bivariate regression 2

Adam Okulicz-Kozaryn adam.okulicz.kozaryn@gmail.com

this version: Saturday 9th December, 2017 08:20

outline

misc

stat significance (hypothesis testing)

basic measurement

<u>outline</u>

misc

stat significance (hypothesis testing)

basic measurement

misc 3/2

ps1

- ⋄ note: on 1-31 i beefed up a bit ps1
- still need stata lab next week?

study cities, counties, or states

- ps1: finding data: be opportunistic:
- · cannot find data for neighborhoods?
- do not have exact variable you need?
- V do not have exact variable you need:
- study sth similar!
- read literature! and follow it! (in terms of data too)
- \cdot your first studies should closely follow published examples
- · just tweak them a little bit

misc

anatomy of stata output dofile: outlier

. regress DV IV

Source	SS	S	df	MS	Number of	obs =	n
Model	$ESS = \sum$	$\left(\hat{Y}_i - \overline{Y}\right)^2$	1		F(1, n-2)	=	
Residual	_	,	n-2	$s^2 = \frac{RSS}{n-2}$	Prob > F R-squared	=	r^2
Total	$TSS = \sum$	$(Y_i - \overline{Y})^2$	n-1	$s_Y^2 = \frac{TSS}{n-1}$	Adj R-Squa Root MSE		 S
DV	Coef. St	d.Err.	t	P> t	[95% Conf.	Interv	al]
IV	$\hat{oldsymbol{eta}}_2$	$s_{\hat{\beta}_2}$ $\left(\frac{\beta}{s}\right)$	$\left(\frac{\hat{oldsymbol{eta}}_2}{\hat{oldsymbol{eta}}_2} \right)$	p val. for H_0 that $\beta_2 = 0$	$\hat{eta}_2 - t_{0.025} s_{\hat{eta}_2}$	$\hat{\beta}_2 + t_{0.02}$	$\sum_{25} S_{\hat{\beta}_2}$
Intercept	$\hat{oldsymbol{eta}}_{\!\scriptscriptstyle 1}$	$S_{\hat{\beta}_1}$ $\left(\frac{f}{s}\right)$	$\left(\frac{\hat{\beta}_1}{\hat{\beta}_1}\right)$	p val. for H_0 that $\beta_1 = 0$	$\hat{\beta}_{\rm l}-t_{0.025}s_{\hat{\beta}_{\rm l}}$	$\hat{\beta}_{\scriptscriptstyle 1} + t_{\scriptscriptstyle 0.02}$	$S_{\hat{\beta}_1}$

today and looking ahead

- let's begin by repeating key stuff from last class
- and then we'll add stat significance
- next week we will start multiple regression
- · over time, esp after midterm, class will get more applied
- · and we will have more examples

misc 6/2

outline

misc

stat significance (hypothesis testing)

basic measurement

basic calculations blackboard; dofile

<u>Y</u>	X	У	y2	X	x2	ху
1	17					
3	13					
5	8					
7	10					
9	2					
Sun	n:					

$$\bar{Y} = 5$$
 $\bar{X} = 10$

the coefficients-interpretation

 Beta hat two is the slope coefficient. Thus, a one unit change in X leads to a 0.524 decrease in Y. Beta hat one is the intercept term. It is the predicted value for Y when X is equal to zero.

predicted val and resid blackboard; dofile

$$\diamond \hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$$

- ♦ for obs 1:
- $\hat{Y}_1 = 10.24 + (-0.524)(17) = 1.332$
- $\diamond e_1 = 1 1.33 = -0.33$

regression plot again

se of the slope blackboard; dofile

$$\Rightarrow \sum e_i^2 = 5.42$$

$$\Rightarrow s = \sqrt{\frac{\sum e_i^2}{n-2}} =$$

· it gives us info about reliability (like sd or se) of slope

sampling distribution of the slope

probability distribution of $\hat{\beta}_2$ is centered on the true value of the parameter (i.e. unbiased) and is normally distributed with variance:

$$\diamond s_{\hat{\beta}_2}^2 = \frac{s^2}{\sum x_i^2}$$

$$\diamond~~ oldsymbol{s}_{\hat{eta}_2} = \sqrt{rac{s^2}{\sum x_i^2}} = rac{s}{\sqrt{\sum x_i^2}}$$

hypothesis test dofile

- the null is that slope ("the unobserved true parameter")
- · is zero (ie no effect)

$$\diamond H_0: \beta_2 = 0$$

$$\diamond H_A: \beta_2 \neq 0$$

$$\diamond t = \frac{\hat{\beta}_2 - \beta_2}{s_{\hat{\beta}_2}} = \frac{\hat{\beta}_2}{s_{\hat{\beta}_2}}$$

$$\diamond \text{ CI: } \hat{eta}_2 \pm (t_{n-2,\frac{\alpha}{2}})(s_{\hat{\beta}_2})$$

partitioning variance in Y dofile

- \diamond before regression $E[Y_i] = \bar{Y}$
- $TSS = \sum (Y_i \bar{Y})^2 = \sum y_i^2 = 40$
- \diamond after regression $E[Y_i|X_i] = \hat{Y}_i$
- $RSS = \sum_{i=1}^{n} (Y_i \hat{Y}_i)^2 = \sum_{i=1}^{n} e_i^2 = 5.43$
- ESS = TSS RSS = 40 5.4 = 34.57
- $\diamond R^2 = 1 \frac{\sum e_i^2}{\sum y_i^2}$
- $\diamond\,$ proportion of the total variance in the Y explained by Xs
- $\diamond 0 \le R^2 \le 1$

