Топология I, листочек 3

1. Докажите, что $\mathbb{R}/\mathbb{Z} \simeq S^1$.

Утверждение 1. Элементы базы топологии на X после индуцирования на $Y \subseteq X$ образуют базу топологии на Y.

По определению элемент базы останется открытым после индуцирования. Покажем теперь, что все индуцированные элементы базы составят базу. Пусть $U\subseteq Y$ – открытое множество. Тогда существует такое открытое $V\subseteq X$, что $V\cap Y=U$. Раз V открыто, то существуют элементы базы $B_i\in \tau_X, i\in I$, что $\bigcup_{i\in I}B_i=V$. Тогда $U=V\cap Y=Y\cap\bigcup_{i\in I}B_i=\bigcup_{i\in I}Y\cap B_i$ открытое множество представимо как объединение индуцированных элементов базы на топологии X, а значит, что множество всех таких индуцированных элементов составят базу топологии на Y.

Утверждение 2. Если в топологии пространства X/\sim образ элемента базы топологии на X при канонической проекции открыт, то объединение этих образов составит базу топологии на фактор пространства.

Пусть $U \in X/\sim$ открыто, тогда $\pi_{\sim}^{-1}[U]$ открыто и представимо как $\bigcup_{i\in I} B_i$ где B_i – элемент базы топологии на X. Тогда $U=\pi_{\sim}[\bigcup_{i\in I} B_i]=\bigcup_{i\in I} \pi_{\sim}[B_i]$. А значит образ элементов базы топологии на X составит базу топологии на фактор пространстве.

Утверждение 3. Если биекция $X \to Y$ переводит элементы базы в открытые множества и прообразами элементов базы тоже являются открытые множества, то биекция является гомеоморфизмом.

Пусть $U\subseteq X$ открыто, тогда существуют такие элементы базы $B_i\subseteq X, i\in I$, что $U=\bigcup_{i\in I}B_i$. Тогда $f^{-1}[U]=\bigcup_{i\in I}f^{-1}[B_i]$ – объединение открытых, а значит само открыто и f непрерывно. В обратную сторону доказывается также.

Базой пространства S^1 являются всевозможные пересечения окружности и открытых кругов, то есть открытые дуги. Найдем теперь базу пространства \mathbb{R}/\mathbb{Z} . Пусть (a,b) – элемент базы топологии на \mathbb{R} . Прообраз образа этого интервала равен $\bigcup_{n\in\mathbb{Z}}(a+n,b+n)$ и открыт, а значит образы интервалов составят базу топологии на фактор пространстве. Если классы эквивалентности отождествить с точками на [0,1), то образом интервала (a,b) будет $(\{a\},\{b\})$, если изначальный интервал не содержал целых точек, $[0,\{b\}) \cup (\{a\},1)$, если изначальный интервал содержал 2 и более целые точки. Пусть $f:[x]\mapsto e^{i2\pi\{x\}}$ биекция из \mathbb{R}/\mathbb{Z} в S^1 . Тогда очевидно, что она однозначно сопоставляет элементам базы топологии на фактор пространстве открытые дуги, а значит пространства гомеоморфны.

2. Докажите, что $\mathbb{D}^n/S^{n-1}\simeq S^n$.

Пусть I=(-1,1) интервал. Тогда положим $B^n=I^n$, $\mathbb{D}^n=\overline{B^n}$ и $S^n=\partial\mathbb{D}^{n+1}$. \mathbb{D}^n/S^{n-1} – это диск в котором все точки его границы положили в один класс. Построим сюръекцию из диска в шар, что уважает это отождествление: Пусть $x=(x_1,...,x_n)$ и пусть $|x|=max_i|x_i|$, тогда

$$f(x) = \begin{cases} (-1, 4x_1, ..., 4x_n) & ,0 \leq |x| < 1/4 \\ (4|x| - 2, x_0/|x|, ..., x_n/|x|) & ,1/4 \leq |x| \leq 3/4 \\ (1, 4(1 - |x|)\frac{4}{3}x_0, 4(1 - |x|)\frac{4}{3}x_n) & ,3/4 < |x| \leq 1 \end{cases}$$

Сюръекция f непрерывно, так как непрерывна каждая композиция $pr_i \circ f$. Теперь если объединить все точки $\partial \mathbb{D}^n$ в один класс, то $f: \mathbb{D}^n/\partial \mathbb{D}^n \to S^n$ станет биекцией. Причем прообраз открытого не содержащего $f(\partial \mathbb{D}^n)$ будет открытым, потому как факторизация ничего не поменяла, а прообраз открытого, содержащего эту точку, был открыт до факторизации и содержал границу, а значит останется открытым и после факторизации. Заметим также, что f – это биекция из компактного пространства в хаусдорфово, а значит является гомеоморфизмом.

