Comparison Tables: CEC BBOB 2015 Testbed in 3-D

The BBOBies

May 27, 2015

Abstract

This document provides tabular results of the special session on Black-Box Optimization Benchmarking at CEC 2015, see http://coco.gforge.inria.fr/doku.php?id=cec-bbob-2015. Overall, eight algorithms have been tested on 24 benchmark functions in dimensions between 2 and 20. A description of the used objective functions can be found in [6, 4]. The experimental set-up is described in [5].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm in BBOB-2009 (see [1]) if an algorithm from BBOB-2009 reached the given target function value. The ERT value is given otherwise (ERT $_{\rm best}$ is noted as infinite). See [5] for details on how ERT is obtained. Bold entries in the table correspond to values below 3 or the top-three best values. Table 1 gives an overview on all algorithms submitted to the noise-free testbed at CEC 2015.

Table 1: Names and references of all algorithms submitted for the noise-free testbed

algorithm short	paper	reference
name		
MATSuMoTo	Comparison of the MATSuMoTo Library for Expensive Optimization on the Noiseless Black-Box Optimization Benchmarking Testbed	[2]
R-DE-10e2	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
R-DE-10e5	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
R-SHADE-10e2	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
R-SHADE-10e5	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
RL-SHADE-10e2	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
RL-SHADE-10e5	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
SOO	Simultaneous Optimistic Optimization on the Noiseless BBOB Testbed	[3]

Table 2: 03-D, running time excess ERT/ERT_{best 2009} on f_1 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f1	3.6	8.0	8.0	8.0	8.0	8.0	8.0	15/15
MATSUMOTO-	1.9 (2)	2.2 (1)	2.9 (0.9)*	³ 4.4 (0.6)* ⁴	5.5 (2)*4	71(42)	∞ 150	0/15
R-DE-10e2-	2.6(2)	4.7(3)	10(4)	16(4)	22(3)	41(19)	$\infty 300$	0/15
R-DE-10e5-	2.5 (3)	5.5(2)	9.2(4)	15(4)	22(6)	36 (5)	64 (80)	15/15
RL-SHADE-1	1.5(1)	5.6(4)	12(4)	18(7)	22(5)	40(21)	276(262)	2/15
RL-SHADE-1	2.1(2)	15(6)	47(17)	79(32)	147(12)	251(17)	344(21)	15/15
R-SHADE-10	2.9 (3)	5.4(3)	14(8)	22(6)	29(6)	280(356)	$\infty 300$	0/15
R-SHADE-10	3.0(2)	7.3(3)	14(3)	21(4)	30(5)	48(6)	64 (4)	15/15
SOO-Derbel	1.1 (0.8)	2.4 (1)	6.4(2)	14 (2)	20 (5)	44(5)	79(5)	15/15

Table 3: 03-D, running time excess ERT/ERT_{best 2009} on f_2 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f2	38	42	43	44	45	47	48	15/15
MATSUMOTO-	57(31)	∞	∞	∞	∞	∞	∞ 150	0/15
R-DE-10e2-	4.1(1)	5.8(4)	7.3(6)	12(12)	25(37)	∞	$\infty 300$	0/15
R-DE-10e5-	3.9(1)	5.0 (2)	5.8 (3)	18(86)	20(44)	21 (43)	26 (78)	15/15
RL-SHADE-1	4.1(0.7)	4.5(1)	6.4(2)	7.3 (4)	10 (5)	96(85)	$\infty 300$	0/15
RL-SHADE-1	24(4)	31(5)	40(5)	50(5)	56(6)	71(6)	85(6)	15/15
R-SHADE-10	5.6(1)	7.1(3)	17(14)	102(94)	∞	∞	$\infty 300$	0/15
R-SHADE-10	6.2(1)	7.8(2)	8.5(1)	10(2)	12 (3)	14 (2)	17 (2)	15/15
SOO-Derbel	7.2(2)	8.6(3)	13(3)	15(3)	17(5)	25(6)	35(3)	15/15

Table 4: 03-D, running time excess ERT/ERT_{best 2009} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

