Σειρές (Ασκήσεις) (λύσεις)

1. i) Έχουμε $a_n=n^2+1>0,\ \forall n\in\mathbb{N}.$ Επομένως η σειρά συγκλίνει ή απειρίζεται θετικά. Όμως

$$\lim_{n \to \infty} (n^2 + 1) = +\infty \neq 0$$

άρα από κριτήριο η-οστού όρου, η σειρά αποκλίνει και άρα απειρίζεται θετικά.

ii) Έχουμε $a_n=\frac{n^2+1}{3n^2-1}>0, \ \forall n\in\mathbb{N}$. Επομένως η σειρά συγκλίνει ή απειρίζεται θετικά. Όμως

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2 + 1}{3n^2 - 1} = \lim_{n \to \infty} \frac{n^2 (1 + \frac{1}{n^2})}{n^2 (3 - \frac{1}{n^2})} = \lim_{n \to \infty} \frac{1 + \frac{1}{n^2}}{3 - \frac{1}{n^2}} = \frac{1 + 0}{3 - 0} = \frac{1}{3} \neq 0$$

επομένως από κριτήριο η-οστού όρου, η σειρά αποκλίνει και άρα απειρίζεται θετικά.

iii) Έχουμε $a_n=\frac{2n^3+n-1}{n^3+4}>0,\ \forall n\in\mathbb{N}.$ Επομένως η σειρά συγκλίνει ή απειρίζεται θετικά. Όμως

$$\lim_{n \to \infty} \frac{2n^3 + n - 1}{n^3 + 4} = \lim_{n \to \infty} \frac{n^3(2 + \frac{1}{n^2} - \frac{1}{n^3})}{n^3(1 + \frac{4}{n^3})} = \lim_{n \to \infty} = \lim_{n \to \infty} \frac{2 + \frac{1}{n^2} - \frac{1}{n^3}}{1 + \frac{4}{n^3}} = \frac{2 + 0 - 0}{1 + 0} = 2 \neq 0$$

επομένως από η κριτήριο η-οστού όρου, η σειρά αποκλίνει και άρα απειρίζεται θετικά.

2. i) Παρατηρούμε ότι $a_n = \frac{2n}{n^2 + 1} > 0, \ \forall n \in \mathbb{N}$. Έχουμε

$$a_n = \frac{2n}{n^2 + 1} \ge \frac{2n}{n^2 + n^2} = \frac{2n}{2n^2} \ge \frac{1}{n}, \ \forall n \in \mathbb{N}$$

Επομένως $0 \leq \frac{1}{n} \leq \frac{2n}{n^2+1}, \ \forall n \in \mathbb{N}$ και $\sum_{n=1}^{\infty} \frac{1}{n}$ αποκλίνει, επομένως από κριτήριο Σύγκρισης και $\sum_{n=1}^{\infty} \frac{2n}{n^2+1}$ αποκλίνει.

ii) Παρατηρούμε ότι $a_n=\frac{10n+2020}{n^2+1}>0, \ \forall n\in\mathbb{N}.$ Έχουμε

$$a_n = \frac{10n + 2020}{n^2 + 1} \ge \frac{10n}{n^2 + 1} \ge \frac{10n}{n^2 + n^2} = \frac{10n}{2n^2} = 5\frac{1}{n}, \ \forall n \in \mathbb{N}$$

Επομένως $0 \le 5\frac{1}{n} \le \frac{10n+2020}{n^2+1}, \ \forall n \in \mathbb{N}$ και $\sum_{n=1}^{\infty} 5\frac{1}{n}$ αποκλίνει, γιατί $\sum_{n=1}^{\infty} \frac{1}{n}$ αποκλίνει, επομένως από κριτήριο

Σύγκρισης και $\sum_{n=1}^{\infty} \frac{10n + 2020}{n^2 + 1}$ αποκλίνει.

iii) Παρατηρούμε ότι $a_n=rac{3n^3+1}{4n^4-1}>0, \ \forall n\in\mathbb{N}.$ Έχουμε

$$a_n = \frac{3n^3 + 1}{4n^4 - 1} \ge \frac{3n^3}{4n^4} = \frac{3}{4} \frac{1}{n}, \ \forall n \in \mathbb{N}$$

Επομένως $0 \leq \frac{3}{4} \frac{1}{n} \leq \frac{3n^3+1}{4n^3-1}, \ \forall n \in \mathbb{N}$ και $\sum_{n=1}^{\infty} \frac{3}{4} \frac{1}{n}$ αποκλίνει γιατί $\sum_{n=1}^{\infty} \frac{1}{n}$ αποκλίνει, επομένως από κριτήριο $\sum_{n=1}^{\infty} 3n^3+1$

σύγκρισης και $\sum_{n=1}^{\infty} \frac{3n^3+1}{4n^4-1}$ αποκλίνει.

iv) Παρατηρούμε ότι $a_n=\frac{n^2+1}{n}>0, \ \forall n\in\mathbb{N}.$ Έχουμε

$$a_n = \frac{n^2 + 1}{n} \ge \frac{n^2}{n} = \frac{1}{n}, \ \forall n \in \mathbb{N}$$

Επομένως $0 \leq \frac{1}{n} \leq \frac{n^2+1}{n}, \ \forall n \in \mathbb{N}$ και $\sum_{n=1}^{\infty} \frac{1}{n}$ αποκλίνει, επομένως από κριτήριο σύγκρισης και $\sum_{n=1}^{\infty} \frac{n^2+1}{n}$ αποκλίνει.

