Switches: The Basics

Cabrillo College

CIS 83 (CCNA 3)
Rick Graziani
Cabrillo College
Fall 2006

Note to instructors

Cabrillo College

- If you have downloaded this presentation from the Cisco Networking Academy Community FTP Center, this may not be my latest version of this PowerPoint.
- For the latest PowerPoints for all my CCNA, CCNP, and Wireless classes, please go to my web site:

http://www.cabrillo.edu/~rgraziani/

- The username is cisco and the password is perlman for all of my materials.
- If you have any questions on any of my materials or the curriculum, please feel free to email me at graziani@cabrillo.edu (I really don't mind helping.) Also, if you run across any typos or errors in my presentations, please let me know.
- I will add "(Updated date)" next to each presentation on my web site that has been updated since these have been uploaded to the FTP center.

Thanks! Rick

Transparent Bridge Process - Jeff Doyle

Switch Process – Another Look

Cabrillo College

For every frame that enters a switch...

- Learning Stage (Building/Updating of SAT/MAC table)
 - Examines <u>Source MAC Address</u>:
 - If Source MAC Address is in the <u>SAT/MAC table</u>, update 5 minute timer
 - If Source MAC Address is NOT in the SAT/MAC table, add Source MAC Address and incoming port number to SAT/MAC table
- Forwarding Stage (Flood or Filter)
 - Examines <u>Destination MAC Address</u>:
 - If **Destination MAC Address** is in the <u>SAT/MAC table</u>, forward the frame only out that port (**Filter**), unless it is the outgoing port is the same as the incoming port (checks Source MAC Address)
 - If Destination MAC Address is NOT in the SAT/MAC table, forward the frame only out all ports except incoming port (Flood)

LAN Design Goals

Cabrillo College

Network design requirements:

- Functionality
- Scalability
- Adaptability
- Manageability
- Functionality The network must work. The network must allow users
 to meet their job requirements. The network must provide user-to-user
 and user-to-application connectivity with reasonable speed and
 reliability.
- Scalability The network must be able to grow. The initial design should grow without any major changes to the overall design.
- Adaptability The network must be designed with a vision toward future technologies. The network should include no element that would limit implementation of new technologies as they become available.
- Manageability The network should be designed to facilitate network monitoring and management to ensure ongoing stability of operation.

LAN design considerations

Server Placement

- Servers can be categorized into two distinct classes:
 - Enterprise servers
 - Workgroup servers
- An enterprise server supports all the users on the network by offering services, such as e-mail or Domain Name System (DNS) that everyone in an organization would need because it is a centralized function.
- A workgroup server supports a specific set of users, offering services such as word processing and file sharing.
 - Other examples might include applications that are specific to a group of users.

LAN design considerations

Server Placement

- Enterprise servers should be placed in the main distribution facility (MDF).
 - Traffic to the enterprise servers travels only to the MDF and is not transmitted across other networks. (Not necessarily. If you have a "routed core" it will travel across other networks.)

LAN design considerations

Server Placement

- Ideally, workgroup servers should be placed in the intermediate distribution facilities (IDFs) closest to the users accessing the applications on these servers.
 - By placing workgroup servers close to the users, traffic only has to travel the network infrastructure to an IDF, and does not affect other users on that network segment.
 - Layer 2 LAN switches located in the MDF and IDFs should have
 100 Mbps or more allocated to these servers.

Cabrillo College – MDF/IDF Map

Switched LANs, access layer overview

The hierarchical design model includes the following three layers:

- The access layer provides users in workgroups access to the network.
- The distribution layer provides policy-based connectivity.
- The core layer provides optimal transport between sites.
 - The core layer is often referred to as the backbone.

Access layer switches

- Access layer switches operate at Layer 2 of the OSI model and provide services such as VLAN membership.
- The main purpose of an access layer switch is to allow end users into the network.
- An access layer switch should provide this functionality with low cost and high port density.
 - Catalyst 1900 series
 - Catalyst 2820 series
 - Catalyst 2950 series
 - Catalyst 4000 series
 - Catalyst 5000 series

Distribution Layer

- The purpose of this layer is to provide a boundary definition in which packet manipulation can take place.
- Networks are segmented into broadcast domains by this layer.
- Policies can be applied and access control lists can filter packets.
- The distribution layer also prevents problems from affecting the core layer.
- Switches in this layer operate at Layer 2 and Layer 3.
- The distribution layer includes several functions such as the following:
 - Aggregation of the wiring closet connections
 - Broadcast/multicast domain definition
 - Virtual LAN (VLAN) routing
 - Any media transitions that need to occur
 - Security

