Procédures de qualification

Installatrice-électricienne CFC Installateur-électricien CFC

Connaissances professionnelles écrites

Pos. 4 Technique des systèmes électriques

Dossier des expertes et experts

Temps: 90 minutes

Auxiliaires: Formulaire, calculatrice de poche (sans banque de données), règle, cercle,

équerre et rapporteur.

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

- Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leurs unités soulignés deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.

- Pour des exercices avec des réponses à choix multiple, pour chaque réponse fausse il sera déduit le même nombre de points que pour une réponse exacte.

- Si dans un exercice on demande plusieurs réponses vous êtes tenu de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.

- S'il manque de la place, la solution peut être écrite au dos de la feuille.

Barème: Nombres de points maximum: 49,0

47,0 - 49,0	Points = Note	6,0
42,0 - 46,5	Points = Note	5,5
37,0 - 41,5	Points = Note	5,0
32,0 - 36,5	Points = Note	4,5
27,0 - 31,5	Points = Note	4,0
22,5 - 26,5	Points = Note	3,5
17,5 - 22,0	Points = Note	3,0
12,5 - 17,0	Points = Note	2,5
7,5 - 12,0	Points = Note	2,0
2,5 - 7,0	Points = Note	1,5
0,0 - 2,0	Points = Note	1,0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 9.9.2008)

Délai d'attente: Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1^{er} septembre 2012.

Créé par: Groupe de travail USIE examen de fin d'apprentissage

Installatrice-électricienne CFC / Installateur-électricien CFC

Editeur: CSFO, département procédures de qualification, Berne

Exer	kercices					maximal	de points obtenus		
1.	5.1.3 Propriétés et description Cochez d'une croix la b		pou	r la branche é	électr	ique.		2	
	PVC	Thermoplastique	X	Duroplaste	0	Elastome	ère 🔾		
	Caoutchouc	Thermoplastique	0	Duroplaste	0	Elastome	ere X		
	Plastique déformable	Thermoplastique	X	Duroplaste	0	Elastome	ere 🔾	(0.	
	Résine PUR	Thermoplastique	0	Duroplaste	X	Elastome	ère 🔾	(0,5 par rép)	
				1		1		,	
2.	5.1.4 Un FI-LS est constitué e - DDR (dispositifs de - LS – déclencheur - LS – déclencheur Quelle unité de fonction ci-dessous ?	e protection à co thermique magnétique	uran	t différentiel-r	ésid	uel)		2	
					DDR	LS-décl. thermique	LS-décl. magnétique		
	Les neutres de 2 group	es sont inversés	S		X		0		
	Trop de consommateu	rs raccordés			С	X	0		
	Liaison entre 2 conduc	teurs actifs			С		X		
	Liaison entre PE et N c	lans l'installatior	1		Х		0	(0,5 par rép)	
3.	 5.1.7 Une lampe, à filament, halogène bas-voltage est raccordée à un transformateur électronique. Pourquoi ne pouvez-vous pas mesurer, correctement, la tension à la lampe avec un simple multimètre? Solution : Les transformateurs électroniques produisent une tension secondaire avec de hautes fréquences. Les simples multimètres ne mesurent correctement que des tensions à 50 Hz. 				2				

Exer	cices	Nombre maximal	de points maximal
4.	 5.1.6 A un transformateur, raccordé à un réseau 230 V, on mesure une tension, au secondaire, de 60 V et un courant de 25 A. L'enroulement primaire comporte 1'200 spires. Les pertes sont négligées. a) Sur quelle intensité doit être réglée la protection de surcharge du primaire du transformateur ? b) Calculez le nombre de spires de l'enroulement secondaire. 	2	
	Solution: a) $ \frac{U_1}{U_2} = \frac{I_2}{I_1} \Rightarrow I_1 = \frac{I_2 \cdot U_2}{U_1} = \frac{25 \text{ A} \cdot 60 \text{ V}}{230 \text{ V}} = \frac{6,52 \text{ A}}{230 \text{ V}} $	(1)	
	b) $N_2 = \frac{N_1 \cdot U_2}{U_1} = \frac{1'200 \cdot 60 \text{ V}}{230 \text{ V}} = \frac{313 \text{ Spires}}{}$	(1)	
5.	5.1.9 L'ordonnance sur la protection contre le rayonnement non ionisant (ORNI) dit que, dans une chambre à coucher, aucune colonne montante et aucun ensemble d'appareillage ne doit être placé. Pour quelles raisons ? Solution:	2	
	Les colonnes montantes ainsi que les Eap's conduisent fréquemment des gros courants, lesquels engendrent un grand champ magnétique.	(1)	
	Ces installations sont en permanence sous tension et provoquent un champ électrique.	(1)	
6.	5.2.1 Quelle grandeur est utilisée pour déterminer le rendement énergétique des sources lumineuses ? Cochez d'une croix la bonne réponse.	1	
	Solution : Flux lumineux O		
	Eclairement O		
	Efficacité lumineuse X		
	Rendement lumineux		