ν) Παρατηρούμε ότι $a_n=rac{\sqrt[3]{n^2+1}}{n+1}>0, \ \forall n\in\mathbb{N}.$ Έχουμε

$$a_n = \frac{\sqrt[3]{n^2 + 1}}{n + 1} \ge \frac{\sqrt[3]{n^2}}{n + 1} \ge \frac{\sqrt[3]{n^2}}{n + n} = \frac{\sqrt[3]{n^2}}{2n} = \frac{1}{2n^{\frac{1}{3}}}, \ \forall n \in \mathbb{N}$$

Επομένως $0 \leq \frac{1}{2n^{\frac{1}{3}}} \leq \frac{\sqrt[3]{n^2+1}}{n+1}, \ \forall n \in \mathbb{N}$ και $\sum_{n=1}^{\infty} \frac{1}{2} \frac{1}{n^{\frac{1}{3}}}$ αποκλίνει γιατί $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{3}}}$ αποκλίνει, ως γενικευμένη αρμονική με $\rho = \frac{1}{3} < 1$ επομένως από κριτήριο Σύγκρισης και $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^2+1}}{n+1}$ αποκλίνει.

vi) Παρατηρούμε ότι $a_n=\frac{1}{\sqrt{n(n+1)}}>0, \ \forall n\in\mathbb{N}.$ Έχουμε

$$a_n = \frac{1}{\sqrt{n(n+1)}} \ge \frac{1}{\sqrt{(n+1)(n+1)}} = \frac{1}{\sqrt{(n+1)^2}} = \frac{1}{n+1} \ge \frac{1}{n+n} = \frac{1}{2n}, \ \forall n \in \mathbb{N}$$

Επομένως $0 \leq \frac{1}{2n} \leq \frac{1}{\sqrt{n(n+1)}}, \ \forall n \in \mathbb{N}$ και $\sum_{n=1}^{\infty} \frac{1}{2} \frac{1}{n}$ αποκλίνει γιατί $\sum_{n=1}^{\infty} \frac{1}{n}$ αποκλίνει, επομένως από κριτήριο Σύγκρισης και $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$ αποκλίνει.

Παρατήρηση 1.0.1. Ένας 2ος τρόπος

$$a_n = \frac{1}{\sqrt{n(n+1)}} = \frac{1}{\sqrt{n^2 + n}} \ge \frac{1}{\sqrt{n^2 + n^2}} = \frac{1}{\sqrt{2n^2}} = \frac{1}{\sqrt{2n^2}}, \ \forall n \in \mathbb{N}$$

vii) Παρατηρούμε ότι $a_n=\frac{n}{3n^2-4}$ δεν είναι ακολουθία θετικών όρων γιατί για n=1 έχουμε $a_1=-1$. Οπότε δεν εφαρμόζεται το κριτήριο Ορίου. Γι' αυτό

$$a_n = \frac{n}{3n^2 - 4} \ge \frac{n}{3n^2} = \frac{1}{3n} = b_n, \ \forall n \in \mathbb{N}$$

Όμως

$$0 \le \frac{1}{3n} \le \frac{n}{3n^2 - 4}, \ \forall n \ge 2$$

και επειδή η σειρά $\sum_{n=1}^{\infty} \frac{1}{3n} = \sum_{n=1}^{\infty} \frac{1}{3} \cdot \frac{1}{n}$ αποκλίνει, τότε από κριτήριο Σύγκρισης και $\sum_{n=1}^{\infty} \frac{n}{3n^2-4}$ αποκλίνει.

νίϊί) Παρατηρούμε ότι $a_n=\frac{n^3+2n+1}{5n^5-7}$ όχι ακολουθία θετικών όρων, αφού για n=1, έχουμε $a_1=-4$. Οπότε δεν εφαρμόζεται το κριτήριο Ορίου. Γι' αυτό

$$0 < a_n = \frac{n^3 + 2n + 1}{5n^5 - 7} < \frac{n^3 + 2n^3 + n^3}{5n^5 - 7} < \frac{4n^3}{5n^5 - n^3} = \frac{4n^3}{n^3(5n^2 - 1)} = \underbrace{\frac{4}{5n^2 - 1}}_{h}, \ \forall n \ge 2$$

Φοιτητικό Πρόσημο

και επειδή για τη σειρά $\sum_{n=1}^\infty \frac{4}{5n^2-1}$ έχουμε ότι συγκλίνει, γιατί $b_n=\frac{4}{5n^2-1}\geq 0, \ \forall n\in\mathbb{N}$ και $c_n=\frac{1}{n^2}$, τότε

$$\frac{b_n}{c_n} = \frac{\frac{4}{5n^2-1}}{\frac{1}{n^2}} = \frac{4n^2}{5n^2-1} \xrightarrow{n\to\infty} \frac{4}{5} \in \mathbb{R}$$

οπότε από κριτήριο Ορίου η σειρά $\sum_{n=1}^\infty b_n = \sum_{n=1}^\infty \frac{4}{5n^2-1}$ συγκλίνει και τελικά από το κριτήριο Σύγκρισης και η σειρά $\sum_{n=1}^\infty a_n = \sum_{n=1}^\infty \frac{n^3+2n+1}{5n^5-7}$ θα συγκλίνει.

