

世界知的所有権機関 国際 事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C12N 15/13, C07K 14/47, 16/18, C12P 21/08

A1

JP

(11) 国際公開番号

WO98/10070

(43) 国際公開日

1998年3月12日(12.03.98)

(21) 国際出願番号

PCT/JP97/02983

(22) 国際出願日

1997年8月27日(27.08.97)

(30) 優先権データ

特願平8/231742 特願平8/271546 1996年9月2日(02.09.96)

1996年9月20日(20.09.96)

(71) 出願人 (米国を除くすべての指定国について)

住友電気工業株式会社

(SUMITOMO ELECTRIC INDUSTRIES, LTD.)[JP/JP]

〒541 大阪府大阪市中央区北浜四丁目5番33号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

奥村 康(OKUMURA, Ko)[JP/JP]

〒113 東京都文京区本郷2-2-1

順天堂大学 医学部免疫学教室内 Tokyo, (JP)

中田元巳(NAKATA, Motomi)[JP/JP]

〒244 神奈川県横浜市栄区田谷町1番地

住友電気工業株式会社 横浜製作所内 Kanagawa, (JP)

樋口浩文(HIGUCHI, Hirofumi)[JP/JP]

〒869-11 熊本県菊池郡菊陽町津久礼3020

大川ハイツ201号 Kumamoto, (JP)

牛尾義高(USHIO, Yoshitaka)[JP/JP]

〒862 熊本県熊本市龍田町上立田960 田中ハイツ209号

Kumamoto, (JP)

前田浩明(MAEDA, Hiroaki)[JP/JP]

〒860 熊本県熊本市壺川1丁目1-12 栄久ハイツ101号

Kumamoto, (JP)

江田康幸(EDA, Yasuyuki)[JP/JP]

〒861-11 熊本県菊池郡合志町豊岡2012-88 Kumamoto, (JP)

(74) 代理人

弁理士 青山 葆、外(AOYAMA, Tamotsu et al.) 〒540 大阪府大阪市中央区城見1丁目3番7号 IMPビル 青山特許事務所 Osaka, (JP)

(81) 指定国 AU, CA, JP, US, 欧州特許 (AT, BF, CH, DE,

(81) 指定国 AU, CA, JP, US, 欧州特許 (AT, BF, CH, DE DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調查報告書

(54)Title: HUMANIZED IMMUNOGLOBULIN REACTING SPECIFICALLY WITH Fas LIGAND OR ACTIVE FRAGMENTS THEREOF AND REGION INDUCING APOPTOSIS ORIGINATING IN Fas LIGAND

(54)発明の名称 Fasリガンドに特異的に反応するヒト型化免疫グロブリンもしくはその活性フラグメント並びにFasリガンド に由来するアポトーシス誘導領域

(57) Abstract

A novel humanized immunoglobulin reacting specifically with a Fas ligand and active fragments thereof are provided and a region on a Fas ligand which is important in inhibiting apoptosis induced by cells with Fas expression on the basis of the Fas-Fas ligand interaction is clarified. The novel humanized immunoglobulin and active fragments thereof are prepared by the recombinant DNA techniques from hybridomas which produce a monoclonal antibody reacting specifically with a Fas ligand. This immunoglobulin can inhibit physiological reactions between a Fas ligand and Fas, typified by apoptosis. By specifying the region participating in the induction of apoptosis on a Fas ligand, there have been constructed recombinant proteins and peptides which react specially with the amino acids contained in this region to thereby inhibit apoptosis and are thus applicable to novel remedies, clinical diagnostic drugs, etc.

... CRY enhancer

b ... daick \$-actin promoter

compress catalics ... o

orto voscomo colico color producto... o

o ... teman Cyl

0 ... polyedenylation sito

g ... bamen Ce

Fasリガンドに特異的に反応する新規なヒト型化免疫グロブリン及びそ の活性フラグメントを提供し、さらにFas-Fasリガンド相互作用によ りFas発現細胞に誘導されるアポトーシスを抑制するために重要なFas リガンド上の領域を明らかにする。

Fasリガンドに特異的に反応するモノクローナル抗体を産生するハイブ リドーマより、組換えDNA技術を用いてFasリガンドに特異的に反応す る新規なヒト型化免疫グロブリン及びその活性フラグメントを調製する。該 ヒト型化免疫グロプリンは、アポトーシスで代表されるFasリガンドと Fasとの生理的反応を抑制することができる。また、アポトーシスの誘導 に関与するFasリガンド上の領域の特定により、当該領域に含まれるアミ ノ酸に対して特異的に反応し、アポトーシスを抑制する組換え蛋白、ペプチ ドなどを作出し、新たな治療薬或いは臨床診断薬等に応用することができ る。

PCTに基づいて公開される国際出版のパンフレット第一頁に記載されたPCT加盟国を同定するために使用されるコーポ(参考情報)

AAAABBEFGJRYAFCHIMNUZE SIRABEHMNWRU GGGGGGGGHU LRSTUVCD SGSI SN2DGJMRTTUUUZNUUVYW MG MK IDELISTPEGPRZC. ML MNWXELOZLTOUC

1

明細書

Fasリガンドに特異的に反応するヒト型化免疫グロブリンもしくはその 活性フラグメント並びにFasリガンドに由来するアポトーシス誘導領域

技術分野

本発明は、新規なヒト型化免疫グロブリンに関し、加えて、FasーFasリガンド相互作用によりFas発現細胞に誘導されるアポトーシスを抑制するために重要なFasリガンド上の領域についての知見に関する。詳細には、Fasリガンドに特異的に反応するヒト型化免疫グロブリンまたはその活性フラグメントに関し、当該免疫グロブリン及び領域は、Fas抗原とFasリガンドの生理的反応により誘導されるアポトーシスが原因となる疾患についての臨床的な応用、例えば、細胞死におけるFasシステム等の解明、免疫治療や診断、Fasリガンドの検出またはこれに関連した産業分野において有用である。

背景技術

多細胞生物は、その恒常性を保つために細胞の増殖と死を巧妙にコントロールしている。個体発生の過程では多くの細胞が細胞死によって除去される。また、成体においても、臓器を構成する細胞は常に増殖と死のバランスを保ちながらその機能を維持している。このような細胞死は、予め予定された死であり「プログラム細胞死(programmed cell death)」と呼ばれ、物理的・化学的要因で引き起こされる不慮の細胞死(accidental cell death)と区別されている(Raff, M. C., Nature, vol. 3 5 6, p. 3 9 7 - 4 0 0, 1 9 9 2)。

これらの2つの細胞死は、その過程が異なっている。すなわち、プログラム細胞死はアポトーシスの過程によって起こるのに対し、不慮の細胞死ではネクローシス(壊死)の過程を経て細胞が死滅すると考えられている(カー (Kerr, J. F.)、Brit. J. C ancer, vol. 26, p. 239-257, 1972)。

Fas抗原は、プログラム細胞死(アポトーシス)を媒介する細胞表面蛋白質であり、そのcDNAもクローニングされている(長田ら、Cell, vol. 66, p. 223-243, 1991)。得られたcDNAの構造から、ヒトFas抗原はアミノ酸319残基からなる細胞膜貫通型蛋白質であって1つの細胞膜貫通部分を有することが判明した。Fas抗原の細胞外部分は、アミノ酸157残基から構成されシステイン残基に富む構造を有している。また、マウスFas抗原はアミノ酸306残基からなりヒトFas抗原と49.3%の相同性を示す。

Fas抗原における細胞外部分のシステイン残基に富む構造は、神経成長因子(NGF: nerve growth factor)の低親和性レセプターや腫瘍壊死因子(TNF: tumor necrosis factor)のレセプターにも認められるよく保存された構造であることが判明した。これらの事実から、Fas抗原がNGF/TNFレセプターファミリーに属する細胞表層蛋白質であることが明らかとなった。このファミリーに属する蛋白質の多くは、生体内にそのリガンドを有しているのでFas抗原にも生体内にリガンドが存在していることが予想されていたが、1993年、長田重一博士のグループによりラットのFasリガンドの分子が同定された(長田ら、Cell, vol. 75, p. 1169-1178, 1993)。続いて、マウス及びヒトのFasリガンドの分子が同グループにより同定された(長田ら、Int. Immunol., vol. 6

No. 10, p. 1567-1574, 1994).

前記長田らの文献によれば、Fasリガンドは278個のアミノ酸からなる分子量31,138の蛋白質であること、また、4カ所のNーグリコシド結合サイトがあり、糖蛋白質であること等が判明している(長田ら、細胞工学、vol. 13 No. 8,p. 738-744,1994)。また、可溶性のFasリガンド分子はFas抗原を細胞表面に発現するターゲット細胞にアポトーシスを誘導することが明らかにされている(長田ら、J. Exp. Med., vol. 1 79,p. 873-879,1994)。

花渕らの報告によれば、キラーT細胞によるFas抗原を介した標的細胞破壊機構の解析の結果、パーフォリンを発現していないCD4陽性T細胞(CTL)による標的細胞破壊には、標的細胞上のFas抗原を介したアポトーシス・シグナルの伝達が関与している可能性が示され、それによってCD4陽性CTLの細胞表面にFasリガンドが存在していることが明らかになった(花渕ら、Proc. Natl. Acad. Sci. USA,vol. 9 1, No. 11, p. 4930-4934, 1994)。

このように、Fas抗原は細胞に"死"というシグナルを伝えることが明らかになっているが、Fas抗原やFasリガンドなどのアポトーシスを媒介する蛋白質の不活性化が細胞の異常増殖を引き起こし、一方、その異常な活性化がある種の炎症反応を引き起こすことが示唆されている。

例えば、自己免疫疾患様の症状を示す l p r (lymphoproliferation)変異をもつマウスでは、F a s 遺伝子に変異が存在していることが見出されている一方で、同じく自己免疫疾患様の症状を示す g l d (generalized lymphoproliferative disease)変異をもつマウスでは、F a s リガンドそのものに変異が存在することが報告されている(長田ら、Cell, vol. 7 6,

p. 969-979, 1994).

また最近の研究結果から、Fas抗原とFasリガンドの生理的反応が、 様々な疾患を引き起こす可能性が示唆されている。

例えば、AIDSの原因ウィルスであるHIV由来のtat蛋白がFas リガンドの発現を促進し、Fas抗原を発現しているT細胞にFas-Fasリガンドの相互作用を介したアポトーシスを引き起こすことが報告さ れており (ウエスタンドロップ (Westerndrop, M.)ら、Nature, vol. 37 5, p. 497-500, 1995)、実際に、HIV感染T細胞には Fasの発現が認められることも明らかとなっている(小林ら、Proc. Natl. Acad. Sci. USA, vol. 87, p. 9620-9624, 199 0)。これらの報告などから、Fas-Fasリガンドの相互作用により誘 導されるアポトーシスが、AIDSにおけるCD4陽性T細胞の消失のメカ ニズムの一つであることが示唆される。さらに、抗Fas抗体(Jo-2) をマウスに腹腔投与した場合、マウスは劇症肝炎を起こして死亡すること (小笠原ら、Nature, vol. 364, p. 806-809, 1993)、ウイ ルス性肝炎ではFasの発現が認められること(平松ら、Hepatology, vol. 19, p. 1354-1359, 1994)、糖尿病、自己免疫疾患におい ても、全身性エリテマトーデス(SLE)や慢性関節リウマチ(RA)では Fasの発現が認められるとの報告がなされており、これら疾患はFas抗 原に反応するFasリガンドによって引き起こされているのではないかと推 察できる。

上述の背景のもと、FasとFasリガンドの結合を抑制(阻害)し、その結果アポトーシスを抑制する活性を持つ物質が創出されることは、上記のような研究の更なる進展のためにも、また、特に将来における臨床応用によ

る疾患の治療のためにも極めて意義深いものである。

本発明者らは、Fasリガンドに特異的に反応し、FasとFasリガンドの生理的反応を抑制(阻害)することができるマウスモノクローナル抗体を発明し特許出願した(特許出願平成7年第303492号)。また、該モノクローナル抗体は、FasとFasリガンドの結合よりも強くFasリガンドに結合することができることから、生体内においてもFasーFasリガンドの生理的反応を阻害し得ると考えられた。

しかしながら、このような高い活性を持つモノクローナル抗体は臨床応用の観点から望ましいことは言うまでもないが、不運にも、例えば上記マウスモノクローナル抗体のような非ヒト免疫グロブリンは、ヒトへ投与する場合においては以下に述べるような欠点を有する。すなわち、非ヒト免疫グロブリンはヒトの生体内では比較的短い半減期しか持たず、一定の血中濃度を維持するためにはヒト抗体を投与する場合に比して頻回の投与が必要となる。また、更に留意されるべきこととして、非ヒト免疫グロブリンはヒトに投与された場合に抗原性を発揮し得るアミノ酸配列を含んでいる点がある。このため、頻回の投与を行なう場合においては、投与によって誘導された免疫応答により、後に投与する免疫グロブリンが排除されるのみならず、極端な結果としてはアナフィラキシー様ショックを引き起こす可能性がある。

上述の問題点を解決する試みとして、いわゆるキメラ抗体(ヒト免疫グロブリンの定常領域にマウス免疫グロブリンの可変領域を連結した免疫グロブリン)の作出が行なわれた例がある(ロプグリオ(LoBuglio)ら、Proc.
Natl. Acad. Sci. USA, vol. 86, p. 4220-4224, 198
9)。上記報告で記載されている結果では、キメラ抗体のヒトでの血中半減期はマウス抗体の6倍に延びたが、それでも一般的なヒト免疫グロブリンと

比べると約1/5程度であった。また、キメラ抗体を投与した3人の患者のうちの1人にキメラ抗体に対する免疫応答が観られた。この反応は抗マウス免疫グロブリンで吸収できたことから、マウス免疫グロブリン由来の可変領域に由来するものであると考えられた。

ヒト免疫グロブリンとのキメラ化を行なってもなお解決しない問題点を克服するものとして、可変領域(V領域)内にあって抗原と直接的に結合する相補性決定領域(以下、CDRと呼称することがある)を、遺伝子工学的な手法を用いてヒト免疫グロブリン可変領域のCDRに移植することによって、キメラ抗体よりもよりヒト免疫グロブリンに近いヒト型化免疫グロブリンを構築する方法が、ウインター(Winter)らにより報告された(ウインターら、Nature, vol. 321, p. 522-525, 1986)。

ベンディック(Bendig)の文献(A Companion to Methods in Enzymology, vol. 8, p. 83-93, 1995)に整理されているように、これまでに上記のような方法に基づいて、様々なヒト型化免疫グロブリンが作製されている。しかし、多くのヒト型化免疫グロブリンは、CDRの供与体となるオリジナルのマウス免疫グロブリンと比べて活性の顕著な低下を伴い、マウス免疫グロブリンと同等の活性を維持しているものは少なく、特に、マウス免疫グロブリンよりも高い活性を持つヒト型化免疫グロブリンを作製できた例は極めて稀である。また、言うまでもなく本願発明のFasリガンドに対するヒト型化免疫グロブリンの作製の報告はない。

最近の研究で、マウスFasリガンドの推定三次元構造モデルが報告されている(マニエル(Manuel C. P.)ら、Molecular Immunology, vol. 32(10),p.761-772,1996)。この報告において、著者らは、マウスFasリガンドがTNFa及びTNFβ(以下、両者を合わせて単に

TNFと呼称する)と同様に三量体構造を形成し生物学的な活性を発揮すると考え、マウスFasリガンド三量体モデルを作製し、TNF三量体の構造及びTNFとTNFレセプターの相互作用領域を参照しながら、マウスFasリガンドの単量体間の相互作用領域及びマウスFasリガンドとFas抗原との相互作用領域について推論している。しかし、この推論についての立証はなされていない。

一方、ヒトFasリガンドについては、上記文献のような推定三次元構造モデルの報告はなく、Fasリガンド単量体間の相互作用部位及びFasーFasリガンド間の相互作用部位が明らかにされた例はない。現在のこのような状況においては、FasーFasリガンドの生理的反応により引き起こされるアポトーシスを抑制(もしくは阻害)するためには、FasリガンドあるいはFasのどの領域をターゲットにすれば良いか不明のままである。

オリジナルのマウス免疫グロブリンと比べて、ヒト型化した免疫グロブリンの活性が低下する主な理由は、CDRの供与体となるマウス免疫グロブリンと受容体となるヒト免疫グロブリンのフレームワーク領域の立体構造の違いにより、移植されたCDRに構造的な変化が生じた結果、抗原への結合性が低下してしまうことによると考えられる。このような活性の低下を避けるためには、CDR移植によるヒト型化の改良された方法が必要である。

平成7年特許願第303492号の発明に含まれるFasリガンドに特異的に反応するモノクローナル抗体は、FasとFasリガンドとの生理的反応を抑制(もしくは阻害)することができる有用な活性を持つ抗体である。しかし、該抗体はマウス免疫グロブリンであるために、安全性(抗原性の惹起)及び有効性(半減期の短縮)の観点から、ヒトに対する臨床的な応用は現実的には不可能である。

発明の開示

本発明の主たる目的は、Fasリガンドに特異的に反応するヒト型化免疫 グロブリンまたはその活性フラグメントを提供することにあり、とりわけ、 Fasリガンドに特異的に反応し、FasとFasリガンドとの生理的反応 を抑制(もしくは阻害)することができるヒト型化免疫グロブリンを提供す ることにある。

また、ヒトのFasとFasリガンドの相互作用領域が明らかにされておらず、FasーFasリガンド複合体のモデリングや結晶構造解析なども行われていない現在においては、Fas-Fasリガンドの生理的反応により引き起こされるアポトーシスを効果的に抑制(もしくは阻害)するための領域を確定することができていない。

本発明のもう一つの目的は、高いアポトーシス抑制活性を持つ複数の抗 Fasリガンドモノクローナル抗体とアミノ酸置換を導入した複数のFas リガンド(変異Fasリガンド)分子の反応性を検討し、さらに、ヒト Fasリガンド三量体の分子モデルを構築し、上記実験により明らかになっ た領域がヒトFasリガンド三量体上でどの様に分布するかを確認すること により、アポトーシス抑制活性に関連したFasリガンド上の領域を初めて 明らかにすることにある。

図面の簡単な説明

図1は、NOK2抗体の重鎖可変領域の核酸及びアミノ酸配列を示す図であり、下線の領域はクローニングに使用したプライマーを示す。

図2は、NOK2抗体の軽鎖可変領域の核酸及びアミノ酸配列を示す図であり、下線の領域はクローニングに使用したプライマーを示す。

図3は、キメラNOK2抗体の重鎖発現プラスミド(a)及びキメラ

NOK2抗体の軽鎖発現プラスミド(b)を示す図である。

図4は、キメラNOK2抗体のFasリガンドに対する認識をELISA で調べた結果を示す図である。

図5は、NOK2抗体、SGI抗体及びヒト型化NOK2 (RNOK2) 免疫グロブリンの重鎖可変領域(RNOK2VHver11及びRNOK2 VHver12)のアミノ酸配列を示す図である。

図6は、NOK2抗体、REI抗体、ヒト由来免疫グロブリンのhuVL 19とhuVL31及びRNOK2免疫グロブリンの軽鎖可変領域 (RNOK2VLver1, RNOK2VLver21, RNOK2 VLver22, RNOK2VLver23及びRNOK2VLver2 4)のアミノ酸配列を示す図である。

図7は、NOK2抗体、REI抗体、ヒト由来免疫グロブリンのhuVL 19とhuVL31及びRNOK2免疫グロブリンの軽鎖可変領域 (RNOK2VLver1, RNOK2VLver21, RNOK2 VLver22, RNOK2VLver23及びRNOK2VLver2 4)のアミノ酸配列を示す図である。

図8は、RNOK2免疫グロブリンの重鎖可変領域(RNOK2 VHverl1及びRNOK2VHverl2)の遺伝子を作製するために 使用したプライマーが鋳型のRC25免疫グロブリンの重鎖可変領域にア ニールしている様子を示す図である。

図9は、RNOK2免疫グロプリンの重鎖可変領域(RNOK2 VHver11及びRNOK2VHver12)の遺伝子を作製するために 使用したプライマーが鋳型のRC25免疫グロブリンの重鎖可変領域にア ニールしている様子を示す図である。 図10は、RNOK2免疫グロブリンの軽鎖可変領域(RNOK2 VLverl)の遺伝子を作製するために使用したプライマーが鋳型の NOK2抗体軽鎖にアニールしている様子を示す図である。

図11は、RNOK2免疫グロブリンの軽鎖可変領域(RNOK2 VLverl)の遺伝子を作製するために使用したプライマーが鋳型の NOK2抗体軽鎖にアニールしている様子を示す図である。

図12は、RNOK2免疫グロブリンの軽鎖可変領域(RNOK2 VLver21, RNOK2 VLver22, RNOK2 VLver23及 びRNOK2 VLver24) の遺伝子を作製するために使用したプライマーが鋳型のNOK2 抗体軽鎖にアニールしている様子を示す図である。

図13は、RNOK2免疫グロブリンの軽鎖可変領域(RNOK2 VLver21, RNOK2 VLver22, RNOK2 VLver23及 びRNOK2 VLver24) の遺伝子を作製するために使用したプライマーが鋳型のNOK2 抗体軽鎖にアニールしている様子を示す図である。

図14は、各RNOK2免疫グロブリンのFasリガンドに対する認識を ELISAで調べた結果を示す図である。

図15は、各RNOK2免疫グロブリン及びマウスNOK2免疫グロブリンの、FasリガンドとFasを介して起こるアポトーシスに対する抑制活性を調べた結果を示す図である。

図16は、Fasリガンドの核酸配列(上段)及びアミノ酸配列(下段)の一部を示す図である。アミノ酸の番号は長田らの文献(長田ら、Int. Immunology, vol. 6, p. 1567-1574, 1994)に従う。

.図17は、発現させたネイティブFasリガンド及び変異Fasリガンドに対する抗FLAG抗体の認識性をELISAで調べた結果の一部を示す図

である。

図18は、発現させたネイティブFasリガンド及び変異Fasリガンドに対する抗Fasリガンド抗体(NOK1抗体)の認識性をELISAで調べた結果の一部を示す図である。

図19は、各変異Fasリガンドに対する各NOK抗体及びヒト型化 NOK2抗体の相対的認識力を示す図である。なお、N.D.は未実施 (Not Done)を意味する。

図20は、各変異Fasリガンドに対する各NOK抗体及びヒト型化 NOK2抗体の相対的認識力を示す図である。なお、N.D.は未実施 (Not Done)を意味する。

図21は、Fasyがンドアミノ酸配列と $TNF\alpha$ 及び $TNF\beta$ のアミノ酸配列のアライメントを示す図である。最上段は、長田らの文献(長田ら、Int. Immunology, vol. 6, p. 1567-1574, 1994)に示されているヒトFasyがンドの細胞外領域のアミノ酸配列、二段目はモデリングを行なった領域のアミノ酸配列、三段目は $TNF\alpha$ のアミノ酸配列(1TNF)、最下段は $TNF\beta$ のアミノ酸配列(1TNR)を示す。

図22は、Fasリガンド三量体のうちの二分子上のNOK1抗体が認識 するアミノ酸を丸印で示す。灰色丸印は同一側面上に存在するアミノ酸を、 白抜き丸印はそれ以外のアミノ酸を示す。

図23は、Fasリガンド三量体のうちの二分子上の、NOK2抗体及びヒト型化NOK2抗体が認識するアミノ酸を丸印で示す。灰色丸印は同一側面上に存在するアミノ酸を、白抜き丸印はそれ以外のアミノ酸を示す。また、波線の丸印はヒト型化NOK2抗体が特に認識するアミノ酸を示す。

図24は、Fasリガンド三量体のうちの二分子上の、NOK3抗体が認

識するアミノ酸を丸印で示す。灰色丸印は同一側面上に存在するアミノ酸を、白抜き丸印はそれ以外のアミノ酸を示す。

図25は、NOK2抗体のVH領域と1FOR抗体のVH領域のアライメントを示す図である。VH領域の下流に付加されている定常領域は1FOR抗体のものである。

図26は、NOK2抗体のVL領域と1TET抗体のVL領域のアライメントを示す図である。VL領域の下流に付加されている定常領域は1TET抗体のものである。

図27は、Fasリガンド三量体のうちの二分子上に示された、各NOK 抗体及びヒト型化NOK2抗体が認識するアミノ酸を丸印で示す。灰色丸印 は同一側面上に存在するアミノ酸を、白抜き丸印はそれ以外のアミノ酸を示 す。灰色丸印のアミノ酸を囲む円は、抗体のCDR領域とほぼ同じ大きさの 半径約17オングストロームの円である。

図28は、図27に示す半径約17オングストロームの円内に含まれる全てのアミノ酸のうちで、Fasリガンドの表面に出ている(抗体などに認識され得る)アミノ酸を丸印で示す。各NOK抗体及びヒト型化NOK2抗体が認識するアミノ酸を灰色丸印で示す。

図29~31は、Fasリガンド三量体のうちの二分子(それぞれ白色と 濃色で示される)のファンデルワールスコンタクトモデルを示す図である。 図29ではNOK1抗体の認識アミノ酸が、図30ではNOK2抗体及びヒ ト型化NOK2抗体の認識アミノ酸が、図31ではNOK3抗体の認識アミ ノ酸がそれぞれ斜線で示されている。

図32および図33は、Fasリガンド三量体におけるNOK2抗体の認 識領域の側部からの概観図である。図32において上部のモデルがFasリ ガンド三量体、下部のモデルがNOK2抗体のFab部分で、その中間にある部分がNOK2抗体の相補性決定領域(CDR)である。図33のNOK 2抗体のCDRは、半径約17オングストロームの円とほぼ同じサイズを有している。

図34は図29~31と同様のファンデルワールスコンタクトモデルを示す図であり、図33に示す半径約役17オングストロームの円の範囲内にあって、15平方オングストローム以上の露出表面を持つアミノ酸が斜線で示されている。

発明を実施するための最良の形態

平成7年特許願第303492号の発明に含まれるFasリガンドに特異的に反応するマウスモノクローナル抗体の持つ有用性を現実化するためには、Fasに特異的に反応することによりFasとFasリガンドとの生理的反応を抑制(阻害)するという特性を保持して、かつヒトの生体内で抗原性を持たないヒト免疫グロブリンへと改変する必要がある。そのために適用可能な方法としては、例えばウインターらの報告(ウインターら、Nature, vol. 321, p. 522-525, 1986)に記述されているように、遺伝子工学的手法を用いてマウス免疫グロブリンをヒト免疫グロブリンへと改変する方法がある。しかし、前述の如く、このような方法に従って作製された多くのヒト型化抗体は、CDRの供与体となるオリジナルのマウス抗体と比べて活性の顕著な低下を伴っており、高活性を維持したヒト型化抗体を作製するためには、CDR移植によるヒト型化の改良された方法が必要であった。

過去に、マウス免疫グロブリンのヒト型化に関するウインターらの報告 (ウインターら、Nature, vol. 332, p. 323-327, 1988) や、免疫グロブリンCDR領域の立体構造解析に関するチョシア(Chothia)らの報告(チョシアら、J. Mol. Biol, vol. 196, p. 901-917, 1987)などにおいて、CDRの近傍(一次配列上あるいは立体構造上)にあってCDRの立体構造の維持、延いては免疫グロブリンの活性維持に寄与しているフレームワーク(FR)領域のアミノ酸(以下、FRアミノ酸ともいう)の存在が示されている。

本発明におけるFasリガンドに特異的に反応するモノクローナル抗体のヒト型化においては、これらの情報に基づいて、コンピュータモデリングを利用して選ばれた上記のようなFRアミノ酸をCDRとともに受容体ヒト抗体へ移植することにより、オリジナルのマウス抗体と同等以上の活性を持つヒト型化抗体を作製することに成功した。

CDRの立体構造の維持、延いては抗体の活性維持に寄与しているFR領域中の重要アミノ酸を推定するために、まず抗体のコンピュータモデリングが行われた。コンピュータモデリングには、例えばシリコングラフィックス (Silicongraphics) 上で起動する分子設計ソフトウエアである QUANTA/CHARMmあるいはModeler (いずれもモレキュラー・シミュレーションズ (Molecular Simulations Inc.) 社製) などが利用可能である。このようなソフトウエアを利用して構築された抗体の三次元構造データに基づいて、CDRの立体構造維持に寄与しているFRアミノ酸を選定する。具体的には、上記ソフトウエアに搭載されている計算プログラムを利用して、CDRアミノ酸と直接あるいは間接的に水素結合あるいはエネルギーコンタクトをしているアミノ酸を選定する。CDRとともに移植するアミノ酸はこれらの中から選定される。ただし、移植された結果、ヒト生体内で抗原性を惹起することが予想されるようなヒト抗体にはないアミノ酸

配列を生じる場合においては移植しないものとする。

マウス抗体の可変領域アミノ酸の各々がヒト抗体の可変領域アミノ酸のいずれに相当するかは、カバット(Kabat)らの分類(シークエンス・オブ・プロテインズ・オブ・イミュノロジカル・インタレスト(Sequence of Proteins of Immunological Interest) 第4版、パブリック・ヘルス・サービス(Public Health Service)、NIH、ワシントンDC、1987 に従えば容易に判断でき、該分類に従うことはこの分野では標準となっている。

上記のような手法により、ヒト中で抗原性を惹起しないが、Fasリガンドに特異的に反応し、FasとFasリガンドとの生理的反応を抑制(阻害)することができ、その活性がオリジナルのマウス抗体と同等以上であるヒト型化免疫グロブリンを提供し得る本発明に到達した。

また、ヒトのFasとFasリガンドの相互作用領域が明らかにされておらず、Fas-Fasリガンド複合体のモデリングや結晶構造解析なども行われていない現在においては、Fas-Fasリガンドの生理的反応により引き起こされるアポトーシスを抑制(もしくは阻害)するためには、FasリガンドあるいはFas抗原のどの領域をブロックすれば効果的であるか不明である。

そこで、アポトーシスを抑制(もしくは阻害)するために重要なFasリガンド上の領域を明らかにするために、高いアポトーシス抑制活性を持つ複数の抗Fasリガンドモノクローナル抗体の認識する認識領域の解析を行なった。具体的には、アミノ酸置換を導入したFasリガンド(変異Fasリガンド)分子を複数作製し、それらに対する、平成7年特許願第303492号明細書に記載のハイブリドーマであるNOK1、NOK2、NOK3

及びNOK4の各々より産生される、抗Fasリガンドモノクローナル抗体 (以下、各々単にNOK1、NOK2、NOK3及びNOK4免疫グロブリン (抗体) と呼称することがある。これらは、工業技術院生命工学工業技術研究所(日本国茨城県つくば市東1丁目1番3号)に寄託されていて、その受託番号は、各々FERM BP-5044、FERM BP-5045、FERM BP-5046、FERM BP-5045、 すERM BP-5046、FERM BP-5047である。また、これらを総称してNOK抗体と呼ぶことがある。)及び本発明のヒト型化免疫グロブリンの結合性を調べ、ヒトFasリガンド分子上の上記各抗体の認識領域を同定することにより、アポトーシスを抑制するために重要な領域を明らかにした。

さらに、ヒトFasリガンド三量体モデルを構築し、上記実験により明らかになった領域がヒトFasリガンド三量体上でどの様に分布するかを確認することにより、アポトーシス抑制活性に関連したFasリガンド上の領域を初めて明らかにするに至った。

上記のようにFasリガンド(以下、FasLともいう)は、プログラム 細胞死(アポトーシス)を媒介する細胞表面蛋白質であるFas抗原のリガンドであり、現在までにヒト、ラット、及びマウスのFasリガンドが同定されている。本発明では、広くFasリガンドを対象とするが、これらの中でも、特に、種がヒト及びマウスのFasリガンドが好ましい。すなわち、本発明は、好ましくは、ヒトFas抗原のリガンド及びマウスFas抗原のリガンドに特異的に反応するヒト型化免疫グロブリン及びその活性フラグメントを提供する。

本明細書において、「免疫グロブリン」とは免疫グロブリン遺伝子によって実質的にコードされる1以上のポリペプチドからなる蛋白質をいう。本発明の免疫グロブリン遺伝子は、カッパ、ラムダ、アルファ、ガンマ、デル

タ、イプシロン及びミュー定常領域遺伝子並びにミリアド (myriad)免疫グロブリン可変領域遺伝子を含む。また、本発明においては、免疫グロブリンは活性フラグメントをも包含するものである。活性フラグメントとは、抗原抗体反応活性を有する抗体のフラグメントを意味し、具体的には、F (ab′) 2、Fab′、Fab、Fv、及び組換えFv体などを挙げることができる。

本明細書において、「キメラ抗体」とは、軽鎖遺伝子及び重鎖遺伝子が、 典型的には遺伝子工学により、異なった種に属する免疫グロブリン遺伝子断 片から構成されている遺伝子より得られる抗体である。例えば、マウスモノ クローナル抗体からの遺伝子の可変(V)領域断片は、ヒト定常(C)領域 断片、例えばγ1またはγ4と連結され得る。従って、他の哺乳動物種も採 用され得るが、典型的な治療用キメラ抗体は、マウス抗体からのVもしくは 抗原結合ドメイン及びヒト免疫グロブリンからのCまたはエフェクタードメ インからなるハイブリッド蛋白質である。

本明細書において、「フレームワーク領域」とは、単一種中の種々の免疫 グロブリンの内で、比較的保存されている(即ち、CDR以外の)免疫グロブ リン軽鎖及び重鎖可変領域の部分を言う。「ヒトフレームワーク領域」は、 自然に生じるヒト免疫グロブリンのフレームワーク領域とまたはいくつかの このような免疫グロブリンの共通配列と実質的に同一(約85%またはそれ 以上)であるところのフレームワーク領域である。また、「ヒト型化免疫グロブリン」は、ヒトフレームワーク、非ヒト免疫グロブリンからの少なくとも一つのCDRを含む免疫グロブリンを意味し、その中に存在する定常領域 は、ヒト免疫グロブリン定常領域と実質的に同一である、即ち蛋白質を構成 するアミノ酸配列の少なくとも約85~90%、好ましくは少なくとも9

5%同一である。従って、恐らくCDRを除く、ヒト型化免疫グロブリンの全ての部分は、1以上の天然のヒト免疫グロブリン配列の対応する部分と実質的に同一である。

ヒト型化免疫グロブリンは、ヒトの治療用の用途のために、マウス抗体に 較べ、少なくとも3つの潜在的な利点を有する。

- (1) エフェクター部分がヒトであるので、ヒト免疫系の他の部分とより 良好に相互作用し得る(例えば、補体依存性細胞障害(CDC)または抗体 依存性細胞障害(ADCC)による、より効率的な標的細胞の破壊)。
- (2) ヒト免疫系は、ヒト型化免疫グロブリンのフレームワークまたはC 領域を異物として認識せず、従って当該免疫グロブリンに対する好ましから ぬ抗体応答は、全部が異物であるマウス抗体または一部分が異物であるキメ ラ抗体に対するものよりも少ない。
- (3) ヒトに注入されたマウス抗体は、通常のヒト抗体の半減期よりも非常に短い半減期を有すると報告されている(Shaw, DR ら、J. Immnol., vol. 138, p. 4534-4538, 1987)。一方、ヒト型化免疫グロブリンは、自然に生じるヒト抗体の半減期により近い半減期を有し、マウス抗体に比較して、より小さいまたはより少ない頻度の投与量を与えることが期待される。

本発明のヒト型化免疫グロブリンは、Fasリガンドに特異的に反応するものであれば特に限定されないが、FasリガンドとFasとの生理的反応を阻害(抑制)できるものであることが特に好ましい。ここで言う生理的反応を阻害する免疫グロブリンとは、Fasリガンドを発現している細胞あるいは可溶型となったFasリガンド(以下、sFasリガンドまたは可溶性Fasリガンドと呼称することがある)がFasを発現している細胞に結合

して、Fasを発現している細胞をアポトーシスにより死滅させるシグナルを与える時に、Fasと結合するFasリガンドの結合部位に対し特異的に結合し、FasリガンドがFasと結合できなくなるように機能し得る免疫グロブリンを指す。すなわち、FasリガンドとFasとの生理的反応を阻害する免疫グロブリンが存在すれば、Fasリガンドを発現している細胞あるいはsFasリガンドがFasを発現している細胞を死滅させることができなくなる。しかも、この時の免疫グロブリンはFasリガンドとFasとの結合力よりも強い結合力を持つ免疫グロブリンであることがより好ましい。具体的には、FasとIgGのFcとを結合させたキメラ分子(以下、FasーIgともいう)を指標に調べることができる。このFasーIgは、生体内のFasリガンドとFasとの結合力と同じ結合力でFasリガンドに結合することができる。したがって、Fasリガントに対する免疫グロブリンが、FasーIgキメラ分子よりも低濃度でFasリガンドとFasとの結合を阻害することができれば、実際、実用レベルでは生体内の種々のFasリガンドによる作用を有効に阻害することができる。

本発明のヒトFasリガンドに特異的に反応するヒト型化免疫グロブリンとしては、例えば、平成7年特許願第303492号の発明に含まれ、工業技術院生命工学工業技術研究所に1995年3月20日に寄託されている受託番号FERM BP-5045(ハイブリドーマNOK2)より産生されるNOK2抗体を供与体抗体としてヒト型化した抗体、RNOK201、RNOK202及びRNOK203抗体を挙げることができる(以下、NOK2抗体をヒト型化した抗体を、ヒト型化NOK2抗体、ヒト型化NOK2免疫グロブリン、RNOK2抗体あるいはRNOK2免疫グロブリンと呼称することがある)。

ここでは、便宜上好適な例として、以下NOK 2抗体をヒト型化する工程を概説するが、Fasリガンドに特異的に反応するヒト型化免疫グロブリンであれば特にこれらに限定されるものではない。

遺伝子工学的手法を用いることによってNOK2抗体をヒト免疫グロブリンのアミノ酸配列を有する分子に改変するためには、まず、NOK2抗体の可変 (V) 領域遺伝子をクローニングする必要がある。

V領域遺伝子は、通常の遺伝子操作技術によりクローニングすることができる。例えば、その細胞の染色体DNAから常法(例えば、マニアチス(T. Maniatis)、「モレキュラー・クローニング(Molucular Cloning)」、コールドスプリングハーバー・ラボラトリー、1982年参照)に従ってV領域遺伝子をクローニングする方法、あるいは、その細胞のmRNAを材料として常法(例えば、グローバー(D. M. Glover)編 "DNA Cloning vol. 1、IRLプレス, 1985)によりcDNAを合成しV領域遺伝子をクローニングする方法がある。

いずれの方法も、V領域遺伝子クローニングの為のプローブとして、すでに報告されているマウス免疫グロブリン遺伝子の核酸塩基配列(例えばサカノ (Sakano) ら、Nature, vol. 286, p. 676, 1980);マックス (E. E. Max) ら、J. Biol. Chem. vol. 256, p. 5116, 1981) を参照して合成したDNAプローブ等を利用することができる。また、ポリメレース連鎖反応 (PCR) を利用したクローニングも可能である (オーランディ (R. Orlandi) ら、Proc. Natl. Acad. Sci. USA, vol. 86, p. 3883, 1989);ヒューズ (W. D. Huse) ら、Science, vol. 246, p. 1275, 1989)。これらに代表されるような方法に従って、NOK 2抗体産生ハイブリドーマよりNOK 2抗体のV領域遺伝

子をクローニングし、塩基及びアミノ酸配列を決定できる(図1及び図2参 照)。

このようにして単離したV領域遺伝子断片を、ヒト免疫グロブリン定常領域の上流に連結させてキメラNOK2抗体遺伝子を作製することができる。 当該キメラNOK2抗体が、濃度依存的にFasリガンド分子に結合することがELISAにより確認され、この結果、本発明者等がクローニングした免疫グロブリン可変領域遺伝子が抗Fasリガンド活性を担うものであることが確認される(図4参照)。

V領域にあって抗原と直接的に結合する相補性決定領域領域(CDR) を、ウインターらの方法(ウインターら、Nature, vol. 321, p. 52 2-525, 1986) によりヒト免疫グロブリン可変領域のCDRに移植 することによって、キメラ抗体よりもよりヒト免疫グロブリンに近い、ヒト 型化NOK2抗体遺伝子を作製し得る。ところで、過去に、マウス免疫グロ プリンのリシェイピングに関するウインターらの報告(ウインターら、 Nature, vol. 332, p. 323-327, 1988) や、免疫グロブリ ンCDR領域の立体構造解析に関するチョシアらの報告(チョシアら、」. Mol.Biol, vol. 196, p. 901-917, 1987) などにおいて、 CDRの近傍(一次配列上あるいは立体構造上)にあってCDRの立体構造 の維持、ひいては免疫グロブリンの活性維持に寄与しているフレームワーク (以下、FRともいう) 領域のアミノ酸 (以下、FRアミノ酸ともいう) の 存在が示されている。これらの知見に基づき、CDRの立体構造の維持ひい ては免疫グロブリンの活性維持に寄与していることが示唆されるFR領域中 のアミノ酸も、CDRと併せて移植する。移植するFRアミノ酸は、NOK 2 抗体のコンピュータモデリングの結果から、CDRのアミノ酸(以下、

CDRアミノ酸ともいう)と直接あるいは間接的に相互作用していることが 示唆されたものの中から選出される。

すなわち、まず、シリコングラフィックス上で起動するソフトウエアQUANTA/CHARMmあるいはModeler(いずれもモレキュラー・シミュレーションズ社製)等を用いたモデリングにより、NOK2抗体の三次元構造が推定できる。例えば、ブルックへーブン・プロテイン・データバンク(Brookhaven Protein Data Bank)(PDB)に登録されている、NOK2抗体H鎖可変領域(VH)及びL鎖可変領域(VL)と相同性が高いPDB ID:1FORのVHとPDB ID:1TETのVLを三次元構造の鋳型として利用し、分子設計ソフトウエアである前記QUANTA/CHARMmあるいはModelerを用いて、その使用説明書に従って行なうことができるが、この鋳型抗体可変領域に限定されるものではなくその他のNOK2抗体可変領域にホモロジーのある抗体の高次構造データが入手できれば、それを用いても実施可能である。また、分子設計ソフトウエアもQUANTA/CHARMmあるいはModelerに限定されるものではなく、その他の一般的なタンパク質を扱える分子設計ソフトウエアであれば実施可能である。

次に、搭載されているプログラムを用いて、上記のNOK 2抗体の推定三次元構造においてH鎖及びL鎖のCDRに水素結合しているFR領域中のアミノ酸群(第一群)を選出し、更にそれらに水素結合しているFR領域中のアミノ酸群(第二群)を選出する。同様に、搭載されているプログラムを用いて、NOK 2抗体のH鎖及びL鎖のCDRにエネルギーコンタクトしているFR領域中のアミノ酸群(第一群)を選出し、更にそれらにエネルギーコンタクトしているFR領域中のアミノ酸群(第二群)を選出する。ここでい

うエネルギーコンタクトには、いわゆる静電的相互作用及びファンデルワー ルス力が含まれる。CDRアミノ酸と併せてヒト免疫グロブリンの可変領域 のFRに移植するアミノ酸は上記第一群及び第二群の中から選ばれる。ただ し、それらのFRアミノ酸のうちで、ヒト免疫グロブリン中の相当する部位 に移植した結果、カバットらの分類(シークエンス・オブ・プロテインズ・ オブ・イミュノロジカル・インタレスト、第4版、パプリック・ヘルス・ サービス、NIH、ワシントンDC、1987)や、ナショナル・セン ター・フォー・バイオテクノロジー・インフォメーション(National Center for Biotechnology Information:NCBI)で開発された情報検索 ソフトウエアであるアントレ (Entrez) (商標) などから引用できる、ヒト 免疫グロブリンの可変領域アミノ酸配列には存在しないような配列が生じる 場合については、そのアミノ酸の移植は行わない。これにより、ヒト型化免 疫グロブリンをヒトに投与した場合において抗原性を発揮する可能性が可能 な限り低減される。NOK2抗体のCDRのアミノ酸配列は、重鎖CDR 1、CDR2、CDR3が各々配列表の配列番号1、2、3に記されてお り、軽鎖CDR1、CDR2、CDR3が各々配列表の配列番号4、5、6 に記されている。なお、本発明におけるFRとCDRの範囲の規定は全て、 上記のカバットらの分類に従う。

移植先のヒト免疫グロブリン可変領域アミノ酸配列は、ヒト型化しようとするマウス免疫グロブリンの可変領域アミノ酸配列に相同性の高いものであることが望ましい。好適な態様として、受容体ヒト免疫グロプリンのフレームワーク領域のアミノ酸配列が、供与体抗体(マウス免疫グロブリン)のフレームワーク領域のアミノ酸配列と経験的に少なくとも60%以上のホモロジーを有することが望まれる。常法として、利用可能なデータベースからヒ

ト型化しようとするマウス免疫グロブリンにホモロジーの高いヒト免疫グロ ブリンが選出されて使用される。 本発明の好ましい態様としてNOK2抗 体のCDRをヒト免疫グロブリンの可変領域に移植することができる。具体 的には、NOK2抗体のVH領域(重鎖可変領域)のCDRを、ヒトサブグ ループIIのFR(フレームワーク)領域を持つVH領域であるSGI(配 列番号7:英国MRC コラボラティブ・センター(MRC Collaborative Center のベンディック博士より分与されたもの)へ移植する。NOK2抗 体のVL領域(軽鎖可変領域)のCDRは、過去に報告されているヒトκ鎖 のFR領域を持つVL領域であるREI(パーム(W. Palm)ら、Physiol. Chem., vol. 356, p167, 1975)、及び正常人ヒト末梢血リンパ 球由来の c DNAライブラリーからクローニングした κ 鎖のFR領域を持つ VL領域(huVL-19:配列番号8及びhuVL-31:配列番号9) に移植する。実際的なアミノ酸移植は、VHについてはヒト型化抗HIV免 疫グロブリンであるRC25抗体(特許国際公開WO94/20632号公 報)のVH遺伝子を鋳型に、VLについては前述のようにして得たキメラ NOK2のVL遺伝子を鋳型に使用し、PCRによって変異を導入する PCR 突然変異誘発法により遺伝子レベルで行なわれる。例えば、ヒト型 化NOK2抗体のH鎖及びL鎖をコードする遺伝子は、それらの組み合わせ により10種類のヒト型化NOK2抗体を作製し得るように、H鎖について 2種類、L鎖について5種類が作製された。

本発明の、結合性フラグメント及びそれらの他の誘導体を含む免疫グロブリンは種々の組換えDNA技術により容易に製造されることができ、トランスフェクションされた細胞、好ましくは不死化された真核細胞、例えば、ミエローマまたはハイブリドーマ細胞中で最終的に発現され得る。ヒト型化免

疫グロブリンフレームワーク領域をコードする第一配列、及び所望の免疫グロブリン相補性決定領域をコードする第二配列セットを含むポリヌクレオチドが、合成的にまたは適当なcDNAとゲノムDNA断片を組み合わせることによって調製される。

上述のごとく調製されたヒト型化抗体構築用のH鎖及びL鎖をコードする遺伝子は、配列を発現制御配列に作動可能に連結した後に、宿主中で発現される。これらの発現ベクターは、典型的には、エピソームとして或は宿主染色体DNAの肝要な部分として宿主中で複製可能である。通常、発現ベクターは、選択マーカー、例えばテトラサイクリン耐性、G418耐性、ミコフェノール酸耐性またはHSV-tk等を含み、所望のDNA配列で形質転換された細胞の検出を可能とする。

大腸菌は、本発明のDNA配列をクローニングするために特に有用な一つの原核生物宿主である。他にも、バチルス、例えば枯草菌及び他の腸内細菌科、例えばサルモネラ、セラチア及び種々のシュードモナス種等が微生物宿主として使用される。これらの原核生物宿主において、また、発現ベクターを構築することもでき、該ベクターは、典型的には、宿主細胞と適合した発現制御配列を含む。さらに、任意の数の種々の公知のプロモーター、例えば、ラクトースプロモーター系、トリプトファン(trp)プロモーター系、βーラクタマーゼプロモーター系またはλファージからのプロモーター系が存在してもよい。プロモーターは、場合によりオペレーター配列と共に、発現を調節し、そして、転写及び翻訳を開始し完成させるためのリボソーム結合部位配列等を有する。

他の微生物、例えば真核生物宿主として酵母もまた発現のために用いられ得る。サッカロミセスは、発現制御配列、例えば、3-ホスホグリセレート

キナーゼまたは他の解糖酵素を含むプロモーター及び複製起点、末端配列及 び所望の類似のものを有する適当なベクターを伴った好ましい宿主である。

昆虫細胞培養物もまた、本発明のヒト型化免疫グロブリンを製造するために用いられることができ、代表的にはバキュロウイルスに基づいた発現系が用いられる。ヒト型化免疫グロブリンは、ズ・プトリッツらにより報告された方法(ZuPutlitz. J. ら、Bio/Technology, vol. 8, p. 651-654, 1990)に従って、ヒト型化免疫グロブリンをコードするポリヌクレオチド配列を発現することにより製造することもできる。

上述の宿主に加えて、哺乳動物細胞培養物もまた本発明のヒト型化免疫グロブリンを発現し、製造するために好適に用いられる。例えば、その好ましい態様として、完全な免疫グロブリンを分泌できる多くの宿主セルラインが本技術分野で開発されており、それらは、CHOセルライン、種々のCOSセルライン、Hela細胞、好ましくはミエローマセルライン等または形質転換されたB細胞またはハイブリドーマが例示される。これらの細胞の発現ベクターは、発現制御配列、例えば、複製起点、プロモーター、エンハンサー及び必要なプロセッシング情報部位例えばリボソーム結合部位、RNAスプライシング部位、ポリアデニル化部位及び転写ターミネーター配列を含む。好ましい発現制御配列は、免疫グロブリン遺伝子、SV40、アデノウイルス、ウシパピローマウイルス、サイトメガロウイルス、ニワトリのβーアクチン遺伝子等由来のエンハンサー、プロモーターである。

本発明における好適な態様として、先述のごとく構築されたヒト型化 NOK 2 抗体のH鎖及びL鎖をコードする遺伝子は、各々ヒト免疫グロブリンの定常領域遺伝子(H鎖: C_{γ} 1, L鎖: C_{κ})、サイトメガロウイルス由来のエンハンサー、ニワトリの β -アクチン遺伝子のプロモーター、ウサ

ギのβーグロビン遺伝子のスプライスアクセプターサイト及び薬剤耐性マーカーとしての遺伝子(H鎖:neor, L鎖:dhfr)を含む発現ベクターに連結され、当該ベクターは、宿主細胞のタイプに応じて変更を加えた良く知られた方法により宿主細胞中に移入される。例えば、塩化カルシウムトランスフェクションは、通常、原核生物細胞のために利用され、一方、リン酸カルシウム処理、リポフェクション、バイオリスティックス、ウイルスによるトランスダクションまたはエレクトロポレーションが他の細胞に対して用いられる。

所望の免疫グロブリンがいったん発現されれば、本発明の完全な免疫グロブリン、それらのダイマー、個々の軽鎖及び重鎖、または免疫グロブリンの他の形態は、本技術分野の標準方法に従って精製される。該方法は、硫安沈澱、各種イオン交換クロマトグラフィー及びアフィニティーカラムクロマトグラフィー等を含む。

薬学的用途のためには、少なくとも約90~95%の均質性の実質純粋な 免疫グロブリンが好ましく、98~99%あるいはそれ以上の均質性が好ま しい。

本発明のヒト型化免疫グロブリンは、免疫グロブリン濃度が 0.06 μg /ml (実効濃度)以上の範囲で可溶性 Fasリガンドが Fas発現細胞に対して引き起こすアポトーシスを、90%以上のアポトーシス抑制率で抑制することができる。ここで、アポトーシス抑制率とは、Fasリガンドを遺伝子導入した細胞の培養上清より調製される可溶性 Fasリガンドをエフェクター分子とし、一方、Fasを遺伝子導入した細胞をターゲット細胞とし、両者を96ウエルプレート中で100μlの反応系で反応させ、ターゲット細胞の16時間後の生存率を生細胞数検出試薬を用いて測定する細胞

障害反応試験において、免疫グロブリンを添加したときのターゲット細胞の 生存率を意味する。

ヒト型化免疫グロブリンが、前記RNOK201、RNOK202及びRNOK203のいずれかである場合、Fasリガンドを遺伝子導入した細胞の培養上清中に含まれる可溶性Fasリガンドをエフェクター分子とし、その希釈液25μlを用い、一方、Fasを遺伝子導入した細胞(Fas/WR19L)をターゲット細胞とし、該細胞の濃度2×105cells/ml液50μlを用い、そして、前記免疫グロブリンを含むハイブリドーマの培養上清25μlを用い、これらのすべてを混合した後、37℃で17時間反応させたとき、ターゲット細胞の生存率(すなわち、アポトーシス抑制率)を90%以上とすることができる。

また、図15に示されるように、本発明のヒト型化免疫グロブリンのアポトーシス抑制活性は、同濃度のオリジナル供与体抗体であるマウス免疫グロブリンを用いた場合よりも高い。これまでに報告されているヒト型化免疫グロブリンの作製においては、オリジナルの非ヒト免疫グロブリンに比べて大幅な活性低下を伴っていたことを鑑みれば、本発明におけるヒト型化免疫グロブリンが、これまでにも稀な成功例であることは明白である。

また、本発明のヒト型化免疫グロブリンのアポトーシスの抑制活性は、 Fas-Igキメラ分子よりも高いと言える。なぜなら、本発明のヒト型化 抗体を作製するうえでの供与体抗体であるマウス抗体は、平成7年特許願第 303492号に記載されたとおり、0.01~8μg/mlの抗体濃度 (実効濃度)において、同濃度のFas-Igキメラ分子に比べて、高いアポトーシスの抑制活性を示すことが判っている。従って、そのマウス抗体以上の活性を持つ本発明のヒト型化免疫グロブリンが、0.01~8μg/

mlの抗体濃度(実効濃度)において、Fas-Igキメラ分子と同等またはそれ以上のアポトーシス抑制活性を有することは明白である。

本発明のヒト型化免疫グロブリンは、免疫化学的な研究のみならず、免疫 治療や診断などに有用である。このような目的を達成するには、必ずしも免 疫グロブリン分子全体を用いる必要はなく、活性を有する限り、分子の一部 を用いることができ、場合によってはその方が好ましいこともある。このこ とは、当業者であれば容易に理解できることである。したがって、本発明 は、抗Fasリガンド免疫グロブリンの活性フラグメントをも包含するもの である。抗体は、特定の抗原物質を認識する均一な免疫グロブリンである。 活性フラグメントとは、抗原抗体反応活性を有する免疫グロブリンのフラグ メントを意味し、具体的には、F (ab′) 2、Fab′、Fab、Fv、 及び組換えFv体などを挙げることができる。F(ab´)2フラグメント は、免疫グロブリンIgGをペプシンを用いて消化することにより得られる フラグメントの1つである。IgGをpH4.0付近でペプシン消化する と、H鎖のヒンジ部で切断されて、分子量約10万のフラグメントを生成す る。この切断は、H鎖間のジスルフィド結合よりもC末端側で起こる。この フラグメントは、抗原結合部位が2個あるので、抗原に結合して、沈降反応 や凝集反応を起こすことがができる。Fab´フラグメントは、F (ab') 2フラグメントを2-メルカプトエタノールなどの試薬で還元し て、モノヨード酢酸でアルキル化すると、H鎖間のジスルフィド結合(S-S結合) が切断されて生じる分子量約5万のフラグメントである。

Fabフラグメント (抗原結合性フラグメント (antigen-binding fragment)) は、IgGをパパイン消化することにより得られるフラグメントの1つである。IgGをシステインの存在下にパパイン消化すると、ヒン

ジ部のH鎖間のジスルフィド結合よりN末端側の位置でH鎖を切断し、2個のFabと1個のFc(結晶形成フラグメント(crystallizable fragment))を生成する。Fabフラグメントは、H鎖のN末端側の約半分に相当するFdフラグメント(VHドメイン+CH1ドメイン)とL鎖がジスルフィド結合した分子量約45,000のフラグメントである。Fabフラグメントは、抗原結合部位を1個有している。Fvフラグメントは、非共役結合で結合したH鎖可変部(VH)とL鎖可変部(VL)からなる抗原結合可能なフラグメントである。

組換え下v体は、免疫グロブリンを産生するハイブリドーマからDNAをシーケンスして、VHとLHをコードする各塩基配列を決定し、次いで、これらのDNA断片をベクターに組み込んで、VLーリンカーーVHの構造を有する一価の抗体活性フラグメントを産生させることにより得ることができる。IgG、FabまたはF(ab′)2では、VHとLHは、S-S結合により結合しているが、組換えFv体フラグメントでは、VHとLHとの間にリンカーを挿入して、S-S結合している状態と同様の立体構造がとれるようにしている。このフラグメントは、単にFvと呼ばれることがあり、また、scFv(一本鎖Fv)とも呼ばれている。組換えFv体は、大腸菌等の微生物やバクテリオファージによって発現させることもできる。

これらの活性フラグメントは、単独でも用いられるが、必要に応じて、アルブミン、ポリエチレングリコール等の物質と結合させ、新たな複合物として用いることができる。このような複合物は、一般に、生体内では、長時間分解されずにその効果を最大限まで発揮することが多い。活性フラグメントに、アルブミン、ポリエチレングリコール等の物質を付加する方法は、例えば、アンティボディーズ、ア・ラボラトリー・マニュアル(Antibodies, A.

Laboratory Manual), コールドスプリングハーバー・ラボラトリー、1988に記載されている。一般的には、SPDP (ファルマシア製)等の2価反応性試薬を用いれば、活性フラグメントをアルプミン等と容易に結合させることができる。

本発明の免疫グロブリン及びそれらの薬学的組成物は、特に、非経口投与、即ち、皮下、筋肉内または静脈内投与において有用であり、通常、許容される担体、好ましくは水性担体中に溶解される。種々の水性担体、例えば、水、緩衝液、リン酸塩緩衝生理食塩水(PBS)、0.4%生理食塩水、0.3%グリシン、ヒトアルブミン溶液等が用いられ得る。これらの溶液は、無菌であり、そして一般的には微粒子物質が存在しない。これらの組成物は、慣用の、公知の滅菌方法により滅菌される。組成物は、生理学的条件に近づけるために、要求に応じて、薬学的に許容できる補助物質、例えばpH調節及び緩衝化剤、例えば酢酸ナトリウム、塩化ナトリウム、塩化カリウム、塩化カルシウム及びクエン酸ナトリウム等を含み得る。これらの製剤中の免疫グロブリンの濃度は、即ち約1重量%から20重量%の広範囲に変化させることができ、主として、選択された投与の特定の様式に従って、液容量、粘性等を基準として選択される。

本発明の免疫グロブリンは、必要に応じて貯蔵のため凍結または凍結乾燥され、使用に先だって適当な溶解液中に再構成される。

Fasリガンドのアミノ酸配列の一部に、アミノ酸置換を導入した複数の変異Fasリガンドを使用することにより、抗Fasリガンド抗体が結合するFasリガンド上の認識領域を同定することができる。本発明では、平成7年特許願第303492号に記載の、NOK2免疫グロブリン(NOK2抗体と呼称することもある)の認識領域と推察される領域、すなわち、

FasリガンドのN端より207番目のLeuから220番目のGlnまで(以下、特にことわりがなければアミノ酸番号は長田らの文献(長田ら、Int. Immunology, vol.6, p1567-1574, 1994)に従う)の14アミノ酸を含む45アミノ酸の領域にアミノ酸の置換(Ala以外のアミノ酸はAlaに置換し、元々Alaの部位はGlyに置換した)を一ヶ所ずつ導入した、45種類の変異Fasリガンドを作製した。次に、これらの変異Fasリガンドについて、上記出願に記載のFas-Fasリガンドの相互作用を介して起こるアポトーシスに対して高い抑制活性を持つ抗Fasリガンド抗体(NOK1抗体、NOK2抗体、NOK3抗体、NOK4抗体を示し、以下これらを総称してNOK抗体と呼称することがある)及び本発明のヒト型化NOK2抗体との結合性を調べた。

その結果、上記のNOK抗体及びヒト型化NOK2抗体は、Fasリガンドの第198番目のArgから第238番目のMetまでの領域に含まれるアミノ酸配列に広く結合していることが示された。また、NOK1、NOK2及びNOK4抗体に関しては、合成ペプチドを用いた認識領域のマッピングの結果からも、Fasリガンドの上記領域中にNOK1、NOK2及びNOK4抗体の抗原認識・結合に重要な役割を演ずるアミノ酸が含まれていることが改めて示唆された。

前述のNOK抗体は、Fasリガンド発現細胞をマウスに免疫して得られたモノクローナル抗体である(平成7年特許願第303492号の明細書、発明の詳細な説明、実施例1に記載)。また、上記NOK抗体及びヒト型化NOK2抗体は、Fas-Fasリガンドの相互作用を介してFas発現細胞に誘導されるアポトーシスに対して強い抑制活性を有する抗体である(平成7年特許願第303492号の明細書、発明の詳細な説明、実施例1及び

2並びに本特許出願、明細書、発明の詳細な説明、実施例4に記載)。すなわち、NOK抗体はネイティブな構造を持ったFasリガンドを免疫して得られた高いアポトーシス抑制活性を持つ初めての抗Fasリガンドモノクローナル抗体である。しかも、これらのモノクローナル抗体のCDR(相補性決定領域)のアミノ酸配列は各々で異なり、抗体のクラス及びサブクラスも異なる、すなわち全く独立な抗体である。

それら全く別々の抗体の認識領域が、前述のように、Fasリガンドの第198番目のArgから第238番目のMetまでのアミノ酸配列で形成される広い領域に存在していることから、高いアポトーシス抑制活性を持つ抗Fasリガンド抗体は、一般的に上記の領域に含まれるアミノ酸を認識領域として認識していると結論することができる。換言すれば、上記の領域はFasリガンド分子中に存在する、高いアポトーシス抑制活性を有する抗Fasリガンド抗体を惹起することができる領域なのである。さらには、上記領域はFasリガンドがアポトーシス誘導活性を発揮するために重要な領域であり、この領域を認識し結合できる物質はアポトーシス抑制活性を示すことができることを示唆している。

前述の変異Fasリガンド及び合成ペプチドを用いた、認識領域の解析で得られた実験データを、市販の分子設計ソフトウエアを用いて構築した Fasリガンド分子立体構造モデルに適応すれば、上記の高いアポトーシス 抑制活性を持つ各抗体の結合領域の全貌を明らかにすることが可能である。

Fasリガンド分子モノマーのモデリングは、ブルックヘープン・プロテイン・データバンク (Brookhaven Protein Data Bank) (PDB) に登録されている、Fasリガンドに相同性が高いTNFα (PDB ID:1 TNF) 及びTNFβ (PDB ID:1TNR)のX線結晶構造データを 鋳型に、分子設計ソフトウエアであるModeler (モレキュラー・シミュレーションズ (Molecular Simulations) 社製)を用い、その使用説明書に従って行なうことができる。Fasリガンド三量体モデルは分子設計ソフトウエアであるQUANTA/CHARMm (モレキュラー・シミュレーションズ (Molecular Simulations) 社製)を用いて、TNFαの三量体であるPDB ID:1TNFの原子座標に、前述のFasリガンドモノマーモデルを、TNFモノマーの各々のセグメントに重ね合わせ(スーパーインポーズ)で構築することができる。

本発明では、分子設計ソフトウエアとしてModeler D び QUANTA/CHARMm (共にモレキュラー・シミュレーションズ (Molecular Simulations) 社製)を用いたが、それに限定されるものではなく、その他の一般的なタンパク質を扱うことのできる分子設計ソフトウエアであればどのメーカーのソフトウエアでも可能である。また、鋳型タンパク質としてTNF α 及び β を用いたが、TNFファミリーであればこのTNF α 及び β に限定されるものではない。

このようにして得られたモデル上に、上述した各NOK抗体及びヒト型化NOK2抗体が結合する領域を重ねた結果、驚くべきことに、上記各抗体がFasリガンド三量体が形成されて初めて出現するFasリガンド2分子にまたがる広範囲な領域に結合していることが明らかになった。Fasリガンドと抗Fasリガンド抗体の関係において、このような知見はこれまでの報告にない新規なものである。

一般的に、抗体の抗原結合領域はCDR(相補性決定領域)と言われている6箇所からなる領域で、その広さは結合する抗原によっても異なるが通常の大きなタンパク質抗原の場合約700平方オングストローム(笹月健彦監

修、免疫生物学、南江堂、128ページ、1995年)から約900平方オングストローム(チューリップ(Tulip W. R.)ら、J. Mol. Biol., vol. 227、p.122-148、1992)と言われている。Fasリガンド分子は通常は約40kDの膜貫通型タンパク質として細胞表面に存在するが、その細胞外ドメイン部分はプロセシングを受けることにより、約27kDの遊離型分子としても存在することができる。さらに、Fasリガンドモノマーが三分子会合することにより、Fasリガンド三量体を形成することができると言われている。この程度の大きさのタンパク質になれば、CDR領域をフルに使って抗原と抗体はタンパク質同士の面と面で接触している(笹月健彦監修、免疫生物学、南江堂、128ページ、1995年)。

従って、本発明により明らかになったFasリガンド三量体上のアポトーシス活性抑制に関連した領域は、面として表すこともできる。一般的に面は一直線上にない3点A(XA,YA,ZA)B(XB,YB,ZB)C(XC,YC,ZC)で規定される平面として表示することができる。Fasリガンド三量体モデルから得られる各抗体の認識アミノ酸の原子座標データをこの式に当てはめれば、Fasリガンド三量体モデルに存在する抗原の面を計算することができる。このような面を定義するために必要なアミノ酸は、各抗体の認識アミノ酸の中から任意に選択された3個のアミノ酸として設定することができるが、望ましい例として、隣合う二つのFasリガンド分子のうちの一方の200番G1n、他方のFasリガンド分子上の203番Asn、220番G1nが挙げられる。これらの各アミノ酸のα位の炭素(Ca)原子の座標の組合せによって規定される面は、各抗体の認識アミノ酸から構成される領域面をカバーすることができる。実際の抗体と接触する面または抗体の原子がFasリガンド三量体に向かって通過してくる面

は、各 $C\alpha$ 原子の座標からFasリガンド分子と反対側にアミノ酸残基の側鎖の長さとさらに一般的なファンデルワールスコンタクトのカット・オフ (Cutoff) 値である約4.1オングストローム離れた位置に構成される面になると考えられる。

さらに、抗Fasリガンド抗体のCDR領域の大きさから、Fasリガンド三量体上のアポトーシス活性抑制に関連している領域を構成しているアミノ酸を明らかにすることが可能である。抗Fasリガンド抗体のCDR領域の大きさは、その可変領域のアミノ酸配列の長さから一般的な抗体のそれと大きな違いはないと考えられる。本発明では、抗Fasリガンド抗体の実際のCDR領域の大きさを明らかにするために、抗Fasリガンド抗体の代表として前述のNOK2抗体の立体構造モデルを利用したが、CDR領域のアミノ酸数は各NOK抗体及びヒト型化NOK2抗体で大きな違いはないので、いずれの抗体を用いてもかまわない。さらに、CDR領域の大きさを測定するだけなら、これらの抗体に限定されるものでもない。

NOK2抗体のCDR領域を調べると、半径約17オングストロームの円とほぼ同じサイズを持っていることが明らかとなった。この半径約17オングストロームの円と前述のFasリガンド三量体モデル上の各抗体の認識アミノ酸からなる領域とを比較した結果、この半径約17オングストロームの円の中にFasリガンド三量体上の各NOK抗体及びヒト型化NOK2抗体の認識領域アミノ酸が全てカバーされていることが明らかとなった。このことは、高いアポトーシス抑制活性を持つ抗Fasリガンド抗体が、この円内に示されたアミノ酸からなる領域を共通して認識しており、逆にこの円の範囲にあるFasリガンド三量体のアミノ酸であれば、抗Fasリガンド抗体のCDR領域アミノ酸と相互作用することができることを示している。抗

Fasリガンド抗体のCDR領域アミノ酸と相互作用可能なアミノ酸は、こ の円内にあってFasリガンド三量体上に露出しているアミノ酸なら全てそ の候補となり得るが、15平方オングストローム以上のアミノ酸残基の露出 表面積を持つFasリガンド三量体の表面アミノ酸として選択することが望 ましい。その望ましいアミノ酸として、隣合う二つのFasリガンド分子の うちの一方の分子の153番Ser、166番Tyr、168番Ile、1 98番Arg、199番Gly、200番Gln、237番Gln、238 番Met、241番Arg、242番Ser、269番Phe、270番 Glu、271番Glu、272番Serの各アミノ酸、他方のFasリガ ンド分子の157番Ser、158番Met、159番Pro、161番 Glu、178番Lys、179番Gly、203番Asn、204番 Asn、205番Leu、206番Pro、208番Ser、210番 Lys、212番Tyr、214番Arg、218番Tyr、219番 Pro、220番Gln、221番Asp、222番Leu、223番 Val、228番Lys、230番Met、232番Tyr、256番 His、258番Tyr、260番Asn、262番Ser、263番 Glu、264番Leu、265番Serの各アミノ酸を挙げることができ る。即ち、Fasリガンド三量体上のこれらの領域に含まれるアミノ酸と相 互作用することが、高いアポトーシス抑制活性をもつタンパク質、ペプチ ド、望ましくは抗体もしくはその類似物にとって重要である。

本発明のアポトーシス抑制活性を発揮する物質とは、Fasリガンドに特異的に反応するヒト型化免疫グロブリンに加えて、前述のFasリガンド上のアポトーシス抑制活性に重要なドメイン、領域あるいはそのアミノ酸を特異的に認識して反応することのできる物質であれば、本質的にいかなる物質

であってもよい。特に免疫グロブリンのように蛋白質分子上の特定のアミノ酸を認識し結合する物質が好ましく、さらに、免疫グロブリンに由来するフラグメントあるいはその類似物、前述の領域を認識できるように改良したレセプター改変体、特定のアミノ酸を認識して反応する酵素類などが好ましい物質として挙げられる。それらの蛋白質物質は遺伝子組換え技術によって作製することもできるので、組換え蛋白質として定義することもできる。また、そのような蛋白性物質から由来したアミノ酸配列を基にした合成ペプチドや、ファージディスプレイシステムなどのランダム配列を有するペプチドライブラリーからFasリガンド上のアポトーシス抑制活性に重要なドメイン、領域あるいはそのアミノ酸に対する認識能を指標にスクリーニングすることによって得られた全く新しい配列を持ったペプチド、さらにはそれらのペプチドを基にして自然界にない合成ペプチドによって作製されたペプチド様物質なども、認識物質の候補として挙げられる。

前述の如く、最近の研究により、FasとFasリガンドの生理的反応が AIDS、骨髄移植における移植片拒絶反応(GVHD)、劇症肝炎、自己 免疫疾患(SLE,RA)などの様々な疾患に関連していることが明らかに される中で、Fasリガンドに特異的に反応し該生理的反応を抑制できる活 性を持つ本発明のヒト型化免疫グロブリンは、それらの疾患の治療薬として 使用することができる。

また、本願発明により明らかにされたFasリガンド上のアポトーシス誘導活性の発揮に必要な領域は、高いアポトーシス抑制活性を持つ抗Fasリガンド抗体を惹起する領域としてもその重要性は高い。この知見は、他の様々なアポトーシス抑制分子をデザインする上で重要な情報を与える。すなわち、上記知見に基づけば上記領域に含まれるアミノ酸に対して特異的に反

応し、アポトーシスを抑制する組換え蛋白、ペプチドなどを作出し、新たな 治療薬或いは臨床診断薬等に応用することができる。

以下、本発明の理解を深めるために実施例に沿って説明するが、本発明は これらの実施例になんら限定されるものではない。

実施例

本実施例に記載するNOK抗体は、平成7年特許願第303492号の発明に含まれるものであり、これは全ての目的のために引用されることにより全体として本明細書の一部となる。その作製法は上記出願明細書に詳述されているが、その概略は以下の通りである。

まず、Fasリガンドを発現しているヒトキラーT細胞から常法により調 製した c D N A を鋳型に、長田らの報告(長田ら、 Cell, vol. 75, p. 1169-1178, 1993) に基づいて作製したプライマーを用いて PCRを行ない、ヒトFasリガンド遺伝子を増幅した。増幅された遺伝子 はプライマーに付加されていた制限酵素切断部位を利用して、発現ベクター BCMGSNeo(烏山一、実験医学別冊遺伝子工学ハンドブック、羊土 社、p. 297-299.1992) に連結してFasリガンド発現プラス ミドが作製された。この発現プラスミドを、常法のDEAEーデキストラン 法によりCOS細胞(ATCC CRL1650)に導入してFasリガン ド発現COS細胞が作製された。本Fasリガンド発現COS細胞を、 1pr/lprマウスの腹腔内に1週間隔で3回免疫し、最終免疫 MPLから3日目に脾臓を摘出した。摘出した脾臓から得た細胞は、ポリエチレン グリコールを用いる常法により、マウス由来の8-アザグアニン耐性細胞で あるP3X63Ag8. 653 (ATCC CRL1580) と細胞融合さ れた。このようにして得られたハイブリドーマを限界希釈法によりクローニ

ングし、各クローンを培養して得られた培養上清の中に存在する免疫グロブリンについて、後述するアポトーシス抑制活性の測定を行なうことによりスクリーニングして、Fasリガンドに特異的に反応するモノクローナル抗体NOK2を産生するハイブリドーマ(工業技術院生命工学工業技術研究所に寄託されている受託番号FERM BP-5045のハイブリドーマNOK2)を得た。

同様にして、NOK1、NOK3及びNOK4抗体を得た。

実施例 1

(キメラNOK2抗体(CNOK2)の作製)

1-1) NOK 2 抗体可変領域遺伝子の単離

マウス免疫グロブリン可変(V)領域遺伝子の単離については以下のように行なった。まず、NOK2産生ハイブリドーマ細胞からニッポンジーン社製のRNA抽出試薬イソジェン(ISOGEN)(商品名)を使用して全RNAを抽出した。方法はキットに添付のプロトコールに従った。なお、NOK2抗体を産生するハイブリドーマは、工業技術院生命工学工業技術研究所に寄託されているFERM BP-5045に同じものである。次に、抽出した全RNAからストラテジーン(STRATAGENE)社製のポリ(A)クイックmRNAアイソレーション(POLY(A)QUIKmRNA ISOLATION)キット(商品名)を用いてメッセンジャーRNA(mRNA)を調製した。方法はキットに添付のプロトコールに従った。続いて、このmRNAを鋳型にファルマシア・バイオテック(Pharmasia Biotech)社製の第一鎖cDNA合成(First Strand cDNASynthesis)キット(商品名)を用いて1本鎖のcDNAを合成した。プライマーはキットに添付のオリゴ(dT)プライマーを使用し、方法は添付の

プロトコールに従った。このようにして得た一本鎖 c DNAを鋳型に、カバットらの分類したV領域とJ領域の核酸塩基配列(シークエンス・オブ・プロテインズ・オブ・イミュノロジカル・インタレスト、第4版、パブリック・ヘルス・サービス、NIH, ワシントンDC、1987)を基にして合成したDNAプライマー(重鎖/MHL4.4プライマー:配列番号10、MHJ124プライマー:配列番号11;軽鎖/MKL2.4プライマー:配列番号11;軽鎖/MKL2.4プライマー:配列番号12、MKJ124プライマー:配列番号13)を用いてポリメレース連鎖反応(PCR)を行なった。V領域プライマーとJ領域プライマーには各々HindIIIとBamHIサイトが付加されている。PCRはパーキン・エルマー(PERKIN ELMER)社製のキットを使用し、添付されているプロトコールに従って行なった。PCRの条件は、94℃1分、60℃2分、72℃2分で35サイクル行なった。PCR後、得られたDNA断片をインビトロジェン(Invitrogen)社製のPCRIIベクター(商品名)へクローニングした。方法は添付のプロトコールに従った。

1-2)マウスNOK2抗体V領域遺伝子の塩基配列

パーキン・エルマー社製のダイプライマーサイクルシークエンシング(Dye Primer Cycle Sequencing)キット(商品名)を用いてシーケンス反応を行ない、得られた反応産物をオートシーケンサにアプライしてpCRIIに組み込まれたV領域遺伝子の塩基配列を決定した。その結果得られたNOK2抗体の重鎖の可変領域(VH)及び軽鎖の可変領域(VL)の塩基配列を図1及び図2に示す(VH:配列番号14、VL:配列番号15)。また、その核酸塩基配列から得られるアミノ酸配列(VH:配列番号16、VL:配列番号17)についても併せて図1及び図2に示す。NOK2抗体

の塩基配列はいずれもV領域遺伝子特有の再配列を起こしており、しかも発現可能なオープンリーディングフレーム(ORF)をとっていることが確認できた。

1-3) キメラNOK 2 抗体発現遺伝子(CNOK 2 H, CNOK 2 L)の 構築

単離されたNOK 2抗体 V領域遺伝子が本当に抗 F a s J ガンド活性を担う V 領域をコードする遺伝子であるかどうかを確認するために、マウスーヒトキメラ抗体を作製した。キメラ抗体の発現のためにニワトリ β -P0 プロモーターとウサギ β -D0 ビン遺伝子のスプライシングD0 セプター配列及びサイトメガロウイルス由来のエンハンサーを持った発現ベクターD0 CAG-D2 及びD3 CAG-D3 を使用した。

 $pCAG-\kappa$ は、特許国際公開WO94/20632号公報に記載されているヒト型化抗HIV中和モノクローナル抗体であるRC25の、軽鎖発現プラスミドであるRHC25プラスミドに由来するヒト免疫グロブリンの κ 鎖定常領域遺伝子とポリアデニレーション部位、pSV2-dhfrプラスミド(Lee, F. 6、Nature, vol. 294, p.228-232, 1981)に由来する真核細胞中での選択マーカーとしてのdhfr遺伝子とSV40プロモーターとポリアデニレーション部位、及び特開平3-168087の公報に記載のpCAGプラスミドに由来する原核細胞中での選択マーカーとしてのAmpr遺伝子とサイトメガロウイルス(CMV)のエンハンサーとこフトリの β -アクチン遺伝子のプロモーター及びウサギの β -グロビン遺伝子のスプライスアクセプターサイトを、通常の遺伝子工学的手法により連結したものである。また、該ベクタープラスミドのウサギ β -グロビン遺伝子のスプライスアクセプターサイトの下流にはHirdellare

