Deductive Databases

TD 5: Data Exchange

Exercise 1.

Given the schema mapping: $\Sigma : E(x, y) \to \exists z, H(x, z) \land H(z, y)$ with the source instance I = E(a, b). - Are the following J_i solutions? Justify

Q1.1.
$$J_1 = [H(a,b), H(b,b)]$$

Q1.2. $J_2 = [H(a,a), H(a,b)]$

Q1.3.
$$J_3 = \{H(a, X), H(X, b)\}$$

Q1.4.
$$J_A = [H(a, X), H(X, b), H(a, Y), H(Y, b)]$$

Q1.5.
$$J_5 = [H(a, X), H(X, b), H(Y, Y)]$$

Solution:

 J_1 is a solution with (z=b)

 J_2 is a solution with (z=a)

 J_3 is a solution with (z=X)

 J_{a} is a solution with (z=X) and $H(a,Y), H(Y,b) \in J_{a}$

 J_5 is a solution with (z=X) and $H(Y,Y) \in J_5$

- Specify for each J_i whether it is a universal solution or not, and justify.

Solution:

 J_1 is not a universal solution because for each homomorphism h we have h(a) = a. Therefore, there is no homomorphism from J_1 to J_2 .

 J_2 is not a solution for the same reason. It is impossible to find a homomorphism from J_2 to J_1 .

 J_3 is a universal solution. For each solution J, there is z such that H(a,z) and H(a,b) are in J. So we construct the homomorphism h(X) = a.

 J_4 is a universal solution (we can choose h(X) = h(Y)).

 J_5 is not a universal solution. There is no homomorphism from J_5 to J_1 .

Exercise 2.

. Create the dependency graph for the following schema mapping and specify if/why the sets of tgds are weakly acyclic.

2.1.

$$\Sigma_{st} = \left[DeptEmp(d, n, e) \rightarrow \exists M \left(Dept(d, M, n) \land Emp(e, d) \right) \right]$$

$$\Sigma_{t} = \left[Dept(d, m, e) \rightarrow Emp(m, d), Emp(e, d) \rightarrow \exists M \exists N Dept(d, M, N) \right]$$

2.2.

$$\Sigma_{st} = [DeptEmp(d, n, e) \rightarrow \exists M (Dept(d, M, n) \land Emp(e, d))]$$

$$\Sigma_{t} = [Dept(d, m, e) \rightarrow \exists D Emp(m, D), Emp(e, d) \rightarrow \exists M \exists N Dept(d, M, N)]$$

Solution:

The graph for 2.1 is weakly acyclic

The graph for 2.1 is not weakly acyclic

Exercise 3.

Let us consider the following source instance:

NYSE

name	symbol
Google	GOOG
Yahoo!	YHOO

Public-Company

name	city
Apple	Cup
Adobe	SJ

Public-Grant

company	investigator	amount
Apple	Mike B.	25,000
Adobe	Anne C.	50,000

NSF-Grantee

id	name	symbol
23	Yahoo!	YHOO
25	Adobe	ADBE

NSF-Grant

company	amount	
23	18,000	
25	50 000	

and the constraints $\Sigma_{st} = [m_1, m_2, m_3, m_4]$ and $\Sigma_t = [t_1, e_1]$ such that:

$$m_1$$
: $\forall s, n, NYSE(s, n) \rightarrow \exists I Company(I, n, s)$

 $\mathsf{m}_{-2} \colon \forall \ \mathsf{n}, \mathsf{c} \ \mathsf{,} \ \mathsf{a}, \ \mathsf{pi}, \ \mathsf{PublicCompany} \ (\ \mathsf{n}, \mathsf{c} \) \ \land \ \mathsf{PublicGrant} \ (\ \mathsf{n}, \mathsf{i}, \mathsf{a}) \ \to \exists \ \mathsf{I} \ \mathsf{,} \exists \ \mathsf{S} \ \mathsf{Company} \ (\ \mathsf{I} \ \mathsf{,} \ \mathsf{n}, \ \mathsf{S} \) \ \land \mathsf{Grant} \ (\mathsf{a}, \ \mathsf{I} \)$

 m_3 : $\forall i, n, s, NFSGrantee(i, n, s) \rightarrow Company(i, n, s)$

 $m_4: \forall a, c, NFSGrant(c, a) \rightarrow Grant(a, c)$

$$\begin{split} &t_1 \colon \forall \ a \ , c \ , Grant \ (a \ , c) \to \exists \ N \ , \exists \ S \ Company \ (c \ , N \ , S) \\ &e_1 \colon \forall \ n \ , n' \ , i \ , i' \ , s \ , Company \ (i \ , n \ , s) \land Company \ (i' \ , n' \ , s) \to (n = n') \land (i = i') \end{split}$$

Specify if the following instances are universal solutions? not universal? Or other.

J_1 Company

id	name	symbol
N1	Google	GOOG
N2	Yahoo	YHOO
11	Apple	S1
12	Adobe	S2
23	Yahoo!	YHOO
25	Adobe	ADBE

Grant

amount	company
25,000	11
50,000	12
18,000	23
50,000	25

J_2 Company

id	name	symbol
N1	Google	GOOG
11	Apple	S1
12	Adobe	S2
23	Yahoo!	YHOO
25	Adobe	ADBE

Grant

amount	company
25,000	I 1
50,000	12
18,000	23
50,000	25

J_3 Company

id	name	symbol
N1	Google	GOOG
11	Apple	NULL
23	Yahoo!	YHOO
25	Adobe	ADBE

Grant

amount	company
25,000	11
18,000	23
50,000	25

J_4 Company

id	name	symbol
N1	Google	GOOG
11	Apple	NULL
23	Yahoo!	YHOO
25	Adobe	ADBE

Grant

amount	company
25,000	I1
18,000	12
50,000	25
80,000	N1

Solution:

The minimal universal solution is:

	id	name	symbol
	<i>I</i> 1	Apple	S1
Company =	12	Google	GOOG
	23	Yahoo!	YHOO
	25	Adobe	ADBE

Grant =	amount	company
	18000	23
	50000	25
	25000	<i>I</i> 1

Solution:

 J_1 is not a solution because e_1 is not satisfied for s = YHOO.

 J_2 is a universal solution because we can define a homomorphism h from J_2 to J_0 with h(I2)=25, h(S2)=ABDE, h (I1)=I1 and h(N1)=I2.

 J_3 is a solution because it satisfies all the constraints. On the other hand, for any homomorphism h we have h(NULL)=NULL, so there is no homomorphism from J_3 to J_0 . So J_3 is not a universal solution. J_4 is not a solution because it does not satisfy all the constraints (m4 is not satisfied).

.