SEQUENCE PROTOCOL

- (i) APPLICANT:
 - (A) NAME: Prof.DR. Werner Lubitz
 - (B) ROAD: Schoenborngasse 12/7
 - (C) CITY: Vienna
 - (E) COUNTRY: Austria
 - (F) POSTAL CODE: 1080
- (ii) TITLE OF INVENTION: New systems for the regulation of gene expression
- (iii) NUMBER OF SEQUENCES: 10
 - (iv) COMPUTER-READABLE FORM:
 - (A) DATA CARRIER: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING\SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: \PatentIn Release #1.0, Version #1.30 (EPO)
- (2) INFORMATION FOR SEQ 1/D NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 82 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: linear
 - (vi) INITIAL ORIGIN:
 - (A) ORGANISM: lambda OR operator (wild-type)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

ACGTTAAATC TATCACCGCA AGGGATAAAT ATCTAACACC GTGCGTGTTG ACTATTTTAC

CTCTGGCGGT GATAATGGTT GC

60 82

- (2) INFORMATION FOR SEQ ID NO: 21/2
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 82 base pairs
 - (B) TYPE: nucleotide
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: linear

(vi) INITIAL ORIGIN: (A) ORGANISM: lambda OR operator (mutant)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
ACGITAAATC TATCACGCA AGGGATAAAT ATCTAACACC GCGCGTGTTG ACTATTTTAC 60
CTCTGGCGGT GATAATGGTT GC 82
(2) INFORMATION FOR SEQ ID NO: 3:
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 85 base pairs (B) TYPE nucleotide (C) STRANDEDNESS: both (D) TOPOLOGY: linear
(vi) INITIAL ORIGIN: (A) ORGANISM: lambda OL operator (wild-type)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
ACATACAGAT AACCATCTGC GGTGATAAAT TATCTCTGGC GGTGTTGACA TAAATACCAC 60
TGGCGGTGAT ACTGAGCACA TCAGC \ 85
(2) INFORMATION FOR SEQ ID NO: 4:
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1601 base pairs (B) TYPE: nucleotide (C) STRANDEDNESS: double strand (D) TOPOLOGY: both
(vi) INITIAL ORIGIN: (A) ORGANISM: pAW12 fragment
<pre>(xi) CHARACTERISTICS: (A) NAME/KEY: CDS (B) LOCATION: complement (106816)</pre>

the state of the s

/ '

(ix) CHARACTERISTICS:

