- 1. Consider a voltaic cell constructed from the following half cells, linked by an external circuit and by a KCl salt bridge. -an Ag(s) electrode in 1.0 M AgNO₃ solution -a Ni(s) electrode in 1.0 M Ni(NO₃)₂ solution----- The balanced overall (net) cell reaction is:
- A. $2Ag(s) + Ni^{2+}(aq) ---> Ag^{2+}(aq) + Ni(s)$
- B. $Ag(s) + Ni(s) ---> Ag+(aq) + Ni^{2+}(aq)$
- C. $Ag^{+}(aq) + Ni(s) ---> Ag(s) + Ni^{2+}(aq)$
- D. $2Ag^{+}(aq) + Ni(s) ---> Ni^{2+}(aq) + 2Ag(s)$
- 2. Calculate the E°_{cell} for a cell consisting of -a zinc electrode in 1.0M ZnSO_4 -a copper electrode in a 1.0M CuSO_4
- A. 1.10 V
- ^O B. -1.10 V
- ^C C. 0.34 V
- O D. -0.76 V
- 3. Calculate the standard cell emf for the following cell. $Zn \mid Zn^{2+} \mid |Br^{-}(1)|Br_{2}(aq)|Pt$
- ^O A. 0.32 V
- B. 1.83 V
- ^C C. -0.32 V
- ^O D. 1.08 V
- © E. -1.08 V
- 4. Given the following standard reduction potentials in acid solution:

E°(**V**)

$$Al^{3+}(aq) + 3e^{--->} Al(s)$$
 -1.66

$$Sn^{4+}(aq) + 2e^{--->} Sn^{2+}(aq) +0.14$$

$$I_2(s) + 2e^- ---> 2I^-(aq)$$
 +0.53

Which is the most likely to gain electrons?

- $^{\circ}$ A. Al³⁺(aq)
- ^O B. Al(s)
- C. I⁻(aq)
- D. I₂(s)
- C E. Sn⁴⁺(aq)

- 5. Which one of the following reactions must be carried out in an electrolytic cell, rather than a voltaic cell?
- $^{\circ}$ A. Zn + Cd²⁺ ---> Cd + Zn²⁺
- $^{\circ}$ B. Al + 3/2 Br₂ ---> Al³⁺ + 3Br⁻
- C. $2Al^{3+} + 3Fe ---> 2Al + 3Fe^{2+}$
- O. $H_2 + I_2 ---> 2H + 2I^-$
- 6. The half-reaction that occurs at the anode during electrolysis of aqueous CuSO_4 solution is:
- ^O A. Cu+ + e- ---> Cu
- $^{\circ}$ B. $Cu^{2+} + e^{-} Cu$
- $^{\circ}$ C. $2H_2O + 2e^{--->} H_2 + OH^{--}$
- D. $2H_2O \longrightarrow O_2 + 4H^+ + 4e^-$
- 7. Consider the following balanced redox reaction: $3\text{CuO}(s) + 2\text{NH}_3(aq) ---> \text{N}_2(g) + 3\text{H}_2\text{O}(l) + 3\text{Cu}(s)$ Which of the following is true?
- A. CuO(s) is the reducing agent and Cu is oxidized
- B. CuO(s) is the reducing agent and Cu is reduced
- C. CuO(s) is the oxidizing agent and Cu is reduced
- O. CuO(s) is the reducing agent and Cu is oxidized
- 8. Which is most easily reduced?
- A. KMnO₄
- C B. MnO₂
- C. MnCl₂
- C D. Mn
- 9. In a cell constructed of Cd²⁺/Cd and Ni²⁺/Ni and operating under standard conditions:
- A. the cell voltage is zero
- [○] B. the [△]G for the cell is zero

