The LOSVD of stars at projected radius R on the sky $\sigma_{los}(R)$ is given by

$$\sigma_{\rm los}^2(R) = \frac{1}{\Sigma_{\star}(R)} \int_{R^2}^{\infty} \rho_{\star}(r) \sigma_{\rm r}^2(r) \left[1 - \frac{R^2}{r^2} \beta(r) \right] \frac{dr^2}{\sqrt{r^2 - R^2}},\tag{1}$$

where $\rho_{\star}(r)$ is the volume stellar density, $\Sigma_{\star}(R)$ is the surface stellar mass density projected on the sky, $\sigma_{\rm r}(r)$ is the radial stellar VD, and $\beta(r)$ is the VD anisotropy.

Let $u \equiv \sqrt{r^2/R^2 - 1}$ with $0 \le u < \infty$. Then equation (1) becomes

$$\sigma_{\rm los}^{2}(R) = \frac{2R}{\Sigma_{\star}(R)} \int_{0}^{\infty} \rho_{\star}(R\sqrt{1+u^{2}}) \sigma_{\rm r}^{2}(R\sqrt{1+u^{2}}) \left[1 - \frac{\beta(R\sqrt{1+u^{2}})}{1+u^{2}}\right] du.$$
(2)

Now let $v \equiv u + a$ with a positive constant a so that $a \leq v < \infty$. Finally, let $w \equiv e^{-v}$ so that $0 \leq w \leq e^{-a}$. Then equation (2) takes the following form with a finite integration range

$$\sigma_{\rm los}^2(R) = \frac{2R}{\Sigma_{\star}(R)} \int_0^{e^{-a}} \rho_{\star}(R \ t(w)) \sigma_{\rm r}^2(R \ t(w)) \left[1 - \frac{\beta(R \ t(w))}{t^2(w)} \right] \frac{dw}{w}, \quad (3)$$

where $t(w) \equiv \sqrt{1 + (\ln w + a)^2}$. We may choose a = 1/2 or some other positive number.