ix) Παρατηρούμε ότι $a_n=rac{\sqrt{n}}{n^3+1}\geq 0, \ \forall n\in\mathbb{N}.$ Έχουμε

$$a_n = \frac{\sqrt{n}}{n^3 + 1} \le \frac{\sqrt{n}}{n^3} = \frac{n^{\frac{1}{2}}}{n^3} = \frac{1}{n^{\frac{5}{2}}}, \ \forall n \in \mathbb{N}$$

Επομένως $0 \leq \frac{\sqrt{n}}{n^3+1} \leq \frac{1}{n^{\frac{5}{2}}}, \ \forall n \in \mathbb{N}$ και $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{5}{2}}}$ συγκλίνει ως γενικευμένη αρμονική με $\rho = \frac{5}{2} > 1$, επομένως από κριτήριο Σύγκρισης η $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^3+1}$ συγκλίνει.

x) Παρατηρούμε ότι $a_n=\frac{\sqrt{n}}{n+5\sqrt{n}}\geq 0, \ \forall n\in\mathbb{N}.$ Έχουμε

$$a_n = \frac{\sqrt{n}}{n + 5\sqrt{n}} \ge \frac{\sqrt{n}}{n + 5n} = \frac{\sqrt{n}}{6n} = \frac{1}{6\sqrt{n}} \ge \frac{1}{6n}, \ \forall n \in \mathbb{N}$$

Επομένως $0 \leq \frac{1}{6n} \leq \frac{\sqrt{n}}{n+5\sqrt{n}}, \ \forall n \in \mathbb{N}$ και $\sum_{n=1}^{\infty} \frac{1}{6} \frac{1}{n}$ αποκλίνει γιατί $\sum_{n=1}^{\infty} \frac{1}{n}$ αποκλίνει, επομένως από κριτήριο Σύγκρισης και $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+5\sqrt{n}}$ αποκλίνει.

xi) Παρατηρούμε ότι $\sum_{n=1}^{\infty} \frac{3^n}{5^n+1} \geq 0, \ \forall n \in \mathbb{N}.$ Έχουμε

$$a_n = \frac{3^n}{5^n + 1} \le \frac{3^n}{5^n} = \left(\frac{3}{5}\right)^n, \ \forall n \in \mathbb{N}$$

Επομένως $0 \leq \frac{3^n}{5^n+1} \leq \left(\frac{3}{5}\right)^n$, $\forall n \in \mathbb{N}$ και $\sum_{n=1}^{\infty} \left(\frac{3}{5}\right)^n$ συγκλίνει ως γεωμετρική σειρά με $|\lambda| = \left|\frac{3}{5}\right| = \frac{3}{5} < 1$, επομένως από κριτήριο Σύγκρισης και $\sum_{n=1}^{\infty} \frac{3^n}{5^n+1}$ συγκλίνει.

xii) Παρατηρούμε ότι $\sum_{n=1}^{\infty}\frac{1}{n}\left(\frac{2}{5}\right)^n\geq 0, \ \forall n\in\mathbb{N}.$ Έχουμε

$$a_n = \frac{1}{n} \left(\frac{2}{5}\right)^n \le 1 \left(\frac{2}{5}\right)^n, \ \forall n \in \mathbb{N}$$

Επομένως $0 \leq \frac{1}{n} \left(\frac{2}{5}\right)^n \leq \left(\frac{2}{5}\right)^n$, $\forall n \in \mathbb{N}$ και $\sum_{n=1}^{\infty} \left(\frac{2}{5}\right)^n$ συγκλίνει ως γεωμετρική με $|\lambda| = \left|\frac{2}{5}\right| = \frac{2}{5} \leq 1$, επομένως και $\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{2}{5}\right)^n$ συγκλίνει.

Φοιτητικό Πρόσημο

xiii) Παρατηρούμε ότι
$$a_n=\frac{\sin^4 n}{1+\sqrt{n^5}}\geq 0, \ \forall n\in\mathbb{N}.$$
 Έχουμε

$$a_n = \frac{\sin^4 n}{1 + \sqrt{n^5}} = \frac{(\sin n)^4}{1 + \sqrt{n^5}} \le \frac{1^4}{1 + \sqrt{n^5}} < \frac{1}{\sqrt{n^5}} = \frac{1}{n^{\frac{5}{2}}}, \ \forall n \in \mathbb{N}$$

Επομένως $0 \leq \frac{\sin^4 n}{1+\sqrt{n^5}} \leq \frac{1}{n^{\frac{5}{2}}}, \ \forall n \in \mathbb{N}$ και $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{5}{2}}}$ συγκλίνει ως γενικευμένη αρμονική με $\rho=\frac{5}{2}>1$, επομένως και $\sum_{n=1}^{\infty} \frac{\sin^4 n}{1+\sqrt{n^5}}$ συγκλίνει.

xiv) Παρατηρούμε ότι
$$a_n=rac{3^n+5}{4^n+n^2}\geq 0, \ \forall n\in \mathbb{N}.$$
 Έχουμε

$$a_n = \frac{3^n + 5}{4^n + n^2} \le \frac{3^n + 5}{4^n} = \frac{3^n}{4^n} + \frac{5}{4^n} = \left(\frac{3}{4}\right)^n + 5\left(\frac{1}{4}\right)^n, \ \forall n \in \mathbb{N}$$

