7D 反应机理示例

在这一节中,我们将综合运用你的数学与化学知识来推导各种反应的速率方程,并加深你对**7C**中学习的理论知识的印象与实用的技巧.

Hint.

需要说明的是,一般我们给出的复杂反应的反应机理中的各步骤都是基元反应.因此你可以 大胆地将基元反应的性质与速率方程应用于它们.

7D.1 链反应动力学

链反应的基本概念

在化学动力学中有一类特殊的反应,只需用热,光或辐射等方法使反应引发,体系就能通过活性组分(通常是自由基或原子)相继发生一系列的连续反应,像链条一样自动地发展下去.

Definition 7D.1.1 链反应

链反应(又称连锁反应),是指反应的产物或副产物又可作为其他反应的原料,从而使反应反复发生.在化学中,链反应通常在光,热,辐射或引发剂作用下,反应中交替产生活性中间体(如自由原子或自由基),从而使反应一直进行下去.

按照活性物质数量的变化,链反应主要有三个过程.

Definition 7D.1.2 链反应的过程

在链反应中,产生活性中间体的过程称为**链引发**,活性中间体与反应物分子反复作用生成产物的过程称为**链增长或链传递**,活性中间体最后湮灭的过程称为**链终止**.

一般的链增长过程中,一个活性中间体产生一个新的活性中间体.例如Cl·与H2的反应:

$$Cl \cdot + H_2 \longrightarrow HCl + H \cdot$$

不过,在部分链增长过程中,一个活性中间体也可能产生数个活性中间体.例如 $H \cdot bO_2$ 的反应:

$$H \cdot + O_2 \longrightarrow HO \cdot + O \cdot$$

据此,我们可以按照链增长的性质对链反应进行分类.

Definition 7D.1.3 直链反应与支链反应

一个活性中间体只能产生一个新的活性中间体的反应称为**直链反应**,可以产生两个或多个新的活性中间体的反应称为**支链反应**.

我们将在接下来对这些链反应的速率方程进行详细地讨论.

简单直链反应——H2与卤素单质的自由基反应

对中间体与总反应速率的研究表明, H_2 与 X_2 (其中X=Cl,Br)在光照或加热下的化合反应的机理是不同的.我们先从最简单的 H_2 与 Cl_2 的反应开始. H_2 与 Cl_2 通过自由基反应生成HCl的反应机理如下.

$$\begin{aligned} \operatorname{Cl}_2 & \xrightarrow{k_1} 2 \operatorname{Cl} \cdot \\ \operatorname{Cl} \cdot & + \operatorname{H}_2 \xrightarrow{k_2} \operatorname{HCl} + \operatorname{H} \cdot \\ \operatorname{H} \cdot & + \operatorname{Cl}_2 \xrightarrow{k_3} \operatorname{HCl} + \operatorname{Cl} \cdot \end{aligned}$$

由于产物HCl十分稳定,因此忽略后两个反应的逆反应.现在我们来推导该体系的反应速率方程.

Derivation.

体系中的不稳定中间体为H·与Cl·,分别对它们稳态近似有

$$\frac{d[H \cdot]}{dt} = k_2[Cl \cdot][H_2] - k_3[H \cdot][Cl_2] = 0$$
 (1)

$$\frac{d[Cl \cdot]}{dt} = 2k_1[Cl_2] - 2k_{-1}[Cl \cdot]^2 - k_2[Cl \cdot][H_2] + k_3[H \cdot][Cl_2] = 0$$
 (2)

将(2)减去(1)可得

$$2k_1[Cl_2] - 2k_{-1}[Cl \cdot]^2 = 0 (3)$$

干是

$$[\operatorname{Cl} \cdot] = \sqrt{\frac{k_1}{k_{-1}}[\operatorname{Cl}_2]} \tag{4}$$

由(1)可得

$$\frac{d[HCl]}{dt} = k_2[Cl \cdot][H_2] + k_3[H \cdot][Cl_2] = 2k_2[Cl \cdot][H_2]$$
 (5)

将(4)代入(5)可得

$$\frac{d[HCl]}{dt} = 2k_2[Cl \cdot][H_2] = 2k_2 \sqrt{\frac{k_1}{k_{-1}}} [H_2][Cl_2]^{\frac{1}{2}}$$
(6)

因此反应对H2为一级,对Cl2为二分之一级.

