
**************************************	**************************************
MONIE CARDO EXFERIMENT # ***********************************	
************	* * * * * * * * * * * * * * * * * * * *
**************	*******
COMPUTING A MPE OF THE DYNAMIC GAME	
******************	*********
Values of the structural parameters	
Fixed cost firm 1 =	-1.900
Fixed cost firm 2 =	-1.800
Fixed cost firm 3 =	-1.700
Fixed cost firm 4 =	-1.600
Fixed cost firm 5 =	-1.500
Parameter of market size (theta_rs) =	1.000 1.000
Parameter of competition effect (theta_rn) = Entry cost (theta_ec) =	2.000
Discount factor =	0.9500
Std. Dev. epsilons =	1.000
BEST RESPONSE MAPPING ITERATIONS	
Dogt regrees manning iteration	1 000
Best response mapping iteration = Convergence criterion = 1000.	1.000
convergence criterion = 1000.	
Best response mapping iteration =	2.000
Convergence criterion = 0.9774	
Best response mapping iteration =	3.000
Convergence criterion = 0.3539	
Dogt regrence manning iteration -	4.000
Best response mapping iteration = Convergence criterion = 0.1535	4.000
Convergence criterion - 0.1333	
Best response mapping iteration =	5.000
Convergence criterion = 0.08525	
Best response mapping iteration =	6.000
Convergence criterion = 0.04840	
	T 000
Best response mapping iteration =	7.000
Convergence criterion = 0.02597	
Best response mapping iteration =	8.000
Convergence criterion = 0.01382	0.000
0.01302	
Best response mapping iteration =	9.000
Page 1	
10.90	

_				
Best response Convergence c	<pre>mapping iterat riterion =</pre>	o.003758	10.00	
	<pre>mapping iterat riterion =</pre>		11.00	
	<pre>mapping iterat riterion =</pre>		12.00	
	<pre>mapping iterat riterion =</pre>		13.00	
	<pre>mapping iterat riterion =</pre>		14.00	
	mapping iterat		15.00	
	mapping iterat		16.00	
	mapping iterat		17.00	
	mapping iterat riterion =		18.00	
	<pre>mapping iterat riterion =</pre>		19.00	
 CONVERGENCE A		20.00	BEST RESPONSE ITE	
EQUILIBRIUM P	ROBABILITIES			
	0.06836	0.07944	0.09291	
0.1094 0.04754	0.05480	0.06354	0.07414	
0.4864 0.04861	0.05606	0.06502	0.4407	
0.08923 0.04165	0.04796	0.05555	0.3837	
0.4338 0.04962	0.05723	0.3984	0.07757	
0.09121 0.04227	0.04868	0.3441	0.06576	
0.4396 0.04302	0.04956	0.3498	0.3954	
0.04302	0.04930	0.3490	0.3334	

Convergence criterion = 0.007230

Page 2

0.07868 0.03799

0.4005

0.05054	0.3595	0.06770	0.07910
0.09304 0.04283 0.4448	0.3085	0.05717	0.06667
0.4446 0.04361 0.07984	0.3137	0.05825	0.4004
0.07984	0.2790	0.05116	0.3569
0.04432	0.3185	0.3597	0.06915
0.03888	0.2822	0.3190	0.06040
0.03946 0.07204	0.2862	0.3235	0.3662
0.03548	0.2594	0.2935	0.3326
0.3242	0.05932	0.06887	0.08048
0.2766 0.4495	0.04992	0.05785	0.06748
0.2814 0.08086	0.05087	0.05898	0.4048
0.2494 0.4077	0.04460	0.05164	0.3600
0.2858 0.08234	0.05174	0.3638	0.07006
0.2524 0.4125	0.04519	0.3218	0.06100
0.2560 0.07279	0.04590	0.3264	0.3695
0.2315 0.3801	0.04114	0.2956	0.3350
0.2898 0.08367	0.3268	0.06095	0.07117
0.2550 0.4168	0.2877	0.05295	0.06172
0.2588 0.07370	0.2919	0.05382	0.3735
0.2335 0.3833	0.2636	0.04806	0.3379
0.2621 0.07482	0.2958	0.3343	0.06370
0.2360 0.3873	0.2663	0.3013	0.05665
0.2389 0.06743	0.2697	0.3051	0.3457
0.2188 0.3603	0.2471	0.2797	0.3172
0.1405 0.2650	0.1642	0.1924	0.2258
0.1135 0.7449	0.1325	0.1551	0.1820
0.1146	0.1338	0.1567 Page 3	0.7025

