Loan Prediction Model

1 Introduction

1.0.1 Domain:

Financial Markets Analysis

1.0.2 Sub-Domain:

Loan Prediction

1.0.3 Problem Statement:

It is expected that the development of ML model that can help the company predict loan approval in **accelerating decision-making process** for determining whether an applicant is eligible for a loan or not.

2 Importing Libraries

```
[ ]: import numpy as np
      import pandas as pd
1
      import matplotlib.pyplot as plt
      import missingno as mso
      import seaborn as sns
      import warnings
      import os
      import scipy
      from scipy import stats
      from scipy.stats import pearsonr
      from scipy.stats import ttest_ind
      from sklearn.metrics import classification_report
      from sklearn.metrics import confusion_matrix
      from sklearn.preprocessing import MinMaxScaler
      from sklearn.model_selection import train_test_split
      from imblearn.over sampling import SMOTE
      from sklearn.svm import SVC
```

3 Reading Data Set

After importing libraries, we will also import the dataset that will be used.

```
[ ]: from google.colab import drive drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

```
[ ]: df = pd.read_csv("/loan_data_set.csv")
    df_raw = pd.read_csv("/loan_data_set.csv")
    df.head()
```

[]:		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	\
	0	LP001002	Male	No	0	Graduate	No	
	1	LP001003	Male	Yes	1	Graduate	No	
	2	LP001005	Male	Yes	0	Graduate	Yes	
	3	LP001006	Male	Yes	0	Not Graduate	No	
	4	LP001008	Male	No	0	Graduate	No	

	ApplicantIncome	CoapplicantIncome	LoanAmountL	.oan_Amount_Term \
0	5849	0.0	NaN	360.0
1	4583	1508.0	128.0	360.0
2	3000	0.0	66.0	360.0
3	2583	2358.0	120.0	360.0
4	6000	0.0	141.0	360.0

	Credit_History	Property_Area	Loan_Status
0	1.0	Urban	Υ
1	1.0	Rural	N
2	1.0	Urban	Υ
3	1.0	Urban	Υ
4	1.0	Urban	Υ

[]: print(df.shape)

(614, 13)

4 Data Exploration

This section will perform data exploration of "raw" data set that has been imported.

4.1 Categorical Variable

The first type of variable that I will explore is categorical variable.

4.1.1 Self Employed

[]: | df.Self_Employed.value_counts(dropna=False)

[]: No 500 Yes 82 NaN 32

Name: Self_Employed, dtype: int64

[]: sns.countplot(x="Self_Employed", data=df, palette="crest") plt.show()


```
print("Missing values percentage: {:.2f}%".format((countNull / (len(df. sSelf_Employed))*100)))
```

Percentage of Not self employed: 81.43% Percentage of self employed: 13.36% Missing values percentage: 5.21%

The number of applicants that are not self employed is higher compared to applicants that are self employed. It also can be seen, there are missing values in this column.

4.1.2 Credit History

[]: | df.Credit_History.value_counts(dropna=False)

[]: 1.0 475 0.0 89 NaN 50

Name: Credit_History, dtype: int64

[]: sns.countplot(x="Credit_History", data=df, palette="viridis") plt.show()

Percentage of Good credit history: 77.36% Percentage of Bad credit history: 14.50%

Missing values percentage: 8.14%

The number of applicants that have good credit history is higher compared to applicants that have bad credit history. It also can be seen, there are missing values in this column.

4.1.3 Loan Status

```
[ ]: df.Loan_Status.value_counts(dropna=False)
```

[]: Y 422 N 192

Name: Loan_Status, dtype: int64

[]: sns.countplot(x="Loan_Status", data=df, palette="YlOrBr") plt.show()

Percentage of Approved: 68.73% Percentage of Rejected: 31.27% Missing values percentage: 0.00%

The number of approved loans is higher compared to rejected loans. It also can be seen, there is no missing values in this column.

4.1.4 Loan Amount Term

[]: | df.Loan_Amount_Term.value_counts(dropna=False)

```
[]: 360.0
              512
     180.0
               44
     480.0
               15
     NaN
               14
     300.0
               13
     240.0
                4
     84.0
                4
     120.0
                3
     60.0
                2
     36.0
                2
     12.0
     Name: Loan_Amount_Term, dtype: int64
```

Name. Loan_Amount_Term, atype. into-

[]: sns.countplot(x="Loan_Amount_Term", data=df, palette="rocket") plt.show()


