MA571 Problem Set 4

Carlos Salinas

September 20, 2015

Problem 4.1 (Munkres §20, Ex. 4(a))

Consider the product, uniform, and box topologies on \mathbf{R}^{ω} .

(a) In which topologies are the following functions from \mathbf{R} to \mathbf{R}^{ω} continuous?

$$\begin{split} f(t) &= (t, 2t, 3t, \ldots) \\ g(t) &= (t, t, t, \ldots) \\ h(t) &= (t, \frac{1}{2}t, \frac{1}{3}t, \ldots). \end{split}$$

Proof. The maps f, g and h are, evidently, continuous by Theorem 19.6 and the following lemmas (they may be useful in the future so we prove them here):

Lemma 8 (Munkres §18, Ex. 1). Let (X, d_X) and (Y, d_Y) be metric spaces. Suppose $f: X \to Y$ is continuous in ε - δ sense. Then f is continuous in the open set sense.

Proof. Suppose f is continuous in the ε - δ sense, that is, for every $\varepsilon>0$ there exists $\delta>0$ such that $d_X(x_0,x)<\delta$ implies $d_Y(f(x_0),f(x))<\varepsilon$. Now, let U be an open set in $\mathbf R$ and let $x_0\in f^{-1}(U)$. Since U is open, there exists a real number $\varepsilon>0$ such that $B_{d_Y}(f(x_0),\varepsilon)\subset U$. Since f is ε - δ continuous, there exists $\delta>0$ such that $x\in B_{d_X}(x_0,\delta)$ implies $f(x)\in B_{d_Y}(f(x_0),\varepsilon)$ so $B_{d_X}(x_0,\delta)\subset f^{-1}(U)$ (this is because if $x\in B_{d_X}(x_0,\delta)$, then $f(x)\in B_{d_Y}(f(x_0),\varepsilon)\subset U$ so $f(x)\in U$ and in particular $x\in f^{-1}(U)$). Since x_0 was arbitrary, we conclude that $f^{-1}(U)$ is open.

Lemma 9. Suppose $f, g: \mathbf{R} \to \mathbf{R}$ are continuous. Then the following hold

- (i) The sum (f+g)(x) = f(x) + g(x) is continuous.
- (ii) The product fg(x) = f(x)g(x) is continuous.

Proof. By Lemma 8, it suffices to show that f+g and fg are continuous in the ε - δ sense: Let $x_0 \in \mathbf{R}$ and let $\varepsilon > 0$ be given.

(i) Since f and g are continuous in the ε - δ sense there exists $\delta_1>0$ and $\delta_2>0$ such that $|x_0-x|<\delta_1$ implies $|f(x_0)-f(x)|<\varepsilon/2$ and $|x_0-x|<\delta_2$ implies $|g(x_0)-g(x)|<\varepsilon/2$ respectively. Take $\delta=\min\{\delta_1,\delta_2\}$. Then, by the triangle inequality (cf. Munkres §20 the definition of a metric in p. 119) we have

$$\begin{split} |(f+g)(x_0) - (f+g)(x)| &= |f(x_0) + g(x_0) - f(x) - g(x)| \\ &= |f(x_0) - f(x) + g(x_0) - g(x)| \\ &\leq |f(x_0) - f(x)| + |g(x_0) - g(x)| \\ &\leq \varepsilon \end{split}$$

(ii) Since f and g are continuous in the ε - δ sense, by the triangle inequality we have

$$\begin{split} |fg(x_0)-fg(x)| &= |f(x_0)g(x_0)-f(x)g(x)| \\ &= |f(x_0)g(x_0)-f(x_0)g(x)+f(x_0)g(x)-f(x)g(x)| \\ &= |f(x_0)g(x_0)-f(x_0)g(x)|+|f(x_0)g(x)-f(x)g(x)| \\ &= |f(x_0)||g(x_0)-g(x)|+|f(x_0)-f(x)||g(x)|. \end{split}$$

To bound this expression, consider the following: Let $\delta_1>0$ such that $|f(x_0)-f(x)|<\varepsilon/2$. Since g is continuous, choose $\delta_2>0$ such that $|g(x_0)-g(x)|<1$. Then $g(x)< g(x_0)+1$ for all $x\in (x_0-\delta,x_0+\delta)$. Finally, if choose $\delta_3>0$ such that $|g(x_0)-g(x)|<\varepsilon/2f(x_0)$. Then $\delta=\min\{\delta_1,\delta_2,\delta_3\}$ gives a bound to the expression

$$|f(x_0)||g(x_0) - g(x)| + |f(x_0) - f(x)||g(x)| < \varepsilon.$$

Note that if $f(x_0) = 0$, we discard δ_3 and we obtain a stricter bound on our estimates. In any case, fg is continuous.

Corollary. Polynomials from R to R are continuous.

