ROLLING BALL COLLECTOR

CAPSTONE DESIGN 1ST PRESENTATION

Advisor: Prof. YongHwa Park

TA: Sooyong Kim

Team Member: Sangwon Yoon, Duckyoung Kim, Minkyung Kim, Won Choi, Yechan Lee, Sungwoog Hong, Cheol Sagong

CONTENTS

- Common mission
- Function Analysis
- Define Unknowns

- Concept Overview
- Pick up
- Heat Transfer & Vibration
- Ros
- Open CV
- Labview

- Unsolved Problems
- Next Goals

PROBLEM DEFINITION

Specify given problems and set the plan for the approach

COMMON MISSION

Algorithm for exact mapping

- Plan for the shortest route
 - Effective pick up method

- Effective Heat transfer
- Minimize battery consumption

FUNCTION ANALYSIS

Information Flow

Energy Flow

Energy Dissipation

FUNCTION ANALYSIS

Information Flow

Energy Flow

Energy Dissipation

CONCEPT

Ideation result for the pickup, heat transfer, and vibration

CONCEPT OVERVIEW

PICK UP

GOODS & BADS

GOODS

- Time effective
 - Catch the ball during the movement
- Ease of control
 - One additional motor required
- Ease of release

BADS

- Go in and Get out
- Possibilities of hit the ball
- Instability
 - Additional mass of roller, slide and a storage
 - Center of mass goes higher

BADS

- Go in and Get out
- Possibilities of hit the ball
- Instability
 - Additional mass of roller, slide and a storage
 - Center of mass goes higher

Segmentation from TRIZ

BADS

- Go in and Get out
- Possibilities of hit the ball
- Instability
 - Additional mass of roller, slide and a storage
 - Center of mass goes higher

 ω : angular velocity v: Relative velocity of a ball relative to the mobile platform

- Control ω relative to the v
- Find Optimal dimension:
 - -length of brush.
 - -the height of pivot
 - -the distance between platform body and pivot.

BADS

- Go in and Get out
- Possibilities of hit the ball
- Instability
 - Additional mass of roller, slide and a storage
 - Center of mass goes higher

1) Additional mass

Taking out from TRIZ

BADS

- Go in and Get out
- Possibilities of hit the ball
- Instability
 - Additional mass of roller, slide and a storage
 - Center of mass goes higher

2) COM goes higher

Allowable least acceleration: 4.032m/s2

Max. Acceleration of the wheel: 27.38 m/s²

HEAT TRANSFER

STRATEGY

- Minimize Energy usage
 - Optimal path planning
 - Light weight
 - Rotating roller only for the pick up process
- Increase Surface area
 - Perforated Frame with high conductivity
- Heat Sink and Cooling Fan
 - Maximize air flow

VIBRATION

STRATEGY

Absorb vibration only for the cam, rather than the whole system

• Make high frequency ratio(>√2) & low damping ratio

SUMMARY

OTHER WORKS

Brief summary for the progress of ROS. Open CV. and Labview

ROS

TOPIC

- Continuous communication which is used to send and receive the data
- Get the distance data and send it to myRIO to control the velocity

SERVICE

- Sporadic communication ordering for the specific event
- Used for changing the direction and avoiding obstacles

RVIZ

Visualize of LIDAR /cam data

CURRENT PROGRESS (2) OPEN CV

(a) Creating Bounding boxes and circles for contours

(b) Creating Bounding rotated boxes and ellipses for contours

CURRENT PROGRESS (3) LABVIEW

Wheel & Position mode control

FUTURE WORKS

Overall summary for the system and next goal

FUNCTION ANALYSIS

Information Flow
Energy Flow

----- Energy Dissipation

PATH GENERATION

We can find an optimal path because our robot collect balls while moving

1 MAPPING

② CALCULATE OPTIMAL PATH

(DECREASING ERRORS)

NEXT GOALS

ROS

- Get the information from webcam and transfer to myRIO
- Motor control using Xbox
- Based on the webcam, find the optimal route