```
[]: count12 = len(df[df.Loan_Amount_Term == 12.0])
     count36 = len(df[df.Loan_Amount_Term == 36.0])
     count60 = len(df[df.Loan\_Amount\_Term == 60.0])
     count84 = len(df[df.Loan_Amount_Term == 84.0])
     count120 = len(df[df.Loan\_Amount\_Term == 120.0])
     count180 = len(df[df.Loan\_Amount\_Term == 180.0])
     count240 = len(df[df.Loan\_Amount\_Term == 240.0])
     count300 = len(df[df.Loan_Amount_Term == 300.0])
     count360 = len(df[df.Loan\_Amount\_Term == 360.0])
     count480 = len(df[df.Loan\_Amount\_Term == 480.0])
     countNull = len(df[df.Loan_Amount_Term.isnull()])
     print("Percentage of 12: {:.2f}%".format((count12 / (len(df.
      sLoan_Amount_Term))*100)))
     print("Percentage of 36: {:.2f}%".format((count36 / (len(df.
      Loan_Amount_Term))*100)))
     print("Percentage of 60: {:.2f}%".format((count60 / (len(df.
      sLoan_Amount_Term))*100)))
     print("Percentage of 84: {:.2f}%".format((count84 / (len(df.
      sLoan_Amount_Term))*100)))
     print("Percentage of 120: {:.2f}%".format((count120 / (len(df.
      sLoan_Amount_Term))*100)))
     print("Percentage of 180: {:.2f}%".format((count180 / (len(df.
      sLoan_Amount_Term))*100)))
     print("Percentage of 240: {:.2f}%".format((count240 / (len(df.
      sLoan_Amount_Term))*100)))
     print("Percentage of 300: {:.2f}%".format((count300 / (len(df.
      sLoan_Amount_Term))*100)))
     print("Percentage of 360: {:.2f}%".format((count360 / (len(df.
      sLoan_Amount_Term))*100)))
     print("Percentage of 480: {:.2f}%".format((count480 / (len(df.
      sLoan_Amount_Term))*100)))
     print("Missing values percentage: {:.2f}%".format((countNull / (len(df.
      sLoan_Amount_Term))*100)))
    Percentage of 12: 0.16%
    Percentage of 36: 0.33%
    Percentage of 60: 0.33%
    Percentage of 84: 0.65%
    Percentage of 120: 0.49%
    Percentage of 180: 7.17%
    Percentage of 240: 0.65%
    Percentage of 300: 2.12%
    Percentage of 360: 83.39%
    Percentage of 480: 2.44%
    Missing values percentage: 2.28%
```

As can be seen from the results, **the 360 days loan duration is the most popular** compared to others.

4.2 Numerical Variable

The second variable that explored is categorical variable.

4.2.1 Describe Numerical Variable

This section will show mean, count, std, min, max and others using describe function.

[]: | df[['ApplicantIncome', 'CoapplicantIncome', 'LoanAmount']].describe()

[]:		ApplicantIncome	CoapplicantIncome	LoanAmount
	count	614.000000	614.000000	592.000000
	mean	5403.459283	1621.245798	146.412162
	std	6109.041673	2926.248369	85.587325
	min	150.000000	0.000000	9.000000
	25%	2877.500000	0.000000	100.000000
	50%	3812.500000	1188.500000	128.000000
	75%	5795.000000	2297.250000	168.000000
	max	81000.000000	41667.000000	700.000000

Mathematical Formulation: Mean & Standard Deviation

$$mean = \frac{\sum X}{count}$$

$$ext{std} = \sqrt{rac{\sum (X- ext{mean})^2}{ ext{count}-1}}$$

4.2.2 Distribution of Numerical Variable

This section will show the distribution of numerical variable using histogram.

Histogram Distribution

```
[]: sns.set(style="darkgrid")
fig, axs = plt.subplots(2, 2, figsize=(10, 8))

sns.histplot(data=df, x="ApplicantIncome", kde=True, ax=axs[0, 0],
scolor='green')
sns.histplot(data=df, x="CoapplicantIncome", kde=True, ax=axs[0, 1],
scolor='skyblue')
sns.histplot(data=df, x="LoanAmount", kde=True, ax=axs[1, 0], color='orange');
```


The distribution of **Applicant income**, **Co Applicant Income**, and **Loan Amount** are **positively skewed** and **it has outliers**

4.3 Bivariate analysis

This section will show additional exploration from each variables. The additional exploration are: * categorical w/ categorical * categorical w/ numerical * numerical w/ numerical

4.3.1 Categorical - Categorical

Most not self employed applicants have good credit compared to self employed applicants.

4.3.2 Categorical - Numerical

sns.boxplot(x="Loan_Status", y="ApplicantIncome", data=df, palette="mako");

It can be seen that there are lots of outliers in Applicant Income, and the distribution also positively skewed

4.3.3 Numerical - Numerical

Pearson correlation: -0.11660458122889966

T Test and P value:

TtestResult(statistic=13.835753259915665, pvalue=1.460983948423972e-40, df=1226.0)

- There is **negative correlation** between Applicant income and Co Applicant Income.
- The correlation coefficient is **significant** at the 95 per cent confidence interval, as it has a **p-value of 1.46**

Mathematical Formulation: Pearson Coefficient

$$r = rac{\sum_{i=1}^{n}(X_{i}-ar{X})(Y_{i}-ar{Y})}{\sqrt{\sum_{i=1}^{n}(X_{i}-ar{X})^{2}\sum_{i=1}^{n}(Y_{i}-ar{Y})^{2}}}$$

4.4 Null Values

- []: | df.isnull().sum().sort_values(ascending=False)
- []: Credit_History 50 Self_Employed 32 LoanAmount 22 Dependents 15

Loan_Amount_Term 14 Gender 13 3 Married Loan_ID 0 Education 0 ApplicantIncome 0 CoapplicantIncome 0 Property_Area 0 Loan_Status 0 dtype: int64

