ANÁLISE MATEMÁTICA IV

FICHA SUPLEMENTAR 3

EQUAÇÕES DIFERENCIAIS ESCALARES DE PRIMEIRA ORDEM

Equações Lineares Homogéneas

Determine a solução geral da seguinte equação diferencial:

(1)

$$\frac{dy}{dt} + e^t y = 0 .$$

Resolução: Para $y \neq 0$,

$$\frac{dy}{dt} + e^t y = 0 \iff \frac{\dot{y}}{y} = -e^t$$

$$\iff \int \frac{1}{y} dy = -\int e^t dt + c$$

$$\iff |y(t)| = ke^{-e^t} \quad \text{onde } k > 0$$

$$\iff y(t) = ke^{-e^t} \quad \text{onde } k \neq 0$$

Quando y=0, encontra-se que a função y(t)=0, $\forall t\in\mathbb{R}$, também é solução. Solução geral:

$$y(t) = ke^{-e^t}$$
 $com k \in \mathbb{R}$.

Intervalo de definição: R

Verificação:

$$\frac{dy}{dt} = \frac{d}{dt}(ke^{-e^t}) = k(-e^t)e^{-e^t} ,$$

logo

$$\frac{dy}{dt} + e^{t}y = k(-e^{t})e^{-e^{t}} + ke^{t}e^{-e^{t}} = 0 - ok!$$

Comentário: Esta EDO tem uma família infinita de soluções, família essa parametrizada por $k \in \mathbb{R}$, ou seja, para cada k real tem-se uma solução. Cada solução está definida em toda a recta real.

Determine a solução do seguinte problema de valor inicial:

$$\begin{cases} \frac{dy}{dt} + \sqrt{1+t^2} \ y = 0\\ y(0) = \sqrt{5} \ . \end{cases}$$

(2)

Resolução:

Resolução da EDO: Para $y \neq 0$,

$$\frac{dy}{dt} + \sqrt{1+t^2} y = 0 \iff \frac{\dot{y}}{y} = -\sqrt{1+t^2}$$

$$\iff \ln|y| = -\int \sqrt{1+t^2} dt$$

Cálculo de uma primitiva de $\sqrt{1+t^2}$: Fazendo a substituição $t=\frac{e^x-e^{-x}}{2}\stackrel{\text{def}}{=}\sinh x$, para a qual $\frac{dt}{dx}=\frac{e^x+e^{-x}}{2}\stackrel{\text{def}}{=}\cosh x$, obtém-se

$$\int \sqrt{1+t^2} \, dt = \int \underbrace{\sqrt{1+\sinh^2 x}}_{\cosh x} \cosh x \, dx$$

$$= \int \cosh^2 x \, dx \quad \text{a qual se pode primitivar por partes, ficando}$$

$$= \sinh x \cosh x - \int \underbrace{\sinh^2 x}_{\cosh^2 x - 1} \, dx$$

Das duas últimas linhas obtém-se

$$2\int \cosh^2 x \, dx = \sinh x \cosh x + x + c \;,$$

pelo que

$$\int \sqrt{1+t^2} dt = \frac{1}{2} (\sinh x \cosh x + x) + c.$$

Falta escrever esta primitiva em termos de t:

$$t = \frac{e^x - e^{-x}}{2} \iff (e^x)^2 - 2te^x - 1 = 0$$
$$\iff e^x = t + \sqrt{1 + t^2}$$

onde se aplicou a fórmula resolvente para a equação quadrática ($t-\sqrt{1+t^2}$ não pode ser solução porque é sempre negativo). Logo,

$$x = \ln(t + \sqrt{1 + t^2}) .$$

Por outro lado,

$$\sinh x = t$$
 e $\cosh x = \sqrt{1+t^2}$.

Finalmente, a primitiva em questão fica

$$\int \sqrt{1+t^2} \, dt = \frac{1}{2} (t\sqrt{1+t^2} + \ln(t+\sqrt{1+t^2})) + c$$
$$= \frac{1}{2} t\sqrt{1+t^2} + \ln\sqrt{t+\sqrt{1+t^2}} + c .$$

Voltando à EDO,

$$\ln|y| = -\int \sqrt{1+t^2} \, dt = -\frac{1}{2}t\sqrt{1+t^2} - \ln\sqrt{t+\sqrt{1+t^2}} + c$$

$$\iff |y(t)| = k \exp(-\frac{1}{2}t\sqrt{1+t^2} - \ln\sqrt{t+\sqrt{1+t^2}}) \quad \text{onde } k > 0$$

$$\iff y(t) = k \exp(-\frac{1}{2}t\sqrt{1+t^2} - \ln\sqrt{t+\sqrt{1+t^2}}) \quad \text{onde } k \neq 0$$

$$\iff y(t) = k \frac{1}{\sqrt{t+\sqrt{1+t^2}}} e^{-\frac{1}{2}t\sqrt{1+t^2}} \quad \text{onde } k \neq 0$$

Quando y=0, encontra-se que a função y(t)=0 , $\forall t\in\mathbb{R}$, também é solução. Solução geral:

$$y(t) = k \frac{1}{\sqrt{t + \sqrt{1 + t^2}}} e^{-\frac{1}{2}t\sqrt{1 + t^2}} \quad com \ k \in \mathbb{R} \ .$$

Intervalo de definição: \mathbb{R} .

Verificação:

$$\frac{dy}{dt} = \frac{d}{dt} \left(k \exp(-\frac{1}{2}t\sqrt{1+t^2} - \ln\sqrt{t+\sqrt{1+t^2}}) \right)$$

$$= y(t) \cdot \frac{d}{dt} \left(-\frac{1}{2}t\sqrt{1+t^2} - \ln\sqrt{t+\sqrt{1+t^2}} \right)$$

$$= y(t) \cdot \left(-\frac{1}{2}\sqrt{1+t^2} - \frac{1}{2}\frac{t^2}{\sqrt{1+t^2}} - \frac{1+\frac{t}{\sqrt{1+t^2}}}{2(t+\sqrt{1+t^2})} \right)$$

$$= y(t) \cdot \left(-\frac{1}{2}\sqrt{1+t^2} - \frac{t^2(t+\sqrt{1+t^2})+\sqrt{1+t^2}+t}{2\sqrt{1+t^2}(t+\sqrt{1+t^2})} \right)$$

$$= y(t) \cdot \left(-\frac{1}{2}\sqrt{1+t^2} - \frac{(1+t^2)(t+\sqrt{1+t^2})}{2\sqrt{1+t^2}(t+\sqrt{1+t^2})} \right)$$

$$= -\sqrt{1+t^2} y(t) - ok!$$

Condição inicial: $\sqrt{5} = y(0) = ke^0 \implies k = \sqrt{5}$. Solução do problema de valor inicial:

$$y(t) = \sqrt{rac{5}{t+\sqrt{1+t^2}}} \; e^{-rac{1}{2}t\sqrt{1+t^2}} \quad ext{ onde } k \in \mathbb{R} \; .$$

Comentário: Este problema de valor inicial tem uma única solução definida para todo o t real.

Equações Lineares

Resolva o seguinte problema de valor inicial

(3)
$$\frac{dy}{dt} + y = \frac{1}{1+t^2} \quad , y(2) = 3$$

Resolução: O factor de integração desta EDO linear é e^t . Multiplicando por e^t tem-se

$$e^t \frac{dy}{dt} + e^t y = \frac{e^t}{1+t^2} \iff \frac{d}{dt}(e^t y) = \frac{e^t}{1+t^2}$$

e integrando entre 2 e t, tem-se

$$e^{t}y(t) - e^{2}y(2) = \int_{2}^{t} \frac{e^{s}}{1 + s^{2}} ds$$

$$\iff y(t) = e^{-t} \left(3e^{2} + \int_{2}^{t} \frac{e^{s}}{1 + s^{2}} ds \right)$$

$$\iff y(t) = 3e^{2-t} + e^{-t} \left(\int_{2}^{t} \frac{e^{s}}{1 + s^{2}} ds \right)$$

Solução:

$$y(t) = 3e^{2-t} + e^{-t} \left(\int_2^t \frac{e^s}{1+s^2} ds \right)$$

Intervalo de definição: R

Verificação: A condição inicial é verificada

$$y(2) = 3e^{0} + e^{0} \left(\int_{2}^{2} \frac{e^{s}}{1+s^{2}} ds \right) = 3 + 0 = 3$$

e a equação também:

$$\frac{dy}{dt} = -3e^{2-t} - e^{-t} \int_2^t \frac{e^s}{1+s^2} ds + e^{-t} \frac{d}{dt} \left(\int_2^t \frac{e^s}{1+s^2} ds \right)$$

$$= -3e^{2-t} - e^{-t} \int_2^t \frac{e^s}{1+s^2} ds + e^{-t} \frac{e^t}{1+t^2}$$

$$= -y(t) + \frac{1}{1+t^2} - ok!$$

Comentário: Como nem sempre é possível primitivar uma função em termos de funções elementares, pode acontecer (como no exercício anterior) que a solução de uma equação diferencial só possa ser apresentada em termos de um integral indefinido.

