Last time

- Absolute and relative errors
- Condition number of a problem
- Stability of an algorithm

Goals for today

- Interpolation
- Piecewise interpolation
- Global Lagrange interpolation

Goals for today

- Interpolation
- Piecewise interpolation
- Global Lagrange interpolation

Heading towards global function approximation

Representing data

- Suppose we have some discrete data
- E.g. measurements of a physical or economic system

Representing data

- Suppose we have some discrete data
- E.g. measurements of a physical or economic system
- These could be discrete samples coming from a system with continuous output

Representing data

- Suppose we have some discrete data
- E.g. measurements of a physical or economic system
- These could be discrete samples coming from a system with continuous output
- How can we re-construct a function from a set of discrete samples?

Re-constructing functions from data

- (At least) two different methods to re-construct functions:
 - 1 Fit a "best approximation" to the data from within some class of functions: approximation theory
 - 2 A function that *passes through* the data: **interpolation**

Re-constructing functions from data

- (At least) two different methods to re-construct functions:
 - 1 Fit a "best approximation" to the data from within some class of functions: approximation theory
 - 2 A function that passes through the data: interpolation

If in fact the data came from sampling a function, we can compare the original and re-constructed functions

Collaboration I

Interpolation

Suppose we are given data (x_i, y_i) in 2D for i = 0, ..., n and we want to find a function f(x) that passes through the points.

- \blacksquare Which type of functions f should we try?
- f 2 Write down the conditions on f that we want to satisfy.
- What kind of mathematical problem do you get?
- 4 Is this problem solvable?

Interpolation

- lacksquare Given data points (x_i,y_i) for $i=0,\ldots,n$
- We want to find a function f(x) passing through the data:

$$f(x_i) = y_i \quad \forall i$$

Interpolation

- \blacksquare Given data points (x_i,y_i) for $i=0,\dots,n$
- lacktriangle We want to find a function f(x) passing through the data:

$$f(x_i) = y_i \quad \forall i$$

- The x_i are **nodes** or **knots**
- We will assume that they are distinct and ordered:

$$a = x_0 < x_1 < \dots < x_n = b$$

lacktriangle The first class of functions f to try are **polynomials**

- lacktriangle The first class of functions f to try are **polynomials**
- $\blacksquare \text{ Suppose } f(x) = a_0 + a_1 x + \dots + a_n x^n$
- $\blacksquare \text{ Then } f(x_i) = a_0 + a_1 x_i + \dots + a_n x_i^n = y_i \quad \forall i \in \mathbb{N}$

- lacktriangle The first class of functions f to try are **polynomials**
- $\blacksquare \text{ Suppose } f(x) = a_0 + a_1 x + \dots + a_n x^n$
- $\blacksquare \text{ Then } f(x_i) = a_0 + a_1 x_i + \dots + a_n x_i^n = y_i \quad \forall i$
- lacktriangle Find the a_i that solve this system of equations

- lacktriangle The first class of functions f to try are **polynomials**
- $\blacksquare \text{ Suppose } f(x) = a_0 + a_1 x + \dots + a_n x^n$
- $\blacksquare \text{ Then } f(x_i) = a_0 + a_1 x_i + \dots + a_n x_i^n = y_i \quad \forall i \in \mathbb{N}$
- lacktriangle Find the a_i that solve this system of equations
- What kind of system is it?

- lacktriangle The first class of functions f to try are **polynomials**
- $\blacksquare \text{ Suppose } f(x) = a_0 + a_1 x + \dots + a_n x^n$
- $\blacksquare \text{ Then } f(x_i) = a_0 + a_1 x_i + \dots + a_n x_i^n = y_i \quad \forall i$
- lacktriangle Find the a_i that solve this system of equations
- What kind of system is it?
- When can we expect to be able to solve it?

