МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Вопрос по выбору, 3 семестр Закон Кюри-Вейсса

Климова Екатерина Группа Б01-108 **Цель работы:** изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

В работе используются: катушка самоиндукции с образцом из гадолиния; термостат; частотомер; цифровой вольтметр; LC-автогенератор; термопара медь-константан.

1 Аннотация

В данной работе проводится исследование зависимости периода колебаний автогенератора от температуры сердечника катушки и по результатам измерений определяется парамагнитная точка Кюри гадолиния.

2 Теоретическое введение

2.1 Магнитное поле в веществе

В веществе магнитное поле формируется как внешним полем, так и циркулирующими в этом веществе токами. На микроуровне (то есть на расстояниях порядка размера атома и менее) поле резко меняется во времени и пространстве. Это поле называется микрополем ${\bf B}_{\rm микро}$. Однако если произвести усреднение по малому объему ΔV , в котором, тем не менее, имеется много частиц зарядов, то получим среднее поле: ${\bf B} = \frac{1}{\Delta V} \int_{\Delta V} {\bf B}_{\rm микро} \, dV$. Среднее поле меняется существенно медленнее вследствие статистического усреднения при случайном движении частиц. Вектор ${\bf B}$ называют $undykuue\check{u}$ магнитного поля.

При макроскопическом описании свойств среды можно считать, что каждый элемент объема среды может являться элементарным источником магнитного поля — магнитным диполем. Для описания усредненных свойств среды используют вектор намагниченности \mathbf{M} , равный магнитному моменту единичного объема вещества.

Также вводится вектор напряженности магнитного поля **H**, удовлетворяющий соотношению (в СГСЭ):

$$\mathbf{B} = \mathbf{H} + 4\pi \mathbf{M}.\tag{1}$$

В наиболее простом случае намагниченность в каждой точке среды прямо пропорциональна вектору напряженности в этой же точке:

$$\mathbf{M} = \chi \mathbf{H},\tag{2}$$

где χ — магнитная восприимчивость, в зависимости от значения которой можно условно выделить два типа веществ: ∂ иамагнетики (χ < 0), в которых элементарные диполи ориентированы в основном против приложенного поля, и парамагнетики (χ > 0), в которых элементарные диполи ориентированы в основном по направлению приложенного поля. В общем случае зависимость $\mathbf{M}(\mathbf{H})$ не является линейной, а зависит от предыстории образца — явление гистерезиса в ферромагнетиках.

Если закон (2) применим, то

$$\mathbf{B} = \mu \mathbf{H},\tag{3}$$

где $\mu = 1 + 4\pi \chi$ — магнитная проницаемость вещества.

2.2 Парамагнетизм

Парамагнетизм наблюдается у тех веществ, атомы которых обладают магнитными моментами уже в отсутствие внешнего магнитного поля. В парамагнетиках энергия взаимодействия между соседними магнитными моментами атомов мала по сравнению с тепловой энергией, поэтому пока нет магнитного поля, атомы совершают беспорядочное тепловое движение, а их магнитные моменты ориентированы в пространстве также беспорядочно. В этом случае вещество не намагничено. При помещении во внешнее поле магнитным моментам энергетически выгодно ориентироваться преимущественно по полю, что и приводит к парамагнитному эффекту: $\chi > 0$, то есть $\mathbf{B}||\mathbf{H}||\mathbf{M}$.

Оценим зависимость магнитной восприимчивости парамагнетика от температуры. Пусть среднее число атомов в единице объема равно n, а величина магнитного момента атома $-p_m$. В магнитном поле с индукцией B энергия магнитного диполя, составляющего с направлением поля угол α , равна

$$|U| = p_m B \cos \alpha$$

и может меняться от $-p_m B$ до $p_m B$. Доля атомов dn, обладающих в условиях равновесия энергией $U(\alpha)$, определяется распределением Больцмана:

$$dn \propto e^{\frac{U(\alpha)}{k_{\rm B}T}} d\alpha.$$

Пусть внешнее магнитное поле достаточно мало, так что $p_m B \ll k_{\rm B} T$. Число атомов, имеющих положительную ($\alpha > 0$) проекцию на направление **B**, может быть записано как

$$n_{+} = n_0 e^{p_m B/k_{\rm B}T} \approx n_0 \left(1 + \frac{p_m B}{k_{\rm B}T}\right),\,$$