```
[]: plt.figure(figsize = (24, 5))
axz = plt.subplot(1,2,2)
mso.bar(df, ax = axz, fontsize = 12);
```


Previously, the null values has been explored for Categorical Variables. In this section, the null values has been explored **for all variables** in the dataset.

5 Data Preprocessing

5.1 Drop Unnecessary Variables

```
[ ]: df = df.drop(['Loan_ID'], axis=1)
df_raw = df_raw.drop(['Loan_ID'], axis=1)
```

[]: df.head()

[]:	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	\
() Male	No	0	Graduate	No	5849	
	I Male	Yes	1	Graduate	No	4583	
í	2 Male	Yes	0	Graduate	Yes	3000	
3	3 Male	Yes	0	Not Graduate	No	2583	
4	4 Male	No	0	Graduate	No	6000	

	CoapplicantIncome	LoanAmount Loan	_Amount_Term Credi	t_History \	١
0	0.0	NaN	360.0	1.0	
1	1508.0	128.0	360.0	1.0	
2	0.0	66.0	360.0	1.0	
3	2358.0	120.0	360.0	1.0	
4	0.0	141.0	360.0	1.0	

Property_Area Loan_Status

0	Urban	Y
1	Rural	N
2	Urban	Y
3	Urban	Y
4	Urban	Υ

[]: df_raw.head()

[]:		Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	\
	0	Male	No	0	Graduate	No	5849	
	1	Male	Yes	1	Graduate	No	4583	
	2	Male	Yes	0	Graduate	Yes	3000	
	3	Male	Yes	0	Not Graduate	No	2583	
	4	Male	No	0	Graduate	No	6000	

	CoapplicantIncome	LoanAmount Loar	ı_Amount_Term Credi	t_History \
0	0.0	NaN	360.0	1.0
1	1508.0	128.0	360.0	1.0
2	0.0	66.0	360.0	1.0
3	2358.0	120.0	360.0	1.0
4	0.0	141 0	360.0	1 0

Property_Area Loan_Status

0	Urban	Υ
1	Rural	Ν
2	Urban	Υ
3	Urban	Υ
4	Urban	Υ

5.2 Handling Missing Values

5.2.1 Approach 1: Remove missing values

[]: | df_raw.dropna(inplace=True)

5.2.2 Approach 2: Data Imputation

Imputation is a technique for substituting an estimated value for missing values in a dataset. The imputation will be performed for variables that have missing values.

Categorical Variables

The imputation for categorical variables will be performed using **mode**.

[]: df['Self_Employed'].fillna(df['Self_Employed'].mode()[0],inplace=True) df['Credit_History'].fillna(df['Credit_History'].mode()[0],inplace=True) df['Loan_Amount_Term'].fillna(df['Loan_Amount_Term'].mode()[0],inplace=True)

Numerical Variables

This imputation for numerical variables using **mean**.

df['LoanAmount'].fillna(df['LoanAmount'].mean(),inplace=True)

[]: df.head()

[]:		Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	\
	0	Male	No	0	Graduate	No	5849	
	1	Male	Yes	1	Graduate	No	4583	
	2	Male	Yes	0	Graduate	Yes	3000	
	3	Male	Yes	0	Not Graduate	No	2583	
	4	Male	Nο	0	Graduate	Nο	6000	

	Coapplicantificome	LOAHAIHOUHLL	oan_Amount_remicreuit_i	mistory /	
0	0.0	146.412162	360.0	1.0	
1	1508.0	128.000000	360.0	1.0	
2	0.0	66.000000	360.0	1.0	
3	2358.0	120.000000	360.0	1.0	
4	0.0	141.000000	360.0	1.0	

Property_Area Loan_Status

0	Urban	Y
1	Rural	N
2	Urban	Υ
3	Urban	Υ
4	Urban	Υ

5.3 Handle Categorical Data

5.3.1 Removing Categorical Values

Categorical data needs to be handled since SVM algorithm doesnot support non-numerical data []: values.

```
df_raw = df_raw.drop(['Gender', 'Married', 'Education','Self_Employed',_
s'Property_Area','Dependents'], axis = 1)
```

