Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática – ICEI Arquitetura de Computadores I

ARQ1 \_ Aula\_04

Tema: Introdução à Álgebra de Boole

Atividade: Álgebra de Boole

Em Matemática, chama-se *proposição* ao enunciado de uma verdade que se quer demonstrar, ou como usaremos: uma sentença que pode ser falsa (0), ou verdadeira (1), mas nunca ambos ao mesmo tempo.

A conjunção é uma relação entre sentenças que estabelece um resultado <u>verdadeiro</u> (1) quando associadas duas proposições (p e q), ambas <u>verdadeiras</u> (iguais a 1). Basta uma delas ser <u>falsa</u> (0), para que a conjunção (s) também seja <u>falsa</u> (0).

A porta **AND** ( E ) é um componente de circuito lógico que implementa essa relação; pode ter duas (p, q), ou mais entradas, e a saída (s) assumirá o valor 1 (<u>verdadeiro</u>) se, e somente se, todas as entradas forem iguais a 1 (<u>verdadeiras</u>); caso uma, ou mais entradas forem iguais a 0 (<u>falso</u>), a saída terá valor igual a 0 (**falso**).

A disjunção é uma relação entre sentenças que estabelece um resultado <u>falso</u> (0) quando duas proposições (p e q) forem <u>falsas</u> (0). Basta uma delas ser <u>verdadeira</u> (1), para que a disjunção também seja <u>verdadeira</u> (1).

A porta **OR** ( OU ) é um componente de circuito lógico que implementa essa relação; pode ter duas (p, q), ou mais entradas, e a saída (s) assumirá o valor 0 (<u>falso</u>) se, e somente se, todas as entradas forem iguais a 0 (<u>falso</u>); caso uma, ou mais entradas forem iguais a 1 (<u>verdadeiro</u>), a saída terá valor 1 (<u>verdadeiro</u>).

A negação determina que se uma proposição (p) for <u>falsa</u> (0), seu resultado será <u>verdadeiro</u> (1), ou vice-versa.

A porta **NOT** (NÃO) é um componente de circuito lógico que implementa essa relação, também chamada de **INVERTER** (INVERSOR), só possui uma entrada (p), e a saída assumirá o valor 1 (<u>verdadeiro</u>), se a entrada for igual a 0 (<u>falso</u>); senão, a saída terá valor 0 (<u>falso</u>), se a entrada for igual a 1 (<u>verdadeiro</u>).

### - Analogias com circuitos elétricos

O primeiro circuito a seguir (conjunção) determina que se duas chaves (p e q) forem fechadas (1), o resultado (s) será o de um circuito fechado com uma lâmpada acesa (1), por exemplo; basta que uma delas seja aberta (0), para que o circuito se abra, e a lâmpada apague (0). O circuito poderá ter duas (p, q), ou mais chaves, em série que a saída (s) terá o mesmo resultado (1) se, e somente se, todas as chaves forem fechadas (1); caso uma, ou mais chaves forem abertas (0), o resultado será um circuito aberto com a lâmpada apagada (0).

O segundo circuito a seguir (disjunção) determina que se duas chaves (p e q) forem abertas (0), o resultado (s) será o de um circuito aberto com uma lâmpada apagada (0), por exemplo; basta que uma delas seja fechada (1), para que o circuito se feche. O circuito poderá ter duas (p, q), ou mais chaves, em paralelo que a saída (s) terá o mesmo resultado (0), se, e somente se, todas as entradas forem abertas (0); caso uma, ou mais chaves forem fechadas (1), o resultado será um circuito fechado coma lâmpada acesa (1).

O terceiro circuito a seguir (negação) determina que se uma chave (p) for acionada (1), o resultado (s) será o de um circuito aberto com uma lâmpada apagada (0); caso contrário, o circuito permanecerá fechado, e a lâmpada se manterá acesa (1).

