Introduction Realizable Training Dataset Algorithm Generalization Example

One-layer transformer for NTP task

Li Yunai

September 3, 2024

Task Set Up

- Vocabulary set: $\mathcal{V} \subset \mathbb{R}^d$ Sentence: $X = [x_1, \dots, x_L] \in \mathcal{V}^L \subset \mathbb{R}^{d \times L}$, length $L < L_{max}$
- Ground truth model: $p_L^*: X \in \mathcal{V}^L \to x_{L+1} \in \mathcal{V}$
- training data set:

$$\mathcal{D}_0 = \{ (X, x_{L+1}) | L < L_{\text{max}}, X \in \mathcal{V}^L, x_{L+1} \in \mathcal{V} \}$$

Model Architecture

Output:

$$T_{\theta}(X) := \phi(W_{\text{ov}} X \phi(X^T W_{\text{kq}} x_L)) \in [0, 1]^{|\nu|}$$

X_q partial order

- Motivation:training loss $\rightarrow 0$
- "Collocation": Consider the one-token in which only the feed forward layer works (with parameter W_t at time t). Then if the loss fuction $\to 0$, i.e $\lim_{t\to\infty} -\sum_{x\in\mathcal{D}_0} \log e_\iota(x)^\top \phi(W_t x) = 0$ then ι is injective, here $\iota(x)$ is the index of the next token, indicating the unique next token $\mathsf{n}(\mathsf{x})$ for one-token input. Call $\{x,\mathsf{n}(x)\}_{x\in\mathcal{V}}$ as **collocation**. $(p_1^*=n)$
- "order": $\mathbf{n}^{-1}(x_{L+1}) \in \{x_{\ell}\}_{\ell \leq L}$. Denote $\varphi_{\ell} \propto \exp(x_{\ell}^{\top} W_k q x_L)$ (Weight from the attention layer). Then $\varphi_{\ell} > \varphi_{\ell'}$ if $n(x_{\ell}) = x_{L+1} \neq n(x_{\ell'})$

query-dependent partial orders

Definition

Let $\mathcal{D}_0^{x^q}$ be the set of all sentences in the training dataset that has the final token x^q . Then, for any pair of tokens $x, x' \in \mathcal{V}$, $x >_{x^q} x'$ if there exists a sentence $X = [x_1, \dots, x_L] \in \mathcal{D}_0^{x^q}$ and x, x' are tokens in X such that $n(x) = x_{L+1} \neq n(x')$, where x_{L+1} is the next token of X.

token classification:

optimal/non-optimal/non-comparable/confused token (non-exist by assumption)

Realizable dataset: 1) collocation 2) well-defined $>_{x^q}$ partial order without confused token

Algorithm Design

Training W_{OV} (by single token prediction)

$$\mathcal{L}_0(W_{ov}) = -\sum_{x \in \mathcal{V}} \log \frac{\exp(e_{In(x)}^\top W_{ov} x)}{\sum_{v \le |\mathcal{V}| \exp(e_v^\top W_{ov} x)}}$$

$$W_{\text{ov}}^{(t+1)} = W_{\text{ov}}^{(t)} - \eta_0 \frac{\nabla_{W_{\text{ov}}} \mathcal{L}_0(W_{\text{ov}}^{(t)})}{\|\nabla_{W_{\text{ov}}} \mathcal{L}_0(W_{\text{ov}}^{(t)})\|}$$

Algorithm Design

Training W_{kq} Considering cross entropy loss:

$$\mathcal{L}(\theta) = -\sum_{n} \pi^{(n)} \left(\log \left(\sum_{v} e_{\text{In}(X^{(n)})}^{\top} \bar{\mathcal{T}}_{\theta}(X^{(n)}) \right) - e_{\text{In}(X^{(n)})}^{\top} \bar{\mathcal{T}}_{\theta}(X^{(n)}) \right)$$

Where $X^{(n)}$ denotes the n-th sentence, $X_{-1}^{(n)}$ is the last token,

$$\pi^{(n)} = \frac{\sum_{(X, x_{L+1}) \in \mathcal{D}_0} \mathbf{1} \big\{ X = X^{(n)} \big\}}{|\mathcal{D}_0|}, \ \bar{\mathbf{T}}_{\theta}(X) = W_{\text{ov}} X \phi(X^\top W_{\text{kq}} X_{-1}^{(n)}).$$

Then the parameter is trained by:

$$W_{\mathrm{kq}}^{(t+1)} = W_{\mathrm{kq}}^{(t)} - \eta \frac{\nabla_{W_{\mathrm{kq}}} \mathcal{L}(\theta^{(t)})}{\|\nabla_{W_{\mathrm{kq}}} \mathcal{L}(\theta^{(t)})\|}, \text{where } \theta^{(t)} = (W_{\mathrm{ov}}^{(T)}, W_{\mathrm{kq}}^{(t)})$$

From the perspective of hard margin problem

W_{ov}

$$W_{\text{ov}}^* = \arg\min \|W\|$$

s.t.
$$(e_{v^*} - e_v)Wx \ge 1$$
, $\forall v^* = \ln(x), v \ne \ln(x)$

W_{kq}

$$W_{\mathsf{kq}}^* = \arg\min \|W\|$$

s.t.
$$(x_{\ell_*}^{(n)} - x_{\ell}^{(n)})WX_{-1}^{(n)} \ge 1$$
, $\forall \ell_* \in l^{(n)}, \ell \notin l^{(n)}, \forall n$

I(n) is the set of indices of the optimal tokens

Generalization ability

If the trained transformer takes input X with query x^q that consists of a non-comparable and non-optimal tokens, then the prediction made by $T_{\theta^{(t)}}(X)$ is $n(x_0)$ with high probability:

Theorem

With certain assumptions in effect and $t = \Omega(\log(1/\epsilon))$. Then there exists a constant C_0 such that

$$(x_* - x_0)^{\top} W_{kq}^{(t)} x^q \ge C_0 t, \quad (x_0 - x)^{\top} W_{kq}^{(t)} x^q \ge C_0 t,$$

$$\forall x_* \in \mathcal{O}_{x^q}, x_0 \in \mathcal{M}_{x^q}, x \in \mathcal{N}_{x^q}.$$

Subject, Verb, Object& Punctuation mark

V=SVOP, VOP, OPP, PSV Collocation:(S, V),(V, O),(O, P),(P, S).

Partial order under query S. $S>_SP$.

Partial order under query V. $V>_V S$.

Partial order under query O. $O>_O S$ $O>_O V$.

Partial order under query P. $O>_P P$.

Generalization to unseen data

Example 1 Input:SP under> $_P$, S non comparable, p non-optimal, then Φ_s is larger prediction: n(S)=V

Example 2 Input:OSP $O >_P P$ prediction:n(O)=P