Seminar 6 - Distribuții bidimensionale

Distribuția unui eșantion de 750 de firme din Iași după cifra de afaceri, X, și tipul firmei, Y, (mici, mijlocii și mari) este prezentată în tabelul de mai jos.

Tabelul 6.1. Distribuția firmelor din Iași după cifra de afaceri și tipul firmei

x_i y_j	mici	mijlocii	mari	TOTAL
(mii lei)				
10	132	30	8	170
20	42	60	13	115
30	20	90	40	150
40	6	70	239	315
TOTAL	200	250	300	750

Se cere:

- 1. Puneți în evidență distribuția marginală a variabilei X și distribuția marginală a variabilei Y
- 2. Puneți în evidență distribuțiile condiționate. Câte distribuții condiționate sunt?
- 3. Să se interpreteze frecvențele absolute parțiale
- 4. Să se interpreteze frecvențele absolute marginale
- 5. Să se calculeze și să se interpreteze frecvențele relative parțiale
- 6. Să se calculeze și să se interpreteze frecvențele relative marginale
- 7. Să se calculeze și să se interpreteze frecvențele relative condiționate
- 8. Să se calculeze si să se interpreteze mediile conditionate (mediile pe grupe)
- 9. Să se calculeze și să se interpreteze media pe total
- 10. Să se calculeze varianțele condiționate (varianțele de grupă)
- 11. Să se calculeze media varianțelor de grupă
- 12. Să se calculeze varianța între grupe (varianța intergrupe)
- 13. Să se calculeze varianța generală
- 14. Să se calculeze coeficientul de influență a factorului de grupare și coeficientul de influență a factorilor aleatori/întâmplători

Forma generală a unei distribuții bidimensionale poate fi prezentată astfel:

X_i y_j	y_1	y_2	•••	y_j	•••	y_p	TOTAL
x_1	n_{11}	n_{12}	•••	n_{1j}	• • •	n_{1p}	$n_{1.}$
x_2	n_{21}	n_{22}	•••	n_{2j}	•••	n_{2p}	
							$n_{2\bullet}$
:		:	• • •	:		:	:
X_i	n_{i1}	n_{i2}	•••	n_{ij}	•••	n_{ip}	$n_{i\bullet}$
:	•	:		:		:	:
\mathcal{X}_{m}	n_{m1}	n_{m2}	•••	n_{mj}	•••	n_{mp}	n_{m} .
mom . r							
TOTAL	$n_{\cdot 1}$	$n_{\cdot 2}$	•••	$n_{{\scriptscriptstyleullet} j}$	• • •	$n_{\bullet p}$	n

$$n_{1.} = \sum_{j=1}^{p} n_{1j}$$
 $n_{2.} = \sum_{j=1}^{p} n_{2j}$

$$n_{m\bullet} = \sum_{j=1}^{p} n_{mj}$$

$$n_{\cdot 1} = \sum_{i=1}^{m} n_{i1}$$
, $n_{\cdot 2} = \sum_{i=1}^{m} n_{i2}$

$$n_{\bullet p} = \sum_{i=1}^{m} n_{ip}$$

$$n_{..} = \sum_{i=1}^{m} n_{i.} = \sum_{j=1}^{p} n_{.j} = \sum_{i}^{m} \sum_{j}^{p} n_{ij}$$

În cazul problemei noastre avem:

X_i y_j	y_1	y_2	y_3	TOTAL
x_1	n_{11}	n_{12}	n_{13}	n_{1} .
x_2	n_{21}	n_{22}	n_{23}	$n_{2\bullet}$
x_3	n_{31}	n_{32}	n_{33}	$n_{3.}$
x_4	n_{41}	n_{42}	n_{43}	$n_{4\bullet}$
TOTAL	n. ₁	$n_{\cdot 2}$	$n_{•3}$	n

$$n_{1} = n_{11} + n_{12} + n_{13} = \sum_{j=1}^{p} n_{1j}$$

$$n_{2} = n_{21} + n_{22} + n_{23} = \sum_{j=1}^{p} n_{2j}$$

$$n_{3} = n_{11} + n_{21} + n_{31} + n_{41} = \sum_{i=1}^{m} n_{i1}$$

$$n_{4} = n_{11} + n_{21} + n_{31} + n_{41} = \sum_{i=1}^{m} n_{i1}$$

$$n_{5} = n_{11} + n_{22} + n_{32} + n_{42} = \sum_{i=1}^{m} n_{i2}$$

$$n_{3 \cdot} = n_{31} + n_{32} + n_{33} = \sum_{j=1}^{p} n_{3j}$$

$$n_{\cdot 3} = n_{13} + n_{23} + n_{33} + n_{43} = \sum_{i=1}^{m} n_{i3} + n_{23} + n_{34} = \sum_{i=1}^{m} n_{i3} + n_{43} = \sum_{i=1}^{m} n_{i4} + n_{44} = \sum_{i=1}^{m$$

