Infinite Task Learning

In RKHSs

PASADENA

Presented by:

R. Brault (Thales).

Joint Work with:

A. Lambert (LTCI), Z. Szabó (CMAP), M. Sangnier (LPSM), F. d'Alché-Buc (LTCI)

Acknowledgement:

A. Tenenhaus (L2S)

Friday, the 15th February 2019

https://arxiv.org/pdf/1805.08809.pdf

Motivations E.g. Quantile Regression

Let X and Y be two random variables taking values in X and \mathbb{R} .

Objective:

Learn the quantile $\theta \in (0, 1)$:

$$q_{ heta}(x) = \inf \ \{y \in \mathbb{R}, P(\{Y \leq y | X = x\}) = heta\}$$
 ,

from i.i.d. training copies:

$$\mathcal{S}:=((X_i,Y_i))_{i=1}^n\stackrel{ ext{i. i. d.}}{\sim}(X,Y).$$

Method

[koenker, 1978; Takeuchi, 2006]:

Minimize the "pinball loss" in the function h:

$$q_{ heta} = rg \min_h R(h) := rg \min_h E \left[\max(heta(Y - h(X), (1 - heta)(h(X) - Y)))
ight].$$

Figure S.4: Pinball loss for $\theta = 0.8$.

$$rg \min_h R_{\mathcal{S}}(h) = rg \min_h rac{1}{n} \sum_{i=1}^n \max(heta(Y_i - h(X_i), (1- heta)(h(X_i) - Y_i))) + \lambda \Omega(h).$$

Drawbacks:

- Not adapted to the structure of the problem,
- No way to recover other non-learned quantiles,
- Inefficient.

Setting

Learn problem with risk depending on hyperparameters for all hyperparameters values.

Related work: [Takeuchi, 2013; Sangnier et al. 2016, Glazer et al 2013].

- Quantile level,
- Density level sets,
- Error sensitivity in classification.

Framework A Functional Approach

Idea

Learn Function-Valued Functions:

'input \mapsto (hyperparameter \mapsto output)'

In a nutshell $x \mapsto (\theta \mapsto y)$.

Given an input $x \in \mathcal{X}$ the model returns a function, with suitable properties, that predict an output $y \in \mathbb{R}$ from an hyperparameter $\theta \in \Theta$.

The Infinite Task Learning Framework

Remember:

$$rg \min_{h \in \mathcal{H}} rac{1}{n} \sum_{i=1}^n v_{ heta}(h(x_i), y_i) + \lambda \Omega(h)$$
 e.g. pinball loss

In Infinite task learning:

$$rg \min_{h \in \mathcal{H}} rac{1}{n} \sum_{i=1}^n \int_{\Theta} v_{ heta}(h(x_i)(heta), y_i) d\mu(heta) + \lambda \Omega(h)$$

Let
$$V(h(x),y) = \int_{\Theta} v_{ heta}(h(x)(heta),y) d\mu(heta).$$

Finite Sample Properties How Do We Learn in Practice?

Estimating The Integral Term

Replace
$$V(h(x),y) = \int_{\Theta} v_{ heta}(h(x)(heta),y) d\mu(heta)$$

with
$$ilde{V}(h(x),y) = \sum_{j=1}^m w_j v_{ heta_j}(h(x)(heta_j),y).$$

- $\theta'_j s$ cannot depend on h,
- Quasi Monte-Carlo: low discrepency sequences have error rate of $\mathcal{O}(m^{-1}\log(m))$,
- No overkill in precision.

Handling Function-Valued Functions

The model h lives in a Vector-Valued RKHS [Pedrick, 1957]

- Hilbert space of functions with values in a Hilbert space.
- Regularity property (continuous evaluation functional) and inner product [Carmeli et al. 2006].

Take two scalar-valued kernels $k_{\mathcal{X}}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ and $k_{\Theta}: \Theta \times \Theta \to \mathbb{R}$. Construct

$$K: egin{cases} \mathcal{X} imes \mathcal{X}
ightarrow \mathcal{L}(\mathcal{H}_{K_{\Theta}}) \ (x,\,z) \mapsto k_{\mathcal{X}}(x,\,z) I_{\mathcal{H}_{k_{\Theta}}} \end{cases}$$

Then
$$\mathcal{H}_K \simeq \mathcal{H}_{k_\mathcal{X} \times k_\Theta} = \overline{\operatorname{span}} \ \{ k_\mathcal{X}(\cdot, x) k_\Theta(\cdot, \theta) \quad | \quad \forall (x, \, \theta) \in \mathcal{X} \times \Theta \}.$$

