```
Query Match
                         82.1%; Score 23; DB 11; Length 36;
  Best Local Similarity 100.0%; Pred. No. 7.3e-17;
 Matches
          23; Conservative
                               0; Mismatches
                                               0; Indels
                                                               0; Gaps
                                                                          0;
           6 GKSIQDLRRRFFLHHLIAEIHTA 28
Qу
             Db
          12 GKSIQDLRRRFFLHHLIAEIHTA 34
RESULT 14
US-10-372-095-23
; Sequence 23, Application US/10372095
; Publication No. US20030162256A1
; GENERAL INFORMATION:
  APPLICANT: Juppner, Harald
  APPLICANT: Rubin, David A.
  TITLE OF INVENTION: PTH1R and PTH3R Receptors, Methods and Uses Thereof
 FILE REFERENCE: 0609.4740002
  CURRENT APPLICATION NUMBER: US/10/372,095
  CURRENT FILING DATE: 2003-02-25
  PRIOR APPLICATION NUMBER: 09/449,632
  PRIOR FILING DATE: 1999-11-30
  PRIOR APPLICATION NUMBER: US 60/110,467
  PRIOR FILING DATE: 1998-11-30
  NUMBER OF SEQ ID NOS: 25
  SOFTWARE: PatentIn Ver. 2.1
 SEO ID NO 23
   LENGTH: 36
   TYPE: PRT
   ORGANISM: Homo sapiens
US-10-372-095-23
  Query Match
                         82.1%; Score 23; DB 12; Length 36;
  Best Local Similarity
                         100.0%; Pred. No. 7.3e-17;
          23; Conservative 0; Mismatches
                                                0; Indels
                                                               0; Gaps
                                                                          0;
Qу
           6 GKSIQDLRRRFFLHHLIAEIHTA 28
              Db
          12 GKSIQDLRRRFFLHHLIAEIHTA 34
RESULT 15
US-10-340-484-2
; Sequence 2, Application US/10340484
; Publication No. US20030171288A1
; GENERAL INFORMATION:
  APPLICANT: Stewart, Andrew F.
  TITLE OF INVENTION: Treatment of Bone Disorders with Skelatal Anabolic
  TITLE OF INVENTION: Drugs
  FILE REFERENCE: 25200-501
  CURRENT APPLICATION NUMBER: US/10/340,484
  CURRENT FILING DATE: 2003-01-10
  PRIOR APPLICATION NUMBER: 60/347,215
  PRIOR FILING DATE: 2002-01-10
  PRIOR APPLICATION NUMBER: 60/353,296
  PRIOR FILING DATE: 2002-02-01
```

```
PRIOR APPLICATION NUMBER: 60/368,955
  PRIOR FILING DATE: 2002-03-28
  PRIOR APPLICATION NUMBER: 60/379,125
  PRIOR FILING DATE: 2002-05-08
  NUMBER OF SEQ ID NOS: 27
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 2
   LENGTH: 36
   TYPE: PRT
   ORGANISM: Homo sapiens
US-10-340-484-2
 Query Match
                         82.1%; Score 23; DB 12; Length 36;
 Best Local Similarity
                         100.0%; Pred. No. 7.3e-17;
 Matches
           23; Conservative
                               0; Mismatches
                                                 0; Indels
                                                               0; Gaps
                                                                          0;
           6 GKSIQDLRRRFFLHHLIAEIHTA 28
Qу
             Db
          12 GKSIQDLRRRFFLHHLIAEIHTA 34
RESULT 16
US-10-340-484-3
; Sequence 3, Application US/10340484
; Publication No. US20030171288A1
; GENERAL INFORMATION:
  APPLICANT: Stewart, Andrew F.
  TITLE OF INVENTION: Treatment of Bone Disorders with Skelatal Anabolic
  TITLE OF INVENTION: Drugs
  FILE REFERENCE: 25200-501
  CURRENT APPLICATION NUMBER: US/10/340,484
  CURRENT FILING DATE: 2003-01-10
  PRIOR APPLICATION NUMBER: 60/347,215
  PRIOR FILING DATE: 2002-01-10
  PRIOR APPLICATION NUMBER: 60/353,296
  PRIOR FILING DATE: 2002-02-01
  PRIOR APPLICATION NUMBER: 60/368,955
  PRIOR FILING DATE: 2002-03-28
  PRIOR APPLICATION NUMBER: 60/379,125
  PRIOR FILING DATE: 2002-05-08
  NUMBER OF SEQ ID NOS: 27
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 3
   LENGTH: 36
   TYPE: PRT
   ORGANISM: Equus caballus
US-10-340-484-3
 Query Match
                         82.1%; Score 23; DB 12; Length 36;
 Best Local Similarity
                         100.0%; Pred. No. 7.3e-17;
           23; Conservative
                             0; Mismatches
                                              0; Indels
                                                               0; Gaps
                                                                          0;
Qу
           6 GKSIQDLRRRFFLHHLIAEIHTA 28
             Db
          12 GKSIQDLRRRFFLHHLIAEIHTA 34
```

```
RESULT 17
US-10-340-484-4
; Sequence 4, Application US/10340484
; Publication No. US20030171288A1
; GENERAL INFORMATION:
  APPLICANT: Stewart, Andrew F.
   TITLE OF INVENTION: Treatment of Bone Disorders with Skelatal Anabolic
   TITLE OF INVENTION: Drugs
  FILE REFERENCE: 25200-501
   CURRENT APPLICATION NUMBER: US/10/340,484
   CURRENT FILING DATE: 2003-01-10
   PRIOR APPLICATION NUMBER: 60/347,215
   PRIOR FILING DATE: 2002-01-10
   PRIOR APPLICATION NUMBER: 60/353,296
   PRIOR FILING DATE: 2002-02-01
   PRIOR APPLICATION NUMBER: 60/368,955
   PRIOR FILING DATE: 2002-03-28
   PRIOR APPLICATION NUMBER: 60/379,125
   PRIOR FILING DATE: 2002-05-08
  NUMBER OF SEQ ID NOS: 27
   SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 4
    LENGTH: 36
    TYPE: PRT
    ORGANISM: Bos taurus
US-10-340-484-4
  Query Match
                          82.1%; Score 23; DB 12; Length 36;
                         100.0%; Pred. No. 7.3e-17;
  Best Local Similarity
  Matches
            23; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
            6 GKSIQDLRRRFFLHHLIAEIHTA 28
              Db
           12 GKSIQDLRRRFFLHHLIAEIHTA 34
RESULT 18
US-10-340-484-5
; Sequence 5, Application US/10340484
; Publication No. US20030171288A1
; GENERAL INFORMATION:
  APPLICANT: Stewart, Andrew F.
  TITLE OF INVENTION: Treatment of Bone Disorders with Skelatal Anabolic
   TITLE OF INVENTION: Drugs
  FILE REFERENCE: 25200-501
   CURRENT APPLICATION NUMBER: US/10/340,484
   CURRENT FILING DATE: 2003-01-10
   PRIOR APPLICATION NUMBER: 60/347,215
   PRIOR FILING DATE: 2002-01-10
   PRIOR APPLICATION NUMBER: 60/353,296
   PRIOR FILING DATE: 2002-02-01
   PRIOR APPLICATION NUMBER: 60/368,955
   PRIOR FILING DATE: 2002-03-28
   PRIOR APPLICATION NUMBER: 60/379,125
  PRIOR FILING DATE: 2002-05-08
  NUMBER OF SEQ ID NOS: 27
  SOFTWARE: PatentIn Ver. 2.1
```

```
; SEQ ID NO 5
   LENGTH: 36
   TYPE: PRT
   ORGANISM: Ovis aries
US-10-340-484-5
                         82.1%; Score 23; DB 12; Length 36;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 7.3e-17;
           23; Conservative 0; Mismatches 0; Indels
 Matches
                                                              0; Gaps
Qу
           6 GKSIQDLRRRFFLHHLIAEIHTA 28
             12 GKSIODLRRRFFLHHLIAEIHTA 34
RESULT 19
US-10-340-484-6
; Sequence 6, Application US/10340484
; Publication No. US20030171288A1
; GENERAL INFORMATION:
  APPLICANT: Stewart, Andrew F.
  TITLE OF INVENTION: Treatment of Bone Disorders with Skelatal Anabolic
  TITLE OF INVENTION: Drugs
  FILE REFERENCE: 25200-501
  CURRENT APPLICATION NUMBER: US/10/340,484
  CURRENT FILING DATE: 2003-01-10
  PRIOR APPLICATION NUMBER: 60/347,215
  PRIOR FILING DATE: 2002-01-10
  PRIOR APPLICATION NUMBER: 60/353,296
  PRIOR FILING DATE: 2002-02-01
  PRIOR APPLICATION NUMBER: 60/368,955
  PRIOR FILING DATE: 2002-03-28
  PRIOR APPLICATION NUMBER: 60/379,125
  PRIOR FILING DATE: 2002-05-08
  NUMBER OF SEQ ID NOS: 27
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 6
   LENGTH: 36
    TYPE: PRT
    ORGANISM: Canis familiaris
US-10-340-484-6
                         82.1%; Score 23; DB 12; Length 36;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 7.3e-17;
  Matches 23; Conservative 0; Mismatches 0;
                                                    Indels
                                                               0; Gaps
           6 GKSIQDLRRRFFLHHLIAEIHTA 28
Qу
             Db
          12 GKSIQDLRRRFFLHHLIAEIHTA 34
RESULT 20
US-10-340-484-7
; Sequence 7, Application US/10340484
; Publication No. US20030171288A1
; GENERAL INFORMATION:
; APPLICANT: Stewart, Andrew F.
```

```
TITLE OF INVENTION: Treatment of Bone Disorders with Skelatal Anabolic
   TITLE OF INVENTION: Drugs
   FILE REFERENCE: 25200-501
  CURRENT APPLICATION NUMBER: US/10/340,484
  CURRENT FILING DATE: 2003-01-10
   PRIOR APPLICATION NUMBER: 60/347,215
  PRIOR FILING DATE: 2002-01-10
  PRIOR APPLICATION NUMBER: 60/353,296
   PRIOR FILING DATE: 2002-02-01
   PRIOR APPLICATION NUMBER: 60/368,955
  PRIOR FILING DATE: 2002-03-28
  PRIOR APPLICATION NUMBER: 60/379,125
  PRIOR FILING DATE: 2002-05-08
   NUMBER OF SEQ ID NOS: 27
   SOFTWARE: PatentIn Ver. 2.1
  SEQ ID NO 7
   LENGTH: 36
    TYPE: PRT
    ORGANISM: Felis catus
US-10-340-484-7
  Query Match
                          82.1%; Score 23; DB 12; Length 36;
                         100.0%; Pred. No. 7.3e-17;
  Best Local Similarity
  Matches
           23; Conservative 0; Mismatches
                                                  0;
                                                      Indels
                                                                0; Gaps
                                                                            0;
Qу
            6 GKSIQDLRRRFFLHHLIAEIHTA 28
              Db
           12 GKSIQDLRRRFFLHHLIAEIHTA 34
RESULT 21
US-10-340-484-8
; Sequence 8, Application US/10340484
; Publication No. US20030171288A1
; GENERAL INFORMATION:
  APPLICANT: Stewart, Andrew F.
   TITLE OF INVENTION: Treatment of Bone Disorders with Skelatal Anabolic
   TITLE OF INVENTION: Drugs
   FILE REFERENCE: 25200-501
  CURRENT APPLICATION NUMBER: US/10/340,484
  CURRENT FILING DATE: 2003-01-10
  PRIOR APPLICATION NUMBER: 60/347,215
  PRIOR FILING DATE: 2002-01-10
  PRIOR APPLICATION NUMBER: 60/353,296
  PRIOR FILING DATE: 2002-02-01
  PRIOR APPLICATION NUMBER: 60/368,955
   PRIOR FILING DATE: 2002-03-28
  PRIOR APPLICATION NUMBER: 60/379,125
  PRIOR FILING DATE: 2002-05-08
  NUMBER OF SEQ ID NOS: 27
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 8
   LENGTH: 36
    TYPE: PRT
   ORGANISM: Orycctolagus cuniculus
US-10-340-484-8
```

```
Query Match 82.1%; Score 23; DB 12; Length 36; Best Local Similarity 100.0%; Pred. No. 7.3e-17;
           23; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
  Matches
QУ
            6 GKSIODLRRRFFLHHLIAEIHTA 28
              111111111111
           12 GKSIQDLRRRFFLHHLIAEIHTA 34
Db
RESULT 22
US-10-340-484-9
; Sequence 9, Application US/10340484
; Publication No. US20030171288A1
 GENERAL INFORMATION:
  APPLICANT: Stewart, Andrew F.
   TITLE OF INVENTION: Treatment of Bone Disorders with Skelatal Anabolic
  TITLE OF INVENTION: Drugs
  FILE REFERENCE: 25200-501
   CURRENT APPLICATION NUMBER: US/10/340,484
   CURRENT FILING DATE: 2003-01-10
   PRIOR APPLICATION NUMBER: 60/347,215
   PRIOR FILING DATE: 2002-01-10
   PRIOR APPLICATION NUMBER: 60/353,296
   PRIOR FILING DATE: 2002-02-01
   PRIOR APPLICATION NUMBER: 60/368,955
   PRIOR FILING DATE: 2002-03-28
   PRIOR APPLICATION NUMBER: 60/379,125
   PRIOR FILING DATE: 2002-05-08
   NUMBER OF SEQ ID NOS: 27
   SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 9
    LENGTH: 36
    TYPE: PRT
    ORGANISM: Rattus norvegicus
US-10-340-484-9
                          82.1%; Score 23; DB 12; Length 36;
  Query Match
  Best Local Similarity
                         100.0%; Pred. No. 7.3e-17;
  Matches
           23; Conservative 0; Mismatches
                                                  0;
                                                      Indels
                                                                 0; Gaps
                                                                             0;
Qу
            6 GKSIQDLRRRFFLHHLIAEIHTA 28
              Db
           12 GKSIQDLRRRFFLHHLIAEIHTA 34
RESULT 23
US-10-340-484-10
; Sequence 10, Application US/10340484
; Publication No. US20030171288A1
; GENERAL INFORMATION:
  APPLICANT: Stewart, Andrew F.
   TITLE OF INVENTION: Treatment of Bone Disorders with Skelatal Anabolic
   TITLE OF INVENTION: Drugs
   FILE REFERENCE: 25200-501
   CURRENT APPLICATION NUMBER: US/10/340,484
   CURRENT FILING DATE: 2003-01-10
   PRIOR APPLICATION NUMBER: 60/347,215
```

```
PRIOR FILING DATE: 2002-01-10
   PRIOR APPLICATION NUMBER: 60/353,296
  PRIOR FILING DATE: 2002-02-01
  PRIOR APPLICATION NUMBER: 60/368,955
  PRIOR FILING DATE: 2002-03-28
  PRIOR APPLICATION NUMBER: 60/379,125
  PRIOR FILING DATE: 2002-05-08
  NUMBER OF SEO ID NOS: 27
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 10
   LENGTH: 36
    TYPE: PRT
    ORGANISM: Mus musculus
US-10-340-484-10
  Query Match 82.1%; Score 23; DB 12; Length 36; Best Local Similarity 100.0%; Pred. No. 7.3e-17;
           23; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
           6 GKSIQDLRRRFFLHHLIAEIHTA 28
Qу
              Db
          12 GKSIQDLRRRFFLHHLIAEIHTA 34
RESULT 24
US-10-014-162-112
; Sequence 112, Application US/10014162
; Publication No. US20030032096A1
; GENERAL INFORMATION:
 APPLICANT: Usdin, Ted B.
  APPLICANT: Hoare, Samuel R.J.
   TITLE OF INVENTION: PARATHYROID HORMONE RECEPTOR LIGANDS
  FILE REFERENCE: NIH175.001C1
  CURRENT APPLICATION NUMBER: US/10/014,162
   CURRENT FILING DATE: 2001-12-11
   PRIOR APPLICATION NUMBER: PCT/US00/1677
  PRIOR FILING DATE: 2000-06-15
  PRIOR APPLICATION NUMBER: 60/139335
  PRIOR FILING DATE: 1999-06-15
  NUMBER OF SEQ ID NOS: 112
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 112
   LENGTH: 39
    TYPE: PRT
    ORGANISM: Homo sapiens
US-10-014-162-112
  Query Match
                         82.1%; Score 23; DB 15; Length 39;
  Best Local Similarity 100.0%; Pred. No. 7.8e-17;
  Matches 23; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
Qу
           6 GKSIQDLRRRFFLHHLIAEIHTA 28
              Db
          12 GKSIQDLRRRFFLHHLIAEIHTA 34
```

```
US-09-169-786-12
; Sequence 12, Application US/09169786B
 Patent No. US20020025929A1
; GENERAL INFORMATION:
  APPLICANT: Sato, Masahiko
  TITLE OF INVENTION: METHOD OF BUILDING AND MAINTAINING BONE
  FILE REFERENCE: X-11480
  CURRENT APPLICATION NUMBER: US/09/169,786B
  CURRENT FILING DATE: 1998-10-09
  EARLIER APPLICATION NUMBER: US 60/061,800
  EARLIER FILING DATE: 1997-10-14
; NUMBER OF SEQ ID NOS: 12
  SOFTWARE: PatentIn Ver. 2.0
 SEO ID NO 12
   LENGTH: 40
    TYPE: PRT
    ORGANISM: Homo sapiens
US-09-169-786-12
 Query Match
                          82.1%; Score 23; DB 9; Length 40;
                         100.0%; Pred. No. 8e-17;
 Best Local Similarity
                               0; Mismatches
 Matches
            23; Conservative
                                                  0; Indels
                                                                0; Gaps
                                                                            0;
Qу
            6 GKSIQDLRRRFFLHHLIAEIHTA 28
              1111111111
Db
           12 GKSIQDLRRRFFLHHLIAEIHTA 34
RESULT 26
US-09-843-221A-71
; Sequence 71, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEO ID NO 71
   LENGTH: 28
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified human PTHrP
   NAME/KEY: misc feature
```

```
LOCATION: (6)..(6)
   OTHER INFORMATION: D amino acid
US-09-843-221A-71
                         78.6%; Score 22; DB 11; Length 28;
 Ouery Match
 Best Local Similarity
                         100.0%; Pred. No. 6.4e-16;
                              0; Mismatches
                                                               0; Gaps
                                                                          0;
           22; Conservative
                                                0; Indels
 Matches
Qу
           7 KSIODLRRRFFLHHLIAEIHTA 28
              Db
           7 KSIQDLRRRFFLHHLIAEIHTA 28
RESULT 27
US-09-843-221A-72
; Sequence 72, Application US/09843221A
 Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
; SEQ ID NO 72
   LENGTH: 28
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified PTHrP
   NAME/KEY: misc feature
   LOCATION: (6)..(6)
   OTHER INFORMATION: D amino acid
US-09-843-221A-72
                         78.6%; Score 22; DB 11; Length 28;
  Query Match
 Best Local Similarity
                         100.0%; Pred. No. 6.4e-16;
           22; Conservative
                               0; Mismatches 0; Indels
                                                               0; Gaps
           7 KSIQDLRRRFFLHHLIAEIHTA 28
Qу
              Db
           7 KSIQDLRRRFFLHHLIAEIHTA 28
```

RESULT 28 US-09-843-221A-75

```
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
  SEQ ID NO 75
    LENGTH: 28
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: modified human PTHrP
    NAME/KEY: misc feature
    LOCATION: (6)..(6)
    OTHER INFORMATION: D amino acid
US-09-843-221A-75
  Query Match
                          78.6%; Score 22; DB 11; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 6.4e-16;
            22; Conservative
                                 0; Mismatches
                                                  0;
                                                      Indels
                                                                    Gaps
                                                                             0;
            7 KSIQDLRRRFFLHHLIAEIHTA 28
Qу
              Db
            7 KSIQDLRRRFFLHHLIAEIHTA 28
RESULT 29
US-09-843-221A-67
; Sequence 67, Application US/09843221A
  Publication No. US20030039654A1
; GENERAL INFORMATION:
   APPLICANT: KOSTENUIK, PAUL
   APPLICANT: LIU, CHUAN-FA
   APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
   TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
   CURRENT FILING DATE: 2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
   PRIOR APPLICATION NUMBER: 60/214,860
```

; Sequence 75, Application US/09843221A

```
PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
 NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
SEQ ID NO 67
   LENGTH: 33
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified human PTHrP
US-09-843-221A-67
                         78.6%; Score 22; DB 11; Length 33;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 7.4e-16;
          22; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                          0;
 Matches
           7 KSIQDLRRRFFLHHLIAEIHTA 28
Qу
             12 KSIQDLRRRFFLHHLIAEIHTA 33
Dh
RESULT 30
US-09-843-221A-76
; Sequence 76, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
 APPLICANT: LIU, CHUAN-FA
APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
 PRIOR APPLICATION NUMBER: 60/266,673
 PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
 PRIOR APPLICATION NUMBER: 60/200,053
 PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEO ID NO 76
   LENGTH: 30
    TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-76
                         67.9%; Score 19; DB 11; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 8.7e-13;
  Matches 19; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
            6 GKSIQDLRRRFFLHHLIAE 24
QУ
              Db
           12 GKSIQDLRRRFFLHHLIAE 30
```

PRIOR FILING DATE: 2000-06-28

```
RESULT 31
US-09-843-221A-78
; Sequence 78, Application US/09843221A
 Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
   APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
   TITLE OF INVENTION:
                       RELATED PROTEIN
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
   CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
   PRIOR FILING DATE: 2000-06-28
   PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
   NUMBER OF SEO ID NOS: 170
   SOFTWARE: PatentIn version 3.1
 SEQ ID NO 78
    LENGTH: 31
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: human PTHrP with non-human N-terminal peptide
US-09-843-221A-78
  Query Match
                          67.9%; Score 19; DB 11; Length 31;
  Best Local Similarity
                          100.0%; Pred. No. 8.9e-13;
  Matches
           19; Conservative
                               0; Mismatches
                                                 0; Indels
                                                                0; Gaps
                                                                             0;
            6 GKSIQDLRRRFFLHHLIAE 24
Qу
              Db
           13 GKSIQDLRRRFFLHHLIAE 31
RESULT 32
US-09-843-221A-79
; Sequence 79, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
   APPLICANT: LIU, CHUAN-FA
   APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
   TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
```

```
PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 79
   LENGTH: 30
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified human PTHrP
   NAME/KEY: misc feature
   LOCATION: (12)..(12)
   OTHER INFORMATION: D amino acid
US-09-843-221A-79
                         64.3%; Score 18; DB 11; Length 30;
  Query Match
  Best Local Similarity
                         100.0%; Pred. No. 9.4e-12;
           18; Conservative
                               0; Mismatches
                                                      Indels
                                                                    Gaps
           7 KSIQDLRRRFFLHHLIAE 24
Qу
              Db
           13 KSIQDLRRRFFLHHLIAE 30
RESULT 33
US-09-843-221A-70
; Sequence 70, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 70
   LENGTH: 28
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: modified PTHrP
US-09-843-221A-70
  Query Match
                         60.7%; Score 17; DB 11; Length 28;
```

```
Best Local Similarity 100.0%; Pred. No. 9.6e-11;
 Matches
           17; Conservative 0; Mismatches
                                                   0;
                                                       Indels
                                                                 0; Gaps
                                                                              0;
           12 LRRRFFLHHLIAEIHTA 28
QУ
              111111111111111111
           12 LRRRFFLHHLIAEIHTA 28
Db
RESULT 34
US-10-097-079-77
; Sequence 77, Application US/10097079
 Publication No. US20020132973A1
    GENERAL INFORMATION:
         APPLICANT: Condon, Stephen M.
                    Morize, Isabelle
         TITLE OF INVENTION: PEPTIDE PARATHYROID HORMONE ANALOGS
         NUMBER OF SEQUENCES: 88
         CORRESPONDENCE ADDRESS:
              ADDRESSEE: Rhone-Poulenc Rorer Inc.
              STREET: 500 Arcola Road, Mailstop 3C43
              CITY: Collegeville
              STATE: PA
              COUNTRY: USA
              ZIP: 19426
         COMPUTER READABLE FORM:
              MEDIUM TYPE: Floppy disk
              COMPUTER: IBM PC compatible
              OPERATING SYSTEM: PC-DOS/MS-DOS
              SOFTWARE: PatentIn Release #1.0, Version #1.30
         CURRENT APPLICATION DATA:
              APPLICATION NUMBER: US/10/097,079
              FILING DATE: 13-Mar-2002
              CLASSIFICATION: <Unknown>
         PRIOR APPLICATION DATA:
              APPLICATION NUMBER: 09/228,990
              FILING DATE: <Unknown>
              APPLICATION NUMBER: US 60/046,472
              FILING DATE: 14-MAY-1997
         ATTORNEY/AGENT INFORMATION:
              NAME: Martin Esq., Michael B.
              REGISTRATION NUMBER: 37,521
              REFERENCE/DOCKET NUMBER: A2678B-WO
         TELECOMMUNICATION INFORMATION:
              TELEPHONE: (610) 454-2793
              TELEFAX: (610) 454-3808
    INFORMATION FOR SEO ID NO: 77:
         SEQUENCE CHARACTERISTICS:
              LENGTH: 28 amino acids
              TYPE: amino acid
              STRANDEDNESS: <Unknown>
              TOPOLOGY: No. US20020132973A1 Relevant
         MOLECULE TYPE: peptide
         FRAGMENT TYPE: N-terminal
         FEATURE:
              NAME/KEY: Peptide
              LOCATION:
                         12..16
              OTHER INFORMATION: /product= "OTHER"
```

```
/note= "The side chains of Lys at position 12 and Asp at
              position 16 are linked by an amide bond."
         FEATURE:
             NAME/KEY:
                         Peptide
              LOCATION:
                         28
              OTHER INFORMATION: /product= "OTHER"
              /note= "This C-terminal amino acid is an amide, i.e., CONH2."
         SEQUENCE DESCRIPTION: SEQ ID NO: 77:
US-10-097-079-77
 Query Match
                          42.9%; Score 12; DB 14; Length 28;
 Best Local Similarity
                          100.0%; Pred. No. 1.4e-05;
           12; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
Qу
           17 FLHHLIAEIHTA 28
              17 FLHHLIAEIHTA 28
Db
RESULT 35
US-10-097-079-71
; Sequence 71, Application US/10097079
; Publication No. US20020132973A1
   GENERAL INFORMATION:
         APPLICANT: Condon, Stephen M.
                    Morize, Isabelle
         TITLE OF INVENTION: PEPTIDE PARATHYROID HORMONE ANALOGS
         NUMBER OF SEQUENCES: 88
         CORRESPONDENCE ADDRESS:
              ADDRESSEE: Rhone-Poulenc Rorer Inc.
              STREET: 500 Arcola Road, Mailstop 3C43
              CITY: Collegeville
              STATE: PA
              COUNTRY: USA
              ZIP: 19426
         COMPUTER READABLE FORM:
              MEDIUM TYPE: Floppy disk
              COMPUTER: IBM PC compatible
              OPERATING SYSTEM: PC-DOS/MS-DOS
              SOFTWARE: PatentIn Release #1.0, Version #1.30
         CURRENT APPLICATION DATA:
              APPLICATION NUMBER: US/10/097,079
              FILING DATE: 13-Mar-2002
              CLASSIFICATION: <Unknown>
         PRIOR APPLICATION DATA:
              APPLICATION NUMBER: 09/228,990
              FILING DATE: <Unknown>
              APPLICATION NUMBER: US 60/046,472
              FILING DATE: 14-MAY-1997
         ATTORNEY/AGENT INFORMATION:
              NAME: Martin Esq., Michael B.
              REGISTRATION NUMBER: 37,521
              REFERENCE/DOCKET NUMBER: A2678B-WO
         TELECOMMUNICATION INFORMATION:
              TELEPHONE: (610) 454-2793
              TELEFAX: (610) 454-3808
    INFORMATION FOR SEQ ID NO: 71:
```

```
SEQUENCE CHARACTERISTICS:
ï
             LENGTH: 34 amino acids
              TYPE: amino acid
             STRANDEDNESS: <Unknown>
              TOPOLOGY: No. US20020132973A1 Relevant
         MOLECULE TYPE: peptide
         FRAGMENT TYPE: N-terminal
         FEATURE:
              NAME/KEY:
                         Peptide
                         18..22
              LOCATION:
                                 /product= "OTHER"
              OTHER INFORMATION:
              /note= "The side chains of Lys at position 18 and Asp at
             position 22 are linked by an amide bond. "
         FEATURE:
             NAME/KEY:
                         Peptide
              LOCATION:
                         34
              OTHER INFORMATION: /product= "OTHER"
              /note= "This C-terminal amino acid is an amide, i.e., CONH2."
         SEQUENCE DESCRIPTION: SEQ ID NO: 71:
US-10-097-079-71
                          42.9%; Score 12; DB 14; Length 34;
  Query Match
                          100.0%; Pred. No. 1.7e-05;
  Best Local Similarity
  Matches
          12; Conservative 0; Mismatches
                                                 0; Indels
                                                                 0; Gaps
           17 FLHHLIAEIHTA 28
QУ
              1111111111
Db
           23 FLHHLIAEIHTA 34
RESULT 36
US-09-843-221A-77
; Sequence 77, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 77
   LENGTH: 30
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
```

```
OTHER INFORMATION: modified human PTHrP
US-09-843-221A-77
                         39.3%; Score 11; DB 11; Length 30;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 0.00017;
           11; Conservative 0; Mismatches
                                                0; Indels
                                                                            0;
                                                                0; Gaps
           6 GKSIQDLRRRF 16
Qу
              Db
          12 GKSIODLRRRF 22
RESULT 37
US-09-843-221A-150
; Sequence 150, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
   PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 150
   LENGTH: 30
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: modified human PTHrP
US-09-843-221A-150
                         39.3%; Score 11; DB 11; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 0.00017;
                                                                0; Gaps
  Matches 11; Conservative
                               0; Mismatches 0; Indels
                                                                            0:
QУ
            5 LGKSIODLRRR 15
              1111111111
Db
           11 LGKSIQDLRRR 21
RESULT 38
US-09-843-221A-114
; Sequence 114, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
```

```
APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
 TITLE OF INVENTION: RELATED PROTEIN
 FILE REFERENCE: A-665B
 CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
 PRIOR APPLICATION NUMBER: 60/266,673
; PRIOR FILING DATE: 2001-02-06
; PRIOR APPLICATION NUMBER: 60/214,860
; PRIOR FILING DATE: 2000-06-28
 PRIOR APPLICATION NUMBER: 60/200,053
; PRIOR FILING DATE: 2000-04-27
 NUMBER OF SEQ ID NOS: 170
 SOFTWARE: PatentIn version 3.1
; SEQ ID NO 114
 LENGTH: 34
  TYPE: PRT
   ORGANISM: Artificial Sequence
   OTHER INFORMATION: modified human PTHrP
US-09-843-221A-114
                         39.3%; Score 11; DB 11; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 0.00018;
 Matches 11; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
           5 LGKSIODLRRR 15
QУ
             11 LGKSIQDLRRR 21
Db
RESULT 39
US-09-843-221A-65
; Sequence 65, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
 APPLICANT: LIU, CHUAN-FA
 APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
 FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
 CURRENT FILING DATE: 2001-04-26
; PRIOR APPLICATION NUMBER: 60/266,673
; PRIOR FILING DATE: 2001-02-06
; PRIOR APPLICATION NUMBER: 60/214,860
 PRIOR FILING DATE: 2000-06-28
 PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
 SOFTWARE: PatentIn version 3.1
; SEQ ID NO 65
; LENGTH: 36
```

```
TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified human PTHrP
US-09-843-221A-65
                         39.3%; Score 11; DB 11; Length 36;
 Query Match
                         100.0%; Pred. No. 0.00019;
 Best Local Similarity
 Matches
          11; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
           6 GKSIQDLRRRF 16
Qу
              1111111111
Db
           12 GKSIQDLRRRF 22
RESULT 40
US-09-843-221A-103
; Sequence 103, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
   APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
   NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
; SEQ ID NO 103
   LENGTH: 28
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: modified human PTHrP
US-09-843-221A-103
                         35.7%; Score 10; DB 11; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 0.0017;
           10; Conservative 0; Mismatches 0; Indels
                                                                           0;
                                                                0; Gaps
  Matches
            6 GKSIQDLRRR 15
Qу
              Db
            6 GKSIQDLRRR 15
```

Search completed: January 14, 2004, 11:15:11 Job time: 19.8411 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:19; Search time 20.9346 Seconds

(without alignments)

345.145 Million cell updates/sec

Title: US-09-843-221A-169

Perfect score: 28

Sequence: 1 LLHNLGKSIQDLRRRFFLHHLIAEIHTA 28

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 830525 seqs, 258052604 residues

Word size : 0

Total number of hits satisfying chosen parameters: 13497

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database : SPTREMBL 23:*

1: sp_archea:*
2: sp_bacteria:*
3: sp_fungi:*

4: sp_human:*

5: sp invertebrate:*

6: sp_mammal:*

7: sp_mhc:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp rodent:*

12: sp virus:*

13: sp vertebrate:*

14: sp_unclassified:*

15: sp rvirus:*

16: sp bacteriap:*

17: sp_archeap:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

용

Result Query

No. Score Match Length DB ID Description

1	5	17.9	31	11 Q91Y90	Q91y90 peromyscus
2	5	17.9	31	11 Q91Y91	Q91y91 peromyscus
3	5	17.9	31	16 Q8KCG1	Q8kcg1 chlorobium
4	5	17.9	35	15 Q8JAC6	Q8jac6 human immun
					Q51595 pelobacter
5	5	17.9	39	2 Q51595	
6	4	14.3	28	10 Q8GZQ8	Q8gzq8 hordeum vul
7	4	14.3	28	12 Q67781	Q67781 human adeno
8	4	14.3	28	12 Q67780	Q67780 human adeno
9	4	14.3	29	2 Q9R4S6	Q9r4s6 treponema d
10	4	14.3	29	4 Q96PP3	Q96pp3 homo sapien
11	4	14.3	29	13 P82235	P82235 rana tempor
12	4	14.3	30	2 Q8KYE4	Q8kye4 bacillus an
13	4	14.3	30	2 Q9JMV3	Q9jmv3 escherichia
14	4	14.3	30	8 Q32617	Q32617 marchantia
15	4	14.3	31	5 Q8MXE8	Q8mxe8 caenorhabdi
16	4	14.3	31	8 Q9MS77	Q9ms77 phacus acum
17	4	14.3	31	13 Q9DFI7	Q9dfi7 monopterus
18	4	14.3	31	13 Q9DEW2	Q9dew2 coturnix co
19	4	14.3	31	13 Q9DFH7	Q9dfh7 mastacembel
20	4	14.3	31	13 Q9DFI2	Q9dfi2 brachydanio
					Q9dfh8 mastacembel
21	4	14.3	31	13 Q9DFH8	
22	4	14.3	31	13 Q9DF16	Q9dfi6 monopterus
23	4	14.3	31	13 Q9DFI1	Q9dfil brachydanio
24	4	14.3	31	13 Q9DEW1	Q9dew1 coturnix co
25	4	14.3	31	13 Q9DEW3	Q9dew3 coturnix co
26	4	14.3	31	13 Q90Z24	Q90z24 monopterus
27	4	14.3	31	16 Q8KEV8	Q8kev8 chlorobium
28	4	14.3	31	16 Q8KEV3	Q8kev3 chlorobium
				-	
29	4	14.3	32	4 Q96Q53	Q96q53 homo sapien
30	4	14.3	32	15 Q9DZ37	Q9dz37 human immun
31	4	14.3	33	4 Q9P1T8	Q9p1t8 homo sapien
32	4	14.3	33	4 Q8N4J9	Q8n4j9 homo sapien
33	4	14.3	33	10 Q9AR83	Q9ar83 pinus pinas
34	4	14.3	33	16 Q9RI14	Q9ri14 yersinia pe
35	4	14.3	34	2 Q9R5U1	Q9r5u1 campylobact
36	4	14.3	34	2 Q9RCC0	Q9rcc0 yersinia ps
37	4	14.3	34	2 Q9RCD1	Q9rcd1 yersinia pe
38	4	14.3	34	6 Q95LA4	Q95la4 macaca mula
39	4	14.3	34	6 Q95LA6	Q951a6 sus scrofa
40	4	14.3	34	11 Q91ZX2	Q91zx2 cavia porce
41	4	14.3	34	11 Q91ZX3	Q91zx3 rattus norv
42	4	14.3	34	15 Q78053	Q78053 human immun
43	4	14.3	34	15 091366	091366 human immun
44	4	14.3	34	16 Q8CSH2	Q8csh2 staphylococ
45	4	14.3	35	15 Q8J9Q9	Q8j9q9 human immun
46	4	14.3	35	15 Q8JAB2	Q8jab2 human immun
					Q8jab8 human immun
47	4	14.3	35	15 Q8JAB8	
48	4	14.3	35	15 Q75981	Q75981 human immun
49	4	14.3	35	15 Q8J9P5	Q8j9p5 human immun
50	4	14.3	35	15 Q70824	Q70824 human immun
51	4	14.3	35	15 Q8JAC5	Q8jac5 human immun
52	4	14.3	35	15 Q8JAA0	Q8jaa0 human immun
53	4	14.3	35	15 091400	091400 human immun
54	4	14.3	35	15 Q8J9N6	Q8j9n6 human immun
55	4	14.3	35	15 Q75988	Q75988 human immun
56		14.3			Q8jab1 human immun
	4		35	15 Q8JAB1	· ·
57	4	14.3	35	15 Q8JAB6	Q8jab6 human immun

									
						•			
								-	
58	4	14.3	35	15	Q8J9Q2		Q8j9q2		
59 60	4	14.3	35 35	15 15	Q8J9Q8		Q8j9q8		
60 61	4 4	14.3 14.3	35 35	15	Q8J9R6		Q8j9r6 Q8ja96		
62	4	14.3	35 35	15	Q8JA96 Q8J9Q0		Q8j9q0		
63	4	14.3	35	15	Q8JAB0		Q8jab0		
64	4	14.3	35	15	Q8JAA1		Q8jab0		
65	4	14.3	35	15	Q8JAA5		Q8jaa5		
66	4	14.3	35	15	Q77133		Q77133		
67	4	14.3	35	15	Q8JAB5		Q8jab5		
68	4	14.3	35	15	Q8JA85		Q8ja85		
69	4	14.3	35	15	Q8JA92		Q8ja92		
70	4	14.3	35	15	Q8JA84		Q8ja84	human	immun
71	4	14.3	35	15	Q8JA83		Q8ja83	human	immun
72	4	14.3	35	15	040587		040587	human	immun
73	4	14.3	35	15	Q8J9P0		Q8j9p0		
74	4	14.3	35	15	Q8J9P8		Q8j9p8		
75	4	14.3	35	15	Q8J9Q6		Q8j9q6		
76	4	14.3	35	15	Q8JA91		Q8ja91		
77	4	14.3	35	15	Q8JA90		Q8ja90		
78	4	14.3	35	15	Q8JAB9		Q8jab9		
79 00	4	14.3	35 35	15	Q8JAA7		Q8jaa7		
80	4	14.3	35 35	15	Q8JA86		Q8ja86 Q8j9r5		
81 82	4 4	14.3 14.3	35 35	15 15	Q8J9R5 Q8J9R0		Q8j9r0 Q8j9r0		
83	4	14.3	35	15	Q8JAA3		Q8jaa3		
84	4	14.3	35	15	Q8J9P4		Q8j9p4		
85	4	14.3	35	15	091346		091346		
86	4	14.3	35	15	Q8JAA6		Q8jaa6		
87	4	14.3	35	15	Q8JA82		Q8ja82		
88	4	14.3	35	15	Q8JAC2		Q8jac2		
89	4	14.3	35	15	Q8J9R1		Q8j9r1		
90	4	14.3	35	15	88AL8Q		Q8ja88		
91	4	14.3	35	15	Q8J9Q5		Q8j9 q 5	human	immun
92	4	14.3	35	15	Q8J9C6		Q8j9c6	human	immun
93	4	14.3	35	15	Q8JA94		Q8ja94		
94	4	14.3	35	15	Q8J9P9		Q8j9p9		
95	4	14.3	35	15	Q8JAC3		Q8jac3		
96	4	14.3	35	15	Q8JA97		Q8ja97		
9 7	4	14.3	35	15	Q75970		Q75970		
98	4	14.3	35 35	15	Q8JA95		Q8ja95		
99 100	4 4	14.3 14.3	35	15	Q8J9R3		Q8j9r3		
100	4	14.3	35 35	15 15	Q8JAA9 Q8JAC4		Q8jaa9 Q8jac4		
101	4	14.3	35 35	15	Q8JA89		Q8ja89		
102	4	14.3	35	15	Q8J9Q7		Q8j9q7		
104	4	14.3	35	15	Q8J9P3		Q8j9q7		
105	4	14.3	35	15	Q8JA93		Q8ja93		
106	4	14.3	35	15	Q8JAA2		Q8jaa2		
107	4	14.3	35	15	Q8J9P2		Q8j9p2		
108	4	14.3	35	15	Q8JAB7		Q8jab7		
109	4	14.3	35	15	Q8JAA8		Q8jaa8		
110	4	14.3	35	15	Q8J9N8		Q8j9n8		
111	4	14.3	35	15	Q8JA98		Q8ja98		
112	4	14.3	35	15	Q75990		Q75990		
113	4	14.3	35	15	Q75989		Q75989		
114	4	14.3	35	15	Q70833		Q70833	human	immun

115	4	14.3	35	15	Q8J9R2	Q8j9r2 human immun
116	4	14.3	35	15	Q8JAC0	Q8jac0 human immun
117	4	14.3		15	Q76253	Q76253 human immun
118	4	14.3		15	Q70798	Q70798 human immun
						Q8jaa4 human immun
119	4	14.3		15	Q8JAA4	· ·
120	4	14.3		15	Q8J9P6	Q8j9p6 human immun
121	4	14.3		15	Q8JA46	Q8ja46 human immun
122	4	14.3	35	15	Q70300	Q70300 human immun
123	4	14.3	35	15	Q8J9Q3	Q8j9q3 human immun
124	4	14.3		15	Q8J9C7	Q8j9c7 human immun
125	4	14.3		15	Q8J9Q1	Q8j9q1 human immun
		14.3				·
126	4			15	Q8J9N7	Q8j9n7 human immun
127	4	14.3	35	15	Q8JAC1	Q8jac1 human immun
128	4	14.3	35	15	Q8JAB4	Q8jab4 human immun
129	4	14.3	35	15	Q8J9R4	Q8j9r4 human immun
130	4	14.3	35	15	Q8J9P7	Q8j9p7 human immun
131	4	14.3	35	15	Q8JAB3	Q8jab3 human immun
132	4	14.3	35	15	Q77250	Q77250 human immun
						Q75955 human immun
133	4	14.3	35	15	Q75955	
134	4	14.3	35	15	Q8J9Q4	Q8j9q4 human immun
135	4	14.3	35	15	Q70776	Q70776 human immun
136	4	14.3	35	15	Q8J9P1	Q8j9p1 human immun
13AAR149	4	14.3	35	15	Q8 J 9N9	Q8j n immun
138	4	14.3	35	15	Q70827	Q70827 human immun
			35			Q8ja99 human immun
139	4	14.3		15	Q8JA99	
140	4	14.3	35	16	Q9PBV9	Q9pbv9 xylella fas
141	4	14.3	35	16	Q8EXR3	Q8exr3 leptospira
142	4	14.3	35	16	Q8EEP3	Q8eep3 shewanella
143	4	14.3	36	4	Q15530	Q15530 homo sapien
144	4	14.3	36	15	Q79434	Q79434 human immun
145	4	14.3	36	15	Q79419	Q79419 human immun
146	4	14.3	36	16	Q8EYJ2	Q8eyj2 leptospira
						- - ,
147	4	14.3	37	2	Q45107	Q45107 bacillus ce
148	4	14.3	37	8	Q8MDC2	Q8mdc2 larix gmeli
149	4	14.3	37	12	Q8AY5NX1150XZ	Q8ayz0 goose circo
150	4	14.3	37	15	O40237	040237 human immun
151	4	14.3	37	16	Q8CLL0	Q8cll0 yersinia pe
152	4	14.3	38	2	Q9FCW4	Q9fcw4 escherichia
153	4	14.3	38	2	Q9XCW6	Q9xcw6 rhodobacter
154	4	14.3	38	2	P97145	P97145 escherichia
155	4	14.3	38	4	Q9BWQ4	Q9bwq4 homo sapien
156	4	14.3	38	16	Q8X3X9	Q8x3x9 escherichia
157	4	14.3	39	10	Q9FEY1	Q9fey1 heterocapsa
158	4	14.3	39	11	Q9QWJ4	Q9qwj4 mus musculu
159	4	14.3	39	12	Q04259	Q04259 influenza a
160	4	14.3	39	15	Q90SK8	Q90sk8 human immun
161					Q90SK7	Q90sk7 human immun
	4	14.3	39	15		
162	4	14.3	39	16	Q8EZ33	Q8ez33 leptospira
163	4	14.3	40	4	P78340	P78340 homo sapien
164	4	14.3	40	4	Q9Н3В8	Q9h3b8 homo sapien
165	4	14.3	40	12	Q8V647	Q8v647 rabies viru
166	4	14.3	40	12	Q9WGB3	Q9wgb3 human herpe
167	3	10.7	28	2	Q9AH13	Q9ah13 lactococcus
168	3	10.7	28	2	Q47736	Q47736 enterococcu
169	3	10.7	28	2	Q9ZG30	Q9zg30 chlamydia t
170	3	10.7	28	2	Q49327	Q49327 mycoplasma
171	3	10.7	28	2	Q9R5E6	Q9r5e6 thermus aqu

172	3	10.7	28 2	Q9REI4		Q9rei4	acidiphiliu
173	3	10.7	28 2	Q9R5G3		Q9r5g3	bacteroides
174	3	10.7	28 2	Q9XB41		Q9xb41	escherichia
175	3	10.7	28 2	Q9R4Z2			lactobacill
176	3	10.7	28 2	Q9ZIZ8			borrelia bu
177	3	10.7	28 3	Q9UT99		~	schizosacch
178	3	10.7	28 3	Q9URF2			trametes ve
179	3	10.7	28 4	Q9UEN1			homo sapien
180	3	10.7	28 4	043804			homo sapien
181	3	10.7	28 4	Q96RV7			homo sapien
182	3	10.7	28 4	Q16325			homo sapien
183	3	10.7	1043Y 75			Lengt50 95 737	_
184	3	10.7	28 4	Q96G80		_	homo sapien
185	3	10.7	28 4	Q8IXD3		Q8ixd3	homo sapien
186	3	10.7	28 5	Q9BJE1		Q9bje1	pauropus sp
187	3	10.7	28 5	Q9BJE0		Q9bje0	pauropus sp
188	3	10.7	28 5	Q9BJE3		Q9bje3	pauropus sp
189	3	10.7	28 5	Q9GPK5		-	scutigerell
190	3	10.7	28 5	Q95P93			mesobuthus
191	3	10.7	28 5	Q9BM76			giardia lam
192	3	10.7	28 5	Q9BM74			giardia lam
193	3	10.7	28 5	Q9GPK6			scutigerell
	3						pauropus sp
194		10.7		Q9BJE2			
	000XE 3	10.7	28 5	ØHBM 8			glottidia p
196	3	10.7	28 5	Q9BM75			giardia lam
197	3	10.7	28 6	Q9TRM4			bos taurus
198	3	10.7	28 6	Q9XS67			bos taurus
199	3	10.7	28 6	Q8MJG7			sus scrofa
200	3	10.7	28 6	Q9N264		Q9n264	bos taurus
201	3	10.7	28 6	Q9TSY9		Q9tsy9	gorilla gor
202	3	10.7	28 8	Q9T4F8		Q9t4f8	meleagris g
203	3	10.7	28 8	Q37005		Q37005	oryza sativ
204	3	10.7	28 8	Q9T7L2			meleagris g
205	3	10.7	28 8	Q9TIE9			centella er
XX2p6	3	10.7		Q9TIE8		Q9tie8	
207	3	10.7	28 8	Q9T4F7	e đ 0 ½e		7meaeagsinogv
208	3	10.7	28 8	Q9TIE6	04012		centella hi
209	3	10.7	28 8	Q9T7L1			meleagris g
210	3	10.7	28 8	Q9TIE7			centella tr
211	3	10.7		Q8S6H4			oryza sativ
212							
	3	10.7		Q944P1			l manihot esc
213	3	10.7	28 11	Q99PL9		_	mus musculu
214	3	10.7	28 11	Q9QWC0		_	rattus sp.
215	3	10.7	28 11	Q9QWQ3			3 rattus norv
216	3	10.7	28 11	P70542			2 rattus norv
217	3	10.7	28 11	P97914		P97914	1 rattus norv
218	3	10.7	28 11	Q62677			
219	3	10.7	28 11	055021		055023	l mus musculu
220	3	10.7	28 11	Q63743		Q63743	3 rattus norv
221	3	10.7	28 11	Q8CFB9		Q8cfb9	9 mus musculu
222	3	10.7	28 11	Q8C1H5			mus musculu
223	3	10.7	28 12	Q9WNI9			tt virus. o
224	3	10.7	28 12	Q68552			2 hepatitis c
225	3	10.7	28 13	Q9DD70			gallus gall
226	3	10.7	28 13	Q8QGY7			7 fugu rubrip
227	3	10.7	28 13	042525			scyliorhinu
228	3	10.7	28 13	Q90757			gallus gall
220	3	10.7	20 13	ונוטעט		Q,073	. garras garr

229	3	10.7	28	13	Q9DFT7	Q9dft7 gallus gall
230	3	10.7	28	15	Q73626	Q73626 human immun
231	3	10.7	28	15	071995	071995 human endog
232	3	10.7	28	15	Q70310	Q70310 human immun
233	3	10.7	28	16	Q8ENT7	Q8ent7 oceanobacil
234	3	10.7	28	16	Q8E014	Q8e014 streptococc
235	3	10.7	28	17	Q8ZYY3	Q8zyy3 pyrobaculum
236	3	10.7	29	2	Q931G2	Q93ig2 thiobacillu
237	3	10.7	29	2	Q49148	Q49148 methylobact
238	3	10.7	29	2	Q9R526	Q9r526 vibrio chol
239	3	10.7	29	2	Q9R5G7	Q9r5g7 fusobacteri
240	3	10.7	29	2	Q9K340	Q9k340 vibrio chol
241	3	10.7	29	2	Q9ACD9	Q9acd9 vibrio salm
242	3	10.7	29	2	Q51692	Q51692 paracoccus
243	3	10.7	29	3	Q8TGQ5	Q8tgq5 saccharomyc
244	3	10.7	29	3	Q9HDQ3	Q9hdq3 candida rug
245	3	10.7	29	4	Q9Y3G1	Q9y3g1 homo sapien
246	3	10.7	29	4	Q9H2A1	Q9h2a1 homo sapien
247	3	10.7	29	4	Q9UEF0	Q9uef0 homo sapien
248	3	10.7	29	4	095485	095485 homo sapien
249	3	10.7	29	4	Q8TAI5	Q8tai5 homo sapien
250	3	10.7	29	5	Q967U3	Q967u3 schistocerc
251	3	10.7	29	5	Q24684	Q24684 dugesia tig
252	3	10.7	29	5	Q8T3E8	Q8t3e8 caenorhabdi
253	3	10.7	29	5	Q24688	Q24688 dugesia tig
254	3	10.7	29	5	Q95SE3	Q95se3 drosophila
255	3	10.7	29	5	Q967U4	Q967u4 schistocerc
256	3	10.7	29	5	Q24683	Q24683 dugesia tig
257	3	10.7	29	5	Q8T936	Q8t936 folsomia ca
258	3	10.7	29	5	Q24687	Q24687 dugesia tig
259	3	10.7	29	5	Q8ITD6	Q8itd6 schistosoma
260	3 3	10.7	29 29	6 6	Q9TRL6 Q9TSY6	Q9trl6 bos taurus Q9tsy6 pan troglod
261	3	10.7	29	6	Q8SQD5	Q9csy8 pan crogrod Q8sqd5 macaca mula
262 263	3	10.7 10.7	29	6	062784	O62784 isoodon mac
264	3	10.7	29	7	Q8HWM0	Q8hwm0 homo sapien
265	3	10.7	29	8	Q9G651	Q9g651 otocryptis
266	3	10.7	29	9	Q9ZX23	Q9zx23 mycobacteri
267	3	10.7	29	10	P82193	P82193 spinacia ol
268	3	10.7	29	11	Q9QWM6	Q9qwm6 mus musculu
269	3	10.7	29	11	088227	088227 mus musculu
270	3	10.7	29	11	088221	088221 mus musculu
271	3	10.7	29	11	Q9Z2C0	Q9z2c0 mus musculu
272	3	10.7	29	11	Q91VE8	Q91ve8 mus musculu
273	3	10.7	29	11	Q8K362	Q8k362 mus musculu
274	3	10.7	29	11	Q64353	Q64353 mus musculu
275	3	10.7	29	11	088225	088225 mus musculu
276	3	10.7	29	11	088214	088214 mus musculu
277	3	10.7	29	11	Q9Z2C1	Q9z2c1 mus musculu
278	3	10.7	29	11	088217	088217 mus musculu
279	3	10.7	29	11	070564	070564 mus musculu
280	3	10.7	29	11	Q91UZ3	Q91uz3 mus musculu
281	3	10.7	29	11	088218	088218 mus musculu
282	3	10.7	29	11	Q9QWN1	Q9qwn1 mus musculu
283	3	10.7	29	11	088223	088223 mus musculu
284	3	10.7	29	11	Q99JY5	Q99jy5 mus musculu
285	3	10.7	29	11	088220	088220 mus musculu

		`			
286	3	10.7	29	11 088215	088215 mus musculu
287	3	10.7	29	11 Q8CGM8	Q8cgm8 mus musculu
288	3	10.7	29	12 Q86235	Q86235 human rotav
289	3	10.7	29	12 Q86233	
290	3	10.7	29	12 Q86232 12 Q86233	Q86232 human rotav
291	3	10.7	29		Q86233 human rotav
292	3	10.7		12 056835	O56835 vibrio chol
293	3	10.7	29 29	12 Q86234	Q86234 human rotav
293 294	3	10.7		13 Q9PRF9	Q9prf9 brachydanio
295	3	10.7	29 29	13 Q91396 13 O13043	Q91396 gallus gall
296	3	10.7			013043 scyliorhinu
296	3	10.7	29 29	13 Q90894	Q90894 gallus gall
298	. 3			13 Q8AX77	Q8ax77 oreochromis
299	3	10.7	29	13 Q8AX76	Q8ax76 oreochromis
	3	10.7	29	15 P89816	P89816 human immun
300		10.7	29	15 Q69897	Q69897 human immun
301	3	10.7	29	15 Q9WG58	Q9wg58 chimpanzee
302	3	10.7	29	15 Q88078	Q88078 chimpanzee
303	3	10.7	29	15 P89821	P89821 human immun
304	3	10.7	29	16 Q9JZN6	Q9jzn6 neisseria m
305	3	10.7	29	16 Q99UH5	Q99uh5 staphylococ
306	3	10.7	29	16 Q8X3T7	Q8x3t7 escherichia
307	3	10.7	29	16 Q8X3T6	Q8x3t6 escherichia
308	3	10.7	29	16 Q8NWX8	Q8nwx8 staphylococ
309	3	10.7	29	16 086497	086497 streptomyce
310	3	10.7	29	16 Q8FZ68	Q8fz68 brucella su
311	3	10.7		2 Q9R887	Q9r887 chlamydia t
312	3	10.7	30	2 Q9R4N2	Q9r4n2 pseudomonas
313	3	10.7		2 Q9L8W9	Q918w9 streptomyce
314	3	10.7	30	2 Q9R4C2	Q9r4c2 wolinella s
315	3	10.7		2 Q9F7U1	Q9f7ul helicobacte
316	3	10.7	30	2 Q9L8X1	Q918x1 streptomyce
317	3	10.7	30	2 Q9REI5	Q9rei5 acidiphiliu
318	3	10.7	30	2 Q8VUW9	Q8vuw9 staphylococ
319	3	10.7		2 Q52299	Q52299 pseudomonas
320	3	10.7	30	2 Q9ZG27	Q9zg27 chlamydia t
321	3	10.7		2 Q9R5Q3	Q9r5q3 leuconostoc
322	3	10.7		2 Q93GF6	Q93gf6 staphylococ
323	3	10.7	30	2 Q9R5K3	Q9r5k3 leptospira
324	3	10.7		2 Q9S014	Q9s014 borrelia bu
325	3	10.7		2 Q8KYT6	Q8kyt6 bacillus an
326	3	10.7	30	2 P83001	P83001 pseudomonas
327	3	10.7		2 Q8GJA5	Q8gja5 campylobact
328	3	10.7		3 Q9P817	Q9p817 candida alb
329	3	10.7	30	3 Q8TGM3	Q8tgm3 saccharomyc
330	3	10.7		3 Q8X1N5	Q8x1n5 hypocrea ni
331	3	10.7	30	3 Q8WZD3	Q8wzd3 trichoderma
332	3	10.7	30	3 Q8X1N4	Q8x1n4 hypocrea fl
333	3	10.7	30	3 Q02176	Q02176 geotrichum
334	3	10.7	30	4 P78460	P78460 homo sapien
335	3	10.7		4 Q9UMJ2	Q9umj2 homo sapien
336	3	10.7		4 Q8WUP3	Q8wup3 homo sapien
337	3	10.7	30	4 Q15980	Q15980 homo sapien
338	3	10.7	30	4 Q8IU66	Q8iu66 homo sapien
339	3	10.7	30	5 Q8SZJ6	Q8szj6 drosophila
340	3	10.7	30	5 Q967V3	Q967v3 lithobius f
341	3	10.7	30	5 Q25627	Q25627 onchocerca
342	3	10.7	30	5 Q967V0	Q967v0 lithobius f

343	3	10.7	30	5	Q967V1	Q967v1 lithobius f
344	3	10.7	30	6	Q8MJJ5	Q8mjj5 gorilla gor
345	3	10.7	30	7	Q9Y453	Q9y453 homo sapien
346	3	10.7	30	8	Q9MJF6	Q9mjf6 candida alb
347	3	10.7	30	8	Q8M0A1	Q8m0al bucorvus le
348	3	10.7	30	8	Q9T2T8	Q9t2t8 bos taurus
349	3	10.7	30	9	Q9T162	Q9t162 bacteriopha
350	3	10.7	30	10	Q42133	Q42133 arabidopsis
351	3	10.7	30	10	Q41490	Q41490 solanum tub
352	3	10.7	30	11	Q9QVC3	Q9qvc3 rattus sp.
353	3	10.7	30	11	Q9JHF4	Q9jhf4 rattus norv
354	3	10.7	30	11	088549	088549 mesocricetu
355	3	10.7	30	11	Q9WUS5	Q9wus5 mus musculu
356	3	10.7	30	11	Q99LC0	Q991c0 mus musculu
357	3	10.7	30	11	Q9QV18	Q9qv18 rattus sp.
358	3	10.7	30	11	Q9WUS6	Q9wus6 mus musculu
359	3	10.7	30	11	Q9QV19	Q9qv19 rattus sp.
360	3	10.7	30	11	Q9WUS7	Q9wus7 mus musculu
361	3	10.7	30	12	Q02949	Q02949 beet wester
362	3	10.7	30	15	Q70350	Q70350 human immun
363	3	10.7	30	15	Q03514	Q03514 mouse intra
364	3	10.7	30	16	Q9X066	Q9x066 thermotoga
365	3	10.7	30	16	Q9KU55	Q9ku55 vibrio chol
366	3	10.7	30	16	Q9KQQ5	Q9kqq5 vibrio chol
367	3	10.7	30	16	Q9JWF4	Q9jwf4 neisseria m
368	3	10.7	30	16	Q97QV7	
369	3	10.7	30	16	Q97QV7 Q9K1W7	Q97qv7 streptococc
370	3	10.7	30	16	Q8U566	Q9k1w7 chlamydia p
371	3	10.7	30	16		Q8u566 agrobacteri
372	3				Q93RS7	Q93rs7 streptomyce
373	3	10.7	30	16	Q8G218	Q8g2i8 brucella su
374	3	10.7 10.7	30 30	16 16	Q8ECQ9	Q8ecq9 shewanella
375	3	10.7	30	16	Q8EAT6 Q8CTZ5	Q8eat6 shewanella Q8ctz5 staphylococ
376	3	10.7	30	16		
377	3	10.7			Q8CTE8	Q8cte8 staphylococ
378	3		30	16	Q8CT39	Q8ct39 staphylococ
379	3	10.7 10.7	30	16 17	Q8CKS9	Q8cks9 yersinia pe
380	3		30 31	2	Q8ZWV2	Q8zwv2 pyrobaculum
,		10.7			Q45547	Q45547 bacillus su
381 382	3	10.7	31	2	Q9L7N5	Q917n5 borrelia bi
383	3 3	10.7 10.7	31 31	2 2	Q9Z352	Q9z352 synechococc Q52707 rhodobacter
384	3	10.7	31	2	Q52707 Q9JP49	
385	3	10.7	31			Q9jp49 azospirillu
386				2	Q93GF7	Q93gf7 staphylococ
	3 3	10.7	31	2	Q8KYP8	Q8kyp8 bacillus an
387		10.7	31	2	Q9L7N3	Q917n3 borrelia an
388	3	10.7	31	2	Q9RZY3	Q9rzy3 borrelia bu
389	3	10.7	31	2	Q9R4X1	Q9r4x1 treponema d
390	3	10.7	31	2	Q8RTS5	Q8rts5 uncultured
391	3	10.7	31	2	Q46662	Q46662 enterobacte
392	3	10.7	31	2	Q9L7N7	Q917n7 borrelia af
393	3	10.7	31	2	Q9R2G0	Q9r2g0 staphylococ
394	3	10.7	31	2	Q53411	Q53411 bacillus su
395	3	10.7	31	2	052911	052911 campylobact
396	3	10.7	31	3	Q8TGQ4	Q8tgq4 saccharomyc
397	3	10.7	31	3	Q9URA5	Q9ura5 candida alb
398	3	10.7	31	4	Q9UHE3	Q9uhe3 homo sapien
399	3	10.7	31	4	Q96FZ1	Q96fz1 homo sapien

400	3	10.7	31	4	Q9Y2A3	Q9y2a3 homo sapien
401	3	10.7	31	4	Q9UHM9	Q9uhm9 homo sapien
402	3	10.7	31	4	Q9UMS7	Q9ums7 homo sapien
403	3	10.7	31	4	Q9UD38	Q9ud38 homo sapien
						Q8iqv3 drosophila
404	3	10.7	31	5	Q8IQV3	
405	3	10.7	31	5	Q81F28	Q8if28 trypanosoma
406	3	10.7	31	6	Q8MI94	Q8mi94 tupaia tana
407	3	10.7	31	6	Q8MIH5	Q8mih5 canis famil
408	3	10.7	31	6	Q8MIC3	Q8mic3 ochotona pr
409	3	10.7	31	6	Q8WP05	Q8wp05 ateles belz
410	3	10.7	31	6	Q8MIC9	Q8mic9 nycticebus
			31	6		Q9gkl4 canis famil
411	3	10.7			Q9GKL4	
412	3	10.7	31	6	Q8MIG4	Q8mig4 cynocephalu
413	3	10.7	31	6	Q9TSE4	Q9tse4 oryctolagus
414	3	10.7	31	8	Q9MS59	Q9ms59 euglena san
415	3	10.7	31	8	Q9MS62	Q9ms62 euglena myx
416	3	10.7	31	8	Q9MS74	Q9ms74 euglena ana
417	3	10.7	31	8	Q9MS68	Q9ms68 euglena des
						Q9ms53 euglena vir
418	3	10.7	31	8	Q9MS53	
419	3	10.7	31	8	Q9MS56	Q9ms56 euglena ste
420	3	10.7	31	8	Q9MS71	Q9ms71 lepocinclis
421	3	10.7	31	9	Q38402	Q38402 bacteriopha
422	3	10.7	31	9	Q9B083	Q9b083 mycobacteri
423	3	10.7	31	10	Q9LEJ3	Q9lej3 glycine max
424	3	10.7	31	10	Q9AT70	Q9at70 coffea arab
	3	10.7	31	10	Q8LKB4	Q81kb4 musa acumin
425						
426	3	10.7	31	10	Q9FUQ2	Q9fuq2 zea mays (s
427	3	10.7	31	11	Q8K1W2	Q8k1w2 cavia porce
428	3	10.7	31	11	Q99KK6	Q99kk6 mus musculu
429	3	10.7	31	11	055182	O55182 rattus norv
430	3	10.7	31	11	Q9WUS8	Q9wus8 mus musculu
431	3	10.7	31	11	Q99PC8	Q99pc8 rattus norv
432	3	10.7	31	11	Q8K1P4	Q8k1p4 sciurus vul
						-
433	3	10.7	31	12	Q919E5	Q919e5 human papil
434	3	10.7	31	12	Q919E4	Q919e4 human papil
435	3	10.7	31	12	Q919F7	Q919f7 human papil
436	3	10.7	31	12	Q919E6	Q919e6 human papil
437	3	10.7	31	12	Q919F3	Q919f3 human papil
438	3	10.7	31	12	Q919F8	Q919f8 human papil
439	3	10.7	31	12		Q919e1 human papil
440	3	10.7	31	12		Q919d9 human papil
441	3	10.7	31	12		Q919f6 human papil
442	3	10.7	31	12		Q919e3 human papil
443	3	10.7	31	12		Q919e8 human papil
444	3	10.7	31	12	Q919F0	Q919f0 human papil
445	3	10.7	31	12	Q919F4	Q919f4 human papil
446	3	10.7	31	12		Q69354 herpes simp
447	3	10.7	31	12		Q919f2 human papil
	3					0919f1 human papil
448		10.7	31	12		
449	3	10.7	31	12		Q919e2 human papil
450	3	10.7	31	12		Q919d8 human papil
451	3	10.7	31	12	Q919E9	Q919e9 human papil
452	3	10.7	31	12	Q919D7	Q919d7 human papil
453	3	10.7	31	12		Q919f5 human papil
454	3	10.7	31	12		Q919e0 human papil
455	3	10.7	31	12		Q919e7 human papil
456	3	10.7	31	13		Q9dfi9 monopterus
400	ے	10./	21	13	Q9DFI9	Cadria monobrerus

