Hidden Markov Models Part 2: Algorithms

CSE 4309 – Machine Learning
Vassilis Athitsos
Computer Science and Engineering Department
University of Texas at Arlington

Hidden Markov Model

- An HMM consists of:
 - A set of states S_1, \dots, S_K .
 - An **initial state probability** function $\pi_k = p(z_1 = s_k)$.
 - A state transition matrix A, of size $K \times K$, where

$$A_{k,j} = p(z_n = s_j | z_{n-1} = s_k)$$

Observation probability functions, also called emission probabilities, defined as:

$$\varphi_k(x) = p(x_n = x \mid z_n = s_k)$$

The Basic HMM Problems

- We will next see algorithms for the four problems that we usually want to solve when using HMMs.
- Problem 1: learn an HMM using training data. This involves:
 - Learning the initial state probabilities π_k .
 - Learning the state transition matrix A.
 - Learning the observation probability functions $P_k(x)$.
- Problems 2, 3, 4 assume we have already learned an HMM.
- Problem 2: given a sequence of observations $X = x_1, ..., x_N$, compute $p(X \mid HMM)$: the probability of X given the model.
- Problem 3: given an observation sequence $X = x_1, ..., x_N$, find the hidden state sequence $Z = z_1, ..., z_N$ maximizing $p(Z \mid X, HMM)$
- Problem 4: given an observation sequence $X = x_1, ..., x_N$, compute, for any n, k, the probability $p(z_n = s_k \mid X, \text{HMM})$

The Basic HMM Problems

- Problem 1: learn an HMM using training data.
- Problem 2: given a sequence of observations $X = x_1, ..., x_N$, compute $p(X \mid HMM)$: the probability of X given the model.
- Problem 3: given an observation sequence $X=x_1,\dots,x_N$, find the hidden state sequence $Z=z_1,\dots,z_N$ maximizing $p(Z\mid X, \text{HMM})$
- Problem 4: given an observation sequence $X = x_1, ..., x_N$, compute, for any n, k, the probability $p(z_n = s_k \mid X, \text{HMM})$
- We will first look at algorithms for problems 2, 3, 4.
- Last, we will look at the standard algorithm for learning an HMM using training data.

Probability of Observations

- Problem 2: given an HMM model θ , and a sequence of observations $X = x_1, ..., x_N$, compute $p(X \mid \theta)$: the probability of X given the model.
- Inputs:
 - $-\theta = (\pi, A, \varphi_k)$: a trained HMM, with probability functions π, A, φ_k specified.
 - A sequence of observations $X = x_1, ..., x_N$.
- Output: $p(X \mid \theta)$.

Probability of Observations

- Problem 2: given a sequence of observations $X = x_1, ..., x_N$, compute $p(X \mid \theta)$.
- Why do we care about this problem?
 - What would be an example application?

Probability of Observations

- Problem 2: given a sequence of observations $X = x_1, ..., x_N$, compute $p(X \mid \theta)$.
- Why do we care about this problem?
- We need to compute $p(X \mid \theta)$ to classify X.
 - Suppose we have multiple models $\theta_1, \dots, \theta_C$.
 - For example, we can have one model for digit 2, one model for digit 3, one model for digit 4...
 - A Bayesian classifier classifies X by finding the θ_c that maximizes $p(\theta_c \mid X)$.
 - Using Bayes rule, we must maximize $\frac{p(X \mid \theta_c) p(\theta_c)}{p(X)}$.
 - Therefore, we need to compute $p(X \mid \theta_c)$ for each c.

The Sum Rule

• The sum rule, which we saw earlier in the course, states that:

$$p(X) = \sum_{y \in \mathbb{Y}} p(X, Y = y)$$

• We can use the sum rule, to compute $p(X \mid \theta)$ as follows:

$$p(X \mid \theta) = \sum_{Z} p(X, Z \mid \theta)$$

• According to this formula, we can compute $p(X \mid \theta)$ by summing $p(X,Z \mid \theta)$ over **all possible state sequences** Z.

The Sum Rule

$$p(X \mid \theta) = \sum_{Z} p(X, Z \mid \theta)$$

- According to this formula, we can compute $p(X \mid \theta)$ by summing $p(X, Z \mid \theta)$ over all possible state sequences Z.
- An HMM with parameters θ specifies a joint distribution function $p(X, Z \mid \theta)$ as:

$$p(X,Z \mid \theta) = p(z_1 \mid \theta) \prod_{n=2}^{N} p(z_n \mid z_{n-1}, \theta) \prod_{n=1}^{N} p(x_n \mid z_n, \theta)$$

Therefore:

$$p(X \mid \theta) = \sum_{Z} \left[p(z_1 \mid \theta) \prod_{n=2}^{N} p(z_n \mid z_{n-1}, \theta) \prod_{n=1}^{N} p(x_n \mid z_n, \theta) \right]_{\alpha}$$

The Sum Rule

$$p(X \mid \theta) = \sum_{Z} \left[p(z_1 \mid \theta) \prod_{n=2}^{N} p(z_n \mid z_{n-1}, \theta) \prod_{n=1}^{N} p(x_n \mid z_n, \theta) \right]$$

- According to this formula, we can compute $p(X \mid \theta)$ by summing $p(X, Z \mid \theta)$ over all possible state sequences Z.
- What would be the time complexity of doing this computation directly?
- It would be linear to the number of all possible state sequences Z, which is typically exponential to N (the length of X).
- Luckily, there is a polynomial time algorithm for computing $p(X \mid \theta)$, that uses dynamic programming.

Dynamic Programming for $p(X \mid \theta)$

$$p(X \mid \theta) = \sum_{Z} \left[p(z_1 \mid \theta) \prod_{n=2}^{N} p(z_n \mid z_{n-1}, \theta) \prod_{n=1}^{N} p(x_n \mid z_n, \theta) \right]$$

- To compute $p(X \mid \theta)$, we use a dynamic programming algorithm that is called the **forward algorithm**.
- We define a 2D array of problems, of size $N \times K$.
 - -N: length of observation sequence X.
 - -K: number of states in the HMM.
- Problem (*n*, *k*):
 - Compute $\alpha[n,k] = p(x_1,...,x_n,z_n = s_k \mid \theta)$

The Forward Algorithm - Initialization

$$p(X \mid \theta) = \sum_{Z} \left[p(z_1 \mid \theta) \prod_{n=2}^{N} p(z_n \mid z_{n-1}, \theta) \prod_{n=1}^{N} p(x_n \mid z_n, \theta) \right]$$

- Problem (*n*, *k*):
 - Compute $\alpha[n, k] = p(x_1, ..., x_n, z_n = s_k \mid \theta)$
- Problem (1, *k*):
 - **—** ???

