

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

الدورة الاستثنائية: 2017

وزارة التربية الوطنية المتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

اختبار في مادة: العلوم الفيزيائية المحتبار في مادة: 03 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع الأول على 04 صفحات (من الصفحة 1 من 8 إلى الصفحة 4 من 8)

الجزء الأول: (13 نقطة)

التمرين الأول: (06 نقاط)

متحرك كتلته m=800 g ندفعه من أسفل مستوي مائل أملس (عديم الاحتكاك)، يميل عن الأفق بزاوية α وبسرعة α ابتدائية α يتحرك صعودا حتى النقطة α حيث تنعدم سرعته، ليعود تحت تأثير ثقله فيمر بالنقطة α مرة أخرى (الشكل-1).

(تعطی $g = 10 \, m/s^2$).

v = f(t) مخطط سرعة مركز عطالة الجسم بدلالة الزمن 2-

الشكل-1

- 1) استنتج من البيان:
- . v_B أ) السرعة الابتدائية
 - ب) مسافة الصعود BA.
- أ اذكر نص القانون الثاني لنيوتن.
- ب) باستخدام القانون الثاني لنيوتن أوجد عبارة التسارع أثناء مرحلة الصعود ثم استنتج طبيعة الحركة.
 - α احسب زاوية الميل α .
 - لين أن الجسم يعود إلى النقطة B بنفس السرعة التى دفع بها.

- 4) يلاقي الجسم أثناء رجوعه بعد مروره بالنقطة B مستوي أفقي خشن BD (وجود قوة احتكاك ثابتة) فتتباطأ حركته ليتوقف عند نقطة C تبعد عن D مسافة D مسافة عند نقطة D تبعد عن D مسافة D مسافة عند نقطة D تبعد عن D مسافة D مسافة عند نقطة D تبعد عن D مسافة D مسافة D مسافة D تبعد عن D مسافة D
 - أ) مثّل القوى المؤثرة على الجسم خلال حركته على المقطع BD.
 - \mathbf{P} باستخدام مبدأ انحفاظ الطاقة على الجملة (جسم) بين الموضعين \mathbf{B} و \mathbf{P} ، احسب شدة قوة الاحتكاك.
 - ج) احسب المدة الزمنية المستغرقة لقطع المسافة BC.
 - BC أعد رسم مخطط السرعة الموضح بالشكل -2 ثم مثل عليه ما تبقى من منحنى سرعة الجسم للمقطع +2

التمرين الثاني: (07 نقاط)

 $\lambda_{CH_3COO^-} = 4,09 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 5,01 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{HO^-} = 19,9 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^+} = 10,00 \times 10^{-3} \, S.m^2.mol^{-1} \, \, \text{`} \, \lambda_{Na^$

- ي بيشر حجما $C_4H_8O_2$ بيشر حجما الدراسة الحركية لتفاعل التصبن لأستر E صيغته الجزيئية المجملة $C_4H_8O_2$ نمزج في بيشر حجما $C_1=0$,1 $mol\ /\ L$ من محلول الصود $Na^+(aq)+HO^-(aq)$ تركيزه المولي $V_1=100\ mL$. $V_1=100\ mOl$ من الأستر $V_1=100\ mOl$ اليصبح حجم الوسط التفاعلي V_2 في الدرجة V_3 في الدرجة V_3 في الدرجة V_4 والمسلم التفاعلي V_4 في الدرجة V_4 في الدرجة V_5 من الأستر V_5 المسلم التفاعلي V_5 في الدرجة V_5 في الدركة V_5 ف
 - . أعط جميع الصيغ نصف المفصلة للأستر E مع تسمية كل منها (1
 - $.C_2H_5OH$ والايثانول CH_3COOH والايثانول حمض الايثانوي والايثانول (2

اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحاصل في البيشر بين محلول الصود والأستر E مستعملا الصيغ نصف المفصلة.

II. تابعنا تطور هذا التفاعل عن طريق قياس الناقلية G للوسط التفاعلي خلال فترات زمنية مختلفة وسجلنا النتائج في الجدول الآتي:

t(s)	0	30	60	90	120	150	180	210
G(mS)	46,20	18,60	12,40	12,30	11,15	10,80	10,70	10,70

- . فسر تناقص الناقلية G مع تطور التفاعل (1
- $G = K imes \sigma$ ثسمي لا ثابت الخلية و σ الناقلية النوعية حيث K
- . λ_i والناقليات النوعية المولية الشاردية K, C_1, V_1, V_T بدلالة بدلالة المولية الشاردية K, C_1, V_1, V_T
 - ب) بالاستعانة بجدول تقدم التفاعل، بيّن أن عبارة الناقلية G في اللحظة t تعطى بالعلاقة:

$$G = G_0 + \frac{K}{V_T} x (\lambda_{CH_3COO^-} - \lambda_{HO^-})$$

1cm ورقة ملمترية G=f(t) بأخذ سلم الرسم: 30s ورقة ملمترية ورقة ملمترية G=f(t)

$$\frac{K}{V_T}$$
 = 185,5 $\left(SI\right)$ أن $t=0$ عرّف سرعة التفاعل واحسب قيمتها عند اللحظة والحظة $t=0$

$$G(t_{1/2}) = \frac{G_0 + G_f}{2}$$
 عند زمن نصف التفاعل $t_{1/2}$ تعطى بالعلاقة: $G(t)$ عند زمن نصف التفاعل عند أن الناقلية

 $t_{1/2}$ استنتج قیمه -

الجزء الثاني: (07 نقاط)

التمرين التجريبي: (07 نقاط)

تستعمل الوشائع، المكثفات والنواقل الأومية في الدارة الكهربائية لمختلف الأجهزة الكهربائية، ولإبراز دور (تصرف) هذه العناصر الكهربائية، قام أستاذ مع فوج من تلاميذ السنة النهائية بتركيب الدارتين الكهربائيتين الآتيتين:

- وشيعة ذاتيتها L ومقاومتها الداخلية r
- . $R_2 = 80~\Omega$ ، R_1 ناقلین أومیین مقاومتهما
- مولد للتوتر الثابت قوته المحركة الكهربائية E .
 - قاطعة K .
 - راسم اهتزاز رقمي ذو ذاكرة.