					•
457	3	10.7	31	13 Q8JJ98	Q8jj98 melanoptila
458	3	10.7		13 Q8JJ93	
459	3	10.7		13 Q8JJA3	· • • • • • • • • • • • • • • • • • • •
460	3	10.7		13 Q91704	
461	3	10.7		13 Q8JJA4	-
462	3	10.7		13 Q8JJ99	
463	3	10.7		13 Q8JJA0	
	3	10.7			
464					
465	3	10.7		13 Q8JJA1	
466	3	10.7		13 Q8JJ96	1. 33
467	3	10.7		15 Q87950	
468	3	10.7		15 Q83937	
469	3	10.7		16 025108	
470	3	10.7		16 Q9PAW4	
471	3	10.7		16 Q9PA95	
472	3	10.7		16 Q9KU30	
473	3	10.7	31	16 Q9K7A8	
474	3	10.7		16 Q9K0T6	
475	3	10.7	31	16 Q9JXQ7	Q9jxq7 neisseria m
476	3	10.7	31	16 Q97T66	Q97t66 streptococc
477	3	10.7	31	16 Q97SZ9	Q97sz9 streptococc
478	3	10.7	31	16 Q97QJ4	Q97qj4 streptococc
479	3	10.7	31	16 Q931I1	Q931i1 staphylococ
480	3	10.7	31	16 Q9K200	
481	3	10.7		16 Q8U567	
482	3	10.7		16 Q8VWC7	
483	3	10.7		16 Q9ZK13	
484	3	10.7		16 Q8KF13	
485	3	10.7		16 Q8KEY3	The state of the s
486	3	10.7		16 Q8KCQ0	The state of the s
487	3	10.7		16 Q8KCG9	
488	3	10.7		16 Q8KAG1	_
489	3	10.7		16 Q8FYY1	_
490	3	10.7		16 Q8EI77	
491	3	10.7		16 Q8EHI1	
492	3	10.7		16 Q8EGZ1	
493	3	10.7		16 Q8E9Y5	
494	3	10.7		16 Q8E2H9	
495	3	10.7		16 Q8DYE5	
496	3	10.7		16 Q8CU39	
497	3	10.7		16 Q8CQQ0	•
498	3	10.7			
499	3	10.7			Q99224 klebsiella
				2 Q00491	Q00491 streptomyce
500	3	10.7		2 Q9KJE5	Q9kje5 thauera aro
501	3	10.7		2 Q8VU88	Q8vu88 lactobacill
502	3	10.7		2 Q9Z639	Q9z639 streptococc
503	3	10.7		2 Q9Z638	Q9z638 streptococc
504	3	10.7		2 Q8VN21	Q8vn21 kluyvera ci
505	3	10.7		2 Q9R5X1	Q9r5x1 bordetella
506	3	10.7		2 Q49137	Q49137 methylobact
507	3	10.7		2 Q9APT5	Q9apt5 pseudomonas
508	3	10.7		2 Q8VNT6	Q8vnt6 enterobacte
509	3	10.7		2 Q47227	Q47227 escherichia
510	3	10.7		2 Q51855	Q51855 pasteurella
511	3	10.7		3 Q9URU5	Q9uru5 schizosacch
512	3	10.7		3 Q8TGR9	Q8tgr9 saccharomyc
513	3	10.7	32	4 Q96RK7	Q96rk7 homo sapien

514	3	10.7	32	4	Q9BY35	Q9by35 homo sapien
515	3	10.7	32	4	Q9UEB0	Q9ueb0 homo sapien
516	3	10.7	32	4	Q8TB02	Q8tb02 homo sapien
517	3	10.7	32	4	Q9HAX8	Q9hax8 homo sapien
517	3	10.7	32	4	Q8TBQ3	Q8tbq3 homo sapien
519	3	10.7	32	4	Q96D66	Q96d66 homo sapien
520	3	10.7	32	4	Q8NG01	Q8ng01 homo sapien
521	3	10.7	32	4	Q9UNE9	Q9une9 homo sapien
522	3	10.7	32	5	Q9GPD9	Q9gpd9 drosophila
522 523	3	10.7	32	5	Q9GTB1	Q9qtbl eimeria ten
524	3	10.7	32	5	Q26651	Q26651 strongyloce
525	. 3	10.7	32	5	Q26828	Q26828 trypanosoma
526	. 3	10.7	32	5	Q8T382	Q8t382 leishmania
	3	10.7	32	5	096634	O96634 trypanosoma
527 528				5	Q9GNH0	Q9gnh0 drosophila
528	3	10.7	32	5	Q9GT99	Q9qt99 babesia bov
529	3	10.7	32			Q9gtc0 neospora ca
530	3	10.7	32	5	Q9GTC0	Q9tse6 oryctolagus
531	3	10.7	32	6	Q9TSE6	· · · · · · · · · · · · · · · · · · ·
532	3	10.7	32	6	062854	062854 oryctolagus
533	3	10.7	32	6	Q9MYR8	Q9myr8 oryctolagus
534	3	10.7	32	6	Q9TSE5	Q9tse5 oryctolagus
535	3	10.7	32	6	077647	077647 macropus eu
536	3	10.7	32	7	Q95HL3	Q95hl3 homo sapien
537	3	10.7	32	7	Q8SNB9	Q8snb9 homo sapien
538	3	10.7	32	7	Q31597	Q31597 xenopus lae
539	3	10.7	32	7	Q9BCT8	Q9bct8 homo sapien
540	3	10.7	32	7	Q8MHQ2	Q8mhq2 homo sapien
541	3	10.7	32	7	Q9BCU0	Q9bcu0 homo sapien
542	3	10.7	32	8	Q94VL5	Q94vl5 salmo trutt
543	3	10.7	32	8	Q94NY1	Q94ny1 salmo salar
544	3	10.7	32	8	Q36463	Q36463 onychomys 1
545	3	10.7	32	8	Q9T2Q1	Q9t2q1 pinus sylve
546	3	10.7	32	8	Q951P3	Q951p3 salmo salar
547	3	10.7	32	9	Q9MBU5	Q9mbu5 chlamydia p
548	3	10.7	32	9	Q9MBU9	Q9mbu9 vibrio phag
549	3	10.7	32	10	Q9S8X7	Q9s8x7 daucus caro
550	3	10.7	32	10	Q9FUQ1	Q9fuq1 zea mays (s
551	3	10.7	32	10	Q9FUQ4	Q9fuq4 zea mays (s
552	3	10.7	32	10	Q9FE80	Q9fe80 zea diplope
553	3	10.7	32	10	Q9FUP8	Q9fup8 zea luxuria
554	3	10.7	.32	11	Q9R0E3	Q9r0e3 mus musculu
555	3	10.7	32	11	Q9QVG6	Q9qvg6 rattus sp.
556	3	10.7	32	11	P97642	P97642 rattus norv
557	3	10.7	32	11	Q61695	Q61695 mus musculu
558	3	10.7	32	11	Q9QWN2	Q9qwn2 mus musculu
559	3	10.7	32	11	P97649	P97649 rattus norv
560	3	10.7	32	11	Q8C2N8	Q8c2n8 mus musculu
561	3	10.7	32	11	Q8BS12	Q8bs12 mus musculu
562	3	10.7	32	12		Q66855 foot-and-mo
563	3	10.7	32	13		Q8qg73 oncorhynchu
564	3	10.7	32	13		Q8qg72 salmo salar
565	3	10.7	32	13		Q8qg71 oncorhynchu
566	3	10.7	32	13		Q9ps21 carassius a
567	3	10.7	32	13		Q8uun6 xenopus lae
568	3	10.7	32	13		Q8qg84 oncorhynchu
569	3	10.7	32	13		Q8qg83 oncorhynchu
570	3	10.7	32	13		Q8qg82 oncorhynchu
_ · ·	-				~ ~-	-

	_					
571	3	10.7	32	13	Q8QG70	Q8qg70 salvelinus
572	3	10.7	32	13	P82780	P82780 rana catesb
573	3	10.7	32	13	Q9W7P3	Q9w7p3 morone saxa
574	3	10.7	32	13	Q9W7P2	Q9w7p2 morone saxa
575	3	10.7	32	16	050851	050851 borrelia bu
576	3	10.7	32	16	Q9PCD4	Q9pcd4 xylella fas
577	3	10.7	32	16	Q9KVF7	Q9kvf7 vibrio chol
578	3	10.7	32	16	Q9KTM5	Q9ktm5 vibrio chol
579	3	10.7	32	16	Q9KKU3	Q9kku3 vibrio chol
580	3	10.7	32	16	Q9K6N3	Q9k6n3 bacillus ha
581	3	10.7	32	16	Q9K175	Q9k175 neisseria m
582	3	10.7	32	16		
					Q97SW9	Q97sw9 streptococc
583	3	10.7	32	16	Q97RT9	Q97rt9 streptococc
584	3	10.7	32	16	Q97NT4	Q97nt4 streptococc
585	3	10.7	32	16	Q8VKF9	Q8vkf9 mycobacteri
586	3	10.7	32	16	Q9CDK7	Q9cdk7 lactococcus
587	3	10.7	32	16	Q8KCV0	Q8kcv0 chlorobium
588	3	10.7	32	16	Q8KCP1	Q8kcp1 chlorobium
589	3	10.7	32	16	Q8EFA5	Q8efa5 shewanella
590	3	10.7	32	16	Q8ECK5	Q8eck5 shewanella
591	3	10.7	32	16	Q8E9X5	Q8e9x5 shewanella
592	3					
		10.7	32	16	Q8E9D2	Q8e9d2 shewanella
593	3	10.7	32	16	Q8CTI0	Q8cti0 staphylococ
594	3	10.7	32	16	Q8CTH2	Q8cth2 staphylococ
595	3	10.7	32	17	Q8ZZF7	Q8zzf7 pyrobaculum
596	3	10.7	33	1	Q9UWL4	Q9uwl4 methanopyru
597	3	10.7	33	2	Q9S3I9	Q9s3i9 haemophilus
598	3	10.7		2	Q9R5N9	Q9r5n9 clostridium
599	3	10.7		2	Q9K370	Q9k370 rhizobium l
600	3	10.7	33	2	Q9R2F6	Q9r2f6 klebsiella
601	3	10.7		2	Q9S3N5	Q9s3n5 bacillus ce
602	3	10.7	33	2	Q9ZG76	Q9zg76 chlamydia t
603	3	10.7		2	Q9KI23	Q9ki23 helicobacte
604	3	10.7	33	2	Q56122	Q56122 salmonella
605	3	10.7	33	2	Q09122	Q09122 fusobacteri
606	3	10.7	33	2	P82583	P82583 streptococc
607	3	10.7		2	Q8GQU2	Q8gqu2 leptospira
608	3	10.7		2	Q8GG98	Q8gg98 neisseria p
609	3	10.7	33	3	Q8TGR1	Q8tgr1 saccharomyc
		10.7				
610	3			3	Q10986	Q10986 absidia. ba
611	3	10.7	33	4	Q9NPZ1	Q9npzl homo sapien
612	3	10.7	33	4	Q9BUZ1	Q9buz1 homo sapien
613	3	10.7	33	4	Q15285	Q15285 homo sapien
614	3	10.7	33	4	Q9UMG4	Q9umg4 homo sapien
615	3	10.7	33	4	Q9BST3	Q9bst3 homo sapien
616	3	10.7	33	4	Q9BV16	Q9bv16 homo sapien
617	3	10.7	33	4	Q8WWE0	Q8wwe0 homo sapien
618	3	10.7	33	4	Q9BYF4	Q9byf4 homo sapien
619	3	10.7	33			
				4	Q92668	Q92668 homo sapien
620	3	10.7		5	Q25433	Q25433 molgula cit
621	3	10.7		5	Q9GTB6	Q9gtb6 eimeria ten
622	3	10.7		5	Q9GT96	Q9gt96 cryptospori
623	3	10.7	33	5	Q9GTA3	Q9gta3 babesia bov
624	3	10.7	33	5	Q9GTB0	Q9gtb0 sarcocystis
625	3	10.7	33	5	Q27637	Q27637 drosophila
626	3	10.7	33	5	Q8WTH4	Q8wth4 heteroptery
627	3	10.7	33	5	Q9NGN0	Q9ngn0 strongyloce
	-			-	×2110110	*>20 perom31000

628	3	10.7	33 5	5 Ç)9GTA7		sarcocystis
629	3	10.7	33 5	5 Ç	9GTB8	Q9gtb8	neospora ca
630	3	10.7	33 5	5 0	9GTA5	Q9gta5	babesia bov
631	3	10.7	33 5	-	95545		drosophila
632	3	10.7	33 5		29GT98		cryptospori
633	3	10.7			017147		echinococcu
					29VHD7		drosophila
634	3	10.7			-		papio hamad
635	3	10.7			28788		
636	3	10.7			077664		sus scrofa
637	3	10.7			Q9TSX7		sus scrofa
638	3	10.7	33 6	5 (229066	-	sus scrofa
639	3	10.7	33 6	5 Ç	Q9TRD6	Q9trd6	oryctolagus
640	3	10.7	33 6	6 9	Q8MIL2	Q8mil2	bos taurus
641	3	10.7	33 8	в (Q9BAC6	Q9bac6	euglena gra
642	3	10.7		-	9BAC1	09bac1	euglena ste
643	3	10.7			Q8WI31		psilotum nu
	3	10.7			29BAC4		euglena mut
644					-		euglena ana
645	3	10.7			Q9MS75		_
646	3	10.7			047024		barbeya ole
647	3	10.7			Q8SCC2		vibrio harv
648	3	10.7			238588		bacteriopha
649	3	10.7	33 9	9 (Q38551		bacteriopha
650	3	10.7	33	10	Q02904		l arabidopsis
651	3	10.7	33 :	10	Q94IJ2	Q94ij2	2 zea mays (m
652	3	10.7		10	Q9XJ70	Q9xj70	cucumis sat
653	3	10.7		10	Q9AYQ5	09avg	cucumis sat
654	3	10.7		10	Q9XJ69		cucumis sat
	3	10.7		10	Q8H7H6		arabidopsis
655							mus musculu
656	3	10.7		11	088226		
657	3	10.7		11	Q9JLA8		3 mus musculu
658	3	10.7		11	Q9Z298		3 rattus norv
659	3	10.7		11	Q9QVM2		2 mus sp. glu
660	3	10.7	33	11	P97670	P97670) rattus norv
661	3	10.7	33	11	Q62539	Q62539	mus spretus
662	3	10.7	33	12	072982	072982	2 hepatitis c
663	3	10.7		12	073068	073068	B hepatitis c
664	3	10.7		12	072979		hepatitis c
665	3	10.7		12	072988		3 hepatitis c
	3	10.7		12	072900		2 hepatitis c
666							hepatitis c
667	3	10.7		12	072990		_
668	3	10.7		12	073010		hepatitis c
669	3	10.7		12	072981		l hepatitis c
670	3	10.7	33	12	009759		9 lettuce mos
671	3	10.7	33	12	Q65687	Q6568°	7 bovine papi
672	3	10.7	33	12	073008	07300	8 hepatitis c
673	3	10.7	33	12	072986	07298	6 hepatitis c
674	3	10.7		12	072993		3 hepatitis c
675	3	10.7		12	072984		4 hepatitis c
	3	10.7		12	073005		5 hepatitis c
676							7 hepatitis c
677	3	10.7		12	073067		
678	. 3	10.7		12	072985		5 hepatitis c
679	3	10.7		12	Q9PXQ9		9 tobacco mos
680	3	10.7		12	072983		3 hepatitis c
681	3	10.7		12	072987		7 hepatitis c
682	3	10.7	33	12	Q69461		1 human herpe
683	3	10.7	33	12	072978	07297	8 hepatitis c
684	3	10.7		12	073009		9 hepatitis c
~~ *	~						-

685	3	10.7	33	13	Q9DD87	Q9dd87 brachyramph
686	3	10.7	33	13	Q9PT34	Q9pt34 oncorhynchu
687	3	10.7	33	13	Q8UUR8	Q8uur8 brachydanio
688	3	10.7	33	13	Q9DD86	Q9dd86 brachyramph
689	3	10.7	33	13	Q9W7N9	Q9w7n9 morone saxa
690	3	10.7	33	15	Q9DZ98	Q9dz98 human immun
691	3	10.7	33	15	Q9QKI9	Q9qki9 human immun
692	3	10.7	33	15	Q8QDU0	Q8qdu0 human immun
693	3	10.7	33	15	Q70443	Q70443 human immun
694	3	10.7	33	15	Q8QDT9	Q8qdt9 human immun
695	3	10.7	33	15	Q9PXE1	Q9pxe1 human immun
696	3	10.7	33	16	025518	O25518 helicobacte
697	3	10.7	33	16	050777	O50777 borrelia bu
698	3	10.7	33	16	Q9KSG4	Q9ksg4 vibrio chol
699	3	10.7	33	16	Q9KRR7	Q9krr7 vibrio chol
700	3	10.7	33	16	Q9KQP4	Q9kqp4 vibrio chol
701	3	10.7	33	16	Q9JY44	Q9jy44 neisseria m
702	3	10.7	33	16	Q9JUM4	Q9jum4 neisseria m
703	3	10.7	33	16	Q9A388	Q9a388 caulobacter
704	3	10.7	33	16	Q8VK01	Q8vk01 mycobacteri
705	3	10.7	33	16	Q8VJK1	Q8vjk1 mycobacteri
706	3	10.7	33	16	Q8NT95	Q8nt95 corynebacte
707	3	10.7	33	16	Q8NLP2	Q8nlp2 corynebacte
708	3	10.7	33	16	Q8KG99	Q8kg99 chlorobium
709	3	10.7	33	16	Q8KE00	Q8ke00 chlorobium
						Q8kbz0 chlorobium
710	3	10.7	33	16	Q8KBZ0	
711	3	10.7	33	16	Q8G1K3	Q8g1k3 brucella su
712	3	10.7	33	16	Q8G173	Q8g173 brucella su
713	3	10.7	33	16	Q8G0U8	Q8g0u8 brucella su
			33			Q8fyd4 brucella su
714	3	10.7		16	Q8FYD4	
715	3	10.7	33	16	Q8FSG0	Q8fsg0 corynebacte
716	3	10.7	33	16	Q8EHN3	Q8ehn3 shewanella
717	3	10.7	33	16	Q8EFM7	Q8efm7 shewanella
718	3	10.7	33	16	Q8EEJ9	Q8eej9 shewanella
719	3	10.7	33	16	Q8ECS9	Q8ecs9 shewanella
720	3	10.7	33	16	Q8E877	Q8e877 shewanella
721	3	10.7	33	16	Q8DWK4	Q8dwk4 streptococc
722	3	10.7	33	16	Q8CTR8	Q8ctr8 staphylococ
	3		33			Q9hsx6 halobacteri
723		10.7		17	Q9HSX6	
724	3	10.7	34	1	Q9P9L8	Q9p918 methanosarc
725	3	10.7	34	2	Q8KYQ3	Q8kyq3 bacillus an
726	3	10.7	34	2	Q02571	Q02571 klebsiella
727	3	10.7	34	2	Q8KJV6	Q8kjv6 proteus vul
						Q50998 neisseria q
728	3	10.7	34	2	Q50998	-
729	3	10.7	34	2	Q43910	Q43910 azospirillu
730	3	10.7	34	2	Q51131	Q51131 neisseria m
731	3	10.7	34	2	Q8KYH2	Q8kyh2 bacillus an
	3			2		Q9kwg7 citrobacter
732		10.7	34		Q9KWG7	
733	3	10.7	34	2	Q53594	Q53594 streptomyce
734	3	10.7	34	2	Q9RZW6	Q9rzw6 borrelia bu
735	3	10.7	34	2	Q9R885	Q9r885 chlamydia t
736	3	10.7	34	2	Q9L3B8	Q913b8 mycobacteri
737	3	10.7	34	2	Q8GGA4	Q8gga4 neisseria l
738	3	10.7	34	4	Q8WY57	Q8wy57 homo sapien
739	3	10.7	34	4	Q8WW51	Q8ww51 homo sapien
740	3	10.7	34	4	Q9BXC5	Q9bxc5 homo sapien
	- 3	10.7				Q9h530 homo sapien
741	٠ 3	10./	34	4	Q9H530	Valiano monto gabren

					·
742	3	10.7	34 4	Q9UCI7	Q9uci7 homo sapien
743	3	10.7	34 4	Q8WYN8	Q8wyn8 homo sapien
744	3	10.7	34 4	Q96Q75	Q96q75 homo sapien
745	3	10.7	34 4	Q96C21	Q96c21 homo sapien
746	3	10.7	34 4	Q9UCJ5	Q9ucj5 homo sapien
747	3	10.7	34 4	Q9BU51	Q9bu51 homo sapien
748	3	10.7	34 4	Q96C89	Q96c89 homo sapien
74 9	3	10.7	34 5	Q8T3M2	Q8t3m2 drosophila
750	3	10.7	34 5	Q9BIQ3	Q9biq3 cooperia pu
751	3	10.7	3 4 5	Q9BIQ1	Q9biq1 cooperia pu
752	3	10.7	34 5	Q27821	Q27821 trichomonas
753	3	10.7	34 5	Q8WTH8	Q8wth8 ctenomorpho
754	3	10.7	34 5	Q9GN73	Q9gn73 drosophila
755	3	10.7	34 5	Q9BIQ2	Q9biq2 cooperia pu
756	3	10.7	34 5	Q9GQE5	Q9gqe5 branchiosto
757	3	10.7	34 5	Q9BIQ0	Q9biq0 cooperia pu
758	3	10.7	34 5	Q9GN69	Q9gn69 drosophila
759	3	10.7	34 5	Q8WTF8	Q8wtf8 sialis hama
760	3	10.7	34 5	Q9TWU9	Q9twu9 schistocerc
761	3	10.7	34 5	Q81NS3	Q8ins3 drosophila
762	3	10.7	34 6	Q29225	Q29225 sus scrofa
763	3	10.7	34 6	Q9TS91	Q9ts91 oryctolagus
764	3	10.7	34 6	Q8SPN7	Q8spn7 macaca mula
765	3	10.7	34 6	Q9TRI2	Q9tri2 sus scrofa
766	3	10.7	34 6	Q29351	Q29351 sus scrofa
767	3	10.7	34 6	Q29299	Q29299 sus scrofa
768	3	10.7	34 7	Q29863	Q29863 homo sapien
769	3	10.7	34 8	Q9T2T7	Q9t2t7 bos taurus
770	3	10.7	34 8	Q95A06	Q95a06 ophisurus m
771	3	10.7	34 8	Q8MCA2	Q8mca2 phaseolus a
772 773	3	10.7	34 8	Q9XNP0	Q9xnp0 boophilus m
774	3	10.7	34 9	Q8SCC1	Q8scc1 vibrio harv
775	3 3	10.7	34 10		Q41589 triticum ae
775 7 76	3	10.7	34 10		Q43108 pteris vitt
777	3	10.7 10.7	34 11 34 11		O35471 mus musculu
778	3	10.7			Q91y56 mus musculu
779	3	10.7	34 11 34 11		Q9et72 mus musculu
780	3	10.7	34 11		Q64344 rattus norv
781	3	10.7	34 11		Q64115 rattus sp. Q9cv73 mus musculu
782	3	10.7	34 11		P97647 rattus norv
783	3	10.7	34 11		Q62534 mus spretus
784	3	10.7	34 11		Q62535 mus spretus
785	3	10.7	34 11		Q9wuu0 mus musculu
786	3	10.7	34 11		Q8c4p4 mus musculu
787	3	10.7	34 12		Q9e8k5 hepatitis b
788	3	10.7	34 12		Q69212 human cytom
789	3	10.7	34 13		Q8qgf9 oncorhynchu
790	3	10.7	34 13		Q8qgg2 oncorhynchu
791	3	10.7	34 13		Q9dde8 clarias gar
792	3	10.7	34 13		Q8qfm9 oncorhynchu
793	3	10.7	34 13		Q8qgg1 oncorhynchu
794	3	10.7	34 13		Q8qgf7 oncorhynchu
795	3	10.7	34 13		Q98tm8 platichthys
796	3	10.7	34 13		Q8qgg0 oncorhynchu
797	3	10.7	34 15		Q79493 human immun
798	3	10.7	34 15		Q72952 human immun
					-

799	3	10.7	34	15	091361	091361 human immun
008	3	10.7	34	15	071801	071801 human immun
801	3	10.7	34	15	071805	071805 human immun
802	3	10.7	34	15	091357	091357 human immun
803	3	10.7	34	15	Q9QQZ2	Q9qqz2 human immun
804	3	10.7	34	15	P90368	P90368 human immun
805	3	10.7	34	15	Q72953	Q72953 human immun
806	3	10.7	34	15	071743	071743 human immun
807	3	10.7	34	15	Q9QR24	Q9qr24 human immun
808	3	10.7	34	15	091368	O91368 human immun
		10.7	34	15		071728 human immun
809	3				071728	
810	3	10.7	34	15	071730	071730 human immun
811	3	10.7	34	15	Q80484	Q80484 human immun
812	3	10.7	34	15	Q80604	Q80604 human immun
813	3	10.7	34	15	Q79463	Q79463 human immun
814	3	10.7	34	15	Q97619	Q97619 human immun
815	3	10.7	34	15	071817	071817 human immun
816	3	10.7	34	15	071802	071802 human immun
817	3	10.7	34	15	091360	O91360 human immun
818	3	10.7	34	15	071804	071804 human immun
819	3	10.7	34	15	071813	071813 human immun
820	3	10.7	34	15	071724	071724 human immun
821	3	10.7	34	15	091355	091355 human immun
822	3	10.7	34	15	071744	071744 human immun
823	3	10.7	34	15	091356	O91356 human immun
824	3	10.7	34	15	Q97637	Q97637 human immun
825	3	10.7	34	15	Q8J3W7	Q8j3w7 human immun
826	3	10.7	34	15	Q76341	Q76341 human immun
827	3	10.7	34	15	071816	071816 human immun
828	3	10.7	34	15	Q97651	Q97651 human immun
829	3	10.7	34	15	071745	071745 human immun
830	3	10.7	34	15	091364	091364 human immun
831	3	10.7	34	15	091369	O91369 human immun
832	3	10.7	34	15	Q9W8Y1	Q9w8y1 chimpanzee
833	3	10.7	34	15	Q97649	Q97649 human immun
834	3	10.7	34	15	Q8J3X2	Q8j3x2 human immun
835	3	10.7	34	15	071734	071734 human immun
836	3	10.7	34	15	071746	071746 human immun
837	3	10.7	34	15	091365	O91365 human immun
838	3	10.7	34	15	091367	091367 human immun
839	3 -	10.7	34	15	Q97616	Q97616 human immun
840	3	10.7	34	15	071821	071821 human immun
841	3	10.7	34	15	Q8QDV6	Q8qdv6 human immun
842	3	10.7	34	15	091358	091358 human immun
843	3	10.7	34	15	091363	091363 human immun
844	3	10.7	34	15	091359	091359 human immun
845	3	10.7	34	15	071829	071829 human immun
846	3	10.7	34	15	Q76345	Q76345 human immun
847	3	10.7	34	15	071742	071742 human immun
848	3	10.7	34	15	071831	071831 human immun
849	3	10.7	34	15	091354	091354 human immun
850	3	10.7	34	15	Q8QDU9	Q8qdu9 human immun
851	3	10.7	34 34	15		071811 human immun
					071811	
852	3	10.7	34	15	071809	071809 human immun
853	3	10.7	34	15	Q9WR33	Q9wr33 human immun
854	3	10.7	34	15	071757	071757 human immun
855	3	10.7	34	15	091362	O91362 human immun

056			2.4	15 071014	OFFICIA burner demons
856	3	10.7	34	15 071814	071814 human immun
857	3	10.7	34	15 Q97618	Q97618 human immun
858	, 3	10.7	34	15 071731	071731 human immun
859	3	10.7	34	15 Q97617	Q97617 human immun
860	3	10.7	34	15 Q78211	Q78211 human immun
861	3	10.7	34	15 071796	071796 human immun
862	3	10.7	34	16 025955	O25955 helicobacte
863	3	10.7	34	16 050720	O50720 borrelia bu
864	3	10.7	34	16 050785	O50785 borrelia bu
865	3	10.7	34	16 050799	050799 borrelia bu
866	3	10.7	34	16 050839	O50839 borrelia bu
867	3	10.7	34	16 051026	O51026 borrelia bu
868	3	10.7	34	16 Q9PGF8	Q9pgf8 xylella fas
869	3	10.7	34	16 Q9PFA5	Q9pfa5 xylella fas
870	3	10.7	34	16 Q9KQ46	Q9kq46 vibrio chol
					Q9km63 vibrio chol
871	3	10.7	34	16 Q9KM63	
872	3	10.7	34	16 Q9K0X6	Q9k0x6 neisseria m
873	3	10.7	34	16 Q9JY24	Q9jy24 neisseria m
874	3	10.7	34	16 Q9JUR9	Q9jur9 neisseria m
875	3	10.7	34	16 Q97P56	Q97p56 streptococc
876	3	10.7	34	16 Q97K50	Q97k50 clostridium
877	3	10.7	34	16 Q9K2B9	Q9k2b9 chlamydia p
878	3	10.7	34	16 Q8XVG6	Q8xvg6 ralstonia s
879	3	10.7	34	16 Q8X457	Q8x457 escherichia
880	3	10.7	34	16 Q8KFH3	Q8kfh3 chlorobium
881	3	10.7	34	16 Q8KE71	Q8ke71 chlorobium
882	3	10.7	34	16 Q8KBR4	Q8kbr4 chlorobium
883	3	10.7	34	16 Q9S2B7	Q9s2b7 streptomyce
884	3	10.7	34	16 Q8G2Q2	Q8g2q2 brucella su
885	3	10.7	34	16 Q8F9A8	Q8f9a8 leptospira
886	3	10.7	34	16 Q8F6G1	Q8f6g1 leptospira
887	3	10.7	34	16 Q8F507	Q8f507 leptospira
888	3	10.7	34	16 Q8F423	Q8f423 leptospira
			34		Q8f2w2 leptospira
889	3	10.7		~	
890	3	10.7	34	16 Q8F2G7	
891	3	10.7	34	16 Q8F1Y9	
892	3	10.7	34	16 Q8F0V9	
893	3	10.7	34	16 Q8F0G8	Q8f0g8 leptospira
894	3	10.7	34	16 Q8EZ37	Q8ez37 leptospira
895	3	10.7	34	16 Q8EYP4	Q8eyp4 leptospira
896	3	10.7	34	16 Q8EXY2	Q8exy2 leptospira
897	3	10.7	34	16 Q8EXH8	Q8exh8 leptospira
898	3	10.7	34	16 Q8EXH6	Q8exh6 leptospira
899	3	10.7	34	16 Q8EHS0	Q8ehs0 shewanella
900	3	10.7	34	16 Q8EHK1	Q8ehk1 shewanella
901	3	10.7	34	16 Q8EBU4	Q8ebu4 shewanella
902	3	10.7	34	16 Q8E8Y3	Q8e8y3 shewanella
903	3	10.7	34	16 Q8DZH8	Q8dzh8 streptococc
904	3	10.7	34	16 Q8CTV6	Q8ctv6 staphylococ
905	3	10.7	34	16 Q8CTU8	Q8ctu8 staphylococ
906	3	10.7	34	16 Q8CLE7	Q8cle7 yersinia pe
907	3	10.7	35	2 Q9ZGU9	Q9zgu9 escherichia
908	3	10.7	35	2 033758	O33758 streptococc
909	3	10.7	35	2 087904	O87904 coxiella bu
910	3	10.7	35	2 Q9R4Z3	Q9r4z3 lactobacill
911	3	10.7	35	2 Q9RPW0	Q9rpw0 bacillus me
912	3	10.7	35 35	2 Q3RFW0 2 Q30661	030661 vibrio chol
714	ی	10./	33	~ 03000I	ODOOOT ATDITO CHOT

913	3	10.7	35	2	Q48442	Q48442 klebsiella
914	3	10.7	35	2	Q9ZG68	Q9zg68 chlamydia t
915	3	10.7	35	2	Q8RTK5	Q8rtk5 leuconostoc
916	3	10.7	35	3	Q9URA2	Q9ura2 trametes ve
917	3	10.7	35	3	Q9UR84	Q9ur84 penicillium
918	3	10.7	35	3	Q9URA3	Q9ura3 trametes ve
919	3	10.7	35	3	Q8TGS4	Q8tgs4 saccharomyc
920	3	10.7	35	4	Q9BS62	Q9bs62 homo sapien
921	3	10.7	35	4	Q16157	Q16157 homo sapien
922	3	10.7	35	4	Q14530	Q14530 homo sapien
923	3	10.7	35	4	014844	
924	3	10.7		5		014844 homo sapien
925	3	10.7	35	5 5	Q17349	Q17349 caenorhabdi
			35		Q27754	Q27754 pisaster oc
926	3	10.7	35	5	Q8WTG4	Q8wtg4 oreophoetes
927	3	10.7	35	5	Q26372	Q26372 tribolium c
928	3	10.7	35	5	Q9ВНК9	Q9bhk9 caenorhabdi
929	3	10.7	35	5	Q8IF25	Q8if25 trypanosoma
930	3	10.7	35	6	018877	O18877 canis famil
931	3	10.7	35	6	Q95N74	Q95n74 equus cabal
932	3	10.7	35	8	Q8M1P5	Q8m1p5 nirridessus
933	3	10.7	35	8	Q95766	Q95766 cerataphis
934	3	10.7	35	8	Q04330	Q04330 candida par
935	3	10.7	35	8	Q8WEJ7	Q8wej7 cycas circi
936	3	10.7	35	8	062956	062956 picea abies
937	3	10.7	35	8	Q95A00	Q95a00 nemichthys
938	3	10.7	35	9	Q38294	Q38294 lactococcus
939	3	10.7	35	9	Q38508	Q38508 bacteriopha
940	3	10.7	35	10	P92971	P92971 arabidopsis
941	3	10.7	35	10	Q8L986	Q81986 arabidopsis
942	3	10.7	35	10	Q94IS4	Q94is4 pinus radia
943	3	10.7	35	10	Q9S9I1	Q9s9i1 daucus caro
944	3	10.7	35	10	Q9SF57	Q9sf57 arabidopsis
945	3	10.7	35	10	Q8GUX3	Q8gux3 picea maria
946	3	10.7	35	10	Q8GUX2	Q8gux2 picea maria
947	3	10.7	35	10	Q8GUX0	Q8gux0 picea maria
948	3	10.7	35	10	Q8GUW8	Q8guw8 picea maria
949	3	10.7	35	10	Q8GS04	Q8gs04 arabidopsis
950	3	10.7	35	11	Q63896	Q63896 mus sp. nk-
951	3	10.7	35	11	Q63397	Q63397 rattus norv
952	3	10.7	35	11	055083	055083 mus musculu
953	3	10.7	35	11	Q8K1C8	Q8k1c8 mus musculu
954	3	10.7	35	11	Q60608	Q60608 mus musculu
955	3	10.7	35	11	Q9QV50	Q9qv50 rattus sp.
956	3	10.7	35	11	P97643	P97643 rattus norv
957	3	10.7	35	11	Q9Z2G3	Q9z2g3 rattus norv
958	3	10.7	35	11	Q9R086	Q9r086 mus musculu
959	3	10.7	35	11	Q9QVT2	Q9qvt2 mus sp. ret
960	3	10.7	35	11	Q8CC11	Q8cc11 mus musculu
961	3	10.7	35	12	Q9YR05	Q9yr05 porcine cir
962	3	10.7	35	12	Q9YQW9	Q9yqw9 porcine cir
963	3	10.7	35	12	091864	091864 porcine cir
964	3	10.7	35	12	Q91HA8	Q91ha8 porcine cir
965	3	10.7	35	12	093206	093206 porcine cir
966	3	10.7	35	12	056131	056131 porcine cir
967	3	10.7	35	12	Q8B6X7	Q8b6x7 human rotav
968	3	10.7	35	13	Q9PU87	Q9pu87 catla catla
969	3	10.7	35	13	Q09132	Q09132 xenopus lae
	-				~ · · · · · · · · · · · · · · · · · · ·	

970	3	10.7	35	13	Q09133	Q09133 xenopus lae
971	3	10.7	35	15	070411	Q70411 human immun
972	3	10.7	35	15	076748	076748 human immun
					~	Q80458 human immun
973	3	10.7	35	15	Q80458	091391 human immun
974	3	10.7	35	15	091391	076728 human immun
975	3	10.7	35	15	Q76728	~
976	3	10.7	35	15	040565	040565 human immun
977	3	10.7	35	15	Q79885	Q79885 human immun
978	3	10.7	35	15	Q72954	Q72954 human immun
979	3	10.7	35	15	071540	071540 human immun
980	3	10.7	35	15	040564	040564 human immun
981	3	10.7	35	15	Q78812	Q78812 human immun
982	3	10.7	35	15	071534	071534 human immun
983	3	10.7	35	15	Q9QR10	Q9qr10 human immun
984	3	10.7	35	15	Q80457	Q80457 human immun
985	3	10.7	35	15	040563	040563 human immun
986	3	10.7	35	15	Q80609	Q80609 human immun
987	3	10.7	35	15	Q70215	Q70215 human immun
988	3	10.7	35	15	Q79494	Q79494 human immun
989	3	10.7	35	15	091371	091371 human immun
990	3	10.7	35	15	Q9IPY8	Q9ipy8 human immun
991	3	10.7	35	15	Q78049	Q78049 human immun
992	3	10.7	35	15	Q79477	Q79477 human immun
993	3	10.7	35	15	Q77703	Q77703 human immun
994	3	10.7	35	15	091436	O91436 human immun
995	3	10.7	35	15	Q70322	Q70322 human immun
996	3	10.7	35	15	Q91PX8	Q9ipx8 human immun
				15	091441	O91441 human immun
997	3	10.7	35			Q79478 human immun
998	3	10.7	35	15	Q79478	Q79476 Human immun
999	3	10.7	35	15	Q79481	
1000	3	10.7	35	15	Q79997	Q79997 human immun

ALIGNMENTS

```
RESULT 1
Q91Y90
                 PRELIMINARY;
                                    PRT;
                                            31 AA.
ID
     Q91Y90
AC
     Q91Y90;
     01-DEC-2001 (TrEMBLrel. 19, Created)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
DE
     Parathyroid hormone (Fragment).
     PTH.
GN
OS
     Peromyscus maniculatus (Deer mouse).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Sigmodontinae;
OC
     Peromyscus.
OC
OX
     NCBI_TaxID=10042;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RA
     Prince K.L., Dewey M.J.;
     Submitted (MAY-2001) to the EMBL/GenBank/DDBJ databases.
RL
DR
     EMBL; AF382953; AAK63072.1; -.
DR
     InterPro; IPR001415; Parathyrd hrm.
DR
     InterPro; IPR003625; Pthyrhorm sub.
```

```
ProDom; PD010687; Pthyrhorm sub; 1.
DR
DR
     PROSITE; PS00335; PARATHYROID; 1.
FT
     NON TER
                  1
                         1
     NON TER
                  31
FT
                         31
                31 AA; 3461 MW; A208B0E772B9B55B CRC64;
SO
     SEQUENCE
                          17.9%; Score 5; DB 11; Length 31;
  Query Match
                          100.0%; Pred. No. 3e+02;
 Best Local Similarity
             5; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
            3 HNLGK 7
Qу
              Db
           21 HNLGK 25
RESULT 2
Q91Y91
                                   PRT;
                                           31 AA.
ID
     Q91Y91
                 PRELIMINARY;
AC
     Q91Y91;
DT
     01-DEC-2001 (TrEMBLrel. 19, Created)
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
DΕ
     Parathyroid hormone (Fragment).
GN
OS
     Peromyscus polionotus (Oldfield mouse).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Sciuroqnathi; Muridae; Siqmodontinae;
OC
OC
     Peromyscus.
     NCBI_TaxID=42413;
OX
RN
RΡ
     SEQUENCE FROM N.A.
RA
     Prince K.L., Dewey M.J.;
RL
     Submitted (MAY-2001) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; AF382952; AAK63071.1; -.
     InterPro; IPR001415; Parathyrd_hrm.
DR
     InterPro; IPR003625; Pthyrhorm sub.
DR
     Pfam; PF01279; Parathyroid; 1.
DR
DR
     ProDom; PD010687; Pthyrhorm sub; 1.
     PROSITE; PS00335; PARATHYROID; 1.
DR
     NON TER
FT
                  1
                         1
FT
     NON TER
                  31
                         31
SQ
     SEQUENCE
                31 AA; 3461 MW; A208B0E772B9B55B CRC64;
  Query Match
                          17.9%; Score 5; DB 11; Length 31;
  Best Local Similarity 100.0%; Pred. No. 3e+02;
                              0; Mismatches
             5; Conservative
                                                 0: Indels
                                                                 0: Gaps
                                                                             0;
            3 HNLGK 7
QУ
              Db
           21 HNLGK 25
RESULT 3
O8KCG1
ID
     Q8KCG1
                 PRELIMINARY;
                                   PRT;
                                           31 AA.
AC
     Q8KCG1;
```

Pfam; PF01279; Parathyroid; 1.

DR

```
DT
     01-OCT-2002 (TrEMBLrel. 22, Created)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last sequence update)
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
     Hypothetical protein CT1460.
DE
     CT1460.
GN
OS
     Chlorobium tepidum.
     Bacteria; Chlorobi; Chlorobia; Chlorobiales; Chlorobiaceae;
OC
OC
     Chlorobium.
XO
     NCBI TaxID=1097;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RC
     STRAIN=TLS / ATCC 49652 / DSM 12025;
RX
     MEDLINE=22103685; PubMed=12093901;
     Eisen J.A., Nelson K.E., Paulsen I.T., Heidelberg J.F., Wu M.,
RA
RA
     Dodson R.J., Deboy R., Gwinn M.L., Nelson W.C., Haft D.H.,
RA
     Hickey E.K., Peterson J.D., Durkin A.S., Kolonay J.L., Yang F.,
RA
     Holt I., Umayam L.A., Mason T., Brenner M., Shea T.P., Parksey D.,
     Nierman W.C., Feldblyum T.V., Hansen C.L., Craven M.B., Radune D.,
RA
     Vamathevan J., Khouri H., White O., Gruber T.M., Ketchum K.A.,
RA
     Venter J.C., Tettelin H., Bryant D.A., Fraser C.M.;
RA
     "The complete genome sequence of Chlorobium tepidum TLS, a
RT
     photosynthetic, anaerobic, green-sulfur bacterium.";
RT
     Proc. Natl. Acad. Sci. U.S.A. 99:9509-9514(2002).
RL
     EMBL; AE012903; AAM72688.1; -.
DR
     TIGR; CT1460; -.
DR
KW
     Hypothetical protein; Complete proteome.
     SEQUENCE 31 AA; 3539 MW; 0353C55E1E8185CC CRC64;
SO
                          17.9%; Score 5; DB 16; Length 31;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 3e+02;
           5; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                              0;
  Matches
           18 LHHLI 22
Qу
              11111
           24 LHHLI 28
Db
RESULT 4
Q8JAC6
                                   PRT;
ID
     Q8JAC6
                 PRELIMINARY;
                                           35 AA.
AC
     08JAC6:
     01-OCT-2002 (TrEMBLrel. 22, Created)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
DE
     Gp120 (Fragment).
GN
     ENV.
OS
     Human immunodeficiency virus 1.
OC
     Viruses; Retroid viruses; Retroviridae; Lentivirus.
OX
     NCBI TaxID=11676;
RN
     [1]
     SEQUENCE FROM N.A.
RP
     MEDLINE=22068028; PubMed=12072500;
RX
     Kijak G.H., Simon V., Balfe P., Vanderhoeven J., Pampuro S.E.,
RA
     Zala C., Ochoa C., Cahn P., Markowitz M., Salomon H.;
RA
     "Origin of Human Immunodeficiency Virus Type 1 Quasispecies Emerging
RT
     after Antiretroviral Treatment Interruption in Patients with
RT
     Therapeutic Failure.";
RT
```

```
RL
     J. Virol. 76:7000-7009(2002).
DR
     EMBL; AF470757; AAM74604.1; -.
DR
     InterPro; IPR000777; GP120.
     Pfam; PF00516; GP120; 1.
DR
KW
     AIDS; Coat protein; Glycoprotein.
     NON TER
                   1
                          1
FT
                         35
     NON TER
                  35
FT
                35 AA; 3734 MW; DE5E0E3DEC9BE2B0 CRC64;
SQ
     SEQUENCE
  Query Match
                          17.9%; Score 5; DB 15; Length 35;
                          100.0%; Pred. No. 3.4e+02;
  Best Local Similarity
                                                                             0;
                                                 0; Indels
             5; Conservative 0; Mismatches
                                                                 0; Gaps
            6 GKSIQ 10
Qу
              Db
            9 GKSIO 13
RESULT 5
Q51595
                 PRELIMINARY;
                                   PRT;
                                           39 AA.
ID
     Q51595
AC
     Q51595;
     01-NOV-1996 (TrEMBLrel. 01, Created)
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
     Acetoin: DCPIP oxidoreductase alpha and beta subunits, lipoat synthase,
     dihydrolipoamide dehydrogenase and ferredoxin (AcoA,B,C,S, and L) genes
DE
DE
     (Fragment).
OS
     Pelobacter carbinolicus.
     Bacteria; Proteobacteria; Deltaproteobacteria; Desulfuromonadales;
OC
     Pelobacteraceae; Pelobacter.
OC
OX
     NCBI TaxID=19;
RN
     [1]
     SEOUENCE FROM N.A.
RP
RC
     STRAIN=Gra Bd 1;
     Oppermann F.B., Steinbuechel A.;
RA
     "Identification and molecular characterization of the aco genes
RT
     encoding the Pelobacter carbinolicus acetoin dehydrogenase enzyme
RT
RT
     system.";
     Submitted (MAR-1996) to the EMBL/GenBank/DDBJ databases.
\mathtt{RL}
DR
     EMBL; L24124; AAA91874.1; -.
FT
     NON TER
                   1
                          1
     NON TER
                  39
FT
                         39
     SEQUENCE
                39 AA; 4256 MW; AE9D84F64CD1126A CRC64;
SO
                          17.9%; Score 5; DB 2; Length 39;
  Query Match
                          100.0%; Pred. No. 3.7e+02;
  Best Local Similarity
             5; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
           12 LRRRF 16
Qу
              11111
           22 LRRRF 26
Db
RESULT 6
O8GZQ8
     Q8GZQ8
                 PRELIMINARY;
                                    PRT;
                                            28 AA.
ID
```

```
DT
     01-MAR-2003 (TrEMBLrel. 23, Created)
      01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
DE
     SNF-1 related kinase (Fragment).
GN
     BKIN12.
     Hordeum vulgare var. distichum (Two-rowed barley).
OS
OC
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae; Pooideae;
OC
     Triticeae; Hordeum.
OX
     NCBI TaxID=112509;
RN
     [1]
     SEQUENCE FROM N.A.
RP
RC
     STRAIN=cv. Igri;
     Clark J.S.C., Dani M., Barker J.H.A., Halford N.G., Karp A.;
RA
RT
     "Bkin12 Promoter Variants - Examples of Functional Biodiversity?";
RL
     Submitted (NOV-2001) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; AF448389; AAN76447.1; -.
KW
     Kinase.
FT
     NON TER
                  28
                          28
SQ
     SEQUENCE
                28 AA;
                        2950 MW;
                                   853EDC11F6BB2C6C CRC64;
  Query Match
                           14.3%; Score 4; DB 10; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 3.2e+03;
  Matches
             4; Conservative 0; Mismatches
                                                    0; Indels
                                                                      Gaps
            4 NLGK 7
Qу
              1111
Db
           18 NLGK 21
RESULT 7
067781
ID
     Q67781
                 PRELIMINARY;
                                    PRT:
                                            28 AA.
AC
     Q67781;
DT
     01-NOV-1996 (TrEMBLrel. 01, Created)
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DE
     PTP (Fragment).
GN
     PTP.
     Human adenovirus type 31.
OS
OC
     Viruses; dsDNA viruses, no RNA stage; Adenoviridae; Mastadenovirus.
OX
     NCBI TaxID=10529;
RN
RΡ
     SEQUENCE FROM N.A.
RC
     STRAIN=ATCC cat# VR-1109;
RA
     Ma Y., Mathews M.B.;
RT
     "The structure, function, and evolution of adenovirus VA RNA: a
RT
     phylogenetic approach.";
RL
     Submitted (MAR-1996) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; U52568; AAB00302.1; -.
FT
     NON TER
                   1
                          1
     NON TER
FT
                  28
                         28
SO
                28 AA; 3282 MW;
     SEQUENCE
                                  6601C5E66A98ACF6 CRC64;
  Query Match
                          14.3%;
                                  Score 4; DB 12; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 3.2e+03;
```

AC

Q8GZQ8;

```
Matches
             4; Conservative
                                 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
            8 SIQD 11
Qу
              1111
            1 SIQD 4
Db
RESULT 8
Q67780
ID
     Q67780
                 PRELIMINARY;
                                   PRT;
                                           28 AA.
AC
DT
     01-NOV-1996 (TrEMBLrel. 01, Created)
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
DΕ
     PTP (Fragment).
GN
     PTP.
OS
     Human adenovirus type 18.
OC
     Viruses; dsDNA viruses, no RNA stage; Adenoviridae; Mastadenovirus.
OX
     NCBI TaxID=10528;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=ATCC cat# VR-1095;
     Ma Y., Mathews M.B.;
RA
RT
     "The structure, function, and evolution of adenovirus VA RNA: a
RT
     phylogenetic approach.";
RL
     Submitted (MAR-1996) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; U52567; AAB00300.1; -.
FT
     NON TER
                   1
                          1
     NON TER
FT
                  28
                         28
SQ
     SEQUENCE
                28 AA; 3301 MW; 921195F72E98B9FE CRC64;
  Query Match
                          14.3%; Score 4; DB 12; Length 28;
  Best Local Similarity 100.0%; Pred. No. 3.2e+03;
  Matches
            4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
            8 SIQD 11
Qу
              Db
            1 SIQD 4
RESULT 9
09R4S6
ID
     Q9R4S6
                 PRELIMINARY;
                                   PRT;
                                           29 AA.
AC
     09R4S6;
DT
     01-MAY-2000 (TrEMBLrel. 13, Created)
DT
     01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
DT
     01-JUN-2000 (TrEMBLrel. 14, Last annotation update)
DE
     Oligopeptidase (Fragment).
OS
    Treponema denticola.
OC
    Bacteria; Spirochaetes; Spirochaetales; Spirochaetaceae; Treponema.
OX
    NCBI TaxID=158;
RN
     [1]
RP
    SEQUENCE.
RX
    MEDLINE=95168853; PubMed=7864624;
RA
    Makinen K.K., Makinen P.L., Loesche W.J., Syed S.A.;
RT
     "Purification and general properties of an oligopeptidase from
     Treponema denticola ATCC 35405--a human oral spirochete.";
RT
```

```
29 AA; 3484 MW; 2F614C2387CCF68C CRC64;
     SEQUENCE
SO
                          14.3%; Score 4; DB 2; Length 29;
  Query Match
                          100.0%; Pred. No. 3.3e+03;
  Best Local Similarity
            4; Conservative 0; Mismatches 0; Indels
                                                                             0;
                                                                 0; Gaps
 Matches
           22 IAEI 25
QУ
              11 IAEI 14
RESULT 10
096PP3
                                   PRT;
                                           29 AA.
ID
     Q96PP3
                 PRELIMINARY;
AC
     Q96PP3;
     01-DEC-2001 (TrEMBLrel. 19, Created)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
     Lympho-epithelial Kazal type-related inhibitor LEKTI (Fragment).
DE
GN
     SPINK5.
     Homo sapiens (Human).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OC
OX
     NCBI TaxID=9606;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
     Sprecher E., Chavanas S., DiGiovanna J.J., Amin S., Nielsen K.,
RA
     Prendiville J.S., Silverman R., Esterly N.B., Spraker M.K., Guelig E.,
RA
     de Luna M.L., Williams M.L., Buehler B., Pfendner E., Bale S.J.,
RA
     Uitto J., Hovnanian A., Richard G.;
RA
     "The spectrum of pathogenic mutations in SPINK 5 in 19 families with
RT
     Netherton syndrome - Implications for mutation detection and first
RT
     case of prenatal diagnosis.";
RT
     J. Invest. Dermatol. 0:0-0(2001).
RL
DR
     EMBL; AF295783; AAK97140.1; -.
     NON TER
FT
                   1
                          1
     NON TER
                  29
                         29
FT
                29 AA; 3449 MW; 9F31E2AD857EC1BB CRC64;
     SEOUENCE
SO
                          14.3%; Score 4; DB 4; Length 29;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 3.3e+03;
                                                                 0; Gaps
                                                                             0;
            4; Conservative
                                0; Mismatches
                                                   0; Indels
  Matches
            4 NLGK 7
Qу
              14 NLGK 17
RESULT 11
P82235
                                   PRT;
                                           29 AA.
ID
     P82235
                 PRELIMINARY;
     P82235;
AC
     01-MAY-2000 (TrEMBLrel. 13, Created)
DT
     01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
DT
     01-MAY-2000 (TrEMBLrel. 13, Last annotation update)
DT
     Brevinin-2TD.
DE
```

Arch. Biochem. Biophys. 316:689-698(1995).

RL

```
Rana temporaria (European common frog).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Ranoidea; Ranidae; Rana.
OC
OX
     NCBI TaxID=8407;
RN
     [1]
     SEQUENCE.
RP
RC
     TISSUE=SKIN SECRETION;
     MEDLINE=99266278; PubMed=10333736;
RX
     Simmaco M., Mignogna G., Barra D.;
RA
     "Antimicrobial peptides from amphibian skin: what do they tell us?";
RT
     Biopolymers 47:435-450(1998).
RL
CC
     -!- FUNCTION: SHOWS ANTIBACTERIAL ACTIVITY AGAINST REPRESENTATIVE
         GRAM-NEGATIVE AND GRAM-POSITIVE BACTERIAL SPECIES.
CC
     -!- SUBCELLULAR LOCATION: SECRETED.
CC
     -!- TISSUE SPECIFICITY: SKIN.
CC
     -!- SIMILARITY: BELONGS THE BREVININ/ESCULENTIN/GAEGURIN/RUGOSIN
CC
CC
         FAMILY.
KW
     Amphibian skin; Antibiotic.
                                  BY SIMILARITY.
FT
     DISULFID
                23
                        29
                29 AA; 3234 MW; DDF8F76F48F1273C CRC64;
     SEQUENCE
SQ
                          14.3%; Score 4; DB 13; Length 29;
  Query Match
                          100.0%; Pred. No. 3.3e+03;
  Best Local Similarity
            4; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
Qу
            2 LHNL 5
              111
           18 LHNL 21
Db
RESULT 12
O8KYE4
                 PRELIMINARY;
                                   PRT;
                                            30 AA.
ID
     O8KYE4
AC
     Q8KYE4;
     01-OCT-2002 (TrEMBLrel. 22, Created)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
DΕ
     Hypothetical protein.
     BXB0050.
GN
     Bacillus anthracis.
OS
OG
     Plasmid pXO2.
     Bacteria; Firmicutes; Bacillales; Bacillaceae; Bacillus.
OC
OX
     NCBI TaxID=1392;
RN
     [1]
     SEQUENCE FROM N.A.
RP
RC
     STRAIN=A2012;
     MEDLINE=22061436; PubMed=12004073;
RX
RA
     Read T.D., Salzberg S.L., Pop M., Shumway M., Umayam L., Jiang L.,
     Holtzapple E., Busch J.D., Smith K.L., Schupp J.M., Solomon D.,
RA
     Keim P., Fraser C.M.;
RA
     "Comparative Genome Sequencing for Discovery of Novel Polymorphisms in
RT
RT
     Bacillus anthracis.";
RL
     Science 296:2028-2033(2002).
     EMBL; AE011191; AAM26208.1; -.
DR
KW
     Hypothetical protein; Plasmid.
SQ
     SEQUENCE
                30 AA; 3515 MW; B3352D9BB791AEDF CRC64;
```

```
Query Match
                          14.3%; Score 4; DB 2; Length 30;
 Best Local Similarity 100.0%; Pred. No. 3.4e+03;
           4; Conservative 0; Mismatches 0; Indels
 Matches
                                                                  0; Gaps
                                                                              0;
            7 KSIO 10
Qу
              \parallel \parallel \parallel \parallel
Db
            4 KSIQ 7
RESULT 13
Q9JMV3
ID
     O9JMV3
                 PRELIMINARY;
                                   PRT;
                                           30 AA.
AC
     Q9JMV3;
     01-OCT-2000 (TrEMBLrel. 15, Created)
DT
     01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
DT
     01-JUN-2002 (TrEMBLrel. 21, Last annotation update)
DT
     Luciferase alpha-subunit (Fragment).
DE
GN
    LUXA.
OS
    Escherichia coli.
OC
     Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
     Enterobacteriaceae; Escherichia.
OC
     NCBI TaxID=562;
OX
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
     STRAIN=HB101;
RC
RA
     Lotz W., Bauer T.;
     "luxAB/kan-cassette for site-directed insertion mutagenesis and
RT
     bacterial transcription studies.";
RT
     Submitted (SEP-1999) to the EMBL/GenBank/DDBJ databases.
RL
RN
     [2]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=HB101;
     Olsson O., Koncz C., Szalay A.;
RA
     "The use of luxA gene of the bacterial luciferase operon as a reporter
RT
     gene.";
RT
     Mol. Gen. Genet. 215:1-9(1998).
RL
RN
     [3]
     SEQUENCE FROM N.A.
RΡ
RC
     STRAIN=HB101;
RX
     MEDLINE=92114868; PubMed=1685011;
     Escher A., O'Kane D.J., Szalav A.;
RA
RT
     "The beta subunit polypeptide of Vibrio harveyi luciferase determines
     light emission at 42 degrees C.";
RT
     Mol. Gen. Genet. 230:385-393(1991).
RL
DR
     EMBL; AJ249443; CAB96206.1; -.
DR
     HSSP; P07740; 1LUC.
     InterPro; IPR002103; Bac luciferase.
DR
DR
     Pfam; PF00296; bac luciferase; 1.
FT
     NON TER
                 30
                         30
SQ
     SEQUENCE
                30 AA; 3454 MW; 2FC87235BDBE72FD CRC64;
  Query Match
                          14.3%; Score 4; DB 2; Length 30;
                          100.0%; Pred. No. 3.4e+03;
  Best Local Similarity
             4; Conservative 0; Mismatches 0; Indels
  Matches
                                                                              0;
                                                                  0; Gaps
            4 NLGK 7
Qу
```

RA

```
RESULT 14
032617
ID
     Q32617
                 PRELIMINARY;
                                   PRT;
                                            30 AA.
AC
     Q32617;
DT
     01-NOV-1996 (TrEMBLrel. 01, Created)
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
_{
m DE}
     ORF30.
OS
     Marchantia polymorpha (Liverwort).
OG
     Chloroplast.
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Marchantiophyta;
OC
     Marchantiopsida; Marchantiidae; Marchantiales; Marchantiineae;
OC
OC
     Marchantiaceae; Marchantia.
OX
     NCBI_TaxID=3197;
RN
     [1]
RP
     SEQUENCE FROM N.A.
     Ohyama K., Fukuzawa H., Kohchi T., Shirai H., Sano T., Sano S.,
RA
     Umesono K., Shiki Y., Takeuchi M., Chang Z., Aota S., Inokuchi H.,
RA
     Ozeki H.;
RA
RT
     "Chloroplast gene organization deduced from complete sequence of
RT
     liverwort Marchantia polymorpha chloroplast DNA.";
     Nature 322:572-574(1986).
RL
RN
     SEOUENCE FROM N.A.
RΡ
     MEDLINE=84247325; PubMed=6739292;
RX
     Yamano Y., Ohyama K., Komano T.;
RA
RT
     "Nucleotide sequences of chloroplast 5S ribosomal RNA from cell
RT
     suspension cultures of the liverworts Marchantia polymorpha and
RT
     Jungermannia subulata.";
RL
     Nucleic Acids Res. 12:4621-4624(1984).
RN
RΡ
     SEQUENCE FROM N.A.
RX
     MEDLINE=85087956; PubMed=6393057;
     Umesono K., Inokuchi H., Ohyama K., Ozeki H.;
RA
RT
     "Nucleotide sequence of Marchantia polymorpha chloroplast DNA: a
     region possibly encoding three tRNAs and three proteins including a
RT
RT
     homologue of E. coli ribosomal protein S14.";
     Nucleic Acids Res. 12:9551-9565(1984).
RL
RN
RP
     SEQUENCE FROM N.A.
     Fukuzawa H., Uchida Y., Yamano Y., Ohyama K., Komano T.;
RA
RT
     "Molecular cloning of promoters functional in Escherichia coli from
RT
     chloroplast DNA of a liverwort, Marchantia polymorpha.";
RL
     Agric. Biol. Chem. 49:2725-2731(1985).
RN
     [5]
RΡ
     SEOUENCE FROM N.A.
RA
     Yamano Y., Kohchi T., Fukuzawa H., Ohyama K., Komano T.;
     "Nucleotide sequences of chloroplast 4.5 S ribosomal RNA from a leafy
RT
     liverwort, Jungermannia subulata, and a thalloid liverwort, Marchantia
RT
RT
     polymorpha.";
RL
     FEBS Lett. 185:203-207(1985).
RN
RP
     SEQUENCE FROM N.A.
```