Proof of Corollary. It is immediate from Lemma 9(i,ii) and Theorem 18.2(a,b) from Munkres. Here is a sketch: By Theorem 18.2(a) constant functions are continuous, therefore $x \mapsto a_0$ for $a_0 \in \mathbf{R}$ is continuous. By Theorem 18.2(b), the map $x \mapsto x$ is continuous so by Lemma 9(ii), $x \mapsto x^2$ is continuous. By induction on $n, x \mapsto x^n$ is continuous. Similarly, we have that $x \mapsto a_n x^n$ is continuous. Thus, by Lemma 9(i), the map

$$x \longmapsto a_n x^n + \dots + a_1 x + a_0$$

is continuous.

Now, for the box topology, consider our favorite neighborhood of $\bf 0$ (as seen in Munkres §19, p. 117) given by

$$U = \prod_{i=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right).$$

The set U is clearly open since it is a basis element, by Theorem 19.2. However, the preimage

$$h^{-1}(U) = \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right) = \{0\}$$

is not open in \mathbf{R} so h is not open in \mathbf{R}^{ω} with the box topology.

Finally, we will show that h is continuous in the ε - δ sense: Given $\varepsilon > 0$ and $x_0 \in \mathbf{R}$, let $\delta = \varepsilon$, then for any $x \in (x_0 - \varepsilon, x_0 + \varepsilon)$ we have

$$d_{\bar{\varrho}}(h(x_0), h(x)) = |x_0 - x| < \varepsilon.$$

Thus, since h is continuous in the ε - δ sense, by Lemma 8, we have that h is continuous in the open set sense.

Problem 4.2 (Munkres §20, Ex. 4(b))

Consider the product, uniform, and box topologies on \mathbf{R}^{ω} .

(b) In which topologies do the following sequences converge?

$$\begin{array}{lll} \mathbf{w}_1 = (1,1,1,1,\ldots), & & \mathbf{x}_1 = (1,1,1,1,\ldots), \\ \mathbf{w}_2 = (0,2,2,2,\ldots), & & \mathbf{x}_2 = \left(0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\ldots\right), \\ \mathbf{w}_3 = (0,0,3,3,\ldots), & & \mathbf{x}_3 = \left(0,0,\frac{1}{3},\frac{1}{3},\ldots\right), \\ \vdots & & \vdots & & \vdots \\ \mathbf{y}_1 = (1,0,0,0,\ldots) & & \mathbf{z}_1 = (1,1,0,0,\ldots), \\ \mathbf{y}_2 = \left(\frac{1}{2},\frac{1}{2},0,0,\ldots\right) & & \mathbf{z}_2 = \left(\frac{1}{2},\frac{1}{2},0,0,\ldots\right), \\ \mathbf{y}_3 = \left(\frac{1}{3},\frac{1}{3},\frac{1}{3},0,\ldots\right), & & \vdots & & \vdots \end{array}$$

Proof. By Lemma D (from Prof. McClure's notes) if $\{\mathbf{x}_n\}$, $\{\mathbf{y}_n\}$ and $\{\mathbf{z}_n\}$ converge in the box topology, they converge to $\mathbf{0}$ since they converge to $\mathbf{0}$ in the product topology (and this can be readily seen by applying Problem 3.5 [Munkres §19, Ex. 6]).

However, for the sequences $\{\mathbf{x}_n\}$ and $\{\mathbf{y}_n\}$ we see that the neighborhood of $\mathbf{0}$ given by

$$U = \prod_{i=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right)$$

does not contain any term of either sequence since for any $k \in \mathbf{Z}_+$, the term

$$\mathbf{x}_k = \left(0, 0, ..., \tfrac{1}{k}, \tfrac{1}{k}, ...\right) \not\in (-1, 1) \times \cdots \left(-\tfrac{1}{k}, \tfrac{1}{k}\right) \times \left(-\tfrac{1}{(k-1)}, \tfrac{1}{(k-1)}\right) \times \cdots.$$

Similarly, we can see that \mathbf{y}_k will not be in U for any k so the sequence $\{\mathbf{x}_n\}$ and $\{\mathbf{y}_n\}$ will not converge in the box topology.

Although $\{\mathbf{x}_n\}$ and $\{\mathbf{y}_n\}$ do not converge in the box topology we claim that the sequence $\{\mathbf{z}_n\}$ does converge. To see this it is enough to consider basic open neighborhoods of $\mathbf{0}$. Let $U = \prod (a_n, b_n)$ be a basis element containing $\mathbf{0}$. Then we must show that for N sufficiently big, $\mathbf{x}_n \in U$ for all $n \geq N$. Let $b = \min\{b_1, b_2\}$. Since b > 0, by the Archimedean property (Munkres Theorem 4.2), there exists $N \in \mathbf{Z}_+$ such that 1/N < b. Thus, $\mathbf{z}_n \in U$ for all $n \geq N$ so $\mathbf{z}_n \to \mathbf{0}$ in the box topology.

