1. (6 Punkte) Zeige durch vollständige Induktion

Sei
$$A = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}$$
 dann ist $A^n = \begin{pmatrix} 1 & 0 & n \cdot a \\ 0 & 1 & n \cdot b \\ 0 & 0 & 1 \end{pmatrix}$

- 2. (6 Punkte) Modulorechnung
 - (a) Bestimme im Körper \mathbb{F}_{31} das multiplikative Inverse zu 29.
 - (b) Berechne $11^{33} \mod(17)$

3.	. (4 Punkte) Eine falsche Antwort gibt einen Minuspunkt eine richtige einen Pluspunkt unbeantworte-
	te Fragen keinen Punkt. Man kann in Summe keine negativen Punkte bekommen. Eine Begründung ist nicht nötig.
	(a) Ein Vektoraum ist immer eine abelsche Gruppe. \square Wahr \square Falsch
	(b) Welche Gleichung stimmt?
	$\bigcirc det(A+B) = det(A) + det(B)$
	$\bigcirc \det(\lambda \cdot A) = \lambda \cdot \det(A)$
	$\bigcirc \det(A \cdot B \cdot C) = \det(A) \cdot \det(B) \cdot \det(C)$
	(c) Wieviele Untervektorräume hat der \mathbb{R}^2 ?
	\bigcirc nur $\{ ec{0} \}$ und \mathbb{R}^2
	\bigcirc nur $\{\vec{0}\}, \mathbb{R}^2, 0 \times \mathbb{R}$ und $\mathbb{R} \times 0$
	○ unendlich viele
	(d) Wenn im Gleichungssystem $A \cdot \vec{x} = \vec{b}$ eine Spalte der Matrix A gleich \vec{b} ist, hat das LGS immer eine Lösung \Box Wahr \Box Falsch

4. (6 Punkte) Bestimmen Sie eine Orthonormalbasis des Untervektorraums U des \mathbb{R}^3 $U=\{\begin{pmatrix}x\\y\\z\end{pmatrix}|x+y+z=0\}$

$$U = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} | x + y + z = 0 \right\}$$

5. (9 Punkte) Lösen Sie das lineare Gleichungssystem $A \cdot \vec{x} = \vec{b}$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 6 \\ 7 \end{pmatrix}$$

6. (10 Punkte) Gegeben sei der Vektorraum $V=\mathbb{R}^{3x3}$ aller 3x3-Matrizen über \mathbb{R} und die lineare Abbildung $f:V\longrightarrow\mathbb{R}^3$ durch die Gleichung

Abbildung
$$f: V \longrightarrow \mathbb{R}^3$$
 durch die Gleichung für $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ ist $f(A) = \begin{pmatrix} a_{11} + a_{22} + a_{33} \\ a_{12} + a_{23} + a_{31} \\ a_{13} + a_{21} + a_{32} \end{pmatrix}$

Bestimme eine Basis von ker(f) mit dem Hinweis , daß $Im(f) = \mathbb{R}^3$

7. (9 Punkte) Bestimmen Sie die Eigenwerte und zugehörige Eigenvektoren der Matrix $A=\begin{pmatrix}0&1&-10\\2&1&0\\-1&0&1\end{pmatrix}$

$$A = \begin{pmatrix} 0 & 1 & -10 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$