$$A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix}$$

Para mentrar U, partimo minolo AAT, antones

$$A^{T} = \begin{bmatrix} 3 & -1 \\ 4 & 3 \\ 1 & 1 \end{bmatrix}$$

$$P_{a} \text{ touts}$$
, $AA^{T} = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 1 & 3 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 11 & 1 \\ 1 & 11 \end{bmatrix}$

Alon delens eventros velores y rectres peopies de AAT. Como AV = AV, entones pora AAT tenenos

$$\begin{bmatrix} 11 & 1 \\ 1 & 11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

ai event mos el rejuinte sust de leurends:

11
$$\times_1 + \times_2 = \lambda \times_1$$
 } Revidenands temms $(11 - \lambda) \times_1 + \times_2 = 0$ (1) $\times_1 + 1 \times_2 = \lambda \times_2$ } $\times_1 + (11 - \lambda) \times_2 = 0$ (2)

an jodenis envoritios à modernte la determinante

$$\begin{vmatrix} (11-\lambda) & 1 \\ 1 & (11-\lambda) \end{vmatrix} = 0 \quad \text{an} \quad (11-\lambda)(11-\lambda) - 1 \cdot 1 = 0 \\ \lambda_1 = 10 \quad \lambda_1 = 12$$

Porumoto a 21 en les aumonos son cirles (expenjumente en D)

$$(11-10)x_1 + x_2 = 0$$

 $x_1 = -x_2$, or $x_1 = 1$ y $x_2 = -1$

El rector proper and conder a An es [1, -1] y houendo los mis mur poro le mos ace el rector proper [1,1]

On partial order to square entry

(1)
$$\frac{1}{4}$$

Very successful of the proper entry of the grand of the conduction of the control of the conduction of the conducti

April letin A3 on bos auronas precess:
$$(\lambda_3 = 12)$$
 $(40-12)\times 1 + 2\times 3 = -2\times 1 + 2\times 3 = 0$, $\Rightarrow \times 1 = 1$, $\times 3 = 1$
 $(40-12)\times 2 + 4\times 3 = -2\times 3 + 4\times 2 = 0 \Rightarrow \times 2 = 2\times 3$, $\times 2 = 2$
But, It rather from from A3 as $[1,2,1]$.

Para $\lambda_2 = 10$ dam to ruther g in obtaine it rather forms $[2,-1,0]$ if $[2,-1,0]$ if $[2,-1,0]$ if $[2,-1,2]$.

Almon, in Grown Defining

Where $[4] = \begin{bmatrix} 1 & 2 & 1 \\ 2 & -1 & 2 \\ 1 & 0 & -5 \end{bmatrix}$, the $[4] = \begin{bmatrix} 1 & 2 & 1 \\ 2 & -1 & 2 \\ 1 & 0 & -5 \end{bmatrix}$.

Almon, in Grown Defining

Where $[4] = \begin{bmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}$; the $[4] = [4] = \begin{bmatrix} 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}$ if $[4] = \begin{bmatrix} 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}$; the $[4] = [4] = \begin{bmatrix} 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}$ if $[4] = \begin{bmatrix} 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}$ if $[4] = \begin{bmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}$ if $[4] = \begin{bmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}$ if $[4] = \begin{bmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}$ in the quantary $[4] = \begin{bmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}$ if $[4] = \begin{bmatrix} 1/\sqrt{6} \\ 1/\sqrt{6}$