A Representer Theorem

$$h^*=rg\min_{oldsymbol{h}\in\mathcal{H}_K}\sum_{i=1}^n ilde{V}(h(x_i),y_i)+\lambda||oldsymbol{h}||_{\mathcal{H}_K}^2$$
 , with $\lambda>0.$

Representer Theorem:

Assume that the local loss function v_{θ} is convex, lower semicontinous. Then the solution for (1) exists, is unique an verifies for all $(x, \theta) \in \mathbb{R}^d \times \Theta$,

$$h^*(x)(heta) = \sum_{i=1}^n \sum_{j=1}^m lpha_{ij} k_{\mathcal{X}}(x,\,x_i) k_{\Theta}(heta,\, heta_j)$$
, (2)

for some $\alpha_{ij} \in \mathbb{R}^{n \times m}$.

Plug back (2) in (1). We solved with L-BFGS.

Figure S.5: Impact of the Huber loss smoothing of the pinball loss for differents values of κ .

Numerical Study Quantile Regression &

Cost Sensitive Classification

Quantile Regression: Crossing Penalty

$$\Omega_{
m nc}(h) = \lambda_{
m nc} \int_{\mathcal{X}} \int_{\Theta} max \left(-rac{\partial h}{\partial heta}(X)(heta), 0
ight) d\mu(heta) dP(X)$$

We have a representer theorem.

Zhou, D.-X. (2008)

Perspectives:

Figure 1: Impact of crossing penalty on toy data. Left plot: strong non-crossing penalty ($\lambda_{nc}=10$). Right plot: no non-crossing penalty ($\lambda_{nc}=0$). The plots show 100 quantiles of the continuum learned, linearly spaced between 0 (blue) and 1 (red). Notice that the non-crossing penalty does not provide crossings to occur in the regions where there is no points to enforce the penalty (e. g. $x \in [0.13, 0.35]$). This phenomenon is alleviated by the regularity of the model.

