Foundations of Computing Lecture 16

Arkady Yerukhimovich

March 21, 2023

Outline

- 1 Lecture 15 Review
- 2 An Undecidable Language
- Reducibility
- 4 Where Are We Now?

Lecture 15 Review

- Labguages about Machines
- Countable and Uncountable Sets
 - Diagonalization
- Proving L_{TM} is Undecidable

Outline

- 1 Lecture 15 Review
- 2 An Undecidable Language
- Reducibility
- Where Are We Now?

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By construction of machine $M_{L_{TM}}$

 $M_{L_{TM}}$: On input $\langle M, w \rangle$,

Run M on input w

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By construction of machine $M_{L_{TM}}$: On input $\langle M, w \rangle$,

- Run M on input w
- If M halts, halt and output what M outputs

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By construction of machine $M_{L_{TM}}$: On input $\langle M, w \rangle$,

- Run M on input w
- If M halts, halt and output what M outputs

Correctness:

• For any input $\langle M, w \rangle \in L_{TM}$, M is a TM, and M(w) halts and outputs 1.

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By construction of machine $M_{L_{TM}}$: On input $\langle M, w \rangle$,

- Run M on input w
- If M halts, halt and output what M outputs

Correctness:

- For any input $\langle M, w \rangle \in L_{TM}$, M is a TM, and M(w) halts and outputs 1.
- Hence, $M_{L_{TM}}$, also halts and outputs 1

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By construction of machine $M_{L_{TM}}$: On input $\langle M, w \rangle$,

- Run M on input w
- If M halts, halt and output what M outputs

Correctness:

- For any input $\langle M, w \rangle \in L_{TM}$, M is a TM, and M(w) halts and outputs 1.
- Hence, $M_{L_{TM}}$, also halts and outputs 1
- Thus, M_{LVTM} accepts all inputs in L_{TM}

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By construction of machine $M_{L_{TM}}$: On input $\langle M, w \rangle$,

- Run M on input w
- If M halts, halt and output what M outputs

Correctness:

- For any input $\langle M, w \rangle \in L_{TM}$, M is a TM, and M(w) halts and outputs 1.
- Hence, $M_{L_{TM}}$, also halts and outputs 1
- Thus, $M_{L(TM)}$ accepts all inputs in L_{TM}
- ullet Note that $M_{L_{TM}}$ may not halt on all inputs doesn't decide L_{TM}

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

$$L_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1\}$$

Proof: By contradiction

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that L_{TM} is decided by TM H

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

L_{TM} is Undecidable

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that L_{TM} is decided by TM H

$$H(\langle M, w \rangle) = \left\{ egin{array}{ll} \textit{accept} & \textit{if } M \textit{ accepts } w \\ \textit{reject} & \textit{if } M \textit{ does not accept } w \end{array}
ight.$$

 Use H to build a TM D that checks whether a TM M accepts its own description, and then does the opposite:

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

Assume that L_{TM} is decided by TM H

$$H(\langle M, w \rangle) = \left\{ egin{array}{ll} \textit{accept} & \textit{if } M \textit{ accepts } w \\ \textit{reject} & \textit{if } M \textit{ does not accept } w \end{array}
ight.$$

- Use H to build a TM D that checks whether a TM M accepts its own description, and then does the opposite:
- $\bigcirc : \text{On Input } \langle M \rangle, \text{ where } M \text{ is a TM}$ $\bigcirc \text{Run } H \text{ on input } \langle M, \langle M \rangle \rangle$

 - 2 Output the opposite of what H outputs

L_{TM} is Undecidable

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

• Assume that L_{TM} is decided by TM H

$$H(\langle M, w \rangle) = \left\{ egin{array}{ll} \textit{accept} & \textit{if } M \textit{ accepts } w \\ \textit{reject} & \textit{if } M \textit{ does not accept } w \end{array}
ight.$$

- Use H to build a TM D that checks whether a TM M accepts its own description, and then does the opposite:
 - On Input $\langle M \rangle$, where M is a TM
 - **1** Run *H* on input $\langle M, \langle M \rangle \rangle$
 - Output the opposite of what H outputs

$$D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

L_{TM} is Undecidable

$$L_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

Proof: By contradiction

Assume that L_{TM} is decided by TM H

$$H(\langle M, w \rangle) = \left\{ egin{array}{ll} \textit{accept} & \textit{if } M \textit{ accepts } w \\ \textit{reject} & \textit{if } M \textit{ does not accept } w \end{array}
ight.$$