ト免疫グロブリンκ鎖定常領域遺伝子の上流にはBamHIサイトが付加されている。

pCAGーγ1は、文献(前田ら、Hum. Antibod. Hybridomas, vol. 2, p124-134, 1991)に記載のHCMV-VH0.5β-γ1プラスミドに由来するヒト免疫グロブリンのγ1定常領域遺伝子とポリアデニレーション部位、特開平2-5890の公報に記載のpAd. RE. neoプラスミドに由来する真核細胞中での選択マーカーとしてのneor遺伝子とSV40プロモーターとポリアデニレーション部位、及び特開平3-168087の公報に記載のpCAGプラスミドに由来する原核細胞中での選択マーカーとしてのAmpr遺伝子とサイトメガロウイルス(CMV)のエンハンサーとニワトリのβ-アクチン遺伝子のプロモーター及びウサギのβ-グロビン遺伝子のスプライスアクセプターサイトを通常の遺伝子工学的手法により連結したものである。また、該ベクタープラスミドのウサギβ-グロビン遺伝子のスプライスアクセプターサイトの下流にはHindIIIサイトが、ヒト免疫グロブリンγ1定常領域遺伝子の上流にはBamHIサイトが付加されている。

- 1-4) キメラNOK 2 抗体 (CNOK 2) の発現キメラNOK 2 抗体 (CNOK 2) を産生する形質転換細胞を作製する為

に、前述のプラスミドDNA CNOK2HとCNOK2Lをギブコ (Gibco BRL) 社製のLipofectACE(商品名)を用いる方法により CHO-DG44細胞 (チェイシン (Chasin, L. A.) ら、Somatic Cell. Mol. Genet., vol. 12, p. 555-566, 1986) に導入した。方 法は、基本的にはLipofectACEに添付のプロトコールに従った。 以下簡潔に述べると、まず、キアジェン(QIAGEN)社製のキットで調 製した両プラスミドDNA1 μ gずつを制限酵素PvuIで線状化し、 LipofectACEとの混合物にしてCHO-DG44細胞に導入し、 1 mMのG418 (ギブコ BRL社製) 及び10%の透析済牛胎児血清 (ギブコ Β R L 社製) を含むヌクレオチド非含有 α - Μ E M 培地 (ギブコ BRL社製)で、37℃、5%СО2の条件下で2週間培養した。この条件 下で増殖する細胞は、CNOK2H及びCNOK2LプラスミドDNAで共 形質転換されたものである。こうして得られた形質転換細胞を上記の培地で 継代、拡張し、75cm2の培養フラスコ(コーニング(CORNING) 社製) 内でコンフルエントに達した時点で、20mlのASF培地(商品 名) (味の素株式会社製) へ切り換え、37℃、5%СО2の条件下で7日 間培養した後、上清を回収した。

1-5) 培養上清の濃縮及びその中に含まれるCNOK 2 抗体の定量 回収したASF培養上清をアミコン (Amicon) 社製のセントリコン-1 0 (Centricon-10) スピンカラム (商品名) を用いて10倍に濃縮した。この濃縮した上清中に含まれるキメラ抗体の量をELISAにより定量した。詳しくは、まずインターメッド (InterMed) 社製の96ウェルマキシソープ (Maxisorp) プレート (商品名) に、2μg/mlの濃度のヤギ抗ヒトIgG (Fc) 抗体 (カッペル (Cappel) 社製) を50μl/ウェ

ルで添加した。4℃で一晩インキュペーションした後、0.05% Tween20含有0.01M PBSで3回洗浄した。続いて、1%BSA 含有PBSを100μ1/ウェルで添加し、37℃で3時間インキュペー ションした。再び、0.05%Tween20含有0.01M PBSで3回 洗浄した後、前述の培養上清濃縮液を50 μ l / ウェルで添加し、37℃で 1時間インキュベーションした。その後、0.05%Tween20含有0. 01M PBSで3回洗浄し、二次抗体のHRPラベル抗ヒトIg-Cκ抗 体 (サザーン・バイオテクノロジー・アソシエート (Southern Biotechnology Associate) 社製) を1%BSA含有PBSで5000倍に 希釈したものを50μ1/ウェルで添加した。37℃で1時間インキュベー ションした後、0.05%Tween20含有0.01M PBSで5回洗浄 した。最後に発色基質溶液 (0.5 mM TMB Z + 過酸化水素) を 5 0 μ l /ウェルで添加し、適当な発色が得られたところで、 0.3 N 硫酸を 5 0 μ 1/ウェルで添加して反応を停止させ、その後マイクロプレートリーダー (モレキュラー・デバイシズ (Molecular Devices) 社製) で波長450 n mにおける吸光度を測定した。同様の方法で、濃度が既知の標準ヒト IgGを用いて検量線を作成し、それをもとにRNOK2の濃度を算出し た。標準ヒトIgGとしては、キメラNOK2抗体と同じFc及びCκを持 つ抗HIV中和モノクローナル抗体であるRC25抗体(特許国際公開WO 94/20632号公報)の精製品(純度98%以上)を用いた。

1-6) 可溶性Fasリガンド分子の調製

Fasリガンド遺伝子の単離からFasリガンド発現細胞の作出及び可溶性Fasリガンド分子の調製までの方法は、平成7年特許願第303492 号明細書に記載の方法と同じである。以下に概略を述べる。

まず、ヒトFasリガンドを発現しているヒトキラーT細胞から、常法に より抽出したmRNAをもとにcDNAを調製した。次に、長田らの文献 (長田ら、Int. Immunol., vol. 6, No. 10, p. 1567-157 4. 1994) に記載のプライマー (5' 側プライマーにはXho Iサイ ト、3、側プライマーにはNotIサイトが付加されている)を用いて、先 のcDNAを鋳型にPCRを行ない、その増幅産物としてのヒトFasリガ ンド遺伝子を得た。このヒトFasリガンド遺伝子をXhoIサイト及び Not Iサイトで、発現ベクターBCMGSNeo(烏山一,遺伝子工学ハ ンドブック, 羊土社, p. 297-299, 1992) に組み込んでヒト Fasリガンド発現プラスミド (ヒトFasリガンドーBCMGSNeo) を得た。続いて、このプラスミドを常法により大腸菌内で増幅して回収し、 DEAE-デキストラン法(実験医学別冊バイオマニュアルシリーズ4, 遺 伝子導入と発現解析法, 羊土社, p. 16-22, 1994) によりCOS 細胞 (ATCC CRL1.650) に導入してFasリガンド発現COS細 胞を得た。次に、このFasリガンド発現COS細胞を10%FCS-DME培地で培養し、その培養上清中に放出されたFasリガンド分子を、 平成7年特許願第303492号明細書に記載の抗Fasリガンド抗体であ るNOK1抗体 (受託番号FERM BP-5044で規定されるハイブリ ドーマによって産生される抗体)を用いてアフィニティ精製した後、0.4 5μmのフィルターで濾過滅菌し、これを可溶性Fasリガンド分子とし た。Fasリガンドが精製されていることは、SDS-PAGEにより、単 一のバンドが検出されたことで確認した。Fasリガンドの濃度は、波長2 80nmにおける吸光度を基に決定した。

1-7) CNOK2抗体の可溶性Fasリガンドへの結合性の確認

可溶性Fasリガンドと抗ヒトIgGを用いたELISA法により、濃縮 上清中に存在するキメラ抗体の活性を測定した。具体的には、まずインター メッド社製の96ウェルマキシソーププレート(商品名)に、1-6)に記 載の方法で調製した50ng/mlの濃度の可溶性Fasリガンド溶液を5 0 μ 1 / ウェルで添加した。4℃で一晩インキュベーションした後、0.0 5%Tween20含有0.01M PBSで3回洗浄した。続いて、1% BSA含有PBSを100μ1/ウェルで添加し、37℃で2時間インキュ ベーションした。再び、0.05%Tween20含有0.01M PBSで 3回洗浄した後、前述の培養上清濃縮液(1-4)で作製)を50μ1/ ウェルで添加し、37℃で2時間インキュベーションした。その後、0.0 5%Tween20含有0.01M PBSで3回洗浄し、二次抗体のHRP ラベル抗ヒトΙg-Cκ抗体(サザーン・バイオテクノロジー・アソシエー ト社製) を 0.1% B S A 含有 P B S で 5 0 0 0 倍に希釈したものを 5 0 μ 1/ウェルで添加した。37℃で1時間インキュベーションした後、0.0 5% Tween20含有0.01M PBSで5回洗浄した。最後に発色基質 溶液 (0.5 mM TMBZ+過酸化水素) を50 μ1/ウェルで添加し、適 当な発色が得られたところで、0.3N 硫酸を50μl/ウェルで添加して 反応を停止させ、その後マイクロプレートリーダー(モレキュラー・デバイ シズ社製)で波長450nmにおける吸光度を測定した。CNOK2H及び CNOK2LプラスミドDNAの共形質転換による発現産物が、濃度依存的 にFasリガンドと結合したことから、上記の単離したNOK2抗体V領域 遺伝子が間違いなく抗Fasリガンド活性を持った抗体のV領域をコードし ている遺伝子であることが確認された(図4)。

実施例 2

(ヒト型化NOK2抗体(RNOK2)の作製)

2-1) PCR突然変異誘発法によるNOK2抗体V領域遺伝子のCDR移植

クローニングしたNOK 2 抗体のVH、VL領域中のCDR(相補性決定領域;配列表配列番号1~6)を各々ヒト免疫グロブリンのVH、VL領域へ移植した。方法は、ヒト型化免疫グロブリン作製方法(特開平 4-14 1095号公報)に従った。NOK 2 抗体のVH領域のCDRはヒトサブグループIIのFR(フレームワーク)領域を持つVH領域であるSGI(英国MRC コラボラティブ・センターのベンディック博士より分与されたもの)へ移植した。NOK 2 抗体のVL領域のCDRは、過去に報告されているヒトκ鎖のFR領域を持つVL領域であるREI(パームら、Physiol. Chem., vol. 356, p.167, 1975)、及び正常人ヒト末梢血リンパ球由来のcDNAライブラリーからクローニングしたκ鎖のFR領域を持つVL領域(huVL-19及びhuVL-31)に移植した。

NOK 2 抗体のヒト型化においては、まず、コンピュータモデリングによりNOK 2 抗体の推定 3 次元構造を構築した。具体的には、NOK 2 抗体重鎖及び軽鎖の可変領域アミノ酸配列を基に、ブルックヘーブン・プロテイン・データバンク(Brookhaven Protein Data Bank)(PDB)とのホモロジー検索を行ない、鋳型となる抗体の重鎖可変領域(PDB ID:1 FOR)と軽鎖可変領域(PDB ID:1TET)を選定した。次に、シリコングラフィックス上で起動するソフトウエアQUANTA/
CHARMm(モレキュラー・シミュレーションズ)を用いてモデリングを行なった。モデリングの工程は1)上記鋳型可変領域アミノ酸の原子座標にNOK 2 抗体のアミノ酸配列をコピー、2)エネルギー極小化計算(最大傾

斜法)、3)温度300Kから0Kへ2,400ステップかけて冷却、4) エネルギー極小化計算(最大傾斜法)、5)温度0Kから300Kへ7,5 00ステップかけて加熱、6)30,000ステップ(30ピコ秒に相当) の平衡化、7)20,000ステップ(20ピコ秒に相当)のシミュレー ション、から成る。次に、上記のシミュレーションにおいて計算100毎に 1つの構造を抽出し(合計200構造)、これらを上記ソフトウエアに搭載 されているクラスタ解析プログラムを用いて5つの群に分類した。最終的 に、上記2)のエネルギー極小化計算の結果で得られた1構造及び上記5群 の各々の中で最少のエネルギーを持つもの合計 5 構造を抽出し、これら 6 種 の構造をNOK2抗体の推定3次元構造とした。次に、同ソフトウエアに搭 載されているプログラムを用いて、上記NOK2抗体の推定三次元構造の 各々においてH鎖及びL鎖のCDRに水素結合しているFR領域中のアミノ 酸群(第一群)を選出し、更にそれらに水素結合しているFR領域中のアミ ノ酸群(第二群)を選出した。同様に、同ソフトウエアに搭載されているプ ログラムを用いて、H鎖及びL鎖のCDRにエネルギーコンタクトしている FR領域中のアミノ酸群(第一群)を選出し、更にそれらにエネルギーコン タクトしているFR領域中のアミノ酸群(第二群)を選出した。ここで言う エネルギーコンタクトには、いわゆる静電的相互作用及びファンデルワール ス力が含まれる。また、上記水素結合アミノ酸の選定及びエネルギーコンタ クト計算のために必要なパラメータとしては、上記プログラムの初期設定値 を採用した。続いて、水素結合で選ばれた第一群・第二群のFRアミノ酸 と、エネルギーコンタクトで選ばれた第一群・第二群のFRアミノ酸のうち で、上記6種の推定構造のうち4種以上において選ばれたFRアミノ酸を、 CDRの立体構造維持に寄与しているFRアミノ酸としてCDRアミノ酸と

併せてヒト免疫グロブリンの可変領域のFRに移植することにした。ただし、それらのFRアミノ酸のうちで、ヒト免疫グロブリン中の相当する部位に移植した結果、カバットらの分類(シークエンス・オブ・プロテインズ・オブ・イミュノロジカル・インタレスト、第4版、パブリック・ヘルス・サービス、NIH、ワシントンDC、1987)や、ナショナル・センター・フォー・バイオテクノロジー・インフォメーション(NCBI)で開発された情報検索ソフトウエアであるアントレ(Entrez)(商標)などから引用できる、ヒト免疫グロブリンの可変領域アミノ酸配列には存在しないような配列が生じる場合については、そのアミノ酸の移植は行わないこととした。これにより、ヒト型化免疫グロブリンをヒトに投与した場合において抗原性を発揮する可能性が可能な限り低減される。

ヒト型化VHについては、FR3中のアミノ酸が2つ異なる2種類のバリエーションを作った(RNOK2VHver11:配列番号18及びRNOK2VHver12:配列番号19)。ヒト型化VLについては、ヒト免疫グロブリンVL領域のREIに移植するものとして、RNOK2VLver1 (配列番号20)、cDNAライブラリーから得たhuVLー19及びhuVL-30へ移植するものとして、FR1中の1アミノ酸あるいは2アミノ酸が異なる4種類のバリエーションを作った(RNOK2VLver21:配列番号21、RNOK2VLver22:配列番号22、RNOK2VLver23:配列番号23及びRNOK2VLver24:配列番号24)。従って、VLについては合計5種類のバリエーションを作製した。

・NOK2抗体と移植先のヒト免疫グロブリン及び構築される各々のヒト型 化NOK2抗体のVH及びVLアミノ酸配列を図5及び図6に示した。アミ ノ酸配列中の大文字はNOK2抗体と移植先のヒト抗体で共通の配列であり、小文字は両者で異なるアミノ酸である。枠で囲んだアミノ酸は、前項に記載した方法により選択されたFRアミノ酸であり、CDRアミノ酸と併せてヒト免疫グロブリンに移植するものである。

実際のアミノ酸移植は、VHについてはヒト型化抗HIV免疫グロブリンであるRC25抗体(特許国際公開WO94/20632号公報)のVH遺伝子を鋳型に、VLについては前述のようにして得たキメラNOK2のVL遺伝子を鋳型に使用し、PCRによって変異を導入するPCR突然変異誘発法により遺伝子レベルで行なわれ、図5、図6及び図7に示すヒト型化NOK2抗体のアミノ酸配列をコードする遺伝子が構築された。図8~図13はPCR突然変異誘発に用いた合成プライマーが、各々の鋳型VH、VL領域にアニーリングしているところを示したものである。

PCRはパーキン・エルマー社製のキットを使用し、添付されているプロトコールに従って行なった。PCRの条件は、95 $\mathbb{C}1$ \mathcal{G} \mathbb{C} \mathbb{C}

VHの場合、ヒト型化C25免疫グロブリンの重鎖遺伝子をクローニング したプラスミドRHC25 (特許国際公開WO94/20632号公報)を 鋳型とし、そのプロモーター領域上のプライマーpAGF (配列番号:2 5)及びプライマー#01 (配列番号:26)を用いてVH遺伝子の5'側 を増幅し、#02 (配列番号:27)あるいは#03 (配列番号:28)と #04 (配列番号:29)を用いてVH遺伝子の3'側を増幅した

(RNOK2VHver11作製のためには#02、ver12作製のためには#03を使用した)。次に、ここで得られた2つの増幅遺伝子断片を等量混合して鋳型とし、pAGFプライマーと#04を用いてPCRを行なっ

た。こうして得られた増幅遺伝子断片を、ヒト型化C25抗体(特許国際公開WO94/20632号公報)VH遺伝子のKpnIサイトでつないでヒト型化NOK2抗体VH遺伝子のRNOK2VHver11及びver12を作製した。

一方、VLについてはキメラNOK2のVLを鋳型にプライマー#05 (配列番号:30)と#06 (配列番号:31)を用いてVL遺伝子の5'側を増幅し、#07 (配列番号:32)と#08 (配列番号:33)を用いて中間部分を増幅し、#09 (配列番号:34)と#10 (配列番号:35)を用いて3'側を増幅した。次に、ここで得られた3つの増幅遺伝子断片を等量混合して鋳型とし、#05と#10を用いてPCRを行なった。こうして得られた増幅遺伝子断片を、ヒト免疫グロブリンSGIのVH遺伝子上流のLeader領域遺伝子中にあるApaIサイトで連結しヒト型化NOK2抗体VL遺伝子のRNOK2VLver1を作製した。

また、VLの残り4種類のバリエーションについては、以下のようにして作製した。まず、キメラNOK2のVLを鋳型にプライマー#11 (配列番号:36)と#12 (配列番号:37)を用いてPCRを行なった。プライマー#11中には、RNOK2VLver21,22,23及び24のバリエーションを作出するために、核酸配列にバリーエーションが含まれている。こうして得られた増幅遺伝子断片を、ヒト免疫グロブリンSGIのVH遺伝子上流のLeader領域遺伝子中にあるApaIサイトで連結しヒト型化NOK2抗体VL遺伝子のRNOK2VLver21,22,23及び24を作製した。

上記のようにして構築した各ヒト型化VH及びVL領域遺伝子の塩基配列を、パーキン・エルマー社製のキット及びオートシーケンサを用いて解析

し、設計通りの配列を有しているクローンを選択した。

これらの各ヒト型化VH及びVL領域断片をHindIIIとBamHI 制限

酵素で消化し、キメラ抗体の作製(実施例1参照)と同様にして、各々pCAG-γ1、pCAG-κのHindIII-BamHIサイトに組み込んだ。このようにしてヒト型化NOK2抗体遺伝子発現プラスミド(各々RHNOK2、RLNOK2:これらはヒト型化VH及びVLの各バージョンをクローニングした各プラスミドの総称である)を調製した。

2-2) ヒト型化NOK2(RNOK2)免疫グロブリンの発現

RNOK2免疫グロブリンを産生する形質転換細胞を作製するために、キメラ抗体の作製(実施例1参照)と同様にして前述の各ヒト型化NOK2免疫グロブリン遺伝子発現プラスミド(RHNOK2,RLNOK2)DNAをCHO-DG44細胞に導入した。方法は、キメラ抗体の場合と同様にLipofectACEを用いて行なった。

前述のように、VHについては2種類、VLについては5種類のヒト型化可変領域遺伝子の発現プラスミドを作製したので、それらの組み合わせで合計10種類のヒト型化NOK2免疫グロブリンを発現させた(後に記載するRNOK201、RNOK202及びRNOK203は、各々RNOK2VHver11とRNOK2VHver11とRNOK2VLver21、RNOK2VHver11とRNOK2VLver21、RNOK2VHver11とRNOK2VLver22の組み合せで発現させたヒト型化NOK2抗体である。以下、これらを総称してRNOK2抗体あるいはRNOK2免疫グロブリンと呼称することがある)。

発現プラスミド導入後に、形質転換細胞を培養して得た上清について、キ

メラ抗体の定量と同様にして、抗ヒトIg G_γ 1及び抗ヒトIg G_κ を用いたELISAを行なった結果、その培養上清中にヒト免疫グロブリンが産生されていることが確認された。

実施例 3

ヒト型化NOK2 (RNOK2) 免疫グロブリンのFasリガンド結合活性 3-1) 精製RNOK2免疫グロブリンの調製

実施例 2 に記載したようにして作製したRNOK 2 発現CHO-DG 4 4 細胞を培養して得た培養上清を回収し、その中に含まれるRNOK 2 免疫ケロブリンを精製した。具体的には、まず、実施例 2 に示したようにして得た、RNOK 2 免疫グロブリンを産生する形質転換細胞を 7 5 c m 2 の培養フラスコ (コーニング社製)中で、1 mMのG 4 1 8 (ギブコ BR L社製)及び10%の透析済牛胎児血清(ギブコ BR L社製)を含むヌクレオチド非含有α-MEM培地(ギブコ BR L社製)で、37℃、5%CO2の条件下でコンフルエントになるまで培養した。次に、これを225 c m 2 の培養フラスコ (コーニング社製)2 本に拡張し、再び同条件下でコンフルエントになるまで培養した。続いて、この2本を225 c m 2 の培養フラスコ8本に拡張して同条件下で培養し、コンフルエントに達した時点で65 m1/フラスコのASF培地(商品名)(味の素株式会社製)へ置換し、37℃、5%CO2の条件下で7日間培養した後、合計約500mlの培養上清を回収した。

上述のようにして得た培養上清から、プロテインGカラム(ファルマシア・バイオテック社製)とTPLCシステム(ファルマシア・バイオテック社製)を用いて、プロテインG吸着IgGのみを精製した。精製した免疫グロブリンの濃度は、実施例1に記載のELISA法により決定した。また、

精製した免疫グロブリンについて還元条件下でSDS-PAGEを行ない CBB染色を行なった結果、各々重鎖、軽鎖と思われるバンド以外には、特 に夾雑蛋白の存在は確認されなかった。

3-2) RNOK2のFasリガンドへの結合活性

前項に記載したようにして調製した精製RNOK免疫グロブリンのうち、RNOK201、RNOK202及びRNOK203免疫グロブリンと Fasリガンドとの結合性を、可溶性Fasリガンドと抗ヒトIgGを用いたELISA法(実施例1に記載)により調べた結果、RNOK2免疫グロブリンが濃度依存的にFasリガンドと結合することが確認された(図14)。

実施例 4

RNOK2免疫グロブリンのアポトーシス抑制活性の測定

4-1) 可溶性Fasリガンド分子の調製

実施例1-6)に記載した方法と同じ方法により可溶性Fasyがンド分子を調製した。

4 - 2) RNOK2免疫グロブリン溶液の調製

実施例3に記載した方法で調製した精製RNOK2免疫グロブリンを、10%FCS-RPMI1640培地にて希釈し、以下の12種類の濃度の免疫グロブリン溶液を調製した。免疫グロブリンの濃度は、4μg/ml、2μg/ml、0.5μg/ml、0.25μg/ml、0.125μg/ml、0.0625μg/ml、0.03125μg/ml、0.01563μg/ml、0.007813μg/ml、0.003906μg/ml、0.001953μg/mlのものを、各々100μlずつ調製した。

なお、これらの免疫グロブリンは、最終的には 100μ 1の反応系に 1/42 を量の 25μ 1 を入れるため、最終的な実効濃度は上記濃度の 1/42 なる。

4-3) 精製マウスNOK2免疫グロブリンの調製

ハイブリドーマNOK2(工業技術院生命工学工業技術研究所に寄託されている受託番号FERM BP-5045のハイブリドーマ)を各々10% FCS含有RPMI1640培地で3×107個まで増殖させた。3×10 7個の細胞は、75cm²フラスコ(ファルコン社製)に30m1培養液を入れて細胞培養を行なうスケールで調製した。具体的には、2×105個/mlの濃度で培養を始め、1×106個/mlになるとき細胞を回収した。

回収したハイブリドーマは、 $1.5\,\mathrm{m}\,\mathrm{l}$ のPBSに懸濁し、ヌードマウスに対し、 $0.5\,\mathrm{m}\,\mathrm{l}$ (1×107 個相当分)腹腔内投与した。 $10\,\mathrm{H}\,\mathrm{l}$ の後、腹腔内にたまった腹水を回収した。回収した腹水は、 $6.7\,\mathrm{m}\,\mathrm{l}$ / 匹であった。このうち、 $10\,\mathrm{m}\,\mathrm{l}$ を用い精製を行なった。

精製は、10ml(等量)の飽和硫酸アンモニウムを滴下し、腹水と混合する硫安塩析から始めた。4℃にて2時間撹拌後、10,000gで15分間遠心分離を行なった。上澄みを捨てた後、沈殿したものを5mlのPBSにて溶解させた。その後、PBS3リットルにて1昼夜透析した。続いて、透析サンプルを回収後、プロテインGカラム(ファルマシア社製)を用いて、FPLCシステムにてプロテインG吸着IgGのみを精製した。このサンプルをさらにPBSにて透析を一昼夜行なった。翌日に蛋白質濃度の定量及び純度の検定を行なった。

・蛋白質の定量は、バイオラッド社製のタンパク質定量試薬を用いて測定した。方法は、試薬に添付されているプロトコールに従った。精製した免疫グ

ロブリンについて還元条件下でSDS-PAGEを行ないCBB染色を行なった結果、各々重鎖、軽鎖と思われるバンド以外には、特に夾雑蛋白の存在は確認されなかった。

このようにして調製した精製NOK2免疫グロブリンについて、前項に記載のRNOK2免疫グロブリンの場合と同様にして12種類の濃度の免疫グロブリン溶液を調製した。

4-4) ターゲット細胞の調製

ターゲット細胞には、ヒトFas遺伝子を導入したWR19L細胞を用いた。WR19L細胞(ATCC TIB52)へのヒトFas遺伝子の導入は常法にしたがって行なった。具体的には、奥村らの文献(奥村ら、Proc. Natl. Acad. Sci. USA, vol. 91, No. 11, p4930-4934,1994)を参考にして作製した。得られたFasーWR19L細胞を培養し、10%FCS-RPMI培地にて2x105個/mlに調製した。

4-5) RNOK2免疫グロブリンのアポトーシス抑制活性の測定

まず、4-1)項に記載した方法で調製した可溶性Fasリガンド分子を10%FCS-DME培地で18.5 ng/mlに希釈した。96 ウェル平底プレートを用い、各ウェルにこの希釈液 25μ lを入れた。次いで、4-2)項に記載した方法で調製したRNOK2免疫グロブリン溶液(RNOK201、RNOK202及びRNOK203)及び4-3)項に記載した方法で調製したマウスNOK2000多次の資産の溶液を3ウェルずつに 25μ 1/ウェルの割合で加えた。その後、37%で5%CO2のもとで1時間インキュベーションした。その後、4-4)項に記載した方法で調製したターゲット細胞のFas-WR19L細胞懸濁液を 50μ 1/ウェ

ルの割合で加え、37℃で5%CO2のもとで17時間インキュペーションした。次いで、アラマー・ブルー(Alamer Blue)(コスモバイオ社より購入)を10µl/ウェルの割合で加えて、更に37℃で5%CO2のもとで4時間インキュベーションした。その後、蛍光マイクロプレートリーダー(フルオロスカン(Fluoroskan)II(商品名);タイターテック(Titertek)社製)を用いて励起波長544nm、測定波長590nmで蛍光強度を測定した。この蛍光強度は各ウェル中の生細胞数を反映するものである。

なお、可溶性 Fas リガンドも RNOK 2 免疫グロブリンもマウス NOK 2 免疫グロブリンも入れずに、ターゲットの Fas -WR 19L 細胞 50μ 1 / ウェルに対して 10%FCS -RPMI 1640 培地を 50μ 1 / ウェルスれたものを 100% 生存のコントロールとし、可溶性 Fas リガンド 25μ 1 に、 10%FCS -RPMI 1640 培地を 25μ 1 及びターゲットの Fas -WR 19L 細胞 50μ 1 を加えたものをアポトーシスのコントロールとした。その結果を図 15 に示した。

図15から判るように、ヒト型化NOK2免疫グロブリン(RNOK201, RNOK202及びRNOK203)は、いずれも濃度が0.06μg/ml (実効濃度)以上の範囲で90%以上のアポトーシス抑制率を示した。このことにより、本発明のヒト型化免疫グロブリンの全てが可溶性 Fasリガンドが持つFas発現細胞に対するアポトーシス誘導活性を抑制できることが実証された。しかも、特に注目すべきことに、本発明のヒト型化免疫グロブリンは、試験を行なった全濃度範囲において、オリジナルのマウスNOK2免疫グロブリンと比べて同等以上の活性を持つことがわかった。

また、マウスNOK 2免疫グロブリンは、平成7年特許願第303492 号に記載されたとおり、0.01~8μg/mlの抗体濃度(実効濃度)に おいて、同濃度のFas-Igキメラ分子に比べて、著しく高いアポトーシ スの抑制活性を示すことがわかっている。従って、本発明のヒト型化免疫グ ロブリンがマウスFas-IgよりもFasリガンドに対するアフィニ ティーが強く、より有効であることは明白である。

また、このことは、生体内でも本発明のヒト型化免疫グロブリンのいずれかが存在すれば、FasリガンドがFasに結合するのに優先して、これらのヒト型化免疫グロブリンがFasリガンドに結合することを示唆している。このことにより、本発明のヒト型化免疫グロブリンが、生体内においてFasとFasリガンドの生理的反応を十分抑制できることが容易に推察できる。

実施例 5

(アミノ酸置換を導入したFasリガンド (変異Fasリガンド) の作製) 5-1) Fasリガンド発現用ベクターの構築

Fasリガンド発現ベクターを構築するために、まず、実施例1-3)項に記載の $pCAG-\kappa$ 発現ベクターの κ 鎖定常領域遺伝子を欠くpCAG発現ベクターのHindIII-BamHIサイトに、C25抗体(特許国際公開WO94/20632号公報に記載)のリーダー配列を含む軽鎖可変領域の遺伝子を上記制限酵素で切り出して連結した。このプラスミドを常法により大腸菌に導入し、得られた形質転換大腸菌を培養して得た菌体より、小スケールプラスミド調製法(コールド・スプリング・ハーバー・ラボラトリー(Cold Spring Harbor Lab.),モレキュラー・クローニング(Molucular Cloning)p.1.25,1989)により、上記プラスミドを回

収した。続いて、このプラスミドより、リーダー配列中のKpnIサイトとC25軽鎖可変領域下流のBamHIサイトで、リーダー領域の一部と可変領域遺伝子の全体を切除した。これにより、C25抗体軽鎖由来のリーダー配列を付加したpCAG発現ベクターが得られた。

5-2) PCR突然変異誘発法による変異Fasリガンド遺伝子の作製及び それらの発現プラスミドの構築

高いアポトーシス抑制活性を持つ免疫グロブリンが結合するFasリガンドのアミノ酸配列中の領域すなわち認識領域を調べるために、図16に示すFasリガンドの細胞外領域のアミノ酸配列の下線部分の各々を一つずつAla或いはGlyに置換したものを作製した(Fasリガンドのアミノ酸がAlaではない部分についてはAlaに、元々Alaの部分についてはGlyに置換したものを作製した)。以下、これらのアミノ酸置換を導入したFasリガンドを総称して変異Fasリガンドと呼称する。更に、各変異Fasリガンドは、図16の下線部の最初のTyrをAlaに置換したものをB1と呼称し(以下、順にB2,B3,・・・といったように呼称する)、下線部の最後のAlaをGlyに置換したB45までの合計45種類を作製した。

まず、実施例1-6)項に記載の発現ベクター(ヒトFasリガンドーBCMGSNeo)にクローニングされているFasリガンド遺伝子を鋳型とし、センスプライマーのEP-02プライマー(配列番号:38)と、アンチセンスプライマーであるEP-03プライマー(配列番号:39)を用いてPCRを行ない、アミノ酸の置換が導入されていないFasリガンド(以下、混同を避けるために、アミノ酸の置換が導入されていないFasリガンドがンドをネイティブFasリガンドと呼称する)の遺伝子断片を得た。

PCRはTAKARA Ex Taq (商品名) (宝酒造社製) を使用し、添付文書に従って反応液を調製し、95℃1分、60℃1分、72℃2分で30サイクルの増幅を行なった。この断片を、5−1) 項に記載のpCAG発現ベクターに連結し、ネイティブFasリガンド発現ベクターを作製した。EP−02プライマーには、前項に記載のpCAG発現ベクターに連結するためのKpnIサイト以下、C25抗体のリーダー配列の残りの部分の遺伝子配列、以下に述べるFLAG配列をコードする遺伝子配列及びFasリガンドのN端から117番目のSerまでをコードする遺伝子配列が含まれている。

変異Fasリガンドをコードする遺伝子は、PCR突然変異誘発法により作製した。具体的には、まず、Fasリガンド細胞外領域のN端から4番目のHisから18番目のGInまでに位置するセンスプライマーであるMFプライマー(配列番号:40)と、アミノ酸を置換する箇所にAla或いはGIyのコドンを導入した各々の変異プライマー(変異FasリガンドB1~B45に対応するプライマーは、各々配列番号の41~85に記載)をアンチセンスプライマーに用いて各変異Fasリガンド細胞外領域のN端側を

増幅した。MFプライマー配列中にはEcoNIサイトが含まれている。次に、上記の各々の変異プライマーに相補的なプライマー(配列番号41~85のプライマーに相補的なプライマーは、各々配列番号の86~130に記載)をセンスプライマーとし、これとアンチセンスプライマーであるEPー03プライマーを用いて各変異FasリガンドのC端側を増幅した。上記変異プライマー及びそれに相補的なプライマーは、B1からB45までの45種類の変異Fasリガンドを作製するために45種類ずつ合成された。次に、上述のようにして得た変異FasリガンドについてのN端側とC端側の2つの増幅遺伝子断片を等量混合して鋳型とし、EPー02及びEPー03プライマーを用いて再度PCRを行なった。本PCRを各々の変異Fasリガンドについて行なうことにより、図16に示した下線の部分にアミノ酸置換を導入した、B1からB45までの45種類の変異Fasリガンドの細胞外領域をコードする遺伝子(変異Fasリガンド遺伝子)を得ることができた。

以上の方法で作製した各変異Fasリガンドの遺伝子断片を、EcoNI-BamHIサイトで上述のネイティブFasリガンド発現ベクター上のネイティブFasリガンド遺伝子と置換し、各変異Fasリガンドの発現プラスミドを作製した。これらのFasリガンド発現プラスミドを宿主細胞に導入し培養すれば、その上清中に、Fasリガンド細胞外領域のN端から3番目のPheの部分にFLAG配列が挿入されている蛋白が分泌される。

5-3) 各変異Fasリガンドの発現

前項に記載した方法で構築した各変異Fasリガンド発現プラスミドを常法により大腸菌に導入し、得られた形質転換大腸菌を培養して得た菌体より、プラスミド・ミニ・キット (Plasmid Mini Kit) (商品名) (キアジェ

ン(QIAGEN)社製)を用いて、上記発現プラスミドを回収・精製した。続いて、各精製発現プラスミドを1-4)項に記載の方法と同様にしてLipofectACE(商品名)(ギブコ BRL社製)を用いてCOS細胞(ATCC CRL1650)に導入して培養し、変異Fasリガンドを含む培養上清を得た。すなわち、上記発現プラスミド1μgとLipofectACEとの混合物をCOS細胞に添加して、37℃、5%CO2の条件下で一晩培養した後、ASF培地(商品名)(味の素株式会社製)を4ml添加し、37℃、5%CO2の条件下で4日間培養し、その培養上清を回収した。また、ネイティブFasリガンド発現プラスミドについても同様にしてCOS細胞へ導入し培養上清を得た。なお、陰性対照として、Fasリガンド遺伝子が連結されていないpCAGベクターを上記と同様の方法によりCOS細胞に導入し、同じ培地で同じ期間培養した後、培養上清を回収した。

5-4) 培養上清中の変異Fasリガンドの相対定量

前項に記載した方法で調製した、ネイティブFasリガンドを含む培養上清を標準溶液として、各培養上清に含まれる変異Fasリガンド分子の相対 濃度をELISA法により算出した。具体的な方法は以下の通りである。まず、前述のネイティブFasリガンドを含む培養上清、各変異Fasリガンド分子を含む各培養上清及び陰性対照の培養上清を、ASF培地を用いて二倍階段希釈で7段階希釈して8種類の濃度の溶液を調製した。次に、インターメッド(InterMed)社製の96ウェル マキシソープ(Maxisorp)プレート(商品名)の各縦8ウェルに、上記の各々の濃度の溶液を50μ1/ウェルで添加した。変異Fasリガンドを含む培養上清は、左から3番目の列から10番目の列までの各縦8列の各々の列に8種類の変異Fasリガン

ドの各々の濃度の溶液を添加した。プレートが複数になるため、標準溶液であるネイティブFasリガンドを含む各々の濃度の溶液を、各プレートの左から2番目の列の縦8ウェルの各々に添加し、各プレートに添加した変異Fasリガンドの相対濃度を決めるための標準とした。また、非特異的な発色の強度を調べるために、陰性対照の上清の各々の濃度の溶液を左から11番目の列の縦8ウェルの各々に添加した。プレートの両端の列は使用しないことにした。

次に、4℃で一晩インキュベーションした後、各ウェルを0.05% Tween20含有0.01MPBSで3回洗浄し、1%BSA含有PBS を100µ1/ウェルで添加した。37℃で1時間インキュベーションした 後、各ウェルを 0.0 5 % T w e e n 2 0 含有 0.0 1 M P B S で 3 回洗浄 し、 $25 \mu g/m$ lの濃度の抗FLAGM2マウスモノクローナル抗体(商 品名) (コダック (Kodak) 社製) を、縦8ウェルの各々に50μ 1 / ウェ ルで添加した。37℃で2時間インキュベーションした後、各ウェルを0. 05%Tween20含有0.01MPBSで3回洗浄し、HRPラベル抗 マウス I g - C κ 抗体 (サザーン・バイオテクノロジー・アソシエート (S outhern Biotechonlogy Associate) 社製) を1%BSA含有PBSで5 000倍に希釈したものを50μ l / ウェルで添加した。続いて、37℃で 1時間インキュベーションした後、各ウエルを 0.05% Tween 20含 有 0.0 1 M P B S で 5 回洗浄し、発色基質溶液 (0.5 m M T M B Z + 過 酸化水素)を50μ1/ウェルで添加し、適当な発色が得られたところで0 . 3 Nの硫酸を 5 0 μ l / ウェルで添加して反応を停止させ、マイクロプ レートリーダー (モレキュラー・ディバイシーズ (Molecular Devices) 社 製)を用いて波長450nmにおける各ウェルの吸光度を測定した。ネイ

ティブFasリガンドを含む培養上清及び各々の変異Fasリガンド分子を含む培養上清を添加したウェルにおいて、抗FLAGM2抗体の濃度依存的に発色が確認された。また、陰性対照の培養上清を入れたウェルについては、抗体濃度に依存した発色は確認されなかった。その結果の一部を図17に示す。 従って、ここで得られた発色強度(OD450値)は、上記培養上清中に含まれるFLAG配列が付加されたネイティブFasリガンド及び各変異Fasリガンドの量を反映するものであると考えられる。

そこで、ネイティブFasリガンドについての発色強度を基準とし、各々 の変異Fasリガンドの相対量を決定した。すなわち、まず、各々の希釈倍 率のネイティプFasリガンド及び変異Fasリガンドを添加した各ウェル の〇D450値から、同じ希釈倍率の陰性対照を添加したウェルの〇D450 値を差し引いた値を算出して、各ウェルの特異的な発色強度を求めた。次 に、その〇D450値と各培養上清の希釈倍率の関係をグラフにしたとき、 OD450値が直線的な減少を示し、かつ、いずれの直線も同じ傾きを示し た範囲内においてあるOD450値を選択し、その値を示したときの希釈倍 率をネイティブFasリガンド及び各変異Fasリガンドについて上記グラ フをもとに算出した。最終的に、ネイティブFasリガンドについて得られ た希釈倍率を基準としたときの、各変異Fasリガンドについて得られた希 釈倍率の相対値を算出し、この相対値を、ネイティブFasリガンドに対す る各変異Fasリガンドの相対凝度とした。この操作を各プレートについて 行うことにより、ネイティブFasリガンドに対する全変異Fasリガンド の相対濃度が得られた。

5-4) 項の方法により決定した相対濃度が最も低かった変異Fasリガンドを含む培養上清を新たな基準とし、相対濃度がそれより高かったものについては、基準のものと同一の濃度となるように前述のASF培地で希釈した。これにより、全ての溶液について、それらの中に含まれる変異Fasリガンド或いはネイティブFasリガンドの濃度が同一に調整された。

実施例 6

(抗Fasリガンド抗体の認識領域の解析)

6-1) 各抗Fasリガンドモノクローナル抗体溶液の調製

国際出願公開公報WO96/29350に記載のハイブリドーマである NOK1、NOK2及びNOK3の各々より産生される、抗Fasリガンドモノクローナル抗体(以下、各々単にNOK1、NOK2及びNOK3免疫グロブリン(抗体)と呼称することがある。また、これらを総称してNOK 抗体と呼ぶことがある。)を以下の方法により調製・精製した。

まず、ハイブリドーマNOK1、NOK2及びNOK3を各々10% FCS入りRPMI1640培地で3×107個まで増殖させた。3×107個の細胞は、75cm2フラスコ(ファルコン社製)に30ml培養液を入れて細胞培養を行なうスケールで調製した。具体的には、2×105個/mlの濃度で培養を始め、1×106個/mlになるとき細胞を回収した。

回収したハイブリドーマは、1.5mlのPBSに懸濁し、ヌードマウスに対し、0.5ml (1×107個相当分)腹腔内投与した。10~18日間の飼育の後、腹腔内にたまった腹水を回収した。回収した腹水のうち、10mlを用い精製した。精製は、各々10ml (腹水と等量)の飽和硫酸アンモニウムを滴下し、腹水と混合する硫安塩析から始めた。4℃にて2時間撹拌後、10,000gで15分間遠心分離を行なった。上澄みを捨てた

後、沈殿したものを5mlのPBSにて溶解させた。その後、3リットルの PBSにて1昼夜透析した。

NOK1抗体、NOK2抗体については、透析サンプルを回収後、プロテインGカラム(商品名)(ファルマシア(Pharmasia)社製)を用いて、FPLCシステムにてプロテインG吸着IgGのみを精製した。このサンプルをさらにPBSにて透析を一昼夜行なった。翌日にタンパク質濃度の定量及び純度の検定を行なった。NOK3抗体については、透析サンプルを回収後、ゲル濾過用Superdex200カラム(商品名)(ファルマシア(Pharmasia)社製)を用いて、FPLCシステムにてゲル濾過を行ない、空隙容量(void volume)に溶出されるIgMを回収した。このIgMについても、タンパク質の定量及び純度の検討を行なった。

蛋白質の定量は、タンパク質定量試薬(バイオ・ラッド(BIO RAD) 社製)を用いて測定した。方法は、試薬に添付されているプロトコールに従った。精製した免疫グロブリンについて還元条件下でSDSーPAGEを行ないCBB染色を行なった結果、各々重鎖、軽鎖と思われるバンド以外には、特に夾雑蛋白の存在は確認されなかった。

上述の方法で調製した各精製NOK抗体及び実施例3-1)項に記載の方法で調製した三種類の精製ヒト型化NOK2抗体(RNOK201、RNOK202及びRNOK203)について、NOK1抗体は10μg/mlを、NOK2抗体は50μg/mlを、NOK3抗体は0.1μg/mlを、RNOK201は3.57μg/mlを、RNOK202は1.86μg/mlを、RNOK203は3.35μg/mlを原液として、1%BSA含有PBSを用いて二倍階段希釈し8種類の濃度の抗体溶液を調製した。

6-2) 変異Fasリガンドを用いた各NOK抗体の認識領域の同定実施例 5-5) 項に記載の方法で調製した、変異Fasリガンドのうちの2・9種類及びネイティブFasリガンドを含む溶液を用いて、NOK抗体及びヒト型化NOK 2 抗体が結合するFasリガンド上の認識領域を、以下に述べるELISA法により調べた。本法では、ネイティブFasリガンドに対してNOK抗体或いはヒト型化NOK 2 抗体を反応させた時の発色強度(OD450値)を基準値として、同濃度のNOK抗体或いはヒト型化NOK 2 抗体を同濃度の各変異Fasリガンドに反応させた時の相対的な発色強度を測定した。

まず、5-5) 項で調製したネイティブFasリガンドを含む溶液及び変 異Fasリガンドを含む溶液及び陰性対照の溶液を、96ウェル マキシ ソーププレート (商品名) の縦8ウェルに50μ1/ウェルで添加した。添 加した列の位置関係は5-4)項と同じである。4℃で一晩インキュベー ションした後、各ウェルを 0.05% Tween 20含有 0.01MPBSで 3回洗浄し、1%BSA含有PBSを100μl/ウェルで添加した。3 7℃で1時間インキュペーションした後、各ウェルを0.05%Tween 20含有0.01MPBSで3回洗浄した。次に、前項に記載の方法で調製 した各々の濃度のNOK抗体及びヒト型化NOK2抗体を、縦8ウェルに5 0 μ 1 / ウェルで添加した。続いて、3 7 ℃で 2 時間インキュベーションし た後、各ウェルを 0.05% Tween 20含有 0.01 MPB S で 3 回洗浄 し、HRPラベル抗マウスΙgーCκ抗体あるいはHRPラベル抗ヒトIg - C κ 抗体(いずれも、サザーン・バイオテクノロジー・アソシエート(Southern Biotechonlogy Associate) 社製)を1%BSA含有PBSで50 0 0 倍に希釈したものを 5 0 μ 1 / ウェルで添加した。 3 7 ℃で 1 時間イン キュベーションした後、各ウェルを 0.05% Tween 20含有 0.01 MPB Sで 3回洗浄し、発色基質溶液(0.5 mM TMB Z + 過酸化水素)を 50 μ 1 / ウェルで添加し、適当な発色が得られたところで 0.3 Nの硫酸を 50 μ 1 / ウェルで添加して反応を停止させ、マイクロプレートリーダー(モレキュラー・ディバイシーズ(Molecular Devices)社製)を用いて波長 450 nmにおける各ウェルの吸光度を測定した。ネイティブ Fasリガンドを含む培養上清を添加したウェルにおいて、NOK抗体及びヒト型化NOK 2 抗体の濃度依存的に発色が確認された。また、陰性対照の溶液を入れたウェルについては、抗体濃度に依存した発色は見られなかった。その結果の一部を図 18に示す。従って、ここで得られた発色強度(OD 450値)は、上記溶液中に含まれるネイティブFasリガンドに対するNOK抗体及びヒト型化NOK 2 抗体の特異的な結合を反映していると考えられる。

そこで、ネイティブFasリガンドについての発色強度を基準とし、各々の変異Fasリガンドに対するNOK抗体及びヒト型化NOK2抗体の相対的な結合力を調べた。すなわち、まず、各ウェルの特異的な発色強度を求めるために、ネイティブFasリガンド及び変異Fasリガンドを添加した各ウェルのOD450値から、陰性対照に同じ濃度のNOK抗体を添加したウェルのOD450値を差し引いた値を算出した。次に、そのOD450値と各NOK抗体及びヒト型化NOK2抗体の濃度の関係をグラフにしたとき、OD450値が直線的な増加を示し、かつ、すべての直線が同じ傾きを示した範囲内において、あるOD450値を選択し、その値を示したときのNOK抗体及びヒト型化NOK2抗体濃度をネイティブFasリガンド及び

各変異Fasリガンドについて上記グラフを基に算出した。最終的には、ネイティブFasリガンドについて得られた抗体濃度を基準としたときの、各変異Fasリガンドについて得られた抗体濃度の相対値を算出し、その相対値を、各々の変異Fasリガンドに対するNOK抗体及びヒト型化NOK2抗体の相対的な結合力とした。

以上のようにして算出した、各変異Fasリガンドに対するNOK抗体及びヒト型化NOK2抗体の相対的結合力を図19及び図20にまとめた。

図19及び図20からわかるように、FasリガンドのN端側から198番のArgから238番のMetの範囲(アミノ酸番号は長田らの文献(長田ら、Int. Immunology, vol. 6, p1567-1574, 1994)に従う)では、NOK2抗体の結合性の低下が観られた(特に、198番のArg、199番のGly、205番のLeu、220番のGln、221番のAsp、222番のLeu、230番のMet、237番のGln及び238番のMetの部位において顕著な低下が観られる)。

三種類のヒト型化NOK 2 抗体(RNOK 201、RNOK 202及びRNOK 203)は、ほぼ同様の結合性パターンを示し、198番のArgから238番のMetの範囲で結合性の低下が観られた(特に、198番のArg、199番のGly、205番のLeu、220番のGln、221番のAsp、222番のLeu、228番のLys、230番のMet、237番のGln及び238番のMetの部位において顕著な低下が観られる)。一方、NOK 2の結合性パターンとは198番のArg、228番のLysおよび230番のMetの部位で異なっているが、これらの差異はヒト型化を行なったことに起因するものであると考えられる。このことから、RNOK 2 抗体のアポトーシス抑制活性がNOK 2 抗体を上まわっている

(実施例4に記載)原因は、ヒト型化により上記部位の認識アミノ酸に対する両者の結合の質および強度が変化し、総合的に見てFasリガンドへの結合力が上昇したことにあると考えられる。

NOK1抗体の場合は199番のGlyから237番のGlnの範囲で結合性の低下が観られる(特に、199番のGly、203番のAsn、205番のLeu、218番のTyr、220番のGln、221番のAsp、222番のLeu、227番のGly、228番のLys及び237番のGlnの部位において顕著な低下が観られる)。NOK3抗体は199番のGlyから238番のMetの範囲で結合性の低下が観察された(特に、199番のGly、200番のGln、203番のAsn、205番のLeu、212番のTyr、220番のGln、221番のAsp、222番のLeu、228番のLys、230番のMet、237番のGln及び238番のMetの部位において顕著な低下が観られる)。

上記NOK抗体は、Fasリガンド発現細胞をマウスに免疫して得られたモノクローナル抗体である(平成7年特許願第303492号の実施例1に記載)。また、上記NOK抗体及びヒト型化NOK2抗体は、FasーFasリガンドの相互作用を介してFas発現細胞に誘導されるアポトーシスに対して強い抑制活性を持つ抗体である(国際出願公開公報WO96/29350の実施例1及び2及び本願発明の実施例4に記載)。すなわち、NOK抗体はネイティブな構造を持ったFasリガンドを免疫して得られた、高いアポトーシス抑制活性を持つ初めての抗Fasリガンドモノクローナル抗体である。しかも、これらのモノクローナル抗体のCDR(相補性決定領域)のアミノ酸配列は各々で異なり、抗体のクラス及びサブクラスも異なる、すなわち全く独立な抗体である。それら全く別々の抗体の認識領域が

前述のように、Fasリガンドの第198番のArgから第238番のMetまでのアミノ酸配列で形成される広い領域に存在していることから、高いアポトーシス抑制活性を持つ抗Fasリガンド抗体は、一般的に上記の領域に含まれるアミノ酸を認識領域として認識していると言うことができる。換言すれば、上記の領域はFasリガンド分子中に存在する、高いアポトーシス抑制活性を持つ抗Fasリガンド抗体を惹起することができる主要な領域なのである。さらには、上記領域はFasリガンドがアポトーシス誘導活性を発揮するために重要な領域であり、この領域を認識し結合できる物質はアポトーシス抑制活性を示すことができることを示唆している。

実施例7

(合成ペプチドを用いたNOK1、NOK2及びNOK4抗体の認識領域のマッピング)

- 1. Fasリガンドの細胞外ドメインのN末端(FasリガンドのN末端から103番目のGln)からの15merのペプチド、6番から20番までの15merのペプチド、11番から25番の15mer、16番から30番までの15merと,5merずつずらしながら15merのペプチドを34種類合成したペプチドライブラリーを作製した(ペプセット(登録商標、カイロン社製)を利用した)。
- 2. NOK1、NOK2及びNOK4ハイブリドーマの培養上清を用いて、 下記の操作によりFasリガンド抗体が反応するFasリガンドの部位を特 定した。
- (1) 96ウェルプレート(マキシソープ、登録商標、ヌンク社製)の各ウェルをプロッキング液(ブロックエース(大日本製薬社製)を蒸留水で4倍に希釈したもの)で満たし、さらに、このプレートの各ウェルにペプセッ

トのピン (先端に合成されたペプチドが固定されている) を入れ、ピンの先端を室温で2時間ブロッキングした。

- (2) ブロッキング終了後、ペプセットのピンを取り出し、PBSで洗浄した。
- (3) 新しい96ウェルプレートにNOK1、NOK2及びNOK4ハイブリドーマの培養上清を100μ1/ウェル分注した。コントロールには、ペプセット付属の抗体液を使用した(ペプセットには陽性のコントロールのピンと陰性のコントロールのピン及びそれらに対する抗体液が用意されている)。
- (4) その後、ペプセットのピンを3のプレートの各ウェルに入れ、室温で 2時間反応させた。
- (5) (4) のプレートからペプセットのピンを取り出し、PBSが入った パッドに移し、振盪洗浄を10分間3回行なった。
- (6) 新しい 9 6 ウェルプレートに PBSで 1 0 0 0 倍に希釈した HRP (西洋ワサビペルオキシダーゼ) 標識抗マウス I g G (カペル社製) を 1 0 μ 1 ℓ ウェル分注し、さらに、ペプセットのピンをこのプレートの各ウェルに入れ、室温で 2 時間反応させた。
- (7) 反応後、ペプセットのピンを取り出し、PBSで10分間3回振盪洗 浄した。
- (8) 新しい96ウェルプレートに下記組成の基質液を100µ1/ウェル 分注し、さらにペプセットのピンを該プレートの各ウェルに入れ、室温で2 0分間反応させた。

- 基質液の組成:

OPD $0.4 \,\mathrm{mg/ml}$, $30\% \,\mathrm{H2O2}$ $0.4 \,\mu\,\mathrm{l/ml}$, $0.1 \,\mathrm{M}$

ン酸リン酸緩衝液(p H 5. 1)

- (9) プレートからペプセットのピンを取り出した後、2NのH2SO4を各ウェルに $50\mu1$ 添加して反応を停止した。
- (10) このプレートの各ウェルの液の吸光度をプレートリーダー (バイオラッド社製) で測定した。
- (11) この結果、NOK1及びNOK4のハイブリドーマの培養上清については、LYFVYSKVYFRGQSC、

SKVYFRGQSCNNLPL及びRGQSCNNLPLSHKVY (FasリガンドのN末端から188~202番目、193~207番目、198~212番目)、NOK2のハイブリドーマの培養上清については、YPQDLVMMEGKMMSY、VMMEGKMMSYCTTGQ及びKMMSYCTTGQQMWARS(FasリガンドのN末端から218~232番目、223~237番目、228~242番目)のペプチドを固定したピンを入れたウェルで、ピンに固定したペプチドに結合したHRPによる酵素反応による色の変化がみられた。すなわち、NOK1及びNOK4のハイブリドーマが産生する抗Fasリガンド抗体は、FasリガンドのLYFVYSKVYFRGQSCNNLPLSHKVYの領域を認識し、NOK2のハイブリドーマが産生する抗Fasリガンド抗体は、Fasリガンド抗体は、FasリガンドのYPQDLVMMEGKMMSYCTTGQMWARSの領域を認識することがわかった。

実施例6に記載した変異Fasリガンドを用いた各抗Fasリガンド抗体の認識領域の解析の結果に鑑みれば、今回反応が観られた合成ペプチドの配列の大部分は、上記結果で示された各抗Fasリガンド抗体の認識領域に含まれていることがわかる。このことから、上記領域が抗原認識・結合に重要

な役割を演ずるアミノ酸を含んでいることが改めて示された。 実施例8

(Fasリガンドのモデリング)

実施例 6で同定した抗F a s J ガンド抗体の結合領域がF a s J ガンド上のどこに位置するのかを確認する目的でF a s J ガンドのモデリングを行なった。F a s J ガンドは、TNF a D f g と同じTNFファミリーに属しており、TNFと同様に三量体を形成していると考えられている(マニエル(Manuel C. P.)ら、Molecular Immunology、vol. 32(10)、p. 761-772、1996)。そこで、F a s J ガンド三量体のモデルをTNFを鋳型にコンピュータを用いた分子モデリング法により構築し、抗F a s J ガンド抗体と変異F a s J ガンド分子の結合実験の結果から確認されたアポトーシス抑制活性に重要な領域が、F a s J ガンド分子上のどこに位置するか検討することにした。

Fasリガンド三量体のモデリングを行なうにあたっては、まず、Fasリガンドモノマー(単量体)のモデリングを実行した。具体的には、Fasリガンドと相同性が高いことが知られているTNF α 及びTNF β の三次元構造を鋳型として利用し、シリコングラフィックス上で起動するモデリングソフトウエアであるModeler(モレキュラー・シミュレーションズ(Molecular Simulations Inc.)社製)を利用して行なった。まず、Fasリガンドの細胞外領域のアミノ酸配列とTNF α 及びTNF β のアミノ酸配列を図21に示すようにアライメントし、Modelerに入力した。また、鋳型としてはブルックヘーブン・プロテイン・データバンク(Brookhaven Protein Data Bank)(PDB)からTNF α (PDB ID:1TNF)及びTNF β (PDB ID:1TNR)の座標データを入力した。PDB

ID:1TNFは、TNFαの三量体の結晶構造のデータであり、PDB ID:1TNRは、TNFβとTNFレセプター55の複合体の結晶構造 のデータであるので、各々より、 $TNF\alpha$ モノマー及び $TNF\beta$ モノマーの データのみを引用した。Modelerの使用説明書に従って10個のモデ ルが得られるように条件を設定し、モデリングを行なった。その結果、エネ ルギー最小化計算後のエネルギーと確率密度関数(PDF; Probability Density Function) と全原子の平均二乗偏差の平方根(RMS; Root Mean Square) 値の低いモデルNo. 3をFasリガンドモデルとして選択した。 次に、このようにして得られたFasリガンドモノマーのモデルを基に、 Fasリガンド三量体の構築を行なった。具体的には、シリコングラフィッ クス上で起動するソフトウエアであるQUANTA/CHARMm(モレ キュラー・シミュレーションズ (Molecular Simulations) 社製) を用い て、上記TNFαの三量体であるPDB ID:1TNFの原子座標に、前 述のFasリガンドモノマーのモデルを、TNFモノマーの各々のセグメン トに重ね合わせ(スーパーインポーズ)した後、不良結合(Bad Contact)を修正し、エネルギーの最少化計算を行なって、Fasリ ガンド三量体モデルを構築した(三量体を形成するモノマーを、それぞれ FasリガンドA分子、B分子、C分子或いはAセグメント、Bセグメン ト、Cセグメントと呼称する)。その原子座標データ(PDBフォーマッ ト)を表1に示す。

表 1 Fasリガンド高次構造の原子座標

アミノ酸

	原子和		_残差	Ę	#_	 <u>X</u>	Y	Z	OCC	В
MOTA	1	N	ARG A	A	1	-1.389	71.752	-6.218	1.00	5.73
ATOM	2	CA	ARG	A	1	-1.823	72.707	-5. 191	1.00	5.73
ATOM	3	C	ARG	A	1	-0.735	72.796	-4.140	1.00	5.73
ATOM	4	0	ARG .	A	1	0.417	72.930	-4.523	1.00	5.73
ATOM	5	СВ	ARG	A	1	-3. 207	72.348	-4.642	1.00	5.73
ATOM	6	CG	ARG	A	1	-4.345	72.778	-5.564	1.00	5.73
ATOM	7	CD	ARG	A	1	-5. 708	72.545	-4.915	1.00	5.73
ATOM	8	NE	ARG	A	1	-6.787	72.989	-5. 795	1.00	5.73
ATOM	9	CZ	ARG	A	1	-7.819	72.166	-6.086	1.00	5.73
ATOM	10	NH1	ARG	A	1	-8. 790	72.608	-6.883	1.00	5.73
ATOM	11	NH2	ARG	A	1	-7. 865	70.928	-5.587	1.00	5.73
ATOM	12	1H	ARG	A	1	-2.006	71.784	-7.053	1.00	20.00
ATOM	13	2H	ARG	A	1	-0.414	72.022	-6.470	1.00	20.00
ATOM	14	3Н	ARG	A	1	-1.374	70.790	-5. 820	1.00	20.00
ATOM	15	HE	ARG	A	1	-6.744	73.925	-6.147	1.00	20.00
ATOM	16	1HH1	ARG	A	1	-9.573	72.032	-7.119	1.00	20.00
ATOM	17	2HH1	ARG	A	1	-8.753	73.531	-7.268	3 1.00	20.00
ATOM	18	1HH2	ARG	A	1	-8.635	70.316	-5.767	1.00	20.00
MOTA	19	2HH2	ARG	A	1	-7. 118	70.572	-5.022	2 1.00	20.00
ATOM	20	N	LYS	A	2	-1.115	72.708	-2.849	1.00	19.49

WO 98/10070

PCT/JP97/02983

78

1.00 19.49 -1.79872.844 -0.107LYS A 2 CA **ATOM** 21 1.00 19.49 71.626 -1.7282 0.758 C LYS A MOTA 22 1.00 19.49 -1.65270.508 2 0.263 LYS A **ATOM** 23 0 -0.4031.00 19.49 73.023 -0.7032 CB LYS A **ATOM** 24 1.00 19.49 74.314 -0.180-1.476CG LYS A 2 25 MOTA 1.00 19.49 -0.84974.287 -2.8362 26 CD LYS A **ATOM** 1.00 19.49 -0.51375.534 -3.607LYS A 2 CE **ATOM** 27 1.00 19.49 -1.43976.656 -3.410LYS A 2 28 NZ ATOM 1.00 20.00 -2.55972.441 -2.0312 Н LYS A **ATOM** 29 -1.2991.00 20.00 77.263 2 -4.257LYS A 30 1HZ **ATOM** 1.00 20.00 -1.21677.166 -2.5322 31 2HZ LYS A **ATOM** 1.00 20.00 -2.42476.329 -3.4042 32 3HZ LYS A ATOM -1.7971.00 4.59 71.908 2.059 3 N VAL A MOTA 33 -1.7781.00 4.59 3.037 70.833 3 VAL A MOTA 34 CA 4.59 -0.9071.00 71.303 4.182 3 C **ATOM** 35 VAL A -0.8161.00 4.59 4.460 72.496 3 **ATOM** 36 0 VAL A 1.00 4.59 -3.21570.493 3.496 CB VAL A 3 **ATOM** 37 -3.2781.00 4.59 69.408 4.575 3 CG1 VAL A **ATOM** 38 1.00 4.59 -4.08770.071 2.311 3 CG2 VAL A **ATOM** 39 1.00 20.00 72.853 -1.8002.389 3 Н VAL A **ATOM** 40 5.22 -0.2711.00 4.801 70.306 4 41 N ALA A MOTA 0.4785.22 70.518 1.00 6.025 CA ALA A 4 42 MOTA 1.00 5.22 0.324 6.854 69.270 C ALA A 4 ATOM 43 1.00 5.22 0.27468.166 6.323 4 ALA A 0 **ATOM** 44

		·	
WO 98/10070			

PCT/JP97/02983

79 1.00 5.22 70.722 1.963 5.723 MOTA CB ALA A 4 45 69.365 -0.3771.00 20.00 ALA A 4.466 ATOM 46 H 4 8.165 69.492 0.259 1.00 4.76 N HIS A 5 ATOM 47 HIS A 5 9.087 68.363 0.340 1.00 4.76 48 CA MOTA 10.319 68.911 0.995 1.00 4.76 ATOM 49 C HIS A 5 0.402 1.00 4.76 10.920 69.784 HIS A ATOM 50 0 5 67.835 1.00 4.76 9.444 -1.057HIS A 5 MOTA 51 CB 66.663 -0.9351.00 4.76 5 10.391 **ATOM** 52 CG HIS A 65.394 -0.8561.00 4.76 9.969 ATOM ND1 HIS A 5 53 66.678 -0.8531.00 4.76 CD2 HIS A 5 11.788 **ATOM** 54 -0.7221.00 4.76 11.082 64.614 **ATOM** 55 CE1 HIS A 5 1.00 4.76 12.201 65.396 -0.719MOTA NE2 HIS A 5 56 1.00 20.00 70.432 0.202 **ATOM** Н HIS A 5 8.515 57 65.102 -0.8931.00 20.00 **ATOM** HD1 HIS A 5 9.032 58 N LEU A 6 10.630 68.419 2.199 1.00 6.04 MOTA 59 11.725 68.990 2.981 1.00 6.04 6 ATOM CA LEU A 60 3.272 1.00 6.04 6 12.794 67.980 **ATOM** 61 C LEU A 1.00 6.04 12.501 66.802 3.412 0 LEU A 6 ATOM 62 6.04 69.442 4.348 1.00 LEU A 11.244 MOTA 63 CB 6 1.00 70.438 4.321 6.04 ATOM 64 CG LEU A 6 10.107 5.745 1.00 CD1 LEU A 6 9.730 70.798 6.04 **ATOM** 65 10.447 71.671 3.495 1.00 6.04 CD2 LEU A 6 **ATOM** 66 2.590 1.00 20.00 10.081 67.684 Н LEU A 6 ATOM 67

14.024

ATOM

68

N

THR A

7

68.489

3.408

1.00

3.03

					80			
ATOM	69	CA	THR A	7	15.080	67.561	3.795	1.00 3.03
ATOM	70	С	THR A	7	15.620	67.841	5.183	1.00 3.03
MOTA	71	0	THR A	7	15.443	68.922	5.735	1.00 3.03
ATOM	72	СВ	THR A	7	16. 190	67.576	2.745	1.00 3.03
ATOM	73	0G1	THR A	7	16.533	68.925	2.406	1.00 3.03
ATOM	74	CG2	THR A	7	15.777	66.803	1.489	1.00 3.03
ATOM	75	Н	THR A	7	14.229	69.466	3. 302	1.00 20.00
ATOM	76	HG1	THR A	7	17.405	68.899	2.033	1.00 20.00
ATOM	77	N	GLY A	8	16. 265	66.799	5. 735	1.00 3.29
ATOM	78	CA	GLY A	8	16.871	66.977	7.054	1.00 3.29
ATOM	79	С	GLY A	8	18. 225	67.663	7.023	1.00 3.29
ATOM	80	0	GLY A	8	19.042	67.442	6. 137	1.00 3.29
ATOM	81	Н	GLY A	8	16. 315	65.930	5.237	1.00 20.00
ATOM	82	N	LYS A	9	18.437	68.502	8.052	1.00 6.71
ATOM	83	CA	LYS A	9	19.711	69. 220	8.111	1.00 6.71
MOTA	84	С	LYS A	9	20.941	68.381	8.395	1.00 6.71
MOTA	85	0	LYS A	9	21. 247	68.035	9.530	1.00 6.71
ATOM	86	СВ	LYS A	9	19.686	70.355	9.130	1.00 6.71
ATOM	87	CG	LYS A	9	18. 723	71.483	8.796	1.00 6.71
ATOM	88	CD	LYS A	9	18.966	72.700	9.685	1.00 6.71
ATOM	89	CE	LYS A	9	18.067	73.876	9.307	1.00 6.71
ATOM	90	NZ	LYS A	9	18.085	74.872	10.386	1.00 6.71
MOTA	91	Н	LYS A	9	17.702	68.659	8.715	1.00 20.00
ATOM	92	1H2	LYS A	9	17.311	75.551	10. 252	1.00 20.00

81

1.00 20.00 11.295 17.856 74.397 93 2HZ LYS A 9 **ATOM** 1.00 20.00 75.344 10.467 19.002 9 MOTA 94 3HZ LYS A 1.00 13.61 7.300 68.152 21.685 10 N SER A ATOM 95 7.392 1.00 13.61 23.041 67.594 EA SER A 10 ATOM 96 1.00 13.61 68.121 8.519 23.911 C SER A 10 97 **ATOM** 1.00 13.61 67.396 9.326 10 24.481 0 SER A **ATOM** 98 1.00 13.61 6.07223. 781 67.790 SER A 10 99 CB **ATOM** 1.00 13.61 67, 441 4.99422.916 OG SER A 10 **ATOM** 100 1.00 20.00 68.2226.416 21.215 SER A 10 **ATOM** 101 Н 1.00 20.00 4.221 67.394 23.463 HG SER A 10 102 ATOM 1.00 8.64 69.458 8.546 23.994 ASN A 11 N ATOM 103 24.685 9.707 1.00 8.64 70.004 CA ASN A 11 MOTA 104 10.757 1.00 8.64 70.544 23.743 105 C ASN A 11 MOTA 1.00 8.64 11.057 71.72923.681 **ATOM** 106 0 ASN A 11 1.00 8.64 9.310 70.991 25.790 CB ASN A 11 **MOTA** 107 8.64 1.00 8.740 27.028 70.293 ASN A CG 11 MOTA 108 8.230 1.00 8.64 70.940 27.932 OD1 ASN A 11 MOTA 109 1.00 8.64 27.071 68.952 8.839 ND2 ASN A 11 MOTA 110 1.00 20.00 70.027 7.862 23.538 Н ASN A 11 **ATOM** 111 9.233 1.00 20.00 68.361 26.361 112 1HD2 ASN A 11 **ATOM** 1.00 20.00 8.476 68.522 27.896 **ATOM** 113 2HD2 ASN A 11 1.00 14.76 11.324 23.018 69.574 Ñ SER A 12 ATOM 114 1.00 14.76 69.884 12.564 22.324 SER A 12 ATOM 115 CA 13.696 1.00 14.76 69.149 23.000 C SER A 12 MOTA 116

ATOM	117	0	SER A	١	12	23. 766	68.217	13.483	1.00 14.76
ATOM	118	СВ	SER A	4	12	20.841	69.520	12.478	1.00 14.76
ATOM	119	OG	SER A	Ą	12	20.117	70. 231	13.487	1.00 14.76
ATOM	120	Н	SER A	A	12	23.078	68.625	11.004	1.00 20.00
ATOM	121	HG	SER	A	12	19. 207	70. 232	13.210	1.00 20.00
ATOM	122	N	ARG .	A	13	22.710	69.622	14.916	1.00 14.62
ATOM	123	CA	ARG	A	13	23. 259	68. 873	16.045	1.00 14.62
ATOM	124	С	ARG	A	13	22.596	67.516	16.200	1.00 14.62
ATOM	125	0	ARG	A	13	21.487	67.300	15.738	1.00 14.62
ATOM	126	СВ	ARG	A	13	23. 140	69.684	17.336	1.00 14.62
ATOM	127	CG	ARG	A	13	23. 873	71.022	17.256	1.00 14.62
ATOM	128	CD	ARG	A	13	23. 890	71.764	18.596	1.00 14.62
ATOM	129	NE	ARG	A	13	24.741	72.954	18.530	1.00 14.62
ATOM	130	CZ	ARG	A	13	26. 079	72.866	18.718	1.00 14.62
ATOM	131	NH	1 ARG	A	13	26.832	73.955	18.580	1.00 14.62
ATOM	132	: NH	2 ARG	A	13	26.647	71.703	19.037	1.00 14.62
MOTA	133	3 H	ARG	A	13	21.993	70.317	14.993	1.00 20.00
ATOM	134	. HE	ARG	A	. 13	24. 299	73.819	18.289	1.00 20.00
ATOM	135	5 1HF	11 ARG	A	. 13	27.824	73.921	18.702	1.00 20.00
ATOM	130	6 2HF	11 ARC	A	13	26.415	74.834	18.348	1.00 20.00
ATOM	13	7 1H	H2 ARC	; A	13	27.634	71.610	19.161	1.00 20.00
ATOM	13	8 2HI	H2 AR(; <i>F</i>	13	26. 077	70.890	19.157	1.00 20.00
ATOM	13	9 N	SEI	R A	A 14	23. 304	66.61	3 16.896	5 1.00 5.58
MOTA	14	0 C	A SE	R A	A 14	22.75	4 65.26	3 17.042	2 1.00 5.58

83 17.792 5.58 1.00 65.109 21.436 C SER A 14 **ATOM** 141 1.00 5.58 17.725 64.074 20.787 0 SER A 14 MOTA 142 1.00 5.58 64.357 17.654 23.817 CB SER A 14 ATOM 143 17.172 1.00 5. 58 64.770 25.103 SER A 14 0G **ATOM** 144 1.00 20.00 17.123 66.737 24.270 H SER A 14 145 MOTA 1.00 20.00 17.078 25.612 63.974 SER A 14 HG 146 MOTA 1.00 11.01 18.524 66.181 15 21.074 Ņ MET A 147 MOTA 1.00 11.01 19.147 66.148 19.750 148 CA MET A 15 MOTA 1.00 11.01 18.225 66.382 18.545 C MET A 15 **ATOM** 149 1.00 11.01 65.533 18.172 17.669 0 MET A 15 MOTA 150 1.00 11.01 20.420 19.685 67.011 MET A 15 CB MOTA 151 1.00 11.01 66.686 21.473 20.747 CG MET A 15 MOTA 152 1.00 11.01 67.740 22.927 20.601 SD MET A 15 **ATOM** 153 1.00 11.01 67.225 23.457 18.959 MOTA 154 CE MET A 15 66.991 18.538 1.00 20.00 21.654 MET A 15 **ATOM** 155 H 1.00 6.76 17.508 67.542 18.467 PRO A 16 156 N ATOM 1.00 6.76 67.737 16.668 17.278 157 CA PRO A 16 ATOM 6.76 15.288 1.00 67.088 PRO A 17.336 C 16 MOTA 158 6.76 14.636 1.00 18.366 66.988 PRO A 0 16 **ATOM** 159 1.00 6.76 69.262 16.583 17.205 PRO A 16 CB **ATOM** 160 69.706 16.546 1.00 6.76 18.666 **ATOM** 161 CG PRO A 16 17.496 1.00 6.76 68.721 19.336 162 CD PRO A 16 **ATOM** 1.00 6.37 14.845 66.718 16.124 LEU A 17 ATOM 163 N 6.37 13.404 1.00 66.590 15.919 LEU A CA 17 MOTA 164

WO 98/10070

PCT/JP97/02983

84 1.00 6.37 12.927 67.895 15.330 LEU A 17 C MOTA 165 1.00 6.37 13.399 14.283 68.315 LEU A 17 166 0 MOTA 6.37 1.00 13.094 65.447 14.948 LEU A 17 CB 167 MOTA 1.00 6.37 11.612 14.792 65.085 -CG LEU A 17 168 **ATOM** 6.37 10.956 1.00 64.679 16.115 CD1 LEU A 17 169 ATOM 1.00 6.37 11.424 64.012 13.719 CD2 LEU A 17 170 MOTA 15.449 1.00 20.00 66.774 15.332 17 LEU A H **ATOM** 171 1.00 14.08 12.005 16.051 68.537 18 GLU A N **ATOM** 172 1.00 14.08 11.562 15.485 69.803 GLU A 18 CA MOTA 173 1.00 14.08 10.073 69.762 15.250 GLU A 18 C MOTA 174 1.00 14.08 9.353 69.085 15.974 18 0 GLU A **ATOM** 175 1.00 14.08 11.964 70.960 16.398 18 CB GLU A **MOTA** 176 1.00 14.08 72.251 12.305 15.640 GLU A 18 177 CG **ATOM** 1.00 14.08 12.387 16.589 73.436 GLU A 18 CD 178 MOTA 1.00 14.08 73.270 12.652 17.778 18 OE1 GLU A 179 **ATOM** 1.00 14.08 12.109 74.559 16.177 OE2 GLU A 18 180 **ATOM** 11.585 1.00 20.00 68.153 16.873 GLU A 18 Н 181 **ATOM** 9.654 1.00 6.20 14.198 70.475 19 N TRP A 182 **ATOM** 8.224 1.00 6.20 70.460 13.914 TRP A 19 183 CA **MOTA** 6.20 1.00 7.511 71.678 14.463 TRP A 19 **ATOM** 184 C 1.00 6.20 8.129 14.779 72.689 0 TRP A 19 **ATOM** 185 6.20 1.00 70.326 7.984 12.411 CB TRP A 19 186 ATOM 6.20 8.517 1.00 69.013 11.882 TRP A 19 CG 187 MOTA 9.558 1.00 6.20 68.849 10.955 19 CD1 TRP A 188 **ATOM**

						85			
ATOM	189	CD2	TRP A	1	19	12.215	67.672	8.093	1.00 6.20
ATOM	190	NE1	TRP A	1	19	10.707	67.532	9.795	1.00 6.20
ATOM	191	CE2	TRP A	1	19	11.460	66.767	8.913	1.00 6.20
ATOM	192	CE3	TRP A	A	19	13.072	67.161	7.097	1.00 6.20
ATOM	193	CZ2	TRP A	A	19	11.597	65.374	8.732	1.00 6.20
ATOM	194	CZ3	TRP	A	19	13. 198	65.767	6.923	1.00 6.20
ATOM	195	CH2	TRP .	A	19	12.464	64.877	7.736	1.00 6.20
ATOM	196	Н	TRP .	A	19	13.691	71.069	10.277	1.00 20.00
ATOM	197	HE1	TRP .	A	19	10.109	67.179	10.486	1.00 20.00
ATOM	198	N	GLU .	A	20	14.553	71.530	6. 181	1.00 5.13
MOTA	199	CA	GLU	A	20	15. 101	72.623	5.385	1.00 5.13
ATOM	200	С	GLU	A	20	14.370	72.847	4.082	1.00 5.13
ATOM	201	0	GLU	A	20	13. 839	71.906	3.505	1.00 5.13
ATOM	202	СВ	GLU	A	20	16.573	72.359	5.094	1.00 5.13
ATOM	203	CG	GLU	A	20	17.460	73.452	5.688	1.00 5.13
ATOM	204	CD	GLU	A	20	18.919	73. 191	5.367	1.00 5.13
ATOM	205	OE1	GLU	A	20	19. 233	72.953	4.202	1.00 5.13
ATOM	206	OE2	GLU	A	20	19.741	73. 238	6.281	1.00 5.13
ATOM	207	H	GLU	A	20	14.410	70.630	5.764	1.00 20.00
ATOM	208	N	ASP	A	21	14.415	74.133	3.664	1.00 13.73
MOTA	209	CA	ASP	A	21	13.739	74.576	2.440	1.00 13.73
ATOM	210	C	ASP	A	21	14.628	74.779	1.224	1.00 13.73
MOTA	211	0	ASP	A	21	14. 264	74.520	0.083	1.00 13.73
ATOM	212	СВ	ASP	A	21	12. 921	75.854	2.658	1.00 13.73

