Результаты расчета надежности информационной системы

Модель Сложности

Модель Джелинского-Моранды

Модель Муса

Формулы для расчета по модели сложности

$$x_{\phi i} = \frac{a_i}{a_{\text{max}}}$$

$$x_{min} = \frac{a_{min}}{a_{max}}$$

$$d_i = \frac{x_{\min}(1 - x_{\phi i})}{x_{\phi i}(1 - x_{\min})}$$

$$R = 1 - \prod_{i=1}^{N} (1 - d_i)^{\lambda_i}$$

Промежуточные результаты расчетов

Метрики	Значение а;	a _{min}	a _{max}	X _{min}	Xφi	di
V	178747,875	31 000	240 000	0, 129167	0,744	0,0508
V*	49637,716	508	69000	0, 007362	0,71	0,0028
Q	1070	57	3425	<i>0,</i> 016642	0,312	0,0372
ΔN	9,4	4	35	0, 114286	0,2685	0,3514
L	0,277	0,003	3,1	0, 000968	0,089	0,0098
E	643679,95	23000	991000	0, 023209	0,6495	0,0128
Ca	23	11	141	<i>0,</i> 078014	0,1631	0,434
Ce	25	11	210	0, 052381	0,1190	0,409
1	0,52	0	2	0	0,26	0
	25	11	210	0, 052381	0,1190	0,4

Риск снижения надежности работы программного средства составил R=0,056 Исходные данные для расчетов

i	1	2	3	4	5	6	7	8	9	10
Хі, день	2	9	11	14	16	18	22	27	33	39

Формулы для расчета по Джелинского-Моранды

$$P(t) = e^{-\lambda(t)}$$

$$f_n(B+1) = g_n(B+1, A),$$

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i},$$

$$g_n(m, A) = \frac{n}{m-A},$$

$$A = \frac{\sum_{i=1}^n i \cdot X_i}{\sum_{i=1}^n X_i},$$

$$m = B+1,$$

Промежуточные результаты расчетов

i	Xi	i·X _i	m	$g_n(m, A)$	$f_n(m)$	$ f_n(m)-g_n(m,A) $
1	2	2	11	<i>2,</i> 553191	2, 928968254	0, 375777
2	9	18	12	1, 033898	2, 019877345	0, 01402
3	11	33	13	<i>1,</i> 690141	<i>1,</i> 603210678	0, 08693
4	14	56	14	1, 445783	1, 346800422	0, 09898
5	16	80	15	<i>1,</i> 263158	1, 168228993	0, 09493
6	19	114	16	<i>1,</i> 121495	1, 03489566	0, 0866
7	22	154	17	1, 008403	0, 930728993	0, 07767
8	27	216	18	<i>0,</i> 916031	0, 84669538	0, 06934
9	33	297	19	0, 839161	0, 777250935	0, 06191
10	39	390	20	<i>0,</i> 774194	0, 718771403	0, 05542

Вероятность безотказной работы программного средства P(t) = 0,94 Формулы для расчета по модели сложности

$$\tau = \tau_0 \exp\left(\frac{CT}{M\tau_0}\right),$$

$$\tau_0 = \frac{1}{fKN},$$

$$f = \frac{A}{B},$$

$$\tau = \tau_0 \exp\left(\frac{C(T + \Delta T)}{M\tau_0}\right),$$

$$p(t) = e^{-\frac{t}{\tau}},$$

Для данного программного модуля длительности этапов тестирования составляют $t_1 = 19$ часов, $t_2 = 23$ часов, $t_3 = 28$ часов. Число отказов на первом этапе $m_1 = 3$, на втором — $m_2 = 5$, на третьем — $m_3 = 1$. Средняя скорость исполнения ПС $A = 10^4$ операторов/час количество операторов в ПС B = 740. Период эксплуатации t = 189 часов.

Надежность программного средства для периода Эксплуатации t = 189 Равно p = 0.85