Each equation can be written

$$\begin{pmatrix} 1 & x_i & x_i^2 & \cdots & x_i^n \end{pmatrix}^{\mathsf{T}} \mathbf{a} = y_i$$

 ${\bf a}=(a_1,a_2,\dots,a_n)^{\rm T}$ is a vector of the unknown $a_i{\bf s}$

Each equation can be written

$$\begin{pmatrix} 1 & x_i & x_i^2 & \cdots & x_i^n \end{pmatrix}^{\mathsf{T}} \mathbf{a} = y_i$$

- ${\bf a}=(a_1,a_2,\ldots,a_n)^{\rm T}$ is a vector of the unknown $a_i{\bf s}$
- Hence we get an equation of form $V \cdot \mathbf{a} = \mathbf{y}$

Each equation can be written

$$\begin{pmatrix} 1 & x_i & x_i^2 & \cdots & x_i^n \end{pmatrix}^\mathsf{T} \mathbf{a} = y_i$$

- ${\bf a}=(a_1,a_2,\dots,a_n)^{\rm T}$ is a vector of the unknown $a_i{\bf s}$
- Hence we get an equation of form $V \cdot \mathbf{a} = \mathbf{y}$
- V is **Vandermonde matrix** with *i*th row $\begin{pmatrix} 1 & x_i & x_i^2 & \cdots & x_i^n \end{pmatrix}$

Each equation can be written

$$\begin{pmatrix} 1 & x_i & x_i^2 & \cdots & x_i^n \end{pmatrix}^\mathsf{T} \mathbf{a} = y_i$$

- ${\bf a}=(a_1,a_2,\ldots,a_n)^{\rm T}$ is a vector of the unknown $a_i{\bf s}$
- Hence we get an equation of form $\vee \cdot \mathbf{a} = \mathbf{y}$
- V is **Vandermonde matrix** with ith row $\begin{pmatrix} 1 & x_i & x_i^2 & \cdots & x_i^n \end{pmatrix}$
- In principle we can solve polynomial interpolation by solving this linear system

Each equation can be written

$$\begin{pmatrix} 1 & x_i & x_i^2 & \cdots & x_i^n \end{pmatrix}^{\mathsf{T}} \mathbf{a} = y_i$$

 ${\bf a}=(a_1,a_2,\ldots,a_n)^{\rm T}$ is a vector of the unknown $a_i{\bf s}$

- Hence we get an equation of form $\vee \cdot \mathbf{a} = \mathbf{y}$
- V is **Vandermonde matrix** with *i*th row $(1 \ x_i \ x_i^2 \ \cdots \ x_i^n)$
- In principle we can solve polynomial interpolation by solving this linear system
- V is ill-conditioned; algorithm is expensive and unstable

Alternative method for polynomial interpolation

- Alternative method for polynomial interpolation
- We will build the polynomial interpolant as a sum

- Alternative method for polynomial interpolation
- We will build the polynomial interpolant as a sum

- Look for cardinal basis functions:
- \blacksquare Functions ℓ_k that are 1 at a single node and 0 elsewhere:

$$\ell_k(x_i) = \delta_{i,k} = [i = k]$$

- Alternative method for polynomial interpolation
- We will build the polynomial interpolant as a sum

- Look for cardinal basis functions:
- \blacksquare Functions ℓ_k that are 1 at a single node and 0 elsewhere:

$$\ell_k(x_i) = \delta_{i,k} = [i = k]$$

Iverson bracket notation (indicator function):

$$[\mathcal{S}] = \begin{cases} 1, & \text{if statement } \mathcal{S} \text{ is correct} \\ 0, & \text{if not} \end{cases}$$

Collaboration II

Line joining two points

Given two points (x_0, y_0) and (x_1, y_1) .

- What degree polynomial interpolates them?
- Find cardinal basis functions.

