Universidade Federal do Paraná Setor de Ciências Sociais Aplicadas Departamento de Economia SE620 – Economia do Setor Público

Prof. Dr. Victor Oliveira

EXERCÍCIOS

1) Considere uma economia com dois consumidores, B e J. Existe um bem público nesta economia na forma de sirenes de enchente. A demanda de B por sirenes é dada por P=10-Q, e a demanda de J por sirenes é P=8-2Q. O custo marginal para fornecer sirenes é constante, CMg=9. Quantas sirenes serão fornecidas no mercado?

Solução

3 sirenes.

2) Considere uma economia com vários consumidores e ofertantes. Essa população vive em uma área com histórico de poluição. Há empresas especializadas em vender medidores de poluição. A população é muito preocupada com esse problema e tem uma demanda por medidores de poluição de Q=50-0,5P. As empresas operam em concorrência perfeita, em que o custo marginal para fornecer medidores é constante e igual a CMg=8. Quantos medidores de poluição serão fornecidas no mercado?

Solução

46 medidores de poluição.

3) Suponha que haja n consumidores idênticos indexados por $i=1,\ldots,N$. Todos os consumidores têm a mesma função de utilidade:

$$U_i = \log(x_i) + \log(G)$$

em que x_i é o consumo de um bem privado pelo indivíduo i e G é um bem público puro. Cada consumidor possui renda igual a 1. Seja 1 o preço unitário do bem privado, de modo que a restrição orçamentária de cada consumidor possa ser escrita como:

em que g_i é a contribuição individual para o bem público. A quantidade total disponível do bem público é a soma das contribuições individuais, ou seja:

$$G = \sum_{i=1}^{N} g_i$$

a) Calcule G^d , a provisão de equilíbrio do bem público quando os indivíduos tomam decisões descentralizadas.

Solução

$$G^d = Ng = \frac{N}{N+1}$$

b) Calcule G^o , a provisão ótima de bem público quando um planejador social escolhe o nível de bem público.

Solução

$$G^o = \frac{N}{2}$$

c) Qual o efeito de N sobre G^d e G^o ?

Solução

À medida que N aumenta, a diferença entre G^o e G^d aumenta. Calcule as derivadas!

d) Um governo aparece repentinamente nesta economia. É dotado da capacidade de aumentar um imposto fixo t para cada indivíduo e usa a receita total dos impostos T=Nt para produzir algum bem público na quantidade \overline{G} usando a seguinte tecnologia:

$$\overline{G} = \alpha \sum_{i=1}^{N} t = \alpha T$$

com $\alpha > 0$. Consequentemente, a restrição orçamentária de cada indivíduo agora é $x_i + g_i \leq 1 - t$. A quantidade total disponível do bem público é agora a soma das contribuições individuais e a quantidade fornecida publicamente, ou seja:

$$G = \sum_{i=1}^{N} g_i + \overline{G}$$

Calcule $G^{d'}$, a provisão de bem público de equilíbrio apenas por indivíduos privados, quando os indivíduos tomam decisões descentralizadas sob esse novo cenário, ou seja, os indivíduos pagam o imposto t e consideram \overline{G} como dado.

Solução

$$G^{d'} = Ng = \frac{N}{N+1} - \frac{N}{N+1}(\alpha N + 1)t = \frac{N}{N+1}(1 - t\alpha N - t)$$

e) Calcular G^g , a provisão para bens públicos em equilíbrio total, ou seja, a soma das contribuições individuais, $G^{d'}$, e a quantidade fornecida publicamente, \overline{G} .

Solução

$$G^g = \frac{N}{N+1}(1 - t\alpha N - t + \alpha(N+1)t)$$

- f) Discuta se o governo deve se engajar na provisão do bem público dependendo do valor de α .
- 4) Considere uma sociedade composta por três indivíduos indexados por A, B e C. Seja $G \in [0, +\infty[$ o número de horas de transmissão televisiva por dia. A transmissão televisiva é financiada através de um imposto compartilhado igualmente entre indivíduos, ou seja, se G é fornecido, cada indivíduo deve pagar G/3. Suponha que os indivíduos tenham a seguinte função de utilidade sobre G:

$$U_A = G$$

$$U_B = 2 - G$$

$$U_C = \frac{4}{3}G - \frac{G^2}{2}$$

a) Mostre que os três indivíduos têm preferências de pico único.

