

US012385379B2

(12) United States Patent

Yeung et al.

(54) METHODS FOR DETECTION AND MITIGATION OF WELL SCREEN OUT

(71) Applicant: BJ Energy Solutions, LLC, The

Woodlands, TX (US)

(72) Inventors: Tony Yeung, The Woodlands, TX (US);

Ricardo Rodriguez-Ramon, The Woodlands, TX (US); Joseph Foster,

The Woodlands, TX (US)

(73) Assignee: **BJ Energy Solutions, LLC**, The

Woodlands, TX (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 18/583,167

(22) Filed: Feb. 21, 2024

(65) Prior Publication Data

US 2025/0003321 A1 Jan. 2, 2025

Related U.S. Application Data

- (63) Continuation of application No. 17/991,007, filed on Nov. 21, 2022, now Pat. No. 11,939,854, which is a (Continued)
- (51) **Int. Cl.**E21B 43/267 (2006.01)

 E21B 21/08 (2006.01)

 (Continued)
- (52) **U.S. Cl.**CPC *E21B 43/267* (2013.01); *E21B 21/08*(2013.01); *E21B 43/12* (2013.01); *E21B 43/26*(2013.01);

(Continued)

(10) Patent No.: US 12,385,379 B2

(45) **Date of Patent:** *Aug. 12, 2025

(58) Field of Classification Search

CPC E21B 43/267; E21B 21/08; E21B 43/12; E21B 43/26; E21B 43/2607; G08B 21/182

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

1,716,049 A 6/1929 Greve 1,726,633 A 9/1929 Smith (Continued)

FOREIGN PATENT DOCUMENTS

AU 9609498 A 7/1999 AU 737970 B2 9/2001 (Continued)

OTHER PUBLICATIONS

Green Field Energy Services Natural Gas Driven Turbine Frac Pumps HHP Summit Presentation, Yumpu (Sep. 2012), https://www.yumpu.com/en/document/read/49685291/turbine-frac-pump-assembly-hhp ("Green Field").

(Continued)

Primary Examiner — James G Sayre (74) Attorney, Agent, or Firm — Norton Rose Fulbright US LLP

(57) ABSTRACT

Methods, systems, and controllers for detecting and mitigating well screen outs may include a controller configured to operate a fracturing pump to supply fluid at a discharge rate to a wellhead at a fracturing well site. The controller may also operate a blender positioned to deliver a blend of proppant and fluid to the fracturing pump. The controller may compare a fluid pressure increase rate to a preselected increase rate indicative of a potential well screen out. The controller may incrementally decrease the discharge rate of the fracturing pump and a flow rate of a blender when the fluid pressure increase rate and the fluid pressure is within a (Continued)

preselected percentage of a maximum wellhead pressure until the fluid pressure of the fluid supplied to the wellhead is stabilized.

19 Claims, 3 Drawing Sheets

Related U.S. Application Data

continuation of application No. 17/355,920, filed on Jun. 23, 2021, now Pat. No. 11,566,506, which is a continuation of application No. 17/303,841, filed on Jun. 9, 2021, now Pat. No. 11,208,881, which is a continuation of application No. 17/182,408, filed on Feb. 23, 2021, now Pat. No. 11,066,915.

- (60) Provisional application No. 62/705,050, filed on Jun. 9, 2020.
- (51) Int. Cl. E21B 43/12 (2006.01) E21B 43/26 (2006.01) G08B 21/18 (2006.01)
- (52) **U.S. Cl.** CPC *E21B 43/2607* (2020.05); *G08B 21/182* (2013.01)

(56) References Cited

2,178,662 A

U.S. PATENT DOCUMENTS A 11/1939 Hanson

2,170,002	4 1	11,1707	TIGHOOH
2,427,638	A	9/1947	Vilter et al.
2,498,229	A	2/1950	Adler
2,535,703	A	12/1950	Smith et al.
2,572,711	A	10/1951	Fischer
2,820,341	A	1/1958	Amann
2,868,004	A	1/1959	Runde
2,940,377	A	6/1960	Darnell et al.
2,947,141	A	8/1960	Russ
2,956,738	A	10/1960	Af et al.
3,068,796	Α	12/1962	Pfluger et al.
3,191,517	A	6/1965	Solzman
3,257,031	A	6/1966	Dietz
3,274,768	A	9/1966	Klein
3,332,491	A	7/1967	Flickinger
3,378,074	A	4/1968	Kiel
3,382,671	A	5/1968	Ehni, III
3,401,873	A	9/1968	Privon et al.
3,463,612	A	8/1969	Whitsel, Jr.
3,496,880	A	2/1970	Wolff
3,550,696	A	12/1970	Kenneday
3,560,053	A	2/1971	Ortloff
3,586,459	A	6/1971	Zerlauth
3,632,222	A	1/1972	Cronstedt
3,656,582	A	4/1972	Alcock
3,667,868	A	6/1972	Brunner
3,692,434	A	9/1972	Schnear
3,739,872	A	6/1973	McNair
3,757,581	A	9/1973	Mankin et al.
3,759,063	A	9/1973	Bendall
3,765,173	A	10/1973	Harris
3,771,916	A	11/1973	Flanigan et al.
3,773,438	A	11/1973	Hall et al.
3,781,135	A	12/1973	Nickell
3,786,835	A	1/1974	Finger
3,791,682	A	2/1974	Mitchell
3,796,045	A	3/1974	Foster-Pegg
3,814,549	A	6/1974	Cronstedt
3,820,922	A	6/1974	Sensinger et al.
3,847,511	A	11/1974	Cole
3,866,108	A	2/1975	Yannone et al.
3,875,380	A	4/1975	Rankin

6/1976 McLain et al. 3,963,372 A 4,010,613 A 3/1977 McInerney 4,019,477 A 4/1977 Overton 4,031,407 A 6/1977 Reed 4,047,569 A 9/1977 Tagirov et al. 4,050,862 A 9/1977 Buse 4,059,045 A 11/1977 McClain 4,086,976 A 5/1978 Holm et al. 4,117,342 A 9/1978 Melley, Jr. 4,173,121 11/1979 Yu 4,204,808 A 5/1980 Reese et al. 4,209,079 A 6/1980 Marchal et al. 4,209,979 7/1980 Woodhouse et al. 4,222,229 9/1980 Uram 4,239,396 A 12/1980 Arribau et al. 4.269,569 A 5/1981 Hoover 4,311,395 A 1/1982 Douthitt et al. 4,330,237 A 5/1982 Battah 4,341,508 A 7/1982 Rambin, Jr. 4,357,027 11/1982 Zeitlow 4,383,478 A 5/1983 Jones 4,402,504 A 9/1983 Christian 4,430,047 2/1984 2/1984 Ilg 4/1984 Fick et al. 4.442.665 A 7/1984 4,457,325 A Green 9/1984 4,470,771 Hall et al. 4,483,684 A 11/1984 Black 4,505,650 3/1985 Hannett et al. 4,574,880 A 3/1986 Handke 4,584,654 A 4/1986 Crane 4,620,330 A 11/1986 Izzi, Sr. 4.672.813 A 6/1987 David 4,754,607 7/1988 Mackay 11/1988 4.782.244 A Wakimoto 4,796,777 1/1989 Keller 4,869,209 A 9/1989 Young 4,913,625 A 4/1990 Gerlowski 4,983,259 A 1/1991 Duncan et al. 4,990,058 A 2/1991 Eslinger 5.032,065 A 7/1991 Yamamuro et al. 5,135,361 A 8/1992 Dion 5.167.493 A 12/1992 Kobari 9/1993 5,245,970 A Iwaszkiewicz et al. 5,275,041 A 1/1994 Poulsen 5,291,842 A 3/1994 Sallstrom et al. 5,326,231 A 7/1994 Pandeya et al. 5,362,219 A 11/1994 Paul et al. 5.482.116 A 1/1996 El-Rabaa et al. 5,511,956 A 4/1996 Hasegawa et al. 5,517,854 A 5/1996 Plumb et al. 7/1996 5,537,813 A Davis et al. 5,553,514 A 9/1996 Walkowc 5,560,195 A 10/1996 Anderson et al. 5,586,444 A 12/1996 Fung 5,622,245 A 4/1997 Reik et al. 5,626,103 A 5/1997 Haws et al. 5,634,777 6/1997 Albertin et al. 5,651,400 A 7/1997 Corts et al. 5,678,460 A 10/1997 Walkowc 5,717,172 2/1998 Griffin, Jr. et al. 5,720,598 A 2/1998 de Chizzelle 5,761,084 6/1998 Edwards 5,811,676 A 9/1998 Spalding et al. 5,839,888 A 11/1998 Harrison 5,846,062 12/1998 Yanagisawa et al. 3/1999 5.875.744 A Vallejos 11/1999 5,983,962 A Gerardot 5,992,944 A 11/1999 Hara 6,041,856 A 3/2000 Thrasher et al. 4/2000 Horner 6,050,080 A 6,067,962 A 5/2000 Bartley et al. 6,071,188 A 6/2000 O'Neill et al. 6,074,170 A 6/2000 Bert et al. 6,123,751 A 9/2000 Nelson et al. 6,129,335 A 10/2000 Yokogi 6,145,318 A 11/2000 Kaplan et al. 6,186,334 B1 2/2001 Dohmann et al. 6,230,481 B1 5/2001 Jahr 6,279,309 B1 8/2001 Lawlor et al.

(56)	Refe	enc	es Cited	8,763,583 8,770,329			Hofbauer et al.
	U.S. PATE	NT I	DOCUMENTS	8,784,081	В1	7/2014 7/2014	Blume
				8,789,601			Broussard et al.
6,321,860			Reddoch	8,794,307 8,801,394			Coquilleau et al. Anderson
6,334,746 6,367,548			Nguyen et al. Purvis et al.	8,851,186			Shampine et al.
6,401,472			Pollrich et al.	8,851,441			Acuna et al.
6,530,224			Conchieri	8,886,502 8,894,356			Walters et al. Lafontaine et al.
6,543,395 6,644,844			Green Neal et al.	8,905,056			Kendrick
6,655,922				8,951,019			Hains et al.
6,669,453			Breeden et al.	8,973,560 8,997,904		3/2015	Krug Cryer et al.
6,765,304 6,786,051			Baten et al. Kristich et al.	9,011,111		4/2015	
6,832,900				9,016,383			Shampine et al.
6,851,514	B2 2/20		Han et al.	9,032,620 9,057,247			Frassinelli et al. Kumar et al.
6,859,740 6,901,735			Stephenson et al. Lohn	9,037,247			Petersen
6,935,424			Lehman et al.	9,103,193	B2		Coli et al.
6,962,057			Kurokawa et al.	9,121,257 9,140,110			Coli et al. Coli et al.
7,007,966 7,047,747			Campion Tanaka	9,175,810			Hains et al.
7,047,747			ranaka Kopko	9,187,982	B2	11/2015	Dehring et al.
7,143,016	B1 11/20)6	Discenzo et al.	9,206,667			Khvoshchev et al.
7,222,015			Davis et al.	9,212,643 9,217,318			Deliyski Dusterhoft et al.
7,281,519 7,388,303			Schroeder et al. Seiver	9,222,346	B1	12/2015	
7,404,294	B2 7/20	96	Sundin	9,297,250			Dusterhoft et al.
7,442,239			Armstrong et al.	9,324,049 9,341,055			Thomeer et al. Weightman et al.
7,516,793 7,524,173			Dykstra Cummins	9,346,662			Van Vliet et al.
7,545,130			Latham	9,366,114			Coli et al.
7,552,903			Dunn et al.	9,376,786 9,394,829			Numasawa Cabeen et al.
7,563,076 7,563,413			Brunet et al. Naets et al.	9,395,049	B2		Vicknair et al.
7,574,325	B2 8/20)9	Dykstra	9,401,670	B2		Minato
7,581,379			Yoshida et al.	9,410,406 9,410,410		8/2016	Yuan Broussard et al.
7,594,424 7,614,239			Fazekas Herzog et al.	9,410,410			Jaeger et al.
7,627,416			Batenburg et al.	9,429,078	В1	8/2016	Crowe et al.
7,677,316	B2 3/20	10	Butler et al.	9,435,333 9,488,169			McCoy et al. Cochran et al.
7,721,521 7,730,711			Kunkle et al. Kunkle et al.	9,488,109			Liu et al.
7,779,961			Matte	9,512,783	B2	12/2016	Veilleux, Jr. et al.
7,789,452	B2 9/20		Dempsey et al.	9,534,473 9,546,652	B2	1/2017 1/2017	Morris et al.
7,836,949 7,841,394			Dykstra McNeel et al.	9,540,032			Ledbetter et al.
7,845,413			Shampine et al.	9,556,721	B2	1/2017	Jang et al.
7,861,679	B2 1/20	11	Lemke et al.	9,562,420			Morris et al.
7,886,702 7,900,724			Jerrell et al. Promersberger et al.	9,570,945 9,579,980			Fischer Cryer et al.
7,900,724			Bruins et al.	9,587,649	B2	3/2017	Oehring
7,938,151	B2 5/20		Hockner	9,593,710			Laimboeck et al. Oehring
7,955,056 7,980,357			Pettersson Edwards	9,611,728 9,617,808			Liu et al.
8,056,635			Shampine et al.	9,638,101	B1	5/2017	Crowe et al.
8,083,504	B2 12/20	11	Williams et al.	9,638,194			Wiegman et al.
8,099,942 8,186,334			Alexander et al. Ooyama	9,650,871 9,656,762			Oehring et al. Kamath et al.
8,196,555			Ooyama Ikeda et al.	9,689,316		6/2017	
8,202,354	B2 6/20	12	Iijima	9,695,808			Giessbach et al.
8,316,936			Roddy et al.	9,739,130 9,764,266		8/2017 9/2017	
8,336,631 8,388,317			Shampine et al. Sung	9,777,748	B2	10/2017	Lu et al.
8,414,673	B2 4/20	13	Raje et al.	9,803,467			Tang et al.
8,469,826	B2 6/20		Brosowske	9,803,793 9,809,308			Davi et al. Aguilar et al.
8,500,215 8,506,267			Gastauer et al. Gambier et al.	9,829,002		11/2017	
8,575,873	B2 11/20	13	Peterson et al.	9,840,897	B2	12/2017	Larson
8,616,005			Cousino, Sr.	9,840,901			Oehring et al.
8,621,873 8,641,399			Robertson et al. Mucibabic et al.	9,845,730 9,850,422			Betti et al. Lestz et al.
8,656,990			Kajaria et al.	9,856,131			Moffitt, Jr.
8,672,606	B2 3/20	14	Glynn et al.	9,863,279	B2	1/2018	Laing et al.
8,707,853			Dille et al.	9,869,305			Crowe et al.
8,708,667 8,714,253			Collingborn Sherwood et al.	9,871,406 9,879,609			Churnock et al. Crowe et al.
8,757,918			Ramnarain et al.	RE46,725			Case et al.