```
[ ]: df_raw.head()
```

1

2

3

4

5

```
[]:
        ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term \
                   4583
                                    1508.0
                                                 128.0
     2
                   3000
                                                  66.0
                                                                    360.0
                                        0.0
     3
                   2583
                                    2358.0
                                                 120.0
                                                                   360.0
     4
                   6000
                                        0.0
                                                 141.0
                                                                   360.0
     5
                   5417
                                    4196.0
                                                 267.0
                                                                   360.0
```

Υ

Credit_History Loan_Status 1.0 N 1.0 Y 1.0 Y 1.0 Y

1.0

5.3.2 One-Hot Encoding

Here, transform categorical variables into a form that could be provided by ML algorithms to do

[]: df.head()

[]:	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term \
0	5849	0.0	146.412162	360.0
1	4583	1508.0	128.000000	360.0
2	3000	0.0	66.000000	360.0
3	2583	2358.0	120.000000	360.0
4	6000	0.0	141.000000	360.0

	Credit_History	Gender	Married	Dependents_0	Dependents_1	Dependents_2	\
0	1.0	1	0	1	0	0	
1	1.0	1	1	0	1	0	
2	1.0	1	1	1	0	0	
3	1.0	1	1	1	0	0	
4	1.0	1	0	1	0	0	

	Dependents_3+ E	ducation	Self_Employed	Prop	erty_Area_Rural	\
0	. 0	1	. , 0	·	0	
1	0	1	0		1	
2	0	1	1		0	
3	0	0	0		0	
4	0	1	0		0	
0	Property_Area_Ser	miurban 0	Property_Area_U	rban 1	Loan_Status	
1		0		0	0	
2		0		1	1	
3		0		1	1	
4		0		1	1	

5.4 Remove Outliers & Infinite values

Since there are outliers, the outliers will be removed.

```
[]: Q1 = df.quantile(0.25)

Q3 = df.quantile(0.75)

IQR = Q3 - Q1

df = df[\sim((df < (Q1 - 1.5 * IQR)) | (df > (Q3 + 1.5 * IQR))).any(axis=1)]
```

[]: | df.head()

[]:	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term
0	5849	0.0	146.412162	360.0
4	6000	0.0	141.000000	360.0
13	1853	2840.0	114.000000	360.0
15	4950	0.0	125.000000	360.0
19	2600	3500.0	115.000000	360.0

	Credit_History	Gender	Married	Dependents_0	Dependents_1	Dependents_2	\
0	1.0	1	0	1	0	0	
4	1.0	1	0	1	0	0	
13	1.0	1	0	1	0	0	
15	1.0	1	0	1	0	0	
19	1.0	1	1	1	0	0	

 \setminus

	Dependents_3+ Edu	ıcation	Self_Employed	Property_Area_Rural	\
0	0	1	0	0	
4	0	1	0	0	
13	0	1	0	1	
15	0	1	0	0	
19	0	1	0	0	

Property_Area_Semiurban Property_Area_Urban Loan_Status

0	0	1	1
4	0	1	1
4 13	0	0	0
15	0	1	1
19	0	1	1

5.5 Skewed Distribution Treatment

Previously, it was already shown that **distribution for ApplicantIncome**, **CoapplicantIncome**, and **LoanAmount is positively skewed**.

```
# Square Root Transformation
df.ApplicantIncome = np.sqrt(df.ApplicantIncome)
df.CoapplicantIncome = np.sqrt(df.CoapplicantIncome)
df.LoanAmount = np.sqrt(df.LoanAmount)
```

```
[]: sns.set(style="darkgrid")
fig, axs = plt.subplots(2, 2, figsize=(10, 8))
sns.histplot(data=df, x="ApplicantIncome", kde=True, ax=axs[0, 0],
scolor='green')
sns.histplot(data=df, x="CoapplicantIncome", kde=True, ax=axs[0, 1],
scolor='skyblue')
sns.histplot(data=df, x="LoanAmount", kde=True, ax=axs[1, 0], color='orange');
```


As can be seen, the distribution after using log transformation are much better compared to original distribution.

5.6 Features Separating

Dependent features (Loan_Status) will be seperated from independent features.

```
[ ]: X = df.drop(["Loan_Status"], axis=1)
y = df["Loan_Status"]

X_raw = df_raw.drop(["Loan_Status"], axis=1)
y_raw = df_raw["Loan_Status"]
```

[]: df.head()

[]:		ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term \
	0	76.478755	0.000000	12.100089	360.0
	4	77.459667	0.000000	11.874342	360.0
	13	43.046487	53.291650	10.677078	360.0
	15	70.356236	0.000000	11.180340	360.0
	19	50 990195	59 160798	10 723805	360.0

	Credit_History	Gender	Married	Dependents_0 Depe	endents_1 Depen	dents_2 \
0	1.0	1	0	1	0	0
4	1.0	1	0	1	0	0
13	1.0	1	0	1	0	0
15	1.0	1	0	1	0	0
19	1.0	1	1	1	0	0

	Dependents_3+ Educ	ation	Self_Employed	Property_Area_Rural	
0	0	1	0	0	
4	0	1	0	0	
13	0	1	0	1	
15	0	1	0	0	
19	0	1	0	0	

	Property_Area_Semiurban	Property_Area_Urban	Loan_Status
0	0	1	1
4	0	1	1
13	0	0	0
15	0	1	1
19	0	1	1

[]: df_raw.head()

```
[]:
        ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term \
                   4583
                                    1508.0
                                                  128.0
                                                                    360.0
                   3000
                                                                    360.0
     2
                                        0.0
                                                   66.0
     3
                   2583
                                    2358.0
                                                  120.0
                                                                    360.0
     4
                   6000
                                                  141.0
                                                                    360.0
                                        0.0
     5
                                    4196.0
                   5417
                                                  267.0
                                                                    360.0
        Credit_History Loan_Status
     1
                   1.0
                                  N
     2
                   1.0
                                  Υ
     3
                   1.0
                                  Υ
     4
                   1.0
                                  Υ
     5
                   1.0
                                  Υ
```

5.7 SMOTE Technique

Previously, it was seen that **the number between approved and rejected loan is imbalanced**. In this section, **oversampling technique will be used to avoid overfitting**,