而H。与Br。的反应就略微复杂一些.两者通过自由基反应生成HBr的反应机理如下.

$$\begin{array}{c} \operatorname{Br}_2 \xrightarrow{\overline{k_1}} 2\operatorname{Br} \cdot \\ \\ \operatorname{Br} \cdot + \operatorname{H}_2 \xrightarrow{\overline{k_2}} \operatorname{HBr} + \operatorname{H} \cdot \\ \\ \operatorname{H} \cdot + \operatorname{Br}_2 \xrightarrow{k_3} \operatorname{HBr} + \operatorname{Br} \cdot \end{array}$$

由于HBr相对不那么稳定,并且H·的能量很高,因此相比HCl需要额外考虑HBr与H·的反应.

Derivation.

体系中的不稳定中间体为H·与Br·,分别对它们稳态近似有

$$\frac{d[H \cdot]}{dt} = k_2[Br \cdot][H_2] - k_{-2}[H \cdot][HBr] - k_3[H \cdot][Br_2] = 0$$
 (1)

$$\frac{d[Br \cdot]}{dt} = 2k_1[Br_2] - 2k_{-1}[Br \cdot]^2 - k_2[Br \cdot][H_2] + k_{-2}[H \cdot][HBr] + k_3[H \cdot][Br_2] = 0$$
 (2)

将(2)减去(1)可得

$$2k_1[Br_2] - 2k_{-1}[Br \cdot]^2 = 0 (3)$$

于是

$$[\operatorname{Br}\cdot] = \sqrt{\frac{k_1}{k_{-1}}[\operatorname{Br}_2]} \tag{4}$$

将(4)代入(1)可得

$$[\mathbf{H} \cdot] = \frac{k_2[\mathbf{Br} \cdot][\mathbf{H}_2]}{k_{-2}[\mathbf{HBr}] + k_3[\mathbf{Br}_2]} = \frac{k_2 \sqrt{\frac{k_1}{k_{-1}}} [\mathbf{H}_2][\mathbf{Br}_2]^{\frac{1}{2}}}{k_{-2}[\mathbf{HBr}] + k_3[\mathbf{Br}_2]}$$
(5)

将(4)(5)代入 $\frac{d[HBr]}{dt}$ 可得

$$\frac{d[HBr]}{dt} = k_2[Br \cdot][H_2] + k_3[H \cdot][Br_2] - k_{-2}[HBr][H \cdot] = \frac{2k_2k_3\sqrt{\frac{k_1}{k_{-1}}}[H_2][Br_2]^{\frac{3}{2}}}{k_3[Br_2] + k_{-2}[HBr]}$$
(6)

$$\frac{d[HBr]}{dt} = \frac{k_a[H_2][Br_2]^{\frac{3}{2}}}{[Br_2] + k_b[HBr]}$$
(7)

这就是我们在7A.2中给出的速率方程.

而 H_2 与 F_2 或 I_2 的反应则比较复杂,我们在这里就不叙述了.如果你感兴趣,可以自行查阅相关资料.

复杂直链反应——自由基氧化

脂类物质的氧化是油脂保存过程中广泛存在的问题.如果反应物记作RH,那么总反应方程式如下.

$$RH + O_2 \longrightarrow ROOH$$

产生的过氧化物ROOH可以进一步催化体系中其余RH被O2氧化.反应的机理如下.

$$2 ROOH \xrightarrow{k_1} 2 R \cdot + 副产物$$

$$\begin{aligned} R \cdot + O_2 &\xrightarrow{k_2} ROO \cdot \\ ROO \cdot + RH &\xrightarrow{k_3} ROOH + R \cdot \\ & 2R \cdot \xrightarrow{k_4} R_2 \\ R \cdot + ROO \cdot \xrightarrow{k_5} ROOR \\ & 2ROO \cdot \xrightarrow{k_6} ROOR + O_2 \end{aligned}$$

实验表明有近似关系 $4k_4k_6 = k_5^2$.现在我们来考察这一自催化体系的速率方程(以 O_2 的消耗速率计).如果同时考虑三种链终止的方式,那么这对我们来说有些复杂,因此我们先从简单的情形入手.

