Bölüm 1. TEMEL KAVRAMLAR	3
${f Giris}$	3
A LTÇİZGE YIĞINLARI	3
Sample math environments	4
İcindekiler	

1. BÖLÜM

TEMEL KAVRAMLAR

page=001
r0-

1 Giriş

Elimizde, ayrıtları ve düğümleri olarak adlandıracağımız iki ayrı öğelerin kümesi bulunsun. Ayrıkların oluşturduğu kümeyi Ψ düğümlerin oluşturduğu kümeyi ise Delta ile gösterelim. Bu kümelerdeki öğelerin sayısı

$$a = \Psi$$

ve

$$d=\Delta$$

olsun.

_____ page=013

2 ALTÇİZGE YIĞINLARI

Euler çizgesinin, ortak ayrıtsız çevrelerin birleşiminden oluştuğunu biliyoruz. $\zeta(d,a)$ nın, ortak ayrıtsız çevrelerin birleşiminden oluşan altçizgesine de Euler Çizgesi diyeceğiz. Bundan böyle de alt önekini açıkça belirtmeden, Euler çizgesi deyince $\zeta(d,a)$ nın Euler niteliğindeki bir altçizgesinden söz etmiş olacağız. Ayrıca bu bölümde, inceleyeceğimiz çizgelerdeki koşut bağlı ayrıtların varlığına değgin herhangi bir kısıtlamada da bulunmayacağız.

Teorem 1. E_1 ve E_2 C(d,a) daki iki Euler çizgesi ise,

$$E_1 \oplus E_2 = E_3$$

olarak tanımlanan E_3 de $\zeta(d,a)$ içinde bir Euler çizgesidir.

Kanıt. \mathbb{Q}_1 ve \mathbb{Q}_2 sırasıyla E_1 ve E_2 de ortak ayrıtlı iki çevreyi göstersin.

$$Q_1 \oplus Q_2 = Q_3$$

olarak tanımlanan C_3 , bu ortak ayrıtları içermeyen yeni bir çevre oluşturacaktır.

Eğer C_1 ve C_2 ortak ayrıtsız ise, ya ortak bir düğümleri vardır ya da hiçbir bağları yoktur. Her iki durumda da bu çevreler \oplus altında ya bir çevre ya da bir çevre yığını verecektir.

Bu gözlem, E_1 ve E_2 nin bütün çevreleri için doğrudur. Öyleyse E_3 , $\mathbb{C}(d,a)$ içinde bir Euler çizgesidir.

3 Sample math environments

Please use these environments for math.

Teorem 2. ttttt

Kanit. pppp □

Önsav 3. aaaa

Önerme 4. bbbb

Eksonuç 5. nnnn

Sani 6. yyyy

AÇIKLAMA 7. wwww

Varsayım 8. brrr

Örnek 9. eeee

3.1 Şekiller

This is a figure with reference.

Sekil 3.1. Classification of complex numbers

As seen in Şekil. 3.1, this is not a good figure.

3.1.1 Biraz daha şekiler

This is the first figure.

Same more.

This is the second figure.

Same more here, too.

Note the usage of empty line for new paragraph or usage of $\$ in the LaTeX code.