Solução

Calcule a derivada de cada utilidade em relação a G e note que só há uma solução.

b) Se o governo está escolhendo G no intervalo de $0 \le G \le 2$, qual é o resultado da votação majoritária G?

Solução

$$G=1$$

c) O resultado da votação majoritária maximiza o bem-estar social? Comente.

Solução

A função de bem-estar social agregada pode ser escrita como $W=U_A+U_B+U_B-G$ e decorre que $G=\frac{1}{3}$

5) Uma cidade tem 1000 habitantes, os quais consomem apenas um bem privado: cervejas. Será construído nessa cidade um bem público: uma praça. Suponha que todos os habitantes tenham a mesma função de utilidade $U(X_i, G) = X_i - \frac{10}{G}$, em que X_i é a quantidade de cervejas consumidas e G é o tamanho da praça em m^2 . Suponha que o preço da cerveja por garrafa seja 1 e o

preço do metro quadrado construído da praça seja 100. Qual o valor de G é Pareto-eficiente?

Solução

$$G^* = 10$$

6) Suponha que existem dois agentes e que existe um bem público e um bem privado, ambos disponíveis em quantidades contínuas. A provisão do bem público é dada por $G = g_1 + g_2$, em que g_i é a contribuição do agente i = 1, 2 para a provisão do bem público. A utilidade do agente 1 é $u_1(G, x_1) = 3\sqrt{G} + x_1$ e a utilidade do agente 2 é $u_2(G, x_2) = 5\sqrt{G} + x_2$, em que x_i é o consumo do bem privado pelo agente i. Determine o nível de G^* de provisão eficiente do bem público.

Solução

$$G^* = 16$$

7) Considere o problema de provisão eficiente de um bem público contínuo com dois consumidores. Seja u_i(γ, x_i) = ln(γ) + (¹/2) x_i a utilidade do consumidor i sobre o bem público e o bem privado, em que γ é a quantidade do bem público e x_i a quantidade do bem privado consumido pelo consumidor i, para i = 1,2. A produção do bem público depende das contribuições g₁ e g₂ dos consumidores 1 e 2, respectivamente, e é dada pela função de produção γ = ln(g₁ + g₂). Cada consumidor possui uma dotação inicial de 2 unidades do bem privado. Calcule a quantidade eficiente do bem público que deve ser produzida de forma descentralizada e quando o governo decide o nível do bem público.

Solução

$$\gamma = \frac{\omega_1 + \omega_2}{p_\gamma (1 + x_1 + x_2)}$$

8) Considere uma economia com n indivíduos, com uma dotação inicial de bens de w_i e cuja utilidade é dada pelo seu consumo de bens, x_i , e do volume de um bem público G, que é igual a soma das contribuições de cada um dos indivíduos, $G = \sum_{i=1}^{n} g_i$. A utilidade de cada um dos indivíduos é dada por $u_i = x_i + a_i \ln G$, em que $a_i > 1$. Suponha que na determinação de sua escolha de contribuição, o indivíduo assuma que os demais agentes não alterarão sua contribuição em resposta. Calcule a provisão ótima do bem público. Qual agente contribuirá com um valor positivo?

Solução

$$G = a_i$$

9) Considere dois consumidores com as seguintes funções de demanda por bens públicos:

$$p_1 = 10 - \frac{1}{10}G$$
$$p_2 = 20 - \frac{1}{10}G$$

em que p_i é o preço que o indivíduo i está disposto a pagar pela quantidade G.

a) Qual é o nível ótimo do bem público se o custo marginal do bem público for de 25?

Solução

G = 25

b) Suponha que o custo marginal do bem público seja de 5. Qual é o nível ideal?

Solução

G = 125

c) Suponha que o custo marginal do bem público seja de 40. Qual é o nível ideal? Os consumidores devem fazer uma declaração honesta de suas funções de demanda?

Solução

G = 0

10) Considere três consumidores com as seguintes funções de demanda por bens públicos:

$$p_1 = 50 - G$$

$$p_2 = 110 - G$$

$$p_3 = 150 - G$$

em que p_i é o preço que o indivíduo i está disposto a pagar pela quantidade G.

a) Qual é o nível ótimo do bem público se o custo marginal do bem público for de 190? Ilustre sua resposta graficamente.

Solução

G = 140

b) Explique por que o bem público pode não ser fornecido por causa do problema do free-rider.

