ПРОИЗВОДСТВЕННОЕ ОСВЕЩЕНИЕОсновные светотехнические понятия и величины.

Свет – видимое электромагнитное излучение. (Видимый диапазон – 380-760 нм)

производственное освещение

Основные светотехнические понятия и величины.

Сила света I — пространственная плотность светового потока в направлении оси телесного угла $d\omega$ [канделлы, кд].

$$I = d\Phi/d\omega$$

Световой поток Φ — мощность лучистой энергии, оцениваемой по световому ощущению, воспринимаемому человеческим глазом. [люмен, лм].

1 лм — световой поток, испускаемый в единичном телесном угле, величиной 1 стерадиан точечным источником при силе света 1 кд.

Освещенность E — величина, характеризующая поверхностную плотность светового потока на освещаемой площади S [люкс, лк].

$$\mathbf{E} = \Phi / \mathbf{S}$$

Яркость L — отношение силы света светящейся поверхности в рассматриваемом направлении к ее проекции на плоскость перпендикулярную этому направлению [кд/м²].

$$\mathbf{L} = \frac{I}{S\cos\alpha} \,,$$

где α — угол между нормалью к плоскости, на которую направлено излучение, и направлением излучения

Виды освещения

Виды естественного освещения

Виды освещения

Искусственное освещение:

- общее равномерное освещение- освещение, при котором светильники, располагаемые как правило в верхней зоне помещения, обеспечивают равномерную освещенность всей площади;
- общее локализованное освещение, при котором светильники общего освещения располагают либо непосредственно над рабочими местами, либо акцентируют их на рабочие места;
- местное освещение одного рабочего места, без освещения прилегающих к нему вспомогательных помещений;
- комбинированное освещение, включающее в себя светильники как общего, так и местного освещения.

Искусственное освещение по назначению подразделяется на:

- Рабочее освещение, обеспечивающее нормируемые осветительные условия (освещенность, качество освещения) в помещениях и в местах производства работ вне зданий.
- **Аварийное** предназначенное для продолжения работы при отключении рабочего освещения на тех предприятиях, где невозможна мгновенная остановка технологического процесса.
- Эвакуационное необходимо для освещения лестничных проемов и маршрутов эвакуации людей в случае чрезвычайных ситуаций.
- Дежурное используется в тех местах, где недостаточно рабочего освещения, а участки выполняемых работ связаны с опасностью для жизни человека. Может оставаться включенным в моменты прекращения работ.
- Охранное освещение для различного рода указателей, на строительных площадках.

Виды источников света

Галогенная

Ртутная

Люминесцентная

Виды источников света

	Источник света										
	Лампа н	акаливания	Люминесь ламг		Разрядная лампа						
Параметр	обычная	галогенная	компактная	обычная	Ртутная лампа высокого давления (ДРЛ)	Металло- галогенная лампа высокого давления (МГЛ, ДРИ)	Натриевая лампа высокого давления (ДНат)	Светодиодна			
Средний срок эксплуатации, часов	1000	2000-3000	10000	10000- 15000	12000- 15000	6000-12000	20000	50000- 100000			
Энергоэффективность, лм/Вт	рективность, 8-13 14-16		45-60	60-90	45-55	80-90	80-120	100-150			
Температурный режим окружающей среды, 8C	сающей среды, -40+40 -40+40		+5+30	+5+30	-30+50	-30+50	-30+50	-40+60			
Индекс цветопередачи, Ra			70-80	70-80	45	80-90	25	75-95			
Цветовая температура, К	2400-2700	3000	2700-6000	2700-6000	9000-10000	3000-6000	2000	2800-10000			
Ультрафиолетовое излучение	Среднее	Среднее	Высокое	Высокое	Очень высокое	Очень высокое	Очень высокое	Нет			
Стробоскопический эффект	Нет	Нет	Есть	Есть	Есть	Есть	Есть	Нет			
Наличие вредных веществ	HeT HeT		Есть	Есть	Есть	Есть	Есть	Нет			
Специальные условия хранения и	Нет	Нет	Есть	Есть	Есть	Есть	Есть	Нет			

Нормирование производственного освещения

В основу нормирования освещения положен принцип разделения рабочих мест по размерам объектам различения.

Нормируемая величина для искусственного освещения: освещенность E на рабочей поверхности, коэффициент пульсации освещённости $K\pi$, объединенный показатель дискомфорта – UGR.