		86
ATOM	213 CG ASP A 21	12.016 75.767 3.873 1.00 13.73
ATOM	214 OD1 ASP A 21	11.748 76.809 4.465 1.00 13.73
ATOM	215 OD2 ASP A 21	11.587 74.672 4.233 1.00 13.73
ATOM	216 H ASP A 21	14.787 74.814 4.289 1.00 20.00
ATOM	217 N THR A 22	15.840 75.265 1.494 1.00 11.65
ATOM	218 CA THR A 22	16. 637 75. 591 0. 315 1. 00 11. 65
MOTA	219 C THR A 22	17. 551 74. 473 -0. 160 1. 00 11. 65
-ATOM	220 O THR A 22	18.772 74.519 -0.079 1.00 11.65
ATOM	221 CB THR A 22	17. 345 76. 931 0. 534 1. 00 11. 65
ATOM	222 OG1 THR A 22	16.385 77.868 1.043 1.00 11.65
MOTA	223 CG2 THR A 22	17.992 77.488 -0.740 1.00 11.65
ATOM	224 H THR A 22	16.146 75.452 2.424 1.00 20.00
ATOM	225 HG1 THR A 22	16.826 78.699 1.148 1.00 20.00
ATOM	226 N TYR A 23	16.867 73.447 -0.685 1.00 6.57
ATOM	227 CA TYR A 23	17.600 72.318 -1.247 1.00 6.57
MOTA	228 C TYR A 23	17.037 71.987 -2.616 1.00 6.57
ATOM	229 O TYR A 23	15.911 72.348 -2.931 1.00 6.57
ATOM	230 CB TYR A 23	17.557 71.133 -0.264 1.00 6.57
ATOM	231 CG TYR A 23	18.370 69.948 -0.741 1.00 6.57
MOTA	232 CD1 TYR A 23	17.700 68.824 -1.269 1.00 6.57
ATOM	233 CD2 TYR A 23	19.776 70.002 -0.652 1.00 6.57
ATOM	234 CE1 TYR A 23	18.456 67.738 -1.741 1.00 6.57
MOTA	235 CE2 TYR A 23	20. 532 68. 913 -1. 117 1. 00 6. 57
ATOM	236 CZ TYR A 23	19.862 67.799 -1.664 1.00 6.57

PCT/JP97/02983 WO 98/10070 87 1.00 6.57 66.735 -2.14520.596 23 OH TYR A 237 **ATOM** 1.00 20.00 -0.74773.514 15.866 TYR A 23 H 238 MOTA 1.00 20.00 -1.88466.817 21.504 TYR A 23 HH MOTA 239 1.00 5.63 -3.41371.296 17.882 GLY A 24 N MOTA 240 5.63 1.00 17.582 70.981 -4.814CA GLY A 24 MOTA 241 1.00 5.63 16.127 70.704 -5.132 C GLY A 24 MOTA 242 -5.877 5.63 71.429 1.00 15.478 0 GLY A 24 243 ATOM -3.0331.00 20.00 18.771 71.050 Н GLY A 24 244 ATOM 1.00 5.38 -4.51669.623 15.625 ILE A 25 N MOTA 245 1.00 5.38 -4.66069.558 14.180 ILE A 25 CA **ATOM** 246 1.00 5.38 -3.35313.430 69.623 25 ILE A 247 C ATOM -2.8921.00 5.38 68.690 12.788 ILE A 25 0 MOTA 248 -5.5615.38 1.00 68.418 13.710 ILE A 25 CB MOTA 249 68.2041.00 5.38 -6.72914.683 CG1 ILE A 25 MOTA 250 5.38 -6.0631.00 68.814 12.320 CG2 ILE A 25 MOTA 251 -7.4421.00 5.38 66.862 14.563 CD1 ILE A 25 MOTA 252

-3.9501.00 20.00 68.987 16. 152 MOTA 253 Н ILE A 25 70.828 -2.7911.00 4.68 13.545 N VAL A 26 ATOM 254 -1.6451.00 4.68 71.139 12.714 VAL A 26 CA MOTA 255 72.307 -1.9481.00 4.68 11.801 VAL A 26 C ATOM 256 -2.4661.00 4.6812.200 73.343 0 VAL A 26 257 **ATOM** 1.00 4.68 13.583 71.364 -0.41126 CB VAL A MOTA 258 0.726 1.00 4.68 71.947 12.770 CG1 VAL A 26 MOTA 259 1.00 4.68 0.040 70.049 14.214 CG2 VAL A 26 ATOM 260

ATOM	261 H	VAL A	26	14. 148	71.536	-3.170	1.00 20.00
ATOM	262 N	LEU A	27	10.517	72.036	-1.668	1.00 5.09
MOTA	263 CA	LEU A	27	9.501	72.981	-2.119	1.00 5.09
ATOM	264 C	LEU A	27	8.486	73.335	-1.082	1.00 5.09
ATOM	265 0	LEU A	27	8.301	72.647	-0.082	1.00 5.09
ATOM	266 CB	LEU A	27	8.710	72.440	-3.294	1.00 5.09
MOTA	267 CG	LEU A	27	9.651	71.772	-4.264	1.00 5.09
MOTA	268 CD	1 LEU A	27	9.013	70.489	-4.783	1.00 5.09
ATOM	269 CD	2 LEU A	27	10.301	72.777	-5. 224	1.00 5.09
ATOM	270 H	LEU A	27	10.302	71.172	-1.210	1.00 20.00
ATOM	271 N	LEU A	28	7. 815	74.434	-1.464	1.00 7.30
ATOM	272 CA	LEU A	28	6. 781	75.058	-0.666	1.00 7.30
ATOM	273 C	LEU A	28	5.743	75. 691	-1.577	1.00 7.30
ATOM	274 0	LEU A	. 28	6. 092	76.467	-2.457	1.00 7.30
ATOM	275 CI	B LEU A	. 28	7. 456	76. 136	0. 181	1.00 7.30
ATOM	276 C	G LEU A	28	6. 478	76.882	1.074	1.00 7.30
MOTA	277 C	D1 LEU /	28	5. 697	7 5.875	1.898	1.00 7.30
ATOM	278 C	D2 LEU A	A 28	7. 142	77.965	1.922	1.00 7.30
MOTA	279 H	LEU	A 28	8. 075	5 74.917	-2.301	1.00 20.00
ATOM	280 N	SER .	A 29	4.47	2 75.373	3 -1.280	1.00 16.57
ATOM	281 (CA SER	A 29	3. 39	2 76.107	7 -1.940	1.00 16.57
ATOM	282 (SER	A 29	2.22	1 76.36	7 -1.012	2 1.00 16.57
MOTA	283 () SER	A 29	1.32	7 75.54	3 -0.88	3 1.00 16.57
ATOM	284	CB SER	A 29	2.89	4 75.35	3 -3.17	8 1.00 16.57

WO 98/10070

PCT/JP97/02983

ATOM	285	OG	SER A		29	3.993	75.008	-4.023	1.00 16.57
ATOM	286	Н	SER A		29	4.316	74.571	-0.697	1.00 20.00
ATOM	287	HG	SER A		29	3.640	74.527	-4.758	1.00 20.00
ATOM	288	N	GLY A		30	2.248	77.534	-0.342	1.00 4.20
ATOM	289	CA	GLY A		30	1.116	77.838	0.544	1.00 4.20
MOTA	290	С	GLY A		30	1.203	77.273	1.958	1.00 4.20
ATOM	291	0	GLY A		30	0.622	77.781	2.906	1.00 4.20
ATOM	292	Н	GLY A	L	30	3. 028	78.156	-0.418	1.00 20.00
ATOM	293	N	VAL A		31	1.980	76.187	2.068	1.00 3.10
ATOM	294	CA	VAL A	1	31	2.296	75.687	3.406	1.00 3.10
ATOM	295	С	VAL A	1	31	3. 237	76. 702	4.061	1.00 3.10
ATOM	296	0	VAL A	1	31	3.778	77.570	3.384	1.00 3.10
ATOM	297	СВ	VAL A	A	31	2.908	74.273	3. 233	1.00 3.10
ATOM	298	CG1	VAL A	4	31	3. 349	73. 565	4.517	1.00 3.10
ATOM	299	CG2	VAL A	A	31	1.948	73.386	2.437	1.00 3.10
ATOM	300	Н	VAL A	A	31	2.496	75.876	1.275	1.00 20.00
ATOM	301	N	LYS A	A	32	3.419	76.589	5.377	1.00 18.46
ATOM	302	CA	LYS A	A	32	4.512	77. 387	5.919	1.00 18.46
ATOM	303	С	LYS	A	32	5. 317	76.556	6.881	1.00 18.46
ATOM	304	0	LYS	A	32	4.778	75. 698	7.565	1.00 18.46
ATOM	305	СВ	LYS	A	32	3. 975	78.664	6.573	1.00 18.46
MOTA	306	CG	LYS .	A	32	5.064	79.664	6.979	1.00 18.46
MOTA	307	CD	LYS	A	32	4.486	80.949	7.559	1.00 18.46
ATOM	308	CE	LYS	A	32	3.612	80.698	8.786	1.00 18.46

ATOM	309 N	Z I	LYS A	32		3.014	81.976	9.189	1.00	18.46
ATOM	310 H		LYS A	32		2.890	75.938	5.925	1.00	20.00
ATOM	311 1H	Z I	LYS A	32		2.376	81.823	9.995	1.00	20.00
ATOM	312 2H	IZ I	LYS A	32		3.769	82.643	9.447	1.00	20.00
MOTA	313 3H	IZ :	LYS A	32	;	2.473	82.359	8.387	1.00	20.00
ATOM	314 N	1	TYR A	33	}	6.623	76.837	6.903	1.00	6.60
ATOM	315	CA	TYR A	33	3	7.411	76. 135	7.906	1.00	6.60
ATOM	316 (TYR A	33	3	7.557	76.987	9. 133	1.00	6.60
ATOM	317 ()	TYR A	33	3	7.743	78. 196	9.059	1.00	6.60
ATOM	318	CB	TYR A	33	3	8.765	75. 728	7.327	1.00	6.60
ATOM	319	CG	TYR A	. 33	3	8.503	75.070	5.997	1.00	6.60
ATOM	320	CD1	TYR A	. 3	3	8.852	75.754	4.819	1.00	6.60
ATOM	321	CD2	TYR A	3	3	7.878	73.810	5.974	1.00	6.60
ATOM	322	CE1	TYR A	3	3	8.566	7 5. 159	3.581	1.00	6.60
ATOM	323	CE2	TYR A	3	3	7. 555	73. 235	4.739	1.00	6.60
ATOM	324	CZ	TYR A	A 3	3	7. 9 01	73.918	3.562	1.00	6.60
ATOM	325	ОН	TYR A	A 3	3	7.546	73.347	2.360	1.00	6.60
ATOM	326	Н	TYR A	A 3	33	7.036	77.555	6.344	1.00	20.00
ATOM	327	НН	TYR .	A 3	33	8. 135	72.630	2.144	1.00	20.00
ATOM	328	N	LYS	A :	34	7.421	76.307	10.272	1.00	11.73
MOTA	329	CA	LYS	A :	34	7.606	77.087	11.484	1.00	11.73
ATOM	330	С	LYS	A :	34	8. 708	76.511	12.360	1.00	11.73
ATOM	331	0	LYS	A ·	34	9.847	76.398	11.928	3 1.00	11.73
ATOM	332	СВ	LYS	A	34	6. 245	5 77.314	12.154	1.00	0 11.73

				91			
ATOM	333 CG	LYS A	34	6. 241	78.556	13.045	1.00 11.73
ATOM	334 CD	LYS A	34	4.886	78.804	13.698	1.00 11.73
ATOM	335 CE	LYS A	34	4.936	80.002	14.643	1.00 11.73
ATOM	336 NZ	LYS A	34	3.589	80. 254	15. 171	1.00 11.73
ATOM	337 H	LYS A	34	7. 171	75. 336	10.244	1.00 20.00
ATOM	338 1HZ	LYS A	34	3.625	81.026	15.866	1.00 20.00
MOTA	339 2HZ	LYS A	34	2.962	80.522	14.387	1.00 20.00
ATOM	340 3HZ	LYS A	34	3. 221	79.390	15, 620	1.00 20.00
ATOM	341 N	LYS A	35	8. 357	76.118	13.597	1.00 6.70
ATOM	342 CA	LYS A	35	9.396	75.517	14.429	1.00 6.70
ATOM	343 C	LYS A	35	9.571	74.038	14.124	1.00 6.70
ATOM	344 0	LYS A	35	9. 171	73. 168	14.883	1.00 6.70
ATOM	345 CB	LYS A	35	9.069	75.758	15.904	1.00 6.70
ATOM	346 CG	LYS A	35	8. 944	77.244	16.255	1.00 6.70
ATOM	347 CD	LYS A	35	8.458	77.457	17.690	1.00 6.70
ATOM	348 CE	LYS A	35	8. 340	78.933	18.071	1.00 6.70
ATOM	349 NZ	LYS A	3 5	7. 794	79.038	19.432	1.00 6.70
ATOM	350 H	LYS A	35	7.414	76.121	13.921	1.00 20.00
ATOM	351 1HZ	LYS A	35	7. 760	80.036	19.723	1.00 20.00
ATOM	352 2HZ	LYS A	35	6. 837	78.632	19.456	1.00 20.00
ATOM	353 3HZ	LYS A	3 5	8.404	78.508	20.088	1.00 20.00
ATOM	354 N	GLY A	36	10. 159	73.807	12.936	1.00 3.55
ATOM	355 CA	GLY A	36	10. 359	72.429	12.478	1.00 3.55
ATOM	,356 C	GLY A	36	9. 086	71.673	12.118	1.00 3.55

ATOM	357	0	GLY	A	36	9.016	70.453	12.190	1.00	3.55
ATOM	358	Н	GLY	A	36	10.443	74.595	12.382	1.00 2	20.00
ATOM	359	N	GLY	A	37	8.072	72.461	11.724	1.00	4.03
ATOM	360	CA	GLY	A	37	6.797	71.810	11.446	1.00	4.03
ATOM	361	С	GLY	A	37	6.030	72.498	10.347	1.00	4.03
ATOM	362	0	GLY	A	37	6.312	73.643	10.005	1.00	4.03
ATOM	363	Н	GLY	A	37	8. 173	73.450	11.645	1.00	20.00
ATOM	364	N-	LEU	A	38	5.072	71.731	9.802	1.00	5.45
ATOM	365	CA	LEU	A	38	4. 345	72.259	8.648	1.00	5.45
ATOM	366	С	LEU	A	38	3.006	72.827	9.040	1.00	5.45
ATOM	367	0	LEU	A	38	2. 233	72.175	9.723	1.00	5.45
ATOM	368	СВ	LEU	A	38	4.081	71.208	7.560	1.00	5.45
ATOM	369	CG	LEU	A	38	5. 222	70. 280	7.134	1.00	5.45
ATOM	370	CD	1 LEU	A	38	4.986	69.731	5.731	1.00	5.45
ATOM	371	CD	2 LEU	A	38	6.603	70.906	7. 206	1.00	5.45
ATOM	372	Н	LEU	A	38	4.872	70.831	10. 201	1.00	20.00
ATOM	373	N	VAL	. A	39	2.762	74.052	8.560	1.00	2.74
ATOM	374	. CA	VAL	. A	39	1.428	74.630	8.718	1.00	2.74
ATOM	375	C	VAL	. A	39	0.601	74. 393	7.469	1.00	2.74
ATOM	376	5 0	VAI	A	. 39	1.009	74.750	6.369	1.00	2.74
MOTA	377	7 CF	3 VAI	<u>ک</u> A	39	1.511	76.139	8.992	1.00	2.74
ATOM	378	3 C(G1 VAI	L A	39	0. 146	76.704	9.401	1.00	2.74
ATOM	379	9 C(G2 VA	L A	39	2.595	76.487	10.013	1.00	2.74
ATOM	38	0 Н	VA	L A	39	3.474	74.512	8.029	1.00	20.00

						93			
ATOM	381	N	ILE	A	40	-0.574	73.782	7.679	1.00 15.04
MOTA	382	CA	ILE	A	40	-1.419	73.524	6.512	1.00 15.04
ATOM	383	С	ILE	A	40	-2. 281	74.721	6. 119	1.00 15.04
ATOM	384	0	ILE	A	40	-2.953	75. 347	6. 928	1.00 15.04
ATOM	385	СВ	ILE	A	40	-2. 234	72. 225	6. 707	1.00 15.04
ATOM	386	CG1	ILE	A	40	-1.310	71.002	6.665	1.00 15.04
ATOM	387	CG2	ILE	A	40	-3.290	72.032	5. 615	1.00 15.04
ATOM	388	CD1	ILE	A	40	-0.602	70.638	7. 970	1.00 15.04
ATOM	389	Н	ILE	A	40	-0.836	73.498	8.609	1.00 20.00
ATOM	390	N	ASN	A	41	-2.205	75.014	4.808	1.00 16.19
ATOM	391	CA	ASN	A	41	-2.949	76. 147	4.249	1.00 16.19
ATOM	392	С	ASN	A	41	-4.450	75.933	4.126	1.00 16.19
ATOM	393	0	ASN	A	41	-5.246	76.807	4.443	1.00 16.19
ATOM	394	СВ	ASN	Α	41	-2.364	76.513	2.878	1.00 16.19
ATOM	395	CG	ASN	A	41	-2.784	77.887	2.355	1.00 16.19
ATOM	396	OD1	ASN	A	41	-1.976	78.785	2.188	1.00 16.19
ATOM	397	ND2	ASN	A	41	-4.069	78.015	2.001	1.00 16.19
ATOM	398	Н	ASN	A	41	-1.593	74.459	4.247	1.00 20.00
ATOM	399	1HD2	ASN	A	41	-4.779	77.322	2.122	1.00 20.00
ATOM	400	2HD2	ASN	A	41	-4.339	78.895	1.613	1.00 20.00
ATOM	401	N	GLU	A	42	-4.813	74.765	3.577	1.00 4.33
ATOM	402	CA	GLU	A	42	-6.216	74.615	3.193	1.00 4.33
ATOM	403	С	GLU	A	42	-6.790	73.304	3.666	1.00 4.33
ATOM	404	0	GLU	A	42	-6.080	72.368	4.002	1.00 4.33

PCT/JP97/02983

				c 070	74 715	1 672	1.00 4.33
ATOM	405 CB	GLU A	42	-6. 372	74.715	1.672	_
ATOM	406 CG	GLU A	42	-6.946	76.041	1.145	1.00 4.33
ATOM	407 CD	GLU A	42	-6.707	76. 142	-0.358	1.00 4.33
ATOM	408 OE	1 GLU A	42	-7.088	75. 222	-1.087	1.00 4.33
ATOM	409 OE	2 GLU A	42	-6.089	77.124	-0.796	1.00 4.33
ATOM	410 H	GLU A	42	-4.191	73.991	3.448	1.00 20.00
ATOM	411 N	THR A	43	-8.124	73. 268	3.644	1.00 2.66
MOTA	412 CA	THR A	43	-8.755	71.982	3.908	1.00 2.66
ATOM	413 C	THR A	43	-8.660	71.049	2.711	1.00 2.66
ATOM	414 0	THR A	43	-8.742	71.458	1.551	1.00 2.66
ATOM	415 CI	B THR A	43	-10. 204	72.229	4.338	1.00 2.66
ATOM	416 00	G1 THR A	43	-10. 229	73. 269	5.322	1.00 2.66
ATOM	417 C	G2 THR A	43	-10. 915	70.980	4.869	1.00 2.66
ATOM	418 H	THR A	43	-8. 675	74.077	3.444	1.00 20.00
ATOM	419 H	G1 THR A	43	-11.124	73.328	5.631	1.00 20.00
ATOM	420 N	GLY A	44	-8.480	69.768	3.040	1.00 2.64
ATOM	421 C	CA GLY	44	-8.593	68.775	1.983	1.00 2.64
ATOM	422 (GLY A	A 44	-7.723	67.583	2.265	1.00 2.64
ATOM	423 (GLY	A 44	-7.139	67.451	3.333	1.00 2.64
MOTA	424 H	H GLY	A 44	-8. 285	69.503	3.991	1.00 20.00
ATOM	425 I	N LEU	A 45	-7.661	66.722	1.246	1.00 5.33
ATOM	426	CA LEU	A 45	-6. 795	5 65.568	3 1.417	1.00 5.33
ATOM	427	C LEU	A 45	-5. 36	2 65.899	1.116	1.00 5.33
ATOM	428	O LEU	A 45	-5. 03	9 66.562	2 0.140	1.00 5.33

ATOM	429	СВ	LEU A	45	-7. 292	64.429	0.543	1.00 5.33
ATOM	430	CG	LEU A	45	-8.661	63.988	1.046	1.00 5.33
ATOM	431	CD1	LEU A	45	-9.547	63.464	-0.073	1.00 5.33
ATOM	432	CD2	LEU A	45	-8.540	63.031	2. 227	1.00 5.33
ATOM	433	Н	LEU A	45	-8.096	66.902	0.366	1.00 20.00
ATOM	434	N	TYR A	46	-4.524	65.406	2.019	1.00 3.53
ATOM	435	CA	TYR A	46	-3. 103	65.518	1.767	1.00 3.53
ATOM	436	С	TYR A	46	-2.514	64.135	1.830	1.00 3.53
ATOM	437	0	TYR A	46	-2.907	63.306	2.645	1.00 3.53
ATOM	438	СВ	TYR A	46	-2.433	66.444	2.791	1.00 3.53
ATOM	439	CG	TYR A	46	-2. 815	67.896	2.581	1.00 3.53
ATOM	440	CD1	TYR A	46	-4.070	68.372	3.021	1.00 3.53
ATOM	441	CD2	TYR A	46	-1.885	68.747	1.952	1.00 3.53
ATOM	442	CE1	TYR A	46	-4.405	69.722	2.821	1.00 3.53
MOTA	443	CE2	TYR A	46	-2. 215	70.099	1.758	1.00 3.53
ATOM	444	CZ	TYR A	46	-3.471	70.571	2.191	1.00 3.53
ATOM	445	ОН	TYR A	46	-3.784	71.902	1.985	1.00 3.53
ATOM	446	Н	TYR A	46	-4.861	64.899	2.815	1.00 20.00
ATOM	447	НН	TYR A	46	-3. 042	72.329	1.581	1.00 20.00
ATOM	448	N	PHE A	47	-1.551	63.930	0.930	1.00 3.38
ATOM	449	CA	PHE A	47	-0.687	62.782	1.134	1.00 3.38
ATOM	450	С	PHE A	47	0. 524	63.235	1.911	1.00 3.38
ATOM	451	0	PHE A	47	1.216	64.183	1.553	1.00 3.38
ATOM	452	СВ	PHE A	47	-0.319	62.144	-0. 205	1.00 3.38

ATOM	453	CG	PHE A	1	47	0.421	60.836	-0.024	1.00	3.38
MOTA	454	CD1	PHE A	1	47	-0.317	59.645	0.143	1.00	3.38
ATOM	455	CD2	PHE A	1	47	1.832	60.816	-0.043	1.00	3.38
ATOM	456	CE1	PHE A	A	47	0.358	58.415	0.265	1.00	3.38
ATOM	457	CE2	PHE A	A	47	2.511	59.588	0.078	1.00	3.38
ATOM	458	CZ	PHE A	A	47	1.767	58.399	0. 221	1.00	3.38
MOTA	459	H	PHE A	A	47	-1.320	64.645	0.270	1.00	20.00
ATOM	460	N	VAL A	A	48	0.684	62.519	3.024	1.00	2.79
ATOM	461	CA	VAL .	A	48	1.767	62.784	3.956	1.00	2.79
ATOM	462	С	VAL .	A	48	2.778	61.666	3.834	1.00	2.79
ATOM	463	0	VAL	A	48	2.439	60.507	4.037	1.00	2.79
ATOM	464	СВ	VAL	A	48	1.176	62.831	5.373	1.00	2.79
ATOM	465	CG	VAL	A	48	2.228	63. 144	6.436	1.00	2.79
ATOM	466	CG2	2 VAL	A	48	-0. 015	63. 792	5.439	1.00	2.79
ATOM	467	Н	VAL	A	48	0.048	61.766	3.206	1.00	20.00
ATOM	468	N	TYR	A	49	4.015	62.046	3.491	1.00	3.73
ATOM	469	CA	TYR	A	49	5.042	61.011	3.405	1.00	3.73
ATOM	470	С	TYR	A	49	6.315	61.442	4.090	1.00	3.73
ATOM	471	0	TYR	A	49	6.596	62.627	4.212	1.00	3.73
ATOM	472	СВ	TYR	A	49	5. 328	60.612	1.948	1.00	3.73
ATOM	473	CG	TYR	A	49	5. 835	61.784	1.135	1.00	3.73
ATOM	474	CI	1 TYR	À	49	7. 218	62.0 59	1.114	1.00	3.73
MOTA	475	CE	2 TYR	A	49	4.907	62.574	0.429	1.00	3.73
ATOM	476	S CI	E1 TYR	. A	49	7. 681	63.168	0.391	1.0	3.73

WO 98/10070			

PCT/JP97/02983

					97			
MOTA	477	CE2	TYR A	49	5.372	63.683	-0.293	1.00 3.73
ATOM	478	CZ	TYR A	49	6.751	63.966	-0.301	1.00 3.73
ATOM	479	ОН	TYR A	49	7. 215	65.056	-1.010	1.00 3.73
ATOM	480	Н	TYR A	49	4.241	63.009	3.317	1.00 20.00
ATOM	481	НН	TYR A	49	6.524	65.714	-1.072	1.00 20.00
ATOM	482	N	SER A	50	7.083	60.431	4.508	1.00 5.02
ATOM	483	CA	SER A	50	8.379	60.756	5.091	1.00 5.02
ATOM	484	C .	SER A	50	9.300	59.563	5.031	1.00 5.02
ATOM	485	0	SER A	50	8.854	58.421	5.057	1.00 5.02
MOTA	486	СВ	SER A	50	8. 204	61.253	6.529	1.00 5.02
ATOM	487	0G	SER A	50	9.478	61.518	7.119	1.00 5.02
ATOM	488	Н	SER A	50	6.782	59.477	4.413	1.00 20.00
ATOM	489	HG	SER A	50	9.364	62.204	7.763	1.00 20.00
ATOM	490	N	LYS A	51	10.598	59.871	4.945	1.00 6.04
ATOM	491	CA	LYS A	51	11.558	58. 783	5.032	1.00 6.04
ATOM	492	С	LYS A	51	12.786	59.177	5.813	1.00 6.04
ATOM	493	0	LYS A	51	13. 278	60. 293	5.706	1.00 6.04
ATOM	494	СВ	LYS A	51	11.932	58. 24 9	3.649	1.00 6.04
ATOM	495	CG	LYS A	51	12.407	56.810	3.790	1.00 6.04
ATOM	496	CD	LYS A	51	12.622	56.035	2.507	1.00 6.04
ATOM	497	CE	LYS A	51	12.870	54.579	2.891	1.00 6.04
ATOM	498	NZ	LYS A	51	13. 340	53. 861	1.710	1.00 6.04
MOTA	499	Н	LYS A	51	10. 889	60. 831	4.975	1.00 20.00
MOTA	500	1HZ	LYS A	51	13.415	52.845	1.891	1.00 20.00

ATOM	501 2HZ	LYS A	51	12.652	54.028	0.949	1.00 20	0.00
ATOM	502 3 HZ	LYS A	51	14.259	54.234	1.406	1.00 2	0.00
ATOM	503 N	VAL A	52	13. 246	58. 200	6.611	1.00	4.38
ATOM	504 CA	VAL A	-52	14.492	58. 383	7.348	1.00	4.38
ATOM	505 C	VAL A	52	15.390	57. 179	7.244	1.00	4.38
ATOM	506 0	VAL A	52	14.962	56.050	7.000	1.00	4.38
ATOM	507 CB	VAL A	52	14.251	58.667	8.826	1.00	4.38
ATOM	508 CG	1 VAL A	52	13.746	60.087	9.048	1.00	4.38
ATOM	509 CG	2 VAL A	52	13.363	57.583	9.435	1.00	4.38
ATOM	510 H	VAL A	52	12.756	57. 326	6.656	1.00 2	0.00
ATOM	511 N	TYR A	53	16.675	57.497	7.446	1.00	6.58
MOTA	512 CA	TYR A	53	17. 683	56.448	7.424	1.00	6.58
ATOM	513 C	TYR A	53	18. 569	56.505	8.625	1.00	6.58
ATOM	514 0	TYR A	53	18. 938	57.561	9.130	1.00	6.58
ATOM	515 CB	B TYR A	53	18.568	56. 526	6.186	1.00	6.58
ATOM	516 CO	G TYR A	53	17.789	56.086	4.979	1.00	6.58
MOTA	517 CI	O1 TYR A	53	18. 185	54.910	4.322	1.00	6.58
ATOM	518 CI	O2 TYR A	53	16. 689	56.855	4.553	1.00	6.58
ATOM	519 CI	E1 TYR A	53	17.441	54.493	3. 215	1.00	6.58
ATOM	520 CI	E2 TYR A	53	15.948	56.439	3.450	1.00	6.58
ATOM	521 C	Z TYR A	53	16.343	55. 265	2.798	1.00	6.58
ATOM	522 0	H TYR A	53	15. 634	54.879	1.685	1.00	6.58
ATOM	523 H	TYR A	A 53	16.942	58.454	7.570	1.00	20.00
ATOM	524 H	H TYR	A 53	15.854	55.548	1.030	1.00	20.00

						99				
ATOM	525	N	PHE A	1	54	18.891	55. 284	9.038	1.00	6.05
MOTA	526	CA	PHE A	١	54	19.699	55. 137	10. 229	1.00	6.05
ATOM	527	С	PHE I	A	54	20. 934	54.352	9.872	1.00	6.05
ATOM	528	0	PHE A	A	54	20.853	53.403	9. 102	1.00	6.05
ATOM	529	СВ	PHE I	A	54	18.892	54.390	11. 294	1.00	6.05
ATOM	530	CG	PHE A	A	54	17.501	54.968	11.470	1.00	6.05
ATOM	531	CD1	PHE .	A	54	16.381	54.136	11.251	1.00	6.05
MOTA	532	CD2	PHE	A	54	17. 336	56.313	11.867	1.00	6.05
ATOM	533	CE1	PHE	A	54	15. 086	54.630	11.499	1.00	6.05
ATOM	534	CE2	PHE	A	54	16.044	56.810	12.111	1.00	6.05
ATOM	535	CZ	PHE	A	54	14.935	55.953	11.962	1.00	6.05
ATOM	536	Н	PHE	A	54	18.560	54.470	8.556	1.00	20.00
ATOM	537	N	ARG	A	55	22.059	54.764	10.456	1.00	19.70
ATOM	538	CA	ARG	A	55	23. 214	53.875	10.457	1.00	19.70
ATOM	539	С	ARG	A	5 5	23.770	53.786	11.852	1.00	19.70
ATOM	540	0	ARG	A	5 5	23.368	54.498	12.762	1.00	19.70
ATOM	541	СВ	ARG	A	55	24.326	54.350	9.515	1.00	19.70
ATOM	542	CG	ARG	A	55	25. 023	53.313	8.631	1.00	19.70
ATOM	543	CD	ARG	A	55	26. 080	53.934	7.716	1.00	19.70
ATOM	544	NE	ARG	A	55	27. 229	54.454	8.465	1.00	19.70
MOTA	545	CZ	ARG	A	55	28. 227	55.085	7.803	1.00	19.70
ATOM	546	NH	1 ARG	A	55	29. 356	55.401	8.441	1.00	19.70
MOTA	547	NH	2 ARG	A	55	28.077	55. 393	6.514	1.00	19.70
ATOM	548	Н	ARG	A	55	22. 082	55.627	10.971	1.00	20.00

WO 98/10070			PCT/JP97/02983
		100	
ATOM	549 HE ARG A 55	27. 292 54. 250 9. 444	1.00 20.00
ATOM	550 1HH1 ARG A 55	30.074 55.929 7.985	1.00 20.00
ATOM	551 2HH1 ARG A 55	29.508 55.134 9.394	1.00 20.00
ATOM	552 1HH2 ARG A 55	28.856 55.594 5.913	1.00 20.00
ATOM	553 2HH2 ARG A 55	27. 148 55. 426 6. 145	1.00 20.00
ATOM	554 N GLY A 56	24.762 52.907 11.954	1.00 3.53
ATOM	555 CA GLY A 56	25.605 52.945 13.132	1.00 3.53
ATOM	556 C GLY A 56	26.750 52.008 12.892	1.00 3.53
ATOM	557 O GLY A 56	26.704 51.160 12.006	1.00 3.53
ATOM	558 H GLY A 56	24.906 52.215 11.243	1.00 20.00
ATOM	559 N GLN A 57	27.776 52.217 13.712	1.00 16.13
ATOM	560 CA GLN A 57	28.824 51.219 13.717	1.00 16.13
ATOM	561 C GLN A 57	28.743 50.499 15.042	1.00 16.13
ATOM	562 O GLN A 57	28.468 51.129 16.057	1.00 16.13
ATOM	563 CB GLN A 57	30. 150 51. 927 13. 473	1.00 16.13
ATOM	564 CG GLN A 57	31. 262 50. 961 13. 088	1.00 16.13
ATOM	565 CD GLN A 57	32.402 51.756 12.499	1.00 16.13
ATOM	566 OE1 GLN A 57	32.914 52.710 13.066	1.00 16.13
ATOM	567 NE2 GLN A 57	32.767 51.325 11.291	1.00 16.13
ATOM	568 H GLN A 57	27.763 52.914 14.428	3 1.00 20.00
ATOM	569 1HE2 GLN A 57	32.292 50.580 10.828	3 1.00 20.00
ATOM	570 2HE2 GLN A 57	33.548 51.796 10.886	5 1.00 20.00
ATOM	571 N SER A 58	28. 933 49. 166 14. 969	9 1.00 30.56
ATOM	572 CA SER A 58	28.718 48.335 16.15	5 1.00 30.56

PCT/JP97/02983

					101			
ATOM	573	С	SER A	58	27. 278	48.393	16.634	1.00 30.56
ATOM	574	0	SER A	58	26.435	49.079	16.059	1.00 30.56
ATOM	575	СВ	SER A	58	29. 718	48.673	17. 271	1.00 30.56
ATOM	576	O G	SER A	58	31.030	48.790	16.710	1.00 30.56
ATOM	577	Н	SER A	58	29.082	48.711	14.093	1.00 20.00
ATOM	578	HG	SER A	58	31.560	49.229	17.360	1.00 20.00
MOTA	579	N	CYS A	59	27.008	47.612	17.690	1.00 24.24
ATOM	580	CA	CYS A	59	25.589	47.502	17.977	1.00 24.24
ATOM	581	С	CYS A	59	25. 271	47. 326	19.436	1.00 24.24
ATOM	582	0	CYS A	59	25.875	46.536	20. 152	1.00 24.24
ATOM	583	СВ	CYS A	59	24.977	46.371	17. 168	1.00 24.24
ATOM	584	SG	CYS A	59	25. 700	46. 151	15.517	1.00 24.24
ATOM	585	Н	CYS A	59	27.672	47.049	18.180	1.00 20.00
ATOM	586	N	ASN A	60	24.275	48. 129	19.823	1.00 8.07
ATOM	587	CA	ASN A	60	23. 832	48. 174	21.211	1.00 8.07
ATOM	588	С	ASN A	60	22. 321	48.085	21. 167	1.00 8.07
ATOM	589	0	ASN A	60	21.737	48.056	20.090	1.00 8.07
ATOM	590	СВ	ASN A	60	24.264	49.489	21.882	1.00 8.07
ATOM	591	CG	ASN A	60	25. 773	49.601	22.051	1.00 8.07
ATOM	592	0D1	L ASN A	60	26. 572	49.312	21.172	1.00 8.07
MOTA	593	ND2	2 ASN A	60	26. 140	50.076	23.246	1.00 8.07
ATOM	594	Н	ASN A	60	23. 781	48.668	19.143	1.00 20.00
ATOM	595	1HD2	2 ASN A	60	25. 478	50. 333	23.947	1.00 20.00
ATOM	596	2HD	2 ASN A	60	27. 119	50.181	23.412	1.00 20.00

	PCT/JP97/02983
WO 98/10070	

	·	102
ATOM	597 N ASN A 61	21.697 48.056 22.352 1.00 15.42
ATOM	598 CA ASN A 61	20. 236 47. 965 22. 297 1. 00 15. 42
ATOM	599 C ASN A 61	19.573 49.326 22.249 1.00 15.42
MOTA	600 O ASN A 61	19.520 50.027 23.250 1.00 15.42
ATOM	601 CB ASN A 61	19.672 47.170 23.479 1.00 15.42
ATOM	602 CG ASN A 61	20. 196 45. 748 23. 484 1. 00 15. 42
ATOM	603 OD1 ASN A 61	20.062 44.988 22.534 1.00 15.42
ATOM	604 ND2 ASN A 61	20. 810 45. 411 24. 622 1. 00 15. 42
ATOM	605 H ASN A 61	22.191 48.206 23.207 1.00 20.00
ATOM	606 1HD2 ASN A 61	20.893 46.060 25.377 1.00 20.00
ATOM	607 2HD2 ASN A 61	21.180 44.488 24.701 1.00 20.00
ATOM	608 N LEU A 62	19.073 49.663 21.044 1.00 19.58
ATOM	609 CA LEU A 62	18.378 50.943 20.858 1.00 19.58
ATOM	610 C LEU A 62	17. 243 50. 828 19. 852 1. 00 19. 58
ATOM	611 O LEU A 62	17.453 50.470 18.701 1.00 19.58
ATOM	612 CB LEU A 62	19.339 52.042 20.383 1.00 19.58
MOTA	613 CG LEU A 62	20. 243 52. 637 21. 468 1. 00 19. 58
ATOM	614 CD1 LEU A 62	21.301 53.565 20.870 1.00 19.58
MOTA	615 CD2 LEU A 62	19.439 53.332 22.570 1.00 19.58
MOTA	616 H LEU A 62	19.213 49.055 20.262 1.00 20.00
ATOM	617 N PRO A 63	16.009 51.127 20.323 1.00 9.44
ATOM	618 CA PRO A 63	14.865 51.136 19.403 1.00 9.44
MOTA	619 C PRO A 63	14.814 52.410 18.571 1.00 9.44
ATOM	620 O PRO A 63	15.061 53.503 19.054 1.00 9.44

ATOM	621	СВ	PRO A	A	63	13. 691	51.016	20.377	1.00	9.44
ATOM	622	CG	PRO A	A	63	14.150	51.758	21.634	1.00	9.44
ATOM	623	CD	PRO A	A	63	15.641	51.439	21.702	1.00	9.44
ATOM	624	N	LEU A	A	64	14.475	52.225	17.289	1.00	5.10
ATOM	625	CA	LEU A	A	64	14.438	53.428	16.462	1.00	5.10
ATOM	626	С	LEU A	A	64	13. 001	53.773	16.136	1.00	5.10
ATOM	627	0	LEU A	A	64	12. 226	52.890	15.781	1.00	5.10
ATOM	628	СВ	LEU A	A	64	15. 228	53. 219	15.162	1.00	5.10
ATOM	629	CG	LEU A	A	64	16. 355	52.172	15.218	1.00	5.10
ATOM	630	CD1	LEU .	A	64	16.845	51.816	13.819	1.00	5.10
ATOM	631	CD2	LEU .	A	64	17.513	52.528	16. 152	1.00	5. 10
ATOM	632	Н	LEU .	A	64	14.263	51.328	16.897	1.00	20.00
ATOM	633	N	SER	A	65	12.655	55.059	16. 259	1.00	3.51
ATOM	634	CA	SER	A	65	11.281	55.367	15.885	1.00	3.51
ATOM	635	С	SER	A	65	11.171	56.506	14.900	1.00	3.51
ATOM	636	0	SER	A	65	12.012	57.393	14.846	1.00	3.51
MOTA	637	СВ	SER	A	65	10.410	55.598	17. 124	1.00	3.51
ATOM	638	O G	SER	A	6 5	10.714	56.856	17.733	1.00	3.51
ATOM	639	Н	SER	A	65	13. 262	55.762	16.640	1.00	20.00
ATOM	640	HG	SER	A	65	10. 513	56.776	18.656	1.00	20.00
ATOM	641	N	HIS	A	66	10.086	56.430	14.119	1.00	11.85
ATOM	642	CA	HIS	A	66	9. 823	57.498	13. 168	1.00	11.85
ATOM	643	С	HIS	A	66	8. 350	57.820	13.094	1.00	11.85
ATOM	644	0	HIS	A	66	7. 555	57.029	12.600	1.00	11.85

1770) I	C.45 C	חר	HIC		66	10. 332	57. 106	11.790	1.00 11.85
ATOM		CB	HIS		66			10.882	1.00 11.85
ATOM	646 C	CG	HIS	A	66	10. 130	58. 286		
MOTA	647 N	ND1	HIS	A	66	9. 149	58.363	9.972	1.00 11.85
MOTA	648 (CD2	HIS	A	66	10.886	59.453	10.842	1.00 11.85
ATOM	649 (CE1	HIS	A	66	9. 287	59.56 5	9.347	1.00 11.85
ATOM	6 50 1	NE2	HIS	A	66	10. 354	60.234	9.880	1.00 11.85
ATOM	651	H	HIS	A	66	9.501	55.619	14. 167	1.00 20.00
ATOM	652	HD1	HIS	A	.66	8.428	57.723	9.829	1.00 20.00
ATOM	653	N	LYS	A	67	8.015	58.998	13.627	1.00 4.98
ATOM	654	CA	LYS	A	67	6.585	59. 239	13.777	1.00 4.98
ATOM	655	С	LYS	S A	67	6. 167	60.608	13.274	1.00 4.98
ATOM	656	0	LYS	S A	67	6.827	61.614	13.518	1.00 4.98
ATOM	657	СВ	LYS	5 A	67	6. 188	59.042	15. 243	1.00 4.98
MOTA	658	CG	LYS	5 A	67	6.638	57.722	15.891	1.00 4.98
ATOM	659	CD	LY:	S A	67	6.505	57.778	17.413	1.00 4.98
ATOM	660	CE	LY	S A	67	6.776	56.478	18.170	1.00 4.98
MOTA	661	NZ	LY	S A	67	5.640	56.223	19.074	1.00 4.98
ATOM	662	Н	LY	S A	67	8.700	59.656	13.955	1.00 20.00
MOTA	663	1H2	. LY	'S A	67	5. 6 58	55.261	19.454	1.00 20.00
ATOM	664	2H2	Z LY	S A	67	5. 565	56.935	19.825	1.00 20.00
MOTA	665	3H2	Z L	IS A	A 67	4.766	56.262	2 18.502	1.00 20.00
ATOM	666	N	V	AL I	A 68	5.036	60.585	12.550	1.00 3.61
ATOM	667	C	A V	AL	A 68	4.40	9 61.824	12.099	1.00 3.61
ATOM	668	С	V.	AL.	A 68	3. 20	6 62.12	8 12.97	1.00 3.61

					105			
ATOM	669	0	VAL A	68	2. 331	61.288	13. 159	1.00 3.61
ATOM	670	СВ	VAL A	68	3. 984	61.713	10.627	1.00 3.61
ATOM	671	CG1	VAL A	68	3.409	63.031	10.092	1.00 3.61
ATOM	672	CG2	VAL A	68	5. 133	61.192	9.759	1.00 3.61
ATOM	673	Н	VAL A	68	4.549	59.718	12.441	1.00 20.00
ATOM	674	N	TYR A	69	3. 223	63.358	13.494	1.00 4.98
ATOM	675	CA	TYR A	69	2.180	63.799	14.410	1.00 4.98
ATOM	676	С	TYR A	69	1.417	64.972	13.843	1.00 4.98
ATOM	677	0	TYR A	69	1.943	65.742	13.046	1.00 4.98
ATOM	678	СВ	TYR A	69	2.771	64.251	15.747	1.00 4.98
ATOM	679	CG	TYR A	69	3.695	63.223	16.352	1.00 4.98
ATOM	680	CD1	TYR A	69	3. 156	62.165	17.111	1.00 4.98
MOTA	681	CD2	2 TYR A	6 9	5.082	63.379	16.162	1.00 4.98
ATOM	682	CE	TYR A	69	4.034	61.276	17.753	1.00 4.98
ATOM	683	CE2	2 TYR A	69	5.958	62.490	16.801	1.00 4.98
ATOM	684	CZ	TYR A	69	5.422	61.470	17.610	1.00 4.98
ATOM	685	ОН	TYR A	69	6. 292	60.642	18. 289	1.00 4.98
ATOM	686	Н	TYR A	69	3.943	63.996	13.220	1.00 20.00
ATOM	687	НН	TYR A	69	7. 151	60.697	17.892	1.00 20.00
ATOM	688	N	MET A	70	0.169	65.091	14.318	1.00 14.09
ATOM	689	CA	MET A	70	-0.581	66. 295	13.972	1.00 14.09
ATOM	690	С	MET A	70	-1.068	67. 055	15. 185	1.00 14.09
MOTA	691	0	MET A	70	-1.797	66. 542	16.024	1.00 14.09
ATOM	692	CE	MET A	70	-1.749	65. 983	13.028	1.00 14.09

ATOM	693	CG	MET A	70	-2.761	64.979	13.569	1.00 14.09
ATOM	694	SD	MET A	70	-4.088	64.559	12.436	1.00 14.09
ATOM	695	CE	MET A	70	-4.770	66. 200	12.181	1.00 14.09
ATOM	696	Н	MET A	70	-0. 182	64.407	14.961	1.00 20.00
ATOM	697	N	ARG A	71	-0.653	68.321	15.228	1.00 7.41
ATOM	698	CA	ARG A	71	-1.316	69.196	16.183	1.00 7.41
ATOM	699	С	ARG A	71	-2.413	69.970	15.491	1.00 7.41
ATOM	700	0	ARG A	71	-2. 175	70.982	14.837	1.00 7.41
ATOM	701	СВ	ARG A	71	-0. 326	70.141	16.857	1.00 7.41
ATOM	702	CG	ARG A	71	-1.001	70.877	18.014	1.00 7.41
MOTA	703	CD	ARG A	71	-0.053	71.792	18.777	1.00 7.41
ATOM	704	NE	ARG A	71	-0. 758	72.406	19.900	1.00 7.41
ATOM	705	CZ	ARG A	71	-0.095	73. 136	20.816	1.00 7.41
ATOM	706	NH	1 ARG A	71	1.225	73. 293	20. 725	1.00 7.41
ATOM	707	NH	2 ARG A	71	-0.774	73.698	21.813	1.00 7.41
ATOM	708	Н	ARG A	71	-0.064	68.667	14.498	1.00 20.00
ATOM	709	HE	ARG A	71	-1.742	72. 229	19.966	1.00 20.00
ATOM	710	1HF	II ARG A	71	1.741	73. 845	21.379	1.00 20.00
ATOM	711	2HI	11 ARG A	71	1.721	72.836	19.986	1.00 20.00
ATOM	712	2 1HI	12 ARG A	71	-0. 324	74.260	22.506	1.00 20.00
ATOM	713	3 2HI	12 ARG A	71	-1.762	73.555	21.881	1.00 20.00
ATOM	714	4 N	ASN A	A 72	-3. 623	69.413	15.643	1.00 8.42
MOTA	71	5 C	A ASN	A 72	-4.73	7 70.024	14.923	1.00 8.42
ATOM	71	6 C	ASN A	A 72	-5. 31	8 71.237	7 15.632	1.00 8.42

	PCT/JP97/02983
WO 98/10070	101/01/102/00
110 30:100.0	

107 1.00 8.42 16.828 71.419 -5.145 **ATOM** 717 0 ASN A 72 8.42 14.582 1.00 68.956 -5.787 72 CB ASN A ATOM 718 8.42 69.453 13.505 1.00 -6.738CG ASN A 72 ATOM 719 13.790 1.00 8.42 -7.828 69.927 OD1 ASN A 72 720 **ATOM** 1.00 -6.28269.348 12.253 ND2 ASN A 72 MOTA 721 1.00 20.00 68.663 16.298 -3.733Н ASN A 72 **ATOM** 722 1.00 20.00 69.028 12.011 -5.356723 1HD2 ASN A **ATOM** 72 1.00 20.00 69.633 11.478 -6.84172 ATOM 724 2HD2 ASN A 1.00 5.16 14.852 -6.02572.070 73 **ATOM** 725 N SER A 73.193 15.491 1.00 5.16 -6.710CA SER A 73 ATOM 726 72.760 16.419 1.00 5.16 -7.837**ATOM** 727 C SER A 73 73.315 17.487 1.00 5.16 -8.06573 ATOM 728 0 SER A 74.124 14.400 1.00 5.16 -7.231SER A 73 ATOM 729 CB 5.16 13.407 1.00 73.339 -7.90373 MOTA 730 OG SER A 1.00 20.00 13.877 71.908 -6.188**ATOM** 731 Н SER A 73 1.00 20.00 12.766 73.954 -8.242 ATOM 732 HG SER A 73 5.76 71.707 15.947 1.00 -8.530N LYS A 74 MOTA 733 16.724 1.00 5.76 71.165 -9.645 CA LYS A 74 MOTA 734 18.069 1.00 5.76 70.571 74 -9.245C LYS A **ATOM** 735

74

74

74

74

74

LYS A

LYS A

LYS A

LYS A

LYS A

0

CB

CG

CD

CE

736

737

738

739

740

ATOM

ATOM

ATOM

ATOM

ATOM

19.076

15.890

14.555

13.669

12.301

70.737

70.129

70.667

69.544

70.026

-9.920

-10.404

-10.932

-11.479

-11.970

1.00

1.00

1.00

1.00

1.00

5.76

5.76

5.76

5.76

5.76

PCT/JP97/02983

ATOM	741 NZ	LYS A	74	-12.405	68.867	11.507	1.00 5.76
ATOM	742 H	LYS A	74	-8. 292	71.351	15.038	1.00 20.00
ATOM	743 1HZ	LYS A	74	-12.812	69.191	10.607	1.00 20.00
ATOM	744 2HZ	LYS A	74	-11.589	68.251	11.315	1.00 20.00
ATOM	745 3HZ	LYS A	74	-13. 122	68.332	12.037	1.00 20.00
ATOM	746 N	TYR A	75	-8. 105	69.857	18.031	1.00 6.72
ATOM	747 CA	TYR A	75	-7.641	69.230	19.267	1.00 6.72
ATOM	748 C	TYR A	7 5	-6. 326	69.787	19.785	1.00 6.72
ATOM	749 0	TYR A	7 5	-5. 300	69.730	19.126	1.00 6.72
ATOM	750 CB	TYR A	7 5	-7. 534	67.706	19.076	1.00 6.72
ATOM	751 CG	TYR A	75	-7.403	66.932	20.380	1.00 6.72
ATOM	752 CD	1 TYR A	7 5	-8. 155	67.305	21.516	1.00 6.72
ATOM	753 CD	2 TYR A	7 5	-6.537	65.821	20.414	1.00 6.72
ATOM	754 CE	1 TYR A	7 5	-8.017	66.581	22.712	1.00 6.72
ATOM	755 CE	2 TYR A	7 5	-6.429	65.069	21.597	1.00 6.72
ATOM	756 CZ	TYR A	75	-7. 156	65.466	22.738	1.00 6.72
ATOM	757 OH	TYR A	. 75	-7. 022	64.749	23.912	1.00 6.72
ATOM	758 H	TYR A	75	-7.582	69.779	17. 184	1.00 20.00
ATOM	759 HI	H TYR A	75	-6.405	64.032	23.778	1.00 20.00
ATOM	760 N	PRO A	76	-6.378	70.278	21.045	1.00 6.84
ATOM	761 C	A PRO	A 76	-5. 153	70.658	21.763	1.00 6.84
ATOM	762 C	PRO A	A 76	-3. 945	69.705	21.801	1.00 6.84
ATOM	763 0	PRO A	A 76	-2.869	70.140	22.193	1.00 6.84
ATOM	764 C	B PRO	A 76	-5. 67	5 71.047	23.158	3 1.00 6.84

							00 000	1 00	C 01
765	CG	PRO A	1	76	-7.110	70.527	23. 259	1.00	6.84
766	CD	PRO A	1	76	-7.589	70.543	21.817	1.00	6.84
767	N	GLN A	A	77	-4.130	68.421	21.422	1.00	4.75
768	CA	GLN A	A	77	-2.970	67.527	21.497	1.00	4.75
769	С	GLN A	A	77	-2.429	67.111	20. 144	1.00	4.75
770	0	GLN A	A	77	-3.069	67.256	19.109	1.00	4.75
77 1	СВ	GLN A	A	77	-3.276	66. 243	22.268	1.00	4.75
772	CG	GLN	A	77	-3.691	66.406	23.728	1.00	4.75
773	CD	GLN .	A	77	-4.116	65.052	24.270	1.00	4.75
774	OE1	GLN	A	77	-4.261	64.063	23.563	1.00	4.75
775	NE2	GLN	A	77	-4.362	65.046	25.582	1.00	4.75
776	Н	GLN	A	77	-4.940	68. 125	20.921	1.00	20.00
777	1HE2	C GLN	A	77	-4. 294	65.866	26. 147	1.00	20.00
778	2HE	2 GLN	A	77	-4.643	64.173	25.977	1.00	20.00
779	N	ASP	A	78	-1. 225	66.532	20.243	1.00	4.94
780	CA	ASP	A	78	-0. 574	65.976	19.064	1.00	4.94
781	С	ASP	A	78	-0.997	64.531	18.849	1.00	4.94
782	0	ASP	A	78	-0.648	63. 627	19.600	1.00	4.94
783	CB	ASP	A	78	0. 958	66.079	19. 192	1.00	4.94
784	. CG	ASP	A	78	1.494	67.505	19.367	1.00	4.94
785	5 OD	1 ASP	A	. 78	0.727	68.446	19.569	1.00	4.94
786	5 O E	2 ASP	A	. 78	2.711	67.673	19.306	1.00	4.94
787	7 H	ASP	A	78	-0.741	66.515	21.114	1.00	20.00
788	8 N	LEU	J A	79	-1.793	64.355	17.786	1.00	4.95
	766 767 768 769 770 771 772 773 774 775 776 777 788 779 780 781 782 783 784 785 786 787	766 CD 767 N 768 CA 769 C 770 O 771 CB 772 CG 773 CD 774 OE1 775 NE2 776 H 777 1HE2 778 2HE2 779 N 780 CA 781 C 782 O 783 CB 784 CG 785 OD 786 OD 787 H	766 CD PRO A 767 N GLN A 768 CA GLN A 769 C GLN A 770 O GLN A 771 CB GLN A 772 CG GLN A 774 OE1 GLN A 775 NE2 GLN A 776 H GLN A 777 1HE2 GLN A 778 2HE2 GLN A 779 N ASP 780 CA ASP 781 C ASP 782 O ASP 783 CB ASP 784 CG ASP 785 OD1 ASP 786 OD2 ASP 787 H ASP	766 CD PRO A 767 N GLN A 768 CA GLN A 769 C GLN A 770 O GLN A 771 CB GLN A 773 CD GLN A 774 OE1 GLN A 775 NE2 GLN A 777 1HE2 GLN A 778 2HE2 GLN A 780 CA ASP A 781 C ASP A 782 O ASP A 783 CB ASP A 784 CG ASP A 785 OD1 ASP A 786 OD2 ASP A 787 H ASP A	766 CD PRO A 76 767 N GLN A 77 768 CA GLN A 77 769 C GLN A 77 770 O GLN A 77 771 CB GLN A 77 772 CG GLN A 77 773 CD GLN A 77 774 OE1 GLN A 77 775 NE2 GLN A 77 776 H GLN A 77 777 1HE2 GLN A 77 778 2HE2 GLN A 77 779 N ASP A 78 780 CA ASP A 78 781 C ASP A 78 782 O ASP A 78 783 CB ASP A 78 784 CG ASP A 78 785 OD1 ASP A 78 786 OD2 ASP A 78 787	766 CD PRO A 76	766 CD PRO A 76	766 CD PRO A 76 -7.589 70.543 21.817 767 N GLN A 77 -4.130 68.421 21.422 768 CA GLN A 77 -2.970 67.527 21.497 769 C GLN A 77 -2.429 67.111 20.144 770 O GLN A 77 -3.069 67.256 19.109 771 CB GLN A 77 -3.069 67.256 19.109 771 CB GLN A 77 -3.276 66.243 22.268 772 CG GLN A 77 -4.116 65.052 24.270 774 OE1 GLN A 77 -4.261 64.063 23.563 775 NE2 GLN A 77 -4.940 68.125 20.921 776 H GLN A 77 -4.9	766 CD PRO A 76 -7.589 70.543 21.817 1.00 767 N GLN A 77 -4.130 68.421 21.422 1.00 768 CA GLN A 77 -2.970 67.527 21.497 1.00 769 C GLN A 77 -2.429 67.111 20.144 1.00 770 O GLN A 77 -3.069 67.256 19.109 1.00 771 CB GLN A 77 -3.276 66.243 22.268 1.00 772 CG GLN A 77 -4.116 65.052 24.270 1.00 773 CD GLN A 77 -4.261 64.063 23.563 1.00 775 NE2 GLN A 77 -4.261 64.063 23.563 1.00 776 H GLN A 77 -4.294 65.866 26.147 1.00 777 1HE2 GLN A

ATOM	789 CA	LEU A	79	-2. 205	62.999	17.414	1.00 4.95
ATOM	790 C	LEU A	79	-1.076	62.291	16.694	1.00 4.95
ATOM	791 0	LEU A	79	-0. 197	62.926	16.126	1.00 4.95
ATOM	792 -CB	LEU A	79	-3.389	62.965	16.436	1.00 4.95
ATOM	793 CG	LEU A	79	-4.762	63.586	16.735	1.00 4.95
ATOM	794 CD	LEU A	79	-4.774	65.114	16.862	1.00 4.95
ATOM	795 CD	2 LEU A	79	-5.740	63.157	15.636	1.00 4.95
ATOM	796 H	LEU A	79	-1.974	65.160	17.219	1.00 20.00
ATOM	797 N	VAL A	80	-1.157	60.953	16.686	1.00 4.14
MOTA	798 CA	VAL A	80	-0. 198	60.297	15.808	1.00 4.14
ATOM	799 C	VAL A	80	-0.829	59.810	14.523	1.00 4.14
ATOM	800 0	VAL A	80	-1.731	58.978	14.497	1.00 4.14
ATOM	801 CE	S VAL A	80	0.564	59.169	16.502	1.00 4.14
ATOM	802 CC	G1 VAL A	80	1.853	58.906	15.725	1.00 4.14
MOTA	803 CC	G2 VAL A	80	0.853	59.476	17.974	1.00 4.14
ATOM	804 H	VAL A	. 80	-1.867	60.439	17.164	1.00 20.00
ATOM	805 N	MET A	81	-0. 298	60.402	13.444	1.00 4.15
ATOM	806 C	A MET A	81	-0.756	60.001	12.119	1.00 4.15
MOTA	807 C	MET A	81	-0.141	58.682	11.708	1.00 4.15
ATOM	808 0	MET A	A 81	-0.810	57.727	11.336	1.00 4.15
ATOM	809 C	B MET	A 81	-0.410	61.085	11.095	5 1.00 4.15
ATOM	810 (G MET	A 81	-0.94	1 62.451	11.517	1.00 4.15
ATOM	811 5	SD MET.	A 81	-0.31	4 63.804	1 10.514	1.00 4.15
ATOM	812 (E MET	A 81	-1.20	8 63.43	5 9.00′	7 1.00 4.15

WO 98/10070

PCT/JP97/02983

111 1.00 20.00 60.999 13.566 81 0.500 MOTA Н MET A 813 1.00 5.02 1.200 58.683 11.789 82 MOTA 814 N MET A 57.508 11.307 1.00 5.02 1.919 CA MET A 82 ATOM 815 12.187 1.00 5.02 57.195 C MET A 82 3.104 **ATOM** 816 3.784 58.086 12.672 1.00 5.02 MET A 82 **MOTA** 817 0 82 2.399 57.723 9.873 1.00 5.02 **ATOM** 818 CB MET A 5.02 57.743 8.819 1.00 **ATOM** 819 CG MET A 82 1.292 1.00 5.02 82 1.937 58.016 7.169 **ATOM** 820 SD MET A 1.00 5.02 82 2.667 59.632 7.451 821 CE MET A ATOM 12.167 1.00 20.00 82 1.694 59.472 Н MET A **ATOM** 822 83 3.327 55.888 12.366 1.00 4.99 823 N GLU A **ATOM** 55.493 13.261 1.00 4.99 CA GLU A 83 4.413 **ATOM** 824 12.650 1.00 4.99 5.275 54.450 **ATOM** 825 C GLU A 83 53.553 1.00 4.99 12.025 4.736 0 GLU A 83 MOTA 826 1.00 4.99 54.756 14.457 3.889 CB GLU A 83 MOTA 827 4.99 55.618 15.382 1.00 CG GLU A 83 3.089 ATOM 828 1.00 4.99 55.640 16.726 CD GLU A 83 3.773 MOTA 829 OE1 GLU A 83 4.446 54.677 17.122 1.00 4.99 **ATOM** 830 OE2 GLU A 83 3.627 56.648 17.397 1.00 4.99 831 **ATOM** 55. 195 11.955 1.00 20.00 2.737 ATOM 832 H GLU A 83 12.923 1.00 3.83 6.580 54.558 **ATOM** 833 И GLY A 84 53.514 12.559 1.00 3.83 GLY A 7.526 MOTA 834 CA 84 53.054 13.724 1.00 3.83 MOTA 835 C GLY A 84 8.373

9.097

53.839

14.314

1.00

3.83

0

GLY A

84

836

MOTA

VO 98/10070								1	PCT/JP97/02983
						112			
ATOM	837	Н	GLY	A	84	6.904	55.409	13.340	1.00 20.00
ATOM	838	N	LYS	A	85	8. 269	51.751	14.030	1.00 5.40
ATOM	839	CA	LYS	A	85	9. 204	51.217	15.017	1.00 5.40
ATOM	840	С	LYS	A	85	10.119	50.200	14.395	1.00 5.40
ATOM	841	0	LYS	A	85	9.685	49.201	13.833	1.00 5.40
MOTA	842	СВ	LYS	A	85	8.492	50.533	16. 176	1.00 5.40
ATOM	843	CG	LYS	A	85	7. 538	51.436	16.942	1.00 5.40
ATOM	844	CD	LYS	A	85	6.814	50.636	18, 015	1.00 5.40
ATOM	845	CE	LYS	A	85	5.815	51.489	18.788	1.00 5.40
ATOM	846	NZ	LYS	A	85	5. 158	50.615	19.763	1.00 5.40
ATOM	847	Н	LYS	A	85	7.645	51.137	13.554	1.00 20.00
ATOM	848	1HZ	LYS	A	85	4.477	51.153	20. 340	1.00 20.00
ATOM	849	2HZ	LYS	S A	85	4.658	49.860	19.252	1.00 20.00
ATOM	850	3HZ	LYS	S A	85	5.853	50. 191	20.406	1.00 20.00
ATOM	851	N	MET	Λ	86	11.410	50.491	14.536	1.00 17.02
ATOM	852	CA	ME	ГΑ	86	12.372	49.480	14.142	1.00 17.02
ATOM	853	С	ME	ΓА	86	13. 285	49.154	15. 294	1.00 17.02
ATOM	854	0	ME	T A	86	14. 205	49.889	15.621	1.00 17.02
ATOM	855	CE	ME	T A	86	13. 173	49.922	12.912	1.00 17.02
ATOM	856	C(ME	T A	86	12. 308	3 50.081	11.658	1.00 17.02
ATOM	857	7 SI) ME	T A	86	11.506	48.548	3 11.152	1.00 17.02
ATOM	858	3 CI	E ME	T	A 86	12. 959	9 47.697	7 10.523	1.00 17.02
ATOM	859	9 Н	ME	et i	A 86	11.698	8 51.35	1 14.962	2 1.00 20.00

860 N

MOTA

MET A 87

13.039 47.975 15.882 1.00 29.14

ATOM	861	CA	MET A	87	14.077	47.534	16.819	1.00 29.14
ATOM	862	С	MET A	87	15. 137	46.684	16.139	1.00 29.14
ATOM	863	0	MET A	87	15. 631	45.671	16.614	1.00 29.14
ATOM	864	СВ	MET A	87	13.486	46.853	18.054	1.00 29.14
ATOM	865	CG	MET A	87	14.428	47.021	19.249	1.00 29.14
ATOM	866	SD	MET A	87	13. 931	46.100	20.705	1.00 29,14
ATOM	867	CE	MET A	87	15. 308	46.529	21.781	1.00 29.14
ATOM	868	Н	MET A	87	12.292	47.397	15.551	1.00 20.00
ATOM	869	N	SER A	88	15. 438	47.156	14.930	1.00 17.75
ATOM	870	CA	SER A	88	16. 291	46.381	14.060	1.00 17.75
MOTA	871	С	SER A	88	17.673	46.973	13.968	1.00 17.75
ATOM	872	0	SER A	88	18. 220	47.231	12.907	1.00 17.75
ATOM	873	СВ	SER A	88	15.610	46.322	12.716	1.00 17.75
ATOM	874	OG	SER A	88	16.348	45.494	11.820	1.00 17.75
ATOM	875	Н	SER A	88	15.116	48.050	14.630	1.00 20.00
ATOM	876	HG	SER A	88	16.557	46.092	11.120	1.00 20.00
ATOM	877	N	TYR A	89	18. 231	47.164	15. 158	1.00 19.14
ATOM	878	CA	TYR A	89	19.673	47.374	15. 157	1.00 19.14
ATOM	879	С	TYR A	89	20. 375	46.042	14.875	1.00 19.14
ATOM	880	0	TYR A	89	19. 781	45. 118	14.327	1.00 19.14
MOTA	881	СВ	TYR A	89	20.080	48.072	16.468	1.00 19.14
ATOM	882	CG	TYR A	89	19.571	47.288	17.655	1.00 19.14
ATOM	883	CD	1 TYR A	89	18. 320	47.611	18.217	1.00 19.14
ATOM	884	CD	2 TYR A	89	20. 356	46. 231	18. 149	1.00 19.14

ATOM	885 C	Œ1	TYR	A	89	17.828	46.823	19. 266	1.00 19.14
ATOM	886 0	CE2	TYR	A	89	19.868	45.444	19.198	1.00 19.14
ATOM	887 (CZ	TYR	A	89	18.604	45.746	19.736	1.00 19.14
ATOM	888 (OH	TYR	A	89	18. 115	44.967	20.761	1.00 19.14
ATOM	889	Н	TYR	A	89	17.720	46.902	15.975	1.00 20.00
ATOM	890	НН	TYR	A	89	18.859	44.678	21.287	1.00 20.00
ATOM	891	N	CYS	Λ	90	21.651	45. 956	15. 252	1.00 32.37
MOTA	892	ÇA	CYS	A	90	22.299	44.667	15.015	1.00 32.37
ATOM	893	С	CYS	A	90	22. 823	44.026	16.287	1.00 32.37
ATOM	894	0	CYS	S A	90	22.546	44.478	17.389	1.00 32.37
ATOM	895	СВ	CYS	S A	90	23. 385	44.854	13.957	1.00 32.37
ATOM	896	SG	CYS	5 A	90	24.212	46.439	14.170	1.00 32.37
MOTA	897	Н	CYS	S A	90	22. 147	46.712	15.679	1.00 20.00
ATOM	898	N	TH	R A	91	23. 605	42.962	16.086	1.00 22.92
ATOM	899	CA	TH	R A	91	24.339	42.363	17. 196	1.00 22.92
ATOM	900	С	TH	R A	91	25.818	42.616	16.939	1.00 22.92
ATOM	901	0	TH	R A	91	26. 149	43.587	16.278	1.00 22.92
ATOM	902	СВ	TH	IR A	91	23.988	3 40.882	17.199	1.00 22.92
ATOM	903	OG	1 TF	ir <i>f</i>	91	24. 115	5 40.369	15.866	1.00 22.92
ATOM	904	CG	2 Ti	IR A	A 91	22. 563	3 40.647	7 17.710	1.00 22.92
ATOM	905	Н	T	IR A	A 91	23. 79	5 42.572	2 15.187	7 1.00 20.00
ATOM	906	НС	31 TI	HR .	A 91	24.13	7 39.424	4 15.940	1.00 20.00
ATOM	907	N	T	HR	A 92	26.70	8 41.72	1 17.40	0 1.00 5.61
MOTA	908	C	А Т	HR	Λ 92	28. 08	6 41.85	3 16.91	3 1.00 5.61

PCT/JP97/02983

ATOM	909	С	THR	A	92	28. 213	41.890	15. 392	1.00 5.61
ATOM	910	0	THR	A	92	27.912	40.922	14.704	1.00 5.61
ATOM	911	СВ	THR	A	92	28. 926	40.714	17.486	1.00 5.61
ATOM	912	O G1	THR	A	92	28. 595	40.529	18.867	1.00 5.61
ATOM	913	CG2	THR	A	92	30.430	40.943	17. 305	1.00 5.61
ATOM	914	Н	THR	A	92	26.508	40.997	18.059	1.00 20.00
ATOM	915	HG1	THR	A	92	29. 235	39.918	19.211	1.00 20.00
ATOM	916	N	GLY	A	93	28.658	43.058	14.909	1.00 3.78
ATOM	917	CA	GLY	A	93	28. 732	43. 206	13.464	1.00 3.78
ATOM	918	С	GLY	A	93	29. 306	44.546	13.070	1.00 3.78
ATOM	919	0	GLY	Α	93	29.678	45.364	13.903	1.00 3.78
ATOM	920	Н	GLY	A	93	28. 829	43.853	15.492	1.00 20.00
ATOM	921	N	GLN	A	94	29. 357	44.705	11.739	1.00 15.42
ATOM	922	CA	GLN	A	94	29. 825	45.959	11.157	1.00 15.42
MOTA	923	С	GLN	I A	94	28.774	47.056	11.240	1.00 15.42
ATOM	924	0	GLN	I A	94	27. 854	47.009	12.047	1.00 15.42
ATOM	925	СВ	GLN	A F	94	30. 255	45.687	9.710	1.00 15.42
ATOM	926	CG	GLI	N A	94	31.542	44.868	9.579	1.00 15.42
ATOM	927	CD	GLI	N A	94	32.724	45.680	10.075	1.00 15.42
ATOM	928	OE	1 GL	N A	94	33. 261	45.475	11.152	1.00 15.42
ATOM	929	NE	2 GL	A N	94	33. 116	46.632	9.222	1.00 15.42
ATOM	930	Н	GL	N A	94	28. 96 9	43.993	11.158	1.00 20.00
ATOM	931	1HE	2 GL	N A	94	32. 648	46.789	8.353	1.00 20.00
ATOM	932	2 2HI	E2 GL	N A	94	33. 914	47.171	9.484	1.00 20.00

ATOM	933	N	MET	A	95	28.930	48.044	10. 337	1.00 18.74
ATOM	934	CA	MET	A	95	27.843	49.006	10.176	1.00 18.74
ATOM	935	С	MET	A	95	26. 493	48.376	9.859	1.00 18.74
ATOM	936	0	MET	A	95	26.386	47.301	9. 281	1.00 18.74
ATOM	937	СВ	MET	A	95	28. 211	50.069	9.127	1.00 18.74
ATOM	938	CG	MET	A	95	28.503	49.492	7.737	1.00 18.74
MOTA	939	SD	MET	A	95	28.762	50.723	6.449	1.00 18.74
ATOM	940	CE	MET	A	95	29.080	49.589	5. 084	1.00 18.74
ATOM	941	Н	MET	A	95	29. 733	48.091	9. 751	1.00 20.00
ATOM	942	N	TRP	A	96	25. 463	49.120	10.262	1.00 3.87
ATOM	943	CA	TRP	Α	96	24.112	48.694	9.925	1.00 3.87
ATOM	944	С	TRP	A	96	23. 339	49.887	9.430	1.00 3.87
ATOM	945	0	TRP	A	96	23.504	50.978	9.955	1.00 3.87
ATOM	946	СВ	TRP	A	96	23. 421	48.062	11.142	1.00 3.87
ATOM	947	CG	TRF	A	96	23. 354	49.035	12.303	1.00 3.87
ATOM	948	CD	1 TRF	A	96	24. 333	49.259	13.283	1.00 3.87
ATOM	949	CD	2 TRI	P A	96	22. 280	49.934	12.644	1.00 3.87
ATOM	950	NE	1 TRI	P A	96	23.943	50. 198	14.181	1.00 3.87
ATOM	951	CE	2 TRI	P A	96	22.674	50.647	13.825	1.00 3.87
ATOM	952	CE	3 TRI	P A	96	21.028	50.190	12.049	1.00 3.87
ATOM	953	3 C2	2 TR	P A	. 96	21.806	51.609	14.383	1.00 3.87
ATOM	954	C2	Z3 TR	P A	96	20. 172	51.154	12.617	1.00 3.87
ATOM	955	5 CI	ł2 TR	P A	96	20. 557	51.857	13.777	1.00 3.87
ATOM	956	5 H	TR	P A	A 96	25.635	49.947	10.803	1.00 20.00

ATOM	957	HE1	TRP	A	96	24.476	50.477	14.958	1.00 20.00
ATOM	958	N	ALA	A	97	22.498	49.640	8.418	1.00 3.76
ATOM	959	CA	ALA	A	97	21.642	50.732	7.978	1.00 3.76
ATOM	960	С	ALA	A	97	20. 211	50. 269	7.857	1.00 3.76
ATOM	961	0	ALA	A	97	19.943	49.221	7.277	1.00 3.76
ATOM	962	СВ	ALA	A	97	22. 111	51.295	6.636	1.00 3.76
ATOM	963	Н	ALA	A	97	22. 433	48.732	8.009	1.00 20.00
ATOM	964	N	ARG	- A	98	19. 322	51.073	8.467	1.00 11.69
ATOM	965	CA	ARG	A	98	17.895	50.758	8.389	1.00 11.69
ATOM	966	С	ARG	A	98	17.113	51.920	7.835	1.00 11.69
ATOM	967	0	ARG	A	98	17. 389	53.074	8.138	1.00 11.69
ATOM	968	СВ	ARG	A	98	17. 282	50.406	9.749	1.00 11.69
ATOM	969	CG	ARG	A	98	18. 026	49.325	10.519	1.00 11.69
ATOM	970	CD	ARC	A	98	18. 214	48.043	9.724	1.00 11.69
ATOM	971	NE	ARC	A	98	19.092	47.120	10.438	1.00 11.69
ATOM	972	CZ	ARO	A	98	18.895	45.804	10.316	1.00 11.69
ATOM	973	NH	1 AR(G A	98	19. 725	44.923	10.868	1.00 11.69
ATOM	974	NH	2 ARG	G A	98	17. 862	45.392	9.604	1.00 11.69
ATOM	975	Н	AR	G A	98	19.647	51.921	8.896	1.00 20.00
ATOM	976	HE	AR	G A	98	19. 795	47.481	11.051	1.00 20.00
ATOM	977	1111	1 AR	G A	98	19.644	43.944	10.682	1.00 20.00
ATOM	978	2HH	1 AR	G A	98	20.449	45. 230	11.485	1.00 20.00
ATOM	979	1HH	2 AR	G A	. 98	17.815	44.424	9.344	1.00 20.00
ATOM	980	2HF	i2 Ar	G A	98	17. 183	46.019	9. 228	1.00 20.00

ATOM	981 N	1	SER	A	99	16.112	51.568	7.023	1.00	7.28
ATOM	982 C	CA	SER	A	99	15.251	52.651	6.579	1.00	7.28
ATOM	983 C		SER	A	99	13.819	52.537	7.045	1.00	7.28
ATOM	984 0)	SER	A	99	13. 218	51.468	7.051	1.00	7.28
ATOM	985 (СВ	SER	A	99	15. 326	52.777	5.062	1.00	7.28
ATOM	986 (OG	SER	A	99	14.993	51.548	4.407	1.00	7.28
ATOM	987 I	Н	SER	A	99	15.937	50.634	6.715	1.00	20.00
ATOM	988	HG	SER	A	99	15. 592	51.447	3.679	1.00	20.00
ATOM	989	N	SER	A	100	13. 291	53.712	7.406	1.00	2.73
ATOM	990	CA	SER	. A	100	11.865	53.753	7.707	1.00	2.73
ATOM	991	С	SER	A	100	11.154	54.722	6.785	1.00	2.73
MOTA	992	0	SER	R A	100	11.559	55. 866	6.644	1.00	2.73
ATOM	993	СВ	SEF	R A	100	11.645	54.133	9.173	1.00	2.73
ATOM	994	OG	SEI	R A	100	12.260	53.161	10.026	1.00	2.73
ATOM	995	Н	SEI	R A	100	13.847	54.548	7.414	1.00	20.00
ATOM	996	HG	SE	R A	100	12.324	53.557	10.887	1.00	20.00
ATOM	997	N	TY	R A	101	10.081	54.205	6.157	1.00	2.72
ATOM	998	CA	TY	R A	101	9. 290	55.066	5.268	3 1.00	2.72
ATOM	999	С	TY	R	A 101	7.839	55.064	5.678	3 1.00	2.72
MOTA	1000	0	TY	R A	A 101	7. 28	1 54.003	5.90	1 1.00	0 2.72
ATOM	1001	CE	3 TY	r .	A 101	9. 38	0 54.580	3.81	6 1.0	0 2.72
ATOM	1002	C	G TY	rR .	A 101	8.53	2 55.444	2.90	5 1.0	0 2.72
ATOM	1003	CI	01 T	YR	A 101	9.05	0 56.650	2.39	1 1.0	0 2.72
MOTA	1004	C	D2 T	YR	A 101	7.22	3 55.019	9 2.61	3 1.0	0 2.72