Resolva o seguinte problema de valor inicial

$$\frac{dy}{dt} + h(t)y = t \quad , \quad y(-1) = 2$$

onde h(t) é a função definida por

$$h(t) = \begin{cases} 0 & \text{se } t < 0 \\ t & \text{se } t \ge 0 \end{cases}$$

Resolução: O factor de integração para esta EDO linear é $e^{\int h(t)dt}$. Uma primitiva de h(t) pode obter-se por meio de um integral indefinido, por exemplo:

$$H(t) = \int_0^t h(s)ds = \left\{ \begin{array}{ll} 0 & \text{se } t \le 0 \\ \frac{1}{2}t^2 & \text{se } t > 0 \end{array} \right.$$

Multiplicando pelo factor de integração tem-se

$$e^{H(t)}\frac{dy}{dt} + h(t)e^{H(t)}y = te^{H(t)} \iff \frac{d}{dt}(e^{H(t)}y) = te^{H(t)}$$

e integrando entre -1 e t, tem-se

$$e^{H(t)}y(t) - e^{H(-1)}y(-1) = \int_{-1}^{t} se^{H(s)}ds$$

$$\iff y(t) = e^{-H(t)} \left(2e^{0} + \int_{-1}^{t} se^{H(s)}ds \right)$$

$$\iff y(t) = \begin{cases} 2e^{-H(t)} + e^{-H(t)} \left(\int_{-1}^{0} se^{0}ds + \int_{0}^{t} se^{\frac{1}{2}s^{2}}ds \right) & \text{se } t > 0 \\ 2e^{-H(t)} + e^{-H(t)} \int_{-1}^{t} se^{0}ds & \text{se } t \leq 0 \end{cases}$$

$$\iff y(t) = \begin{cases} 2e^{-\frac{1}{2}t^{2}} + e^{-\frac{1}{2}t^{2}} \left(-\frac{1}{2} + \left[e^{\frac{1}{2}s^{2}} \right]_{0}^{t} \right) & \text{se } t > 0 \\ 2e^{0} + \frac{t^{2}}{2} - \frac{1}{2} & \text{se } t \leq 0 \end{cases}$$

$$\iff y(t) = \begin{cases} 2e^{-\frac{1}{2}t^{2}} + e^{-\frac{1}{2}t^{2}} \left(e^{\frac{1}{2}t^{2}} - \frac{3}{2} \right) & \text{se } t > 0 \\ 2 + \frac{t^{2}}{2} - \frac{1}{2} & \text{se } t \leq 0 \end{cases}$$

$$\iff y(t) = \begin{cases} \frac{1}{2}e^{-\frac{1}{2}t^{2}} + 1 & \text{se } t > 0 \\ \frac{t^{2}}{2} + \frac{3}{2} & \text{se } t \leq 0 \end{cases}$$

Solução:

$$y(t) = \begin{cases} \frac{1}{2}e^{-\frac{1}{2}t^2} + 1 & \text{se } t > 0\\ \frac{t^2}{2} + \frac{3}{2} & \text{se } t \le 0 \end{cases}$$

Intervalo de definição: R

Verificação: Primeiro nota-se que

$$y(-1) = \frac{1}{2} + \frac{3}{2} = 2$$

Além disso, tem-se, para $t \neq 0$

$$\frac{dy}{dt} = \begin{cases} -\frac{1}{2}te^{-\frac{1}{2}t^2} = -ty(t) + t = -h(t)y(t) + t & \text{se } t > 0 \\ t = -0y(t) + t = -h(t)y(t) + t & \text{se } t < 0 \end{cases}$$

Em t=0 ambas as derivadas laterais de y(t) são 0 e portanto a equação

$$\frac{dy}{dt}(0) + h(0)y(0) = 0$$

é satisfeita.

Comentário: Apesar da expressão da solução do problema de valor inicial ter de ser dada por ramos, a função y(t) é de classe C^1 . Isto deve-se ao facto de H(t) ser de classe C^1 em $\mathbb R$ (é uma primitiva da função contínua h(t)) e à expressão integral para a solução y(t). \diamondsuit

Um cardume de salmões vive tranquilamente numa zona costeira. A taxa de natalidade do cardume é de 2 por cento por dia e a taxa de mortalidade de 1 por cento por dia. Em t=0 o cardume tem 1000 salmões e nesse instante chega à zona um tubarão que se dedica a consumir 15 salmões por dia. Quanto tempo demora o tubarão a extinguir o cardume?

Resolução: Seja y(t) a população de salmões no dia t. A evolução normal da população seria aumentar à taxa de 2-1=1 por cento por dia. Isto é a população deveria satisfazer a equação diferencial:

$$\frac{dy}{dt} = 0.01y$$

No entanto, a partir do momento em que o tubarão chega, morrem mais 15 salmões por dia e portanto tem-se

$$\frac{dy}{dt} = 0.01y - 15$$

Uma vez que no instante t=0 há 1000 salmões, para responder à questão do enunciado tem de se resolver para $t\geq 0$ o problema de valor inicial:

$$\frac{dy}{dt} = 0.01y - 15$$
 , $y(0) = 1000$

O factor de integração para esta EDO linear é $e^{-0.01t}$. Multiplicando pelo factor de integração tem-se

$$\frac{d}{dt} \left(e^{-0.01t} y(t) \right) = -15e^{-0.01t}$$

e integrando entre 0 e t tem-se

$$e^{-0.01t}y(t) - 1000 = \int_0^t -15e^{-0.01s}ds$$

$$\iff y(t) = e^{0.01t} \left(1000 - \int_0^t 15e^{-0.01s}ds \right)$$

$$\iff y(t) = 1000e^{0.01t} - 15e^{0.01t} \left[-\frac{e^{-0.01s}}{0.01} \right]_0^t$$

$$\iff y(t) = 1000e^{0.01t} - 1500(e^{0.01t} - 1)$$

$$\iff y(t) = 1500 - 500e^{0.01t}$$

Solução:

$$y(t) = 1500 - 500e^{0.01t}$$

Intervalo de definição: R

Note-se que apesar de a solução da equação estar definida para $t \in \mathbb{R}$, ela só tem significado físico para $t \geq 0$ e $y(t) \geq 0$.

Verificação: Primeiro nota-se que

$$y(0) = 1500 - 500 = 1000$$

Além disso, tem-se

$$\frac{dy}{dt} = -5e^{0.01t} = 0.01(y - 1500) = 0.01y(t) - 15 - ok!$$

Resposta ao problema: O cardume estará extinto quando y(t) = 0

$$1500 - 500e^{0.01t} = 0$$

$$e^{0.01t} = 3$$

$$t = 100 \ln 3$$

$$t = 109.8$$

Conclui-se que o tubarão leva aproximadamente 110 dias a extinguir o cardume de salmões.

Um resíduo industrial é despejado num tanque cheio com 1000 litros de água a uma taxa de 1 litro por minuto. A mistura bem homogénea é despejada à mesma taxa.

- (a) Determine a concentração de resíduos no tanque no instante t.
- (b) Quanto tempo leva esta concentração a atingir os 20 por cento?

Resolução:

(a) Seja y(t) a quantidade de resíduo no tanque no minuto t em litros. Se o tanque tivesse capacidade ilimitada e não houvesse escoamento, a quantidade de resíduo aumentaria de acordo com a lei

$$\frac{dy}{dt} = 1$$

Como se está a admitir que o resíduo se mistura imediatamente e que o tanque se escoa à mesma taxa em que é cheio, a taxa de aumento de resíduo será inferior porque uma parte do resíduo se escoará imediatamente. A questão é: que parte? Uma vez que a mistura é homogénea, a proporção de resíduo no litro que se escoa em cada minuto será idêntica à proporção de resíduo no tanque. Esta proporção é $\frac{y(t)}{1000}$ portanto conclui-se que a quantidade de resíduo que se escoa por minuto é 0.001y(t) litros. Donde y(t) obedece à lei:

$$\frac{dy}{dt} = 1 - 0.001y$$

No instante t=0 não há qualquer resíduo no tanque, portanto

$$y(0) = 0$$

Para resolver esta EDO linear multiplica-se pelo factor de integração $e^{0.001t}\,$ e obtemse:

$$\frac{d}{dt}\left(e^{0.001t}y(t)\right) = e^{0.001t}$$

e integrando entre 0 e t tem-se:

$$e^{0.001t}y(t) - 0 = \int_0^t e^{0.001s} ds$$

$$\iff y(t) = e^{-0.001t} \left(\int_0^t e^{0.001s} ds \right)$$

$$\iff y(t) = 1000(1 - e^{-0.001t})$$

Solução: A concentração c(t) de resíduo é igual à quantidade de resíduo a dividir pela capacidade do tanque. Conclui-se que

$$c(t) = 1 - e^{-0.001t}s$$

Intervalo de definição: \mathbb{R} (mas a solução só tem significado para $t \geq 0$) Verificação: Primeiro nota-se que

$$y(0) = 1000(1-1) = 0$$

Além disso, tem-se

$$\frac{dy}{dt} = e^{-0.001t} = -0.001(y - 1000) = -0.001y(t) + 1 - ok!$$

(b) A concentração atinge 20 por cento quando a quantidade de resíduo for 200 litros.

$$1000(1 - e^{-0.001t}) = 200$$

$$e^{-0.001t} = 1 - 0.2$$

$$t = -1000 \ln 0.8$$

$$t = 223.1$$

Portanto a concentração leva aproximadamente 3h e 43m a atingir os 20 por cento.

