COMP90038 Algorithms and Complexity

Lecture 23: Revision

(with thanks to Harald Søndergaard & Michael Kirley)

Andres Munoz-Acosta

munoz.m@unimelb.edu.au

Peter Hall Building G.83

What is examinable?

- Data structures: Stacks, queues, trees. Binary search trees, AVL trees, heaps (priority queues). Graphs: directed, undirected, weighted.
- **Sorting algorithms**: Selection sort, insertion sort, (shellsort), mergesort, quicksort, heapsort, distribution counting.
- **Search algorithms**: Sequential search, binary search, BSTs, AVL trees, 2–3 trees, hashing, *k*th-largest element.
- **Graph algorithms**: DFS, BFS, topsort, (cyclicity, connectedness), Warshall, Floyd, Prim, Dijkstra.

What is examinable?

- String manipulation algorithms: Brute-force string search, Horspool (Huffman encoding, Boyer-Moore, Knuth-Morris-Pratt and Rabin-Karp are not examinable)
- Other algorithms: Closest pairs, knapsack, ...
- Algorithmic techniques: Brute force, decrease-and-conquer, divide-and-conquer, transform-and-conquer (presorting, representation change), dynamic programming, greedy methods, time/space tradeoffs.
- Algorithm analysis: Asymptotics, the Master Theorem for divide-andconquer.

Priority queues and heaps

 A priority queue is a set of elements, each one has an associated priority which determines its ejection order

- A heap is a partially ordered binary tree
 - It must be a complete tree (filled from top to bottom, left to right)
 - Each child has a priority which is less or equal than its parent (max-heap)
 - We represent the heap as an array, starting from position 1, such that the children of node i will be nodes 2i and 2i + 1

Heapsort

- It iterates the sequence: Build the heap eject the root build the heap eject the root ...
- An exercise: sort [8 45 11 97 1 78 82]

```
8 45 11 97 1 78 82
8 45 82 97 1 78 11
8 45 82 97 1 78 11
8 97 82 45 1 78 11
97 8 82 45 1 78 11
97 8 82 45 1 78 11
97 45 82 8 1 78 11
```

```
      97
      45
      82
      8
      1
      78
      11

      11
      45
      82
      8
      1
      78
      97

      82
      45
      11
      8
      1
      78
      97

      12
      45
      78
      8
      1
      11
      97

      14
      45
      78
      8
      1
      82
      97

      14
      45
      11
      8
      78
      82
      97
```

```
      45
      1
      11
      8
      78
      82
      97

      8
      1
      11
      45
      78
      82
      97

      11
      1
      8
      45
      78
      82
      97

      1
      8
      11
      45
      78
      82
      97

      1
      8
      11
      45
      78
      82
      97

      1
      8
      11
      45
      78
      82
      97
```

Transform and Conquer

- The idea is to make a change, such that the problem can be solved faster. Two main approaches:
 - Instance simplification, e.g., pre-sorting
 - Representational change, e.g., use a binary search tree
- A binary search tree is a binary tree, which must satisfy:
 - For the root r, each element in the **left subtree** is **smaller** than r, and each element in the **right subtree** is **larger** than r
- Balanced trees are preferable as in the worst case search requires $\Theta(\log n)$

AVL Trees and 2-3 Trees

• These are approaches to keep the tree balanced

 An AVL tree rotates its nodes, such that the balance factor remains below 2 or -2

• A 2-3 tree allows a maximum of 2 keys and three children per node.

Example

• Build an AVL tree and a 2-3 tree with the data [8 6 54 78 94 13 57 47 2 34]

• https://www.cs.usfca.edu/~galles/visualization/Algorithms.html

Sorting by counting

Lets go through this example carefully:

• The keys are: [1 2 3 4 5]

• The data is: [5 5 1 5 4 1 2 3 5 5 1 5 5 3 5 1 3 5 4 5]

• Lets count the appearances of each key:

Key	1	2	3	4	5
Occurrences	4	1	3	2	10

Lets add up the occurrences

Occurrences	4	1	3	2	10
	0+4	4+1	5+3	8+2	10+10
Cumulation	4	5	8	10	20

Sorting by counting

• Lets sort the data:

