What are the best systems?

New Perspectives on NLP Benchmarking.

Nathan Noiry & Pierre Colombo

Datacraft 8. March 2022.

Classical Al pipeline:

Classical Al pipeline:

Data collection

Classical Al pipeline:

Data collection

Features extraction

Classical Al pipeline:

Data collection

Features extraction

ML Model

Classical Al pipeline:

Data collection

Features extraction

ML Model

Analysis Tools

Classical Al pipeline:

Data collection

Features extraction

ML Model

Analysis Tools

Explainability Fairness Robustness

Classical Al pipeline:

Data collection

Features extraction

ML Model

Analysis Tools

Explainability

Fairness

Robustness

Stop focusing on the models!

Classical Al pipeline:

Stop focusing on the models!

Warmup

Warmup

What is a benchmark?

- 1. An ensemble of datasets
 - 2. One or multiple metrics
 - 3. A way to aggregate performances

Warmup

What is a benchmark?

- 1. An ensemble of datasets
 - 2. One or multiple metrics
 - 3. A way to aggregate performances

Why are benchmark vitals?

Research advances in Machine Learning are crucially fueled by *reliable evaluation procedures*

- 1.1 Context: problems, evaluation of automatic evaluation.
- 1.2 What are the main metrics to do reference based evaluation of NLG?
- 1.3 Reference based evaluation of NLG using embedding based metrics.
- 1.4 Beyond embedding based metrics.

- 1.1 Context: problems, evaluation of automatic evaluation.
- 1.2 What are the main metrics to do reference based evaluation of NLG?
- 1.3 Reference based evaluation of NLG using embedding based metrics.
- 1.4 Beyond embedding based metrics.
 - 2. How to aggregate several metrics?

1. How to evaluate Natural Language Generation?

- 1.1 Context: problems, evaluation of automatic evaluation.
- 1.2 What are the main metrics to do reference based evaluation of NLG?
- 1.3 Reference based evaluation of NLG using embedding based metrics.
- 1.4 Beyond embedding based metrics.

2. How to aggregate several metrics?

- 1.1 Framework
- 1.2 Task Level Aggregation
- 1.3 Instance Level Aggregation

1. How to evaluate Natural Language Generation?

- 1.1 Context: problems, evaluation of automatic evaluation.
- 1.2 What are the main metrics to do reference based evaluation of NLG?
- 1.3 Reference based evaluation of NLG using embedding based metrics.
- 1.4 Beyond embedding based metrics.

2. How to aggregate several metrics?

- 1.1 Framework
- 1.2 Task Level Aggregation
- 1.3 Instance Level Aggregation

3. Conclusions

- 1.1 Context: problems, evaluation of automatic evaluation.
- 1.2 What are the main metrics to do reference based evaluation of NLG?
- 1.3 Reference based evaluation of NLG using embedding based metrics.
- 1.4 Beyond embedding based metrics.

- 1.1 Context: problems, evaluation of automatic evaluation.
- 1.2 What are the main metrics to do reference based evaluation of NLG?
- 1.3 Reference based evaluation of NLG using embedding based metrics.
- 1.4 Beyond embedding based metrics.

1. Debug NLG systems without annotators.

- 1. Debug NLG systems without annotators.
- 2. Improve learning of systems by deriving new losses.

- 1. Debug NLG systems without annotators.
- 2. Improve learning of systems by deriving new losses.
- 3. Compare different systems.

- 1. Debug NLG systems without annotators.
- 2. Improve learning of systems by deriving new losses.
- 3. Compare different systems.

- 1. Debug NLG systems without annotators.
- 2. Improve learning of systems by deriving new losses.
- 3. Compare different systems.

Why do we need human evaluation?

1. Cheap: compared to human evaluation.

- 1. Debug NLG systems without annotators.
- 2. Improve learning of systems by deriving new losses.
- 3. Compare different systems.

- 1. Cheap: compared to human evaluation.
- 2. Fast: you can label "instantaneously".

- 1. Debug NLG systems without annotators.
- 2. Improve learning of systems by deriving new losses.
- 3. Compare different systems.

Karpinska et al. 2021

- 1. Cheap: compared to human evaluation.
- 2. Fast: you can label "instantaneously".
- 3. Reproductible: two sentences always get the same score.

- 1. Debug NLG systems without annotators.
- 2. Improve learning of systems by deriving new losses.
- 3. Compare different systems.

Karpinska et al. 2021

- 1. Cheap: compared to human evaluation.
- 2. Fast: you can label "instantaneously".
- 3. Reproductible: two sentences always get the same score.
- 4. Easy to use (e.g no annotator training, no form design).

 S_1 : The weather is cold today.

 S_2 : It is freezing today

 S_1 : The weather is cold today. S_2 : It is freezing today S_1 : I like those cats. S_2 : It is freezing today O.1 Dissimilar

 S_1 : The weather is cold today.

 S_2 : It is freezing today

 S_1 : I like those cats.

 S_2 : It is freezing today

Similar

Dissimilar

We want to build a metric m

$$m: \mathcal{S} \times \mathcal{S} \rightarrow [0,1]$$

$$(S_1, S_2) \to m(S_1, S_2)$$

 S_1 : The weather is cold today. S_2 : It is freezing today

 S_1 : I like those cats.

 S_2 : It is freezing today

0.1

Dissimilar

Similar

We want to build a metric m

$$m: \mathcal{S} \times \mathcal{S} \rightarrow [0,1]$$

$$(S_1, S_2) \rightarrow m(S_1, S_2)$$

Success Criterion:

When do we know that m is good?

Let's formalize the problem of Automatic Evaluation

 S_1 : The weather is cold today.

 S_2 : It is freezing today

 S_1 : I like those cats.

 S_2 : It is freezing today

8.0

Similar

0.1

Dissimilar

We want to build a metric m

$$m: \mathcal{S} \times \mathcal{S} \rightarrow [0,1]$$

$$(S_1, S_2) \rightarrow m(S_1, S_2)$$

Success Criterion:

When do we know that m is good?

Correlation with human scores

Scenario 1: Let's assume we have a reference Reference based

$$m: \mathcal{S} \times \mathcal{S} \rightarrow [0,1]$$

$$(S_1, S_2) \to m(S_1, S_2)$$

Scenario 1: Let's assume we have a reference Reference based

System

 $m: \mathcal{S} \times \mathcal{S} \rightarrow [0,1]$

 $(S_1, S_2) \rightarrow m(S_1, S_2)$

$m: \mathcal{S} \times \mathcal{S} \rightarrow [0,1]$

$$(S_1, S_2) \to m(S_1, S_2)$$

Scenario 1: Let's assume we have a reference Reference based

System

Human

Scenario 1: Let's assume we have a reference Reference based

 $m: \mathcal{S} \times \mathcal{S} \rightarrow [0,1]$

 $(S_1, S_2) \to m(S_1, S_2)$

Scenario 1: Let's assume we have a reference Reference based

 $m: \mathcal{S} \times \mathcal{S} \rightarrow [0,1]$

 $(S_1, S_2) \to m(S_1, S_2)$

$m: \mathcal{S} \times \mathcal{S} \rightarrow [0,1]$

$$(S_1, S_2) \to m(S_1, S_2)$$

Scenario 1: Let's assume we have a reference Reference based

 $m: \mathcal{S} \times \mathcal{S} \rightarrow [0,1]$

$$(S_1, S_2) \rightarrow m(S_1, S_2)$$

Scenario 1: Let's assume we have a reference Reference based

S₁

J'aime courir à l'extérieur!

 S_2

J'apprécie courir dehors!

Scenario 2: we have no reference.

Reference free

 $m: \mathcal{S} \times \mathcal{S} \rightarrow [0,1]$

$$(S_1, S_2) \to m(S_1, S_2)$$

Scenario 1: Let's assume we have a reference Reference based

S₁

J'aime courir à l'extérieur!

I like running outside!

System

 S_2

J'apprécie courir dehors!

Human

Scenario 2: we have no reference. Reference free

S I like running outside!

 $m: \mathcal{S} \times \mathcal{S} \rightarrow [0,1]$

 $(S_1, S_2) \rightarrow m(S_1, S_2)$

Scenario 1: Let's assume we have a reference Reference based

 S_1

J'aime courir à l'extérieur!

I like running outside!

System

 S_2

J'apprécie courir dehors!

Human

Scenario 2: we have no reference. Reference free

S I like running outside!

S₂ l'aime l'extérieur!

