DOCKET NO.: 277223US0PCT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Yoneichi HIRATA, et al.

SERIAL NO.: NEW U.S. PCT APPLICATION

FILED: HEREWITH

INTERNATIONAL APPLICATION NO.: PCT/JP04/16400 INTERNATIONAL FILING DATE: November 5, 2004

FOR: PHOSPHORESCENT PHOSPHOR AND METHOD OF MANUFACTURING THEREOF

REQUEST FOR PRIORITY UNDER 35 U.S.C. 119 AND THE INTERNATIONAL CONVENTION

Commissioner for Patents Alexandria, Virginia 22313

Sir:

In the matter of the above-identified application for patent, notice is hereby given that the applicant claims as priority:

COUNTRY

APPLICATION NO

DAY/MONTH/YEAR 06 November 2003

Japan

2003-377414

Certified copies of the corresponding Convention application(s) were submitted to the International Bureau in PCT Application No. PCT/JP04/16400.

Respectfully submitted, OBLON, SPIVAK, McCLELLAND,

MAIER & NEUSTADT, P.C.

Norman F. Oblon Attorney of Record Registration No. 24,618

Surinder Sachar

Registration No. 34,423

Customer Number 22850

(703) 413-3000 Fax No. (703) 413-2220 (OSMMN 08/03)

BEST AVAILABLE COPY

日本国特許庁 JAPAN PATENT OFFICE

09.11.2004

REC'D 0 4 JAN 2005

PCT

WIPO

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年11月 6日

出 願 番 号 Application Number:

特願2003-377414

[ST. 10/C]:

[JP2003-377414]

出 願 人
Applicant(s):

根本特殊化学株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年12月16日

1) 11

【書類名】 特許願 P031106003 【整理番号】 平成15年11月 6日 【提出日】 特許庁長官 殿 【あて先】 CO9K 11/64 【国際特許分類】 【発明者】 東京都杉並区上荻1-15-1 丸三ビル 根本特殊化学株式会 【住所又は居所】 社内 平田 米一 【氏名】 【発明者】 東京都杉並区上荻1-15-1 丸三ビル 根本特殊化学株式会 【住所又は居所】 社内 坂口 朋也 【氏名】 【発明者】 東京都杉並区上荻1-15-1 丸三ビル 根本特殊化学株式会 【住所又は居所】 社内 竹内 信義 【氏名】 【特許出願人】 【識別番号】 390031808 【氏名又は名称】 根本特殊化学株式会社 【代理人】

【識別番号】 100118315

【弁理士】

【氏名又は名称】 黒田 博道

【手数料の表示】

【予納台帳番号】 126425 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 0204398

【請求項1】

MAl2O4で表される化合物で、Mは、ストロンチウム(Sr)およびバリウム(Ba)からなる化合物を母結晶にすると共に、

賦活剤としてユウロピウム(Eu)を添加し、

共賦活剤としてジスプロシウム(Dy)を添加する蓄光性蛍光体であって、

ユウロピウム (Eu) の添加量は、Mで表す金属元素とユウロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対するモル%で1.5%を超え5%以下であり、

ジスプロシウム (Dy) の添加量は、ユウロピウム (Eu) に対するモル比で $0.3 \le Dv/Eu \le 2$ であり、

アルミニウム $(A \ 1)$ の割合は、Mで表す金属元素とユウロピウム $(E \ u)$ とジスプロシウム $(D \ y)$ のモル数の合計に対して、モル比で $2 \cdot 1$ 以上 $2 \cdot 9$ 以下であり、

Mに対するバリウム (Ba) の割合が、0.03≦Ba/(Sr+Ba)≦0.2である

ことを特徴とした蓄光性蛍光体。

【請求項2】

 MAl_2O_4 で表される化合物で、Mは、ストロンチウム(Sr)およびカルシウム(Ca)からなる化合物を母結晶にすると共に、

賦活剤としてユウロピウム(Eu)を添加し、

共賦活剤としてジスプロシウム (Dy) を添加する蓄光性蛍光体であって、

ユウロピウム (Eu) の添加量は、Mで表す金属元素とユウロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対するモル%で1.5%を超え5%以下であり、

ジスプロシウム (Dy) の添加量は、ユウロピウム (Eu) に対するモル比で $0.3 \le Dy/Eu \le 2$ であり、

アルミニウム (A1) の割合は、Mで表す金属元素とユウロピウム(Eu)とジスプロシウム (Dy) のモル数の合計に対して、モル比で2.1以上2.9以下であり、

Mに対するカルシウム(Ca)の割合は、 $0.005 \le C$ a \angle (Sr+Ca) ≤ 0.1 である

ことを特徴とした蓄光性蛍光体。

【請求項3】

 MAl_2O_4 で表される化合物で、Mは、ストロンチウム(Sr)、バリウム(Ba)およびカルシウム(Ca)からなる化合物を母結晶にすると共に、

賦活剤としてユウロピウム(Eu)を添加し、

共賦活剤としてジスプロシウム (Dy) を添加する蓄光性蛍光体であって、

ユウロピウム (Eu) の添加量は、Mで表す金属元素とユウロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対するモル%で1.5%を超え5%以下であり、

ジスプロシウム (Dy) の添加量は、ユウロピウム (Eu) に対するモル比で 0.3 \leq Dy/Eu \leq 2 であり、

アルミニウム (A1) の割合は、Mで表す金属元素とユウロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対して、モル比で2.1以上2.9以下であり、

Mに対するバリウム (Ba) の割合は、0.03≦Ba/(Sr+Ba+Ca)≦0. 145であり、

Mに対するカルシウム (Ca) の割合は、0.005 \leq Ca/(Sr+Ba+Ca) \leq 0.05であり、

かつMに対するパリウム (Ba) およびカルシウム (Ca) の割合の合計は、0.03 $5 \le (Ba+Ca) \diagup (Sr+Ba+Ca) \le 0.15$ である

ことを特徴とした蓄光性蛍光体。

【請求項4】

アルミニウム (A 1) 化合物と、ストロンチウム (S r) 化合物と、パリウム化合物 (Ba) と、

ユウロピウム (Eu) 化合物と、ジスプロシウム (Dy) 化合物と、

を各元素が下記のモル比になるように混合し、還元雰囲気中にて焼成し、その後冷却、 粉砕することを特徴とするアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法。

- 0. $0.15 < Eu / (Sr + Ba + Eu + Dy) \le 0.05$
- 0. $3 \le D y / E u \le 2$
- 0. $0.3 \le Ba/(Sr+Ba) \le 0.2$
- 2. $1 \le A 1 / (S r + B a + E u + D y) \le 2.$ 9

【請求項5】

アルミニウム (A1) 化合物と、ストロンチウム (Sr) 化合物と、カルシウム化合物 (Ca) と、

ユウロピウム (Eu) 化合物と、ジスプロシウム (Dy) 化合物と、

を各元素が下記のモル比になるように混合し、還元雰囲気中にて焼成し、その後冷却、 粉砕することを特徴とするアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法。

- 0. $0.15 < Eu / (Sr + Ca + Eu + Dy) \le 0.05$
- 0. $3 \le D y / E u \le 2$
- 0. $0.05 \le Ca/(Sr+Ca) \le 0.1$
- 2. $1 \le A 1 / (S r + C a + E u + D y) \le 2.$ 9

【請求項6】

アルミニウム (A1) 化合物と、ストロンチウム (Sr) 化合物と、

バリウム(Ba)化合物と、カルシウム(Ca)化合物と、

ユウロピウム (Eu) 化合物と、ジスプロシウム (Dy) 化合物と、

を各元素が下記のモル比になるように混合し、還元雰囲気中にて焼成し、その後冷却、 粉砕することを特徴とするアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法。

- 0. $0.15 < Eu / (Sr + Ba + Ca + Eu + Dy) \le 0.05$
- 0. $3 \le D y / E u \le 2$
- 0. $0.3 \le Ba/(Sr+Ba+Ca) \le 0.145$
- 0. $0.05 \le Ca/(Sr+Ba+Ca) \le 0.05$
- 0. $0.35 \le (Ba+Ca) / (Sr+Ba+Ca) \le 0.15$
- 2. $1 \le A 1 / (S r + B a + C a + E u + D y) \le 2.9$

【請求項7】

原料中に、フラックスとしてホウ素化合物を添加し焼成することを特徴とする請求項4ないし6記載のアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法。

【曹類名】明細曹

【発明の名称】蓄光性蛍光体及びその製造方法

【技術分野】

[0001]

本発明は蓄光性蛍光体、特に低照度で励起されたときに、優れた残光特性を有する蓄光 性蛍光体に関するものである。

【背景技術】

[0002]

一般に蛍光体の残光時間は極めて短く、外部刺激を停止すると速やかにその発光は減衰するが、まれに紫外線等で刺激した後その刺激を停止した後もかなりの長時間(数10分から数時間)に渡り残光が肉眼で認められるものがあり、これらを通常の蛍光体とは区別して蓄光性蛍光体あるいは燐光体と呼んでいる。

この蓄光性蛍光体としては、CaS:Bi(紫青色発光)、CaSrS:Bi(青色発光)、ZnS:Cu(緑色発光)、ZnCdS:Cu(黄色~橙色発光)等の硫化物蛍光体が知られているが、これらのいずれの硫化物蛍光体も、化学的に不安定であったり、耐光性に劣ったり、またこの硫化亜鉛系蛍光体を夜光時計に用いる場合であっても、肉眼でその時刻を認識可能な残光時間は約30分から2時間程度であるなど実用面での問題点が多かった。

[0003]

そこで、出願人は、市販の硫化物系蛍光体に比べて遥かに長時間の残光特性を有し、更には化学的にも安定であり、かつ長期にわたり耐光性に優れる蓄光性蛍光体として、 $MA1_2O_4$ で表わされる化合物で、Mは、カルシウム、ストロンチウム、バリウムからなる群から選ばれる少なくとも1つ以上の金属元素からなる化合物を母結晶にした蓄光性蛍光体を発明し、特許を取得した(特許文献1参照。)。

この特許文献1のアルミン酸塩系蓄光性蛍光体の発明により、従来の硫化物系蛍光体に 比べて遥かに長時間の残光特性を有し、さらには酸化物系であることから化学的にも安定 であり、かつ耐光性に優れる、様々な用途に適用可能な長残光の蓄光性蛍光体を提供する ことが可能となった。

【特許文献1】特許第2543825号公報

【発明の開示】

【発明が解決しようとする課題】

[0004]

しかしながら、さらなる市場ニーズ、特に自動車トランクの脱出用リリースハンドルや 地下鉄、トンネル、船舶、航空機内などにおける避難誘導用安全標識など、低照度環境に おいて使用するセーフティ用途のニーズが高まっており、より低照度での励起条件におい て、高い残光輝度特性が要求されてきている。