```
    X, y = SMOTE().fit_resample(X, y)
    sns.set_theme(style="darkgrid")
    sns.countplot(y=y, data=df, palette="coolwarm")
    plt.ylabel('Loan Status')
    plt.xlabel('Total')
    plt.show()
```


As can be seen, the distrubtion of Loan status are now **balanced**.

5.8 Data Normalization - data normalization will be performed to normalize the range of independent variables or features of data.

[]: pd.DataFrame(X).head() []: ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term \ 0 76.478755 0.000000 12.100089 360.0 77.459667 0.000000 11.874342 360.0 1 53.291650 2 43.046487 10.677078 360.0 3 70.356236 0.000000 11.180340 360.0 4 50.990195 59.160798 10.723805 360.0 Gender Married Dependents_0 Dependents_1 Dependents_2 Credit_History 0 1.0 0 1 1.0 1 0 1 0 0 2 1.0 1 0 0 0 3 1.0 0 0 0 1 4 1.0 1 0 0

```
Dependents_3+ Education Self_Employed Property_Area_Rural
0
                0
                                                                   0
1
                            1
                                            0
2
                0
                            1
                                            0
                                                                   1
3
                0
                                                                   0
                            1
                                            0
                0
                                            0
                                                                   0
```

Property_Area_Semiurban Property_Area_Urban

0	0	1
1	0	1
2	0	0
3	0	1
4	0	1

[]: X = MinMaxScaler().fit_transform(X)

[]: pd.DataFrame(X).head()

Mathematical Formulation: MinMax Normalization

$$X_{ ext{normalized}} = rac{X - \min(X)}{\max(X) - \min(X)}$$

5.9 Splitting Data Set

The data set will be split into **80% train and 20% test**.

6 Model

6.1 Support Vector Machine (SVM)

SVC trained with **PARTIALLY** pre-processed data:

```
[]: SVCclassifier_raw = SVC(kernel='rbf', max_iter=500)
SVCclassifier_raw.fit(X_raw_train, y_raw_train)

y_raw_pred = SVCclassifier_raw.predict(X_raw_test)

print(classification_report(y_raw_test, y_raw_pred))
print(confusion_matrix(y_raw_test, y_raw_pred))

SVCAcc_raw = accuracy_score(y_raw_pred,y_raw_test)
print('SVC_raw accuracy: {:.2f}%'.format(SVCAcc_raw*100))
```

	precision	recall	f1-score	support
N	0.00	0.00	0.00	35
Υ	0.64	1.00	0.78	61
accuracy			0.64	96
macro avg	0.32	0.50	0.39	96
weighted avg	0.40	0.64	0.49	96

[[0 35] [0 61]]

SVC_raw accuracy: 63.54%

SVC trained with **FULLY** pre-processed data:

```
[]: SVCclassifier = SVC(kernel='rbf', max_iter=500)
SVCclassifier.fit(X_train, y_train)

y_pred = SVCclassifier.predict(X_test)

print(classification_report(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))

from sklearn.metrics import accuracy_score
SVCAcc = accuracy_score(y_pred,y_test)
print('SVC accuracy: {:.2f}%'.format(SVCAcc*100))
```

	precision	recall	f1-score	support
0	0.89	0.76	0.82	21
1	0.81	0.92	0.86	24
accuracy			0.84	45
macro avg	0.85	0.84	0.84	45
weighted avg	0.85	0.84	0.84	45

[[16 5] [2 22]]

SVC accuracy: 84.44%

7 Model Comparison

```
[]: accuracy = pd.DataFrame({'Model': ['SVC','SVC_RAW'], 'Accuracy': [SVCAcc*100,_ sVCAcc_raw*100]})
print(accuracy)
```

```
Model Accuracy
0 SVC 84.444444
1 SVC_RAW 63.541667
```

It can be seen that the accuracy achieved of the **model with the pre-processed data is 84.44%** which is much higher compared to the accuracy of the **model without pre-processed data which is 63.54%**

8 Hyperparameter Tuning using GridSearchCV

```
[]: from sklearn.model_selection import GridSearchCV param_grid = {'C': [0.1,1, 10, 100], 'gamma': [1,0.1,0.01,0.001],'kernel':_s['rbf', 'poly', 'sigmoid']}
```

