CS/DS 541: Class 12

Jacob Whitehill

Recurrent neural networks (RNNs)

- A CNN applied to each image in the sequence can tell us about the *individual objects* contained in *each frame*.
- Here, the hidden state \mathbf{h}_t of each input \mathbf{x}_t is computed independently, i.e.: $\mathbf{h}_t = f(\mathbf{x}_t)$

 However, sometimes we need to aggregate over time to understand how the individual objects relate to each other:

documentary about breakfast, cooking TV show

 It's also possible that past hidden state helps us to infer the current hidden state (e.g., the French toast looks blurry at time t=4 but was very clear at time t=3).

documentary about breakfast, cooking TV show

• To accomplish this, we can link the hidden state across the elements of the sequence, i.e.: $\mathbf{h}_t = f(\mathbf{x}_t, \mathbf{h}_{t-1})$

documentary about breakfast, cooking TV show

• This is the essence of a recurrent neural network (RNN) — the hidden states at time t depend on the hidden states of time t-1: $\mathbf{h}_t = f(\mathbf{x}_t, \mathbf{h}_{t-1})$

 We sometimes represent the recurrent hidden state as a single node with an arrow to itself:

 We can construct a simple recurrent neural network (RNN) as follows:

$$\hat{y}_t = g(\mathbf{x}_1, \dots, \mathbf{x}_t; \mathbf{U}, \mathbf{V}, \mathbf{w}) = \mathbf{h}_t^{\mathsf{T}} \mathbf{w}$$

 $\mathbf{h}_t = \sigma(\mathbf{U}\mathbf{h}_{t-1} + \mathbf{V}\mathbf{x}_t)$

- As the activation σ, we typically use tanh instead of the logistic function:
 - Range of tanh: (-1, +1)
 - Range of logistic: (0, 1)
- Reason:
 - We want the hidden state to be able to maintain its value across many time steps (t=1, 2, 3, ...).
 - tanh(x) is approximated by the line y=x around x=0.

- Consider a unidimensional hidden state. Let $h_1=0$.
- If σ =logistic, then:
 - $h_2 = \sigma(h_1) = \sigma(0) = 0.5$
 - $h_3 = \sigma(h_2) = \sigma(0.5) = 0.622$
 - $h_4=\sigma(h_3)=\sigma(0.622)=0.651$
 - ...

- Consider a unidimensional hidden state. Let $h_1=0$.
- If σ =tanh, then:
 - $h_2 = \sigma(h_1) = \sigma(0) = 0$
 - $h_3 = \sigma(h_2) = \sigma(0) = 0$
 - $h_4 = \sigma(h_3) = \sigma(0) = 0$
 - ...

- The hidden state remains stable for tanh but not for logistic.
- Note that the *gradient* of tanh at 0 is exactly 1 because: $\tanh'(x) = 1 \tanh^2(x)$
 - Learning can still occur!

- We can use the same back-propagation procedure to train an RNN as we did for feed-forward neural networks (FFNN).
- For every input sequence $(\mathbf{x}_1, ..., \mathbf{x}_T)$ and labels $(y_1, ..., y_T)$, we **unroll** the computational graph over all T time-steps.

- We can use the same back-propagation procedure to train an RNN as we did for feed-forward neural networks (FFNN).
- For every input sequence $(\mathbf{x}_1, ..., \mathbf{x}_T)$ and labels $(y_1, ..., y_T)$, we **unroll** the computational graph over all T time-steps.

• The same weights (e.g., U) are used in all time-steps, and we need to *sum* their contributions to the gradient $\nabla_{\mathbf{U}}J$ of the loss function J.

• Moreover, we need to sum the loss values J_t at every timestep t: $J(\mathbf{U}) = \sum_{t=0}^{T} J_t(y_t, \hat{y}_t; \mathbf{U})$

 $\hat{y_1}$ $\hat{y_2}$ $\hat{y_3}$ $\hat{y_7}$ h_1 h_2 h_3 h_7 x_1 x_2 x_3 x_4

 This process is called back-propagation through time (BPTT).

 Note that, in the example RNN below, the "base" network is very simple and has just 1 hidden layer:

- However, across timesteps, the maximum path-length from any input to any output can be large if T is large.
- In this sense, RNNs are deep networks.

- Note that we can also make the base RNN itself deep:
 - \mathbf{g}_t depends on \mathbf{x}_t and \mathbf{g}_{t-1} .
 - \mathbf{h}_t depends on \mathbf{g}_t and \mathbf{h}_{t-1} .

- Note that we can also make the base RNN itself deeper:
 - \mathbf{g}_t depends on \mathbf{x}_t and \mathbf{g}_{t-1} .
 - \mathbf{h}_t depends on \mathbf{g}_t and \mathbf{h}_{t-1} .