- $^{\circ}$ C. the $^{\vartriangle}$ G for the cell is positive
- D. the $\triangle G$ for the cell is negative
- 10. Given the following notation for an electrochemical cell $Zn|Zn^{2+}$ (1M)||Fe²⁺ (1M), Fe³⁺ (1M)|Pt what is the balanced overall (net) cell reaction?
- A. $Zn + 2Fe^{3+} ---> 2Fe^{2+} + Zn^{2+}$
- O B. $Zn^{2+} + 2Fe^{2+} ---> Zn + 2Fe^{3+}$
- C. $Zn + 2Fe^{2+} ---> 2Fe^{3+} + Zn^{2+}$
- O. $Zn + Fe^{3+} ---> Fe^{2+} + Zn^{2+}$
- 11. Examine the following half-reactions and select the strongest oxidizing agent among the substances. $Sr^{2+}(aq) + 2e^- \rightarrow Sr(s)E^\circ = -2.89 \text{ V}, Cr^{2+}(aq) + 2e^- \rightarrow Cr(s)E^\circ = -0.913 \text{ V}, Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)E^\circ = -0.447 \text{ V}, Co^{2+}(aq) + 2e^- \rightarrow Co(s)E^\circ = -0.28 \text{ V}$
- $^{\circ}$ A. $Cr^{2+}(aq)$
- B. Sr²⁺
- © C. Co²⁺
- O. Fe²⁺
- 12. The value of the equilibrium constant for the reaction of nickel(II) ions with cadmium metal is 1.17×10^5 . Calculate $^{\Delta}G$ for the reaction at 25 °C.
- ^C A. -12.6 kJ
- **®** B. -29.8 kJ
- C. 0 kJ
- O. 29.8 kJ
- ^O E. 12.6 kJ
- 13. A constant current was passed through a solution of AuCl₄⁻ ions between gold electrodes. After a period of 20 min, the cathode increased in mass by 2.664 g. What was the current, I?
- ^O A. 1.08 A
- **B.** 3.26 A
- ^O C. 2.17 A

- 14. How many grams of the product formed at the cathode in the electrolysis of an aqueous solution of cupric chloride will be produced by a current of 1 A operating for 4 hours?
- ^O A. 2.3 g
- B. 4.7 g
- ^C C. 6.9 g
- O. 8.0 g
- 15. How many Faradays would be required to reduce 1 mole of MnO₄⁻ to Mn⁺²?
- ^O A. 1
- O B. 2
- ^C C. 3
- O D. 5
- E. 7
- 16. A redox reaction that involves the transfer of 3 electrons has a net cell potential of +0.34~V. For this reaction, the value of DG° is: (F= 96.5 kJ/V)
- ^C A. -98.4 kJ/mol
- ^O B. -32.8 kJ/mol
- ^C C. +98.4 kJ/mol
- D. +32.8 kJ/mol
- ^C E. -8.30 kJ/mol
- 17. Given the following set of half-reactions and reduction potentials, write the net cell reaction for the spontaneous change that will occur and calculate the net cell potential. $Pb^{+2}(aq) + 2e^{-o} Pb(s) E^{o} = -0.13 V$

$$Mg^{+2}(aq) + 2e^{-o} Mg(s) E^{o} = -2.37 V$$

• A.
$$Pb^{+2}(aq) + Mg(s) 6 Pb(s) + Mg^{+2}(aq)$$
, $E^{0} = 2.24 V$

^O B.
$$Pb^{+2}(aq) + Mg(s) 6 Pb(s) + Mg^{+2}(aq)$$
, $E^{\circ} = 2.50 V$

```
C. Mg^{+2}(aq) + Pb(s) 6 Mg(s) + Pb^{+2}(aq), E^{0} = 2.24 V
```

^O D.
$$Mg^{+2}(aq) + Pb(s) 6 Mg(s) + Pb^{+2}(aq)$$
, $E^{\circ} = 2.50 V$

^C E.
$$Mg^{+2}(aq) + Pb^{+2}(aq) 6 Mg(s) + Pb(s)$$
, $E^{\circ} = 2.24 V$

18. If the equilibrium constant K is greater than 1 for a given reaction, the value of) G° will be _____ and $^\circ$ will be _____.

