Příklad

Dokažte, že pro daný okruh R a monoid M, a α, β ze cvičení platí:

Je-li $\gamma: R \to S$ okruhový homomorfismus a $\delta: M \to (S, \cdot, 1)$ monoidový homomorfismus a platí-li navíc $(\forall r \in R)(\forall m \in M) \ \gamma(r) \cdot \delta(m) = \delta(m) \cdot \gamma(r)$, existuje právě jeden okruhový homomorfismus $\varepsilon: R[M] \to S$ takový, že $\varepsilon \circ \alpha = \gamma$ a $\varepsilon \circ \beta = \delta$.

Důkaz (Existence)

Definujeme ε následovně: Je-li $f \in R[M]$, můžeme (jednoznačně) psát " $f = \sum_{m \in \text{supp } f} f_m \cdot m$ " (tj. $f(m) = f_m$ pro $m \in \text{supp } f$ a f(m) = 0 jinak). $\varepsilon(f)$ potom položíme rovné $\sum_{m \in \text{supp } f} \gamma(f_m) \cdot \delta(m)$.

Zřejmě b $\varepsilon \circ \alpha = \gamma$ a $\varepsilon \circ \beta = \delta$. Nyní ověříme, že je to okruhový homomorfismus

^bProtože ($\gamma(1_R) = 1_S = \delta(1_M)$ je vlastnost homomorfismu):

$$\varepsilon(\alpha(r)) = \varepsilon \left(\sum_{m \in \{1\}} r \cdot m \right) = \sum_{m \in \{1\}} \gamma(r) \cdot \delta(1) = \gamma(r) \cdot 1 = \gamma(r),$$

$$\varepsilon(\beta(k)) = \varepsilon\left(\sum_{m \in \{k\}} 1 \cdot m \right) = \sum_{m \in \{k\}} \gamma(1) \cdot \delta(m) = 1 \cdot \delta(k) = \delta(k),$$

^aJelikož supp f je konečné, $\gamma(f_m), \delta(m) \in S$ a jelikož rozklad " $f = \sum_{m \in \text{supp } f} f_m \cdot m$ " je jednoznačný, je $\varepsilon(f)$ dobře definovaná funkce $R[M] \to S$.