Vorlesung Analysis II

July 15, 2025

Teil 3: Gewöhnliche Differentialgleichungen

an 23: Differentialgleichungssysteme

Stichworte: DGLsysteme (Linear 1. ordnung, Konstante Koeff.), Jordan-Normalform

Literatur: frühere Vorlesung in Lineare Algebra II, Kapitel 1 14.

- 23.1. Einleitung: Wir lösen DGLsysteme 1. Ordnung (Linear mit Konstanten Koeffizienten) durch Anwenden des Satzes von der Jordan-Normalform aus der Linearen Algebra II.
- 23.2. Motivation: Manche DGLn, etwa Lineare höhere Ordnung, lassen sich in DGLsysteme umformen und in Matrixform bzw. mit Funktionen bestehend aus mehreren Komponenten Kurzgefasst notieren und Lösen.
- **23.3.** <u>Vereinbarung:</u> $y: \mathbb{R} \to \mathbb{C}^n$, $y(x) = \begin{pmatrix} y_1(x) \\ y_2(x) \\ \vdots \\ y_n(x) \end{pmatrix}$ sei eine Funktion auf \mathbb{R} (der Zeit x) die Kom-

ponentenfunktionen $y_1, ..., y_n$ seien stetig diff'bar.

dazu sei $y': \mathbb{R} \to \mathbb{C}^n, \ x \mapsto y'(x) := \begin{pmatrix} y_1(x) \\ y_2(x) \\ \vdots \\ \vdots \end{pmatrix}$ die Ableitung. Sie ist stetig auf \mathbb{R} .

Weiter sei $A:=(a_{ij}) \in \mathbb{C}^{n \times n}$ eine fest gewählte n x n- Matrix.

23.4. Bezeichnung: (i) Wir nennen eine Abb. $D: y \rightarrow D(y):=y'-Ay$,

d.h. $(D(y))(x) := y'(x) - A \cdot y(x)$,

einen Linearen Differential-Operator erster Ordnung mit Konstanten Koeffizienten.

(ii) Für eine stetige Funktion $b: \mathbb{R} \to \mathbb{C}^n, \mapsto b(x) := \begin{pmatrix} b_1(x) \\ \vdots \\ b_n(x) \end{pmatrix}$

heißt D(y)=b, d.h. y'=Ay+b ein Lineares Differentialgleichungssystem

erster Ordnung

→d.h. maximal erste Ableitung kommen vor

die Einträge von A sind Konstant, d.h. keine Veränderlichen Funktionen in x

Ist $b(x)\equiv 0$ (konstant-0-Fkt.) so reden wir von einem <u>homogenen System</u>, sonst von einem <u>inhomogenen System</u>.

23.5. <u>Bem.:</u> Haben $D \in Hom(\varphi^1(\mathbb{R}, \mathbb{C}^n), \varphi^0(\mathbb{R}, \mathbb{C}^n))$ als Homomorphismus zwischen Funktionenräumen (sind ja $\mathbb{R} - VRe$) was die Benennung "linearer Differentialoperator" rechtfertigt. In der Funktionalanalysis heißen Abb.en zwischen Funktionsräumen <u>Operatoren</u>.

Die Struktur der Lösungsmenge erhält man aus der Linearen Algebra I:

23.6. Lemma: Ist y_p (irgend)eine (partikuläre/spezielle) Lösung des inhomogenen Systems Dy=b, d.h. von y'-Ay=b, so ist $L(D;b) := \{y_p + y_H; y_H \in ker D\}$ die Gesamtheit aller Lösungen.

Dabei besteht $\ker(D)$ aus allen Lösungen der homogenen Gleichung $Dy_H = 0$,

d.h. von $y'_H - Ay_H = 0$.

<u>Bew.:</u> Vgl. Vorl. zur <u>LA I</u>, bzw. $y \in \mathbb{L}(D; b) \Leftrightarrow y - y_p \in ker(D) = D^{-1}(\{0\})$.

Die homogene Gleichunge hat folgende Eigenschaft.

23.7. <u>Lemma:</u> Ist y Lösung von $D_=0$, d.h. ist $\underline{y}'=A\underline{y}$ (d.h. ist homogene Lsg.),

und ist $x_0 \in \mathbb{R}$ eine Nullstelle von y, d.h. $y(x_0) = 0$,

so ist y(x)=0 für alle $x \in \mathbb{R}$, d.h. $y(x)\equiv 0$ Konstant =0.

Bew.: Für jedes $t \in \mathbb{R}$ ist y'(t) = Ay(t), so dass $y'_i(t) = \sum_{j=1}^n \alpha_{ij} y_j(t)$

Durch Integration folgt

 $y_i(x) = y_i(x_0) + \int_{x_0}^x y_i'(t)dt = 0 + \int_{x_0}^x \alpha_{ij}y_j(t)dt.$

mit $\eta(x) := \max\{\max\{|y_i(t); \text{ für t mit } |t - x_0| \le |x - x_0|\}; i = 1, ..., n\}$ und $a := \max\{|\alpha_{ij}|; \text{ alle } i, j\}$ ist damit

 $0 \le \eta(x) \le \int_{x_0}^x n \cdot a \cdot a \cdot \eta(t) dt \le \eta(x) \cdot n \cdot a \cdot |x - x_0|.$

Ist x so nahe bei x_0 , dass $na|x-x_0|<1$, folgt daraus notwendig $\eta(x=0)$, also auch $\eta(t)=0$ für $|t-x_0|<|x-x_0|$.

Dieser Schluss ist

iterierbar

erst:y(x)=0 für alle x nahe x_0 , dann alle x(induktiv) erreichbar...

- **23.8.** Folgerung: (i) Für jedes $y_0 \in \mathbb{C}^n$, hat das Anfangswertaufgabe Dy=b, $y(0) \stackrel{!}{=} y_0$, höchstens eine Lösung.
- (ii) Die Abbildung $\varphi: kerD \to \mathbb{C}^n, y \mapsto y(0),$ ist <u>injektiv</u>, und damit ist <u>dim ker D \leq n</u>.
- **23.9.** Bem.: Tatsächlich gibt es bei (i) stets eine Lösung, dann also eindeutig. Denn: Mit 23.10. sehen wir, dass φ bijektiv ist und dann dim ker D=n ist.

<u>Bew.</u>: (i): Sind y_1, y_2 Lösungen von Dy=b, jeweils mit $y_1(0) = y_0 = y_2(0)$,

 $y(0) = y_1(0) - y_2(0) = y_0 - y_0 = 0,$

so dass $y_1(x) = y_2(x)$ für alle $x \in \mathbb{R}$ folgt nach Lemma 23.7.

(ii): Stimmen zwei Lösungen von Dy=0 an der Stelle $x_0 = 0$ überein, so sind sie nach (i) identisch. Dies sagt gerade, dass φ injektiv ist.

Nun zeigen wir folgende Existenz-und Eindeutigkeitssatz:

23.10. Satz: Die Abbildung $\varphi : kerD \to \mathbb{C}^n, y \mapsto y(0)$, ist auch surjektiv und damit bijektiv, d.h. zu jeden $y_0 \in \mathbb{C}^n$, gibt es genau eine Lösung der homogenen Anfangswertaufgabe $Dy = y' - Ay = 0, y(0) = y_0$.

Mit Folgerung 23.8. ist dies äquivaltent dazu, dass Dy=0 genau n Linear unabhängige Lösungen besitzt. Wir führen den Beweis schrittweise durch.

2

23.11. Reduktion: