ECE 550D Fundamentals of Computer Systems and Engineering

Fall 2023

Number Representations

Xin Li & Dawei Liu Duke Kunshan University

Slides are derived from work by Andrew Hilton, Tyler Bletsch and Rabih Younes (Duke)

Last time....

- Who can remind us what we talked about last time?
 - Combinatorial Logic
 - · Sum-of-products
 - Simplification
 - Muxes

Next: logic to work with numbers

- Computers do one thing: math
 - And they do it well/fast
 - Fundamental rule of computation: "Everything is a number"
 - Computers can only work with numbers
 - Represent things as numbers
 - Specifically: good at **binary** math
 - Base 2 number system: matches circuit voltages
 - 1 (Vcc)
 - 0 (Ground)
 - Use fixed sized numbers
 - How many bits
 - Quick primer on binary numbers/math
 - Then how to make circuits for it

3

Numbers for computers

- We usually use base 10:
 - $12345 = 1 * 10^4 + 2 * 10^3 + 3 * 10^2 + 4 * 10^1 * 5 * 10^0$
 - Recall from third grade: 1's place, 10's place, 100's place...
 - Yes, we are going to re-cover 3rd grade math, but in binary
 - What is the biggest digit that can go in any place?
- Base 2:
 - 1's place, 2's place, 4's place, 8's place,
 - What is the biggest digit that can go in any place?

Basic Binary

- Advice: memorize the following
 - $2^0 = 1$
 - $2^1 = 2$
 - $2^2 = 4$
 - $2^3 = 8$
 - $2^4 = 16$
 - $2^5 = 32$
 - $2^6 = 64$
 - $2^7 = 128$
 - $2^8 = 256$
 - $2^9 = 512$
 - $2^{10} = 1024$

5

Binary continued:

- Binary Number Example: 101101
 - Take a second and figure out what number this is

Binary continued:

- Binary Number Example: 101101
 - Take a second and figure out what number this is

```
1 in 32's place = 32
```

0 in 16's place

1 in 8's place = 8

1 in 4's place = 4

0 in 2's place

1 in 1's place = 1

_

45

7

Converting Numbers

• Converting Decimal to Binary

Suppose I want to convert 457 to binary

Think for a second about how to do this

Decimal to binary using remainders

?	Quotient	Remainder	
457 ÷ 2 =	228	1	
228 ÷ 2 =	114	0 —	
114 ÷ 2 =	57	0 —	
57 ÷ 2 =	28	1	
28 ÷ 2 =	14	0 —	
14 ÷ 2 =	7	0 —	
7 ÷ 2 =	3	1	
3 ÷ 2 =	1	1	├─ <u>┐</u>
1 ÷ 2 =	0	1	

Decimal to binary using comparison

Compare 2ⁿ Num ≥ ? <u>25</u>6

Hexadecimal: Convenient shorthand for Binary

- Binary is not easy to write
 - 425,000 decimal = 11001111110000101000 binary
 - Generally about 3x as many binary digits as decimal
 - Converting (by hand) takes some work and thought
- Hexadecimal (aka "hex")—base 16—is convenient:
 - Easy mapping to/from binary
 - · Same or fewer digits than decimal
 - 425,000 decimal = 0x67C28
 - Generally write "0x" on front to make clear "this is hex"
 - Digits from 0 to 15, so use A—F for 10—15.

11

Hexadecimal

Binary \Leftrightarrow Hex conversion is straightforward.

Every 4 binary bits = 1 hex digit. If # of bits not a multiple of 4, add implicit 0s on left as needed

Hex digit	Binary	Decimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
A	1010	10
В	1011	11
С	1100	12
D	1101	13
E	1110	14
F	1111	15

0x02468ACE

0x13579BDF

12

Binary to/from hexadecimal

- 0101101100100011₂ -->
- 0101 1011 0010 0011₂ -->
- 5 B 2 3₁₆

1 F 4
$$B_{16}$$
 -->
0001 1111 0100 1011_2 -->
0001111101001011₂

Hex digit	Binary	Decimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
A	1010	10
В	1011	11
С	1100	12
D	1101	13
E	1110	14
F	1111	15

13

Binary Math: Addition

•Suppose we want to add two numbers:

•How do we do this?

•Suppose we want to add two numbers:

- •How do we do this?
 - Let's revisit decimal addition
 - Think about the process as we do it

15

Binary Math: Addition

•Suppose we want to add two numbers:

•First add one's digit 5+2 = 7

•Suppose we want to add two numbers:

- •First add one's digit 5+2 = 7
- •Next add ten's digit 9+3 = 12 (2 carry a 1)

17

Binary Math: Addition

Suppose we want to add two numbers:

- First add one's digit 5+2 = 7
- Next add ten's digit 9+3 = 12 (2 carry a 1)
- Last add hundred's digit 1+6+2 = 9

•Suppose we want to add two numbers:

```
00011101 + 00101011
```

- •Back to the binary:
- First add 1's digit 1+1 = ...?

