HW4: Understanding CNNs and Generative Adversarial Networks (GANs)

- -This will be a "tutorial" based homework. Step-by-step instructions will be provided
- -Due Thursday, Oct 5 (next week)
- -Besides training the model, most of the work can be done all at once

Understanding CNNs (What does a CNN learn?)

- Lots of questions about how many layers/hidden units/pooling/etc. no definitive answer
- Does it learn small or large parts? Collection of small parts? Concept of "whole"? (Think about how you would describe an object to another person)
- Set up to "discriminate" between objects (tiger vs. soccerball? vs. basketball? vs. zebra?)
- Very hard to "generate" objects without tons of data to discriminate between (humans can easily do this)
- Layers of convolution go from simple to complex prevents it from seeing too much at once (easier to learn)
- "Receptive Field" gets bigger as more layers are used

Receptive Field

- How many pixels of the original image went into the calculation deeper within the network?
- Convolutions and pooling layers increase the receptive field
- Near the output of the network, the receptive field should be relative to the "size" of the objects of interest within the image
- Strided convolution vs. convolution + strided max pooling

https://medium.com/@Synced/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-42f33d4378e0

Network Design

- Understand your dataset to know what's necessary (big/small objects within image/distinctive features/etc.)
- Resolution of images? (CIFAR10/MNIST are small, ImageNet images are large yet most networks are cropped/resized to 224x224x3 inputs)
- Where within the picture will objects of interest be?
 - MNIST : objects aligned/scaled
 - CIFAR10 : (mostly) full object visible and takes up the whole image
 - PASCAL VOC : objects with bounding boxes (will do object detection in a later assignment)
- Can data augmentation help?

What Do Features Look Like?

- Features become more interesting and complex as network deepens
- Need lots of training data to "see" all possible types
- Overtraining particular feature very apparent in dataset yet not necessarily representative of underlying distribution
- Detecting tanks (not sure if real story but demonstrates point well)

 it technically "learned" but the data distribution did not match the true targeted distribution

What Do Features Look Like?

Synthetic Images with Large Class Scores

- Backpropagate error to noisy initialized image until network outputs large logit for desired class
- Images don't look real but distinctive features – multiple objects, some patterns (dalmatians), edges (computer keyboard), object size (limousine)
- Lots of random points/colors/contours that cause high activation but not what we would think is important
- You will be doing this for your assignment with CIFAR10 dataset

Deep Inside Convolutional Networks: Visualizing Image Classification Models and Saliency Maps - https://arxiv.org/pdf/1312.6034.pdf

Tricking Networks

- 8-bit images (0-255) rescaled between -1.0 and 1.0 (resolution of 0.0078)
- Backpropagate error from alternative class to real image, use sign of the gradient (-1 or 1) and multiply by 0.0078
- Models behave "too linearly", extrapolate far from the training data and become overconfident

Original image classified as a panda with 60% confidence.

Tiny adversarial perturbation.

Imperceptibly modified image, classified as a gibbon with 99% confidence.

Tricking Networks (CIFAR10)

- Each pixel changed by +/- 10*0.0078 based on sign of the gradient
- 59/64 went from correct label to incorrect label
- You will do this on your homework

Generative Adversarial Networks (GANs)

NIPS 2016 Tutorial: Generative Adversarial Networks - https://arxiv.org/pdf/1701.00160.pdf

- Very important that everyone reads this paper, it's very easy to follow along without dense language (57 pages with lots of images)
- Near comprehensive study of GANs, mentions nearly all of the important papers
- Goes more in depth on everything I say here
- All additional pictures will be from this paper unless otherwise mentioned, check for sources

GANs

- Lots of generative models have been studied in the past
- Neural networks are discriminative models (calculates pseudo-posterior probability P(y|x))
- Most generative models map data to probability distributions (likelihood P(x|y))
- GANs are very flexible: as long as you can back propagate some error, no need to explicitly model distributions
- However, they can be very difficulty to train

- Represent and manipulate high dimensional probability distributions
- Reinforcement learning: model based to "generate" realistic experiences to learn from
- Semi-supervised learning: easier to generate some data than hand labeling everything necessary for supervised learning, can act as a regularizer (will see in homework)
- Capable of handling multi-modal models

- Tasks specifically requiring generation of images
- You will train a network on CIFAR10 to do this for the HW (results below)

Art (style transfer) and Image-to-Image Translation

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks - https://junyanz.github.io/CycleGAN/

Text-to-image synthesis

this small bird has a pink breast and crown, and black primaries and secondaries.

this magnificent fellow is almost all black with a red crest, and white cheek patch.