Fukuzawa H., Kohchi T., Shirai H., Ohyama K., Umesono K., Inokuchi H.,

```
RA
     Ozeki H.;
     "Coding sequences for chloroplast ribosomal protein S12 from the
RT
     liverwort, Marchantia polymorpha, are separated far apart on the
RT
     different DNA strands.";
RT
     FEBS Lett. 198:11-15(1986).
RL
RN
     [7]
     SEQUENCE FROM N.A.
RP
     Fukuzawa H., Yoshida T., Kohchi T., Okumura T., Sawano Y., Ohyama K.;
RA
     "Splicing of group II introns in mRNAs coding for cytochrome b6 and
RT
     subunit IV in liverwort Marchantia polymorpha chloroplast genome: Exon
RT
     specifying a region coding for two genes with the spacer region.";
RT
RL
     FEBS Lett. 220:61-66(1987).
RN
     [8]
RP
     SEQUENCE FROM N.A.
RX
     MEDLINE=89028845; PubMed=2846189;
     Kohchi T., Ogura Y., Umesono K., Yamada Y., Komano T., Ozeki H.,
RA
RA
     Ohyama K.;
     "Ordered processing and splicing in a polycistronic transcript in
RT
     liverwort chloroplasts.";
RT
RL
     Curr. Genet. 14:147-154(1988).
     [9]
RN
     SEOUENCE FROM N.A.
RP
     MEDLINE=89068687; PubMed=3199436;
RX
RA
     Fukuzawa H., Kohchi T., Sano T., Shirai H., Umesono K., Inokuchi H.,
RA
     Ozeki H., Ohyama K.;
     "Structure and organization of Marchantia polymorpha chloroplast
RT
     genome. III. Gene organization of the large single copy region from
RT
     rbcL to trnI(CAU).";
RT
     J. Mol. Biol. 203:333-351(1988).
RL
RN
     [10]
RP
     SEQUENCE FROM N.A.
RX
     MEDLINE=91212240; PubMed=1708498;
RA
     Shimada H., Sugiura M.;
RΤ
     "Fine structural features of the chloroplast genome: comparison of the
RT
     sequenced chloroplast genomes.";
     Nucleic Acids Res. 19:983-995(1991).
RL
RN
     [11]
     SEQUENCE FROM N.A.
RΡ
RX
     MEDLINE=89068685; PubMed=2462054;
     Ohyama K., Fukuzawa H., Kohchi T., Sano T., Sano S., Shirai H.,
RA
     Umesono K., Shiki Y., Takeuchi M., Chang Z., Aota S.i., Inokuchi H.,
RA
RA
     "Structure and organization of Marchantia polymorpha Chloroplast
RT
     genome. I. cloning and gene identification.";
RT
     J. Mol. Biol. 203:281-298(1988).
RL
RN
     [12]
RP
     SEQUENCE FROM N.A.
RX
     MEDLINE=89068686; PubMed=2974085;
     Umesono K., Inokuchi H., Shiki Y., Takeuchi M., Chang Z., Fukuzawa H.,
RA
RA
     Kohchi T., Shirai H., Ohyama K., Ozeki H.;
     "Structure and organization of Marchantia polymorpha chloroplast
RT
     genome. II. gene organization of the large single copy region from
RT
RT
     rps'12 to atpB.";
     J. Mol. Biol. 203:299-331(1988).
RL
RN
RP
     SEQUENCE FROM N.A.
RX
     MEDLINE=89068688; PubMed=3199437;
```

```
Kohchi T., Shirai H., Fukuzawa H., Sano T., Komano T., Umesono K.,
RA
     Inokuchi H., Ozeki H., Ohyama K.;
RA
     "Structure and organization of Marchantia polymorpha chloroplast
RT
    genome. IV. inverted repeat and small single copy regions.";
RT
    J. Mol. Biol. 203:353-372(1988).
RL
    EMBL; X04465; CAA28070.1; -.
DR
    Chloroplast.
KW
     SEQUENCE 30 AA; 3842 MW; 41C170779F249D58 CRC64;
SO
  Query Match
                          14.3%; Score 4; DB 8; Length 30;
 Best Local Similarity 100.0%; Pred. No. 3.4e+03;
           4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
           15 RFFL 18
Qу
              1111
Db
           24 RFFL 27
RESULT 15
Q8MXE8
                                           31 AA.
ID
    Q8MXE8
                 PRELIMINARY;
                                   PRT;
AC
     Q8MXE8;
DT
     01-OCT-2002 (TrEMBLrel. 22, Created)
     01-OCT-2002 (TrEMBLrel. 22, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
DE
     Hypothetical protein K07A9.4.
GN
     K07A9.4.
OS
     Caenorhabditis elegans.
OC
     Eukaryota; Metazoa; Nematoda; Chromadorea; Rhabditida; Rhabditoidea;
OC
     Rhabditidae; Peloderinae; Caenorhabditis.
OX
     NCBI_TaxID=6239;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=Bristol N2;
RX
     MEDLINE=99069613; PubMed=9851916;
RA
     Waterston R.;
RT
     "Genome sequence of the nematode C. elegans: a platform for
RT
     investigating biology. The C. elegans Sequencing Consortium.";
RL
     Science 282:2012-2018(1998).
RN
     SEQUENCE FROM N.A.
RP
RC
     STRAIN=Bristol N2;
RA
     Davidson S., O'Neal D.;
RT
     "The sequence of C. elegans cosmid K07A9.";
     Submitted (OCT-1998) to the EMBL/GenBank/DDBJ databases.
RL
RN
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=Bristol N2;
RA
    Waterston R.;
     Submitted (AUG-2002) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; AF099924; AAM98005.1; -.
DR
DR
     WormPep; K07A9.4; CE31709.
KW
     Hypothetical protein.
SQ
     SEQUENCE 31 AA; 3720 MW; 147938913DC940ED CRC64;
  Query Match
                          14.3%; Score 4; DB 5; Length 31;
  Best Local Similarity 100.0%; Pred. No. 3.5e+03;
```

```
0;
                                 0; Mismatches
                                                 0; Indels
                                                                  0; Gaps
 Matches
             4; Conservative
           16 FFLH 19
Qу
              +111
Db
           21 FFLH 24
RESULT 16
Q9MS77
ID
     Q9MS77
                 PRELIMINARY;
                                   PRT:
                                           31 AA.
AC
     Q9MS77;
DT
     01-OCT-2000 (TrEMBLrel. 15, Created)
     01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
DE
     Photosystem I protein M.
GN
     PSAM.
OS
     Phacus acuminata.
OG
     Chloroplast.
OC
     Eukaryota; Euglenozoa; Euglenida; Euglenales; Phacus.
     NCBI_TaxID=130316;
OX
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RX
     MEDLINE=21080550; PubMed=11212923;
RA
     Doetsch N.A., Thompson M.D., Favreau M.R., Hallick R.B.;
RT
     "Comparison of psbK operon organization and group III intron content
     in chloroplast genomes of 12 Euglenoid species.";
RT
     Mol. Gen. Genet. 264:682-690(2001).
RL
DR
     EMBL; AF241276; AAF82438.1; -.
KW
     Chloroplast.
SQ
     SEQUENCE
                31 AA; 3449 MW; 2FFB2AF4B4ACDEC8 CRC64;
  Query Match
                          14.3%; Score 4; DB 8; Length 31;
  Best Local Similarity
                          100.0%; Pred. No. 3.5e+03;
            4; Conservative
                                 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
            4 NLGK 7
Qу
              Db
           24 NLGK 27
RESULT 17
Q9DFI7
                                            31 AA.
ID
     Q9DFI7
                 PRELIMINARY;
                                   PRT:
AC
     09DFI7;
DT
     01-MAR-2001 (TrEMBLrel. 16, Created)
     01-MAR-2001 (TrEMBLrel. 16, Last sequence update)
DT
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DE
     Double-sex like protein Dmrt5 (Fragment).
OS
     Monopterus albus (swamp eel).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopterygii; Neopterygii; Teleostei; Euteleostei; Neoteleostei;
OC
     Acanthomorpha; Acanthopterygii; Percomorpha; Synbranchiformes;
OC
OC
     Symbranchidae; Monopterus.
OX
     NCBI TaxID=43700;
RN
     [1]
     SEQUENCE FROM N.A.
RΡ
RC
     TISSUE=Blood;
```

```
"A conserved family of doublesex related genes from fish.";
RT
     Submitted (MAY-2000) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; AF272957; AAG18566.1; -.
DR
     InterPro; IPR001275; DM DNA-binding.
DR
     Pfam; PF00751; DM-domain; 1.
DR
DR
     PROSITE; PS50809; DM DOMAIN 2; 1.
FT
     NON TER
                  1
                          1
     NON TER
                  31
                         31
FT
     SEQUENCE
                31 AA; 3633 MW; 33A2E9B0B118DE2D CRC64;
SQ
                          14.3%; Score 4; DB 13; Length 31;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 3.5e+03;
             4; Conservative 0; Mismatches 0; Indels
                                                                 0;
                                                                     Gaps
                                                                             0;
  Matches
           21 LIAE 24
              24 LIAE 27
RESULT 18
Q9DEW2
                 PRELIMINARY;
                                   PRT:
                                           31 AA.
ID
     Q9DEW2
AC
     O9DEW2;
DT
     01-MAR-2001 (TrEMBLrel. 16, Created)
     01-MAR-2001 (TrEMBLrel. 16, Last sequence update)
DT
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
     Doublesex-related protein Dmrt15 (Fragment).
DΕ
GN
     DMRT15.
OS
     Coturnix coturnix (Common quail).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Archosauria; Aves; Neognathae; Galliformes; Phasianidae; Phasianinae;
OC
OC
     Coturnix.
OX
     NCBI TaxID=9091;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     TISSUE=Blood;
     Ren L., Zhou R.;
RA
     "Evolutionary conservation of doublesex-related gene family in
RT
     amphibian, reptile and bird.";
RT
     Submitted (JUL-2000) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; AY005392; AAG15564.1; -.
DR
     InterPro; IPR001275; DM DNA-binding.
DR
     Pfam; PF00751; DM-domain; 1.
DR
     PROSITE; PS50809; DM DOMAIN 2; 1.
DR
FT
     NON TER
                   1
                          1
FT
     NON TER
                  31
                         31
SQ
     SEQUENCE
                31 AA; 3593 MW; 211519B0B7B3D92D CRC64;
                          14.3%; Score 4; DB 13; Length 31;
  Query Match
                          100.0%; Pred. No. 3.5e+03;
  Best Local Similarity
             4; Conservative 0; Mismatches 0;
                                                      Indels
                                                                 0; Gaps
  Matches
           21 LIAE 24
Qу
              Db
           24 LIAE 27
```

RA

Huang X., Zhou R.;

```
RESULT 19
O9DFH7
                                           31 AA.
                 PRELIMINARY;
                                   PRT;
ID
    Q9DFH7
AC
     Q9DFH7;
     01-MAR-2001 (TrEMBLrel. 16, Created)
DT
     01-MAR-2001 (TrEMBLrel. 16, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DΤ
     Doublesex-like protein Dmrt6 (Fragment).
DΕ
     Mastacembelus aculeatus.
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopterygii; Neopterygii; Teleostei; Euteleostei; Neoteleostei;
OC
     Acanthomorpha; Acanthopterygii; Percomorpha; Synbranchiformes;
OC
     Mastacembelidae; Mastacembelus.
OC
     NCBI TaxID=138129;
OX
RN
     [1]
     SEQUENCE FROM N.A.
RΡ
     Huang X., Zhou R.;
RA
     "A conserved family of doublesex related genes from fish.";
RT
     Submitted (MAY-2000) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; AF272971; AAG18556.1; -.
DR
     InterPro; IPR001275; DM DNA-binding.
DR
     Pfam; PF00751; DM-domain; 1.
DR
     PROSITE; PS50809; DM DOMAIN 2; 1.
DR
FT
     NON TER
                   1
                          1
                  31
                         31
FT
     NON TER
                31 AA; 3653 MW; 211519B0A769B92D CRC64;
SQ
     SEQUENCE
                          14.3%; Score 4; DB 13; Length 31;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 3.5e+03;
           4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
  Matches
           21 LIAE 24
Qу
              24 LIAE 27
Db
RESULT 20
O9DFI2
                                   PRT;
                                            31 AA.
                 PRELIMINARY;
ID
     O9DFI2
AC
     09DFI2;
     01-MAR-2001 (TrEMBLrel. 16, Created)
DT
     01-MAR-2001 (TrEMBLrel. 16, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
     Doublesex-like protein Dmrt6 (Fragment).
DE
     Brachydanio rerio (Zebrafish) (Danio rerio).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopterygii; Neopterygii; Teleostei; Ostariophysi; Cypriniformes;
OC
     Cyprinidae; Danio.
OC
     NCBI TaxID=7955;
OX
RN
     [1]
RP
     SEQUENCE FROM N.A.
     Huang X., Zhou R.;
RA
     "A conserved family of doublesex related genes from fish.";
RT
     Submitted (MAY-2000) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; AF272962; AAG18558.1; -.
DR
     InterPro; IPR001275; DM DNA-binding.
DR
```

```
DR
    PROSITE; PS50809; DM DOMAIN 2; 1.
    NON TER
                  1
                         1
FT
    NON TER
                 31
                        31
FT
               31 AA; 3653 MW; 211519B0A769B92D CRC64;
    SEQUENCE
SO
                         14.3%; Score 4; DB 13; Length 31;
 Query Match
                         100.0%; Pred. No. 3.5e+03;
 Best Local Similarity
          4; Conservative 0; Mismatches 0; Indels
 Matches
                                                                 0;
                                                                    Gaps
          21 LIAE 24
Qу
              1111
Db
          24 LIAE 27
RESULT 21
Q9DFH8
                 PRELIMINARY;
                                   PRT;
                                           31 AA.
ID
    Q9DFH8
AC
    O9DFH8;
     01-MAR-2001 (TrEMBLrel. 16, Created)
DT
     01-MAR-2001 (TrEMBLrel. 16, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
    Doublesex-like protein Dmrt5 (Fragment).
DE
    Mastacembelus aculeatus.
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Actinopterygii; Neopterygii; Teleostei; Euteleostei; Neoteleostei;
OC
    Acanthomorpha; Acanthopterygii; Percomorpha; Synbranchiformes;
OC
OC
    Mastacembelidae; Mastacembelus.
OX
    NCBI_TaxID=138129;
RN
     [1]
RP
     SEQUENCE FROM N.A.
     Huang X., Zhou R.;
RA
     "A conserved family of doublesex related genes from fish.";
RT
     Submitted (MAY-2000) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; AF272970; AAG18555.1; -.
DR
     InterPro; IPR001275; DM DNA-binding.
DR
DR
     Pfam; PF00751; DM-domain; 1.
DR
     PROSITE; PS50809; DM DOMAIN 2; 1.
FT
     NON TER
                          1
                  1
FT
     NON TER
                  31
                         31
                31 AA; 3633 MW; 33A2E9B0B118DE2D CRC64;
SO
     SEQUENCE
                          14.3%; Score 4; DB 13; Length 31;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 3.5e+03;
                              0; Mismatches
             4; Conservative
                                                                 0; Gaps
  Matches
                                                 0; Indels
Qy
           21 LIAE 24
              24 LIAE 27
Db
RESULT 22
Q9DFI6
                                           31 AA.
                                   PRT;
ID
     Q9DFI6
                 PRELIMINARY;
AC
     01-MAR-2001 (TrEMBLrel. 16, Created)
DT
     01-MAR-2001 (TrEMBLrel. 16, Last sequence update)
DT
```

DR

Pfam; PF00751; DM-domain; 1.

```
01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
     Double-sex like protein Dmrt6 (Fragment).
DE
     Monopterus albus (swamp eel).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopterygii; Neopterygii; Teleostei; Euteleostei; Neoteleostei;
OC
     Acanthomorpha; Acanthopterygii; Percomorpha; Synbranchiformes;
OC
     Synbranchidae; Monopterus.
OC
     NCBI TaxID=43700;
OX
RN
     [1]
     SEQUENCE FROM N.A.
RΡ
     TISSUE=Blood;
RC
RA
     Huang X., Zhou R.;
     "A conserved family of doublesex related genes from fish.";
RT
     Submitted (MAY-2000) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; AF272958; AAG18567.1; -.
DR
     InterPro; IPR001275; DM DNA-binding.
DR
     Pfam; PF00751; DM-domain; 1.
DR
DR
     PROSITE; PS50809; DM_DOMAIN_2; 1.
     NON TER
                          1
FT
                  1
FT
     NON TER
                  31
                         31
     SEQUENCE
                31 AA; 3653 MW; 211519B0A769B92D CRC64;
SQ
                          14.3%; Score 4; DB 13; Length 31;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 3.5e+03;
             4; Conservative 0; Mismatches 0; Indels
                                                                      Gaps
                                                                              0;
  Matches
           21 LIAE 24
Qу
              1111
           24 LIAE 27
Db
RESULT 23
Q9DFI1
ID
     O9DFI1
                 PRELIMINARY;
                                    PRT:
                                            31 AA.
AC
     09DFI1;
     01-MAR-2001 (TrEMBLrel. 16, Created)
DT
     01-MAR-2001 (TrEMBLrel. 16, Last sequence update)
DΤ
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
DΕ
     Doublesex-like protein Dmrt11 (Fragment).
     Brachydanio rerio (Zebrafish) (Danio rerio).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopterygii; Neopterygii; Teleostei; Ostariophysi; Cypriniformes;
OC
OC
     Cyprinidae; Danio.
OX
     NCBI TaxID=7955;
RN
     [1]
RP
     SEOUENCE FROM N.A.
RA
     Huang X., Zhou R.;
RT
     "A conserved family of doublesex related genes from fish.";
     Submitted (MAY-2000) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; AF272963; AAG18559.1; -.
DR
     InterPro; IPR001275; DM DNA-binding.
DR
     Pfam; PF00751; DM-domain; 1.
DR
FT
     NON TER
                   1
                          1
FT
     NON TER
                  31
                          31
SQ
     SEQUENCE
                31 AA; 3734 MW;
                                  211519BE4019B92D CRC64;
  Query Match
                           14.3%; Score 4; DB 13; Length 31;
```

```
Best Local Similarity 100.0%; Pred. No. 3.5e+03;
                               0; Mismatches 0; Indels
                                                                   0; Gaps
 Matches
          4; Conservative
                                                                               0;
           21 LIAE 24
Qу
              1111
           24 LIAE 27
Db
RESULT 24
Q9DEW1
ID
     Q9DEW1
                 PRELIMINARY;
                                    PRT;
                                            31 AA.
AC
     Q9DEW1;
DT
     01-MAR-2001 (TrEMBLrel. 16, Created)
     01-MAR-2001 (TrEMBLrel. 16, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
DE
     Doublesex-related protein Dmrt16 (Fragment).
GN
     DMRT16.
     Coturnix coturnix (Common quail).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Archosauria; Aves; Neognathae; Galliformes; Phasianidae; Phasianinae;
OC
     Coturnix.
     NCBI TaxID=9091;
OX
RN
     [1]
     SEQUENCE FROM N.A.
RP
     TISSUE=Blood;
RC
     Ren L., Zhou R.;
RA
     "Evolutionary conservation of doublesex-related gene family in
RT
     amphibian, reptile and bird.";
RT
     Submitted (JUL-2000) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; AY005393; AAG15565.1; -.
DR
DR
     InterPro; IPR001275; DM DNA-binding.
DR
     Pfam; PF00751; DM-domain; 1.
FT
     NON TER
                        . 1
                   1
     NON TER
FT
                  31
                         31
     SEQUENCE 31 AA; 3525 MW; 4FC922DE73F934FB CRC64;
SQ
                          14.3%; Score 4; DB 13; Length 31;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 3.5e+03;
            4; Conservative 0; Mismatches 0; Indels
  Matches
                                                                   0; Gaps
                                                                               0;
           21 LIAE 24
Qу
              1111
           24 LIAE 27
Db
RESULT 25
O9DEW3
ID
     O9DEW3
                 PRELIMINARY;
                                    PRT;
                                            31 AA.
AC
     Q9DEW3;
DT
     01-MAR-2001 (TrEMBLrel. 16, Created)
     01-MAR-2001 (TrEMBLrel. 16, Last sequence update) 01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
DT
     Doublesex-related protein Dmrt6 (Fragment).
DE
GN
     DMRT6.
     Coturnix coturnix (Common quail).
OS
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Archosauria; Aves; Neognathae; Galliformes; Phasianidae; Phasianinae;
```

```
OC
     Coturnix.
OX
     NCBI TaxID=9091;
RN
     [1]
     SEOUENCE FROM N.A.
RP
     TISSUE=Blood;
RC
     Ren L., Zhou R.;
RA
     "Evolutionary conservation of doublesex-related gene family in
RT
RT
     amphibian, reptile and bird.";
     Submitted (JUL-2000) to the EMBL/GenBank/DDBJ databases.
RL
DR
     EMBL; AY005391; AAG15563.1; -.
DR
     InterPro; IPR001275; DM DNA-binding.
DR
     Pfam; PF00751; DM-domain; 1.
DR
     PROSITE; PS50809; DM_DOMAIN_2; 1.
FT
                          1
     NON TER
                   1
FT
     NON_TER
                  31
                         31
SO
     SEQUENCE
                31 AA; 3653 MW; 211519B0A769B92D CRC64;
                          14.3%; Score 4; DB 13; Length 31;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 3.5e+03;
             4; Conservative 0; Mismatches 0; Indels
                                                                      Gaps
                                                                              0;
  Matches
           21 LIAE 24
Qу
              1111
           24 LIAE 27
Db
RESULT 26
Q90Z24
ID
     Q90Z24
                 PRELIMINARY;
                                   PRT;
                                            31 AA.
AC
     Q90Z24;
     01-DEC-2001 (TrEMBLrel. 19, Created)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
DE
     Dmrt1 (Fragment).
     Monopterus albus (swamp eel).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopterygii; Neopterygii; Teleostei; Euteleostei; Neoteleostei;
OC
     Acanthomorpha; Acanthopterygii; Percomorpha; Synbranchiformes;
OC
     Synbranchidae; Monopterus.
OC
OX
     NCBI TaxID=43700;
RN
     [1]
RP
     SEQUENCE FROM N.A.
     Zhou R., Huang X.;
RA
     "Molecular cloning and expression of rice field eel Dmrt1.";
RT
     Submitted (MAY-2001) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; AF378149; AAK59253.1; -.
DR
DR
     InterPro; IPR001275; DM DNA-binding.
DR
     Pfam; PF00751; DM-domain; 1.
     PROSITE; PS50809; DM DOMAIN 2; 1.
DR
FT
     NON TER
                          1
                   1
     NON TER
FT
                  31
                          31
SO
     SEQUENCE
                31 AA; 3753 MW; BB91FDB73A1F0ADD CRC64;
                           14.3%; Score 4; DB 13; Length 31;
  Query Match
                          100.0%; Pred. No. 3.5e+03;
  Best Local Similarity
                                                                              0;
             4; Conservative
                               0; Mismatches
                                                   0; Indels
                                                                      Gaps
```

```
21 LIAE 24
Qу
              1111
           24 LIAE 27
Db
RESULT 27
O8KEV8
ΙD
     Q8KEV8
                 PRELIMINARY;
                                   PRT;
                                           31 AA.
AC
     Q8KEV8;
DT
     01-OCT-2002 (TrEMBLrel. 22, Created)
     01-OCT-2002 (TrEMBLrel. 22, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
DE
     Hypothetical protein CT0574.
GN
     CT0574.
     Chlorobium tepidum.
OS
OC
     Bacteria; Chlorobi; Chlorobia; Chlorobiales; Chlorobiaceae;
OC
     Chlorobium.
     NCBI TaxID=1097;
OX
RN
     [1]
     SEQUENCE FROM N.A.
RΡ
     STRAIN=TLS / ATCC 49652 / DSM 12025;
RC
     MEDLINE=22103685; PubMed=12093901;
RX
     Eisen J.A., Nelson K.E., Paulsen I.T., Heidelberg J.F., Wu M.,
RA
     Dodson R.J., Deboy R., Gwinn M.L., Nelson W.C., Haft D.H.,
RA
     Hickey E.K., Peterson J.D., Durkin A.S., Kolonay J.L., Yang F.,
RA
     Holt I., Umayam L.A., Mason T., Brenner M., Shea T.P., Parksey D.,
RA
     Nierman W.C., Feldblyum T.V., Hansen C.L., Craven M.B., Radune D.,
RA
     Vamathevan J., Khouri H., White O., Gruber T.M., Ketchum K.A.,
RA
     Venter J.C., Tettelin H., Bryant D.A., Fraser C.M.;
RA
     "The complete genome sequence of Chlorobium tepidum TLS, a
RT
     photosynthetic, anaerobic, green-sulfur bacterium.";
RT
     Proc. Natl. Acad. Sci. U.S.A. 99:9509-9514(2002).
RL
     EMBL; AE012832; AAM71816.1; -.
DR
     TIGR; CT0574; -.
DR
     Hypothetical protein; Complete proteome.
KW
     SEQUENCE 31 AA; 3734 MW; 588CF6AC05DA440B CRC64;
SQ
                          14.3%; Score 4; DB 16; Length 31;
  Query Match
                          100.0%; Pred. No. 3.5e+03;
  Best Local Similarity
             4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
           21 LIAE 24
Qу
              14 LIAE 17
Db
RESULT 28
O8KEV3
                 PRELIMINARY;
                                    PRT;
                                            31 AA.
ID
     Q8KEV3
AC
     Q8KEV3;
     01-OCT-2002 (TrEMBLrel. 22, Created)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last sequence update)
DT
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
     Hypothetical protein CT0579.
DE
GN
     CT0579.
     Chlorobium tepidum.
OS
     Bacteria; Chlorobi; Chlorobia; Chlorobiales; Chlorobiaceae;
OC
```

```
Chlorobium.
OC
    NCBI TaxID=1097;
OX
RN
     SEQUENCE FROM N.A.
RP
     STRAIN=TLS / ATCC 49652 / DSM 12025;
RC
     MEDLINE=22103685; PubMed=12093901;
RX
     Eisen J.A., Nelson K.E., Paulsen I.T., Heidelberg J.F., Wu M.,
RA
     Dodson R.J., Deboy R., Gwinn M.L., Nelson W.C., Haft D.H.,
RA
     Hickey E.K., Peterson J.D., Durkin A.S., Kolonay J.L., Yang F.,
RA
     Holt I., Umayam L.A., Mason T., Brenner M., Shea T.P., Parksey D.,
RA
     Nierman W.C., Feldblyum T.V., Hansen C.L., Craven M.B., Radune D.,
RA
     Vamathevan J., Khouri H., White O., Gruber T.M., Ketchum K.A.,
RA
     Venter J.C., Tettelin H., Bryant D.A., Fraser C.M.;
RA
     "The complete genome sequence of Chlorobium tepidum TLS, a
RT
     photosynthetic, anaerobic, green-sulfur bacterium.";
RT
     Proc. Natl. Acad. Sci. U.S.A. 99:9509-9514(2002).
RL
     EMBL; AE012832; AAM71821.1; -.
DR
     TIGR; CT0579; -.
DR
     Hypothetical protein; Complete proteome.
KW
     SEQUENCE 31 AA; 3617 MW; 265C9621F2F40044 CRC64;
SO
                          14.3%; Score 4; DB 16; Length 31;
  Query Match
                          100.0%; Pred. No. 3.5e+03;
  Best Local Similarity
            4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
  Matches
           14 RRFF 17
Qу
              | | | | |
            4 RRFF 7
Db
RESULT 29
Q96Q53
                                   PRT;
                                            32 AA.
                 PRELIMINARY;
ID
     Q96Q53
AC
     Q96Q53;
     01-DEC-2001 (TrEMBLrel. 19, Created)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
     Mitochondrial ribosomal protein L17 (Fragment).
DE
GN
     MRPL17.
     Homo sapiens (Human).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OC
OX
     NCBI TaxID=9606;
RN
     [1]
     SEQUENCE FROM N.A.
RP
     MEDLINE=21429115; PubMed=11543634;
RX
     Kenmochi N., Suzuki T., Uechi T., Magoori M., Kuniba M., Higa S.,
RA
RA
     Watanabe K., Tanaka T.;
     "The human mitochondrial ribosomal protein genes: Mapping of 54 genes
RT
     to the chromosomes and implications for human disorders.";
RT
     Genomics 77:65-70(2001).
RL
     EMBL; AB051620; BAB54948.1; -.
DR
     Ribosomal protein.
KW
     NON TER
FT
                   1
                           1
                                  1322815AE11A6404 CRC64;
     SEQUENCE
                32 AA; 3542 MW;
SO
                           14.3%; Score 4; DB 4; Length 32;
  Query Match
```

```
Best Local Similarity 100.0%; Pred. No. 3.6e+03;
                                                                 0; Gaps
                                                                             0;
          4; Conservative 0; Mismatches 0; Indels
 Matches
          10 ODLR 13
Qу
              1111
           11 QDLR 14
Db
RESULT 30
Q9DZ37
                 PRELIMINARY;
                                   PRT;
                                           32 AA.
     09DZ37
TD
     Q9DZ37;
AC
     01-MAR-2001 (TrEMBLrel. 16, Created)
DT
     01-MAR-2001 (TrEMBLrel. 16, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
     Pol polyprotein (Fragment).
DΕ
GN
     POL.
     Human immunodeficiency virus 1.
OS
     Viruses; Retroid viruses; Retroviridae; Lentivirus.
OC
     NCBI TaxID=11676;
OX
RN
     [1]
     SEOUENCE FROM N.A.
RP
     MEDLINE=20461476; PubMed=11005867;
RX
     Martinez-Picado J., DePasquale M.P., Kartsonis N., Hanna G.J.,
RA
     Wong J., Finzi D., Rosenberg E., Gunthard H.F., Sutton L., Savara A.,
RA
     Petropoulos C.J., Hellmann N., Walker B.D., Richman D.D.,
RA
     Siliciano R., D'Aquila R.T.;
RA
     "Antiretroviral resistance during successful therapy of HIV type 1
RT
     infection.";
RT
     Proc. Natl. Acad. Sci. U.S.A. 97:10948-10953(2000).
RL
     EMBL; AF292795; AAG25401.1; -.
DR
KW
     Polyprotein.
     NON TER
                   1
                          1
FT
     NON TER
                  32
                         32
FT
     SEQUENCE 32 AA; 3951 MW; B6AD13060D1EEA1A CRC64;
SQ
                          14.3%; Score 4; DB 15; Length 32;
  Query Match
                          100.0%; Pred. No. 3.6e+03;
  Best Local Similarity
           4; Conservative 0; Mismatches 0; Indels 0; Gaps
  Matches
           15 RFFL 18
Qу
              1111
            8 RFFL 11
Db
RESULT 31
Q9P1T8
                                           33 AA.
ID
     Q9P1T8
                 PRELIMINARY;
                                   PRT;
AC
     Q9P1T8;
     01-OCT-2000 (TrEMBLrel. 15, Created)
DT
     01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
DT
     01-JUN-2001 (TrEMBLrel. 17, Last annotation update)
DT
     Mutant chemokine receptor CCR5 (Fragment).
DE
     CCR5.
GN
     Homo sapiens (Human).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OC
```

```
NCBI TaxID=9606;
OX
RN
     [1]
     SEQUENCE FROM N.A.
RP
     MEDLINE=99392755; PubMed=10465086;
RX
     Aikhionbare F.O., Newman C., Womack C., Roth W.W., Stringer H.G. Jr.,
RA
RA
     Bond V.C.;
     "Characterization of a third CCR5 amplicon from CCR5-delta32-
RT
     heterozygous HIV-1-infected individuals.";
RT
     AIDS 13:1585-1586(1999).
RL
     EMBL; AF052244; AAF65577.1; -.
DR
     Receptor.
KW
     NON TER
FT
                   1
     SEQUENCE
                33 AA; 3477 MW; 664294782E2DB3E1 CRC64;
SQ
                          14.3%; Score 4; DB 4; Length 33;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 3.7e+03;
          4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
            5 LGKS 8
Qу
              | | | | |
           30 LGKS 33
Db
RESULT 32
O8N4J9
                                   PRT;
                                           33 AA.
ID
     Q8N4J9
                 PRELIMINARY;
AC
     Q8N4J9;
     01-OCT-2002 (TrEMBLrel. 22, Created)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
     Hypothetical protein (Fragment).
DE
OS
     Homo sapiens (Human).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OC
OX
     NCBI TaxID=9606;
RN
     [1]
     SEQUENCE FROM N.A.
RP
RC
     TISSUE=Brain;
RA
     Strausberg R.;
     Submitted (JUL-2002) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; BC033964; AAH33964.1; -.
DR
     Hypothetical protein.
KW
     NON TER
FT
                   1
                          1
     SEQUENCE
                33 AA; 3884 MW; 1A0E9E343070B4E1 CRC64;
SO
                          14.3%; Score 4; DB 4; Length 33;
  Ouery Match
  Best Local Similarity 100.0%; Pred. No. 3.7e+03;
            4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
            1 LLHN 4
Qу
               Db
           17 LLHN 20
RESULT 33
Q9AR83
                 PRELIMINARY;
                                   PRT;
                                           33 AA.
     Q9AR83
ID
```

```
AC
    Q9AR83;
     01-JUN-2001 (TrEMBLrel. 17, Created)
DT
     01-JUN-2001 (TrEMBLrel. 17, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
     Putative metallothionein-like protein (Fragment).
DE
     Pinus pinaster (Maritime pine).
OS
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Coniferopsida; Coniferales; Pinaceae; Pinus.
OC
OX
     NCBI TaxID=71647;
RN
     [1]
     SEQUENCE FROM N.A.
RP
     TISSUE=Seedling aerial parts;
RC
     Dubos C., Le Provost G., Salin F., Lalane C., Madur D., Frigerio J.M.,
RA
RA
     Plomion C.;
     "Identification and characterization of water-deficit responsive genes
RT
     in Maritime pine (Pinus pinaster Ait.) seedlings.";
RT
     Submitted (APR-2001) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; AJ309103; CAC35976.1; -.
DR
     NON TER
FT
                   1
                          1
                33 AA; 3610 MW; A89612AE71CD728C CRC64;
     SEOUENCE
SO
                          14.3%; Score 4; DB 10; Length 33;
  Query Match
                          100.0%; Pred. No. 3.7e+03;
  Best Local Similarity
            4; Conservative 0; Mismatches 0; Indels 0; Gaps
           20 HLIA 23
Qу
              1111
            3 HLIA 6
Db
RESULT 34
O9RI14
                                            33 AA.
                 PRELIMINARY;
                                   PRT;
ID
     Q9RI14
AC
     Q9RI14;
     01-MAY-2000 (TrEMBLrel. 13, Created)
DT
     01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
DT
     01-MAR-2002 (TrEMBLrel. 20, Last annotation update)
DT
     YPCD1.70c protein (Fragment).
DE
     YPCD1.70C.
GN
     Yersinia pestis.
OS
OG
     Plasmid pCD1.
     Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
OC
     Enterobacteriaceae; Yersinia.
OC
OX
     NCBI_TaxID=632;
RN
     [1]
     SEQUENCE FROM N.A.
RΡ
     STRAIN=CO-92 / Biovar Orientalis; PLASMID=pCD1;
RC
     MEDLINE=21470413; PubMed=11586360;
RX
     Parkhill J., Wren B.W., Thomson N.R., Titball R.W., Holden M.T.G.,
RA
     Prentice M.B., Sebaihia M., James K.D., Churcher C., Mungall K.L.,
RA
     Baker S., Basham D., Bentley S.D., Brooks K., Cerdeno-Tarraga A.M.,
RA
     Chillingworth T., Cronin A., Davies R.M., Davis P., Dougan G.,
RA
     Feltwell T., Hamlin N., Holroyd S., Jagels K., Karlyshev A.V.,
RA
     Leather S., Moule S., Oyston P.C.F., Quail M., Rutherford K.,
RA
     Simmonds M., Skelton J., Stevens K., Whitehead S., Barrell B.G.;
RA
     "Genome sequence of Yersinia pestis, the causative agent of plague.";
RT
RL
     Nature 413:523-527(2001).
```

```
KW
     Plasmid; Complete proteome.
    NON TER
                 33
                         33
FT
     SEOUENCE
               33 AA; 3882 MW; 69B9646EC9FF34DE CRC64;
SO
                          14.3%; Score 4; DB 16; Length 33;
  Query Match
                          100.0%; Pred. No. 3.7e+03;
  Best Local Similarity
                                                                 0; Gaps
             4; Conservative 0; Mismatches 0; Indels
                                                                             0;
           20 HLIA 23
Qу
              Db
           30 HLIA 33
RESULT 35
Q9R5U1
                 PRELIMINARY;
                                   PRT;
                                           34 AA.
     Q9R5U1
ID
AC
     Q9R5U1;
     01-MAY-2000 (TrEMBLrel. 13, Created)
DT
     01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
DT
     01-JUN-2002 (TrEMBLrel. 21, Last annotation update)
DT
     PEB4=MAJOR antigenic peptide (Fragment).
DE
     Campylobacter jejuni.
OS
     Bacteria; Proteobacteria; Epsilonproteobacteria; Campylobacterales;
OC
     Campylobacteraceae; Campylobacter.
OC
     NCBI TaxID=197;
OX
RN
     [1]
RΡ
     SEQUENCE.
RX
     MEDLINE=91358413; PubMed=1885571;
     Pei Z.H., Ellison R.T.III., Blaser M.J.;
RA
     "Identification, purification, and characterization of major antigenic
RT
     proteins of Campylobacter jejuni.";
RT
     J. Biol. Chem. 266:16363-16369(1991).
RL
     NON TER
FT
                   1
                          1
FT
     NON TER
                         34
                  34
     SEQUENCE
                34 AA; 3665 MW; 73BECEFA922507D2 CRC64;
SQ
                          14.3%; Score 4; DB 2; Length 34;
  Query Match
                          100.0%; Pred. No. 3.7e+03;
  Best Local Similarity
             4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
  Matches
            6 GKSI 9
Qу
              1111
            8 GKSI 11
Dh
RESULT 36
O9RCC0
                 PRELIMINARY;
                                   PRT:
                                           34 AA.
ID
     Q9RCC0
     Q9RCC0;
AC
     01-MAY-2000 (TrEMBLrel. 13, Created)
DT
     01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
     Ferrochelatase (EC 4.99.1.1) (Protoheme ferro-lyase) (Heme synthetase)
DE
DE
     (Fragment).
     HEMH.
GN
     Yersinia pseudotuberculosis (type 0:1b).
OS
```

DR

EMBL; AL117189; CAB54947.1; -.

```
Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
OC
     Enterobacteriaceae; Yersinia.
OC
    NCBI TaxID=109458;
OX
RN
     [1]
     SEOUENCE FROM N.A.
RP
     STRAIN=pa3606;
RC
    MEDLINE=20392461; PubMed=10931327;
RX
     Skurnik M., Peippo A., Ervela E.;
RA
     "Characterization of the O-antigen gene clusters of Yersinia
RT
     pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia
RT
     pestis shows that the plague bacillus is most closely related to and
RT
     has evolved from Y. pseudotuberculosis serotype 0:1b.";
RT
     Mol. Microbiol. 37:316-330(2000).
RL
     -!- FUNCTION: CATALYZES THE FERROUS INSERTION INTO PROTOPORPHYRIN IX
CC
         (BY SIMILARITY).
CC
     -!- CATALYTIC ACTIVITY: PROTOPORPHYRIN + FE(2+) = PROTOHEME + 2 H(+).
CC
     -!- PATHWAY: PROTOHEME BIOSYNTHESIS; LAST STEP.
CC
     -!- SIMILARITY: BELONGS TO THE FERROCHELATASE FAMILY.
CC
     EMBL; AJ251712; CAB63288.1; -.
DR
     InterPro; IPR001015; Ferrochelatase.
DR
     Pfam; PF00762; Ferrochelatase; 1.
DR
     Heme biosynthesis; Iron; Lyase; Porphyrin biosynthesis.
KW
FT
     NON TER
                  1
                          1
     SEQUENCE 34 AA; 3921 MW; 948552A9D80C2FE8 CRC64;
SO
                          14.3%; Score 4; DB 2; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 3.7e+03;
             4; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
           16 FFLH 19
Qу
              1111
            1 FFLH 4
RESULT 37
O9RCD1
                                           34 AA.
                 PRELIMINARY;
                                   PRT;
ID
     Q9RCD1
AC
     09RCD1;
     01-MAY-2000 (TrEMBLrel. 13, Created)
DT
     01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
     Ferrochelatese (EC 4.99.1.1) (Ferrochelatase) (Protoheme ferro-lyase)
DE
DE
     (Heme synthetase) (Fragment).
GN
     HEMH.
     Yersinia pestis.
OS
     Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
OC
     Enterobacteriaceae; Yersinia.
OC
OX
     NCBI TaxID=632;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=EV76;
     MEDLINE=20392461; PubMed=10931327;
RX
     Skurnik M., Peippo A., Ervela E.;
RΑ
     "Characterization of the O-antigen gene clusters of Yersinia
RT
     pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia
RT
     pestis shows that the plaque bacillus is most closely related to and
RT
     has evolved from Y. pseudotuberculosis serotype 0:1b.";
RT
```

```
-!- FUNCTION: CATALYZES THE FERROUS INSERTION INTO PROTOPORPHYRIN IX
CC
CC
         (BY SIMILARITY).
     -!- CATALYTIC ACTIVITY: PROTOPORPHYRIN + FE(2+) = PROTOHEME + 2 H(+).
CC
     -!- PATHWAY: PROTOHEME BIOSYNTHESIS; LAST STEP.
CC
     -!- SIMILARITY: BELONGS TO THE FERROCHELATASE FAMILY.
CC
     EMBL; AJ251713; CAB63269.1; -.
DR
DR
     InterPro; IPR001015; Ferrochelatase.
DR
     Pfam; PF00762; Ferrochelatase; 1.
     Heme biosynthesis; Iron; Lyase; Porphyrin biosynthesis.
KW
FT
     NON TER
                   1
                          1
              34 AA; 3921 MW; 948552A9D80C2FE8 CRC64;
SO
     SEOUENCE
                          14.3%; Score 4; DB 2; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 3.7e+03;
             4; Conservative 0; Mismatches 0; Indels
                                                                             0;
                                                                 0; Gaps
  Matches
           16 FFLH 19
              +
Db
            1 FFLH 4
RESULT 38
095LA4
                 PRELIMINARY;
                                   PRT:
                                           34 AA.
ID
     Q95LA4
AC
     Q95LA4;
     01-DEC-2001 (TrEMBLrel. 19, Created)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
DT
     01-MAR-2002 (TrEMBLrel. 20, Last annotation update)
DT
DΕ
     LIM homeodomain protein 3b (Fragment).
GN
OS
     Macaca mulatta (Rhesus macaque).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Catarrhini; Cercopithecidae;
OC
OC
     Cercopithecinae; Macaca.
     NCBI TaxID=9544;
OX
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RX
     MEDLINE=21453325; PubMed=11470784;
     Sloop K.W., Dwyer C.J., Rhodes S.J.;
RA
     "An isoform-specific inhibitory domain regulates the Lhx3 lim
RT
     homeodomain factor holoprotein and the production of a functional
RT
     alternate translation form.";
RT
     J. Biol. Chem. 276:36311-36319(2001).
RL
     EMBL; AF370449; AAL09574.1; -.
DR
KW
     DNA-binding; Homeobox; Nuclear protein.
FT
     NON TER
                  34
                         34
                34 AA; 3674 MW; D7A2F1258F8E414A CRC64;
     SEQUENCE
SO
                          14.3%; Score 4; DB 6; Length 34;
  Query Match
                          100.0%; Pred. No. 3.7e+03;
  Best Local Similarity
                                                                 0; Gaps
             4; Conservative 0; Mismatches 0; Indels
                                                                              0:
  Matches
           11 DLRR 14
Qу
              | | | | |
           28 DLRR 31
```

RL

Mol. Microbiol. 37:316-330(2000).

```
RESULT 39
Q95LA6
                                            34 AA.
                                   PRT;
ID
     Q95LA6
                 PRELIMINARY;
AC
     095LA6:
     01-DEC-2001 (TrEMBLrel. 19, Created)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
DT
     01-MAR-2002 (TrEMBLrel. 20, Last annotation update)
DT
     LIM homeodomain protein 3b (Fragment).
DE
GN
     LHX3.
OS
     Sus scrofa (Pig).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Cetartiodactyla; Suina; Suidae; Sus.
OC
OX
     NCBI TaxID=9823;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
     MEDLINE=21453325; PubMed=11470784;
RX
     Sloop K.W., Dwyer C.J., Rhodes S.J.;
RA
     "An isoform-specific inhibitory domain regulates the Lhx3 lim
RT
RT
     homeodomain factor holoprotein and the production of a functional
     alternate translation form.";
RT
     J. Biol. Chem. 276:36311-36319(2001).
RL
     EMBL; AF370445; AAL09570.1; -.
DR
     DNA-binding; Homeobox; Nuclear protein.
KW
FT
     NON TER
                  34
                         34
                34 AA; 3748 MW; 7083C3258F8E414C CRC64;
     SEOUENCE
SO
  Query Match
                           14.3%; Score 4; DB 6; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.7e+03;
             4; Conservative
                                0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
           11 DLRR 14
Qу
              1111
Db
           28 DLRR 31
RESULT 40
Q91ZX2
ID
                 PRELIMINARY;
                                    PRT;
                                            34 AA.
     Q91ZX2
AC
     Q91ZX2;
     01-DEC-2001 (TrEMBLrel. 19, Created)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
DT
     01-MAR-2002 (TrEMBLrel. 20, Last annotation update)
DT
     LIM homeodomain protein 3b (Fragment).
DE
GN
     LHX3.
     Cavia porcellus (Guinea pig).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Hystricognathi; Caviidae; Cavia.
OC
OX
     NCBI TaxID=10141;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
     MEDLINE=21453325; PubMed=11470784;
RX
     Sloop K.W., Dwyer C.J., Rhodes S.J.;
RA
RT
     "An isoform-specific inhibitory domain regulates the Lhx3 lim
     homeodomain factor holoprotein and the production of a functional
RT
RT
     alternate translation form.";
     J. Biol. Chem. 276:36311-36319(2001).
RL
```

DR EMBL; AF370450; AAL09575.1; -.

KW DNA-binding; Homeobox; Nuclear protein.

FT NON_TER 34 34

SQ SEQUENCE 34 AA; 3746 MW; D7A2F215BC88212C CRC64;

Query Match 14.3%; Score 4; DB 11; Length 34;

Best Local Similarity 100.0%; Pred. No. 3.7e+03;

Matches 4; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Search completed: January 14, 2004, 10:42:13 Job time: 33.9346 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:19; Search time 4.62305 Seconds

(without alignments)

284.822 Million cell updates/sec

Title: US-09-843-221A-169

Perfect score: 28

Sequence: 1 LLHNLGKSIQDLRRRFFLHHLIAEIHTA 28

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 127863 seqs, 47026705 residues

Word size : 0

Total number of hits satisfying chosen parameters: 1319

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database : SwissProt_41:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

_		%					
Result	_	Query	_				
No.	Score	Match	Length	DB	ID	Descrip	otion
		17.0	٠		DIU DUDDO	D00E04	therem:
1	5	17.9	36	1	ELH_THETS		theromyzon
2	4	14.3	31	1	PSAM_EUGGR		euglena gra
3	4	14.3	34	1	DEF7_RABIT	P80223	oryctolagus
4	4	14.3	36	1	PAHO_MACMU	P33684	macaca mula
5	4	14.3	36	1	PAHO_RABIT	P41336	oryctolagus
6	4	14.3	36	1	Y4KD_BPCHP	P19188	bacteriopha
7	3	10.7	28	1	FIBA CANFA	P02673	canis famil
8	3	10.7	28	1	GTS5_CHICK	P20137	gallus gall
9	3	10.7	28	1	HSP4_OCTVU	P83216	octopus vul
10	3	10.7	28	1	PA23_TRIST	P82894	trimeresuru
11	3	10.7	28	1	VG9_SPV4	P11341	spiroplasma
12	3	10.7	28	1	VI03_VACCP	Q00334	vaccinia vi
13	3	10.7	28	1	Y073_ARCFU	030163	archaeoglob
14	3	10.7	28	1	YA79 ARCFU	029184	archaeoglob
15	3	10.7	29	1	12AH CLOS4	P21215	clostridium
16	3	10.7	29	1	DMS5 PHYSA	P80281	phyllomedus
17	3	10.7	29	1	P2SM_LOXIN	P83046	loxosceles

18	3	10.7	29	1	PRO1_DACGL	P	18689	dactylis gl	
19	3	10.7	30	1	CH60_CLOPA	P8	81339	clostridium	
20	3	10.7	30	1	HSP5_OCTVU	P8	83217	octopus vul	
21	3	10.7	30	1	MMAL DERMI	P1	16312	dermatophag	
22	3	10.7	30	1	NUO2 SOLTU	P8	80268	solanum tub	
23	3	10.7	30	1	PRT1 CLUPA	PO	02335	clupea pall	
24	3	10.7	30	1	PRT2_ONCMY	PO	02331	oncorhynchu	
25	3	10.7	30	1	PRT3_ONCMY	PO	02332	oncorhynchu	
26	3	10.7	30	1	PRT4 ONCMY	PO	02333	oncorhynchu	
27	3	10.7	30	1	PRTB_ONCMY			oncorhynchu	
28	3	10.7	30	1	PSAM ODOSI			odontella s	
29	3	10.7	30	1	PSAM PINTH			pinus thunb	
30	3	10.7	30	1	PSAM PORPU			porphyra pu	
31	3	10.7	30	1	RL18 HALCU			halobacteri	
32	3	10.7	31	1	COX4 NEUCR			neurospora	
33	3	10.7	31	1	DEJP DROME			drosophila	
34	3	10.7	31	1	GP37 BPSP1			bacteriopha	
	3	10.7	31	1	NAP4 HUMAN			homo sapien	
35			31		PETL ODOSI			odontella s	
36	3	10.7		1				clupea pall	
37	3	10.7	31	1	PRT2_CLUPA			clupea pall	
38	3	10.7	31	1	PRT3_CLUPA				
39	3	10.7	31	1	SCK5_ANDMA			androctonus	
40	3	10.7	31	1	SCKL_LEIQH			leiurus qui	11
41	3	10.7	31	1	TXA3_PARAC			parasicyoni	
42	3	10.7	31	1	Y3KD_BPCHP			bacteriopha	
43	3	10.7	32	1	CAL2_ONCKE			oncorhynchu	
44	3	10.7	32	1	CAL3_ONCKI			oncorhynchu	
45	3	10.7	32	1	CAL_ANGJA			anguilla ja	
46	3	10.7	32	1	CAR1_ECHCA			echis carin	
47	3	10.7	32	1	ERH_PIG			sus scrofa	
48	3	10.7	32	1	FLA1_METHU			methanospir	
49	3	10.7	32	1	IAPP_PIG			sus scrofa	
50	3	10.7	32	1	MIFH_TRITR	P	81748	trichuris t	
51	3	10.7	32	1	P1SM_LOXIN	P	83045	loxosceles	
52	3	10.7	32	1	PRI3_ONCMY	P	02330	oncorhynchu	
53	3	10.7	, 32	1	PRT1 ESOLU	P	02325	esox lucius	
54	3	10.7	32	1	PRT1 ONCKE	P	02327	oncorhynchu	
55	3	10.7	32	1	PRT5 ONCMY	P	02334	oncorhynchu	
56	3	10.7	32	1	PRT6 ONCMY	P	08145	oncorhynchu	
57	3	10.7	32	1	PRT7 ONCMY	P	08146	oncorhynchu	
58	3	10.7	32	1	PRT8 ONCMY	P	12817	oncorhynchu	
59	3	10.7	32	1	PRT9 ONCMY	P	08147	oncorhynchu	
60	3	10.7	32	1	PRTA ONCMY			oncorhynchu	
61	3	10.7	32	1	PRT_ORYLA			oryzias lat	
62	3	10.7	32	1	PSAM MARPO			marchantia	
63	3	10.7	32	1	UC09 MAIZE			zea mays (m	
64	3	10.7	32	1	Y160 BPT4			bacteriopha	
65	3	10.7	32	1	YH17 HAEIN			haemophilus	
66	3	10.7	33	1	COA2 BPI22			bacteriopha	
67	3	10.7	33	1	COA2 BPIKE			bacteriopha	
68	3	10.7	33		DEF1 MESAU			mesocricetu	
69	3	10.7	33	1 1	DEFI_MESAU DEF3 MESAU			mesocricetu	
70	3	10.7	33	1	GAST DIDMA			didelphis m	
		10.7						rana rugosa	
71	3		33	1	GGN1_RANRU			zea mays (m	
72 73	3	10.7	33	1	MBP1_MAIZE			bos taurus	
73	3	10.7	33	1	OREX_BOVIN				
74	3	10.7	33	1	PRI1_ONCMY	Р	UZ3Z0	oncorhynchu	

.

75	3	10.7	33	1	PRI2 ONCMY	P02328	oncorhynchu
76	3	10.7	33	1	PRTB MUGCE	P08130	mugil cepha
77	3	10.7	33	1	RUGB RANRU		rana rugosa
78	3	10.7	33	1	SCX9 BUTOC	P04099	buthus occi
7 9	3	10.7	33	1	Y474 BORBU	051430	borrelia bu
80	3	10.7	33	1	Y50A MYCTU		mycobacteri
81	3	10.7	33	1	YLCH BP82		bacteriopha
82	3	10.7	34	1	BUTH ANDAU		androctonus
83	3	10.7	34	1	EF2 RABIT		oryctolagus
	3	10.7	34	1	PRT1 SAROR		sarda orien
84	3	10.7	34	1	PRT1_SAROR		scomber sco
85	3	10.7	34	1	PRT1 THUTH		thunnus thy
86			34 34	1	PRT2 SCOSC		scomber sco
87	3	10.7			PRT2_SCOSC		thunnus thy
88	3	10.7	34	1			dicentrarch
89	3	10.7	34	1	PRT_DICLA		perca flave
90	3	10.7	34	1	PRT_PERFV		
91	3	10.7	34	1	PSAI_SOYBN		glycine max
92	3	10.7	34	1	PSBM_NEPOL		nephroselmi
93	3	10.7	34	1	RR2_OCHNE	· ·	ochrosphaer
94	3	10.7	34	1	YC12_GUITH		guillardia
95	3	10.7	34	1	YC12_ODOSI		odontella s
96	3	10.7	35	1	CECA_AEDAL		aedes albop
97	3	10.7	35	1	COPA_CANFA		canis famil
98	3	10.7	35	1	DEFB_MYTED		mytilus edu
99	3	10.7	35	1	END4_YEREN		yersinia en
100	3	10.7	35	1	FLAV_NOSSM	P35707	nostoc sp.
101	3	10.7	35	1	NP30 STAAU	P21222	staphylococ
102	3	10.7	35	1	PSBM SYNY3	P72701	synechocyst
103	3	10.7	35	1	Y644 ARCFU	029613	archaeoglob
104	3	10.7	35	1	YQB5 CAEEL	Q09258	caenorhabdi
105	3	10.7	36	1	NIFH ENTAG	P26249	enterobacte
106	3	10.7	36	1	PAHO ANSAN		anser anser
107	3	10.7	36	1	PAHO CERSI		ceratotheri
108	3	10.7	36	1	PAHO DIDMA		didelphis m
109	3	10.7	36	1	PAHO EQUZE		equus zebra
110	3	10.7	36	1	PAHO ERIEU		erinaceus e
111	3	10.7	36	1	PAHO TAPPI		tapirus pin
112	3	10.7	36	1	PSAI BRAOL		brassica ol
			36	1	PSAI_BKAOL PSAI_SKECO		skeletonema
113	3	10.7			_		nicotiana t
114	3	10.7	36	1	PSAI_TOBAC PSBM SYNEL		synechococc
115	3	10.7	36	1	_		archaeoglob
116	3	10.7	36	1	Y297_ARCFU		borrelia bu
117	3	10.7	36	1	Y609_BORBU		
118	3	10.7	36	1	Y619_ARCFU		archaeoglob
119	3	10.7	37	1	DEF4_ANDAU		androctonus
120	3	10.7	37	1	DEFA_MYTED		mytilus edu
121	3	10.7	37	1	ES2A_RANES		rana escule
122	3	10.7	37	1	ES2B_RANES		rana escule
123	3	10.7	37	1	IAPP_CRIGR		cricetulus
124	3	10.7	37	1	OGT1_RABIT		oryctolagus
125	3	10.7	37	1	OP2B_OXYKI		oxyopes kit
126	3	10.7	37	1	POLN_WEEV		western equ
127	3	10.7	37	1	PRT3_SCYCA		scyliorhinu
128	3	10.7	37	1	PSAI_ARATH		arabidopsis
129	3	10.7	37	1	PSAJ_EUGGR		euglena gra
130	3	10.7	37	1	REV SIVM2	P08809	simian immu
131	3	10.7	37	1	RK36 ARATH	P12144	arabidopsis
	_			_	_		_

132	3	10.7	37	1	RK36_CHAGL	Q8m9v5 cha	
133	3	10.7	37	1	RK36_EPIVI	P30069 epi	
134	3	10.7	37	1	RK36_LOTJA	Q9bbq2 lot	us japon
135	3	10.7	37	1	RK36_MARPO	P12142 mar	
136	3	10.7	37	1	RK36_OENHO	Q9mtj1 oen	
137	3	10.7	37	1	RK36_ORYSA	P12143 ory	za sativ
138	3	10.7	37	1	RK36_PEA	P07815 pis	sum sativ
139	3	10.7	37	1	RK36_PINTH	P41631 pin	ius thunb
140	3	10.7	37	1	RK36_PSINU	Q8why9 psi	lotum nu
141	3	10.7	37	1	RK36_SPIOL	P12230 spi	nacia ol
142	3	10.7	37	1	RL36_ANASP	Q8ypk0 ana	baena sp
143	3	10.7	37	1	RL36_BACST	P07841 bac	cillus st
144	3	10.7	37	1	RL36_NEIMA	Q9jrb2 nei	sseria m
145	3	10.7	37	1	RL7_CLOPA	P05393 clo	stridium
146	3	10.7	. 37	1	SCK2_LEIQH	P45628 lei	urus qui
147	3	10.7	37	1	SCKC_LEIQH	P13487 lei	_
148	3	10.7	37	1	VG65_BPPH2	P16515 bac	cteriopha
149	3	10.7	37	1	VG65_BPPZA	P08384 bac	cteriopha ·
150	3	10.7	38	1	CRS3_NOTGO	P15534 not	
151	3	10.7	38	1	DEF4_LEIQH	P41965 lei	urus qui
152	3	10.7	38	1	DEFI_MYTGA	P80571 myt	ilus gal
153	3	10.7	38	1	DNP_DENAN	P28374 den	ndroaspis
154	3	10.7	38	1	MFA2_USTMA	P31963 ust	ilago ma
155	3	10.7	38	1	PSBF_TOBAC	P05171 nic	cotiana t
156	3	10.7	38	1	PSBM_CYAPA	P48107 cya	nophora
157	3	10.7	38	1	RL36_SYNY3	P73300 syn	nechocyst
158	3	10.7	38	1	VCOM_BPD10	Q38200 bac	cteriopha
159	3	10.7	38	1	VG8_SPV4	P11340 spi	roplasma
160	3	10.7	38	1	YF07_HAEIN	P44229 hae	emophilus
161	3	10.7	39	1	ARME_BOVIN	P80513 bos	s taurus
162	3	10.7	39	1	COA2_BPPM2	P15794 bac	cteriopha
163	3	10.7	39	1	PA2_AGKBI	Q9psf9 agk	cistrodon
164	3	10.7	39	1	PRT1 BUFJA	P24641 buf	fo japoni
165	3	10.7	39	1	PRT2 BUFJA	P24642 buf	To japoni
166	3	10.7	39	1	PSBF GNEGN	Q9gfc3 gne	etum gnem
167	3	10.7	39	1	PSBF MARPO	P06853 mar	rchantia
168	3	10.7	39	1	PSBF ORYSA	P12088 ory	za sativ
169	3	10.7	39	1	PSBF PINTH	P41616 pin	nus thunb
170	3	10.7	39	1	PSBF PSINU	Q8wi05 psi	llotum nu
171	3	10.7	39	1	PSBY SYNY3	P73676 syn	nechocyst
172	3	10.7	39	1	Y410_BORBU	051371 bor	rrelia bu
173	3	10.7	40	1	ALB1_TRASC	P81188 tra	achemys s
174	3	10.7	40	1	ASPG_RAT	P30919 rat	tus norv
175	3	10.7	40	1	CSP2_STRMT	033666 str	reptococc
176	3	10.7	40	1	CSP3 STRMT	O33668 str	reptococc
177	3	10.7	40	1	GKBL GINBI	P83171 gin	ıkgo bilo
178	3	10.7	40	1	H2B3 ECHES	P13283 ech	ninus esc
179	3	10.7	40	1	HPT_RABIT	P19007 ory	
180	3	10.7	40	1	HS9A_RABIT	P30946 ory	
181	3	10.7	40	1	ITAV_BOVIN	P80746 bos	
182	3	10.7	40	1	LHB1_ECTHL	P80106 ect	othiorho
183	3	10.7	40	1	PHAC_MASLA	P11389 mas	stigoclad
184	3	10.7	40	1	PRE_BACLI	P18189 bac	cillus li
185	3	10.7	40	1	PSAI_PEA	P1 7 227 pis	sum sativ
186	3	10.7	40	1	PSAJ_CYAPA	P48117 cya	anophora
187	3	10.7	40	1	R18C_BOVIN	P82917 bos	s taurus
188	3	10.7	40	1	R362_STRCO	Q93jh3 str	reptomyce

189	3	10.7	40	1	RK33 PEA	P51416	pisum sativ
190	3	10.7	40	1	RL36 CORGL	Q8nmn8	corynebacte
191	3	10.7	40	1	UC11 MAIZE	P80617	zea mays (m
192	3	10.7	40	1	UC12 MAIZE		zea mays (m
193	2	7.1	28	1	ACON CANAL	P82611	candida alb
194	2	7.1	28	1	APC1 RABIT	P33047	oryctolagus
195	2	7.1	28	1	ARYA PSEPU	P35902	pseudomonas
196	2	7.1	28	1	ARYC NOCGL	P80008	nocardia gl
197	2	7.1	28	1	C1QC RAT	P31722	rattus norv
198	2	7.1	28	1	CH60 MYCSM	P80673	mycobacteri
199	2	7.1	28	1	COXB SOLTU	P80499	solanum tub
200	2	7.1	28	1	ETX2 BACCE		bacillus ce
201	2	7.1	28	1	FLA1 TREPH	P21988	treponema p
202	2	7.1	28	1	GRP ALLMI	P31886	alligator m
203	2	7.1	28	1	GUN SCHCO	P81190	schizophyll
204	2	7.1	28	1	GVPC OSCAG	P80999	oscillatori
205	2	7.1	28	1	ICPP_VIPLE	P82475	vipera lebe
206	2	7.1	28	1	IEL1 MOMCH	P10296	momordica c
207	2	7.1	28	1	ITR3 LUFCY		luffa cylin
208	2	7.1	28	1	LECA IRIHO		iris hollan
209	2	7.1	28	1	LPFS ECOLI		escherichia
210	2	7.1	28	1	LPL_ECOLI	P09149	escherichia
211	2	7.1	28	1	LPL SALTI	Q8z9h9	salmonella
212	2	7.1	28	1	LPL SALTY	· · · · · · · · · · · · · · · · · · ·	salmonella
213	2	7.1	28	1	LPW SERMA	P03055	serratia ma
214	2	7.1	28	1	MAAI RAT		rattus norv
215	2	7.1	28	1	MCDP MEGPE		megabombus
216	2	7.1	28	1	MT2 BRANA		brassica na
217	2	7.1	28	1	NLT2 WHEAT		triticum ae
218	2	7.1	28	1	OBP1 HYSCR		hystrix cri
219	2	7.1	28	1	OMPA YERPS		yersinia ps
220	2	7.1	28	1	ORND PLAOR		placobdella
221	2	7.1	28	1	OST1 CHICK		gallus gall
222	2	7.1	28	1	PA22 MICNI		micrurus ni
223	2	7.1	28	1	PA23 MICNI		micrurus ni
224	2	7.1	28	1	PA2C PSEPO		pseudechis
225	2	7.1	28	1	PETL CYAPA		cyanophora
226	2	7.1	28	1	PHR METTM		methanobact
227	2	7.1	28	1	PHYB ASPFI		aspergillus
228	2	7.1	28	1	PP71 HCMVT		human cytom
229	2	7.1	28	1	PPOX BOVIN		bos taurus
230	2	7.1	28	1	RIP PLETU		pleurotus t
231	2	7.1	28	1	RS19 PHYS1		phytoplasma
232	2	7.1	28	1	SCX2 BUTSI		buthus sind
233	2	7.1	28	1	SLP1 LEIQH		leiurus qui
234	2	7.1	28	1	SMS2 ORENI		oreochromis
235	2	7.1	28	1	TXO2 AGEAP		agelenopsis
236	2	7.1	28	1	VAO PLEOS		pleurotus o
237	2	7.1	28	1	VIP ALLMI		alligator m
238	2	7.1	28	1	VIP DIDMA		didelphis m
239	2	7.1	28	1	VIP RANRI		rana ridibu
240	2	7.1	28	1	VIP SCYCA		scyliorhinu
241	2	7.1	28	1	VIP SHEEP		ovis aries
242	2	7.1	28	1	Y16P BPT4		bacteriopha
243	2	7.1	29	1	28KD TRIFO		tritrichomo
244	2	7.1	29	1	AMEL RABIT		oryctolagus
245	2	7.1	29	1	ATP9 PICPJ		pichia pijp
			=		_	~	

246	2	7.1		1	ATPA_BRYMA	P26965 bryopsis ma
247	2	7.1		1	BR2D_RANES	P40840 rana escule
248	2	7.1		1	BREE_RANES	P40841 rana escule
249	2	7.1		1	CERB_CERCA	P36191 ceratitis c
250	2	7.1		1	COA1_BPI22	P15413 bacteriopha
251	2	7.1		1	COXK_SHEEP	Q9tr28 ovis aries
252	2	7.1	29	1	CU36_LOCMI	P11737 locusta mig
253	2	7.1	29	1	CXO7_CONGE	P05483 conus geogr
254	2	7.1	29	1	CXOC_CONMA	P37300 conus magus
255	2	7.1		1	CXST_CONGE	P58844 conus geogr
256	2	7.1		1	DMD_RAT	P11530 rattus norv
257	2	7.1		1	GALA_ALLMI	P47215 alligator m
258	2	7.1		1	GALA_AMICA	P47214 amia calva
259	2	7.1	29	1	GALA_CHICK	P30802 gallus gall
260	2	7.1	29	1	GALA_ONCMY	P47213 oncorhynchu
261	2	7.1	29	1	GALA_RANRI	P47216 rana ridibu
262	2	7.1	29	1	GALA_SHEEP	P31234 ovis aries
263	2	7.1	29	1	GLUC_ANAPL	P01276 anas platyr
264	2	7.1	29	1	GLUC_CALMI	P13189 callorhynch
265	2	7.1	29	1	GLUC_CHIBR	P31297 chinchilla
266	2	7.1	29	1	GLUC_DIDMA	P18108 didelphis m
267	2	7.1	29	1	GLUC_PLAFE	P23062 platichthys
268	2	7.1	29	1	GLUC_RABIT	P25449 oryctolagus
269	2	7.1	29	1	GLUC TORMA	P09567 torpedo mar
270	2	7.1	29	1	H2B2_ECHES	P13282 echinus esc
271	2	7.1	29	1	HOXY_RHOOP	P22660 rhodococcus
272	2	7.1	29	1	HRJ BOTJA	P20416 bothrops ja
273	2	7.1	29	1	HS98_NEUCR	P31540 neurospora
274	2	7.1	29	1	IPYR DESVH	P19371 desulfovibr
275	2	7.1	29	1	ITH3_BOVIN	P56652 bos taurus
276	2	7.1	29	1	ITR1_CUCMA	P01074 cucurbita m
277	2	7.1	29	1	ITR1_LUFCY	P25849 luffa cylin
278	2	7.1	29	1	KDPF_ECOLI	P36937 escherichia
279	2	7.1	29	1	MDH_BURPS	P80536 burkholderi
280	2	7.1	29	1	MULR ECHML	P81798 echis multi
281	2	7.1	29	1	NUO1 SOLTU	P80267 solanum tub
282	2	7.1	29	1	PCG4 PACGO	P82417 pachycondyl
283	2	7.1	29	1	PETN_ANASP	Q913p6 anabaena sp
284	2	7.1	29	1	PETN_CHAGL	Q8ma13 chaetosphae
285	2	7.1	29	1	PETN CYAPA	P48258 cyanophora
286	2	7.1	29	1	PETN_GUITH	078498 guillardia
287	2	7.1	29	1	PETN_MARPO	P12177 marchantia
288	2	7.1	29	1	PETN_MESVI	Q9mus4 mesostigma
289	2 .	7.1	29	1	PETN_ODOSI	P49527 odontella s
290	2	7.1	29	1	PETN_PORPU	P51276 porphyra pu
291	2	7.1	29	1	PETN_PSINU	Q8wi23 psilotum nu
292	2	7.1	29	1	PETN_SKECO	096807 skeletonema
293	2	7.1	29	1	PETN_SYNEL	Q8dkn2 synechococc
294	2	7.1	29	1	PETN SYNY3	P72717 synechocyst
295	2	7.1	29	1	PK4 DICDI	P34103 dictyosteli
296	2	7.1	29	1	PSAF_SYNP6	P31083 synechococc
297	2	7.1	29	1	PSAK_SPIOL	P14627 spinacia ol
298	2	7.1	29	1	PSAM GUITH	078448 guillardia
299	2	7.1	29	1	PSAX SYNVU	P23320 synechococc
300	2	7.1	29	1	PSBI SYNVU	P12240 synechococc
301	2	7.1	29	1	RL15 HALCU	P05971 halobacteri
302	2	7.1	29	1	RL15 STRLI	P49975 streptomyce
			-		_	_ - _ -

