Control Design of DC Microgrid Considering CPL Instability

Avanish Dhapare¹ Aditya R. Jadhav¹

¹Department of Electrical Engineering, Indian Institute of Technology (BHU) Varanasi Mentoring Professor : Dr. Avirup Maulik

April 23, 2024

- Introduction
- 2 Buck Converter Mathematical Modeling
- 3 Controller Design and Simulation
- 4 Solar Photovoltaic Unit(Non-Dispatchable Unit)
- Simulating the Control Loop
- 6 State Space Modelling and CPL Instability
- Virtual Conductance
- Virtual Capacitance
- Onclusion

DC Micro Grid:Advantages and Challenges

AC Micro Grids are widely used but DC Micro Grids are also becoming Popular

Advantages:

- Simpler Controllability due to absence of frequency controlling and phase unbalance.
- Losses like Skin Effect automatically eliminated.

Disadvantages:

 Complicated and Costly Protection System.

Challenges Addressed:

- Addressing CPL Instability
- Lack of Inertia leading to high ROCOV

Dispatchable Unit(Grid Forming Unit):

 Output voltage is tracked keeping the DC Bus Link Voltage constant

PV Unit:

 Idea is to track Input Voltage To Maximum Power Point Voltage by Implimenting MPPT Algorithms

- Introduction
- 2 Buck Converter Mathematical Modeling
- 3 Controller Design and Simulation
- 4 Solar Photovoltaic Unit(Non-Dispatchable Unit)
- 5 Simulating the Control Loop
- 6 State Space Modelling and CPL Instability
- Virtual Conductance
- Virtual Capacitance
- Onclusion

Buck Converter Topology

Mode 1

$$V_i = L\frac{di}{dt} + ir_s + V \tag{1}$$

$$i = C\frac{dV}{dt} + \frac{V}{R} \tag{2}$$

Mode 2

$$0 = L\frac{dV}{dt} + ir_s + V \tag{3}$$

$$i = C\frac{dV}{dt} + \frac{dV}{dt} \tag{4}$$

State Space Averaging

$$DV_i = L\frac{di}{dt} + iR_s + V (5) i = C\frac{dV}{dt} + \frac{V}{R} (6)$$

Linearizing the Model Under Steady State With Small Ripple Approximation

Linearizing

$$D = D_o + \hat{d}$$

$$V = V_0 + \hat{v}$$

$$I = I_0 + \hat{i}$$

Small Ripple Approximation

$$D_o V_i = I_o r_s + V_o \tag{7}$$

$$I_o = \frac{V_o}{R} \tag{8}$$

$$D_o\hat{v}_i + \hat{d}V_i = L\frac{d\hat{i}}{dt} + r_s\hat{i} + \hat{v}$$

$$\hat{i} = C \frac{d\hat{v}}{dt} + \frac{\hat{v}}{R}$$

- Introduction
- 2 Buck Converter Mathematical Modeling
- Controller Design and Simulation
- Solar Photovoltaic Unit(Non-Dispatchable Unit)
- 5 Simulating the Control Loop
- 6 State Space Modelling and CPL Instability
- Virtual Conductance
- Virtual Capacitance
- Onclusion

Controller Design

Voltage Controller Design

From Small Signal Model:

$$\hat{i} = C\frac{d\hat{v}}{dt} + \frac{d\hat{v}}{dt}$$

$$I(s) = CsV(s) + \frac{V(s)}{R}$$

$$\frac{V(s)}{I(s)} = \frac{R}{1 + RCs}$$

Current Controller Design

From Small Signal Model:

$$\hat{d}V_i - \hat{v} = L\frac{d\hat{i}}{dt} + r_s\hat{i} = u$$

$$U(s) = sLI(s) + R_sI(s)$$

$$\frac{I(s)}{U(s)} = \frac{1}{R_s + sL}$$

PI Parameter Tuning

Current Controller

$$G(s) = \frac{sK_p + K_i}{s(R_s + sL)} = \frac{K_i(1 + \frac{sK_p}{K_i})}{sR(1 + \frac{sL}{R})}$$