Chama-se equação de Bernoulli a uma equação diferencial da forma

$$\frac{dy}{dt} + a(t)y = b(t)y^n$$

onde n > 1 é um número natural.

(7) (a) Determine a solução geral desta equação.
Sugestão: Divida ambos os lados

Sugestão: Divida ambos os lados por y^n e transforme a equação numa equação linear fazendo a mudança de variável $u=y^{1-n}$

(b) Ache a solução geral da seguinte equação de Bernoulli

$$\frac{dy}{dt} + y\sin t + y^3\sin 2t = 0$$

Equações Separáveis

Determine a solução geral da seguinte equação diferencial:

$$\frac{dy}{dt} = \frac{1}{t} .$$

Resolução: Para $t \neq 0$,

$$\frac{dy}{dt} = \frac{1}{t} \iff \int \frac{dy}{dt} dt = \int \frac{1}{t} dt + c$$

$$\iff \int dy = \ln|t| + c$$

$$\iff y(t) = \ln|t| + c$$

Solução geral:

(8)

$$y(t) = \ln|t| + c$$
 $com c \in \mathbb{R}$.

Intervalo de definição: $]-\infty,0[$ ou $]0,+\infty[$.

Verificação:

$$\frac{dy}{dt} = \frac{d}{dt}(\ln|t| + c) = \frac{1}{t} \quad (para \ t \neq 0) \quad -ok!$$

Comentário: A equação dada tem duas famílias infinitas de soluções, cada família parametrizada por $c \in \mathbb{R}$. As soluções de uma família estão definidas no semi-eixo aberto $]-\infty,0[$ e as soluções da outra família no semi-eixo aberto $]0,+\infty[$.

Determine a solução geral da seguinte equação diferencial:

$$\frac{dy}{dt} = 1 - t + y^2 - ty^2 .$$

Resolução: Factorizando o segundo membro, e dividindo por $1+y^2$ (que nunca é zero),

$$\begin{split} \frac{dy}{dt} &= 1 - t + y^2 - ty^2 &\iff \frac{dy}{dt} = (1 - t)(1 + y^2) \\ &\iff \frac{\dot{y}}{1 + y^2} = 1 - t \\ &\iff \int \frac{1}{1 + y^2} \, dy = \int (1 - t) \, dt + c \\ &\iff \arctan y = t - \frac{1}{2} t^2 + c \\ &\iff y(t) = \tan(t - \frac{1}{2} t^2 + c) \\ ¶ \ t - \frac{1}{2} t^2 + c \neq \frac{\pi}{2} + k\pi \ , k \in \mathbb{Z} \ . \end{split}$$

Solução geral:

(9)

$$y(t) = \tan(t - \frac{1}{2}t^2 + c)$$
 com $c \in \mathbb{R}$

Intervalo de definição: Os intervalos de definição possíveis são os intervalos máximos contidos no conjunto

$$\mathbb{R} \setminus \{t \in \mathbb{R}: \ t - \frac{1}{2}t^2 + c \neq \frac{\pi}{2} + k\pi \ , k \in \mathbb{Z}\} \ .$$

Verificação:

$$\frac{dy}{dt} = \frac{d}{dt}[\tan(t - \frac{1}{2}t^2 + c)]$$

$$= (1 - t)[1 + \tan^2(t - \frac{1}{2}t^2 + c)]$$

$$1 - t + y^2 - ty^2 = (1 - t)(1 + y^2)$$

$$= (1 - t)[1 + \tan^2(t - \frac{1}{2}t^2 + c)] - ok!$$

Comentário: Os possíveis intervalos de definição da solução foram apenas apresentados implicitamente como intervalos abertos de comprimento máximo contidos no conjunto

$$\mathbb{R} \setminus \{ t \in \mathbb{R} : t - \frac{1}{2}t^2 + c \neq \frac{\pi}{2} + k\pi , k \in \mathbb{Z} \} .$$

Por outras palavras, um intervalo de definição concreto terá por extremos duas soluções consecutivas da equação quadrática

$$\frac{1}{2}t^2 - t - c + \frac{\pi}{2} + k\pi = 0$$

com k a variar em \mathbb{Z} . Se fosse dada uma condição incial, escolher-se-ia a constante real c e determinar-se-ia o intervalo que contivesse o instante inicial.

Por exemplo, se fosse dada a condição inicial y(0)=0, a constante c teria que satisfazer $0=y(0)=\tan c$. Escolhendo c=0, o intervalo de definição da solução deste problema de valor inicial seria o intervalo máximo contido no conjunto

$$\mathbb{R} \setminus \{ t \in \mathbb{R} : t - \frac{1}{2}t^2 \neq \frac{\pi}{2} + k\pi , k \in \mathbb{Z} \}$$

que contém o instante t=0. Resolvendo a equação quadrática

$$t^2 - 2t + \pi + 2k\pi = 0 \iff t = 1 \pm \sqrt{1 - \pi - 2k\pi}$$

(com $k\in\mathbb{Z}$), obtém-se que as soluções mais próximas de t=0 são

$$t = 1 - \sqrt{1 + \pi}$$
 e $t = 1 + \sqrt{1 + \pi}$.

Sendo estes os dois instantes mais próximos de 0 onde a solução explode, conclui-se que o problema de valor inical

$$\begin{cases} \frac{dy}{dt} = 1 - t + y^2 - ty^2\\ y(0) = 0 \end{cases}$$

teria por solução

$$y(t) = \tan(t - \frac{1}{2}t^2)$$

definida para

$$t \in]1 - \sqrt{1+\pi}, 1 + \sqrt{1+\pi}[$$
.

Suponha que temos uma equação diferencial da forma

$$\frac{dy}{dt} = f\left(\frac{y}{t}\right) ,$$

como, por exemplo, a equação $\frac{dy}{dt}=\sin(\frac{y}{t})$. Estas equações dizem-se homogéneas. Como o segundo membro da equação depende apenas do quociente $\frac{y}{t}$, é natural fazer a substituição $v = \frac{y}{t}$, ou seja, y = vt.

Mostre que esta substituição transforma $\frac{dy}{dt} = f(\frac{y}{t})$ na equação equivalente

$$t\frac{dv}{dt} + v = f(v) ,$$

que é separável.

Resolução: Supõe-se que $t \neq 0$. Se y(t) = tv(t), então

$$\frac{dy}{dt} = t\frac{dv}{dt} + v ,$$

pelo que a equação $\frac{dy}{dt} = f\left(\frac{y}{t}\right)$ fica

$$t\frac{dv}{dt} + v = f(v) ,$$

que é separável:

$$\frac{\dot{v}}{f(v)-v} = \frac{1}{t} \qquad \textit{para } f(v) \neq v \;.$$

Determine se cada uma das seguintes funções de t e y pode ser expressa como uma função de uma só variável $\frac{y}{t}$:

(11) (a)
$$\ln y - \ln t + \frac{t+y}{t-y}$$
, (b) $\frac{y^3+t^3}{yt^2+y^3}$.

(b)
$$\frac{y^3+t^3}{yt^2+y^3}$$

Resolução:

(12)

(a) Sim: fundindo os logaritmos e dividindo numerador e denominador da fracção por t, fica

$$\ln y - \ln t + \frac{t+y}{t-y} = \ln \frac{y}{t} + \frac{1+\frac{y}{t}}{1-\frac{y}{t}} .$$

(b) Sim para $t \neq 0$: dividindo numerador e denominador da fracção por t^3 , fica

$$\frac{y^3 + t^3}{yt^2 + y^3} = \frac{(\frac{y}{t})^3 + 1}{\frac{y}{t} + (\frac{y}{t})^3} .$$

Para t=0, a função original vale 1 (ou tem limite 1 quando $y\to 0$), mas a substituição para a variável $\frac{y}{t}$ não é legal.

Comentário: Na alínea (b), a resposta estrita é "não". No entanto, pode ser útil saber exprimir a função em termos de uma só variável no domínio $t \neq 0$.

Determine a solução geral da seguinte equação diferencial:

$$t^2 \frac{dy}{dt} = 2ty + y^2 .$$

Sugestão: Exercício 10.

Resolução: Para $t \neq 0$, divida-se a equação por t^2 e depois aplique-se o exercício 10:

$$\begin{split} \frac{dy}{dt} &= 2\frac{y}{t} + (\frac{y}{t})^2 &\iff t\frac{dv}{dt} + v = 2v + v^2 \\ &\iff \frac{\dot{v}}{v + v^2} = \frac{1}{t} \qquad \textit{para} \ v + v^2 \neq 0 \\ &\iff \int \frac{1}{v + v^2} \, dv = \int \frac{1}{t} \, dt + c \ . \end{split}$$

Cálculo de uma primitiva de $\frac{1}{v+v^2}$:

Decompõe-se $\frac{1}{v+v^2}$ em fracções simples:

$$\frac{1}{v(1+v)} = \frac{A}{v} + \frac{B}{1+v} \quad \Longleftrightarrow \quad 1 = A + Av + Bv$$

$$\iff \quad A = 1 \quad \text{ and } \quad B = -1 \; .$$

Logo, uma primitiva de $\frac{1}{v+v^2}$ é

$$\int \frac{1}{v} dv - \int \frac{1}{1+v} dv = \ln|v| - \ln|1+v| .$$

Continuando a resolução da equação:

$$\int \frac{1}{v+v^2} dv = \int \frac{1}{t} dt + c \iff \ln|v| - \ln|1 + v| = \ln|t| + c$$

$$\iff \ln\left|\frac{v}{1+v}\right| = \ln|t| + c$$

$$\iff \frac{v}{1+v} = kt \quad \text{onde } k \neq 0$$

$$\iff v - kt - ktv = 0$$

$$\iff v(1 - kt) = kt$$

$$\iff v(t) = \frac{kt}{1-kt}$$

$$\iff y(t) = \frac{kt^2}{1-kt}$$

onde na última linha se substituiu v de volta por $\frac{y}{t}$.

