Algèbre Relationnel

Table des matières

Algèbre Relationnel	1
1Opérations ensemblistes	2
1.1Union	2
1.2Différence	2
1.3Produit Cartésien	
2Opérations spécifiques	4
2.1Projection	4
2.2restriction	
2.3jointure	4
3Opérations dérivées	
4Applications	
4.1Exercice 1 :	
4.2Exercice 2	

1 Opérations ensemblistes

1.1 Union

opération portant sur 2 relations de même schéma R1, R2 consistant à construire une relation R3 de même schéma ayant pour tuples ceux appartenant à R1 ou R2 ou aux 2 relations.

Notation: R3 = Union(R1,R2)ou R3 = R1 U R2 R3

R1

ex:

VIN1	CRU	Millésime	Région	Couleur
	chenas tavel	1993 1996	Beaujolais Rhone	Rouge Rosé
Union				
VIN2	CRU	Millésime	Région	Couleur
	chablis	1985	Bourgogne	Blanc

1996

donne:

VIN3	CRU	Millésime	Région	Couleur
	chenas tavel	1993 1996	Beaujolais Rhone	Rouge Rosé
	chablis	1985	Bourgogne	Blanc

Rhone

Rosé

1.2 <u>Différence</u>

opération portant sur 2 relations de même schéma R1, R2 consistant à construire une relation R3 de même schéma ayant pour tuples ceux appartenant à R1 et n'appartenant pas à R2.

Notation : R3 = Différence(R1,R2)ou R3 = R1 - R2

tavel

ex:

VIN1	CRU	Millésime	Région	Couleur
	chenas	1993	Beaujolais	Rouge
	tavel	1996	Rhone	Rosé

Différence

VIN2	CRU	Millésime	Région	Couleur
	chablis	1985	Bourgogne	Blanc
	tavel	1996	Rhone	Rosé

donne:

VIN3	CRU	Millésime	Région	Couleur
	chenas	1993	Beaujolais	Rouge

1.3 Produit Cartésien

opération portant sur 2 relations de même schéma R1, R2 consistant à construire une relation R3 de même schéma la concaténation de ceux des relations R1 et R2 et pour tuples toutes les combinaisons des tuples des relations R1 et R2.

Notation: R3 = Produit(R1,R2)

ou $R3 = R1 \times R2$

ex:

VIN1	CRU	Région	Couleur
	chenas	Beaujolais	Rouge
	tavel	Rhone	Rosé

Produit scalaire

ANNEES	Millésime
	1980 1985

donne:

VIN3	CRU	Région	Couleur	Millésime
	chenas	Beaujolais	Rouge	1980
	chenas	Beaujolais	Rouge	1985
	tavel	Rhone	Rosé	1980
	tavel	Rhone	Rosé	1985

2 Opérations spécifiques

2.1 Projection

Opération sur une relation R1 consistant à composer une relation R2 en enlevant de R1 tous les attributs non mentionnés en opérandes et en éliminant les tuples en double .

Notation : $R2 = \Pi$ att1, att2, ..., attn(R1)

ex: Π cru, région (VIN)

ΠVIN	CRU	Région
	chenas tavel	Beaujolais Rhone

2.2 restriction

Opération sur une relation R1 consistant à composer une relation R2 de même schéma mais comportant uniquement les tuples vérifiant la condition précisée en argument.

Notation : $R2 = \sigma \text{ condition}(R1)$

ex : σ millésime > 1982(VIN)

VIN	CRU	Millésime	Région	Couleur
	chenas	1993	Beaujolais	Rouge
	tavel	1996	Rhone	Rosé

2.3 jointure

Opération consistant à rapprocher les tuples de 2 relations R1 et R2 afin de former une 3ème dont les attributs sont l'union des attributs de R1 et R2 et dont les tuples sont obtenus en composant un tuple de R1 et un tuple de R2 vérifiant la condition précisée en argument.

Notation: R3 = Jointure(R1,R2,condition)

ou
$$R3 = R1 \propto R2$$

condition

R1.att Θ R2.att

ex:

VIN1	CRU	Millésime	Couleur
	chenas	1980	Rouge
	tavel	1985	Rosé

et

VIN2	CRU	Région
	chenas tavel	Beaujolais Rhone
	volnay	Bourgogne

VIN1 jointure VIN2:

VIN3	CRU	Millésime	Région	Couleur
	chenas	1980	Beaujolais	Rouge
	tavel	1985	Rhone	Rosé

3 Opérations dérivées

Intersection:

$$R3 = R1 \cap R2 = R1 - (R1 - R2)$$

4 Applications

4.1 Exercice 1:

On souhaite créer une base de données destinée à la gestion de la scolarité d'une UFR. Soit le schéma relationnel suivant :

SALLE(IdSalle, capacité)

COURS(IdCours, Nom_Cours, Jour, Heure)

COURS_SALLE(IdCours, IdSalle)

ETUDIANT(IdEtudiant, Nom, Adresse)

SUIVRE_COURS(IdCours, IdEtudiant, Note)

Exprimer les requêtes suivantes en langage algébriques puis donner l'arbre algébrique équivalent :

R1: Donner les noms des étudiants inscrits à des cours

R2 : Donner les noms des étudiants qui suivent le cours 'Algo'

R3 : Donner l'ensemble des inscriptions possibles (produit cartésien)

R4: Donner les inscriptions manquantes

R5 : Donner les identifiants des étudiants inscrits à aucun cours

R6: Donner les notes en 'Architecture' des étudiants dont le nom est 'Titi'

R7 : Donner les dates (jour, heure) pour lesquelles la salle 1 est occupée par un cours

R1:

<u>R3</u>:

<u>R4</u>:

<u>R5</u>:

<u>R6</u>:

4.2 Exercice 2

Lors d'un concours de chefs de cuisine, les infos nécessaires pour décerner un prix sont les suivantes.

Les plats confectionnés sont caractérisés par un numéro et ont une désignation (" le gigot d'agneau à l'estouffade "...).

Les ingrédients nécessaires à la confection d'un plat sont reconnus par leur catégorie générale (" viande ", " poisson ",...), leur nom (" filet ", " bavette "...) et un qualificatif (" agneau " pour une viande, " frisée " pour une salade, ...).

De plus, pour la gestion comptable, le prix d'achat de chaque ingrédient est conservé. Chaque ingrédient est fourni par un fournisseur. Les fournisseurs sont identifiés par un numéro ainsi que par leur nom et adresse.

Les chefs de cuisine sont identifiés par un numéro, leur nom, leur prénom, adresse et nom du resto. Pour le concours, chaque chef doit confectionner une entrée, un plat principal et un dessert.

Pour un plat donné, chaque chef a sa recette : par ex, Pierre Baccante met 200 g de chocolat noir et 6 œufs dans sa mousse au chocolat tandis que Bernard Rossignole met 2 œufs et moins de crème fraîche. Chaque plat est cuisiné pour un certain nombre de personnes.

Pour assurer l'équité du concours, un ingrédient ne peut pas être acheté chez plusieurs fournisseurs.

- 1- Proposer un schéma entité/association.
- 2- En déduire le schéma relationnel, sur le schéma préciser les clés primaires ainsi que les clés étrangères.

