Derive the following using all known inferences rules and equivalences from propositional logic as well as the $\forall E$, $\forall I$, $\exists I$ and $\exists E$.

- 1. ∃yGya A
- 2. $\forall z(Gza \rightarrow Gaz)$ A
- 3. Gba H for ∃E
- 4. Gba \rightarrow Gab 2, \forall E
- 5. Gab 3,4 →E
- 6. ∃xGax 5, ∃I
- 7. ∃xGax 1, 3-6 ∃E

Note, that step 7 is permissible here because b does not occur in any assumption, in line 1 (which in this case is an assumption), or in line 7 itself. The name 'a' does occur in line 7 but that is ok, because 'a' is not the name we hypothesized.

Philosophy 60 Predicate calculus worksheet

2.
$$\forall x \forall y (Fxy \rightarrow Fyx), \exists x Fxa \mid \exists x Fax$$

1.	$\forall x \forall y$	/(Fx\	$/ \rightarrow F_{Y}$	/X)	Α

4.
$$\forall y(Fby \rightarrow Fyb)$$
 1, $\forall E$

5. Fba
$$\rightarrow$$
 Fab 4, \forall E

3. $\forall x Fx \ v \ \forall x Gx \ \mid \exists x (Fx \ v \ Gx)$

1. ∀	′xFx v ∀xGx	Α
2.	∀xFx	Н
3.	Fa	2, ∀E
4.	Fa v Ga	3, vl
5.	∃x(Fx v Gx)	4, ∃I
6.	$\forall x Fx \rightarrow \exists x (Fx \lor Gx)$	2 - 5 →I
7.	∀xGx	Н
8.	Ga	7, ∀E
9.	Fa v Ga	8, vI
10.	∃x(Fx v Gx)	9, ∃I
11.	$\forall xGx \rightarrow \exists x(Fx \lor Gx)$	7-10 →I
12.	∃x(Fx v Gx)	1,6,11 vE

4. $\exists x(Fx \lor Gx) \mid \exists xFx \lor \exists xGx$

1. Ξ	∃x(Fx v Gx)	Α
2.	Fa v Ga	Н
3.	Fa	Н
4.	∃xFx	3, ∃I
5.	∃xFx v ∃xGx	4, vI
6.	$Fa \rightarrow (\exists xFx \ v \ \exists xGx)$	3-5 →I
7.	Ga	Н
8.	∃xGx	7, ∃l
9.	∃xFx v ∃xGx	8, vI
10.	$Ga \rightarrow (\exists x Fx \ v \ \exists x Gx)$	7 - 9 →I
11.	∃xFx v ∃xGx	2,6,10 vE
12.	∃xFx v ∃xGx	1, 2-11 ∃E

Alternatively,

1.∃	xFx	Α
2.	∀x~Fx	H ~I
3.	~Fa	2, ∀E
4.	Fa	H, ∃E
5.	P & ~P	3,4 CON
6.	P & ~P	1, 4-5 ∃E
7	~∀x~Fx	2-6, ~I

Note carefully the importance in this case of using P&~P by CON since you can not end the proof with Fa &~Fa, since a is in the hypothesis and must not remain in the last line. You can avoid mistakes just by always using this method whenever you require a contradiction to discharge any hypothesis at all.

1. ~∃x~Fx 2. l ~∀xFx 3. ⊢~Fa ∃x~Fx 4. 5. P & ~P ~~Fa 6. 7. Fa 8. ∀xFx 9. P & ~P 10. ~~∀xFx 11. ∀xFx

3, ∃I 1,4 CON 3-5, ~I 6, DN 7, ∀I 2,8 CON 2-9, ~I 10, DN

H for ~I

H for ~I

Α

Note that step 7 is permissible only because a does not occur in an undischarged hypothesis or an assumption.

Philosophy 60 Predicate calculus worksheet

7.
$$\forall x(Fx \rightarrow Gx), \exists x \sim Gx \mid \neg \forall x Fx$$

1. $\forall x(Fx \rightarrow Gx)$ A

2. ∃x~Gx A

3. |~Ga H

4. $| Fa \rightarrow Ga$ 1, $\forall E$

+. | I a \rightarrow Oa I, \forall L

5. ~Fa 3,4 MT

7. Fa 6, ∀E

B. P & ~P 5,7 CON

10. ~∀xFx 2, 3-9 ∃E

Note that on line 6 you can not simply do a \forall I because this would result in \forall x~Fx, not \sim \forall xFx. You also can not do this because a is in an undischarged hypothesis.

8.
$$\forall x(Fx \rightarrow \forall y(Gy \rightarrow Hxy)), \exists x(Fx \& \exists y\sim Hxy) \models \exists x\sim Gx$$

1.
$$\forall x(Fx \rightarrow \forall y(Gy \rightarrow Hxy))$$
A

2. $\exists x(Fx \& \exists y \sim Hxy)$
A

3. $\mid Fa \& \exists y \sim Hay$
H, $\exists E$

4. $\mid Fa \mid$
3, &E

5. $\mid \exists y \sim Hay$
3, &E

6. $\mid \sim Hab$
H, $\exists E$

7. $\mid Fa \rightarrow \forall y(Gy \rightarrow Hay)$
1, $\forall E$

8. $\mid \forall y(Gy \rightarrow Hay)$
1, $\forall Fa \rightarrow \forall y(Gy \rightarrow Hay)$

9. $\mid Gb \rightarrow Hab$
8, $\forall E$

10. $\mid \neg Gb \rightarrow Hab$
6,9 MT

11. $\mid \exists x \sim Gx$
10, $\exists I$

12. $\mid \exists x \sim Gx$
5, 6-10 $\exists E$

13. $\exists x \sim Gx$
2, 3-12 $\exists E$

9.
$$\forall x(\exists y Fxy \rightarrow \exists z Fzx) \mid \exists x Fax \rightarrow \neg \forall z \neg Fza$$

1. ∀	f x(\exists yFxy $\rightarrow \exists$ zFzx)	Α
2.	∃xFax	$H \rightarrow I$
3.	∃yFay → ∃xFza	1, ∀E
4.	Fab	H, ∃E
5.	∃yFay	4, ∃I
6.	∃yFay	2, 4-5 ∃E
7.	∃xFza	3,6 →E
8.	Fca	H, ∃E
9.	∣∀z~Fza	H, ~I
10.	~Fca	9, ∀E
11.	P & ~P	8,10 CON
12.	~∀z~Fza	9-11, ~I
13.	~∀z~Fza	7, 8-12 ∃E
14.	∃xFax → ~∀z~Fza	2 - 12, →I

10. $\exists x(Fx \lor \forall yGxy) \models \exists yFy \lor \exists y(Gyy \& Gyb)$

1.∃:	x(Fx v ∀yGxy)	Α
2.	Fa v ∀yGay	H, ∃E
3.	Fa	$H \rightarrow I$
4.	∃yFy	3, ∃I
5.	∃yFy v ∃y(Gyy & Gyb)	4, ∀I
6.	Fa → (∃yFy v ∃y(Gyy & Gyb))	3-5 →I
7.	∀yGay	$H, \rightarrow I$
8.	Gab	7, ∀E
9.	Gaa	7, ∀E
10.	Gaa & Gab	8,9 &1
11.	∃yGyy & Gyb	10, ∃I
12.	∃yFy v ∃y(Gyy & Gyb)	11, vl
13.	∀yGay → ∃yFy v ∃y(Gyy & Gyb)	7-12, →I
14.	∃yFy v ∃y(Gyy & Gyb)	2,6,13 vE
15. ∃yFy v ∃y(Gyy & Gyb)		1, 2-14 ∃E