M1 IEAP - BTI/FH/IEMH pFIEA02CM : Analyse et Traitement du Signal

Flavy ROSEREN Martin EGIZIANO Frank BULOUP

Aix Marseille Université Institut des Sciences du Mouvement

Pourquoi des rappels sur les complexes ?

Les complexes sont utilisés dans pratiquement toutes les sciences et tout particulièrement en traitement du signal : représentation fréquentielles des signaux et des systèmes

Pourquoi des rappels sur les complexes ?

Les complexes sont utilisés dans pratiquement toutes les sciences et tout particulièrement en traitement du signal : représentation fréquentielles des signaux et des systèmes

Pourquoi les complexes ?

- Résoudre certains problèmes insolubles autrement
- Faciliter les calculs

Jérôme CARDAN (1501-1576)

Le plan complexe

 $(O, \vec{e_1}, \vec{e_2})$ est un repère orthonormé ρ est la longueur du segment [OM] θ est l'angle orienté entre l'axe réel et la droite (OM) Le point M est l'**image** du nombre complexe z z est appelé **affixe** du point M

$$z = a + ib$$
, $i^2 = -1$

$$z = a + ib, \quad i^2 = -1$$

Forme polaire

$$\mathit{z} = \rho[\mathit{cos}(\theta) + \mathit{isin}(\theta)]$$

$$z = a + ib$$
, $i^2 = -1$

Forme polaire

$$z = \rho[\cos(\theta) + i\sin(\theta)]$$

Formule d'Euler

$$e^{i\theta} = cos(\theta) + isin(\theta)$$

$$z = a + ib, \quad i^2 = -1$$

Formule d'Euler

$$e^{i\theta} = cos(\theta) + isin(\theta)$$

Forme polaire

$$z = \rho[\cos(\theta) + i\sin(\theta)]$$

Forme exponentielle

$$z = \rho e^{i\theta}$$

$$z = a + ib, \quad i^2 = -1$$

Forme polaire

$$z = \rho[\cos(\theta) + i\sin(\theta)]$$

Conjugué d'un nombre complexe

$$\overline{z} = a - ib$$

= $\rho[\cos(\theta) - i\sin(\theta)]$
= $\rho e^{-i\theta}$

Formule d'Euler

$$e^{i\theta} = cos(\theta) + isin(\theta)$$

Forme exponentielle

$$z = \rho e^{i\theta}$$

$$z = a + ib$$
, $i^2 = -1$

Forme polaire

$$z = \rho[\cos(\theta) + i\sin(\theta)]$$

Conjugué d'un nombre complexe

$$ar{z} = a - ib$$

= $ho[\cos(\theta) - i\sin(\theta)]$
= $ho e^{-i\theta}$

Formule d'Euler

$$e^{i\theta} = cos(\theta) + isin(\theta)$$

Forme exponentielle

$$z = \rho e^{i\theta}$$

Combinaison linéaire

$$Z = \alpha_1 z_1 + \alpha_2 z_2 + \alpha_3 z_3 + \alpha_4 z_4 \dots$$

Z est un nombre complexe résultant de la somme pondérée de nombres complexes

Exercice I - Nombres complexes

- **1** Exprimer ρ et θ en fonction de a et b
- Calculer zz̄
- 3 Soit $z_1 = 2+5i$ sous forme cartésienne. Exprimer z_1 sous forme polaire puis exponentielle
- Soit $z_2 = 10e^{i\frac{\pi}{4}}$ sous forme exponentielle. Exprimer z_2 sous forme polaire puis cartésienne.
- **3** Soit deux complexes z_3 et z_4 , le premier réel pur de module 4 et le second imaginaire pur de module 5. Exprimer z_3 et z_4 sous forme cartésienne puis exponentielle.
- Exprimer les conjugués de tous ces nombres complexes sous forme cartésienne et exponentielle.
- Placer tous ces nombres dans la plan complexe.
- **3** Calculer z_1z_2 , $\frac{z_1}{z_2}$, z_3z_4 et $\frac{z_1}{z_4}$ en utilisant la notation (cartésienne ou exponentielle) la plus appropriée.

Exercice II - Nombres complexes avec Python

- Définir les complexes z_1 (cartésienne), z_2 (exponentielle), z_3 et z_4
- En utilisant la commande help, lire l'aide des fonctions real, imag, abs, angle et conj
- **3** En déduire le module et l'argument (la phase) de z_1 . Vérifier le résultat.
- En déduire les parties réelles et imaginaires de z_2 . Vérifier le résultat.
- Vérifiez les résultats obtenus aux questions six et huit de l'exercice précédent.
- Tracer ces nombres dans le même plan complexe en utilisant l'aide de la fonction plot

Exercice III - Formule d'Euler

- **1** En partant de la formule d'Euler, montrer que $cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$ et $sin(\theta) = \frac{e^{i\theta} e^{-i\theta}}{2i}$
- ② En utilisant les résultats précédents, exprimer $\cos^2(\theta)$ en fonction de $\cos(2\theta)$
- **3** De même, exprimer $sin^2(\theta)$ en fonction de $cos(\theta)$ et $sin(\theta)$