Case I. O₂浓度较低.

Derivation.

这时,体系中主要存在的自由基为R·,链终止步骤主要为2R· \longrightarrow R_2 .对体系中的两种自由基R· 和ROO· 做稳态近似可得

$$\frac{d[R \cdot]}{dt} = 2k_1[ROOH]^2 - k_2[R \cdot][O_2] + k_3[ROO \cdot][RH] - 2k_4[R \cdot]^2 = 0$$
 (1)

$$\frac{\mathrm{d}[\mathrm{ROO} \cdot]}{\mathrm{d}t} = k_2[\mathrm{R} \cdot][\mathrm{O}_2] - k_3[\mathrm{ROO} \cdot][\mathrm{RH}] = 0 \tag{2}$$

(1) - (2)可得

$$2k_1[ROOH]^2 - 2k_4[R \cdot]^2 = 0$$
(3)

于是

$$[R \cdot] = \sqrt{\frac{k_1}{k_4}} [ROOH] \tag{4}$$

干是

$$-\frac{d[O_2]}{dt} = k_2[R \cdot][O_2] = k_2 \sqrt{\frac{k_1}{k_4}}[ROOH][O_2]$$
 (5)

此时,反应对ROOH和 O_2 均为一级.可以看到,反应的速率随着产物ROOH的增加而增加,因此随着反应进行,速率会逐渐加快.

Case II. O。浓度较高.

Derivation.

这时,体系中主要存在的自由基为ROO·,链终止步骤主要为 $2\,\mathrm{ROO}$ · \longrightarrow ROOR + O_2 .对体系中的两种自由基R·和ROO·做稳态近似可得

$$\frac{d[R \cdot]}{dt} = 2k_1[ROOH]^2 - k_2[R \cdot][O_2] + k_3[ROO \cdot][RH] = 0$$
 (1)

$$\frac{d[ROO \cdot]}{dt} = k_2[R \cdot][O_2] - k_3[ROO \cdot][RH] - 2k_6[ROO \cdot]^2 = 0$$
 (2)

(1)+(2)可得

$$2k_1[ROOH]^2 - 2k_6[ROO \cdot]^2 = 0$$
 (3)

于是

$$[ROO \cdot] = \sqrt{\frac{k_1}{k_6}} [ROOH] \tag{4}$$

由(2)亦可得

$$-\frac{d[O_2]}{dt} = k_2[R \cdot][O_2] - k_6[ROO \cdot]^2 = k_3[ROO \cdot][RH] + k_6[ROO \cdot]^2$$
 (5)

由于自由基ROO·的浓度很低,链终止的速率远小于链增长的速率,因此可以近似地忽略后一项.于是有

$$-\frac{\mathrm{d}[\mathrm{O}_2]}{\mathrm{d}t} = k_3 \sqrt{\frac{k_1}{k_6}} [\mathrm{ROOH}][\mathrm{RH}] \tag{6}$$

此时,反应对ROOH和RH均为一级.可以看到,反应的速率同样随着产物ROOH的增加而增加,因此随着反应进行,速率会逐渐加快.

在前面两种情况的推导过程中,我们都由稳态近似得出了一个重要的结论.

Theorem 7D.1.4 直链反应的性质

一般而言,如果对反应采取稳态近似处理,那么直链反应中链引发和链终止的速率相等.

这是因为我们总是假设体系内所有自由基的浓度随时间变化都不大,因而自由基的总浓度可以近似看作不变.对于直链反应而言,链转移不改变自由基数目,只有链引发和链终止可以改变,因而这两个反应的速率近似相同.

Case III. 一般情形.

Derivation.