(A) NAME/KEY: CDS

(B) LOCATION: 1144..1416

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

10

ATTTACTATG TTATGTTCTG AGGGGAGTGA AAATTCCCCT AATTCGATGA AGATTCTTGC 60 TCAATTGTTA TCAGCTATGC GCCGACCAGA ACACCTTGCC GATCAGCCAA ACGTCTCTTC 120 AGGCCACTGA CTAGCGATAA CTTTCCCCAC AACGGAACAA CTCTCATTGC ATGGGATCAT 180 20 TGGGTACTGT GGGTTTAGTG GTTGTAAAAA CACCTGACCG CTATCCCTGA TCAGTTTCTT 240 GAAGGTAAAC TCATCACCCC CAAGTCTGGC TATGCAGAAA TCACCTGGCT CAACAGCCTG 300 CTCAGGGTCA ACGAGAATTA ACATTCCGTQ AGGAAAGCTT GGCTTGGAGC CTGTTGGTGC 360 GGTCATGGAA TTACCTTCAA CCTCAAGCCA \GAATGCAGAA TCACTGGCTT TTTTGGTTGT 420 GCTTACCCAT CTCTCCGCAT CACCTTTGGT AAAGGTTCTA AGCTTAGGTG AGAACATCCC 480 30 TGCCTGAACA TGAGAAAAAA CAGGGTACTC A\(\frac{1}{4}\)ACTCACTT CTAAGTGACG GCTGCATACT 540 AACCGCTTCA TACATCTCGT AGATTTCTCT GGGGATTGAA GGGCTAAATT CTTCAACGCT 600 AACTTTGAGA ATTTTTGTAA GCAATGCGGC GTTATAAGCA TTTAATGCAT TGATGCCATT 660 35 AAATAAAGCA CCAACGCCTG ACTGCCCCAT CCCCATCTTG TCTGCGACAG ATTCCTGGGA 720 TAAGCCAAGT TCATTTTTCT TTTTTTCATA AATTGCTTTA AGGCGACGTG CGTCCTCAAG 780 40 CTGCTCTTGT GTTAATGGTT TCTTTTTGT GCTCATACGT TAAATCTATC ACCGCAAGGG 840 ATAAATATCT AACACCGCGC GTGTTGACTA TTTTACCTCT GGCGGTGATA ATGGTTGCAT 900 GTACTAAGTA GGTTGTATGG AACAACGCAT AACCCTGAAA GATTATGCAA TGCGCTTTGG 960 GCAAACCAAG ACAGCTAAAG ATCCTCTAGA GTCGACCTGC\AGGCATGCAA GCTTATCGAA 1020 TTCTCATTCA GGCTTCTGCC GTTTTGGATT TAACCGAAGA TGATTTCGAT TTTCTGACGA 1080 50 GTAACAAAGT TTGGATTGCT ACTGACCGCT CTCGTGCTCG TCGCTGCGTT GAGGCTTGCG 1140 TTT ATG GTA CGC TGG ACT TTG TGG GAT ACC CTC GCT TTC CTG CTC CTG 1188 Met Val Arg Trp Thr Leu Trp Asp Thr Leu Ala Phe Leu Leu 55 TTG AGT TTA TTG CTG CCG TCA TTG CTT ATT ATG TTC ATC CCG TCA ACA 1236 Leu Ser Leu Leu Leu Pro Ser Leu Leu Ile Met Phe The Pro Ser Thr 60 TTC AAA CGG CCT GTC TCA TCA TGG AAG GCG CTG AAT TTA CGG AAA ACA 1284 Phe Lys Arg Pro Val Ser Ser Trp Lys Ala Leu Asn Leu Arg Lys Thr 35 45

20

25

30

	mm a	mm »	2		-													
	Leu	Len	MAT	Ala	TCG	AGC	GTC	CGG	TTA	AAG	CCG	CTG	AAT	TGT	TCG	CGT		1332
	·	. Deu	50	\ \	SEL	ser	val	55	ren	гув	Pro	Leu	Asn 60	Cys	Ser	Arg		
5	TTA	CCT	TGC	ĢIG	TAC	GCG	CAG	GAA	ACA	CTG	ACG	TTC	TTA	CTG	ACG	CAG		1380
	Leu	Pro 65	Сув	Val	Tyr	Ala	Gln 70	Glu	Thr	Leu	Thr	Phe 75	Leu	Leu	Thr	Gln		1500
	AAG	AAA	ACG	TGC	GTC	AAA	AAT	TAC	GTG	CAG	AAG	GAG	TGAT	י בידים:	ATICE			1426
10	80 Lys	Lys	Thr	Сув	Val	Lys 85	Asn	Tyr	Val	Gln	Lys 90	Glu	1011	IGIA	110			1426
	ጥርጣን	, , , , , , , , ,	א ארחיר															
	1012	MAGG	TH F	WAAA	1CG3-1	C TO	SGCGC	TCGC	: CC1	GGTC	CGTC	CGC	AGCCC	STT (3CGA	GTACI	•	1486
15	AAAG	GCAZ	AGC C	TAAA	reecg	C TO	GTCI	TTGG	TAT	GTAG	GTG	GTC	ACA	ATT :	TAAT	TGCAG	;	1546
	GGGC	TTC	GC C	CTTA	CTTG	A GO	ATA	ATTA	TGT	CTAA	TAT	TCAF	ACTO	GC (GCCG#	١.		1601

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH; 237 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

