Notation

1D Gaussian PDF:
$$f(x) = \mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Standard normal distribution

$$\mathcal{N}(x|0,1) = \mathcal{N}(0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

$$\int_{-\infty}^{\infty} \mathcal{N}(x|\mu,\sigma^2) dx = 1$$

1D Gaussian Mixture Model

Mixture of two 1D Gaussians

$$f(x) = \pi_1 \mathcal{N}(x|\mu_1, \sigma_1^2) + \pi_2 \mathcal{N}(x|\mu_2, \sigma_2^2)$$

 $https://angusturner.github.io/generative_models/2017/11/03/pytorch-gaussian-mixture-model.html. Angusturner.github.io/generative_models/2017/11/03/pytorch-gaussian-mixture-model.html. Angusturner.github.io/generative_models/2017/11/03/pytorch-gaussian-mixture-model.html. Angusturner.github.io/generative_models/2017/11/03/pytorch-gaussian-mixture-model.html. Angusturner.github.io/generative_models/2017/11/03/pytorch-gaussian-mixture-model.html. Angusturner.github.io/generative_models/2017/11/03/pytorch-gaussian-mixture-model.html. Angusturner.github.io/generative_models/2017/11/03/pytorch-gaussian-mixture-model.html. Angusturner.github.io/generative_models/2017/11/03/pytorch-gaussian-mixture-model.html. Angusturner.github.io/generative_models/2017/11/03/pytorch-gaussian-mixture-model.html. Angusturner.github.io/generative_models/2017/11/03/pytorch-gaussian-mixture-model.html. Angusturner.github.git$

A Property of PDF:
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{\infty} \left[\boldsymbol{\pi}_{1} \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_{1}, \boldsymbol{\sigma}_{1}^{2}) + \boldsymbol{\pi}_{2} \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_{2}, \boldsymbol{\sigma}_{2}^{2}) \right] dx$$

$$= \boldsymbol{\pi}_{1} \int_{-\infty}^{\infty} \left[\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_{1}, \boldsymbol{\sigma}_{1}^{2}) \right] dx + \boldsymbol{\pi}_{2} \int_{-\infty}^{\infty} \left[\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_{2}, \boldsymbol{\sigma}_{2}^{2}) \right] dx$$

$$= \boldsymbol{\pi}_{1} + \boldsymbol{\pi}_{2}$$

What is $\gamma_{(n,k)}$ when there are two Gaussians in a GMM?

$$\gamma_{(n,1)} = \frac{\pi_1 \mathcal{N}(x_n | \mu_1, \sigma_1^2)}{\pi_1 \mathcal{N}(x_n | \mu_1, \sigma_1^2) + \pi_2 \mathcal{N}(x_n | \mu_2, \sigma_2^2)}$$

$$\gamma_{(n,2)} = \frac{\pi_2 \mathcal{N}(x_n | \mu_2, \sigma_2^2)}{\pi_1 \mathcal{N}(x_n | \mu_1, \sigma_1^2) + \pi_2 \mathcal{N}(x_n | \mu_2, \sigma_2^2)}$$

$$\gamma_{(n,1)} + \gamma_{(n,2)} = 1$$

What are the E-step and M-step for this 1D GMM?

• E-step:

Given π_1 , $\pi_2 \mu_1$, σ_1^2 , μ_2 , σ_2^2 , calculate $\gamma_{(n,1)}$ and $\gamma_{(n,2)}$ for each data point x_n

• M-step:

Given
$$\gamma_{(n,1)}$$
 and $\gamma_{(n,2)}$, calculate π_1 , π_2 μ_1 , σ_1^2 , μ_2 , σ_2^2

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{(n,k)} x_n$$

$$\sigma_k^2 = \frac{1}{N_k} \sum_{n=1}^N \gamma_{(n,k)} (x_n - \mu_k)^2$$

$$\pi_k = \frac{N_k}{N}$$
where $N_k = \sum_{n=1}^N \gamma_{(n,k)}$

How can we do clustering using $\gamma_{(n,k)}$?

• If there are two clusters, for the data point x_n , if $\gamma_{(n,1)} > \gamma_{(n,2)}$, then x_n is assigned to cluster-1 if $\gamma_{(n,1)} < \gamma_{(n,2)}$, then x_n is assigned to cluster-2

- $\gamma_{(n,k)}$ is the probability of x_n belonging to cluster-k
- For each data point x_n , there is a probability distribution over the K clusters $[\gamma_{(n,1)}, \gamma_{(n,2)}, \gamma_{(n,3)}, ..., \gamma_{(n,k)}, ..., \gamma_{(n,K)}]$

$$\gamma_{(n,1)} + \gamma_{(n,2)} + \gamma_{(n,3)} + \dots + \gamma_{(n,k)} + \dots + \gamma_{(n,K)} = 1$$

 $\gamma_{(n,k)}$ is also called membership of x_n in cluster-k