我们仍然对R·和ROO·稳态近似可得

$$\frac{d[R \cdot]}{dt} = 2k_1[ROOH]^2 - k_2[R \cdot][O_2] + k_3[ROO \cdot][RH] - 2k_4[R \cdot]^2 - k_5[R \cdot][ROO \cdot] = 0 \quad (1)$$

$$\frac{\mathrm{d}[\mathrm{ROO}\cdot]}{\mathrm{d}t} = k_2[\mathrm{R}\cdot][\mathrm{O}_2] - k_3[\mathrm{ROO}\cdot][\mathrm{RH}] - k_5[\mathrm{R}\cdot][\mathrm{ROO}\cdot] - 2k_6[\mathrm{ROO}\cdot]^2 = 0 \qquad (2)$$

(1)+(2)可得

$$k_1[\text{ROOH}]^2 = k_4[\text{R} \cdot]^2 + k_5[\text{R} \cdot][\text{ROO} \cdot] + k_6[\text{ROO} \cdot]^2$$
 (3)

这也与7D.1.4的结论符合.

体系内的变量仍然太多,因此我们需要进一步做一些合理的近似.考虑到链引发和链终止的

速率应当远小于链转移的速率,于是对于(1)或(2)有

$$k_2[\mathbf{R} \cdot][\mathbf{O}_2] = k_3[\mathbf{ROO} \cdot][\mathbf{RH}] \tag{4}$$

即

$$[ROO \cdot] = \frac{k_2[O_2]}{k_3[RH]}[R \cdot]$$
 (5)

将(5)代入(3)可得

$$k_1[\text{ROOH}]^2 = \left(k_4 + \frac{k_2[O_2]}{k_3[\text{RH}]}k_5 + \left(\frac{k_2[O_2]}{k_3[\text{RH}]}\right)^2k_6\right)[\text{R}\cdot]^2$$
 (6)

我们迫切地希望大括号内也是完全平方式,这样就可以将两边开方以极大地化简.考虑该式地形式,将 $k_5 = 2\sqrt{k_4k_6}$ 代入(6)可得

$$k_1[\text{ROOH}]^2 = \left(k_4 + \frac{k_2[O_2]}{k_3[\text{RH}]} 2\sqrt{k_4 k_6} + \left(\frac{k_2[O_2]}{k_3[\text{RH}]}\right)^2 k_6\right) [\text{R} \cdot]^2$$
 (7)

这恰好可以改写为完全平方式,即

$$k_1[\text{ROOH}]^2 = \left(\sqrt{k_4} + \frac{k_2[O_2]}{k_3[\text{RH}]}\sqrt{k_6}\right)^2 [\text{R} \cdot]^2$$
 (8)

开方后整理可得

$$[R \cdot] = \frac{\sqrt{k_1}[ROOH]}{\sqrt{k_4} + \frac{k_2[O_2]}{k_2[RH]}\sqrt{k_6}}$$
(9)

于是消耗O₂的速率

$$-\frac{d[O_2]}{dt} = k_2[R \cdot][O_2] = \frac{\sqrt{k_1} k_2[ROOH][RH][O_2]}{\sqrt{k_4} + \frac{k_2[O_2]}{k_2[RH]} \sqrt{k_6}}$$
(10)

令
$$k=k_3\sqrt{rac{k_1}{k_6}},\lambda=rac{k_2}{k_3}\sqrt{rac{k_4}{k_6}},$$
就有

$$-\frac{\mathrm{d}[\mathrm{O}_2]}{\mathrm{d}t} = k[\mathrm{ROOH}] \frac{[\mathrm{O}_2][\mathrm{RH}]}{[\mathrm{O}_2] + \lambda[\mathrm{RH}]}$$
(11)

这也与实验测得的速率方程相符合.

7D.2 聚合反应动力学

7D.3 酶促反应动力学

迄今为止,我们还没有系统地讨论有催化剂参与时反应的动力学特征.尽管在前面,我们已经讨论了一类自催化反应.但大多数时候催化剂都是额外加入的,在总反应中不会被消耗的物

质.

我们在本节要讨论的催化剂,**酶**,就是一种高效专一的生物均相催化剂.关于酶的基本概念与特性,你可以查阅生物化学书.我们在这里主要关注酶催化的反应,即**酶促反应**的动力学特性.

