objective of the PPT

The title of the presentation

Last name first name student number Supervisor: name

School of XXXXX Beihang University

December 6, 2020

Outline

- 1 Introduction
- 2 Research background
- 3 Internsntent
 - Scenarstruction
 - Slid cool
 - Reincetrol
- 4 Conclusion

1 Introduction

About the company

LO GO

Name of the company Co.,Ltd.

- 1. well-kn supplof on-e rapiection solutions;
- 2. a complete R&D, produfter-sales see system;
- 3. ser the pubafety, food saand ml safety industries.

Fig. 1. Holeld exsive deter.

Fig. 2. Moile expive dettor.

Content of the intership

Norm (mathematics) From Wikipedia, the free encyclopedia

1. In mathematics, a norm is a function;

Fig. 3. UAV exsive detion.

Content of the intership

Norm (mathematics) From Wikipedia, the free encyclopedia

- 1. In mathematics, a norm is a function;
- 2. form of the triangle inequality, and is;

Fig. 3. UAV exsive detion.

Content of the intership

Norm (mathematics) From Wikipedia, the free encyclopedia

- 1. In mathematics, a norm is a function;
- form of the triangle inequality, and is;
- 3. two properties of a norm, but may;

Fig. 3. UAV exsive detion.

1 Introduction

Content of the intership

Norm (mathematics) From Wikipedia, the free encyclopedia

- 1. In mathematics, a norm is a function;
- form of the triangle inequality, and is;
- 3. two properties of a norm, but may;
- 4. g, obeys a form of the triangle ine;

Fig. 3. UAV exsive detion.

Outline

- 1 Introduction
- 2 Research background
- 3 Internsntent
 - Scenarstruction
 - Slid cool
 - Reincetrol
- 4 Conclusion

2 Research background

QuadroAV modeling

Translational motion:

$$\begin{cases} m\ddot{X}^w = u_{c1}(\cos\phi\sin\theta\cos\psi) \\ m\ddot{Y}^w = u_{c1}(\sin\phi\cos\psi) \\ m\ddot{Z}^w = mg - u_{c1}\cos\theta \end{cases} \tag{1}$$

Rotational motion:

$$\begin{cases} I_{xx}\ddot{\phi} = u_{c2}l + \dot{\theta}\dot{\psi}(-I_{zz}) \\ I_{yy}\ddot{\theta} = u_{c3}l + \dot{\phi}\dot{\psi}(I_{zz} -) \\ I_{zz}\ddot{\psi} = u_{c4} + \dot{\theta}(I_{xx} - I_{yy}) \end{cases}$$
 (2)

2 Research background

QuadroAV modeling

Translational motion:

$$\begin{cases} m\ddot{X}^w = u_{c1}(\cos\phi\sin\theta\cos\psi) \\ m\ddot{Y}^w = u_{c1}(\sin\phi\cos\psi) \\ m\ddot{Z}^w = mg - u_{c1}\cos\theta \end{cases} \tag{1}$$

Rotational motion:

$$\begin{cases} I_{xx}\ddot{\phi} = u_{c2}l + \dot{\theta}\dot{\psi}(-I_{zz}) \\ I_{yy}\ddot{\theta} = u_{c3}l + \dot{\phi}\dot{\psi}(I_{zz} -) \\ I_{zz}\ddot{\psi} = u_{c4} + \dot{\theta}(I_{xx} - I_{yy}) \end{cases}$$
 (2)

Reduced model:

$$\dot{p}_i(t) = v_i(t)
\dot{v}_i(t) = u_i(t)$$
(3)

2 Research background

QuadroAV modeling

Translational motion:

$$\begin{cases} m\ddot{X}^w = u_{c1}(\cos\phi\sin\theta\cos\psi) \\ m\ddot{Y}^w = u_{c1}(\sin\phi\cos\psi) \\ m\ddot{Z}^w = mg - u_{c1}\cos\theta \end{cases} \tag{1}$$

Rotational motion:

$$\begin{cases} I_{xx}\ddot{\phi} = u_{c2}l + \dot{\theta}\dot{\psi}(-I_{zz}) \\ I_{yy}\ddot{\theta} = u_{c3}l + \dot{\phi}\dot{\psi}(I_{zz}-) \\ I_{zz}\ddot{\psi} = u_{c4} + \dot{\theta}(I_{xx} - I_{yy}) \end{cases}$$
(2)

Reduced model:

$$\dot{p}_i(t) = v_i(t)$$

$$\dot{v}_i(t) = u_i(t)$$

State space representaion:

$$\dot{x}_i(t) = Ax_i(t) + Bu_i(t), \qquad (4)$$

(3)

Formation tracking

Fig. 4. Illustrof the ti forion tracking.

