Calcolo Integrale

Simone Lidonnici

18 aprile 2024

Indice

1	Seri	ie numeriche 2
	1.1	Tipi di serie
		1.1.1 Serie geometriche
		1.1.2 Serie armoniche
	1.2	Teoremi
	1.3	Serie di Taylor
		1.3.1 Serie di Taylor notevoli
		1.3.2 Calcolo delle derivate e principio di sostituzione
	1.4	Serie di potenze
		1.4.1 Insieme di convergenza
2	Inte	egrali 10
	2.1	Approssimazione con i rettangoli
	2.2	Proprietà degli integrali
	2.3	Teorema fondamentale
	2.4	Tipi di integrazione
		2.4.1 Integrali per sostituzione
		2.4.2 Integrali per parti
		2.4.3 Integrale di polinomi per funzioni
		2.4.4 Studio di funzione tramite integrali
		2.4.5 Integrali di funzioni razionali
3	Equ	nazioni differenziali 18
	3.1	Sigle
	3.2	Problema di Cauchy
		3.2.1 Ordine 1 e $\overset{\circ}{2}$
	3.3	Equazioni senza calcoli
	3.4	Equazioni lineari di ordine 1
		3.4.1 Equazioni omogenee a variabili separabili
		3.4.2 Equazioni non omogenee
	3.5	Equazioni lineari di ordine 2
		3.5.1 Equazioni non omogenee
		3.5.2 Equazioni omogenee
		3.5.3 Soluzione particolare

1

Serie numeriche

Definizione di serie numerica

Una **serie numerica** è una successione in cui il valore n-esimo è la somma di tutti i valori precedenti della successione.

$$S_n = \sum_{k=0}^n a_k \ \forall n \in \mathbb{N}$$

Esempi:

$$a_k = k \implies S_n = \sum_{k=0}^n a_k = \frac{n(n+1)}{2}$$

$$a_k = \frac{1}{k+1} \implies S_n = \sum_{k=0}^n \frac{1}{k+1} = 1 + \frac{1}{2} + \dots + \frac{1}{n+1} = +\infty \implies S_n \le \log_2 n = +\infty$$

Convergenza o Divergenza di una serie

Data una successione a_k , S_n può:

• Convergere: se la successione S_n delle somme parziali della successione a_k è uguale ad un numero finito.

$$S_n = \sum_{k=0}^{+\infty} a_k = \lim_{n \to \infty} \sum_{k=0}^n a_k = l \in \mathbb{R}$$

• Divergere: se la successione S_n delle somme parziali della successione a_k è uguale a $\pm \infty$.

$$S_n = \sum_{k=0}^{+\infty} a_k = \lim_{n \to \infty} \sum_{k=0}^{n} a_k = \pm \infty$$

• Non convergere ne divergere: se la successione S_n delle somme parziali della successione a_k non è uguale ad un numero finito ma neanche a $\pm \infty$.

$$S_n = \sum_{k=0}^{+\infty} a_k = \nexists \lim_{n \to \infty} \sum_{k=0}^{n} a_k$$

1. Serie numeriche 1.1. Tipi di serie

1.1 Tipi di serie

1.1.1 Serie geometriche

Serie geometrica

Una serie geometrica è una serie in cui l'indice della sommatoria k è l'esponente di un numero reale.

$$S_n = \sum_{k=0}^{n} q^k = \frac{q^{n+1} - 1}{q - 1}$$

Il valore della successione, del limite e della sommatoria cambiano in base al valore di q:

$$S_n = \begin{cases} 0 & q = 0 \\ n+1 & q = 1 \\ \frac{q^{n+1}-1}{q-1} & q \neq 0, 1 \end{cases}$$

$$\lim_{k \to +\infty} q^k = \begin{cases} 0 & -1 < q < 1 \\ \infty & q > 1 \\ 1 & q = 1 \\ \text{non esiste} & q \leq -1 \end{cases}$$

$$\sum_{k=0}^{+\infty} q^k = \begin{cases} \frac{1}{1-q} & -1 < q < 1 \\ \infty & q \geq 1 \\ \text{non esiste} & q \leq -1 \end{cases}$$

Esempio:

$$\sum_{k=0}^{+\infty} \frac{3 \cdot 2^k}{5^{k+2}} = \frac{3}{25} \sum_{k=0}^{+\infty} (\frac{2}{5})^k = \frac{3}{25} \cdot \frac{1}{1 - \frac{2}{5}} = \frac{1}{5}$$

1.1.2 Serie armoniche

Serie armonica

Una **serie armonica** è una serie in cui l'indice della sommatoria k è al denominatore della successione ed è elevato ad un numero naturale α .

$$S_n = \sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$$

La convergenza dipende dal valore di α :

- $\alpha > 1 \implies \text{converge}$
- $0 < \alpha \le 1 \implies \text{diverge}$

1. Serie numeriche 1.2. Teoremi

Esempi:

$$\sum_{k=1}^{+\infty} \frac{1}{k^2} < +\infty$$

$$\sum_{k=0}^{+\infty} \frac{\cos^2(k)}{k^2} \le \frac{1}{k^2} \implies < +\infty$$

1.2 Teoremi

Teorema della condizione necessaria

Data una serie S_n convergente allora la successione a_k tende a 0.

$$S_n = \sum_{k=0}^{+\infty} a_k = l \in \mathbb{R} \implies \lim_{k \to +\infty} a_k = 0$$

Questo teorema non vale al contrario, cioè una succesione che tende a 0 può avere una seie divergente.

