MATEMATIKA ANGOL NYELVEN MATHEMATICS

KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA INTERMEDIATE LEVEL WRITTEN EXAM

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ KEY AND GUIDE FOR EVALUATION

OKTATÁSI MINISZTÉRIUM MINISTRY OF EDUCATION

Important Information

Formal requirements:

- The papers must be assessed in **pen and of different colour** than the one used by the candidates. Errors and flaws should be indicated according to ordinary teaching practice.
- The first one among the shaded rectangles next to each question contains the maximal score for that question. The **score** given by the examiner should be entered into the other **rectangle**.
- In case of correct solutions, it is enough to enter the maximal score into the corresponding rectangle.
- In case of faulty or incomplete solutions, please indicate the corresponding partial scores within the body of the paper.

Substantial requirements:

- In case of some problems there are more than one solutions outlined with the corresponding marking schemes. However, if you happen to come across with some **solution different** from those in the assessment bulletin, please identify the parts equivalent to those in the solution provided here and do your marking accordingly.
- The scores in this assessment bulletin can be split further. Keep in mind, however, that the number of points awarded for any item can be an integer number only.
- In case of a correct answer and a valid argument the maximal score can be awarded even if the actual solution is **less detailed** than that in this bulletin.
- If there is a **calculation error** or any other flaw in the solution, then the score should be deducted for the actual item where the error has occured. If the candidate is going on working with the faulty intermediate result and the problem has not been changed essentially due to the error, then the subsequent partial scores should be given out.
- If there is a **fundamental error** within an item (these are separated by double lines in this bulletin), even formally correct steps should not be awarded by any points, whatsoever. However, if the candidate is using the wrong result obtained by the invalid argument throughout the subsequent steps correctly, they should be given the maximal score for the remaing parts if the problem has not been changed essentially due to the error.
- If a **measuring unit** occurs in braces in this bulletin, the solution is complete even if the candidate does not indicate this unit.
- If there are more than one attempts to solve a problem, there is **just one** of them (with the highest score) that can be considered in the final assessment.
- You should **not give out any bonus points** (points beyond the maximal score for a solution or for some part of the solution).
- You should not reduce the score for erroneous calculations or steps unless its results are actually used by the candidate in the course of the solution.
- There are only 2 questions to be marked out of the 3 in part II/B of this exam paper. Hopefully, the candidate has entered the number of the question not to be marked in the square provided for this purpose. Accordingly, this question should not be assessed even if there is some kind of solution written down in the paper. Should there be any ambiguity about the student's request with respect to the question not to be checked, it is the last one in this problem set, by default, that should not be marked.

I.

1.		
$A \cap B = \{12; 16; 20\}$	2 points	If the candidate finds two of the elements correctly, I point may be given.
Total:	2 points	The elements of the sets A and B should not be given any credit.

2.		
The leg is $3 \cdot \sin 42^{\circ} \approx 2.01$ cm.	2 points	The leg: 1 point, rounding: 1 point.
Tota	: 2 points	

3.	
a) true	1 point
b) false	1 point
c) true	1 point
d) false	1 point
Total	: 4 points

4.	
The mode is 174.	1 point
The median is 173.	1 point
Total:	2 points

5.		
$3y - x = 3$ or $y = \frac{1}{3}x + 1$ ($x \in [-9; 9]$)	3 points	In case of partially correct answer both the slope and the y-intercept are worth 1 point each.
Total:	3 points	The 3 points are due even if the candidate gives the formula of the mapping insted of the equation of the graph.

7.		
Not every grandma is in fond of her grandchild. or: There is a grandma who does not like her grandchild.	2 points	Any correct answer is worth 2 points.
Total:	2 points	

8.		
The index is equal to $-\frac{1}{2}$.	2 points	The index may be given in any correct form.
Total:	2 points	If the answer is $10^{-\frac{1}{2}}$ then I point should be given.

9.			
The range is $-1 \le y \le 3$, y is a real number. or $[-1, 3]$.		2 points	Specifying y be real is not neccessary.
	Total:	2 points	

10.		
The number of possible arrangements is equal to 12	3 points	
(=3.2.1.2).		
Total:	3 points	If the candidate is listing the arrangements and the list is incomplete but there are at least 6 correct items then 1 point may be given.

