

<u>KIIT Deemed to be University</u> Online End Semester Examination(Autumn Semester-2020)

Subject Name & Code: CD, CS 3008

Full Marks=50

Applicable to Courses: B.Tech
Time:2 Hours

SECTION-A(Answer All Questions. Each question carries 2 Marks)
Time:30 Minutes (7×2=14 Marks)

Question	Questi	Question	CO	Answer
No	on		Mapp	Key
	Type		ing	(For
	(MCQ			MCQ
	<u>/SAT)</u>			Questions
				<u>only)</u>
Q.No:1	MCQ	The part of a compiler that validates the derivation of the input	CO1	b
		string from the grammar of the language is,		
		a. Semantic Analysis		
		b. Syntax Analysis		
		c. Data Flow Analysis		
		d. Lexical Analysis		
		The part of compiler that produces a stream of words with their	CO1	d
		syntactic categories from group of characters is,		
		a. Semantic Analysis		
		b. Data Flow Analysis		
		c. Code Optimization		
		d. Lexical Analysis		
		The part of compiler that validates the variables used is consistent	CO1	a
		with their definitions and meaning is,		
		a. Semantic Analysis		
		b. Lexical Analysis		
		c. Code Generation		
		d. Syntax Analysis		
		The part of compiler that tries to transform of IR to IR for	CO1	c
		improving the IR (IR means intermediate representation) is,		
		a. Syntax Analysis		
		b. Intermediate Code Generation		
		c. Code Optimization		
		d. Lexical Analysis		_
<u>Q.No:2</u>	MCQ	Consider the syntax directed translation scheme S -> x{print	CO4	b
		"3"}xW, S -> y{print "2"}, W -> S{print "1"}z. What will get		
		printed during semantic processing of "xxxxyzz" using the above		
		mentioned syntax directed translation scheme?		
		a. 32131 b. 33211 c. 31312 d. 21313		
		Consider the syntax directed translation scheme A -> xB{print	CO4	d
		"a"} x , A -> {print "b"} y , B -> z {print "c"}A. What will get		
		printed during semantic processing of "xzxzyxx" using the above		
		mentioned syntax directed translation scheme?		
		a. bcaca b. acacb c. accba d. ccbaa		

		Consider the syntax directed translation scheme P -> Q{print "2"}xx , P -> y{print "1"}, Q -> {print "3"}Pz. What will get printed during semantic processing of "yzxxzxx" using the above mentioned syntax directed translation scheme? a. 23231 b. 13232 c. 33122 d. 13322	CO4	С
		Consider the syntax directed translation scheme M -> {print "c"}xxN, M -> y{print "a"}, N -> z{print "b"}M. What will get printed during semantic processing of "xxzxxzy" using the above mentioned syntax directed translation scheme? a. cbcba b. ccabb c. acbcb d. cbcba	CO4	a
Q.No:3	MCQ	Consider the expression grammar A->A / X A, X->T-X X * T	CO3	С
<u> </u>	11200	T, T->T+F F, F->a for generating arithmetic expressions over a.	203	
		Which of the following is false?		
		a. + is associative from left		
		b. / is associative from left		
		c is associative from left		
		d. * is associative from left	900	
		Consider the expression grammar E->E / B E, B -> C - B B * C	CO3	a
		C, C->C+D D, D->d for generating arithmetic expressions over d.		
		Which of the following is true? a. + has highest precedence		
		b has highest precedence		
		c. * has highest precedence		
		d. / has highest precedence		
		Consider the expression grammar S-> S / Y S, Y -> Z - Y Y * Z	CO3	С
		Z, Z -> Z+W W, W->b for generating arithmetic expressions over		
		b. Which of the following is false?		
		a. Precedence of / is lesser than -		
		b. Precedence of + is higher than -		
		c. Precedence of / and * are same		
		d. Precedence of - and * are same		
		Consider the expression grammar P -> P / Q P, Q -> R - Q R * Q	CO3	c
		$ R, R \rangle S + R S, S \rangle x$ for generating arithmetic expressions over		
		x. Which of the following is false?		
		a. Operator + is right associative		
		b. Operator - is right associative		
		c. Operator / is right associative d. Operator * is right associative		
Q.No:4	MCQ	Which of the following is a valid optimized code after applying	CO5	c
<u> </u>	MicQ	common sub-expression elimination and copy propagation to the		
		code $\{a = x+y; b = a*z; c = x+y; d = c*z\}$?		
		a. $\{u = x+y; b = u*z; d = u*z\}$		
		b. $\{a = x+y; b = a*z; c = a; d = c*z\}$		
		c. $\{u = x+y; v = u*z; b = v; d = v\}$		
		d. $\{a = x+y; b = a*z; c = a; d = a\}$		
		Which of the following is a valid optimized code after applying	CO5	d
		constant propagation and folding to the code {x=5; y=7; if y==7		
		goto L; $z=x+5$; L: $x=10$ }?		
		a. {x=5; y=7; if y==7 goto L; z=10; L: x=10}		
		b. {x=5; y=7; z=a+5; x=10}		
		c. {x=5; y=7;if y==7 goto L; z=15; L: x=10}		
		d. {x=5; y=7; z=15; x=10}		
		Which of the following is a valid optimized code after applying	CO5	c
		loop invariant code motion to the code {L: i=i+1; t1=a; t2=t1-4;		