~	acii ciiib raia	0 41,140	a ~,, arra	CILCIOI OII.					
	$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
	f3	38	822	830	835	842	847	853	15/15
	MATSUMOTO-	1.8(1)	2.7 (4)	∞	∞	∞	∞	∞ 150	0/15
	R-DE-10e2-	4.6(5)	2.7 (1)	∞	∞	∞	∞	$\infty 300$	0/15
	R-DE-10e5-	3.1(0.7)	1.4(1)	7.7(6)	9.1(3)	9.2(8)	9.2(9)	11(9)	15/15
	RL-SHADE-1	2.4 (1)	0.39 (0.4)	0.83 (0.9)	1.0(0.7)	5.3(7)	∞	$\infty 300$	0/15
	RL-SHADE-1	8.7(4)	2.2 (0.8)	3.3 (0.8)	3.9(0.5)	4.6(0.3)	5.5(0.5)	6.4(0.5)	15/15
	R-SHADE-10	2.6 (1)	1.7(2)	5.3(6)	∞	∞	∞	$\infty 300$	0/15
	R-SHADE-10	4.3(7)	1.2(0.6)	3.5(2)	3.6 (2)	3.7 (2)	3.9 (3)	4.0 (3)	15/15
	SOO-Derbel	4.0(4)	2.6 (3)	9.1(11)	9.2(10)	9.3(9)	10(11)	10(11)	15/15

೮

Table 5: 03-D, running time excess ERT/ERT_{best 2009} on f_4 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f4	40	808	866	921	952	1015	1044	15/15
MATSUMOTO-	5.7(4)	∞	∞	∞	∞	∞	∞ 150	0/15
R-DE-10e2-	3.0 (1)	2.7 (2)	∞	∞	∞	∞	∞ 300	0/15
R-DE-10e5-	3.5(2)	3.8(5)	14(27)	14(25)	15(8)	18(34)	17(7)	15/15
RL-SHADE-1	2.4 (1)	1.1 (1)	2.6 (3)	4.9(4)	∞	∞	∞ 300	0/15
RL-SHADE-1	12(3)	3.0(0.8)	3.7 (0.3)	4.5(0.5)	4.8(0.3)	5.5(0.4)	6.2(0.4)	15/15
R-SHADE-10	3.1(3)	1.3(0.7)	5.2(11)	4.9(4)	∞	∞	∞ 300	0/15
R-SHADE-10	7.3(20)	2.6 (3)	8.8(5)	8.4(6)	8.2 (8)	7.9 (5)	7.8 (5)	15/15
SOO-Derbel	4.4(6)	14(37)	226(287)	349(513)	353(410)	465(515)	572(754)	6/15

6

Table 6: 03-D, running time excess ERT/ERT_{best 2009} on f_5 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f5	6.6	6.6	6.6	6.6	6.6	6.6	6.6	15/15
MATSUMOTO-	1.3 (0.1)	1.8(0.4)*	4 1.9 (0.4)	⁴ 1.9 (0.6)	⁴ 1.9 (0.3)	⁴ 1.9 (0.6)*	⁴ 1.9 (0.4)*	15/15
R-DE-10e2-	6.2(2)	16(6)	26(7)	34(6)	62(51)	∞	$\infty 300$	0/15
R-DE-10e5-	6.1(4)	20(18)	46(20)	66(75)	98(87)	157(55)	188(81)	15/15
RL-SHADE-1	5.3(4)	14 (3)	20 (4)	26 (4)	31 (4)	46 (5)	224(205)	3/15
RL-SHADE-1	17(16)	78(11)	123(11)	172(7)	218(8)	307(11)	393(13)	15/15
R-SHADE-10	6.3(2)	15(3)	25(6)	34(4)	49(25)	∞	$\infty 300$	0/15
R-SHADE-10	8.9(7)	32(33)	48(7)	61(15)	76(13)	107(16)	135(38)	15/15
SOO-Derbel	3.1 (0.1)	15(0.1)	40(0.1)	81(0.1)	135(0.1)	261(0.1)	430(0.1)	15/15