Apesar da técnica de resolução só se aplicar quando $t \neq 0$, a extensão da função y acima para t = 0 é válida e permanece solução da equação.

Falta estudar os casos em que $v+v^2=v(v+1)=0$ (onde $v=\frac{y}{t}$) excluídos no início da resolução:

- quando v=0, obtém-se que y(t)=0, $\forall t$, é solução, que pode ser descrita na forma acima para k=0;
- quando v=-1, verifica-se, por substituição na equação diferencial, que y(t)=-t, $\forall t$, também é solução:

$$t^{2}\frac{d}{dt}(-t) = -t^{2} = 2t(-t) + (-t)^{2}.$$

Solução geral:

$$y(t) = \frac{kt^2}{1-kt} \;\; \text{com} \; k \in \mathbb{R} \qquad \text{ou} \qquad y(t) = -t \;.$$

Intervalo de definição: Para $k \neq 0$, o intervalo de definição de uma solução da primeira forma é

$$]-\infty,rac{1}{k}[\qquad ext{ou} \qquad]rac{1}{k},\infty[\ .$$

Para k=0, o intervalo de definição de y(t)=0 é \mathbb{R} . O intervalo de definição da solução y(t)=-t também é \mathbb{R} .

Verificação:

$$\frac{dy}{dt} = \frac{2kt(1-kt)+k^2t^2}{(1-kt)^2}$$

$$t^2 \frac{dy}{dt} = \frac{2kt^3(1-kt)+k^2t^4}{(1-kt)^2}$$

$$2ty + y^2 = \frac{2kt^3}{1-kt} + \frac{k^2t^4}{(1-kt)^2}$$

$$= \frac{2kt^3(1-kt)+k^2t^4}{(1-kt)^2} = t^2 \frac{dy}{dt} - ok!$$

Comentário: A equação dada tem duas famílias de soluções definidas em subintervalos de \mathbb{R} , cada uma parametrizada por $k \neq 0$, e tem ainda mais duas soluções definidas em todo o \mathbb{R} .

Um objecto de massa m é lançado verticalmente a partir da superfície da Terra com uma velocidade inicial V_0 . Considera-se um referencial em que o sentido positivo do eixo dos y's coincida com a direcção vertical apontando para cima, estando a origem sobre a superfície da Terra. Assumindo que não há resistência do ar, mas considerando a variação do campo gravitacional terrestre com a altitude, obtém-se a seguinte lei para a velocidade V(t) do objecto:

$$m\frac{dV}{dt} = -\frac{mgR^2}{(y+R)^2}$$

(13)

onde R é o raio da Terra.

- (a) Seja V(t) = v(y(t)), onde v = v(y) é a velocidade como função da altitude y. Determine a equação diferencial satisfeita por v(y).
- (b) Calcule a chamada $velocidade\ de\ escape$, ou seja, calcule a menor velocidade inicial V_0 para a qual o objecto não regressa à Terra.

Sugestão: A velocidade de escape é determinada impondo que v(y) permaneça positivo.

Considere uma espécie com reprodução sexuada: cada membro da população necessita de encontrar um parceiro para se reproduzir. Se N(t) for a população total no instante t, o número de encontros entre machos e fêmeas deve ser proporcional ao produto do número de machos pelo número de fêmeas. Como cada um destes números é proporcional a N(t), o número de nascimentos é proporcional a $N^2(t)$. Por outro lado, a taxa de mortalidade, é proporcional a N(t) pois não depende de encontros entre indivíduos.

(14)

Conclui-se que a população N(t) satisfaz a equação diferencial

$$\frac{dN}{dt} = bN^2 - aN \quad , \text{ com } a, b > 0$$

Mostre que, se $N(0)<\frac{a}{b}$ então $N(t)\to 0$ quando $t\to \infty$. Conclua que quando a população é inferior ao nível crítico $\frac{a}{b}$ a população está em vias de extinção.

Equações Exactas

Determine a solução geral da seguinte equação diferencial:

(15)
$$2t\sin y + y^3 e^t + (t^2\cos y + 3y^2 e^t)\frac{dy}{dt} = 0.$$

Resolução: Esta equação não é linear nem separável.

Teste de equação exacta:

A equação

$$\underbrace{2t\sin y + y^3 e^t}_{M(t,y)} + \underbrace{(t^2\cos y + 3y^2 e^t)}_{N(t,y)} \underbrace{\frac{dy}{dt}}_{t} = 0$$

é exacta se e só se existe uma função "potencial", F=F(t,y), tal que

$$\left\{ \begin{array}{lcl} \frac{\partial F}{\partial t} & = & M(t,y) \\ \frac{\partial F}{\partial y} & = & N(t,y) \end{array} \right.$$

(por definição de equação exacta).

Uma vez que as expressões de M(t,y) e N(t,y) são continuamente diferenciáveis em todo o \mathbb{R}^2 , uma condição necessária e suficiente para a existência de uma tal função potencial F é 1

$$\frac{\partial M}{\partial u} = \frac{\partial N}{\partial t} .$$

Ora

$$\frac{\partial M}{\partial y} = 2t\cos y + 3y^2 e^t = \frac{\partial N}{\partial t} ,$$

pelo que se conclui que a equação é exacta.

Resolução da EDO:

Determina-se uma função "potencial", F:

$$\begin{cases} \frac{\partial F}{\partial t} &= 2t \sin y + y^3 e^t \\ \frac{\partial F}{\partial y} &= t^2 \cos y + 3y^2 e^t \end{cases}$$

$$\iff \begin{cases} F(t,y) &= \int (2t \sin y + y^3 e^t) dt + f(y) \\ F(t,y) &= \int (t^2 \cos y + 3y^2 e^t) dy + g(t) \end{cases}$$

$$\iff \begin{cases} F(t,y) &= t^2 \sin y + y^3 e^t + f(y) \\ F(t,y) &= t^2 \sin y + y^3 e^t + g(t) \end{cases}$$

Escolhendo

$$F(t,y) = t^2 \sin y + y^3 e^t ,$$

a equação diferencial fica equivalente a

$$\frac{d}{dt}F(t,y(t)) = 0 \iff F(t,y) = c \iff t^2 \sin y + y^3 e^t = c.$$

Solução:

$$t^2 \sin y + y^3 e^t = c$$
 (\star) $com \ c \in \mathbb{R}$.

Verificação:

$$t^{2} \sin y + y^{3} e^{t} \qquad \text{\'e constante}$$

$$\iff \frac{d}{dt} \left(t^{2} \sin y + y^{3} e^{t} \right) = 0$$

$$\iff \frac{\partial}{\partial t} \left(t^{2} \sin y + y^{3} e^{t} \right) + \frac{\partial}{\partial y} \left(t^{2} \sin y + y^{3} e^{t} \right) \frac{dy}{dt} = 0$$

$$\iff 2t \sin y + y^{3} e^{t} + (t^{2} \cos y + 3y^{2} e^{t}) \frac{dy}{dt} = 0 - \text{ok!}$$

Comentário: Pelo teorema da função implícita, se for dada uma condição inicial, $y(t_0) = y_0$, a expressão (\star) determina y = y(t) em torno de $t = t_0$, desde que seja satisfeita a condição

$$\frac{\partial F}{\partial y}(t_0, y_0) \neq 0 ,$$

ou seja,

$$t_0^2 \cos y_0 + 3y_0^2 e^{t_0} \neq 0$$
.

 $^{^1 \}text{Cf.}$ Análise Matemática III: condição para um campo vectorial (M(t,y),N(t,y)) ser o gradiante, $\nabla F=(\frac{\partial F}{\partial t},\frac{\partial F}{\partial y})$, de alguma função escalar F(t,y).

Determine a solução do seguinte problema de valor inicial:

(16)

$$\begin{cases} 3t^2 + 4ty + (2y + 2t^2) \frac{dy}{dt} = 0\\ y(0) = 1 . \end{cases}$$

Resolução: A equação diferencial não é linear nem separável.

Teste de equação exacta:

A equação diferencial

$$\underbrace{3t^2 + 4ty}_{M(t,y)} + \underbrace{(2y + 2t^2)}_{N(t,y)} \frac{dy}{dt} = 0$$

é exacta se e só se existe uma função "potencial", F=F(t,y), tal que

$$\begin{cases} \frac{\partial F}{\partial t} &= M(t,y) \\ \frac{\partial F}{\partial y} &= N(t,y) \end{cases}$$

(por definição de equação exacta).

Uma vez que as expressões de M(t,y) e N(t,y) são continuamente diferenciáveis em todo o \mathbb{R}^2 , uma condição necessária e suficiente para a existência de uma tal função potencial F ϵ^2

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial t} \ .$$

Ora

$$\frac{\partial M}{\partial y} = 4t = \frac{\partial N}{\partial t} ,$$

pelo que se conclui que a equação é exacta.

