Решение нелинейных уравнений.

Описание задачи.

Пусть задана функция f(x) действительного переменного. Требуется найти корни уравнения

$$f(x) = 0 \tag{1}$$

или, что тоже самое, нули функции f(x) . Считаем, что f(x) определена и непрерывна на отрезке [a,b] .

1. Метод табулирования с уменьшением интервала и дробления шага.

Метод состоит в том, что вычисляется таблица значений функции f(x) в заданных точках $x_k \in [a,b]$, k=0,1,...,n. Если обнаружится, что при некотором k числа $f(x_k)$, $f(x_{k+1})$ имеют разные знаки, то это будет означать, что на интервале (x_k,x_{k+1}) уравнение (1) имеет по крайней мере один действительный корень (точнее, имеет нечетное число корней на (x_k,x_{k+1})). Затем можно разбить интервал (x_k,x_{k+1}) на более мелкие интервалы и с помощью аналогичной процедуры уточнить расположение корня.

Если $\varepsilon > 0$ - заданная точность, то вычисления ведутся до момента выполнения неравенства $|x_k - x_{k+1}| < \varepsilon$.

Примечание 1: для использования метода необходимо выбрать отрезок [a,b].

Примечание 2: кратные корни (при которых график функции касается оси абсцисс, но не пересекает её) не определяются данным методом.

2. Метод половинного деления (метод бисекции или метод деления отрезка пополам).

Предположим, что на (a,b) расположен лишь один корень ξ , уравнения (1), причем f(a) и f(b) имеют различные знаки. Пусть для определенности f(a)>0, f(b)<0. Положим $x_0=\frac{(a+b)}{2}$ и вычислим $f(x_0)$. Если $f(x_0)<0$, то искомый корень находится на интервале (a,x_0) , если же $f(x_0)>0$, то $\xi\in(x_0,b)$. Далее, из двух интервалов (a,x_0) и (x_0,b) выбираем тот, на границах которого функция f(x) имеет различные знаки, находим точку x_1 - середину выбранного интервала, вычисляем $f(x_1)$ и повторяем указанный процесс. В результате получаем последовательность интервалов, содержащих искомый корень ξ , причем длина каждого последующего интервала вдвое меньше, чем предыдущего.

Процесс заканчивается, когда длина вновь полученного интервала станет меньше заданного числа $\varepsilon > 0$, и в качестве корня ξ , приближенно принимается середина этого интервала.

Примечание: для использования метода необходимо задать интервал (a,b), при этом на нём должен быть один корень; если имеется несколько корней, то процесс сойдется к одному из корней, но заранее неизвестно, к какому именно.

3. Метод касательных (метод Ньютона).

Пусть уравнение (1) имеет простой вещественный корень $x = \xi$. Считаем, что f(x) имеет непрерывные производные f'(x), f''(x), не обращающиеся в нуль на отрезке [a,b].

Основная идея метода Ньютона заключается в следующем: задаётся начальное приближение x_0 вблизи предположительного корня ξ , после чего строится касательная к графику исследуемой функции в точке приближения, для которой находится пересечение с осью абсцисс. Эта точка берётся в качестве следующего приближения x_1 . И так далее, пока не будет достигнута необходимая точность.

Каждое следующее приближение вычисляется по формуле:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Расчёты ведут до тех пор, пока не выполнится условие остановки, в качестве которого

можно взять $|x_{n+1}-x_n| < \varepsilon$.

Примечание: для использования метода необходимо задать некоторое начальное приближение $x_0 \in (a,b)$, причём чем ближе x_0 к искомому корню ξ , тем лучше; если начальное приближение выбрано неудачно, то метод может сходиться медленно, либо не сойдет чся вообще.

Теорема (достаточное условие сходимости метода Ньютона). Пусть f(x) определена и дважды непрерывно дифференцируема на [a,b], причём f(a)f(b)<0, а производные f'(x), f''(x) отличны от нуля и сохраняют знак на отрезке [a,b]. Тогда, исходя из начального приближения $x_0 \in [a,b]$, удовлетворяющему неравенству $f(x_0)f''(x_0)>0$, можно построить последовательность $x_{n+1}=x_n-f(x_n)/f'(x_n)$, $n=0,1,2,\ldots$, сходящуюся к единственному на [a,b] решению ξ уравнения f(x)=0.