TSS

stat significance (hypothesis testing)

RSS

exercise 1 dofile

you regressed car's price on its weight

```
price | Coef. Std. Err.
```

weight | 2.044063 .3768341

- interpret the coefficient
- is it significant ?
- ⋄ calculate 95% CI

reliability of predict val (se of E(Y|X)

- We have discussed the fact that parameter estimates are random variables, and so they have standard errors.
 Predicted values are also random variables because they are linear combinations of the coefficients.
- ♦ The further from the mean of X, the wider the confidence interval around the predicted value.
- leave it to software, no need to know the formula

se of E(Y|X) illustration dofile

outline

misc

stat significance (hypothesis testing)

basic measurement

basic measurement 21/29

intuition

- what happens to betas if we change variables' measurement?
- · millions of dollars as opposed to dollars
- · curved grades (each person gets extra 10 points)
- · proportion of people in poverty v percent in poverty
- income per capita v income per 100k people

basic measurement 22/2

add constant c to X or Y (say curved grades)

- ♦ if you add c to each obs, mean of var would change by that much
- but demeaned var doesn't change:

$$\diamond \ x_{i}^{'} = (X_{i}^{'} - \bar{X}^{'}) = [(X_{i} + c) - (\bar{X} + c)] = x_{i} \text{ same for Y}$$

- and nobody cares about intercept anyway, so let's spare our brain

basic measurement 23/

multiply X or Y by constant (say months, not years) think about it, assume some example

- · say year of educ produces \$2 increase in wage
- \diamond how about a month of educ? should be 1/12 of \$2!
- to convert yr to mo, multiply years by 12, right?
- · if a person has 2yr of educ, that's 24mo
- \diamond so if i multiply X by c, say 12, I need to divide β_2 by 12 \diamond what if multiply Y?
- · again, say year of educ produces \$2 increase in wage
- ...or 200 cent increase in wage
 to get cents from dollars, I multiply dollars by 100
- · so if I multiply Y by 100, i get β_2 100x bigger

basic measurement

fun fact1: correlation v bivariate regression

$$\diamond r = \frac{\sum y_i x_i}{\sqrt{(\sum x_i^2)(\sum y_i^2)}} \quad \hat{\beta}_2 = \frac{\sum y_i x_i}{\sum x_i^2}$$

bivariate slope equals corr coef scaled by std dev of Y and

X:

$$\hat{\beta}_2 = \frac{\sum y_i x_i}{\sum x_i^2} = r(\frac{s_Y}{s_X})$$

basic measurement 25/

education and wages dofile

. corr wage educ (obs=534)						
	wage	educ				
wage educ	1.0000 0.3819	1.0000				

 sum wage educ 					
Variable	Obs	Mean	Std. Dev.	Min	Max
wage	534	9.023939	5.138876	1	44.5
educ	534	13 01873	2 615373	2	1.8

basic measurement 26/29

education and wages dofile

. regress wage educ

Source	SS		MS		Number of obs	
Model Residual		1 2053	.22494		F(1, 532) Prob > F R-squared	= 0.0000
	14075.4884				Adj R-squared Root MSE	
wage		Std. Err.	t	P> t	[95% Conf.	=
educ _cons		.07873	9.532	0.000	.5957891 -2.799576	.9051086 1.307678

The estimated regression line:

$$\widehat{wage}_i = \hat{\beta}_1 + \hat{\beta}_2 educ_i = -0.75 + 0.75 educ_i$$

Interpret the coefficients.

basic measurement 27/29

fun fact2: Z scores bivariate regression=correlation

⋄ z scores always have a mean of 0 and a variance (and standard deviation) of 1

$$\hat{\beta}_2 = r_{Z_Y Z_X} \frac{s_{Z_Y}}{s_{Z_X}} = r_{YX}$$

$$\hat{\beta}_1 = \bar{z}_Y - \hat{\beta}_2 \bar{z}_X = 0 - r(0) = 0$$

Thus, a regression of the z scores of Y on the z scores of X produces a slope equal to the correlation coefficient of X and Y and a zero intercept.

basic measurement 28/29

exercise 2: if no time do at home: see dofile

- confirm the above in stata using our simple data we started today's lecture with
- ⋄ run regression of Y on X
- modify X or Y and check what happened

basic measurement 29/