Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego

Laboratorium z przedmiotu: Architektura i organizacja komputerów

Sprawozdanie z ćwiczenia laboratoryjnego nr 9:

Optymalizacja programów dla komputera DLX

Spis treści

Α.	Treść zadania	. 2
	Kod programu	
	Zrzut ekranu z wynikami	
	Zawartość tablic T oraz TB	
	Obliczone wartości tablic T oraz TB	

A. Treść zadania

```
Begin
```

Dane:

SKŁADNIK = 1330, UŁAMEK = 0.35, ROZMIAR = 103.

Wzór:

```
TB[i] = [\frac{(3.2*T[i] * T[i+3]*T[i+5]* T[i+6])}{(0.35+(T[i+5]*T[i+6]* T[i+7])} + T[i+8]]
```

Napisać program *Lab9_nr.s* w asemblerze komputera DLX, który:

- Zadeklaruje dwie tablice przechowujące liczby zmiennoprzecinkowe podwójnej precyzji: T 130- elementową oraz TB ROZMIAR-elementową, a także zmienną Suma zmiennoprzecinkową podwójnej precyzji.
- 2. Komórki tablicy T wypełni (za pomocą obliczeń, wykonanych w pętli, a nie za pomocą statycznej deklaracji z nadaniem wartości początkowych) kolejnymi liczbami o części ułamkowej równej UŁAMEK i części całkowitej rosnącej o jeden, począwszy od numeru w dzienniku studenta/ studentki, powiększonej o SKŁADNIK (np. nr=1; UŁAMEK = 0.35; SKŁADNIK = 5; w tablicy T mają być zapisane liczby T[1] = (1+5+0.35) =
 - (np. nr=1; UŁAMEK = 0.35; SKŁADNIK = 5; w tablicy T mają być zapisane liczby T[1] = (1+5+0.35) = 6.35, T[2] = (6.35 + 1) = 7.35 itd.).
- 3. Następnie dla każdego elementu tablicy *TB* wykona operację, określoną powyższym wzorem (UWAGA: wszystkie występujące we wzorze działania mają być jawnie wykonane w programie, nie są dopuszczalne przekształcenia wzoru (np. skrócenia), zastępowanie wykonywania działań obliczonymi stałymi. Można użyć stałych dla reprezentowania w programie wartości numeru w dzienniku, danych SKŁADNIK i UŁAMEK oraz stałych we wzorach na TB np. 3.2 itd.
- 4. W zmiennej Suma umieści obliczoną w pętli sumę wszystkich elementów tablicy TB. Uwaga ze względu na błąd w implementacji forwardingu ZMP w WinDLX czasem zdarza się tak, że poprawnie napisany program przy wyłączonym forwardingu "daje" poprawne wyniki, a po włączeniu forwardingu generuje złe zawartości TB albo błędną Sumę. Radzę w przypadku "niezrozumiałych" błędów wyłączyć forwarding i sprawdzić działanie programu.
- 5. Przed rozpoczęciem tworzenia programu radzę (o ile Studentka/Student wykonawca ćwiczenia walczy o ocenę co najmniej **db**) zaprojektować arkusz kalkulacyjny w Excelu, Calcu lub innym środowisku, wykonujący te same obliczenia w celu weryfikacji poprawności uzyskiwanych w programie wyników.