Distribution layer switches

2926G

6500

- Distribution layer switches are the aggregation points for multiple access layer switches.
- The switch must be able to accommodate the total amount of traffic from the access layer devices.
- The distribution layer combines VLAN traffic and is a focal point for policy decisions about traffic flow.
- For these reasons distribution layer switches operate at both Layer 2 and Layer 3.
- The following Cisco switches are suitable for the distribution layer:
 - Catalyst 2926G
 - Catalyst 5000 family
- Catalyst 6000 family
 Rick Graziani graziani@cabrillo.edu

Core Layer | Policy-Based Connectivity | Distribution | Edge Distribution | Module | Module

Server Farm

- The core layer is a high-speed switching backbone.
- If they do not have an associated router module, an external router is used for the Layer 3 function.
- This layer of the network design should not perform any packet manipulation.
- Packet manipulation, such as access list filtering, would slow down the switching of packets.
- Providing a core infrastructure with redundant alternate paths gives stability to the network in the event of a single device failure.

Departmental Switch Block

Core Layer Switches

Lightstream 1010

8540

- In a network design, the core layer can be a routed, or Layer 3, core.
- Core layer switches are designed to provide efficient Layer 3 functionality when needed.
- Factors such as need, cost, and performance should be considered before a choice is made.
- The following Cisco switches are suitable for the core layer:
 - Catalyst 6500 series
 - Catalyst 8500 series
 - IGX 8400 series
 - Lightstream 1010

Switch Configuration

Cabrillo College

CIS 83 (CCNA 3)
Rick Graziani
Cabrillo College
Fall 2006

Physical startup of the Catalyst switch

- Switches are dedicated, specialized computers;
 - Central Processing Unit (CPU)
 - Random Access Memory (RAM)
 - Operating System
- A switch can be managed by connecting to the console port to view and make changes to the configuration.
- Lower model switches typically have no power switch to turn them on and off.
- They simply connect or disconnect from a power source.

Switch LED indicators

Cabrillo College

Mode button

- We will examine LED indicators.
- Note: Many of these are switch specific, although green is usually good.
- LED indicators are only quick view of the status of the switch.
- For a more detailed view, use IOS commands.

Switch LED indicators - 2950

Cabrillo College

- The front panel of a switch has several lights to help monitor system activity and performance.
- These lights are called light-emitting diodes (LEDs).
- The front of the switch has the following LEDs:

System LED

 Whether the system is receiving power and functioning correctly.

Remote Power Supply (RPS) LED

Whether or not the remote power supply is in use

Port Mode LED

- Indicates the current state of the Mode button.
- The modes are used to determine how the Port Status LEDs are interpreted.

Port Status LEDs

 Has different meanings, depending on the current value of the Mode LED.

Switch LED indicators: Port Status LED

Mode LED	Color	Description			
STAT	Off	No link			
	Solid Green	Link operational			
	Flashing Green	Port is sending or receiving data			
	Alternating green/amber	Link fault			
	Solid amber	Port is not forwarding because it was disabled by management or address violation, or blocked by Spanning/Tree Protocol.			
UTL	Off	Each LED that is off indicates a reduction by half of the total bandwidth. The LEDs are turned off from right to left. If the right-most LED is off, then the switch is using less than 50% of total bandwidth. If the two right-most LEDs are off, the switch is using less than 25% of total bandwidth.			
	Green	If all LEDs are green, the switch is using 50% or more of total bandwidth.			
FDUP	Off	Port is operating in half-duplex mode.			
	Green	Port is operating in full-duplex mode.			
100	Off	Port is operating at 10 Mbps.			
	Green	Port is operating at 100 Mbps.			

Port LEDs during switch POST – System LED

System LED

The System LED indicates the success or failure of POST.

- If the System LED is off but the switch is plugged in, then POST is running.
- · If the System LED is green, then POST was successful.
- · If the System LED is amber, then POST failed.
- Once the power cable is connected, the switch initiates a series of tests called the power-on self test (POST).
- If the System LED is green, then POST was successful.
- If the System LED is amber, then POST failed. POST failure is considered to be a fatal error.

Port LEDs during switch POST – Port Status LED

- The Port Status LEDs also change during switch POST.
- The Port Status LEDs turn amber for about 30 seconds as the switch discovers the network topology and searches for loops.
- If the Port Status LEDs turn green, the switch has established a link between the port and a target, such as a computer.
- If the Port Status LEDs turn off, the switch has determined that nothing is plugged into the port.

Viewing initial bootup output from the

- The switch may be configured manually with or without the assistance of the System Configuration dialog.
- The System Configuration dialog on the switch is simpler than that on a router.

Examining help in the switch CLI

Cabrillo College

 The command-line interface (CLI) for Cisco switches is very similar to the CLI for Cisco routers.