где n_0 — некоторая нормировочная константа. Аналогично для атомов с отрицательной проекцией момента ($\alpha < 0$):

$$n_{-} = n_0 e^{-p_m B/k_{\rm B}T} \approx n_0 \left(1 - \frac{p_m B}{k_{\rm B}T}\right).$$

Учитывая условие нормировки $n_+ + n_- = n$, найдем: $n_0 \approx n/2$. Величину суммарного магнитного момента единицы объема можно оценить как

$$M \sim n_+ p_m - n_- p_m \approx \frac{p_m^2 n}{k_B T} B.$$

Таким образом, зная, что $\mathbf{M} = \chi \mathbf{H}$ и $\mathbf{B} = (1 + 4\pi \chi) \mathbf{H}$, парамагнитную восприимчивость можно оценить так:

$$\chi_{\rm nap} \sim \frac{np_m^2}{3k_{\rm B}T} \propto \frac{1}{T}.$$
(4)

Температурная зависимость восприимчивости парамагнетиков вида (4) называется **законом Кюри**. При низках температурах или в сверхсильных полях магнитная энергия внутриатомного диполя может оказаться сравнима с тепловой. В таком случае наступит магнитное насыщение, когда почти все магнитные моменты в парамагнетике ориентируются по полю.

2.3 Ферромагнетизм

Ферромагнетиками называются вещества, которые могут быть намагничены уже в отсутствие магнитного поля. Как и в случае парамагнетиков, атомы ферромагнетика обладают собственным магнитным моментом. Однако даже в отсутсвие внешнего магнитного поля атомы ферромагнетика способны образовывать упорядоченные структуры (домены), в которых все магнитные моменты ориентированы практически в одном направлении. Таким образом, каждый отдельный атом испытывает влияние не только внешнего поля, но и поля, созданного соседями.

Зависимость намагниченности ${\bf M}$ от напряженности магнитного поля ${\bf H}$ у всех ферромагнетиков оказывается *нелинейной*: магнитная восприимчивость (как и проницаемость) не является постоянной величиной и зависит от H. По абсолютной величине восприимчивость достигает 10^3-10^4 (для диа- и парамагнетиков $\chi\sim 10^{-7}-10^{-5}$).

Предположим, что намагниченность элемента среды пропорциональна некоторому эффективному полю $\mathbf{H}_{\text{эфф}}$, складывающемуся из поля \mathbf{H} в данной точке, созданного сторонними токами, и среднего «коллективного» поля, пропорционального величине намагниченности \mathbf{M} :

$$\mathbf{M} = \chi_{\text{пар}} \mathbf{H}_{\text{9}\Phi\Phi}, \ \mathbf{H}_{\text{9}\Phi\Phi} = \mathbf{H} + \beta \mathbf{M},$$
 (5)

где $\chi_{\text{пар}}$ — парамагнитная восприимчивость отдельного атома (4), β — некоторая безразмерная константа, определяемая из опыта.

Определяя магнитную восприимчивость по-прежнему как $\chi = M/H$, найдем из (4):

$$\chi = \frac{1}{\chi_{\text{nan}}^{-1} - \beta} \propto \frac{1}{T - \Theta},\tag{6}$$

где параметр $\Theta=\beta \frac{p_m^2 n}{3k_{\rm B}}$ имеет размерность температуры.

Соотношение (6) называют законом Кюри-Вейсса.

2.4 Фазовый переход

Таким образом, при повышении температуры T возрастает дезориентирующее действие теплового движения частиц и магнитная восприимчивость парамагнетиков убывает по $закону\ Kюри\ -$ обратно пропорционально температуре.