The Forward Algorithm - Initialization

$$p(X \mid \theta) = \sum_{Z} \left[p(z_1 \mid \theta) \prod_{n=2}^{N} p(z_n \mid z_{n-1}, \theta) \prod_{n=1}^{N} p(x_n \mid z_n, \theta) \right]$$

- Problem (*n*, *k*):
 - Compute $\alpha[n,k] = p(x_1,...,x_n,z_n = s_k \mid \theta)$
- Problem (1, *k*):
 - Compute $\alpha[1, k] = p(x_1, z_1 = s_k \mid \theta)$
- Solution:
 - **—** ???

The Forward Algorithm - Initialization

$$p(X \mid \theta) = \sum_{Z} \left[p(z_1 \mid \theta) \prod_{n=2}^{N} p(z_n \mid z_{n-1}, \theta) \prod_{n=1}^{N} p(x_n \mid z_n, \theta) \right]$$

- Problem (*n*, *k*):
 - Compute $\alpha[n, k] = p(x_1, ..., x_n, z_n = s_k \mid \theta)$
- Problem (1, *k*):
 - Compute $\alpha[1, k] = p(x_1, z_1 = s_k \mid \theta)$
- Solution:

$$-\alpha[1,k] = p(x_1,z_1 = k \mid \theta) = \pi_k \varphi_k(x_1)$$

- Problem (n, k):
 - Compute $\alpha[n, k] = p(x_1, ..., x_n, z_n = s_k | \theta)$
- Solution:

- Problem (*n*, *k*):
 - Compute $\alpha[n, k] = p(x_1, ..., x_n, z_n = s_k | \theta)$
- Solution:

$$p(x_1, ..., x_n, z_n = s_k | \theta) = \sum_{j=1}^K p(x_1, ..., x_n, z_{n-1} = s_j, z_n = s_k | \theta)$$

$$= \varphi_k(x_n) \sum_{j=1}^K p(x_1, ..., x_{n-1}, z_{n-1} = s_j, z_n = s_k | \theta)$$

$$= \varphi_k(x_n) \sum_{j=1}^K \{ p(x_1, \dots, x_{n-1}, z_{n-1} = s_j | \theta) A_{j,k} \}$$

- Problem (n, k):
 - Compute $\alpha[n, k] = p(x_1, ..., x_n, z_n = s_k | \theta)$
- Solution:

$$p(x_1, \dots, x_n, z_n = k \mid \theta)$$

$$= \varphi_k(x_n) \sum_{j=1}^K \{ p(x_1, ..., x_{n-1}, z_{n-1} = s_j | \theta) A_{j,k} \}$$

$$= \varphi_k(x_n) \sum_{j=1}^{K} \{\alpha[n-1,j]A_{j,k}\}\$$

- Problem (*n*, *k*):
 - Compute $\alpha[n, k] = p(x_1, ..., x_n, z_n = s_k | \theta)$
- Solution:

$$p(x_1, ..., x_n, z_n = k \mid \theta) = \varphi_k(x_n) \sum_{j=1}^K \{\alpha[n-1, j]A_{j,k}\}$$

- Thus, $\alpha[n,k] = \varphi_k(x_n) \sum_{j=1}^K \{\alpha[n-1,j]A_{j,k}\}.$
- $\alpha[n,k]$ is easy to compute once all $\alpha[n-1,j]$ values have been computed.

The Forward Algorithm

- Our aim was to compute $p(X \mid \theta)$.
- Using the dynamic programming algorithm we just described, we can compute $\alpha[N,k] = p(X,z_N = s_k | \theta)$.
- How can we use those $\alpha[N,k]$ values to compute $p(X \mid \theta)$?
- We use the sum rule:

$$p(X \mid \theta) = \sum_{k=1}^{K} \{ p(X, z_N = s_k \mid \theta) \} \Rightarrow$$

$$p(X \mid \theta) = \sum_{k=1}^{K} \alpha[n, k]$$

Problem 3:

- Inputs: a trained HMM θ , and an observation sequence $X = x_1, \dots, x_N$
- Output: the state sequence $Z = z_1, ..., z_N$ maximizing $p(Z \mid \theta, X)$.
- Why do we care?
- Some times, we want to use HMMs for classification.
 - In those cases, we do not really care about maximizing $p(Z \mid \theta, X)$, we just want to find the HMM parameters θ that maximize $p(\theta \mid X)$.
- Some times, we want to use HMMs to figure out the most likely values of the hidden states given the observations.
 - In the tree ring example, our goal was to figure out the average temperature for each year.
 - Those average temperatures were the hidden states.
 - Solving problem 3 provides the most likely sequence of average temperatures.

Problem 3:

- Input: an observation sequence $X = x_1, ..., x_N$
- Output: the state sequence $Z = z_1, ..., z_N$ maximizing $p(Z \mid \theta, X)$.
- We want to maximize $p(Z \mid \theta, X)$.
- Using the definition of conditional probabilities:

$$p(Z \mid \theta, X) = \frac{p(X, Z \mid \theta)}{p(X \mid \theta)}$$

- Since X is known, $p(X \mid \theta)$ will be the same over all possible state sequences Z.
- Therefore, to find the Z that maximizes $p(Z \mid \theta, X)$, it suffices to find the Z that maximizes $p(Z, X \mid \theta)$.

21

Problem 3:

- Input: an observation sequence $X = x_1, ..., x_N$
- Output: the state sequence $Z = z_1, ..., z_N$ maximizing $p(Z \mid \theta, X)$, which is the same as maximizing $p(Z, X \mid \theta)$.
- Solution: (again) dynamic programming.
- Problem (n, k): Compute G[n, k] and H[n, k], where:

$$G[n, k] = \underset{z_1, \dots, z_{n-1}}{\operatorname{argmax}} p(x_1, \dots, x_n, z_1, \dots, z_{n-1}, z_n = s_k | \theta)$$

Note that:

- We optimize over all possible values $z_1, ..., z_{n-1}$.
- However, z_n is constrained to be equal to s_k .
- Values x_1, \dots, x_n are known, and thus they are fixed.