简单酶促反应与米氏方程

最简单的酶催化反应的机理可由以下基元反应描述.

$$E + S \xrightarrow[k_{-1}]{k_1} ES \xrightarrow{k_2} E + P$$

其中E即参与催化的酶,S为底物(即反应物),ES为酶-底物复合中间体,P为产物.我们现在来推导该反应的速率方程.

Derivation.

对中间体ES做稳态近似可得

$$\frac{d[ES]}{dt} = k_1[E][S] - k_{-1}[ES] - k_2[ES] = 0$$

于是有

$$[ES] = \frac{k_1[E][S]}{k_{-1} + k_2}$$

根据催化剂的物料守恒可得

$$[E] + [ES] = [E]_0$$

于是

[E] =
$$\frac{[E]_0}{1 + \frac{k_1[S]}{k_{-1} + k_2}}$$
 [ES] = $\frac{k_1[E]_0[S]}{k_{-1} + k_2 + k_1[S]}$

于是反应的速率即为

$$\frac{d[P]}{dt} = k_2[ES] = \frac{k_1 k_2[E]_0[S]}{k_{-1} + k_2 + k_1[S]}$$

为了简化上式,我们不妨定义 $K_M = \frac{k_{-1} + k_2}{k_1}$,这样就有

$$[ES] = \frac{[E][S]}{K_M}$$

同理,最后可以得出

$$\frac{\mathrm{d[P]}}{\mathrm{d}t} = \frac{k_2[\mathrm{E}]_0}{1 + \frac{K_M}{[\mathrm{S}]}}$$

如果底物S大大过量,那么就有 $\frac{K_M}{[S]} \sim 0$,于是

$$\frac{\mathrm{d[P]}}{\mathrm{d}t} = \frac{k_2[\mathrm{E}]_0}{1 + \frac{K_M}{[\mathrm{S}]}} \approx k_2[\mathrm{E}]_0$$

这就是酶的总浓度一定时反应的最大速率,记作 v_{max} .如此,速率方程亦可以写作

$$v = \frac{v_{\text{max}}}{1 + \frac{K_M}{[S]}}$$

这就是Leonor Michaelis和Maud Menten提出的米氏方程.

Theorem 7D.3.1 米氏方程

对于符合

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

机理的酶促反应,其速率方程为

$$v = \frac{v_{\text{max}}}{1 + \frac{K_M}{[S]}}$$

其中**米氏常数** $K_M = \frac{k_{-1} + k_2}{k_1}.v_{\text{max}} = k_2[\mathbf{E}]_0$,是该反应在酶的总浓度 $[\mathbf{E}]_0$ 一定时能达到的最大速率.

以下是v对[S]作图的结果.可以看出,当[S] $\ll K_M$ 时近似地有 $v = \frac{v_{\text{max}}}{K_M}$ [S],反应对S为准一级.当[S] $\gg K_M$ 时,反应速率趋近于 v_{max} ,反应对[S]为准零级.

反应速率常数 k_1, k_{-1}, k_2 是较难直接获取的,但米氏方程为我们提供了线性回归测定它们的方式.

Derivation.

将米氏方程变形可得

$$\frac{1}{v} = \frac{1}{v_{\text{max}}} + \left(\frac{K_M}{v_{\text{max}}}\right) \frac{1}{[S]}$$

可以看到, $\frac{1}{v}$ 与 $\frac{1}{[S]}$ 成一次函数关系.测定S在不同起始浓度 $[S]_0$ 及其对应的速率 v_0 ,就可以通过线性回归的方式求出斜率 $\frac{K_M}{v_{\max}}$ 和截距 $\frac{1}{v_{\max}}$.

上面的这种方式就是Lineweaver-Burk作图法.

Theorem 7D.3.2 Lineweaver-Burk作图法

在符合米氏方程的酶促反应中,反应速率的倒数 $\frac{1}{v}$ 和底物浓度 $\frac{1}{[S]}$ 成倒数关系,根据实验数据作图就可以求得米氏常数 K_M .因此,这一方法也被称作**双倒数法**.

下面是由Lineweaver-Burk作图法给出7D.3.1的图像.