Key	1	2	3	4	5
Cumulation	4	5	8	10	20
P[20]					19
P[10]				9	
P[19]					18
P[8]			7		

Index	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Unsorted	5	5	1	5	4	1	2	3	5	5	1	5	5	3	5	1	3	5	4	5
Sorted	1	1	1	1	2	3	3	3	4	4	5	5	5	5	5	5	5	5	5	5

Horspool's algorithm

- Lets go through this example carefully:
 - The pattern is 'ACGT' (A=1, T=2, G=3, C=4 \rightarrow P[.] = [1 4 3 2], m = 4)
 - The string is GACCGCGTGAGATAACGTCA
- This algorithm creates the table of shifts:

function FINDSHIFTS(
$$P[\cdot], m$$
)
for $i \leftarrow 0$ to alphasize -1 do
Shift[i] $\leftarrow m$
for $j \leftarrow 0$ to $m-2$ do
Shift[$P[j]$] $\leftarrow m - (j+1)$

	А	Т	G	С
After first loop	4	4	4	4
j=0	3	4	4	4
j=1	3	4	4	2
j=2	3	4	1	2

Horspool's algorithm

- We append a sentinel at the end of the data to guarantee completion
 - The string is now GACCGCGTGAGATAACGTCAACGT

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
STRING	G	Α	С	С	G	С	G	Т	G	Α	G	Α	Т	Α	Α	С	G	Т	С	Α	Α	С	G	Т
T[.]	3	1	4	4	3	4	3	2	3	1	3	1	2	1	1	4	3	2	4	1	2	1	1	4
FAILED (C!=T, SHIFT BY C)	Α	С	G	Т																				
FAILED (C!=T, SHIFT BY C)			Α	С	G	Т																		
FAILED (G!=A, SHIFT BY T)					A	С	G	Т																
FAILED (A!=T, SHIFT BY A)									Α	С	G	Т												
FAILED (A!=T, SHIFT BY A)												Α	С	G	Т									
FOUND AT 17															Α	C	G	Т						

Any change in P will change the shift table.

Hashing

 Hashing is a standard way of implementing the abstract data type "dictionary", a collection of <attribute name, value> pairs.

- The challenges in implementing a **hash table** are:
 - Design an easy (cheap) to compute hash function that distribute the keys evenly.
 - Handling of same addresses (collisions) for different key values
- We examined three approaches
 - Separate Chaining
 - Linear probing
 - Double Hashing

An excercise

• With the hash functions $h(k) = k \mod 11$ and $s(k) = 3 + k \mod 7$, draw the hash table that results after inserting in the given order: [35 20 26 62 48]

Index	0	1	2	3	4	5	6	7	8	9	10
Separate Chaining			35		26			62		20	
					48						
Linear Probing			35		26	48		62		20	
Double Hashing	48		35		26			62		20	

Recap

- **Dynamic programming** is a bottom-up problem solving technique. The idea is to divide the problem into smaller, overlapping ones. The results are tabulated and used to find the complete solution.
 - Solutions often involves recursion.
- Dynamic programming is often used on Combinatorial Optimization problems.
 - We are trying to find the **best** possible **combination** subject to some **constraints**
- Discussed a few problems
 - Coin row problem
 - Knapsack problem
 - Transitive closure of a matrix
 - All pairs shortest paths

The coin row problem

- You are shown a group of coins of different denominations ordered in a row.
- You can keep some of them, as long as you do not pick two adjacent ones.
 - Your objective is to maximize your profit, i.e., you want to take the largest amount of money.
- The solution can be expressed as the recurrence:

$$S(n) = \max (c_n + S(n-2), S(n-1)) \text{ for } n > 1$$
$$S(1) = c_1$$
$$S(0) = 0$$

The coin row problem

• Try to solve the problem C = [50 10 20 20 50 50 20 5 5 10]

Step	0	50	10	20	20	50	50	20	5	5	10
0	0										
1		50									
2	0	50	50								
3		50	50	70							
4			50	70	70						
5				70	70	120					
6					70	120	120				
7						120	120	140			
8							120	140	140		
9								140	140	145	
10									140	145	150

