Teselaciones simétricas del toro n-dimensional

Antonio Montero ¹
José Collins ²

 $^1\mathrm{Centro}$ de Ciencias Matemáticas, UNAM Morelia $^2\mathrm{Instituto}$ de Matemáticas, UNAM C.U.

6º Aquelarre Matemático

Facultad de Ciencias, UNAM C.U. México DF Octubre 2014

¿ Qué es una teselación?

Definicion

Una teselación $\mathcal T$ del espacio euclidiano $\mathbb E^n$ es una familia de n-politopos convexos tales que

• La unión de todos los politopos cubre a \mathbb{E}^n .

¿Qué es una teselación?

Definicion

Una teselación $\mathcal T$ del espacio euclidiano $\mathbb E^n$ es una familia de n-politopos convexos tales que

- La unión de todos los politopos cubre a \mathbb{E}^n .
- Si dos politopos se intersectan, entonces su intersección es una cara.

¿Qué es una teselación?

Definicion

Una teselación $\mathcal T$ del espacio euclidiano $\mathbb E^n$ es una familia de n-politopos convexos tales que

- La unión de todos los politopos cubre a \mathbb{E}^n .
- Si dos politopos se intersectan, entonces su intersección es una cara.

La verdad... esto es muy general.

Teselaciones

A nosotros nos interesa una teselación muy particular de \mathbb{E}^n ... la teselación con n-cubos:

Teselaciones

A nosotros nos interesa una teselación muy particular de \mathbb{E}^n ... la teselación con n-cubos:

Una simetría de una teselación es una isometría del espacio que preserva la teselación.

Banderas

Una bandera de una teselación de \mathbb{E}^n es una (n+1)-ada de caras incidentes $(F_0, F_1, \dots F_n)$ donde $dim(F_i) = i$.

Banderas

Una bandera de una teselación de \mathbb{E}^n es una (n+1)-ada de caras incidentes $(F_0, F_1, \dots F_n)$ donde $dim(F_i) = i$.

Una teselación $\mathcal T$ es regular si dadas dos banderas Φ y Ψ , existe una simetría de $\mathcal T$ que manda Φ en Ψ .

Teselaciones Regulares

Teorema

La teselación con n-cubos de \mathbb{E}^n es regular. Más aún, si $n \notin \{2,4\}$, entonces es la única teselación regular en \mathbb{E}^n .

El *n*-toro

Definicion

El n-toro es el espacio que resulta de identificar los puntos de \mathbb{E}^n mediante n traslaciones linealmente independientes.

¿Qué pasa con las simetrías?

¿Qué pasa con las simetrías? ¿Las teselaciones del n-toro con n-cubos son todas regulares?

Simetrías del n-toro

De fondo, el problema es que no todas las simetrías de \mathcal{T} "se portan bien" con la identificación de las traslaciones.

Simetrías del n-toro

De fondo, el problema es que no todas las simetrías de \mathcal{T} "se portan bien" con la identificación de las traslaciones.

Simetrías del n-toro

¿Cuáles simetrías si se portan bien con las traslaciones?

Simetrías del n-toro

¿Cuáles simetrías si se portan bien con las traslaciones? En principio... quién sabe...

Simetrías del n-toro

¿Cuáles simetrías si se portan bien con las traslaciones? En principio... quién sabe... pero sí conocemos algunas que siempre se comportan:

 \bullet -id.

Simetrías del n-toro

¿Cuáles simetrías si se portan bien con las traslaciones? En principio... quién sabe... pero sí conocemos algunas que siempre se comportan:

- \bullet -id.
- Las traslaciones.

Simetrías del n-toro

¿Cuáles simetrías si se portan bien con las traslaciones? En principio... quién sabe... pero sí conocemos algunas que siempre se comportan:

- \bullet -id.
- Las traslaciones.

Gracias a esto, conocer las simetrías de las teselaciones del n-toro es equivalente conocer las simetrias de $\mathcal T$ que fijan un vértice.

 Mediante esta técnica es posible, al menos teóricamente, dar una clasificación de las teselaciones del n-toro.

- Mediante esta técnica es posible, al menos teóricamente, dar una clasificación de las teselaciones del n-toro.
- Lamentablemente, es poco práctico, pues hay que analizar algo del orden de $2^n n!$ casos.

- Mediante esta técnica es posible, al menos teóricamente, dar una clasificación de las teselaciones del n-toro.
- Lamentablemente, es poco práctico, pues hay que analizar algo del orden de $2^n n!$ casos.
- Para n=2 y n=3 sí podemos dar la clasificación.

Regulares

Quirales o clase 2_{\emptyset}

Quirales o clase $2\emptyset$

• Además de los regulares y las familias de 2 órbitas en banderas presentadas hay una familia de 4 órbitas en banderas.

- Además de los regulares y las familias de 2 órbitas en banderas presentadas hay una familia de 4 órbitas en banderas.
- La clasificación de estas teselaciones es trabajo de diversos autores :
 - Coxeter estudió las regulares y las quirales en los 80's.

- Además de los regulares y las familias de 2 órbitas en banderas presentadas hay una familia de 4 órbitas en banderas.
- La clasificación de estas teselaciones es trabajo de diversos autores :
 - Coxeter estudió las regulares y las quirales en los 80's.
 - Duarte extendió la clasificación para 2 órbitas (2007).

