CSC251 Basics of Computer Graphics Module: Geometry

G S Ragavendra P. J. Narayanan Spring 2025

Graphics Process

CS7.302 Computer Graphics

Graphics Process

- Model the desired world in your head.
- Represent it using natural structures in the program.
 Convert to standard primitives supported by the API
- Processing is done by the API. Converts the primitives in stages and forms an image in the framebuffer
- The image is displayed automatically on the device

CS7.302

How to Draw A House?

CS7.302 Computer Graphics

Drawing A House

Compose using basic shapes

```
// Main part
drawRectangle(v1, v2, v3, v4);
drawTriangle(v2, v3, v5); // Roof
drawRectangle(...); // Door
drawRectangle(...); // Window
drawRectangle(...); // Chimney
drawCircle(...); // Sun
```


That's all there is, really!

CS7.302

Graphics Primitives

- Graphics is concerned with the appearance of the 3D world to a camera
- Only outer surface of objects important, not interiors!!
- Hence, uses only 1D and 2D primitives

- Points: 2D or 3D. (x, y) or (x, y, z).
- Lines: specified using end-points
- Triangles/Polygons: specified using vertices
- Why not circles, ellipses, hyperbolas?

Graphics Attributes

- Colour, Point width.
- Line width, Line style, Line Colour.
- Fill, Fill Pattern.

- Line: Give two endpoints
- Triangle: Give three vertices
- Point is the most basic primitive

CS7.302

Point Representation

- A point is represented using 2 or 3 numbers (x, y, [z]) that are the projections on to the respective coordinate axes.
 - Could also be reprsented as a 2 or 3 vector P.
- Fundamental shape-defining primitive in most Graphics APIs. Everything else is built from it!
- Represented using byte, short, int, float, double, etc.
- The scale and unit are application dependent.
 Could be angstroms or lightyears!
- Points undergo transformations:
 Translations, Rotations, Scaling, Shearing.

3D Coordinates

Vector P

- Cartesian: (x, y, z)

- Polar: (ρ, θ, ϕ)

$$-z = y = x = x = 0$$

$$ho =
ho =
ho$$

– Elevation: θ , Azimuthal: ϕ

3D Coordinates

Vector P

- Cartesian: (x, y, z)

- Polar: (ρ, θ, ϕ)

$$-z = \rho \cos \theta,$$

$$y = \rho \sin \theta \sin \phi$$

$$x = \rho \sin \theta \cos \phi$$

$$- \rho^2 = x^2 + y^2 + z^2,$$

$$\phi = \tan^{-1}(y/x),$$

$$\theta = \tan^{-1}(\sqrt{x^2 + y^2}/z)$$

– Elevation: θ , Azimuthal: ϕ

Translation

• Translate a point P = (x, y, [z]) by (a, b, [c]).

• Points coordinates become P' = (?,?,?).

• In vector form, P' = ?.

CS7.302 Computer Graphics

Translation

- Translate a point P = (x, y, [z]) by (a, b, [c]).
- Points coordinates become P' = (x + a, y + b, [z + c]).
- In vector form, P' = P + T, where T = (a, b, [c]).
- Distances, angles, parallelism are all maintained.

CS7.302 Computer Graphics

2D Rotation

– Rotate about origin CCW by θ .

$$-x' = ?, y' = ?$$

- Matrix notation: P' = R P

$$\left[\begin{array}{c} x \\ y \end{array}\right]' = \left[\begin{array}{cc} ? & ? \\ ? & ? \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

2D Rotation

– Rotate about origin CCW by θ .

$$-x' = ?, y' = ?$$

- Matrix notation: P' = R P

$$\left[\begin{array}{c} x \\ y \end{array}\right]' = \left[\begin{array}{cc} ? & ? \\ ? & ? \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

2D Rotation

- Rotate about origin CCW by θ .
- $-x' = x\cos\theta y\sin\theta,$ $y' = x\sin\theta + y\cos\theta.$

- Matrix notation: P' = R P

$$\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Rotation: Observations

$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

- Orthonormal: $R^{-1} = R^T$
- Rows: vectors that
 rotate to coordinate axes
- Cols: vectors coordinate axes rotate to
- Invariants: distances, angles, parallelism.