The knapsack problem

- We also talked about the knapsack problem:
- Given a list of *n* items with:
 - Weights $\{w_1, w_2, ..., w_n\}$
 - Values $\{v_1, v_2, ..., v_n\}$
- and a knapsack (container) of capacity W
- Find the combination of items with the highest value that would fit into the knapsack
- All values are positive integers

The knapsack problem

• The algorithm was based on a recursion, with a base **state**:

$$K(i, w) = 0 \text{ if } i = 0 \text{ or } w = 0$$

And a general case:

$$K(i, w) = \begin{cases} \max(K(i-1, w), K(i-1, w-w_i) + v_i) & \text{if } w \ge w_i \\ K(i-1, w) & \text{if } w < w_i \end{cases}$$

- Another exercise:
 - The knapsack capacity W = 10
 - The values are {8, 24, 13, 19}
 - The weights are {7, 4, 6, 5}

The knapsack problem

				j	0	1	2	3	4	5	6	7	8	9	10
V		W	i												
				0	0	0	0	0	0	0	0	0	0	0	0
	8		7	1	0	0	-1	-1	0	0	0	-1	-1	-1	8
	24		4	2	0	-1	-1	-1	24	24	-1	-1	-1	-1	24
	13		6	3	0	-1	-1	-1	-1	24	-1	-1	-1	-1	37
	19		5	4	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	43

```
function \operatorname{MFKNAP}(i,j)

if i < 1 or j < 1 then

return 0

if F(i,j) < 0 then

if j < w(i) then

value = \operatorname{MFKNAP}(i-1,j)

else

value = \max(\operatorname{MFKNAP}(i-1,j), v(i) + \operatorname{MFKNAP}(i-1,j-w(i)))

F(i,j) = value

return F(i,j)
```

Warshall's algorithm

- Warshall's algorithm computes the transitive closure of a directed graph, by building a path through the following the rules:
 - step from *i* to *j* using only nodes [1 ... *k*-1], or
 - step from i to k using only nodes [1 ... k-1], and then step from k to j using only nodes [1 ... k-1].
- We examined the simplest version of the algorithm.

```
for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

if A[i,k] then

for j \leftarrow 1 to n do

if A[k,j] then

A[i,j] \leftarrow 1
```

Warshall's Algorithm

$$\begin{bmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}$$

$$k = 1, i = 2, j = 2$$
 $k = 1, i = 2, j = 3$

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$k = 1, i = 4, j = 3$$

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

$$k = 1, i = 2, j = 3$$

$$\begin{bmatrix}
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}$$

$$k = 1, i = 4, j =$$

$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$k = 1, i = 4, j = 2$$

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

$$k = 1, i = 4, j = 4$$
 $k = 2, i = 1, j = 1$

$$\left[\begin{array}{ccccc} 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{array}\right]$$

Floyd's Algorithm

- Floyd's algorithm solves the all-pairs shortest-path problem for weighted graphs with positive weights, by building a path following these rules:
 - step from i to j using only nodes [1 ... k-1], or
 - step from i to k using only nodes $[1 \dots k-1]$, and then step from k to j using only nodes $[1 \dots k-1]$.
- We examined a simple version updating D:

```
\begin{aligned} & \textbf{function} \  \, \text{FLOYD}(W[\cdot,\cdot],n) \\ & D \leftarrow W \\ & \textbf{for} \ k \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ i \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & \textbf{for} \ j \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ & D[i,j] \leftarrow \min \left(D[i,j],D[i,k] + D[k,j]\right) \\ & \textbf{return} \ D \end{aligned}
```

