Linear prediction with NA, Imputation versus specific methods

Alexis Ayme

Under the supervision of: Claire Boyer, Aymeric Dieuleveut and Erwan Scornet

Background

 \circ Growing mass of data => NA (not attributed)/missing values

O Different sources:

- 1. Bugs
- 2. Cost
- 3. Multiplication of sources (i.e. merging)
- 4. Sensitive data

O Growing mass of data => High-dimensional dataset

- 1. Cost
- 2. Multiplication of sources (i.e. merging)
- 3. Genotype, text

Age	Job	Income	
		NA	
		NA	
NA		NA	

\$1	\$10	\$100	\$0
		NA	
		IVA	
	NA	NA	
		NA	
	NA	NA	

			NA	NA	NA
			NA	NA	NA
			NA	NA	NA
NA	NA	NA	NA		
NA	NA	NA	NA		
NA	NA	NA	NA		
NA	NA				NA
NA	NA				NA

Introduction: Supervised learning with missing values (NA)

Introduction: Supervised learning with missing values (NA)

O Handle missing values with:

- 1. Impute then regress procedure
- 2. Specific method

O Low dimension $n \to +\infty$

O High dimension $d \to +\infty$

Introduction: Naive imputation

Introduction

O Missing values

Bernoulli Model: Missing values

i.i.d
$$M_1, \dots, M_d \sim \mathcal{B}(1-\rho)$$

o In this talk:

1) High-dimensional dataset

$$d \gg n$$

2) Predict on **imputed data**

$$R_{\text{imp}}(f) = \mathbb{E}_{X,Y} \left[\left(Y - f(X_{\text{imp}}) \right)^2 \right]$$

3) Comparison with the complete case

$$R(f) = \mathbb{E}_{X,Y} \left[\left(Y - f(X) \right)^2 \right]$$

Definition

O Linear model (well/miss-specified): $\beta \in \mathbb{R}^d$, $\mathbb{E}[\epsilon X] = 0$

$$Y = \theta_{\star}^{\mathsf{T}} X + \epsilon$$

O Bayes risk:

$$R^* = \inf_{\theta} R(\theta)$$
$$R^*_{imp} = \inf_{\theta} R_{imp}(\theta)$$

Imputation bias:

$$B_{\rm imp} = R_{\rm imp}^{\star} - R^{\star}$$

Imputation by 0 = implicit ridge?

O Ridge penalization

$$R_{\lambda}(\theta) = R(\theta) + \lambda \|\theta\|_{2}^{2}$$

Theorem 2: Under Bernoulli model and $\Sigma_{j,j}=1$ for all $j\in[d]$,

$$R_{\text{imp}}(\theta) = R(\rho\theta) + \rho(1-\rho)\|\theta\|_2^2$$

- 1. Optimal predictor has a small norm
- 2. TAKE AT HOME: Imputation induce a Ridge penalization

Ridge bias

$$B_{\text{ridge},\lambda} = \inf_{\theta} \{ R(\theta) - R(\theta_{\star}) + \lambda \|\theta\|_{2}^{2} \}$$

Theorem 2: Under Bernoulli model and $\Sigma_{j,j}=1$ for all $j\in[d]$,

where
$$\lambda_{
m imp}=rac{
ho}{1-
ho}$$

- 1. No strong assumptions on X
- 2. λ_{imp} depends only on 1ρ the proportion of missing values.
- 3. Available for all MCAR setting with another λ_{imp}
- 4. Bias decreases with the dimension
- 5. TAKE AT HOME: MCAR missing values seem to be at the same price of Ridge penalization