```
grid = GridSearchCV(SVC(),param_grid,refit=True,verbose=2)
grid.fit(X_train,y_train)
grid_predictions = grid.predict(X_test)
print()
best_model = grid.best_estimator_
best_parameters = grid.best_params_
best_f1 = grid.best_score_
print()
print('The best model was:', best_model)
print('The best parameter values were:', best_parameters)
print('The best f1-score was:', best_f1)
print()
print(confusion_matrix(y_test,grid_predictions))
print()
print(classification_report(y_test,grid_predictions))
from sklearn.metrics import accuracy_score
SVCAcc = accuracy_score(y_test,grid_predictions)
print('SVC accuracy: {:.2f}%'.format(SVCAcc*100))
Fitting 5 folds for each of 48 candidates, totalling 240 fits
[CV] END ...C=0.1, gamma=1, kernel=rbf; total time= 0.0s
[CV] END ...C=0.1, gamma=1, kernel=poly; total time=0.0s
[CV] END ...C=0.1, gamma=1, kernel=poly; total time=0.0s
[CV] END ...C=0.1, gamma=1, kernel=poly; total time= 0.0s
[CV] END ...C=0.1, gamma=1, kernel=poly; total time= 0.0s
[CV] END ...C=0.1, gamma=1, kernel=poly; total time= 0.0s
[CV] END ...C=0.1, gamma=1, kernel=sigmoid; total time= 0.0s
[CV] END ...C=0.1, gamma=0.1, kernel=rbf; total time= 0.0s
[CV] END ...C=0.1, gamma=0.1, kernel=poly; total time= 0.0s
[CV] END ...C=0.1, gamma=0.1, kernel=poly; total time= 0.0s
[CV] END ...C=0.1, gamma=0.1, kernel=poly; total time= 0.0s
```

[CV] END ...C=0.1, gamma=0.1, kernel=poly; total time= 0.0s

```
[CV] END ...C=0.1, gamma=0.1, kernel=poly; total time= 0.0s
[CV] END ...C=0.1, gamma=0.1, kernel=sigmoid; total time= 0.0s
[CV] END ... C=0.1, gamma=0.1, kernel=sigmoid; total time= 0.0s
[CV] END ...C=0.1, gamma=0.01, kernel=rbf; total time=0.0s
[CV] END ...C=0.1, gamma=0.01, kernel=poly; total time= 0.0s
[CV] END ...C=0.1, gamma=0.01, kernel=sigmoid; total time= 0.0s
[CV] END ...C=0.1, gamma=0.001, kernel=rbf; total time=0.0s
[CV] END ...C=0.1, gamma=0.001, kernel=poly; total time= 0.0s
[CV] END ...C=0.1, gamma=0.001, kernel=sigmoid; total time= 0.0s
[CV] END ...C=1, gamma=1, kernel=rbf; total time=
[CV] END ...C=1, gamma=1, kernel=rbf; total time= 0.0s
[CV] END ...C=1, gamma=1, kernel=poly; total time=0.0s
[CV] END ...C=1, gamma=1, kernel=poly; total time= 0.0s
[CV] END ...C=1, gamma=1, kernel=poly; total time=0.0s
[CV] END ...C=1, gamma=1, kernel=poly; total time=0.0s
[CV] END ...C=1, gamma=1, kernel=poly; total time=0.0s
[CV] END ...C=1, gamma=1, kernel=sigmoid; total time= 0.0s
[CV] END ...C=1, gamma=1, kernel=sigmoid; total time=0.0s
```