نغلق القاطعة عند اللحظة t=0 نحصل على المنحنيين البيانيين الممثلين في الشكل-4.

- . على المنحنى البياني الذي يمثل التوتر الكهربائي بين طرفي الناقل الأومي R_2 ، علل المنحنى البياني الذي يمثل التوتر الكهربائي بين طرفي الناقل الأومي R_2
 - 2) أوجد المعادلة التفاضلية بدلالة شدة التيار المار في الدارة .
 - 3) اعتمادا على الشكل-4:
 - أ) أوجد قيمة E .
 - ب) حدّد قیمة كل من: R₁ ، r.
 - ج) احسب قيمة L بطريقتين مختلفتين.

(L,r)

k .

C

الشكل-5

اختبار في مادة: العلوم الفيزيائية / الشعبة: علوم تجريبية / بكالوريا استثنائية 2017

II. التركيب الثاني الممثل في الشكل-5 والمكون من:

- الوشيعة السابقة
- . مكثفة سعتها $C=47~\mu F$ مشحونة كليا
 - ناقل اومي مقاومته Ω = 28.
 - قاطعة K .

الممثلين في الشكل-6.

- راسم إهتزاز رقمي ذو ذاكرة .

نغلق القاطعة عند اللحظة t=0 نحصل على المنحنيين البيانيين

- 1) كيف تتحقق تجريبيا من أنّ المكثفة مشحونة؟
 - 2) ما هو نمط الإهتزازات الملاحظ؟ علّل.
- (3) احسب قيمة الطاقة الكلية للدارة عند اللحظتين t=0 و t=T/4 هو شبه الدور للاهتزازت الكهربائية. ماذا تستنتج؟
 - R كيف تتوقع شكل المنحنى البيانى $u_{C}(t)$ عند حذف الناقل الأومى $u_{C}(t)$

الشكل-6

الموضوع الثانى

يحتوي الموضوع الثاني على 04 صفحات (من الصفحة 5 من 8 إلى الصفحة 8 من 8)

الجزء الأول: (13 نقطة)

التمرين الأول: (06 نقاط)

... وضع الفيزيائي الفرنسي هنري بيكريل صدفة في درج مكتبه عينة من أملاح اليورانيوم فوق لوح فوتوغرافي وهذا حينما كان يقوم بأبحاث علمية على الأشعة السينية، في أول مارس 1896 فتح الدرج فلاحظ بانبهار كبير أن الألواح متأثرة رغم عدم تعرض الأملاح لأشعة الشمس.

وهذا ما أدى إلى اكتشاف أن أملاح اليورانيوم انبعثت منها تلقائياً أشعة غير مرئية تركت آثاراً على الألواح الفوتوغرافية، فدعاها بأشعة اليورانيوم.

إن النظير لليورانيوم 238 يشكل العائلة الاشعاعية التي تؤدي إلى نظير مستقر من الرصاص Pb وفق تفككات متتابعة، يمكن كتابة الحصيلة بعد انتهاء التفاعل كما يلى :

$$^{238}_{92}U \longrightarrow ^{206}_{82}Pb + x_{2}^{4}He + y_{-1}^{0}e$$

1- أ) عرّف كل من:

- النواة المشعة.
 - النظائر.
- العائلة المشعة.
- ب جد x و y مع تحديد القوانين المستعملة.
- ج) ذكر بالنمط الإشعاعي المنبعث عن تفكك الأنوية غير المستقرة لعائلة لليورانيوم 238.
- (2-N) اعتماداً على المخطط ((Z-N) الممثل في الشكل ((2) اعتماداً على التفكك رقم ((2) النواة (2) ورقم ((2) النواة (2) المحلط (2) المح
 - ب) استخرج رموز آخِر الأنوية للنظائر المستقرة.

النسبة النشاط
$$\frac{N\left(\frac{210}{Po}\right)}{N\left(\frac{210}{Bi}\right)}$$
 من أجل نسبة النشاط $\frac{A\left(\frac{210}{Po}\right)}{A\left(\frac{210}{Bi}\right)}=1$ الإشعاعي $\frac{A\left(\frac{210}{Po}\right)}{A\left(\frac{210}{Bi}\right)}$

			1	
128	$^{2010}_{82}Pb$	²¹¹ ₈₃ Bi	$ _{84}^{212} Po$	$^{213}_{85}At$
127	$^{209}_{82}Pb$	²¹⁰ ₈₃ Bi	²¹¹ ₈₄ Po	$^{212}_{85}At$
126	$_{82}^{208} Pb$	²⁰⁹ ₈₃ Bi	²¹⁰ ₈₄ Po	$^{211}_{85}At$
125	$^{207}_{82}Pb$	208 83 Bi	²⁰⁹ ₈₄ Po	²¹⁰ ₈₅ At
124	$^{206}_{82}Pb$	²⁰⁷ ₈₃ Bi	²⁰⁸ ₈₄ Po	$^{209}_{85}At$
N/Z	82	83	84	85
	الشكل-1		2	

- .(Z-N) مميزة لكل نواة تتحكم في تموضع الأنوية في مخطط $E_{\ell}ig(^{A}_{z}Xig)$ مميزة لكل نواة تتحكم في تموضع الأنوية في مخطط أ) عرّف طاقة ربط النواة مع إعطاء عبارتها.
 - ب) باستغلال الشكل-2 والمعطيات أكمل الجدول الآتى:

¹⁴ C	¹² C	¹¹ C	النواة
		70,394	$E_{_\ell}inom{A}{z}Xig)(MeV)$ طاقة الربط
7,300			$rac{E_{\ell}inom{A}{X}}{A}(MeV \mid n)$ طاقة الربط لكل نوية
			نمط الاشعاع

	8	¹² ₄ Be	13 B	14 C	$_{7}^{15}N$	¹⁶ ₈ <i>O</i>	ج) رتب تصاعدياً استقرار الأنوية المذكورة في الجدول
İ		¹¹ ₄ Be					أعلاه.
Ì		¹⁰ ₄ Be					عرض التلفزيون الجزائري يوم 09 جانفي 2017 مشهد (
	5	⁹ ₄ Be	$^{10}_{5}B$	$^{11}_{6}C$	$^{12}_{7}N$	13 8	ل رُفاة شهداء وُجِدوا في مغارة بوسيف بجبل الطارف بأم
ľ	4	8 <i>Be</i>	⁹ ₅ B	10 C	$^{11}_{7}N$	12 O	واقي إلى مخبر التحليل الإشعاعي لغرض تحديد تاريخ

الشكل_2

5

5) عرض التلفزيون الجزائري لنقل رُفاة شهداء وُجدوا في مغ البواقي إلى مخبر التحليل الإ استشهادهم.

