<u>Plant Disease Classification Using Deep Learning:</u>
<u>Technical Report</u>

Hosted Demo: https://plant-disease-prediction-516848219617.asia-south1.run.app

Github Link: https://github.com/DerickDavies/plant-disease-prediction-keras

Abstract

This report presents the development and implementation of a deep learning model for plant disease classification using a convolutional neural network (CNN) architecture. The model achieves 98.51% accuracy on the training set and 95.99% accuracy on the validation set, demonstrating its effectiveness in identifying 38 different classes of plant diseases.

1. Introduction

Plant diseases can significantly impact agricultural yield and food security. Early detection and classification of plant diseases using machine learning techniques can help in timely intervention and crop protection. This project implements a deep learning solution using TensorFlow to classify plant diseases from images.

2. Dataset

Link to dataset used: https://www.kaggle.com/datasets/vipoooool/new-plant-diseases-dataset

This dataset is recreated using offline augmentation from the original dataset. This dataset consists of about 87K RGB images of healthy and diseased crop leaves which is categorized into 38 different classes. The total dataset is divided into 80/20 ratio of training and validation set preserving the directory structure. A new directory containing 33 test images is created later for prediction purpose.

2.1 Dataset Overview

Training samples: 70,295 imagesValidation samples: 17,572 images

• Number of classes: 38

• Image specifications: RGB, resized to 128x128 pixels

38 classes defined are as follows:

No.	Plant Species	Disease/Condition
1	Apple	Apple Scab
2	Apple	Black Rot
3	Apple	Cedar Apple Rust
4	Apple	Healthy
5	Blueberry	Healthy
6	Cherry	Powdery Mildew
7	Cherry	Healthy
8	Corn (Maize)	Cercospora Leaf Spot/Gray Leaf Spot
9	Corn (Maize)	Common Rust
10	Corn (Maize)	Northern Leaf Blight
11	Corn (Maize)	Healthy
12	Grape	Black Rot
13	Grape	Esca (Black Measles)
14	Grape	Leaf Blight (Isariopsis Leaf Spot)
15	Grape	Healthy
16	Orange	Haunglongbing (Citrus Greening)
17	Peach	Bacterial Spot
18	Peach	Healthy
19	Pepper (Bell)	Bacterial Spot
20	Pepper (Bell)	Healthy
21	Potato	Early Blight
22	Potato	Late Blight
23	Potato	Healthy
24	Raspberry	Healthy
25	Soybean	Healthy
26	Squash	Powdery Mildew
27	Strawberry	Leaf Scorch
28	Strawberry	Healthy
29	Tomato	Bacterial Spot

30	Tomato	Early Blight
31	Tomato	Late Blight
32	Tomato	Leaf Mold
33	Tomato	Septoria Leaf Spot
34	Tomato	Spider Mites/Two-spotted Spider Mite
35	Tomato	Target Spot
36	Tomato	Yellow Leaf Curl Virus
37	Tomato	Mosaic Virus
38	Tomato	Healthy

2.2 Data Preprocessing

- Standardized image dimensions: 128 x 128 pixels
- Color mode: RGB (3 channels)
- Training and validation Images loaded using with the following parameters:
 - batch_size = 32 (optimal for memory management)
 - shuffle = True (prevents learning order-based patterns)
 - interpolation = "bilinear" (good balance of quality and speed)

3. Model Architecture

The implemented CNN architecture consists of multiple convolutional blocks with increasing filter sizes:

Layer (type)	Output Shape	Parameters	
conv2d (Conv2D)	(None, 128, 128, 32)	896	
conv2d_1 (Conv2D)	(None, 126, 126, 32)	9,248	
max_pooling2d (MaxPooling2D)	(None, 63, 63, 32)	0	
conv2d_2 (Conv2D)	(None, 63, 63, 64)	18,496	
conv2d_3 (Conv2D)	(None, 61, 61, 64)	36,928	
max_pooling2d_1 (MaxPooling2D)	(None, 30, 30, 64)	0	
conv2d_4 (Conv2D)	(None, 30, 30, 128)	73,856	
conv2d_5 (Conv2D)	(None, 28, 28, 128)	147,584	

max_pooling2d_2 (MaxPooling2D)	(None, 14, 14, 128)	0
conv2d_6 (Conv2D)	(None, 14, 14, 256)	295,168
conv2d_7 (Conv2D)	(None, 12, 12, 256)	590,080
max_pooling2d_3 (MaxPooling2D)	(None, 6, 6, 256)	0
conv2d_8 (Conv2D)	(None, 6, 6, 512)	1,180,160
conv2d_9 (Conv2D)	(None, 4, 4, 512)	2,359,808
max_pooling2d_4 (MaxPooling2D)	(None, 2, 2, 512)	0
dropout (Dropout)	(None, 2, 2, 512)	0
flatten (Flatten)	(None, 2048)	0
dense (Dense)	(None, 1500)	3,073,500
dropout_1 (Dropout)	(None, 1500)	0
dense_1 (Dense)	(None, 38) 57,038	

Model Summary Statistics:

- Total parameters: 7,842,762 (29.92 MB)
- Trainable parameters: 7,842,762 (29.92 MB)
- Non-trainable parameters: 0 (0.00 B)
- 1. Input Layer: 128x128x3
- 2. Convolutional Blocks:
 - Block 1: Two Conv2D layers (32 filters) + MaxPooling
 - Block 2: Two Conv2D layers (64 filters) + MaxPooling
 - Block 3: Two Conv2D layers (128 filters) + MaxPooling
 - Block 4: Two Conv2D layers (256 filters) + MaxPooling
 - Block 5: Two Conv2D layers (512 filters) + MaxPooling
- 3. Regularization: Dropout (0.25)
- 4. Flatten Layer
- 5. Dense Layer: 1500 units with **ReLU** activation
- 6. Dropout Layer (0.4)
- 7. Output Layer: 38 units with **Softmax** activation

3.1 Model Configuration

 Optimizer Used: Adam (learning rate = 0.0001 – Set low so as to prevent the overshooting of loss function)

• Loss function used: Categorical Cross-entropy

Metrics: AccuracyTraining epochs: 10

4. Results and Analysis

4.1 Model Performance

Particular	Performance
Training Accuracy	98.51%
Training Loss	0.0445
Validation Accuracy	95.99%
Validation Loss	0.1447

Accuracy Visualization:

Model evaluation using Precision, Recall, F1-Score and Support:

Class	Precision	Recall	F1-Score	Support
AppleApple_scab	0.96	0.92	0.94	504
AppleBlack_rot	0.93	1.00	0.96	497
AppleCedar_apple_rust	0.98	0.95	0.96	440
Applehealthy	0.97	0.94	0.95	502
Blueberryhealthy	0.93	0.98	0.96	454
Cherry_(including_sour)Powdery_ mildew	0.95	0.98	0.97	421
Cherry_(including_sour)healthy	0.96	0.99	0.97	456
Corn_(maize)Cercospora_leaf_spo t Gray_leaf_spot	0.87	0.96	0.91	410
Corn_(maize)Common_rust_	0.99	0.99	0.99	477
Corn_(maize)Northern_Leaf_Blight	0.97	0.89	0.93	477
Corn_(maize)healthy	0.99	1.00	0.99	465
GrapeBlack_rot	0.98	0.98	0.98	472
GrapeEsca_(Black_Measles)	0.99	0.99	0.99	480
GrapeLeaf_blight_(Isariopsis_Leaf _Spot)	0.98	1.00	0.99	430
Grapehealthy	0.97	0.99	0.98	423
OrangeHaunglongbing_(Citrus_gre ening)	0.99	0.98	0.98	503
PeachBacterial_spot	0.93	0.97	0.95	459
Peachhealthy	0.96	0.99	0.97	432
Pepper,_bellBacterial_spot	0.89	0.99	0.94	478
Pepper,_bellhealthy	0.94	0.96	0.95	497
PotatoEarly_blight	0.96	0.99	0.97	485
PotatoLate_blight	0.98	0.94	0.96	485
Potatohealthy	0.96	0.95	0.96	456
Raspberryhealthy	1.00	0.98	0.99	445
Soybeanhealthy	0.99	0.96	0.98	505

SquashPowdery_mildew	0.99	0.98	0.98	434
StrawberryLeaf_scorch	0.97	0.98	0.98	444
Strawberryhealthy	0.98	0.99	0.99	456
TomatoBacterial_spot	0.98	0.96	0.97	425
TomatoEarly_blight	0.93	0.89	0.91	480
TomatoLate_blight	0.92	0.93	0.92	463
TomatoLeaf_Mold	0.97	0.94	0.95	470
TomatoSeptoria_leaf_spot	0.96	0.84	0.90	436
TomatoSpider_mites Two-spotted_spider_mite	0.97	0.94	0.95	435
TomatoTarget_Spot	0.88	0.89	0.88	457
TomatoTomato_Yellow_Leaf_Curl_ Virus	0.98	0.99	0.99	490
TomatoTomato_mosaic_virus	0.97	1.00	0.98	448
Tomatohealthy	1.00	0.89	0.94	481
Accuracy	-	-	0.96	17572
Macro Avg	0.96	0.96	0.96	17572
Weighted Avg	0.96	0.96	0.96	17572

4.2 Training Dynamics

- The model showed consistent improvement across training epochs with minimal signs of overfitting, demonstrated by:
 - Small gap between training and validation accuracy
 - Stable learning curve
 - Effective dropout regularization (0.25 and 0.4)

4.3 Model Evaluation

- The model demonstrates robust performance across classes, as evidenced by:
 - High precision and recall scores across categories
 - Strong performance on the validation set
 - Effective generalization with minimal overfitting

5. Technical Implementation Details

- Framework: TensorFlow
- Key Libraries:
 - tensorflow
 - matplotlib
 - pandas
 - seaborn
 - scikit-learn

6. Conclusions

The implemented CNN model demonstrates strong performance in plant disease classification, achieving high accuracy on both training and validation sets. The model's architecture, with its multiple convolutional layers and dropout regularization, effectively captures the relevant features for disease classification while preventing overfitting.