$$n_{4 \bullet} = n_{41} + n_{42} + n_{43} = \sum_{j=1}^{p} n_{4j}$$

$$n_{\bullet \bullet} = n_{1 \bullet} + n_{2 \bullet} + n_{3 \bullet} + n_{4 \bullet}$$

$$n_{-} = n_{-1} + n_{-2} + n_{-3}$$

$$\boldsymbol{n_{\cdots}} = \boldsymbol{n_{11}} + \boldsymbol{n_{21}} + \boldsymbol{n_{31}} + \boldsymbol{n_{41}} + \boldsymbol{n_{12}} + \boldsymbol{n_{22}} + \boldsymbol{n_{32}} + \boldsymbol{n_{42}} + \boldsymbol{n_{13}} + \boldsymbol{n_{23}} + \boldsymbol{n_{33}} + \boldsymbol{n_{43}}$$

1. Puneți în evidență distribuția marginală a variabilei X și distribuția marginală a variabilei Y

O distribuție a unei variabile empirice poate fi pusă în evidență prin prezentarea valorilor variabilei și a frecvențelor lor de apariție.

Sunt două distribuții marginale constituite din valorile variabilei și frecvențele marginale.

Tabelul 6.2. Distribuția firmelor din Iași după cifra de afaceri

x_i	n_{iullet}
(mii lei)	
10	170
20	115
30	150
40	315
TOTAL	750

Tabelul 6.3. Distribuția firmelor din Iași după tipul firmelor

y_j	$n_{\boldsymbol{\cdot} j}$
mici	200
mijlocii	250
mari	300
TOTAL	750

2. Puneți în evidență distribuțiile condiționate. Câte distribuții condiționate sunt?

Sunt m+p=4+3=7 distribuții condiționate

Tabelul 6.4 Distribuția cifrei de afaceri a firmelor din Iași condiționată de tipul firmei să fie "mică" $(X/Y = y_1)$

X_i	n_{i1}
(mii lei)	
10	132
20	42
30	20
40	6
TOTAL	200

Tabelul 6.5 Distribuția cifrei de afaceri a firmelor din Iași condiționată de tipul firmei să fie "mijlocie" $(X/Y = y_2)$

X_i	n_{i2}
(mii lei)	
10	30
20	60
30	90
40	70
TOTAL	250

Tabelul 6.6 Distribuția cifrei de afaceri a firmelor din Iași condiționată de tipul firmei să fie "mijlocie" $(X/Y = y_3)$

X_i	n_{i3}
(mii lei)	
10	8
20	13
30	40
40	239
TOTAL	300

Distribuțiile prezentate în tabelele 6.2, 6.4, 6.5 și 6.6 sunt distribuții ale unei variabile cantitative, discrete. Prin urmare pentru acestea putem determina nivelul mediu prin media aritmetică, dispersia prin abaterea standard etc.

Tabelul 6.7 Distribuția firmelor din Iași după tipul firmei condiționată ca cifra de afaceri să fie 10 mii lei $(Y / X = x_1)$

y_j	n_{1j}
mici	132
mijlocii	30
mari	8
TOTAL	170

Tabelul 6.8 Distribuția firmelor din Iași după tipul firmei condiționată ca cifra de afaceri să fie 20 mii lei $(Y / X = x_1)$

y_j	n_{2j}
mici	42
mijlocii	60
mari	13
TOTAL	115

Tabelul 6.9 Distribuția firmelor din Iași după tipul firmei condiționată ca cifra de afaceri să fie 30 mii lei $(Y / X = x_1)$

y_j	n_{3j}
mici	20
mijlocii	90
mari	40
TOTAL	150

Tabelul 6.10 Distribuția firmelor din Iași după tipul firmei condiționată ca cifra de afaceri să fie 40 mii lei $(Y/X = x_1)$