~1

Table 7: 03-D, running time excess ERT/ERT_{best 2009} on f_6 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f6	34	56	90	117	149	215	265	15/15
MATSUMOTO	-6.3(5)	42(32)	∞	∞	∞	∞	∞ 150	0/15
R-DE-10e2-	1.9 ₍₇₎	3.3 (4)	3.5 (3)	7.6(12)	∞	∞	$\infty 300$	0/15
R-DE-10e5-	2.2 (1)	3.5(2)	3.9(2)	19(38)	27(24)	33(54)	31(47)	15/15
RL-SHADE-1	2.7 (0.9)	3.5(2)	6.1(3)	7.2 (6)	15 (14)	∞	$\infty 300$	0/15
RL-SHADE-1	4.9(5)	10(4)	14(3)	17(2)	16(4)	17 (2)	18 (1)	15/15
R-SHADE-10	2.6 (2)	5.1(4)	24(26)	∞	∞	∞	$\infty 300$	0/15
R-SHADE-10	2.3 (3)	3.2 (2)	3.2 (0.8)	3.4 (0.3)	3.5 (0.9)	3.6 (1)	3.9 (1.0)	15/15
SOO-Derbel	1.9(2)	97(341)	527(398)	3211(5562)	8850(1e4)	∞	$\propto 3e5$	0/15

Table 8: 03-D, running time excess ERT/ERT_{best 2009} on f_7 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f7	11	65	342	464	482	482	535	15/15
MATSUMOTO-	2.3 (2)	2.1 (3)	3.6(3)	∞	∞	∞	∞ 150	0/15
R-DE-10e2-	2.2 (1)	1.8(4)	0.92 (1.0)	1.3 (1)	1.8(0.8)	1.8(2)	2.7 (4)	3/15
R-DE-10e5-	1.7(1)	2.3 (0.8)	1.8(1)	2.3(2)	3.1(3)	3.1(3)	2.9 (2)	15/15
RL-SHADE-1	3.5(3)	2.5(1.0)	0.86(0.6)	2.3(2)	3.1(5)	3.1(4)	8.3(6)	1/15
RL-SHADE-1	6.6(9)	4.7(2)	2.4 (0.5)	3.1(1)	3.8(0.9)	3.8(0.4)	3.9(0.8)	15/15
R-SHADE-10	3.4(3)	2.7 (2)	3.0 (3)	10(4)	∞	∞	$\infty 300$	0/15
R-SHADE-10	3.7(2)	2.0 (4)	0.82(1.0)	0.77 (0.7)	0.78 (0.4)	0.78 (0.8)	0.81(0.6)	15/15
SOO-Derbel	2.3(7)	2.7 (6)	2.1 (3)	2.3 (4)	3.3(3)	3.3(2)	3.5(1)	15/15

Table 9: 03-D, running time excess ERT/ERT_{best 2009} on f_8 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

ccci c	orre terre	0 41,140	G 0, GIII	TOTIOTOTI.					
4	$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
	f8	27	45	152	179	188	198	208	15/15
MATS	SUMOTO-	3.2(3)	51(40)	15(13)	∞	∞	∞	∞ 150	0/15
R-D	E-10e2-	4.0(2)	6.2(4)	5.6(3)	∞	∞	∞	$\infty 300$	0/15
R-D	E-10e5-	3.6(2)	23(45)	14(11)	22(28)	24(19)	31(24)	36(18)	15/15
RL-S	HADE-1	3.5(2)	9.3(5)	14(6)	25(20)	∞	∞	$\infty 300$	0/15
RL-S	HADE-1	10(6)	22(5)	14(4)	16(3)	18(3)	23 (3)	25(4)	15/15
R-SH	IADE-10	4.8(5)	15(18)	∞	∞	∞	∞	$\infty 300$	0/15
R-SH	IADE-10	3.0(2)	9.2(4)	4.6 (3)	4.7 (2)	4.9 (3)	5.3 (3)	6.0(2)	15/15
SOO	-Derbel	1.8 (1.0)	4.1 (3)	4.6 (2)	8.9(12)	13 (13)	32(22)	49(17)	15/15

Table 10: 03-D, running time excess ERT/ERT_{best 2009} on f_9 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