By Pole Zero Cancellation

$$G(s) = \frac{K_i}{sR} = \frac{1}{s\tau}$$

Thumb Rule

Bandwidth of Inner Loop Should be 10 to 20 Times Lower that of Switching Frequency

$$au = rac{R_s}{K_i}$$
 and $\omega_o = rac{1}{ au} = rac{2\pi f_s}{20}$

$$K_i = \frac{R_s}{\tau} = \frac{2\pi f_s R_s}{20}$$
$$K_p = \frac{2\pi f_s L}{20}$$

PI Parameter Tuning

Voltage Controller

$$G(s) = \frac{(sK_p + K_i)R}{s(1 + sCR)} = \frac{RK_i(1 + \frac{sK_p}{K_i})}{s(1 + sCR)}$$

By Pole Zero Cancellation

$$G(s) = \frac{K_i R}{s} = \frac{1}{s\tau}$$

Thumb Rule

Outer Loop Should be 10 Times Slower Than The Inner Loop

Where

$$au=rac{1}{ extit{K}_{i} extit{R}}$$
 and $\omega_{o}=rac{1}{ au}=rac{2\pi extit{f}_{ extsf{s}}}{100}$

$$K_i = rac{1}{R au} = rac{2\pi f_s}{100R}$$
 $K_p = rac{2\pi f_s C}{100}$

Implementation of Control Loop in Buck Converter

Simulation Results

- Introduction
- 2 Buck Converter Mathematical Modeling
- 3 Controller Design and Simulation
- Solar Photovoltaic Unit(Non-Dispatchable Unit)
- 5 Simulating the Control Loop
- 6 State Space Modelling and CPL Instability
- Virtual Conductance
- Virtual Capacitance
- Onclusion

Non Dispatchable Unit

State Space Averaging

State Space Average Model is Given by:

$$i_{pv} = C_i \frac{dV_i}{dt} + Di + \frac{V_i}{R_c}$$
 $DV_i = L\frac{di}{dt} + R_s i + V_o$

Small Signal Model is Given as:

$$\hat{i_{pv}} = C_i \frac{d\hat{V}_i}{dt} + \hat{d}i_o + D_o\hat{i}$$

$$D_o\hat{V}_i + \hat{d}V_{io} = L\frac{d\hat{i}}{dt} + R_s\hat{i}$$

- Introduction
- 2 Buck Converter Mathematical Modeling
- Controller Design and Simulation
- 4 Solar Photovoltaic Unit(Non-Dispatchable Unit)
- 5 Simulating the Control Loop
- State Space Modelling and CPL Instability
- Virtual Conductance
- Virtual Capacitance
- Onclusion

Simulating the Control Loop

NOTE

A DC source is used to maintain output voltage at 48. Practically however the DC Bus Link Voltage is maintained by the Dispatchable Unit(Grid Forming Unit)

Simulation Results

Maximum Power Point Voltage = 87 was Tracked

- Introduction
- 2 Buck Converter Mathematical Modeling
- 3 Controller Design and Simulation
- 4 Solar Photovoltaic Unit(Non-Dispatchable Unit)
- 5 Simulating the Control Loop
- State Space Modelling and CPL Instability
- Virtual Conductance
- Virtual Capacitance
- Onclusion

State Space Model

State Space Model is Given By:

$$\frac{dx}{dt} = Ax + B_1W + B_2U$$

x : state space variables

W: disturbances

U: input State Space Model for

Dispatchable + Non-Dispatchable Unit

$$\mathsf{A} = egin{bmatrix} rac{-1}{R_e\,C_e} & rac{1}{C_e} & rac{1}{C_e} \ 0 & rac{-1}{ au_1} & 0 \ 0 & 0 & rac{-1}{ au_2} \end{bmatrix}$$

 $R_e = \mathsf{Equivalent} \; \mathsf{Resistance}$

 $C_e = \mathsf{Equivalent} \; \mathsf{Resistance}$

 $au_1 = \mathsf{Time}$ Constant of Current Controller of

Dispatchable Unit

 $au_2 = \mathsf{Time} \; \mathsf{Constant} \; \mathsf{of} \; \mathsf{Current} \; \mathsf{Controller} \; \mathsf{of} \; \mathsf{Solar} \; \mathsf{Unit}$

Small Signal Model

For constant Power Load:

$$P = VI$$
 $P_o + \Delta p = (V_o + \Delta v)(I_o + \Delta i)$
 $\Delta p = \Delta v I_o + V_o \Delta i$
 $\Delta i = \frac{\Delta p}{V_o} - \frac{\Delta v}{\left(\frac{V_o}{I_o}\right)}$

 $\Delta i = \frac{\Delta p}{V_o} - \frac{\Delta v}{R_{cpl}}$

- CPL introduces a negative resistance in the small signal model.
- The negative resistance causes instability in the physical system.