11) Considere três consumidores (i=1,2,3) que se preocupam com o consumo de um bem privado e o consumo de um bem público. Suas funções de utilidade são, respectivamente, $u_1=x_1G$, $u_2=x_2G$ e $u_3=x_3G$, em que x_i é o consumo do bem privado e G é a quantidade de bem público consumida em conjunto por todos eles. O custo unitário do bem privado é de 1 e o custo unitário do bem público é de 10. Os níveis de riqueza individuais são $w_1=30$, $w_2=50$ e $w_3=20$. Determine a alocação de equilíbrio se o bem público for financiado por meio das contribuições voluntárias dos indivíduos g_1 , g_2 e g_3 .

Solução

$$G = \frac{11}{4}$$

12) Considere uma população de consumidores. Quando um consumidor é membro de um clube que fornece um nível de provisão G e possui n membros, obtém utilidade

$$U = M - \frac{G}{n} + \log(G) - \frac{n}{k}$$

em que k é uma constante positiva e $\frac{G}{n}$ é a taxa de associação ao clube.

a) Qual o tamanho do clube maximiza a utilidade total produzida pelo clube?

Solução

$$n = \sqrt{Gk}$$

b) Qual o nível ótimo de fornecimento do bem público? Como essa nível varia com o tamanho do clube?

Solução

$$G = n$$

Calcule a derivada para a segunda parte da resposta.

13) Seja $U = 40n - 2n^2$ a função de utilidade dos membros de um clube. Encontre o tamanho ideal do clube.

Solução

$$n = 10$$

14) Suponha que os consumidores tenham renda M e preferências representadas por

$$U = x + 5\log G - n$$

Também suponha que a função de custo da produção privada do bem público seja C(G)=G.

a) Mostre que utilidade dos membros do clube é maximizada quando n=5 com nível de provisão G=25.

Solução

Calcule as derivadas em relação a n e G e resolva numericamente.

b) Prove que, se G é escolhido de forma ideal, dado n, a utilidade em função de n pode ser escrita como $U = M + 10 \log(n) - 2n$.

Solução

Substitua a expressão do G ótimo na função de utilidade e manipule algebricamente.

c) Usando a função de utilidade do item acima, calcule o número de clubes se a população total for N=18. Arredonde o número.

Solução

O número ótimo de clubes seria 5 com 4 membros cada.

- 15) Considere três consumidores (i=1,2,3) que se preocupam com o consumo de um bem privado e o consumo de um bem público. Suas funções de utilidade são, respectivamente, $u_1=x_1G$, $u_2=x_2G$ e $u_3=x_3G$, em que x_i é o consumo do bem privado e G é a quantidade de bem público consumida em conjunto por todos eles. O custo unitário do bem privado é de 1 e o custo unitário do bem público é de 1. Os níveis de riqueza individuais em são $w_1=1$, $w_2=1$ e $w_3=1$.
 - a) Determine as alocações de equilíbrio se o bem público é financiado pelas contribuições de cada indivíduo, isto é, g_1 , g_2 e g_3 .

Solução

$$g_1 = g_2 = g_3 = \frac{1}{4}$$

b) Mostre que a alocação eficiente é tal que $G = \frac{3}{2}$.

Solução

Use a Regra de Samuelson.

c) Verifique rapidamente se a alocação eficiente é Pareto superior em relação à obtida graças a contribuições voluntárias. Explique por que elas diferem.

Solução

Pode provar por meio de um exemplo simples.

d) Suponha que o governo seja capaz de excluir indivíduos do consumo do bem público. Isso implica que agora é possível permitir que cada indivíduo pague um preço unitário p para obter acesso à quantidade

total disponível do bem público. Determine p que permita alcançar a alocação eficiente.

Solução

$$p = \frac{1}{3}$$

e) Qual o gasto do indivíduo no consumo do bem público se o mesmo for provisionado pelo planejador central?

Solução

$$p = \frac{1}{2}$$

16) Considere que as preferências de dois agentes possam ser representadas pelas seguintes funções de utilidade, respectivamente:

$$U_1(x_1, z_1) = 2 \ln x_1 + \ln z_1$$

$$U_2(x_2, z_2) = \ln x_2 + 2 \ln z_2$$

em que x_i é o consumo do bem privado e z_i é o consumo do bem público.

a) Encontre os preços de Lindhal.

