PRUNING CONVOLUTIONAL NEURAL NETWORKS FOR RESOURCE EFFICIENT INFERENCE

Beknazaro v Nazar

Moscow 2018

Problem of over-complexity

Overview

Three ways to overcome the problem:

- Minimal description length
- VC dimension
- Maximization of evidence

VC - dimension

RVMrelevant vecs

Maximization of evidence

Minimal description length principle

Baseline pruning model

- Minimal weight
- Random
- L1 regularization

Way to measure quality of methods.

- Straight compute needs $2^{|W|}$, |W| > 4000 for VGG16
- No mutual information.
- Oracle pruning.
- The measure is correlation.

Taylor approximation

$$f(x) = \sum_{p=0}^{P} \frac{f^{(p)}(a)}{p!} (x - a)^p + R_p(x),$$

$$\mathcal{C}(\mathcal{D}, h_i = 0) = \mathcal{C}(\mathcal{D}, h_i) - \frac{\delta \mathcal{C}}{\delta h_i} h_i + R_1(h_i = 0).$$

Resulting formula

$$\Theta_{TE}(h_i) = \left| \Delta \mathcal{C}(h_i) \right| = \left| \mathcal{C}(\mathcal{D}, h_i) - \frac{\delta \mathcal{C}}{\delta h_i} h_i - \mathcal{C}(\mathcal{D}, h_i) \right| = \left| \frac{\delta \mathcal{C}}{\delta h_i} h_i \right|.$$

Results

	AlexNet / Flowers-102						VGG-16 / Birds-200						
	Weight	Activation			OBD	Taylor	Weight	Activation			OBD	Taylor	Mutual
		Mean	S.d.	APoZ				Mean	S.d.	APoZ			Info.
Per layer	0.17	0.65	0.67	0.54	0.64	0.77	0.27	0.56	0.57	0.35	0.59	0.73	0.28
All layers	0.28	0.51	0.53	0.41	0.68	0.37	0.34	0.35	0.30	0.43	0.65	0.14	0.35
(w/ ℓ_2 -norm)	0.13	0.63	0.61	0.60	-	0.75	0.33	0.64	0.66	0.51	-	0.73	0.47
	AlexNet / Birds-200						VGG-16 / Flowers-102						
Per layer	0.36	0.57	0.65	0.42	0.54	0.81	0.19	0.51	0.47	0.36	0.21	0.6	-
All layers	0.32	0.37	0.51	0.28	0.61	0.37	0.35	0.53	0.45	0.61	0.28	0.02	-
(w/ ℓ_2 -norm)	0.23	0.54	0.57	0.49	-	0.78	0.28	0.66	0.65	0.61	-	0.7	
	AlexNet / ImageNet												-
Per layer	0.57	0.09	0.19	-0.06	0.58	0.58							
All layers	0.67	0.00	0.13	-0.08	0.72	0.11							
(w/ ℓ_2 -norm)	0.44	0.10	0.19	0.19	-	0.55							

Table 1: Spearman's rank correlation of criteria vs. oracle for convolutional feature maps of VGG-16 and AlexNet fine-tuned on Birds-200 and Flowers-102 datasets, and AlexNet trained on ImageNet.

Results

Figure 4: Pruning of feature maps in VGG-16 fine-tuned on the Birds-200 dataset.

Results

Figure 5: Pruning of feature maps in AlexNet on fine-tuned on Flowers-102.

References

- https://arxiv.org/pdf/1611.06440.pdf Source article
- https://github.com/jacobgil/pytorch-pruning Code
- https://arxiv.org/abs/1702.04008 Soft weight sharing
- https://github.com/KarenUllrich/Tutorial-SoftWeightSharingForNNCompression
 - Code