Eigenvalue Calculation For Varying CPL

• Eigenvalues of Matrix A for 4 different values of CPL are tabulated

Eigenvalues	R = 10	R = 5	R = -5	R = -10
λ_1	-475.8	-951.6	951.6	475.8
λ_2	-314.16	-314.16	-314.16	-314.16
λ_3	-314.16	-314.16	-314.16	-314.16

$$\lambda_i = i^{th}$$
eigenvalue

- All eigenvalues in left half plane for positive CPL
- Some eigenvalues in left half plane for negative CPL

	λ_1	λ_2	λ_3
X_1	1	0	0
X_2	0	1	0
X_3	0	0	1

Table: Participation Factor Analysis

- Introduction
- 2 Buck Converter Mathematical Modeling
- 3 Controller Design and Simulation
- 4 Solar Photovoltaic Unit(Non-Dispatchable Unit)
- 5 Simulating the Control Loop
- 6 State Space Modelling and CPL Instability
- Virtual Conductance
- 8 Virtual Capacitance
- Onclusion

Mitigating CPL Instability Using Virtual Conductance

$$i = C\frac{dv}{dt} + G_v v - Gv$$

- Virtual Conductance neutralizes effect of negative CPL
- Magnitude of Gv should be greater than maximum magnitude of negative CPL
- Called virtual because it is not a physical impedance but implemented in control loop

$$A = \begin{bmatrix} \frac{-1}{R_e C_e} & \frac{1}{C_e} & \frac{1}{C_e} \\ \frac{G_v}{\tau_1} & \frac{-1}{\tau_1} & 0 \\ 0 & 0 & \frac{-1}{\tau_2} \end{bmatrix}$$

Eigenvalue Tabulation(with Virtual Conductance)

Eigenvalues	R = 10	R = 5	
λ_1	-0.0181 + 1.2225i	-0.0205 + 1.2226i	
λ_2	-0.0181 - 1.2225i	-0.0205 - 1.2226i	
λ_3	-0.0314	-0.0314	

Eigenvalues	R = -5	R = -10	
λ_1	-0.0109 + 1.2224i	-0.0133 + 1.2225i	
λ_2	-0.0109 - 1.2224i	-0.0133 - 1.2225i	
λ_3	-3.1416	-0.0314	

 $\lambda_i = i^{th}$ eigenvalue All Eigenvalues Lie in the Left Half Plane

Simulation Results

2nd Challenge

Overshoots undershoots seen due to changes in Irradiance

- Introduction
- 2 Buck Converter Mathematical Modeling
- 3 Controller Design and Simulation
- 4 Solar Photovoltaic Unit(Non-Dispatchable Unit)
- 5 Simulating the Control Loop
- 6 State Space Modelling and CPL Instability
- Virtual Conductance
- Virtual Capacitance
- Onclusion

Virtual Capacitance

$$i = C\frac{dv}{dt} + \frac{v}{R} + C_v \frac{dv}{dt}$$
$$i - C_v \frac{dv}{dt} = C\frac{dv}{dt} + \frac{v}{R}$$

- Virtual Capacitance helps in reduction of ROCOV
- Positive voltage slope decreases current and negative slope increases it
- Physical implementation of capacitor is expensive so it is implemented in control loop

Simulation Results

Simulation Results

Magnitudes of overshoots is more for system without virtual capacitance

- Introduction
- 2 Buck Converter Mathematical Modeling
- Controller Design and Simulation
- Solar Photovoltaic Unit(Non-Dispatchable Unit)
- Simulating the Control Loop
- 6 State Space Modelling and CPL Instability
- Virtual Conductance
- Virtual Capacitance
- Conclusion

Conclusion

- CPL instability due to introduction of negative resistance in the small signal model is addressed by Implementing Virtual Conductance in the Control Loop
- Lack of Inertia Causing high ROCOV mitigated by Implementing Virtual Capacitance.

Future Works

- Designing of Bidirectional Converter to handle Situations of Overgeneration of Power
- Real Time Implementation using DSP Signals and RTDS Integration