Resolução da EDO:

Para encontrar uma função "potencial", F, resolve-se o sistema de equações

$$\begin{cases} \frac{\partial F}{\partial t} &= 3t^2 + 4ty \\ \frac{\partial F}{\partial y} &= 2y + 2t^2 \end{cases}$$

$$\iff \begin{cases} F(t,y) &= \int (3t^2 + 4ty) dt + f(y) \\ F(t,y) &= \int (2y + 2t^2) dy + g(t) \end{cases}$$

$$\iff \begin{cases} F(t,y) &= t^3 + 2t^2y + f(y) \\ F(t,y) &= y^2 + 2t^2y + g(t) \end{cases}$$

Escolhendo

$$F(t,y) = t^3 + y^2 + 2t^2y$$

a equação diferencial fica equivalente a

$$\frac{d}{dt}F(t,y(t)) = 0 \iff F(t,y) = c \iff t^3 + y^2 + 2t^2y = c.$$

 $^{^2\}text{Cf.}$ Análise Matemática III: condição para um campo vectorial (M(t,y),N(t,y)) ser o gradiante, $\nabla F=(\frac{\partial F}{\partial t},\frac{\partial F}{\partial y})$, de alguma função escalar F(t,y).

Condição inicial:

 \overline{A} condição y(0) = 1 impõe que a constante real c satisfaça

$$0^3 + 1^2 + 2 \cdot 0^2 \cdot 1 = c \iff c = 1$$
.

A solução do problema de valor inicial é dada por

$$t^{3} + y^{2} + 2t^{2}y = 1 \iff y^{2} + 2t^{2}y + t^{3} - 1 = 0$$

$$\iff y(t) = -t^{2} \pm \sqrt{t^{4} - t^{3} + 1}.$$

Para que y(0) = 1, escolhe-se o sinal + para a raiz quadrada. Intervalo de definição:

- $\overline{-Para\ que\ y=y(t)}$ esteja definida, o argumento da raiz quadrada tem que ser não-
- Para que y = y(t) seja diferenciável, o argumento da raiz quadrada tem que ser positivo, o que acontece sempre:

 - $\begin{array}{l} \bullet \ \ \textit{quando}\ t \geq 1,\ \textit{tem-se}\ t^4 \geq t^3,\ \textit{logo}\ t^4 t^3 + 1 \geq 1;\\ \bullet \ \ \textit{quando}\ t \leq 0,\ \textit{tem-se}\ t^4 \geq 0\ \textit{e}\ t^3 \geq 0,\ \textit{logo}\ t^4 t^3 + 1 \geq 1; \end{array}$
 - quando 0 < t < 1, tem-se $t^4 > 0$ e $t^3 < 1$, logo $t^4 t^3 + 1 > 0$.

Conclui-se que o intervalo máximo de definição é R.

Solução do problema de valor inicial:

$$y(t) = -t^2 + \sqrt{t^4 - t^3 + 1} \;, \;\;\;$$
 para todo o $t \in \mathbb{R}$.

Verificação:

$$\frac{dy}{dt} = \frac{d}{dt} \left(-t^2 + \sqrt{t^4 - t^3 + 1} \right)$$

$$= -2t + \frac{4t^3 - 3t^2}{2\sqrt{t^4 - t^3 + 1}}$$

$$2y + 2t^2 = 2\sqrt{t^4 - t^3 + 1}$$

$$(2y + 2t^2)\frac{dy}{dt} = -4t\sqrt{t^4 - t^3 + 1} + 4t^3 - 3t^2 \qquad (\star)$$

$$3t^2 + 4ty = 3t^2 - 4t^3 + 4t\sqrt{t^4 - t^3 + 1} \qquad (\star\star)$$

$$(\star\star) + (\star) = 0 \qquad - ok!$$

$$y(0) = -0 + \sqrt{0 - 0 + 1} = 1 \qquad - ok!$$

Determine a constante real α para a qual a equação diferencial seguinte é exacta e resolva-a:

(17)
$$e^{\alpha t+y} + 3t^2y^2 + (2yt^3 + e^{\alpha t+y})\frac{dy}{dt} = 0.$$

Resolução:

Determinação de α :

A equação

$$\underbrace{e^{\alpha t + y} + 3t^2 y^2}_{M(t,y)} + \underbrace{(2yt^3 + e^{\alpha t + y})}_{N(t,y)} \frac{dy}{dt} = 0$$

é exacta se e só se existe uma função "potencial", F=F(t,y), tal que

$$\left\{ \begin{array}{lcl} \frac{\partial F}{\partial t} & = & M(t,y) \\ \frac{\partial F}{\partial y} & = & N(t,y) \end{array} \right.$$

(por definição de equação exacta).

Uma vez que as expressões de M(t,y) e N(t,y) são continuamente diferenciáveis em todo o \mathbb{R}^2 , uma condição necessária e suficiente para a existência de uma tal função potencial F é 3

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial t} \ .$$

Há então que escolher lpha de modo a satisfazer a equação

$$e^{\alpha t + y} + 6t^2 y = 6yt^2 + \alpha e^{\alpha t + y} \iff \alpha = 1$$
.

Para que a equação seja exacta, a constante α deve ser 1.

Resolução da equação para $\alpha = 1$:

 $\overline{\textit{Quando } \alpha = 1}$, encontra-se uma função "potencial", F, resolvendo o sistema de equações

$$\begin{cases} \frac{\partial F}{\partial t} &= e^{t+y} + 3t^2y^2 \\ \frac{\partial F}{\partial y} &= 2yt^3 + e^{t+y} \end{cases}$$

$$\iff \begin{cases} F(t,y) &= \int (e^{t+y} + 3t^2y^2) dt + f(y) \\ F(t,y) &= \int (2yt^3 + e^{t+y}) dy + g(t) \end{cases}$$

$$\iff \begin{cases} F(t,y) &= e^{t+y} + t^3y^2 + f(y) \\ F(t,y) &= y^2t^3 + e^{t+y} + g(t) \end{cases}$$

Uma solução possível é

$$F(t,y) = t^3 y^2 + e^{t+y}$$
.

A equação dada é equivalente a

$$\frac{d}{dt}F(t,y(t)) = 0 \iff F(t,y) = c \iff t^3y^2 + e^{t+y} = c.$$

Solução:

$$t^3y^2+e^{t+y}=c \qquad (\star) \qquad {\it com} \ c\in \mathbb{R} \ .$$

Verificação:

$$t^3y^2 + e^{t+y} \qquad \text{\'e constante}$$

$$\iff \quad \frac{d}{dt}\left(t^3y^2 + e^{t+y}\right) = 0$$

$$\iff \quad \frac{\partial}{\partial t}\left(t^3y^2 + e^{t+y}\right) + \frac{\partial}{\partial y}\left(t^3y^2 + e^{t+y}\right)\frac{dy}{dt} = 0$$

$$\iff \quad 3t^2y^2 + e^{t+y} + (2yt^3 + e^{t+y})\frac{dy}{dt} = 0 \quad - \text{ok!}$$

 $^{^3\}text{Cf.}$ Análise Matemática III: condição para um campo vectorial (M(t,y),N(t,y)) ser o gradiante, $\nabla F=(\frac{\partial F}{\partial t},\frac{\partial F}{\partial y})$, de alguma função escalar F(t,y).

Comentário: Pelo teorema da função implícita, se for dada uma condição inicial, $y(t_0) = y_0$, a expressão (\star) determina y = y(t) em torno de $t = t_0$, desde que seja satisfeita a condição

$$\frac{\partial F}{\partial y}(t_0, y_0) \neq 0 ,$$

ou seja,

$$2y_0t_0^3 + e^{t_0+y_0} \neq 0$$
,

É possível ver que para esta equação diferencial, as condições iniciais só são admissíveis se satisfizerem a condição do teorema da função implícita:

Suponha-se (por redução ao absurdo) que existia uma solução com condição inicial (t_0,y_0) tal que

$$2y_0t_0^3 + e^{t_0+y_0} = 0$$
.

A própria EDO avaliada em (t_0,y_0) imporia também que

$$e^{t_0+y_0}+3t_0^2y_0^2=0$$
.

Nesse caso, teria que ser $t_0 \neq 0$ e $y_0 \neq 0$. Então

$$2y_0t_0^3 = 3t_0^2y_0^2 \iff 2t_0 = 3y_0 \iff y_0 = \frac{2}{3}t_0$$
.

Voltando a substituir, ficaria

$$0 = 2y_0 t_0^3 + e^{t_0 + y_0} \Big|_{y_0 = \frac{2}{3}t_0} = \frac{4}{3} t_0^4 + e^{\frac{5}{3}t_0} ,$$

o que é impossível, pois a exponencial é sempre positiva e o primeiro termo nunca é negativo.

Mostre que qualquer equação separável da forma

(18)

$$\frac{dy}{dt} = \frac{g(t)}{f(y)}$$

é exacta.

