AIM 5001 - Data Acquisition & Management

Jesus Olivera

Final Project - Exploring Climate Data:

Introduction

Climate change poses a great risk to humanity.

Climate change poses a greater risk to Small Island Developing States (SIDS) and Least Developed Countries (LDCs).

Between 1970 and 2019, 79% of natural disasters worldwide involved weather and climate related hazards.

Scientists have high confidence that the global temperatures will continue to rise for decades to come, largely due to the greenhouse gases produced by human activity.

Research Questions

How are global temperatures affecting the weather and safety of our planet? This question can be broken down into the following sub questions:

What are the trends in global surface temperature?

How do global temperature trends affect glaciers?

How do global temperature trends affect the number of deaths by natural disasters?

Surface Temperature Anomaly

Data Source: Our World in Data

Description: The data is based on the GISTEMP analysis from the NASA Goddard Institute for Space Studies. The temperature data is measured in degrees Celsius and it is relative to the 1951 – 1980 global average temperature. The data was collected via CSV from its source.

Importing the Data:

```
read = pd.read_csv("https://raw.githubusercontent.com/j
read.head(3)
```

	Entity	Code	Year	Surface temperature anomaly
0	Afghanistan	AFG	1881	0.28
1	Afghanistan	AFG	1882	-0.35
2	Afghanistan	AFG	1883	-0.29

Data Preparation

The data was properly prepared using functions to locate and deal with null values.

We discovered that Micronesia was missing its country code and we used the "replace" function to replace the null values for the country's code.

```
# Finding null values
is nan = read.isnull()
row with nan = is nan.any(axis=1)
nan rows = read[row with nan]
# Finding unique countries with "NaN" country code
nan rows.Entity.unique()
array(['Micronesia'], dtype=object)
# Replacing "NaN" values for Micronesia 3 digit ISO code: FSM
read['Code'] = read['Code'].replace(np.NaN, 'FSM')
# Reviewing if "NaN" values were replaced
read.isnull().sum()
Entity
Code
Year
```

Surface temperature anomaly

dtvpe: int64

EDA - Surface Temp Anomaly

Statistical Summary

read.describe().round(2)

	Year	Surface temperature anomaly
count	23127.00	23127.00
mean	1955.10	0.14
std	37.82	0.67
min	1880.00	-4.70
25%	1925.00	-0.26
50%	1958.00	0.11
75%	1987.00	0.52
max	2017.00	3.41

print(read.shape)

(23127, 4)

Distribution

```
read['Entity'].value counts().sort values()
Solomon Islands
                         44
Oman
Sao Tome and Principe
Timor
                         60
Vanuatu
North Macedonia
                        138
Algeria
                        138
New Zealand
                        138
Norway
                        138
Sweden
                        138
Name: Entity, Length: 198, dtype: int64
```

EDA - Surface Temp Anomaly

```
temp_country = read.groupby(['Year']).mean()
sns.scatterplot(data = temp_country)
plt.title("Global Average Surface Temperature Anomaly", size=15)
plt.show()
```

Global Average Surface Temperature Anomaly

What does surface temperature mean? Comparable to how warm or cool the earth feels if you were to touch it.

What is an anomaly?

An instance when conditions depart from the average conditions of a particular place at a given time of the year.

Graph Conclusions:

This graph shows a sharp increase in the global surface temperature over time. There is a particularly steep increase from 1980 onwards.

EDA - Deaths from Natural Disasters

Data Source: Our World in Data

Description: Deaths caused by natural disasters by country and year. The data set contains the name of the country, the country code, the year and the total deaths due to natural disasters. The data needed will be collected from this source via csv.

Importing the Data:

```
read1 = pd.read_csv("https://raw.githubusercontent.com/jaynuel
deaths_by_country = read1.rename(columns={"Deaths - Exposure t

# Printing Results
deaths_by_country.head(3)
```

	Entity	Code	Year	Total_Deaths
0	Afghanistan	AFG	1990	0.000000
1	Afghanistan	AFG	1991	1349.999434
2	Afghanistan	AFG	1992	614.000083

Data Preparation

The data was properly prepared using functions to locate and deal with null values.

We discovered that the data was not only organized by country, but it was also grouped by regions, and the null values on the code column was due to this grouping.

