

An effective bound of p for algebraic points on Shimura curves of $\Gamma_0(p)$ -type

Keisuke Arai

Abstract

In previous articles, we classified the characters associated to algebraic points on Shimura curves of $\Gamma_0(p)$ -type, and over number fields in a certain large class we showed that there are at most elliptic points on such a Shimura curve for every sufficiently large prime number p . In this article, we obtain an effective bound of p concerning algebraic points on Shimura curves of $\Gamma_0(p)$ -type.

Notation

For an integer $n \geq 1$ and a commutative group (or a commutative group scheme) G , let $G[n]$ denote the kernel of multiplication by n in G . For a field F , let $\text{char } F$ denote the characteristic of F , let \overline{F} denote an algebraic closure of F , let F^{sep} (resp. F^{ab}) denote the separable closure (resp. the maximal abelian extension) of F inside \overline{F} , and let $G_F = \text{Gal}(F^{\text{sep}}/F)$, $G_F^{\text{ab}} = \text{Gal}(F^{\text{ab}}/F)$. For a prime number p and a field F of characteristic 0, let $\theta_p : G_F \longrightarrow \mathbb{F}_p^\times$ denote the mod p cyclotomic character. Let $|\cdot|$ denote the usual complex absolute value on \mathbb{C} . For a number field or a local field k , let \mathcal{O}_k denote the ring of integers of k . For a number field k , put $n_k := [k : \mathbb{Q}]$; let d_k denote the discriminant of k ; let h_k denote the class number of k ; let r_k denote the rank of the unit group \mathcal{O}_k^\times ; let R_k denote the regulator of k ; fix an inclusion $k \hookrightarrow \mathbb{C}$ and take the algebraic closure \overline{k} inside \mathbb{C} ; let k_v denote the completion of k at v where v is a place (or a prime) of k ; let $k_{\mathbb{A}}$ denote the adèle ring of k ; and let $\mathbf{Ram}(k)$ denote the set of prime numbers which are ramified in k . For a scheme S and an abelian scheme A over S , let $\text{End}_S(A)$ denote the ring of endomorphisms of A defined over S . If $S = \text{Spec}(F)$ for a field F and if F'/F is a field extension, simply put $\text{End}_{F'}(A) := \text{End}_{\text{Spec}(F')}(A \times_{\text{Spec}(F)} \text{Spec}(F'))$ and $\text{End}(A) := \text{End}_{\overline{F}}(A)$. Let $\text{Aut}(A) := \text{Aut}_{\overline{F}}(A)$ be the group of automorphisms of A defined over \overline{F} . For a prime number p and an abelian variety A over a field F , let $T_p A := \varprojlim A[p^n](\overline{F})$ be the p -adic Tate module of A , where the inverse limit is taken with respect to multiplication by $p : A[p^{n+1}](\overline{F}) \longrightarrow A[p^n](\overline{F})$.

1 Introduction

Let B be an indefinite quaternion division algebra over \mathbb{Q} . Let

$$d := \text{disc } B$$

be the discriminant of B . Then d is the product of an even number of distinct prime numbers, and $d > 1$. Fix a maximal order \mathcal{O} of B . For each prime number p not dividing d , fix an isomorphism

$$\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_p \cong M_2(\mathbb{Z}_p) \quad (1.1)$$

of \mathbb{Z}_p -algebras.

Definition 1.1. (cf. [7, p.591]) Let S be a scheme. A QM-abelian surface by \mathcal{O} over S is a pair (A, i) where A is an abelian surface over S (i.e. A is an abelian scheme over S of relative dimension 2), and $i : \mathcal{O} \hookrightarrow \text{End}_S(A)$ is an injective ring homomorphism (sending 1 to id). We assume that A has a left \mathcal{O} -action. We will sometimes omit “by \mathcal{O} ” and simply write “a QM-abelian surface” if there is no fear of confusion.

Let M^B be the coarse moduli scheme over \mathbb{Q} parameterizing isomorphism classes of QM-abelian surfaces by \mathcal{O} . The notation M^B is permissible although we should write $M^{\mathcal{O}}$ instead of M^B ; for even if we replace \mathcal{O} by another maximal order \mathcal{O}' , we have a natural isomorphism $M^{\mathcal{O}} \cong M^{\mathcal{O}'}$ since \mathcal{O} and \mathcal{O}' are conjugate in B . Then M^B is a proper smooth curve over \mathbb{Q} , called a Shimura curve. For a prime number p not dividing d , let $M_0^B(p)$ be the coarse moduli scheme over \mathbb{Q} parameterizing isomorphism classes of triples (A, i, V) where (A, i) is a QM-abelian surface by \mathcal{O} and V is a left \mathcal{O} -submodule of $A[p]$ with \mathbb{F}_p -dimension 2. Then $M_0^B(p)$ is a proper smooth curve over \mathbb{Q} , which we call a Shimura curve of $\Gamma_0(p)$ -type. We have a natural map

$$\pi^B(p) : M_0^B(p) \longrightarrow M^B$$

over \mathbb{Q} defined by $(A, i, V) \longmapsto (A, i)$.

