Robust, Deep and Inductive Anomaly Detection

Raghavendra Chalapathy

Aditya Krishna Menon Sanjay Chawla

Application

Anomaly Detection: Video Surveillance.

■ Detecting: Background activities.

Definition

Anomaly Detection

Anomalies are objects : different from most other objects.

Anomaly Detection: By Spectral Techniques

Analysis based on Eigen-Decomposition of data.

Anomaly Detection: By Spectral Techniques

- Analysis based on Eigen-Decomposition of data.
- Key Idea:
 - Find combination of attributes capturing bulk of variability.

Anomaly Detection: By Spectral Techniques

- Analysis based on Eigen-Decomposition of data.
- Key Idea:
 - Find combination of attributes **capturing bulk of variability**.
 - Reduced set of attributes can explain only normal data well.
- Several methods use Principal Component Analysis.
 - Top few principal components capture variability: normal data.
 - Outliers have variability in the smallest component.

Motivation and Challenges

■ PCA is highly sensitive to **data perturbation**.

■ PCA is highly sensitive to data perturbation.

■ PCA, Robust PCA fails to capture non-linear projections.

■ PCA, Robust PCA fails to capture non-linear projections.

We propose Robust (Convolutional) Auto-encoder to overcome these limitations.

Related Work

Conventional Anomaly Detection Techniques

Matrix Factorization Approach: PCA

Matrix Factorization Approach: PCA

- PCA interpreted as matrix factorisation.
- Factorise $\mathbf{X} \in \mathbb{R}^{N \times D}$ into $\mathbf{Z} \in \mathbb{R}^{N \times K}$ and $\mathbf{W} \in \mathbb{R}^{K \times D}$

$$\min_{\mathbf{W}\mathbf{W}^T=\mathbf{I},\mathbf{Z}}\|\mathbf{X}-\mathbf{Z}\mathbf{W}\|_F^2 = \min_{\mathbf{W}\mathbf{W}^T=\mathbf{I}}\|\mathbf{X}-\mathbf{X}\mathbf{W}^T\mathbf{W}\|_F^2$$

Matrix Factorization Approach: PCA

- PCA interpreted as matrix factorisation.
- Factorise $\mathbf{X} \in \mathbb{R}^{N \times D}$ into $\mathbf{Z} \in \mathbb{R}^{N \times K}$ and $\mathbf{W} \in \mathbb{R}^{K \times D}$

$$\min_{\mathbf{W}\mathbf{W}^T=\mathbf{I},\mathbf{Z}}\|\mathbf{X}-\mathbf{Z}\mathbf{W}\|_F^2 = \min_{\mathbf{W}\mathbf{W}^T=\mathbf{I}}\|\mathbf{X}-\mathbf{X}\mathbf{W}^T\mathbf{W}\|_F^2$$

Limitations:

- Does not handle data perturbations.
- Does not capture nonlinear projections.

■ RPCA generalizes PCA with **tuning parameter** $\lambda > 0$.

■ RPCA generalizes PCA with tuning parameter $\lambda > 0$.

$$\min_{\mathbf{S}, \mathbf{N}} \|\mathbf{S}\|_* + \lambda \|\mathbf{N}\|_1 : \mathbf{X} = \mathbf{S} + \mathbf{N}$$
 (1)

■ RPCA generalizes PCA with **tuning parameter** $\lambda > 0$.

$$\min_{\mathbf{S}, \mathbf{N}} \|\mathbf{S}\|_* + \lambda \|\mathbf{N}\|_1 : \mathbf{X} = \mathbf{S} + \mathbf{N}$$
 (1)

■ S is signal, N is noise matrix.

■ RPCA generalizes PCA with **tuning parameter** $\lambda > 0$.

$$\min_{\mathbf{S}, \mathbf{N}} \|\mathbf{S}\|_* + \lambda \|\mathbf{N}\|_1 : \mathbf{X} = \mathbf{S} + \mathbf{N}$$
 (1)

■ S is signal, N is noise matrix.

