Feedback — Chapter 3 Quiz: Integration

Although your quiz has been submitted, we were unable to verify your identity due to time-out. If you believe this is an error or if you encountered technical difficulties during authentication, please contact us.

You submitted this exam on **Sun 24 Feb 2013 4:00 PM EST -0500**. You got a score of **8.00** out of **10.00**.

The following is an *exam* and counts toward your final evaluation for this class. Please answer the ten (10) problems below. You may *not* use a calculator, or any other assistance, including software, textbooks, or notes. You may *not* collaborate with others or post your solutions on a discussion board. Use your head, some paper, and a writing utensil. Good luck!

Question 1

$$\int \frac{\left(\arcsin x\right)^2}{\sqrt{1-x^2}} \ dx =$$

Your Answer

Score

Explanation

$$\frac{\left(\arcsin x\right)^3}{3\sqrt{1-x^2}} + C$$

$$\bigcirc \frac{1}{3}\sqrt{1-\left(\arcsin x\right)^3}+C$$

$$\sqrt[6]{\sqrt{\frac{1}{3}\left(\arcsin x\right)^3}} + C$$

$$\bigcirc$$
 $\frac{1}{3} \left(\arcsin x \right)^3 + C$

√ 1.00

$$\bigcirc \frac{2}{3}\sqrt{1-\sin^3x}+C$$

$$\frac{1}{3}\sin^3 x + C$$

$$\bigcirc \frac{1}{3} \left(\arcsin \sqrt{1-x^2} \right)^3 + C$$

$${ \bigcirc \over 3} {x^3 \over 3} + C$$

Total

1.00 / 1.00

Question 2

$$\int \frac{dx}{x^2 + x - 6} =$$

Your Answer

Score

Explanation

$$\left| -\frac{1}{3} \ln \left| \frac{x+2}{x-3} \right| + C \right|$$

$$\bigcirc \frac{1}{3} \ln \left| \frac{x+2}{x-3} \right| + C$$

$$\left| \frac{1}{3} \ln \left| \frac{x-2}{x+3} \right| + C \right|$$

$$\bigcirc \frac{1}{5} \ln \left| \frac{x-2}{x+3} \right| + C$$

√ 1.00

$$-\frac{1}{3} \ln \left| \frac{x-2}{x+3} \right| + C$$

$$\left| \bigcirc \frac{1}{5} \ln \left| \frac{x+2}{x-3} \right| + C \right|$$

$$\left| -\frac{1}{5} \ln \left| \frac{x+2}{x-3} \right| + C \right|$$

$$-rac{1}{5}\ln\left|rac{x-2}{x+3}
ight|+C$$

Question 3

Which of the following integrals converge? In order to receive full credit for this problem, you must select **all** the integrals that converge (there may be many) and **none** of those that diverge.

Your Answer		Score	Explanation
$\square\int_2^{+\infty}rac{x^3-1}{x^3\sqrt{x-2}}dx$	1	0.00	
$\square\int_0^{+\infty}rac{dx}{\left(x-2 ight)^4}$	✓	0.00	
$\Box \int_1^3 \frac{dx}{(x-3)^2 \ln x}$	✓	0.00	
$\square \int_0^1 rac{\sin^2 x}{x^{5/2} (x-1)^{1/2}} dx$	✓	0.25	
$\square \int_0^1 \frac{dx}{x\sqrt{x-1}}$	1	0.00	
$\displaystyle \sqrt{\int_1^{+\infty} rac{dx}{x^4 (x-1)^{2/3}}}$	✓	0.25	
$\square \int_1^{+\infty} rac{dx}{\sqrt{x(x-1)}}$	✓	0.25	
	1	0.25	

4/17/13

Total 1.00 / 1.00

Question 4

$$\int_0^{\,\pi/2} x \sin 2x \, dx =$$

Your Answer		Score	Explanation
			Explanation
$-rac{1}{2}$			
$\frac{1}{2}$			
π			
$\circ \frac{\pi}{2}$			
$\odot \frac{\pi}{4}$	✓	1.00	
4			
$\mathbb{D} = \frac{\pi}{2}$			
\circ $\frac{1}{4}$			
4			
$0-\frac{1}{1}$			
4			
$\bigcirc -\frac{\pi}{4}$			
4			
Гotal		1.00 / 1.00	

Question 5

$$\int rac{dx}{x^2-2x+5} =$$

Your Answer

Score

Explanation

 $\bigcirc \frac{1}{2}\arctan\frac{x-1}{4} + C$

 $\bigcirc \frac{1}{2}\arctan\frac{x+1}{4} + C$

 $\bigcirc \frac{1}{3}\arctan\frac{x+1}{5} + C$

 \bigcirc $\frac{1}{2}$ arctan $\frac{x-1}{2} + C$

√ 1.00

 $\bigcirc \frac{1}{3}\arctan\frac{x-1}{5} + C$

 $\bigcirc \frac{1}{3} \arctan \frac{x+1}{3} + C$

 $\bigcirc \frac{1}{2}\arctan\frac{x+1}{2} + C$

 $\bigcirc \frac{1}{3}\arctan\frac{x-1}{3} + C$

Total

1.00 / 1.00

Question 6

Solve the differential equation $\frac{dx}{dt} = e^{t-x}$.

