CSC 252: Computer Organization Spring 2023: Lecture 4

Instructor: Yuhao Zhu

Department of Computer Science University of Rochester

Announcement

- Programming Assignment 1 is out
 - Details: https://www.cs.rochester.edu/courses/252/spring2023/labs/assignment1.html
 - Due on Jan. 27, 11:59 PM
 - You have 3 slip days

15	16	17	18	19	20	21
					Today	
22	23	24	25	26	Due 27	28

Announcement

- Programming assignment 1 is in C language. Seek help from TAs.
- TAs are best positioned to answer your questions about programming assignments!!!
- Programming assignments do NOT repeat the lecture materials. They ask you to synthesize what you have learned from the lectures and work out something new.

• Goal: Computing Product of w-bit numbers x, y

Goal: Computing Product of w-bit numbers x, y

Original Number (w bits)

• Goal: Computing Product of w-bit numbers x, y

Original Number (w bits)

Product

• Goal: Computing Product of w-bit numbers x, y

Goal: Computing Product of w-bit numbers x, y

Goal: Computing Product of w-bit numbers x, y

Goal: Computing Product of w-bit numbers x, y

Original Number (w bits) Product PMax OMin * OMax

Goal: Computing Product of w-bit numbers x, y

Original Number (w bits)

OMax $2^{w-1}-1 = \frac{1}{0}$ OMin -2^{w-1}

Product (2w bits)

- Goal: Computing Product of w-bit numbers x, y
- Exact results can be bigger than w bits
 - Up to 2w bits (both signed and unsigned)

Original Number (w bits)

Product (2w bits)

Unsigned Multiplication in C

Discard w bits: w

bits

- Standard Multiplication Function
 - Ignores high order w bits
- Effectively Implements the following:

$$UMult_w(u, v) = u \cdot v \mod 2^w$$

Today: Floating Point

- Background: Fractional binary numbers and fixed-point
- Floating point representation
- IEEE 754 standard
- Rounding, addition, multiplication
- Floating point in C
- Summary

- What does 10.01₂ mean?
 - C.f., Decimal

- What does 10.01₂ mean?
 - C.f., Decimal

$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

- What does 10.01₂ mean?
 - C.f., Decimal

$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

- What does 10.01₂ mean?
 - C.f., Decimal

$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

- What does 10.01₂ mean?
 - C.f., Decimal

$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

- What does 10.01₂ mean?
 - C.f., Decimal

$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

- What does 10.01₂ mean?
 - C.f., Decimal

$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

$$10.01_2 = 1^21 + 0^20 + 0^2-1 + 1^2-2$$

- What does 10.01₂ mean?
 - C.f., Decimal

$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

$$10.01_2 = 1*2^1 + 0*2^0 + 0*2^{-1} + 1*2^{-2}$$

- What does 10.01₂ mean?
 - C.f., Decimal

$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

$$10.01_2 = 1*2^1 + 0*2^0 + 0*2^{-1} + 1*2^{-2}$$

- What does 10.01₂ mean?
 - C.f., Decimal

$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

$$10.01_2 = 1*2^1 + 0*2^0 + 0*2^{-1} + 1*2^{-2}$$

- What does 10.01₂ mean?
 - C.f., Decimal

$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

$$10.01_2 = 1^*2^1 + 0^*2^0 + 0^*2^{-1} + 1^*2^{-2}$$

- What does 10.01₂ mean?
 - C.f., Decimal

$$12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$$

$$10.01_2 = 1^*2^1 + 0^*2^0 + 0^*2^{-1} + 1^*2^{-2}$$
$$= 2.25_{10}$$

Fractional Binary Numbers

Decimal	Binary
0	0000.
1	0001.
2	0010.
3	0011.
4	0100.
5	0101.
6	0110.
7	0111.
8	1000.
9	1001.
10	1010.
11	1011.
12	1100.
13	1101.
14	1110.
15	1111.

Decimal	Binary
0	0000.
1	0001.
2	0010.
3	0011.
4	0100.
5	0101.
6	0110.
7	0111.
8	1000.
9	1001.
10	1010.
11	1011.
12	1100.
13	1101.
14	1110.
15	1111.

