Homework 1

Xie Zejian 11810105@mail.sustech.edu.cn

Department of Finance, SUSTech

Last compiled on 17:56, 08 October, 2021

Lemma 0.1. σ algebra \mathcal{A} can be seen as collection of numerical \mathcal{A} measurable function, formerly,

$$\mathcal{A} = \sigma \left\{ f : f \text{ is } \mathcal{A} \text{ meaurable} \right\} = \sigma(\bigcup_f \sigma f)$$

Proof. Recall that f is \mathcal{A} measurable (w.r.t borel \mathcal{B}) iff $\sigma f = f^{-1}(\mathcal{B}) \subset \mathcal{A}$, thus

$$\sigma(\bigcup_f \sigma f) \subset \mathcal{A}$$

On the other hand, for any $A\in\mathcal{A},\,\mathbf{1}_{_{A}}$ is measurable and hence:

$$\sigma(\bigcup_f \sigma f) \supset \bigcup_f \sigma(f) \supset \bigcup_{A \in \mathcal{A}} \sigma(\mathbf{1}_A) = \mathcal{A}$$

then claim follows.

Hence we can write $V \in \mathcal{A}$ to mean V is \mathcal{A} measurable without further comments.

Lemma 0.2. $V \in \mathcal{A} \iff \{A \leq r\} \in \mathcal{A} \text{ for any } r \in \mathbb{R}.$

Proof. \implies is immediately and \iff follows from collection of $[-\infty, r]$ generates \mathcal{B} .

For σ -algebras on stopping time, we have

 $\textbf{Theorem 0.1.}\ \ V\in\mathcal{F}_{\tau}\ \ \textit{iff}\ V\mathbf{1}_{\tau\leq t}\in\mathcal{F}_{t}\ \textit{for any}\ t\in\overline{T}.$

Proof.

$$\begin{split} V \in \mathcal{F}_{\tau} &\iff \{V > r\} \in \mathcal{F}_{\tau} \\ &\iff \{V > r\} \cap \{\tau \leq t\} \in \mathcal{F}_{t}, \forall t \\ &\iff \{V \mathbf{1}_{\tau \leq t} > r\} \in \mathcal{F}_{t}, \forall t \\ &\iff V \mathbf{1}_{\tau \leq t} \in \mathcal{F}_{t}, \forall t \end{split}$$

Similarly, we abuse \mathbb{F} following collection of process:

- 1. $X = \{X_t\}_{t \in T}$ is adapted to \mathbb{F} .
- 2. The path $t \mapsto X_t(\omega)$ is right continuous for every $\omega \in \Omega$ (RCLL or cadlag).

In such notations, we have the restatement of theorem 6 (Protter 2005):

Theorem 0.2. $\mathcal{F}_{\tau} = \{X_{\tau} : X \in \mathbb{F}\}$

Combine above theorems:

Theorem 0.3. Let σ and τ be stopping times of \mathbb{F} , then

- 1. $\sigma \wedge \tau$ and $\sigma \vee \tau$ are stopping time of \mathbb{F} .
- 2. $\sigma \leq \tau$ a.s. $\Longrightarrow \mathcal{F}_{\sigma} \subset \mathcal{F}_{\tau}$
- 3. In general, $\mathcal{F}_{\sigma \wedge \tau} = \mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}$ 4. If $V \in \mathcal{F}_{\sigma}$, then the following are in $\mathcal{F}_{\sigma \wedge \tau}$:

$$V\mathbf{1}_{\sigma < \tau}, V\mathbf{1}_{\sigma = \tau}, V\mathbf{1}_{\sigma < \tau}$$

Proof. 1 follows easily by noting

$$\{\tau \land \sigma \le t\} = \{\sigma \le t\} \cup \{\tau \le t\}$$

For 2, suppose $V \in \mathcal{F}_{\sigma}$, then $X_t = V \mathbf{1}_{\sigma \leq t}$ defines a process X adapted to \mathbb{F} by theorem 0.1 and it's right continuous obviously, thus $X \in \mathbb{F}$. Then $X_{\tau} = 0$ is $X_{\tau} = 0$. So theorem 0.2 and the claim follows.

To see 3, we show 4 first. As $\sigma \wedge \tau$ is stopping time, use $V \in \mathcal{F}_{\sigma}$ in 2, we have

$$X_{\sigma \wedge \tau} = V \mathbf{1}_{\sigma < \sigma \wedge \tau} = V \mathbf{1}_{\sigma < \tau} \in \mathcal{F}_{\sigma \wedge \tau}$$

take V=1 we have $\{\sigma \leq \tau\} \in \mathcal{F}_{\sigma \wedge \tau}$ and the others follows by symmetry and set operations.

Now let $H \in \mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}$ and $V = \mathbf{1}_{H}$, then 4 implies $V = V \mathbf{1}_{\sigma < \tau} + V \mathbf{1}_{\tau < \sigma} \in \mathcal{F}_{\sigma \cap \tau}$ and that shows $F_{\sigma} \cap \mathcal{F}_{\tau} \subset \mathcal{F}_{\sigma \cap \tau}$ $\mathcal{F}_{\sigma \wedge \tau}$. The other direction follows easily by noting $\sigma \wedge \tau$ are dominated by both τ and σ .