Exercices	Nombre maximal	de points maximal
7. L'éclairage d'une salle de classe doit être recalculé et échangé. Citez quatre grandeurs déterminantes pour définir le nombre de l Solutions possibles: - Eclairement produit - Rendu des couleurs des surfaces du local - Eclairement nécessaire - Rendement lumineux du local - Rendement lumineux des luminaires - Efficacité lumineuse des sources - Facteur de vieillissement	2	
 5.2.4 Une pompe à chaleur à moteur électrique fonctionne avec un coeperformance moyen de 4,2. a) Qu'exprime ce chiffre? b) Combien d'énergie électrique sera consommée, si la pompe selon un compteur calorifique, produit 325 kWh? Solutions: a) La proportion entre l'énergie calorifique produite et l'énergie consommée. (Pas la puissance). Ou: Il démontre le rendement de l'installation. b) W_{Cons} = W_{Prod.} Coefficient = 325 kWh / 4,2 = 77,4 kWh 	e à chaleur,	

Exer	cices	Nombre of maximal	de points maximal
9.	5.2.5 Plaquette signalétique d'un moteur : Fabricant Typ 3 ~ Motor Nr. Y 400 V 8, 7 A 4 kW S1 cosf 0,85 1' 435/min 3 ~ Motor IsolKI.B IP54 29 kg a) Déterminez, selon la plaquette, le rendement du moteur. b) Combien de paire de pôles a ce moteur ? (Calcul pas nécessaire) c) De combien est le glissement, en fonctionnement nominal ?	4	
	Solutions: a) $ \eta = \frac{P_2}{P_1} = \frac{P_2}{\sqrt{3} \cdot U \cdot I \cdot \cos \varphi} = \frac{4'000 W}{\sqrt{3} \cdot 400 V \cdot 8,7 A \cdot 0,85} = \underbrace{0,781}_{===} \text{ou } \frac{78,1\%}{=====} $	(2)	
	b) 2 paires de pôles	(1)	
	c) $s = \frac{n_s - n}{n_s} \cdot 100\% = \frac{1'500 \text{min}^{-1} - 1'435 \text{min}^{-1}}{1'500 \text{min}^{-1}} \cdot 100\% = \frac{4,33\%}{1}$	(1)	
10	5.2.5	2	
10.	Sélectionnez les types de moteur, en cochant d'une croix la bonne réponse. Motent a solution: Wotent à collectent) Wotent à collectent d'une croix la bonne réponse.	2	
	Moteur triphasé X		
	Moteur à condensateur X		
	Moteur universel O X		
	Moteur à pôles bagués x O	(0,5 par rép)	

rercices	Nombre maximal	de point maxima
1. 5.3.2 I 3 x 400 V/50 Hz I C M 3-	4	
Compensation de l'énergie réactive induite par un condensateur. $ \begin{array}{l} 6,5 \text{ kW} \\ 3 \text{ x } 400 \text{ V} \\ \cos \phi = 0,84 \\ \eta = 0,8 \\ \end{array} $ a) Calculez le courant I_M . b) Transcrivez par dessin de vecteurs le courant I, lorsque le facteur de puissance de toute l'installation est amélioré à 0,9. Tracez tous les vecteurs. Echelle: $10 \text{ mm} \triangleq 1 \text{ A}$		
a) $I_{M} = \frac{P_{2}}{\sqrt{3} \cdot U \cdot \cos \varphi \cdot \eta} = \frac{6'500 \text{ W}}{\sqrt{3} \cdot 400 \text{ V} \cdot 0,84 \cdot 0,8} = \frac{13,96 \text{ A}}{}$	(2)	
b) U 32,9° 25,8°		
$I = 130 \text{ mm} \triangleq \underline{13 \text{ A}}$ $(I_M = 14,0 \text{ A})$ $(I_C = 1,9 \text{ A})$		
Tolérance : ± 0,5 A	(2)	

