I-Maps: Graphs and Distributions

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- I-Maps
- I-Map to Factorization
- Factorization to I-Map
- Perfect Map

Graphs and Distributions

- Relating two concepts:
 - Independencies in distributions
 - Independencies in graphs
- I-Map is a relationship between the two

Independencies in a Distribution

- Let P be a distribution over X
- I(P) is set of conditional independence assertions of the form $(X \perp Y|Z)$ that hold in P

X	Y	P(X,Y)
x^0	y^0	0.08
x^0	y^{I}	0.32
x^{I}	y^0	0.12
x^{I}	y^{I}	0.48

X and Y are independent in P, e.g.,

$$P(x^{I})=0.48+0.12=0.6$$

 $P(y^{I})=0.32+0.48=0.8$
 $P(x^{I},y^{I})=0.48=0.6x0.8$

Thus $(X \perp Y | \phi) \in I(P)$

Independencies in a Graph

Graph G with CPDs
 is equivalent to a set of independence assertions

 $P(D,I,G,S,L) = P(D)P(I)P(G \mid D,I)P(S \mid I)P(L \mid G)$

Local Conditional Independence Assertions (starting from leaf nodes):

 $I(G) = \{(L \perp I, D, S \mid G), \quad L \text{ is conditionally independent of all other nodes given parent } G$ $(S \perp D, G, L \mid I), \quad S \text{ is conditionally independent of all other nodes given parent } I$ $(G \perp S \mid D, I), \quad \text{Even given parents, } G \text{ is NOT independent of descendant } L$ $(I \perp D \mid \phi), \quad \text{Nodes with no parents are marginally independent}$ $(D \perp I, S \mid \phi)\} \quad D \text{ is independent of non-descendants } I \text{ and } S$

- Parents of a variable shield it from probabilistic influence
 - Once value of parents known, no influence of ancestors
- Information about descendants can change beliefs about a node

I-MAP

- Let G be a graph associated with a set of independencies I(G)
- Let P be a probability distribution with a set of independencies I(P)
- Then G is an I-map of I if $I(G) \subseteq I(P)$
- From direction of inclusion
 - distribution can have more independencies than the graph
 - Graph does not mislead in independencies existing in P

Example of I-MAP

 G_0 encodes $X \perp Y$ or $I(G_0) = \{X \perp Y\}$

 G_1 encodes no Independence or $I(G_1) = \{\Phi\}$

 G_2 encodes no Independence $I(G_2) = \{\Phi\}$

X	Y	P(X,Y)
x^0	y^0	0.08
x^0	y^{I}	0.32
x^{l}	y^0	0.12
x^{I}	y^{I}	0.48

X and Y are independent in P, e.g.,

 G_0 is an I-map of P G_1 is an I-map of P G_2 is an I-map of P

X	Y	P(X,Y)
x^0	y^0	0.4
x^0	y^{I}	0.3
x^{I}	y^0	0.2
x^{I}	y^{I}	0.1

X and Y are not independent in PThus $(X \perp Y) \mid \subseteq I(P)$

 G_0 is not an I-map of P G_1 is an I-map of P G_2 is an I-map of P

If *G* is an I-map of *P* then it captures some of the independences, not all

I-map to Factorization

- A Bayesian network G encodes a set of conditional independence assumptions I(G)
- Every distribution P for which G is an I-map should satisfy these assumptions
 - Every element of I(G) should be in I(P)
- This is the key property to allowing a compact representation

I-map to Factorization

From chain rule of probability

P(I,D,G,L,S) = P(I)P(D|I)P(G|I,D)P(L|I,D,G)P(S|I,D,G,L)

- Relies on no assumptions
- Also not very helpful
 - Last factor requires evaluation of 24 conditional probabilities

Grade

SAT

Apply conditional independence assumptions induced from the graph

 $D \perp I \subseteq I(P)$ therefore P(D|I) = P(D) $(L \perp I, D) \subseteq I(P)$ therefore P(L|I, D, G) = P(L|G)

- Thus we get $P(D,I,G,S,L) = P(D)P(I)P(G \mid D,I)P(S \mid I)P(L \mid G)$

- Which is a factorization into local probability models
- Thus we can go from graphs to factorization of P

Factorization to I-map

- We have seen that we can go from the independences encoded in G, i.e., I (G), to Factorization of P
- Conversely, Factorization according to G implies associated conditional independences
 - If P factorizes according to G then G is an I-map for P
 - Need to show that if P factorizes according to G then I(G) holds in P
 - Proof by example

Example that independences in G hold in P

- P is defined by set of CPDs
- Consider independences for S in G, i.e., $P(S \perp D, G, L|I)$

Starting from factorization induced by graph

$$P(D,I,G,S,L) = P(D)P(I)P(G \mid D,I)P(S \mid I)P(L \mid G)$$

- Can show that P(S|I,D,G,L)=P(S|I)
- Which is what we had assumed for P

Perfect Map

- I-map
 - All independencies in I(G) present in I(P)
 - Trivial case: all nodes interconnected

- All independencies in *I(P)* present in *I(G)*
- Trivial case: all nodes disconnected

- Both an I-map and a D-map
- Interestingly not all distributions P over a given set of variables can be represented as a perfect map
 - Venn Diagram where D is set of distributions that can be represented as a perfect map