3D Rotations

- Rotation could be about any axis in 3D! What does it mean?
 - Distance of each point to the axis of rotation remains same.
 - Each points moves in a circle on a plan perpendicular to the axis of rotation, with the centre on the axis
- About Z-axis: Just like 2D rotation case. Z-coordinates don't change anyway.
- X-Y coordinates change exactly the same way as in 2D.
- CCW +ve, looking into the **arrowhead**: $R_z(\theta) = ??$

3D Rotations

- Rotation could be about any axis in 3D!
- About Z-axis: Z-coordinates don't change anyway

$$R_z(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- CCW +ve; orthonormal; length preserving
- Rows: vectors that rotate onto axes; columns: vectors that axes rotate into....

3D Rotations

$$R_y = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$R_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

- CCW +ve; orthonormal
- Rows: vectors that rotate onto axes; columns: vectors that axes rotate into....
- Rotation about an arbitrary axis, for example, [1,1,1]^T ??
 Coming soon

Non-uniform Scaling

Scale along X, Y, Z directions by s, u, and t.

$$\bullet \ x' = s \ x, \ y' = u \ y, \ z' = t \ z.$$

• We are more comfortable with P' = S P or

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}' = \begin{bmatrix} s & 0 & 0 \\ 0 & u & 0 \\ 0 & 0 & t \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

 Invariants: parallelism, ratios of lengths in any direction (Angles also for uniform scaling.)

Shearing

Add a little bit of x to y or other combinations

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}' = \begin{bmatrix} 1 & x_y & x_z \\ y_x & 1 & y_z \\ z_x & z_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- One of $x_y, x_z, y_x, y_z, z_x, z_y \neq 0$. Rectangles can become parallelograms, but not general quadrilaterals
- Invariants: parallelism, ratios of lengths in any direction.

Reflection

Negative entries in a matrix indicate reflection.

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}' = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Reflection needn't be about a coordinate axis alone

Summary of Transformations

- Translation: New coordinates P' = P + t
- Rotation: P' = R P
- Scaling: P' = SP
- Shearing: $P' = S_h P$
- Reflection: $P' = R_f P$
- Each is a matrix-vector product, except

General Transformation

- Rotation, scaling, shearing, and reflection: Matrix-vector product. Vectors get tranformed into other vectors
- Translation alone is a vector-vector addition
- Sequence of: Translation, rotation, scaling, translation and rotation: $\mathbf{P}' = \mathbf{R_2} \left[\mathbf{S} \ \mathbf{R_1} \left(\mathbf{P} + \mathbf{t_1} \right) + \mathbf{t_2} \right]$
- If translation is also a matrix-vector product, we can combine above transformations into a single matrix: $P' = R_2 T_2 S R_1 T_1 P = M P$
- How? Answer: homogeneous coordinates!

Homogeneous Coordinates

- Add a *non-zero scale factor* w to each coordinate. A 2D point is represented by a vector $\begin{bmatrix} x & y & w \end{bmatrix}^T$
- $\bullet [x \ y \ w]^{\mathsf{T}} \equiv (x/w, \ y/w).$
- Simplest value of w is obviously 1
- Translate $\begin{bmatrix} x & y \end{bmatrix}^{\mathsf{T}}$ by $\begin{bmatrix} a & b \end{bmatrix}^{\mathsf{T}}$ to get $\begin{bmatrix} x+a & y+b \end{bmatrix}^{\mathsf{T}}$

$$\begin{bmatrix} x+a \\ y+b \\ 1 \end{bmatrix} = \begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Homogeneous Coordinates

- Add a *non-zero scale factor* w to each coordinate. A 2D point is represented by a vector $\begin{bmatrix} x & y & w \end{bmatrix}^T$
- Translate $\begin{bmatrix} x & y \end{bmatrix}^{\mathsf{T}}$ by $\begin{bmatrix} a & b \end{bmatrix}^{\mathsf{T}}$ to get $\begin{bmatrix} x+a & y+b \end{bmatrix}^{\mathsf{T}}$

$$\begin{bmatrix} x+a \\ y+b \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

• Now, translation is also: P' = T P, a matrix-vector product and a linear operation.

