ZJUNIX

实验操作流程

浙江大学

2017.08.20

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k}$$

$$\zeta_{k} = |a|^{1/n} e^{i(\arg(a) + 2k\pi)/n}$$

$$e^{i\pi} + 1 = 0$$

$$\neg (p \lor q) \equiv (\neg p) \land (\neg q)$$

$$y = x - x^{3/3}$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Chapter 1	实验 4 设备驱动设计	Page 2_
1.1	实验目的	2
1.2	实验步骤 目录结构 – 新增的代码 – 修改的代码	2
1.3	新期结果 一類相似 ()	5

1.1 实验目的

- 理解 ZJUNIX 操作系统中对于异常的处理
- 编写异常机制初始化代码
- 编写系统调用初始化代码
- 测试系统调用的可用性

1.2 实验步骤

1.2.1 目录结构

代码 1.1: 实验 4 目录结构

1.2.2 新增的代码

从这次实验开始,由于修改与新增的代码众多,难以一一列出每个代码的具体内容,所以这里列出所有新增以及修改过的代码,并对关键代码进行标注。具体的代码可以根据下面的标注,对比 exp3 和 exp4 的工程源码

代码 1.2: 实验 4 新增代码

在新加入的代码中, 比较重要的部分有

代码	说明
kernel/driver/*	一些重要的输入输出设备驱动
kernel/time/*	时间操作模块
usr/ps.c	一个简单的 shell,可以检验输入输出设备驱动的可用性,同时提供一些测
	试命令
utils/assert.c	运行时断言,即运行时如果有一个条件不满足,则使系统停机,在开发阶
	段有助于避免一些错误
utils/log.c	日志输出功能,开机启动时会调用
utils/utils.c	一些工具函数,例如 memset 等

表 1.1: 关键代码说明

1.2.3 修改的代码

代码 1.3: 实验 4 修改的代码

```
exp4
--- include
--- init_place_holder.h
--- kernel
--- init.c
--- Makefile
--- Makefile
```

1.3 预期结果

根据 init.c 的代码,在系统启动时会在屏幕上输出一些日志信息,然后等待按键,准备进入 shell

根据 shell 代码 usr/ps.c, 在 shell 中可运行的命令如表 1.2所示

命令	说明
clear	清屏
echo	输出字符
gettime	打印当前时间
syscall4	调用 4 号系统调用,点亮 LED 灯的低 8 位
sdwi	向 SD 卡第 7 扇区写入非 0 数据
sdwz	向 SD 卡第 7 扇区写入 0 数据
sdr	读取 SD 卡第 7 扇区

表 1.2: 当前可运行命令