Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский химико-технологический университет имени Д.И. Менделеева»

ОТЧЕТ ПО ДОМАШНЕЙ РАБОТЕ №11

Выполнил студент группы КС-36: Золотухин Андрей Александрович

Ссылка на репозиторий: https://github.com/

CorgiPuppy/

num-methods-eq-math-phys-chem-labs

Приняла: Кольцова Элеонора Моисеевна

Дата сдачи: 05.05.2025

Москва 2025

Оглавление

Описание задачи	. 1
Выполнение задачи	. 3
Задание 1	. 3
Задание 2	. 3
Задание 3	. 3
Задание 4	. 3
Задание 5	. 4
Задание 6	. 5
Задание 7	. 6
Задание 8	. 6
Задание 9	. 6
Задание 10	. 7
Задание 11	. 7
Задание 12	. 7
Задание 13	. 8
Задание 14	. 9
Задание 15	. 10
Задание 16	. 11
Задание 17	. 11

Описание задачи

Уравнение	Интервалы переменных	Начальные и граничные условия
$\frac{\partial u}{\partial t} - 3\frac{\partial u}{\partial x} + 7\frac{\partial u}{\partial y} = \frac{\partial^2 u}{\partial x^2} + 4\frac{\partial^2 u}{\partial y^2} + e^{tx} + e^{ty} + y$	$x \in [0, 1]$ $y \in [0, 1]$ $t \in [0, 1]$	$u(t = 0, x, y) = 2 + xy$ $\begin{cases} u(t, x = 0, y) = 2.7t + y \\ u(t, x = 1, y) = e^{t} + y \end{cases}$ $\begin{cases} u(t, x, y = 0) = 2 + x \\ u(t, x, y = 1) = te^{x} + x \end{cases}$

Для заданного уравнения:

- 1. записать неявную разностную схему;
- 2. записать схему переменных направлений;
- 3. привести схемы к виду, удобному для использования метода прогонки;
- 4. проверить сходимость прогонки;
- 5. записать рекуррентное прогоночное соотношение;
- 6. составить алгоритм (блок-схему) расчёта.

Уравнение	Интервалы переменных	Начальные и граничные условия
	$x \in [0, 1]$	$u(t = 0, x, y) = x^2 - y^2$
$\frac{\partial u}{\partial t} - 2\frac{\partial u}{\partial x} - 4\frac{\partial u}{\partial y} = t + x^2 - y^2$	$y \in [0, 1]$	$u(t, x = 1, y) = t + y^2$
	$t \in [0, 1]$	$u(t, x, y = 1) = t + x^2$

Для заданного уравнения:

- 7. записать явную разностную схему;
- 8. вывести рекуррентное соотношение;
- 9. составить алгоритм (блок-схему) расчёта.
- 10. записать неявную разностную схему;
- 11. записать схему расщепления;
- 12. вывести рекуррентное соотношение;
- 13. составить алгоритм (блок-схему) расчёта.
- 14. записать схему предиктор-корректор;

- 15. вывести рекуррентное соотношение для предиктора;
- 16. вывести рекуррентное соотношение для корректора;
- 17. составить алгоритм (блок-схему) расчёта.

Выполнение задачи

Задание 1

Записать неявную разностную схему:

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n}}{\Delta t} - 3 \frac{u_{i+1,j}^{n+1} - u_{i,j}^{n+1}}{h_x} + 7 \frac{u_{i,j}^{n+1} - u_{i,j-1}^{n+1}}{h_y} = \frac{u_{i+1,j}^{n+1} - 2u_{i,j}^{n+1} + u_{i-1,j}^{n+1}}{h_x^2} + 4 \frac{u_{i,j+1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1}}{h_y^2} + e^{(n+1)\Delta t(i-1)h_x} + e^{(n+1)\Delta t(j-1)h_y} + (j-1)h_y.$$

$$(1)$$

Задание 2

Записать схему переменных направлений для схемы (1):

$$\frac{u_{i,j}^{n+\frac{1}{2}} - u_{i,j}^{n}}{\Delta t} - \frac{3}{2} \frac{u_{i+1,j}^{n+\frac{1}{2}} - u_{i,j}^{n+\frac{1}{2}}}{h_{x}} + \frac{7}{2} \frac{u_{i,j}^{n} - u_{i,j-1}^{n}}{h_{y}} = \frac{1}{2} \frac{u_{i+1,j}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i-1,j}^{n+\frac{1}{2}}}{h_{x}^{2}} + \frac{4}{2} \frac{u_{i,j+1}^{n} - 2u_{i,j}^{n} + u_{i,j-1}^{n}}{h_{y}^{2}},$$