- Problem 3:
 - Input: an observation sequence $X = x_1, ..., x_N$
 - Output: the state sequence $Z = z_1, ..., z_N$ maximizing $p(Z \mid \theta, X)$, which is the same as maximizing $p(Z, X \mid \theta)$.
- Solution: (again) dynamic programming.
- Problem (n, k): Compute G[n, k] and H[n, k], where:

$$H[n,k] = p(x_1, ..., x_n, G[n,k] | \theta)$$

- H[n, k] is the joint probability of:
 - the first n observations x_1, \dots, x_n
 - the sequence we stored in G[n, k]

- Problem 3:
 - Input: an observation sequence $X = x_1, ..., x_N$
 - Output: the state sequence $Z = z_1, ..., z_N$ maximizing $p(Z \mid \theta, X)$, which is the same as maximizing $p(Z, X \mid \theta)$.
- Solution: (again) dynamic programming.
- Problem (n, k): Compute G[n, k] and H[n, k], where:

$$H[n,k] = p(x_1, ..., x_n, G[n,k] | \theta)$$

- H[n, k] is the joint probability of:
 - the first n observations x_1, \dots, x_n
 - the sequence we stored in G[n, k]
- G[n, k] stores a **sequence** of state values.
- H[n, k] stores a **number** (a probability).

The Viterbi Algorithm

$$G[n,k] = \underset{z_1,...,z_{n-1}}{\operatorname{argmax}} p(x_1,...,x_n,z_1,...,z_{n-1},z_n = s_k | \theta)$$

$$H[n,k] = p(x_1, ..., x_n, G[n,k] | \theta)$$

- We use a dynamic programming algorithm to compute G[n, k] and H[n, k] for all n, k such that $1 \le n \le N, 1 \le k \le K$.
- This dynamic programming algorithm is called the <u>Viterbi algorithm</u>.

The Viterbi Algorithm - Initialization

$$G[1, k] = \underset{z_1, \dots, z_{n-1}}{\operatorname{argmax}} p(x_1, z_1 = s_k | \theta)$$

$$H[1, k] = p(x_1, z_1 = s_k | \theta)$$

- What is G[1, k]?
 - It is the empty sequence.
 - We must maximize over the previous states z_1, \dots, z_{n-1} , but n=1, so there are no previous states.
- What is H[1, *k*]?

$$-H[1,k] = p(x_1,z_1 = s_k | \theta) = \pi_k \varphi_k(x_1).$$

The Viterbi Algorithm – Main Loop

$$G[n, k] = \underset{z_1, \dots, z_{n-1}}{\operatorname{argmax}} p(x_1, \dots, x_n, z_1, \dots, z_{n-1}, z_n = s_k | \theta)$$

$$H[n,k] = p(x_1, ..., x_n, G[n,k] | \theta)$$

- How do we find G[n, k]?
- $G[n,k] = G^*[n,k] \otimes s_j$ for some $G^*[n,k]$ and some j.
 - The last element of G[n, k] is some s_j .
 - Therefore, G[n, k] is formed by appending some s_j to some sequence $G^*[n, k]$

The Viterbi Algorithm – Main Loop

$$G[n,k] = \underset{z_1,...,z_{n-1}}{\operatorname{argmax}} p(x_1,...,x_n,z_1,...,z_{n-1},z_n = s_k | \theta)$$

$$H[n,k] = p(x_1, ..., x_n, G[n,k] | \theta)$$

- $G[n,k] = G^*[n,k] \otimes s_i$ for some $G^*[n,k]$ and some j.
- We can prove that $G^*[n,k] = G[n-1,j]$, for that j.
 - The proof is very similar to the proof that DTW finds the optimal alignment.
 - If G[n-1,j] is better than $G^*[n,k]$, then $G[n-1,j] \otimes s_i$ is better than G[n,k], which is a contradiction.

The Viterbi Algorithm – Main Loop

$$G[n,k] = \underset{z_1,...,z_{n-1}}{\operatorname{argmax}} p(x_1,...,x_n,z_1,...,z_{n-1},z_n = s_k | \theta)$$

$$H[n,k] = p(x_1, ..., x_n, G[n,k] | \theta)$$

- $G[n,k] = G[n-1,j] \otimes s_j$ for some j.
- Let's define j^* as: $j^* = \underset{j=1,\dots,K}{\operatorname{argmax}} \{ H[n-1,j] A_{j,k} \varphi_k(x_n) \}$
- Then:
 - $-G[n,k] = G[n-1,j^*] \otimes s_{j^*}.$
 - $H[n,k] = \{H[n-1,j^*]A_{j^*,k}\varphi_k(x_n)\}$

The Viterbi Algorithm – Output

- Our goal is to find the Z maximizing $p(Z \mid \theta, X)$, which is the same as finding the Z maximizing $p(Z, X \mid \theta)$.
- The Viterbi algorithm computes G[n, k] and H[n, k], where:

$$G[n, k] = \underset{z_1, \dots, z_{n-1}}{\operatorname{argmax}} p(x_1, \dots, x_n, z_1, \dots, z_{n-1}, z_n = s_k | \theta)$$

$$H[n, k] = p(x_1, \dots, x_n, G[n, k] | \theta)$$

- Let's define k^* as: $k^* = \underset{k=1,...,K}{\operatorname{argmax}} \{H[N,k]\}$
- Then, the Z maximizing $p(Z,X\mid heta)$ is $G[N,k^*]\otimes s_{k^*}$

- Problem 4:
 - Inputs: a trained HMM θ , and an observation sequence $X = x_1, \dots, x_N$
 - Output: an array γ , of size $N \times K$, where $\gamma[n, k] = p(z_n = s_k \mid X, \theta)$.
- In words: given an observation sequence X, we want to compute, for any moment in time n and any state s_k , the probability that the hidden state at that moment is s_k .

Problem 4:

- Inputs: a trained HMM θ , and an observation sequence $X = x_1, \dots, x_N$
- Output: an array γ , of size $N \times K$, where $\gamma[n, k] = p(z_n = s_k \mid X, \theta)$.
- We have seen, in our solution for problem 2, that the **forward** algorithm computes an array α , of size $N \times K$, where $\alpha[n,k] = p(x_1,...,x_n,z_n = s_k \mid \theta)$.
- We can also define another array β , of size $N \times K$, where $\beta[n,k] = p(x_{n+1},...,x_N \mid \theta, z_n = s_k)$.
- In words, $\beta[n, k]$ is the probability of all observations **after** moment n, given that the state at moment n is s_k .