~	COLL CILLS (CILCE.	0 0111100	· .,	TOTIOTOTI.					
	$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
	f9	21	65	127	149	159	169	178	15/15
1	MATSUMOTO-	2.5(2)	5.9(6)	∞	∞	∞	∞	∞ 150	0/15
	R-DE-10e2-	4.5(3)	5.6(8)	35(37)	∞	∞	∞	$\infty 300$	0/15
	R-DE-10e5-	8.1(16)	33(69)	34(29)	36(40)	37(14)	41(35)	45(29)	15/15
	RL-SHADE-1	5.1(3)	7.2(5)	∞	∞	∞	∞	$\infty 300$	0/15
	RL-SHADE-1	14(9)	16(8)	16(6)	18(3)	21(4)	26 (4)	29 (3)	15/15
	R-SHADE-10	6.2(3)	23(22)	∞	∞	∞	∞	$\infty 300$	0/15
	R-SHADE-10	3.7(1)	3.4(2)	3.6 (3)	4.2 (1)	4.7 (3)	5.4 (3)	6.0 (2)	15/15
	SOO-Derbel	2.2 (1)	2.4(1)	5.4(6)	9.4 (5)	15 (8)	27(24)	42(38)	15/15

11

Table 11: 03-D, running time excess ERT/ERT_{best 2009} on f_{10} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

occorr orres corre	0 41,140	· · · · · · · · · · · · · · · · · · ·	TI CILCIOI	•				
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f10	114	152	168	180	194	218	242	15/15
MATSUMOTO-	$-\infty$	∞	∞	∞	∞	∞	∞ 150	0/15
R-DE-10e2-	39(24)	29(18)	∞	∞	∞	∞	$\infty 300$	0/15
R-DE-10e5-	33(34)	52(55)	135(116)	188(219)	237(287)	604(779)	1003(978)	10/15
RL-SHADE-1	∞	∞	∞	∞	∞	∞	$\infty 300$	0/15
RL-SHADE-1	13 (3)	14 (3)	16 (1)	17 (3)	18 (1)	20 (2)	22 (2)	15/15
R-SHADE-10	∞	∞	∞	∞	∞	∞	$\infty 300$	0/15
R-SHADE-10	1.9(0.6)	2.2 (0.2)	3.0(2)	3.2(1)	3.4(2)	3.8 (1)	4.2(1)	15/15
SOO-Derbel	18(3)	92(97)	525(920)	1027(903)	1750(1555)	$9406 (1\mathrm{e}4)$	$\propto 3e5$	0/15

Table 12: 03-D, running time excess ERT/ERT_{best 2009} on f_{11} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f11	67	105	227	263	277	302	327	15/15
MATSUMOTO-	11(8)	∞	∞	∞	∞	∞	∞ 150	0/15
R-DE-10e2-	11(9)	41(45)	∞	∞	∞	∞	$\infty 300$	0/15
R-DE-10e5-	18(5)	90(289)	205(278)	517(343)	588(393)	2685(2077)	6686(3713)	2/15
RL-SHADE-1	12(13)	14 (10)	∞	∞	∞	∞	$\infty 300$	0/15
RL-SHADE-1	13(9)	15(3)	11 (1)	11 (0.8)	12(0.8)	14 (2)	16 (1)	15/15
R-SHADE-10	12(18)	∞	∞	∞	∞	∞	$\infty 300$	0/15
R-SHADE-10	3.3(2)	4.7(6)	2.8(0.7)	3.0 (4)	3.1 (6)	3.4 (1)	3.6 (5)	15/15
SOO-Derbel	4.6 (4)	41(95)	300(683)	2112(1406)	∞	∞	$\propto 3e5$	0/15

Table 13: 03-D, running time excess ERT/ERT_{best 2009} on f_{12} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

occorr orres corre										
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ		
f12	65	168	338	401	445	696	790	15/15		
MATSUMOTO-	11 (13)	14(28)	∞	∞	∞	∞	∞ 150	0/15		
R-DE-10e2-	∞	∞	∞	∞	∞	∞	$\infty 300$	0/15		
R-DE-10e5-	62(177)	76(66)	74(50)	86(58)	93(64)	96(81)	113(80)	15/15		
RL-SHADE-1	13(11)	∞	∞	∞	∞	∞	$\infty 300$	0/15		
RL-SHADE-1	33(9)	20(10)	13(4)	13(5)	14 (6)	11(4)	11 (3)	15/15		
R-SHADE-10	68(61)	∞	∞	∞	∞	∞	$\infty 300$	0/15		
R-SHADE-10	11(28)	8.2(13)	6.2 (15)	6.3 (13)	6.5(8)	5.8 (5)	6.1 (7)	15/15		
SOO-Derbel	5.4 (1)	4.3(2)	4.1 (2)	9.5(14)	22(15)	46(28)	189(170)	13/15		