Επομένως $0 \leq \frac{3^n+5}{4^n+n^2} \leq \left(\frac{3}{4}\right)^n+5\left(\frac{1}{4}\right)^n, \ \forall n \in \mathbb{N}$ και $\sum_{n=1}^{\infty} \left(\frac{3}{4}\right)^n$ και $\sum_{n=1}^{\infty} 5\left(\frac{1}{4}\right)^n$ συγκλίνουν ως γεωμετρικές με $|\lambda_1| = \left|\frac{3}{4}\right| = \frac{3}{4} < 1$ και $|\lambda_2| = \left|\frac{1}{4}\right| = \frac{1}{4} < 1$ αντίστοιχα, επομένως από κριτήριο Σύγκρισης και $\sum_{n=1}^{\infty} \frac{3^n+5}{4^n+n^2}$ συγκλίνει ως το άθροισμα συγκλινουσών σειρών.

xv) Παρατηρούμε ότι
$$a_n=rac{1}{n!}\geq 0, \ \forall n\in\mathbb{N}.$$
 Έχουμε

$$a_n = \frac{1}{n!} = \frac{1}{1} \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \dots \cdot \frac{1}{n} = \frac{1}{2} \cdot \frac{1}{3} \cdot \dots \cdot \frac{1}{n} \le \frac{1}{2} \cdot \frac{1}{2} \cdot \dots \cdot \frac{1}{2} = \frac{1}{2^{n-1}} = \left(\frac{1}{2}\right)^{n-1}, \ \forall n \in \mathbb{N}$$

Επομένως $0 \leq \frac{1}{n!} \leq \frac{1}{2^{n-1}}, \ \forall n \in \mathbb{N}$ και $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n-1}$ συγκλίνει, ως γεωμετρική με $|\lambda| = \left|\frac{1}{2}\right| = \frac{1}{2} < 1$, επομένως από κριτήριο Σύγκρισης και $\sum_{n=1}^{\infty} \frac{1}{n!}$ συγκλίνει.

xvi) Παρατηρούμε ότι
$$a_n=\frac{n!}{2^n+1}\geq 0, \ \forall n\in\mathbb{N}.$$
 Έχουμε

$$a_n = \frac{n!}{2^n + 1} \ge \frac{2^{n-1}}{2^n + 1} \ge \frac{2^{n-1}}{2^n + 2^n} = \frac{2^n \cdot 2^{-1}}{2 \cdot 2^n} = \frac{1}{4}, \ \forall n \in \mathbb{N}$$

Επομένως $0 \leq \frac{1}{4} \leq \frac{n!}{2^n+1}$, $\forall n \in \mathbb{N}$ και $\sum_{n=1}^{\infty} \frac{1}{4}$ αποκλίνει, επομένως από κριτήριο Σύγκρισης και $\sum_{n=1}^{\infty} \frac{n!}{2^n+1}$

$$\frac{|a_{n+1}|}{|a_n|} = \frac{\frac{(n+1)!}{3^{n+1}}}{\frac{n!}{3^n}} = \frac{3^n}{3^{n+1}} \cdot \frac{(n+1)!}{n!} = \frac{3^n}{3^n \cdot 3} \cdot \frac{1 \cdot 2 \cdots n \cdot (n+1)}{1 \cdot 2 \cdots n} = \frac{1}{3} \cdot (n+1) \xrightarrow{n \to \infty} \infty > 1$$

Επομένως από κριτήριο Λόγου η σειρά $\sum_{n=1}^{\infty} \frac{n!}{3^n}$ αποκλίνει.

ii)
$$\frac{|a_{n+1}|}{|a_n|} = \frac{\frac{2^{n+1}}{(n+1)^2}}{\frac{2^n}{n^2}} = \frac{n^2}{(n+1)^2} \cdot \frac{2^{n+1}}{2^n} = \left(\frac{n}{n+1}\right)^2 \cdot 2 \xrightarrow{n \to \infty} 1^2 \cdot 2 = 2 > 1$$

Επομένως από κριτήριο Λόγου η σειρά $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$ αποκλίνει.

iii)
$$\frac{|a_{n+1}|}{|a_n|} = \frac{\frac{3^{n+1} \cdot (n+1)!}{(n+1)^{n+1}}}{\frac{3^n \cdot n!}{3^n \cdot n!}} = \frac{3^{n+1}}{3^n} \cdot \frac{n^n}{(n+1)^{n+1}} \cdot \frac{(n+1)!}{n!} = 3 \cdot \frac{n^n}{(n+1)^{n+1}} \cdot (n+1) = 3 \cdot \left(\frac{n}{n+1}\right)^n$$

Όπου

$$\lim_{n\to\infty}\left(\frac{n}{n+1}\right)^n=\lim_{n\to\infty}\frac{1}{\left(\frac{n+1}{n}\right)^n}=\lim_{n\to\infty}\frac{1}{(1+\frac{1}{n})^n}=\frac{1}{e}$$

Επομένως $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = 3 \cdot \frac{1}{e} = \frac{3}{e} > 1$ άρα από κριτήριο Λόγου η σειρά $\sum_{n=1}^{\infty} \frac{3^n \cdot n!}{n^n}$ αποκλίνει.

