1. DP, let n_i denote the number of occurrences of character i in the input string, and let f[i][j] denote the number of possibilities when the length of the sequence is i and we only use the first j characters $(1 \le j \le |\Sigma|)$. $f[i][j] = \sum_{0 \le k \le \min\{i, n_j\}} {i \choose k} f[i-k][j-1]$. running time $\sum_{j=1}^{|\Sigma|} O(n) \cdot O(n_j) = O(n^2)$ (independent of $|\Sigma|$). 2. use EGF. let $F_m(x) = \sum_{i=0}^m \frac{x^i}{i!}$, we only need to compute $\prod_{j=1}^{|\Sigma|} F_{n_j}(x)$. use divide and conquer & FFT, $O(n \log^2 n)$ (can improve to $O(n \log n)$?).

references: 国家集训队2015论文集:金策《生成函数的运算与组合计数问题》.