11.	
The number of outcomes is 90.	1 point
The number of favourable outcomes is 9.	1 point
The probability is equal to $\frac{9}{90} = 0.1$.	1 point
Total:	3 points

12.		
The equation of the circle is $(x+2)^2 + (y-1)^2 = 25$.	1 point	
Substituting the coordinates of the point $P(1, -3)$ one gets $25 = 25$,	1 point	The candidate might calculate the distance of the point P and the centre of the circle.
Therefore, the point <i>P</i> is lying on the circle.	1 point	
Total:	3 points	_

II./A

13.		
By the respective domains of the logarithm and the square root one gets $x > \frac{2}{3}$ and $x > \frac{7}{4}$,	1 point*	
and thus the domain of the equation is the set $x > \frac{7}{4}$.	1 point*	
By the laws of logarithms	2	
$\lg\left(\sqrt{3x-2}\cdot\sqrt{4x-7}\right) = \lg 2.$	2 points	
The ten base logarithm function is strictly monotone and thus $\sqrt{3x-2} \cdot \sqrt{4x-7} = 2$.	1 point	This point is due even if the explanation is missing.
Squaring $(3x-2)\cdot(4x-7)=4$.	1 point	
Multiplying and collecting the terms $12x^2 - 29x + 10 = 0$.	2 points	
The solutions of the equation are $x_1 = 2$; $x_2 = \frac{10}{24} \left(= \frac{5}{12} \right)$.	2 points	
Equality holds when $x_1 = 2$ is plugged.	1 point	
$x_2 = \frac{5}{12}$ does not satisfy the equation.	1 point	* If the domain is not stated but the check is correct then these 2 points should be given.
Total:	12 points	

14. a)		
We write the cosine rule for the length AB of the umbrella: $AB^2 = 25^2 + 60^2 - 2 \cdot 25 \cdot 60 \cdot \cos 120^\circ$.	3 points	2 points for realizing the relevance of the cosine rule and 1 more for correct substitution.
$AB^2 = 5725$	1 point	
$AB = \sqrt{5725} \approx 76$ cm is the length of the umbrella.	1 point	
Total:	5 points	

14. b)		
If x is the length of the part of the string from the endpoint A, then that of the other part is $85 - x$.	1 point	This point is due even if the coresponing division is clear from the Pithagorean equation.
Writing down Pithagoras' theorem in the right		
triangle yields $x^2 + (85 - x)^2 = 5725$.	1 point	
$x^2 + 85^2 + x^2 - 170x = 5725.$	1 point	For the squaring.
$x^2 - 85x + 750 = 0.$	1 point	For collecting the terms.
The roots of this quadratic are 75 and 10.	2 points	
The distance of the right angle vertex from the		
endpoint A is either 75 cm or 10 cm.	1 point	
Total:	7 points	

15. b)		
The mean age of the team is $ \frac{19 + 20 + 3 \cdot 21 + 2 \cdot 22 + 3 \cdot 23 + 24 + 4 \cdot 25 + 3 \cdot 26 + 27 + 3 \cdot 28}{22} = \frac{528}{22} = 24 \text{ years.} $	3 points	In case of any computation error at most 2 points may be given.
Total:	3 points	

15. c)		
There are $\binom{4}{2}$ (= 6) ways to choose 2 out of the four 25 years old players and $\binom{3}{2}$ (= 3) ways to choose 2 out of the three 28 years old ones.	3 points	The correct urn model is worth 1 point and the two cases are worth 1 point each. (If there are no combinatorial terms but the correct answer, full credit should still be given.)
There are $6 \cdot 3 \cdot 1 = 18$ ways to choose the 5 players.	2 points	
Total:	5 points	There can be at most 2 points given if the explanation is missing.