 $m: \mathcal{S} \times \mathcal{S} \rightarrow [0,1]$

 $(S_1, S_2) \rightarrow m(S_1, S_2)$

Scenario 1: Let's assume we have a reference Reference based

 S_1

J'aime courir à l'extérieur!

I like running outside!

System

 S_2

J'apprécie courir dehors!

Human

Scenario 2: we have no reference.
Reference free

S I like running outside!

S₂ J'aime courir à l'extérieur!

1. How to evaluate Natural Language Generation?

- 1.1 Context: problems, evaluation of automatic evaluation.
- 1.2 What are the main metrics to do reference based evaluation of NLG?
- 1.3 Reference based evaluation of NLG using embedding based metrics.
- 1.4 Beyond embedding based metrics.

Edit Based

Edit Based

N-gram Based

Edit Based

N-gram Based

Embedding Based

Edit Based

Snover et al. 2006

Operations

- Insertion (I)
- Deletion (D)
- Substitution (S).

```
tailor -> sailor (S)
sailor -> sailir (S)
sailir -> sailin (S)
sailin -> sailing (I)
```

Distance is 4!

Edit Based

Snover et al. 2006

Operations

- Insertion (I)
- Deletion (D)
- Substitution (S).

```
tailor -> sailor (S)
sailor -> sailir (S)
sailir -> sailin (S)
sailin -> sailin (S)
sailin -> sailing (I)
```

Distance is 4!

N-gram Based

Papineni et al. 2002

C: I like these very nice pies!

R: I like those cakes!

Unigrams

C: I like these very nice pies!

R: I like those cakes!

Bigrams

C: I like these very nice pies!

R: I like those cakes!

Edit Based

Snover et al. 2006

Operations

- Insertion (I)
- Deletion (D)
- Substitution (S).

tailor -> sailor (S)
sailor -> sailir (S)
sailir -> sailin (S)
sailin -> sailin (S)

Distance is 4!

N-gram Based

Papineni et al. 2002

C: I like these very nice pies!

R: I like those cakes!

Unigrams

C: I like these very nice pies!

R: I like those cakes!

Bigrams

C: I like these very nice pies!

R: I like those cakes!

Embedding Based

Word Mover distance

Kusner et al. 2015

BertScore

Zhang et al. 2019

MoverScore

Zhao et al. 2019

Sentence Mover

Clark et al. 2019

1. How to evaluate Natural Language Generation?

- 1.1 Context: problems, evaluation of automatic evaluation.
- 1.2 What are the main metrics to do reference based evaluation of NLG?
- 1.3 Reference based evaluation of NLG using embedding based metrics.
- 1.4 Beyond embedding based metrics.

Intuition

R: The weather is cold today.

C: It is freezing today

8.0

Intuition

R: The weather is cold today.

C: It is freezing today

8.0

1. Choose your embedding

Intuition

R: The weather is cold today.

C: It is freezing today

1. Choose your embedding

2. Choose a similarity function

Intuition

R: The weather is cold today.

C: It is freezing today

1. Choose your embedding

2. Choose a similarity function

Advantage

- 1. Deal with paraphrases
- 2. Include "semantic"

Intuition

R: The weather is cold today.

C: It is freezing today

1. Choose your embedding

2. Choose a similarity function

Advantage

- 1. Deal with paraphrases
- 2. Include "semantic"

Limitation

1. Not interpretable

C: It is freezing this morning

R: The weather is cold today

C: It is freezing this morning

C: It is freezing this morning

C: It is freezing this morning

C: It is freezing this morning

Advantage

- 1. Deal with paraphrases
- 2. Include "semantic"

C: It is freezing this morning

Advantage

- 1. Deal with paraphrases
- 2. Include "semantic"

Limitations

- 1. Use only one layer
- 2. Use arbitrary sequence of operation

R: The weather is cold today

C: It is freezing this morning

Advantage

- 1. Deal with paraphrases
- 2. Include "semantic"

Limitations

- 1. Use only one layer
- 2. Use arbitrary sequence of operation

This is a distance between two empirical distributions!

Advantage

- 1. Deal with paraphrases
- 2. Include "semantic"

Limitations

- 1. Use only one layer
- 2. Use arbitrary sequence of operation

R: The weather is cold today

C: It is freezing this morning

This is a distance between two empirical distributions!

Advantage

- 1. Deal with paraphrases
- 2. Include "semantic"

Limitations

- 1. Use only one layer
- 2. Use arbitrary sequence of operation

R: The weather is cold today

C: It is freezing this morning

Still not interpretable

G. Staerman, P. Mozharovskyi, P. Colombo, S. Clémençon, F. d'Alché-Buc. A Pseudo-Metric between Probability Distributions based on Depth-Trimmed Regions.

G. Staerman, P. Mozharovskyi, P. Colombo, S. Clémençon, F. d'Alché-Buc. A Pseudo-Metric between Probability Distributions based on Depth-Trimmed Regions.

R: The weather is cold today

C: It is freezing this morning

R: The weather is cold today

C: It is freezing this morning

G. Staerman, P. Mozharovskyi, P. Colombo, S. Clémençon, F. d'Alché-Buc. A Pseudo-Metric between Probability Distributions based on Depth-Trimmed Regions.

R: The weather is cold today

C: It is freezing this morning

G. Staerman, P. Mozharovskyi, P. Colombo, S. Clémençon, F. d'Alché-Buc. A Pseudo-Metric between Probability Distributions based on Depth-Trimmed Regions.

Advantage

- 1. Deal with paraphrases
- 2. Include "semantic"

R: The weather is cold today

C: It is freezing this morning

G. Staerman, P. Mozharovskyi, P. Colombo, S. Clémençon, F. d'Alché-Buc. A Pseudo-Metric between Probability Distributions based on Depth-Trimmed Regions.

Advantage

- 1. Deal with paraphrases
- 2. Include "semantic"

Limitations

1. Use only one layer

R: The weather is cold today

C: It is freezing this morning

G. Staerman, P. Mozharovskyi, P. Colombo, S. Clémençon, F. d'Alché-Buc. A Pseudo-Metric between Probability Distributions based on Depth-Trimmed Regions.

Advantage

- 1. Deal with paraphrases
- 2. Include "semantic"

Limitations

1. Use only one layer

Still not interpretable

R: The weather is cold today

C: It is freezing this morning

G. Staerman, P. Mozharovskyi, P. Colombo, S. Clémençon, F. d'Alché-Buc. A Pseudo-Metric between Probability Distributions based on Depth-Trimmed Regions.

Advantage

- 1. Deal with paraphrases
- 2. Include "semantic"

Limitations

1. Use only one layer

Still not interpretable

Intuition

R: The weather is cold today.

C: It is freezing today

8.0

Intuition

R: The weather is cold today.

C: It is freezing today

Intuition

R: The weather is cold today.

C: It is freezing today

Intuition

R: The weather is cold today.

C: It is freezing today

Intuition

R: The weather is cold today.

C: It is freezing today

Intuition

R: The weather is cold today.

C: It is freezing today

Layer L

1. Choose your multi-layer encoder

Layer 1 Layer 2 R: The Weather is cold today. treezing today C. It is treezing today

2. Choose a similarity function euh??

P: The Weather is cold today.

C. It is freezing today

BaryScore vs BertScore vs MoverScore

Pierre Colombo, Guillaume Staerman, Chloé Clavel, Pablo Piantanida. Automatic Text Evaluation through the Lens of Wasserstein Barycenters.

BaryScore vs BertScore vs MoverScore

Pierre Colombo, Guillaume Staerman, Chloé Clavel, Pablo Piantanida. Automatic Text Evaluation through the Lens of Wasserstein Barycenters.

BaryScore

MoverScore

BertScore

1. How to evaluate Natural Language Generation?

- 1.1 Context: problems, evaluation of automatic evaluation.
- 1.2 What are the main metrics to do reference based evaluation of NLG?
- 1.3 Reference based evaluation of NLG using embedding based metrics.
- 1.4 Beyond embedding based metrics.

Pierre Colombo, Chloé Clavel and Pablo Piantanida. InfoLM: A New Metric to Evaluate Summarization & Data2Text Generation. AAAI 2022

Hello, Chicago.
If there is anyone out there who still doubts that America is a place where all things are possible, who still wonders if the dream of our founders is alive in our time, [....].
Yes we can!

Input Text

Hello, Chicago.
If there is anyone out there who still doubts that America is a place where all things are possible, who still wonders if the dream of our founders is alive in our time, [....].
Yes we can!