- Además de los regulares y las familias de 2 órbitas en banderas presentadas hay una familia de 4 órbitas en banderas.
- La clasificación de estas teselaciones es trabajo de diversos autores :
 - Coxeter estudió las regulares y las quirales en los 80's.
 - Duarte extendió la clasificación para 2 órbitas (2007).
 - ▶ Brehem y Kühnel completaron la clasificación (2008).

- Además de los regulares y las familias de 2 órbitas en banderas presentadas hay una familia de 4 órbitas en banderas.
- La clasificación de estas teselaciones es trabajo de diversos autores :
 - Coxeter estudió las regulares y las quirales en los 80's.
 - Duarte extendió la clasificación para 2 órbitas (2007).
 - Brehem y Kühnel completaron la clasificación (2008).
 - Hubard, Orbanić, Pellicer y Weiss introducen la técnica antes mencionada y obtienen esta clasificación (2012).

Hubard, Orbanić, Pellicer y Weiss usan esta técnica para clasificar las teselaciones cubicas del 3-toro. Los resultados son:

• Tres familias de regulares.

- Tres familias de regulares.
- Cuatro familias con 3 órbitas.

- Tres familias de regulares.
- Cuatro familias con 3 órbitas.
- Tres familias con 4 órbitas.

- Tres familias de regulares.
- Cuatro familias con 3 órbitas.
- Tres familias con 4 órbitas.
- Dieciseis familias con 6 órbitas con tres arreglos de banderas distintos (siete, siete y dos).

- Tres familias de regulares.
- Cuatro familias con 3 órbitas.
- Tres familias con 4 órbitas.
- Dieciseis familias con 6 órbitas con tres arreglos de banderas distintos (siete, siete y dos).
- Tres familias con 8 órbitas.

- Tres familias de regulares.
- Cuatro familias con 3 órbitas.
- Tres familias con 4 órbitas.
- Dieciseis familias con 6 órbitas con tres arreglos de banderas distintos (siete, siete y dos).
- Tres familias con 8 órbitas.
- Doce familias con 12 órbitas, dos arreglos de órbitas distintos (siete y cinco).

- Tres familias de regulares.
- Cuatro familias con 3 órbitas.
- Tres familias con 4 órbitas.
- Dieciseis familias con 6 órbitas con tres arreglos de banderas distintos (siete, siete y dos).
- Tres familias con 8 órbitas.
- Doce familias con 12 órbitas, dos arreglos de órbitas distintos (siete y cinco).
- Una familia con 24 órbitas que contiene al resto de las teselaciones.

• No existen teselaciones de 2 órbitas en el 3-toro.

- No existen teselaciones de 2 órbitas en el 3-toro.
- H., O., P. y W. dejan abierta la pregunta acerca de la clasificación de teselaciones del n-toro con 2 órbitas para $n \geqslant 4$.

- No existen teselaciones de 2 órbitas en el 3-toro.
- H., O., P. y W. dejan abierta la pregunta acerca de la clasificación de teselaciones del n-toro con 2 órbitas para n ≥ 4.
- Evidencia teórica de que estos podrían no existir:
 - ▶ Se sabe que no existen quirales para $n \ge 3$.
 - Existe una k tal que no existen poliedros convexos de 2 órbitas si n>k.

Sin embargo, J. Collins y M. hemos encontrado algunos resultados para $n\geqslant 4$:

Sin embargo, J. Collins y M. hemos encontrado algunos resultados para $n\geqslant 4$:

• Si n es impar, no existen teselaciones del n-toro con 2 órbitas en banderas.

Sin embargo, J. Collins y M. hemos encontrado algunos resultados para $n\geqslant 4$:

- Si n es impar, no existen teselaciones del n-toro con 2 órbitas en banderas.
- Si n es par, existen dos familias de teselaciones en clase $2_{\{1,2,\dots,n-1\}}$ y éstas son todas las de dos órbitas.

Sin embargo, J. Collins y M. hemos encontrado algunos resultados para $n\geqslant 4$:

- Si n es impar, no existen teselaciones del n-toro con 2 órbitas en banderas.
- Si n es par, existen dos familias de teselaciones en clase $2_{\{1,2,\dots,n-1\}}$ y éstas son todas las de dos órbitas.
- Si 2 < k < n, entonces no existen teselaciones con cubos del n-toro con k órbitas.

Sin embargo, J. Collins y M. hemos encontrado algunos resultados para $n \geqslant 4$:

- Si n es impar, no existen teselaciones del n-toro con 2 órbitas en banderas.
- Si n es par, existen dos familias de teselaciones en clase $2_{\{1,2,\dots,n-1\}}$ y éstas son todas las de dos órbitas.
- Si 2 < k < n, entonces no existen teselaciones con cubos del n-toro con k órbitas.
- Para toda $n \ge 4$ existen teselaciones del n-toro con n órbitas.

Trabajo a futuro

¿Será cierto que si M es una n-variedad plana que admite una teselación con cubos con k órbitas, para alguna $k \le n$ entonces M es forzosamente es el n-toro?

¡Gracias!