y_j	n_{4j}
mici	6
mijlocii	70
mari	239
TOTAL	315

3. Să se interpreteze frecvențele absolute parțiale

 $n_{11}=132$. 132 de firme sunt mici și au cifra de afaceri egală cu 10 mii lei $n_{21}=42$. 42 de firme sunt mici și au cifra de afaceri egală cu 20 mii lei $n_{31}=20$. 20 de firme sunt mici și au cifra de afaceri egală cu 30 mii lei $n_{41}=6$. 6 firme sunt mici și au cifra de afaceri egală cu 40 mii lei $n_{12}=30$. 30 de firme sunt mijlocii și au cifra de afaceri egală cu 10 mii lei $n_{22}=60$. 60 de firme sunt mijlocii și au cifra de afaceri egală cu 20 mii lei $n_{32}=90$. 90 de firme sunt mijlocii și au cifra de afaceri egală cu 30 mii lei $n_{42}=70$. 70 de firme sunt mijlocii și au cifra de afaceri egală cu 40 mii lei $n_{13}=8$. 8 firme sunt mari și au cifra de afaceri egală cu 10 mii lei $n_{23}=13$. 13 firme sunt mari și au cifra de afaceri egală cu 20 mii lei $n_{33}=40$. 40 de firme sunt mari și au cifra de afaceri egală cu 30 mii lei $n_{33}=239$. 239 de firme sunt mari și au cifra de afaceri egală cu 40 mii lei

4. Să se interpreteze frecvențele absolute marginale

 $n_{1.} = 170$. 170 de firme au cifra de afaceri de 10 mii lei

 $n_{2} = 115.115$ firme au cifra de afaceri de 20 mii lei

 $n_{3} = 150$. 150 de firme au cifra de afaceri de 30 mii lei

 $n_{4*} = 315 . 315$ firme au cifra de afaceri de 40 mii lei

 $n_1 = 200$. 200 firme sunt mici

 $n_{2} = 250$. 250 de firme sunt mijlocii

 $n_{.3} = 300$. 300 de firme sunt mari

5. Să se calculeze și să se interpreteze frecvențele relative parțiale

$$f_{ij} = \frac{n_{ij}}{n_{\bullet}} \cdot 100$$

 $f_{11} = \frac{n_{11}}{n_{..}} \cdot 100 = \frac{132}{750} \cdot 100 = 17,6\% . 17,6\% \text{ din firme sunt mici și au cifra de afaceri egală cu 10 mii lei}$ $f_{21} = \frac{n_{21}}{n_{..}} \cdot 100 = \frac{42}{750} \cdot 100 = 5,6\% . 5,6\% \text{ din firme sunt mici și au cifra de afaceri egală cu 20 mii lei}$ $f_{31} = \frac{n_{31}}{n_{..}} \cdot 100 = \frac{20}{750} \cdot 100 = 2,67\% . 2,67\% \text{ din firme sunt mici și au cifra de afaceri egală cu 30 mii lei}$ $f_{41} = \frac{n_{41}}{n_{..}} \cdot 100 = \frac{6}{750} \cdot 100 = 0,8\% . 0,8\% \text{ din firme sunt mici și au cifra de afaceri egală cu 40 mii lei}$

 $f_{12} = \frac{n_{12}}{n_{..}} \cdot 100 = \frac{30}{750} \cdot 100 = 4,00\% . 4,00\% \text{ din firme sunt mijlocii și au cifra de afaceri egală cu 10 mii$

lei

mii lei

 $f_{22} = \frac{n_{22}}{n_{..}} \cdot 100 = \frac{60}{750} \cdot 100 = 8,00\%$. 8,00% din firme sunt mijlocii și au cifra de afaceri egală cu 20 mii

 $f_{32} = \frac{n_{32}}{n_{..}} \cdot 100 = \frac{90}{750} \cdot 100 = 12,00\%$. 12,00% din firme sunt mijlocii și au cifra de afaceri egală cu 30

 $f_{42} = \frac{n_{42}}{n_{..}} \cdot 100 = \frac{70}{750} \cdot 100 = 9,33\%$. 9,33% din firme sunt mijlocii și au cifra de afaceri egală cu 40 mii lei

 $f_{13}=\frac{n_{13}}{n_{\bullet}}\cdot 100=\frac{8}{750}\cdot 100=1,07\% \ . \ 1,07\% \ din firme sunt mari și au cifra de afaceri egală cu 10 mii lei$

 $f_{23} = \frac{n_{23}}{n_{..}} \cdot 100 = \frac{13}{750} \cdot 100 = 1,73\%$. 1,73% din fîrme sunt mari și au cifra de afaceri egală cu 20 mii lei