$$^{\circ}$$
 A.) G° = positive, E° = positive

$$^{\circ}$$
 B.) G° = negative, E° = negative

$$^{\circ}$$
 C.) G° = positive, E° = negative

• D.)
$$G^{\circ}$$
 = negative, E° = positive

$$^{\circ}$$
 E.) $G^{\circ} = 0$, $E^{\circ} = 0$

19. Sketch a *voltaic cell* based on the half-reactions:

$$Ni^{+2}(aq) + 2e^{-o} Ni(s) E^{o} = -0.25 V$$

$$Cr^{+3}(aq) + 3e^{-o} Cr(s) E^{o} = -0.74 V$$

In this voltaic cell,

- A. The Cr electrode decreases in mass as the spontaneous reaction occurs.
- B. Electrons flow through the external wire from the cathode to the anode.
- C. The Ni electrode carries a negative potential.
- O. Ni(s) is oxidized as the spontaneous reaction occurs.
- E. The cathode carries a negative potential

20. How long does it take to plate 0.800 g of silver onto a serving tray from an aqueous solution of $AgNO_3$ at a current of 5.00 A?

- A. 48 seconds
- B. 1.19 minutes
- © C. 2.38 min
- ^C D. 4.76 min
- ^O E. 5.92 min

21. A Redox reaction which involves the transfer of 2 electrons has an equilibrium constant $K = 5.40 \times 10^6$. For this reaction, $G^\circ = ?$.

$$^{\circ}$$
 C.) G° = +38.4 kJ/mol

• D.)
$$G^{\circ} = -38.4 \text{ kJ/mol}$$

$$^{\circ}$$
 E.)G° = +76.8 kJ/mol

22. A voltaic cell consists of Mn/Mn^{2+} and Cd/Cd^{2+} half-cells with an initial cell potential of +0.768 V. The $[Mn^{2+}]$ concentration is 0.500 M. Use the Nernst equation to calculate the $[Cd^{2+}]$ concentration in the Cd/Cd^{2+} half-cell.

$$Cd^{+2}(aq) + 2e^{-6} Cd(s) E^{6} = -0.40 V$$

$$Mn^{+2}(aq) + 2e^{-o}Mn(s) E^{o} = -1.18 V$$

23. The value of the equilibrium constant K_{eq} is 1.8×10^{17} for a redox reaction that involves the transfer of 3 electrons. What is the standard cell potential in a voltaic cell involving this redox reaction? (Faraday's constant is 9.65×10^4 J/V)

24. In an electrolytic cell, a current of $3.00~\mathrm{A}$ is passed through an aqueous solution of aluminum chloride for a period of $5.00~\mathrm{min}$. What volume of chlorine gas would be formed at the anode at $25^{\circ}\mathrm{C}$ and $1.00~\mathrm{atm}$?

25. In the voltaic cell below, the hydrogen reference electrode is coupled with a Cu^{2+}/Cu half-cell. If the Cu^{2+}/Cu half-cell is coupled with a Zn^{2+}/Zn half-cell ($E^{\circ}_{half-cell} = -0.76$ V), the net cell potential is 1.10 V. The Cu^{2+}/Cu half-cell has a more positive reduction potential than the Zn^{2+}/Zn half-cell. Based on this information, which of the following statements correctly describes the figure below.

- A. The overall cell reaction is $Cu(s) + 2H^+(aq) \tilde{O} Cu^{2+}(aq) + H_2(g)$ with platinum serving as the cathode in the hydrogen reference electrode.
- B. The overall cell reaction is $Cu(s) + 2H^{+}(aq) \tilde{O} Cu^{2+}(aq) + H_{2}(g)$ and the voltmeter reads +1.86 V.
- [©] C. The overall cell reaction is $Cu^{2+}(aq) + H_2(g) \tilde{O} Cu(s) + 2H^+(aq)$ and the voltmeter reads +0.34 V.
- D. The copper electrode serves as the anode and carries a negative potential.
- ^C E. Electrons travel through the external wire from the copper electrode into the hydrogen reference electrode resulting in a negative potential on the platinum electrode