Рассматриваются ряды $f(x) = \sum_{i=0...\infty} u_i$. Для каждого индивидуального задания определены вид элемента ряда u_i , функция f(x), область сходимости D, если $D \neq R$.

1.
$$u(i) = (-1)^{i} x^{2i} / (2i)!$$
; $f(x) = \cos(x)$.

2.
$$u(i) = x^{i} / i!$$
; $f(x) = \exp(x)$.

3.
$$u(i) = (1/\operatorname{sqrt}(2\pi))(-1)^n x^{2n+1}/(2^n n!(2n+1)); f(x) = \Phi(x)$$
 — "функция ошибок" [10, c.46].

4.
$$u(i) = (-1)^{i} x^{2i} / i!$$
; $f(x) = \exp(-x^{2})$.

5.
$$u(i) = x^{i}(i+1) / i!$$
; $f(x) = \exp(x)(1+x)$.

6.
$$u(i) = x^{3i}/(3i)!$$
; $f(x) = (1/3)\exp(x) + 2\exp(-x/2)\cos(x \operatorname{sqrt}(3)/2)$.

7.
$$u(i) = x^{3i+q} / (3i+q)!$$
; $q = 1, 2$;

$$f(x) = (1/3)\exp(x) - (2/3)\exp(-x/2)\cos(x \operatorname{sqrt}(3)/2 - (\pi/3)(-1)^q).$$

8.
$$u(i) = q^{i} x^{4i} / (4i)!; q = +1,-1;$$

$$f(x) = (1/2)(ch(x) + cos(x));$$
 при $q = +1;$

$$f(x) = \cos(x / \text{sqrt}(2)) \text{ ch}(x / \text{sqrt}(2));$$
 при $q = -1$.

9.
$$u(i) = x^{4i+1} / (4i+1)!$$
; $f(x) = (1/2)(\sinh(x) + \sin(x))$.

10.
$$u(i) = x^{4i+3} / (4i+3)!$$
; $f(x) = (1/2)(\sinh(x) - \sin(x))$.

11.
$$u(i) = (-1)^{i} 2^{2i} x^{4i} / (4i)!$$
; $i \ge 1$; $f(x) = \operatorname{ch}(x) \sin(x) - 1$.

12.
$$u(i) = (-1)^{i+1} 2^{2i-1} x^{4i-2} / (4i-2)!; i \ge 1; f(x) = \operatorname{sh}(x) \cos(x).$$

13.
$$u(i) = 2^{2i} x^{2i+1} / (2i+1)!;$$
 $i \ge 1;$ $f(x) = x - \sinh(x) \sin(x).$

14.
$$u(i) = (-1)^{i+1} 2^{2i-1} x^{2i} / (2i)!;$$
 $i \ge 1;$ $f(x) = \sin^2(x).$

15.
$$u(i) = (-1)^{i} (2i - 1)! x^{2i} / 2^{2i} / (i!)^{2}; i \ge 1;$$

$$f(x) = \ln 2 - \ln(1 + \operatorname{sqrt}(1 + x^2)); \quad x^2 \le 1.$$

16.
$$u(i) = (-1)^{i} 2^{2i-1} (i-1)! i! x^{2i+1} / (2i+1)!; i \ge 1;$$

$$f(x) = x - \operatorname{sqrt}(1 + x^2) \ln(x + \operatorname{sqrt}(1 + x^2)); \ x^2 < 1.$$

17.
$$u(i) = (-1)^{i} 2^{2i} (i!)^{2} x^{2i+1} / (2i+1)!;$$

 $f(x) = \ln(x + \operatorname{sqrt}(1 + x^{2})) / \operatorname{sqrt}(1 + x^{2}); \quad x^{2} < 1.$

18.
$$u(i) = (-1)^{i} (2i - 1)! / 2^{2i - 1} / i! / (i - 1)! / (2i + 1) / x^{2i + 1}; i \ge 1;$$

 $f(x) = \ln(1 + \operatorname{sqrt}(1 + x^{2})) - \ln(x) - 1/x; x^{2} \ge 1.$

19.
$$u(i) = (2i)! x^{2i+1} / 2^{2i} / (i!)^2 / (2i+1); \quad f(x) = \arcsin(x); \quad x^2 < 1.$$

20.
$$u(i) = 2^{2i} (i!)^2 x^{2i+1} / (2i+1)! / (i+1); f(x) = \arcsin^2(x); x^2 \le 1.$$

21.
$$u(i) = (2i)! / 2^{2i} / (i!)^2 / (2i + 1) (x^2 / (1 + x^2))^i$$
;
 $arctg(x) = [x / sqrt(1 + x^2)] f(x) ; x^2 < \infty;$

для сравнения рассмотреть:

a)
$$u(i) = (-1)^i x^{2i+1} / (2i+1)$$
; $f(x) = \operatorname{arctg}(x)$; $x^2 \le 1$;
6) $u(i) = (-1)^i / x^{2i+1} / (2i+1)$; $f(x) = \pi/2 - \operatorname{arctg}(x)$; $x^2 \ge 1$.

22. Вычислить пару функций f_1 и f_2 :

$$u_1(i) = p^i \sin(i \cdot x) / i; \quad i \ge 1; \quad u_2(i) = p^i \cos(i \cdot x) / i; \quad i \ge 1;$$

$$f_1(x) = \operatorname{arctg}(p \sin(x) / (1 - p \cos(x)));$$

$$f_2(x) = \ln(1 / \operatorname{sqrt}(1 - 2p\cos(x) + p^2)); (0 < x < 2\pi) & (p^2 \le 1).$$

23. Вычислить пару функций f_1 и f_2 :

$$u_1(i) = x^i \sin(i \cdot p)/i!$$
; $i \ge 1$; $u_2(i) = x^i \cos(i \cdot p) / i!$; $i \ge 0$;
 $f_1(x) = \exp(x \cos(p)) \sin(x \sin(p))$;
 $f_2(x) = \exp(x \cos(p)) \cos(x \sin(p))$; $x^2 < 1$.

24.
$$u(i) = (-1)^{i} x^{2i+1} / (2i+1)!; f(x) = \sin(x).$$

25.
$$u(i) = x^{2i+1} / (2i+1)!$$
; $f(x) = \sinh(x)$.

26.
$$u(i) = x^{2i} / (2i)!$$
; $f(x) = ch(x)$.

Примечание. sh(x) = (exp(x) - exp(-x)) / 2;ch(x) = (exp(x) + exp(-x)) / 2.