Exer	cices	Nombre maximal	de points maximal
12.	5.1.6 Un transformateur monophasé absorbe sous $U_1 = 230 \text{ V}$ un courant $I_1 = 36 \text{ A}$ avec un $\cos \phi_1 = 0.84$. Sous une tension $U_2 = 400 \text{ V}$ et un $\cos \phi_2 = 0.78$ il est chargé à $I_2 = 18 \text{ A}$. Calculez: a) La puissance perdue (dissipée). b) Le facteur de puissance.	3	Пахіпа
	Solutions: a) $P_{1} = U_{1} \cdot I_{1} \cdot \cos \varphi_{1} = 230 \text{ V} \cdot 36 \text{ A} \cdot 0,84 = 6'955,2 \text{ W}$ $P_{2} = U_{2} \cdot I_{2} \cdot \cos \varphi_{2} = 400 \text{ V} \cdot 18 \text{ A} \cdot 0,78 = 5'616,0 \text{ W}$ $P_{V} = P_{1} - P_{2} = 6'955,2 \text{ W} - 5'616,0 \text{ W} = \underline{1'339,2 \text{ W}}$	(2)	
	b) $\eta = \frac{P_2}{P_1} = \frac{5'616,0 \text{ W}}{6'955,2 \text{ W}} = \frac{0,807}{9000} \Rightarrow \frac{80,7\%}{9000}$	(1)	
13.	5.3.1 Déterminez la résistance totale de ce couplage. $P_2 = 20 \text{ W}$ R_2 $U_{23} = 40 \text{V}$ R_3 Solution : $U = 200 \text{ V}$ $I_2 = \frac{P_2}{U_{23}} = \frac{20 \text{ W}}{40 \text{ V}} = 0,5 \text{ A}$	3	
	$I_3 = \frac{U_{23}}{R_3} = \frac{40 \text{ V}}{50 \Omega} = 0.8 \text{ A}$ $I = I_2 + I_3 = 0.5 \text{ A} + 0.8 \text{ A} = \underline{1.3 \text{ A}}$	(2)	
	$R_{tot} = \frac{U}{I} = \frac{200 \text{ V}}{1,3 \text{ A}} = \frac{153,8 \Omega}{1}$	(1)	

Exer	cices	Nombre maximal	de points maximal
14.	 5.3.4 On raccorde à un réseau 3 x 400/230 V un chauffe- eau équipé de 3 résistances de 10 Ω chacune et couplées en triangle. a) Calculez la puissance active totale. b) Calculez la puissance active si une résistance est coupée. c) Calculez la puissance active si un conducteur d'alimentation est coupé. 	4	
	Solutions : a) $P_{\text{Tot.(a)}} = 3 \cdot P_{\text{Str}} = 3 \cdot \frac{U^2}{R_{\text{Str}}} = 3 \cdot \frac{(400 \text{ V})^2}{10 \Omega} = \frac{48 \text{kW}}{10 \Omega}$	(2)	
	b) $P_{(b)} = 2 \cdot P_{Str} = 2 \cdot \frac{U^2}{R_{Str}} = 2 \cdot \frac{(400 \text{ V})^2}{10 \Omega} = \frac{32 \text{ kW}}{10 \Omega}$ Ou: $P_{(b)} = \frac{2}{3} \cdot P_{Tot.(a)} = \frac{2}{3} \cdot 48 \text{ kW} = \frac{32 \text{ kW}}{10 \Omega}$ c)	(1)	
	$\begin{aligned} P_{(c)} &= P_{Str} + 2 \cdot \frac{(\frac{U}{2})^2}{R_{Str}} = \frac{(400 \text{ V})^2}{10 \Omega} + 2 \cdot \frac{(200 \text{ V})^2}{10 \Omega} = \frac{24 \text{ kW}}{10 \Omega} \end{aligned}$ Ou: $P_{(c)} &= \frac{1}{2} \cdot P_{Tot.(a)} = \frac{1}{2} \cdot 48 \text{ kW} = \frac{24 \text{ kW}}{10 \Omega}$	(1)	
15.	5.3.6 Dans un réseau, à charges symétriques, 3 x 400 V alternatif, un transformateur d'intensité est monté sur le conducteur d'alimentation L ₁ dont le rapport (ü) est de 250 A / 5 A. L'ampèremètre qui est raccordé indique un courant I ₂ de 2,9 A, le voltmètre entre L ₂ et L ₃ mesure 398 V. Calculez la puissance apparente S transmise par ce réseau.	2	
	Solution : $I_1 = \ddot{u} \cdot I_2 = \frac{250 \text{ A}}{5 \text{ A}} \cdot 2,9 \text{ A} = 145 \text{ A}$	(1)	
	$\mathbf{S_1} = \sqrt{3} \cdot \mathbf{U} \cdot \mathbf{I} = \sqrt{3} \cdot 398 \mathbf{V} \cdot 145 \mathbf{A} = \underline{\mathbf{99,96kVA}}$	(1)	

