پنجشنبه، 30 دی 1400، 1:49 عصر	شروع
پایانیافته	وضعيت
پنجشنبه، 30 دی 1400، 5:19 عصر	پایان
3 ساعت 30 دقیقه	زمان صرف شده

سیگنال x(t) با ضابطهٔ زیر را در نظر بگیرید:

 $x(t) = \begin{cases} \frac{t+2}{4}, & |t| \le 1\\ 0, & |t| > 1 \end{cases}$

الف) $X(j\omega)$ را با استفاده از جداول تبدیل فوریه و خواص آن، محاسبه کرده و به سادهترین شکل بنویسید.

ب) بخش حقیقی $X(j\omega)$ را به دست آورده و نشان دهید که همان تبدیل فوریهٔ بخش زوج سیگنال x(t) است. ج) تبدیل فوریهٔ بخش فرد سیگنال x(t) را بیابید.

سؤال 1 كامل نمره از 4.00 سیگنال x(t) به صورت زیر از یک سیستم با پاسخ ضربه h(t) عبور می کند. طیف سیگنال ورودی و خروجی و پاسخ فر کانسی سیستم را بدست آورید و رسم نمایید.

$$x(t) = \sum_{k=-10}^{10} e^{j3kt}$$

$$h(t) = \frac{2j}{\pi t} \sin(5t) \sin(12t)$$

سؤال 2 كامل نمره از 3.00

_____ سوال ۲ سیگنال.pdf

سؤال 3 كامل نمره از 3.00

برای یک سیستم LTI زمان گسستهٔ پایدار با ورودی
$$x[n]$$
 و خروجی $y[n]$ تابع سیستم زیر داده شده است:
$$H(z)=\frac{1-z^{-1}}{1-\frac{17}{6}z^{-1}-\frac{3}{2}z^{-2}}$$

الف) معادلة تفاضلي توصيف كنندة رفتار اين سيستم را بنويسيد.

- ب) صفرها و قطبهای این سیستم را تعیین کنید.
- ج) پاسخ سیستم به ورودی x[n]=u[n] را به دست آورید.
- د) پاسخ سیستم به ورودی $x[n] = \cos(\frac{\pi n}{2})$ را به ساده ترین شکل ممکن حقیقی بنویسید.

سؤال 4 كامل نمره از 3.00

ضرایب سری فوریه سیگنال متناوب و زمان گسسته x[n] با دوره تناوب x را با استفاده از خواص و سیگنالهای شناخته شده بدست آورید.

$$x[n] = \begin{cases} \cos\left(\frac{n\pi}{3}\right), & 0 \le n \le 2\\ 0, & 3 \le n \le 5 \end{cases}$$

سوال ۴ سیگنال.pdf

. الف) با فرض x[n] x[n] را محاسبه کنید، $X(e^{j\omega})=2cos^2(\omega)+sin^2(3\omega)$ را محاسبه کنید

ب) با فرض $Yig(e^{j\omega}ig)$ را محاسبه کنید. $y[n]=(n-1)(rac{1}{3})^{|n|}$ با فرض

سوال ۵ سیگنال.pdf

سؤال 5 كامل نمره از 4.00

سؤال 6 كامل نمره از 3.00

الف) اگر بزرگترین فرکانس سیگنال x(t) برابر ω_M باشد، برای ذخیره صحیح سیگنال x(t) به صورت دیجیتال، فواصل نمونهبرداری با قطار ضربه در چه محدودهای باید واقع شوند؟

ب) سیگنال x(t) با طیف فر کانسی $X(j\omega)$ زیر، با قطار ضربهٔ x(t) با طیف فر کانسی $y(t)=\sum_{k=-\infty}^{+\infty}\delta(t-6k)$ نمایید. $y(t)=\sum_{k=-\infty}^{+\infty}\delta(t-6k)$ به نمایید. y(t) با طیف بر کانس قطع y(t) و نیلتر پایین گذر y(t) را در این سیستم تعیین نمایید.

