List of useful formulae

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

$$x(t) = \int_{-\infty}^{\infty} x(\lambda) \delta(t-\lambda) d\lambda$$

$$x(t) = \int_{-\infty}^{\infty} x(\lambda) \delta(t-\lambda) d\lambda$$

$$x(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_n t}$$

$$c_0 = \frac{1}{T} \int_{} x(t) dt$$

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-jn\omega_n t} dt$$

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-jn\omega_n t} dt$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(t) e^{-jn\omega_n t} dt$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(t) e^{-jn\omega_n t} dt$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(t) e^{-jn\omega_n t} dt$$

$$x(t) = \int_{-\infty}^{\infty}$$

Fourier Transform Pairs

Signal	Fourier Transfrom
$\sum_{n=-\infty}^{\infty} c_n e^{jn\omega_o t}$	$2\pi\sum_{n=-\infty}^{\infty}c_n\delta(\omega-n\omega_o)$
$e^{j\omega_{\!\scriptscriptstyle o}t}$	$2\pi\delta(\omega - \omega_o)$
$\cos \omega_0 t$	$\pi[\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$
$\sin \omega_0 t$	$j\pi[\delta(\omega+\omega_o)-\delta(\omega-\omega_o)]$
1	$2\pi\delta(\omega)$
$\delta(t)$	1
u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$
$\delta(t-t_o)$	$e^{-j\omega \epsilon_o}$

$$e^{-at}u(t), a > 0 \qquad \frac{1}{a+j\omega}$$

$$x(t) = \begin{cases} 1, & |t| < \tau \\ 0, & |t| > \tau \end{cases} \qquad \frac{2\sin\omega\tau}{\omega} = 2\tau\sin c(\omega\tau)$$

$$\frac{\sin\omega_c t}{\pi t} = \frac{\omega_c}{\pi}\sin c(\omega_c t) \qquad X(\omega) = \begin{cases} 1, & |\omega| < \omega_c \\ 0, & |\omega| > \omega_c \end{cases}$$

$$\sum_{n=-\infty}^{\infty} \delta(t-nT) \qquad \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)$$

Properties of Fourier Transform

Property	Aperiodic signal, $x(t)$	Fourier Transfrom, $X(\omega)$
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(\omega) + bX_2(\omega)$
Time Shifting	$x(t-t_o)$	$e^{-j\omega t_o}X(\omega)$
Frequency Shifting	$e^{j\omega_{o}t}x(t)$	$X(\omega - \omega_0)$
Time Scaling	x(at)	$\frac{1}{a}X\left(\frac{\omega}{a}\right)$
Differentiation in Time	$\frac{dx(t)}{dt}$	$j\omega X(\omega)$
Differentiation in Frequency	tx(t)	$j\frac{dX(\omega)}{d\omega}$
Integration in time	$\int_{-\infty}^{t} x(\tau)d\tau$	$\frac{X(\omega)}{j\omega} + \pi X(0)\delta(\omega)$
Convolution	x(t)*h(t)	$X(\omega).H(\omega)$
Multiplication in time	x(t).h(t)	$\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\lambda)H(\omega-\lambda)d\lambda$
Parseval's Theorem	$E = \int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2$	$^{2}d\omega$

Properties of Laplace Transform

Property	Transform Property	
Linearity	$ax_1(t) + bx_2(t) \leftrightarrow aX_1(s) + bX_2(s).$	
Time shift	$x(t-t_o) u(t-t_o) \leftrightarrow X(s)e^{-st_o}, t_o > 0$	
Multiplication by a complex exponential	$x(t)e^{s_o t} \leftrightarrow X(s-s_o)$	
Time scaling	$x(at) \leftrightarrow X(s/a)/ a $	
Differentiation in time domain	$\frac{dx(t)}{dt} \leftrightarrow sX(s) - x(0)$	
	$\left. \frac{d^2 x(t)}{dt^2} \longleftrightarrow s^2 X(s) - sx(0) - \left. \frac{dx(t)}{dt} \right _{t=0}$	
Differentiation in s domain	$t^n x(t) \longleftrightarrow \frac{d^n X(s)}{ds^n} (-1)^n$	
Integration	$\int_{-\infty}^{t} x(\tau)d\tau \leftrightarrow \frac{1}{s}X(s)$	
Convolution in time domain	$x(t)*h(t) \leftrightarrow X(s).H(s)$	
Initial value theorem	$x(0) = \lim_{s \to \infty} sX(s)$	
Final value theorem	$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$	
(if $x(t)$ has a finite value as $t \to \infty$)	. / 3 //	
Laplace Transform pairs		
Signal	Transform	
Unit step: $u(t)$	$\frac{1}{s}$	
Unit impulse: $\delta(t)$	1	
Unit ramp: $tu(t)$	$\frac{1}{s^2}$	
$e^{-at}u(t)$	$\frac{1}{s+a}$	
$t^n e^{-at} u(t)$	$\frac{n!}{(s+a)^{n+1}}$	

$$\frac{s}{\left(s^{2} + \omega_{o}^{2}\right)}$$

$$(\sin \omega_{b}t)u(t) \qquad \qquad \frac{\omega_{o}}{\left(s^{2} + \omega_{o}^{2}\right)}$$

$$(e^{-at}\cos \omega_{o}t)u(t) \qquad \qquad \frac{s + a}{\left((s + a)^{2} + \omega_{o}^{2}\right)}$$

$$(e^{-at}\sin \omega_{o}t)u(t) \qquad \qquad \frac{\omega_{o}}{\left((s + a)^{2} + \omega_{o}^{2}\right)}$$

$$(t\cos \omega_{o}t)u(t) \qquad \qquad \frac{s^{2} - \omega_{o}^{2}}{\left(s^{2} + \omega_{o}^{2}\right)^{2}}$$

$$(t\sin \omega_{o}t)u(t) \qquad \qquad \frac{2\omega_{o}s}{\left(s^{2} + \omega_{o}^{2}\right)^{2}}$$

Unit step response for 2nd order systems

Onit step response for 2 order systems		
Damping factor, ζ	Unit step response	
>1	$y(t) = \frac{k}{p_1 p_2} + k_2 e^{p_1 t} . u(t) + k_3 e^{p_2 t} . u(t)$	
1	$y(t) = \frac{k}{\omega_n^2} \left(1 - \left(1 + \omega_n t \right) e^{-\omega_n t} . u(t) \right)$	
$0 < \zeta < 1$	$y(t) = \frac{k}{\omega_n^2} \left(1 - \frac{\omega_n}{\omega_d} e^{-\zeta \omega_n t} \sin(\omega_d t + \theta) . u(t) \right)$	
0	$y(t) = \frac{k}{\omega_n^2} (1 - \cos(\omega_n t) . u(t))$	