Нормируемая величина для естественного освещения: коэффициент естественной освещенности **КЕО**.

Коэффициент естественной освещенности (КЕО) – отношение естественной освещенности, создаваемой в некоторой точке заданной плоскости внутри помещения светом неба (непосредственным или после отражений), к одновременному значению наружной горизонтальной освещенности, создаваемой светом полностью открытого небосвода.

$$KEO = E_{eH}/E_{Hap} * 100\%$$

При нормировании *КЕО* устанавливается в зависимости от:

- ✓ характера и точности зрительной работы (разряд зрительной работы);
- ✓ конструктивного решения системы освещения (боковое, верхнее, комбинированное или совмещенное);
- ✓ коэффициента светового климата, определяемого в зависимости от района расположения здания на территории России;
- ✓ ориентации световых проёмов здания по сторонам горизонта (два последних коэффициента для Москвы равны 1)

Порядок нормирования производственного освещения (СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания»):

- 1. На основании размера минимального объекта различения определяют разряд зрительной работы.
- 2. По контрасту объекта с фоном и характеристике фона определяется подразряд зрительной работы.

Фон — поверхность, прилегающая непосредственно к объекту различения, на которой он рассматривается.

Величина фона определяется коэффициентом отражения поверхности ρ , на которой рассматривается объект. Фон считается светлым, если $\rho > 0.4$; средним при $0.2 \le \rho \le 0.4$; темным при $\rho < 0.2$.

Контраст объекта с фоном определяется отношением разности между яркостью объекта и фона или разностью их коэффициентов отражения к соответственно яркости фона или коэффициенту его отражения.

$$K=(L_{\theta}-L_{\phi})/L_{\phi}$$
 unu $K=(\rho_{\theta}-\rho_{\phi})/\rho_{\phi}$.

Контраст малый при K<0.2; средний при $0.2 \le K \le 0.5$; большой при K>0.5.

Качественные показатели освещения

Коэффициент пульсации освещенности К $_{\rm II}$ — критерий оценки относительной глубины колебаний освещенности в результате изменения потока газоразрядных ламп, питаемых переменным током

$$K_{\Pi} = \frac{E_{max} - E_{min}}{2 \cdot E_{cn}} \cdot 100\%,$$

где E_{max} , E_{min} , E_{cp} — максимальное, минимальное и среднее значение освещенности за период колебаний переменного тока, лк.

Объединённый показатель дискомфорта UGR — общеевропейский критерий оценки дискомфортной блёскости, вызывающей неприятные ощущения при неравномерном распределении яркостей в поле зрения, определяемый по формуле:

$$UGR = 8lg\left(\frac{0.25}{L_a}\sum_{i=1}^{N}\frac{L_i^2\omega_i}{p_i^2}\right)$$

 L_a – яркость адаптации, кд/м 2

 L_i – яркость блёсткого источника, кд/м²;

 ω_i – угловой размер блёсткого источника, стер;

 p_i – индекс позиции блёсткого источника относительно линии зрения;

Требования к освещению рабочих мест на промышленных предприятиях СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания»

		р Разряд зрител ьной работ ы н				Искусственное освещение					Естественно е освещение		Совмещённое освещение	
						осве	щённост	ь, лк	, лк Сочетание нормируем		KEO,		ен, %	
Характерис тика зрительной работы	Наимень пий или эквивале нтный размер объекта различен ия, мм		тел ой зрител от работ	Конграст объекта с фоном	Характер истика фона	ного систе освещения ме общег				при верхнем или комбинированном освещении	м освещении	или комбинированном освещении	м освещении	
								· ·	нта пульсации		осве	боковом	верхнем или освег	боковом
						всего	в том числе от общег о	ения	UR G, не бол ее	Кп, %, не более	нхдэв ифи	иди	при верхн	иди
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Наивысшей точности	Менее 0,15		а I б	Малый	Тёмный	5000 4500	500 500	-	22 19	10 10				
				Малый	Средний	4000	400	1250	22	10				
				Средний	Тёмный	3500	400	1000	19	10				
					В	Малый	Светлый	2500	300	750	22	10	-	-

Требования к освещению в жилых и общественных зданиях СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания»

