Zadanie 1.

Niech $X_1, X_2, ..., X_n, ...$ będą niezależnymi zmiennymi losowymi z rozkładu gamma o gęstości

$$p(x) = \begin{cases} 16xe^{-4x} & \text{gdy } x > 0 \\ 0 & \text{gdy } x \le 0. \end{cases}$$

Niech N będzie zmienną losową niezależna od zmiennych $X_1, X_2, ..., X_n, ...$ spełniającą

$$P(N=0) = \frac{1}{2}$$
 i $P(N=1) = P(N=2) = P(N=3) = \frac{1}{6}$.

Niech
$$S = \begin{cases} 0 & \text{gdy } N = 0 \\ \sum_{i=1}^{N} X_i & \text{gdy } N > 0. \end{cases}$$

Wtedy $E(S-ES)^3$ jest równe

- (A) $\frac{1}{16}$
- (B) $\frac{7}{16}$
- (C) $\frac{3}{16}$
- (D) $\frac{6}{16}$
- (E) $\frac{9}{16}$

Zadanie 2.

Niech *X* i *Y* będą niezależnymi zmiennymi losowymi każda z rozkładu wykładniczego o wartości oczekiwanej 1.

Niech
$$U = 2X + Y$$
 i $V = X - Y$.

Wtedy prawdopodobieństwo $P(U \in (0,6) \land V \in (0,6))$ jest równe

(A)
$$1-2e^{-1}$$

(B)
$$\frac{1}{2} \left(4e^{-3} - 3e^{-4} \right)$$

(C)
$$\frac{1}{2} \left(1 - 4e^{-3} + 3e^{-4} \right)$$

(D)
$$1 - e^{-3}$$

(E)
$$1-2e^{-1}$$

Zadanie 3.

Niech $X_1, X_2, ..., X_n$, będą niezależnymi zmiennymi losowymi o rozkładzie gamma z gęstością

$$f_{\theta}(x) = \begin{cases} \theta^2 x e^{-\theta x} & g dy \ x > 0 \\ 0 & g dy \ x \le 0 \end{cases}$$

Budujemy estymator wariancji czyli funkcji $v(\theta) = \frac{2}{\theta^2}$ postaci $\hat{v} = c \cdot \text{ENW}(v(\theta))$, gdzie ENW $(v(\theta))$ oznacza estymator największej wiarogodności funkcji v. Jeśli wiadomo, że \hat{v} jest nieobciążony, to stała c jest równa

- (A) $\frac{n}{1+2n}$
- (B) 2*n*
- (C) $\frac{1+2n}{n}$
- (D) $\frac{2n}{1+2n}$
- (E) $\frac{1+2n}{2n}$

Zadanie 4.

Rozpatrzmy następujący model regresji liniowej bez wyrazu wolnego:

$$Y_i = \beta \cdot x_i + \varepsilon_i$$
 (i = 1,...,16),

gdzie $x_i > 0$ są znanymi liczbami, β jest nieznanym parametrem, zaś ε_i są błędami losowymi. Zakładamy, że ε_i są niezależnymi zmiennymi losowymi o rozkładach normalnych i

$$E[\varepsilon_i] = 0$$
 i $Var[\varepsilon_i] = x_i^2$ $(i = 1,...,16)$.

Niech $\hat{\beta}$ będzie estymatorem parametru β o następujących własnościach:

$$\hat{\beta}$$
 jest liniową funkcją obserwacji, tzn. jest postaci $\hat{\beta} = \sum_{i=1}^{16} c_i Y_i$,

 $\hat{\beta}$ jest nieobciążony,

 $\hat{\beta}\,$ ma najmniejszą wariancję spośród estymatorów liniowych i nieobciążonych.

Wyznaczyć stałą c taką, że spełniony jest warunek

$$P(\left|\hat{\beta} - \beta\right| < c) = 0.95.$$

(A)
$$c = 0.49$$

(B)
$$c = \frac{7,84}{\sqrt{\sum_{i=1}^{16} x_i}}$$

(C)
$$c = 1,64$$

(D)
$$c = 0,49\sqrt{\sum_{i=1}^{16} x_i}$$

(E)
$$c = \frac{1,96}{\sqrt{\sum_{i=1}^{16} x_i}}$$

Zadanie 5.

