Computational approaches - biology of Osteoarthritis

AG meeting: 22nd July

Krutik Patel

Newcastle University

22nd July 2020

microRNAs are important biological regulators

microRNAs down regulate target mRNAs

microRNAs regulate biological processes

- Development :
 - Neurogenesis
 - Skeletogenesis
 - Chondrogenesis
- Regulation of tissues :
 - Epithelium
 - Bone
 - Cartilage
- Age related diseases :
 - Cancers
 - 4 Huntington's disease
 - Osteoarthritis (OA)

OA is a complex global debilitating condition

- WHO estimates 10% to 15% of all adults aged over 60 have some degree of OA, with prevalence higher among women than men.
- A UN report estimated by 2050, 15% of over 60s will suffer from OA, 1/3rd of which will be severe OA.
- Many factors contribute to OA and severity of the condition
 - Age
 - Obesity
 - Gender
 - 4 Lifestyle
 - Injury
 - Genetics

Chondrogenesis could uncover mechanisms in OA

- Chondrogenesis is the process of mesenchymal stem cells differentiating into chondrocytes
- Chondrocytes form and maintain cartilage
- Over time changes in chondrocytes lead to molecular imbalances e.g. increase in catabolic factors, changes in miRNA levels
- These contribute to OA
- Better understanding chondrogenesis can give insights into OA

OA is the chronic loss of joint function

Histology of Human Normal and Osteoarthritic Cartilage

- Leads to pain, loss of movement, stiffness and in severe cases the formation of bone (osteophytes)
- No cure, only treatments such a surgery or pain relief drugs
- One obstacle for novel treatments is a lack of understanding in the basic biology

miRNA expressions patterns change between chondrogenesis and OA

miRNAs	Chondrogenesis	Osteoarthritis
MIR-140-5p	\uparrow	\
MIR-140-3p	\uparrow	\downarrow
MIR-199a-5p	\downarrow	\uparrow
MIR-29a-5p	\downarrow	\uparrow
MIR-34a	\downarrow	\uparrow
MIR-455-3p	\uparrow	\downarrow

Aims of my PhD

Use computational approaches to better understand chondrogenesis

- Design a novel pipeline to automise big data analysis of multi-omic longitudinal data sets
- Generate a computational model which is of significance to chondrogenesis
- Work with collaborators to validate model

TimiRGeN R package

- R package which streamlines the process of finding models from longitudinal multi-omic data.
- Currently in review to become a Bioconductor package.
- Appeal from this in conferences in Europe and Japan.

TimiRGeN R package: Gene set enrichment

TimiRGeN R package: Network generation

TimiRGeN R package: Export to Pathvisio

Title: TGF-beta Signaling Pathw. Availability: Freely available or Organism: Homo Sapiens TGF beta Signaling Pathway rotein - protein dissociation --- eads to through unknown mecha Segetive regulation of gene expressi

Auto catalysis

Acetylation - Descetviation - Sumoviation - Deubiguitination roteolytic cleavag Protein induced catalysis Cytoplasm Extracellular Endosome Mitochondries

13/19

miRNA-mRNA model

Calibrate model

Validate model

miR199b-5p is important to chondrogenesis

Conclusions

 Have created a novel tool which can analyse longitudinal miRNA-mRNA data set to find biomarkers, create models or to better understand biological niches

 Have developed a miRNA-mRNA model which seems significant in chondrogenesis and OA

Further work to do

 Work on the TimiRGeN R package to have it accepted onto bioconductor

Simulate validation results for the miRNA-mRNA model

 Add more to the model, to increase it's complexity and ability to make predictions