· WO 98/10070	PCT/JP97/02983
---------------	----------------

:

1	1	n
	-1	ч

ATOM	1005 CE1 TYR A 101	8.244 57.444	1.559 1.00 2.72
ATOM	1006 CE2 TYR A 101	6.413 55.818	1.795 1.00 2.72
ATOM	1007 CZ TYR A 101	6.940 57.004	1.255 1.00 2.72
ATOM	1008 OH TYR A 101	6.153 57.736	0.390 1.00 2.72
ATOM	1009 H TYR A 101	9.831 53.250	6.305 1.00 20.00
ATOM	1010 HH TYR A 101	5.326 57.292	0.259 1.00 20.00
ATOM	1011 N LEU A 102	7. 253 56. 255	5.767 1.00 17.88
ATOM	1012 CA LEU A 102	5.860 56.384	6.183 1.00 17.88
ATOM	1013 C LEU A 102	5.100 57.129	5.097 1.00 17.88
ATOM	1014 O LEU A 102	5.688 57.936	4.388 1.00 17.88
ATOM	1015 CB LEU A 102	5.803 57.140	7.519 1.00 17.88
ATOM	1016 CG LEU A 102	5.972 56.301	8.801 1.00 17.88
ATOM	1017 CD1 LEU A 102	4.868 55.256	8.909 1.00 17.88
ATOM	1018 CD2 LEU A 102	7.353 55.674	9.006 1.00 17.88
MOTA	1019 H LEU A 102	7.742 57.061	5.433 1.00 20.00
ATOM	1020 N GLY A 103	3.798 56.824	4.975 1.00 5.34
ATOM	1021 CA GLY A 103	3.053 57.518	3.923 1.00 5.34
ATOM	1022 C GLY A 103	1.577 57.172	3.900 1.00 5.34
MOTA	1023 O GLY A 103	1.227 56.000	3.874 1.00 5.34
ATOM	1024 H GLY A 103	3. 334 56. 161	5.562 1.00 20.00
ATOM	1025 N ALA A 104	0.734 58.226	3.923 1.00 6.66
ATOM	1026 CA ALA A 104	-0.713 57.984	3.938 1.00 6.66
ATOM	1027 C ALA A 104	-1.551 59.223	3.656 1.00 6.66
ATOM	1028 O ALA A 104	-1.029 60.330	3.607 1.00 6.66

ATOM	1029	СВ	ALA A 104	-1.133	57.414	5.287	1.00 6.66
ATOM	1030	Н	ALA A 104	1.093	59.164	3.962	1.00 20.00
ATOM	1031	N	VAL A 105	-2.867	58.989	3.460	1.00 2.80
ATOM	1032	CA	VAL A 105	-3.752	60.117	3.148	1.00 2.80
ATOM	1033	С	VAL A 105	-4.645	60.533	4.296	1.00 2.80
ATOM	1034	0	VAL A 105	-5. 287	59.720	4.950	1.00 2.80
ATOM	1035	СВ	VAL A 105	-4.602	59.805	1.914	1.00 2.80
ATOM	1036	CG1	VAL A 105	-5.572	60.920	1.528	1.00 2.80
ATOM	1037	CG2	2 VAL A 105	-3.673	59.526	0.754	1.00 2.80
ATOM	1038	Н	VAL A 105	-3. 265	58.071	3.522	1.00 20.00
ATOM	1039	N	PHE A 106	-4.654	61.859	4.497	1.00 2.81
ATOM	1040	CA	PHE A 106	-5.386	62.398	5.637	1.00 2.81
ATOM	1041	С	PHE A 106	-6. 159	63.659	5. 250	1.00 2.81
ATOM	1042	0	PHE A 106	-5.778	64.341	4.308	1.00 2.81
ATOM	1043	СВ	PHE A 106	-4.376	62.653	6.766	1.00 2.81
ATOM	1044	CG	PHE A 106	-3.693	61.370	7.221	1.00 2.81
ATOM	1045	CD	1 PHE A 106	-2.354	61.109	6.859	1.00 2.81
ATOM	1046	CI	02 PHE A 106	-4.396	60.457	8.033	1.00 2.81
ATOM	1047	CF	E1 PHE A 106	-1.702	59.974	7.380	1.00 2.81
ATOM	1048	CI	E2 PHE A 106	-3. 758	59.319	8.556	1.00 2.81
ATOM	1049) C	Z PHE A 106	-2.402	59.105	8. 245	1.00 2.81
ATOM	1050) Н	PHE A 106	-4.116	62.456	3.895	1.00 20.00
ATOM	105	1 N	ASN A 107	-7. 255	63.955	5.988	1.00 6.84
ATOM	1052	2 C	A ASN A 107	-7.863	65.278	5.759	1.00 6.84

	~ cm/ma/01002
WO 98/10070	PCT/JP97/02983

ATOM 1054 O ASN A ATOM 1055 CB ASN A ATOM 1056 CG ASN A ATOM 1057 OD1 ASN A ATOM 1058 ND2 ASN A ATOM 1059 H ASN A ATOM 1060 1HD2 ASN A ATOM 1061 2HD2 ASN A	A 107 A 107 A 107 A 107 A 107	-7. 295 -7. 481 -9. 369 -10. 175 -10. 677 -10. 299 -7. 478 -9. 850		6.714 7.922 5.997 4.954 3.975 5.256 6.795	1.00 1.00 1.00 1.00 1.00	6. 84 6. 84 6. 84 6. 84 6. 84
ATOM 1055 CB ASN A ATOM 1056 CG ASN A ATOM 1057 OD1 ASN A ATOM 1058 ND2 ASN A ATOM 1059 H ASN A ATOM 1060 1HD2 ASN A ATOM 1061 2HD2 ASN A	A 107 A 107 A 107 A 107 A 107 A 107	-9. 369 -10. 175 -10. 677 -10. 299 -7. 478	65. 410 64. 699 65. 231 63. 426 63. 414	5.997 4.954 3.975 5.256	1.00 1.00 1.00 1.00	6.846.846.846.84
ATOM 1056 CG ASN A ATOM 1057 OD1 ASN A ATOM 1058 ND2 ASN A ATOM 1059 H ASN A ATOM 1060 1HD2 ASN A ATOM 1061 2HD2 ASN A	A 107 A 107 A 107 A 107 A 107	-10. 175 -10. 677 -10. 299 -7. 478	64. 699 65. 231 63. 426 63. 414	4.954 3.975 5.256	1.00 1.00 1.00	6.846.846.84
ATOM 1057 OD1 ASN A ATOM 1058 ND2 ASN A ATOM 1059 H ASN A ATOM 1060 1HD2 ASN A ATOM 1061 2HD2 ASN A	A 107 A 107 A 107 A 107	-10.677 -10.299 -7.478	65. 231 63. 426 63. 414	3.975 5.256	1.00 1.00	6. 84 6. 84
ATOM 1058 ND2 ASN A ATOM 1059 H ASN A ATOM 1060 1HD2 ASN A ATOM 1061 2HD2 ASN A	A 107 A 107 A 107	-10. 299 -7. 478	63. 426 63. 414	5. 256	1.00	6.84
ATOM 1059 H ASN A ATOM 1060 1HD2 ASN A ATOM 1061 2HD2 ASN A	A 107	-7.478	63.414			
ATOM 1060 1HD2 ASN A ATOM 1061 2HD2 ASN A	A 107			6.795	1.00	
ATOM 1061 2HD2 ASN A		-9.850	63 061			20.00
	A 107		00.001	6.071	1.00	20.00
ATOM 1062 N LEU A		-10.834	62.817	4.673	1.00	20.00
	A 108	-6.609	67.239	6.111	1.00	5.08
ATOM 1063 CA LEU A	A 108	-6. 140	68.308	6.973	1.00	5.08
ATOM 1064 C LEU A	A 108	-7.006	69.538	6.833	1.00	5.08
ATOM 1065 O LEU A	A 108	-7.826	69.648	5.923	1.00	5.08
ATOM 1066 CB LEU	A 108	-4.661	68.566	6.699	1.00	5.08
ATOM 1067 CG LEU	A 108	-3.832	67. 297	6.932	1.00	5.08
ATOM 1068 CD1 LEU	A 108	-2.413	67.423	6.391	1.00	5.08
ATOM 1069 CD2 LEU	A 108	-3.845	66.857	8.396	1.00	5.08
ATOM 1070 H LEU	A 108	-6.553	67.274	5.111	1.00	20.00
ATOM 1071 N THR	A 109	-6. 793	70.436	7.797	1.00	3.97
ATOM 1072 CA THR	A 109	-7.583	71.659	7.816	1.00	3.97
ATOM 1073 C THR	A 109	-6. 596	72.809	7.748	1.00	3.97
ATOM 1074 O THR	A 109	-5.409	72.624	7.969	1.00	3.97
ATOM 1075 CB THR	A 109	-8.413	71.698	9.115	1.00	3.97
ATOM 1076 OG1 THR) A 100	0 021	70 427	0 358	1.00	3.97

WO 98/10070

		122	
ATOM	1077 CG2 THR A 109	-9.489 72.790 9.	136 1.00 3.97
ATOM	1078 H THR A 109	-6.022 70.350 8.	436 1.00 20.00
MOTA	1079 HG1 THR A 109	_9.492 70.529 10.	177 1.00 20.00
ATOM	1080 N SER A 110	-7.090 74.019 7 .	467 1.00 5.78
ATOM	1081 CA SER A 110	-6.181 75.132 7.	727 1.00 5.78
ATOM	1082 C SER A 110	-5. 717 75. 216 9.	180 1.00 5.78
ATOM	1083 O SER A 110	-6.457 74.892 10.	103 1.00 5.78
MOTA	1084 CB SER A 110	-6.858 76.425 7.	292 1.00 5.78
ATOM	1085 OG SER A 110	-7.383 76.244 5.	972 1.00 5.78
ATOM	1086 H SER A 110	-8.020 74.186 7	. 139 1. 00 20. 00
ATOM	1087 HG SER A 110	-6.722 76.600 5	. 381 1. 00 20. 00
ATOM	1088 N ALA A 111	-4.456 75.673 9	. 307 1. 00 23. 23
ATOM	1089 CA ALA A 111	-3.794 76.025 10	. 569 1. 00 23. 23
ATOM	1090 C ALA A 111	-3.149 74.915 11	.374 1.00 23.23
ATOM	1091 O ALA A 111	-2.361 75.193 12	2.274 1.00 23.23
ATOM	1092 CB ALA A 111	-4.675 76.865 11	.508 1.00 23.23
ATOM	1093 H ALA A 111	-3.916 75.702 8	3.463 1.00 20.00
ATOM	1094 N ASP A 112	-3.484 73.655 1	1.047 1.00 12.39
MOTA	1095 CA ASP A 112	-2.809 72.652 1	1.861 1.00 12.39
ATOM	1096 C ASP A 112	-1.360 72.396 1	1.493 1.00 12.39
ATOM	1097 O ASP A 112	-0.903 72.732 1	0.405 1.00 12.39
ATOM	1098 CB ASP A 112	-3.661 71.388 1	2.018 1.00 12.39
ATON	1 1099 CG ASP A 112	-3.767 70.469 1	0.816 1.00 12.39
ATON	M 1100 OD1 ASP A 112	-3.607 69.267	11.004 1.00 12.39

ATOM	1101	OD2	ASP	A	112	-4. 052	70.934	9.720	1.00	12.39
MOTA	1102	Н	ASP	A	112	-4.067	73.372	10. 281	1.00	20.00
ATOM	1103	N	HIS	A	113	-0.645	71.849	12.492	1.00	16.60
ATOM	1104	CA	HIS	A	113	0.771	71.584	12.259	1.00	16.60
ATOM	1105	С	HIS	A	113	1. 049	70. 105	12.141	1.00	16.60
ATOM	1106	0	HIS	A	113	0.514	69.306	12.898	1.00	16.60
ATOM	1107	СВ	HIS	A	113	1. 655	72.098	13.395	1.00	16.60
ATOM	1108	CG	HIS	A	113	1.693	73.602	13.508	1.00	16.60
АТОМ	1109	ND1	HIS	A	113	0.738	74.324	14.117	1.00	16.60
ATOM	1110	CD2	HIS	A	113	2.700	74.466	13.066	1.00	16.60
ATOM	1111	CE1	HIS	A	113	1. 128	75.635	14.067	1.00	16.60
ATOM	1112	NE2	HIS	A	113	2. 336	75. 72 5	13.423	1.00	16.60
ATOM	1113	Н	HIS	A	113	-1.107	71.541	13.328	1.00	20.00
ATOM	1114	HD1	HIS	A	113	-0.092	73.977	14.506	1.00	20.00
MOTA	1115	N	LEU	A	114	1.949	69.777	11.205	1.00	5.46
ATOM	1116	CA	LEU	A	114	2.475	68.413	11.254	1.00	5.46
MOTA	1117	С	LEU	A	114	3. 926	68.404	11.683	1.00	5.46
ATOM	1118	0	LEU	A	114	4.682	69.309	11.346	1.00	5.46
ATOM	1119	СВ	LEU	A	114	2.348	67.678	9.916	1.00	5.46
ATOM	1120	CG	LEU	A	114	0.964	67.659	9.261	1.00	5.46
ATOM	1121	CD1	LEU	A	114	0.945	66.690	8.088	1.00	5.46
ATOM	1122	CD2	LEU	A	114	-0. 182	67.343	10.213	1.00	5.46
ATOM	1123	Н	LEU	A	114	2. 297	70.482	10.585	1.00	20.00
ATOM	1124	N	TYR	A	115	4.274	67.352	12.444	1.00	8. 89

ATOM	1125	CA	TYR A 115	5.662	67.210	12.894	1.00	8.89
ATOM	1126	С	TYR A 115	6.174	65.820	12.623	1.00	8.89
ATOM	1127	0	TYR A 115	5.412	64.863	12.610	1.00	8.89
MOTA	1128	СВ	TYR A 115	5.814	67.473	14.394	1.00	8.89
ATOM	1129	CG	TYR A 115	5.461	68.900	14.726	1.00	8.89
ATOM	1130	CD1	TYR A 115	6.421	69.912	14.523	1.00	8.89
ATOM	1131	CD2	TYR A 115	4.176	69. 174	15.231	1.00	8.89
ATOM	1132	CE1	TYR A 115	6.073	71. 243	14.807	1.00	8.89
ATOM	1133	CE2	2 TYR A 115	3. 831	70.503	15.515	1.00	8.89
MOTA	1134	CZ	TYR A 115	4.777	71.522	15.280	1.00	8.89
ATOM	1135	ОН	TYR A 115	4.414	72.834	15.511	1.00	8.89
ATOM	1136	Н	TYR A 115	3.583	66.661	12.676	1.00	20.00
ATOM	1137	нн	TYR A 115	3. 481	72.871	15.676	1.00	20.00
ATOM	1138	N	VAL A 116	7.494	65.743	12.391	1.00	5. 15
ATOM	1139	CA	VAL A 116	8.070	64.434	12.085	1.00	5. 15
ATOM	1140	С	VAL A 116	9. 369	64.215	12.824	1.00	5.15
ATOM	1141	0	VAL A 116	10.402	64.765	12.464	1.00	5. 15
ATOM	1142	СВ	VAL A 116	8. 284	64.281	10.577	1.00	5. 15
ATOM	1143	CG	31 VAL A 116	8.984	62.982	10.210	1.00	5. 15
ATOM	1144	CG	G2 VAL A 116	6. 955	64.328	9.853	1.00	5. 15
ATOM	1145	Н	VAL A 116	8.066	66.562	12.404	1.00	20.00
MOTA	1146	N	ASN A 117	9. 263	63.388	13.872	1.00	8.77
ATOM	1147	CA	A ASN A 117	10.485	63.210	14.650	1.00	8.77
ATOM	1148	С	ASN A 117	10. 937	7 61.767	14.713	3 1.00	8.77

ATOM	1149	0	ASN A	. 117	10. 154	60.829	14.595	1.00 8.77
MOTA	1150	CB	ASN A	117	10.350	63.800	16.061	1.00 8.77
ATOM	1151	CG	ASN A	117	10.177	65.309	16.010	1.00 8.77
MOTA	1152	OD1	ASN A	117	10.707	66.013	15. 164	1.00 8.77
ATOM	1153	ND2	ASN A	117	9.376	65. 790	16.966	1.00 8.77
ATOM	1154	Н	ASN A	117	8.418	62.875	14.048	1.00 20.00
ATOM	1155	1HD2	ASN A	117	8. 981	65. 202	17.668	1.00 20.00
ATOM	1156	2HD2	ASN A	117	9. 194	66.772	16.957	1.00 20.00
ATOM	1157	N	VAL A	118	12. 261	61.657	14.908	1.00 2.80
ATOM	1158	CA	VAL A	118	12.889	60.363	15. 168	1.00 2.80
ATOM	1159	c	VAL A	118	13.317	60. 341	16.623	1.00 2.80
ATOM	1160	0	VAL A	118	13.598	61.390	17. 189	1.00 2.80
MOTA	1161	СВ	VAL A	118	14.106	60. 198	14.240	1.00 2.80
MOTA	1162	CG1	VAL A	A 118	14.931	58.932	14.486	1.00 2.80
MOTA	1163	CG2	VAL A	A 118	13.686	60.300	12.780	1.00 2.80
ATOM	1164	Н	VAL A	A 118	12.814	62.483	15.015	1.00 20.00
ATOM	1165	N	SER A	A 119	13. 364	59.128	17. 200	1.00 3.07
ATOM	1166	CA	SER A	A 119	13. 914	59.016	18.551	1.00 3.07
ATOM	1167	С	SER A	A 119	15. 367	59.474	18.716	1.00 3.07
ATOM	1168	0	SER A	A 119	15.669	60.363	19.502	1.00 3.07
ATOM	1169	СВ	SER A	A 119	13.686	57.589	19.052	1.00 3.07
ATOM	1170	OG	SER .	A 119	14.115	56.654	18.053	1.00 3.07
MOTA	1171	Н	SER .	A 119	13.064	58.308	16.706	1.00 20.00
ATOM	1172	HG	SER .	A 119	14.876	56. 209	18.450	1.00 20.00

WO 98/10070			PCT/JP97/02983
	1	126	

			126			
ATOM	1173 N	GLU A 120	16. 257	58.852	17.922	1.00 12.56
ATOM	1174 CA	GLU A 120	17.662	59. 245	18.058	1.00 12.56
ATOM	1175 C	GLU A 120	18. 245	59.835	16.796	1.00 12.56
ATOM	1176 0	GLU A 120	18.428	59.174	15.782	1.00 12.56
ATOM	1177 CB	GLU A 120	18.576	58.093	18.498	1.00 12.56
MOTA	1178 CG	GLU A 120	18. 296	57.424	19.851	1.00 12.56
ATOM	1179 CD	GLU A 120	17.012	56.613	19.830	1.00 12.56
ATOM	1180 OE	C1 GLU A 120	16.676	56.047	18.790	1.00 12.56
ATOM	1181 OE	2 GLU A 120	16.340	56.562	20.857	1.00 12.56
ATOM	1182 H	GLU A 120	15. 973	58.071	17.365	1.00 20.00
ATOM	1183 N	LEU A 121	18.572	61.127	16.897	1.00 16.20
MOTA	1184 CA	A LEU A 121	19.092	61.724	15.669	1.00 16.20
ATOM	1185 C	LEU A 121	20.555	61.434	15.374	1.00 16.20
ATOM	1186 0	LEU A 121	21.031	61.580	14.255	1.00 16.20
ATOM	1187 C	B LEU A 121	18.721	63. 205	15.560	1.00 16.20
ATOM	1188 C	G LEU A 121	17. 226			
ATOM	1189 C	D1 LEU A 121	16.729	62.549	14.164	1.00 16.20
ATOM	1190 C	CD2 LEU A 121	16.310	63.322	16.510	1.00 16.20
ATOM	1191 F	1 LEU A 121	18. 412	61.651	17.733	1.00 20.00
ATOM	1192 N	N SER A 122	21. 227	7 60.893	3 16.409	1.00 8.33
ATOM	1193	CA SER A 122	22. 53	5 60.272	2 16.188	3 1.00 8.33
ATOM	1194	C SER A 122	22.56	8 59.19	5 15.112	2 1.00 8.33
MOTA	1195	O SER A 122	23. 58	4 58.94	0 14.479	9 1.00 8.33
ATOM	1196	CB SER A 122	23. 04	5 59.68	7 17.50	0 1.00 8.33

ATOM	1197	OG	SER A	122	22. 731	60.587	18.567	1.00	8.33
ATOM	1198	H	SER A	122	20. 883	60.940	17.347	1.00 2	20.00
ATOM	1199	HG	SER A	122	23. 155	60. 237	19.341	1.00 2	20.00
ATOM	1200	N	LEU A	123	21.385	58.577	14.931	1.00	10.07
ATOM	1201	CA	LEU A	123	21. 259	57.556	13.894	1.00	10.07
ATOM	1202	С	LEU A	123	21.336	58.072	12.471	1.00	10.07
ATOM	1203	0	LEU A	123	21.589	57.318	11.540	1.00	10.07
ATOM	1204	СВ	LEU A	123	19.918	56.851	14.007	1.00	10.07
ATOM	1205	CG	LEU A	123	19.596	56. 197	15.341	1.00	10.07
ATOM	1206	CD1	LEU A	123	18. 093	55. 945	15.449	1.00	10.07
ATOM	1207	CD2	LEU A	123	20.438	54.948	15.593	1.00	10.07
MOTA	1208	Н	LEU A	123	20.574	58. 842	15.457	1.00	20.00
ATOM	1209	N	VAL A	124	21.025	59.371	12.325	1.00	5.90
ATOM	1210	CA	VAL A	124	20.726	59.799	10.964	1.00	5.90
ATOM	1211	С	VAL A	124	21. 921	59.840	10.046	1.00	5.90
ATOM	1212	0	VAL A	124	22. 982	60.387	10.323	1.00	5.90
ATOM	1213	СВ	VAL A	124	19.940	61.116	10.948	1.00	5. 90
MOTA	1214	CG	1 VAL A	124	19.532	61.582	9.546	1.00	5.90
ATOM	1215	CG	2 VAL A	124	18.682	60.926	11.782	1.00	5.90
ATOM	1216	Н	VAL A	124	21.015	60.016	13.092	1.00	20.00
ATOM	1217	N	ASN A	125	21.657	59.217	8.896	1.00	5.82
ATOM	1218	CA	ASN A	A 125	22.640	59.347	7.835	1.00	5.82
ATOM	1219	С	ASN A	A 125	22.475	60.654	7.120	1.00	5. 82
ATOM	1220	0	ASN A	A 125	21.375	61.039	6.750	1.00	5. 82

	PCT/JP97/02983
WO 98/10070	PC 1/JF > //02>05

0 70/100/0		٠	128			
ATOM	1221 CB A	SN A 125	22.501	58. 207	6.835	1.00 5.82
ATOM	1222 CG A	SN A 125	22. 928	56.936	7.511	1.00 5.82
ATOM	1223 OD1 A	SN A 125	23. 689	56.957	8.463	1.00 5.82
ATOM	1224 ND2 A	SN A 125	22.402	55.826	6.977	1.00 5.82
ATOM	1225 H A	SN A 125	20. 748	58.818	8.760	1.00 20.00
ATOM	1226 1HD2 A	ASN A 125	21.811	55.874	6.174	1.00 20.00
ATOM	1227 2HD2 /	ASN A 125	22.587	54.944	7.409	1.00 20.00
ATOM	1228 N I	PHE A 126	23.629	61.297	6.914	1.00 7.35
MOTA	1229 CA I	PHE A 126	23. 582	62.373	5.934	1.00 7.35
ATOM	1230 C	PHE A 126	24.544	62.117	4.810	1.00 7.35
ATOM	1231 0	PHE A 126	25. 128	63.023	4.233	1.00 7.35
ATOM	1232 CB	PHE A 126	23.870	63.740	6.546	1.00 7.35
ATOM	1233 CG	PHE A 126	22.917	64.028	7.676	1.00 7.35
ATOM	1234 CD1	PHE A 126	23.359	63.811	8.997	1.00 7.35
ATOM	1235 CD2	PHE A 126	21.621	64.520	7.402	1.00 7.35
ATOM	1236 CE1	PHE A 126	22.510	64.136	10.070	1.00 7.35
ATOM	1237 CE2	PHE A 126	20.773	64.851	8.476	1.00 7.35
MOTA	1238 CZ	PHE A 126	21. 236	64.676	9.798	1.00 7.35
ATOM	1239 H	PHE A 126	24.485	61.035	7. 360	1.00 20.00
MOTA	1240 N	GLU A 127	24.688	60.812	4.511	1.00 24.73
ATOM	1241 CA	GLU A 127	25.455	60.561	3.297	1.00 24.73
ATOM	1242 C	GLU A 127	24.765	61.137	2.073	1.00 24.73
ATOM	1243 0	GLU A 127	25. 389	61.707	1.189	1.00 24.73
ATOM	1244 CB	GLU A 127	25. 725	5 59.072	3. 104	1.00 24.73

WO 98/10070	PCT/JP97/02983
-------------	----------------

VO	98/10070								101,01
						129			
	ATOM	1245	CG	GLU A	127	26.677	58.837	1.922	1.00 24.73
	ATOM	1246	CD	GLU A	127	27.964	58.218	2.414	1.00 24.73
	ATOM	1247	OE1	GLU A	127	28. 272	57.109	1.979	1.00 24.73
	ATOM	1248	OE2	GLU A	127	28. 632	58.829	3.245	1.00 24.73
	ATOM	1249	Н	GLU A	127	24. 181	60.106	5.002	1.00 20.00
	MOTA	1250	N	GLU A	128	23. 431	60.945	2.079	1.00 23.04
	ATOM	1251	CA	GLU A	128	22.694	61.261	0.861	1.00 23.04
	MOTA	1252	С	GLU A	A 128	21. 313	61.807	1.171	1.00 23.04
	ATOM	1253	0	GLU A	A 128	20. 947	61.971	2.328	1.00 23.04
	ATOM	1254	СВ	GLU A	A 128	22.615	59. 987	0.045	1.00 23.04
	ATOM	1255	CG	GLU A	A 128	23.910	59.607	-0.685	1.00 23.04
	ATOM	1256	CD	GLU .	A 128	23.939	60.144	-2.103	1.00 23.04
	ATOM	1257	OE1	GLU .	A 128	22.997	60.832	-2.510	1.00 23.04
	ATOM	1258	OE2	GLU .	A 128	24.913	59.852	-2.798	1.00 23.04
	ATOM	1259	Н	GLU	A 128	22.928	60.568	2.862	1.00 20.00
	ATOM	1260	N	SER	A 129	20.537	62.056	0.099	1.00 19.86
	ATOM	1261	CA	SER	A 129	19. 298	62.850	0.216	1.00 19.86
	ATOM	1262	С	SER	A 129	18. 103	62. 253	0.958	1.00 19.86
	ATOM	1263	0	SER	A 129	17.013	62.805	1.032	1.00 19.86
	ATOM	1264	СВ	SER	A 129	18. 861	63. 281	-1.184	1.00 19.86
	ATOM	1265	OG	SER	A 129	20. 026	63.459	-1.996	1.00 19.86
	ATOM	1266	Н	SER	A 129	20.885	61.864	-0.824	1.00 20.00
	ATOM	1267	HG	SER	A 129	19.718	63.707	-2.867	1.00 20.00
	ATOM	1268	N	GLN	A 130	18.363	61.056	1.484	1.00 15.57

	PCT/JP97/02983
WO 98/10070	FC1/31 9 // 023 02

130 1.00 15.57 1.992 60.136 17.353 1269 CA **GLN A 130** MOTA 1.00 15.57 2.962 60.634 16.283 **GLN A 130** C **ATOM** 1270 1.00 15.57 2.905 60.216 15. 133 **GLN A 130** 1271 0 MOTA 58.956 2.558 1.00 15.57 18.125 CB GLN A 130 MOTA 1272 1.00 15.57 3.657 59.328 19.140 **GLN A 130** CG **ATOM** 1273 1.00 15.57 58.937 3.305 20.572 CD **GLN A 130** MOTA 1274 1.00 15.57 3.944 59.345 21.535 OE1 GLN A 130 1275 MOTA 1.00 15.57 2.295 20.710 58.067 NE2 GLN A 130 1276 **ATOM** 1.00 20.00 1.462 60.784 19.321 **GLN A 130** Н MOTA 1277 1.00 20.00 1.637 20.003 57.812 1278 1HE2 GLN A 130 MOTA 1.00 20.00 57.658 2.183 21.612 1279 2HE2 GLN A 130 MOTA 1.00 3.96 3.877 61.510 16.719 THR A 131 N **ATOM** 1280 1.00 3.96 4.933 61.902 15.791 THR A 131 MOTA 1281 CA 3.96 4.590 1.00 63.131 14.970 C THR A 131 ATOM 1282 3.96 4.469 1.00 15.474 64.245THR A 131 1283 0 MOTA 3.96 6.253 1.00 16.558 62.045 CB THR A 131 1284 ATOM 1.00 3.96 60.7686.631 17.098 OG1 THR A 131 **ATOM** 1285 7.400 1.00 3.96 15.726 62.628 CG2 THR A 131 **ATOM** 1286 1.00 20.00 3.823 17.641 61.887 THR A 131 ATOM 1287 Н 1.00 20.00 7.349 17.691 60.951 HG1 THR A 131 ATOM 1288 6.06 4.442 1.00 13.667 62.845 N PHE A 132 MOTA 1289 6.06 3.965 1.00 12.752 63.873 CA PHE A 132 **ATOM** 1290 4.556 1.00 6.06 63.754 11.362 C PHE A 132 MOTA 1291 6.06 5.022 1.00 62.693 10.972 0 PHE A 132 MOTA 1292

. WO 98/10070	PCT/JP97/02983
---------------	----------------

			131			
ATOM	1293	CB PHE A 132	12.702	63. 885	2.427	1.00 6.06
ATOM	1294	CG PHE A 132	12. 234	62.575	1.829	1.00 6.06
ATOM	1295	CD1 PHE A 132	10.884	62.175	1.949	1.00 6.06
ATOM	1296	CD2 PHE A 132	13. 169	61.778	1.136	1.00 6.06
ATOM	1297	CE1 PHE A 132	10.467	60.957	1.382	1.00 6.06
ATOM	1298	CE2 PHE A 132	12.753	60.561	0.563	1.00 6.06
ATOM	1299	CZ PHE A 132	11.407	60.162	0.695	1.00 6.06
MOTA	1300	H PHE A 132	13. 343	61.917	4.647	1.00 20.00
ATOM	1301	N PHE A 133	10. 628	64.873	4.477	1.00 7.15
ATOM	1302	CA PHE A 133	9. 214	64.866	4.855	1.00 7.15
ATOM	1303	C PHE A 133	8. 445	65.768	3.918	1.00 7.15
ATOM	1304	0 PHE A 133	8. 868	66.881	3.647	1.00 7.15
MOTA	1305	CB PHE A 133	9.052	65. 335	6.310	1.00 7.15
MOTA	1306	CG PHE A 133	7.611	65.586	6.714	1.00 7.15
ATOM	1307	CD1 PHE A 133	6.609	64.626	6.446	1.00 7.15
ATOM	1308	CD2 PHE A 133	7.299	66.794	7.375	1.00 7.15
ATOM	1309	CE1 PHE A 133	5. 281	64.876	6.837	1.00 7.15
MOTA	1310	CE2 PHE A 133	5.972	67.039	7.779	1.00 7.15
MOTA	1311	CZ PHE A 133	4.975	66.081	7.503	1.00 7.15
MOTA	1312	H PHE A 133	11.065	65.710	4.134	1.00 20.00
ATOM	1313	N GLY A 134	7.306	65. 265	3.432	1.00 4.00
ATOM	1314	CA GLY A 134	6. 587	66. 141	2.523	1.00 4.00
MOTA	1315	C GLY A 134	5. 111	65. 853	2.424	1.00 4.00
ATOM	1316	O GLY A 134	4.638	64.774	2.764	1.00 4.00

ATOM	1317	Н	GLY A	134	6.958	64.355	3.670	1.00 20	. 00
MOTA	1318	N	LEU A	135	4.410	66.893	1.946	1.00 5	. 48
ATOM	1319	CA	LEU A	135	2.963	66. 783	1.775	1.00 5	. 48
ATOM	1320	С	LEU A	135	2.573	67. 208	0.387	1.00 5	. 48
ATOM	1321	0	LEU A	135	3. 311	67.919	-0. 285	1.00 5	5.48
ATOM	1322	СВ	LEU A	135	2. 154	67.712	2.683	1.00 5	5.48
ATOM	1323	CG	LEU A	135	2.479	67.767	4.168	1.00 5	5.48
MOTA	1324	CD1	LEU A	135	1.468	68.655	4.892	1.00	5.48
ATOM	1325	CD2	LEU A	135	2.584	66.394	4.809	1.00	5.48
ATOM	1326	Н	LEU A	135	4.910	67.671	1.560	1.00 20	0.00
ATOM	1327	N	TYR A	136	1. 345	66.809	0.030	1.00	5. 12
ATOM	1328	CA	TYR A	136	0.694	67.444	-1.113	1.00	5. 12
ATOM	1329	С	TYR A	136	-0.799	67.241	-1.096	1.00	5.12
ATOM	1330	0	TYR A	136	-1.284	66.190	-0.703	1.00	5. 12
ATOM	1331	СВ	TYR A	136	1.278	66.980	-2.454	1.00	5.12
ATOM	1332	CG	TYR A	136	1.350	65.477	-2.571	1.00	5.12
ATOM	1333	CD	1 TYR A	136	2.412	64.790	-1.951	1.00	5.12
MOTA	1334	CD	2 TYR A	136	0.372	64.808	-3.330	1.00	5.12
ATOM	1335	CE	1 TYR A	136	2.541	63.408	-2.156	1.00	5.12
ATOM	1336	6 CF	2 TYR A	136	0.509	63.428	-3.543	1.00	5.12
ATOM	1337	7 C2	Z TYR I	136	1.609	62.754	-2.982	1.00	5.12
ATOM	1338	B OF	i TYR A	A 136	1. 767	61.412	-3. 258	1.00	5.12
ATOM	1339	9 H	TYR	A 136	0.911	66.058	0.534	1.00	20.00
ATOM	134	0 Н	H TYR	A 136	0.909	61.010	-3.263	1.00	20.00

PCT/JP97/02983 WO 98/10070 133 1.00 11.54 -1.53868.291 -1.507LYS A 137 MOTA 1341 N 1.00 11.54 -1.65468.117 -2.953LYS A 137 CA 1342 MOTA -2.8691.00 11.54 -3.34467.290 LYS A 137 C 1343 ATOM 1.00 11.54 67.419 -3.936 -2.754LYS A 137 0 **ATOM** 1344 69.482 -1.6211.00 11.54 -3.665 LYS A 137 CB MOTA 1345 69.346 -1.5041.00 11.54 -5. 187 CG LYS A 137 ATOM 1346 1.00 11.54 -1.32270.630 -5.992 LYS A 137 1347 CD MOTA -1.4031.00 11.54 70.304 -7.486LYS A 137 **ATOM** 1348 CE 1.00 11.54 -0.976 71.450 -8.302LYS A 137 1349 NZ ATOM 1.00 20.00 -1.839-1.02069.113 LYS A 137 1350 Н ATOM -1.1161.00 20.00 71.233 -9.308LYS A 137 1351 1HZ **ATOM** 1.00 20.00 0.050 -8. 173 71.604 1352 2HZ LYS A 137 MOTA

1.00 20.00 -1.482-8.04772.3221353 3HZ LYS A 137 **ATOM** 2.56 -2.6331.00 66.438 -4.3531354 LEU A 138 **ATOM** N -3.72565.690 1.00 2.56 -4.970CA LEU A 138 MOTA 1355 1.00 66.433 -4.378 2.56 -6.144C LEU A 138 MOTA 1356 -5.193 1.00 2.56 65.833 -6.8470 LEU A 138 **ATOM** 1357 1.00 2.56 64.309 -3.210**LEU A 138** -5.401 1358 CB ATOM 1.00 -2.46463.538 -4.306LEU A 138 **ATOM** 1359 CG 1.00 -1.807-4.86662.281 CD1 LEU A 138 MOTA 1360 -3.3451.00 -3.09663.225 CD2 LEU A 138 ATOM 1361

2.56 2.56 2.56 67.610 -4.0731.00 2.56 -6.365**ATOM** 1362 OXT LEU A 138 -1.7141.00 20.00 66.418 -4.752LEU A 138 AŢOM H 1363 62.603 -15.335 1.00 5.73 -2.937ARG B 1 MOTA N 1364

WO 98/10070	PCT/JP97/02983

134 **ATOM** 1365 CA ARG B 1 -2.03563.134 -16.365 1.00 5.73 **MOTA** 1366 C ARG B 1 -0.958 62.103 -16.634 1.00 5.73 ATOM 1367 0 ARG B 1 -1.30760.944 -16.804 1.00 5.73 **ATOM** 1368 -CB ARG B 1 -1.50464.518 -15.977 1.00 5.73 ATOM 1369 CG ARG B -2.5131 65.637 -16.220 1.00 5.73 **ATOM** 1370 CD ARG B 1 -1.898 67.011 -15.960 1.00 5.73 ATOM 1371 NE ARG B -2.8661 68.071 -16.230 1.00 5.73 ATOM 1372 CZ ARG B 1 -3. 105 69.035 -15.314 1.00 5.73 ATOM 1373 NH1 ARG B 1 -3.990 69.989 -15.599 1.00 5.73 **ATOM** 1374 NH2 ARG B 1 -2.47169.032 -14.139 1.00 5.73 ATOM 1375 1H ARG B 1 -3. 784 63. 195 -15. 230 1.00 20.00 ATOM 1376 2H ARG B 1 -3.19761.641 -15.643 1.00 20.00 ATOM 1377 3H ARG B 1 -2.43262.534 -14.428 1.00 20.00 **ATOM** 1378 HE ARG B 1 -3.32068.068 -17.123 1.00 20.00 **ATOM** 1379 1HH1 ARG B 1 -4.19370.723 -14.951 1.00 20.00 ATOM 1380 2HH1 ARG B 69.987 -16.474 1 -4.4761.00 20.00 ATOM 1381 1HH2 ARG B 1 69.754 -13.462 -2.6141.00 20.00 ATOM 1382 2HH2 ARG B 1 -1.83968.293 -13.898 1.00 20.00 ATOM 1383 N LYS B 2 62.537 -16.655 0.318 1.00 19.49 ATOM 1384 CA LYS B 2 61.594 -16.965 1.393 1.00 19.49 **ATOM** 1385 C LYS B 2 1.627 60.661 -15.819 1.00 19.49 ATOM 1386 0 LYS B 2 1.798 61.091 -14.685 1.00 19.49 ATOM 1387 CB LYS B 2 2.732 62. 274 -17. 247 1.00 19.49

ATOM

1388

CG

LYS B

2

2.778

63. 147 -18. 491

1.00 19.49

ATOM	1389 CD	LYS B	2	2.066	64.470 -18.286	1.00 19.49
ATOM	1390 CE	LYS B	2	2. 193	65.340 -19.507	1.00 19.49
ATOM	1391 NZ	LYS B	2	1.180	65.110 -20.544	1.00 19.49
ATOM	1392 H	LYS B	2	0.597	63.447 -16.360	1.00 20.00
ATOM	1393 1HZ	LYS B	2	1.214	65.974 -21.140	1.00 20.00
ATOM	1394 2HZ	LYS B	2	1.405	64.257 -21.095	1.00 20.00
ATOM	1395 3HZ	LYS B	2	0. 233	65.037 -20.128	1.00 20.00
ATOM	1396 N	VAL B	3	1.581	59.377 -16.177	1.00 4.59
ATOM	1397 CA	VAL B	3	1.753	58.335 -15.177	1.00 4.59
ATOM	1398 C	VAL B	3	2.608	57.262 -15.816	1.00 4.59
ATOM	1399 0	VAL B	3	2.582	57.072 -17.030	1.00 4.59
ATOM	1400 CB	VAL B	3	0.379	57.792 -14.718	1.00 4.59
ATOM	1401 CG	1 VAL B	3	0.475	56.648 -13.705	1.00 4.59
ATOM	1402 CG	2 VAL B	3	-0.487	58.909 -14.131	1.00 4.59
ATOM	1403 H	VAL B	3	1.494	59. 105 -17. 136	1.00 20.00
ATOM	1404 N	ALA B	4	3. 368	56.603 -14.938	1.00 5.22
MOTA	1405 CA	A ALA B	4	4. 135	55.432 -15.315	1.00 5.22
ATOM	1406 C	ALA B	4	4. 150	54.517 -14.117	1.00 5.22
ATOM	1407 0	ALA B	4	4.200	54.973 -12.981	1.00 5.22
ATOM	1408 C	B ALA B	4	5. 576	55. 815 -15. 653	1.00 5.22
ATOM	1409 H	ALA B	4	3. 349	56. 867 -13. 969	1.00 20.00
MOTA	1410 N	HIS B	5	4.111	53. 221 -14. 421	1.00 4.76
ATOM	1411 C	A HIS B	5	4.349	52. 235 -13. 371	1.00 4.76
ATOM	1412 C	HIS B	5	4.993	51.074 -14.063	1.00 4.76

ATOM	1413 0	HIS B	5	4.331 50.490 -14.896 1.00 4.76	
ATOM	1414 CB	HIS B	5	3.032 51.774 -12.730 1.00 4.76	
ATOM	1415 CG	HIS B	5	3.317 50.760 -11.644 1.00 4.76	
MOTA	1416 ND:	HIS B	5	3.511 51.104 -10.365 1.00 4.76	
ATOM	1417 CD	2 HIS B	5	3.455 49.372 -11.763 1.00 4.76	
ATOM	1418 CE	1 HIS B	5	3.773 49.951 -9.680 1.00 4.76	
MOTA	1419 NE	2 HIS B	5	3.740 48.886 -10.533 1.00 4.76	
MOTA	1420 H	HIS B	5	3.968 52.930 -15.371 1.00 20.00	
- ATOM	1421 HD	1 HIS B	5	3.469 52.017 -10.008 1.00 20.00	
ATOM	1422 N	LEU B	6	6. 259 50. 801 -13. 732 1. 00 6. 04	
MOTA	1423 CA	LEU B	6	7.023 49.785 -14.455 1.00 6.04	
ATOM	1424 C	LEU B	6	7.455 48.665 -13.559 1.00 6.04	
ATOM	1425 0	LEU B	6	7.694 48.882 -12.380 1.00 6.04	
ATOM	1426 C	B LEU B	6	8.319 50.358 -14.995 1.00 6.04	
ATOM	1427 C	G LEU B	6	8.147 51.555 -15.901 1.00 6.04	
ATOM	1428 C	D1 LEU B	6	9.510 52.012 -16.382 1.00 6.04	
ATOM	1429 C	D2 LEU B	6	7.204 51.258 -17.060 1.00 6.04	
MOTA	1430 H	l LEU E	3 6	6.704 51.325 -13.009 1.00 20.00	,
ATOM	1431	N THR F	3 7	7.595 47.482 -14.168 1.00 3.03	
ATOM	1432	CA THR I	3 7	8.116 46.387 -13.358 1.00 3.03	3
ATOM	1433	C THR	В 7	9.485 45.927 -13.817 1.00 3.00	3
ATOA	A 1434	O THR	B 7	9.911 46.196 -14.935 1.00 3.00	3
FOTA	M 1435	CB THR	В 7	7. 112 45. 234 -13. 336 1. 00 3. 0	3
ATO	M 1436	OG1 THR	B 7	6.655 44.949 -14.663 1.00 3.0	3

				•	137
ATOM	1437	CG2	THR B	7	5.923 45.549 -12.423 1.00 3.03
MOTA	1438	Н	THR B	7	7.403 47.340 -15.143 1.00 20.00
ATOM	1439	HG1	THR B	7	6.334 44.057 -14.655 1.00 20.00
ATOM	1440	N	GLY B	8	10. 169 45. 241 -12. 885 1. 00 3. 29
ATOM	1441	CA	GLY B	8	11.479 44.700 -13.245 1.00 3.29
ATOM	1442	С	GLY B	8	11.416 43.393 -14.016 1.00 3.29
MOTA	1443	0	GLY B	8	10.604 42.517 -13.740 1.00 3.29
ATOM	1444	Н	GLY B	8	9.769 45.109 -11.974 1.00 20.00
ATOM	1445	N	LYS B	9	12.331 43.292 -14.996 1.00 6.71
ATOM	1446	CA	LYS B	9	12.359 42.070 -15.801 1.00 6.71
ATOM	1447	С	LYS B	9	12.776 40.805 -15.075 1.00 6.71
ATOM	1448	0	LYS B	9	13.951 40.545 -14.840 1.00 6.71
ATOM	1449	СВ	LYS B	9	13.256 42.205 -17.028 1.00 6.71
ATOM	1450	CG	LYS B	9	12.803 43.248 -18.036 1.00 6.71
ATOM	1451	CD	LYS B	9	13.558 43.111 -19.356 1.00 6.71
ATOM	1452	CE	LYS B	9	13.034 44.076 -20.419 1.00 6.71
ATOM	1453	NZ	LYS B	9	14.003 44.169 -21.520 1.00 6.71
ATOM	1454	Н	LYS B	9	12.937 44.069 -15.182 1.00 20.00
ATOM	1455	1HZ	LYS B	9	13.760 44.969 -22.136 1.00 20.00
ATOM	1456	2HZ	LYS B	9	14.946 44.419 -21.127 1.00 20.00
ATOM	1457	7 3HZ	LYS B	9	14.076 43.284 -22.051 1.00 20.00
MOTA	1458	3 N	SER B	10	11.747 39.985 -14.810 1.00 13.61
ATOM	1459	O CA	SER B	10	11.964 38.612 -14.334 1.00 13.61
ATOM	1460	o C	SER B	10	13.071 37.832 -15.017 1.00 13.61

ATOM	1461	0	SER B	10	13.970	37. 261 -14. 409	1.00 13.61
ATOM	1462	СВ	SER B	10	10.673	37.804 -14.424	1.00 13.61
ATOM	1463	OG	SER B	10	9.604	38.576 -13.884	1.00 13.61
ATOM	1464	H	SER B	10	10.839	40.413 -14.779	1.00 20.00
ATOM	1465	HG	SER B	10	8.872	37.982 -13.776	1.00 20.00
ATOM	1466	N	ASN B	11	12.970	37.830 -16.352	1.00 8.64
ATOM	1467	CA	ASN B	11	14.102	37. 232 -17. 049	1.00 8.64
ATOM	1468	С	ASN B	11	15.041	38. 261 -17. 633	1.00 8.64
ATOM	1469	0	ASN B	11	15. 192	38.429 -18.836	1.00 8.64
ATOM	1470	СВ	ASN B	11	13.657	36. 153 -18. 048	1.00 8.64
ATOM	1471	CG	ASN B	11	13. 192	34.864 -17.360	1.00 8.64
ATOM	1472	O D1	ASN B	11	12.646	33.972 -17.994	1.00 8.64
ATOM	1473	ND2	2 ASN B	11	13.420	34.765 -16.037	1.00 8.64
ATOM	1474	Н	ASN B	11	12. 213	38. 284 -16. 820	1.00 20.00
ATOM	1475	1HD	2 ASN B	11	13.855	35.461 -15.458	1.00 20.00
ATOM	1476	2HD	2 ASN B	11	13. 115	33.917 -15.609	1.00 20.00
ATOM	1477	N	SER E	12	15. 692	38.936 -16.679	1.00 14.76
ATOM	1478	S CA	SER E	3 12	16.852	39.723 -17.067	1.00 14.76
ATOM	1479) С	SER I	3 12	18. 084	39.073 -16.486	1.00 14.76
ATOM	1480	0 (SER I	3 12	18.003	38.271 –15.563	1.00 14.76
ATOM	148	1 CE	SER 1	B 12	16. 722	2 41.173 –16.597	1.00 14.76
ATOM	1482	2 00	SER !	B 12	17.626	6 41.998 -17.338	1.00 14.76
ATOM	148	3 H	SER	B 12	15.500	38. 780 -15. 708	1.00 20.00
ATOM	148	4 H	G SER	B 12	17. 32	6 42.893 -17.220	1.00 20.00

WO 98/10070	PCT/JP97/02983	

	-						
				٠	139		
ATOM	1485	N	ARG B	13	19. 233	39.424 -17.081	1.00 14.62
ATOM	1486	CA	ARG B	13	20. 459	38.887 -16.492	1.00 14.62
ATOM	1487	С	ARG B	13	20.732	39.464 -15.113	1.00 14.62
ATOM	1488	0	ARG B	13	20. 252	40.533 -14.771	1.00 14.62
ATOM	1489	СВ	ARG B	13	21.651	39. 127 -17. 421	1.00 14.62
ATOM	1490	CG	ARG B	13	21.465	38.479 -18.792	1.00 14.62
ATOM	1491	CD	ARG B	13	22.723	38.571 -19.661	1.00 14.62
ATOM	1492	NE	ARG B	13	22.569	37.794 -20.893	1.00 14.62
ATOM	1493	CZ	ARG B	13	22.814	36. 463 -20. 915	1.00 14.62
ATOM	1494	NH1	ARG B	13	22.591	35.776 -22.032	1.00 14.62
MOTA	1495	NH2	ARG B	13	23. 270	35. 837 -19. 829	1.00 14.62
ATOM	1496	Н	ARG B	13	19.207	40.156 -17.765	1.00 20.00
ATOM	1497	HE	ARG B	13	22.226	38. 279 -21. 699	1.00 20.00
ATOM	1498	1HH1	ARG B	13	22.754	34.790 -22.080	1.00 20.00
ATOM	1499	2HH1	ARG B	13	22. 251	36. 238 -22. 852	1.00 20.00
ATOM	1500	1HH2	ARG B	13	23. 434	34.851 -19.812	1.00 20.00
ATOM	1501	2HH2	ARG B	13	23.457	36.362 -18.998	1.00 20.00
ATOM	1502	N	SER B	14	21.549	38.731 -14.340	1.00 5.58
ATOM	1503	CA	SER B	14	21.812	39.197 -12.977	1.00 5.58
ATOM	1504	С	SER B	14	22.520	40.535 -12.807	1.00 5.58
ATOM	1505	0	SER B	14	22.519	41.117 -11.732	1.00 5.58
ATOM	1506	СВ	SER B	14	22. 559	38.112 -12.209	1.00 5.58
ATOM	1507	OG	SER B	14	22.065	36.832 -12.622	1.00 5.58
ATOM	1508	Н	SER E	14	21.798	37.787 –14.558	1.00 20.00

ATOM	1509 HG	SER B 14	22.136 36.270 -11.860 1.00 20.00
ATOM	1510 N	MET B 15	23.138 40.993 -13.914 1.00 11.01
ATOM	1511 CA	MET B 15	23.705 42.340 -13.849 1.00 11.01
ATOM	1512 C	MET B 15	22.714 43.511 -13.896 1.00 11.01
ATOM	1513 0	MET B 15	22.716 44.325 -12.986 1.00 11.01
ATOM	1514 CB	MET B 15	24.874 42.528 -14.832 1.00 11.01
ATOM	1515 CG	MET B 15	25.998 41.498 -14.706 1.00 11.01
ATOM	1516 SD	MET B 15	27.322 41.796 -15.892 1.00 11.01
ATOM	1517 CE	MET B 15	27. 838 43. 418 -15. 302 1. 00 11. 01
ATOM	1518 H	MET B 15	23. 109 40. 463 -14. 757 1. 00 20. 00
ATOM	1519 N	PRO B 16	21.872 43.632 -14.966 1.00 6.76
ATOM	1520 CA	A PRO B 16	20.965 44.786 -14.986 1.00 6.76
MOTA	1521 C	PRO B 16	19.665 44.616 -14.206 1.00 6.76
ATOM	1522 0	PRO B 16	19.076 43.549 -14.101 1.00 6.76
MOTA	1523 C	B PRO B 16	20.716 44.959 -16.485 1.00 6.76
ATOM	1524 C	CG PRO B 16	20.694 43.532 -17.028 1.00 6.76
MOTA	1525 C	D PRO B 16	21.773 42.846 -16.199 1.00 6.76
MOTA	1526 N	N LEU B 17	19. 206 45. 781 -13. 720 1. 00 6. 37
MOTA	1527 (CA LEU B 17	17.781 45.908 -13.424 1.00 6.37
ATOM	1528	C LEU B 17	17. 143 46. 560 -14. 627 1. 00 6. 37
ATOM	1529	O LEU B 17	17.528 47.653 -15.017 1.00 6.37
ATON	A 1530	CB LEU B 17	17.564 46.791 -12.191 1.00 6.37
fot a		CG LEU B 17	16.128 46.859 -11.658 1.00 6.37
ATO		CD1 LEU B 17	15.573 45.486 -11.265 1.00 6.37

ATOM	1533	CD2	LEU B	17	16. 021	47.859 -10.505	1.00	5. 37
ATOM	1534	Н	LEU B	17	19.764	46.605 -13.794	1.00 20	0.00
ATOM	1535	N	GLU B	18	16. 186	45.843 -15.221	1.00 14	1.08
ATOM	1536	CA	GLU B	18	15. 596	46.473 -16.394	1.00 14	1.08
ATOM	1537	С	GLU B	18	14.112	46.640 -16.190	1.00 14	1.08
ATOM	1538	0	GLU B	18	13.490	45.838 -15.505	1.00 14	1.08
ATOM	1539	СВ	GLU B	18	15.912	45.659 -17.648	1.00 14	4.08
ATOM	1540	CG	GLU B	18	16. 059	46.515 -18.916	1.00 14	4.08
ATOM	1541	CD	GLU B	18	16.075	45.650 -20.167	1.00 1	4.08
ATOM	1542	OE1	GLU B	18	16.395	44.465 -20.108	1.00 1	4.08
ATOM	1543	OE2	GLU B	18	15.688	46. 124 -21. 232	1.00 1	4.08
ATOM	1544	Н	GLU B	18	15.837	44.981 -14.855	1.00 2	0.00
MOTA	1545	N	TRP B	19	13. 583	47.722 -16.774	1.00	6.20
MOTA	1546	CA	TRP B	19	12.151	47.934 -16.600	1.00	6.20
ATOM	1547	С	TRP B	19	11.337	47.428 -17.775	1.00	6.20
ATOM	1548	0	TRP B	19	11.859	47. 205 -18. 862	1.00	6.20
MOTA	1549	СВ	TRP B	19	11.865	49.412 -16.339	1.00	6.20
ATOM	1550	CG	TRP B	19	12.506	49.881 -15.052	1.00	6.20
ATOM	1551	CD	i trp b	19	13. 518	50.846 -14.929	1.00	6.20
ATOM	1552	CD	2 TRP B	19	12.237	49.442 -13.701	1.00	6.20
ATOM	1553	NE:	1 TRP B	19	13.879	51.019 -13.629	1.00	6.20
ATCM	1554	CE	2 TRP B	19	13.115	50.173 -12.833	1.00	6.20
ATOM	1555	CE	3 TRP B	19	11.337	48.504 -13.154	1.00	6.20
ATOM	1556	cz	2 TRP B	19	13. 085	49.938 -11.441	1.00	6.20

ATOM	1557 C	CZ3 TRP B	19	11.313	48.280 -11.763 1.	00 6.20
ATOM	1558 C	CH2 TRP B	19	12. 185	48.991 -10.909 1.	00 6.20
MOTA	1559 H	H TRP B	19	14. 125	48.305 -17.378 1.	00 20.00
ATOM	1560 H	HE1 TRP B	19	14.576	51.627 -13.305 1.	00 20.00
ATOM	1561 N	N GLU B	20	10.034	47.266 -17.500 1.	00 5.13
ATOM	1562 (CA GLU B	20	9. 142	46.757 -18.537 1.	00 5.13
ATOM	1563	C GLU B	20	7.800	47.449 -18.566 1	00 5.13
ATOM	1564	O GLU B	20	7.310	47.882 -17.530 1	. 00 5. 13
MOTA	1565	CB GLU B	20	8.919	45.262 -18.340 1	. 00 5. 13
ATOM	1566	CG GLU B	20	9.485	44.456 -19.508 1	.00 5.13
ATOM	1567	CD GLU B	20	9. 237	42.972 -19.312 1	.00 5.13
ATOM	1568	OE1 GLU B	20	8. 122	42.600 -18.951 1	.00 5.13
ATOM	1569	OE2 GLU B	20	10. 158	42.187 -19.534	.00 5.13
ATOM	1570	H GLU B	20	9.712	47.331 -16.553	00 20.00
ATOM	1571	N ASP B	21	7. 248	47.482 –19.802	1.00 13.73
ATOM	1572	CA ASP B	21	5. 954	48.123 -20.064	1.00 13.73
MOTA	1573	C ASP E	3 21	4.760	47.192 -20.205	1.00 13.73
ATOM	1574	O ASP E	3 21	3.64	1 47.477 -19.793	1.00 13.73
MOTA	1575	CB ASP I	3 21	5.99	5 49.036 -21.295	1.00 13.73
ATOM	1576	CG ASP I	B 21	7.17	0 49.993 -21.267	1.00 13.73
ATOM	1577	OD1 ASP	B 21	7.63	9 50.358 –22.342	1.00 13.73
ATOM	1578	OD2 ASP	B 21	7.62	3 50.366 -20.186	1.00 13.73
ATOM	1579	H ASP	B 21	7.81	5 47.200 -20.571	1.00 20.00
ATOM	1580	n THR	B 22	5. 02	24 46.037 -20.816	1.00 11.65

ATOM	1581	CA	THR B	22	3.851 45.207 -21.073 1.00 11.65
ATOM	1582	С	THR B	22	3.541 44.196 -19.981 1.00 11.65
ATOM	1583	0	THR B	22	3.677 42.987 -20.122 1.00 11.65
ATOM	1584	СВ	THR B	22	3.953 44.603 -22.475 1.00 11.65
ATOM	1585	0G1	THR B	22	4.317 45.647 -23.389 1.00 11.65
ATOM	1586	CG2	THR B	22	2.654 43.933 -22.940 1.00 11.65
ATOM	1587	Н	THR B	22	5.938 45.799 -21.132 1.00 20.00
ATOM	1588	HG1	THR B	22	4.335 45.272 -24.258 1.00 20.00
MOTA	1589	N	TYR B	23	3.094 44.781 -18.861 1.00 6.57
ATOM	1590	CA	TYR B	23	2.693 43.947 -17.734 1.00 6.57
ATOM	1591	С	TYR E	23	1.345 44.418 -17.222 1.00 6.57
ATOM	1592	0	TYR E	3 23	0.938 45.543 -17.481 1.00 6.57
ATOM	1593	СВ	TYR I	3 23	3.798 43.961 -16.660 1.00 6.57
ATOM	1594	CG	TYR I	3 23	3.492 43.041 -15.496 1.00 6.57
ATOM	1595	CD	1 TYR I	B 23	3.030 43.598 -14.284 1.00 6.57
ATOM	1596	CD	2 TYR	B 23	3.665 41.652 -15.659 1.00 6.57
MOTA	1597	CE	1 TYR	B 23	2.702 42.740 -13.222 1.00 6.57
ATOM	1598	S CE	2 TYR	B 23	3.344 40.795 -14.593 1.00 6.57
ATOM	1599) C2	Z TYR	B 23	2.853 41.350 -13.394 1.00 6.57
ATOM	1600) OI	i TYR	B 23	2.500 40.513 -12.356 1.00 6.57
ATOM	160	ı H	TYR	B 23	2.973 45.780 -18.851 1.00 20.00
ATOM	160	2 H	H TYR	B 23	2.824 39.635 -12.510 1.00 20.00
ATOM	160	3 N	GLY	B 24	0.670 43.497 -16.498 1.00 5.63
ATOM	160	4 C	A GLY	B 24	-0.703 43.702 -16.025 1.00 5.63

ATOM	1605 C	GLY B	24	-1.050	45.118 -15.618	1.00 5.63
ATOM	1606 0	GLY B	24	-1.892	45.777 -16.217	1.00 5.63
ATOM	1607 H	GLY B	24	1.118	42.621 -16.332	1.00 20.00
ATOM	1608 N	ILE B	25	-0.341	45.579 -14.574	1.00 5.38
ATOM	1609 C	A ILE B	25	-0.527	47.010 -14.405	1.00 5.38
ATOM	1610 C	ILE B	25	0.742	47.811 -14.553	1.00 5.38
ATOM	1611 0	ILE B	25	1.286	48.396 -13.627	1.00 5.38
ATOM	1612 C	B ILE B	25	-1.321	47.376 -13.153	1.00 5.38
ATOM	1613 C	G1 ILE B	25	-2.448	46.363 -12.908	1.00 5.38
ATOM	1614 C	G2 ILE B	25	-1.881	48.780 -13.392	1.00 5.38
ATOM	1615 (D1 ILE B	25	-2.995	46.321 -11.485	1.00 5.38
ATOM	1616 H	ILE B	25	0.309	45.038 -14.040	1.00 20.00
ATOM	1617	N VAL B	26	1.167	47.811 -15.818	1.00 4.68
MOTA	1618	CA VAL B	26	2.240	48.716 -16.181	1.00 4.68
MOTA	1619	C VAL B	26	1.778	49.691 -17.243	1.00 4.68
ATOM	1620	O VAL E	3 26	1.171	49.339 -18.246	1.00 4.68
ATOM	1621	CB VAL E	3 26	3.479	47.926 -16.590	1.00 4.68
ATOM	1622	CG1 VAL I	3 26	4.515	48.837 -17.216	1.00 4.68
ATOM	1623	CG2 VAL	B 26	4.090	47.225 -15.379	1.00 4.68
ATOM	1624	H VAL	B 26	0.734	47.247 -16.520	5 1.00 20.00
ATOM	1625	N LEU	В 27	2.034	50.966 -16.91	1 1.00 5.09
ATOM	1626	CA LEU	B 27	1.449	52.017 -17.73	9 1.00 5.09
ATOM	1627	C LEU	В 27	2.40	53.101 -18.11	8 1.00 5.09
ATON	1628	O LEU	B 27	3. 45	2 53.289 –17.51	3 1.00 5.09

ATOM	1629	СВ	LEU B	27	0. 305	52.723 -17.039	1.00 5.09
	1630	CG	LEU B	27	-0. 552	51.709 -16.329	1.00 5.09
ATOM					-0.966	52. 266 -14. 972	1.00 5.09
ATOM	1631	CDI	LEU B	27			
ATOM	1632	CD2	LEU B	27	-1.581	51.067 -17.269	1.00 5.09
MOTA	1633	Н	LEU B	27	2.571	51.146 -16.086	1.00 20.00
ATOM	1634	N	LEU B	28	1.884	53. 824 -19. 126	1.00 7.30
ATOM	1635	CA	LEU B	28	2.567	54.936 -19.752	1.00 7.30
ATOM	1636	С	LEU B	28	1.549	55.965 -20.212	1.00 7.30
ATOM	1637	0	LEU B	28	0. 592	55.617 -20.892	1.00 7.30
ATOM	1638	СВ	LEU B	28	3.319	54.376 -20.958	1.00 7.30
ATOM	1639	CG	LEU B	28	4.099	55.444 -21.707	1.00 7.30
ATOM	1640	CD1	LEU B	28	4.988	56.179 -20.723	1.00 7.30
ATOM	1641	CD2	LEU B	28	4.860	54.900 -22.915	1.00 7.30
ATOM	1642	Н	LEU B	28	1.013	53.559 -19.540	1.00 20.00
ATOM	1643	N	SER B	29	1.837	57. 231 -19. 862	1.00 16.57
ATOM	1644	CA	SER B	29	1.051	58.324 -20.438	1.00 16.57
ATOM	1645	С	SER B	29	1.894	59.556 -20.704	1.00 16.57
MOTA	1646	0	SER B	2 9	2.071	60.393 -19.831	1.00 16.57
ATOM	1647	CB	SER B	29	-0. 113	58.706 -19.518	1.00 16.57
ATOM	1648	OG	SER B	29	-0.892	57.552 -19.197	1.00 16.57
ATOM	1649	Н	SER B	29	2.516	57.368 -19.138	1.00 20.00
ATOM	1650) HG	SER B	3 29	-1.574	57.830 -18.604	1.00 20.00
ATOM	1651	N	GLY B	30	2.433	3 59.646 -21.934	1.00 4.20
ATOM	1652	2 CA	GLY E	3 30	3. 245	60.833 -22.238	1.00 4.20

ATOM	1653 C	GLY B	30	4.710	60.762 -21.821 1.00 4.20	
ATOM	1654 0	GLY B	30	5. 582	61.427 -22.363 1.00 4.20	
ATOM	1655 H	GLY B	30	2.315	58.915 -22.606 1.00 20.00	
ATOM	1656 N	VAL B	31	4.957	59.904 -20.823 1.00 3.10	
ATOM	1657 CA	VAL B	31	6.350	59.619 -20.483 1.00 3.10	
ATOM	1658 C	VAL B	31	6. 927	58.775 -21.622 1.00 3.10	
ATOM	1659 0	VAL B	31	6. 182	58.264 -22.451 1.00 3.10	
ATOM	1660 CB	VAL B	31	6.350	58.914 -19.102 1.00 3.10	
ATOM	1661 CG	1 VAL B	31	7.718	58.487 -18.560 1.00 3.10	
ATOM	1662 CG	2 VAL B	31	5.614	59.780 -18.077 1.00 3.10	
ATOM	1663 H	VAL B	31	4.226	59.313 -20.495 1.00 20.00	
ATOM	1664 N	LYS B	32	8. 253	58.643 -21.656 1.00 18.46	
ATOM	1665 CA	A LYS B	32	8. 752	57.633 -22.580 1.00 18.46	
ATOM	1666 C	LYS E	32	9. 828	56.828 -21.904 1.00 18.46	
ATOM	1667 0	LYS E	3 32	10. 568	57.346 -21.080 1.00 18.46	
ATOM	1668 C	B LYS I	3 32	9. 251	58.285 -23.874 1.00 18.46	
ATOM	1669 C	G LYS 1	3 32	9.612	2 57.287 -24.980 1.00 18.46	•
ATOM	1670 C	D LYS	В 32	10.032	2 57.977 -26.273 1.00 18.46)
MOTA	1671 C	E LYS	B 32	11.23	1 58.903 -26.084 1.00 18.46	;
ATOM	1672 N	nz lys	B 32	11.47	5 59.598 -27.353 1.00 18.46	5
ATOM	1673 H	H LYS	В 32	8.84	6 59.148 -21.026 1.00 20.00)
ATOM	1674 11	HZ LYS	В 32	12.26	7 60.261 -27.240 1.00 20.0	0
ATOM	1675 2	HZ LYS	B 32	11.69	2 58.899 -28.092 1.00 20.0	0
ATON	A 1676 3	HZ LYS	В 32	10.6	17 60.124 -27.617 1.00 20.0	0

PCT/JP97/02983 WO 98/10070 147

ATOM	1677	N	TYR	В	33	9.880	55.545 -22.275	1.00 6.60
ATOM	1678	CA	TYR	В	33	10. 983	54.766 -21.735	1.00 6.60
ATOM	1679	С	TYR	В	33	12.116	54.735 -22.717	1.00 6.60
ATOM	1680	0	TYR	В	33	11.920	54.625 -23.922	1.00 6.60
ATOM	1681	СВ	TYR	В	33	10.512	53. 362 -21. 366	1.00 6.60
ATOM	1682	CG	TYR	В	33	9. 247	53.516 -20.563	1.00 6.60
ATOM	1683	CD1	TYR	В	33	8.019	53. 173 -21. 156	1.00 6.60
ATOM	1684	CD2	TYR	В	33	9.329	54.041 -19.261	1.00 6.60
ATOM	1685	CE1	TYR	В	33	6.839	53. 358 -20. 423	1.00 6.60
ATOM	1686	CE2	TYR	В	33	8. 147	54.265 -18.545	1.00 6.60
ATOM	1687	CZ	TYR	В	33	6. 922	53.921 -19.135	1.00 6.60
ATOM	1688	ОН	TYR	В	33	5. 770	54.173 -18.423	1.00 6.60
ATOM	1689	Н	TYR	В	33	9. 269	55.151 -22.961	1.00 20.00
ATOM	1690	НН	TYR	В	33	5. 709	53.591 -17.673	1.00 20.00
ATOM	1691	N	LYS	В	34	13.313	54.882 -22.152	1.00 11.73
ATOM	1692	CA	LYS	В	34	14.439	54.807 -23.066	1.00 11.73
ATOM	1693	С	LYS	В	34	15.414	53.710 -22.667	1.00 11.73
ATOM	1694	0	LYS	В	34	15.039	52.549 -22.586	1.00 11.73
ATOM	1695	СВ	LYS	В	34	15.026	56.211 -23.263	1.00 11.73
ATOM	1696	CG	LYS	В	34	15. 784	56.336 -24.585	1.00 11.73
ATOM	1697	CD	LYS	В	34	16.356	57.731 -24.803	1.00 11.73
ATOM	1698	CE	LYS	В	34	17. 181	57.796 -26.085	1.00 11.73
ATOM	1699	NZ	LYS	ВВ	34	17.616	59.180 -26.307	1.00 11.73
ATOM	1700	Н	LYS	S В	34	13.379	55.065 -21.167	1.00 20.00

ATOM	1701 1HZ	LYS B	34	18. 227	59. 223 -27. 148	1.00 20.00
MOTA	1702 2HZ	LYS B	34	16.779	59.777 -26.456	1.00 20.00
ATOM	1703 3HZ	LYS B	34	18. 135	59.523 -25.473	1.00 20.00
ATOM	1704 N	LYS B	35	16. 673	54.091 -22.389	1.00 6.70
MOTA	1705 CA	LYS B	35	17.605	53.057 -21.948	1.00 6.70
ATOM	1706 C	LYS B	35	17.466	52.778 -20.461	1.00 6.70
ATOM	1707 0	LYS B	3 5	18. 296	53.161 -19.650	1.00 6.70
ATOM	1708 CB	LYS B	35	19.032	53.471 -22.317	1.00 6.70
ATOM	1709 CG	LYS B	35	19. 220	53.710 -23.819	1.00 6.70
ATOM	1710 CD	LYS B	35	20.602	54.284 -24.139	1.00 6.70
ATOM	1711 CE	LYS B	35	20. 825	54.515 -25.635	1.00 6.70
ATOM	1712 NZ	LYS B	35	22. 139	55. 142 -25. 835	1.00 6.70
ATOM	1713 H	LYS B	35	16.959	55.046 -22.366	1.00 20.00
ATOM	1714 1HZ	LYS B	35	22.324	55. 256 -26. 853	1.00 20.00
ATOM	1715 2HZ	Z LYS B	35	22. 157	56.071 -25.369	1.00 20.00
ATOM	1716 3H2	Z LYS B	35	22. 875	54.537 -25.418	1.00 20.00
ATOM	1717 N	GLY B	36	16. 335	5 52.120 -20.147	1.00 3.55
ATOM	1718 C	A GLY E	36	16. 03	7 51.813 –18.746	1.00 3.55
ATOM	1719 C	GLY I	3 36	15. 70	2 53.015 -17.871	1.00 3.55
ATOM	1720 0	GLY I	B 36	15.89	3 53.006 -16.662	2 1.00 3.55
ATOM	1721 H	GLY	B 36	15.71	2 51.860 -20.89	1.00 20.00
ATOM	1722 N	GLY	В 37	15. 19	1 54.060 -18.54	2 1.00 4.03
ATOM	i 1723 (CA GLY	В 37	14.92	3 55.271 -17.77	4 1.00 4.03
ATON	1724 (C GLY	В 37	13.72	23 56.023 -18.28	3 1.00 4.03

MOTA	1725	0	GLY B	37	13. 267	55.800 -19.402	1.00 4.03
MOTA	1726	Н	GLY B	37	15.022	54.024 -19.524	1.00 20.00
ATOM	1727	N	LEU B	38	13. 227	56.901 -17.396	1.00 5.45
ATOM	1728	CA	LEU B	38	11.996	57.610 -17.747	1.00 5.45
ATOM	1729	С	LEU B	38	12. 278	58.998 -18.260	1.00 5.45
MOTA	1730	0	LEU B	38	12.997	59.757 -17.630	1.00 5.45
ATOM	1731	СВ	LEU B	38	11.023	57.759 -16.568	1.00 5.45
ATOM	1732	CG	LEU B	38	10.741	56.537 -15.691	1.00 5.45
MOTA	1733	CD1	LEU B	38	9.403	56.672 -14.972	1.00 5.45
ATOM	1734	CD2	LEU B	38	10.781	55.213 -16.431	1.00 5.45
ATOM	1735	Н	LEU B	38	13.712	57.058 -16.531	1.00 20.00
ATOM	1736	N	VAL B	39	11.664	59.299 -19.411	1.00 2.74
ATOM	1737	CA	VAL B	39	11.708	60.675 -19.903	1.00 2.74
ATOM	1738	С	VAL B	39	10.461	61.426 -19.476	1.00 2.74
MOTA	1739	0	VAL B	39	9.345	60.988 -19.735	1.00 2.74
ATOM	1740	СВ	VAL B	39	11.821	60.711 -21.435	1.00 2.74
MOTA	1741	CG	1 VAL E	39	12. 109	62.130 -21.937	1.00 2.74
ATOM	1742	: CG	2 VAL E	3 39	12.842	59.704 -21.966	1.00 2.74
ATOM	1743	3 H	VAL E	3 39	11.116	58.595 -19.864	1.00 20.00
ATOM	1744	l N	ILE I	3 40	10. 691	62.572 -18.818	1.00 15.04
ATOM	1745	5 CA	ILE I	3 40	9. 525	63.344 –18.386	1.00 15.04
MOTA	1746	5 C	ILE 1	В 40	8. 975	5 64.260 -19.476	1.00 15.04
ATOM	174′	7 0	ILE !	B 40	9. 686	65.007 -20.136	1.00 15.04
ATOM	174	8 C)	B ILE	B 40	9. 82	3 64.084 -17.062	2 1.00 15.04

ATOM	1749	CG1	ILE B	40	9. 938	63.084 -15.905	1.00 15.04
ATOM	1750	CG2	ILE B	40	8.721	65.079 -16.692	1.00 15.04
ATOM	1751	CD1	ILE B	40	11. 290	62.394 -15.729	1.00 15.04
ATOM	1752	Н	ILE B	40	11.634	62.859 -18.616	1.00 20.00
ATOM	1753	N	ASN B	41	7.644	64.142 -19.638	1.00 16.19
ATOM	1754	CA	ASN B	41	6.938	64.933 -20.650	1.00 16.19
ATOM	1755	С	ASN B	41	6.778	66.408 -20.315	1.00 16.19
ATOM	1756	0	ASN B	41	6.972	67.278 -21.154	1.00 16.19
ATOM	1757	СВ	ASN B	41	5.561	64.308 -20.911	1.00 16.19
MOTA	1758	CG	ASN B	41	4.884	64.784 -22.196	1.00 16.19
ATOM	1759	ODI	ASN B	41	4.669	64.029 -23.129	1.00 16.19
ATOM	1760	ND2	2 ASN B	41	4.456	66.052 -22.196	1.00 16.19
ATOM	1761	Н	ASN B	41	7. 170	63.468 -19.075	1.00 20.00
ATOM	1762	1HD	2 ASN B	41	4.608	66.715 -21.465	1.00 20.00
MOTA	1763	2HD	2 ASN B	41	3.974	66.360 -23.014	1.00 20.00
MOTA	1764	N	GLU B	3 42	6. 338	66.662 -19.074	1.00 4.33
ATOM	1765	CA	GLU F	3 42	5.914	68.031 -18.787	1.00 4.33
ATOM	1766	5 C	GLU E	3 42	6.497	68.543 -17.496	1.00 4.33
MOTA	1767	7 0	GLU I	3 42	6.958	67.793 -16.648	1.00 4.33
MOTA	1768	3 CE	GLU I	B 42	4.386	68. 120 -18. 726	1.00 4.33
ATOM	1769	9 C(G GLU	B 42	3. 711	68.762 -19.948	1.00 4.33
ATOM	1770	O CI	O GLU	B 42	2.214	68.473 -19.919	1.00 4.33
ATOM	177	1 0	E1 GLU	B 42	1.572	2 68.75618.903	1.00 4.33
ATOM	177	2 0	E2 GLU	B 42	1.69	9 67.914 -20.897	1.00 4.33

WO 98/10070

PCT/JP97/02983

ATOM	1773	Н	GLU B	42	6. 316	65.982 -18.339	1.00 20.00
ATOM	1774	N	THR B	43	6.421	69.869 -17.368	1.00 2.66
ATOM	1775	CA	THR B	43	6.788	70.427 -16.075	1.00 2.66
ATOM	1776	С	THR B	43	5. 698	70.214 -15.037	1.00 2.66
ATOM	1777	0	THR B	43	4.499	70.270 -15.318	1.00 2.66
ATOM	1778	СВ	THR B	43	7. 133	71.908 -16.261	1.00 2.66
ATOM	1779	0G1	THR B	43	8. 013	72.045 -17.382	1.00 2.66
ATOM	1780	CG2	THR B	43	7. 750	72.562 -15.020	1.00 2.66
ATOM	1781	Н	THR B	43	6. 113	70.458 -18.114	1.00 20.00
ATOM	1782	HG1	THR B	43	8. 287	72.953 -17.402	1.00 20.00
ATOM	1783	N	GLY B	44	6. 166	69.962 -13.813	1.00 2.64
ATOM	1784	CA	GLY B	44	5. 217	69.955 -12.712	1.00 2.64
ATOM	1785	С	GLY B	44	5.668	69.028 -11.619	1.00 2.64
ATOM	1786	0	GLY B	44	6.769	68.494 -11.641	1.00 2.64
ATOM	1787	Н	GLY B	44	7.148	69.796 -13.661	1.00 20.00
ATOM	1788	N	LEU B	45	4.751	68.860 -10.662	1.00 5.33
MOTA	1789	CA	LEU B	45	5. 085	67.931 -9.596	1.00 5.33
ATOM	1790	С	LEU B	45	4.807	66.510 -9.993	1.00 5.33
ATOM	1791	0	LEU B	45	3. 782	66.188 -10.577	1.00 5.33
ATOM	1792	СВ	LEU B	45	4.323	68.311 -8.339	1.00 5.33
ATOM	1793	CG	LEU B	45	4.818	69.669 -7.859	1.00 5.33
ATOM	1794	CD.	1 LEU B	45	3.733	70.465 -7.151	1.00 5.33
ATOM	1795	CD	2 LEU B	45	6. 104	69.539 -7.048	1.00 5.33
ATOM	1796	Н	LEU B	45	3.838	69. 256 -10. 719	1.00 20.00