Outline

- 1 Introduction
- 2 Research background
- 3 Internsntent
 - Scenarstruction
 - Slid cool
 - Reincetrol
- 4 Conclusion

Sliding mode control

Fig. 5. Tratory of contnuous system.

Sliding mode control

Fig. 5. Tratory of contnuous system.

Fig. 6. Trajery of diete system.

Discrete-time SMC protocol

The following disibuted fortion procol is proposed,

$$u_{i}(k) = (K\bar{B}(d_{i} + a_{i0}))^{-1} \left(K\bar{B} \sum a_{ij} u_{j}(k) - \left[K\bar{A}(x_{i}(k) - \sum_{j=1, j \neq i}^{N} a_{ij} x_{j}(k)) - a_{i0} K\bar{A}x_{0}(k) - a_{i0} K\bar{B}\tilde{u}_{i0}(k) + \varepsilon T \operatorname{sgn}(s_{i}(k)) \right] - K\left((d_{i} + a_{i0}) f_{i}(k+1) - \sum_{j=1, j \neq i}^{N} a_{ij} \right) \right)$$

$$(5)$$

where $\tilde{u}_{i0}(k) = \tilde{u}_1 - \mathrm{sgn}(s_i(k))$, $\tilde{u}_1 = (u_{min})/2$ and $\tilde{u}_2 = (u_{max} - u_{min})/2$.

Simulation results

Fig. 7. Trajecto of seven UAin 40s in experiment 1.

Fig. 8. PositioAVs at 40s in experiment 1.

Reinforcement learning

Markon Process (MDP)

Fig. 9. The agection inion process.

Reward function

Denote d the distance between UAV and target.

Table 1: Reward function definition oracking task.

	Condition	Reward (R)
1	d < 0.05m	+50
2	d < 0.05m	+50
3	d < 0.05m	+50
4	d < 0.05m	+50
5	no other reward	-1

Dyna-Q algorithm

Training results

- \blacksquare Stage 1: Fixedt tracking, with (x,y)=(1.2m,-1.2m) ;
- \blacksquare Stage 2: Randracking, with $x,y \in [-3.6m,3.6m]$;

Training results

- \blacksquare Stage 1: Fixedt tracking, with (x,y)=(1.2m,-1.2m) ;
- Stage 2: Randracking, with $x, y \in [-3.6m, 3.6m]$;

Fig. 10. Stage 1.

Training results

- Stage 1: Fixedt tracking, with (x,y)=(1.2m,-1.2m) ;
- Stage 2: Randracking, with $x, y \in [-3.6m, 3.6m]$;

Fig. 11. Stage 2.

Fig. 10. Stage 1.

Formatng wi RL

- Leader UAV: circular mot r = 10m;
- Followers: tracking the learealize a square formation;

Formatng wi RL

- Leader UAV: circular mot r = 10m;
- Followers: tracking the learealize a square formation;

Fig. 12. Five UAVs before the formation.

Fig. 13. Positions of five UAVs before the formation.

Forma trackin RL

- LeadeAV: ciular mot with r = 10m;
- Follors: tng the lea realize a square formation;

Forma trackin RL

- LeadeAV: ciular mot with r = 10m;
- Follors: tng the lea realize a square formation;

Fig. 14. Five UAVs after the formation.

Fig. 15. Positions of five UAVs after the formation.

Outline

- 1 Introduction
- 2 Research background
- 3 Internsntent
 - Scenarstruction
 - Slid cool
 - Reincetrol
- 4 Conclusion

What I have donnterhip

- Utilization of timulator;
- Survey on the sle control theory;
- Survey on throl method with mulUAV system;
- RL algorithm trainingntation onplatform;

Self-evaluation

■ What I have learned

- Understanding of
- ► Ability to solve complexe problems;
- Quality of oral communication;

■ To be improved

- The ability to solve complems across fields and disciplines;
- ► The ability to integrate and n special environments;
- ► The ability to ask quality questions;

Thanks for your attention! Q& A