3 – Conceitos de análise de circuitos na prática

Objectivos – Montagem e estudo de circuitos em DC. Utilização de duas fontes de tensão. Demonstração prática do Princípio da Sobreposição e do Teorema de Thévenin.

3.1 – Circuito com tensões simétricas

Monte o circuito da fig. 3.1. As duas fontes de tensão são obtidas da fonte de alimentação da sua bancada: V_{SI} do lado *master* e V_{S2} do lado *slave*. Configurando as secções *master* e *slave* da fonte de alimentação em série (modo SERIES: botão da esquerda para dentro; botão da direita para fora), liga internamente as duas fontes em série, tal como estão no esquema. Neste modo o controlo do valor da tensão de ambas as fontes é feito pela fonte *master* (as tensões obtidas são sempre de valor simétrico).

- a) Meça com o multímetro a tensão nodal V_1 .
- **b)** Confirme teoricamente o valor obtido em *a*).

Fig. 3.1

3.2 - Princípio da Sobreposição

Monte o circuito da fig. 3.2. Note que aqui as fontes de tensão V_{SI} e V_{S2} são independentes. Deve pois configurar a fonte de alimentação da bancada neste modo (modo INDEP: ambos os botões para fora).

- a) Obtenha indirectamente as correntes I_1 e I_2 , por medição das tensões nas resistências de 820Ω e 680Ω , respectivamente.
- b) Obtenha novamente os valores de I_1 e I_2 mas usando agora, experimentalmente, o Principio da Sobreposição (ou seja, efectuando as medições da alinea a), mas mantendo activa uma fonte de cada vez).

Fig. 3.2

3.3 – Divisor de tensão e equivalente de Thévenin

A fig. 3.3-a) ilustra um dos circuitos mais simples mas também mais ubíquos em electrónica: o divisor de tensão. É usado sobretudo quando, a partir duma tensão de alimentação V_S , precisamos de obter uma tensão diferente, V_o (mais baixa). Se usarmos mais do que duas resistências podemos obter mais tensões a partir da tensão V_S . Com uma resistência variável (um potenciómetro – fig. 3.3-b) podemos gerar qualquer valor de tensão entre θV e o valor de V_S .

- a) Considerando o circuito da fig. 3.3-a) com $V_S = 15V$ e $R_I = 3.3k\Omega$ calcule R_2 para que o valor de V_o seja o mais próximo possível de 8.8V. Depois, monte o circuito e verifique o resultado obtido.
- b) Suponha que o divisor de tensão que montou se destina a fornecer a tensão V_o a um outro circuito cuja entrada se pode representar, para efeitos de teste, por uma resistência, tal como ilustrado na fig. 3.4.

Para perceber como se irá comportar o seu divisor de tensão quando ligado ao tal circuito, ligue no nó V_o uma resistência $R_i = 10k\Omega$. O que aconteceu ao valor de V_o ? Qual é o seu novo valor? Meça também o valor de V_o para $R_i = 2.2k\Omega$.

- Fig. 3.3
- c) Uma maneira fácil de perceber o comportamento observado do divisor de tensão, e até de prever o valor de V_o para qualquer valor de resistência de carga (R_i) , é através do **equivalente de Thévenin**. Usando o que aprendeu nas aulas teóricas, determine o equivalente de Thévenin do divisor de tensão.
- d) O equivalente de Thévenin também pode ser determinado experimentalmente usando a tensão em circuito aberto que mediu em a) $(V_{oc} = V_{TH})$, e depois medindo a corrente de curto-circuito, I_{sc} , na saída. Para isso ligue o múltimetro, configurado em modo amperímetro, entre a saída do divisor de tensão e a massa⁴. O valor da resistência de Thévenin, R_{TH} , será dado por V_{oc}/I_{sc} .

⁴ Note que este procedimento só é recomendável na prática quando os valores esperados para a corrente de curtocircuito são baixos, como acontece no caso presente.