

PATENT ABSTRACTS OF JAPAN

(11)Publication number :

06-019520 JP# 3091572

(43)Date of publication of application : 28.01.1994

(51)Int.CI.

G05B 19/18

B23Q 15/00

// G05B 9/02

(21)Application number : 04-170731

(71)Applicant : HITACHI SEIKO LTD

(22)Date of filing : 29.06.1992

(72)Inventor : DOBASHI CHUKEI

(54) NUMERICALLY CONTROLLED MACHINE TOOL EQUIPPED WITH ABNORMAL POWER SOURCE COUNTERMEASURE CONTROL

(57)Abstract:

PURPOSE: To suppress the capacity of a uninterruptive power unit small and prevent respective parts of the machine tool from being damaged.

CONSTITUTION: The uninterruptive power unit 4 always supplies the electric power to a computer device 7 and the control circuit for actuator driving devices 10 and 12. A feed device and actuators 11 and 13 for tools can avow a momentary power failure, etc., so they are excluded from the load on the uninterruptive power unit 4, whose capacity is reduced. When the abnormality time of the power source is at a level 1 below a 1st set value, the actuators 11 and 13 are placed in a stand-by state and when the abnormality time exceeds the 1st set value and is at a level below a 2nd set value, one machining process is stopped to prude interference at the time of the recovery. When the level exceeding the 2nd set value is reached, data required to restart the machining are stored to guarantee the smooth machining restart at the time of the abnormality recovery.

LEGAL STATUS

[Date of request for examination] 24.06.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3091572

[Date of registration] 21.07.2000

[Number of appeal against examiner's decision of rejection]

(51) Int.Cl. ⁵	識別記号	序内整理番号	F 1	技術表示箇所
G 05 B 19/18	X	9064-3H		
B 23 Q 15/00	A	9136-3C		
	D	9136-3C		
// G 05 B 9/02	K	7208-3H		

審査請求 未請求 請求項の数3(全5頁)

(21)出願番号	特願平4-170731	(71)出願人	00023332 日立精工株式会社 神奈川県海老名市上今泉2100
(22)出願日	平成4年(1992)6月29日	(72)発明者	土橋 忠敬 神奈川県海老名市上今泉2100番地 日立精工株式会社内

(54)【発明の名称】 電源異常対応制御を備えた数値制御工作機械装置

(57)【要約】

【目的】 無停電電源装置の容量を小さく抑えるとともに、工作機械各部の損傷を防止する。

【構成】 計算機装置7とアクチュエータ駆動装置10, 12の制御回路については、無停電電源装置4から常時電力を供給する。送り装置又は工具のアクチュエータ11, 13は、瞬時停電等は許容できることから無停電電源装置4の負荷から外してその容量を軽減する。そして、電源の異常時間が、第1の設定値以下のレベル1ではアクチュエータ11, 13を待避させ、第1の設定値を超える第2の設定値以下のレベル2では一加工工程を停止させて、回復時の干渉等を防止する。また、第2の設定値を超えたレベル3に達した場合は、加工再開時に備えて必要なデータを記憶して、異常回復時の円滑な加工再開を確保する。

【0011】まず、瞬時停電等の極短時間の異常でも許容できない計算機装置と駆動装置の制御回路については、無停電電源装置から常時電力が供給されるので、電源異常が生じても正常な機能を確保できるとともに、それらの所要電力は比較的小さいのでシステム上の問題はない。一方、ワークや工具の送り装置又は加工工具の駆動装置のアクチュエータは、瞬時停電等の短時間（第1の設定値以下の時間）の異常は許容できることに鑑み、無停電電源装置の負荷から外して無停電電源装置の容量を軽減している。この場合、前述したように、異常時間が長くなると、停電回復時にワークと工具の干渉等の不都合が発生するが、本発明によれば、電源異常が発生した第1の段階（第1の設定値以下）では、工具等の制御対象のアクチュエータを待避させるようにしていることから、回復時の干渉等を防止できる。また、異常時間が第1の設定値を超えた第2の段階では、工具等の制御対象のアクチュエータを停止させる一加工工程を停止させていることから、回復時の干渉等を防止できる。また、異常時間が第2の設定値を超えた第3段階では、第1と第2の段階の対応に加えて、加工再開時に備えて必要なデータを記憶するようにしていることから、異常回復時に円滑に加工を再開できる。

【0012】

【実施例】以下、本発明の一実施例を図面を参照して説明する。図1は、本発明に係る数値制御プリント板穴明機の一実施例装置の全体ブロック構成図である。本実施例装置の電源系統は、入力電源（A.C.）を投入・遮断する遮断器1と、カミナリ等のサージを除去するサージキラー2と、ノイズを減衰させる3相ラインフィルタ3と、無停電電源装置4と、直流電源装置5とを備えて構成されている。本実施例装置の数値制御プリント板穴明け機は、計算機装置7と、この計算機装置7を介して穴明け機を操作する操作部8と、計算機装置7に各種の指令を入力する指令部9と、計算機装置7から入力される制御指令に応じてサーボモータ11を駆動制御するサーボモータ駆動装置10と、計算機装置7から入力される制御指令に応じてスピンドルモータ13を駆動制御するスピンドルモータ駆動装置12と、無停電電源装置4の入力電圧の異常を検出する電源異常検出回路14とを含んで構成されている。