Teorema serie a termini positivi

Data una successione a_k positiva per ogni k la sua successione può:

$$a_k \ge 0 \ \forall k \implies s_n = \begin{cases} l \in \mathbb{R} & a_k \to 0 \\ +\infty & a_k \ne 0 \end{cases}$$

Esempio:

$$a_k = \frac{1}{k^2} \implies a_k \ge 0 \ \forall k \land a_k \to 0 \implies S_n = 2$$

Teorema del confronto

Date due successioni a_k, b_k per cui $0 < a_k < b_k$ allora sappiamo che:

$$\bullet \ \sum_{k=0}^{+\infty} b_k < +\infty \implies \sum_{k=0}^{+\infty} a_k < +\infty$$

•
$$\sum_{k=0}^{+\infty} a_k = +\infty \implies \sum_{k=0}^{+\infty} b_k = +\infty$$

Esempia

$$\sum_{k=1}^{+\infty} \sin(\frac{1}{k^2}) < \frac{1}{k^2} \implies \sum_{k=1}^{+\infty} \sin(\frac{1}{k^2}) < +\infty$$

$$\sum_{k=1}^{+\infty} \cos(\frac{1}{k^2}) \implies a_k \to 1 \implies \sum_{k=1}^{+\infty} \cos(\frac{1}{k^2}) = +\infty$$

1. Serie numeriche 1.2. Teoremi

Teorema del confronto asintotico

Date due succesioni a_k, b_k per cui $a_k > 0$ e $b_k > 0$ e $\lim_{n \to +\infty} \frac{a_k}{b_k} = l \in \mathbb{R}$:

$$\bullet \ \sum_{k=0}^{+\infty} a_k < +\infty \iff \sum_{k=0}^{+\infty} b_k < +\infty$$

•
$$\sum_{k=0}^{+\infty} a_k = \pm \infty \iff \sum_{k=0}^{+\infty} b_k = \pm \infty$$

Teorema della radice e del rapporto

Data una successione $a_k \geq 0$ possiamo calcolare un valore L in due modi:

• Radice: $L = \lim_{k \to +\infty} \sqrt[k]{a_k}$

• Rapporto: $L = \lim_{k \to +\infty} \frac{a_{k+1}}{a_k}$

In base al valore di L:

$$S_n = \begin{cases} \text{converge} & 0 \le L < 1 \\ \text{diverge} & L > 1 \\ \text{non si può stabilire a priori} & L = 1 \end{cases}$$

Esempi:

$$a_k = \frac{1}{k!} \implies \lim_{k \to +\infty} \frac{a_{k+1} a_k}{=} \lim_{k \to +\infty} \frac{\frac{1}{(k+1)!}}{\frac{1}{k!}} = \lim_{k \to +\infty} \frac{k!}{(k+1)!} = 0 \implies \text{converge}$$

$$a_k = k(\frac{2}{3})^k \implies \lim_{k \to +\infty} \sqrt[k]{k(\frac{2}{3})^k} = \lim_{k \to +\infty} \sqrt[k]{k(\frac{2}{3})} = \frac{2}{3} < 1 \implies \text{converge}$$

Criterio di Leibnitz

Data una successione $a_k = (-1)^k b_k$, se:

- $b_k > 0 \ \forall k$
- b_k decresce
- $b_k \to 0$

allora la successione $S_n = \sum_{k=0}^{+\infty} (-1)^k b_k < +\infty$

Teorema della convergenza assoluta

Data una serie a_k se:

$$\sum_{k=0}^{+\infty} |a_k| < +\infty \implies \sum_{k=0}^{+\infty} a_k < +\infty$$

1.3 Serie di Taylor

Polinomio di Taylor

Il **Polinomio di Taylor** $T_n(f(x); x_0)$ è un polinomio di grado $\leq n$ che approssima la funzione f(x) nel punto x_0 :

$$T_n(f(x); x_0) = \sum_{k=0}^n \frac{f^k(x_0)}{k!} (x - x_0)^k =$$

$$f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^n(x_0)}{n!} (x - x_0)^n$$

Da cui:

$$f(x) = T_n(f(x); x_0) + o((x - x_0)^n)$$

In cui $o((x-x_0)^n)$ è una quantità tale che:

$$\lim_{x \to 0} \frac{o((x - x_0)^n)}{(x - x_0)^n} = 0$$

oppure:

$$o((x-x_0)^n) = \frac{f^{n+1}(\xi)}{(n+1)!}(x-x_0)^{n+1}$$

dove $\xi \in (x, x_0)$

Esempio:

$$f(x) = x \implies T_n(e^x; 0) = \sum_{k=0}^n \frac{(e^x)^k(0)}{k!} (x - 0)^k$$

$$f^k(0) = e^0 = 1 \ \forall k \implies T_n(e^x; 0) = \sum_{k=0}^n \frac{1 \cdot x^k}{k!} \implies e^x = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n)$$

Serie di Taylor

Una **serie di Taylor** è il limite per $n \to +\infty$ di un polinomio di Taylor e coincide perfettemente con (x_0) :

$$f(x_0) = \lim_{n \to +\infty} T_n(f(x); x_0) = \sum_{k=0}^{+\infty} \frac{f^k(x_0)}{k!} (x - x_0)^k$$

1.3.1 Serie di Taylor notevoli

Serie notevoli $\forall x \in \mathbb{R}$:

$$\bullet \ e^x = \sum_{k=0}^{+\infty} \frac{x^k}{k!}$$

•
$$\sin(x) = \sum_{k=0}^{+\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$