		t3=2*t2; t4=4*i; t5=t3+t4; goto L}?		
		a. {t1=a; L: i=i+1; t2=t1-4; t3=2*t2; t4=4*i; t5=t3+t4; goto L}		
		b. {t1=a; t2=t1-4; L: i=i+1; t3=2*t2; t4=4*i; t5=t3+t4; goto L}		
		c. {t1=a; t2=t1-4; t3=2*t2; L: i=i+1; t4=4*i; t5=t3+t4; goto L}		
		d. {t3=2*t2; L: i=i+1; t1=a; t2=t1-4; t4=4*i; t5=t3+t4; goto L}		
		Which of the following is a valid optimized code after applying	CO5	d
		strength reduction to the code {L: i=i+1; t=a; u=t-4; v=2+v; w=4*i;		
		$z=v+w$; goto L}?		
		a. {w=4; L: i=i+1; t=a; u=t-4; v=2+v; z=v+w; goto L}		
		b. {w=4; L: i=i+1; t=a; u=t-4; v=2+v; w=i; z=v+w; goto L}		
		c. {w=4; L: i=i+1; t=a; u=t-4; v=2+v; z=v+w; w=w+1; goto L}		
		d. {w=4; L: i=i+1; t=a; u=t-4; v=2+v; z=v+w; w=w+4; goto L}		
Q.No:5	MCQ	Suppose M is a LL(1) table for the grammar having productions A	CO3	b
<u>V.110.5</u>	MeQ	$ - \rangle XY b \in$. Assuming FIRST(X) ={a,b} and FOLLOW(A) =	003	Ü
		$\{b,c\}$, how many total number of productions are present in		
		M[A,b]?		
		a. 2 b. 3 c. 4 d. 5		
		Suppose N is a LL(1) table for the grammar having productions A	CO3	0
		suppose N is a LL(1) table for the grainfinal having productions A $ \cdot \rangle$ Bx $ y \in A$, B $ \cdot \rangle$ E. Assuming FOLLOW(A) = $\{x, \$\}$, how many	CO3	a
		total number of productions are present in N[A,x]? a. 2 b. 3 c. 4 d. 5		
			CO2	1.
		Suppose P is a LL(1) table having the productions {X -> YaZb, X	CO3	b
		$-> \in$, X -> a) present in P[X,a]. Which of following is not possible		
		for FOLLOW(X)?		
		a. {a,b,\$} b. {c,b,\$} c. {a,c,\$} d.{a,b,c}	000	
		Suppose Q is a LL(1) table having the productions {A -> cMbd, A	CO3	С
		\rightarrow E, A \rightarrow Na} present in Q[A,c]. Which of following sets is valid		
		for FOLLOW(A)?		
		a. {a,b,d} b. {b,d,\$} c. {a,d,c,\$} d. {a,d,\$}	~~ -	
<u>Q.No:6</u>	MCQ	Suppose the address descriptor for x and y contains itself. What will	CO6	b
		be the content of the address descriptor for x and y after generating		