■ RPCA generalizes PCA with **tuning parameter** $\lambda > 0$.

$$\min_{\mathbf{S}, \mathbf{N}} \|\mathbf{S}\|_* + \lambda \|\mathbf{N}\|_1 : \mathbf{X} = \mathbf{S} + \mathbf{N}$$
 (1)

- **S** is signal, **N** is noise matrix.
- Points with **high value of** N are considered anomalous.

■ RPCA generalizes PCA with **tuning parameter** $\lambda > 0$.

$$\min_{\mathbf{S}, \mathbf{N}} \|\mathbf{S}\|_* + \lambda \|\mathbf{N}\|_1 : \mathbf{X} = \mathbf{S} + \mathbf{N}$$
 (1)

- **S** is signal, **N** is noise matrix.
- Points with **high value of** N are considered anomalous.

■ RPCA generalizes PCA with **tuning parameter** $\lambda > 0$.

$$\min_{\mathbf{S}, \mathbf{N}} \|\mathbf{S}\|_* + \lambda \|\mathbf{N}\|_1 : \mathbf{X} = \mathbf{S} + \mathbf{N}$$
 (1)

- **S** is signal, **N** is noise matrix.
- Points with **high value of N** are considered anomalous.

Limitations:

Does not capture nonlinear projections.

Robust (Convolutional) Autoencoders

Auto encoder with single hidden layer

$$\min_{\mathbf{U},\mathbf{V}} \|\mathbf{X} - \mathbf{f}(\mathbf{X}\mathbf{U})\mathbf{V}\|_{\mathbf{F}}^{2} \tag{2}$$

 $\hat{\mathbf{X}} = f(\mathbf{X}\mathbf{U})\mathbf{V}$ is reconstruction error measure.

Auto encoder with single hidden layer

$$\min_{\mathbf{U},\mathbf{V}} \|\mathbf{X} - \mathbf{f}(\mathbf{X}\mathbf{U})\mathbf{V}\|_{\mathbf{F}}^{2} \tag{2}$$

- $\hat{\mathbf{X}} = f(\mathbf{X}\mathbf{U})\mathbf{V}$ is reconstruction error measure.
 - **U**: Weights (input \rightarrow hidden),

Auto encoder with single hidden layer

$$\min_{\mathbf{U},\mathbf{V}} \|\mathbf{X} - \mathbf{f}(\mathbf{X}\mathbf{U})\mathbf{V}\|_{\mathbf{F}}^{2} \tag{2}$$

- $\hat{\mathbf{X}} = f(\mathbf{X}\mathbf{U})\mathbf{V}$ is reconstruction error measure.
 - U: Weights (input \rightarrow hidden),
 - V: Weights (hidden → output),
- \blacksquare XU projects \mathbf{X} into K dimensional space $\mathbf{U} \in \mathbf{R^{D \times K}}, \, \mathbf{V} \in \mathbf{R^{K \times D}}.$

Auto encoder with single hidden layer

$$\min_{\mathbf{U},\mathbf{V}} \|\mathbf{X} - \mathbf{f}(\mathbf{X}\mathbf{U})\mathbf{V}\|_{\mathbf{F}}^{2} \tag{2}$$

- $\hat{\mathbf{X}} = f(\mathbf{X}\mathbf{U})\mathbf{V}$ is reconstruction error measure.
 - \blacksquare U: Weights (input \rightarrow hidden),
 - $lackbox{ V: Weights (hidden <math>\rightarrow$ output),}
 - **activation function:** $f: \mathbb{R} \to \mathbb{R}$
- \blacksquare XU projects X into K dimensional space $\mathbf{U} \in \mathbf{R^{D \times K}}, \, \mathbf{V} \in \mathbf{R^{K \times D}}.$
- Non linear projection: **sigmoid** $f(\cdot) := (1 + \exp(-a))^{-1}$

Comparison: Conventional Anomaly Detection Methods

■ Deep (convolution) Robust Auto encoder are versatile.