```
[CV] END ...C=1, gamma=1, kernel=sigmoid; total time=
                                                         0.0s
[CV] END ...C=1, gamma=1, kernel=sigmoid; total time=
                                                         0.0s
[CV] END ...C=1, gamma=1, kernel=sigmoid; total time=
                                                         0.0s
[CV] END ...C=1, gamma=0.1, kernel=rbf; total time=
                                                       0.0s
[CV] END ...C=1, gamma=0.1, kernel=rbf; total time=
                                                       0.0s
[CV] END ...C=1, gamma=0.1, kernel=rbf; total time=
                                                       0.0s
[CV] END ...C=1, gamma=0.1, kernel=rbf; total time=
                                                       0.0s
[CV] END ...C=1, gamma=0.1, kernel=rbf; total time=
                                                       0.0s
[CV] END ...C=1, gamma=0.1, kernel=poly; total time=
                                                        0.0s
[CV] END ...C=1, gamma=0.1, kernel=poly; total time=
                                                        0.0s
[CV] END ...C=1, gamma=0.1, kernel=poly; total time=
                                                        0.0s
[CV] END ...C=1, gamma=0.1, kernel=poly; total time=
                                                        0.0s
[CV] END ...C=1, gamma=0.1, kernel=poly; total time=
                                                        0.0s
[CV] END ...C=1, gamma=0.1, kernel=sigmoid; total time=
                                                           0.0s
[CV] END ...C=1, gamma=0.1, kernel=sigmoid; total time=
                                                           0.0s
[CV] END ...C=1, gamma=0.1, kernel=sigmoid; total time=
                                                           0.0s
[CV] END ...C=1, gamma=0.1, kernel=sigmoid; total time=
                                                           0.0s
[CV] END ...C=1, gamma=0.1, kernel=sigmoid; total time=
                                                           0.0s
[CV] END ...C=1, gamma=0.01, kernel=rbf; total time=
                                                        0.0s
[CV] END ...C=1, gamma=0.01, kernel=rbf; total time=
                                                        0.0s
[CV] END ...C=1, gamma=0.01, kernel=rbf; total time=
                                                        0.0s
[CV] END ...C=1, gamma=0.01, kernel=rbf; total time=
                                                        0.0s
[CV] END ...C=1, gamma=0.01, kernel=rbf; total time=
                                                        0.0s
[CV] END ...C=1, gamma=0.01, kernel=poly; total time=
                                                         0.0s
[CV] END ...C=1, gamma=0.01, kernel=poly; total time=
                                                         0.0s
[CV] END ...C=1, gamma=0.01, kernel=poly; total time=
                                                         0.0s
[CV] END ...C=1, gamma=0.01, kernel=poly; total time=
                                                         0.0s
[CV] END ...C=1, gamma=0.01, kernel=poly; total time=
                                                         0.0s
[CV] END ...C=1, gamma=0.01, kernel=sigmoid; total time=
                                                            0.0s
[CV] END ...C=1, gamma=0.01, kernel=sigmoid; total time=
                                                            0.0s
[CV] END ...C=1, gamma=0.01, kernel=sigmoid; total time=
                                                            0.0s
[CV] END ...C=1, gamma=0.01, kernel=sigmoid; total time=
                                                            0.0s
[CV] END ...C=1, gamma=0.01, kernel=sigmoid; total time=
                                                            0.0s
[CV] END ...C=1, gamma=0.001, kernel=rbf; total time=
                                                         0.0s
[CV] END ...C=1, gamma=0.001, kernel=rbf; total time=
                                                         0.0s
[CV] END ...C=1, gamma=0.001, kernel=rbf; total time=
                                                         0.0s
[CV] END ...C=1, gamma=0.001, kernel=rbf; total time=
                                                         0.0s
[CV] END ...C=1, gamma=0.001, kernel=rbf; total time=
                                                         0.0s
[CV] END ...C=1, gamma=0.001, kernel=poly; total time=
                                                          0.0s
[CV] END ...C=1, gamma=0.001, kernel=poly; total time=
                                                          0.0s
[CV] END ...C=1, gamma=0.001, kernel=poly; total time=
                                                          0.0s
[CV] END ...C=1, gamma=0.001, kernel=poly; total time=
                                                          0.0s
[CV] END ...C=1, gamma=0.001, kernel=poly; total time=
                                                          0.0s
[CV] END ...C=1, gamma=0.001, kernel=sigmoid; total time=
                                                             0.0s
[CV] END ...C=1, gamma=0.001, kernel=sigmoid; total time=
                                                             0.0s
[CV] END ...C=1, gamma=0.001, kernel=sigmoid; total time=
                                                             0.0s
[CV] END ...C=1, gamma=0.001, kernel=sigmoid; total time=
                                                             0.0s
[CV] END ...C=1, gamma=0.001, kernel=sigmoid; total time=
                                                             0.0s
```

```
[CV] END ...C=10, gamma=1, kernel=rbf; total time=
                                                      0.0s
[CV] END ...C=10, gamma=1, kernel=poly; total time=
                                                      0.0s
[CV] END ...C=10, gamma=1, kernel=poly; total time=
                                                      0.0s
[CV] END ...C=10, gamma=1, kernel=poly; total time=
                                                       0.0s
                                                       0.0s
[CV] END ...C=10, gamma=1, kernel=poly; total time=
[CV] END ...C=10, gamma=1, kernel=poly; total time=
                                                      0.0s
[CV] END ...C=10, gamma=1, kernel=sigmoid; total time=
                                                          0.0s
[CV] END ...C=10, gamma=1, kernel=sigmoid; total time=
                                                          0.0s
[CV] END ...C=10, gamma=1, kernel=sigmoid; total time=
                                                          0.0s
[CV] END ...C=10, gamma=1, kernel=sigmoid; total time=
                                                          0.0s
[CV] END ...C=10, gamma=1, kernel=sigmoid; total time=
                                                          0.0s
[CV] END ...C=10, gamma=0.1, kernel=rbf; total time=
                                                        0.0s
[CV] END ...C=10, gamma=0.1, kernel=rbf; total time=
                                                        0.0s
[CV] END ...C=10, gamma=0.1, kernel=rbf; total time=
                                                        0.0s
[CV] END ...C=10, gamma=0.1, kernel=rbf; total time=
                                                        0.0s
[CV] END ...C=10, gamma=0.1, kernel=rbf; total time=
                                                        0.0s
[CV] END ...C=10, gamma=0.1, kernel=poly; total time=
                                                         0.0s
[CV] END ...C=10, gamma=0.1, kernel=poly; total time=
                                                         0.0s
[CV] END ...C=10, gamma=0.1, kernel=poly; total time=
                                                         0.0s
[CV] END ...C=10, gamma=0.1, kernel=poly; total time=
                                                         0.0s
[CV] END ...C=10, gamma=0.1, kernel=poly; total time=
                                                         0.0s
[CV] END ...C=10, gamma=0.1, kernel=sigmoid; total time=
                                                            0.0s
[CV] END ...C=10, gamma=0.1, kernel=sigmoid; total time=
                                                            0.0s
[CV] END ...C=10, gamma=0.1, kernel=sigmoid; total time=
                                                            0.0s
[CV] END ...C=10, gamma=0.1, kernel=sigmoid; total time=
                                                            0.0s
[CV] END ...C=10, gamma=0.1, kernel=sigmoid; total time=
                                                            0.0s
[CV] END ...C=10, gamma=0.01, kernel=rbf; total time=
                                                         0.0s
[CV] END ...C=10, gamma=0.01, kernel=rbf; total time=
                                                         0.0s
[CV] END ...C=10, gamma=0.01, kernel=rbf; total time=
                                                         0.0s
[CV] END ...C=10, gamma=0.01, kernel=rbf; total time=
                                                         0.0s
[CV] END ...C=10, gamma=0.01, kernel=rbf; total time=
                                                         0.0s
[CV] END ...C=10, gamma=0.01, kernel=poly; total time=
                                                          0.0s
[CV] END ...C=10, gamma=0.01, kernel=poly; total time=
                                                          0.0s
[CV] END ...C=10, gamma=0.01, kernel=poly; total time=
                                                          0.0s
[CV] END ...C=10, gamma=0.01, kernel=poly; total time=
                                                          0.0s
[CV] END ...C=10, gamma=0.01, kernel=poly; total time=
                                                          0.0s
[CV] END ...C=10, gamma=0.01, kernel=sigmoid; total time=
                                                             0.0s
[CV] END ...C=10, gamma=0.01, kernel=sigmoid; total time=
                                                             0.0s
[CV] END ...C=10, gamma=0.01, kernel=sigmoid; total time=
                                                             0.0s
[CV] END ...C=10, gamma=0.01, kernel=sigmoid; total time=
                                                             0.0s
[CV] END ...C=10, gamma=0.01, kernel=sigmoid; total time=
                                                             0.0s
[CV] END ...C=10, gamma=0.001, kernel=rbf; total time=
                                                          0.0s
[CV] END ...C=10, gamma=0.001, kernel=rbf; total time=
                                                          0.0s
[CV] END ...C=10, gamma=0.001, kernel=rbf; total time=
                                                          0.0s
```