Exer	cices	Nombre maximal	de points maximal
16.	5.4.1 Commander ou régler ? Cochez d'une croix la bonne colonne.	2	
	Solutions:		
	Dans une usine électrique, la tension de sortie pour le réseau est maintenue à une valeur constante. Dans un bâtiment publique, l'éclairage intérieur des escaliers et vestibules est, en ou hors service, en fonction de la lumière du jour.		
	Dans une maison la puissance de chauffe de l'installation de chauffage augmente ou diminue en fonction de la température extérieure Pour un radiateur, le thermostat capte la température ambiante et la compare avec la température de consigne. La vanne de réglage travaille plus ou moins, jusqu'à l'équilibre des deux températures.	(0,5 par rép)	
17.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	
	a) Comment se nomme le couplage du redresseur ci-dessus ? (Cochez d'une croix la bonne réponse) Couplage hexaphasé (lissé) Couplage en pont triphasé X Couplage Graetz Couplage à point milieu	(1)	
	b) Comment sont couplés les enroulements soit, primaires et secondaires du transformateur ? (Cochez d'une croix la bonne réponse) Enroulements	(1)	

Exer	cice	es e	Nombre maximal	de points maximal
18.	5.5 Inst	.1 tallation KNX.	3	
	a)	Tout périphérique de bus KNX a une adresse physique explicite. Comment est composée cette adresse. Solution: L'adresse physique se compose de chiffres, qui représentent la zone, la ligne et le périphérique.	(1)	
	b)	Un périphérique de bus qui est capable de recevoir un télégramme, de l'interpréter et d'appliquer l'action prévue, se nomme : Solution : Acteur (actionneur) Un périphérique de bus, qui admet une grandeur physique, la transforme en grandeur électrique et la digitalise, puis l'insère dans un télégramme et envoie le dit télégramme sur le bus, se nomme : Solution : Sensor (capteur)	(1)	
19.	230 l'ins Que puis	2 s lampes fluorescentes de l'éclairage d'une halle, absorbent sous 0.0750 Hz une puissance active totale de 1'170 W. Le facteur de puissance de stallation d'éclairage a un cos $\varphi = 0.5$. elle est la capacité, nécessaire, du condensateur, pour amener le facteur de ssance à un cos $\varphi = 0.9$? lution : $\varphi = \mathbf{P} \cdot (\tan \varphi_1 - \tan \varphi_2) = \mathbf{1'170} \cdot \mathbf{W} \cdot (1.732 - 0.484) = \mathbf{1'459.8} \cdot \mathbf{var}$	2 (1)	
	C =	$= \frac{Q_{c}}{\omega \cdot U^{2}} = \frac{1'459.8 \text{var}}{\omega \cdot (230 \text{V})^{2}} = \frac{87.8 \mu \text{F}}{2}$	(1)	