例えば、UL規格のUL924" Emergency Lighting and Power Equipment"においては、5 f t - c (約541x)で60分間励起という低照度条件が定められており、またISO規格のISO15370:2001" Ships and marine technology · Low-location lighting on passenger ships · Arrangement"においては、251xで24時間励起という低照度条件が定められている。

[0005]

さらに、前記UL924では、前記励起条件で励起し、90分経過後の残光輝度特性を判断 基準として用いている。

本発明は、このような現状に鑑みなされたもので、低照度の励起条件でも、従来の同種のアルミン酸ストロンチウム系蓄光性蛍光体に比べて優れた残光輝度特性を有する蓄光性蛍光体、特に初期の残光輝度特性に優れ、かつ励起後60分ないしは90分後の残光輝度特性にも優れる蓄光性蛍光体およびその製造方法の提供を目的とする。

【課題を解決するための手段】

[0006]

そこで、本発明者は、前述の現状に鑑み、特許文献1のアルミン酸ストロンチウム系蓄 光性蛍光体において、賦活剤であるユウロピウム(Eu)と共賦活剤であるジスプロシウム(Dy)の添加量の最適化をはかり、さらに、母結晶の構成元素であるストロンチウム (Sr)、バリウム(Ba)、カルシウム(Ca)、アルミニウム(Al)の構成比の最 適化をはかることにより、特に低照度で励起した時に、従来のアルミン酸ストロンチウム 系蓄光性蛍光体と比べて、残光輝度特性に優れた蓄光性蛍光体を見出した。

請求項1記載の蓄光性蛍光体は、MA12O4で表される化合物で、Mは、ストロンチウム (Sr) とバリウム (Ba) からなる化合物を母結晶にすると共に、賦活剤としてユウロピウム (Eu) を添加し、共賦活剤としてジスプロシウム (Dy) を添加しており、ユウロピウム (Eu) の添加量は、Mで表す金属元素とユウロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対して、モル%で1.5%を超え5%以下であり、ジスプロシウム (Dy) の添加量はユウロピウム (Eu) に対するモル比で0.3 \leq Dy/Eu \leq 2であり、アルミニウム (A1) の割合は、Mで表す金属元素とユウロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対して、モル比で2.1以上2.9以下であり、Mに対するバリウムの割合は、モル比で0.03 \leq Ba/ (Sr+Ba) \leq 0.2であることを特徴としている。

[0007]

そして、まず賦活剤としてユウロピウム(Eu)を、Mで表す金属元素とユウロピウム(Eu)とジスプロシウム(Dy)のモル数の合計に対して、モル%で1.5%を超え5%以下添加し、共賦活剤としてジスプロシウム(Dy)をユウロピウム(Eu)に対するモル比で0.3 $\leq Dy/Eu \leq 2$ 添加したことで、蛍光輝度特性ないしは初期残光輝度特性に寄与するユウロピウムの添加量が残光輝度特性に寄与するジスプロシウムの添加量に比べ増大し、最適化がはかられることにより、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体に比べ優れた残光輝度特性を示す。

さらに、アルミニウム(A1)の割合を、Mで表す金属元素とユウロピウム(Eu)とジスプロシウム(Dy)のモル数の合計に対して、モル比で2.1以上2.9以下とすると、アルミニウムの割合を化学量論比である2.0より増加させることにより、結晶構造に歪みが生じトラップが形成されやすくなるため、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体に比べさらに優れた残光輝度特性を示す。

[0008]

さらに、Mに対するバリウムの割合を、モル比で $0.03 \le Ba/(Sr+Ba) \le 0$. 2 としたため、ストロンチウムの一部をバリウムで置換することで結晶中に適度な歪が生じることによって、低照度励起条件による初期残光輝度特性および励起後60分後、90分後における残光輝度特性が向上し、従来の蓄光性蛍光体に比べ優れた初期残光輝度特性を示す。

ここで、まず賦活剤としてのユウロピウムの添加量が、Mで表す金属元素とユウロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対するモル%で1.5%以下の場合では、ユウロピウムの添加量が少なく、初期残光輝度特性が充分に得られないため、従来の蓄光性蛍光体と同等か、それ以下の残光輝度特性となり好ましくない。さらに、5%を超える場合では、濃度消光により全体的に残光輝度が低下するため、低照度条件での初期残光輝度特性も低下する。よって、ユウロピウムの添加量は、1.5%を超え5%以下が最適である。

[0009]

そして、共賦活剤としてのジスプロシウムの添加量が、ユウロピウムに対するモル比で 0.3未満、すなわち Dy/Eu<0.3の場合では、優れた初期残光輝度特性を得るためには、残光輝度特性に寄与するジスプロシウムの添加量がユウロピウムの添加量に対して充分ではないため、望ましい初期残光輝度特性が得られない。また、ジスプロシウムの添加量が、ユウロピウムに対するモル比で2を超える、すなわち2<Dy/Euの場合では、蛍光輝度特性ないしは初期残光輝度特性に寄与するユウロピウムの添加量が残光輝度特性に寄与するジスプロシウムの添加量に比べ充分ではないため、蛍光輝度特性や初期残

[0010]

そのため、賦活剤としてのユウロピウムの添加量は、Mで表す金属元素とユウロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対するモル%で1.5%を超え5%以下であり、さらに共賦活剤としてのジスプロシウムの添加量は、ユウロピウムに対するモル比で0.3 \leq Dy/Eu \leq 2 であることで、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体に比べ優れた初期残光輝度特性を有する蓄光性蛍光体が得られる。

また、アルミニウム(A1)の割合を、Mで表す金属元素とユウロピウム(Eu)とジスプロシウム(Dy)のモル数の合計に対して、モル比で 2.1 未満、すなわち A1/(M+Eu+Dy) < 2.1 とした場合には、化学量論比である 2.0 とほぼ等しいかそれ以下であるため、その残光輝度特性は従来の蓄光性蛍光体とほぼ同等か、または低下する。また、同じくモル比で 2.9 を超える、すなわち 2.9 < A1/(M+Eu+Dy) とした場合には、副生成物の発生する割合が増加するとともに輝度が低下するため好ましくない。

[0011]

そのため、アルミニウム(A1)の割合を、Mで表す金属元素とユウロピウム(Eu)とジスプロシウム(Dy)のモル数の合計に対して、モル比で 2.1以上 2.9以下としたことで、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体に比べさらに優れた残光輝度特性を有する蓄光性蛍光体が得られる。

さらに、バリウムの割合を、Mに対するモル比で 0.03 未満、すなわち B a / (Sr + Ba) < 0.03 とした場合は、バリウムの割合が少なすぎるため結晶中に適度な歪がおきにくく効果がない。また、Mに対するモル比で 0.2 を超える、すなわち 0.2 < B a / (Sr + Ba) とした場合では、相対的にストロンチウムの割合が減少し、全体的な輝度の低下がおこるため好ましくない。

[0012]

そのため、Mに対するバリウムの割合が、モル比で0.03≦Ba/(Sr+Ba)≦0.2であることにより、低照度励起条件による初期残光輝度特性が向上し、かつ励起後60分ないしは90分後の残光輝度特性が向上した、従来の蓄光性蛍光体に比べ優れた残光輝度特性を有する蓄光性蛍光体が得られる。

請求項2記載の蓄光性蛍光体は、MA12O4で表される化合物で、Mは、ストロンチウム (Sr) とカルシウム (Ca) からなる化合物を母結晶にすると共に、賦活剤としてユウロピウム (Eu) を添加し、共賦活剤としてジスプロシウム (Dy) を添加しており、ユウロピウム (Eu) の添加量は、Mで表す金属元素とユウロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対して、モル%で1.5%を超え5%以下であり、ジスプロシウム (Dy) の添加量はユウロピウム (Eu) に対するモル比で0.3 \leq Dy/Eu \leq 2であり、アルミニウム (A1) の割合は、Mで表す金属元素とユウロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対して、モル比で2.1以上2.9以下であり、Mに対するカルシウムの割合は、モル比で0.005 \leq Ca/(Sr+Ca) \leq 0.1であることを特徴としている。

[0013]

そして、まず賦活剤としてユウロピウム(Eu)を、Mで表す金属元素とユウロピウム(Eu)とジスプロシウム(Dy)のモル数の合計に対して、モル%で1.5%を超え5%以下添加し、共賦活剤としてジスプロシウム(Dy)をユウロピウム(Eu)に対するモル比で0.3 $\leq Dy/Eu \leq 2$ 添加したことで、蛍光輝度特性ないしは初期残光輝度特性に寄与するユウロピウムの添加量が残光輝度特性に寄与するジスプロシウムの添加量に比べ増大し、最適化がはかられることにより、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体に比べ優れた残光輝度特性を示す。

さらに、アルミニウム(A1)の割合を、Mで表す金属元素とユウロピウム(Eu)とジスプロシウム (Dy) のモル数の合計に対して、モル比で 2.1以上 2.9以下とする

[0014]

さらに、Mに対するカルシウムの割合を、モル比で 0.005≦Ca/(Sr+Ca) ≦0.1としたため、ストロンチウムの一部をカルシウムで置換することで結晶中に適度 な歪が生じることによって、低照度励起条件による初期残光輝度特性等が向上し、従来の 蓄光性蛍光体に比べ優れた初期残光輝度特性を示す。

ここで、まず賦活剤としてのユウロピウムの添加量が、Mで表す金属元素とユウロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対するモル%で1.5%以下の場合では、ユウロピウムの添加量が少なく、初期残光輝度特性が充分に得られないため、従来の蓄光性蛍光体と同等か、それ以下の残光輝度特性となり好ましくない。さらに、5%を超える場合では、濃度消光により全体的に残光輝度が低下するため、低照度条件での初期残光輝度特性も低下する。よって、ユウロピウムの添加量は、1.5%を超え5%以下が最適である。

[0015]

そして、共賦活剤としてのジスプロシウムの添加量が、ユウロピウムに対するモル比で 0.3未満、すなわちDy/Eu<0.3の場合では、優れた初期残光輝度特性を得るためには、残光輝度特性に寄与するジスプロシウムの添加量がユウロピウムの添加量に対して充分ではないため、望ましい初期残光輝度特性が得られない。また、ジスプロシウムの添加量が、ユウロピウムに対するモル比で2を超える、すなわち2<Dy/Euの場合では、蛍光輝度特性ないしは初期残光輝度特性に寄与するユウロピウムの添加量が残光輝度特性に寄与するジスプロシウムの添加量に比べ充分ではないため、蛍光輝度特性や初期残光輝度特性が低下し、望ましい初期残光輝度特性が得られない。

[0016]