أُخذت عينة من رُفاة أحد الشهداء، باستخدام ^{14}C فكان نشاطها الإشعاعي 0,1605Bq. في حين أن نشاط عينة حية مماثلة لها في الكتلة هو 0,1617Bq.

ما هو تاريخ استشهاد هذا الشهيد؟

المعطيات:

 $m\binom{12}{C} = 11,99671u$; $m\binom{1}{0}n = 1,00866u$; $m\binom{1}{1}p = 1,00728u$, $1u = 931,5 MeV/c^2$ $t_{1/2}(^{210}Po) = 138.676 j$; $t_{1/2}(^{210}Bi) = 5{,}013 j$, $t_{1/2}(^{14}C) = 5700 ans$, $1ans = 365{,}25 j$

التمرين الثاني: (07 نقاط)

يستعمل الديوان الوطنى للأرصاد الجوية لأجل معرفة تركيب الغلاف الجوي بالون مسبار، من المطاط الخفيف المرن جداً، معباً بالهيليوم، معلق به علبة تحتوي على تجهيز علمي لرصد الطقس والاتصال اللاسلكي بالمحطة.

ينفجر البالون المسبار عندما يصل إلى ارتفاع hعن سطح الأرض، حينئذ تفتح مظلة هبوط العلبة المتصلة بها مع التجهيز العلمي، فتعيده إلى الأرض.

ننمذج قيمة \overrightarrow{f} قوة احتكاك الهواء على الجملة { مظلة + علبة } بـ $f = k \cdot v^2$ حيث k ثابت موجب من أجل ارتفاعات معتبرة، و v سرعة مركز عطالة الجملة.

بفرض أنه لا توجد رياح (الحركة تكون شاقولية)، وندرس حركة مركز عطالة الجملة في مرجع أرضى نعتبره غاليلياً.

- 1. أ) مثل القوى المطبقة على مركز عطالة الجملة { مظلة + علبة } في بداية السقوط(t=0) وفي النظام الدائم.
 - \mathbf{p}) أعط العبارة الحرفية الشعاعية لدافعة أرخميدس \mathbf{n} .
- ج) ذكّر بنص القانون الثاني لنيوتن ثم اكتب العبارة الشعاعية للقوى المطبقة على الجملة في النظام الانتقالي.
 - د) جد المعادلة التفاضلية للسرعة.
 - هـ) استخرج عبارة السرعة الحدية v_{ℓ} ، ثم احسب قيمتها.
 - و) انطلاقا من عبارة السرعة الحدية وباستعمال التحليل البعدى، حدّد وحدة k في الجملة الدولية للوحدات.
 - 2 جِد a_0 عبارة تسارع مركز عطالة الجملة $\{$ مظلة + علبة $\}$ عند اللحظة تسارع مركز عطالة الجملة $\{$
 - 3) إذا اعتبرنا سقوط العلبة حرا:
 - أ) عرّف السقوط الحر.
 - ب) عين قيمة التسارع في هذه الحالة.
- ج) إذا أعتبرنا أن العلبة سقطت من ارتفاع m 1000 من سطح الأرض، احسب سرعتها لحظة ارتطامها بالأرض بالأرض ماذا تتوقع أن يحدث للعلبة في هذه الحالة مع التعليل وماذا تستنتج؟
 - v=f(t) وبيان التسارع a=g(t) (ارسم كيفيا البيانين: بيان السرعة v=f(t) السرعة بيان السرعة m=2.5~kg , $g=9.80~m\cdot s^{-2}$, $\Pi=3~N$, k=1.32~S.I تعطى:

الجزء الثاني: (07 نقاط) التمرين التجريبي: (07 نقاط)

جابر بن حيان أنبغ الكيميائيين المسلمين، وأعظم كيميائي العصور الوسطى بشكل عام فلقد تركت ابحاثه ودراسته أثرا خالداً. يعتبر أول من حضّر الأحماض من تقطير أملاحها منها روح الملح (محلول حمض كلور الهيدروجين)، وكذلك هو أول من اكتشف الصود الكاوي (هيدروكسيد الصوديوم).

أولاً: نقترح معايرة مُنتج منزلي (روح الملح) حمض كلور الهيدروجين المتواجد في هذا المحلول التجاري بمحلول هيدروكسيد الصوديوم.

- تحمل بطاقة قارورة المحلول التجاري S_0 المعلومات التالية:

d = 1,068 الكثافة

النسبة المئوية الكتلية لحمض كلور الهيدروجين %13,5

 $M(HC\ell) = 36,5 g / mol$

- الوسائل: ماصات عيارية: 20 mL, 10 mL, 5 mL

حوجلات عيارية: 500mL, 250 mL, 100mL

50~mL , 25~mL , 10~mL ; سحاحة مدرجة

جهاز pH متر معایر، مخلاط مغناطیسی.

بياشر وأرلينة ماير مختلفة السعة.