						-		
303	2	7.1	29	1	RP54_CLOKL		clostridium	
304	2	7.1	29	1	RS7_METTE		methanosarc	
305	2	7.1	29	1	SDHB CLOPR	P80213	clostridium	
306	2	7.1	29	1	TL16 SPIOL	P81834	spinacia ol	
307	2	7.1	29	1	TLP ACTDE	P81370	actinidia d	
308	2	7.1	29	1	VARF VIOAR	P58451	viola arven	
309	2	7.1	29	1	Y15 BPT7		bacteriopha	
310	2	7.1	29	1	Y51 BPT3		bacteriopha	
				1	_		odontella s	
311	2	7.1	29		YCX4_ODOSI			
312	2	7.1	29	1	YCXC_ODOSI		odontella s	
313	2	7.1	30	1	2ENR_CLOTY		clostridium	
314	2	7.1	30	1	A1AT_CHIVI		chinchilla	
3 1 5	2	7.1	30	1	AATC_RABIT		oryctolagus	
316	2	7.1	30	1	AATM_RABIT	P12345	oryctolagus	
317	2	7.1	30	1	ACB1 DIGLA	P81624	digitalis l	
318	2	7.1	30	1	ANF RANRI	P09196	rana ridibu	
319	2	7.1	30	1	CALM LYTPI	P05935	lytechinus	
320	2	7.1	30	1	CBAL BACST		2 bacillus st	
321	2	7.1	30	1	CIRA CHAPA		chassalia p	
	2		30	1	CLPA PINPS		l pinus pinas	
322		7.1					corynebacte	
323	2	7.1	30	1	COAE_CORAM			
324	2	7.1	30	1	COXC_SOLTU) solanum tub	
325	2	7.1	30	1	CRG2_SCOWA		scoliodon w	
326	2	7.1	30	1	CX2A_CONBE		conus betul	
327	2	7.1	30	1	CX7A_CONTU	P5892	3 conus tulip	
328	2	7.1	30	1	CXK4 CONST	P5892	l conus stria	
329	2	7.1	30	1	CXOB CONPE	P56713	3 conus penna	
330	2	7.1	30	1	CXVB CONER		3 conus ermin	
331	2	7.1	30	1	CY35 DESAC		e desulfuromo	
332	2	7.1	30	1	CYH1 VIOHE		3 viola heder	
	2	7.1	30		CYO1 VIOOD) viola odora	
333				1			viola odora	
334	2	7.1	30	1	CYO2_VIOOD			
335	2	7.1	30	1	CYO3_VIOOD		5 viola odora	
336	2	7.1	30	1	CYO7_VIOOD		9 viola odora	
337	2	7.1	30	1	CAO8_A100D) viola odora	
338	2	7.1	30	1	CYO9_VIOOD		l viola odora	
339	2	7.1	30	1	CYOA_VIOOD	P5844	2 viola odora	
340	2	7.1	30	1	DEF2 MACMU	P8231	7 macaca mula	
341	2	7.1	30	1	DIDH COMTE	P8070	2 comamonas t	
342	2	7.1	30	1	DIU2 HYLLI	P8201	5 hyles linea	
343	2	7.1	30	1	DIU2 MANSE		3 manduca sex	
344	2	7.1	30	1	DMS3 PHYSA		9 phyllomedus	
345	2	7.1	30	1	END2 ONCKE		5 oncorhynchu	
							5 panulirus i	
346	2	7.1	30	1	FIBR_PANIN		_	
347	2	7.1	30	1	FMBB_BACNO		9 bacteroides	
348	2	7.1	30	1	FTN_BACFR		3 bacteroides	
349	2	7.1	30	1	GLUM_ANGAN		l anguilla an	
350	2	7.1	30	1	HCY2_HOMAM		7 homarus ame	
351	2	7.1	30	1	HETA RADMA	P5869	l radianthus	
352	2	7.1	30	1	нүра нүвра	P5844	5 hybanthus p	
353	2	7.1	30	1	IHFB RHILE		6 rhizobium l	
354	2	7.1	30	1	ITI1 LAGLE		l lagenaria l	
355	2	7.1	30	1	ITR1 CITLA		9 citrullus 1	
356	2	7.1	30	1	ITR1 MOMCH		4 momordica c	
	2		30		ITR1_MOMCH		1 ecballium e	
357		7.1		1			0 luffa cylin	
358	2	7.1	30	1	ITR2_LUFCY		_	
359	2	7.1	30	1	ITR3_CUCMC	P3204	1 cucumis mel	

	360	2	7.1	20	1	ITR3 MOMCO	D82410	momordica c
	360	2	7.1	30 30	1 1	ITR6 CYCPE		cyclanthera
	361	2				ITRO_CICFE		cyclanthera
	362	2	7.1	30	1	_		sus scrofa
	363	2	7.1	30	1	LAS1_PIG		
	364	2	7.1	30	1	LEAH_PHAVU		phaseolus v
	365	2	7.1	30	1	MDH_HELGE		heliobacter
	366	2	7.1	30	1	NU5M_PISOC		pisaster oc
	367	2	7.1	30	1	OTCC_AERPU		aeromonas p
	368	2	7.1	30	1	P2CO_ARTSP		arthrobacte
,	369	2	7.1	30	1	PCCA_MYXXA		myxococcus
	370	2	7.1	30	1	PCG2_PACGO		pachycondyl
	371	2	7.1	30	1	PCG3_PACGO		pachycondyl
	372	2	7.1	30	1	PCG5_PACGO		pachycondyl
	373	2	7.1	30	1	PETN_NEPOL		nephroselmi
	374	2	7.1	30	1	PLF4_RABIT		oryctolagus
	375	2	7.1	30	1	PLMS_SQUAC		squalus aca
	376	2	7.1	30	1	PMGY_CANAL		candida alb
	377	2	7.1	30	1	PSAM_CYACA	Q9tlx5	cyanidium c
	378	2	7.1	30	1	PSAM_MESVI	Q9mus2	mesostigma
	379	2	7.1	30	1	PYSD_METBA	P80524	methanosarc
	380	2	7.1	30	1	RIPS_MOMCO	P20655	momordica c
	381	2	7.1	30	1	RKGG LEPKE	P21587	lepidochely
	382	2	7.1	30	1	RNP ODOVI	P19640	odocoileus
	383	2	7.1	30	1	SCK2 TITSE	P08816	tityus serr
	384	2	7.1	30	1	SCX2 CENLI	P18927	centruroide
	385	2	7.1	30	1	SDHA CLOPR	P80212	clostridium
	386	2	7.1	30	1	TL1X SPIOL	P82537	spinacia ol
	387	2	7.1	30	1	TL29_SPIOL	P81833	spinacia ol
	388	2	7.1	30	1	TX2 HETVE	P58426	heteropoda
	389	2	7.1	30	1	UC35 MAIZE		zea mays (m
	390	2	7.1	30	1	UDDP SULAC		sulfolobus
	391	2	7.1	30	1	UP61 UPEIN		uperoleia i
	392	2	7.1	30	1	UP62_UPEIN		uperoleia i
	393	2	7.1	30	1	URE1 ECOLI		escherichia
	394	2	7.1	30	1	VAA1 EQUAR		equisetum a
	395	2	7.1	30	1	VAA1 PSINU		psilotum nu
	396	2	7.1	30	1	VAA2 EQUAR		equisetum a
	397	2	7.1	30	1	VAA2 PSINU		psilotum nu
	398	2	7.1	30	1	VATN BOVIN		bos taurus
	399	2	7.1	30	1	VG03 BPPF1		bacteriopha
	400	2	7.1	30	1	VPU HV1SC		human immun
	401	2	7.1	30	1	VTTA BPT3		bacteriopha
	402	2	7.1	30	1	Y161 TREPA		treponema p
		2	7.1	30	1	Y357 BORBU		borrelia bu
	403	2	7.1	30	1	Y425 BORBU		borrelia bu
	404	2	7.1	30	1	Y523 BORBU		borrelia bu
	405					Y573 TREPA		treponema p
	406	2	7.1	30	1	_		treponema p
	407	2	7.1	30	1	Y932_TREPA		-
	408	2	7.1	30	1	YCCB_ECOLI		escherichia
	409	2	7.1	31	1	A98A_DROME		drosophila
	410	2	7.1	31	1	ANP3_PAGBO		pagothenia
	411	2	7.1	31	1	BCAM_PIG		sus scrofa
	412	2	7.1	31	1	CEC1_PIG		sus scrofa
	413	2	7.1	31	1	CIRB_CHAPA		chassalia p
	414	2	7.1	31	1	COG5_BOVIN		bos taurus
	415	2	7.1	31	1	CTRP_PENMO		penaeus mon
	416	2	7.1	31	1	CTX2_CORVA	P82601	coremiocnem

417	2	7.1	31	1	CU54_LOCMI	P11738 locusta mig
418	2	7.1	31	1	CXMA_CONMR	P56708 conus marmo
419	2	7.1	31	1	CYLA_PSYLO	P56872 psychotria
420	2	7.1	31	1	CAO6 AIOOD	P58438 viola odora
421	2	7.1	31	1	CYOB_VIOOD	P58443 viola odora
422	2	7.1	31	1	DEF2 MESAU	P81466 mesocricetu
423	2	7.1	31	1	DIUX DIPPU	P82372 diploptera
424	2	7.1	31	1	ENDB CAMDR	P01203 camelus dro
425	2	7.1	31	1	ER29 BOVIN	P81623 bos taurus
425	2	7.1	31	1	GT SERMA	P22416 serratia ma
			31	1	GUN2 SCLSC	P21834 sclerotinia
427	2	7.1				P15872 triticum ae
428	2	7.1	31	1	H13_WHEAT	P81043 macropus eu
429	2	7.1	31	1	HBA_MACEU	the control of the co
430	2	7.1	31	1	HCY1_HOMAM	P82296 homarus ame
431	2	7.1	31	1	HCY2_MAISQ	P82303 maia squina
432	2	7.1	31	1	HEM2_PHAGO	P27687 phascolopsi
433	2	7.1	31	1	LC70_LACPA	P80959 lactobacill
434	2	7.1	31	1	LCCB_LEUME	P81052 leuconostoc
435	2	7.1	31	1	LPL BUCRP	Q53017 buchnera ap
436	2	7.1	31	1	LPRM ECOLI	P10739 escherichia
437	2	7.1	31	1	MALK PHOLU	P41124 photorhabdu
438	2	7.1	31	1	MDH STRAR	P19982 streptomyce
439	2	7.1	31	1	PETL ANASP	Q8yvq2 anabaena sp
	2	7.1	31	1	PETL ARATH	P56776 arabidopsis
440		7.1	31	1	PETL BETVU	P46612 beta vulgar
441	2					P56306 chlorella v
442	2	7.1	31	1	PETL_CHLVU	
443	2	7.1	31	1	PETL_GUITH	078468 guillardia
444	2	7.1	31	1	PETL_LOTJA	Q9bbr4 lotus japon
445	2	7.1	31	1	PETL_MAIZE	P19445 zea mays (m
446	2	7.1	31	1	PETL_MARPO	P12179 marchantia
447	2	7.1	31	1	PETL_MESVI	Q9mun4 mesostigma
448	2	7.1	31	1	PETL_NEPOL	Q9tky9 nephroselmi
449	2	7.1	31	1	PETL OENHO	Q9mtk4 oenothera h
450	2	7.1	31	1	PETL ORYSA	P12180 oryza sativ
451	2	7.1	31	1	PETL POPDE	020272 populus del
452	2	7.1	31	1	PETL PORPU	P51221 porphyra pu
453	2	7.1	31	1	PETL PSINU	Q8wi03 psilotum nu
454	2	7.1	31	1	PETL SPIOL	Q9m310 spinacia ol
455	2	7.1	31	1	PETL TOBAC	P12181 nicotiana t
456	2	7.1	31		PETL WHEAT	P58247 triticum ae
			31	1	PETH_WHEAT PETM CYACA	Q9tlr5 cyanidium c
457	2	7.1		1	PETM_CIACA PETN CYACA	Q9tlr6 cyanidium c
458	2	7.1	31	1		P23317 anabaena va
459	2	7.1	31	1	PSAK_ANAVA	
460	2	7.1	31	1	PSAM_CHLVU	P56314 chlorella v
461	2	7.1	31	1	PSAM_CYAPA	P48185 cyanophora
462	2	7.1	31	1	PSAM_SYNEL	P25903 synechococc
463	2	7.1	31	1	PSAM_SYNY3	P72986 synechocyst
464	2	7.1	31	1	PSBK_SYNVU	P19054 synechococc
465	2	7.1	31	1	PSBM_MESVI	Q9muq7 mesostigma
466	2	7.1	31	1	PSBT CHLRE	P37256 chlamydomon
467	2	7.1	31	1	PSBT_CHLVU	P56327 chlorella v
468	2	7.1	31	1	PSBT CYAPA	P48109 cyanophora
469	2	7.1	31	1	PSBT_EUGGR	P20176 euglena gra
470	2	7.1	31	1	PSBT MESVI	Q9muv6 mesostigma
471	2	7.1	31	1	PSBT PORPU	P51323 porphyra pu
471	2	7.1	31	1	PYSG METBA	P80523 methanosarc
	2				RECX METCL	P37865 methylomona
473	4	7.1	31	1	KECA_METCH	137003 meerry romoria

						B10056 Links
474	2	7.1	31	1	RL21_STRTR	P48956 streptococc
475	2	7.1	31	1	SARL_HUMAN	000631 homo sapien
476	2	7.1	31	1	SARL_MOUSE	Q9cqd6 mus musculu
477	2	7.1	31	1	SARL_RABIT	P42532 oryctolagus
478	2	7.1	31	1	SC37_MESMA	P83407 mesobuthus
479	2	7.1	31	1	SODC_STRHE	P81163 striga herm
480	2	7.1	31	1	Y191_BORBU	O51209 borrelia bu
481	2	7.1	31	1	Y603_ARCFU	O29652 archaeoglob
482	2	7.1	31	1	Y822 BORBU	O51762 borrelia bu
483	2	7.1	32	1	ADHR DROYA	P28487 drosophila
484	2	7.1	32	1	APL3 DIAGR	P81471 diatraea gr
485	2	7.1	32	1	ATPO PIG	P80021 sus scrofa
486	2	7.1	32	1	ATP7 SPIOL	P80088 spinacia ol
487	2	7.1	32	1	ATPO_SPIOL	P80087 spinacia ol
488	2	7.1	32	1	B4G1 RAT	P80225 r beta-1,4-
489	2	7.1	32	1	CAAP MICEC	P21162 micromonosp
490	2	7.1	32	1	CALO BOVIN	P01260 bos taurus
	2	7.1	32	1	CALO PIG	P01259 sus scrofa
491	2	7.1	32	1	CAPP METEX	O49136 methylobact
492			32	1	CEC OIKKI	P83420 oiketicus k
493	2	7.1			COA1 BPIF1	080295 bacteriopha
494	2	7.1	32	1	_	P03676 bacteriopha
495	2	7.1	32	1	COA1_BPIKE	P03677 bacteriopha
496	2	7.1	32	1	COA2_BPFD	-
497	2	7.1	32	1	COA2_BPIF1	080296 bacteriopha
498	2	7.1	32	1	CRP_PLEPL	P12245 pleuronecte
499	2	7.1	32	1	CY31_DESAC	P81078 desulfuromo
500	2	7.1	32	1	CYBL_RHOGR	P32953 rhodotorula
501	2	7.1	32	1	CYSB_FASHE	P80529 fasciola he
502	2	7.1	32	1	ER29_CHICK	P81628 gallus gall
503	2	7.1	32	1	ER29_TRIVU	P81629 trichosurus
504	2	7.1	32	1	FER_PORCR	P18821 porphyridiu
505	2	7.1	32	1	FF21_SALEN	P55224 salmonella
506	2	7.1	32	1	$FRIH_ANAPL$	P80145 anas platyr
507	2	7.1	32	1	GHR4_RAT	P33581 rattus norv
508	2	7.1	32	1	GLB4_LAMSP	P20413 lamellibrac
509	2	7.1	32	1	GT82 DICLA	P82608 dicentrarch
510	2	7.1	32	1	H2AZ ONCMY	P22647 oncorhynchu
511	2	7.1	32	1	HCYC CHEDE	P83172 cherax dest
512	2	7.1	32	1	IAPP BOVIN	Q28207 bos taurus
513	2	7.1	32	1	IAPP SAGOE	Q28934 saguinus oe
514	2	7.1	32	1	IAPP SHEEP	Q28605 ovis aries
515	2	7.1	32	1	ITR2 CUCSA	P10291 cucumis sat
516	2	7.1	32	1	ITR3_CUCPE	P10293 cucurbita p
517	2	7.1	32	1	ITR4 CUCMA	P07853 cucurbita m
518	2	7.1	32	1	LEC DOLAX	P02875 dolichos ax
519	2	7.1	32	1	LPID ECOLI	P03060 escherichia
520	2	7.1	32	1	LPID EDWTA	P08140 edwardsiell
521	2	7.1	32	1	LPIV ECOLI	P03061 escherichia
			32		MDH NITAL	P10887 nitzschia a
522 523	2	7. 1		1	NEUB PIG	P01297 sus scrofa
523 524	2	7.1	32	1		P20739 anas platyr
524	2	7.1	32	1	OVOS_ANAPL	P18997 agkistrodon
525 526	2	7.1	32	1	PA22_AGKHP	P43318 rhopilema n
526	2	7.1	32	1	PA2_RHONO	P50369 chlamydomon
527	2	7.1	32	1	PETL_CHLRE	078499 guillardia
528	2	7.1	32	1	PETM_GUITH	
529	2	7.1	32	1	PETM_PORPU	P51275 porphyra pu P13062 desulfovibr
530	2	7.1	32	1	PHNS_DESMU	PI3002 desulfOVIDE

							al Constitute
531	2	7.1	32	1	PHSS_DESBN		lesulfovibr
532	2	7.1	32	1	PRT4_SCYCA		cyliorhinu
533	2	7.1	32	1	PRTE_HALME		nalobacteri
534	2	7.1	32	1	PSBQ_PEA		oisum sativ
535	2	7.1	32	1	PSBT_CYACA		cyanidium c
536	2	7.1	32	1	PSBT_GUITH		guillardia
537	2	7.1	32	1	PSBT_ODOSI		odontella s
538	2	7.1	32	1	PSBZ_EUGAN		euglena ana
539	2	7.1	32	1	PSBZ EUGGA		euglena gra
540	2	7.1	32	1	PSBZ_EUGMY		euglena myx
541	2	7.1	32	1	PSBZ_EUGST		euglena ste
542	2	7.1		1	PSBZ EUGVI	Q8s187 e	euglena vir
543	2	7.1		1	RIP2 PHYDI	P34967 p	phytolacca
544	2	7.1		1	RS19 YEREN	Q56847 y	yersinia en
545	2	7.1		1	SCK2 CENNO	P58504 c	centruroide
546	2	7.1		1	TAT SIVM2	P05912 s	simian immu
	2	7.1		1	TRYP PENMO		penaeus mon
547	2	7.1		1	TX29 PHONI	_	ohoneutria
548				1	TXP7 APTSC	_	aptostichus
549	2	7.1		1	Y169 TREPA		treponema p
550	2	7.1		1	Y433 BORBU		borrelia bu
551	2	7.1		1	YCPG MASLA		mastigoclad
552	2	7.1			_		caenorhabdi
553	2	7.1	32	1	YL55_CAEEL		yersinia en
554	2	7.1		1	YSCA_YEREN		infectious
555	2	7.1	32	1	YTK3_ILTVT		dictyocaulu
556	2	7.1	33	1	ACT_DICVI		pichia past
557	2	7.1	33	1	ALOX_PICPA		
558	2	7.1	33	1	ANP3_MYOSC		myoxocephal
559	2	7.1	33	1	ANP5_MYOAE		myoxocephal
560	2	7.1	33	1	ATP7_SOLTU		solanum tub
561	2	7.1	33	1	BR2A_RANES		rana escule
562	2	7.1	33	1	BR2B_RANES		rana escule
563	2	7.1	33	1	BR2E_RANES		rana escule
564	2	7.1	33	1	BR2_RANBP		rana brevip
565	2	7.1	33	1	CECB_HELVI		heliothis v
566	2	7.1	33	1	CECC_HELVI		heliothis v
567	2	7.1	33	1	COA1_BPFD		bacteriopha
568	2	7.1	33	1	COXT_ONCWA		oncorhynchu
569	2	7.1	33	1	CU89_HUMAN		homo sapien
570	2	7.1	33	1	CXO_CONVE		conus ventr
571	2	7.1	33	1	DBB2_DOLAU		dolabella a
572	2	7.1	33	1	DEF4_MESAU		mesocricetu
573	2	7.1	33	1	DHE3 PIG		sus scrofa
574	2	7.1	33	1	FABI RHASA	P81175	rhamdia sap
575	2	7.1	33	1	FER PORAE	P18820	porphyridiu
576	2	7.1	33	1	GAST CAVPO	P06885	cavia porce
577	2	7.1	33	1	GAST CHIBR	P10034	chinchilla
578	2	7.1	33	1	GGN2 RANRU	P80396	rana rugosa
579	2	7.1	33	1	GGN3 RANRU		rana rugosa
580	2	7.1	33	1	GLU2 ORENI		oreochromis
581	2	7.1	. 33	1	HF40_MAIZE		zea mays (m
581	2	7.1	33	1	HOXU RHOOP		rhodococcus
		$7.1 \\ 7.1$	33	1	LPPY_SALTY		salmonella
583	2		33	1	LPRH ECOLI		escherichia
584	2	7.1			LYC2 HORSE		equus cabal
585	2	7.1	33	1			streptomyce
586	2	7.1	33	1	MHAA_STRCH		mytilus edu
587	2	7.1	33	1	MYMY_MYTED	LOTOIT	, 51145 544

588	2	7.1	33	1	OTCC PSEPU	P11727	pseudomonas
589	2	7.1	33	1	PAP1 PARPV		pardachirus
590	2	7.1	33	1	PAP2 PARPV	P23067	pardachirus
591	2	7.1	33	1	PAP3 PARPV	P81866	pardachirus
592	2	7.1	33	1	PAP4 PARMA		pardachirus
593	2	7.1	33	1	PAP5 PARMA		pardachirus
594	2	7.1	33	1	PEN3 ADECU		canine aden
595	2	7.1	33	1	PETM CYAPA	P48366	cyanophora
596	2	7.1	33	1	PETM SYNEL		synechococc
597	2	7.1	33	1	PK1 DICDI		dictyosteli
598	2	7.1	33	1	PK5 DICDI		dictyosteli
599	2	7.1	33	1	PRTL ECOLI		escherichia
600	2	7.1	33	1	PSAI SPIOL		spinacia ol
601	2	7.1	33	1	PSAK CUCSA		cucumis sat
602	2	7.1	33	1	PSBT ARATH		arabidopsis
603	2	7.1	33	1	PSBT MAIZE		zea mays (m
604	2	7.1	33	1	RL21 XENLA		xenopus lae
605	2	7.1	33	1	RL26 XENLA		xenopus lae
606	2	7.1	33	1	RL28 XENLA		xenopus lae
607	2	7.1	33	1	RL4 HALCU		halobacteri
608	2	7.1	33	1	RPOC HETCA		heterosigma
609	2	7.1	33	1	RRPO BPBZ1		bacteriopha
610	2	7.1	33	1	RS4 XENLA		xenopus lae
611	2	7.1	33	1	RT25 BOVIN		bos taurus
612	2	7.1	33	1	RUGA RANRU		rana rugosa
613	2	7.1	33	1	SC63 CANFA		canis famil
614	2	7.1	33	1	T1F PARTE		paramecium
615	2	7.1	33	1	TXH1 SELHU		selenocosmi
616	2	7.1	33	1	TXN3 SELHA		selenocosmi
617	2	7.1 7.1	33	1	VT1B RAT		rattus norv
618	2	7.1	33	1	Y656 TREPA		treponema p
619	. 2	7.1	33	1	Y849 BORBU		borrelia bu
620	2	7.1	33	1	YC12 CHLRE		chlamydomon
621	2	7.1	33	1	YC12 EUGGR		euglena gra
622	2	7.1	33	1	YC12_BOGGR		marchantia
623	2	7.1	33	1	YC12 MESVI		mesostigma
624	2	7.1	33	1	YC12 NEPOL		nephroselmi
625	2	7.1	33	1	YC12_NETOB	· · · · · · · · · · · · · · · · · · ·	pinus thunb
626	2	7.1	33	1	YL74 ARCFU		archaeoglob
627		7.1	33		YLCH ECOLI		escherichia
628	2 2	7.1	34	1 1	AMP2_CHICK		gallus gall
629	2	7.1	34	1	ASPG PIG		sus scrofa
630	2	7.1	34	1	BR2C RANES		rana escule
631	2	7.1	34	1	COL CHICK		gallus gall
632	2	7.1	34	1	COXA THETH		thermus the
633	2	7.1	34	1	COXA_THETH		thunnus obe
634	2	7.1 7.1	34	1	CXGS CONGE		conus geogr
635	2	7.1	34		DEF2 RABIT		oryctolagus
				1			phyllomedus
636	2 2	7.1 7.1	34	1	DMS1_PHYSA		phyllomedus
637	2		34	1	DMS2_PHYSA ECAB ECTTU		ectatomma t
638		7.1 7.1	34	1	_		
639 640	2		34	1	EGGR_APLCA		aplysia cal
640	2	7.1	34	1	EM1_ENSMI		ensis minor
641	2	7.1	34	1	GAST_CAPHI		capra hircu
642	2	7.1	34	1	GUN1_SCLSC		sclerotinia strongyloce
643	2	7.1	34	1	H1S_STRPU		
644	2	7.1	34	1	HEMO_CHICK	P20057	gallus gall

645	2	7.1	34	1	HS7S_CUCMA	P31082	cucurbita m	
646	2.	7.1	34	1	ITR1 MOMCO	P82408	momordica c	
647	2	7.1	34	1	ITR2 MOMCO	P82409	momordica c	
648	2	7.1	34	1	LPTN PROVU	P28779	proteus vul	
649	2	7.1	34	1	M44E HUMAN		homo sapien	
650	2	7.1	34	1	MYTA MYTED		mytilus edu	
651	2	7.1	34	1	MYTB MYTED		mytilus edu	
652	2	7.1	34	1	PETM ANASP		anabaena sp	
	2	7.1	34	1	PSAI LOTJA		lotus japon	
653					_			
654	2	7.1	34	1	PSAI_OENHO		oenothera h	
655	2	7.1	34	1	PSBM_ARATH		arabidopsis	
656	2	7.1	34	1	PSBM_CHAGL		chaetosphae	
657	2	7.1	34	1	PSBM_CHLRE		chlamydomon	
658	2	7.1	34	1	PSBM_MAIZE		zea mays (m	
659	2	7.1	34	1	PSBM_MARPO		marchantia	
660	2	7.1	34	1	PSBM_OENHO	Q9mtm8	oenothera h	
661	2	7.1	34	1	PSBM_PEA	P34833	pisum sativ	
662	2	7.1	34	1	PSBM PSINU	Q8wi22	psilotum nu	
663	2	7.1	34	1	PSBM WHEAT	Q9xps6	triticum ae	
664	2	7.1	34	1	PSBT TOBAC	P12184	nicotiana t	
665	2	7.1	34	1	PSPC BOVIN		bos taurus	
666	2	7.1	34	1	PSPC CANFA		canis famil	
667	2	7.1	34	1	PTU1 PEITU		peirates tu	
668	2	7.1	34	1	PYSB METBA		methanosarc	
669	2	7.1	34	1	RNL1 PIG		sus scrofa	
	2	7.1		1	_		scorpio mau	
670			34		SCXM_SCOMA			
671	2	7.1	34	1	SMS_MYXGL		myxine glut	
672	2	7.1	34	1	THEM_MALSU		malbranchea	
673	2	7.1	34	1	TX1_SCOGR		scodra gris	
674	2	7.1	34	1	TX33_PHONI		phoneutria	
675	2	7.1	34	1	TXP5_BRASM		brachypelma	
676	2	7.1	34	1	VLYS_BPM1		bacteriopha	
677	2	7.1	34	1	VPU_HV1W2	P08808	human immun	
678	2	7.1	34	1	Y05J_BPT4	P39239	bacteriopha	
679	2	7.1	34	1	Y224_TREPA	083253	treponema p	
680	2	7.1	34	1	Y848_BORBU	051788	borrelia bu	
681	2	7.1	34	1	Y870 HAEIN	P44065	haemophilus	
682	2	7.1	34	1	Y967 HAEIN	P44086	haemophilus	
683	2	7.1	34	1	YC12 PORPU		porphyra pu	
684	2	7.1	34	1	YC12 SKECO		skeletonema	
685	2	7.1	34	1	YMIA AGRTU		agrobacteri	
686	2	7.1	34	1	Z33B HUMAN		homo sapien	
687	2	7.1	35	1	ADO1 AGRDO		agriosphodr	
688	2	7.1	35	1	C550 BACHA		bacillus ha	
689	2	7.1	35	1	CECA HELVI		heliothis v	
690	2	7.1	35	1	CECB ANTPE		antheraea p	
691	2	7.1	35		CHI1 CASSA		castanea sa	
				1	_		sus scrofa	
692	2	7.1	35	1	CPI2_PIG			
693	2	7.1	35	1	D3HI_RABIT		oryctolagus	
694	2	7.1	35	1	ERFK_KLEAE		klebsiella	
695	2	7.1	35	1	EXE2_HELSU		heloderma s	
696	2	7.1	35	1	FAS_CAPHI		capra hircu	
697	2	7.1	35	1	GBGU_MOUSE		mus musculu	
698	2	7.1	35	1	GP58_BPSP1		bacteriopha	
699	2	7.1	35	1	GRDB_CLOPU		clostridium	
700	2	7.1	35	1	HCYA_CHEDE		cherax dest	
701	2	7.1	35	1	HMWC_DESGI	P38588	desulfovibr	

	_						
702	2	7.1	35	1	IAAC_HORVU		hordeum vul
703	2	7.1	35	1	KPPR_PINPS		pinus pinas
704	2	7.1	35	1	LCGB_LACLA	P36962	lactococcus
705	2	7.1	35	1	NEF HV1H3	P05854	human immun
706	2	7.1	35	1	PBP1 LYMDI	P34176	lymantria d
707	2	7.1	35	1	PBP2 LYMDI		lymantria d
708	2	7.1	35	1	PBP HYACE		hyalophora
709	2	7.1	35	1	PBP ORGPS		orgyia pseu
	2						cyanidium c
710		7.1	35	1	PETG_CYACA		
711	2	7.1	35	1	PHI1_MYTCA		mytilus cal
712	2	7.1	35	1	PSAI_CYAPA		cyanophora
713	2	7.1	35	1	PSBT_MARPO		marchantia
714	2 ·	7.1	35	1	PSBT_OENHO		oenothera h
715	2	7.1	35	1	PSBT_ORYSA	P12183	oryza sativ
716	2	7.1	35	1	PSBT PINTH	P41625	pinus thunb
717	2	7.1	35	1	PSPC PIG	P15785	sus scrofa
718	2	7.1	35	1	RL15 SYNP7	P31160	synechococc
719	2	7.1	35	1	RL32 HALCU		halobacteri
720	2	7.1	35	1	SCKK TITSE		tityus serr
721	2	7.1	35	1	SCX1 BUTSI		buthus sind
							
722	2	7.1	35	1	SCX5_BUTEU		buthus eupe
723	2	7.1	35	1	SCXP_ANDMA		androctonus
724	2	7.1	35	1	SMS_LAMFL	_	lampetra fl
725	2	7.1	35	1	SPRC_PIG		sus scrofa
726	2	7.1	35	1	THPA_THADA	P21381	thaumatococ
727	2	7.1	35	1	TMTX_MESTA	Q9bn12	mesobuthus
728	2	7.1	35	1	TX1 GRASP	P56852	grammostola
729	2	7.1	35	1	TX1 THRPR		thrixopelma
730	2	7.1	35	1	TX2 GRASP		grammostola
731	2	7.1	35	1	TXAG AGEOP		agelena opu
732	2	7.1	35	1	TXH4 SELHU		selenocosmi
733	2	7.1	35	1	TXKS STOHE		stoichactis
					-		
734	2	7.1	35	1	TXN4_SELHA		selenocosmi
735	2	7.1	35	1	VL3_PAPVD		deer papill
736	2	7.1	35	1	VORB_METTM		methanobact
737	2	7.1	35	1	VSPA_CERVI		cerastes vi
738	2	7.1	35	1	WSP7_PINPS	P81086	pinus pinas
739	2	7.1	35	1	Y210 HAEIN	P43964	haemophilus
740	2	7.1	35	1	Y320 BORBU	051299	borrelia bu
741	2	7.1	35	1	Y37 BPT3	P20325	bacteriopha
742	2	7.1	35	1	Y845 BORBU		borrelia bu
743	2	7.1	35	1	Y847 BORBU		borrelia bu
744	2	7.1	35	1	YC12 CYACA		cyanidium c
	2	7.1	35	1			archaeoglob
745					YC69_ARCFU		
746	2	7.1	35	1	YRKM_BACSU		bacillus su
747	2	7.1	36	1	AMPL_PIG		sus scrofa
748	2	7.1	36	1	ANFV_ANGJA		anguilla ja
749	2	7.1	36	1	C3L1_BOVIN		bos taurus
750	2	7.1	36	1	CBBA_NITVU		nitrobacter
751	2	7.1	36	1	CECD_ANTPE		antheraea p
752	2	7.1	36	1	CYC7_GEOME	P81894	geobacter m
753	2	7.1	36	1	F4RE METOG		methanogeni
754	2	7.1	36	1	GLU1 ORENI		oreochromis
755	2	7.1	36	1	GLUC HYDCO		hydrolagus
756	2	7.1	36	1	H1L5 ENSMI		ensis minor
757	2	7.1	36	1	—		pongo pygma
					HBB_PONPY		
758	2	7.1	36	1	IOB1_ISYOB	F38609	isyndus obs

	_		2.5		MAD GMDGD	T	NE 2 2 0 0	atrontomuca	
759	2	7.1	36	1	KAD_STRGR			streptomyce rhodopseudo	
760	2	7.1	36 36	1	LHG_RHOVI			sus scrofa	
761	2	7.1	36 36	1	LYOX_PIG			saccharomyc	
762	2	7.1	36	1	MFA1_YEAST			dactylis gl	
763	2	7.1	36	1	MPG2_DACGL MYPC RAT	-	~	rattus norv	
764	2	7.1	36 36	1	NEUH CARCA	_		cardisoma c	
765	2 2	7.1 7.1	36	1	NEUY_GADMO			gadus morhu	
766 767	2	7.1	36	1	NEUY ONCMY			oncorhynchu	
767 768	2	7.1	36	1	NEUY_RABIT			oryctolagus	
769	2	7.1	36	1	NEUY_RANRI			rana ridibu	
770	2	7.1	36	1	NLTP PINPI			pinus pinea	
771	2	7.1	36	1	NPF ARTTR			artioposthi	
772	2	7.1	36	1	NUCM SOLTU			solanum tub	
773	2	7.1	36	1	OST2 CHICK	I	80897	gallus gall	
774	2	7.1	36	1	OSTS YEAST	Ç	299380	saccharomyc	
775	2	7.1	36	1	PAHO ALLMI	F	206305	alligator m	
776	2	7.1	36	1	PAHO CHIBR	I	P41519	chinchilla	
777	2	7.1	36	1	PAHO LARAR	I	P 4133 7	larus argen	
778	2	7.1	36	1	PAHO_RANCA	I	P15427	rana catesb	
779	2	7.1	36	1	PAHO_RANTE	I	P31229	rana tempor	
780	2	7.1	36	1	PAHO_STRCA			struthio ca	
781	2	7.1	36	1	PETM_SYNY3			synechocyst	
782	2	7.1	36	1	PGKH_CHLFU			chlorella f	
783	2	7.1	36	1	PMY_PETMA			petromyzon	
784	2	7.1	36	1	PSAH_PEA			pisum sativ	
785	2	7.1	36	1	PSAI_ANGLY			angiopteris	
786	2	7.1	36	1	PSAI_CARCL			carpobrotus chaetosphae	
787	2	7.1	36	1	PSAI_CHAGL			chlorella v	
788	2	7.1	36 36	1	PSAI_CHLVU			cyanidium c	
789	2 2	7.1 7.1	36 36	1 1	PSAI_CYACA PSAI GUITH			guillardia	
790 791	2	7.1	36	1	PSAI_GOITH			hordeum vul	
792	2	7.1	36	1	PSAI MAIZE			zea mays (m	
793	2	7.1	36	1	PSAI MARPO			marchantia	
794	2	7.1	36	1	PSAI MESVI		Q9muq4	mesostigma	
795	2	7.1	36	1	PSAI NEPOL	(Q9t112	nephroselmi	
796	2	7.1	36	1	PSAI ORYSA	•	P12186	oryza sativ	
797	2	7.1	36	1	PSAI_PICAB			picea abies	
798	2	7.1	36	1	PSAI_PORPU			porphyra pu	
799	2	7.1	36	1	PSAI_PSINU			psilotum nu	
800	2	7.1	36	1	PSAI_WHEAT			triticum ae	
801	2	7.1	36	1	PSBI_ARATH			arabidopsis	
802	2	7.1	36	1	PSBI_HORVU			hordeum vul	
803	2	7.1	36	1	PSBI_MARPO			marchantia	
804	2	7.1	36	1	PSBI_ORYSA			oryza sativ pinus thunb	
805	2	7.1	36	1	PSBI_PINTH			pseudotsuga	
806	2	7.1	36 36	1	PSBI_PSEMZ			chlorella v	
807	2 2	7.1	36 36	1 1	PSBM_CHLVU PSBY ODOSI			odontella s	
808 809	2	7.1 7.1	36 36	1	PSBY PORPU			porphyra pu	
809 810	2	7.1	36	1	PYY AMICA			amia calva	
811	2	7.1	36	1	PYY LEPSP			lepisosteus	
812	2	7.1	36	1	PYY MYOSC			myoxocephal	
813	2	7.1	36	1	PYY ONCKI			oncorhynchu	
814	2	7.1	36	1	PYY ORENI			oreochromis	
815	2	7.1	36	1	PYY_PIG		P01305	sus scrofa	

						POOCOC
816	2	7.1	36	1	PYY_RAJRH	P29206 raja rhina
817	2	7.1	36	1	PYY_RANRI	P29204 rana ridibu
818	2	7.1	36	1	R18A_BOVIN	P82919 bos taurus
819	2	7.1	36	1	RET4_CHICK	P30370 gallus gall
820	2	7.1	36	1	RL6_HALCU	P05968 halobacteri
821	. 2	7.1	36	1	SCK2_CENLL	P45630 centruroide
822	2	7.1	36	1	SCK3_LEIQH	P45660 leiurus qui
823	2	7.1	36	1	SCX1_BUTEU	P15220 buthus eupe
824	2	7.1	36	1	SCX8_BUTOC	P04098 buthus occi
825	2	7.1	36	1	SCXL_LEIQU	P45639 leiurus qui
826	2	7.1	36	1	SPYY_PHYBI	P80952 phyllomedus
827	2	7.1	36	1	TAEK ACTEQ	P81897 actinia equ
828	2	7.1	36	1	TERN PSEUS	P82321 pseudacanth
829	2	7.1	36	1	TLN1 CHICK	P54939 gallus gall
830	2	7.1	36	1	TX1B AGEAP	P15970 agelenopsis
831	2	7.1	36	1	TXAM METSE	P11495 metridium s
832	2	7.1	36	1	TXD3 PARLU	P83258 paracoelote
833	2	7.1	36	1	Y16L BPT4	P39244 bacteriopha
834	2	7.1	36	1	Y260 BACHD	Q9kq53 bacillus ha
835	2	7.1	36	1	Y609 ARCFU	029646 archaeoglob
836	2	7.1	36	1	Y699 TREPA	083697 treponema p
	2	7.1	36	1	YC12 CYAPA	P48256 cyanophora
837	2		36	1	YG50 HAEIN	P44281 haemophilus
838		7.1			YRKG BACSU	P54434 bacillus su
839	2	7.1	36	1		P14592 plasmodium
840	2	7.1	37	1	24KD_PLACH	P83138 malva parvi
841	2	7.1	37	1	AFP4_MALPA	
842	2	7.1	37	1	ANP3_PSEAM	P02733 pseudopleur
843	2	7.1	37	1	ATPO_SOLTU	P80504 solanum tub
844	2	7.1	37	1	B2MG_ORENI	Q03423 oreochromis
845	- 2	7.1	37	1	CAL1_PIG	P30880 sus scrofa
846	2	7.1	37	1	CAL1_SHEEP	P30881 ovis aries
847	2	7.1	37	1	CALR_RANRI	P31888 rana ridibu
848	2	7.1	37	1	CEC2_MANSE	P14662 manduca sex
849	2	7.1	37	1	CEC3_MANSE	P14663 manduca sex
850	2	7.1	37	1	CEC4_MANSE	P14664 manduca sex
851	2	7.1	37	1	CG2S_LUPAN	P09930 lupinus ang
852	2	7.1	37	1	CHCD_ANTPO	P08931 antheraea p
853	2	7.1	37	1	CUP4_SARBU	P14486 sarcophaga
854	2	7.1	37	1	DIU1 TENMO	P56618 tenebrio mo
855	2	7.1	37	1	ECAA ECTTU	P49343 ectatomma t
856	2	7.1	37	1	F13A BOVIN	P12260 bos taurus
857	2	7.1	37	1	GHR3 RAT	P33580 rattus norv
858	2	7.1	37	1	HCYB CANPG	P83175 cancer pagu
859	2	7.1	37	1	HOXF RHOOP	P22658 rhodococcus
860	2	7.1	37	1	LCNM LACLA	P83002 lactococcus
861	2	7.1	37	1	LPPY SERMA	P19937 serratia ma
862	2	7.1	37	1	MAUR PARVE	Q56462 paracoccus
863	2	7.1	37	1	ME20 EUPRA	P26888 euplotes ra
864	2	7.1	37	1	ME22 EUPRA	P58548 euplotes ra
865	2	7.1	3 <i>7</i> 37	1	MIBP PSESP	P04576 pseudomonas
	2	7.1 7.1	3 <i>1</i> 37	1	NLT3 VITSX	P80273 vitis sp. (
866			37 37	1	NUFM SOLTU	P80266 solanum tub
867	2	7.1				P83248 oxyopes kit
868	2	7.1	37	1	OP2A_OXYKI	P83240 Oxyopes kit P83250 oxyopes kit
869	2	7.1	37	1	OP2C_OXYKI	
870	2	7.1	37	1	OP2D_OXYKI	P83251 oxyopes kit
871	2	7.1	37	1	PETG_ANASP	P58246 anabaena sp
872	2	7.1	37	1	PETG_ANAVA	Q913p7 anabaena va

				_		P56775 arabidopsis
873	2	7.1	37	1	PETG_ARATH	
874	2	7.1	37	1	PETG_CHAGL	Q8m9y4 chaetosphae
875	2	7.1	37	1	PETG_CHLEU	P46304 chlamydomon
876	2	7.1	37	1	PETG_CHLRE	Q08362 chlamydomon
877	2	7.1	37	1	PETG_CHLVU	P56305 chlorella v
878	2	7.1	37	1	PETG_CUSRE	P30398 cuscuta ref
879	2	7.1	37	1	PETG_CYAPA	P14236 cyanophora
880	2	7.1	37	1	PETG_EUGGR	P30396 euglena gra
881	2	7.1	37	1	PETG_GUITH	078505 guillardia
882	2	7.1	37	1	PETG_MARPO	P12120 marchantia
883	2	7.1	37	1	PETG_MESVI	Q9mun3 mesostigma
884	2	7.1	37	1	PETG_NEPOL	Q9tky8 nephroselmi
885	2	7.1	37	1	PETG_ODOSI	P49470 odontella s
886	2	7.1	37	1	PETG ORYSA	P12121 oryza sativ
887	2	7.1	37	1	PETG PINTH	P41614 pinus thunb
888	2	7.1	37	1	PETG PORPU	P51318 porphyra pu
889	2	7.1	37	1	PETG PSINU	Q8wi02 psilotum nu
890	2	7.1	37	1	PETG SKECO	096811 skeletonema
891	2	7.1	37	1	PETG SYNEL	Q8dki2 synechococc
892	2	7.1	37	1	PETG SYNP7	Q9z3g1 synechococc
893	2	7.1	37	1	PIIL ACHLY	P81720 achromobact
894	2	7.1	37	1	PIP7 BOVIN	P21671 bos taurus
895	2	7.1	37	1	PRF1 RAT	P18889 rattus norv
	2	7.1	37	1	PSBL ARATH	P29301 arabidopsis
896			37	1	PSBL ORYSA	P12166 oryza sativ
897	2	7.1	37	1	PSBM_DINTH	P41608 pinus thunb
898	2	7.1			PSBY CYACA	O19893 cyanidium c
899	2	7.1	37	1		078433 guillardia
900	2	7.1	37	1	PSBY_GUITH	P29203 gallus gall
901	2	7.1	37	1	PYY_CHICK	P24355 astasia lon
902	2	7.1	37	1	RK36_ASTLO	P56360 chlorella v
903	2	7.1	37	1	RK36_CHLVU	Q9tlu9 cyanidium c
904	2	7.1	37	1	RK36_CYACA	
905	2	7.1	37	1	RK36_CYAPA	P48131 cyanophora
906	2	7.1	37	1	RK36_EUGGR	P21532 euglena gra
907	2	7.1	37	1	RK36_NEPOL	Q9tl26 nephroselmi
908	2	7.1	37	1	RK36_ODOSI	P49568 odontella s
909	2	7.1	37	1	RK36_PORPU	P51296 porphyra pu
910	2	7.1	37	1	RL36_AQUAE	066487 aquifex aeo
911	2	7.1	37	1	RL36_BACHD	050631 bacillus ha
912	2	7.1	37	1	RL36_BACSU	P20278 bacillus su
913	2	7.1	37	1	RL36_BORBU	051452 borrelia bu
914	2	7.1	37	1	RL36_CAMJE	Q9pm84 campylobact
915	2	7.1	37	1	RL36_CLOAB	Q97ek2 clostridium
916	2	7.1	37	1	RL36_DEIRA	Q9rsk0 deinococcus
917	2	7.1	37	1	RL36_HELPJ	Q9zjt1 helicobacte
918	2	7.1	37	1	RL36_HELPY	P56058 helicobacte
919	2	7.1	37	1.	RL36 LEPIN	Q9xd13 leptospira
920	2	7.1	37	1	RL36_LISMO	Q927n0 listeria mo
921	2	7.1	37	1	RL36 MYCGE	P47420 mycoplasma
922	2	7.1	37	1	RL36 MYCLE	Q9x7a2 mycobacteri
923	2	7.1	37	1	RL36 MYCPU	Q98q05 mycoplasma
924	2	7.1	37	1	RL36 MYCSP	P38015 mycoplasma
925	2	7.1	37	1	RL36 MYCTU	P45810 mycobacteri
926	2	7.1	37	1	RL36 STAAM	Q99s42 staphylococ
927	2	7.1	37	1	RL36_STRCO	086772 streptomyce
927	2	7.1	37	1	RL36_SIRCO	024707 synechococc
929	2	7.1	37	1	RL36_STRTO	P80256 thermus the
フムブ	۷	/ . 1	3/	Т	VT20_1115111	10020 0:10111100 0:10

020	2	7 1	27 .	,	DIOC TOEDA	083239	treponema p
930 931	2 2	7.1 7.1	37 3 37 3	L L	RL36_TREPA RS15 HELLU		helix lucor
932	2	7.1		1	RUGC RANRU		rana rugosa
933	2	7.1		1	SCIT MESTA		mesobuthus
934	2	7.1		1	SCK3 BUTOC	P59290	buthus occi
935	2	7.1		1	SCK3 PARTR		parabuthus
936	2	7.1	37	1	SCKA_TITSE		tityus serr
937	2	7.1	37	1	SCKI_MESTA		mesobuthus
938	2	7.1		1	SMS_PETMA		petromyzon
939	2	7.1		1	TCTP_TRYBB		trypanosoma
940	2	7.1		1	THHS_HORVU		hordeum vul
941	2	7.1		1	TX21_SELHU		selenocosmi agelenopsis
942	2	7.1		1	TX3D_AGEAP TXD1 PARLU		paracoelote
943	2 2	7.1 7.1		1 1	TXJC HADVE		hadronyche
944 945	2	7.1		1	TXKB BUNGR		bunodosoma
946	2	7.1		1	TXOD HADVE		hadronyche
947	2	7.1		1	TXP3 APTSC		aptostichus
948	2	7.1		1	VA1 BPBF2		bacteriopha
949	2	7.1		1	VG40 BPML5	Q05250	mycobacteri
950	2	7.1	37	1	VGJ_BPPHX	P03651	bacteriopha
951	2	7.1	37	1	VPU_HV1Z8		human immun
952	2	7.1	37	1	Y268_ARCFU		archaeoglob
953	2	7.1		1	Y63_BPT3		bacteriopha
954	2	7.1		1	Y63_BPT7		bacteriopha
955	2	7.1		1	Y692_BORBU		borrelia bu
956	2	7.1		1	Y700_BORBU		borrelia bu borrelia bu
957	2	7.1		1	Y762_BORBU		borrelia bu
958	2	7.1 7.1		1	Y846_BORBU YBGT ECOLI		escherichia
959 960	2 2	7.1		1	YC12 CHLVU		chlorella v
961	2	7.1		1	YDA3 SCHPO		schizosacch
962	2	7.1		1	YIM4 BPPH1		bacteriopha
963	2	7.1		1	YQGE BACCA	P28753	bacillus ca
964	2	7.1		1	YRYL_CAEEL		caenorhabdi
965	2	7.1		1	AFP5_MALPA		malva parvi
966 ,	2	7.1		1	_		pisum sativ
967	2	7.1		1	BD01_BOVIN		bos taurus
968	2	7.1		1	BD08_BOVIN		bos taurus
969	2	7.1		1	BD11_BOVIN		bos taurus xanthomonas
970	2	7.1	38	1	COA3_XANCP		cancer pagu
971	2 2	7.1 7.1	38 38	1	CPRP_CANPG CU47 LACCU		lactobacill
972 973	2	7.1	38	1	DCHS MICSP		micrococcus
974	2	7.1	38	1	DLP3 ORNAN		ornithorhyn
975	2	7.1	38	1	DPOB BOVIN		bos taurus
976	2	7.1	38	1	E2F1 RAT		rattus norv
977	2	7.1	38	1	EST5 DROMO		drosophila
978	2	7.1	38	1	EXE1_HELSU		heloderma s
979	2	7.1	38	1	FER_METPR		metallospha
980	2	7.1	38	1	GLUM_HYDCO		hydrolagus
981	2	7.1	38	1	GME1_RAT		rattus norv
982	2	7.1	38	1	H5_COLLI		columba liv
983	2	7.1	38	1	HIS1_MACFA		macaca fasc
984	2	7.1	38	1	HMG2_BOVIN		bos taurus rhodococcus
985	2	7.1	38	1	HOXH_RHOOP		adenanthera
986	. 2	7.1	38	1	ID5B_ADEPA	FUJJ42	addidiffera

```
P32734 prosopsis j
                     38 1 ID5B PROJU
              7.1
         2
987
                                                     P34166 saccharomyc
                      38 1 MFA2 YEAST
988
              7.1
                                                     P47763 yersinia en
                      38 1 MUTS YEREN
              7.1
989
         2
                                                     P80275 vitis sp. (
                      38 1 NLT1 VITSX
              7.1
         2
990
                                                     P33556 vitis sp. (
                      38 1 NLT2 VITSX
              7.1
991
          2
                                                     P81648 hystrix cri
                      38 1 OBP2 HYSCR
              7.1
992
          2
                                                     P24644 maticora bi
                      38 1 PA21 MATBI
          2
              7.1
993
                                                     P24645 maticora bi
                      38 1 PA22 MATBI
          2
             7.1
994
                                                     P81039 uranoscopus
                     38 1 PACA URAJA
             7.1
          2
995
                                                     P74149 synechocyst
                     38 1 PETG SYNY3
             7.1
996
          2
                                                     032295 bacillus su
                     38 1 PHRG BACSU
          2
             7.1
997
                                                     P81765 musca domes
             7.1
                      38 1 POI MUSDO
          2
998
                                                     P49484 odontella s
                      38 1 PSAI ODOSI
          2
              7.1
999
                                                     087786 prochloroco
                      38 1 PSAI PROMA
              7.1
1000
```

ALIGNMENTS

RESULT 1

```
ELH THETS
                                           36 AA.
                    STANDARD;
                                   PRT;
     ELH THETS
ID
AC
     P80594;
     01-OCT-1996 (Rel. 34, Created)
DT
     01-OCT-1996 (Rel. 34, Last sequence update)
DT
     30-MAY-2000 (Rel. 39, Last annotation update)
DT
     Egg-laying-like hormone (L-ELH).
DΕ
     Theromyzon tessulatum (Leech).
OS
     Eukaryota; Metazoa; Annelida; Clitellata; Hirudinida; Hirudinea;
OC
     Rhynchobdellida; Glossiphoniidae; Theromyzon.
OC
     NCBI TaxID=13286;
OX
RN
     [1]
     SEQUENCE.
RP
RC
     TISSUE=CNS;
     MEDLINE=98047073; PubMed=9387880;
RX
     Salzet M., Verger-Bocquet M., Vandenbulcke F., van Minnen J.;
RA
     "Leech egg-laying-like hormone: structure, neuronal distribution and
RT
RT
     phylogeny.";
     Brain Res. Mol. Brain Res. 49:211-221(1997).
RL
     -!- FUNCTION: MAY BE INVOLVED IN LEECH REPRODUCTION.
CC
     -!- TISSUE SPECIFICITY: SUPRA, SUBESOPHAGEAL GANGLIA AND SEGMENTAL
CC
         GANGLIA OF THE VENTRAL NERVE CORD AND BRAIN.
CC
     -!- DEVELOPMENTAL STAGE: L-ELH GREATLY INCREASES BEFORE EGG-LAYING,
CC
         WHILE IT STRONGLY DECREASES AFTER EGG-LAYING.
CC
     -!- MASS SPECTROMETRY: MW=4172.29; METHOD=Electrospray.
CC
     Hormone; Amidation; Neuropeptide.
KW
                         36
                                  AMIDATION.
     MOD RES
                  36
FT
                36 AA; 4290 MW; 2633C40D6A15CECC CRC64;
     SEQUENCE
SQ
                          17.9%; Score 5; DB 1; Length 36;
  Query Match
                          100.0%; Pred. No. 51;
  Best Local Similarity
                                                    0; Indels
                                                                  0; Gaps
                                                                              0:
            5; Conservative 0; Mismatches
  Matches
           12 LRRRF 16
QУ
               1111
           29 LRRRF 33
Db
```

```
PSAM EUGGR
    PSAM EUGGR
                  STANDARD;
                                PRT:
                                      31 AA.
AC
    P31479;
DT
    01-JUL-1993 (Rel. 26, Created)
    01-JUL-1993 (Rel. 26, Last sequence update)
DT
DT
    01-OCT-1996 (Rel. 34, Last annotation update)
    Photosystem I reaction centre subunit XII (PSI-M).
DE
GN
OS
    Euglena gracilis.
OG
    Chloroplast.
OC
    Eukaryota; Euglenozoa; Euglenida; Euglenales; Euglena.
OX
    NCBI_TaxID=3039;
RN
    [1]
RP
    SEQUENCE FROM N.A.
RC
    STRAIN=Z / UTEX 753;
RX
    MEDLINE=93347989; PubMed=8346031;
RA
    Hallick R.B., Hong L., Drager R.G., Favreau M.R., Monfort A.,
RA
    Orsat B., Spielmann A., Stutz E.;
RT
     "Complete sequence of Euglena gracilis chloroplast DNA.";
    Nucleic Acids Res. 21:3537-3544(1993).
RL
CC
    -!- SIMILARITY: BELONGS TO THE PSAM FAMILY.
CC
     CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
    modified and this statement is not removed. Usage by and for commercial
CC
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
    or send an email to license@isb-sib.ch).
CC
     DR
    EMBL; X70810; CAA50083.1; -.
DR
    PIR; S34504; S34504.
KW
    Photosystem I; Photosynthesis; Chloroplast.
SQ
    SEQUENCE 31 AA; 3443 MW; 85F208627C873165 CRC64;
  Query Match
                        14.3%; Score 4; DB 1; Length 31;
  Best Local Similarity 100.0%; Pred. No. 5.1e+02;
  Matches
           4; Conservative 0; Mismatches 0; Indels
                                                            0; Gaps
           5 LGKS 8
Qу
            1111
          25 LGKS 28
Db
RESULT 3
DEF7 RABIT
    DEF7 RABIT
                  STANDARD;
                                PRT;
ΙD
                                        34 AA.
AC
    P80223; P80224;
    01-OCT-1993 (Rel. 27, Created)
DT
DT
    01-OCT-1993 (Rel. 27, Last sequence update)
DT
    28-FEB-2003 (Rel. 41, Last annotation update)
    Corticostatin VI (CS-VI) (Neutrophil antibiotic peptide NP-6).
DE
    Oryctolagus cuniculus (Rabbit).
OS
OC
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC.
    Mammalia; Eutheria; Lagomorpha; Leporidae; Oryctolagus.
```

RESULT 2

```
NCBI TaxID=9986;
OX
RN
     [1]
     SEOUENCE.
RΡ
     STRAIN=Japanese white; TISSUE=Spleen;
RC
     MEDLINE=93387318; PubMed=8397087;
RX
     Fuse N., Hayashi Y., Fukata J., Tominaga T., Ebisui O., Satoh Y.,
RA
RA
     Isohara T., Uno I., Imura H.;
     "Purification and characterization of new anti-adrenocorticotropin
RT
     rabbit neutrophil peptides (defensins).";
RT
     Eur. J. Biochem. 216:653-659(1993).
RL
     -!- FUNCTION: MICROBICIDAL ACTIVITY AND INHIBITS CORTICOTROPIN (ACTH)
CC
         STIMULATED CORTICOSTERONE PRODUCTION.
CC
     -!- TISSUE SPECIFICITY: LUNG, SPLEEN, SMALL INTESTINE, PITUITARY
CC
         GLAND, ADRENAL MEDULLA AND PLASMA.
CC
     -!- SIMILARITY: BELONGS TO THE CORTICOSTATIN/DEFENSIN FAMILY.
CC
     PIR; $36843; $36843.
DR
     InterPro; IPR006081; Defensin alpha.
DR
     InterPro; IPR006080; Defensin mammal.
DR
     Pfam; PF00323; defensins; 1.
DR
     SMART; SM00048; DEFSN; 1.
DR
     PROSITE; PS00269; DEFENSIN; 1.
DR
KW
     Defensin; Antibiotic.
     DISULFID
                      31
                                  BY SIMILARITY.
FT
                 3
FT
     DISULFID
                   5
                         20
                                  BY SIMILARITY.
FT
     DISULFID
                  10
                         30
                                  BY SIMILARITY.
                34 AA; 4052 MW; E0090709FA1512B9 CRC64;
SQ
     SEQUENCE
                          14.3%; Score 4; DB 1; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.5e+02;
                                                                  0; Gaps
                                                                              0;
             4; Conservative
                               0; Mismatches 0; Indels
           13 RRRF 16
Qу
              1111
            6 RRRF 9
Db
RESULT 4
PAHO MACMU
                                           36 AA.
ID
     PAHO MACMU
                    STANDARD;
                                   PRT;
AC
     P33684;
     01-FEB-1994 (Rel. 28, Created)
DT
     01-FEB-1994 (Rel. 28, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
     Pancreatic hormone (Pancreatic polypeptide) (PP).
DΕ
GN
     PPY.
     Macaca mulatta (Rhesus macaque).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Catarrhini; Cercopithecidae;
OC
OC
     Cercopithecinae; Macaca.
OX
     NCBI TaxID=9544;
RN
     [1]
     SEQUENCE.
RΡ
     MEDLINE=91164506; PubMed=2003150;
RX
     Yu J., Xin Y., Eng J., Yalow R.S.;
RA
     "Rhesus monkey gastroenteropancreatic hormones: relationship to human
RT
RT
     sequences.";
     Regul. Pept. 32:39-45(1991).
RL
```

```
-!- FUNCTION: PANCREATIC HORMONE IS SYNTHESIZED IN PANCREATIC ISLETS
CC
         OF LANGERHANS AND ACTS AS A REGULATOR OF PANCREATIC AND
CC
         GASTROINTESTINAL FUNCTIONS.
CC
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: Belongs to the NPY family.
     PIR; C60071; C60071.
DR
    HSSP; P01302; 1BBA.
DR
DR
     InterPro; IPR001955; Pancreatic hormn.
DR
     Pfam; PF00159; hormone3; 1.
DR
     PRINTS; PR00278; PANCHORMONE.
DR
     SMART; SM00309; PAH; 1.
DR
     PROSITE; PS00265; PANCREATIC HORMONE 1; 1.
DR
     PROSITE; PS50276; PANCREATIC_HORMONE_2; 1.
KW
     Hormone; Pancreas; Amidation.
FT
     MOD RES
                  36
                        36
                                 AMIDATION.
SQ
     SEQUENCE
                36 AA; 4183 MW; 761B717671A7758F CRC64;
  Query Match
                          14.3%; Score 4; DB 1; Length 36;
  Best Local Similarity 100.0%; Pred. No. 5.8e+02;
            4; Conservative 0; Mismatches 0; Indels
  Matches
                                                                 0; Gaps
           11 DLRR 14
Qу
              1111
           23 DLRR 26
Dh
RESULT 5
PAHO RABIT
                                   PRT; 36 AA.
ΙD
     PAHO RABIT
                    STANDARD;
AC
     P41336;
DT
     01-FEB-1995 (Rel. 31, Created)
     01-FEB-1995 (Rel. 31, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
     Pancreatic hormone (Pancreatic polypeptide) (PP).
DE
GN
     PPY.
OS
     Oryctolagus cuniculus (Rabbit).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Lagomorpha; Leporidae; Oryctolagus.
OC
     NCBI TaxID=9986;
OX
RN
     [1]
     SEOUENCE.
RP
RC
     TISSUE=Pancreas;
     MEDLINE=94130533; PubMed=8299350;
RX
     Marks N.J., Shaw C., Halton D.W., Curry W.J., Thim L.;
RA
     "Rabbit pancreatic polypeptide.";
RT
     Comp. Biochem. Physiol. 106B:883-887(1993).
RL
     -!- FUNCTION: PANCREATIC HORMONE IS SYNTHESIZED IN PANCREATIC ISLETS
CC
         OF LANGERHANS AND ACTS AS A REGULATOR OF PANCREATIC AND
CC
CC
         GASTROINTESTINAL FUNCTIONS.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: Belongs to the NPY family.
DR
     HSSP; P01302; 1BBA.
DR
     InterPro; IPR001955; Pancreatic hormn.
DR
     Pfam; PF00159; hormone3; 1.
DR
     PRINTS; PR00278; PANCHORMONE.
     SMART; SM00309; PAH; 1.
DR
     PROSITE; PS00265; PANCREATIC HORMONE 1; 1.
DR
```

```
DR
    PROSITE; PS50276; PANCREATIC HORMONE 2; 1.
KW
    Hormone; Amidation; Pancreas.
    MOD RES
              36
                      36
                               AMIDATION.
FT
    SEOUENCE 36 AA; 4197 MW; A14A4E0831A7759D CRC64;
SO
                       14.3%; Score 4; DB 1; Length 36;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 5.8e+02;
           4; Conservative 0; Mismatches 0; Indels
                                                          0; Gaps
                                                                       0;
          11 DLRR 14
Qу
             1111
          23 DLRR 26
Dh
RESULT 6
Y4KD BPCHP
    Y4KD BPCHP
                  STANDARD; PRT;
                                        36 AA.
ID
    P19188;
AC
    01-NOV-1990 (Rel. 16, Created)
DT
    01-NOV-1990 (Rel. 16, Last sequence update)
DT
    01-NOV-1990 (Rel. 16, Last annotation update)
DT
    Hypothetical 4.7 kDa protein (ORF8).
DE
    Bacteriophage Chp1.
OS
    Viruses; ssDNA viruses; Microviridae; Microvirus.
OC
OX
    NCBI TaxID=12367;
RN
    [1]
RΡ
    SEQUENCE FROM N.A.
    MEDLINE=90111716; PubMed=2607341;
RX
RA
    Storey C.C., Lusher M., Richmond S.J.;
    "Analysis of the complete nucleotide sequence of Chp1, a phage which
RT
    infects avian Chlamydia psittaci.";
RT
    J. Gen. Virol. 70:3381-3390(1989).
RL
    _____
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
СС
    the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
CC
    modified and this statement is not removed. Usage by and for commercial
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
    or send an email to license@isb-sib.ch).
CC
CC
    EMBL; D00624; BAA00510.1; -.
DR
KW
    Hypothetical protein.
    SEQUENCE 36 AA; 4670 MW; 98AF35E45B9545A4 CRC64;
SO
  Query Match
                        14.3%; Score 4; DB 1; Length 36;
  Best Local Similarity 100.0%; Pred. No. 5.8e+02;
           4; Conservative 0; Mismatches 0; Indels
                                                             0; Gaps
          12 LRRR 15
Qу
             1111
           7 LRRR 10
RESULT 7
FIBA CANFA
ID FIBA CANFA
                STANDARD; PRT;
                                        28 AA.
```

```
AC
     P02673; P14464;
DT
     21-JUL-1986 (Rel. 01, Created)
DT
     01-NOV-1990 (Rel. 16, Last sequence update)
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
     Fibrinogen alpha chain [Contains: Fibrinopeptide A] (Fragment).
DE
GN
     FGA.
OS
     Canis familiaris (Dog), and
OS
     Vulpes vulpes (Red fox).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Mammalia; Eutheria; Carnivora; Fissipedia; Canidae; Canis.
OC
OX
     NCBI TaxID=9615, 9627;
RN
     [1]
RP
     SEQUENCE.
RC
     SPECIES=C.familiaris;
RX
     MEDLINE=76081726; PubMed=1198547;
RA
     Birken S., Wilner G.D., Canfield R.E.;
RT
     "Studies of the structure of canine fibrinogen.";
RL
     Thromb. Res. 7:599-610(1975).
RN
     [2]
RP
     SEQUENCE OF 1-16.
RC
     SPECIES=C.familiaris, and V.vulpes;
RA
     Blomback B., Blomback M., Grondahl N.J.;
RT
     "Studies on fibrinopeptides from mammals.";
RL
     Acta Chem. Scand. 19:1789-1791(1965).
RN
RP
     SEQUENCE OF 1-16.
RC
     SPECIES=C.familiaris;
RX
     MEDLINE=66020594; PubMed=5836555;
RA
     Osbahr A.J. Jr., Colman R.W., Laki K., Gladner J.A.;
RT
     "The nature of the peptides released from canine fibrinogen.";
     Biochem. Biophys. Res. Commun. 14:555-558 (1964).
RL
CC
     -!- FUNCTION: FIBRINGEN HAS A DOUBLE FUNCTION: YIELDING MONOMERS THAT
CC
         POLYMERIZE INTO FIBRIN AND ACTING AS A COFACTOR IN PLATELET
CC
         AGGREGATION.
CC
     -!- SUBUNIT: HEXAMER CONTAINING 2 SETS OF 3 NONIDENTICAL CHAINS
CC
         (ALPHA, BETA AND GAMMA), LINKED TO EACH OTHER BY DISULFIDE BONDS.
CC
     -!- MISCELLANEOUS: CONVERSION OF FIBRINOGEN TO FIBRIN IS TRIGGERED BY
CC
         THROMBIN, WHICH CLEAVES FIBRINOPEPTIDES A AND B FROM ALPHA & BETA
CC
         CHAINS, AND THUS EXPOSES THE N-TERMINAL POLYMERIZATION SITES
CC
         RESPONSIBLE FOR THE FORMATION OF THE SOFT CLOT.
DR
     PIR; A94308; A05296.
KW
     Blood coagulation; Plasma; Phosphorylation.
FT
     PEPTIDE
                   1
                         16
                                  FIBRINOPEPTIDE A.
FT
     MOD RES
                   3
                          3
                                  PHOSPHORYLATION (PARTIAL).
     CONFLICT
FT
                   2
                          2
                                  N \rightarrow D (IN REF. 2).
                          7
FT
     CONFLICT
                                  KEGE -> EGKQ (IN REF. 2).
                   4
     NON TER
FT
                  28
                         28
     SEQUENCE
SQ
                28 AA; 2958 MW; 09DCD3F923BFEBD2 CRC64;
  Ouery Match
                          10.7%; Score 3; DB 1; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 5.2e+03;
  Matches
             3; Conservative 0; Mismatches
                                                   0; Indels
           22 IAE 24
Qу
              111
            9 IAE 11
Db
```

```
GTS5 CHICK
                                            28 AA.
                                    PRT;
     GTS5 CHICK
                    STANDARD;
ID
     P20137;
AC
     01-FEB-1991 (Rel. 17, Created)
DT
     01-FEB-1991 (Rel. 17, Last sequence update)
DT
     01-FEB-1996 (Rel. 33, Last annotation update)
DT
     Glutathione S-transferase 5 (EC 2.5.1.18) (GST-CL5) (GST class-sigma)
DE
     (Fragment).
DΕ
OS
     Gallus gallus (Chicken).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Archosauria; Aves; Neognathae; Galliformes; Phasianidae; Phasianinae;
OC
OC
     Gallus.
     NCBI_TaxID=9031;
OX
     [1]
RN
     SEQUENCE.
RΡ
RC
     TISSUE=Liver;
     MEDLINE=90248419; PubMed=2337594;
RX
     Chang L.-H., Chuang L.-F., Tsai C.-P., Tu C.-P.D., Tam M.F.;
RA
     "Characterization of glutathione S-transferases from day-old chick
RT
RT
     livers.";
     Biochemistry 29:744-750(1990).
RL
     -!- FUNCTION: CONJUGATION OF REDUCED GLUTATHIONE TO A WIDE NUMBER
CC
         OF EXOGENOUS AND ENDOGENOUS HYDROPHOBIC ELECTROPHILES.
CC
     -!- CATALYTIC ACTIVITY: RX + glutathione = HX + R-S-glutathione.
CC
     -!- SUBUNIT: Homodimer.
CC
     -!- SUBCELLULAR LOCATION: Cytoplasmic.
CC
     -!- SIMILARITY: BELONGS TO THE GST SUPERFAMILY. SIGMA FAMILY.
CC
     PIR; C33948; C33948.
DR
     InterPro; IPR004045; GST_Nterm.
DR
     Pfam; PF02798; GST N; 1.
DR
KW
     Transferase.
     NON TER
                  28
                          28
FT
                28 AA; 3389 MW; DA51DC0ABD203B12 CRC64;
     SEQUENCE
SQ
  Query Match
                           10.7%; Score 3; DB 1; Length 28;
                           100.0%; Pred. No. 5.2e+03;
  Best Local Similarity
             3; Conservative
                                 0; Mismatches 0;
                                                       Indels
                                                                   0; Gaps
  Matches
           23 AEI 25
Qу
               | | |
           14 AEI 16
Db
RESULT 9
HSP4 OCTVU
                                            28 AA.
                                    PRT;
ID
     HSP4 OCTVU
                     STANDARD;
     P83216;
AC
     28-FEB-2003 (Rel. 41, Created)
DT
     28-FEB-2003 (Rel. 41, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DΕ
     Sperm protamine P4 (Po4).
     Octopus vulgaris (Octopus).
OS
     Eukaryota; Metazoa; Mollusca; Cephalopoda; Coleoidea; Neocoleoidea;
OC
     Octopodiformes; Octopoda; Incirrata; Octopodidae; Octopus.
OC
OX
     NCBI TaxID=6645;
```