Input Text

Neural Network

Hello, Chicago.
If there is anyone out there who still doubts that America is a place where all things are possible, who still wonders if the dream of our founders is alive in our time, [....].
Yes we can!

High dimensional data

Input Text

Neural Network

Hello, Chicago.
If there is anyone out there who still doubts that America is a place where all things are possible, who still wonders if the dream of our founders is alive in our time, [....].
Yes we can!

High dimensional data

Soft Probabilities

Hello, Chicago.
If there is anyone out there who still doubts that America is a place where all things are possible, who still wonders if the dream of our founders is alive in our time, [....].
Yes we can!

High dimensional data

Soft Probabilities

Existing Methods

Edit Based

Snover et al. 2006

Operations

- Insertion (I)
- Deletion (D)
- Substitution (S).

```
tailor -> sailor (S)
sailor -> sailir (S)
sailir -> sailin (S)
sailin -> sailin (I)
```

Distance is 4!

Existing Methods

InfoLM

Edit Based

Snover et al. 2006

Operations

- Insertion (I)
- Deletion (D)
- Substitution (S).

tailor -> sailor (S)
sailor -> sailir (S)
sailir -> sailin (S)
sailin -> sailin (S)

Distance is 4!

N-gram Based

Papineni et al. 2002

C: I like these very nice pies!

R: I like those cakes!

Unigrams

C: I like these very nice pies!

R: I like those cakes!

Bigrams

C: I like these very nice pies!

R: I like those cakes!

Embedding Based

Word Mover distance

Kusner et al. 2015

BertScore

Zhang et al. 2019

MoverScore

Zhao et al. 2019

Sentence Mover

Clark et al. 2019

Goal Compute a similarity score between R and C.

Goal Compute a similarity score between R and C.

Tools Use a pretrained MLM

Goal Compute a similarity score between R and C.

MLM predicts a distribution over Ω

Tools Use a pretrained MLM

Goal Compute a similarity score between R and C.

Tools Use a pretrained MLM

$$p_{\Omega}(\cdot | [R]^i)$$

Goal Compute a similarity score between R and C.

Tools Use a pretrained MLM

$$p_{\Omega}(\cdot | [R]^i)$$

$$\mathcal{J}: [0,1]^{|\Omega|} \times [0,1]^{|\Omega|}$$

Goal Compute a similarity score between R and C.

Tools Use a pretrained MLM

Use a measure of information

$$p_{\Omega}(\cdot | [R]^i)$$

$$\mathcal{I}: [0,1]^{|\Omega|} \times [0,1]^{|\Omega|}$$

Goal Compute a similarity score between R and C.

Tools Use a pretrained MLM

Use a measure of information

$$p_{\Omega}(\cdot | [R]^i)$$

$$\mathcal{F}: [0,1]^{|\Omega|} \times [0,1]^{|\Omega|}$$

Name	Notation	Domain	Expression
α-divergence (Csiszár 1967)	\mathcal{D}_{lpha}	$\alpha \not \in \{0,1\}$	$rac{1}{lpha(lpha-1)}(1-\sum q_i^{1-lpha}p_i^lpha)$
γ divergence (Fujisawa and Eguchi 2008)	$\mathcal{D}_{\gamma}^{\beta}$	$\beta \not \in \{0,-1\}$	$rac{1}{eta(eta+1)}\log\sum p_i^{eta+1} + rac{1}{eta+1}\log\sum q_i^{eta+1} - rac{1}{eta}\log\sum p_i q_i^{eta}$
AB Divergence (Cichocki, Cruces, and Amari 2011)	$\mathcal{D}_{sAB}^{\alpha,\beta}$	$(\alpha, \beta) \in (\mathbb{R}^*)^2$ $\beta + \alpha \neq 0$	$=rac{1}{eta(eta+lpha)}\log\sum p_i^{eta+lpha}+rac{1}{eta+lpha}\log\sum q_i^{eta+lpha}-rac{1}{eta}\log\sum p_i^lpha q_i^eta$
\mathcal{L}_1 distance	\mathcal{L}_1		$\sum p_i - q_i $
\mathcal{L}_2 distance \mathcal{L}_∞ distance Fisher-Rao distance	$egin{array}{c} \mathcal{L}_2 \ \mathcal{L}_\infty \ R \end{array}$		$egin{array}{c} \sqrt{\sum (p_i - q_i)^2} \ \max_i p_i - q_i \ rac{2}{\pi} rccos \sum \sqrt{p_i imes q_i} \end{array}$

Goal Compute a similarity score between R and C.

Compute a similarity score between R and C. Goal

Equivalence for masked contexts $\mathcal{F}: [0,1]^{|\Omega|} \times [0,1]^{|\Omega|}$

$$\mathcal{I}: [0,1]^{|\Omega|} \times [0,1]^{|\Omega|}$$

MLM predicts a distribution over Ω $p_{\Omega}(\cdot | [R]^i)$

Compute a similarity score between R and C. Goal

Equivalence for masked contexts $\mathcal{F}: [0,1]^{|\Omega|} \times [0,1]^{|\Omega|}$

$$\mathcal{F}: [0,1]^{|\Omega|} \times [0,1]^{|\Omega|}$$

MLM

MLM predicts a distribution over Ω $p_{\mathcal{O}}(\cdot | [R]^i)$

Similar context

R: It is [MASK] today.

Compute a similarity score between R and C. Goal

Equivalence for masked contexts $\mathcal{F}: [0,1]^{|\Omega|} \times [0,1]^{|\Omega|}$

$$\mathcal{F}: [0,1]^{|\Omega|} \times [0,1]^{|\Omega|}$$

MLM predicts a distribution over Ω $p_{\mathcal{O}}(\cdot \mid [R]^i)$

R: It is [MASK] today.

Compute a similarity score between R and C. Goal

Equivalence for masked contexts $\mathcal{F}: [0,1]^{|\Omega|} \times [0,1]^{|\Omega|}$

$$\mathcal{F}: [0,1]^{|\Omega|} \times [0,1]^{|\Omega|}$$

MLM predicts a distribution over Ω $p_{\mathcal{O}}(\cdot | [R]^i)$

R: It is [MASK] today.

Compute a similarity score between R and C. Goal

Equivalence for masked contexts $\mathcal{F}:[0,1]^{|\Omega|}\times[0,1]^{|\Omega|}$

$$\mathcal{F}: [0,1]^{|\Omega|} \times [0,1]^{|\Omega|}$$

MLM predicts a distribution over Ω $p_{\mathbf{O}}(\cdot | [R]^i)$

Similar context

R: It is [MASK] today.

$$\mathcal{I}\left(p_{\Omega}(\,\cdot\,|\,[R]^2),p_{\Omega}(\,\cdot\,|\,[C]^2)\right)\sim 0$$

Compute a similarity score between R and C. Goal

Equivalence for masked contexts $\mathcal{F}:[0,1]^{|\Omega|}\times[0,1]^{|\Omega|}$

$$\mathcal{F}: [0,1]^{|\Omega|} \times [0,1]^{|\Omega|}$$

MLM predicts a distribution over Ω $p_{\mathbf{O}}(\cdot | [R]^{i})$

Similar context

C: It is [MASK] this morning!

$$\mathcal{I}\left(p_{\Omega}(\,\cdot\,|\,[R]^2),p_{\Omega}(\,\cdot\,|\,[C]^2)\right)\sim 0$$

Dissimilar context

R: It is cold [MASK]

Compute a similarity score between R and C. Goal

Equivalence for masked contexts $\mathcal{F}:[0,1]^{|\Omega|}\times[0,1]^{|\Omega|}$

$$\mathcal{F}: [0,1]^{|\Omega|} \times [0,1]^{|\Omega|}$$

MLM predicts a distribution over Ω $p_{\mathbf{O}}(\cdot | [R]^{i})$

Similar context

R: It is [MASK] today.

C: It is [MASK] this morning!

$$\mathcal{I}\left(p_{\Omega}(\,\cdot\,|\,[R]^2),p_{\Omega}(\,\cdot\,|\,[C]^2)\right)\sim 0$$

Dissimilar context

R: It is cold [MASK]

$$p_{\Omega}(\cdot \mid [R]^3)$$

$$p_{\Omega}(\cdot | [C]^2)$$

Compute a similarity score between R and C. Goal

Equivalence for masked contexts $\mathcal{F}:[0,1]^{|\Omega|}\times[0,1]^{|\Omega|}$

$$\mathcal{F}: [0,1]^{|\Omega|} \times [0,1]^{|\Omega|}$$

MLM predicts a distribution over Ω $p_{\mathbf{O}}(\cdot | [R]^{i})$

Similar context

R: It is [MASK] today.