### - Representações por circuitos



# - Representações de relações lógicas

# Notações

| Conjunção ( E )<br>(p e q) | Disjunção (OU )<br>(p ou q) | Negação (NÃO )<br>(não p) |
|----------------------------|-----------------------------|---------------------------|
| $p \wedge q$               | $p \vee q$                  | ¬p                        |
| $p \cdot q = p q$          | p + q                       | /p = p' = p               |
| p & q                      | p   q                       | ~p                        |
| p && q                     | p    q                      | <b>!</b> p                |

# Tabela-verdade

| Conjunção (E)   | Disjunção (OU) | Negação (NÃO ) |
|-----------------|----------------|----------------|
| p q s           | p q s          | p s            |
| $0 \cdot 0 = 0$ | 0 + 0 = 0      |                |
| $0 \cdot 1 = 0$ | 0 + 1 = 1      | 0' = 1         |
| $1 \cdot 0 = 0$ | 1 + 0 = 1      | 1' = 0         |
| 1 • 1 = 1       | 1 + 1 = 1      |                |

# Diagrama de Decisão Binária (BDD)



Portas Lógicas



# Diagramas de tempo para as portas lógicas



#### - Prioridade de conectivos

Estabelece-se que a ordem de avaliação de uma expressão, envolvendo conectivos lógicos, será da esquerda para a direita, respeitando-se as prioridades dos conectivos na ordem mostrada abaixo, sendo a primeira a mais alta quando aplicada imediatamente a um valor.

Pode-se mudar a ordem de avaliação por meio de parênteses.

### Exemplo:

Considere a expressão lógica: (! x && y) || (x && ! y) de forma mais simples como  $(x' \cdot y) + (x \cdot y')$  A sua avaliação será feita na seguinte ordem de prioridade:

negação de (x) : x'
conjunção com (y) : x' • y
negação de (y) : y'
conjunção com (x) : x • y'

- disjunção das conjunções : (x' • y) + (x • y')

A expressão poderá ser representada nas formas tabular (*tabela-verdade*) ou por BDD (*Binary Decision Diagram*):

| ху  | (x' • y) | (x • y') | $(x'\bullet y)+(x\bullet y')$ |
|-----|----------|----------|-------------------------------|
| 0 0 | 0        | 0        | 0                             |
| 0 1 | 1        | 0        | 1                             |
| 1 0 | 0        | 1        | 1                             |
| 1 1 | 0        | 0        | 0                             |



Resumidamente as relações em uma tabela também poderão ser indicadas

- pela disjunção (+) das conjunções iguais a 1 (ou mintermos)

| ху  | (x' • y) | (x • y') | $(x'\bullet y)+(x\bullet y')$ |
|-----|----------|----------|-------------------------------|
| 0 0 | 0        | 0        | 0                             |
| 0 1 | 1        | 0        | 1                             |
| 1 0 | 0        | 1        | 1                             |
| 11  | 0        | 0        | 0                             |

mintermos (=1)  

$$m0 = x' \cdot y' = 0$$
.  
 $m1 = x' \cdot y = 1 \leftarrow$   
 $m2 = x \cdot y' = 2 \leftarrow$   
 $m3 = x \cdot y = 3$ .

$$f(x, y) = (x' \cdot y) + (x \cdot y') = m1 + m2 = \sum m(1,2) = SoP(1,2)$$

- pela conjunção ( • ) das disjunções iguais a 0 (ou MAXTERMOS).

| XY  | (X+Y') | (X'+Y) | (X+Y')•(X'+Y) |
|-----|--------|--------|---------------|
| 0 0 | 0      | 0      | 0             |
| 0 1 | 1      | 0      | 1             |
| 1 0 | 0      | 1      | 1             |
| 1 1 | 0      | 0      | 0             |