4. Метод хорд.

Основная идея метода заключается в следующем: задаётся начальное приближение x_0 вблизи предположительного корня ξ , после чего строится касательная к графику исследуемой функции в точке приближения, для которой находится пересечение с осью абсцисс. Эта точка берётся в качестве следующего приближения x_1 . Через точки $f(x_0)$ и $f(x_1)$ проводится секущая, которая пересекает ось абсцисс в точке x_2 . Точки $f(x_0)$ и $f(x_2)$ используются для построения новой секущей, проходящей через точку x_3 так далее, пока не будет достигнута необходимая точность. Таким образом, из точки $f(x_0)$ строится «веер» секущих.

Итерационная формула метода хорд имеет вид:

$$x_{n+1} = x_n - f(x_n) \cdot \frac{(x_n - x_0)}{f(x_n) - f(x_0)},$$

где X_0 — фиксированная точка из окрестности корня.

Повторять операцию следует до тех пор, пока $|x_n - x_{n-1}|$ не станет меньше заданного значения погрешности ε .

Примечание: для использования метода необходимо задать некоторое начальное приближение $x_0 \in (a,b)$, причём чем ближе x_0 к искомому корню ξ , тем лучше.

Для определения сходимости метода можно использовать следующую теорему, для этого исходное уравнение (1) переписывается в эквивалентном виде $x = \varphi(x)$.

Теорема (достаточное условие сходимости метода простых итераций). Пусть функция $\varphi(x)$ определена и дифференцируема на [a,b], причём все её значения $\varphi(x) \in [a,b]$. Тогда, если существует число q такое, что $|\varphi'(x)| \le q < 0$ на отрезке [a,b], то последовательность $x_{n+1} = \varphi(x_n)$, $n = 0,1,2,\ldots$ сходится к единственному на [a,b] решению уравнения $x = \varphi(x)$ при любом начальном значении $x_0 \in [a,b]$.

Численное интегрирование.

Описание задачи.

Необходимо вычислить определённый интеграл:

$$I = \int_{a}^{b} f(x) dx.$$
 (1)

Основной подход построения формул приближенного интегрирования заключается в замене интеграла конечной суммой, которая называется квадратурной суммой:

$$I \approx I_n = \sum_{i=0}^n c_i \cdot f(x_i)$$
,

где c_i - числовые коэффициенты, x_i - точки отрезка [a,b], $f(x_i)$ - значения функции в точках x_i .

Разделим отрезок [a,b] на N равных частей длинной $h=\frac{b-a}{N}$, получаем множество

точек $\{x_i = a + hi, i = 0, 1, ..., N\}$ и представим интеграл (1) в виде суммы интегралов по частичным отрезкам:

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{N} \int_{x_{i-1}}^{x_i} f(x)dx.$$

Для построения формулы численного интегрирования на всём отрезке [a,b] достаточно построить квадратурную формулу для интеграла

$$\int_{x_{i-1}}^{x_i} f(x) dx. \tag{2}$$

интеграл с заданной точностью $\varepsilon > 0$, то можно Если требуется вычислить воспользоваться правилом Рунге практической оценки погрешности:

$$|I-I_{h/2}| \approx \frac{|I_{h/2}-I_h|}{2^k-1}$$
,

где I — точное значение интеграла, I_h , $I_{h/2}$ — приближённые значения интеграла, вычисленные с шагом h и h/2 соответственно, k - порядок ошибки метода численного интегрирования. Получаем, что для достижения заданной точности ε , надо проводить деление шага h до тех пор, пока не выполнится оценка:

$$\frac{|I_{h/2}-I_h|}{2^k-1}<\varepsilon.$$

Примечание 1: для некоторых функций f(x) деление шага для достижения заданной точности ε может продолжаться слишком долго. Поэтому в соответствующей программе следует предусмотреть ограничение сверху на число делений, а также возможность увеличения ε .