そのため、賦活剤としてのユウロピウムの添加量は、Mで表す金属元素とユウロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対するモル%で1.5%を超え5%以下であり、さらに共賦活剤としてのジスプロシウムの添加量は、ユウロピウムに対するモル比で0.3 \leq Dy/Eu \leq 2 であることで、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体に比べ優れた初期残光輝度特性を有する蓄光性蛍光体が得られる。

また、アルミニウム(A1)の割合を、Mで表す金属元素とユウロピウム(Eu)とジスプロシウム(Dy)のモル数の合計に対して、モル比で 2.1 未満、すなわちA1/(M+Eu+Dy) < 2.1 とした場合には、化学量論比である 2.0 とほぼ等しいかそれ以下であるため、その残光輝度特性は従来の蓄光性蛍光体とほぼ同等か、または低下する。また、同じくモル比で 2.9 を超える、すなわち 2.9 < A1/(M+Eu+Dy)とした場合には、副生成物の発生する割合が増加するとともに輝度が低下するため好ましくない。

[0017]

そのため、アルミニウム (A1) の割合を、Mで表す金属元素とユウロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対して、モル比で2.1以上2.9以下としたことで、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体に比べさらに優れた残光輝度特性を有する蓄光性蛍光体が得られる。

さらに、カルシウムの割合を、Mに対するモル比で 0.005未満、すなわち Ca/(Sr+Ca) < 0.005とした場合は、カルシウムの割合が少なすぎるため結晶中に適度な歪がおきにくく効果がない。また、Mに対するモル比で 0.1を超える、すなわち0.1 < Ca/(Sr+Ca)とした場合では、アルミン酸カルシウム(CaAl2O4)等が副生し、また相対的にストロンチウムの割合が減少し、全体的な輝度の低下がおこるため好ましくない。

[0018]

請求項3記載の蓄光性蛍光体は、MA $12O_4$ で表される化合物で、Mは、ストロンチウム (Sr) とバリウム (Ba) とカルシウム (Ca) とからなる化合物を母結晶にすると共に、賦活剤としてユウロピウム (Eu) を添加し、共賦活剤としてジスプロシウム (Dy) を添加しており、ユウロピウム (Eu) の添加量は、Mで表す金属元素とユウロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対して、モル%で1.5%を超え5%以下であり、ジスプロシウム (Dy) の添加量はユウロピウム (Eu) に対するモル比で0.3 \leq Dy/Eu \leq 2 であり、アルミニウム (A1) の割合は、Mで表す金属元素とユウロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対して、モル比で2.1以上2.9以下であり、Mに対するバリウムの割合は、モル比で0.03 \leq Ba/(Sr+Ba+Ca) \leq 0.145であり、Mに対するカルシウムの割合は、モル比で0.05 \leq Ca/(Sr+Ba+Ca) \leq 0.05であり、かつMに対するバリウムとカルシウムの割合の合計は、モル比で0.035 \leq (Ba+Ca)/(Sr+Ba+Ca) \leq 0.15であることを特徴としている。

[0019]

そして、まず賦活剤としてユウロピウム(Eu)を、Mで表す金属元素とユウロピウム(Eu)とジスプロシウム(Dy)のモル数の合計に対して、モル%で1.5%を超え5%以下添加し、共賦活剤としてジスプロシウム(Dy)をユウロピウム(Eu)に対するモル比で0.3 $\leq Dy/Eu \leq 2$ 添加したことで、蛍光輝度特性ないしは初期残光輝度特性に寄与するユウロピウムの添加量が残光輝度特性に寄与するジスプロシウムの添加量に比べ増大し、最適化がはかられることにより、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体に比べ優れた残光輝度特性を示す。

さらに、アルミニウム (A1) の割合を、Mで表す金属元素とユウロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対して、モル比で2.1以上2.9以下とすると、アルミニウムの割合を化学量論比である2.0より増加させることにより、結晶構造に歪みが生じトラップが形成されやすくなるため、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体に比べさらに優れた残光輝度特性を示す。

[0020]

さらに、Mに対するバリウムの割合を、モル比で $0.03 \le Ba/(Sr+Ba+Ca) \le 0.145$ とし、Mに対するカルシウムの割合を、モル比で $0.005 \le Ca/(Sr+Ba+Ca) \le 0.05$ とし、かつMに対するバリウムとカルシウムの割合の合計を $0.035 \le (Ba+Ca)/(Sr+Ba+Ca) \le 0.15$ としたため、ストロンチウムの一部をバリウムおよびカルシウムで置換することで結晶中に適度な歪が生じることによって、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体に比べ優れた初期残光輝度特性を示す。

ここで、まず賦活剤としてのユウロピウムの添加量が、Mで表す金属元素とユウロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対するモル%で1.5%以下の場合では、ユウロピウムの添加量が少なく、初期残光輝度特性が充分に得られないため、従来の蓄光性蛍光体と同等か、それ以下の残光輝度特性となり好ましくない。さらに、5%を超える場合では、濃度消光により全体的に残光輝度が低下するため、低照度条件での初期残光輝度特性も低下する。よって、ユウロピウムの添加量は、1.5%を超え5%以下が最適である。

[0021]

そして、共賦活剤としてのジスプロシウムの添加量が、ユウロピウムに対するモル比で 0.3未満、すなわちDy/Eu<0.3の場合では、優れた初期残光輝度特性を得るためには、残光輝度特性に寄与するジスプロシウムの添加量がユウロピウムの添加量に対して充分ではないため、望ましい初期残光輝度特性が得られない。また、ジスプロシウムの

添加量が、ユウロピウムに対するモル比で2を超える、すなわち2<Dy/Euの場合では、蛍光輝度特性ないしは初期残光輝度特性に寄与するユウロピウムの添加量が残光輝度特性に寄与するジスプロシウムの添加量に比べ充分ではないため、蛍光輝度特性や初期残光輝度特性が低下し、望ましい初期残光輝度特性が得られない。

[0022]

そのため、賦活剤としてのユウロピウムの添加量は、Mで表す金属元素とユウロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対するモル%で1.5%を超え5%以下であり、さらに共賦活剤としてのジスプロシウムの添加量は、ユウロピウムに対するモル比で0.3 \leq Dy/Eu \leq 2 であることで、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体に比べ優れた初期残光輝度特性を有する蓄光性蛍光体が得られる。

また、アルミニウム(A1)の割合を、Mで表す金属元素とユウロピウム(Eu)とジスプロシウム(Dy)のモル数の合計に対して、モル比で 2.1 未満、すなわちA1/(M+Eu+Dy) < 2.1 とした場合には、化学量論比である 2.0 とほぼ等しいかそれ以下であるため、その残光輝度特性は従来の蓄光性蛍光体とほぼ同等か、または低下する。また、同じくモル比で 2.9 を超える、すなわち 2.9 < A1/(M+Eu+Dy) とした場合には、副生成物の発生する割合が増加するとともに輝度が低下するため好ましくない。

[0023]

そのため、アルミニウム (A1) の割合を、Mで表す金属元素とユウロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対して、モル比で2.1以上2.9以下としたことで、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体に比べさらに優れた残光輝度特性を有する蓄光性蛍光体が得られる。

さらに、バリウムの割合を、Mに対するモル比で0.03未満、すなわちBa/(Sr+Ba+Ca)<0.03とした場合は、バリウムの割合が少なすぎるため結晶中に適度な歪がおきにくく効果がない。同じく、カルシウムの割合を、Mに対するモル比で0.05未満、すなわちCa/(Sr+Ba+Ca)<0.05とした場合は、カルシウムによって得られる効果がない。また、Mに対するモル比で0.05ととした場合は、カルシウム。0.5</br> 0.5
 0.5<

[0024]

一方、上記条件に加えて、また、Mに対するバリウムおよびカルシウムのモル比の合計が 0.15 を超える、すなわち 0.15 〈(Ba+Ca)〉((Sr+Ba+Ca)〉とした場合では、相対的にストロンチウムの割合が減少し、全体的な輝度の低下がおこるため好ましくない。

そのため、Mに対するバリウムの割合が、モル比で $0.03 \le Ba/(Sr+Ba+Ca) \le 0.145$ であり、 $0.005 \le Ca/(Sr+Ba+Ca) \le 0.05$ であり、かつMに対するバリウムおよびカルシウムの割合の合計が、モル比で $0.035 \le (Ba+Ca)/(Sr+Ba+Ca) \le 0.15$ であることによって、低照度励起条件による初期残光輝度特性等が向上し、従来の蓄光性蛍光体に比べ優れた残光輝度特性を有する蓄光性蛍光体が得られる。

請求項4に記載のアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法は、アルミニウム (A1) 化合物と、ストロンチウム (Sr) 化合物と、バリウム化合物 (Ba) と、ユウロピウム (Eu) 化合物と、ジスプロシウム (Dy) 化合物とを各元素が下記のモル比になるように混合し、還元雰囲気中にて焼成し、その後冷却、粉砕したことを特徴としている。そして、下記の配合比にて還元雰囲気中で焼成し、その後冷却、粉砕することにより、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体に比べより優れた残光輝度特性を有するアルカリ土類金属アルミン酸塩蓄光性蛍光体を製造できる。0.015<Eu/ (Sr+Ba+Eu+Dy) ≤0.05、

- 0. $3 \le D y / E u \le 2$
- 0. $0.3 \le Ba/(Sr+Ba) \le 0.2$
- 2. $1 \le A 1 / (Sr + Ba + Eu + Dy) \le 2.9$

請求項5に記載のアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法は、アルミニウム(A1)化合物と、ストロンチウム(Sr)化合物と、カルシウム化合物(Ca)と、ユウロピウム(Eu)化合物と、ジスプロシウム(Dy)化合物とを各元素が下記のモル比になるように混合し、還元雰囲気中にて焼成し、その後冷却、粉砕したことを特徴としている。そして、下記の配合比にて還元雰囲気中で焼成し、その後冷却、粉砕することにより、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体に比べより優れた残光輝度特性を有するアルカリ土類金属アルミン酸塩蓄光性蛍光体を製造できる

- 0. $0.15 < Eu / (Sr + Ca + Eu + Dy) \le 0.05$
- $0.3 \leq Dy/Eu \leq 2$
- 0. $0.05 \le Ca/(Sr+Ca) \le 0.1$
- 2. $1 \le A 1 / (S r + C a + E u + D y) \le 2.9$

請求項6に記載のアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法は、アルミニウム(A1)化合物と、ストロンチウム(Sr)化合物と、バリウム(Ba)化合物と、カルシウム化合物(Ca)と、ユウロピウム(Eu)化合物と、ジスプロシウム(Dy)化合物とを各元素が下記のモル比になるように混合し、還元雰囲気中にて焼成し、その後冷却、粉砕したことを特徴としている。そして、下記の配合比にて還元雰囲気中で焼成し、その後冷却、粉砕することにより、低照度励起条件による初期残光輝度特性が向上し、従来の蓄光性蛍光体に比べより優れた残光輝度特性を有するアルカリ土類金属アルミン酸塩蓄光性蛍光体を製造できる。