iv)
$$\frac{|a_{n+1}|}{|a_n|} = \frac{\frac{6^{n+1}}{2(n+1)+7}}{\frac{6^n}{2n+7}} = \frac{6^n \cdot 6}{6^n} \cdot \frac{2n+7}{2n+9} = 6 \cdot \frac{2n+7}{2n+9} \xrightarrow{n \to \infty} 6 \cdot 1 = 6 > 1$$

Επομένως από κριτήριο Λόγου η σειρά $\sum_{n=1}^{\infty} \frac{6^n}{2n+7}$ αποκλίνει.

v)

$$\frac{|a_{n+1}|}{|a_n|} = \frac{\frac{3^{n+1}+4^{n+1}}{\frac{5^{n+1}+4^{n+1}}{\frac{3^n+4^n}}}}{\frac{3^n+4^n}{5^n+4^n}} = \frac{3\cdot 3^n+4\cdot 4^n}{3^n+4^n} \cdot \frac{5^n+4^n}{5\cdot 5^n+4\cdot 4^n} = \frac{4^n\left(3\cdot (\frac{3}{4})^n+4\cdot 1\right)}{4^n\left((\frac{3}{4})^n+1\right)} \cdot \frac{5^n\left(1+(\frac{4}{5})^n\right)}{5^n\left(5\cdot 1+4\cdot (\frac{4}{5})^n\right)}$$

$$= \frac{3\cdot (\frac{3}{4})^n+4}{(\frac{3}{4})^n+1} \cdot \frac{1+(\frac{4}{5})^n}{5+4\cdot (\frac{4}{5})^n} \xrightarrow{n\to\infty} \frac{3\cdot 0+4}{0+1} \cdot \frac{1+0}{5+4\cdot 0} = \frac{4}{5} < 1$$

Επομένως από κριτήριο Λόγου η σειρά $\sum_{n=1}^{\infty} \frac{3^n + 4^n}{5^n + 4^n}$ συγκλίνει.

vi)
$$\frac{|a_{n+1}|}{|a_n|} = \frac{\frac{[(n+1)!]^2}{[2(n+1)]!}}{\frac{(n!)^2}{(2n)!}} = \left(\frac{(n+1)!}{n!}\right)^2 \cdot \frac{(2n)!}{(2n+2)!} = \frac{(n+1)^2}{(2n+1) \cdot (2n+2)} = \frac{n^2 + 2n + 1}{4n^2 + 6n + 2} \xrightarrow{n \to \infty} \frac{1}{4} < 1$$

Επομένως από κριτήριο Λόγου η σειρά $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$ συγκλίνει.

vii)

$$\frac{|a_{n+1}|}{|a_n|} = \frac{\frac{(n+1)!}{1 \cdot 3 \cdots (2(n+1)-1)}}{\frac{n!}{1 \cdot 3 \cdots (2n-1)}} = \frac{(n+1)!}{n!} \cdot \frac{1 \cdot 3 \cdots (2n-1)}{1 \cdot 3 \cdots (2n-1) \cdot (2n+1)} = \frac{n+1}{2n+1} \xrightarrow{n \to \infty} \frac{1}{2} < 1$$

Επομένως από κριτήριο Λόγου η σειρά $\sum_{n=1}^{\infty} \frac{n!}{1 \cdot 3 \cdots (2n-1)}$ συγκλίνει.

4. i

$$\sqrt[n]{|a_n|} = \sqrt[n]{\left(\frac{3n}{n+1}\right)^n} = \frac{3n}{n+1} \xrightarrow{n \to \infty} 3 > 1$$

Επομένως από κριτήριο Ρίζας η σειρά $\sum_{n=1}^{\infty} \left(\frac{3n}{n+1}\right)^n$ αποκλίνει.

ii)

$$\sqrt[n]{|a_n|} = \sqrt[n]{\frac{2^n}{n^n}} = \sqrt[n]{\left(\frac{2}{n}\right)^n} = \frac{2}{n} \xrightarrow{n \to \infty} 0 < 1$$

Επομένως από κριτήριο Ρίζας η σειρά $\sum_{n=1}^{\infty}\frac{2^n}{n^n}$ συγκλίνει.

iii)

$$\sqrt[n]{|a_n|} = \sqrt[n]{\frac{e^n}{5n}} = \frac{e}{\sqrt[n]{5} \cdot \sqrt[n]{n}} \xrightarrow{n \to \infty} \frac{e}{1 \cdot 1} = e > 1$$

Επομένως από κριτήριο Ρίζας η σειρά $\sum_{n=1}^{\infty} \frac{e^n}{5n}$ αποκλίνει.

iv)

$$\sqrt[n]{|a_n|} = \sqrt[n]{\frac{n^3}{e^{n^2}}} = \frac{\sqrt[n]{n^3}}{e^n} = \frac{\sqrt[n]{n} \cdot \sqrt[n]{n} \cdot \sqrt[n]{n}}{e^n} \xrightarrow{n \to \infty} 1 \cdot 0 = 0 < 1$$

Επομένως από κριτήριο Ρίζας η σειρά $\sum_{1}^{\infty} \frac{n^3}{e^{n^2}}$ συγκλίνει.

