Cards face-up problem:

$$_{9} \bigstar AQ62 \ \P 9765 \ \bigstar Q \ \bigstar J942$$

$$_{3} \bigstar 9873 \ \P J4 \ \bigstar JT5 \ \bigstar QT83 \ W \qquad E \qquad _{9} \bigstar T \ \P Q832 \ \bigstar A76432 \ \bigstar K7$$

$$_{18} \bigstar KJ54 \ \P AKT \ \bigstar K98 \ \bigstar A65$$

$$_{18} \bigstar KJ54 \ \P AKT \ \bigstar K98 \ \bigstar A65$$

$$_{PASS} \ PASS \ 2 \bigstar \ 2NT$$

$$_{PASS} \ 3 \bigstar \ PASS \ 3 \bigstar$$

$$_{PASS} \ 4 \bigstar \ all \ pass$$

Lead: $J \blacklozenge$. Is there any winning line of play?

Our goal is to end up with, losing, so far, at most 2 tricks.

With this distribution, we can play $A \clubsuit$, $K \heartsuit$ and $6 \clubsuit$. If W ducks, we win the 10^{TH} trick with $J \clubsuit$. If he wins with $Q \clubsuit$, he is left with \clubsuit only so we will win the last trick as well (with $J \clubsuit$).

So how to achieve this distribution? Take whatever E plays (if it is a \blacklozenge – throw away the \blacktriangledown), ruff the third diamond and duck a club. Then, take whatever the opponents play (if they play \clubsuit or \blacklozenge the contract is already secured) then draw trumps and here you are.

Do you agree with $2 \blacklozenge$ bid? A possibility worth considering is $3 \blacklozenge$ bid (vulnerabilities!). Also, the left opponent could raise the preempt.