RESULT 8

```
RN
     [1]
     SEQUENCE, FUNCTION, AND MASS SPECTROMETRY.
RP
     TISSUE=Sperm;
RC
     Gimenez-Bonafe P., Ribes E., Buesa C., Sautiere P., Kouach M.,
RA
     Ausio J., Kasinsky H.E., Chiva M.;
RΑ
     "Chromatin remodelling and protamines during spermiogenesis of Octopus
RT
     vulgaris (Cephalopoda).";
RT
RЬ
     J. Exp. Zool. 0:0-0(2001).
     -!- FUNCTION: Protamines substitute for histones in the chromatin of
CC
         sperm during the haploid phase of spermatogenesis. They compact
CC
         sperm DNA into a highly condensed, stable and inactive
CC
CC
         complex.
     -!- SUBCELLULAR LOCATION: Nuclear.
CC
     -!- TISSUE SPECIFICITY: Testis.
CC
     -!- MASS SPECTROMETRY: MW=3537; METHOD=Electrospray.
CC
     GO; GO:0005718; C:nucleosome; NAS.
DR
     GO; GO:0005634; C:nucleus; NAS.
DR
     GO; GO:0003677; F:DNA binding activity; NAS.
DR
     GO; GO:0007001; P:chromosome organization and biogenesis (sen. . .; NAS.
DR
     GO; GO:0007076; P:mitotic chromosome condensation; NAS.
DR
     GO; GO:0006334; P:nucleosome assembly; NAS.
DR
     GO; GO:0007283; P:spermatogenesis; NAS.
DR
     Chromosomal protein; Nucleosome core; Spermatogenesis;
KW
     DNA-binding; DNA condensation; Nuclear protein.
KW
                                  POLY-ARG.
FT
     DOMAIN
                  1
                          7
                  18
                         26
                                   POLY-ARG.
FT
     DOMAIN
                28 AA; 3538 MW; A40B4D2C1B8E20ED CRC64;
     SEQUENCE
SQ
                           10.7%; Score 3; DB 1; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.2e+03;
             3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
           13 RRR 15
Qу
              1 RRR 3
Db
RESULT 10
PA23 TRIST
     PA23 TRIST
                                    PRT;
                                            28 AA.
                    STANDARD;
     P82894;
AC
     16-OCT-2001 (Rel. 40, Created)
DT
     16-OCT-2001 (Rel. 40, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Phospholipase A2, basic 3 (EC 3.1.1.4) (PA2-III) (PLA2-III)
DE
      (Phosphatidylcholine 2-acylhydrolase) (Fragment).
DΕ
     Trimeresurus stejnegeri (Chinese green tree viper).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Lepidosauria; Squamata; Scleroglossa; Serpentes; Colubroidea;
OC
     Viperidae; Crotalinae; Trimeresurus.
OC
     NCBI_TaxID=39682;
OX
RN
      [1]
     SEQUENCE.
RΡ
RC
     TISSUE=Venom;
     Li S.Y., Wang W.Y., Xiong Y.L.;
RA
      "Isolation, sequence and characterization of five variants of
RT
     phospholipase A2 from venom of snake Trimeresurus stejnegeri.";
RT
```

```
-!- FUNCTION: PA2 catalyzes the calcium-dependent hydrolysis of the 2-
CC
        acyl groups in 3-sn-phosphoglycerides. Hemolytic and neurotoxic
CC
        activities are not detected.
CC
    -!- CATALYTIC ACTIVITY: Phosphatidylcholine + H(2)0 = 1-
CC
        acylqlycerophosphocholine + a fatty acid anion.
CC
    -!- COFACTOR: Binds 1 calcium ion per subunit (By similarity).
CC
    -!- SUBCELLULAR LOCATION: Secreted.
CC
    -!- SIMILARITY: BELONGS TO THE PHOSPHOLIPASE A2 FAMILY. GROUP II
CC
CC
        SUBFAMILY.
    HSSP; P82287; 1QLL.
DR
    InterPro; IPR001211; PhospholipaseA2.
DR
    Pfam; PF00068; phoslip; 1.
DR
    ProDom; PD000303; PhospholipaseA2; 1.
DR
    PROSITE; PS00119; PA2 ASP; PARTIAL.
DR
    PROSITE; PS00118; PA2 HIS; PARTIAL.
DR
    Hydrolase; Lipid degradation; Calcium; Multigene family.
KW
    NON TER
                 28
                       28
FT
               28 AA; 3023 MW; 042104521CA1F103 CRC64;
    SEQUENCE
SQ
                        10.7%; Score 3; DB 1; Length 28;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 5.2e+03;
          3; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0;
 Matches
Qу
           5 LGK 7
            5 LGK 7
Db
RESULT 11
VG9 SPV4
                                         28 AA.
                   STANDARD;
                                 PRT;
    VG9 SPV4
AC
    P11341;
     01-JUL-1989 (Rel. 11, Created)
DT
     01-JUL-1989 (Rel. 11, Last sequence update)
DT
     01-JUL-1989 (Rel. 11, Last annotation update)
DT
DE
    Gene 9 protein.
GN
     Spiroplasma virus 4 (SpV4).
OS
     Viruses; ssDNA viruses; Microviridae; Spiromicrovirus.
OC
OX
    NCBI TaxID=10855;
RN
RΡ
     SEQUENCE FROM N.A.
     MEDLINE=88032809; PubMed=2822658;
RX
     Renaudin J., Pascarel M.-C., Bove J.-M.;
RA
     "Spiroplasma virus 4: nucleotide sequence of the viral DNA,
RT
     regulatory signals, and proposed genome organization.";
RT
     J. Bacteriol. 169:4950-4961(1987).
RL
     ______
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
CC
```

Submitted (DEC-2000) to the SWISS-PROT data bank.

RL

```
EMBL; M17988; -; NOT ANNOTATED_CDS.
DR
    PIR; B29825; G9BPSV.
DR
    SEQUENCE 28 AA; 3776 MW; 9916C3C9C3B9FD1D CRC64;
SQ
                       10.7%; Score 3; DB 1; Length 28;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 5.2e+03;
 Matches 3; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                      0;
         13 RRR 15
QУ
             17 RRR 19
RESULT 12
VIO3 VACCP
                               PRT;
                                       28 AA.
                  STANDARD;
    VIO3 VACCP
AC
    Q00334;
    01-APR-1993 (Rel. 25, Created)
DT
    01-APR-1993 (Rel. 25, Last sequence update)
DT
    01-FEB-1994 (Rel. 28, Last annotation update)
DT
    Protein I3 (Fragment).
DE
GN
    Vaccinia virus (strain L-IVP).
OS
    Viruses; dsDNA viruses, no RNA stage; Poxviridae; Chordopoxvirinae;
OC
OC
     Orthopoxvirus.
OX
    NCBI TaxID=31531;
RN
    [1]
     SEQUENCE FROM N.A.
RP
     MEDLINE=91066899; PubMed=2250685;
RX
     Ryazankina O.I., Shchelkunov S.N., Muravlev A.I., Netesova N.A.,
RA
     Mikryukov N.N., Gutorov V.V., Nikulin A.E., Kulichkov V.A.,
RA
     Malygin E.G.;
RA
     "Molecular-biological study of vaccinia virus genome. II.
RT
     Localization and nucleotide sequence of vaccinia virus genes coding
RT
RT
     for proteins 36K and 12K.";
     Mol. Biol. (Mosk) 24:968-976(1990).
RL
     -!- MISCELLANEOUS: THIS PROTEIN IS SYNTHESIZED IN THE EARLY AS WELL AS
CC
        THE LATE PHASE OF INFECTION.
CC
     -----
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
     -----
CC
     EMBL; X61165; CAA43473.1; -.
DR
DR
     InterPro; IPR006754; Pox I3.
     Pfam; PF04661; Pox I3; 1.
DR
     Early protein; Late protein.
KW
FT
     NON TER 1 1
     SEQUENCE 28 AA; 3238 MW; CE10813AC544F010 CRC64;
SQ
                        10.7%; Score 3; DB 1; Length 28;
  Best Local Similarity 100.0%; Pred. No. 5.2e+03;
  Matches 3; Conservative 0; Mismatches 0; Indels
                                                            0; Gaps
```

```
4 NLG 6
Qу
             111
           5 NLG 7
RESULT 13
Y073 ARCFU
     Y073 ARCFU
                   STANDARD;
                                  PRT;
                                          28 AA.
ID
AC
     030163;
     16-OCT-2001 (Rel. 40, Created)
DT
     16-OCT-2001 (Rel. 40, Last sequence update)
DT
     16-OCT-2001 (Rel. 40, Last annotation update)
DT
DE
    Hypothetical protein AF0073.
GN
    AF0073.
OS
    Archaeoglobus fulgidus.
     Archaea; Euryarchaeota; Archaeoglobi; Archaeoglobales;
OC
    Archaeoglobaceae; Archaeoglobus.
OC
OX
     NCBI TaxID=2234;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=VC-16 / DSM 4304 / ATCC 49558;
     MEDLINE=98049343; PubMed=9389475;
RX
     Klenk H.-P., Clayton R.A., Tomb J.-F., White O., Nelson K.E.,
RA
     Ketchum K.A., Dodson R.J., Gwinn M., Hickey E.K., Peterson J.D.,
RA
     Richardson D.L., Kerlavage A.R., Graham D.E., Kyrpides N.C.,
RA
RA
     Fleischmann R.D., Quackenbush J., Lee N.H., Sutton G.G., Gill S.,
     Kirkness E.F., Dougherty B.A., McKenney K., Adams M.D., Loftus B.,
RA
     Peterson S., Reich C.I., McNeil L.K., Badger J.H., Glodek A., Zhou L.,
RA
RA
     Overbeek R., Gocayne J.D., Weidman J.F., McDonald L., Utterback T.,
RA
     Cotton M.D., Spriggs T., Artiach P., Kaine B.P., Sykes S.M.,
RA
     Sadow P.W., D'Andrea K.P., Bowman C., Fujii C., Garland S.A.,
RA
     Mason T.M., Olsen G.J., Fraser C.M., Smith H.O., Woese C.R.,
RA
     Venter J.C.;
RT
     "The complete genome sequence of the hyperthermophilic, sulphate-
RT
     reducing archaeon Archaeoglobus fulgidus.";
RL
     Nature 390:364-370(1997).
CC
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
     use by non-profit institutions as long as its content is in no way
     modified and this statement is not removed. Usage by and for commercial
CC
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
     DR
     EMBL; AE001101; AAB91159.1; -.
DR
     PIR; A69259; A69259.
DR
     TIGR; AF0073; -.
KW
     Hypothetical protein; Complete proteome.
SQ
     SEQUENCE
              28 AA; 3222 MW; 4EA8550DA1345BC9 CRC64;
                         10.7%; Score 3; DB 1; Length 28;
  Query Match
                         100.0%; Pred. No. 5.2e+03;
  Best Local Similarity
  Matches
            3; Conservative 0; Mismatches 0; Indels
```

```
RESULT 14
YA79 ARCFU
                                 PRT;
                                        28 AA.
    YA79 ARCFU
                  STANDARD;
ID
    029184;
AC
    16-OCT-2001 (Rel. 40, Created)
DТ
    16-OCT-2001 (Rel. 40, Last sequence update)
DT
    16-OCT-2001 (Rel. 40, Last annotation update)
DT
    Hypothetical protein AF1079.
DE
GN
    AF1079.
    Archaeoglobus fulgidus.
OS
    Archaea; Euryarchaeota; Archaeoglobi; Archaeoglobales;
OC
    Archaeoglobaceae; Archaeoglobus.
OC
    NCBI TaxID=2234;
OX
RN
    [1]
    SEQUENCE FROM N.A.
RP
    STRAIN=VC-16 / DSM 4304 / ATCC 49558;
RC
    MEDLINE=98049343; PubMed=9389475;
RX
     Klenk H.-P., Clayton R.A., Tomb J.-F., White O., Nelson K.E.,
RA
     Ketchum K.A., Dodson R.J., Gwinn M., Hickey E.K., Peterson J.D.,
RA
     Richardson D.L., Kerlavage A.R., Graham D.E., Kyrpides N.C.,
RA
     Fleischmann R.D., Quackenbush J., Lee N.H., Sutton G.G., Gill S.,
RA
     Kirkness E.F., Dougherty B.A., McKenney K., Adams M.D., Loftus B.,
RA
     Peterson S., Reich C.I., McNeil L.K., Badger J.H., Glodek A., Zhou L.,
RA
     Overbeek R., Gocayne J.D., Weidman J.F., McDonald L., Utterback T.,
RA
     Cotton M.D., Spriggs T., Artiach P., Kaine B.P., Sykes S.M.,
RA
     Sadow P.W., D'Andrea K.P., Bowman C., Fujii C., Garland S.A.,
RA
     Mason T.M., Olsen G.J., Fraser C.M., Smith H.O., Woese C.R.,
RA
RA
     Venter J.C.;
     "The complete genome sequence of the hyperthermophilic, sulphate-
RT
     reducing archaeon Archaeoglobus fulgidus.";
RT
     Nature 390:364-370(1997).
RL
     -!- SIMILARITY: BELONGS TO THE UPF0165 FAMILY.
CC
     _____
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
     ______
CC
     EMBL; AE001028; AAB90160.1; -.
DR
     PIR; G69384; G69384.
DR
     TIGR; AF1079; -.
DR
     InterPro; IPR002807; DUF104.
DR
     Pfam; PF01954; DUF104; 1.
DR
     ProDom; PD005964; DUF104 N; 1.
DR
     Hypothetical protein; Complete proteome.
KW
     SEQUENCE 28 AA; 3289 MW; 22502C0A72E6A1D5 CRC64;
SQ
                         10.7%; Score 3; DB 1; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.2e+03;
          3; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
  Matches
```

```
11 DLR 13
QУ
              |\cdot|
           21 DLR 23
Db
RESULT 15
12AH CLOS4
                                   PRT;
                                            29 AA.
                    STANDARD;
     12AH CLOS4
AC
     P21215;
     01-AUG-1991 (Rel. 19, Created)
DT
     01-AUG-1991 (Rel. 19, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
     12-alpha-hydroxysteroid dehydrogenase (EC 1.1.1.176) (Fragment).
DΕ
     Clostridium sp. (strain C 48-50).
OS
     Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae;
OC
     Clostridium.
OC
     NCBI TaxID=1507;
OX
RN
     [1]
RP
     SEOUENCE.
     MEDLINE=91177018; PubMed=2007406;
RX
     Braun M., Luensdorf H., Bueckmann A.F.;
RA
     "12 alpha-hydroxysteroid dehydrogenase from Clostridium group P,
RT
     strain C 48-50. Production, purification and characterization.";
RT
     Eur. J. Biochem. 196:439-450(1991).
RL
     -!- FUNCTION: Catalyzes the oxidation of the 12-alpha-hydroxyl group
CC
         of bile acids, both in their free and conjugated form. Also acts
CC
CC
         on bile alcohols.
     -!- CATALYTIC ACTIVITY: 3-alpha,7-alpha,12-alpha-trihydroxy-5-beta-
CC
         cholanate + NADP(+) = 3-alpha,7-alpha-dihydroxy-12-oxo-5-beta-
CC
         cholanate + NADPH.
CC
CC
     -!- SUBUNIT: Homotetramer.
     -!- MISCELLANEOUS: The thermostability of the enzyme is greatly
CC
         increased due to NADP binding.
CC
     PIR; S14099; S14099.
DR
     Bile acid catabolism; Oxidoreductase; NADP.
KW
     NON TER
                  29
                          29
FT
                29 AA; 2900 MW; A827DB34DB6C8812 CRC64;
     SEQUENCE
SO
                           10.7%; Score 3; DB 1; Length 29;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.3e+03;
             3; Conservative 0; Mismatches
                                                    0; Indels
                                                                   0; Gaps
  Matches
            7 KSI 9
Qу
              111
Db
           17 KSI 19
RESULT 16
DMS5 PHYSA
                     STANDARD;
                                    PRT;
                                            29 AA.
     DMS5 PHYSA
ID
     P80281;
AC
     01-FEB-1994 (Rel. 28, Created)
DT
     01-FEB-1994 (Rel. 28, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
     Dermaseptin 5 (DS V).
DE
```

Phyllomedusa sauvagei (Sauvage's leaf frog).

OS

```
Amphibia; Batrachia; Anura; Neobatrachia; Bufonoidea; Hylidae;
OC
     Phyllomedusinae; Phyllomedusa.
OC
     NCBI TaxID=8395;
OX
RN
     [1]
RΡ
     SEQUENCE.
RC
     TISSUE=Skin secretion;
RX
     MEDLINE=94139686; PubMed=8306981;
     Mor A., Nicolas P.;
RA
     "Isolation and structure of novel defensive peptides from frog skin.";
RT
RL
     Eur. J. Biochem. 219:145-154(1994).
CC
     -!- FUNCTION: POSSESSES A POTENT ANTIMICROBIAL ACTIVITY AGAINST
         BACTERIA FUNGI AND PROTOZOA. PROBABLY ACTS BY DISTURBING MEMBRANE
CC
         FUNCTIONS WITH ITS AMPHIPATIC STRUCTURE.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: Skin.
CC
     -!- SIMILARITY: Belongs to the frog skin active peptide (FSAP) family.
CC
CC
         Dermaseptin subfamily.
     Amphibian defense peptide; Antibiotic; Fungicide; Multigene family.
KW
                29 AA; 2840 MW; 540A4971FC5BB506 CRC64;
     SEOUENCE
SQ
                          10.7%; Score 3; DB 1; Length 29;
  Query Match
                          100.0%; Pred. No. 5.3e+03;
  Best Local Similarity
            3; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
            6 GKS 8
Qу
           10 GKS 12
Db
RESULT 17
P2SM LOXIN
     P2SM LOXIN
                    STANDARD;
                                    PRT;
                                            29 AA.
ID
AC
     P83046;
DT
     28-FEB-2003 (Rel. 41, Created)
     28-FEB-2003 (Rel. 41, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DΕ
     Sphingomyelinase P2 (EC 3.1.4.12) (Fragment).
     Loxosceles intermedia (Spider).
OS
     Eukaryota; Metazoa; Arthropoda; Chelicerata; Arachnida; Araneae;
OC
     Araneomorphae; Haplogynae; Sicariidae; Loxosceles.
OC
OX
     NCBI TaxID=58218;
RN
     [1]
     SEQUENCE, FUNCTION, CATALYTIC ACTIVITY, COFACTOR, SUBCELLULAR
RΡ
     LOCATION, AND TISSUE SPECIFICITY.
RP
RC
     TISSUE=Venom;
RX
     MEDLINE=99009277; PubMed=9790962;
RA
     Tambourgi D.V., Magnoli F.C., van den Berg C.W., Morgan B.P.,
     de Araujo P.S., Alves E.W., Da Silva W.D.;
RA
     "Sphingomyelinases in the venom of the spider Loxosceles intermedia
RT
     are responsible for both dermonecrosis and complement-dependent
RT
RT
     hemolysis.";
     Biochem. Biophys. Res. Commun. 251:366-373(1998).
RL
     -!- FUNCTION: Has sphingomyelinase activity. Induces complement-
CC
CC
         dependent hemolysis and dermonecrosis.
     -!- CATALYTIC ACTIVITY: Sphingomyelin + H(2)O = N-acylsphingosine +
CC
CC
         choline phosphate.
```

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

OC

```
-!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: Expressed by the venom gland.
CC
     Hydrolase; Toxin; Calcium; Hemolysis.
KW
     NON TER
                  29
                         29
FT
                        3281 MW; 4488EDD619BD2398 CRC64;
     SEQUENCE
                29 AA;
SQ
                          10.7%; Score 3; DB 1; Length 29;
  Query Match
                          100.0%; Pred. No. 5.3e+03;
  Best Local Similarity
                                                    0; Indels
             3; Conservative 0; Mismatches
                                                                   0;
                                                                       Gaps
                                                                               0;
            4 NLG 6
Qу
              ||1||
           25 NLG 27
Db
RESULT 18
PRO1 DACGL
                                            29 AA.
     PRO1 DACGL
                    STANDARD;
                                    PRT;
ID
AC
     P18689;
     01-NOV-1990 (Rel. 16, Created)
01-NOV-1990 (Rel. 16, Last sequence update)
DT
DT
     01-NOV-1997 (Rel. 35, Last annotation update)
DT
     Prolamin alpha-1 (Fragment).
DE
     Dactylis glomerata (Orchard grass) (Cocksfoot grass).
OS
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae; Pooideae;
OC
OC
     Poeae; Dactylis.
     NCBI_TaxID=4509;
OX
RN
     [1]
     SEQUENCE.
RP
     Vvedenskaya I.O., Shlyapnikov S.V., Konarev A.V.;
RA
     "Characterization of the N-terminal amino acid sequence of alpha-
RT
     prolamine from Dactylis glomerata L.";
RT
     Biokhimiia 51:1519-1522(1986).
RL
DR
     PIR; S02200; S02200.
     NON TER
FT
                   29
                          29
                29 AA; 3647 MW; DEAEB9ADC967D256 CRC64;
     SEQUENCE
SO
                           10.7%; Score 3; DB 1; Length 29;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.3e+03;
             3; Conservative 0; Mismatches
                                                     0; Indels
                                                                   0; Gaps
  Matches
           16 FFL 18
Qу
               111
           21 FFL 23
Db
RESULT 19
CH60 CLOPA
     CH60 CLOPA
                     STANDARD;
                                    PRT;
                                            30 AA.
ID
     P81339;
AC
     15-JUL-1998 (Rel. 36, Created)
DT
     15-JUL-1998 (Rel. 36, Last sequence update)
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     60 kDa chaperonin (Protein Cpn60) (groEL protein) (CP 3) (Fragment).
DE
     GROL OR GROEL OR MOPA.
GN
```

-!- COFACTOR: Calcium ion.

CC

```
OS
    Clostridium pasteurianum.
    Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae;
OC
OC
    Clostridium.
    NCBI TaxID=1501;
OX
RN
     [1]
    SEQUENCE.
RΡ
RC
    STRAIN=W5;
RX
    MEDLINE=98291870; PubMed=9629918;
RA
     Flengsrud R., Skjeldal L.;
RT
     "Two-dimensional gel electrophoresis separation and N-terminal
     sequence analysis of proteins from Clostridium pasteurianum W5.";
RT
RL
     Electrophoresis 19:802-806(1998).
     -!- FUNCTION: Prevents misfolding and promotes the refolding and
CC
         proper assembly of unfolded polypeptides generated under stress
CC
CC
         conditions (By similarity).
CC
     -!- SUBUNIT: Oligomer of 14 subunits composed of two stacked rings of
CC
         7 subunits (By similarity).
CC
     -!- SUBCELLULAR LOCATION: Cytoplasmic.
CC
     -!- SIMILARITY: Belongs to the chaperonin (HSP60) family.
     HAMAP; MF 00600; -; 1.
DR
     InterPro; IPR001844; Chaprnin Cpn60.
DR
     PROSITE; PS00296; CHAPERONINS CPN60; PARTIAL.
DR
     Chaperone; ATP-binding.
KW
FT
     NON TER
                  30
                         30
     SEQUENCE
                30 AA; 3124 MW; 193F5EF05825BF1D CRC64;
SO
  Query Match
                          10.7%; Score 3; DB 1; Length 30;
  Best Local Similarity 100.0%; Pred. No. 5.5e+03;
                                                   0; Indels
  Matches
             3; Conservative
                                0; Mismatches
                                                                  0; Gaps
                                                                              0;
            7 KSI 9
Qу
              Db
            2 KSI 4
RESULT 20
HSP5 OCTVU
     HSP5 OCTVU
                                   PRT;
ID
                    STANDARD;
                                           30 AA.
AC
     P83217;
     28-FEB-2003 (Rel. 41, Created)
DT
     28-FEB-2003 (Rel. 41, Last sequence update)
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DΕ
     Sperm protamine P5 (Po5).
OS
     Octopus vulgaris (Octopus).
     Eukaryota; Metazoa; Mollusca; Cephalopoda; Coleoidea; Neocoleoidea;
OC
     Octopodiformes; Octopoda; Incirrata; Octopodidae; Octopus.
OC
OX
     NCBI TaxID=6645;
RN
RP
     SEQUENCE, FUNCTION, AND MASS SPECTROMETRY.
RC
     TISSUE=Sperm;
     Gimenez-Bonafe P., Ribes E., Buesa C., Sautiere P., Kouach M.,
RA
RA
     Ausio J., Kasinsky H.E., Chiva M.;
     "Chromatin remodelling and protamines during spermiogenesis of Octopus
RT
     vulgaris (Cephalopoda).";
RT
RL
     J. Exp. Zool. 0:0-0(2001).
     -!- FUNCTION: Protamines substitute for histones in the chromatin of
CC
         sperm during the haploid phase of spermatogenesis. They compact
CC
```

983	2	7.1	30	2	B45095	photosystem I ligh
984	2	7.1	30	2	A22977	delta-endotoxin -
985	2	7.1	30	2	S08565	ribulose-bisphosph
986	2	7.1	30	2	B61278	coat protein VP1 -
987	2	7.1	30	2	S30757	genome polyprotein
988	2	7.1	30	2	S30760	genome polyprotein
989	2	7.1	30	2	S30759	genome polyprotein
990	2	7.1	30	2	S13753	replication initia
991	2	7.1	30	2	S26175	tail tubular prote
992	2	7.1	30	2	S68312	glucuronosyltransf
993	2	7.1	30	2	S42364	aromatic-amino-aci
994	2	7.1	30	2	S05223	photosystem I 6.5K
995	2	7.1	30	2	S30333	N-carbamoyl-D-amin
996	2	7.1	30	2	S28991	antifungal protein
997	2	7.1	30	2	PC2307	X-Pro aminopeptida
998	2	7.1	30	2	PQ0484	globulin 1b - taro
999	2	7.1	30	2	C43591	51K outer membrane
1000	2	7.1	30	2	B56586	storage hexamer 2

ALIGNMENTS

```
hypothetical protein 30 - liverwort (Marchantia polymorpha) chloroplast
C; Species: chloroplast Marchantia polymorpha
C;Date: 05-Jun-1987 #sequence revision 05-Jun-1987 #text_change 21-Jul-2000
C:Accession: S01582; A05012
R; Umesono, K.; Inokuchi, H.; Shiki, Y.; Takeuchi, M.; Chang, Z.; Fukuzawa, H.;
Kohchi, T.; Shirai, H.; Ohyama, K.; Ozeki, H.
J. Mol. Biol. 203, 299-331, 1988
A; Title: Structure and organization of Marchantia polymorpha chloroplast genome.
II. Gene organization of the large single copy region from rps'12 to atpB.
A; Reference number: S01567; MUID: 89068686; PMID: 2974085
A; Accession: S01582
A; Molecule type: DNA
A; Residues: 1-30 < UME>
A;Cross-references: EMBL:X04465; NID:g11640; PIDN:CAA28070.1; PID:g11657
A: Note: the authors translated the codon GAA for residue 2 as Val and ATT for
residues 13 and 14 as Asn
R; Ohyama, K.; Fukuzawa, H.; Kohchi, T.; Shirai, H.; Sano, T.; Sano, S.; Umesono,
K.; Shiki, Y.; Takeuchi, M.; Chanq, Z.; Aota, S.; Inokuchi, H.; Ozeki, H.
Nature 322, 572-574, 1986
A; Title: Chloroplast gene organization deduced from complete sequence of
liverwort Marchantia polymorpha chloroplast DNA.
A; Reference number: A38014
A; Contents: annotation; gene organization, sites, features
C; Genetics:
A; Genome: chloroplast
C; Keywords: chloroplast
                          14.3%; Score 4; DB 2; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+03;
             4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
```

RESULT 1 A05012

```
||||
24 RFFL 27
```

A.; Nerome, R.; Omoe, K.; Nerome, K.

DЪ

```
RESULT 2
S34504
photosystem I protein psaM - Euglena gracilis chloroplast
C; Species: chloroplast Euglena gracilis
C;Date: 10-Sep-1999 #sequence revision 10-Sep-1999 #text_change 29-Oct-1999
C; Accession: S34504; S34871
R; Hallick, R.B.; Hong, L.; Drager, R.G.; Favreau, M.; Monfort, A.; Orsat, B.;
Spielmann, A.; Stutz, E.
submitted to the EMBL Data Library, January 1993
A; Description: The complete sequence of the Euglena gracilis chloroplast genome
(tentative).
A; Reference number: S34494
A; Accession: S34504
A; Molecule type: DNA
A; Residues: 1-31 <HAL1>
A;Cross-references: EMBL:X70810; NID:g415327; PIDN:CAA50083.1; PID:g415739
R; Hallick, R.B.; Hong, L.; Drager, R.G.; Favreau, M.R.; Monfort, A.; Orsat, B.;
Spielmann, A.; Stutz, E.
Nucleic Acids Res. 21, 3537-3544, 1993
A; Title: Complete sequence of Euglena gracilis chloroplast DNA.
A; Reference number: S34862; MUID: 93347989; PMID: 8346031
A; Accession: S34871
A; Status: nucleic acid sequence not shown; translation not shown
A; Molecule type: DNA
A; Residues: 1-31 <HAL2>
A;Cross-references: EMBL:X70810; NID:g415327; PIDN:CAA50083.1; PID:g415739
A; Note: the nucleotide sequence was submitted to the EMBL Data Library, January
1993
C; Genetics:
A;Gene: psaM
A; Genome: chloroplast
C; Superfamily: Euglena gracilis chloroplast photosystem I protein psaM
C; Keywords: chloroplast; photosynthesis; photosystem I; thylakoid
                          14.3%; Score 4; DB 1; Length 31;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+03;
                                                                              0;
             4: Conservative
                               0; Mismatches 0; Indels
                                                                  0; Gaps
            5 LGKS 8
Qу
              1111
Db
           25 LGKS 28
RESULT 3
PO0416
RNA-directed RNA polymerase (EC 2.7.7.48) 3 - influenza A virus (strain
A/Yamagata/120/86 [H1N1]) (fragment)
N; Alternate names: P2 protein; PA protein
C; Species: influenza A virus
C;Date: 30-Sep-1993 #sequence revision 30-Sep-1993 #text_change 07-May-1999
C; Accession: PQ0416
R;Li, X.S.; Zhao, C.Y.; Gao, H.M.; Zhang, Y.Q.; Ishida, M.; Kanegae, Y.; Endo,
```

```
A; Title: Origin and evolutionary characteristics of antigenic reassortant
influenza A (H1N2) viruses isolated from man in China.
A; Reference number: PQ0408; MUID: 92300326; PMID: 1607856
A; Accession: PQ0416
A; Molecule type: genomic RNA
A; Residues: 1-33 <LIA>
C:Genetics:
A; Map position: segment 3
C; Superfamily: influenza virus RNA-directed RNA polymerase 3
C; Keywords: nucleotidyltransferase
                          14.3%; Score 4; DB 2; Length 33;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.2e+03;
                                                                 0; Gaps
                                                                             0;
             4; Conservative
                                0; Mismatches
                                                   0; Indels
            6 GKSI 9
Qу
              Db
           16 GKSI 19
RESULT 4
S36843
defensin NP-6 - rabbit
N; Contains: defensin des-G1-NP-6
C; Species: Oryctolagus cuniculus (domestic rabbit)
C;Date: 10-Dec-1993 #sequence revision 13-Mar-1997 #text change 13-Mar-1998
C; Accession: S36843; S36844
R; Fuse, N.; Hayashi, Y.; Fukata, J.; Tominaga, T.; Ebisui, O.; Satoh, Y.;
Isohara, T.; Uno, I.; Imura, H.
Eur. J. Biochem. 216, 653-659, 1993
A; Title: Purification and characterization of new anti-adrenocorticotropin
rabbit neutrophil peptides (defensins).
A; Reference number: S36843; MUID: 93387318; PMID: 8397087
A; Accession: S36843
A; Molecule type: protein
A; Residues: 1-34 < FUS>
A; Accession: S36844
A; Molecule type: protein
A; Residues: 2-34 <FU2>
A: Note: defensin des-G1-NP-6
C; Superfamily: mammalian defensin
                          14.3%; Score 4; DB 2; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.2e+03;
           4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
  Matches
           13 RRRF 16
Qу
              Db
            6 RRRF 9
RESULT 5
A39888
synapsin I - rat (fragments)
C; Species: Rattus norvegicus (Norway rat)
C;Date: 31-Jan-1992 #sequence_revision 31-Jan-1992 #text_change 18-Jun-1993
```

J. Gen. Virol. 73, 1329-1337, 1992

```
R; Czernik, A.J.; Pang, D.T.; Greengard, P.
Proc. Natl. Acad. Sci. U.S.A. 84, 7518-7522, 1987
A; Title: Amino acid sequences surrounding the cAMP-dependent and
calcium/calmodulin-dependent phosphorylation sites in rat and bovine synapsin I.
A; Reference number: A39888; MUID: 88041137; PMID: 3118371
A; Accession: A39888
A; Status: preliminary
A; Molecule type: protein
A; Residues: 1-34 <CZE>
  Query Match
                          14.3%; Score 4; DB 2; Length 34;
  Best Local Similarity 100.0%; Pred. No. 1.2e+03;
                                                                              0:
            4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
  Matches
           12 LRRR 15
Qу
              1111
Db
            3 LRRR 6
RESULT 6
520042
hypothetical protein 1 - Haemophilus influenzae insertion sequence IS1016(V-5)
(fragment)
C; Species: Haemophilus influenzae
C;Date: 07-May-1998 #sequence revision 17-Jul-1998 #text_change 17-Jul-1998
C; Accession: S20042
R; Kroll, J.S.; Loynds, B.M.; Moxon, E.R.
Mol. Microbiol. 5, 1549-1560, 1991
A; Title: The Haemophilus influenzae capsulation gene cluster: a compound
transposon.
A; Reference number: S16288; MUID: 92157882; PMID: 1664907
A; Accession: S20042
A; Status: preliminary; translation not shown
A; Molecule type: DNA
A; Residues: 1-35 < KRO>
A; Cross-references: EMBL: X58177
C; Genetics:
A; Mobile element: insertion sequence IS1016(V-5)
                          14.3%; Score 4; DB 2; Length 35;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.2e+03;
           4; Conservative 0; Mismatches
                                                                  0; Gaps
                                                                              0;
                                                   0; Indels
  Matches
            7 KSIO 10
Qу
              | \cdot | \cdot |
Db
           10 KSIQ 13
RESULT 7
E64108
protein V6, truncated - Haemophilus influenzae insertion sequence IS1016
C; Species: Haemophilus influenzae
C;Date: 18-Aug-1995 #sequence revision 18-Aug-1995 #text_change 24-Oct-1998
C; Accession: E64108
R; Fleischmann, R.D.; Adams, M.D.; White, O.; Clayton, R.A.; Kirkness, E.F.;
Kerlavage, A.R.; Bult, C.J.; Tomb, J.F.; Dougherty, B.A.; Merrick, J.M.;
```

C:Accession: A39888

```
McKenney, K.; Sutton, G.; FitzHugh, W.; Fields, C.; Gocayne, J.D.; Scott, J.;
Shirley, R.; Liu, L.I.; Glodek, A.; Kelley, J.M.; Weidman, J.F.; Phillips, C.A.;
Spriggs, T.; Hedblom, E.; Cotton, M.D.; Utterback, T.R.; Hanna, M.C.; Nguyen,
D.T.; Saudek, D.M.; Brandon, R.C.; Fine, L.D.; Fritchman, J.L.; Fuhrmann, J.L.;
Geoghagen, N.S.M.
Science 269, 496-512, 1995
A; Authors: Gnehm, C.L.; McDonald, L.A.; Small, K.V.; Fraser, C.M.; Smith, H.O.;
Venter, J.C.
A; Title: Whole-genome random sequencing and assembly of Haemophilus influenzae
A; Reference number: A64000; MUID: 95350630; PMID: 7542800
A; Accession: E64108
A; Status: nucleic acid sequence not shown; translation not shown
A; Molecule type: DNA
A; Residues: 1-35 <TIGR>
A; Cross-references: GB: U32782; GB: L42023; NID: g1574041; PID: g1574052;
TIGR: HI1018
A; Experimental source: strain Rd KW20
C:Genetics:
A; Mobile element: insertion sequence IS1016
                          14.3%; Score 4; DB 2; Length 35;
  Ouery Match
                          100.0%; Pred. No. 1.2e+03;
  Best Local Similarity
            4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
  Matches
                                                                              0;
            7 KSIO 10
Qу
              1111
Db
           10 KSIQ 13
RESULT 8
D82607
hypothetical protein XF2026 [imported] - Xylella fastidiosa (strain 9a5c)
C; Species: Xylella fastidiosa
C;Date: 18-Aug-2000 #sequence revision 20-Aug-2000 #text change 20-Aug-2000
C; Accession: D82607
R; anonymous, The Xylella fastidiosa Consortium of the Organization for
Nucleotide Sequencing and Analysis, Sao Paulo, Brazil.
Nature 406, 151-157, 2000
A; Title: The genome sequence of the plant pathogen Xylella fastidiosa.
A; Reference number: A82515; MUID: 20365717; PMID: 10910347
A; Note: for a complete list of authors see reference number A59328 below
A; Accession: D82607
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-35 <SIM>
A; Cross-references: GB: AE004021; GB: AE003849; NID: g9107139; PIDN: AAF84828.1;
GSPDB:GN00128; XFSC:XF2026
A; Experimental source: strain 9a5c
R; Simpson, A.J.G.; Reinach, F.C.; Arruda, P.; Abreu, F.A.; Acencio, M.;
Alvarenga, R.; Alves, L.M.C.; Araya, J.E.; Baia, G.S.; Baptista, C.S.; Barros,
M.H.; Bonaccorsi, E.D.; Bordin, S.; Bove, J.M.; Briones, M.R.S.; Bueno, M.R.P.;
Camargo, A.A.; Camargo, L.E.A.; Carraro, D.M.; Carrer, H.; Colauto, N.B.;
Colombo, C.; Costa, F.F.; Costa, M.C.R.; Costa-Neto, C.M.; Coutinho, L.L.;
Cristofani, M.; Dias-Neto, E.; Docena, C.; El-Dorry, H.; Facincani, A.P.;
Ferreira, A.J.S.
submitted to GenBank, June 2000
```

```
A; Authors: Ferreira, V.C.A.; Ferro, J.A.; Fraga, J.S.; Franca, S.C.; Franco,
M.C.; Frohme, M.; Furlan, L.R.; Garnier, M.; Goldman, G.H.; Goldman, M.H.S.;
Gomes, S.L.; Gruber, A.; Ho, P.L.; Hoheisel, J.D.; Junqueira, M.L.; Kemper,
E.L.; Kitajima, J.P.; Krieger, J.E.; Kuramae, E.E.; Laigret, F.; Lambais, M.R.;
Leite, L.C.C.; Lemos, E.G.M.; Lemos, M.V.F.; Lopes, S.A.; Lopes, C.R.; Machado,
J.A.; Machado, M.A.; Madeira, A.M.B.N.; Madeira, H.M.F.; Marino, C.L.; Marques,
M.V.; Martins, E.A.L.
A; Authors: Martins, E.M.F.; Matsukuma, A.Y.; Menck, C.F.M.; Miracca, E.C.;
Miyaki, C.Y.; Monteiro-Vitorello, C.B.; Moon, D.H.; Nagai, M.A.; Nascimento,
A.L.T.O.; Netto, L.E.S.; Nhani Jr., A.; Nobrega, F.G.; Nunes, L.R.; Oliveira,
M.A.; de Oliveira, M.C.; de Oliveira, R.C.; Palmieri, D.A.; Paris, A.; Peixoto,
B.R.; Pereira, G.A.G.; Pereira Jr., H.A.; Pesquero, J.B.; Quaggio, R.B.;
Roberto, P.G.; Rodrigues, V.; Rosa, A.J. de M.; de Rosa Jr., V.E.; de Sa, R.G.;
Santelli, R.V.; Sawasaki, H.E.
A;Authors: da Silva, A.C.R.; da Silva, F.R.; da Silva, A.M.; Silva Jr., W.A.; da
Silveira, J.F.; Silvestri, M.L.Z.; Siqueira, W.J.; de Souza, A.A.; de Souza,
A.P.; Terenzi, M.F.; Truffi, D.; Tsai, S.M.; Tsuhako, M.H.; Vallada, H.; Van
Sluys, M.A.; Verjovski-Almeida, S.; Vettore, A.L.; Zago, M.A.; Zatz, M.;
Meidanis, J.; Setubal, J.C.
A; Reference number: A59328
A; Contents: annotation
C:Genetics:
A;Gene: XF2026
                          14.3%; Score 4; DB 2; Length 35;
  Query Match
                          100.0%; Pred. No. 1.2e+03;
  Best Local Similarity
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
             4; Conservative
                               0; Mismatches
  Matches
           21 LIAE 24
Qу
              30 LIAE 33
Db
RESULT 9
JU0352
4.6K protein - Chlamydophila psittaci phage Chpl
C; Species: Chlamydophila psittaci phage Chp1, Chlamydia psittaci phage Chp1
A; Note: host Chlamydia psittaci
C;Date: 30-Sep-1993 #sequence revision 30-Sep-1993 #text change 16-Jun-2000
C; Accession: JU0352
R; Storey, C.C.; Lusher, M.; Richmond, S.J.
J. Gen. Virol. 70, 3381-3390, 1989
A; Title: Analysis of the complete nucleotide sequence of Chp1, a phage which
infects avian Chlamydia psittaci.
A; Reference number: JU0345; MUID: 90111716; PMID: 2607341
A; Accession: JU0352
A; Molecule type: DNA
A; Residues: 1-36 <STO>
A; Cross-references: GB: D00624; NID: g217761; PIDN: BAA00510.1; PID: g217769
C; Superfamily: Chlamydia psittaci phage Chp1 4.6K protein
                           14.3%; Score 4; DB 1; Length 36;
  Query Match
                           100.0%; Pred. No. 1.3e+03;
  Best Local Similarity
                                                        Indels
                                                                  0; Gaps
             4; Conservative 0; Mismatches
                                                    0;
            12 LRRR 15
Qу
```

```
RESULT 10
C60071
pancreatic hormone - rhesus macaque
N; Alternate names: pancreatic polypeptide
C; Species: Macaca mulatta (rhesus macaque)
C;Date: 07-May-1993 #sequence revision 07-May-1993 #text_change 15-Jun-1996
C; Accession: C60071
R; Yu, J.; Xin, Y.; Eng, J.; Yalow, R.S.
Regul. Pept. 32, 39-45, 1991
A; Title: Rhesus monkey gastroenteropancreatic hormones: relationship to human
sequences.
A; Reference number: A60071; MUID: 91164506; PMID: 2003150
A; Accession: C60071
A; Status: protein sequence not shown
A; Molecule type: protein
A; Residues: 1-36 < YUA>
A; Note: the sequence is identical with the human sequence
C; Superfamily: pancreatic hormone
C: Keywords: amidated carboxyl end; hormone; pancreas
F;36/Modified site: amidated carboxyl end (Tyr) #status experimental
                          14.3%; Score 4; DB 2; Length 36;
  Query Match
                          100.0%; Pred. No. 1.3e+03;
  Best Local Similarity
  Matches
             4; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0:
           11 DLRR 14
Qу
              1111
Db
           23 DLRR 26
RESULT 11
S17507
cytokine - rabbit
C; Species: Oryctolagus cuniculus (domestic rabbit)
C;Date: 19-Mar-1997 #sequence revision 19-Mar-1997 #text change 31-Oct-1997
C; Accession: S17507
R; Jose, P.J.; Collins, P.D.; Perkins, J.A.; Beaubien, B.C.; Totty, N.F.;
Waterfield, M.D.; Hsuan, J.; Williams, T.J.
Biochem. J. 278, 493-497, 1991
A; Title: Identification of a second neutrophil-chemoattractant cytokine
generated during an inflammatory reaction in the rabbit peritoneal cavity in
vivo. Purification, partial amino acid sequence and structural relationship to
melanoma-growth-stimulatory activity.
A; Reference number: S17507; MUID: 91378900; PMID: 1898341
A; Accession: S17507
A;Status: preliminary
A; Molecule type: protein
A; Residues: 1-36 < JOS>
C; Superfamily: beta-thromboglobulin
                          14.3%; Score 4; DB 2; Length 36;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 1.3e+03;
             4; Conservative 0; Mismatches
                                                    0; Indels
```

```
7 KSIQ 10
Qу
              1111
Db
           19 KSIQ 22
RESULT 12
S04627
qlutathione transferase (EC 2.5.1.18) 6.0 - Proteus mirabilis (fragment)
C; Species: Proteus mirabilis
C;Date: 28-Feb-1990 #sequence_revision 28-Feb-1990 #text_change 01-Feb-1999
C; Accession: S04627
R;Di Ilio, C.; Aceto, A.; Piccolomini, R.; Allocati, N.; Caccuri, A.M.; Barra,
D.; Federici, G.
FEBS Lett. 250, 57-59, 1989
A; Title: N-terminal region of Proteus mirabilis glutathione transferase is not
homologous to mammalian and plant glutathione transferases.
A; Reference number: S04627; MUID: 89290034; PMID: 2661269
A; Accession: S04627
A; Molecule type: protein
A; Residues: 1-38 <DII>
C; Complex: dimer
C; Function:
A; Description: catalyzes conjugation of glutathione to a large variety of
electrophilic compounds of endobiotic and xenobiotic origin; also involved in
intracellular binding and transport of hydrophobic compounds; involved in
detoxification of organic hydroperoxides
C; Superfamily: glutathione transferase
C; Keywords: dimer; transferase
                          14.3%; Score 4; DB 2; Length 38;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.3e+03;
                                 0; Mismatches
             4; Conservative
                                                    0; Indels
                                                                  0; Gaps
                                                                              0;
           11 DLRR 14
Qу
              1111
Db
           31 DLRR 34
RESULT 13
B39888
synapsin I - bovine (fragments)
C; Species: Bos primigenius taurus (cattle)
C;Date: 31-Jan-1992 #sequence revision 31-Jan-1992 #text change 18-Jun-1993
C; Accession: B39888
R;Czernik, A.J.; Pang, D.T.; Greengard, P.
Proc. Natl. Acad. Sci. U.S.A. 84, 7518-7522, 1987
A; Title: Amino acid sequences surrounding the cAMP-dependent and
calcium/calmodulin-dependent phosphorylation sites in rat and bovine synapsin I.
A; Reference number: A39888; MUID: 88041137; PMID: 3118371
A; Accession: B39888
A; Status: preliminary
A; Molecule type: protein
A; Residues: 1-38 <CZE>
  Query Match
                          14.3%; Score 4; DB 2; Length 38;
  Best Local Similarity
                          100.0%; Pred. No. 1.3e+03;
                                                    0; Indels
                                                                              0;
```

4; Conservative 0; Mismatches

Matches

```
12 LRRR 15
Qу
              1111
            3 LRRR 6
Db
RESULT 14
A38335
58K tubulointerstitial nephritis antigen - rabbit (fragments)
C; Species: Oryctolagus cuniculus (domestic rabbit)
C;Date: 28-Jun-1991 #sequence revision 24-Feb-1994 #text change 24-Feb-1994
C; Accession: A38335; B38335
R; Butkowski, R.J.; Langeveld, J.P.M.; Wieslander, J.; Brentjens, J.R.; Andres,
G.A.
J. Biol. Chem. 265, 21091-21098, 1990
A; Title: Characterization of a tubular basement membrane component reactive with
autoantibodies associated with tubulointerstitial nephritis.
A; Reference number: A38335; MUID: 91065920; PMID: 2250013
A; Accession: A38335
A; Molecule type: protein
A; Residues: 1-38 <BUT>
A; Note: the source of this sequence is the 58K antigen
A; Accession: B38335
A; Molecule type: protein
A; Residues: 1-12 <BU2>
A; Note: the source of this sequence is the 50K antigen
  Query Match
                          14.3%; Score 4; DB 2; Length 38;
  Best Local Similarity
                          100.0%; Pred. No. 1.3e+03;
             4; Conservative
                                0; Mismatches
                                                    0; Indels
                                                                   0; Gaps
                                                                               0;
           22 IAEI 25
Qу
              1111
Db
           26 IAEI 29
RESULT 15
E86077
hypothetical protein Z5430 [imported] - Escherichia coli (strain O157:H7,
substrain EDL933)
C; Species: Escherichia coli
C;Date: 16-Feb-2001 #sequence revision 16-Feb-2001 #text change 14-Sep-2001
C; Accession: E86077
R; Perna, N.T.; Plunkett III, G.; Burland, V.; Mau, B.; Glasner, J.D.; Rose,
D.J.; Mayhew, G.F.; Evans, P.S.; Gregor, J.; Kirkpatrick, H.A.; Posfai, G.;
Hackett, J.; Klink, S.; Boutin, A.; Shao, Y.; Miller, L.; Grotbeck, E.J.; Davis,
N.W.; Lim, A.; Dimalanta, E.; Potamousis, K.; Apodaca, J.; Anantharaman, T.S.;
Lin, J.; Yen, G.; Schwartz, D.C.; Welch, R.A.; Blattner, F.R.
Nature 409, 529-533, 2001
A; Title: Genome sequence of enterohemorrhagic Escherichia coli 0157:H7.
A; Reference number: A85480; MUID: 21074935; PMID: 11206551
A; Accession: E86077
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-38 <STO>
A; Cross-references: GB: AE005174; NID: g12518780; PIDN: AAG59081.1; GSPDB: GN00145;
UWGP: Z5430
```

```
C:Genetics:
A;Gene: Z5430
                          14.3%; Score 4; DB 2; Length 38;
  Query Match
                          100.0%; Pred. No. 1.3e+03;
  Best Local Similarity
                               0; Mismatches 0; Indels
                                                                  0; Gaps
 Matches
             4; Conservative
                                                                              0;
            2 LHNL 5
Qу
              1111
Db
           20 LHNL 23
RESULT 16
S67938
hypothetical protein 3 - Streptococcus pneumoniae
C; Species: Streptococcus pneumoniae
C;Date: 05-Dec-1996 #sequence_revision 13-Mar-1997 #text change 13-Mar-1997
C; Accession: S67938
R; Saluja, S.K.; Weiser, J.N.
Mol. Microbiol. 16, 215-227, 1995
A; Title: The genetic basis of colony opacity in Streptococcus pneumoniae:
evidence for the effect of box elements on the frequency of phenotypic
variation.
A; Reference number: S67936; MUID: 96015435; PMID: 7565084
A; Accession: S67938
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-39 < SAL>
A; Cross-references: EMBL: U12567
                          14.3%; Score 4; DB 2; Length 39;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 1.4e+03;
             4; Conservative
                                 0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                               0;
            5 LGKS 8
Qу
              1111
Db
            5 LGKS 8
RESULT 17
G9BPSV
gene 9 protein - spiroplasma virus 4
C; Species: spiroplasma virus 4, SpV4
A; Note: host Spiroplasma melliferum
C;Date: 31-Mar-1989 #sequence revision 31-Mar-1989 #text change 07-Dec-1999
C; Accession: B29825
R; Renaudin, J.; Pascarel, M.C.; Bove, J.M.
J. Bacteriol. 169, 4950-4961, 1987
A; Title: Spiroplasma virus 4: nucleotide sequence of the viral DNA, regulatory
signals, and proposed genome organization.
A; Reference number: A91845; MUID: 88032809; PMID: 2822658
A; Accession: B29825
A; Molecule type: DNA
A; Residues: 1-28 < REN>
A; Cross-references: GB:M17988; NID:g334998
```

A; Note: this ORF is not annotated in GenBank entry SPVDNA

A: Experimental source: strain O157:H7, substrain EDL933

```
C; Comment: This virus is a procaryote DNA virus.
C; Genetics:
A;Gene: 9
A; Genetic code: SGC3
C; Superfamily: spiroplasma virus 4 gene 9 protein
                          10.7%; Score 3; DB 1; Length 28;
  Query Match
                          100.0%; Pred. No. 1.1e+04;
  Best Local Similarity
  Matches
            3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
           13 RRR 15
Qу
              | | |
           17 RRR 19
Dh
RESULT 18
S41774
ubiquinol-cytochrome-c reductase (EC 1.10.2.2) cytochrome b - Trypanosoma
congolense mitochondrion (fragment)
C; Species: mitochondrion Trypanosoma congolense
C;Date: 25-Dec-1994 #sequence revision 27-Feb-1997 #text_change 03-Jun-2002
C:Accession: S41774
R; Read, L.K.; Fish, W.R.; Muthiani, A.M.; Stuart, K.
Nucleic Acids Res. 21, 4073-4078, 1993
A; Title: Maxicircle DNA and edited mRNA sequences of closely related trypanosome
species: implications of kRNA editing for evolution of maxicircle genomes.
A; Reference number: S41774; MUID: 93382785; PMID: 8396763
A; Accession: S41774
A; Status: preliminary
A; Molecule type: mRNA
A; Residues: 1-28 < REA>
C; Superfamily: cytochrome b; cytochrome b homology; cytochrome b6 homology;
plastoquinol-plastocyanin reductase 17K protein homology
C; Keywords: electron transfer; mitochondrion; oxidative phosphorylation;
oxidoreductase; respiratory chain; RNA editing
                          10.7%; Score 3; DB 2; Length 28;
  Query Match
                          100.0%; Pred. No. 1.1e+04;
  Best Local Similarity
  Matches
             3; Conservative 0; Mismatches 0; Indels
                                                                      Gaps
                                                                              0;
                                                                 0;
           16 FFL 18
Qу
            9 FFL 11
Db
RESULT 19
S66436
allophycocyanin alpha-B chain - Anabaena sp. (strain PCC 7120) (fragment)
C; Species: Anabaena sp.
A; Variety: PCC 7120
C;Date: 15-Feb-1997 #sequence revision 13-Mar-1997 #text change 24-Oct-1997
C; Accession: S66436
R; Ducret, A.; Sidler, W.; Wehrli, E.; Frank, G.; Zuber, H.
Eur. J. Biochem. 236, 1010-1024, 1996
A; Title: Isolation, characterization and electron microscopy analysis of a
hemidiscoidal phycobilisome type from the cyanobacterium Anabaena sp. PCC 7120.
A; Reference number: S66435; MUID: 96270757; PMID: 8665889
```

```
A:Accession: S66436
A; Status: preliminary
A; Molecule type: protein
A; Residues: 1-28 < DUC>
C; Superfamily: phycocyanin
                          10.7%; Score 3; DB 2; Length 28;
  Query Match
                          100.0%; Pred. No. 1.1e+04;
  Best Local Similarity
            3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
  Matches
            7 KSI 9
Qу
              111
           23 KSI 25
Db
RESULT 20
C33948
glutathione transferase (EC 2.5.1.18) 5 - chicken (fragment)
N; Alternate names: glutathione S-alkyltransferase; glutathione S-
aralkyltransferase; glutathione S-aryltransferase
C; Species: Gallus gallus (chicken)
C;Date: 07-Jun-1990 #sequence_revision 07-Jun-1990 #text_change 03-Nov-2000
C; Accession: C33948
R;Chang, L.H.; Chuang, L.F.; Tsai, C.P.; Tu, C.P.D.; Tam, M.F.
Biochemistry 29, 744-750, 1990
A; Title: Characterization of glutathione S-transferases from day-old chick
livers.
A; Reference number: A90547; MUID: 90248419; PMID: 2337594
A; Accession: C33948
A; Molecule type: protein
A; Residues: 1-28 < CH3>
C; Superfamily: glutathione transferase
C; Keywords: transferase
                           10.7%; Score 3; DB 2; Length 28;
  Query Match
                          100.0%; Pred. No. 1.1e+04;
  Best Local Similarity
             3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
  Matches
           23 AEI 25
Qу
Db
           14 AEI 16
RESULT 21
A31859
deoxycytidine kinase (EC 2.7.1.74) / deoxyadenosine kinase (EC 2.7.1.76) -
Lactobacillus acidophilus (fragment)
 C; Species: Lactobacillus acidophilus
 C;Date: 07-Jun-1990 #sequence_revision 07-Jun-1990 #text_change 18-Sep-1998
 C; Accession: A31859
 R; Ikeda, S.; Swenson, R.P.; Ives, D.H.
 Biochemistry 27, 8648-8652, 1988
A; Title: Amino-terminal nucleotide-binding sequences of a Lactobacillus
 deoxynucleoside kinase complex isolated by novel affinity chromatography.
 A; Reference number: A31859; MUID: 89118283; PMID: 2851331
 A; Accession: A31859
A; Molecule type: protein
```

```
A: Residues: 1-28 < IKE>
A; Note: 18-Ile, 21-Lys, 26-Gln, and 27-Ala were also found
C; Superfamily: Lactobacillus acidophilus deoxyadenosine kinase
C; Keywords: phosphotransferase
                          10.7%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
             3; Conservative 0; Mismatches 0; Indels
                                                                             0;
  Matches
                                                                 0; Gaps
            6 GKS 8
Qу
              111
           11 GKS 13
Db
RESULT 22
B54257
deoxynucleoside kinase complex I F-component - Lactobacillus acidophilus
(fragment)
N; Alternate names: dCyd kinase subunit
C; Species: Lactobacillus acidophilus
C;Date: 06-Oct-1994 #sequence_revision 18-Nov-1994 #text_change 18-Sep-1998
C; Accession: B54257
R; Ikeda, S.; Ma, G.T.; Ives, D.H.
Biochemistry 33, 5328-5334, 1994
A; Title: Heterodimeric deoxynucleoside kinases of Lactobacillus acidophilus R-
26: functional assignment of subunits using limited proteolysis controlled by
end-product inhibitors.
A; Reference number: A54257; MUID: 94227067; PMID: 8172906
A; Accession: B54257
A; Status: preliminary
A; Molecule type: protein
A; Residues: 1-28 < IKE>
A; Experimental source: R-26
A; Note: sequence extracted from NCBI backbone (NCBIP:146749)
C; Superfamily: Lactobacillus acidophilus deoxyadenosine kinase
                          10.7%; Score 3; DB 2; Length 28;
  Query Match
                          100.0%; Pred. No. 1.1e+04;
  Best Local Similarity
            3; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                              0;
            6 GKS 8
Qу
           11 GKS 13
Db
RESULT 23
D41912
T-cell receptor beta chain (AE16) - mouse (fragment)
C; Species: Mus musculus (house mouse)
C;Date: 03-Feb-1994 #sequence_revision 03-Feb-1994 #text_change 17-Mar-1999
C; Accession: D41912
R; Hong, S.C.; Chelouche, A.; Lin, R.; Shaywitz, D.; Braunstein, N.S.; Glimcher,
L.; Janeway Jr., C.A.
Cell 69, 999-1009, 1992
A; Title: An MHC interaction site maps to the amino-terminal half of the T cell
receptor alpha chain variable domain.
A; Reference number: A41912; MUID: 92298397; PMID: 1318787
```

```
A; Status: preliminary; not compared with conceptual translation
A: Molecule type: mRNA
A:Residues: 1-28 <HON>
C; Superfamily: immunoglobulin V region; immunoglobulin homology
C; Keywords: T-cell receptor
                          10.7%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+04;
             3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
  Matches
                                                                              0;
           11 DLR 13
Qу
              111
           25 DLR 27
Db
RESULT 24
I50169
alpha-1 type-1 collagen - chicken (fragment)
C; Species: Gallus gallus (chicken)
C;Date: 13-Sep-1996 #sequence_revision 13-Sep-1996 #text_change 13-Aug-1999
C; Accession: I50169
R;Yamada, Y.; Mudryj, M.; de Crombrugghe, B.
J. Biol. Chem. 258, 14914-14919, 1983
A; Title: A uniquely conserved regulatory signal is found around the translation
initiation site in three different collagen genes.
A; Reference number: I50169; MUID: 84087884; PMID: 6689169
A; Accession: I50169
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: mRNA
A; Residues: 1-28 < YAM>
A; Cross-references: GB: K01482; NID: g211287; PIDN: AAA48636.1; PID: g555426
C; Superfamily: collagen alpha 1(I) chain; fibrillar collagen carboxyl-terminal
homology; von Willebrand factor type C repeat homology
                          10.7%; Score 3; DB 2; Length 28;
  Query Match
                          100.0%; Pred. No. 1.1e+04;
  Best Local Similarity
             3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
           21 LIA 23
QУ
              | | | |
           12 LIA 14
Db
RESULT 25
S21231
calcium-binding protein SCP VI, sarcoplasmic - common lancelet
C; Species: Branchiostoma lanceolatum (common lancelet)
C;Date: 19-Mar-1997 #sequence revision 25-Apr-1997 #text_change 02-Aug-2002
C; Accession: S21231
R; Takagi, T.; Valette-Talbi, L.; Cox, J.A.
FEBS Lett. 302, 159-160, 1992
A; Title: Primary structure of three minor isoforms of amphioxus sarcoplasmic
calcium-binding proteins.
A; Reference number: S21153; MUID: 92339504; PMID: 1633848
A; Accession: S21231
A; Molecule type: protein
```

