Exercise 1.1. [10pt] Let a = 1485 and b = 1745

- [4pt] Use Euclidean algorithm to find gcd(1485, 1745)
- [4pt] Find $\alpha, \beta \in \mathbb{Z}$ satisfying $1485 \cdot \alpha + 1745 \cdot \beta = \gcd(1485, 1745)$.
- [2pt] Compute lcm(1485, 1745). (3)

Solution: Using Euclidean algorithm we get:

$$1745 = 1 \cdot 1485 + 260$$
 $\Rightarrow \gcd(1485, 1745) = \gcd(1485, 260)$
 $1485 = 5 \cdot 260 + 185$ $= \gcd(185, 260)$
 $260 = 1 \cdot 185 + 75$ $= \gcd(185, 75)$
 $185 = 2 \cdot 75 + 35$ $= \gcd(35, 75)$
 $75 = 2 \cdot 35 + 5$ $= \gcd(35, 5)$
 $35 = 7 \cdot 5 + 0$ $= \gcd(0, 5) = 5$.

$$75 = 2 \cdot 35 + 5 \qquad \qquad = \gcd(35,5) \\ 35 = 7 \cdot 5 + 0 \qquad \qquad = \gcd(0,5) = 5.$$
 Proceeding from the bottom to the top we get a required expression for 5:
$$5 = 75 - 2 \cdot 35 \\ = 75 - 2 \cdot (185 - 2 \cdot 75) = 5 \cdot 75 - 2 \cdot 185 \\ = 5 \cdot (260 - 185) - 2 \cdot 185 = 5 \cdot 260 - 7 \cdot 185 \\ = 5 \cdot 260 - 7 \cdot (1485 - 5 \cdot 260) = 40 \cdot 260 - 7 \cdot 1485 \\ = 40 \cdot (1745 - 1485) - 7 \cdot 1485 = 40 \cdot 1745 - 47 \cdot 1485$$
 Hence $\alpha = -47$ and $\beta = 40$ is a solution. This problem has infinitely many solutions. You can check yourself that for any solution (α, β) a pair $(\alpha - 1745, \beta + 1485)$ is a solution too.
$$\lim(1485, 1745) = \frac{1485 \cdot 1745}{\gcd(1485, 1745)} = 518265.$$
 Exercise 1.2. [5pts] The Fibonacci numbers $\{f_i\}$ are defined recurrently by
$$\begin{cases} f_1 = 1; \\ f_2 = 1; \\ f_3 = f_1 + f_2; \\ \dots \\ f_n = f_{n-1} + f_{n-2}. \end{cases}$$
 Use Euclidean lemma to show that $\gcd(f_n, f_{n+1}) = 1$. Solution: Induction on n . For $n = 1$ we have:
$$\gcd(f_1, f_2) = 1,$$
 which is true. Assume the result holds for k :

$$lcm(1485, 1745) = \frac{1485 \cdot 1745}{\gcd(1485, 1745)} = 518265.$$

$$\begin{cases} f_1 = 1; \\ f_2 = 1; \\ f_3 = f_1 + f_2; \\ \dots \\ f_n = f_{n-1} + f_{n-2}. \end{cases}$$

$$\gcd(f_1, f_2) = 1,$$

which is true. Assume the result holds for k:

$$\gcd(f_k, f_{k+1}) = 1,$$

and prove that $gcd(f_{k+1}, f_{k+2}) = 1$. Note that dividing f_{k+2} by f_{k+1} gives:

$$f_{k+2} = 1 \cdot f_{k+1} + f_k,$$

and, hence, by Euclidean Lemma:

$$\gcd(f_{k+1}, f_{k+2}) = \gcd(f_{k+1}, f_k) = 1.$$

Thus, the statement holds by induction on n.

and, hence, by Thus, the state Exercise 1.3. for every $n \in \mathbb{N}$. Exercise 1.3. [5pt] Use mathematical induction to prove that

$$6 \mid 7^n - 1$$

Solution: For n = 1 we have $6 \mid 7 - 1$ which is true.

Assume that statement holds for some k, i.e.

$$6 \mid 7^k - 1,$$

which means that $7^k - 1 = 6q$ for some $q \in \mathbb{N}$. We need to prove that $6 \mid 7^{k+1} - 1$. Indeed,

$$7^{k+1} - 1 = 7 \cdot 7^k - 1 = 7 \cdot (6q + 1) - 1 = 42q + 6 = 6(7q + 1),$$

which means that $7^{k+1} - 1$ is divisible by 6.