 $f_{33} = \frac{n_{33}}{n_{..}} \cdot 100 = \frac{40}{750} \cdot 100 = 5,33\% . 5,33\% din firme sunt mari și au cifra de afaceri egală cu 30 mii lei$

 $f_{43} = \frac{n_{43}}{n_{..}} \cdot 100 = \frac{239}{750} \cdot 100 = 31,87\% \ . \ 31,87\% \ din firme sunt mari și au cifra de afaceri egală cu 40 mii lei$

6. Să se calculeze și să se interpreteze frecvențele relative marginale

$$f_{i\bullet} = \frac{n_{i\bullet}}{n} \cdot 100$$

$$\begin{split} f_{1 \cdot} &= \frac{n_{1 \cdot}}{n_{..}} \cdot 100 = \frac{170}{750} \cdot 100 = 22,67\% \ .\ 22,67\% \ dintre \ firme \ au \ cifra \ de \ afaceri \ de \ 10 \ mii \ lei \\ f_{2 \cdot} &= \frac{n_{2 \cdot}}{n_{..}} \cdot 100 = \frac{115}{750} \cdot 100 = 15,33\% \ ,\ 15,33\% \ dintre \ firme \ au \ cifra \ de \ afaceri \ de \ 20 \ mii \ lei \\ f_{3 \cdot} &= \frac{n_{3 \cdot}}{n_{..}} \cdot 100 = \frac{150}{750} \cdot 100 = 20,00\% \ ,\ 20\% \ dintre \ firme \ au \ cifra \ de \ afaceri \ de \ 30 \ mii \ lei \\ f_{4 \cdot} &= \frac{n_{4 \cdot}}{n_{..}} \cdot 100 = \frac{315}{750} \cdot 100 = 42,00\% \ ,\ 42\% \ dintre \ firme \ au \ cifra \ de \ afaceri \ de \ 40 \ mii \ lei \end{split}$$

$$f_{\bullet j} = \frac{n_{\bullet j}}{n_{\bullet \bullet}} \cdot 100$$

$$f_{-1} = \frac{n_{-1}}{n_{-1}} \cdot 100 = \frac{200}{750} \cdot 100 = 26,67\%$$
, 26,67% dintre firme sunt mici

$$f_{2} = \frac{n_{2}}{n} \cdot 100 = \frac{250}{750} \cdot 100 = 33,33\%$$
, 33,33% dintre firme sunt mijlocii

$$f_{-3} = \frac{n_{-3}}{n_{-1}} \cdot 100 = \frac{300}{750} \cdot 100 = 40,00\%$$
, 40% dintre firme sunt mari

7. Să se calculeze și să se interpreteze frecvențele relative condiționate

$$f_{i/j} = \frac{n_{ij}}{n_{\bullet j}} \cdot 100$$
, j valoare fixă (mărimea firmei)

Firme Mici

$$f_{i/1} = \frac{n_{i1}}{n_{\bullet 1}} \cdot 100$$

 $f_{1/1}$ reprezintă frecvența relativă a firmelor mici condiționate ca valoarea cifrei de afaceri să fie de $10\,\mathrm{mii}$ lei

$$f_{2/1} = \frac{n_{21}}{n_{21}} \cdot 100 = \frac{42}{200} \cdot 100 = 21,00\%$$
. 21% dintre firmele mici au cifra de afaceri egală cu 20 mii lei

$$f_{3/1} = \frac{n_{31}}{n_{.1}} \cdot 100 = \frac{20}{200} \cdot 100 = 10,00\%$$
. 10% dintre firmele mici au cifra de afaceri egală cu 30 mii lei

$$f_{4/1} = \frac{n_{41}}{n_{*1}} \cdot 100 = \frac{6}{200} \cdot 100 = 3,00\%$$
. 3% dintre firmele mici au cifra de afaceri egală cu 40 mii lei