C: It is [MASK] this morning!

$$\mathcal{I}\left(p_{\Omega}(\,\cdot\,|\,[R]^2),p_{\Omega}(\,\cdot\,|\,[C]^2)\right)\sim 0$$

Dissimilar context

R: It is cold [MASK]

$$p_{\Omega}(\cdot \mid [R]^3)$$

$$p_{\Omega}(\cdot | [C]^2)$$

Compute a similarity score between R and C. Goal

Equivalence for masked contexts $\mathcal{F}:[0,1]^{|\Omega|}\times[0,1]^{|\Omega|}$

$$\mathcal{F}: [0,1]^{|\Omega|} \times [0,1]^{|\Omega|}$$

MLM predicts a distribution over Ω $p_{\mathbf{O}}(\cdot | [R]^{i})$

Similar context

R: It is [MASK] today.

C: It is [MASK] this morning!

$$\mathcal{J}\left(p_{\Omega}(\,\cdot\,|\,[R]^2),p_{\Omega}(\,\cdot\,|\,[C]^2)\right)\sim 0$$

Dissimilar context

R: It is cold [MASK]

$$p_{\Omega}(\cdot \mid [R]^3)$$

$$p_{\Omega}(\cdot | [C]^2)$$

$$\mathcal{I}\left(p_{\Omega}(\,\cdot\,|\,[R]^3),p_{\Omega}(\,\cdot\,|\,[C]^2)\right)\gg 0$$

Goal Compute a similarity score between R and C.

Goal Compute a similarity score between R and C.

How to aggregate contexts?

Goal Compute a similarity score between R and C.

How to aggregate contexts?

Goal Compute a similarity score between R and C.

How to aggregate contexts?

Weighted Sum!

Goal Compute a similarity score between R and C.

How to aggregate contexts?

Weighted Sum!

Reference

[MASK] is cold today.

It is [MASK] today.

It is cold today [MASK]

Goal Compute a similarity score between R and C.

How to aggregate contexts? [MASK] is cold today. Reference It is [MASK] today. It is cold today [MASK] is freezing this morning! Candidate It is [MASK] this morning! It is freezing this morning [MASK]

Weighted Sum!

Goal Compute a similarity score between R and C.

How to aggregate contexts?

Weighted Sum!

Reference

[MASK] is cold today.

It is [MASK] today.

It is cold today [MASK]

$$P \triangleq \frac{1}{5} \sum_{k=0}^{4} \gamma_k \times p_{\Omega}(\cdot \mid [R]^k)$$

Candidate

[MASK] is freezing this morning!

It is [MASK] this morning!

It is freezing this morning [MASK]

Goal Compute a similarity score between R and C.

How to aggregate contexts?

Weighted Sum!

Reference

[MASK] is cold today.

It is [MASK] today.

It is cold today [MASK]

$$P \triangleq \frac{1}{5} \sum_{k=0}^{4} \gamma_k \times p_{\Omega}(\cdot \mid [R]^k)$$

andidate

[MASK] is freezing this morning!

It is [MASK] this morning!

It is freezing this morning [MASK]

$$Q \triangleq \frac{1}{6} \sum_{k=0}^{5} \gamma_k \times p_{\Omega}(\cdot \mid [C]^k)$$

Goal Compute a similarity score between R and C.

How to aggregate contexts?

Weighted Sum!

Reference

[MASK] is cold today.

t is [MASK] today.

It is cold today [MASK]

$$P \triangleq \frac{1}{5} \sum_{k=0}^{4} \gamma_k \times p_{\Omega}(\cdot \mid [R]^k)$$

 $InfoLM(R, C) \triangleq \mathcal{F}(P, Q)$

andidate

[MASK] is freezing this morning!

It is [MASK] this morning!

It is freezing this morning [MASK

$$Q \triangleq \frac{1}{6} \sum_{k=0}^{5} \gamma_k \times p_{\Omega}(\cdot \mid [C]^k)$$

Data2text Generation

Results on WebNLG 2020

Gardent et al. 2017

Perez-Beltrachini et al 2016

Ferreira et al. (2020)

- Correctness / Data Coverage / RelevanceFluency / Text Structure
- Results on English only

Data2text Generation

Results on WebNLG 2020

Gardent et al. 2017

Ferreira et al. (2020)

Correctness / Data Coverage / RelevanceFluency / Text Structure

Perez-Beltrachini et al 2016

Results on English only

Summary Generation

Results on SummEval

Nallapati et al. 2016)

Bhandari et al. (2020)

Correlation with pyramid score

Nenkova and Passonneau 2004

Results on English only

Data2text Generation

Results on WebNLG 2020

Gardent et al. 2017

Ferreira et al. (2020)

Correctness / Data Coverage / RelevanceFluency / Text Structure

Perez-Beltrachini et al 2016

Results on English only

Summary Generation

Results on SummEval

Nallapati et al. 2016)

Bhandari et al. (2020)

Correlation with pyramid score

Nenkova and Passonneau 2004

Results on English only

Task

(John_Blaha birthDate 1942_08_26)
(John_Blaha birthPlace San_Antonio)
(John_E_Blaha job Pilot)

John Blaha, born in San Antonio on 1942-08-26, worked as a pilot

Task

(John_Blaha birthDate 1942_08_26)
(John_Blaha birthPlace San_Antonio)
(John_E_Blaha job Pilot)

John Blaha, born in San Antonio on 1942-08-26, worked as a pilot

	Correctness			Data Coverage			Fluency			F	Relevance	e	Text Structure		
Metric	r	ho	au	r	ho	au	r	ho	au	r	ho	au	r	ho	au
Correct	100.0	100.0	100.0	97.6	85.2	73.3	80.0	81.1	61.6	99.1	89.7	75.0	80.1	80.8	60.0
DataC	85.2	97.6	73.3	100.0	100.0	100.0	71.8	51.7	38.3	96.0	93.8	81.6	71.6	51.4	36.6
Fluency	81.1	80.0	61.6	71.8	51.7	38.3	100.0	100.0	100.0	77.0	61.4	46.6	99.5	99.7	98.3
Relev	89.7	99.1	75.0	96.0	93.8	81.6	77.0	61.4	46.6	100.0	100.0	100.0	77.2	61.1	45.0
TextS	80.8	80.1	60.0	71.6	51.4	36.6	99.5	99.7	98.3	77.2	61.1	45.0	100.0	100.0	100.0
\mathcal{D}_{AB}	88.8	89.3	<u>76.6</u>	81.8	82.6	<u>70.0</u>	86.6	92.0	76.6	89.8	<u>87.9</u>	73.3	86.6	91.4	75.0
\mathcal{D}_{lpha}	88.8	<u>89.3</u>	<u>76.6</u>	<u>81.8</u>	<u>82.6</u>	<u>70.0</u>	86.6	92.0	76.6	<u>89.8</u>	<u>87.9</u>	<u>73.3</u>	86.6	91.4	75.0
\mathcal{D}_{eta}	81.4	50.0	71.6	48.4	79.7	65.0	44.8	84.7	76.6	49.3	72.3	60.0	48.0	83.8	75.0
\mathcal{L}_1	75.2	33.8	61.6	32.4	53.8	40.0	22.7	83.5	73.3	32.2	57.9	45.0	25.6	83.2	71.6
${\cal R}$	<u>89.7</u>	86.0	75.0	78.7	70.5	51.6	<u>93.3</u>	<u>95.7</u>	<u>85.3</u>	87.6	84.4	70.0	<u>92.4</u>	93.8	<u>81.6</u>
JS	79.4	81.1	70.0	69.3	75.5	60.0	89.4	91.4	75.0	81.7	70.5	60.0	91.9	91.1	73.3
BertS	85.5	83.4	73.3	74.7	68.2	53.3	92.3	95.5	85.0	83.3	79.4	65.0	91.9	<u>95.0</u>	83.3
MoverS	84.1	<u>84.1</u>	<u>73.3</u>	<u>78.7</u>	66.2	<u>53.3</u>	91.2	92.1	78.3	82.1	77.4	65.0	90.1	91.4	76.3
BLEU	77.6	66.3	60.0	55.7	50.2	36.6	89.4	90.5	78.3	63.0	65.2	51.6	88.5	89.1	76.6
R-1	80.6	65.0	65.0	61.1	<u>59.6</u>	<u>48.3</u>	76.5	76.3	60.3	64.3	<u>69.2</u>	56.7	75.9	77.5	58.3
METEOR	<u>86.5</u>	<u>66.3</u>	<u>70.0</u>	<u>77.3</u>	50.2	46.6	86.7	90.5	78.3	<u>82.1</u>	65.2	58.6	86.2	89.1	76.6
TER	79.6	78.3	58.0	69.7	58.2	38.0	89.1	93.5	80.0	75.0	70.2	<u>77.6</u>	89.5	91.1	<u>78.6</u>