the flower has petals that are bright pinkish purple with white stigma

this white and yellow flower have thin white petals and a round yellow stamen

GANs Setup

- Consists of a generator network and a discriminator network
- Generator will sample a vector from a random distribution and manipulate it with transposed convolutions into a fake image
- Discriminator will be a basic convolutional network

GANs - Generator

- Transposed convolutions are typically referred to as deconvolutions (although deconvolution is not the correct term)
- Manipulates a low dimensional random distribution into the shape of an image

Transposed Convolution Demo - https://distill.pub/2016/deconv-checkerboard/

Training GAN in Tensorflow

- Generator
- Discriminator
- Loss Functions
- Training steps (separate for G and D)
- Batch Normalization (can be tricky)
- Dropout in D (prevent D from learning too quickly)
- Nearly all operations are convolution (as opposed to fully connected layers)
- Leaky ReLU
- No max pooling (use strided convolutions instead)
- Train with labels instead of just 0(real)/1(fake)
- One sided label smoothing (prevent extreme extrapolation)
- Gradient of G can vanish if D becomes too good too fast at recognizing fake images
- Instructions for implementing all of this will be detailed in the HW pdf, it is written as more of a tutorial as opposed to figuring out how to do it all on your own
- Code demonstration

https://github.com/soumith/ganhacks - tips and tricks

Problems with GAN

- Non-convergence: Requires finding an equilibrium between two players (G and D) in a game. Sometimes can repeatedly undo progress (D focuses too much on G without learning worthwhile features, D becomes too good at recognizing fake images and G gets stuck)
- Mode Collapse several different input values z mapped to the same output, the generator then oscillates between modes without further progress

Mode Collapse

Examples - Minibatch GANs

 Method includes features based on the distance between samples in a mini-batch to encourage them to be different

Examples – Trouble with Counting

 Discriminator can output a very high score because of the small part (face) without considering the object as a whole

Examples – More image-to-image translation

Examples – Face Generation

https://github.com/carpedm20/DCGAN-tensorflow

Homework

- I will provide you with a pretrained network on CIFAR10, with it you will:
 - Trick the network with slightly altered real images
 - Trick the network with slightly altered noisy images
 - Back-propagate error to create synthetic images maximizing the activation of last layer features (before output)
 - Back-propagate error to create synthetic images maximizing the action of the class output layer
- Train a GAN (generator and discriminator) on CIFAR10
 - Create animated GIF demonstrating the evolution of the generator output
 - (Hopefully) get higher accuracy on the test dataset with the discriminator trained with the GAN as opposed to the network I give you (80-81% compared to 83-85%)
- Repeat the first part using your discriminator trained with the GAN and compare with the pretrained model I provided
- Possible extra credit options:
 - find set of hyperparameters and a large network structure (9+ convolutional layers for D) achieving 88-90%+ accuracy and doesn't experience mode collapse
 - Write your own TF code implementing someone else's work (plenty to be found online and seen throughout this presentation), need to write a summary of your code and what it's based on so it's obvious it's not completely copied
 - https://github.com/carpedm20/DiscoGAN-pytorch Great example of pytorch code for lots of datasets that you could rewrite as tensorflow code
 - Modify code from this assignment to include feature matching and minibatch discrimination (from this paper) https://arxiv.org/pdf/1606.03498.pdf

Example HW Output

No GAN

• GAN

Example HW Output

No GAN

• GAN

• Airplane car bird cat deer dog frog horse ship building

Takeaway

- Help build your intuition of CNNs to better design networks based on your data as opposed to treating it as a black box
- Help realize various problems and creative solutions neural networks can tackle as opposed to being limited by a simple classification structure
- Lots of project ideas mentioned throughout (fair warning: these can be a complete pain to train and tune, metric for success can sometimes be very subjective requiring careful monitoring of the network to understand why it's succeeding or more often failing)
- Please ask questions and let me know if anything is unclear

Some Links I had Saved but Didn't Mention

https://hardikbansal.github.io/CycleGANBlog/

http://www.inference.vc/instance-noise-a-trick-for-stabilising-gan-training/

http://yosinski.com/media/papers/Yosinski__2015__ICML_DL__Understanding_Neural_Networks_Through_Deep_Visualization__.pdf

https://distill.pub/2016/deconv-checkerboard/

https://arxiv.org/pdf/1412.6572.pdf

https://github.com/carpedm20/DCGAN-tensorflow

https://github.com/carpedm20/BEGAN-tensorflow

https://github.com/carpedm20/simulated-unsupervised-tensorflow

https://github.com/zsdonghao/dcgan