- 0. $0.15 < Eu / (Sr + Ba + Ca + Eu + Dy) \le 0.05$
- $0.3 \leq D \text{ v/E u} \leq 2$
- 0. $0.3 \le Ba/(Sr+Ba+Ca) \le 0.145$
- $0.005 \le Ca/(Sr + Ba + Ca) \le 0.05$
- 0. $0.35 \le (Ba+Ca) / (Sr+Ba+Ca) \le 0.15$
- 2. $1 \le A 1 / (S r + B a + C a + E u + D y) \le 2.$ 9

請求項7に記載のアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法は、請求項4ないし6記載のアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法において、原料中に、フラックスとしてホウ素化合物を添加し焼成することを特徴としている。そして、原料中に、フラックスとしてホウ素化合物を添加し焼成することで、低い焼成温度でも優れたアルカリ土類金属元素アルミン酸塩蓄光性蛍光体を製造できる。なお、ホウ素化合物としては例えばホウ酸(H_3 BO₃)が好適に用いられるが、ホウ酸に限らずホウ素化合物であれば同様の効果が得られる。また、添加するホウ素化合物の量としては、原料の総質量に対して0.01~10%程度添加するのが良く、より好ましくは、0.5~3%程度である。

[0025]

ここで、添加するホウ素化合物の量が、原料の総質量に対して10%を超える場合では、焼成物が硬く焼結してしまうため、粉砕が困難となり、また粉砕による輝度の低下がおこってしまう。このため、添加するホウ素化合物の量は原料の総質量に対して0.01~10%が好ましい。

【発明の効果】

[0026]

請求項1記載の蓄光性蛍光体によれば、 $MA12O_4$ で表される化合物であって、Mは、A1D2D4 で表される化合物であって、M4 にストロンチウム (A1B1D2 に対りウム (A1B1B3 からなる化合物を母結晶にすると共に、賦活

剤としてユウロピウム(Eu)を添加し、共賦活剤としてジスプロシウム(Dy)を添加し、ユウロピウム(Eu)の添加量を、Mで表す金属元素とユウロピウム(Eu)とジスプロシウム(Dy)のそル数の合計に対して、モル%で1.5%を超え5%以下とし、ジスプロシウム(Dy)の添加量をユウロピウム(Eu)に対するモル比で0.3 \leq Dy/Eu \leq 2とし、アルミニウム(A1)の割合を、Mで表す金属元素とユウロピウム(Eu)とジスプロシウム(Dy)のモル数の合計に対して、モル比で2.1以上2.9以下とし、Mに対するバリウムの割合を、モル比で0.03 \leq Ba/(Sr+Ba) \leq 0.2 としたことで、蛍光輝度特性ないしは初期残光輝度特性に寄与するユウロピウムの添加量が残光輝度特性に寄与するジスプロシウムの添加量に比べ増大し最適化がはかられ、またアルミニウムの割合を化学量論比である2.0より増加させることにより、結晶構造に正みが生じ、さらにストロンチウムの一部をバリウムで置換することで結晶中に適度な正が生ずるため、低照度励起条件による残光輝度特性が向上し、かつ励起後60分後ないし90分後における残光輝度特性が向上し、従来の蓄光性蛍光体に比べ優れた残光輝度特性を得ることができる。

請求項2記載の蓄光性蛍光体によれば、MAI2O4で表される化合物であって、Mは、ストロンチウム(Sr)とカルシウム(Ca)からなる化合物を母結晶にすると共に、賦活剤としてユウロピウム(Eu)を添加し、共賦活剤としてジスプロシウム(Dy)を添加し、ユウロピウム(Eu)の添加量を、Mで表す金属元素とユウロピウム(Eu)とジスプロシウム(Dy)のモル数の合計に対して、モル%で1.5%を超え5%以下とし、ジスプロシウム(Dy)の添加量をユウロピウム(Eu)に対するモル比で0.3 \leq Dy/Eu \leq 2 とし、アルミニウム(A1)の割合を、Mで表す金属元素とユウロピウム(Eu)とジスプロシウム(Dy)のモル数の合計に対して、モル比で2.1以上2.9以下とし、Mに対するカルシウムの割合を、モル比で0.005 \leq Ca/(Sr+Ca) \leq 0.1としたことで、蛍光輝度特性ないしは初期残光輝度特性に寄与するユウロピウムの添加量に比べ増大し最適化がはかられ、またアルミニウムの割合を化学量論比である2.0より増加させることにより、結晶構造に歪みが生じ、さらにストロンチウムの一部をカルシウムで置換することで結晶中に適度な歪が生ずるため、低照度励起条件による残光輝度特性等が向上し、従来の蓄光性蛍光体に比べ優れた残光輝度特性を得ることができる。

請求項3記載の蓄光性蛍光体によれば、MAl2O4で表される化合物であって、Mは、 ストロンチウム (Sr) とバリウム (Ba) とカルシウム (Ca) とからなる化合物を母 結晶にすると共に、賦活剤としてユウロピウム(Eu)を添加し、共賦活剤としてジスプ ロシウム(Dy)を添加し、ユウロピウム(Eu)の添加量を、Mで表す金属元素とユウ ロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対して、モル%で 1.5%を超え5%以下とし、ジスプロシウム (Dy) の添加量をユウロピウム (Eu) に対する モル比で 0.3≦Dy/Eu≦2とし、アルミニウム(Al)の割合を、Mで表す金属元 素とユウロピウム(Eu)とジスプロシウム(Dy)のモル数の合計に対して、モル比で 2. 1以上2. 9以下とし、Mに対するパリウムの割合を、モル比で0. 03≤Ba/($Sr+Ba+Ca) \leq 0.145$ とし、Mに対するカルシウムの割合を、0.005 $\leq C$ a/(Sr+Ba+Ca)≦0.05とし、かつMに対するバリウムおよびカルシウムの 割合の合計を、モル比で 0. 0 3 5 ≤ (Ba+Ca) / (Sr+Ba+Ca) ≤ 0. 1 5 としたことで、蛍光輝度特性ないしは初期残光輝度特性に寄与するユウロピウムの添加量 が残光輝度特性に寄与するジスプロシウムの添加量に比べ増大し最適化がはかられ、また アルミニウムの割合を化学量論比である2. 0より増加させることにより、結晶構造に歪 みが生じ、さらにストロンチウムの一部をバリウムおよびカルシウムで置換することで結 晶中に適度な歪が生ずるため、低照度励起条件による残光輝度特性等が向上し、従来の蓄 光性蛍光体に比べ優れた残光輝度特性を得ることができる。

請求項4に記載のアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法によれば、アルミニウム(A1)化合物と、ストロンチウム(Sr)化合物と、バリウム化合物(Ba)と、ユウロピウム(Eu)化合物と、ジスプロシウム(Dy)化合物とを各元素が下記のモル比になるように混合し、還元雰囲気中で焼成し、その後冷却、粉砕することにより、低照度励起条件による残光輝度特性が向上し、従来の蓄光性蛍光体に比べより優れた残光輝度特性を有するアルカリ土類金属アルミン酸塩蓄光性蛍光体を製造できる。

- 0. $0.15 < Eu / (Sr + Ba + Eu + Dy) \le 0.05$
- $0.3 \leq Dy/Eu \leq 2$
- 0. $0.3 \le Ba/(Sr+Ba) \le 0.2$
- 2. $1 \le A 1 / (S r + B a + E u + D y) \le 2.9$

請求項5に記載のアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法によれば、アルミニウム (A1) 化合物と、ストロンチウム (Sr) 化合物と、カルシウム化合物 (Ca) と、ユウロピウム (Eu) 化合物と、ジスプロシウム (Dy) 化合物とを各元素が下記のモル比になるように混合し、還元雰囲気中で焼成し、その後冷却、粉砕することにより、低照度励起条件による残光輝度特性が向上し、従来の蓄光性蛍光体に比べより優れた残光輝度特性を有するアルカリ土類金属アルミン酸塩蓄光性蛍光体を製造できる。

- 0. $0.15 < Eu / (Sr + Ca + Eu + Dy) \le 0.05$
- $0. 3 \leq D y / E u \leq 2,$
- 0. $0.05 \le Ca/(Sr+Ca) \le 0.1$
- 2. $1 \le A 1 / (S r + C a + E u + D y) \le 2.9$

請求項6に記載のアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法によれば、アルミニウム (A1) 化合物と、ストロンチウム (Sr) 化合物と、バリウム (Ba) 化合物と、カルシウム化合物 (Ca) と、ユウロピウム (Eu) 化合物と、ジスプロシウム (Dy) 化合物とを各元素が下記のモル比になるように混合し、還元雰囲気中で焼成し、その後冷却、粉砕することにより、低照度励起条件による残光輝度特性が向上し、従来の蓄光性蛍光体に比べより優れた残光輝度特性を有するアルカリ土類金属アルミン酸塩蓄光性蛍光体を製造できる。

- 0. $0.15 < Eu / (Sr + Ba + Ca + Eu + Dy) \le 0.05$
- 0. $3 \le D y / E u \le 2$
- 0. $0.3 \le Ba/(Sr+Ba+Ca) \le 0.145$
- 0. $0.05 \le Ca/(Sr+Ba+Ca) \le 0.05$
- 0. $0.35 \le (Ba+Ca) / (Sr+Ba+Ca) \le 0.15$
- 2. $1 \le A 1 / (Sr + Ba + Ca + Eu + Dy) \le 2.9$

請求項7に記載のアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法によれば、請求項4ないし6記載のアルカリ土類金属アルミン酸塩蓄光性蛍光体の製造方法において、原料中に、フラックスとしてホウ素化合物を添加し焼成することにより、低い焼成温度でも優れたアルカリ土類金属元素アルミン酸塩蓄光性蛍光体を製造できる。

【発明を実施するための最良の形態】

[0027]

以下、本発明の一実施の形態における蓄光性蛍光体を製造する工程を説明する。

まず、Mで表す金属元素としてのストロンチウム(Sr)、バリウム(Ba)およびカルシウム(Ca)の原料として例えばそれぞれ炭酸ストロンチウム($SrCO_3$)、炭酸バリウム($BaCO_3$)および炭酸カルシウム($CaCO_3$)に、賦活剤としてのユウロピウム(Eu)の原料として酸化ユウロピウム(Eu_2O_3)を添加し、共賦活剤としてのジスプロシウム(Dy)の原料として酸化ジスプロシウム(Dy_2O_3)を添加する。このときのユウロピウム(Eu)の添加量は、Mで表す金属元素とユウロピウムとジスプロシウ

[0028]