26

Task

(John_Blaha birthDate 1942_08_26) (John_Blaha birthPlace San_Antonio) (John_E_Blaha job Pilot)

John Blaha, born in San Antonio on 1942-08-26, worked as a pilot

	Correctness			Data Coverage			Fluency			F	Relevance	e	Text Structure		
Metric	r	ho	au	r	ho	au	r	ho	au	r	ho	au	r	ho	au
Correct	100.0	100.0	100.0	97.6	85.2	73.3	80.0	81.1	61.6	99.1	89.7	75.0	80.1	80.8	60.0
DataC	85.2	97.6	73.3	100.0	100.0	100.0	71.8	51.7	38.3	96.0	93.8	81.6	71.6	51.4	36.6
Fluency	81.1	80.0	61.6	71.8	51.7	38.3	100.0	100.0	100.0	77.0	61.4	46.6	99.5	99.7	98.3
Relev	89.7	99.1	75.0	96.0	93.8	81.6	77.0	61.4	46.6	100.0	100.0	100.0	77.2	61.1	45.0
TextS	80.8	80.1	60.0	71.6	51.4	36.6	99.5	99.7	98.3	77.2	61.1	45.0	100.0	100.0	100.0
\mathcal{D}_{AB}	88.8	89.3	76.6	81.8	82.6	70.0	86.6	92.0	76.6	89.8	87.9	73.3	86.6	91.4	75.0
\mathcal{D}_{lpha}	88.8	<u>89.3</u>	<u>76.6</u>	<u>81.8</u>	82.6	<u>70.0</u>	86.6	92.0	76.6	89.8	<u>87.9</u>	<u>73.3</u>	86.6	91.4	75.0
${\cal D}_{eta}$	81.4	50.0	71.6	48.4	79.7	65.0	44.8	84.7	76.6	49.3	72.3	60.0	48.0	83.8	75.0
\mathcal{L}_1	75.2	33.8	61.6	32.4	53.8	40.0	22.7	83.5	73.3	32.2	57.9	45.0	25.6	83.2	71.6
\mathcal{R}	89.7	86.0	75.0	78.7	70.5	51.6	93.3	<u>95.7</u>	<u>85.3</u>	87.6	84.4	70.0	<u>92.4</u>	93.8	<u>81.6</u>
JS	79.4	81.1	70.0	69.3	75.5	60.0	89.4	91.4	75.0	81.7	70.5	60.0	91.9	91.1	73.3
BertS	85.5	83.4	73.3	74.7	68.2	53.3	92.3	95.5	85.0	83.3	79.4	65.0	91.9	95.0	83.3

Parameter Free

PAB	00.0	07.0	7000	<u>01.0</u>	<u>02.0</u>	7000	00.0	12.0	70.0	07.0	07.07	13.3	00.0	71.1	15.0
\mathcal{D}_{lpha}	88.8	<u>89.3</u>	<u>76.6</u>	81.8	82.6	<u>70.0</u>	86.6	92.0	76.6	89.8	87.9	73.3	86.6	91.4	75.0
${\cal D}_{eta}$	81.4	50.0	71.6	48.4	79.7	65.0	44.8	84.7	76.6	49.3	72.3	60.0	48.0	83.8	75.0
\mathcal{L}_1	75.2	33.8	61.6	32.4	53.8	40.0	22.7	83.5	73.3	32.2	57.9	45.0	25.6	83.2	71.6
\mathcal{R}	<u>89.7</u>	86.0	75.0	78.7	70.5	51.6	93.3	<u>95.7</u>	85.3	87.6	84.4	70.0	<u>92.4</u>	93.8	<u>81.6</u>
JS	79.4	81.1	70.0	69.3	75.5	60.0	89.4	91.4	75.0	81.7	70.5	60.0	91.9	91.1	73.3
BertS	<u>85.5</u>	83.4	<u>73.3</u>	74.7	<u>68.2</u>	53.3	<u>92.3</u>	<u>95.5</u>	<u>85.0</u>	<u>83.3</u>	<u>79.4</u>	<u>65.0</u>	<u>91.9</u>	<u>95.0</u>	<u>83.3</u>
MoverS	84.1	<u>84.1</u>	73.3	<u>78.7</u>	66.2	53.3	91.2	92.1	78.3	82.1	77.4	65.0	90.1	91.4	76.3
BLEU	77.6	66.3	60.0	55.7	50.2	36.6	89.4	90.5	78.3	63.0	65.2	51.6	88.5	89.1	76.6
R-1	80.6	65.0	65.0	61.1	<u>59.6</u>	48.3	76.5	76.3	60.3	64.3	<u>69.2</u>	56.7	75.9	77.5	58.3
METEOR	<u>86.5</u>	66.3	<u>70.0</u>	<u>77.3</u>	50.2	46.6	86.7	90.5	78.3	<u>82.1</u>	65.2	58.6	86.2	89.1	76.6
TER	79.6	78.3	58.0	69.7	58.2	38.0	89.1	93.5	80.0	75.0	70.2	<u>77.6</u>	<u>89.5</u>	91.1	<u>78.6</u>
·						-20							-		

20

SUMMARY

We explored different metrics for automatic NLG evaluation

We explored different metrics for automatic NLG evaluation

Embedding Based

Soft Probability based

We explored different metrics for automatic NLG evaluation

Embedding Based

Soft Probability based

Different Metrics correlate better with different human criterion

We explored different metrics for automatic NLG evaluation

Embedding Based

Soft Probability based

Different Metrics correlate better with different human criterion

One task: If we want to have an exhaustive evaluation we need to consider several metrics.

Multitask: To evaluate on system on different tasks we need different metrics (data2text vs Translation)

We explored different metrics for automatic NLG evaluation

Embedding Based

Soft Probability based

Different Metrics correlate better with different human criterion

One task: If we want to have an exhaustive evaluation we need to consider several metrics.

Multitask: To evaluate on system on different tasks we need different metrics (data2text vs Translation)

Let's speak about how to aggregate different metrics to obtain stronger evaluation procedures.

2. How to aggregate several metrics?

1.1 Framework

1.2 Task Level Aggregation

1.3 Instance Level Aggregation

Pierre Colombo, Nathan Noiry, Ekhine Irurozki and Stephan Clemencon. What are the best Systems? New Perspectives on NLP Benchmarking.

Framework

Instance-level information

① instance-level aggregation

Task-level information

② task-level aggregation

Framework

Instance-level information

① instance-level aggregation

Task-level information

② task-level aggregation

Setting:

1. One has access to the scores of N systems across T tasks.

2. Each task t being associated with a metric and a test set of size K_t .

3. We have $s_{n,t,k} \in \mathbb{R}$

Instance-level information

① instance-level aggregation

Task-level information

② task-level aggregation

Instance-level information

① instance-level aggregation

Task-level information

2 task-level aggregation

For every n and every t, we only have access to the aggregated performance of system n on task t

Instance-level information

① instance-level aggregation

Task-level information

2 task-level aggregation

For every n and every t, we only have access to the aggregated performance of system n on task t

$$s_{n,t} \in \mathbb{R}$$

Instance-level information

① instance-level aggregation

Task-level information

2 task-level aggregation

For every n and every t, we only have access to the aggregated performance of system n on task t

$$s_{n,t} \in \mathbb{R}$$

Goal: find an aggregation procedure that orders the systems.

