Databases and Web Application Development UG2

Designing Databases: Databases as Data structures

Lecture

PLANNING A DATABASE DESIGN

Accuracy

 the degree of closeness to true desired value

Precision

the degree to which an process will repeatable result in the same value.

Birmingham

London

- Like planning a route
 - What is the **specific** starting point?
 - What is the specific destination?
 - What are the constraints on how to get there?
- In Science and Engineering we want to be as specific (accurate and precise) as possible
 - Formulating problems / questions
 - Formulating solutions / answers
- Implement your Software before you have a Plan?
 - No clear starting point?
 - No clear destination?
 - No route!

4 Cardigan St,
Birmingham
West Midlands
England United Kingdom?
Europe?
B4 7BD Earth?

- Like planning a route
 - What is the specific starting point?
 - What is the specific destination?
 - What are the constraints on how to get there?

London

BCU Cardigan Building 4 Cardigan St, Birmingham West Midlands

England B4 7BD United Kingdom? Europe? Earth?

LSE Cowdray House 6 Portugal St, London, Greater London,

England

WC2A 2HJ

United Kingdom? Europe? Earth?

- Like planning a route
 - What is the specific starting point?
 - What is the specific destination?
 - What are the constraints on how to get there?

BCU Cardigan Building 4 Cardigan St, Birmingham West Midlands

England B4 7BD United Kingdom? Europe? Earth?

LSE Cowdray House 6 Portugal St, London, Greater London,

England

WC2A 2HJ

United Kingdom? Europe? Earth?

- Like planning a route
 - What is the specific starting point?
 - What is the specific destination?
 - What are the constraints on how to get there?

```
- By Air?
- Helicopter?
- Plane?
- By River?
- Boat?
- Hovercraft?
- By Road?
- Car?
```

- Walking?
 By Train?
 - Heavy rail locomotive?
 - Light metro trail "The tube"?
 - Walking?

BCU Cardigan Building 4 Cardigan St, Birmingham West Midlands

England B4 7BD United Kingdom? Europe? Earth?

LSE Cowdray House 6 Portugal St, London, Greater London,

England

WC2A 2HJ

United Kingdom? Europe? Earth?

- Like planning a route
 - What is the specific starting point?
 - What is the specific destination?
 - What are the constraints on how to get there?
 - By Road?

```
Exclusive
```

» Car?

» Walking?

— Mixture?

» Car?

» Walking?

BCU Cardigan Building 4 Cardigan St, Birmingham West Midlands

England B4 7BD United Kingdom? Europe? Earth?

LSE Cowdray House 6 Portugal St, London, Greater London,

England

WC2A 2HJ

United Kingdom? Europe? Earth?

- Like planning a route
 - What is the specific starting point?
 - What is the specific destination?
 - What are the constraints on how to get there?
 - By Road
 - Exclusive

» Car

Anything else?

Route Plan BCU Cardigan Building 4 Cardigan St, Birmingham West Midlands

England B4 7BD United Kingdom? Europe? Earth?

LSE Cowdray House
6 Portugal St,
London,
Greater London,
England
United Kingdom?

WC2A 2HJ Europe?

• Like planning a route

- What is the specific starting point?
- What is the specific destination?
- What are the constraintson how to get there?

Requirements

- What
 - Does it represent?
 - etc.
- Why
 - Is it needed?
 - etc.
- Who
 - Does it involve?
 - etc.
- When
 - Should a process / transaction happen?
 - etc.
- How
 - Should it be structured?
 - etc.

What you need to focus on?

- Who is our Web Application for?
 - The User
- What features will the web app have?
 - What would the user want / need from your system?
 - How will this work from the user's perspective?
 - How will they use it?

What you need to focus on?

- What data will need to be stored / accessed to support this feature set?
 - Based on the desired features
 - Think about specifics
 - Instead of generalities like "Customer details" or "Order details"
 - Think of specific items of data (attributes)
 - The name of a customer
 - The address of a customer
 - The email address of a customer
 - The product reviews a customer might have provided for items they have purchased
 - etc

- What processing will we want to do on that data?
 - Based on the desired features
 - Starting point -> Destination
 - Inputs -> Outputs

CONCEPTS AND DEFINITIONS

"Flatfile" Database Design

- Data stored in a single big "table" or file
- Issues
 - Redundant data
 - Storage space is wasted
 - Maintenance becomes more complex
 - Inconsistent data
 - Different values representing the same item being stored?

Flat File Approach: Data Stored in One Table/File

Student	Form	Form Teacher	
Patterson	1UE	Mr Jones	Storage space wasted :
Winton	1UE	Mr Jones	Name of 1UE's form teacher stored twice.
Burton	1LA	Mr Johnson	Inconsistency : Who is
Delaney 1LA		Miss Smith	1LA's form teacher?

Relational Database Design

- Allow data to be stored in separate groups.
 - Relations / Tables
 - Relations of attributes
 - "Groups" are connected to each other via relationships
 - **Relations** of records
- By breaking the data into groups
 - Reduce the chance of mistakes happening
 - Does not take up any more space than necessary
 - Needs to be well designed

Online Transaction Processing

- Up-to-date operational data
- Used for day-to-day operations
 - Frequent read operations
 - Frequent write operations
 - Transactions / Queries
 - Should aim to deal with only a small amount of data at once
 - Many and small

Database Schema

- Describes the structure of a database in a formal language that is supported by the database management system.
- Create a blueprint of the database.
 - This blueprint will not contain any data.
- The database schema uses logical formulas to create integrity constraints.
 - It is not possible to insert data into the database that violates these integrity constraints.
 - All constraints use the same language.