35 Met Ser Thr Lys Lys Pro Leu Thr\Gln Glu Gln Leu Glu Asp Ala Arg Arg Leu Lys Ala Ile Tyr Glu Lys Lys Asn Glu Leu Gly Leu Ser Gln Glu Ser Val Ala Asp Lys Met Gly Wet Gly Gln Ser Gly Val Gly Ala Leu Phe Asn Gly Ile Asn Ala Leu Asn Ala Tyr Asn Ala Ala Leu Leu Thr Lys Ile Leu Lys Val Ser Val Glu Phe Ser Pro Ser 50 Ile Ala Arg Glu Ile Tyr Glu Met Tyr Glu Ala Val Ser Met Gln Pro 90 Ser Leu Arg Ser Glu Tyr Glu Tyr Pro Val Phe Ser His Val Gln Ala Gly Met Phe Ser Pro Lys Leu Arg Thr Phe Thr Lys Gly Asp Ala Glu Arg Trp Val Ser Thr Thr Lys Lys Ala Ser Asp Ser Ala Rhe Trp Leu Glu Val Glu Gly Asn Ser Met Thr Ala Pro Thr Gly Ser Lyd Pro Ser 160

Phe Pro Asp Gly Met L u Ile L u Val Asp Pro Glu Gln Ala Val Glu 165 170 175

Pro Gly Asp Phe Cys Ile Ala Arg Leu Gly Gly Asp Glu Phe Thr Phe 180 190

Lys Lys Leu Ile Arg Asp Ser Gly Gln Val Phe Leu Gln Pro Leu Asn 195 200 205

10 Pro Gln Tyr Pro Met Ile Pro Cys Asn Glu Ser Cys Ser Val Val Gly
210 220

Lys Val Ile Ala Ser Gln Trp Pro Glu Glu Thr Phe Gly 235

(2) INFORMATION\FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 91 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) TYPE OF MOLECULE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Met Val Arg Trp Thr Leu Trp Asp Thr Leu Ala Phe Leu Leu Leu 1 15

35 Ser Leu Leu Pro Ser Leu Leu Ile Met Phe Ile Pro Ser Thr Phe
20 25 30

Lys Arg Pro Val Ser Ser Trp Lys Ala Leu Asn Leu Arg Lys Thr Leu 35 40 45

Leu Met Ala Ser Ser Val Arg Leu Lys Pro Leu Asn Cys Ser Arg Leu
50 60

Pro Cys Val Tyr Ala Gln Glu Thr Leu Thr Phe Leu Leu Thr Gln Lys 65 70 75 80

Lys Thr Cys Val Lys Asn Tyr Val Gln Lys Glu 85 90

(2) INFORMATION FOR SEQ ID\NO: 7:

(i) SEQUENCE CHARACTER STICS:

(A) LENGTH: 2834 base pairs

(B) TYPE: nucleotide

(C) STRANDEDNESS: double strand

(D) TOPOLOGY: both

60

50

55

15

20

50

60

110

10

15

20

(vi)	TI/NI	IAL ORIGIN	:	
	(/)	ORGANISM:	pCSJ	fragment

(xi) CHARACTERISTICS:

(A)\NAME/KEY: CDS

LOCATION: complement (106..816)

(ix) CHARACTERISTICS:

(A) NAME/KEY: CDS

(B) LOCATION: 1025..2104

(ix) CHARACTERISTICS:

(A) NAME/KEY: CDS

(B) LOCATION: 2377..2649

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

ATTTACTATG TTATGTTCTG AGGGGAGTGA AAATTCCCCT AATTCGATGA AGATTCTTGC 60 TCAATTGTTA TCAGCTATGC GCCGACQAGA ACACCTTGCC GATCAGCCAA ACGTCTCTTC 120 AGGCCACTGA CTAGCGATAA CTTTCCCCAC AACGGAACAA CTCTCATTGC ATGGGATCAT 180 TGGGTACTGT GGGTTTAGTG GTTGTAAAAA CACCTGACCG CTATCCCTGA TCAGTTTCTT 240 GAAGGTAAAC TCATCACCCC CAAGTCTGGC TATGCAGAAA TCACCTGGCT CAACAGCCTG 300 CTCAGGGTCA ACGAGAATTA ACATTCCGTC\AGGAAAGCTT GGCTTGGAGC CTGTTGGTGC 360 35 GGTCATGGAA TTACCTTCAA CCTCAAGCCA ÇAATGCAGAA TCACTGGCTT TTTTGGTTGT 420 GCTTACCCAT CTCTCCGCAT CACCTTTGGT AAAGGTTCTA AGCTTAGGTG AGAACATCCC 480 TGCCTGAACA TGAGAAAAAA CAGGGTACTC ATACTCACTT CTAAGTGACG GCTGCATACT 540 AACCGCTTCA TACATCTCGT AGATTTCTCT GGCGATTGAA GGGCTAAATT CTTCAACGCT 600 AACTTTGAGA ATTTTTGTAA GCAATGCGGC GTTATAAGCA TTTAATGCAT TGATGCCATT 660 AAATAAAGCA CCAACGCCTG ACTGCCCCAT CCCCATCTTG TCTGCGACAG ATTCCTGGGA 720 TAAGCCAAGT TCATTTTCT TTTTTTCATA AATTGQTTTA AGGCGACGTG CGTCCTCAAG 780 CTGCTCTTGT GTTAATGGTT TCTTTTTTGT GCTCATACGT TAAATCTATC ACCGCAAGGG 840 ATAAATATCT AACACCGCGC GTGTTGACTA TTTTACCTCT GGCGGTGATA ATGGTTGCAT 900 GTACTAAGTA GGTTGTATGG AACAACGCAT AACCCTGAAA GATTATGCAA TGCGCTTTGG 960 55 GCAAACCAAG ACAGCTAAAG ATCCTCTAGA GCGCCCGGAA\GAGAGTCAAT TCAGGGTGGT 1020 GAAT GTG AAA CCA GTA ACG TTA TAC GAT GTC GCA\GAG TAT GCC GGT GTC 1069 Val Lys Pro Val Thr Leu Tyr Asp Val Ala Glu Tyr Ala Gly Val 100 TCT TAT CAG ACC GTT TCC CGC GTG GTG AAC CAG GCC AGC CAC GTT TCT 1117 Ser Tyr Gln Thr Val Ser Arg Val Val Asn Gln Ala\Ser His Val Ser