(56)	Referen	ces Cited	10,598,258 10,605,060			Oehring et al. Chuprakov et al.
U.S	. PATENT	DOCUMENTS	10,610,842		4/2020	
			10,662,749			Hill et al.
9,893,500 B2	2/2018	Oehring et al.	10,677,961			Chen et al.
9,893,660 B2		Peterson et al.	10,711,787		7/2020	
9,897,003 B2		Motakef et al.	10,738,580 10,753,153			Fischer et al. Fischer et al.
9,920,615 B2 9,945,365 B2		Zhang et al. Hernandez et al.	10,753,165			Fischer et al.
9,964,052 B2		Millican et al.	10,760,416			Weng et al.
9,970,278 B2		Broussard et al.	10,760,556			Crom et al.
9,981,840 B2	5/2018		10,794,165			Fischer et al.
9,995,102 B2		Dille et al.	10,794,166 10,801,311			Reckels et al. Cui et al.
9,995,218 B2 10,008,880 B2		Oehring et al. Vicknair et al.	10,815,764			Yeung et al.
10,008,912 B2		Davey et al.	10,815,978		10/2020	
10,018,096 B2		Wallimann et al.	10,830,032			Zhang et al.
10,020,711 B2		Oehring et al.	10,830,225 10,851,633		11/2020 12/2020	
10,024,123 B2		Steffenhagen et al. Wendorski et al.	10,859,203			Cui et al.
10,029,289 B2 10,030,579 B2		Austin et al.	10,864,487			Han et al.
10,036,238 B2		Oehring	10,865,624			Cui et al.
10,040,541 B2		Wilson et al.	10,865,631			Zhang et al.
10,060,293 B2		Del Bono	10,870,093 10,871,045			Zhong et al. Fischer et al.
10,060,349 B2 10,077,933 B2		Morales Alvarez et al. Nelson et al.	10,871,043			Enya et al.
10,077,933 B2 10,082,137 B2		Graham et al.	10,895,202			Yeung et al.
10,094,366 B2	10/2018		10,900,475		1/2021	Weightman et al.
10,100,827 B2		Devan et al.	10,907,459		2/2021	Yeung et al.
10,107,084 B2		Coli et al.	10,914,139 10,920,538		2/2021	Shahri et al. Rodriguez Herrera et al.
10,107,085 B2		Coli et al.	10,920,552			
10,114,061 B2 10,119,381 B2		Frampton et al. Oehring et al.	10,927,774			Cai et al.
10,125,750 B2		Pfaff et al.	10,927,802			Oehring et al.
10,134,257 B2		Zhang et al.	10,954,770			Yeung et al.
10,138,098 B2		Sørensen et al.	10,954,855 10,961,614			Ji et al. Djavanroodi
10,151,244 B2		Giancotti et al.	10,961,914			Yeung et al.
10,161,423 B2 10,174,599 B2	1/2018	Rampen et al. Shampine et al.	10,961,912			Yeung et al.
10,184,397 B2		Austin et al.	10,961,914	B1	3/2021	Yeung et al.
10,196,258 B2		Kalala et al.	10,961,993			Ji et al.
10,221,856 B2		Hernandez et al.	10,961,995			Mayorca Yeung et al.
10,227,854 B2	3/2019		10,968,837 10,982,523			Hill et al.
10,227,855 B2 10,246,984 B2		Coli et al. Payne et al.	10,989,019			Cai et al.
10,247,182 B2		Zhang et al.	10,989,180			Yeung et al.
10,253,598 B2	4/2019	Crews et al.	10,995,564			Miller et al.
10,254,732 B2		Oehring et al.	11,002,189 11,008,950		5/2021	Yeung et al. Ethier et al.
10,267,439 B2		Pryce et al. Hinderliter	11,005,930			Yeung et al.
10,280,724 B2 10,287,943 B1	5/2019		11,015,536			Yeung et al.
10,288,519 B2		De La Cruz	11,015,594			Yeung et al.
10,303,190 B2	5/2019		11,022,526			Yeung et al.
10,305,350 B2		Johnson et al.	11,028,677 11,035,213			Yeung et al. Dusterhoft et al.
10,316,832 B2 10,317,875 B2	6/2019 6/2019	Pandurangan et al.	11,035,214	B2		Cui et al.
10,329,888 B2		Urbancic et al.	11,047,379	B1		Li et al.
10,337,402 B2	7/2019	Austin et al.	11,053,853			Li et al.
10,358,035 B2		Cryer et al.	11,060,455 11,066,915			Yeung et al. Yeung et al.
10,371,012 B2 10,374,485 B2		Davis et al. Morris et al.	11,068,455			Shabi et al.
10,374,485 B2 10,378,326 B2		Morris et al.	11,085,281			Yeung et al.
10,393,108 B2		Chong et al.	11,085,282		8/2021	Mazrooee et al.
10,407,990 B2		Oehring et al.	11,092,152		8/2021	Yeung et al.
10,408,031 B2		Oehring et al.	11,098,651 11,105,250			Yeung et al. Zhang et al.
10,415,348 B2 10,415,557 B1	9/2019	Zhang et al. Crowe et al.	11,105,266			Zhou et al.
10,415,562 B2	9/2019		11,109,508			Yeung et al.
10,422,207 B2		Aidagulov et al.	11,111,768			Yeung et al.
RE47,695 E	11/2019	Case et al.	11,125,066			Yeung et al.
10,465,689 B2	11/2019		11,125,156			Zhang et al.
10,478,753 B1		Elms et al.	11,129,295 11,143,000		9/2021	Yeung et al. Li et al.
10,526,882 B2 10,563,649 B2		Oehring et al. Zhang et al.	11,143,000			Dusterhoft et al.
10,570,704 B2		Colvin et al.	11,143,006			Zhang et al.
10,577,908 B2		Kisra et al.	11,149,533	B1	10/2021	Yeung et al.
10,577,910 B2	3/2020	Stephenson	11,149,726	B1		Yeung et al.
10,584,645 B2	3/2020	Nakagawa et al.	11,156,159			Yeung et al.
10,590,867 B2	3/2020	Thomassin et al.	11,168,681	B2	11/2021	Boguski et al.

(56)	Referen	ces Cited	2005/0226754			Orr et al.
ZII	PATENT	DOCUMENTS	2005/0274134 2006/0061091			Ryu et al. Osterloh
0.5.	IMILITI	DOCUMENTS	2006/0062914			Garg et al.
11,174,716 B1	11/2021	Yeung et al.	2006/0155473		7/2006	Soliman et al.
11,193,360 B1	12/2021	Yeung et al.	2006/0196251		9/2006	
11,193,361 B1	12/2021	Yeung et al.	2006/0211356 2006/0228225		10/2006	Grassman Rogers
11,205,880 B1 11,205,881 B2	12/2021 12/2021	Zhou Makino	2006/0260331			Andreychuk
11,203,881 B2 11,208,879 B1		Yeung et al.	2006/0272333		12/2006	
11,208,953 B1		Yeung et al.	2007/0029090			Andreychuk et al.
11,220,895 B1		Yeung et al.	2007/0041848			Wood et al. Keller et al.
11,236,739 B2		Yeung et al.	2007/0066406 2007/0098580			Petersen
11,242,737 B2 11,243,509 B2		Zhang et al. Cai et al.	2007/0107981			Sicotte
11,251,650 B1		Liu et al.	2007/0125544	A1		Robinson et al.
11,261,717 B2	3/2022	Yeung et al.	2007/0169543			Fazekas
11,268,346 B2		Yeung et al.	2007/0181212 2007/0272407		8/2007	Lehman et al.
11,280,266 B2		Yeung et al. Dille et al.	2007/0272407		12/2007	
11,306,835 B1 RE49,083 E		Case et al.	2007/0295569			Manzoor et al.
11,319,791 B2*		Yeung E21B 21/08	2008/0006089			Adnan et al.
11,339,638 B1	5/2022	Yeung et al.	2008/0041594			Boles et al.
11,346,200 B2		Cai et al.	2008/0098891 2008/0161974		7/2008	Feher et al.
11,373,058 B2 RE49,140 E		Jaaskelainen et al. Case et al.	2008/0101974			Waryck et al.
11,377,943 B2		Kriebel et al.	2008/0229757			Alexander et al.
RE49,155 E		Case et al.	2008/0264625		10/2008	
RE49,156 E	8/2022	Case et al.	2008/0264649			Crawford
11,401,927 B2		Li et al.	2008/0298982 2009/0053072			Pabst et al. Borgstadt et al.
11,428,165 B2		Yeung et al. Li et al.	2009/0033072			Busekros et al.
11,441,483 B2 11,448,122 B2		Feng et al.	2009/0068031			Gambier et al.
11,466,680 B2		Yeung et al.	2009/0092510			Williams et al.
11,480,040 B2		Han et al.	2009/0124191			Van Becelaere
11,492,887 B2		Cui et al.	2009/0178412 2009/0212630		7/2009	Spytek Flegel et al.
11,499,405 B2 11,506,039 B2		Zhang et al. Zhang et al.	2009/0212030			Wilkes et al.
11,512,570 B2		Yeung et al.	2009/0252616			Brunet et al.
11,519,395 B2		Zhang et al.	2009/0308602			Bruins et al.
11,519,405 B2		Deng et al.	2010/0019626		1/2010	
11,530,602 B2		Yeung et al.	2010/0071899 2010/0218508			Coquilleau et al. Brown et al.
11,549,349 B2 11,555,390 B2		Wang et al. Cui et al.	2010/0224365		9/2010	
11,555,756 B2		Yeung et al.	2010/0300683			Looper et al.
11,557,887 B2		Ji et al.	2010/0310384			Stephenson et al.
11,560,779 B2	1/2023	Mao et al.	2011/0030963 2011/0041681		2/2011	Demong et al. Duerr
11,560,845 B2		Yeung et al.	2011/0041081			Gambier et al.
11,572,775 B2 11,575,249 B2	2/2023	Mao et al. Ji et al.	2011/0054704			Karpman et al.
11,592,020 B2		Chang et al.	2011/0067857		3/2011	Underhill et al.
11,596,047 B2	2/2023	Liu et al.	2011/0085924		4/2011	Shampine et al.
11,598,263 B2	3/2023	Yeung et al.	2011/0120702 2011/0120705		5/2011	Walters et al.
11,603,797 B2 11,607,982 B2		Zhang et al. Tian et al.	2011/0120706		5/2011	Craig
11,608,726 B2		Zhang et al.	2011/0120718		5/2011	
11,624,326 B2	4/2023	Yeung et al.	2011/0125471			Craig et al.
11,629,583 B2		Yeung et al.	2011/0125476 2011/0146244		5/2011	Craig Farman et al.
11,629,589 B2 11,649,766 B1		Lin et al. Yeung et al.	2011/0146244			Farman et al.
11,649,766 B1 11,649,819 B2		Gillispie	2011/0173991			Dean et al.
11,662,384 B2		Liu et al.	2011/0197988			Van Vliet et al.
11,668,173 B2	6/2023	Zhang et al.	2011/0241888			Lu et al.
11,668,289 B2		Chang et al.	2011/0265443 2011/0272158		11/2011	Ansari et al.
11,677,238 B2 2002/0126922 A1		Liu et al.	2012/0023973			Mayorca
2002/0120922 A1 2002/0197176 A1	12/2002	Cheng et al.	2012/0048242		3/2012	
2003/0031568 A1	2/2003		2012/0085541			Love et al.
2003/0061819 A1		Kuroki et al.	2012/0137699			Montagne et al.
2003/0161212 A1		Neal et al.	2012/0179444			Ganguly et al. Chillar et al.
2004/0016245 A1 2004/0074238 A1		Pierson Wantanabe et al.	2012/0192542 2012/0199001			Chillar et al.
2004/0074238 A1 2004/0076526 A1		Fukano et al.	2012/0199001			Anderl et al.
2004/0187950 A1		Cohen et al.	2012/0255734			Coli et al.
2004/0219040 A1		Kugelev et al.	2012/0310509			Pardo et al.
2005/0051322 A1	3/2005	Speer	2012/0324903			Dewis et al.
2005/0056081 A1	3/2005		2013/0068307			Hains et al.
2005/0139286 A1		Poulter et al.	2013/0087045		4/2013	
2005/0196298 A1	9/2003	Manning	2013/0087945	AI	4/2013	Kusters et al.

(56)	Referen	ices Cited	2016/0195082 2016/0215774			Wiegman et al. Oklejas et al.
U.S	. PATENT	DOCUMENTS	2016/0213774			Lestz et al.
0.0		DOCOMENTO	2016/0244314			Van Vliet et al.
2013/0134702 A1	5/2013	Boraas et al.	2016/0248230			Tawy et al.
2013/0140031 A1		Cohen et al.	2016/0253634 2016/0258267			Thomeer et al. Payne et al.
2013/0189915 A1		Hazard	2016/0238207			Mazrooee et al.
2013/0205798 A1 2013/0233165 A1		Kwok et al. Matzner et al.	2016/0265331			Weng et al.
2013/0255953 A1	10/2013		2016/0273328	A1		Oehring
2013/0259707 A1	10/2013		2016/0273346			Tang et al.
2013/0284455 A1		Kajaria et al.	2016/0290114 2016/0319650			Ochring et al.
2013/0300341 A1		Gillette, II	2016/0319030			Oehring et al. Djikpesse et al.
2013/0306322 A1 2014/0000668 A1		Sanborn et al. Lessard	2016/0348479			Oehring et al.
2014/0000003 A1 2014/0010671 A1		Cryer et al.	2016/0369609	A 1		Morris et al.
2014/0013768 A1		Laing et al.	2017/0009905			Arnold
2014/0032082 A1		Gehrke et al.	2017/0016433		1/2017	Chong et al.
2014/0044517 A1		Saha et al.	2017/0030177 2017/0038137			Oehring et al. Turney
2014/0048253 A1 2014/0090729 A1		Andreychuk Coulter et al.	2017/0045055			Hoefel et al.
2014/0090742 A1		Coskrey et al.	2017/0051598			Ouenes
2014/0094105 A1		Lundh et al.	2017/0052087			Faqihi et al.
2014/0095114 A1		Thomeer et al.	2017/0074074			Joseph et al.
2014/0095554 A1		Thomeer et al.	2017/0074076 2017/0074089			Joseph et al. Agarwal et al.
2014/0123621 A1 2014/0130422 A1		Driessens et al. Laing et al.	2017/0074089			Lammers
2014/0138079 A1		Broussard et al.	2017/0089189			Norris et al.
2014/0144641 A1		Chandler	2017/0114613			Lecerf et al.
2014/0147291 A1	5/2014	Burnette	2017/0114625			Norris et al.
2014/0158345 A1		Jang et al.	2017/0122310 2017/0131174			Ladrón de Guevara Enev et al.
2014/0174097 A1		Hammer et al.	2017/01311/4			Oehring et al.
2014/0196459 A1 2014/0216736 A1		Futa et al. Leugemors et al.	2017/0177992		6/2017	
2014/0219824 A1		Burnette	2017/0191350			Johns et al.
2014/0250845 A1	9/2014	Jackson et al.	2017/0218727			Oehring et al.
2014/0251623 A1		Lestz et al.	2017/0226839 2017/0226842			Broussard et al. Omont et al.
2014/0262232 A1		Dusterhoft et al.	2017/0226842			Zhang et al.
2014/0277772 A1 2014/0290266 A1		Lopez et al. Veilleux, Jr. et al.	2017/0227002			Mikulski et al.
2014/0318638 A1		Harwood et al.	2017/0233103	A1		Teicholz et al.
2014/0322050 A1		Marette et al.	2017/0234165			Kersey et al.
2015/0027730 A1		Hall et al.	2017/0234308 2017/0241336			Buckley Jones et al.
2015/0075778 A1		Walters et al.	2017/0241530			Ahmad
2015/0078924 A1 2015/0096739 A1		Zhang et al. Ghasripoor et al.	2017/0247995			Crews et al.
2015/0101344 A1		Jarrier et al.	2017/0248034			Dzieciol et al.
2015/0114652 A1		Lestz et al.	2017/0248208			Tamura
2015/0129210 A1		Chong et al.	2017/0248308 2017/0254186			Makarychev-Mikhailov et al.
2015/0135659 A1		Jarrier et al.	2017/0234180			Aidagulov et al. Schmidt
2015/0159553 A1 2015/0176387 A1		Kippel et al. Wutherich	2017/0288400			Williams
2015/0192117 A1		Bridges	2017/0292409	A1		Aguilar et al.
2015/0204148 A1		Liu et al.	2017/0302135		10/2017	
2015/0204174 A1		Kresse et al.	2017/0305736			Haile et al.
2015/0204322 A1		Iund et al.	2017/0306847 2017/0306936			Suciu et al. Dole et al.
2015/0211512 A1 2015/0214816 A1	7/2013	Wiegman et al.	2017/0322086			Luharuka et al.
2015/0217672 A1		Shampine et al.	2017/0328179	A1		Dykstra et al.
2015/0226140 A1		Zhang et al.	2017/0333086		11/2017	
2015/0252661 A1	9/2015		2017/0334448			Schwunk Rabingan et al
2015/0275891 A1	10/2015	Chong	2017/0335842 2017/0350471			Robinson et al. Steidl et al.
2015/0337730 A1 2015/0340864 A1		Kupiszewski et al. Compton	2017/0356470		12/2017	
2015/0345385 A1		Santini	2017/0370199		12/2017	Witkowski et al.
2015/0369351 A1		Hermann et al.	2017/0370480			Witkowski et al.
2016/0032703 A1		Broussard et al.	2018/0016895			Weng et al.
2016/0032836 A1		Hawkinson et al.	2018/0034280 2018/0038216			Pedersen Zhang et al.
2016/0076447 A1		Merlo et al. Alzahabi et al.	2018/0038210			Louven et al.
2016/0090823 A1 2016/0102581 A1		Del Bono	2018/0041093			Miranda
2016/0105022 A1	4/2016	Oehring et al.	2018/0045202		2/2018	
2016/0108705 A1		Maxwell et al.	2018/0058171		3/2018	Roesner et al.
2016/0108713 A1		Dunaeva et al.	2018/0087499			Zhang et al.
2016/0123185 A1		Le Pache et al.	2018/0087996			De La Cruz
2016/0168979 A1		Zhang et al.	2018/0149000			Roussel et al.
2016/0177675 A1 2016/0177945 A1		Morris et al.	2018/0156210 2018/0172294		6/2018	Oehring et al.
2016/017/943 A1 2016/0186671 A1		Byrne et al. Austin et al.	2018/01/2294 2018/0183219			Oehring et al.
2010/01000/1 AI	0,2010	. Indim et ai.	2010/0100219		J/2010	- ming ve ai.