20. $U = 3 \times 400/230 \text{ V}$ $f = 50 \text{ Hz}$ $R = 100 \Omega$ $L = 300 \text{ mH}$ Determinez: a) Le courant dans l'alimentation. b) Le facteur de puissance. Solutions: a) $X_L = \omega \cdot L = 2 \cdot \pi \cdot 50 \text{Hz} \cdot 0,300 \text{H} = 94,25 \Omega$ $Z = \sqrt{R^2 + X_L^2} = \sqrt{(100 \Omega)^2 + (94.25 \Omega)^2} = \underline{137,41\Omega}$ (1) $I = I_1 = \frac{U_1}{Z} = \frac{230 \text{ V}}{137,41\Omega} = \underline{1,67 \text{ A}}$ (1) b) $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41\Omega} = \underline{0,728}$	Exer	cices	Nombre of maximal	de points maximal
F = 50 Hz R = 100 Ω L = 300 mH R Déterminez : a) Le courant dans l'alimentation. b) Le facteur de puissance. Solutions : a) X _L = $\omega \cdot L = 2 \cdot \pi \cdot 50 \text{Hz} \cdot 0.300 \text{H} = 94.25 \Omega$ Z = $\sqrt{R^2 + X_L^2} = \sqrt{(100 \Omega)^2 + (94.25 \Omega)^2} = \frac{137.41 \Omega}{137.41 \Omega} $ (1) I = $\frac{U_L}{Z} = \frac{230 V}{137.41 \Omega} = \frac{1.67 A}{137.41 \Omega} $ (1) b) cos $\varphi = \frac{R}{Z} = \frac{100 \Omega}{137.41 \Omega} = \frac{0.728}{137.41 \Omega} $ (1)	20.		3	
Déterminez : a) Le courant dans l'alimentation. b) Le facteur de puissance. Solutions : a) $X_{L} = \omega \cdot L = 2 \cdot \pi \cdot 50 \text{Hz} \cdot 0,300 \text{H} = 94,25 \Omega$ $Z = \sqrt{R^2 + X_{L}^2} = \sqrt{(100 \Omega)^2 + (94.25 \Omega)^2} = \underline{137,41\Omega}$ $I = I_{L} = \frac{U_{L}}{Z} = \frac{230 \text{ V}}{137,41\Omega} = \underline{1,67 \text{ A}}$ (1) b) $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41\Omega} = \underline{0,728}$		f = 50 Hz		
Déterminez : a) Le courant dans l'alimentation. b) Le facteur de puissance. Solutions : a) $X_L = \omega \cdot L = 2 \cdot \pi \cdot 50 Hz \cdot 0,300 H = 94,25 \Omega$ $Z = \sqrt{R^2 + X_L^2} = \sqrt{(100 \Omega)^2 + (94.25 \Omega)^2} = 137,41 \Omega$ $I = I_1 = \frac{U_1}{Z} = \frac{230 \text{ V}}{137,41 \Omega} = \frac{1,67 \text{ A}}{137,41 \Omega}$ (1) $cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41 \Omega} = \frac{0,728}{137,41 \Omega}$				
Déterminez : a) Le courant dans l'alimentation. b) Le facteur de puissance. Solutions : a) $X_L = \omega \cdot L = 2 \cdot \pi \cdot 50 \text{Hz} \cdot 0,300 \text{H} = 94,25 \Omega$ $Z = \sqrt{R^2 + X_L^2} = \sqrt{(100 \Omega)^2 + (94.25 \Omega)^2} = 137,41 \Omega$ $I = I_L = \frac{U_L}{Z} = \frac{230 \text{ V}}{137,41 \Omega} = \frac{1,67 \text{ A}}{137,41 \Omega}$ (1) (1) $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41 \Omega} = \frac{0,728}{137,41 \Omega}$		L = 300 mH		
a) Le courant dans l'alimentation. b) Le facteur de puissance. Solutions : a) $X_L = \omega \cdot L = 2 \cdot \pi \cdot 50 Hz \cdot 0,300 H = 94,25 \Omega$ $Z = \sqrt{R^2 + X_L^2} = \sqrt{(100 \Omega)^2 + (94.25 \Omega)^2} = \underline{137,41 \Omega} $ $I = I_I = \frac{U_I}{Z} = \frac{230 V}{137,41 \Omega} = \underline{1,67 A} $ (1) $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41 \Omega} = \underline{0,728} $				
a) Le courant dans l'alimentation. b) Le facteur de puissance. Solutions : a) $X_L = \omega \cdot L = 2 \cdot \pi \cdot 50 Hz \cdot 0,300 H = 94,25 \Omega$ $Z = \sqrt{R^2 + X_L^2} = \sqrt{(100 \Omega)^2 + (94.25 \Omega)^2} = \underline{137,41 \Omega} $ $I = I_I = \frac{U_I}{Z} = \frac{230 V}{137,41 \Omega} = \underline{1,67 A} $ (1) $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41 \Omega} = \underline{0,728} $		L L		