- Use H to build a TM D that checks whether a TM M accepts its own description, and then does the opposite:
 On Input $\langle M \rangle$, where M is a TM
 Run H on input $\langle M, \langle M \rangle \rangle$ Output the opposite of what H outputs

$$D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

• Now consider what happens if we run D on $\langle D \rangle$

$$D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts} \langle D \rangle \end{cases}$$

How Is This a Diagonalization?

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$		$\langle D \rangle$	
M_1		reject	accept		accept	
M_2	reject	reject	reject		accept	
M_3	accept	accept	accept		reject	
:		:		٠	(
D	reject	accept	reject		\bigcirc	

- ullet We have defined D to do the opposite of what M_i does on input $\langle M_i \rangle$
- But what does D do on input $\langle D \rangle$??

A Turing-unrecognizable Language

$\overline{L_{TM}}$

The language

$$\overline{L_{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM and } M(w) \neq 1\}$$

is not Turing-recognizable

Outline

- 1 Lecture 15 Review
- 2 An Undecidable Language
- Reducibility
- Where Are We Now?

Reductions Between Problems

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Examples:

 $lue{0}$ Finding area of a rectangle \leq Finding its length and width

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Examples:

- lacktriangle Finding area of a rectangle \leq Finding its length and width

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Examples:

- lacktriangle Finding area of a rectangle \leq Finding its length and width
- ② Finding temperature outside ≤ Reading a thermometer Observations:

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Examples:

- lacktriangle Finding area of a rectangle \leq Finding its length and width
- $oldsymbol{0}$ Finding temperature outside \leq Reading a thermometer

Observations:

• Reductions not always symmetrical: $A \leq B$ does not mean $B \leq A$

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Examples:

- lacktriangle Finding area of a rectangle \leq Finding its length and width
- Finding temperature outside Reading a thermometer

Observations:

- Reductions not always symmetrical: $A \leq B$ does not mean $B \leq A$
- For now, no restriction on how the reduction works

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Examples:

- lacktriangle Finding area of a rectangle \leq Finding its length and width
- Finding temperature outside Reading a thermometer

Observations:

- Reductions not always symmetrical: $A \leq B$ does not mean $B \leq A$
- For now, no restriction on how the reduction works

Intuition

A < B means that:

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Examples:

- lacktriangle Finding area of a rectangle \leq Finding its length and width
- Finding temperature outside Reading a thermometer

Observations:

- Reductions not always symmetrical: $A \leq B$ does not mean $B \leq A$
- For now, no restriction on how the reduction works

Intuition

A < B means that:

• problem A is no harder than problem B.

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Examples:

- lacktriangle Finding area of a rectangle \leq Finding its length and width
- Finding temperature outside Reading a thermometer

Observations:

- Reductions not always symmetrical: $A \leq B$ does not mean $B \leq A$
- For now, no restriction on how the reduction works

Intuition

A < B means that:

- problem A is no harder than problem B.
- Equivalently, problem B is no easier than problem A

Main Observation

Suppose that $A \leq B$, then:

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

• Suppose that *B* is decidable

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

- Suppose that *B* is decidable
- Since $A \leq B$, there exists an algorithm (i.e., a reduction) that uses a solution to B to solve A

Reductions and Undecidability

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

- Suppose that B is decidable
- Since $A \leq B$, there exists an algorithm (i.e., a reduction) that uses a solution to B to solve A
- ullet But, this means that A is decidable by running the machine for B as needed by the reduction

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

 $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w\}$

Theorem: HALT is undecidable

 $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w\}$

Theorem: HALT is undecidable

Proof Sketch:

• We show that $L_{TM} \leq HALT$

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

- We show that $L_{TM} \leq HALT$
- Since we know that L_{TM} is undecidable, this shows that HALT is also undecidable

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

- We show that $L_{TM} \leq HALT$
- Since we know that L_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

