Maximal Ideals

Definition

Let R be a ring and $I \subseteq R$. To say that I is *maximal* means:

- 1). I is proper
- 2). $\forall J \triangleleft R, I \not\subset J$.

Example

- 1). Let F be a field. Only the zero ideal is maximal.
- 2). For Z, all ideals are of the form $n\mathbb{Z}$. Since $n\mathbb{Z} \subseteq m\mathbb{Z} \iff m \mid n$, it follows that $p\mathbb{Z}$, p prime are the maximal ideals in \mathbb{Z} .
- 3). Let p be prime. $F_p = \mathbb{Z}/p\mathbb{Z}$. Since $F_p^{\times} = \{a + p\mathbb{Z} \mid (a, p) = 1\}$, $F_p^{\times} = F_p^{*}$ and thus F_p is a field. Therefore, the only maximal ideal is $\{p\mathbb{Z}\}$ (the zero ideal).

Theorem

Let R be a ring with $1 \neq 0$. Every proper ideal I in R is contained in a maximal ideal in R.

Proof

Assume I is a proper ideal in R

Let \mathcal{L} be the set of all proper ideals of R such that $I\subseteq J$, partially ordered by inclusion $I\in\mathcal{L}$ so $\mathcal{L}\neq\emptyset$

Note that none of the J contain a unit (since proper)

Assume C is a chain in L

Let
$$L = \bigcup \{J : J \in \mathcal{C}\}$$

$$L \unlhd R$$

Plus, L does not contain a unit, so L is proper

Thus, $L \in \mathcal{L}$ and L is an upper bound for \mathcal{C}

Therefore, by Zorn's Lemma, there exists a maximal ideal $M \in \mathcal{L}$

Theorem

Let R be a commutative ring with $1 \neq 0$ and $I \leq R$. TFAE:

- 1). I is maximal in R
- 2). R/I is simple
- 3). R/I is a field

<u>Proof</u>

 $I \ {\rm is \ maximal \ in} \ R$

- $\iff \forall\, J \trianglelefteq R, I \not\subset J$
- $\iff R/I$ has no proper ideals $\iff R/I$ is simple
- $\iff R/I \text{ is a field.}$