Test

December 7, 2023

Problem 1. (15 points)

- 1. Apply classical Gram-Schimdt orthogonalization and Householder reflectors to find the full QR factorization of the matrix $\begin{bmatrix} 2 & 3 \\ -2 & -6 \\ 1 & 0 \end{bmatrix}$.
- 2. Please find the least squares solution and 2-norm error $\|e\|_2$ for the following inconsistent systems: $\begin{bmatrix} 2 & 3 \\ -2 & -6 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \\ 6 \end{bmatrix}.$

Problem 2. (10 points) Fit the data to periodic models $F_1(t) = c_1 + c_2 \cos 2\pi t + c_3 \sin 2\pi t$ and $F_2(t) = c_1 + c_2 \cos 2\pi t + c_3 \sin 2\pi t + c_4 \cos 4\pi t$. Find and compare the 2-norm errors $\|e\|_2$ of F_1 and F_2 . The points are as follows: $(0,0), (\frac{1}{4},2), (\frac{1}{2},3), (\frac{3}{4},1)$.

Problem 3. (10 points) Given a square matrix $A = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$, please answer the following questions:

- 1. Find all eigenvalues and eigenvectors of A;
- 2. Apply three steps of Power Iteration with initial vector $x_0 = (1, 0)$;
- 3. Predict the result of applying Inverse Power Iteration with shift s=1 and s=5 respectively, and explain the reason.

Problem 4. (10 points) Use the three-point centered-difference formula to approximate f'(0), where $f(x) = e^x$, and find the approximation error for h = 0.1.

Problem 5. (15 points) Apply the Trapezoid Rule, Simpson's Rule and Midpoint Rule to approximate the integral $\int_0^1 x^2 dx$. Compute the error by comparing with the exact value from calculus.

Problem 6. (10 points) Given the following:

- x and w: two vectors with $||x||_2 = ||w||_2$;
- u = w x and $v = \frac{u}{\|u\|_2}$;
- $H = I 2vv^{-1}$.

Please prove that Hx = w and Hw = x.

Problem 7. (10 points) Please prove the following:

Let A be an $m \times n$ matrix where $m \le n$. There are two orthonormal bases $\{v_1, \dots, v_n\}$ of R^n and $\{u_1, \dots, u_m\}$ of R^m , and real numbers $s_1 \ge s_2 \ge \dots \ge 0$ s.t. $Av_i = s_i u_i$ for $1 \le i \le m$.

Problem 8. (10 points) Please briefly introduce the main idea of Google Page Rank.

Problem 9. (10 points) Please briefly introduce the idea of Trapezoid Rule, Simpson's Rule, Composite Newton-Cotes formulas and Midpoint Rule and compare them.