- Problem 4:
 - Inputs: a trained HMM θ , and an observation sequence $X=x_1,\ldots,x_N$
 - Output: an array γ , of size $N \times K$, where $\gamma[n,k] = p(z_n = s_k \mid X, \theta)$.
- We have seen, in our solution for problem 2, that the **forward** algorithm computes an array α , of size $N \times K$, where $\alpha[n,k] = p(x_1,...,x_n,z_n = s_k \mid \theta)$.
- We can also define another array β , of size $N \times K$, where $\beta[n,k] = p(x_{n+1},...,x_N \mid \theta, z_n = s_k)$.
- Then, $\alpha[n,k] * \beta[n,k] = p(x_1, ..., x_n, z_n = s_k \mid \theta) * p(x_{n+1}, ..., x_N \mid \theta, z_n = s_k) = p(X, z_n = s_k \mid \theta)$
- Therefore: $\gamma[n,k] = p(z_n = s_k \mid X,\theta) = \frac{\alpha[n,k] * \beta[n,k]}{P(X \mid \theta)}$

- The **forward algorithm** computes an array α , of size $N \times K$, where $\alpha[n,k] = p(x_1,...,x_n,z_n = s_k \mid \theta)$.
- We define another array β , of size $N \times K$, where $\beta[n,k] = p(x_{n+1},...,x_N \mid \theta, z_n = s_k)$.
- Then, $\gamma[n,k] = p(z_n = s_k \mid X,\theta) = \frac{\alpha[n,k]*\beta[n,k]}{P(X\mid\theta)}$
- In the above equation:
 - $-\alpha[n,k]$ and $P(X\mid\theta)$ are computed by the forward algorithm.
 - We need to compute $\beta[n, k]$.
- We compute $\beta[n, k]$ in a way very similar to the forward algorithm, but going backwards this time.
 - The resulting combination of the forward and backward algorithms is called (not surprisingly) the **forward-backward algorithm**.

The Backward Algorithm

- We want to compute the values of an array β , of size $N \times K$, where $\beta[n,k] = p(x_{n+1},...,x_N \mid \theta, z_n = s_k)$.
- Again, we will use dynamic programming.
 - Problem (n, k) is to compute value $\beta[n, k]$.
- However, this time we start from the end of the observations.
- First, compute $\beta[N, k] = p(\{\} | \theta, z_N = s_k)$.
- In this case, the observation sequence x_{n+1}, \dots, x_N is empty, because n=N.
- What is the probability of an empty sequence?

Backward Algorithm - Initialization

- We want to compute the values of an array β , of size $N \times K$, where $\beta[n,k] = p(x_{n+1},...,x_N \mid \theta, z_n = s_k)$.
- Again, we will use dynamic programming.
 - Problem (n, k) is to compute value $\beta[n, k]$.
- However, this time we start from the end of the observations.
- First, compute $\beta[N, k] = p(\{\} | \theta, z_N = s_k)$.
- In this case, the observation sequence x_{n+1}, \dots, x_N is empty, because n=N.
- What is the probability of an empty sequence?

$$-\beta[N,k]=1$$

Backward Algorithm - Initialization

• Next: compute $\beta[N-1,k]$.

$$\beta[N-1,k] = p(x_N | \theta, z_{N-1} = s_k) =$$

$$\sum_{j=1}^{K} p(x_N, z_N = s_j | \theta, z_{N-1} = s_k) =$$

$$\sum_{j=1}^{K} \{ p(x_N \mid z_N = s_j) p(z_N = s_j \mid \theta, z_{N-1} = s_k) \}$$

Backward Algorithm - Initialization

• Next: compute $\beta[N-1,k]$.

$$\beta[N-1,k] = p(x_N | \theta, z_{N-1} = s_k)$$

$$= \sum_{j=1}^{K} \{ p(x_N | z_N = s_j) p(z_N = s_j | \theta, z_{N-1} = s_k) \}$$

$$= \sum_{j=1}^{K} \{ \varphi_j(x_N) A_{k,j} \}$$

• Next: compute $\beta[n, k]$, for n < N - 1.

$$\beta[n,k] = p(x_{n+1},...,x_N | \theta, z_n = s_k) =$$

$$\sum_{j=1}^{K} p(x_{n+1}, \dots, x_N, z_{n+1} = s_j | \theta, z_n = s_k) =$$

$$\sum_{j=1}^{K} \{ p(x_{n+1} \mid z_{n+1} = s_j) p(x_{n+2}, \dots, x_N, z_{n+1} = s_j \mid \theta, z_{N-1} = s_k) \}$$

• Next: compute $\beta[n, k]$, for n < N - 1.

$$\beta[n,k] = p(x_{n+1},...,x_N | \theta, z_n = s_k) =$$

$$\sum_{i=1}^{K} \{ p(x_{n+1} \mid z_{n+1} = s_j) p(x_{n+2}, \dots, x_N, z_{n+1} = s_j \mid \theta, z_{N-1} = s_k) \}$$

$$\sum_{j=1}^{K} \{ \varphi_j(x_{n+1}) p(x_{n+2}, ..., x_N | \theta, z_{n+1} = s_j) A_{k,j} \}$$

We will take a closer look at the last step...

$$\sum_{i=1}^{K} \{ p(x_{n+1} \mid z_{n+1} = s_j) p(x_{n+2}, \dots, x_N, z_{n+1} = s_j \mid \theta, z_n = s_k) \} =$$

$$\sum_{j=1}^{K} \{ \varphi_{j}(x_{n+1}) p(x_{n+2}, ..., x_{N} | \theta, z_{n+1} = s_{j}) A_{k,j} \}$$

• $p(x_{n+1} \mid z_{n+1} = s_j) = \varphi_j(x_{n+1})$, by definition of φ_j .