Firme Mijlocii

$$f_{i/2} = \frac{n_{i2}}{n_{\bullet 2}} \cdot 100$$

 $f_{1/2}$ -reprezintă frecvența relativă a firmelor mijlocii condiționate ca valoarea cifrei de afaceri să fie de 10 mii lei

$$f_{1/2} = \frac{n_{12}}{n_{22}} \cdot 100 = \frac{30}{250} \cdot 100 = 12,00\% \text{ . } 12\% \text{ dintre firmele mijlocii au cifra de afaceri egală cu } 10 \text{ mii } 100 = 12,00\% \text{ . } 12\% \text{ dintre firmele mijlocii au cifra de afaceri egală cu } 10 \text{ mii } 100 = 12,00\% \text{ . } 12\% \text{ dintre firmele mijlocii au cifra de afaceri egală cu } 10 \text{ mii } 100 = 12,00\% \text{ . } 12\% \text{ dintre firmele mijlocii au cifra de afaceri egală cu } 10 \text{ mii } 100 = 12,00\% \text{ . } 12\% \text{ dintre firmele mijlocii au cifra de afaceri egală cu } 10 \text{ mii } 100 = 12,00\% \text{ . } 100 = 12,00\% \text{ . } 12\% \text{ dintre firmele mijlocii au cifra de afaceri egală cu } 10 \text{ mii } 100 = 12,00\% \text{ . } 100 = 12,00\% \text{ . } 12\% \text{ dintre firmele mijlocii au cifra de afaceri egală cu } 10 \text{ mii } 100 = 12,00\% \text{ . } 100 = 12,00\% \text{ .$$

lei

$$f_{2/2} = \frac{n_{22}}{n_{2}} \cdot 100 = \frac{60}{250} \cdot 100 = 24,00\%$$
. 24% dintre firmele mijlocii au cifra de afaceri egală cu 20

mii lei

$$f_{3/2} = \frac{n_{32}}{n_{\star 2}} \cdot 100 = \frac{90}{250} \cdot 100 = 36,00\% \ . \ 36\% \ dintre \ firmele mijlocii au cifra de afaceri egală cu 30 mii lei$$

$$f_{4/2} = \frac{n_{42}}{n_{•2}} \cdot 100 = \frac{70}{250} \cdot 100 = 28,00\%$$
. 28% dintre firmele mijlocii au cifra de afaceri egală cu 40

mii lei

Firme Mari

$$f_{i/3} = \frac{n_{i3}}{n_{\cdot 3}} \cdot 100$$

$$f_{1/3} = \frac{n_{13}}{n_{13}} \cdot 100 = \frac{8}{300} \cdot 100 = 2,67\%$$
 . 2,67% dintre firmele mari au cifra de afaceri egală cu 10 mii

lei

$$f_{2/3} = \frac{n_{23}}{n_{.3}} \cdot 100 = \frac{13}{300} \cdot 100 = 4,33\%$$
. 4,33% dintre firmele mari au cifra de afaceri egală cu 20 mii

lei

$$f_{3/3} = \frac{n_{33}}{n_{.3}} \cdot 100 = \frac{40}{300} \cdot 100 = 13,33\%$$
. 13,33% dintre firmele mari au cifra de afaceri egală cu 30 mii

lei

$$f_{4/3} = \frac{n_{43}}{n_{.3}} \cdot 100 = \frac{239}{300} \cdot 100 = 79,67\%$$
. 79,67% dintre firmele mari au cifra de afaceri egală cu 40 mii lei

$$f_{i/j} = \frac{n_{ij}}{n_{i.}} \cdot 100$$
, i valoare fixă (cifra de afaceri)

Firme cu cifra de afaceri de 10 mii lei

$$f_{1/j} = \frac{n_{1j}}{n_{1\bullet}} \cdot 100$$

$$f_{1/1} = \frac{n_{11}}{n_{1.}} \cdot 100 = \frac{132}{170} \cdot 100 = 77,65\%$$
. 77,65% dintre firmele ce au cifra de afaceri egală cu 10 mii lei

sunt mici

$$f_{1/2} = \frac{n_{12}}{n_{1.}} \cdot 100 = \frac{30}{170} \cdot 100 = 17,65\%$$
. 17,65% dintre firmele ce au cifra de afaceri egală cu 10 mii lei sunt miilocii

$$f_{1/3} = \frac{n_{13}}{n_{1 \cdot}} \cdot 100 = \frac{8}{170} \cdot 100 = 4,70\% \text{ dintre firmele ce au cifra de afaceri egală cu } 10 \text{ mii lei sunt mari}$$

Firme cu cifra de afaceri de 20 mii lei

$$f_{2/j} = \frac{n_{2j}}{n_{2.}} \cdot 100$$

$$f_{2/1} = \frac{n_{21}}{n_{2\bullet}} \cdot 100 = \frac{42}{115} \cdot 100 = 36,52\%$$
 . 36,52% dintre firmele ce au cifra de afaceri egală cu 20 mii lei

sunt mici

$$f_{2/2} = \frac{n_{22}}{n_2} \cdot 100 = \frac{60}{115} \cdot 100 = 52,17\%$$
. 52,17% dintre firmele ce au cifra de afaceri egală cu 20 mii lei sunt mijlocii