•
$$\cos(x) = \sum_{k=0}^{+\infty} \frac{(-1)^k x^{2k}}{(2k)!}$$

Serie notevoli $\forall x \in (-1, 1)$:

$$\bullet \ \frac{1}{1-x} = \sum_{k=0}^{+\infty} x^k$$

•
$$\frac{1}{1+x} = \sum_{k=0}^{+\infty} (-1)^k x^k$$

$$\bullet \ \frac{1}{1+x^2} = \sum_{k=0}^{+\infty} \frac{(-1)^k x^{k+1}}{k+1}$$

•
$$\arctan(x) = \sum_{k=0}^{+\infty} \frac{(-1)^k x^{2k+1}}{2k+1}$$

•
$$\ln(1+x) = \sum_{k=0}^{+\infty} \frac{(-1)^k x^{k+1}}{k+1}$$

1.3.2 Calcolo delle derivate e principio di sostituzione

Anche per le Serie di Taylor vale il **Principio di sostituzione**, quindi se dovessimo calcolare la Serie di Taylor di e^{x^2} basterebbe sostitutire $x^2 = y$

$$e^{x^2} = e^y = \sum_{k=0}^{+\infty} \frac{y^k}{k!} = \sum_{k=0}^{+\infty} \frac{(x^2)^k}{k!} = \sum_{k=0}^{+\infty} \frac{x^{2k}}{k!}$$

Per calcolare poi la derivata k-esima nel punto $x_0 = 0$ basta moltiplicare a_k con k!:

$$f^k(0) = a_k \cdot k!$$

Esempio:

$$f(x) = x^{3} \sin(x^{3}) = y \sin(y)$$

$$f(x) = y \sum_{k=0}^{+\infty} \frac{(-1)^{k} y^{2k+1}}{(2k+1)!} = \sum_{k=0}^{+\infty} \frac{(-1)^{k} (x^{3})^{2k+2}}{(2k+1)!} = \sum_{k=0}^{+\infty} \frac{(-1)^{k} x^{6k+6}}{(2k+1)!}$$

$$x^{3} \sin(x^{3}) = \frac{x^{6}}{1!} - \frac{x^{12}}{3!} + \frac{x^{18}}{5!} - \dots \implies \frac{1}{1!} = a_{6}, -\frac{1}{3!} = a_{12}, \frac{1}{5!} = a_{18}$$

Calcolando le derivate nel punto 0:

$$f'(0) = a_1 \cdot 1! = 0 \cdot 1! = 0$$

$$f^{6}(0) = a_6 \cdot 6! = \frac{1}{1!} \cdot 6! = 6!$$

$$f^{12}(0) = a_{12} \cdot 12! = -\frac{1}{3!} \cdot 12! = -\frac{12!}{3!}$$

$$f^{18}(0) = a_{18} \cdot 18! = \frac{1}{5!} \cdot 18! = \frac{18!}{5!}$$

1.4 Serie di potenze

Serie di potenze

Una **serie di potenze** è formata da:

• Coefficiente: $a_k \subseteq \mathbb{R}$

• Centro: $x_0 \in \mathbb{R}$

$$S_n = \sum_{k=0}^{+\infty} a_k (x - x_0)^k$$

Esempi:

$$e^{x} = \sum_{k=0}^{+\infty} \frac{x^{k}}{k!} = \sum_{k=0}^{+\infty} \frac{1}{k!} (x-0)^{k}$$

$$e^{3x} = \sum_{k=0}^{+\infty} \frac{(3x)^{k}}{k!} = \sum_{k=0}^{+\infty} \frac{3^{k}}{k!} (x-0)^{k}$$

$$e^{3x-5} = \sum_{k=0}^{+\infty} \frac{(3x-5)^{k}}{k!} = \sum_{k=0}^{+\infty} \frac{(3(x-\frac{5}{3}))^{k}}{k!} = \sum_{k=0}^{+\infty} \frac{3^{k}}{k!} (x-\frac{5}{3})^{k}$$

$$\cos(4x) = \sum_{k=0}^{+\infty} \frac{(-1)^{k} (4x)^{2k}}{(2k)!} = \sum_{k=0}^{+\infty} \frac{(-1)^{k} 4^{2k}}{(2k)!} (x-0)^{2k} \implies a_{k} = \begin{cases} \frac{-4^{2k}}{(2k)!} & k \text{ dispari} \\ \frac{4^{2k}}{(2k)!} & k \text{ pari} \end{cases}$$

1.4.1 Insieme di convergenza

Raggio di convergenza

Data una serie di potenze e preso x_0 esiste un valore $R \in [0, +\infty]$ chiamato raggio di convergenza per cui:

$$\forall x | \begin{cases} |x-x_0| < R & \text{la serie converge} \\ |x-x_0| > R & \text{la serie diverge} \\ |x-x_0| = R & \text{bisogna studiare i due casi singolarmente} \end{cases}$$

Il terzo caso ha due possibili sottocasi:

$$|x - x_0| = R \implies \begin{cases} x_1 = x_0 + R \implies \sum_{k=0}^{+\infty} a_k R^k \\ x_2 = x_0 - R \implies \sum_{k=0}^{+\infty} (-1)^k a_k R^k \end{cases}$$

Il raggio di convergenza R si calcola usando prima il teorema della radice o del rapporto, cioè:

$$L = \lim_{k \to +\infty} \frac{|a_{k+1}|}{|a_k|} = \lim_{k \to +\infty} \sqrt[k]{|a_k|} \implies R = \begin{cases} 0 & L = +\infty \\ \frac{1}{L} & L = l \in \mathbb{R} \\ +\infty & L = 0 \end{cases}$$

Esempio:

Esemplo:
$$\sum_{k=0}^{+\infty} \frac{(2x-5)^k}{k+1} = \sum_{k=0}^{+\infty} \frac{2^k}{k+1} (x-\frac{5}{2})^k \implies L = \lim_{k \to +\infty} \sqrt[k]{\frac{2^k}{k+1}} = \lim_{k \to +\infty} \frac{2}{\sqrt[k]{k+1}} = 2 \implies R = \frac{1}{L} = \frac{1}{2}$$

$$S_n \begin{cases} \text{coverge} & \forall x | |x-\frac{5}{2}| < \frac{1}{2} \\ \text{non converge} & \forall x | |x-\frac{5}{2}| > \frac{1}{2} \end{cases}$$

$$x_1 = x_0 + R = \frac{5}{2} + \frac{1}{2} = 3$$

$$x_2 = x_0 - R = \frac{5}{2} - \frac{1}{2} = 2$$

$$\sum_{k=0}^{+\infty} \frac{(2x-5)^k}{k+1} \text{ con } x_1 \implies \sum_{k=0}^{+\infty} \frac{(6-5)^k}{k+1} = \sum_{k=0}^{+\infty} \frac{(1)^k}{k+1} \implies \text{diverge}$$

$$\sum_{k=0}^{+\infty} \frac{(2x-5)^k}{k+1} \text{ con } x_2 \implies \sum_{k=0}^{+\infty} \frac{(4-5)^k}{k+1} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k+1} \implies \text{converge con Leibnitz}$$

$$E = [2,3)$$

2

Integrali

Un **integrale** di una funzione è l'area compresa tra l'asse delle x e la funzione in un intervallo **chiuso** e **limitato** [a,b].

2.1 Approssimazione con i rettangoli

L'area può essere approssimata tra l'area con altezza il minimo di f(x) e l'area con altezza il massimo di f(x).

$$(b-a)\cdot \min(f(x)) \le \text{Area} \le (b-a)\cdot \max(f(x))$$

Per approssimare ancora meglio si divide l'area in 2^n parti uguali con intervalli $[a_k,b_k]$ in cui:

- $\bullet \ a_k = a + k \frac{b-a}{2^n}$
- $b_k = a + (k+1)\frac{b-a}{2^n}$

$$\sum_{k=0}^{2^{n}-1} a_{k} \frac{b-a}{2^{n}} \le \text{Area} \le \sum_{k=0}^{2^{n}-1} b_{k} \frac{b-a}{2^{n}}$$

Se facciamo tendere $n \to +\infty$ le due sommatorie tenderanno allo stesso numero, cioè il valore dell'area.

Definizione di Integrale

Data una funzione $f[a,b] \to \mathbb{R}$ limitata:

Se
$$\lim_{n\to+\infty}\sum_{k=0}^{2^n-1}a_k\frac{b-a}{2^n}=\lim_{n\to+\infty}\sum_{k=0}^{2^n-1}b_k\frac{b-a}{2^n}=L\in\mathbb{R}\implies f$$
 integrabile in $[a,b]$

L'integrabile definito di f(x) in [a, b] sarà:

$$\int_{a}^{b} f(x)dx = L$$

2.2 Proprietà degli integrali

Linearità degli integrali

Date due funzioni f(x), g(x) integrabili in un intervallo [a, b], la somma degli integrali delle due funzioni nell'intervallo è uguale all'integrale della somma delle due funzioni:

$$\int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

Inoltre l'integrale di una costante moltiplicata per una funzione è uguale alla costante moltiplicata per l'integrale della funzione:

$$\int_{a}^{b} (k \cdot f(x)) dx = k \int_{a}^{b} f(x) dx$$

Additività degli integrali

L'integrale di una funzione f(x) in un intervallo [a,b] può essere calcolato come la somma dell'integrale di due intervalli più piccoli:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \quad \forall c \in [a, b]$$

Una funzione non continua può essere integrabile in un intervallo purché abbia un numero finito di cambi di monotonia e un numero finito di discontinuità.

2. Integrali

Intagrale assoluto

Data una funzione f(x) vale che:

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} \left| f(x) \right| dx$$

Nel caso una funzione abbia dei valori basta calcolare l'integrale della parte positiva e sottrarre l'integrale della parte negativa.

Esempio:

In questo caso:

$$\int_{a}^{b} f(x)dx = -\int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Monotonia dell'integrale

Se una funzione g(x) è sempre maggiore di un'altra funzione f(x) in un intervallo allora anche il suo integrale sarà maggiore dell'integrale dell'altra funzione in quell'intervallo.

$$f(x) \le g(x) \ \forall x \in [a, b] \implies \int_a^b f(x) dx \le \int_a^b g(x) dx$$

Inversione di un intervallo

Invertendo gli estremi dell'intervallo in un integrale si ottiene l'opposto dell'integrale:

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

2.3 Teorema fondamentale

Teorema fondamentale dell'integrazione

Data una funzione $f:[a,b]\to\mathbb{R}$ continua:

$$F(t) = \int_{a}^{t} f(x)dx \ t \in [a, b]$$

Quindi:

$$F'(t) = f(t)$$

Questa funzione F(t) si chiama **primitiva** di f(x) e tutte le altre primitive di f(x) sono nella forma G(t) = F(t) + c.

