

Section 4 Time Complexity & Sorting Algorithms (1)

Presentation by Asem Alaa

Big O Notation for Algorithm Analysis

Big O Notation for Algorithm AnalysisWhat is an Algorithm

Big O Notation for Algorithm AnalysisWhat is an Algorithm

According to Donald Knuth, the word *algorithm* is derived from the name "al-Khowârizmî," a ninth-century Persian mathematician.

Big O Notation for Algorithm AnalysisWhat is an Algorithm

According to Donald Knuth, the word *algorithm* is derived from the name "al-Khowârizmî," a ninth-century Persian mathematician.

In programming,

- *algorithm* is a function with some logic.
- Very general term.
- The meanArray function is an *algorithm
- Similary, varianceArray, minArray, maxArray, factorial, and power.

We are **concerned** about the function running time **w.r.t input size n**.

- T(n) is the running time function.
- *n* is size of the data structure.
- printing array of size 10 takes less time than array of size 1000 (T(10) < T(100))

Example

```
void printArray( double *array, int size ) // n = size
{
    for( int i = 0; i < size; ++i )
    {
        std::cout << array[i]; // T1(n) = n
        std::cout << " "; // T2(n) = n
    }
    std::cout << "\n"; // T3(n) = 1
}</pre>
```

$$T(n) = T1 + T2 + T3 = n + n + 1 = 1 + 2n$$
 (§ linear)

• *n* is size of the data structure.

Example

Alternatively, factor out *n*

```
void printArray( double *array, int size ) // n = size
{
    for( int i = 0; i < size; ++i ) // T1(n) = n * ( T2 + T3 )
    {
        std::cout << array[i]; // T2(n) = 1
        std::cout << " "; // T3(n) = 1
    }
    std::cout << "\n"; // T4(n) = 1
}</pre>
```

$$T(n) = 1 + n(T3 + T4) = 1 + 2n$$
 (§ linear)

• *n* is size of the data structure.

Example

slight modification..

```
void printArray( double *array, int size ) // n = size
{
    for( int i = 0; i < size; ++i ) // T1(n) = n * ( T2 )
    {
        std::cout << array[i] << " "; // T2(n) = 1
    }
    std::cout << "\n"; // T4(n) = 1
}</pre>
```

$$T(n) = T1 + T4 = 1 + n(T4) = 1 + n$$

- Conclusion: T(n) is not reliable estimate!
- But T(n) is still linear!

```
#include <iostream>
void printArray( double *array, int size ) {
    for( int i = 0; i < size; ++i )
        std::cout << array[i] << " ";
}
int main() {
    double a[] = {1.2, 1.3, -1.0, 0.4};
    printArray(a, 4);
}</pre>
```

Estimating the running time of an algorithm by T(n) is unrealistic because the running time will vary:

- 1. from platform to another (e.g Core i3 vs Core i9).
- 2. from compiler to another (e.g GCC vs Clang vs MSVC).

Even if used the same compiler and platform, it may change from time to time (e.g summer vs. winter)

Estimating the running time T(n)The asymptotic running time (big O notation)

For either

•
$$T_a(n) = 2n + 1$$

•
$$T_b(n) = n + 1$$

•
$$T_c(n) = 4n + 5$$

•
$$T_d(n) = 6n + 3$$

• The n term will dominate the function T(n) at large n values.

So, we propose "big O notation" to capture the dominating term at large n values.

So..

$$O(T_a(n)) = O(T_b(n)) = O(T_c(n)) = O(T_d(n)) = O(n)$$

Consider the following function varianceArray

```
double meanArray(double *array, int size){....} // 0(??)
double varianceArray( double *array, int size ) // n = size
   double sum = 0; // O(1)
    for(_int i = 0; i < size ; ++i ) // 0(??)</pre>
        double diff = meanArray( array, size ) - array[i]; // O(n)
        sum = sum + diff * diff ; // O(1)
    return sum / size; // 0(1)
```

Consider the following function varianceArray

```
double meanArray( double *array, int size){.....} // O(an + b) = O(n)
double varianceArray( double *array, int size ) // n = size
{
    double sum = 0 ; // O(1)
    for( int i = 0; i < size ; ++i ) // O(n^2)
    {
        double diff = meanArray( array, size ) - array[i]; // O(n)
        sum = sum + diff * diff ; // O(1)
    }
    return sum / size; // O(1)
}</pre>
```