task 1			tas	sk t		tasl	k T
instances	rankings	• • •	instances	rankings	• • •	instances	rankings
$egin{array}{c} 1 \ \vdots \ k \ \vdots \end{array}$	$\sigma^{1,1}$ $\sigma^{1,2}$ \vdots $\sigma^{1,k}$	•••	$egin{array}{c} 1 \ \vdots \ k \ \vdots \end{array}$	$\sigma^{t,1}$ $\sigma^{t,2}$ \vdots $\sigma^{t,k}$		1 2 : k	$\sigma^{T,1}$ $\sigma^{T,2}$ \vdots $\sigma^{T,k}$ \vdots
K_1	σ^{1,K_1}	•••	K_2	\circ		K_T	σ^{T,K_T}
(σ^1			σ^t			σ^T
One level aggregation: $\sigma^l = \text{Borda}(\sigma^{t,k}, 1 \le t \le T, 1)$						$\leq T, \ 1 \leq k$	$\leq K_t$
	Two level	aggregatio			$\sigma^t = \operatorname{Bord}$		$(k \leq K_t)$

task 1			tas	sk t		tas	k T
instances	rankings	• • •	instances	$\operatorname{rankings}$	• • •	instances	rankings
$egin{array}{c} 1 \ & dots \ & dots \ & k \ & dots \ & K_1 \ \end{array}$	$\sigma^{1,1}$ $\sigma^{1,2}$ $\sigma^{1,k}$ $\sigma^{1,k}$ $\sigma^{1,k}$		$egin{array}{c} 1 \ \vdots \ k \ \vdots \ K_2 \end{array}$	$\sigma^{t,1}$ $\sigma^{t,2}$ $\sigma^{t,k}$ $\sigma^{t,k}$ $\sigma^{t,k}$		$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\sigma^{T,1}$ $\sigma^{T,2}$ \vdots $\sigma^{T,k}$ \vdots σ^{T,K_T}
	One level a	aggregatio		σ^t	$\sigma^{t,k},1\leq t\leq$	$\leq T, \ 1 \leq k$	$\leq K_t$
	Two level	aggregatio			$\sigma^t = \operatorname{Bord}$ $(\sigma^t, 1 \le t \le t)$	`	$\leq k \leq K_t$

For every n, every t and every k, access to the aggregated performance of system n on instance k of task t

ta	task 1		tas	sk t		tasl	k T
instances	rankings	• • •	instances	rankings	• • •	instances	rankings
$egin{array}{c} 1 \ & 2 \ & dots \ & k \ & dots \ & K_1 \ \end{array}$	$\sigma^{1,1}$ $\sigma^{1,2}$ \vdots $\sigma^{1,k}$ \vdots $\sigma^{1,k}$ \vdots σ^{1,K_1}		$egin{array}{c} 1 \ \vdots \ k \ \vdots \ K_2 \end{array}$	$\sigma^{t,1}$ $\sigma^{t,2}$ $\sigma^{t,k}$ $\sigma^{t,k}$ $\sigma^{t,k}$		$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\sigma^{T,1}$ $\sigma^{T,2}$ \vdots $\sigma^{T,k}$ \vdots σ^{T,K_T}
	One level aggregation: Two level aggregation:				$\sigma^{t,k}, 1 \leq t \leq \sigma^t = \mathrm{Bord}$,

 $\sigma^{2l} = \operatorname{Borda}(\sigma^t, 1 \le t \le T)$

For every n, every t and every k, access to the aggregated performance of system n on instance k of task t

$$s_{n,t,k} \in \mathbb{R}$$

	task 1			tas	sk t		asl	к T
	instances	rankings	•••	instances	rankings	• • •	instances	rankings
	$egin{array}{c} 1 \ \vdots \ k \ \vdots \end{array}$	$\sigma^{1,1}$ $\sigma^{1,2}$ \vdots $\sigma^{1,k}$ \vdots	•••	$egin{array}{c} 1 \ \vdots \ k \ \vdots \end{array}$	$\sigma^{t,1}$ $\sigma^{t,2}$ \vdots $\sigma^{t,k}$ \vdots		$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\sigma^{T,1}$ $\sigma^{T,2}$ \vdots $\sigma^{T,k}$ \vdots
	K_1	σ^{1,K_1}		K_2	σ^{1,K_1}		K_T	σ^{T,K_T}
	σ^1 One level a				σ^t			σ^T
			aggregatio	σ	-l = Borda($\leq K_t)$		
		Two level	aggregatio	on:	$'1 \le t \le T,$	$\sigma^t = \text{Bord}$	$\mathrm{a}(\sigma^{t,k},1\leq$	$k \leq K_t$

 $\sigma^{2l} = \operatorname{Borda}(\sigma^t, 1 \le t \le T)$

For every n, every t and every k, access to the aggregated performance of system n on instance k of task t

$$s_{n,t,k} \in \mathbb{R}$$

Goal: find an aggregation procedure that orders the systems.

2. How to aggregate several metrics?

1.1 Framework

1.2 Task Level Aggregation

1.3 Instance Level Aggregation

 $s_{n,t} \in \mathbb{R}$ **Initial information:**

dots K_T s_{1,T,K_T} s_{N,T,K_T} task T $s_{1,1}$ $s_{1,T}$ Task-level information ① instance-level aggregation

Instance-level information

instances

② task-level aggregation

Initial information: $S_{n,t} \in \mathbb{R}$

First attempt: mean-aggregation

1. Compute aggregated scores:

$$S_n = \sum_{t=1}^T S_{n,t}$$

2. Rank systems accordingly

D instance-level aggregation

Task-level information

② task-level aggregation

Initial information: $S_{n,t} \in \mathbb{R}$

First attempt: mean-aggregation

1. Compute aggregated scores:

$$S_n = \sum_{t=1}^T S_{n,t}$$

2. Rank systems accordingly

Weaknesses

- 1. Scale dependent
- 2. Non-relative score

 $s_{n,t} \in \mathbb{R}$ **Initial information:**

34

① instance-level aggregation

Task-level information

② task-level aggregation

Initial information: $S_{n,t} \in \mathbb{R}$

Second attempt: pairwise ranking

1. Compute pairwise ranking:

$$\lambda_A = \sum_{t=1}^T \mathbf{1}_{s_{A,t} > s_{B,t}}$$

2. Rank A>B if and only if $\lambda_A > \lambda_B$

) instance-level aggregation

Task-level information

② task-level aggregation

 $s_{n,t} \in \mathbb{R}$ **Initial information:**

Second attempt: pairwise ranking

Compute pairwise ranking:

$$\lambda_A = \sum_{t=1}^T \mathbf{1}_{s_{A,t} > s_{B,t}}$$

2. Rank A>B if and only if $\lambda_A > \lambda_B$

Weaknesses

1 Restricted to two systems

2 Can lead to paradoxes

A toy example

	task 1	task 2	task 3	task 4	task 5	task 6	sum
A	0,3	5 3	10 1	0,02 2	1,0 1	0,4 3	16,72 13
B	0, 1 2	4 2	13 ₂	0,01 1	2,2 3	0,3 2	19,61 12
C	0,0	3 1	15 ₃	0,03 3	2,0 2	0,2 1	20, 23 11

mean-aggregation:

pairwise ranking:

$$B > A, C > B, A = C$$

our ranking:

For every t, let σ^t be the ranking of the systems on task t:

$$\sigma^t = [\sigma_1^t, ..., \sigma_N^t],$$

where σ_i^t is the rank of system i.

For every t, let σ^t be the ranking of the systems on task t:

$$\sigma^t = [\sigma_1^t, ..., \sigma_N^t],$$

where σ_i^t is the rank of system i.

Example: [2,1,3] means that system 1 is the second best, system 2 is the best and system 3 is the third best.

For every t, let σ^t be the ranking of the systems on task t:

$$\sigma^t = [\sigma_1^t, ..., \sigma_N^t],$$

where σ_i^t is the rank of system i.

Example: [2,1,3] means that system 1 is the second best, system 2 is the best and system 3 is the third best.

- 1. For every system n, compute: $b_n = \sum_{t=1}^{l} \sigma_n^t$
- 2. Rank the systems accordingly

For every t, let σ^t be the ranking of the systems on task t:

$$\sigma^t = [\sigma_1^t, ..., \sigma_N^t],$$

where σ_i^t is the rank of system i.

For every t, let σ^t be the ranking of the systems on task t:

$$\sigma^t = [\sigma_1^t, ..., \sigma_N^t],$$

where σ_i^t is the rank of system i.

It is better to interpret σ^t as a permutation: $\sigma^t \in \mathfrak{S}_N$

For every t, let σ^t be the ranking of the systems on task t:

$$\sigma^t = [\sigma_1^t, ..., \sigma_N^t],$$

where σ_i^t is the rank of system i.