A; Accession: D41912

```
A; Residues: 1-28 < TAK>
C; Superfamily: calmodulin; calmodulin repeat homology
C; Keywords: calcium binding; EF hand
  Query Match
                          10.7%; Score 3; DB 2; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+04;
 Matches
            3; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
Qу
           16 FFL 18
              HH
Dh
            5 FFL 7
RESULT 26
A05296
fibrinogen alpha chain - dog (fragment)
C; Species: Canis lupus familiaris (dog)
C;Date: 05-Jun-1987 #sequence revision 05-Jun-1987 #text change 25-Oct-1996
C; Accession: A94308; A03118; A37511; A05296; B37511; C03118
R; Birken, S.; Wilner, G.D.; Canfield, R.E.
Thromb. Res. 7, 599-610, 1975
A; Title: Studies of the structure of canine fibrinogen.
A; Reference number: A94308; MUID: 76081726; PMID: 1198547
A; Accession: A94308
A; Molecule type: protein
A; Residues: 1-28 <BIR>
R; Blombaeck, B.; Blombaeck, M.; Groendahl, N.J.
Acta Chem. Scand. 19, 1789-1791, 1965
A; Title: Studies on fibrinopeptides from mammals.
A; Reference number: A03118
A; Accession: A03118
A; Molecule type: protein
A; Residues: 1-16 <BLO>
R; Osbahr Jr., A.J.; Colman, R.W.; Laki, K.; Gladner, J.A.
Biochem. Biophys. Res. Commun. 14, 555-558, 1964
A; Reference number: A37511; MUID: 66020594; PMID: 5836555
A; Accession: A37511
A; Molecule type: protein
A; Residues: 1, 'D', 3, 'EGKQ', 8-16 < OSB >
C; Superfamily: fibrinogen alpha chain; fibrinogen disulfide ring homology
C; Keywords: blood coagulation; liver; phosphoprotein; plasma
F;1-16/Product: fibrinopeptide A #status experimental <APT>
F;3/Binding site: phosphate (Ser) (covalent) (partial) #status experimental
  Query Match
                          10.7%; Score 3; DB 2; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+04;
                               0; Mismatches
             3; Conservative
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           22 IAE 24
              9 IAE 11
Db
RESULT 27
B35577
cell adhesion receptor CD36 - bovine (fragment)
N; Alternate names: membrane glycoprotein PAS IV; platelet glycoprotein IV
```

```
C; Species: Bos primigenius taurus (cattle)
C;Date: 21-Sep-1990 #sequence revision 10-May-1996 #text change 29-Aug-1997
C; Accession: B35577; A37884
R; Greenwalt, D.E.; Watt, K.W.K.; So, O.Y.; Jiwani, N.
Biochemistry 29, 7054-7059, 1990
A; Title: PAS IV, an integral membrane protein of mammary epithelial cells, is
related to platelet and endothelial cell CD36 (GP IV).
A; Reference number: A35577; MUID: 91027734; PMID: 1699598
A; Accession: B35577
A; Molecule type: protein
A; Residues: 1-28 < GRE>
R; Greenwalt, D.E.; Watt, K.W.K.; Hasler, T.; Howard, R.J.; Patel, S.
J. Biol. Chem. 265, 16296-16299, 1990
A; Title: Structural, functional, and antigenic differences between bovine heart
endothelial CD36 and human platelet CD36.
A; Reference number: A37884; MUID: 90375491; PMID: 1697855
A; Accession: A37884
A; Molecule type: protein
A; Residues: 1-21 <GR2>
C; Superfamily: lysosomal integral membrane protein II
C; Keywords: cell adhesion; glycoprotein; receptor; surface antigen;
transmembrane protein
  Query Match
                          10.7%; Score 3; DB 2; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+04;
                                0; Mismatches
  Matches
                                                 0; Indels
             3; Conservative
                                                                  0; Gaps
                                                                              0;
           21 LIA 23
Qу
              Db
            8 LIA 10
RESULT 28
PN0047
signal transduction protein QM0017 - mouse (fragments)
C; Species: Mus musculus (house mouse)
C;Date: 29-Oct-1997 #sequence revision 29-Oct-1997 #text change 15-Oct-1999
C; Accession: PN0047
R; Kato, H.
Kawasaki Igakkaishi 22, 245-259, 1996
A; Title: Analysis of proteins isolated by two dimensional electrophoresis of
mouse neuroblastoma cells.
A; Reference number: PN0041
A; Accession: PN0047
A; Molecule type: protein
A; Residues: 1-28 < KAT>
A; Experimental source: neuroblastoma cell
C; Comment: The molecular mass is 25,600 and the pI is 6.07. The amino-terminus
is blocked.
C; Superfamily: signal transduction protein DJ-1
C; Keywords: brain
  Query Match
                          10.7%; Score 3; DB 2; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+04;
  Matches
            3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
```

```
|||
14 NLG 16
```

7 KSI 9

Qу

Db

```
RESULT 29
T48178
orphan receptor - rat (fragment)
C; Species: Rattus norvegicus (Norway rat)
C;Date: 02-Jul-1996 #sequence_revision 02-Jul-1996 #text change 24-Sep-1999
C; Accession: I48178
R; Pena de Ortiz, S.; Cannon, M.M.; Jamieson, G.A.
Brain Res. Mol. Brain Res. 23, 278-283, 1994
A; Title: Expression of nuclear hormone receptors within the rat hippocampus:
identification of novel orphan receptors.
A; Reference number: I48178; MUID: 94335560; PMID: 7914660
A; Accession: I48178
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: mRNA
A; Residues: 1-28 < RES>
A;Cross-references: GB:L19344; NID:g349093; PIDN:AAB46396.1; PID:g565378
C; Superfamily: unassigned erbA-related proteins; erbA transforming protein
homology
                          10.7%; Score 3; DB 2; Length 28;
  Query Match
                          100.0%; Pred. No. 1.1e+04;
  Best Local Similarity
                               0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
             3; Conservative
            8 SIO 10
Qу
            6 SIQ 8
Db
RESULT 30
B56779
tetM 5'-region leader peptide - Enterococcus faecalis transposon Tn916
C; Species: Enterococcus faecalis
C;Date: 08-Sep-1995 #sequence revision 08-Sep-1995 #text change 24-Sep-1999
C; Accession: B56779
R;Su, Y.A.; He, P.; Clewell, D.B.
Antimicrob. Agents Chemother. 36, 769-778, 1992
A:Title: Characterization of the tet(M) determinant of Tn916: evidence for
regulation by transcription attenuation.
A; Reference number: A56779; MUID: 92368175; PMID: 1323953
A; Accession: B56779
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-28 <SU1>
A;Cross-references: GB:U09422; NID:g532533; PIDN:AAB60021.1; PID:g532545
A; Note: sequence extracted from NCBI backbone (NCBIN:111076, NCBIP:111079)
C; Superfamily: unassigned leader peptides
                          10.7%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+04;
                                                                  0; Gaps
                                                                              0;
  Matches
             3; Conservative 0; Mismatches
                                                  0; Indels
```

```
RESULT 31
G69384
conserved hypothetical protein AF1079 - Archaeoglobus fulgidus
C; Species: Archaeoglobus fulgidus
C;Date: 05-Dec-1997 #sequence revision 05-Dec-1997 #text change 22-Oct-1999
C; Accession: G69384
R; Klenk, H.P.; Clayton, R.A.; Tomb, J.F.; White, O.; Nelson, K.E.; Ketchum,
K.A.; Dodson, R.J.; Gwinn, M.; Hickey, E.K.; Peterson, J.D.; Richardson, D.L.;
Kerlavage, A.R.; Graham, D.E.; Kyrpides, N.C.; Fleischmann, R.D.; Quackenbush,
J.; Lee, N.H.; Sutton, G.G.; Gill, S.; Kirkness, E.F.; Dougherty, B.A.; McKenny,
K.; Adams, M.D.; Loftus, B.; Peterson, S.; Reich, C.I.; McNeil, L.K.; Badger,
J.H.; Glodek, A.; Zhou, L.; Overbeek, R.; Gocayne, J.D.; Weidman, J.F.;
McDonald, L.
Nature 390, 364-370, 1997
A; Authors: Utterback, T.; Cotton, M.D.; Spriggs, T.; Artiach, P.; Kaine, B.P.;
Sykes, S.M.; Sadow, P.W.; D'Andrea, K.P.; Bowman, C.; Fujii, C.; Garland, S.A.;
Mason, T.M.; Olsen, G.J.; Fraser, C.M.; Smith, H.O.; Woese, C.R.; Venter, J.C.
A; Title: The complete genome sequence of the hyperthermophilic, sulfate-reducing
archaeon Archaeoglobus fulgidus.
A; Reference number: A69250; MUID: 98049343; PMID: 9389475
A:Accession: G69384
A; Status: preliminary; nucleic acid sequence not shown; translation not shown
A; Molecule type: DNA
A; Residues: 1-28 < KLE>
A;Cross-references: GB:AE001028; GB:AE000782; NID:g2689351; PIDN:AAB90160.1;
PID:g2649506; TIGR:AF1079
  Query Match
                          10.7%; Score 3; DB 2; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+04;
  Matches
             3; Conservative
                               0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           11 DLR 13
              \|\cdot\|
Db
           21 DLR 23
RESULT 32
A69259
hypothetical protein AF0073 - Archaeoglobus fulgidus
C; Species: Archaeoglobus fulgidus
C;Date: 05-Dec-1997 #sequence revision 05-Dec-1997 #text change 22-Oct-1999
C; Accession: A69259
R; Klenk, H.P.; Clayton, R.A.; Tomb, J.F.; White, O.; Nelson, K.E.; Ketchum,
K.A.; Dodson, R.J.; Gwinn, M.; Hickey, E.K.; Peterson, J.D.; Richardson, D.L.;
Kerlavage, A.R.; Graham, D.E.; Kyrpides, N.C.; Fleischmann, R.D.; Quackenbush,
J.; Lee, N.H.; Sutton, G.G.; Gill, S.; Kirkness, E.F.; Dougherty, B.A.; McKenny,
K.; Adams, M.D.; Loftus, B.; Peterson, S.; Reich, C.I.; McNeil, L.K.; Badger,
J.H.; Glodek, A.; Zhou, L.; Overbeek, R.; Gocayne, J.D.; Weidman, J.F.;
McDonald, L.
Nature 390, 364-370, 1997
A; Authors: Utterback, T.; Cotton, M.D.; Spriggs, T.; Artiach, P.; Kaine, B.P.;
Sykes, S.M.; Sadow, P.W.; D'Andrea, K.P.; Bowman, C.; Fujii, C.; Garland, S.A.;
Mason, T.M.; Olsen, G.J.; Fraser, C.M.; Smith, H.O.; Woese, C.R.; Venter, J.C.
```

```
archaeon Archaeoglobus fulgidus.
A; Reference number: A69250; MUID: 98049343; PMID: 9389475
A; Accession: A69259
A; Status: preliminary; nucleic acid sequence not shown; translation not shown
A; Molecule type: DNA
A; Residues: 1-28 < KLE>
A; Cross-references: GB: AE001101; GB: AE000782; NID: g2689424; PIDN: AAB91159.1;
PID:g2650579; TIGR:AF0073
                          10.7%; Score 3; DB 2; Length 28;
  Query Match
                          100.0%; Pred. No. 1.1e+04;
  Best Local Similarity
                                                                              0;
           3; Conservative
                                0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
  Matches
           23 AEI 25
QУ
              | | | |
           17 AEI 19
Db
RESULT 33
T14905
hypothetical protein - parsley
C; Species: Petroselinum crispum (parsley)
C;Date: 20-Sep-1999 #sequence_revision 20-Sep-1999 #text_change 20-Sep-1999
C:Accession: T14905
R; Feldbrugge, M.; Sprenger, M.; Dinkelbach, M.; Yazaki, K.; Harter, K.;
Weisshaar, B.
Plant Cell 6, 1607-1621, 1994
A; Title: Functional analysis of a light-responsive plant bZIP transcriptional
regulator.
A; Reference number: Z18259; MUID: 95128172; PMID: 7827494
A; Accession: T14905
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-28 <FEL>
A; Cross-references: EMBL: S75395; NID: g913201; PID: e194726
                           10.7%; Score 3; DB 2; Length 28;
  Query Match
                          100.0%; Pred. No. 1.1e+04;
  Best Local Similarity
                                                                  0; Gaps
                                                                               0;
             3; Conservative 0; Mismatches 0; Indels
  Matches
            1 LLH 3
Qу
Db
           14 LLH 16
RESULT 34
JQ0272
hypothetical 3K protein (trnH-trnV intergenic region) - rice chloroplast
C; Species: chloroplast Oryza sativa (rice)
C;Date: 31-Mar-1990 #sequence_revision 31-Mar-1990 #text_change 21-Jul-2000
C; Accession: JQ0272; S05152
R;Shimada, H.; Whittier, R.F.; Hiratsuka, J.; Maeda, Y.; Hirai, A.; Sugiura, M.
submitted to JIPID, December 1989
A; Reference number: JQ0200
A; Accession: JQ0272
A; Molecule type: DNA
```

A; Title: The complete genome sequence of the hyperthermophilic, sulfate-reducing

```
A; Residues: 1-28 <SHI>
A; Experimental source: cv. Nihonbare
R; Hiratsuka, J.; Shimada, H.; Whittier, R.; Ishibashi, T.; Sakamoto, M.; Mori,
M.; Kondo, C.; Honji, Y.; Sun, C.R.; Meng, B.Y.; Li, Y.Q.; Kanno, A.; Nishizawa,
Y.; Hirai, A.; Shinozaki, K.; Sugiura, M.
Mol. Gen. Genet. 217, 185-194, 1989
A; Title: The complete sequence of the rice (Oryza sativa) chloroplast genome:
intermolecular recombination between distinct tRNA genes accounts for a major
plastid DNA inversion during the evolution of the cereals.
A; Reference number: S05080; MUID: 89364698; PMID: 2770692
A; Accession: S05152
A; Status: nucleic acid sequence not shown; translation not shown
A; Molecule type: DNA
A; Residues: 1-28 <HIR>
A; Cross-references: GB: X15901; NID:q11957; PIDN: CAA33939.1; PID:g12032
A; Note: this sequence was submitted to EMBL, July 1989
C; Genetics:
A; Genome: chloroplast
C; Keywords: chloroplast
                          10.7%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
            3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
           19 HHL 21
Qу
              Db
           19 HHL 21
RESULT 35
S07826
venom protein - American tarantula (Eurypelma californica) (fragment)
C; Species: Eurypelma californica
C;Date: 30-Sep-1991 #sequence revision 30-Sep-1991 #text_change 18-Jun-1993
C; Accession: S07826
R; Savel-Niemann, A.
Biol. Chem. Hoppe-Seyler 370, 485-498, 1989
A; Title: Tarantula (Eurypelma californicum) venom, a multicomponent system.
A; Reference number: S04224; MUID: 89302691; PMID: 2742756
A; Accession: S07826
A; Molecule type: protein
A; Residues: 1-28 <SAV>
C; Keywords: venom
                          10.7%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+04;
                                                 0; Indels
                              0; Mismatches
                                                                              0;
  Matches
           3; Conservative
                                                                 0; Gaps
            6 GKS 8
Qу
              Db
           20 GKS 22
RESULT 36
I54183
cell adhesion regulator - human (fragment)
C; Species: Homo sapiens (man)
```

```
C; Accession: I54183
R; Koyama, K.; Emi, M.; Nakamura, Y.
Genomics 16, 264-265, 1993
A:Title: The cell adhesion regulator (CAR) gene; TaqI and insertion/deletion
polymorphism, and regional assignment to the peritelomeric region of 16q by
linkage analysis.
A; Reference number: I54183; MUID: 93252394; PMID: 8098008
A:Accession: I54183
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-28 < RES>
A; Cross-references: GB:D14075; NID:q219525; PIDN:BAA03160.1; PID:q219526
                          10.7%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
             3; Conservative
                              0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
           12 LRR 14
QУ
              111
           14 LRR 16
RESULT 37
J01035
hypothetical 3.2K protein (type I IGFR 5' region) - human
C; Species: Homo sapiens (man)
C;Date: 16-Jul-1999 #sequence_revision 16-Jul-1999 #text change 16-Jul-1999
C; Accession: JQ1035
R; Cooke, D.W.; Bankert, L.A.; Roberts Jr., C.T.; LeRoith, D.; Casella, S.J.
Biochem. Biophys. Res. Commun. 177, 1113-1120, 1991
A; Title: Analysis of the human type I insulin-like growth factor receptor
promotor region.
A; Reference number: PQ0159; MUID: 91282751; PMID: 1711844
A; Accession: JQ1035
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-28 <COO>
                          10.7%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
           3; Conservative 0; Mismatches
                                                   0; Indels
           12 LRR 14
Qу
              18 LRR 20
RESULT 38
myrB protein - Micromonospora griseorubida (fragment)
C; Species: Micromonospora griseorubida
C;Date: 19-Mar-1997 #sequence_revision 18-Jul-1997 #text change 05-Nov-1999
C; Accession: S51593
R; Inouye, M.; Takada, Y.; Muto, N.; Beppu, T.; Horinouchi, S.
Mol. Gen. Genet. 245, 456-464, 1994
```

C;Date: 24-May-1996 #sequence revision 24-May-1996 #text change 21-Jul-2000

```
biosynthesis gene using a novel Micromonospora-Escherichia coli shuttle cosmid
vector.
A:Reference number: S51593; MUID:95107242; PMID:7808395
A:Accession: S51593
A; Molecule type: DNA
A; Residues: 1-28 < INO>
A; Cross-references: EMBL:D16098; NID:g286050; PIDN:BAA03671.1; PID:d1004186;
PID:q829046
C; Genetics:
A;Gene: myrB
                          10.7%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
            3; Conservative 0; Mismatches
                                                 0; Indels
                                                               0; Gaps
  Matches
           13 RRR 15
Qу
              111
Db
           22 RRR 24
RESULT 39
JN0014
GABA(A) receptor alpha-1 chain /glycine receptor alpha-1 chain engineered fusion
protein - synthetic (fragment)
C; Species: synthetic
A; Note: Rattus norvegicus (Norway rat) gene 5' region with engineered signal
sequence derived from GABA(A) receptor
C;Date: 31-Mar-1990 #sequence revision 30-Apr-1998 #text_change 13-Aug-1999
C; Accession: JN0014
R; Sontheimer, H.; Becker, C.M.; Pritchett, D.B.; Schofield, P.R.; Grenningloh,
G.; Kettenmann, H.; Betz, H.; Seeburg, P.H.
Neuron 2, 1491-1497, 1989
A; Title: Functional chloride channels by mammalian cell expression of rat
glycine receptor subunit.
A; Reference number: JN0014; MUID: 90180468; PMID: 2483325
A; Accession: JN0014
A; Molecule type: mRNA
A; Residues: 1-28 <SON>
C; Comment: See PIR:S20662.
F;1-20/Region: GABA(A) receptor alpha-1 chain-derived
F;21-28/Region: glycine receptor alpha-1 chain-derived
                          10.7%; Score 3; DB 4; Length 28;
  Ouery Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
            3; Conservative 0; Mismatches 0; Indels
                                                                     Gaps
  Matches
            6 GKS 8
QУ
              2 GKS 4
Db
RESULT 40
A55527
pyrroloquinoline quinone precursor pqqD - Methylobacterium extorquens
C; Species: Methylobacterium extorquens
C;Date: 18-Feb-2000 #sequence revision 18-Feb-2000 #text change 18-Feb-2000
```

A; Title: Characterization and expression of a P-450-like mycinamicin

```
R; Morris, C.J.; Biville, F.; Turlin, E.; Lee, E.; Ellermann, K.; Fan, W.H.;
Ramamoorthi, R.; Springer, A.L.; Lidstrom, M.E.
J. Bacteriol. 176, 1746-1755, 1994
A; Title: Isolation, phenotypic characterization, and complementation analysis of
mutants of Methylobacterium extorquens AM1 unable to synthesize pyrroloquinoline
quinone and sequences of pqqD, pqqG, and pqqC.
A; Reference number: A55527; MUID: 94179111; PMID: 8132470
A; Accession: A55527
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-29 < MOR>
A; Cross-references: GB:L25889; NID:g414589; PIDN:AAA17878.1; PID:g414590
C; Genetics:
A; Gene: pqqD
C; Superfamily: pyrroloquinoline quinone precursor pqqA
C; Keywords: quinoprotein
F;16,20/Product: pyrroloquinoline quinone #status predicted <MAT>
F;16-20/Cross-link: pyrroloquinoline quinone (Glu, Tyr) #status predicted
                          10.7%; Score 3; DB 1; Length 29;
  Query Match
                          100.0%; Pred. No. 1.2e+04;
  Best Local Similarity
                                                  0; Indels
                                                                 0; Gaps
                                                                              0;
             3; Conservative 0; Mismatches
  Matches
           23 AEI 25
Qу
              23 AEI 25
Db
```

Search completed: January 14, 2004, 10:37:32

Job time : 11.2866 secs

C; Accession: A55527

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:37:44; Search time 18.8411 Seconds

(without alignments)

303.882 Million cell updates/sec

Title:

US-09-843-221A-169

Perfect score: 28

Sequence: 1 LLHNLGKSIQDLRRRFFLHHLIAEIHTA 28

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 762491 seqs, 204481190 residues

Word size : 0

Total number of hits satisfying chosen parameters: 28045

Minimum DB seq length: 28 Maximum DB seg length: 40

Post-processing: Listing first 1000 summaries

Database :

Published Applications AA:*

- 1: /cgn2 6/ptodata/1/pubpaa/US07 PUBCOMB.pep:*
- 2: /cgn2_6/ptodata/1/pubpaa/PCT_NEW_PUB.pep:*
- 3: /cgn2 6/ptodata/1/pubpaa/US06 NEW PUB.pep:*
- 4: /cgn2_6/ptodata/1/pubpaa/US06_PUBCOMB.pep:*
- 5: /cgn2 6/ptodata/1/pubpaa/US07 NEW PUB.pep:*
- 6: /cgn2 6/ptodata/1/pubpaa/PCTUS PUBCOMB.pep:*
- 7: /cgn2 6/ptodata/1/pubpaa/US08 NEW PUB.pep:*
- 8: /cgn2 6/ptodata/1/pubpaa/US08 PUBCOMB.pep:*
- 9: /cgn2 6/ptodata/1/pubpaa/US09A PUBCOMB.pep:*
- 10: /cgn2 6/ptodata/1/pubpaa/US09B PUBCOMB.pep:*
- 11: /cgn2 6/ptodata/1/pubpaa/US09C PUBCOMB.pep:*
- 12: /cgn2_6/ptodata/1/pubpaa/US09_NEW_PUB.pep:*
- 13: /cgn2_6/ptodata/1/pubpaa/US10A_PUBCOMB.pep:*
- 14: /cgn2 6/ptodata/1/pubpaa/US10B PUBCOMB.pep:*
- 15: /cgn2_6/ptodata/1/pubpaa/US10C_PUBCOMB.pep:*
- 16: /cgn2 6/ptodata/1/pubpaa/US10 NEW PUB.pep:*
- 17: /cgn2_6/ptodata/1/pubpaa/US60_NEW_PUB.pep:*
- 18: /cgn2 6/ptodata/1/pubpaa/US60 PUBCOMB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result

Query

No. Score Match Length DB ID

왕

Description

```
28
                                                            Sequence 69, Appl
                           11 US-09-843-221A-69
1
            100.0
                       28
                                                            Sequence 169, App
                               US-09-843-221A-169
2
        28
            100.0
                       28
                           11
                                                            Sequence 68, Appl
3
        23
             82.1
                       28
                           11 US-09-843-221A-68
                                                           Sequence 5, Appli
        23
             82.1
                       34
                           9 US-09-169-786-5
4
                                                            Sequence 75, Appl
5
             82.1
                       34
                          10 US-09-423-800-75
        23
                                                            Sequence 63, Appl
                       34
                           11
                               US-09-843-221A-63
6
        23
             82.1
                                                            Sequence 75, Appl
7
        23
             82.1
                       34
                           12
                               US-10-337-981-75
                                                            Sequence 21, Appl
8
        23
             82.1
                       34
                           12
                               US-10-340-484-21
                                                            Sequence 2, Appli
9
        23
             82.1
                       34
                           14
                               US-10-097-079-2
                                                            Sequence 75, Appl
10
        23
             82.1
                       34
                           15
                               US-10-182-018-75
11
        23
             82.1
                       34
                           15
                               US-10-169-003-75
                                                            Sequence 75, Appl
                                                            Sequence 66, Appl
        23
             82.1
                       35
                           11
                               US-09-843-221A-66
12
                                                            Sequence 64, Appl
        23
             82.1
                       36
                           11
                               US-09-843-221A-64
13
                                                            Sequence 23, Appl
        23
             82.1
                       36
                           12
                               US-10-372-095-23
14
                                                            Sequence 2, Appli
15
        23
             82.1
                       36
                           12
                               US-10-340-484-2
                                                            Sequence 3, Appli
                       36
                           12
                               US-10-340-484-3
16
        23
             82.1
                                                            Sequence 4, Appli
                       36
                           12
                               US-10-340-484-4
17
        23
             82.1
                       36
                           12
                                US-10-340-484-5
                                                            Sequence 5, Appli
18
        23
             82.1
                       36
                           12
                                US-10-340-484-6
                                                             Sequence 6, Appli
19
        23
             82.1
                       36
                           12
                                US-10-340-484-7
                                                             Sequence 7, Appli
             82.1
20
        23
                                US-10-340-484-8
                                                            Sequence 8, Appli
21
        23
             82.1
                       36
                           12
                       36
                           12
                                US-10-340-484-9
                                                            Sequence 9, Appli
22
        23
             82.1
                       36
                           12
                                US-10-340-484-10
                                                            Sequence 10, Appl
        23
             82.1
23
                       39
                           15
                                US-10-014-162-112
                                                            Sequence 112, App
24
        23
             82.1
                                                           Sequence 12, Appl
        23
              82.1
                       40
                           9
                              US-09-169-786-12
25
                                                            Sequence 71, Appl
26
        22
              78.6
                       28
                           11
                                US-09-843-221A-71
                                                            Sequence 72, Appl
                                US-09-843-221A-72
27
        22
              78.6
                       28
                           11
                                                            Sequence 75, Appl
28
        22
              78.6
                       28
                           11
                                US-09-843-221A-75
                       33
                           11
                                US-09-843-221A-67
                                                             Sequence 67, Appl
29
        22
              78.6
        19
              67.9
                       30
                           11
                                US-09-843-221A-76
                                                             Sequence 76, Appl
30
                       31
                           11
                                US-09-843-221A-78
                                                             Sequence 78, Appl
31
        19
             67.9
                                                             Sequence 79, Appl
32
        18
              64.3
                       30
                           11
                                US-09-843-221A-79
                       28
                           11
                                US-09-843-221A-70
                                                             Sequence 70, Appl
33
        17
              60.7
34
                       28
                                US-10-097-079-77
                                                             Sequence 77, Appl
              42.9
                           14
        12
                                US-10-097-079-71
                                                             Sequence 71, Appl
                       34
35
        12
              42.9
                           14
                                                             Sequence 77, Appl
36
              39.3
                       30
                           11
                                US-09-843-221A-77
        11
                                                             Sequence 150, App
37
        11
              39.3
                       30
                           11
                                US-09-843-221A-150
                                                             Sequence 114, App
                       34
                           11
                                US-09-843-221A-114
        11
              39.3
38
                                                             Sequence 65, Appl
                           11
39
        11
              39.3
                       36
                                US-09-843-221A-65
                       28
                           11
                                US-09-843-221A-103
                                                             Sequence 103, App
40
        10
              35.7
                                                             Sequence 104, App
41
                       28
                           11
                                US-09-843-221A-104
        10
              35.7
                                                             Sequence 105, App
                                US-09-843-221A-105
                       28
                           11
42
        10
              35.7
                                                             Sequence 106, App
        10
              35.7
                       28
                           11
                                US-09-843-221A-106
43
                                US-09-843-221A-107
                                                             Sequence 107, App
44
        10
              35.7
                       28
                           11
              35.7
                       30
                           11
                                US-09-843-221A-134
                                                             Sequence 134, App
45
        10
                                                             Sequence 135, App
46
        10
              35.7
                       30
                           11
                                US-09-843-221A-135
                                                             Sequence 136, App
47
        10
              35.7
                       30
                           11
                                US-09-843-221A-136
              35.7
                       30
                           11
                                US-09-843-221A-137
                                                             Sequence 137, App
48
        10
                       30
                                US-09-843-221A-138
                                                             Sequence 138, App
              35.7
                           11
49
        10
                                                             Sequence 144, App
50
        10
              35.7
                       30
                           11
                                US-09-843-221A-144
                       30
                           11
                                US-09-843-221A-145
                                                             Sequence 145, App
51
        10
              35.7
                                                             Sequence 147, App
52
        10
              35.7
                       30
                           11
                                US-09-843-221A-147
                                                             Sequence 151, App
                       30
                           11
                                US-09-843-221A-151
53
        10
              35.7
                                                             Sequence 153, App
54
        10
              35.7
                       30
                           11
                                US-09-843-221A-153
                       30
                           11
                                US-09-843-221A-155
                                                             Sequence 155, App
55
        10
              35.7
                                                             Sequence 156, App
              35.7
                       30
                           11
                                US-09-843-221A-156
56
        10
```

```
Sequence 157, App
                                 US-09-843-221A-157
57
         10
              35.7
                        30
                            11
                                                              Sequence 146, App
              35.7
                            11
                                 US-09-843-221A-146
         10
                        33
58
                                                             Sequence 6, Appli
                            9
                                US-09-169-786-6
              35.7
                        34
59
         10
                                US-09-169-786-8
                                                             Sequence 8, Appli
              35.7
                        34
                             9
60
         10
                                                              Sequence 98, Appl
              35.7
                        34
                            11
                                 US-09-843-221A-98
61
         10
                                 US-09-843-221A-99
                                                              Sequence 99, Appl
              35.7
                        34
                            11
62
         10
                                                              Sequence 100, App
                                 US-09-843-221A-100
                            11
63
         10
              35.7
                        34
                                                              Sequence 101, App
64
         10
              35.7
                        34
                             11
                                 US-09-843-221A-101
                                                               Sequence 102, App
65
         10
              35.7
                        34
                             11
                                 US-09-843-221A-102
                                                               Sequence 108, App
66
         10
              35.7
                        34
                             11
                                 US-09-843-221A-108
                                                               Sequence 109, App
67
         10
              35.7
                        34
                             11
                                 US-09-843-221A-109
                                                               Sequence 111, App
68
         10
              35.7
                        34
                             11
                                 US-09-843-221A-111
                                 US-09-843-221A-115
                                                               Sequence 115, App
69
         10
              35.7
                        34
                             11
                                 US-09-843-221A-117
                                                               Sequence 117, App
70
               35.7
                        34
                             11
         10
                                                               Sequence 119, App
71
         10
               35.7
                        34
                             11
                                 US-09-843-221A-119
                                                               Sequence 120, App
72
         10
               35.7
                        34
                             11
                                 US-09-843-221A-120
                                                               Sequence 121, App
         10
                        34
                             11
                                 US-09-843-221A-121
73
               35.7
                                                               Sequence 11, Appl
                        36
                             12
                                 US-10-340-484-11
74
         10
               35.7
                                                               Sequence 110, App
                        37
                             11
                                 US-09-843-221A-110
75
         10
               35.7
                        30
                             11
                                 US-09-843-221A-149
                                                               Sequence 149, App
76
          9
               32.1
                                                              Sequence 7, Appli
                        34
                             9
                                US-09-169-786-7
77
          9
               32.1
                                                               Sequence 113, App
                             11
                                 US-09-843-221A-113
78
          9
               32.1
                        34
                                                               Sequence 154, App
                        30
                             11
                                 US-09-843-221A-154
79
          8
               28.6
                        34
                             11
                                 US-09-843-221A-118
                                                               Sequence 118, App
          8
               28.6
80
                        28
                             11
                                 US-09-843-221A-33
                                                               Sequence 33, Appl
          7
               25.0
81
                                                               Sequence 53, Appl
          7
               25.0
                        28
                             11
                                 US-09-843-221A-53
82
                                                               Sequence 44, Appl
                                 US-09-843-221A-44
83
          7
               25.0
                        30
                             11
                                 US-09-843-221A-49
                                                               Sequence 49, Appl
84
          7
               25.0
                        30
                             11
                                                               Sequence 148, App
85
          7
               25.0
                        30
                             11
                                 US-09-843-221A-148
          7
               25.0
                        32
                             11
                                 US-09-843-221A-29
                                                               Sequence 29, Appl
86
87
          7
               25.0
                        34
                             11
                                 US-09-843-221A-21
                                                               Sequence 21, Appl
                                                               Sequence 26, Appl
               25.0
                        34
                             11
                                 US-09-843-221A-26
88
          7
          7
                                 US-09-843-221A-112
                                                               Sequence 112, App
89
               25.0
                        34
                             11
               21.4
                        28
                             11
                                 US-09-843-221A-36
                                                               Sequence 36, Appl
90
          6
               21.4
                        28
                             11
                                 US-09-843-221A-55
                                                               Sequence 55, Appl
91
          6
                                 US-09-843-221A-46
                                                               Sequence 46, Appl
               21.4
                        30
                             11
92
          6
                                                               Sequence 31, Appl
93
          6
               21.4
                         32
                             11
                                 US-09-843-221A-31
                                 US-09-843-221A-23
                                                               Sequence 23, Appl
94
          6
               21.4
                         34
                             11
                                 US-10-097-079-72
                                                               Sequence 72, Appl
          6
                         34
                             14
95
               21.4
                                                               Sequence 32, Appl
          5
                             11
                                 US-09-843-221A-32
 96
               17.9
                         28
                                                               Sequence 34, Appl
          5
               17.9
                         28
                             11
                                 US-09-843-221A-34
 97
                                                               Sequence 35, Appl
          5
               17.9
                         28
                             11
                                 US-09-843-221A-35
 98
                                                               Sequence 52, Appl
          5
               17.9
                             11
                                 US-09-843-221A-52
 99
                         28
                                                               Sequence 54, Appl
                                 US-09-843-221A-54
100
          5
               17.9
                         28
                             11
                                                               Sequence 93, Appl
          5
                         28
                             11
                                 US-09-843-221A-93
101
               17.9
               17.9
                                                               Sequence 94, Appl
          5
                         28
                             11
                                 US-09-843-221A-94
102
                                                               Sequence 95, Appl
           5
                                 US-09-843-221A-95
103
               17.9
                         28
                             11
                                                               Sequence 96, Appl
                                 US-09-843-221A-96
104
           5
               17.9
                         28
                             11
           5
               17.9
                         28
                             11
                                 US-09-843-221A-97
                                                               Sequence 97, Appl
105
                                 US-09-843-221A-168
                                                               Sequence 168, App
           5
               17.9
                         28
                             11
106
                                                               Sequence 54, Appl
           5
                                 US-10-097-079-54
107
               17.9
                         28
                             14
                                                               Sequence 62, Appl
           5
               17.9
                         28
                             14
                                  US-10-097-079-62
108
           5
                                                               Sequence 65, Appl
               17.9
                         28
                             14
                                 US-10-097-079-65
109
           5
                                                               Sequence 78, Appl
               17.9
                         28
                             14
                                 US-10-097-079-78
110
           5
                                                               Sequence 79, Appl
111
               17.9
                         28
                             14
                                 US-10-097-079-79
           5
                                                               Sequence 51, Appl
                         29
                             11
                                  US-09-843-221A-51
112
               17.9
                                                               Sequence 167, App
113
           5
               17.9
                         29
                             11
                                  US-09-843-221A-167
```

```
Sequence 53, Appl
                                 US-10-097-079-53
114
          5
               17.9
                         29
                             14
                                                               Sequence 63, Appl
                         29
                             14
                                 US-10-097-079-63
          5
               17.9
115
                                                               Sequence 39, Appl
                         30
                             11
                                 US-09-843-221A-39
          5
               17.9
116
                                                               Sequence 42, Appl
          5
               17.9
                         30
                             11
                                 US-09-843-221A-42
117
                                                               Sequence 43, Appl
          5
               17.9
                         30
                             11
                                 US-09-843-221A-43
118
                                                               Sequence 45, Appl
          5
               17.9
                         30
                             11
                                 US-09-843-221A-45
119
                                                               Sequence 47, Appl
                         30
                             11
                                 US-09-843-221A-47
120
          5
               17.9
                                 US-09-843-221A-48
                                                               Sequence 48, Appl
          5
               17.9
                         30
                             11
121
                                                               Sequence 50, Appl
           5
               17.9
                         30
                             11
                                 US-09-843-221A-50
122
                                                               Sequence 124, App
           5.
               17.9
                         30
                             11
                                 US-09-843-221A-124
123
                                 US-09-843-221A-125
                                                               Sequence 125, App
           5
               17.9
                         30
                             11
124
                                                               Sequence 126, App
125
           5
               17.9
                         30
                             11
                                 US-09-843-221A-126
           5
               17.9
                         30
                             11
                                 US-09-843-221A-127
                                                               Sequence 127, App
126
                                                               Sequence 158, App
           5
               17.9
                         30
                             11
                                 US-09-843-221A-158
127
                                                               Sequence 159, App
           5
               17.9
                         30
                             11
                                 US-09-843-221A-159
128
                                                               Sequence 166, App
           5
               17.9
                         30
                             11
                                 US-09-843-221A-166
129
                                                               Sequence 52, Appl
           5
               17.9
                         30
                             14
                                 US-10-097-079-52
130
                                                               Sequence 64, Appl
           5
                         30
                             14
                                 US-10-097-079-64
               17.9
131
                                                              Sequence 2, Appli
           5
                         31
                             9
                                US-09-169-786-2
               17.9
132
               17.9
                         31
                             9
                                US-09-169-786-9
                                                              Sequence 9, Appli
           5
133
                                US-09-169-786-10
                                                              Sequence 10, Appl
           5
               17.9
                         31
                             9
134
                                                               Sequence 27, Appl
                                 US-09-843-221A-27
           5
               17.9
                         31
                             11
135
                                                               Sequence 28, Appl
           5
                         31
                             11
                                  US-09-843-221A-28
               17.9
136
                         31
                             11
                                 US-09-843-221A-165
                                                               Sequence 165, App
           5
               17.9
137
                         31
                             12
                                  US-10-031-874A-206
                                                               Sequence 206, App
           5
138
               17.9
                                                               Sequence 3, Appli
           5
                         31
                             14
                                  US-10-097-079-3
139
               17.9
                                                               Sequence 4, Appli
           5
               17.9
                         31
                             14
                                  US-10-097-079-4
140
                                  US-10-097-079-5
                                                                Sequence 5, Appli
           5
               17.9
                         31
                             14
141
                                                               Sequence 6, Appli
           5
               17.9
                         31
                             14
                                  US-10-097-079-6
142
           5
                         31
                             14
                                  US-10-097-079-7
                                                               Sequence 7, Appli
143
               17.9
           5
                         31
                             14
                                  US-10-097-079-8
                                                               Sequence 8, Appli
               17.9
144
           5
                         31
                             14
                                  US-10-097-079-9
                                                                Sequence 9, Appli
               17.9
145
                                                               Sequence 10, Appl
           5
                              14
                                  US-10-097-079-10
               17.9
                         31
146
                         31
                                  US-10-097-079-16
                                                                Sequence 16, Appl
           5
               17.9
                              14
147
           5
                                  US-10-097-079-17
                                                                Sequence 17, Appl
               17.9
                         31
                              14
148
                                  US-10-097-079-18
                                                                Sequence 18, Appl
           5
               17.9
                         31
                              14
149
                                                                Sequence 19, Appl
           5
               17.9
                         31
                              14
                                  US-10-097-079-19
150
                                                                Sequence 20, Appl
           5
               17.9
                         31
                              14
                                  US-10-097-079-20
151
                                  US-10-097-079-21
                                                                Sequence 21, Appl
           5
                         31
                              14
               17.9
152
                                                                Sequence 22, Appl
                              14
                                  US-10-097-079-22
           5
               17.9
                         31
153
                                                                Sequence 23, Appl
                         31
                              14
                                  US-10-097-079-23
           5
               17.9
154
                                                                Sequence 24, Appl
               17.9
                         31
                              14
                                  US-10-097-079-24
           5
155
                                                                Sequence 25, Appl
                         31
                              14
                                  US-10-097-079-25
           5
               17.9
156
                                                                Sequence 26, Appl
           5
               17.9
                         31
                              14
                                  US-10-097-079-26
157
                                                                Sequence 27, Appl
                                  US-10-097-079-27
           5
               17.9
                         31
                              14
158
                                                                Sequence 32, Appl
           5
                         31
                              14
                                  US-10-097-079-32
159
               17.9
                                                                Sequence 33, Appl
                              14
160
           5
               17.9
                         31
                                  US-10-097-079-33
                                                                Sequence 34, Appl
161
           5
               17.9
                         31
                              14
                                  US-10-097-079-34
               17.9
                         31
                              14
                                  US-10-097-079-35
                                                                Sequence 35, Appl
           5
162
               17.9
                         31
                              14
                                  US-10-097-079-36
                                                                Sequence 36, Appl
           5
163
                                                                Sequence 37, Appl
                                  US-10-097-079-37
           5
               17.9
                         31
                              14
164
                                                                Sequence 38, Appl
           5
               17.9
                         31
                              14
                                  US-10-097-079-38
165
                                                                Sequence 39, Appl
           5
               17.9
                         31
                              14
                                  US-10-097-079-39
166
                                                                Sequence 42, Appl
                         31
                              14
                                  US-10-097-079-42
           5
               17.9
167
                                                                Sequence 43, Appl
           5
               17.9
                         31
                              14
                                  US-10-097-079-43
168
                                                                Sequence 44, Appl
           5
               17.9
                              14
                                  US-10-097-079-44
169
                         31
                                                                Sequence 45, Appl
               17.9
                         31
                              14
                                  US-10-097-079-45
170
```

171	5	17.9	31	14	US-10-097-079-47	Sequence 47, Appl
172	5	17.9	31	14	US-10-097-079-48	Sequence 48, Appl
173	5	17.9	31	14	US-10-097-079 -4 9	Sequence 49, Appl
174	5	17.9	31	14	US-10-097-079-50	Sequence 50, Appl
175	5	17.9	31	14	US-10-097-079-51	Sequence 51, Appl
176	5	17.9	31	14	US-10-097-079 - 67	Sequence 67, Appl
177	5	17.9	31	14	US-10-097-079-68	Sequence 68, Appl
178	5	17.9	31	14	US-10-097-079-69	Sequence 69, Appl
179	5	17.9	31	14	US-10-097-079-70	Sequence 70, Appl
180	5	17.9	31	14	US-10-097-079-73	Sequence 73, Appl
181	5	17.9	31	14	US-10-097-079-74	Sequence 74, Appl
182	5	17.9	31	14	US-10-097-079-76	Sequence 76, Appl
183	5	17.9	31	14	US-10-097-079-80	Sequence 80, Appl
184	5	17.9	31	14	US-10-097-079-81	Sequence 81, Appl
	5	17.9	31	14	US-10-097-079-82	Sequence 82, Appl
185	5	17.9	31	14	US-10-097-079-83	Sequence 83, Appl
186			31	14	US-10-097-079-84	Sequence 84, Appl
187	5	17.9			US-10-097-079-85	Sequence 85, Appl
188	5	17.9	31	14	US-09-843-221A-30	Sequence 30, Appl
189	5	17.9	32	11		Sequence 3, Appli
190	5	17.9	33	12	US-10-361-928-3	Sequence 6, Appli
191	5	17.9	33	12	US-10-361-928-6	Sequence 9, Appli
192	5	17.9	33	12	US-10-361-928-9	
193	5	17.9	33	12	US-10-300-083-4	Sequence 4, Appli
194	5	17.9	33	12	US-10-300-083-7	Sequence 7, Appli
195	5	17.9	33	12	US-10-300-083-14	Sequence 14, Appl
196	5	17.9	33	12	US-10-300-083-15	Sequence 15, Appl
197	5	17.9	33	12	US-10-300-083 - 16	Sequence 16, Appl
198	5	17.9	33	12	US-10-300-083 - 17	Sequence 17, Appl
199	5	17.9	33	12	US-10-300-083 -1 8	Sequence 18, Appl
200	5	17.9	33	12	US-10-300-083-20	Sequence 20, Appl
201	5	17.9	33	12	US-10-300-083-21	Sequence 21, Appl
202	5	17.9	33	12	US-10-300-083-22	Sequence 22, Appl
203	5	17.9	33	12	US-10-300-083-23	Sequence 23, Appl
204	5	17.9	33	12	US-10-300-083-26	Sequence 26, Appl
205	5	17.9	33	12	US-10-300-083-27	Sequence 27, Appl
206	5	17.9	33	12	US-10-300-083-28	Sequence 28, Appl
207	5	17.9	33	12	US-10-300-083-29	Sequence 29, Appl
208	5	17.9	33	12	US-10-300-083-30	Sequence 30, Appl
209	5	17.9	34	9	US-09-169-786-3	Sequence 3, Appli
210	5	17.9	34	10	US-09-928-047B-6	Sequence 6, Appli
211	5	17.9	34	11	US-09-843-221A-16	Sequence 16, Appl
212	5	17.9	34	11	US-09-843-221A-19	Sequence 19, Appl
213	5	17.9	34	11	US-09-843-221A-20	Sequence 20, Appl
214	5	17.9	34	11	US-09-843-221A-22	Sequence 22, Appl
215	5	17.9	34	11	US-09-843-221A-24	Sequence 24, Appl
216	5	17.9	34	11	US-09-843-221A-25	Sequence 25, Appl
217	5	17.9	34	11	US-09-843-221A-88	Sequence 88, Appl
217	5	17.9	34	11	US-09-843-221A-89	Sequence 89, Appl
	5		34	11	US-09-843-221A-90	Sequence 90, Appl
219		17.9				Sequence 91, Appl
220	5	17.9	34	11	US-09-843-221A-91	Sequence 92, Appl
221	5	17.9	34	11	US-09-843-221A-92	Sequence 122, App
222	5	17.9	34	11	US-09-843-221A-122	Sequence 122, App Sequence 123, App
223	5	17.9	34	11	US-09-843-221A-123	
224	5	17.9	34	11	US-09-843-221A-128	Sequence 128, App
225	5	17.9	34	11	US-09-843-221A-161	Sequence 161, App
226	5	17.9	34	11	US-09-843-221A-164	Sequence 164, App
227	5	17.9	34	12	US-09-928-048A-6	Sequence 6, Appli

```
228
          5
              17.9
                        34
                            12
                                US-10-361-928-1
                                                             Sequence 1, Appli
229
              17.9
                        34
                            12
                                 US-10-361-928-2
                                                             Sequence 2, Appli
230
              17.9
                        34
                            12
                                US-10-361-928-5
                                                             Sequence 5, Appli
              17.9
231
          5
                        34
                            12
                                US-10-361-928-8
                                                             Sequence 8, Appli
232
          5
              17.9
                        34
                            12
                                US-10-372-095-22
                                                             Sequence 22, Appl
233
          5
              17.9
                        34
                            12
                                US-10-372-095-24
                                                             Sequence 24, Appl
                                                             Sequence 15, Appl
234
          5
              17.9
                        34
                            12
                                US-10-340-484-15
235
          5
              17.9
                        34
                            12
                                US-10-340-484-16
                                                             Sequence 16, Appl
          5
              17.9
236
                        34
                            12
                                US-10-340-484-17
                                                             Sequence 17, Appl
          5
              17.9
                                                             Sequence 18, Appl
237
                        34
                            12
                                US-10-340-484-18
238
          5
              17.9
                        34
                            12
                                 US-10-340-484-19
                                                             Sequence 19, Appl
239
          5
              17.9
                        34
                            12
                                US-10-340-484-20
                                                             Sequence 20, Appl
240
          5
              17.9
                        34
                            12
                                US-10-340-484-22
                                                             Sequence 22, Appl
          5
              17.9
                            12
                                                             Sequence 23, Appl
241
                        34
                                US-10-340-484-23
242
          5
              17.9
                        34
                            14
                                                             Sequence 5, Appli
                                 US-10-016-403-5
243
          5
              17.9
                        34
                            14
                                 US-10-016-403-6
                                                             Sequence 6, Appli
244
          5
              17.9
                        34
                            14
                                US-10-016-403-7
                                                             Sequence 7, Appli
245
          5
              17.9
                        34
                            14
                                US-10-097-079-1
                                                             Sequence 1, Appli
246
          5
              17.9
                        34
                            14
                                US-10-097-079-46
                                                             Sequence 46, Appl
247
          5
              17.9
                        34
                            14
                                US-10-097-079-75
                                                             Sequence 75, Appl
              17.9
248
          5
                        37
                            11
                                US-09-843-221A-15
                                                             Sequence 15, Appl
249
          5
              17.9
                        37
                                                             Sequence 9, Appli
                            12
                                US-10-168-185-9
250
          5
              17.9
                        38
                            9
                               US-09-169-786-4
                                                            Sequence 4, Appli
251
          5
              17.9
                        38
                            11
                                US-09-843-221A-14
                                                             Sequence 14, Appl
252
          5
              17.9
                        38
                            11
                                US-09-998-279-11
                                                             Sequence 11, Appl
          5
              17.9
253
                        38
                            12
                                US-10-245-707-1
                                                             Sequence 1, Appli
          5
254
              17.9
                        40
                            15
                                US-10-014-162-111
                                                             Sequence 111, App
255
          4
              14.3
                        28
                            9
                               US-09-864-761-35098
                                                            Sequence 35098, A
256
          4
              14.3
                        28
                            9
                               US-09-864-761-44536
                                                            Sequence 44536, A
257
          4
              14.3
                        28
                            10
                                US-09-071-838-97
                                                             Sequence 97, Appl
258
          4
              14.3
                        28
                            10
                                US-09-790-622-9
                                                             Sequence 9, Appli
259
          4
              14.3
                        28
                            11
                                US-09-809-391-662
                                                             Sequence 662, App
260
          4
              14.3
                        28
                            12
                                US-09-882-171-662
                                                             Sequence 662, App
261
          4
              14.3
                        28
                            15
                                US-10-213-512-97
                                                             Sequence 97, Appl
262
          4
              14.3
                        28
                            15
                                US-10-141-953-9
                                                             Sequence 9, Appli
263
          4
              14.3
                        29
                                                            Sequence 42588, A
                               US-09-864-761-42588
264
          4
              14.3
                        29
                            9
                               US-09-764-869-638
                                                            Sequence 638, App
265
          4
              14.3
                        29
                            10
                                US-09-867-852-152
                                                             Sequence 152, App
266
                        29
          4
              14.3
                            11
                                US-09-843-221A-152
                                                             Sequence 152, App
267
          4
              14.3
                        29
                            12
                                US-10-351-641-379
                                                             Sequence 379, App
268
          4
              14.3
                        29
                            12
                                US-10-351-641-590
                                                             Sequence 590, App
269
          4
              14.3
                        29
                            12
                                US-10-351-641-596
                                                             Sequence 596, App
270
          4
              14.3
                        29
                            12
                                US-10-351-641-1127
                                                             Sequence 1127, Ap
271
          4
              14.3
                        29
                            12
                                US-10-227-577-638
                                                             Sequence 638, App
              14.3
272
          4
                        29
                            12
                                US-10-264-049-3239
                                                             Sequence 3239, Ap
273
          4
              14.3
                        29
                            15
                                US-10-214-188-11
                                                             Sequence 11, Appl
274
          4
              14.3
                        29
                            15
                                                             Sequence 45, Appl
                                US-10-092-750-45
275
                        29
          4
              14.3
                            15
                                US-10-000-256A-218
                                                             Sequence 218, App
276
          4
              14.3
                        29
                                US-10-091-504-638
                            15
                                                             Sequence 638, App
277
          4
              14.3
                        30
                            9
                               US-09-864-761-40825
                                                            Sequence 40825, A
278
          4
              14.3
                        30
                            9
                               US-09-878-905-5
                                                            Sequence 5, Appli
279
          4
                            9
              14.3
                        30
                               US-09-878-905-7
                                                            Sequence 7, Appli
280
              14.3
                        30
                            9
                               US-09-764-860-456
                                                            Sequence 456, App
281
              14.3
                        30
          4
                            11
                                US-09-910-180-16
                                                             Sequence 16, Appl
282
          4
              14.3
                        30
                            12
                                US-10-351-641-1521
                                                             Sequence 1521, Ap
283
          4
              14.3
                        30
                            12
                                US-10-029-386-30521
                                                             Sequence 30521, A
284
              14.3
                        30
                                                             Sequence 456, App
                                US-10-212-872-456
```

```
Sequence 3744, Ap
                         30
                                 US-10-264-049-3744
               14.3
                             12
285
                                                               Sequence 456, App
               14.3
                         30
                             15
                                 US-10-074-095-456
286
          4
                                                              Sequence 33755, A
                         31
                             9
                                US-09-864-761-33755
          4
               14.3
287
                             9
                                US-09-864-761-40876
                                                              Sequence 40876, A
                         31
288
           4
               14.3
                                                               Sequence 55, Appl
                                 US-09-840-277-55
289
               14.3
                         31
                             10
                         31
                                 US-09-840-277-89
                                                               Sequence 89, Appl
290
           4
               14.3
                             10
                                                               Sequence 29, Appl
                                 US-09-932-367A-29
291
           4
               14.3
                         31
                             11
                                                               Sequence 33, Appl
                                 US-09-932-367A-33
292
           4
               14.3
                         31
                             11
                                                               Sequence 648, App
293
           4
               14.3
                         31
                             11
                                 US-09-809-391-648
                                                               Sequence 648, App
294
           4
               14.3
                         31
                             12
                                 US-09-882-171-648
                                                               Sequence 589, App
                                 US-10-351-641-589
295
           4
               14.3
                         31
                             12
                                                               Sequence 595, App
296
           4
               14.3
                         31
                             12
                                 US-10-351-641-595
                                                               Sequence 158, App
297
               14.3
                         31
                             12
                                  US-10-062-599-158
               14.3
                         31
                             12
                                  US-10-213-053A-11
                                                               Sequence 11, Appl
298
           4
                                  US-10-269-695-344
                                                               Sequence 344, App
299
           4
               14.3
                         31
                             12
                                                               Sequence 344, App
300
           4
               14.3
                         31
                             12
                                  US-10-410-998-344
                                                               Sequence 11, Appl
                         31
                                  US-10-097-079-11
301
           4
               14.3
                             14
                                                               Sequence 15, Appl
                         31
                             14
                                  US-10-097-079-15
302
           4
               14.3
                                                               Sequence 28, Appl
303
           4
               14.3
                         31
                             14
                                  US-10-097-079-28
                                                               Sequence 31, Appl
304
           4
               14.3
                         31
                             14
                                  US-10-097-079-31
                                                               Sequence 40, Appl
305
           4
               14.3
                         31
                             14
                                  US-10-097-079-40
                                                               Sequence 88, Appl
           4
               14.3
                         31
                             14
                                  US-10-097-079-88
306
                                                               Sequence 189, App
307
           4
               14.3
                         31
                             15
                                  US-10-082-830-189
308
           4
               14.3
                         31
                             15
                                  US-10-002-884A-4
                                                               Sequence 4, Appli
                                                               Sequence 158, App
309
           4
               14.3
                         31
                             15
                                  US-10-062-831-158
                                                              Sequence 38615, A
           4
               14.3
                         32
                             9
                                 US-09-864-761-38615
310
           4
               14.3
                         32
                             9
                                 US-09-864-761-39194
                                                              Sequence 39194, A
311
           4
               14.3
                         32
                             12
                                  US-10-316-253-211
                                                               Sequence 211, App
312
               14.3
                         32
                             12
                                  US-10-029-386-31729
                                                               Sequence 31729, A
313
           4
314
           4
               14.3
                         32
                             14
                                  US-10-060-714-9
                                                               Sequence 9, Appli
                                                               Sequence 200, App
315
           4
               14.3
                         32
                             15
                                  US-10-174-410-200
                                                               Sequence 209, App
316
           4
               14.3
                         32
                             15
                                  US-10-174-410-209
                                                               Sequence 243, App
           4
               14.3
                         32
                             15
                                  US-10-174-410-243
317
               14.3
                         32
                             15
                                  US-10-174-410-277
                                                               Sequence 277, App
318
319
           4
               14.3
                         32
                             15
                                  US-10-002-884A-1
                                                               Sequence 1, Appli
320
               14.3
                         33
                             9
                                 US-09-864-761-48332
                                                               Sequence 48332, A
           4
                                                               Sequence 49019, A
               14.3
                         33
                             9
                                 US-09-864-761-49019
321
           4
322
           4
               14.3
                         33
                             10
                                  US-09-785-546-4
                                                               Sequence 4, Appli
           4
               14.3
                         33
                             10
                                  US-09-785-546-5
                                                               Sequence 5, Appli
323
           4
               14.3
                         33
                             11
                                  US-09-843-221A-116
                                                               Sequence 116, App
324
                             12
                                                               Sequence 37, Appl
325
           4
               14.3
                         33
                                  US-10-289-135A-37
               14.3
                         33
                              12
                                  US-10-351-641-588
                                                               Sequence 588, App
326
           4
           4
               14.3
                         33
                             12
                                  US-10-351-641-594
                                                               Sequence 594, App
327
               14.3
                             12
                                                               Sequence 664, App
           4
                         33
                                  US-10-189-437-664
328
                                                               Sequence 26, Appl
329
           4
               14.3
                         34
                              9
                                 US-09-776-490-26
                              9
                                                               Sequence 26, Appl
330
           4
               14.3
                         34
                                 US-09-776-491-26
           4
                         34
                              9
                                 US-09-864-761-35232
                                                               Sequence 35232, A
331
               14.3
                              9
                                                               Sequence 42358, A
           4
               14.3
                         34
                                 US-09-864-761-42358
332
333
           4
               14.3
                         34
                              9
                                 US-09-864-761-43442
                                                               Sequence 43442, A
                                                               Sequence 44916, A
334
           4
               14.3
                         34
                              9
                                 US-09-864-761-44916
                                 US-09-864-761-45281
                                                               Sequence 45281, A
335
           4
               14.3
                         34
                              9
                              9
                                                               Sequence 46156, A
336
           4
               14.3
                         34
                                 US-09-864-761-46156
           4
               14.3
                         34
                              9
                                 US-09-917-340-44
                                                               Sequence 44, Appl
337
           4
               14.3
                         34
                              9
                                 US-09-917-340-83
                                                               Sequence 83, Appl
338
           4
                              10
                                  US-09-785-546-3
                                                                Sequence 3, Appli
               14.3
                         34
339
                                                                Sequence 75, Appl
340
           4
               14.3
                         34
                              12
                                  US-09-840-743-75
               14.3
                                                                Sequence 256, App
341
                         34
                              12
                                  US-10-195-730-256
```