Consider the following function varianceArray

```
double meanArray( double *array, int size){....} // O(an + b) = O(n)
double varianceArray( double *array, int size ) // n = size
{
    double sum = 0 ; // O(1)
    for( int i = 0; i < size ; ++i ) // O(n^2)
    {
        double diff = meanArray( array, size ) - array[i]; // O(n)
        sum = sum + diff * diff ; // O(1)
    }
    return sum / size; // O(1)
}</pre>
```

$$O(T(n)) = O(1) + O(n^2) + O(1) = O(n^2)$$

Can we do better?

Consider the following function varianceArray

```
double meanArray( double *array, int size)\{....\} // O(an + b) = O(n)
double varianceArray( double *array, int size ) // n = size
   double sum = 0; // 0(1)
   double mean = meanArray( array ); // O(n)
   for( int i = 0; i < size; ++i ) // O(n)
        double diff = mean - array[i]; // 0(1)
       sum = sum + diff * diff ; // O(1)
   return sum / size; // 0(1)
```

$$O(T(n)) = O(1) + O(n) + O(n) + O(1) = O(n)$$

 $O(n)$ is better than $O(n^2)$

Constant Performance

```
double arrayBack( double *array, int size ) // n = size
{
    double last = array[ size - 2 ]; // O(1)
    return last; // O(1)
}
```

$$O(T(n)) = O(1) + O(1) = O(1)$$

Note that:

$$O(12) = O(9 + log(3)) = O(1)$$

f(n)	dominant term	O(f(n))
$2n+3n^3+100$		
$11n + 2^n + 0.2n^3$		
$log_2(n)+5n$		
$nlog_2(n)+n^{1.5}$		

f(n)	dominant term	O(f(n))
$2n+3n^3+100$	$3n^3$	$O(n^3)$
$\boxed{11n + 2^n + n^3}$	2^n	$O(2^n)$
$log_2(n)+5n$	5n	O(n)
$nlog_2(n)+n^{1.5}$	+-	+ 🐃

f(n)	dominant term	O(f(n))
$\boxed{2n+3n^3+100}$	$3n^3$	$O(n^3)$
$\boxed{11n+2^n+n^3}$	2^n	$O(2^n)$
$log_2(n)+5n$	5n	O(n)
$nlog_2(n)+n^{1.5}$	+ 🧖	+ 🐃

To find which is dominant for large n:

$$\lim_{n o\infty}rac{nlog_2(n)}{n^{1.5}}=0 ext{ or } \infty$$

hint: **a** use l'hopital

Common asymptotic functions

{Orders of common functions}

Exercise: predict running time in seconds using small measurement

```
double meanArray(double *array, int size){.....} // O(n)
double varianceArray( double *array, int size ) { // n = size
    double sum = 0 ; // O(1)
    for( int i = 0; i < size ; ++i ) { // O(??)
        double diff = meanArray( array, size ) - array[i]; // O(n)
        sum = sum + diff * diff ; // O(1)
    }
    return sum / size; // O(1)
}</pre>
```

How to approximately estimate the function varianceArray running time for n=1000000, i.e array of **1-million** element

Givens

- The function has complexity of $O(n^2)$.
- The function executed in 2 melliseconds when n = 2000.

Exercise: predict running time in seconds using small measurement

```
double meanArray(double *array, int size)\{....\} // O(n) double varianceArray( double *array, int size ) \{....\} // O(n^2)
```

How to approximately estimate the function varianceArray running time for n = 1000000, i.e array of **1-million** element

Givens

- The function has complexity of $O(n^2)$.
- The function executed in 2 microseconds when n = 2000.

Exercise: predict running time in seconds using small measurement

```
double meanArray(double *array, int size){.....} // O(n)
double varianceArray( double *array, int size ) { .....} // O(n^2)
```

How to approximately estimate the function varianceArray running time for n=1000000, i.e array of **1-million** element

Givens

- The function has complexity of $O(n^2)$.
- The function executed in 2 microseconds when n = 2000.

