

Vidya Jyothi Institute of Technology (Autonomous) (Accredited by NAAC & NBA, Approved By A.I.C.T.E., New Delhi, Permanently Affiliated to JNTU, Hyderabad)

(Aziz Nagar, C.B.Post, Hyderabad -500075) Subject code: A21006

I B. Tech II SEM REGULAR EXAMINATION - MAY 2019 **MATHEMATICS-II**

(COMMON TO CE, EEE, MECH, ECE, CSE AND IT)

Time: 3hrs

Max.Marks:75

Note: This question paper contains two PARTS A and B.

PARTA is compulsory which carries 25 marks. Answer all questions.

PART B consists of 5 questions. Answer all the questions.

Remember	L1
Understand	L2
Apply	L3
Analyze	L4
Evaluate	L5
Create	L6

PART-A ANSWER ALL THE QUESTIONS	Bloom Levels	Marks 25
1 Define orthogonal trajectories.	L1	2M
$Solve x dy - y dx = a(x^2 + y^2)dy$	L1	3M
Find particular Integral of $\frac{1}{D^2-2D+1}(e^x \cos x)$	L3	2M
$4 \qquad \text{Solve } (D^4 + 1)y = 0$	L3	3M
5 Find the Laplace transform of sin hat	L1	2M
6 State the Convolution theorem of Laplace transform.	L3	3M
Figure 2 Evaluate double integral $\int_0^3 \int_0^1 (x^2 + 3y^2) dy dx$	L5	2M
8 Find $grad\left(\frac{1}{r}\right)$	LI	3M
9 State the Green's theorem.	L3	2M
Prove that the scalar field $\overline{F} = (x^2 + xy^2)i + (y^2 + x^2y)j$ is conservative	L5	3M
PART-B	Bloom	Marks
ANSWER ALL THE QUESTIONS	Levels	50
11. i.a) Solve $(3xy^2 - y^3)dx - (2x^2y - xy^2)dy = 0$	L3	5M
11. i.a) Solve $(3xy^2 - y^3)dx - (2x^2y - xy^2)dy = 0$ b) Solve $\frac{dy}{dx} = y + xy^5$	L3	5M
[OR]		
- ii) A body originally at 80°C cools down to 60°C in 20 minutes, the	L1	10M
temperature of the air being 40°C. What will be the temperature of the		
body after 40 minutes from the original.		
12. i. a) Solve $(D^2 + 2D + 1)y = e^{2x} - \cos^2 x$	L3	5M
b) Solve $(D^2 + 4D + 3)y = e^{-x} \sin x + x e^{-3x}$	L3	5M
[OR]		107.5
ii) Solve $(D^2 + 1)y = \tan x$ by method of variation of parameters.	L3	10M
13. i. a) Find the $L^{-1}\left(\frac{s^2}{(s^2+4)(s^2+1)}\right)$ by using convolution theorem.	L5	6M
b) Find Laplace transform of $\left(e^{-t}\int_0^t \frac{\sin t}{t}dt\right)$	L3	4M
[OR]		
[OR] Solve $y'' - 6y' + 9y = t^2 e^{3t}$, $y(0) = 2$, $y'(0) = 6$. by using Laplace Transform	L1	10M
14. i. a) Change of order of integration $\int_0^a \int_{\frac{x^2}{a}}^{2a-x} xy^2 dy dx$. and hence evaluate	L5	5M
the same. b) Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} xyz dz dy dx$	L5	5M
J_0 J_0 J_0 J_0 J_0	P.T	

	[OR]	-1-:1.	
ii. a)	Find the directional Derivative of $\varphi = 5x^2y - 5y^2z + 2.5z^2x$ at point P(1,1,1) in the direction of 2i-j-k	L2	5M
b)		Ll	5M
15. i.a)	Find the work done by force $\bar{f} = (2y + 3)i + xzj + (yz - x)k$ when it moves a particle from the point (0,0,0) to (2,1,1) along the curve $x=2t^2$, $y=t,z=t^3$	Ļl	5M
b)	Evaluate $\int_c (x^2 + xy) dx + (x^2 + y^2) dy$ where C is the square formed by the lines $y=\pm 1$ and $x=\pm 1$.	L5	5M
	[OR]		
ii.	Verify Green's theorem for $\int_c (3x^2 - 8y^2) dx + (4y - 6xy) dy$ where C is the boundary of the region bounded by $x=0,y=0$ and $x+y=1$	L5	10M

VJIT(A)