Two points

- \blacksquare Simplest case: Find Line joining (x_0,y_0) and (x_1,y_1)
- \blacksquare We need a degree-1 polynomial ℓ_1 such that $\ell_1(x_1)=1$ and $\ell_1(x_2)=0$

Two points

- lacksquare Simplest case: Find Line joining (x_0,y_0) and (x_1,y_1)
- \blacksquare We need a degree-1 polynomial ℓ_1 such that $\ell_1(x_1)=1$ and $\ell_1(x_2)=0$

- We could use $\ell_1(x) = ax + b$ and substitute
- Instead, since x_2 is a root, $p(x) = c(x x_2)$

Two points

- \blacksquare Simplest case: Find Line joining (x_0,y_0) and (x_1,y_1)
- \blacksquare We need a degree-1 polynomial ℓ_1 such that $\ell_1(x_1)=1$ and $\ell_1(x_2)=0$

- We could use $\ell_1(x) = ax + b$ and substitute
- Instead, since x_2 is a root, $p(x) = c(x x_2)$
- So $p(x_1) = c(x_1 x_2) = 1$
- \blacksquare Hence $c=\frac{1}{x-x_1},$ giving $\ell_1(x)=\frac{x-x_2}{x_1-x_2}$
- lacksquare Symmetry gives ℓ_2

The Lagrange interpolant or Lagrange polynomial satisfies

$$L(x_1)=y_1 \quad \text{and} \quad L(x_2)=y_2$$

 \blacksquare Since ℓ_1 and ℓ_2 are cardinal basis functions,

$$L(x) = y_1 \ell_1(x) + y_2 \ell_2(x)$$

The Lagrange interpolant or Lagrange polynomial satisfies

$$L(x_1)=y_1 \quad \text{and} \quad L(x_2)=y_2$$

 \blacksquare Since ℓ_1 and ℓ_2 are cardinal basis functions,

$$L(x) = y_1 \ell_1(x) + y_2 \ell_2(x)$$

lacksquare Any linear polynomial ax+b can be written in this way

■ The Lagrange interpolant or Lagrange polynomial satisfies

$$L(x_1)=y_1 \quad \text{and} \quad L(x_2)=y_2$$

 \blacksquare Since ℓ_1 and ℓ_2 are cardinal basis functions,

$$L(x) = y_1 \ell_1(x) + y_2 \ell_2(x)$$

- lacksquare Any linear polynomial ax+b can be written in this way
- Hence $\{\ell_1, \ell_2\}$ forms a new **basis** of linear polynomials

Piecewise-linear interpolation

 \blacksquare A possible interpolant would be to use separate polynomials on each sub-interval $[x_i,x_{i+1}]$

Piecewise-linear interpolation

- \blacksquare A possible interpolant would be to use separate polynomials on each sub-interval $[x_i,x_{i+1}]$
- E.g. a piecewise-linear function satisfying cardinality conditions:

Piecewise-linear interpolation

- \blacksquare A possible interpolant would be to use separate polynomials on each sub-interval $[x_i,x_{i+1}]$
- E.g. a piecewise-linear function satisfying cardinality conditions:
- \blacksquare Piecewise-linear "hat" function with value 1 at x_k and zero for all other x_i
- Then a piecewise-linear interpolant ("join the dots") is a linear combination of hat basis functions

Piecewise-linear interpolation

- \blacksquare A possible interpolant would be to use separate polynomials on each sub-interval $[x_i,x_{i+1}]$
- E.g. a piecewise-linear function satisfying cardinality conditions:
- \blacksquare Piecewise-linear "hat" function with value 1 at x_k and zero for all other x_i
- Then a piecewise-linear interpolant ("join the dots") is a linear combination of hat basis functions
- Any piecewise-linear function can be written like this

Piecewise-linear interpolation

- lacksquare A possible interpolant would be to use separate polynomials on each sub-interval $[x_i,x_{i+1}]$
- E.g. a piecewise-linear function satisfying cardinality conditions:
- \blacksquare Piecewise-linear "hat" function with value 1 at x_k and zero for all other x_i
- Then a piecewise-linear interpolant ("join the dots") is a linear combination of hat basis functions
- Any piecewise-linear function can be written like this
- This points towards finite-element methods for solving differential equations

■ Piecewise-linear interpolation gives a *non-smooth* result

- Piecewise-linear interpolation gives a *non-smooth* result
- We can make the result smoother by replacing linear pieces with higher-degree polynomials

- Piecewise-linear interpolation gives a *non-smooth* result
- We can make the result smoother by replacing linear pieces with higher-degree polynomials