(56)	Referen	ces Cited	2019/0309585			Miller et al.
U.S.	PATENT	DOCUMENTS	2019/0316447 2019/0316456			Oehring et al. Beisel et al.
0.5.	17111111	DOCOMENTO	2019/0323337			Glass et al.
2018/0186442 A1	7/2018	Maier	2019/0330923			Gable et al.
2018/0187662 A1		Hill et al.	2019/0331117 2019/0337392			Gable et al. Joshi et al.
2018/0209415 A1		Zhang et al.	2019/0337392			Curry et al.
2018/0223640 A1 2018/0224044 A1		Keihany et al. Penney et al.	2019/0345920			Surjaatmadja et al.
2018/0229998 A1	8/2018		2019/0353103	A1		Roberge
2018/0230780 A1		Klenner et al.	2019/0356199			Morris et al.
2018/0252084 A1		Nguyen et al.	2019/0376449		12/2019	Carrell Hinderliter
2018/0258746 A1		Broussard et al.	2019/0383123 2020/0003205			Stokkevåg et al.
2018/0266412 A1 2018/0278124 A1		Stokkevåg et al. Oehring et al.	2020/0011165			George et al.
2018/0283102 A1	10/2018		2020/0040878		2/2020	
2018/0283618 A1	10/2018		2020/0049136			Stephenson
2018/0284817 A1		Cook et al.	2020/0049153 2020/0071998			Headrick et al. Oehring et al.
2018/0290877 A1	10/2018		2020/0071338			Marica
2018/0291781 A1 2018/0298731 A1	10/2018 10/2018		2020/0088202			Sigmar et al.
2018/0298735 A1	10/2018		2020/0095854		3/2020	Hinderliter
2018/0307255 A1	10/2018	Bishop	2020/0109610			Husøy et al.
2018/0313456 A1		Bayyouk et al.	2020/0109616 2020/0132058			Oehring et al. Mollatt
2018/0328157 A1	11/2018		2020/0132038			Oehring et al.
2018/0334893 A1 2018/0363435 A1		Oehring Coli et al.	2020/0141326			Redford et al.
2018/0363436 A1		Coli et al.	2020/0141907	A1	5/2020	Meck et al.
2018/0363437 A1		Coli et al.	2020/0166026			Marica
2018/0363438 A1		Coli et al.	2020/0206704		7/2020 7/2020	
2019/0003272 A1		Morris et al.	2020/0208733 2020/0223648			Herman et al.
2019/0003329 A1 2019/0010793 A1		Morris et al. Hinderliter	2020/0224645			Buckley
2019/0010/93 A1 2019/0011051 A1	1/2019		2020/0225381			Walles et al.
2019/0048993 A1		Akiyama et al.	2020/0232454			Chretien et al.
2019/0055836 A1		Felkl et al.	2020/0256333			Surjaatmadja et al.
2019/0063263 A1		Davis et al.	2020/0263498 2020/0263525			Fischer et al. Reid et al.
2019/0063341 A1 2019/0067991 A1	2/2019	Davis Davis et al.	2020/0263526			Fischer et al.
2019/0007991 A1 2019/0071946 A1		Painter et al.	2020/0263527			Fischer et al.
2019/0071992 A1	3/2019		2020/0263528			Fischer et al.
2019/0072005 A1		Fisher et al.	2020/0267888		8/2020	
2019/0078471 A1		Braglia et al.	2020/0291731 2020/0295574			Haiderer et al. Batsch-Smith
2019/0088845 A1 2019/0091619 A1		Sugi et al. Huang	2020/0300050			Oehring et al.
2019/0091019 A1 2019/0106316 A1		Van Vliet et al.	2020/0309027			Rytkönen
2019/0106970 A1		Oehring	2020/0309113			Hunter et al.
2019/0112908 A1		Coli et al.	2020/0325752			Clark et al. Markham
2019/0112910 A1		Oehring et al.	2020/0325760 2020/0325761			Williams
2019/0119096 A1 2019/0120024 A1		Haile et al. Oehring et al.	2020/0325791			Himmelmann
2019/0120024 A1 2019/0120031 A1	4/2019		2020/0325893	A1	10/2020	Kraige et al.
2019/0120134 A1	4/2019	Goleczka et al.	2020/0332784			Zhang et al.
2019/0128247 A1	5/2019	Douglas, III	2020/0332788			Cui et al.
2019/0128288 A1		Konada et al.	2020/0340313 2020/0340322			Fischer et al. Sizemore et al.
2019/0131607 A1 2019/0136677 A1		Gillette Shampine et al.	2020/0340340			Oehring et al.
2019/0136684 A1		Felkl et al.	2020/0340344		10/2020	Reckels et al.
2019/0153843 A1		Headrick	2020/0340404			Stockstill et al.
2019/0153938 A1		Hammoud	2020/0347725			Morris et al.
2019/0154020 A1	5/2019		2020/0354928 2020/0355055			Wehler et al. Dusterhoft et al.
2019/0155318 A1 2019/0169962 A1		Meunier Agrawi et al.	2020/0362760			Morenko et al.
2019/0178234 A1	6/2019		2020/0362764			Saintignan et al.
2019/0178235 A1		Coskrey et al.	2020/0370394			Cai et al.
2019/0185312 A1		Bush et al.	2020/0370408			Cai et al. Cai et al.
2019/0203572 A1		Morris et al.	2020/0370429 2020/0371490			Cai et al.
2019/0204021 A1 2019/0211661 A1		Morris et al. Reckels et al.	2020/03/1490			Hinderliter et al.
2019/0211801 A1 2019/0211814 A1		Weightman et al.	2020/0386222			Pham et al.
2019/0217258 A1		Bishop	2020/0388140	A1		Gomez et al.
2019/0226317 A1	7/2019	Payne et al.	2020/0392826			Cui et al.
2019/0245348 A1		Hinderliter et al.	2020/0392827			George et al.
2019/0249652 A1		Stephenson et al.	2020/0393088			Sizemore et al.
2019/0249754 A1 2019/0257297 A1		Oehring et al. Botting et al.	2020/0398238 2020/0400000			Zhong et al. Ghasripoor et al.
2019/0237297 A1 2019/0264667 A1	8/2019	_	2020/0400000			Han et al.
2019/0204007 A1		Byrne et al.	2020/0407625			Stephenson
2019/0277295 A1		Clyburn et al.	2020/0408071		12/2020	

(56)	References Cited	2022/0235642 A1 2022/0235802 A1	7/2022 Zhang et al. 7/2022 Jiang et al.
U.S.	PATENT DOCUMENTS	2022/0242297 A1	8/2022 Tian et al.
		2022/0243613 A1	8/2022 Ji et al.
2020/0408144 A1 2020/0408147 A1	12/2020 Feng et al. 12/2020 Zhang et al.	2022/0243724 A1 2022/0250000 A1	8/2022 Li et al. 8/2022 Zhang et al.
2020/0408149 A1	12/2020 Enang et al. 12/2020 Li et al.	2022/0255319 A1	8/2022 Liu et al.
2021/0010361 A1	1/2021 Kriebel et al.	2022/0258659 A1	8/2022 Cui et al.
2021/0010362 A1 2021/0025324 A1	1/2021 Kriebel et al. 1/2021 Morris et al.	2022/0259947 A1 2022/0259964 A1	8/2022 Li et al. 8/2022 Zhang et al.
2021/0025383 A1	1/2021 Moins et al. 1/2021 Bodishbaugh et al.	2022/0268201 A1	8/2022 Feng et al.
2021/0032961 A1	2/2021 Hinderliter et al.	2022/0282606 A1	9/2022 Zhong et al.
2021/0054727 A1 2021/0071503 A1	2/2021 Floyd 3/2021 Ogg et al.	2022/0282726 A1 2022/0290549 A1	9/2022 Zhang et al. 9/2022 Zhang et al.
2021/0071574 A1	3/2021 Ogg et al. 3/2021 Feng et al.	2022/0294194 A1	9/2022 Cao et al.
2021/0071579 A1	3/2021 Li et al.	2022/0298906 A1 2022/0307359 A1	9/2022 Zhong et al. 9/2022 Liu et al.
2021/0071654 A1 2021/0071752 A1	3/2021 Brunson, Jr. 3/2021 Cui et al.	2022/0307339 A1 2022/0307424 A1	9/2022 Elu et al. 9/2022 Wang et al.
2021/0071752 A1 2021/0079758 A1	3/2021 Yeung et al.	2022/0314248 A1	10/2022 Ge et al.
2021/0079851 A1	3/2021 Yeung et al.	2022/0315347 A1 2022/0316306 A1	10/2022 Liu et al. 10/2022 Liu et al.
2021/0086851 A1 2021/0087883 A1	3/2021 Zhang et al. 3/2021 Zhang et al.	2022/0316360 A1 2022/0316362 A1	10/2022 Eld et al. 10/2022 Zhang et al.
2021/0087916 A1	3/2021 Zhang et al.	2022/0316461 A1	10/2022 Wang et al.
2021/0087925 A1	3/2021 Heidari et al.	2022/0325608 A1 2022/0330411 A1	10/2022 Zhang et al. 10/2022 Liu et al.
2021/0087943 A1 2021/0088042 A1	3/2021 Cui et al. 3/2021 Zhang et al.	2022/0333471 A1	10/2022 Elu et al. 10/2022 Zhong et al.
2021/0000042 A1	4/2021 Cui et al.	2022/0339646 A1	10/2022 Yu et al.
2021/0123434 A1	4/2021 Cui et al.	2022/0341358 A1 2022/0341362 A1	10/2022 Ji et al. 10/2022 Feng et al.
2021/0123435 A1 2021/0131409 A1	4/2021 Cui et al. 5/2021 Cui et al.	2022/0341302 A1 2022/0341415 A1	10/2022 Teng et al.
2021/0140416 A1	5/2021 Buckley	2022/0345007 A1	10/2022 Liu et al.
2021/0148208 A1	5/2021 Thomas et al.	2022/0349345 A1 2022/0353980 A1	11/2022 Zhang et al. 11/2022 Liu et al.
2021/0156240 A1 2021/0156241 A1	5/2021 Cicci et al. 5/2021 Cook	2022/0353560 A1 2022/0361309 A1	11/2022 Liu et al.
2021/0172282 A1	6/2021 Wang et al.	2022/0364452 A1	11/2022 Wang et al.
2021/0180517 A1	6/2021 Zhou et al.	2022/0364453 A1 2022/0372865 A1	11/2022 Chang et al. 11/2022 Lin et al.
2021/0190045 A1 2021/0199110 A1	6/2021 Zhang et al. 7/2021 Albert et al.	2022/0372803 A1 2022/0376280 A1	11/2022 Em et al. 11/2022 Shao et al.
2021/0222690 A1	7/2021 Reisel	2022/0381126 A1	12/2022 Cui et al.
2021/0239112 A1	8/2021 Buckley	2022/0389799 A1 2022/0389803 A1	12/2022 Mao et al. 12/2022 Zhang et al.
2021/0246774 A1 2021/0270261 A1	8/2021 Cui et al. 9/2021 Zhang et al.	2022/0389804 A1	12/2022 Enang et al.
2021/0270264 A1	9/2021 Byrne et al.	2022/0389865 A1	12/2022 Feng et al.
2021/0285311 A1	9/2021 Ji et al.	2022/0389867 A1 2022/0412196 A1	12/2022 Li et al. 12/2022 Cui et al.
2021/0285432 A1 2021/0301807 A1	9/2021 Ji et al. 9/2021 Cui et al.	2022/0412199 A1	12/2022 Mao et al.
2021/0301815 A1	9/2021 Chretien et al.	2022/0412200 A1	12/2022 Zhang et al.
2021/0306720 A1	9/2021 Sandoval et al.	2022/0412258 A1 2022/0412379 A1	12/2022 Li et al. 12/2022 Wang et al.
2021/0308638 A1 2021/0324718 A1	10/2021 Zhong et al. 10/2021 Anders	2023/0001524 A1	1/2023 Jiang et al.
2021/0348475 A1	11/2021 Yeung et al.	2023/0003238 A1	1/2023 Du et al.
2021/0348476 A1 2021/0348477 A1	11/2021 Yeung et al. 11/2021 Yeung et al.	2023/0015132 A1 2023/0015529 A1	1/2023 Feng et al. 1/2023 Zhang et al.
2021/0355927 A1	11/2021 Tetalig et al. 11/2021 Jian et al.	2023/0015581 A1	1/2023 Ji et al.
2021/0372394 A1	12/2021 Bagulayan et al.	2023/0017968 A1	1/2023 Deng et al.
2021/0372395 A1 2021/0376413 A1	12/2021 Li et al. 12/2021 Asfha	2023/0029574 A1 2023/0029671 A1	2/2023 Zhang et al. 2/2023 Han et al.
2021/0370413 A1 2021/0388760 A1	12/2021 Asina 12/2021 Feng et al.	2023/0036118 A1	2/2023 Xing et al.
2022/0082007 A1	3/2022 Zhang et al.	2023/0040970 A1 2023/0042379 A1	2/2023 Liu et al. 2/2023 Zhang et al.
2022/0090476 A1 2022/0090477 A1	3/2022 Zhang et al. 3/2022 Zhang et al.	2023/0047033 A1	2/2023 Enang et al.
2022/0090477 A1 2022/0090478 A1	3/2022 Zhang et al.	2023/0048551 A1	2/2023 Feng et al.
2022/0112892 A1	4/2022 Cui et al.	2023/0049462 A1 2023/0064964 A1	2/2023 Zhang et al. 3/2023 Wang et al.
2022/0120262 A1 2022/0145740 A1	4/2022 Ji et al. 5/2022 Yuan et al.	2023/0004904 A1 2023/0074794 A1	3/2023 Liu et al.
2022/0154775 A1	5/2022 Liu et al.	2023/0085124 A1	3/2023 Zhong et al.
2022/0155373 A1	5/2022 Liu et al.	2023/0092506 A1 2023/0092705 A1	3/2023 Zhong et al. 3/2023 Liu et al.
2022/0162931 A1 2022/0162991 A1	5/2022 Zhong et al. 5/2022 Zhang et al.	2023/0106683 A1	4/2023 Zhang et al.
2022/0181859 A1	6/2022 Ji et al.	2023/0107300 A1	4/2023 Huang et al.
2022/0186724 A1	6/2022 Chang et al.	2023/0107791 A1 2023/0109018 A1	4/2023 Zhang et al. 4/2023 Du et al.
2022/0213777 A1 2022/0220836 A1	7/2022 Cui et al. 7/2022 Zhang et al.	2023/0109018 A1 2023/0116458 A1	4/2023 Du et al.
2022/0224087 A1	7/2022 Ji et al.	2023/0117362 A1	4/2023 Zhang et al.
2022/0228468 A1	7/2022 Cui et al.	2023/0119725 A1	4/2023 Wang et al.
2022/0228469 A1 2022/0235639 A1	7/2022 Zhang et al. 7/2022 Zhang et al.	2023/0119876 A1 2023/0119896 A1	4/2023 Mao et al. 4/2023 Zhang et al.
2022/0235640 A1	7/2022 Mao et al.	2023/0119890 A1 2023/0120810 A1	4/2023 Enang et al.
2022/0235641 A1	7/2022 Zhang et al.	2023/0121251 A1	4/2023 Cui et al.