	Handles Data Perturbation	Captures Non-linear Structure	Learns Non-linear Structure from data
PCA	No	No	No
RPCA	Yes	No	No
RKPCA	Yes	Yes	No
RCAE	Yes	Yes	Yes

$$\min_{\mathbf{U}, \mathbf{V}, \mathbf{N}} \|\mathbf{X} - \mathbf{f}(\mathbf{X}\mathbf{U})\mathbf{V} + \mathbf{N}\|_{\mathbf{F}}^{2} + \frac{\mu}{2} \cdot (\|\mathbf{U}\|_{\mathbf{F}}^{2} + \|\mathbf{V}\|_{\mathbf{F}}^{2}) + \lambda \|\mathbf{N}\|_{1}$$
(3)

■ For activation function $f: \mathbb{R} \to \mathbb{R}$

$$\min_{\mathbf{U}, \mathbf{V}, \mathbf{N}} \|\mathbf{X} - \mathbf{f}(\mathbf{X}\mathbf{U})\mathbf{V} + \mathbf{N}\|_{\mathbf{F}}^{2} + \frac{\mu}{2} \cdot (\|\mathbf{U}\|_{\mathbf{F}}^{2} + \|\mathbf{V}\|_{\mathbf{F}}^{2}) + \lambda \|\mathbf{N}\|_{1}$$
(3)

 $\hat{X} = f(\mathbf{X}\mathbf{U})\mathbf{V}$ is reconstruction error measure

$$\min_{\mathbf{U}, \mathbf{V}, \mathbf{N}} \|\mathbf{X} - \mathbf{f}(\mathbf{X}\mathbf{U})\mathbf{V} + \mathbf{N}\|_{\mathbf{F}}^{2} + \frac{\mu}{2} \cdot (\|\mathbf{U}\|_{\mathbf{F}}^{2} + \|\mathbf{V}\|_{\mathbf{F}}^{2}) + \lambda \|\mathbf{N}\|_{1}$$
(3)

- $\hat{X} = f(XU)V$ is reconstruction error measure
- $\lambda, \mu > 0$ are tuning parameters.

$$\min_{\mathbf{U}, \mathbf{V}, \mathbf{N}} \|\mathbf{X} - \mathbf{f}(\mathbf{X}\mathbf{U})\mathbf{V} + \mathbf{N}\|_{\mathbf{F}}^{2} + \frac{\mu}{2} \cdot (\|\mathbf{U}\|_{\mathbf{F}}^{2} + \|\mathbf{V}\|_{\mathbf{F}}^{2}) + \lambda \|\mathbf{N}\|_{1}$$
(3)

- $\hat{X} = f(XU)V$ is reconstruction error measure
- lacksquare $\lambda, \mu > 0$ are tuning parameters.
- $\mathbf{Z} = \mathbf{f}(\mathbf{X}\mathbf{U})$ latent representation decoded by V weights.
- N captures gross outliers.

$$\min_{\mathbf{U}, \mathbf{V}, \mathbf{N}} \|\mathbf{X} - \mathbf{f}(\mathbf{X}\mathbf{U})\mathbf{V} + \mathbf{N}\|_{\mathbf{F}}^{2} + \frac{\mu}{2} \cdot (\|\mathbf{U}\|_{\mathbf{F}}^{2} + \|\mathbf{V}\|_{\mathbf{F}}^{2}) + \lambda \|\mathbf{N}\|_{1}$$
(3)

- $\hat{X} = f(XU)V$ is reconstruction error measure
- $\lambda, \mu > 0$ are tuning parameters.
- ${f Z}={f f}({f X}{f U})$ latent representation decoded by V weights.
- N captures gross outliers.
- $0 < \lambda < +\infty$, models a standard auto encoder robust to noise.

