Markov Chain Monte Carlo Simulations for the 2D Ising Model

Surya Dutta and Nick Brooks

Department of Physics, Yale University, New Haven, CT 06520

- Model phase transitions and observe critical phenomena in the 2D Ising Model using Markov-chain Monte Carlo simulations.
- Measure thermodynamic quantities, such as magnetization, magnetic susceptibility, specific heat and correlation length
- ullet Obtain values for critical exponents as well as the critical temperature T_c , and verify with known theoretical values

1

BACKGROUND

ISING MODEL

- mathematical model that describes an array of magnetic dipole moments with 2 possible spin states
- One of the simplest models to exhibit a phase transition at a critical temperature
- Above critical temperature, thermal fluctuations disrupt aligned spins and cause them to randomly flip

Ground state of 5x5 Ising Model

STATISTICAL MECHANICS

Gibbs Distribution

 probability of finding a macroscopic system in a microscopic state of energy E is given by:

$$P(\text{state}) \propto e^{-\frac{E}{k_B T}}$$

 Useful thermodynamic quantities (specific heat and susceptibility) can be derived using the partition function:

$$\mathcal{Z} = \sum_{i} e^{-\beta E_i}$$

$$c_V = \frac{\beta}{T} \left[\langle E^2 \rangle_T - \langle E \rangle_T^2 \right]$$

$$\chi = \beta \left[\langle M^2 \rangle_T - \langle M \rangle_T^2 \right]$$

CRITICAL EXPONENTS & IDENTITIES

Critical Exponent	Definition	Theoretical Value
α	$\mathrm{C_v} \propto \mathrm{t} ^{-lpha}$	0
β	$ \mathrm{M} \propto \mathrm{t} ^{eta}$	1/8
γ	$\chi \propto { m t} ^{-\gamma}$	7/4
δ	$ \mathrm{M} \propto \mathrm{B} ^{\delta}$	15
ν	$\xi \propto { m t} ^{- u}$	1
η	$\langle \sigma(0)\sigma(x)\rangle \propto x ^{d-2+\eta}$	1/4

Rushbrooke's Identity: $\alpha + 2\beta + \gamma = 2$

Widom's Identity: $\delta - 1 = \gamma/\beta$

Josephson's Identity: $2 - \alpha = d\nu$

Fisher's Identity: $\gamma = (2 - \eta)\nu$

Theoretical critical exps and identities in the infinite lattice-size limit

6 critical exps, 4 identities → 2 independent variables

6

2

METHOD

METHOD: MONTE CARLO SIMULATIONS

- Markov Chain Monte Carlo simulation, lattice-size N x N
- 0.01 intervals from **T=0** to **T=4.6**
- Initializes with a random spin configuration at each temperature step
- Evolves by invoking spin transitions at calculated probability, and determines the corresponding energy and magnetization of the system
- Designate set number of burn-in steps to allow system to converge (reach the global minimum of the Gibbs Distribution)

METHOD: ANNEALING AND CONVERGENCE

- To help with convergence, we implement code to anneal both the magnetic field and temperature.
- "Cool down" these quantities in order to avoid test points from getting stuck in local minimum of the Gibbs distribution, and help them reach the global minimum where the value converges correctly.

METHOD: OBTAINING ERROR VALUES

- Obtain error values for C_V and susceptibility (χ) by **binning** our data collection steps **at each temperature** to obtain C_V and χ values, then calculating the **sample standard deviation S** of those values.
- 50,000 data collection steps , bin size of 100 steps \rightarrow 500 bins
- Final standard deviation obtained by implementing following correction:

$$\sigma_{\text{population}} = \sigma_{\text{sample}} \frac{\sqrt{N_{\text{sample}} - 1}}{\sqrt{N_{\text{population}}}} = \sigma_{\text{sample}} \frac{\sqrt{499}}{\sqrt{50000}}$$

$$ightarrow \sigma_{
m population} pprox 0.1 imes \sigma_{
m sample}$$

3

ANALYSIS

ANALYSIS: PRIMER

Nonlinear Weighted Fits

- MATLAB's Weighted Nonlinear Regression Model Fitter
- Hougen-Watson Algorithm
- Weights assigned using instrumental weighting

Chi-Squared Analysis

$$\chi^2 = \sum_{i=1}^n \left(\frac{x_i - x_{curve}}{\sigma_i} \right)^2$$

Good Fit:
$$\chi^2 \cong 1$$

ANALYSIS: ENERGY

Energy vs. Temperature curve for N=100 lattice, no ext. B field.