なおこのとき、添加する賦活剤としてのユウロピウム(Eu)の添加量とは、金属元素 Mと賦活剤ユウロピウム(Eu)と共賦活剤ジスプロシウム(Dy)の各々の元素のモル数の合計に対するモル%で表され、例えば、Mで表す金属元素がストロンチウムおよびバリウムの場合であって、ストロンチウムとバリウムのモル数の合計に対するバリウムのモル比を 0.1 とし、ユウロピウムを 3 モル%添加、ジスプロシウムを 1.5 モル%添加する場合は、ストロンチウム元素が 0.8595 モル、バリウム元素が 0.0955 モル、ユウロピウム元素が 0.0955 モル、グスプロシウム元素が 0.0955 モル、名々の元素の化合物を配合する。これにより、各々の元素のモル数の合計 1 に対して、ユウロピウムの量はモル%で 3 %、ジスプロシウムの量はモル比で 1.5 %となり、またストロンチウムとバリウムのモル数の合計に対するバリウムのモル比は 0.1 となる。

[0029]

また、上記実施の形態では、フラックスとしてホウ素化合物を用いて焼成したが、焼成温度が反応に要する温度に対して充分に高温であれば、例えば1450℃程度であれば、フラックスを用いずに焼成してもよく、この場合得られた焼成物の凝集は弱く、粉砕が容易となるため、粉砕による輝度低下を低減できる。

なお、本願発明におけるMで表す金属元素は、実質的にストロンチウムとバリウム、ストロンチウムとカルシウム、またはストロンチウムとバリウムとカルシウムとから構成されていればよく、これらの元素の他に微量の別の元素が含まれていたとしても、本願発明の範囲に含まれる。

【実施例1】

[0030]

次に、上記一実施の形態の実施例として、Mで表す金属元素がストロンチウム(Sr)およびバリウム(Ba)である場合を説明する。

まず始めに、ユウロピウム(Eu)およびジスプロシウム(Dy)の添加量と、初期残 光輝度特性との関係を説明する。

まず、ストロンチウム(Sr)の原料として炭酸ストロンチウム(SrCO3)128.88 g(0.873モル)に、バリウム(Ba)の原料として炭酸バリウム(BaCO3)を19.14g(0.097モル)加え、さらに賦活剤としてのユウロピウムの原料として酸化ユウロピウム(Eu2O3)を3.52g(Euとして0.02モル)添加し、共賦活剤としてのジスプロシウム(Dy)の原料として酸化ジスプロシウム(Dy)の原料として酸化ジスプロシウム(Dy2O3)を1.86g(Dyとして0.01モル)添加し、さらにアルミニウム原料としてのアルミナ(Al2O3)を17.26g(Alとして2.3モル、すなわちAl/(Sr+Eu+Dy)=2.3)加え、さらにフラックスとしてのホウ素(B)化合物としてホウ酸(H3BO3)を3.2g(すなわち原料に対して1.2質量%)添加し、ボールミルを用いて充分に混合する。この混合物を還元雰囲気中として窒素97%ー水素3%混合ガス気流中で、1350℃の焼成温度で4時間焼成を行い、その後室温まで約1時間かけて冷却する。得られた焼成物を粉砕し節分し#250メッシュを通過したものを蓄光性蛍光体の試料1-(3)とした。この試料1-(3)は、ストロンチウムが0.873モル、バリウムが0.097モルで、ストロンチウムとバリウムのモル数の合計0.97モルに対するストロンチウムのモル比は

0.9、バリウムのモル比は0.1となる。さらに、ストロンチウム、バリウム、ユウロピウム、ジスプロシウムの合計に対するユウロピウムの添加量が2モル%、同じくジスプロシウムの添加量が1モル%であり、ユウロピウムに対するジスプロシウムのモル比、すなわちDy/Euは0.5である。また、アルミニウムのモル比、すなわちA1/(Sr+Eu+Dy)は、化学量論比2.0を超えた2.3である。

[0031]

[0032]

【表1】

条件	M = S r + B a (S r)	M = S r + B a (S r = 0.9, B a = 0.1)				
	(M+Eu+Dy)=	(M+E u+Dy)=1モル				
	$\Lambda l / (M + E u + D)$	A l / (M + E u + D y) : 2. 3				
試料	E u / (M+Eu+Dy)	E u / (M+Eu+Dy) D y / (M+Eu+Dy) D y / E u				
	(モル比) (モル比)					
試料1-(1)	0.01	0.005	0.5			
試料1-(2)	0.015	0.0075	0.5			
試料1-(3)	0.02	0. 01	0.5			
試料1-(4)	0.03	0. 015	0. 5			
試料1-(5)	0.05	0.025	0. 5			
試料1-(6)	0.07	0.035	0. 5			

次に、これら試料 1-(1) ないし試料 1-(6) および比較例 1 の残光輝度特性を調べた。各試料粉末をアルミニウム製試料容器に充填し、あらかじめ暗所にて 120 で約2時間加熱することで残光を消去した後、色温度が 4200 K である蛍光ランプにより 541 x の明るさで 60 分間励起、すなわち低照度条件で励起し、その後の残光を輝度計(色度輝度計 B M -5 A トプコン株式会社製)を用いて計測した。その結果を、比較例 1 の残光輝度を 1 とした場合の相対輝度として表 2 に示す。

[0033]

励起条件	FL(4200K)、541x、60分間					
試料	残光輝度特性(相対値、比較例1=1.0として)					
	5分後	10分後	20分後	60分後	90分後	
比較例1	1.00	1.00	1. 00	1.00	1. 00	
試料1-(1)	1. 62	1.70	1. 74	1. 93	1.85	
試料1-(2)	1. 82	1.89	1. 96	2. 19	1. 94	
試料1-(3)	1. 89	1. 98	2. 09	2. 48	2. 53	
試料1-(4)	2. 00	2. 12	2. 23	2.76	2.81	
試料1-(5)	1.89	1. 98	2. 09	2. 48	2. 53	
試料1-(6)	1. 69	1. 57	1. 43	1. 52	1. 23	

これら表2に示す結果より、試料1-(3)ないし試料1-(5)すなわちユウロピウムの添加量が2モル%ないし5モル%の条件において比較例1に比べて残光輝度特性、特に初期の5分後の残光輝度特性が、比較例1に比べていずれも1.7倍程度をこえて優れており、なおかつ90分後の残光輝度特性が、比較例1に比べていずれも2倍程度をこえて優れていることがわかる。さらに、試料1-(4)すなわちユウロピウムの添加量が3モル%の条件において、5分後の残光輝度特性が比較例1と比べて2倍であり、かつ90分後の残光輝度特性が比較例1と比べて2.81倍となっており、より好ましい優れた残光輝度特性を有していることがわかる。

[0034]

しかし、試料1-(6)すなわちユウロピウムの添加量が5モル%を超え7モル%の条件では、濃度消光により輝度全体が低下してしまい、特に90分後の残光輝度特性は比較例1の1.23倍程度と低下している。

また、試料1-(2)すなわちユウロピウムの添加量が1.5モル%の条件では、5分後の残光輝度特性が比較例1に比べて1.82倍と好ましいものの、90分後の残光輝度特性が比較例1に比べて1.94倍となっており、期待値の2倍を僅かに下回っている。

さらに、試料1-(1)すなわちユウロピウムの添加量が1モル%の条件では、輝度全体が低下している。

[0035]

これらの結果より、低照度条件で励起した場合において、ユウロピウムに対するジスプロシウムの比を 0.5に固定したとき、ユウロピウムの添加量が 1.5モル%を超え 5モル%以下である場合において、従来例に比べ優れた残光輝度特性となることがわかる。

次に、ジスプロシウムとユウロピウムの添加量の比(Dy/Eu)を変化させた場合の、初期残光輝度特性の変化を説明する。

表2に示す結果より好適であった試料1-(4)の条件、すなわちストロンチウム、バリウム、ユウロピウムおよびジスプロシウムの合計に対するユウロピウムの添加量が3モル%、ユウロピウムに対するジスプロシウムの比(Dy/Eu)が0.5である条件を中心に、ユウロピウムの添加量を3モル%に固定し、Dy/Euの値を表3に示すように0.1から2.5の範囲でそれぞれ変化させて、その他の条件は試料1-(3)と同様な製造条件にて蓄光性蛍光体を作成し、それぞれ試料1-(7)ないし試料1-(14)として得た。

【0036】 【表3】

	M = S r + B a (S r = 0.9, B a = 0.1)					
	(M+Eu+Dy)=1.	(M+E u+Dy)=1モル				
	A 1 / (M+E u+D)	A 1 / (M+E u+Dy): 2. 3				
試料	E u / (M+Eu+Dy)	E u / (M+Eu+Dy) D y / (M+Eu+Dy) D y / E u				
	(モル比) (モル比)					
試料1-(7)	0.03	0.003	0.1			
試料1-(8)	0.03	0.006	0. 2			
試料1-(9)	0.03	0.009	0.3			
試料1-(10)	0.03	0.012	0.4			
試料1-(4)	0.03	0.015	0.5			
試料1-(11)	0.03	0.03	1			
試料1-(12)	0.03	0.045	1. 5			
試料1-(13)	0.03	0.06	2			
試料1-(14)	0.03	0.075	2. 5			

これら試料1-(7) ないし試料1-(14) について、試料1-(1) と同様に、低照度条件(4200 K 蛍光ランプ/541 x /60 分間)で励起し残光輝度特性を調べた。その結果を、比較例1 および試料1-(4) とともに、比較例1 の残光輝度を1 とした場合の相対輝度として表4 に示す。

[0037]

励起条件	FL(4200K)、541x、60分間					
試料		残光輝度特性(相対値、比較例1=1.0として)				
	5分後	10分後	20分後	60分後	90分後	
比較例1	1.00	1.00	1.00	1.00	1.00	
試料1-(7)	1. 49	1. 38	1. 27	1. 17	1.04	
試料1-(8)	1. 65	1. 51	1. 49	1.52	1. 30	
試料1-(9)	1.75	1.78	1.83	2.10	2. 01	
試料1-(10)	1.87	1. 95	2. 09	2. 52	2.60	
試料1-(4)	2. 00	2. 12	2. 23	2.76	2.81	
試料1-(11)	1. 95	2.06	2. 19	2. 59	2.81	
試料1-(12)	1. 93	2.04	2. 17	2.62	2. 79	
試料1-(13)	1. 95	2.06	2. 19	2. 59	2.81	
試料1-(14)	1. 52	1.64	1.72	2.02	2.08	

