Syllabus

- Meeting Time: Tue, Thr 9:00 10:15am
- Pre-recommended: Mathematical Statistics and Regression Analysis (Undergraduate level)
- TEXTBOOK: Statistical Inference, 2nd edition; Casella and Berger, 2002.
- Homework 10%, Test I & II, 20% each, Midterm & Final 25%
- HOMEWORK: Approximately 10 homework assignments
- All exams are closed book and notes.

Ch 1. Probability Theory

Intro: Goal

The purpose of this chapter is to define probability and discuss some of its properties. Probability is the foundation upon which almost all statistics is built, and provides a means for modeling populations, experiments, sampling and almost anything that could be considered a random phenomenon. Just as statistics builds upon the foundation of probability theory, probability theory builds on set theory

- Probability of "SOMETHING"
- Basics
 - **Set:** A collection of objects (or elements). Use the uppercase letters for set (A, B, C, \cdots) and the lowercase letters for the elements $(x, y, z \cdots)$.
 - Family or Class: Set of sets. Elements are sets.
 - Notations:

Element: $x \in A$, $x \notin A$

Subset: $A \subset B$, $x \in A \rightarrow x \in B$

Equivalent sets: A = B, $A \subset B$ and $B \subset A$

Empty set: \emptyset , no element in the set

Universal set: Ω

Definition (Sample Space S)

The set, S, of all possible outcomes of a particular experiment.

Example:

Experiment	Sample Space
Tossing a coin	$S = \{H, T\}$
Measuring weights	$S = \{x : 0 \le x \le 500\}$

Definition (Event)

Any collection of possible outcomes of an experiment. That is, any subset of sample space S.

- Elementary Set Operations
 - Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}.$
 - Intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}.$
 - Compliment: $A^c = \{x : x \notin A\}.$
 - Set difference:

$$A \backslash B = A - B = \{x : x \in A \text{ and } x \notin B\} = A \cap B^c.$$

Venn Diagram

Theorem

Idempotent Law:

$$A \cap A = A$$
, $A \cup A = A$.

Commutative Law:

$$A \cap B = B \cap A$$
, $A \cup B = B \cup A$

Distributive Law:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

DeMorgan's Law:

$$(A \cap B)^c = A^c \cup B^c$$
, $(A \cup B)^c = A^c \cap B^c$

Note: Set Operations of more than two sets

$$\cup_{i=1}^{\infty}A_i\ ,\ \cap_{i=1}^{\infty}A_i\ ,\ \cup_{a\in\Gamma}A_a\ ,\ \cap_{a\in\Gamma}A_a\ .$$

Definition

Two events A and B are mutually exclusive if $A \cap B = \emptyset$.

Definition

 $\{A_1,A_2,\cdots\}$ is called a *partition* of a sample space if $A_i\cap A_j=\emptyset$ for all $i\neq j$ and $A_1\cup A_2\cup\cdots=S$.

Probability:

- Frequency of occurrence:
 Experiment is performed a number of times. Check the frequency of outcomes of interest.
 Probability = number of outcomes of interest/ number of experiments
- Axiomatic Probability:
 Set function that satisfies a certain axioms

1.2.1. Axiomatic Foundation

Definition (Sigma Algebra, or σ -algebra, or σ -field, or Borel Field \mathcal{B})

A collection of subsets of S, \mathcal{B} , that satisfies

S1: $\emptyset \in \mathcal{B}$

S2: If $A \in \mathcal{B}$ then $A^c \in \mathcal{B}$

S3: If $A_1, A_2, \dots \in \mathcal{B}$ then $\cup_{i=1}^{\infty} A_i \in \mathcal{B}$

Note: S1-S3 also implies $S \in \mathcal{B}$ and it is closed under countable intersection.

Example: Let \mathcal{B} be a set of all subsets of $\{1,2,3\}$. That is

$$\mathcal{B} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\} \,.$$

Is this sigma algebra ? If S is finite or countable, then

$$\mathcal{B} = \{\text{all subset of } S, \text{ including } S\}$$

1.2.1. Axiomatic Foundation (Axioms of Probability)

Axioms of Probability

Definition

Given S and associated sigma algebra \mathcal{B} , a probability function is a function P with domain \mathcal{B} that satisfies

A1: $P(A) \ge 0$ for all $A \in \mathcal{B}$

A2: P(S) = 1

A3: If $A_1, A_2, \dots \in \mathcal{B}$ and pairwise mutually exclusive then

$$P\left(\cup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P(A_{i})$$

- Associated sigma algebra
- Probability Space: (S, \mathcal{B}, P) .