- In their simplest form, RNNs are typically hard to train:
 - The gradients can occasionally become very large (exploding gradient), which forces us to use a very small learning rate (which makes training slow).

- In their simplest form, RNNs are typically hard to train:
 - The gradients can also become very small (vanishing gradient), which also makes learning very slow.

• A related problem is that, if T is large, then information early in the input sequence (e.g., \mathbf{x}_1) can "get lost" when trying to predict values *late* in the sequence (e.g., \hat{y}_T).

- Why do these problems occur?
- Let's consider a simplistic RNN without a non-linear activation function, i.e.:

$$\mathbf{h}_t = \mathbf{U}\mathbf{h}_{t-1} + \mathbf{V}\mathbf{x}_t$$

• When we compute the gradient of $J(y_T, \hat{y}_T)$ w.r.t. **V**, we must sum over all occurrences of **V** —including the *first* one:

$$\frac{\partial J_T(\mathbf{V})}{\partial \mathbf{V}} = \frac{\partial J_T(\mathbf{V})}{\partial \mathbf{h}_T} \frac{\partial \mathbf{h}_T}{\partial \mathbf{h}_{T-1}} \dots \frac{\partial \mathbf{h}_2}{\partial \mathbf{h}_1} \frac{\partial \mathbf{h}_1}{\partial \mathbf{V}} + \text{other terms}$$

There are "other terms" because V occurs at not just t=1.

• When we compute the gradient of $J(y_T, \hat{y}_T)$ w.r.t. **V**, we must sum over all occurrences of **V** —including the *first* one:

$$\frac{\partial J_T(\mathbf{V})}{\partial \mathbf{V}} = \frac{\partial J_T(\mathbf{V})}{\partial \mathbf{h}_T} \mathbf{U} \mathbf{U} \dots \mathbf{U} \frac{\partial \mathbf{h}_1}{\partial \mathbf{V}}$$

- Note that **U** is square (it maps from one hidden state to another).
- If **U** is diagonalizable, then we can write it as:

$$\mathbf{U} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{-1}$$

where the columns of **Q** are **U**'s eigenvectors and **D** contains **U**'s the associated eigenvalues.

- Note that **U** is square (it maps from one hidden state to another).
- If **U** is diagonalizable, then we can write it as:

$$\mathbf{U} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{-1}$$

where the columns of **Q** are **U**'s eigenvectors and **D** contains **U**'s the associated eigenvalues.

Hence:

$$rac{\textit{k} \text{ terms}}{\text{UU} \dots \text{U}} =$$

- Note that **U** is square (it maps from one hidden state to another).
- If **U** is diagonalizable, then we can write it as:

$$\mathbf{U} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{-1}$$

where the columns of **Q** are **U**'s eigenvectors and **D** contains **U**'s the associated eigenvalues.

Hence:

$$egin{aligned} rac{ extbf{\textit{k terms}}}{ extbf{U} extbf{U} \dots extbf{U}} &= extbf{Q} extbf{D} extbf{Q}^{-1} extbf{Q} extbf{D} extbf{Q}^{-1} \dots extbf{Q} extbf{D} extbf{Q}^{-1} \ &= extbf{Q} extbf{D}^k extbf{Q}^{-1} \end{aligned}$$

Plugging back into the gradient:

$$\frac{\partial J_T(\mathbf{V})}{\partial \mathbf{V}} = \frac{\partial J_T(\mathbf{V})}{\partial \mathbf{h}_T} \mathbf{U} \mathbf{U} \dots \mathbf{U} \frac{\partial \mathbf{h}_1}{\partial \mathbf{V}}
= \frac{\partial J_T(\mathbf{V})}{\partial \mathbf{h}_T} \mathbf{Q} \mathbf{D}^{T-1} \mathbf{Q}^{-1} \frac{\partial \mathbf{h}_1}{\partial \mathbf{V}}
= \frac{\partial J_T(\mathbf{V})}{\partial \mathbf{h}_T} \mathbf{Q} \begin{bmatrix} \lambda_1^{T-1} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \lambda_m^{T-1} \end{bmatrix} \mathbf{Q}^{-1} \frac{\partial \mathbf{h}_1}{\partial \mathbf{V}}$$

Plugging back into the gradient:

$$\frac{\partial J_T(\mathbf{V})}{\partial \mathbf{V}} = \frac{\partial J_T(\mathbf{V})}{\partial \mathbf{h}_T} \mathbf{U} \mathbf{U} \dots \mathbf{U} \frac{\partial \mathbf{h}_1}{\partial \mathbf{V}}
= \frac{\partial J_T(\mathbf{V})}{\partial \mathbf{h}_T} \mathbf{Q} \mathbf{D}^{T-1} \mathbf{Q}^{-1} \frac{\partial \mathbf{h}_1}{\partial \mathbf{V}}
= \frac{\partial J_T(\mathbf{V})}{\partial \mathbf{h}_T} \mathbf{Q} \begin{bmatrix} \lambda_1^{T-1} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \lambda_m^{T-1} \end{bmatrix} \mathbf{Q}^{-1} \frac{\partial \mathbf{h}_1}{\partial \mathbf{V}}$$

- If $|\lambda_i| < 1$, then $\lambda_i^{T-1} \to 0$ as $T \to \infty$. Vanishing gradient.
- If $|\lambda_i|>1$, then $|\lambda_i^{T-1}|\to\infty$ as $T\to\infty$. Exploding gradient.

