Title

D. Zack Garza

Table of Contents

Contents

Table of Contents	
1 Lecture 10	

Table of Contents

Lecture 10

1 | Lecture 10

Remark 1.0.1: What we've been calling a *torsor* (a sheaf with a group action plus conditions) is called by some sources a **pseudotorsor** (e.g. the Stacks Project), and what we've been calling a *locally trivial torsor* is referred to as a *torsor* instead.

Recall that statement of ??.

Proof (of Hilbert 90).

Let $\tau = X_{\text{zar}}, X_{\text{\'et}}, X_{\text{fppf}}$, then the data of a GL_n -torsor split by a τ -cover $U \to X$ is the same as descent data for a vector bundle relative to $U_{/X}$. This descent data comes from the following:

$$U \times_X U$$

$$\pi_1 \bigcup_{\pi_2} \pi_2$$

$$U$$

$$\downarrow$$

$$X$$

That U trivializes our torsor means that $\pi^*T = \pi^*G$ as a G-torsor, where G acts on itself by left-multiplication. We have two different ways of pulling back, and identifications with G in both, yielding

$$\pi_1^*\pi^*T \xrightarrow{\sim} \pi_2^*\pi^*T$$

$$\downarrow \qquad \qquad \downarrow$$

$$\pi_1^*\pi^*G \xrightarrow{\sim} \pi_2^*\pi^*G$$

Both of the bottom objects are isomorphic to $G|_{U\times U}$.

Claim: The top horizontal map is descent data for T, and the bottom horizontal map is an automorphism of a G-torsor and thus is a section to G.

Lecture 10 3