1.2.1. Axiomatic Foundation

- Examples
- 1. Three-sided die with number 1, 2 and 3. $S = \{1, 2, 3\}$

$$\mathcal{B} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\} \,.$$

Define
$$P$$
 as $P(\emptyset) = 0$ $P(\{1\}) = P(\{2\}) = P(\{3\}) = 1/3$ $P(\{1,2\}) = P(\{1,3\}) = P(\{2,3\}) = 2/3$ $P(\{1,2,3\}) = P(S) = 1$

2.
$$S=[0,\infty),~\mathcal{B}=?$$
. Define P as, for $A\in\mathcal{B},~P(A)=\int_A e^{-x}dx$. (See Example 1.2.3 for $S=(-\infty,\infty)$)

1.2.2. The calculus of probability

Theorem

(See Theorem 1.2.8.) Given (S, \mathcal{B}, P) , for $A \in \mathcal{B}$,

- 1) $P(\emptyset) = 0$
- *2)* $P(A) \leq 1$
- 3) $P(A^c) = 1 P(A)$

Theorem

(See Theorem 1.2.9.) Given (S, \mathcal{B}, P) , for $A, B \in \mathcal{B}$,

- 1) $P(B \cap A^c) = P(B) P(A \cap B)$
- 2) $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 3) If $A \subset B$ then $P(A) \leq P(B)$
- 4) $P(A \cap B) \ge P(A) + P(B) 1$
- 4) Bonferroni's inequality

1.2.3. Counting

Consider the sample space with finite number of elements.

$$S = \{s_1, s_2, \cdots, s_N\} .$$

Let all outcomes(elements) are equally likely, that is, $P(\{s_i\}) = 1/N$, for all i. Then, for $A \subset S$,

$$P(A) = \sum_{s_i \in A} P(\{s_i\}) = \sum_{s_i \in A} \frac{1}{N} = \frac{\text{\# of elements in } A}{\text{\# of elements in } S}$$

satisfies 3 axioms of probability.

1.2.3. Counting

Theorem (Fundamental Theorem of Counting)

If a job consist of k separate tasks, the i-th of which can be done in n_i ways, $i=1,\cdots,k$, then the entire job can be done in $n_1\times\cdots\times n_k$ ways.

Definition

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \cdot \cdot 2 \cdot 1$$

Definition (Binomial Coefficient)

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} , n \ge r$$

- Probability that we have rain tomorrow: Probability of rain tomorrow given rain today.
- Conditional probability is a probability defined on an updated sample space based on the available information.

 \triangleright Example: Toss a fair die. $A = \{1\}$, $B = \{1, 3, 5\}$. What i s the probability of throwing a 1 given that an odd numbers is thrown?

Definition

If A and B are events in S, and P(B) > 0, then the *conditional* probability of A given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)} .$$

• Note: Conditional probability also satisfies 3 axioms. That is,

A1: $P(A|B) \ge 0$ for all $A \in \mathcal{B}$

A2: P(S|B) = 1

A3: If $A_1,A_2,\dots\in\mathcal{B}$ and pairwise mutually exclusive then

$$P\left(\bigcup_{i=1}^{\infty}A_{i}|B\right)=\sum_{i=1}^{\infty}P(A_{i}|B)$$

In case of disease: test will fail to detect on 10% of cases In case of no-disease: test will produce a false positive in 20% of cases.

We have 30% of individuals tested actually have disease.

 \triangleright Example: Medical Test - Continued

Want to know (i) lab's overall error rate and (ii) the likelihood of having disease if lab return a positive result (+).

$$P(+|D) = 0.9, \qquad P(-|D) = 0.1,$$
 $P(+|N.D.) = 0.2, \qquad P(-|N.D.) = 0.8, \qquad P(D) = 0.3.$
$$\frac{\text{Prob}}{\text{Disease}} \frac{\text{Positive}}{0.27(=0.9 \cdot 0.3)} \frac{\text{Negative}}{0.1 \times 0.3}$$

