Aeroacústica Computacional Lista 4

1 Implementação de paredes não alinhadas

Este exercício consiste em implementar a técnica de Bouzidi et al. de paredes curvas. O objetivo principal é comparar os resultados do número de Strouhal St=UD/f obtidos para o escoamento ao redor de uma circunferência, como ilustra a figura abaixo. O primeiro resultado é obtido para uma circunferência utilizando o bounce-back simples. O segundo resultado é obtido, utilizando-se a técnica de Bouzidi et al. para paredes curvas.

Dados do problema:

Dimensões do domínio: 150 x 300 células Espessura das barreiras anecoicas: 30 células Posição do centro da circunferência: (75, 80)

Raio do circunferência: 15 células

M = 0.1 $\omega = 1.88$

Para a obtenção do número de Strouhal, inicie o escoamento até que se obtenha o regime estacionário em cada caso. Esperase que no regime estacionário seja possível observar o desprendimento de vórtices com frequência f e a formação de um "caminho de von Karman"à jusante da circunferência. A frequência adimensional pode ser obtida a partir da medição da flutuação de densidade, 100 células à jusante da linha central da circunferência. Do mesmo modo, a velocidade média do escoamento na direção x deve ser medida ao longo da seção transversal do domínio, 100 células à jusante da linha central da circunferência.

Desenvolva no relatório todos os passos da implementação e explique porque os resultados do número de Strouhal diferem entre o bounce - back normal e a técnica de paredes não alinhadas.

2 Paredes movediças

O objetivo deste exercício é implementar a técnica de paredes movediças desenvolvido por Lallemand e Luo. Neste caso, a parede movediça será uma corda em vibração livre com engaste nas extremidades, inserida no meio fluido representado por LBM.

Primeiro passo

Criar um domínio computacional com 200x200 células, contendo bordas anecóicas com espessura de 30 células.

Segundo passo

Resolva a equação de uma corda não amortecida por diferenças finitas. A equação da corda é dada por:

$$T\frac{\partial^2 w(x,t)}{\partial x^2} + F(x,t) = \rho \frac{\partial^2 w(x,t)}{\partial t^2}$$

sendo T é a tensão da corda, F a força distribuída ao longo da corda e w o deslocamento transversal. Sugere-se, para tanto, que se utilizem os seguintes valores para esses parâmetros, em unidade de lattice:

$$T = 0,333$$

$$\rho = 160$$

A discretização espacial da corda deve ser de 100 elementos. Como todos os parâmetros estão em unidade de lattice, Dx = 1 e Dt = 1. A corda deve vibrar mediante a um deslocamento inicial dado por:

$$w(x, t = 0) = \frac{2}{25}x$$
 para $1 \le x \le 25$

e

$$w(x,t=0) = -\frac{2}{75}x + \frac{8}{3} \quad \text{para} \quad 25 \leq x \leq 100$$

Terceiro passo

Implementar o modelo da corda fracamente acoplada (a corda não sente a influencia do fluido) dentro do domínio de LBM, de acordo com a técnica de Lallemand e Luo. Utilize, para tanto, a função crossing.m. As extremidades da corda devem ser afixadas nos pontos (50,100) e (150,100). Neste caso, a foça F(x,t)=0. Obtenha o histórico de deslocamento da corda no ponto central para 10 ciclos de oscilação.

Quarto passo

Para as mesmas condições, considere agora o problema amplamente acoplado em que o fluido transfere quantidade de movimento para a corda. Neste caso, $F(x,t) \neq 0$ na equação da corda. Em outras palavras, a cada instante de tempo, a força exercida pelo fluido na superfície da corda deve ser calculado e inserido no modelo de diferenças finitas. Explique no relatório como esta força é calculada. Obtenha o histórico de deslocamento da corda no ponto central para 10 ciclos de oscilação e compara com o resultado anterior. Qual a diferença mais notável?