Show running-config

```
ALSwitch#show running-config
Building configuration...
Current configuration: 1300 bytes
version 12.1
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
hostname ALSwitch
ip subnet-zero
spanning-tree mode pvst
no spanning-tree optimize bpdu transmission
spanning-tree extend system-id
interface FastEthernet0/1
```

show interface

```
Switch#show interface FastEthernet0/1
FastEthernet0/1 is down, line protocol is down
  Hardware is Fast Ethernet, address is
0008.e32e.e501 (bia 0008.e32.e.e601)
  MTU 1500 bytes, BW 0 Kbit, DLY 100 usec,
    reliability 255/25, txlead 1/255, rxlead 1/255
  Encapulation ARPA, Loopback not set
  Keepalive not set
  Auto-duplex, AutoSpeed , 100BaseTX/TX
 ARP type: ARPA, ARP TImeout 04:00:00
  Last Input never, output 00:31:54, output hang
never
  Last clearing of "show interface" counters never
 Queueing strategy: fifo
  Output queue 0/40, 0 drops; input queue o/75, 0
drops
  5 minute input rate 0 bits/sec, 0 packets/sec
```

show vlan

Switch#show vlan											
VLAN	Name			Status	Ports						
1	default			active	Fa0/1,	Fa0/2,	Fa0/3,	Fa0/4,			
					Fa0/5,	Fa0/6,	Fa0/7,	Fa0/8,			
					Fa0/9,	Fa0/10,	,Fa0/11,	,Fa0/12			
1002	fddi-default			active							
1003	token-ring-default			active							
1004	fddinet-default			active							
1005	trnet-default			active							
VLAN	Type	SAID	MTU	Parent	RingNo	Bridge	eNo				
1	enet	100001	1500	-	-	-					
1002	fddi	101002	1500	-	-	-					
1003	tr	101003	1500	1005	0	-					
1004	fdnet	101004	1500	-	-	1					

show flash

```
Switch#show flash or Switch#dir flash:
Directory of flash:/

2 -rwx 1674921 Apr 30 2001 15:09:51 c2950-
c3h2s-mz.120-5.3.WC.1.bin
3 -rwx 269 Jan 01 1970 00:00:57
env_vars
4 drwx 10240 Apr 30 2001 15:09:52 html

7741440 bytes total (4780544 bytes free)
```

show version

Cabrillo College

Switch#show version

Cisco Internetwork Operating System Software IOS (tm) C2950 Software (C2950-C3H2S-M), Version 12.0(5.3)WC(1), MAINTENANCE INTERIM SOFTWARE Copyright (c) 1986-2001 by cisco Systems, Inc. Compiled Mon 30-Apr-01 07:56 by devgoyal Image text-base: 0x80010000, data-base: 0x8031A000

ROM: Bootstrap program is CALHOUN boot loader

Switch uptime is 1 hour, 24 minutes System returned to ROM by power-on System image file is "flash:c2950-c3h2s-mz.120-5.3.WC.1.bin"

cisco WS-C2950-12 (RC32300) processor (revision B0) with 22260K bytes of memory.

Processor board ID FOC0605W0BH

Reset all Switch Configurations & Reload

Cabrillo College

Catalyst 2950

```
Switch#delete flash:vlan.dat

Delete filename [vlan.dat]?

Delete flash:vlan.dat? [confirm]

Switch#erase startup-config

<output omitted>

Switch#reload
```

Catalyst 1900

Switch#delete nvram

The following steps will ensure that a new configuration will completely overwrite any existing configuration:

- Remove any existing VLAN information by deleting the VLAN database file vlan.dat from the flash directory
- Erase the back up configuration file startup-config
- Reload the switch

Security, documentation, and management

```
Switch(config) #hostname ALSwitch

ALSwitch(config) #line con 0

ALSwitch(config-line) #password <your-choice>

ALSwitch(config-line) #login

ALSWitch(config-line) #line vty 0 4

ALSwitch(config-line) #password <your-choice>

ALSwitch(config-line) #login
```

- The same class rules apply for passwords on switches as they did on routers.
- "cisco" and "class"
- We will not need to configure "enable secret", console, and vty passwords until the case study.

Set IP Address and Default Gateway

```
ALSwitch(config) #interface VLAN1
ALSwitch(config-if) #ip address 192.168.1.2
255.255.255.0
ALSwitch(config) #ip default-gateway 192.168.1.1
```

- To allow the switch to be accessible by Telnet and other TCP/IP applications, IP addresses and a default gateway should be set.
- By default, VLAN 1 is the management VLAN. (more later)
- In a switch-based network, all internetworking devices should be in the management VLAN.
- This will allow a single management workstation to access, configure, and manage all the internetworking devices.
- The default gateway is only for management purposes, not for user Ethernet frames (and packets).
- This is only used if you wanted to telnet from this switch into a device on another network.