0.2161	0.1128	0.1320	0.6383
0.6879 0.1159	0.1354	0.6580	0.1863
0.2190 0.09777	0.1141	0.5918	0.1568
0.6923 0.09872	0.1152	0.5958	0.6469
0.1863 0.08581	0.1000	0.5436	0.5946
0.6454 0.1175	0.6123	0.1609	0.1889
0.2221 0.09891	0.5455	0.1352	0.1587
0.6968 0.09987	0.5493	0.1366	0.6516
0.1887 0.08669	0.4976	0.1183	0.5985
0.6493 0.1010	0.5537	0.6050	0.1623
0.1910 0.08757	0.5013	0.5513	0.1404
0.6533 0.08839	0.5048	0.5550	0.6064
0.1670 0.07838	0.4630	0.5116	0.5622
0.6134 0.5665	0.1392	0.1632	0.1917
0.2253 0.5002	0.1168	0.1368	0.1607
0.7013 0.5039	0.1180	0.1382	0.6562
0.1910 0.4535	0.1021	0.1195	0.6023
0.6531 0.5080	0.1193	0.6097	0.1643
0.1933 0.4570	0.1032	0.5551	0.1419
0.6571 0.4602 0.1687	0.1042	0.5589	0.6103
0.1667 0.4201 0.6167	0.09217	0.5147	0.5654
0.5125 0.1958	0.5629	0.1416	0.1664
0.1938 0.4606 0.6612	0.5088	0.1221	0.1435
0.4639 0.1706	0.5123	0.1234	0.6144
0.1708 0.4230 0.6202	0.4692	0.1089	0.5689
0.4675 0.1726	0.5162	0.5670	0.1466
0.1/20		_	

Page 4

0.4261 0.6239	0.4724	0.5216	0.1292
0.4290	0.4756	0.5250	0.5761
0.1536 0.3955	0.4399	0.4875	0.5376
0.5889	0.3434	0.3898	0.4386
0.4884	0.3095	0.3526	0.3986
0.8836 0.2685	0.3080	0.3510	0.8618
0.4445	0.2776	0.3175	0.8378
0.8618 0.2676	0.3070	0.8364	0.3958
0.4435	0.2770	0.8096	0.3599
0.8615 0.2400	0.2760	0.8088	0.8368
0.4041	0.2496	0.7817	0.8125
0.8394 0.2672	0.8073	0.3496	0.3955
0.4431	0.7778	0.3169	0.3599
0.8616 0.2399	0.7769	0.3158	0.8369
0.4042	0.7474	0.2867	0.8128
0.8397	0.7765	0.8085	0.3583
0.4037 0.2165	0.7472	0.7819	0.3268
0.8397 0.2160	0.7466	0.7814	0.8123
0.3692	0.7178	0.7549	0.7883
0.8179 0.7747	0.3068	0.3499	0.3958
0.4435 0.7428	0.2774	0.3174	0.3606
0.8621 0.7417	0.2765	0.3164	0.8374
0.4049 0.7101	0.2505	0.2875	0.8135
0.8404 0.7412	0.2760	0.8091	0.3590
0.4044 0.7099	0.2503	0.7827	0.3277
0.8403 0.7091	0.2497	0.7821	0.8130
0.3701 0.6786	0.2272	0.7558	0.7892
		Page 5	

0.8187			
0.7412	0.7771	0.3159	0.3590
0.4045 0.7102	0.7483	0.2876	0.3280
0.8406 0.7095	0.7477	0.2870	0.8133
0.3705 0.6792	0.7194	0.2619	0.7897
0.8192 0.7093	0.7476	0.7824	0.3272
0.3704 0.6793	0.7195	0.7565	0.2999
0.8193 0.6789	0.7191	0.7562	0.7896
0.3405 0.6501	0.6918	0.7308	0.7664
0.7982			
0.5500 0.7020	0.5919	0.6315	0.6683
0.5324	0.5745	0.6145	0.6519
0.9469 0.5306	0.5727	0.6128	0.9386
0.6849	0.5549	0.5953	0.9339
0.9424 0.5288	0.5709	0.9288	0.6486
0.6833 0.5109	0.5531	0.9234	0.6317
0.9420 0.5091	0.5513	0.9228	0.9330
0.6656 0.4909	0.5331	0.9170	0.9279
0.9372 0.5269	0.9171	0.6093	0.6469
0.6817 0.5091	0.9109	0.5918	0.6300
0.9416 0.5073	0.9103	0.5901	0.9325
0.6640			
0.4892 0.9368	0.9037	0.5722	0.9275
0.5056 0.6625	0.9097	0.9218	0.6267
0.4875 0.9364	0.9030	0.9159	0.6093
0.4858	0.9024	0.9154	0.9265
0.6442 0.4675	0.8952	0.9091	0.9210
0.9311 0.9033	0.5673	0.6076	0.6453
0.6802 0.8962	0.5496	0.5902	0.6284
0.9413		Description	

