In the previous lecture ...

Markov Decision Process

A Markov decision process is a tuple $\langle S, A, P, R, \gamma \rangle$ where

- \mathcal{S} is a finite set of states.
- A is a finite set of actions.
- $oldsymbol{ ilde{\mathcal{P}}}$ is a state-action transition probability matrix,

$$\circ \; \mathcal{P}^a_{s,s'} = \mathbb{P}(S_{t+1} = s \mid S_t = s, A_t = a).$$

• \mathcal{R} is a reward function

$$\circ \ \mathcal{R}_s^a = \mathbb{E}(R_{t+1} \mid S_t = s, A_t = a)$$

• γ is a discount factor, $\gamma \in [0,1]$.

Let's define an MPD for space invaders

Policies

A **policy** π is a distribution over actions given states,

$$\pi(a\mid s):=\mathbb{P}(A_t=a\mid S_t=s).$$

- · A policy fully defines the behaviour of the agent.
- Policies are stationary and depend only on the current state, not the history.

Recursion equations

As with MRP's, we have similar recursive relations:

$$egin{aligned} v_\pi(s) &= & \mathbb{E}_\pi(R_{t+1} + \gamma v_\pi(S_{t+1}) \mid S_t = s) \ q_\pi(s,a) &= & \mathbb{E}_\pi(R_{t+1} + \gamma q_\pi(S_{t+1},A_{t+1}) \mid S_t = s, A_t = a) \end{aligned}$$

In particular, we can, for a given policy π , solve the Bellman equation.

Note also that:

$$v_\pi(s) = \sum_{a \in A} \pi(a|s) q_\pi(s,a).$$

Which state has a higher value?

If we play a reasonable policy.

Deep Reinforcement Learning

Collective Robot Reinforcement Learning, Training Phase

Neural Architecture Search with Reinforcement Learning

Task 02004: You are looking for and it should serve gastropub food. You don't care about the price range. You want to know the address.		
Into Deak 1 Hallo , verticants to the Cambridge restaurant system. You can ask for restaurants by area, price range or food type . How may I help you? Coulsiners' I want a generoup to do. The country of the country		
glogt care about the price range, just give me the address please.	Submit the HT	

A Network-based End-to-End Trainable Task-oriented Dialogue System

Mastering the game of Go with deep neural networks and tree search

Motivation

Reinforcement learning prior to 2014:

- handcrafted features, or fully observed, low-dimensional states
- achievements: a super-human
 Backgammon algorithm, a successful robot soccer agent

Reinforcement Learning for robot soccer - M.Riedmiller et al. (2009)

What we want:

- learn directly from high-dimensional sensory input, no feature engineering (end-to-end learning)
- one architecture that can excel at a variety of tasks

Solution

Deep Learning:

- Deep Neural Networks are capable of processing high-dimensional input and have been successfully applied to a wide range of problems
- we could use a DNN as a approximator for the action-value function (Q function)

Challenges:

Reinforcement learning is unstable when we use nonlinear function approximators.

Deep Q-Network

DQN Breakout (DeepMind 2016)

DQN Space Invaders (DeepMind 2016)

How Deep Q-Network works

- we are modeling the learning task as a Reinforcement Learning problem
- therefore, we are dealing with Markov Decision Processes
- action-value function for an optimal policy

$$Q^*(s,a) = \max_{\pi} \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots | s_t = s, \ a_t = a, \ \pi]$$

 let's turn it into a loss function for our neural network:

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim \mathrm{U}(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

<u>Human-level control through deep</u> orcement learning - V.Mnih et al. (2014)

What about the instability problem?

Two solutions:

Experience replay

- store experience in a replay buffer
- randomly sample batches of data and train the network on them

2. Target-Value Network

- target-value network is a clone of our main neural network which we are training
- use it to calculate the target

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim \mathrm{U}(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

• create a new clone once a while so that the target-value network is not too different from the trained network

Algorithm 1: deep Q-learning with experience replay. Initialize replay memory D to capacity N

Initialize action-value function Q with random weights θ

Initialize target action-value function Q with weights $\theta^- = \theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set $y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the

network parameters θ Every C steps reset Q = Q

End For

End For

Optimal Sepsis Treatment

Case study 1
Aniruddh Ragu et al. (2017)

Policy	Expected Return	Estimated Mortality
Physician	9.87	$13.9 \pm 0.5\%$
Normal Q-N	10.16	$12.8 \pm 0.5\%$
Autoencode Q-N	10.73	$11.2 \pm 0.4\%$