RCAE Vs Robust PCA (1)

■ RPCA objective function with basic equality constraints:

$$\min_{S,N} \|\mathbf{S}\|_* + \lambda \|\mathbf{N}\|_1 \tag{4}$$

RCAE Vs Robust PCA (1)

■ RPCA objective function with basic equality constraints:

$$\min_{S.N} \|\mathbf{S}\|_* + \lambda \|\mathbf{N}\|_1 \tag{4}$$

■ RCAE objective function with basic equality constraints:

$$\min_{U,V,N} \|\mathbf{X} - \mathbf{f}(\mathbf{X}\mathbf{U})\mathbf{V} + \mathbf{N}\|_{\mathbf{F}}^{2} + \frac{\mu}{2} \cdot (\|\mathbf{U}\|_{\mathbf{F}}^{2} + \|\mathbf{V}\|_{\mathbf{F}}^{2}) + \lambda \|\mathbf{N}\|_{1}$$
(5)

RCAE Vs Robust PCA (1)

■ RPCA objective function with basic equality constraints:

$$\min_{S,N} \|\mathbf{S}\|_* + \lambda \|\mathbf{N}\|_1 \tag{4}$$

■ RCAE objective function with basic equality constraints:

$$\min_{U,V,N} \|\mathbf{X} - \mathbf{f}(\mathbf{X}\mathbf{U})\mathbf{V} + \mathbf{N}\|_{\mathbf{F}}^2 + \frac{\mu}{2} \cdot (\|\mathbf{U}\|_{\mathbf{F}}^2 + \|\mathbf{V}\|_{\mathbf{F}}^2) + \lambda \|\mathbf{N}\|_1$$
(5)

Conceptual Similarity between Equation 4 and Equation 5 established [5].

Consider the Objective function of Robust Autoencoder.

$$\min_{\mathbf{U},\mathbf{V},\mathbf{N}} \lVert \mathbf{X} - \mathbf{f}(\mathbf{X}\mathbf{U})\mathbf{V} + \mathbf{N} \rVert_{\mathbf{F}}^2 + \frac{\mu}{2} \cdot (\lVert \mathbf{U} \rVert_{\mathbf{F}}^2 + \lVert \mathbf{V} \rVert_{\mathbf{F}}^2) + \lambda \lVert \mathbf{N} \rVert_1 \quad \text{(6)}$$

Consider the Objective function of Robust Autoencoder.

$$\min_{\mathbf{U},\mathbf{V},\mathbf{N}} \|\mathbf{X} - \mathbf{f}(\mathbf{X}\mathbf{U})\mathbf{V} + \mathbf{N}\|_{\mathbf{F}}^{2} + \frac{\mu}{2} \cdot (\|\mathbf{U}\|_{\mathbf{F}}^{2} + \|\mathbf{V}\|_{\mathbf{F}}^{2}) + \lambda \|\mathbf{N}\|_{1}$$
(6)

More generally objective could be rewritten as below.

$$\min_{\theta, \mathbf{N}} \|\mathbf{X} - \hat{\mathbf{X}}(\theta) + \mathbf{N}\|_{\mathbf{F}}^{2} + \frac{\mu}{2} \cdot \Omega(\theta) + \lambda \|\mathbf{N}\|_{1}$$
 (7)

Consider the Objective function of Robust Autoencoder.

$$\min_{\mathbf{U},\mathbf{V},\mathbf{N}} \|\mathbf{X} - \mathbf{f}(\mathbf{X}\mathbf{U})\mathbf{V} + \mathbf{N}\|_{\mathbf{F}}^2 + \frac{\mu}{2} \cdot (\|\mathbf{U}\|_{\mathbf{F}}^2 + \|\mathbf{V}\|_{\mathbf{F}}^2) + \lambda \|\mathbf{N}\|_1 \quad (6)$$

More generally objective could be rewritten as below.

$$\min_{\theta, \mathbf{N}} \|\mathbf{X} - \hat{\mathbf{X}}(\theta) + \mathbf{N}\|_{\mathbf{F}}^2 + \frac{\mu}{2} \cdot \mathbf{\Omega}(\theta) + \lambda \|\mathbf{N}\|_1$$
 (7)

- where $\hat{\mathbf{X}}(\theta)$ is some generic predictor with parameters θ .
- lacksquare $\Omega(\cdot)$: regularization function.