CS7.302

Homogeneous Coordinates

- Add a *non-zero scale factor* w to each coordinate. A 2D point is represented by a vector $\begin{bmatrix} x & y & w \end{bmatrix}^T$
- $\bullet [x \ y \ w]^{\mathsf{T}} \equiv (x/w, \ y/w).$
- Now, translation is also: P' = T P
- For a point: Rotation followed by translation followed by scaling, followed by another rotation: $P' = R_2 STR_1 P$.
- Similarly for 3D. Points represented by: $[x \ y \ z \ w]^T$.
- All matrices are 3×3 in 2D. Last row is $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$.
- All matrices are 4×4 in 3D. Last row is $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$.

CS7.302

Homogeneous Representation

- Convert to a 4-vector with a scale factor as fourth. $(x, y, z) \equiv [kx \ ky \ kz \ k]^{\mathsf{T}}$ for any $k \neq 0$.
- ullet Translation, rotation, scaling, shearing, etc. become linear operations represented by 4×4 matrices.
- What does $[x \ y \ z \ 0]^T$ mean?
- [a b c d]^T could be a point or a plane. Lines are specified using two such vectors, either as join of two points or intersection of two planes!

CS7.302 Computer Graphics

Transformation Matrices: Rotations

$$R_x(\theta) = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & \cos \theta & -\sin \theta & 0 \ 0 & \sin \theta & \cos \theta & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{y} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad R_{z} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 CCW +ve; orthonormal; length preserving; rows give direction vectors that rotate onto each axis; columns

CS7.302

Translation, Scaling, Composite

$$T(a,b,c) = egin{bmatrix} 1 & 0 & 0 & a \ 0 & 1 & 0 & b \ 0 & 0 & 1 & c \ 0 & 0 & 0 & 1 \end{bmatrix}, \quad S(a,b,c) = egin{bmatrix} a & 0 & 0 & 0 \ 0 & b & 0 & 0 \ 0 & 0 & c & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

- A sequence of transforms can be represented using a composite matrix: $\mathbf{M} = \mathbf{R_x T R_y S T} \cdots$
- Operations are not commutative, but are associative.
- RT and TR??

Rotation and Translation

$$\bullet \ T_{4\times 4} = \left[\begin{array}{cc} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{array} \right]$$

and

$$R_{4\times4} = \left[\begin{array}{cc} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{array} \right]$$

•
$$TR = \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} = ?$$

$$\bullet \ R \ T = \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} = ?$$

Rotation and Translation

$$\bullet \ T_{4\times 4} = \left[\begin{array}{cc} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{array} \right]$$

and

$$R_{4\times4} = \left[\begin{array}{cc} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{array} \right]$$

$$\bullet \ T \ R = \left[\begin{array}{cc} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{array} \right] \left[\begin{array}{cc} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{array} \right] = \left[\begin{array}{cc} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{array} \right]$$

$$\bullet \ R \ T = \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{R}\mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}$$

•
$$TR = RT$$
 if: (a) $R = I$ or (b) $t = 0$ or (c) $Rt = ?$

(a)
$$\mathbf{R} = \mathbf{I}$$

(c)
$$\mathbf{Rt} = ?$$

Rotation and Translation

$$\bullet \ T_{4\times 4} = \left[\begin{array}{cc} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{array} \right]$$

and

$$R_{4\times4} = \left[\begin{array}{cc} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{array} \right]$$

$$\bullet \ T \ R = \left[\begin{array}{cc} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{array} \right] \left[\begin{array}{cc} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{array} \right] = \left[\begin{array}{cc} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{array} \right]$$

$$\bullet \ R \ T = \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{R}\mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}$$

- TR = RT if: (a) R = I or (b) t = 0 or (c) Rt = t
- When is Rt = t? t is an eigenvector of R
- Question: Are transformations commutative?