Quantile Regression: Real Data

	JQR				IND				∞-QR	
	(PINBALL	PVAL.)	(CROSS	PVAL.)	(PINBALL	PVAL.)	(CROSS	PVAL.)	PINBALL	CROSS
CobarOre	159 ± 24	$9 \cdot 10^{-01}$	0.1 ± 0.4	$6 \cdot 10^{-01}$	150 ± 21	$2 \cdot 10^{-01}$	0.3 ± 0.8	$7 \cdot 10^{-01}$	165 ± 36	2.0 ± 6.0
ENGEL	175 ± 555	$6 \cdot 10^{-01}$	0.0 ± 0.2	$1 \cdot 10^{+00}$	63 ± 53	$8 \cdot 10^{-01}$	4.0 ± 12.8	$8 \cdot 10^{-01}$	47 ± 6	0.0 ± 0.1
BostonHousing	49 ± 4	$8 \cdot 10^{-01}$	0.7 ± 0.7	$2 \cdot 10^{-01}$	49 ± 4	$8 \cdot 10^{-01}$	1.3 ± 1.2	$1 \cdot 10^{-05}$	49 ± 4	0.3 ± 0.5
CAUTION	88 ± 17	$6 \cdot 10^{-01}$	0.1 ± 0.2	$6 \cdot 10^{-01}$	89 ± 19	$4 \cdot 10^{-01}$	$\boldsymbol{0.3 \pm 0.4}$	$2 \cdot 10^{-04}$	85 ± 16	0.0 ± 0.1
FTCOLLINSSNOW	154 ± 16	$8 \cdot 10^{-01}$	0.0 ± 0.0	$6 \cdot 10^{-01}$	155 ± 13	$9 \cdot 10^{-01}$	0.2 ± 0.9	$8 \cdot 10^{-01}$	156 ± 17	0.1 ± 0.6
HIGHWAY	103 ± 19	$4 \cdot 10^{-01}$	0.8 ± 1.4	$2 \cdot 10^{-02}$	99 ± 20	$9 \cdot 10^{-01}$	6.2 ± 4.1	$1 \cdot 10^{-07}$	105 ± 36	0.1 ± 0.4
HEIGHTS	127 ± 3	$1 \cdot 10^{+00}$	0.0 ± 0.0	$1 \cdot 10^{+00}$	127 ± 3	$9 \cdot 10^{-01}$	0.0 ± 0.0	$1 \cdot 10^{+00}$	127 ± 3	0.0 ± 0.0
SNIFFER	43 ± 6	$8 \cdot 10^{-01}$	0.1 ± 0.3	$2 \cdot 10^{-01}$	44 ± 5	$7 \cdot 10^{-01}$	$\boldsymbol{1.4\pm1.2}$	$6 \cdot 10^{-07}$	44 ± 7	0.1 ± 0.1
SNOWGEESE	55 ± 20	$7 \cdot 10^{-01}$	0.3 ± 0.8	$3 \cdot 10^{-01}$	53 ± 18	$6 \cdot 10^{-01}$	0.4 ± 1.0	$5 \cdot 10^{-02}$	57 ± 20	0.2 ± 0.6
UFC	81 ± 5	$6 \cdot 10^{-01}$	0.0 ± 0.0	$4 \cdot 10^{-04}$	82 ± 5	$7 \cdot 10^{-01}$	1.0 ± 1.4	$2 \cdot 10^{-04}$	82 ± 4	0.1 ± 0.3
BIGMAC2003	80 ± 21	$7 \cdot 10^{-01}$	1.4 ± 2.1	$4 \cdot 10^{-04}$	74 ± 24	$9 \cdot 10^{-02}$	0.9 ± 1.1	$7 \cdot 10^{-05}$	84 ± 24	0.2 ± 0.4
UN3	98 ± 9	$8 \cdot 10^{-01}$	0.0 ± 0.0	$1 \cdot 10^{-01}$	99 ± 9	$1 \cdot 10^{+00}$	$\boldsymbol{1.2\pm1.0}$	$1 \cdot 10^{-05}$	99 ± 10	0.1 ± 0.4
BIRTHWT	141 ± 13	$1 \cdot 10^{+00}$	0.0 ± 0.0	$6 \cdot 10^{-01}$	140 ± 12	$9 \cdot 10^{-01}$	0.1 ± 0.2	$7 \cdot 10^{-02}$	141 ± 12	0.0 ± 0.0
CRABS	11 ± 1	$4 \cdot 10^{-05}$	0.0 ± 0.0	$8 \cdot 10^{-01}$	11 ± 1	$2 \cdot 10^{-04}$	0.0 ± 0.0	$2 \cdot 10^{-05}$	13 ± 3	0.0 ± 0.0
GAGURINE	01 ± 7	$4 \cdot 10^{-01}$	0.0 ± 0.1	$3 \cdot 10^{-03}$	02 ± 1	$5 \cdot 10^{-01}$	$\boldsymbol{0.1 \pm 0.2}$	$4 \cdot 10^{-04}$	02± /	0.0 ± 0.0
GEYSER	105 ± 7	$9 \cdot 10^{-01}$	0.1 ± 0.3	$9 \cdot 10^{-01}$	105 ± 6	$9 \cdot 10^{-01}$	0.2 ± 0.3	$6 \cdot 10^{-01}$	104 ± 6	0.1 ± 0.2
GILGAIS	51 ± 6	$5 \cdot 10^{-01}$	0.1 ± 0.1	$1 \cdot 10^{-01}$	49 ± 6	$6 \cdot 10^{-01}$	1.1 ± 0.7	$2 \cdot 10^{-05}$	49 ± 7	0.3 ± 0.3
TOPO	69 ± 18	$1 \cdot 10^{+00}$	0.1 ± 0.5	$1 \cdot 10^{+00}$	71 ± 20	$1 \cdot 10^{+00}$	$\boldsymbol{1.7 \pm 1.4}$	$3 \cdot 10^{-07}$	70 ± 17	0.0 ± 0.0
MCYCLE	66 ± 9	$9 \cdot 10^{-01}$	0.2 ± 0.3	$7 \cdot 10^{-03}$	66 ± 8	$9 \cdot 10^{-01}$	$\boldsymbol{0.3 \pm 0.3}$	$7 \cdot 10^{-06}$	65 ± 9	0.0 ± 0.1
CPUS	7 ± 4	$2 \cdot 10^{-04}$	$\boldsymbol{0.7 \pm 1.0}$	$5 \cdot 10^{-04}$	7 ± 5	$3 \cdot 10^{-04}$	$\boldsymbol{1.2\pm0.8}$	$6 \cdot 10^{-08}$	16 ± 10	0.0 ± 0.0

Table 1: Quantile Regression on 20 UCI datasets. Reported: $100 \times \text{value}$ of the pinball loss, $100 \times \text{crossing}$ loss (smaller is better). p.-val.: outcome of the Mann-Whitney-Wilcoxon test of JQR vs. ∞ -QR and Independent vs. ∞ -QR. Boldface: significant values.