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

Binary point stays fixed

0 1 2 3

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

- Binary point stays fixed
- Fixed interval between representable numbers
 - The interval in this example is 0.25₁₀

0 1 2 3

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

- Binary point stays fixed
- Fixed interval between representable numbers
 - The interval in this example is 0.25₁₀

0 1 2 3

 Still need to remember the binary point, but just once for all numbers, which is implicit given the data type

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

Fixed-Point Representation

- Binary point stays fixed
- Fixed interval between representable numbers
 - The interval in this example is 0.25₁₀

0 1 2 3

- Still need to remember the binary point, but just once for all numbers, which is implicit given the data type
- Usual arithmetics still work
 - No need to align (already aligned)

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

Can exactly represent numbers only of the form x/2^k

Can exactly represent numbers only of the form x/2^k

- Can exactly represent numbers only of the form x/2^k
 - Other rational numbers have repeating bit representations

- Can exactly represent numbers only of the form x/2^k
 - Other rational numbers have repeating bit representations

Decimal Value	Binary Representation
1/3	0.0101010101[01]
1/5	0.001100110011[0011]
1/10	0.0001100110011[0011]

 Can't represent very small and very large numbers at the same time

- Can't represent very small and very large numbers at the same time
 - To represent very large numbers, the (fixed) interval needs to be large, making it hard to represent small numbers

- Can't represent very small and very large numbers at the same time
 - To represent very large numbers, the (fixed) interval needs to be large, making it hard to represent small numbers

- Can't represent very small and very large numbers at the same time
 - To represent very large numbers, the (fixed) interval needs to be large, making it hard to represent small numbers

- Can't represent very small and very large numbers at the same time
 - To represent very large numbers, the (fixed) interval needs to be large, making it hard to represent small numbers

- Can't represent very small and very large numbers at the same time
 - To represent very large numbers, the (fixed) interval needs to be large, making it hard to represent small numbers
 - To represent very small numbers, the (fixed) interval needs to be small, making it hard to represent large numbers

- Can't represent very small and very large numbers at the same time
 - To represent very large numbers, the (fixed) interval needs to be large, making it hard to represent small numbers
 - To represent very small numbers, the (fixed) interval needs to be small, making it hard to represent large numbers

- Can't represent very small and very large numbers at the same time
 - To represent very large numbers, the (fixed) interval needs to be large, making it hard to represent small numbers
 - To represent very small numbers, the (fixed) interval needs to be small, making it hard to represent large numbers

large numbers

+∞

O↑
A Small
Number

Unrepresentable

Today: Floating Point

- Background: Fractional binary numbers and fixed-point
- Floating point representation
- IEEE 754 standard
- Rounding, addition, multiplication
- Floating point in C
- Summary

Decimal Value	Scientific Notation
2	2×10 ⁰
-4,321.768	-4.321768×10 ³
0.000 000 007 51	7.51×10 ⁻⁹

- In decimal: M × 10^E
 - E is an integer
 - Normalized form: 1<= |M| < 10

Decimal Value	Scientific Notation
2	2×10 ⁰
-4,321.768	-4.321768×10 ³
0.000 000 007 51	7.51×10 ⁻⁹

- In decimal: M × 10^E
 - E is an integer
 - Normalized form: 1<= |M| < 10

$$M \times 10^{E}$$

Decimal Value	Scientific Notation
2	2×10 ⁰
-4,321.768	-4.321768×10 ³
0.000 000 007 51	7.51×10 ⁻⁹

- In decimal: M × 10^E
 - E is an integer
 - Normalized form: 1<= |M| < 10

Decimal Value	Scientific Notation
2	2×10 ⁰
-4,321.768	-4.321768×10 ³
0.000 000 007 51	7.51×10 ⁻⁹

- In decimal: M × 10^E
 - E is an integer
 - Normalized form: 1<= |M| < 10

Decimal Value	Scientific Notation
2	2×10 ⁰
-4,321.768	-4.321768×10 ³
0.000 000 007 51	7.51×10 ⁻⁹

- In decimal: M × 10^E
 - E is an integer
 - Normalized form: 1<= |M| < 10

Decimal Value	Scientific Notation
2	2×10 ⁰
-4,321.768	-4.321768×10 ³
0.000 000 007 51	7.51×10 ⁻⁹