$$\sum_{j=1}^{K} \{ p(x_{n+1} \mid z_{n+1} = s_j) p(x_{n+2}, \dots, x_N, z_{n+1} = s_j \mid \theta, z_n = s_k) \} =$$

$$\sum_{j=1}^{K} \{ \varphi_j(x_{n+1}) p(x_{n+2}, ..., x_N | \theta, z_{n+1} = s_j) A_{k,j} \}$$

$$p(x_{n+2, \dots, x_N, z_{n+1}} = s_j | \theta, z_n = s_k) = p(x_{n+2, \dots, x_N} | \theta, z_n = s_k, z_{n+1} = s_j) p(z_{n+1} = s_j | z_n = s_k)$$

by application of chain rule: P(A,B) = P(A|B)P(B), which can also be written as $P(A,B \mid C) = P(A|B,C)P(B \mid C)$

$$\sum_{j=1}^{K} \{ p(x_{n+1} \mid z_{n+1} = s_j) p(x_{n+2}, \dots, x_N, z_{n+1} = s_j \mid \theta, z_n = s_k) \} =$$

$$\sum_{j=1}^{K} \{ \varphi_j(x_{n+1}) p(x_{n+2}, ..., x_N | \theta, z_{n+1} = s_j) A_{k,j} \}$$

$$p(x_{n+2, ..., x_N, z_{n+1}} = s_j | \theta, z_n = s_k) =$$
 $p(x_{n+2, ..., x_N} | \theta, z_n = s_k, z_{n+1} = s_j) p(z_{n+1} = s_j | z_n = s_k) =$
 $p(x_{n+2, ..., x_N} | \theta, z_n = s_k, z_{n+1} = s_j) A_{k,j}$

(by definition of $A_{k,j}$)

$$\sum_{j=1}^{K} \{ p(x_{n+1} \mid z_{n+1} = s_j) p(x_{n+2}, \dots, x_N, z_{n+1} = s_j \mid \theta, z_n = s_k) \} =$$

$$\sum_{j=1} \{ \varphi_{j}(x_{n+1}) p(x_{n+2}, ..., x_{N} | \theta, z_{n+1} = s_{j}) A_{k,j} \}$$

$$p(x_{n+2}, ..., x_{N}, z_{n+1} = s_{j} | \theta, z_{n} = s_{k}) =$$

$$p(x_{n+2}, ..., x_{N} | \theta, z_{n} = s_{k}, z_{n+1} = s_{j}) p(z_{n+1} = s_{j} | z_{n} = s_{k}) =$$

$$p(x_{n+2}, ..., x_{N} | \theta, z_{n} = s_{k}, z_{n+1} = s_{j}) A_{k,j} =$$

 $(x_{n+2}, ..., x_N)$ are conditionally independent of z_n given z_{n+1}

 $p(x_{n+2},...,x_N | \theta, z_{n+1} = s_i)A_{k,i}$

• In the previous slides, we showed that

$$\beta[n,k] = p(x_{n+1},...,x_N | \theta, z_n = s_k) =$$

$$\sum_{j=1}^{K} \{ \varphi_j(x_{n+1}) p(x_{n+2}, ..., x_N | \theta, z_{n+1} = s_j) A_{k,j} \}$$

- Note that $p(x_{n+2}, ..., x_N | \theta, z_{n+1} = s_j)$ is $\beta[n+1, j]$.
- Consequently, we obtain the recurrence:

$$\beta[n,k] = \sum_{j=1}^{K} \{ \varphi_j(x_{n+1}) \beta[n+1,j] A_{k,j} \}$$

$$\beta[n,k] = \sum_{j=1}^{K} \{ \varphi_j(x_{n+1}) \beta[n+1,j] A_{k,j} \}$$

- Thus, we can easily compute all values $\beta[n,k]$ using this recurrence.
- The key thing is to proceed in decreasing order of n, since values $\beta[n,*]$ depend on values $\beta[n+1,*]$.

The Forward-Backward Algorithm

Inputs:

- A trained HMM θ .
- An observation sequence $X = x_1, ..., x_N$

• Output:

- An array γ , of size $N \times K$, where $\gamma[n,k] = p(z_n = s_k \mid X, \theta)$.
- Algorithm:
 - Use the forward algorithm to compute $\alpha[n, k]$.
 - Use the backward algorithm to compute $\beta[n, k]$.
 - For n = 1 to N:
 - For k = 1 to K:

$$\gamma[n,k] = p(z_n = s_k \mid X, \theta) = \frac{\alpha[n,k] * \beta[n,k]}{P(X \mid \theta)}$$

Problem 1: Training an HMM

- Goal: Estimate parameters $\theta = (\pi_k, A_{k,j}, \varphi_k)$.
- The training data can consist of multiple observation sequences $X_1, X_2, X_3, ..., X_M$.
- We denote the length of training sequence X_i as N_m .
- We denote the elements of each observation sequence X_m as:

$$X_m = (x_{m,1}, x_{m,2}, \dots, x_{m,N_m})$$

- **Before** we start training, we need to decide on:
 - The number of states.
 - The transitions that we will allow.

Problem 1: Training an HMM

- While we are given $X_1, X_2, X_3, ..., X_M$, we are <u>not</u> given the corresponding hidden state sequences $Z_1, Z_2, Z_3, ..., Z_M$.
- We denote the elements of each hidden state sequence Z_m as:

$$Z_m = (z_{m,1}, z_{m,2}, ..., z_{m,N_m})$$

- The training algorithm is called <u>Baum-Welch</u> <u>algorithm</u>.
- It is an Expectation-Maximization algorithm, similar to the algorithm we saw for learning Gaussian mixtures.

Expectation-Maximization

- When we wanted to learn a mixture of Gaussians, we had the following problem:
 - If we knew the probability of each object belonging to each Gaussian, we could estimate the parameters of each Gaussian.
 - If we knew the parameters of each Gaussian, we could estimate the probability of each object belonging to each Gaussian.
 - However, we know neither of these pieces of information.
- The EM algorithm resolved this problem using:
 - An initialization of Gaussian parameters to some random or non-random values.
 - A main loop where:
 - The current values of the Gaussian parameters are used to estimate new weights of membership of every training object to every Gaussian.
 - The current estimated membership weights are used to estimate new parameters (mean and covariance matrix) for each Gaussian.

Expectation-Maximization

- When we want to learn an HMM model using observation sequences as training data, we have the following problem:
 - If we knew, for each observation sequence, the probabilities of the hidden state values, we could estimate the parameters θ .
 - If we knew the parameters θ , we could estimate the probabilities of the hidden state values.
 - However, we know neither of these pieces of information.
- The Baum-Welch algorithm resolves this problem using EM:
 - At initialization, parameters θ are given (mostly) random values.
 - In the main loop, these two steps are performed repeatedly:
 - The current values of parameters θ are used to estimate new probabilities for the hidden state values.
 - The current probabilities for the hidden state values are used to estimate new values for parameters θ .

