Zusammenfassung

InkuBOX - Ein Projekt im Makerspace SoSe2021

Projekt: Inkubator zur Anzucht und Kultivierung von Pflanzen und Pilzen in der Phytopathologie

Name: Jonas Schweigel, Franziska Meyer

Definition: Pflanzen- und Pilzinkubator zur Versuchsdurchführung von Pflanze-Pathogen-Interaktionen

Geschlossenes System mit semi-automatisierter Überwachung und Steuerung verschiedener Umweltfaktoren

Größe: Circa 50cmx75cmx50cm

Sensoren:

- > Temperatursensor
- > Bodenfeuchtigkeitssensor
- > Luftfeuchtigkeitssensor
- Wasserstandsensor

Module:

- Heizung
- Wasserpumpe
- ➤ Belüftung (Geeignete Umgebung vorausgesetzt)

Anforderungen

Bewässerung:

- Automatischen Einschalten der Wasserpumpe nach Erreichen eines niedrigen Grenzwerts
- > Abschalten der Wasserpumpe bei definiertem Grenzwert
- Überlaufschutz

Heizung:

- Automatisches Einschalten, wenn Temperatur unter Grenzwert fällt
- > Abschalten nach Erreichen des Temperaturoptimums

Luftfeuchtigkeit:

> Anzeige der Luftfeuchtigkeit

Gantt Diagramm und Projektplanung

Woche	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		17	18	19	20	21	22	23
	12.04.2021	19.04.2021	26.04.2021	03.05.2021	10.05.2021	17.05.2021	24.05.2021	31.05.2021	07.06.2021	14.06.2021	21.06.2021	28.06.2021	05.07.2021	12.07.2021	19.07.2021	26.07.2021	Urlaub	30.08.2021	06.09.2021	13.09.2021	20.09.2021	27.09.2021	04.10.2021	11.10.2021
Phase 1																								
Projektfindung																								
Planung und Entwurf																								
Recherche																								
Phase 2																								
Einführung Arduino																								
Beschaffung Hardware																								
Codierung																								
Phase 3																								
CAD Entwürfe 3D Druck																								
Zusammenbau Hardware																								
Zusammenbau Elektronik																								
Testdurchläufe																								
Abschluss							_																	
Optimierung und Problemanalyse																								

<u>Darstellung möglicher Erweiterungen/Adaptionen:</u>

- Luftfeuchtigkeit aktiv erhöhen durch Wasserzerstäuber im Innenraum
- > Temperierung der zirkulierenden Luft in einem weiteren Modul (Heizmatten außerhalb des Innenraums)
- Kontrollierte Lichteinstellungen mit Lampe (Steuerung über Funksteckdose)
- Erstellung eines Interfaces, um Paramater je nach Experiment einzustellen (Oder Programmierung verschiedener Programme, aus welchen man wählen kann)
- > PID Regelung des Heizmoduls (Elektronisch regelbares Netzteil bzw. regulierbare Heizmatte)
- Verwendung eines hochwertigeren Bodenfeuchtigkeitssensors
- Verwendung einer vorgefertigten Platine, um Kabel zu reduzieren

Beschränkungen:

- > Auf 12 V beschränkte Elektronik
- ➤ Elektronik der Feuchte ausgesetzt
- Budget (Kostenaufwand ca. 250-300 Euro)
- Keine aktive Kühlung
- ➤ Keine integrierte Lichtquelle
- ➤ Keine aktive Beeinflussung der Luftfeuchtigkeit
- Korrosion elektrischer Bauteile im Innenraum des Inkubators
- ➤ Weitere Abdichtungen notwendig, um Sporenaustritt vollständig zu verhindern

Fazit:

- > Überwachung und Regulation einfacher Umweltfaktoren ist über Arduino Plattform möglich
- > Schwierigkeiten beim Design der Hardware zeigten sich sehr schnell
- > Software bietet großes Potential für Erweiterungen (PID, Interface, etc.)
- > Inkubator eignet sich für Pflanzen und Pilze (Erste Testdurchläufe)