Некоторые ферромагнетики при повышении температуры испытывают фазовый переход в парамагнитное состояние. При малых температурах тепловое движение меньше препятствует магнитным моментам атомов ориентироваться в одном направлении при сколь угодно слабом внешнем поле. Температуру фазового перехода второго рода парамагнетик ($T > \Theta_{\kappa}$)-ферромагнетик($T < \Theta_{\kappa}$) называют температурой Кюри Θ_{κ} . Температурная зависимость магнитной восприимчивости у ферромагнетиков выше точки Кюри описывается законом Кюри-Вейсса:

$$\chi \propto \frac{1}{T - \Theta_p},\tag{7}$$

Рис. 1. Зависимость обратной величины магнитной восприимчивости от температуры

где Θ_p — параметр с размерностью температуры, называемый *парамагнитной точкой Кюри*. Величина Θ_p близка

к Θ_{κ} , но не совпадает с ней. Закон Кюри-Вейсса удовлетворительно выполняется вдали от Θ_{κ} , однако нарушается при приближении к этой точке перехода, где модель среднего поля становится слишком груба. На практике наблюдается зависимость, изображенная на рис. 1.

3 Экспериментальная установка

В работе изучается температурная зависимость $\chi(T)$ гадолиния при температурах выше точки Кюри. Выбор материала определяется тем, что его точка Кюри лежит в диапазоне комнатных температур.

Рис. 2. Схема экспериментальной установки

Схема установки для проверки закона Кюри-Вейсса показана на рис. 2. Исследуемый

ферромагнитный образец расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC-автогенератора (генератора колебаний с хорошим самовозбуждением).

Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками образца. Кроме того, оно улучшает тепловой контакт между образцом и термостатной (рабочей) жидкостью 3 в термостате. Ртутный термометр 4 используется для приближенной оценки температуры. Температура образца регулируется с помощью термостата 5.

Коэффициент самоиндукции катушки L пропорционален магнитной проницаемости μ заполняющей его среды: $L \propto \Phi \propto B \propto \mu$. Тогда разность самоиндукций катушки с образцом L и без него L_0 будет пропорциональна восприимчивости образца χ :

$$L-L_0 \propto \mu-1=\chi$$
.

При изменении индуктивности образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC},\tag{8}$$

где C — емкость контура автогенератора. Аналогичным (8) образом определяется период колебаний в отсутствие образца:

$$\tau_0 = 2\pi \sqrt{L_0 C}. (9)$$

Тогда

$$L - L_0 \propto \tau^2 - \tau_0^2,$$

то есть, следовательно,

$$\chi \propto \tau^2 - \tau_0^2.$$

Отсюда следует, что закон Кюри-Вейсса справедлив, если выполнено соотношение

$$\frac{1}{\tau^2 - \tau_0^2} \propto T - \Theta_p. \tag{10}$$

Измерения проводятся в интервале температур от 14 до 40 градусов. Температура исследуемого образца всегда несколько отличается от температуры воды в термостате. После того как вода достигла заданной температуры, идет медленный процесс выравнивания температур образца и воды. Разность их температур контролируется с помощью медно-константановой термопары 6, один из спаев которой находится в тепловом контакте с образцом, а другой погружен в воду, и цифрового вольтметра, к которому подключены концы термопары.

4 Ход работы

Подготовим приборы к работе и запишем параметры установки: чувствительность термопары k=24 град/мВ; зная допустимую разность температур образца и рабочей жидкости $\Delta T=0.5^{\circ}C$ (более точному измерению температур мешают паразитные ЭДС, возникающие в цепи термопары), оценим допустимую ЭДС термопары:

$$U_m = \frac{\Delta T}{k} = \frac{0.5}{24} \approx 0.021 \text{ MB}.$$

Также зафиксируем указанный на установке период колебаний без образца ($\tau_0 = 6.9092$ мкс) и погрешности приборов: $\sigma_T = 0.01$, $\sigma_\tau = 0.01$ мкс, $\sigma_{\Delta U} = 10^{-5}$ В.

Исследуем зависимость периода колебаний LC-генератора от температуры образца, отмечая период колебаний τ по частотомеру, а температуру T_o — по показаниям дисплея термостата и цифрового вольтметра. При этом, как уже было отмечено ранее, температура рабочей жидкости и температура образца, как правило, немного различаются, поэтому температуру образца нужно корректировать при помощи следующей формулы:

$$T_o = T + \Delta U k$$

где T — температура, которую отображает дисплей, ΔU — показание вольтметра в момент измерения периода. Термопара подключена так, что при знаке «-» на табло вольтметра температура образца ниже температуры рабочей жидкости. Результаты исследования занесем в таблицу 1:

n	T, °C	ΔU , мкВ	T_0 , °C	τ , MKC	$\tau^2 - \tau_0^2$, MKC ²	$\frac{1}{\tau^2 - \tau_0^2}$, MKC ⁻²
1	14.11	-0.021	13.61	7.979	15.927	0.063
2	16.09	-0.021	15.59	7.920	14.989	0.067
3	18.08	-0.024	17.50	7.827	13.525	0.074
4	20.09	-0.024	19.51	7.657	10.893	0.092
5	22.08	-0.022	21.55	7.448	7.736	0.129
6	24.07	-0.025	23.47	7.275	5.189	0.193
7	26.09	-0.021	25.59	7.180	3.815	0.262
8	28.06	-0.026	27.44	7.140	3.243	0.308
9	30.08	-0.022	29.55	7.100	2.673	0.374
10	32.08	-0.021	31.58	7.078	2.361	0.424
11	34.07	-0.022	33.54	7.067	2.205	0.453
12	36.07	-0.021	35.57	7.052	1.994	0.502
13	38.06	-0.021	37.56	7.043	1.867	0.536
14	40.05	-0.021	39.55	7.035	1.754	0.570

Таблица 1. Расчеты и измерения для определения зависимости периода колебаний от температуры образца

Теперь рассчитаем погрешности:

$$\sigma_{T_0} = \sqrt{\sigma_T + k^2 \sigma_{\Delta U}^2},$$

но $\sigma_{\Delta U}$ очень мала по сравнению с σ_T , поэтому можно считать, что $\sigma_{T_0} \approx \sigma_T$.

$$\sigma_{\frac{1}{\tau^2 - \tau_0^2}} = \frac{\partial \left(\frac{1}{\tau^2 - \tau_0^2}\right)}{\partial \tau} \sigma_{\tau} = \frac{2\tau \sigma_{\tau}}{\left(\tau^2 - \tau_0^2\right)^2}.$$

Результаты расчета погрешностей занесем в таблицу 2:

n	τ , MKC	$\sigma_{\frac{1}{\tau^2-\tau_0^2}}, \text{ MKC}^{-2}$
1	7.979	0.001
2	7.920	0.001
3	7.827	0.001
4	7.657	0.001
5	7.448	0.002
6	7.275	0.005
7	7.180	0.010
8	7.140	0.014
9	7.100	0.020
10	7.078	0.025
11	7.067	0.029
12	7.052	0.035
13	7.043	0.040
14	7.035	0.046

Таблица 2. Погрешности

Построим график зависимости вида $f(T)=\frac{1}{\tau^2-\tau_0^2}$ (рис. 3) и экстраполируем полученную кривую к оси абсцисс. Зная соотношение (10) $\frac{1}{\tau^2-\tau_0^2}\propto T-\Theta_p$, можно определить, что парамагнитная точка Кюри Θ_p будет лежать на пересечении линейного участка полученной кривой и оси абсцисс, по которой отложена температура образца.

Рис. 3. График зависимости $f(T)=\frac{1}{\tau^2-\tau_0^2},$ где $x\equiv T_o$ — температура образца, $y\equiv \frac{1}{\tau^2-\tau_0^2}$

Линейный участок кривой можно представить в виде y = a + bx, значения коэффцицентов a и b и погрешностей их определения занесем в таблицу 3:

a	σ_a	b	σ_b
-0.486	0.024	0.029	0.001

Таблица 3. Коэффициенты аппроксимированной прямой y = a + bx

Отсюда можно найти парамагнитную точку Кюри для гадолиния: $\Theta_p \approx 17.01^{\circ}C$. Погрешность можно определить по следующей формуле:

$$\sigma_{\Theta_p} = \Theta_p \sqrt{\left(\frac{\sigma_a}{|a|}\right)^2 + \left(\frac{\sigma_b}{b}\right)^2} \approx 1.02^{\circ} C.$$

Таким образом, найденная экспериментальным путем парамагнитная точка Кюри для гадолиния: $\Theta_p = (17.01 \pm 1.02)^{\circ}C$. Сравним с теоретическим значением, найденным в интернете, — примерно $17^{\circ}C$, что совпадает с вычисленным значением в пределах погрешности.

5 Вывод

В ходе работы была экспериментально определена парамагнитная точка Кюри для гадолиния, исследован его переход из ферромагнитного в парамагнитное состояние. Полученное значение хорошо совпало с табличным.