Programming Contest 2017

解説

問題一覧

- A. MEN☆G
- B. 製本
- C. 片付け

ほぼ全員に解けて欲しかった

- D. WNCS
- E. P=NP
- F. 2017
- G. NOKEMON GO

だんだん難易度が上がっていく

(´•ω•`)(経験者用)

問題概要(A)

• 並盛はaグラム、大盛はa+bグラム、神盛はa+b+cグラム

・並盛、大盛、神盛の合計を求めよう

解說(A)

- <u>a+(a+b)+(a+b+c)</u>を計算するだけ
- •書くのが面倒なので3a+2b+cとするといい

(ところで、<u>某油そば屋</u>はエゴサが激しいことが知られているので、 みんなも注意しよう)

B. 製本

問題概要(B)

今、Nページが完成している。ページを<u>追加</u>して、ページ数を<u>4の倍数</u>にしたい

•*N*+*x*が4<u>の倍数</u>になる最小の非負整数*x*は?

解説(B)

ポイント: <u>4の倍数</u>を考える ⇒ 演算子 "%" を使おう

方針1. i=0~3をfor文で試して、(x+i)%4==0となるiを探す

方針2. xを4で割った余りで場合分け

などなど色々な方法があります.

(. 片付け

問題概要(C)

- ・文字"○"と"."からなる文字列S がある
- ・文字"○"を右に全部寄せた同じ長さの文字列を求めよう

例えば

00...0..

解說(C)

・答えの文字列はSと比較して、"○"と"."の数が一緒!

・だから

「"."をSと同じ数だけ並べて、残りを"o"で埋めたもの」

が答え→<u>ループ</u>を使おう!

別解(C)

実は、"○"と"."では"."のほうがASCIIコードが小さい

"."(小さい方)を手前に"○"(大きい方)を奥に並べたい

ソート

するだけでなんと答えが出る

D. WNCS

問題概要(D)

N人が総当りリーグ戦を行う(必ず勝敗がつく)

勝ち数が多い順に上位になれる

勝ち数が同じなら予選順位が高い方が上位になる

リーグ戦の順位はどのようになるか?

解説(D)

1. 勝ち数が多い方から見ていく

その勝ち数と一致すればその順位を出力

2. 予選順位が高い方から見ていく

「同じ勝ち数なら予選順位が高い方が上位」という条件もカバーできる!

```
int rank[100],r=0;
for(int i=N-1; i>=0; i--){
   for(int j=1; j<=N; j++){
       if(win[j] == i) {
          rank[r++] = j;
```

別解(D)

勝ち数が多い順に、

勝ち数が同じ中では 予選順位が小さい順になるように並べたい

バブルソート、選択ソート、挿入ソート、クイックソート...

N <= 100 なので どれでも十分に速く動作します

E. P=NP

問題概要(E)

文字列Sが与えられる

P→NPという変換を繰り返すことで、PPAPからSにできるか?

(例) S = NPNPAP

PPAP → PNPAP → NPNPAP

解說(E)

変換(P→NP)の意味について考える

要するにPの左隣にNを入れる操作

そうすると初期状態(PPAP)から作ることのできる文字列は...

N...NPN...NPAN...NP

各Pの左隣にNが0個以上連続する文字列のみ作れる

解說(E)

どうやって判定する?

例えば...

- (1) Pがちょうど3つあることを確認
- (2) 最後の文字がPであることを確認
- (3) 2つ目のPの直後がAであることを確認
- (4) それ以外の文字は全てNであることを確認

他にも、正規表現を書くとか

問題概要(F)

 $1 \times 2 \times 3 \times 4 \times ... \times N \mod 2017$

例えば 29! = 8841761993739701954543616000000

↑ 64bit整数(long long型)でも入らない

 $(A \times B) \% M = ((A \% M) \times B) \% M$

<u>掛け算のあとに、毎回 mod を取る</u>ことで、 常に 2017 以下で扱うことができる

解說(F)

```
int ans = 1;
for(int i=2; i<=N; i++) {
    ans = (ans * i ) % 2017
}
printf("%d\n", ans);</pre>
```

Nがとても大きいので、終わらない!

解說(F)

よく考えてみると...

$$1 \times 2 \times 3 \times ... \times 2016 \times 2017 \times 2018 \times ... \times N = ?$$
 $\uparrow \mod 2017 = 0$

よって、N ≥ 2017 のとき, 絶対に答えは0!

N < 2017のときは愚直に計算しよう

G. NOKEMON GO

問題概要(G)

- •(x,y)座標系で考える
- ・ノケモンがM匹いる
- ・ノケストップがN回ある
- ・ノケストップから, **距離L**以内の ノケモンをゲットできる
- ・何匹のノケモンをゲットできるか?

