Sequences, Integer Functions

Andres Buritica Monroy

1 Comments

Even though sequence problems and integer function problems look cosmetically different, a sequence is just a function from \mathbb{N} to (some subset of) \mathbb{R} .

For divisibility problems, try to make one side of the divisibility prime.

If you can find infinitely many values, often you can sub a small unknown number and a large known one, and this gives you the small number.

2 Problems

- 1. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that f(n+1) > f(f(n)) for all positive integers n.
- 2. Prove that if a sequence $\{a_n\}_0^\infty$ of integers satisfies $a_0 = 0$ and $a_n = n a_{a_n}$ for all n, then $a_{n+2} > a_n$ for all n.
- 3. Given an integer $k \geq 2$, determine all functions f from the positive integers into themselves such that $f(x_1)! + f(x_2)! + \cdots + f(x_k)!$ is divisible by $x_1! + x_2! + \cdots + x_k!$ for all positive integers $x_1, x_2, \cdots x_k$.
- 4. Does there exist a strictly increasing function $f: \mathbb{N} \to \mathbb{N}$ such that f(1) = 2 and f(f(n)) = f(n) + n for all positive integers n?
- 5. Prove that all terms of the sequence $a_1 = a_2 = a_3 = 1$, $a_{n+1} = (1 + a_{n-1}a_n)/a_{n+2}$ are integers.
- 6. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that f(f(m)f(n)) = mn for all positive integers m and n.
- 7. Let $f: \mathbb{Z} \to \mathbb{N}$ be a function such that for any integers m and n, $f(m-n) \mid f(m) f(n)$. Prove that for all integers m and n, if $f(m) \leq f(n)$ then $f(m) \mid f(n)$.
- 8. Let n be a fixed positive integer. Let $\frac{a_1}{b_1}, \ldots, \frac{a_k}{b_k}$ be the rational numbers between 0 and 1 inclusive with denominators at most n, written in increasing order and lowest terms.
 - Prove that for each i, $a_{i+1}b_i a_ib_{i+1} = 1$.
 - Prove that the rational number x with smallest denominator such that $\frac{a_i}{b_i} < x < \frac{a_{i+1}}{b_{i+1}}$ is $\frac{a_i + a_{i+1}}{b_i + b_{i+1}}$.
 - Which pairs of numbers appear as consecutive b_i s?

- 9. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that for all $m, n \in \mathbb{N}$ we have $m^2 + f(n) \mid mf(m) + n$.
- 10. Let P(n) be the product of the digits of a positive integer n. Let n_1 be a positive integer, and define $n_{i+1} = n_i + P(n_i)$ for each $i \ge 1$. Prove that this sequence is eventually constant.
- 11. Find all functions $f: \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0}$ such that f(f(f(n))) = f(n+1) + 1 for all $n \in \mathbb{Z}_{\geq 0}$.
- 12. Find all functions $f:\mathbb{N}\to\mathbb{N}$ satisfying

$$f(n) + f(n+1) = f(n+2)f(n+3) - 2023$$

for all $n \in \mathbb{N}$.

3 Homework

- 1. Is there a sequence a_1, \ldots of primes such that for each i we have $10a_i \leq a_{i+1} < 10a_i + 9$?
- 2. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that $m^2 + f(n) \mid mf(m) + n$ for all positive integers m and n.
- 3. Is there a function $f: \mathbb{N} \to \mathbb{N}$ of positive integers such that $\gcd(a_m, a_n) = 1 \iff |m-n| = 1$?