

Reshaping & Combining Tables

Unit of analysis

Combining

set: concatenate tables (stack rows)

merge: link tables (attach columns)

Reshaping

proc summary: consolidate rows

proc transpose: reshape table

Hye-Chung Kum

Population Informatics Research Group http://research.tamhsc.edu/pinformatics/ http://pinformatics.web.unc.edu/

License:

Data Science in the Health Domain by Hye-Chung Kum is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Course URL:

http://pinformatics.tamhsc.edu/phpm672

Data Science

Knowledge Discovery & Data mining (KDD)

Table Operations: multiple table → 1 table

set (Append)

Table A

Table B

 \rightarrow

Table A

Table B

merge (link)

Table A

Table B

 \rightarrow

Table A

Table B

Assignment 4

- Concatenate multiple tables (more rows)
 - stack tables on top of each other to increase the number of rows
 - using **set**
 - Be sure to understand the different behavior given different situations (i.e. what happens to shared variables? What happens to not shared variables?)
- Link up multiple tables using a shared key (more columns)
 - align the rows using the shared key, and link multiple tables to increase the number of variables in the tables
 - using merge
 - Be sure to understand the different behavior given different situations (i.e. what happens to shared vars? What happens to not shared vars?)
 - What is a 1-to-1 link
 - What is a 1-to-N link
 - What is a N-to-N link (you will not be doing this, but need to understand what this is. This must be done with proc sql in SAS)

Table Operations: 1 table → 1 table (reshaping)

Proc Transpose

1	2
а	d
b	е
С	f

1	а	b	С
2	d	e	f

Proc Summary

Α
В
С

Where D=function(A,B,C)

Examples of function are

Sum (A,B,C) Man (A,B,C) Man (A,B,C)

Sum(A,B,C) Mean(A,B,C) Max(A,B,C) Min(A,B,C)

Assignment 4 continued

- Combine multiple rows into one row
 - by group processing Droc Summary
- Reshape table to flip rows & columns
 - using proc transpose
 - Also transpose (flip rows & columns) by groups or row

Unit of Analysis

Basic Regression

- $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \epsilon$
- y: dependent variable
- x_i: independent variables
 - β_i : coefficient
- ε: error term

Unit of analysis

•
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \epsilon$$

- Table
 - column: y, x₁, x₂
 - row: ? (unit of analysis)
- What is unit of y/x ?
 - DV: capacity of hospital (unit: ?)
 - DV: service use (unit: ?)

Unit of analysis

•
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \epsilon$$

- Table
 - column: y, x₁, x₂
 - row: ? (unit of analysis)
- What is unit of y/x ?
 - DV: capacity of hospital (unit: hospital)
 - DV: service use (unit: person)

Reshaping to correct unit

- What do you have?
- What do you want? (unit of analysis)

Example

- Flu data
 - Weekly estimates
- NSDUH
 - Person
- Tx Discharge Data
 - Per hospital

Converting to the desired unit

- Consolidating multiple rows
 - Flu: Weekly estimates to monthly estimates
 - NSDUH: Per person to per race
 - Tx Discharge: Per hospital to per region
- Transposing: changing row/column
 - Flu: Weekly estimates to estimates per state
 - Tx Discharge: Per hospital to per hospital year

- Must first determine how to consolidate
 - Sum, max, min, count (of nonmissing) etc
 - Think about each variable and decide on the correct method per variable
- MUST be sorted first by the by varlist
- Example
 - Flu: SUM Weekly estimates to monthly estimates
 - NSDUH: MEAN Per person to per race
 - Tx Discharge: SUM- Per hospital to per region

proc summary (try it)

```
proc sort data= srcfn [out= fn nodupkey];
by byvar1 byvar2 ..;
proc summary data= fn;
[by byvar1 byvar2 ..];
var var1 var2 ···;
output out= outfn(drop=_type_) sum=;
proc summary data= fn;
[by byvar1 byvar2 ..];
var var1 var2 ···:
output out= outfn(drop=_type )
      sum(var1) = outvar1
      mean (var2) = outvar2;
```


- Must first determine unit of transpose
 - Per time period
- MUST be
 - sorted first by the by varlist (unit of transpose)
 - one row per unit
- Example
 - Flu: Weekly estimates to estimates per state
 - Full table
 - Tx Discharge: Per hospital to per hospital year
 - Group transpose

proc transpose (try it)

```
proc sort data= srcfn [out= fn] nodupkey;
by byvar1 byvar2 ...;

proc transpose data= fn out= outfn [prefix=prefix];
[by byvar1 byvar2 ..];
var var1 var2 ...;
id idvar;
```


demo.sas
(break in between)

Table Operations: multiple table → 1 table

set (Append)

Table A

Table B

 \rightarrow

Table A

Table B

merge (link)

Table A

Table B

 \rightarrow

Table A

Table B

Table Operations: 1 table → 1 table (reshaping)

Proc Transpose

1	2
а	d
b	е
С	f

1	а	b	С
2	d	e	f

Proc Summary

Α
В
С

Where D=function(A,B,C)

Examples of function are

Sum (A,B,C) Man (A,B,C) Man (A,B,C)

Sum(A,B,C) Mean(A,B,C) Max(A,B,C) Min(A,B,C)

- Take INPUT and turn it into OUTPUT
 - OUTPUT: Know what you want/goal
 - INPUT: figure out what you have to work with
- Change what you have (INPUT) to what you need (OUTPUT)
 - Break up the problems into small subproblems
 - Intermediate results (scrap paper)
 - Use functions to calculate the intermediary results

Think/Hypothesize output first

- Before running your code
 - Think about what you are expecting to see
 - in log (how many vars, obs)
 - Output (freq/print)
 - Run
 - Test that it is what you expected
 - If not, figure out why
 - What your hypothesis wrong?
 - If so where?
 - Program typo
 - Error in logic
 - Missing data (not located in the correct folder, in the correct form)

Programming

- Step at a time
- Jump to confirm before moving onto next step
- Know where you are going
- Check you are on track every step of the way

- Follow best practices on small projects
 - KISS Keep It Simple, Stupid
- Good programming practice. Helps debug
 - Small statements
 - Explicit parenthesis
 - Initialize variables
 - Document assumptions

Lab 4

- Lab 4 (2 pts): Due in 1 week
 - Learn how each command behaves
 - Submit excel file with answers
 - Will post answer one week from now
 - Will be on midterm
- Midpoint email (1 pt): Due in 1 week
 - Separate from lab
 - Must have started the assignment to answer
 - Review together

Assignment 4 (9 pts)

- REVIEW timeline (A5 vs Midterm)
- Most difficult
 - Covers ALL topics we have done so far. (final grade: 12)
 - Assignment 5: extension to assignment 4 (4 pt)
 - You have to think about what task is required, and than which commands to use
 - 5 weeks (2/24-3/31): midterm in the middle
- Look at the assignment together

What you learned so far...

- Assignment 1
 - Setup work environment
 - Use the SAS software
 - SAS programming basics
 - data step & proc step
 - libname
 - Writing code & Reading logs
- Assignment 2
 - Understand variables (names, types, labels)
 - To write conditional logic codes
 - Subset columns (variables) from a table
 - Subset rows (observations) from a table
 - Recode, rename variables and calculate new variables
 - Label variables and values

What you learned so far...

- Assignment 3
 - use for loops (iterative loops)
 - use while loops (conditional loops)
 - SAS: use one dimensional arrays

Assignment 4

- Concatenate multiple tables (more rows)
 - stack tables on top of each other to increase the number of rows
 - using **set**
 - Be sure to understand the different behavior given different situations (i.e. what happens to shared variables? What happens to not shared variables?)
- Link up multiple tables using a shared key (more columns)
 - align the rows using the shared key, and link multiple tables to increase the number of variables in the tables
 - using merge
 - Be sure to understand the different behavior given different situations (i.e. what happens to shared vars? What happens to not shared vars?)
 - What is a 1-to-1 link
 - What is a 1-to-N link
 - What is a N-to-N link (you will not be doing this, but need to understand what this is. This must be done with proc sql in SAS)

Assignment 4 continued

- Combine multiple rows into one row
 - by group processing Proc summary
- Reshape table to flip rows & columns
 - using proc transpose
 - Also transpose (flip rows & columns) by groups or row

Reminder

- Read the required readings
- Do the lab this week to learn the behavior of each command
 - Set
 - Merge
 - Proc summary
 - Proc transpose