【0013】サーボモータ駆動装置10とスピンドルモータ12の各モータ用の電源は、無停電電源装置4の入力側から供給するようにしている。計算機装置7の電源と、スピンドルモータ駆動装置12の制御回路の電源と、電源異常検出回路14の電源は、直流電源装置5から供給するようにしている。サーボモータ駆動装置10の制御回路の電源は無停電電源装置4から供給するようにしている。

【0014】電源異常検出回路14では、A.C.入力電源の瞬時電圧低下、瞬断を検出してその電源異常の時間だ

けDCレベルに変換した検出信号を計算機装置7に出力するようになっている。

【0015】計算機装置7は、図2に示すブロック図のように、中央処理ユニット（C.P.U.）7Aと、制御プログラム登録用およびデータ待避用のメモリ7Bと、電源異常時間測定回路7Cとを含んで構成されている。電源異常時間測定回路7Cは、電源異常検出回路14から出力される電源異常の検出信号を取り込み、電源異常の継続時間（異常時間）を計測し、異常時間の幅に応じて設定された3段階（レベル1, 2, 3）に分け、C.P.U.7Aの入出力（I/O）部が読み取り可能な電気信号に変換し出力する。本実施例では、レベル1は200ms以下、レベル2は200msを超える500ms以下、レベル3は500msを超えた場合として設定している。

【0016】C.P.U.7Aは、本発明の特徴部にかかる異常対応制御手段を含んで構成される。この異常対応制御手段はI/O制御部を介して異常検出信号を取り込み、レベル1の場合は、電源瞬断と判断して加工対象のワークから制御対象の工具等を一時待避させる。レベル2の場合は、数値制御装置をシングル停止させ加工中断を行なう。ここでシングル停止とは、一連の加工工程の内の現在実行している一つの加工工程を停止することをいう。レベル3の信号が输出された場合は、停電と判断して、レベル1、2の処理を実施した後、停電復帰後の加工再開に必要な各種データをメモリ部に記憶する。このデータとしては、加工中断に伴う再加工続行時に必要なデータをいう。また、レベル1の信号のみでレベル2の信号が输出されない場合は、加工対象であるワークから制御対象の一時待避を解除して再び加工を再開させる。これらの一連の制御は、予めメモリ7Bに記憶されたプログラムをC.P.U.7Aが実行することにより実現している。

【0017】

【発明の効果】以上説明したように、本発明によれば、万一入力電源に異常発生しても、加工対象の保護、機械の保護を達成できるとともに、加工中断後の加工再開が円滑に行えるので、装置稼働率の低減等の防止に効果がある。

【図面の簡単な説明】

【図1】本発明の一実施例の数値制御プリント板穴明機のブロック構成図である。

【図2】図1の計算機装置の内部ブロック図である。

【符号の説明】

- 1 遮断器
- 2 サージキラー
- 3 3相ラインフィルタ
- 4 無停電電源装置
- 5 直流電源装置
- 6 計算機装置
- 7 A C.P.U.

[図1]

(19) 日本国特許庁 (JP)

(12) 特許公報 (B2)

(11) 特許番号
特許第3091572号
(P3091572)

(45) 発行日 平成12年9月25日 (2000.9.25)

(24) 登録日 平成12年7月21日 (2000.7.21)

(51) Int.Cl.
G 05 B 19/18
B 23 Q 15/00
// G 05 B 9/02

識別記号

F 1
G 05 B 19/18 X
B 23 Q 15/00 A
C 05 B 9/02 D
K

請求項の数 3 (全 5 頁)

(21) 出願番号 特願平4-170731
(22) 出願日 平成4年6月29日 (1992.6.29)
(65) 公開番号 特開平6-19520
(43) 公開日 平成6年1月28日 (1994.1.28)
審査請求日 平成11年6月24日 (1999.6.24)

(73) 特許権者 000233332
日立ビアメカニクス株式会社
神奈川県海老名市上今泉2100
(72) 発明者 士浦 忠敬
神奈川県海老名市上今泉2100番地 日立
精工株式会社 内
審査官 平田 信勝

(56) 参考文献 特開 昭62-49514 (JP, A)
特開 平3-196107 (JP, A)
特開 昭63-88802 (JP, A)
特開 平4-237301 (JP, A)
特開 平5-53629 (JP, A)

(58) 調査した分野 (Int.Cl., DB名)