		the machine code for the instruction z=x+y assuming register A is		
		used for x and register B is used for y and z respectively?		
		a. $\{(x,A),(y,B)\}$ b. $\{(x,A),(y)\}$ c. $\{(x),(y,B)\}$ d. $\{(x)(y)\}$		
		Suppose the address descriptor for p and q contains itself. What will	CO6	c
		be the content of the address descriptor for p and q after generating		
		the machine code for the instruction r=p*q assuming register X is		
		used for q and register Y is used for p and r respectively?		
		a. $\{(p,Y),(q,X)\}$ b. $\{(p,Y),(q)\}$ c. $\{(p),(q,X)\}$ d. $\{(p)(q)\}$		
		Suppose the address descriptor for m and n contains itself. What	CO6	a
		will be the content of the address descriptor for m and n after		
		generating the machine code for the instruction t=m-n assuming		
		register R is used for m and register S is used for n and register T		
		used for t respectively?		
		$a.\{(m,R),(n,S)\}$ $b.\{(m,R),(n)\}$ $c.\{(m),(n,S)\}$ $d.\{(m)(n)\}$		
		Suppose the address descriptor for c contains itself and address	CO6	b
		descriptor for d contains d and D respectively. What will be the		
		content of the address descriptor for c and d after generating the		
		machine code for the instruction y=c/d assuming register C is used		
	Ī	for c and register D is used for d and y respectively?		
O.No:7	MCO	$a.\{(c,C),(d,D)\}$ $b.\{(c,C),(d)\}$ $c.\{(c),(d,D)\}$ $d.\{(c)(d)\}$	CO2	a
Q.No:7	MCQ	a. $\{(c,C),(d,D)\}$ b. $\{(c,C),(d)\}$ c. $\{(c),(d,D)\}$ d. $\{(c)(d)\}$ A lexical analyzer uses the pattern $0?(1\mid 2)*1$ and $0?(0\mid 2)*2$ for	CO2	a
Q.No:7	MCQ	a. $\{(c,C),(d,D)\}$ b. $\{(c,C),(d)\}$ c. $\{(c),(d,D)\}$ d. $\{(c)(d)\}$ A lexical analyzer uses the pattern $0?(1\mid 2)*1$ and $0?(0\mid 2)*2$ for recognizing the tokens A and B respectively. What will be the token	CO2	a
Q.No:7	MCQ	a. $\{(c,C),(d,D)\}$ b. $\{(c,C),(d)\}$ c. $\{(c),(d,D)\}$ d. $\{(c)(d)\}$ A lexical analyzer uses the pattern $0?(1\mid 2)*1$ and $0?(0\mid 2)*2$ for	CO2	a

