Discrete Mathematics (2011 Spring) Midterm II

- 1. (20 points) For each of the following statements, determine and explain (required) whether it is correct or not.
 - (1). R is an equivalence relation on Z where xRy if x-y is even.
 - (2). String 00110 is in the language $\{00\}^*\{1\}^*\{0\}^+$ and is also in the language $\{01\}^*\{0\}^*\{11\}^*\{1,0\}^*$.
 - (3). Any subset of size 15 from the set $S = \{3, 7, 11, 15, 19, ..., 95, 99, 103\}$ must contain two elements whose sum is 114.
 - (4). The number of the equivalence relations on $A = \{a, b, c, d, e, f, g\}$ that have exactly one equivalence class of size 4 is 5*C(6, 4).
- 2. (20 points, 2,3,3,6,6) If $A = \{v, w, x, y, z\}$, determine the number of relations on A that are (a) symmetric, (b) antisymmetric, (c) antisymmetric and contain (x,y), (d) equivalence relations that determine exactly three equivalence classes, (e) reflexive and symmetric but not transitive. [Note: S(4,2)=7, S(4,3)=6, S(5,2)=15]
- 3. (10 points) Let p, q be distinct primes. How many edges are there in the Hasse diagram of all positive divisors of p^3q^3 .
- 4. (10 points) For $I = O = \{0, 1\}$, construct a finite state machine M that recognizes all strings in the language $\{0, 1\}^*\{00\} \cup \{0, 1\}^*\{11\}$.
- 5. (10 points) (a) How many ways can 81,345 be factored into two or more factors where each factor is greater than 1 and the order of the factors is not relevant? (b) Answer (a), assuming the order of the factors is taken into consideration. [Note: 81,345=3*5*11*17*29].
- 6. (15 points) Let $A = \{a, b, c, d\}$, and $B = \{u, v, w, x, y, z\}$. (a) If $f : A \rightarrow B$ is randomly generated, what is the probability that it is one-to-one? (b) How many closed binary operations on A that have c as the identity? (c) How many closed binary operations on A that are commutative and have an identity?
- 7. (10 points) Let $U=\{1, 2, 3, 4, 5, 6\}$, with A=P(U), and let R be the *subset relation* on A. For $B=\{\{1\}, \{2\}, \{2, 3\}\}\subseteq A$, determine each of the following. (a) The number of upper bounds that exist for B. (b) The lub for B.
- 8. (15 points, 10,5) Let M be the finite state machine given in the state diagram shown in the following figure. (a) Minimize machine M. (b) find a distinguishing string for s₃ and s₆.

