Лабораторная работа №2 по курсу "Технологии машинного обучения"

Выполнила Попова Дарья, студентка группы РТ5-61Б

Кодирование категориальных признаков

 $\textbf{from} \ \text{sklearn.preprocessing} \ \textbf{import} \ \texttt{LabelEncoder}, \ \texttt{OneHotEncoder}$

In [2]:

In [1]:

import numpy as np
import pandas as pd

chocolate = pd.read_csv('C:\\Users\\Дасупс\\Downloads\\flavors_of_cacao.csv')

In [3]:

chocolate.head()

Out[3]:

	Company \n(Maker-if known)	Specific Bean Origin\nor Bar Name	REF	Review\nDate	Cocoa\nPercent	Company\nLocation	Rating	Bean\nType	Broad Bean\nOrigin	
	Kilowii)	Origin (nor bar Name							bean (norigin	
0	A. Morin	Agua Grande	1876	2016	63%	France	3.75		Sao Tome	
1	A. Morin	Kpime	1676	2015	70%	France	2.75		Togo	
2	A. Morin	Atsane	1676	2015	70%	France	3.00		Togo	
3	A. Morin	Akata	1680	2015	70%	France	3.50		Togo	
4	A. Morin	Quilla	1704	2015	70%	France	3.50		Peru	

Переименуем для начала колонки и избавимся от пробелов и \n.

In [4]:

chocolate = chocolate.rename(columns={'Company \n(Maker-if known)':'company',

'Specific Bean Origin\nor Bar Name': 'specific bean origin',

'Review\nDate':'review date',

'Cocoa\nPercent':'cocoa percentage',

'Company\nLocation':'company location',

'Bean\nType':'bean_type',

'Broad Bean\nOrigin':'bean_origin'})

In [5]:

chocolate.tail()

Out[5]:

	Company \n(Maker-if known)	specific_bean_origin	REF	review_date	cocoa_percentage	company_location	Rating	bean_type	bean_origin	
1790	Zotter	Peru	647	2011	70%	Austria	3.75		Peru	
1791	Zotter	Congo	749	2011	65%	Austria	3.00	Forastero	Congo	
1792	Zotter	Kerala State	749	2011	65%	Austria	3.50	Forastero	India	
1793	Zotter	Kerala State	781	2011	62%	Austria	3.25		India	
1794	Zotter	Brazil, Mitzi Blue	486	2010	65%	Austria	3.00		Brazil	

Немного не понимаю, почему первая колонка не переименовалась...

Посмотрим, какие у нас есть категориальные признаки и сколько в них уникальных значений.

In [6]:

chocolate.dtypes

Out[6]:

Company \n(Maker-if known)	object			
specific_bean_origin	object			
REF	int64			
review_date	int64			
cocoa_percentage	object			
company_location	object			
Rating	float64			
bean_type	object			
bean_origin	object			
dtype: object				

```
chocolate.company location.nunique()
                                                                                                                  Out[7]:
60
                                                                                                                   In [8]:
chocolate.specific bean origin.nunique()
                                                                                                                  Out[8]:
1039
                                                                                                                   In [9]:
chocolate.bean type.nunique()
                                                                                                                  Out[9]:
41
                                                                                                                  In [10]:
chocolate.isnull().any()
                                                                                                                 Out[10]:
Company \n(Maker-if known)
                                False
specific_bean_origin
                                False
REF
                                False
review date
                                False
cocoa_percentage
                                False
company_location
                                False
Rating
                                False
bean type
                                 True
bean origin
                                 True
dtype: bool
                                                                                                                  In [11]:
chocolate = chocolate.dropna(axis=0, how='any')
                                                                                                                  In [12]:
chocolate.isnull().any()
                                                                                                                 Out[12]:
Company \n(Maker-if known)
                                False
specific bean origin
                                False
                                False
review_date
                                False
cocoa_percentage
                                False
company_location
                               False
Rating
                                False
                                False
bean_type
bean origin
                                False
dtype: bool
LabelEncoder
Для колонки с локацией компании воспользуемся кодированием целочисленными значениями.
                                                                                                                  In [13]:
lbl enc = LabelEncoder()
                                                                                                                  In [14]:
comp loc encryption = lbl enc.fit transform(chocolate.company location)
                                                                                                                  In [15]:
inverse array comp loc = np.unique(comp loc encryption)
                                                                                                                  In [16]:
inverse_array_comp_loc
                                                                                                                 Out[16]:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
       34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
       51, 52, 53, 54, 55, 56, 57, 58, 59])
Теперь проверим, что скрывается за этим массивом и точно ли LabelEncoder всё верно нашаманил.
                                                                                                                  In [17]:
```

lbl enc.inverse transform(inverse array comp loc)

In [7]:

One-Hot Encoding

Колонке с происхождением сырья для шоколада повезло намного меньше: на ней мы будем испытывать кодирование наборами бинарных значений...

```
In [18]:
ohe = OneHotEncoder()
specific_bean_origin_ohe_enc = ohe.fit_transform(chocolate[['specific_bean_origin']])

In [19]:
specific_bean_origin_ohe_enc.shape

Out[19]:
(1793, 1038)
Уже видим что-то невообразимо страшное во втором элементе кортежа с количеством столбцов...

In [20]:
specific_bean_origin_ohe_enc

<1793x1038 sparse matrix of type '<class 'numpy.float64'>'
with 1793 stored elements in Compressed Sparse Row format>
То же самое, только с помощью встроенное в Pandas функции get_dummies.

In [21]:
```

pd.get_dummies(chocolate[['specific_bean_origin']]).head()

 $specific_bean_origin_A$ specific_bean_origin_"heirloom", specific_bean_origin_100 specific_bean_origin_2009 specific_bean_origin_ABOCFA case of the Xerces specific_ Arriba Nacional percent Hapa Nibby Coop Blues, triple roast 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Out[21]:

5 rows × 1038 columns

Кошмар...