2018 微算機期末專題

指導教授:蕭得聖老師

助教:朱俊華、葉語

專題目標

使用組合語言完成:

- 1. 積分器:
 - 利用 ADC 模組擷取波型產生器的訊號進入微控器
 - · 將訊號進行積分後利用 DAC 模組輸出
 - 鍵盤模組改變ADC取樣頻率

2. 定點數運算:

- · LED模組顯示輸出波的峰值資訊(正負號)
- 與四個7段顯示器模組顯示輸出波的峰值資訊(整數與小數)
- 鍵盤模組改變顯示內容(波鋒值、波谷值)

系統架構

使用器材

- 波型產生器(實驗室提供)
- 電源供應器(實驗室提供)
- 示波器(實驗室提供)
- A/D D/A 模組
- 鍵盤模組
- 四個7段顯示器模組
- LED模組

ADC-取樣定理

· 類比與數位系統之間,必須經過**取樣**與**量化**的過程,才能以一般的數位處理器來做運算

· 取樣的速度與量化的精準度分 別會影響到我們真實的系統

ADC-取樣定理

- MPC82G516A內建之ADC 十位元轉換器
- 其量化刻度為 1024位元,且取其中最高的8位元(ADCH)進行運算
- 輸入電壓 0至5伏特,對應到 1 byte 的數值

DAC-A/D D/A 模組

- ➤ 以 DAC0800 達成
- ▶ 數位訊號由 JP04 輸入
- ➤ 經由 DAC0800 將數位訊號轉換成類比電流訊號(IOUT+, IOUT-)
- > 經由運算放大器將電流訊號轉換成電壓訊號

$$V_{\text{out}} = (V_{pp} - V_{pp-}) \frac{x}{256} + V_{pp-}$$

DAC-A/D D/A 模組

ADC – example

積分器 - 拉式轉換與Z 轉換

• 拉式轉換

$$y(s) = \frac{k_i}{s} u(s)$$

Z轉換

$$y[z] = \frac{k_{i}}{1 - z^{-1}} u[z]$$

$$y[z] = z^{-1} y[z] + k_{i} u[z]$$

$$y(kT) = y((k-1)T) + k_{i} u(kT)$$

積分器 - 黎曼和

積分器-example

定點數

$$3.14 = \frac{314}{100} \cong \frac{201}{64} = \frac{201}{2^6}$$

$$2^7 + 2^6 + 2^3 + 2^0 = 201$$

$$2^{1} + 2^{0} + 2^{-3} + 2^{-6} = 3.140625$$

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
1	1	0	0	1	0	0	1
label左移6位(2 ⁻⁶)							
2 ¹	2 ⁰	2-1	2^{-2}	2-3	2-4	2-5	2-6
1	1	0	0	1	0	0	1

定點數

• 對應到2 bytes

$$V_{out} = (V_{pp} - V_{pp-}) \frac{x}{256} + V_{pp-} = \frac{(2 \text{ bytes number})}{2^{y}}$$

 \pm

LED模組

定點數-換算

• 換算為10進位做顯示 E.g.

21	2 ⁰	2-1	2^{-2}	2^{-3}
1	0	1	0	1

$$C(carry_{10}) = 0$$

$$10^{-3}$$
: $C + 5 * 1 = 5$

$$10^{-2}$$
: $C + 5 * 0 + 2 * 1 = 2$

$$10^{-1}$$
: $C + 5 * 1 + 2 * 0 + 1 * 1 = 6$

$$10^0$$
: $C + 2^0 * 0 + 2^1 * 1 = 2$

$$2^{-1} = 0.5$$
 $2^{-2} = 0.25$
 $2^{-3} = 0.125$

定點數 - 查表法

有限數量的顯示結果

- ▶建立TABLE
- ▶儲存十進位小數點後兩位資訊
- ▶直接顯示

2 ¹	2 ⁰	2-1	2^{-2}	2^{-3}
1	0	1	0	1

專題要求

- 1) 可利用 ADC 將任意指定之波形(方波、弦波)頻率(10Hz)取樣轉換成數值後傳入 8051 中進行儲存。[10]
- 2) 可使用DAC輸出訊號且用示波器進行觀察。[10]
- 3) 可將儲存之數值進行處理後輸出相位差 $\frac{\pi}{2}$ 之波形(積分)。[40] (積分後會有偏移的問題,需有常數可以調整偏差移動的快慢)
- 4) 能夠利用鍵盤模組調整取樣的頻率。[10]
- 5) 用四個7段顯示器模組顯示輸出波的峰值資訊(整數與小數)。[15]
- 6) 用LED模組顯示輸出波的峰值資訊(正負號)。[5]
- 7) 能夠用鍵盤模組調整(更新)四個7段顯示器模組內容。[10]

問題與討論

- 取樣頻率與訊號準確度的相關性?
- 定點數的使用與優缺點?

Extra

- How to include SFR library in Keil?
 - #include "REG_MPC82G516.INC"

14	2018/12/12	專題介紹			
15	2018/12/19	上機考		上機考	
16	2018/12/26	專題	補課		
17	2019/01/02	專題			
18	2019/01/09	專題Demo		期末考週	