OK, thus far we have been talking about linear models. All these can be viewed as a single-layer neural net. The next step is to move on to multi-layer nets. Training these is a bit more involved, and implementing from scratch requires time and effort. Instead, we just use well-established libraries. I prefer PyTorch, which is based on an earlier library called Torch (designed for training neural nets via backprop).

```
In [ ]: import numpy as np import torch import torchvision
```

Torch handles data types a bit differently. Everything in torch is a *tensor*.

```
In []: a = np.random.rand(2,3)
b = torch.from_numpy(a)

# Q4.1 Display the contents of a, b
print("contest of a: ", a)
print("contest of b: ", b)

contest of a: [[0.816508    0.75597224   0.67269371]
      [0.38200301   0.06110529   0.70656539]]
contest of b: tensor([[0.8165, 0.7560, 0.6727],
      [0.3820, 0.0611, 0.7066]], dtype=torch.float64)
```

The idea in Torch is that tensors allow for easy forward (function evaluations) and backward (gradient) passes.

```
In [ ]: A = torch.rand(2,2)
        b = torch.rand(2,1)
        x = torch.rand(2,1, requires grad=True)
        y = torch.matmul(A, x) + b
        print(y)
        z = y.sum()
        print(z)
        z.backward()
        print(x.grad)
        print(x)
        tensor([[0.9157],
                [1.3327]], grad_fn=<AddBackward0>)
        tensor(2.2484, grad_fn=<SumBackward0>)
        tensor([[0.7845],
                [1.7336]])
        tensor([[0.1465],
                [0.9142]], requires_grad=True)
```

Notice how the backward pass computed the gradients using autograd. OK, enough background. Time to train some networks. Let us load the *Fashion MNIST* dataset, which is a database of grayscale images of clothing items.

```
In [ ]: trainingdata = torchvision.datasets.FashionMNIST('./FashionMNIST/', train=True, download=True, transform
        =torchvision.transforms.ToTensor())
        testdata = torchvision.datasets.FashionMNIST('./FashionMNIST/',train=False,download=True,transform=to
        rchvision.transforms.ToTensor())
        Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to
        ./FashionMNIST/FashionMNIST/raw/train-images-idx3-ubyte.gz
        Extracting ./FashionMNIST/FashionMNIST/raw/train-images-idx3-ubyte.gz to ./FashionMNIST/FashionMNIS
        T/raw
        Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz to
        ./FashionMNIST/FashionMNIST/raw/train-labels-idx1-ubyte.gz
        Extracting ./FashionMNIST/FashionMNIST/raw/train-labels-idx1-ubyte.gz to ./FashionMNIST/FashionMNIS
        T/raw
        Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz to
        ./FashionMNIST/FashionMNIST/raw/t10k-images-idx3-ubyte.gz
        Extracting ./FashionMNIST/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to ./FashionMNIST/FashionMNIST/
        raw
        Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to
        ./FashionMNIST/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz
        Extracting ./FashionMNIST/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to ./FashionMNIST/FashionMNIST/
        raw
        Processing...
        Done!
        /usr/local/lib/python3.6/dist-packages/torchvision/datasets/mnist.py:469: UserWarning: The given Num
        Py array is not writeable, and PyTorch does not support non-writeable tensors. This means you can wr
        ite to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy
        the array to protect its data or make it writeable before converting it to a tensor. This type of wa
        rning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csr
        c/utils/tensor_numpy.cpp:141.)
```

return torch.from numpy(parsed.astype(m[2], copy=False)).view(*s)