Cost Sensitive Classification

$$V(h(x),y) = \int_{[-1,1]} \left| rac{ heta+1}{2} - 1_{\{-1\}}(y)
ight| \max(1-h(x)(heta)y,0) d\mu(heta)$$

DATASET	Метнор	$\theta = -0.9$		θ =	= 0	$\theta = +0.9$		
DAMAGET	METHOD	SENSITIVITY	SPECIFICITY	SENSITIVITY	SPECIFICITY	SENSITIVITY	SPECIFICITY	
Two-Moons	IND	0.3 ± 0.05	0.99 ± 0.01	0.83 ± 0.03	0.86 ± 0.03	0.99 ± 0	0.32 ± 0.06	
	∞ -CSC	0.32 ± 0.05	0.99 ± 0.01	0.84 ± 0.03	0.87 ± 0.03	1 ± 0	0.36 ± 0.04	
Circles	IND	0 ± 0	1 ± 0	0.82 ± 0.02	0.84 ± 0.03	1 ± 0	0 ± 0	
	∞ -CSC	0.15 ± 0.05	1 ± 0	0.82 ± 0.02	0.84 ± 0.03	1 ± 0	0.12 ± 0.05	
Iris	IND	0.88 ± 0.08	0.94 ± 0.06	0.94 ± 0.05	0.92 ± 0.06	0.97 ± 0.05	0.87 ± 0.06	
	∞ -CSC	0.89 ± 0.08	0.94 ± 0.05	0.94 ± 0.06	0.92 ± 0.05	0.97 ± 0.04	0.90 ± 0.05	
Toy	IND	0.51 ± 0.06	0.98 ± 0.01	0.83 ± 0.03	0.86 ± 0.03	0.97 ± 0.01	0.49 ± 0.07	
	∞-CSC	0.63 ± 0.04	0.96 ± 0.01	0.83 ± 0.03	0.85 ± 0.03	0.95 ± 0.02	0.61 ± 0.04	

Table 2: ∞ -CSC vs Independent (IND)-CSC. Higher is better.

Statistical Study Generalization Error

β -Stability

[Kadri et al., 2015; Bousquet et al., 2002]

Generalization Bound:

Let h^* be the unique solution of the Quantile Regression or Cost Sensitive Classification problem with Quasi Monte-Carlo sampling. Under mild assumptions it holds,

$$R(h^*) \leq ilde{R}_{\mathcal{S}}(h^*) + \mathcal{O}_{P_{(X,Y)}}\left(rac{1}{\sqrt{n}}
ight) + \mathcal{O}\left(rac{\log(m)}{m}
ight).$$
 (3)

- Requires bounded random variable in Quantile Regression,
- Indicates the potential tradeoff between n' and m',
- Mild assumptions on the kernel.

Figure S.4: Impact of the number of hyperparameters sampled.

Extensions Unsupervised Tasks

The One-Class SVM [Schölkopf, 2000]

Given $(x_i)_{i=1}^n \overset{ ext{i. i. d.}}{\sim} X$ and $heta \in (0,\,1)$, minimize for $(h,\,t) \in \mathcal{H}_{k_\mathcal{X}} imes \mathbb{R}$

$$J(h,\,t) = rac{1}{n} \sum_{i=1}^n rac{max(0,t-h(x_i))}{ heta} - t + ||h||^2_{\mathcal{H}_{K_{\mathcal{X}}}}.$$

Decision function

$$d(x)=1_{\mathbb{R}_+}(h(x)-t)$$

θ -property:

The decision function should separate the training data into two subsets (normal / abnormal) with proportion θ of abnormal.

The ∞-OCSVM

Given $(x_i)_{i=1}^N \overset{ ext{i. i. d.}}{\sim} X$ and $heta \in (0,\,1)$, minimize for $(h,\,t) \in \mathcal{H}_{k_\mathcal{X}} imes \mathbb{R}$

$$J(h, t) = \frac{1}{n} \sum_{i=1}^{n} \int_{\Theta} \frac{max(0, t - h(x_i)(\theta))}{\theta} - t(\theta) + ||h(\cdot)(\theta)||^2_{\mathcal{H}_{K_{\mathcal{X}}}} d\mu(\theta). \tag{4}$$
New regularizer

Again one can use Quasi Monte-Carlo or quadrature rules to approximate the integral.

A New Representer Theorem

(weak) Representer Theorem:

The solution for (4) exists, is unique an verifies for all $(x, \theta) \in \mathbb{R}^d imes (0, 1)$,

$$h^*(x)(heta)=\sum_{i=1}^n\sum_{j=1}^mlpha_{ij}k_{\mathcal{X}}(x,\,x_i)k_{\Theta}(heta,\, heta_j)$$
, (5) $t^*(heta)=\sum_{j=1}^meta_jk_b(heta,\, heta_j)$,

for some $lpha_{ij} \in \mathbb{R}^{n imes m}$ and $eta_j \in \mathbb{R}^m$.

