N-Gram Language Model

Kumar Shresth

Roll Number: 24CS60R51

Contents

1	Introduction	
2	Execution Time Breakdown	2
3	Optimization and Design Choices 3.1 Memory Optimization	3
	3.2 Time Optimization	3
4	Conclusion	4

1 Introduction

This project implements an optimized n-gram language model using unigram, bigram, and trigram probabilities with interpolation. The goal is to preprocess text data, train n-gram models using MLE with Laplace smoothing, and optimize interpolation weights (λ values) to minimize perplexity. The final model is evaluated on a test set using perplexity as a metric.

2 Execution Time Breakdown

The table below provides the execution time for each step:

Step	Task	Time (seconds)	
1	Loading & Splitting Data	10s	
2	Text Cleaning (Punctuation, Non-ASCII)	$7\mathrm{s}$	
3	Stopword Removal	10s	
4	Lemmatization	150s	
5	Tokenization	60s	
6	N-Gram Generation	$\sim 5s$	
7	Filtering N-Grams (≥1% of Articles)	48s	
8	MLE Probability Computation	40s	
9	Interpolation Optimization	$\sim 30 \mathrm{s}$	
10	Test Set Evaluation	$\sim 5s$	
Total Execution Time	$\sim \! 365 \mathrm{s} \; (\sim \! 6 \; \mathrm{minutes})$		

Table 1: Time taken for each part of the code

3 Optimization and Design Choices

To improve efficiency and performance, we made the following choices:

3.1 Memory Optimization

- Using Sets for Filtering: Quick lookup operations were used for filtering n-grams appearing in $\geq 1\%$ of articles.
- Efficient Data Structures: 'Counter' dictionaries were used to reduce redundant operations.
- In-Place String Operations: Applied transformations like 'str.replace()' and 'str.strip()' directly to DataFrame columns.

3.2 Time Optimization

- Vectorized Operations: Used 'apply()' in Pandas instead of explicit loops for better performance.
- Optimized N-Gram Generation: Used tuple slicing with 'zip()' instead of manual loops.
- Efficient Probability Lookup: Stored probabilities in dictionaries for O(1) lookup.

3.3 Algorithmic Improvements

- Laplace Smoothing: Prevents zero probability for unseen n-grams.
- Interpolation Model: Combines unigram, bigram, and trigram probabilities for robustness.
- Grid Search & Optimization: Used 'scipy.optimize.minimize()' to find optimal λ values.

4 Conclusion

The final model achieves a test set perplexity of **121.05**, indicating a well-trained language model. The optimizations in memory usage and time complexity ensure an efficient pipeline, making it scalable for larger datasets.