不过,这一方法仍然不能给出 k_1 和 k_{-1} 的具体值.我们需要更复杂的手段进行测量,这里就不再赘述了.

竞争性抑制剂和非竞争性抑制剂

酶对反应体系是敏感的.一些物质可以与酶发生反应,进而降低其活性或使其完全失效.这就是抑制剂.

Definition 7D.3.3 抑制剂

酶抑制剂是一类特异性作用于或影响酶的活性中心或必需基团,导致酶活性下降或丧失,进 而降低酶促反应速率的物质.

按照抑制剂作用的机理不同,酶抑制剂可以简单地被分为如下两类,

Definition 7D.3.4 抑制剂的分类

竞争性抑制剂在结构上通常与底物相似。它和底物不能同时与酶结合,通常是由于它对 酶的活性位点具有亲和力,而底物也与该位点结合,故底物和抑制剂竞争结合酶的活性 位点。

多底物酶促反应——单置换反应与双置换反应

实际情况中超过60%的酶促反应都涉及两个及以上的底物.对双底物酶促反应的研究表明 有以下几种机理.

如果两种底物A和B需要按照顺序与E结合,然后生成产物,那么这样的机理被称为**单置换反 应**.我们可以将机理表述如下.

$$E + A \xrightarrow[k_{-1}]{k_{-1}} EA$$

$$EA + B \xrightarrow[k_{-2}]{k_{2}} EAB$$

$$EAB \xrightarrow[k_{-2}]{k_{-2}} E + P + Q$$

现在我们来推导单置换反应的速率方程.

Derivation.

仿照米氏方程的推导方式,对EA和EAB稳态近似可得

$$\frac{d[EA]}{dt} = k_1[E][A] - k_{-1}[EA] - k_2[EA][B] + k_{-2}[EAB] = 0$$
 (1)

$$\frac{d[EAB]}{dt} = k_2[EA][B] - k_{-2}[EAB] - k_3[EAB] = 0$$
 (2)

不妨令 $K_{M,B} = \frac{k_{-2} + k_3}{k_2}$ 为该反应对B的米氏常数.由(2)可得

$$[EAB] = \frac{k_2[B]}{k_{-2} + k_3}[EA] = \frac{[B]}{K_{M,B}}[EA]$$
 (3)

由(1)和(3)可得

$$[E] = \frac{(k_{-1} + k_{2}[B]) [EA] - k_{-2}[EAB]}{k_{1}[A]}$$

$$= \frac{k_{-1} + k_{2}[B] - \frac{k_{-2}[B]}{K_{M,B}}}{k_{1}[A]} [EA]$$

$$= \frac{k_{-1} + \frac{k_{3}}{K_{M,B}}[B]}{k_{1}[A]} [EA]$$
(4)

这里由中间量[EA]统一变量可以降低计算的难度.

这样,由(3)和(4),以及E的物料守恒[E] + [EA] + [EAB] = $[E_0]$ 可得

$$[EA] = \frac{[E]}{[E] + [EA] + [EAB]} [E]_0 = \frac{1}{\frac{k_{-1} + \frac{k_3}{K_{M,B}}[B]}{k_1[A]} + 1 + \frac{[B]}{K_{M,B}}} (5)$$

于是反应的速率即为

$$v = \frac{d[P]}{dt} = k_3[EAB] = \frac{k_2 k_3[B]}{k_{-2} + k_3}[EA]$$

$$= \frac{1}{\frac{K_{M,B}}{k_3[B]}} \cdot \frac{EB_0}{\frac{k_{-1} + \frac{k_3}{K_{M,B}}[B]}{k_1[A]} + 1 + \frac{EB}{K_{M,B}}}$$

$$= \frac{EB_0}{\left(\frac{1}{k_3} + \frac{1}{k_1[A]}\right) + \frac{K_{M,B}}{k_3}\left(1 + \frac{k_{-1}}{k_1[A]}\right)\frac{1}{[B]}}$$
(6)