Floyd's Algorithm

$$\begin{bmatrix} \infty & 5 & 1 & 2 \\ 4 & 9 & 5 & 10 \\ \infty & \infty & \infty & \infty \\ 3 & 8 & 4 & 5 \end{bmatrix} \begin{bmatrix} 9 & 5 & 1 & 2 \\ 4 & 9 & 5 & 6 \\ \infty & \infty & \infty & \infty \\ 3 & 8 & 4 & 5 \end{bmatrix}$$

$$k=1$$

$$k=2$$

$$\begin{bmatrix} 9 & 5 & 1 & 2 \\ 4 & 9 & 5 & 6 \\ \infty & \infty & \infty & \infty \\ 3 & 8 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 9 & 5 & 1 & 2 \\ 4 & 9 & 5 & 6 \\ \infty & \infty & \infty & \infty \\ 3 & 8 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 9 & 5 & 1 & 2 \\ 4 & 9 & 5 & 6 \\ \infty & \infty & \infty & \infty \\ 3 & 8 & 4 & 5 \end{bmatrix} \begin{bmatrix} 5 & 5 & 1 & 2 \\ 4 & 9 & 5 & 6 \\ \infty & \infty & \infty & \infty \\ 3 & 8 & 4 & 5 \end{bmatrix}$$

Greedy algorithms

- A **greedy algorithm** takes the **locally best** choice among all feasible ones. Such choice is **irrevocable**.
 - Greedy algorithm can provide good approximations.

- We applied this idea to two graph problems :
 - Prim's algorithm for finding minimum spanning trees
 - Dijkstra's algorithm for single-source shortest path

Prim's Algorithm

• We examined the complete algorithm, that uses priority queues:

```
function PRIM(\langle V, E \rangle)
    for each v \in V do
        cost[v] \leftarrow \infty
        prev[v] \leftarrow nil
    pick initial node v_0
    cost[v_0] \leftarrow 0
    Q \leftarrow \text{InitPriorityQueue}(V)
                                                              > priorities are cost values
    while Q is non-empty do
        u \leftarrow \text{EJECTMIN}(Q)
        for each (u, w) \in E do
            if weight(u, w) < cost[w] then
                 cost[w] \leftarrow weight(u, w)
                prev|w| \leftarrow u
                UPDATE(Q, w, cost[w])
                                                             > rearranges priority queue
```

Another example

• Let's work with the following graph, but starting from b:

Tree T		a	b	С	d	е	f
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost	∞	0	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
h	cost	3		1	∞	∞	4
b	prev	b		b	nil	nil	b
h c	cost	3			6	∞	4
b,c	prev	b			С	nil	b
h c a	cost				6	6	4
b,c,a	prev				С	a	b
h c a f	cost				5	2	
b,c,a,f	prev				f	f	
h c a f a	cost				5		
b,c,a,f,e	prev				f		
boafad	cost						
b,c,a,f,e,d	prev						

Dijkstra's Algorithm

Dijkstra's algorithm finds all shortest paths from a fixed start node.
 Its complexity is the same as that of Prim's algorithm.

```
function Dijkstra(\langle V, E \rangle, v_0)
    for each v \in V do
        dist[v] \leftarrow \infty
        prev[v] \leftarrow nil
    dist[v_0] \leftarrow 0
    Q \leftarrow \text{InitPriorityQueue}(V)
                                                                > priorities are distances
    while Q is non-empty do
        u \leftarrow \text{EJECTMIN}(Q)
        for each (u, w) \in E do
            if dist[u] + weight(u, w) < dist[w] then
                dist[w] \leftarrow dist[u] + weight(u, w)
                prev|w| \leftarrow u
                 UPDATE(Q, w, dist[w])
                                                             > rearranges priority queue
```

Another example

• Let's work with this graph again, but starting from b:

Tree T		a	b	С	d	е	f
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
	cost	∞	∞	∞	∞	∞	∞
	prev	nil	nil	nil	nil	nil	nil
h	cost	3		1	∞	∞	4
b	prev	b		b	nil	nil	b
h c	cost	3			7	∞	4
b,c	prev	b			С	nil	b
h c a	cost				7	9	4
b,c,a	prev				С	a	b
h c a f	cost				7	6	
b,c,a,f	prev				С	f	
h c a f a	cost				7		
b,c,a,f,e	prev				С		
h c a f a d	cost						
b,c,a,f,e,d	prev						

- Toby will be back for Wednesday.
- Thanks for your attention.
- Please do not forget to fill in the SES.