Resolução: Para $f(y) \neq 0$,

$$\frac{dy}{dt} = \frac{g(t)}{f(y)} \iff \underbrace{g(t)}_{M(t,y)} \underbrace{-f(y)}_{N(t,y)} \frac{dy}{dt} = 0 .$$

A equação é exacta se e só se existe uma função "potencial", F=F(t,y), tal que

$$\begin{cases} \frac{\partial F}{\partial t} &= M(t,y) \\ \frac{\partial F}{\partial y} &= N(t,y) \end{cases}$$

ou seja,

$$\begin{cases} \frac{\partial F}{\partial t} &= g(t) \\ \frac{\partial F}{\partial y} &= -f(y) \end{cases}$$

$$\iff$$
 $F(t,y) = \int g(t) dt - \int f(y) dy + c$

Portanto, qualquer equação separável da forma

$$\frac{dy}{dt} = \frac{g(t)}{f(y)}$$

é exacta; além disso, é equivalente, para $f(y) \neq 0$, a

$$\int g(t) dt - \int f(y) dy =$$
 constante .

Equações Redutíveis a Exactas

(19)

Resolva o seguinte problema de valor inicial

$$3ty + y^2 + (t^2 + ty)\dot{y} = 0$$
, $y(2) = 1$

Resolução: A equação não é linear nem separável. Também não é exacta porque:

$$\frac{\partial}{\partial y} (3ty + y^2) = 3t + 2y \neq 2t + y = \frac{\partial}{\partial t} (t^2 + ty)$$

Assim, resta tentar encontrar um factor de integração μ . A equação que μ tem de verificar para ser um factor de integração é

$$\frac{\partial}{\partial y} \left((3ty + y^2)\mu \right) = \frac{\partial}{\partial t} \left((t^2 + ty)\mu \right)$$

$$\iff (3t + 2y)\mu + (3ty + y^2)\frac{\partial \mu}{\partial y} = (2t + y)\mu + (t^2 + ty)\frac{\partial \mu}{\partial t}$$

Como não se aprende a resolver estas equações em AMIV, tenta-se achar um factor de integração que seja só função de y ou só função de t. Nesse caso a equação anterior simplifica-se porque uma das derivadas parciais de μ é nula.

A equação tem um factor de integração $\mu = \mu(y)$? Em caso afirmativo, o factor de integração tem de satisfazer a equação:

$$\frac{\partial}{\partial y} \left(\mu(3ty + y^2) \right) = \frac{\partial}{\partial t} \left(\mu(t^2 + ty) \right)$$

$$\iff \frac{d\mu}{dy} (3ty + y^2) + \mu(y)(3t + 2y) = \mu(y)(2t + y)$$

$$\iff \frac{\frac{d\mu}{dy}}{\mu} = \frac{t + y}{3ty + y^2}$$

Esta equação não tem solucões! Isto porque no termo esquerdo tem-se uma função de y e no termo direito uma função que depende de t e de y. Conclui-se que não existe um factor integrante que seja função só de y.

A equação tem um factor de integração $\mu = \mu(t)$? Em caso afirmativo, o factor de integração tem de satisfazer a equação:

$$\frac{\partial}{\partial y} \left(\mu(3ty + y^2) \right) = \frac{\partial}{\partial t} \left(\mu(t^2 + ty) \right) \qquad (\star)$$

$$\iff \quad \mu(t)(3t + 2y) = \mu(t)(2t + y) + \frac{d\mu}{dt}(t^2 + ty)$$

$$\iff \quad \frac{\frac{d\mu}{dt}}{\mu} = \frac{t + y}{ty + t^2}$$

$$\iff \quad \frac{\frac{d\mu}{dt}}{\mu} = \frac{1}{t}$$

Esta equação tem solução. Pode-se tomar por exemplo $\mu(t)=t$ para $t\neq 0$. Resolução da equação usando o factor de integração: Multiplicando a equação pelo factor de integração obtem-se

$$3t^2y + y^2t + (t^3 + t^2y)\dot{y} = 0 \qquad (\star\star)$$

que é equivalente ao problema que queremos resolver para $t \neq 0$. Como \mathbb{R}^2 é simplesmente conexo, a condição (\star) é suficiente para a existência de uma função potencial para o campo vectorial (M,N)

$$M(t,y) = 3t^2y + y^2t$$
 , $N(t,y) = t^3 + t^2y$

Sendo $\phi(t,y)$ a função potencial tem-se

$$\begin{cases} \frac{\partial \phi}{\partial t} = 3t^2y + y^2t \\ \frac{\partial \phi}{\partial y} = t^3 + t^2y \end{cases} \iff \begin{cases} \phi(t,y) = t^3y + \frac{1}{2}y^2t^2 + A(y) \\ \phi(t,y) = t^3y + \frac{1}{2}t^2y^2 + B(t) \end{cases}$$

Portanto, um potencial para o campo (M, N) é

$$\phi(t,y) = t^3 y + \frac{1}{2} t^2 y^2$$

A equação (**) escreve-se

$$\frac{d}{dt}\left(\phi(t, y(t))\right) = 0$$

Portanto as soluções da equação verificam

$$t^3y + \frac{1}{2}t^2y^2 = C$$

e a constante pode ser determinada pelo valor inicial

$$y(2) = 1 \implies 2^3 1 + \frac{1}{2} 2^2 1^2 = C \iff C = 10$$

Ou seja, utilizando a fórmula resolvente,

$$t^{3}y + \frac{1}{2}t^{2}y^{2} - 10 = 0$$

$$\iff y = \frac{-t^{3} \pm \sqrt{t^{6} + 20t^{2}}}{t^{2}}$$

$$\iff y = -t \pm \sqrt{t^{2} + \frac{20}{t^{2}}}$$

A condição inicial força o sinal "+" na equação anterior. Solução do problema de valor inicial:

$$y(t) = -t + \sqrt{t^2 + \frac{20}{t^2}}$$

Esta é a solução do problema de valor inicial pretendido para $t \neq 0$. Como o limite de y(t) é infinito quando $t \to 0$, conclui-se que o intervalo máximo de definição da solução é $]0,+\infty[$ (e portanto a condição que impusemos ($t \neq 0$) é irrelevante para a solução deste problema de valor inicial).

Verificação:

$$y(2) = -2 + \sqrt{4 + \frac{20}{4}} = 1$$

Quanto à equação, fazendo $u=\sqrt{t^2+\frac{20}{t^2}}$ e notando que

$$\frac{du}{dt} = \frac{2t - \frac{40}{t^3}}{2u} = \frac{t^4 - 20}{t^3u}$$

tem-se

(20)

$$3ty + y^{2} + (t^{2} + ty)\dot{y}$$

$$= 3t(-t+u) + (-t+u)^{2} + (t^{2} + t(-t+u))\left(-1 + \frac{t^{4} - 20}{t^{3}u}\right)$$

$$= -3t^{2} + 3tu + t^{2} - 2tu + u^{2} - tu + t^{2} - \frac{20}{t^{2}}$$

$$= 0 - ok!$$

Resolva o seguinte problema de valor inicial

$$y^3 + 2yt + (4y^2t + 2t^2)\dot{y} = 0$$
, $y(1) = 1$

A equação diferencial

$$6y(t+y) + t(4t+9y)\frac{dy}{dt} = 0$$

admite um factor de integração da forma $\mu(ty)$, ou seja, um factor μ que só depende do produto das variáveis ty. Determine-o e dê a solução da equação com y(1)=1. Sugestão: A equação diferencial que dá $\mu=\mu(ty)$ pode ser escrita em termos de uma só variável v=ty.

Resolução:

Cálculo de um factor de integração: Uma função, $\mu=\mu(ty)$, que nunca se anula é factor de integração da equação dada se e só se

$$\mu(ty)\left[6y(t+y)+t(4t+9y)\frac{dy}{dt}\right]=0 \qquad \mbox{\'e equação exacta}.$$

Para tal, uma condição necessária é

$$\frac{\partial}{\partial y} \left[\mu(ty) 6y(t+y) \right] = \frac{\partial}{\partial t} \left[\mu(ty) t(4t+9y) \right]$$

$$\iff t\mu'(ty) 6y(t+y) + 6t\mu(ty) + 12y\mu(ty) =$$

$$= y\mu'(ty) t(4t+9y) + \mu(ty) 8t + \mu(ty) 9y$$

$$\iff \underbrace{\left(2t^2y - 3ty^2 \right)}_{ty(2t-3y)} \mu'(ty) + \underbrace{\left(3y - 2t \right)}_{-(2t-3y)} \mu(ty) = 0.$$

Pondo v=ty, é suficiente resolver a seguinte equação separável com $\mu \neq 0$ e $v \neq 0$:

$$\begin{split} v\mu'(v) - \mu(v) &= 0 &\iff \frac{\mu'(v)}{\mu(v)} = \frac{1}{v} \\ &\iff \ln|\mu(v)| = \ln|v| + c \\ &\iff |\mu(v)| = k|v| \qquad \operatorname{com} \, k > 0 \\ &\iff \mu(v) = kv \qquad \operatorname{com} \, k \neq 0 \;. \end{split}$$

Como basta um factor de integração, escolhemos k=1, ou seja,

$$\mu(ty) = ty$$
.

