Programare logică și funcțională - examen scris -

Notă

- 1. Subjectele se notează astfel: of 1p; A 2p; B 4p; C 3p.
- 2. Problema Prolog (B) vor fi rezolvată în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- de flux, tipul predicatului determinist/nedeterminist).

 3. Problema Lisp (C) va fi rezolvată în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).

```
A. Fie următoarea definiție de funcție LISP

(DEFUN F(G L)

(COND

((NULL L) NIL)

(> (FUNCALL G L) 0) (CONS (FUNCALL G L) (F (CDR L))))

(T (FUNCALL G L))

)
```

Rescrieți această definiție pentru a evita apelul repetat (**FUNCALL G L**), fără a redefini logica clauzelor și fără a folosi o funcție auxiliară. Nu folosiți SET, SETQ, SETF. Justificați răspunsul.

B. Scrieţi un program PROLOG care determină dintr-o listă formată din numere întregi lista subşirurilor cu cel puţin 2 elemente, formate din elemente în ordine strict crescătoare. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite. **Exemplu**- pentru lista $[1, 8, 6, 4] \Rightarrow [[1,8],[1,6],[1,4],[6,8],[4,8],[4,6],[1,4,6],[1,4,8],[1,6,8],[4,6,8],[1,4,6,8]]$ (nu neapărat în această ordine)

- C. Se consideră o listă neliniară. Să se scrie o funcție LISP care să aibă ca rezultat lista inițială în care toate aparițiile unui element e au fost înlocuite cu o valoare e1. Se va folosi o funcție MAP.
 Exemplu

 a) dacă lista este (1 (2 A (3 A)) (A)) e este A și e1 este B => (1 (2 B (3 B)) (B))
 b) dacă lista este (1 (2 (3))) și e este A => (1 (2 (3)))