Commutativity

- Translations are commutative: $T_1T_2 = T_2T_1$
- Scaling is commutative: $S_1S_2 = S_2S_1$
- Are rotations commutative? $R_1R_2 \stackrel{?}{=} R_2R_1$
- Rotation and Scaling commute? SR = RS
- What would be an example?
 Consider the effect on Z-axis of:

CS7.302 Computer Graphics

Commutativity

- Translations are commutative: $T_1T_2 = T_2T_1$
- Scaling is commutative: $S_1S_2 = S_2S_1$
- Are rotations commutative? $R_1R_2 \neq R_2R_1$
- Rotation and Scaling commute. SR = RS
- Consider the effect on Z-axis of $\mathbf{R_x(90)R_y(90)}$ and $\mathbf{R_y(90)R_x(90)}$
- $\mathbf{RT} \neq \mathbf{TR}$. (If translation is not parallel to rotation axis)
- Consider: $\mathbf{R}(\pi/4)$ and T(5,0). Where does the origin (0,0) go in \mathbf{TR} and \mathbf{RT} ?

TR and RT

 \mathbf{TR} \mathbf{RT}

CS7.302 Computer Graphics

TR and RT

TR keeps it on X axis to (5,0). **RT** takes it to $(\frac{5}{\sqrt{2}}, \frac{5}{\sqrt{2}})$.

Objects Away from Origin

- Object "translates" when rotated or scaled!!
- Default: Perform these
 about the origin
- How do we transform points "in place"?
- Rotate or scale about the centroid of the object. Or about an arbitrary point
- How?

Transformations About A Point

- Rotating about point P
 - Align P with origin
 - Rotate/scale about origin
 - Translate back
- Rotation:

$$\mathbf{R}_{\mathbf{C}}(\theta) = \mathbf{T}(\mathbf{C}) \mathbf{R} \mathbf{T}(-\mathbf{C})$$

Scaling:

$$\mathbf{S}_{\mathbf{C}}() = \mathbf{T}(\mathbf{C}) \; \mathbf{S}() \; \mathbf{T}(-\mathbf{C})$$

• A transformation M:

$$\mathbf{M}_{\mathbf{C}} = \mathbf{T}(\mathbf{C}) \ \mathbf{M} \ \mathbf{T}(-\mathbf{C})$$

Object

• Object has a coordinate frame of its own.

Object and Translation

Object, Translation, Rotation

$$P' = P$$

$$\mathbf{P}' = \mathbf{R} \ \mathbf{P}$$

Understanding Transformations

R, T Operations on Points

• T(5,0) R($\pi/4$): Impact on a point:

```
- R(\pi/4): (Point stays at (0, 0))
- T(5, 0): (Point goes to (5, 0))
```

• $R(\pi/4)$ T(5,0): Impact on the point:

```
- T(5,0): (Point moves to (5,0))
- R(\pi/4). (Point rotates about origin)
```

 All points on the shape undergo the same motions and get new coordinates

Relating Coordinate Frames

• T(5,0) and $R(\pi/4)$

Start: Black axes

Next: Blue axes

Last: Red axes

$$ullet$$
 $\mathbf{P}'=egin{array}{c|c} \mathbf{Black} & \mathbf{Blue} \\ \hline \mathbf{T} & \mathbf{R} & \mathbf{P} \end{array}$

$$ullet$$
 $\mathbf{P}' = egin{array}{c|c} \mathbf{Black} & \mathbf{Blue} \\ \hline \mathbf{R} & \mathbf{T} & \mathbf{P} \end{array}$

R, T Operaions on Frames

• **T(5,0)** $\mathbf{R}(\pi/4)$: Impact on coordinate frame:

```
- T(5,0): (Origin shifted to (5,0))
- R(\pi/4). (Axes rotated at new origin)
```

• $\mathbf{R}(\pi/4)$ $\mathbf{T}(5,0)$: Impact on coordinate frame:

```
- R(\pi/4): (Axes rotate by 45 degrees))
- T(5,0). (Point moves to (\mathbf{5},\mathbf{0}) in new axes)
```

 Frames move around, giving new coordinates to points on objects!!