Solução

Sendo
$$M$$
 a renda, temos que $p_z^1 = \frac{M_1}{3Z}$ e $p_z^2 = \frac{2M_2}{3Z}$

b) Suponha que a fronteira de possibilidade de produção Z+X=120. De acordo com o esquema de Lindhal, qual é o nível ótimo de fornecimento do bem público Z?

$$Z = \frac{M_1}{3} + \frac{2M_2}{2}$$

c) Se a renda do indivíduo 1 é $w_1 = 90$ e a do indivíduo 2 é $w_2 = 30$, quais são os preços de Lindhal e qual é o nível ótimo de fornecimento do bem público \mathbb{Z} ?

Solução

$$p_z^1 = 0,6 \text{ e } p_z^2 = 0,4.$$

17) Considere que as preferências de dois agentes possam ser representadas pelas seguintes funções de utilidade, respectivamente:

$$U_1(x_1, G) = \ln x_1 + \left(\frac{\eta_1}{1 - \eta_1}\right) \ln G$$

$$U_2(x_2, G) = \ln x_2 + \left(\frac{\eta_2}{1 - \eta_2}\right) \ln G$$

em que x_i é o consumo do bem privado e G é o consumo do bem público. Encontre os preços de Lindhal e a provisão ótima de fornecimento do bem público nessa abordagem.

Solução

Temos que
$$p_G^1 = \frac{\eta_1}{2\eta_1 - 1} \frac{M_1}{G}$$
 e $p_G^2 = \frac{\eta_2}{2\eta_2 - 1} \frac{M_2}{G}$. E $G = M_1 \left(\frac{\eta_1}{2\eta_1 - 1}\right) + M_2 \left(\frac{\eta_2}{2\eta_2 - 1}\right)$.

18) Suponha que haja dois consumidores indexados por i=1,2. Os consumidores têm a seguinte função de utilidade:

$$U^{1} = \alpha_{1} \log x_{1} + (1 - \alpha_{1}) \log G$$

$$U^{2} = \alpha_{2} \log x_{2} + (1 - \alpha_{2}) \log G$$

em que x é o consumo de um bem privado pelo indivíduo i, G é um bem público puro e $\alpha_1 > 0$, $\alpha_2 > 0$. Cada consumidor possui renda igual a 1. Seja 1 o preço unitário do bem privado, de modo que a restrição orçamentária de cada consumidor possa ser escrita como:

$$x_i + g_i \le 1$$

em que g_i é a contribuição individual para o bem público. A quantidade total disponível do bem público é a soma das contribuições individuais, ou seja:

$$G = \sum_{i=1}^{N} g_i$$

Calcule G^d , a provisão de equilíbrio do bem público quando os indivíduos tomam decisões descentralizadas. É necessário impor condições adicionais sobre os parâmetros?

Solução

Temos que $g_1=\frac{1+\alpha_1\alpha_2-2\alpha_1}{1-\alpha_1\alpha_2}$ e $g_1=\frac{1+\alpha_1\alpha_2-2\alpha_2}{1-\alpha_1\alpha_2}$. É necessário impor condições adicionais.

19) Existem cinco proprietários: $N=\{1,2,3,4,5\}$. Suas funções de utilidade são todas da forma $u(x,y_i)=y_i-\frac{1}{2}(\alpha_i-x)^2$, em que x indica o nível em que um bem público é fornecido e y_i indica a quantidade de dinheiro que o

proprietário da casa tem disponível para gastar em outros bens. Os valores de seus parâmetros de preferência α_i são $\alpha_1=30,\ \alpha_2=27,\ \alpha_3=24,\ \alpha_4=21$ e $\alpha_5=18$. Todas as empresas que produzem o bem público cobram um preço unitário de p reais; p é, portanto, o custo marginal para os proprietários de cada unidade de x. Suponha que p=40.

a) Qual a provisão ótima do bem público?

Solução

x = 16

b) Quais consumidores irão adquirir o bem público?

Solução

Nenhum consumidor.

c) Suponha que o preço agora é p=20. Quais consumidores irão adquirir o bem público?

Solução

Consumidores 1, 2, 3 e 4.