Moreover, during forward-propagation:

$$\hat{y}_{T} = \mathbf{w}\mathbf{U}\mathbf{U} \dots \mathbf{U}\mathbf{x}_{1} + \text{other terms}$$

$$= \mathbf{w}\mathbf{Q}\mathbf{D}^{T-1}\mathbf{Q}^{-1}\mathbf{x}_{1}$$

$$= \mathbf{w} \begin{bmatrix} \mathbf{u}_{1} & \dots \mathbf{u}_{m} \end{bmatrix} \begin{bmatrix} \lambda_{1}^{T-1} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \lambda_{m}^{T-1} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1}^{\top} \\ \vdots \\ \mathbf{u}_{m}^{\top} \end{bmatrix} \mathbf{x}_{1}$$

where \mathbf{u}_i is the i^{th} eigenvector of \mathbf{U} .

• \hat{y}_T loses information from \mathbf{x}_1 along direction \mathbf{u}_i unless $|\lambda_i| > 1$.

Difficulty in training deep FFNNs

 Note that the same vanishing/exploding gradient problems can also occur in very deep FFNNs, particularly if the rows of the weight matrices are highly correlated.

Difficulty in training deep FFNNs

- One coping strategy is to clip the gradients:
- Suppose we obtain a gradient $\nabla_p J$ for some parameter p, and $|\nabla_p J|$ is very large (above some threshold τ).
- Then we can "clip" its value to be:

$$\nabla_p J \left(\frac{\tau}{|\nabla_p J|} \right)$$

Difficulty in training deep FFNNs

- Another strategy for preventing vanishing and exploding gradients is to use skip connections (more later).
 - These are used in LSTM and GRU RNNs, as well as ResNet FFNNs.
- Yet another strategy is to restrict U to the manifold of unitary matrices (i.e., all eigenvalues have magnitude 1; see Helfrich & Ye 2019).

Training RNNs

- Like CNNs, RNNs exhibit an inherently large degree of weight sharing:
 - The U, V matrices are the same at all timesteps.
- See rnn.pdf on Canvas.

Long short-term memory (LSTM) neural networks

 https://colah.github.io/posts/2015-08-Understanding-LSTMs/

• Three gates — forget (f), input (i), and output (o).

$$\mathbf{f}_t = \sigma(\mathbf{W}_f[\mathbf{x}_t, \mathbf{h}_{t-1}] + \mathbf{b}_f)$$

$$\mathbf{i}_t = \sigma(\mathbf{W}_i[\mathbf{x}_t, \mathbf{h}_{t-1}] + \mathbf{b}_i)$$

$$\mathbf{o}_t = \sigma(\mathbf{W}_o[\mathbf{x}_t, \mathbf{h}_{t-1}] + \mathbf{b}_o)$$

- Three gates forget (f), input (i), and output (o).
- Two state vectors: \mathbf{h}_t , \mathbf{c}_t .

$$\mathbf{f}_{t} = \sigma(\mathbf{W}_{f}[\mathbf{x}_{t}, \mathbf{h}_{t-1}] + \mathbf{b}_{f})$$

$$\mathbf{i}_{t} = \sigma(\mathbf{W}_{i}[\mathbf{x}_{t}, \mathbf{h}_{t-1}] + \mathbf{b}_{i})$$

$$\mathbf{o}_{t} = \sigma(\mathbf{W}_{o}[\mathbf{x}_{t}, \mathbf{h}_{t-1}] + \mathbf{b}_{o})$$

$$\tilde{\mathbf{c}}_{t} = \tanh(\mathbf{W}_{c}[\mathbf{x}_{t}, \mathbf{h}_{t-1}] + \mathbf{b}_{c})$$

$$\mathbf{c}_{t} = \mathbf{f}_{t} \odot \mathbf{c}_{t-1} + \mathbf{i}_{t} \odot \tilde{\mathbf{c}}_{t}$$

$$\mathbf{h}_{t} = \mathbf{o}_{t} \odot \tanh(\mathbf{c}_{t})$$

In total, we have 4 weight matrices and 4 bias vectors.