 $f_{2/3} = \frac{n_{23}}{n_{2 \cdot}} \cdot 100 = \frac{13}{115} \cdot 100 = 11,31\%$. 11,31% dintre firmele ce au cifra de afaceri egală cu 20 mii lei

sunt mari

Firme cu cifra de afaceri de 30 mii lei

$$f_{3/j} = \frac{n_{3j}}{n_{3\bullet}} \cdot 100$$

$$f_{3/1} = \frac{n_{31}}{n_{3\bullet}} \cdot 100 = \frac{20}{150} \cdot 100 = 13,33\%$$
 . 13,33% dintre firmele ce au cifra de afaceri egală cu 30 mii lei

sunt mici

$$f_{3/2} = \frac{n_{32}}{n_{3.}} \cdot 100 = \frac{90}{150} \cdot 100 = 60,00\%$$
 . 60,00% dintre firmele ce au cifra de afaceri egală cu 30 mii

lei sunt mijlocii

$$f_{3/3} = \frac{n_{33}}{n_{3.}} \cdot 100 = \frac{40}{150} \cdot 100 = 26,67\%$$
 . 26,67% dintre firmele ce au cifra de afaceri egală cu 30 mii

lei sunt mari

Firme cu cifra de afaceri de 40 mii lei

$$f_{4/j} = \frac{n_{4j}}{n_{4.}} \cdot 100$$

$$f_{4/1} = \frac{n_{41}}{n_{4 \bullet}} \cdot 100 = \frac{6}{315} \cdot 100 = 1,91\% \text{ . 1,91\% dintre firmele ce au cifra de afaceri egală cu 40 mii lei}$$

sunt mici

$$f_{4/2} = \frac{n_{42}}{n_{4*}} \cdot 100 = \frac{70}{315} \cdot 100 = 22,22\%$$
. 22,22% dintre firmele ce au cifra de afaceri egală cu 40 mii

lei sunt mijlocii

$$f_{4/3} = \frac{n_{43}}{n_{4.}} \cdot 100 = \frac{239}{315} \cdot 100 = 75,87\%$$
. 75,87% dintre firmele ce au cifra de afaceri egală cu 40 mii

lei sunt mari

8. Să se calculeze și să se interpreteze mediile condiționate (mediile pe grupe)

Mediile condiționate pot fi calculate pentru fiecare din distribuțiile condiționate ale variabilei cantitative, cifra de afaceri.

$$\overline{x}_{j} = \frac{\sum_{i=1}^{m} x_{i} n_{ij}}{\sum_{i=1}^{p} n_{ij}} = \frac{\sum_{i=1}^{m} x_{i} n_{ij}}{n_{\cdot j}}$$

Tabelul 6.4 Distribuția cifrei de afaceri a firmelor din Iași condiționată de tipul firmei să fie "mică" $(X/Y = y_1)$

X_i	n_{i1}	$x_i n_{i1}$
(mii lei)		
10	132	1320
20	42	840
30	20	600
40	6	240
TOTAL	200	3000

$$\overline{x}_1 = \frac{\sum_{i=1}^{m} x_i n_{i1}}{\sum_{i=1}^{p} n_{ij}} = \frac{\sum_{i=1}^{m} x_i n_{i1}}{n_{\cdot 1}} = \frac{3000}{200} = 15 \text{ mii lei}$$

Cifra medie de afaceri a firmelor mici este de 15 mii lei.

Tabelul 6.5 Distribuția cifrei de afaceri a firmelor din Iași condiționată de tipul firmei să fie "mijlocie" $(X/Y = y_2)$

\mathcal{X}_{i}	n_{i2}	$x_i n_{i2}$
(mii lei)		
10	30	300
20	60	1200
30	90	2700
40	70	2800
TOTAL	250	7000

$$\overline{x}_2 = \frac{\sum_{i=1}^m x_i n_{i2}}{\sum_{i=1}^p n_{ij}} = \frac{\sum_{i=1}^m x_i n_{i2}}{n_{\cdot 2}} = \frac{7000}{250} = 28 \text{ mii lei}$$

Cifra medie de afaceri a firmelor medii este de 28 mii lei.