20) Assuma que d denote uma decisão pública: $d \in \{0,1\}$ (se um poste for construído d=1; caso contrário, d=0). O custo total é cd. Seja c=1. Existem dois jogadores, n=2. Os jogadores têm a mesma avaliação (disposição para pagar) pelo bem público,

$$\theta_1 = \theta_2 = \frac{2}{3}$$

O jogador i contribui com g_i e sua recompensa é

$$u_i = \begin{cases} \theta_i - g_i & \text{se } d = 1\\ 0 & \text{se } d = 0 \end{cases}$$

Suponha que a regra de decisão pública seja d=1 se e somente se $\sum g_i \geq c$. Suponha que as contribuições sejam escolhidas em um conjunto discreto, a saber

$$g_i \in \left\{0, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}\right\}$$

a) Represente o jogo na forma normal, isto é, escreva a matriz de payoffs.

Solução

A matriz de payoffs será

	0	$^{1}/_{3}$	$^{1}/_{2}$	2/3
0	(0,0)	(0,0)	(0,0)	(0,0)
$1/_{3}$	(0,0)	(0,0)	(0,0)	(1/3,0)
$1/_{2}$	(0,0)	(0,0)	(1/6, 1/6)	(1/6,0)
$^{2}/_{3}$	(0,0)	(0, 1/3)	(0, 1/6)	(0,0)

b) Encontre os equilíbrios de Nash em estratégias puras.

Solução

(1/6, 1/6)

- 21) Suponha que cinco proprietários morem às margens da Lagoa dos Patos: Ana, Betania, Catarina, Diana e Eliane. Para lidar com problemas de bens públicos, como decidir o nível da água no lago e como controlar os mosquitos no verão, eles formaram uma associação de proprietários. A função de utilidade de cada proprietário é da forma: $u(x,y_i)=y_i-\frac{1}{2}(\alpha_i-x)^2$, em que x indica o número de tanques de spray de mosquito que são pulverizados a cada semana durante o verão, e y_i indica a quantidade de dinheiro que o proprietário tem disponível para gastar em outros bens privados. Os valores de seus parâmetros de preferência α_i são $\alpha_1=30,\ \alpha_2=27,\ \alpha_3=24,\ \alpha_4=21$ e $\alpha_5=18$. Existem várias empresas locais que pulverizarão para controlar os mosquitos. Todas as empresas cobram o mesmo preço p=40 por tanque que utilizam na pulverização.
 - a) Quanto spray será comprado?

Solução

x = 16

b) Suponha que os proprietários decidam que, em vez de cada um deles comprar repelente de insetos separadamente e cada um pagar R\$ 40 por tanque, a associação cobrará de cada um deles apenas uma parte do preço de R\$ 40: cada proprietário pagará a parcela do preço (ou imposto por unidade) p_i para cada unidade que a associação compra, com $\sum p_i = 40$, tal que seja igual a sua TMS. Qual o valor pago individualmente?

Solução

Cada indivíduo pagará um preço igual a sua taxa marginal de substituição. Calcule!

22) Ana, Bete e Carla se preocupam apenas com o consumo de eletricidade e um conjunto de bens agregados. Além disso, Ana deseja consumir eletricidade apenas pela manhã, Bete deseja consumir eletricidade somente à tarde, e Carla deseja consumir eletricidade somente à noite. Suas taxas marginais de substituição entre o bem composto e o consumo de eletricidade são dadas pelas expressões

$$TMS_A = 10 - x_A$$
 $TMS_B = 8 - x_B$ $TMS_C = 6 - x_C$

em que x_i indica o número de unidades de eletricidade que i consome (apenas na hora do dia preferida). A eletricidade é produzida por uma tecnologia com retorno constante de escala: 18 unidades do bem composto produzirão uma unidade de eletricidade durante o dia e a noite - ou seja, manhã, tarde e noite são produtos conjuntos e produzem uma unidade a qualquer hora do dia. O consumo de eletricidade de cada pessoa é monitorado por um medidor de energia.

a) Determine o nível ótimo de produção e a alocação ótima de Pareto de eletricidade.

Solução

x = 2

b) Suponha que a eletricidade seja produzida pela cidade. A cidade deseja cobrar preços diferentes em diferentes horários do dia para maximizar o bem-estar do consumidor. Obviamente, a cidade também terá que cobrir o custo de produção. Quais os preços que deve cobrar a cada hora do dia? Explique como se pode dizer que esses preços maximizam o bem-estar.

Solução

Os preços de Lindhal são $p_A = 8$, $p_B = 6$, $p_C = 4$