3. Верно ли, что фактор хаусдорфова пространства является хаусдорфовым? Регулярного – регулярным? Нормального – нормальным?

Возьмём отрезок [0,1] с канонической топологией. Он компактен и хаусдорфов, а значит нормален и регулярен. Профакторизуем его так, что его внутренность попадёт в один класс

эквивалентности, 0 в другой, а 1 в третий обозначим их за i, 0, 1 соответственно. Тогда из всех подмножеств только \emptyset , $\{i\}$, $\{0,i\}$, $\{1,i\}$, $\{0,1,i\}$ будут открытыми. Заметим, что $\{0\}$ и $\{1\}$ будут замкнутыми в такой топологии, но при этом у этих синглтонов нет непересекающихся окрестностей, а значит, что полученное фактор пространства ни хаусдорфово, ни регулярно, ни нормально. Тогда ответ на все вопросы – нет.

4. Приведите пример хаусдорфова нерегулярного топологического пространства.

Положим $K = \{1/n | n \in \mathbb{N}\}$. Это множество не открыто в стандартной топологии прямой \mathbb{R} , так как любая окрестность 1 не лежит в K. С другой стороны оно не замкнуто, так как не содержит предельную точку 0. Возьмём множество S всех интервалов вместе со всеми интервалами без K. Оно покрывает прямую и пересечение двух элементов либо интервал, либо интервал без K, а значит S – база некой топологии, в которой открытые множества - это канонические открытые множества без некого подмножества в K. Это означает, что любая окрестность 0 содержит отрезок без некого количества элементов из K. Тогда между границами этого отрезка лежит некое число вида 1/p и любая окрестность K будет содержать шар радиусом меньшим 1/p - 1/(p-1) вокруг 1/p и 1/p содержащий. Тогда этот шар пересекается с K только по своему центру, а значит это шар в привычном нам смысле. Тогда он пересекается с изначальной окрестностью 0. В итоге у K и 0 нет непересекающихся окрестностей и K очевидно замкнуто, а занчит прямая с этой топологией не регулярна, но хаусдорфова, так как тоньше стандартной хаусдорфовой топологии.

5. Приведите пример регулярного ненормального топологического пространства.

Топология стрелки. Возьмём прямую $\mathbb R$ и снабдим её топологией, базой которой являются полуинтервалы вида [a,b). Это семейство и вправду является базой, так как если пересечение 2 её элементов непусто, то оно тоже будет правым полуинтервалом, а также семейство покрывает всё пространство. Назовем получившуюся топологию au_l , а пространства $\mathbb{R}_l :=$ (\mathbb{R}, au_l) . Нетрудно видеть, что если U открыто в евклидовом смысле, то вместе с каждой своей точкой x U будет содержать некий шар (x-d,x+d), а значит содержит и полуинтервал [x, x+d), тогда U открыто в топологии стрелки. Это означает что топология стрелки тоньше евклидовой топологии. Тогда \mathbb{R}_l хаусдорфово. Пусть теперь $A,B\subseteq\mathbb{R}_l$ замкнуты и дизъюнктивны. Заметим, что $A\subseteq\mathbb{R}\backslash B$ и $B\subseteq\mathbb{R}\backslash A$ открытые окрестности соответствующий множеств. Тогда вместе с каждым $a\in A$ есть полуинтервал $U_a:=[a,a+d_a),d_a>0$ лежащий в $\mathbb{R}ackslash B$, и вместе с каждым $b\in B$ есть полуинтервал $V_b:=[b,b+d_b),d_b>0$ лежащий в $\mathbb{R}\backslash A$. Положим $V=\bigcup_B V_b$ и $U=\bigcup_A V_a$, они являются открытыми окрестностями B и Aсоответственно. Покажем теперь, что их пересечение пусто. Если $V_b \cap U_a \neq \emptyset$, то тогда их пересечение содержит $\max(a,b)$, пусть без потери общности $a\in V_b\cap U_a\subseteq V_b\subset \mathbb{R}\backslash A$, что есть противоречие. Тогда мы нашли непересекающиеся окрестности 2 произвольных замкнутых множеств, а значит пространство \mathbb{R}_l хаусдорфово, регулярно и нормально.