Примечание 2: для нахождения сумм $I_{h/2}$ не надо пересчитывать значения f(x) во всех узлах, достаточно вычислять f(x) только в новых узлах.

1. Метод прямоугольников.

Метод основан на замене подынтегральной функции на многочлен нулевой степени, то есть константу, на каждом элементарном отрезке $[x_{i-1}, x_i]$. В качестве константы можно взять точку 1) $x_i - 0.5h$, 2) x_{i-1} или 3) x_i . Геометрически такая замена означает, что площадь фигуры, ограниченной кривой f(x) заменяется площадью прямоугольника 1) $f(x_i-0.5h)\cdot h$, 2) $f(x_{i-1})\cdot h$, 3) $f(x_i)\cdot h$.

Тогда интеграл на частичном отрезке (2) вычисляется по формулам:

- 1) формула прямоугольников $\int\limits_{x_{i-1}}^{x_i} f(x) dx \approx f(x_i 0.5h) \cdot h$,
- 2) формула левых прямоугольников $\int\limits_{x_{i-1}}^{x_i} f(x) \, dx \approx f(x_{i-1}) \cdot h$, 3) формула правых прямоугольников $\int\limits_{x_{i-1}}^{x_i} f(x) \, dx \approx f(x_i) \cdot h$.

На всём отрезке [a,b] формулы вычисления интеграла примут вид:

1) составная формула прямоугольников

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{N} f(x_{i} - \frac{h}{2}) \cdot h = h \cdot \left(f(a + \frac{h}{2}) + f(a + \frac{3h}{2}) + \dots + f(a + \frac{2N-1}{2}h) \right),$$

2) составная формула левых прямоугольников

$$\int_{x_{i-1}}^{x_i} f(x) dx \approx \sum_{i=1}^{N} f(x_{i-1}) \cdot h = h \cdot |f(a) + f(a+h) + f(a+2h) + \dots + f(a+(N-1)h)|,$$

3) составная формула правых прямоугольников

$$\int_{x_{i-1}}^{x_i} f(x) dx \approx \sum_{i=1}^{N} f(x_i) \cdot h = h \cdot |f(a+h) + f(a+2h) + f(a+3h) + \dots + f(a+N \cdot h)|.$$

Порядок ошибки метода прямоугольников k=2, из-за нарушения симметричности порядок ошибки методов левых и правых прямоугольников k=1.

2. Метод трапеций.

Метод заключается в замене на каждом элементарном отрезке $[x_{i-1},x_i]$ подынтегральной функции на многочлен первой степени, то есть линейную функцию. Линейная функция строится по двум точкам: $(x_{i-1},f(x_{i-1}))$ и $(x_i,f(x_i))$. Геометрически такая замена означает, что площадь фигуры, ограниченной кривой f(x) заменяется площадью прямоугольной трапеции.

Интеграл на частичном отрезке (2) вычисляется по формуле:

$$\int_{x_{i-1}}^{x_i} f(x) dx \approx \frac{f(x_{i-1}) + f(x_i)}{2} \cdot h.$$

Составная формула трапеций для вычисления интеграла на всём отрезке [a,b] имеет вид:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{N} h \cdot \frac{f(x_{i-1}) + f(x_{i})}{2} = h \cdot |0.5f(a) + f(a+h) + \dots + f(a+(N-1)h) + 0.5f(a+N \cdot h)|.$$

Порядок ошибки метода трапеций k=2.

3. Метод парабол (метод Симпсона).

Суть метода заключается в приближении подынтегральной функции на элементарном отрезке $[x_{i-1},x_i]$ многочленом второй степени $p_2(x)$, то есть параболой, которая проходит через три точки функции f(x) с абсциссами x_{i-1} , $x_{i-1}+0.5h$ и x_i .

