Stochastic Modelling and Random Processes

Yiming MA

December 13, 2020

Contents

1	Discrete-Time Markov Chains	2
	1.1 Countable Discrete-Time Markov Chains	2
2	Continuous-Time Markov Chains	4
	2.1 Continuous-Time Markov Chains	4

Chapter 1

Discrete-Time Markov Chains

1.1 Countable Discrete-Time Markov Chains

One can extend much of what we have done for finite discrete-time Markov chains to the countably infinite case, e.g. the **simple random walk** on \mathbb{Z} , but some results become more subtle. For example, the simple random walk is *not* SP-ergodic, despite being irreducible. Actually, it even fails to have a $stationary\ probability$; also it is $not\ aperiodic$, and it has a $period\ 2$.

Example 1.1.1. Using definition of the simple random walk:

$$Y_n = \sum_{i=0}^{n-1} X_i,$$

where X_i 's are independent and identically distributed, with

$$X_i = \begin{cases} +1 & \text{with probability } p \\ -1 & \text{with probability } 1-p \end{cases},$$

Compute the $\mathbb{E}[Y_n]$ and $\text{Var}[Y_n]$.

One has to refine various concepts.

Definition 1.1.1 (The First Return Time). The first return time to state x is defined as

$$T_x = \inf\{n \ge 1 : X_n = x | X_0 = x\}.$$

Remark. Notice that when the state space is finite and x is recurrent, T_x is finite. Since the state space here is countably infinite, T_x is allowed to be infinite.

Definition 1.1.2 (Transience). Say $x \in S$ is transient if

$$\mathbb{P}[T_x = \infty] > 0.$$

Remark. If $x \in S$ is transient, then with probability 1 X_n comes back to x only finitely many times.

Definition 1.1.3 (Null Recurrence). Say $x \in S$ is **null recurrent** if

$$\mathbb{P}[T_r < \infty] = 1$$
 and $\mathbb{E}[T_r] = \infty$.

Definition 1.1.4 (Positive Recurrence). Say $x \in S$ is **positive recurrent** if

$$\mathbb{P}[T_x < \infty] = 1$$
 and $\mathbb{E}[T_x] < \infty$.

Remark. A communicating class is either **null recurrent**, which means every member is null recurrent, or **positive recurrent** which means every member is positive recurrent.

Theorem 1.1.1 (Stationarity \iff Positive Recurrence). An absorbing class has a stationary probability if and only if it is positive recurrent. Furthermore, if the class has one stationary probability, then it is uniquely determined by

$$\boldsymbol{\pi}_x = \frac{1}{\mathbb{E}[T_x]}.$$

Chapter 2

Continuous-Time Markov Chains

2.1 Continuous-Time Markov Chains

We are now considering a continuous-time markov chain with a countable state space S and the domain $T \in \mathbb{R}$ (or $T \in \mathbb{R}_+$), and we restrict $X : \mathbb{R} \mapsto S$ to those which are *piecewise constant* and *right-continuous*, meaning

$$X(t) = \begin{cases} \vdots & \vdots \\ s & t \in [J_s, J_{s'}) \\ s' & t \in [J_{s'}, J_{s''}) \\ \vdots & \vdots \end{cases}$$

Definition 2.1.1 (Continuous-Time Markov Chains). $X(t) : \mathbb{R} \to S$ is a **continuous-time Markov** chain, if it satisfies the **Markov property**

$$\mathbb{P}[X(t_{n+1}) \in A | X(t_n) = s_n, \cdots, X(t_1) = s_1] = \mathbb{P}[X(t_{n+1}) \in A | X(t_n) = s_n],$$
 where $A \subset S$ and $t_1 < \cdots t_n < t_{n+1}$.

Definition 2.1.2 (Homogeneity). A continuous-time Markov chain is **homogeneous** if

$$\mathbb{P}[X(t+u) \in A | X(u) = s] = \mathbb{P}[X(t) \in A | X(0) = s].$$

Remark. Homogeneity means time translation invariance.

Definition 2.1.3 (Transition Matrices). Let $(P_t)_{i,j} := \mathbb{P}[X(t) = j | X(0) = i]$, then P_t is the transition matrix with time step t.

Remark. The (i,j) element of the transition matrix P_t can also be expressed as $P_t(i,j)$.

Theorem 2.1.1 (Chapman-Kolmogorov Equation). The transition matrix P of a homogeneous Markov chain satisfies

$$P_{t+u} = P_t P_u, P_0 = I.$$

Proof. Notice that

$$\begin{split} (P_{t+u})_{i,j} = & \mathbb{P}[X(t+u) = j|X(0) = i] \\ = & \sum_{k \in S} \mathbb{P}[X(t+u) = j|X(t) = k, \ X(0) = i] \mathbb{P}[X(t) = k|X(0) = i] \\ = & \sum_{k \in S} \mathbb{P}[X(t+u) = j|X(t) = k] \mathbb{P}[X(t) = k|X(0) = i] \\ = & \sum_{k \in S} \mathbb{P}[X(u) = j|X(0) = k] \mathbb{P}[X(t) = k|X(0) = i] \\ = & \sum_{k \in S} (P_u)_{k,j}(P_t)_{i,k} \\ = & (P_t)_{i,:} \ (P_u)_{:,j}, \end{split}$$

where $(P_t)_{i,:}$ is the *i*-th row of P_t and $(P_u)_{:,j}$ is the *j*-th column of P_u . Thus, $P_{t+u} = P_t P_u$. And by definition, $(P_0)_{i,j} = \mathbb{P}[X_0 = j | X_0 = i] = \delta_{i,j}$, so $P_0 = I$.