2.4 Tipi di integrazione

2.4.1 Integrali per sostituzione

Per risolvere integrali del tipo:

$$\int_{1}^{4} e^{3x} dx$$

Possiamo sostituire y = 3x e dy = 3dx e moltiplicare gli estremi facendolo diventare:

$$\int_{4}^{12} e^{y} \frac{dy}{3} = \frac{1}{3} \int_{4}^{12} e^{y} dy = \frac{1}{3} e^{y}$$

Se $y = g(x) \implies dy = g'(x)dx$ e $[a_y, b_y] = [g(a_x), g(b_x)]$ Riportando poi y al suo valore originale:

$$\int_{1}^{4} e^{3x} dx = \frac{1}{3} e^{3x}$$

Esempi:

$$\int_{2}^{3} e^{x^{2}} dx \implies \begin{cases} y = x^{2} \\ dy = 2x dx \end{cases} \implies \int_{4}^{9} e^{y} \frac{dy}{2} = \frac{e^{y}}{2} \Big|_{4}^{9} = \frac{e^{9} - e^{4}}{2}$$

$$\int_{0}^{\pi} \sin(5x) dx \implies \begin{cases} y = 5x \\ dy = 5 dx \end{cases} \implies \int_{0}^{5\pi} \sin(y) \frac{dy}{5} = \frac{1}{5} \int_{0}^{5\pi} \sin(y) dy = -\cos(5x) \Big|_{0}^{\pi} = -(-1+0) = 1$$

Integrali per parti 2.4.2

Per risolvere integrali del tipo:

$$\int_{a}^{b} x e^{x} dx$$

Possiamo usare la formula:

$$\int_{a}^{b} f'(x)g(x)dx = f(x)g(x)|_{a}^{b} - \int_{a}^{b} f(x)g'(x)dx$$

In questo caso possiamo scegliere
$$f'(x)$$
 e $g(x)$ a piacimento ma un caso è migliore dell'altro:
$$\int_a^b xe^x dx = \begin{cases} f'(x) = x & f(x) = \frac{x^2}{2} \\ g(x) = e^x & g'(x) = e^x \end{cases} \implies \frac{x^2}{2} e^x \Big|_a^b - \int_a^b \frac{x^2}{2} e^x dx$$
$$\int_a^b xe^x dx = \begin{cases} f'(x) = e^x & f(x) = e^x \\ g(x) = x & g'(x) = 1 \end{cases} \implies xe^x \Big|_a^b - \int_a^b e^x dx = xe^x \Big|_a^b - e^x \Big|_a^b = (x-1)e^x \Big|_a^b$$

- Derivare il polinomio
- Integrare le funzioni $(e^x, \sin(x), \cos(x))$

$$\int x^2 e^{3x} dx = \begin{cases} f'(x) = e^{3x} & f(x) = \frac{e^{3x}}{3} \\ g(x) = x^2 & g'(x) = 2x \end{cases} \implies \frac{x^2}{3} e^{3x} - \frac{2}{3} \int x e^{3x} \implies \begin{cases} f'(x) = e^{3x} & f(x) = \frac{e^{3x}}{3} \\ g(x) = x & g'(x) = 1 \end{cases} \implies \frac{x^2}{3} e^{3x} - \frac{2}{3} (\frac{x}{3} e^{3x} - \frac{1}{3} \int e^{3x}) = e^{3x} (\frac{x^2}{3} - \frac{2x}{9} + \frac{2}{27})$$

Funzioni trigonometriche con e^x

Se si ha e^x e una funzione trigonometrica va derivata la funzione trigonometrica e integrata e^x .

$$\int e^x \cos(x) = \begin{cases} f'(x) = e^x & f(x) = e^x \\ g(x) = \cos(x) & g'(x) = -\sin(x) \end{cases} \implies e^x \cos(x) - \int e^x \sin(x) = e^x \cos(x) + e^x \sin(x) - \int e^x \cos(x) \implies \int e^x \cos(x) = e^x \cos(x) + e^x \sin(x) - \int e^x \cos(x) \implies \int e^x \cos(x) = e^x \cos(x) + e^x \cos(x) + e^x \cos(x) = e^$$

2.4.3 Integrale di polinomi per funzioni

Per calcolare un integrale del tipo:

$$\int P_n(x)e^x dx$$

in cui $P_n(x)$ è un generico polinomio di grado n, secondo la formula della derivata di un prodotto vale che:

$$[Q_n(x)e^x]' = Q'_n(x)e^x + Q_n(x)e^x = e^x(Q_n(x) + Q'_n(x))$$

Se poniamo $P_n(x) = Q_n(x) + Q'_n(x)$ possiamo dire che la derivata di un polinomio per e^x è uguale alla somma del polinomio e la sua derivata, anch'essi moltiplicati per e^x .

Quindi sapendo che $[Q_n(x)e^x]' = P_n(x)e^x$ possiamo dire che:

$$\int P_n(x)e^x dx = Q_n(x)e^x$$

Per un generico polinomio di grado 2 per esempio avremo $P_2(x) = Q_2(x) + Q_2'(x)$ quindi essendo:

$$P_2(x) = \alpha x^2 + \beta x + \delta$$

$$Q_2(x) = ax^2 + bx + c$$

$$Q'_2(x) = 2ax + b$$

Avremo $P_2(x) = ax^2 + (2a + b)x + b + c$.

Per trovare $Q_2(x)$ basta risolvere il sistema ponendo i coefficienti di $P_2(x)$ uguali ai coefficienti della funzione $Q_2(x) + Q'_2(x)$:

$$\begin{cases} \alpha = a \\ \beta = 2a + b \\ \delta = b + c \end{cases}$$

Trovando a, b, c possiamo trovare $Q_2(x)$.