Exercise 0.1.

Solution. See theorem 0.3.2.

Exercise 0.2.

Solution. Let $\Omega = \mathbb{N}$, $\mathcal{F}_n = \sigma(\{1\}, \{2\}, \dots \{n\})$.

Let $S(\omega) = \omega$, T = 3, then $\{S = n\} = \{n\} \in \mathcal{F}_n$ thus both are stopping time. However,

$$\{T - S = 1\} = \{2\} \notin \mathcal{F}_1$$

therefore T-S isn't a stopping time.

Exercise 0.3.

 $\begin{array}{ll} \textit{Solution.} & \bullet & \sup_n \tau_n \colon \left\{ \sup_n \tau_n \leq t \right\} = \bigcap_n \left\{ \tau_n \leq t \right\} \in \mathcal{F}_t \\ & \bullet & \inf_n \tau_n \colon \left\{ \inf_n \tau_n < t \right\} = \bigcup_n \left\{ \tau_n < t \right\} \in \mathcal{F}_t \end{array}$

- $\limsup_{n\to\infty} = \inf_m \sup_{n>m} \tau_n$
- $\liminf_{n\to\infty} = \sup_m \inf_{n>m} \tau_n$

Exercise 0.4.

Solution. The first statement is clear by last exercise. By theorem 0.3.3 and monotonicity, we have

$$\mathcal{F}_{\tau} = \mathcal{F}_{\lim_{n \to \infty} \tau_n} = \lim_{n \to \infty} \mathcal{F}_{\wedge_{i \le n} \tau_i} = \lim_{n \to \infty} \bigcap_{i \le n} \mathcal{F}_i = \bigcap_n \mathcal{F}_n$$

Exercise 0.5.

Solution. Since $X \in L^p$, then $X \in L^1$

a. By Jensen's inequality

$$\mathbb{E}\left|M\right|^p = \mathbb{E}\left|\mathbb{E}\left|X\right|^p \leq \mathbb{E}\left|\mathbb{E}\left|X^p\right| = \mathbb{E}\left|X\right|^p < \infty$$

b. For $t \geq s \geq 0$,

$$\mathbb{E}_{s} M_{t} = \mathbb{E}_{s} \mathbb{E}_{t} X = \mathbb{E}_{s} X = M_{s}$$

thus M is a martingale. For the continuity, Jensen's inequality yields: $\forall p>1$:

$$\mathbb{E}\left|M_{t}^{n}-M_{t}\right|^{p}=\mathbb{E}\left|\mathbb{E}\left(M_{\infty}^{n}-X\right)\right|^{p}\leq\mathbb{E}\left.\mathbb{E}\left|M_{\infty}^{n}-X\right|^{p}=\mathbb{E}\left|M_{\infty}^{n}-X\right|$$

Take sup:

$$\sup_t \mathbb{E} \left| M^n_t - M_t \right| \leq \mathbb{E} \left| M^n_\infty - X \right| \to 0$$

For any $\varepsilon > 0$, we have

$$\begin{split} \mathbb{P}\left\{\sup_{t}\left|M_{t}^{n}-M_{t}\right|>\varepsilon\right\} &\leq \frac{1}{\varepsilon^{p}}\,\mathbb{E}\sup_{t}\left|M_{t}^{n}-M_{t}\right|^{p} & \text{(Chebychev's inequality)} \\ &\leq \frac{1}{\varepsilon^{p}}\left(\frac{p}{p-1}\right)^{p}\,\frac{\sup_{t}\mathbb{E}\left|M_{t}^{n}-M_{t}\right|^{p}}{\varepsilon^{p}} & \text{(Doob's inequality)} \\ &\to 0 \end{split}$$

Thus $M^n \to M$ uniformly in probability. As we can select a subsequence uniformly converges to M a.s., then M is continuous a.s. since it's limit of uniformly continuous paths.

Exercise 0.6.

Solution.

$$\begin{split} \mathbb{E}\left|N_{t}-\lambda t\right| &= \mathbb{E}\left(N_{t}-\lambda t\right) + 2\,\mathbb{E}\left(N_{t}-\lambda t\right)^{-} \\ &= 2\,\mathbb{E}\left(N_{t}-\lambda t\right)^{-} \\ &= 2\sum_{n=0}^{\lambda t}(\lambda t - n)e^{-\lambda t}\frac{(\lambda t)^{n}}{n!} \\ &= 2e^{-\lambda t}\frac{(\lambda t)^{\lambda t}}{(\lambda t - 1)!} \end{split}$$

Exercise 0.7.

Solution. As Poison process has stationery increments, for $t \geq s \geq 0$,

$$\mathbb{E}\left(N_t - N_s\right)^2 = \mathbb{E}\,N_{t-s}^2 = \operatorname{Var}N_{t-s} + \mathbb{E}\,N_{t-s} = \lambda(t-s)\left[1 + \lambda(t-s)\right]$$

As $s \to t$, that tends to 0 and the claim follows.

Reference

Protter, Philip E. 2005. Stochastic Differential Equations. Springer.