PROJECT DESIGN PHASE-II

TECHNOLOGY STACK (ARCHITECTURE & STACK)

Date	16 October 2022	
Team ID	PNT2022TMID15933	
Project Name	Fertilizers Recommendation System For	
	Disease Prediction	

TECHNICAL ARCHITECTURE:

TABLE -1: COMPONENTS & TECHNOLOGIES:

S.NO	Component	Description	Technology
1,	User Interface	The user interact with the	HTML, CSS, JavaScript,
		website by logging in	React, Angular, etc,.
		and uploading the image	
		(affected plant leaf).The	
		data is sent through the	
		Cloud by API and HTTP	
		request ,response.	
2,	Disease Prediction	Once the image has been	Keras, CNN, Image
		uploaded by the user it is	processing,
		then processed by the	Machine Learning
		model and the model gives	Algorithm, TensorFlow, etc,
		the name of the disease	
		affected by the plant.	
3.	Fertilizer	After the disease has been	User interface, HTML,
	Recommendation	predicted by the model, the	CSS, JavaScript
		fertilizer is recommended	
		for the predicted disease	
4.	Dataset	The training and testing	Kaggle.com, data.gov,
		dataare collectively stored	UCI machine learning
		in the IBM Watson Cloud.	repository,etc.
5.	File Storage	File storage requirements	IBM, Local File system.
6,	Modules	Purpose of deep	Image
		learningmodules	Recognition
			Modules, etc.
7.	Infrastructure(Server)	Application development on	Local File system.
		Local server	
		configuration:	
		4GB RAM	
		512GB SSD	
		64-bit Operating System	
		AMD PRO A4-	
		3350BAPU	

TABLE – 2: APPLICATION CHARACTERISTICS:

S.NO	Characteristics	Description	Technology
1.	Opensource Framework	List of the	Open source-PyCharm,
		opensource	anaconda navigator,
		framework used are	flask ,OpenCV,
		TensorFlow, Keras,	CNN, Keras,
		OpenCV	TensorFlow.
2.	Secure Implementation	Provides highly	Security – OWASP,SHA-
		Secure Environment	256,Encryptions,etc.,
		for the details	
		provided.	
3.	Scalable Architecture	As this architecture is	flask,
		Scalable in nature	OpenCV, CNN,
		.Whenever a new feature is	TensorFlow, Keras.
		added to the model, it will	
		not decrease the	
		performance of the model.	
4.	Availability	The website is	Web application access
		completely available	to all the resources.
		and provide 24/7	
		availability .The user	
		can access the	
		information	
		irrespective of the	
		location.	
5.	Performance	Performance of the	Machine Learning
		website is high when the	Algorithm, Keras,
		image that is to be	Tensorflow,CNN,
		processed is available in	etc,.
		the Cache. Performance	
		is bit low when the image	
		to be processed is not	
		available in the cache.	