```
[CV] END ...C=10, gamma=0.001, kernel=rbf; total time= 0.0s
[CV] END ...C=10, gamma=0.001, kernel=rbf; total time= 0.0s
[CV] END ...C=10, gamma=0.001, kernel=poly; total time=0.0s
[CV] END ...C=10, gamma=0.001, kernel=sigmoid; total time= 0.0s
[CV] END ...C=100, gamma=1, kernel=rbf; total time= 0.0s
[CV] END ...C=100, gamma=1, kernel=rbf; total time=0.0s
[CV] END ...C=100, gamma=1, kernel=rbf; total time= 0.0s
[CV] END ...C=100, gamma=1, kernel=rbf; total time=0.0s
[CV] END ...C=100, gamma=1, kernel=rbf; total time= 0.0s
[CV] END ...C=100, gamma=1, kernel=poly; total time=0.0s
[CV] END ...C=100, gamma=1, kernel=sigmoid; total time= 0.0s
[CV] END ...C=100, gamma=0.1, kernel=rbf; total time= 0.0s
[CV] END ...C=100, gamma=0.1, kernel=poly; total time= 0.0s
[CV] END ...C=100, gamma=0.1, kernel=sigmoid; total time=0.0s
[CV] END ...C=100, gamma=0.01, kernel=rbf; total time= 0.0s
[CV] END ...C=100, gamma=0.01, kernel=poly; total time=0.0s
```

```
[CV] END ...C=100, gamma=0.01, kernel=poly; total time=0.0s
[CV] END ...C=100, gamma=0.01, kernel=sigmoid: total time=0.0s
[CV] END ...C=100, gamma=0.01, kernel=sigmoid; total time= 0.0s
[CV] END ...C=100, gamma=0.001, kernel=rbf; total time=0.0s
[CV] END ...C=100, gamma=0.001, kernel=poly; total time=0.0s
[CV] END ...C=100, gamma=0.001, kernel=sigmoid; total time=0.0s
[CV] END ...C=100, gamma=0.001, kernel=sigmoid; total time=0.0s
[CV] END ...C=100, gamma=0.001, kernel=sigmoid; total time= 0.0s
[CV] END ...C=100, gamma=0.001, kernel=sigmoid; total time=0.0s
[CV] END ...C=100, gamma=0.001, kernel=sigmoid; total time= 0.0s
```

The best model was: SVC(C=10, gamma=1)

The best parameter values were: {'C': 10, 'gamma': 1, 'kernel': 'rbf'}

The best f1-score was: 0.8025396825396826

[[16 5] [1 23]]

	precision	recall	f1-score	support
0	0.94	0.76	0.84	21
1	0.82	0.96	0.88	24
accuracy			0.87	45
macro avg	0.88	0.86	0.86	45
weighted avg	0.88	0.87	0.86	45

SVC accuracy: 86.67%

After tuning the hyperparamters, the accuracy of the model has improved upto 86.67%

Mathematical Formulation: f1-score

$$F1=rac{2 imes TP}{2 imes TP+FP+FN}$$

9 Confusion Matrix

[]: import seaborn as sns sns.heatmap(confusion_matrix(y_test,grid_predictions), annot=True)

[]: <Axes: >

