Санкт-Петербургский Государственный Университет Аэрокосмического Приборостроения

Исследование Дисперсии и Затухания Волн в Волноводе Прямоугольного Печения с H_{10} .

Отчет по Лабораторной работе №7

Выполнил: Студент факультета №5 Группы 5025 кафедры 52 Соколовский Роман Александрович

1. Цель Работы

- Изучение явления дисперсии и затухания волн в волноводе.
- Изучение методов измерения параметров, характеризующих дисперсию и затухание.
- Экспериментальное исследование изменения фазовой и групповой скоростей, а также затухания в зависимости от частоты генерируемых колебаний.
- Исследование математической зависимости затухания, фазовой и групповой скоростей от поперечных размеров волновода, диэлектрической проницаемости заполнения и удельной проводимости стенок в заданном частотном диапазоне.

2. Схема Лабораторной Установки

Схема лабораторной установки представлена на Рис. 1.

Рис. 1. Принципиальная схема лабораторной установки

3. Результаты измерений и вычислений

3.1. Измерения и вычисления.

3.1.1. Теоретический коэффициент затухания $\alpha_{H_{10}}$.

$$\alpha_{H_{10}} = \frac{0.793 \left[1 + 2\frac{b}{a} \left(\frac{\lambda}{2a} \right)^2 \right]}{b \sqrt{\sigma \lambda \left[1 - \left(\frac{\lambda}{2a} \right)^2 \right]}}$$
(3.1)

3.1.2. Экспериментальный коэффициент затухания $\alpha_{H_{10}}$.

$$\alpha_{H_{10}} = 8.686 \frac{\mathrm{KB}_v}{l} \tag{3.2}$$

$$KB_v = \frac{\pi \cdot \Delta z}{\Lambda} \tag{3.3}$$

$$\Lambda = 2(l_{2\min} - l_{1\min}) \tag{3.4}$$

$$\lambda = \frac{\Lambda}{\sqrt{1 + \left(\frac{\Lambda}{2a}\right)^2}}\tag{3.5}$$

3.2. Таблицы результатов измерений и вычислений. Экспериментальные характеристики электромагнитной волны в волноводе сведены в Таблицу 1. Теоретические величины представлены в Таблице 2.

f, MHz	z_1	z_2	z_1'	z_2'	l_1	l_2	L	λ	KB_v	α	V_{gr}/c	V_{ph}/c
3000	1.4	1.7	8.6	8.3	1.55	8.45	13.8	9.92	20.4	59.20	0.72	1.38
3200	0.5	2.3	6.6	8.4	1.4	7.5	12.2	9.27	4.29	12.44	0.75	1.32
3600	2.3	3.3	7.3	8.4	2.8	7.85	10.1	8.24	8.38	24.26	0.81	1.22
4000	1.5	1.6	5.8	5.9	1.55	5.85	8.6	7.36	27.4	79.34	0.85	1.16
4200	1.9	2.0	6.1	6.2	1.95	6.15	8.4	7.24	27.2	78.90	0.86	1.16

Таблица 1. Экспериментальные характеристики.

f, MHz	λ	Λ	V_{gr}/c	V_{ph}/c	α	α , dB/m
3000	0.1	0.138	0.71	1.39	0.0197	34.11
3200	0.093	0.124	0.75	1.32	0.0186	34.61
3600	0.083	0.102	0.81	1.23	0.0172	35.29
4000	0.075	0.087	0.85	1.17	0.0165	35.65
4200	0.071	0.082	0.86	1.15	0.0164	35.70

Таблица 2. Теоретические характеристики.

3.3. Графики и рисунки. На основе данных таблиц 1, 2 были построены сравнительные характеристики теоретических и практических зависимостей фазовой и групповой скоростей (Рис. 2), а также коэффициента затухания электромагнитной волны (Рис. 3).

Рис. 2. График зависимости фазовой и групповой скоростей от частоты.

Рис. 3. График зависимости коэффициента затухания ЭМВ от частоты.