Page 6

0.8955	0.5479	0.5885	0.9321
0.6625 0.8880	0.5298	0.5706	0.9270
0.9364 0.8948	0.5461	0.9213	0.6252
0.6610 0.8872	0.5281	0.9154	0.6078
0.9360 0.8865	0.5264	0.9149	0.9261
0.6428 0.8784	0.5081	0.9086	0.9206
0.9308 0.8941	0.9085	0.5851	0.6236
0.6595 0.8865	0.9018	0.5673	0.6063
0.9356	0.9012	0.5657	0.9256
0.6413 0.8777	0.8940	0.5475	0.9201
0.9304 0.8851	0.9006	0.9138	0.6031
0.6398 0.8769	0.8934	0.9075	0.5853
0.9299 0.8762	0.8928	0.9070	0.9191
0.6211 0.8675	0.8851	0.9002	0.9132
0.9243 0.7803	0.8029	0.8231	0.8412
0.8573 0.7752	0.7982	0.8188	0.8372
0.9781 0.7746	0.7976	0.8183	0.9752
0.8533 0.7693	0.7927	0.8137	0.9745
0.9773 0.7739	0.7970	0.9719	0.8362
0.8528 0.7686	0.7921	0.9711	0.8321
0.9773 0.7680	0.7915	0.9710	0.9743
0.8485 0.7625	0.7864	0.9701	0.9735
0.9765 0.7732	0.9681	0.8171	0.8357
0.8523 0.7678	0.9671	0.8126	0.8315
0.9772 0.7672	0.9670	0.8120	0.9742
0.8480 0.7617 0.9764	0.9660	0.8073	0.9734
0.7666	0.9668	0.9707	0.8305
		Page 7	

0.8476			
0.8476 0.7610 0.9763	0.9658	0.9698	0.8261
0.7604 0.8431	0.9657	0.9697	0.9732
0.7547 0.9755	0.9646	0.9688	0.9724
0.9635 0.8517	0.7956	0.8164	0.8351
0.8517 0.9624 0.9771	0.7907	0.8119	0.8309
0.9623	0.7901	0.8114	0.9741
0.8475 0.9612	0.7850	0.8066	0.9733
0.9763 0.9622	0.7895	0.9706	0.8299
0.8470 0.9610	0.7843	0.9697	0.8255
0.9762 0.9609	0.7837	0.9696	0.9731
0.8425 0.9597	0.7784	0.9686	0.9722
0.9754 0.9620	0.9666	0.8102	0.8293
0.8465 0.9608	0.9655	0.8054	0.8249
0.9761 0.9607	0.9654	0.8048	0.9730
0.8420 0.9595	0.9643	0.7999	0.9721
0.9753 0.9606	0.9653	0.9694	0.8239
0.8415 0.9593	0.9642	0.9684	0.8193
0.9752 0.9592	0.9641	0.9683	0.9719
0.8368 0.9579 0.9743	0.9629	0.9673	0.9710
0.2/43			

DESCRIPTIVE STATISTICS FROM THE EQUILIBRIUM BASED ON 5.000e+004 OBSERVATIONS

TABLE 2 OF THE PAPER AGUIRREGABIRIA AND MIRA (2007)

(1) Average number of active firms = 2.797

(2)	Std. Dev. number of firms	=	1.776	
(3)	Regression N[t] on N[t-1]	=	0.8192	
(4)	Average number of entrants	=		
(5)	Average number of exits	=		
(6)	Excess turnover (in # of firms) =		
(7)	Correlation entries and exits	=		
0. 0. 0. 0.	Frequencies of being active 4892 5238 5578 5922 6342	*****	*******	·
	CARLO EXPERIMENT # 5.0	000 *****	********	**
(a) (b. (c. (c. (d. (d. (e) Replica (a) (b.	1) Estimation of initial CCPs 2) NPL algorithm using frequence 1) Estimation of initial CCPs 2) NPL algorithm using Logit estimation of initial CCPs 2) NPL algorithm using U(0,1) in NPL algorithm using true value to a comparison of x's and a's 1) Estimation of initial CCPs 1) NPL algorithm using frequence 1) Estimation of initial CCPs 2) NPL algorithm using frequence 1) Estimation of initial CCPs 2) NPL algorithm using Logit estimation of initial CCPs 2) NPL algorithm using U(0,1) in the comparison of the compa	cy esting (Semi-Pastimates (Complete random of Complete Semi-Pastimates (Complete random of Complete random	mates as initial CCPs arametric: Logit) s as initial CCPs tely Random) draws as initial CCPs initial CCPs rametric) mates as initial CCPs arametric: Logit) s as initial CCPs tely Random) draws as initial CCPs	
Replica (a) (b. (b. (c. (c.	Simulations of x's and a's 1) Estimation of initial CCPs 2) NPL algorithm using frequence 1) Estimation of initial CCPs 2) NPL algorithm using Logit estimation	cy estir (Semi-Pa stimate:	mates as initial CCPs arametric: Logit) s as initial CCPs	