これら、表4に示す結果より、試料1-(9)ないし試料1-(13)すなわちユウロ ピウムに対するジスプロシウムの比が 0.3ないし2の範囲において比較例1に比べて残 光輝度特性、特に初期の5分後の残光輝度特性が、比較例1に比べていずれも1.7倍程 度をこえて優れており、なおかつ90分後の残光輝度特性が、比較例1に比べていずれも 2倍程度をこえて優れていることがわかる。さらに、試料1- (4)、試料1- (11) ないし試料1-(13)すなわちユウロピウムに対するジスプロシウムの比が0.5以上 2以下の範囲において、5分後の残光輝度特性が比較例1と比べて1.9倍以上であり、 かつ90分後の残光輝度特性が比較例1と比べて略2.8倍となっており、より好ましい 優れた残光輝度特性を有していることがわかる。しかし、試料1-(7)および試料1-(8) すなわちユウロピウムに対するジスプロシウムの比が 0.1以上 0.2以下では残 光輝度特性に寄与するジスプロシウムの添加量がユウロピウムに比べて少なすぎるため、 残光輝度特性が低下し、特に90分後の残光輝度が低下しているのがわかる。また試料1 - (14) すなわちユウロピウムに対するジスプロシウムの比が2.5では、90分後の 残光輝度特性は比較例1に比べて2倍以上あるが、蛍光輝度および初期残光輝度に寄与す るユウロピウムの添加量が残光輝度特性に寄与するジスプロシウムの量に比べて少なくな るため、初期の残光輝度特性が低下してしまう。

[0038]

これらの結果より、低照度条件で励起した場合において、ユウロピウムの添加量を3モル%に固定したとき、ジスプロシウムとユウロピウムの比(Dy/Eu)が0.3以上2.0以下において、従来例に比べ優れた残光輝度特性となることがわかる。また、ユウロピウムの添加量を1.5%ないし5%としても同様の効果が得られることを確認した。

さらに、上記測定において好適であった試料1-(9)、試料1-(4)、試料1-(13) すなわちユウロピウムの添加量がそれぞれ3%であって、ジスプロシウムの添加量が0.9%、1.5%、6%である蓄光性蛍光体を、上記比較例1とともに低照度条件で励起するのではなく、通常光の条件下の一例として D_{65} 標準光源により4001xの明るさで20分間励起し、同様に残光輝度特性を測定した。その結果を、比較例1の残光輝度を1とした場合の相対輝度として表5に示す。

【0039】 【表5】

励起条件	D65標準光源、4001x、20分間					
試料	残)	残光輝度特性(相対値、比較例1=1.0として)				
	5分後	10分後	20分後	60分後	90分後	
比較例1	1.00	1.00	1.00	1.00	1.00	
試料1-(9)	1. 12	0.98	0.90	0.81	0.86	
試料1-(4)	1. 39	1. 39	1. 37	1. 36	1.34	
試料1-(13)	1. 38	1. 42	1. 41	1. 43	1. 42	

以上、試料1-(1) ないし試料1-(14) の残光輝度測定結果より、ユウロピウム (Eu) の添加量をストロンチウム (Sr) とバリウム (Ba) とユウロピウム (Eu) とジスプロシウム (Dy) のモル数の合計に対して、モル%で1.5%を超え5%以下とし、ジスプロシウム (Dy) の添加量をユウロピウム (Eu) に対するモル比で $0.3\le Dy/Eu\le 2$ とすることにより、従来の蓄光性蛍光体に比べ、特に低照度条件で励起した場合において、特に初期残光輝度特性および励起後60分後ないし90分後の残光輝度特性において優れた残光輝度特性を有することがわかり、従来にない新たな特性を備えていることがわかる。

次に、Mで表す金属元素がストロンチウム(Sr)およびバリウム(Ba)である場合における、Mで表す金属元素とユウロピウム(Eu)とジスプロシウム(Dy)とのモル数の合計に対するアルミニウム(Al)のモル比と、残光輝度特性について説明する。

[0040]

ストロンチウム (Sr) の原料として炭酸ストロンチウム (SrCO3) 126.89g (0.8595モル) に、バリウム (Ba) の原料として炭酸バリウム (BaCO3) を18.85g (0.0955モル) 加え、さらに賦活剤としてのユウロピウムの原料として酸化ユウロピウム (Eu2O3) を5.28g (Euとして0.03モル) 添加し、共賦活剤としてのジスプロシウム (Dy) の原料として酸化ジスプロシウム (Dy2O3) を2.80g (Dyとして0.015モル) 添加し、さらにアルミニウム原料としてのアルミナ (Al2O3) を104.51g (Alとして2.05モル、すなわちAl/(Sr+Ba+Eu+Dy) = 2.0

5)加え、さらにフラックスとしてのホウ素(B)化合物としてホウ酸(H_3 BO₃)を3.1g(すなわち原料に対して1.2質量%)添加し、ボールミルを用いて充分に混合する。この混合物を還元雰囲気中として窒素 9.7%-水素 3.%混合ガス気流中で、1.3.5.0 $\mathbb C$ の焼成温度で 4 時間焼成を行い、その後室温まで約 1 時間かけて冷却する。得られた焼成物を粉砕し篩分し# 2.5.0 メッシュを通過したものを蓄光性蛍光体の試料 2-(1) とした。この試料 2-(1) は、ストロンチウムが 0.8.5.9 5 モル、バリウムが 0.0.9 5 5 モルで、ストロンチウムとバリウムのモル数の合計 0.9.5.5 モルに対するストロンチウムのモル比は 0.9.5.5 ボリウム、 0.5.5 さらに、 ストロンチウム、 0.5.5 ボリウム、 0.5.5 である。さらに、 ストロンチウム、 0.5.5 である。さらに、 ストロンチウム、 0.5.5 である。また、 0.5.5 である。また、 0.5.5 である。また、 0.5.5 である。

[0041]

同様にして、アルミニウムのモル比、すなわちA1/(Sr+Eu+Dy)を表6に示すように2.1から3.3の範囲で変化させた蓄光性蛍光体を作成し、それぞれ試料2-(2)ないし試料2-(13)として得た。なお、試料2-(9)すなわちアルミニウムのモル比が2.9の試料についてCu管球を用いた粉末X線回折分析を行い、回折図形を得た。これを図2に示す。

【0042】 【表6】

M = S r + B a (S r = 0.9, B a = 0.1)
E u = 3 モル%、D y = 1. 5モル%(対M+Eu+Dy)
A 1 / (M+E u+D y)
2.05
2. 1
2. 2
2. 3
2. 4
2. 5
2. 6
2. 7
2. 8
2. 9
3. 0
3. 1
3. 2
3. 3

次に、これら試料 2-(1) ないし試料 2-(13) について、試料 1-(1) と同様に、低照度条件(4200 K 蛍光ランプ/541 x /60 分間)で励起し、残光輝度特性を調べた。その結果を、アルミニウムのモル比が 2.3 である他は同一条件である試料 1-(4) とともに、比較例 1 の残光輝度を 1 とした場合の相対輝度として表 7 に示す。

【0043】 【表7】

励起条件	FL(4200K)、541x、60分問						
試料		残光輝度特性(相対値、比較例1=1.0として)					
	5分後	10分後	20分後	60分後	90分後		
比較例1	1.00	1.00	1.00	1.00	1.00		
試料2-(1)	1.60	1. 61	1.66	1. 93	2.00		
試料2-(2)	1. 78	1.83	1. 93	2. 33	2.44		
試料2-(3)	2. 03	2.14	2. 26	2. 79	2. 95		
試料1-(4)	2.00	2. 12	2. 23	2.76	2.81		
試料2-(4)	2.00	2. 13	2. 24	2.76	2.84		
試料2-(5)	1. 99	2. 11	2. 23	2.70	2.82		
試料2-(6)	1. 98	2. 10	2. 23	2.68	2.80		
試料2-(7)	1.88	1. 91	2.03	2. 45	2. 59		
試料2-(8)	1.80	1.83	1.95	2. 35	2.49		
試料2-(9)	1.72	1. 75	1.88	2. 27	2.40		
試料2-(10)	1.63	1. 68	1.79	2. 18	2. 31		
試料2-(11)	1. 56	1.60	1.68	1. 99	2. 17		
試料2-(12)	1. 48	1.55	1.65	1.96	2. 12		
試料2-(13)	1.38	1.42	1. 55	1. 94	2.06		

この表7に示す結果より、試料2-(2)ないし試料2-(9)すなわちアルミニウムのモル比が2.1以上2.9以下において、比較例1に比べ残光輝度特性、特に5分後の初期残光輝度特性が比較例1と比べていずれも1.7倍程度をこえて優れており、なおかつ90分後の残光輝度特性が、比較例1に比べていずれも2倍程度をこえて優れていることがわかる。さらに、試料2-(3)ないし試料2-(6)(アルミニウムのモル比が2.2以上2.6以下)において、5分後の残光輝度特性が比較例1と比べて2倍程度かそれ以上であり、かつ90分後の残光輝度が比較例1と比べて2.8倍以上となっており、より好ましい優れた残光輝度特性を有していることがわかる。これらは、アルミニウムのモル比が2.0を超えることで、結晶中に歪みが生じることによるものと考えられる。しかし、試料2-(1)(アルミニウムのモル比が2.05)では、90分後の残光輝度特性が比較例1の2倍と優れているものの、5分後の残光輝度特性では比較例1の1.6倍程度の輝度向上にとどまっている。また、試料2-(10)ないし試料2-(13)(アルミニウムのモル比が3以上3.3以下)では、全体的に残光輝度の低下がみられる。これは、アルミニウムのモル比が増加することによって、副生成物として例えば(Sr, B

このことより、MA12O4で表される化合物で、Mは、ストロンチウム(Sr)およびバリウム(Ba)からなる化合物を母結晶にする場合、ストロンチウムとバリウムとユウロピウムとジスプロシウムとのモル数の合計に対するアルミニウムのモル比、すなわちA1/(Sr+Ba+Eu+Dy)が2. 1以上2. 9以下のとき、優れた残光輝度特性をもつ蓄光性蛍光体となることがわかる。

次に、Mで表す金属元素がストロンチウム(Sr)およびバリウム(Ba)である場合について、バリウムの割合と、初期残光輝度特性について説明する。

[0045]