Утверждение 4. Подпространство регулярного пространство регулярно.

Пусть X – регулярно и $A \subseteq X$. Пусть $a \in A$ точка и $F \subset A$ замкнутое, что не содержит a. Тогда существует замкнутое $C \subset X$, что $F = C \cap A$. не содержит точки a, а значит по регулярности X существуют открытые $C \subseteq U$, $a \in V$, что пересекаются по пустому множеству. Тогда $F \subset U \cap A$ и $a \in V \cap A$ – открытые в A окрестности точки и замкнутого её не содержащего, что не пересекаются, а значит пространство A регулярно.

Утверждение 5. Пространство X регулярно тогда и только тогда, когда для любого открытого O и точки x из O существует открытое U, что верно соотношение $x \in U \subseteq \overline{U} \subseteq O$.

⇒: Пусть U – открытое множество и $x \in U$ – точка в нём. Тогда $x \notin U^c$ и U^c – замкнуто. Тогда по регулярности мы найдем пару открытых O_1 и O_2 , что $x \in O_1$ и $U^c \subseteq O_2$ и $O_1 \cap O_2 = \emptyset$. Тогда будет иметь место следующее соотношение: $x \in O_1 \subseteq \overline{O_1} \subseteq O_2^c \subseteq U$.

 \Leftarrow : Для точки x и замкнутого F её не содержащего найдём открытое V, что $x \in V \subseteq \overline{V} \subseteq F^c$. Тогда $x \in V$ и $F \subseteq \overline{V}^c$ и $V \cap \overline{V}^c = \emptyset$, а значит пространство регулярно.

Утверждение 6. Пространство $\prod_i X_i = X$ регулярно тогда и только тогда, когда всякое X_i регулярно.

- \Rightarrow Если $\prod_i X_i$ регулярно, то регулярно $\prod_i Y_i$, где для $i=i_0$, $Y_{i_0}=X_{i_0}$, а во всех остальных случаях $Y_i=\{x_i\}\subseteq X_i$ это произведение гомеоморфно X_{i_0} и регулярно в силу утверждения 4. Тогда X_{i_0} тоже регулярно.
- \Leftarrow Пусть теперь всякое X_i регулярно. Пусть $x=(x_i)\in \prod_i X_i=X$. Пусть $x\in U\in \tau$ открытое множество. Тогда есть набор открытых $\{W_i\}$, что $x\in W=\prod_i W_i\subseteq U$. Это в частности означает, что $x_i\in W_i$ координата лежит в открытом сомножителе. Тогда по регулярности

пространства X_i найдется открытое V_i , что $x_i \in V_i \subseteq \overline{V_i} \subseteq W_i$. Тогда $x \in V = \prod_i V_i \subseteq \overline{\prod_i V_i} = \overline{\bigcap_i \operatorname{pr}_i^{-1}[V_i]} = \bigcap_i \overline{\operatorname{pr}_i^{-1}[V_i]} \subseteq \bigcap_i \operatorname{pr}_i^{-1}[\overline{V_i}] = \prod_i \overline{V_i} \subseteq W \subseteq U$. Тогда $x \in V \subseteq \overline{V} \subseteq U$ и по утвердению 5 произведение пространств будет регулярным.

Положим теперь $\mathbb{S} := \mathbb{R}_l \times \mathbb{R}_l$. Это пространство называется *прямой Зоргенфрея*. Оно является произведением регулярных пространств, а значит само регулярно. Также топология этой плоскости тоньше топологии евклидовой плоскости. Тогда прямая $D = \{(x,-x)|x \in \mathbb{R}\}$ замкнута в топологии Зоргенфрея. Базой \mathbb{S} очевидно являются квадраты $[a,a+d)\times[b,b+d)$. Я буду дальше под \mathbb{P} подразумевать $\mathbb{R}\setminus\mathbb{Q}$. Тогда множества $Q = \bigcup_{q\in\mathbb{Q}}[q,q+1)\times[-q,-q+1)$ и $P = \bigcup_{p\in\mathbb{P}}[p,p+1)\times[-p,-p+1)$ будут открытыми, а $D\setminus Q$ и $D\setminus P$ замкнутыми.

Утверждение 4. На вещественно прямой с евклидовой топологией (\mathbb{R}, τ) если множество U открыто и всюду полотно, то его дополнение U^c счётно.