Resolução da EDO usando o factor de integração encontrado: Para $t \neq 0$ e $y \neq 0$, a equação dada é equivalente à seguinte equação exacta:

$$ty\left[6y(t+y) + t(4t+9y)\frac{dy}{dt}\right] = 0.$$

Uma função "potencial", F(t,y), determina-se através de

$$\begin{cases} \frac{\partial F}{\partial t} &= 6ty^2(t+y) \\ \frac{\partial F}{\partial y} &= t^2y(4t+9y) \end{cases}$$

$$\iff \begin{cases} F(t,y) &= \int 6ty^2(t+y) dt + f(y) \\ F(t,y) &= \int t^2y(4t+9y) dy + g(t) \end{cases}$$

$$\iff \begin{cases} F(t,y) &= 2t^3y^2 + 3t^2y^3 + f(y) \\ F(t,y) &= 2t^3y^2 + 3t^2y^3 + g(t) \end{cases}$$

Uma solução possível é

$$F(t,y) = 2t^3y^2 + 3t^2y^3 .$$

A solução da equação diferencial é dada implicitamente por

$$\frac{d}{dt}F(t,y) = 0 \iff F(t,y) = c \iff 2t^3y^2 + 3t^2y^3 = c.$$

Verificação: Para ty \neq 0,

$$2t^3y^2 + 3t^2y^3 \qquad \text{\'e constante}$$

$$\iff \frac{d}{dt}\left(2t^3y^2 + 3t^2y^3\right) = 0$$

$$\iff \frac{\partial}{\partial t}\left(2t^3y^2 + 3t^2y^3\right) + \frac{\partial}{\partial y}\left(2t^3y^2 + 3t^2y^3\right)\frac{dy}{dt} = 0$$

$$\iff ty[6y(t+y)] + ty[t(4t+9y)]\frac{dy}{dt} = 0$$

$$\iff 6y(t+y) + t(4t+9y)\frac{dy}{dt} = 0 \qquad - \text{ok!}$$

Solução do problema de valor inicial: A condição y(1)=1 impõe que a constante c satisfaça

$$2 \cdot 1 \cdot 1 + 3 \cdot 1 \cdot 1 = c \iff c = 5$$
.

Pelo teorema da função implícita, como

$$\frac{\partial F}{\partial y}(1,1) = t^2 y(4t + 9y)\big|_{t=1,y=1} = 13 \neq 0$$
,

conclui-se que a solução do problema de valor inicial é dada por

$$2t^3y^2 + 3t^2y^3 = 5$$

para t numa vizinhança de $t_0 = 1$.

Comentário: Esta solução poderia ser escrita explicitamente usando a fórmula resolvente para a equação do 3º grau.

Existência, Unicidade e Extensão de Soluções

Determine uma solução contínua do problema de valor inicial

$$\begin{cases} \frac{dy}{dt} + y = g(t) \\ y(0) = 0 \end{cases}$$

(22) onde

$$g(t) = \begin{cases} 2 & \text{se } 0 \le t \le 1 \\ 0 & \text{se } t > 1 \end{cases}$$

Resolução: Para $0 \le t \le 1$, $\mu(t) = e^t$ é um factor de integração:

$$\frac{dy}{dt} + y = 2 \iff e^t \frac{dy}{dt} + e^t y = 2e^t$$

$$\iff \frac{d}{dt}(e^t y) = 2e^t$$

$$\iff e^t y = \int 2e^t dt + c$$

$$\iff y(t) = e^{-t}(2e^t + c) = 2 + ce^{-t}$$

Condição inicial: $0 = y(0) = 2 + c \Rightarrow c = -2$

Solução do problema de valor inicial para $0 \le t \le 1$:

$$y(t) = 2 - 2e^{-t}$$
.

Continuação da solução para t>1: Quando t>1, a equação é homogénea; para $y\neq 0$ resolve-se pelo método de separação de variáveis:

$$\begin{array}{ll} \frac{dy}{dt} + y = 0 & \Longleftrightarrow & \frac{\dot{y}}{y} = -1 \\ & \Longleftrightarrow & \int \frac{\dot{y}}{y} \ dt = -\int dt + c \\ & \Longleftrightarrow & \int \frac{1}{y} \ dy = -t + c \\ & \Longleftrightarrow & \ln|y| = -t + c \\ & \Longleftrightarrow & |y(t)| = ke^{-t} \qquad \text{onde } k > 0 \\ & \Longleftrightarrow & y(t) = ke^{-t} \qquad \text{onde } k \neq 0 \ . \end{array}$$

A função y(t)=0, $\forall t$, também é solução. Logo, a solução geral da equação diferencial para t>1 é

$$y(t) = ke^{-t}$$
 onde $k \in \mathbb{R}$.

Para obter uma solução contínua do problema posto, a solução para t>1 deve satisfazer uma condição inicial em t=1 que a faça coincidir com o valor da solução no intervalo $0 \le t \le 1$:

$$y(1) = 2 - 2e^{-1} .$$

Assim impõe-se $ke^{-1}=2-2e^{-1}$, ou seja, k=2e-2. Solução:

$$y(t) = \begin{cases} 2 - 2e^{-t}, & 0 \le t \le 1\\ (2e - 2)e^{-t}, & t > 1. \end{cases}$$

Verificação:

$$\frac{dy}{dt} = \begin{cases} \frac{d}{dt} [2 - 2e^{-t}] = 2e^{-t}, & 0 \le t < 1\\ \frac{d}{dt} [(2e - 2)e^{-t}] = (2 - 2e)e^{-t}, & t > 1. \end{cases}$$

$$\begin{array}{rcl} \frac{dy}{dt} + y & = & \begin{cases} 2e^{-t} + 2 - 2e^{-t} = 2 \;,\; 0 \leq t < 1 \\ (2 - 2e)e^{-t} + (2e - 2)e^{-t} = 0 \;,\; t > 1 \end{cases} \\ & = & g(t) \quad \textit{para} \; t \neq 1 \qquad - \textit{ok}! \end{array}$$

Comentário: Esta "solução" contínua não é de classe C^1 , porque os limites laterais de $\frac{dy}{dt}$ em t=1 são diferentes:

$$\lim_{t \to 1^{-}} \frac{dy}{dt} = \lim_{t \to 1^{-}} 2e^{-t} = 2e^{-1}$$

$$\lim_{t \to 1^+} \frac{dy}{dt} = \lim_{t \to 1^+} (2 - 2e)e^{-t} = (2 - 2e)e^{-1}.$$

Portanto, esta "solução" não é solução do problema de valor inicial no sentido estrito da definição de "solução de equação diferencial" onde se impõe ter primeira derivada contínua (i.e., ser de classe C^1). \diamondsuit

Prove que y(t)=-1, $\forall t\in\mathbb{R}$, é a única solução do problema de valor inicial

(23)
$$\begin{cases} \frac{dy}{dt} = t(1+y) \\ y(0) = -1 \ . \end{cases}$$

Resolução: A função y(t)=-1, $\forall t\in\mathbb{R}$, é claramente solução do problema dado porque

$$\frac{d}{dt}(-1) = 0 \qquad e \qquad t(1+(-1)) = 0 , \quad \forall t \in \mathbb{R} .$$

Como f(t,y)=t(1+y) é uma função de classe C^1 definida em \mathbb{R}^2 , ela é localmente lipschitziana relativamente a y em \mathbb{R}^2 . Pelo teorema de Picard, qualquer problema de valor inicial

$$\begin{cases} \frac{dy}{dt} = f(t, y) = t(1+y) \\ y(t_0) = y_0 \end{cases}$$

tem uma única solução. Em particular, y(t) = -1, $\forall t \in \mathbb{R}$, é a única solução de

$$\begin{cases} \frac{dy}{dt} = t(1+y) \\ y(0) = -1 \end{cases}.$$

Determine todas as soluções de classe C^1 do problema de valor inicial

$$\frac{dy}{dt} = \sqrt{y} , \qquad y(0) = 0 .$$

Mostre que existe uma solução de classe C^1 para o problema de valor inicial

$$\begin{cases} \frac{dy}{dt} = t\sqrt{1 - y^2} \\ y(0) = -1 \end{cases}$$

(25) diferente da solução y(t) = -1, $\forall t \in \mathbb{R}$.

Sugestão: Para |y|<1 a equação pode ser resolvida como equação separável. Obtenha dessa maneira um par de soluções com a propriedade $y(t) \to -1$ quando $t \to 0^+$ ou $t \to 0^-$, cole-as e estenda ao resto de $\mathbb R$ como constante.

Explique porque é que isto não contradiz o teorema de Picard.

Resolução: De acordo com a sugestão, resolve-se a equação diferencial para |y| < 1 como equação separável:

$$\frac{dy}{dt} = t\sqrt{1 - y^2} \iff \frac{\frac{dy}{dt}}{\sqrt{1 - y^2}} = t$$

$$\iff \int \frac{1}{\sqrt{1 - y^2}} dy = \int t dt + c$$

$$\iff \arcsin y = \frac{t^2}{2} + c$$

$$\iff y(t) = \sin(\frac{t^2}{2} + c) .$$

Para que y(0)=-1, escolhemos $c=-\frac{\pi}{2}$. Para que |y|<1, o argumento do seno tem que ser

$$-\frac{\pi}{2} < \frac{t^2}{2} - \frac{\pi}{2} < \frac{\pi}{2} \quad \Longleftrightarrow \quad 0 < t^2 < 2\pi$$

$$\iff \quad t \in]-\sqrt{2\pi}, 0[\text{ ou } t \in]0, \sqrt{2\pi}[\ .$$

Sejam

$$y^{-}(t) = \sin(\frac{t^{2}}{2} - \frac{\pi}{2}) , \qquad t \in]-\sqrt{2\pi}, 0[,$$

 $y^{+}(t) = \sin(\frac{t^{2}}{2} - \frac{\pi}{2}) , \qquad t \in]0, \sqrt{2\pi}[.$

Estas soluções podem-se colar em t=0 e podem-se estender para $t\geq \sqrt{2\pi}$ ou $t\leq -\sqrt{2\pi}$ como sendo a constante 1.

