PI Informational Briefing



Heather Paul

January 2004 ADVANCED INTEGRATION MATRIX Habitation 2004 Conference

### Mission Needs Statement

Our success will be measured by the extent to which early ground-based testing of mission capability identifies successful system implementations and operations, hidden risks and hazards, unexpected system and operations interactions, mission mass and operational savings, evaluates solutions to requirements-driving questions, and enables NASA to develop more effective, lower-risk systems and more reliable cost estimates for future exploration missions.

#### SCOPE



#### Two primary functions

- Develop, test, and validate the integration of mission systems for long-duration human exploration missions
- Develop and test baselines for mission operations protocols and procedures

#### Activities

- Develop solutions & requirements
- Evaluate systems
- Validate solutions & requirements

# GENERAL OBJECTIVES & EXPECTATIONS

- Solve system-level integration and interface issues
- Investigate bioastronautics systems
- Investigate common issues
- Develop scalable solutions
- Support agency commitment to an exploration mission
- Be an agency strategic resource

# TECHNICAL APPROACH

- A system is more than the sum of its parts
  - Collect individual projects into an integrated test environment
  - Study and optimize system-level interactions
- Start small and expand
  - Technology validation
  - Baselines for further development
  - Breakthrough concepts
- May utilize Bioastronautics Laboratory (BAL)
- Distinct from existing analog sites



# AIM IS AN AHST ELEMENT

#### Examples of shared risks and critical questions with other AHST Elements

|                                                   | AHST<br>Element | AIM | Examples of Potential Integration Areas                                                                       |
|---------------------------------------------------|-----------------|-----|---------------------------------------------------------------------------------------------------------------|
| Advanced<br>Environmental<br>Monitoring & Control | AEMC            |     | Control systems architecture requirements & integration                                                       |
| Advanced Life<br>Support                          | ALS             |     | Crop growth, processing & storage, autonomous operations                                                      |
| Space Human<br>Factors<br>Engineering             | SHFE            |     | Human engineering, operational systems and processes effects on human performance                             |
| Advanced<br>Extravehicular<br>Activity            | AEVA            |     | Surface dust, EVA communications, pre-breathe (ALS)                                                           |
| Advanced<br>Food<br>Technology                    | AFT             |     | Food preparation impacts on life support systems loads; tracking food inventory; processing & crew time; etc. |
|                                                   |                 |     |                                                                                                               |

## PHASE A / FORMULATION PRODUCTS



- Project plan and schedule
- Project budget estimate
- Trade studies and analyses
- Project systems engineering definition
- "One NASA" partnership communications
- Project and mission risk assessment and management plans
- Education outreach implementation
- Benchmark test

#### PHASE B / FORMULATION PRODUCTS



- Implementation plan for integration tests
- Preliminary systems engineering designs
- "One NASA" partnership
- Project support solicitation
- Continuing education outreach implementation
- Feasibility test

## TEST FLOW PLAN

Benchmark Test Feasibility Test

#### Objectives:

- Bring in partners & technology
- Evaluate our study process
- Develop project metrics for success

#### Objectives:

- Demonstrate feasibility of our project concept
- Expand integration scope
- Reveal unknowns & refine/direct development
- Demonstrate the project value
- Reveal and demonstrate the project metrics

## BENCHMARK TEST

- Purpose
  - Evaluate integration of hardware, software, procedures, and processes
  - Evaluate trade and test processes
  - Perform necessary and useful test
- Integrate 3-5 SETO areas
  - Hardware of TRL 3 to 6
  - Preliminary operation/procedural concept
- Inexpensive and succinct
- Preliminary TRD/TPD: March 2004
- Test: Fall of 2004

### BENCHMARK TEST

- Teams are being formulated to investigate integration issues
  - CHeCS and ECLSS commonality issues
  - Control issues and computer system architectures
  - Modeling and simulation plans/issues
- Soliciting participants

