General Instruction

- Submit uncompressed file(s) in the Dropbox folder via BeachBoard (Not email).
- 1. Design neural networks to classify hand written numbers using keras library, however, do not include convolutional layers.
 - (a) Design neural networks and implement them.
 - Find Assignment_5_mnist.ipynb and mnist.zip.
 - train_X and test_X are list of intensities in 8-bit gray scale of 28 × 28 images.
 - train_y and test_y are list of integers which are the classes of the corresponding images.
 - The objective of the networks is classifying images into 0 to 9.
 - (b) Split the training dataset into sub_training and validation sets randomly. Use $\frac{1}{6}$ of training dataset as validation set. Use the 'accuracy' as metric. Please repeat 10 times of random split for each hyper-parameters and architecture, and aggregate (average) the accuracy.
 - (c) (20 points) Optimizer evaluation
 - Implement a neural network which has single hidden layer with 32 units. Using the network, find best hyper-parameters of the following optimizers; SGD, RMSprop, Adam, Adagrad.
 - You have 10 different sub_training and validation sets.
 - Tune hyper-parameters of SGD, RMSprop, Adam, and Adagrad with those sets.
 - Choose the best hyper-parameters by averaging the accuracy.
 - With the best hyper-parameters of each optimizer, train the network with the training dataset (not sub training).
 - For each optimizer, report **test accuracy** using the test dataset.
 - (d) (20 points) Architecture evaluation
 - Pick the best optimizer and it's hyper-parameters from the previous part.
 - Using sub_training and validation datasets, find the best architecture in terms of the number of layers, the number of units, and activation functions.
 - Report 3 best architectures in terms of **test accuracy**. Please include architecture diagram as shown in Figure 1.
 - (e) Submit ipynb files which include your source codes and pdf file which includes your report.

Figure 1: A network architecture example $\,$