"数学外卖"高数组春季第五次讲座: 曲线曲面积分

黄泽昕 邬宗圣 解淑涵 王子嫣 许可

2025年5月31日

例 1. 求曲线积分 $\int_C e^{-(x^2+y^2)} \left[\cos(2xy)\,\mathrm{d}x + \sin(2xy)\,\mathrm{d}y\right]$ 之值,其中 C 是单位圆周 $x^2+y^2=1$,方向为逆时针.

例 2. 计算
$$I_1 = \int_L \frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{x^2 + y^2}, I_2 = \int_L \frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{x^2 + 4y^2},$$
 其中 L 为

- (1) 椭圆 $\frac{(x-2)^2}{2} + \frac{y^2}{3} = 1$ 所围区域的正向边界;
- (2) 单位圆 $x^2 + y^2 = 1$ 所围区域的正向边界.

例 3. 设 L 为椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$,其周长为 a,求 $\oint_L (2xy + 3x^2 + 4y^2) ds$.

例 4. 求微分方程 $\sin x \sin 2y \, dx - 2 \cos x \cos 2y \, dy = 0$ 的通解.

例 5. 已知 Σ 为曲面 $4x^2+y^2+z=1$ $(x\geq 0,\ y\geq 0,\ z\geq 0)$ 的上侧,L 为 Σ 的边界曲线,其正向与 Σ 的正法向量满足右手法则,计算曲线积分

$$I = \int_{L} (yz^2 - \cos z) dx + 2xz^2 dy + (2xyz + x\sin z) dz.$$

例 6. 计算曲线积分 $\int_L y \, \mathrm{d}x + z \, \mathrm{d}y + x \, \mathrm{d}z$, 其中 L 是曲线

$$x^{2} + y^{2} + z^{2} = 1$$
, $x + z = 1$, $x \ge 0$, $y \ge 0$, $z \ge 0$

从点 (1,0,0) 到 (0,0,1).

例 7. 设函数 f(x) 在 $(-\infty, +\infty)$ 内具有一阶连续导数,L 是上半平面 (y > 0) 内的有向分段光滑曲线,其起点为 (a,b),终点为 (c,d). 记

$$I = \int_{I} \frac{1}{y} [1 + y^2 f(xy)] dx + \frac{x}{y^2} [y^2 f(xy) - 1] dy,$$

(1) 证明曲线积分 I 与路径无关;

(2) 当 ab = cd 时, 求 I 的值.

例 8. 求力 $\vec{F} = y\vec{i} + z\vec{j} + x\vec{k}$ 沿有向闭曲线 Γ 所做的功,其中 Γ 为平面 x + y + z = 1 被三个坐标面 所截成的三角形的整个边界,从 z 轴正向看去,沿顺时针方向.

例 9. 求 $\iint_{\Sigma} xy \, dy \, dz + xz dz dx + yz \, dx \, dy$, 其中 Σ 为圆柱面 $x^2 + y^2 = R^2$ 在 $y \ge 0$, $z \ge 0$ 两卦限 内被平面 z = 0 和 z = H(H > 0) 所截下的部分的外侧.

例 10. 计算 $I = \iint_{\Sigma} |xyz| \, dS$, 其中 Σ 为 $z = x^2 + y^2$ 在 z = 1 以下的部分.

例 11. 计算 $\iint_{\Sigma} (xy + yz + zx) \, dS$,其中 Σ 是锥面 $z = \sqrt{x^2 + y^2}$ 被圆柱面 $x^2 + y^2 = 2ax(a > 0)$ 所 割下的部分.

例 12. $\iint_{\Sigma} xz \, dx \, dy + xy \, dy \, dz + yz \, dz \, dx$, 其中 Σ 是平面 x = 0, y = 0, z = 0, x + y + z = 1 所 围成的空间区域的整个边界曲面的外侧.

例 13. $\iint_{\Sigma} z \, dx \, dy + x \, dy \, dz + y \, dz \, dx$, 其中 Σ 是柱面 $x^2 + y^2 = 1$ 被平面 z = 0 及 z = 3 所截得的 在第一卦限内的部分的前侧.

例 14. 设 Σ 为空间立体区域 $\{(x,y,z)\mid x^2+4y^2\leq 4,0\leq z\leq 2\}$ 表面的外侧,求曲面积分 $\iint_{\Sigma}x^2\,\mathrm{d}y\,\mathrm{d}z+y^2\,\mathrm{d}z\,\mathrm{d}x+z\,\mathrm{d}x\,\mathrm{d}y$

例 15. 计算曲面积分 $I = \iint_{\Sigma} \frac{x \, \mathrm{d}y \, \mathrm{d}z + y \, \mathrm{d}z \, \mathrm{d}x + z \, \mathrm{d}x \, \mathrm{d}y}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}$, 其中 Σ 是曲面 $2x^2 + 2y^2 + z^2 = 4$ 的外侧.

例 16. 设函数 f(x) 连续可导, $P=Q=R=f((x^2+y^2)z)$,有向曲面 Σ_t 是圆柱体 $x^2+y^2\leq t^2, 0\leq z\leq 1$ 的表面,方向朝外. 记第二型的曲面积分

$$I_t = \iint_{\Sigma_t} P \,\mathrm{d}y \,\mathrm{d}z + Q \,\mathrm{d}z \,\mathrm{d}x + R \,\mathrm{d}x \,\mathrm{d}y$$

求极限 $\lim_{t\to 0^+} \frac{I_t}{t^4}$.