# Credit Card Default Analysis – Machine Learning Algorithms

Xinxie Wu, xinxiewu@gmai.com

### **Predicting**

In banking, Credit Risk is a big issue; Banks use various techniques for Credit Card Default Analysis. This research applies 2-part methodology into default analysis and prediction, based on the dataset of Default of Credit Card Clients.

In **baseline** approach, we train Logistic Regression, Naïve Bayes, Gaussian Discriminant Analysis, Decision Tree and SVM for both continuous and discrete features, with total accuracy of ~80% but imbalanced pos-neg gap, >45%.

In **improvement** stage, SMOTE removes the imbalance gap, but brings overfitting; PCA/K-means refined the dataset and SVM's retraining results in 99% accuracy; Neural Network is trained and improves accuracy to 90.06%

#### **Baseline Models**

For baseline algorithms:

- 1. Continuous: SVM, with rbf kernel, achieves 81.97% accuracy; GDA reaches the highest AUC-ROC as 0.74, with F1 score 0.50.
- **2. Discrete**: Naïve Bayes, with (0.78, 0.22) prior distribution, gains 80% accuracy; also, this NB reaches AUC-ROC as 0.76.
- 3. Logistic Regression shows the highest imbalance gap (73.5%)

| Model                            | Prevalence | Total Acc  | Neg Acc              | Recall | Precision                                                                                      | F1-Score                                                 | AUC-R |
|----------------------------------|------------|------------|----------------------|--------|------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------|
| NaiveBayes-discrete-[0.78, 0.22] | 21.88%     | 80.22%     | 90.25%               | 44.40% | 56.06%                                                                                         | 49.55%                                                   | 0.7   |
| LogisticReg-continuous           | 21.88%     | 80.97%     | 97.06%               | 23.53% | 69.13%                                                                                         | 35.11%                                                   | 0.7   |
| SVM-continuous-rbf               | 21.88%     | 81.97%     | 95.63%               | 33.21% | 68.02%                                                                                         | 44.63%                                                   | 0.    |
| LogisticReg-continuous           | 21.88%     | 80.97%     | <b>97.06%</b> 95.63% | 23.53% | 69.13% 68.02%  Ir-cont svm-cor svm-cor svm-dis svm-dis svm-dis nb-[0.5, nb-[0.78 gda gda-[0.8] | at-rbf nt-sig nt-poly ct-rbf ct-sig ct_poly 0.5] B,0.22] | 0.7   |
| 0.0 -                            |            |            |                      |        | dt-cont<br>dt-disct                                                                            |                                                          |       |
| 0.0                              | 0.2        | 0.4<br>FPR | 0.6                  | (      | 0.8                                                                                            | 1.0                                                      |       |
|                                  |            | רצה        | •                    |        |                                                                                                |                                                          |       |

#### Dataset & Features: Default of Credit Card Clients

| Attribute  | Description                   | Туре    | Mean    | Std     | Min       | 25%    | Median  | 75%     | Max       |
|------------|-------------------------------|---------|---------|---------|-----------|--------|---------|---------|-----------|
| Age        | Age in years                  | Numeric | 35      | 9       | 21        | 28     | 34      | 41      | 79        |
| Limit_Bal  | Given credits, family-based   | Numeric | 167,484 | 129,748 | 10,000    | 50,000 | 140,000 | 240,000 | 1,000,000 |
| Bill_Amt_1 | Bill statement of Sep, 2005   | Numeric | 51,223  | 73,636  | (165,580) | 3,559  | 22,382  | 67,091  | 964,511   |
| Bill_Amt_2 | Bill statement of Aug, 2005   | Numeric | 49,179  | 71,174  | (69,777)  | 2,985  | 21,200  | 64,006  | 983,931   |
| Bill_Amt_3 | Bill statement of Jul, 2005   | Numeric | 47,013  | 69,349  | (157,264) | 2,666  | 20,089  | 60,165  | 1,664,089 |
| Bill_Amt_4 | Bill statement of Jun, 2005   | Numeric | 43,263  | 64,333  | (170,000) | 2,327  | 19,052  | 54,506  | 891,586   |
| Bill_Amt_5 | Bill statement of May, 2005   | Numeric | 40,311  | 60,797  | (81,334)  | 1,763  | 18,105  | 50,191  | 927,171   |
| Bill_Amt_6 | Bill statement of Apr, 2005   | Numeric | 38,872  | 59,554  | (339,603) | 1,256  | 17,071  | 49,198  | 961,664   |
| Pay_Amt_1  | Previous payment of Sep, 2005 | Numeric | 5,664   | 16,563  | -         | 1,000  | 2,100   | 5,006   | 873,552   |
| Pay_Amt_2  | Previous payment of Aug, 2005 | Numeric | 5,921   | 23,041  | -         | 833    | 2,009   | 5,000   | 1,684,259 |
| Pay_Amt_3  | Previous payment of Jul, 2005 | Numeric | 5,226   | 17,607  | -         | 390    | 1,800   | 4,505   | 896,040   |
| Pay_Amt_4  | Previous payment of Jun, 2005 | Numeric | 4,826   | 15,666  | -         | 296    | 1,500   | 4,013   | 621,000   |
| Pay_Amt_5  | Previous payment of May, 2005 | Numeric | 4,799   | 15,278  | -         | 253    | 1,500   | 4,032   | 426,529   |
| Pay_Amt_6  | Previous payment of Apr, 2005 | Numeric | 5,216   | 17,777  | -         | 118    | 1,500   | 4,000   | 528,666   |