まず、ストロンチウム (Sェ) の原料として炭酸ストロンチウム (SェСО3) 112.79 g (0.764モル) に、バリウム (Ba) の原料として炭酸バリウム (BaCO3) を3 7.69g (0. 191モル) 加え、さらに賦活剤としてのユウロピウムの原料として酸化ユ ウロピウム (E u 2 O 3) を5.28 g (E u として 0. 0 3 モル) 添加し、共賦活剤としての ジスプロシウム (Dy) の原料として酸化ジスプロシウム (Dy2O3) を2.80g (Dyと して0.015モル)添加し、さらにアルミニウム原料としてのアルミナ(Al2O3)を 117.26g(A l として 2. 3 モル、すなわち A l / (S r + B a + E u + D y) = 2. 3)加え、さらにフラックスとしてのホウ素 (B)化合物としてホウ酸 (H3BO3)を3. 3g(すなわち原料に対して1. 2質量%)添加し、ボールミルを用いて充分に混合する 。この混合物を還元雰囲気中として窒素97%−水素3%混合ガス気流中で、1350℃ の焼成温度で4時間焼成を行い、その後室温まで約1時間かけて冷却する。得られた焼成 物を粉砕し篩分し#250メッシュを通過したものを蓄光性蛍光体の試料3-(7)とし た。この試料3-(7)は、ストロンチウムが0.764モル、バリウムが0.191モ ルで、ストロンチウムとバリウムのモル数の合計0.955モルに対するストロンチウム のモル比は0.8、バリウムのモル比は0.2となる。さらに、ストロンチウム、バリウ ム、ユウロピウム、ジスプロシウムのモル数の合計に対するユウロピウムの添加量が3モ ル%、同じくジスプロシウムの添加量が1.5モル%であり、ユウロピウムに対するジス プロシウムのモル比、すなわちDy/Euは0.5である。また、アルミニウムのモル比 、すなわちAl/(Sr+Ba+Eu+Dy)は、化学量論比2.0を超えた2.3であ る。

[0046]

同様にして、ストロンチウムとバリウムの配合比を表8に示すように、Sr:Ba=0. 99:0.01~0.7:0.3の範囲で変化させた蓄光性蛍光体を作成し、それぞれ試料3-(1)ないし試料3-(6)、試料3-(8)および試料3-(9)として得た。なお、試料3-(7)についてCu管球を用いた粉末X線回折分析を行い、回折図形を得た。これを図3に示す。

[0047]

【表8】

							
条件	M = S r + B a						
	E u = 3 モル%、D y = 1. 5 モル% (対M+Eu+Dy)						
	A 1/(M+E u+D y): 2.	A 1 / (M + E u + D y) : 2. 3					
試料	Sr/(Sr+Ba)	Ba/(Sr+Ba)					
試料3-(1)	0.99	0. 01					
試料3-(2)	0.97	0.03					
試料3-(3)	0.96	0.04					
試料3-(4)	0.95	0.05					
試料1-(4)	0.9	0. 1					
試料3-(5)	0.85	0. 15					
試料3-(6)	0.83	0.17					
試料3-(7)	0.8	0. 2					
試料3-(8)	0.75	0.25					
試料3-(9)	0. 7	0. 3					

次に、これら試料 3-(1) ないし試料 3-(9) について、実験例 1 の試料 1-(1) と同様に、低照度条件(4200 K 蛍光ランプ/541 x /60 分間)で励起し、残光輝度特性を調べた。その結果を、ストロンチウムとバリウムの配合比が 0.9:0.1 である他は同一条件である試料 1-(4) とともに、前記比較例 1 の残光輝度を 1 とした場合の相対輝度として表 9 に示す。

[0048]

【表9】

励起条件	FL(4200K)、54lx、60分間						
試料	残光	残光輝度特性(相対値、比較例1=1.0として)					
	5分後	10分後	20分後	60分後	90分後		
比較例1	1. 00	1.00	1.00	1.00	1. 00		
試料3-(1)	1. 90	1.82	1.74	1.64	1. 56		
試料3~(2)	1. 98	1. 95	1.89	1. 98	1. 95		
試料3-(3)	1. 99	1. 98	1.94	2. 08	2.04		
試料3-(4)	2.00	2.01	1.99	2. 17	2. 12		
試料1-(4)	2. 00	2. 12	2. 23	2.76	2. 81		
試料3-(5)	1.83	1. 95	2.02	2. 35	2.40		
試料3-(6)	1. 77	1.87	1.93	2. 13	2. 17		
試料3-(7)	1. 69	1.76	1.81	1. 94	1. 97		
試料3-(8)	1. 37	1. 52	1.60	1.64	1.64		
試料3-(9)	1.02	1. 12	1. 20	1. 28	1. 25		

この表9に示す結果より、試料3-(2)ないし試料3-(7)すなわちバリウムの割合が0.03以上0.2以下において比較例1に比べて残光輝度特性、特に5分後の初期残光輝度特性が比較例1に比べていずれも1.7倍程度かそれ以上と優れており、なおかつ90分後の残光輝度特性が比較例1に比べていずれも2倍程度かそれ以上と優れていることがわかる。さらに、試料3-(3)、試料3-(4)および試料1-(4)すなわちバリウムの割合が0.05以上0.1以下の条件において、5分後の残光輝度特性が比較例1に比べて略2倍となりより好ましく、また試料1-(4)および試料3-(5)すなわちバリウムの割合が0.1以上0.15以下の条件において、90分後の残光輝度特性が比較初1に比べて2.4倍以上と、より好ましい優れた残光輝度特性となることがわかる。しかし、試料3-(1)すなわちバリウムの割合が0.01では、初期の5分後の残光輝度特性は比較例1の1.9倍と優れているものの、90分後の残光輝度特性は比較例1の1.9倍と優れているものの、90分後の残光輝度特性は比較例1の1.56倍程度となっている。また試料3-(8)および試料3-(9)すなわちバリウムの割合が0.2を超えて0.25以上0.3以下では、相対的にストロンチウムの割合が減少してしまうこともあり、残光輝度が全体的に低下してしまっている。

[0049]

このことより、Mで表す金属元素がストロンチウムおよびバリウムからなる場合、Mに対するバリウムの割合、すなわちB a / (S r + B a) が 0 . 0 3 以上 0 . 2 以下のとき、優れた残光輝度特性をもつ蓄光性蛍光体となることがわかる。

なお、これらのMで表す金属元素がストロンチウムおよびバリウムからなる蓄光性蛍光体の発光波長を調べるため、上記の試料を発光スペクトル測定装置より測定すると、Mで表す金属元素がストロンチウムのみである蓄光性蛍光体と比較して、その発光波長のピークが若干短波長側にシフトしていることがわかった。このため、若干ではあるが、発光色が青みがかった色になっている。

【実施例2】 【0050】

次に、上記一実施の形態の別の実施例として、Mで表す金属元素の構成元素をバリウム (Ba) に変わってカルシウムを用いた例、すなわちMで表す金属元素がストロンチウム (Sr) およびカルシウム (Ca) である場合を説明する。

まず、ストロンチウム (Sr) の原料として炭酸ストロンチウム (SrCO3) 126.89 g (0.8595モル)に、カルシウム (Ca) の原料として炭酸カルシウム (CaCO 3) を9.56g (0.0955モル) 加え、さらに賦活剤としてのユウロピウムの原料とし て酸化ユウロピウム (Eu2O3) を5.28g (Euとして0.03モル) 添加し、共賦活剤 としてのジスプロシウム (Dy) の原料として酸化ジスプロシウム (Dy2O3) を2.80 g (Dyとして0.015モル)添加し、さらにアルミニウム原料としてのアルミナ(A1 203) を117.26g (A1として2.3モル、すなわちAl/(Sr+Ca+Eu+Dy) = 2. 3) 加え、さらにフラックスとしてのホウ素(B) 化合物としてホウ酸(H3BO3)を3.1g(すなわち原料に対して1.2質量%)添加し、ボールミルを用いて充分に 混合する。この混合物を還元雰囲気中として窒素97%-水素3%混合ガス気流中で、1 350℃の焼成温度で4時間焼成を行い、その後室温まで約1時間かけて冷却する。得ら れた焼成物を粉砕し篩分し#250メッシュを通過したものを蓄光性蛍光体の試料4-(5) とした。この試料4-(5) は、ストロンチウムが0.8595モル、カルシウムが 0. 0955モルで、ストロンチウムとカルシウムのモル数の合計0. 955モルに対す るストロンチウムのモル比は 0.9、カルシウムのモル比は 0.1となる。さらに、スト ロンチウム、カルシウム、ユウロピウム、ジスプロシウムのモル数の合計に対するユウロ ピウムの添加量が3モル%、同じくジスプロシウムの添加量が1.5モル%であり、ユウ ロピウムに対するジスプロシウムのモル比、すなわちDy/Euは0.5である。また、 アルミニウムのモル比、すなわちA1/ (Sr+Сa+Eu+Dy) は、化学量論比2. 0を超えた2.3である。

[0051]

同様にして、ストロンチウムとカルシウムの配合比を表10に示すように、Sr:Ca=0.997:0.003~0.8:0.2の範囲で変化させた蓄光性蛍光体を作成し、それぞれ試料4-(1) ないし試料4-(4)、試料4-(6)、試料4-(7) として得た。

【0052】 【表10】

条件	M = S r + C a						
	Eu=3モル%、 $Dy=1$.	E u = 3モル%、D y = 1. 5モル% (対M+Eu+Dy)					
	A 1/(M+E u+D y): 2	. 3					
試料	Sr/(Sr+Ca)	Ca/(Sr+Ca)					
試料4-(1)	0. 997	0.003					
試料4-(2)	0.995	0.005					
	0. 99	0.01					
試料4-(4)	0. 95	0.05					
試料4-(5)	0. 9	0. 1					
試料4-(6)	0.85	0. 15					
試料4-(7)	0.8	0. 2					

次に、これら試料4-(1)ないし試料4-(7)について、試料1-(1)と同様に、低照度条件(4200K蛍光ランプ/541x/60分間)で励起し、残光輝度特性を

調べた。その結果を、前記比較例1の残光輝度を1とした場合の相対輝度として表11に 示す。

【0053】 【表11】

励起条件	FL(4200K)、541x、60分間				
試料	残光輝度特性(相対値、比較例1=1.0として)				
	5分後	10分後	20分後	60分後	90分後
比較例1	1.00	1.00	1.00	1.00	1. 00
試料4-(1)	1.54	1. 42	1. 37	1. 20	1. 12
試料4-(2)	1.64	1. 54	1.38	1. 20	1. 19
試料4-(3)	1.54	1. 48	1.39	1. 23	1. 21
試料4-(4)	1.46	1.46	1.47	1.39	1. 33
	1.38	1. 28	1. 22	1. 12	1. 18
試料4-(6)	1.05	1.00	0.94	0. 91	0.89
試料4-(7)	0.42	0.40	0.36	0.31	0. 29

この表11に示す結果より、試料4-(2)ないし試料4-(5)すなわちカルシウムの割合が0.005ないし0.1において比較例1に比べて、残光輝度特性、特に5分後の初期残光輝度特性が比較例1の1.4倍程度かそれ以上と優れており、なおかつ90分後の残光輝度特性が、比較例1に比べて1.2倍程度かそれ以上と優れていることがわかる。さらに、試料4-(2)(Mに対するカルシウムの割合が0.005)において5分後の残光輝度特性が比較例1の1.64倍とより好まく、また試料4-(4)(Mに対するカルシウムの割合が0.05)において90分後の残光輝度特性が比較例1の1.33倍とより好しい優れた残光輝度特性を有していることがわかる。しかし、試料4-(1)(Mに対するカルシウムの割合が0.003)では、90分後の残光輝度特性が比較例1の1.12倍と、あまり効果がない。また試料4-(6)および試料4-(7)(Mに対するカルシウムの割合が0.15ないし0.2)では、相対的にストロンチウムの割合が減少してしまうこともあり、全体的に残光輝度が低下している。