115

										. 30	-							
٠	GCG Ala	AAA Lys	ACG Thr 125	CGG Arg	GAA Glu	AAA Lys	GTG Val	GAA Glu 130	GCG Ala	GCG Ala	ATG Met	GCG Ala	GAG Glu 135	CTG Leu	AAT Asn	TAC Tyr		1165
5	ATT Ile	CCC Pro 140	AAC Asn	CGC Arg	GTG Val	GCA Ala	CAA Gln 145	CAA Gln	CTG Leu	GCG Ala	GGC Gly	AAA Lys 150	CAG Gln	TCG Ser	TTG Leu	CTG Leu		1213
10	ATT Ile 155	GGC Gly	GTT Val	AL a	ACC Thr	TCC Ser 160	AGT Ser	CTG Leu	GCC Ala	CTG Leu	CAC His 165	GCG Ala	CCG Pro	TCG Ser	CAA Gln	ATT Ile 170		1261
15	GTC Val	GCG Ala	GCG Ala	ATT Ile	ДАА 1ув 175	TCT Ser	CGC	GCC Ala	GAT Asp	CAA Gln 180	CTG Leu	GGT Gly	GCC Ala	AGC Ser	GTG Val 185	GTG Val		1309
20	GTG Val	TCG Ser	ATG Met	GTA Val 190	GAA Glu	CGA Arg	AGC Ser	GGC Gly	GTC Val 195	GAA Glu	GCC Ala	TGT Cys	AAA Lys	GCG Ala 200	GCG Ala	GTG Val		1357
	CAC His	AAT Asn	CTT Leu 205	CTC Leu	GCG Ala	CAR Gln	CGC Arg	GTC Val 210	AGT Ser	GGG Gly	CTG Leu	ATC Ile	ATT Ile 215	AAC Asn	TAT Tyr	CCG Pro		1405
25		Asp 220	Asp	Gln	Asp	Ala	11/e 225	Ala	Val	Glu	Ala	Ala 230	Сув	Thr	Asn	Val		1453
30	CCG Pro 235	GCG Ala	TTA Leu	TTT Phe	CTT Leu	GAT Asp 240	GTC Val	TCT	GAC Asp	CAG Gln	ACA Thr 245	CCC Pro	ATC Ile	AAC Asn	AGT Ser	ATT Ile 250		1501
35	IIe	Pne	ser	H1s	G1u 255	Asp	Gly	Thr	Arg	Leu 260	Gly	GTG Val	Glu	His	Leu 265	Val		1549
40	GCA Ala	TTG Leu	GGT Gly	CAC His 270	CAG Gln	CAA Gln	ATC Ile	GCG Ala	CTG Leu 275	TTA Leu \	GCG Ala	GGC Gly	CCA Pro	TTA Leu 280	AGT Ser	TCT Ser		1597
	Val-	Ser	Ala 285	Arg	Leu	Arg	Leu	Ala 290	Gly	Thp	His	AAA Lys	Tyr 295	Leu	Thr	Arg		1645
45	Asn	300	Ile	Gln	Pro	Ile	Ala 305	Glu	Arg	Glu	gly.	GAC Asp 310	Trp	Ser	Ala	Met		1693
50	TCC Ser 315	GGT Gly	TTT Phe	CAA Gln	CAA Gln	ACC Thr 320	ATG Met	CAA Gln	ATG Met	CTG Leu	AAT Asn 325	GAG Glu	GGC Gly	ATC Ile	GTT Val	CCC Pro 330		1741
55	ACT Thr	GCG Ala	ATG Met	CTG Leu	GTT Val 335	GCC Ala	AAC Asn	GAT Asp	CAG Gln	ATG Met 340	GCG Ala	CIG	GGC Gly	GCA Ala	ATG Met 345	CGC Arg		1789
60	GCC Ala	ATT Ile	ACC	GAG Glu 350	TCC Ser	GGG Gly	CTG Leu	CGC Arg	GTT Val 355	GGT Gly	GCG Ala	GAT Asp	ATC Ile	TCG Ser 360	GTA Val	GTG Val	:	1837
	GGA Gly	TAC Tyr	GAC Asp 365	GAT Asp	ACC Thr	GAA Glu	GAC Asp	AGC Ser 370	TCA Ser	TGT Cys	TAT Tyr	ATC Ile	CCG Pro 375	CCG Pro	TCA Ser	ACC Thr	:	1885
65	ACC Thr	ATC Ile 380	AAA Lys	CAG Gln	GAT Asp	TTT Phe	CGC Arg 385	CTG Leu	CTG Leu	GGG	CAA Gln	ACC Thr 390	AGC Ser	GTG Val	GAC Asp	CGC Arg		1933

