Math 5110 Applied Linear Algebra

He Wang

he.wang@northeastern.edu

Homework 2.

- 1. Reading: [Gockenbach], Chapter 1 and Chapter 2.
- 2. Questions:

Questions 1-10 are about vector spaces.

Question 1. Let V be a vector space over \mathbb{R} and let $\vec{v} \in V$ be a nonzero vector. Is the subset $\{0, \vec{v}\}$ is a subspace of V? Prove your result.

No. $2\vec{v}$ is not in the subset. So the set $\{0, \vec{v}\}$ is not closed under scalar product.

Question 2. Determine whether or not the following set a subspace of \mathbb{R}^2 . Prove your result.

(1)
$$S = {\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}} \in \mathbb{R}^2 \mid x_1 x_2 = 0}.$$

- (2) $T = {\vec{x} \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \le 1}$ the unit disc in \mathbb{R}^2 .
 - (1) No, the set S is not closed under sum. For example, $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are in S, but their sum is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ which is not in S.
 - (2) No. the set T is not closed under scalar product. For example, $3 \begin{bmatrix} 0.5 \\ 0 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 0 \end{bmatrix}$ which is not in T.

Question 3. (1) Let $U_{3\times 3}$ be the set of all 3×3 upper triangular matrices with real entries. Is $U_{3\times 3}$ a subspace of $\mathbb{R}^{3\times 3}$? Prove your result.

- (2) Let $T_{3\times3}$ be the set of all 3×3 triangular matrices with real entries. Is $T_{3\times3}$ a subspace of $\mathbb{R}^{3\times3}$?
- (3) Let W be the set of all polynomials in the form $\{t + at^2\}$ where a is any real number. Is W a subspace of P the vector space of all polynomials.
 - (1) Yes. Verify three conditions.
 - (2) No. Sum is not closed.
 - (3) No. Not include zero.

Question 4. (Allow to use Matlab for **rref**) Let *S* be the following subspace of \mathbb{R}^4 :

$$S = \operatorname{Span} \left\{ \vec{b}_1 = \begin{bmatrix} -1 \\ -2 \\ 4 \\ -2 \end{bmatrix}, \ \vec{b}_2 = \begin{bmatrix} 0 \\ 1 \\ -5 \\ 4 \end{bmatrix} \right\}.$$

Determine if each vector belongs to *S*:

$$(1.) \ \vec{v} = \begin{bmatrix} -1\\0\\-6\\6 \end{bmatrix}; \quad (2.) \ \vec{w} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$

It is the same question as whether or not $x_1\vec{b}_1 + x_2\vec{b}_2 = \vec{v}$ or $x_1\vec{b}_1 + x_2\vec{b}_2 = \vec{w}$ has a solution. Set up augmented matrix $[\vec{b}_1 \ \vec{b}_2|\vec{v}]$ and $[\vec{b}_1 \ \vec{b}_2|\vec{w}]$ and find their **rref**. (1) Yes. (2) No.

Question 5. Let *S* be the following subspace of $\mathbb{R}^{2\times 2}$:

$$S = \operatorname{Span} \left\{ \vec{b}_1 = \begin{bmatrix} -1 & -2 \\ 4 & -2 \end{bmatrix}, \ \vec{b}_2 = \begin{bmatrix} 0 & 1 \\ -5 & 4 \end{bmatrix} \right\}.$$

Determine if each vector belongs to *S*:

$$(1.) \ \vec{v} = \begin{bmatrix} -1 & 0 \\ -6 & 6 \end{bmatrix}; \quad (2.) \ \vec{w} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

See above question.

It is the same question as whether or not $x_1\vec{b}_1 + x_2\vec{b}_2 = \vec{v}$ or $x_1\vec{b}_1 + x_2\vec{b}_2 = \vec{w}$ has a solution. (1) Yes. (2) No.

Question 6. Show that $S = \text{Span}\{\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}\}$ and $T = \text{Span}\{\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}\}$ are the same subspace of \mathbb{R}^3 .

It is clear that $S \subset T$.

We only need to show that $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \in S$. That is show that $\vec{v}_3 = x_1 \vec{u}_1 + x_2 \vec{u}_2$ has a solution.