MAXTERMOS (=0)  

$$m0 = X + Y = 0 \leftarrow$$
  
 $m1 = X + Y' = 1$   
 $m2 = X' + Y = 2$   
 $m3 = X' + Y' = 3 \leftarrow$ 

$$F(X, Y) = (X+Y') \cdot (X'+Y) = M1 \cdot M2 = \Pi M(0,3) = PoS(0,3)$$

## Principais relações da álgebra de Boole



## Resumo

|           |         |      |     |      | AND   | OR    | XOR   | XNOR      | NOR       | NAND      |
|-----------|---------|------|-----|------|-------|-------|-------|-----------|-----------|-----------|
|           | m       | M    | р   | q    | p&q   | p q   | p ^ q | ~ (p ^ q) | ~ (p   q) | ~ (p & q) |
| 0         | p' • q' | P+Q  | 0   | 0    | 0     | 0     | 0     | 1         | 1         | 1         |
| 1         | p' • q  | P+Q  | 0   | 1    | 0     | 1     | 1     | 0         | 0         | 1         |
| 2         | p • q'  | P+Q  | 1   | 0    | 0     | 1     | 1     | 0         | 0         | 1         |
| 3         | p•q     | P'+Q | 1   | 1    | 1     | 1     | 0     | 1         | 0         | 0         |
|           |         |      |     |      | [1]   | [7]   | [6]   | [9]       | [8]       | [14]      |
|           |         |      |     |      |       |       |       |           |           |           |
| mintermos |         | SoP  | (+) | [=1] | 3     | 1,2,3 | 1,2   | 0,3       | 0         | 0,1,2     |
| MAXTERMOS |         | PoS  | (•) | [=0] | 0,1,2 | 0     | 0,3   | 1,2       | 1,2,3     | 3         |
|           |         |      |     |      |       |       |       |           |           |           |

# Principais propriedades da Álgebra de Boole

| Idempotência           | Comutativa                                             | Associativa                                          |  |
|------------------------|--------------------------------------------------------|------------------------------------------------------|--|
| p + p = p              | p + q = q + p                                          | (p + q) + r = p+(q + r)                              |  |
| p • p = p              | p • q = q • p                                          | $(p \cdot q) \cdot r = p \cdot (q \cdot r)$          |  |
|                        |                                                        |                                                      |  |
| Identidade             | De Morgan                                              | Distributiva                                         |  |
| p + 0 = p p • 0 =0     | $\overline{(p+q)} = \overline{p} \cdot \overline{q}$   | $p + (q \cdot r) = (p + q) \cdot (p + r)$            |  |
| p + 1 = 1 p • 1 = p    | $\overline{(p \cdot q)} = \overline{p} + \overline{q}$ | $p \cdot (q+r) = (p \cdot q) + (p \cdot r)$          |  |
|                        |                                                        |                                                      |  |
| Complementar           | Absorção                                               | Consenso                                             |  |
| p + p = 1 (tautalogia) | $p + (\stackrel{\triangle}{p} \cdot d) = (p + d)$      | $(p \cdot q) + (\overline{p} \cdot r) + (q \cdot r)$ |  |
| (tautologia)           |                                                        | $= (p \cdot q) + (p \cdot r)$                        |  |
| $p \cdot p = 0$        | $p + (p \cdot q) = (p + q)$                            | (p+q) • (p+r) • (q+r)                                |  |
| (contradição)          |                                                        | $=(p+q) \cdot (p+r)$                                 |  |
| =<br>p = p             | $b + (b \cdot d) = b$                                  |                                                      |  |
| (dupla negação)        |                                                        |                                                      |  |

# Principais propriedades da álgebra com XOR.

| Básicas                                              | Identidade                                                    | Complementar                                                              |
|------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|
| $p \oplus p = 0$                                     | p ⊕ 0 = p                                                     | $p \oplus q = p \oplus q$                                                 |
| $p \oplus \overline{p} = 1$                          | p⊕1= ¯                                                        | $\overline{(p \oplus q)} = \overline{p} \oplus q = p \oplus \overline{q}$ |
|                                                      |                                                               |                                                                           |
| Associativa                                          |                                                               | Comutativa                                                                |
| $(p \oplus q) \oplus r = p \oplus (q \oplus r)$      |                                                               | $p \oplus q = q \oplus p$                                                 |
|                                                      |                                                               |                                                                           |
| Disjunção                                            | Distributiva                                                  | Transposição                                                              |
| se: $p=q \oplus r$ e $q \cdot r=0$<br>então: $p=q+r$ | $p \bullet (q \oplus r) = (p \bullet q) \oplus (p \bullet r)$ | se: $p=q \oplus r$<br>então: $q=p \oplus r$ e $r=p \oplus q$              |