MOTA	1797	N	TYR B	46	5. 787	65.684 -	9.652	1.00 3.53	
ATOM	1798	CA	TYR B	46	5. 579	64. 264 -	9.838	1.00 3.53	}
ATOM	1799	С	TYR B	46	5.808	63.591 -	-8.512	1.00 3.53	3
ATOM	1800	0	TYR B	46	6.676	63.979 -	-7.736	1.00 3.53	3
ATOM	1801	СВ	TYR B	46	6.525	63.703 -1	10. 907	1.00 3.53	3
ATOM	1802	CG	TYR B	46	6. 153	64.174 -	12.299	1.00 3.53	3
ATOM	1803	CD1	TYR B	46	6.502	65.475 -	12.725	1.00 3.53	3
ATOM	1804	CD2	YYR B	46	5.469	63.281 -	13. 148	1.00 3.5	3
ATOM	1805	CE1	TYR B	46	6. 153	65.894 -	14.020	1.00 3.5	3
ATOM	1806	CE	2 TYR B	46	5. 126	63.695 -	14.445	1.00 3.5	3
ATOM	1807	CZ	TYR B	46	5.468	64.997 -	14.866	1.00 3.5	3
ATOM	1808	ОН	TYR B	46	5.116	65.393 -	16.144	1.00 3.5	3
ATOM	1809	Н	TYR B	46	6.616	66.022	-9. 201	1.00 20.0	0
ATOM	1810	НН	TYR B	46	4.694	64.668 -	-16.581	1.00 20.0	00
MOTA	1811	N	PHE B	47	4.987	62.563	-8. 294	1.00 3.3	38
ATOM	1812	CA	PHE B	3 47	5. 343	61.642	-7.232	1.00 3.3	38
ATOM	1813	3 C	PHE E	3 47	6. 117	60.500	-7.842	1.00 3.3	38
ATOM	1814	1 0	PHE I	3 47	5. 688	59.851	-8.791	1.00 3.3	38
MOTA	1819	5 CI	B PHE I	B 47	4.093	61.173	-6.491	1.00 3.	38
ATOM	181	6 C	G PHE	B 47	4.43	6 60.359	-5. 261	1.00 3.	38
ATOM	181	7 C	D1 PHE	B 47	4.69	4 61.025	-4.046	1.00 3.	38
ATOM	181	8 C	D2 PHE	B 47	4.47	3 58.950	-5. 337	1.00 3.	3 8
MOTA	181	9 C	E1 PHE	B 47	4.96	5 60.279	-2.883	3 1.00 3.	38
ATOM	182	0 C	E2 PHE	B 47	4.74	2 58.199	-4.17	7 1.00 3.	38

ATOM	1821	CZ	PHE B	47	4.976	58.871	-2.959	1.00	3.38
ATOM	1822	Н	PHE B	47	4.276	62.339	-8.962	1.00	20.00
ATOM	1823	N	VAL B	48	7. 306	60.352	-7.259	1.00	2.79
ATOM	1824	CA	VAL B	48	8. 243	59. 330	-7.693	1.00	2.79
ATOM	1825	С	VAL B	48	8. 276	58. 245	-6.641	1.00	2.79
ATOM	1826	0	VAL B	48	8. 586	58.519	-5.489	1.00	2.79
ATOM	1827	СВ	VAL B	48	9.624	59.984	-7.845	1.00	2.79
ATOM	1828	CG1	VAL B	48	10. 687	59.002	-8.336	1.00	2.79
ATOM	1829	CG2	VAL B	48	9.542	61.234	-8. 726	1.00	2.79
ATOM	1830	Н	VAL B	48	7.543	60.947	-6.488	1.00	20.00
MOTA	1831	N	TYR B	49	7.943	57.021	-7.067	1.00	3.73
MOTA	1832	CA	TYR B	49	8.012	55.927	-6.102	1.00	3.73
ATOM	1833	С	TYR B	49	8.701	54.721	-6.690	1.00	3. 73
ATOM	1834	0	TYR B	49	8. 713	54.528	-7.899	1.00	3.73
ATOM	1835	СВ	TYR B	49	6.620	55.541	-5.576	1.00	3.73
ATOM	1836	CG	TYR B	49	5.711	55.073	-6.692	1.00	3.73
ATOM	1837	CD1	TYR B	49	5. 725	53.714	-7.069	1.00	3.73
ATOM	1838	CD2	YR E	49	4.882	56.014	-7.332	1.00	3.73
ATOM	1839	CEI	TYR E	49	4.911	53. 292	-8. 130	1.00	3. 73
ATOM	1840	CE2	TYR F	3 49	4.067	55.591	-8.392	1.00	3. 73
ATOM	1841	CZ	TYR E	3 49	4.093	54.237	-8.777	1.00	3.73
MOTA	1842	OH	TYR I	3 49	3. 291	53.816	-9.819	1.00	3. 73
ATOM	1843	Н	TYR I	3 49	7. 677	56.848	-8.020	1.00	20.00
ATOM	1844	НН	TYR I	3 49	3. 118	54.550	-10.406	1.00	20.00

ATOM	1845	N	SER B	50	9. 248	53.906	-5. 783	1.00 5.02
ATOM	1846	CA	SER B	50	9.844	52.663	-6. 257	1.00 5.02
ATOM	1847	С	SER B	50	9.951	51.664	-5. 133	1.00 5.02
ATOM	1848	0	SER B	50	10.089	52.034	-3.973	1.00 5.02
MOTA	1849	СВ	SER B	50	11.212	52.937	-6.889	1.00 5.02
ATOM	1850	OG	SER B	50	11.819	51.710	-7.302	1.00 5.02
ATOM	1851	Н	SER B	50	9. 239	54.138	-4.805	1.00 20.00
ATOM	1852	HG	SER B	50	12.405	51.902	-8.020	1.00 20.00
ATOM	1853	N	LYS B	51	9.876	50. 386	-5.521	1.00 6.04
ATOM	1854	CA	LYS B	51	10. 122	49.364	-4.517	1.00 6.04
ATOM	1855	С	LYS B	51	10.911	48.207	-5.077	1.00 6.04
ATOM	1856	0	LYS B	51	10.713	47.791	-6.211	1.00 6.04
ATOM	1857	СВ	LYS B	51	8.821	48.885	-3.871	1.00 6.04
ATOM	1858	CG	LYS B	51	9.132	48. 324	-2.491	1.00 6.04
ATOM	1859	CD	LYS B	51	7. 946	48.007	-1.603	1.00 6.04
ATOM	1860	CE	LYS B	51	8.484	47.686	-0.212	1.00 6.04
ATOM	1861	NZ	LYS B	51	7.398	47.117	0.581	1.00 6.04
ATOM	1862	Н	LYS B	51	9.811	50.160	-6.497	1.00 20.00
ATOM	1863	3 1HZ	LYS E	51	7. 682	46.966	1.564	1.00 20.00
ATOM	1864	4 2HZ	LYS E	3 51	6.604	47.786	0.545	1.00 20.00
ATOM	1865	5 3H2	Z LYS I	3 51	7.086	6 46.220	0.165	1.00 20.00
ATOM	1860	6 N	VAL 1	B 52	11.823	3 47.721	-4.221	1.00 4.38
ATOM	186	7 C	A VAL	B 52	12.590	0 46.529	-4.566	5 1.00 4.38
ATOM	186	8 C	VAL	B 52	12.64	7 45.555	-3.423	3 1.00 4.38

ATOM	1869 0	VAL B	52	12.506	45.898	-2.250	1.00 4.38
ATOM	1870 CB	NAL B	52	14.021	46.856	-4.973	1.00 4.38
ATOM	1871 CO	31 VAL B	52	14.076	47.461	-6.371	1.00 4.38
ATOM	1872 CC	G2 VAL B	52	14.701	47.698	-3.894	1.00 4.38
ATOM	1873 H	VAL B	52	11.935	48.148	-3.320	1.00 20.00
ATOM	1874 N	TYR B	53	12.865	44.305	-3.848	1.00 6.58
MOTA	1875 C	A TYR B	53	12.999	43. 242	-2.868	1.00 6.58
MOTA	1876 C	TYR B	53	14. 224	42.432	-3.113	1.00 6.58
ATOM	1877 0	TYR B	53	14.646	42.174	-4.236	1.00 6.58
ATOM	1878 C	B TYR B	53	11.808	42.293	-2.864	1.00 6.58
MOTA	1879 C	G TYR B	53	10.620	42.980	-2.253	1.00 6.58
ATOM	1880 C	D1 TYR B	53	10.088	42.461	-1.062	1.00 6.58
ATOM	1881 (D2 TYR E	53	10. 085	44.118	-2.886	1.00 6.58
ATOM	1882 (CE1 TYR E	3 53	8.999	43.123	-0.487	1.00 6.58
MOTA	1883 (CE2 TYR I	3 53	9.003	44.778	-2.312	1.00 6.58
ATOM	1884	CZ TYR I	3 53	8.477	44.264	-1.122	1.00 6.58
ATOM	1885	OH TYR	B 53	7. 387	44.900	-0.577	1.00 6.58
ATOM	1886	H TYR	B 53	12.906	44.099	-4.827	1.00 20.00
ATOM	1887	HH TYR	B 53	6.683	44.721	-1.206	1.00 20.00
ATOM	1888	n Phe	B 54	14.760	42.045	-1.963	1.00 6.05
ATOM	1889	CA PHE	B 54	16.004	4 41.312	-1.998	1.00 6.05
ATOM	1890	C PHE	B 54	15. 82	3 40.024	-1.260	1.00 6.05
ATOM	1891	O PHE	B 54	15. 08	3 39.964	-0.285	1.00 6.05
ATOM	1892	CB PHE	B 54	17. 10	5 42.100) -1.304	1.00 6.05

ATOM	1893 CG	PHE B	54	17. 166	43.518	-1.812	1.00 6.05
ATOM	1894 CD	1 PHE B	54	16.982	44.571	-0.893	1.00 6.05
ATOM	1895 CD	2 PHE B	54	17.422	43.768	-3.176	1.00 6.05
MOTA	1896 CE	1 PHE B	54	17. 131	45.899	-1.331	1.00 6.05
ATOM	1897 CE	2 PHE B	54	17.566	45.093	-3.614	1.00 6.05
ATOM	1898 CZ	PHE B	54	17.459	46. 143	-2.680	1.00 6.05
ATOM	1899 H	PHE B	54	14.344	42.270	-1.079	1.00 20.00
ATOM	1900 N	ARG B	55	16.526	39.015	-1.765	1.00 19.70
MOTA	1901 CA	ARG B	55	16.603	37.727	-1.098	1.00 19.70
ATOM	1902 C	ARG B	55	18. 021	37. 259	-1.120	1.00 19.70
ATOM	1903 0	ARG B	55	18.864	37.720	-1.878	1.00 19.70
ATOM	1904 C	B ARG B	5 5	15. 869	36.631	-1.875	1.00 19.70
ATOM	1905 C	G ARG B	55	14.605	36.029	-1.265	1.00 19.70
MOTA	1906 C	D ARG E	55	13.722	35. 199	-2.191	1.00 19.70
ATOM	1907 N	E ARG E	3 55	14.354	34.010	-2.725	1.00 19.70
ATOM	1908 C	Z ARG F	3 55	13. 407	33.083	-3.011	1.00 19.70
ATOM	1909 N	H1 ARG F	3 55	13.834	31.913	-3.459	1.00 19.70
ATOM	1910 N	IH2 ARG I	3 55	12.082	33.279	-2.883	1.00 19.70
ATOM	1911 H	ARG	B 55	16. 851	39.058	-2.711	1.00 20.00
ATOM	1912 F	IE ARG	B 55	15. 340	33.798	-2.649	1.00 20.00
ATOM	1913 1	H1 ARG	B 55	14.21	1 31.927	-4.367	1.00 20.00
MOTA	1914 2	HH1 ARG	B 55	13.82	7 31.014	-2.997	1.00 20.00
ATOM	1915 1	HH2 ARG	B 55	11.48	6 32.457	7 -2.945	1.00 20.00
ATOM	1916 2	HH2 ARG	B 55	11.70	7 34.22	7 -2.766	5 1.00 20.00

. WO 98/10070	PCT/JP97/02983
. WO 98/100/0	

157 3.53 -0.3121.00 36.218 18. 187 GLY B 56 MOTA 1917 N -0.579 1.00 3.53 35.361 19.319 56 GLY B **ATOM** 1918 CA 3.53 0.307 1.00 34.163 19.209 56 1919 C GLY B **ATOM** 3.53 1.00 34.109 1.234 18.407 56 1920 0 GLY B MOTA 1.00 20.00 0.372 35.955 17.503 56 **ATOM** 1921 H GLY B 1.00 16.13 33.208 -0.036 20.060 57 N GLN B 1922 ATOM 1.00 16.13 20.209 32.098 0.872 CA GLN B 57 1923 MOTA 1.00 16.13 32.176 1.461 21.595 C GLN B 57 1924 MOTA 1.00 16.13 22.529 32.523 0.747 GLN B 57 MOTA 1925 0 1.00 16.13 0.07419.964 30.836 57 CB GLN B **ATOM** 1926 1.00 16.13 29.677 1.023 19.750 57 CG GLN B **ATOM** 1927 1.00 16.13 0.21119.263 28.515 GLN B 57 CD **ATOM** 1928 1.00 16.13 28.041 -0.73719.868 OE1 GLN B 57 1929 **ATOM** 1.00 16.13 0.62318.090 28.083 57 NE2 GLN B **ATOM** 1930 1.00 20.00 -0.80633.287 20.692 GLN B 57 Н **ATOM** 1931 1.00 20.00 1.360 28.462 17.528 1932 1HE2 GLN B 57 ATOM 1.00 20.00 0.07827.342 17.709 1933 2HE2 GLN B 57 **ATOM** 1.00 30.56 2.779 31.894 21.672 58 SER B 1934 N MOTA 1.00 30.56 32.099 3.488 22.937 SER B 58 CA **MOTA** 1935 1.00 30.56 3.488 23.348 33.560 58 C SER B **ATOM** 1936 1.00 30.56 2.936 34.423 22.668 SER B 58 0 **ATOM** 1937 1.00 30.56 2.952 31.188 24.052 CB SER B 58 ATOM 1938 1.00 30.56 2.851 29.846 23.563 SER B 58 MOTA 1939 OG 1.00 20.00 20.856 31.697 3.319 SER B 58 ATOM 1940 H

MOTA	1941	HG	SER B	58	24. 153	29.391	2.263	1.00 20.00
ATOM	1942	N	CYS B	59	24.473	33.821	4.168	1.00 24.24
ATOM	1943	CA	CYS B	59	24.721	35. 240	4.358	1.00 24.24
ATOM	1944	С	CYS B	59	26. 179	35.604	4.410	1.00 24.24
ATOM	1945	0	CYS B	59	26.993	34.974	5.074	1.00 24.24
ATOM	1946	СВ	CYS B	59	24.017	35.730	5.610	1.00 24.24
ATOM	1947	SG	CYS B	59	22.424	34.925	5.943	1.00 24.24
MOTA	1948	H	CYS B	59	25. 047	33.142	4.623	1.00 20.00
ATOM	1949	N	ASN B	60	26. 445	36.674	3.655	1.00 8.07
ATOM	1950	CA	ASN B	60	27.803	37.181	3.505	1.00 8.07
ATOM	1951	С	ASN B	60	27.712	38.679	3.715	1.00 8.07
ATOM	1952	0	ASN B	60	26.626	39. 204	3.926	1.00 8.07
ATOM	1953	CB	ASN B	60	28.348	36.873	2.101	1.00 8.07
ATOM	1954	CG	ASN B	60	28.566	35.385	1.862	1.00 8.07
ATOM	1955	OD	1 ASN B	60	27.762	34.525	2.191	1.00 8.07
ATOM	1956	S NI	2 ASN E	8 60	29.712	35.110	1.230	1.00 8.07
ATOM	1957	7 H	ASN I	3 60	25.694	37.178	3.230	1.00 20.00
ATOM	195	8 1HI	D2 ASN I	3 60	30. 349	35.821	0.941	1.00 20.00
ATOM	195	9 2H	D2 ASN 1	B 6 0	29.90	4 34.149	1.039	1.00 20.00
ATOM	196	0 N	ASN 1	B 61	28.86	4 39.359	3.639	1.00 15.42
ATOM	196	1 C	A ASN	B 61	28.75	6 40.807	3.83	7 1.00 15.42
ATOM	196	52 C	ASN	B 61	28.54	0 41.551	2.53	5 1.00 15.42
ATOM	196	3 C	ASN	B 61	29.45	67 41.673	3 1.73	4 1.00 15.42
ATOM	196	64 (B ASN	B 61	29.99	90 41.379	4.54	1 1.00 15.42

ATOM	1965	CG	ASN	В	61	30. 169	40.772	5.918	1.00 15	.42
ATOM	1966	OD1	ASN	В	61	29.305	40.820	6.782	1.00 15	. 42
ATOM	1967	ND2	ASN	В	61	31.360	40. 190	6.090	1.00 15	. 42
MOTA	1968	Н	ASN	В	61	29.712	38.924	3.343	1.00 20	0.00
ATOM	1969	1HD2	ASN	В	61	32.042	40.177	5.361	1.00 20	0.00
ATOM	1970	2HD2	ASN	В	61	31.552	39.770	6.975	1.00 20). 00
ATOM	1971	N	LEU	В	62	27. 296	42.037	2.365	1.00 19	9. 58
ATOM	1972	CA	LEU	В	62	26.949	42.800	1.158	1.00 19	9.58
ATOM	1973	.C	LEU	В	62	25, 910	43.872	1.451	1.00 19	9. 58
MOTA	1974	0	LEU	В	62	24.813	43.581	1.907	1.00 19	9.58
ATOM	1975	СВ	LEU	В	62	26.404	41.888	0.050	1.00 19	9.58
ATOM	1976	CG	LEU	В	62	27.456	41.075	-0.713	1.00 19	9.58
ATOM	1977	CD1	LEU	В	62	26.808	40.058	-1.652	1.00 1	9.58
ATOM	1978	CD2	LEU	В	62	28.453	41.971	-1.451	1.00 1	9.58
ATOM	1979	Н	LEU	В	62	26.591	41.845	3.048	1.00 2	0.00
ATOM	1980	N	PRO	В	63	26.292	45.145	1.194	1.00	9.44
MOTA	1981	CA	PRO	В	63	25. 327	46.240	1.359	1.00	9.44
ATOM	1982	С	PRO	В	63	24.362	46.327	0.187	1.00	9.44
ATOM	1983	0	PRO) B	63	24.732	46.155	-0.963	1.00	9.44
ATOM	1984	СВ	PRO	B	63	26. 254	47.453	1.455	1.00	9.44
ATOM	1985	CG	PRO	B	63	27.442	47.106	0.553	1.00	9.44
ATOM	1986	CD	PRO	B	63	27.612	45.604	0.765	1.00	9.44
ATOM	1987	7 N	LE	JΒ	64	23. 098	46.610	0.523	1.00	5.10
ATOM	1988	3 CA	LE	U B	64	22. 149	46.685	-0.586	1.00	5.10

ATOM	1989	С	LEU B	64	21.731	48.123	-0.793	1.00 5.10
ATOM	1990	0	LEU B	64	21.449	48.822	0.175	1.00 5.10
ATOM	1991	СВ	LEU B	64	20.913	45.821	-0.305	1.00 5.10
ATOM	1992	CG	LEU B	64	21. 125	44.624	0.639	1.00 5.10
MOTA	1993	CD1	LEU B	64	19.793	44.030	1.081	1.00 5.10
ATOM	1994	CD2	LEU B	64	22.076	43.551	0.107	1.00 5.10
ATOM	1995	Н	LEU B	64	22.795	46.760	1.466	1.00 20.00
ATOM	1996	N	SER B	65	21.696	48.556	-2.057	1.00 3.51
MOTA	1997	CA	SER B	65	21. 241	49.929	-2.224	1.00 3.51
ATOM	1998	С	SER B	65	20. 139	50.073	-3.245	1.00 3.51
ATOM	1999	0	SER B	65	20.023	49.294	-4.182	1.00 3.51
ATOM	2000	СВ	SER B	65	22.418	50.866	-2.518	1.00 3.51
MOTA	2001	0G	SER B	6 5	22.900	50.675	-3.851	1.00 3.51
ATOM	2002	Н	SER B	65	22. 020	48.015	-2.839	1.00 20.00
ATOM	2003	HG	SER B	65	23. 809	50.944	-3.862	1.00 20.00
ATOM	2004	N	HIS E	3 66	19. 330	51.113	-3.009	1.00 11.85
MOTA	2005	CA	HIS F	3 66	18. 265	51.404	-3.954	1.00 11.85
ATOM	2006	s C	HIS I	3 66	18. 102	52.890	-4.158	1.00 11.85
ATOM	2007	7 0	HIS I	B 66	17.670	53.607	-3.263	1.00 11.85
ATOM	2008	B CI	B HIS	B 66	16.957	7 50.808	-3.463	1.00 11.85
ATOM	2009	9 C(G HIS	B 66	15.926	5 51.036	-4.531	1.00 11.85
ATOM	201	0 N	D1 HIS	B 66	14.97	4 51.976	-4.456	5 1.00 11.85
ATOM	201	1 C	D2 HIS	B 66	15. 79	5 50.347	7 -5.732	2 1.00 11.85
ATOM	201	2 C	E1 HIS	B 66	14.23	2 51.876	5 -5.59	2 1.00 11.85

MOTA	2013	NE2	HIS B	66	14.735	50.874	-6.376	1.00 11.85
MOTA	2014	Н	HIS B	66	19.438	51.641	-2.165	1.00 20.00
ATOM	2015	HD1	HIS B	66	14.870	52.654	-3.764	1.00 20.00
ATOM	2016	N	LYS B	67	18.490	53.327	-5.359	1.00 4.98
ATOM	2017	CA	LYS B	67	18.563	54.774	-5.512	1.00 4.98
MOTA	2018	С	LYS B	67	17. 905	55. 256	-6.792	1.00 4.98
MOTA	2019	0	LYS B	67	18.078	54.678	-7.861	1.00 4.98
ATOM	2020	СВ	LYS B	67	20.027	55.217	-5.434	1.00 4.98
ATOM	2021	CG	LYS B	67	20.811	54.729	-4.205	1.00 4.98
ATOM	2022	CD	LYS B	67	22.318	54.883	-4.410	1.00 4.98
MOTA	2023	CE	LYS B	67	23. 203	54.587	-3.199	1.00 4.98
ATOM	2024	NZ	LYS B	67	24.111	55. 731	-3.002	1.00 4.98
ATOM	2025	Н	LYS B	67	18.772	52. 703	-6.096	1.00 20.00
ATOM	2026	1HZ	LYS B	67	24.581	55. 693	-2.081	1.00 20.00
ATOM	2027	2HZ	LYS B	67	24.793	55. 826	-3.779	1.00 20.00
MOTA	2028	3HZ	LYS B	67	23. 529	56. 599	-2.969	1.00 20.00
ATOM	2029	N	VAL B	68	17. 134	56. 341	-6.618	1.00 3.61
ATOM	2030) CA	VAL B	68	16.534	57.023	-7.761	1.00 3.61
ATOM	2031	. C	VAL E	68	17. 318	58.284	-8.064	1.00 3.61
ATOM	2032	2 0	VAL E	68	17. 558	59.108	-7.186	1.00 3.61
ATOM	2033	3 CE	3 VAL E	8 68	15.063	57.366	-7.480	1.00 3.61
MOTA	2034	1 C(G1 VAL E	3 68	14.377	7 58.002	-8.696	1.00 3.61
MOTA	203	5 C	G2 VAL I	8 68	14.303	3 56.142	-6.962	1.00 3.61
ATOM	203	6 H	VAL 1	B 68	17. 09	1 56.765	5 -5.713	1.00 20.00

MOTA	2037	N	TYR B	69	17.710	58.374	-9.339	1.00	4.98
ATOM	2038	CA	TYR B	69	18. 533	59.487	-9.792	1.00	4.98
ATOM	2039	С	TYR B	69	17. 818	60.297 -	-10. 848	1.00	4.98
ATOM	2040	0	TYR B	69	16.970	59.784 -	-11.570	1.00	4.98
ATOM	2041	СВ	TYR B	69	19. 840	58.992 -	-10.413	1.00	4.98
ATOM	2042	CG	TYR B	69	20.583	58.031	-9.518	1.00	4.98
MOTA	2043	CD1	TYR B	69	21.419	58.533	-8.501	1.00	4.98
ATOM	2044	CD2	TYR B	69	20. 440	56.650	-9.757	1.00	4.98
ATOM	2045	CE1	TYR B	69	22.183	57.629	-7.745	1.00	4.98
ATOM	2046	CE2	TYR B	69	21. 200	55. 747	-9.000	1.00	4.98
ATOM	2047	CZ	TYR B	69	22. 082	56.252	-8.024	1.00	4.98
ATOM	2048	ОН	TYR B	69	22.874	55.363	-7.328	1.00	4.98
ATOM	2049	Н	TYR B	69	17.400	57.688	-9.996	1.00	20.00
ATOM	2050	ΗН	TYR B	69	22.509	54.491	-7.405	1.00	20.00
ATOM	2051	N	MET B	70	18. 227	61.571	-10.926	1.00	14.09
ATOM	2052	CA	MET B	70	17.730	62.380	-12.034	1.00	14.09
ATOM	2053	С	MET B	70	18.838	62.969	-12.878	1.00	14.09
ATOM	2054	0	MET B	70	19.700	63.696	-12.404	1.00	14.09
ATOM	2055	СВ	мет в	70	16.781	63.483	-11.550	1.00	14.09
ATOM	2056	CG	MET B	70	17.382	64.452	-10.537	1.00	14.09
ATOM	2057	' SD	MET E	3 70	16. 248	65.699	-9.921	1.00	14.09
ATOM	2058	3 CE	MET E	3 70	15. 800	66.467	-11.481	1.00	14.09
ATOM	2059	ЭН	MET I	3 70	18. 923	61.907	-10.286	1.00	20.00
ATOM	2060	N C	ARG I	3 71	18.763	8 62.643	-14.169	1.00	7.41

ATOM	2061	CA	ARG B	71	19.595	63.405 -15.088	1.00	7.41
ATOM	2062	С	ARG B	71	18.783	64.520 -15.707	1.00	7.41
ATOM	2063	0	ARG B	71	18.037	64.319 -16.661	1.00	7.41
ATOM	2064	СВ	ARG B	71	20. 201	62.514 -16.168	1.00	7.41
ATOM	2065	CG	ARG B	71	21. 244	63. 289 -16. 974	1.00	7.41
ATOM	2066	CD	ARG B	71	21.943	62.439 -18.028	1.00	7.41
ATOM	2067	NE	ARG B	71	22.965	63. 233 -18. 704	1.00	7.41
ATOM	2068	CZ	ARG B	71	23.825	62.664 -19.570	1.00	7.41
ATOM	2069	NH1	ARG B	71	23.771	61.354 -19.809	1.00	7.41
ATOM	2070	NH2	ARG B	71	24.728	63.424 -20.183	1.00	7.41
ATOM	2071	Н	ARG B	71	18.020	62.049 -14.480	1.00	20.00
ATOM	2072	HE	ARG B	71	23.010	64.206 -18.467	1.00	20.00
ATOM	2073	1HH1	ARG B	71	24.383	60.907 -20.458	1.00	20.00
MOTA	2074	2HH1	ARG B	71	23. 104	60.794 -19.314	1.00	20.00
ATOM	2075	1HH2	2 ARG B	71	25. 376	63.044 -20.843	1.00	20.00
ATOM	2076	2HH2	2 ARG B	71	24.772	64.402 -19.980	1.00	20.00
ATOM	2077	N	ASN E	3 72	18.944	65.697 -15.084	1.00	8.42
ATOM	2078	CA	ASN E	3 72	18. 118	66.811 -15.540	1.00	8.42
ATOM	2079	С	ASN I	3 72	18.669	67.504 -16.777	1.00	8.42
ATOM	2080	0	ASN I	3 72	19.847	67.410 -17.089	1.00	8.42
MOTA	2081	СВ	ASN I	3 72	17.843	67.773 –14.375	1.00	8.42
MOTA	2082	c CG	ASN 1	8 72	16. 681	68.700 -14.696	1.00	8.42
ATOM	2083	3 OD	1 ASN	B 72	16.871	69.829 –15.127	1.00	8.42
ATOM	2084	ND	2 ASN	B 72	15.466	68.182 -14.493	1.00	8.42

MOTA	2085 H ASN B 72	19.670 65.789 -14.399 1.00 20.00
ATOM	2086 1HD2 ASN B 72	15. 295 67. 230 -14. 208 1. 00 20. 00
ATOM	2087 2HD2 ASN B 72	14.644 68.719 -14.666 1.00 20.00
ATOM	2088 N SER B 73	17.772 68.216 -17.479 1.00 5.16
ATOM	2089 CA SER B 73	18. 254 69. 002 -18. 614 1. 00 5. 16
ATOM	2090 C SER B 73	19.172 70.146 -18.207 1.00 5.16
ATOM	2091 O SER B 73	20. 171 70. 451 -18. 846 1. 00 5. 16
ATOM	2092 CB SER B 73	17.047 69.529 -19.386 1.00 5.16
ATOM	2093 OG SER B 73	16.136 70.134 -18.460 1.00 5.16
ATOM	2094 H SER B 73	16.814 68.316 -17.202 1.00 20.00
MOTA	2095 HG SER B 73	15.436 70.509 -18.981 1.00 20.00
ATOM	2096 N LYS B 74	18.775 70.760 -17.078 1.00 5.76
ATOM	2097 CA LYS B 74	19.557 71.877 -16.547 1.00 5.76
ATOM	2098 C LYS B 74	20.972 71.502 -16.131 1.00 5.76
ATOM	2099 O LYS B 74	21.926 72.239 -16.340 1.00 5.76
ATOM	2100 CB LYS B 74	18.819 72.519 -15.370 1.00 5.76
MOTA	2101 CG LYS B 74	17.413 73.020 -15.716 1.00 5.76
MOTA	2102 CD LYS B 74	16.639 73.446 -14.465 1.00 5.76
ATOM	2103 CE LYS B 74	15.212 73.910 -14.763 1.00 5.76
MOTA	I 2104 NZ LYS B 74	14.530 74.225 -13.498 1.00 5.76
ATOM	1 2105 H LYS B 74	17.915 70.461 -16.653 1.00 20.00
ATON	7.20 D E4	13.585 74.611 -13.697 1.00 20.00
ATO!		14.437 73.360 -12.928 1.00 20.00
ATO		15.085 74.927 -12.968 1.00 20.00

ATOM	2109	N	TYR B	75	21.052	70.308 -15.517	1.00 6.72
ATOM	2110	CA	TYR B	75	22.355	69.866 -15.029	1.00 6.72
ATOM	2111	С	TYR B	75	22.884	68.605 -15.692	1.00 6.72
ATOM	2112	0	TYR B	75	22. 288	67.541 -15.621	1.00 6.72
ATOM	2113	СВ	TYR B	7 5	22.304	69.691 -13.501	1.00 6.72
ATOM	2114	CG	TYR B	75	23. 684	69.575 -12.877	1.00 6.72
ATOM	2115	CD1	TYR B	7 5	24.731	70.423 -13.298	1.00 6.72
ATOM	2116	CD2	TYR B	7 5	23.883	68.612 -11.868	1.00 6.72
ATOM	2117	CE1	TYR B	7 5	26.013	70. 269 -12. 746	1.00 6.72
MOTA	2118	CE2	TYR B	75	25. 155	68.485 -11.286	1.00 6.72
ATOM	2119	CZ	TYR B	7 5	26. 211	69. 299 -11. 745	1.00 6.72
ATOM	2120	ОН	TYR B	7 5	27.472	69.145 -11.200	1.00 6.72
ATOM	2121	Н	TYR B	7 5	20. 243	69.735 -15.404	1.00 20.00
MOTA	2122	НН	TYR B	7 5	27.446	68.497 -10.498	1.00 20.00
MOTA	2123	N	PRO B	76	24.086	68.747 -16.300	1.00 6.84
ATOM	2124	CA	PRO B	76	24.816	67.585 -16.827	1.00 6.84
ATOM	2125	С	PRO B	76	25. 006	66.326 -15.966	1.00 6.84
ATOM	2126	0	PRO B	76	25.39 5	65. 299 -16. 509	1.00 6.84
ATOM	2127	CB	PRO B	76	26. 141	68. 197 -17. 316	1.00 6.84
ATOM	2128	3 CG	PRO B	76	26. 233	69.598 –16.710	1.00 6.84
MOTA	2129) CI	PRO E	76	24.776	70.006 -16.566	1.00 6.84
MOTA	2130	N C	GLN E	3 77	24.760	66.415 -14.641	1.00 4.75
ATOM	213	ı CA	A GLN F	3 77	24.972	2 65.200 -13.848	1.00 4.75
ATOM	2132	2 C	GLN I	3 77	23.69	64.568 -13.339	1.00 4.75

						65 162 -13 333 1 00 4 75
ATOM	2133 0) (GLN B	77	22.623	00.102 10.000 1.11
ATOM	2134	CB (GLN B	77	25.861	65.447 -12.629 1.00 4.75
ATOM	2135	CG	GLN B	77	27. 283	65.926 -12.910 1.00 4.75
ATOM	2136	CD	GLN B	77	27.941	66.295 -11.592 1.00 4.75
ATOM	2137	OE1	GLN B	77	27.336	66.341 -10.529 1.00 4.75
ATOM	2138	NE2	GLN B	77	29. 232	66.613 -11.703 1.00 4.75
ATOM	2139	Н	GLN B	77	24. 261	67.181 -14.242 1.00 20.00
ATOM	2140 1	HE2	GLN B	77	29. 703	66.647 -12.582 1.00 20.00
MOTA	2141 2	HE2	GLN B	77	29.708	66.843 -10.855 1.00 20.00
ATOM	2142	N	ASP B	78	23.908	63.336 -12.860 1.00 4.94
ATOM	2143	CA	ASP B	78	22. 824	62.590 -12.233 1.00 4.94
ATOM	2144	С	ASP B	78	22.750	62.909 -10.749 1.00 4.94
ATOM	2145	0	ASP B	78	23.609	62.544 -9.955 1.00 4.94
ATOM	2146	СВ	ASP B	78	23.007	61.077 -12.459 1.00 4.94
ATOM	2147	CG	ASP B	78	23. 049	60.650 -13.931 1.00 4.94
MOTA	2148	OD1	ASP B	78	23.096	6 61.491 -14.830 1.00 4.94
MOTA	2149	OD2	2 ASP B	78	23. 042	2 59.446 -14.181 1.00 4.94
MOTA	2150	Н	ASP E	3 78	24.799	9 62.900 -12.960 1.00 20.00
ATOM	2151	N	LEU I	3 79	21.67	8 63.638 -10.411 1.00 4.95
MOTA	2152	CA	LEU 1	B 7 9	21.43	3 63.943 -8.999 1.00 4.95
ATOM	2153	С	LEU 1	В 79	20. 83	4 62.737 -8.306 1.00 4.95
ATOM	2154	0	LEU	B 79	20. 24	8 61.873 -8.945 1.00 4.95
ATOM	2155	CE	LEU	В 79	20. 41	7 65.076 -8.786 1.00 4.95
ATO!	1 2156	CC	G LEU	В 79	20. 59	96 66.498 -9.339 1.00 4.95

ATOM	2157	CD1	LEU B	79	20.566	66.614 -10.868	1.00 4.95
ATOM	2158	CD2	LEU B	79	19.508	67.394 -8.739	1.00 4.95
ATOM	2159	Н	LEU B	79	21.021	63.835 -11.139	1.00 20.00
ATOM	2160	N	VAL B	80	20.953	62.729 -6.971	1.00 4.14
ATOM	2161	CA	VAL B	80	20. 194	61.682 -6.300	1.00 4.14
ATOM	2162	С	VAL B	80	18. 944	62.215 -5.635	1.00 4.14
ATOM	2163	0	VAL B	80	18.974	63.051 -4.738	1.00 4.14
ATOM	2164	СВ	VAL B	80	21.039	60. 884 -5. 308	1.00 4.14
ATOM	2165	CG1	VAL B	80	20. 353	59.543 -5.042	1.00 4.14
ATOM	2166	CG2	VAL B	80	22.480	60.689 -5.790	1.00 4.14
ATOM	2167	Н	VAL B	80	21.441	63.434 -6.458	1.00 20.00
ATOM	2168	N	MET B	81	17. 828	61.680 -6.152	1.00 4.15
ATOM	2169	CA	MET B	81	16.536	62.049 -5.584	1.00 4.15
ATOM	2170	С	MET B	81	16. 289	61.328 -4.277	1.00 4.15
ATOM	2171	0	MET B	81	15. 990	61.914 -3.245	1.00 4.15
ATOM	2172	СВ	MET B	81	15. 418	61.732 -6.580	1.00 4.15
ATOM	2173	CG	MET B	81	15. 667	62.383 -7.938	3 1.00 4.15
MOTA	2174	SD	MET E	8 81	14.554	61.808 -9.225	5 1.00 4.15
MOTA	2175	CE	MET E	8 81	13.053	62.577 -8.623	3 1.00 4.15
ATOM	2176	5 H	MET I	81	17.915	60.935 -6.81	3 1.00 20.00
ATOM	2177	7 N	MET I	82	16.424	59.995 -4.38	2 1.00 5.02
ATOM	2178	B CA	MET 1	8 82	16. 100	59.176 -3.21	8 1.00 5.02
ATOM	2179	9 C	MET 1	B 82	17.06	3 58.021 -3.08	4 1.00 5.02
ATOM	218	0 0	MET :	B 82	17.48	5 57.434 -4.06	8 1.00 5.02

ATOM	2181	СВ	MET B	82	14.671	58.643	-3.322	1.00 5.0	02
ATOM	2182	CG	MET B	82	13.577	59.700	-3.168	1.00 5.	02
ATOM	2183	SD	MET B	82	11.933	59.007	-3.335	1.00 5.	02
ATOM	2184	CE	MET B	82	12.094	58.382	-5.010	1.00 5.	02
ATOM	2185	Н	MET B	82	16.740	59.575	-5.238	1.00 20.	00
ATOM	2186	N	GLU B	83	17.387	57.718	-1.821	1.00 4.	99
ATOM	2187	CA	GLU B	83	18. 381	56.671	-1.585	1.00 4.	99
ATOM	2188	С	GLU B	83	17.901	55.708	-0.561	1.00 4.	99
ATOM	2189	0	GLU B	83	17.326	56.154	0.417	1.00 4.	99
ATOM	2190	СВ	GLU B	83	19.597	57. 227	-0.899	1.00 4.	. 99
ATOM	2191	CG	GLU B	83	20.427	58.122	-1.769	1.00 4	. 99
ATOM	2192	CD	GLU B	83	21.766	57.465	-1.998	1.00 4	. 99
ATOM	2193	OE	1 GLU B	83	22. 287	56.750	-1.129	1.00 4	. 99
ATOM	2194	0E	2 GLU B	83	22.303	57.675	-3.073	1.00 4	. 99
ATOM	2195	Н	GLU B	83	17.001	58. 220	-1.049	1.00 20	. 00
ATOM	2196	N	GLY E	84	18. 224	54.428	-0.777	1.00 3	8.83
ATOM	2197	CA	GLY F	84	18.006	53.408	0.239	1.00 3	3.83
ATOM	2198	3 C	GLY I	84	19. 240	52.578	0.510	1.00	3. 83
ATOM	2199	9 0	GLY 1	B 84	19.763	51.931	-0.383	1.00	3.83
MOTA	2200) Н	GLY :	B 84	18.565	54.172	-1.683	1.00 20	0.00
ATOM	220	1 N	LYS	B 85	19.685	52.610	1.776	1.00	5.40
ATOM	220	2 C	A LYS	B 85	20. 759	51.687	2.133	1.00	5.40
ATOM	220	3 C	LYS	В 85	20. 283	3 50.677	3. 139	1.00	5.40
ATOM	220	4 0	LYS	B 85	19.80	9 51.019	4.216	1.00	5.40

WO 98/10070	PCT/JP97/02983
W() 30/100/0	

ATOM	2205	СВ	LYS B	85	21.959	52.406	2.738	1.00 5	. 40
ATOM	2206	CG	LYS B	85	22. 574	53.465	1.834	1.00 5	. 40
ATOM	2207	CD	LYS B	85	23. 701	54.191	2.558	1.00 5	. 40
ATOM	2208	CE	LYS B	85	24.309	55.303	1.710	1.00 5	. 40
ATOM	2209	NZ	LYS B	85	25.353	55.954	2.506	1.00 5	5.40
ATOM	2210	Н	LYS B	85	19. 252	53. 165	2.482	1.00 20	0.00
ATOM	2211	1HZ	LYS B	85	25.825	56.703	1.954	1.00 20	0.00
ATOM	2212	2HZ	LYS B	85	24.920	56.371	3.354	1.00 20	0.00
ATOM	2213	ЗНΖ	LYS B	85	26.082	55.271	2.784	1.00 20	0.00
ATOM	2214	N	MET B	86	20.443	49.416	2.746	1.00 17	7. 02
MOTA	2215	CA	MET B	86	20. 192	48.371	3.721	1.00 1	7.02
ATOM	2216	С	MET B	86	21.403	47.488	3.860	1.00 1	7.02
ATOM	2217	0	MET B	86	21.681	46.631	3.034	1.00 1	7.02
ATOM	2218	СВ	MET B	86	18. 952	47.547	3.353	1.00 1	7.02
ATOM	2219	CG	MET B	86	17.654	48.359	3.398	1.00 1	7.02
ATOM	2220	SD	MET B	86	17. 292	49.027	5.033	1.00 1	7. 02
ATOM	2221	CE	MET B	8 86	16. 822	47.490	5.839	1.00 1	7.02
ATOM	2222	e H	MET E	8 86	20. 790	49.206	1.829	1.00 2	20.00
ATOM	2223	3 N	MET E	8 87	22.106	47.685	4.984	1.00 2	29. 14
ATOM	2224	1 CA	MET I	87	23. 124	46.665	5. 254	1.00 2	29. 14
ATOM	2225	5 C	MET I	3 87	22. 576	45.528	6.101	1.00 2	29. 14
MOTA	2226	6 0	met i	8 87	23. 172	2 45.001	7.030	1.00	29.14
MOTA	222'	7 CI	B MET	B 87	24.40	0 47.267	5.842	1.00	29. 14
ATOM	222	8 C	G MET	B 87	25. 60	7 46.391	5.494	1.00	29. 14

MOTA	2229	SD	MET B	87	27. 129	46.891		1.00 29.14
ATOM	2230	CE	MET B	87	28. 207	45.591	5.675	1.00 29.14
MOTA	2231	Н	MET B	87	21.810	48.376	5.643	1.00 20.00
ATOM	2232	N	SER B	88	21.339	45.198	5.734	1.00 17.75
ATOM	2233	CA	SER B	88	20. 592	44.258	6.536	1.00 17.75
ATOM	2234	С	SER B	88	20.486	42.917	5.860	1.00 17.75
ATOM	2235	0	SER B	88	19.424	42.337	5.695	1.00 17.75
ATOM	2236	СВ	SER B	88	19. 238	44.871	6.792	1.00 17.75
ATOM	2237	0G	SER B	88	18.465	44.031	7.649	1.00 17.75
ATOM	2238	Н	SER B	88	20.935	45.558	4.896	1.00 20.00
ATOM	2239	HG	SER B	88	17. 736	43.798	7.096	1.00 20.00
ATOM	2240	N	TYR B	89	21.665	42.435	5.485	1.00 19.14
ATOM	2241	CA	TYR B	89	21.703	41.012	5.173	1.00 19.14
ATOM	2242	C	TYR B	89	21.602	40.211	6.475	1.00 19.14
ATOM	2243	8 0	TYR E	8 89	21. 140	40.714	7.494	1.00 19.14
ATOM	2244	L CE	3 TYR I	89	22.947	40.721	4.315	1.00 19.14
ATOM	2245	5 C(G TYR I	8 89	24. 188	3 41.226	5.014	1.00 19.14
ATOM	2246	6 CI	O1 TYR !	B 89	24.67	1 42.518	4.730	1.00 19.14
ATOM	224	7 CI	D2 TYR	B 89	24.810	0 40.393	5.961	1.00 19.14
ATOM	224	8 C	E1 TYR	В 89	25.77	2 42.999	5.450	1.00 19.14
ATOM	224	9 C	E2 TYR	В 89	25. 91	1 40.871	6.681	1.00 19.14
ATOM	225	0 C	Z TYR	B 89	26. 37	1 42.175	6.421	1.00 19.14
MOTA	1 225	51 C	H TYR	B 89	27.44	6 42.654	7.135	1.00 19.14
ATOM	1 225	52 F	ı TYR	В 89	22.48	35 42.969	5.683	3 1.00 20.00

	PCT/JP97/02983
WO 98/10070	101/317//02500

171 1.00 20.00 7.308 41.918 28.032 TYR B HH 89 MOTA 2253 1.00 32.37 6.428 22.037 38.951 CYS B 90 N MOTA 2254 1.00 32.37 7.684 38.207 21.963 CYS B 90 CA ATOM 2255 1.00 32.37 37.701 8.156 23.314 C CYS B 90 **ATOM** 2256 1.00 32.37 7.627 38.064 24.354 CYS B 90 0 MOTA 2257 1.00 32.37 7.529 20.929 37.094 CYS B 90 CB **ATOM** 2258 1.00 32.37 21.007 36.374 5.881 CYS B 90 SG ATOM 2259 1.00 20.00 5.596 22.397 38.527 CYS B 90 Н **ATOM** 2260 1.00 22.92 9.169 23. 252 36.832 THR B 91 N ATOM 2261 1.00 22.92 36.119 9.606 24.448 THR B 91 CA 2262 ATOM 1.00 22.92 9.285 91 24.228 34.649 C THR B 2263 ATOM 1.00 22.92 34.344 8.367 23.484 0 THR B 91 2264 ATOM 1.00 22.92 11.100 36.380 24.589 CB THR B 91 **MOTA** 2265 1.00 22.92 36.129 11.739 OG1 THR B 23.331 91 2266 **ATOM** 1.00 22.92 11.377 37.819 25.033 CG2 THR B 91 **ATOM** 2267 1.00 20.00 36.564 9.621 22.403 Н THR B 91 **MOTA** 2268 1.00 20.00 36.058 12.668 23.509 HG1 THR B 91 MOTA 2269 33.729 10.071 1.00 5.61 92 24.817 THR B N ATOM 2270 1.00 5.61 24.376 32.342 9.901 92 THR B CA **ATOM** 2271 5.61 10.014 1.00 32.158 92 22.875 C THR B 2272 **ATOM**

5.61

5.61

5.61

5.61

1.00

1.00

1.00

1.00

11.054

10.912

10.966

10.601

32.381

31.451

31.817

29.959

22.265

25.085

26.466

24.920

THR B

THR B

OG1 THR B

CG2 THR B

2273

2274

2275

2276

ATOM

ATCM

MOTA

ATOM

0

CB

92

92

92

				_		05 505	22 016	10.738	1.00 20.00
MOTA	2277	Н	THR	В	92	25. 535	33.916		
ATOM	2278	HG1	THR	В	92	26. 892	31.160	11.501	1.00 20.00
ATOM	2279	N	GLY	В	93	22.314	31.756	8.877	1.00 3.78
ATOM	2280	CA	GLY	В	93	20.879	31.663	8.914	1.00 3.78
ATOM	2281	С	GLY	В	93	20. 378	31.121	7.625	1.00 3.78
ATOM	2282	0	GLY	В	93	21.093	30.841	6.666	1.00 3.78
ATOM	2283	Н	GLY	В	93	22.789	31.646	8.003	1.00 20.00
ATOM	2284	N	GLN	В	94	19.062	31.003	7.674	1.00 15.42
ATOM	2285	CA	GLN	В	94	18.408	30.650	6.454	1.00 15.42
MOTA	2286	С	GLN	В	94	18.502	31.773	5.453	1.00 15.42
ATOM	2287	0	GLN	В	94	19.242	32.743	5.553	1.00 15.42
MOTA	2288	СВ	GLN	I B	94	16.980	30.303	6.857	1.00 15.42
MOTA	2289	CG	GLI	N B	94	16. 940	28.953	7.556	1.00 15.42
ATOM	2290	CD	GLI	N B	94	17. 358	27.874	6.577	1.00 15.42
ATOM	2291	OE	1 GL	N B	94	18. 301	27. 136	6.819	1.00 15.42
ATOM	2292	. NE	2 GL	N B	94	16. 573	27.723	5.504	1.00 15.42
ATOM	2293	3 H	GL	N B	94	18. 504	31.364	8.418	1.00 20.00
ATOM	2294	1 1HE	C2 GL	n e	94	15. 682	28.163	5.350	1.00 20.00
ATOM	229	5 2HI	E2 GL	N F	3 94	16.926	27.114	4.795	1.00 20.00
ATOM	229	6 N	ME	T I	3 95	17.640	31.566	4.484	1.00 18.74
ATOM	229	7 C	A MI	et 1	B 9 5	17. 266	32.63	7 3.570	1.00 18.74
ATOM	229	8 C	M	et i	B 95	16.75	5 33.92	6 4.243	3 1.00 18.74
ATOM	229	9 0	M	ET	B 95	16.20	9 33.91	0 5.34	1.00 18.74
ATOM	230	0 C	в м	EΤ	В 95	16. 18	6 32.04	4 2.69	2 1.00 18.74

ATOM	2301	CG	MET B	95	15. 061	31.664	3.652	1.00 18.74
ATOM	2302	SD	MET B	95	13.472	31.178	3.039	1.00 18.74
ATOM	2303	CE	MET B	95	12.867	30.943	4.699	1.00 18.74
ATOM	2304	Н	MET B	95	17. 203	30.670	4.513	1.00 20.00
ATOM	2305	N	TRP B	96	16.917	35.037	3.505	1.00 3.87
MOTA	2306	CA	TRP B	96	16.528	36. 338	4.053	1.00 3.87
ATOM	2307	С	TRP B	96	15.869	37. 182	2.987	1.00 3.87
ATOM	2308	0	TRP B	96	16. 243	37.094	1.825	1.00 3.87
ATOM	2309	СВ	TRP B	96	17.755	37.069	4.628	1.00 3.87
ATOM	2310	CG	TRP B	96	18.818	37. 286	3.565	1.00 3.87
ATOM	2311	CD:	TRP B	96	19.818	36.382	3. 175	1.00 3.87
ATOM	2312	CD	2 TRP B	96	19.025	38.445	2.730	1.00 3.87
ATOM	2313	NE:	1 TRP B	96	20.603	36.890	2. 191	1.00 3.87
ATOM	2314	CE	2 TRP B	96	20.146	38.165	1.876	1.00 3.87
ATOM	2315	CE	3 TRP B	96	18. 353	39.680	2.622	1.00 3.87
ATOM	2316	CZ	2 TRP B	96	20. 572	39.129	0.936	1.00 3.87
MOTA	2317	CZ	3 TRP B	96	18. 787	40.632	1.678	1.00 3.87
ATOM	2318	СН	2 TRP B	96	19. 888	40.358	0.839	1.00 3.87
ATOM	2319	Н	TRP E	96	17. 365	34.971	2.607	1.00 20.00
ATOM	2320	HE	1 TRP E	3 96	21.371	36.419	1.795	1.00 20.00
ATOM	2321	N	ALA E	3 97	14. 896	38.001	3.420	1.00 3.76
ATOM	2322	CA	ALA I	3 97	14.310	38.918	2.450	1.00 3.76
ATOM	2323	С	ALA I	3 97	14. 183	40.311	3.025	1.00 3.76
ATOM	2324	0	ALA 1	B 97	13. 706	40.486	4.142	1.00 3.76

ATOM	2325	СВ	ALA	В	97	12.934	38.430	1.992	1.00 3.76
ATOM	2326	Н	ALA	В	97	14.582	38.005	4.367	1.00 20.00
ATOM	2327	N	ARG	В	98	14.669	41.280	2.227	1.00 11.69
ATOM	2328	CA	ARG	В	98	14.570	42.677	2.651	1.00 11.69
ATOM	2329	С	ARG	В	98	13.868	43.511	1.612	1.00 11.69
MOTA	2330	0	ARG	В	98	14.072	43.340	0.417	1.00 11.69
ATOM	2331	СВ	ARG	В	98	15. 934	43.328	2.909	1.00 11.69
ATOM	2332	CG	ARG	В	98	16.838	42.551	3.856	1.00 11.69
ATOM	2333	CD	ARG	В	98	16. 184	42.240	5. 193	1.00 11.69
ATOM	2334	NE	ARG	В	98	17.015	41.329	5.974	1.00 11.69
ATOM	2335	CZ	ARG	В	98	17.025	41.432	7.306	1.00 11.69
MOTA	2336	NH	ARG	В	98	17. 686	40.563	8.065	1.00 11.69
ATOM	2337	NH2	2 ARG	В	98	16.333	42.411	7.860	1.00 11.69
ATOM	2338	Н	ARC	В	98	15. 016	41.031	1.318	1.00 20.00
ATOM	2339	HE	ARO	3 B	98	17. 602	40.669	5.504	1.00 20.00
ATOM	2340	1HH	1 ARC	G B	98	17.606	40.574	9.062	1.00 20.00
MOTA	2341	2HH	1 AR	G В	98	18. 279	39.876	7.646	1.00 20.00
ATOM	2342	1HH	2 AR	G B	98	16. 182	42.387	8.852	1.00 20.00
ATOM	2343	2HIH	2 AR	G B	98	15. 871	43.113	7.323	1.00 20.00
ATOM	2344	l N	SE	R E	99	13.044	44.436	2.114	1.00 7.28
MOTA	2345	5 C#	A SE	R E	3 99	12.448	3 45.344	1.148	1.00 7.28
ATOM	2340	5 C	SE	R F	3 99	12.868	3 46.786	1.316	1.00 7.28
MOTA	234	7 0	SE	er i	3 99	12.95	9 47.316	2.417	1.00 7.28
MOTA	234	8 C	B SE	ER 1	В 99	10. 93	2 45.207	1.188	3 1.00 7.28

•	75	
- 1	/5	

ATOM	2349	OG	SER B 99	10.412	45.436	2.502	1.00 7.28
ATOM	2350	H	SER B 99	12.817	44.523	3.083	1.00 20.00
ATOM	2351	HG	SER B 99	9.663	44.864	2.611	1.00 20.00
ATOM	2352	N	SER B 100	13.086	47.407	0.151	1.00 2.73
ATOM	2353	CA	SER B 100	13.319	48.845	0.182	1.00 2.73
ATOM	2354	С	SER B 100	12.271	49.572	-0.634	1.00 2.73
ATOM	2355	0	SER B 100	12.017	49.224	-1.778	1.00 2.73
ATOM	2356	СВ	SER B 100	14.726	49.165	-0.330	1.00 2.73
ATOM	2357	OG	SER B 100	15. 704	48.535	0.504	1.00 2.73
ATOM	2358	Н	SER B 100	13.030	46.908	-0.719	1.00 20.00
ATOM	2359	HG	SER B 100	16.521	48.545	0.018	1.00 20.00
ATOM	2360	N	TYR B 101	11.668	50.588	0.010	1.00 2.72
ATOM	2361	CA	TYR B 101	10.661	51.388	-0.699	1.00 2.72
ATOM	2362	С	TYR B 101	11.006	52.854	-0.634	1.00 2.72
ATOM	2363	0	TYR B 101	11. 325	53.348	0.434	1.00 2.72
ATOM	2364	СВ	TYR B 101	9. 273	51.194	-0.078	1.00 2.72
MOTA	2365	CG	TYR B 101	8. 242	52.053	-0.781	1.00 2.72
ATOM	2366	CD	1 TYR B 101	7. 624	51.594	-1.962	1.00 2.72
MOTA	2367	CD	2 TYR B 101	7.944	53.315	-0.235	1.00 2.72
ATOM	2368	CE	1 TYR B 101	6. 680	52.411	-2.606	1.00 2.72
ATOM	2369	CE	2 TYR B 101	7. 015	54.137	-0.885	1.00 2.72
MOTA	2370	CZ	Z TYR B 101	6.372	53.666	-2.044	1.00 2.72
MOTA	2371	OF	1 TYR B 101	5.402	54.459	-2.622	1.00 2.72
ATOM	2372	2 H	TYR B 101	11.914	50.791	0.957	1.00 20.00

ATOM	2373	нн	TYR B 101	5. 286	55. 245	-2.107	1.00 20.00
ATOM	2374	N	LEU B 102	10.935	53. 525	-1.781	1.00 17.88
ATOM	2375	CA	LEU B 102	11. 286	54.940	-1.857	1.00 17.88
ATOM	2376	С	LEU B 102	10.100	55.696	-2.431	1.00 17.88
ATOM	2377	0	LEU B 102	9. 326	55. 127	-3. 192	1.00 17.88
ATOM	2378	СВ	LEU B 102	12.530	55.098	-2.745	1.00 17.88
ATOM	2379	CG	LEU B 102	13.902	54.915	-2.066	1.00 17.88
ATOM	2380	CD1	LEU B 102	14.099	55.948	-0.964	1.00 17.88
ATOM	2381	CD2	LEU B 102	14.212	53.502	-1.564	1.00 17.88
ATOM	2382	Н	LEU B 102	10.530	53.077	-2.578	1.00 20.00
ATOM	2383	N	GLY B 103	9.968	56.973	-2.035	1.00 5.34
ATOM	2384	CA	GLY B 103	8.821	57.714	-2.565	1.00 5.34
ATOM	2385	С	GLY B 103	8.775	59.160	-2.114	1.00 5.34
ATOM	2386	0	GLY B 103	8.857	59.429	-0.923	1.00 5.34
ATOM	2387	Н	GLY B 103	10.609	57.423	-1.413	1.00 20.00
ATOM	2388	N	ALA B 104	8. 653	60.074	-3. 102	1.00 6.66
ATOM	2389	CA	ALA B 104	8.624	61.499	-2.757	1.00 6.66
ATOM	2390	С	ALA B 104	8. 185	62.405	-3.899	1.00 6.66
MOTA	2391	0	ALA B 104	8.047	61.959	-5.031	1.00 6.66
ATOM	2392	СВ	ALA B 104	9. 999	61.951	-2.285	1.00 6.66
ATOM	2393	В	ALA B 104	8.612	59. 782	-4.062	1.00 20.00
MOTA	2394	N	VAL B 105	7.958	63.691	-3.550	1.00 2.80
ATOM	2395	5 CA	VAL B 105	7.496	64.636	-4.573	1.00 2.80
ATOM	239	5 C	VAL B 105	8.557	65.607	-5.040	1.00 2.80

AT	OM	2397	0	VAL B	105	9. 264	66.228	-4.257	1.00	2.80
AT	COM	2398	СВ	VAL B	105	6.268	65.403	-4.079	1.00	2.80
ΑТ	MO	2399	CG1	VAL B	105	5.733	66.430	-5.074	1.00	2.80
ГА	МО	2400	CG2	VAL B	105	5. 180	64.402	-3.756	1.00	2.80
ΑT	MO	2401	Н	VAL B	105	8.094	64.027	-2.616	1.00 2	20.00
ΑT	ГОМ	2402	N	PHE B	106	8.619	65.708	-6.376	1.00	2.81
A	MOT	2403	CA	PHE B	106	9.664	66.528	-6.978	1.00	2.81
A7	TOM	2404	С	PHE B	106	9.114	67.358	-8. 136	1.00	2.81
, A	TOM	2405	0	PHE B	106	8.123	66.974	-8.743	1.00	2.81
A'	TOM	2406	СВ	PHE B	106	10.802	65.593	-7.415	1.00	2.81
A'	TOM	2407	CG	PHE B	106	11.413	64.847	-6. 236	1.00	2.81
A	TOM	2408	CD	PHE B	106	11. 117	63.482	-6. 026	1.00	2.81
A	MOT	2409	CD	2 PHE B	106	12.302	65.518	-5. 373	1.00	2.81
A	MOT	2410	CE	1 PHE B	106	11.778	62.779	-4.999	1.00	2.81
A	MOT	2411	CE	2 PHE B	106	12.964	64.828	-4.342	1.00	2.81
A	MOTA	2412	CZ	PHE B	106	12.714	63.452	-4.185	1.00	2.81
P	MOTA	2413	Н	PHE E	3 106	7.979	65. 181	-6.943	1.00	20.00
I	ATOM	2414	N	ASN E	3 107	9.767	68.507	-8.431	1.00	6.84
I	ATOM	2415	S CA	ASN E	3 107	9.373	69.186	-9.678	1.00	6.84
1	ATOM	2416	6 C	ASN I	3 107	10. 243	68.732	-10.805	1.00	6.84
1	ATOM	2417	7 0	ASN 1	B 107	11.443	68.979	-10.825	1.00	6.84
1	ATOM	2418	3 CE	B ASN I	B 107	9.530	70.708	-9.733	1.00	6.84
	ATOM	2419) C(G ASN	B 107	8.548	3 71.417	-8.851	1.00	6.84
	ATOM	2420	0 01	O1 ASN	B 107	7. 503	3 71.922	-9.232	1.00	6.84

ATOM	2421 ND2 ASN B 107	8.985 71.454 -7.612 1.00 6.84
ATOM	2422 H ASN B 107	10.618 68.734 -7.963 1.00 20.00
ATOM	2423 1HD2 ASN B 107	9.849 71.011 -7.373 1.00 20.00
ATOM	2424 2HD2 ASN B 107	8.455 71.916 -6.904 1.00 20.00
ATOM	2425 N LEU B 108	9.577 68.073 -11.744 1.00 5.08
ATOM	2426 CA LEU B 108	10.346 67.725 -12.925 1.00 5.08
ATOM	2427 C LEU B 108	10.047 68.671 -14.065 1.00 5.08
ATOM	2428 O LEU B 108	9.103 69.459 -14.019 1.00 5.08
ATOM	2429 CB LEU B 108	10.108 66.257 -13.267 1.00 5.08
ATOM	2430 CG LEU B 108	10.498 65.352 -12.092 1.00 5.08
ATOM	2431 CD1 LEU B 108	9.994 63.925 -12.266 1.00 5.08
MOTA	2432 CD2 LEU B 108	11.998 65.394 -11.801 1.00 5.08
ATOM	2433 H LEU B 108	8.582 67.966 -11.683 1.00 20.00
ATOM	2434 N THR B 109	10.917 68.562 -15.072 1.00 3.97
ATOM	2435 CA THR B 109	10.774 69.430 -16.233 1.00 3.97
ATOM	2436 C THR B 109	10.626 68.516 -17.434 1.00 3.97
ATOM	2437 O THR B 109	10.912 67.332 -17.352 1.00 3.97
ATOM	2438 CB THR B 109	12.026 70.323 -16.345 1.00 3.97
ATOM	2439 OG1 THR B 109	12.366 70.880 -15.068 1.00 3.97
ATOM	2440 CG2 THR B 109	11.893 71.460 -17.365 1.00 3.97
ATOM	2441 H THR B 109	11.587 67.813 -15.111 1.00 20.00
MOTA	2442 HG1 THR B 109	13.135 71.406 -15.223 1.00 20.00
MOTA	2443 N SER B 110	10.201 69.070 -18.575 1.00 5.78
ATOM	2444 CA SER B 110	10.374 68.239 -19.764 1.00 5.78

	PCT/JP97/02983
WO 98/10070	

ATOM	2445 C	SER B 110	11.829	67.856 -20.030	1.00 5.78
ATOM	2446 0	SER B 110	12.747	68.622 -19.753	1.00 5.78
MOTA	2447 CB	SER B 110	9.770	68.967 -20.960	1.00 5.78
ATOM	2448 OG	SER B 110	8.459	69.426 -20.608	1.00 5.78
ATOM	2449 H	SER B 110	9.827	69.994 -18.648	1.00 20.00
ATOM	2450 HG	SER B 110	7.853	68.778 -20.963	1.00 20.00
ATOM	2451 N	ALA B 111	11.965	66.634 -20.583	1.00 23.23
ATOM	2452 CA	ALA B 111	13.211	66.062 -21.107	1.00 23.23
ATOM	2453 C	ALA B 111	14.150	65. 377 -20. 133	1.00 23.23
ATOM	2454 0	ALA B 111	15. 034	64.639 -20.556	1.00 23.23
ATOM	2455 CE	3 ALA B 111	14.027	67.046 -21.962	1.00 23.23
ATOM	2456 H	ALA B 111	11.149	66.052 -20.558	1.00 20.00
ATOM	2457 N	ASP B 112	13.951	65.624 -18.827	1.00 12.39
ATOM	2458 C	A ASP B 112	14.887	64.918 -17.960	1.00 12.39
ATOM	2459 C	ASP B 112	14.602	63.441 -17.774	1.00 12.39
ATOM	2460 0	ASP B 112	13.496	62.963 -18.011	1.00 12.39
ATOM	2461 C	B ASP B 112	15. 137	65.687 -16.659	1.00 12.39
ATOM	2462 C	G ASP B 112	14.027	65.684 -15.626	1.00 12.39
ATOM	2463 0	D1 ASP B 112	14.336	65.452 -14.461	1.00 12.39
ATOM	2464 C	D2 ASP B 112	12. 883	65.956 -15.963	1.00 12.39
ATOM	2465 H	ASP B 112	13. 204	66.161 -18.428	1.00 20.00
MOTA	2466 N	HIS B 113	15.683	8 62.734 -17.404	1.00 16.60
ATOM	2467 (CA HIS B 113	15. 525	5 61.297 -17.207	1.00 16.60
ATOM	2468	C HIS B 113	15. 572	2 60.926 -15.745	5 1.00 16.60

MOTA	2469	0 HIS B 113	16.376 61.456 -14.990 1.00 16.60
ATOM	2470	CB HIS B 113	16.626 60.489 -17.893 1.00 16.60
ATOM	2471	CG HIS B 113	16.587 60.556 -19.400 1.00 16.60
ATOM	2472	ND1 HIS B 113	17.096 61.577 -20.109 1.00 16.60
ATOM	2473	CD2 HIS B 113	16.085 59.597 -20.285 1.00 16.60
ATOM	2474	CÈ1 HIS B 113	16.924 61.276 -21.433 1.00 16.60
ATOM	2475	NE2 HIS B 113	16.305 60.058 -21.544 1.00 16.60
ATOM	2476	H HIS B 113	16.534 63.209 -17.164 1.00 20.00
ATOM	2477	HD1 HIS B 113	17.498 62.393 -19.744 1.00 20.00
ATOM	2478	N LEU B 114	14.723 59.954 -15.388 1.00 5.46
MOTA	2479	CA LEU B 114	14.929 59.347 -14.074 1.00 5.46
ATOM	2480	C LEU B 114	15.405 57.916 -14.205 1.00 5.46
ATOM	2481	O LEU B 114	15.000 57.205 -15.118 1.00 5.46
ATOM	2482	CB LEU B 114	13.670 59.370 -13.203 1.00 5.46
ATOM	2483	CG LEU B 114	12.970 60.720 -13.022 1.00 5.46
ATOM	2484	CD1 LEU B 114	11.903 60.623 -11.942 1.00 5.46
ATOM	2485	CD2 LEU B 114	13.906 61.882 -12.721 1.00 5.46
ATOM	2486	H LEU B 114	14.055 59.615 -16.054 1.00 20.00
ATOM	2487	N TYR B 115	16.285 57.535 -13.264 1.00 8.89
ATOM	2488	CA TYR B 115	16.799 56.162 -13.264 1.00 8.89
ATOM	2489	C TYR B 115	16.701 55.548 -11.893 1.00 8.89
MOTA	2490	O TYR B 115	16.762 56.244 -10.890 1.00 8.89
ATOM	2491	CB TYR B 115	18.265 56.090 -13.693 1.00 8.89
ATOM	2492	CG TYR B 115	18.430 56.555 -15.116 1.00 8.89

ATOM	2493 CD1 TYR B 115	18.156 55.658 -16.169 1.00 8.89
MOTA	2494 CD2 TYR B 115	18.853 57.878 -15.346 1.00 8.89
ATOM	2495 CE1 TYR B 115	18.283 56.109 -17.493 1.00 8.89
ATOM	2496 CE2 TYR B 115	18.980 58.325 -16.668 1.00 8.89
ATOM	2497 CZ TYR B 115	18.674 57.443 -17.724 1.00 8.89
ATOM	2498 OH TYR B 115	18.748 57.906 -19.023 1.00 8.89
ATOM	2499 H TYR B 115	16.565 58.190 -12.555 1.00 20.00
ATOM	2500 HH TYR B 115	18.874 58.845 -19.007 1.00 20.00
MOTA	2501 N VAL B 116	16.532 54.216 -11.885 1.00 5.15
MOTA	2502 CA VAL B 116	16.391 53.542 -10.595 1.00 5.15
ATOM	2503 C VAL B 116	17. 197 52. 266 -10. 542 1. 00 5. 15
ATOM	2504 O VAL B 116	16.810 51.248 -11.102 1.00 5.15
ATOM	2505 CB VAL B 116	14.918 53.250 -10.302 1.00 5.15
ATOM	2506 CG1 VAL B 116	14.721 52.473 -9.013 1.00 5.15
MOTA	2507 CG2 VAL B 116	14.139 54.543 -10.200 1.00 5.15
ATOM	2508 H VAL B 116	16.478 53.701 -12.740 1.00 20.00
ATOM	2509 N ASN B 117	18.333 52.372 -9.843 1.00 8.77
ATOM	2510 CA ASN B 117	19.167 51.174 -9.830 1.00 8.77
ATOM	2511 C ASN B 117	19.399 50.633 -8.436 1.00 8.77
MOTA	2512 O ASN B 117	19.350 51.348 -7.439 1.00 8.77
ATOM	2513 CB ASN B 117	20.500 51.404 -10.555 1.00 8.77
ATOM	2514 CG ASN B 117	20.279 51.688 -12.032 1.00 8.77
ATOM	2515 OD1 ASN B 117	19.378 51.179 -12.681 1.00 8.77
ATOM	2516 ND2 ASN B 117	7 21.150 52.562 -12.547 1.00 8.77

ATOM	2517 H	ASN B 117	18.541	53.196 -9	9.308	1.00 20.00
MOTA	2518 1HD2	ASN B 117	21.897	52.941 -12	2.005	1.00 20.00
ATOM	2519 2HD2	ASN B 117	21.029	52.817 -13	3.504	1.00 20.00
ATOM	2520 N	VAL B 118	19.655	49.315 -	8.438	1.00 2.80
ATOM	2521 CA	VAL B 118	20.075	48.618 -	7.224	1.00 2.80
ATOM	2522 C	VAL B 118	21.538	48.250 -	7.381	1.00 2.80
ATOM	2523 0	VAL B 118	21.997	48.046 -	8.497	1.00 2.80
ATOM	2524 CB	VAL B 118	19.216	47.353 -	7.046	1.00 2.80
ATOM	2525 CG1	VAL B 118	19.631	46.461 -	5.874	1.00 2.80
ATOM	2526 CG2	2 VAL B 118	17.739	47.713	-6.963	1.00 2.80
MOTA	2527 H	VAL B 118	19.690	48.821 -	-9.306	1.00 20.00
ATOM	2528 N	SER B 119	22.244	48.163	-6.241	1.00 3.07
ATOM	2529 CA	SER B 119	23.620	47.667	-6.305	1.00 3.07
MOTA	2530 C	SER B 119	23. 792	46. 253	-6.866	1.00 3.07
ATOM	2531 0	SER B 119	24.505	46.037	-7.838	1.00 3.07
ATOM	2532 CB	SER B 119	24.264	47.836	-4.928	1.00 3.07
ATOM	2533 OG	SER B 119	23.390	47.315	-3.918	1.00 3.07
MOTA	2534 H	SER B 119	21.832	48.402	-5.357	1.00 20.00
ATOM	2535 HC	S SER B 119	23. 856	46.543	-3.572	1.00 20.00
ATOM	2536 N	GLU B 120	23. 090	45.294	-6. 235	1.00 12.56
ATOM	2537 CA	A GLU B 120	23. 24	43.924	-6.733	1.00 12.56
MOTA	2538 C	GLU B 120	21.95	1 43.320	-7.233	1.00 12.56
ATOM	2539 0	GLU B 120	21.02	0 43.039	-6.489	1.00 12.56
ATOM	2540 C	B GLU B 120	23. 83	4 42.961	-5.695	1.00 12.56

PCT/JP97/02983

					183				
ATOM	2541	CG	GLU B	120	25. 244	43.250	-5. 162	1.00	12.56
ATOM	2542	CD	GLU B	120	25. 277	44.479	-4.271	1.00	12.56
ATOM	2543	OE1	GLU B	120	24.290	44.756	-3.591	1.00	12.56
ATOM	2544	OE2	GLU B	120	26. 294	45.168	-4.272	1.00	12.56
MOTA	2545	Н	GLU B	120	22. 593	45.503	-5.392	1.00	20.00
ATOM	2546	N	LEU B	121	21.931	43.090	-8.549	1.00	16.20
ATOM	2547	CA	LEU B	121	20.674	42.546	-9.053	1.00	16.20
ATOM	2548	С	LEU B	121	20.477	41.055	-8.837	1.00	16.20
ATOM	2549	0	LEU B	121	19. 372	40.533	-8.905	1.00	16.20
ATOM	2550	СВ	LEU B	121	20. 391	43.005	-10.486	1.00	16.20
MOTA	2551	CG	LEU B	121	20.038	44.497	-10.587	1.00	16.20
ATOM	2552	CD1	LEU B	121	19.002	44.883	-9.542	1.00	16.20
ATOM	2553	CD2	LEU B	121	21. 227	45.458	-10.542	1.00	16.20
ATOM	2554	Н	LEU B	121	22.699	43.329	-9.143	1.00	20.00
ATOM	2555	N	SER B	122	21.592	40.403	-8.449	1.00	8.33
ATOM	2556	CA	SER B	122	21.491	39.047	-7.904	1.00	8.33
ATOM	2557	С	SER B	122	20.531	38.891	-6.732	1.00	8.33
ATOM	2558	0	SER B	122	19.965	37.833	-6.494	1.00	8.33
ATOM	2559	СВ	SER B	122	22.875	38.562	-7.484	1.00	8.33
MOTA	2560	O G	SER B	122	23.832	38.967	-8.468	1.00	8.33
ATOM	2561	Н	SER B	122	22.503	40.801	-8.558	1.00	20.00
ATOM	2562	HG	SER B	122	24.651	38.552	-8.225	1.00	20.00
ATOM	2563	N	LEU E	123	20. 371	40.017	-6.012	1.00	10.07
ATOM	2564	CA	LEU E	3 123	19.436	40.032	-4.890	1.00	10.07

1001	2565 C LEU B 123	17. 973 39. 912 -5. 267 1. 00 10. 07
ATOM		17.575 55.525
ATOM	2566 O LEU B 123	11.20.
ATOM	2567 CB LEU B 123	19.562 41.335 -4.118 1.00 10.07
ATOM	2568 CG LEU B 123	20.938 41.678 -3.570 1.00 10.07
ATOM	2569 CD1 LEU B 123	21.015 43.169 -3.242 1.00 10.07
MOTA	2570 CD2 LEU B 123	21.330 40.782 -2.398 1.00 10.07
ATOM	2571 H LEU B 123	20.845 40.864 -6.264 1.00 20.00
ATOM	2572 N VAL B 124	17.680 40.300 -6.519 1.00 5.90
ATOM	2573 CA VAL B 124	16.267 40.546 -6.784 1.00 5.90
ATOM	2574 C VAL B 124	15.405 39.307 -6.803 1.00 5.90
ATOM	2575 O VAL B 124	15.683 38.288 -7.425 1.00 5.90
ATOM	2576 CB VAL B 124	16.078 41.404 -8.043 1.00 5.90
ATOM	2577 CG1 VAL B 124	14.619 41.768 -8.338 1.00 5.90
ATOM	2578 CG2 VAL B 124	16.871 42.690 -7.865 1.00 5.90
ATOM	2579 H VAL B 124	18.375 40.396 -7.233 1.00 20.00
ATOM	2580 N ASN B 125	14.303 39.483 -6.070 1.00 5.82
MOTA	2581 CA ASN B 125	13.268 38.466 -6.159 1.00 5.82
ATOM	2582 C ASN B 125	12.436 38.671 -7.381 1.00 5.82
ATOM	2583 O ASN B 125	11.998 39.778 -7.656 1.00 5.82
ATOM	2584 CB ASN B 125	12.354 38.519 -4.943 1.00 5.82
ATOM	2585 CG ASN B 125	13. 162 37. 999 -3. 808 1. 00 5. 82
ATOM	4 2586 OD1 ASN B 125	14.077 37.236 -4.056 1.00 5.82
ATOM	M 2587 ND2 ASN B 125	12.807 38.450 -2.591 1.00 5.82
ATO	M 2588 H ASN B 125	14.155 40.369 -5.628 1.00 20.00