I Am Where I Think I Am (IAWITIA)

- What am I? Different entities at different times.
 student, friend, brother, enemy, daughter, neighbour, ...
- Let us stick to easier 3D geometry!
 What are my coordinates (if I am a point)?
- Coordinates of a point depend on the viewpoint used (similar to life; evaluation depends on the viewer)
- Nothing really "happens". Nothing "moves".
 There are only changes in viewpoints (in geometry)!!
- IAWITIA: Pronounced ayA-wl-shia (rhymes with *dementia*)

IAWITIA in Action

- Consider $P_4 = \mathbf{M_4M_3M_2M_1} P_0$
- Point P_0 undergoes 4 operations and get coordinates P_4
- Imagine the point having coordinates P_1, P_2, P_3 after operations $\mathbf{M_1}, \mathbf{M_2}, \mathbf{M_3}$
- We can also visualize coordinate frames $\Pi_4, \Pi_3, \Pi_2, \Pi_1, \Pi_0$ in which a point has coordinates P_4 to P_0 respectively
- Operation M_i represents a change in coordinates from Π_i to Π_{i-1} , resulting in new labels for the point.

IAWITIA in TR

- Frame translates first.
- Frame rotates next, in the *current* frame!!

IAWITIA in RT

- Frame rotates first
- Frame translates next, in the *current* frame!!

IAWITIA in Action in IIIT Campus

- Model IIIT Campus as a whole. Campus is our "world"
- Global coordinate frame $\Pi_{\mathbf{G}}$ for the campus: at the Gate
- Buildings: Himalaya, Vindhya, Bakul, Parul, ..., Palash. Each has a natural coordinate frame. Π_H is Himalaya's
- H102 has 15 desks, with coord frames Π_{Di} for desk i
- Desks are identical in geometry; the coord frame Π_{Di} places each in its location.

Consider a Desk

- Consider a corner point P of desk 37, with coordinates (200, 30, 100) in Π_{D37} . That is: $P_{D37} = (200, 30, 100)$
- Since our world is the campus, we have to ultimately describe everything in the coordinate frame Π_G

$$P_G = M_{GH} M_{HC} M_{CD37} P_{D37}$$

- M_{GH} aligns Π_G to Π_H . M_{HC} aligns Π_H to Π_C . M_{CD37} aligns Π_C to Π_{D37}
- We can place a given desk in any building, room, place!

Walking on Stage

- Person walking horizontally on stage, with swinging arms
- How does the hand-tip move w.r.t each student? How?
- Student knows own position in room's reference frame
- Start at a student's eye. (That provides the viewpoint!)
- Align to room's reference frame using M_1 . Different matrix for each student, but everyone same now....
- Walk: pure translation. M₂ aligns to person coord frame
- Arm swing: Simple harmonic motion with angle $\theta(t)$

Simpler viewpoints in newer coord frames. **IAWITIA** !!

Rolling Wheel

Final Transformation

•
$$P(t) = T_1(t) R(\theta(t)) T_2(p(t)) P'''$$

•
$$\mathbf{T_1}(\mathbf{t}) = \mathbf{T}(\mathbf{r} \ \theta(\mathbf{t}), \mathbf{0}) = \mathbf{T}(\mathbf{r} \ \omega \ \mathbf{t}, \mathbf{0})$$
 (A translation matrix)

$$oldsymbol{\bullet} \ \mathbf{R}(heta(\mathbf{t})) = \mathbf{R}_{\mathbf{Z}}(\omega \ \mathbf{t})$$
 (A normal rotation matrix)

•
$$T_2(t) = T(p(t), 0) = T(v t, 0)$$
 (A translation matrix)

•
$$\mathbf{P}$$
" = $[0, 0, 1]$ ^T (Origin of the bead)

- Lot simpler than thinking about it all together.
- What if we have a pendulum swinging freely on the bead?

Given an object

• An object traingleObj is given. Can be drawn using drawObject (triangleObj)

 drawObject(triangleObj) draws the object at (current) origin

Draw it in a different configuration

• Use drawObject (triangleObj), with right transformations

Transformations

- What are the transformations?
 Combination of Translation, Rotation, Scaling!!
- Operations involved: $S(\frac{1}{2}, \frac{1}{2}), T(3, 2), R(90)$

Correction from the Class

- Decided $S(\frac{1}{2}, \frac{1}{2})R(90)T(6, 4)$ as a solution in the class!
- This is not quite right!! Scale sets the size right and rotation sets the orientation
- The next transation is in the new rotated+scaled coordinate system. We only took care of the scaling of the coordinate system
- Correct: $S(\frac{1}{2}, \frac{1}{2})$ R(90) T(4, -6)
- Kudos to the student who brought it up at the end.
 Great to know students are alert and thinking!

Which combination?

Envision and sketch the impact of each of:

1.
$$S(\frac{1}{2}, \frac{1}{2})$$
 $R(90)$ $T(3, 2)$

2.
$$S(\frac{1}{2}, \frac{1}{2})$$
 $T(3, 2)$ $R(90)$

3.
$$T(3,2)$$
 $R(90)$ $S(\frac{1}{2},\frac{1}{2})$

4.
$$T(3,2) S(\frac{1}{2},\frac{1}{2}) R(90)$$

5.
$$\mathbf{R}(90) \ \mathbf{S}(\frac{1}{2}, \frac{1}{2}) \ \mathbf{T}(3, 2)$$

6.
$$\mathbf{R}(90) \ \mathbf{T}(3,2) \ \mathbf{S}(\frac{1}{2},\frac{1}{2})$$

Several Correct Situations

T(3,2)R(90)S(0.5,0.5) T(3,2)S(0.5,0.5)R(90) R(90)T(2,-3)S(0.5,0.5) R(90)S(0.5,0.5)T(4,-6) S(0.5,0.5)R(90)T(4,-6)S(0.5,0.5)T(6,4)R(90)

Another Situation

- A clock is hanging from a nail fixed to a flat plate. The plate is being translated with a velocity \vec{v} and acceleration \vec{a} . The pendulum of the clock swings back and forth with a time period of 5 seconds and a max angle of $\pm \theta$. An ant travels from the bottom tip of the pendulum up to the centre.
- How do we compute the ant's position with respect to a fixed coordinate system coplanar with the plate?

Please sketch the situation and work it out for yourself

A Transformation Problem

Bring **D** to origin and **BC** parallel to the Y axis as shown

Transformation Computation

- Step 1: Translate by $-\mathbf{D}$. What is the orientation of BC?
- Step 2: Rotate to have unit vector $\vec{\mathbf{u}} = [u_x \ u_y]^{\mathsf{T}}$ from **B** to **C** on the Y axis. That is the second row of **R** matrix
- The matrix for the total operation: $\mathbf{M} = \mathbf{R} \mathbf{T}(-\mathbf{D})$
- ullet Two options for first row. $[u_y u_x]^{\mathsf{T}}$ and $[-u_y \ u_x]^{\mathsf{T}}$
- R matrix: (a) $\begin{bmatrix} u_y & -u_x \\ u_x & u_y \end{bmatrix}$ or (b) $\begin{bmatrix} -u_y & u_x \\ u_x & u_y \end{bmatrix}$?
- Difference? The direction aligned to the X-axis!
- Option (a) is correct. Why? Draw Option (b)!

Rotation about an axis parallel to Z

- An axis parallel to Z axis, passing through point (x, y, 0).
- Translate so that the axis passes through the origin: T(-x, -y, k) for any k!!
- Overall: $\mathbf{M} = \mathbf{T}(x, y, -k) \mathbf{R}_{\mathbf{Z}}(\theta) \mathbf{T}(-x, -y, k)$
- ullet Why shouldn't k matter? $\mathbf{R}_{\mathbf{Z}}$ doesn't affect the z coordinate. So, whatever k is added first will be subtracted later

Easy 3D Transformations

$$T(a,b,c) = \begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad S(a,b,c) = \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_y = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad R_z = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 CCW +ve; orthonormal; length preserving; rows give direction vectors that rotate onto each axis; columns