End

B. Kod programu

```
.data
T: .space 1040
TB: .space 824
suma: .double 0
skladnik: .double 1330
ulamek: .double 0.35
numer: .double 10
stala: .double 3.2
liczT: .word 129
liczTB: .word 103
jeden: .double 1
.text
;pobieranie danych
ld f2, skladnik
ld f4, ulamek
ld f6, numer
ld f12, jeden
               ; liczba 1 typu double
ld f14, stala
;indeks i licznik dla T
addi r20, r0, T ; indeks pierwszego elementu T
;pierwszy element T
addd f8, f2, f4 ; skladnik + ulamek
addd f10, f8, f6 ; skladnik + ulamek + numer
sd T(r0), f10; wpisz wynik do T[1]
;wypelnianie tabliy T
tablicaT:
addi r20, r20, #8 ; miejsce nastepnego elementu T (8 = sizeof(double))
addd f10, f10, f12 ; nastepna wartosc T
subi r10, r10, #1 ; zmniejsz licznik
bnez r10, tablicaT ; zakoncz, jesli licznik = 0
;indeks i licznik dla TB
addi r20, r20, #8 ; indeks pierwszego elementu TB (T[131] => TB[1])
;przygotowywanie zmiennych do obliczen dla TB
add r5, r0, r20 ; indeks nastepnej pamieci po T
subi r5, r5, #1040 ; indeks pierwszego elementu T
```

```
ld f18, 4120
                 ; wartosc T[i+3]
ld f20, 4136
                  ; wartosc T[i+5]
ld f22, 4144
                  ; wartosc T[i+6]
                  ; wartosc T[i+7]
ld f24, 4152
ld f28, 4160
                  ; wartosc T[i+8]
;wypenianie tablicy TB
tablicaTB:
;obliczanie licznika wartości TB[i]
multd f26, f14, f16 ; iloczyn1 = stala * T[i]
multd f26, f26, f18 ; iloczyn1 *= T[i+3]
multd f26, f26, f20 ; iloczyn1 *= T[i+5]
multd f26, f26, f22 ; iloczyn1 *= T[i+6]
subd f26, f26, f24 ; iloczyn1 -= T[i+7]
;obliczanie mianownika wartosci TB[i]
subd f2, f2, f2
                 ; zerowanie rejestru do liczenia mianownika
multd f2, f20, f22 ; iloczyn2 = T[i+5] * T[i+6]
multd f2, f2, f24 ; iloczyn2 *= T[i+7]
addd f2, f2, f28 ; iloczyn2 += T[i+8]
addd f2, f2, f4 ; iloczyn2 += ulamek
;wartosc TB[i] = iloczyn1 / iloczyn2
divd f26, f26, f2
;dodawanie wartosci do TB[i]
sd 0(r20), f26
                ; wpisz do TB[i]
addd f30, f30, f26 ; dodaj wartosc TB[i] do sumy
addi r20, r20, #8 ; nastepny indeks TB[i]
;nastepne wartosci do przeliczania
addd f16, f16, f12 ; nastepna wartosc T[i]
addd f18, f18, f12 ; nastepna wartosc T[i+3]
addd f20, f20, f12 ; nastepna wartosc T[i+5]
addd f22, f22, f12 ; nastepna wartosc T[i+6]
addd f24, f24, f12 ; nastepna wartosc T[i+7]
addd f28, f28, f12 ; nastepna wartosc T[i+8]
;zarzadzanie petla
subi r4, r4, #1 ; zmniejsz licznik
bnez r4, tablicaTB ; zakoncz, jesli licznik = 0
;wpisywanie wyniku do zmiennej suma
sd 0(r20), f30 ; ostatnia zmiana indeksu (TB[104] => Suma)
```

C. Zrzut ekranu z wynikami

D. Zawartość tablic T oraz TB

E. Obliczone wartości tablic T oraz TB

	TF:1		TD[:1
i	T[i]	ı	TB[i]
1	1340,35	1	4276,384146
2	1341,35	2	4279,584098
3	1342,35	3	4282,784051
4	1343,35	4	4285,984003
5	1344,35	5	4289,183956
6	1345,35	6	4292,383909
7	1346,35	7	4295,583861
8	1347,35	8	4298,783814
9	1348,35	9	4301,983767
10	1349,35	10	4305,18372
121	1460,35	94	4573,980003
122	1461,35	95	4577,179961
123	1462,35	96	4580,37992
124	1463,35	97	4583,579878
125	1464,35	98	4586,779837
126	1465,35	99	4589,979795
127	1466,35	100	4593,179754
128	1467,35	101	4596,379713
129	1468,35	102	4599,579671
130	1469,35	103	4602,77963

Suma	457276,9288613
	4,57E+05