Session 54: Congruence

- Congruences
- Properties of congruences

Congruence Relation

Definition: If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides a - b.

Notations

- The notation $a \equiv b \pmod{m}$ says that a is congruent to b modulo m.
- We say that $a \equiv b \pmod{m}$ is a **congruence** and that m is its **modulus**.
- If a is not congruent to b modulo m, we write $a \neq b \pmod{m}$

Example

Determine whether 17 is congruent to 5 modulo 6

Determine whether 24 and 14 are congruent modulo 6.

(mod m) and mod m Notations

The notations $a \equiv b \pmod{m}$ and $a \mod m = b$ are different.

- $a \equiv b \pmod{m}$ is a *relation* on the set of integers.
- In $a \mod m = b$, the notation \mod denotes a *function*.

Theorem 3: Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if $a \pmod{m} = b \pmod{m}$.

Corollary: Two integers are congruent mod m if and only if they have the same remainder when divided by m.

Theorem on Congruences

Theorem 4: Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that a = b + km.

Congruences of Sums and Products

```
Theorem 5: Let m be a positive integer.

If a \equiv b \pmod{m} and c \equiv d \pmod{m},

then a + c \equiv b + d \pmod{m} and ac \equiv bd \pmod{m}.
```

Example

Because $7 \equiv 2 \pmod{5}$ and $11 \equiv 1 \pmod{5}$

Algebraic Manipulation of Congruences

Multiplying both sides of a valid congruence by an integer preserves validity.

If $a \equiv b \pmod{m}$ then $c \cdot a \equiv c \cdot b \pmod{m}$, where c is any integer.

Proof: by Theorem 5 with d = c.

Adding an integer to both sides of a valid congruence preserves validity.

If $a \equiv b \pmod{m}$ then $c + a \equiv c + b \pmod{m}$, where c is any integer

Proof: by Theorem 5 with d = c.

Example

Since $14 \equiv 8 \pmod{6}$ also

Dividing both sides by 2 does not produce a valid congruence:

Dividing a congruence by an integer does not always produce a valid congruence!

Summary

- Definition of congruences
- mod m relation vs. mod function
- Congruences of arithmetic operations