Numerical Analysis

Labix

May 11, 2025

Abstract

Contents

1	Numerical Techniques for Linear Algebra	2
	1.1 Solving For Solutions	2

Numerical Analysis Labix

1 Numerical Techniques for Linear Algebra

1.1 Solving For Solutions

For an $n \times m$ matrix M, we use the notation $a_{i,j}$ to mean the element at the (i,j)th position. We refer to the ith row as R_i and the jth column as C_j .

Definition 1.1.1: The Gauss-Jordan Elimination Method

Let $M \in M_{n \times m}(\mathbb{R})$. The Gauss-Jordan elimination method computes the row echelon form of M using the following algorithm. For $1 \le i \le m$, repeat the following steps:

- 1. Step 1: Find the pivot of the *i*th column.
- 2. Step 2: Swap the the *i*th row with the row containing the pivot.
- 3. Step 3: For $j \neq i$, replace R_j with $R_j \frac{a_{i,i}}{a_{j,i}}R_i$.

Definition 1.1.2: The Gaussian Elimination Method

Let $M \in M_{n \times n}(\mathbb{R})$.

Definition 1.1.3: LU Decomposition

Definition 1.1.4: QR Decomposition

1.2 Singular Value Decomposition

Definition 1.2.1: Singular Value Decomposition