■ This gives **splines**, e.g. cubic splines

- Piecewise-linear interpolation gives a *non-smooth* result
- We can make the result smoother by replacing linear pieces with higher-degree polynomials

- This gives **splines**, e.g. cubic splines
- Two continuous derivatives

- Piecewise-linear interpolation gives a *non-smooth* result
- We can make the result smoother by replacing linear pieces with higher-degree polynomials

- This gives splines, e.g. cubic splines
- Two continuous derivatives

- Impose conditions at each node
- Requires solving a linear system

 \blacksquare Instead we can look for a single polynomial that interpolates all n+1 points x_i simultaneously

- \blacksquare Instead we can look for a single polynomial that interpolates all n+1 points x_i simultaneously
- By the Vandermonde argument we know this is possible

- Instead we can look for a single polynomial that interpolates all n+1 points x_i simultaneously
- By the Vandermonde argument we know this is possible
- We can solve this by extending the argument from 2 points

- Instead we can look for a single polynomial that interpolates all n+1 points x_i simultaneously
- By the Vandermonde argument we know this is possible
- We can solve this by extending the argument from 2 points
- Construct a cardinal basis

Collaboration III

Polynomial interpolation

- 1 How can we make a cardinal basis function that is 1 at \boldsymbol{x}_k and 0 at all other \boldsymbol{x}_i ?
- 2 How can we then make an interpolant of the data?

Generalise from 2 to n points:

$$\ell_k(x) = c_k(x-x_1)\cdots \widehat{(x-x_k)}\cdots (x-x_n)$$
 where $\hat{\cdot}$ indicates a $\textit{missing}$ term

lacksquare We want $\ell_k(x_k)=1$, so

$$c_k = \frac{1}{(x_k - x_1) \cdots \widehat{(x_k - x_k)} \cdots (x - x_n)}$$

 \blacksquare Generalise from 2 to n points:

$$\ell_k(x) = c_k(x-x_1)\cdots \widehat{(x-x_k)}\cdots (x-x_n)$$
 where $\hat{\cdot}$ indicates a missing term

■ We want $\ell_k(x_k) = 1$, so

$$c_k = \frac{1}{(x_k - x_1) \cdots \widehat{(x_k - x_k)} \cdots (x - x_n)}$$

- \blacksquare Thus $\ell_k(x) = \prod_{i \neq k} \frac{x x_i}{x_k x_i}$
- \blacksquare And $L(x) = \sum_{k=0}^n y_k \ell_k(x)$

Uniqueness: Suppose they are not unique and subtract

- Uniqueness: Suppose they are not unique and subtract
- We have constructed a new basis for the (vector) space of degree-n polynomials

- Uniqueness: Suppose they are not unique and subtract
- We have constructed a new basis for the (vector) space of degree-n polynomials

What can go wrong?

- Uniqueness: Suppose they are not unique and subtract
- We have constructed a new basis for the (vector) space of degree-n polynomials

- What can go wrong?
- We will see that global Lagrange interpolation can go very badly wrong if we use equally-spaced points

- Uniqueness: Suppose they are not unique and subtract
- We have constructed a new basis for the (vector) space of degree-n polynomials

- What can go wrong?
- We will see that global Lagrange interpolation can go very badly wrong if we use equally-spaced points
- It turns out to be much better to use points that cluster near the endpoints of interval

Summary of Lagrange interpolation

 \blacksquare Given data (n+1) data points $(x_i,y_i)_{i=0}^n,$ the Lagrange interpolant of degree n is

$$p(x) = \sum_{j=0}^{n} y_j \ell_j(x)$$

Where

$$\ell_j(x) := \frac{\prod_{k \neq j} (x - x_k)}{\prod_{k \neq j} (x_j - x_k)}$$

lacktriangle Evaluating this requires $\mathcal{O}(n^2)$ operations

- lacksquare Evaluating this requires $\mathcal{O}(n^2)$ operations
- If we add a new node, we must recalculate

- lacksquare Evaluating this requires $\mathcal{O}(n^2)$ operations
- If we add a new node, we must recalculate
- It also turns out to be numerically unstable