For real points on M^B , we know the following.

Theorem 1.2 ([14, Theorem 0, p.136]). *We have $M^B(\mathbb{R}) = \emptyset$.*

In the previous article, we showed that there are few points on $M_0^B(p)$ for every sufficiently large prime number p , which is an analogue of the study of points on the modular curve $X_0(p)$ ([12], [13]; for related topics, see [2]).

Theorem 1.3 ([3, Theorem 1.4]). *Let k be a finite Galois extension of \mathbb{Q} which does not contain the Hilbert class field of any imaginary quadratic field. Then there is a finite set $\mathcal{L}(k)$ of prime numbers depending on k which satisfies the following. Assume that there is a prime number q which splits completely in k and satisfies $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \not\cong M_2(\mathbb{Q}(\sqrt{-q}))$, and let $p > 4q$ be a prime number which also satisfies $p \geq 11$, $p \neq 13$, $p \nmid d$ and $p \notin \mathcal{L}(k)$.*

- (1) *If $B \otimes_{\mathbb{Q}} k \cong M_2(k)$, then $M_0^B(p)(k) = \emptyset$.*
- (2) *If $B \otimes_{\mathbb{Q}} k \not\cong M_2(k)$, then $M_0^B(p)(k) \subseteq \{\text{elliptic points of order 2 or 3}\}$.*

We can identify $M_0^B(p)(\mathbb{C})$ with a quotient of the upper half-plane, and we use the notion of “elliptic points” in this context. In Theorem 1.3, the set $\mathcal{L}(k)$ can be described explicitly. In this article, we modify the set $\mathcal{L}(k)$ slightly, and obtain its effective bound in Section 7.

2 Galois representations associated to QM-abelian surfaces (generalities)

We consider the Galois representation associated to a QM-abelian surface. Take a prime number p not dividing d . Let F be a field with $\text{char } F \neq p$. Let (A, i) be a QM-abelian surface by \mathcal{O} over F . We have isomorphisms of \mathbb{Z}_p -modules:

$$\mathbb{Z}_p^4 \cong T_p A \cong \mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_p \cong M_2(\mathbb{Z}_p).$$

The middle is also an isomorphism of left \mathcal{O} -modules; the last is also an isomorphism of \mathbb{Z}_p -algebras (which is fixed in (1.1)). We sometimes identify these \mathbb{Z}_p -modules. Take a \mathbb{Z}_p -basis

$$e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad e_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

of $M_2(\mathbb{Z}_p)$. Then the image of the natural map

$$M_2(\mathbb{Z}_p) \cong \mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_p \hookrightarrow \text{End}(T_p A) \cong M_4(\mathbb{Z}_p)$$

lies in $\left\{ \begin{pmatrix} X & 0 \\ 0 & X \end{pmatrix} \mid X \in M_2(\mathbb{Z}_p) \right\}$. The action of the Galois group G_F on $T_p A$ induces a representation

$$\rho : G_F \longrightarrow \text{Aut}_{\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_p}(T_p A) \subseteq \text{Aut}(T_p A) \cong \text{GL}_4(\mathbb{Z}_p),$$

where $\text{Aut}_{\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_p}(T_p A)$ is the group of automorphisms of $T_p A$ commuting with the action of $\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_p$. We often identify $\text{Aut}(T_p A) = \text{GL}_4(\mathbb{Z}_p)$. The above observation implies

$$\text{Aut}_{\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_p}(T_p A) = \left\{ \begin{pmatrix} sI_2 & tI_2 \\ uI_2 & vI_2 \end{pmatrix} \mid \begin{pmatrix} s & t \\ u & v \end{pmatrix} \in \text{GL}_2(\mathbb{Z}_p) \right\},$$

where $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Then the Galois representation ρ factors as

$$\rho : G_F \longrightarrow \left\{ \begin{pmatrix} sI_2 & tI_2 \\ uI_2 & vI_2 \end{pmatrix} \mid \begin{pmatrix} s & t \\ u & v \end{pmatrix} \in \text{GL}_2(\mathbb{Z}_p) \right\} \subseteq \text{GL}_4(\mathbb{Z}_p).$$

