# How Grammarly Teaches Machines

by Oleksii Sliusarenko







#### **Problem statement**

It is og course a good idea to og for a walk.



If it will rain tomorrow, I won't go for a run.





#### Problem statement

Tom is resembled by Andy.

Intransitive verb in passive voice Andy resembles Tom

If I cannot understand the material, the teacher will me.





#### Available data



~0.1 Petabytes of plain texts



10<sup>3</sup>-10<sup>6</sup> marked sentences

#### Available data





#### Grammarly uses all possible approaches





N-grams: roses are red  $\rightarrow$  5082 roses is red  $\rightarrow$  28 roses am red  $\rightarrow$  0

# Grammarly uses all possible approaches





Deep learning

#### Rule based approach





she → third-person pronoun

*have* → first-person verb

#### N-gram approach

Shane Bergsma, Dekang Lin, and Randy Goebel. 2009. Web-scale N-gram models for lexical disambiguation.

Of course it helps that the **whether** is almost always sunny and dry.

Of course it helps that the **weather** is almost always sunny and dry.



## N-gram approach

```
a(5,0) = freq(it helps that the whether)
```

a(5,1) = freq(helps that the **whether** is)

a(5,2) = freq(that the **whether** is almost)

a(5,3) = freq(the whether is almost always)

a(5,4) = freq(whether is almost always sunny)

score = sum log(a(i, j))



N-grams

#### ML approach

Matthew Shardlow. 2013. A Comparison of Techniques to Automatically Identify Complex Words

Complex:

Mike got spam today that contained gibberish.

Non-complex:

The book tells about people's irrationality.



#### ML approach

#### Features:

- $x_1$  = word frequency
- $x_2$  = word length
- $x_3$  = syllable count
- $\star$   $x_4$  = sense count
- $x_5 = synonym count$





# ML approach

Support vector machine:

$$w_1^*x_1 + w_2^*x_2 + \dots + w_5^*x_5 > 0$$



Chengjie Sun, Xiaoqiang Jin, Lei Lin, Yuming Zhao, and Xiaolong Wang. 2015. Convolutional Neural Networks for Correcting English Article Errors



I watched **a** film you were talking about yesterday.



Deep learning

#### correct:

I watched **the** film you were talking about yesterday.

No features! One-hot encoding:

```
rose = (0,0,0,0,1,0,0,0)
red = (0,1,0,0,0,0,0,0)
violet = (0,0,0,0,0,0,0,1)
...
```

(in fact, word embeddings are used)

- Better quality
- Works for all: NLP, computer vision...



# What's the catch?



Deep learning

#### Much harder algorithm:





Deep learning

Pre-processing

(2\*k)\*n representation of article context with non-static channel

Convolution layer with multiple filter widths and feature maps

Max-over time Pooling Fully connected layer with dropout and softmax output

Post-processing

- Much harder algorithm
- Needs much more data
- Needs more computation





Deep learning

#### Difference from academia



Big data



High precision requirement



High speed requirement



# Thanks!

Any questions?







#### **Credits**

Special thanks to all the people who made and released these **awesome resources** for free:

- Presentation template by <u>SlidesCarnival</u>
- Photographs by <u>Unsplash</u>