3D Rotation about an axis α

- What is $\mathbf{R}_{\alpha}(\theta)$?
- How do we reduce it to something we know?
- What do we know? $\mathbf{R}_{\mathbf{X}}(\theta), \mathbf{R}_{\mathbf{Y}}(\theta), \mathbf{R}_{\mathbf{Z}}(\theta)$

3D Rotation about an axis α

- What is $\mathbf{R}_{\alpha}(\theta)$?
- 3-step process:
 - 1. Apply $\mathbf{R}_{\alpha \mathbf{x}}$ to align α with the X axis.
 - 2. Rotate about X by angle θ .
 - 3. Undo the first rotation using $\mathbb{R}_{\alpha x}^{-1}$
- Net result: $\mathbf{R}_{\alpha}(\theta) = \mathbf{R}_{\alpha \mathbf{x}}^{-1} \mathbf{R}_{\mathbf{x}}(\theta) \mathbf{R}_{\alpha \mathbf{x}}$
- Quite simple!? What is $\mathbf{R}_{\alpha \mathbf{x}}(\theta)$?
- (We can align α with Y or Z axis also)

Computing \mathbf{R}_{α}

• First rotate by $-\beta$ about X axis. Vector α would lie in the XY plane, with tip at point **P**.

•
$$\beta = ?$$
, $\tan \beta = ?$

• Next rotate by $-\gamma$ about Z axis. Vector α would coincide with the X axis.

• $\gamma = ?$, $\tan \gamma = ?$

Computing \mathbf{R}_{α}

• Rotate by $-\beta$ about X axis to bring α to XY plane

•
$$\tan \beta = \frac{\alpha_z}{\alpha_y}$$

• Rotate by $-\gamma$ about Z axis to bring α to X axis

•
$$\tan \gamma = \frac{\sqrt{\alpha_y^2 + \alpha_z^2}}{\alpha_x} = \frac{\sqrt{1 - \alpha_x^2}}{\alpha_x}$$
 if $|\alpha| = 1$.

•
$$\mathbf{R}_{\alpha \mathbf{x}} = \mathbf{R}_{\mathbf{z}}(-\gamma)\mathbf{R}_{\mathbf{x}}(-\beta)$$
 and $\mathbf{R}_{\alpha \mathbf{x}}^{-1} = \mathbf{R}_{\mathbf{x}}(\beta)\mathbf{R}_{\mathbf{z}}(\gamma)$

 Alternative: Don't we know about rotation matrices and direction cosines that go to/from coordinate axes?

Final

• $\mathbf{R}_{\alpha}(\theta) = \mathbf{R}_{\mathbf{x}}(\beta)\mathbf{R}_{\mathbf{z}}(\gamma)$ $\mathbf{R}_{\mathbf{x}}(\theta)$ $\mathbf{R}_{\mathbf{z}}(-\gamma)\mathbf{R}_{\mathbf{x}}(-\beta)$

Alternate $R_{\alpha x}$

- After rotation, α will align with X-axis. Hence that is the first row $\mathbf{r_1}$ of the rotation matrix
- Find a direction orthogonal to α to be row $\mathbf{r_2}$. How?
- Take any vector \mathbf{v} not parallel to α . $\mathbf{r_2} = \alpha \times \mathbf{v}$ will work!!

• Lastly,
$${f r_3}={f r_1}\times{f r_2}$$
 and ${f R}_{\alpha{f x}}=$
$$\begin{bmatrix} \alpha & 0 \\ \alpha\times{f v} & 0 \\ {f r_1}\times{f r_2} & 0 \\ {f 0} & 1 \end{bmatrix}$$

• Many possibilities, all with the same result (hopefully...)

