

Home

Volume

me Contest

Training

Community Credits

Server Time: Sat Apr 8, 2017 4:41 pm

Welcome Ahmed Dinar (logout)

Þ

1007 - Mathematically Hard

SUBMIT .	PDF (English)	Statistics	Forum
Time Limit: 2 second(s)		Memory Limit: 64 MB	

Mathematically some problems look hard. But with the help of the computer, some problems can be easily solvable.

In this problem, you will be given two integers ${\boldsymbol a}$ and ${\boldsymbol b}$. You have to find the summation of the scores of the numbers from ${\boldsymbol a}$ to ${\boldsymbol b}$ (inclusive). The score of ${\boldsymbol a}$ number is defined as the following function.

score $(x) = n^2$, where n is the number of relatively prime numbers with x, which are smaller than x

For example,

For 6, the relatively prime numbers with 6 are 1 and 5. So, score (6) = $2^2 = 4$.

For 8, the relatively prime numbers with 8 are 1, 3, 5 and 7. So, score $(8) = 4^2 = 16$.

Now you have to solve this task.

Input

Input starts with an integer $T (\leq 10^5)$, denoting the number of test cases.

Each case will contain two integers **a** and **b** $(2 \le a \le b \le 5 * 10^6)$.

Output

For each case, print the case number and the summation of all the scores from ${\bf a}$ to ${\bf b}$.

Sample Input	Output for Sample Input
3	Case 1: 4
6 6	Case 2: 16
8 8	Case 3: 1237
2 20	

Note

Euler's totient function $\phi(n)$ applied to a positive integer \mathbf{n} is defined to be the number of positive integers less than or equal to \mathbf{n} that are relatively prime to \mathbf{n} . $\phi(n)$ is read "**phi of n.**"

Given the general prime factorization of $n=p_1^{e_1}p_2^{e_2}\cdots p_m^{e_m}$, one can compute $\phi(n)$ using the formula

$$\phi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_m}\right).$$

PROBLEM SETTER: JANE ALAM JAN

Developed and Maintained by **JANE ALAM JAN**

Copyright © 2012 **LightOJ, Jane Alam Jan**