BRAZIL HOUSING

JABASTIN MICHAEL PRIYA F

AGENDA

- INTRODUCTION
- TOOLS
- VISUALIZATION
- RECOMMENDATION

INTRODUCTION

➤ Work From Home (WFH) has become the new normal for workers around the world. Several companies are allowing at least 40% of their employees to work from home permanently.

OBJECTIVE:

- ➤ Rio De Janeiro and Sao Paulo are among the most expensive cities to live in Brazil.
- Castro Brazila Inc., a top real estate management firm with a nationwide presence in Brazil, wishes to help people choose an alternate city to relocate.
- > As a data analyst, help the firm figure out suitable cities for relocation for bachelors, for mid-sized families, and for large families

TOOLS AND TECHNIQUES

- EXPLORATORY DATA ANALYSIS JUPYTER NOTEBOOK
- USER DEFINED FUNCTION
- IF CONDITION
- FOR LOOP
- Pandas
- Numpy

INFORMATION ABOUT DATASETS

INFORMATION

- It has 10692 rows and 13 columns
- Column are separated by Numerical and Categorical variable
- By using .info(), Find that there is no Null values and their datatypes
- There is No Missing Values in the Data Set.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10692 entries, 0 to 10691
Data columns (total 13 columns):
# Column Non-Null Count Dtype
 0 city 10692 non-null object
 1 area 10692 non-null int64
2 rooms 10692 non-null int64
3 bathroom 10692 non-null int64
4 parking spaces 10692 non-null int64
5 floor 10692 non-null int64
6 animal 10692 non-null object
7 furniture 10692 non-null object
8 hoa (R$) 10692 non-null int64
9 rent amount (R$) 10692 non-null int64
10 property tax (R$) 10692 non-null
int.64
11 fire insurance (R$) 10692 non-null
int64
12 total (R$) 10692 non-null int64
dtypes: int64(10), object(3)
memory usage: 1.1+ MB
```

DEFINING A CATEGORICAL AND NUMERICAL VARIABLE

- def separate(brazil_data):
- categorical=[]
- numerical=[]
- for columns in brazil_data.columns:
- if brazil_data[columns].nunique() < 40:
- categorical.append(columns)
- else:
- numerical.append(columns)
- return categorical, numerical
- categorical, numerical=separate(brazil_data)
- from tabulate import tabulate
- table=[categorical, numerical]
- print(tabulate({"Categorical Columns":categorical,
- "numerical Columns":numerical}, headers=['categorical','numerical']))

CATEGORICAL AND NUMERICAL VARIABLE COLUMNS

CATEGORICAL

- > CITY
- > ROOMS
- BATHROOMS
- PARKING SPACES
- > FLOOR
- > ANIMAL
- > FURNITURE

NUMERICAL

- AREA
- HOA
- RENT AMOUNT (R\$)
- PROPERTY TAX (R\$)
- FIRE INSURANCE (R\$)
- TOTAL (R\$)

DEFINING A FUNCTION FOR CATEGORICAL COLUMNS

- def fun_cat(col):
- if brazil_data[col].isnull().sum()>0:
- print(f"\n There are null values in {col} columns")
- print(f"{col}: Mode of {col} are {brazil_data[col].mode()[0]}")
- print(f"{col}: Unique Values in {col} are: {brazil_data[col].unique()}")
- print(f"{col}: Number of Missing values in {col} is {brazil_data[col].isnull().sum()}")

DEFINING A FUNCTION FOR NUMERICAL COLUMNS

```
def fun_num(col):
    if brazil_data[col].isnull().sum()>0:
        brazil_data[col].fillna(brazil_data[col].mean(),
inplace=True)
    print(f"{col}: Mean is {brazil_data[col].mean()}")
    print(f"{col}: Median is {brazil_data[col].median()}")
```

MEAN, MEDIAN AND MODE OF CATEGORICAL AND NUMERICAL COLUMNS

CATEGORICAL COLUMNS

- MODE OF CITY IS SAO PAULO
- MODE OF ROOMS IS 3.
- MODE OF BATHROOM IS 1
- MODE OF PARKING SPACES IS 1
- MODE OF FURNITURE IS NOT FURNISHED
- MODE OF PETS IS ACCEPT
- MODE OF FLOOR IS 0

NUMERICAL COLUMNS

- MEAN OF AREA IS 137.97
- MEDIAN IS 90
- MEAN OF HOA IS 1174.02
- MEDIAN OF HOA IS 560
- MEAN OF RENT AMOUNT IS 3896.24
- MEDIAN OF RENT AMOUNT IS 2661.0
- MEAN OF PROPERT TAX IS 366.70
- MEDIAN OF PEOPERTY TAX IS 125.0
- MEAN OF TOTAL COST IS 5228.78
- MEDIAN IS 5357.0
- MEAN OF FIRE INSURANCE IS 53.30
- MEDIAN OF FIRE INSURANCE IS 36.0

CITY VS RENT AMOUNT

- plt.figure(figsize=(10,6))
- sb.boxplot(data=brazil_data, x='city', y='rent amount (R\$)')
- plt.xticks(rotation=90)
- plt.xlabel('city')
- plt.ylabel('rent amount (R\$)')
- plt.title('Rent Amount by City')
- plt.show()

RECOMMENDATION: Campinas and Porto Alegre are the cheapest city with less rent amount

ROOMS VS PARKING SPACES

- sb.barplot(x='rooms', y='parking spaces' data=brazil_data, palette='pastel')
- plt.show()

RECOMMENDATION: The Parking space is higher when number of rooms increases on increase of rooms and that's true considering bigger Family would have more cars and need more parking spaces.

TOTAL COST FOR RENT IN DIFFERENT CITY