Let

$$\bar{\rho} : G_F \longrightarrow \left\{ \begin{pmatrix} sI_2 & tI_2 \\ uI_2 & vI_2 \end{pmatrix} \mid \begin{pmatrix} s & t \\ u & v \end{pmatrix} \in \text{GL}_2(\mathbb{F}_p) \right\} \subseteq \text{GL}_4(\mathbb{F}_p)$$

be the reduction of ρ modulo p . Let

$$\bar{\rho}_{A,p} : G_F \longrightarrow \text{GL}_2(\mathbb{F}_p) \tag{2.1}$$

denote the Galois representation induced from $\bar{\rho}$ by “ $\begin{pmatrix} s & t \\ u & v \end{pmatrix}$ ”, so that we have $\bar{\rho}_{A,p}(\sigma) = \begin{pmatrix} s & t \\ u & v \end{pmatrix}$ if $\bar{\rho}(\sigma) = \begin{pmatrix} sI_2 & tI_2 \\ uI_2 & vI_2 \end{pmatrix}$ for $\sigma \in G_F$.

Suppose that $A[p](F^{\text{sep}})$ has a left \mathcal{O} -submodule V with \mathbb{F}_p -dimension 2 which is stable under the action of G_F . We may assume $V = \mathbb{F}_p e_1 \oplus \mathbb{F}_p e_2 = \left\{ \begin{pmatrix} * & 0 \\ * & 0 \end{pmatrix} \right\}$. Since V is stable under the action of G_F , we find $\bar{\rho}_{A,p}(G_F) \subseteq \left\{ \begin{pmatrix} s & t \\ 0 & v \end{pmatrix} \right\} \subseteq \text{GL}_2(\mathbb{F}_p)$. Let

$$\lambda : G_F \longrightarrow \mathbb{F}_p^\times \quad (2.2)$$

denote the character induced from $\bar{\rho}_{A,p}$ by “ s ”, so that $\bar{\rho}_{A,p}(\sigma) = \begin{pmatrix} \lambda(\sigma) & * \\ 0 & * \end{pmatrix}$ for $\sigma \in G_F$. Note that G_F acts on V by λ (i.e. $\bar{\rho}(\sigma)(v) = \lambda(\sigma)v$ for $\sigma \in G_F, v \in V$).

3 Automorphism groups

We consider the automorphism group of a QM-abelian surface. Let (A, i) be a QM-abelian surface by \mathcal{O} over a field F . Put

$$\text{End}_{\mathcal{O}}(A) := \{f \in \text{End}(A) \mid fi(g) = i(g)f \text{ for any } g \in \mathcal{O}\}$$

and

$$\text{Aut}_{\mathcal{O}}(A) := \text{Aut}(A) \cap \text{End}_{\mathcal{O}}(A).$$

If $\text{char } F = 0$, then $\text{Aut}_{\mathcal{O}}(A) \cong \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z}/6\mathbb{Z}$.

Let p be a prime number not dividing d . Let (A, i, V) be a triple where (A, i) is a QM-abelian surface by \mathcal{O} over a field F and V is a left \mathcal{O} -submodule of $A[p](\overline{F})$ with \mathbb{F}_p -dimension 2. Define a subgroup $\text{Aut}_{\mathcal{O}}(A, V)$ of $\text{Aut}_{\mathcal{O}}(A)$ by

$$\text{Aut}_{\mathcal{O}}(A, V) := \{f \in \text{Aut}_{\mathcal{O}}(A) \mid f(V) = V\}.$$

Assume $\text{char } F = 0$. Then $\text{Aut}_{\mathcal{O}}(A, V) \cong \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z}/6\mathbb{Z}$. Notice that we have $\text{Aut}_{\mathcal{O}}(A) \cong \mathbb{Z}/2\mathbb{Z}$ (resp. $\text{Aut}_{\mathcal{O}}(A, V) \cong \mathbb{Z}/2\mathbb{Z}$) if and only if $\text{Aut}_{\mathcal{O}}(A) = \{\pm 1\}$ (resp. $\text{Aut}_{\mathcal{O}}(A, V) = \{\pm 1\}$).