Consider the Objective function of Robust Autoencoder.

$$\min_{\mathbf{U},\mathbf{V},\mathbf{N}} \|\mathbf{X} - \mathbf{f}(\mathbf{X}\mathbf{U})\mathbf{V} + \mathbf{N}\|_{\mathbf{F}}^2 + \frac{\mu}{2} \cdot (\|\mathbf{U}\|_{\mathbf{F}}^2 + \|\mathbf{V}\|_{\mathbf{F}}^2) + \lambda \|\mathbf{N}\|_1 \quad (6)$$

More generally objective could be rewritten as below.

$$\min_{\theta, \mathbf{N}} \|\mathbf{X} - \hat{\mathbf{X}}(\theta) + \mathbf{N}\|_{\mathbf{F}}^2 + \frac{\mu}{2} \cdot \mathbf{\Omega}(\theta) + \lambda \|\mathbf{N}\|_1$$
 (7)

- where $\hat{\mathbf{X}}(\theta)$ is some generic predictor with parameters θ .
- lacksquare $\Omega(\cdot)$: regularization function.
- Equation 7 is non-convex but unconstrained and sub-differentiable

For differentiable function $\hat{\mathbf{X}}(\theta)$ back-propagation is employed.

¹Bach, F., Jenatton, R., Mairal, J., Obozinski, G. Convex Optimization with Sparsity-Inducing Norms.

Application Definition Motivation and Challenges Related Work Robust (Convolutional) Autoencoders Experimental Setup Results

Training RCAE (2)

- For differentiable function $\hat{\mathbf{X}}(\theta)$ back-propagation is employed.
- We follow soft thresholding approach to optimize N.

¹Bach, F., Jenatton, R., Mairal, J., Obozinski, G. Convex Optimization with Sparsity-Inducing Norms.

- For differentiable function $\hat{\mathbf{X}}(\theta)$ back-propagation is employed.
- We follow soft thresholding approach to optimize N.
- For fixed N, θ , U, V the objective is:

$$\min_{\theta, \mathbf{N}} \|\mathbf{N} - (\mathbf{X} - \hat{\mathbf{X}}(\theta)) + \lambda \|\mathbf{N}\|_1$$
 (8)

¹Bach, F., Jenatton, R., Mairal, J., Obozinski, G. Convex Optimization with Sparsity-Inducing Norms.

- For differentiable function $\hat{\mathbf{X}}(\theta)$ back-propagation is employed.
- We follow **soft thresholding approach** to optimize N.
- For fixed N, θ , U, V the objective is:

$$\min_{\theta, \mathbf{N}} \|\mathbf{N} - (\mathbf{X} - \hat{\mathbf{X}}(\theta)) + \lambda \|\mathbf{N}\|_{1}$$
 (8)

Applying Soft-thresholding¹ to compute N

$$N_{ij} = \begin{cases} (\mathbf{X} - \hat{\mathbf{X}}(\theta))_{ij} - \frac{\lambda}{2} & \text{if } (\mathbf{X} - \hat{\mathbf{X}}(\theta))_{ij} > \frac{\lambda}{2} \\ (\mathbf{X} - \hat{\mathbf{X}}(\theta))_{ij} + \frac{\lambda}{2} & \text{if } (\mathbf{X} - \hat{\mathbf{X}}(\theta))_{ij} < -\frac{\lambda}{2} \\ 0 & \text{else.} \end{cases}$$
(9)

¹Bach, F., Jenatton, R., Mairal, J., Obozinski, G. Convex Optimization with Sparsity-Inducing Norms.

