HOMEWORK 13

LEANDRO RIBEIRO

Proposition 10.27. Given any $r \in \mathbb{R}_{>0}$, the number \sqrt{r} is unique in the sense that, if x is a positive real number such that $x^2 = r$, then $x = \sqrt{r}$.

Proof. Suppose u and v are such that $u^2 = r$ and $v^2 = r$. Let $w = \sup\{x \in \mathbb{R} | x^2 < r\}$. We will show u = w = v. For any $x \in A := \{x \in \mathbb{R} | x^2 < r\}$ we see that $x^2 < u^2 = r$. If x < 0, then clearly x < u. If $x \ge 0$, then propositio 10.5 ensures that x < u. Since w is the least upper bound of A, we conclude that $w \le u$. But $w^2 = r = u^2$. By proposition 10.5 again it must be the case that w = u. Similarly, v = w.

Proposition 11.12. If $r \in \mathbb{N}$ is not a perfect square, then \sqrt{r} is irrational.

Let us prove the contrapositive. Suppose \sqrt{r} is rational. We aregue r is a perfect square. Suppose $\sqrt{r} = \frac{m}{n}$ with m and n in lowest terms, i.e. the gcd(m,n)=1. Thus, $r=\frac{m^2}{n^2}$ and $rn^2=m^2$. If p is prime and $k\geq 0$ is such that $p^k|n$ then $p^{2k}|n^2$. Since $rn^2=m^2$, we conclude that $p^{2k}|m^2$. Thus, $p^k|m$. Since $n=p_1^{k_1}\dots p_l^{k_l}$, take $m=q_1^{a_1}\dots q_j^{a_j}$ with $q_i=p_i$ and $k_i\leq a_i$. $m=p_1^{k_1}\dots p_l^{k_l}\cdot c$ with $c=q_{l+1}^{a_{l+1}}\dots q_j^{a_j}$. Thus, $m=n\cdot c$. We conclude n|m, however gcd(m,n)=1, thus n=1. Hence, $\sqrt{r}=m$, and r is a perfect square.

Proof.

Proposition 11.4. Given a rational number $r \in \mathbb{Q}$, we can always write it as $r = \frac{m}{n}$, where n > 0 and m and n do not have any common factors.

Proof. Suppose toward a contradiction there were $m, n \in \mathbb{Z}_{>0}$ such that the fraction $\frac{m}{n}$ cannot be written in lowest terms. Let C be the the set of positive integers that are numerators of such fractions. Then $m \in C$, so C is not empty. Therefore, by the well-ordering principle there must be a smallest integer m in C. There is an integer $n_0 > 0$ such that the

Date: May 1, 2017.

fraction $\frac{m_0}{n_0}$ cannot be written in lowest terms by our definition of C. This means that m_0 and n_0 must have a common factor p>1, however $(\frac{m_0}{p})/(\frac{n_0}{p})=\frac{m_0}{n_0}$. Any way of expressing the left hand fraction in lowest terms would also work for $\frac{m_0}{n_0}$, which implies the fraction $(\frac{m_0}{p})/(\frac{n_0}{p})$ cannot be written in lowest terms either. By our definition of C, $\frac{m_0}{p}$, is in C, but $\frac{m_0}{p}< m_0$, which contradicts that m_0 is the smallest element of C.

proposition 11.13. Let m and n be nonzero integers. Then $\frac{m}{n}\sqrt{2}$ is irrational.

Proof. Suppose toward a contradiction $\frac{m}{n}\sqrt{2} \in \mathbb{Q}$. From our assumption, we may take $q, p \in \mathbb{Z}$ such that $\frac{m}{n}\sqrt{2} = \frac{p}{q}$. Multiplying by $\frac{n}{m}$ on both sides, we have $\frac{n}{m}\frac{m}{n}\sqrt{2} = \sqrt{2} = \frac{n}{m}\frac{p}{q} = \frac{np}{mq}$. Let a = np and b = mq. Let's assume, by proposition 11.4, $\frac{a}{b}$ is in lowest terms. This means gcd(a,b)=1. We see that $\frac{(a)^2}{(b)^2}=2$, so $a^2=2b^2$. We deduce that a is even. $2|a\cdot a$, and by Euclid's lemma, 2|a. Since 2|a, we see $a=2\cdot k$. Hence $(2k)^2=2b^2=4k^2$. Therefore, $2k^2=b^2$. As with a, we conclude that 2|b. This is absurd since we assumed gcd(a,b)=1.

Sources.

https://math.stackexchange.com/questions/463342/prove-that-theres-no-fractions-that-cant-be-written-in-lowest-term-with-well-o