Your Answer

Score

Explanation

 $^{igorightarrow} x = rac{t^2}{4} + rac{1}{2} + Ce^{-2t}$

 ${}^{\bigcirc} x = - \ln ig(C - e^t ig)$

 $\bigcirc x = t + \ln C$

1

1.00

4/17/13

$$^{ ext{@}} x = \ln\!\left(e^t + C
ight)$$

$$^{ extstyle 0} x = -rac{t}{2} - rac{1}{4} + Ce^{2t}$$

$$^{igcap} x = \ln\Bigl(Ce^{-2t}\Bigr)$$

$$^{\bigcirc} x = \left(\frac{t^2}{2} + C\right) e^{-2t}$$

Total

1.00 / 1.00

Question 7

$$\int \cos^3 3x \, dx =$$

Your Answer

Score

Explanation

$$\frac{1}{3}\cos 3x + \frac{1}{9}\cos^3 3x + C$$

$$0 - 9\cos^2 3x + C$$

$$\frac{1}{3}\sin 3x - \frac{1}{9}\sin^3 3x + C$$

√ 1.00

$$\frac{1}{3}\sin 3x + \frac{1}{9}\sin^3 3x + C$$

$$\cos 3x + \frac{1}{4}\cos^4 3x + C$$

$$\sin 3x - \frac{1}{3}\sin^3 3x + C$$

Total

1.00 / 1.00

Question 8

$$rac{d}{dx}\int_0^{\ln x}rac{\sin 2t}{\sqrt{1+t}}\;dt=$$

Your Answer

Score

Explanation

- \bigcirc 0
- $\frac{d}{dx} \left(\frac{\sin(2\ln x)}{\sqrt{1 + \ln x}} \right)$
- $\frac{\sin(2\ln x)}{x\sqrt{1+\ln x}}$

X

0.00

Total

0.00 / 1.00

Question 9

Which of the following is the *integrating factor* used to solve the linear differential equation

$$e^{3t} \frac{dx}{dt} = 2 - e^t x$$

Your Answer

Score

Explanation

$$\bigcirc$$
 $I=2e^{3t}$, that is, $I=2\exp(3t)$

$$^{igsplus} I = e^{rac{1}{3}e^{3t}}$$
 , that is, $I = \exp\Bigl(rac{1}{3}\,e^{3t}\Bigr)$

$$^{igorup}~I=e^{-rac{1}{3}e^{-3t}}$$
 , that is, $I=\exp\Bigl(-rac{1}{3}\,e^{-3t}\Bigr)$

$$^{ extstyle 0}$$
 $I=e^{-rac{1}{2}e^{-2t}}$, that is, $I=\exp\Bigl(-rac{1}{2}\,e^{-2t}\Bigr)$ $^{ extstyle J}$ 1.00

$$lacksquare I=e^{-e^{-t}}$$
 , that is, $I=\expig(-e^{-t}ig)$

$$igcirc$$
 $I=e^{e^t}$, that is, $I=\expig(e^tig)$

$$\bigcirc$$
 $I=2e^{-3t}$, that is, $I=2\exp(-3t)$

$igspace$
 $I=e^{rac{1}{2}e^{2t}}$, that is, $I=\exp\Bigl(rac{1}{2}\,e^{2t}\Bigr)$

Total 1.00 / 1.00

Question 10

The size z(t) of a hailstone evolves according to the differential equation

$$\frac{dz}{dt} = A\sqrt{z} - B\sqrt{z^3}$$

where A and B are positive constants. Without solving the differential equation, determine the limiting size $\lim_{t\to+\infty}z(t)$ in the case where z(0)=1.

Your Answer		Score	Explanation
$\frac{\sqrt{A}}{B}$			
$\frac{A}{\sqrt{B}}$	X	0.00	
$\sqrt{\frac{A}{B}}$			
$\frac{A}{B}$			
$\sqrt{\frac{B}{A}}$			
$-\frac{A}{B}$			
$\frac{B}{A}$			
$-\frac{B}{A}$			
otal		0.00 / 1.00	