Linear inequality representation of convex domains

Computational Intelligence, Lecture 7

by Sergei Savin

Spring 2021

CONTENT

- Convex polytopes
- Half-spaces
 - Definition
 - ▶ Construction. Simple case
 - ▶ Construction. General case
 - **▶** Combination
 - ► Formal description via inequalities
- Linear approximation of convex regions
- Homework

CONVEX POLYTOPES

Before defining what a convex polytope is, let us look at examples:

HALF-SPACES Definition

We can define half-space as a set of all points \mathbf{x} , such that $\mathbf{a}^{\top}\mathbf{x} \leq b$. It has a very clear geometric interpretation. In the following image, the filled space is **not** in the half space.

Construction. Simple case

Consider half-space that passes through the origin, and defined by its normal vector \mathbf{n} :

It is easy to see that this half-space can be defined as "all

Construction. General case

In the general case there is some distance between the boundary of the half-space and the origin, let's say d.

The same way we see, that the half space can be defined as "all vectors \mathbf{x} , such that $\mathbf{n} \cdot \mathbf{x} \leq d$ ". This is the same as making

Combination

We can define a region of space as an *intersection* of half-spaces $\mathbf{a}_i^{\top} \mathbf{x} \leq b_i$:

Formal description via inequalities

The last result allows us to write any convex polytope as a matrix inequality:

$$\mathbf{A}\mathbf{x} \le \mathbf{b} \tag{1}$$

And conversely, any matrix inequality (1) represents either an empty set or a convex polytope.

LINEAR APPROXIMATION OF CONVEX REGIONS

Some convex regions can be easily approximated using polytopes.

Which allows to represent constraints on \mathbf{x} to belong in such a region as a matrix inequality

HOMEWORK

Represent in matrix inequality form the following figures:

- Equilateral triangle
- A square
- Parallelepiped
- Trapezoid

Lecture slides are available via Moodle.

You can help improve these slides at: github.com/SergeiSa/Computational-Intelligence-Slides-Spring-2021

Check Moodle for additional links, videos, textbook suggestions.