ATOM	2589 1HD2	ASN B 125	12.024	39.059 -2	2.498	1.00 20.00
ATOM	2590 2HD2	ASN B 125	13. 325	38.216 -	1.766	1.00 20.00
MOTA	2591 N	PHE B 126	12.207	37.549 -	8.072	1.00 7.35
ATOM	2592 CA	PHE B 126	11.119	37.606 -	9.041	1.00 7.35
ATOM	2593 C	PHE B 126	10.099	36.555 -	8.715	1.00 7.35
ATOM	2594 0	PHE B 126	9.564	35.843 -	9.555	1.00 7.35
ATOM	2595 CB	PHE B 126	11.595	37.426 -1	0.476	1.00 7.35
ATOM	2596 CG	PHE B 126	12.638	38.457 -1	0.804	1.00 7.35
ATOM	2597 CD1	PHE B 126	13.993	38.081 -1	.0.727	1.00 7.35
ATOM	2598 CD2	PHE B 126	12. 248	39.758 -1	1.192	1.00 7.35
ATOM	2599 CE1	PHE B 126	14.984	39.008 -1	1.092	1.00 7.35
ATOM	2600 CE2	2 PHE B 126	13. 239	40.685 -	11.564	1.00 7.35
ATOM	2601 CZ	PHE B 126	14.594	40.291 -	11.532	1.00 7.35
ATOM	2602 H	PHE B 126	12.688	36.693	-7.882	1.00 20.00
ATOM	2603 N	GLU B 127	9. 865	36.476	-7. 396	1.00 24.73
ATOM	2604 CA	GLU B 127	8. 691	35.743	-6.955	1.00 24.73
ATOM	2605 C	GLU B 127	7.431	36.370	-7.515	1.00 24.73
ATOM	2606 0	GLU B 127	6. 521	35.753	-8.053	1.00 24.73
ATOM	2607 CB	GLU B 127	8. 591	35.817	-5.445	1.00 24.73
ATOM	2608 CG	GLU B 127	7. 585	34.753	-5.001	1.00 24.73
ATOM	2609 CD	GLU B 127	8. 355	33.515	-4.517	1.00 24.73
ATOM	2610 OE	C1 GLU B 127	8.966	33.486	-3.443	1.00 24.73
MOTA	2611 OE	22 GLU B 127	8. 38	2 32.557	-5.246	1.00 24.73
ATOM	2612 H	GLU B 127	10.41	6 36.983	-6.739	1.00 20.00

ATOM	2613	N	GLU B 128	7.441	37.688	-7.277	1.00 23.04
MOTA	2614	CA	GLU B 128	6.166	38.365	-7.373	1.00 23.04
ATOM	2615	С	GLU B 128	6.353	39.772	-7.856	1.00 23.04
ATOM	2616	0	GLU B 128	7.468	40.213	-8.110	1.00 23.04
ATOM	2617	СВ	GLU B 128	5.557	38. 339	-5.989	1.00 23.04
ATOM	2618	CG	GLU B 128	4.727	37.086	-5.729	1.00 23.04
ATOM	2619	CD	GLU B 128	3.295	37.307	-6. 160	1.00 23.04
ATOM	2620	OE1	GLU B 128	2.980	38.384	-6.680	1.00 23.04
ATOM	2621	OE2	GLU B 128	2.500	36.393	-5.955	1.00 23.04
ATOM	2622	H	GLU B 128	8.219	38. 174	-6.866	1.00 20.00
ATOM	2623	N	SER B 129	5.217	40.479	-7.935	1.00 19.86
ATOM	2624	CA	SER B 129	5. 190	41.782	-8.619	1.00 19.86
ATOM	2625	С	SER B 129	5. 966	42.944	-7.999	1.00 19.86
ATOM	2626	0	SER B 129	5.971	44.069	-8.479	1.00 19.86
ATOM	2627	СВ	SER B 129	3.737	42.203	-8.827	1.00 19.86
ATOM	2628	OG	SER B 129	2.958	41.052	-9.163	1.00 19.86
ATOM	2629	Н	SER B 129	4.353	40.037	-7.661	1.00 20.00
ATOM	2630	HG	SER B 129	2.038	41.313	-9. 105	1.00 20.00
MOTA	2631	N	GLN B 130	6.604	42.618	-6.871	1.00 15.57
ATOM	2632	CA	GLN B 130	7. 165	43.597	-5.948	1.00 15.57
ATOM	2633	3 C	GLN B 130	8.061	44.718	-6.469	1.00 15.57
ATOM	2634	1 0	GLN B 130	8.015	5 45.841	-5.981	1.00 15.57
MOTA	2639	5 CE	3 GLN B 130	7.858	8 42.813	-4.846	1.00 15.57
ATOM	263	6 C(G GLN B 130	8.99	8 41.884	-5.311	1.00 15.57

ATOM	2637 CD	GLN B 130	8.664	40.407	-5.145	1.00 15.57
ATOM	2638 OE1	GLN B 130	9.297	39.522	-5. 7 07	1.00 15.57
ATOM	2639 NE2	GLN B 130	7.630	40.142	-4.338	1.00 15.57
ATOM	2640 H	GLN B 130	6.616	41.649	-6.641	1.00 20.00
ATOM	2641 1HE2	2 GLN B 130	7.088	40.805	-3.827	1.00 20.00
ATOM	2642 2HE2	2 GLN B 130	7.346	39.189	-4.262	1.00 20.00
ATOM	2643 N	THR B 131	8.902	44.358	-7.447	1.00 3.96
ATOM	2644 CA	THR B 131	9.869	45.355	-7.893	1.00 3.96
ATOM	2645 C	THR B 131	9.359	46.228	-9.023	1.00 3.96
ATOM	264 6 0	THR B 131	9. 134	45.786	-10. 147	1.00 3.96
ATOM	2647 CB	THR B 131	11.200	44.669	-8.225	1.00 3.96
ATOM	2648 OG	1 THR B 131	11.738	44.065	-7.038	1.00 3.96
ATOM	2649 CG	2 THR B 131	12.236	45.603	-8.859	1.00 3.96
ATOM	2650 H	THR B 131	8.839	43.456	-7.870	1.00 20.00
ATOM	2651 HC	1 THR B 131	12.465	43.535	-7.339	1.00 20.00
ATOM	2652 N	PHE B 132	9. 195	47.504	-8.640	1.00 6.06
ATOM	2653 C	PHE B 132	8.580	48.458	-9.553	1.00 6.06
MOTA	2654 C	PHE B 132	9. 126	49.862	-9.396	1.00 6.06
ATOM	2655 0	PHE B 132	9. 692	50. 198	-8.365	1.00 6.06
ATOM	2656 C	B PHE B 132	7.049	48.437	-9.410	1.00 6.06
ATOM	2657 C	G PHE B 132	6. 573	48.792	-8.018	1.00 6.06
MOTA	2658 C	D1 PHE B 132	6. 682	2 50.119	-7.541	1.00 6.06
ATOM	2659 C	D2 PHE B 132	6.006	47.778	-7.219	1.00 6.06
MOTA	2660 C	E1 PHE B 132	6. 234	50.430	-6.245	1.00 6.06

DC	r/	TP	97	IN.	2983

1	00
1	00

ATOM	2661 CE2 PHE B 132	5. 552 48. 087 -5. 923 1. 00 6. 06
ATOM	2662 CZ PHE B 132	5.675 49.409 -5.448 1.00 6.06
ATOM	2663 H PHE B 132	9.489 47.782 -7.721 1.00 20.00
MOTA	2664 N PHE B 133	8.893 50.667 -10.443 1.00 7.15
ATOM	2665 CA PHE B 133	9.216 52.094 -10.375 1.00 7.15
ATOM	2666 C PHE B 133	8. 160 52. 877 -11. 118 1. 00 7. 15
ATOM	2667 O PHE B 133	7.790 52.516 -12.224 1.00 7.15
ATOM	2668 CB PHE B 133	10.603 52.353 -10.983 1.00 7.15
ATOM	2669 CG PHE B 133	10.922 53.825 -11.169 1.00 7.15
ATOM	2670 CD1 PHE B 133	10.718 54.745 -10.116 1.00 7.15
ATOM	2671 CD2 PHE B 133	11.440 54.250 -12.412 1.00 7.15
ATOM	2672 CE1 PHE B 133	11.031 56.104 -10.306 1.00 7.15
ATOM	2673 CE2 PHE B 133	11.766 55.607 -12.599 1.00 7.15
ATOM	2674 CZ PHE B 133	11.556 56.522 -11.547 1.00 7.15
ATOM	2675 Н РНЕ В 133	8.474 50.273 -11.267 1.00 20.00
ATOM	2676 N GLY B 134	7.687 53.957 -10.491 1.00 4.00
MOTA	2677 CA GLY B 134	6.660 54.684 -11.218 1.00 4.00
ATOM	2678 C GLY B 134	6.524 56.129 -10.814 1.00 4.00
ATOM	2679 O GLY B 134	6.950 56.542 -9.741 1.00 4.00
ATOM	2680 H GLY B 134	8.007 54.259 -9.590 1.00 20.00
ATOM	2681 N LEU B 135	5.913 56.875 -11.747 1.00 5.48
ATOM	2682 CA LEU B 135	5.698 58.301 -11.516 1.00 5.48
MOTA	2683 C LEU B 135	4.262 58.657 -11.780 1.00 5.48
ATOM	2684 O LEU B 135	3.551 57.936 -12.470 1.00 5.48

ATOM	2685 CB LEU B 135	6.481	59.215 -12.461	1.00 5.48
ATOM	2686 CG LEU B 135	7.961	58.954 -12.694	1.00 5.48
MOTA	2687 CD1 LEU B 135	8. 553	60.056 -13.571	1.00 5.48
MOTA	2688 CD2 LEU B 135	8.749	58.771 -11.408	1.00 5.48
ATOM	2689 H LEU B 135	5.468	56.411 -12.517	1.00 20.00
ATOM	2690 N TYR B 136	3.902	59.841 -11.268	1.00 5.12
ATOM	2691 CA TYR B 136	2.670	60.475 -11.731	1.00 5.12
ATOM	2692 C TYR B 136	2.647	61.949 -11.422	1.00 5.12
ATOM	2693 O TYR B 136	3. 133	62.379 -10.385	1.00 5.12
ATOM	2694 CB TYR B 136	1.414	59.795 -11.169	1.00 5.12
ATOM	2695 CG TYR B 136	1.462	59.619 -9.671	1.00 5.12
ATOM	2696 CD1 TYR B 136	2.201	58.549 -9.128	1.00 5.12
ATOM	2697 CD2 TYR B 136	0.734	60.509 -8.860	1.00 5.12
MOTA	2698 CE1 TYR B 136	2. 150	58.319 -7.745	1.00 5.12
MOTA	2699 CE2 TYR B 136	0. 675	60.270 -7.479	1.00 5.12
ATOM	2700 CZ TYR B 136	1.355	59.160 -6.945	1.00 5.12
ATOM	2701 OH TYR B 136	1.232	58.901 -5.596	1.00 5.12
ATOM	2702 H TYR B 136	4.467	60.252 -10.548	1.00 20.00
MOTA	2703 HH TYR B 136	1.239	59.729 -5.136	1.00 20.00
ATOM	2704 N LYS B 137	2.064	62.706 -12.363	1.00 11.54
ATOM	2705 CA LYS B 137	1.910	64.129 -12.070	1.00 11.54
ATOM	2706 C LYS B 137	0.784	64.402 -11.084	1.00 11.54
ATOM	2707 0 LYS B 137	-0.262	63.763 -11.129	1.00 11.54
ATOM	2708 CB LYS B 137	1.758	64.935 -13.373	1.00 11.54

ATOM	2709 CG LYS B 137	1.835 66.448 -13.139 1.00 11.54
ATOM	2710 CD LYS B 137	1.837 67.348 -14.372 1.00 11.54
ATOM	2711 CE LYS B 137	1.746 68.811 -13.928 1.00 11.54
ATOM	2712 NZ LYS B 137	2.007 69.724 -15.050 1.00 11.54
MOTA	2713 H LYS B 137	1.698 62.264 -13.184 1.00 20.00
ATOM	2714 1HZ LYS B 137	1.867 70.705 -14.740 1.00 20.00
MOTA	2715 2HZ LYS B 137	3.010 69.645 -15.337 1.00 20.00
ATOM	2716 3HZ LYS B 137	1.404 69.516 -15.872 1.00 20.00
ATOM	2717 N LEU B 138	1.070 65.368 -10.198 1.00 2.56
ATOM	2718 CA LEU B 138	0.042 65.880 -9.295 1.00 2.56
ATOM	2719 C LEU B 138	-0.736 67.067 -9.876 1.00 2.56
ATOM	2720 O LEU B 138	-1.506 67.689 -9.144 1.00 2.56
ATOM	2721 CB LEU B 138	0.688 66.242 -7.949 1.00 2.56
ATOM	2722 CG LEU B 138	1.557 65.135 -7.341 1.00 2.56
ATOM	2723 CD1 LEU B 138	2.317 65.642 -6.121 1.00 2.56
ATOM	2724 CD2 LEU B 138	0.766 63.865 -7.029 1.00 2.56
ATOM	2725 OXT LEU B 138	-0.574 67.379 -11.062 1.00 2.56
ATOM	2726 H LEU B 138	1.965 65.813 -10.253 1.00 20.00
ATOM	2727 N ARG C 1	-11.122 63.107 -5.160 1.00 5.73
ATOM	2728 CA ARG C 1	-12.158 62.194 -5.656 1.00 5.73
ATOM	2729 C ARG C 1	-12.274 61.039 -4.682 1.00 5.73
MOTA	2730 O ARG C 1	-12.338 61.304 -3.491 1.00 5.73
ATOM	2731 CB ARG C 1	-11.889 61.777 -7.105 1.00 5.73
ATOM	2732 CG ARG C 1	-12.301 62.841 -8.119 1.00 5.73

ATOM	2733	CD	ARG	С	1	-12.165	62.329	-9.552	1.00	5.73
ATOM	2734	NE	ARG	С	1	-12.591	63.346	-10.511	1.00	5.73
MOTA	2735	CZ	ARG	С	1	-11.792	63.695	-11.543	1.00	5.73
MOTA	2736	NH1	ARG	С	1	-12.217	64.618	-12.404	1.00	5.73
ATOM	2737	NH2	ARG	С	1	-10.592	63.129	-11.697	1.00	5.73
ATOM	2738	1H	ARG	С	1	-11.124	64.006	-5.682	1.00	20.00
MOTA	2739	2H	ARG	С	1	-11.336	63. 267	-4.152	1.00	20.00
ATOM	2740	ЗН	ARG	С	1	-10. 188	62.653	-5. 231	1.00	20.00
MOTA	2741	HE	ARG	c	1	-13.500	63.748	-10. 389	1.00	20.00
ATOM	2742	1HH1	ARG	С	1	-11.658	64.901	-13. 184	1.00	20.00
ATOM	2743	2HH1	ARG	С	1	-13.111	65. 052	-12. 285	1.00	20.00
ATOM	2744	1HH2	ARG	С	1	-9.999	63. 354	-12.471	1.00	20.00
ATOM	2745	2HH2	ARG	С	1	-10. 245	62.467	-11.031	1.00	20.00
ATOM	2746	N	LYS	С	2	-12.286	59. 794	-5. 199	1.00	19.49
ATOM	2747	CA	LYS	С	2	-12.453	58.651	-4.301	1.00	19.49
ATOM	2748	С	LYS	C	2	-11.210	58.413	-3.504	1.00	19.49
ATOM	2749	0	LYS	С	2	-10. 120	58.321	-4.054	1.00	19.49
MOTA	2750	СВ	LYS	С	2	-12.747	57.342	-5.032	1.00	19.49
MOTA	2751	CG	LYS	С	2	-14.079	57. 283	-5.763	1.00	19.49
ATOM	2752	CD	LYS	С	2	-14.062	58.092	-7.045	1.00	19.49
MOTA	2753	CE	LYS	С	2	-15. 357	57.915	-7.789	1.00	19.49
ATOM	2754	NZ	LYS	С	2	-16.406	58.884	-7.450	1.00	19.49
ATOM	2755	Н	LYS	С	2	-12.075	59.589	-6. 151	1.00	20.00
ATOM	2756	1HZ	LYS	С	2	-17.050	58.874	-8. 282	1.00	20.00

WO 98/10070

ATOM	2757 2HZ	LYS C	2	-16.899	58.602	-6.579	1.00 20.00
ATOM	2758 3HZ	LYS C	2	-16.014	59.840	-7.355	1.00 20.00
ATOM	2759 N	VAL C	3	-11.437	58.360	-2.191	1.00 4.59
ATOM	2760 CA	VAL C	3	-10.328	58.169	-1.270	1.00 4.59
MOTA	2761 C	VAL C	3	-10.810	57.210	-0.203	1.00 4.59
ATOM	2762 0	VAL C	3	-11.995	57. 162	0.117	1.00 4.59
MOTA	2763 CB	VAL C	3	-9.876	59.524	-0.679	1.00 4.59
MOTA	2764 CG	1 VAL C	3	-8.749	59.403	0.351	1.00 4.59
ATOM	2765 CG	2 VAL C	3	-9.443	60.490	-1.784	1.00 4.59
MOTA	2766 H	VAL C	3	-12.366	58.386	-1.821	1.00 20.00
MOTA	2767 N	ALA C	4	-9.833	56.450	0.299	1.00 5.22
ATOM	2768 CA	ALA C	4	-10.047	55. 588	1.445	1.00 5.22
ATOM	2769 C	ALA C	4	-8.759	55.575	2.228	1.00 5.22
ATOM	2770 0	ALA C	4	-7.677	55.614	1.655	1.00 5.22
ATOM	2771 CF	ALA C	4	-10. 359	54.160	0.998	1.00 5.22
ATOM	2772 H	ALA C	4	-8.902	56.534	-0.066	1.00 20.00
ATOM	2773 N	HIS C	5	-8.926	55.512	3.548	1.00 4.76
ATOM	2774 C	A HIS C	5	-7.770	55. 262	4.404	1.00 4.76
MOTA	2775 C	HIS C	5	-8.312	54.515	5.584	1.00 4.76
ATOM	2776 0	HIS C	5	-9.121	55.092	6. 283	1.00 4.76
ATOM	2777 C	B HIS C	5	-7.137	56.578	4.880	1.00 4.76
ATOM	2778 C	G HIS C	5	-5. 938	3 56. 2 84	5.753	1.00 4.76
ATOM	2779 N	D1 HIS C	5	-4.69	5 56.176	5.267	1.00 4.76
ATOM	2780	D2 HIS C	5	-5.90	2 56.052	7.133	1.00 4.76

ATOM	2781	CE1	HIS C	5	-3.881	55.876	6.322	1.00	4.76
ATOM	2782	NE2	HIS C	5	-4.616	55. 799	7.469	1.00	4.76
MOTA	2783	Н	HIS C	5	-9.845	55.588	3.945	1.00 2	0.00
ATOM	2784	HD1	HIS C	5	-4.439	56.295	4.327	1.00 2	0.00
MOTA	2785	N	LEU C	6	-7. 889	53.257	5.746	1.00	6.04
ATOM	2786	CA	LEU C	6	-8.469	52.397	6.777	1.00	6.04
ATOM	2787	С	LEU C	6	-7.439	51.931	7. 7 62	1.00	6.04
ATOM	2788	0	LEU C	6	-6. 284	51.752	7.403	1.00	6.04
ATOM	2789	СВ	LEU C	6	-9.028	51.122	6.176	1.00	6.04
ATOM	2790	CG	LEU C	6	-10.064	51.332	5.095	1.00	6.04
ATOM	2791	CD1	LEU C	6	-10.532	49.982	4.586	1.00	6.04
ATOM	2792	CD2	LEU C	6	-11.226	52.191	5.575	1.00	6.04
ATOM	2793	H	LEU C	6	-7. 203	52.882	5. 126	1.00	20.00
ATOM	2794	N	THR C	7	-7. 908	51.695	8.993	1.00	3.03
ATOM	2795	CA	THR C	7	-6. 966	51.140	9.959	1.00	3.03
ATOM	2796	С	THR C	7	-7.318	49.722	10.363	1.00	3.03
ATOM	2797	0	THR C	7	-8.439	49.261	10. 178	1.00	3.03
ATOM	2798	СВ	THR C	7	-6.867	52.062	11. 173	1.00	3.03
ATOM	2799	0G	1 THR C	7	-8.176	52.445	11.612	1.00	3.03
MOTA	2800	CO	2 THR C	7	-6.030	53.305	10.859	1.00	3.03
MOTA	2801	. Н	THR C	7	-8.866	51.841	9.252	1.00	20.00
ATOM	2802	e HO	CI THR C	7	-8.091	52.724	12.514	1.00	20.00
ATOM	2803	3 N	GLY C	8	-6. 290	49.040	10.898	1.00	3. 29
ATOM	2804	1 C	A GLY C	8	-6. 531	47.675	11.365	1.00	3. 29

ATOM	2805	С	GLY C	8	-7. 155	47.598	12.747	1.00 3.29
ATOM	2806	0	GLY C	8	-6. 839	48.372	13.644	1.00 3.29
ATOM	2807	Н	GLY C	8	-5. 388	49.475	10.962	1.00 20.00
ATOM	2808	N	LYS C	9	-8. 054	46.609	12.887	1.00 6.71
ATOM	2809	CA	LYS C	9	-8.724	46.455	14.179	1.00 6.71
ATOM	2810	С	LYS C	9	-7.858	45.990	15.333	1.00 6.71
MOTA	2811	0	LYS C	9	-7.574	44.810	15.502	1.00 6.71
ATOM	2812	CB	LYS C	9	-9.923	45.517	14.099	1.00 6.71
ATOM	2813	CG	LYS C	9	-11.065	46.024	13.232	1.00 6.71
ATOM	2814	CD	LYS C	9	-12. 326	45.188	13.433	1.00 6.71
MOTA	2815	CE	LYS C	9	-13.508	45.733	12.633	1.00 6.71
ATOM	2816	NZ	LYS C	9	-14.572	44.722	12.583	1.00 6.71
ATOM	2817	Н	LYS C	9	-8.285	46.041	12.094	1.00 20.00
ATOM	2818	1HZ	LYS C	9	-15. 268	3 44.980	11.857	1.00 20.00
ATOM	2819	2HZ	LYS C	9	-14.168	3 43.814	12.239	1.00 20.00
MOTA	2820	3HZ	LYS C	9	-15.019	5 44.575	13.506	1.00 20.00
ATOM	2821	. N	SER C	10	-7.53	0 46.982	16.177	1.00 13.61
ATOM	2822	2 CA	SER C	10	-6. 93	0 46.711	17.490	1.00 13.61
ATOM	2823	3 C	SER C	10	-7.50	0 45.534	18.260	1.00 13.61
ATOM	282	4 0	SER C	10	-6.81	1 44.625	18.709	1.00 13.61
ATOM	282	5 CI	SER C	10	-7.00	9 47.953	18.372	1.00 13.61
ATOM	282	6 0 (G SER C	10	-6. 61	7 49.092	17.609	1.00 13.61
ATOM	282	7 H	SER C	10	-7.56	60 47.914	15.805	1.00 20.00
ATOM	282	8 H	G SER C	10	-6.5	13 49.803	3 18.230	1.00 20.00

ATOM	2829	N	ASN C	11	-8.831	45. 583	18.399	1.00	3. 64
ATOM	2830	CA	ASN C	11	-9.426	44.390	18.989	1.00	8.64
ATOM	2831	С	ASN C	11	-10.069	43.481	17.969	1.00	8.64
MOTA	2832	0	ASN C	11	-11.272	43.259	17.930	1.00	8.64
ATOM	2833	СВ	ASN C	11	-10. 342	44.728	20.173	1.00	8. 64
ATOM	2834	CG	ASN C	11	-9.562	45.112	21.433	1.00	8.64
ATOM	2835	OD1	ASN C	11	-10. 138	45.560	22.414	1.00	8.64
ATOM	2836	ND2	ASN C	11	-8. 230	44.922	21.405	1.00	8.64
ATOM	2837	Н	ASN C	11	-9.369	46.347	18.044	1.00 2	0.00
ATOM	2838	1HD2	ASN C	11	-7.694	44.571	20.632	1.00 2	0.00
ATOM	2839	2HD2	ASN C	11	-7.746	45.163	22.245	1.00 2	0.00
ATOM	2840	N	SER C	12	-9.167	42.939	17.144	1.00 1	4.76
ATOM	2841	CA	SER C	12	-9.586	41.802	16.339	1.00 1	4.76
ATOM	2842	С	SER C	12	-8.904	40.563	16.865	1.00 1	4.76
ATOM	2843	0	SER C	12	-7.930	40.637	17.606	1.00	14.76
ATOM	2844	СВ	SER C	12	-9.272	42.024	14.859	1.00	14.76
ATOM	2845	OG	SER C	12	-10.060	41.134	14.062	1.00	14.76
ATOM	2846	Н	SER C	12	-8.198	43. 194	17.191	1.00	20.00
ATOM	2847	HG	SER C	12	-10. 101	41.522	13. 194	1.00	20.00
ATOM	2848	N	ARG C	13	-9.465	39.409	16.476	1.00	14.62
ATOM	2849	CA	ARG C	13	-8. 762	38. 197	16.886	1.00	14.62
ATOM	2850	C	ARG C	13	-7.415	38. 113	16. 185	1.00	14.62
ATOM	2851	0	ARG C	13	-7. 237	38.658	15. 107	1.00	14.62
ATOM	2852	c CB	ARG C	13	-9.649	36.969	16.634	1.00	14.62

MOTA	2853	CG	ARG C	13	-10.958	37.042	17.429	1.00 14.62
ATOM	2854	CD	ARG C	13	-11.796	35.761	17.346	1.00 14.62
ATOM	2855	NE	ARG C	13	-12.945	35.813	18.255	1.00 14.62
ATOM	2856	CZ	ARG C	13	-12.821	35.476	19.560	1.00 14.62
ATOM	2857	NH1	ARG C	13	-13.868	35.600	20.373	1.00 14.62
ATOM	2858	NH2	ARG C	13	-11.660	35.027	20.039	1.00 14.62
ATOM	2859	Н	ARG C	13	-10. 181	39.450	15.778	1.00 20.00
ATOM	2860	HE	ARG C	13	-13. 809	36. 153	17.881	1.00 20.00
ATOM	2861	1HH1	ARG C	13	-13. 804	35.371	21. 344	1.00 20.00
MOTA	2862	2HH1	ARG C	13	-14.745	35.930	20.022	1.00 20.00
ATOM	2863	1HH2	ARG C	13	-11.538	34.791	21.003	1.00 20.00
ATOM	2864	2НН2	ARG C	13	-10.881	34.919	19.423	1.00 20.00
ATOM	2865	N	SER C	14	-6.474	37.379	16.812	1.00 5.58
ATOM	2866	CA	SER C	14	-5.119	37.234	16.246	1.00 5.58
ATOM	2867	С	SER C	14	-5. 031	36.662	14.863	1.00 5.58
ATOM	2868	0	SER C	14	-4.028	36.618	14.167	1.00 5.58
MOTA	2869	CB	SER C	14	-4.293	36.320	17.124	1.00 5.58
ATOM	2870) OG	SER (14	-4.659	36.531	18.486	1.00 5.58
ATOM	2871	Н	SER (14	-6.642	36.896	17.668	1.00 20.00
ATOM	2872	2 HC	SER (C 14	-3.837	7 36.636	18.947	1.00 20.00
ATOM	2873	3 N	MET	C 15	-6. 184	4 36.171	14.535	1.00 11.01
ATOM	287	4 C	A WET	C 15	-6. 37	4 35.586	3. 259	1.00 11.01
ATOM	287	5 C	MET	C 15	-6.69	3 36.528	3 12.088	3 1.00 11.01
ATOM	287	6 0	MET	C 15	-5.84	6 36.53	7 11.212	2 1.00 11.01

İ	ATOM	2877	СВ	MET C	15	-7.437	34.564	13.481	1.00 11.01
À	ATOM	2878	CG	MET C	15	-7.404	33.532	14.569	1.00 11.01
4	ATOM	2879	SD	MET C	15	-8. 931	32.670	14.158	1.00 11.01
1	ATOM	2880	CE	MET C	15	-9. 999	33.725	13. 122	1.00 11.01
,	ATOM	2881	Н	MET C	15	-6. 889	36. 187	15.229	1.00 20.00
	ATOM	2882	N	PRO C	16	-7.852	37.294	11.986	1.00 6.76
	ATOM	2883	CA	PRO C	16	-7.930	38. 151	10.789	1.00 6.76
	ATOM	2884	С	PRO C	16	-7.180	39.476	10.950	1.00 6.76
	ATOM	2885	0	PRO C	16	-6.989	40.010	12.036	1.00 6.76
	ATOM	2886	СВ	PRO C	16	-9.435	38. 379	10.638	1.00 6.76
	ATOM	2887	CG	PRO C	16	-9.925	38.490	12.082	1.00 6.76
	ATOM	2888	CD	PRO C	16	-9.037	37.494	12.840	1.00 6.76
	MOTA	2889	N	LEU C	17	-6.817	40.019	9.779	1.00 6.37
	ATOM	2890	CA	LEU C	17	-6.599	41.462	9.727	1.00 6.37
	ATOM	2891	С	LEU C	17	-7.895	42.076	9.257	1.00 6.37
	ATOM	2892	0	LEU C	17	-8.391	41.740	8. 191	1.00 6.37
	ATOM	2893	СВ	LEU C	17	-5.479	41.803	8.742	1.00 6.37
	MOTA	2894	CG	LEU C	17	-5.026	43.267	8.733	1.00 6.37
	ATOM	2895	CD	1 LEU C	17	-4.530	43.745	10.102	1.00 6.37
	ATOM	2896	CD	2 LEU C	17	-3. 983	43.501	7.639	1.00 6.37
	ATOM	2897	Н	LEU C	. 17	-6.948	39.513	8.930	1.00 20.00
	ATOM	2898	N	GLU C	18	-8.446	42.951	10.101	1.00 14.08
	ATOM	2899	CÁ	GLU C	18	-9.702	43.528	9.645	1.00 14.08
	ATOM	2900	С	GLU C	18	-9.574	45. 029	9.569	1.00 14.08

ATOM	2901	0	GLU C	18	-8. 831	45. 628	10.338	1.00 14.08
ATOM	2902	СВ	GLU C	18	-10.847	43.100	10.561	1.00 14.08
ATOM	2903	CG	GLU C	18	-12. 185	42.922	9.829	1.00 14.08
ATOM	2904	CD	GLU C	18	-13.334	42.810	10.818	1.00 14.08
ATOM	2905	0E1	GLU C	18	-13. 140	42.401	11.960	1.00 14.08
ATOM	2906	0E2	GLU C	18	-14.450	43. 208	10.492	1.00 14.08
ATOM	2907	Н	GLU C	18	-8.002	43.255	10.944	1.00 20.00
ATOM	2908	N	TRP C	19	-10. 296	45.601	8.598	1.00 6.20
ATOM	2909	CA	TRP C	19	-10.197	47.049	8.465	1.00 6.20
MOTA	2910	С	TRP C	19	-11.343	47.773	9.141	1.00 6.20
ATOM	2911	0	TRP C	19	-12.379	47.189	9.439	1.00 6.20
ATOM	2912	СВ	TRP C	19	-10.106	47.441	6.991	1.00 6.20
ATOM	2913	CG	TRP C	19	-8.853	46.885	6.352	1.00 6.20
ATOM	2914	CD	1 TRP C	19	-8. 795	45.941	5.314	1.00 6.20
ATOM	2915	CD	2 TRP C	19	-7.474	47. 195	6.660	1.00 6.20
ATOM	2916	NE	1 TRP C	19	-7.507	45.654	4.982	1.00 6.20
ATOM	2917	CE	2 TRP C	19	-6.655	46.395	5. 794	1.00 6.20
ATOM	2918	S CE	C3 TRP (19	-6.866	48.054	7.601	1.00 6.20
ATOM	2919) C2	Z2 TRP (C 19	-5. 247	46.481	5.878	1.00 6.20
ATOM	2920) C2	Z3 TRP (C 19	-5.459	48.130	7.676	1.00 6.20
ATOM	292	1 CI	H2 TRP	C 19	-4.653	3 47.342	6.824	1.00 6.20
ATOM	292	2 H	TRP	C 19	-10.942	2 45.070	8.052	2 1.00 20.00
ATOM	292	3 H	E1 TRP	C 19	-7. 22	2 45.00	4.305	5 1.00 20.00
ATOM	292	4 N	GLU	C 20	-11.10	3 49.07	9.364	1.00 5.13

	PCT/JP97/02983
WO 98/10070	PCIMI

ATOM	2925	CA	GLU C	20	-12, 119	49.871	10.042	1.00 5.13
				20	-12. 285	51.257	9.464	1.00 5.13
ATOM	2926	С	GLU C				8.954	1.00 5.13
ATOM	2927	0	GLU C	20	-11. 330	51.830		
MOTA	2928	CB	GLU C	20	-11.781	49.982	11.524	1.00 5.13
ATOM	2929	CG	GLU C	20	-12.881	49.370	12.390	1.00 5.13
MOTA	2930	CD	GLU C	20	-12.543	49.511	13.862	1.00 5.13
ATOM	2931	OE1	GLU C	20	-12. 218	50.617	14.289	1.00 5.13
ATOM	2932	OE2	GLU C	20	-12.620	48.516	14.582	1.00 5.13
ATOM	2933	Н	GLU C	20	-10. 183	49.447	9. 224	1.00 20.00
ATOM	2934	N	ASP C	21	-13. 538	51.745	9.612	1.00 13.73
ATOM	2935	CA	ASP C	21	-13. 925	53.060	9.089	1.00 13.73
ATOM	2936	С	ASP C	21	-14.013	54.183	10.109	1.00 13.73
ATOM	2937	0	ASP C	21	-13. 694	55.339	9.855	1.00 13.73
ATOM	2938	СВ	ASP C	21	-15. 246	53.010	8.312	1.00 13.73
ATOM	2939	ĊG	ASP C	21	-15. 275	51.896	7.282	1.00 13.73
ATOM	2940	OD	1 ASP C	21	-16. 364	51.402	7.002	1.00 13.73
ATOM	2941	OD	2 ASP C	21	-14. 223	51.517	6.768	1.00 13.73
ATOM	2942	H	ASP (21	-14. 244	51.127	9.948	1.00 20.00
ATOM	2943	3 N	THR (22	-14.467	53.815	11.308	1.00 11.65
ATOM	2944	A CA	THR (C 22	-14.684	54.918	12.238	1.00 11.65
ATOM	2945	5 C	THR	C 22	-13. 502	55.223	13.145	1.00 11.65
ATOM	2940	6 0	THR	C 22	-13.506	55.015	14.351	1.00 11.65
ATOM	294	7 CI	3 THR	C 22	-16.006	54.707	12.979	1.00 11.65
MOTA	294	8 00	G1 THR	C 22	-17.011	54.362	2 12.015	1.00 11.65

ATOM	2949	CG2	THR C	22	-16.454	55.936	13.781	1.00 11.65
ATOM	2950	Н	THR C	22	-14.702	52.870	11.523	1.00 20.00
ATOM	2951	HG1	THR C	22	-17. 830	54.261	12.480	1.00 20.00
MOTA	2952	N	TYR C	23	-12.472	55.754	12.473	1.00 6.57
ATOM	2953	CA	TYR C	23	-11. 280	56.165	13.207	1.00 6.57
ATOM	2954	С	TYR C	23	-10. 882	57.564	12.776	1.00 6.57
ATOM	2955	0	TYR C	23	-11.265	58.019	11.707	1.00 6.57
ATOM	2956	СВ	TYR C	23	-10.164	55.122	13.006	1.00 6.57
ATOM	2957	CG	TYR C	23	-8.920	55.433	13.811	1.00 6.57
ATOM	2958	CD1	TYR C	23	-7.789	55.957	13.149	1.00 6.57
ATOM	2959	CD2	TYR C	23	-8. 927	55. 200	15. 201	1.00 6.57
ATOM	2960	CEI	TYR C	23	-6.647	56. 277	13.901	1.00 6.57
ATOM	2961	CE2	2 TYR C	23	-7.782	55.514	15. 951	1.00 6.57
ATOM	2962	CZ	TYR C	23	-6.660	56.057	15. 293	1.00 6.57
ATOM	2963	ОН	TYR C	23	-5.540	56.393	16.025	1.00 6.57
MOTA	2964	Н	TYR C	23	-12.573	55.927	11.487	1.00 20.00
ATOM	2965	НН	TYR C	23	-5.604	56.042	16.904	1.00 20.00
ATOM	2966	N	GLY C	24	-10. 108	58. 222	13.667	1.00 5.63
ATOM	2967	CA	GLY C	24	-9.714	59.625	13.501	1.00 5.63
ATOM	2968	C C	GLY C	24	-9.473	60.080	12.077	1.00 5.63
ATOM	2969	0	GLY C	24	-10. 171	60.934	11.543	1.00 5.63
ATOM	2970) H	GLY C	24	-9.854	57.735	14.501	1.00 20.00
ATOM	2971	L N	ILE (25	-8.45	1 59.456	11.464	1.00 5.38
ATOM	2972	2 C <i>i</i>	A ILE (25	-8.43	4 59.750	10.04	1.00 5.38

ATOM	2973	С	ILE C	25	-8. 615	58.538	9.161	1.00	5.38
ATOM	2974	0	ILE C	25	-7.741	58.094	8.430	1.00	5. 38
ATOM	2975	СВ	ILE C	25	-7. 254	60.623	9.618	1.00	5.38
ATOM	2976	CG1	ILE C	25	-6. 921	61.660	10.699	1.00	5.38
ATOM	2977	CG2	ILE C	25	-7. 670	61.298	8.310	1.00	5.38
ATOM	2978	CD1	ILE C	2 5	-5.541	62.297	10.587	1.00	5.38
ATOM	2979	Н	ILE C	25	-7.838	58.799	11.901	1.00	20.00
ATOM	2980	N	VAL C	26	-9.849	58.042	9.273	1.00	4.68
ATOM	2981	CA	VAL, C	26	-10. 267	57.013	8.342	1.00	4.68
ATOM	2982	С	VAL C	26	-11.447	57.485	7.520	1.00	4.68
MOTA	2983	0	VAL C	26	-12.430	58.020	8.017	1.00	4.68
ATOM	2984	СВ	VAL C	26	-10. 539	55.710	9.086	1.00	4.68
ATOM	2985	CG1	VAL C	26	-11.229	54.705	8.186	1.00	4.68
ATOM	2986	CG2	VAL C	26	-9. 233	55.113	9.605	1.00	4.68
ATOM	2987	H	VAL C	26	-10.506	58.396	9.945	1.00	20.00
ATOM	2988	N	LEU C	27	-11. 244	57.327	6.202	1.00	5.09
ATOM	2989	CA	LEU C	27	-12. 194	57.944	5.282	1.00	5.09
ATOM	2990	С	LEU C	27	-12.657	57.046	4.182	1.00	5.09
ATOM	2991	0	LEU C	27	-12.047	56.030	3.863	1.00	5.09
ATOM	2992	св св	LEU C	27	-11.602	59.160	4.596	1.00	5.09
ATOM	2993	s CG	LEU C	27	-10.839	59.981	5.603	1.00	5. 09
MOTA	2994	CD	1 LEU C	27	-9.551	60.492	4.968	1.00	5.09
ATOM	2995	5 CD	2 LEU C	27	-11.756	60.922	6.397	1.00	5.09
ATOM	2996	5 H	LEU (27	-10.422	56.842	5.903	1.00	20.00

ATOM	2997	N	LEU C	28	-13. 754	57.566	3.606	1.00	7.30
ATOM	2998	CA	LEU C	28	-14.469	56.924	2.525	1.00	7.30
MOTA	2999	С	LEU C	28	-15.080	57.978	1.618	1.00	7.30
ATOM	3000	0	LEU C	28	-15. 783	58.861	2.091	1.00	7.30
ATOM	3001	СВ	LEU C	28	-15. 574	56.077	3. 156	1.00	7.30
ATOM	3002	CG	LEU C	28	-16.415	55.343	2.124	1.00	7.30
ATOM	3003	CD1	LEU C	28	-15.498	54.547	1.215	1.00	7.30
ATOM	3004	CD2	LEU C	28	-17. 526	54.498	2.745	1.00	7.30
ATOM	3005	Н	LEU C	28	-14.169	58.398	3.975	1.00	20.00
ATOM	3006	N	SER C	29	-14.830	57.802	0.310	1.00	16.57
ATOM	3007	CA	SER C	29	-15. 560	58.618	-0.661	1.00	16.57
MOTA	3008	С	SER C	29	-15. 927	57.838	-1.909	1.00	16.57
ATOM	3009	0	SER C	29	-15. 149	57.761	-2.849	1.00	16.57
ATOM	3010	СВ	SER C	29	-14.747	59.853	-1.060	1.00	16.57
ATOM	3011	OG	SER C	29	-14.301	60.551	0.105	1.00	16.57
ATOM	3012	Н	SER C	29	-14.073	57.193	0.058	1.00	20.00
ATOM	3013	HG	SER C	29	-13. 788	61.289	-0.191	1.00	20.00
ATOM	3014	. N	GLY C	30	-17. 133	57.242	-1.899	1.00	4.20
ATOM	3015	S CA	GLY	30	-17.540	56.505	-3.103	1.00	4.20
MOTA	3016	5 C	GLY C	30	-17.068	55.057	-3. 192	1.00	4.20
ATOM	3017	7 0	GLY (30	-17.661	54.210	-3.845	1.00	4.20
MOTA	3018	8 H	GLY (30	-17.718	57.271	-1.087	1.00	0 20.00
ATOM	301	9 N	VAL (C 31	-15. 961	54.797	-2.483	3 1.0	0 3.10
ATOM	302	0 C	A VAL	C 31	-15.540	53.404	-2.33	1.0	0 3.10

WO 98/10070

ATOM	3021	С	VAL C	31	-16. 559	52.715	-1.420	1.00 3.10
ATOM	3022	0	VAL C	31	-17. 358	53.381	-0.772	1.00 3.10
ATOM	3023	СВ	VAL C	31	-14.095	53.422	-1.769	1.00 3.10
ATOM	3024	CG1	VAL C	31	-13.457	52.056	-1.499	1.00 3.10
ATOM	3025	CG2	VAL C	31	-13. 194	54.261	-2.679	1.00 3.10
ATOM	3026	Н	VAL C	31	-15.577	55.509	-1.903	1.00 20.00
ATOM	3027	N	LYS C	32	-16.526	51.382	-1.382	1.00 18.46
ATOM	3028	CA	LYS C	32	-17.316	50.776	-0.318	1.00 18.46
ATOM	3029	С	LYS C	32	-16. 521	49.683	0.344	1.00 18.46
MOTA	3030	0	LYS C	32	-15. 732	49.009	-0.303	1.00 18.46
ATOM	3031	СВ	LYS C	32	-18.653	50.264	-0.861	1.00 18.46
ATOM	3032	CG	LYS C	32	-19.634	49.808	0.224	1.00 18.46
ATOM	3033	CD	LYS C	32	-20. 977	49.373	-0.353	1.00 18.46
ATOM	3034	CE	LYS C	32	-20. 842	48.234	-1.360	1.00 18.46
ATOM	3035	NZ	LYS C	32	-22. 165	47.978	-1.939	1.00 18.46
ATOM	3036	Н	LYS C	32	-15. 934	50.855	-1.996	1.00 20.00
MOTA	3037	1HZ	LYS C	32	-22. 091	47.237	-2.663	1.00 20.00
ATOM	3038	2HZ	LYS C	32	-22. 819	47.681	-1.186	1.00 20.00
ATOM	3039	3HZ	LYS C	32	-22. 516	48.855	-2.374	1.00 20.00
ATOM	3040	N	TYR C	33	-16. 750	49.537	1.652	1.00 6.60
ATOM	3041	CA	TYR C	33	-16. 085	48.415	2.297	1.00 6.60
ATOM	3042	С	TYR C	33	-17. 008	47.232	2.352	1.00 6.60
ATOM	3043	0	TYR C	33	-18. 202	47.359	2.600	1.00 6.60
ATOM	3044	CE	TYR C	33	-15.590	48.819	3.685	1.00 6.60

ATOM	3045 CG TYR C 33	-14.855 50.126 3.535 1.00 6.60
ATOM	3046 CD1 TYR C 33	-15.445 51.301 4.037 1.00 6.60
ATOM	3047 CD2 TYR C 33	-13.623 50.139 2.857 1.00 6.60
ATOM	3048 CE1 TYR C 33	-14.780 52.522 3.855 1.00 6.60
ATOM	3049 CE2 TYR C 33	-12.980 51.364 2.640 1.00 6.60
ATOM	3050 CZ TYR C 33	-13.568 52.536 3.138 1.00 6.60
ATOM	3051 OH TYR C 33	-12.933 53.732 2.886 1.00 6.60
ATOM	3052 H TYR C 33	-17.413 50.092 2.154 1.00 20.00
ATOM	3053 HH TYR C 33	-12.187 53.844 3.467 1.00 20.00
ATOM	3054 N LYS C 34	-16.411 46.075 2.067 1.00 11.73
ATOM	3055 CA LYS C 34	-17.262 44.901 2.159 1.00 11.73
ATOM	3056 C LYS C 34	-16.705 43.878 3.137 1.00 11.73
ATOM	3057 0 LYS C 34	-16.525 44.178 4.310 1.00 11.73
ATOM	3058 CB LYS C 34	-17.587 44.396 0.747 1.00 11.73
ATOM	3059 CG LYS C 34	-18.886 43.591 0.707 1.00 11.73
ATOM	3060 CD LYS C 34	-19.229 43.105 -0.697 1.00 11.73
ATOM	3061 CE LYS C 34	-20.485 42.237 -0.693 1.00 11.73
ATOM	3062 NZ LYS C 34	-20.821 41.872 -2.075 1.00 11.73
ATOM	3063 H LYS C 34	-15.450 46.067 1.778 1.00 20.00
ATOM	3064 1HZ LYS C 34	-21.636 41.226 -2.078 1.00 20.00
ATOM		-21.060 42.734 -2.605 1.00 20.00
ATOM		-20.004 41.413 -2.526 1.00 20.00
ATOM	0 05	-16.406 42.665 2.640 1.00 6.70
ATO		-15.822 41.689 3.557 1.00 6.70

	PCT/JP97/02983
WO 98/10070	

ATOM	3069	С	LYS C	35	-14.321	41.878	3.697	1.00 6.70
ATOM	3070	0	LYS C	35	-13.521	41.110	3.184	1.00 6.70
ATOM	3071	СВ	LYS C	3 5	-16.175	40.276	3.087	1.00 6.70
ATOM	3072	CG	LYS C	35	-17.685	40.034	2.995	1.00 6.70
ATOM	3073	CD	LYS C	35	-18. 011	38.676	2.372	1.00 6.70
ATOM	3074	CE	LYS C	35	-19.513	38.403	2.282	1.00 6.70
ATOM	3075	NZ	LYS C	35	-19.727	37.118	1.600	1.00 6.70
ATOM	3076	Н	LYS C	35	-16.468	42.447	1.669	1.00 20.00
ATOM	3077	1HZ	LYS C	35	-20.743	36.895	1.580	1.00 20.00
ATOM	3078	2HZ	LYS C	35	-19.362	37. 178	0.628	1.00 20.00
ATOM	3079	ЗНΖ	LYS C	35	-19.217	36.370	2.112	1.00 20.00
ATOM	3080	N	GLY C	36	-13.989	42.981	4.392	1.00 3.55
ATOM	3081	CA	GLY C	36	-12.577	43.326	4.576	1.00 3.55
ATOM	3082	С	GLY C	36	-11.851	43.783	3.317	1.00 3.55
ATOM	3083	0	GLY C	36	-10.642	43.652	3. 185	1.00 3.55
ATOM	3084	Н	GLY C	36	-14.727	43.549	4.767	1.00 20.00
MOTA	3085	N	GLY C	37	-12.652	44.331	2.388	1.00 4.03
ATOM	3086	CA	GLY C	37	-12.034	44.710	1.123	1.00 4.03
ATOM	3087	C	GLY C	37	-12.679	45.921	0.506	1.00 4.03
ATOM	3088	0	GLY (37	-13. 788	46.300	0.872	1.00 4.03
ATOM	3089	Н	GLY (37	-13.628	3 44.459	2.543	1.00 20.00
ATOM	3090) N	LEU (38	-11.915	46.516	-0.425	1.00 5.45
ATOM	3091	ı C	A LEU (38	-12.392	2 47.771	-1.003	1.00 5.45
ATOM	3092	2 C	LEU (C 38	-13.03	6 47.562	-2.349	1.00 5.45

ATOM	3093	0	LEU C	38	-12.464	46.930	-3.222	1.00 5.45
ATOM	3094	СВ	LEU C	38	-11. 280	48.813	-1.199	1.00 5.45
ATOM	3095	CG	LEU C	38	-10. 282	49.055	-0.062	1.00 5.45
ATOM	3096	CD1	LEU C	38	-9.653	50.439	-0.174	1.00 5.45
ATOM	3097	CD2	LEU C	38	-10.857	48.872	1.331	1.00 5.45
ATOM	3098	Н	LEU C	38	-11.052	46.088	-0.705	1.00 20.00
ATOM	3099	N	VAL C	39	-14.234	48.139	-2.483	1.00 2.74
MOTA	3100	CA	VAL C	39	-14.872	48.161	-3.798	1.00 2.74
MOTA	3101	С	VAL C	39	-14.585	49.475	-4.500	1.00 2.74
ATOM	3102	0	VAL C	39	-14.854	50.545	-3.963	1.00 2.74
ATOM	3103	СВ	VAL C	39	-16. 392	47.973	-3.676	1.00 2.74
ATOM	3104	CG1	VAL C	39	-17. 034	47.749	-5.049	1.00 2.74
ATOM	3105	CG2	VAL C	39	-16. 763	46.864	-2.691	1.00 2.74
ATOM	3106	Н	VAL C	39	-14.628	48.615	-1.697	1.00 20.00
ATOM	3107	N	ILE C	40	-14.035	49.356	-5.717	1.00 15.04
ATOM	3108	CA	ILE C	40	-13. 733	50.589	-6.445	1.00 15.04
ATOM	3109	С	ILE C	40	-14.933	51.146	-7. 206	1.00 15.04
ATOM	3110	0	ILE C	40	-15. 637	50.454	-7. 931	1.00 15.04
ATOM	3111	СВ	ILE C	40	-12.482	50.404	-7.334	1.00 15.04
ATOM	3112	CG	1 ILE C	40	-11. 224	50. 269	-6.468	1.00 15.04
ATOM	3113	CG	2 ILE C	40	-12. 258	51.589	-8.277	1.00 15.04
ATOM	3114	CD	1 ILE C	40	-10. 921	48.875	-5. 921	1.00 15.04
ATOM	3115	5 Н	ILE C	40	-13. 823	48.444	-6.087	1.00 20.00
ATOM	3116	5 N	ASN C	2 41	-15. 136	52.457	-6.980	1.00 16.19

ATOM	3117	CA	ASN C	41	-16.258	53.161	-7.609	1.00 16	5. 19
ATOM	3118	С	ASN C	41	-16.095	53.432	-9.097	1.00 16	5. 19
ATOM	3119	0	ASN C	41	-17.018	53.256	-9.881	1.00 16	5. 19
ATOM	3120	СВ	ASN C	41	-16.510	54.481	-6.867	1.00 16	5. 19
ATOM	3121	CG	ASN C	41	-17.861	55.130	-7.167	1.00 16	5. 19
ATOM	3122	OD1	ASN C	41	-18.713	55. 266	-6.306	1.00 1	6. 19
ATOM	3123	ND2	ASN C	41	-18.015	55.628	-8.401	1.00 1	6. 19
ATOM	3124	Н	ASN C	41	-14.522	52.913	-6.338	1.00 2	0.00
ATOM	3125	1HD2	ASN C	41	-17, 360	55.540	-9.150	1.00 2	0.00
ATOM	3126	2HD2	ASN C	41	-18.876	56.096	-8.588	1.00 2	0.00
ATOM	3127	N	GLU C	42	-14.907	53.944	-9.454	1.00	4.33
ATOM	3128	CA	GLU C	42	-14.787	54.466	-10.814	1.00	4.33
ATOM	3129	С	GLU C	42	-13.534	53.977	-11.493	1.00	4.33
ATOM	3130	0	GLU C	42	-12.595	53.510	-10.865	1.00	4.33
ATOM	3131	СВ	GLU C	42	-14.792	55. 998	-10.804	1.00	4.33
ATOM	3132	CG	GLU C	42	-16. 101	56.666	-11.259	1.00	4.33
ATOM	3133	CD	GLU C	42	-16.092	58. 138	-10.857	1.00	4.33
ATOM	3134	0E	1 GLU C	42	-15. 141	58.844	-11. 202	1.00	4.33
ATOM	3135	OE	2 GLU C	42	-17.018	58.566	-10.153	1.00	4.33
ATOM	3136	Н	GLU (42	-14.103	53.956	-8.857	1.00	20.00
ATOM	3137	N	THR (2 43	-13.547	54.141	-12.818	1.00	2.66
ATOM	3138	B CA	THR (2 43	-12.307	53.867	7 –13.530	1.00	2.66
ATOM	3139) C	THR (C 43	-11. 293	3 54.986	5 –13.353	1.00	2.66
ATOM	3140	0 0	THR	C 43	-11.627	7 56.17	1 -13.294	1.00	2.66

ATOM	3141	СВ	THR C	43	-12.638	53.612 -15.004 1.00 2.66
ATOM	3142	0G1	THR C	43	-13.743	52.704 -15.085 1.00 2.66
ATOM	3143	CG2	THR C	43	-11.456	53.083 -15.823 1.00 2.66
ATOM	3144	Н	THR C	43	-14.362	54.449 -13.307 1.00 20.00
ATOM	3145	HG1	THR C	43	-13.856	52.497 -16.004 1.00 20.00
ATOM	3146	N	GLY C	44	-10.030	54.561 -13.267 1.00 2.64
ATOM	3147	CA	GLY C	44	-8.975	55.561 -13.314 1.00 2.64
ATOM	3148	С	GLY C	44	-7. 771	55.114 -12.534 1.00 2.64
ATOM	3149	0	GLY C	44	-7.686	53.985 -12.070 1.00 2.64
MOTA	3150	Н	GLY C	44	-9.822	53.580 -13.185 1.00 20.00
MOTA	3151	N	LEU C	45	-6.843	56.067 -12.406 1.00 5.33
ATOM	3152	CA	LEU C	45	-5. 669	55.735 -11.616 1.00 5.33
ATOM	3153	С	LEU C	45	-5. 924	55.899 -10.146 1.00 5.33
ATOM	3154	0	LEU C	45	-6. 508	56.873 -9.692 1.00 5.33
ATOM	3155	СВ	LEU C	45	-4.498	56.590 -12.069 1.00 5.33
MOTA	3156	CG	LEU C	45	-4.141	56.211 -13.500 1.00 5.33
ATOM	3157	CD	1 LEU C	45	-3. 565	57.381 -14.282 1.00 5.33
ATOM	3158	CD	2 LEU C	45	-3. 268	54.960 -13.545 1.00 5.33
ATOM	3159	Н	LEU C	45	-6.982	56.997 -12.739 1.00 20.00
MOTA	3160	N	TYR (46	-5.461	54.881 -9.431 1.00 3.53
ATOM	3161	CA	TYR (2 46	-5. 502	2 54.984 -7.987 1.00 3.53
MOTA	3162	. C	TYR (C 46	-4.104	54.772 -7.471 1.00 3.53
ATOM	3163	3 0	TYR	C 46	-3. 348	3 53.953 -7.983 1.00 3.53
ATOM	3164	L CI	3 TYR	C 46	-6.46	53.953 -7.388 1.00 3.53

ATOM	3165	CG	TYR C	46	-7.916	54.293	-7.678	1.00	3.53
ATOM	3166	CD1	TYR C	46	-8.468	54.022	-8.949	1.00	3.53
ATOM	3167	CD2	TYR C	46	-8. 686	54.869	-6.648	1.00	3.53
ATOM	3168	CE1	TYR C	46	-9.815	54.340	-9.198	1.00	3.53
MOTA	3169	CE2	TYR C	46	-10. 033	55. 180	-6.893	1.00	3.53
ATOM	3170	CZ	TYR C	46	-10. 582	54.916	-8.164	1.00	3.53
ATOM	3171	ОН	TYR C	46	-11.908	55. 237	-8.393	1.00	3.53
ATOM	3172	H	TYR C	46	-5.022	54.096	-9.873	1.00 2	20.00
ATOM .	3173	нн	TYR C	46	-12.277	55.583	-7.594	1.00 2	20.00
ATOM	3174	N	PHE C	47	-3.802	55. 550	-6.430	1.00	3.38
MOTA	3175	CA	PHE C	47	-2.638	55. 184	-5.645	1.00	3.38
ATOM	3176	С	PHE C	47	-3.095	54.309	-4.503	1.00	3.38
ATOM	3177	0	PHE C	47	-3.990	54.649	-3.735	1.00	3.38
ATOM	3178	СВ	PHE C	47	-1.899	56.433	-5. 168	1.00	3.38
ATOM	3179	CG	PHE C	47	-0.578	56.093	-4.512	1.00	3.38
ATOM	3180	CD	1 PHE C	47	0. 570	55. 933	-5.316	1.00	3.38
ATOM	3181	CD	2 PHE C	47	-0.503	55. 958	-3.108	1.00	3.38
ATOM	3182	CE	1 PHE C	47	1.814	55.663	-4.715	1.00	3.38
ATOM	3183	CE	2 PHE C	47	0.740	55.689	-2.502	1.00	3.38
ATOM	3184	CZ	PHE C	47	1.887	55. 553	-3.311	1.00	3.38
ATOM	3185	Н	PHE C	47	-4.462	56. 226	-6.100	1.00	20.00
MOTA	3186	N	VAL C	48	-2.448	53. 144	-4.494	1.00	2.79
ATOM	3187	' CA	VAL C	48	-2. 731	52.119	-3.504	1.00	2.79
ATOM	3188	3 C	VAL (2 48	-1.569	52.062	-2.537	1.00	2.79

					•			
ATOM	3189	0	VAL C	48	-0.440	51.828	-2.948	1.00 2.79
ATOM	3190	СВ	VAL C	48	-2.895	50.780	-4.237	1.00 2.79
ATOM	3191	CG1	VAL C	48	-3. 237	49.630	-3.289	1.00 2.79
ATOM	3192	CG2	VAL C	48	-3. 903	50.902	-5.383	1.00 2.79
ATOM	3193	Н	VAL C	48	-1.733	52.986	-5.178	1.00 20.00
ATOM	3194	N	TYR C	49	-1.878	52.291	-1.255	1.00 3.73
ATOM	3195	CA	TYR C	49	-0.801	52.202	-0.273	1.00 3.73
ATOM	3196	С	TYR C	49	-1. 226	51.413	0.939	1.00 3.73
ATOM	3197	0	TYR C	49	-2.404	51.338	1.262	1.00 3.73
ATOM	3198	СВ	TYR C	49	-0. 295	53.593	0.146	1.00 3.73
ATOM	3199	CG	TYR C	49	-1.390	54.417	0.789	1.00 3.73
MOTA	3200	CD	1 TYR C	49	-1.607	54.309	2.178	1.00 3.73
ATOM	3201	CD	2 TYR C	49	-2.169	55.264	-0.023	1.00 3.73
ATOM	3202	CE	1 TYR C	49	-2.648	55.044	2.764	1.00 3.73
ATOM	3203	CE	2 TYR C	49	-3. 209	55.999	0.564	1.00 3.73
ATOM	3204	CZ	TYR	49	-3.435	55.878	1.948	1.00 3.73
ATOM	3205	5 OF	TYR (49	-4.458	56.599	2.532	1.00 3.73
ATOM	3206	5 H	TYR (C 49	-2.819	52.496	-0.967	1.00 20.00
ATOM	3207	7 HI	H TYR	C 49	-5.137	7 56.775	1.882	1.00 20.00
ATOM	320	8 N	SER	C 50	-0. 21	5 50.852	1.611	1.00 5.02
ATOM	320	9 C.	A SER	C 50	-0.52	6 50.156	2.852	2 1.00 5.02
ATOM	321	0 C	SER	C 50	0.70	3 50.043	3.719	1.00 5.02
ATOM	321	1 0	SER	C 50	1.82	3 50.001	3.22	2 1.00 5.02
ATOM	321	.2 C	B SER	C 50	-1.12	5 48.778	3 2.55	3 1.00 5.02
					_			

ATOM	3213	OG	SER C	50	-1.384	48.081	3.773	1.00 5.02
ATOM	3214	Н	SER C	50	0.730	50.917	1.277	1.00 20.00
ATOM	3215	HG	SER C	50	-2.105	47.485	3.620	1.00 20.00
ATOM	3216	N	LYS C	51	0.451	50.004	5.032	1.00 6.04
ATOM	3217	CA	LYS C	51	1.566	49.747	5.928	1.00 6.04
MOTA	3218	С	LYS C	51	1.168	48.864	7.085	1.00 6.04
ATOM	3219	0	LYS C	51	0.081	48.988	7.634	1.00 6.04
ATOM	3220	CB	LYS C	51	2.204	51.046	6.419	1.00 6.04
ATOM	3221	CG	LYS C	51	3.649	50.767	6.806	1.00 6.04
ATOM	3222	CD	LYS C	51	4.515	51.970	7.118	1.00 6.04
ATOM	3223	CE	LYS C	51	5. 951	51.473	7.261	1.00 6.04
ATOM	3224	NZ	LYS C	51	6.762	52.551	7.819	1.00 6.04
MOTA	3225	Н	LYS C	51	-0.498	50.000	5. 359	1.00 20.00
ATOM	3226	1HZ	LYS C	51	7.767	52.303	7.829	1.00 20.00
ATOM	3227	2HZ	LYS C	51	6. 618	53.390	7. 222	1.00 20.00
ATOM	3228	ЗНΖ	LYS C	51	6.445	52.779	8.779	1.00 20.00
ATOM	3229	N	VAL C	52	2. 106	47.962	7.414	1.00 4.38
ATOM	3230	CA	VAL C	52	1.919	47. 105	8.580	1.00 4.38
ATOM	3231	С	VAL C	52	3. 163	47.030	9.425	1.00 4.38
ATOM	3232	0	VAL C	52	4.288	47. 236	8.969	1.00 4.38
MOTA	3233	СВ	VAL C	52	1.526	45.684	8. 196	1.00 4.38
ATOM	3234	CG:	ı VAL C	52	0.075	45.610	7.735	1.00 4.38
MOTA	3235	CG	2 VAL C	52	2.532	45. 109	7. 199	1.00 4.38
ATOM	3236	Н	VAL C	52	2.955	47.914	6.882	1.00 20.00

ATOM	3237	N	TYR C	53	2. 885	46.722	10.698	1.00	6.58
ATOM	3238	CA	TYR C	53	3. 982	46.563	11.640	1.00	6.58
ATOM	3239	С	TYR C	53	3. 874	45. 285	12.404	1.00	6.58
ATOM	3240	0	TYR C	53	2.802	44.814	12.771	1.00	6.58
ATOM	3241	СВ	TYR C	53	4.053	47.702	12.650	1.00	6.58
ATOM	3242	CG	TYR C	53	4.540	48.956	11.979	1.00	6.58
ATOM	3243	CD1	TYR C	53	5. 7 54	49.515	12.410	1.00	6.58
ATOM	3244	CD2	TYR C	53	3.772	49.528	10.946	1.00	6.58
ATOM	3245	CE1	TYR C	53	6. 205	50.675	11.774	1.00	6.58
MOTA	3246	CE2	TYR C	53	4.222	50.682	10.313	1.00	6.58
ATOM	3247	CZ	TYR C	53	5.430	51.241	10.747	1.00	6.58
ATOM	3248	ОН	TYR C	53	5. 846	52.408	10. 152	1.00	6.58
ATOM	3249	Н	TYR C	53	1.934	46.638	11.003	1.00	20.00
MOTA	3250	нн	TYR C	53	5. 227	53.067	10.477	1.00	20.00
ATOM	3251	N	PHE C	54	5.075	44.765	12.622	1.00	6.05
ATOM	3252	CA	PHE C	54	5. 170	43.485	13. 288	1.00	6.05
ATOM	3253	С	PHE (54	6.023	43.652	14.513	1.00	6.05
ATOM	3254	0	PHE (54	7.011	44.378	14.484	1.00	6.05
ATOM	3255	CF	B PHE	C 54	5.816	42.470	12.343	1.00	6.05
ATOM	3256	C	G PHE	C 54	5. 174	42.482	2 10.971	1.00	6.05
ATOM	3257	' Cl	D1 PHE	C 54	5. 97	5 42.770	9.844	1.00	6.05
MOTA	3258	3 C	D2 PHE	C 54	3.80	0 42.19	10.829	1.00	6.05
ATOM	3259) C	E1 PHE	C 54	5.41	3 42.69	8.55	5 1.00	6.05
ATOM	.3260	о с	E2 PHE	C 54	3. 2 3	6 42.12	0 9.543	3 1.00	6.05

	PCT/JP97/02983
WO 98/10070	I CT/017//cases

ATOM	3261	CZ	PHE C	54	4.057	42.337	8.418	1.00 6.05
ATOM	3262	Н	PHE C	54	5.907	45. 228	12.310	1.00 20.00
ATOM	3263	N	ARG C	55	5. 622	42.952	15.570	1.00 19.70
ATOM	3264	CA	ARG C	5 5	6.572	42.757	16.651	1.00 19.70
ATOM	3265	С	ARG C	55	6.573	41.317	17.086	1.00 19.70
ATOM	3266	0	ARG C	55	5. 775	40.502	16.642	1.00 19.70
ATOM	3267	СВ	ARG C	55	6. 247	43.628	17.856	1.00 19.70
ATOM	3268	CG	ARG C	55	7.422	44.314	18.542	1.00 19.70
ATOM	3269	CD	ARG C	55	6.974	44.923	19.852	1.00 19.70
ATOM	3270	NE	ARG C	55	6.518	43.926	20.818	1.00 19.70
ATOM	3271	CZ	ARG C	55	5.435	44.370	21.486	1.00 19.70
ATOM	3272	NH1	ARG C	55	5.476	44.387	22.819	1.00 19.70
ATOM	3273	NH2	ARG C	5 5	4.366	44.819	20.807	1.00 19.70
ATOM	3274	Н	ARG C	55	4.731	42.491	15.582	1.00 20.00
ATOM	3275	HE	ARG C	55	7.217	43.332	21.219	1.00 20.00
ATOM	3276	1HH1	ARG C	55	4.720	44.761	23.357	1.00 20.00
ATOM	3277	2HH:	1 ARG C	55	6. 280	44.044	23.311	1.00 20.00
ATOM	3278	1HH:	2 ARG C	55	3.562	45.210	21.263	1.00 20.00
ATOM	3279	2HH:	2 ARG C	55	4.349	44.751	19.798	1.00 20.00
ATOM	3280	N	GLY C	56	7.479	41.063	18.026	1.00 3.53
ATOM	3281	CA	GLY C	56	7. 387	39.825	18.773	1.00 3.53
MOTA	3282	С	GLY C	56	8. 374	39.905	19.899	1.00 3.53
ATOM	3283	0	GLY C	56	9. 263	40.752	19.911	1.00 3.53
ATOM	3284	Н	GLY (56	8. 224	41.708	18. 207	1.00 20.00

ATOM	3285 N	1	GLN C	57	8. 161	38.991	20.841	1.00 16.13
MOTA	3286	CA	GLN C	57	9.200	38.805	21.831	1.00 16.13
ATOM	3287	2	GLN C	57	9.825	37.456	21.568	1.00 16.13
ATOM	3288 (0	GLN C	57	9.117	36.520	21.210	1.00 16.13
ATOM	3289	СВ	GLN C	57	8.567	38. 938	23.211	1.00 16.13
ATOM	3290	CG	GLN C	57	9.600	39. 118	24.315	1.00 16.13
ATOM	3291	CD	GLN C	57	8.893	39.628	25.547	1.00 16.13
ATOM	3292	0E1	GLN C	57	7.925	39.070	26.040	1.00 16.13
ATOM	3293	NE2	GLN C	57	9.418	40.761	26.016	1.00 16.13
ATOM	3294	Н	GLN C	57	7.420	38.322	20.786	1.00 20.00
MOTA	3295 1	HE2	C GLN C	57	10. 181	41.219	25.564	1.00 20.00
ATOM	3296 2	2HE2	2 GLN C	57	8.999	41.118	26.849	1.00 20.00
ATOM	3297	N	SER C	58	11.166	37.423	21.705	1.00 30.56
MOTA	3298	CA	SER C	58	11.908	36. 219	21.328	1.00 30.56
ATOM	3299	C	SER C	58	11. 762	35. 901	19.850	1.00 30.56
ATOM	3300	0	SER C	58	11.079	36.601	19.104	1.00 30.56
ATOM	3301	СВ	SER (58	11.538	35. 026	22.221	1.00 30.56
ATOM	3302	00	SER (C 58	11.501	35.453	23.588	1.00 30.56
MOTA	3303	Н	SER (C 58	11.683	38.246	21.931	1.00 20.00
ATOM	3304	H	SER (C 58	11.062	2 34.765	24.069	1.00 20.00
ATOM	3305	N	CYS	C 59	12.462	2 34.836	5 19.435	5 1.00 24.24
ATOM	3306	C	A CYS	C 59	12.50	1 34.696	6 17.990	0 1.00 24.24
ATOM	3307	С	CYS	C 59	12.57	0 33.26	9 17.51	5 1.00 24.24
ATOM	3308	0	CYS	C 59	13. 33	6 32.45	0 18.00	8 1.00 24.24

ATOM	3309	СВ	CYS C	59	13.659	35.496	17.418	1.00 24.24
ATOM	3310	SG	CYS C	59	14.016	37.043	18.301	1.00 24.24
MOTA	3311	Н	CYS C	59	13. 019	34.245	20.017	1.00 20.00
MOTA	3312	N	ASN C	60	11.707	33.035	16.519	1.00 8.07
ATOM	3313	CA	ASN C	60	11.551	31.704	15.937	1.00 8.07
ATOM	3314	С	ASN C	60	11.572	31.893	14.433	1.00 8.07
ATOM	3315	0	ASN C	60	11.625	33.026	13.966	1.00 8.07
ATOM	3316	CB	ASN C	60	10.214	31.075	16.357	1.00 8.07
ATOM	3317	CG	ASN C	60	10.146	30.760	17.845	1.00 8.07
ATOM	3318	OD1	ASN C	60	10.511	31.536	18.717	1.00 8.07
ATOM	3319	ND2	ASN C	60	9.610	29.563	18.106	1.00 8.07
ATOM	3320	Н	ASN C	60	11.195	33.797	16. 126	1.00 20.00
MOTA	3321	1HD2	ASN C	60	9.294	28.953	17.382	1.00 20.00
ATOM	3322	2HD2	ASN C	60	9.532	29.302	19.066	1.00 20.00
ATOM	3323	N	ASN C	61	11.514	30.780	13.682	1.00 15.42
ATOM	3324	CA	ASN C	61	11.545	31.001	12.234	1.00 15.42
ATOM	3325	С	ASN C	61	10. 163	31.214	11.638	1.00 15.42
ATOM	3326	0	ASN (61	9.386	30. 282	11.485	1.00 15.42
ATOM	3327	CB	ASN (61	12. 265	29.860	11.501	1.00 15.42
ATOM	3328	CG	ASN (61	13.704	29.717	11.967	1.00 15.42
MOTA	3329	O D1	ASN (61	14.510	30.636	11.888	1.00 15.42
ATOM	3330	ND2	ASN (61	14.013	28.504	12.436	1.00 15.42
MOTA	3331	Н	ASN (61	11.388	29.854	14.049	1.00 20.00
MOTA	3332	1HD2	2 ASN (61	13. 314	27.781	12.549	1.00 20.00

ATOM	3333 2H	D2	ASN C	61	14.937	28. 289	12.741	1.00 2	0.00
ATOM	3334 N		LEU C	62	9.893	32.490	11.299	1.00 1	9. 58
ATOM	3335 C	A	LEU C	62	8.602	32.835	10.690	1.00 1	9.58
ATOM	3336 C	·	LEU C	62	8.741	33.958	9.677	1.00 1	9.58
ATOM	3337 0)	LEU C	62	9. 193	35.050	9.995	1.00 1	9.58
ATOM	3338 C	В	LEU C	62	7.570	33. 260	11.744	1.00 1	9.58
ATOM	3339 C	CG	LEU C	62	6. 938	32. 121	12.549	1.00 1	9.58
ATOM	3340 0	D1	LEU C	62	6.093	32.657	13.704	1.00 1	9.58
ATOM	3341 (D2	LEU C	62	6. 140	31. 158	11.664	1.00	9.58
ATOM	3342 H	ł	LEU C	62	10.560	33.207	11.502	1.00 2	20.00
ATOM	3343 N	N	PRO C	63	8.351	33.655	8.417	1.00	9.44
ATOM	3344 (CA	PRO C	63	8.377	34.686	7.373	1.00	9.44
ATOM	3345	С	PRO C	63	7. 154	35.586	7.454	1.00	9.44
MOTA	3346	0	PRO C	63	6.041	35. 142	7.686	1.00	9.44
ATOM	3347	СВ	PRO C	63	8.373	33.832	6. 108	1.00	9.44
ATOM	3348	CG	PRO C	63	7.481	32.650	6.483	1.00	9.44
ATOM	3349	CD	PRO C	63	7.877	32.365	7.927	1.00	9.44
ATOM	3350	N	LEU C	64	7.405	36. 879	7.242	1.00	5.10
ATOM	3351	CA	LEU C	64	6. 257	37.775	7.346	1.00	5.10
ATOM	3352	С	LEU C	64	5. 886	38.278	5. 96 9	1.00	5.10
ATOM	3353	0	LEU (64	6.764	38.658	5.202	1.00	5.10
MOTA	3354	СВ	Leu (64	6. 582	38.963	8.261	1.00	5.10
ATOM	3355	CG	LEU (C 64	7.669	38.718	9.324	1.00	5.10
ATOM	3356	CD	1 LEU (C 64	8. 140	40.030	9.940	1.00	5.10

ATOM	3357	CD2	LEU C	64	7. 298	37.688	10.392	1.00 5.10
ATOM	3358	Н	LEU C	64	8. 319	37. 228	7.026	1.00 20.00
ATOM	3359	N	SER C	65	4.586	38. 273	5.666	1.00 3.51
ATOM	3360	CA	SER C	65	4.250	38.805	4.354	1.00 3.51
ATOM	3361	С	SER C	65	3. 172	39.859	4.405	1.00 3.51
ATOM	3362	0	SER C	65	2.328	39.873	5.292	1.00 3.51
ATOM	3363	СВ	SER C	65	3.902	37.678	3.377	1.00 3.51
ATOM	3364	OG	SER C	65	2.619	37.124	3.681	1.00 3.51
ATOM	3365	Н	SER C	65	3.881	37.873	6.257	1.00 20.00
ATOM	3366	HG	SER C	6 5	2.613	36.234	3.355	1.00 20.00
ATOM	3367	N	HIS C	66	3. 253	40.745	3.405	1.00 11.85
ATOM	3368	CA	HIS C	66	2. 241	41.783	3. 293	1.00 11.85
ATOM	3369	С	HIS C	66	1.873	42.036	1.853	1.00 11.85
MOTA	3370	0	HIS C	66	2.665	42.562	1.079	1.00 11.85
ATOM	3371	СВ	HIS C	66	2.741	43.071	3.924	1.00 11.85
ATOM	3372	CG	HIS C	66	1.617	44.067	3.872	1.00 11.85
ATOM	3373	ND	1 HIS C	66	1.564	45.081	2.998	1.00 11.85
ATOM	3374	CD	2 HIS C	66	0.485	44.099	4.680	1.00 11.85
ATOM	3375	CE	n HIS C	66	0.416	45.764	3.256	1.00 11.85
MOTA	3376	5 NE	E2 HIS C	66	-0. 247	45.162	4.290	1.00 11.85
ATOM	3377	7 H	HIS (66	4.033	40.708	2.779	1.00 20.00
ATOM	3378	B HI	ol HIS (66	2. 184	45.259	2.266	1.00 20.00
ATOM	3379	9 N	LYS	67	0.651	41.623	1.518	3 1.00 4.98
ATOM	338	0 C	A LYS	C 67	0. 363	3 41.645	0.093	3 1.00 4.98

ATOM	3381	С	LYS C	67	-0. 988	42.273	-0.208	1.00 4.98
ATOM	3382	0	LYS C	67	-1.971	42.048	0.490	1.00 4.98
ATOM	3383	СВ	LYS C	67	0.482	40.216	-0.443	1.00 4.98
ATOM	3384	CG	LYS C	67	1.767	39.429	-0.119	1.00 4.98
ATOM	3385	CD	LYS C	67	1.594	37.922	-0.344	1.00 4.98
ATOM	3386	CE	LYS C	67	2.815	37.009	-0.253	1.00 4.98
ATOM	3387	NZ	LYS C	67	2.939	36.229	-1.501	1.00 4.98
ATOM	3388	Н	LYS C	67	-0.009	41.255	2.182	1.00 20.00
MOTA	3389	1HZ	LYS C	67	3.886	35. 825	-1.586	1.00 20.00
MOTA	3390	2HZ	LYS C	67	2.213	35.493	-1.635	1.00 20.00
ATOM	3391	3HZ	LYS C	67	2.868	36.897	-2.300	1.00 20.00
ATOM	3392	N	VAL C	68	-0.975	43.094	-1.269	1.00 3.61
ATOM	3393	CA	VAL C	68	-2.210	43.689	-1.772	1.00 3.61
ATOM	3394	С	VAL C	68	-2.621	42.989	-3.048	1.00 3.61
ATOM	3395	0	VAL C	68	-1.832	42.861	-3.981	1.00 3.61
ATOM	3396	СВ	VAL C	68	-2.021	45. 189	-2.044	1.00 3.61
MOTA	3397	CG	1 VAL C	6 8	-3. 322	45.864	-2.501	1.00 3.61
MOTA	3398	CG	2 VAL C	68	-1.395	45. 894	-0.838	1.00 3.61
ATOM	3399) H	VAL C	68	-0. 127	43. 195	-1.787	1.00 20.00
ATOM	3400	N (TYR C	69	-3.883	42.554	-3.043	1.00 4.98
ATOM	340	1 CA	TYR (69	-4.378	41.828	-4.200	1.00 4.98
MOTA	340	2 C	TYR (69	-5.590	42.489	-4.806	1.00 4.98
ATOM	340	3 0	TYR	C 69	-6.297	43.255	-4.159	1.00 4.98
ATOM	340	4 C	B TYR	C 69	-4.730	40.394	-3.819	1.00 4.98