Database Schema

- There are different kinds of database schemas:
 - Conceptual schema
 expresses the concepts in
 the database, and how
 they relate to each other
 - Logical schema is a mapping of entities with their attributes, and the respective relations
 - Physical schema is a particular implementation of a logical schema.

Database Schema

- Ideally, a database schema should have the following properties:
 - It should be complete: all information in the source should be included.
 - It should be minimal: it should not be possible to leave out a relation, without losing information
 - It should be normalised: A certain piece of data should be in the schema only once.

Database Design

- Before we create a database, we need to design one
- Conceptual Design
 - Build a model of the database independent of DBMS details
- Logical Design
 - Model further structure of the data
 - Still abstract enough to be independent of DBMS details
- Physical Design
 - How is the data within the database precisely stored and managed by the DBMS?
 - Specific types
 - Keys
 - Indexes
 - etc

	Entity	Relationship	Attribute	Attribute Type	Primary Key	Foreign Key
Conceptual	Y	Y	N	N	N	N
Logical	Y	Υ	Υ	?	N	N
Physical	Y	Y	Y	Y	Y	Y

Sometimes a "kind" of data can be identified for that attribute without necessarily specifying a specific concrete type

ERD Type

	Entity	Relationship	Attribute	Attribute Type	Primary Key	Foreign Key
Conceptual	Y	Y	N	N	N	N
Logical	Y	Y	Y	?	N	N
Physical	Y	Y	Y	Y	Y	Y

Sometimes a "kind" of data can be identified for that attribute without necessarily specifying a specific concrete type

Entity Relationship Diagrams

- A type of structural diagram for use in database design.
- Entity Relationship Modelling is an approach to semantic modelling of data within information systems
- The process of entity relationship modelling was originally defined by the work on <u>Chen</u> (1976) and has been continued to be refined through further work since.

Different notations / styles
Representing the same information
Recommended: "Crow's Foot"

An Example ERD

Entities

- Shipment
- Courier
- Order

Attributes

- S_Date is a **date** and belongs to Shipment entity
- Name is a variable length character array and belongs to the Courier entity
- etc

Relationships

- An Order is shipped via a single Shipment
 - A Shipment can ship many Orders
- An Order is delivered by a single Courier
 - A Courier can deliver many orders

Records

- Each individual Shipment, Order or Courier would be represented as a "row" in our final table
- Think of the Records as the "Objects" to the Entity / Tables "Classes"

Entity/Relationship Modelling

- E/R Modelling is used for designing our data model
 - 1. Identify Entities
 - objects or items of interest
 - 2. Identify the Attributes
 - · facts about, or properties of, an entity
 - 3. Identify the Relationships
 - links between entities
 - 4. Establish cardinality of relationships
 - How many records of one entity can be related to how many records of another entity?
 - 5. Establish modality of relationship
 - Is the relationship optional, or mandatory?
 - 6. Identify keys
 - Primary key
 - What value can be used to uniquely identify each record in the entity?
 - » StudentID?
 - » StudentEmailAddress?

- Example
 - For a university database:
 - Entities Students, Modules, Lecturers
 - Students attributes could be Student ID, Name and course
 - Could have relationships with Modules (enrolment) and Lecturers (tutor/tutee)
 - Cardinality
 - E.g. A student may study multiple modules while a module may be studied by many students
 - Modality
 - e.g.

Lab Talk

ENTITY RELATIONSHIP MODELLING

Entity Relationship Diagrams

- A type of structural diagram for use in database design.
- Entity Relationship Modelling is an approach to semantic modelling of data within information systems
- The process of entity relationship modelling was originally defined by the work on <u>Chen</u> (1976) and has been continued to be refined through further work since.

Entity

Relationship

Attributes

- Cardinality: Multiplicity
 - Maximum amount of times an instance of one entity can be associated with instances of another entity.

- Modality: Minimality
 - minimum number of times one instance can be related to others.

Keys

Candidate key

 A collection of one or more attributes which can be used to uniquely identify records belonging to a given table / entity

Primary Key

- Chosen from the candidate keys
- A unique identifier for a record within a table / entity, ensuring that no two records have the same identifier.
- Unique constraint
- Not null constraint

Foreign Key

 A reference to the primary key of another table / entity

Identifying Relationship

Weak

- Non-identifying
- Existence is independent
- Usually PK of Child doesn't contain PK component of Parent Entity

Strong

- Identifying
- Existence is dependent on another entity
- Usually PK of Child contains PK component from a Parent Entity

"If we delete a record for one entity what happens to the records linked to it for another entity?"

ERD Type

	Entity	Relationship	Attribute	Attribute Type	Primary Key	Foreign Key
Conceptual	Y	Y	N	N	N	N
Logical	Y	Y	Y	?	N	N
Physical	Y	Y	Y	Y	Y	Y

Sometimes a "kind" of data can be identified for that attribute without necessarily specifying a specific concrete type

ERD Type

Note: some diagramming tools use colour to differentiate, instead get into the habit of looking at what constraints are met with the diagram

- 'Order' is a reserved word for the target DBMS. Therefore, the entity Order is renamed to Purchase Order.
- Conceptual, logical, or physical model of the database? Why do you think so?
- Think of at least 3 sample record tuples to represent "rows" for each relation/table.
- What limitations does this specific database structure have?
 - What possible use cases may not be possible based on these limitations?
- What additional constraints could be placed on the attributes within each table to prevent invalid data being stored?

Diagramming Software

Draw.io (free)

Visual Paradigm Community (free but limitations)

- Recommend draw.io as least likely to cause issues with locking off features.
- However, Visual Paradigm (full version) is a very useful feature rich application for Software Design in general, see it as a possible alternative.