Niech $X_1,...,X_n$, n>1, będzie próbką z rozkładu jednostajnego o gęstości danej wzorem:

$$f_{\theta}(x) = \begin{cases} 1/\theta & \text{dla } 0 \le x \le \theta; \\ 0 & \text{w przeciwnym przypadku,} \end{cases}$$

gdzie $\theta > 0$ jest nieznanym parametrem.

Zmienne losowe $X_1,...,X_n$ nie są w pełni obserwowalne. Obserwujemy zmienne losowe $Y_i = \min(X_i, M)$, gdzie M jest ustaloną liczbą dodatnią. Oblicz estymator największej wiarogodności $\hat{\theta}$ parametru θ jeśli wiadomo, że w próbce $Y_1,...,Y_n$, jest K obserwacji o wartościach mniejszych niż M i $K \in \{1,2,...,n-1\}$.

(A)
$$\hat{\theta} = M + \frac{n}{K}$$

(B)
$$\hat{\theta} = \frac{Mn}{K}$$

(C)
$$\hat{\theta} = \frac{Mn}{n-K}$$

(D)
$$\hat{\theta} = M + \frac{n-K}{n}$$

(E) nie można zastosować metody największej wiarogodności w tym modelu

Zadanie 6.

Rozważmy następujące zagadnienie testowania hipotez statystycznych. Dysponujemy próbką $X_1,...,X_n$ z rozkładu normalnego o nieznanej średniej μ i znanej wariancji równej 4. Przeprowadzamy najmocniejszy test hipotezy $H_0: \mu=0$ przeciwko alternatywie $H_1: \mu=-1$ na poziomie istotności $\alpha=1/2$. Niech β_n oznacza prawdopodobieństwo błędu drugiego rodzaju, dla rozmiaru próbki n.

Wybierz poprawne stwierdzenie:

(A)
$$\lim_{n\to\infty}\beta_n n=1$$

(B)
$$\lim_{n\to\infty}\beta_n\sqrt{n}=1$$

(C)
$$\lim_{n\to\infty}\beta_n e^{\frac{n}{8}} = 1$$

(D)
$$\lim_{n\to\infty}\beta_n \frac{e^{\frac{n}{8}}\sqrt{\pi n}}{\sqrt{2}} = 1$$

(E)
$$\lim_{n\to\infty}\beta_n \frac{e^{\frac{n}{8}}\sqrt{\pi}}{4\sqrt{2}} = 1$$

Zadanie 7.

W urnie znajduje się 20 kul białych, 20 kul czarnych i 20 kul niebieskich. Losujemy bez zwracania 24 kule. Niech

- X oznacza liczbę wylosowanych kul białych,
- Y oznacza liczbę wylosowanych kul czarnych,
- Z oznacza liczbę wylosowanych kul niebieskich.

Współczynnik korelacji zmiennych losowych X + 2Y i Z,

$$corr(X+2Y,Z)$$
,

jest równy

$$(A)$$
 -1

(B)
$$-\frac{\sqrt{3}}{2}$$

(C)
$$-\frac{3}{4}$$

(E)
$$-\frac{1}{2}$$

Zadanie 8.

Niech $X_1,...,X_n,...$ będą niezależnymi zmiennymi losowymi o jednakowym rozkładzie Pareto o gęstości

$$f(x) = \begin{cases} \frac{\theta}{(1+x)^{\theta+1}} & \text{gdy } x > 0\\ 0 & \text{w przeciwnym przypadku,} \end{cases}$$

gdzie $\theta > 1$ jest ustalone.

Niech N będzie zmienną losową niezależną od $X_1,...,X_n,...$, o rozkładzie geometrycznym

$$P(N=n) = (1-q)q^n$$
 gdy $n = 0,1,2,...,$

gdzie $q \in (0,1)$ jest ustaloną liczbą.

Niech

$$Z = \begin{cases} \min\{X_1, ..., X_N\}, & gdy \quad N > 0; \\ 0 & gdy \quad N = 0. \end{cases}$$

Oblicz E(N | Z = z) przy założeniu, że z > 0.