(56)	Referen	ces Cited	CN CN	102562020 A 202326156 U	7/2012 7/2012
	U.S. PATENT	DOCUMENTS	CN	202370773 U	8/2012
			CN CN	202417397 U	9/2012 9/2012
2023/012444 2023/013858		Chang et al.	CN CN	202417461 U 102729335 A	10/2012
2023/013836			CN	202463955 U	10/2012
2023/014596	53 A1 5/2023	Zhang et al.	CN	202463957 U	10/2012
2023/015172 2023/015172		Cui et al. Ji et al.	CN CN	202467739 U 202467801 U	10/2012 10/2012
2023/015172		Wang et al.	CN	202531016 U	11/2012
2023/016028	9 A1 5/2023	Cui et al.	CN	202544794 U	11/2012
2023/016051		Bao et al.	CN CN	102825039 A 202578592 U	12/2012 12/2012
2023/016358 2023/016777		Ji et al. Cui et al.	CN	202579164 U	12/2012
			CN CN	202594808 U 202594928 U	12/2012 12/2012
F	OREIGN PATEN	NT DOCUMENTS	CN CN CN	202596615 U 202596616 U	12/2012 12/2012 12/2012
CA	2043184 C	8/1994	CN	102889191 A	1/2012
CA CA	2829762 A1 2737321 C	9/2012 9/2013	CN	202641535 U	1/2013
CA	2876687 A1	5/2014	CN CN	202645475 U 202666716 U	1/2013 1/2013
CA	2693567 C	9/2014	CN	202669645 U	1/2013
CA CA	2964597 A1 3138533 A1	10/2017 11/2020	CN	202669944 U	1/2013
CA	2919175 C	3/2021	CN CN	202671336 U 202673269 U	1/2013 1/2013
CN	2622404 Y	6/2004	CN	202073203 U 202751982 U	2/2013
CN CN	2779054 Y 2890325 Y	5/2006 4/2007	CN	102963629 A	3/2013
CN	200964929 Y	10/2007	CN CN	202767964 U 202789791 U	3/2013 3/2013
CN	101323151 A	12/2008	CN	202789791 U	3/2013
CN CN	201190660 Y 201190892 Y	2/2009 2/2009	CN	202810717 U	3/2013
CN	201190892 T 201190893 Y	2/2009	CN CN	202827276 U 202833093 U	3/2013 3/2013
CN	101414171 A	4/2009	CN	202833370 U	3/2013
CN CN	201215073 Y 201236650 Y	4/2009 5/2009	CN	202895467 U	4/2013
CN	201275542 Y	7/2009	CN CN	202926404 U 202935216 U	5/2013 5/2013
CN	201275801 Y	7/2009	CN	202935798 U	5/2013
CN CN	201333385 Y 201443300 U	10/2009 4/2010	CN	202935816 U	5/2013
CN	201496415 U	6/2010	CN CN	202970631 U 103223315 A	6/2013 7/2013
CN	201501365 U	6/2010	ČN	203050598 U	7/2013
CN CN	201507271 U 201560210 U	6/2010 8/2010	CN	103233714 A	8/2013
CN	201581862 U	9/2010	CN CN	103233715 A 103245523 A	8/2013 8/2013
CN	201610728 U	10/2010	CN	103247220 A	8/2013
CN CN	201610751 U 201618530 U	10/2010 11/2010	CN	103253839 A 103277290 A	8/2013
CN	201661255 U	12/2010	CN CN	103277290 A 103321782 A	9/2013 9/2013
CN CN	101949382 A 201756927 U	1/2011 3/2011	CN	203170270 U	9/2013
CN	102128011 A	7/2011	CN CN	203172509 U 203175778 U	9/2013 9/2013
CN	102140898 A	8/2011	CN	203175787 U	9/2013
CN CN	102155172 A 102182904 A	8/2011 9/2011	CN	102849880 B	10/2013
CN	202000930 U	10/2011	CN CN	203241231 U 203244941 U	10/2013 10/2013
CN	202055781 U	11/2011	CN	203244942 U	10/2013
CN CN	202082265 U 202100216 U	12/2011 1/2012	CN	203303798 U	11/2013
CN	202100210 U	1/2012	CN CN	103420532 A 203321792 U	12/2013 12/2013
CN	202100815 U	1/2012	CN	203412658 U	1/2014
CN CN	202124340 U 202140051 U	1/2012 2/2012	CN	203420697 U	2/2014
CN	202140080 U	2/2012	CN CN	203480755 U 103711437 A	3/2014 4/2014
CN	202144789 U	2/2012	CN	203531815 U	4/2014
CN CN	202144943 U 202149354 U	2/2012 2/2012	CN	203531871 U	4/2014
CN	102383748 A	3/2012	CN CN	203531883 U 203556164 U	4/2014 4/2014
CN CN	202156297 U 202158355 U	3/2012 3/2012	CN	203558809 U	4/2014
CN CN	202158355 U 202163504 U	3/2012	CN	203559861 U	4/2014
CN	202165236 U	3/2012	CN CN	203559893 U 203560189 U	4/2014 4/2014
CN CN	202180866 U 202181875 U	4/2012 4/2012	CN CN	102704870 B	5/2014
CN CN	202181873 U 202187744 U	4/2012	CN	203611843 U	5/2014
CN	202191854 U	4/2012	CN	203612531 U	5/2014
CN CN	202250008 U 101885307 B	5/2012 7/2012	CN CN	203612843 U 203614062 U	5/2014 5/2014
C11	10100230/ D	1/2012		203017002	5,2017

(56)	Referen	ces Cited	CN CN	104595493 A 104612647 A	5/2015 5/2015
	FOREIGN PATE	NT DOCUMENTS	CN	104612928 A	5/2015
CN	203614388 U	5/2014	CN CN	104632126 A 204325094 U	5/2015 5/2015
CN	203621045 U	6/2014	CN	204325098 U	5/2015
CN CN	203621046 U 203621051 U	6/2014 6/2014	CN CN	204326983 U 204326985 U	5/2015 5/2015
CN	203640993 U	6/2014	CN	204344040 U	5/2015
CN CN	203655221 U 103899280 A	6/2014 7/2014	CN CN	204344095 U 104727797 A	5/2015 6/2015
CN	103923670 A	7/2014	CN	204402414 U	6/2015
CN CN	203685052 U 203716936 U	7/2014 7/2014	CN CN	204402423 U 204402450 U	6/2015 6/2015
CN	103990410 A	8/2014	CN	104803568 A	7/2015
CN CN	103993869 A 203754009 U	8/2014 8/2014	CN CN	204436360 U 204457524 U	7/2015 7/2015
CN	203754025 U	8/2014	CN	204472485 U	7/2015
CN CN	203754341 U 203756614 U	8/2014 8/2014	CN CN	204473625 U 204477303 U	7/2015 7/2015
CN	203770264 U	8/2014	CN CN	204493095 U 204493309 U	7/2015 7/2015
CN CN	203784519 U 203784520 U	8/2014 8/2014	CN	104820372 A	8/2015
CN	104057864 A	9/2014	CN CN	104832093 A 104863523 A	8/2015 8/2015
CN CN	203819819 U 203823431 U	9/2014 9/2014	CN	204552723 U	8/2015
CN	203835337 U	9/2014	CN CN	204553866 U 204571831 U	8/2015 8/2015
CN CN	104074500 A 203876633 U	10/2014 10/2014	CN	204703814 U	10/2015
CN	203876636 U	10/2014	CN CN	204703833 U 204703834 U	10/2015 10/2015
CN CN	203877364 U 203877365 U	10/2014 10/2014	CN	105092401 A	11/2015
CN	203877375 U	10/2014	CN CN	103790927 B 105207097 A	12/2015 12/2015
CN CN	203877424 U 203879476 U	10/2014 10/2014	CN	204831952 U	12/2015
CN	203879479 U	10/2014	CN CN	204899777 U 102602323 B	12/2015 1/2016
CN CN	203890292 U 203899476 U	10/2014 10/2014	CN	105240064 A	1/2016
CN CN	203906206 U 104150728 A	10/2014 11/2014	CN CN	204944834 U 205042127 U	1/2016 2/2016
CN	104176522 A	12/2014	CN	205172478 U	4/2016
CN CN	104196464 A 104234651 A	12/2014 12/2014	CN CN	105536299 A 105545207 A	5/2016 5/2016
CN	203971841 U	12/2014	CN CN	205260249 U 205297518 U	5/2016 6/2016
CN CN	203975450 U 204020788 U	12/2014 12/2014	CN	205297318 U 205298447 U	6/2016
CN	204021980 U	12/2014	CN CN	205391821 U 205400701 U	7/2016 7/2016
CN CN	204024625 U 204051401 U	12/2014 12/2014	CN	205477370 U	8/2016
CN	204060661 U	12/2014	CN CN	205479153 U 205503058 U	8/2016 8/2016
CN CN	104260672 A 104314512 A	1/2015 1/2015	CN	205503068 U	8/2016
CN CN	204077478 U 204077526 U	1/2015 1/2015	CN CN	205503089 U 105958098 A	8/2016 9/2016
CN	204077326 U 204078307 U	1/2015	CN	205599180 U	9/2016
CN CN	204083051 U 204113168 U	1/2015 1/2015	CN CN	106121577 A 205709587 U	11/2016 11/2016
CN	104340682 A	2/2015	CN	106246120 A	12/2016
CN CN	104358536 A 104369687 A	2/2015 2/2015	CN CN	205805471 U 106321045 A	12/2016 1/2017
CN	104402178 A	3/2015	CN CN	205858306 U 106438310 A	1/2017
CN CN	104402185 A 104402186 A	3/2015 3/2015	CN CN	205937833 U	2/2017 2/2017
CN	204209819 U	3/2015	CN CN	206129196 U 106715165 A	4/2017 5/2017
CN CN	204224560 U 204225813 U	3/2015 3/2015	CN	106761561 A	5/2017
CN	204225839 U	3/2015	CN CN	206237147 U 206287832 U	6/2017 6/2017
CN CN	104533392 A 104563938 A	4/2015 4/2015	CN	206346711 U	7/2017
CN CN	104563994 A 104563995 A	4/2015 4/2015	CN CN	107120822 A 107143298 A	9/2017 9/2017
CN CN	104563995 A 104563998 A	4/2015 4/2015	CN	107159046 A	9/2017
CN CN	104564033 A 204257122 U	4/2015 4/2015	CN CN	107188018 A 206496016 U	9/2017 9/2017
CN CN	204283610 U	4/2015	CN	107234358 A	10/2017
CN CN	204283782 U 204297682 U	4/2015 4/2015	CN CN	107261975 A 206581929 U	10/2017 10/2017
CN CN	204297682 U 204299810 U	4/2015 4/2015	CN	107476769 A	12/2017
CN	104594857 A	5/2015	CN	107520526 A	12/2017

(56)	References C	ited	CN	208576042 U	3/2019
	FOREIGN PATENT D	OCHMENTS	CN CN	208650818 U 208669244 U	3/2019 3/2019
	FOREIGN FAIENT D	SCOMENTS	CN	109555484 A	4/2019
CN	206754664 U 12/2	017	CN	109682881 A	4/2019
CN		018	CN CN	208730959 U 208735264 U	4/2019 4/2019
CN		018 018	CN CN	208733204 U 208746733 U	4/2019
CN CN		018	CN	208749529 U	4/2019
CN		018	CN	208750405 U	4/2019
CN		018	CN CN	208764658 U 109736740 A	4/2019 5/2019
CN CN		018 018	CN	109750740 A 109751007 A	5/2019
CN		018	CN	208868428 U	5/2019
CN		018	CN CN	208870761 U 109869294 A	5/2019 6/2019
CN		018 018	CN CN	109809294 A 109882144 A	6/2019
CN CN		018	CN	109882372 A	6/2019
CN	207169595 U 4/2	018	CN	209012047 U	6/2019
CN		018 018	CN CN	209100025 U 110080707 A	7/2019 8/2019
CN CN		018	CN	110118127 A	8/2019
CN		018	CN	110124574 A	8/2019
CN		018	CN CN	110145277 A 110145399 A	8/2019 8/2019
CN CN		018 018	CN	110152552 A	8/2019
CN		018	CN	110155193 A	8/2019
CN		018	CN	110159225 A 110159432 A	8/2019
CN		018	CN CN	110159432 A 110159433 A	8/2019 8/2019
CN CN		018 018	CN	110208100 A	9/2019
CN		018	CN	110252191 A	9/2019
CN		018	CN CN	110284854 A 110284972 A	9/2019 9/2019
CN CN		018 018	CN	209387358 U	9/2019
CN		018	CN	110374745 A	10/2019
CN		018	CN CN	209534736 U 110425105 A	10/2019 11/2019
CN CN		018 018	CN	110423103 A 110439779 A	11/2019
CN		018	CN	110454285 A	11/2019
CN		018	CN CN	110454352 A 110467298 A	11/2019 11/2019
CN CN		018 018	CN CN	110467298 A 110469312 A	11/2019
CN		018	CN	110469314 A	11/2019
CN	108687954 A 10/2	018	CN	110469405 A	11/2019
CN	207935270 U 10/2 207961582 U 10/2		CN CN	110469654 A 110485982 A	11/2019 11/2019
CN CN	207964530 U 10/2		CN	110485983 A	11/2019
CN	108789848 A 11/2		CN	110485984 A	11/2019
CN	108799473 A 11/2		CN CN	110486249 A 110500255 A	11/2019 11/2019
CN CN	108868675 A 11/2 208086829 U 11/2		CN	110510771 A	11/2019
CN	208089263 U 11/2		CN	110513097 A	11/2019
CN	208169068 U 11/2		CN CN	209650738 U 209653968 U	11/2019 11/2019
CN CN	108979569 A 12/2 109027662 A 12/2		CN	209654004 U	11/2019
CN	109058092 A 12/2		CN	209654022 U	11/2019
CN	208179454 U 12/2		CN CN	209654128 U 209656622 U	11/2019 11/2019
CN CN	208179502 U 12/2 208253147 U 12/2		CN	107849130 B	12/2019
CN	208260574 U 12/2		CN	110566173 A	12/2019
CN		019	CN CN	110608030 A 110617187 A	12/2019 12/2019
CN CN		019 019	CN	110617187 A	12/2019
CN		019	CN	110617318 A	12/2019
CN		019	CN	209740823 U	12/2019
CN CN		019 019	CN CN	209780827 U 209798631 U	12/2019 12/2019
CN CN		019	CN	209799942 U	12/2019
CN	109429610 A 3/2	019	CN	209800178 U	12/2019
CN		019	CN CN	209855723 U	12/2019
CN CN		019 019	CN CN	209855742 U 209875063 U	12/2019 12/2019
CN		019	CN	110656919 A	1/2020
CN	208564504 U 3/2	019	CN	110787667 A	2/2020
CN		019	CN	110821464 A	2/2020
CN CN		019 019	CN CN	110833665 A 110848028 A	2/2020 2/2020
CN		019	CN	210049880 U	2/2020
	5,2				1