b) Le facteur de puissance. Solutions : a) $X_L = \omega \cdot L = 2 \cdot \pi \cdot 50 \text{Hz} \cdot 0,300 \text{H} = 94,25 \Omega$ $Z = \sqrt{R^2 + X_L^2} = \sqrt{(100 \Omega)^2 + (94.25 \Omega)^2} = \underline{137,41 \Omega} $				
Solutions: a) $X_{L} = \omega \cdot L = 2 \cdot \pi \cdot 50 \text{Hz} \cdot 0,300 \text{H} = 94,25 \Omega$ $Z = \sqrt{R^2 + X_{L}^2} = \sqrt{(100 \Omega)^2 + (94.25 \Omega)^2} = \underline{137,41\Omega} \qquad (1)$ $I = I_{I} = \frac{U_{I}}{Z} = \frac{230 V}{137,41\Omega} = \underline{1,67 A} \qquad (1)$ $b)$ $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41\Omega} = \underline{0,728} \qquad (1)$				
a) $X_L = \omega \cdot L = 2 \cdot \pi \cdot 50 \text{Hz} \cdot 0,300 \text{H} = 94,25 \Omega$ $Z = \sqrt{R^2 + X_L^2} = \sqrt{(100 \Omega)^2 + (94.25 \Omega)^2} = \underline{137,41\Omega} $ (1) $I = I_1 = \frac{U_1}{Z} = \frac{230 V}{137,41\Omega} = \underline{1,67 A} $ (1) $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41\Omega} = \underline{0,728} $ (1)		b) Le facteur de puissance.		
a) $X_L = \omega \cdot L = 2 \cdot \pi \cdot 50 \text{Hz} \cdot 0,300 \text{H} = 94,25 \Omega$ $Z = \sqrt{R^2 + X_L^2} = \sqrt{(100 \Omega)^2 + (94.25 \Omega)^2} = \underline{137,41\Omega} $ (1) $I = I_1 = \frac{U_1}{Z} = \frac{230 V}{137,41\Omega} = \underline{1,67 A} $ (1) $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41\Omega} = \underline{0,728} $ (1)				
a) $X_L = \omega \cdot L = 2 \cdot \pi \cdot 50 \text{Hz} \cdot 0,300 \text{H} = 94,25 \Omega$ $Z = \sqrt{R^2 + X_L^2} = \sqrt{(100 \Omega)^2 + (94.25 \Omega)^2} = \underline{137,41 \Omega} $ (1) $I = I_1 = \frac{U_1}{Z} = \frac{230 V}{137,41 \Omega} = \underline{1,67 A} $ (1) $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41 \Omega} = \underline{0,728} $ (1)				
a) $X_L = \omega \cdot L = 2 \cdot \pi \cdot 50 \text{Hz} \cdot 0,300 \text{H} = 94,25 \Omega$ $Z = \sqrt{R^2 + X_L^2} = \sqrt{(100 \Omega)^2 + (94.25 \Omega)^2} = \underline{137,41 \Omega} $ (1) $I = I_1 = \frac{U_1}{Z} = \frac{230 V}{137,41 \Omega} = \underline{1,67 A} $ (1) $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41 \Omega} = \underline{0,728} $ (1)				
a) $X_L = \omega \cdot L = 2 \cdot \pi \cdot 50 \text{Hz} \cdot 0,300 \text{H} = 94,25 \Omega$ $Z = \sqrt{R^2 + X_L^2} = \sqrt{(100 \Omega)^2 + (94.25 \Omega)^2} = \underline{137,41 \Omega} $ (1) $I = I_1 = \frac{U_1}{Z} = \frac{230 V}{137,41 \Omega} = \underline{1,67 A} $ (1) $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41 \Omega} = \underline{0,728} $ (1)				
a) $X_L = \omega \cdot L = 2 \cdot \pi \cdot 50 \text{Hz} \cdot 0,300 \text{H} = 94,25 \Omega$ $Z = \sqrt{R^2 + X_L^2} = \sqrt{(100 \Omega)^2 + (94.25 \Omega)^2} = \underline{137,41 \Omega} $ (1) $I = I_1 = \frac{U_1}{Z} = \frac{230 V}{137,41 \Omega} = \underline{1,67 A} $ (1) $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41 \Omega} = \underline{0,728} $ (1)				
a) $X_L = \omega \cdot L = 2 \cdot \pi \cdot 50 \text{Hz} \cdot 0,300 \text{H} = 94,25 \Omega$ $Z = \sqrt{R^2 + X_L^2} = \sqrt{(100 \Omega)^2 + (94.25 \Omega)^2} = \underline{137,41 \Omega} $ (1) $I = I_1 = \frac{U_1}{Z} = \frac{230 V}{137,41 \Omega} = \underline{1,67 A} $ (1) $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41 \Omega} = \underline{0,728} $ (1)				
