Word Vector Representation

Oct. 20th, 2020 Knowledge and Language Engineering Lab., Pohang University of Science and Technology

Contents

- Recapitulation
 - Vector Representation
 - Word2Vec (Mikolov et al., 2013)
 - GloVe (Pennington et al., 2014)
 - fastText (Bojanowski et al., 2017)
- Practice
 - Word2Vec
- Latest Trends

RECAPITULATION

Vector

 An object that is supposed to represent its magnitude and direction at the same time.

- The arrow a is capable of signifying both its length (magnitude; 'norm') and angle (direction; 'inner product').
- $\mathbf{a}=(a_{\chi},a_{\gamma},a_{z}).$

- Language model (LM)
 - A stochastic model for sequences of words.
 - LM can be used in all NLP tasks.
- Two ways to represent a word as a vector
 - discrete representation
 - continuous representation

- Discrete Representation
 - A word is regarded as an autonomous entity.
 - Every word is represented as a '1-of-V' ('one-hot') vector of dimension |V|; sparse representation.

	Vector				
Apple	[1, 0, 0, 0,, 0]				
Banana	[0, 1, 0, 0,, 0]				
Cherry	[0, 0, 1, 0,, 0]				
Durian	[0, 0, 0, 1,, 0]				
	•••				

- Discrete Representation
 - All word vectors are independent from one another.
 - → Redundant space (zero-valued)
 - → Intractability of a huge vocabulary
 - → Difficulty in estimating the similarity between two words

- Continuous Representation
 - This system consists of dense matrices; 'word embedding.'
 - Each dimension reflects a certain (uninterpreted) lexical property.

	Vector				
Apple	[0.7, 0.5, 0.3, 0.1,]				
Banana	[0.4, 0.1, 0.5, 0.9,]				
Cherry	[0.6, 0.4, 0.7, 0.1,]				
Durian	[0.2, 0.1, 0.6, 0.3,]				
	•••				

Distributional Hypothesis

- "Words that are used and occur in the same context tend to purport similar meanings" (Harris 1954, as cited in "Distributional semantics," 2020, "Distributional hypothesis," para. 1)
- "A word is characterized by the company it keeps" (Firth, 1968)
- i.e. co-occurrence

Methods

- Word2Vec (Mikolov et al., 2013)
- GloVe (Pennington et al., 2014)
- fastText (Bojanowski et al., 2017)

- Continuous Bag-of-Words Model
 - The model predicts the current word from the other words within a given range.

- Continuous Bag-of-Words Model
 - The model predicts the current word from the other words within a given range.

- Continuous Skip-gram Model
 - The model predicts the other words from the current word

- Continuous Skip-gram Model
 - The model predicts the other words from the current word

GloVe (Pennington et al., 2014)

- Global Vectors for Word Representation
- "Word2Vec methods poorly utilize the statistics of the corpus since they train on separate local context windows instead of on global co-occurrence counts."
- The model is based on the co-occurrence matrix.
 - A "global skip-gram" model.

	k = solid	k = gas	k = water	k = fasion
P(k ice)	0.00019	0.000066	0.003	0.000017
P(k steam)	0.000022	0.00078	0.0022	0.000018
P(k ice)/P(k steam)	8.9	0.085	1.36	0.96

fastText (Bojanowski et al., 2017)

- We can handle rare words by decomposing them into 'subwords'.
- A pre-trained Korean embedding is provided at
 - https://fasttext.cc/docs/en/crawl-vectors.html

```
u-n_r-e-l-a_t-e_d
u-n re-l_a-t-e_d
u-n re_l-at-e_d
un re-l-at-e-d
un re_l-at-ed
un re-lat-ed
un re-lat-ed
un relat_ed
```

```
u-n-<u>r-e</u>-l-a_t-e-d
u_n re_l-<u>a-t</u>-e-d
u_n re-l-<u>at-e</u>-d
u_n <u>re-l</u>-ate_d
u_n <u>rel-ate</u>-d
u_n relate_d
```

```
u-n_r_e_l-a-t-e-d
u-n-r_e-l-at-e-d
u-n-r_e-l_at_ed
un-r-e-l-at-ed
un re-l_at-ed
un re-l_at-ed
un rel_ated
```

fastText (Bojanowski et al., 2017)

- Word2Vec taking the subword level into account
 - Word2Vec's score function $s(w_t, w_c)$ is the inner product of the word and its context, but fastText uses

$$s(w,c) = \sum_{g \in \mathcal{G}_w} \mathbf{z}_g^{\top} \mathbf{v}_c$$

lacktriangle , where z_q is a n-gram subword vector and v_c is the context vector.