Complex elliptical function

ANALYSIS: ENERGY

ANALYSIS: MAGNETIZATION

Magnetization vs. Temperature curve for N=100 lattice, no ext. B field.

Drops sharply at critical temperature

ANALYSIS: MAGNETIZATION

Power law verification via log-log plot

$$|M| \propto |t|^{\beta}$$
 where $t = \frac{T - T_c}{T_c}$

Fit function used:
$$|M| = A \left| \frac{T - T_c}{T_c} \right|^{\beta}$$

ANALYSIS: MAGNETIZATION

Fit function used:
$$|M| = A \left| \frac{T - T_c}{T_c} \right|^{\beta}$$

Parameter	Value
A	1.230 ± 0.036
T_c	2.29 ± 0.002
β	0.127 ± 0.005
$\mathrm{Chi^2/DoF}$	0.4001

Specific Heat vs. Temperature curve for N=100 lattice, no ext. B field.

Sharply diverges at critical temperature

Logarithmic divergence verification via log-linear plot

$$C_v \propto |t|^{-\alpha} \Rightarrow \alpha = 0$$

Fit function used:
$$A \ln \left| \frac{T - T_c}{T_c} \right| + C_{\mathrm{V},0}$$

Fit function used:
$$A \ln \left| \frac{T - T_c}{T_c} \right| + C_{\mathrm{V},0}$$

Parameter	Value
A	$(-5.28 \pm 0.14) \text{ E} -5$
T_{c1}	2.276 ± 0.008
$\mathrm{C}_{\mathrm{V},0}$	$(-3.85 \pm 0.13) \text{ E} -5$
$\mathrm{Chi^2/DoF}$	1.363

 C_V Weighted Fit Parameters below T_c

Fit function used:
$$A \ln \left| \frac{T - T_c}{T_c} \right| + C_{\mathrm{V},0}$$

Parameter	Value
A	$(-3.9 \pm 0.1) \text{ E} -5$
T_{c2}	2.312 ± 0.004
$C_{V,0}$	$(-7.8 \pm 0.13) \text{ E} -6$
Chi ² /DoF	1.416

 C_V Weighted Fit Parameters above T_c

ANALYSIS: SUSCEPTIBILITY

Susceptibility vs. Temperature curve for N=100 lattice, no ext. B field.

Sharply diverges at critical temperature

ANALYSIS: SUSCEPTIBILITY

Difficult to fit due to large errors

Handout Technique to extract γ:

Apply small magnetic field to system

$$\chi = \frac{\partial M}{\partial \mathbf{B}} \Rightarrow M \approx \chi \mathbf{B} \propto |t|^{-\gamma} \mathbf{B} \propto |t|^{-\gamma}$$

ANALYSIS: SUSCEPTIBILITY

Fit function used:
$$M = A \left| \frac{T - T_c}{T_c} \right|^{-\gamma}$$

Parameter	Value
A	12.6 ± 28.4
T_c	0.95 ± 1.39
γ	8.05 ± 7.67
Chi ² /DoF	0.177

Huge uncertainties - need better method

ANALYSIS: SUSCEPTIBILITY (NEW METHOD)

New method to extract γ:

Compare magnetic and nonmagnetic systems

$$\chi = \frac{\partial M}{\partial B} \approx \frac{\Delta M}{\Delta B} = \frac{M_1 - M_0}{B_1 - B_0}$$

$$\chi \propto \Delta M \Rightarrow \Delta M \propto |t|^{-\gamma}$$

ANALYSIS: SUSCEPTIBILITY (NEW METHOD)