Solução:

$$y(t) \stackrel{\text{def}}{=} \begin{cases} \sin(\frac{t^2}{2} - \frac{\pi}{2}) , & |t| < \sqrt{2\pi} \\ 1 , & |t| \ge \sqrt{2\pi} \end{cases}$$

Note-se que esta função é continuamente diferenciável em todo o $\mathbb R$ (em particular, a derivada em $t=-\sqrt{2\pi}$ ou em t=0 ou em $t=\sqrt{2\pi}$ é 0).

Verificação:

$$\frac{dy}{dt} = \begin{cases} t \cos(\frac{t^2}{2} - \frac{\pi}{2}) , & |t| < \sqrt{2\pi} \\ 0 , & |t| \ge \sqrt{2\pi} \end{cases}$$

$$t\sqrt{1 - y^2} = \begin{cases} t\sqrt{1 - \sin^2(\frac{t^2}{2} - \frac{\pi}{2})} , & |t| < \sqrt{2\pi} \\ 0 , & |t| \ge \sqrt{2\pi} \end{cases}$$

$$= \begin{cases} t \cos(\frac{t^2}{2} - \frac{\pi}{2}) , & |t| < \sqrt{2\pi} \\ 0 , & |t| \ge \sqrt{2\pi} \end{cases}$$

$$- ok!$$

Relação com o teorema de Picard: A equação diferencial é da forma

$$\frac{dy}{dt} = f(t, y)$$

com $f(t,y)=t\sqrt{1-y^2}$ definida para $t\in\mathbb{R}$ e $y\in[-1,1].$ Pelo teorema de Picard, a solução do problema de valor inicial

$$\begin{cases} \frac{dy}{dt} = f(t, y) \\ y(t_0) = y_0 \end{cases}$$

existe e é única se f for localmente lipschitziana em relação a y num domínio contendo (t_0, y_0) .

Neste caso, a função $f(t,y)=t\sqrt{1-y^2}$ não é localmente lipschitziana em relação a y para qualquer domínio contendo $(t_0,y_0)=(0,-1)$. A condição falha exactamente em y=-1 porque

$$\lim_{y \to -1} \frac{\partial f}{\partial y} = \lim_{y \to -1} \frac{-ty}{\sqrt{1 - y^2}} = \infty \quad \text{ para } t \approx 0 \; , t \neq 0 \; ,$$

o que implica que

$$\lim_{y \to -1} \frac{f(t,y) - f(t,-1)}{y - (-1)} = \infty \quad \ \mbox{para} \ t \approx 0 \ , t \neq 0 \ .$$

Logo, qualquer que seja o intervalo $[-1,-1+\varepsilon]$, não pode existir uma constante L_{ε} satisfazendo⁴

$$|f(t,y)-f(t,-1)|\leq L_\varepsilon|y+1|\ ,\qquad \forall y\in[-1,-1+\varepsilon]\ ,$$
 para $t\approx 0,\ t\neq 0.$

Comentário:

- A função f(t,y) é localmente lipschitziana em relação a y para $y \in]-1,1[$, porque a derivada parcial $\frac{\partial f}{\partial y}$ é contínua para $y \in]-1,1[$.
- A função $y(t)=\sin(\frac{t^2}{2}-\frac{\pi}{2})$, $\forall t\in\mathbb{R}$, não é solução da equação diferencial. De facto, a igualdade $\sqrt{1-\sin^2x}=\cos x$ usada na verificação só é verdadeira quando $-\frac{\pi}{2}+2k\pi\leq x\leq \frac{\pi}{2}+2k\pi$ para algum $k\in\mathbb{Z}$. Para outros valores de x, o co-seno é negativo e tem-se $\sqrt{1-\sin^2x}=-\cos x$.

⁴Cf. definição de função localmente lipschitziana.

 \Diamond

Mostre que a solução do seguinte problema de valor inicial existe, é única e está definida para $0 \le t \le 1$:

$$\dot{y} = y^2 + \cos t^2$$
, $y(0) = 0$

Resolução: Esta equação não pode ser resolvida explicitamente pelos métodos estudados. No entanto, a resolução explícita não é necessária para responder à questão.

A função $f(t,y)=y^2+\cos t^2$ é de classe C^1 em \mathbb{R}^2 e portanto, o teorema de Picard garante a existência e unicidade da solução do problema de valor inicial. O teorema garante também que a solução do problema de valor inicial pode ser prolongada a um intervalo máximo de definição]a,b[(contendo 0) tal que quando $t\to a^+$ ou $t\to b^-$, (t,y(t)) tende para a fronteira do domínio de f. Uma vez que f está definida em todo o \mathbb{R}^2 , isto significa que $(t,y(t))\to\infty$ nos extremos do intervalo de definição. Em particular, se a (respectivamente b) for finito então a solução explode para t=a (respectivamente $t\to b$), isto é, $y(t)\to\infty$ quando $t\to a$ (respectivamente $t\to b$).

Assim, para mostrar que o intervalo de definição da solução contém [0,1] é suficiente mostrar que a solução y(t) não explode para $t \leq 1$. Uma maneira de fazer isto é arranjar dois problemas de valor inicial

$$\frac{du}{dt} = f(t, u) \quad , \quad u(0) = 0$$

$$\frac{dv}{dt} = g(t, v) \quad , \quad v(0) = 0$$

cujos intervalos de definição contenham [0,1] e que verifiquem

Para que esta última condição seja verificada basta ⁵ que

$$f(t,y) \le y^2 + \cos t^2 \le g(t,y)$$

Uma vez que, para $0 \le t \le 1$ se tem

(26)

$$0 \le y^2 + \cos t^2 \le y^2 + 1$$

pode-se considerar os problemas de valor inicial

$$\frac{du}{dt} = 0 \quad , \quad u(0) = 0$$

$$\frac{dv}{dt} = v^2 + 1$$
 , $v(0) = 0$

O primeiro tem solução constante u(t)=0. Quanto ao segundo, trata-se de uma equação separável

$$\frac{1}{v^2 + 1} \cdot \frac{dv}{dt} = 1$$

$$\iff \frac{d}{dt}(\arctan v) = 1$$

$$\iff v(t) = \tan(t + c)$$

em que c é uma constante real. A condição inicial implica c=0, portanto a solução é

$$v(t) = \tan t$$

⁵ Ver Proposição 3.2.11, página 160, do livro "Equações Diferenciais Ordinárias" por Fernando Pestana da Costa.

com intervalo máximo de definição] $-\frac{\pi}{2}, \frac{\pi}{2}$ [. Conclui-se que

$$0 \le y(t) \le \tan t$$
, para $0 \le t \le 1$

o que mostra que o intervalo de definição de y(t) contém [0,1].

Mostre que as soluções dos seguintes problemas de valor inicial existem, são únicas e estão definidas nos intervalos indicados:

(27) (a)
$$\dot{y} = y + e^{-y} + e^{-t}$$
, $y(0) = 0$, $0 \le t \le 1$
(b) $\dot{y} = e^{-t} + \ln(1 + y^2)$, $y(0) = 0$, $0 \le t < +\infty$

(b)
$$\dot{y} = e^{-t} + \ln(1+y^2)$$
 , $y(0) = 0$, $0 \le t < +\infty$

Campos de Direcções

Esboce o campo de direcções e trace os respectivos tipos de solução da equação diferencial

(28)
$$\frac{dy}{dt} = y(y-2) \ .$$

Resolução: Para cada $c \in \mathbb{R}$, o conjunto dos pontos $(t,y) \in \mathbb{R}^2$ onde o gráfico da solução y(t) tem declive $\frac{dy}{dt} = c$, é determinado pela equação

$$y(y-2) = c.$$

Casos especiais:

$$c < -1 \\ c = -1 \\ c = -\frac{1}{2}$$

$$y^2 - 2y - c = 0 \iff y = 1 \pm \sqrt{1 + c} \text{ \'e impossível}$$

$$y^2 - 2y + 1 = 0 \iff y = 1 \\ c = -\frac{1}{2}$$

$$y^2 - 2y + \frac{1}{2} = 0 \iff y = 1 \pm \frac{\sqrt{2}}{2}$$

$$y = 0 \text{ ou } y = 2$$

$$c = 1 \\ c = 3 \\ c = 8$$

$$y^2 - 2y - 1 = 0 \iff y = 1 \pm \sqrt{2}$$

$$y^2 - 2y - 3 = 0 \iff y = 1 \pm 2$$

$$y^2 - 2y - 8 = 0 \iff y = 1 \pm 3$$

Esboço do campo de direcções:

Traçado dos tipos de solução:

Esboce os campos de direcções e trace os vários tipos de solução para as seguintes equações diferenciais
(a) $\dot{y}=y(y^2-1)$ (b) $\dot{y}=t^2+y^2$ (c) $\dot{y}=\frac{y+t}{y-t}$

(a)
$$\dot{y} = y(y^2 - 1)$$

(b)
$$\dot{y} = t^2 + y^2$$

(c)
$$\dot{y} = \frac{y+t}{y-t}$$

(29)