ARBEITSKREIS MODALLOGIK

NORMALE MODALLOGIKEN: K, D, T, B, S4, S5

WICHTIGE RELATIONSEIGENSCHAFTEN

Seien d, d' und d'' beliebige Objekte. Dann gilt:

<u>Kürzel</u>	<u>Eigenschaft</u>	<u>Bedingung</u>	<u>Formel</u>	<u>Beispiel</u>
ρ	Reflexivität	<d, d=""> ∈ [R]</d,>	∀x Rxx	x ähnelt y
σ	Symmetrie	Wenn <d, d'=""> ∈ [R], dann <d', d=""> ∈ [R]</d',></d,>	$\forall xy (Rxy \rightarrow Ryx)$	x diskutiert-mit y
Т	Transitivität	Wenn $<$ d, $d'> \in [R]$ und $<$ d', $d''> \in [R]$, dann $<$ d, $d''> \in [R]$	$\forall xyz (Rxy \land Ryz \rightarrow Rxz)$	x ist-kleiner-als y
η	Serialität	<d, d'=""> ∈ [R]</d,>	∀x∃y Rxy	x ist-Kind-von y

Eine reflexive, symmetrische und transitive Relation ist eine Äquivalenzrelation. Eine serielle, symmetrische und transitive Relation ist eine reflexive Relation. Reflexivität impliziert Serialität.

K: AXIOMATIK

<u>Formel</u>	<u>Name</u>
$p \rightarrow (q \rightarrow p)$	2. Paradoxie des materialen Konditionals
$(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$	Pfeil-Verteiler
$(\sim p \rightarrow \sim q) \rightarrow (q \rightarrow p)$	Kontraposition
$\Box(p\toq)\to(\Boxp\to\Boxq)$	Box-Verteiler

Herleitungsregeln:

 $\begin{array}{lll} \underline{\text{Name}} & \underline{\text{Abk\"{u}rzung}} & \underline{\text{Regel}} \\ \text{modus ponens} & \text{m. p.} & \{a \rightarrow \beta, a\} \vdash \beta \\ \\ \text{Nezessisierungsregel} & \text{NEC} & \{\} \vdash a \Rightarrow \{\} \vdash \Box a \\ \end{array}$

20.04.2021 Vitus Schäfftlein

DIE HIERARCHIE MODALLOGISCHER SYSTEME – EIN ÜBERBLICK

Stärke des Systems

20.04.2021 Vitus Schäfftlein

Name	Axiom	Condition on Frames	R is
(<i>D</i>)	$\Box A \rightarrow \Diamond A$	$\exists uwRu$	Serial
(M)	$\square A \to A$	wRw	Reflexive
(4)	$\Box A \rightarrow \Box \Box A$	$(wRv \& vRu) \Rightarrow wRu$	Transitive
(B)	$A \to \Box \Diamond A$	$wRv \Rightarrow vRw$	Symmetric
(5)	$\Diamond A \to \Box \Diamond A$	$(wRv \& wRu) \Rightarrow vRu$	Euclidean
(CD)	$\Diamond A \to \Box A$	$(wRv \& wRu) \Rightarrow v = u$	Functional
$(\Box M)$	$\Box(\Box A \to A)$	$wRv \Rightarrow vRv$	Shift
			Reflexive
(<i>C</i> 4)	$\Box\Box A \to \Box A$	$wRv \Rightarrow \exists u(wRu \& uRv)$	Dense
(<i>C</i>)	$\Diamond \Box A \to \Box \Diamond A$	$wRv \& wRx \Rightarrow \exists u(vRu \& xRu)$	Convergen
20 04	. 2021	Vitus Schäfftlein	6

Table 1. A list of standard normal modal logics.

NORMALE MODALSEMANTIK (MODELL)

Ein K-Modell ist ein Tripel <W, R, [...]>, für den gilt: W ist eine nicht-leere Menge.

R ist eine Relation auf W (also: $R \subseteq W \times W$), sodass gilt: ...

[...] ist eine Funktion, die jeder wff von K für jeden Kontext w ∈ W einen Wahrheitswert aus der Menge {1, 0} zuordnet. Dabei gelten die folgenden einschränkenden Bedingungen:

- 1. $\llbracket \neg \alpha \rrbracket_w = 1 \text{ gdw } \llbracket \alpha \rrbracket_w = 0$
- 2. $\llbracket \lceil a \land \beta \rceil \rrbracket_w = 1$ gdw sowohl $\llbracket a \rrbracket_w = 1$ als auch $\llbracket \beta \rrbracket_w = 1$
- 3. $\llbracket \neg \neg \neg \rrbracket_w = 1$ gdw für alle Kontexte w' \in W gilt: Wenn wRw', dann $\llbracket a \rrbracket_{w'} = 1$

K-Tableaux: Regeln II

Seien i und $j \in \mathbb{N}_0$, a eine wff. Dann gilt:

5. Die AL-Tableauregeln werden erweitert:

Vitus Schäfftlein

K-TABLEAUX: REGELN II

Seien i, j und $k \in \mathbb{N}_0$. Dann gilt:

Reflexivität Symmetrie Transitivität

Serialität

zz:
$$\Box p \vdash_{\eta} \Diamond p$$

20.04.2021

11