As part of the data transformation process we decided to drop all grouped values and only work with individual country values.

```
nan values = deaths by country[deaths by country['Code'].isna()]
nan values.Entity.unique()
array(['Andean Latin America', 'Australasia', 'Caribbean', 'Central Asia',
       'Central Europe',
       'Central Europe, Eastern Europe, and Central Asia',
       'Central Latin America', 'Central Sub-Saharan Africa', 'East Asia',
       'Eastern Europe', 'Eastern Sub-Saharan Africa', 'England',
       'High SDI', 'High-income', 'High-income Asia Pacific',
       'High-middle SDI', 'Latin America and Caribbean', 'Low SDI',
       'Low-middle SDI', 'Middle SDI', 'North Africa and Middle East',
       'North America', 'Northern Ireland', 'Oceania', 'Scotland',
       'South Asia', 'Southeast Asia',
       'Southeast Asia, East Asia, and Oceania', 'Southern Latin America',
       'Southern Sub-Saharan Africa', 'Sub-Saharan Africa',
       'Tropical Latin America', 'Wales', 'Western Europe',
       'Western Sub-Saharan Africa'], dtype=object)
 deaths by country = deaths by country.dropna().reset index(drop=True)
deaths by country.drop(deaths by country[deaths by country['Entity'] == 'World'].index, inplace=1
```

EDA - Deaths from Natural Disasters

Statistical Summary

```
print(deaths_by_country.describe().round(2))
```

Deaths by Country

	Year	${ t Total_Deaths}$
count	5460.00	5460.00
mean	2003.50	261.24
std	8.08	4990.05
min	1990.00	0.00
25%	1996.75	0.00
50 %	2003.50	0.00
75 %	2010.25	12.00
max	2017.00	222658.31

```
print(deaths_by_country.shape)
(6468, 4)
```

Distribution

```
print(deaths by country['Entity'].value counts().sort values().head(5))
Deaths by Country
            28
Laos
Malavsia
            28
Sweden
            2.8
Namibia
            2.8
Bahrain
deaths by country.groupby('Year').Entity.agg(['count']).head(5)
      count
 Year
       195
1990
1991
       195
1992
       195
1993
       195
1994
       195
```

EDA - Deaths from Natural Disasters

EDA - Understanding the Outliers

```
outliers deaths = total by country.nlargest(4, 'sum')
          sum
 Year
 2010 240034.0
 2004 237601.0
 2008 233796.0
 1991 149891.0
total by year.nlargest(4, 'sum')
               sum
      Entity
      Haiti 227488.0
  Indonesia 185304 0
 Bangladesh 154153.0
   Myanmar 139682.0
```

Findings:

Haiti: 2010 Earthquake

Entity Code Year Total_Deaths 2148 Haiti HTI 2010 222658.3065

Indonesia: 2004 Indian Ocean Earthquake & Tsunami

Entity Code Year Total_Deaths 2282 Indonesia IDN 2004 166041.1199

Bangladesh: 1991 Cyclone

Entity Code Year Total_Deaths 393 Bangladesh BGD 1991 139252.1216

Myanmar: 2008 Cyclone Nargis

Entity Code Year Total_Deaths 3350 Myanmar MMR 2008 138366.4963

EDA - Glacier Mass Balance

Data Source: DataHub io

Description: Average cumulative mass balance of reference glaciers worldwide. Average cumulative balance of "reference" glaciers worldwide from 1945-2014 from US EPA and World Glacier Monitoring Service (WGMS). The values represent the average of all the glaciers that were measured. Negative values indicate a net loss of ice and snow compared with the base year of 1945. The data needed was collected from this source via Web Scraping.

Importing the Data:

```
r = requests.get('https://pkgstore.datahub.io/core/glacier-mas
data = StringIO(r)
glacier = pd.read_csv(data, sep=",")

# Printing dataframe
glacier.head(3)
```

Year Mean cumulative mass balance Number of observations

0	1945	0.00	NaN
1	1946	-1.13	1.0
2	1947	-3.19	1.0

EDA - Glacier Mass Balance

Statistical Summary

glacier.describe().round(2)

	Year	Mean cumulative mass balance	Number of observations
count	70.00	70.00	70.00
mean	1979.50	-12.84	27.36
std	20.35	6.58	13.07
min	1945.00	-28.65	0.00
25%	1962.25	-16.34	20.50
50%	1979.50	-11.22	35.50
75%	1996.75	-9.14	37.00
max	2014.00	0.00	37.00

print(glacier.shape)

(70, 3)

EDA - Climate Projections

Data Source: Climate Impact Lab

Web Address: http://www.impactlab.org/map/#usmeas=absolute&usyear=1981-2010&gmeas=absolute&gyear=1986-2005&tab=global

Description: The projections were aggregated to regional estimates by first transforming the daily min, average, or maximum temperatures at the grid scale, then aggregating to regions using a weighted average. From this source we were be able to extract necessary data regarding climate projections by region and year. The data needed was collected from this source as a CSV format.

