Quantum Modular Forms in Knot Theory

Kabir Bajaj¹, Rehmat Singh Chawla¹

¹Department of Physics, Indian Institute of Technology Bombay

Motivation

Knot Theory formalises intuitive notions of knots and links. The central problem in Knot Theory is to characterise and differentiate knots using topological quantities which are invariant for a particular knot but can differ between knots. We explore the connection between knot invariants and curious mathematical objects called Quantum Modular Forms.

Modular Forms

- The Modular group $\mathrm{PSL}_2(\mathbb{Z}) = \mathrm{SL}_2(\mathbb{Z})/\{\pm \mathbb{I}\}$ acts as $\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}$ on $z \in \mathbb{C} \cup \{\infty\}$.
- A modular form is a holomorphic function on $H(\text{upper half complex plane}) \cup \{\infty\}$ transforming as $f(\gamma z) = \epsilon(\gamma)(cz+d)^{2k} f(z) \ \forall \gamma \in \mathrm{PSL}_2(\mathbb{Z}), \ |\epsilon(\gamma)| = 1$

Quantum Modular Forms

A quantum modular form of weight k $(k \in \mathbb{Z}/2)$ is a function $g : \mathbb{Q}/S \to \mathbb{C}$, for some discrete subset S, such that for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \subseteq SL_2, (\mathbb{Z})$ the functions:

$$h_{q,\gamma}(x) := g(x) - \epsilon(\gamma)^{-1} (cx + d)^{-2k} g(\gamma x)$$
 (1)

satisfy a suitable property of continuity or analyticity in \mathbb{R} (definitions vary).

Examples of QMFs

- Kontsevich (1997), Zagier (2001), Kashaev (1996): $F(\zeta_N) := \sum_{n=0}^{\infty} (\zeta_N)_n$, where $(x)_n = \prod_{k=0}^{n-1} (x-k)$ and $(\zeta_N)^N = 1$.
- Kashaev (1996): $J(\zeta_N) := \sum_{n=0}^{\infty} |(\zeta_N)_n|^2$.
- Lawrence Zagier (1999): $W(\zeta_K) := \frac{-1-i}{\sqrt{120K}} \sum_{\beta \mod{60K}, \frac{\sin(\frac{\pi\beta}{3K})\sin(\frac{\pi\beta}{5K})}{\cos(\frac{\pi\beta}{2K})}} e^{-\pi i(\beta^2+1)/60K}$

Knot Theory

- A **knot** is a closed path embedded in a 3-manifold, generally \mathbb{R}^3 .
- A **link** is a collection of knots, possibly intertwined.

Figure 1. The trefoil knot and its 2D diagram with labelled crossings.

- A famous knot invariant is the **Jones Polynomial**, a Laurent polynomial generated via a recursive relation between knots related by the addition of a single crossing.
- Witten showed that the Jones polynomial for a knot can be obtained as the expectation value of the corresponding Wilson loop operator in a Chern-Simons field theory with gauge group SU(2).
- The **coloured Jones polynomials** are generalisations obtained from the SU(N) Chern-Simons theories (see below).
- Torus knots are knots embedded on the surface of a torus in \mathbb{R}^3 . The (p,q) torus knot winds q times around the interior of the torus and p times around its axis - the trefoil is the (2,3) torus knot. (p,q)must be coprime. They can be parametrised as

$$(\cos p\theta(R + r\cos q\theta), \sin p\theta(R + r\cos q\theta), -r\sin q\theta)$$

$$\theta \in [0, 2\pi]$$
(2)

Chern-Simons Theory

Composed of

- A differentiable, compact 3-manifold M
- A simple, compact gauge group G (with corresponding gauge connection A, a 1-form)
- Integer parameter k (required to be integral for gauge invariance)

Then we have a Chern-Simons form, which integrates to give the action:

$$S_{CS}[A] = \int_{M} \text{Tr}(A \wedge dA + \frac{2}{3}A \wedge A \wedge A)$$
 (3)

The Wilson loop operator for a knot K is given by an integral over the knot:

$$W[K] = \exp\left(\iota n_i \oint_K dx^{\mu} A_{\mu}(x)\right) \tag{4}$$

The expectation value of a Wilson loop operator for gauge groups SU(N) give the coloured Jones polynomials in the variable $q = \exp \frac{2\pi \iota}{k+h}$ for the knot K.

Torus Knots and Quantum Modular Forms

Example: Trefoil

The coloured Jones polynomial can be computed by associating tensorial factor to each crossing and contracting the indices of connected crossings. We write down the result for a trefoil in the fundamental representation of any SU(N):

$$J_N(T_{2,3},q) = q^{1-N} \sum_{n=0}^{\infty} q^{-nN} (q^{1-N})_n$$
(5)

This can be rewritten in the Kontsevich-Zagier series, a well-known Quantum Modular Form we discussed previously.

$$J_N(T_{2,3},\zeta_N) = \zeta_N F(\zeta_N) \tag{6}$$

 $T_{(2,2t+1)}$ Torus Knots

$$J_N(T_{(s,t)},\zeta_N) = \zeta_N^{\frac{s^2t^2 - s^2 - t^2}{4st}} \tilde{\Phi}_{s,t}^{s-1,1}(\frac{1}{N})$$
(7)

$$J_N(T_{(s,t)}, \zeta_N) = \zeta_N^{\frac{s^2t^2 - s^2 - t^2}{4st}} \tilde{\Phi}_{s,t}^{s-1,1}(\frac{1}{N})$$

$$\tilde{\Phi}_{s,t}^{n,m}(\tau) := -\frac{1}{2} \sum_{k=0}^{\infty} k \chi_{s,t}^{n,m}(k) \exp \frac{2\pi \iota \tau k^2}{4st}$$
(8)

$$\chi_{s,t}^{n,m}(k) := \begin{cases} 1 & k = \pm (nt - ms) \mod 2st \\ -1 & k = \pm (nt + ms) \mod 2st \\ 0 & \text{otherwise} \end{cases}$$
 (9)