[0054]

このことより、Mで表す金属元素がストロンチウムおよびカルシウムからなる場合、Mに対するカルシウムの割合、すなわちCa/(Sr+Ca)が0.005以上0.1以下のとき、Mであらわす金属元素がストロンチウムおよびバリウムによる蓄光性蛍光体には及ばずとも、従来の蓄光性蛍光体に比べて優れた残光輝度特性をもつ蓄光性蛍光体となることがわかる。

なお、これらのMで表す金属元素がストロンチウムおよびカルシウムからなる蓄光性蛍 光体の発光波長を調べるため、上記の試料を発光スペクトル測定装置より測定すると、M で表す金属元素がストロンチウムのみである蓄光性蛍光体と比較して、その発光波長のピークが若干長波長側にシフトしていることがわかった。このため、若干ではあるが、発光 色が黄みがかった色になっている。

【実施例3】

[0055]

次に、上記一実施の形態のさらに別の実施例として、Mで表す金属元素がストロンチウム (Sr)、バリウム (Ba) およびカルシウム (Ca) である場合を説明する。

まず、ストロンチウム (Sェ) の原料として炭酸ストロンチウム (SェСО3) 119.84 g (0.81175モル) に、バリウム (Ba) の原料として炭酸バリウム (BaCO3 」を18.85g(0.0955モル)加え、カルシウム(Ca)の原料として炭酸カルシウ ム (CaCO3) を4.78g (0. 04775モル) 加え、さらに賦活剤としてのユウロピ ウムの原料として酸化ユウロピウム(Eu2O3)を5.28g(Euとして0.03モル)添 加し、共賦活剤としてのジスプロシウム(Dy)の原料として酸化ジスプロシウム(Dy $_{2}$ O_{3}) $_{2}$ e_{2} e_{2} e_{3} e_{2} e_{3} e_{2} e_{3} e_{2} e_{3} e_{2} e_{3} e_{3} e_{3} e_{4} e_{3} e_{4} e_{3} e_{4} e_{3} e_{4} e_{3} e_{4} e_{4} e_{4} e_{5} e_{4} e_{5} e_{4} e_{5} $e_$ アルミナ (A 1 2 O3) を117.26g (A 1 として 2.3 モル、すなわちA 1/(Sr+Ba +Ca+Eu+Dy)=2.3) 加え、さらにフラックスとしてのホウ素(B) 化合物と してホウ酸 (H_3BO_3) を 3.2g (すなわち原料に対して 1.2g 量%) 添加し、ボー ルミルを用いて充分に混合する。この混合物を還元雰囲気中として窒素97%-水素3% 混合ガス気流中で、1350℃の焼成温度で4時間焼成を行い、その後室温まで約1時間 かけて冷却する。得られた焼成物を粉砕し篩分し#250メッシュを通過したものを蓄光 性蛍光体の試料 5- (4) とした。この試料 5- (4) は、ストロンチウムが 0. 811 75モル、バリウムが0.0955モル、カルシウムが0.04775で、ストロンチウ ムとバリウムとカルシウムのモル数の合計0.955モルに対するストロンチウムのモル 比は 0. 85、バリウムのモル比は 0. 1、カルシウムのモル比は 0. 05となる。 さら にストロンチウム、バリウム、カルシウム、ユウロピウム、ジスプロシウムのモル数の合 計に対するユウロピウムの添加量が3モル%、同じくジスプロシウムの添加量が1.5モ ル%であり、ユウロピウムに対するジスプロシウムのモル比、すなわちDy/Euは0. 5である。また、アルミニウムのモル比、すなわちA 1 / (Sr+Ba+Ca+Eu+Dy) は、化学量論比2.0を超えた2.3である。

[0056]

同様にして、バリウムを実施例 1 で好適であったMに対するモル比で 0. 1 に固定し、ストロンチウムとカルシウムの配合比を表 1 2 に示すように、C a : 0 0 3 \sim 0 . 2 の範囲で変化させた蓄光性蛍光体を作成し、それぞれ試料 5 - (1) ないし試料 5 - (3) 、および試料 5 - (5) ないし試料 5 - (7) として得た。

【0057】 【表12】

条件	M = S r + B a + C	M = S r + B a + C a				
	Eu=3モル%、D	Eu=3モル%、Dy=1.5モル%(対M+Eu+Dy)				
	A 1 / (M+E u+E	A1/(M+Eu+Dy): 2.3				
 	Sr/(Sr+Ba+Ca)	Ba/(Sr+Ba+Ca)	Ca/(Sr+Ba+Ca)			
武料5-(1)	0.897	0. 1	0.003			
武料5−(2)	0.895	0. 1	0.005			
試料5-(3)	0.89	0. 1	0.01			
武料5-(4)	0.85	0. 1	0.05			
試料5-(5)	0. 8	0. 1	0. 1			
試料5-(6)	0.75	0. 1	0. 15			
試料5-(7)	0. 7	0. 1	0. 2			

次に、これら試料5-(1)ないし試料5-(7)について、試料1-(1)と同様に、低照度条件(4200 K蛍光ランプ/541 x/60 分間)で励起し、残光輝度特性を調べた。その結果を、前記比較例1の残光輝度を1とした場合の相対輝度として表13 に

示す。

【0058】 【表13】

励起条件	FL(4200K)、541x、60分間					
試料	残光輝度特性(相対値、比較例1=1.0として)					
	5分後	10分後	20分後	60分後	90分後	
比較例1	1.00	1.00	1.00	1. 00	1.00	
試料5-(1)	1. 85	1.87	1.90	1.88	1. 92	
試料5-(2)	1. 92	1. 99	1. 95	2. 17	2. 22	
試料5-(3)	1. 92	1.99	1. 99	2. 23	2. 25	
試料5-(4)	1. 92	2.03	2. 17	2. 40	2.40	
武料5-(5)	1. 31	1.38	1. 42	1. 58	1. 58	
試料5-(6)	0.65	0.78	0.77	0.79	0.78	
試料5-(7)	0. 52	0.51	0. 51	0. 51	0.48	

この表13に示す結果より、試料5-(2)ないし試料5-(4)(バリウムの割合が0.1、カルシウムの割合が0.005以上0.05以下、すなわちバリウムとカルシウムの割合の合計は、0.105以上0.15以下)において、比較例1に比べ残光輝度特性、特に5分後の残光輝度特性が比較例1に比べていずれも1.9倍以上とすぐれており、なおかつ90分後の残光輝度特性が比較例1に比べていずれも2倍以上と優れていることがわかる。さらに、試料5-(4)(Mに対するバリウムの割合が0.1、カルシウムの割合が0.05すなわちバリウムとカルシウムの割合の合計は、0.15)において90分後の残光輝度特性が比較例1の2.4倍とより好ましい優れた残光輝度特性を有していることがわかる。しかし、試料5-(1)(Mに対するカルシウムの割合が0.003)では、90分後の残光輝度特性が比較例1に比べて2倍未満となっており、また試料5-(5)ないし試料5-(7)(Mに対するバリウムの割合が0.1、カルシウムの割合が0.1以上0.2以下、すなわちバリウムとカルシウムの割合の合計は、0.2以上0.3以下)では、相対的にストロンチウムの割合が減少してしまう等のため、残光輝度が全体的に低下しており、特に試料5-(6)と試料5-(7)では、比較例1を下回っている。

[0059]

これら試料5-(1)ないし試料5-(7)のほかにも、バリウムおよびカルシウムの配合比を変化させて実験を行ったが、いずれも、バリウムの割合の好適な範囲は、0.03以上0.145以下であり、カルシウムの好適な範囲は0.005以上0.05以下であり、かつバリウムおよびカルシウムの割合の合計の好適な範囲は、0.035以上0.15以下であることが確認された。

このことより、Mで表す金属元素がストロンチウム、バリウムおよびカルシウムからなる場合、Mに対するバリウムの割合、すなわちBa/(Sr+Ba+Ca)が0.03以上0.145以下であり、Mに対するカルシウムの割合、すなわち<math>Ca/(Sr+Ba+Ca)が0.005以上0.05以下であり、かつMに対するバリウムおよびカルシウムの割合の合計、すなわち(<math>Ba+Ca)/(Sr+Ba+Ca)が0.035以上0.15以下のとき、Mであらわす金属元素がストロンチウムおよびバリウムによる蓄光性蛍光体には及ばずとも、優れた残光輝度特性をもつ蓄光性蛍光体となることがわかる。

[0060]

なお、これらのMで表す金属元素がストロンチウム、バリウムおよびカルシウムからなる蓄光性蛍光体の発光波長を調べるため、上記の試料を発光スペクトル測定装置より測定すると、Mで表す金属元素がストロンチウムのみである蓄光性蛍光体と比較して、その発光波長のピークのシフトはあまり見られなかった。このことは、バリウムが存在することで短波長側にシフトする作用と、カルシウムが存在することで長波長側にシフトする作用とが打ち消しあっているためであろうと推察される。これらのことより、Mで表す金属元素をストロンチウム、バリウムおよびカルシウムとすることで、発光波長のシフトを抑え、かつ残光輝度特性の改善された蓄光性蛍光体が得られることがわかった。

【図面の簡単な説明】

[0061]

【図1】試料1-(4)の粒度分布を示した図である。

【図2】試料2-(9)の粉末X線回折図形である。

【図3】試料3-(7)の粉末X線回折図形である。

【書類名】図面 【図1】

【図2】

【書類名】要約書

【課題】 低照度の励起条件でも、従来の同種のアルミン酸ストロンチウム系蓄光性蛍 光体に比べて優れた残光輝度特性を有する蓄光性蛍光体、特に初期の残光輝度特性に優れ 、かつ励起後60分ないしは90分後の残光輝度特性にも優れる。

【解決手段】 下記の蓄光性蛍光体。

- 0. $0.15 < Eu/(Sr+Ba+Eu+Dy) \le 0.05$
- 0. $3 \le D y / E u \le 2$
- 0. $0.3 \le Ba/(Sr+Ba) \le 0.2$
- 1 ≤ A 1 / (S r + B a + E u + D y) ≤ 2. 9
 【選択図】 なし

特願2003-377414

出願人履歴情報

識別番号

[390031808]

1. 変更年月日

1994年 2月15日

[変更理由]

住所変更

住 所

東京都杉並区上荻1丁目15番1号 丸三ビル内

氏 名 根本特殊化学株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
П отнев.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.