Chapter 6a

Hyperbolic Functions - definitions and solving

We will see the definition and purpose of **hyperbolic functions** such as $\sinh x$, $\cosh x$, their inverses, and how we can manipulate them, such as solving equations, differentiating and integrating.

1:: Definition of hyperbolic functions and their sketches.

"Find the exact value of: tanh (ln 4)"

2 :: Inverse hyperbolic functions.

Prove that $\operatorname{arcosh} x = \ln\left(x + \sqrt{x^2 - 1}\right)$

3:: Hyperbolic Identities and Solving Equations

Solve for all real x $2 \cosh^2 x - 5 \sinh x = 5$

Hyperbolic Functions

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$\cosh x = \frac{1}{2} \left(e^x + e^{-x} \right)$$

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$\sinh x = \frac{1}{2}(e^x - e^{-x})$$

Using these defintions, find the definitions of:

 $\operatorname{sech} x$

tanh x

cosech x

coth x

Hyperbolic sine:

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$x \in \mathbb{R}$$

Say as "shine" of x

Hyperbolic cosine:

$$cosh x = \frac{e^x + e^{-x}}{2} \qquad x \in \mathbb{R}$$

Say as "cosh"

Hyperbolic tangent:

$$\tanh = \frac{\sinh x}{\cosh x} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

$$x \in \mathbb{R}$$

Say as "th-an"

Hyperbolic secant:

$$\operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}$$

$$x \in \mathbb{R}$$

Say as "setch"

Hyperbolic cosecant:

$$\operatorname{cosech} x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}}$$

$$x \in \mathbb{R}, x \neq 0$$

Say as "cosetch"

Hyperbolic cotangent:

$$\coth x = \frac{1}{\tanh x} = \frac{(e^{2x} + 1)}{e^{2x} - 1}$$

$$x \in \mathbb{R}, x \neq 0$$

Say as "coth"

Equations for hyperbolic functions

Calculate (using both your sinh button and using the formula) $sinh \ 3$

Write in terms of *e*:

cosech 3

Solve sinh x = 5

Sketching hyperbolic functions

Odd or Even?

Odd or Even?

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

To sketch $y = \tanh x$, consider the usual features when you sketch a graph.

$$\tanh x = \frac{\sinh x}{\cosh x}$$

When x = 0,

As $x \to \infty$,

As $x \to -\infty$,

Sketching the reciprocal hyperbolic functions

cosech (x)↑

sech (x)

 $y \uparrow$

[FP3 June 2011 Q5] The curve C_1 has equation $y = 3 \sinh 2x$, and the curve C_2 has equation $y = 13 - 3e^{2x}$.

(a) Sketch the graph of the curves C_1 and C_2 on one set of axes, giving the equation of any asymptote and the coordinates of points where the curves cross the axes.

(4)

Inverse Hyperbolic Functions

$$\sin^{-1} x = \arcsin x$$

$$sinh^{-1} x = arsinh x$$

etc.

Given that hyperbolic functions can be written in terms of e, it make sense that inverse hyperbolic can be expressed in terms of ln.

Prove that $arsinh x = \ln(x + \sqrt{x^2 + 1})$

Prove that $\operatorname{arcosh} x = \ln(x + \sqrt{x^2 - 1})$, $x \ge 1$

But recall from the graph that we only include positive values of y in the function to avoid it being one-to-many. Thus $arcosh\ x = \ln \left(x + \sqrt{x^2 - 1}\right)$ only.

