# STA 303/1002-Methods of Data Analysis II Sections L0101& L0201, Winter 2018

#### **Shivon Sue-Chee**



March 15, 2018

# Class 18- Summary of Case Study VI



#### Framingham Heart Study

A Project of the National Heart, Lung, and Blood Institute and Boston University

工 Assume Dist. of *Y*  $H_0$ Test Stat.

Diff. in prop Row totals fixed Binomial  $\pi_1 = \pi_2$ 

LRT Overall total fixed Multinomial  $\pi_{ij} = \pi_{i}.\pi_{.j}$   $\chi^2_{(I-1)(J-1)}$ 

(2 factors) IXT CT

Log-linear

Totals are random Poisson

Additive model

$$\chi^2_{(I-1)(J-1)}$$

(3 factors) IXXXX (†
Non-parametric method: Fisher's Exact Test. Eg. 242 42
Three-way Contingency Tables

table (f1, f2, f3) dim (f3) 2-way tables

## A Three-way Contingency Table

#### Case Study VII Data:

- ▶ 1992 survey of high-school seniors in Ohio
- ► Table of counts of seniors who used alcohol, cigarettes and marijuana.

(3 factors).

|             |               | Marijuana use |     |  |
|-------------|---------------|---------------|-----|--|
| Alcohol use | Cigarette use | Yes           | No  |  |
| Yes         | Yes           | 911           | 538 |  |
|             | No            | 44            | 456 |  |
| No          | Yes           | 3             | 43  |  |
|             | No            | 2             | 279 |  |

Q: Are alcohol (A), cigarettes (C) and marijuana (M) use associated?

# Forms of independence in $I \times J \times K$ Tables

# Models

|            | 1 (0 8/8/5         |                                                                   |             | -10      |                                                               |
|------------|--------------------|-------------------------------------------------------------------|-------------|----------|---------------------------------------------------------------|
|            | Independence       | $\pi_{ijk}$                                                       | Short form  |          |                                                               |
|            | Mutually indep.    | (1) $\pi_{ijk} = \pi_{i}\pi_{.j.}\pi_{k}$                         | (X,Y,Z)     | Complete | 89                                                            |
| 1 2 way    | Jointly indep.     | $(3)  \pi_{ijk} = \pi_{ij}.\pi_{\cdot\cdot k}$                    | (XY,Z)      | Block    | $\{AC, M\}$<br>$\{AM, C\}$<br>(CM, A)<br>(XY, XZ)<br>(YZ, XY) |
| 9 2-Wa     | Conditionally inde | $ep(3)\pi_{ijk}=\pi_{i\cdot k}\pi_{\cdot jk}/\pi_{\cdot \cdot k}$ | (XZ,YZ)     | Partial  | (LM,A)                                                        |
| All 2-wa   | Uniform assoc.     | $(1)  \pi_{ijk} = \pi_{ij}.\pi_{i\cdot k}\pi_{\cdot jk}$          | (XZ,YZ, XY) | Homo     | $(\lambda^3, \chi^2)$                                         |
| All 2, war | Saturated          | $(1)$ $\pi_{ijk}$                                                 | XYZ         |          | 70                                                            |
| 8 3 war    | )                  |                                                                   |             |          |                                                               |

#### Three-way Tables



► Learning Objectives

Write out the models used and the assumptions for inference

Carry out the inference procedures completely\_

▶ Interpret the respective R outputs

In this inference inference wald G-0-F Global LRT

## Model 1: Complete Independence

- P(ACM) = P(A)P(C)P(M); Alcohol, cigarette and marijuana use are mutually independent
- ► Hypotheses:

$$H_0: \pi_{ijk} = \pi_{i..}\pi_{.j.}\pi_{..k}$$
 for all  $i, j, k$   
 $H_a: \pi_{ijk} \neq \pi_{i..}\pi_{.j.}\pi_{..k}$ 