(56)	Referen	ces Cited	I	DE 10	02015103872	A1	10/2015
` /	FOREIGN PATE			DE 10 EP	02013114335 0835983		12/2020 4/1998
	POREIGN FAIEI	VI DOCUMENT		EP	1378683		8/2004
CN	210049882 U	2/2020		EP EP	2143916 2613023		1/2010 7/2013
CN CN	210097596 U 210105817 U	2/2020 2/2020		EP	3095989		11/2016
CN	210105817 U 210105818 U	2/2020	H	$\mathbf{E}\mathbf{P}$	3211766	A1	8/2017
CN	210105993 U	2/2020		EP EP	3049642 3354866		4/2018 8/2018
CN CN	110873093 A 210139911 U	3/2020 3/2020		P P	3075946		5/2019
CN	110947681 A	4/2020		R	2795774 474072		1/2001
CN CN	111058810 A 111075391 A	4/2020 4/2020		GB GB	1438172		10/1937 6/1976
CN	210289931 U	4/2020		P	S57135212		8/1982
CN	210289932 U	4/2020		KR 2 Ru	20020026398		4/2002 4/2000
CN CN	210289933 U 210303516 U	4/2020 4/2020		VO	9320328		10/1993
CN	111089003 A	5/2020		VO	2006025886		3/2006
CN CN	111151186 A 111167769 A	5/2020 5/2020		VO VO	2009023042 2011119668		2/2009 9/2011
CN	111169833 A	5/2020		VO	2011113008		12/2011
CN	111173476 A	5/2020		VO	2012139380		10/2012
CN CN	111185460 A 111185461 A	5/2020 5/2020		VO VO WO	2013158822 -2013163786		10/2013 11/2013
CN	111188763 A	5/2020		VO	2013185399		12/2013
CN CN	111206901 A 111206992 A	5/2020 5/2020		VO	2015073005		5/2015
CN	111206992 A 111206994 A	5/2020		VO VO	2015158020 2016014476		10/2015
CN	210449044 U	5/2020		VO	2016014476		3/2016
CN CN	210460875 U 210522432 U	5/2020 5/2020	7	VO	2016078181	A1	5/2016
CN	210598943 U	5/2020		VO	2016086138		6/2016
CN CN	210598945 U 210598946 U	5/2020 5/2020		VO VO	2016101374 2016112590		6/2016 7/2016
CN	210599194 U	5/2020		VO	2016186790		11/2016
CN	210599303 U	5/2020		VO	2017146279		8/2017
CN CN	210600110 U 111219326 A	5/2020 6/2020		VO VO	2017123656 2017213848		10/2017 12/2017
CN	111350595 A	6/2020		VO	2018031031		2/2018
CN CN	210660319 U 210714569 U	6/2020 6/2020		VO	2018031029		3/2018
CN	210714303 U 210769168 U	6/2020		VO VO	2018038710 2018044293		3/2018 3/2018
CN CN	210769169 U 210769170 U	6/2020 6/2020		VO	2018044307		3/2018
CN	210709170 U 210770133 U	6/2020		VO	2018071738		4/2018
CN	210825844 U	6/2020		VO VO	2018075034 2018084871		5/2018 5/2018
CN CN	210888904 U 210888905 U	6/2020 6/2020		VO	2018101912	A1	6/2018
CN	210889242 U	6/2020		VO	2018106210		6/2018
CN CN	111397474 A 111412064 A	7/2020 7/2020		VO VO	2018106225 2018106252		6/2018 6/2018
CN	111441923 A	7/2020		VO	2018125176		7/2018
CN	111441925 A	7/2020		VO	2018132106		7/2018
CN CN	111503517 A 111515898 A	8/2020 8/2020		VO VO	2018101909 2018152051		8/2018 8/2018
CN	111594059 A	8/2020	1	VO	2018156131	A1	8/2018
CN CN	111594062 A 111594144 A	8/2020 8/2020		VO VO	2018160171 2018187346		9/2018 10/2018
CN	211201919 U	8/2020		VO	2018187340		3/2019
CN CN	211201920 U 211202218 U	8/2020 8/2020	1	VO	2019046680	A1	3/2019
CN	111608965 A	9/2020		VO	2019060922		3/2019
CN	111664087 A	9/2020		VO VO	2019117862 2019126742		6/2019 6/2019
CN CN	111677476 A 111677647 A	9/2020 9/2020	7	VO	2019147601	A1	8/2019
CN	111692064 A	9/2020		VO VO	2019169366		9/2019
CN CN	111692065 A 211384571 U	9/2020 9/2020		VO	2019195651 2019200510		10/2019 10/2019
CN	211397553 U	9/2020	7	VO	2019210417	A1	11/2019
CN	211397677 U	9/2020		VO VO	2020018068		1/2020
CN CN	211412945 U 211500955 U	9/2020 9/2020		VO VO	2020046866 2020076569		3/2020 4/2020
CN	211524765 U	9/2020	7	VO	2020097060	A2	5/2020
DE	4004854 A1	8/1991		VO	2020104088		5/2020
DE DE	4241614 A1 102009022859 A1	6/1994 12/2010		VO VO	2020072076 2020131085		6/2020 6/2020
DE	102012018825 A1	3/2014	7	VO	2020211083	A1	10/2020
DE	102013111655 A1	12/2014	1	VO	2020211086	A1	10/2020

(56) References Cited

FOREIGN PATENT DOCUMENTS

WO 2021038604 A1 3/2021 WO 2021041783 A1 3/2021

OTHER PUBLICATIONS

Halliburton, Vessel-based Modular Solution (VMS), 2015.

HCI Jet Frac, Screenshots from YouTube, Dec. 11, 2010. https://www.youtube.com/watch?v=6HjXkdbFaFQ.

Hydraulic Fracturing: Gas turbine proves successful in shale gasfield operations, Vericor (2017), https://www.vericor.com/wp-content/uploads/2020/02/7.-Fracing-4500hp-Pump-China-En.pdf ("Vericor Case Study").

Ibragimov, ?.S., Use of gas turbine engines in oil field pumping units; Chem Petrol Eng; (1994) 30: 530. https://doi.org/10.1007/BF01154919. (Translated from Khimicheskaya i Neftyanoe Mashinostroenie, No. 11, pp. 24-26, Nov. 1994.).

IHS Markit Standards Store, https://global.ihs.com/doc_detail.cfm? document_name=API%20STD%20674&item_s_key=00010672#docdetail-history-anchor, accessed Dec. 30, 2021; and https://global.ihs.com/doc_detail.cfm?&input_doc_number=671&input_doc_title=&document_name=API%20STD%20671&item_s_key=00010669&item_key_date=890331&origin=DSSC, accessed Dec. 30, 2021. II-VI Marlow Industries, Thermoelectric Technologies in Oil, Gas, and Mining Industries, blog.marlow.com (Jul. 24, 2019).

Integrated Flow, Skid-mounted Modular Process Systems, Jul. 15, 2017, https://ifsolutions.com/why-modular/.

ISM, What is Cracking Pressure, 2019.

J. Porteiro et al., Feasibility of a new domestic CHP trigeneration with heat pump: II. Availability analysis. Design and development, Applied Thermal Engineering 24 (2004) 1421-1429.

JBG Enterprises, Inc., WS-Series Blowout Prevention Safety Coupling—Quick Release Couplings, Sep. 11, 2015, http://www.jgbhose.com/products/WS-Series-Blowout-Prevention-Safety-Coupling.asp.

Jereh Apollo 4500 Turbine Frac Pumper Finishes Successful Field Operation in China, Jereh Group (Feb. 13, 2015), as available on Apr. 20, 2015, https://web.archive.org/web/20150420220625/https://www.prnewswire.com/news-releases/jereh-apollo-4500-turbine-frac-pumper-finishes-successful-field-operation-in-china-300035829. html.

Jereh Apollo Turbine Fracturing Pumper Featured on China Central Television, Jereh Group (Mar. 9, 2018), https://www.jereh.com/en/news/press-release/news-detail-7267.htm.

Jereh Debut's Super power Turbine Fracturing Pump, Leading the Industrial Revolution, Jereh Oilfield Services Group (Mar. 19, 2014), https://www.prnewswire.com/news-releases/jereh-debuts-super-power-turbine-fracturing-pump-leading-the-industrial-revolution-250992111.html.

Jereh Group, Jereh Fracturing Equipment. YouTube (Jun. 8, 2015), https://www.youtube.com/watch?v=m0vMiq84P4Q.

Jereh Group, Jereh Fracturing Unit, Fracturing Spread, YouTube (Mar. 30, 2015), https://www.youtube.com/watch?v=PlkDbU5dE0o. Jereh Unveiled New Electric Fracturing Solution at OTC 2019, Jereh Group (May 7, 2019), as available on May 28, 2019, https://web.archive.org/web/20190528183906/https://www.prnewswire.com/news-releases/jereh-unveiled-new-electric-fracturing-solution-at-otc-2019-300845028.html.

Jp Yadav et al., Power Enhancement of Gas Turbine Plant by Intake Air Fog Cooling, Jun. 2015.

Karassik, Igor, Joseph Messina, Paul Cooper, and Charles Heald. Pump Handbook. 4th ed. New York: McGraw-Hill Education, 2008. Karen Boman, Turbine Technology Powers Green Field Multi-Fuel Frack Pump, Rigzone (Mar. 7, 2015), as available on Mar. 14, 2015, https://web.archive.org/web/20150314203227/https://www.rigzone.com/news/oil-gas/a/124883/Turbine_Technology_Powers_Green_Field_MultiFuel_Frack_Pump.

Kas'yanov et al., Application of gas-turbine engines in pumping units complexes of hydraulic fracturing of oil and gas reservoirs; Exposition Oil & Gas; (Oct. 2012) (published in Russian).

Lekontsev, Yu M., et al. "Two-side sealer operation." Journal of Mining Science 49.5 (2013): 757-762.

Leslie Turj, Green Field asset sale called 'largest disposition industry has seen,' The INDsider Media (Mar. 19, 2014), http://theind.com/article-16497-green-field-asset-sale-called-%E2%80%98largest-disposition-industry-has-seen%60.html.

M. Ahmadzadehtalatapeh et al. Performance enhancement of gas turbine units by retrofitting with inlet air cooling technologies (IACTs): an hour-by-hour simulation study, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Mar. 2020.

Marine Turbine Technologies, 1 MW Power Generation Package, http://marineturbine.com/power-generation, 2017.

Marine Turbine. Turbine Powered Frac Units. Franklin, Louisiana: Marine Turbine Technologies, 2020.

Mee Industries: Inlet Air Fogging Systems for Oil, Gas and Petrochemical Processing, Verdict Media Limited Copyright 2020.

Mobile Fuel Delivery, atlasoil.com. Mar. 6, 2019. https://www.atlasoil.com/nationwide-fueling/onsite-and-mobile-fueling.

Neal, J.C. (Gulf Oil Corp. Odessa Texas), Gas Turbine Driven Centrifugal Pumps for High Pressure Water Injection; American Institute of Mining, Metallurgical and Petroleum Engineers, Inc.; SPE-1888 (1967).

Overview of Industry Guidance/Best Practices on Hydraulic Fracturing (HF), American Petroleum Institute, © 2012.

PbNG, Natural Gas Fuel for Drilling and Hydraulic Fracturing, Diesel Displacement / Dual Fuel & Bi-Fuel, May 2014.

Pettigrew, Dana, et al., High Pressure Multi-Stage Centrifugal Pump for 10,000 psi Frac Pump—HPHPS Frac Pump, Copyright 2013, Society of Petroleum Engineers, SPE 166191.

Plos One, Dynamic Behavior of Reciprocating Plunger Pump Discharge Valve Based on Fluid Structure Interaction and Experimental Analysis. Oct. 21, 2015.

Porter, John A. (Solar Division International Harvester Co.), Modern Industrial Gas Turbines for the Oil Field; American Petroleum Institute; Drilling and Production Practice; API-67-243 (Jan. 1, 1967).

PowerShelter Kit II, nooutage.com, Sep. 6, 2019.

Procedures for Standards Development, American Petroleum Institute, Third Edition (2006).

Publications, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110427043936 / http://www.api.org:80/Publications/, captured Apr. 27, 2011.

Pump Control With Variable Frequency Drives, Kevin Tory, Pumps & Systems: Advances in Motors and Drives, Reprint from Jun. 2008.

Researchgate, Answer by Byron Woolridge, found at https://www.researchgate.net/post/How_can_we_improve_the_efficiency_of_the_gas_turbine_cycles, Jan. 1, 2013.

Review of HHP Summit 2012, Gladstein, Neandross & Associates https://www.gladstein.org/gna-conferences/high-horsepower-summit-2012/

Rigmaster Machinery Ltd., Model: 2000 RMP-6-PLEX, brochure, downloaded at https://www.rigmastermachinery.com/_files/ugd/431e62 eaecd77091e54af8b13d08396072da67.pdf.

Rotating Right. Quintuplex Power Pump Model Q700. Edmonton, Alberta, Canada: Weatherford International Ltd. https://www.rotatingright.com/pdf/weatherford/RR%2026-Weatherford%20Model%20Q700.pdf, 2021.

Shandong Saigao Group Corporation. Q4 (5W115) Quintuplex Plunger Pump. Jinan City, Shandong Province, China; Saigao. Oct. 20, 2014. https://www.saigaogroup.com/product/q400-5w115-quintuplex-plunger-pump.html.

Special-Purpose Couplings for Petroleum, Chemical, and Gas Industry Services, API Standard 671 (4th Edition) (2010).

SPM® QEM 5000 E-Frac Pump Specification Sheet, Weir Group (2019) ("Weir 5000").

Standards, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110207195046/http://www.api.org/Standards/, captured Feb. 7, 2011; and https://web.archive.org/web/20110204112554/http://global.ihs.com/?RID=APII, captured Feb. 4, 2011

Swagelok, The right valve for controlling flow direction? Check,

(56) References Cited

OTHER PUBLICATIONS

Technology.org, Check valves how do they work and what are the main type, 2018.

The Application of Flexible Couplings for Turbomachinery, Jon R.Mancuso et al., Proceedings of the Eighteenthturbomachinery Symposium (1989).

The Leader in Frac Fueling, suncoastresources.com. Jun. 29, 2015. https://web.archive.org/web/20150629220609/https://www.suncoastresources.com/oilfield/fueling-services/.

The Weir Group, Inc. Weir SPM Pump Product Catalog. Ft. Worth, TX: S.P.M. Flow Control, Inc. Oct. 30, 2017. https://manage.global.weir/assets/files/product%20brochures/SPM_2P140706_Pump_Product_Catalogue_View.pdf.

Tom Hausfeld, GE Power & Water, and Eldon Schelske, Evolution Well Services, TM2500+ Power for Hydraulic Fracturing.

Transcript of Jereh Group, Jereh Fracturing Equipment, YouTube (Jun. 8, 2015), https://www.youtube.com/watch?v=m0vMiq84P4Q. Transcript of Jereh Group, Jereh Fracturing Unit, Fracturing Spread, YouTube (Mar. 30, 2015).

US 11,555,493, 1/2023, Chang et al. (withdrawn)

Wallace, E.M., Associated Shale Gas: From Flares to Rig Power, Copyright 2015, Society of Petroleum Engineers, SPE-173491-MS. Walzel, Brian, Hart Energy, Oil, Gas Industry Discovers Innovative Solutions to Environmental Concerns, Dec. 10, 2018.

Weir Oil & Gas Introduces Industry's First Continuous Duty 5000-Horsepower Pump, Weir Group (Jul. 25, 2019), https://www.global.weir/newsroom/news-articles/weir-oil-and-gas-introduces-industrys-first-continuous-duty-5000-horsepower-pump/.