(d.2)NPL algorithm using U(0,1) random draws as initial CCPs NPL algorithm using true values as initial CCPs (e) Replication = 1000.00 (a) Simulations of x's and a's Estimation of initial CCPs (Non-Parametric) (b.1)NPL algorithm using frequency estimates as initial CCPs (b.2)Estimation of initial CCPs (Semi-Parametric: Logit) (c.1)(c.2)NPL algorithm using Logit estimates as initial CCPs

(d.1)

Estimation of initial CCPs (Completely Random)
NPL algorithm using U(0,1) random draws as initial CCPs (d.2)

NPL algorithm using true values as initial CCPs (e)

Number of Re-drawings due to Multicollinearity = 0.000000

MONTE CARLO EXPERIMENT # 5.00000 EMPIRICAL MEANS AND STANDARD ERRORS

TABLE 4 OF THE PAPER AGUIRREGABIRIA AND MIRA (2007) *******************************

theta_fc_1 theta_rs theta_rn theta_ec -1.90000 1.00000 1.00000 2.00000 TRUE VALUES MEAN 2step-True -1.90764 1.00529 1.00955 2.01188 MEDIAN 2step-True -1.90619 1.00112 0.993494 2.00937 S.E. 2step-True 0.173863 0.145032 0.368283 0.130411 MEAN 2step-Freq -0.839605 0.373028 0.168087 1.58662 MEDIAN 2step-Freq -0.828811 0.366443 0.144167 1.58399 S.E. 2step-Freq 0.215259 0.128743 0.290008 0.147825

MEAN NPL-Freq -1.92130 1.01631 1.03067 2.00336

MEDIAN NPL-Freq	-1.91981	1.00364	0.985501	1.99970
S.E. NPL-Freq	0.197466	0.180926	0.445842	0.134831
MEAN 2step-Logit	-1.91779	0.996678	0.976926	2.00535
MEDIAN 2step-Logit	-1.91490	0.985050	0.938724	2.00067
S.E. 2step-Logit	0.198603	0.170397	0.414252	0.135413
MEAN NPL-Logit	-1.92116	1.01644	1.03100	2.00339
MEDIAN NPL-Logit	-1.91981	1.00364	0.985501	1.99970
S.E. NPL-Logit	0.197322	0.181282	0.446739	0.134798
MEAN 2step-Random	-1.91779	0.996678	0.976926	2.00535
MEDIAN 2step-Rando	-1.91490	0.985050	0.938724	2.00067
S.E. 2step-Random	0.198603	0.170397	0.414252	0.135413
MEAN NPL-Random	-1.92118	1.01644	1.03098	2.00338
MEDIAN NPL-Random	-1.91981	1.00364	0.985501	1.99970
S.E. NPL-Random	0.197346	0.181307	0.446721	0.134791

Page 11

MONTE CARLO EXPERIMENT # 5.00000 SQUARE-ROOT MEAN SQUARE ERRORS

RATIOS OVER THE SQUARE-ROOT MSE OF THE 2-STEP PML USING THE TRUE CCPs

TABLE 5 OF THE PAPER AGUIRREGABIRIA AND MIRA (2007)				
	theta_fc_1	theta_rs	theta_rn	theta_ec
SQ-MSE 2-step-TRUE				
RATIO: 2step-Freq	6.21744	4.41027	2.39142	3.35254
RATIO: NPL-Freq	1.14125	1.25172	1.21305	1.02994
RATIO: 2step-Logit	1.14577	1.17434	1.12619	1.03488
RATIO: NPL-Logit	1.14033	1.25424	1.21554	1.02970
RATIO: 2step-Rando	6.33776	0.525217	2.86358	1.02274
RATIO: NPL-Random	1.14049	1.25442	1.21549	1.02964