解説(G)

「距離L以内」

→ みんな大好き「三平方の定理」より

$$(P_x - Q_x)^2 + (P_y - Q_y)^2 \le L^2$$

が成り立てば、距離L以内

(ルートとか小数とか考えなくてOK)

解説(G)

-2重ループを回そう

int count = 0;

for (i:全部のノケストップについて) for (j:全部のノケモンについて) if(距離がL以内) count++;

解説(G)

```
-2重ループを回そう
int count = 0;
int checked[M] = \{0\};
for (i:全部のノケストップについて)
 for (j:全部のノケモンについて)
   if( 距離がL以内 && checked[j] == 0){
     count++;
     checked[j] = 1;
```


H. PPAP

問題概要

この問題に目を通してくれた方がどれだけいるのか...(´・ω・`)

N軒の店がある

それぞれの店ではペンai本・リンゴbi個・パイナップルci個のセットをriルビーで売っている(1軒の店から何セットでも買える)

ペンを2x本以上、リンゴをx個以上、パイナップルをx個以上買いたい

必要な金額の最小値は?

「何が分かれば答えを決められるか」を考えてみる

cost[i][j][k] := ペンをi本以上、リンゴをj個以上、パイナップルをk個以上((i,j,k)と表す)買うために必要な金額の最小値

とおけば、答えはcost[2x][x][x]

1つずつ状況を整理していく

"1軒のお店で何セットでも買うことが出来る" ← このままだと分かりにくい

自由にお店をまわって、1セットずつ買っていく

という解釈にしよう

(例)1軒目で3セット、2軒目で2セット買う

→ 1,1,1,2,2 という順番で店を訪れる という解釈

今、ペンをi本、リンゴをi個、パイナップルをk個持っている時:

次に行くお店をN軒の中から1つ選ぶ → 店sに行くとしたら...

cost[i+as][j+bs][k+cs] = min(cost[i+as][j+bs][k+cs], cost[i][j][k]+rs)

今、ペンをi本、リンゴをj個、パイナップルをk個持っている時:

次に行くお店をN軒の中から1つ選ぶ → 店sに行くとしたら...

店sで1セット購入 → ペンi+as本、リンゴj+bs個、パイナップルk+cs個になる

解説

漸化式の形を見ると、cost[i][j][k]は自分より添字の小さい位置にしか依存していない

→ 小さい位置が全部決まっていればcost[i][j][k]も決まる

あとは、この更新ルールに従って(i,j,k)が小さい方から更新していく

cost[0][0][0] = 0 を初期値として、cost[2x][x][x]が答えになる

次元を落として考えよう

2次元で考える

リンゴとパイナップルだけで考えよう

(具体例) N=2, x=4

cost[x][x] はどうなる???

	0	1	2	3	4
0	0	INF	INF	INF	INF
1	INF	INF	INF	INF	INF
2	INF	INF	INF	INF	INF
3	INF	INF	INF	INF	INF
4	INF	INF	INF	INF	INF

	0	1	2	3	4
0	0	INF	INF	INF	INF
1	INF	INF	INF	INF	INF
2	INF	INF	INF	INF	INF
3	INF	INF	INF	INF	INF
4	INF	INF	INF	INF	INF

・(0,0)のセルは確定

	0	1	2	3	4
0	0	INF	INF	INF	INF
1	INF	INF	INF	11	INF
2	INF	7	INF	INF	INF
3	INF	INF	INF	INF	INF
4	INF	INF	INF	INF	INF

・(0,0)のセルは確定

	0	1	2	3	4
0	0	INF	INF	INF	INF
1	INF	INF	INF	11	INF
2	INF	7	INF	INF	INF
3	INF	INF	INF	INF	INF
4	INF	INF	INF	INF	INF

•(0,1)のセルは確定

	0	1	2	3	4
0	0	INF	INF	INF	INF
1	INF	INF	INF	11	INF
2	INF	7	INF	INF	INF
3	INF	INF	INF	INF	INF
4	INF	INF	INF	INF	INF

•(0,1)のセルは確定

INFに何を足しても無意味

	0	1	2	3	4
0	0	INF	INF	INF	INF
1	INF	INF	INF	11	INF
2	INF	7	INF	INF	INF
3	INF	INF	INF	INF	INF
4	INF	INF	INF	INF	INF

・(0,2)のセルは確定

	0	1	2	3	4
0	0	INF	INF	INF	INF
1	INF	INF	INF	11	INF
2	INF	7	INF	INF	INF
3	INF	INF	INF	INF	INF
4	INF	INF	INF	INF	INF

•(0,2)のセルは確定

(0,2)、青を買う → (1,5)