Table 14: 03-D, running time excess ERT/ERT_{best 2009} on f_{13} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f13	49	85	108	136	215	281	365	15/15
MATSUMOTO-	2.2 (0.5)*	8.1(6)	∞	∞	∞	∞	∞ 150	0/15
R-DE-10e2-	3.8 (3)	25(18)	∞	∞	∞	∞	$\infty 300$	0/15
R-DE-10e5-	6.0(7)	13(9)	22(13)	42(22)	59(62)	689(825)	1444(1196)	7/15
RL-SHADE-1	4.5(2)	26(37)	∞	∞	∞	∞	$\infty 300$	0/15
RL-SHADE-1	16(12)	21(2)	25(4)	25(3)	19 (1)	20 (2)	19 (2)	15/15
R-SHADE-10	8.1(7)	∞	∞	∞	∞	∞	$\infty 300$	0/15
R-SHADE-10	3.9(1)	4.0(2)	4.4(2)	4.6 (1)	3.5(0.4)	3.9 (1)	3.8 (0.7)	15/15
SOO-Derbel	3.8(1.0)	7.0 (2)	13 (4)	19(12)	25(31)	81(135)	223(161)	15/15

Table 15: 03-D, running time excess ERT/ERT_{best 2009} on f_{14} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

~	com cimb rema	C G1.144	ou ~,, our.	TITOTIOIOI.					
	$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
	f14	2.2	17	28	43	71	110	194	15/15
	MATSUMOTO-	1.5 (0.9)	1.4(0.6)	2.0(1)	9.4(10)	31(40)	∞	∞ 150	0/15
	R-DE-10e2-	1.8(1)	2.1(2)	3.6(2)	4.3 (1)	11(10)	∞	$\infty 300$	0/15
	R-DE-10e5-	2.8(2)	2.8 (4)	5.0(5)	14(0.6)	19(22)	121(111)	529(462)	15/15
	RL-SHADE-1	1.7(2)	2.6 (2)	3.7(1)	3.9 (0.9)	4.7(2)	∞	$\infty 300$	0/15
	RL-SHADE-1	1.3(2)	4.1(3)	17(3)	23(4)	23(5)	28 (4)	22 (2)	15/15
	R-SHADE-10	3.5(7)	2.9 (0.9)	4.8(2)	7.2(6)	∞	∞	$\infty 300$	0/15
	R-SHADE-10	2.7 (0.8)	2.8(2)	4.0(1)	4.8(1)	4.2 (3)	5.0(0.5)	4.0 (1)	15/15
	SOO-Derbel	1.3 (0.9)	1.4(0.6)	2.9 (0.6)	6.1(4)	12(13)	286(317)	674(790)	13/15

Table 16: 03-D, running time excess ERT/ERT_{best 2009} on f_{15} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f15	121	1372	6285	8282	8429	8787	9041	15/15
MATSUMOTO	0.76 (0.6)	∞	∞	∞	∞	∞	∞ 150	0/15
R-DE-10e2-	0.92(1)	∞	∞	∞	∞	∞	$\infty 300$	0/15
R-DE-10e5-	3.1(8)	7.1(6)	10(9)	9.2(5)	9.0(7)	11(11)	11(8)	15/15
RL-SHADE-1	1.0(0.7)	3.2(6)	0.71(1)	0.54 (0.4)	∞	∞	$\infty 300$	0/15
RL-SHADE-1	2.7 (1)	2.7 (1)	2.1(5)	1.7(0.1)	1.8(4)	1.8(2)	1.8(2)	15/15
R-SHADE-10	1.5 ₍₁₎	∞	∞	∞	∞	∞	$\infty 300$	0/15
R-SHADE-10	1.7 ₍₁₎	1.0(0.8)	0.84(1)	0.64(0.5)	0.64(0.9)	0.63 (0.6)	0.63 (0.3)	15/15
SOO-Derbel	0.95 (0.3)	1.5(2)	3.0(6)	2.3 (3)	2.5 (4)	2.5 (2)	2.4 (5)	15/15

