第二十一届全国青少年信息学奥林匹克联赛初赛

提高组 C++语言试题

竞赛时间: 2015年10月11日14:30~16:30

选手注意:

•	试题纸共有9页,	答题纸共有2页,	满分 100 分。	请在答题纸上作答,	写在试题纸上的
	一律无效。				

- 不得使用任何电子设备(如计算器、手机、电子词典等)或查阅任何书籍资料。
- 角

一、单项选择题(共 15 题, 每题 1.5 分, 选项)	,共计 22.5 分,每是	题有且仅有一个正确
1. 在计算机内部用来传送、存贮、加工处理A. 二进制码 B. 八进制码		
2. 下列说法正确的是()。 A. CPU 的主要任务是执行数据运算和程序B. 存储器具有记忆能力,其中信息任何时C. 两个显示器屏幕尺寸相同,则它们的分D. 个人用户只能使用 Wifi 的方式连接到 In	候都不会丢失 辨率必定相同	
3. 与二进制小数 0.1 相等的十六进制数是() 。	
A. 0.8 B. 0.4	C. 0.2	D. 0.1
4. 下面有四个数据组,每个组各有三个数据: 十进制数,第三个数据为十六进制数。这A. 120 82 50B. 144 100 68	四个数据组中三个数据	居相同的是 ()。
5. 线性表若采用链表存储结构,要求内存中	可用存储单元地址() 。
A. 必须连续	B. 部分地址必须连	续
C. 一定不连续	D. 连续不连续均可	
6. 今有一空栈 S,对下列待进栈的数据元素所进栈,进栈,出栈的操作,则此操作完成		
A. f B. c	C. a	D. b

7.	前序遍历序列与后周	序遍历序	列相同的二义	.树为	() 。		
A	. 非叶子结点只有	左子树的	二叉树	B.	只有根结点的二	叉树	
C	. 根结点无右子树	的二叉树		D.	非叶子结点只有	右子	树的二叉树
8.	如果根的高度为1,	具有 61	个结点的完全	全二叉	【 树的高度为() 。	
A	. 5	B. 6		C.	7	D.	8
9.	6个顶点的连通图的	的最小生用	成树,其边数	为() 。		
A	. 6	B. 5		C.	7	D.	4
10.	设某算法的计算时间复杂的			(n) = ⁻	Γ(n - 1) + n(n 为ī	E整数	纹)及 T(0) = 1,则
A	. O(log n)	B. O(n	log n)	C.	O(n)	D.	O(n ²)
	具有 n 个顶点,e 条 算的时间复杂度均	为()	0	储结	沟,进行深度优先	·遍历	和广度优先遍历运
A	. $\Theta(n^2)$	Β. Θ(ϵ	e ²)	C.	$\Theta(ne)$	D.	Θ(n + e)
12.	在数据压缩编码的	应用中,	哈夫曼(Huff	man)	算法是一种采用	了 ()思想的算法。
A	. 贪心	B. 分》	台	C.	递推	D.	回溯
13.	双向链表中有两个: 一个结点, q 指向-						•
A	<pre>p->llink = q; p->llink->rli</pre>	•	• •		. 114 mlv.		
В	p->111111K->1111 . q->1111nk = p-		•	•	-		
	q->rlink = p;	p->lli	nk = q->rli	ink;			
C	. q->rlink = p;	•	• •				
D	p->llink->rli . p->llink->rli						
	q->llink = p-	-	•	-			
14.	对图 G 中各个结点	分别指定	一种颜色,使	た相邻 ガン	7结点颜色不同,[則称う エモ	为图 G 的一个正常

着色。正常着色图 G 所必需的最少颜色数, 称为 G 的色数。那么下图的色数是()。

						_\		
	A.	3	B.	4	C.	5	D.	6
15		E NOI 系列赛事中誓		选手必须使用由承	办单	位统一提供的设备	4。下	列物品中不允许选
		鼠标		笔	C.	身份证	D.	准考证
		不定项选择题(,多选或少选均			`, ታ	共计 7.5 分 ;每是	题有 [.]	一个或多个正确
		以下属于操作系统的 Windows XP			C.	Linux	D.	Mac OS
		下列属于视频文件构						
	A.	AVI	В.	MPEG	C.	WMV	D.	JPEG
		下列选项不是正确的 202.300.12.4				100:128:35:91	D.	111-132-35-21
	A.	下列有关树的叙述。 在含有 n 个结点的 在哈夫曼树中,『	的树。	中,边数只能是 (n-	1)条	数多 1		
		完全二叉树一定是在二叉树的前序员			点 v	之前,则 u 一定是	ē∨的	7祖先
5.		以下图中一定可以 _达 丙种颜色之一,使材) 。	(黑白染色: 为	各个组	结点分别指定黑白
	A.	二分图	B.	完全图	C.	树	D.	连通图

三、问题求解(共2题,每题5分,共计10分;每题全部答对得5分,没有部分分)

