

Learning Feature Fusion for Unsupervised Domain Adaptive Person Re-identification

Jin Ding¹, Xue Zhou^{1,2}*

¹University of Electronic Science and Technology of China (UESTC),

²Shenzhen Institute of Advanced Study, UESTC

*Corresponding author:zhouxue@uestc.edu.cn

Contents

- Background
- Motivation
- Method
- Experiments
- Analysis
- Conclusion

Background

- Unsupervised Domain Adaptation (UDA)
- Unsupervised Domain Adaptive person ReID

Background

- **■** Unsupervised Domain Adaptation (UDA)
- Unsupervised Domain Adaptive person Person Re-Identification (ReID)

Source

Target

$$P(\mathbf{X}_s, \mathbf{Y}_s) \neq Q(\mathbf{X}_t, \mathbf{Y}_t)$$

 $\mathbf{Y}_s \neq \mathbf{Y}_t$

Motivation

■ Limitation of **Fine-tuning based** UDA person ReID

Motivation

■ Limitation of **Fine-tuning based** UDA person ReID

- Noisy pseudo labels
- Obscure learning

?

How to avoid obscure learning?

Method

Overview

- Fusion Module: Fuse the student network's local feature maps and the teacher network's global feature maps.
- **Expert-i:** Align the student network's local feature and the fusion feature.

Method

■ Fusion Module (FM)

$$egin{aligned} \Phi^{P_j} &= \sigmaig(Z^{P_j}ig) \otimes \Phi^{P_0} \ &= \sigmaig(MLPig(F^{P_j}ig) \otimes F^{P_j}ig) \otimes \Phi^{P_0} \ &= \sigmaig(W_2ig(ext{ReLU}ig(W_1ig(F^{P_j}ig)ig)ig) \otimes F^{P_j}ig) \otimes \Phi^{P_0} \end{aligned}$$

- ➤ Only the student network's local feature maps are forwarded to a MLP for adaptively learning fusion.
- > The red line is a residual structure to obtain the learned attention map.

Method

University of Electronic Science and Technology of China

Optimization

$$L_{ ext{total}} = lpha L_{ ext{ReID}}^t + \gamma \sum_{j=1}^K L_{tri}^{P_j} = lpha ig(L_{cls}^t + \lambda L_{tri}^t ig) + \gamma \sum_{tri}^K L_{ti}^{P_j}$$

• Classification loss:
$$L^t_{cls} = rac{1}{N_t} \sum_{i=1}^{N_t} L_{ce}ig(C^tig(f^{P_0}(x_i)ig), \hat{y}_{i,0}ig)$$

• Softmax triplet loss:
$$L_{tri}^{P_j} = -\frac{1}{N_t} \sum_{i=1}^{N_t} \log \mathcal{H}_j(x_i \mid \theta^s)$$

$$\mathcal{H}_{j}(x_{i}\mid heta^{s}) = rac{e^{\left\|f^{P_{j}}(x_{i}\mid heta^{s}) - f^{P_{i}}(x_{i,-}\mid heta^{s})
ight\|_{2}}}{e^{\left\|f^{P_{j}}(x_{i}\mid heta^{s}) - f^{P_{j}}(x_{i,+}\mid heta^{s})
ight\|_{2}} + e^{\left\|f^{P_{j}}(x_{i}\mid heta^{s}) - f^{P_{j}}(x_{i,-}\mid heta^{s})
ight\|_{2}}}$$

Experiments

Training stage

1) First stage: Pretrain on the source domain.

2) **Second stage:** Fine-tune on the target domain.

Component-wise analysis of the proposed model.