v)

$$\sqrt[n]{|a_n|} = \sqrt[n]{\frac{2^n}{n \cdot e^{n+1}}} = \frac{2}{\sqrt[n]{n} \cdot \sqrt[n]{e^{n+1}}} = \frac{2}{\sqrt[n]{n} \cdot \sqrt[n]{e^n} \cdot \sqrt[n]{e}} \xrightarrow[n \to \infty]{} \frac{2}{1 \cdot e \cdot 1} = \frac{2}{e} < 1$$

Επομένως από κριτήριο Ρίζας η σειρά $\sum_{n=1}^{\infty} \frac{2^n}{n \cdot e^{n+1}}$ συγκλίνει.

vi)

$$\sqrt[n]{|a_n|} = \sqrt[n]{(\sqrt[n]{n} - 1)^n} = \sqrt[n]{n} - 1 \xrightarrow{n \to \infty} 1 - 1 = 0 < 1$$

Επομένως από κριτήριο Ρίζας η σειρά $\sum_{n=1}^{\infty} (\sqrt[n]{n}-1)^n$ συγκλίνει.

vii)

$$\sqrt[n]{|a_n|} = \sqrt[n]{\frac{1}{3^n \cdot (\frac{n+1}{n})^{n^2}}} = \sqrt[n]{\frac{1}{3^n}} \cdot \sqrt[n]{\frac{(n+1)^{n^2}}{n}} = \frac{1}{3} \cdot \left(\frac{n+1}{n}\right)^n = \frac{1}{3} \cdot \left(1 + \frac{1}{n}\right)^n \xrightarrow[]{n \to \infty} \frac{1}{3} \cdot e = \frac{e}{3} < 1$$

Επομένως από κριτήριο Ρίζας η σειρά $\sum_{i=1}^{\infty} \frac{1}{3^n} \cdot \left(\frac{n+1}{n}\right)^{n^2}$ συγκλίνει.

viii)

$$\sqrt[n]{|a_n|} = \sqrt[n]{\left(1 + \frac{1}{4n}\right)^{-n^2}} = \left(1 + \frac{1}{4n}\right)^{-n} = \frac{1}{\left(1 + \frac{1}{4n}\right)^n} = \frac{1}{\left(1 + \frac{1}{4}\right)^n} \xrightarrow{n \to \infty} \frac{1}{e^{\frac{1}{4}}} = \frac{1}{\sqrt[4]{e}} < 1$$

Επομένως από κριτήριο Ρίζας η σειρά $\sum_{i=1}^{\infty} \left(1+\frac{1}{4n}\right)^{-n^2}$ συγκλίνει.

i) Παρατηρούμε ότι $a_n=\frac{1}{n^2+n-1}>0, \ \forall n\in\mathbb{N}.$ Θέτουμε $b_n=\frac{1}{n^2}>0, \ \forall n\in\mathbb{N}$ οπότε

$$\frac{a_n}{b_n} = \frac{\frac{1}{n^2 + n - 1}}{\frac{1}{n^2}} = \frac{n^2}{n^2 + n - 1} \xrightarrow{n \to \infty} 1 \in \mathbb{R}$$

και επειδή $\sum_{n=1}^{\infty}b_n=\sum_{n=1}^{\infty}\frac{1}{n^2}$ συγκλίνει, τότε από κριτήριο Ορίου και η σειρά $\sum_{n=1}^{\infty}a_n$ συγκλίνει.

ii) Παρατηρούμε ότι $a_n=\frac{1}{\sqrt{n^3+n^2}}\geq 0, \ \forall n\in\mathbb{N}.$ Θέτουμε $b_n=\frac{1}{n^{\frac{3}{2}}}.$ Οπότε

$$rac{1}{n^3+n^2}\geq 0, \; orall n\in \mathbb{N}.$$
 Θέτουμε $b_n=rac{1}{n^{rac{3}{2}}}.$ Οπότ

$$\frac{a_n}{b_n} = \frac{\frac{1}{\sqrt{n^3 + n^2}}}{\frac{1}{n^{\frac{3}{2}}}} = \frac{\sqrt{n^3}}{\sqrt{n^3 + n^2}} = \sqrt{\frac{n^3}{n^3 + n^2}} \xrightarrow{n \to \infty} \sqrt{1} = 1 \in \mathbb{R}$$

και επειδή η η σειρά $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ συγκλίνει, ως γενικευμένη αρμονική με $\rho=\frac{3}{2}>1$, τότε από κριτήριο Ορίου και η σειρά $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3+n^2}}$ συγκλίνει.

iii) Παρατηρούμε ότι
$$a_n=\frac{n}{\sqrt{n^3+n^2}}\geq 0,\ \forall n\in\mathbb{N}.$$
 Θέτουμε $b_n=\frac{1}{n^{\frac{1}{2}}}.$ Οπότε
$$\frac{a_n}{b_n}=\frac{\frac{n}{\sqrt{n^3+n^2}}}{\frac{1}{1}}=\frac{\sqrt{n}\cdot n}{\sqrt{n^3+n^2}}=\sqrt{\frac{n^3}{n^3+n^2}}\xrightarrow{n\to\infty}\sqrt{1}=1\in\mathbb{R}$$

και επειδή η σειρά $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}$ αποκλίνει, ως γενικευμένη αρμονική με $\rho=\frac{1}{2}<1$, τότε από κριτήριο Ορίου θα αποκλίνει και η σειρά $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^3+n^2}}$.