```
plt.figure(figsize=(8,6))
ax=sb.barplot(x='city', y='total (R$)', hue='rent amount
(R$)', data=brazil_data, palette='magma', edgecolor='red'
linewidth=2)
for bar in ax.patches:
     percentage = f"{round(bar.get_height(), 2)}"
    x=bar.get_x() + bar.get_width()/2
    y=bar.get_height()
    ax.annotate(percentage, (x,y), va='bottom',
ha='center')
plt.show()
```


RECOMMENDATION: THE TOTAL COST FOR RENT IN CITY OF PORTO ALEGRE IS CHEAPER THAN OTHER CITIES

CITY, TOTAL COST, FURNITURE

- fig,ax=plt.subplots(figsize=(10,6))
- ax=sb.barplot(x='city', y='total (R\$)',data=brazil_data, hue='furniture', palette='pastel', linewidth=2, linestyle='--')
- plt.title('City Wise furnished house/flat total (R\$)')
- for bar in ax.patches:
- percentage = f"{round(bar.get_height(), 2)}"
- x=bar.get_x() + bar.get_width()/2
- y=bar.get_height()
- ax.annotate(percentage, (x,y), va='bottom', ha='center')
- plt.show()

RECOMMENDATION: If someone looking for furnished house and that should be cheap is again Porto Alegre

CITY, TOTAL VS PET

- fig,ax=plt.subplots(figsize=(10,7))
- ax=sb.barplot(x='city', y='total (R\$)',data=brazil_data, hue='animal', palette='viridis', linewidth=2, linestyle='--')
- plt.title('City wise houses who accept pet and total (R\$) ')
- for bar in ax.patches:
- percentage = f"{round(bar.get_height(), 2)}"

- x=bar.get_x() + bar.get_width()/2
- y=bar.get_height()
- ax.annotate(percentage, (x,y), va='bottom', ha='center')
- plt.show()

RECOMMENDATIONS: Cities Porto Alegre and Campinas are almost accepts pets 50% and total cost is also not expensive

ROOMS, RENT AMOUNT VS FURNITURE

- plt.figure(figsize=(7,4))
- sb.lineplot(data=brazil_data, x='rooms', y='rent amount (R\$)', hue='furniture', palette='pastel', linewidth=2)
- plt.xlabel('rooms')
- plt.ylabel('rent amount (R\$)')
- plt.title('Rent Amount With Furnished rooms')
- plt.show()

RECOMMENDATIONS: The Two room set are really affordable which are furnished, otherwise the furnished homes are really expensive.

WHICH CITY HAS THE LOWEST PROPERTY TAX

- plt.figure(figsize=(8,6))
- sb.barplot(data=brazil_data, x='city', y='property tax (R\$)')
- plt.title('Bar Plot: City has a property tax (R\$)')
- plt.tight_layout()
- plt.show()

RECOMMENDATION: Porto Alegre has lowest Property tax and Campinus also have less property Tax

ROOMS, RENT AMOUNT AND CITY

- plt.figure(figsize=(10, 6))
- sb.pairplot(data=brazil_data, vars=(['rooms','rent amount (R\$)']), hue='city')
- plt.xlabel('Number of Rooms')
- plt.ylabel('Rent Amount')
- plt.suptitle('Rent Amount, Rooms by City')
- plt.show()

RECOMMENDATION: If we take room wise Sao Paulo can be considered. If we take rent amount (R\$) wise let consider Campinas

RECOMMENDATION

- > Campinas and Porto Alegre are the cheapest city with less rent amount
- > Porto Alegre has lowest Property tax and Campinus also have less property Tax
- ➤ The Total cost for rent in city of Porto Alegre is cheaper than other cities.
- ➤ If someone looking for furnished house and that should be cheap is again Porto Alegre
- Cities Porto Alegre and Campinas are almost accepts pets 50% and total cost is also not expensive
- The Two room set are really affordable which are furnished, otherwise the furnished homes are really expensive.
- ➤ If we take room wise Sao Paulo can be considered. If we take rent amount (R\$) wise let consider Campinas
- > The Parking space is higher when number of rooms increases on increase of rooms and that true considering bigger Family would have more cars and need more parking spaces.