Интеграл на частичном отрезке (2) вычисляется по формуле:

$$\int_{x}^{x_{i}} f(x) dx \approx \int_{x}^{x_{i}} p_{2}(x) dx = \frac{h}{6} (f(x_{i-1}) + 4f(x_{i-1} + 0.5h) + f(x_{i})).$$

На всём отрезке $\begin{bmatrix} a,b \end{bmatrix}$ составная формула парабол имеет вид:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{N} \frac{h}{6} \cdot (f(x_{i-1}) + 4f(x_{i} - 0.5h) + f(x_{i})) = \frac{h}{6} \cdot (f(a) + f(b) + 2(f(x_{1}) + f(x_{2}) + \dots + f(x_{N-1}h)) + 4(f(a + 0.5h) + f(x_{1} + 0.5h) + \dots + f(x_{N} - 0.5h)).$$

Чтобы не использовать дробных значений, можно обозначить

$$x_i = a + 0.5 hi$$
, $i = 0, 1, ..., 2N$, $N = \frac{b-a}{h}$

и записать формулы трапеций в виде:

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6N} \left| f(a) + f(b) + 2 \left| f(x_2) + f(x_4) + \dots + f(x_{2N-2}) \right| + 4 \left| f(x_1) + f(x_3) + \dots + f(x_{2N-1}) \right| \right|.$$

Порядок ошибки метода парабол k=4 .

4. Метод трех восьмых.

Метод основан на интерполяции подынтегральной функции на элементарном отрезке $[x_{i-1},x_i]$ кубической параболой, проходящей через четыре точки функции f(x), абсциссы которых равны: x_{i-1} , $x_{i-1}+\frac{1}{3}h$, $x_{i-1}+\frac{2}{3}h$ и x_i .

Формула вычисления интеграла (2) на частичном отрезке будет иметь вид:

$$\int\limits_{x_{i-1}}^{x_i} f\left(x\right) dx \approx \frac{1}{8} \, h \cdot \left(f\left(x_{i-1}\right) + 3\left(f\left(x_{i-1} + \frac{1}{3}h\right) + f\left(x_{i-1} + \frac{2}{3}h\right)\right) + f\left(x_i\right)\right) \,.$$
 На всём отрезке $\begin{bmatrix} a,b \end{bmatrix}$ составная формула имеет вид:
$$\int\limits_a^b f\left(x\right) dx \approx \frac{1}{8} \, h \cdot \left[f\left(a\right) + f\left(b\right) + 2\left(f\left(x_1\right) + f\left(x_2\right) + \ldots + f\left(x_{N-1}\right)\right) + \right.$$
 $\left. + 3\left(f\left(x_1 + \frac{1}{3}h\right) + f\left(x_1 + \frac{2}{3}h\right) + \ldots + f\left(x_{N-1} + \frac{1}{3}h\right) + f\left(x_{N-1} + \frac{2}{3}h\right)\right)\right].$

Чтобы не использовать дробных значений, можно ввести переобозначения

$$h = \frac{b-a}{3N}$$
, $x_i = a+hi$, $i = 0,1,...,3N$.

и записать составную формулу в виде:

$$\int\limits_{a}^{b}f(x)dx\approx\frac{1}{8}h\cdot \left|f(a)+f(b)+2(f(x_{3})+f(x_{6})+\ldots+f(x_{3\mathrm{N}-3}))+3(f(x_{1})+f(x_{2})+\ldots+f(x_{3\mathrm{N}-1}))\right|.$$
 Порядок ошибки метода $k=4$.

Литература.

1. Материалы Википедии:

https://ru.wikipedia.org/wiki/Метод бисекции

https://ru.wikipedia.org/wiki/Метод Ньютона

https://ru.wikipedia.org/wiki/Метод хорд

https://ru.wikipedia.org/wiki/Метод прямоугольников

https://ru.wikipedia.org/wiki/Метод трапеций

https://ru.wikipedia.org/wiki/Формула Симпсона

- 2. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989.
- 3. Березин И.С., Жидков Н.П. Методы вычислений. Том 1, 2. М.: Государственное издательство физико-математической литературы, 1959.
- 4. Распопов В.Е., Клунникова М.М., Сапожников В.А. Численные методы : учебное пособие. Красноярский университет [КрасГУ]. Математический факультет. 2006.