- 1) عرّف كل من الحمض والأساس حسب برونشتد.
- S_0 التركيز المولى لحمض كلور الهيدروجين في المحلول التجاري (2 c_0
- $V_1 = 250 \; m$ حجمه S_1 حجمه على محلول على محلول أتجريبياً لتمديد المحلول S_0 التجاري S_0 مرة للحصول على محلول على محلول أتجريبياً لتمديد المحلول على التجاري S_0 مرة للحصول على محلول أتجريبياً لتمديد المحلول على التجاري S_0 مرة للحصول على محلول أتجريبياً لتمديد المحلول أتجاري S_0 التجاري S_0 مرة للحصول على محلول أتجاري S_0
- 4) نُعاير حجماً pH متر بواسطة محلول S_1 مع إضافة الماء المقطر لغمر مسبار الـ pH متر بواسطة محلول فيدروكسيد الصوديوم تركيزه المولى $C_B=0.10\ mol\cdot L^{-1}$. المتابعة الـ pH مترية أعطت الجدول الآتي:

$V_{B}(mL)$	0	1	2	5	6	7	7,5	8	8,5	9	11	12
рН	1,7	2,0	2,3	2,8	3,0	3,3	3,8	7,1	10,1	10,5	11,2	11,5

- أ) ارسم شكلاً تخطيطياً لعملية المعايرة مع تسمية الوسائل المستعملة.
 - ب) اكتب معادلة تفاعل المعايرة.
- . $V_{\scriptscriptstyle B}$ ارسم المنحنى البياني $pH=f\left(V_{\scriptscriptstyle B}
 ight)$ لتطور pH الوسط التفاعلي بدلالة الحجم $pH=f\left(V_{\scriptscriptstyle B}
 ight)$
 - . E عين احداثيي نقطة التكافؤ
- . S_0 التركيز المولي للمحلول التجاري ، S_1 نثم استنتج ، S_1 التركيز المولي المحلول التجاري . S_0
 - و) هل المعلومات المكتوبة على القارورة صحيحة؟

ثانياً: نريد معرفة أهمية الإسترات في الحياة اليومية، نأخذ حجماً من محلول الصود المتبقي في السحاحة عند نهاية المعايرة، ونضيف له زيت الزيتون الذي نعتبره يتكون من ثلاثي الغليسريد الذي صيغته الجزيئية نصف المفصلة

. في بيشر مع التسخين فنلاحظ طفو نوعاً عضوياً عند إضافة الملح.
$$C\!H_2\!-\!O\!-\!C\!O\!-\!C_{17}\!H_{33}$$

$$C\!H\!-\!O\!-\!C\!O\!-\!C_{17}\!H_{33}$$

$$CH_{2}-O-CO-C_{17}H_{33}$$

 $CH_{2}-O-CO-C_{17}H_{33}$

- 1) اكتب معادلة تفاعل محلول الصود مع ثلاثي الغليسريد.
 - 1.2) ماذا نسمي هذه العملية والنوع العضوي الذي يطفو؟
 - ب) فيمَ تتمثل أهمية الإسترات في الحياة اليومية؟

رمة	العا	(1 \$11 cm + 11) in 12 cm
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		الجزء الأول: (13 نقطة)
		التمرين الأول: (06 نقاط)
0,75	0 ,25	$v_B = -3$ m/s السرعة الابتدائية من البيان $v_B = -3$ m/s
	0,5	ب)- مسافة الصعود BA: مسافة الصعود هي مساحة الحيز المحصور بمنحنى السرعة
		$BA = \frac{1}{2} \times 1 \times 3 = 1.5m$ ومحور الأزمنة واللحظتين $t = 1s$ ، $t = 0s$
	0,5	2-أ)- نص القانون الثاني لنيوتن: في مرجع عطالي، المجموع الشعاعي للقوى الخارجية
		المطبقة على جملة مادية يساوي الى جداء كتلة الجملة في شعاع تسارع مركز عطالتها.
	0.5	ب)- عبارة التسارع واستنتاج طبيعة الحركة: A R
	0,5	باعتبار المرجع السطحي الأرضي وبتطبيق القانون الثاني لنيوتن
2,25	0,25	${B}$ $a = g.\sin(\alpha)$ بالإسقاط نجد $\vec{P} + \vec{R} = m.\vec{a}$ نجد $\sum \vec{f} = m.\vec{a}$
	0,25	بما أن المسار مستقيم والجداء $a imes v < 0$ فإن الحركة مستقيمة متباطئة بانتظام.
	0,25	$a = \frac{\Delta v}{\Delta t} = 3 \ m/s^2$: الميل: من البيان لدينا: -(ج
	0,25 0,25	$lpha=17.5^\circ$ ومنه $\sin(lpha)=0.3$ بالتعويض في علاقة التسارع نجد
0.25	0,25	تبيان أن الجسم يعود إلى B بنفس السرعة : من البيان $v_B = 3 \ m/s$ وتبيان أن الجسم يعود إلى B
0,25		أخرى)
	0.25	\vec{r} القوى: \vec{r} القوى: \vec{r}
	0,25	ب)- شدة قوة الاحتكاك: بتطبيق مبدأ انحفاظ الطاقة
	0,25	$0 = \frac{1}{2} m.v_B^2 - f.BC$ بالتعویض $0 = E_C(B) + W_f$
	0,5 0,25	$m.v_h^2$
2,0		$f = \frac{m.v_b^2}{2BC} = 2N$ بالتعویض نجد
		ج)- حساب المدة الزمنية المستغرقة لقطع المسافة BC :
	0,25	$a_1 = -2.5 m/s^2$ ومنه $-f = m.a_1$ لدينا
	0,25	(الحركة مستقيمة متباطئة بانتظام) $a \times v < 0$ لدينا
	0,25	$t=rac{-v_B}{a_1}=1.2s$ من المعادلة الزمنية للسرعة نجد: $v_C=a_1.t+v_B$ نخلص إلى

رمة	العا	مناه بالاحادة (الله مالاً)
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
0,75	0,75	رسم المنحنى البياني: -5 رسم المنحنى البياني: 0 0,5
2,0	8x0,25	التعرين الثاني: (07 نقاط) ملاحظة هامة: التمرين الثاني (كيمياء) الموضوع الأول، في حالة عدم انتباه المترشح للمعطيات: - يتم منح علامة المؤال الـ (0,25 نقطة) إلى السؤال الـ (حساب قيمة السرعة) على نفس السؤال في تعريف السرعة. تعريف السرعة. (1- I CH3-CH2-C O-CH3-CH3 Likelin Weight Weight
0,5	0,5	CH_3-C معادلة التفاعل: CH_3-C $CH_3-CH_2-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3$
0,25	0,25	$\lambda_{_{HO^{-}}}>\lambda_{_{CH_{3}COO^{-}}}$ تتناقص الناقلية لأن $^{-1}$ -II
	0,5	$G_0 = rac{KC_1V_1}{V_T}(\lambda_{HO^-} + \lambda_{Na^+})$ -(أ-2) $G = rac{KC_1V_1}{V_T}\lambda_{Na^+} + rac{Kx}{V_T}\lambda_{CH_3COO^-} + rac{K(C_1V_1 - x)}{V_T}\lambda_{HO^-}$ بات العلاقة: $C_0 = rac{KC_1V_1}{V_T}$ بات من العلاقة: $C_0 = rac{KC_1V_1}{V_T}$
	0,5	$G = G_0 + \frac{Kx}{V_T} (\lambda_{CH_3COO^-} - \lambda_{HO^-})$