Question 7. Suppose U and V are two subspaces of a vector space W.

- (1) Is the union of two subspace $U \cup V$ a subspace?
- (2) Is the intersection $U \cap V$ is a subspace?
 - (1) No. Sum is not closed.
 - (2) Yes. Verify three conditions:
 - 1. $\vec{0} \in U$ and $\vec{0} \in V$, so $\vec{0} \in U \cap V$
 - 2. If $\vec{u}, \vec{v} \in U \cap V$, then $\vec{u} + \vec{v} \in U$ and $\vec{u} + \vec{v} \in V$. So, $\vec{u} + \vec{v} \in U \cap V$.
 - 2. If $\vec{u} \in U \cap V$, then $k\vec{u} \in U$ and $k\vec{v} \in V$ for any $k \in F$. So, $k\vec{u} \in U \cap V$.

Question 8. Prove or disprove the following statement: if U, V, W are subspaces of a vector space, then $(U + V) \cap W = (U \cap W) + (V \cap W)$.

The statement is false in general. For example, consider the three subspaces $U = \operatorname{Span}(\begin{bmatrix} 1 \\ 0 \end{bmatrix})$, $V = \operatorname{Span}(\begin{bmatrix} 0 \\ 1 \end{bmatrix})$ and $W = \operatorname{Span}(\begin{bmatrix} 1 \\ 1 \end{bmatrix})$

$$U + V = \mathbb{R}^2$$
, $U \cap W = V \cap W = 0$. So, $(U + V) \cap W = W$ but $(U \cap W) + (V \cap W) = 0$

Question 9. Let U_1, U_2, U_3 be subspaces of a vector space such that $U_i \cap U_j = 0$ for $i \neq j$. Is it true that the subspace $U_1 + U_2 + U_3$ equals $U_1 \oplus U_2 \oplus U_3$? Justify your answer.

No.

For example, consider the three subspaces
$$U = \text{Span}(\begin{bmatrix} 1 \\ 0 \end{bmatrix})$$
, $V = \text{Span}(\begin{bmatrix} 0 \\ 1 \end{bmatrix})$ and $W = \text{Span}(\begin{bmatrix} 1 \\ 1 \end{bmatrix})$

Question 10. If V is a vector space with dimension n over the field \mathbb{Z}_2 of two elements, how many elements does V contain? Prove your result.

Solution. If n=0, then V=0 and so V has only one vector, the zero vector. Let n>0, and choose a basis of V, say $\{v_1,...,v_n\}$. Then each vector \vec{v} of V can be uniquely written in the form $\vec{v}=c_1\vec{v}_1+\cdots+c_n\vec{v}_n$ where c=0 or 1. Consequently there are 2^n possibilities for \vec{v} .

Question 11. If $\{\vec{u}, \vec{v}\}, \{\vec{v}, \vec{w}\}$ and $\{\vec{w}, \vec{u}\}$ are linearly independent subsets, is the subset $\{\vec{u}, \vec{v}, \vec{w}\}$ linearly independent?

Not in general. For example,
$$\vec{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \vec{v} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Question 12. Show that $\{\begin{bmatrix} -1\\1\\3 \end{bmatrix}, \begin{bmatrix} 1\\-1\\-2 \end{bmatrix}, \begin{bmatrix} -3\\3\\13 \end{bmatrix}\} \in \mathbb{R}^3$ is linearly dependent by writing one of the vectors as a linear combination of the others.

```
Solve x_1\vec{v}_1 + x_2\vec{v}_2 + x_3\vec{v}_3 = \vec{0}
We can get a solution x_1 = -7; x_2 = -4; x_3 = 1.
So, \vec{v}_3 = 7\vec{v}_1 + 4\vec{v}_2
```

Question 13. Let *A* be an $m \times n$ matrix with real entries, and suppose n > m. Prove the linear transformation defined by *A* is not injective. (That is, $A\vec{x} = \vec{0}$ has a nontrivial solution $x \in \mathbb{R}^n$.)

There are several different arguments for this question. $\operatorname{rank}(A) \le m < n$. So $\operatorname{Nullity}(A) = n - \operatorname{rank}(A) = n - m > 0$. So the null space has dimension ≥ 1 . So, $A\vec{x} = \vec{0}$ has a nontrivial solution $x \in \mathbb{R}^n$.

