# CSCA 5642 Final Project

Convolutional Neural Networks for Photoelectric-Compton Decomposition in Duel-Energy CT Tissue Classification

**Karl Schmidt** 

## **Table of Contents**

- 1. Introduction
- 2. Methodology
- 3. Evaluation & Analysis
- 4. Conclusion

## **INTRODUCTION**

## Introduction

- Goal: Create a DL-spectral CT model to accurately "recover" three-tissue images.
- Models:
  - 11 convolutional layers (Unet256) and
  - 15 convolutional layers (UNet512)

## **METHODOLOGY**

# Methodology Dataset

#### **Duel-Energy CT Scan (Spectral CT)**

- Low Energy 50kVp
- High Energy 80kVp

#### Dataset - for 50 & 80 kVp

- 1000x512x512 True Tissue Values
- 1000x256x1024 kVp Transmission



# Methodology Exploratory Data Analysis





# Methodology Exploratory Data Analysis





# Methodology Data Preparation

Convert the transmission data into Attenuation values.

Use Filtered BackProjection (FBP) to reconstruct kVp Images from Attenuation values [ $\mu_{low}$ ,  $\mu_{high}$ ].



$$A = log_{10} \left(\frac{I_o}{I}\right) = \epsilon cl$$

#### Filtered Back Projection



# Methodology Models



#### UNet256

- 2 encoding and decoding levels
- Encodes up to 256 pixels
- Faster to train but likely less expressive

```
class ConvBlock(nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size=3,
        padding=1
):
    super().__init__()
    self.block = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_channels, out_channels, kernel_size=kernel_size, padding=padding),
            nn.ReLU(inplace=True),
            nn.ReLU(inplace=True),
            nn.ReLU(inplace=True),
            rnuserical channels, cont_channels, kernel_size=kernel_size, padding=padding),
            nn.ReLU(inplace=True),
            rnuserical channels, cont_channels, kernel_size=kernel_size, padding=padding),
            nn.ReLU(inplace=True),
            rnuserical channels, cont_channels, kernel_size=kernel_size, padding=padding),
            nn.ReLU(inplace=True),
            rnuserical channels, kernel_size=kernel_size, padding=padding),
            rnuserical channels, kernel_size=kernel_size, padding=padding),
```

### UNet512

- 3 encoding and decoding levels
- Encodes up to 512 pixels
- Potential to recorder greater image complexity.

## **EVALUATION & ANALYSIS**

# **Evaluation & Analysis**

## Hyperparameter Optimization

### **Tuned Hyperparameters**

#### • Filter Size: 3, 4, 5

- **Stride**: 2, 3
- **Padding**: 1, 2
- **Learning Rate**: 1e-4, 1e-3, 1e-2
- **Batch Size**: 4, 8
- **Epochs:** 3, 5

### **Best Configurations**

- UNet256: [Val Loss: 0.0519]
  - Filter Size: 4
  - Stride: 3
  - Padding: 2
  - Learning Rate: 0.001
  - Batch Size: 4
- UNet512: [Val Loss: 0.0380]
  - Filter Size: 5
  - Stride: 3
  - Padding: 1
  - Learning Rate: 0.001
  - Batch Size: 4

# Evaluation & Analysis Final Training Results

| Epoch | Train Loss | Val Loss | MAE (Adipose, Fibro, Calc)  |  |  |
|-------|------------|----------|-----------------------------|--|--|
| 1     | 0.2254     | 0.0456   | (0.00420, 0.00260, 0.00023) |  |  |
| 2     | 0.0478     | 0.0366   | (0.00469, 0.00469, 0.00010) |  |  |
| 3     | 0.0365     | 0.0331   | (0.00161, 0.00175, 0.00005) |  |  |
| 4     | 0.0324     | 0.0310   | (0.00216, 0.00260, 0.00004) |  |  |
| 5     | 0.0304     | 0.0292   | (0.00260, 0.00278, 0.00003) |  |  |

#### **Loss Curves**

- Train Loss: Decreased from 0.2254 to 0.0304
- Val Loss: Dropped from 0.0456 to 0.0292 over 5 epochs.

| Epoch | Predicted (%) |       |      | Ground Truth (%) |       |      |
|-------|---------------|-------|------|------------------|-------|------|
|       | Adipose       | Fibro | Calc | Adipose          | Fibro | Calc |
| 1     | 39.35         | 22.46 | 0.06 | 39.67            | 22.35 | 0.04 |
| 2     | 40.12         | 21.89 | 0.03 | 39.67            | 22.35 | 0.04 |
| 3     | 39.51         | 22.52 | 0.05 | 39.67            | 22.35 | 0.04 |
| 4     | 39.83         | 22.14 | 0.05 | 39.67            | 22.35 | 0.04 |
| 5     | 39.42         | 22.61 | 0.04 | 39.67            | 22.35 | 0.04 |

# Evaluation & Analysis Interpretation

### **Key Takeaways**

- UNet512 Outperforms UNet256
- Model converges quickly
- High tissue composition accuracy

### **Challenges & Considerations**

- Class imbalance
- Low error doesn't guarantee clinical interpretability

#### Conclusion

UNet512 demonstrates effective learning of dual-energy spectral features for multi-tissue segmentation in noiseless 2D breast CT.

## **CONCLUSIONS**

# Conclusion Results Summary

- UNet 512 achieved the best performance
  - Final validation loss: 0.0292
  - Tissue MAE: as low as <0.003</li>
  - Tissue compositions closely matched ground truth
- Demonstrated robust performance despite class imbalance and small calcification signals

# Conclusion Key Contributions

- Integrated Beer-Lambert attenuation law into training design
- Used physically meaningful  $[\mu_{low}, \mu_{high}]$  features for segmentation
- Trained and evaluated fully end-to-end U-Net models on simulated AAPM data

# Conclusion Future Directions

- Add data augmentation or class balancing for rare tissue types (e.g., calcification)
- Extend model to noisy or real clinical data
- Explore multi-task learning (e.g., decomposition + classification)