Importing the Data:

```
r3= requests.get('https://raw.githubusercontent.com/jaynuel/AIM-5
r4 = r3.text
data = StringIO(r4)
projections = pd.read csv(data, sep=",")
# Printing dataframe
projections.head(3)
      Country Average
                       5th 50th 95th 5th.1
                                           50th.1
                                                 95th.1
                                                       5th.2
                                                             50th.2 95th.2
0
       Aruba
                 80.6 81.1
                           82.1
                                 83
                                      81.3
                                            83.2
                                                   84.9
                                                        83.6
                                                               85.7
                                                                     90.5
                                      76.5
                                            78.7
                                                   83.2
                                                        80.5
   Afghanistan
                           76.7 79.9
                                                               84.1
                                                                     95.6
                 68.5 69.7 70.7 71.9
                                     70.9
                                            72.3
                                                        73.6
                                                               75.7
                                                                     83.2
                                                   74.6
       Angola
```

Data Preparation

The data was properly prepared using functions to locate and deal with null values.

As part of the data transformation process we created 4 dataframes from the original dataframe and rename the columns for a more intuitive analysis.

projections[project	ions['Country'].i	sna()]

	Country	Average	5th	50th	95th	5th.1	50th.1	95th.1	5th.2	50th.2	95th.2
252	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
253	NaN	1986-2005	2020-2039	NaN	NaN	2040-2059	NaN	NaN	2080-2099	NaN	NaN
254	NaN	Average	5th	50th	95th	5th	50th	95th	5th	50th	95th

```
projections = projections.dropna()
```

print(projections.isnull().sum())

```
Country
            0
Average
5th
50th
            0
95t.h
            0
5th.1
            0
50th.1
            0
95th.1
            0
5th.2
            0
50th.2
            0
95th.2
dtype: int64
```

AVG_1986_to_2005 = projections[["Country", "Average"]].rename(columns={"Average": "AVG_1986_to_200 PROJECTION_2020_to_2039 = projections[["Country", "5th", "50th", "95th"]].reset_index(drop=True) PROJECTION_2040_to_2059 = projections[["Country", "5th.1", "50th.1", "95th.1"]].rename(columns={"5t PROJECTION_2080_to_2099 = projections[["Country", "5th.2", "50th.2", "95th.2"]].rename(columns={"5t PROJECTION_2080_to_2099 = projections["Country", "5th.2", "50th.2", "95th.2"]].rename(columns={"5t PROJECTION_2080_to_2099 = projections"]].rename(columns={"5t PROJECTION_2080_to_2099 =

EDA - Climate Projections

Actual AVG from 1986 to 2005 Country AVG 1986 to 2005 504 504 count. 252 238 unique top Laos 79.2 frea 2020 to 2039 95th 5th 50th Country 504 504 504 504 count 273 unique 252 261 263 Laos 80.1 81.8 82.9 top 2 frea 2040 to 2059 Country 5th 50th 95th 504 504 504 504 count 252 272 272 273 unique 81.3 83.2 top Laos freq 8 2080 to 2099 Country 5th 50th 95th 504 504 504 504 count unique 252 279 281 301 83.6 83.2 89.4 top Laos

freq

```
print(projections.shape)
(509, 11)
pc = percentage change.pct change(axis='columns')*100
percentage change = pd.concat([countries,pc],axis =1, sort=False)
top 15 = percentage change.nlargest(15, 'Projected % Cumulative Temperature Increase by 2099')
# Printing Results
top 15.head(5)
                          1986-
                                  2020-
                                           2040-
                                                    2080-
                                                            Projected % Cumulative Temperature Increase by
               Country
                          2005
                                   2039
                                           2059
                                                    2099
                                                                                            2099
        Netherlands Antilles
                                6.386861
                                         3.945111
                                                 9.735974
                                                                                        20.067946
  6
 92
              Greenland
                                5.882353
                                         4.629630
                                                 9.439528
                                                                                        19.951511
         Svalbard and Jan
 199
                                4.289544
                                        5.398458 10.000000
                                                                                        19 688002
                 Mayen
 131
            Liechtenstein
                                5.585586
                                        3.242321
                                                 8.925620
                                                                                        17.753526
                           NaN
```

