e-3		NC	5	NC	
535		 	max		3			.688	4		4_				1
536			min	021	2	003	3	0	1	0	1_	730.12	2	8453.059	
537		3	max	.031	3	.045	3	.667	4	1.406e-2	4	NC 040.047	15	NC 4070,000	1
538			min	022	2	036	2	0	1	0	1_	340.347	2	4978.222	4
539		4	max	.03	3	.169	3	.643	4	1.146e-2	4	8605.452	<u>15</u>	NC	1
540			min	021	2	296	2	0	1	0	1	206.067	2	3857.115	4
541		5	max	.029	3	.347	3	.617	4	8.853e-3	4	5978.225	15	NC	1
542			min	021	2	582	2	0	1	0	1	143.677	2	3313.462	4
543		6	max	.029	3	.55	3	.59	4	6.249e-3	4	4577.922	15	NC	1
544			min	02	2	868	2	0	1	0	1	110.269	2	2971.176	4
545		7	max	.028	3	.751	3	.563	4	3.644e-3	4	3773.678	15	NC	1
											_		_		

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
546			min	02	2	-1.129	2	0	1	0	1	91.012	2	2689.427	4
547		8	max	.027	3	.921	3	.537	4	1.04e-3	4	3308.118	15	NC	1
548			min	019	2	-1.339	2	0	1	0	1	79.836	2	2403.578	4
549		9	max	.027	3	1.031	3	.512	4	0	1	3069.857	15	NC	1
550			min	019	2	-1.472	2	0	1	-6.298e-6	5	74.107	2	2157.858	4
551		10	max	.026	3	1.071	3	.481	4	0	1	2998.09	15	NC	1
552			min	019	2	-1.518	2	0	1	-6.037e-6	5	72.432	2	2114.673	4
553		11	max	.025	3	1.044	3	.448	4	0	1	3070.035	<u> 15</u>	NC	1
554			min	018	2	-1.473	2	0	1	-5.776e-6	5	74.376	2	2156.406	4
555		12	max	.025	3	.953	3	.415	4	7.174e-4	4	3308.536	<u> 15</u>	NC	1
556			min	018	2	-1.335	2	0	1	0	1	80.724	2	2207.827	4
557		13	max	.024	3	.806	3	.375	4	2.515e-3	4		<u> 15</u>	NC	1
558			min	018	2	-1.114	2	0	1	0	1_	93.339	2	2583.775	4
559		14	max	.024	3	.621	3	.328	4	4.312e-3	4		15	NC	1
560			min	017	2	841	2	0	1	0	1_	115.589	2	3637.939	4
561		15	max	.023	3	.415	3	.279	4	6.11e-3	4		<u> 15</u>	NC	1
562			min	017	2	547	2	0	1	0	1_	155.488	2	6893.839	4
563		16	max	.022	3	.207	3	.231	4	7.907e-3	_4_		<u> 15</u>	NC	1
564			min	017	2	262	2	0	1	0	1_	233.406	2	NC	1
565		17	max	.022	3	.014	3	.189	4	9.705e-3	_4_		<u>15</u>	NC	1
566			min	017	2	019	2	0	1	0	1_	409.611	2	NC	1
567		18	max	.022	3	16	1	.156	4	4.909e-3	4_	NC	5	NC	1
568			min	017	2	148	3	0	1	0	_1_	922.906	2	NC	1
569		19	max	.022	3	.304	1	.132	4	0	1_	NC	1_	NC	1
570			min	016	2	293	3	0	1	-5.902e-6	4	NC	1_	NC	1
571	<u>M9</u>	1	max	.01	3	.21	2	.703	4	1.814e-2	3	NC	1_	NC	1
572			min	006	2	051	3	0	1	-8.341e-3	1_	NC	<u>1</u>	NC	1
573		2	max	.01	3	.102	2	.686	4	9.003e-3	3_	NC	5	NC	1
574			min	006	2	024	3	0	12	-4.014e-3	1_	1262.68	2	9290.856	4
575		3	max	.01	3	.015	3	<u>.665</u>	4	1.401e-2	4	NC	5_	NC	1
576			min	006	2	012	2	0	12	-1.824e-5	<u>10</u>	611.031	2	5339.567	4
577		4	max	.01	3	.077	3	<u>.641</u>	4	1.104e-2	5_		<u>15</u>	NC 1007.000	1
578		_	min	006	2	<u>139</u>	2	0	12	-4.177e-3	2	388.41	2	4027.999	4
579		5	max	.01	3	.155	3	.616	4	8.346e-3	5_		<u>15</u>	NC 0070 004	1
580		_	min	006	2	271	2	0	12	-8.367e-3	2	281.849	2	3373.994	4
581		6	max	.01	3	.239	3	.59	4	1.229e-2	3		<u>15</u>	NC 0000 074	1
582		7	min	006	2	398	2	0	12	-1.256e-2	2	222.895	2	2966.071	4
583		7	max	.009	3	.318	3	.563	4	1.636e-2	3_		<u>15</u>	NC OCEZ O 40	1
584		0	min	005	2	<u>511</u>	3	0	1	-1.675e-2	2	187.983	2	2657.948	1
585		8	max	.009	3	.385		.538	4	2.042e-2 -2.094e-2	3		<u>15</u>	NC	
586		0	min	005	2	<u>6</u>	2	<u>0</u>	1 1		2	167.289		2383.634	
587		9	max min	.009 005	3	.428 657	3	.512	4	2.089e-2 -2.342e-2	3		<u>15</u> 2	NC 2158.549	1
588 589		10		.009	3	<u>657</u> .444	3	<u> </u>	1 <u>2</u>	1.894e-2	2		<u>2</u> 15	NC	1
590		10	max	005	2	675	2	48 <u>Z</u>	1	-2.476e-2	2	153.314	2	2096.55	4
591		11	min max	.009	3	<u>675</u> .434	3	.449	4	1.7e-2	3		<u>2</u> 15	NC	1
592		11	min	005	2	656	2	<u>.449</u>	1	-2.611e-2	2	156.998	2	2131.563	_
593		12	max	.005	3	.398	3	.414	4	1.466e-2	3		<u>-</u> 15	NC	1
594		14	min	005	2	598	2	414 0	12	-2.493e-2	2	168.79	2	2236.867	4
595		13	max	.008	3	.339	3	.373	4	1.173e-2	3		<u>2</u> 15	NC	1
596		13	min	005	2	505	2	<u>.373</u> 0	10	-2.e-2	2	191.533	2	2653.501	4
597		14	max	.003	3	.264	3	.327	4	8.798e-3	3		2 15	NC	1
598		17	min	005	2	388	2	002	1	-1.506e-2	2	230.328	2	3665.564	_
599		15	max	.003	3	.18	3	.279	4	5.883e-3	5		- 15	NC	1
600		13	min	005	2	259	2	005	1	-1.013e-2	2	296.862	2	6300.443	_
601		16	max	.005	3	.091	3	.233	4	7.853e-3	5		<u>-</u> 15	NC	1
602		10	min	005	2	128	2	007	1	-5.193e-3	2	419.411	2	NC	1
002			1111111	005		120		007		J. 190 6- 3		713.411	_	INC	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
603		17	max	.007	3	.005	3	.191	4	9.864e-3	4	NC	5	NC	1
604			min	005	2	007	2	008	1	-5.266e-4	1	679.582	2	NC	1
605		18	max	.007	3	.096	2	.158	4	4.807e-3	5	NC	5	NC	1
606			min	005	2	073	3	006	1	-6.549e-3	2	1435.023	2	NC	1
607		19	max	.007	3	.188	2	.132	4	4.473e-3	3	NC	1	NC	1
608			min	005	2	147	3	0	12	-1.304e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)								
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)				
4.00	0.50	1.00	2500	7.87				