1000 to 100 10 - 5-100 to 1

Prove that
$$artanh \ x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$
, $|x| < 1$

Summary

$$arsinh x = \ln\left(x + \sqrt{x^2 + 1}\right)$$

$$arcosh x = \ln\left(x + \sqrt{x^2 - 1}\right), \qquad x \ge 1$$

$$artanh x = \frac{1}{2}\ln\left(\frac{1 + x}{1 - x}\right), \qquad |x| < 1$$

Hyperbolic	Domain	Sketch	Inverse Hyperbolic	Domain	Sketch
$y = \sinh x$	$x \in \mathbb{R}$	\	y = arsinh x	$x \in \mathbb{R}$	
$y = \cosh x$	$x \ge 0$		y = arcosh x	$x \ge 1$	i
$y = \tanh x$	$x \in \mathbb{R}$	1	y = artanh x	x < 1	
$y = \operatorname{sech} x$	$x \ge 0$	1	$y = \operatorname{arsech} x$	$0 < x \le 1$	<u> </u>
y = cosech x	<i>x</i> ≠ 0		y = arcosech x	<i>x</i> ≠ 0	
$y = \coth x$	<i>x</i> ≠ 0	1	$y = \operatorname{arcoth} x$	x > 1	

Ex 6B

Hyperbolic Identities

Use the definitions of sinh and cosh to prove that...

$$\cosh^2 x - \sinh^2 x = 1$$

What else could we prove?

Prove the following identity using the definitions of $\sinh x$ and $\cosh x$

sinh(A + B) = sinh A cosh B + cosh A sinh B

Prove the following identity using the definitions of sinh x and cosh x

$$\cosh 2A = 1 + 2\sinh^2 A$$

Osborn's Rule

Are these the same, or different, to the trig identities?

$$sinh(A \pm B) = sinh A cosh B \pm cosh A sinh B$$

 $cosh(A \pm B) = cosh A cosh B \pm sinh A sinh B$

$$tanh(A \pm B) = \frac{sinh x}{cosh x} = \frac{tanh A + tanh B}{1 + tanh A tanh B}$$

We can get these identities from the normal sin/cos ones by:

Osborn's Rule:

- 1. Replacing $sin \rightarrow sinh$ and $cos \rightarrow cosh$
- 2. Negate any explicit or implied product of two sines.

$$\tan(A - B) =$$

$$\sin A \sin B \rightarrow \tan^2 A \rightarrow$$

$$cos2A =$$

Ex 6C Q1, 2

Solving Equations

You must to decide whether to use **hyperbolic identities** or **the definitions of hyperbolic functions.**

```
Solve for all real x

6 \sinh x - 2 \cosh x = 7
```

Solve for all real x $2 \cosh^2 x - 5 \sinh x = 5$

Solve for all real x $\cosh 2x - 5\cosh x + 4 = 0$

Double Angle

Double Angle
$\sin 2x = 2\sin x \cos x$
$\cos 2x = \cos^2 x - \sin^2 x$
$\cos 2x = 2\cos^2 x - 1$
$\cos 2x = 1 - 2\sin^2 x$
$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$

If $sinh x = \frac{3}{4}$, find the exact value of: a) cosh x

b) tanh x

c) $\sinh 2x$

Ex 6C Q3-9

Exam Questions

[FP3 June 2014 (I) Q3] Using the definitions of $\sinh x$ and $\cosh x$ in terms of exponentials,

(a) prove that

$$\cosh^2 x - \sinh^2 x \equiv 1$$

(2)

(5)

(b) find algebraically the exact solutions of the equation $2 \sinh x + 7 \cosh x = 9$ giving your answers as natural logarithms.

-1

[FP3 June 2011 Q5]

(b) Solve the equation $3 \sinh 2x = 13 - 3e^{2x}$, giving your answer in the form $\frac{1}{2} \ln k$, where k is an integer.

(5)

1	C 1	41		
1.	Solve	tne	eq	uation

$$6\cosh 2x + 4\sinh x = 7$$

giving your answers as exact logarithms.

(6)

7. (a) Using the definition of $\cosh x$ in terms of exponentials, prove that

 $4\cosh^3 x - 3\cosh x = \cosh 3x$

(3)

(b) Hence, or otherwise, solve the equation

$$\cosh 3x = 9 \cosh x$$

(4)

1. (a) Prove that

$$\tanh^{-1}(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$
 $-k < x < k$

stating the value of the constant k.

(5)

(b) Hence, or otherwise, solve the equation

$$2x = \tanh\left(\ln\sqrt{2 - 3x}\right) \tag{5}$$