6. i) Παρατηρούμε ότι
$$a_n=\frac{1}{2n+1}\geq 0, \ \forall n\in\mathbb{N}$$
. Έχουμε

$$lackbreak n+1>n, \ \forall n\in\mathbb N\Leftrightarrow 2(n+1)>2n, \ \forall n\in\mathbb N\Leftrightarrow 2(n+1)+1>2n+1, \ \forall n\in\mathbb N\Leftrightarrow rac{1}{2(n+1)+1}<rac{1}{2n+1}, \ \forall n\in\mathbb N\Leftrightarrow a_{n+1}< a_n, \ \forall n\in\mathbb N,$$
 επομένως η $a_n=rac{1}{2n+1}$ είναι γνησίως φθίνουσα και άρα φθίνουσα.

$$\lim_{n\to\infty}\frac{1}{2n+1}=\lim_{n\to\infty}\frac{1}{n(2+\frac{1}{n})}=\lim_{n\to\infty}\left(\frac{1}{n}\cdot\frac{1}{2+\frac{1}{n}}\right)=\lim_{n\to\infty}\frac{1}{n}\cdot\lim_{n\to\infty}\frac{1}{2+\frac{1}{n}}=0\cdot\frac{1}{2+0}=0$$

Επομένως από Κριτήριο Leibnitz η εναλλάσσουσα σειρά $\sum_{n=1}^{\infty} (-1)^n \frac{1}{2n+1}$ συγκλίνει.

ii) Παρατηρούμε ότι
$$a_n=\frac{1}{\sqrt{n^2+3}}\geq 0, \ \forall n\in\mathbb{N}.$$
Έχουμε

$$\sqrt{n^2+3}$$
 $n+1>n, \ \forall n\in\mathbb{N}\Leftrightarrow (n+1)^2>n^2, \ \forall n\in\mathbb{N}\Leftrightarrow (n+1)^2+3>n^2+3, \ \forall n\in\mathbb{N}\Leftrightarrow \sqrt{(n+1)^2+3}> \sqrt{n^2+3}, \ \forall n\in\mathbb{N}\Leftrightarrow \frac{1}{\sqrt{((n+1)^2+3)}}<\frac{1}{\sqrt{n^2+3}}, \ \forall n\in\mathbb{N}\Leftrightarrow a_{n+1}< a_n, \ \forall n\in\mathbb{N}, \ \text{άρα η } a_n=\frac{1}{\sqrt{n^2+3}}$ είναι γνησίως φθίνουσα και άρα φθίνουσα.

$$\lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 3}} = 0$$

Επομένως από κριτήριο Leibnitz η εναλλάσσουσα σειρά $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n^2+3}}$ συγκλίνει.

iii)
$$\sum_{n=1}^{\infty} \left(-\frac{1}{2}\right)^n = \sum_{n=1}^{\infty} (-1)^n \left(\frac{1}{2}\right)^n$$
 και πρόκειται για εναλλάσσουσα σειρά με $a_n = \left(\frac{1}{2}\right)^n \geq 0, \ \forall n \in \mathbb{N}.$

Επομένως από κριτήριο Leibnitz η εναλλάσσουσα σειρά $\sum_{n=1}^{\infty} (-1)^n \left(\frac{1}{2} \right)^n$ συγκλίνει.

iv)
$$\sum_{n=1}^{\infty} \frac{\cos{(n\pi)}}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$
, άρα είναι εναλλάσσουσα, όμοια με το ii).

Παρατήρηση 1.0.2. Για αυτήν την άσκηση θα μπορούσε να είχε χρησιμοποιηθεί και το πιο γενικό κριτήριο Dirichlet, όπου μία ακόμη προϋπόθεση για την ακολουθία $b_n=(-1)^n$ είναι να έχει φραγμένα μερικά αθροίσματα, δηλαδή

$$\exists M > 0 : \left| \sum_{n=1}^{N} (-1)^n \right| < M, \ \forall n \in \mathbb{N}.$$

Πράγματι, έχουμε

$$\left| \sum_{n=1}^{N} (-1)^n \right| = 0 \, \, \text{\'n} \, \, 1 \le 1 = M, \, \, \forall n \in \mathbb{N}$$

οπότε ισχύουν οι προϋποθέσεις του κριτηρίου Dirichlet και επομένως όλες οι σειρές της παραπάνω ασκήσεις $\sum_{n=1}^{\infty}b_n\cdot a_n$ συγκλίνουν, όπου $b_n=(-1)^n$ ή $b_n=\cos n\pi$.