No Disease 0.2×0.7 0.8×0.7

$$P(\text{overall error}) = 0.03 + 0.14$$

 $P(\text{Disease} \mid +) = 27/41 \text{ by Bayes' rule.}$

Theorem

Let $\{A_1, A_2 \cdots\}$ be a partition of the sample space S and B be any subset of B. Then

$$P(B) = \sum_{j=1}^{\infty} P(A_j \cap B) = \sum_{j=1}^{\infty} P(B|A_j)P(A_j) ,$$

(law of the total probability) and for each $i = 1, 2, \cdots$

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^{\infty} P(B|A_j)P(A_j)}.$$

(Bayes' Rule)

There are three rental agencies A, B and C. Probability of having unsafe car from these agencies are 0.1, 0.08 and 0.125 respectively. An agency is chosen randomly and a car tested is found to be unsafe. What is the conditional probability that the car came from agency A, B or C?

```
P(Unsafe) = P(A|Unsafe) = P(B|Unsafe) = P(C|Unsafe) = P(C|Unsafe) = P(C|Unsafe) = P(C|Unsafe)
```

Definition

Events A_1, A_2, \dots, A_n are called *mutually independent* provided the probability of the intersection of any sub-collection of events is the product of the probabilities of the events in the sub-collection. That is, if for any sub-collection $A_{i_1}, A_{i_2}, \dots, A_{i_k}$,

$$P\left(\bigcap_{j=1}^{k}A_{i_{j}}\right)=\prod_{j=1}^{k}P\left(A_{i_{j}}\right).$$

1.4. Random Variables

In most cases, we have interest in probabilities of certain event or function of elements of the sample space.

$$(S, \mathcal{B}, P) \stackrel{R.V.}{\Longrightarrow} (\mathcal{R}, \mathcal{B}^1, P_X)$$

 ${\mathcal R}$: Real Number $\, , \, \, {\mathcal B}^1$: $\, \sigma$ -field generated by R

 P_X : Induced probability from P

Definition

A random variable is a function from a sample space S into the real numbers.

1.4. Random Variables

 \triangleright Example: Toss a fair coin 3 times

$$S = \{hhh, hht, hth, htt, thh, tht, tth, ttt\}$$

$$\mathcal{B} = \mathsf{Collection}$$
 of all subsets of S

Let X be a number of heads. Then

S	P(s)	X(s) = x
hhh	1/8	3
hht	1/8	2
hth	1/8	2
htt	1/8	1
thh	1/8	2
tht	1/8	1
tth	1/8	1
ttt	1/8	0

1.4. Random Variables

$$X = x P(X = x) = P_X(x)$$
0
1
2
3

$$P(X = 1) = P_X(1) = P(s \in S : X(s) = 1) = \frac{3}{8}$$

⊲ Note:

Random variable: Uppercase letter (X, Y, \cdots) Values of RV: Lowercase letter (x, y, \cdots) Subscript X is often deleted

Most general tool to specify the distribution (probability structure) of a random variable.

Definition

The cumulative distribution function (cdf) for a random variable X is

$$F_X(x) = P(X \le x)$$
, for all $x \in \mathcal{R}$

⊲ Note:

$$P(a < X \le b) = P(X \le b) - P(X \le a) = F_X(b) - F_X(a).$$

 \triangleright Example: Tossing 3 coins. X = number of heads

$$F_X(x) = \begin{cases} &, & x < 0, \\ &, & 0 \le x < 1, \\ &, & 1 \le x < 2, \\ &, & 2 \le x < 3, \\ &, & 3 \le x \end{cases}$$

Figure of the cdf of this RV X: Step function.

Theorem

The function $F_X(x)$ is a cdf if and only if the following 3 conditions hold:

- $P_X(x)$ is nondecreasing
- **3** $F_X(x)$ is right continuous, that is,

$$\lim_{x\downarrow x_0} F_X(x) = F_X(x_0) \ , \ \text{ for all } \ x_0 \in \mathcal{R} \ .$$

Definition

A random variable X is *continuous* if $F_X(x)$ is a (absolute) continuous function of x. A random variable X is *discrete* if $F_X(x)$ is a step function of x.