a) $X_L = \omega \cdot L = 2 \cdot \pi \cdot 50 \text{Hz} \cdot 0,300 \text{H} = 94,25 \Omega$ $Z = \sqrt{R^2 + X_L^2} = \sqrt{(100 \Omega)^2 + (94.25 \Omega)^2} = \underline{137,41 \Omega} $ (1) $I = I_1 = \frac{U_1}{Z} = \frac{230 V}{137,41 \Omega} = \underline{1,67 A} $ (1) $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41 \Omega} = \underline{0,728} $ (1)				
$X_{L} = \omega \cdot L = 2 \cdot \pi \cdot 50 \text{Hz} \cdot 0,300 \text{H} = 94,25 \Omega$ $Z = \sqrt{R^{2} + X_{L}^{2}} = \sqrt{(100 \Omega)^{2} + (94.25 \Omega)^{2}} = \underline{137,41 \Omega}$ $I = I_{I} = \frac{U_{I}}{Z} = \frac{230 V}{137,41 \Omega} = \underline{1,67 A}$ $cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41 \Omega} = \underline{0,728}$ (1)		Solutions:		
$ Z = \omega \cdot L = 2 \cdot \pi \cdot 50Hz \cdot 0,300H = 94,25 \Omega $ $ Z = \sqrt{R^2 + X_L^2} = \sqrt{(100 \Omega)^2 + (94.25 \Omega)^2} = \underline{137,41\Omega} $				
$X_{L} = \omega \cdot L = 2 \cdot \pi \cdot 50Hz \cdot 0,300H = 94,25 \Omega$ $Z = \sqrt{R^{2} + X_{L}^{2}} = \sqrt{(100 \Omega)^{2} + (94.25 \Omega)^{2}} = \underline{137,41\Omega}$ $I = I_{I} = \frac{U_{I}}{Z} = \frac{230 V}{137,41\Omega} = \underline{1,67 A}$ $cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41\Omega} = \underline{0,728}$ (1)				
$Z = \sqrt{R^2 + X_L^2} = \sqrt{(100\Omega)^2 + (94.25\Omega)^2} = \underline{137,41\Omega} $ $I = I_I = \frac{U_I}{Z} = \frac{230 \text{ V}}{137,41\Omega} = \underline{1,67 \text{ A}} $ $b)$ $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41\Omega} = \underline{0,728} $ (1)				
$I = I_{1} = \frac{U_{1}}{Z} = \frac{230 \text{ V}}{137,41\Omega} = \underline{1,67 \text{ A}} $ $b)$ $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41\Omega} = \underline{0,728} $ (1)				
$I = I_{1} = \frac{U_{1}}{Z} = \frac{230 \text{ V}}{137,41\Omega} = \underline{1,67 \text{ A}} $ $b)$ $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41\Omega} = \underline{0,728} $ (1)		$Z = \sqrt{R^2 + X_L^2} = \sqrt{(100 \Omega)^2 + (94.25 \Omega)^2} = 137,41 \Omega$	(1)	
b) $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41 \Omega} = \frac{0,728}{137,41 \Omega}$ (1)		·		
b) $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41 \Omega} = \frac{0,728}{137,41 \Omega}$ (1)				
b) $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41 \Omega} = \frac{0,728}{137,41 \Omega}$ (1)		II 230 V		
b) $\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41 \Omega} = \frac{0,728}{137,41 \Omega}$ (1)		$I = I_1 = \frac{O_1}{I} = \frac{230 \text{ V}}{127 \text{ A} \cdot 12} = 1,67 \text{ A}$	(1)	
$\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41 \Omega} = \underline{0,728} \tag{1}$		Ζ 137,41Ω ====		
$\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41 \Omega} = \underline{0,728} \tag{1}$				
$\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41 \Omega} = \underline{0,728} \tag{1}$				
$\cos \varphi = \frac{R}{Z} = \frac{100 \Omega}{137,41 \Omega} = \underline{0,728} \tag{1}$				
Ζ 137,41Ω —		b)		
Ζ 137,41Ω —		R 100Ω 0.700	(1)	
		$\cos \varphi = \frac{137.410}{7} = \frac{0.728}{137.410}$		
		2 137,7122		
T (1)				
I otal		Total	49	
1000		10101		