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n+\frac{1}{2}}}{\Delta t} - \frac{3}{2} \frac{u_{i+1,j}^{n+\frac{1}{2}} - u_{i,j}^{n+\frac{1}{2}}}{h_{x}} + \frac{7}{2} \frac{u_{i,j}^{n+1} - u_{i,j-1}^{n+1}}{h_{y}} = \frac{1}{2} \frac{u_{i+1,j}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i-1,j}^{n+\frac{1}{2}}}{h_{x}^{2}} + \frac{4}{2} \frac{u_{i,j+1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1}}{h_{y}^{2}} + \frac{4}{2} \frac{u_{i,j+1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1}}{h_{y}^{2}} + \frac{4}{2} \frac{u_{i,j+1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1}}{h_{y}^{2}} + \frac{4}{2} \frac{u_{i,j+1}^{n+1} - 2u_{i,j}^{n} + u_{i,j-1}^{n}}{h_{y}^{2}} + \frac{4}{2} \frac{u_{i,j+1}^{n} - 2u_{i,j}^{n}}{h_{y}^{2}} + \frac{4}{2} \frac{u_{i,j+1}^{n} - 2u_{i,j}^{n}}{h_{y}^{2}} + \frac{4}{2} \frac{u_{i,j+1}^{n}$$

Первая подсхема в схеме переменных направлений (2) аппроксимирует производную по времени на первом полушаге интервала Δt и является неявной по координате x и явной по координате y. Вторая подсхема аппроксимирует производную по времени на втором полушаге интервала Δt и является неявной по координате y и явной по координате x.

Задание 3

Привести схемы (2) к виду, удобному для использования метода прогонки:

Первая подсхема

Приведу первую подсхему (2) к виду, удобному для использования метода прогонки:

$$(-\frac{3}{2}\frac{\Delta t}{h_x}-\frac{1}{2}\frac{\Delta t}{h_x^2})u_{i+1,j}^{n+\frac{1}{2}}+(1+\frac{3}{2}\frac{\Delta t}{h_x}+\frac{\Delta t}{h_x^2})u_{i,j}^{n+\frac{1}{2}}-\frac{1}{2}\frac{\Delta t}{h_x^2}u_{i-1,j}^{n+\frac{1}{2}}=u_{i,j}^n-\frac{7}{2}\frac{u_{i,j}^n-u_{i,j-1}^n}{h_y}+\frac{4}{2}\Delta t\frac{u_{i,j+1}^n-2u_{i,j}^n+u_{i,j-1}^n}{h_y^2}.$$

Вторая подсхема

Приведу вторую подсхему (2) к виду, удобному для использования метода прогонки:

$$-\frac{4}{2}\frac{\Delta t}{h_y^2}u_{i,j+1}^{n+1} + \left(1 + \frac{7}{2}\frac{\Delta t}{h_y} + 4\frac{\Delta t}{h_y^2}\right)u_{i,j}^{n+1} - \left(\frac{7}{2}\frac{\Delta t}{h_y} + \frac{4}{2}\frac{\Delta t}{h_y^2}\right)u_{i,j-1}^{n+1} = u_{i,j}^{n+\frac{1}{2}} + \frac{3}{2}\frac{u_{i+1,j}^{n+\frac{1}{2}} - u_{i,j}^{n+\frac{1}{2}}}{h_x} + \frac{1}{2}\frac{u_{i+1,j}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i-1,j}^{n+\frac{1}{2}}}{h_x^2} + e^{(n+\frac{1}{2})\Delta t(i-1)h_x} + e^{(n+\frac{1}{2})\Delta t(j-1)h_y} + (j-1)h_y.$$

Задание 4

Проверить сходимость прогонки для схем (2):