- Weaker regularizer, coercivity is not trivial,
- Convex problem with (n+1)m parameters sloved again with L-BFGS.

Numerical Illustrations

• The θ -property is approximately respected

	LOSS	PENALTY
QUANTILE	$\int_{[0,1]} \left \theta - \mathbb{1}_{\mathbb{R}_{-}} (y - h_{x}(\theta)) \right y - h_{x}(\theta) d\mu(\theta)$	$\lambda_{\operatorname{\mathfrak{nc}}} \int_{[0,1]} \left -\frac{\operatorname{d} h_{X}}{\operatorname{d} \theta}(\theta) \right _{+} \operatorname{d} \mu(\theta) + \frac{\lambda}{2} \ h\ _{\mathcal{H}_{K}}^{2}$
M-QUANTILE (SMOOTH)	$\int_{[0,1]}^{\kappa} \left \theta - \mathbb{1}_{\mathbb{R}_{-}} (y - h_{x}(\theta)) \right \psi_{1}^{\kappa} (y - h_{x}(\theta)) d\mu(\theta)$	$\lambda_{nc} \int_{(0,1)} \psi_+^{\kappa} \left(-\frac{dh_{\chi}}{d\theta}(\theta) \right) d\mu(\theta) + \frac{\lambda}{2} \ h\ _{\mathcal{H}_K}^2$
EXPECTILES (SMOOTH)	$\int_{[0,1]} \left \theta - \mathbb{1}_{\mathbb{R}_{-}} (y - h_{x}(\theta)) \right (y - h_{x}(\theta))^{2} d\mu(\theta)$	$\lambda_{nc} \int_{(0,1)} \left -\frac{dh_X}{d\theta}(\theta) \right _+^2 d\mu(\theta) + \frac{\lambda}{2} \ h\ _{\mathcal{H}_K}^2$
Cost-Sensitive	$\int_{[0,1]}^{[0,1]} \left \theta - \mathbb{1}_{\mathbb{R}_{-}} (y - h_{x}(\theta)) \right (y - h_{x}(\theta))^{2} d\mu(\theta)$ $\int_{[-1,1]}^{[-1,1]} \left \frac{\theta + 1}{2} - \mathbb{1}_{\{-1\}} (y) \right 1 - y h_{x}(\theta) _{+} d\mu(\theta)$ $\int_{[-1,1]}^{[-1,1]} \left \frac{\theta + 1}{2} - \mathbb{1}_{\{-1\}} (y) \right \psi_{+}^{\kappa} (1 - y h_{x}(\theta)) d\mu(\theta)$	$\frac{\lambda}{2}\ \mathbf{h}\ _{\mathcal{H}_{K}}^{2}$
COST-SENSITIVE (SMOOTH)	$\int_{[-1,1]} \left \frac{\theta+1}{2} - \mathbb{1}_{\{-1\}}(y) \right \psi_{+}^{\kappa} (1 - y h_{\kappa}(\theta)) d\mu(\theta)$	$\frac{\lambda}{2} \ \mathbf{h}\ _{\mathcal{H}_{K}}^2$
Level-Set	$\int_{[\epsilon, 1]} -t(\theta) + \frac{1}{\theta} t(\theta) - h_{x}(\theta) _{+} d\mu(\theta)$	$\tfrac{1}{2} \int_{[\varepsilon,1]} \ h(\cdot)(\theta) \ _{\mathfrak{H}_{\mathbf{K}_{\chi}}}^2 \mathrm{d} \mu(\theta) + \frac{\lambda}{2} \ t \ _{\mathfrak{H}_{\mathbf{K}_{\mathbf{b}}}}^2$

Table S.3: Examples for objective (8). ψ_1^{κ} , ψ_+^{κ} : κ -smoothed absolute value and positive part. $h_{\kappa}(\theta) := h(x)(\theta)$.

Conclusion Wrap-Up

- New flexible setting functional multitask (multioutput),
- Recover some settings as limit cases [Sangnier et al. 2016, Glazer et al. 2013],
- New representer theorems and statistical guarantees,
- Compares well to the state of the art.
- https://bitbucket.org/RomainBrault/itl/
- https://arxiv.org/pdf/1805.08809.pdf

Conclusion Future Directions

Investigate:

- Further algorithmic and statistical guarantees,
- Efficient solvers,
- New regularization term $\int_{\Theta} ||h(\cdot)(\theta)||^2 d\mu(\theta)$,
- Other algorithms (LASSO, SVR, ...),
- Scaling up with Random Fourier Features [Brault et al., 2016],
- Deep architectures?