MATH 102: IDEAS OF MATH

WORKSHEET 4

1. Logical equivalence

Definition 1.1. Let P and Q be logical formulae. We say that P and Q are logically equivalent and write $P \equiv Q$ if Q can be derived from P and P can be derived from Q.

Problem 1.1. Show that

$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$
,

where P, Q, R are propositional variables.

It turns out that the following is true.

Theorem 1.2. Two propositional formulae are logically equivalent if and only if their truth values are the same under any assignment of truth values to their constituent propositional variables.

2. Truth table

Theorem 2.1 (De Morgan's laws for logical operators). Let P, Q be propositional variables. Then,

$$(1) \neg (P \lor Q) \equiv (\neg P) \land (\neg Q),$$

$$(2) \neg (P \land Q) \equiv (\neg P) \lor (\neg Q).$$

$$(2) \neg (P \land Q) \equiv (\neg P) \lor (\neg Q).$$

Theorem 2.2 (Distributive laws). Let P, Q, R be propositional variables. Then,

(1)
$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$
,
(2) $P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$.

$$(2) \ P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R).$$

Theorem 2.3 (Absorption laws). Let P, Q be propositional variables. Then,

(1)
$$P \lor (P \land Q) \equiv P$$
,

(2)
$$P \wedge (P \vee Q) \equiv P$$
.

Problem 2.1. Prove the theorems above by truth tables.

Date: September 13, 2023.

There are a few other laws that are useful to know.

Theorem 2.4 (Tautology laws). (1) $P \land a \ tautology \equiv P$

- (2) $P \lor a \ tautology \equiv tautology$
- (3) \neg (a tautology) is a contradiction.

Theorem 2.5 (Contradiction laws). (1) $P \land contradiction \equiv contradiction.$

- (2) $P \lor contradiction \equiv P$
- (3) \neg (a contradiction) is a tautology.

Problem 2.2 (Problem 9 in section 1.2). Use truth table to determine which of these statements are tautologies, which are contradictions, and which are neither:

- $(1) (P \lor Q) \land (\neg P \lor \neg Q)$
- (2) $(P \lor Q) \land (\neg P \land \neg Q)$
- $(3) (P \lor Q) \lor (\neg P \lor \neg Q)$
- $(4) [P \wedge (Q \vee \neg R)] \vee (\neg P \vee R).$