الصفحة 2 من 10

رمة	العا	وزام الإمارة (المرابع الأراب)
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
	0,5	ج)- رسم المنحنى: 5
04,0	0,25 0,25 0,25 0,25	$v = \frac{\left(\frac{dG}{dt}\right)_{t=0}}{\frac{k}{V_{T}}(\lambda_{CH_{3}COO^{-}} - \lambda_{HO^{-}})}$: ومنه: $v = \frac{dx}{dt}$: ريانيا: $v = 5,25 \times 10^{-4} mol / s$. $\left(\frac{dG}{dt}\right)_{t=0} = -1,54 \times 10^{-3}$: بيانيا:
	0,5	$G(t_{1/2}) = G_0 + rac{K}{V_T} \cdot rac{C_1 V_1}{2} (\lambda_{CH_3COO^-} - \lambda_{HO^-})$: بيان العلاقة: $-(a)$ $2G(t_{1/2}) = 2G_0 + rac{K}{V_T} \cdot C_1 V_1 (\lambda_{CH_3COO^-} - \lambda_{HO^-})$ $G(t_f) = G_0 + rac{KC_1 V_1}{V_T} (\lambda_{CH_3COO^-} - \lambda_{HO^-})$ $G(t_{1/2}) = rac{G_0 + G(\mathbf{t}_f)}{2} \iff 2G(t_{1/2}) = G_0 + G(\mathbf{t}_f)$
	0,5	$t_{1/2}$ $=$ $t_{1/2} \approx 15s$: اينايا
0,5	0,5	الجزء الثاني: (07 نقاط) التمرين التجريبي: (07 نقاط) 1-I-
		$(u_R=0)$ المنحنى البياني الذي يوافق u_{R2} هو المنحنى A عند اللحظة $t=0$ يكون
0,75	0,25 0,25	-2 المعادلة التفاضلية بدلالة شدة التيار -2 $R_1i+R_2i+ri+L\;di/dt=E$ نجد $u_{R1}+u_{R2}+u_b=E$ $(R_1+R_2+r)i+L\;di/dt=E$,
	0,25	$\frac{di}{dt} + \frac{\left(R_1 + R_2 + r\right)t + L dt}{L} i = \frac{E}{\left(R_1 + R_2 + r\right)}$ نخلص إلى

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
	0,25	E=6~V قیمة $=6~V$ قیمة $=6~V$
	0,25 0,25	$i_0 = \frac{u_{R_2}}{R_2} = \frac{4}{80} = 0.05 A$ ولدينا $u_{\max} = (r + R_2).i_0$ ادينا :r قيمة
	0,25	$r=rac{u_{ m max}}{i_0}-R_2=12\;\Omega$ نجد
	0,5	$R_1=28~\Omega$ نجد $E=ig(r+R_2+R_1ig).i_0$: R_I قيمة
03,25	0,5	$L = \tau(R_1 + R_2 + r) = 0.72H$ نجد $\tau = 0.006 s$ من البيان $\tau = 0.006 s$ نجد t
03,23	1,25	$L= au(R_1+R_2+r)=0.72H$ نجد $ au=0.006s$ نجد $t=0.006s$ ن
		$L=0,72H$ من البيان $(rac{du_{R_2}}{dt})_{t=0}=rac{2}{3} imes 10^3 V/s:$ A من البيان
	0,5	1 — التحقق التجريبي: توصيل طرفي المكثفة بجهاز الفولط متر ، انحراف المؤشر يدل
0,5	- ,,-	على أنها مشحونة.
	0.25	2)- نمط الاهتزازات حرة متخامدة لأنها لا تستقبل طاقة من الوسط الخارجي وتحتوي الدارة
0,25	0,25	على ناقل أومي .
		$E_{T}=E_{c}\left(0 ight)=rac{1}{2}C.u_{c}^{2}\left(0 ight)$: حساب الطاقة الكلية -(3
	0,5	$E_T = E_c(0) = \frac{1}{2}Cu_c^2(0) = 8.5 \times 10^{-4} J : t = 0$ عند
01,25	0,5	$E_T = E_L (T/4) = \frac{1}{2} L i^2 (T/4) = 2.58 \times 10^{-4} J$: t= T/4 عند
	0,25	ومنه $E_{T}(0) > E_{T}(T/4)$ ومنه ضياع في الطاقة (طاقة غير محفوظة)
	0,5	4)- عند حذف الناقل الأومي يزداد زمن التخامد دون تأثر الدور ، يكون ضياع الطاقة أقل دقيل التفريد بدانيا)
0,5		(يقبل التفسير بيانيا)