## Tabela-verdade

Expressões lógicas podem ser expressas na forma tabular (tabela-verdade):

# Exemplo:

Avaliar a expressão: x' • y + x • y'

considerando a ordem de prioridades entre negação, conjunção e disjunção.

| _ x y | x' • y | x • y' | x'• y + x • y' |
|-------|--------|--------|----------------|
| 0 0   | 0      | 0      | 0              |
| 0 1   | 1      | 1      | 1              |
| 1 0   | 0      | 0      | 1              |
| 11    | 0      | 0      | 0              |

A descrição equivalente em Verilog será

Uma função lógica também pode ser descrita pela soma de produtos (mintermos) ou SoP (disjunção das conjunções dos termos na tabela onde a função for igual a 1).

| #mintermo | mintermo | ху  | f(x,y) | _   |
|-----------|----------|-----|--------|-----|
| 0         | x'• y'   | 0 0 | 0      |     |
| 1         | x'• y    | 0 1 | 1      | _ ← |
| 2         | x • y'   | 1 0 | 1      | _ ← |
| 3         | x • y    | 1 1 | 0      |     |

$$f(x,y) = (x' \cdot y) + (x \cdot y') = \sum m(1, 2)$$

A descrição equivalente em Verilog será

Uma função lógica pode ser descrita pelo produto de somas (MAXTERMOS) ou PoS, (conjunção das disjunções dos termos na tabela onde a função for igual a 0), cujo resultado é equivalente à soma de produtos complementar

| #MAXTERMOS | MAXTERMOS | ΧY  | F(X,Y) |   |
|------------|-----------|-----|--------|---|
| 0          | X +Y      | 0 0 | 0      | ← |
| 1          | X +Y'     | 0 1 | 1      | _ |
| 2          | X'+Y      | 1 0 | 1      | _ |
| 3          | X'+Y'     | 1 1 | 0      | ← |

$$F(X,Y) = (X + Y) \cdot (X' + Y') = \prod M(0, 3)$$

A descrição equivalente em Verilog será

endmodule // PoS

cujo módulo com os conjuntos de testes em Verilog poderá ser

```
// -----
// -- test_module
// -----
module test_module;
reg x, y;
wire s1, s2, s3;
      // instancias
fxy FXY1 (s1, x, y);
SoP SOP1 (s2, x, y);
PoS POS1 (s3, x, y);
      // valores iniciais
initial begin: start
   x=1'bx; y=1'bx; // indefinidos
end
      // parte principal
initial begin: main
 // identificacao
    $display("Exemplo-xxx yyy zzz - 999999");
    $display("Test boolean expression");
    \frac{(\n x'&y+x&y'=s\n'')}{(\n x'&y+x&y'=s\n'')};
 // monitoramento
    \frac{1}{2} \sin(x y) = s1 s2 s3;
    monitor("%2b %2b = %2b %2b %2b", x, y, s1, s2, s3);
 // sinalizacao
 #1 x=0; y=0;
 #1 x=0; y=1;
 #1 x=1; y=0;
 #1 x=1; y=1;
end
```

endmodule // test\_module

## Preparação

### Vídeos recomendados

Como preparação para o início das atividades, recomenda-se assistir os seguintes vídeos:

http://www.youtube.com/watch?v=Tb1qLGR2hvUhttp://www.youtube.com/watch?v=UrA-miNZ6aghttp://www.youtube.com/watch?v=wAqlu7M4xvAh

### Exercícios:

### Orientação geral:

Apresentar uma forma de solução em formato texto (.txt).

Outras formas de solução serão avaliadas como atividades extras (.v, .c).

As funções poderão ser desenvolvidas em Verilog ou C,

e as execuções deverão apresentar as respostas e/ou gravá-las em arquivo texto.

Exemplos em Verilog serão fornecidos como ponto de partida.

