GEOMETRY

Chapter 1

TRIÁNGULOS

TRÍANGULOS

Definición

Triángulo es la figura geométrica formada al unir con segmentos de recta tres puntos no colineales.

Elementos

Vértices: A, B y C Lados: \overline{AB} , \overline{BC} y \overline{CA}

OBSERVACIÓN

ΔABC se lee: triángulo ABC.

El perímetro del triángulo indica la suma de longitudes de los lados y se simboliza generalmente con 2p. Así

$$2p = AB + BC + AC$$

El semiperímetro

$$p = \frac{AB + BC + AC}{2}$$

Teoremas básicos

 Las medidas de los tres ángulos interiores suman 180°.

Cada ángulo exterior mide igual que la suma de dos interiores no adyacentes a él.

 Las medidas de los tres ángulos exteriores, uno por cada vértice, suman 360°.

Teorema de existencia

Cualquier lado es mayor que la diferencia de los otros dos y menor que la suma de ellos.

Teorema de correspondencia

En un triángulo: A mayor ángulo se opone mayor lado, y viceversa.

1. Dos lados de un triángulo miden 3 cm y 4 cm. Halle la longitud del tercer lado si es igual al doble de uno de los otros dos.

Resolución:

Nos piden la longitud del tercer lado

* Por ley de existencia triangular

La longitud del tercer lado es de 6 cm

Resolución:

Nos piden m∡ABD

Entonces:

△ BDC es isósceles

△ ABD es isósceles

En △ ABD:

$$70^{\circ} + 70^{\circ} + x = 180^{\circ}$$

 $x = 40^{\circ}$

Resolución:

Nos piden el valor de x

En el ABC, por suma de ángulos internos

$$7x + 4x + 7x = 180^{\circ}$$

$$x = 10^{\circ}$$

4. En la figura, si α + β = 4x, halle el valor de x.

Resolución:

Nos piden el valor de x

Del gráfico:

Por suma de ángulos externos

$$\alpha + \beta + 180^{\circ} - x = 360^{\circ}$$

 $4x + 180^{\circ} - x = 360^{\circ}$

$$x = 60^{\circ}$$

5. En la figura, AB = BC y AD = DC. Halle el valor de x.

Resolución:

Nos piden el valor de m

BAD = x

Trazar la diagonal AC

Entonces:

△ ABC es isósceles

△ ADC es isósceles

Del gráfico

$$m \angle BAD = 35^{\circ} + 40^{\circ}$$

$$x = 75^{\circ}$$

6. En la figura se muestra un jardín, cuyo contorno es el cuadrilátero ABCD. Halle el número entero de metros de una valla que se desea colocar desde A hasta C para dividir el jardín en dos partes.

Resolución:

Por ley de existencia triangular

$$\triangle$$
 ABC: $7-3 < AC < 7+4$
 $4 < AC < 11$

AC ={5,6,7,8,9,10,11}

 \triangle ADC: $4-2 < AC < 4+2$
 $2 < AC < 6$

AC ={3,4,5}

: la longitud de la valla es de 5 m

7. En la figura, halle el valor de x.

Resolución:

Piden el valor de x.

△ ABC: Por suma de ángulos internos

$$3x + \alpha + \beta = 180^{\circ}$$

 $\alpha + \beta = 180^{\circ} - 3x$ (1)

Por teorema en ABCD

$$3x + x = 2\alpha + 2\beta$$

$$4x = 2(\alpha + \beta)$$

$$2x = \alpha + \beta \qquad \dots (2)$$

Igualando (1) y (2)

$$180^{\circ} - 3x = 2x$$

$$x = 36^{\circ}$$

8. En un triángulo ABC, AB < BC y m \(\times \) ABC = 120°. Halle el menor valor entero de la m \(\times \) BAC.

Resolución:

Piden el menor valor entero de la m 4 BAC.

Del dato: AB < BC
$$60^{\circ} - x < x$$
 $60^{\circ} < 2x$ $30^{\circ} < x$ $x = \{ 31^{\circ}, 32^{\circ}, 33^{\circ},$

$$x = 31^{\circ}$$

9. En la figura, halle el valor de x.

Resolución:

Piden el valor de x.

En ABCD, por el teorema :

$$4x + 2\alpha = 180^{\circ} + 2\beta$$

 $2x - 60^{\circ} = \beta - \alpha$ (1)

Por teorema en ABCD

$$x + \beta = 60^{\circ} + \alpha$$

 $\alpha + \beta = 60^{\circ} - x$ (2)

Igualando (1) y (2)

$$2x - 60^{\circ} = 60^{\circ} - x$$

$$x = 40^{\circ}$$

10. En la figura, AB = BC = CD, halle el valor de x.