Tabelul 6.6 Distribuția cifrei de afaceri a firmelor din Iași condiționată de tipul firmei să fie "mijlocie" $(X/Y = y_3)$

X_i	n_{i3}	$x_i n_{i3}$
(mii lei)		
10	8	80
20	13	260
30	40	1200
40	239	9560
TOTAL	300	11100

$$\overline{x}_3 = \frac{\sum_{i=1}^m x_i n_{i3}}{\sum_{i=1}^p n_{ij}} = \frac{\sum_{i=1}^m x_i n_{i3}}{n_{\cdot 3}} = \frac{11100}{300} = 37 \text{ mii lei}$$

Cifra medie de a faceri a firmelor mari este de 37 mii lei.

9. Să se calculeze și să se interpreteze media pe total

$$\overline{x} = \frac{\sum_{j=1}^{p} \overline{x}_{j} n_{\cdot j}}{\sum_{j=1}^{p} n_{\cdot j}} = \frac{\sum_{j=1}^{p} \overline{x}_{j} n_{\cdot j}}{n_{\cdot \cdot \cdot}}$$

$$\overline{x} = \frac{15 \cdot 200 + 28 \cdot 250 + 37 \cdot 300}{750} = \frac{3000 + 7000 + 11100}{750} = \frac{21100}{750} = 28,13 \text{ mii lei}$$

Cifra medie de a faceri a tuturor firmelor este de 37 mii lei.

Media pe total poate fi calculată și cu ajutorul distribuției marginale a variabilei X.

Tabelul 6.2. Distribuția firmelor din Iași după cifra de afaceri

		· · · · · · · · · · · · · · · · · · ·
\mathcal{X}_{i}	$n_{i\bullet}$	$x_i n_i$
(mii lei)		
10	170	1700
20	115	2300
30	150	4500
40	315	12600
TOTAL	750	21100

$$\overline{x} = \frac{\sum_{i=1}^{m} x_i n_i}{\sum_{i=1}^{m} n_i} = \frac{\sum_{i=1}^{m} x_i n_i}{n_i}$$

$$\overline{x} = \frac{21100}{750} = 28,13 \text{ mii lei}$$

10. Să se calculeze varianțele condiționate (varianțele de grupă)

Varianțele de grupă pot fi calculate pentru fiecare din distribuțiile condiționate ale variabilei cantitative, cifra de afaceri.

$$s_{j}^{2} = \frac{\sum_{i=1}^{m} (x_{i} - \overline{x}_{j})^{2} n_{ij}}{\sum_{i=1}^{m} n_{ij}} = \frac{\sum_{i=1}^{m} (x_{i} - \overline{x}_{j})^{2} n_{ij}}{n_{.j}}$$

Tabelul 6.4 Distribuția cifrei de afaceri a firmelor din Iași condiționată de tipul firmei să fie "mică" $(X \mid Y = y_1)$

(mii lei)	n_{i1}	$x_i n_{i1}$	$x_i - \overline{x}_1$	$\left(x_i - \overline{x}_1\right)^2$	$\left(x_i - \overline{x}_1\right)^2 n_{i1}$
10	132	1320	-5	25	3300
20	42	840	5	25	1050
30	20	600	15	225	4500
40	6	240	25	625	3750
TOTAL	200	3000	-	-	12600

$$s_{1}^{2} = \frac{\sum_{i=1}^{m} (x_{i} - \overline{x}_{1})^{2} n_{i1}}{\sum_{i=1}^{m} n_{i1}} = \frac{\sum_{i=1}^{m} (x_{i} - \overline{x}_{1})^{2} n_{i1}}{n_{\cdot 1}}$$

$$s_{1}^{2} = \frac{12600}{n_{\cdot 1}} = 63$$

Tabelul 6.5 Distribuția cifrei de afaceri a firmelor din Iași condiționată de tipul firmei să fie "mijlocie" $(X/Y = y_2)$

x_i	n_{i2}	$x_i n_{i2}$	$x_i - \overline{x}_2$	$\left(x_i - \overline{x}_2\right)^2$	$\left(x_i - \overline{x}_2\right)^2 n_{i2}$
(mii lei)					
10	30	300	-18	324	9720
20	60	1200	-8	64	3840
30	90	2700	2	4	360
40	70	2800	12	144	10080
TOTAL	250	7000	-	-	24000

$$s_{2}^{2} = \frac{\sum_{i=1}^{m} (x_{i} - \overline{x}_{2})^{2} n_{i2}}{\sum_{i=1}^{m} n_{i2}} = \frac{\sum_{i=1}^{m} (x_{i} - \overline{x}_{2})^{2} n_{i2}}{n_{\cdot 2}}$$

$$s_2^2 = \frac{24000}{250} = 96$$

Tabelul 6.6 Distribuția cifrei de afaceri a firmelor din Iași condiționată de tipul firmei să fie "mare" $(X/Y = y_3)$