G05B 19/18
B23Q 15/00

(54) 【発明の名称】 電源異常対応制御を備えた数値制御工作機械装置

(57) 【特許請求の範囲】

【請求項1】 工作機械のアクチュエータを駆動制御する駆動装置と、数値情報に基づいて前記アクチュエータの制御指令を生成して前記駆動装置に出力する計算機装置と、前記駆動装置の制御回路と前記計算機装置に電力を供給する無停電電源装置とを含んでなる数値制御工作機械装置において、前記無停電電源装置の入力電源の電圧低下を検出して電源異常検出信号を出力する電源異常検出手段と、該手段から出力される電源異常検出信号に基づいて電源異常の継続時間を計測する異常時間計測手段と、該異常時間計測手段から出力される異常時間の長さに応じて、予め定められた駆動装置に待避指令と加工中断指令を選択出力するとともに、電源異常回復時の加工制御再開に必要なデータを記憶させる異常対応制御手段を設けたことを特徴とする数値制御工作機械装置。

【請求項2】 請求項1において、前記異常対応制御手段は、異常時間が第1の設定値以下のとき前記待避指令を出力し、異常時間が第1の設定値を超え第2の設定値以下のとき前記停止指令を出力し、異常時間が第2の設定値を超えたとき前記データの記憶を行わせることを特徴とする数値制御工作機械装置。

【請求項3】 請求項2において、異常時間が第1の設定値を超えた後、第2の設定値を超えない場合は、前記待避指令を解除して駆動制御を再開させることを特徴とする数値制御工作機械装置。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、計算機により工作機械の駆動を制御する数値制御工作機械装置に関する。

【0002】

成されている。本実施例の数値制御プリント板穴明け機は、計算機装置7と、この計算機装置7を介して穴明け機を操作する操作部8と、計算機装置7に各種の指令を入力する指令部9と、計算機装置7から入力される制御指令に応じてサーボモータ1を駆動制御するサーボモータ駆動装置10と、計算機装置7から入力される制御指令に応じてスピンドルモータ13を駆動制御するスピンドルモータ駆動装置12と、無停電電源装置4の入力電圧の異常を検出する電源異常検出回路5とを含んで構成されている。

【0013】サーボモータ駆動装置10とスピンドルモータ12の各モータ用の電源は、無停電電源装置4の入力側から供給するようにしている。計算機装置7の電源と、スピンドルモータ駆動装置12の制御回路の電源と、電源異常検出回路5の電源は、直流電源装置6から供給するようにしている。サーボモータ駆動装置10の制御回路の電源は無停電電源装置4から供給するようにしている。

【0014】電源異常検出回路5では、AC入力電源の瞬時電圧低下、瞬断を検出してその電源異常の時間だけDCレベルに変換した検出信号を計算機装置7に出力するようになっている。

【0015】計算機装置7は、図2に示すブロック図のとくに、中央処理ユニット(CPU)7Aと、制御プログラム登録用およびデータ待避用のメモリ7Bと、電源異常時間測定回路7Cとを含んで構成されている。電源異常時間測定回路7Cは、電源異常検出回路5から出力される電源異常の検出信号を取り込み、電源異常の継続時間(異常時間)を計測し、異常時間の幅に応じて設定された3段階(レベル1, 2, 3)に分け、CPU7Aの入出力(I/O)部が読み取り可能な電気信号に変換し出力する。本実施例では、レベル1は200ms以下、レベル2は200msを超える500ms以下、レベル3は500msを超えた場合として設定している。

【0016】CPU7Aは、本発明の特徴部にかかる異常対応制御手段を含んで構成される。この異常対応制御手段はI/O制御部を介して異常検出信号を取り込み、レベル1の場合は、電源瞬断と判断して加工対象のワークから制御対象の工具等を一時待避させる。レベル2の場合は、数値制御装置をシングル停止させ加工中断を行

なう。ここでシングル停止とは、一連の加工工程内の現在実行している一つの加工工程を停止することをいう。レベル3の信号が出力された場合は、停電と判断して、レベル1, 2の処理を実施した後、停電復帰後の加工再開に必要な各種データをメモリ部に記憶する。このデータとしては、加工中断に伴う再加工続行時に必要なデータをいう。また、レベル1の信号のみでレベル2の信号が出力されない場合は、加工対象であるワークから制御対象の一時待避を解除して再び加工を再開させる。

10 これらの一連の制御は、予めメモリ7Bに記憶されたプログラムをCPU7Aが実行することにより実現している。

【0017】

【発明の効果】以上説明したように、本発明によれば、万一入力電源に異常発生しても、加工対象の保護、機械の保護を達成できるとともに、加工中断後の加工再開が円滑に行えるので、装置稼働率の低減等の防止に効果がある。

【図面の簡単な説明】

20 20 【図1】本発明の一実施例の数値制御プリント板穴明け機のブロック構成図である。

【図2】図1の計算機装置の内部ブロック図である。

【符号の説明】

1 適応器

2 サージキラー

3 3相ラインフィルタ

4 無停電電源装置

5 異常時間計測回路

6 直流電源装置

30 7 計算機装置

7A CPU

7B メモリ

7C 電源瞬断時間測定回路

8 操作部

9 指令部

10 サーボモータ駆動装置

11 サーボモータ

12 スピンドルモータ駆動装置

13 スピンドルモータ

【図1】