$$\mathbf{f}_{t} = \sigma(\mathbf{W}_{f}[\mathbf{x}_{t}, \mathbf{h}_{t-1}] + \mathbf{b}_{f})$$

$$\mathbf{i}_{t} = \sigma(\mathbf{W}_{i}[\mathbf{x}_{t}, \mathbf{h}_{t-1}] + \mathbf{b}_{i})$$

$$\mathbf{o}_{t} = \sigma(\mathbf{W}_{o}[\mathbf{x}_{t}, \mathbf{h}_{t-1}] + \mathbf{b}_{o})$$

$$\tilde{\mathbf{c}}_{t} = \tanh(\mathbf{W}_{c}[\mathbf{x}_{t}, \mathbf{h}_{t-1}] + \mathbf{b}_{c})$$

$$\mathbf{c}_{t} = \mathbf{f}_{t} \odot \mathbf{c}_{t-1} + \mathbf{i}_{t} \odot \tilde{\mathbf{c}}_{t}$$

$$\mathbf{h}_{t} = \mathbf{o}_{t} \odot \tanh(\mathbf{c}_{t})$$

 The memory cell c offers a pathway through the network to preserve information across long time-spans:

$$\mathbf{c}_t = \mathbf{i}_t \odot \tilde{\mathbf{c}}_t + \mathbf{f}_t \odot \mathbf{c}_{t-1}$$

It tends not to decay due to exponentiated eigenvalues.

• If $\mathbf{f}_{t}=\mathbf{1}$, then \mathbf{c}_{t} directly contains information from 1, ..., t: $\mathbf{c}_{t}=\mathbf{i}_{t}\odot \tilde{\mathbf{c}}_{t}+\mathbf{c}_{t-1}$

• If $\mathbf{f}_{t}=\mathbf{1}$, then \mathbf{c}_{t} directly contains information from 1, ..., t:

$$\mathbf{c}_{t} = \mathbf{i}_{t} \odot \tilde{\mathbf{c}}_{t} + \mathbf{c}_{t-1}$$

$$= \mathbf{i}_{t} \odot \tilde{\mathbf{c}}_{t} + \mathbf{i}_{t-1} \odot \tilde{\mathbf{c}}_{t-1} + \mathbf{c}_{t-2}$$

• If $\mathbf{f}_{t}=\mathbf{1}$, then \mathbf{c}_{t} directly contains information from 1, ..., t:

$$\mathbf{c}_{t} = \mathbf{i}_{t} \odot \tilde{\mathbf{c}}_{t} + \mathbf{c}_{t-1}$$

$$= \mathbf{i}_{t} \odot \tilde{\mathbf{c}}_{t} + \mathbf{i}_{t-1} \odot \tilde{\mathbf{c}}_{t-1} + \mathbf{c}_{t-2}$$

$$= \mathbf{i}_{t} \odot \tilde{\mathbf{c}}_{t} + \mathbf{i}_{t-1} \odot \tilde{\mathbf{c}}_{t-1} + \mathbf{i}_{t-2} \odot \tilde{\mathbf{c}}_{t-2} + \mathbf{c}_{t-3}$$

• If $\mathbf{f}_{t}=\mathbf{1}$, then \mathbf{c}_{t} directly contains information from 1, ..., t:

$$\mathbf{c}_{t} = \mathbf{i}_{t} \odot \tilde{\mathbf{c}}_{t} + \mathbf{c}_{t-1}$$

$$= \mathbf{i}_{t} \odot \tilde{\mathbf{c}}_{t} + \mathbf{i}_{t-1} \odot \tilde{\mathbf{c}}_{t-1} + \mathbf{c}_{t-2}$$

$$= \mathbf{i}_{t} \odot \tilde{\mathbf{c}}_{t} + \mathbf{i}_{t-1} \odot \tilde{\mathbf{c}}_{t-1} + \mathbf{i}_{t-2} \odot \tilde{\mathbf{c}}_{t-2} + \mathbf{c}_{t-3}$$

. . .

• If $\mathbf{f}_{t}=\mathbf{1}$, then \mathbf{c}_{t} directly contains information from 1, ..., t:

$$\mathbf{c}_{t} = \mathbf{i}_{t} \odot \tilde{\mathbf{c}}_{t} + \mathbf{c}_{t-1}$$

$$= \mathbf{i}_{t} \odot \tilde{\mathbf{c}}_{t} + \mathbf{i}_{t-1} \odot \tilde{\mathbf{c}}_{t-1} + \mathbf{c}_{t-2}$$

$$= \mathbf{i}_{t} \odot \tilde{\mathbf{c}}_{t} + \mathbf{i}_{t-1} \odot \tilde{\mathbf{c}}_{t-1} + \mathbf{i}_{t-2} \odot \tilde{\mathbf{c}}_{t-2} + \mathbf{c}_{t-3}$$

. . .