It is better to interpret σ^t as a permutation: $\sigma^t \in \mathfrak{S}_N$

Example: [2,1,3] is the permutation that moves first object to second position, second object to first position and leaves third object in third position.

For every t, let σ^t be the ranking of the systems on task t:

$$\sigma^t = [\sigma_1^t, ..., \sigma_N^t],$$

where σ_i^t is the rank of system i.

It is better to interpret σ^t as a permutation: $\sigma^t \in \mathfrak{S}_N$

Example: [2,1,3] is the permutation that moves first object to second position, second object to first position and leaves third object in third position.

$$[2,1,3] \cdot (a,b,c) = (b,a,c)$$

Each task t induces a permutation of the systems $\sigma^t \in \mathfrak{S}_N$.

Each task t induces a permutation of the systems $\sigma^t \in \mathfrak{S}_N$.

→ New question: how to aggregate permutations?

Each task t induces a permutation of the systems $\sigma^t \in \mathfrak{S}_N$.

→ New question: how to aggregate permutations?

The mean $\frac{1}{T}\sum_{t=1}^{T} \sigma^t$ makes no sense!

Each task t induces a permutation of the systems $\sigma^t \in \mathfrak{S}_N$.

→ New question: how to aggregate permutations?

The mean $\frac{1}{T}\sum_{t=1}^{T} \sigma^t$ makes no sense!

Solution: define a distance d on the permutation group, and find a permutation σ^* that minimizes the sum of distances:

$$\sigma^* \in \underset{\sigma \in \mathfrak{S}_N}{\operatorname{argmin}} \sum_{t=1}^{T} d(\sigma, \sigma^t)$$

→ How to aggregate permutations?

$$\sigma^* \in \underset{\sigma \in \mathfrak{S}_N}{\operatorname{argmin}} \sum_{t=1}^T d(\sigma, \sigma^t)$$

→ How to aggregate permutations?

$$\sigma^* \in \underset{\sigma \in \mathfrak{S}_N}{\operatorname{argmin}} \sum_{t=1}^T d(\sigma, \sigma^t)$$

When d is the Kendall distance that counts the number of inversions, σ^* is called a Kemeny consensus.

---> How to aggregate permutations?

$$\sigma^* \in \underset{\sigma \in \mathfrak{S}_N}{\operatorname{argmin}} \sum_{t=1}^T d(\sigma, \sigma^t)$$

When d is the Kendall distance that counts the number of inversions, σ^* is called a Kemeny consensus.

It is the only aggregation of permutations procedures that satisfies three natural axioms.

- Neutrality
- Consistency
- Condorcet Criterion

→ How to aggregate permutations?

$$\sigma^* \in \underset{\sigma \in \mathfrak{S}_N}{\operatorname{argmin}} \sum_{t=1}^T d(\sigma, \sigma^t)$$

When d is the Kendall distance that counts the number of inversions, σ^* is called a Kemeny consensus.

It is the only aggregation of permutations procedures that satisfies three natural axioms.

- Neutrality
- Consistency
- Condorcet Criterion

BUT: NP-Hard problem!

→ How to aggregate permutations?

$$\sigma^* \in \underset{\sigma \in \mathfrak{S}_N}{\operatorname{argmin}} \sum_{t=1}^T d(\sigma, \sigma^t)$$

When d is the Kendall distance that counts the number of inversions, σ^* is called a Kemeny consensus.

It is the only aggregation of permutations procedures that satisfies three natural axioms.

- Neutrality
- Consistency
- Condorcet Criterion

BUT: NP-Hard problem!

Relaxation of the problem: Borda count!

- + 2-approximation
- + Small complexity
- + Simple interpretation

Ranking Analysis

	GLUE			XTREM	
σ^*	Team	σ^{mean}	σ^*	Team	σ^{mean}
0 (1430)	Ms Alex	0 (88.6)	0 (55)	ULR	0 (83.2)
1 (1405)	ERNIE	1 (88.0)	1 (50)	CoFe	1 (82.6)
2 (1397)	DEBERTA	2 (87.9)	2 (44)	InfoLXL	3 (80.6)
3 (1391)	AliceMind	3 (87.8)	3 (42)	VECO	4 (80.3)
4 (1375)	PING-AH	5 (87.6)	4 (35)	Unicoder	5 (79.4)
5 (1362)	HFL	4 (87.7)	5 (34)	PolyGlot	2 (80.6)
6 (1361)	T5	6 (87.5)	6 (31)	ULR-v2	6 (79.4)
7 (1358)	DIRL	10 (86.7)	7 (29)	HiCTL	8 (79.1)
8 (1331)	Zihan	7 (87.6)	8 (29)	Ernie	7 (79.1)
9 (1316)	ELECTRA	11 (86.7)	9 (21)	Anony	10 (78.3)

Ranking Analysis

	GLUE			XTREM	
σ^*	Team	σ^{mean}	σ^*	Team	σ^{mean}
0 (1430)	Ms Alex	0 (88.6)	0 (55)	ULR	0 (83.2)
1 (1405)	ERNIE	1 (88.0)	1 (50)	CoFe	1 (82.6)
2 (1397)	DEBERTA	2 (87.9)	2 (44)	InfoLXL	3 (80.6)
3 (1391)	AliceMind	3 (87.8)	3 (42)	VECO	4 (80.3)
4 (1375)	PING-AH	5 (87.6)	4 (35)	Unicoder	5 (79.4)
5 (1362)	HFL	4 (87.7)	5 (34)	PolyGlot	2 (80.6)
6 (1361)	T5	6 (87.5)	6 (31)	ULR-v2	6 (79.4)
7 (1358)	DIRL	10 (86.7)	7 (29)	HiCTL	8 (79.1)
8 (1331)	Zihan	7 (87.6)	8 (29)	Ernie	7 (79.1)
9 (1316)	ELECTRA	11 (86.7)	9 (21)	Anony	10 (78.3)

Ranking Analysis

	GLUE			XTREM	
σ^*	Team	σ^{mean}	σ^*	Team	σ^{mean}
0 (1430)	Ms Alex	0 (88.6)	0 (55)	ULR	0 (83.2)
1 (1405)	ERNIE	1 (88.0)	1 (50)	CoFe	1 (82.6)
2 (1397)	DEBERTA	2 (87.9)	2 (44)	InfoLXL	3 (80.6)
3 (1391)	AliceMind	3 (87.8)	3 (42)	VECO	4 (80.3)
4 (1375)	PING-AH	5 (87.6)	4 (35)	Unicoder	5 (79.4)
5 (1362)	HFL	4 (87.7)	5 (34)	PolyGlot	2 (80.6)
6 (1361)	T5	6 (87.5)	6 (31)	ULR-v2	6 (79.4)
7 (1358)	DIRL	10 (86.7)	7 (29)	HiCTL	8 (79.1)
8 (1331)	Zihan	7 (87.6)	8 (29)	Ernie	7 (79.1)
9 (1316)	ELECTRA	11 (86.7)	9 (21)	Anony	10 (78.3)

Ranking Analysis

	GLUE			XTREM	
σ^*	Team	σ^{mean}	σ^*	Team	σ^{mean}
0 (1430)	Ms Alex	0 (88.6)	0 (55)	ULR	0 (83.2)
1 (1405)	ERNIE	1 (88.0)	1 (50)	CoFe	1 (82.6)
2 (1397)	DEBERTA	2 (87.9)	2 (44)	InfoLXL	3 (80.6)
3 (1391)	AliceMind	3 (87.8)	3 (42)	VECO	4 (80.3)
4 (1375)	PING-AH	5 (87.6)	4 (35)	Unicoder	5 (79.4)
5 (1362)	HFL	4 (87.7)	5 (34)	PolyGlot	2 (80.6)
6 (1361)	T5	6 (87.5)	6 (31)	ULR-v2	6 (79.4)
7 (1358)	DIRL	10 (86.7)	7 (29)	HiCTL	8 (79.1)
8 (1331)	Zihan	7 (87.6)	8 (29)	Ernie	7 (79.1)
9 (1316)	ELECTRA	11 (86.7)	9 (21)	Anony	10 (78.3)

Aggregation procedure matters a lot!