Binary Value	Scientific Notation
1110110110110	(-1) ⁰ 1.110110110110 x 2 ¹²
-101.11	$(-1)^1$ 1.0111 x 2 ²
0.00101	(-1) ⁰ 1.01 x 2 ⁻³

$$(-1)^s M \times 2^E$$

Binary Value	Scientific Notation
1110110110110	(-1) ⁰ 1.110110110110 x 2 ¹²
-101.11	$(-1)^1$ 1.0111 x 2 ²
0.00101	(-1) ⁰ 1.01 x 2 ⁻³

Binary Value	Scientific Notation
1110110110110	(-1) ⁰ 1.110110110110 x 2 ¹²
-101.11	$(-1)^1$ 1.0111 x 2 ²
0.00101	(-1) ⁰ 1.01 x 2 ⁻³

Binary Value	Scientific Notation
1110110110110	(-1) ⁰ 1.110110110110 x 2 ¹²
-101.11	$(-1)^1$ 1.0111 x 2 ²
0.00101	(-1) ⁰ 1.01 x 2 ⁻³

Binary Value	Scientific Notation
1110110110110	(-1) ⁰ 1.110110110110 x 2 ¹²
-101.11	$(-1)^1$ 1.0111 x 2 ²
0.00101	(-1) ⁰ 1.01 x 2 ⁻³

Binary Value	Scientific Notation
1110110110110	(-1) ⁰ 1.110110110110 x 2 ¹²
-101.11	$(-1)^1$ 1.0111 x 2 ²
0.00101	(-1) ⁰ 1.01 x 2 ⁻³

- In binary: (-1)^s M 2^E
- Normalized form:
 - 1 <= M < 2
 - $M = 1.b_0b_1b_2b_3...$

Binary Value	Scientific Notation
1110110110110	(-1) ⁰ 1.110110110110 x 2 ¹²
-101.11	$(-1)^1$ 1.0111 x 2 ²
0.00101	(-1) ⁰ 1.01 x 2 ⁻³

- In binary: (-1)^s M 2^E
- Normalized form:
 - 1 <= M < 2
 - $M = 1.b_0b_1b_2b_3...$ Fraction

Binary Value	Scientific Notation
1110110110110	(-1) ⁰ 1.110110110110 x 2 ¹²
-101.11	$(-1)^1$ 1.0111 x 2 ²
0.00101	$(-1)^0$ 1.01 x 2 ⁻³

- In binary: (-1)^s M 2^E
- Normalized form:
 - 1 <= M < 2
 - $M = 1.b_0b_1b_2b_3...$ Fraction

- If I tell you that there is a number where:
 - Fraction = 0101
 - s = 1
 - E = 10
 - You could reconstruct the number as (-1)¹1.0101x2¹⁰

- In binary: (-1)^s M 2^E
- Normalized form:
 - 1 <= M < 2
 - $M = 1.b_0b_1b_2b_3...$ Fraction

- In binary: (-1)^s M 2^E
- Normalized form:
 - 1 <= M < 2
 - $M = 1.b_0b_1b_2b_3...$ Fraction
- Encoding

- In binary: (-1)^s M 2^E
- Normalized form:
 - 1 <= M < 2
 - $M = 1.b_0b_1b_2b_3...$ Fraction
- Encoding

- In binary: (-1)^s M 2^E
- Normalized form:
 - 1 <= M < 2
 - $M = 1.b_0b_1b_2b_3...$ Fraction
- Encoding
 - MSB s is sign bit s

S

Primer: Floating Point Representation

- In binary: (-1)^s M 2^E
- Normalized form:
 - $1 \le M \le 2$
 - $M = 1.b_0b_1b_2b_3...$ Fraction
- Encoding
 - MSB s is sign bit s
 - exp field encodes Exponent (but not exactly the same, more later)

s exp

Primer: Floating Point Representation

- In binary: (-1)^s M 2^E
- Normalized form:
 - $1 \le M \le 2$
 - $M = 1.b_0b_1b_2b_3...$ Fraction
- Encoding
 - MSB s is sign bit s
 - exp field encodes Exponent (but not exactly the same, more later)
 - frac field encodes Fraction (but not exactly the same, more later)

S	ехр	frac
1	3	2

• exp has 3 bits, interpreted as an unsigned value

- exp has 3 bits, interpreted as an unsigned value
 - If exp were E, we could represent exponents from **0 to 7**

- exp has 3 bits, interpreted as an unsigned value
 - If exp were E, we could represent exponents from 0 to 7
 - How about negative exponent?