A lexical analyzer uses the pattern 1?(0 2)*0 and 2?(1 0)*1 for	CO2	С
recognizing the tokens C and D respectively. What will be the token		
sequence for the lexeme 20121120?		
a. DCD b. CCD c. DDC d. CDC		
A lexical analyzer uses the pattern $x?(y \mid z)*y$ and $y?(z \mid x)*z$ for	CO2	d
recognizing the tokens M and N respectively. What will be the		
token sequence for the lexeme yzyxxzzy?		
a. NMM b. MMN c. MNN d. MNM		
A lexical analyzer uses the pattern $x?(x \mid z)*y$ and $x?(y \mid x)*z$ for	CO2	c
recognizing the tokens P and Q respectively. What will be the token		
sequence for the lexeme xxyzxyzy?		
a. PQQ b. PQP c. QPP d. QPQ		

SECTION-B(Answer Any Three Questions. Each Question carries 12 Marks)

Time: 1 Hour and 30 Minutes (3×12=36 Marks)

Question No	Question	CO Mapping
		(Each question
		should be from
		the same
		<u>CO(s))</u>
<u>Q.No:8</u>	Suppose a Lexical Analyzer admits the function names as	CO2
	letter followed by one or more occurrence of letters or digits	CO6
	but ending with a letter and also admits the operators $+$, $+$ =,	
	-=, and Design an appropriate regular definition for	
	recognizing function names and the above said operators.	
	Draw a transition diagram (DFA) that matches with the	
	above designed regular definition. Consider a target machine	
	X with two registers R_1 and R_2 that allows the LD, ST, ADD,	
	SUB, MUL machine instructions. Assuming the size of each	
	element of the arrays a and b as 8 bytes generate the target	
	code of the statement $a[k] = b[i] + c * 2$ for the target	
	machine X.	
	Suppose a Lexical Analyzer accepts the variable names as	
	letter or \$ followed by one or more occurrence of letters,	
	digits but ending with a # and also accepts the operators &&,	
	&=, & and =. Design an appropriate regular definition for	
	recognizing variable names and the above said operators.	
	Draw a transition diagram that matches with the above	
	designed regular definition. Consider a target machine M	
	with two registers P_1 and P_2 that allows the LD, ST, ADD,	
	SUB, MUL machine instructions. Assuming the size of each	
	element of the arrays x and y as 4 bytes generate the target	
	code of the expression $\mathbf{n} = \mathbf{x}[\mathbf{k}] * \mathbf{y}[\mathbf{j}] - \mathbf{c}$ for M.	
	Suppose a Lexical Analyzer admits the type names as letter	
	followed by one or more occurrence of letters, digits but	

ending with a digit and the operators $\|$, !=, | and ==. Design an appropriate regular definition for recognizing type names and the above said operators. Draw a transition diagram that matches with the above designed regular definition. Consider a target machine N with two registers C_1 and C_2 that allows the LD, ST, ADD, SUB, MUL machine instructions. Assuming the size each element of the arrays p and r as 8 bytes generate the target code of the expression $\mathbf{r}[\mathbf{k}] = \mathbf{p}[\mathbf{j}] * \mathbf{y} - \mathbf{c}$ for N.

Q.No:9

```
Consider the code, for(i=1; i <= 8; i++) { for(j = 0; j < 8; j++) { if(arr[i][j] > 2) arr[i][j] = 5; }
```

Considering the size of arr as 8X8 and size of each element as 4 bytes, find the three address code for the above code. Find the control flow graph for the above three address code. Represent the three address code of " $\mathbf{x} = \mathbf{a} * \mathbf{y} + \mathbf{b[i]}$ " in quadruple and triple notation.

```
Consider the code,

m=0;

while(m<6)

{

for(n = 1; n <= 6; n++)

{

brr[m][n] = 2;

}

if(m > 1)

m = m+7;

}
```

Assuming the size of brr as 6X6 and size of each element as 8 bytes, find the three address code for the above code. Construct the control flow graph for the above three address code. Represent the three address code of "a[i] = x + b / c" in triple and quadruple notation.

```
Consider the code, q = 1; for (p = 0; p < 7; p++) { while (q <= 7) { if (crr[p][q] < 5) crr[p][q] = 2; q = q + 1; }
```

Assuming the size of crr as 7X7 and size of each element as 4 bytes, find the three address code for the above code. Construct the control flow graph for the above three address code. Represent the three address code of "if ((a+x*y) < b) goto L" in quadruple and triple notation.