Esempio:

$$\int (x^3 - 3x^2 + 8x - 11)e^x dx \implies x^3 - 3x^3 + 8x - 11 = Q_3(x) + Q_3'(x) \implies \begin{cases} Q_3(x) = ax^3 + bx^2 + cx + d \\ Q_3'(x) = 3ax^2 + 2bx + c \end{cases}$$

$$\implies x^3 - 3x^3 + 8x - 11 = ax^3 + (3a + b)x^2 + (2b + c)x + c + d \implies \begin{cases} 1 = a & a = 1 \\ -3 = 3a + b & b = -6 \\ 8 = 2b + c & c = 20 \\ -11 = c + d & d = -31 \end{cases}$$

$$\int (x^3 - 3x^2 + 8x - 11)e^x dx = (x^3 - 6x^2 + 20x - 31)e^x$$

2.4.4 Studio di funzione tramite integrali

Se abbiamo una funzione che non sappiamo integrare come:

$$F(t) = \int_{a}^{t} f(x)$$

Possiamo comunque dire che:

- $F(a) = 0 \ \forall a$
- F'(t) = f(t)

Crescenza e decrescenza:

Possiamo sapere se F(t) è crescente o decrescente studiando la sua derivata prima quindi:

$$F(t) = \begin{cases} \text{crescente} & f(t) > 0\\ \text{decrescente} & f(t) < 0 \end{cases}$$

Ricordandoci che F(a) = 0 possiamo sapere dove è positiva e dove negativa.

Parità e disparità

L'integrale di una funzione pari è dispari e viceversa quindi calcolando f(x) possiamo sapere anche F(t):

$$F(t) = \begin{cases} \text{pari} & f(x) \text{ dispari} \\ \text{dispari} & f(x) \text{ pari} \end{cases}$$

Possiamo dire se F(t) è pari o dispari solo se l'integrale parte da 0:

Se f(x) è dispari e l'intervallo è simmetrico $\implies \int_{-a}^{a} f(x)dx = 0$

Se f(x) è pari e l'intervallo è simmetrico $\implies \int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$

Limiti:

Se F(t) è crescente:

•
$$\exists \lim_{t \to +\infty} F(t) = \begin{cases} +\infty \\ l \in \mathbb{R} \end{cases}$$

• Se esiste
$$G(t) \ge F(t)$$
 con $\lim_{t \to +\infty} G(t) = l \implies \lim_{t \to +\infty} F(t) = l \in \mathbb{R}$

• Se esiste
$$G(t) \leq F(t)$$
 con $\lim_{t \to +\infty} G(t) = +\infty \implies \lim_{t \to +\infty} F(t) = +\infty$

Se F(t) è decrescente:

•
$$\exists \lim_{t \to +\infty} F(t) = \begin{cases} -\infty \\ l \in \mathbb{R} \end{cases}$$

• Se esiste
$$G(t) \leq F(t)$$
 con $\lim_{t \to +\infty} G(t) = l \implies \lim_{t \to +\infty} F(t) = l \in \mathbb{R}$

• Se esiste
$$G(t) \ge F(t)$$
 con $\lim_{t \to +\infty} G(t) = -\infty \implies \lim_{t \to +\infty} F(t) = -\infty$

2.4.5 Integrali di funzioni razionali

Se abbiamo una funzione come:

$$F(t) = \int_0^t \frac{1}{x^2 + bx + c} dx$$

In base al segno del Δ possiamo usare tre formule:

$$F(t) = \int_0^t \frac{1}{x^2 + bx + c} = \begin{cases} -\frac{1}{x - x_1} & \Delta = 0\\ \frac{1}{x_1 - x_2} \cdot \ln(|\frac{x - x_1}{x - x_2}|) & \Delta > 0 \land x_1 > x_2\\ \frac{2}{\sqrt{-b^2 + 4c}} \cdot \arctan(\frac{2x + b}{\sqrt{-b^2 + 4c}}) & \Delta < 0 \end{cases}$$

3

Equazioni differenziali

Le **equazioni differenziali** sono equazioni la cui soluzione non è un numero reale ma una funzione e nell'equazione appare almeno una volta la derivata della funzione incognita. L'ordine di un'equazione differenziale è l'ordine massimo della derivata dell'incognita y(t).

Esempi:

$$y'(t) = 2t \implies y(t) = t^2 + c$$

$$y''(t)\cos(y'(t)) + [e^{y(t)}]''' = t^2 \ \forall t \in [a, b] \subseteq \mathbb{R}$$

Se la derivata di ordine massima può essere divisa dalle altre si dicono equazioni differenziali in **forma normale**.

3.1 Sigle

Quando parleremo delle varie equazioni differenziali useremo delle sigle per abbreviare le varie proprietà dell'equazione in questione:

- E.D.O: equazione differenziale ordinaria (con una sola incognita)
- 2°O: 2° ordine
- F.N.: forma normale (la derivata di ordine massimo è divisa dalle altre)
- L.: lineare (la derivata non è elevata a qualche esponente)
- O./N.O.: omogenea/non omogenea (omogenea quando l'equazione è uguale a 0)

Esempio:

$$y'(t) + y(t) = e^t \implies \text{E.D.O. 1°O L. N.O. F.N.}$$

3.2 Problema di Cauchy

Quando si risolve un'equazione differenziale del tipo:

$$y'(t) = 3t \implies y(t) = \int_0^t 3x dx = \frac{3}{2}t^2$$

Ogni funzione della forma $y(t) = \frac{3}{2}t^2 + c$ con $c \in \mathbb{R}$ è soluzione.

Per decidere quale tra le possibili soluzioni si sceglie il valore che deve assumere in un punto specifico. In una equazione di ordine n ci sono n parametri arbitrari e per sceglierne solo una bisogna mettere n condizioni partendo dalla soluzione fino alla derivata (n-1)-esima. Il sistema creato da queste condizioni si chiama problema di Cauchy.