Experimental Setup

We compare all methods on three real-world datasets for anomaly detection:

- We compare all methods on three real-world datasets for anomaly detection:
 - Restaurant, comprising video background modeling and activity detection consisting of snapshots of restaurant activities.

- We compare all methods on three real-world datasets for anomaly detection:
 - Restaurant, comprising video background modeling and activity detection consisting of snapshots of restaurant activities.
 - USPS, comprising the USPS handwritten digits.

- We compare all methods on three real-world datasets for anomaly detection:
 - Restaurant, comprising video background modeling and activity detection consisting of snapshots of restaurant activities.
 - USPS, comprising the USPS handwritten digits.
 - CIFAR-10 consisting of 60000 32×32 colour images of 10 classes,with 6000 images per class.

- We compare all methods on three real-world datasets for anomaly detection:
 - Restaurant, comprising video background modeling and activity detection consisting of snapshots of restaurant activities.
 - **USPS**, comprising the USPS handwritten digits.
 - CIFAR-10 consisting of 60000 32×32 colour images of 10 classes,with 6000 images per class.

Dataset	# instances	# anomalies	# features
restaurant	200	Unknown (foreground)	19200
usps	231	11 ('7')	256
cifar-10	5000	50 (cats)	1024

■ Compare empirical effectiveness of:

²Publicly available implementations[3][5][1]

³Tensorflow Implementation: https://github.com/raghavchalapathy/rcae

- Compare empirical effectiveness of:
 - Truncated SVD: zero-mean features is equivalent to PCA.²

²Publicly available implementations[3][5][1]

³Tensorflow Implementation: https://github.com/raghavchalapathy/rcae

- Compare empirical effectiveness of:
 - Truncated SVD: zero-mean features is equivalent to PCA.²
 - Robust PCA .2

²Publicly available implementations[3][5][1]

³Tensorflow Implementation: https://github.com/raghavchalapathy/rcae

- Compare empirical effectiveness of:
 - Truncated SVD: zero-mean features is equivalent to PCA.²
 - Robust PCA .2
 - Robust kernel PCA (RKPCA)².

²Publicly available implementations[3][5][1]

³Tensorflow Implementation: https://github.com/raghavchalapathy/rcae

- Compare empirical effectiveness of:
 - Truncated SVD: zero-mean features is equivalent to PCA.²
 - Robust PCA .2
 - Robust kernel PCA (RKPCA)².
 - Autoencoder (AE)³.

²Publicly available implementations[3][5][1]

³Tensorflow Implementation: https://github.com/raghavchalapathy/rcae

- Compare empirical effectiveness of:
 - Truncated SVD: zero-mean features is equivalent to PCA.²
 - Robust PCA .2
 - Robust kernel PCA (RKPCA)².
 - Autoencoder (AE)³.
 - Convolutional Autoencoder (CAE)³ where $\lambda = +\infty$.

²Publicly available implementations[3][5][1]

³Tensorflow Implementation: https://github.com/raghavchalapathy/rcae

- Compare empirical effectiveness of:
 - **Truncated SVD**: zero-mean features is equivalent to PCA.²
 - Robust PCA .2
 - Robust kernel PCA (RKPCA)².
 - Autoencoder (AE)³.
 - Convolutional Autoencoder (CAE)³ where $\lambda = +\infty$.
 - Robust Convolutional Autoencoder (RCAE).3

²Publicly available implementations[3][5][1]

³Tensorflow Implementation: https://github.com/raghavchalapathy/rcae

■ Experiments were conducted for three scenarios:

- Experiments were conducted for three scenarios:
 - Non-inductive anomaly detection.

- Experiments were conducted for three scenarios:
 - Non-inductive anomaly detection.
 - Inductive anomaly detection.