Let us examine the size of the dataset.

```
In []: # Q4.2 How many training and testing data points are there in the dataset?
# What is the number of features in each data point?

# There are 60000 training data points and 10000 testing data points in the dataset
# For each data point, we have the image data and the actual label for this image.
# The data size of each image is 1*28*28
# '1' means each pixel only has one channel, that's grayscale value
#'28*28' means the width and height of each image are both 28 pixels,
# that means each image has 28*28=784 pixels
print("the number of training data points: ", len(trainingdata))
print("the number of testing data points: ", len(testdata))
print("the size of each data point vector: ", len(trainingdata[0]))
print("the size of each data is", trainingdata[0][0].size())
print("label for each data is", type(trainingdata[0][1]))
```

the number of traning data points: 60000 the number of testing data points: 10000 the size of each data point vector: 2 the size of each image data: torch.Size([1, 28, 28]) label for each data is <class 'int'>

Let us try to visualize some of the images. Since each data point is a tensor (not an array) we need to postprocess to use matplotlib.

```
In [ ]: import matplotlib.pyplot as plt
%matplotlib inline

image, label = trainingdata[0]
# Q4.3 Assuming each sample is an image of size 28x28, show it in matplotlib.
plt.figure()
plt.imshow(image[0], cmap='gray')
plt.show()
```


Let's try plotting several images. This is conveniently achieved in PyTorch using a data loader, which loads data in batches.

```
In []: # Q4.4 Visualize the first 10 images of the first minibatch
# returned by testDataLoader.

first_ten_images = images[:10, 0,...].numpy()
    row = np.concatenate([first_ten_images[i] for i in range(10)], axis=1)
    plt.figure()
    print("Showing the 10 images in one row:")
    plt.imshow(row, cmap='gray')
    plt.show()
```

Showing the 10 images in one row:

Now we are ready to define our linear model. Here is some boilerplate PyTorch code that implements the forward model for a single layer network for logistic regression (similar to the one discussed in class notes).

```
In []: class LinearReg(torch.nn.Module):
    def __init__(self):
        super(LinearReg, self).__init__()
        self.linear = torch.nn.Linear(28*28,10)

    def forward(self, x):
        x = x.view(-1,28*28)
        transformed_x = self.linear(x)
        return transformed_x

    net = LinearReg().cuda()
    Loss = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(net.parameters(), lr=0.01)
```

Cool! Now we have set everything up. Let's try to train the network.

```
In [ ]: train loss history = []
        test loss history = []
        # Q4.5 Write down a for-loop that trains this network for 20 minibatch iterations,
        # and print the train/test losses.
        # Save them in the variables above. If done correctly, you should be able to
        # execute the next code block.
        #Initiate network
        net = LinearReg().cuda()
        Loss = torch.nn.CrossEntropyLoss()
        optimizer = torch.optim.SGD(net.parameters(), lr=0.01)
        num of epochs = 20
        for i in range(num of epochs):
          #shuffle training data
          trainDataLoader = torch.utils.data.DataLoader(trainingdata, batch_size=64, shuffle=True)
          #train the net with each minibatch
          epoch train loss = 0
          for images, labels in trainDataLoader:
            optimizer.zero grad()
            # calculate train loss of the current minibatch
            preds = net(images.cuda())
            batch images loss = Loss(preds, labels.cuda())
            epoch train loss += batch images loss
            #optimize the network
            batch images loss.backward()
            optimizer.step()
          # calculate train loss for the epoch
          epoch train_loss /= len(trainingdata)
          train loss history.append(epoch train loss)
          # test the net with each minibatch
          epoch test loss = 0
          for images, labels in testDataLoader:
            preds = net(images.cuda())
            batch images loss = Loss(preds, labels.cuda())
            epoch test loss += batch images loss
```

```
# calculate test loss for the epoch
epoch_test_loss /= len(testdata)
test_loss_history.append(epoch_test_loss)

print('Epoch: {}, Train Loss: {}, Test Loss: {}'.format(i, epoch_train_loss, epoch_test_loss))
```

```
Epoch: 0, Train Loss: 0.01502606924623251, Test Loss: 0.011578425765037537
Epoch: 1, Train Loss: 0.010432981885969639, Test Loss: 0.010125137865543365
Epoch: 2, Train Loss: 0.009428427554666996, Test Loss: 0.009466097690165043
Epoch: 3, Train Loss: 0.008885594084858894, Test Loss: 0.00906306505203247
Epoch: 4, Train Loss: 0.008530200459063053, Test Loss: 0.008839458227157593
Epoch: 5, Train Loss: 0.008271351456642151, Test Loss: 0.008571295067667961
Epoch: 6, Train Loss: 0.00807273667305708, Test Loss: 0.00842297449707985
Epoch: 7, Train Loss: 0.007911734282970428, Test Loss: 0.008297959342598915
Epoch: 8, Train Loss: 0.007779350504279137, Test Loss: 0.008169146254658699
Epoch: 9, Train Loss: 0.007666518911719322, Test Loss: 0.00807636696845293
Epoch: 10, Train Loss: 0.007574894465506077, Test Loss: 0.008048789575695992
Epoch: 11, Train Loss: 0.007492510136216879, Test Loss: 0.007952781394124031
Epoch: 12, Train Loss: 0.007416723761707544, Test Loss: 0.007868158631026745
Epoch: 13, Train Loss: 0.0073526217602193356, Test Loss: 0.0078074736520648
Epoch: 14, Train Loss: 0.007288788910955191, Test Loss: 0.007769959978759289
Epoch: 15, Train Loss: 0.007235296536237001, Test Loss: 0.007714950945228338
Epoch: 16, Train Loss: 0.0071831876412034035, Test Loss: 0.0077091665007174015
Epoch: 17, Train Loss: 0.007145352195948362, Test Loss: 0.007648747880011797
Epoch: 18, Train Loss: 0.007103899493813515, Test Loss: 0.007626079488545656
Epoch: 19, Train Loss: 0.007061449345201254, Test Loss: 0.007573876064270735
```

```
In [ ]: plt.plot(range(20),train_loss_history,'-',linewidth=3,label='Train error')
    plt.plot(range(20),test_loss_history,'-',linewidth=3,label='Test error')
    plt.xlabel('epoch')
    plt.ylabel('loss')
    plt.grid(True)
    plt.legend()
```

Out[]: <matplotlib.legend.Legend at 0x7f243392e710>

Neat! Now let's evaluate our model accuracy on the entire dataset. The predicted class label for a given input image can computed by looking at the output of the neural network model and computing the index corresponding to the maximum activation. Something like

predicted_output = net(images) _, predicted_labels = torch.max(predicted_output,1)

```
In [ ]: predicted output = net(images.cuda())
        print(torch.max(predicted output, 1))
        fit = Loss(predicted output, labels.cuda())
        print(labels)
        torch.return types.max(
        values=tensor([ 6.1149, 2.9275, 8.9590, 7.8504, 6.6379, 6.2165, 10.2046, 4.3740,
                 7.0905, 11.6778, 10.4770, 10.4350, 6.6251, 4.7262, 9.3121, 4.5606],
               device='cuda:0', grad fn=<MaxBackward0>),
        indices=tensor([3, 1, 7, 5, 8, 2, 5, 6, 8, 9, 1, 9, 1, 8, 1, 5], device='cuda:0'))
        tensor([3, 2, 7, 5, 8, 4, 5, 6, 8, 9, 1, 9, 1, 8, 1, 5])
In [ ]: def evaluate(dataloader):
          # Q4.6 Implement a function here that evaluates training and testing accuracy.
          # Here, accuracy is measured by probability of successful classification.
          correct pred = 0
          num of all images = 0
          for images, labels in dataloader:
            predicted output = net(images.cuda())
            _, predicted_labels = torch.max(predicted_output,1)
            preds diff = labels - predicted_labels.cpu()
            correct_pred += int((preds_diff==0).sum())
            num of all images += len(images)
          return correct pred/num of all images
        print('Train acc = %0.2f, test acc = %0.2f' % (evaluate(trainDataLoader), evaluate(testDataLoader)))
```

Train acc = 0.85, test acc = 0.83