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	2/(NVC) / NVCO) I ed, v I C, v I II, v v by (OCO. D.4.1, D.O.Z. NO) & Eq. D Z 1)						
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:			_		

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	1/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

1.Project information

Customer company: Customer contact name: Customer e-mail:

Comment:

Project description:

Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 32-	40 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 32	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2732.0	1650.0	0.0	1650.0
2	2732.0	1650.0	0.0	1650.0
Sum	5464.0	3300.0	0.0	3300.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5464 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	ť _c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	I,N $\Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	$f_{ extit{short-term}}$	K _{sat}	τ _{k,cr} (psi)	
1035	1.00	1.00	1035	_
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	<i>N</i> _{a0} (lb)	
1035	0.50	6.000	9755	_
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ	$Y_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N$	ao (Sec. D.4.1 & Eq.	D-16b)

A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)	
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093	

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 32-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc/Avco) Yec, v Ye	$_{ed,V} arPsi_{c,V} arPsi_{h,V} arV_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
576.00	648.00	1.000	0.928	1.000	1.000	15593	0.70	9001

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.66	18939		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
737.64	839.68	1.000	1.000	1.000	18939	0.70	23292

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\textit{Cpg}} = \phi \min |\textit{KcpNag}\;;\; \textit{KcpNcbg}| = \phi \min |\textit{Kcp}(\textit{A}_\textit{Na} / \textit{A}_\textit{Na0}) \, \Psi_{\textit{ed},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, N_{\textit{a0}}\;;\; \textit{Kcp}(\textit{A}_\textit{Nc} / \textit{A}_\textit{Nco}) \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, N_{\textit{b}}|\; (\text{Eq. D-30b})$

, ,,,	1 1 3 7 1		(3,	r, , , , , , , ,	, ,		
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2732	6071	0.45	Pass
Concrete breakout	5464	10231	0.53	Pass
Adhesive	5464	8093	0.68	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1650	3156	0.52	Pass (Governs)
T Concrete breakout x+	3300	9001	0.37	Pass

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete breako	ut y- 1650	23292	2 0.0	07	Pass	
Pryout	3300	20601	0.1	16	Pass	
					-	
Interaction check	$N_{ua}/\phi N_n$	$V_{ua}/\phi V_n$	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.68	0.52	119.8 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.