Feature Engineering in Machine Learning

Research · September 2015		
DOI: 10.13140/RG.2.1.3564.3367		
CITATIONS		READS
0		2,882
1 author:		
_		
	Nayyar Abbas Zaidi	
	Monash University (Australia)	
	28 PUBLICATIONS 145 CITATIONS	
	SEE PROFILE	
Some of the authors of this publication are also working on these related projects:		
Project Ubiquitous Metric Learning View project		
Project	obiquitous metric tearning view project	
Decinat	Deep Broad Learning: Rig Models for Rig Data View project	

Feature Engineering in Machine Learning

Nayyar A. Zaidi

Research Fellow Faculty of Information Technology, Monash University, Melbourne VIC 3800, Australia

August 21, 2015

Outline

- A Machine Learning Primer
 - Machine Learning and Data Science
 - Bias-Variance Phenomenon
 - Regularization
- What is Feature Engineering (FE)?
- Graphical Models and Bayesian Networks
- Deep Learning and FE
- Dimensionality Reduction
- Wrap-up
 - Current Trends
 - Practical Advice on FE

Machine Learning

- Suppose there exists a function y = f(x), now given examples of the form (y,x), can we determine the function f? [1]
 - Functional approximation
 - Input is the Data
 - Roots in Statistics
 - Kin to Data Mining
 - Subset of Data Science
- Countless applications in:
 - Medicine, Science, Finance, Industry, etc.
- Renewed interests due to the emergence of big data
- Part of multi-billion analytics industry of 21st century

Typical Machine Learning Problems

- Supervised Learning (Classification, Regression)
- Un-supervised Learning (Clustering)
- Recommender Systems
- Market Basket Analysis (Association Rule Discovery)
- Ad-placement
- Link Analysis
- Text Analysis (e.g., mining, retrieval)
- Social Network Analysis
- Natural Language Processing

Applications of Machine Learning

Tale of Two Worlds

Data Science

- The two worlds are merging into each other day by day
- Database community needs analytics and analytics community needs a way to store and manage large quantities of data
- On-going debate about putting databases into analytics or analytics into databases
- SQL vs. NoSQL
- Database world
 - Pros: Good at storing, accessing and managing large quantities of data
 - Cons: Very bad for analytics (assumes a structure)
- Analytics world
 - Pros:Good at analyzing
 - Cons: Poor at managing data

Data Science

- What constitutes data science:
 - Analytics
 - Storage
 - Visualization
 - Munging

Data-driven World

- Four paradigms of science
 - Observational based
 - Experimental based
 - Model based
 - Data based
- "The Fourth Paradigm: Data-Intensive Scientific Discovery", by Jim Gray
- It is not about databases vs. analytics, SQL vs. NoSQL, it is all about data

Fundamental Problem in Machine Learning

- Regression:
 - $\min_{\beta \in \mathcal{R}^n} \frac{1}{N} \sum_{i=1}^N (y_i \beta^T x)^2 + \lambda \|\beta\|_2^2$
- Classification:
 - $\min_{\beta \in \mathcal{R}^n} \frac{1}{N} \sum_{i=1}^N \mathcal{L}(y_i \beta^T x) + \lambda \|\beta\|_2^2$
- In general:
 - $\min_{\beta \in \mathcal{R}^n} (\text{Loss} + \text{Regularization})$
 - $\min_{\beta \in \mathcal{R}^n} \mathcal{F}(\beta)$
- Important questions:
 - Model selection.
 - Which optimization to use to learn the parameters.
- Different loss functions leads to different classifiers:
 - Logistic Regression
 - Support Vector Classifier
 - Artificial Neural Network

• Let us visit the simplest of all machine learning problem:

• Let us visit the simplest of all machine learning problem:

• Let us visit the simplest of all machine learning problem:

- Observation Models vs. Features
 - You can take the cube of the features and fit a linear model.

•
$$(x_1,\ldots,x_m) \to (x_1^3,x_1^2x_2,x_1x_2x_3,\ldots)$$

- This will be equivalent to applying cubic model.
- Question Which model should you select? Or equivalently, which attributes interactions should you consider?
- Remember In real world, you will have more than one features - categorical, discrete, etc.
- Hint With every model selection decision there is a control of bias and variance:
 - Why not select model by controlling for both bias and variance?

Parameterizing Model

- How do you handle numeric attributes? One parameter per attribute per class?
- How do you handle categorical attributes? Multiple parameters per attribute per class?
- How do you handle interactions among the variables?
- How do you handle missing values of the attributes?
- How do you handle redundant attributes?
- Over-parameterized model vs. under-parameterized model

Bias Variance Illustration

- Low variance model for small data
- Low bias model for big data
- More details in [2]
- Machine learning has been applied on small quantities of data
 - Here, low variance algorithms are the best
 - Low bias algorithms will over-fit and you need to rely on regularization or feature selection
- Feature Selection
 - Forward selection
 - Backward elimination

Regularizing your Model

- Very powerful technique for controlling bias and variance
- Many different regularizations exists, most common:
 - L2 Regularization

