Representation of visual uncertainty through neural gain variability

Olivier J. Hénaff, Zoe M. Boundy-Singer, Kristof Meding, Corey M. Ziemba & Robbe L. T. Goris

Jiaxin Wang 04/23/2021

Introduction

 Model: average neural response strength encodes stimulus features, while cross-neuron variability in response gain encodes the uncertainty of these features

- Experiments: spiking activity in macaque V1 and V2 by repeated presentations of stimuli whose uncertainty was manipulated in distinct ways
- **Finding:** gain variability of individual neurons is tuned to stimulus uncertainty.

Model 1

If gain G has a unit mean and varies on a time-scale which is slow relative to the measurement interval Δt , variance of spike count K is

$$\operatorname{Var}[K|S,\Delta t] = f(S)\Delta t + \sigma_G^2(f(S)\Delta t)^2.$$

Experiment 1 : single neuron

Experiment 2 : neuron population

Experiment 3: other feature

Model 2: Normalization

Experiment 4 : slow or fast dynamics

Method: Decoding uncertainty from neural activity

Experiment 5 : Quantitative performance

Model 3: How circuits decode gain variability

Discussion

Proposed a new model of canonical computation in sensory cortex

- Our approach can directly be extended to other stimulus features, visual areas, and sensory systems to investigate the generality of the uncertainty receptive field.
- Estimating interneuronal gain variability allows a decoder to infer stimulus uncertainty without detailed knowledge of the sensory neurons' classical receptive field.