19

Binary Math: Addition

•Suppose we want to add two numbers:

```
1
00011101
+ 00101011
```

- •Back to the binary:
- First add 1's digit 1+1 = 2 (0 carry a 1)

• Suppose we want to add two numbers:

```
11
00011101
+ 00101011
00
```

- Back to the binary:
- First add 1's digit 1+1 = 2 (0 carry a 1)
- Then 2's digit: 1+0+1=2 (0 carry a 1)
- You all finish it out....

21

Binary Math: Addition

•Suppose we want to add two numbers:

```
\begin{array}{rcl}
111111 \\
00011101 &= 29 \\
+ & 00101011 &= 43 \\
\hline
01001000 &= 72
\end{array}
```

•Can check our work in decimal

Negative Numbers

- May want negative numbers too!
- Many ways to represent negative numbers:
 - Sign/magnitude
 - Biased
 - 1's complement
 - 2's complement

23

2's Complement Integers

• To negate, flip bits, add 1:	0000 0001	0
1's complement + 1	0010	2
Proci	0011	3
• Pros:	0100	4
 Easy to compute with 	0101	5
'	0110	6
 One representation of 0 	0111	7
Como	1000	-8
• Cons:	1001	-7
 More complex negation 	1010	-6
· ·	1011	-5
 Extra negative number (-8) 	1100	-4
	1101	-3
	1110	-2
	1111	-1

•Revisit binary math for a minute:

25

Binary Math: Addition

• What about this one:

```
\begin{array}{rcl}
1111111 \\
01011101 &= 93 \\
+ & 01101011 &= 107 \\
\hline
11001000 &= -56
\end{array}
```

- But... that can't be right?
 - What do you expect for the answer?
 - What is it in 8-bit signed 2's complement?

Integer Overflow

- Answer should be 200
 - Not representable in 8-bit signed representation
 - No right answer
- Called Integer Overflow
 - Signed addition: CI != CO of last bit
 - Unsigned addition: CO != 0 of last bit
- Can detect in hardware
 - Signed: XOR CI and CO of last bit
 - Unsigned: CO of last bit
 - What processor does: depends

27

Subtraction

- 2's complement makes subtraction easy:
 - Remember: A B = A + (-B)
 - And: $-B = \sim B + 1$
 - ↑ that means flip bits ("not")
 - So we just flip the bits and start with CI = 1
 - Fortunate for us: makes circuits easy (next time)

Signed and Unsigned Ints

- Most programming languages support two int types
 - Signed: negative and positive
 - Unsigned: positive only, but can hold larger positive numbers
- Addition and subtraction:
 - Same, except overflow detection
 - x86: one add instruction, sets two different flags for overflows
- Inequalities
 - Different operations for signed/unsigned
 - Can someone give an example? (Let's say 4-bit numbers)

29

One hot representation

- Binary representation convenient for math
- Another representation:
 - One hot: one wire per number
 - At any time, one wire = 1, others = 0

• Very convenient in many cases

Converting to/from one hot

- Converting from 2^N bits one hot to N bits binary=encoder
 - E.g., "an 8-to-3 encoder"
- Converting from N bits binary to 2^N bits one hot=decoder
 - E.g., "a 4-to-16 decoder"

31

Lets build a 4-to-2 encoder

- Start with a truth table
 - Input constrained to 1-hot: don't care about invalid inputs
 - Can do anything we want

In0	In1	In2	In3	Out1	Out0
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

Simplest formulas:

• Out0 = In1 or In3 [alternatively: Out0 = In0 nor In2]

• Out1 = In2 or In3 [alternatively: Out1 = In0 nor In1]

4-to-2 encoder

- Our 4-to-2 encoder
 - Note: the dots here show connections
 - Don't confuse with open circles which mean NOT

33

Lets build a 2-to-4 decoder

- Start with a truth table
 - Now input unconstrained

In0	Out0	Out1	Out2	Out3
0	1	0	0	0
1	0	1	0	0
0	0	0	1	0
1	0	0	0	1
	1n0 0 1 0 1	In0 Out0 0 1 1 0 0 0 1 0	In0 Out0 Out1 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0	In0 Out0 Out1 Out2 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0

Now sum-of-powers more useful, do for each of the 4 outputs:

Out0 = (Not In1) and (Not In0)

Out1 = (Not In1) and In0

Out2 = In1 and (Not In0)

Out3 = In1 and In0

2-to-4 decoder

• 2-to-4 decoder

35

2-to-4 decoder

• 2-to-4 decoder

2-to-4 decoder

• 2-to-4 decoder

37

Delays

- Mentioned before: switching not instant
 - Not going to try to calculate delays by hand (tools can do)
 - But good to know where delay comes from, to tweak/improve
- Gates:
 - · Switching the transistors in gates takes time
 - More gates (in series) = more delay
- Fan-out: how many gates the output drives
 - Related to capacitance
 - High fan-out = slow
 - Sometimes better to replicate logic to reduce its fan-out
- Wire delay:
 - Signals take time to travel down wires

Wrap Up

- Number Representations
 - Binary number
 - 2's complement
 - One hot representation
 - Encoder and decoder