Definition 2.1.4 (Generator / Rate Matrix). Suppose P_t is differentiable with respect to t at t = 0, then

$$G := \left. \frac{\mathrm{d}P_t}{\mathrm{d}t} \right|_{t=0}$$

is called the **generator** or the **rate matrix** of the process.

Proposition 2.1.1. $P_t = \exp(tG)$ in the sense of power series.

Proof. By the Chapman-Kolmogorov equation, we have

$$\begin{split} P_{t+u} = & P_t P_u \\ P_{t+u} - P_t = & P_t (P_u - I) \\ \frac{P_{t+u} - P_t}{u} = & P_t \cdot \frac{P_u - I}{u} \\ \lim_{u \to 0} \frac{P_{t+u} - P_t}{u} = & \lim_{u \to 0} P_t \cdot \frac{P_u - I}{u} \\ \lim_{u \to 0} \frac{P_{t+u} - P_t}{u} = & P_t \cdot \lim_{u \to 0} \frac{P_u - I}{u} \\ \frac{\mathrm{d}P_t}{\mathrm{d}t} = & P_t G, \end{split}$$

So $P_t = C \cdot \exp(tG)$, where C is a constant diagonal matrix with diagonal elements being equal. By $P_0 = I$, we know C = I.

Proposition 2.1.2. The generator G also satisfies

$$G\vec{1} = \vec{0}$$
.

Proof. For any probability distribution $\pi_t = \pi_0 P_t$ with initial distribution π_0 , evolves by

$$\frac{\mathrm{d}\boldsymbol{\pi}_t}{\mathrm{d}t} = \boldsymbol{\pi}_0 \frac{\mathrm{d}P_t}{\mathrm{d}t} = \boldsymbol{\pi}_0 P_t G = \boldsymbol{\pi}_t G.$$

And by conservation of probability, we have $\pi_t \vec{1} = \vec{1}$, which implies $\pi_t G \vec{1} = \frac{d\pi_t \vec{1}}{dt} = 0$. Since π_t is arbitrary, we have $G \vec{1} = 0$.

Theorem 2.1.2 (The Master Equation). The equation

$$\frac{\mathrm{d}\boldsymbol{\pi}_t}{\mathrm{d}t} = \boldsymbol{\pi}_t G$$

can be written into

$$\frac{\mathrm{d}(\boldsymbol{\pi}_t)_i}{\mathrm{d}t} = \underbrace{\sum_{j \neq i} (\boldsymbol{\pi}_t)_j G_{j,i}}_{\text{"aain"}} - \underbrace{\sum_{j \neq i} (\boldsymbol{\pi}_t)_i G_{i,j}}_{\text{"loss"}},$$

which is called the **master equation**.

Proof. For $i \neq j$, since $G_{i,j}$ is the rate at which the process goes from state i to j, we have $G_{i,j} \geq 0$. By $G\vec{1} = \vec{0}$, we have

$$G_{i,i} = -\sum_{j \neq i} G_{i,j}.$$

So

$$\frac{\mathrm{d}(\boldsymbol{\pi}_t)_i}{\mathrm{d}t} = \boldsymbol{\pi}_t G_{:,i}$$

$$= \sum_{j \in S} (\boldsymbol{\pi}_t)_j G_{j,i}$$

$$= \sum_{j \neq i} (\boldsymbol{\pi}_t)_j G_{j,i} - \sum_{j \neq i} (\boldsymbol{\pi}_t)_i G_{i,j}.$$

Remark. The name "master equation" is exaggerated; it does not tell everything about the process, such as the correlations between states at different times.

Definition 2.1.5 (Stationarity). Say $\pi \in \Delta$ is stationary if $\pi G = 0$.

Definition 2.1.6 (Reversibility). Say $\pi \in \Delta$ is reversible if

$$\boldsymbol{\pi}_i G_{i,j} = \boldsymbol{\pi}_j G_{j,i}, \ \forall i, j \in S.$$

Proposition 2.1.3 (Reversibility \implies Stationarity). If $\pi \in \Delta$ is reversibile, then it is also stationary.

Proposition 2.1.4. S is fintie $\implies \exists$ stationary π .

There is an analogous decomposition of the state space S into transient and recurrent states, and of the set of recurrent states into communicating components. And we have the same definition of an absorbing component.

Proposition 2.1.5. If S is finite, then each absorbing component has a unique stationary probability π , and the space of starionary π for the whole continuous-time Markov chain (up to normalisation) is the span of those for its absorbing components. Furthermore, 0 is a semisimple eigenvalue of G.

Theorem 2.1.3. Suppose S is finite and G has a unique absorbing component, then the process is SP-ergodic, which means

$$\lim_{t\to\infty}\boldsymbol{\pi}_t=\boldsymbol{\pi}_A,$$

6

where π_A is the stationary distribution of the absorbing component.

Remark. Aperiodicity is automatic in continuous time.