CO₅

O No.10	Suppose the first two letters (in upper case) of your first	CO3
Q.No:10	name represented by FF, SF and the last two digits of your	003
	roll number is represented by SD,LD respectively (in case	
	first name is a single letter take the last name into	
	consideration). Further, assume the productions of the	
	grammar have the fixed pattern {FF->SF SF SD, SF->SD SF	
	LD}. Obtain a grammar by replacing the characters and	
	digits of your name and roll number in the above pattern.	
	Construct a SLR(1) parsing table for your grammar. Further,	
	provide the first three states of CLR automaton. Finally,	
	design a DAG for the expression $(p/q+q)*(p-q/p)*(p-q)$.	
	Suppose the first two letters (in upper case) of your first	
	name represented by FF, SF and the last two digits of your	
	roll number is represented by SD,LD respectively (in case	
	first name is a single letter take the last name into	
	consideration). Further, assume the productions of the	
	grammar have the fixed pattern {FF->SF SF SD, SF->SD SF	
	LD}. Obtain a grammar by replacing the characters and	
	digits of your name and roll number in the above pattern.	
	Construct a SLR(1) parsing table for your grammar. Further,	
	provide the first three states of LR(1) automaton. Finally,	
	draw a DAG for the expression $(x*y+x)-(x+y)*(x*y)$.	
	Suppose the first two letters (in upper case) of your first	
	* * * * * * * * * * * * * * * * * * * *	
	name represented by FF, SF and the last two digits of your	
	roll number is represented by SD,LD respectively (in case	
	first name is a single letter take the last name into	
	consideration). Further, assume that the productions of the	
	grammar have the fixed pattern {FF->SF SF SD, SF->SD SF	
	LD}. Obtain a grammar by replacing the characters and	
	digits of your name and roll number in the above pattern.	
	Construct a SLR(1) parsing table for your grammar. Further,	
	provide the first three states of LALR automaton. Finally,	
0.77	draw a DAG for the expression (a-b)*(a*b)+a+a*b.	G0.4
Q.No:11	Consider the following syntax directed definition (SDD)	CO4
	scheme,	
	$S \rightarrow S + A \qquad \{S.v = A.v * S.v\}$	
	$S \rightarrow A$ {S.v = A.v \(^2\)} A \(^2\) A * B {A.v = B.v * 2 + A.v}	
	$A -> A * B$ $\{A.v = B.v * 2 + A.v\}$	
	$A \rightarrow B \qquad \{A.v = B.v + 1\}$	
	$B \rightarrow digit$ { $B.v = digit.lexval$ }	
	where ^ represents the exponentiation operator.	
	A. Draw the parse tree for the string " $x * y + z$ " where x, y,	
	and z are the last three digits of your roll number	
	respectively. For example, for the roll number 1705234 the	
	values of x, y, and z are 2, 3, and 4 respectively.	
	B. Evaluate the above string using the above given SDD.	
	C. Design a grammar to generate the strings of the language	
	$L = \{a^mb^n : m, n > 0\}$. Add semantic actions to your grammar	
	to check whether number of b's is exactly one more than	
	number of a's in any string of L or not.	
	D. Left factor the grammar P -> PqR PQr PQR	
	D. Lett factor the grammar 1 -> 1 qK f QI f QK	

Consider the following syntax directed definition (SDD) scheme,

```
\begin{array}{ll} P -> P * Q & \{P.v = P.v \parallel Q.v\} \\ P -> Q & \{P.v = Q.v + 1\} \\ Q -> Q - R & \{Q.v = Q.v + R.v * 2\} \\ Q -> R & \{Q.v = R.v + 1\} \\ R -> digit & \{R.v = digit.lexval\} \end{array}
```

where || represents the concatenation operator.

A. Draw the parse tree for the string "p - q * r" where p, q, and r are the last three digits of your roll number respectively. For example, for the roll number 1705789 the values of p, q, and r are 7, 8, and 9 respectively.

respectively.

- B. Evaluate the above string using the above given SDD.
- C. Design a grammar to generate the strings of the language $M = \{1^a0^b : a, b > 0\}$. Add semantic actions to your grammar to check whether number of 1's is exactly one less than number of 0's in any string of M or not.
- D. Left factor the grammar $M \rightarrow aBX \mid abB \mid aBY$

Consider the following syntax directed definition (SDD) scheme,

$$\begin{array}{lll} X -> X \ / \ Y & \{X.v = X.v + Y.v\} \\ X -> Y & \{X.v = Y.v * 2\} \\ Y -> Y * Z & \{Y.v = (Y.v \parallel Z.v) + 2\} \\ Y -> Z & \{Y.v = Z.v + 2\} \\ Z -> digit & \{Z.v = digit.lexval\} \end{array}$$

where || represents the concatenation operator.

- A. Draw the parse tree for the string "a / b * c" where a, b, and c are the last three digits of your roll number respectively. For example, for the roll number 1705567 the values of a, b, and c are 5, 6, and 7 respectively.
- B. Evaluate the above string using the above given SDD.
- C. Design a grammar to generate the strings of the language $P = \{x^cy^d : c, d > 0\}$. Add semantic actions to your grammar to check whether number of y's is same as number of x's in any string of P or not.
- D. Left factor the grammar A -> BXy | BBc | BXz