1.	在1和2015之间	(包括1和2015石	在内)不能被 4、	5、	6三个数任意一个数整除的数
	有个。				

2.	结点数为 5 的不同形态的二叉树一共有	种。(结点数为 2 的二叉树一共有 2
	种:一种是根结点和左儿子,另一种是根结儿	点和右儿子。)

四、阅读程序写结果(共4题,每题8分,共计32分)

1. #include <iostream> using namespace std; struct point { int x; int y; **}**; int main() { struct EX{ int a; int b; point c; } e; e.a = 1;e.b = 2;e.c.x = e.a + e.b;e.c.y = e.a * e.b; cout << e.c.x << ',' << e.c.y << endl;</pre> return 0; } 输出:

2. #include <iostream>
 using namespace std;

```
void fun(char *a, char *b) {
       a = b;
       (*a)++;
   }
   int main() {
       char c1, c2, *p1, *p2;
       c1 = 'A';
       c2 = 'a';
       p1 = &c1;
       p2 = &c2;
       fun(p1, p2);
       cout << c1 << c2 << endl;</pre>
       return 0;
   }
   输出: _____
3. #include <iostream>
   #include <string>
   using namespace std;
   int main() {
       int len, maxlen;
       string s, ss;
       maxlen = 0;
       do {
           cin >> ss;
           len = ss.length();
           if (ss[0] == '#')
               break;
           if (len > maxlen) {
               s = ss;
               maxlen = len;
           }
       } while (true);
       cout << s << endl;</pre>
       return 0;
   }
```

```
输入:
   Ι
   am
   citizen
   of
   China
   输出: _____
4. #include <iostream>
   using namespace std;
   int fun(int n, int fromPos, int toPos) {
       int t, tot;
       if (n == 0)
           return 0;
       for (t = 1; t <= 3; t++)
           if (t != fromPos && t != toPos)
              break;
       tot = 0;
       tot += fun(n - 1, fromPos, t);
       tot++;
       tot += fun(n - 1, t, toPos);
       return tot;
   }
   int main() {
       int n;
       cin >> n;
       cout << fun(n, 1, 3) << endl;</pre>
       return 0;
   }
   输入: 5
   输出: _____
```

五、完善程序(共2题,每题14分,共计28分)

1. (双子序列最大和)给定一个长度为 n (3 ≤ n ≤ 1000)的整数序列,要求从中选出两个连续子序列,使得这两个连续子序列的序列和之和最大,最终只需输出这个最大和。一个连续子序列的序列和为该连续子序列中所有数之和。要求:每个连续子序列长度至少为 1,且两个连续子序列之间至少间隔 1 个数。(第五空 4 分,其余 2.5 分)

```
#include <iostream>
using namespace std;
const int MAXN = 1000;
int n, i, ans, sum;
int x[MAXN];
int lmax[MAXN];
// lmax[i]为仅含 x[i]及 x[i]左侧整数的连续子序列的序列和中,最大的序列和
int rmax[MAXN];
// rmax[i]为仅含 x[i]及 x[i]右侧整数的连续子序列的序列和中,最大的序列和
int main() {
   cin >> n;
   for (i = 0; i < n; i++)
      cin >> x[i];
   lmax[0] = x[0];
   for (i = 1; i < n; i++)
      if (lmax[i - 1] <= 0)
          lmax[i] = x[i];
      else
          lmax[i] = lmax[i - 1] + x[i];
   for (i = 1; i < n; i++)
      if (lmax[i] < lmax[i - 1])
          lmax[i] = lmax[i - 1];
    (1);
   for (i = n - 2; i >= 0; i--)
      if (rmax[i + 1] <= 0)
          (2)
      else
          (3);
```

2. (最短路径问题) 无向连通图 **G** 有 **n** 个结点,依次编号为 0,1,2,...,(**n**-1)。用邻接矩阵的形式给出每条边的边长,要求输出以结点 0 为起点出发,到各结点的最短路径长度。

使用 Dijkstra 算法解决该问题:利用 dist 数组记录当前各结点与起点的已找到的最短路径长度;每次从未扩展的结点中选取 dist 值最小的结点 v 进行扩展,更新与 v 相邻的结点的 dist 值;不断进行上述操作直至所有结点均被扩展,此时 dist 数据中记录的值即为各结点与起点的最短路径长度。(第五空 2 分,其余 3 分)

```
for (i = 1; i < n; i++)
   dist[i] = -1;
for (i = 0; i < n; i++)
   used[i] = 0;
while (true) {
   (1) ;
   for (i = 0; i < n; i++)
       if (used[i] != 1 && dist[i] != -1 && (v == -1 || ____(2) ___))
          (3);
   if (v == -1)
       break;
   (4)
   for (i = 0; i < n; i++)
       if (w[v][i] != -1 && (dist[i] == -1 || ___(5)__))
          dist[i] = dist[v] + w[v][i];
for (i = 0; i < n; i++)
   cout << dist[i] << endl;</pre>
return 0;
```

}