Пусть U открыто. Тогда оно представимо как $U=\coprod_{i=0}^{\infty}I_i$ дизъюнктивное объединение интервалов. Их счетное количество, так как в каждом можно выбрать по рациональной точке и тем самым задать вложение в множество действительных чисел. Определим для целого $z\,P_z=[z,z+1]$, и для натурального $n\,A_{n,z}=\{I_k\cap P_z\,|\,k\geqslant 1\,\wedge\, \mathrm{diam}(I_k\cap P_z)>1/n\}$ - множество интервалов отрезка и $B_{n,z}=\{S\subseteq P_z\,|\,\forall I\in A_{n,z}I\cap S=\emptyset \wedge S$ - отрезок Λ ($S\subseteq S'$ вложено в отрезок Λ $\forall J\in A_{n,z}S'\cap J=\emptyset \Rightarrow S=S')\}$ - множество отрезков, что лежат между интервалами. Очевидно что как $A_{n,z}$, так и $B_{n,z}$ оба конечные. Заметим, что по построение $A_{n,z}\subseteq A_{n+1,z}$ и $\bigcup A_{n,z}\to U\cap P_z$, когда $n\to +\infty$.

6. Приведите пример связного, но не линейно связного топологического пространства. Обозначим за L_n отрезок между (0,0) и (1,1/n) в \mathbb{R}^n . Он связен и открыт.

Утверждение 4. Если $C_{\alpha} \subseteq X$ – связные пространства для всяких индексов и $\bigcap_{\alpha} C_{\alpha} \neq \emptyset$, то $\bigcup_{\alpha} C_{\alpha}$ связно.

Пусть $\bigcap_{\alpha} C_{\alpha} \neq \emptyset$, но при этом $\bigcup_{\alpha} C_{\alpha} = U \sqcup V$, где U и V дизъюнктивные открыты непустые множества. Если бы ни одно из C_{α} не одержало одновременно элементы этих двух открытых множеств, то тоже было бы справедливым относительно их непустого пересечения и тогда все C_{α} были бы подмножествами одного из открытых, а значит второе открытое множество оказалось бы пустым, что противоречит с нашим предположением. Пусть C_{α_0} содержит элементы из обоих множеств. Тогда $C_{\alpha_0} = (U \cap C_{\alpha_0}) \sqcup (U \cap C_{\alpha_0})$ – несвязно, а значит мы вновь пришли к противоречию. Тогда $\bigcap_{\alpha} C_{\alpha}$ обязано быть связным.

В нашем случае множества $B=\bigcup_{n=1}^{+\infty}L_n$ и $\overline{B}=B\cup([0,1]\times\{0\})$ в силу этого утверждения связны, так как их связные части-отрезки пересекаются по (0,0).

Утверждение 5. Если множества C и \overline{C} связны, то и всякое лежащее между ними тоже связно.

Пусть C и \overline{C} связны и $C \subset X \subset \overline{C}$. Если бы $X = U \sqcup V$ было несвязно, то если бы оба имели элементы из C, то $C = (U \cap C) \sqcup (V \cap C)$ было бы несвязно, что ведёт к противоречию. Иначе одно из открытых, пусть без потери общности им будет V, полностью бы находилось в $\overline{C} \backslash C$. Тогда $\overline{C} \backslash V$ было бы замкнутым в объемлющем пространстве и содержало бы C, а значит замыкания не было бы минимальным по включению замкнутым надмножеством C, что опять ведет к противоречию. В итоге X обязано быть связным.

7. Определите естественную топологию на пространства невырожденных матриц $\mathrm{GL}_n(\mathbb{R})$. Является ли оно связным?

Отождествим $M_n(\mathbb{R})$ с \mathbb{R}^{n^2} с топологией проиведения. Тогда топологией на пространстве $\mathrm{GL}_n(\mathbb{R})$ будет индуцированная с топологии $M_n(\mathbb{R})$. det будет непрерывным отображением $\mathrm{GL}_n(\mathbb{R})$ на $\mathbb{R}\setminus\{0\}$. Так как образ пространства при непреывном отображении несвязен, то несвязно и само пространство.

- 8. Докажите, что функции расстояния d_1, d_2, d_∞ задают структуру метрического пространства на \mathbb{R}^n . Нарисуйте открытые шары B_0^1 в метриках d_i при n=2.
- 9. Докажите, что топология на \mathbb{R}^n , индуцированная метриками d_i и выше, совпадает с топологией произведения, определённой на лекции.

