5. ИТЕРАЦИОННЫЕ ЦИКЛЫ: ВЫЧИСЛЕНИЕ СУММЫ БЕСКОНЕЧНОГО РЯЛА

Цель работы: изучение методов решения задач, связанных с вычислением суммы бесконечного ряда, программирования итерационных алгоритмов.

Методические указания

Изучить материал лекции №5 «Итерационные методы».

Контрольные вопросы

- 1. Что такое итерационный метод? Для решения каких задачи используются итерационные методы?
- 2. Общая схема итерационного метода.
- Схема итерационного метода с ограничением по числу итераций.
- 4. Общий итерационный алгоритм вычисления суммы функционального ряда.
- 5. Три вида общего члена функционального ряда.
- 6. Итерационный алгоритм вычисления суммы функционального ряда вида 2.
- Итерационный алгоритм вычисления суммы функционального ряда вида 3.

Упражнения для самостоятельной работы

 Вычислить с заданной точностью константу π используя бесконечный ряд Шарпа (1699 г.):

$$\pi = 2\sqrt{3} \cdot \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \frac{1}{3^4 \cdot 9} - \dots\right)$$

2) Написать программу вычисления значения функции e^x с помощью степенного ряда с точностью ε по формуле:

$$e^{x} = 1 + \frac{x^{1}}{1!} + \frac{x^{2}}{2!} - \frac{x^{3}}{3!} + \dots$$

Задание к лабораторной работе

Задание. Разработайте алгоритм и напишите программы для нахождения сумм или произведений бесконечного ряда.

При разработке алгоритма необходимо:

- 1) предусмотреть защиту от вводе неверного значения аргумента (выходящего за границу диапазона);
- 2) предусмотреть защиту от зацикливания;
- 3) вывести информацию о количестве итераций (количестве просуммированных членах ряда), значение найденной частичной суммы, значение суммы, величину погрешности.

№	Задание
ва-	
ри-	
анта	,
1	$ \ln \frac{x+1}{x-1} = 2\sum_{n=0}^{\infty} \frac{1}{(2n+1)x^{2n+1}} = 2\left(\frac{1}{x} + \frac{1}{3x^3} + \frac{1}{5x^5} + \dots\right), x > 1 $
2	$e^{-x} = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \dots, x < \infty$
3	$\ln(x+1) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} - \dots, -1 < x \le 1$
4	$arcctgx = \frac{\pi}{2} + \sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{2n+1}}{2n+1} = \frac{\pi}{2} - x + \frac{x^3}{3} - \frac{x^5}{5} +, x \le 1$
5	$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots, x < \infty$
6	$\frac{\sin x}{x} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+1)!} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} - \dots, x < \infty$

No	Задание
ва-	
ри-	
анта	
7	$e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n!} = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \frac{x^8}{4!} - \dots, x < \infty$
8	$arctg = -\frac{\pi}{2} + \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2n+1)x^{2n+1}} = -\frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} + \frac{1}{5x^5} + \dots, x < -1$
9	$\arcsin x = x + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \dots (2n-1) \cdot x^{2n+1}}{2 \cdot 4 \dots 2n \cdot (2n+1)} =$
	$= x + \frac{x^3}{2 \cdot 3} + \frac{1 \cdot 3 \cdot x^5}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5 \cdot x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \dots, x < 1$
10	$\arccos x = \frac{\pi}{2} - \left(x + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \dots (2n-1) \cdot x^{2n+1}}{2 \cdot 4 \dots 2n \cdot (2n+1)} \right) =$
	$= \frac{\pi}{2} - \left(x + \frac{x^3}{2 \cdot 3} + \frac{1 \cdot 3 \cdot x^5}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5 \cdot x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \dots \right), x < 1$