Dataset has 30k observations, 6,636 (22%) default; includes 23 attributes covering demographic and card historical information. All features are used and further analyzed by PCA & K-means.

#### EDA:

- 1. No Missing Value Reasonable Values
- 2. Normalization & Discretization (9 Categories)
- 3. Correlation Matrix Marriage & Age (0.41)
- 4. Training vs Testing: 80% / 20%



## Principal Component Analysis (23)

maximize  $\frac{1}{p} \sum_{i=1}^{n} \left( \sum_{j=1}^{p} \emptyset_{j1} x_{ij} \right)^2$  SVM re-training determines the optional # as 23

$$J = \sum_{i=1}^{n} \sum_{j=1}^{k} r_{ij} \|x^{(i)} - \mu_{j}\|^{2}$$

K-means (2)

#### **Neural Network**

Dataset is split into training (80%), validation (10%) and testing (10%).

Convolutional layer is NOT in this research.



### **Results & Discussion**

| Model                                  | <b>Total Acc</b> | Nega Acc     | Recall  | Precision | Imbalance | F1-Score | AUC-ROC |
|----------------------------------------|------------------|--------------|---------|-----------|-----------|----------|---------|
|                                        |                  | Baseline Re  | sults   |           |           |          |         |
| SVM - Continuous - RBF Kernel          | 81.97%           | 95.63%       | 33.21%  | 68.02%    | 62.42%    | 44.63%   | 0.715   |
| Naïve Bayes - Prior of [0.78, 0.22]    | 80.22%           | 90.25%       | 44.40%  | 56.06%    | 45.85%    | 49.55%   | 0.7546  |
| Gaussian Discriminant Analysis         | 71.05%           | 72.75%       | 64.97%  | 40.05%    | 7.78%     | 49.55%   | 0.7371  |
| Decision Tree - Discrete               | 75.62%           | 86.54%       | 36.63%  | 43.26%    | 49.91%    | 39.67%   | 0.6229  |
| Logistic Reg Continuous                | 80.97%           | 97.06%       | 23.53%  | 69.13%    | 73.53%    | 35.11%   | 0.7269  |
|                                        | F                | eature Engir | neering |           |           |          |         |
| PCA(23) + KM(20729, 69.10%) = SVM      | 99.49%           | 99.90%       | 91.79%  | 97.94%    | 8.11%     | 94.76%   | 0.9998  |
|                                        | ı                | mbalance - S | MOTE    |           |           |          |         |
| LogisticReg SMOTE                      | 68.60%           | 69.40%       | 65.73%  | 37.57%    | 3.67%     | 47.81%   | 0.7306  |
|                                        |                  | Neural Net   | work    |           |           |          |         |
| Neural Network - Linear, ReLU, Dropout | 90.06%           | N.A.         | N.A.    | N.A.      | N.A.      | N.A.     | N.A.    |

#### \_ Results & Discussion:

- 1. Baseline models show total accuracy ~80%, but >45% negative-positive gap;
- 2. SMOTE removes the neg-pos gap, but brings overfitting (68.60%);
- 3. PCA returns an optimal number as 23, K-means removes 9,271 obs. Improved SVM accuracy 99.49%;

  Neural network includes 0.8 dropouts.
- Neural network includes 0.8 dropout and gets 90.06%; no convolutional layer in this research.

#### **Future Work**

For the future work, **k-fold cross-validation** is under consideration since our research focused on 8/2 dataset split. Also, **neural networks** with more different number of layers/neurons need to be trained and compare the performance. Finally, SMOTE shows overfitting and so poor generalization ability; methods besides sampling, such as **kernel-based** and **cost-sensitive**, should be considered and tested.

#### References

[1] Liu, R.L. (2018) Machine Learning Approaches to Predict Default of Credit Card Clients. Modern Economy, 9, 1828-1838. [2] I-Cheng Yeh, Che-hui Lien. The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. Expert Systems with Applications, Volume 36, Issue 2, Part 1, 2009, Pages 2473-2480, ISSN 0957-4174. [3] Husejinovic, Admel and Kečo, Dino and Masetic, Zerina, Application of Machine Learning Algorithms in Credit Card Default Payment Prediction (October 1, 2018). A Husejinovic, D Keco, Z Masetic, International Journal of Scientific Research 7 (10), 425-426, 2018.