Example: Rotation about $[1 \ 1 \ 1]^T$

$$\beta = ?, \qquad \gamma = ?$$

Example: Rotation about $[1 \ 1 \ 1]^T$

$$\tan \beta = 1, \qquad \tan \gamma = \sqrt{2}$$

Computing $\mathbf{R}_{\alpha \mathbf{x}}$: Method 1

• Rotate by $-\pi/4$ about X. $\mathbf{R_X}(-\frac{\pi}{4}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$

•
$$\mathbf{R}_{\mathbf{Z}}(-\arctan(\sqrt{2})) = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & 0\\ \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

•
$$\mathbf{R_{\alpha x}^{I}} = \mathbf{R_{Z}}(-\tan^{-1}(\sqrt{2})) \ \mathbf{R_{X}}(-\frac{\pi}{4}) = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & 0\\ \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & 0\\ 0 & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Computing $\mathbf{R}_{\alpha \mathbf{x}}$: Method 2

- $[1\ 1\ 1]^T$ will lie on X-axis. First row $\mathbf{r_1} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}^T$.
- Second row: $\mathbf{r_2} = \alpha \times [\mathbf{1} \ \mathbf{0} \ \mathbf{0}]^T = [\mathbf{0} \ \frac{1}{\sqrt{2}} \ \frac{-1}{\sqrt{2}}]^T$
- Third row: $\mathbf{r_3} = \alpha \times [\mathbf{0} \ \frac{1}{\sqrt{2}} \ \frac{-1}{\sqrt{2}}]^{\mathrm{T}} = [\frac{2}{\sqrt{6}} \ \frac{-1}{\sqrt{6}} \ \frac{-1}{\sqrt{6}}]^{\mathrm{T}}$

$$\bullet \mathbf{R}_{\alpha \mathbf{x}}^{\mathbf{II}} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 \\ \frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \mathbf{R}_{\mathbf{Y}}(\tan^{-1}(\sqrt{2})) \mathbf{R}_{\mathbf{X}}(\frac{\pi}{4})$$

CS7.302

$\mathbf{R}_{\alpha\mathbf{x}}$ Method 2: Contd

Question: Which vector v yields the matrix of Method 1?

Rotation: Arbitrary Axis, Point

- An arbitrary axis may not pass through the origin.
- Translate by T so that it passes through the origin.
- Apply \mathbf{R}_{α} .
- Translate back using T^{-1} .
- Composite transformation: $T^{-1} R_{\alpha} T$.

3D Transformations

- Many ways to think about a given transform.
- Ultimately, there is only one transform given the starting and ending configurations.
- Different methods let us analyze the problem from different perspectives.

Another Example

Working the Example

- Translate by -A to bring it to the origin.
- After the rotation, AC sits on the X axis.
- The first row of the rotation matrix is AC / |AC|.
- The vector normal to the plane ABC sits on the Y axis.
- The second row of the rotation matrix is the unit vector along AB × AC = (AB × AC) / |AB × AC|.
- Third row is a cross product of the first two.
- Final transformation: $\mathbf{R} \mathbf{T}(-\mathbf{A})$

Transforming Lines

- A composite transformation can be seen as changing points in the coordinate system.
- These transformations preserve collinearity. Thus, points on a line remain on a (transformed) line.
- Take two points on the line, transform them, and compute the line between new points.
- Lines are defined as a join of 2 points or intersection of 2 planes in 3D. The same holds for transformed lines using transformed points or planes!

Transforming Planes

- A plane is defined by a 4-vector n (called the normal vector) in homogeneous coordinates.
- The plane consists of points p such that $n^Tp = 0$.
- Let Q transform n when points are transformed by M.
- Coplanarity is preserved: $(\mathbf{Qn})^{\mathsf{T}}\mathbf{Mp} = \mathbf{0} = \mathbf{n}^{\mathsf{T}}\mathbf{Q}^{\mathsf{T}}\mathbf{Mp}$.
- True when $Q^{\mathsf{T}}M = I$, or $Q = M^{-\mathsf{T}}$.
- Q is the Matrix of cofactors of M in the general case when M⁻¹ doesn't exist.

Understanding Geometric Transformations

- Geometry transformation of objects is very important to compose graphics environments
- Understand what you want to be achieved, visualize it in your mind and compose the series of transformations
- Needs getting used to the ideas. Think about getting into a simpler situtation from the current one.