## 01.) Construir a tabela-verdade para as proposições

e verificar pelas respectivas tabelas-verdades implementadas em Verilog: Exemplo:

$$\bar{x} + (\bar{y} \cdot \bar{z})$$

| #mintermos | mintermos | хуг | x' | y' | z' | y'•z' | x'+(y'•z') |
|------------|-----------|-----|----|----|----|-------|------------|
| 0          | x'•y'•z'  | 000 | 1  | 1  | 1  | 1     | 1          |
| 1          | x'•y'•z   | 001 | 1  | 1  | 0  | 0     | 1          |
| 2          | x'•y•z'   | 010 | 1  | 0  | 1  | 0     | 1          |
| 3          | x'•y •z   | 011 | 1  | 0  | 0  | 0     | 1          |
| 4          | x•y'•z'   | 100 | 0  | 1  | 1  | 1     | 1          |
| 5          | x•y'•z    | 101 | 0  | 1  | 0  | 0     | 0          |
| 6          | x•y•z'    | 110 | 0  | 0  | 1  | 0     | 0          |
| 7          | x•y•z     | 111 | 0  | 0  | 0  | 0     | 0          |

SoP (0,1,2,3,4)

module fxyz (output s,

assign  $s = \sim x \mid (\sim y \& \sim z);$ 

endmodule // fxyz

$$d.) (x.y)' + z'$$

e.) 
$$(x'+y)$$
.  $(x+z')$ 

02.) Simplificar as expressões abaixo pelas propriedades da álgebra de Boole e verificar pelas respectivas tabelas-verdades implementadas em Verilog: Exemplo:

$$(x+y) \cdot (x+z)$$
  
= x'+(y'•z') (propriedade distributiva)  
module fxyz (output s1, output s2, input x, y, z);  
assign s1 = (~x | ~y) & (~x | ~z);  
assign s2 = ~x | (~y & ~z);  
endmodule // fxyz

b.) 
$$(x + y') + (x . y)$$

c.) 
$$(x.y)'.(x'+y')$$

$$d.) (x'.y)' + (x + y')'$$

e.) 
$$(y + x)'$$
.  $(y' + x')$ 

03.) Montar as tabelas-verdades expressas pelas somas de produtos abaixo e verificar pelas respectivas tabelas-verdades implementadas em Verilog: Exemplo:

$$\begin{split} f & (x,y,z) = \sum m \; (\; 0,\; 1,\; 2,\; 3,\; 4\; ) = SoP \; (0,1,2,3,4) = 1 \\ & \text{module SoP (output s, input } \; x,\; y); \qquad // \; \text{mintermos} \\ & // & \; m \; \; 0 \qquad \qquad 1 \qquad \qquad 2 \qquad \qquad 3 \qquad \qquad 4 \\ & \text{assign s} = (\sim x\&\sim y\&\sim z) \; | \; (\sim x\&\sim y\&\sim z) \; | \; (\sim x\&y\&\sim z) \; | \; (\sim x\&y\&\sim z) \; | \; (x\&\sim y\&\sim z); \end{split}$$

### endmodule // SoP

| хух   | mintermos     | SoP (0,1,2,3,4) |
|-------|---------------|-----------------|
| 0 0 0 | x'•y'•z' = m0 | 1               |
| 0 0 1 | x'•y'•z = m1  | 1               |
| 0 1 0 | x'•y •z' = m2 | 1               |
| 011   | x'•y •z = m3  | 1               |
| 100   | x•y'•z' = m4  | 1               |
| 101   | X•y'•Z        | 0               |
| 110   | x•y•z'        | 0               |
| 111   | x•y•z         | 0               |
|       |               |                 |

a) 
$$f(x,y,z) = \sum m(1, 2, 3, 6)$$

b) 
$$f(x,y,z) = \sum m(1, 2, 3, 5)$$

c) 
$$f(x,y,w,z) = \sum m(1, 3, 6, 7, 9, 10, 11)$$

d) 
$$f(x,y,w,z) = \sum m(0, 2, 5, 6, 8, 10, 13)$$

e) 
$$f(x,y,w,z) = \sum m(1, 2, 3, 5, 8, 11)$$

04.) Montar as expressões PoS equivalentes aos produtos das somas abaixo e verificar pelas respectivas tabelas-verdades implementadas em Verilog: Exemplo:

$$\begin{split} F & (X,Y,Z) = \textbf{TT} \ M \ (\ 5,\ 6,\ 7\ ) = PoS \ (5,6,7) = 0 \\ \\ module \ PoS \ (output \ S, input \ \ X,\ Y); \qquad // \ MAXTERMOS \\ // \qquad M \quad 5 \qquad 6 \qquad 7 \\ \\ assign \ S & = (\sim X|\ Y|\sim Z) \ \& \ (\sim X|\sim Y|\ Z) \ \& \ (\sim X|\sim Y|\sim Z); \end{split}$$

endmodule // PoS

| хуz   | MAXTERMOS     | PoS (5,6,7) |
|-------|---------------|-------------|
| 000   | X+Y+Z         | 1           |
| 0 0 1 | X+Y+Z'        | 1           |
| 010   | X+Y'+Z        | 1           |
| 0 1 1 | X+Y'+Z'       | 1           |
| 100   | X'+Y+Z        | 1           |
| 101   | X'+Y+Z' = M5  | 0           |
| 110   | X'+Y'+Z = M6  | 0           |
| 111   | X'+Y'+Z' = M7 | 0           |

- a)  $F(X,Y,Z) = \Pi M (1, 3, 5, 6)$
- b)  $F(X,Y,Z) = \Pi M (0, 1, 2, 3, 7)$
- c)  $F(X,Y,W,Z) = \Pi M (0, 1, 2, 3, 7, 8, 11, 12)$
- d) F(X,Y,W,Z) = TT M (0, 2, 4, 6, 7, 9, 13)
- e)  $F(X,Y,W,Z) = \Pi M (0, 1, 2, 4, 7, 14, 15)$

05.) Identificar as expressões SoP e PoS equivalentes às tabelas abaixo e verificar pelas respectivas tabelas-verdades implementadas em Verilog:

a.)

| n | ху  | f(x,y) |      |     |
|---|-----|--------|------|-----|
| 0 | 0 0 | 1      | SoP( | ) = |
| 1 | 0 1 | 1      | _    |     |
| 2 | 1 0 | 0      | PoS( | ) = |
| 3 | 11  | 1      |      |     |
|   |     |        | _    |     |

b.)

| n | ху  | f(x,y) |      |     |
|---|-----|--------|------|-----|
| 0 | 0 0 | 1      | SoP( | ) = |
| 1 | 0 1 | 0      | _    |     |
| 2 | 1 0 | 1      | PoS( | ) = |
| 3 | 11  | 0      | _    |     |

c.)

| n | хух | f(x,y,z) |
|---|-----|----------|
| 0 | 000 | 1        |
| 1 | 001 | 1        |
| 2 | 010 | 0        |
| 3 | 011 | 1        |
| 4 | 100 | 0        |
| 5 | 101 | 1        |
| 6 | 110 | 1        |
| 7 | 111 | 1        |

SoP(

PoS(

d.)

| n | хух | f(x,y,z) |
|---|-----|----------|
| 0 | 000 | 1        |
| 1 | 001 | 0        |
| 2 | 010 | 1        |
| 3 | 011 | 1        |
| 4 | 100 | 1        |
| 5 | 101 | 1        |
| 6 | 110 | 0        |
| 7 | 111 | 0        |
|   |     |          |

SoP(

PoS(

e.)

| n  | хуwz | f(x,y,w,z) |
|----|------|------------|
| 0  | 0000 | 1          |
| 1  | 0001 | 1          |
| 2  | 0010 | 1          |
| 3  | 0011 | 0          |
| 4  | 0100 | 1          |
| 5  | 0101 | 0          |
| 6  | 0110 | 1          |
| 7  | 0111 | 0          |
| 8  | 1000 | 1          |
| 9  | 1001 | 0          |
| 10 | 1010 | 1          |
| 11 | 1011 | 1          |
| 12 | 1100 | 0          |
| 13 | 1101 | 1          |
| 14 | 1110 | 1          |
| 15 | 1111 | 1          |

SoP(

PoS(