- exp has 3 bits, interpreted as an unsigned value
 - If exp were E, we could represent exponents from 0 to 7
 - How about negative exponent?
 - Subtract a bias term: $E = \exp bias$ (i.e., $\exp = E + bias$)

- exp has 3 bits, interpreted as an unsigned value
 - If exp were E, we could represent exponents from 0 to 7
 - How about negative exponent?
 - Subtract a bias term: $E = \exp bias$ (i.e., $\exp = E + bias$)
 - bias is always 2^{k-1} 1, where k is number of exponent bits

- exp has 3 bits, interpreted as an unsigned value
 - If exp were E, we could represent exponents from 0 to 7
 - How about negative exponent?
 - Subtract a bias term: E = exp bias (i.e., exp = E + bias)
 - bias is always 2^{k-1} 1, where k is number of exponent bits
- Example when we use 3 bits for exp (i.e., k = 3):

- exp has 3 bits, interpreted as an unsigned value
 - If exp were E, we could represent exponents from 0 to 7
 - How about negative exponent?
 - Subtract a bias term: $E = \exp bias$ (i.e., $\exp = E + bias$)
 - bias is always 2^{k-1} 1, where k is number of exponent bits
- Example when we use 3 bits for exp (i.e., k = 3):
 - bias = 3

- exp has 3 bits, interpreted as an unsigned value
 - If exp were E, we could represent exponents from 0 to 7
 - How about negative exponent?
 - Subtract a bias term: E = exp bias (i.e., exp = E + bias)
 - bias is always 2^{k-1} 1, where k is number of exponent bits
- Example when we use 3 bits for exp (i.e., k = 3):
 - bias = 3
 - If E = -2, exp is 1 (001₂)

- exp has 3 bits, interpreted as an unsigned value
 - If exp were E, we could represent exponents from 0 to 7
 - How about negative exponent?
 - Subtract a bias term: $E = \exp bias$ (i.e., $\exp = E + bias$)
 - bias is always 2^{k-1} 1, where k is number of exponent bits
- Example when we use 3 bits for exp (i.e., k = 3):
 - bias = 3
 - If E = -2, exp is 1 (001₂)

E	exp
-3	000
-2	001
-1	010
0	011
1	100
2	101
3	110
4	111

- exp has 3 bits, interpreted as an unsigned value
 - If exp were E, we could represent exponents from 0 to 7
 - How about negative exponent?
 - Subtract a bias term: E = exp bias (i.e., exp = E + bias)
 - bias is always 2^{k-1} 1, where k is number of exponent bits
- Example when we use 3 bits for exp (i.e., k = 3):
 - bias = 3
 - If E = -2, exp is 1 (001₂)
 - Reserve 000 and 111 for other purposes (more on this later)

- exp has 3 bits, interpreted as an unsigned value
 - If exp were E, we could represent exponents from 0 to 7
 - How about negative exponent?
 - Subtract a bias term: E = exp bias (i.e., exp = E + bias)
 - bias is always 2^{k-1} 1, where k is number of exponent bits
- Example when we use 3 bits for exp (i.e., k = 3):
 - bias = 3
 - If E = -2, exp is 1 (001₂)
 - Reserve 000 and 111 for other purposes (more on this later)
 - We can now represent exponents from -2 (exp 001) to 3 (exp 110)

S	ехр	frac
1	3	2

- frac has 2 bits, append them after "1." to form M
 - *frac* = 10 implies M = 1.10

- frac has 2 bits, append them after "1." to form M
 - *frac* = 10 implies M = 1.10
- Putting it Together: An Example:

$$-10.1_2 = (-1)^1 1.01 \times 2^1$$

- frac has 2 bits, append them after "1." to form M
 - *frac* = 10 implies M = 1.10
- Putting it Together: An Example:

$$-10.1_2 = (-1)^1 1.01 \times 2^1$$

- frac has 2 bits, append them after "1." to form M
 - *frac* = 10 implies M = 1.10
- Putting it Together: An Example:

$$-10.1_2 = (-1)^1 1.01 \times 2^1$$

- frac has 2 bits, append them after "1." to form M
 - *frac* = 10 implies M = 1.10
- Putting it Together: An Example:

$$-10.1_2 = (-1)^1 1.01 \times 2^1$$

- frac has 2 bits, append them after "1." to form M
 - *frac* = 10 implies M = 1.10
- Putting it Together: An Example:

- frac has 2 bits, append them after "1." to form M
 - *frac* = 10 implies M = 1.10
- Putting it Together: An Example:

- frac has 2 bits, append them after "1." to form M
 - *frac* = 10 implies M = 1.10
- Putting it Together: An Example:

E	exp
	000
-2	001
-1	010
0	011
1	100
2	101
3	110
didam Tenin Ain	

- frac has 2 bits, append them after "1." to form M
 - *frac* = 10 implies M = 1.10
- Putting it Together: An Example:

E	exp
	000
-2	001
-1	010
0	011
1	100
2	101
3	110
didam Tenin Ain	

E	ехр	E	ехр
<u>-</u> S	000	1	100
-2	001	2	101
-1	010	3	110
0	011	-	

E	exp	E	exp
<u>-3</u>	000	1	100
-2	001	2	101
-1	010	3	110
0	011	<u>Aurora</u>	A Paragraph

0

+∞

E	exp	E	exp
<u>-</u> 3	000	1	100
-2	001	2	101
-1	010	3	110
0	011	<u>A</u> waran	A Paragraphic

E	ехр	E	exp
23	000	1	100
-2	001	2	101
-1	010	3	110
0	011	4	and the same

0

+∞

E	exp	E	exp
<u>-</u> 3	000	1	100
-2	001	2	101
-1	010	3	110
0	011	<u>Aurora</u>	- propose

E	ехр	E	ехр
<u>-</u> S	000	1	100
-2	001	2	101
-1	010	3	110
0	011	A CONTRACTOR	

Ε	ехр	E	ехр
23	000	1	100
-2	001	2	101
-1	010	3	110
0	011	4	A Paras

E	exp	E	exp
<u> </u>	000	1	100
-2	001	2	101
-1	010	3	110
0	011	April 100	

E	exp	E	exp
<u> </u>	000	1	100
-2	001	2	101
-1	010	3	110
0	011	A Comment	- paper

E	exp	E	exp
<u> </u>	000	1	100
-2	001	2	101
-1	010	3	110
0	011	April 100	

E	exp	E	exp
<u> </u>	000	1	100
-2	001	2	101
-1	010	3	110
0	011	A Comment	- paper

E	exp	E	exp
23	000	1	100
-2	001	2	101
-1	010	3	110
0	011	<u>Aurora</u>	A Paras

E	exp	E	exp
<u>-S</u>	000	1	100
-2	001	2	101
-1	010	3	110
0	011	April 100	The second second

E	exp	E	exp
<u>-S</u>	000	1	100
-2	001	2	101
-1	010	3	110
0	011	April 100	The second second

E	exp	E	exp
<u>-S</u>	000	1	100
-2	001	2	101
-1	010	3	110
0	011	April 100	The second second

E	exp	E	exp
<u>-S</u>	000	1	100
-2	001	2	101
-1	010	3	110
0	011	April 100	The second second

E	exp	E	exp
<u>-S</u>	000	1	100
-2	001	2	101
-1	010	3	110
0	011	April 100	The second second

E	exp	E	exp
<u>-S</u>	000	1	100
-2	001	2	101
-1	010	3	110
0	011	April 100	The second second

E	exp	E	exp
<u>-S</u>	000	1	100
-2	001	2	101
-1	010	3	110
0	011	April 100	The second second

E	exp	E	exp
<u> </u>	000	1	100
-2	001	2	101
-1	010	3	110
0	011	April 100	A Company

E	exp	E	exp
<u> </u>	000	1	100
-2	001	2	101
-1	010	3	110
0	011	April 100	A Company

E	exp	E	exp
<u> </u>	000	1	100
-2	001	2	101
-1	010	3	110
0	011	April 100	A Company

E	exp	E	exp
<u> </u>	000	1	100
-2	001	2	101
-1	010	3	110
0	011	April 100	A Company

E	exp	E	exp
<u> </u>	000	1	100
-2	001	2	101
-1	010	3	110
0	011	April 100	A Company

E	exp	E	exp
<u> </u>	000	1	100
-2	001	2	101
-1	010	3	110
0	011	April 100	A Company

E	exp	E	exp
<u> </u>	000	1	100
-2	001	2	101
-1	010	3	110
0	011	April 100	A Company

- Uneven interval (c.f., fixed interval in fixed-point)
 - More dense toward 0, sparser toward infinite
 - Allow encoding small and large numbers at the same time