Esempi:

Esempi:
$$y''(t) = t \implies y'(t) = \frac{t^2}{2} + c \implies y''(t) = \frac{t^3}{6} + ct + d$$

$$\begin{cases} y''(t) = t \\ y(2) = 8 \\ y'(2) = -5 \end{cases} \implies y(t) = \frac{t^3}{6} + ct + d \implies \begin{cases} y(2) = \frac{2^3}{6} + 2c + d = 8 \\ y'(2) = \frac{2^2}{2} + c = -5 \end{cases} \implies \begin{cases} c = -7 \\ d = \frac{62}{3} \end{cases}$$

$$y(t) = \frac{t^3}{6} - 7t + \frac{62}{3}$$

Ordine 1 e 2 3.2.1

I problemi di Cauchy per le equazioni differenziali di ordine 1 e 2 sono di questa forma:

Ordine 1:

$$\begin{cases} F(t,y(t),y'(t))=0 & \text{Equazione del problema } (\infty \text{ soluzioni}) \\ y(t_0)=y_0 & \text{Condizione iniziale} \end{cases}$$

Ordine 2:

$$\begin{cases} F(t,y(t),y'(t),y''(t)) = 0 & \text{Equazione del problema } (\infty \text{ soluzioni}) \\ y(t_0) = y_0 & 1^\circ \text{ condizione iniziale} \\ y'(t_0) = y_1 & 2^\circ \text{ condizione iniziale} \end{cases}$$

Tutti i problemi di Cauchy hanno una sola soluzione.

Esempi:

$$\begin{cases} y'(t) = 1 \\ y'(0) = 2 \end{cases} \implies \text{non è un problema di Cauchy e non ha soluzioni}$$

$$\begin{cases} y'(t) = 2 \\ y'(t) = 2 \end{cases} \implies \text{non è un problema di Cauchy e ha infinite soluzioni}$$

$$\begin{cases} y'(t) = y(t) \\ y(0) = 2 \end{cases} \implies \text{è un problema di Cauchy con una sola soluzione}$$

Equazioni senza calcoli 3.3

Dato un problema di Cauchy tipo:

$$\begin{cases} y'(t) = e^{y(t)} \\ y(0) = 2 \end{cases}$$

Senza fare calcoli io posso sapere quanto valgono y'(0) e y''(0):

$$y'(0) = e^{y(0)} = e^2$$

$$y''(0) = [y'(0)]' = [e^{y(0)}]' = y'(0)e^{y(0)} = e^{2y(0)} = e^4$$

Sapendo poi la derivata seconda possiamo calcolare tutte le derivate k-esime: $y^{(k)}(t) = (k-1)e^{ky(t)}$

3.4 Equazioni lineari di ordine 1

3.4.1 Equazioni omogenee a variabili separabili

Per risolvere un'equazione differenziale come:

$$\begin{cases} y'(t) = f(t)g(y(t)) \\ y(t_0) = y_0 \end{cases}$$

Se $g(y_0) = 0 \implies y(t) = y_0$

Se $g(y_0) \neq 0$ allora dobbiamo calcolare due integrali uguali tra loro:

•
$$F(t) = \int_{t_0}^t f(s)ds$$

•
$$G(t) = \int_{t_0}^t \frac{ds}{g(s)}$$

$$G(y(t))=F(t)-F(t_0)+G(y_0) \implies y(t)=G^{-1}(F(t)-F(t_0)+G(y_0))$$
 con G^{-1} funzione inversa di G

Esempio:

Eschiplo.
$$\begin{cases} y'(t) = te^{t^2} \cdot e^{-y(t)} \\ y(0) = 0 \end{cases} \implies g(y_0) = g(0) = 1$$

$$F(t) = \int_{t_0}^t f(s)ds = \int_{t_0}^t se^{s^2}ds = \frac{1}{2}e^{t^2}$$

$$G(t) = \int_{t_0}^t \frac{ds}{g(s)} = \int_{t_0}^t \frac{ds}{e^{-s}} = \int^t e^s ds = e^t$$

$$e^{y(t)} = \frac{1}{2}e^{t^2} - \frac{1}{2}e^{t_0^2} + e^{y_0} \implies e^{y(t)} = \frac{1}{2}e^{t^2} - \frac{1}{2}e^{0} + e^{0} = \frac{1}{2}e^{t^2} + \frac{1}{2} \implies y(t) = \log(\frac{1}{2}(e^{t^2} + 1))$$

3.4.2 Equazioni non omogenee

Per risolvere equazioni come:

$$y'(t) = a(t)y(t) + b(t)$$

Trovo l'equazione omogenea associata:

$$y_0'(t) = a(t)y_0(t)$$

Le soluzioni dell'equazione iniziale sono:

$$y(t) = y_0(t) + \overline{y}(t)$$

Dove:

 $y(t)=[C+B(t)]e^{A(t)}$ con $C\in\mathbb{R}$ è soluzione generica dell'equazione Con: $B(t)=\int^t b(t)e^{-A(t)}dt~A(t)=\int^t a(t)dt$

Se invece della soluzione generica vogliamo una soluzione relativa ad un problema di Cauchy specifico:

$$\begin{cases} y'(t) = a(t)y(t) + b(t) \\ y(t_0) = y_0 \end{cases}$$

La cui unica soluzione è:

$$y(t) = [y_0 + \int_{t_0}^t b(t)e^{-A(t)}dt]e^{A(t)}A(t) = \int_{t_0}^t a(t)dt$$