Question 14. Let
$$\vec{u}_1 = \begin{bmatrix} 1 \\ 4 \\ 0 \\ -5 \\ 1 \end{bmatrix}$$
; $\vec{u}_2 = \begin{bmatrix} 1 \\ 3 \\ 0 \\ -4 \\ 0 \end{bmatrix}$; $\vec{u}_3 = \begin{bmatrix} 0 \\ 4 \\ 1 \\ 1 \\ 4 \end{bmatrix}$ be vectors in \mathbb{R}^5 .

- (1) Show that $\vec{u}_1, \vec{u}_2, \vec{u}_3$ is linearly independent.
- (2) Extend $\vec{u}_1, \vec{u}_2, \vec{u}_3$ to a basis for \mathbb{R}^5 .

(1) Let
$$A = [\vec{u}_1 \ \vec{u}_2 \ \vec{u}_3]$$
. Then $\mathbf{rref}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. So. $\vec{u}_1, \vec{u}_2, \vec{u}_3$ is independent.

(2) You can try to add \vec{e}_4 and \vec{e}_5 , but we need to check that $\mathbf{rref}([\vec{u}_1 \ \vec{u}_2 \ \vec{u}_3 \ \vec{e}_4 \ \vec{e}_5]) = I_5$. An more general method is to use decomposition

 $\mathbb{R}^5 = \operatorname{Row}(A^T) \oplus \ker A^T$

where

$$A^T = \begin{bmatrix} 1 & 4 & 0 & -5 & 1 \\ 1 & 3 & 0 & -4 & 0 \\ 0 & 4 & 1 & 1 & 4 \end{bmatrix}$$

Question 15. Consider the linear subspaces
$$U$$
 and W of \mathbb{R}^4 spanned by $\vec{u}_1 := \begin{bmatrix} -1 \\ 3 \\ 1 \\ 0 \end{bmatrix}, \vec{u}_2 := \begin{bmatrix} 1 \\ 0 \\ 1 \\ -1 \end{bmatrix}, \vec{u}_3 := \begin{bmatrix} 2 \\ 2 \\ 1 \\ -3 \end{bmatrix}$

and
$$\vec{w}_1 := \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}$$
, $\vec{w}_2 := \begin{bmatrix} 1\\3\\1\\-1 \end{bmatrix}$, $\vec{w}_3 := \begin{bmatrix} 2\\-2\\-1\\-1 \end{bmatrix}$, $\vec{w}_4 := \begin{bmatrix} 2\\2\\1\\-1 \end{bmatrix}$ respectively.

Find the **dimensions** of the sum U + W, the intersection $U \cap W$, and the quotient spaces \mathbb{R}^4/U and \mathbb{R}^4/W .

```
Let A = [\vec{u}_1 \ \vec{u}_2 \ \vec{u}_3], B = [\vec{w}_1 \ \vec{w}_2 \ \vec{w}_3 \ \vec{w}_4], C = [\vec{u}_1 \ \vec{u}_2 \ \vec{u}_3 \ \vec{w}_1 \ \vec{w}_2 \ \vec{w}_3 \ \vec{w}_4]
Calculate rank(A) = 3, rank(A) = 3, rank(A) = 4. So, dim U = 3, dim W = 3 and dim(U + W) = 4. By dim(U + W) = \dim U + \dim W - \dim(U \cap W). dim U \cap W = 2. (\mathbb{R}^4/U) \oplus U = \mathbb{R}^4. So, dim \mathbb{R}^4/U = 1. Similarly, dim \mathbb{R}^4/W = 1.
```

Question 16. Let V be a vector space over a field \mathbb{K} , and let $\vec{v}_1, ..., \vec{v}_n$ be n linearly dependent vectors of V such that any n-1 of the vectors $\vec{v}_1, ..., \vec{v}_n$ are linearly independent. Show:

- (a) There exist scalars $\alpha_1, \ldots, \alpha_n$ in \mathbb{K} , all nonzero, such that $\sum_{i=1}^n \alpha_i \vec{v}_i = \vec{0}$.
- (b) If $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n are two sets of nonzero scalars in \mathbb{K} such both $\sum_{j=1}^n \alpha_j \vec{v}_j = 0$ and $\sum_{j=1}^n \beta_j \vec{v}_j = 0$ then there exists a nonzero scalar γ in K such that $\beta_j = \gamma \alpha_j$ for each j = 1, ..., n.