NO 08/10070

WO 98/10070 PCT/JP97/02983

219 4.98 1.00 -2.97939.788 -3.641TYR C 69 **ATOM** 3405 CG 4.98 1.00 -3.617-2.56539.154 69 **ATOM** 3406 CD1 TYR C 4.98 1.00 -3.75339.850 -1.580CD2 TYR C 69 ATOM 3407 1.00 4.98 38.427 -2.831-1.664CE1 TYR C 69 **ATOM** 3408 39.110 -0.7901.00 4.98 -2.867CE2 TYR C 69 **ATOM** 3409 -1.4481.00 4.98 38.336 -1.896TYR C 69 CZ**ATOM** 3410 -0.7131.00 4.98 37.436 -1.164OH TYR C 69 **ATOM** 3411 -2.2511.00 20.00 -4.47642.714 TYR C 69 Н 3412 **ATOM** 1.00 20.00 37.470 0.176 -1.483TYR C 69 HH MOTA 3413 1.00 14.09 -6.080-5.799 42.145 MET C 70 N MOTA 3414 1.00 14.09 -6.73442.649 -7.000MET C 70 CA ATOM 3415 -7.3091.00 14.09 41.544 -7.85070 C MET C 3416 **ATOM** -8.1471.00 14.09 -7.42240.761 MET C 70 0 MOTA 3417 1.00 14.09 -7.80743.692 -6.664MET C 70 CB **ATOM** 3418 1.00 14.09 -8.90843.206 70 -5.727 MET C CG MOTA 3419 44.450 -10.124 1.00 14.09 -5.286MET C 70 SD MOTA 3420 44.872 -10.703 1.00 14.09 -6.932 CE MET C 70 3421 **ATOM** -6.5191.00 20.00 41.501 -5. 168 70 3422 Н MET C MOTA 41.534 -6.8391.00 7.41-9.097ARG C 71 MOTA 3423 N 1.00 7.4140.714 -7.557 -10.059ARG C 71 **ATOM** 3424 CA -8.5411.00 7.41 41.567 -10.825 C ARG C 71 3425 MOTA 7.41 42.256 -8.1941.00 -11.781 ARG C 3426 0 71 ATOM 39.999 -6.5991.00 7.41 -11.005ARG C 71 3427 CB **ATOM** 1.00 7.41 -7.358 -11.847 38.974 ARG C 71 **MOTA** 3428 CG

ATOM	3429 C	D	ARG C	71	-12.761	38. 162	-6.451	1.00 7.41
ATOM	3430 N	E	ARG C	71	-13.474	37.162	-7.242	1.00 7.41
ATOM	3431 C	Z	ARG C	71	-14.237	36.227	-6.646	1.00 7.41
ATOM	3432 N	Hl	ARG C	71	-14.334	36.183	-5.317	1.00 7.41
ATOM	3433 N	H2	ARG C	71	-14.891	35.348	-7.400	1.00 7.41
ATOM	3434 H		ARG C	71	-9. 365	42.213	-6.154	1.00 20.00
ATOM	3435 H	E	ARG C	71	-13. 335	37.194	-8.233	1.00 20.00
ATOM	3436 1H	H1	ARG C	71	-14.902	35.511	-4.846	1.00 20.00
ATOM	3437 2H	IH1	ARG C	71	-13. 810	36.837	-4.769	1.00 20.00
ATOM	3438 1H	I H2	ARG C	71	-15.482	34.647	-7.002	1.00 20.00
ATOM	3439 2H	1 H2	ARG C	71	-14.790	35.378	-8.395	1.00 20.00
ATOM	3440 1	1	ASN C	72	-10. 325	41.510	-9.784	1.00 8.42
ATOM	3441	CA	ASN C	72	-10. 929	42.380	-10.789	1.00 8.42
ATOM	3442	С	ASN C	72	-12. 207	41.812	-11.386	1.00 8.42
ATOM	3443	0	ASN C	72	-12.456	40.616	-11.342	1.00 8.42
MOTA	3444	СВ	ASN C	72	-9.882	42.767	-11.844	1.00 8.42
ATOM	3445	CG	ASN C	72	-10. 343	43.970	-12.652	1.00 8.42
ATOM	3446	OD 1	ASN C	72	-10.878	43.836	-13.744	1.00 8.42
ATOM	3447	ND2	2 ASN C	72	-10. 137	45. 157	-12.071	1.00 8.42
MOTA	3448	Н	ASN (72	-9.622	40.825	-9.988	1.00 20.00
MOTA	3449 1	LHD:	2 ASN (72	-9.766	45.276	-11.141	1.00 20.00
ATOM	3450 2	2HD	2 ASN (72	-10.392	46.004	-12.532	1.00 20.00
ATOM	3451	N	SER	C 73	-13.017	42.718	-11.959	1.00 5.16
ATOM	3452	CA	SER	C 73	-14.205	42. 232	2 -12.657	1.00 5.16

WO 98/10070

WO 98/10070 PCT/JP97/02983

ATOM	3453	С	SER C	73	-13. 882	41.409 -13.897	1.00 5.16
ATOM	3454	0	SER C	73	-14.517	40.412 -14.211	1.00 5.16
ATOM	3455	СВ	SER C	73	-15. 079	43.432 -13.011	1.00 5.16
ATOM	3456	0G	SER C	73	-14. 258	44.440 -13.616	1.00 5.16
ATOM	3457	Н	SER C	73	-12. 794	43.692 -12.031	1.00 20.00
ATOM	3458	HG	SER C	73	-14.840	45. 151 -13. 860	1.00 20.00
ATOM	3459	N	LYS C	74	-12. 832	41.886 -14.586	1.00 5.76
ATOM	3460	CA	LYS C	74	-12.403	41.214 -15.812	1.00 5.76
MOTA	3461	С	LYS C	74	-11. 907	39. 791 -15. 607	1.00 5.76
ATOM	3462	0	LYS C	74	-12. 165	38.901 -16.406	1.00 5.76
ATOM	3463	СВ	LYS C	74	-11.330	42.049 -16.513	1.00 5.76
ATOM	3464	CG	LYS C	74	-11. 792	43.465 -16.874	1.00 5.76
MOTA	3465	CD	LYS C	74	-10.635	44.332 -17.377	1.00 5.76
ATOM	3466	CE	LYS C	74	-11. 038	45.774 -17.696	1.00 5.76
ATOM	3467	NZ	LYS C	74	-9.843	46.532 -18.098	1.00 5.76
ATOM	3468	Н	LYS C	74	-12.417	42.746 -14.275	1.00 20.00
MOTA	3469	1HZ	LYS C	74	-10. 120	47.489 -18.394	1.00 20.00
MOTA	3470	2HZ	LYS C	74	-9. 183	46.597 -17.296	1.00 20.00
ATOM	3471	3HZ	LYS C	74	-9.372	46.050 -18.890	1.00 20.00
ATOM	3472	N	TYR C	75	-11.171	39.617 -14.495	1.00 6.72
MOTA	3473	CA	TYR C	75	-10.638	38.280 -14.249	1.00 6.72
ATOM	3474	C	TYR C	75	-11.066	37.699 -12.920	1.00 6.72
ATOM	3475	5 0	TYR C	75	-10.772	38.246 -11.869	1.00 6.72
MOTA	3476	S CE	TYR C	75	-9.105	38.308 –14.319	1.00 6.72

ATOM	3477	CG	TYR C	75	-8.440	36.943 -14.287	1.00 6.72
ATOM	3478	CD1	TYR C	75	-8.963	35.858 -15.024	1.00 6.72
ATOM	3479	CD2	TYR C	7 5	-7. 267	36.814 -13.518	1.00 6.72
ATOM	3480	CE1	TYR C	75	-8. 306	34.617 -14.970	1.00 6.72
ATOM	3481	CE2	TYR C	7 5	-6.593	35.582 -13.488	1.00 6.72
ATOM	3482	CZ	TYR C	75	-7. 124	34.492 -14.207	1.00 6.72
ATOM	3483	ОН	TYR C	7 5	-6.482	33. 265 -14. 174	1.00 6.72
ATOM	3484	Н	TYR C	7 5	-10. 987	40.361 -13.852	1.00 20.00
ATOM	3485	НН	TYR C	7 5	-5. 693	33.285 -13.631	1.00 20.00
ATOM	3486	N	PRO C	76	-11.714	36.515 -13.012	1.00 6.84
ATOM	3487	CA	PRO C	76	-12.025	35.690 -11.833	1.00 6.84
ATOM	3488	С	PRO C	76	-11.014	35.468 -10.696	1.00 6.84
ATOM	3489	0	PRO C	76	-11.428	35.007 -9.640	1.00 6.84
ATOM	3490	СВ	PRO C	76	-12.531	34.374 -12.448	1.00 6.84
MOTA	3491	CG	PRO C	76	-12.231	34.433 -13.948	1.00 6.84
ATOM	3492	CD	PRO C	76	-12.214	35. 922 -14. 250	1.00 6.84
ATOM	3493	N	GLN C	77	-9.716	35.758 -10.921	1.00 4.75
MOTA	3494	CA	GLN C	77	-8.765	35.501 -9.840	1.00 4.75
ATOM	3495	С	GLN C	77	-8. 246	36.758 -9.189	1.00 4.75
ATOM	3496	0	GLN C	77	-8.371	37.866 -9.699	1.00 4.75
ATOM	3497	СВ	GLN C	77	-7.552	34.724 -10.328	1.00 4.75
ATOM	3498	CG	GLN C	77	-7.832	33. 291 -10. 761	1.00 4.75
ATOM	3499) CD	GLN C	77	-6.554	32.722 -11.343	1.00 4.75
ATOM	3500	O OE	E1 GLN C	77	-5.532	33.383 -11.471	1.00 4.75

ATOM	3501	NE2	GLN	С	77	-6. 653	31.456 -11.751	1.00 4.75
ATOM	3502	Н	GLN	С	77	-9.415	36.320 -11.686	1.00 20.00
ATOM	3503 1	HE2	GLN	С	77	-7. 507	30.941 -11.721	1.00 20.00
ATOM	3504 2	HE2	GLN	С	77	-5. 814	31.054 -12.113	1.00 20.00
ATOM	3505	N	ASP	С	78	-7.604	36.490 -8.049	1.00 4.94
ATOM	3506	CA	ASP	С	78	-6.988	37.584 -7.322	1.00 4.94
ATOM	3507	С	ASP	С	78	-5.543	37.751 -7.745	1.00 4.94
ATOM	3508	0	ASP	С	78	-4.675	36.920 -7.507	1.00 4.94
MOTA	3509	СВ	ASP	С	78	-7. 137	37.369 -5.809	1.00 4.94
ATOM	3510	CG	ASP	С	78	-8. 590	37.333 -5.326	1.00 4.94
ATOM	3511	OD1	ASP	C	78	-9.492	36.990 -6.093	1.00 4.94
ATOM	3512	OD2	ASP	С	78	-8.822	37.650 -4.160	1.00 4.94
ATOM	3513	Н	ASP	С	78	-7.663	35. 592 -7. 618	1.00 20.00
ATOM	3514	N	LEU	С	79	-5. 336	38. 879 -8. 431	1.00 4.95
ATOM	3515	CA	LEU	С	79	-3.977	39. 208 -8. 865	1.00 4.95
ATOM	3516	С	LEU	С	79	-3. 188	39.759 -7.698	1.00 4.95
ATOM	3517	0	LEU	С	79	-3.760	40. 270 -6. 747	1.00 4.95
MOTA	3518	СВ	LEU	С	79	-3.930	40.309 -9.933	1.00 4.95
ATOM	3519	CG	LEU	С	79	-4.627	40. 199 -11. 297	1.00 4.95
ATOM	3520	CD1	LEU	C	79	-6. 160	40. 174 -11. 253	1.00 4.95
ATOM	3521	CD2	LEU	C	79	-4.160	41.367 -12.169	1.00 4.95
ATOM	3522	Н	LEU	С	79	-6.111	39.509 -8.505	1.00 20.00
ATOM	3523	N	VAL	. C	80	-1.858	39.696 -7.827	1.00 4.14
MOTA	3524	CA	VAL	. C	80	-1.108	40.425 -6.814	1.00 4.14

ATOM	3525	С	VAL C	80	-0.562	41.739	-7.329	1.00 4.14
ATOM	3526	0	VAL C	80	0. 236	41.816	-8.259	1.00 4.14
ATOM	3527	СВ	VAL C	80	0.009	39.588	-6. 196	1.00 4.14
ATOM	3528	CG1	VAL C	80	0.437	40. 220	-4.868	1.00 4.14
ATOM	3529	CG2	VAL C	80	-0. 375	38.110	-6.068	1.00 4.14
ATOM	3530	Н	VAL C	80	-1.406	39.260	-8.604	1.00 20.00
ATOM	3531	N	MET C	81	-1.062	42.786	-6.659	1.00 4.15
ATOM	3532	CA	MET C	81	-0. 591	44.126	-6.993	1.00 4.15
ATOM	3533	C.	MET C	81	0.776	44.387	-6.400	100 4.15
ATOM	3534	0	мет с	81	1. 723	44.782	-7.067	1.00 4.15
ATOM	3535	СВ	MET C	81	-1.591	45.171	-6.492	1.00 4.15
ATOM	3536	CG	MET C	81	-3.003	44.888	-6.998	1.00 4.15
ATOM	3537	SD	MET C	81	-4.263	45.898	-6.212	1.00 4.15
ATOM	3538	CE	MET C	81	-3.831	47.468	-6.958	1.00 4.15
ATOM	3539	Н	MET C	81	-1.634	42.611	-5.854	1.00 20.00
ATOM	3540	N	MET C	82	0.823	44. 151	-5.078	1.00 5.02
ATOM	3541	CA	MET C	82	2.053	44.479	-4.364	1.00 5.02
ATOM	3542	С	MET C	82	2.351	43.463	-3.289	1.00 5.02
ATOM	3543	0	MET C	82	1.456	42.968	-2.622	1.00 5.02
ATOM	3544	CE	MET C	82	1.951	45.865	-3.728	1.00 5.02
ATOM	3545	s cc	MET C	82	1.957	47.031	-4.716	1.00 5.02
MOTA	3546	S SI) MET C	82	1.820	48.615	-3.889	1.00 5.02
ATOM	3547	7 CI	E MET C	82	0. 217	48.358	-3.121	1.00 5.02
ATOM	3548	8 H	MET C	82	0. 03	43.765	-4.595	1.00 20.00

ATOM	3549	N	GLU C	83	3.650	43.181	-3.141	1.00	4.99
ATOM	3550	CA	GLU C	83	4.031	42.168	-2.159	1.00	4.99
ATOM	3551	С	GLU C	83	5. 134	42.647	-1.289	1.00	4.99
ATOM	3552	0	GLU C	83	6.027	43.296	-1.805	1.00	4.99
ATOM	3553	СВ	GLU C	83	4.703	41.001	-2.815	1.00	4.99
ATOM	3554	CG	GLU C	83	3.789	40. 181	-3.667	1.00	4.99
MOTA	3555	CD	GLU C	83	3.711	38.793	-3.086	1.00	4.99
ATOM	3556	OE1	GLU C	83	4.676	38.279	-2.501	1.00	4.99
ATOM	3557	OE2	GLU C	83	2.651	38.212	-3. 228	1.00	4.99
ATOM	3558	Н	GLU C	83	4.345	43.600	-3.724	1.00	20.00
ATOM	3559	N	GLY C	84	5. 078	42.229	-0.019	1.00	3.83
ATOM	3560	CA	GLY C	84	6. 184	42.410	0.910	1.00	3.83
ATOM	3561	С	GLY C	84	6. 587	41.123	1.597	1.00	3.83
MOTA	3562	0	GLY C	84	5. 792	40.508	2.288	1.00	3. 83
ATOM	3563	Н	GLY C	84	4.220	41.820	0.297	1.00	20.00
ATOM	3564	N	LYS C	85	7.858	40.740	1.393	1.00	5.40
ATOM	3565	CA	LYS C	85	8. 357	39. 626	2. 195	1.00	5.40
MOTA	3566	С	LYS C	85	9.449	40.074	3. 121	1.00	5.40
ATOM	3567	0	LYS C	85	10.467	40.608	2.700	1.00	5.40
ATOM	3568	СВ	LYS C	85	8. 934	38.514	1.341	1.00	5.40
ATOM	3569	CG	LYS C	85	7.920	37.952	0.376	1.00	5.40
ATOM	3570	CD	LYS C	85	8.615	36.928	-0.467	1.00	5.40
ATOM	3571	CE	LYS C	85	7.652	36.380	-1.469	1.00	5.40
ATOM	3572	NZ	LYS C	85	8.517	35.490	-2.219	1.00	5.40

ATOM	3573 H	LYS C	85	8.480	41.241	0.795	1.00 20.00
ATOM	3574 1HZ	LYS C	85	7.931	34.961	-2.879	1.00 20.00
ATOM	3575 2HZ	LYS C	85	9. 259	35.921	-2.806	1.00 20.00
ATOM	3576 3HZ	LYS C	85	8.871	34.631	-1.757	1.00 20.00
MOTA	3577 N	MET C	86	9. 199	39.818	4.401	1.00 17.02
MOTA	3578 CA	MET C	86	10.273	40.042	5. 350	1.00 17.02
ATOM	3579 C	MET C	86	10.556	38.784	6. 131	1.00 17.02
ATOM	3580 0	MET C	86	9.828	38.420	7.043	1.00 17.02
ATOM	3581 CB	MET C	86	9.943	41.205	6.293	1.00 17.02
ATOM	3582 CG	MET C	86	9.833	42.554	5.576	1.00 17.02
ATOM	3583 SD	MET C	86	11. 365	43.050	4.767	1.00 17.02
ATOM	3584 CE	мет с	86	12.309	43.466	6.239	1.00 17.02
ATOM	3585 H	MET C	86	8.321	39.425	4.683	1.00 20.00
ATOM	3586 N	MET C	87	11.689	38.147	5. 793	1.00 29.14
ATOM	3587 CA	MET C	87	12. 120	37.112	6.742	1.00 29.14
ATOM	3588 C	MET C	87	13. 033	37.646	7.816	1.00 29.14
ATOM	3589 0	MET C	87	14.037	37.078	8. 225	1.00 29.14
ATOM	3590 CI	B MET C	87	12.808	35.921	6. 104	1.00 29.14
MOTA	3591 C	G MET C	87	12.438	34.692	6.925	1.00 29.14
MOTA	3592 SI	D MET C	87	13.617	33.359	6.749	1.00 29.14
ATOM	3593 C	e met c	87	12.836	32.217	7.895	1.00 29.14
MOTA	3594 H	MET C	87	12. 25	1 38.496	5.044	1.00 20.00
ATOM	3595 N	SER (88	12.64	2 38.836	8. 234	1.00 17.75
ATOM	3596 C	A SER (88	13. 51	9 39.539	9.13	1.00 17.75

WO 98/10070		

ATOM	3597	С	SER C	88	12.987	39.503	10.535	1.00 17.75
ATOM	3598	0	SER C	88	12.814	40.509	11.205	1.00 17.75
ATOM	3599	СВ	SER C	88	13. 644	40.935	8.587	1.00 17.75
ATOM	3600	OG	SER C	88	14.562	41.686	9.373	1.00 17.75
ATOM	3601	Н	SER C	88	11.756	39. 209	7.971	1.00 20.00
ATOM	3602	HG	SER C	88	14.024	42.406	9.661	1.00 20.00
MOTA	3603	N	TYR C	89	12.744	38. 270	10.966	1.00 19.14
ATOM	3604	CA	TYR C	89	12.590	38. 127	12.407	1.00 19.14
ATOM	3605	С	TYR C	89	13. 964	38. 248	13.072	1.00 19.14
MOTA	3606	0	TYR C	89	14.897	38.805	12.500	1.00 19.14
ATOM	3607	СВ	TYR C	89	11.820	36.830	12.713	1.00 19.14
ATOM	3608	CG	TYR C	89	12.502	35.656	12.058	1.00 19.14
ATOM	3609	CD	TYR C	89	12.084	35.257	10.779	1.00 19.14
ATOM	3610	CD	2 TYR C	89	13. 554	35.014	12.738	1.00 19.14
ATOM	3611	CE:	1 TYR C	89	12.788	34.229	10. 159	1.00 19.14
ATOM	3612	CE	2 TYR C	89	14.256	33.980	12.106	1.00 19.14
ATOM	3613	CZ	TYR C	89	13.872	33.612	10.810	1.00 19.14
ATOM	3614	ОН	TYR C	89	14.581	32.623	10. 167	1.00 19.14
ATOM	3615	Н	TYR C	89	12.930	37.496	10.361	1.00 20.00
ATOM	3616	НН	TYR C	89	14. 838	31.971	10.814	1.00 20.00
MOTA	3617	N	CYS C	90	14.075	37.727	14.294	1.00 32.37
ATOM	3618	B CA	CYS C	90	15.400	37.814	14.906	1.00 32.37
ATOM	3619) C	CYS (90	15. 975	36.457	15.265	1.00 32.37
ATOM	3620	0 0	CYS (90	15.443	35.420	14.896	1.00 32.37

ATOM	3621	СВ	CYS C	90	15. 325	38.758	16. 104	1.00 32.37
ATOM	3622	SG	CYS C	90	13.763	38.558	16.976	1.00 32.37
ATOM	3623	Н	CYS C	90	13.312	37.291	14.773	1.00 20.00
ATOM	3624	N	THIR C	91	17.078	36.507	16.014	1.00 22.92
ATOM	3625	CA	THR C	91	17.631	35. 291	16.602	1.00 22.92
MOTA	3626	С	THR C	91	17.453	35.405	18.108	1.00 22.92
ATOM	3627	0	THR C	91	16.545	36.090	18.551	1.00 22.92
ATOM	3628	СВ	THR C	91	19. 094	35. 235	16. 184	1.00 22.92
MOTA	3629	0G1	THR C	91	19.700	36.512	16.424	1.00 22.92
ATOM	3630	CG2	THIR C	91	19. 238	34.862	14.705	1.00 22.92
ATOM	3631	Н	THR C	91	17.535	37.354	16.279	1.00 20.00
ATOM	3632	HG:	1 THR C	91	20.637	36.374	16.397	1.00 20.00
ATOM	3633	N	THR C	92	18.348	34.794	18.904	1.00 5.61
ATOM	3634	CA	THIR C	92	18. 301	35.135	20.330	1.00 5.61
ATOM	3635	С	THR C	92	18.369	36.632	20.618	1.00 5.61
ATOM	3636	0	THR C	92	19.367	37. 290	20.347	1.00 5.61
MOTA	3637	CB	THR C	92	19.432	34.407	21.051	1.00 5.61
ATOM	3638	00	SI THR C	92	19.515	33.063	20.565	1.00 5.61
ATOM	3639	CO	32 THR C	92	19. 271	34.434	22.575	1.00 5.61
ATOM	3640	Н	THR C	92	19.014	34.112	18.603	1.00 20.00
MOTA	364	1 H(G1 THR (92	20. 118	32.608	21.140	1.00 20.00
ATOM	3642	2 N	GLY (93	17. 252	2 37.135	21.164	1.00 3.78
ATOM	364	3 C	A GLY	C 93	17. 202	2 38.570	21.396	5 1.00 3.78
ATOM	364	4 C	GLY	C 93	15. 91	4 38.982	22.066	5 1.00 3.78

ATOM	3645	0	GLY C	93	15. 058	38.165	22.385	1.00 3.78
ATOM	3646	Н	GLY C	93	16.427	36.586	21.303	1.00 20.00
ATOM	3647	N	GLN C	94	15. 845	40.307	22.264	1.00 15.42
ATOM	3648	CA	GLN C	94	14.651	40.911	22.846	1.00 15.42
ATOM	3649	С	GLN C	94	13.512	41.010	21.841	1.00 15.42
MOTA	3650	0	GLN C	94	13.470	40.305	20.841	1.00 15.42
ATOM	3651	СВ	GLN C	94	15.036	42.284	23.412	1.00 15.42
ATOM	3652	CG	GLN C	94	15. 919	42.225	24.662	1.00 15.42
MOTA	3653	CD	GLN C	94	15. 129	41.654	25.826	1.00 15.42
ATOM	3654	OE 1	GLN C	94	15. 286	40.514	26.235	1.00 15.42
ATOM	3655	NE2	GLN C	94	14. 257	42.518	26.355	1.00 15.42
ATOM	3656	Н	GLN C	94	16.578	40.882	21.907	1.00 20.00
MOTA	3657	1HE	2 GLN C	94	14.140	43.439	25.990	1.00 20.00
MOTA	3658	2HE	2 GLN C	94	13.737	42.206	27. 149	1.00 20.00
ATOM	3659	N	MET C	95	12.595	41.952	22.134	1.00 18.74
MOTA	3660	CA	MET C	95	11.607	42.290	21.112	1.00 18.74
ATOM	3661	. C	MET C	95	12. 209	42.709	19.776	1.00 18.74
ATOM	3662	2 0	MET C	95	13. 317	43.223	19.684	1.00 18.74
ATOM	3663	3 CE	MET (95	10. 633	43.358	21.635	1.00 18.74
MOTA	366	4 CC	MET (95	11.314	44.665	22.057	1.00 18.74
ATOM	366	5 SI) MET	C 95	10. 183	45.997	22.487	1.00 18.74
ATOM	366	6 C1	e met	C 95	11.415	47.240	22.920	1.00 18.74
ATOM	366	7 H	MET	C 95	12.616	5 42.449	9 22.996	1.00 20.00
MOTA	366	8 N	TRP	C 96	11.40	2 42.46	9 18.741	1.00 3.87

ATOM	3669	CA	TRP C	96	11.807	42.911	17.412	1.00	3.87
ATOM	3670	С	TRP C	96	10.624	43.548	16.734	1.00	3.87
ATOM	3671	0	TRP C	96	9.518	43.043	16.852	1.00	3.87
ATOM	3672	СВ	TRP C	96	12.327	41.730	16.579	1.00	3.87
ATOM	3673	CG	TRP C	96	11. 268	40.652	16.436	1.00	3.87
ATOM	3674	CD1	TRP C	96	11.013	39.591	17.318	1.00	3.87
ATÓM	3675	CD2	TRP C	96	10.312	40.483	15.370	1.00	3.87
ATOM	3676	NE1	TRP C	96	9.998	38.804	16.881	1.00	3.87
ATOM	3677	CE2	TRP C	96	9.521	39. 326	15.682	1.00	3.87
ATOM	3678	CE3	TRP C	96	10.042	41.227	14.204	1.00	3.87
ATOM	3679	CZ2	TRP C	96	8.495	38.923	14.803	1.00	3.87
ATOM	3680	CZ3	TRP C	96	9.010	40.817	13.338	1.00	3.87
ATOM	3681	CH2	TRP C	96	8.238	39.675	13.638	1.00	3.87
ATOM	3682	Н	TRP C	96	10.547	41.965	18.891	1.00	20.00
ATOM	368 3	HEI	TRP C	96	9.688	37.996	17.345	1.00	20.00
ATOM	3684	N	ALA C	97	10.892	44.650	16.024	1.00	3.76
MOTA	3685	CA	ALA C	97	9. 794	45.242	15.270	1.00	3.76
ATOM	3686	С	ALA C	97	10. 204	45.489	13.840	1.00	3.76
ATOM	3687	0	ALA C	97	11.275	46.032	13. 585	1.00	3.76
ATOM	3688	СВ	ALA C	97	9. 340	46.560	15.900	1.00	3.76
ATOM	3689	Н	ALA C	97	11.817	45.020	15.972	1.00	20.00
ATOM	3690	N	ARG C	98	9. 326	45.029	12.930	1.00	11.69
ATOM	3691	. CA	ARG C	98	9.592	45. 242	11.506	1.00	11.69
ATOM	3692	2 C	ARG (98	8.440	45.948	10.839	1.00	11.69

ATOM	3693	0	ARG C	98	7. 280	45.688	11.133	1.00 11.69
ATOM	3694	СВ	ARG C	98	9.830	43.938	10.738	1.00 11.69
ATOM	3695	CG	ARG C	98	10.886	43.027	11.347	1.00 11.69
ATOM	3696	CD	ARG C	98	12. 225	43.716	11.560	1.00 11.69
ATOM	3697	NE	ARG C	98	13. 131	42.856	12.316	1.00 11.69
ATOM	3698	CZ	ARG C	98	14.443	42.914	12.074	1.00 11.69
ATOM	3699	NH1	ARG C	98	15. 314	42.219	12.799	1.00 11.69
ATOM	3700	NH2	ARG C	98	14.864	43.706	11.105	1.00 11.69
ATOM	3701	Н	ARG C	98	8.465	44.621	13.246	1.00 20.00
ATOM	3702	HE	ARG C	98	12.756	42.194	12.966	1.00 20.00
ATOM	3703	1111	ARG C	98	16.301	42.347	12.693	1.00 20.00
ATOM	3704	2HH	ARG C	98	14.993	41.549	13.468	1.00 20.00
ATOM	3705	1HH2	2 ARG C	98	15. 845	43.906	11.040	1.00 20.00
ATOM	3706	2HH	2 ARG C	98	14.237	44.192	10.499	1.00 20.00
ATOM	3707	N	SER C	99	8.806	46.839	9.913	1.00 7.28
ATOM	3708	CA	SER C	99	7.720	47.440	9. 156	1.00 7.28
ATOM	3709) C	SER C	99	7.749	47.126	7.678	1.00 7.28
ATOM	3710	0 (SER C	99	8. 790	47.124	7.032	1.00 7.28
ATOM	371	ı CE	SER (99	7.697	48.944	9.396	1.00 7.28
ATOM	3712	2 00	SER (99	8.948	3 49.559	9.072	1.00 7.28
ATOM	371	3 H	SER (C 99	9.750	47.106	9.728	1.00 20.00
ATOM	371	4 H(SER (C 99	9.129	50.199	9.749	1.00 20.00
ATOM	371	5 N	SER	C 100	6. 53	3 46.894	7, 168	3 1.00 2.73
ATOM	371	6 C.	a ser	C 100	6.41	7 46.75	5.722	2 1.00 2.73

ATOM	3717	С	SER C 100		5. 485	47.803	5.156	1.00 2.73
ATOM	3718	0	SER C 100		4.370	47.971	5.626	1.00 2.73
MOTA	3719	СВ	SER C 100		5.930	45.344	5.368	1.00 2.73
ATOM	3720	0G	SER C 100	İ	6.869	44.368	5.837	1.00 2.73
ATOM	3721	Н	SER C 100)	5.720	46.875	7.758	1.00 20.00
ATOM	3722	HG	SER C 100)	6.414	43.534	5.838	1.00 20.00
ATOM	3723	N	TYR C 101		6.001	48.510	4.133	1.00 2.72
ATOM	3724	CA	TYR C 102	ļ	5. 171	49.531	3.481	1.00 2.72
ATOM	3725	С	TYR C 10:	,	5.090	49. 285	1.995	1.00 2.72
ATOM	3726	0	TYR C 10	1	6.113	49.072	1.367	1.00 2.72
ATOM	3727	СВ	TYR C 10	1	5. 753	50.933	3.700	1.00 2.72
ATOM	3728	CG	TYR C 10	1	4.918	51.981	2.993	1.00 2.72
ATOM	3729	CD	1 TYR C 10	1	3.771	52.511	3.618	1.00 2.72
ATOM	3730	CD	2 TYR C 10	1	5.309	52.384	1.703	1.00 2.72
ATOM	3731	CE	1 TYR C 10	1	3.003	53.473	2.941	1.00 2.72
ATOM	3732	CE	2 TYR C 10)1	4.534	53.331	1.021	1.00 2.72
ATOM	3733	3 C2	TYR C 10)1	3.409	53.885	1.656	1.00 2.72
ATOM	3734	l OF	TYR C 10)1	2.706	54.874	0.997	1.00 2.72
ATOM	373	5 H	TYR C 1	01	6.935	48.332	3.829	1.00 20.00
ATOM	373	6 Н	H TYR C 1	01	3. 125	55.063	0.169	1.00 20.00
ATOM	373	7 N	LEU C 1	02	3.873	3 49.322	1.460	1.00 17.88
ATOM	373	8 C	A LEU C 1	02	3.66	3 49.070	0.037	1.00 17.88
ATOM	373	9 C	LEU C 1	02	2.96	3 50.276	-0.569	1.00 17.88
ATOM	374	0 0	LEU C 1	.02	2.22	8 50.966	0.126	5 1.00 17.88

ATOM	3741	СВ	LEU C 102	2.818	47.798	-0. 127	1.00 17.88
MOTA	3742	CG	LEU C 102	3.577	46.457	-0. 131	1.00 17.88
ATOM	3743	CD1	LEU C 102	4.571	46.406	-1.285	1.00 17.88
ATOM	3744	CD2	LEU C 102	4.240	46.067	1.193	1.00 17.88
ATOM	3745	Н	LEU C 102	3. 109	49.642	2.020	1.00 20.00
ATOM	3746	N	GLY C 103	3. 225	50.519	-1.864	1.00 5.34
ATOM	3747	CA	GLY C 103	2.573	51.686	-2.462	1.00 5.34
ATOM	3748	С	GLY C 103	2.863	51.846	-3.942	1.00 5.34
ATOM	3749	0	GLY C 103	4.020	51.837	-4.340	1.00 5.34
ATOM	3750	Н	GLY C 103	3.831	49.946	-2.417	1.00 20.00
ATOM	3751	N	ALA C 104	1.778	51.979	-4.734	1.00 6.66
ATOM	3752	CA	ALA C 104	1.962	52.109	-6.184	1.00 6.66
ATOM	3753	С	ALA C 104	0.713	52.555	-6.929	1.00 6.66
ATOM	3754	0	ALA C 104	-0.366	52.617	-6.354	1.00 6.66
ATOM	3755	СВ	ALA C 104	2.428	50. 784	-6.771	1.00 6.66
ATOM	3756	Н	ALA C 104	0.854	51.959	-4.339	1.00 20.00
MOTA	3757	N	VAL C 105	0.907	52.877	-8.227	1.00 2.80
ATOM	3758	C.	A VAL C 105	-0.232	53.351	-9.022	1.00 2.80
ATOM	3759	C	VAL C 105	-0.758	52.333	-10.009	1.00 2.80
MOTA	3760	0	VAL C 105	-0.016	51.701	-10.751	1.00 2.80
ATOM	3761	C	B VAL C 105	0. 128	54.647	-9.752	1.00 2.80
ATOM	3762	2 C	G1 VAL C 105	-0. 998	55. 205	-10.620	1.00 2.80
MOTA	3763	3 C	G2 VAL C 105	0.526	55.682	-8.723	3 1.00 2.80
ATOM	3764						

ATOM	3765 N PHE C 106	-2.094 52.216 -9.978 1.00 2.81
ATOM	3766 CA PHE C 106	-2.736 51.196 -10.798 1.00 2.81
ATOM	3767 C PHE C 106	-3.996 51.740 -11.470 1.00 2.81
ATOM	3768 O PHE C 106	-4.599 52.678 -10.965 1.00 2.81
ATOM	3769 CB PHE C 106	-3.028 49.984 -9.900 1.00 2.81
ATOM	3770 CG PHE C 106	-1.754 49.378 -9.328 1.00 2.81
ATOM	3771 CD1 PHE C 106	-1.411 49.587 -7.974 1.00 2.81
ATOM	3772 CD2 PHE C 106	-0.932 48.582 -10.150 1.00 2.81
ATOM	3773 CE1 PHE C 106	-0.288 48.929 -7.433 1.00 2.81
ATOM	3774 CE2 PHE C 106	0.193 47.923 -9.623 1.00 2.81
MOTA	3775 CZ PHE C 106	0.487 48.084 -8.256 1.00 2.81
ATOM	3776 H PHE C 106	-2.628 52.794 -9.354 1.00 20.00
ATOM	3777 N ASN C 107	-4.382 51.142 -12.622 1.00 6.84
MOTA	3778 CA ASN C 107	-5.709 51.517 -13.142 1.00 6.84
ATOM	3779 C ASN C 107	-6.748 50.571 -12.633 1.00 6.84
ATOM	3780 O ASN C 107	-6.746 49.387 -12.948 1.00 6.84
ATOM	3781 CB ASN C 107	-5.915 51.449 -14.658 1.00 6.84
ATOM	3782 CG ASN C 107	-5. 166 52. 525 -15. 382 1. 00 6. 84
ATOM	3783 OD1 ASN C 107	-5.649 53.583 -15.757 1.00 6.84
ATOM	3784 ND2 ASN C 107	-3.922 52.156 -15.595 1.00 6.84
ATOM	M 3785 H ASN C 107	-3.904 50.331 -12.952 1.00 20.00
ATOM	M 3786 1HD2 ASN C 107	-3.594 51.279 -15.246 1.00 20.00
ATO	M 3787 2HD2 ASN C 107	-3.299 52.753 -16.097 1.00 20.00
MTO.	M 3788 N LEU C 108	-7.641 51.157 -11.846 1.00 5.08

PCT/JP97/02983 WO 98/10070 235

5.08 50.318 -11.421 1.00 -8.746 LEU C 108 **ATOM** 3789 CA 50.627 -12.210 1.00 5.08 -9.997 LEU C 108 3790 C MOTA 1.00 5.08 51.625 -12.924 -10.079LEU C 108 0 3791 MOTA 5.08 1.00 -9.911 50.447 -8.927LEU C 108 3792 CB ATOM 5.08 -9.1721.00 50.048 -7.644LEU C 108 CG 3793 **ATOM** 5.08 1.00 -7.69950.439 -7.678CD1 LEU C 108 3794 **ATOM** 5.08 1.00 -9.359 -7.30348.569 CD2 LEU C 108 3795 MOTA 1.00 20.00 52.146 -11.684 -7.608 LEU C 108 Н 3796 MOTA 3.9749.702 -12.060 1.00 -10.948THR C 109 N 3797 **ATOM** 3.97 49.845 -12.791 1.00 -12.199CA THR C 109 3798 ATOM 3.97 49.877 -11.750 1.00 -13.303C THR C 109 **ATOM** 3799 3.97 49.518 -10.603 1.00 -13.088THR C 109 0 3800 ATOM 3.97 48.647 -13.749 1.00 -12.356THR C 109 CB 3801 ATOM 1.00 3.97 48.393 -14.446 -11.129OG1 THR C 109 3802 ATOM 3.97 48.810 -14.772 1.00 -13.487CG2 THR C 109 3803 **ATOM** 1.00 20.00 48.979 -11.366 -10.874 THR C 109 Н 3804 MOTA 1.00 20.00 47.635 -14.983 -11.301 HG1 THR C 109 3805 **ATOM** 5.78 1.00 50. 283 -12. 158 SER C 110 -14.510N 3806 **ATOM** 5.78 49.995 -11.231 1.00 -15.602**SER C 110** 3807 CA ATOM 48.509 -10.919 1.00 5.78 -15.764SER C 110 C ATOM 3808 1.00 5.78 47.653 -11.766 -15.531 SER C 110 3809 0 MOTA 50.580 -11.800 1.00 5.78 -16.888SER C 110 CB ATOM 3810 5.78 51.935 -12.192 1.00 -16.641O_G SER C 110 ATOM 3811 50.720 -13.039 1.00 20.00 -14.690 Н SER C 110 MOTA 3812

PCT/JP97/02983 WO 98/10070

			230			
ATOM	3813 HG	SER C 110	-16. 930	52.472 -1	11.456	1.00 20.00
ATOM	3814 N	ALA C 111	-16. 179	48. 276	-9.658	1.00 23.23
ATOM	3815 CA	ALA C 111	-16. 587	46.975	-9. 117	1.00 23.23
ATOM	3816 C	ALA C 111	-15.509	46.036	-8.612	1.00 23.23
ATOM	3817 0	ALA C 111	-15.815	45.076	-7.911	1.00 23.23
ATOM	3818 CB	ALA C 111	-17.522	46.190 -	10.051	1.00 23.23
ATOM	3819 H	ALA C 111	-16.131	49.058	-9. 033	1.00 20.00
ATOM	3820 N	ASP C 112	-14.244	46.320	-8.968	1.00 12.39
ATOM	3821 CA	ASP C 112	-13. 272	45.377	-8.430	1.00 12.39
ATOM	3822 C	ASP C 112	-12.940	45.570	-6.963	1.00 12.39
ATOM	3823 0	ASP C 112	-13. 185	46.622	-6.380	1.00 12.39
MOTA	3824 CF	3 ASP C 112	-12.054	45. 235	-9.349	1.00 12.39
ATOM	3825 CC	G ASP C 112	-11.065	46. 384	-9.373	1.00 12.39
ATOM	3826 OI	D1 ASP C 112	-9.871	46.109	-9.297	1.00 12.39
ATOM	3827 01	D2 ASP C 112	-11.469	47.531	-9.515	1.00 12.39
ATOM	3828 H	ASP C 112	-13. 933	47.126	-9.478	1.00 20.00
ATOM	3829 N	HIS C 113	-12.439	44.465	-6.385	1.00 16.60
ATOM	3830 C	A HIS C 113	-12.106	44.527	-4.965	1.00 16.60
ATOM	3831 C	HIS C 113	-10.614	44.536	-4.754	1.00 16.60
ATOM	3832 C	HIS C 113	-9.888	43.789	-5.395	1.00 16.60
ATOM	3833 (CB HIS C 113	-12.651	43.333	-4.183	1.00 16.60
ATOM	3834 (CG HIS C 113	-14. 155	43.312	-4.085	1.00 16.60
ATOM	3835 1	ND1 HIS C 113	-14.951	42.861	-5.068	1.00 16.60
MOTA	3836	CD2 HIS C 113	-14.949	43.695	-2.999	1.00 16.60

PCT/JP97/02983 WO 98/10070

ATOM	3837 CE1 HIS C 113	-16. 241 42.	954 -4.618	1.00 16.60
ATOM	3838 NE2 HIS C 113	-16.242 43.	465 -3.346	1.00 16.60
ATOM	3839 H HIS C 113	-12.192 43.	669 -6.945	1.00 20.00
ATOM	3840 HD1 HIS C 113	-14.660 42.	542 -5.948	1.00 20.00
ATOM	3841 N LEU C 114	-10.190 45.	370 -3.799	1.00 5.46
ATOM	3842 CA LEU C 114	-8.805 45.	190 -3.367	1.00 5.46
MOTA	3843 C LEU C 114	-8.771 44	.644 -1.968	1.00 5.46
ATOM	3844 O LEU C 114	-9.650 44	. 950 -1. 171	1.00 5.46
ATOM	3845 CB LEU C 114	-8.000 46	. 485 -3. 364	1.00 5.46
ATOM	3846 CG LEU C 114	-7.974 47	.270 -4.668	1.00 5.46
MOTA	3847 CD1 LEU C 114	-6.918 48	3.360 -4.584	1.00 5.46
ATOM	3848 CD2 LEU C 114	-7.760 46	5.410 -5.906	
ATOM	3849 H LEU C 114	-10.844 45	5.965 -3.326	
ATOM	3850 N TYR C 115	-7.735 43	3.842 -1.701	1.00 8.89
ATOM	3851 CA TYR C 115	-7.600 4	3.353 -0.332	
ATOM	3852 C TYR C 115	-6.159 4	3.351 0.095	
MOTA	3853 0 TYR C 115	3,22	3.393 -0.726	
ATOM	3854 CB TYR C 115	-8.093 4	1.932 -0.14	6 1.00 8.89
ATOM	3855 CG TYR C 115	-9.512 4	1.669 -0.56	
ATOM	3856 CD1 TYR C 115	-10.527	11.731 0.41	0 1.00 8.89
ATOM	3857 CD2 TYR C 115	-9.769	11.314 -1.90	1.00 8.89
ATON	1 2000 CET LIN O 120		41.426 0.03	
ATO				
ATO	M 3860 CZ TYR C 115	-12.111	41.094 -1.3	10 1.00 8.89

ATOM	3861 OH	H TYR C 115	-13.427	40.877	-1.680	1.00 8.89
ATOM	3862 H	TYR C 115	-7.089	43.583	-2.428	1.00 20.00
ATOM	3863 H	H TYR C 115	-13.500	40.898	-2.625	1.00 20.00
ATOM	3864 N	VAL C 116	-6.003	43.353	1.429	1.00 5.15
ATOM	3865 C	A VAL C 116	-4.655	43.500	1.969	1.00 5.15
ATOM	3866 C	VAL C 116	-4.427	42.616	3.167	1.00 5.15
ATOM	3867 0	VAL C 116	-4.921	42.892	4.254	1.00 5.15
ATOM	3868 C	CB VAL C 116	-4.391	44.958	2.347	1.00 5.15
ATOM	3869 C	CG1 VAL C 116	-3.047	45.146	3.028	1.00 5.15
ATOM	3870	CG2 VAL C 116	-4.431	45.833	1.114	1.00 5.15
ATOM	3871 H	H VAL C 116	-6.795	43.259	2.033	1.00 20.00
ATOM	3872	N ASN C 117	-3.635	41.564	2.923	1.00 8.77
ATOM	3873	CA ASN C 117	-3.425	40.689	4.070	1.00 8.77
ATOM	3874	C ASN C 117	-1.998	40.449	4.438	1.00 8.77
ATOM	3875	O ASN C 117	-1.065	40.561	3.650	1.00 8.77
ATOM	3876	CB ASN C 117	-4.121	39. 345	3.930	1.00 8.77
ATOM	3877	CG ASN C 117	-5. 592	39.615	3.829	1.00 8.77
ATOM	3878	OD1 ASN C 117	-6. 204	40.373	4.562	1.00 8.77
ATOM	3879	ND2 ASN C 117	-6. 137	38.982	2.834	1.00 8.77
ATOM	3880	H ASN C 117	-3. 275	41.370	2.006	1.00 20.00
ATOM	3881	1HD2 ASN C 117	-5. 613	38.450	2.164	1.00 20.00
ATOM	3882	2HD2 ASN C 117	-7.069	39.135	2.53	1.00 20.00
ATOM	3883	N VAL C 118	-1.89	5 40.104	5.72	1.00 2.80
ATOM	1 3884	CA VAL C 118	-0.59	3 39.71	6.23	1 1.00 2.80

	PCT/JP97/02983
WO 98/10070	PC1/3F9//02985

239 2.80 1.00 6.429-0.635 38.220 C VAL C 118 3885 **ATOM** 2.80 1.00 6.704 -1.69737.681 **VAL C 118** 0 3886 **ATOM** 2.80 1.00 7.559 40.435 -0.353 CB **VAL C 118** 3887 ATOM 2.80 1.00 8.299 40.010 0.916 CG1 VAL C 118 3888 MOTA 1.00 2.80 7.324 41.939 -0.376CG2 VAL C 118 3889 **ATOM** 1.00 20.00 39.935 6.266 -2.718VAL C 118 3890 H **ATOM** 3.07 1.00 6.321 37.580 0.535 **SER C 119** 3891 N ATOM 3.07 1.00 6.827 36.208 0.547**SER C 119** CA 3892 MOTA 1.00 3.07 8.291 0.075 36.075 SER C 119 3893 C **ATOM** 3.07 1.00 8.587 -1.02735.625 **SER C 119** 3894 0 **ATOM** 1.00 3.07 6.539 1.928 35.591 **SER C 119** 3895 CB MOTA 1.00 3.07 7.029 2.980 36.438 0G SER C 119 3896 **ATOM** 1.00 20.00 6.067 38.081 1.366 Н SER C 119 ATOM 3897 1.00 20.00 35.915 7.707 3.428 SER C 119 **ATOM** 3898 HG 1.00 12.56 9.223 36.509 0.930 **GLU C 120** 3899 N ATOM 1.00 12.56 10.608 36.236 0.538 GLU C 120 CA **ATOM** 3900 1.00 12.56 11.360 37.435 0.004 **GLU C 120** C MOTA 3901 1.00 12.56 38.386 11.647 0.721 **GLU C 120** 0 MOTA 3902 1.00 12.56 11.452 35.651 1.681 **GLU C 120** CB **ATOM** 3903 11.093 1.00 12.56 34.312 2.348 **GLU C 120** CG MOTA 3904 1.00 12.56 9.742 3.027 34.367 **GLU C 120** CD **ATOM** 3905 1.00 12.56 9.440 35.387 OE1 GLU C 120 3.641 **ATOM** 3906 8.990 1.00 12.56 2.93133.398 3907 OE2 GLU C 120 **ATOM** 1.00 20.00 36.922 8.983 1.813 **GLU C 120** H **ATOM** 3908

ATOM	3909	N	LEU C 121	-1.281	37.351	11.733	1.00 16.20
ATOM	3910	CA	LEU C 121	-1.776	38.546	12.420	1.00 16.20
ATOM	3911	С	LEU C 121	-1.412	38.676	13.892	1.00 16.20
ATOM	3912	0	LEU C 121	-1.465	39.747	14.485	1.00 16.20
ATOM	3913	СВ	LEU C 121	-3.259	38. 801	12.140	1.00 16.20
ATOM	3914	CG	LEU C 121	-3.542	39.252	10.702	1.00 16.20
ATOM	3915	CD1	LEU C 121	-2.592	40.361	10.277	1.00 16.20
ATOM	3916	CD2	LEU C 121	-3.564	38. 129	9.669	1.00 16.20
ATOM	3917	Н	LEU C 121	-1.868	36.575	11.492	1.00 20.00
ATOM	3918	N	SER C 122	-0.917	37.546	14.431	1.00 8.33
ATOM	3919	CA	SER C 122	-0.237	37.593	15.728	1.00 8.33
MOTA	3920	С	SER C 122	0.909	38.589	15.825	1.00 8.33
ATOM	3921	0	SER C 122	1.248	39.085	16.890	1.00 8.33
ATOM	3922	СВ	SER C 122	0.288	36.206	16.078	1.00 8.33
ATOM	3923	OG	SER C 122	-0.667	35. 221	15.673	1.00 8.33
ATOM	3924	H	SER C 122	-1.050	36.661	13.986	1.00 20.00
ATOM	3925	HG	SER C 122	-0.389	34.411	16.078	1.00 20.00
ATOM	3926	N	LEU C 123	1.493	38. 855	14.641	1.00 10.07
ATOM	3927	CA	LEU C 123	2.577	39. 833	14.580	1.00 10.07
ATOM	3928	С	LEU C 123	2. 158	41.266	14.832	1.00 10.07
ATOM	3929	0	LEU C 123	2.977	42.114	15.160	1.00 10.07
ATOM	3930	СВ	LEU C 123	3. 221	39. 824	13.204	1.00 10.07
ATOM	3931	CG	LEU C 123	3.772	38. 495	12.713	1.00 10.07
ATOM	3932	CD:	LEU C 123	3.961	38. 536	11. 198	1.00 10.07

ATOM	3933	CD2 LEU C 123	5.031	38.075	13.468	1.00 10.07
ATOM	3934	H LEU C 123	1. 154	38.448	13.789	1.00 20.00
MOTA	3935	N VAL C 124	0.862	41.525	14.587	1.00 5.90
ATOM	3936	CA VAL C 124	0.517	42.935	14.459	1.00 5.90
ATOM	3937	C VAL C 124	0.587	43.712	15.750	1.00 5.90
ATOM	3938	0 VAL C 124	0.065	43.349	16.797	1.00 5.90
ATOM	3939	CB VAL C 124	-0.827	43.121	13.742	1.00 5.90
ATOM	3940	CG1 VAL C 124	-1.211	44.586	13.507	1.00 5.90
MOTA	3941	CG2 VAL C 124	-0.742	42.418	12.395	1.00 5.90
ATOM	3942	H VAL C 124	0.165	40.808	14.518	1.00 20.00
ATOM	3943	N ASN C 125	1.286	44.839	15.593	1.00 5.82
ATOM	3944	CA ASN C 125	1.253	45.780	16.696	1.00 5.82
ATOM	3945	C ASN C 125	0.001	46.605	16.639	1.00 5.82
ATOM	3946	0 ASN C 125	-0.386	47. 103	15.591	1.00 5.82
ATOM	3947	CB ASN C 125	2.455	46.712	16.655	1.00 5.82
ATOM	3948	CG ASN C 125	3. 695	45.953	17.048	1.00 5.82
ATOM	3949	OD1 ASN C 125	3.674	45.044	17.871	1.00 5.82
ATOM	3950) ND2 ASN C 125	4.794	46.399	16.421	1.00 5.82
ATOM	3951	H ASN C 125	1.631	45.065	14.679	1.00 20.00
ATOM	3952	2 1HD2 ASN C 125	4.758	47.221	15.853	1.00 20.00
ATOM	3953	3 2HD2 ASN C 125	5. 659	45.905	16.501	1.00 20.00
MOTA	3954	4 N PHE C 126	-0. 588	3 46.754	17.829	1.00 7.35
ATOM	395	5 CA PHE C 126	-1.587	7 47.809	17.914	1.00 7.35
ATOM	395	6 C PHE C 126	-1.199	9 48.815	18.956	1.00 7.35

MOTA	3957	0	PHE C 126	-2.028	49.398	19.641	1.00 7.35
ATOM	3958	СВ	PHE C 126	-2.980	47.275	18.224	1.00 7.35
ATOM	3959	CG	PHE C 126	-3.392	46. 261	17.190	1.00 7.35
ATOM	3960	CD1	PHE C 126	-3.254	44.893	17.499	1.00 7.35
ATOM	3961	CD2	PHE C 126	-3.914	46.690	15.950	1.00 7.35
ATOM	3962	CE1	PHE C 126	-3.677	43.930	16.566	1.00 7.35
ATOM	3963	CE2	PHE C 126	-4.343	45.727	15.017	1.00 7.35
ATOM	3964	CZ	PHE C 126	-4.235	44.358	15.343	1.00 7.35
ATOM	3965	Н	PHE C 126	-0.328	46.220	18.634	1.00 20.00
ATOM	3966	N	GLU C 127	0. 131	48.999	19.056	1.00 24.73
ATOM	3967	CA	GLU C 127	0.501	50.103	19.932	1.00 24.73
ATOM	3968	С	GLU C 127	0.000	51.423	19.378	1.00 24.73
ATOM	3969	0	GLU C 127	-0.527	52.267	20.088	1.00 24.73
ATOM	3970	СВ	GLU C 127	2.006	50.161	20. 162	1.00 24.73
ATOM	3971	CG	GLU C 127	2. 354	51.265	21.170	1.00 24.73
ATOM	3972	CD	GLU C 127	2. 781	50.661	22.483	1.00 24.73
MOTA	3973	0E	1 GLU C 127	3.935	50.873	22.856	1.00 24.73
ATOM	3974	0E	2 GLU C 127	1.977	49.974	23. 110	1.00 24.73
ATOM	3975	Н	GLU C 127	0.769	48.539	18.441	1.00 20.00
ATOM	3976	N	GLU C 128	0. 196	51.549	18.052	1.00 23.04
ATOM	3977	CA	GLU C 128	-0. 125	52.847	17.475	1.00 23.04
ATOM	3978	3 C	GLU C 128	-0.744	52.724	16.096	1.00 23.04
ATOM	3979	0	GLU C 128	-0.960	51.626	15.599	1.00 23.04
ATOM	3980) CI	B GLU C 128	1. 159	53.647	17.451	1.00 23.04

WO 98/10070

PCT/JP97/02983

_	70,100.0								
						243			
	ATOM	3981	CG	GLU C	128	1.605	54.203	18.810	1.00 23.04
	MOTA	3982	CD	GLU C	128	1.107	55.618	19.019	1.00 23.04
	ATOM	3983	OE1	GLU C	128	0.356	56.125	18.180	1.00 23.04
	ATOM	3984	OE2	GLU C	128	1.493	56.211	20.027	1.00 23.04
	ATOM	3985	Н	GLU C	128	0.566	50.822	17.466	1.00 20.00
	ATOM	3986	N	SER C	129	-0.999	53.889	15.469	1.00 19.86
	ATOM	3987	CA	SER C	129	-1.846	53.943	14.262	1.00 19.86
	ATOM	3988	С	SER C	129	-1.339	53.305	12.969	1.00 19.86
	ATOM	3989	0	SER C	129	-1.933	53.394	11.903	1.00 19.86
	ATOM	3990	СВ	SER C	129	-2. 223	55.400	13.991	1.00 19.86
	ATOM	3991	OG	SER C	129	-2.331	56.091	15. 240	1.00 19.86
	ATOM	3992	Н	SER C	129	-0.769	54.758	15.918	1.00 20.00
	ATOM	3993	HG	SER C	129	-2.530	57.003	15.034	1.00 20.00
	ATOM	3994	N	GLN C	130	-0.171	52.674	13.114	1.00 15.57
	ATOM	3995	CA	GLN C	130	0.662	52.233	12.003	1.00 15.57
	ATOM	3996	С	GLN C	130	0.054	51.392	10.884	1.00 15.57
	MOTA	3997	0	GLN C	130	0.416	51.529	9.722	1.00 15.57
	ATOM	3998	СВ	GLN C	130	1.870	51.549	12.624	1.00 15.57
	ATOM	3999	CG	GLN C	130	1.560	50.341	13.533	1.00 15.57
	ATOM	4000	CD	GLN C	130	1.919	50.583	14.997	1.00 15.57
	ATOM	4001	OE	1 GLN C	130	1.513	49.865	15.902	1.00 15.57
	ATOM	4002	NE	2 GLN C	130	2.705	51.641	15. 229	1.00 15.57
	MOTA	4003	Н	GLN C	130	0. 143	52.554	14.051	1.00 20.00
	MOTA	4004	1HE	2 GLN C	130	3. 123	52. 223	14.534	1.00 20.00

ATOM	4005 2HE2 GLN C 130	2.869 51.883 16.183 1.00 20.00
ATOM	4006 N THR C 131	-0.853 50.493 11.288 1.00 3.96
ATOM	4007 CA THR C 131	-1.370 49.568 10.285 1.00 3.96
ATOM	4008 C THR C 131	-2.605 50.079 9.567 1.00 3.96
ATOM	4009 O THR C 131	-3.688 50.213 10.133 1.00 3.96
ATOM	4010 CB THR C 131	-1.576 48.188 10.921 1.00 3.96
ATOM	4011 OG1 THR C 131	-0.308 47.671 11.357 1.00 3.96
MOTA	4012 CG2 THR C 131	-2.272 47.177 10.005 1.00 3.96
ATOM	4013 H THR C 131	-1.174 50.479 12.233 1.00 20.00
ATOM	4014 HG1 THR C 131	-0.516 46.906 11.880 1.00 20.00
ATOM	4015 N PHE C 132	-2.362 50.355 8.276 1.00 6.06
ATOM	4016 CA PHE C 132	-3.390 50.993 7.464 1.00 6.06
ATOM	4017 C PHE C 132	-3.364 50.552 6.015 1.00 6.06
·ATOM	4018 0 PHE C 132	-2.350 50.071 5.530 1.00 6.06
ATOM	4019 CB PHE C 132	-3.301 52.525 7.578 1.00 6.06
ATOM	4020 CG PHE C 132	-1.974 53.089 7.114 1.00 6.06
ATOM	4021 CD1 PHE C 132	-1.638 53.094 5.741 1.00 6.06
ATOM	4022 CD2 PHE C 132	-1.094 53.624 8.078 1.00 6.06
ATOM	4023 CE1 PHE C 132	-0.403 53.626 5.329 1.00 6.06
ATOM	4024 CE2 PHE C 132	0.140 54.162 7.669 1.00 6.06
ATOM	4025 CZ PHE C 132	0.474 54.154 6.299 1.00 6.06
ATOM	4026 H PHE C 132	-1.463 50.132 7.889 1.00 20.00
ATOM	4027 N PHE C 133	-4.504 50.776 5.344 1.00 7.15
ATOM	4028 CA PHE C 133	-4.576 50.554 3.898 1.00 7.15

WO 98/10070 PCT/JP97/02983

ATOM	4029	С	PHE C 1	33	-5.443	51.623	3.274	1.00	7. 15
ATOM	4030	0	PHE C 1	33	-6.517	51.917	3.775	1.00	7. 15
ATOM	4031	СВ	PHE C 1	33	-5. 147	49.157	3.606	1.00	7. 15
ATOM	4032	CG	PHE C 1	.33	-5.481	48.927	2.144	1.00	7. 15
ATOM	4033	CD1	PHE C 1	.33	-4.545	49.243	1.132	1.00	7.15
ATOM	4034	CD2	PHE C	133	-6.741	48.379	1.820	1.00	7. 15
ATOM	4035	CE1	PHE C	133	-4.873	49.013	-0.217	1.00	7.15
ATOM	4036	CE2	PHE C	133	-7.064	48. 136	0.470	1.00	7.15
ATOM	4037	CZ	PHE C	133	-6.130	48.458	-0.535	1.00	7.15
ATOM	4038	Н	PHE C	133	-5. 301	51.117	5.852	1.00 2	20.00
MOTA	4039	N	GLY C	134	-4.955	52.195	2.170	1.00	4.00
ATOM	4040	CA	GLY C	134	-5. 798	53. 226	1.589	1.00	4.00
ATOM	4041	С	GLY C	134	-5. 561	53.468	0.120	1.00	4.00
ATOM	4042	0	GLY C	134	-4.524	53.119	-0.435	1.00	4.00
ATOM	4043	Н	GLY C	134	-4.078	51.938	1.757	1.00	20.00
ATOM	4044	N	LEU C	135	-6.594	54.081	-0.479	1.00	5.48
ATOM	4045	CA			-6.529		-1.903		5.48
MOTA	4046	С	LEU C	135	-6. 875	55.847	-2. 125	1.00	5.48
ATOM	4047	0	LEU C	135	-7.510	56.478	-1.289	1.00	5.48
ATOM	4048	C	B LEU C	135	-7.54	7 53.645	-2.759	1.00	5.48
ATOM	4049	C	G LEU (135	-7.68	8 52.141	-2.591	1.00	5.48
ATO.	4050) C	D1 LEU (2 135	-8. 66	1 51.586	3 -3.63	1.00	5.48
				105	£ 35	7 51.40	-2.618	3 1.00	5.48
ATON	d 4051	i C				54.45			

ATOM	4053	N	TYR C 136	-6.500	56.309	-3.325	1.00 5.12
ATOM	4054	CA	TYR C 136	-7.083	57. 553	-3.823	1.00 5.12
ATOM	4055	С	TYR C 136	-6. 940	57.684	-5.318	1.00 5.12
ATOM	4056	0	TYR C 136	-5. 937	57. 281	-5.889	1.00 5.12
ATOM	4057	СВ	TYR C 136	-6.510	58.792	-3.124	1.00 5.12
ATOM	4058	CG	TYR C 136	-5.000	58.809	-3.108	1.00 5.12
ATOM	4059	CD1	TYR C 136	-4.314	58.036	-2.151	1.00 5.12
ATOM	4060	CD2	2 TYR C 136	-4.321	59.629	-4.030	1.00 5.12
ATOM	4061	CE1	1 TYR C 136	-2.919	58.140	-2.065	1.00 5.12
ATOM	4062	CE	2 TYR C 136	-2.926	59.740	-3.934	1.00 5.12
MOTA	4063	CZ	TYR C 136	-2.248	59.021	-2.932	1.00 5.12
ATOM	4064	ОН	TYR C 136	-0.885	59.194	-2.809	1.00 5.12
ATOM	4065	Н	TYR C 136	-5. 801	55.809	-3.844	1.00 20.00
ATOM	4066	НН	TYR C 136	-0.519	59. 268	-3.679	1.00 20.00
MOTA	4067	N	LYS C 137	-7. 985	58. 263	-5.926	1.00 11.54
ATOM	4068	3 CA	LYS C 137	-7.861	58.523	-7.359	1.00 11.54
ATOM	4069) C	LYS C 137	-6. 972	59.720	-7.657	1.00 11.54
MOTA	4070	0 0	LYS C 137	-7.009	60.724	-6.954	1.00 11.54
ATOM	407	ı Cl	B LYS C 137	-9. 252	2 58.650	-8.007	1.00 11.54
MOTA	407	2 C	G LYS C 137	-9. 183	3 58.690	9.538	3 1.00 11.54
ATOM	407	3 C	D LYS C 137	-10.50	7 58.6 7 4	1 -10.297	7 1.00 11.54
ATOM	407	4 C	E LYS C 137	-10.23	6 58.89	7 –11.78	8 1.00 11.54
ATOM	407	'5 N	IZ LYS C 137	-11.43	9 58.63	0 -12.59	1 1.00 11.54
ATOM	407	76 F	I LYS C 137	-8.76	6 58.55	9 -5.37	3 1.00 20.00

WO 98/10070	PCT/JP97/02983

ATOM	4077 1	HZ	LYS	С	137	-11. 252	58.866	-13.585	1.00	20.00
ATOM	4078 2	2HZ	LYS	С	137	-11.653	57.608	-12.564	1.00	20.00
ATOM	4079 3	BHZ	LYS	С	137	-12. 265	59. 158	-12.244	1.00	20.00
ATOM	4080	N	LEU	С	138	-6. 177	59.542	-8.723	1.00	2.56
ATOM	4081	CA	LEU	С	138	-5. 383	60.647	-9.256	1.00	2.56
ATOM	4082	С	LEU	С	138	-6. 126	61.467	-10.319	1.00	2.56
ATOM	4083	0	LEU	С	138	-5.503	62.314	-10.959	1.00	2.56
ATOM	4084	СВ	LEU	С	138	-4.056	60.098	-9.801	1.00	2.56
ATOM	4085	CG	LEU	С	138	-3. 292	59. 193	-8.827	1.00	2.56
ATOM	4086	CD1	LEU	С	138	-2. 105	58. 525	-9.511	1.00	2.56
ATOM	4087	CD2	LEU	С	138	-2.875	59.918	-7.548	1.00	2.56
ATOM	4088	OXT	LEU	С	138	-7. 329	61.259	-10.516	1.00	2.56
ATOM	4089	Н	LEU	С	138	-6. 232	58.672	-9.217	1.00	20.00
END										

表1中のアミノ酸残基の後に記されているA, B及びCはFasリガンドトリマーのセグメントの区別である。X, Y及びZは、それぞれ各原子のX, Y及びZ軸に対しての座標を示し、OCCはOccupancy、Bは温度因子である。

このようにして構築したFasリガンドモデル上で、各NOK抗体及びヒ ト型化NOK2抗体の認識領域がどの様な位置関係にあるか表すために、表 1に示された原子座標データを基に、QUANTA/CHARMmを用いて Fasリガンド三量体を各アミノ酸のα位の炭素原子(Cα)のみで結んだ 線で表し、実施例6で同定されたNOK1、NOK2及びヒト型化NOK2 (RNOK201~203)、NOK3抗体の各々の認識領域アミノ酸のう ち、Fasリガンド三量体の同一側面に位置する認識領域アミノ酸を灰色丸 印で、それ以外の位置にあるアミノ酸を白抜きの丸印で表示した場合の図 を、図22から図24に各々示した(図23のNOK2及びヒト型化NOK 2 抗体の場合、ヒト型NOK 2 抗体で特に認識するアミノ酸を破線の丸印で 示している)。この場合、理解を容易にするために便宜上3分子のFasリ ガンドのうち手前側の2分子(表1のB及びCセグメント)のみを表示して おり、さらに、認識領域アミノ酸の番号は図21のアライメントデータに示 したFasリガンドモデルの番号に従っている。また、Fasリガンドの各 原子のファンデルワールスコンタクトモデルをQUANTA/CHARMm のレイ・トレース (Ray Trace) コマンドで表示し、実施例6で同 定された各NOK抗体及びヒト型化NOK 2 抗体の認識領域アミノ酸を重ね て表示した。ファンデルワールスコンタクトモデル上のNOK1抗体の認識 領域は図29、NOK2抗体及びヒト型化NOK2抗体の認識領域は図3 0、NOK3抗体の認識領域は図31の斜線部分の位置のアミノ酸になっ た。これらの図22から24までと図29から31までは表現を変更してい るだけで、基本的に同じ図である(同一モデルを同一の方向から見てい る)。

これらの解析結果より、特に注目すべきことに、各NOK抗体及びヒト型

化NOK2抗体が結合する認識領域は、立体構造から考えて2分子のFasリガンドにまたがっていることが判明した。即ち、各NOK抗体及びヒト型化NOK2抗体はFasリガンド三量体が形成されたとき初めて出現する領域を認識領域として認識していることが示された。これらNOK抗体のように強いアポトーシス抑制活性を持つ抗体がFasリガンド二分子にまたがる認識領域を認識していたことは、これまでの報告にない新規な知見である。従って、Fasリガンド三量体上に2分子にまたがって形成される領域を認識し、結合することが強いアポトーシス抑制活性を発揮するためには重要であると考えられる。

各NOK抗体及びヒト型化NOK 2抗体の認識する領域は図22から24 や図29から31に示されるように、各抗体は、互いに共通の認識アミノ酸を、例えば、NOK1~3及びヒト型化NOK 2抗体に共通:199番Gly、205番Leu、220番Gln、221番Asp、222番Leu、237番Gln、NOK1と3抗体に共通:203番Asn、NOK1と3及びヒト型化NOK 2抗体に共通:203番Asn、NOK1と3及びヒト型化NOK 2抗体に共通:228番Lys、NOK2と3及びヒト型化NOK 2抗体に共通:230番Met、238番Met (アミノ酸番号は長田らの文献(長田ら、Int. Immunology, vol. 6, p1567-1574, 1994)に従う)などを持っていることから、ある領域を共通して認識していることが推定される。

一方、Fasリガンド三量体程度の大きさの蛋白分子であれば、抗体の大きさを考慮すると抗体が認識する抗原領域は一種の面を構成していると考えられ、抗体が認識した場合、これらの認識アミノ酸から構成される抗原領域面と抗体の認識領域面が、面と面で接している状態になる。前述のNOK1~3抗体及びヒト型化NOK2抗体の認識領域や共通領域も面として存在し

ていると考えられる。即ち、Fasリガンド三量体分子上の抗体の認識領域は蛋白分子上の面として定義することができ、アポトーシス活性を強く抑制する抗体は、Fasリガンド三量体分子上のこれらの認識アミノ酸から構成される面に対して侵入あるいは近づいてくる抗体である。

従って、前述のFasリガンド三量体分子上の各抗体の認識アミノ酸を面 の構成要素として検討することができる。一般的に面は一直線上にない3点 A (XA, YA, ZA) B (XB, YB, ZB) C (XC, YC, ZC) で 規定される平面として表示することができる。各抗体の認識アミノ酸の表 1 に示す原子座標データをこの式に当てはめ、面を計算することができる。こ のようにして、各抗体の認識アミノ酸から3個のアミノ酸を任意に選択し、 計算すれば、抗体の認識する面を表すことができる。例えば、NOK3抗体 の認識アミノ酸の中から、表1に示すFasリガンドB分子上の57番目 Gln、FasリガンドC分子上の60番目Asn、FasリガンドC分子 上の77番目G l n を選択した場合、そのC α 原子の座標データは各々(20.209, 32.098, 0.872) (11.551, 31.704, 15. 937) (-8.765, 35.501, -9.840) となり、これらのア ミノ酸 C α原子の座標によって規定される面算出することができる。この FasリガンドB分子上の57番目Gln、FasリガンドC分子上の60 番目Asn、FasリガンドC分子上の77番目GIn組合せによって規定 される面は、NOK3抗体の認識アミノ酸から構成される領域面をカバーす ることができる。実際の抗体と接触または抗体の原子がFasリガンド三量 体に向かって通過してくる面は、各Cα原子の座標からFasリガンド分子 と反対側にアミノ酸残基の側鎖の長さの分とさらに一般的なファンデルワー ルスコンタクトのカット·オフ (cut off) 値である4.1オングス

トローム離れた所に構成される面になると考えられる。

実施例 9

(Fasリガンド上のNOK2抗体認識領域の同定)

実施例8で述べたように、各NOK抗体やヒト型化NOK2抗体がある共通したアミノ酸を認識していることから、アポトーシス活性を強く抑制する抗体には、共通したある認識領域が存在すると推定されている。一方、各NOK抗体やヒト型化NOK2抗体はその可変領域のアミノ酸配列の長さから、通常の抗体の可変領域とほとんど同じ大きさを有していると考えれる。そこで、Fasリガンド三量体上の各NOK抗体やヒト型化NOK2抗体の共通認識領域を同定するために、それらの代表としてNOK2抗体をFasリガンドの場合と同様にモデリングし、NOK2抗体の可変領域(特にCDR領域)がFasリガンド三量体上の認識アミノ酸より構成される領域をカバーすることが可能であるか、カバーするとすれば現在示されている認識アミノ酸以外にどのようなアミノ酸が認識アミノ酸の候補として考えられるかについて検討した。

NOK2抗体の立体構造モデルとして、ここでは、Modelerを使って新たにモデリングしたNOK2抗体モデルを使用した。初めに、NOK2抗体H鎖可変領域(VH)及びL鎖可変領域(VL)と相同性が高いPDBID:1FORのVH(配列番号:131)とPDBID:1TETのVL(配列番号:132)を三次元構造の鋳型として利用した。NOK2抗体のVH及びVLアミノ酸配列と1FORのVH及び1TETのVLアミノ酸配列を図25と図26に各々示すようにアライメントし、Modelerに入力した。Modelerの使用説明書に従って5個のモデルが得られるように条件を設定し、モデリングを行った。その結果、エネルギー最小化計

算後のエネルギーと確率密度関数 (PDF; Probability Density Function) と全原子の平均二乗偏差の平方根 (RMS; Root Mean Square) 値の低いモデルNo. 5をNOK 2 抗体可変領域モデルとして選択した。

NOK 2 抗体の可変領域内の抗原認識領域(6個のCDR:相補性決定領 域)の大きさをQUANTA/CHARMmのグラフィカル・シリンダー (Graphical Cylinder) コマンドを使用して調べた。そ の結果、図32と33に示すように、NOK2抗体モデルの抗原認識領域は 半径約17オングストロームの円とほぼ同じサイズを有していた(図33で 半径約17オングストロームの円内にNOK2抗体モデルのCDR領域アミ ノ酸がちょうど入っていることが示されている)。次に、QUANTA/ CHARMm上で、得られた半径約17オングストロームの円を図22~2 4に示したFasリガンド三量体上の認識領域アミノ酸から構成される面と その認識アミノ酸を各々カバーするように配置したところ、得られたNOK 2 抗体の可変領域内の抗原認識領域に相当する領域(半径約17オングスト ロームの円) が、Fasリガンド三量体上の各NOK抗体及びヒト型化 NOK 2 抗体の認識領域アミノ酸を全てカバーできることがわかった(図 2 7)。従って、反応性に差はあるものの、各NOK抗体やヒト型化NOK 2 抗体はFasリガンド三量体上のほぼ同じ領域を接触面としてカバーしてい ると考えられる。このことは、アポトーシス抑制活性の高い抗体が、今回示 された領域を共通して認識していることを示している。

そこで、この円の範囲で、15平方オングストローム以上のアミノ酸残基の露出表面積を誇つFasリガンド三量体の表面アミノ酸を、抗体のCDR領域アミノ酸と相互作用可能なアミノ酸として選択したところ、各々隣合うこつのFasリガンド分子のうちの一方の分子の10番Ser、23番

Tyr、25番Ile、55番Arg、56番Gly、57番Gln、94 番Gln、95番Met、98番Arg、99番Ser、126番Phe、 127番Glu、128番Glu、129番Serの各アミノ酸、他方の Fasリガンド分子の14番Ser、15番Met、16番Pro、18番 Glu、35番Lys、36番Gly、60番Asn、61番Asn、62 番Leu、63番Pro、65番Ser、67番Lys、69番Tyr、7 1番Arg、75番Tyr、76番Pro、77番Gln、78番Asp、 79番Leu、80番Val、85番Lys、87番Met、89番 Tyr、113番His、115番Tyr、117番Asn、119番 Ser、120番Glu、121番Leu、122番Serの各アミノ酸 (アミノ酸の番号はいずれの分子も図21のアライメントデータに示した Fasリガンドモデルの番号に従っている) が選ばれてきた。これらのアミ ノ酸を図28と図34に示す。図中のアミノ酸を大きく囲む円は上述の半径 約17オングストロームの円であり、今回選ばれたアミノ酸のうち、各 NOK抗体とヒト型化NOK2抗体の認識領域アミノ酸と重複するものを濃 色丸印で、新たに抗体認識領域アミノ酸として選択されたアミノ酸を白抜き 丸印で表示している。

これらのアミノ酸番号を、先述の長田らの文献(長田ら、Int. Immunology, vol. 6, p1567-1574, 1994)に従って表記し直すと、各々隣合う二つのFasリガンド分子のうちの一方の分子の153番Ser、166番Tyr、168番Ile、198番Arg、199番Gly、200番Gln、237番Gln、238番Met、241番Arg、242番Ser、269番Phe、270番Glu、271番Glu、272番Scrの各アミノ酸、他方のFasリガンド分子の157

番Ser、158番Met、159番Pro、161番Glu、178番Lys、179番Gly、203番Asn、204番Asn、205番Leu、206番Pro、208番Ser、210番Lys、212番Tyr、214番Arg、218番Tyr、219番Pro、220番Gln、221番Asp、222番Leu、223番Val、228番Lys、230番Met、232番Tyr、256番His、258番Tyr、260番Asn、262番Ser、263番Glu、264番Leu、265番Serの各アミノ酸に相当する。

これらのアミノ酸の中に、NOK3抗体の認識アミノ酸はもとより、各NOK抗体やヒト型化NOK2抗体のようなアポトーシス活性を強く抑制する抗体に共通する認識領域アミノ酸も含まれていると考えられる。即ち、Fasリガンド三量体上のこれらの領域に含まれるアミノ酸と相互作用することが、高いアポトーシス抑制活性をもつタンパク質、ペプチド、望ましくは抗体もしくはその類似物にとって重要であることを示している。

本発明は、高いアポトーシス抑制活性を持つ抗Fasリガンド抗体の Fasリガンド三量体上の認識領域を初めて明かにしたという点で重要であ るのみならず、他の様々なアポトーシス活性抑制分子をデザインする上で重 要な情報を与えている。すなわち、本願発明に基づけば上記領域及びその領 域に含まれるアミノ酸(実施例6から9に記載の領域及びアミノ酸)に対し て特異的に反応し、アポトーシスを抑制するタンパク質、ペプチド、望まし くは抗体もしくはその類似物などを作出し、新たな治療薬或いは臨床診断薬 等に応用することができる。