	Помещения			Совмещенное освещение		Искусственное освещение						
		плоскость нормирования	KEO , %		KEO , %							
		КЕО и	при	при	при	при	Освеш	енность,	лк			
		освещенности (Г - горизон- тальная, В - верти-	или комбини-	боковом осве- щении	верхнем или комбини- рован-	осве-	при комбини- рованном освещении		при общем осве- щении	Объеди- ненный показа- тель	Коэф- фициент пульса- ции	
		кальная) и высота плоскости над полом, м	ном осве- щении		ном осве- щении		всего	от общего		диском- форта, UGR, не более	освещен- ности, , % , не более	
	Административные здания (министерства, ведомства, комитеты, префектуры, муниципалитеты управления, конструкторские и проектные организации, научно-исследовательские учреждения и тому подобное)											
1	Кабинеты, рабочие комнаты, офисы, представительств	Γ-0,8	3,0	1,0	1,8	0,6	400	200	300	21	15	
2	Проектные залы и комнаты конструкторские, чертежные бюро	Γ-0,8	4,0	1,5	2,4	0,9	600	400	500	21	10	

Нормы освещённости, приведенные в таблице, повышают на одну ступень по шкале освещённости в следующих случаях:

- а) при работах I-IV разряда, если зрительная работа выполняется более половины рабочего дня;
- б) при повышенной опасности травматизма, если освещённость от системы общего освещения составляет 200 лк и менее;
- в) при специальных повышенных санитарных требованиях (на предприятиях пищевой и химико-фармацевтической промышленности), если освещённость от системы общего освещения 500 лк и менее;
- г) при работе или производственном обучении подростков, если освещённость от системы общего освещения 300 лк и менее;
- д) при отсутствии естественного света и постоянном пребывании работающих, если освещённость от системы общего освещения 750 лк и менее;
- е) при наблюдении деталей, вращающихся со скоростью, равной или более 500 об/мин, или объектов, движущихся со скоростью, равной или более 1,5 м/мин;
- ж) при постоянном поиске объектов различения на поверхности размером $0,1~{\rm M}^2$ и более;
- з) в помещениях, где более половины работающих старше 40 лет.

Расчет освещения

Расчётное уравнение метода коэффициента использования светового потока

$$\Phi = (E_{\rm H} kSz)/(N U_{\rm oy}),$$

где Φ – световой поток каждой из ламп или каждого светильника, лм;

 $E_{\rm H}$ — нормируемая минимальная освещённость, лк;

k — коэффициент запаса, учитывает запыление светильников и износ источников света в процессе эксплуатации, равен 1,2 для ламп накаливания и 1,4 для разрядных ламп;

S – площадь помещения, M^2 ;

z — коэффициент неравномерности освещения, характеризует отношение средней освещённости к минимальной, и равен 1,15 для ламп накаливания и 1,1 для люминесцентных ламп;

N — выбранное число ламп или светильников;

 $U_{\rm oy}$ — коэффициент использования осветительной установки (светильника), показывает какая часть светового потока (в долях единицы) лампы падает на освещаемую поверхность.

Неионизирующие излучения оптического диапазона (ультрафиолетовое излучение)

Ультрафиолетовое излучение — электромагнитное излучение оптического диапазона с длиной волны от 200 до 400 нм и частотой от 1013 Гц до 1016Гц (излучение возникает от нагретых тел с температурой от 3000 К).

Ультрафиолетовое излучение подразделяется в зависимости от биологической активности на:

- **—длинноволновое УФ-А 400**—**315 нм** (слабое биологическое действие);
- —**средневолновое УФ-В 315—280 нм** (выраженное загарное действие, стимуляции выработки витамина Д;
- —**коротковолновое УФ-С 280—200 нм** (выраженное бактерицидное действие)

Неионизирующие излучения оптического диапазона (ультрафиолетовое излучение)

Естественный источник—солнце (1 > 290 нм)

Искусственные источники-

- 1 Дуга промышленной сварки
- 2 Промышленные/рабочие UVR лампы
- 3- «Черный свет»
- 4- «Ультрафиолетовые лампы»
- 5 «Ультрафиолетовые лазеры»

Биологическое влияние

Положительное-болеутоляющее, стимулирует выработку антител, стимуляция выработки витамина Д, усиление окислительных процессов, усиление регенеративных процессов, бактерицидное действие

Отрицательное-ультрафиолетовая эритема, дерматиты, фотоофтальмия, фотоконьюктивит (воспаление слизистых оболочек), помутнение хрусталика, старение кожи, канцерогенный эффект

Бактерицидное действие ультрафиолета

Кривые бактерицидной эффективности

Спектр солнечного излучения над атмосферой и на уровне моря. Наиболее жесткая часть ультрафиолетового диапазона до поверхности земли не доходит

Спектр бактерицидного действия и спектр солнечного излучения

Отрицательное действие ультрафиолета

Кривые действия ультрафиолета, вызывающие эритему и рак кожи.