Table 17: 03-D, running time excess ERT/ERT_{best 2009} on f_{16} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ		
f16	41	319	582	789	1864	3204	3361	15/15		
MATSUMOTO-	1.3 (1)	1.6(2)	∞	∞	∞	∞	∞ 150	0/15		
R-DE-10e2-	1.8(2)	3.2(6)	∞	∞	∞	∞	$\infty 300$	0/15		
R-DE-10e5-	1.7(2)	4.0(7)	7.7(2)	9.3(7)	4.5(2)	3.8(3)	5.2(4)	15/15		
RL-SHADE-1	1.3(0.9)	2.6 (2)	∞	∞	∞	∞	∞ 300	0/15		
RL-SHADE-1	1.9(2)	4.4(4)	11(5)	11(5)	8.6(14)	5.9(10)	5.9(9)	15/15		
R-SHADE-10	0.98(1)	14(9)	∞	∞	∞	∞	$\infty 300$	0/15		
R-SHADE-10	1.0(1)	1.7(2)	1.6 (0.6)	1.5(0.5)	0.82(0.4)	0.54 (0.4)	0.63(0.5)	15/15		
SOO-Derbel	0.91 (0.9)	0.48 (0.3)	0.84 (0.8)	1.0(0.5)	0.64 (0.6)	1.4(0.6)	2.2 (3)	15/15		

Table 18: 03-D, running time excess ERT/ERT_{best 2009} on f_{17} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

JOSEPH CITTO TOTAL	ic arriac	· a ~ ., a	CILCIOII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f17	3.6	78	282	491	1134	2347	3469	15/15
MATSUMOTO	-2.6 (2)	1.2(0.9)	8.4(16)	∞	∞	∞	∞ 150	0/15
R-DE-10e2-	2.2 (2)	1.7(0.8)	2.5(2)	∞	∞	∞	$\infty 300$	0/15
R-DE-10e5-	2.1 (0.9)	1.5(1)	2.0(1)	6.6(3)	7.8(5)	9.2(28)	17(16)	15/15
RL-SHADE-1	2.5(2)	2.3(2)	5.2(6)	∞	∞	∞	$\infty 300$	0/15
RL-SHADE-1	2.1(4)	4.7(4)	5.3(1)	5.9(1)	3.9(0.2)	3.1(0.3)	2.7 (0.2)	15/15
R-SHADE-10	2.6 (1)	2.5 (2)	16(15)	∞	∞	∞	$\infty 300$	0/15
R-SHADE-10	1.8(2)	1.3(0.8)	1.1(0.4)	1.1(0.1)	0.66(0.1)	0.67(0.1)	0.84(0.3)	15/15
SOO-Derbel	1.2(1)	0.90 (0.5)	0.98 (0.3)	1.8(1)	1.3 (1.0)	1.6 (1)	2.0 (0.8)	15/15

Table 19: 03-D, running time excess ERT/ERT_{best 2009} on f_{18} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f18	40	145	1289	3084	3523	4738	5527	15/15
MATSUMOTO-	1.1 (1)	16(29)	∞	∞	∞	∞	∞ 150	0/15
R-DE-10e2-	1.3(0.7)	2.0(1)	∞	∞	∞	∞	$\infty 300$	0/15
R-DE-10e5-	1.3(0.8)	7.4(7)	5.3(13)	4.0(4)	12(11)	28(33)	46(27)	10/15
RL-SHADE-1	2.2 (3)	7.3(6)	∞	∞	∞	∞	$\infty 300$	0/15
RL-SHADE-1	2.9 (3)	7.1(2)	2.0 (0.2)	1.3(0.2)	1.5(0.1)	1.7(0.1)	1.9(0.0)	15/15
R-SHADE-10	2.4 (2)	7.4(8)	∞	∞	∞	∞	$\infty 300$	0/15
R-SHADE-10	1.2 (1)	1.7(0.8)	0.64(1)	0.42 (0.4)	0.61(0.7)	0.68(0.5)	0.89 (0.5)	15/15
SOO-Derbel	0.97(0.6)	1.4(0.2)	0.74 (0.5)	1.0(0.7)	1.6 (0.9)	3.7(3)	6.1(6)	15/15