- Experiments were conducted for three scenarios:
 - Non-inductive anomaly detection.
 - Inductive anomaly detection.
 - Image denoising.

- Experiments were conducted for three scenarios:
 - Non-inductive anomaly detection.
 - Inductive anomaly detection.
 - Image denoising.
- Four network parameters were tuned for best performance:

- Experiments were conducted for three scenarios:
 - Non-inductive anomaly detection.
 - Inductive anomaly detection.
 - Image denoising.
- Four network parameters were tuned for best performance:
 - number of convolutional filters.
 - filter size.
 - strides of convolution operation.
 - activation applied.

- Experiments were conducted for three scenarios:
 - Non-inductive anomaly detection.
 - Inductive anomaly detection.
 - Image denoising.
- Four network parameters were tuned for best performance:
 - number of convolutional filters.
 - filter size.
 - strides of convolution operation.
 - activation applied.
- Number of **hidden nodes** $H \in [3, 64, 128]$, regularisation parameters $\lambda \in [0, 100]$ and $\mu \in [0.05, 0.1]$.

- Experiments were conducted for three scenarios:
 - Non-inductive anomaly detection.
 - Inductive anomaly detection.
 - Image denoising.
- Four network parameters were tuned for best performance:
 - number of convolutional filters.
 - filter size.
 - strides of convolution operation.
 - activation applied.
- Number of **hidden nodes** $H \in [3, 64, 128]$, regularisation parameters $\lambda \in [0, 100]$ and $\mu \in [0.05, 0.1]$.
- Initial weight matrices were from uniform distribution in [-1, 1].

■ Predictive performance is measured against the ground truth anomaly labels using three standard metrics:

- Predictive performance is measured against the ground truth anomaly labels using three standard metrics:
 - Area under the precision-recall curve (AUPRC)
 - Area under the ROC curve (AUROC))
 - Precision at 10 (P@10)

- Predictive performance is measured against the ground truth anomaly labels using three standard metrics:
 - Area under the precision-recall curve (AUPRC)
 - Area under the ROC curve (AUROC))
 - Precision at 10 (P@10)
- AUPRC and AUROC measure ranking performance.

- Predictive performance is measured against the ground truth anomaly labels using three standard metrics:
 - Area under the precision-recall curve (AUPRC)
 - Area under the ROC curve (AUROC))
 - Precision at 10 (P@10)
- AUPRC and AUROC measure ranking performance.
- P@10 measures classification performance.(actual anomalies among top-10 scored instances).

Results

Non Inductive: Top anomalous Images Detected

■ USPS: 220 images of '1's, and 11 images of '7' (anomalous)

 CIFAR: 5000 images of 'dog's, and 50 images of 'cat's(anomalous)

Non Inductive: Top anomalous Images Detected

■ USPS: 220 images of '1's, and 11 images of '7' (anomalous)

(b) RPCA

CIFAR: 5000 images of 'dog's, and 50 images of 'cat's(anomalous)

(a) RCAE

(b) RPCA

Non Inductive Anomaly Detection: Performance

■ The Robust convolution autoencoder outperforms the state of the art methods.