Ranking Analysis

	GLUE			XTREM	
σ^*	Team	σ^{mean}	σ^*	Team	σ^{mean}
0 (1430)	Ms Alex	0 (88.6)	0 (55)	ULR	0 (83.2)
1 (1405)	ERNIE	1 (88.0)	1 (50)	CoFe	1 (82.6)
2 (1397)	DEBERTA	2 (87.9)	2 (44)	InfoLXL	3 (80.6)
3 (1391)	AliceMind	3 (87.8)	3 (42)	VECO	4 (80.3)
4 (1375)	PING-AH	5 (87.6)	4 (35)	Unicoder	5 (79.4)
5 (1362)	HFL	4 (87.7)	5 (34)	PolyGlot	2 (80.6)
6 (1361)	T5	6 (87.5)	6 (31)	ULR-v2	6 (79.4)
7 (1358)	DIRL	10 (86.7)	7 (29)	HiCTL	8 (79.1)
8 (1331)	Zihan	7 (87.6)	8 (29)	Ernie	7 (79.1)
9 (1316)	ELECTRA	11 (86.7)	9 (21)	Anony	10 (78.3)
9 (1310)	ELECTRA	11 (50.7)	9 (21)	Anony	10 (70.3)

Robustness Analysis

Setting:

For an increasing % of task, compute the Kendall's tau correlation coefficient between the obtained ranking and the one obtained with all the tasks

Aggregation procedure matters a lot!

Ranking Analysis

	GLUE			XTREM	
σ^*	Team	σ^{mean}	σ^*	Team	σ^{mean}
0 (1430)	Ms Alex	0 (88.6)	0 (55)	ULR	0 (83.2)
1 (1405)	ERNIE	1 (88.0)	1 (50)	CoFe	1 (82.6)
2 (1397)	DEBERTA	2 (87.9)	2 (44)	InfoLXL	3 (80.6)
3 (1391)	AliceMind	3 (87.8)	3 (42)	VECO	4 (80.3)
4 (1375)	PING-AH	5 (87.6)	4 (35)	Unicoder	5 (79.4)
5 (1362)	HFL	4 (87.7)	5 (34)	PolyGlot	2 (80.6)
6 (1361)	T5	6 (87.5)	6 (31)	ULR-v2	6 (79.4)
7 (1358)	DIRL	10 (86.7)	7 (29)	HiCTL	8 (79.1)
8 (1331)	Zihan	7 (87.6)	8 (29)	Ernie	7 (79.1)
9 (1316)	ELECTRA	11 (86.7)	9 (21)	Anony	10 (78.3)

Robustness Analysis

Setting:

For an increasing % of task, compute the Kendall's tau correlation coefficient between the obtained ranking and the one obtained with all the tasks

Aggregation procedure matters a lot!

Relying on Borda count is more reliable

2. How to aggregate several metrics?

1.1 Framework

1.2 Task Level Aggregation

1.3 Instance Level Aggregation

tas	sk 1		tas	sk t		tasl	k T
instances	rankings	•••	instances	rankings	•••	instances	rankings
1	$\sigma^{1,1}$		1	$\sigma^{t,1}$	• • •	1	$\sigma^{T,1}$
$egin{array}{c} 2 \ dots \ k \ dots \ K_1 \end{array}$	$\sigma^{1,2}$ $\sigma^{1,k}$ $\sigma^{1,k}$ σ^{1,K_1}		$egin{array}{c} 2 \ dots \ k \ dots \ K_2 \end{array}$	$\sigma^{t,2}$ $\sigma^{t,k}$ $\sigma^{t,k}$ σ^{t,K_1}		$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\sigma^{T,2}$ \vdots $\sigma^{T,k}$ \vdots σ^{T,K_T}
	σ^1			σ^t			σ^T
	One level	aggregatio	\mathbf{n} : σ	l = Borda($\sigma^{t,k}, 1 \leq t \leq$	$\leq T, 1 \leq k$	$\leq K_t$
	Two level	aggregatio			$\sigma^t = \text{Bord}$ $(\sigma^t, 1 \le t \le$		$\leq k \leq K_t$

te	ask 1		tas	sk t		tas	k T
instances	rankings	•••	instances	$\operatorname{rankings}$	• • • <u> </u>	instances	rankings
1	$\sigma^{1,1}$		1	$\sigma^{t,1}$	• • •	1	$\sigma^{T,1}$
$\frac{1}{2}$	$\int \sigma^{1,2}$		$\frac{1}{2}$	$/\sigma^{t,2}$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2	$\sigma^{T,2}$
$egin{array}{c} dots \ k \ dots \end{array}$	$\left\langle \left\langle \begin{array}{c} \vdots \\ \sigma^{1,k} \end{array} \right\rangle \right\rangle$	•••	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\sigma^{t,k}$	•••	k	$\sigma^{T,k}$
K_1	σ^{1,K_1}	•••	K_2	σ^{1,K_1}		K_T	σ^{T,K_T}
	σ^1			σ^t		_ //-/	σ^T
	\						/
	One level a	aggregatio	\mathbf{n} : σ	$e^{l} = Borda(e^{l})$	$\sigma^{t,k}, 1 \leq t \leq$	$\leq T, \ 1 \leq k$	$\leq K_t$
	Two level	aggregatio			$\sigma^t = \mathrm{Bord}$		$\leq k \leq K_t$

For every n, every t and every k, access to the aggregated performance of system n on instance k of task t

tas	sk 1		tas	sk t		tasi	k T
instances	rankings	• • •	instances	rankings	• • •	instances	rankings
1	$\sigma^{1,1}$		1	$\sigma^{t,1}$		1	$\sigma^{T,1}$
$egin{array}{c} 2 \ dash \ k \ dash \ K_1 \end{array}$	$\sigma^{1,2}$ $\sigma^{1,k}$ σ^{1,K_1} σ^{1,K_1}		$egin{array}{c} 2 \ \vdots \ k \ \vdots \ K_2 \ \end{array}$	$\sigma^{t,2}$ \vdots $\sigma^{t,k}$ \vdots σ^{1,K_1}		$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\sigma^{T,2}$ \vdots $\sigma^{T,k}$ \vdots σ^{T,K_T} σ^{T,K_T}
	One level	o como cotio		d - Dondo (-t, k 1 $< + <$		j
	One level a	aggregatio	II: σ	= borda($\sigma^{t,k}, 1 \le t \le$	$\succeq I$, $1 \succeq K$:	$\geq n_t$
	Two level	aggregatic			$\sigma^t = \mathrm{Bord}$ $(\sigma^t \ 1 < t < t < t)$		$(k \leq K_t)$

For every n, every t and every k, access to the aggregated performance of system n on instance k of task t

$$s_{n,t,k} \in \mathbb{R}$$

Two level aggregation:

For every n, every t and every k, access to the aggregated performance of system n on instance k of task t

$$s_{n,t,k} \in \mathbb{R}$$

Goal: find an aggregation procedure that orders the systems.

 $\forall 1 \leq t \leq T, \quad \sigma^t = \text{Borda}(\sigma^{t,k}, 1 \leq k \leq K_t)$

Robustness Analysis

Robustness Analysis

Relying on Borda count is more reliable. An 1 or 2 level are equivalents.

Robustness Analysis

Relying on Borda count is more reliable. An 1 or 2 level are equivalents.

	PC	TC	FLI.	MLQE
$ au(\sigma^l,\sigma^{2l})$	-0.08	-0.01	0	-0.03
$ au(\sigma^{mean},\sigma^{2l})$	0.32	0.27	0.29	0.01
$ au(\sigma^{mean},\sigma^l)$	-0.10	-0.15	-0.04	0.00
RSUM	SEVAL	TAC08	TAC09	TAC11
0.04	0.14	0.28	0.06	-0.06
0.07	0.52	0.32	0.37	0.37
0	0.10	0.23	0.19	0.07

Robustness Analysis

Relying on Borda count is more reliable. An 1 or 2 level are equivalents.

Ranking Correlation

Aggregation procedure matters a lot!

 $\sigma^l {\rm disagrees\ from\ } \sigma^{2l} {\rm\ and\ } \sigma^{mean} {\rm\ both\ on\ top\ }$ systems and on their orders.

 σ^{2l} and σ^{mean} select similar systems but rank them differently.

	PC	TC	FLI.	MLQE
$ au(\sigma^l,\sigma^{2l})$	-0.08	-0.01	0	-0.03
$ au(\sigma^{\grave{m}ean},\sigma^{2l})$	0.32	0.27	0.29	0.01
$ au(\sigma^{mean},\sigma^l)$	-0.10	-0.15	-0.04	0.00
RSUM	SEVAL	TAC08	TAC09	TAC11
0.04	0.14	0.28	0.06	-0.06
0.07	0.52	0.32	0.37	0.37
0	0.10	0.23	0.19	0.07