本発明により、Fasリガンドに特異的に反応し、Fas-Fasリガンドを介した生理的反応を抑制する活性を有する、AIDS、骨髄移植におけ

る移植片拒絶反応、自己免疫疾患(SLE、RA)、糖尿病などの疾患の治療薬として使用可能な、以下の特長を有するヒト型化免疫グロブリンが提供される。

- (1) エフェクター部分がヒトであるので、ヒト免疫系の他の部分とより 良好に相互作用し得る(例えば、補体依存性細胞障害(CDC)または抗体 依存性細胞障害(ADCC)による、より効率的な標的細胞の破壊)。
- (2) ヒト免疫系は、ヒト型化免疫グロブリンのフレームワークまたはC 領域を異物として認識せず、従って当該免疫グロブリンに対する好ましから ぬ抗体応答は、全部が異物であるマウス抗体または一部分が異物であるキメ ラ抗体に対するものよりも少ない。
- (3) 自然に生じるヒト抗体の半減期により近い半減期を有し、マウス抗体に比較して、より小さいまたはより少ない頻度の投与量を与えることが期待される。

また、Fasリガンド上のアポトーシス誘導活性の発揮に必要な領域が明らかにされたことにより、当該領域に含まれるアミノ酸に対して特異的に反応し、アポトーシスを抑制する組換え蛋白、ペプチドなどを作出し、新たな治療薬或いは臨床診断薬等に応用することができる。

配 列 表

配列番号:1

配列の長さ:5

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド

起源

生物:マウス

配列

Asn Tyr Trp Ile Gly

1

5

配列番号:2

配列の長さ:17

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド

起源

生物:マウス

配列

Tyr Leu Tyr Pro Gly Gly Leu Tyr Thr Asn Tyr Asn Glu Lys Phe

1

5

10

15

Lys Gly

配列番号:3

配列の長さ:10

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド

起源

生物:マウス

配列

Tyr Arg Asp Tyr Asp Tyr Ala Met Asp Tyr

- 1

5

10

配列番号: 4

配列の長さ:16

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド

起源

生物:マウス

配列

Lys Ser Thr Lys Ser Leu Leu Asn Ser Asp Gly Phe Thr Tyr Leu

1

5

10

15

Gly

配列番号:5

配列の長さ:7

配列の型:ア円ノ酸

トポロジー:直鎖状

258

配列の種類:ペプチド

起源

生物:マウス

配列

Leu Val Ser Asn Arg Phe Ser

1

5

配列番号:6

配列の長さ:9

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド

起源

生物:マウス

配列

Phe Gln Ser Asn Tyr Leu Pro Leu Thr

1

5

配列番号:7

配列の長さ:121

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド

起源:生物名:ヒト

配列

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly

15 10 1 5 Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Ser 25 30 20 Ser His Trp Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu 40 45 35 Glu Trp Val Gly Glu Phe Asn Pro Ser Asn Gly Arg Thr Asn Tyr 60 55 50 Asn Glu Lys Phe Lys Ser Arg Val Thr Met Thr Leu Asp Thr Ser 75 70 65 Thr Asn Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp 90 85 80 Thr Ala Val Tyr Tyr Cys Ala Ser Arg Asp Tyr Asp Tyr Asp Gly 100 105 95 Arg Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser 120 115 110

Ser

配列番号:8

配列の長さ:112

配列の型:アミノ酸

トポロジー:ヨシ鎖状

配列の種類:ペプチド

起源

生物:ヒト

配列

260

Asp	Val	Val	Met	Thr	Gln	Ser	Pro	Leu	Ser	Leu	Pro	Val	Thr	Leu
1				5					10					15
Gly	Gln	Pro	Ala	Ser	Ile	Ser	Cys	Arg	Ser	Ser	Gln	Ser	Leu	Val
				20					25					30
Tyr	Ser	Asp	Gly	Asn	Thr	Tyr	Leu	Asn	Trp	Phe	Gln	Gln	Arg	Pro
				35					40					45
Gly	Gln	Ser	Pro	Arg	Arg	Leu	Ile	Tyr	Lys	Val	Ser	Asn	Arg	Asp
				50					55					60
Ser	Gly	Val	Pro	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp
				65					70					7 5
Phe	Thr	Leu	Lys	Ile	Ser	Arg	. Val	Glu	Ala	Glu	Asp	Val	Gly	Val
				80)				85	ı				90
Tyr	Tyr	Cys	Met	Glr	Gly	Thr	His	Trp	Pro	Arg	Thr	Phe	Gly	Gln
				95	;				100)				105
Gly	Thr	Lys	s Leu	ı Glu	ı Ile	Lys	8							
				110)									
配	列番·	号:	9											
配	列の	長さ	: 1	1 2										
雪	列の	型:	陰ミ	ノ酸										
١	ポロ	ジー	:直	鎖状										

起源

生物:ヒト

配列の種類:ペプチド

配列

Asp	Ile	Val	Met	Thr	Gln	Ser	Pro	Leu	Ser	Leu	Pro	Val	Thr	Pro
1				5					10					15
Gly	Glu	Pro	Ala	Ser	Ile	Ser	Cys	Arg	Ser	Ser	Gln	Ser	Leu	Leu
				20					25					30
His	Asn	Asn	Gly	Tyr	Asn	Tyr	Leu	Asp	Trp	Tyr	Leu	Gln	Lys	Pro
				35					40					45
Gly	Gln	Ser	Pro	Gln	Leu	Leu	Ile	Tyr	Leu	Gly	Ser	Asn	Arg	Ala
				50					55					60
Ser	Gly	Val	Pro	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp
				65					70					7 5
Phe	Thr	Leu	Lys	Ile	Ser	Arg	Val	Glu	Ala	Glu	Asp	Val	Gly	Val
				80					85					90
Tyr	Tyr	Cys	Met	Gln	Ala	Leu	Gln	Thr	Pro	Tyr	Thr	Phe	Gly	Gln
				95	1				100)				105
Gly	Thr	Lys	s Leu	ı Glu	Ile	Lys	;							
				110)									
配	列番	号:	1 0											
四四	列の:	さね	: 3	6										

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 (プライマーDNA)

配列

AAGCTTGCCG CCACCATGGA ATGGAGCTGG GTCTTT 36

配列番号:11

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GGATCCACTC ACCTGAGGAG ACGGTGA 27

配列番号: 12

配列の長さ:34

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

AAGCTTCGCC ACCATGAAGT TGCCTGTTAG GCTG 34

配列番号:13

配列の長さ:28

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GGATCCACTT ACGTTTTATT TCCAGCTT 28

配列番号:14

配列の長さ:357

配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物:マウス

配列の特徴:

特徴を決定した方法:E

配列

CAG GTC CAC CTG CAG CAG TCT GGA GCT GAG CTG GTA AGG CCT GGG 45 ACT TCA GTG AAG ATG TCC TGC AAG GCT GCT GGA TAC ACC TTC ACT 90 AAC TAC TGG ATA GGT TGG GTA AAG CAG AGG CCT GGA CAT GGC CTT 135 GAG TGG ATT GGA TAT CTT TAC CCT GGA GGT CTT TAT ACT AAC TAC 180 AAT GAG AAG TTC AAG GGC AAG GCC ACA CTG ACT GCA GAC ACA TCC 225 TCC AGC ACA GCC TAC ATG CAG CTC AGC AGC CTG ACA TCT GAG GAC 270 TCT GCC ATC TAT TAC TGT GCA AGA TAC AGG GAT TAC GAC TAT GCT 315 ATG GAC TAC TGG GGT CAA GGA ACC TCA GTC ACC GTC TCC TCA 357

配列番号:15

配列の長さ:339

配列の型:核酸

鎖の数:二本鎖

トポロジー:

配列の種類:cDNA to mRNA

起源:

生物:マウス

配列の特徴:

特徴を決定した方法:E

配列

GAT GTT GTT CTG ACC CAA ACT CCA CTC TCT CTG CCT GTC AAT ATT 45

GGA GAT CAA GCC TCT ATC TCT TGC AAG TCT ACT AAG AGC CTT CTG 90

AAT AGT GAT GGA TTC ACT TAT TTG GGC TGG TGC CTG CAG AAG CCA 135

GGC CAG TCT CCA CAG CTC CTA ATA TAT TTG GGT TCT AAT CGA TTT 180

TCT GGA GTT CCA GAC AGG TTC AGT GGT GGT GGG TCA GGG ACA GAT 225

TTC ACC CTC AAG ATC AGC AGA GTG GAG GCT GAG GAT TTG GGA GTT 270

TAT TAT TGC TTC CAG AGT AAC TAT CTT CCT CTT ACG TTC GGA TCG 315

GGG ACC AAG CTG GAA ATA AAA CGT

配列番号:16

配列の長さ:119

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド

起源

生物:マウス

配列

Gln Val His Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly

1 5 10 15

PCT/JP97/02983 WO 98/10070

265

Thr	Ser	Val	Lys	Met	Ser	Cys	Lys	Ala	Ala	Gly	Tyr	Thr	Phe	Thr
				20					25					30
Asn	Tyr	Trp	Ile	Gly	Trp	Val	Lys	Gln	Arg	Pro	Gly	His	Gly	Leu
				35					40					45
Glu	Trp	Ile	Gly	Tyr	Leu	Tyr	Pro	Gly	Gly	Leu	Tyr	Thr	Asn	Tyr
				50					5 5					60
Asn	Glu	Lys	Phe	Lys	Gly	Lys	Ala	Thr	Leu	Thr	Ala	Asp	Thr	Ser
				65					70					7 5
Ser	Ser	Thr	Ala	Tyr	Met	Gln	Leu	Ser	Ser	Leu	Thr	Ser	Glu	Asp
				80					85					90
Ser	Ala	Ile	Tyr	Tyr	Cys	Ala	Arg	Tyr	Arg	Asp	Tyr	Asp	Tyr	Ala
				95					100					105
Met	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Ser	Val	Thr	Val	Ser	Ser	
				110	ı				115)				
配	列番·	号:	1 7											

配列の長さ:113

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド

起源

生物:マウス

配列

Asp Val Val Leu Thr Gin Thr Pro Leu Ser Leu Pro Val Asn Ile 10 15 1 5

	PCT/JP97/0298
O 98/10070	

200	
Gly Asp Gln Ala Ser Ile Ser Cys Lys Ser Thr Lys Ser Leu Leu	
20 25 30	
Asn Ser Asp Gly Phe Thr Tyr Leu Gly Trp Cys Leu Gln Lys Pro	
35 40 45	
Gly Gln Ser Pro Gln Leu Leu Ile Tyr Leu Val Ser Asn Arg Phe	
50 55 60	
Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp	
65 70 75	
Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Leu Gly Val	
80 85 90	
Tyr Tyr Cys Phe Gln Ser Asn Tyr Leu Pro Leu Thr Phe Gly Ser	
95 100 105	
Gly Thr Lys Leu Glu Ile Lys Arg	
110	
配列番号:18	
配列の長さ:119	
配列の型:アミノ酸	
トポロジー:直鎖状	
配列の種類:ペプチド	
配列	
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gl	y
1 5 10	5
Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Th	r
20 25 3	0

Asn Tyr Trp Ile Gly Tr	rp Val	Lys	Gln	Ala	Pro	Gly	Gln	Gly	Leu
35				40					45
Glu Trp Ile Gly Tyr L	eu Tyr	Pro	Gly	Gly	Leu	Tyr	Thr	Asn	Tyr
50				55					6 0
Asn Glu Lys Phe Lys G	ly Lys	Ala	Thr	Met	Thr	Ala	Asp	Thr	Ser
65				70					75
Thr Asn Thr Ala Tyr M	let Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp
80				85					90
Thr Ala Val Tyr Tyr C	Cys Ala	Arg	Tyr	Arg	Asp	Tyr	Asp	Tyr	Ala
95				100)				105
Met Asp Tyr Trp Gly (Gln Gly	Thr	Leu	Val	Thr	Val	Ser	Ser	
110				115	5				
配列番号:19									
配列の長さ:119									
配列の型:アミノ酸									
トポロジー:直鎖状									
配列の種類:ペプチド									
配列									
Gln Val Gln Leu Val	Gln Se	r Gl	y Al	a Gl	u Va	l Ly	s Ly	s Pro	Gly
1 5				1	0				15
Ala Ser Val Lys Val	Ser Cy	s Ly	s Al	a Se	r Gl	у Ту	r Th	r Pho	e Thr
20				2	25				30
Asn Tyr Trp Ile Gly	Trp Va	al Ly	s Gl	n Al	a Pr	o Gi	y Gl	n Gl	y Leu
35				4	10				45

								200							
Glu	Trp	Ile	Gly	Tyr	Leu	Tyr	Pro	Gly	Gly	Leu	Tyr	Thr	As	sn T	yr
				50					55						6 0
Asn	Glu	Lys	Phe	Lys	Gly	Lys	Ala	Thr	Leu	Thr	Leu	Asp	T	hr S	Ser
				65					70						7 5
Thr	Asn	Thr	Ala	Tyr	Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	G	lu A	lsp
				80					85						90
Thr	Ala	Val	Tyr	Tyr	Cys	Ala	Arg	Tyr	Arg	Asp	Tyr	Asp	T	yr A	Ala
				95					100					:	105
Met	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val	Thr	Val	Sei	r S	er	
				110)				115	•					
配列	间番号	号::	2 0												
配列	间の引	長さ	: 1	1 3											
配列	削の <u>₹</u>	型:	アミ	ノ酸											
ኑ ፣	#ㅁ;	ジー	:直急	鎖状											
配列	別の	種類	: ~	プチ	۴										
配	51]														
Ası	o Va	l Va	l Me	t Th	r Gli	n Th	r Pro	Se	r Se	r Le	u Se	r Al	a :	Ser	Val
•	l				5				1	0					15
Gl	y As	p Ar	g Al	a Se	r Il	e Se	r Cy	s Ly	s Se	r Th	r Ly	s Se	er	Leu	Leu
					0					5					30
As	n Se	r As	sp Gl	y Ph	e Th	ır Ty	r Le	u Gl	y Tr	р Су	's Gl	n G	ln	Lys	Pro
					35					10					45
Gl	y Gl	ın Se	er Pr	ro Gl	in Le	eu Le	eu Il	e Ty	∕r Le	eu Va	al Se	er A	sn	Arg	Phe
					50					55					60

Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser	Gly Thr Asp
65 70	75
Phe Thr Leu Lys Ile Ser Ser Leu Gln Pro Glu Asp	o Ile Ala Thr
80 85	90
Tyr Tyr Cys Phe Gln Ser Asn Tyr Leu Pro Leu Thi	r Phe Gly Gln
95 100	105
Gly Thr Lys Val Glu Ile Lys Arg	
110	
配列番号:21	
配列の長さ:113	
配列の型:アミノ酸	
トポロジー:直鎖状	
配列の種類:ペプチド	
配列	
Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Pr	co Val Thr Pro
1 5 10	15
Gly Glu Pro Ala Ser Ile Ser Cys Lys Ser Thr Ly	ys Ser Leu Leu
20 25	30
Asn Ser Asp Gly Phe Thr Tyr Leu Gly Trp Cys Le	eu Gln Lys Pro
35 40	45
Gly Gln Ser Pro Gln Leu Leu Ile Tyr Leu Val S	er Asn Arg Phe
50 55	60
Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly S	er Gly Thr Asp
65 70	75

	DCT/1007/02083
VO 98/10070	PCT/JP97/02983

270
Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val
80 85 90
Tyr Tyr Cys Phe Gln Ser Asn Tyr Leu Pro Leu Thr Phe Gly Gln
95 100 105
Gly Thr Lys Leu Glu Ile Lys Arg
110
配列番号:22
配列の長さ:113
配列の型:アミノ酸
トポロジー:直鎖状
配列の種類:ペプチド
配列
Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Thr Leu
1 5 10 15
Gly Gln Pro Ala Ser Ile Ser Cys Lys Ser Thr Lys Ser Leu Leu
20 25 30
Asn Ser Asp Gly Phe Thr Tyr Leu Gly Trp Cys Leu Gln Lys Pro
35 40 45
Gly Gln Ser Pro Gln Leu Leu Ile Tyr Leu Val Ser Asn Arg Phe
50 55 60
Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp
65 70 75
Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val

Tyr Tyr Cys Phe Gln Ser Asn Tyr Leu Pro Leu Thr Phe Gly	Gln
95 100	105
Gly Thr Lys Leu Glu Ile Lys Arg	
110	
配列番号: 23	
配列の長さ:113	
配列の型:アミノ酸	
トポロジー:直鎖状	
配列の種類:ペプチド	•
配列	
Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Thr	Pro
1 5 10	15
Gly Gln Pro Ala Ser Ile Ser Cys Lys Ser Thr Lys Ser Leu	Leu
20 25	30
Asn Ser Asp Gly Phe Thr Tyr Leu Gly Trp Cys Leu Gln Lys	Pro
35 40	45
Gly Gln Ser Pro Gln Leu Leu Ile Tyr Leu Val Ser Asn Arg	Phe
50 55	60
Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr	Asp
65 70	7 5
Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly	Val
80 85	90
Tyr Tyr Cys Phe Gln Ser Asn Tyr Leu Pro Leu Thr Phe Gly	Gln
95 100	105

Gly Thr Lys Leu Glu Ile Lys Arg

110

配列番号:24

配列の長さ:113

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド

配列

Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Thr Leu

1 5 10 15

Gly Glu Pro Ala Ser Ile Ser Cys Lys Ser Thr Lys Ser Leu Leu

20 25 30

Asn Ser Asp Gly Phe Thr Tyr Leu Gly Trp Cys Leu Gln Lys Pro

35 40 45

Gly Gln Ser Pro Gln Leu Leu Ile Tyr Leu Val Ser Asn Arg Phe

50 55 60

Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp

65 70 75

Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val

80 85 90

Tyr Tyr Cys Phe Gln Ser Asn Tyr Leu Pro Leu Thr Phe Gly Gln

95 100 105

Gly Thr Lys Leu Glu Ile Lys Arg

273

配列番号:25

配列の長さ:17

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GTGCTGGTTG TTGTGCT 17

配列番号:26

配列の長さ:95

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GTATAAAGAC CCCCGGGGTA AAGATAGCCA ATCCACTCGA GCCCTTGGCC TGGGGCCTGC

TTTACCCAAC CTATCCAGTA GTTAGTGAAG GTATA

配列番号:27

配列の長さ:87

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

WO 98/10070

鎖の数:一本鎖

PCT/JP97/02983

<i>211</i>	
TATCTTTACC CCGGGGGTCT TTATACAAAC TATAACGAGA AGTTTAAGGG CAAGGCTACA	60
ATGACCGCAG ACACCTCTAC AAACACC	87
配列番号: 28	
配列の長さ:87	
配列の型: 核酸	
鎖の数:一本鎖	
トポロジー:直鎖状	
配列の種類:他の核酸(プライマーDNA)	
配列	
TATCTTTACC CCGGGGGTCT TTATACAAAC TATAACGAGA AGTTTAAGGG CAAGGCTACA	60
CTGACCCTGG ACACCTCTAC AAACACC	87
配列番号:29	
配列の長さ:74	
配列の型:核酸	
鎖の数:一本鎖	
トポロジー:直鎖状	
配列の種類:他の核酸(プライマーDNA)	
西己列	
ACAAGGGTAC CCTGTCCCCA ATAGTCCATA GCGTAGTCGT AATCCCTGTA CCTTGCGCAG	60
TAGTAGACTG CAGT	74
配列番号:30	
配列の長さ:86	
配列の型:核酸	

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GTCGGGCCCA CAGCGATGTT GTTATGACCC AAACTCCATC TTCTCTGTCT GCCAGTGTTG 60

86

GAGATCGAGC CTCTATCTCT TGCAAG

配列番号:31

配列の長さ:29

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GGCTTCTGCT GGCACCAGCC CAAATAAGT 29

配列番号:32

配列の長さ:30

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GGCTGGTGCC AGCAGAAGCC AGGCCAGTCT 30

配列番号:33

配列の長さ:38

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

ATATCCTCAG GCTGCAGACT GCTGATCTTG AGGGTGAA 38

配列番号: 3 4

配列の長さ:51

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

AGCAGTCTGC AGCCTGAGGA TATAGCTACT TATTATTGCT TCCAGAGTAA C 51

配列番号:35

配列の長さ:58

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CTCGGATCCA CTTACGTTTT ATTTCCACCT TGGTCCCCTG TCCGAACGTA AGAGGAAG 58

配列番号:36

配列の長さ:86

配列の型:核酸

鎖	の	数	٠	一本鎖	鍞
			•	一一个剪	

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GTCGGGCCCA CAGCGATGTT GTTATGACCC AAACTCCACT CTCTCTGCCT GTCACTCYTG 60

GASAGCCAGC CTETATCTCT TGCAAG

86

配列番号:37

配列の長さ:100

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CTCGGATCCA CTTACGTTTT ATTTCCAGCT TGGTCCCCTG TCCGAACGTA AGAGGAAGAT 60

AGTTACTCTG GAAGCAATAA TAAACTCCCA CATCCTCAGC

100

配列番号:38

配列の長さ:81

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

TCTGGTACCT GTGGGCAGCT CGACTACAAG GACGACGATG ACAAGCACCT ACAGAAGGAG 60

CTAGCAGAAC TCCGAGAGTC T

配列番号:39

配列の長さ:36

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GCCAAGCTTG GATCCTTAGA GCTTATATAA GCCGAA 36

配列番号:40

配列の長さ: 45

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CACCTACAGA AGGAGCTAGC AGAACTCCGA GAGTCGACCA GCCAG 45

配列番号:41

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

TTGACCCCGG AAGGCTACTT TGGAATA 27

配列番号:42

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

AGATTGACCC CGGGCGTATA CTTTGGA 27

配列番号: 43

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GTTGCAAGAT TGACCCGCGA AGTATAC 27

配列番号:44

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GTTGCAAGAT TGAGCCCGGA AGTATAC 27

配列番号: 45

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 (プライマーDNA)

配列

GTTGTTGCAA GATGCACCCC GGAAGTA 27

配列番号:46

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CAGGTTGTTG CAAGCTTGAC CCCGGAA 27

配列番号: 47

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GGGCAGGTTG TTGGCAGATT GACCCCG 27

配列番号: 48

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CAGGGGCAGG TTGGCGCAAG ATTGACC 27

配列番号: 49

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GCTCAGGGGC AGGGCGTTGC AAGATTG 27

配列番号:50

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GTGGCTCAGG GGCGCGTTGT TGCAAGA 27

配列番号:51

WO 98/10070

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CTTGTGGCTC AGGGCCAGGT TGTTGCA 27

配列番号:52

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GACCTTGTGG CTCGCGGGCA GGTTGTT 27

配列番号:53

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GTAGACCTTG TGGGCCAGGG GCAGGTT 27

配列番号:54

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CATGTAGACC TTGGCGCTCA GGGGCAG 27

配列番号:55

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CCTCATGTAG ACCGCGTGGC TCAGGGG 27

配列番号:56

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GTTCCTCATG TAGGCCTTGT GGCTCAG 27

配列番号:57

WO 98/10070

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

AGAGTTCCTC ATGGCGACCT TGTGGCT 27

配列番号:58

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CTTAGAGTTC CTCGCGTAGA CCTTGTG 27

配列番号:59

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GGGATACTTA GAGTTCGCCA TGTAGAC 27

配列番号:60

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 (プライマーDNA)

配列

GGGATACTTA GAGGCCCTCA TGTAGAC 27

配列番号:61

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 (プライマーDNA)

配列

CTGGGGATAC TTAGCGTTCC TCATGTA 27

配列番号:62

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

ATCCTGGGGA TACGCAGAGT TCCTCAT 27

配列番号:63

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CAGATCCTGG GGAGCCTTAG AGTTCCT 27

配列番号:64

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CACCAGATCC TGGGCATACT TAGAGTT 27

配列番号:65

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 (プライマーDNA)

配列

CATCACCAGA TCCGCGGGAT ACTTAGA 27

配列番号:66

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CATCATCACC AGAGCCTGGG GATACTT 27

配列番号:67

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 (プライマーDNA)

配列

CTCCATCATC ACCGCATCCT GGGGATA 27

配列番号:68

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CCCCTCCATC ATCGCCAGAT CCTGGGG 27

配列番号:69

WO 98/10070

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CTTCCCCTCC ATCGCCACCA GATCCTG 27

配列番号: 7.0

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CATCTTCCCC TCCGCCATCA CCAGATC 27

配列番号:71

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CATCATCTTC CCCGCCATCA TCACCAG 27

配列番号:72

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GCTCATCATC TTCGCCTCCA TCATCAC 27

配列番号:73

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GTAGCTCATC ATCGCCCCCT CCATCAT 27

配列番号:74

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GCAGTAGCTC ATCGCCTTCC CCTCCAT 27

配列番号:75

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

AGTGCAGTAG CTCGCCATCT TCCCCTC 27

配列番号:76

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

AGTAGTGCAG TAGGCCATCA TCTTCCC 27

配列番号:77

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CCCAGTAGTG CAGGCGCTCA TCATCTT 27

配列番号:78

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CTGCCCAGTA GTGGCGTAGC TCATCAT 27

配列番号: 79

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CATCTGCCCA GTAGCGCAGT AGCTCAT 27

配列番号:80

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CCACATCTGC CCAGCAGTGC AGTAGCT 27

WO 98/10070 PCT/JP97/02983

配列番号:81

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GGCCCACATC TGCGCAGTAG TGCAGTA 27

配列番号:82

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GCGGGCCCAC ATCGCCCCAG TAGTGCA 27

配列番号:83

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GCTGCGGGCC CACGCCTGCC CAGTAGT .27 -

配列番号:84

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GCTGCGGCC GCCATCTGCC CAGTAGT 27

配列番号:85

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CAGGTAGCTG CTGCGGCCCC ACATCTG 27

配列番号:86

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

TATTCCAAAG TAGCCTTCCG GGGTCAA 27

配列番号:87

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 (プライマーDNA)

配列

TCCAAAGTAT ACGCCCGGGG TCAATCT 27

配列番号:88

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 (プライマーDNA)

配列

GTATACTTCG CGGGTCAATC TTGCAAC 27

配列番号:89

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GTATACTTCC GGGCTCAATC TTGCAAC 27

配列番号:90

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 (プライマーDNA)

配列

TACTTCCGGG GTGCATCTTG CAACAAC 27

配列番号:91

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

TTCCGGGGTC AAGCTTGCAA CAACCTG 27

配列番号:92

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CGGGGTCAAT CTGCCAACAA CCTGCCC 27

配列番号:93

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GGTCAATCTT GCGCCAACCT GCCCCTG 27

配列番号: 9 4

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CAATCTTGCA ACGCCCTGCC CCTGAGC 27

配列番号:95

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

TCTTGCAACA ACGCGCCCCT GAGCCAC 27

配列番号:96

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

TGCAACAACC TGGCCCTGAG CCACAAG 27

配列番号:97

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

AACAACCTGC CCGCGAGCCA CAAGGTC 27

配列番号:98

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

AACCTGCCCC TGGCCCACAA GGTCTAC 27

配列番号:99

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CTGCCCCTGA GCGCCAAGGT CTACATG 27

配列番号:100

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CCCCTGAGCC ACGCGGTCTA CATGAGG 27

配列番号:101

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CTGAGCCACA AGGCCTACAT GAGGAAC 27

配列番号:102

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

AGCCACAAGG TCGCCATGAG GAACTCT 27

配列番号:103

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CACAAGGTCT ACGCGAGGAA CTCTAAG 27

配列番号:104

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GTCTACATGG CGAACTCTAA GTATCCC 27

配列番号:105

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GTCTACATGA GGGCCTCTAA GTATCCC 27

配列番号:106

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

TACATGAGGA ACGCTAAGTA TCCCCAG 27

配列番号:107

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

ATGAGGAACT CTGCGTATCC CCAGGAT 27

配列番号:108

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

AGGAACTCTA AGGCTCCCCA GGATCTG 27

配列番号:109

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

AACTCTAAGT ATGCCCAGGA TCTGGTG 27

配列番号:110

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

TCTAAGTATC CCGCGGATCT GGTGATG 27

配列番号:111

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

AAGTATCCCC AGGCTCTGGT GATGATG 27

配列番号:112

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 (プライマーDNA)

配列

TATCCCCAGG ATGCGGTGAT GATGGAG 27

配列番号:113

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CCCCAGGATC TGGCGATGAT GGAGGGG 27

配列番号:114

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CAGGATCTGG TGGCGATGGA GGGGAAG 27

配列番号:115

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GATCTGGTGA TGGCGGAGGG GAAGATG 27

配列番号:116

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

CTGGTGATGA TGGCGGGGAA GATGATG 27

WO 98/10070 PCT/JP97/02983

配列番号:117

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GTGATGATGG AGGCGAAGAT GATGAGC 27

配列番号:118

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

ATGATGGAGG GGGCGATGAT GAGCTAC 27

配列番号:119

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

ATGGAGGGA AGGCGATGAG CTACTGC 27

配列番号:120

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GAGGGGAAGA TGGCGAGCTA CTGCACT 27

配列番号:121

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

GGGAAGATGA TGGCCTACTG CACTACT 27

配列番号:122

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

AAGATGATGA GCGCCTGCAC TACTGGG 27

配列番号:123

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

ATGATGAGCT ACGCCACTAC TGGGCAG 27

配列番号:124

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

ATGAGCTACT GCGCTACTGG GCAGATG 27

配列番号:125

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

AGCTACTGCA CTGCTGGGCA GATGTGG 27

配列番号:126

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 (プライマーDNA)

配列

TACTGCACTA CTGCGCAGAT GTGGGCC 27

配列番号:127

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

TGCACTACTG GGGCGATGTG GGCCCGC 27

配列番号:128

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

ACTACTGGGC AGGCGTGGGC CCGCAGC 27

配列番号:129

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸(プライマーDNA)

配列

ACTACTGGGC AGATGGCGGC CCGCAGC 27

配列番号:130

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 (プライマーDNA)

配列

CAGATGTGGG GCCGCAGCAG CTACCTG 27

配列番号:131

配列の長さ:219

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド

起源

生物:マウス

配列

Gin Gly Gin Leu Gin Gin Ser Gly Ala Glu Leu Val Arg Pro Gi	y
1 5 10 11	
Ser Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Se	r
20 25 3	
Ser Phe Trp Val Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Le	u
	5
Glu Trp Ile Gly Gln Ile Tyr Pro Gly Asp Gly Asp Asn Lys Ty	r
	60
Asn Gly Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Se	er
	75
Ser Thr Thr Ala Tyr Met Gln Leu Tyr Ser Leu Thr Ser Glu As	sp
	90
Ser Ala Val Tyr Phe Cys Ala Arg Ser Gly Asn Tyr Pro Tyr A	la
	05
Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser A	la
	20
Lys Thr Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Val Cys G	ily
	35
Gly Thr Thr Gly Ser Ser Val Thr Leu Gly Cys Leu Val Lys (Gly
	150
Tyr Phe Pro Glu Pro Val Thr Leu Thr Trp Asn Ser Gly Ser I	Leu
	165
Ser Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Gly	Leu
	180

2	1	Λ
٦.		u

510	
Tyr Thr Leu Ser Ser Ser Val Thr Val Thr Ser Ser Thr Trp Pro	
185 190 195	
Ser Gln Thr Ile Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr	
200 205 210	
Lys Val Asp Lys Lys Ile Glu Pro Arg	
215	
配列番号: 1 3 2	
配列の長さ:216	
配列の型:アミノ酸	
トポロジー:直鎖状	
配列の種類:ペプチド	
起源	
生物:マウス	
配列	
Asp Val Leu Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu	u
1 5 10 1	5
Gly Asp Gln Ala Ser Ile Ser Cys Lys Ser Ser Gln Ser Ile Va	1
20 25 3	0
His Ser Ser Gly Asn Thr Tyr Phe Glu Trp Tyr Leu Gln Lys Pr	O
35 40 4	15
Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Ph	ıe
50 55	60
Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr As	sp

65 70 75

WO 98/10070 PCT/JP97/02983

Phe	Thr	Leu	Lys	Ile	Ser	Arg	Val	Glu	Ala	Glu	Asp	Leu	Gly	Val
				80					85					90
Tyr	Tyr	Cys	Phe	Gln	Gly	Ser	His	Ile	Pro	Phe	Thr	Phe	Gly	Ser
				95					100					105
Gly	Thr	Lys	Leu	Glu	Ile	Lys	Arg	Ala	Asp	Ala	Ala	Pro	Thr	Val
				110					115					120
Ser	Ile	Phe	Pro	Pro	Ser	Ser	Glu	Gln	Leu	Thr	Ser	Gly	Gly	Ala
				125					130					135
Ser	Val	Val	Cys	Phe	Leu	Asn	Asn	Phe	Tyr	Pro	Lys	Asp	Ile	Asn
				140					145					150
Val	Lys	Trp	Lys	Ile	Asp	Gly	Ser	Glu	Arg	Gln	Asn	Gly	Val	Leu
				155					160					165
Asn	Ser	Trp	Thr	Asp	Gln	Asp	Ser	Lys	Asp	Ser	Thr	Tyr	Ser	Met
				170					175					180
Ser	Ser	Thr	Leu	Thr	Leu	Thr	Lys	Asp	Glu	Tyr	Glu	Trp	His	Asn
				185)				190)				195
Ser	Туг	Thr	Cys	Glu	Ala	Thr	His	Lys	Thr	Ser	Thr	Ser	Pro	Ile
				200)				205	•				210
Val	Lys	s Sei	r Phe	Asn	Arg	g								

WO 98/10070 PCT/JP97/02983

312

請求の範囲

- 1. Fasリガンドに特異的に反応するヒト型化免疫グロブリンまたはその活性フラグメント。
- 2. FasリガンドとFas抗原との生理的反応を抑制することができる 請求項1に記載のヒト型化免疫グロブリンまたはその活性フラグメント。
- 3. 前記FasリガンドとFas抗原との生理的反応の抑制が、Fasリガンド発現細胞が分泌する可溶性FasリガンドまたはFasリガンド発現細胞の表面に存在するFasリガンドにより引き起こされるFas抗原発現細胞のアポトーシスの抑制である請求項2に記載のヒト型化免疫グロブリンまたはその活性フラグメント。
- 4. 可溶性FasリガンドがFas抗原発現細胞に対して引き起こすアポトーシスを、Fasリガンドを遺伝子導入した細胞の培養上清から調製される実効濃度4.6 ng/mlの可溶性Fasリガンドをエフェクター分子とし、一方、Fas抗原を遺伝子導入した細胞をターゲット細胞とし、両者を96ウエルプレート中で100μlの反応系で反応させ、ターゲット細胞の16時間後の生存率を生細胞数検出試薬を用いて測定する細胞障害反応試験において、免疫グロブリンを添加したときのターゲット細胞の生存率として定義されるアポトーシス抑制率を免疫グロブリン濃度が0.06μg/ml(実効濃度)以上の範囲で90%以上とすることができる、請求項2または請求項3に記載のヒト型化免疫グロブリンまたはその活性フラグメント。
- 5. オリジナルの供与体免疫グロブリンと同等もしくはそれ以上のアポトーシス抑制活性を有する請求項2から請求項4のいずれかに記載のヒト型 化免疫グロブリンまたはその活性フラグメント。

- 6. 0.01~8 μ g / m l の濃度(実効濃度)におけるアポトーシスの 抑制活性がマウスF a s − I g キメラ分子よりも高い請求項 2 から請求項 5 のいずれかに記載のヒト型化免疫グロブリンまたはその活性フラグメント。
- 7. 軽鎖/重鎖二量体よりなり、前記軽鎖及び重鎖が相補性決定領域 (CDR) とヒト様フレームワーク領域を含んでなり、前記CDRが該ヒト様フレームワーク領域とは異なる供与体免疫グロブリンに由来するものである、請求項1から請求項6のいずれかに記載のヒト型化免疫グロブリンまたはその活性フラグメント。
- 8. 受容体ヒト免疫グロブリンのフレームワーク領域のアミノ酸配列が、 供与体免疫グロブリンのフレームワーク領域のアミノ酸配列と少なくとも6 0%以上のホモロジーを有する請求項7に記載のヒト型化免疫グロブリンま たはその活性フラグメント。
- 9. 軽鎖及び重鎖が相補性決定領域(CDR)とヒト様フレームワーク領域を含んでなり、前記CDRが該ヒト様フレームワーク領域とは異なる供与体免疫グロブリンに由来するヒト型化免疫グロブリンで、かつ、ヒトFasリガンドに特異的に反応するヒト型化免疫グロブリンであって、供与体免疫グロブリンのフレームワーク領域の対応する位置に由来する少なくとも1つのアミノ酸を含み、かつ、該アミノ酸が、
- (1) 供与体免疫グロブリンのCDRアミノ酸に直接あるいは間接的に水素 結合またはエネルギーコンタクトしているもので、かつ、
- (2) 受容体ヒト免疫グロブリンのフレームワークの対応する位置に置き換えたとき、ヒト免疫グロブリンの可変領域アミノ酸配列には存在しないような配列を生じない、ものの中から選択されたものであることを特徴とする請求項7または請求項8に記載のヒト型化免疫グロブリンまたはその活性フラ

グメント。

- 10. 免疫グロブリン重鎖のCDR1、CDR2及びCDR3のアミノ酸配列が、各々配列番号1、配列番号2及び配列番号3に記載の配列であり、免疫グロブリン軽鎖のCDR1、CDR2及びCDR3のアミノ酸配列が、各々配列番号4、配列番号5及び配列番号6に記載の配列である、請求項1から請求項9のいずれかに記載のヒト型化免疫グロブリンまたはその活性フラグメント。
- 11. 供与体免疫グロブリンが受託番号FERM BP-5045で規定 されるハイブリドーマにより産生されるマウスNOK2抗体である、請求項 1から請求項10のいずれかに記載のヒト型化免疫グロブリンまたはその活 性フラグメント。
- 12. 下記、請求項13から請求項20のいずれかに記載のFasリガンド結合性物質の認識領域に結合する請求項1から請求項11のいずれかに記載のヒト型化免疫グロブリンまたはその活性フラグメント。
- 13. Fasリガンドのアポトーシス誘導活性を発揮する能力に関与し、該能力が、(a) Fasリガンドの主要なアポトーシス誘導活性ドメインであるか、(b) Fasリガンドの主要なアポトーシス誘導活性ドメインの一部であるか、あるいは(c) Fasリガンドの主要なアポトーシス誘導活性ドメインもしくはその一部と等価であるアミノ酸配列に起因するFasリガンド結合性物質の認識領域。
 - 14. 前記Fasリガンドの主要なアポトーシス誘導活性ドメインが、Fasリガンド分子のN末端から第198番目のArgから第238番目のMetまでのアミノ酸配列(以下、特にことわりがなければアミノ酸番号は長田らの文献(長田ら、Int. Immunology, vol. 6, p1567-157

- 4, 1994)に従う)に含まれるアミノ酸のうち少なくとも一つを含んでなるドメインである請求項13に記載のFasリガンド結合性物質の認識領域。
- 15. 前記Fasリガンドの主要なアポトーシス誘導活性ドメインが、Fasリガンド分子のN末端から第198番目のArg、第199番目のGly、第200番目のGln、第203番目のAsn、第205番目のLeu、第212番目のTyr、第218番目のTyr、第220番目のGln、第221番目のAsp、第222番目のLeu、第227番目のGln、第228番目のLys、第230番目のMet、第237番目のGln、及び第238番目のMetのうちの少なくとも一つのアミノ酸を含んでなるドメインである請求項13または請求項14に記載のFasリガンド結合性物質の認識領域。
- 16. 前記Fasリガンドの主要なアポトーシス誘導活性ドメイン中に、 下記で示されるYPQDLVMMEGKMMSYCTTGQMWARSのア ミノ酸配列を有するペプチドを含有する請求項13から請求項15のいずれ かに記載のFasリガンド結合性物質の認識領域。
- 17. 前記Fasリガンドの主要なアポトーシス誘導活性ドメイン中に、 下記で示されるLYFVYSKVYFRGQSCNNLPLSHKVYのア ミノ酸配列を有するペプチドを含有する請求項13から請求項15のいずれ かに記載のFasリガンド結合性物質の認識領域。
- 18. Fasリガンドのアポトーシス誘導活性を発揮する能力に関与し、該能力がFasリガンド三量体が形成されたときに初めて出現し、少なくとも二分子の接合したFasリガンド表面にまたがる分子構造の一部を構成するアミノ酸立体配置に起因する、Fasリガンド結合性物質の認識領域。

- 19. 上記二分子の接合したFasリガンド表面にまたがる分子構造の一 部を構成するアミノ酸立体配置が、ヒトFasリガンドを構成するアミノ酸 であって、接合する二つのヒトFasリガンド分子のうちの一方の分子の 1 53番Ser、166番Tyr、168番Ile、198番Arg、199 番Gly、200番Gln、237番Gln、238番Met、241番 Arg、242番Ser、269番Phe、270番Glu、271番 Glu、272番Serの各アミノ酸、他方のFasリガンド分子の157 番Ser、158番Met、159番Pro、161番Clu、178番 Lys、179番Gly、203番Asn、204番Asn、205番 Leu、206番Pro、208番Ser、210番Lys、212番 Tyr、214番Arg、218番Tyr、219番Pro、220番 Gln、221番Asp、222番Leu、223番Val、228番 Lys、230番Met、232番Tyr、256番His、258番 Tyr、260番Asn、262番Ser、263番Glu、264番 Leu、265番Serの各アミノ酸からなるアミノ酸立体配置である請求 項18に記載のFasリガンド結合性物質の認識領域。
 - 20. アポトーシス抑制作用を有する抗体に対する1種以上の抗原決定基 (エピトープ) を含んでいる請求項13から請求項19のいずれかに記載の Fasリガンド結合性物質の認識領域。
 - 21. 請求項13から請求項20のいずれかに記載のFasリガンド結合性物質の認識領域を認識し、FasリガンドとFasの生理的反応を抑制し得る免疫グロブリン、免疫グロブリン類似物、組換え蛋白質、レセプター改変体、酵素及び合成ペプチドより選ばれるFasリガンド結合性物質。
 - 22. 二分子の接合したFasリガンド表面にまたがる分子構造の一部を

構成するアミノ酸立体配置を形成するヒトFasリガンドに由来のアミノ酸 であって、接合する二つのヒトFasリガンド分子のうちの一方の分子の1 53番Ser、166番Tyr、168番Ile、198番Arg、199 番Gly、200番Gln、237番Gln、238番Met、241番 Arg、242番Ser、269番Phe、270番Glu、271番 Glu、272番Serの各アミノ酸、他方のFasリガンド分子の157 番Ser、158番Met、159番Pro、161番Glu、178番 Lys、179番Gly、203番Asn、204番Asn、205番 Leu、206番Pro、208番Ser、210番Lys、212番 Tyr、214番Arg、218番Tyr、219番Pro、220番 Gln、221番Asp、222番Leu、223番Val、228番 Lys、230番Met、232番Tyr、256番His、258番 Tyr、260番Asn、262番Ser、263番Glu、264番 Leu、265番Serの各アミノ酸の少なくとも一個を認識する請求項2 1に記載の免疫グロブリン、免疫グロブリン類似物、組換え蛋白質、レセプ ター改変体、酵素及び合成ペプチドより選ばれるFasリガンド結合性物 質。

23. 受託番号FERM BP-5044で規定されるハイブリドーマにより産生されるマウスNOK1抗体、受託番号FERM BP-5045で規定されるハイブリドーマにより産生されるマウスNOK2抗体、受託番号FERM BP-5046で規定されるハイブリドーマにより産生されるマウスNOK3抗体あるいはヒト型化NOK2抗体の、ヒトFasリガンド三量体上の認識アミノ酸の中から任意に選択された3個のアミノ酸のα位の炭素 $(C\alpha)$ 原子の座標からなる3点A(XA,YA,ZA)、B(XB,

YB, ZB)、C(XC, YC, ZC)で規定される平面であって、各C α 原子座標からFasリガンド分子と反対側にアミノ酸残基の側鎖の長さに加えて一般的なファンデルワールスコンタクトのカット・オフ(Cut off)値である約4.1 オングストロームだけ離れた位置に構成される面に対して、接触またはFasリガンド三量体に向かってその面を通過し得る、請求項21に記載の免疫グロブリン、免疫グロブリン類似物、組換え蛋白質、レセプター改変体、酵素及び合成ペプチドより選ばれるFasリガンド結合性物質。

24. 二分子の接合したFasリガンド表面にまたがる分子構造の一部を 構成するアミノ酸立体配置を形成するヒトFasリガンドに由来のアミノ酸 であって、接合する二つのヒトF a s リガンド分子のうちの一方の分子の 1 53番Ser、166番Tyr、168番Ile、198番Arg、199 番Gly、200番Gln、237番Gln、238番Met、241番 Arg、242番Ser、269番Phe、270番Glu、271番 Glu、272番Serの各アミノ酸、他方のFasリガンド分子の157 番Ser、158番Met、159番Pro、161番Glu、178番 Lys、179番Gly、203番Asn、204番Asn、205番 Leu、206番Pro、208番Ser、210番Lys、212番 Tyr、214番Arg、218番Tyr、219番Pro、220番 Gln、221番Asp、222番Leu、223番Val、228番 Lys、230番Met、232番Tyr、256番His、258番 Tyr、260番Asn、262番Ser、263番Glu、264番 Leu、265番Serのアミノ酸のα位の炭素原子の座標からなる3点A (XA, YA, ZA), B (XB, YB, ZB), C (XC, YC, ZC)

で規定される平面であって、各 $C\alpha$ 原子座標からFasリガンド分子と反対側にアミノ酸残基の側鎖の長さに加えて一般的なファンデルワールスコンタクトのカット・オフ (Cut off) 値である約4.1オングストロームだけ離れた位置に構成される面に対して、接触またはFasリガンド三量体に向かってその面を通過し得る、請求項21に記載の免疫グロブリン、免疫グロブリン類似物、組換え蛋白質、レセプター改変体、酵素及び合成ペプチドより選ばれるFasリガンド結合性物質。

25. 二分子の接合したFasリガンド表面にまたがる分子構造の一部を構成するアミノ酸立体配置を形成するヒトFasリガンドに由来のアミノ酸であって、接合する二つのヒトFasリガンド分子のうちの一方の分子の200番G1n、他方のFasリガンド分子の203番Asn及び220番G1nの3個のアミノ酸のα位の炭素原子の座標からなる3点A(XA,YA,ZA)、B(XB,YB,ZB)、C(XC,YC,ZC)で規定される平面であって、各Cα原子座標からFasリガンド分子と反対側にアミノ酸残基の側鎖の長さに加えて一般的なファンデルワールスコンタクトのカット・オフ(Cut off)値である約4.1オングストロームだけ離れた位置に構成される面に対して、接触またはFasリガンド三量体に向かってその面を通過し得る、請求項24に記載の免疫グロブリン、免疫グロブリン類似物、組換え蛋白質、レセプター改変体、酵素及び合成ペプチドより選ばれるFasリガンド結合性物質。

図 1

GGATCC

BamHI (MHJ124 プライマー)

AAGCTTGCCGCCACC HindIII (MHL4.4 プライマー) | FR1 リーダー 50 40 30 20 10 <u>ATGGAATGGAGCTGGGTCTTT</u>ATCTTTCTCCTGTCAGTAACTGCAGGTGTCCACTCCCAG MEWSWVFIFLLSVTAGVHSQ 90 100 110 80 70 GTCCACCTGCAGCAGTCTGGAGCTGAGCTGGTAAGGCCTGGGACTTCAGTGAAGATGTCC V H L Q Q S G A E L V R P G T S V K M S | CDR1 | FR2 150 160 170 TGCAAGGCTGCTGGATACACCTTCACTAACTACTGGATAGGTTGGGTAAAGCAGAGGCCT C K A A G Y T F T N Y W I G W V K Q R P CDR2 220 230 210 200 190 G H G L E W I G Y L Y P G G L Y T N Y N FR3 280 290 270 260 GAGAAGTTCAAGGGCAAGGCCACACTGACTGCAGACACATCCTCCAGCACAGCCTACATG EKFKGKATLTADTSSSTAYM 320 330 340 350 CAGCTCAGCAGCCTGACATCTGAGGACTCTGCCATCTATTACTGTGCAAGATACAGGGAT Q L S S L T S E D S A I Y Y C A R Y R D FR4 400 410 390 380 370 ${\tt TACGACTATGCTATGGACTACTGGGGTCAAGGAACCTCAG\underline{TCACCGTCTCCTCAGGTGAGT}$ Y D Y A M D Y W G Q G T S V T V S S

図 2

AAGCTTCGCCACC HindIII (MKL2.4 プライマー) リーダー 30 40 50 <u>ATGAAGTTGCCTGTTAGGCTG</u>TTGGTGCTGCTATTGTTCATGAGTCCAGCTTCAAGCAGT MKLPVRLLLFMSPASSS FR1 100 110 90 GATGTTGTTCTGACCCAAACTCCACTCTCTCTCTGCCTGTCAATATTGGAGATCAAGCCTCT 80 D V V L T Q T P L S L P V N I G D Q A S FR2 CDR1 160 180 170 130 150 ATCTCTTGCAAGTCTACTAAGAGCCTTCTGAATAGTGATGGATTCACTTATTTGGGCTGG I S C K S T K S L L N S D G F T Y L G W CDR2 240 230 220 210 TGCCTGCAGAAGCCAGGCCAGTCTCCACAGCTCCTAATATATTTGGTTTCTAATCGATTT C L Q K P G Q S P Q L L I Y L V S N R F FR3 290 280 260 270 TCTGGAGTTCCAGACAGGTTCAGTGGTAGTGGGTCAGGGACAGATTTCACCCTCAAGATC S G V P D R F S G S G S G T D F T L K I CDR3 350 360 330 320 AGCAGAGTGGAGGCTGAGGATTTGGGAGTTTATTATTGCTTCCAGAGTAACTATCTTCCT S R V E A E D L G V Y Y C F Q S N Y L P 400 410 FR4 390 420 380 CTTACGTTCGGATCGGGGACCAAGCTGGAAATAAAACGTAAGTGGATCC 370 BamHI (MKJ124 プライマー) L T F G S G T K L E I K

CNOK2 濃度 (ng/ml)

図 5

NOK2VH SGI RNOK2VHver11 RNOK2VHver12	10 20 30 QVHLQQSGAE LVRPGTSVKM SCKAAGYTFII QVQLVQSGAE VKKPGaSVKV SCKASGYTFII QVQLVQSGAE VKKPGaSVKV SCKASGYTFII QVQLVQSGAE VKKPGaSVKV SCKASGYTFII
NOK2VH SGI RNOK2VHver11 RNOK2VHver12	CDR1 FR2 CDR2 40 50 60 NYWIG WVKOR PGHGLEWIG Y LYPGGLYTNY NEKFKG WVRQA PGQGLEWIG WVKOA PGQGLEWIG WVKOA PGQGLEWIG

	FR3		• •	
	70	80	90	
NOK2VH	KAITE	TADTSSSTAY	MQLSSLTSED	SAIYYCALR
207		TATATATAT	MeLSSLrSED	LAVYYCASK
			Metsstrsed	CAVIICAER
KNOKZVHVEITI		m1 DTC+nTAV	MeLSSLrSED	tavyyca=R
RNOKVH2ver12	KALL	TIDISCHIA	110200	_

CDR3 FR4
100 110

NOK2VH YR DYDYAMDY WG QGTSVTVSS
SGI WG QGT1VTVSS
RNOK2VHver11 WG QGT1VTVSS
RNOKVH2ver12 WG QGT1VTVSS

NOK2VL huVL-31 huVL-19 RNOK2VLver21 RNOK2VLver22 RNOK2VLver23 RNOK2VLver24 NOK2VL REI RNOK2VLver1	DIVMTQsPLS DVVMTQTPLS DVVMTQTPLS DVVMTQTPLS DVVMTQTPLS DVVLTQTPLS DIOMTOSPSS	20 LPVNIGDQAS ISC LPVtpGepAS ISC LPVtlGepAS ISC LPVtlGepAS ISC LPVNIGDQAS ISC LSasvGDrVtl ICC LsasvGDrAS ISC	CDR1 30 KSTKSLL
NOK2VL huVL-31 huVL-19 RNOK2VLver21 RNOK2VLver22 RNOK2VLver23 RNOK2VLver24	NSDGFTYLG	FR2 40 50 W CLOKPGOSPO LI W YLOKPGOSPO LI W FQOPPGOSPO LI W CLOKPGOSPO LI	TIA TIA TIA
NOK2VL REI RNOK2VLver1	NSDGFTYLG	W MOKPGKaPk L	LIY LVSNRF S LIY LIY

	FR3		
	70	80	90
NOK2VL	GVPDRFSGS	GSGTDFTLKI	SRVEAEDLGV YYC SRVEAEDVGV YYC
huVL-31	GVPDRFSGS	GSGTDFTLKI	SRVEAEDVGV YYC
huVL-19	GVPDRFSGS	GSGTDFTLKI GSGTDFTLKI	SRVEAEDVGV YYC
RNOK2VLver21	GVPDRFSGS	GSGTDFTLKI	SRVEAEDVGV YYC
RNOK2VLver22	GVPDRFSGS GVPDRFSGS	GSGTDFTLKI	SRVEAEDVGV YYC
RNOK2VLver23 RNOK2VLver24	GVPDRFSGS	GSGTDFTLKI	SRVEAEDVGV YYC
NOK2VL	GVPDRFSGS	GSGTDFT <u>LK</u> I	SRVEAEDLGV YYC
REI	GVPSRFSGS	GSGTDFTftI	SslqpEDiat YYC
RNOK2VLver1	GVPDRFSGS	GSGTDFTLKI	SslqpEDiat YYC

	CDR3		FR4 110	
NOK2VL huVL-31 huVL-19 RNOK2VLver21 RNOK2VLver22 RNOK2VLver23 RNOK2VLver24	FQSNYLP	LT	FGSGTKLE FGQGTKLE FGQGTKLE FGQGTKLE FGQGTKLE FGQGTKLE	IKR IKR IKR IKR IKR
NOK2VL REI RNOK2VLver1	FQSNYLP	LT	FGSGTKLE FGQGTKVE FGQGTKVE	IKR

Gla

Leu (

図8

Leader

CDR1
Asn Ser
AAC TCC
AAC TAC
TTG ATG HindIII Met Asp Trp AAGCTTGCCGCCACC ATG GAC TGG Ser Gly Ala Glu Val Lys Lys Pro Gly Ala TCC GGC GCA GTG AAG AAA CCC GGT GCT Ala Val Ala Pro Gly Ala His GCC GTG GCT CCT GGG GCC CAC 90 Phe Thr 7 TTC ACT 7 TTC ACT 7 AAG TGA 7 80
T AGC GGT TAT ACC TTAT T TGG F Val Ser Cys Lys Ala Ser Gly GTG AGC TGT AAA GCT AGC GGT Thr Trp Arg Val Phe Cys Leu Leu ACC TGG CGC GTG TTT TGC CTG CTC 10 2 Gln Leu Val Gln S ; CAA CTA GTG TA Lys 50 Ser Val 1 TCC GTG 2 FR1 Gln Val CAG GTG RHC25 RHC25

190 Asn Glu Ile Phe AAC GAG ATC TTT 140 Trp Ile TGG ATT TGG ATT TTT. CTC GAG CTC GAG GAG CTC Thr Asn Tyr Prace and Tyr Prace and Tyr Prace and Tyr Prace Transfer and Tyr Prace and Gln Gly CAA GGG CAA GGG 917 989 989 989 989 989 Pro CCA GGT 120 Ala GCC GCC CGC CTT GAA 61y 661 661 661 661 Gln CAG GTC Phe Arg (TTT AGA (GTA AAG CAT TTC (CAT TTC VA) Pro Gly CCT GGA CCC GGG GGG CCC GGG CCC GGG CCC GGG CCC GGG CCC GGG CCC GGG CCC GGG CCC GGG CCC GGG Xmal 7365 766 766 766 766 111e ATT CTT GAA CTT GGT GGT CCA Gly Asp I GGC GAT 7 GGC TAT (GCC TAT (#02>> 5'-TAT (#03>> 5'-TAT (Trp Ile (TGC ATA (TGC ATA (ATA ATA ACC TAT <<#01

0	ΗO		1	က ပ (ပ္ပ္က		>₽	타	 ≸I			
	TAC			355 350 350		4	GLY	8	 ડા			
	Ala GCC	ယ် ယ		TAC		E.	Cac	5) 5			
	Thr Ala ACC GCC	A CC -	0	TAC	TAC ATG	330	₹8 88 88 88	GGA				
ဓ္က	Asn	A C	28	GTC TAC		_	11.05 13.00 10.00	TGG	ACC		Ä	!
7	Thr	ACA CA		BA	A E		TAT				ATTA	
		֓֞֝֟֓֓֓֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	Ī	ACT	ACT GC 	120	Met Asp ATG GAC	GAC	g S		G GTGAGTGGATCCGAATTC RAMHT ECORT	
0			270	ASP		(2)	Met	ATG	TAC		200	1
22	Asp	GAC ACC	7	GIU GAG	<<#04	1	Ala GCT	CT	CGA CGA		rgag!	
		S CTS		Se CT	•	0	TYT	TAC	CIG AIG Asp		<u>ဂ</u>	
	Thr	ACC	09	Arg		31	1 1 1 1 1 1	GAC	Asp	Ser	TCA	
210	Met	ATG CTG		a F		DR3	95 665 665 675	TAC	ATG	Ser	AGT	
	Thr	ACA	(Ser		U	Pro	GAT	CTA ATG ASP TYI	350 : Val	GIC	
E.	Ala GCT	સું સું	0	Leu Ser CTG TCC		300	Ile	AGG	TCC	,hr	ပ္ခ	
FR	Lys	AAG GCT AAG GCT	25	Leu CTG			200 005	TAC	ATG	Val	GTC 7	55
		ပ္တမ္တ		GIU			Arg	AGG	ည်	to Leu		
	Lys AAG	AAG		Met		063	Ser	S	Ala	34 Thr	S S S S	
		402>> 403>>				.,			<<#p>4<#04			<<#04
	RHC25			RHC25			RHC25				RHC25	

<<SGI Leader

ACT TAT TTG

<=#06 3' -- TGA ATA AAC

#07>>

図10

Ala His Ser #05>> 5'-GTCGG GCC CAC AGC ApaI

9 Ile Gly Asp Gln Ala Ser GTC AAT ATT GGA GAT CAA GCC TCT GCC AGT GTT GGA GAT CGA GCC 20 Pro Val Asn CCI TCT Leu ST C Sign Ser TCT TCT 30 CI CI TCT Leu Pro] SCA CCA Thr ACT GTT ATG ACC CAA ACT Gln ACC CAA Val Leu Thr GTT CTG Val GIT CLL ASP GAT GAT

660 TGG 660 TGG CCG ACC 660 TGG 120 Trp Gly . Cys Lys Ser Thr Lys Ser Leu Leu Asn Ser Asp Gly Phe Thr Tyr Leu ATC TCT TGC AAG TCT ACT AAG AGC CIT CTG AAT AGT GAT GGA TTC ACT TAT TTG Arg Ala Ser Val Ser Ser | CDR1 Met Ile Ser CNOK2VL CNOK 2VL #05>>

ATC TCT TGC AAG-3' #05>> #05>> CDR2 FR2

Phe TIT 180 CGA Gln Lys Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Leu Val Ser Asn Arg 160 Cys Leu

CTA ATA TAT TTG GTT TCT AAT TCT CCA CAG CTC CAG AAG CCA GGC CAG CAG AAG CC CNOK2VL

AAG CCA GGC CAG TCT-3' >>#07 TTC GG-5' <<#06 GIC TIGC CAG ACG GTC TIGC CAG 90#>> #07>>

<<#10 3'-GAA GGA

図11

Leu Lys Ile GAG TTC TAG CTC AAG ATC CTC AAG ATC Phe Thr TTC ACC <<#08 3'- AAG TGG TCA GGG ACA GAT TTC ACC Gly Thr Asp Ser Ser Gly AGT GGG TCT GGA GTT CCA GAC AGG TTC AGT GGT Ser Gly Val Pro Asp Arg Phe Ser Gly

210

300 CDR3

Cys Phe Gln Ser Asn Tyr Leu Pro TGC TTC CAG AGT AAC TAT CTT CCT CTT CCT GAG GAT TITG GGA GIT TAT TAT Glu Asp Leu Gly Val Tyr Tyr GAG GAT GCT CCT Val Glu Ala CTG CAG GTG GAG AGA AGT ည္တ Ser AGC CNOK2VL

ATA GCT ACT TAT TAT TGC TTC CAG AGT AAC-3' #09>> CTC CTA TA-5' <<#08 GAT GAG E C C C **€** CTG CAG Leu Gln GAC GTC AGT TCA TCG AGC *******08 #09>>5

Ile Ala Thr

PstI

340 310

ATA AAA CGTAAGTGGATCCGAG ATC AAA CGTAAGTGGATCC Ile Lys Glu GAA CTG Gly Thr Lys Leu ACC AAG 999 TCG Ser Phe Gly TTC GGA **S**CC Thr Leu CII CNOK2VL

GCATTCACCTAGGCTC-5' <<#10 TTT TAT GAA CII GTG CAC AAG TIC ACC **1**366 99 ညည GTC CAG CCT **66** TTC **BCG** E U

BamHI AAG MGC MGC GA <<#10

<<SGI Leader Ala His Ser

図12

#11>> 5'-GTCGG GCC CAC AGC

ApaI

TCI Gln Ala Ser CAA GCC CCT GTC AAT AT--T GGA G--AT Ile Gly Asp 50 Pro Val Asn ည် Ser Leu TCT ည Thr Pro Leu

Thr Pro/Leu Glu/Gln Pro

T T CCA GCC CCT GTC ACT CC/TT GGA G/CAG 2 TCT င်းင GTT CTG ACC CAA ACT CCA GTT GTT ATG ACC CAA ACT CCA Thr Gln Val Leu CIL Asp Val GAT GAT

Met

CNOK 2VL #11>> | CDR1

120 Trp 355 Cys Lys Ser Thr Lys Ser Leu Leu Asn Ser Asp Gly Phe Thr Tyr Leu Gly ATC TCT TGC AAG TCT ACT AAG AGC CTT CTG AAT AGT GAT GGA TTC ACT TAT TTG GGC ATC TCT TGC AAG-3' #11>> CNOK 2VL #11>>

180 CDR2 FR2

Phe Till Cys Leu Gln Lys Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Leu Val Ser Asn Arg CTC CTA ATA TAT TTG GTT TCT AAT CGA TGC CTG CAG AAG CCA GGC CAG TCT CCA CAG CNOK2VL

Gly Thr Asp Phe Thr Leu Lys Ile AGT GGG TCA GGG ACA GAT TTC ACC CTC AAG ATC 230 Ser Ser Gly Gly TCT GGA GTT CCA GAC AGG TTC AGT GGT Gly Val Pro Asp Arg Phe Ser 190 Sex CNOK2VL

Pro CCT CCT GGA 300 CII Leu TAT CTT ATA GAA Tyr TAT TGC TTC CAG AGT AAC TAT TCA TTG AGT AAC Gln Ser Asn 290 CAG ATA ACG AAG GTC TTC Cys Phe 280 TGC Tyr TAT TAT TAT Tyr CAA ATA GTT Val GIL CCT Gly GGA **GG** CAC TTG GAG GAT GTG Glu Asp Leu GAG GAT CTC CTA GCT Ser Arg Val Glu Ala AGC AGA GTG GAG GCT <<#12 3'- CGA

CNOK 2VL

330 310

340

Glu Ile Lys

Leu

Lys

Gly Thr

Ser

Phe Gly

Thr

Lec 2

TTT GCATTCACCTAGGCTC-5' <<#12 GAA ATA AAA CGTAAGTGGATCCGAG ATC AAA CGTAAGTGGATCC BamHI TAT GAA CIT CTG CTG GAC AAG TIC GGG ACC AAG GGG ACC CCC TGG TCG GTC CAG GGA CCI TTC GGA TTC AAG **SCG** TGC ACG CILL CIT GAA <<#12 CNOK 2VL

.:

図14

図15

EcoNI transmembrane 100 GGA TTG GGC CTG GGG ATG TTT CAG CTC TTC CAC CTA CAG AAG GAG CTG Gly Leu Gly Leu Gly Met Phe Gin Leu Phe His Leu Gin Lys Glu Leux 120 GCA GAA CTC CGA GAG TCT ACC AGC CAG ATG CAC ACA GCA TCA TCT TTG Ala Glu Leu Arg Glu Ser Thr Ser Gln Met His Thr Ala Ser Ser Leux GAG AAG CAA ATA GGC CAC CCC AGT CCA CCC CCT GAA AAA AAG GAG CTG Glu Lys Gln He Gly His Pro Ser Pro Pro Pro Glu Lys Lys Glu Leux AGG AAA GTG GCC CAT TTA ACA GGC AAG TCC AAC TCA AGG TCC ATG CCT Arg Lys Val Ala His Leu Thr Gly Lys Ser Asn Ser Arg Ser Met Pro> 170 CTG GAA TGG GAA GAC ACC TAT GGA ATT GTC CTG CTT TCT GGA GTG AAG Leu Glu Trp Glu Asp Thr Tyr Gly Ile Val Leu Leu Ser Gly Val Lys> TAT AAG AAG GGT GGC CTT GTG ATC AAT GAA ACT GGG CTG TAC TIT GTA Tyr Lys Lys Gly Gly Leu Val Ile Asn Glu Thr Gly Leu Tyr Phe Val> TAT TCC AAA GTA TAC TTC CGG GGT CAA TCT TGC AAC AAC CTG CCC CTG Tyr Ser Lys Val Tyr Phe Arg Gly Gln Ser Cys Asn Asn Leu Pro Leux AGC CAC AAG GTC TAC ATG AGG AAC TCT AAG TAT CCC CAG GAT CTG GTG Ser His Lys Val Tyr Met Arg Asn Ser Lys Tyr Pro Gln Asp Leu Val> ATG ATG GAG GGG AAG ATG ATG AGC TAC TGC ACT ACT GGG CAG ATG TGG Met Met Glu Gly Lys Met Met Ser Tyr Cys Thr Thr Gly Gln Met Trp> GCC CGC AGC AGC TAC CTG GGG GCA GTG TTC AAT CTT ACC AGT GCT GAT Ala Arg Ser Ser Tyr Leu Gly Ala Val Phe Asn Leu Thr Ser Ala Asp> CAT TTA TAT GTC AAC GTA TCT GAG CTC TCT CTG GTC AAT TTT GAG GAA His Leu Tyr Val Asn Val Ser Glu Leu Ser Leu Val Asn Phe Glu Glu> TCT CAG ACG TTT TTC GGC TTA TAT AAG CTC TAA GAGAAGCACTTTGGGAT Ser Gin Thr Phe Phe Gly Leu Tyr Lys Leu ***>

図17

図18

	変異7:7酸	NOK1	NOK2	NOK3	RNOK201	RNOK202	RNOK203
	B1	O.N	O.N	N.D			N.D
	82	N.D	O.N.	O.N		N.D	O.N.
	B3	0.876	0.000	0.590	0.254		
	84	0.147	0.035	0.000		0.194	0.097
	B5	>1.000	>1.000	0.000			
	<u>B</u> 6	>1.000	>1.000	>1.000			
	87	O.N	O.N	N.D			
	88	0.000	>1.000	0.000			
	89	N.D	O.N.	N.D			
	810	0.107	0.174	0.000			
	811	N.D	O.	N.D			
	812	O.N.	O.N	N.D			
	813	>1.000	>1.000	>1.000			
	814	O.	O.N	O.N			
	815	>1.000	>1.000	>1.000			
	816	O.N.	O.N.	N.D			
_	817	0.652	0.781	0.350			
	818	>1.000	>1.000	0.802			>1.000
	819	0.793	>1.000	0.604			
	820	0.758	>1.000	>1.000		>1.000	
	821	0.638	0.809	0.585			
	822	>1.000	>1.000	>1.000		>1.000	>1.000

図20

改共///政	NOK1	NOK2	NOK3	RNOK201	RNOK202	RNOK203
823	0.379	0.613	0.602	0.673	0.721	0.558
©24	0.713	0.968	>1.000	0.903	0.923	0.768
825	0.028	0.085	0.000		0.121	0.068
928	0.145	0.218	0.266		0.312	0.175
827	0.439	0.508	0.311		0.455	0.411
828	0.817	>1.000	>1.000		>1.000	0.842
829	O.N	N.D	O.N.	N.D	Q.Z	N.D
 ⊠30	O.N	Q. Q.	N.D		Q.Z	N.D
(S)	>1.000	>1.000	>1.000	>1.000	>1.000	>1.000
832	0.406	0.686	0.885		>1.000	0.589
B33	0.250	0.861	0.083		0.335	0.290
834	>1.000	>1.000	0.576		0.882	0.721
835	0.964	0.370	0.000		0.132	0.128
836	O.N	O.Y.	O.N		O.	O.N
837	O.	O.N.	O.N.	N.D	O.N	Ö.
838	O.N.	N.D	O.N		O.Z	N.D
68 63	0.851	>1.000	909.0	0.928	0.865	0.708
⊗40	0.800	0.862	0.723	0.888	0.812	0.823
8	O.N.	O.N.	N.D	N.D	O.X	N.D
845	0.247	0.445	0.091	0.539	0.388	0.379
843	0.840	0.000	0.080	0.000	0.000	0.000
844	O.N.	O.N.	N.D	N.D	O.N	N.D
845	N.D	N.D	N.D	N.D	Q.	Q.N

RTPSDKPVAHVVANPOAEG-OLOW KPAAHLIGDPSKON-SLLW 103:OLFHLOKELAELRESTSOMHTASSLEKOIGHPSPPPEKKELRKVAHLTGKSNSRSMPLEW RKVAHLTGKSNSRSMPLEW 6: 8: FAS–L (Nagata) FAS-L (Mode) 1TNR_a 218 75 87 CNN--LPLSHKYMIRNSKY 63:EDTYGIVLL-SGVKYKKGGLVINETGLYFVYSKVYFRGOS FAS-L (Naga 🔊 FAS-L (Mode)

20:EDTYGIVLL-SGVKYKKGGLVINETGLYFVYSKVYFRGOS----CNN--LPLSHKVYNFNSKY 29:LNRRANALLANGVELRDNOLVVPSEGLYLIYSOVLFKGOG----CPSTHVLLTHTISRIAVSY 46:RANTDRAFLODGFSLSNNSLLVPTSGIYFVYSOVVFSGKAYSPKATSSPLYLAHEVOLFSSOY

108

1TNR_a

129 148 162 -MMARSSYLGAVFNLTSADHLYVNVSELSLVNFEES-MWARSSYLGAVFNLTSADHLYYNVSELSLVNFEES 219: PODLVMMEGKMMSYCTTGO-76: PODLVANNEGKNANSYCTTGO-FAS-L (Nagata) FAS-L (Model)

88:OTKVNILLSAIK-SPCQRETPEGAEAKPWYEPIYLGGVFQLEKGDRLSAEINRPDYLDFAESG 09:PFHVPLLSSQKWYPGLQE-PMLHSMYHGAAFQLTQGDQLSTHTDGIPHLVLSPS-109: PFHVPLLSSOKMVYPGLOE

273:OTFFGLYKL FAS-L (Nagata)

49:0VYFG11AL 30:OTFFGLYKL 63: TVFFGAFAL

1TNR_a

図22

WO 98/10070 PCT/JP97/02983

図23

図24

LYPGGLYTINY PGOGLEWIGO IYPGDGDNKY 50 PGHGLEWIGY 40 NYW I GWVKOR 1 SFWNWYKOR SCKAAGYTFT | SCKASGYAFS (LVRPGTSVKI S LVRPGSSVKI OVHLOOSGAE L. E E

110 120 DYDYANDYWG OGTSVTVSSA NYPYAMDYWG 100 SALYYCARYR D SAVYFCARSG 90 MOLYSLTSED 9 MOLYSLTSED 9 80 TADTSSSTAY I TADKSSTTAY I 70 NEKFKGKATL NGKFKGKATL 1FOR II

NSGSLSSGVH T NSGSLSSGVH T 160 YFPEPVTLTW YFPEPVTLTW 150 SVTLGCLVKG N SVTLGCLVKG N APVCGGTTGS SAPVCGGTTGS S KTTAPSWYPL KTTAPSWPL

1FOR

180 TFPAVLOSGL TFPAVLOSGL

KVOKK I EPR KVOKK I EPR 210 CNVAHPASST | CNVAHPASST | 200 SSTWPSQTIT 190 YTLSSSYTVT NOK2H 1FOR H

SSTWPSOTIT YTLSSSYTVT

MSXLSCHSON

ONGVILNSWTD

図26

60 LLIYLVSNRF LLIYKVSNRF 120 IKRADAAPTV IKRADAAPTV 170 ONGVLNSWTD (CLOKPGOSPO 1 110 LTFGSGTKLE FTFGSGTKLE 40 NSDGFTYLGW (HSSGNTYFEW SRVEAEDLGV YYCFOSNYLP SRVEAEDLGV YYCFOGSHIP 140 150 160 TSGGASVVCF LNNFYPKDIN VKWKIDGSER TSGGASVVCF LNNFYPKDIN VKWKIDGSER SCKSSOSIV SCKSTKSLL 20 LPVNIGDOAS LPVSLGDOAS 80 GSGTDFTLK I GSGTDFTLK I 10 DVVLTOTPLS L DVLMTOTPLS L 70 SGVPDRFSGS (SIFPPSSEQL SIFPPSSEQL SGVPDRFSGS NOK2L 11ET_L NOK2L 1TET_L NOK2 1TET_

VKSFNR VKSFNR 210 ATHKTSTSP1 ATHKTSTSP 200 YEMHNSYTCE A 190 SSTLTLTKDE N SSTLTLTKDE N NOK2L 11ET_L

図27

WO 98/10070 PCT/JP97/02983

31/34

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/02983

			F 9 7 7 0 Z 9 G 3
	ASSIFICATION OF SUBJECT MATTER		
Int	. $C1^6$ C12N15/13, C07K14/47	, 16/18, C12P21/08	
	to International Patent Classification (IPC) or to bo	th national classification and IPC	
	ILDS SEARCHED		
	documentation searched (classification system followed		
	. C1 ⁶ C12N15/12-61, C07K14		
Oocuments.	ation searched other than minimum documentation to the	extent that such documents are included in the	ne fields searched
lectronic o	data base consulted during the international search (name	e of data base and, where practicable, search	terms used)
Med.	line, Biosis Previews, GenB	ank	
) DOC	UMENTS CONSIDERED TO BE RELEVANT		
ategory*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.
X Y	J. Exp. Med., Vol. 182, (1 al. "Metalloproteinase-med Fas Ligand" p. 1777-1783	995), Kayagaki N. et iated Release of Human	21 - 25 1 - 20
X Y	The Japanese Journal Clini (1996), Hiroshi Asahara et Rheumatoid Arthritis Synov Examination on the Manifes System (in Japanese)", Pages 1960 to 1964, partice right column, 8th line to bottom	al. "Fas in ial Tissues/tation of Fas Ligand ularly page 1962,	21 - 25 1 - 20
Y	JP, 62-296890, A (Gregory Po December 24, 1987 (24. 12. & EP, 239400, A2	oel Winter), 87)	1 - 12
Y	Int. Immunol., Vol. 6, Taka "Human Fas ligand: gene str location and species speci:	ructure, chromosomal	13 - 20
Furthe	er documents are listed in the continuation of Box C.	See patent family annex.	
" docume to be of	categories of cited documents: an defining the general state of the art which is not considered particular relevance	the principle or theory underlying the	ation but cited to understand invention
docume cited to	ocument but published on or after the international filing date at which may throw doubts on priority claim(s) or which is establish the publication date of another clation or other reason (as specified)	considered novel or cannot be considered step when the document is taken alone	ered to involve an inventive
docume:	nt referring to an oral disclosure, use, exhibition or other at published prior to the international filing date but later than trity date claimed	combined with one or more other such d	sep when the document is ocuments, such combination ari
e of the a	actual completion of the international search		
	ember 30, 1997 (30. 09. 97)	October 14, 1997 (
ne and m	ailing address of the ISA/	Authorized officer	
Japan	ese Patent Office		
simile No		Telephone No.	
n PCT/ISA	V210 (second sheet) (July 1992)		

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/02983

C(Continu	note the second	PCI/C	1297/02983
	uation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant	ant passages	Relevant to claim No.
Y	Molecular Immunology, Vol. 32, Peitsch al. "Comparative Molecular Modelling of Fas-Ligand and Other Members of the TNF p. 761-772	M.C. et the Family"	13 - 20
CT/ISA/21	0 (continuation of second sheet) (July 1902)		

国際出願番号 PCT/JP97/02983

(IPC)) 発明の属する分野の分類(国際特許規

Int. Cl' C12N15/13, C07K14/47, 16/18, C12P21/08

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl. C12N15/12-61, C07K14/47, 16/18, C12P21/08

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

Medline. Biosis Previews, GenBank

引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
Х	J. Exp. Med.,第182卷,(1995), Kayagaki N. et al「Metalloproteinase-mediated Releas	21-25
Y	e of Human Fas Ligand Jp. 1777-1783	1-20
X I	日本臨牀,第54巻,(1996),浅原弘嗣 et al「慢性関節リウマチ滑膜組織におけるFas	21-25
Y	/Fas ligand systemの発現の検討」第1960-1964頁特に第1962頁右 欄下から第8-6行	1-20
Y	JP. 62-296890, A(グレゴリー ポール ウインター)24. 12月. 1987(24. 12. 87)&EP, 239400. A2	1-12
Y	Int. Immunol.,第6卷, Takahashi T. et al「Human Fas ligand:gene structure, chromos omal location and species specificity」p. 1567-1574	13-20
Y	Molecular Immunology,第32巻,Peitsch M.C. et al「COMPARATIVE MOLECULAR MODELLIN G OF THE Fas-LIGAND AND OTHER MEMBERS OF THE TNF FAMILY」p. 761-772	13-20

引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示す もの

「E」先行文献ではあるが、国際出願日以後に公表されたも

「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)

「〇」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

30.09.97

国際調査報告の発送日

14.10.97

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

AU .

4 B

7 8 2 3

3 4 4 8

平 Ħ 和 電話番号 03-3581-1101 内線