Mathematical Economics 1A, Problem Set 2

HENRY HAUSTEIN

Task 1: More Auctions!

(a) Player 1 won't bid over 500, but since the best response for player 2 if player 1 is bidding less then 500 is empty (see problem set 1), player 1 has to bid 500.

$$NE = \left\{ \begin{pmatrix} 500, \sigma(x_1) = \begin{cases} (x_1, \infty) & x_1 < 500 \\ [0, 500] & x_1 = 500 \\ \mathbb{R}_+ & x_1 > 500 \end{pmatrix} \right\}$$

- (b) A SPNE must be perfect in *any* game, even if player 1 bids e.g. 150 Pounds. Player 2 can then not find a best response and therefore there is no SPNE.
- (c) The best response of player 1 is

$$BR_1(x_2) = \begin{cases} x_2 + 1 & x_2 < 498 \\ 498, 499 & x_2 = 498 \\ 499 & x_2 = 499 \\ \{0, 1, ..., 500\} & x_2 = 500 \\ \{0, 1, ..., x_2 - 1\} & x_2 > 500 \end{cases}$$

The best response for player 2 is the same. The NE is $NE = \{(498, 498), (499, 499), (500, 500)\}.$

(d) Nash Equilibria:

$$\begin{pmatrix}
499, \sigma(x_1) = \begin{cases}
x_1 + 1 & x_1 < 498 \\
499 & x_1 = 498 \\
499 & x_1 = 499 \\
\{0, 1, ..., 500\} & x_1 = 500 \\
\{0, 1, ..., x_1 - 1\} & x_1 > 500
\end{pmatrix}$$

There's a second NE:

$$\begin{pmatrix}
498, \sigma(x_1) = \begin{cases}
x_1 + 1 & x_1 < 498 \\
498 & x_1 = 498 \\
499 & x_1 = 499 \\
\{0, 1, ..., 500\} & x_1 = 500 \\
\{0, 1, ..., x_1 - 1\} & x_1 > 500
\end{pmatrix}$$

Task 2: Extensive Form Extravaganza

(a) Normal form:

		Player 3				Player 3			
		F	M				M	В	
77	F	$(\underline{2},\underline{2},\underline{2})$	(3,5,1)		73	M	$(0,\underline{3},\underline{2})$	(2,1,1)	
Ь	\mathbf{M}	$(3,1,\underline{5})$	(4,4,4)		Ь	В	(5,0,0)	$(3,\underline{2},\underline{3})$	
Left: Dilemma, Right: Sexes									

The only NE is (Dilemma, F, F).

- (b) The NE for Dilemma is (F,F) and the NE's for Sexes are (M,M), (B,B) and $(\frac{3}{4}M + \frac{1}{4}B, \frac{1}{4}M + \frac{3}{4}B)$. The expected payoff for player 1 is
 - $(F,F) \rightarrow 2$
 - $(M,M) \rightarrow 0$
 - $(B,B) \rightarrow 3$
 - $\bullet \ \left(\frac{3}{4}M + \frac{1}{4}B, \frac{1}{4}M + \frac{3}{4}B \right) \to \frac{3}{4} \cdot \frac{3}{4} \cdot 2 + \frac{1}{4} \cdot \frac{1}{4} \cdot 5 + \frac{1}{4} \cdot \frac{3}{4} \cdot 3 = 2$

Player 1 can expect in Dilemma 2 utility and in Sexes $\frac{5}{3}$ so player 1 will choose Dilemma.

Task 3: Repeated Games: Tragedy of the Commons

(a) Normal form:

		Play			Player 3		
		Graze	Gorge			Graze	Gorge
P 2	Graze	(1,1,1)	$(\underline{-1},\underline{-1},\underline{3})$	7	Graze	$(\underline{3},\underline{-1},\underline{-1})$	$(\underline{-1},\underline{-3},\underline{-1})$
	Gorge	$(\underline{-1},\underline{3},\underline{-1})$	$(\underline{-3},\underline{-1},\underline{-1})$	Ь	Gorge	$(\underline{-1},\underline{-1},\underline{-3})$	$(\underline{-3},\underline{-3},\underline{-3})$

Left: Graze, Right: Gorge

Gorge is a weakly dominant strategy.