Solution

$$rac{T(n_1)}{T(n_2)}pproxrac{n_1^2}{n_2^2}$$

$$T(1000000)pprox \left(rac{1000000}{2000}
ight)^2 T(2000) = 250000 imes 2$$

$$T(1000000) \approx 500000 = 0.5 \text{ seconds}$$

Problem given a collection of **n** elements, it is required to sort the elements in ascending order.

Problem given a collection of **n** elements, it is required to sort the elements in ascending order.

• **Example** the following arbitrary array:

Problem given a collection of **n** elements, it is required to sort the elements in ascending order.

• **Example** the following arbitrary array:

• After applying sorting in ascending order will result as:

Bubble Sort

Bubble Sort

Visualized Bubble Sort 1

Visualized Bubble Sort 2

6 5 3 1 8 7 2 4

Credits: CC BY-SA 3.0

Implementation

```
#include <algorithm>
// A function to implement bubble sort
void bubbleSort( double *array, int size )
    for ( int i = 0; i < size-1; i++ )
        for ( int j = 0; j < size-1; j++ )
            if ( array[j] > array[j+1])
                std::swap( array[j] , array[j+1] );
```

Time Complexity (Big O notation) Analysis

```
#include <algorithm>
// A function to implement bubble sort
void bubbleSort( std::vector< double > &array )
    for ( int i = 0; i < array.size()-1; i++ ) // T1 = n * T2
        for ( int j = 0; j < array.size()-1; j++ ) // T2 = n * T3
            if ( array[j] > arr[j+1] ) // T3 = 1
                std::swap( array[j] , array[j+1] );
```

Time Complexity (Big O notation) Analysis

```
#include <algorithm>
// A function to implement bubble sort
void bubbleSort( std::vector< double > &array )
    for ( int i = 0; i < array.size()-1; i++ ) // T1 = n * T2
        for ( int j = 0; j < array.size()-1; j++ ) // T2 = n * T3
            if ( array[j] > arr[j+1] ) // T3 = 1
                std::swap( array[j] , array[j+1] );
```

$$T(n)=T_1=n imes T_2=n imes n=n^2$$

Time Complexity (Big O notation) Analysis

```
#include <algorithm>
// A function to implement bubble sort
void bubbleSort( std::vector< double > &array )
    for ( int i = 0; i < array.size()-1; i++ ) // T1 = n * T2
        for ( int j = 0; j < array.size()-1; j++ ) // T2 = n * T3
            if ( array[j] > arr[j+1] ) // T3 = 1
                std::swap( array[j] , array[j+1] );
```

$$T(n)=T_1=n imes T_2=n imes n=n^2$$
 $O(T(n))=O(n^2)$

Selection Sort

Selection Sort

credits: GNU license

Implementation

Implementation

```
#include <algorithm>
void selectionSort( double *array, int size )
    // One by one move boundary of unsorted subarray
    for (int i = 0; i < size -1; i++)
        // Find the minimum element in unsorted array
        int min_idx = i;
        for (int j = i+1; j < size; j++)
            if ( array[j] < array[min_idx] )</pre>
                min_idx = j;
        // Swap the found minimum element with the first element
        std::swap( array[min_idx] , array[i] );
```

Complexity Analysis

```
#include <algorithm>
void selectionSort( double *array, int size ){
    for (int i = 0; i < size -1; i++) // T1 = n * ( T2 + T3 + T4 )
        int min_idx = i; // T2 = 1
        for (int j = i+1; j < size; j++) // T3 = O(n)
        {
            if ( array[j] < array[min_idx] )</pre>
                min_idx = j;
        // Swap the found minimum element with the element i
        std::swap( array[min_idx] , array[i] ); // T4 = 1
```

Complexity Analysis

```
#include <algorithm>
void selectionSort( double *array, int size ){
    for (int i = 0; i < size -1; i++) // T1 = n * ( T2 + T3 + T4 )
        int min_idx = i; // T2 = 1
        for (int j = i+1; j < size; j++) // T3 = O(n)
        {
            if ( array[j] < array[min_idx] )</pre>
                min_idx = j;
        // Swap the found minimum element with the element i
        std::swap( array[min_idx] , array[i] ); // T4 = 1
```

$$T(n)=T_1=n imes (T_2+T_3+T_4)=n imes (O(n)+2)$$
 $O(T(n))=O(n^2)$

Thank you