لامة	العا	عناصر الإجابة (الموضوع الثاني)
مجموع	مجزأة	الموطوع اللاي)
		الجزء الأول: (13 نقطة)
		التمرين الأول: (06 نقاط)
	0,25	1-أ)- النواة المشعة: كل نواة غير مستقرة تتفكك تلقائيا لتعطي نواة أكثر استقراراً مع اصدار
		اشعاعات.
1,5	0,25	- النظائر: هي مجموعة ذرات لنفس العنصر لها نفس العدد الذري وتختلف في العدد الكتلي.
	0,25	 العائلة المشعة: هي مجموعة الأنوية الابن الناتجة عن تفكك النواة الأب الأصلي
		ب)- القوانين المستعملة: انحفاظ العدد الشحني - انحفاظ العدد الكتلي
	0,5	x=8 y=6
	0,25	$lpha,eta^-$:الأنماط $lpha,eta^-$
		رقم(1) للنواة ^{210}Bi : النواة ^{210}Bi
	0,25	$^{210}_{83}Bi \longrightarrow ^{210}_{84}Po + ^{0}_{-1}e$
0,75	0,25	^{210}Po النواة ^{210}Po
	0,23	${}^{210}_{84}Po \longrightarrow {}^{206}_{82}Pb + {}^4_2He$
	0,25	Pb , ^{207}Pb , ^{208}Pb النظائر المستقرة: ^{206}Pb , ^{207}Pb , ^{208}Pb
		$t_{1/2} = \frac{\ln 2}{\lambda}$ ونعلم أن: $A = \lambda N$ ونعلم أن: $A = \lambda N$ ونعلم أن: $A = \lambda N$
	0,25	
	0,25	$\frac{N\binom{210}{Po}}{N\binom{210}{Bi}} = \frac{t_{1/2}\binom{210}{Po}}{t_{1/2}\binom{210}{Bi}}$
01,0	0,25	$N(^{210}Bi)$ $t_{1/2}(^{210}Bi)$ ومنه نجد:
	0,25	$\Leftrightarrow \frac{N(^{210}Po)}{N(^{210}Bi)} = \frac{138,676}{5,013} = 27,66$
		$N(^{210}Bi)$ 5,013
		The state of the s
	0,25	4-أ)- طاقة الربط للنواة: هي الطاقة التي يقدمها الوسط الخارجي لنواة ساكنة ومعزولة لتفكيكها إلى نوياتها ساكنة ومعزولة.
	0,25	$E_\ell = \Delta m \cdot c^2 = \left\lceil Z m_p + (A-Z) m_n - m {A \choose Z} \right\rceil c^2$
02,0		

رمة	العا			د عالمان	IN a destination
مجموع	مجزأة			وصوع الثاني)	عناصر الإجابة (الم
			I	I	ب)- تكملة الجدول:
		¹⁴ C	¹² C	¹¹ C	النواة
	1,25	102,200	92,153	70,394	$E_{\ell}({}_{Z}^{A}X)(MeV)$ طاقة الربط
		7,300	7,679	6,399	$rac{E_{\ell}ig(rac{A}{Z}Xig)}{A}ig(MeV/nig)$ طاقة الربط لكل نوية
		$oldsymbol{eta}^-$	///	$oldsymbol{eta}^{\scriptscriptstyle +}$	نمط الإشعاع
					ج)- الترتيب التصاعدي لاستقرار الأنوية:
	0,25		11 C	14 C	تزايد الاستقرار مايد الاستقرار المايد الما
					*
					5- تاريخ استشهاد الشهيد:
0,75	0,25 0,25			0	$A = A_0 e^{-\lambda t} \iff t = -\frac{t_{1/2}}{\ln 2} \ln \frac{A(t)}{A_0}$
0,75	ŕ				$t = -\frac{5700}{\ln 2} \ln \frac{0,1605}{0,1617} = 61,254 ans$
	0,25				ومنه تاريخ الاستشهاد: 1955
					التمرين الثاني:(07 نقاط)
		:		-	1- أ)- تمثيل القوى المطبقة على مركز عط
	0,25		$\vec{P}, \vec{\Pi}$	\overrightarrow{f} : النظام الدائم –	\overrightarrow{P} بداية السقوط: \overrightarrow{P}
			1	\overline{f} $\overline{\Pi}$	$\prod_{i=1}^{n} \overline{\Pi}_{i}$
	0,25		•		\vec{P}
				\overrightarrow{P}	
	0,5		•	∺	
	• • • • • • • • • • • • • • • • • • • •			$\Pi = -\mu$	ب $-$ العبارة الشعاعية لدافعة أرخميدس: g

الصفحة 6 من 10

رمة		عناصر الإجابة (الموضوع الثاني)						
مجموع	مجزأة							
	0,25	ج)- نص القانون الثاني لنيوتن: « في معلم غاليلي، المجموع الشعاعي للقوى						
		الخارجية المطبقة على جملة مادية، يساوي في كل لحظة جداء كتلتها في						
		شعاع تسارع مركز عطالتها ».						
	0,25	$\sum \overline{F_{ext}} = m \cdot \overline{a}_{G}$ العبارة الشعاعية للقوى المطبقة على الجملة { مظلة + علبة }:						
	0,25	$\vec{f} + \vec{P} + \vec{\Pi} = m \cdot \vec{a}$						
		د)- المعادلة التفاضلية للسرعة:						
		بالتفاط العبارة الشعاعية للعوى المطبقة على المحور						
		$-kv^2 + mg - \Pi = m \cdot \frac{dv}{dt} \Leftrightarrow$						
03,5	0,5	$-\frac{k}{m}v^2 + \left(g - \frac{\Pi}{m}\right) = \frac{dv}{dt}$						
		هـ)- عبارة السرعة الحدية برن : المرابع الحديث المرابع						
	0,25	$-\frac{k}{m}v^{2} + \left(g - \frac{\Pi}{m}\right) = \frac{dv}{dt} = 0 \iff v_{\ell} = \sqrt{\frac{mg - \Pi}{k}}$						
	Í	$v_{\ell} = \sqrt{\frac{2,5 \times 9,8 - 3}{1.32}} = 4 m \cdot s^{-1}$						
	0,25	$v_{i} = \sqrt{\frac{mg - \Pi}{k}} \Rightarrow k = \frac{mg - \Pi}{v_{i}^{2}}$:وحدة الثابت في الجملة الدولية:						
	0,5	$[k] = \frac{[mg - \Pi]}{[v_{\ell}]^{2}} = \frac{[M][L][T]^{-2}}{[L]^{2}[T]^{-2}} = [M][L]^{-1}$						
	0,25	$kg.m^{-1}$ إذا وحدة k في الجملة الدولية هي						
		$t=0$ عبارة a_0 تسارع مركز عطالة الجملة a_0 مظلة a_0 عند اللحظة: a_0						
	0.05	ا كن عند اللحظة $t=0$ تكون قوة الاحتكاك معدومة ومنه: $-rac{k}{m}v^2+\left(g-rac{\Pi}{m} ight)=rac{dv}{dt}=a$						
	0,25							
0,75	0,25	$a_0 = g - \frac{11}{m}$						
	0.27	Π Ω Ω Ω Ω Ω Ω Ω						
	0,25	$a_0 = g - \frac{11}{m} = 9,8 - \frac{3}{2,5} = 8,6 m \cdot s^{-2}$:ق.ع:						