(mii lei)	n_{i3}	$x_i n_{i3}$	$x_i - \overline{x}_3$	$\left(x_i - \overline{x}_3\right)^2$	$\left(x_i-\overline{x}_3\right)^2n_{i3}$
10	8	80	-27	729	5832
20	13	260	-17	289	3757
30	40	1200	-7	49	1960
40	239	9560	3	9	2151
TOTAL	300	11100	-	-	13700

$$S_3^2 = \frac{\sum_{i=1}^m (x_i - \overline{x}_3)^2 n_{i3}}{\sum_{i=1}^m n_{i3}} = \frac{\sum_{i=1}^m (x_i - \overline{x}_3)^2 n_{i3}}{n_{\cdot 3}}$$

$$s_3^2 = \frac{13700}{300} = 45,67$$

11. Să se calculeze media varianțelor de grupă

$$\overline{s}^{2} = \frac{\sum_{j=1}^{p} s_{j}^{2} n_{\cdot j}}{\sum_{i=1}^{p} n_{\cdot j}} = \frac{\sum_{j=1}^{p} s_{j}^{2} n_{\cdot j}}{n_{\cdot \cdot \cdot}}$$

$$\overline{s}^2 = \frac{63 \cdot 200 + 96 \cdot 250 + 45,67 \cdot 300}{750} = \frac{12600 + 24000 + 13700}{750}$$

$$\overline{s}^2 = \frac{50300}{750} = 67,067$$

12. Să se calculeze varianța între grupe (varianța intergrupe)

$$s_{\bar{x}_{j}}^{2} = \frac{\sum_{j=1}^{p} (\bar{x}_{j} - \bar{x})^{2} n_{.j}}{\sum_{j=1}^{p} n_{.j}} = \frac{\sum_{j=1}^{p} (\bar{x}_{j} - \bar{x})^{2} n_{.j}}{n_{..}}$$

\overline{x}_{j}	$n_{\bullet j}$	$\overline{x}_j - \overline{x}$	$\left(\overline{x}_{j}-\overline{x}\right)^{2}$	$\left(\overline{x}_{j}-\overline{x}\right)^{2}n_{\bullet j}$
15	200	-13,13	172,48	34496,89
28	250	-0,13	0,02	4,44
37	300	8,87	78,62	23585,33
TOTAL	750			58086,67

$$s_{\overline{x}_j}^2 = \frac{58086,67}{750} = 77,45$$

13.Să se calculeze varianța generală

Tabelul 6.2. Distribuția firmelor din Iași după cifra de afaceri

\mathcal{X}_{i}	$n_{i\bullet}$	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	$(x_i - \overline{x})^2 n_i$
(mii lei)				
10	170	-18,13	328,82	55899,02
20	115	-8,13	66,15	7607,38
30	150	1,87	3,48	522,67
40	315	11,87	140,82	44357,60
TOTAL	750	-12,53	539,27	108386,67

$$s_X^2 = \frac{\sum_{i=1}^m (x_i - \overline{x})^2 n_i}{\sum_{i=1}^m n_i} = \frac{\sum_{i=1}^m (x_i - \overline{x})^2 n_i}{n_i}$$
$$s_X^2 = \frac{108386,67}{750} = 144,52$$

$$s_X^2 = s_{\bar{x}_j}^2 + \bar{s}^2$$
144.52=77.45+67.07

14. Să se calculeze coeficientul de influență a factorului de grupare și coeficientul de influență a factorilor aleatori/întâmplători

$$k_1 = \frac{s_{\bar{x}_j}^2}{s_x^2} \cdot 100 = \frac{77,45}{144,52} \cdot 100 = 53,59\%$$

$$k_2 = \frac{\overline{s}^2}{s_x^2} \cdot 100 = \frac{67,07}{144,52} \cdot 100 = 46,41\%$$

Deoarece coeficientul factorului de grupare k_1 este mai mare decât coeficientul influenței factorilor întâmplători k_2 , factorul de grupare, tipul firmelor (mici, mijlocii și mari) are influență asupra cifrei de afaceri a firmelor din Iași.

14