Optimal Sepsis Treatment

- training set: 15 500 survivors, 2 300 non-survivors
- physiological parameters including demographics, lab values and vital signs aggregated into windows of 4 hours (47 x 1 state vector for each patient at each timestep)
- 5 x 5 action space covering dosages of two different drugs
- continuous state space, discrete action space
- Deep Q-Network + Double Deep-Q + Dueling Q Network + Prioritized
 Experience Replay = Dueling Double-Deep Q Network (Dueling DDQN)
- evaluating models offline is difficult

Ant Soccer (DeepMind 2016)

Continuous action space

- vanilla Deep Q-Network cannot operate in continuous action space - discretize it?
- on the other hand, we can borrow some tricks introduced with DQN
- use a policy network an Actor
- best performance when trained together with a Critic => Actor-Critic
- Continuous Control with Deep
 Reinforcement Learning T.P.Lillicrap et al. (2015)

Figure 11.1: The actor-critic architecture.

Deep Deterministic Policy Gradients

Critic loss:

$$L(\theta^Q) = \mathbb{E}_{s_t \sim \rho^\beta, a_t \sim \beta, r_t \sim E} \left[\left(Q(s_t, a_t | \theta^Q) - y_t \right)^2 \right]$$
$$y_t = r(s_t, a_t) + \gamma Q(s_{t+1}, \mu(s_{t+1}) | \theta^Q).$$

Actor update:

$$\begin{split} \nabla_{\theta^{\mu}} J &\approx \mathbb{E}_{s_{t} \sim \rho^{\beta}} \left[\nabla_{\theta^{\mu}} Q(s, a | \theta^{Q}) |_{s=s_{t}, a=\mu(s_{t}|\theta^{\mu})} \right] \\ &= \mathbb{E}_{s_{t} \sim \rho^{\beta}} \left[\nabla_{a} Q(s, a | \theta^{Q}) |_{s=s_{t}, a=\mu(s_{t})} \nabla_{\theta_{\mu}} \mu(s | \theta^{\mu}) |_{s=s_{t}} \right] \end{split}$$

- a gradient points in the direction of the steepest ascent of a function
- gradients of the Critic with respect to the action tell us how to the improve policy network's parameters in order to maximize the Q-value

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^\mu$

Initialize replay buffer R

for episode = 1, M do

Initialize a random process N for action exploration

Receive initial observation state s_1

for t = 1, T do

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Set
$$y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$$

Update critic by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{Q'}$$
$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau)\theta^{\mu'}$$

end for

You don't have to understand this algorithm completely. Just the basic idea behind actor-critic.

Neural Architecture Search

Case study 2

Barret Zoph et al. (2017)

Convolutional Neural Networks

Source

Neural Architecture Search

train a RNN that generates hyperparameters for neural networks

Figure 1: An overview of Neural Architecture Search.

reward: the test accuracy of the generated network

$$\quad \text{update:} \quad \bigtriangledown_{\theta_c} J(\theta_c) = \sum_{t=1}^T E_{P(a_{1:T};\theta_c)} \big[\bigtriangledown_{\theta_c} \log P(a_t | a_{(t-1):1}; \theta_c) R \big]$$

Figure 4: The controller uses anchor points, and set-selection attention to form skip connections.

Figure 7: Convolutional architecture discovered by our method, when the search space does not have strides or pooling layers. FH is filter height, FW is filter width and N is number of filters. Note that the skip connections are not residual connections. If one layer has many input layers then all input layers are concatenated in the depth dimension.

Figure 8: A comparison of the original LSTM cell vs. two good cells our model found. Top left: LSTM cell. Top right: Cell found by our model when the search space does not include max and sin. Bottom: Cell found by our model when the search space includes max and sin (the controller did not choose to use the sin function).

Summary

- we've seen how to combine neural networks with reinforcement learning
- Deep Q-Network is one the first architectures that made this combination work
- for continuous states, we can use an Actor or a combination of an Actor and a Critic => Actor-Critic (for example the DDPG algorithm)
- there are many use cases of Deep Reinforcement Learning outside playing video games; on the other hand, video games are a great benchmark

The future of Deep Reinforcement Learning

 we've seen a lot of advancements in the Atari games environment but not many applications for real world problems; why?

- move towards general agents that are easy to deploy in many settings
- this could be accomplished by training agents in a modular fashion
- e.g. a module for vision, planning, motion and so on
- similar to how modern software is built