

통계 알고리즘 8

2019년 5월 정화민 교수

Regression (통계의 꽃)

Simple Regression

단순 회귀식? 노동력이 350이면 생산량? 예측정확도?

Mutiple Regression

함수는 특정한 작업을 수행하기 위해 일련의 구문들을 체계적으로 묶은 것, R은 수많은 내장 함수를 가지고 있음.(4주차 데이터 이용)

사용 Data: R 내장 데이터 mtcars:
1974년 미국 Motor trend US magazine에 나오는 data이다.
32개의 차량에 대해서 각 자료들을 기재되어 있음
mpg - Miles/gallon (연비, 1갤런당 몇 마일을 가는가)
cyl - Number of cylinders (차량 엔진의 실린더의 개수, 펌프같이 움직이는 것)
disp - Displacement (배기량)
hp - Gross horsepower (마력)
drat - Rear axle ratio (후방 축 비율
wt - Weight (1000lbs) 파운드 기준 차량무게
qseq - 1/4 mile time 1/4 마일 간 시간?
vs - V/S ??? versus??
am - Transmission(0 = automatic, 1 = manual) 변속기가 자동이냐 아니냐

gear - Number of forward gears 전진기어의 수? (1,2,3) carb - Number of carburetors 카뷰레이터 수 (기화기수)

Mutiple Regression

연구문제: 다중회귀분석을 이용하여 주행연비 계산하기? 회귀식 만들기? y = a + b1x1 + b2x2 +...bnxn 종속변수: 연비(mpg), 독립변수: 배기량(disp), 마력(hp), 무게(wt)

```
input <- mtcars[,c("mpg","disp","hp","wt")]
print(head(input))</pre>
```

```
mpg disp
                             hp
                                   wt
Mazda RX4
                  21.0
Mazda RX4 Wag
                  21.0
                       160 110 2.875
Datsun 710
                  22.8
                            93 2.320
Hornet 4 Drive
                  21.4
                       258 110 3.215
Hornet Sportabout 18.7 360 175 3.440
Valiant
                  18.1
                        225 105 3.460
```

```
input <- mtcars[,c("mpg","disp","hp","wt")]
model <- Im(mpg~disp+hp+wt, data = input)
print(model)</pre>
```

```
Call:
lm(formula = mpg ~ disp + hp + wt, data = input)

Coefficients:
(Intercept) disp hp wt
37.105505 -0.000937 -0.031157 -3.800891
```

$$y = a + b1x1 + b2x2 + ...bnxn$$

아래 공식을 완성하세요

$$Y = 37.10 + (-0.000937*200) + (-0.031157*120) + (-3.800891*2.91)$$

문제 disp =200, hp=120, wt =2.91 인 자동차의 예상주행거리는 얼마인가 ?

Logistic Regression

"mtcars"데이터 세트에서 자동차 이진 값 (0 또는 1) 인 am을 종속변수 hp, wt 및 cyl를 독립변수로한 logistic regression

```
input <- mtcars[,c("am","cyl","hp","wt")]
print(head(input))</pre>
```

```
am cyl hp wt
Mazda RX4 1 6 110 2.620
Mazda RX4 Wag 1 6 110 2.875
Datsun 710 1 4 93 2.320
Hornet 4 Drive 0 6 110 3.215
Hornet Sportabout 0 8 175 3.440
Valiant 0 6 105 3.460
```

```
input <- mtcars[,c("am","cyl","hp","wt")]
am.data = glm(formula = am ~ cyl + hp + wt, data = input, family = binomial)
print(summary(am.data))
```

```
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 19.70288
                     8.11637
                              2.428
                                      0.0152 *
                              0.455
           0.48760
                     1.07162
                                      0.6491
cyl
    0.03259 0.01886 1.728
                                      0.0840 .
hp
          -9.14947
                     4.15332 -2.203
                                      0.0276 *
wt
              0 (***, 0.001 (**, 0.01 (*, 0.05 (, 0.1 (, 1
Signif. codes:
```

ARIMA

ARIMA (Auto-regressive Integrated Moving Average) 모델: 과거의 관측값과 오차를 사용해서 현재의 시계열 값을 설명하는 BOX-JENKINS 모델(ARMA)을 일반화한 것 으로 시계열 데이터의 과거 치들이 설명변수인 AR과 과거의 오차항들이 설명변수 인 MA 모델의 합성어이다.

ARIMA 모델

데이터는 AirPassengers 데이터로 1949년부터 1960년 사이에 매월 항공기 탑승승객수를 나타낸 데이터 세트.

계절성(seasonality), 추세 (trend), 불확실성 (random) 요소로 분해한 그래프

plot(stl(AirPassengers, s.window='periodic'))

ARIMA

이상의 시계열 데이터를 diff()함수와 log()함수 등을 활용하여 안정적인 시계열 데이터로 변환

```
install.packages("tseries")
library(tseries)
difflogAirPassengers <- diff(log(AirPassengers))
plot(difflogAirPassengers)</pre>
```


AirPassengers 시계열 데이터에 diff 및 log함수를 적용한 데이터 플롯

ARIMA

```
install.packages("forecast")
library(forecast)
auto.arima(difflogAirPassengers)
#구한 파라미터를 기준으로 Log(AirPassengers) 데이터 세트를 대상으로 하는 ARIMA 모델을 생성한다.
fitted <- arima(log(AirPassengers), c(1, 0, 1), seasonal =list(order = c(0, 1, 1), period = 12))
fitted
#ARIMA 모델을 생성한 뒤 향후 10년(120개월)간의 데이터를 예측해본 후 (predicted 변수에 저장됨), 기존 데이터 (AirPassengers)와 예측치를 이어서 그래프로 표현한다

predicted <- predict(fitted, n.ahead = 120)
ts.plot(AirPassengers, exp(predicted$pred), lty = c(1,2))
#predicted$pred 항목에 Log(AirPassengers)의 예측치 값이 저장
```