PRACTICE

Gensim

- A free Python library for statistical semantics
 - https://radimrehurek.com/gensim/index.html
- Install Gensim
 - sudo pip install --upgrade gensim
 - conda install gensim
 - For more information
 - https://radimrehurek.com/gensim/install.html

- 1. Prepare the corpus to train
- Train a Word2Vec model
- Load the trained model
- 4. Score the similarity between words
- Find the word farthest away from the mean
- Find the top-N most similar words
- Find the top-N most similar words with combination of words

- Step 1. Prepare the corpus to train
 - Korean news corpus
 - Crawled from online news sites
 - 430 k sentences, 160 k morphemes
 - Morphologically analyzed (No POS Tags)
 - Word frequencies

Frequency	≥ 1000	≥ 700	≥ 500	≥ 300	≥ 100
Unique Words	1612	2175	2891	4250	9196

- Step 2. Train a Word2Vec model
 - model = gensim.models.Word2Vec(size=150, window=5, sg=1, min_count=5, worker=20)
 - size: the dimension of word vector, default = 100
 - window: the size of word window, default = 5
 - sg: 0 CBOW / 1 skip-gram, default = 0
 - min_count: the threshold of word frequency, default = 5
 - worker: the number of thread for training, default = 1

- Step 2. Train a Word2Vec model
 - model.build_vocab(sentences)
 - sentences: the texts for training

 - model.save(\$model_name)
 - \$model_name: the file name of the saved model

- Step 3. Load the trained model
 - model = gensim.models.Word2Vec.load(\$model_path)
 - \$model_path: the location of the trained model

- Step 4. Score the similarity between words
 - model.wv.similarity(word1, word2)
 - Score the similarity of word1 and word2

Examples

- 한국 북한: 0.995
- 노트북 컴퓨터: 0.994
- 일본 도쿄: 0.987
- 자동차 휘발유: 0.982
- 임상실험 신약: 0.933
- 파인애플 피자: 0.147

- Step 5. Find the word that is farthest away from the mean of the given words including itself.
 - model.wv.doesnt_match(word_list)
 - Returns the word that is farthest away from the mean of word_list

- Examples
 - 소프트웨어 하드웨어 컴퓨터 치약 → 치약
 - 국회 정부 정책 창문 → 창문
 - 버스 지하철 비행기 자가용 → 자가용

- Step 6. Find the top-N most similar words
 - model.wv.most_similar(positive=[word])
 - Print 10 most similar words

- Step 7. Find the top-N most similar words with a combination of words
 - - positive/negative: (pos/neg) words for calculation
 - topn: the number of the most similar words
- Example
 - Find the most similar word with the result of (a b + c)
 - 대통령 한국 + 미국 → 부시
 - https://word2vec.kr/search/

LATEST TRENDS

BERT (Devlin et al., 2019)

- Contextualized Word Representation
 - Pre-trained on huge unlabeled corpora.
 - Using Transformer's encoder (multi-head self-attention).
 - https://github.com/google-research/bert

Usage of BERT

- Transferring Features
 - Using some of layer values as features for down-stream tasks.
- Fine-tuning
 - Tuning pre-trained parameters with a touch of down-stream tasks.

Popular variants of BERT

- XLNet (Yang et al., 2019)
 - https://github.com/zihangdai/xlnet
- XLM (Conneau & Lample, 2019)
 - https://github.com/pytorch/fairseq/tree/master/examples/cross_ling ual_language_model
- RoBERTa (Liu et al., 2019)
 - https://github.com/pytorch/fairseq/tree/master/examples/roberta
- BART (Lewis et al., 2020)
 - https://github.com/pytorch/fairseq/tree/master/examples/bart

Q & A

References

- Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of Words and Phrases and Their Compositionality, In Advances in Neural Information Processing Systems 26, Red Hook, NY, USA, Curran Associates Inc. http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
- Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global Vectors for Word Representation, In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, Association for Computational Linguistics. https://doi.org/10.3115/v1/D14-1162
- Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching Word Vectors with Subword Information. *Transactions of the Association for Computational Linguistics*, (5), 135–146. https://doi.org/10.1162/tacl_a_00051
- contributors, W. (2020). Distributional semantics Wikipedia [Online; accessed 18-October-2020].
 https://en.wikipedia.org/wiki/Distributional semantics
- Harris, Z. S. (1954). Distributional Structure. WORD, 2-3(10), 146–162.
 https://doi.org/10.1080/00437956.1954.11659520
- Firth, J. R. (1968). Studies in Linguistic Analysis (F. R. Palmer, Ed.). In F. R. Palmer (Ed.), *Selected Papers of J.R. Firth 1952-1959*. Original work published 1957. London, Longman.

References

- Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, In *Proceedings of the 2019 Conference of the North American* Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, Association for Computational Linguistics.
- Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). XLNet: Generalized Autoregressive Pretraining for Language Understanding, In Advances in Neural Information Processing Systems 32, Red Hook, NY, USA, Curran Associates, Inc. http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf
- Conneau, A., & Lample, G. (2019). Cross-lingual Language Model Pretraining, In Advances in Neural Information Processing Systems 32, Red Hook, NY, USA, Curran Associates, Inc. http://papers.nips.cc/paper/8928-cross-lingual-language-model-pretraining.pdf
- Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. https://arxiv.org/abs/1907.11692
- Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., & Zettlemoyer, L. (2020). BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension, In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, Online, Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.acl-main.703