(م.25) - قيمة التسارع: \[\sum_{F_{ext}} = m \cdot a_{\text{a}} \\ \text{D} = m \cdot a_{\text{a}} \\ \text{0.25} \\ \text{0.25} \\ \text{0.25} \\ \text{0.25} \\ \text{0.25} \\ \text{0.25} \\ \text{0.26} \\ \text{0.27} \\ \text{0.27} \\ \text{0.25} \\ 0			
	العلامة		(ilall a. a.l.) a valic
(م.25) عند التسارع: \[\sum_{ext} = m \cdot a_0 \] \[\sum_{	مجموع	مجزأة	الموصوح اللي)
		0,5	3-أ)- تعريف السقوط الحر: هو السقوط تحت تأثير الثقل فقط
0,25 \$\overline{P} = m \cdot a}\$ 0,25 \$\overline{q} = \overline{q}\$ 0,25 \$\overline{q} = \overline{q}\$ 0,25 \$\overline{q} = 9,8m.s^{-2}\$: each of \$\overline{q} = 40m/s\$ = \$504km/h\$ 0,5 \$\overline{q} = \overline{\sqrt{q}} \overline{q} = 40m/s\$ = \$504km/h\$ 102.75 \$\overline{q} = \overline{q} \overline{q} = 40m/s\$ = \$504km/h\$ 102.75 \$\overline{q} = \overline{q} \overline{q} = 40m/s\$ = \$504km/h\$ 102.75 \$\overline{q} = \overline{q} \overline{q} = 40m/s\$ = \$504km/h\$ 102.75 \$\overline{q} = \overline{q} = 40m/s\$ = \$504km/h\$ 103.75 \$\overline{q} = \overline{q} = 40m/s\$ = \$\overline{q} = 40m/			ب) – قيمة التسارع:
0,25 0,25			$\sum \overrightarrow{F_{ext}} = m \cdot \overrightarrow{a}_{G}$
0,25		0,25	$\vec{P} = m \cdot \vec{a}$
0,5 مرعة العبلة عند وصولها الى سطح الأرض: $v = \sqrt{2gh} = 140m/s = 504km/h$ 0,25 0,25 0,26 0,26 0,27 0,		0,25	$\vec{a} = \vec{g}$
0.25 0.25		0,25	$a = g = 9.8 \text{m.s}^{-2}$ ومنه:
السرعة كبيرة جدا وبالتالي تتلف العلبة ولا يمكن استغلال معلوماتها والمنطقة ضرورية للحفاظ على العلبة. 0,25			ج)- سرعة العبلة عند وصولها الى سطح الأرض:
0,25 (0,25 مرورية للحفاظ على العلبة. 0,25 (0,25 مرورية للحفاظ على العلبة. 0,25 (0,25 مرورية الحفاظ على العلبة. (الانتاني:(07 مرورية الحفاظ على العلبة. (الانتاني:(07 مرورية العلبة) مرون التجريبي:(0,5 مرون التجاريبي:(10 مرون التجريبي:(10 مرون التجريبي:(10 مرون التجاريبي:(10 مرون التجاريبي:(10 مرون العلبة التناء المولى مرون العلبة التناء المولى مرون العلبة التناء التجاري مروزي: التجاري مروزي: المولى مروزي العلبة المحلول التجاري مروزي:(10 مرونية المحلول التجاري مروزية المحلول التجارية المحلول التحارية المحلول التجارية المحلول التجارية المحلول التحارية المحلول المحلول التحارية المحلول المح		0,5	$v = \sqrt{2gh} = 140m / s = 504km / h$
0,25 (مرورية للحفاظ على العلبة. المنحنيين في حالة السقوط الحر: (مرورية المنحنيين في حالة السقوط الحر: (مرورية المنحنيين في حالة السقوط الحر: (مرورية الثاني: (170 نقاط) (مرورية التاني: (170 نقاط) (مرورية التاني: (170 نقاط) (مرورية المرورية أو جزئ) قادر على فقدان "H أثناء تفاعل عليمياني (شاردة أو جزئ) قادر على اكتساب "H أثناء تفاعل كيمياني (مرورة أو جزئ) قادر على اكتساب "H أثناء تفاعل كيمياني. (مرورة أو جزئ) قادر على المحلول التجاري 20: (مرورية المولي 20 لحمض كاور الهيدروجين في المحلول التجاري 20:	02,75	0,25	السرعة كبيرة جدا وبالتالي تتلف العلبة ولا يمكن استغلال معلوماتها
0,25 (ه) الثاني: (0,25 (ه) الثاني: (0,25 (ه)		0,25	نستنتج أن المظلة ضرورية للحفاظ على العلبة.
0,25 (ه) و الثاني: (م) و الهيدروجين في المحلول التجاري و دي و دي التركيز المولي 60 للحمض كلور الهيدروجين في المحلول التجاري و 50 () ()			د)- المنحنيين في حالة السقوط الحر:
0,25 (مرين التجريبي: (0,00 نقاط) (شاردة أو جزئ) قادر على فقدان "H أثناء تفاعل كيميائي. (شاردة أو جزئ) قادر على التجاريبي كل فرد كيميائي (شاردة أو جزئ) قادر على اكتساب "H أثناء تفاعل كيميائي. (شاردة أو جزئ) قادر على اكتساب "H أثناء تفاعل كيميائي التركيز المولي مى لحمض كلور الهيدروجين في المحلول التجاري مى:			$\frac{1}{2}$ $\frac{y(m/s)}{(m/s)}$
رو) مرين التجريبي: (70 نقاط) (م) مرين التجريبي: (70 نقاط) (م) مرين التجريبي: (70 نقاط) (م) مرين التجريبي: (شاردة أو جزئ) قادر على فقدان "H أثناء تفاعل عيميائي (شاردة أو جزئ) قادر على اكتساب "H أثناء تفاعل كيميائي (شاردة أو جزئ) قادر على اكتساب "H أثناء تفاعل كيميائي. (م) مرين المولي م لحمض كلور الهيدروجين في المحلول التجاري م التحاري م المحلول التجاري م التحاري م المحلول التجاري المحلول التجاري م المحلول التجاري م المحلول		0,25	
جزء الثاني: (07 نقاط) مرين التجريبي: (07 نقاط) (شاردة أو جزئ) قادر على فقدان "H أثناء تفاعل ميائي. الأساس: كل فرد كيميائي (شاردة أو جزئ) قادر على اكتساب "H أثناء تفاعل كيميائي. الأساس: كل فرد كيميائي (شاردة أو جزئ) قادر على اكتساب "H أثناء تفاعل كيميائي.		0,25	9,8
جزء الثاني: (07 نقاط) مرين التجريبي: (07 نقاط) (شاردة أو جزئ) قادر على فقدان "H أثناء تفاعل ميائي. الأساس: كل فرد كيميائي (شاردة أو جزئ) قادر على اكتساب "H أثناء تفاعل كيميائي. الأساس: كل فرد كيميائي (شاردة أو جزئ) قادر على اكتساب "H أثناء تفاعل كيميائي.			
مرين التجريبي: (07) نقاط) $(1-1)$ نقاط)			$0 \qquad \qquad \downarrow^{t(s)} \qquad \qquad \downarrow^{t(s)}$
مرين التجريبي: 0.07 نقاط) $(1.5 - 1.5)$ نقاط) $(2.5 - 1.5)$ قادر على فقدان (2.5) أثناء تفاعل (2.5) فرد كيميائي (3.5) قادر على اكتساب (3.5) أثناء تفاعل كيميائي. (3.5) الأساس: كل فرد كيميائي (3.5) قادر على اكتساب (3.5) أثناء تفاعل كيميائي. (3.5) التركيز المولي (3.5) لحمض كاور الهيدروجين في المحلول التجاري (3.5)			
مرين التجريبي: 0.07 نقاط) $(1.5 - 1.5)$ نقاط) $(2.5 - 1.5)$ قادر على فقدان (2.5) أثناء تفاعل (2.5) فرد كيميائي (3.5) قادر على اكتساب (3.5) أثناء تفاعل كيميائي. (3.5) الأساس: كل فرد كيميائي (3.5) قادر على اكتساب (3.5) أثناء تفاعل كيميائي. (3.5) التركيز المولي (3.5) لحمض كاور الهيدروجين في المحلول التجاري (3.5)			
0.5 0.25 0.25 0.5 0.25 0.5			الجزء الثاني: (07 نقاط)
بميائي. الأساس: كل فرد كيميائي (شاردة أو جزئ) قادر على اكتساب H^+ أثناء تفاعل كيميائي. C_0 التركيز المولي C_0 لحمض كلور الهيدروجين في المحلول التجاري C_0 :			التمرين التجريبي:(07 نقاط)
ميائي. الأساس: كل فرد كيميائي (شاردة أو جزئ) قادر على اكتساب H^+ أثناء تفاعل كيميائي. C_0 التركيز المولي C_0 لحمض كلور الهيدروجين في المحلول التجاري C_0 :	0,5	0,25	أولا: $1-$ الحمض: كل فرد كيميائي (شاردة أو جزئ) قادر على فقدان H^+ أثناء تفاعل
- التركيز المولي co لحمض كلور الهيدروجين في المحلول التجاري So:			كيميائي.
· · · · · · · · · · · · · · · · · · ·		0,25	الأساس: كل فرد كيميائي (شاردة أو جزئ) قادر على اكتساب H^+ أثناء تفاعل كيميائي.
			2- التركيز المولى م لحمض كلور الهيدر وجين في المحلول التجاري مي:
0.75 0,5 M 36.5		0.5	* * *
	0,75		
$c_0 = 3,95 \ mol \cdot L^{-1}$		0,23	$c_0 = 3.95 \ mol \cdot L$

