本科生期末试卷 (五)

一、选择题(每小题 1 分, 共 15 分)

1 大正整	某机字长 64 位, 1 位符号位, 63 位表示尾数, 若用定点整数表示, 则最数位()。
A	$+(2^{63}-1)$ B $+(2^{64}-1)$ C $-(2^{63}-1)$ D $-(2^{64}-1)$
2	请从下面浮点运算器中的描述中选出两个描述正确的句子()。
实现。	A 浮点运算器可用两个松散连接的定点运算部件一阶码和尾数部件来
	B 阶码部件可实现加,减,乘,除四种运算。
	C 阶码部件只进行阶码相加,相减和比较操作。
	D 尾数部件只进行乘法和除法运算。
3	存储单元是指()。
	A 存放 1 个二进制信息位的存储元
	B 存放 1 个机器字的所有存储元集合
	C 存放 1 个字节的所有存储元集合
	D 存放 2 个字节的所有存储元集合
4	某机字长 32 位,存储容量 1MB,若按字编址,它的寻址范围是()。
A	0—1M B 0—512KB C 0—56K D 0—256KB
5	用于对某个寄存器中操作数的寻址方式为()。
A	直接 B 间接 C 寄存器直接 D 寄存器间接
6	程序控制类的指令功能是()。
A	进行算术运算和逻辑运算
В	进行主存与 CPU 之间的数据传送
С	进行 CPU 和 I/O 设备之间的数据传送

D	改变程序执行的顺序	
7	指令周期是指()。	
A	CPU 从主存取出一条指令的时间	
В	CPU 执行一条指令的时间	
С	CPU 从主存取出一条指令加上执行一条指令的时间	
D	时钟周期时间	
8	描述当代流行总线结构中基本概念不正确的句子是()。	
A	当代流行的总线不是标准总线	
В	当代总线结构中,CPU 和它私有的 cache 一起作为一个模块与总线相连	
С	系统中允许有一个这样的 CPU 模块	
9	CRT 的颜色为 256 色,则刷新存储器每个单元的字长是()。	
	A 256 位 B 16 位 C 8 位 D 7 位	
10	发生中断请求的条件是 ()。	
A	一条指令执行结束	
В	一次 I/0 操作结束	
С	机器内部发生故障	
D	一次 DMA 操作结束	
11	中断向量地址是()。	
A	子程序入口地址	
В	中断服务程序入口地址	
С	中断服务程序入口地址指示器	
D	例行程序入口地址	
12	IEEE1394 所以能实现数据传送的实时性,是因为()。	
A	除异步传送外,还提供同步传送方式	

В	提高了时钟频率	
С	除优先权仲裁外,还提供均等仲裁,紧急仲裁两种总线仲裁方式	
D	能够进行热插拔	
13	直接映射 cache 的主要优点是实现简单。这种方式的主要缺点是()。	
A	它比其他 cache 映射方式价格更贵	
В	如果使用中的2个或多个块映射到 cache 同一行,命中率则下降	
С	它的存取时间大于其它 cache 映射方式	
D	cache 中的块数随着主存容量增大而线性增加	
14	虚拟存储器中段页式存储管理方案的特性为()。	
A	空间浪费大,存储共享不易,存储保护容易,不能动态连接	
В	空间浪费小,存储共享容易,存储保护不易,不能动态连接	
С	空间浪费大,存储共享不易,存储保护容易,能动态连接	
D	空间浪费小,存储共享容易,存储保护容易,能动态连接	
15	安腾处理机的指令格式中,操作数寻址采用()。	
	A R-R-S 型 B R-R-R 型	
	C R-S-S 型 D S-S-S 型	
二、填空题(每小题 2 分, 共 20 分)		
	IEEE6754 标准规定的 64 位浮点数格式中,符号位为 1 位,阶码为 11 位,52 位。则它所能表示的最大规格化正数为()。	
2 的(直接使用西文键盘输入汉字,进行处理,并显示打印汉字,要解决汉字)、()和()三种不同用途的编码。	
3 示法,	数的真值变成机器码时有四种表示方法,即()表示法,()表()表示法,()表示法。	
4	主存储器的技术指标有(),(),()。	

- 5 cache 和主存构成了(),全由()来实现。
- 6 根据通道的工作方式,通道分为()通道和()通道两种类型。
- 7 SCSI 是 () I/O 标准接口, IEEE1394 是 () I/O 标准接口。
- 8 某系统总线的一个存取周期最快为3个总线时钟周期,总线在一个总线周期中可以存取32位数据。如总线的时钟频率为8.33MHz,则总线的带宽是()。
- **9** 操作系统是计算机硬件资源管理器,其主要管理功能有()管理、()管理和()管理。
- 10 安腾处理机采用 VLIW 技术,编译器经过优化,将多条能并行执行的指令合并成一个具有()的超长指令字,控制多个独立的()同时工作。

三、简答题(每小题8分,共16分)

- 1 画图说明现代计算机系统的层次结构。
- 2 简述水平型微指令和垂直型微指令的特点。

四、计算题(10分)

CPU 执行一段程序时, cache 完成存取的次数为 2420 次, 主存完成的次数为 80 次,已知 cache 存储周期为 40ns,主存存储周期为 200ns,求 cache/主存系统的效率和平均访问时间。

五、设计题(12分)

某机器单字长指令为 32 位,共有 40 条指令,通用寄存器有 128 个,主存最大寻址空间为 64M。寻址方式有立即寻址、直接寻址、寄存器寻址、寄存器间接寻址、基值寻址、相对寻址六种。请设计指令格式,并做必要说明。

六、证明题(12分)

一条机器指令的指令周期包括取指(IF)、译码(ID)、执行(EX)、写回(WB)四个过程段,每个过程段1个时钟周期T完成。

先段定机器指令采用以下三种方式执行:①非流水线(顺序)方式,②标量流水线方式,③超标量流水线方式。

请画出三种方式的时空图,证明流水计算机比非流水计算机具有更高的 吞吐率。

七、设计题(15分)

CPU 的数据通路如图 1 所示。运算器中 $R_0 \sim R_3$ 为通用寄存器,DR 为数据缓冲寄存器,PSW 为状态字寄存器。D-cache 为数据存储器,I-cache 为指令存储器,PC 为程序计数器(具有加 1 功能),IR 为指令寄存器。单线箭头信号均为微操作控制信号(电位或脉冲),如 LR_0 表示读出 R_0 寄存器, SR_0 表示写入 R_0 寄存器。

机器指令 "STO R1, (R2)" 实现的功能是:将寄存器 R1 中的数据写入到以 (R2)为地址的数存单元中。请画出该存数指令周期流程图,并在 CPU 周期框外写出所需的微操作控制信号。(一个 CPU 周期含 $T_1 \sim T_4$ 四个时钟信号,寄存器打入信号必须注明时钟序号)