- lacksquare Evaluating this requires $\mathcal{O}(n^2)$ operations
- If we add a new node, we must recalculate
- It also turns out to be numerically unstable

 These issues can be solved by reformulating it into barycentric Lagrange interpolation

■ Let's define the product

$$\ell(x) := (x-x_0)(x-x_1)\cdots(x-x_n)$$

Let's define the product

$$\ell(x) := (x-x_0)(x-x_1)\cdots(x-x_n)$$

Define the barycentric weights

$$w_j := \frac{1}{\prod_{k \neq j} (x_j - x_k)}$$

Let's define the product

$$\ell(x) := (x-x_0)(x-x_1)\cdots(x-x_n)$$

Define the barycentric weights

$$w_j := \frac{1}{\prod_{k \neq j} (x_j - x_k)}$$

 $\blacksquare \text{ Then } \ell_j(x) = \ell(x) \frac{w_j}{x - x_j}$

Let's define the product

$$\ell(x) := (x-x_0)(x-x_1)\cdots(x-x_n)$$

Define the barycentric weights

$$w_j := \frac{1}{\prod_{k \neq j} (x_j - x_k)}$$

- $\blacksquare \text{ Then } \ell_j(x) = \ell(x) \frac{w_j}{x x_j}$
- \blacksquare So $p(x) = \ell(x) \sum_{j=0}^n \frac{w_j}{x-x_j} y_j$

Let's define the product

$$\ell(x) := (x - x_0)(x - x_1) \cdots (x - x_n)$$

Define the barycentric weights

$$w_j := \frac{1}{\prod_{k \neq j} (x_j - x_k)}$$

- \blacksquare Then $\ell_j(x) = \ell(x) \frac{w_j}{x-x_j}$
- So $p(x) = \ell(x) \sum_{j=0}^{n} \frac{w_j}{x x_j} y_j$
- Also $w_i = 1/\ell'(x_i)$

Now suppose we interpolate the constant function $\mathbf{1}(x) := 1 \quad \forall x$

- Now suppose we interpolate the constant function $\mathbf{1}(x) := 1 \quad \forall x$
- Then we get the following, for all x:

$$1 = \ell(x) \sum_{j=0}^{n} \frac{w_j}{x - x_j}$$

- Now suppose we interpolate the constant function $\mathbf{1}(x) := 1 \quad \forall x$
- Then we get the following, for all x:

$$1 = \ell(x) \sum_{j=0}^{n} \frac{w_j}{x - x_j}$$

lacksquare Dividing p(x) by this we get

$$p(x) = \frac{\sum_{j=0}^{n} \frac{w_j}{x - t_j} y_j}{\sum_{j=0}^{n} \frac{w_j}{x - t_j}}$$

- Now suppose we interpolate the constant function $\mathbf{1}(x) := 1 \quad \forall x$
- Then we get the following, for all x:

$$1 = \ell(x) \sum_{j=0}^{n} \frac{w_j}{x - x_j}$$

Dividing p(x) by this we get

$$p(x) = \frac{\sum_{j=0}^{n} \frac{w_j}{x - t_j} y_j}{\sum_{j=0}^{n} \frac{w_j}{x - t_j}}$$

■ This is the **barycentric form** of Lagrange interpolation.

■ For a given set of nodes x_i :

- \blacksquare For a given set of nodes x_i :
- \blacksquare Calculate the weights w_j once: $\mathcal{O}(N^2)$ operations

- lacksquare For a given set of nodes x_j :
- \blacksquare Calculate the weights w_j once: $\mathcal{O}(N^2)$ operations
- lacksquare Evaluate the interpolant p(x) at $x \colon \mathcal{O}(N)$ operations

- For a given set of nodes x_j :
- \blacksquare Calculate the weights w_j once: $\mathcal{O}(N^2)$ operations
- \blacksquare Evaluate the interpolant p(x) at x: $\mathcal{O}(N)$ operations
- This algorithm is numerically stable (despite the divisions)

Summary

- Degree-n polynomial **interpolates** (n+1) data points
- Can construct Lagrange polynomial that interpolates
- Given in terms of a new cardinal basis

■ The barycentric form gives a practical algorithm