OPEN CV

- Find proper ball tracking method at various condition
- 3D mapping
- Combine mapping data with Lidar

LABVIEW

- Mecanum wheels control
 - Straigh movement
 - Rotation
- Roller motor control
- Backdoor open system

Q&A

REFERENCE

BRAINSTORMING

1. 격자형 집게

3. 끈끈이

4. 우선 다 담고 골라내기 (깔때기 형)

2. W자형 집게

24269

र भीग व्यवमा

linkage

6. 빨간공 쳐내기

9. 바구니까지 이어지는 통로

BRAINSTORMING

드라이아이스
 (혹은 다른 냉매)

3. <u>열용량이</u> 큰 오일 에 담그기

2. Pms 위아래로 공간을 두어 이동을 이 용하여 convection

3. 방열판과 쿨러

DECISION MATRIX (1) PICK UP

Issue: Choose the most efficient pick up method		Baseline :기계팔 집기	눌러서 잡기	윤균이	지게차	빨아들이기		쓸어담기
정확도	26	0	1	1	0	0	1	1
집는 시간	18	0	1	1	1	0	1	1
복구 가능성	8	0	0	0	0	0	0	0
크기:다른공칠수도 14		0	0	0	-1	0	-1	-1
제작편의성 26		0	1	1	1	0) 1	1
에너지 소모	8	0	1	1	1	-1	1	0
		0	78	78	38	-8	64	56

DECISION MATRIX (1) PICK UP

Issue: Choose the most efficient pick up method		눌러서 잡기	끈끈이	돌거	쓸어담기	
정확도	26	0.74	0.66	0.82	0.56	
집는 시간	18	0.82	0.8	0.9	0.8	
복구 가능성	8	0	0	0.32	0.5	
크기:다른공칠수도	14	0.7	0.7	0.44	0.56	
제작편의성	26	0.66	0.66	0.67	0.7	
에너지 소모	8	0.74	0.8	0.56	0.46	
		66.88	64.92	68.14	62.68	

DYNAMIC INTERPRETATION

2.

$$Ma = 4F_t$$

$$T - \mu Nr = \frac{1}{2}mra$$

$$T = \frac{3}{2}mra + \frac{1}{4}Mra$$

$$T = \frac{T}{4}mra$$

 $max\ T$ is given (motor spec, 2.3Nm) Find the maximum acceleration with respect to given T by this equation.

Maximum a: 27.38m/s2

$$a: g = 7: 17.0122$$

 $a: a = 4.032m/s^2$

In our model, mass and geometry is shown in figure(2).

In geometry, vector sum of g and platform's acceleration must do not exceed the contact point of the wheel and ground

BALL DETECTING DETAIL

(a) Thresholding Operation

(d) Hough Circle Transform

(e) Find Contour

(b) Laplace Operation

(f) Creating Bounding boxes and circles for contours

(c) Canny Edge Detector

(g) Creating Bounding rotated boxes and ellipses for contours

GANTT CHART

ID	작업명	시작	완료	기간		2018년 04월	/	2018년 05월
IU					3-25	4-1 4-8 4-15	4-22 4-29	5-6 5-13 5-20
1	Idea Generation	2018-03-19	2018-05-01	6.4w				
2	1st Presentation	2018-03-30	2018-03-30	.2w	- 1			
3	Motor 구동 및 이동	2018-04-02	2018-04-13	2w				
4	집기 방식 제작	2018-03-19	2018-04-23	5.2w				
5	1차 프로토타입 제작	2018-04-23	2018-05-01	1.4w		1		
6	2nd Presentation	2018-05-04	2018-05-04	.2w			- 1	
7	인식 및 경로 설정 알고리즘	2018-03-30	2018-05-01	4.6w				
8	2차 프로토타입 제작	2018-05-01	2018-05-14	2w				
9	피드백 수립 및 최종 제품 제작	2018-05-14	2018-05-30	2.6w				
10	3rd Presentation	2018-06-01	2018-06-01	.2w				

THANK YOU