x個以上持っている時は、 x個とみなして構わない

	0	1	2	3	4
0	0	INF	INF	INF	INF
1	INF	INF	INF	11	INF
2	INF	7	INF	INF	INF
3	INF	INF	INF	INF	INF
4	INF	INF	INF	INF	INF

•(1,3)のセルは確定

	0	1	2	3	4
0	0	INF	INF	INF	INF
1	INF	INF	INF	11	INF
2	INF	7	INF	INF	22
3	INF	INF	INF	INF	18
4	INF	INF	INF	INF	INF

•(1,3)のセルは確定

	0	1	2	3	4
0	0	INF	INF	INF	INF
1	INF	INF	INF	11	INF
2	INF	7	INF	INF	22
3	INF	INF	INF	INF	18
4	INF	INF	INF	INF	INF

•(2,1)のセルは確定

	0	1	2	3	4
0	0	INF	INF	INF	INF
1	INF	INF	INF	11	INF
2	INF	7	INF	INF	22
3	INF	INF	INF	INF	18
4	INF	INF	14	INF	INF

•(2,1)のセルは確定

	0	1	2	3	4
0	0	INF	INF	INF	INF
1	INF	INF	INF	11	INF
2	INF	7	INF	INF	22
3	INF	INF	INF	INF	18
4	INF	INF	14	INF	INF

・(2,4)のセルは確定

	0	1	2	3	4
0	0	INF	INF	INF	INF
1	INF	INF	INF	11	INF
2	INF	7	INF	INF	22
3	INF	INF	INF	INF	18
4	INF	INF	14	INF	29

•(2,4)のセルは確定

(2,4)、青を買う→22+11

各セルは、<mark>最小値</mark>を保存 するので、更新は発生しない

	0	1	2	3	4
0	0	INF	INF	INF	INF
1	INF	INF	INF	11	INF
2	INF	7	INF	INF	22
3	INF	INF	INF	INF	18
4	INF	INF	14	INF	29

・(3,4)のセルは確定

	0	1	2	3	4
0	0	INF	INF	INF	INF
1	INF	INF	INF	11	INF
2	INF	7	INF	INF	22
3	INF	INF	INF	INF	18
4	INF	INF	14	INF	25

•(3,4)のセルは確定

赤でも青でも、(4,4)

各セルは、<mark>最小値</mark>を保存 するので、赤を採用

	0	1	2	3	4
0	0	INF	INF	INF	INF
1	INF	INF	INF	11	INF
2	INF	7	INF	INF	22
3	INF	INF	INF	INF	18
4	INF	INF	14	21	25

•(4,4)のセルは確定

•答えは25

2次元で考える

今、動かしてみたこと

配列とfor文で実現できる

(INFは十分に大きい数で代用)

3次元になっても(ペンが要素として増えても)、同じ要領で考えられる

補足

動的計画法 / Dynamic Programming(DP) と呼ばれるアルゴリズム

初見での理解は難しかったかも...

2016年の最終問(ラボライフ!)は、これの簡単なバージョン。

似た問題たち → http://judge.u-aizu.ac.jp/onlinejudge/finder.jsp?course=DPL

表彰式

上位入賞

1位~9位

上位者紹介

1位 とまと

1628

2位

@hidollara 1522

985

3位 マイケル

ikarostech

4位

5位 seri911

746

795

上位者紹介

6位

7位

8位

9位

10位

alanc

zhacro

kharu45

mi

hitofish

Keito120607

691

688

678

546

538

495

上位賞

10位~15位

上位者紹介

13位	shi	481
1314	SNI	481

2のべき賞

2^4, 2^5, 2^6

2のべき賞

16位	kojak	461
-----	-------	-----

32位	kazu10	267
-----	--------	-----

64位 futafuta22 25

Last Large AC賞

各問題で最後にLargeをACした人

(上位入賞者除く)

Last Large AC賞

MEN☆G	hinafunahashi	15:42:43
製本	mira	15:41:10
片付け	dyuhuhuhuhuhu	15:34:27
P=NP	tyougenni	15:29:38

手作業賞

手作業賞

s162604912

63 s162604912

以下、宣伝です

ICPCに参加しよう!

ICPCとは・・・

● <u>大学対抗のチーム戦</u>プログラミングコンテスト

(3分でわかるicpc: http://icpc.iisf.or.jp/acm-icpc/3min/)

ICPCのここがアツイ!

チーム戦だから、<u>仲間と一緒に</u>戦える!

Programming Daisuki Clubって、、??

本学初(?)の競技プログラミングサークル

● U-30プログラミングコンテスト優勝 など

以下の条件を満たす人はぜひPDCへ!

1. プログラミングが好きだ!

(→@DAyamaCTFにDMしてね)

セキュリティキャンプに行こう!

セキュキャンとは...

- •8/14-18の5日間
- ・最高レベルの講師陣による講義・実習
- •朝から晩まで
- しかも無料で!
- 今年はものづくりコースもあるよ!自作OS・自作言語・自作CPU!!

応募締切: 5/29 正午

お疲れ様でした!

作問したTAは懇親会にも参加しているので 気軽に声掛けてね