Illustration: on low rank data

o Low rank data (or Spiked): $\operatorname{rank}(\Sigma) \approx r$

$$B_{\rm imp} \lesssim \frac{r}{d} \mathbb{E} Y^2$$

Learn imputed data with SGD

o **SGD recursion:** with learning rate
$$\gamma = \frac{1}{d\sqrt{n}}$$

$$\begin{cases} \theta_0 = 0 \\ \theta_{\mathrm{imp},t} = \left[I - \gamma X_{\mathrm{imp},t} X_{\mathrm{imp},t}^{\mathsf{T}}\right] \theta_{\mathrm{imp},t-1} + \gamma Y_t X_{\mathrm{imp},t} \end{cases}$$

O Polyak Ruppert average:

$$\bar{\theta}_{\text{imp},n} = \frac{1}{n+1} \sum_{t=1}^{n} \theta_{\text{imp},t}$$

Theorem 2: Under classical SGD assumptions,

$$\mathbb{E}\left[R_{\mathrm{imp}}\left(\bar{\theta}_{\mathrm{imp,n}}\right)\right] - R^{\star} \leq B_{\mathrm{imp}} + \frac{d}{\sqrt{n}} \|\theta_{\mathrm{imp}}^2\|_2^2 + \frac{\sigma^2}{\sqrt{n}}$$

Learn imputed data with SGD

O SGD recursion:

$$\begin{cases} \theta_0 = 0 \\ \theta_{\text{imp},t} = \left[I - \gamma X_{\text{imp},t} X_{\text{imp},t}^{\top} \right] \theta_{\text{imp},t-1} + \gamma Y_t X_{\text{imp},t} \end{cases}$$

O Polyak Ruppert average:

$$\bar{\theta}_{\text{imp},n} = \frac{1}{n+1} \sum_{t=1}^{n} \theta_{\text{imp},t}$$

Theorem 2: Under classical SGD assumptions,

$$\mathbb{E}\left[R_{\text{imp}}\left(\bar{\theta}_{\text{imp,n}}\right)\right] - R^* \le B_{\text{imp}} + \frac{d}{\sqrt{n}} \|\theta_{\text{imp}}^2\|_2^2 + \frac{\sigma^2}{\sqrt{n}}$$

O Illustration on low rank:

$$\mathbb{E}\left[R_{\mathrm{imp}}\left(\bar{\theta}_{\mathrm{imp,n}}\right)\right] - R^{\star} \leq \left(\frac{1}{\rho\sqrt{n}} + \frac{1-\rho}{d}\right) \frac{r}{\rho} \mathbb{E}Y^{2} + \frac{\sigma^{2}}{\sqrt{n}}$$

- 1. We leverage on implicit regularization.
- 2. Streaming online (one passe)
- 3. Trade-off between imputation bias and initial condition.
- 4. TAKE AT HOME: Imputation bias vanishes for $d \gg \sqrt{n}$

Conclusion

- 1. Imputation (even very cheap) out-performs specific method to handle missing values in high-dimension.
- 2. Imputation by 0 induce a Ridge penalization.
- 3. Imputation bias vanishes with dimension as a consequence missing values are not an issue in high dimension.
- 4. $d \gg \sqrt{n}$ regime leads to slow rates of consistency.

Corresponding Author: alexis.ayme@sorbonne-universite.fr

Toy example

o Complete Model:

$$Y=X_1$$
.

$$X = (X_1, X_1, ..., X_1)$$

$$M_1,\ldots,M_d \sim \mathcal{B}(1/2).$$

$$R^{\star} = 0$$

O With imputed missing values:

$$\theta_1 = (1,0,...,0)^{\mathsf{T}}$$

$$\theta_1^{\mathsf{T}} X_{\rm imp} = X_1 M_1$$

$$R(\theta_1) = \frac{1}{2} \mathbb{E}[X_1^2]$$

$$\theta_2 = 2(1/d, 1/d, \dots, 1/d)^{\mathsf{T}}$$

$$R(\theta_2) = \frac{1}{d} \mathbb{E}[X_1^2]$$

$$B_{\rm imp} = R^{\star} - R_0^{\star} \le \frac{1}{d} \mathbb{E}[X_1^2]$$