FUNCŢII

Problema nr. 1

Fie funcţia $f: R \to R$ definită astfel:

$$f(x) = x^3 - 2$$

- a) Să se arate că funcția f(x) este o funcție bijectivă.
- b) Să se calculeze $f^{-1}(x)$.

Problema nr. 2

Fie A şi B două mulţimi. Fie F(x,y) predicatul "x este în corespondenţă cu y", în care $x \in A$ şi $y \in B$. Folosiţi cuantificatorii învăţaţi şi predicatul F(x,y) pentru a evidenţia faptul că F(x,y) descrie o funcţie.

Problema nr. 3

Daţi exemple de funcţii definite pe **Z** cu valori în **Z** care să aibă următoarele caracteristici:

- a) funcție surjectivă, dar nu injectivă
- b) funcție injectivă, dar nu surjectivă
- c) funcție injectivă și surjectivă
- d) funcție nici injectivă, nici surjectivă

Problema nr. 4

Fie trei funcții $f: N \to N$, $g: N \to N$, $h: N \to N$ definite prin relațiile:

$$f(x) = \begin{cases} 1 & x > 100 \\ 2 & x \le 100 \end{cases}$$
$$g(x) = x^2 + 1, \ \forall x \in N$$
$$h(x) = 2x + 1, \ \forall x \in N$$

- a) Să se verifice dacă funcțiile f, g, h sunt funcții injective și/sau surjective.
- b) Să se determine $h^{\circ}(g^{\circ}f)$ și $(h^{\circ}g)^{\circ}f$ și relația care există între cele două expresii.

Problema nr. 5

- a) Fie mulţimea D cu 5 elemente şi mulţimea C cu 2 elemente. Se definesc funcţiile $f:D\to C$.
 - (i) Câte funcţii f putem defini?
 - (ii) Câte din aceste funcții nu sunt surjective?
 - (iii) Câte din aceste funcţii nu sunt injective?
- b) Fie mulţimea D cu 2 elemente şi mulţimea C cu 5 elemente. Se definesc funcțiile $g:D\to C$.
 - (i) Câte funcții g putem defini?
 - (ii) Câte din aceste funcții nu sunt surjective?
 - (iii) Câte din aceste funcții nu sunt injective?

Problema nr. 6

Fie
$$S = \{x | x \in R \land x \ge 1\}$$
 şi $T = \{x | x \in R \land 0 < x \le 1\}$

Să se găsească o funcție $f: S \to T$ astfel încât funcția f să fie funcție bijectivă.

Indicație: trebuie să se demonstreze că expresia găsită este o funcție și că această funcție este funcție bijectivă.

Problema nr. 7

Fie $f: A \to B$ o funcție inversabilă și C și D submulțimi ale mulțimii B.

- a) Demonstraţi că $|C| = |f^{-1}(C)|$
- b) Demonstraţi că dacă C şi D sunt disjuncte, atunci la fel sunt şi $f^{-1}(C)$ şi $f^{-1}(D)$
- c) Demonstraţi că f^{-1} este inversabilă şi că $(f^{-1})^{-1} = f$
- d) Demonstrați că $\overline{f^{-1}(D)} = f^{-1}(\overline{D})$ (unde \overline{M} este complementul mulțimii M).
- e) Demonstrați că dacă funcția f este surjectivă și A și B sunt mulțimi finite atunci |A| = |B|

Problema nr. 8

Fie $f: A \to B$, $g: B \to A$ şi $h: A \times B \to C$ trei funcţii şi funcţia $k: A \times B \to C$ este definită de expresia $k(x, y) = h(g(y), f(x)), \forall x \in A$ și $\forall y \in B$.

- (i) Să se demonstreze că dacă f, g, h sunt funcții injective, atunci k este funcție injectivă.
- (ii) Să se demonstreze că dacă f, g, h sunt funcții surjective, atunci k este funcție surjectivă.

Problema nr. 9

Să se demonstreze că dacă x este un număr real atunci $\lfloor 2x \rfloor = \lfloor x \rfloor + \left\lfloor x + \frac{1}{2} \right\rfloor$.

Problema nr. 10

Să se demonstreze că [x + y] = [x] + [y].

Problema nr. 11

Fie funcția $f: A \rightarrow B$ și S și T submulțimi ale mulțimii A.

- (i) Să se demonstreze că $f(S \cap T) \subseteq f(S) \cap f(T)$.
- (ii) Ce condiție trebuie să îndeplinească funcția f pentru ca să avem egalitate între membrul stâng și cel drept al relației date? Demonstrație.
 - (iii) Să se demonstreze că $f(S \cup T) = f(S) \cup f(T)$.

Problema nr. 12

Fie S o submulţime a mulţimii universale U. Funcţia caracteristică f_s a lui S este o funcție al cărei domeniu este U și al cărei codomeniu este reprezentat de mulțimea $\{0, 1\}$ astfel încât $f_s(x) = 1$ dacă x este element al mulțimii S și $f_s(x) = 0$ dacă x nu este element al mulțimii S. Fie două mulțimi A și B. Să se demonstreze că pentru orice xavem relațiile:

(i)
$$f_{A \cap B}(x) = f_A(x) \cdot f_B(x)$$

(i)
$$f_{A \cap B}(x) = f_A(x) \cdot f_B(x)$$
 (ii) $f_{A \cup B}(x) = f_A(x) + f_B(x) - f_A(x) \cdot f_B(x)$

Problema nr. 13

Fie $f: S \to T$ şi $g: T \to U$ două funcții.

Să se demonstreze că dacă $g \circ f$ este o funcție injectivă atunci f este o funcție injectivă.

Să se demonstreze că dacă $g \circ f$ este o funcție surjectivă atunci g este o funcție surjectivă.

Problema nr. 14

Fie funcția $f: R^+ \to R$ definită astfel: $f(x) = x^2$. Să se determine:

a)
$$f^{-1}(\{1\})$$

b)
$$f^{-1}(\{0 < x < 1\})$$
 c) $f^{-1}(\{x \mid x > 4\})$

c)
$$f^{-1}(\{x \mid x > 4\})$$

Problema nr. 15

Fie funcția $g: R \to Z$ definită astfel: g(x) = |x|. Să se determine:

a)
$$g^{-1}(\{0\})$$

b)
$$g^{-1}(\{-1,0,1\})$$

a)
$$g^{-1}(\{0\})$$
 b) $g^{-1}(\{-1,0,1\})$ c) $g^{-1}(\{x \mid 0 < x < 1\})$