Table 20: 03-D, running time excess ERT/ERT_{best 2009} on f_{19} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f19	1	1	109	6764	7367	7399	7441	15/15
MATSUMOTO-	8.9(4)	286(338)	∞	∞	∞	∞	∞ 150	0/15
R-DE-10e2-	8.4(6)	177(198)	39(102)	∞	∞	∞	$\infty 300$	0/15
R-DE-10e5-	6.9 (5)	142 (90)	31(58)	7.5(10)	11(12)	22(9)	22(17)	12/15
RL-SHADE-1	15(9)	228(504)	41(44)	∞	∞	∞	$\infty 300$	0/15
RL-SHADE-1	7.7(4)	191(213)	25(19)	2.6 (4)	4.1(7)	7.4 (15)	8.3(9)	15/15
R-SHADE-10	9.0(6)	274(398)	38(38)	∞	∞	∞	$\infty 300$	0/15
R-SHADE-10	7.1(5)	178(76)	24(40)	1.9 (1)	2.2 (1)	2.2 (4)	2.3 (4)	15/15
SOO-Derbel	1(0)*2	$1_{(0)}^{\star 3}$	2.8 (1)	7.2(4)	23(20)	77(52)	134(137)	4/15

Table 21: 03-D, running time excess ERT/ERT_{best 2009} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f20	8.3	385	2291	2398	2481	2573	2776	15/15
MATSUMOTO-	1.6 (0.6)	2.9 (2)	∞	∞	∞	∞	∞ 150	0/15
R-DE-10e2-	3.5(2)	0.89 (0.9)	1.9(2)	∞	∞	∞	$\infty 300$	0/15
R-DE-10e5-	26(178)	2.7 (4)	2.3(1)	2.7 (3)	2.8 (3)	5.9 (9)	6.9 (9)	15/15
RL-SHADE-1	2.5(2)	0.62 (0.6)	∞	∞	∞	∞	$\infty 300$	0/15
RL-SHADE-1	3.3(3)	2.7 (1)	8.0(13)	8.2(13)	8.2(7)	8.3(12)	7.9(0.2)	15/15
R-SHADE-10	3.9(3)	1.3 (1)	∞	∞	∞	∞	$\infty 300$	0/15
R-SHADE-10	2.6(2)	1.8 (3)	3.0(2)	2.9 (2)	2.8 (2)	2.8 (2)	2.6 (3)	15/15
SOO-Derbel	3.4(0.1)	0.19 (1e-3) ¹ 8(1)	18(0.7)	17(1)	17(3)	15(3)	15/15

Table 22: 03-D, running time excess ERT/ERT_{best 2009} on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ		
f21	5.9	184	425	439	458	469	482	15/15		
MATSUMOTO	-1.6 (0.9)	0.70(0.2)	1.5(1)	5.0(9)	∞	∞	∞ 150	0/15		
R-DE-10e2-	1.3(2)	1.5(3)	1.5(2)	3.0 (2)	3.1(1)	4.7(4)	$\infty 300$	0/15		
R-DE-10e5-	1.8 (3)	7.4(14)	6.0(11)	6.2(9)	6.1(6)	6.5(6)	7.1(4)	15/15		
RL-SHADE-1	1.2(1)	2.1(3)	5.2(5)	10(31)	∞	∞	$\infty 300$	0/15		
RL-SHADE-1	1.3(1.0)	3.1(5)	20(1)	21(35)	21(67)	22(65)	23(64)	15/15		
R-SHADE-10	2.6 (1.0)	3.2(4)	2.5 (3)	3.3(1)	∞	∞	$\infty 300$	0/15		
R-SHADE-10	1.4(0.9)	2.8 (4)	2.4 (3)	2.5(2)	2.5 (3)	2.6 (2)	2.7 (2)	15/15		
SOO-Derbel	1.3 (1)	0.56 (0.8)	0.66 (0.6)	1.4(2)	1.9 (4)	2.1 (4)	2.6 (4)	15/15		