- ► Short form: (A,C,M) -all 3 main effects only
- I = J = K = 2

$$\log(\mu_{ijk}) = \beta_0 + \beta_1 \mathbf{I}_{\mathcal{A}} + \beta_2 \mathbf{I}_{\mathcal{C}} + \beta_3 \mathbf{I}_{\mathcal{M}}$$

where  $I : \{1 = Yes, 0 = No\}$ 

Additive

## Model 1: Complete Independence

In general, we have the constraint  $n = \sum_i \sum_j \sum_k y_{ijk}$  or  $\sum_i \sum_j \sum_k \hat{\pi}_{ijk} = 1$ . Then by ML estimation,

$$\sum_{i} \sum_{j} \sum_{k} \hat{\mu}_{ijk} = n = \sum_{i} \sum_{j} \sum_{k} y_{ijk}$$

$$\implies \hat{\pi}_{ijk} = \frac{y_{ijk}}{n} \text{ or } \hat{\mu}_{ijk} = y_{ijk}$$

For complete independence model, using an additional (I-1)+(J-1)+(K-1) constraints

$$\hat{\mu}_{ijk} = n\hat{\pi}_{ijk} = n\hat{\pi}_{i..}\hat{\pi}_{.j.}\hat{\pi}_{..k}$$

$$= n\frac{y_{i..}}{n}\frac{y_{.j.}}{n}\frac{y_{..k}}{n}$$

LRT (Deviance G-0-F)

Ho: Fitted Ha! Sahvated

#### Model Class 2: Block Independence

- ▶ P(AC|M) = P(AC); Joint probability of alcohol and cigarette use is independent of marijuana use; Alcohol and cigarette use are associated
- Hypotheses:

$$H_0: \pi_{ijk} = \pi_{ij}.\pi_{\cdot \cdot k}$$

$$H_a: \pi_{ijk} \neq \pi_{ij}.\pi_{\cdot\cdot k}$$

▶ Short form: (AC,M) - all 3 main effects and 1 interaction

$$\log(\mu_{ijk}) = \beta_0 + \beta_1 \mathbf{I}_A + \beta_2 \mathbf{I}_C + \beta_3 \mathbf{I}_M + \beta_4 \mathbf{I}_{AC}$$

where 
$$\mathbf{I}_{AC} = \mathbf{I}_A * \mathbf{I}_C$$

Others in this class: (AM, C), (CM, A)

1 2-way rntaadin term.

# Model 2: Block Independence

▶ By ML estimation, for block independence model

$$\hat{\mu}_{ijk} = n\hat{\pi}_{ijk} = n\frac{\hat{\pi}_{ij}}{n}\hat{\pi}_{..k}$$

$$= n\frac{y_{ij}}{n}\frac{y_{..k}}{n}$$

#### Model Class 3: Partial Independence

- ▶ P(AC|M) = P(A|M)P(C|M); Alcohol and cigarette use are conditionally independent given marijuana use; Alcohol and marijuana use are associated, and cigarette and marijuana use are associated
- ► Hypotheses:

$$H_0: \pi_{ijk} = \pi_{i\cdot k}\pi_{\cdot jk}/\underline{\pi_{\cdot \cdot k}}$$
  
 $H_a: \pi_{ijk} \neq \pi_{i\cdot k}\pi_{\cdot jk}/\overline{\pi_{\cdot \cdot k}}$ 

Short form: (AM,CM) - all 3 main effects and 2 interactions  $\log(\mu_{ijk}) = \beta_0 + \beta_1 \mathbf{I}_A + \beta_2 \mathbf{I}_C + \beta_3 \mathbf{I}_M + \beta_4 \mathbf{I}_{AM} + \beta_5 \mathbf{I}_{CM}$ 

Others in this class: (AC, CM), (AC, AM)

2 2-way presentin

#### Model 3: Partial Independence

▶ We have P(AC|M) = P(A|M)P(C|M).

$$\Rightarrow \frac{\pi_{ijk}}{\pi_{\cdot\cdot k}} = \frac{\pi_{\cdot jk}}{\pi_{\cdot\cdot k}} \frac{\pi_{i\cdot k}}{\pi_{\cdot\cdot k}}$$
or 
$$\pi_{ijk} = \frac{\pi_{\cdot jk}\pi_{i\cdot k}}{\pi_{\cdot\cdot k}}$$