(A)
$$\frac{2(1+z)^{\theta}}{(1+z)^{\theta}+q}$$

(B)
$$\frac{2(1+z)^{\theta}}{(1+z)^{\theta}-q}$$

(C)
$$\frac{\left(1+z\right)^{\theta}+3q}{\left(1+z\right)^{\theta}+q}$$

(D)
$$\frac{(1+z)^{\theta}+q}{(1+z)^{\theta}-q}$$

(E)
$$\frac{\left(1+z\right)^{\theta}}{\left(1+z\right)^{\theta}-q}$$

Zadanie 9.

Rozważamy łańcuch Markowa X_1, X_2, \dots na przestrzeni stanów $\{0,1,2\}$ o macierzy przejścia

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{4} & 0 & \frac{3}{4} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix},$$

(gdzie $P_{ij} = P(X_{n+1} = j | X_n = i)$ dla i, j = 0, 1, 2).

Niech $Z_1, Z_2, ..., Z_n, ...$ będzie ciągiem zmiennych losowych o wartościach w zbiorze $\{0,1\}$, niezależnych od siebie nawzajem i od zmiennych $X_1, X_2, ..., X_n, ...$, o jednakowym rozkładzie prawdopodobieństwa:

$$P(Z_i = 1) = \frac{3}{4} i P(Z_i = 0) = \frac{1}{4}.$$

Niech $Y_i = Z_i \cdot X_i$. Wtedy $\lim_{n \to \infty} P(Y_n > Y_{n+1})$ jest równy

- A) $\frac{32}{144}$
- (B) $\frac{57}{144}$
- (C) $\frac{35}{144}$
- (D) $\frac{26}{144}$
- (E) $\frac{41}{144}$

Zadanie 10.

Niech $X_1, X_2, ..., X_n$ będą niezależnymi zmiennymi losowymi z rozkładu o gęstości

$$f_{\theta}(x) = \begin{cases} e^{-(x-\theta)} & gdy \ x \ge \theta \\ 0 & gdy \ x < \theta \end{cases}$$

gdzie $\theta \in R$ jest nieznanym parametrem. Zbudowano test jednostajnie najmocniejszy dla weryfikacji hipotezy H_0 : $\theta = 0$ przy alternatywie H_1 : $\theta \neq 0$ na poziomie istotności $\alpha \in (0,1)$.

Obszar krytyczny tego testu jest równy

(A)
$$\left\{\min\left\{X_{1}, X_{2}, \dots, X_{n}\right\} \in \left(-\infty, 0\right) \cup \left(\frac{-\ln \alpha}{n}, +\infty\right)\right\}$$

(B)
$$\left\{\min\left\{X_{1}, X_{2}, \dots, X_{n}\right\} \in \left(-\infty, \frac{\ln \alpha}{n}\right) \cup \left(\frac{-\ln \alpha}{n}, +\infty\right)\right\}$$

(C)
$$\left\{\min\left\{X_1, X_2, \dots, X_n\right\} \in \left(0, \frac{-\ln(1-\alpha)}{n}\right)\right\}$$

(D)
$$\left\{\min\left\{X_1, X_2, \dots, X_n\right\} \in \left(-\infty, \frac{-1}{n}\ln\left(1 - \frac{\alpha}{2}\right)\right) \cup \left(\frac{\ln 2 - \ln \alpha}{n}, +\infty\right)\right\}$$

(E)
$$\left\{\min\left\{X_{1}, X_{2}, \dots, X_{n}\right\} \in \left(-\infty, -\frac{\ln(1-\alpha)}{n}\right)\right\}$$

Egzamin dla Aktuariuszy z 5 października 2009 r.

Prawdopodobieństwo i statystyka

Arkusz odpowiedzi*

Ímię i nazwisko : K L U C Z	O D P O W I E D Z I
Pesel	

Zadanie nr	Odpowiedź	Punktacja*
1	В	
2	C	
3	D	
4	A	
5	В	
6	D	
7	В	
8	D	
9	E	
10	A	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w *Arkuszu odpowiedzi*.

^{*} Wypełnia Komisja Egzaminacyjna.