Baum-Welch: Initialization

- As we said before, before we start training, we need to decide on:
 - The number of states.
 - The transitions that we will allow.
- When we start training, we initialize $\theta = (\pi_k, A_{k,j}, \varphi_k)$ to random values, with these exceptions:
 - For any s_k that we do <u>not</u> want to allow to ever be an initial state, we set the corresponding π_k to 0.
 - The rest of the training will keep these π_k values always equal to 0.
 - For any s_k , s_j such that we do <u>not</u> want to allow transitions from s_k to s_j , we set the corresponding $A_{k,j}$ to 0.
 - The rest of the training will keep these $A_{k,i}$ values always equal to 0.

Baum-Welch: Initialization

- When we start training, we initialize $\theta = (\pi_k, A_{k,j}, \varphi_k)$ to random values, with these exceptions:
 - For any s_k that we do <u>not</u> want to allow to ever be an initial state, we set the corresponding π_k to 0.
 - The rest of the training will keep these π_k values always equal to 0.
 - For any s_k , s_j such that we do <u>not</u> want to allow transitions from s_k to s_j , we set the corresponding $A_{k,j}$ to 0.
 - The rest of the training will keep these $A_{k,j}$ values always equal to 0.
- These initial choices constrain the topology of the resulting HMM model.
 - For example, they can force the model to be fully connected,
 to be a forward model, or to be some other variation.

Baum-Welch: Expectation Step

- Before we start the expectation step, we have some current values for the parameters of $\theta = (\pi_k, A_{k,j}, \varphi_k)$.
- The goal of the expectation step is to use those values to estimate two arrays:
 - $-\gamma[m, n, k] = p(x_{m,1}, ..., x_{m,n}, z_{m,n} = s_k \mid \theta, X_m)$
 - This is the same $\gamma[n,k]$ that we computed earlier, using the forward-backward algorithm.
 - Here we just need to make the array three-dimensional, because we have multiple observation sequences X_m .
 - We can compute $\gamma[m,*,*]$ by running the forward-backward algorithm with θ and X_m as inputs.

$$-\xi[m, n, j, k] = p(z_{m,n-1} = s_i, z_{m,n} = s_k \mid \theta, X_m)$$

Baum-Welch: Expectation Step

• To facilitate our computations, we will also extend arrays α and β to three dimensions, in the same way that we extended array γ .

$$-\alpha[m, n, k] = p(x_{m,1}, ..., x_{m,n}, z_{m,n} = s_k \mid \theta)$$
$$-\beta[m, n, k] = p(x_{m,n+1}, ..., x_{m,N_m} \mid \theta, z_{m,n} = s_k)$$

• Where needed, values $\alpha[m,*,*]$, $\beta[m,*,*]$, $\gamma[m,*,*]$ can be computed by running the forward-backward algorithm with inputs θ and X_m .

Using Bayes rule:

$$\xi[m, n, j, k] = p(z_{m,n-1} = s_j, z_{m,n} = s_k \mid \theta, X_m)$$

$$= \frac{p(X_m \mid \theta, z_{m,n-1} = s_j, z_{m,n} = s_k)p(z_{m,n-1} = s_j, z_{m,n} = s_k \mid \theta)}{p(X_m \mid \theta)}$$

- $p(X_m \mid \theta)$ can be computed using the forward algorithm.
- We will see how to simplify and compute:

$$-p(X_m \mid \theta, z_{m,n-1} = s_j, z_{m,n} = s_k)$$

$$-p(z_{m,n-1}=s_j,z_{m,n}=s_k|\theta)$$

$$\xi[m, n, j, k] = p(z_{m,n-1} = s_j, z_{m,n} = s_k \mid \theta, X_m)$$

$$= \frac{p(X_m \mid \theta, z_{m,n-1} = s_j, z_{m,n} = s_k)p(z_{m,n-1} = s_j, z_{m,n} = s_k \mid \theta)}{p(X_m \mid \theta)}$$

$$p(X_m \mid \theta, z_{m,n-1} = s_j, z_{m,n} = s_k) = p(x_{m,1}, ..., x_{m,n-1} \mid \theta, z_{m,n-1} = s_j)p(x_{m,n}, ..., x_{m,N_m} \mid \theta, z_{m,n} = s_k)$$

Why?

- Earlier observations $x_{m,1}, ..., x_{m,n-1}$ are conditionally independent of state $z_{m,n}$ given state $z_{m,n-1}$.
- Later observations $x_{m,n}, ..., x_{m,N_m}$ are conditionally independent of state $z_{m,n-1}$ given state $z_{m,n}$.

$$\xi[m, n, j, k] = p(z_{m,n-1} = s_j, z_{m,n} = s_k \mid \theta, X_m)$$

$$= \frac{p(X_m \mid \theta, z_{m,n-1} = s_j, z_{m,n} = s_k)p(z_{m,n-1} = s_j, z_{m,n} = s_k \mid \theta)}{p(X_m \mid \theta)}$$

$$p(X_m \mid \theta, z_{m,n-1} = s_j, z_{m,n} = s_k) = p(x_{m,1}, ..., x_{m,n-1} \mid \theta, z_{m,n-1} = s_j)p(x_{m,n}, ..., x_{m,N_m} \mid \theta, z_{m,n} = s_k)$$

$$p(x_{m,n}, ..., x_{m,N_m} \mid \theta, z_{m,n} = s_k) = p(x_{m,n}, ..., x_{m,N_m} \mid \theta, z_{m,n} = s_k)$$

 $p(x_{m,n} \mid \theta, z_{m,n} = s_k)p(x_{m,n+1}, ..., x_{m,N_m} \mid \theta, z_{m,n} = s_k) =$

 $\varphi_k(x_{m,n})\beta[m,n,k]$

$$\xi[m,n,j,k] = p(z_{m,n-1} = s_j, z_{m,n} = s_k \mid \theta, X_m)$$

$$= \frac{p(X_m \mid \theta, z_{m,n-1} = s_j, z_{m,n} = s_k)p(z_{m,n-1} = s_j, z_{m,n} = s_k \mid \theta)}{p(X_m \mid \theta)}$$

$$p(X_m \mid \theta, z_{m,n-1} = s_j, z_{m,n} = s_k) = p(x_{m,1}, ..., x_{m,n-1} \mid \theta, z_{m,n-1} = s_j) \varphi_k(x_{m,n}) \beta[m, n, k] =$$

$$\frac{p(x_{m,1},...,x_{m,n-1},z_{m,n-1}=s_{j}|\theta)}{p(z_{m,n-1}=s_{j}|\theta)}\varphi_{k}(x_{m,n})\beta[m,n,k] =$$

$$\frac{\alpha[m, n-1, j]}{\gamma[m, n-1, j]} \varphi_k(x_{m,n}) \beta[m, n, k]$$

$$\frac{\alpha[m, n - 1, j]}{\gamma[m, n - 1, j]} \varphi_k(x_{m,n}) \beta[m, n, k] p(z_{m,n-1} = s_j, z_{m,n} = s_k | \theta)}{p(X_m | \theta)}$$