•
$$\min_{\beta \in \mathcal{R}^n} \frac{1}{N} \sum_{i=1}^N \mathcal{L}(y_i \beta^T x) + \lambda ||\beta||_2^2$$

- L1 Regularization (also know as sparsity inducing norms)
 - $\min_{\beta \in \mathcal{R}^n} \frac{1}{N} \sum_{i=1}^N \mathcal{L}(y_i \beta^T x) + \lambda \|\beta\|_1$
- Or elastic nets
 - $\min_{\beta \in \mathcal{R}^n} \frac{1}{N} \sum_{i=1}^N \mathcal{L}(y_i \beta^T x) + \lambda(\|\beta\|_1 + \gamma \|\beta\|_2^2)$

Feature Engineering

- Feature engineering is the process of using domain knowledge of the data to create features that make machine learning algorithms work.
- It is fundamental to the application of machine learning, and is both difficult and expensive.
- The need of manual feature engineering can be obviated by automated feature learning.
 - Wikipedia
- Coming up with features is difficult, time-consuming, requires expert knowledge. Applied machine learning is basically feature engineering.
 - Andrew Ng
- Is this what feature engineering is?

Feature Engineering (Contd)

- Feature Engineering is the next buzz word after big data.
- But. On the basis of Wikipedia definition, one can say that feature engineering has been going on for decades.
 - Why so much attention now?
- In my view Feature Engineering and Big Data are related concepts.
- For big data, you need big models
 - Big models Any model with very large no. of parameters.
 - Note that a big model can be simply linear.
- For big models, it is more of an engineering problem as to how handle these parameters effectively.
 - Since the hardware has not scaled-up well with data.

Feature Engineering (Contd)

- Given a model, learning problem is the learning of the parameters of model.
- The number of parameters depends on the number of features that you have:
 - Exception, if you are solving for the dual.
 - There will be some hyper-parameters.
- Parameter estimation is done by optimizing some objective function.
- Traditionally, there has been four elements of interest:
 - Features
 - Model
 - Objective function
 - Optimization

Feature Engineering (Contd)

- Models and features are related.
 - Let us not worry about that for the time being.
- There have been two main objective functions that is:
 - Conditional Log-Likelihood P(y|x).
 - Log-Likelihood P(y, x).
- This distinction has led to generative-discriminative paradigms in machine learning.
 - Generative models P(y, x).
 - Discriminative models P(y|x).
 - Very confusing distinction with no obvious benefits.

Generative vs. Discriminative Models/Learning

- Bayes rule: $P(y|x) \propto P(y,x)$
- Converting \propto to =, we get: $P(y|x) = \frac{P(y,x)}{P(x)}$.
- And therefore, $P(y|x) = \frac{P(y,x)}{\sum_{c} P(c,x)}$.

Generative vs. Discriminative Models/Learning

A well-known generative model – Naive Bayes

$$P(y|x) = \frac{\pi_y \prod_i P(x_i|y)}{\sum_c \pi_c \prod_i P(x_i|c)}$$
(1)

• A well-known discriminative model - Logistic Regression

$$P(y|x) = \frac{\exp(\beta_y + \sum_i \beta_{i,x_i,y} x_i)}{\sum_c \exp(\beta_c + \sum_i \beta_{i,x_i,c} x_i)}$$
(2)

On the Equivalence of Generative vs. Discriminative Models/Learning

• We have naive Bayes as:

$$P(y|x) = \exp(\log \pi_y + \sum_i \log P(x_i|y) - \log(\sum_c \pi_c \prod_i P(x_i|c)))$$

Same exp and log trick:

$$P(y|x) = \exp(\log \pi_y + \sum_i \log P(x_i|y) - \log(\sum_c \exp(\log \pi_c + \sum_i \log P(x_i|c))))$$

$$\log P(y|x) = \log \pi_y + \sum_i \log P(x_i|y) - \log(\sum_c \exp(\log \pi_c + \sum_i \log P(x_i|c))).$$

On the Equivalence of Generative vs. Discriminative Models/Learning

- Now, let us take the log of LR: $\log P(y|x) = \beta_y + \sum_i \beta_{i,x_i,y} x_i \log(\sum_c \exp(\beta_c + \sum_i \beta_{i,x_i,c} x_i))$
- Reminder, for NB we had:

$$\log P(y|x) = \log \pi_y + \sum_i \log P(x_i|y) - \log(\sum_c \exp(\log \pi_c + \sum_i \log P(x_i|c))).$$

• NB and LR are just re-parameterization of each other for example: $\beta_y = \log \pi_y$ and $\beta_{i,x_i,y} = \log P(x_i|y)$.