Первая подсхема

Коэффициенты, соответствующие уравнению первой подсхемы (2), имеют вид:

$$a_i = -\frac{3}{2}\frac{\Delta t}{h_x} - \frac{1}{2}\frac{\Delta t}{h_x^2}, \quad b_i = 1 + \frac{3}{2}\frac{\Delta t}{h_x} + \frac{\Delta t}{h_x^2}, \quad c_i = -\frac{1}{2}\frac{\Delta t}{h_x^2}, \quad \xi_{i,j}^n = u_{i,j}^n - \frac{7}{2}\frac{u_{i,j}^n - u_{i,j-1}^n}{h_y} + \frac{4}{2}\Delta t \frac{u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j-1}^n}{h_y^2}.$$

Легко видеть, что для первой подсхемы (2) схемы расщепления достаточное условие сходимости прогонки выполняется:

$$|a_i| + |c_i| = \frac{3}{2} \frac{\Delta t}{h_x} + \frac{\Delta t}{h_x^2} < 1 + \frac{3}{2} \frac{\Delta t}{h_x} + \frac{\Delta t}{h_x^2} = |b_i|.$$

Вторая подсхема

Коэффициенты, соответствующие уравнению второй подсхемы (2), имеют вид:

$$\tilde{a}_j = -\frac{4}{2} \frac{\Delta t}{h_y^2}, \quad \tilde{b}_j = 1 + \frac{7}{2} \frac{\Delta t}{h_y} + 4 \frac{\Delta t}{h_y^2}, \quad \tilde{c}_j = -\left(\frac{7}{2} \frac{\Delta t}{h_y} + \frac{4}{2} \frac{\Delta t}{h_y^2}\right),$$

$$\tilde{\xi}_{i,j}^{n+\frac{1}{2}} = u_{i,j}^{n+\frac{1}{2}} + \frac{3}{2} \frac{u_{i+1,j}^{n+\frac{1}{2}} - u_{i,j}^{n+\frac{1}{2}}}{h_x} + \frac{1}{2} \frac{u_{i+1,j}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i-1,j}^{n+\frac{1}{2}}}{h_x^2} + e^{(n+\frac{1}{2})\Delta t(i-1)h_x} + e^{(n+\frac{1}{2})\Delta t(j-1)h_y} + (j-1)h_y.$$

Легко видеть, что для второй подсхемы (2) схемы расщепления достаточное условие сходимости прогонки выполняется:

$$|\tilde{a}_j| + |\tilde{c}_j| = \frac{7}{2} \frac{\Delta t}{h_y} + 4 \frac{\Delta t}{h_y^2} < 1 + \frac{7}{2} \frac{\Delta t}{h_y} + 4 \frac{\Delta t}{h_y^2} = |\tilde{b}_j|.$$

Задание 5

Записать рекуррентное прогоночное соотношение для схем (2):

Первая подсхема

Рекуррентное прогоночное соотношение для первой подсхемы (2) имеет вид:

$$u_{i,j}^{n+\frac{1}{2}} = \alpha_i u_{i+1,j}^{n+\frac{1}{2}} + \beta_i.$$

Прогоночные коэффициенты:

$$\alpha_i = -\frac{a_i}{b_i + c_i \alpha_{i-1}}, \ \beta_i = \frac{\xi_{i,j}^n - c_i \beta_{i-1}}{b_i + c_i \alpha_{i-1}}.$$

Вторая подсхема

Рекуррентное прогоночное соотношение для второй подсхемы (2) имеет вид:

$$u_{i,j}^{n+1} = \tilde{\alpha}_j u_{i,j+1}^{n+1} + \tilde{\beta}_i.$$

Прогоночные коэффициенты:

$$\tilde{\alpha}_j = -\frac{\tilde{a}_j}{\tilde{b}_j + \tilde{c}_j \tilde{\alpha}_{j-1}}, \ \tilde{\beta}_j = \frac{\tilde{\xi}_{i,j}^{n+\frac{1}{2}} - \tilde{c}_j \tilde{\beta}_{j-1}}{\tilde{b}_j + \tilde{c}_j \tilde{\alpha}_{j-1}}.$$