(a) usps					(b) cifar-10			
Methods	AUPRC	AUROC	P@10		AUPRC	AUROC	P@10	
RCAE	0.9614 ± 0.0025	$0.9988 \!\pm 0.0243$	0.9108 ± 0.0113		0.9934 ± 0.0003	0.6255 ± 0.0055	0.8716 ± 0.0005	
CAE	0.7003 ± 0.0105	0.9712 ± 0.0002	0.8730 ± 0.0023		0.9011 ± 0.0000	0.6191 ± 0.0000	0.0000 ± 0.0000	
AE	0.8533 ± 0.0023	0.9927 ± 0.0022	0.8108 ± 0.0003		0.9341 ± 0.0029	0.5260 ± 0.0003	0.2000 ± 0.0003	
RKPCA	0.5340 ± 0.0262	0.9717 ± 0.0024	0.5250 ± 0.0307		0.0557 ± 0.0037	0.5026 ± 0.0123	0.0550 ± 0.0185	
DRMF	0.7737 ± 0.0351	0.9928 ± 0.0027	0.7150 ± 0.0342		0.0034 ± 0.0000	0.4847 ± 0.0000	0.0000 ± 0.0000	
RPCA	0.7893 ± 0.0195	0.9942 ± 0.0012	0.7250 ± 0.0323		0.0036 ± 0.0000	0.5211 ± 0.0000	0.0000 ± 0.0000	
SVD	0.6091 ± 0.1263	0.9800 ± 0.0105	0.5600 ± 0.0249		0.0024 ± 0.0000	0.5299 ± 0.0000	0.0000 ± 0.0000	

Inductive: Top anomalous Images Detected

- First train model on **only normal** 5000 dog images.
- Evaluate it on a test set 500 dogs and 50 'cat's(anomalous).

(a) RCAE

(b) CAE

Inductive: Top anomalous Images Detected

- First train model on **only normal** 5000 dog images.
- Evaluate it on a test set 500 dogs and 50 'cat's(anomalous).

(a) RCAE

(b) CAE

	SVD	RKPCA	AE	CAE	RCAE
AUPRC	0.1752 ± 0.0051	0.1006 ± 0.0045	0.6200 ± 0.0005	0.6423 ± 0.0005	0.6908 ± 0.0001
AUROC	0.4997 ± 0.0066	0.4988 ± 0.0125	0.5007 ± 0.0010	0.4708 ± 0.0003	0.5576 ± 0.0005
P@10	0.2150 ± 0.0310	0.0900 ± 0.0228	0.1086 ± 0.0001	0.2908 ± 0.0001	0.5986 ± 0.0001

Image De-noising Capability: RCAE vs RPCA

■ Top anomalous images in original form (first row), noisy form (second row), image denoising task on cifar-10.

(a) RCAE

(b) RPCA

Image De-noising Capability: RCAE vs RPCA

Top anomalous images in original form (first row), noisy form (second row), image denoising task on cifar-10.

(b) RPCA

(a) RCAE

0.025 U 0.020 U 0.020 U 0.005 U 0.0

Extended robust PCA model to the nonlinear autoencoder setting.

- Extended robust PCA model to the nonlinear autoencoder setting.
- Our approach is robust, deep and inductive.

- Extended robust PCA model to the nonlinear autoencoder setting.
- Our approach is **robust**, **deep and inductive**.
- Not oversensitive besides captures subtle anomalies.

- Extended robust PCA model to the nonlinear autoencoder setting.
- Our approach is robust, deep and inductive.
- Not oversensitive besides captures subtle anomalies.
- Extend deep autoencoders for **outlier description**.

plication Definition Motivation and Challenges Related Work Robust (Convolutional) Autoencoders Experimental Setup Results

References

- [1] Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015)
- [2] Goodfellow, I., Bengio, Y., Courville, A. Deep Learning. MIT Press (2016), http://www.deeplearningbook.org
- [3] Xiong, L., Chen, X., Schneider, J. Direct robust matrix factorization for anomaly detection. In International Conference on Data Mining (ICDM). IEEE (2011)
- [4] Zhao, M., Saligrama, V. Anomaly detection with score functions based on nearest neighbor graphs. In Advances in Neural Information Processing Systems (NIPS). pp. 2250 2258 (2009)
- [5]Chalapathy, Raghavendra, Aditya Krishna Menon, and Sanjay Chawla. Robust, Deep and Inductive Anomaly Detection.arXiv:1704.06743 (2017).
- [6] Candes, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis: Recovering low-rank matrices from sparse errors. In: Sensor Array and Multichannel Signal Processing Workshop (SAM), 2010 IEEE. pp. 201204. IEEE (2010)

