PODS Lab 13: Supervised Learning, Classification, & Logistic Regression

Hamza Alshamy

Center for Data Science, NYU ha2486@nyu.edu

04/25/25

- Logistic Regression
- Classification Metrics

Motivating Example: Loan Default Prediction

Scenario: You are a bank predicting whether a loan applicant will **default** ($y \in \{0,1\}$) based on their **score** (x).

Motivating Example: Loan Default Prediction

Scenario: You are a bank predicting whether a loan applicant will **default** $(y \in \{0,1\})$ based on their **score** (x).

The score combines factors like:

Credit history, income, past repayments, etc.

Motivating Example: Loan Default Prediction

Scenario: You are a bank predicting whether a loan applicant will **default** $(y \in \{0,1\})$ based on their **score** (x).

The score combines factors like:

Credit history, income, past repayments, etc.

Idea:

- ► High score: ⇒ stronger evidence the applicant will not default.
- ► Low score: ⇒ greater risk of default.
- In the middle, we have uncertainty we model this as a probability.

Goal: Use a model to map the score to a probability of default:

 $P(\text{default} \mid \text{score}) = \text{some function of the score}$

Visualizing Example: Loan Approval

Observation:

- ▶ **Outcome** is binary: default (1) or non-default (0).
- The score is continuous, so we need a model that maps it to a probability.

Visualizing Example: Linear Regression doesn't cut it

- ▶ Unbounded Predictions: Linear regression can output values below 0 or above 1 invalid predictions.
- Linearity Assumption: Assumes each unit increase in score has the same effect on the outcome.

Visualizing Example: Logistic Regression

- ► **Non-linear:** When score = 5, Little changes in the score have big impacts on our prediction.
- ▶ Bounded: Predictions stay between 0 and 1 perfect for modeling probabilities.

Key Characteristics:

- Supervised learning: learns from labeled data.
- Classification task: predicts discrete outcomes (e.g., default vs non-default).
- ▶ **Goal**: estimate the *probability* of a class given input features.

Key Characteristics:

- Supervised learning: learns from labeled data.
- Classification task: predicts discrete outcomes (e.g., default vs non-default).
- ▶ **Goal**: estimate the *probability* of a class given input features.

Main Idea:

Logistic regression maps continuous predictors to discrete outcomes by applying the **logistic (sigmoid) function**.

Key Characteristics:

- Supervised learning: learns from labeled data.
- Classification task: predicts discrete outcomes (e.g., default vs non-default).
- ▶ **Goal**: estimate the *probability* of a class given input features.

Main Idea:

Logistic regression maps continuous predictors to discrete outcomes by applying the **logistic (sigmoid) function**.

- When score is in the middle: Little changes in these core have big impacts on our probability.
 - Moving from score 5 to 4 is a *huge* change in relative terms.

Key Characteristics:

- **Supervised learning**: learns from labeled data.
- Classification task: predicts discrete outcomes (e.g., default vs non-default).
- **Goal**: estimate the *probability* of a class given input features.

Main Idea:

Logistic regression maps continuous predictors to discrete outcomes by applying the **logistic (sigmoid) function**.

- When **score** is in the middle: Little changes in these core have big impacts on our probability.
 - Moving from score 5 to 4 is a *huge* change in relative terms.
- When score is large: When the score is 9, I have very high evidence that he will not default.
 - So, jumping from 9 to 10 does not change out probability that much.

Classification via Logistic Regression – Thresholding

- Logistic regression outputs a probability between 0 and 1.
- Q: How do we turn this into a binary prediction?

Classification via Logistic Regression – Thresholding

- Logistic regression outputs a probability between 0 and 1.
- Q: How do we turn this into a binary prediction?
- ► **A:** Apply a **threshold** (e.g., classify as 1 if probability > 0.4).

Any applicant with P(Default) > 0.4 is classified as **default** (1).

From Linear Regression to Logistic Regression

- ► Logistic regression is built from two key components:
 - Linear model:

$$z = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$

Sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

From Linear Regression to Logistic Regression

- Logistic regression is built from two key components:
 - Linear model:

$$z = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$

Sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Plug the linear model into the sigmoid:

Logistic Regression!

$$P(y = 1 \mid \mathbf{x}) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n)}}$$

Properties of the Sigmoid Function:

- ▶ **Bounded:** Always stays between 0 and 1 (Probabilistic Output!).
- Non-linear: Captures uncertainty and saturation effects.
- Continuous.

Classification Evaluation Metrics

- In linear regression, we evaluate model performance using metrics like:
 - Root Mean Squared Error (RMSE)
 - ② Coefficient of Determination (R^2)
- But what about classification models, like Logistic Regression?
- Since the output is categorical (e.g., 0 or 1), we need different evaluation metrics.

Classification Metrics from Confusion Matrix

		Actual	
		Positive (1)	Negative (0)
Predicted	Positive (1)	True Positive (TP)	False Positive (FP)
	Negative (0)	False Negative (FN)	True Negative (TN)

Accuracy: Proportion of correct predictions.

$$\mathsf{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

Precision: Proportion of positive predictions that were actually correct.

$$Precision = \frac{TP}{TP + FP}$$

Recall (Sensitivity): Ability to identify all positive instances.

$$Recall = \frac{TP}{TP + FN}$$

Specificity: Ability to identify all negative instances.

Specificity =
$$\frac{TN}{TN + FP}$$

How to Choose the Relevant Metric?

- Precision: When the cost of predicting a positive incorrectly is high (e.g., falsely predicting guilt)
- ▶ Recall: When the cost of missing a positive instance is high (e.g., failing to detect cancer)
- Specificity: When the cost of missing a negative instance is high (e.g., When the cost of falsely diagnosing a healthy person as sick is high – prescribing expensive treatment to someone who doesn't need it)

How to Choose the Relevant Metric?

- Precision: When the cost of predicting a positive incorrectly is high (e.g., falsely predicting guilt)
- ▶ Recall: When the cost of missing a positive instance is high (e.g., failing to detect cancer)
- Specificity: When the cost of missing a negative instance is high (e.g., When the cost of falsely diagnosing a healthy person as sick is high – prescribing expensive treatment to someone who doesn't need it)

Considerations:

- Suppose you are trying to detect fraud.
- Out of 100 cases, only 4 are fraudulent.
- If you predict *all* cases as non-fraud, your **accuracy** is 96%.
- Accuracy can be misleading in imbalanced datasets.

Area under the Receiver Operator Curve (AUROC)

- ► The ROC curve plots **True Positive Rate (Recall)** vs. **False Positive Rate**.
- ► The (AUC) measures overall classification performance.