SI-2024: Introduction to CubeSat and Satellite Communication

Introduction to Antennas

3rd July **2024** NEW SACE REVILUTION

SiliconTech

CubeSat Minimal Architecture

LoRa Transceiver (Radio) Architecture

LoRa Transceiver (Radio) Architecture

Mechanism for Radiation

- ❖ The primary mechanism of radiation is due to accelerating (or deceleration) of charge
- Current in a conductor:

$$\rightarrow J_z = q_v v_z$$

Current in an ideal conductor:

$$\rightarrow J_S = q_S v_Z$$

Current in an thin conductor:

$$\rightarrow I_z = q_l v_z$$

For a time-varying current:

To create radiation, there must be time-varying current OR accelerating (or deceleration) of charge

Mechanism for Radiation (Derived Facts)

- ✓ If a charge is not moving, current is not created and there is no radiation.
- ✓ If charge is moving with a uniform velocity:
 - ☑ There is no radiation if the wire is straight, and infinite in extent.
 - ✓ There is radiation if the wire is curved, bent, discontinuous, terminated, or truncated.
- ✓ If charge is oscillating in a time-motion, it radiates even if the wire is straight.

Two-Wire Antenna and Electric-Field Lines

Two-Wire Antenna and Free-Space Wave

Detached Wave Visualization

Two-Wire Antenna and Free-Space Wave

Thevenin Equivalent of Source-TransmissionLine-Antenna

Formation and Detachment of Free-Waves from a Dipole Antenna

Radiation Pattern

Dipole Antennas

Horn Antennas

Polarization

Linear-Polarized EM Wave

Circular-Polarized EM Wave

Types of Antennas

Wire Antennas

Aperture Antennas

Types of Antennas

Patch (Microstrip) Antennas

Array Antennas

Types of Antennas

(b) Parabolic reflector with Cassegrain feed

Reflector Antennas

Deployable CubeSat Antennas

CubeSat Turnstile Antennas

CubeSat Patch Antennas

V₁‡

- Impedance is the radiation 374 42 resistance. Typical 50-ohm or 75-ohm
- For effective signal transmission (or reception) this reflection should be minimum.
- The reflection is measured through VSWR (Voltage Standing Wave Ratio). Ideal VSWR = 1.0 but realistically < 2.0
- Antenna is tuned using Vector
 Network Analyzer (VNA) by
 measuring the VSWR while
 resizing the antenna elements or
 adjusting RLC circuit parameters.

Output

$$VSWR = \frac{1 + \frac{V_2}{V_1}}{1 - \frac{V_2}{V_1}}$$

example of antenna tuning Using a network analyzer

Appendix

SiliconTech

Tiny Satellite Ground Station

CubeSat Standard Sizes

Our target <1U

Minimal Payload