7. i)

$$|a_n| = \left| (-1)^{n-1} \frac{ne}{n!} \right| = \frac{ne}{n!}$$

$$\frac{|a_{n+1}|}{|a_n|} = \frac{\frac{(n+1)e}{(n+1)!}}{\frac{ne}{n!}} = \frac{(n+1)e}{ne} \cdot \frac{n!}{(n+1)!} = \frac{n+1}{n} \cdot \frac{1}{n+1} = \frac{1}{n} = 0 < 1$$

Επομένως από κριτήριο Λόγου η σειρά $\sum_{n=1}^{\infty}|a_n|$ συγκλίνει και επομένως από απόλυτη σύγκλιση η σειρά $\sum_{n=1}^{\infty}a_n$ συγκλίνει.

ii) $|a_n| = \left| (-1)^{n-1} \frac{n^2}{n^4 + 2} \right| = \frac{n^2}{n^4 + 2}$

η οποία εύκολα με κριτήριο σύγκρισης ή κριτήριο Ορίου αποδεικνύεται ότι συγκλίνει και άρα η σειρά $\sum_{n=1}^{\infty} |a_n|$ συγκλίνει και από απόλυτη σύγκλιση η σειρά $\sum_{n=1}^{\infty} a_n$ συγκλίνει.

iii) $|a_n| = \left|\frac{\sin{(3n+1)}}{10^n}\right| = \frac{|\sin{(3n+1)}|}{10^n} = \leq \frac{1}{10^n} = \left(\frac{1}{10}\right)^n$ όπου η σειρά $\sum_{n=1}^\infty |a_n| = \sum_{n=1}^\infty \left(\frac{1}{10}\right)^n$ η οποία συγκλίνει ως γεωμετρική με $|\lambda| = \left|\frac{1}{10}\right| = \frac{1}{10} < 1$ και άρα από απόλυτη σύγκλιση και η σειρά $\sum_{n=1}^\infty a_n$ συγκλίνει.

iv) $|a_n| = \left| (-1)^{n+1} \frac{\cos n + \sin n}{5^n} \right| = \left| \frac{\cos n + \sin n}{5^n} \right| = \frac{|\cos n + \sin n|}{5^n} \le \frac{|\cos n| + |\sin n|}{5^n} \le \frac{1+1}{5^n} = \frac{2}{5^n}$ όπου η σειρά $\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \frac{2}{5^n} = 2 \sum_{n=1}^{\infty} \left(\frac{1}{5} \right)^n$ η οποία συγκλίνει ως γεωμετρική με $|\lambda| = \left| \frac{1}{5} \right| = \frac{1}{5} < 1$ και άρα από απόλυτη σύγκλιση και η σειρά $\sum_{n=1}^{\infty} a_n$ συγκλίνει.

v) $|a_n| = \left| \frac{(-1)^n}{3^n} \right| = \frac{|(-1)^n|}{3^n} = \frac{1}{3^n} = \left(\frac{1}{3}\right)^n$

όπου η σειρά $\sum_{n=1}^{\infty}|a_n|=\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^n$ η οποία συγκλίνει ως γεωμετρική με $|\lambda|=\left|\frac{1}{3}\right|=\frac{1}{3}<1$ και άρα από απόλυτη σύγκλιση και η σειρά $\sum_{n=1}^{\infty}a_n$ συγκλίνει.

 $|a_n| = \left| \frac{1}{2^n} \cdot \sin\left(\frac{n^2 + 1}{n+2}\right) \right| = \frac{1}{2^n} \cdot \left| \sin\left(\frac{n^2 + 1}{n+2}\right) \right| \le \frac{1}{2^n} \cdot 1 = \frac{1}{2^n}$

όπου η σειρά $\sum_{n=1}^\infty |a_n| = \sum_{n=1}^\infty \frac{1}{2^n}$ εύκολα αποδεικνύεται με κριτήριο λόγου ότι συγκλίνει και άρα από απόλυτη σύγκλιση και η σειρά $\sum_{n=1}^\infty a_n$ συγκλίνει.

vii) $|a_n| = \left| \sin\left(n^2 + 5\right) \cdot \frac{n+1}{n^3 + 7} \right| = \left| \sin\left(n^2 + 5\right) \right| \cdot \left| \frac{n+1}{n^3 + 7} \right| \le 1 \cdot \frac{n+1}{n^3 + 7} = \frac{n+1}{n^3 + 7}$

όπου η σειρά $\sum_{n=1}^{\infty}|a_n|=\sum_{n=1}^{\infty}\frac{n+1}{n^3+7}$ εύκολα αποδεικνύεται με κριτήριο ορίου ότι συγκλίνει και άρα από απόλυτη σύγκλιση και η σειρά $\sum_{n=1}^{\infty}a_n$ συγκλίνει.

viii) Παρατηρούμε ότι $a_n=\frac{1}{n}\cdot\sin\frac{\pi}{n}\geq 0,\ \forall n\in\mathbb{N}.$ Έχουμε

$$a_n = \frac{1}{n} \cdot \sin \frac{\pi}{n} = \frac{1}{n} \cdot \left| \sin \frac{\pi}{n} \right| \le \frac{1}{n} \cdot \left| \frac{\pi}{n} \right| = \frac{\pi}{n^2}, \ \forall n \in \mathbb{N}$$

Επομένως $0 \leq \frac{1}{n} \cdot \sin \frac{\pi}{n} \leq \frac{\pi}{n^2}, \ \forall n \in \mathbb{N}$ και $\sum_{n=1}^{\infty} \frac{\pi}{n^2} = \pi \sum_{n=1}^{\infty} \frac{1}{n^2}$ συγκλίνει, επομένως από κριτήριο και σύγκλισης και $\sum_{n=1}^{\infty} \frac{1}{n} \cdot \sin \frac{\pi}{n}$ συγκλίνει.

Φοιτητικό Πρόσημο