On the Equivalence of Generative vs. Discriminative Models/Learning

Modifying NB:

$$\log P(y|x) = w_y \log \pi_y + \sum_i w_{x_i|y} \log P(x_i|y) - \log(\sum_c \exp(w_c \log \pi_c + \sum_i w_{x_i|c} \log P(x_i|c))).$$

This leads to:

$$P(y|x) = \frac{\pi_y^{w_y} \prod_i P(x_i|y)^{w_{x_i|y}}}{\sum_c \pi_c^{w_c} \prod_i P(x_i|c)^{w_{x_i|c}}}$$

- NB and LR are just re-parameterization of each other, so why the fuss?
- More details in [3, 4, 5]

Summary so far

- Model selection and feature selection are tightly coupled.
 - Feature Engineering
- The distinction between CLL and LL is confusing. Rather, superfluous.
- They only differ in the way parameters are being learned:
 - For LL (naive Bayes), parameters are empirical estimates of probability
 - For CLL (LR), parameters are learned by iterative optimization of some soft-max.
- This leaves two things:
 - How to do feature engineering?
 - How to actually optimize?

How to Engineer Features?

- Regularization
- Use domain knowledge
- Exploit existing structure in the data
- Dimensionality reduction
- Use data to build features

Domain Knowledge

- Use of expert knowledge or your knowledge about the problem
- Use of other datasets to explain your data
- Main advantage is the simplicity and intuitiveness
- Only applies to small number of features
- Access to domain expert might be difficult
- Summary You use some information at your disposal to build features before starting a learning process

Dimensionality Reduction

- Feature Selection
 - Filter
 - Wrapper
 - Embedded
- Principle Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Metric Learning [6, 7]
- Auto-encoders

Auto-Encoders

- Similar to multi-layer Perceptron
- Output layer has equally many nodes as input layer
- Trained to reconstruct its own input
- Learning algorithm: Feed-forward back propagation
- Structure:

Exploit Structures in the Data

- Some datasets have an inherent structure, e.g., in computer vision, NLP
 - You can use this information to build features
- Convolutional Neural Networks
 - CNNs exploit spatially-local correlation by enforcing a local connectivity pattern between neurons of adjacent layers
 - Feed-forward neural network
 - Very successful in digit and object recognition (e.g., MNIST, CIFAR, etc.)

Convolutional Neural Networks

Use Data to Build Features

- Restricted Boltzmann Machines
 - Trained by contrastive divergence
- Deep Belief Networks
- Many more variants

Lessons Learned from Big Data

- Automatic feature engineering helps
- Capturing higher-order interactions in the data is beneficial
- Low-bias algorithms with some regularization on big data leads to state-of-the-art results
- If you know the structure, leverage it to build (engineer) features
- What if you don't know the structure
 - Use heuristics

Optimization

• Let us focus on the optimization:

$$w_{t+1} = w_t - \eta \frac{\partial OF(w)}{\partial w}$$
 (3)

Going second-order:

$$w_{t+1} = w_t - \eta \frac{\partial^2 OF(w)}{\partial w}$$
 (4)

Place regularization to make function smooth for second-order differentiation

Implementation issues in Optimization

- Can we leverage map-reduce paramdigm? No
- Massive Parallelization is required to handle parameters
- Batch version you can distribute parameters across nodes
- SGD you can rely on mini-batches
- Success in deep learning is attributed to advancements in optimization and implementation techniques

- Big Data:
 - Lot of hype around it
 - Volume, Velocity, Variety, Varsity
 - Lots of efforts for managing big data
- Big Models:
 - Models that can learn from big data
 - For example: [8, 9]
 - Deep and Broad
 - Ingredients: Feature Engineering + Stable Optimization
- It is the big models that hold key to a break-through than big data.

Conclusion and Take-away-home Message

- Two most important things: Feature Engineering + Optimization
- Big Model not big data
- Big Model: Low bias + Out-of-core + Minimal tuning parameters + Multi-class
- Big Model: Deep + Broad
- Questions

- R. Duda, P. Hart, and D. Stork, *Pattern Classification*. John Wiley and Sons, 2006.
- D. Brain and G. I. Webb, "The need for low bias algorithms in classification learning from small data sets," in *PKDD*, pp. 62–73, 2002.
- T. Jebara, *Machine Learning: Discriminative and Generative*. Springer International Series, 2003.
- N. A. Zaidi, J. Cerquides, M. J. Carman, and G. I. Webb, "Alleviating naive Bayes attribute independence assumption by attribute weighting," *Journal of Machine Learning Research*, vol. 14, pp. 1947–1988, 2013.
- N. A. Zaidi, M. J. Carman, J. Cerquides, and G. I. Webb, "Naive-bayes inspired effective pre-conditioners for speeding-up logistic regression," in *IEEE International Conference on Data Mining*, 2014.

- N. Zaidi and D. M. Squire, "Local adaptive svm for object recognition," in *Digital Image Computing: Techniques and Applications (DICTA)*, 2010 International Conference on, 2010.
- N. Zaidi and D. M. Squire, "A gradient-based metric learning algorithm for k-nn classifiers," in *Al 2010: Advances in Artificial Intelligence*, 2010.
- N. A. Zaidi and G. I. Webb, "Fast and effective single pass bayesian learning," in *Advances in Knowledge Discovery and Data Mining*, 2013.
- S. Martinez, A. Chen, G. I. Webb, and N. A. Zaidi, "Scalable learning of bayesian network classifiers," accepted to be published in Journal of Machine Learning Research.