Обозначим за τ_{∞} топологию порожденную метрикой d_{∞} и за τ_{\times} топологию произведения. Базой τ_{∞} являются многомерные кубы, то есть множества вида $r(-1,1)^n+a$, где $r\in\mathbb{R}$ и $a\in\mathbb{R}^n$. Базой топологии произведения являются всевозможные произведения интервалов. Заметим, что база метрической топологии вкладывается в базу топологии произведение, а значит $\tau_{\infty}\subseteq\tau_{\times}$. Пусть теперь $U=\prod_{i=1}^n(a_i,b_i)$ – элемент базы τ_{\times} . Тогда каждая его точка $x=(x_1,...,x_n)\in U$ лежит вместе с шаром $\min\{|a_i-x_i|i\in\{1,...,n\}\}\cap\{|b_i-x_i|i\in\{1,...,n\}\}$

 $\{1,...,n\}\}(-1,1)^n+x$, а значит база топологии произведения является семейством открытых множеств из τ_{∞} . Это означает, что $\tau_{\times} \subseteq \tau_{\infty}$, и учитывая прошлое утверждение $\tau_{\times} = \tau_{\infty}$.

Теперь пусть $S_i = \{x \in \mathbb{R}^n | d_i(x,0) = 1\}.$ $x \mapsto d_i(x,0)$ - это непрерывное отображение в смысле $(\mathbb{R}^n, \tau_\times) \to (\mathbb{R}, \tau_c)$, где τ_c – каноническая топология прямой, так как $d_i(\cdot, 0)$ является і-м корнем из суммы непрерывный отображений. Тогда исходя из 2 задачи 2 листочка множество S_i замкнуто, так как (\mathbb{R}, τ_c) – хаусдорфово. Нетрудно также видеть, что $S_i \subset$ $[-1,1]^n$, подмножество произведения компактных по лемме Бореля – Лебега отрезков, что само компактно. Тогда S_i – замкнутое подмножество компакта, а значит S_i компактно в топологии τ_{\times} . Очевидно, что $d_{\infty}(\cdot,0):(\mathbb{R}^n,\tau_{\times})\to(\mathbb{R},\tau_c)$ тоже является непрерывным отображением. Тогда $d_{\infty}(S_i,0)$ – образ сферы при непрерывном отображении тоже компактен. Более того, так как каноническая топология прямой хаусдорфова, то компактный образ сферы замкнут, а значит содержит все свои предельные точки. Теперь так, как функция расстояния имеет неотрицательные значения и сфера не содержит нуль векторного пространства, то она и не может содержать сколь угодно близкие к нулю с точки зрения d_{∞} точки, в силу замкнутости образа. Это означает, что образ имеет ненулевую нижнюю грань m>0, то есть минимальное расстояния от нуля до некоторой точки сферы. Тогда имеет место следующее соотношения для шаров $B_i(a,r)$ метрики d_i . $B_{\infty}(a,rm)\subseteq B_i(a,r)\subseteq B_{\infty}(a,r)$ для любых точек a и радиусов r. Это значит, что в любой шар пространства с метрикой d_i можно вписать куб и вокруг него же можно описать куб, а значит открытые множества одного пространства открыты и в другом. Тогда $au_i = au_\infty = au_{ imes}$, что и завершает доказательство.

10. Пусть X, Y – метрические пространства. Определите естественную метрику на их произведении $X \times Y$.

Естественной метрикой будет $d_{X\times Y}=\max(d_X,d_Y)$ максимум из расстояний между координатами. Она естественная в том смысле, что шар будет произведением шаров равного радиуса, а значит топология такого пространства совпадет с топологией произведения.

- 11. Предположим, что в метрическом пространстве X выполнено $B_x^{\varepsilon_1} = B_y^{\varepsilon_2}$ для некоторых точек x, y и некоторых $\varepsilon_1, \varepsilon_2 > 0$. Верно ли, что $x = y, \varepsilon_1 = \varepsilon_2$?
 - Нет, возьмем отрезок [0, 1], любые шары радиусом большим 2 являются всем пространством, а значит совпадают, при этом их можно рисовать вокруг любых точек.
- 12. Определим топологию Зариского на \mathbb{C}^n следующим образом: замкнутыми множествами назовем множества нулей произвольного набора многочленов из $\mathbb{C}[x_1,...,x_n]$. Проверьте, что это действительно топология. Является ли она хаусдорфовой? Совпадает ли топология Зариского на \mathbb{C}^2 с топологией произведения, полученной из топологии Зариского на C?