Weir SPM. Weir SPM General Catalog: Well Service Pumps, Flow Control Products, Manifold Trailers, Safety Products, Post Sale Services. Ft. Worth, TX: Weir Oil & Gas. May 28, 2016. https://www.pumpfundamentals.com/pumpdatabase2/weir-spm-general.pdf.

Wikipedia, Westinghouse Combustion Turbine Systems Division, https://en.wikipedia.org/wiki/Westinghouse_Combustion_Turbine_Systems_Division, circa 1960.

Wikipedia, Union Pacific GTELs, https://en.wikipedia.org/wiki/Union_Pacific_GTELs, circa 1950.

Williams, C.W. (Gulf Oil Corp. Odessa Texas), The Use of Gasturbine Engines in an Automated High-Pressure Water-Injection Stations; American Petroleum Institute; API-63-144 (Jan. 1, 1963). Wolf, J?rgen J., and Marko A. Perkavec. "Safety Aspects and Environmental Considerations for a 10 MW Cogeneration Heavy Duty Gas Turbine Burning Coke Oven Gas with 60% Hydrogen Content." ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers Digital Collection, 1992.

WorldCat Library Collections Database Records for API Standard 671 and API Standard 674, https://www.worldcat.org/title/positive-displacement-pumps-reciprocating/oclc/858692269&referer=brief_results, accessed Dec. 30, 2021; and https://www.worldcat.org/title/special-purpose-couplings-for-petroleum-chemical-and-gas-industry-services/bclc/871254217&referer=brief_results, accessed Dec. 22, 2021.

ZSi-Foster, Energy | Solar | Fracking | Oil and Gas, Aug. 2020, https://www.zsi-foster.com/energy-solar-fracking-oil-and-gas.html. "Turbine Frac Units," WMD Squared (2012), https://wmdsquared.com/work/gfes-turbine-frac-units/.

"Honghua developing new-generation shale-drilling rig, plans testing of frac pump"; Katherine Scott; Drilling Contractor; May 23, 2013; accessed at https://www.drillingcontractororg/honghua-developing-new-generation-shale-drilling-rig-plans-testing-of-frac-pump-23278.

2011 Publications and Services, American Petroleum Institute (2011). 2012 High Horsepower Summit Agenda, Natural Gas for High Horsepower Applications (Sep. 5, 2012).

35% Economy Increase, Dual-fuel System Highlighting Jereh Apollo Frac Pumper, Jereh Group (Apr. 13, 2015), https://www.jereh.com/en/news/press-release/news-detail-7345.htm.

About API, American Petroleum Institute, https://www.api.org/about, accessed Dec. 30, 2021.

About API, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110422104346 / http://api.org/aboutapi/, captured Apr. 22, 2011.

Advances in Popular Torque-Link Solution Offer OEMs Greater Benefit, Jun. 21, 2018.

AFD Petroleum Ltd., Automated Hot Zone, Frac Refueling System, Dec. 2018.

AFGlobal Corporation, Durastim Hydraulic Fracturing Pump, A Revolutionary Design for Continuous Duty Hydraulic Fracturing, 2018.

American Petroleum Institute. API 616: Gas Turbines for the Petroleum, Chemical, and Gas Industry Services. 5th ed. Washington, DC: API Publishing Services, 2011.

American Petroleum Institute. API 674: Positive Displacement Pumps—Reciprocating. 3rd ed. Washington, DC: API Publishing Services, 2010.

Ankit Tiwari, Design of a Cooling System for a Hydraulic Fracturing Equipment, The Pennsylvania State University, The Graduate School, College of Engineering, 2015.

API Member Companies, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20130424080625/http://api.org/globalitems/globalheaderpages/membership/api-member-companies, accessed Jan. 4, 2021.

API's Global Industry Services, American Petroleum Institute, © Aug. 2020.

Arop, Julius Bankong. Geomechanical review of hydraulic fracturing technology. Thesis (M. Eng.). Cambridge, MA: Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering. Oct. 29, 2013. https://dspace.mit.edu/handle/1721.1/82176

B.M. Mahlalela, et al., Electric Power Generation Potential Based on Waste Heat and Geothermal Resources in South Africa, pangea. Stanford.edu (Feb. 11, 2019).

Blago Minovski, Coupled Simulations of Cooling and Engine Systems for Unsteady Analysis of the Benefits of Thermal Engine Encapsulation, Department of Applied Mechanics, Chalmers University of Technology G{umlaut over ()} oteborg, Sweden 2015. Business Week: Fiber-optic cables help fracking, cablinginstall.com. Jul. 12, 2013. https://www.cablinginstall.com/cable/article/16474208/businessweek-fiberoptic-cables-help-fracking.

Cameron, A Schlumberger Company, Frac Manifold Systems, 2016. CanDyne Pump Services, Inc. Weatherford Q700 Pump. Calgary, Alberta, Canada: CanDyne Pump Services. Aug. 15, 2015. http://candyne.com/wp-content/uploads/2014/10//181905-94921.q700-quintuplex-pump.pdf.

Capstone Turbine Corporation, Capstone Receives Three Megawatt Order from Large Independent Oil & Gas Company in Eagle Ford Shale Play, Dec. 7, 2010.

Chaichan, Miqdam Tariq. "The impact of equivalence ratio on performance and emissions of a hydrogen-diesel dual fuel engine with cooled exhaust gas recirculation." International Journal of Scientific & Engineering Research 6.6 (2015): 938-941.

Chun, M. K., H. K. Song, and R. Lallemand. "Heavy duty gas turbines in petrochemical plants: Samsung's Daesan plant (Korea) beats fuel flexibility records with over 95% hydrogen in process gas." Proceedings of PowerGen Asia Conference, Singapore. 1999. CNG Delivery, Fracturing with natural gas, dual-fuel drilling with CNG, Aug. 22, 2019.

Cooper et al., Jet Frac Porta-Skid—A New Concept in Oil Field Service Pump Equipments[sic]; Halliburton Services; SPE-2706 (1969).

De Gevigney et al., "Analysis of No. load dependent power losses in a planetary gear train by using thermal network method", International Gear Conference 2014: Aug. 26-28, 2014, Lyon, pp. 615-624.

Department of Energy, United States of America, The Water-Energy Nexus: Challenges and Opportunities purenergypolicy.org (Jun. 2014).

Dowell B908 "Turbo-Jet" Operator's Manual.

(56) References Cited

OTHER PUBLICATIONS

Dziubak, Tadeusz, "Experimental Studies of Dust Suction Irregularity from Multi-Cyclone Dust Collector of Two-Stage Air Filter", Energies 2021, 14, 3577, 28 pages.

Ecob, David J., et al. "Design and Development of a Landfill Gas Combustion System for the Typhoon Gas Turbine." ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers Digital Collection, 1996.

Elle Seybold, et al., Evolution of Dual Fuel Pressure Pumping for Fracturing: Methods, Economics, Field Trial Results and Improvements in Availability of Fuel, Copyright 2013, Society of Petroleum Engineers, SPE 166443.

Emmanuel Akita et al., Mewbourne College of Earth & Energy, Society of Petroleum Engineers; Drilling Systems Automation Technical Section (DSATS); 2019.

EMPengineering.com, HEMP Resistant Electrical Generators / Hardened Structures HEMP/GMD Shielded Generators, Virginia, Nov. 3, 2012.

Europump and Hydrualic Institute, Variable Speed Pumping: A Guide to Successful Applications, Elsevier Ltd, 2004.

Eygun, Christiane, et al., URTeC: 2687987, Mitigating Shale Gas Developments Carbon Footprint: Evaluating and Implementing Solutions in Argentina, Copyright 2017, Unconventional Resources Technology Conference.

Ferdinand P. Beer et al., Mechanics of Materials (6th ed. 2012). Filipovi?, Ivan, Preliminary Selection of Basic Parameters of Different Torsional Vibration Dampers Intended for use in Medium-Speed Diesel Engines, Transactions of Famena XXXVI-3 (2012).

Final written decision of PGR2021-00102 dated Feb. 6, 2023. Final written decision of PGR2021-00103 dated Feb. 6, 2023. FMC Technologies, Operation and Maintenance Manual, L06 Through L16 Triplex Pumps Doc No. OMM50000903 Rev: E p. 1 of 66. Aug. 27, 2009.

Frac Shack, Bi-Fuel FracFueller brochure, 2011.

Frac Tank Hose (FRAC), 4starhose.com. Accessed: Nov. 10, 2019. http://www.4starhose.com/product/frac_tank_hose_frac.aspx.

Fracking companies switch to electric motors to power pumps, iadd-intl.org. Jun. 27, 2019. https://www.iadd-intl.org/articles/fracking-companies-switch-to-electric-motors-to-power-pumps/.

Fracture Design and Stimulation, Mike Eberhard, P.E., Wellconstruction & Operations Technical Workshop Insupport of the EPA Hydraulic Fracturing Study, Mar. 10-11, 2011.

FTS International's Dual Fuel Hydraulic Fracturing Equipment Increases Operational Efficiencies, Provides Cost Benefits, Jan. 3, 2018.

Gardner Denver Hydraulic Fracturing Pumps GD 3000 https://www.gardnerdenver.com/en-us/pumps/triplex-fracking-pump-gd-3000. General Purpose vs. Special Purpose Couplings, Jon Mancuso, Proceedings of the Twenty-Third Turbomachinerysymposium (1994). Ginter, Timothy, and Thomas Bouvay. "Uprate options for the MS7001 heavy duty gas turbine." GE paper GER-3808C, GE Energy 12 (2006).

Green Field Energy Services Deploys Third New Hydraulic Fracturing System, Green Field Energy Services, Inc. (Jul. 11, 2012), https://www.prnewswire.com/news-releases/green-field-energy-services-deploys-third-new-hydraulic-fracturing-spread-162113425.

^{*} cited by examiner

FIG. 2

METHODS FOR DETECTION AND MITIGATION OF WELL SCREEN OUT

PRIORITY CLAIM

This is a continuation of U.S. Non-Provisional application Ser. No. 17/991,007, filed Nov. 21, 2022, titled "METHODS FOR DETECTION AND MITIGATION OF WELL SCREEN OUT," now U.S. Pat. No. 11,939,854 issued Mar. 26, 2024, which is a continuation of U.S. Non-Provisional application Ser. No. 17/355,920, filed Jun. 23, 2021, titled "METHODS FOR DETECTION AND MITIGATION OF WELL SCREEN OUT," now U.S. Pat. No. 11,566,506 issued Jan. 31, 2023, which is continuation of U.S. Non-Provisional application Ser. No. 17/303,841, filed Jun. 9, 15 2021, titled "METHODS AND SYSTEMS FOR DETEC-TION AND MITIGATION OF WELL SCREEN OUT," now U.S. Pat. No. 11,208,881, issued Dec. 28, 2021, which is a continuation of U.S. Non-Provisional application Ser. No. 17/182,408, filed Feb. 23, 2021, titled "METHODS ²⁰ FOR DETECTION AND MITIGATION OF WELL SCREEN OUT," now U.S. Pat. No. 11,066,915, issued Jul. 20, 2021, which claims priority to and the benefit of U.S. Provisional Application No. 62/705,050, filed Jun. 9, 2020, titled "METHODS AND SYSTEMS FOR DETECTION 25 AND MITIGATION OF WELL SCREEN OUT," the disclosures of which are incorporated herein by reference in their entireties.

TECHNICAL FIELD

The application generally relates to mobile power units and, more specifically, drive equipment and methods for usage, installation on, and controls for mobile fracturing transportation platforms.

BACKGROUND

Hydrocarbon exploration and energy industries employ including drilling, formation evaluation, stimulation and production. Measurements such as temperature, pressure, and flow measurements are typically performed to monitor and assess such operations. During such operations, problems or situations may arise that may have a detrimental 45 effect on the operation, equipment, and/or safety of operators. For example, during a stimulation or fracturing operation, screen out conditions may occur, which may cause rapid pressure increases that may compromise the operation and/or damage equipment.

SUMMARY

Embodiment of systems, methods, and controllers that control the operation to detect and mitigate screen outs such 55 that screen outs are avoided, for example, may save time, may increase awareness of conditions within the well, and may increase safety at a wellsite hydraulic fracturing pumper system. For example, Applicant has recognized that a controller detecting and mitigating screen outs may avoid 60 packing of a well and avoid the need for additional operations to stimulate a well, e.g., wire line operations. In addition, a controller that avoids rapid pressure increases associated with screen outs may reduce stress on fracturing equipment including power end assemblies, shocking of 65 prime movers and gearing systems associated therewith, and piping of the well. Further, the methods and systems detailed

herein may prevent energy release in the form of release pressure through a pressure relief valve, e.g., a wellhead or manifold pressure relief valve. Avoiding pressure release from a pressure valve may also increase the safety of the wellhead, for example, by not over pressuring a wellhead.

Applicant also has recognized that a controller that detects and mitigates screen outs may also increase awareness of conditions within the well by detecting a rate of pressure increase more accurately and at a more frequent rate than with manual control. In some embodiments, the controller may prewarn by one or more tiers of pressure increase rates such that an operator may manually adjust proppant concentration or take other measures to avoid screen outs before the controller intervenes as would be appreciated by those skilled in the art. The controller may also control the blender and the fracturing pump with a single command such that an operator is not required to sequence both elements in a safe manner to avoid damage to equipment, e.g., via cavitation, and to avoid screen out.

In accordance with an embodiment of the present disclosure, a method of detecting and mitigating well screen out at a fracturing well site during hydrocarbon production may include operating a fracturing pump to supply fluid at a discharge rate to a wellhead at a fracturing well site. The method also may include operating a blender positioned to deliver a blend of proppant and fluid to the fracturing pump. A fluid pressure of the fluid supplied to the wellhead may be measured and a fluid pressure increase rate of the fluid may be determined from the fluid pressure. The fluid pressure increase rate may be compared to a preselected increase rate indicative of a potential well screen out. When the fluid pressure increase rate exceeds the preselected increase rate and the fluid pressure is within a preselected percentage of a maximum wellhead pressure of the well head, the discharge rate of the fracturing pumps may be incrementally decreased until the fluid pressure increase rate is stabilized. Stabilizing the fluid pressure increase rate may include the fluid pressure increase rate being equal to or less than zero.

In accordance with another embodiment of the present various systems and operations to accomplish activities 40 disclosure, a wellsite hydraulic fracturing pumper system may include one or more fracturing pumps, a blender, a pressure transducer, and a controller. The one or more fracturing pumps may be configured to provide fluid to a wellhead when positioned a hydrocarbon well site. The blender may be configured to provide fluid and proppant to the one or more fracturing pumps. The pressure transducer may be positioned adjacent an output of the one or more fracturing pumps or at the wellhead. The pressure transducer may be configured to measure a fluid pressure of the fluid provided to the wellhead. The controller may control the one or more fracturing pumps and the blender. The controller may be positioned in signal communication with the pressure transducer such that the controller receives the fluid pressure of the fluid provided to the wellhead. The controller may include memory, a processor to process data, and a screen out detection and mitigation protocol program stored in the memory and responsive to the process and in which the protocol of the controller may incrementally decrease a discharge rate of the one or more fracturing pumps and a flow rate of the blender in response to a fluid pressure increase rate of the fluid suppled to the wellhead being greater than a preselected increase rate and the fluid pressure of the fluid provided to the wellhead being greater than a preselected percentage of a maximum wellhead pressure until the fluid pressure is stabilized.

In yet another embodiment of the present disclosure, a controller for a hydraulic fracturing pumper system may

include a pressure input, a first control output, and a second control output. The pressure input may be in signal communication with a pressure transducer that measures a fluid pressure of a fluid being provided to a wellhead. The first control output may be in signal communication with a 5 fracturing pump such that the controller provides pump control signals to the fracturing pump to control a discharge rate of the fracturing pump. The second control output may be in signal communication with a blender such that the controller provides blender control signals to the blender to control a flow rate of the blender and delivery of a proppant from the blender. The controller may be configured to calculate a fluid pressure increase rate of the fluid pressure, compare the fluid pressure increase rate of the fluid pressure to a preselected increase rate, and incrementally decrease a discharge rate of the fracturing pump and a flow rate of the blender when the fluid pressure increase rate is greater than the preselected increase rate and the fluid pressure is within a preselected percentage of a maximum wellhead pressure of the wellhead until the fluid pressure of the fluid is supplied $\ ^{20}$ to the wellhead is stabilized.