EDA - Climate Projections

EDA - Global Glacier Reductions

Data Source: National Snow & Ice Data Center

Web Address: https://nsidc.org/glims/glaciermelt

Description: Dataset contains the percentage of total Area and the percentage of contribution to volume change from 1961 to 2003. This analysis is focused on mountain glaciers and smaller ice caps, which have a total area at least 785x103 km2. Although they make up only 4% of the total land ice area, they may have contributed to as much as 30% of sea level change in the 20th century due to rapid ice volume reduction connected with global warming. The data needed was collected from this source via Web Scraping.

Importing the Data:

```
tables2 = pd.read_html('https://nsidc.org/glims/glaciermelt')

# Retrieving Data
g2 = tables2[0]

# Printing Results
g2.head(3)
```

Largest Contributors to Global Water Cycle and Sea Level Rise

	Region	Percentage of Total Area	Percentage of Contribution to Volume Change 1961-2003
0	Arctic	52.7	31.5
1	High Mountain Asia	19.4	23.9
2	Alaska and Coastal Mountains	15.0	23.0

Data Preparation

The data did not contained any null value.

EDA

Results:

Percentage total surface area decreased significantly

Decrease in the volume change contributing to sea level

These two variables are related so this makes sense

Follows along with the Glacier
Mass Balance EDA

Total Area of the Largest Contributors to Global Water Cycle and their Volume Change from 1961 to 2003

EDA: Surface Temperature Anomaly & Glaciers Mean Cumulative Mass Balance

Results:

Strong negative relationship between the average surface temperature anomaly and glaciers mass balance

Results show that as temperature increases, glacier mass balance decreases

Significant changes happen around the same time (~1990)

corr = relationship['temp_mean'].corr(relationship['glacier_mean'])
corr
-0.8613173446158233

Surface temperature anomaly and deaths caused by natural disasters

Results:

Weak negative relationship between global surface temperature anomalies and deaths caused by naturals disasters

As temperature raises, global deaths by naturals disasters are relatively steady with some peaks around areas of sharp temperature change

GeoPandas

Python package to make working with geospatial data in Python easier

Extension of pandas to allow spatial operation on geometric types

shapefile

	NAME	ISO3	ISO2	COUNTRY	CONTINENT	EU	SQKM	geometry
0	Åland	ALA	AX	Åland	Europe	0	1.243719e+03	MULTIPOLYGON (((20.99567 60.64228, 20.99261 60
1	Afghanistan	AFG	AF	Afghanistan	Asia	0	6.413834e+05	POLYGON ((73.27336 36.88856, 73.26195 36.89025
2	Albania	ALB	AL	Albania	Europe	0	2.848611e+04	MULTIPOLYGON (((20.98057 40.85522, 20.98096 40
3	Algeria	DZA	DZ	Algeria	Africa	0	2.316559e+06	MULTIPOLYGON (((-8.67387 27.29807, -8.67172 27
4	American Samoa	ASM	AS	American Samoa	Oceania	0	2.110151e+02	MULTIPOLYGON (((-171.07492 -11.06860, -171.078
260	Western Sahara	ESH	EH	Western Sahara	Africa	0	2.668299e+05	MULTIPOLYGON (((-17.05185 20.77416, -17.05445
261	Yemen	YEM	YE	Yemen	Asia	0	4.198999e+05	MULTIPOLYGON (((53.10706 16.65440, 53.09564 16
262	Zambia	ZMB	ZM	Zambia	Africa	0	7.513153e+05	POLYGON ((30.41826 -15.61757, 30.41293 -15.622
263	Zimbabwe	ZWE	ZW	Zimbabwe	Africa	0	3.906484e+05	POLYGON ((28.84701 -21.74224, 28.83875 -21.738
264	Paracel Islands	P	P-	Paracel Islands	Asia	0	5.343721e+00	MULTIPOLYGON (((112.34131 16.92700, 112.34064

265 rows × 8 columns

GeoPandas Maps

Results and Conclusions

1. What are the trends in global surface temperature?

Steady increase from 1986 to 2017

Steep incline from 1980 onwards

1. How do global temperature trends affect glacier?

Strong negative correlation

Fits with what we expect from the increasing surface temperature

The Arctic region is the most affected by this

1. How do global temperature trends affect the number of deaths by natural disasters?

Weak negative correlation

Few sharp peaks