E	exp	E	exp
- 3	000	1	100
-2	001	2	101
-1	010	3	110
0	011	A Company of the Comp	The property of

- Uneven interval (c.f., fixed interval in fixed-point)
 - More dense toward 0, sparser toward infinite
 - Allow encoding small and large numbers at the same time

 E
 exp
 E
 exp

 -3
 000
 1
 100

 -2
 001
 2
 101

 -1
 010
 3
 110

 0
 011
 4
 111

Always round to 0 is inelegant

Always round to 0 is inelegant

Always round to 0 is inelegant

Representable Numbers (Positive Only)

- Always round to 0 is inelegant
- Using 000 for exp doesn't solve it either

 Idea: Evenly divide between 0 and 1/4 rather than exponentially decreasing when exp = 0 (subnormal/denormalized numbers)

 Idea: Evenly divide between 0 and 1/4 rather than exponentially decreasing when exp = 0 (subnormal/denormalized numbers)

- Idea: Evenly divide between 0 and 1/4 rather than exponentially decreasing when exp = 0 (subnormal/denormalized numbers)
- E = (exp + 1) bias (instead of exp bias)
- M = 0.frac (instead of 1.frac)

- Idea: Evenly divide between 0 and 1/4 rather than exponentially decreasing when exp = 0 (subnormal/denormalized numbers)
- E = (exp + 1) bias (instead of exp bias)
- M = 0.frac (instead of 1.frac)

- Idea: Evenly divide between 0 and 1/4 rather than exponentially decreasing when exp = 0 (subnormal/denormalized numbers)
- E = (exp + 1) bias (instead of exp bias)
- M = 0.frac (instead of 1.frac)
- Subnormal numbers allow graceful underflow

E	exp	E	ехр
-2	000	1	100
-2	001	2	101
-1	010	3	110
0	011	4	and the same of th

E	ехр	E	ехр
-2	000	1	100
-2	001	2	101
-1	010	3	110
0	011	4	and the second

- There are many special values in scientific computing
 - +/- ∞, Not-a-Numbers (NaNs) (e.g., 0 / 0, 0 / ∞, ∞ / ∞, sqrt(-1), ∞ ∞, ∞ x 0, etc.)

E	exp	E	ехр
-2	000	1	100
-2	001	2	101
-1	010	3	110
0	011	4	and the same of th

- There are many special values in scientific computing
 - +/- ∞, Not-a-Numbers (NaNs) (e.g., 0 / 0, 0 / ∞, ∞ / ∞, sqrt(-1), ∞ ∞,
 ∞ x 0, etc.)
- exp = 111 is reserved to represent these numbers

E	exp	E	ехр
-2	000	1	100
-2	001	2	101
-1	010	3	110
0	011		111

- There are many special values in scientific computing
 - +/- ∞, Not-a-Numbers (NaNs) (e.g., 0 / 0, 0 / ∞, ∞ / ∞, sqrt(-1), ∞ ∞,
 ∞ x 0, etc.)
- exp = 111 is reserved to represent these numbers

E	exp	E	ехр
-2	000	1	100
-2	001	2	101
-1	010	3	110
0	011		111

- There are many special values in scientific computing
 - +/- ∞, Not-a-Numbers (NaNs) (e.g., 0 / 0, 0 / ∞, ∞ / ∞, sqrt(-1), ∞ ∞,
 ∞ x 0, etc.)
- exp = 111 is reserved to represent these numbers
- exp = 111, frac = 00
 - +/- ∞ (depending on the s bit). Overflow results.
 - Arithmetic on ∞ is exact: $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

E	exp	E	ехр
-2	000	1	100
-2	001	2	101
-1	010	3	110
0	011		111

- There are many special values in scientific computing
 - +/- ∞, Not-a-Numbers (NaNs) (e.g., 0 / 0, 0 / ∞, ∞ / ∞, sqrt(-1), ∞ ∞,
 ∞ x 0, etc.)
- exp = 111 is reserved to represent these numbers
- exp = 111, frac = 00
 - +/- ∞ (depending on the s bit). Overflow results.
 - Arithmetic on ∞ is exact: $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- exp = 111, frac != 00
 - Represent NaNs

Finite Amount of Floating Point Numbers

Finite Amount of Floating Point Numbers

Finite Amount of Floating Point Numbers