Methods	D-1	to-M	M-to-D		
Methods	mAP	Rank1	mAP	Rank1	
Direct transfer	27.8	55.6	26.9	42.6	
Baseline(only L_{ReID}^t)	69.0	86.6	61.3	75.6	
LF^2 w/o FM	78.5	90.5	68.5	81.5	
$LF^2(M_{t,j}=500)$	79.9	91.8	68.7	81.7	
$LF^2(M_{t,j}=700)$	83.2	92.8	72.2	82.9	
$LF^2(M_{t,j}=900)$	82.3	92.4	73.5	83.7	

- ➤ **D-to-M**: pretrain on Duke and fine-tine on Market.
- ➤ **M-to-D**: pretrain on Market and fine-tine on Duke.
- \triangleright $M_{t,i}$: the number of pseudo identities

- Direct transfer: directly using the source-domain pre-trained model to adapt the target domain.
- Baseline(only L_{ReID}^t): It only uses the teacher network's global feature for clustering.
- $LF^2 w/o FM$: Replace the fusion features with the teacher network's local features for clustering.

Experiments

■ State-of-the-art Comparison

Categories	Methods	Reference	D-to-M				M-to-D			
			mAP	Rank1	Rank5	Rank10	mAP	Rank1	Rank5	Rank10
GAN transferring	SPGAN+LMP [23]	CVPR'18	26.7	57.7	75.8	82.4	26.2	46.4	62.3	68.0
	PDA-Net [24]	ICCV'19	47.6	75.2	86.3	90.2	45.1	63.2	77.0	82.5
Joint learning	ECN [25]	CVPR'19	43.0	75.1	87.6	91.6	40.4	63.3	75.8	80.4
	MMCL [27]	CVPR'20	60.4	84.4	92.8	95.0	51.4	72.4	82.9	85.0
	JVTC+ [26]	ECCV'20	67.2	86.8	95.2	97.1	66.5	80.4	89.9	92.2
	IDM [28]	ICCV'21	82.8	93.2	97.5	98.1	70.5	83.6	91.5	93.7
ADTC AD-Clu MMT [MEB-N Dual-Re UNRN GLT [1 HCD [1 P^2 LR RDSBN	SSG [7]	ICCV'19	58.3	80.0	90.0	92.4	53.4	73.0	80.6	83.2
	ADTC [9]	ECCV'20	59.7	79.3	90.8	94.1	52.5	71.9	84.1	87.5
	AD-Cluster [8]	CVPR'20	68.3	86.7	94.4	96.5	54.1	72.6	82.5	85.5
	MMT [10]	ICLR'20	71.2	87.7	94.9	96.9	65.1	78.0	88.8	92.5
	MEB-Net [11]	ECCV'20	76.0	89.9	96.0	97.5	66.1	79.6	88.3	92.2
	Dual-Refinement [15]	TIP'21	78.0	90.9	96.4	97.7	67.7	82.1	90.1	92.5
	UNRN [14]	AAAI'21	78.1	91.9	96.1	97.8	69.1	82.0	90.7	93.5
	GLT [12]	CVPR'21	79.5	92.2	96.5	97.8	69.2	82.0	90.2	92.8
	HCD [13]	ICCV'21	80.0	91.5	_	_	70.1	82.2	=	-
	$P^{2}LR$ [32]	AAAI'22	81.0	92.6	97.4	98.3	70.8	82.6	90.8	93.7
	RDSBN+MDIF [33]	CVPR'21	81.5	92.9	97.6	98.4	66.6	80.3	89.1	92.6
	$LF^2(Ours)$	This paper	83.2	92.8	97.8	98.4	73.5	83.7	91.9	94.3

➤ Top three performance values are highlighted in RED, BLUE and ORANGE colors respectively.

Analysis

Visualization of feature maps

- **DT**: Direct transfer
- Ours(g+u): Fuse the teacher network's **global** feature map and the student network's **upper** local feature map.
- Ours(g+l): Fuse the teacher network's global feature map and the student network's lower local feature map.

Analysis

■ Visualization of clustering features

Visualization of 20 pedestrians on target domain.

Visualization of 10 pedestrians during target-domain fine-tuning with our framework

Conclusion

- We propose a Learning Feature Fusion (LF2) framework that adaptively learns to fuse global and local features to obtain more comprehensive representations.
- A learnable Fusion Module (FM) is proposed to avoid obscure learning of multiple pseudo labels.

• Experiments conducted on two common UDA ReID settings show that our method achieves significant performance gain over the state-of-the-arts.

Thank you for your attention!

