Метрика. Пересдача

Задача 1.

Предполагая нормальность остатков, оцените модель $y_i = \beta x_i + \varepsilon_i$ по трём наблюдениям: $x_1 = 0, x_2 = 0, x_3 = 1, y_1 = 0, y_2 = 1, y_3 = 4$. Найдите $\hat{\beta}$, RSS, TSS, ESS, R².

Задача 2.

По историческим данным начала 20-го века была оценена зависимость длины тормозного пути от скорости машины. По 50 наблюдениям была оценена регрессия:

$$\widehat{dist}_i = -5.25 + 0.75 speed_i$$

Стандартные ошибки двух оцененных коэффициентов равны 2 и 0.08 соответственно.

- 1. Проверьте гипотезы о значимости каждого коэффициента на 10%-ом уровне значимости.
- 2. Постройте 90%-ый предиктивный интервал для длины тормозного пути машины ехавшей со скоростью 50 км/ч.

Подсказка: Нормальное N(0;1) распределение с вероятностью 90% лежит в пределах от -1.65 до 1.65.

Задача 3.

Винни-Пух построил логит-модель для предсказания качества мёда: $y_i = 0$ означает неправильный мёд, а $y_i = 1$ — правильный. Правильность мёда зависит от разных характеристик дупла, в частности от правильности пчёл (x_i) и их количества (z_i) . Оценка модели выглядит так:

$$\Lambda(P[y_i = 1]) = -0.2 + 2x_i + 0.02z_i$$

Здесь $\Lambda()$ — логистическая функция, $\Lambda(t) = e^t/(1+e^t)$.

- 1. Спрогнозируйте вероятность правильного мёда для дупла с сотней правильных пчёл.
- 2. Во сколько отличается вероятность правильного мёда для дупла с правильными и аналогичного дупла с неправильными пчёлами?
- 3. Стандартные ошибки коэффициентов равны 0.1, 0.2 и 0.3 соответственно. Проверьте значимосить каждого коэффициента и дайте Винни-Пуху содержательные рекомендации касательно правильности мёда.

	Model 1	
(Intercept)	8.45***	
	(0.00)	
$\log(\text{carat})$	1.68***	
	(0.00)	
\mathbb{R}^2	0.93	
$Adj. R^2$	0.93	
Num. obs.	53940	
RMSE	0.26	
***p < 0.001, **p < 0.01, *p < 0.05		

Таблица 1: Statistical models

Задача 4.

Исследовательница Мишель оценила зависимость логарифма цены бриллиантов от логарифма массы. Результаты приведены в таблице 1.

```
model <- lm(data = diamonds, log(price) \sim log(carat)) texreg(model)
```

А затем провела тест Уайта (таблица 2):

```
 \begin{array}{l} {\rm bptest(model,} \\ {\rm varformula = \ ^\sim log(carat) + I(log(carat) \ ^\sim 2),} \\ {\rm data = diamonds) \ \%>\% \ pander \end{array}
```

Таблица 2: studentized Breusch-Pagan test: model

Test statistic	df	P value
560.4	2	2.002e-122 * * *

- 1. Аккуратно сформулируйте H_0 и H_a данного теста
- 2. К каким выводам пришла Мишель по результатам теста
- 3. Что результаты теста говорят о проверке гипотез о значимости коэффициентов?

	Pooling	FE	RE
(Intercept)	10.36***		9.07***
	(1.20)		(1.12)
wage	-0.32^{***}	-0.14***	-0.16^{***}
	(0.05)	(0.03)	(0.03)
capital	2.10***	0.80^{***}	1.13***
	(0.04)	(0.06)	(0.06)
\mathbb{R}^2	0.69	0.16	0.27
$Adj. R^2$	0.69	0.14	0.27
Num. obs.	1031	1031	1031

 $^{^{***}}p < 0.001, \, ^{**}p < 0.01, \, ^{*}p < 0.05$

Таблица 3: Statistical models

Задача 5. Исследователь Василиса хочет сравнить три модели (FE/RE/Pooled регрессия) в исследовании безработицы. Результаты тестов и оценок моделей приводятся в таблицах 3-6:

```
data("EmplUK", package = "plm")
employment <- pdata.frame(EmplUK, index = c("firm", "year"))
pooling <- plm(data = employment, emp ~ wage + capital, model = "pooling")
fe <- plm(data = employment, emp ~ wage + capital, model = "within")
re <- plm(data = employment, emp ~ wage + capital, model = "random")
texreg(list(pooling, fe, re), custom.model.names = c("Pooling", "FE", "RE"))
phtest(fe, re) %>% pander
```

Таблица 4: Hausman Test: emp ~ wage + capital

Test statistic	df	P value	Alternative hypothesis
181.7	2	3.538e-40***	one model is inconsistent

```
plmtest(re, type = "bp") %>% pander
```

Таблица 5: Lagrange Multiplier Test - (Breusch-Pagan) : emp $\tilde{\ }$ wage + capital

Test statistic	df	P value	Alternative hypothesis
5533	1	0 * * *	significant effects

pFtest(fe, pooling) %>% pander

Таблица 6: F test for individual effects: emp ~ wage + capital

Test statistic	df1	df2	P value	Alternative hypothesis
115.6	139	889	0 * * *	significant effects

- 1. Выберите оптимальную модель объяснив свой выбор
- 2. Приведите пример ситуации, в которой FE модель невозможно оценить