Fit function used:
$$\Delta M = A \left| \frac{T - T_c}{T_c} \right|^{-\gamma}$$

Parameter	Value
A	$(6.07 \pm 0.21) \text{ E} -3$
T_c	2.21 ± 0.13
γ	1.78 ± 0.06
$\mathrm{Chi^2/DoF}$	0.1735

ANALYSIS: CORRELATION LENGTH

For a given spin state, spin correlation decreases as distance increases

Characterized by correlation length, ξ :

$$\langle \sigma(0)\sigma(x)\rangle \propto e^{-x/\xi}$$

where
$$\xi \propto |t|^{-\nu}$$

ANALYSIS: CORRELATION LENGTH

Fit function used:
$$\xi = A \left| \frac{T - T_c}{T_c} \right|^{-\nu} + \xi_0$$

Parameter	Value
A	0.27 ± 0.156
T_c	2.14 ± 0.10
ν	0.94 ± 0.42
ξ_0	0.41 ± 0.22
Chi ² /DoF	1.0652

ANALYSIS: CORRELATION LENGTH

Relation used to obtain η :

$$\langle \sigma(0)\sigma(x)\rangle \propto \frac{1}{|x|^{d-2+\eta}}$$

Fit Function Used: $\langle \sigma(0)\sigma(x)\rangle = A|x|^{-\eta}$

Parameter	Value
A	0.884 ± 0.003
η	$ 0.690 \pm 0.005 $

ANALYSIS: CRITICAL TEMPERATURE

Parameter	Experimentally Obtained T_c
Magnetization (M)	2.29 ± 0.02
Specific Heat $(C_{v,left})$	2.28 ± 0.08
Specific Heat (C _{v,right})	2.31 ± 0.04
Susceptibility (χ)	2.21 ± 0.13
Correlation Length (η)	2.14 ± 0.10

Exact Value:
$$T_c = \frac{2}{\ln(1+\sqrt{2})} \approx 2.269$$

ANALYSIS: CRITICAL EXPONENTS

Crit. Exp.	Definition	Theoretical Value	Experimental Value
α	$ m C_{ m v} \propto t ^{-lpha}$	0	0
β	$ { m M} \propto { m t} ^{eta}$	0.125	0.127 ± 0.005
γ	$\chi \propto \mathrm{t} ^{-\gamma}$	1.75	1.78 ± 0.06
ν	$\xi \propto \mathrm{t} ^{- u}$	1	0.94 ± 0.42
η	$\langle \sigma(0)\sigma(x)\rangle \propto x ^{d-2+\eta}$	0.25	0.690 ± 0.005

ANALYSIS: IDENTITIES

Rushbrooke's Identity: $\alpha + 2\beta + \gamma = 2$ Widom's Identity: $\delta - 1 = \gamma/\beta$ Josephson's Identity: $2 - \alpha = d\nu$ Fisher's Identity: $\gamma = (2 - \eta)\nu$

Identity	Left Hand Side	Right Hand Side
Rushbrooke's	1.892 ± 0.162	2
Widom's	14 (theoretical)	13.6 ± 2.0
Josephson's	2	1.88 ± 0.84
Fisher's	1.65 ± 0.15	1.23 ± 0.55

REFERENCES

Thompson, Jed. "Phys 381/282/504 Lab Handout: Two-Dimensional Ising Model." Yale University — Department of Physics. Spring 2017. Web.

"Standard Deviation." Standard Deviation | How and when to use the Sample and Population Standard Deviation - A measure of spread | Laerd Statistics. N.p., n.d. Web. 17 Apr. 2017.

Department of Physics. (n.d.). Lecture 6: Chi Square Distribution (c2) and Least Squares Fitting [PDF]. Ohio State University.

Weighted Nonlinear Regression Open Script. (n.d.). Retrieved April 17, 2017, from https://www.mathworks.com/help/stats/examples/weighted-nonlinear-regression.html

THANK YOU

Please feel free to ask any questions