Задание 6

Составить алгоритм (блок-схему) расчёта для схем (2):

Записать явную разностную схему:

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} - 2\frac{u_{i+1,j}^n - u_{i,j}^n}{h_x} - 4\frac{u_{i+1,j}^n - u_{i,j}^n}{h_y} = n\Delta t + ((i-1)h_x)^2 - ((j-1)h_y)^2.$$
 (3)

Задание 8

Вывести рекуррентное соотношение для схемы (3):

Выражаю $u_{i,j}^{n+1}$ из разностной схемы (3):

$$u_{i,j}^{n+1} = u_{i,j}^n + 2\frac{\Delta t}{h_x}(u_{i+1,j}^n - u_{i,j}^n) + 4\frac{\Delta t}{h_y}(u_{i+1,j}^n - u_{i,j}^n) + \Delta t(n\Delta t + ((i-1)h_x)^2 - ((j-1)h_y)^2).$$

Задание 9

Составить алгоритм (блок-схему) расчёта схемы (3):

Записать неявную разностную схему:

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} - 2\frac{u_{i+1,j}^{n+1} - u_{i,j}^{n+1}}{h_x} - 4\frac{u_{i+1,j}^{n+1} - u_{i,j}^{n+1}}{h_y} = (n+1)\Delta t + ((i-1)h_x)^2 - ((j-1)h_y)^2.$$
(4)

Задание 11

Записать схему расщепления для схемы (4): Рассмотрю метод разрешения неявной разностной схемы (4), называемый **методом дробных шагов**. Данный метод позволяет представить разностной схему (4) в виде двух подсхем, каждая из которых может быть решена с помощью метода прогонки.

Разобью пополам интервал Δt между точками t^n и t^{n+1} на разностной сетке и обозначу полученную промежуточную точку как $t^{n+\frac{1}{2}}.$

Запишу на первом полушаге интервала Δt неявную разностную схему, которая будет учитывать только производную второго порядка по координате x:

$$\frac{u_{i,j}^{n+\frac{1}{2}} - u_{i,j}^n}{\Delta t} - 2\frac{u_{i+1,j}^{n+\frac{1}{2}} - u_{i,j}^{n+\frac{1}{2}}}{h_r} = (n + \frac{1}{2})\Delta t + ((i-1)h_x)^2 - ((j-1)h_y)^2.$$
 (5)

Запишу на втором полушаге интервала Δt неявную разностную схему, которая будет учитывать только производную вторую порядка по координате y:

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n+\frac{1}{2}}}{\Delta t} - 4 \frac{u_{i,j+1}^{n+1} - u_{i,j}^{n+1}}{h_y} = 0.$$
 (6)

Складывая подсхемы (5) и (6), получаю соотношение, отличающееся от неявной разностной схемы (4) только тем, что вторая производная по координате x аппроксимирована в нём не на (n+1)-м шаге по времени, а на шаге $(n+\frac{1}{2})$:

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} - 2\frac{u_{i+1,j}^{n+\frac{1}{2}} - u_{i,j}^{n+\frac{1}{2}}}{h_x} - 4\frac{u_{i,j+1}^{n+1} - u_{i,j}^{n+1}}{h_y} = (n + \frac{1}{2})\Delta t + ((i-1)h_x)^2 - ((j-1)h_y)^2.$$
 (7)

Таким образом, дифференциальное уравнение из условия задачи может быть аппроксимировано с помощью последовательного разрешения двух подсхем (5), (6), называемых в совокупности **схемой расщепления**.

Задание 12

Вывести рекуррентное соотношение для подсхем (5) и (6):

Первая подсхема

Выражаю $u_{i,j}^{n+\frac{1}{2}}$ и разностной схемы (5):

$$u_{i,j}^{n+\frac{1}{2}} = \frac{2\frac{\Delta t}{h_x}}{1+2\frac{\Delta t}{h_x}}u_{i+1,j}^{n+\frac{1}{2}} + \frac{u_{i,j}^n + \Delta t((n+\frac{1}{2})\Delta t + ((i-1)h_x)^2 - ((j-1)h_y)^2)}{1+2\frac{\Delta t}{h_x}}.$$

