NDMansfield, a Monte-Carlo (lattice) polymer simulator

"ndmansfield" is a simple program which generates a series of self-avoiding space-filling curves (also called "lattice Hamiltonian paths").

It has been used (among other things) to simulate the shapes of polymers packed into confined spaces. "polymer"

a long (floppy) molecule

Example: randomly-generated selfavoiding polymer (L = 4096 b)

Mansfield, J.Chem.Phys. 2006

Example: randomly-generated selfavoiding polymer (L = 4096 b)

Mansfield, J.Chem.Phys. 2006

What do you mean by "random"?

What do you mean by "random"?

Let's restrict ourselves to polymers which live on a "lattice". (For example, a checker board.)

 What do you mean by "random"?
Let's restrict ourselves to polymers which live on a "lattice". (For example, a checker board.)

 One strategy: Start at a randomly chosen location and move in random directions until you fill the box.

What do you mean by "random"?

Let's restrict ourselves to polymers which live on a "lattice"

 One strategy: Start at a randomly chosen location and move in random directions until you fill the box. Problems:

You usually "box yourself" into a corner.

What do you mean by "random"?
Let's restrict ourselves to polymers which live

on a "lattice"

 One strategy: Start at a randomly chosen location and move in random directions until you fill the box. Problems:

You usually "box yourself" into a corner.

It's not clear if it is random (depends on where you start)

 What do you mean by "random"?
Let's restrict ourselves to polymers which live on a "lattice"

- One strategy: Start at a randomly chosen location and move in random directions until you fill the box. Problems:
 - You usually "box yourself" into a corner.
 - It's not clear if it is random (depends on where you start)
- Alternate approach: Use "Monte Carlo" (explained later...)

Start with any shape

J. Chem. Phys. 125, 154103 (2006)

Start with any shape

FIG. 1. (a) A Hamilton path on a $4 \times 4 \times 1$ lattice and its associated list, in which sites are specified by their coordinates. The head of the path is site A with coordinates xy=11. One of the nearest neighbors of A is the site B=21. A new path may be generated from the old one by reversing the order of the half-list lying above B. (b) Another possible outcome occurs if we select the tail, C=32, and its neighbor D=42. Then we reverse the half-list lying below D. After each maneuver, only a single edge has moved, but the end of the walk has jumped to a new lattice site.

Start with any shape

Start with any shape

Move it in a random way

Do this for a LONG time.

• Eventually, the shapes you get will be random

Code Outline:

class Ndmansfield

This stores information about the shape of the polymer, and functions which change it.

class Hamiltonian

This calculates the forces acting on the polymer which can bias one shape in favor of another.

Code Outline:

class Ndmansfield

This stores information about the shape of the polymer, and functions which change it.

MonteCarloStep(Hamiltonian& hamiltonian,

double& total_energy);

class Hamiltonian

This calculates the forces acting on the polymer which can bias one shape in favor of another.

double CalcEnergy(NDmansfield& ndmansfield);