Those skilled in the art will appreciate the benefits of various additional embodiments reading the following detailed description of the embodiments with reference to the below-listed drawing figures. It is within the scope of the ²⁵ present disclosure that the above-discussed embodiments and aspects be provided both individually and in various combinations.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the embodiments of the present disclosure, are incorporated in and constitute a part of this specification, and together with the detailed description, serve to explain the principles of the embodiments discussed herein. The present disclosure may be more readily described with reference to the accompanying drawings.

FIG. 1 is a schematic view of a wellsite hydraulic fracturing pumper system according to an embodiment of the 40 disclosure.

FIG. 2 is a schematic view of a control system of the wellsite hydraulic fracturing pumper system of FIG. 1.

FIG. 3 is a flowchart of a method of detecting and mitigating a well screen out of a well according to an 45 embodiment of the present disclosure.

Corresponding parts are designated by corresponding reference numbers throughout the drawings.

DETAILED DESCRIPTION

The present disclosure will now be described more fully hereinafter with reference to example embodiments thereof with reference to the drawings in which like reference numerals designate identical or corresponding elements in 55 each of the several views. These example embodiments are described so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Features from one embodiment or aspect may be combined with features from any other 60 embodiment or aspect in any appropriate combination. For example, any individual or collective features of method aspects or embodiments may be applied to apparatus, product, or component aspects or embodiments and vice versa. The disclosure may be embodied in many different forms 65 and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so

4

that this disclosure will satisfy applicable legal requirements. As used in the specification and the appended claims, the singular forms "a," "an," "the," and the like include plural referents unless the context clearly dictates otherwise. In addition, while reference may be made herein to quantitative measures, values, geometric relationships or the like, unless otherwise stated, any one or more if not all of these may be absolute or approximate to account for acceptable variations that may occur, such as those due to manufacturing or engineering tolerances or the like.

Embodiments of the present disclosure are directed to methods and systems for detecting and mitigating well screen outs during the operations of wellsite hydraulic fracturing pumping systems during the production of hydrocarbons. The methods and systems detailed herein may be executed on a controller that provides alerts or alarms to an operator of a potential well screen out and may intervene to prevent the fluid pressure provided to the well from exceeding a maximum well pressure.

FIG. 1 illustrates an exemplary wellsite hydraulic fracturing pumper system 1000 that is provided in accordance with an embodiment of the present disclosure. The wellsite hydraulic fracturing pumper system 1000 includes a plurality of mobile power units 100 arranged around a wellhead 10 to supply the wellhead 10 with high-pressure fracturing fluids and recover oil and/or gas from the wellhead 10 as will be understood by those skilled in the art. As shown, some of the mobile power units 100, e.g., mobile power units 100a, drive a hydraulic fracturing pump 200 that discharges high pressure fluid to a manifold 20 such that the high pressure fluid is provided to the wellhead 10. Additionally, some of the mobile power units 100, e.g., mobile power units 100b, drive an electrical generator 300 that provides electrical power to the wellsite hydraulic fracturing pumper system 1000

The wellsite hydraulic fracturing pumper system 1000 also includes a blender unit 410, a hydration unit 420, or a chemical additive unit 430 which may be referred to generally as backside equipment 400. Specifically, the blender unit 410 provides a flow of fluid to the fracturing pumps 200 which is pressurized by and discharged from the fracturing pumps 200 into the manifold 20. The blender unit 410 may include one or more screw conveyors 412 that provides proppant to a mixer 416 of the blender unit 410. The blender unit 410 also includes a discharge pump 418 that draws fluid from the mixer 416 such that a flow of fluid is provided from the blender unit 410 to the fracturing pumps 200. The fluid from the mixer 416 may include proppant provided by the screw conveyors 412 and/or chemicals for the fluid of the fracturing pumps 200. When blender unit 410 provides proppant to the fracturing pumps 200, the proppant is in a slurry which may be considered a fluid as will be understood by those skilled in the art.

The wellsite hydraulic fracturing pumper system 1000 includes a supervisory control unit that monitors and controls operation of the mobile power units 100a driving the fracturing pumps 200, the mobile power units 100b driving electrical generators 300, and the units 410, 420, 430 and may be referred to generally as controller 30. The controller 30 may be a mobile control unit in the form of a trailer or a van, as appreciated by those skilled in the art. As used herein, the term "fracturing pump" may be used to refer to one or more of the hydraulic fracturing pumps 200 of the hydraulic fracturing pumps 200 are controlled by the controller 30 such that to an operator of the

5 controller 30, the hydraulic fracturing pumps 200 are controlled as a single pump or pumping system.

The controller 30 is in signal communication with the blender unit 410 to control the delivery of the proppant to the mixer 416 and a flow rate of fluid from the discharge pump 418 to the fracturing pumps 200. The controller 30 is also in signal communication with the fracturing pumps 200 to control a discharge rate of fluid from the fracturing pumps 200 into the manifold 20. In addition, the controller 30 is in signal communication with one or more sensors of the 10 wellsite hydraulic fracturing pumper system 1000 to receive measurements or data with respect to the fracturing operation. For example, the controller 30 receives a measurement of pressure of the fluid being delivered to the wellhead 10 from a wellhead pressure transducer 13, a manifold pressure 15 transducer 23, or a pump output pressure transducer 213. The wellhead pressure transducer 13 is disposed at the wellhead 10 to measure a pressure of the fluid at the wellhead 10. The manifold pressure transducer 23 is shown at an end of the manifold 20. However, as understood by 20 those skilled in the art, the pressure within the manifold 20 is substantially the same throughout the entire manifold 20 such that the manifold pressure transducer 23 may be disposed anywhere within the manifold 20 to provide a pressure of the fluid being delivered to the wellhead 10. The 25 pump output pressure transducer 213 is disposed adjacent an output of one of the fracturing pumps 200 which is in fluid communication with the manifold 20 and thus, the fluid at the output of the fracturing pumps 200 is at substantially the same pressure as the fluid in the manifold 20 and the fluid 30 being provided to the wellhead 10. Each of the fracturing pumps 200 may include a pump output pressure transducer 213 and the controller 30 may calculate the fluid pressure provided to the wellhead 10 as an average of the fluid pressure measured by each of the pump output pressure 35 transducers 213.

The controller 30 is also in signal communication with sensors disposed about the blender unit 410. For example, the blender unit 410 may include a blender screw encoder/ pickup 411 that provides a rotation rate of the screw con- 40 veyors 412 of the blender unit 410 which provide proppant to the mixer 416 such that proppant is provided to the fracturing pumps 200. When the screw conveyors 412 are not active or rotating, proppant is not being added to the mixer 416 such that no proppant is being provided to the 45 fracturing pumps 200. The blender unit 410 may include a blender flow meter 413 that measures a flow of fluid from the blender unit 410 to the fracturing pumps 200.

As used herein, "signal communication" refers to electric communication such as hard wiring two components 50 together or wireless communication, as understood by those skilled in the art. For example, wireless communication may be Wi-Fi®, Bluetooth®, ZigBee, or forms of near field communications. In addition, signal communication may include one or more intermediate controllers or relays dis- 55 posed between elements that are in signal communication with one another. For example, a pump output pressure transducer 213 may be in direct electrical communication with a pump controller (not explicitly shown) and the pump controller may be in direct electrical communication or 60 wireless communication with a master controller (not explicitly shown) of the mobile power unit 100 which is in electrical or wireless communication with the controller 30.

FIG. 2 illustrates a schematic of a control system for the wellsite hydraulic fracturing pumper system 1000 referred to 65 generally as a control system 1010. The control system 1010 includes the controller 30 that is in signal communication

with the wellhead pressure transducer 13, a manifold pressure transducer 23, and a pump output transducer 213. The controller 30 includes memory 32 and a processor 34. The memory 32 may be loaded or preloaded with programs, e.g., detection and mitigation protocol programs as detailed below, that are executed on the processor 34. The pump output transducer 213 may be in direct signal or electrical communication with a pump controller 215 which may be in direct signal or electrical communication with a mobile power unit controller 105 with the mobile power unit controller 105 in direct signal or electrical communication with the controller 30 such that the pump output transducer 213 is in signal communication with the controller 30. In some embodiments, the pump output transducer is in direct signal communication with the controller 30. The pump controller 215 is configured to control the fracturing pump 200 in response to commands signals provided by the controller 30 or the mobile power unit controller 30. The pump controller 215 may include a pump profiler that records events experienced by the fracturing pump 200. The recorded events may be used to schedule maintenance of the fracturing pump 200.

The control system 1010 may include a blender controller 419, a blender flow meter 413, and a blender screw encoder/ pickup 411. The blender flow meter 413 and the blender screw encoder/pickup 411 may be in direct signal or electrical communication with the blender controller 419 which may be in direct signal or electrical communication with the controller 30 such that the blender flow meter 413 and the blender screw encoder/pickup 411 are in signal communication with the controller 30.

FIG. 3 illustrates a method of detecting and mitigating well screen out for a hydraulic fracturing operation is described in accordance with embodiments of the present disclosure and is referred to generally as method 500. The method 500 is detailed with reference to the wellsite hydraulic fracturing pumper system 1000 and the control system 1010 of FIGS. 1 and 2. Unless otherwise specified, the actions of the method 500 may be completed within the controller 30. Specifically, the method 500 may be included in one or more programs or protocols loaded into the memory 32 of the controller 30 and executed on the processor 34. The well screen out protocol is activated (Step 501) either automatically when the controller 30 is started or may be manually activated by an operator. When well screen out protocol is activated, a maximum wellhead pressure is provided to the controller 30 (Step 510). The maximum wellhead pressure may be input by an operator into a human interface of the controller 30 or may be a preselected pressure programmed into the controller 30. When the maximum wellhead pressure is provided by an operator, the controller may verify that the inputted maximum wellhead pressure is within a preselected range. If the inputted maximum wellhead pressure is outside of the preselected range, the controller 30 may display an alarm or reject the inputted maximum wellhead pressure and request another value be inputted by the operator and verify the new inputted maximum wellhead pressure until the inputted maximum wellhead pressure is within the preselected range. The preselected range may be in a range of up to 15,000 per square inch (psi), for example, as will be understood by those skilled in the art.

With the maximum wellhead pressure, the controller 30 verifies that the wellsite hydraulic fracturing pumper system 1000 is in a pumping mode in which at least one of the fracturing pumps 200 is active and that the blender unit 410 is adding proppant to the fluid provided to the fracturing

pumps 200 (Step 520). The controller 30 may verify the blender unit 410 is adding proppant from verifying that one or more of the screw conveyors 412 is rotating via the blender screw encoder/pickups 411. If either the wellsite hydraulic fracturing pumper system 1000 is not in a pumping mode or that the blender unit 410 is not adding proppant to the fluid being supplied to the fracturing pumps 200 the method 500 is terminated or deactivated. The method 500 may be reactivated manually or when the fracturing pumps 200 and the blender unit 410 are activated to provide fluid including proppant to the wellhead 10.

Continuing to refer to FIG. 3, when the fracturing pumps 200 and the blender unit 410 are activated to provide fluid including proppant to the wellhead 10, the controller 30 monitors a fluid pressure of fluid being provided to the wellhead 10 to detect a potential screen out within the well (Step 530). The fluid pressure of the fluid provided to the wellhead 10 may be monitored from the wellhead pressure pump output pressure transducers 213, or combinations thereof. To detect for a potential screen out within the well, the controller 30 monitors a rate of increase of the fluid pressure of fluid being provided to the wellhead 10 which is referred to as fluid pressure increase rate. The fluid pressure 25 increase rate may be calculated by comparing the fluid pressure at a first time $P(t_1)$ and fluid pressure at a second time P(t2) such that the fluid pressure increase rate is calculated as:

Fluid Pressure Increase Rate =
$$\frac{\Delta P}{\Delta t} = \frac{P(t_2) - P(t_1)}{t_2 - t_1}$$
.

The fluid pressure may be sampled at a rate in a range of 1 Hertz (Hz) to 300 Hz and the fluid pressure increase rate may be smoothed by taking an average of 2 samples to 100 samples to prevent a single spike of a sample or an erroneous sample from triggering the detection of a potential screen 40

The calculated fluid pressure increase rate is compared to a preselected increase rate to determine if there is a potential for screen out within the well (Step 540). The preselected increase rate may be an increase rate that is entered by an 45 operator or may be preprogrammed into the controller 30. The preselected increase rate may be based on historical data of well screen out from other wells, for example, or specific to the well being monitored, as will be understood by those skilled in the art. When the fluid pressure increase rate is 50 below the preselected increase rate, the controller 30 continues to monitor the fluid pressure increase rate while proppant is being added to the fluid provided to the fracturing pumps 200.

When the fluid pressure increase rate meets or exceeds the 55 preselected increase rate, a tier of the fluid pressure increase rate may be determined (Step 542). For example, when the fluid pressure increase rate is in a first range of 600 psi/s to 800 psi/s such that the fluid pressure increase rate is a Tier 1 Potential Screen Out and the potential for screen out may be minor. When the fluid pressure increase rate is a Tier 1 Potential Screen Out, the controller 30 provides an alert or message to an operator that the fluid pressure increase rate is high or there is a potential for screen out (Step 544). The message or alert may be a warning light, a message on a screen, an audible alert, or combinations thereof. In response to the alert or message, an operator may take no action,

reduce or stop the addition of proppant to the fluid provided to the fracturing pumps 200, or reduce a discharge rate of the fracturing pumps 200.

Continuing with the example, when the fluid pressure increase rate is in a second range of 800 psi/s to 1200 psi/s such that the fluid pressure increase rate is a Tier 2 Potential Screen Out and the potential for screen out is high. When the fluid pressure increase rate is a Tier 2 Potential Screen Out, the controller 30 provides an alarm or message to an operator that the fluid pressure increase rate is high or potential screen out is high (Step 546). The message or alarm may be a warning light, a message on a screen, an audible alert, or combinations thereof and is escalated from the message or alert provided for a Tier 1 Potential Screen Out. In response to the alarm or message, an operator may take no action, reduce or stop the addition of proppant to the fluid provided to the fracturing pumps 200, or reduce a discharge rate of the fracturing pumps 200.

When the fluid pressure increase rate is above the second transducer 13, the manifold pressure transducer 23, the 20 range, e.g., 1200 psi/s, the potential for screen out is extremely high such that the fluid pressure increase rate is a Tier 3 Potential Screen Out and a screen out is likely. When the fluid pressure increase rate is a Tier 3 Potential Screen Out, a screen out is likely and the controller 30 enters an intervention or mitigation mode to prevent screen out and prevent or reduce damage to the well and the wellsite hydraulic fracturing pumper system 1000 by the mitigation process 550. When the controller 30 begins the mitigation process 550, the controller 30 provides an alert or message 30 to an operator that the mitigation process **550** is running. The message or alert may be a warning light, a message on a screen, an audible alert, or combinations thereof and is escalated from the message or alert provided for a Tier 2 Potential Screen Out.

> In the mitigation mode, the controller 30 compares the fluid pressure to the maximum wellhead pressure (Step 552). When the fluid pressure is greater than a first preselected percentage of the maximum wellhead pressure, e.g., 90%, the controller 30 verifies that the blender screw conveyors 412 are not providing proppant to the blender unit 410, e.g., that the blender screw conveyors **412** are not rotating. If the blender screw conveyors 412 are providing proppant to the blender unit 410, the controller 30 stops the blender screw conveyors 412 to stop delivery of proppant (Step 554). When the delivery of proppant is stopped or verified to be stopped, the controller 30 begins to incrementally decrease a discharge rate of the fracturing pumps 200 as defined by process 560.