العلامة		المالة الله عالمان الإمالة الله
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0,25	3- البروتوكول التجريبي: $f=rac{c}{c_0}=rac{V}{V_0}\Leftrightarrow V_0=5$ ومنه الوسائل هي: $f=rac{c}{c_0}=rac{V}{V_0}$
0.75	0,25	ماصة عيارية سعتها $5mL$ وحوجلة عيارية $250mL$ ماصة عيارية سعتها $5mL$ وحوجلة عيارية $50mL$ - المواد المستعملة: المحلول التجاري $50mL$ والماء المقطر. $5mL$ من المحلول - خطوات العمل: فأخذ بواسطة ماصة عيارية حجماً $5mL$ من المحلول
	0,25	ونسكبه في حوجلة عيارية سعتها $250m$ بها كمية من الماء المقطر $\frac{3}{4}V$)، ثم نكمل بإضافة الماء المقطر إلى خط العيار وبعد غلق الحوجلة بسدادة نقوم بالرج للحصول على محلول متجانس.
		4- أ)- رسم الشكل التخطيطي لعملية المعايرة:
	0,5	سحاحة بها محلول هيدروكسيد الصوديوم
	0,5	$H_3O^+(aq) + HO^-(aq) = 2H_2O(\ell)$ ب $PH = f(V_B)$ برسم البيان: $PH = f(V_B)$
03,0		↑nH
	0,5	7 1,7 0 7,9 V (mt)
	0,25	$E\left(V_{BE}=7,9mL,pH_{E}=7 ight)$: احداثیا نقطة التکافؤ

الصفحة 9 من 10

العلامة		مناه الإمانة (الفراد)
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0,5 0,5 0,25	: S_{0} (S_{0}) S_{0} (
0,75	0,75	حدود أخطاء التجربة. $\frac{\text{Си}_2-O-CO-C_{17}H_{33}}{CH-O-CO-C_{17}H_{33}} +3\left(Na^++HO^-\right)=CH_2OH-CHOH-CH_2OH+3\left(Na^++C_{17}H_{33}-COO^-\right)$ $\frac{\text{CH}_2-O-CO-C_{17}H_{33}}{\text{CH}_2-O-CO-C_{17}H_{33}} +3\left(Na^++HO^-\right)=CH_2OH-CHOH-CH_2OH+3\left(Na^++C_{17}H_{33}-COO^-\right)$
1,25	0,5 0,25 0,5	2.أ) - تسمى هذه العملية: التصبن - النوع العضوي الذي يطفو: الصابون ب) أهمية الإسترات في الحياة اليومية: - صناعة الصابون - الوقود - الملونات والمعطرات المضافة للمواد الغذائية - روائح الفواكه والأزهار والورود