deal and the second of the sec

but cont

	Leu Leu Ser Gln Gly Gln Ala Val Lys Gly Asn Gln Leu Leu 400 400	1981
5	CCC GTC TCA CTG GTG AAA AGA AAA ACC ACC CTG GCG CCC AAT ACG CAA Pro Val Set Leu Val Lys Arg Lys Thr Thr Leu Ala Pro Asn Thr Gln 415 420 425	2029
10	ACC GCC TCT CCC CGC GCG TTG GCC GAT TCA TTA ATG CAG CTG GCA CGA Thr Ala Ser Pro Arg Ala Leu Ala Asp Ser Leu Met Gln Leu Ala Arg 430 435	2077
15	CAG GTT TCC CGA CTG GAA AGC GGG CAG TGAGCGCAAC GCAATTAATG Gln Val Ser Arg Leu Glu Ser Gly Gln 445	2124
	TGAGTTAGCT CACTCATTAG GCACCCCAGG CTTTACACTT TATGCTTCCG GCTCGTATGT	2184
20	TGTGTGGAAT TGTGAGCGGA TAACAATTTC ACACAGGAAA CAGCTCTGCA GGCATGCAAG	2244
20	CTTATCGAAT TCTCATTCAG GCTTCTGCCG TTTTGGATTT AACCGAAGAT GATTTCGATT	2304
	TTCTGACGAG TAACAAAGTT TGGATTGCTA CTGACCGCTC TCGTGCTCGT CGCTGCGTTG	2364
25	AGGCTTGCGT TT ATG GTA CGC TGG ACT TTG TGG GAT ACC CTC GCT TTC Met Val Arg Trp Thr Leu Trp Asp Thr Leu Ala Phe 1 5 10	2412
30	CTG CTC CTG TTG AGT TTA TTG CTG CCG TCA TTG CTT ATT ATG TTC ATC Leu	2460
35	CCG TCA ACA TTC AAA CGG CCT GTC TCA TCA TGG AAG GCG CTG AAT TTA Pro Ser Thr Phe Lys Arg Pro Val Ser Ser Trp Lys Ala Leu Asn Leu 30 35 40	2508
40	CGG AAA ACA TTA TTA ATG GCG TCG AGC GTC CGG TTA AAG CCG CTG AAT Arg Lys Thr Leu Leu Met Ala Ser Ser Val Arg Leu Lys Pro Leu Asn 50 55 60	2556
	TGT TCG CGT TTA CCT TGC GTG TAC GCG CAG GAA ACA CTG ACG TTC TTA Cys Ser Arg Leu Pro Cys Val Tyr Ala Gln Glu Thr Leu Thr Phe Leu 65 70 75	2604
45	CTG ACG CAG AAG AAA ACG TGC GTC AAA AAT TAC GTG CAG AAG GAG Leu Thr Gln Lys Lys Thr Cys Val Lys Asn Tyr Val Gln Lys Glu 80 85 90	2649
50	TGATGTAATG TCTAAAGGTA AAAAACGTTC TGGCGCTCGC CCTGGTCGTC CGCAGCCGTT	2709
20	GCGAGGTACT AAAGGCAAGC GTAAAGGCGC TCGTCTTTGG TATGTAGGTG GTCAACAATT	2769
	TTAATTGCAG GGGCTTCGGC CCTTACTTGA GGATAATTA TGTCTAATAT TCAAACTGGC	2829
55	GCCGA	2834

(2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 237 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

65

(ii) TYPE OF MOLECULE: protein

(刘) SEQUENCE DESCRIPTION: SEQ ID NO:8:

5 Met Ser Thr Lys Lys Lys Pro Leu Thr Gln Glu Gln Leu Glu Asp Ala Arg Arg Leu Lys Ala Ile Tyr Glu Lys Lys Asn Glu Leu Gly Leu Ser Gln Glu Ser Val Ala Asp Lys Met Gly Met Gly Gln Ser Gly Val Gly Ala Leu Phe Asn Gly Ile Asn Ala Leu Asn Ala Tyr Asn Ala Ala Leu Leu Thr Lys tle Leu Lys Val Ser Val Glu Glu Phe Ser Pro Ser 20 Ile Ala Arg Glu Ile Tyr Glu Met Tyr Glu Ala Val Ser Met Gln Pro Ser Leu Arg Ser Glu Tyr Glu Tyr Pro Val Phe Ser His Val Gln Ala Gly Met Phe Ser Pro Lys Leu Arg Thr Phe Thr Lys Gly Asp Ala Glu Arg Trp Val Ser Thr Thr Lys Lys Ala Ser Asp Ser Ala Phe Trp Leu 130 Glu Val Glu Gly Asn Ser Met Thr Ala Pro Thr Gly Ser Lys Pro Ser 35 Phe Pro Asp Gly Met Leu Ile Leu Val Asp Pro Glu Gln Ala Val Glu Pro Gly Asp Phe Cys Ile Ala\Arg Leu Gly Gly Asp Glu Phe Thr Phe