342	4	14.3	34	12	US-09-765-815-7	Sequence 7, Appli
343	4	14.3		12	US-09-840-085-53	Sequence 53, Appl
344	4	14.3		12	US-09-840-085-54	Sequence 54, Appl
345	4	14.3		12	US-09-840-085-55	Sequence 55, Appl
346	4	14.3	34	12	US-09-840-085-56	Sequence 56, Appl
347	4	14.3	34	12	US-10-340-484-24	Sequence 24, Appl
348	4	14.3	34	12	US-09-933-767-1138	Sequence 1138, Ap
349	4	14.3	34	12	US-10-351-641-932	Sequence 932, App
350	4	14.3	34	12	US-10-029-386-29690	Sequence 29690, A
351	4	14.3	34	15	US-10-023-282-1138	Sequence 1138, Ap
352	4	14.3	35	9	US-09-864-761-44061	Sequence 44061, A
353	4	14.3	35	9	US-09-864-761-45676	Sequence 45676, A
354	4	14.3	35	12	US-10-012-952A-147	Sequence 147, App
355	4	14.3	35	12	US-10-351-641-107	Sequence 107, App
356	4	14.3	35	12	US-10-351-641-108	Sequence 108, App
357	4	14.3	35	12	US-10-351-641-109	Sequence 109, App
358	4	14.3	35	12	US-10-351-641-110	Sequence 110, App
359	4	14.3	35	12	US-10-351-641-111	Sequence 111, App
360	4	14.3	35 35	12	US-10-351-641-112	Sequence 112, App
361	4	14.3	35	12	US-10-351-641-113	Sequence 113, App Sequence 114, App
362	4	14.3	35	12	US-10-351-641-114	<u>-</u>
363	4	14.3	35 35	12 12	US-10-351-641-115	Sequence 115, App Sequence 679, App
364	4	14.3	35 35	12	US-10-351-641-679 US-10-351-641-680	Sequence 680, App
365 366	4	14.3 14.3	35 35	12	US-10-351-641-681	Sequence 681, App
366 367	4 4	14.3	35 35	12	US-10-351-641-682	Sequence 682, App
368	4	14.3	35 35	12	US-10-351-641-684	Sequence 684, App
369	4	14.3	35	12	US-10-351-641-685	Sequence 685, App
370	4	14.3	35	12	US-10-351-641-686	Sequence 686, App
370	4	14.3	35	12	US-10-351-641-689	Sequence 689, App
372	4	14.3	35	12	US-10-351-641-693	Sequence 693, App
372	4	14.3	35	12	US-10-351-641-706	Sequence 706, App
374	4	14.3	35	12	US-10-351-641-707	Sequence 707, App
375	4	14.3	35	12	US-10-351-641-708	Sequence 708, App
376	4	14.3	35	12	US-10-351-641-709	Sequence 709, App
377	4	14.3	35	12	US-10-351-641-710	Sequence 710, App
378	4	14.3	35	12	US-10-351-641-711	Sequence 711, App
379	4	14.3	35	12	US-10-351-641-712	Sequence 712, App
380	4	14.3	35	12	US-10-351-641-713	Sequence 713, App
381	4	14.3	35	12	US-10-351-641-714	Sequence 714, App
382	4	14.3	35	12	US-10-351-641-715	Sequence 715, App
383	4	14.3	35	12	US-10-351-641-718	Sequence 718, App
384	4	14.3	35	12	US-10-351-641-726	Sequence 726, App
385	4	14.3	35	12	US-10-351-641-740	Sequence 740, App
386	4	14.3	35	12	US-10-351-641-759	Sequence 759, App
387	4	14.3	35	12	US-10-351-641-766	Sequence 766, App
388	4	14.3	35	12	US-10-351-641-767	Sequence 767, App
389	4	14.3	35	12	US-10-351-641-768	Sequence 768, App
390	4	14.3	35	12	US-10-351-641-829	Sequence 829, App
391	4	14.3	35	12	US-10-351-641-832	Sequence 832, App
392	4	14.3	35	12	US-10-351-641-833	Sequence 833, App
393	4	14.3	35	12	US-10-351-641-917	Sequence 917, App
394	4	14.3	35	12	US-10-351-641-918	Sequence 918, App
395	4	14.3	35	12	US-10-351-641-924	Sequence 924, App
396	4	14.3	35	12	US-10-351-641-1524	Sequence 1524, Ap
397	4	14.3	35	12		Sequence 1525, Ap
398	4	14.3	35	12	US-10-351-641-1526	Sequence 1526, Ap

```
Sequence 1527, Ap
                                 US-10-351-641-1527
399
               14.3
                         35
                             12
          4
                                                               Sequence 1528, Ap
                         35
                             12
                                 US-10-351-641-1528
          4
               14.3
400
                                                               Sequence 1535, Ap
                         35
                             12
                                 US-10-351-641-1535
          4
               14.3
401
                                                               Sequence 1536, Ap
               14.3
                         35
                             12
                                 US-10-351-641-1536
402
          4
                                                               Sequence 1687, Ap
          4
               14.3
                         35
                             12
                                 US-10-351-641-1687
403
                                                               Sequence 9, Appli
                         35
                             15
                                 US-10-158-742A-9
404
          4
               14.3
                                US-08-851-965-24
                                                              Sequence 24, Appl
                         36
                             8
405
          4
               14.3
                                                              Sequence 34385, A
406
          4
               14.3
                         36
                             9
                                US-09-864-761-34385
          4
               14.3
                         36
                             9
                                US-09-864-761-37610
                                                              Sequence 37610, A
407
                                                              Sequence 40701, A
               14.3
                         36
                             9
                                US-09-864-761-40701
408
          4
                                                              Sequence 47597, A
               14.3
                         36
                             9
                                US-09-864-761-47597
409
          4
          4
               14.3
                         36
                             9
                                US-09-864-761-48797
                                                              Sequence 48797, A
410
               14.3
                         36
                             10
                                 US-09-454-533-30
                                                               Sequence 30, Appl
411
          4
                                                               Sequence 261, App
                         36
                             11
                                 US-09-813-153-261
412
          4
               14.3
                                                               Sequence 53, Appl
               14.3
                         36
                             12
                                 US-10-299-003-53
413
           4
                                                               Sequence 100, App
           4
               14.3
                         36
                             12
                                 US-10-234-816-100
414
                             12
                                                               Sequence 27707, A
                         36
                                 US-10-029-386-27707
           4
               14.3
415
                                                               Sequence 31370, A
                         36
                             12
                                 US-10-029-386-31370
               14.3
416
                         36
                                 US-10-016-969-1
                                                               Sequence 1, Appli
           4
               14.3
                             14
417
                         36
                                 US-10-016-157A-248
                                                               Sequence 248, App
               14.3
                             14
           4
418
                         36
                                 US-10-124-903-17
                                                               Sequence 17, Appl
               14.3
                             15
419
           4
                                                              Sequence 22, Appl
               14.3
                         37
                             8
                                US-08-851-965-22
420
           4
                         37
                                US-08-851-965-23
                                                              Sequence 23, Appl
421
           4
               14.3
                             8
                         37
                             8
                                US-08-851-965-25
                                                              Sequence 25, Appl
               14.3
422
           4
                             8
                                US-08-851-965-26
                                                              Sequence 26, Appl
               14.3
                         37
423
           4
                                                              Sequence 27, Appl
               14.3
                         37
                             8
                                US-08-851-965-27
424
                             9
                                US-09-812-528-15
                                                              Sequence 15, Appl
425
           4
               14.3
                         37
                         37
                             10
                                 US-09-764-877-1580
                                                               Sequence 1580, Ap
426
               14.3
           4
                                 US-09-908-805B-79
                                                               Sequence 79, Appl
427
               14.3
                         37
                             10
           4
                         37
                             10
                                 US-09-454-533-6
                                                               Sequence 6, Appli
428
           4
               14.3
                         37
                             10
                                 US-09-454-533-28
                                                               Sequence 28, Appl
429
           4
               14.3
                         37
                             10
                                 US-09-454-533-29
                                                               Sequence 29, Appl
               14.3
430
           4
                                                               Sequence 31, Appl
431
               14.3
                         37
                             10
                                 US-09-454-533-31
           4
                         37
                                  US-09-454-533-32
                                                               Sequence 32, Appl
               14.3
                             10
432
           4
                                  US-09-454-533-33
                                                               Sequence 33, Appl
               14.3
                         37
                             10
433
           4
                                                               Sequence 6, Appli
                         37
                                  US-09-855-698-6
434
           4
               14.3
                             11
                                                               Sequence 195, App
                         37
                             12
                                  US-10-160-162-195
435
           4
               14.3
                         37
                                  US-10-029-386-28688
                                                               Sequence 28688, A
436
           4
               14.3
                             12
                                  US-09-820-649-195
                                                               Sequence 195, App
                         37
                             12
437
           4
               14.3
                                                               Sequence 160, App
                                  US-10-000-256A-160
438
           4
               14.3
                         37
                             15
                                                              Sequence 39905, A
               14.3
                         38
                                 US-09-864-761-39905
439
           4
                                                              Sequence 43123, A
               14.3
                         38
                             9
                                 US-09-864-761-43123
440
           4
                                                               Sequence 48, Appl
                                 US-10-289-228-48
               14.3
                         38
                             12
441
           4
                                                               Sequence 50, Appl
               14.3
                         38
                             12
                                  US-10-289-228-50
442
           4
                                                               Sequence 48, Appl
           4
               14.3
                         38
                             12
                                  US-10-373-592-48
443
                                                               Sequence 50, Appl
           4
               14.3
                         38
                             12
                                  US-10-373-592-50
444
                                                               Sequence 69, Appl
445
           4
               14.3
                         38
                             12
                                  US-10-373-592-69
                                                               Sequence 74, Appl
446
               14.3
                         38
                             12
                                  US-10-373-592-74
           4
               14.3
                         38
                             12
                                  US-10-264-049-3208
                                                               Sequence 3208, Ap
447
                                                               Sequence 201, App
               14.3
                         38
                             15
                                  US-10-050-704-201
           4
448
                                  US-10-197-954-112
                                                               Sequence 112, App
449
           4
               14.3
                         38
                             15
                                                              Sequence 4, Appli
                14.3
                         39
                             9
                                 US-09-730-504-4
450
           4
                                                              Sequence 42664, A
           4
               14.3
                         39
                             9
                                 US-09-864-761-42664
451
                                  US-09-809-391-644
                                                               Sequence 644, App
               14.3
                         39
                             11
           4
452
                                                               Sequence 644, App
           4
               14.3
                         39
                             12
                                  US-09-882-171-644
453
                14.3
                                                               Sequence 275, App
454
           4
                         39
                             12
                                  US-10-105-232-275
                                                               Sequence 262, App
               14.3
                         39
                             12
                                  US-10-189-437-262
455
```

```
Sequence 504, App
                                 US-10-286-333-504
456
          4
               14.3
                         39
                                                              Sequence 869, App
                         40
                                US-09-925-302-869
          4
               14.3
                             9
457
                                                              Sequence 38727, A
                         40
                             9
                                US-09-864-761-38727
          4
               14.3
458
                                US-09-864-761-41416
                                                              Sequence 41416, A
                             9
               14.3
                         40
459
                                                              Sequence 46448, A
          4
               14.3
                         40
                             9
                                US-09-864-761-46448
460
                                                               Sequence 87, Appl
               14.3
                         40
                             10
                                 US-09-989-919-87
461
          4
                                                               Sequence 11, Appl
                         40
                             12
                                 US-10-395-897-11
462
           4
               14.3
                                                               Sequence 11, Appl
463
          4
               14.3
                         40
                             14
                                 US-10-105-992-11
                                                               Sequence 190, App
           4
               14.3
                         40
                             15
                                 US-10-078-090-190
464
                                                              Sequence 484, App
           3
               10.7
                         28
                             Я
                                US-08-424-550B-484
465
                                                              Sequence 554, App
           3
               10.7
                         28
                             8
                                US-08-424-550B-554
466
                                                              Sequence 283, App
           3
               10.7
                         28
                             9
                                US-09-216-393-283
467
           3
               10.7
                         28
                             9
                                US-09-752-724-1
                                                              Sequence 1, Appli
468
                             9
                                US-09-752-724-2
                                                              Sequence 2, Appli
           3
                         28
469
               10.7
                                                              Sequence 15, Appl
           3
               10.7
                         28
                             9
                                US-09-799-983-15
470
                                                              Sequence 31, Appl
           3
               10.7
                         28
                             9
                                US-09-870-162A-31
471
                                                              Sequence 33674, A
           3
               10.7
                         28
                             9
                                US-09-864-761-33674
472
                                                              Sequence 33837, A
                             9
           3
                         28
                                US-09-864-761-33837
473
               10.7
                                                              Sequence 35107, A
               10.7
                         28
                             9
                                US-09-864-761-35107
           3
474
                                                              Sequence 35251, A
               10.7
                         28
                             9
                                US-09-864-761-35251
           3
475
                                US-09-864-761-36085
                                                              Sequence 36085, A
                         28
                             9
               10.7
476
           3
                                                              Sequence 36747, A
                         28
                             9
                                US-09-864-761-36747
           3
               10.7
477
                                                              Sequence 37845, A
                         28
                             9
                                 US-09-864-761-37845
           3
               10.7
478
                         28
                             9
                                 US-09-864-761-38339
                                                              Sequence 38339, A
           3
               10.7
479
                             9
                                US-09-864-761-39217
                                                              Sequence 39217, A
                         28
480
           3
               10.7
                                                              Sequence 39322, A
                             9
           3
               10.7
                         28
                                 US-09-864-761-39322
481
                         28
                             9
                                 US-09-864-761-39579
                                                              Sequence 39579, A
482
           3
               10.7
                         28
                             9
                                 US-09-864-761-40087
                                                              Sequence 40087, A
           3
               10.7
483
                             9
                                 US-09-864-761-40325
                                                              Sequence 40325, A
484
           3
               10.7
                         28
           3
               10.7
                         28
                             9
                                 US-09-864-761-40453
                                                              Sequence 40453, A
485
                                                              Sequence 40836, A
           3
               10.7
                         28
                             9
                                 US-09-864-761-40836
486
                         28
                             9
                                 US-09-864-761-41680
                                                              Sequence 41680, A
           3
               10.7
487
                         28
                             9
                                 US-09-864-761-41850
                                                              Sequence 41850, A
488
           3
               10.7
                         28
                             9
                                 US-09-864-761-42080
                                                              Sequence 42080, A
           3
               10.7
489
                         28
                             9
                                 US-09-864-761-42292
                                                              Sequence 42292, A
           3
               10.7
490
                                 US-09-864-761-43270
                                                              Sequence 43270, A
                         28
                             9
491
           3
               10.7
                                                              Sequence 43683, A
           3
               10.7
                         28
                             9
                                 US-09-864-761-43683
492
                             9
                                 US-09-864-761-43904
                                                              Sequence 43904, A
           3
               10.7
                         28
493
               10.7
                             9
                                 US-09-864-761-45426
                                                              Sequence 45426, A
           3
                         28
494
                                                              Sequence 45563, A
           3
                             9
                                 US-09-864-761-45563
495
               10.7
                         28
                                                              Sequence 45594, A
           3
               10.7
                         28
                             9
                                 US-09-864-761-45594
496
                                                              Sequence 46717, A
           3
               10.7
                         28
                             9
                                 US-09-864-761-46717
497
                             9
                                 US-09-864-761-47128
                                                              Sequence 47128, A
               10.7
                         28
           3
498
                                                              Sequence 47458, A
                             9
           3
               10.7
                         28
                                 US-09-864-761-47458
499
                                                               Sequence 47465, A
                         28
                              9
                                 US-09-864-761-47465
           3
               10.7
500
                                                              Sequence 47891, A
               10.7
                         28
                              9
                                 US-09-864-761-47891
501
           3
                             9
                                                               Sequence 48105, A
                         28
502
           3
               10.7
                                 US-09-864-761-48105
                                                              Sequence 1023, Ap
                             9
503
           3
               10.7
                         28
                                 US-09-925-299-1023
           3
               10.7
                         28
                              9
                                 US-09-728-721-15
                                                               Sequence 15, Appl
504
               10.7
                         28
                              9
                                 US-09-728-721-19
                                                               Sequence 19, Appl
           3
505
                                                               Sequence 20, Appl
                         28
                              9
                                 US-09-728-721-20
506
           3
               10.7
                                                               Sequence 21, Appl
           3
               10.7
                         28
                              9
                                 US-09-728-721-21
507
                              9
                                                               Sequence 162, App
           3
               10.7
                         28
                                 US-09-782-980-162
508
                              9
                                 US-09-782-980-166
                                                               Sequence 166, App
           3
               10.7
                         28
509
                              9
                                                               Sequence 2, Appli
           3
510
               10.7
                         28
                                 US-09-924-889-2
           3
               10.7
                         28
                              9
                                 US-09-929-818-127
                                                               Sequence 127, App
511
                                                               Sequence 154, App
           3
               10.7
                         28
                                 US-09-929-818-154
512
```

```
Sequence 17, Appl
                                 US-09-935-291A-17
                        28
                            10
513
          3
               10.7
                                                              Sequence 19, Appl
                                 US-09-935-291A-19
                        28
                             10
514
          3
               10.7
                                                              Sequence 128, App
                                 US-09-982-172-128
              10.7
                        28
                             10
          3
515
                                                              Sequence 226, App
                                 US-09-982-172-226
                            10
516
          3
               10.7
                        28
                                                              Sequence 116, App
                                 US-09-903-456-116
517
          3
               10.7
                        28
                             10
                                                              Sequence 13, Appl
                            10
                                 US-09-921-397-13
          3
               10.7
                        28
518
                                                              Sequence 20, Appl
                             10
                                 US-09-934-060A-20
               10.7
                        28
519
          3
                                                              Sequence 76, Appl
                                 US-09-852-424-76
520
          3
               10.7
                        28
                             10
                                                              Sequence 86, Appl
521
          3
               10.7
                        28
                             10
                                 US-09-852-424-86
                                                              Sequence 87, Appl
                                 US-09-852-424-87
          3
               10.7
                         28
                             10
522
                                                              Sequence 88, Appl
                                 US-09-852-424-88
523
          3
               10.7
                        28
                             10
                                                              Sequence 89, Appl
                                 US-09-852-424-89
524
          3
               10.7
                        28
                             10
                                                              Sequence 102, App
525
          3
               10.7
                         28
                             10
                                 US-09-852-424-102
                         28
                             10
                                 US-09-852-424-103
                                                              Sequence 103, App
          3
               10.7
526
                                                               Sequence 104, App
                             10
                                 US-09-852-424-104
527
          3
               10.7
                         28
                                                               Sequence 105, App
                                 US-09-852-424-105
528
          3
               10.7
                         28
                             10
                                                               Sequence 34, Appl
                             10
                                 US-09-999-745-34
          3
               10.7
                         28
529
                                                               Sequence 115, App
                         28
                             10
                                 US-09-843-676-115
           3
               10.7
530
                                                               Sequence 18, Appl
          3
               10.7
                         28
                             10
                                 US-09-554-000-18
531
                                                               Sequence 225, App
           3
               10.7
                         28
                             10
                                 US-09-984-245-225
532
                                                               Sequence 49, Appl
           3
               10.7
                         28
                             10
                                 US-09-908-153B-49
533
                                                               Sequence 52, Appl
               10.7
                         28
                             10
                                 US-09-908-153B-52
534
           3
                                                               Sequence 1, Appli
           3
               10.7
                         28
                             10
                                 US-09-785-059-1
535
                                                               Sequence 115, App
           3
               10.7
                         28
                             10
                                 US-09-766-253-115
536
                                                               Sequence 151, App
                         28
           3
                             11
                                 US-09-798-889-151
               10.7
537
                                                               Sequence 115, App
           3
                         28
                             11
                                 US-09-438-486-115
538
               10.7
                                                               Sequence 214, App
           3
               10.7
                         28
                             11
                                 US-09-986-480-214
539
                                                               Sequence 310, App
           3
               10.7
                         28
                             11
                                 US-09-974-879-310
540
                                                               Sequence 543, App
           3
               10.7
                         28
                             11
                                 US-09-974-879-543
541
                                                               Sequence 546, App
           3
               10.7
                         28
                             11
                                 US-09-974-879-546
542
                                                               Sequence 573, App
           3
               10.7
                         28
                             11
                                 US-09-974-879-573
543
                                                               Sequence 579, App
           3
               10.7
                         28
                             11
                                 US-09-974-879-579
544
                                 US-09-785-058-1
                                                               Sequence 1, Appli
           3
               10.7
                         28
                             11
545
                                                               Sequence 1023, Ap
           3
               10.7
                         28
                             11
                                 US-09-925-299-1023
546
           3
               10.7
                         28
                             11
                                 US-09-776-724A-198
                                                               Sequence 198, App
547
                                                               Sequence 225, App
               10.7
                         28
                             11
                                 US-09-966-262-225
           3
548
                                                               Sequence 225, App
                         28
                             11
                                 US-09-983-966-225
549
           3
               10.7
                                                               Sequence 81, Appl
           3
               10.7
                         28
                             11
                                 US-09-911-569-81
550
                                                               Sequence 310, App
           3
               10.7
                         28
                             11
                                  US-09-305-736-310
551
                                                               Sequence 545, App
                         28
                             11
                                  US-09-305-736-545
           3
               10.7
552
                                                               Sequence 548, App
                         28
                             11
                                  US-09-305-736-548
553
           3
               10.7
                                                               Sequence 574, App
                         28
                             11
                                  US-09-305-736-574
           3
               10.7
554
                         28
                             11
                                  US-09-305-736-580
                                                               Sequence 580, App
           3
               10.7
555
                                                               Sequence 20, Appl
                                  US-09-897-776A-20
                         28
                             11
556
           3
               10.7
                                                               Sequence 13, Appl
           3
               10.7
                         28
                             12
                                  US-09-911-261A-13
557
                                                               Sequence 15, Appl
                                  US-09-911-261A-15
           3
               10.7
                         28
                             12
558
                                                               Sequence 16, Appl
                         28
                             12
                                  US-09-911-261A-16
           3
559
               10.7
                                                               Sequence 17, Appl
                                  US-09-911-261A-17
                         28
                             12
560
           3
               10.7
                                                               Sequence 68, Appl
561
           3
               10.7
                         28
                             12
                                  US-09-911-261A-68
                                  US-09-911-261A-69
                                                               Sequence 69, Appl
           3
                10.7
                         28
                             12
562
                                  US-10-200-879-81
                                                               Sequence 81, Appl
           3
                10.7
                         28
                             12
563
                         28
                             12
                                  US-10-334-405-4
                                                               Sequence 4, Appli
           3
                10.7
564
                                                               Sequence 5, Appli
           3
                         28
                              12
                                  US-10-334-405-5
565
                10.7
                                                               Sequence 116, App
           3
                         28
                              12
                                  US-10-156-911-116
                10.7
566
           3
                         28
                              12
                                  US-10-315-515-60
                                                               Sequence 60, Appl
                10.7
567
                                  US-10-315-515-61
                                                               Sequence 61, Appl
           3
                10.7
                         28
                              12
568
                         28
                              12
                                  US-10-315-515-62
                                                               Sequence 62, Appl
           3
                10.7
569
```

```
570
              10.7
                        28
                                                             Sequence 70, Appl
                            12
                                US-10-315-515-70
571
              10.7
                        28
                            12
                                US-09-674-913A-7
                                                             Sequence 7, Appli
                                US-10-061-607A-45
572
          3
              10.7
                        28
                            12
                                                             Sequence 45, Appl
573
          3
              10.7
                        28
                            12
                                US-10-279-061-1
                                                             Sequence 1, Appli
          3
              10.7
                        28
                                                             Sequence 76, Appl
574
                            12
                                US-10-279-061-76
575
          3
              10.7
                        28
                            12
                                US-10-082-828A-224
                                                             Sequence 224, App
576
          3
              10.7
                        28
                            12
                                US-10-082-828A-260
                                                             Sequence 260, App
                        28
          3
              10.7
                            12
                                US-10-231-417-416
577
                                                             Sequence 416, App
          3
              10.7
                        28
578
                            12
                                US-10-314-506-9
                                                             Sequence 9, Appli
579
          3
              10.7
                        28
                            12
                                US-10-408-736-81
                                                             Sequence 81, Appl
580
          3
              10.7
                        28
                            12
                                US-09-933-767-638
                                                             Sequence 638, App
          3
              10.7
581
                        28
                            12
                                US-09-933-767-714
                                                             Sequence 714, App
582
          3
              10.7
                        28
                            12
                                US-10-351-641-68
                                                             Sequence 68, Appl
583
          3
              10.7
                        28
                            12
                                US-10-351-641-1068
                                                             Sequence 1068, Ap
              10.7
                        28
584
          3
                            12
                                 US-10-029-386-27629
                                                             Sequence 27629, A
          3
              10.7
                        28
                            12
585
                                US-10-029-386-27826
                                                             Sequence 27826, A
          3
              10.7
                        28
                            12
586
                                US-10-029-386-28083
                                                             Sequence 28083, A
587
          3
              10.7
                        28
                            12
                                US-10-029-386-28127
                                                             Sequence 28127, A
          3
              10.7
                                                             Sequence 28289, A
588
                        28
                            12
                                 US-10-029-386-28289
          3
              10.7
                                US-10-029-386-30101
589
                        28
                            12
                                                             Sequence 30101, A
              10.7
590
          3
                        28
                            12
                                US-10-029-386-31055
                                                             Sequence 31055, A
                                                             Sequence 31138, A
591
          3
              10.7
                        28
                            12
                                US-10-029-386-31138
592
          3
              10.7
                        28
                            12
                                US-10-029-386-31429
                                                             Sequence 31429, A
593
          3
              10.7
                        28
                            12
                                US-10-029-386-31503
                                                             Sequence 31503, A
          3
                        28
594
              10.7
                           12
                                US-10-029-386-31870
                                                             Sequence 31870, A
          3
595
              10.7
                        28
                            12
                                US-10-029-386-32354
                                                             Sequence 32354, A
596
          3
              10.7
                        28
                            12
                                US-10-062-599-173
                                                             Sequence 173, App
597
          3
              10.7
                        28
                            12
                                US-10-121-799-2
                                                             Sequence 2, Appli
          3
              10.7
                        28
                                US-10-189-437-569
598
                            12
                                                             Sequence 569, App
599
          3
              10.7
                        28
                            12
                                 US-10-321-856-283
                                                             Sequence 283, App
600
          3
              10.7
                        28
                            12
                                 US-10-404-626-2
                                                             Sequence 2, Appli
601
          3
              10.7
                        28
                            12
                                US-10-080-254-100
                                                             Sequence 100, App
602
          3
              10.7
                        28
                            12
                                US-09-818-683-310
                                                             Sequence 310, App
603
          3
              10.7
                        28
                            12
                                US-09-818-683-545
                                                             Sequence 545, App
604
          3
              10.7
                        28
                            12
                                 US-09-818-683-548
                                                             Sequence 548, App
605
          3
              10.7
                        28
                            12
                                US-09-818-683-574
                                                             Sequence 574, App
606
          3
              10.7
                        28
                            12
                                US-09-818-683-580
                                                             Sequence 580, App
607
          3
              10.7
                        28
                            12
                                US-10-366-125-21
                                                             Sequence 21, Appl
608
          3
              10.7
                        28
                            12
                                US-10-418-552-10
                                                             Sequence 10, Appl
609
          3
              10.7
                        28
                            12
                                US-10-418-552-12
                                                             Sequence 12, Appl
610
          3
              10.7
                        28
                            12
                                US-10-418-552-17
                                                             Sequence 17, Appl
          3
611
              10.7
                        28
                            12
                                US-10-242-355-646
                                                             Sequence 646, App
          3
612
              10.7 -
                        28
                            12
                                US-10-154-884B-11082
                                                             Sequence 11082, A
          3
              10.7
613
                        28
                            12
                                US-10-258-367-6
                                                             Sequence 6, Appli
          3
              10.7
614
                        28
                            12
                                US-10-264-049-3158
                                                             Sequence 3158, Ap
          3
              10.7
615
                        28
                            14
                                US-10-001-879-127
                                                             Sequence 127, App
          3
              10.7
616
                        28
                            14
                                US-10-001-879-148
                                                             Sequence 148, App
617
          3
              10.7
                        28
                            14
                                US-10-014-269-9
                                                             Sequence 9, Appli
618
          3
              10.7
                        28
                            14
                                US-10-156-820-35
                                                             Sequence 35, Appl
          3
619
                        28
              10.7
                            14
                                US-10-105-931-15
                                                             Sequence 15, Appl
          3
620
              10.7
                        28
                            14
                                US-10-105-931-19
                                                             Sequence 19, Appl
621
          3
              10.7
                        28
                            14
                                US-10-105-931-20
                                                             Sequence 20, Appl
          3
              10.7
622
                        28
                            14
                                US-10-105-931-21
                                                             Sequence 21, Appl
          3
623
              10.7
                        28
                            14
                                US-10-079-075-1
                                                             Sequence 1, Appli
624
          3
              10.7
                        28
                            14
                                US-10-002-974-9
                                                             Sequence 9, Appli
625
          3
              10.7
                        28
                            14
                                US-10-118-984-15
                                                             Sequence 15, Appl
626
              10.7
                        28
                            14
                                                             Sequence 19, Appl
                                US-10-118-984-19
```

```
Sequence 20, Appl
                                 US-10-118-984-20
               10.7
                         28
                             14
627
                                                               Sequence 21, Appl
           3
               10.7
                         28
                             14
                                 US-10-118-984-21
628
                                                               Sequence 3, Appli
                         28
                                 US-10-060-102-3
          3
               10.7
                             15
629
                                                               Sequence 115, App
                         28
                             15
                                 US-10-053-758-115
           3
630
               10.7
                                                               Sequence 18, Appl
                             15
                                 US-10-092-750-18
631
           3
               10.7
                         28
                                                               Sequence 71, Appl
                         28
                             15
                                 US-10-092-750-71
           3
               10.7
632
                                                               Sequence 115, App
                         28
                             15
                                 US-10-054-295-115
           3
               10.7
633
                                                               Sequence 11, Appl
                                 US-10-055-713-11
634
           3
               10.7
                         28
                             15
                                                               Sequence 13, Appl
635
           3
               10.7
                         28
                             15
                                 US-10-055-713-13
                                 US-10-055-713-18
                                                               Sequence 18, Appl
636
           3
               10.7
                         28
                             15
                                                               Sequence 280, App
                         28
                             15
                                 US-10-050-704-280
637
           3
               10.7
                                                               Sequence 284, App
638
           3
               10.7
                         28
                             15
                                 US-10-043-487-284
                                                               Sequence 307, App
639
           3
               10.7
                         28
                             15
                                 US-10-097-065-307
           3
               10.7
                         28
                             15
                                 US-10-097-065-331
                                                               Sequence 331, App
640
               10.7
                             15
                                 US-10-097-065-351
                                                               Sequence 351, App
641
           3
                         28
                                  US-10-097-065-478
                                                               Sequence 478, App
642
           3
               10.7
                         28
                             15
                                                               Sequence 115, App
                         28
                             15
                                  US-10-054-611-115
643
           3
               10.7
                                                               Sequence 5, Appli
           3
                         28
                             15
                                  US-10-106-806-5
               10.7
644
                                                               Sequence 225, App
                         28
                             15
                                  US-10-143-090-225
           3
               10.7
645
                                                               Sequence 324, App
646
           3
               10.7
                         28
                             15
                                  US-10-059-261-324
                                                               Sequence 166, App
           3
               10.7
                         28
                             15
                                  US-10-150-111-166
647
                                                               Sequence 13, Appl
           3
               10.7
                         28
                             15
                                  US-10-057-408-13
648
                                                               Sequence 15, Appl
           3
               10.7
                         28
                             15
                                  US-10-057-408-15
649
                                                               Sequence 16, Appl
           3
               10.7
                         28
                             15
                                  US-10-057-408-16
650
                         28
                                                               Sequence 17, Appl
           3
               10.7
                             15
                                  US-10-057-408-17
651
                                                               Sequence 68, Appl
           3
               10.7
                         28
                             15
                                  US-10-057-408-68
652
                                                               Sequence 69, Appl
           3
               10.7
                         28
                              15
                                  US-10-057-408-69
653
           3
               10.7
                         28
                             15
                                  US-10-247-279-9
                                                               Sequence 9, Appli
654
           3
               10.7
                         28
                             15
                                  US-10-023-282-638
                                                                Sequence 638, App
655
                                                               Sequence 714, App
656
           3
               10.7
                         28
                             15
                                  US-10-023-282-714
                                                                Sequence 5, Appli
657
           3
               10.7
                         28
                              15
                                  US-10-203-942-5
           3
               10.7
                         28
                              15
                                  US-10-062-831-173
                                                                Sequence 173, App
658
           3
               10.7
                         28
                              15
                                  US-10-055-711-19
                                                                Sequence 19, Appl
659
           3
               10.7
                         28
                              15
                                  US-10-055-711-21
                                                                Sequence 21, Appl
660
           3
               10.7
                         28
                              15
                                  US-10-055-711-26
                                                                Sequence 26, Appl
661
                                                                Sequence 14, Appl
           3
               10.7
                         28
                              15
                                  US-10-197-954-14
662
                                                                Sequence 8, Appli
           3
               10.7
                         28
                              15
                                  US-10-288-220-8
663
                                                                Sequence 17, Appl
           3
               10.7
                         28
                              15
                                  US-10-283-500-17
664
           3
               10.7
                         28
                              15
                                  US-10-295-981-15
                                                                Sequence 15, Appl
665
           3
                         28
                              15
                                  US-10-295-981-19
                                                                Sequence 19, Appl
               10.7
666
           3
                         28
                              15
                                  US-10-295-981-20
                                                                Sequence 20, Appl
667
               10.7
                                                                Sequence 21, Appl
           3
                         28
                              15
                                  US-10-295-981-21
668
               10.7
           3
               10.7
                         28
                              15
                                  US-10-216-209-70
                                                                Sequence 70, Appl
669
                                 US-08-910-386A-44
                                                              Sequence 44, Appl
           3
               10.7
                         29
                              8
670
                                                               Sequence 4, Appli
           3
               10.7
                         29
                              8
                                 US-08-913-430-4
671
                         29
                                 US-09-729-835-106
                                                               Sequence 106, App
           3
               10.7
                              9
672
           3
                         29
                              9
                                 US-09-205-658-71
                                                              Sequence 71, Appl
               10.7
673
                              9
                                                              Sequence 71, Appl
           3
                         29
                                 US-09-844-353A-71
674
               10.7
                                                               Sequence 33928, A
675
           3
               10.7
                         29
                              9
                                 US-09-864-761-33928
                                                               Sequence 33989, A
676
           3
               10.7
                         29
                              9
                                 US-09-864-761-33989
                         29
                                 US-09-864-761-36241
                                                               Sequence 36241, A
677
           3
               10.7
                              9
           3
                         29
                              9
                                 US-09-864-761-38088
                                                               Sequence 38088, A
678
               10.7
           3
               10.7
                         29
                              9
                                 US-09-864-761-38476
                                                               Sequence 38476, A
679
           3
               10.7
                         29
                              9
                                 US-09-864-761-39320
                                                               Sequence 39320, A
680
           3
                         29
                              9
                                 US-09-864-761-39413
                                                               Sequence 39413, A
                10.7
681
           3
                              9
                                                               Sequence 40217, A
                10.7
                         29
                                 US-09-864-761-40217
682
                10.7
                         29
                                 US-09-864-761-40403
                                                               Sequence 40403, A
683
```

```
Sequence 40672, A
                       29
                               US-09-864-761-40672
684
          3
              10.7
                                                           Sequence 40727, A
                        29
                            9
                               US-09-864-761-40727
685
          3
              10.7
                                                           Sequence 40839, A
              10.7
                       29
                           9
                               US-09-864-761-40839
          3
686
                                                           Sequence 41049, A
                       29
                           9
                               US-09-864-761-41049
          3
              10.7
687
                                                           Sequence 41733, A
                               US-09-864-761-41733
          3
              10.7
                        29
                           9
688
                                                           Sequence 41808, A
                        29
                               US-09-864-761-41808
          3
              10.7
689
                                                           Sequence 42014, A
                        29
                               US-09-864-761-42014
          3
              10.7
                           9
690
                                                           Sequence 43866, A
                               US-09-864-761-43866
691
          3
              10.7
                        29
                           9
                                                           Sequence 44607, A
692
          3
              10.7
                        29
                           9
                               US-09-864-761-44607
                                                           Sequence 44706, A
          3
              10.7
                        29
                           9
                               US-09-864-761-44706
693
                                                           Sequence 44778, A
                           9
                               US-09-864-761-44778
694
          3
              10.7
                        29
                                                           Sequence 45581, A
695
          3
              10.7
                        29
                           9
                               US-09-864-761-45581
                                                           Sequence 45948, A
          3
              10.7
                        29
                            9
                               US-09-864-761-45948
696
                        29
                            9
                               US-09-864-761-46130
                                                           Sequence 46130, A
          3
              10.7
697
                           9
                               US-09-864-761-46874
                                                           Sequence 46874, A
698
          3
              10.7
                        29
                                                           Sequence 1222, Ap
                            9
699
          3
              10.7
                        29
                               US-09-925-299-1222
                                                           Sequence 674, App
                        29
                            9
                               US-09-764-869-674
          3
              10.7
700
                                                           Sequence 9, Appli
          3
                        29
                           9
                               US-09-851-271A-9
              10.7
701
                                                           Sequence 134, App
702
          3
              10.7
                        29
                           9
                               US-09-782-980-134
                                                           Sequence 135, App
          3
              10.7
                        29
                               US-09-782-980-135
703
                                                           Sequence 13, Appl
          3
              10.7
                        29
                            9
                               US-09-789-836-13
704
                                                             Sequence 435, App
          3
                        29
                           10
                               US-09-922-261-435
705
              10.7
                                                             Sequence 1596, Ap
          3
              10.7
                        29
                            10
                                US-09-764-877-1596
706
                                                             Sequence 994, App
          3
              10.7
                        29
                            10
                                US-09-925-300-994
707
                                                             Sequence 25, Appl
          3
                        29
                            10
                                US-09-779-050A-25
              10.7
708
                                                             Sequence 84, Appl
                        29
                            10
                                US-09-749-637A-84
          3
               10.7
709
                                                             Sequence 293, App
          3
               10.7
                        29
                            11
                                US-09-774-639-293
710
                                                             Sequence 184, App
          3
               10.7
                        29 11
                                US-09-983-802-184
711
                                                             Sequence 38, Appl
                        29
                            11
                                US-09-956-940-38
712
          3
               10.7
                                                             Sequence 9, Appli
          3
               10.7
                        29
                            11
                                US-09-995-973-9
713
                                                             Sequence 56, Appl
          3
               10.7
                        29
                            11
                                US-09-272-975-56
714
                                                             Sequence 308, App
          3
                        29
                            11
                                US-09-974-879-308
715
               10.7
                                                             Sequence 580, App
          3
                        29
                            11
                                US-09-974-879-580
716
               10.7
                                                             Sequence 1222, Ap
                        29
                            11
                                US-09-925-299-1222
717
          3
               10.7
          3
                        29
                            11
                                US-09-809-391-384
                                                             Sequence 384, App
               10.7
718
                                                             Sequence 388, App
                        29
                            11
                                US-09-809-391-388
           3
719
               10.7
                                                             Sequence 743, App
                        29
                                US-09-809-391-743
720
           3
               10.7
                            11
                                                             Sequence 269, App
                        29
                            11
                                US-09-969-730-269
721
           3
               10.7
                                                             Sequence 47, Appl
           3
                        29
                            11
                                US-09-281-495-47
               10.7
722
                                US-09-764-891-2873
                                                             Sequence 2873, Ap
                        29 11
           3
723
               10.7
                                                             Sequence 70, Appl
                        29 11
                                US-09-899-495-70
           3
               10.7
724
                                                             Sequence 308, App
                        29 11
                                US-09-305-736-308
725
           3
               10.7
               10.7
                        29 11
                                US-09-305-736-581
                                                             Sequence 581, App
           3
726
                                                             Sequence 9, Appli
           3
                        29
                            11
                                US-09-996-484-9
727
               10.7
                                                             Sequence 19, Appl
           3
                        29
                            11
                                US-09-908-139-19
728
               10.7
                                                             Sequence 21, Appl
                        29
           3
                            11
                                US-09-908-139-21
729
               10.7
                        29
                            11
                                US-09-866-066-23
                                                             Sequence 23, Appl
           3
730
               10.7
                                                             Sequence 32, Appl
                        29
                            12
                                US-10-073-333A-32
731
           3
               10.7
                                                             Sequence 214, App
732
           3
               10.7
                        29
                            12
                                US-10-195-730-214
                                                             Sequence 15, Appl
           3
               10.7
                        29
                            12
                                US-10-146-999-15
733
                                                             Sequence 87, Appl
           3
                        29
                            12
                                 US-10-199-869-87
734
               10.7
           3
                                                             Sequence 44, Appl
735
               10.7
                         29
                            12
                                 US-10-231-894-44
           3
                        29
                            12
                                US-10-193-109-19
                                                             Sequence 19, Appl
736
               10.7
                                                             Sequence 57, Appl
                         29
                            12
                                US-10-316-253-57
           3
               10.7
737
                                                             Sequence 13, Appl
                         29
                            12
                                US-09-789-831-13
           3
738
               10.7
                                 US-10-131-909A-7
                                                             Sequence 7, Appli
           3
                         29
                            12
739
               10.7
                                US-10-160-162-198
                                                             Sequence 198, App
           3
               10.7
                         29
                            12
740
```

```
Sequence 286, App
                                 US-10-160-162-286
                            12
741
          3
              10.7
                        29
                                                              Sequence 161, App
                        29
                            12
                                 US-10-411-224-161
742
          3
              10.7
                                                              Sequence 704, App
                                 US-09-942-052-704
                        29
                            12
          3
              10.7
743
                                                              Sequence 384, App
                                 US-09-882-171-384
          3
               10.7
                        29
                            12
744
                                                              Sequence 388, App
                                 US-09-882-171-388
          3
              10.7
                        29
                            12
745
                                                              Sequence 743, App
                                 US-09-882-171-743
               10.7
                        29
                            12
746
          3
                                 US-10-008-524A-110
                                                              Sequence 110, App
                        29
                             12
747
          3
               10.7
                                                              Sequence 4, Appli
748
          3
               10.7
                        29
                             12
                                 US-10-340-458-4
                                                              Sequence 21, Appl
749
          3
               10.7
                        29
                             12
                                 US-10-340-458-21
                                                              Sequence 824, App
          3
               10.7
                        29
                             12
                                 US-09-933-767-824
750
                                                              Sequence 864, App
          3
               10.7
                        29
                             12
                                 US-09-933-767-864
751
                                                              Sequence 1182, Ap
                                 US-09-933-767-1182
752
          3
               10.7
                        29
                             12
                                                              Sequence 1187, Ap
                                 US-09-933-767-1187
          3
               10.7
                        29
                             12
753
                                                              Sequence 71, Appl
          3
               10.7
                         29
                             12
                                 US-09-963-693-71
754
                                                              Sequence 210, App
           3
               10.7
                         29
                             12
                                 US-10-105-232-210
755
                                                              Sequence 319, App
           3
               10.7
                         29
                             12
                                 US-10-105-232-319
756
                                                              Sequence 20, Appl
           3
               10.7
                         29
                             12
                                 US-10-131-686A-20
757
                                                              Sequence 472, App
           3
               10.7
                         29
                             12
                                 US-10-280-066-472
758
                                                              Sequence 25, Appl
           3
               10.7
                         29
                             12
                                 US-10-289-135A-25
759
                                                              Sequence 23, Appl
           3
               10.7
                         29
                             12
                                 US-10-192-078-23
760
                                                              Sequence 6, Appli
                         29
                             12
                                 US-10-263-162-6
           3
               10.7
761
                                                              Sequence 23, Appl
                         29
                             12
                                 US-10-422-934-23
762
           3
               10.7
                                                              Sequence 38, Appl
           3
                         29
                             12
                                 US-10-405-231-38
763
               10.7
                                                              Sequence 1343, Ap
           3
                         29
                             12
                                 US-09-962-756-1343
               10.7
764
                                                              Sequence 1357, Ap
           3
                         29
                             12
                                 US-09-962-756-1357
               10.7
765
                                                              Sequence 27814, A
                             12
                                 US-10-029-386-27814
           3
               10.7
                         29
766
                                                              Sequence 27898, A
                         29
                             12
                                 US-10-029-386-27898
767
           3
               10.7
                                                              Sequence 28398, A
                         29
                             12
                                 US-10-029-386-28398
768
           3
               10.7
                                                              Sequence 28427, A
                             12
                                 US-10-029-386-28427
769
           3
               10.7
                         29
                                                              Sequence 30036, A
           3
               10.7
                         29
                             12
                                 US-10-029-386-30036
770
                                                              Sequence 30088, A
           3
               10.7
                         29
                             12
                                 US-10-029-386-30088
771
                                                              Sequence 30256, A
           3
                         29
                             12
                                 US-10-029-386-30256
772
               10.7
                                                              Sequence 30373, A
                         29
                             12
                                 US-10-029-386-30373
773
           3
               10.7
                                                              Sequence 31330, A
                         29
                             12
                                 US-10-029-386-31330
774
           3
               10.7
                         29
                             12
                                 US-10-029-386-31546
                                                               Sequence 31546, A
775
               10.7
           3
                                                               Sequence 32650, A
                         29
                                 US-10-029-386-32650
                             12
776
           3
               10.7
                                                              Sequence 32712, A
                                 US-10-029-386-32712
           3
               10.7
                         29
                             12
777
                                                               Sequence 32812, A
                         29
                             12
                                 US-10-029-386-32812
778
           3
               10.7
                         29
                             12
                                 US-10-029-386-33620
                                                               Sequence 33620, A
779
           3
               10.7
                         29
                             12
                                 US-10-189-437-197
                                                               Sequence 197, App
780
           3
               10.7
                                                               Sequence 306, App
           3
               10.7
                         29
                             12
                                 US-10-189-437-306
781
                         29
                             12
                                 US-10-189-437-693
                                                               Sequence 693, App
           3
               10.7
782
                         29
                             12
                                 US-10-189-437-707
                                                               Sequence 707, App
           3
               10.7
783
                                                               Sequence 12, Appl
                         29
                             12
                                 US-10-380-558-12
           3
               10.7
784
                                                               Sequence 198, App
                         29
                             12
                                 US-09-820-649-198
785
           3
               10.7
                                                               Sequence 286, App
           3
                         29
                             12
                                 US-09-820-649-286
786
               10.7
                                                               Sequence 44, Appl
                         29
                             12
                                 US-10-231-889-44
787
           3
               10.7
                                                               Sequence 308, App
                         29
                                 US-09-818-683-308
788
           3
               10.7
                             12
                                                               Sequence 581, App
789
           3
               10.7
                         29
                             12
                                 US-09-818-683-581
                                                               Sequence 110, App
           3
               10.7
                         29
                             12
                                 US-10-350-719-110
790
                                                               Sequence 10, Appl
           3
                         29
                             12
                                 US-09-910-432-10
791
               10.7
                                                               Sequence 4, Appli
           3
               10.7
                         29
                             12
                                 US-09-933-780C-4
792
                         29
                             12
                                 US-10-323-069A-133
                                                               Sequence 133, App
793
           3
               10.7
                         29
                             12
                                 US-10-245-871-192
                                                               Sequence 192, App
           3
794
               10.7
                         29
                             12
                                 US-10-253-471-1343
                                                               Sequence 1343, Ap
           3
 795
                10.7
                                                               Sequence 1357, Ap
           3
                10.7
                         29
                             12
                                  US-10-253-471-1357
 796
                         29
                                                               Sequence 161, App
                10.7
                             12
                                 US-10-047-021-161
 797
```

```
Sequence 37, Appl
                                 US-10-305-133-37
               10.7
                        29
                            12
798
          3
                                                              Sequence 47, Appl
                                 US-10-305-133-47
               10.7
                        29
                            12
799
          3
                                 US-10-335-009-1
                                                              Sequence 1, Appli
                        29
                            12
800
          3
               10.7
                                                              Sequence 674, App
               10.7
                        29
                             12
                                 US-10-227-577-674
          3
801
                                                              Sequence 12, Appl
               10.7
                        29
                             14
                                 US-10-038-045-12
802
          3
                                                              Sequence 4, Appli
                        29
                             14
                                 US-10-036-492-4
803
          3
               10.7
                                 US-10-001-876-168
                                                              Sequence 168, App
                        29
                             14
804
          3
               10.7
                                                              Sequence 14, Appl
          3
               10.7
                        29
                             15
                                 US-10-214-188-14
805
                                                              Sequence 15, Appl
          3
               10.7
                        29
                             15
                                 US-10-214-188-15
806
                                                              Sequence 4, Appli
           3
                         29
                             15
                                 US-10-060-102-4
807
               10.7
                                                              Sequence 8, Appli
           3
               10.7
                         29
                             15
                                 US-10-060-102-8
808
                                                              Sequence 19, Appl
           3
               10.7
                         29
                             15
                                 US-10-084-994-19
809
                                                              Sequence 58, Appl
           3
               10.7
                         29
                             15
                                 US-10-092-750-58
810
                                                              Sequence 206, App
           3
                         29
                             15
                                 US-10-000-256A-206
               10.7
811
                                                              Sequence 36, Appl
                         29
                             15
                                 US-10-038-010-36
           3
               10.7
812
                                                              Sequence 7, Appli
           3
                         29
                             15
                                 US-10-018-103A-7
               10.7
813
                                                              Sequence 32, Appl
                         29
                             15
                                 US-10-087-345A-32
           3
               10.7
814
                                                              Sequence 12, Appl
                         29
                             15
                                 US-10-045-465-12
           3
               10.7
815
                                                              Sequence 674, App
                         29
                             15
                                 US-10-091-504-674
           3
               10.7
816
                                                              Sequence 304, App
                         29
                             15
                                 US-10-226-956-304
           3
               10.7
817
                                                              Sequence 305, App
                         29
                             15
                                 US-10-226-956-305
818
           3
               10.7
                                                              Sequence 36, Appl
                                 US-10-094-401-36
               10.7
                         29
                             15
819
           3
                                                              Sequence 33, Appl
                         29
                             15
                                 US-10-140-164-33
           3
               10.7
820
                                                              Sequence 62, Appl
                         29
                             15
                                 US-10-140-164-62
821
           3
               10.7
                                                              Sequence 824, App
                         29
                                 US-10-023-282-824
                             15
822
           3
               10.7
                                                              Sequence 864, App
                                 US-10-023-282-864
               10.7
                         29
                             15
823
           3
                                                              Sequence 1182, Ap
                                 US-10-023-282-1182
               10.7
                         29
                             15
824
           3
                                 US-10-023-282-1187
                                                               Sequence 1187, Ap
               10.7
                         29
                             15
825
           3
                                                               Sequence 105, App
                                 US-10-128-711-105
           3
               10.7
                         29
                             15
826
                                                               Sequence 8, Appli
                         29
                             15
                                 US-10-219-626-8
           3
               10.7
827
                                                               Sequence 12, Appl
                         29
                             15
                                 US-10-178-055-12
           3
               10.7
828
                         29
                             15
                                 US-10-178-055-14
                                                               Sequence 14, Appl
829
           3
               10.7
                                                               Sequence 297, App
                         29
                                 US-10-157-031-297
               10.7
                             15
830
           3
                                                               Sequence 4297, Ap
                                  US-10-106-698-4297
               10.7
                         29
                             15
           3
831
                                                               Sequence 8288, Ap
                         29
                                  US-10-106-698-8288
                             15
               10.7
832
           3
                                                               Sequence 38, Appl
                                 US-10-238-607-38
                         29
                             15
833
           3
               10.7
                                                              Sequence 12, Appl
                         30
                             9
                                 US-09-103-067-12
834
           3
               10.7
                             9
                                 US-09-765-527-15
                                                              Sequence 15, Appl
               10.7
                         30
           3
835
                             9
                                 US-09-773-385-7
                                                              Sequence 7, Appli
                         30
               10.7
836
           3
                             9
                                                              Sequence 32, Appl
                         30
                                 US-09-037-657-32
           3
               10.7
837
                                                              Sequence 34980, A
                         30
                                 US-09-864-761-34980
           3
               10.7
838
                                                              Sequence 35495, A
                         30
                             9
                                 US-09-864-761-35495
           3
               10.7
839
                                 US-09-864-761-36009
                                                              Sequence 36009, A
                         30
                             9
840
           3
               10.7
                                 US-09-864-761-36699
                                                              Sequence 36699, A
           3
               10.7
                         30
                             9
841
                                                              Sequence 37612, A
                         30
                             9
                                 US-09-864-761-37612
               10.7
842
           3
                                                              Sequence 37788, A
                         30
                             9
                                 US-09-864-761-37788
           3
               10.7
 843
                                                              Sequence 38409, A
                                 US-09-864-761-38409
           3
               10.7
                         30
                             9
 844
                                                              Sequence 38511, A
           3
               10.7
                         30
                             9
                                 US-09-864-761-38511
 845
                                                              Sequence 38719, A
                         30
                                 US-09-864-761-38719
           3
                10.7
 846
                                                              Sequence 39156, A
                         30
                             9
                                 US-09-864-761-39156
           3
                10.7
 847
                                                              Sequence 39562, A
                         30
                                 US-09-864-761-39562
           3
                10.7
                             9
 848
                                                              Sequence 39692, A
                         30
                             9
                                 US-09-864-761-39692
           3
                10.7
 849
                                                              Sequence 40127, A
           3
                10.7
                         30
                             9
                                 US-09-864-761-40127
 850
                             9
                                                              Sequence 40263, A
           3
                                 US-09-864-761-40263
                10.7
                         30
 851
                                                              Sequence 40565, A
                              9
                                 US-09-864-761-40565
           3
                10.7
                         30
 852
                                                              Sequence 40773, A
                10.7
                         30
                                 US-09-864-761-40773
           3
 853
                                                              Sequence 40858, A
           3
                10.7
                         30
                                 US-09-864-761-40858
 854
```

```
Sequence 41425, A
                                US-09-864-761-41425
                        30
                            9
               10.7
855
                                                             Sequence 41545, A
                            9
                                US-09-864-761-41545
          3
               10.7
                        30
856
                                                             Sequence 42333, A
                        30
                            9
                                US-09-864-761-42333
          3
               10.7
857
                                                             Sequence 42441, A
                        30
                            9
                                US-09-864-761-42441
          3
858
               10.7
                                                             Sequence 42571, A
                            9
                        30
                                US-09-864-761-42571
859
          3
               10.7
                                                             Sequence 43255, A
               10.7
                        30
                            9
                                US-09-864-761-43255
860
          3
                                                             Sequence 43845, A
                                US-09-864-761-43845
               10.7
                        30
                            9
          3
861
                                                             Sequence 43930, A
                                US-09-864-761-43930
                        30
                            9
862
          3
               10.7
                                                             Sequence 44039, A
                                US-09-864-761-44039
863
          3
               10.7
                        30
                             9
                                                             Sequence 44860, A
                        30
                             9
                                US-09-864-761-44860
864
          3
               10.7
                                                             Sequence 44900, A
          3
                        30
                             9
                                US-09-864-761-44900
865
               10.7
                                                             Sequence 45165, A
          3
                             9
                                US-09-864-761-45165
866
               10.7
                        30
                                                             Sequence 45471, A
                             9
867
          3
               10.7
                        30
                                US-09-864-761-45471
                                                             Sequence 47235, A
          3
               10.7
                        30
                             9
                                US-09-864-761-47235
868
                                                             Sequence 48193, A
          3
                        30
                             9
                                US-09-864-761-48193
869
               10.7
                                                             Sequence 9, Appli
                        30
                             9
                                US-09-989-789-9
870
          3
               10.7
                                                             Sequence 157, App
                        30
                             9
                                US-09-789-561-157
871
          3
               10.7
                                                             Sequence 19, Appl
          3
                        30
                             9
                                US-09-813-345-19
872
               10.7
                                                             Sequence 11, Appl
                        30
                             9
                                US-09-929-315-11
873
          3
               10.7
                                                             Sequence 14, Appl
                             9
874
          3
               10.7
                        30
                                US-09-929-315-14
                                                             Sequence 17, Appl
                        30
                                US-09-929-315-17
875
          3
               10.7
                                                             Sequence 244, App
                        30
                             9
                                US-09-764-898-244
876
          3
               10.7
                                                              Sequence 65, Appl
877
           3
               10.7
                        30
                             10
                                 US-09-993-844-65
                                                              Sequence 11, Appl
878
           3
               10.7
                         30
                             10
                                 US-09-993-215-11
                                                              Sequence 14, Appl
           3
               10.7
                         30
                             10
                                 US-09-993-215-14
879
                                                              Sequence 17, Appl
           3
               10.7
                         30
                             10
                                 US-09-993-215-17
880
                                                              Sequence 13, Appl
           3
               10.7
                         30
                             10
                                 US-09-911-969-13
881
                                                              Sequence 1116, Ap
           3
               10.7
                         30
                             10
                                 US-09-764-877-1116
882
                                                               Sequence 1605, Ap
           3
               10.7
                         30
                             10
                                 US-09-764-877-1605
883
                                                               Sequence 91, Appl
884
           3
               10.7
                         30
                             10
                                 US-09-867-852-91
                                                               Sequence 147, App
885
           3
               10.7
                         30
                             10
                                 US-09-071-838-147
                                                               Sequence 33, Appl
886
           3
               10.7
                         30
                             10
                                 US-09-922-364A-33
                                                               Sequence 110, App
           3
               10.7
                         30
                             10
                                 US-09-852-424-110
887
                                                               Sequence 111, App
888
           3
               10.7
                         30
                             10
                                 US-09-852-424-111
                                                               Sequence 112, App
889
           3
               10.7
                         30
                             10
                                 US-09-852-424-112
                                                               Sequence 119, App
           3
               10.7
                         30
                             10
                                 US-09-852-424-119
890
                                                               Sequence 120, App
           3
               10.7
                         30
                             10
                                 US-09-852-424-120
891
                                                               Sequence 121, App
892
           3
               10.7
                         30
                             10
                                 US-09-852-424-121
                                                               Sequence 127, App
893
           3
               10.7
                         30
                             10
                                 US-09-852-424-127
                                                               Sequence 129, App
           3
                         30
                             10
                                 US-09-852-424-129
894
               10.7
                                                               Sequence 12, Appl
           3
                         30
                             10
                                 US-09-835-107-12
895
               10.7
                                                               Sequence 14, Appl
           3
               10.7
                         30
                             10
                                 US-09-835-107-14
896
                                                               Sequence 268, App
           3
               10.7
                         30
                             10
                                 US-09-984-245-268
897
                                                               Sequence 33, Appl
           3
                         30
                             10
                                 US-09-254-590-33
               10.7
898
                                                               Sequence 101, App
                                 US-09-749-637A-101
899
           3
               10.7
                         30
                             10
                                                               Sequence 292, App
           3
                         30
                             10
                                 US-09-749-637A-292
900
               10.7
           3
                         30
                             10
                                 US-09-899-235-18
                                                               Sequence 18, Appl
               10.7
901
                         30
                             10
                                 US-09-092-296-17
                                                               Sequence 17, Appl
           3
902
               10.7
                                                               Sequence 6, Appli
903
           3
               10.7
                         30
                             10
                                 US-09-790-622-6
                                                               Sequence 4, Appli
                         30
                                 US-09-969-663-4
904
           3
               10.7
                             11
           3
                         30
                                 US-09-969-663-15
                                                               Sequence 15, Appl
905
               10.7
                             11
           3
                         30
                             11
                                 US-09-272-975-25
                                                               Sequence 25, Appl
906
               10.7
907
           3
               10.7
                         30
                             11
                                 US-09-747-802-10
                                                               Sequence 10, Appl
           3
               10.7
                         30
                             11
                                  US-09-999-686-43
                                                               Sequence 43, Appl
908
           3
               10.7
                         30
                             11
                                  US-09-974-879-321
                                                               Sequence 321, App
909
           3
                         30
                             11
                                  US-09-376-430-23
                                                               Sequence 23, Appl
910
               10.7
               10.7
                         30
                             11
                                 US-09-259-658-12
                                                               Sequence 12, Appl
911
```

```
Sequence 217, App
                        30
                                US-09-846-033B-217
912
              10.7
                            11
                                                             Sequence 265, App
              10.7
                        30
                            11
                                US-09-813-153-265
913
          3
              10.7
                                                             Sequence 293, App
914
          3
                        30
                            11
                                US-09-776-724A-293
                                                             Sequence 268, App
                        30
                            11
                                US-09-966-262-268
915
          3
              10.7
                                                             Sequence 268, App
                        30
                                US-09-983-966-268
916
          3
              10.7
                            11
                                                             Sequence 2, Appli
                        30
                            11
                                US-09-865-294-2
917
          3
              10.7
                                                             Sequence 9, Appli
                        30
                            11
                                US-09-990-186-9
918
          3
              10.7
                                                             Sequence 104, App
                                US-09-911-569-104
919
          3
              10.7
                        30
                            11
                                                             Sequence 105, App
920
          3
              10.7
                        30
                            11
                                US-09-876-904A-105
                                                             Sequence 3072, Ap
              10.7
921
          3
                        30
                            11
                                US-09-764-891-3072
                                                             Sequence 4214, Ap
                            11
                                US-09-764-891-4214
922
          3
              10.7
                        30
                                                             Sequence 4843, Ap
923
          3
              10.7
                        30
                            11
                                US-09-764-891-4843
                                                             Sequence 307, App
924
          3
              10.7
                        30
                            11
                                US-09-892-877-307
              10.7
                        30
                            11
                                US-09-847-208-78
                                                             Sequence 78, Appl
925
          3
                                US-09-305-736-321
                                                             Sequence 321, App
926
          3
              10.7
                        30
                            11
                                                             Sequence 20, Appl
927
          3
              10.7
                        30
                            11
                                US-09-908-139-20
                            11
                                                              Sequence 11, Appl
928
          3
              10.7
                        30
                                US-09-491-614-11
                                                              Sequence 320, App
                        30
                            11
                                US-09-948-783-320
929
          3
              10.7
                                                              Sequence 9, Appli
930
          3
              10.7
                        30
                            11
                                US-09-989-994-9
                                                              Sequence 7, Appli
931
          3
               10.7
                        30
                            12
                                US-10-137-647C-7
                                                              Sequence 104, App
932
          3
               10.7
                        30
                            12
                                US-10-200-879-104
                                                              Sequence 12, Appl
          3
                        30
                            12
                                US-10-217-387A-12
933
               10.7
                                                             Sequence 12, Appl
934
          3
               10.7
                        30
                            12
                                US-10-086-177A-12
935
          3
               10.7
                        30
                            12
                                US-10-086-177A-14
                                                              Sequence 14, Appl
                                                              Sequence 29, Appl
          3
               10.7
                        30
                            12
                                 US-10-169-223-29
936
                                                              Sequence 30, Appl
           3
                        30
                            12
                                 US-10-169-223-30
937
               10.7
          3
               10.7
                        30
                            12
                                 US-10-169-223-31
                                                              Sequence 31, Appl
938
          3
               10.7
                        30
                            12
                                 US-10-169-223-32
                                                              Sequence 32, Appl
939
          3
                        30
                            12
                                 US-10-169-223-33
                                                              Sequence 33, Appl
940
               10.7
941
           3
               10.7
                        30
                            12
                                 US-10-169-223-34
                                                              Sequence 34, Appl
942
           3
               10.7
                        30
                            12
                                 US-10-338-348-22
                                                              Sequence 22, Appl
943
           3
               10.7
                        30
                            12
                                 US-10-132-861-4
                                                              Sequence 4, Appli
944
           3
               10.7
                        30
                            12
                                 US-10-389-301-6
                                                              Sequence 6, Appli
945
           3
               10.7
                        30
                             12
                                 US-10-058-053A-99
                                                              Sequence 99, Appl
946
           3
               10.7
                        30
                             12
                                 US-10-058-053A-284
                                                              Sequence 284, App
               10.7
                        30
                             12
                                 US-10-107-857-25
                                                              Sequence 25, Appl
947
           3
                        30
                             12
                                                              Sequence 6, Appli
948
           3
               10.7
                                 US-10-388-931-6
           3
               10.7
                        30
                             12
                                 US-10-192-832-70
                                                              Sequence 70, Appl
949
           3
               10.7
                        30
                             12
                                 US-10-192-832-71
                                                              Sequence 71, Appl
950
           3
                        30
                             12
                                 US-10-192-832-74
                                                              Sequence 74, Appl
951
               10.7
                        30
                             12
                                                              Sequence 612, App
952
           3
               10.7
                                 US-09-933-767-612
           3
               10.7
                        30
                             12
                                 US-09-933-767-768
                                                              Sequence 768, App
953
               10.7
                        30
                           . 12
                                 US-09-933-767-1167
                                                              Sequence 1167, Ap
954
           3
                        30
                             12
                                                              Sequence 265, App
           3
               10.7
                                 US-10-199-820-265
955
                                                              Sequence 253, App
956
           3
               10.7
                         30
                             12
                                 US-10-339-740-253
                                                              Sequence 83, Appl
957
           3
               10.7
                         30
                             12
                                 US-09-802-668-83
                         30
                             12
                                                              Sequence 27553, A
           3
                                 US-10-029-386-27553
958
               10.7
                                                              Sequence 30084, A
           3
                        30
                             12
                                 US-10-029-386-30084
959
               10.7
960
           3
               10.7
                        30
                             12
                                 US-10-029-386-30620
                                                              Sequence 30620, A
                                                              Sequence 31827, A
961
           3
               10.7
                        30
                             12
                                 US-10-029-386-31827
                                                              Sequence 31928, A
962
           3
               10.7
                        30
                             12
                                 US-10-029-386-31928
                                 US-10-029-386-32505
                                                              Sequence 32505, A
963
           3
               10.7
                         30
                             12
           3
               10.7
                         30
                             12
                                 US-10-029-386-33497
                                                              Sequence 33497, A
964
           3
               10.7
                         30
                             12
                                 US-10-193-477-14
                                                              Sequence 14, Appl
965
                         30
                             12
                                                              Sequence 44, Appl
           3
               10.7
                                 US-10-193-477-44
966
                                                              Sequence 83, Appl
967
           3
               10.7
                         30
                             12
                                 US-10-243-475-83
               10.7
                         30
                             12
                                 US-10-023-339-30
                                                              Sequence 30, Appl
968
```

969	3	10.7	30 1	2	US-09-818-683-321	Sequence	321, App
970	3	10.7	30 1	2	US-10-117-937-45	Sequence	45, Appl
971	3	10.7	30 1	2	US-10-298-796-5	Sequence	5, Appli
972	3	10.7	30 1	2	US-10-139-794 - 79	Sequence	79, Appl
973	3	10.7	30 1	2	US-10-411-544-4	Sequence	4, Appli.
974	3	10.7	30 1	2	US-10-057-475B-10823	Sequence	10823, A
975	3	10.7	30 1	2	US-10-057-475B-10824	Sequence	10824, A
976	3	10.7	30 1	2	US-10-154-884B-10823	Sequence	10823, A
977	3	10.7	30 1	2	US-10-154-884B-10824	Sequence	10824, A
978	3	10.7	30 1	3	US-10-036-568-5	Sequence	5, Appli
979	3	10.7	30 1	4	US-10-051-843-5	Sequence	5, Appli
980	3	10.7	30 1	4	US-10-055-430-4	Sequence	4, Appli
981	3	10.7	30 1	4	US-10-103-448-4	Sequence	4, Appli
982	3	10.7	30 1	4	US-10-010-114-18	Sequence	18, Appl
983	3	10.7	30 1	4	US-10-002-344A-146	Sequence	146, App
984	3	10.7	30 1	4	US-10-115-695 - 33	Sequence	33, Appl
985	3	10.7	30 1	4	US-10-078-059-23	Sequence	23, Appl
986	3	10.7	30 1	4	US-10-108-929-4	Sequence	4, Appli
987	3	10.7	30 1	.5	US-10-006-069A-217	Sequence	217, App
988	3	10.7	30 1	.5	US-10-116-561-33	Sequence	33, Appl
989	3	10.7	30 1	.5	US-10-115-671-33	Sequence	33, Appl
990	3	10.7	30 1	.5	US-10-094-699-18	-	18, Appl
991	3	10.7	30 1	.5	US-10-091-572-389		389, App
992	3	10.7	30 1	.5	US-10-091-244A-12	Sequence	12, Appl
993	3	10.7	30 1	.5	US-10-143-090-268	Sequence	268, App
994	3	10.7	30 1	.5	US-10-227-629-14	Sequence	14, Appl
995	3	10.7	30 1	.5	US-10-051-841-5	-	5, Appli
996	3	10.7	30 1	.5	US-10-059 - 261-55	Sequence	55, Appl
997	3	10.7	30 1	.5	US-10-059 - 261-163	-	163, App
998	3	10.7	30 1	.5	US-10-115-415-33	Sequence	33, Appl
999	3	10.7		.5	US-10-116-260-33		33, Appl
1000	3	10.7	30 1	.5	US-10-165-420-5	Sequence	5, Appli

ALIGNMENTS

RESULT 1

US-09-843-221A-69

- ; Sequence 69, Application US/09843221A
- ; Publication No. US20030039654A1
- ; GENERAL INFORMATION:
- ; APPLICANT: KOSTENUIK, PAUL
- ; APPLICANT: LIU, CHUAN-FA
- ; APPLICANT: LACEY, DAVID LEE
- ; TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND

PARATHYROID HORMONE-

- ; TITLE OF INVENTION: RELATED PROTEIN
- ; FILE REFERENCE: A-665B
- ; CURRENT APPLICATION NUMBER: US/09/843,221A
- ; CURRENT FILING DATE: 2001-04-26
- ; PRIOR APPLICATION NUMBER: 60/266,673
- ; PRIOR FILING DATE: 2001-02-06
- ; PRIOR APPLICATION NUMBER: 60/214,860
- ; PRIOR FILING DATE: 2000-06-28
- PRIOR APPLICATION NUMBER: 60/200,053
- ; PRIOR FILING DATE: 2000-04-27

```
NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 69
   LENGTH: 28
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified human PTHrP
US-09-843-221A-69
                         100.0%; Score 28; DB 11; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4e-22;
           28; Conservative
                               0; Mismatches
                                                0; Indels
                                                               0; Gaps
                                                                           0;
 Matches
           1 LLHNLGKSIQDLRRRFFLHHLIAEIHTA 28
QУ
             1 LLHNLGKSIQDLRRRFFLHHLIAEIHTA 28
Db
RESULT 2
US-09-843-221A-169
; Sequence 169, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
   APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
   CURRENT FILING DATE: 2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
   PRIOR APPLICATION NUMBER: 60/214,860
   PRIOR FILING DATE: 2000-06-28
   PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
   NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
 SEQ ID NO 169
    LENGTH: 28
    TYPE: PRT
    ORGANISM: Artificial Sequence
    OTHER INFORMATION: Preferred embodiments - PTHrP
    NAME/KEY: misc_feature
    LOCATION: (28) .. (28)
    OTHER INFORMATION: Optional linker and Fc domain attached at the C-terminus
US-09-843-221A-169
                          100.0%; Score 28; DB 11; Length 28;
  Query Match
                         100.0%; Pred. No. 4e-22;
  Best Local Similarity
                               0; Mismatches 0; Indels
                                                                0; Gaps
                                                                           0;
            28; Conservative
  Matches
```

```
1 LLHNLGKSIQDLRRRFFLHHLIAEIHTA 28
US-09-843-221A-68
; Sequence 68, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
   CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
   PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
  SEQ ID NO 68
   LENGTH: 28
    TYPE: PRT
    ORGANISM: Homo sapiens
US-09-843-221A-68
                         82.1%; Score 23; DB 11; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.9e-17;
  Matches 23; Conservative 0; Mismatches
                                               0; Indels
                                                             0; Gaps
           6 GKSIODLRRRFFLHHLIAEIHTA 28
              6 GKSIQDLRRRFFLHHLIAEIHTA 28
```

```
RESULT 4
US-09-169-786-5
; Sequence 5, Application US/09169786B
; Patent No. US20020025929A1
; GENERAL INFORMATION:
  APPLICANT: Sato, Masahiko
  TITLE OF INVENTION: METHOD OF BUILDING AND MAINTAINING BONE
  FILE REFERENCE: X-11480
  CURRENT APPLICATION NUMBER: US/09/169,786B
  CURRENT FILING DATE: 1998-10-09
; EARLIER APPLICATION NUMBER: US 60/061,800
  EARLIER FILING DATE: 1997-10-14
 NUMBER OF SEQ ID NOS: 12
  SOFTWARE: PatentIn Ver. 2.0
 SEQ ID NO 5
    LENGTH: 34
```

Db

Qу

Db

RESULT 3

```
ORGANISM: Homo sapiens
US-09-169-786-5
                         82.1%; Score 23; DB 9; Length 34;
  Query Match
  Best Local Similarity
                        100.0%; Pred. No. 7e-17;
          23; Conservative 0; Mismatches
                                                0; Indels
                                                              0; Gaps
           6 GKSIQDLRRRFFLHHLIAEIHTA 28
Qу
              11111111111111111111111111
          12 GKSIQDLRRRFFLHHLIAEIHTA 34
Db
RESULT 5
US-09-423-800-75
; Sequence 75, Application US/09423800
; Patent No. US20020165363A1
; GENERAL INFORMATION:
 APPLICANT: SATO, KOH
  APPLICANT: TSUNENARI, TOSHIAKI
  APPLICANT: ISHII, KIMIE
  TITLE OF INVENTION: CACHEXIA REMEDY
  FILE REFERENCE: 04853-0036
  CURRENT APPLICATION NUMBER: US/09/423,800
  CURRENT FILING DATE: 1999-11-12
  PRIOR APPLICATION NUMBER: PCT/JP98/02116
  PRIOR FILING DATE: 1998-05-13
  PRIOR APPLICATION NUMBER: JP 125505/1997
  PRIOR FILING DATE: 1997-05-15
  PRIOR APPLICATION NUMBER: JP 194445/1997
  PRIOR FILING DATE: 1997-07-18
  NUMBER OF SEQ ID NOS: 87
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 75
    LENGTH: 34
    TYPE: PRT
    ORGANISM: Homo sapiens
US-09-423-800-75
                         82.1%; Score 23; DB 10; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 7e-17;
          23; Conservative 0; Mismatches 0; Indels
                                                                          0;
  Matches
                                                               0; Gaps
           6 GKSIQDLRRRFFLHHLIAEIHTA 28
Qу
              Db
          12 GKSIQDLRRRFFLHHLIAEIHTA 34
RESULT 6
US-09-843-221A-63
; Sequence 63, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
```

TYPE: PRT

```
TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
 PRIOR FILING DATE: 2001-02-06
 PRIOR APPLICATION NUMBER: 60/214,860
 PRIOR FILING DATE: 2000-06-28
 PRIOR APPLICATION NUMBER: 60/200,053
 PRIOR FILING DATE: 2000-04-27
 NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 63
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-63
  Query Match
                         82.1%; Score 23; DB 11; Length 34;
 Best Local Similarity 100.0%; Pred. No. 7e-17;
                                                               0; Gaps
 Matches 23; Conservative 0; Mismatches
                                                 0; Indels
                                                                           0;
Qу
           6 GKSIQDLRRRFFLHHLIAEIHTA 28
              Db
          12 GKSIQDLRRRFFLHHLIAEIHTA 34
RESULT 7
US-10-337-981-75
; Sequence 75, Application US/10337981
; Publication No. US20030138424A1
; GENERAL INFORMATION:
; APPLICANT: SATO, KOH
 APPLICANT: TSUNENARI, TOSHIAKI
 APPLICANT: ISHII, KIMIE
  TITLE OF INVENTION: CACHEXIA REMEDY
  FILE REFERENCE: 04853-0036
  CURRENT APPLICATION NUMBER: US/10/337,981
  CURRENT FILING DATE: 2003-01-08
  PRIOR APPLICATION NUMBER: PCT/JP98/02116
  PRIOR FILING DATE: 1998-05-13
  PRIOR APPLICATION NUMBER: JP 125505/1997
  PRIOR FILING DATE: 1997-05-15
  PRIOR APPLICATION NUMBER: JP 194445/1997
  PRIOR FILING DATE: 1997-07-18
  NUMBER OF SEQ ID NOS: 87
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 75
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-10-337-981-75
                         82.1%; Score 23; DB 12; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 7e-17;
```

```
0; Gaps
                                                                             0:
                                 0; Mismatches
                                                  0; Indels
           23; Conservative
 Matches
           6 GKSIQDLRRRFFLHHLIAEIHTA 28
Qу
              1111111111111111111111111111111111
           12 GKSIQDLRRRFFLHHLIAEIHTA 34
Db
RESULT 8
US-10-340-484-21
; Sequence 21, Application US/10340484
; Publication No. US20030171288A1
; GENERAL INFORMATION:
  APPLICANT: Stewart, Andrew F.
   TITLE OF INVENTION: Treatment of Bone Disorders with Skelatal Anabolic
   TITLE OF INVENTION: Drugs
   FILE REFERENCE: 25200-501
   CURRENT APPLICATION NUMBER: US/10/340,484
   CURRENT FILING DATE: 2003-01-10
   PRIOR APPLICATION NUMBER: 60/347,215
   PRIOR FILING DATE: 2002-01-10
   PRIOR APPLICATION NUMBER: 60/353,296
   PRIOR FILING DATE: 2002-02-01
   PRIOR APPLICATION NUMBER: 60/368,955
   PRIOR FILING DATE: 2002-03-28
   PRIOR APPLICATION NUMBER: 60/379,125
   PRIOR FILING DATE: 2002-05-08
   NUMBER OF SEQ ID NOS: 27
   SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 21
    LENGTH: 34
    TYPE: PRT
    ORGANISM: Felis catus
US-10-340-484-21
                          82.1%; Score 23; DB 12; Length 34;
  Ouery Match
  Best Local Similarity 100.0%; Pred. No. 7e-17;
                                                                              0:
  Matches 23; Conservative 0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
            6 GKSIODLRRRFFLHHLIAEIHTA 28
Qу
               11111111111
           12 GKSIQDLRRRFFLHHLIAEIHTA 34
Db
RESULT 9
US-10-097-079-2
; Sequence 2, Application US/10097079
; Publication No. US20020132973A1
    GENERAL INFORMATION:
         APPLICANT: Condon, Stephen M.
                    Morize, Isabelle
         TITLE OF INVENTION: PEPTIDE PARATHYROID HORMONE ANALOGS
         NUMBER OF SEQUENCES: 88
         CORRESPONDENCE ADDRESS:
              ADDRESSEE: Rhone-Poulenc Rorer Inc.
               STREET: 500 Arcola Road, Mailstop 3C43
              CITY: Collegeville
              STATE: PA
```

```
COUNTRY: USA
             ZIP: 19426
        COMPUTER READABLE FORM:
             MEDIUM TYPE: Floppy disk
             COMPUTER: IBM PC compatible
             OPERATING SYSTEM: PC-DOS/MS-DOS
             SOFTWARE: PatentIn Release #1.0, Version #1.30
        CURRENT APPLICATION DATA:
             APPLICATION NUMBER: US/10/097,079
             FILING DATE: 13-Mar-2002
             CLASSIFICATION: <Unknown>
        PRIOR APPLICATION DATA:
             APPLICATION NUMBER: 09/228,990
             FILING DATE: <Unknown>
             APPLICATION NUMBER: US 60/046,472
             FILING DATE: 14-MAY-1997
        ATTORNEY/AGENT INFORMATION:
             NAME: Martin Esq., Michael B.
             REGISTRATION NUMBER: 37,521
             REFERENCE/DOCKET NUMBER: A2678B-WO
        TELECOMMUNICATION INFORMATION:
             TELEPHONE: (610) 454-2793
             TELEFAX: (610) 454-3808
   INFORMATION FOR SEQ ID NO: 2:
        SEQUENCE CHARACTERISTICS:
             LENGTH: 34 amino acids
             TYPE: amino acid
             STRANDEDNESS: <Unknown>
              TOPOLOGY: No. US20020132973A1 Relevant
        MOLECULE TYPE: peptide
        FRAGMENT TYPE: N-terminal
        SEQUENCE DESCRIPTION: SEQ ID NO: 2:
US-10-097-079-2
                          82.1%; Score 23; DB 14; Length 34;
 Query Match
                         100.0%; Pred. No. 7e-17;
 Best Local Similarity
                                                   0; Indels
                                                                 0; Gaps
          23; Conservative 0; Mismatches
            6 GKSIQDLRRRFFLHHLIAEIHTA 28
Qу
              111111111111
           12 GKSIODLRRRFFLHHLIAEIHTA 34
Db
RESULT 10
US-10-182-018-75
; Sequence 75, Application US/10182018
; Publication No. US20030049211A1
; GENERAL INFORMATION:
  APPLICANT: CHUGAI SEIYAKU KABUSHIKI KAISHA
   TITLE OF INVENTION: THERAPEUTIC AND PREVENTIVE AGENTS FOR DENTAL DISEASES
  FILE REFERENCE: PH-1092-PCT
  CURRENT APPLICATION NUMBER: US/10/182,018
  CURRENT FILING DATE: 2002-07-24
   PRIOR APPLICATION NUMBER: JP 2000-83034
   PRIOR FILING DATE: 2000-01-25
  NUMBER OF SEQ ID NOS: 75
   SOFTWARE: PatentIn Ver. 2.0
```

```
; SEQ ID NO 75
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-10-182-018-75
                         82.1%; Score 23; DB 15; Length 34;
 Query Match
                         100.0%; Pred. No. 7e-17;
  Best Local Similarity
                                                                          0;
                                                               0; Gaps
           23; Conservative
                             0; Mismatches
                                                 0; Indels
 Matches
           6 GKSIODLRRRFFLHHLIAEIHTA 28
Qу
              12 GKSIQDLRRRFFLHHLIAEIHTA 34
Db
RESULT 11
US-10-169-003-75
; Sequence 75, Application US/10169003
  Publication No. US20030124119A1
: GENERAL INFORMATION:
   APPLICANT: CHUGAI SEIYAKU KABUSHIKI KAISHA
   TITLE OF INVENTION: Stabilized Antibody Composition and Pharmaceutical
Preparation for
   TITLE OF INVENTION: Injection
   FILE REFERENCE: PH-1093-PCT
   CURRENT APPLICATION NUMBER: US/10/169,003
   CURRENT FILING DATE: 2002-06-26
   PRIOR APPLICATION NUMBER: JP 11-375203
  PRIOR FILING DATE: 1999-12-28
  NUMBER OF SEQ ID NOS: 75
   SOFTWARE: PatentIn Ver. 2.0
 SEQ ID NO 75
    LENGTH: 34
    TYPE: PRT
    ORGANISM: Homo sapiens
US-10-169-003-75
                         82.1%; Score 23; DB 15; Length 34;
  Query Match
                         100.0%; Pred. No. 7e-17;
  Best Local Similarity
                                0; Mismatches 0;
                                                    Indels
                                                               0; Gaps
                                                                           0;
            23; Conservative
  Matches
            6 GKSIQDLRRRFFLHHLIAEIHTA 28
Qу
              12 GKSIQDLRRRFFLHHLIAEIHTA 34
D'n
RESULT 12
US-09-843-221A-66
; Sequence 66, Application US/09843221A
 Publication No. US20030039654A1
; GENERAL INFORMATION:
   APPLICANT: KOSTENUIK, PAUL
   APPLICANT: LIU, CHUAN-FA
   APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
   TITLE OF INVENTION: RELATED PROTEIN
```

```
FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 66
   LENGTH: 35
   TYPE: PRT
   ORGANISM: Artificial Sequence
   OTHER INFORMATION: modified human PTHrP
US-09-843-221A-66
                         82.1%; Score 23; DB 11; Length 35;
  Query Match
                         100.0%; Pred. No. 7.2e-17;
  Best Local Similarity
                                                                0; Gaps
                                                                            0;
          23; Conservative 0; Mismatches
                                                 0;
                                                     Indels
  Matches
            6 GKSIQDLRRRFFLHHLIAEIHTA 28
Qу
              13 GKSIQDLRRRFFLHHLIAEIHTA 35
Db
RESULT 13
US-09-843-221A-64
; Sequence 64, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
   APPLICANT: LIU, CHUAN-FA
   APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
   TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
   CURRENT FILING DATE: 2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
   PRIOR APPLICATION NUMBER: 60/214,860
   PRIOR FILING DATE: 2000-06-28
   PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
   NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
; SEQ ID NO 64
    LENGTH: 36
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: modified human PTHrP
US-09-843-221A-64
```

```
CC
         sperm DNA into a highly condensed, stable and inactive
CC
         complex.
CC
     -!- SUBCELLULAR LOCATION: Nuclear.
     -!- TISSUE SPECIFICITY: Testis.
CC
     -!- MASS SPECTROMETRY: MW=3941; METHOD=Electrospray.
CC
     GO; GO:0005718; C:nucleosome; NAS.
DR
     GO; GO:0005634; C:nucleus; NAS.
DR
     GO; GO:0003677; F:DNA binding activity; NAS.
DR
     GO; GO:0007001; P:chromosome organization and biogenesis (sen. . .; NAS.
DR
     GO; GO:0007076; P:mitotic chromosome condensation; NAS.
DR
     GO; GO:0006334; P:nucleosome assembly; NAS.
DR
     GO; GO:0007283; P:spermatogenesis; NAS.
DR
     Chromosomal protein; Nucleosome core; Spermatogenesis;
KW
     DNA-binding; DNA condensation; Nuclear protein.
KW
FT
                                  POLY-ARG.
     DOMAIN
                   2
                         15
                  17
FT
     DOMAIN
                         26
                                  POLY-ARG.
                30 AA; 3943 MW; 14F1BC7E4D277049 CRC64;
SO
     SEQUENCE
                          10.7%; Score 3; DB 1; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.5e+03;
             3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
           13 RRR 15
Qу
              111
Db
            2 RRR 4
RESULT 21
MMAL DERMI
     MMAL DERMI
                                   PRT:
                                           30 AA.
ID
                    STANDARD:
AC
     P16312;
DT
     01-AUG-1990 (Rel. 15, Created)
DT
     01-AUG-1990 (Rel. 15, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Major mite fecal allergen Der M 1 (EC 3.4.22.-) (Der M I) (Fragment).
GN
     DERM1.
OS
     Dermatophagoides microceras (House-dust mite).
OC
     Eukaryota; Metazoa; Arthropoda; Chelicerata; Arachnida; Acari;
OC
     Acariformes; Sarcoptiformes; Astigmata; Psoroptidia; Analgoidea;
OC
     Pyroglyphidae; Dermatophagoides.
OX
     NCBI TaxID=6955;
RN
RΡ
     SEQUENCE.
RX
     MEDLINE=88229138; PubMed=3372999;
RA
     Lind P., Hansen O.C., Horn N.;
RT
     "The binding of mouse hybridoma and human IqE antibodies to the major
RT
     fecal allergen, Der p I, of Dermatophagoides pteronyssinus. Relative
RT
     binding site location and species specificity studied by solid-phase
RT
     inhibition assays with radiolabeled antigen.";
RL
     J. Immunol. 140:4256-4262(1988).
CC
     -!- FUNCTION: THIS PROTEIN IS THE MAJOR ALLERGEN OF HOUSE DUST MITE,
CC
         IT IS A THIOL PROTEASE THAT HYDROLYZES PROTEINS, WITH A PREFERENCE
CC
         FOR PHE OR BASIC RESIDUES.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO PEPTIDASE FAMILY C1.
DR
     PIR; B27634; B27634.
     MEROPS; C01.073; -.
DR
```

```
DR
     InterPro; IPR000169; SHprot acsite.
DR
     PROSITE; PS00139; THIOL PROTEASE CYS; PARTIAL.
     PROSITE; PS00639; THIOL PROTEASE HIS; PARTIAL.
DR
     PROSITE; PS00640; THIOL PROTEASE ASN; PARTIAL.
DR
KW
     Hydrolase; Thiol protease; Allergen.
FT
     NON TER
                  30
                         30
                30 AA; 3314 MW; D60B742967194886 CRC64;
     SEQUENCE
SO
  Query Match
                          10.7%; Score 3; DB 1; Length 30;
                          100.0%; Pred. No. 5.5e+03;
  Best Local Similarity
                                0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
  Matches
             3; Conservative
Qу
           11 DLR 13
              111
           16 DLR 18
Db
RESULT 22
NUO2 SOLTU
     NUO2 SOLTU
                                    PRT;
                                           30 AA.
                    STANDARD;
ID
AC
     P80268;
     01-FEB-1994 (Rel. 28, Created)
DT
DT
     01-FEB-1996 (Rel. 33, Last sequence update)
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     NADH-ubiquinone oxidoreductase 18 kDa subunit (EC 1.6.5.3)
DE
DE
     (EC 1.6.99.3) (Complex I-18KD) (CI-18KD) (Fragment).
OS
     Solanum tuberosum (Potato).
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
OC
OC
     Asteridae; lamiids; Solanales; Solanaceae; Solanum.
OX
     NCBI_TaxID=4113;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Tuber;
RX
     MEDLINE=97077345; PubMed=8919912;
RA
     Jansch L., Kruft V., Schmitz U.K., Braun H.P.;
     "New insights into the composition, molecular mass and stoichiometry
RT
RT
     of the protein complexes of plant mitochondria.";
RL
     Plant J. 9:357-368(1996).
RN
RP
     SEQUENCE OF 1-22.
RC
     STRAIN=cv. Bintje; TISSUE=Tuber;
RX
     MEDLINE=94124587; PubMed=8294484;
RA
     Herz U., Schroeder W., Liddell A., Leaver C.J., Brennicke A.,
RA
     Grohmann L.;
RT
     "Purification of the NADH: ubiquinone oxidoreductase (complex I) of
RT
     the respiratory chain from the inner mitochondrial membrane of
RT
     Solanum tuberosum.";
RL
     J. Biol. Chem. 269:2263-2269(1994).
     -!- FUNCTION: TRANSFER OF ELECTRONS FROM NADH TO THE RESPIRATORY
CC
         CHAIN. THE IMMEDIATE ELECTRON ACCEPTOR FOR THE ENZYME IS BELIEVED
CC
CC
         TO BE UBIOUINONE.
CC
     -!- CATALYTIC ACTIVITY: NADH + ubiquinone = NAD(+) + ubiquinol.
CC
     -!- CATALYTIC ACTIVITY: NADH + acceptor = NAD(+) + reduced acceptor.
     -!- SUBUNIT: COMPLEX I IS COMPOSED OF ABOUT 30 DIFFERENT SUBUNITS.
CC
     -!- SUBCELLULAR LOCATION: MATRIX SIDE OF THE MITOCHONDRIAL INNER
CC
CC
         MEMBRANE
```

```
Oxidoreductase; NAD; Ubiquinone; Mitochondrion.
KW
FT
    NON TER
                  30
                         30
               30 AA; 3263 MW; 21AA88B3FAEDFE1D CRC64;
    SEQUENCE
SO
                          10.7%; Score 3; DB 1; Length 30;
  Query Match
                          100.0%; Pred. No. 5.5e+03;
  Best Local Similarity
                                                                             0;
                                                      Indels
                                                                     Gaps
                               0; Mismatches
                                                  0;
            3: Conservative
 Matches
           12 LRR 14
Qу
              24 LRR 26
Db
RESULT 23
PRT1 CLUPA
     PRT1 CLUPA
                    STANDARD;
                                   PRT:
                                           30 AA.
ID
     P02335;
AC
     21-JUL-1986 (Rel. 01, Created)
DT
     21-JUL-1986 (Rel. 01, Last sequence update)
DT
     15-DEC-1998 (Rel. 37, Last annotation update)
DT
     Protamine YII (Clupeine YII).
DE
     Clupea pallasii (Pacific herring), and
OS
     Clupea harengus (Atlantic herring).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopterygii; Neopterygii; Teleostei; Clupeomorpha; Clupeidae;
OC
OC
     Clupea.
OX
     NCBI TaxID=30724, 7950;
RN
     [1]
RΡ
     SEQUENCE.
     SPECIES=C.pallasii;
RC
     MEDLINE=73223106; PubMed=4664740;
RX
     Suzuki K., Ando T.;
RA
     "Studies on protamines. XVI. The complete amino acid sequence of
RT
     clupeine YII.";
RТ
     J. Biochem. 72:1419-1432(1972).
RL
RN
     [2]
RP
     SEQUENCE.
RC
     SPECIES=C.harengus;
     Chang W.J., Nukushina M., Ishii S., Nakahara C., Ando T.;
RA
     Submitted (AUG-1970) to the PIR data bank.
RL
     -!- FUNCTION: PROTAMINES SUBSTITUTE FOR HISTONES IN THE CHROMATIN OF
CC
         SPERM DURING THE HAPLOID PHASE OF SPERMATOGENESIS. THEY COMPACT
CC
         SPERM DNA INTO A HIGHLY CONDENSED, STABLE AND INACTIVE COMPLEX.
CC
CC
     -!- SUBCELLULAR LOCATION: Nuclear.
     -!- TISSUE SPECIFICITY: Testis.
CC
     PIR; A37575; CLHR2A.
DR
DR
     PIR; A38052; CLHRY2.
     Chromosomal protein; Nucleosome core; Spermatogenesis; DNA-binding;
KW
     Testis; DNA condensation; Nuclear protein.
KW
     SEQUENCE 30 AA; 4049 MW; 7F9BBB80F3ADA566 CRC64;
SQ
                           10.7%; Score 3; DB 1; Length 30;
  Query Match
                          100.0%; Pred. No. 5.5e+03;
  Best Local Similarity
             3; Conservative 0; Mismatches
                                                    0;
                                                       Indels
                                                                  0; Gaps
                                                                              0;
  Matches
```

```
RESULT 24
PRT2 ONCMY
                  STANDARD:
                                 PRT;
                                        30 AA.
    PRT2 ONCMY
AC
    P02331;
    21-JUL-1986 (Rel. 01, Created)
DT
    21-JUL-1986 (Rel. 01, Last sequence update)
DТ
    15-JUL-1999 (Rel. 38, Last annotation update)
DT
    Protamine CIII (Protamine PPC 6B).
DE
    Oncorhynchus mykiss (Rainbow trout) (Salmo gairdneri).
OS
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Actinopterygii; Neopterygii; Teleostei; Euteleostei;
OC
    Protacanthopterygii; Salmoniformes; Salmonidae; Oncorhynchus.
OC
OX
    NCBI TaxID=8022;
RN
    [1]
    SEQUENCE FROM N.A. (CLONE CIII).
RΡ
    MEDLINE=81198983; PubMed=6262730;
RX
    Gedamu L., Wosnick M.A., Connor W., Watson D.C., Dixon G.H.,
RA
    Iatrou K.;
RA
    "Molecular analysis of the protamine multi-gene family in rainbow
RT
    trout testis.";
RT
RL
    Nucleic Acids Res. 9:1463-1482(1981).
RN
    SEQUENCE FROM N.A. (CLONE PPC 6B).
RP
    MEDLINE=82030654; PubMed=7287661;
RX
    Sakai M., Fujii-Kuriyama Y., Saito T., Muramatsu M.;
RA
    "Closely related mRNA sequences of protamines in rainbow trout
RT
RT
    testis.";
RL
    J. Biochem. 89:1863-1868(1981).
    -!- FUNCTION: PROTAMINES SUBSTITUTE FOR HISTONES IN THE CHROMATIN OF
CC
CC
        SPERM DURING THE HAPLOID PHASE OF SPERMATOGENESIS. THEY COMPACT
CC
        SPERM DNA INTO A HIGHLY CONDENSED, STABLE AND INACTIVE COMPLEX.
CC
    -!- SUBCELLULAR LOCATION: Nuclear.
CC
     -!- TISSUE SPECIFICITY: Testis.
     -!- MISCELLANEOUS: THE PROTAMINE CIII/PPC 6B SEQUENCE IS SHOWN.
CC
     -----
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
CC
CC
    use by non-profit institutions as long as its content is in no way
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
CC
     or send an email to license@isb-sib.ch).
     CC
     EMBL; K03052; -; NOT ANNOTATED_CDS.
DR
DR
     PIR; A02673; IRTRC3.
     Chromosomal protein; Nucleosome core; Spermatogenesis; DNA-binding;
KW
KW
     Testis; DNA condensation; Nuclear protein.
FT
     INIT MET
                 0
                        0
                 10
                        10
                                V -> I (IN 18% OF THE CIII).
FT
     VARIANT
                     10
                                V \rightarrow P (IN 18% OF THE CIII).
                 10
FT
     VARIANT
     SEQUENCE 30 AA; 3991 MW; 0EBCBF9DC788EFA7 CRC64;
SO
                         10.7%; Score 3; DB 1; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.5e+03;
```

```
0:
                                                                      Gaps
                                                    0; Indels
             3; Conservative
                               0; Mismatches
                                                                  0;
 Matches
           13 RRR 15
Qу
              2 RRR 4
Db
RESULT 25
PRT3 ONCMY
     PRT3 ONCMY
                                   PRT;
                                            30 AA.
                    STANDARD;
ΙD
     P02332;
AC
     21-JUL-1986 (Rel. 01, Created)
DT
     21-JUL-1986 (Rel. 01, Last sequence update)
\mathsf{D}\mathbf{T}
     01-APR-1993 (Rel. 25, Last annotation update)
DT
     Protamine 1B.
DE
     Oncorhynchus mykiss (Rainbow trout) (Salmo gairdneri).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopterygii; Neopterygii; Teleostei; Euteleostei;
OC
     Protacanthopterygii; Salmoniformes; Salmonidae; Oncorhynchus.
OC
OX
     NCBI TaxID=8022;
RN
     [1]
     SEQUENCE FROM N.A. (CLONES PRTP178 AND PRTP94).
RP
     MEDLINE=81198983; PubMed=6262730;
RX
     Gedamu L., Wosnick M.A., Connor W., Watson D.C., Dixon G.H.,
RA
     Iatrou K.;
RA
     "Molecular analysis of the protamine multi-gene family in rainbow
RT
     trout testis.";
RT
     Nucleic Acids Res. 9:1463-1482(1981).
RL
RN
     [2]
     SEQUENCE.
RΡ
     MEDLINE=86274711; PubMed=3755398;
RX
     McKay D.J., Renaux B.S., Dixon G.H.;
RA
     "Rainbow trout protamines. Amino acid sequences of six distinct
RT
     proteins from a single testis.";
RT
     Eur. J. Biochem. 158:361-366(1986).
RL
     -!- FUNCTION: PROTAMINES SUBSTITUTE FOR HISTONES IN THE CHROMATIN OF
CC
         SPERM DURING THE HAPLOID PHASE OF SPERMATOGENESIS. THEY COMPACT
CC
         SPERM DNA INTO A HIGHLY CONDENSED, STABLE AND INACTIVE COMPLEX.
CC
     -!- SUBCELLULAR LOCATION: Nuclear.
CC
      -!- TISSUE SPECIFICITY: Testis.
CC
      -!- MISCELLANEOUS: BOTH OF THESE SEQUENCES DIFFER FROM ONE OF THE
CC
         PROTAMINE CIII MINOR COMPONENTS IN HAVING 9-ARG INSTEAD OF 9-PRO.
CC
DR
     PIR; A93723; IRTR78.
     Chromosomal protein; Nucleosome core; Spermatogenesis; DNA-binding;
KW
     Testis; DNA condensation; Nuclear protein.
KW
     INIT MET
                    0
                           0
FT
                 30 AA; 4064 MW;
                                   OEBCBF9DD1E78947 CRC64;
     SEQUENCE
SQ
                           10.7%; Score 3; DB 1; Length 30;
  Query Match
                           100.0%; Pred. No. 5.5e+03;
  Best Local Similarity
              3; Conservative 0; Mismatches 0; Indels
                                                                               0;
                                                                   0; Gaps
  Matches
            13 RRR 15
Qу
               2 RRR 4
Db
```

```
PRT4 ONCMY
    PRT4 ONCMY
                   STANDARD;
                                  PRT:
                                          30 AA.
ID
AC
     P02333;
     21-JUL-1986 (Rel. 01, Created)
DT
     21-JUL-1986 (Rel. 01, Last sequence update)
DT
DT
     15-DEC-1998 (Rel. 37, Last annotation update)
DΕ
     Protamine PTP4.
     Oncorhynchus mykiss (Rainbow trout) (Salmo gairdneri).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopterygii; Neopterygii; Teleostei; Euteleostei;
OC
     Protacanthopterygii; Salmoniformes; Salmonidae; Oncorhynchus.
OC
OX
     NCBI TaxID=8022;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RX
     MEDLINE=79199790; PubMed=450133;
     Jenkins J.R.;
RA
     "Sequence divergence of rainbow trout protamine mRNAs; comparison of
RT
     coding and non-coding nucleotide sequences in three protamine cDNA
RT
     plasmids.";
RT
     Nature 279:809-811(1979).
RL
     -!- FUNCTION: PROTAMINES SUBSTITUTE FOR HISTONES IN THE CHROMATIN OF
CC
         SPERM DURING THE HAPLOID PHASE OF SPERMATOGENESIS. THEY COMPACT
CC
         SPERM DNA INTO A HIGHLY CONDENSED, STABLE AND INACTIVE COMPLEX.
CC
CC
     -!- SUBCELLULAR LOCATION: Nuclear.
CC
     -!- TISSUE SPECIFICITY: Testis.
CC
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
     DR
     EMBL; X01204; CAA25623.1; -.
DR
     PIR; A02675; IRTR4.
KW
     Chromosomal protein; Nucleosome core; Spermatogenesis; DNA-binding;
KW
     Testis; DNA condensation; Nuclear protein.
FT
     INIT MET
                 0
     SEQUENCE
               30 AA; 4064 MW; 0EBCBF9DCD979537 CRC64;
SO
  Query Match
                         10.7%; Score 3; DB 1; Length 30;
  Best Local Similarity 100.0%; Pred. No. 5.5e+03;
           3; Conservative 0; Mismatches 0; Indels 0; Gaps
  Matches
Qу
          13 RRR 15
           2 RRR 4
Db
RESULT 27
PRTB ONCMY
     PRTB ONCMY
                   STANDARD;
                                  PRT; 30 AA.
ID
AC
     P12819;
DT
     01-OCT-1989 (Rel. 12, Created)
     01-OCT-1989 (Rel. 12, Last sequence update)
DT
```

RESULT 26

```
15-JUL-1999 (Rel. 38, Last annotation update)
DT
     Protamine 1A (Protamine PRTP43/PPC 2E).
DE
     Oncorhynchus mykiss (Rainbow trout) (Salmo gairdneri).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Actinopterygii; Neopterygii; Teleostei; Euteleostei;
OC
     Protacanthopterygii; Salmoniformes; Salmonidae; Oncorhynchus.
OC
     NCBI TaxID=8022;
OX
RN
     [1]
     SEQUENCE.
RΡ
     MEDLINE=86274711; PubMed=3755398;
RX
     McKay D.J., Renaux B.S., Dixon G.H.;
RA
     "Rainbow trout protamines. Amino acid sequences of six distinct
RT
     proteins from a single testis.";
RT
     Eur. J. Biochem. 158:361-366(1986).
RL
RN
     [2]
     SEQUENCE FROM N.A. (CLONE PRTP43).
RP
     MEDLINE=81198983; PubMed=6262730;
RX
     Gedamu L., Wosnick M.A., Connor W., Watson D.C., Dixon G.H.,
RA
RA
     Iatrou K.;
     "Molecular analysis of the protamine multi-gene family in rainbow
RT
     trout testis.";
RT
     Nucleic Acids Res. 9:1463-1482(1981).
RL
RN
     SEQUENCE FROM N.A. (CLONE PPC 2E).
RΡ
     MEDLINE=82030654; PubMed=7287661;
RX
     Sakai M., Fujii-Kuriyama Y., Saito T., Muramatsu M.;
RA
     "Closely related mRNA sequences of protamines in rainbow trout
RT
RT
     testis.";
     J. Biochem. 89:1863-1868(1981).
RL
     -!- FUNCTION: PROTAMINES SUBSTITUTE FOR HISTONES IN THE CHROMATIN OF
CC
        SPERM DURING THE HAPLOID PHASE OF SPERMATOGENESIS. THEY COMPACT
CC
         SPERM DNA INTO A HIGHLY CONDENSED, STABLE AND INACTIVE COMPLEX.
CC
     -!- SUBCELLULAR LOCATION: Nuclear.
CC
     -!- TISSUE SPECIFICITY: Testis.
CC
     ______
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
     ______
CC
DR
     EMBL; K03052; AAA49607.1; -.
DR
     EMBL; K03051; AAA49606.1; -.
DR
     PIR; B02673; IRTRC2.
DR
     PIR; I51349; I51349.
     Chromosomal protein; Nucleosome core; Spermatogenesis; DNA-binding;
KW
     Testis; DNA condensation; Nuclear protein.
KW
FT
     INIT MET
                   0
                         0
                30 AA; 4050 MW; 0EBCBF9DC78B5947 CRC64;
     SEQUENCE
SQ
                         10.7%; Score 3; DB 1; Length 30;
  Query Match
                         100.0%; Pred. No. 5.5e+03;
  Best Local Similarity
             3; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
```

```
|||
2 RRR 4
```

```
Db
```

```
RESULT 28
PSAM ODOSI
ID
    PSAM ODOSI
                  STANDARD;
                                PRT;
                                       30 AA.
AC
    P49487;
    01-FEB-1996 (Rel. 33, Created)
DT
DT
    01-FEB-1996 (Rel. 33, Last sequence update)
DT
    01-OCT-1996 (Rel. 34, Last annotation update)
DE
    Photosystem I reaction centre subunit XII (PSI-M).
GN
    PSAM
OS
    Odontella sinensis (Marine centric diatom).
OG
    Chloroplast.
OC
    Eukaryota; stramenopiles; Bacillariophyta; Coscinodiscophyceae;
    Biddulphiophycidae; Eupodiscales; Eupodiscaceae; Odontella.
OC
ΟX
    NCBI_TaxID=2839;
RN
    [1]
RP
    SEQUENCE FROM N.A.
RA
    Kowallik K.V., Stoebe B., Schaffran I., Kroth-Pancic P., Freier U.;
RT
    "The chloroplast genome of a chlorophyll a+c-containing alga,
RT
    Odontella sinensis.";
    Plant Mol. Biol. Rep. 13:336-342(1995).
RL
CC
    -!- SIMILARITY: BELONGS TO THE PSAM FAMILY.
CC
    _____
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
    modified and this statement is not removed. Usage by and for commercial
CC
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
    or send an email to license@isb-sib.ch).
CC
    ______
CC
DR
    EMBL; Z67753; CAA91676.1; -.
DR
    PIR; S78303; S78303.
KW
    Photosystem I; Photosynthesis; Chloroplast.
SQ
    SEQUENCE 30 AA; 3329 MW; 73FDEB91E4BF634F CRC64;
  Query Match
                        10.7%; Score 3; DB 1; Length 30;
 Best Local Similarity 100.0%; Pred. No. 5.5e+03;
         3; Conservative 0; Mismatches 0; Indels
 Matches
                                                            0; Gaps
          21 LIA 23
Qу
             111
          12 LIA 14
Dh
RESULT 29
PSAM PINTH
    PSAM PINTH
ID
                  STANDARD;
                                PRT;
                                        30 AA.
AC
    P41601;
    01-NOV-1995 (Rel. 32, Created)
DT
    01-NOV-1995 (Rel. 32, Last sequence update)
DT
    01-OCT-1996 (Rel. 34, Last annotation update)
DT
DΕ
    Photosystem I reaction centre subunit XII (PSI-M).
GN
    PSAM.
```

```
Pinus thunbergii (Green pine) (Japanese black pine).
OS
    Chloroplast.
OG
    Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
    Spermatophyta; Coniferopsida; Coniferales; Pinaceae; Pinus.
OC
    NCBI TaxID=3350;
OX
     [1]
RN
    SEQUENCE FROM N.A.
RP
    MEDLINE=95024047; PubMed=7937893;
RX
    Wakasugi T., Tsudzuki J., Ito S., Nakashima K., Tsudzuki T.,
ŔĀ
RA
     "Loss of all ndh genes as determined by sequencing the entire
RT
    chloroplast genome of the black pine Pinus thunbergii.";
RT
     Proc. Natl. Acad. Sci. U.S.A. 91:9794-9798(1994).
RL
     -!- SIMILARITY: BELONGS TO THE PSAM FAMILY.
CC
     _____
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
     ______
CC
     EMBL; D17510; BAA04383.1; -.
DR
     EMBL; D17510; BAA04316.1; -.
DR
     PIR; T07505; T07505.
DR
     Photosystem I; Photosynthesis; Chloroplast.
KW
     SEQUENCE 30 AA; 3321 MW; A150441AB5D5AF7C CRC64;
SO
                        10.7%; Score 3; DB 1; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.5e+03;
           3; Conservative 0; Mismatches 0; Indels
                                                          0; Gaps
          21 LIA 23
Qy
             111
           7 LIA 9
Db
RESULT 30
PSAM PORPU
                              PRT:
                                        30 AA.
                   STANDARD;
     PSAM PORPU
TD
AC
     P51395;
     01-OCT-1996 (Rel. 34, Created)
DT
     01-OCT-1996 (Rel. 34, Last sequence update)
DT
     01-OCT-1996 (Rel. 34, Last annotation update)
DT
     Photosystem I reaction centre subunit XII (PSI-M).
DE
GN
     PSAM.
     Porphyra purpurea.
OS
     Chloroplast.
OG
     Eukaryota; Rhodophyta; Bangiophyceae; Bangiales; Bangiaceae; Porphyra.
OC
OX
     NCBI TaxID=2787;
RN
     [1]
     SEQUENCE FROM N.A.
RP
     STRAIN=Avonport;
RC
     Reith M.E., Munholland J.;
RA
     "Complete nucleotide sequence of the Porphyra purpurea chloroplast
RT
RΤ
     genome.";
```

```
Plant Mol. Biol. Rep. 13:333-335(1995).
\mathtt{RL}
    -!- SIMILARITY: BELONGS TO THE PSAM FAMILY.
CC
    ______
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
CC
    modified and this statement is not removed. Usage by and for commercial
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
    or send an email to license@isb-sib.ch).
CC
    ______
CC
    EMBL; U38804; AAC08281.1; -.
DR
    PIR; S73316; S73316.
DR
    Photosystem I; Photosynthesis; Chloroplast.
KW
    SEQUENCE 30 AA; 3338 MW; 8D1930479D8A5527 CRC64;
SO
                        10.7%; Score 3; DB 1; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.5e+03;
                                             0; Indels
                                                          0; Gaps
                                                                       0;
  Matches 3; Conservative 0; Mismatches
           5 LGK 7
QУ
             24 LGK 26
Db
RESULT 31
RL18 HALCU
                  STANDARD; PRT; 30 AA.
    RL18 HALCU
ID
AC
     P05970;
     01-NOV-1988 (Rel. 09, Created)
DT
     01-NOV-1988 (Rel. 09, Last sequence update)
DT
     30-MAY-2000 (Rel. 39, Last annotation update)
DT
     50S ribosomal protein L18P (HCUL18) (HL13) (Fragment).
DE
    RPL18P.
GN
     Halobacterium cutirubrum.
OS
     Archaea; Euryarchaeota; Halobacteria; Halobacteriales;
OC.
     Halobacteriaceae; Halobacterium.
OC
    NCBI TaxID=2242;
OX
RN
     [1]
     SEOUENCE.
RP
     MEDLINE=79045279; PubMed=152199;
RX
     Smith N., Matheson A.T., Yaguchi M., Willick G., Nazar R.N.;
RA
     "The 5-S RNA-protein complex from an extreme halophile,
RT
     Halobacterium cutirubrum. Purification and characterization.";
RT
     Eur. J. Biochem. 89:501-509(1978).
RL
     -!- SIMILARITY: BELONGS TO THE L18P FAMILY OF RIBOSOMAL PROTEINS.
CC
DR
     PIR; S07217; S07217.
     Ribosomal protein.
KW
     NON TER
               30
                       30
FT
     SEQUENCE
               30 AA; 3624 MW; 3A50079B1569CB74 CRC64;
SO
                        10.7%; Score 3; DB 1; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.5e+03;
  Matches 3; Conservative 0; Mismatches 0; Indels 0; Gaps
```

```
RESULT 32
COX4 NEUCR
                  STANDARD;
                                 PRT;
                                       31 AA.
    COX4 NEUCR
ΙD
AC
    P06809;
    01-JAN-1988 (Rel. 06, Created)
DT
    01-JAN-1988 (Rel. 06, Last sequence update)
DT
    15-SEP-2003 (Rel. 42, Last annotation update)
DT
    Cytochrome c oxidase polypeptide IV, mitochondrial precursor
DE
     (EC 1.9.3.1) (Fragment).
DΕ
    COX-4.
GN
    Neurospora crassa.
OS
     Eukaryota; Fungi; Ascomycota; Pezizomycotina; Sordariomycetes;
OC
     Sordariomycetidae; Sordariales; Sordariaceae; Neurospora.
OC
     NCBI TaxID=5141;
OX
RN
     [1]
     SEQUENCE FROM N.A.
RP
     MEDLINE=86085927; PubMed=3001085;
RX
     Sachs M.S., David M., Werner S., Rajbhandary U.L.;
RA
     "Nuclear genes for cytochrome c oxidase subunits of Neurospora
RТ
     crassa. Isolation and characterization of cDNA clones for subunits
RT
     IV, V, VI, and possibly VII.";
RT
     J. Biol. Chem. 261:869-873(1986).
RL
     -!- CATALYTIC ACTIVITY: 4 ferrocytochrome c + O(2) = 4 ferricytochrome
CC
CC
        c + 2 H(2)0.
     -!- SUBCELLULAR LOCATION: Mitochondrial inner membrane.
CC
     -!- SIMILARITY: BELONGS TO THE CYTOCHROME C OXIDASE VB FAMILY.
CC
     _____
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
CC
     EMBL; M12116; AAA33574.1; -.
DR
     PIR; A25629; A25629.
DR
     Oxidoreductase; Mitochondrion; Inner membrane; Transit peptide.
KW
               1
                        1
FT
     NON TER
                                MITOCHONDRION.
                       16
FT
     TRANSIT
                 <1
                                CYTOCHROME C OXIDASE POLYPEPTIDE IV.
                 17
                       >31
FT
     CHAIN
     NON TER
                31
                       31
FT
     SEQUENCE 31 AA; 3397 MW; 069F5D5510300362 CRC64;
SQ
                         10.7%; Score 3; DB 1; Length 31;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.6e+03;
            3; Conservative 0; Mismatches 0; Indels 0; Gaps
  Matches
           12 LRR 14
Qу
             5 LRR 7
Db
```

```
DEJP DROME
                                    PRT;
                                            31 AA.
     DEJP DROME
                    STANDARD;
ID
     P81160;
AC
     15-JUL-1998 (Rel. 36, Created)
DT
     15-JUL-1998 (Rel. 36, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Ductus ejaculatorius peptide 99B.
DE
     DUP99B.
GN
     Drosophila melanogaster (Fruit fly).
OS
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha;
OC
     Ephydroidea; Drosophilidae; Drosophila.
OC
     NCBI TaxID=7227;
OX
RN
     [1]
     SEQUENCE OF 1-24 FROM N.A., AND SEQUENCE OF 9-31.
RP
     STRAIN=Oregon-R; TISSUE=Ductus ejaculatorius;
RC
     MEDLINE=21835775; PubMed=11846801;
RX
     Saudan P., Hauck K., Soller M., Choffat Y., Ottiger M., Sporri M.,
RA
     Ding Z., Hess D., Gehrig P.M., Klauser S., Hunziker P., Kubli E.;
RA
     "Ductus ejaculatorius peptide 99B (DUP99B), a novel Drosophila
RT
     melanogaster sex-peptide pheromone.";
RT
     Eur. J. Biochem. 269:989-997(2002).
RL
     -!- FUNCTION: INDUCES POST-MATING RESPONSES.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: DUCTUS EJACULATORIUS.
CC
     -!- SIMILARITY: TO PARAGONIAL PEPTIDE B.
CC
     FlyBase; FBgn0024381; Dup99B.
DR
     GO; GO:0045434; P:negative regulation of female receptivity, . . .; IMP.
DR
     GO; GO:0046662; P:regulation of oviposition; NAS.
DR
     Behavior; Glycoprotein; Pyrrolidone carboxylic acid.
KW
                          1
                                   PYRROLIDONE CARBOXYLIC ACID.
                   1
     MOD RES
FT
                   19
                          31
     DISULFID
FT
                                   N-LINKED (GLCNAC. . .).
     CARBOHYD
                           4
FT
                 31 AA; 3766 MW; B90A9B99C120EF49 CRC64;
     SEQUENCE
SQ
                           10.7%; Score 3; DB 1; Length 31;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.6e+03;
                                                                   0; Gaps
                                                                               0;
             3; Conservative 0; Mismatches 0; Indels
  Matches
             4 NLG 6
Qу
               22 NLG 24
Db
RESULT 34
 GP37 BPSP1
                                            31 AA.
      GP37 BPSP1
                     STANDARD;
                                    PRT;
 ID
      048393;
AC
      15-DEC-1998 (Rel. 37, Created)
DT
      15-DEC-1998 (Rel. 37, Last sequence update)
 DT
      15-DEC-1998 (Rel. 37, Last annotation update)
 DT
      Putative gene 37 protein.
 DE
 GN
 OS
      Bacteriophage SP01.
      Viruses; dsDNA viruses, no RNA stage; Caudovirales; Myoviridae;
 OC
      SPO1-like viruses.
 OC
      NCBI TaxID=10685;
 OX
```

```
RN
    [1]
    SEQUENCE FROM N.A.
RP
    MEDLINE=98327781; PubMed=9657951;
RX
    Stewart C.R., Gaslightwala I., Hinata K., Krolikowski K.A.,
RA
    Needleman D.S., Peng A.S.-Y., Peterman M.A., Tobias A., Wei P.;
RA
    "Genes and regulatory sites of the 'host-takeover module' in the
RT
    terminal redundancy of Bacillus subtilis bacteriophage SPO1.";
RT
    Virology 246:329-340(1998).
RL
    -----
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
CC
    modified and this statement is not removed. Usage by and for commercial
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
    or send an email to license@isb-sib.ch).
CC
    -----
CC
    EMBL; AF031901; AAC29006.1; -.
DR
KW
    Hypothetical protein.
     SEQUENCE 31 AA; 3715 MW; 5ECBA628AF320670 CRC64;
SO
                        10.7%; Score 3; DB 1; Length 31;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.6e+03;
           3; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                        0;
          13 RRR 15
QУ
             Db
          29 RRR 31
RESULT 35
NAP4 HUMAN
                                 PRT:
ID
     NAP4 HUMAN
                   STANDARD;
AC
     P19877;
DT
     01-FEB-1991 (Rel. 17, Created)
     01-FEB-1991 (Rel. 17, Last sequence update)
DT
     16-OCT-2001 (Rel. 40, Last annotation update)
DT
     Neutrophil-activating protein 4 (NAP-4) (Fragment).
DE
OS
     Homo sapiens (Human).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OC
OX
     NCBI TaxID=9606;
RN
     [1]
     SEQUENCE.
RP
RC
     TISSUE=Platelet;
     MEDLINE=91054515; PubMed=2241978;
RX
     Schroeder J.-M., Sticherling M., Persoon N.L.M., Christophers E.;
RA
     "Identification of a novel platelet-derived neutrophil-chemotactic
RT
     polypeptide with structural homology to platelet-factor 4.";
RT
     Biochem. Biophys. Res. Commun. 172:898-904(1990).
RL
     -!- FUNCTION: INDUCES CHEMOTAXIS OF NEUTROPHILS.
CC
     -!- SIMILARITY: BELONGS TO THE INTERCRINE FAMILY (SMALL CYTOKINE
CC
         C-C) (CHEMOKINE CC). BUT LACK THE C-X-C OR C-C MOTIFS.
CC
DR
     PIR; A36162; A36162.
DR
     HSSP; P02776; 1RHP.
     GO; GO:0008009; F:chemokine activity; TAS.
DR
     GO; GO:0006935; P:chemotaxis; TAS.
DR
```

```
InterPro; IPR000827; CC chemkine_sml.
DR
    PROSITE; PS00472; SMALL CYTOKINES_CC; PARTIAL.
DR
    Chemotaxis; Growth factor.
KW
FΤ
    NON TER
              31
    SEQUENCE 31 AA; 3447 MW; AD910FB894EC1760 CRC64;
SQ
                        10.7%; Score 3; DB 1; Length 31;
 Best Local Similarity 100.0%; Pred. No. 5.6e+03;
          3; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                         0;
 Matches
          10 QDL 12
Qу
             Db
           6 QDL 8
RESULT 36
PETL ODOSI
                                 PRT;
                                        31 AA.
   PETL ODOSI
                   STANDARD;
ID
    P49524;
AC
DΤ
    01-FEB-1996 (Rel. 33, Created)
    01-FEB-1996 (Rel. 33, Last sequence update)
DT
    28-FEB-2003 (Rel. 41, Last annotation update)
DT
    Cytochrome b6-f complex subunit VI (Cytochrome b6f complex subunit
DE
DΕ
    petL).
GN
    PETL.
     Odontella sinensis (Marine centric diatom).
OS
OG
     Chloroplast.
     Eukaryota; stramenopiles; Bacillariophyta; Coscinodiscophyceae;
OC
     Biddulphiophycidae; Eupodiscales; Eupodiscaceae; Odontella.
OC
     NCBI TaxID=2839;
OX
RN
     [1]
     SEQUENCE FROM N.A.
RP
     Kowallik K.V., Stoebe B., Schaffran I., Kroth-Pancic P., Freier U.;
RA
     "The chloroplast genome of a chlorophyll a+c-containing alga,
RT
     Odontella sinensis.";
RT
     Plant Mol. Biol. Rep. 13:336-342(1995).
RL
     -!- FUNCTION: THE CYTOCHROME B6-F COMPLEX FUNCTIONS IN THE LINEAR
CC
         CROSS-MEMBRANE TRANSPORT OF ELECTRONS BETWEEN PHOTOSYSTEM II AND
CC
         I, AS WELL AS IN CYCLIC ELECTRON FLOW AROUND PHOTOSYSTEM I. PETL
CC
         IS IMPORTANT FOR PHOTOAUTOTROPHIC GROWTH AS WELL AS FOR ELECTRON
CC
         TRANSFER EFFICIENCY AND STABILITY OF THE CYTOCHROME B6-F COMPLEX.
CC
     -!- SUBCELLULAR LOCATION: Thylakoid membrane-associated.
CC
     -!- SIMILARITY: Belongs to the petL family.
CC
     _____
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
     _____
CC
     EMBL; Z67753; CAA91708.1; -.
DR
     PIR; S78335; S78335.
DR
     HAMAP; MF 00433; -; 1.
DR
     Pfam; PF05115; PetL; 1.
DR
     Electron transport; Chloroplast; Respiratory chain; Transmembrane;
KW
```

```
KW
     Thylakoid.
                                   POTENTIAL.
                   4
                         24
     TRANSMEM
FT
                31 AA; 3459 MW; AD65232A8B27853E CRC64;
     SEQUENCE
SO
                          10.7%; Score 3; DB 1; Length 31;
  Query Match
                          100.0%; Pred. No. 5.6e+03;
  Best Local Similarity
                                                                               0;
             3; Conservative 0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
            7 KSI 9
Qу
              \|\cdot\|
           26 KSI 28
Db
RESULT 37
PRT2 CLUPA
     PRT2 CLUPA
                    STANDARD;
                                    PRT;
                                            31 AA.
ID
     P02336;
AC
     21-JUL-1986 (Rel. 01, Created)
DT
     21-JUL-1986 (Rel. 01, Last sequence update)
DT
     15-DEC-1998 (Rel. 37, Last annotation update)
DT
     Protamine Z (Clupeine Z).
DE
     Clupea pallasii (Pacific herring), and
OS
     Clupea harengus (Atlantic herring).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopterygii; Neopterygii; Teleostei; Clupeomorpha; Clupeidae;
OC
OC
     Clupea.
     NCBI TaxID=30724, 7950;
OX
RN
     [1]
RP
     SEQUENCE.
     SPECIES=C.pallasii;
RC
     MEDLINE=71157437; PubMed=5551645;
RX
      Iwai K., Nakahara C., Ando T.;
RA
      "Studies on protamines. XV. The complete amino acid sequence of the Z
RT
      component of clupeine. Application of N leads to O acyl rearrangement
RT
     and selective hydrolysis in sequence determination.";
RT
      J. Biochem. 69:493-509(1971).
RL
RN
      [2]
      SEQUENCE.
RP
      SPECIES=C.harengus;
RC
      Chang W.J., Nukushina M., Ishii S., Nakahara C., Ando T.;
RA
      Submitted (AUG-1970) to the PIR data bank.
RL
RN
      X-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS).
RΡ
      MEDLINE=92126280; PubMed=1772633;
RX
      Balschmidt P., Hansen F.B., Dodson E., Dodson G., Korber F.;
 RA
      "Structure of porcine insulin cocrystallized with clupeine Z.";
 RT
      Acta Crystallogr. B 47:975-986(1991).
 RL
      -!- FUNCTION: PROTAMINES SUBSTITUTE FOR HISTONES IN THE CHROMATIN OF
 CC
          SPERM DURING THE HAPLOID PHASE OF SPERMATOGENESIS. THEY COMPACT
 CC
          SPERM DNA INTO A HIGHLY CONDENSED, STABLE AND INACTIVE COMPLEX.
 CC
      -!- SUBCELLULAR LOCATION: Nuclear.
 CC
      -!- TISSUE SPECIFICITY: Testis.
 CC
      -!- MISCELLANEOUS: CLUPEINE Z IS PROBABLY THE RESULT OF A CROSSOVER
 CC
          BETWEEN THE GENES FOR CLUPEINES YI AND YII.
 CC
      PIR; A37576; CLHRZA.
 DR
      PIR; A38053; CLHRZ.
 DR
      PDB; 7INS; 31-JAN-94.
 DR
```

```
Chromosomal protein; Nucleosome core; Spermatogenesis; DNA-binding;
KW
    Testis; DNA condensation; Nuclear protein; 3D-structure.
KW
               31 AA; 4165 MW; 092CCBF7F3AFC050 CRC64;
    SEOUENCE
SO
                          10.7%; Score 3; DB 1; Length 31;
  Query Match
                         100.0%; Pred. No. 5.6e+03;
 Best Local Similarity
                                                                             0;
            3; Conservative 0; Mismatches
                                                 0; Indels
                                                                     Gaps
          13 RRR 15
Qу
              2 RRR 4
Db
RESULT 38
PRT3 CLUPA
     PRT3 CLUPA
                    STANDARD;
                                   PRT;
                                           31 AA.
ID
     P02337;
AC
     21-JUL-1986 (Rel. 01, Created)
DT
     21-JUL-1986 (Rel. 01, Last sequence update)
DT
     15-DEC-1998 (Rel. 37, Last annotation update)
DT
     Protamine YI (Clupeine YI).
DE
     Clupea pallasii (Pacific herring), and
OS
     Clupea harengus (Atlantic herring).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopterygii; Neopterygii; Teleostei; Clupeomorpha; Clupeidae;
OC
OC
     Clupea.
OX
     NCBI TaxID=30724, 7950;
RN
     [1]
     SEQUENCE.
RP
RC
     SPECIES=C.pallasii;
     MEDLINE=73223107; PubMed=4664741;
RX
     Suzuki K., Ando T.;
RA
     "Studies on protamines. XVII. The complete amino acid sequence of
RT
     clupeine YI.";
RТ
     J. Biochem. 72:1433-1446(1972).
RL
RN
     [2]
RP
     SEQUENCE.
     SPECIES=C.harengus;
RC
     Chang W.J., Nukushina M., Ishii S., Nakahara C., Ando T.;
RA
     Submitted (AUG-1970) to the PIR data bank.
RL
     -!- FUNCTION: PROTAMINES SUBSTITUTE FOR HISTONES IN THE CHROMATIN OF
CC
         SPERM DURING THE HAPLOID PHASE OF SPERMATOGENESIS. THEY COMPACT
CC
         SPERM DNA INTO A HIGHLY CONDENSED, STABLE AND INACTIVE COMPLEX.
CC
CC
     -!- SUBCELLULAR LOCATION: Nuclear.
     -!- TISSUE SPECIFICITY: Testis.
CC
     PIR; A37577; CLHR1A.
DR
DR
     PIR; A38051; CLHRY1.
     Chromosomal protein; Nucleosome core; Spermatogenesis; DNA-binding;
KW
     Testis; DNA condensation; Nuclear protein.
KW
     SEQUENCE 31 AA; 4112 MW; BDCC9A140FF7F819 CRC64;
SQ
                          10.7%; Score 3; DB 1; Length 31;
  Query Match
                          100.0%; Pred. No. 5.6e+03;
  Best Local Similarity
                                0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
             3; Conservative
  Matches
```

```
RESULT 39
SCK5 ANDMA
     SCK5 ANDMA
                    STANDARD;
                                   PRT;
                                            31 AA.
AC
     P31719;
DT
     01-JUL-1993 (Rel. 26, Created)
DT
     01-JUL-1993 (Rel. 26, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Leiurotoxin I-like toxin P05.
OS
     Androctonus mauretanicus mauretanicus (Scorpion).
OC
     Eukaryota; Metazoa; Arthropoda; Chelicerata; Arachnida; Scorpiones;
OC
     Buthoidea; Buthidae; Androctonus.
OX
     NCBI_TaxID=6860;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Venom;
RX
     MEDLINE=93215831; PubMed=8385026;
RA
     Zerrouk H., Mansuelle P., Benslimane A., Rochat H.,
RA
     Martin-Eauclaire M.-F.;
RT
     "Characterization of a new leiurotoxin I-like scorpion toxin. PO5
RT
     from Androctonus mauretanicus mauretanicus.";
RL
     FEBS Lett. 320:189-192(1993).
RN
     [2]
RΡ
     SYNTHESIS.
     MEDLINE=93208090; PubMed=8457543;
RX
RA
     Sabatier J.-M., Zerrouk H., Darbon H., Mabrouk K., Benslimane A.,
RA
     Rochat H., Martin-Eauclaire M.-F., van Rietschoten J.;
RT
     "P05, a new leiurotoxin I-like scorpion toxin: synthesis and
RT
     structure-activity relationships of the alpha-amidated analog, a
RT
     ligand of Ca(2+)-activated K+ channels with increased affinity.";
RL
     Biochemistry 32:2763-2770(1993).
RN
     [3]
RP
     STRUCTURE BY NMR.
RX
     MEDLINE=94032328; PubMed=8218272;
RA
     Meunier S., Bernassau J.-M., Sabatier J.-M., Martin-Eauclaire M.-F.,
RA
     van Rietschoten J., Cambillau C., Darbon H.;
RT
     "Solution structure of P05-NH2, a scorpion toxin analog with high
RT
     affinity for the apamin-sensitive potassium channel.";
RL
     Biochemistry 32:11969-11976(1993).
CC
     -!- FUNCTION: Blocker for the small conductance calcium-activated
CC
         potassium channels (SK-Ca) (also known as apamine-sensitive
CC
         potassium channel).
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: Expressed by the venom gland.
CC
     -!- SIMILARITY: BELONGS TO THE SHORT SCORPION TOXIN FAMILY. POTASSIUM
CC
         CHANNEL INHIBITORS SUBFAMILY.
DR
     PIR; A49078; A49078.
DR
     PDB; 1PNH; 31-JAN-94.
DR
     InterPro; IPR001947; Scorpion toxinS.
DR
     Pfam; PF00451; toxin 2; 1.
DR
     PROSITE; PS01138; SCORP SHORT TOXIN; 1.
KW
     Toxin; Neurotoxin; Ionic channel inhibitor;
KW
     Potassium channel inhibitor; 3D-structure.
FT
     DISULFID
                   3
                         21
FT
     DISULFID
                   8
                         26
```

```
12
                         28
    DISULFID
FT
                  5
                         13
FT
    HELIX
                         15
                  14
FT
     TURN
                         22
                  18
     STRAND
FT
                  23
                         24
FT
     TURN
                         29
                  25
FT
     STRAND
                        3421 MW; 94B06CDC5CFB46FE CRC64;
     SEQUENCE
                31 AA;
SQ
                          10.7%; Score 3; DB 1; Length 31;
  Query Match
                          100.0%; Pred. No. 5.6e+03;
  Best Local Similarity
                                                    0; Indels
                                                                  0; Gaps
                                 0; Mismatches
             3; Conservative
  Matches
           12 LRR 14
Qу
              111
            5 LRR 7
Db
RESULT 40
SCKL LEIQH
                                    PRT;
                                            31 AA.
                     STANDARD;
     SCKL LEIQH
ID
AC
     P16341;
     01-APR-1990 (Rel. 14, Created)
DT
     01-APR-1990 (Rel. 14, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Leiurotoxin I (LeTx I) (Scyllatoxin).
DE
     Leiurus quinquestriatus hebraeus (Yellow scorpion).
OS
     Eukaryota; Metazoa; Arthropoda; Chelicerata; Arachnida; Scorpiones;
OC
     Buthoidea; Buthidae; Leiurus.
OC
OX
     NCBI_TaxID=6884;
RN
     [1]
RΡ
     SEQUENCE.
RC
     TISSUE=Venom;
     MEDLINE=88273110; PubMed=2839478;
RX
     Chicci G.G., Gimenez-Gallego G., Ber E., Garcia M.L., Winquist R.,
RA
     Cascieri M.A.;
RA
     "Purification and characterization of a unique, potent inhibitor of
RT
     apamin binding from Leiurus quinquestriatus hebraeus venom.";
RT
     J. Biol. Chem. 263:10192-10197(1988).
RL
      [2]
RN
     SYNTHESIS.
RP
     MEDLINE=90170992; PubMed=2307683;
RX
     Auguste P., Hugues M., Grave B., Gesquiere J.C., Maes P., Tartar A.,
RA
      Romey G., Schweitz H., Lazdunski M.;
RA
      "Leiurotoxin I (scyllatoxin), a peptide ligand for Ca2(+)-activated
RT
      K+ channels. Chemical synthesis, radiolabeling, and receptor
RT
      characterization.";
RT
      J. Biol. Chem. 265:4753-4759(1990).
RL
 RN
      [3]
      STRUCTURE BY NMR.
 RP
      MEDLINE=90127439; PubMed=2153586;
 RX
      Martins J.C., Zhang W., Tartar A., Lazdunski M., Borremans F.A.M.;
 RA
      "Solution conformation of leiurotoxin I (scyllatoxin) by 1H nuclear
 RT
      magnetic resonance. Resonance assignment and secondary structure.";
 RT
      FEBS Lett. 260:249-253(1990).
 RL
      -!- FUNCTION: Blocker for the small conductance calcium-activated
 CC
          potassium channels (SK-Ca) (also known as apamine-sensitive
 CC
          potassium channel).
 CC
```

```
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: Expressed by the venom gland.
CC
     -!- SIMILARITY: BELONGS TO THE SHORT SCORPION TOXIN FAMILY. POTASSIUM
CC
         CHANNEL INHIBITORS SUBFAMILY.
DR
     PIR; A28805; A28805.
     PDB; 1SCY; 26-JAN-95.
DR
     InterPro; IPR001947; Scorpion toxinS.
DR
DR
     Pfam; PF00451; toxin 2; 1.
DR
     PROSITE; PS01138; SCORP SHORT TOXIN; 1.
KW
     Toxin; Neurotoxin; Ionic channel inhibitor;
KW
     Potassium channel inhibitor; Amidation; 3D-structure.
FT
     DISULFID
                   3
                         21
     DISULFID
FT
                   8
                         26
FT
     DISULFID
                  12
                         28
FT
     MOD RES
                  31
                         31
                                  AMIDATION.
FT
     HELIX
                  5
                         14
FT
     TURN
                  15
                         16
FT
                  18
     STRAND
                         21
FT
     STRAND
                  26
                         29
SQ
     SEQUENCE
                31 AA; 3430 MW; BB3183DC5CEA53A7 CRC64;
  Query Match
                          10.7%; Score 3; DB 1; Length 31;
  Best Local Similarity 100.0%; Pred. No. 5.6e+03;
  Matches
             3; Conservative
                              0; Mismatches
                                                   0;
                                                      Indels
                                                                 0; Gaps
                                                                             0;
            5 LGK 7
Qу
              Db
           18 LGK 20
```

Search completed: January 14, 2004, 10:35:40

Job time : 5.62305 secs