 \triangleright Example: Geometric distribution (See Example 1.5.4) Free draw success percentage of a basketball player =p. Under the independence assumption from shot to shot, let X be the number of shots required to get a hit. The *support* (collection of real numbers at which probability is positive) of X is $\{1,2,3,\cdots\}$. $P(X=x)=P(\{MMM\cdots H\})=$ Thus, $F_X(x)=$

 \triangleright Example: Uniform distribution on [0, 1], $X \sim (0, 1)$

$$F_X(x) = \begin{cases} 0, & x < 0, \\ x, & 0 \le x \le 1, \\ 1, & 1 < x. \end{cases}$$

Lemma

If the random variable X is continuous with cdf $F_X(x)$ then P(X=a)=0 for all real number a

Proof) As $\{X = a\} \subset \{a - \epsilon < X \le a\}$ for any $\epsilon > 0$, we have

$$P(X = a) \le P(a - \epsilon < X \le a)$$

$$= P(X \le a) - P(X \le a - \epsilon)$$

$$= F_x(a) - F_x(a - \epsilon)$$

Then, $0 \le P(X = a) \le \lim_{\epsilon \downarrow 0} [F_x(a) - F_x(a - \epsilon)] = 0$. as F_x is continuous. Thus P(X = a) = 0.

ightharpoonup Example - Distribution of waiting time: Exponential distribution, $X \sim exp(\lambda)$

$$F_X(x) = \begin{cases} 0, & x < 0, \\ 1 - \exp(-\lambda x), & 0 \le x, \end{cases}$$

for some $\lambda > 0$

⊲ Note:

- \bullet Probability at least t_1 min
- **2** Memoryless property: probability of waiting additional t_1 min after waiting t_0 min.

ightarrow Q - Is there a distribution that is neither discrete nor continuous? (Example 1.5.6)

1.

$$F_{Y}(y) = \begin{cases} \frac{1-\epsilon}{1+e^{-y}}, & y < 0, \\ \epsilon + \frac{1-\epsilon}{1+e^{-y}}, & y \ge 0. \end{cases}$$

2. Consider an experiment composed of 2 steps. At the first step, a fair coin tossed. If we tail then define a random variable X=0. If we have head, spin a fair spinnes marked (0,1] and let X= ending position of spinnes.

2. - Continued

$$F_X(x) = \begin{cases} 0, & x < 0, \\ 1/2, & x = 0, \\ (x+1)/2, & 0 < x < 1, \\ 1, & 1 \le x. \end{cases}$$

Definition

The random variables X and Y are identically distributed if for every set $A \in \mathcal{B}^1$,

$$P(X \in A) = P(Y \in A)$$

Note that this does not imply X = Y.

The cdf is the most general, but not necessarily most appealing mean of specifying a probability on \mathcal{R} . Now let us consider the probability concerned with *point probability*.

Definition

The probability mass function (pmf) associated with a discrete distribution with cdf F_X is the function

$$f_X(x) = F_X(x) - \lim_{y \to x^-} F_X(y)$$
, (size of jump at point x)

or

$$f_X(x) = P(X = x)$$
, for all $x \in \mathcal{R}$.

 \triangleright Example: A four sided die that has different numbers (1, 2, 3, 4) affixed to each side. On a given roll each of 4 number is equally likely to occur. Roll the die twice. Define X= maximum of two numbers.

pmf of X is then

$$P(1 \le X \le 3) = P(X \le 3) =$$

Definition

The probability density function (pdf), $f_X(x)$, of a (absolute) continuous random variable with (absolute) continuous cdf F_X is the function that satisfies

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$
, for all $x \in \mathcal{R}$.

Note: By the fundamental theorem of calculus,

$$\frac{dF_X(x)}{dx}=f_X(x).$$

Theorem

A function $f_X(x)$ is a pdf (or pmf) of a random variable X if and only if (iff)

- $f_X(x) \ge 0$ for all x

Note: The probability of $A \in \mathcal{R}$, then, is

$$P(X \in A) = \begin{cases} \sum_{x \in A} f_X(x), & \text{if discrete} \\ \int_A f_X(x), & \text{if continuous} \end{cases}$$

 \triangleright Example: A 12 sided die that has different numbers (1, 2, \cdots , 12) affixed to each side. On a given roll each of 12 number is equally likely to occur. Roll the die twice. Define X= maximum of two numbers.

pmf of X is then

$$\begin{array}{c|ccccc} x & 1 & 2 & \cdots & 12 \\ \hline f(x) & & & & \end{array}$$

$$P(X = x) = c(2x - 1)$$
, $x = 1, 2, \dots, 12$.

Find a value for c.