Pipeline Architecture for Crypto Liquidity Prediction

Generated by Avinesh Masih – View on GitHub: AVINESH MASIH

1. Data Ingestion

Source: CSV (<u>Dataset</u>)

Tools: pandas, requests, SQLAlchemy

Output: Raw data frame

2. Data Preprocessing

- Handling missing values
- Outlier detection and removal
- Feature engineering:
 - volatility = abs(returns)
- Scaling (if required)
- Tools: pandas, numpy, scikit-learn

3. Feature Selection

- Select key numerical features:
 - o price, market_cap, volume_24h, returns, volatility
- Optional: correlation analysis or feature importance

4. Model Training

- Model used: Random Forest Regressor (or XGBoost, Linear Regression)
- Training pipeline:
 - train_test_split
 - model.fit(X_train, y_train)
- Tools: scikit-learn, joblib (for model saving)

5. Model Evaluation

- Metrics: RMSE, MAE, R² score
- Validation: Cross-validation (e.g., KFold)

• Save best model using joblib.dump()

6. Model Deployment

- **Deployment Framework**: Streamlit
- Frontend UI: User inputs price, volume, market cap, returns
- Backend: Loads model, makes predictions
- Bonus: Add author info, social links, hover effects, and branding

Technologies Used

Component	Tool
Data Processing	pandas, numpy
Modeling	scikit-learn, joblib
Deployment	Streamlit
Visualization	Matplotlib / Seaborn (for EDA)

Diagram Overview