Exercise 1.4. [5pts] Compute the remainder of division of 3^{100} by 7.

Solution: Notice that, $3^6 \equiv_7 1$. Therefore,

$$3^{100} = (3^6)^{16} 3^4 \equiv_7 1^{16} 3^4 = 81 \equiv_7 4.$$

We can use induction to prove that $6 \mid n(n+1)(2n+1)$ for every $n \in \mathbb{N}$. But a much easier approach is to notice that

$$6 \mid n(n+1)(2n+1) \iff n(n+1)(2n+1) \equiv_{6} 0$$

$$\Leftrightarrow [n(n+1)(2n+1)]_{6} = [0]_{6}$$

$$\Leftrightarrow [n] \cdot [n+1] \cdot [2n+1]_{6} = [0]_{6}.$$

The last equality is easy to check for every n, because there are just 6 congruence classes modulo 6.

Exercise 1.5. [5pts] Prove that $6 \mid n(n+1)(2n+1)$ for every $n \in \mathbb{N}$ by checking that $[n]_6 \cdot [n+1]_6 \cdot [2n+1]_6 = [0]$ for each congruence class $[n]_6$.

Solution:

- For [n] = [0] we have $[0] \cdot [1] \cdot [1] = [0]$;
- For [n] = [1] we have $[1] \cdot [2] \cdot [3] = [0]$;
- For [n] = [2] we have $[2] \cdot [3] \cdot [5] = [0]$;
- For [n] = [3] we have $[3] \cdot [4] \cdot [1] = [0]$;
- For [n] = [4] we have $[4] \cdot [5] \cdot [3] = [0]$;
- For [n] = [5] we have $[5] \cdot [0] \cdot [5] = [0]$.

Let X be a set. A function $f: X \times X \to X$ is called a **binary function** on X. If there is no ambiguity (f is the only binary function) instead of writing f(a,b) we write $a \cdot b$ or simply ab.

Definition 1.1. A binary function \cdot on a set X is

- commutative if ab = ba for every $a, b \in X$;
- associative if (ab)c = a(bc) for every $a, b, c \in X$;
- closed on a subset $S \subset X$ if $ab \in S$ for every $a, b \in S$; in this event we also say that S is closed under \cdot . A restriction of \cdot of $S \times S$ is a binary operation too.
- We say that $x \in X$ is a multiplicative identity in (X, \cdot) if xy = yx = y for every $y \in X$.

We say that a and b **commute** in G if ab = ba.

Exercise 1.6. [+3pts] Consider the set of all complex numbers \mathbb{C} equipped with the standard multiplication \cdot . Which of the following subsets of \mathbb{C} are closed under \cdot ? Just circle appropriate sets, no explanation is required in this problem.

- $(1) \mathbb{R}$
- (2) The set of purely imaginary numbers $\mathbb{R}i = \{ ai \mid a \in \mathbb{R} \}.$
- $(3) \{1, -1, i, -i\}.$
- (4) N.
- (5) $\{a+b\sqrt{2}i \mid a,b \in \mathbb{Q}\}.$
- (6) $\{-1,0,1\}$.

Solution:

- (1) Yes.
- (2) No.
- (3) Yes.
- (4) Yes.
- (5) Yes.
- (6) Yes.

A binary function \cdot on a small set $X = \{x_1, \dots, x_n\}$ can be defined by a table, called a composition (or multiplication) table

Exercise 1.7. [+4pts] Define \cdot on $X = \{a, b, c\}$ using the table

- (1) Is \cdot commutative?
- (2) Is \cdot associative?
- (3) Is \cdot closed on $\{a, b\}$?
- (4) Is there a multiplicative identity in (X, \cdot) ?

Explain your answers!

Solution:

- (1) \cdot is not commutative because $a \cdot b = a \neq b = b \cdot a$.
- (2) \cdot is not associative because $a \cdot (b \cdot c) = a \cdot a = b \neq c = a \cdot c = (a \cdot b) \cdot c$.

- (3) \cdot is not closed on $\{a,b\}$ because $b\cdot b=c\notin\{a,b\}$. (4) No, we do not have a multiplicative identity:
- - -a is not an identity because $a \cdot a \neq a$;
 - b is not an identity because $a \cdot b \neq a$; c is not an identity because $a \cdot c \neq b$.