Lys Lys Leu Ile Arg Asp Ser Gly Gln Val Phe Leu Gln Pro Leu Asn

Pro Gln Tyr Pro Met Ile Pro Cys Asn Glu Ser Cys Ser Val Val Gly 215

Lys Val Ile Ala Ser Gln Trp Pro/Glu Glu Thr Phe Gly

(2) INFORMATION FOR SEQ ID NO: 9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 360 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) TYPE OF MOLECULE: protèin

50

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

Val Lys Pro Val Thr Leu Tyr Asp Val Ala Glu Tyr Ala Gly Val Ser Tyr Gln Thr Val Ser Arg Val Val Asn Gln Ala Ser His Val Ser Ala 10 Lys Thr Arg Gl\(\psi\) Lys Val Glu Ala Ala Met Ala Glu Leu Asn Tyr Ile Pro Asn Arg Val Ala Gln Gln Leu Ala Gly Lys Gln Ser Leu Leu Ile Gly Val Ala Thr Ser Ser Leu Ala Leu His Ala Pro Ser Gln Ile Val Ala Ala Ile Lys Ser Arg Ala Asp Gln Leu Gly Ala Ser Val Val Val Ser Met Val Glu Arg Set Gly Val Glu Ala Cys Lys Ala Ala Val His Asn Leu Leu Ala Gln Arg Val Ser Gly Leu Ile Ile Asn Tyr Pro Leu Asp Asp Gln Asp Ala Ile Ala Val Glu Ala Ala Cys Thr Asn Val Pro 130 135 Ala Leu Phe Leu Asp Val Ser Asp Gln Thr Pro Ile Asn Ser Ile Ile 150 Phe Ser His Glu Asp Gly Thr Arg Leu Gly Val Glu His Leu Val Ala 165 170 Leu Gly His Gln Gln Ile Ala Leu Leu Ala Gly Pro Leu Ser Ser Val Ser Ala Arg Leu Arg Leu Ala Gly The His Lys Tyr Leu Thr Arg Asn 200 Gln Ile Gln Pro Ile Ala Glu Arg Glu Gly Asp Trp Ser Ala Met Ser 215 Gly Phe Gln Gln Thr Met Gln Met Leu Asn Glu Gly Ile Val Pro Thr 230 235 Ala Met Leu Val Ala Asn Asp Gln Met Ala Leu Gly Ala Met Arg Ala 250 Ile Thr Glu Ser Gly Leu Arg Val Gly Ala Asp Ile Ser Val Val Gly Tyr Asp Asp Thr Glu Asp Ser Ser Cys Tyr Ile Pro Pro Ser Thr Thr 280 Ile Lys Gln Asp Phe Arg Leu Leu Gly Gln Thr Ser Val Asp Arg Leu Leu Gln Leu Ser Gln Gly Gln Ala Val Lys Gly Asn Gln Leu Leu Pro Val Ser Leu Val Lys Arg Lys Thr Thr Leu Ala Pro Asn Thr Gln Thr 65

Sulv.

Ala Ser Pro Arg Ala Leu Ala Asp Ser Leu Met Gln Leu Ala Arg Gln 340

Val Ser Arg Leu Glu S r Gly Gln 360

- (2) INFORMATION FOR SEQ ID NO: 10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 91 amino acids
 - (B) TYPE:\amino acid
 - (D) TOPOLOGY: linear
 - (ii) TYPE OF MOLECULE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Met Val Arg Trp Thr Leu Trp Asp Thr Leu Ala Phe Leu Leu Leu Leu 1 15

Ser Leu Leu Pro Ser Leu Leu Ile Met Phe Ile Pro Ser Thr Phe 20 30

Lys Arg Pro Val Ser Ser Trp Lys Ala Leu Asn Leu Arg Lys Thr Leu
35 40 45

Leu Met Ala Ser Ser Val Arg Leu Lys Pro Leu Asn Cys Ser Arg Leu 50 60

35 Pro Cys Val Tyr Ala Gln Glu Thr Leu Thr Phe Leu Leu Thr Gln Lys 65 70 75 80

Lys Thr Cys Val Lys Asn Tyr Val Gln Lys Glu

40

15

20

25

The street was given to the first of the fir