• We can further process $p(z_{m,n-1} = s_j, z_{m,n} = s_k | \theta)$:

$$p(z_{m,n-1} = s_j, z_{m,n} = s_k | \theta) =$$
 $p(z_{m,n} = s_k | \theta, z_{m,n-1} = s_j)p(z_{m,n-1} = s_j | \theta) =$
 $A_{j,k}\gamma[m,n-1,j]$

• So, we get:

$$\xi[m,n,j,k] =$$

$$\frac{\alpha[m, n-1, j]}{\gamma[m, n-1, j]} \varphi_k(x_{m,n}) \beta[m, n, k] A_{j,k} \gamma[m, n-1, j]}{p(X_m \mid \theta)} =$$

$$\frac{\alpha[m, n-1, j]\varphi_k(x_{m,n})\beta[m, n, k]A_{j,k}}{p(X_m \mid \theta)}$$

• Based on the previous slides, the final formula for ξ is:

$$\xi[m,n,j,k] = \frac{\alpha[m,n-1,j]\varphi_k(x_{m,n})\beta[m,n,k]A_{j,k}}{p(X_m \mid \theta)}$$

- This formula can be computed using the parameters θ and the algorithms we have covered:
 - $-\alpha[m,n-1,j]$ is computed with the forward algorithm.
 - $-\beta[m,n,k]$ is computed by the backward algorithm.
 - $-p(X_m \mid \theta)$ is computed with the forward algorithm.
 - $-\varphi_k$ and $A_{i,k}$ are specified by θ .

Baum-Welch: Summary of E Step

• Inputs:

- Training observation sequences $X_1, X_2, X_3, ..., X_M$.
- Current values of parameters $\theta = (\pi_k, A_{k,i}, \varphi_k)$.

• Algorithm:

- For m=1 to M:
 - Run the forward-backward algorithm to compute: $\alpha[m,n,k]$ for n and k such that $1 \leq n \leq N_m$, $1 \leq k \leq K$. $\beta[m,n,k]$ for n and k such that $1 \leq n \leq N_m$, $1 \leq k \leq K$. $\gamma[m,n,k]$ for n and k such that $1 \leq n \leq N_m$, $1 \leq k \leq K$. $p(X_m \mid \theta)$
 - For n, j, k such that $1 \le n \le N_m$, $1 \le j, k \le K$: $\xi[m, n, j, k] = \frac{\alpha[m, n-1, j]\varphi_k(x_{m,n})\beta[m, n, k]A_{j,k}}{p(X_m \mid \theta)}$

 Before we start the maximization step, we have some current values for:

$$-\gamma[m, n, k] = p(z_{m,n} = s_k \mid \theta, X_m)$$

-\xi[m, n, j, k] = p(z_{m,n-1} = s_i, z_{m,n} = s_k \mid \theta, X_m)

- The goal of the maximization step is to use those values to estimate new values for $\theta = (\pi_k, A_{k,i}, \varphi_k)$.
- In other words, we want to estimate new values for:
 - Initial state probabilities π_k .
 - State transition probabilities $A_{k,j}$.
 - Observation probabilities φ_k .

• Initial state probabilities π_k are computed as:

$$\pi_k = \frac{\sum_{m=1}^{M} \gamma[m, 1, k]}{\sum_{m=1}^{M} \sum_{j=1}^{K} \gamma[m, 1, j]}$$

- In words, we compute for each k the ratio of these two quantities:
 - The sum of probabilities, over all observation sequences X_m , that state s_k was the initial state for X_m .
 - The sum of probabilities over all observation sequences X_m and all states s_j that states s_j was the initial state for X_m .

• State transition probabilities $A_{k,j}$ are computed as:

$$A_{k,j} = \frac{\sum_{m=1}^{M} \sum_{n=2}^{N_m} \xi[m, n, k, j]}{\sum_{m=1}^{M} \sum_{n=2}^{N_m} \sum_{i=1}^{K} \xi[m, n, k, i]}$$

- In words, we compute, for each k, j the ratio of these two quantities:
 - The sum of probabilities, over all state transitions of all observation sequences X_m , that state s_k was followed by s_i .
 - The sum of probabilities, over all state transitions of all observation sequences X_m and all states s_i , that state s_k was followed by state s_i .

- Computing the observation probabilities φ_k depends on how we model those probabilities.
- For example, we could choose:
 - Discrete probabilities.
 - Histograms.
 - Gaussians.
 - Mixtures of Gaussians.
 - **—** ...
- We will show how to compute distributions φ_k for the cases of:
 - Discrete probabilities.
 - Gaussians.

- Computing the observation probabilities ϕ_k depends on how we model those probabilities.
- In all cases, the key idea is that we treat observation $x_{m,n}$ as partially assigned to distribution φ_k .
 - $-\gamma[m,n,k]=p(z_{m,n}=s_k\mid\theta,X_m)$ is the weight of the assignment of $x_{m,n}$ to φ_k .
- In other words:
 - We don't know what hidden state $x_{m,n}$ corresponds to, but we have computed, for each state s_k , the probability $\gamma[m,n,k]$ that $x_{m,n}$ corresponds to s_k .
 - Thus, $x_{m,n}$ influences our estimate of distribution φ_k with weight proportional to $\gamma[m,n,k]$.

- Suppose that the observations are discrete, and come from a finite set $Y = \{y_1, ..., y_R\}$.
 - In that case, each $x_{m,n}$ is an element of $\emph{\textbf{Y}}$.
- Define an auxiliary function Eq(x, y) as:

$$Eq(x,y) = \begin{cases} 1 \text{ if } x = y \\ 0 \text{ if } x \neq y \end{cases}$$

• Then, $\varphi_k(y_r) = p\big(x_{m,n} = y_r \mid z_{m,n} = s_k\big)$, and it can be computed as:

$$\varphi_k(y_r) = \frac{\sum_{m=1}^{M} \sum_{n=1}^{N_m} \{ \gamma[m, n, k] \text{Eq}(x_{m,n}, y_r) \}}{\sum_{m=1}^{M} \sum_{n=1}^{N_m} \gamma[m, n, k]}$$

• If observations come from a finite set $Y = \{y_1, ..., y_R\}$:

$$\varphi_k(y_r) = \frac{\sum_{m=1}^{M} \sum_{n=1}^{N_m} \{ \gamma[m, n, k] \operatorname{Eq}(x_{m,n}, y_r) \}}{\sum_{m=1}^{M} \sum_{n=1}^{N_m} \gamma[m, n, k]}$$

• The above formula can be seen as a weighted average of the times $x_{m,n}$ is equal to y_r , where the weight of each $x_{m,n}$ is the probability that $x_{m,n}$ corresponds to hidden state s_k .

