<u>Problem 3.13</u>. A stand-alone charge Q is distributed, in some way, in the volume of a body made of a uniform linear dielectric with a dielectric constant κ . Calculate the polarization charge $Q_{\rm ef}$ residing on the surface of the body, provided that it is surrounded by free space.

<u>Problem 3.15</u>. A point charge q is located at distance r >> R from the center of a uniform sphere of radius R, made of a uniform linear dielectric. In the first nonzero approximation in small parameter R/r, calculate the interaction force, and the energy of interaction between the sphere and the charge.

Problem 3.17. A spherical capacitor (see the figure on the right) is filled with a linear dielectric whose permittivity ε depends on spherical angles θ and φ , but not on the distance r from the system's center. Give an explicit expression for its capacitance C.

<u>Problem 3.19</u>. A uniform electric field \mathbf{E}_0 has been created (by distant external sources) inside a uniform linear dielectric. Find the change of the electric field, created by carving out a cavity in the shape of a round cylinder of radius R, with its axis normal to the external field – see the figure on the right.