> The process 560 may include multiple iterations of decreases in a discharge rate of the fracturing pumps 200 by a preselected increment (Step 562) and determining the fluid pressure increase rate (Step 564). The process 560 continues to iterate through Steps 562 and 564 until the fluid pressure increase rate is no longer increasing or stabilized, e.g., less than or equal to zero. The preselected increment may be in a range of 0.5 barrels per minute (BPM) to 10 BPM, e.g., 2 BPM. In some embodiments, the preselected increment is less than 5 BPM. The process **560** may include decreasing the discharge rate of the fracturing pumps 200 by the preselected increment (Step 562) and delaying the determining the fluid pressure increase rate (Step 564) for a period of time or a number of cycles of the fracturing pump 200, e.g., 1 second or 25 cycles or revolutions of the fracturing pump **200**. The delay in determining the fluid pressure increase rate may allow for the fluid pressure to react to the decreased discharge rate before the fluid pressure increase rate is determined. During each iteration of the process 560, the

controller 30 may sequence the flow rate of the blender unit 410 and the discharge rate of the fracturing pump 200. Specifically, the controller 30 may first send a control signal to the fracturing pump 200 to decrease a discharge rate of the fracturing pump 200 by the increment and then send a control signal to the blender unit 410, e.g., the discharge pump 418 of the blender unit 410, to decrease a flow rate of fluid to the fracturing pump 200. By sequencing the blender unit 410 and the fracturing pumps 200 cavitation at the fracturing pumps 200 may be avoided. In addition, by the controller 30 sequencing the blender unit 410 and the fracturing pumps 200, the need for an operator to manually sequence the blender unit 410 and the fracturing pumps 200 to maintain a safe operation state is removed.

When the fluid pressure increase rate is stabilized such that the fluid pressure is not increasing or is decreasing (e.g., equal to or less than zero), the controller 30 terminates the mitigation process 550 and maintains the discharge rate of the fracturing pumps 200 (Step 570). When the mitigation 20 process 550 is completed, an operator may begin providing proppant to in the fluid provided to the fracturing pumps 200 by activating the blender screw conveyors 412 (Step 580) and/or may manually change the discharge rate of the fracturing pumps 200 (Step 582). When the operator takes 25 control at Steps 580, 582, the operator may reactivate an automatic or scheduled program of the operation the controller 30 returns to monitoring the fluid pressure increase rate of Step 530.

Returning back to the entry into the mitigation process 30 550, when the fluid pressure increase rate is a Tier 3 Potential Screen Out and the fluid pressure is below or less than the first preselected percentage of the maximum fluid pressure, e.g., 90%, the controller 30 maintains the discharge rate of the fracturing pumps 200 and the delivery of the 35 proppant (Step 556). When the discharge rate of the fracturing pumps 200 and the delivery of the proppant is maintained, an operator may provide input to the controller 30 to manually change the discharge rate of the fracturing pumps 200 or reactivate an automatic or scheduled program 40 to the operation of the controller 30 (Step 582). If an operator does not intervene, the controller 30 continues to monitor fluid pressure.

If the operator does not intervene and the fluid pressure reaches a second preselected percentage of the maximum 45 fluid pressure, e.g., 94%, the controller 30 intervenes by preparing for and running the process 560. Specifically, the controller 30 prepares for the process 560 by stopping the blender screw conveyors 412 to stop delivery of proppant (Step 554). When the delivery of proppant is stopped, the 50 controller 30 begins the process 560 to incrementally decrease a discharge rate of the fracturing pumps 200 as detailed above until by cycling through Step 562 and Step 564 until the fluid pressure increase rate is no longer increasing or stabilized, e.g., less than or equal to zero. 55 When the fluid pressure increase rate is stabilized, the discharge rate of the fracturing pumps 200 is maintained (Step 570) such that the mitigation process 550 is complete or terminated. When the mitigation process 550 is completed, an operator may begin providing proppant to in the 60 fluid provided to the fracturing pumps 200 by activating the blender screw conveyors 412 (Step 580) and/or may manually change the discharge rate of the fracturing pumps 200 (Step 582). When the operator takes control at Steps 580, 582, the operator may reactivate an automatic or scheduled 65 program of the operation the controller 30 returns to monitoring the fluid pressure increase rate of Step 530.

10

The mitigation process 550 enables the controller 30 to automatically stop delivery of proppant to the fluid provided to the fracturing pumps 200 and to decrease the discharge rate of the fracturing pumps 200 until the fluid pressure increase rate is stabilized without input from an operator. During the mitigation process 550, including the process 560, an operator may be prevented or locked out from certain commands of the controller 30. For example, in some embodiments, during the mitigation process 550, an operator may be locked out of all commands to the controller 30 except at step 556 until the mitigation process 550 such that the fluid pressure increase rate has been stabilized. In certain embodiments, an operator may be locked out of increasing the discharge rate of the fracturing pumps 200 or initiating or increasing delivery of proppant during the mitigation process 550.

By reducing well screen out, the need for operations to reopen fractures or a well (e.g., wire line operations) may be reduced or eliminated such that time, and thus costs, to stimulate a well may be reduced. In addition, the method 500 of detecting and mitigating well screen out with a controller 30 may reduce rapid pressure increases associated with well screen outs such that stress on fracturing equipment may be reduced. The fracturing equipment may include, but not be limited to, fracturing pumps, power end assemblies of power units (e.g., gas turbine engines), gearboxes, transmissions, and piping or iron of the well site. Further, by intervening before the fluid supplied to the wellhead reaches the maximum fluid pressure, reliance on pressure relief valves, such as a wellhead pressure relief valve, may be reduced. Reducing reliance on pressure relief valves may conserve energy by not releasing pressure within the system and reduce stress on the fracturing equipment by maintaining a more consistent fluid pressure within the maximum wellhead pressure.

The method **500** being executed by the controller **30** allows for continuous monitoring of the fluid pressure and the fluid pressure increase rate at higher rate (e.g., 1 Hz to 300 Hz) when compared to relying on manual control and monitoring. In addition, by including multiple tiers of warnings (e.g., Tier 1 and Tier 2) the controller **30** alerts an operator to intervene before the fluid pressure approaches the maximum wellhead pressure and may automatically intervene if the fluid pressure increase rate reaches Tier **3** and the fluid pressure approaches the maximum wellhead pressure.

This is a continuation of U.S. Non-Provisional application Ser. No. 17/991,007, filed Nov. 21, 2022, titled "METHODS FOR DETECTION AND MITIGATION OF WELL SCREEN OUT," now U.S. Pat. No. 11,939,854 issued Mar. 26, 2024, which is a continuation of U.S. Non-Provisional application Ser. No. 17/355,920, filed Jun. 23, 2021, titled "METHODS FOR DETECTION AND MITIGATION OF WELL SCREEN OUT," now U.S. Pat. No. 11,566,506 issued Jan. 31, 2023, which is continuation of U.S. Non-Provisional application Ser. No. 17/303,841, filed Jun. 9, 2021, titled "METHODS AND SYSTEMS FOR DETEC-TION AND MITIGATION OF WELL SCREEN OUT," now U.S. Pat. No. 11,208,881, issued Dec. 28, 2021, which is a continuation of U.S. Non-Provisional application Ser. No. 17/182,408, filed Feb. 23, 2021, titled "METHODS FOR DETECTION AND MITIGATION OF WELL SCREEN OUT," now U.S. Pat. No. 11,066,915, issued Jul. 20, 2021, which claims priority to and the benefit of U.S. Provisional Application No. 62/705,050, filed Jun. 9, 2020, titled "METHODS AND SYSTEMS FOR DETECTION

AND MITIGATION OF WELL SCREEN OUT," the disclosures of which are incorporated herein by reference in their entireties.

The foregoing description of the disclosure illustrates and describes various exemplary embodiments. Various addi- 5 tions, modifications, changes, etc., may be made to the exemplary embodiments without departing from the spirit and scope of the disclosure. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense. Additionally, the disclosure shows and describes only selected embodiments of the disclosure, but the disclosure is capable of use in various other combinations, modifications, and environments and is capable of changes or modifications within the scope of the inventive 15 concept as expressed herein, commensurate with the above teachings, and/or within the skill or knowledge of the relevant art. Furthermore, certain features and characteristics of each embodiment may be selectively interchanged and applied to other illustrated and non-illustrated embodi- 20 ments of the disclosure.

What is claimed:

1. A wellsite hydraulic fracturing pumper system, the system comprising:

one or more fracturing pumps configured to pump fluid to a wellhead when positioned at a hydrocarbon well site; one or more pressure transducers positioned at a location of one or more of: (a) adjacent an output of the one or more fracturing pumps, and (b) at the wellhead, the one 30 or more pressure transducers each configured to measure a fluid pressure of the fluid provided to the wellhead; and

- a controller to control the one or more fracturing pumps and positioned in signal communication with the one or 35 more pressure transducers such that the controller receives the fluid pressure of the fluid provided to the wellhead, the controller (a) including memory, a processor to process data, and a screen out detection and mitigation protocol program stored in the memory and 40 (b) being responsive to a process in which the protocol of the controller incrementally decreases a discharge rate of the one or more fracturing pumps, in response to: (i) a fluid pressure increase rate of the fluid supplied to the wellhead being greater than a preselected 45 increase rate, and (ii) the fluid pressure of the fluid provided to the wellhead being greater than a preselected percentage of a maximum wellhead pressure, until the fluid pressure is stabilized.
- 2. The wellsite hydraulic fracturing pumper system 50 according to claim 1, wherein the screen out detection and mitigation protocol includes an alarm to provide an alert indicative of when the fluid pressure increase rate is greater than the preselected increase rate before the pressure of the fluid provided to the wellhead is within the preselected 55 percentage of the maximum wellhead pressure.
- 3. The wellsite hydraulic fracturing pumper system according to claim 2, wherein the one or more pressure transducers also are positioned at a location adjacent the output of the one or more fracturing pumps.
- 4. The wellsite hydraulic fracturing pumper system according to claim 3, further comprising one or more blenders configured to provide fluid and proppant to the one or more fracturing pumps, wherein each of the one or more blenders includes a blender conveyor configured to rotate 65 such that proppant is provided to the one or more fracturing pumps in response to rotation of the blender conveyor.

12

- 5. The wellsite hydraulic fracturing pumper system according to claim 4, the controller further being responsive to a process in which the protocol of the controller incrementally decreases a flow rate of the one or more blenders, wherein incrementally decreasing the discharge rate of the one or more fracturing pumps and the flow rate of the one or more blenders by the controller includes stopping delivery of proppant at the one or more blenders prior to decreasing the discharge rate of the fracturing pump when the one or more blenders are delivering proppant.
- 6. The wellsite hydraulic fracturing pumper system according to claim 5, wherein incrementally decreasing the discharge rate of the one or more fracturing pumps and the flow rate of the one or more blenders by the controller includes decreasing the discharge rate of the one or more fracturing pumps prior to decreasing the flow rate of the one or more blenders.
- 7. A wellsite hydraulic fracturing pumper system, the system comprising:

one or more fracturing pumps configured to pump fluid to a wellhead when positioned at a hydrocarbon well site; one or more pressure transducers positioned at a location of one or more of: (a) adjacent an output of the one or more fracturing pumps, (b) at the wellhead, the one or more pressure transducers each configured to measure a fluid pressure of the fluid provided to the wellhead, and (c) adjacent the output of the one or more fracturing pumps; and

- a controller to control the one or more fracturing pumps and positioned in signal communication with the one or more pressure transducers such that the controller receives the fluid pressure of the fluid provided to the wellhead, the controller configured to incrementally decrease a discharge rate of the one or more fracturing pumps in response to: (i) a fluid pressure increase rate of the fluid supplied to the wellhead being greater than a preselected increase rate, and (ii) the fluid pressure of the fluid provided to the wellhead being greater than a preselected percentage of a maximum wellhead pressure, until the fluid pressure is stabilized.
- 8. The wellsite hydraulic fracturing pumper system according to claim 7, wherein the one or more pressure transducers also are positioned at a location adjacent the output of the one or more fracturing pumps.
- **9**. The wellsite hydraulic fracturing pumper system according to claim **7**, further comprising one or more blenders configured to provide fluid and proppant to the one or more fracturing pumps.
- 10. The wellsite hydraulic fracturing pumper system according to claim 9, the controller further being responsive to a process in which the protocol of the controller incrementally decreases a flow rate of the one or more blenders, wherein incrementally decreasing the discharge rate of the one or more fracturing pumps and the flow rate of the one or more blenders by the controller includes stopping delivery of proppant at the one or more blenders prior to decreasing the discharge rate of the fracturing pump when the one or more blenders are delivering proppant.
- 11. The wellsite hydraulic fracturing pumper system according to claim 10, wherein incrementally decreasing the discharge rate of the one or more fracturing pumps and the flow rate of the one or more blenders by the controller includes decreasing the discharge rate of the one or more fracturing pumps prior to decreasing the flow rate of the one or more blenders.
 - 12. The wellsite hydraulic fracturing pumper system according to claim 7, wherein the controller is configured to

incrementally decrease the discharge rate of the one or more fracturing pumps by one or more increments, each increment in the range of 0.5 barrels per minute to 10 barrels per minute.

13. A wellsite hydraulic fracturing pumper system, the 5 system comprising:

one or more mobile fracturing pump units to pump fluid to a wellhead when positioned at a hydrocarbon well site, each of the fracturing pump units comprising a gas turbine engine configured to drive a fracturing pump; 10 one or more pressure transducers configured to be posi-

tioned at a location of one or more of: (a) adjacent an output of the one or more fracturing pumps, or (b) at the wellhead, and to measure a fluid pressure of the fluid when provided to the wellhead; and

- a controller to control the one or more fracturing pumps and configured to be positioned in signal communication with the one or more pressure transducers such that the controller receives measurement of the fluid pressure of the fluid when provided to the wellhead and 20 controllingly stabilizes the fluid pressure when the fluid pressure supplied to the wellhead increases greater than a preselected increase rate and being greater than a preselected percentage of a maximum wellhead pressure, the controller configured to incrementally 25 decrease a discharge rate of the one or more fracturing pumps, in response to a fluid pressure measurement obtained by the one or more pressure transducers.
- 14. The wellsite hydraulic fracturing pumper system according to claim 13, wherein the controller comprises a 30 memory, a processor to process data, and a screen out detection and mitigation protocol program stored in the memory, the controller being responsive to a process in which the protocol of the controller incrementally decreases a discharge rate of the one or more fracturing pumps, in

14

response to: (i) a fluid pressure increase rate of the fluid supplied to the wellhead being greater than a preselected increase rate, and (ii) the fluid pressure of the fluid provided to the wellhead being greater than a preselected percentage of a maximum wellhead pressure.

- 15. The wellsite hydraulic fracturing pumper system according to claim 14, wherein the screen out detection and mitigation protocol includes an alarm to provide an alert indicative of when the fluid pressure increase rate is greater than the preselected increase rate before the pressure of the fluid provided to the wellhead is within the preselected percentage of the maximum wellhead pressure.
- 16. The wellsite hydraulic fracturing pumper system according to claim 15, wherein the controller is configured to incrementally decrease the discharge rate of the one or more fracturing pumps by one or more increments, each increment in the range of 0.5 barrels per minute to 10 barrels per minute.
- 17. The wellsite hydraulic fracturing pumper system according to claim 16, wherein the controller is configured to delay determination of a fluid pressure increase rate after incrementally decreasing the discharge rate of the one or more fracturing pumps by the one or more increments.
- 18. The wellsite hydraulic fracturing pumper system according to claim 13, wherein the one or more pressure transducers also are positioned at a location adjacent the output of the one or more fracturing pumps.
- 19. The wellsite hydraulic fracturing pumper system according to claim 13, wherein the controller is configured to incrementally decrease the discharge rate of the one or more fracturing pumps by one or more increments, each increment in the range of 0.5 barrels per minute to 10 barrels per minute.

* * * * *