- Suppose that observations are vectors in \mathbb{R}^D , and that we model φ_k as a Gaussian distribution.
- In that case, for each φ_k we need to estimate a mean μ_k and a covariance matrix S_k .

$$\mu_k(y_r) = \frac{\sum_{m=1}^{M} \sum_{n=1}^{N_m} \{\gamma[m, n, k] x_{m,n}\}}{\sum_{m=1}^{M} \sum_{n=1}^{N_m} \gamma[m, n, k]}$$

• Thus, μ_k is a weighted average of values $x_{m,n}$, where the weight of each $x_{m,n}$ is the probability that $x_{m,n}$ corresponds to hidden state s_k .

- Suppose that observations are vectors in \mathbb{R}^D , and that we model φ_k as a Gaussian distribution.
- In that case, for each φ_k we need to estimate a mean μ_k and a covariance matrix S_k .

$$\mu_k = \frac{\sum_{m=1}^{M} \sum_{n=1}^{N_m} \{ \gamma[m, n, k] x_{m,n} \}}{\sum_{m=1}^{M} \sum_{n=1}^{N_m} \gamma[m, n, k]}$$

$$S_{k} = \frac{\sum_{m=1}^{M} \sum_{n=1}^{N_{m}} \left\{ \gamma[m, n, k] \left(x_{m,n} - \mu_{k} \right) \left(x_{m,n} - \mu_{k} \right)^{T} \right\}}{\sum_{m=1}^{M} \sum_{n=1}^{N_{m}} \gamma[m, n, k]}$$

Baum-Welch: Summary of M Step

$$\pi_{k} = \frac{\sum_{m=1}^{M} \gamma[m, 1, k]}{\sum_{m=1}^{M} \sum_{j=1}^{K} \gamma[m, 1, j]} \qquad A_{k,j} = \frac{\sum_{m=1}^{M} \sum_{n=2}^{N_{m}} \xi[m, n, k, j]}{\sum_{m=1}^{M} \sum_{n=2}^{N_{m}} \sum_{i=1}^{K} \xi[m, n, k, i]}$$

For discrete observations:

$$\varphi_k(y_r) = \frac{\sum_{m=1}^{M} \sum_{n=1}^{N_m} \{ \gamma[m, n, k] \operatorname{Eq}(x_{m,n}, y_r) \}}{\sum_{m=1}^{M} \sum_{n=1}^{N_m} \gamma[m, n, k]}$$

Baum-Welch: Summary of M Step

$$\pi_{k} = \frac{\sum_{m=1}^{M} \gamma[m, 1, k]}{\sum_{m=1}^{M} \sum_{j=1}^{K} \gamma[m, 1, j]} \qquad A_{k,j} = \frac{\sum_{m=1}^{M} \sum_{n=2}^{N_{m}} \xi[m, n, k, j]}{\sum_{m=1}^{M} \sum_{n=2}^{N_{m}} \sum_{i=1}^{K} \xi[m, n, k, i]}$$

• For Gaussian observation distributions: φ_k is a Gaussian with mean μ_k and covariance matrix S_k , where:

$$\mu_k = \frac{\sum_{m=1}^{M} \sum_{n=1}^{N_m} \{ \gamma[m, n, k] x_{m,n} \}}{\sum_{m=1}^{M} \sum_{n=1}^{N_m} \gamma[m, n, k]}$$

$$S_k = \frac{\sum_{m=1}^{M} \sum_{n=1}^{N_m} \left\{ \gamma[m, n, k] \left(x_{m,n} - \mu_k \right) \left(x_{m,n} - \mu_k \right)^T \right\}}{\sum_{m=1}^{M} \sum_{n=1}^{N_m} \gamma[m, n, k]}$$

Baum-Welch Summary

Initialization:

– Initialize $\theta = (\pi_k, A_{k,j}, \varphi_k)$ with random values, but set to 0 values π_k and $A_{k,j}$ to specify the network topology.

Main loop:

- E-step:
 - Compute all values $p(X_m \mid \theta)$, $\alpha[m, n, k]$, $\beta[m, n, k]$, $\gamma[m, n, k]$ using the forward-backward algorithm.
 - Compute all values $\xi[m,n,j,k] = \frac{\alpha[m,n-1,j]\varphi_k(x_{m,n})\beta[m,n,k]A_{j,k}}{p(X_m \mid \theta)}$.
- M-step:
 - Update $\theta = (\pi_k, A_{k,j}, \varphi_k)$, using the values $\gamma[m, n, k]$ and $\xi[m, n, j, k]$ computed at the E-step.

Hidden Markov Models - Recap

- HMMs are widely used to model temporal sequences.
- In HMMs, an observation sequence corresponds to a sequence of hidden states.
- An HMM is defined by parameters $\theta = (\pi_k, A_{k,j}, \varphi_k)$, and defines a joint probability $p(X, Z \mid \theta)$.
- An HMM can be used as a generative model, to produce synthetic samples from distribution $p(X, Z \mid \theta)$.
- HMMs can be used for Bayesian classification:
 - One HMM θ_c per class.
 - Find the class c that maximizes $p(\theta_c \mid X)$.

Hidden Markov Models - Recap

- HMMs can be used for Bayesian classification:
 - One HMM θ_c per class.
 - Find the class c that maximizes $p(\theta_c \mid X)$, using probabilities $p(X \mid \theta_c)$ calculated by the forward algorithm.
- HMMs can be used to find the most likely hidden state sequence Z for observation sequence X.
 - This is done using the Viterbi algorithm.
- HMMs can be used to find the most likely hidden state z_n for a specific value x_n of an observation sequence X.
 - This is done using the forward-backward algorithm.
- HMMs are trained using the Baum-Welch algorithm, which is an Expectation-Maximization algorithm.