Table 23: 03-D, running time excess ERT/ERT_{best 2009} on f_{22} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f22	18	170	354	362	384	401	414	15/15
MATSUMOTO	1.4 (2)	1.5 ₍₁₎	3.0(4)	∞	∞	∞	∞ 150	0/15
R-DE-10e2-	1.7 (1.0)	1.5(2)	2.9 (4)	12(21)	11(14)	11(15)	$\infty 300$	0/15
R-DE-10e5-	8.2(27)	5.7(11)	6.3(10)	6.5(9)	6.3(7)	7.1 (8)	7.6 (7)	15/15
RL-SHADE-1	2.9 (4)	1.5 ₍₁₎	4.1(3)	∞	∞	∞	$\infty 300$	0/15
RL-SHADE-1	2.0 (3)	2.4 (3)	25(1)	26(83)	26(80)	27(77)	28(75)	15/15
R-SHADE-10	2.2 (2)	1.6(3)	2.0 (3)	6.1(7)	12(14)	∞	$\infty 300$	0/15
R-SHADE-10	0.87(0.8)	1.9(0.4)	2.8 (3)	3.1 (4)	3.1 (3)	3.2 (2)	3.3 (2)	15/15
SOO-Derbel	0.71(0.7)	0.47(0.1)	1.2 (1)	3.0 (2)	4.5(7)	30(7)	44(85)	15/15

Table 24: 03-D, running time excess ERT/ERT_{best 2009} on f_{23} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f23	2.6	407	906	1215	2214	2293	2393	15/15
MATSUMOTO-	4.3(3)	∞	∞	∞	∞	∞	∞ 150	0/15
R-DE-10e2-	3.1 (2)	11(8)	∞	∞	∞	∞	$\infty 300$	0/15
R-DE-10e5-	4.6(3)	24(29)	4863(2897)	3626(6418)	1991(813)	1922(2256)	1843(2758)	1/15
RL-SHADE-1	3.4(3)	∞	∞	∞	∞	∞	$\infty 300$	0/15
RL-SHADE-1	3.3(2)	8.2(5)	20(19)	19(26)	11(14)	11(14)	11 (7)	15/15
R-SHADE-10	4.1(4)	∞	∞	∞	∞	∞	$\infty 300$	0/15
R-SHADE-10	2.8 (3)	5.4 (3)	8.7 (9)	6.6(2)	3.7 (3)	3.7 (2)	3.7 (3)	15/15
SOO-Derbel	4.4(5)	1.4(0.7)	4.3 (6)	5.8 (6)	4.8(5)	9.3(7)	13(5)	15/15

Table 25: 03-D, running time excess ERT/ERT_{best 2009} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f24	97	10391	1.0e5	3.6e5	3.6e5	3.6e5	3.6e5	2/15
MATSUMOTO-	7.1(9)	∞	∞	∞	∞	∞	∞ 150	0/15
R-DE-10e2-	3.4(3)	∞	∞	∞	∞	∞	$\infty 300$	0/15
R-DE-10e5-	2.5(2)	12(13)	∞	∞	∞	∞	$\propto 3e5$	0/15
RL-SHADE-1	2.3(4)	∞	∞	∞	∞	∞	$\infty 300$	0/15
RL-SHADE-1	3.2(4)	20(35)	2.6 (2)	0.81(1)	0.82(0.6)	0.82(0.3)	0.82(1.0)	9/15
R-SHADE-10	3.0(1)	∞	∞	∞	∞	∞	$\infty 300$	0/15
R-SHADE-10	1.7(1)	1.6(2)	2.5 (2)	3.7 (5)	3.7 (5)	3.7 (3)	3.7 (1)	3/15
SOO-Derbel	2.3 (2)	2.3(2)	8.5(20)	5.7(8)	5.7(14)	5.7(6)	5.7(8)	2/15

References

- Anne Auger, Steffen Finck, Nikolaus Hansen, and Raymond Ros. BBOB 2009: Comparison tables of all algorithms on all noiseless functions. Technical Report RT-0383, INRIA, April 2010.
- [2] Dimo Brockhoff. Comparison of the matsumoto library for expensive optimization on the noiseless black-box optimization benchmarking testbed. In *Proceedings of the IEEE Congress on Evolutionary Computation, CEC* 2015, 25-28 May, Sendai, Japan, 2015.
- [3] Bilel Derbel and Philippe Preux. Simultaneous optimistic optimization on the noiseless bbob testbed. In *Proceedings of the IEEE Congress on Evolu*tionary Computation, CEC 2015, 25-28 May, Sendai, Japan, 2015.
- [4] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009. Updated February 2010
- [5] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2012: Experimental setup. Technical report, INRIA, 2012.
- [6] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009. Updated February 2010.
- [7] Ryoji Tanabe and Alex Fukunaga. Parameter tuning for differential evolution for cheap, medium, and expensive computational budgets. In *Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2015, 25-28 May, Sendai, Japan, 2015.*