Esempio:

$$\begin{cases} y'(t) = ty(t) + te^{3t^2} \\ y(0) = 2 \end{cases}$$

$$y(t) = [2 + \int_0^t te^{3t^2}e^{-A(t)}dt]e^{A(t)} \implies A(t) = \int_0^t tdt = \frac{t^2}{2} \implies y(t) = [2 + \int_0^t te^{3t^2}e^{-\frac{t^2}{2}}dt]e^{\frac{t^2}{2}} = [2 + \int_0^t te^{\frac{5t^2}{2}}dt]e^{\frac{t^2}{2}} = \begin{cases} z = \frac{5t^2}{2} \\ dz = 5tdt \end{cases} \implies y(t) = [2 + \frac{1}{5}\int_0^t e^zdz]e^{\frac{t^2}{2}} = [2 + \frac{1}{5}e^{\frac{5t^2}{2}} - \frac{1}{5}]e^{\frac{t^2}{2}} = \frac{9}{5}e^{\frac{t^2}{2}} + \frac{1}{5}e^{\frac{5t^2}{2}} \end{cases}$$

3.5 Equazioni lineari di ordine 2

3.5.1 Equazioni non omogenee

Un'equazione differenziale di ordine 2 è scritta nella forma:

$$\begin{cases} y''(t) + Ay'(t) + By(t) = f(t) \\ y(t_0) = y_0 \\ y'(t_0) = y'_0 \end{cases}$$

La soluzione generale dell'equazione è:

$$y(t) = y_0(t) + \overline{y}(t)$$

$$\begin{cases} y_0''(t) + Ay'(t) + By(t) = 0 & \text{equazione omogenea associata} \\ \overline{y}''(t) + A\overline{y}'(t) + B\overline{y}(t) = f(t) & \text{soluzione particolare} \end{cases}$$

3.5.2 Equazioni omogenee

data un'equazione differenziale di secondo ordine:

$$\begin{cases} y''(t) + Ay'(t) + By(t) = 0\\ y(t_0) = y_0\\ y'(t_0) = y'_0 \end{cases}$$

Le soluzioni dipendono dalle soluzioni dell'equazione:

$$P(\lambda) = \lambda^2 + A\lambda + B = 0$$

La soluzione di questa equazione è della forma:

$$y_0(t) = \begin{cases} Ce^{\lambda_1 t} + De^{\lambda_2 t} & \lambda_1 \in \mathbb{R} \neq \lambda_2 \\ (C + Dt)e^{\lambda t} & \lambda_1 = \lambda_2 \in \mathbb{R} \\ [C\cos(\beta t) + D\sin(\beta t)]e^{\alpha t} & \lambda = \alpha \pm i\beta \in C \end{cases}$$

Per trovare C e D tali che la funzione assuma i valori del problema di Cauchy bisogna risolvere un sistema:

$$\begin{cases} y(t_0) = y_0 \\ y'(t_0) = y'_0 \end{cases}$$

Esempio:

$$\begin{split} y_0''(t) + 3y_0'(t) + 2y_0(t) &= 0 \\ P(\lambda) &= \lambda^2 + 3\lambda + 2 = 0 \implies \lambda = -1, -2 \implies y_0(t) = Ce^{-t} + De^{-2t} \\ \begin{cases} y''(t) - 3y'(t) + 2y(t) &= 0 \\ y(0) &= 0 \\ y'(0) &= 0 \end{cases} &\implies P(\lambda) = \lambda^2 - 3\lambda + 2 \implies \lambda = 1, 2 \implies y_0(t) = Ce^t + De^{2t} \\ \begin{cases} Ce^0 + De^0 &= 0 \\ Ce^0 + 2De^{2\cdot 0} &= 0 \end{cases} &\implies \begin{cases} C &= 0 \\ D &= 0 \end{cases} &\implies y(t) = 0 \end{split}$$

3.5.3 Soluzione particolare

Devo cercare una soluzione particolare simile ad f(t), cioè della forma $\overline{y}(t) = Qf(t)$. Ci sono divrsi casi:

- \bullet e^{Qt}
- $\cos(Qt)/\sin(Qt)$
- Polinomio di grado n

Se questa soluzione particolare è anche soluzione dell'equazione omogenea associata, allora bisogna porre $\overline{y}(t) = Qtf(t)$, se anche questa dovesse esserlo allora $\overline{y}(t) = Qt^2f(t)$, e così via. Poi calcolo $\overline{y}'(t)$ e $\overline{y}''(t)$ e li sostituisco nell'equazione iniziale e controllo quale Q fa diventare l'equazione uguale ad f(t). Una volta trovato Q e $\overline{y}(t)$ per trovare C e D risolvo il sistema per i punti $y(t_0) = y_0$ e $y'(t_0) = y_0'$.

Se
$$f(t) = g(t) + h(t) \implies \overline{y} = Qt^x g(t) + Pt^x h(t)$$

Esempio:

$$\begin{cases} y''(t) - 3y'(t) + 2y(t) = 2e^{3t} \\ y(0) = 0 \\ y''(t) - 3y'_0(t) + 2y_0(t) = 0 \implies P(\lambda) = \lambda^2 - 3\lambda + 2 \implies \lambda = 1, 2 \implies y_0(t) = Ce^t + De^{2t} \\ f(t) \neq Ce^t + De^{2t} \ \forall C, D \implies \begin{cases} \overline{y}(t) = Qe^{3t} \\ \overline{y}'(t) = 3Qe^{3t} \\ \overline{y}''(t) = 9Qe^{3t} \end{cases} \implies 9Qe^{3t} - 3(3Qe^{3t}) + 2(Qe^{3t}) = 2e^{3t} \implies Qe^{3t} + 2(Qe^{3t}) = 2e^{3t} \implies Qe^$$