Construct algorithm S that decides L_{TM} given a TM R that decides HALT

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

- We show that $L_{TM} \leq HALT$
- Since we know that L_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

- We show that $L_{TM} \leq HALT$
- Since we know that L_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

Construct algorithm S that decides L_{TM} given a TM R that decides HALT On input $\langle M, w \rangle$, S does the following:

• Run $R(\langle M, w \rangle)$

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

- Proof Sketch:

 We show that $L_{TM} \leq HALT$
 - Since we know that L_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

- Run $R(\langle M, w \rangle)$
- If R rejects M(w) doesn't halt halt and reject

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

- We show that $L_{TM} \leq HALT$
- Since we know that L_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

- Run $R(\langle M, w \rangle)$
- If R rejects M(w) doesn't halt halt and reject
- if R accepts M(w) halts Simulate M(w) until it halts

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: *HALT* is undecidable Proof Sketch:

- We show that $L_{TM} \leq HALT$
- Since we know that L_{TM} is undecidable, this shows that HALT is also undecidable

Proof:

- Run $R(\langle M, w \rangle)$
- If R rejects M(w) doesn't halt halt and reject
- if R accepts M(w) halts Simulate M(w) until it halts
- Output whatever M output

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

Proof Sketch:

• We show that $L_{TM} \leq REGULAR_{TM}$

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable Proof Sketch:

- We show that $L_{TM} \leq REGULAR_{TM}$
- Specifically, reduction builds a TM M_2 s.t.

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: *REGULAR_{TM}* is undecidable Proof Sketch:

- We show that $L_{TM} \leq REGULAR_{TM}$
- Specifically, reduction builds a TM M_2 s.t.
 - If M accepts w, M_2 recognizes Σ^* regular language

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: *REGULAR_{TM}* is undecidable Proof Sketch:

- We show that $L_{TM} \leq REGULAR_{TM}$
- Specifically, reduction builds a TM M_2 s.t.
 - If M accepts w, M_2 recognizes Σ^* regular language
 - If M does not accept w, M_2 recognizes $\{0^n1^n\}$ not regular

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable Proof Sketch:

- We show that $L_{TM} \leq REGULAR_{TM}$
- Specifically, reduction builds a TM M_2 s.t.
 - If M accepts w, M_2 recognizes Σ^* regular language
 - If M does not accept w, M_2 recognizes $\{0^n1^n\}$ not regular
- If we can decide whether M_2 recognizes a regular language or not, can use that to decide whether M accepts w or not

$$REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

Construct algorithm S that decides L_{TM} given a TM R that decides

 $REGULAR_{TM}$

```
REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}
```

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

Construct algorithm S that decides L_{TM} given a TM R that decides

 $REGULAR_{TM}$

On input $\langle M, w \rangle$:

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

Construct algorithm S that decides L_{TM} given a TM R that decides

 $REGULAR_{TM}$

On input $\langle M, w \rangle$:

1 Construct TM M_2 s.t. on input x

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

Construct algorithm S that decides L_{TM} given a TM R that decides

 $REGULAR_{TM}$

On input $\langle M, w \rangle$:

1 Construct TM M_2 s.t. on input x

1 If $x = 0^n 1^n$, accept

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

Construct algorithm S that decides L_{TM} given a TM R that decides $REGULAR_{TM}$

On input $\langle M, w \rangle$:

On input $\langle W, W \rangle$:

- Construct TM M_2 s.t. on input x
 - If $x = 0^n 1^n$, accept
 - ② If x does not have this form, run M(w) and accept if it accepts

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

Construct algorithm S that decides L_{TM} given a TM R that decides $REGULAR_{TM}$

On input $\langle M, w \rangle$:

• Construct TM M_2 s.t. on input x

- If $x = 0^n 1^n$, accept
- 2 If x does not have this form, run M(w) and accept if it accepts
- ② Run R on input $\langle M_2 \rangle$

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

Construct algorithm S that decides L_{TM} given a TM R that decides $REGULAR_{TM}$

On input $\langle M, w \rangle$:

- Construct TM M_2 s.t. on input x
 - If $x = 0^n 1^n$, accept
 - ② If x does not have this form, run M(w) and accept if it accepts
- ② Run R on input $\langle M_2 \rangle$
- Output what R outputs