(a) Since $\vec{v}_1, ..., \vec{v}_n$ be *n* linearly dependent vectors, there exist non-trivial solution $\vec{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ such that

 $\sum_{j=1}^{n} c_j \vec{v}_j = \vec{0}$. Claim: all c_j are non-zero. Suppose one of c_j is zero, for example $c_i \neq 0$, then $\vec{v}_1, ..., \hat{\vec{v}_i}, ..., \vec{v}_n$ is dependent, which contradict the assumption that any n-1 of the vectors $\vec{v}_1, ..., \vec{v}_n$ are linearly independent.

(b) Suppose $\beta_1 = \gamma \alpha_1$. Then

$$\gamma \sum_{j=1}^{n} \alpha_j \vec{v}_j - \sum_{j=1}^{n} \beta_j \vec{v}_j = \vec{0}$$

Hence $\sum_{j=1}^{n} (\gamma \alpha_j - \beta_j) \vec{v}_j = \sum_{j=2}^{n} (\gamma \alpha_j - \beta_j) \vec{v}_j = \vec{0}$. Since n-1 of the vectors $\vec{v}_2, \vec{v}_3, ..., \vec{v}_n$ are linearly independent, we have $\gamma \alpha_j - \beta_j = 0$ for j = 2, 3, ..., n.

Question 17. Let *M* be the matrix $M = \begin{bmatrix} 3 & 3 & 2 & 8 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 3 & 5 \\ -2 & 4 & 6 & 8 \end{bmatrix}$, and let *U* and *W* be the subspaces of \mathbb{R}^4 generated

by rows 1 and 2 of M, and by rows 3 and 4 of M respectively. Find the dimensions of the subspaces U + W and $U \cap W$.

Note that U + W is just the row space of M, and so $\dim(U + W)$ equals the rank of M. Putting M in reduced row echelon form, we find that the rank is 3. Thus $\dim(U + W) = 3$.

Next $\dim(U) = 2$ since rows 1 and 2 of M are clearly linearly independent; similarly $\dim(W) = 2$. Hence $\dim(U \cap W) = \dim(U) + \dim(W) - \dim(U + W) = 1$.

Question 18. Define polynomials $f_1 = 1 - 2x + x^3$, $f_2 = x + x^2 - x^3$ and also $g_1 = 2 + 2x - 4x^2 + x^3$, $g_2 = 1 - x + x^2$, $g_3 = 2 + 3x - x^2$. Let $U = \text{Span}(f_1, f_2)$ and $V = \text{Span}(g_1, g_2, g_3)$ be subspaces of $P_4(\mathbb{R})$, polynomials of degree smaller than 4. Find a basis for U + V and a basis for $U \cap V$.

Use the ordered basis $1, x, x^2, x^3$, and write down the matrix whose columns are the coordinate vectors of f_1, f_2, g_1, g_2, g_3 .

$$M = \begin{bmatrix} 1 & 0 & 2 & 1 & 2 \\ -2 & 1 & 2 & -1 & 3 \\ 0 & 1 & -4 & 1 & -1 \\ 1 & -1 & 1 & 0 & 0 \end{bmatrix}$$

To find a basis of U + W, put M in reduced column echelon form, and delete all zero columns. The remaining columns will be the coordinate vectors of a set of elements in a basis of U + V. The reduced column echelon form of M is

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Hence a basis for U + W is $1, x, x^2, x^3$, which means that $U + W = P_4(\mathbb{R})$.

To find a basis for $U \cap W$, first find a basis for the null space of M (kernel of M). This turns out to be

$$\begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

The first two entries lead to a basis of $U \cap W$. Thus a basis for $U \cap W$ is $(-1)f_1 + (-1)f_2 = -1 + x - x^2$. (Reason?) It can also be calculated as $0g_1 + 1(g_2) + 0g_3$.