Problem 4.3 (Munkres §20, Ex. 6(b))

Let $\bar{\rho}$ be the uniform metric on \mathbf{R}^{ω} . Given $\mathbf{x}=(x_1,x_2,x_3,\ldots)\in\mathbf{R}^{\omega}$ and given $0<\varepsilon<1$, let

$$U(\mathbf{x},\varepsilon) = (x_1 - \varepsilon, x_1 + \varepsilon) \times \dots \times (x_n - \varepsilon, x_n + \varepsilon) \times \dots.$$

(b) Show that $U(\mathbf{x}, \varepsilon)$ is not even open in the uniform topology.

Proof of (b). It is sufficient to find a point $\mathbf{x}_0 \in U(\mathbf{x}, \varepsilon)$ such that $B_{\bar{\rho}}(\mathbf{x}_0, \delta) \not\subset U(\mathbf{x}, \varepsilon)$ for any $\delta > 0$. Let \mathbf{x}_0 be the point

$$\mathbf{x}_0 = \prod_{i=1}^{\infty} \bigl(x_i + \bigl(\tfrac{i-1}{i}\bigr)\varepsilon\bigr).$$

Now consider the open ball $B_{\bar{\rho}}(\mathbf{x}_0, \delta)$ for $\delta > 0$. Now, pick a point $\mathbf{y} \in B_{\bar{\rho}}(\mathbf{x}_0, \delta)$ given by

$$\mathbf{y} = \prod_{i=1}^{\infty} \left(x_i + \frac{i-1}{i} + \frac{\delta}{2} \right).$$

Clearly $\mathbf{y} \in B_{\bar{\rho}}(\mathbf{x}_0, \delta)$ since

$$\bar{\rho}(\mathbf{x}_0,\mathbf{y}) = \sup_{i \in \mathbf{Z}_+} \{\min\{|x_i - y_i|, 1\}\} = \min\left\{\tfrac{\delta}{2}, 1\right\} \leq \delta/2.$$

However, by the Archimedean property, there exists $k \in \mathbf{Z}_+$ such that $\delta/2 > 1/k$ so $z_n = x_n + (n-1)/n\varepsilon + \delta/2$

CARLOS SALINAS PROBLEM 4.4(A)

Problem 4.4 (A)

Prove Theorem Q.2 from the notes on Quotient Spaces.

Proof. Recall the statement of the theorem:

Theorem (Theorem Q.2). A function $f: X/\sim \to Y$ is continuous if and only if the composite

$$X \stackrel{q}{\longrightarrow} X/{\sim} \stackrel{f}{\longrightarrow} Y$$

is continuous.

_

CARLOS SALINAS PROBLEM 4.5(B)

Problem 4.5 (B)

Prove Proposition Q.5 from the notes on Quotient Spaces.

 ${\it Proof.}$ Recall the statement of the proposition:

Proposition (Proposition Q.5). A map $p: X \to Y$ satisfies Definition Q.4 if and only if it satisfies the definition at the top of page 137 in Munkres.

CARLOS SALINAS PROBLEM 4.6(C)

Problem 4.6 (C)

Prove Proposition Q.6 from the notes on Quotient Spaces.

Proof. Recall the statement of the proposition:

Proposition (Proposition Q.6). Let $p: X \to Y$ be a Munkres quotient map. A function $f: Y \to Z$ is continuous if and only if the composite

$$X \xrightarrow{p} Y \xrightarrow{f} Z$$

 $is\ continuous.$

CARLOS SALINAS PROBLEM 4.7(D)

Problem 4.7 (D)

(Do not use Problem E to do this problem). Let \sim be the equivalence relation on the interval [-1,1] defined by $x \sim y$ if and only if x = y or x = -y with $y \in (-1,1)$ (you do not have to prove that this is an equivalence relation). Prove that $[-1,1]/\sim$ is not Hausdorff.

Proof.

CARLOS SALINAS PROBLEM 4.8(E)

Problem 4.8 (E)

Let X be a topological space with an equivalence relation \sim . Suppose that the quotient space X/\sim is Hausdorff.

Prove that the set

$$S = \{ \, x \times y \in X \times X \mid x \sim y \, \}$$

is a closed subset of $X \times X$.

Proof.

CARLOS SALINAS PROBLEM 4.9(F)

Problem 4.9 (F)

For problem F you need the following definition: if Y is a topological space and S is a subset of Y, we write Y/S for the quotient space Y/\sim , where \sim is defined by $x \sim y$ if and only if x = y or $\{x,y\} \subset S$. (Intuitively, Y/S is obtained from Y by collapsing S to a point.)

Let X be a topological space. Let U be an open set in X, and let A be a subset of U. Give U the subspace topology. Let $\iota \colon U/A \to X/A$ be the map which takes [x] to [x] (you do not have to prove that this is well-defined).

- (i) Prove that ι is continuous.
- (ii) Prove that ι is an open map.

Proof. (i)

(ii)

 $CARLOS\ SALINAS$ PROBLEM 4.10(G)

Problem 4.10 (G)

Let X be a topological space satisfying the first countability axiom (see the bottom of page 130 and the top of page 131). Let $A \subset X$ and let $x \in \overline{A}$. Prove that there is a sequence in A which converges to x (see the top of page 131 for a hint).

Proof.