Фотоиндуцированное старение кожи вызывается ультрафиолетом во всем диапазоне 200...400 нм.

Неионизирующие излучения оптического диапазона

Нормирование ультрафиолетового излучения

Нормируемыми показателями ультрафиолетового излучения являются допустимые интенсивности излучения ДИИ, Bt/m^2 .

Нормативы интенсивности излучения установлены с учетом продолжительности воздействия на работающих, обязательного ношения спецодежды, защищающей от излучения, головных уборов и использования средств защиты глаз.

ДДИ — при наличии незащищенных участков поверхности кожи не более 0,2 м2 (лицо, шея, кисти рук и др.), общей продолжительности воздействия излучения до 50% рабочей смены и длительности однократного облучения свыше 5 мин и более — не должна превышать

- $10 \,\mathrm{BT/m^2}$ для области $\mathrm{Y}\Phi$ -A,
- **0,01 Вт/м²** для области **УФ-Б**.

Излучение в области УФ-С при указанной продолжительности не допускается.

При использовании специальной одежды и средств защиты лица и рук, не пропускающих излучение (кожа, ткани с пленочным покрытием и т. п.), допустимая интенсивность облучения в областях УФ-В + УФ-С (200—315 нм) не должна превышать $1 \, BT/m^2$

Неионизирующие излучения оптического диапазона

Лазерное излучение— особый вид электромагнитного излучения, генерируемого в диапазоне длин волн 0,1...1000 мкм (особенностимонохроматичность излучения, когерентность, высокая степень направленности).

Биологическое действие лазерного излучения:

- —**термическое** —ткани нагреваются до точки, где происходит денатурация белков
- нетермическое –фотохмическое (свет запускает химические реакции в тканях), механическое (взрывные эффект –из-за мгновенного повышения температуры в жидкой части спектра возникает ударная волна)

Опасность лазерного излучения сильно зависит от его характера (импульсное или непрерывное), мощности излучения, длины волны.

НОРМИРОВАНИЕ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

При *нормировании* ЛИ устанавливают предельно допустимые уровни ЛИ для двух условий облучения — однократного и хронического, для трех диапазонов длин волн: 180...300 нм, 380... 1400 нм, 1400... 100 000 нм. **Нормируемыми параметрами являются энергетическая экспозиция Н и облученность Е.**

Устанавливаются раздельные ПДУ при воздействии на глаза и кожу.

В зависимости от выходной энергии (мощности) лазеры разделяют на четыре класса.

К лазерам I класса относят полностью безопасные лазеры, выходное излучение которых не представляет опасности при облучении глаз и кожи.

У лазеров II класса выходное излучение представляет опасность при облучении кожи или глаз человека коллимированным пучком (пучком, заключенным в ограниченном телесном угле); диффузно отраженное их излучение безопасно как для кожи, так и для глаз. Выходная мощность до 1 мВт.

Выходное излучение лазеров III класса представляет опасность при облучении глаз не только коллимированным, но и диффузно отраженным излучением на расстоянии 10 см от отражающей поверхности и (или) при облучении кожи коллимированным пучком. Диффузно отраженное излучение не представляет опасности для кожи. Этот класс распространяется только на лазеры, генерирующее излучение которых в спектральном диапазоне составляет 380... 1400 нм. Выходная мощность от 1 мВт до 5 мВ и 5 мВт до 500 мВт.

К лазерам IV класса относят такие лазеры, диффузно отраженное излучение которых представляет опасность для глаз и кожи на расстоянии 10 см от отражающей поверхности. Выходная мощность >500 мВт

ЗАЩИТНЫЕ МЕРЫ

НЕЛЬЗЯ ИСПОЛЬЗОВАТЬ