我们按照Lineweaver-Burk作图法的形式对(6)整理可得

$$\frac{1}{v} = \frac{1}{[E]_0} \left[\left(\frac{1}{k_3} + \frac{1}{k_1[A]} \right) + \frac{K_{M,B}}{k_3} \left(1 + \frac{k_{-1}}{k_1[A]} \right) \frac{1}{[B]} \right]$$
 (7)

以 $\frac{1}{v}$ 对 $\frac{1}{[\mathrm{B}]}$ 作图,将得到斜率为 $\frac{K_{M,\mathrm{B}}}{k_3[\mathrm{E}]_0}\left(1+\frac{k_{-1}}{k_1[\mathrm{A}]}\right)$,截距为 $\frac{1}{[\mathrm{E}]_0}\left(\frac{1}{k_3}+\frac{1}{k_1[\mathrm{A}]}\right)$ 的直线.因此,改变[A],直线的斜率和截距将发生变化.这是单置换反应的特征.

如果底物A与酶 E_1 反应后生成修饰形式的酶 E_2 ,然后与另一种底物B反应生成原先的酶,如此循环往复,那么这样的机理被称为**双置换反应**.我们可以将机理表述如下.

$$E_{1} + A \xrightarrow{k_{1}} E_{1}A \xrightarrow{k_{2}} E_{2} + P$$

$$E_{2} + B \xrightarrow{k_{3}} E_{2}B \xrightarrow{k_{4}} E_{1} + Q$$

现在我们来推导双置换反应的速率方程.

Derivation.

这一反应由两个相关的米氏反应构成.我们先对 E_1A 和 E_2B 稳态近似可得

$$\frac{d[E_1A]}{dt} = k_1[E_1][A] - (k_{-1} + k_2)[E_1A] = 0 [E_1A] = \frac{[E_1][A]}{K_{M,A}} (1)$$

$$\frac{d[E_2B]}{dt} = k_3[E_2][B] - (k_{-3} + k_4)[E_2B] = 0 \qquad [E_2B] = \frac{[E_2][B]}{K_{MB}}$$
 (2)

其中 $K_{M.A}$ 和 $K_{M.B}$ 分别为两步的米氏常数.

体系处于稳态时, E_1 和 E_2 的浓度也应当变化不大(否则就不满足 E_1 A和 E_2 B的稳态近似).于是有

$$\frac{d[E_1]}{dt} = k_4[E_2B] + k_{-1}[E_1A] - k_1[E_1][A]$$
(3)

(1)+(3)可得

$$k_4[\mathbf{E}_2\mathbf{B}] = k_2[\mathbf{E}_1\mathbf{A}] \tag{4}$$

结合(1)(2)和(4)和物料守恒 $[E_1] + [E_1A] + [E_2] + [E_2B] = [E]_0$ 可得

$$[E_1 A] = \frac{[E]_0}{\frac{K_{M,A}}{[A]} + 1 + \frac{k_2}{k_4} \left(\frac{K_{M,B}}{[B]} + 1\right)}$$
(5)

于是反应的速率即为

$$v = k_2[E_1A] = \frac{[E]_0}{\frac{1}{k_2} + \frac{1}{k_4} + \frac{K_{M,A}}{k_2[A]} + \frac{K_{M,B}}{k_4[B]}}$$
(6)

我们按照Lineweaver-Burk作图法的形式对(6)整理可得

$$\frac{1}{v} = \frac{1}{[E]_0} \left[\frac{K_{M,B}}{k_4} \frac{1}{[B]} + \left(\frac{1}{k_2} + \frac{1}{k_4} + \frac{K_{M,A}}{k_2[A]} \right) \right]$$
(7)

以 $\frac{1}{v}$ 对 $\frac{1}{[\mathrm{B}]}$ 作图,将得到斜率为 $\frac{K_{M,\mathrm{B}}}{k_4[\mathrm{E}]_0}$,截距为 $\frac{1}{[\mathrm{E}]_0}\left(\frac{1}{k_2}+\frac{1}{k_4}+\frac{K_{M,\mathrm{A}}}{k_2[\mathrm{A}]}\right)$ 的一条直线.因此,改变A,直线的斜率不变而截距变化.这是双置换反应的特征.