II./B

16. a)		
2.5% of 20 000 Ft is the comission.	1 point	
The exchange for 19 500 Ft is 19 500·146 = 2 847 000 lej.	2 points	284.7 NEW LEJ may also be accepted.
Total:	3 points	
16. b)	T	Γ
300 NEW LEJ = 3 000 000 lej	1 point	
If this is the exchange for x Ft, one may write $x \cdot 0.975 \cdot 146 = 3\ 000\ 000$.	3 points	
Hence $x = 21 075 \text{ Ft.}$	1 point	
Total:	5 points	If there is a computation error then at most 4 points may be given.
16. c)		
1 NEW LEJ = $\frac{10000}{146}$ Ft = 68.49 Ft	3 points	Computation errors or rounding errors should be penalized by 1-1 point, respectively.
Total:	3 points	
16. d)	1	
There are $\binom{8}{4}$ ways to select four out of the eight	1 point	Stating that each selection is equally
coins so the number of outcomes is 70.		probable is not required.
Given are the four denominations any favourable		
outcome is of the form $90 = 50 + 20 + 10 + 10$.	1 point	
There is one way to pick the single 50, three ways to		
choose one out of the three 20-bani coins, finally		
there are six ways to choose the two 10-bani coins	2 points	
from a supply of four.		
There are $1 \cdot 3 \cdot 6 = 18$ ways for the cashier to collect		
the 90 NEW BANI change altogether.	1 point	
The probability is hence $\frac{18}{70} \approx 0.2571$.	1 point	
Total:	6 points	

17. a)			
$a_3 = 5 \cdot r^2,$			
$a_5 = 5 \cdot r^4.$		2 points	
Tot	al:	2 points	
17. b)			
$a_4 = 5 + 3d,$			
$a_{16} = 5 + 15d.$		2 point	
Tot	al:	2 points	
17. c)			
17. c) $5 \cdot r^2 = 5 + 3d$,			
$5 \cdot r^4 = 5 + 15d.$		2 points	
Eliminating <i>d</i> one gets $r^4 - 5 \cdot r^2 + 4 = 0.$		3 points	Squaring the first equation the common ratio can also be eliminated. The corresponding equation is $d(d-5)=0$.
This is a quadratic in r^2 . The quadratic formula yiel	ds	1 point	
$r^2 = 1 \text{ or } 4$.		2 points	
Hence r is either ± 1 or ± 2 .		2 points	At most 1 point may be given if the negative values are missing.
Accordingly, <i>d</i> is either 0 or 5.		1 points	
Checking the answers against the text of the question	n.	2 points	
Tot	al:	13 points	
18. a)			
The side of length 31.4 cm is the perimeter of the			
base of the cylinder: $31.4 = 2r \cdot \pi$.			
$r \approx 5 \text{ (cm)}$ 1 point			
$V_{\text{cylinder}} = r^2 \cdot \pi \cdot 14$ 1 point The volume of the cylinder is $\approx 1.1 \text{ dm}^3$. 1 point			
Total:	_		
Total: 4 points			

18. b)

Total	2 noints
I WIAI.	2 17071111.5

18. c)

Total:	6 points	
The solution is $R = \frac{28}{\sqrt{3}} \approx 16.2$ cm.	2 points	
$\frac{R^2}{4} + 14^2 = R^2.$	1 point	
triangle of sides $\frac{R}{2}$, 14 and R yields	1 point	
therefore $r = \frac{R}{2}$. Writing down Pithagoras' theorem for the right	1 point	be given if the candidate finds thet ratio as a result of any correct method.
R		*These 1+1 points should
perimeter of the base of the cone: $R \cdot \pi = 2r \cdot \pi$;	1 point*	there is no explanation.
The length $R \cdot \pi$ of the semicircle is equal to the		This point is due even if
The length $R \cdot \pi$ of the semicircle is equal to the		/TI

18. d)		
The area of the base circle is $r^2 \cdot \pi$.	1 point	$\approx 206 \text{ cm}^2$ (here $r \approx 8.1 \text{ cm}$)
The area of the superficies is equal to $\frac{R^2\pi}{2}$.	1 point	$\approx 412 \text{ cm}^2$
The ratio of the areas is $\frac{r^2 \pi}{0.5 \cdot R^2 \pi} = \frac{2r^2}{R^2}$	1 point	
Plugging $r = \frac{R}{2}$	1 point*	This step is not neccessary if the candidate is working with actual numbers.
The ratio of the areas is equal to $\frac{1}{2}$.	1 point	* 1+1 points should be given for the correct value of the ratio no matter what the underlying method is.
Total:	5 points	