Set Port Speed and Duplex Settings

```
Switch(config)#interface FastEthernet0/2
Switch(config-if)#duplex full
Switch(config-if)#speed 100
```

- The Fast Ethernet switch ports default to:
 - auto-speed
 - auto-duplex.
- This allows the interfaces to negotiate these settings.
- When a network administrator needs to ensure an interface has particular speed and duplex values, the values can be set manually.
- More later...

HTTP Service and Port

```
Switch#configure terminal
Enter configuration commands, one per line.
with CNTL/Z.
Switch(config) #ip http ?
  access-class Restrict access by access-class
  authentication Set http authentication method
                 Set base path for HTML
 path
                 HTTP port
 port
  server
                 Enable HTTP server
Switch (config) #ip http server
Switch (config) #ip http port ?
  <0-65535> HTTP port
Switch (config) #ip http port 80
Switch (config) #
```

- A web browser can access this service using the IP address and port 80, the default port for http.
- The HTTP service can be turned on or off, and the port address for the service can be chosen.

The GUI Interface

Managing the MAC address table

Cabrillo College

```
Switch#show mac-address-table
Dynamic Address Count:
Secure Address Count:
Static Address (User-defined) Count:
System Self Address Count:
                                    13
Total MAC addresses:
                                    15
Maximum MAC addresses:
                                    8192
Non-static Address Table:
Destination Address Address Type VLAN Destination
Port.
0010.7a60.ad7e Dynamic 1 FastEthernet0/2
00e0.2917.1884 Dynamic 1 FastEthernet0/5
```

- Switches learn the MAC addresses of PCs or workstations that are connected to their switch ports by examining the source address of frames that are received on that port.
- Machines may have been removed from a port, turned off, or moved to another port on the same switch or a different switch.
- This could cause confusion in frame forwarding.
- The MAC address entry is automatically discarded or aged out after 300 seconds. Rick Graziani graziani@cabrillo.edu

36

Managing the MAC address table

Cabrillo College

```
Switch#clear mac-address-table
Switch#show mac-address-table
Dynamic Address Count: 0
Secure Address Count: 0
Static Address (User-defined) Count: 0
System Self Address Count: 13
Total MAC addresses: 14
Maximum MAC addresses: 8192
Non-static Address Table:
Destination Address Address Type VLAN Destination
Port
```

 Rather than wait for a dynamic entry to age out, the administrator has the option to use the privileged EXEC command clear mac-address-table.

Configuring static MAC addresses

Cabrillo College

```
Switch(config) #mac-address-table ?

aging-time Set MAC address table entry maximum age

secure Configure a secure address
static Configure a static 802.1d static address

Switch(config) #mac-address-table static

0010.7a60.1884 interface FastEthernet0/5 VLAN1

Switch(config) #no mac-address-table static

0010.7a60.1884 interface FastEthernet0/5 VLAN1
```

- The reasons for assigning a permanent MAC address to an interface include:
 - The MAC address will not be aged out automatically by the switch.
 - A specific server or user workstation must be attached to the port and the MAC address is known.
 - If the device is moved on the switch, it will not be able to reached.
 - Security is enhanced.
- To set a static MAC address entry for a switch:

Switch(config)#mac-address-table static <mac-address of host>
interface FastEthernet <Ethernet numer> vlan

Copying IOS from TFTP Server

```
ALSwitch#copy tftp flash
Address or name of remote host []? 192.168.1.3
Source filename []? c2950-c3h2s-mz.120-5.3.WC.1.bin
Destination filename [c2950-c3h2s-mz.120-5.3.WC.1.bin]? [enter]
%Warning: There is a file already existing with this name
Do you want to over write? [confirm] [enter]
Accessing tftp://192.168.1.3/c2950-c3h2s-mz.120-5.3.WC.1.bin...
Loading c2950-c3h2s-mz.120-5.3.WC.1.bin from 192.168.1.3 (via VLAN1):
1111111111111111
[OK - 1674921 bytes]
1674921 bytes copied in 51.732 secs (32841 bytes/sec)
ALSwitch#
```

Erasing and Reloading the Switch

Cabrillo College

Remove the VLAN database information file.

```
Switch#delete flash:vlan.dat
Delete filename [vlan.dat]?[Enter]
Delete flash:vlan.dat? [confirm] [Enter]
Switch#erase startup-config
Switch(config)#reload
```

The responding line prompt will be:

System configuration has been modified. Save? [yes/no]:

Type **n** and then press **Enter**.

The responding line prompt will be:

Proceed with reload? [confirm] [Enter]

Port Security

Cabrillo College

Note: Port Security will be discussed in another presentation.

Switch Configuration

Cabrillo College

CIS 83 (CCNA 3)
Rick Graziani
Cabrillo College
Fall 2006