Вторая подсхема

Выражаю $u_{i,j}^{n+1}$ и разностной схемы (6):

$$u_{i,j}^{n+1} = \frac{4\frac{\Delta t}{h_y}}{1 + 4\frac{\Delta t}{h_y}} u_{i,j+1}^{n+1} + \frac{u_{i,j}^{n+\frac{1}{2}}}{1 + 4\frac{\Delta t}{h_y}}.$$

Задание 13

Составить алгоритм (блок-схему) расчёта схемы (7):

Задание 14

Записать схему предиктор-корректор: Данная схема требует особого способа расщепления интервала Δt : интервал Δt между точками t^n и t^{n+1} на разностной сетке делится пополам; интервал $\Delta t/2$ между точками t^n и $t^{n+\frac{1}{2}}$ снова делится пополам.

На первом полушаге интервала $\Delta t/2$ записывается неявная разностная схема, в которой учитывается только производная по координате x:

$$\frac{u_{i,j}^{n+\frac{1}{4}} - u_{i,j}^n}{\Delta t/2} - 2\frac{u_{i+1,j}^{n+\frac{1}{4}} - u_{i,j}^{n+\frac{1}{4}}}{h_x} = 0.$$
(8)

На втором полушаге интервала $\Delta t/2$ записывается неявная разностная схема, в которой учитывается только производная по координате y:

$$\frac{u_{i,j}^{n+\frac{1}{2}} - u_{i,j}^{n+\frac{1}{4}}}{\Delta t/2} - 4 \frac{u_{i,j+1}^{n+\frac{1}{2}} - u_{i,j}^{n+\frac{1}{2}}}{h_y} = 0.$$
(9)

Результатом последовательного решения подсхем (8), (9), называемых в совокупности **предиктором**, являются значения функции u(t, x, y) на шаге по времени $(n+\frac{1}{2})$. Для завершения расчётов на всём интервале Δt используется поправочное разностное соотношение, называемое **корректором**:

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} - 2\frac{u_{i+1,j}^{n+\frac{1}{2}} - u_{i,j}^{n+\frac{1}{2}}}{h_x} - 4\frac{u_{i,j+1}^{n+\frac{1}{2}} - u_{i,j}^{n+\frac{1}{2}}}{h_y} = (n + \frac{1}{2})\Delta t + ((i-1)h_x)^2 - ((j-1)h_y)^2.$$
(10)

Таким образом, схема предиктор-корректор в случае двумерных задач состоит из трёх подсхем.

Задание 15

Вывести рекуррентное соотношение для подсхем предиктора (8) и (9):

Первая подсхема

Выражаю $u_{i,j}^{n+\frac{1}{4}}$ и разностной схемы (8):

$$u_{i,j}^{n+\frac{1}{4}} = \frac{\frac{\Delta t}{h_x}}{1 + \frac{\Delta t}{h_x}} u_{i+1,j}^{n+\frac{1}{4}} + \frac{u_{i,j}^n}{1 + \frac{\Delta t}{h_x}}.$$

Вторая подсхема

Выражаю $u_{i,j}^{n+\frac{1}{2}}$ и разностной схемы (9):

$$u_{i,j}^{n+\frac{1}{2}} = \frac{2\frac{\Delta t}{h_y}}{1 + 2\frac{\Delta t}{h_y}} u_{i,j+1}^{n+\frac{1}{2}} + \frac{u_{i,j}^{n+\frac{1}{4}}}{1 + 2\frac{\Delta t}{h_y}}.$$

Задание 16

Вывести рекуррентное соотношение для корректора (10):

$$u_{i,j}^{n+1} = u_{i,j}^{n} + 2\frac{\Delta t}{h_x}(u_{i+1,j}^{n+\frac{1}{2}} - u_{i,j}^{n+\frac{1}{2}}) + 4\frac{\Delta t}{h_y}(u_{i,j+1}^{n+\frac{1}{2}} - u_{i,j}^{n+\frac{1}{2}}) + \Delta t((n+\frac{1}{2})\Delta t + ((i-1)h_x)^2 - ((j-1)h_y)^2).$$

Задание 17

Составить алгоритм (блок-схему) расчёта для схем (8)-(10).