► Then by ML estimation

$$\hat{\mu}_{ijk} = n\hat{\pi}_{ijk} = n\frac{\hat{\pi}_{\cdot jk}\hat{\pi}_{i\cdot k}}{\pi_{\cdot \cdot k}}$$

$$= n\frac{(y_{\cdot jk}/n)(y_{i\cdot k}/n)}{(y_{\cdot \cdot k}/n)}$$

$$= \frac{y_{\cdot jk}y_{i\cdot k}}{y_{\cdot \cdot \cdot k}}$$

#### Model 4: Uniform association

- ► There is an association among all pairs
- ► For all levels of the 3rd variable, the association between the pair is the same
- Short form: (AM,AC,CM) all 3 main effects and 3 two-way interactions but no three-way interaction

$$\log(\mu_{ijk}) = \beta_0 + \beta_1 \mathbf{I}_A + \beta_2 \mathbf{I}_C + \beta_3 \mathbf{I}_M + \beta_4 \mathbf{I}_{AM} + \beta_5 \mathbf{I}_{AC} + \beta_6 \mathbf{I}_{CM}$$

All 2-way interaction terms.

- Solutions for  $\pi_{ijk}$  ( $\mu_{ijk}$ ) are found numerically with no simple expression in terms of  $y_{ijk}$ 's
- ▶ No simple interpretation ito. independence structure

#### Saturated Model

► Total number of parameters:

$$1 + \underbrace{3}_{1\text{-way}} + \underbrace{3}_{2\text{-way}} + \underbrace{1}_{3\text{-way}} = \boxed{8}$$

► Total number of observed counts:

$$1 + (I - 1) + (J - 1) + (K - 1)$$

$$+ (I - 1)(J - 1) + (I - 1)(K - 1) + (J - 1)(K - 1)$$

$$+ (I - 1)(J - 1)(K - 1) = IJK = 2 * 2 * 2 = 8$$

$$\log(\mu_{ijk}) = \beta_0 + \beta_1 \mathbf{I}_A + \beta_2 \mathbf{I}_C + \beta_3 \mathbf{I}_M + \beta_4 \mathbf{I}_{AM} + \beta_5 \mathbf{I}_{AC} + \beta_6 \mathbf{I}_{CM} + \beta_7 \mathbf{I}_{ACM}$$

Saturated model always fits the data perfectly

#### On the Saturated Model

$$\log(\mu_{ijk}) = \beta_0 + \beta_1 \mathbf{I}_A + \beta_2 \mathbf{I}_C + \beta_3 \mathbf{I}_M + \beta_4 \mathbf{I}_{AM} + \beta_5 \mathbf{I}_{AC} + \beta_6 \mathbf{I}_{CM} + \beta_7 \mathbf{I}_{ACM}$$

- ► Total # of parameters=Total # of observed counts
- ► Has a separate parameter for each observation
- Always gives a perfect fit
- ► Explains all the variation by its systematic component
- Sounds good but not a helpful model
- Does not smooth the data or is not parsimonious
- Serves as a baseline for checking model fit

Deviance 6-0-I Ho: Fitted

Ho: Titled (Reduced) Ha: Saturated

Ha: Saturated (Full).

T-S= Deviance R

Deviances

#### Add AIC statistics to the table Results from R output $G^2$ =Deviance Model df *p*-value 1286.02 (A,C,M)< 0.00014 (AC,M)843.83 < 0.0001tited model is (AM, C) 3 < 0.0001 939.56 (A,CM)534.21 < 0.0001 (AC,AM)< 0.0001 497.37 (AC,CM)92.02 < 0.0001 (AM,CM) 187.75 < 0.0001 (AC,AM,CM)0.37 0.5408 (ACM) 0.00 0

The simplest model that fits the data adequately is the "Uniform Association" model (AC,AM,CM).

#### Class 18 Summary

- ► Three-way contingency tables:
  - Log-linear model approach
  - Types of independence or association/ interactions
    - (i) Complete
    - (ii) Block
    - (iii) Partial
    - (iv) Uniform association
    - (v) 3-way interaction
  - Deviance goodness-of-fit test
- Next Class: Model Diagnostics

In-Perpretation, Estimate

- ► Things to do:
  - ▶ Assignment #3▶ Participation 6▶ Participation 7

  - Practice Problems on Poisson Regression (Log-linear models)

Three-way Contingency Tables

Final (Apr. 25)