4 Fields of definition

Let k be a number field. Let p be a prime number not dividing d . Take a point

$$x \in M_0^B(p)(k).$$

Let $x' \in M^B(k)$ be the image of x by the map $\pi^B(p) : M_0^B(p) \longrightarrow M^B$. Then x' is represented by a QM-abelian surface (say (A_x, i_x)) over \overline{k} , and x is represented by a triple (A_x, i_x, V_x) where V_x is a left \mathcal{O} -submodule of $A[p](\overline{k})$ with \mathbb{F}_p -dimension 2. For a finite extension M of k (in \overline{k}), we say that we can take (A_x, i_x) (resp. (A_x, i_x, V_x)) to be defined over M if there is a QM-abelian surface (A, i) over M such that $(A, i) \otimes_M \overline{k}$ is isomorphic to (A_x, i_x) (resp. if there is a QM-abelian surface (A, i) over M and a left \mathcal{O} -submodule V of $A[p](\overline{k})$ with \mathbb{F}_p -dimension 2 stable under

the action of G_M such that there is an isomorphism between $(A, i) \otimes_M \bar{k}$ and (A_x, i_x) under which V corresponds to V_x). Put

$$\text{Aut}(x) := \text{Aut}_{\mathcal{O}}(A_x, V_x), \quad \text{Aut}(x') := \text{Aut}_{\mathcal{O}}(A_x).$$

Then $\text{Aut}(x)$ is a subgroup of $\text{Aut}(x')$. Note that x is an elliptic point of order 2 (resp. 3) if and only if $\text{Aut}(x) \cong \mathbb{Z}/4\mathbb{Z}$ (resp. $\text{Aut}(x) \cong \mathbb{Z}/6\mathbb{Z}$).

Since x is a k -rational point, we have ${}^{\sigma}x = x$ for any $\sigma \in G_k$. Then, for any $\sigma \in G_k$, there is an isomorphism

$$\phi_{\sigma} : {}^{\sigma}(A_x, i_x, V_x) \longrightarrow (A_x, i_x, V_x),$$

which we fix once for all. Let

$$\phi'_{\sigma} : {}^{\sigma}(A_x, i_x) \longrightarrow (A_x, i_x)$$

be the isomorphism induced from ϕ_{σ} by forgetting V_x . For $\sigma, \tau \in G_k$, put

$$c_x(\sigma, \tau) := \phi_{\sigma} \circ {}^{\sigma}\phi_{\tau} \circ \phi_{\sigma\tau}^{-1} \in \text{Aut}(x)$$

and

$$c'_x(\sigma, \tau) := \phi'_{\sigma} \circ {}^{\sigma}\phi'_{\tau} \circ (\phi'_{\sigma\tau})^{-1} \in \text{Aut}(x').$$

Then c_x (resp. c'_x) is a 2-cocycle and defines a cohomology class $[c_x] \in H^2(G_k, \text{Aut}(x))$ (resp. $[c'_x] \in H^2(G_k, \text{Aut}(x'))$). Here the action of G_k on $\text{Aut}(x)$ (resp. $\text{Aut}(x')$) is defined in a natural manner (cf. [4, Section 4]).

Proposition 4.1 ([9, Theorem (1.1), p.93]). *We can take (A_x, i_x) to be defined over k if and only if $B \otimes_{\mathbb{Q}} k \cong M_2(k)$.*

Proposition 4.2 ([4, Proposition 4.2]). *(1) Suppose $B \otimes_{\mathbb{Q}} k \cong M_2(k)$. Further assume $\text{Aut}(x) \neq \{\pm 1\}$ or $\text{Aut}(x') \not\cong \mathbb{Z}/4\mathbb{Z}$. Then we can take (A_x, i_x, V_x) to be defined over k .*

(2) Assume $\text{Aut}(x) = \{\pm 1\}$. Then there is a quadratic extension K of k such that we can take (A_x, i_x, V_x) to be defined over K .

Lemma 4.3 ([4, Lemma 4.3]). *Let K be a quadratic extension of k . Assume $\text{Aut}(x) = \{\pm 1\}$. Then the following two conditions are equivalent.*

- (1) We can take (A_x, i_x, V_x) to be defined over K .*
- (2) For any place v of k satisfying $[c_x]_v \neq 0$, the tensor product $K \otimes_k k_v$ is a field.*

5 Classification of characters

We keep the notation in Section 4. Throughout this section, assume $\text{Aut}(x) = \{\pm 1\}$. Let K be a quadratic extension of k which satisfies the equivalent conditions in Lemma 4.3. Then x is represented by a triple (A, i, V) , where (A, i) is a QM-abelian

surface over K and V is a left \mathcal{O} -submodule of $A[p](\overline{K})$ with \mathbb{F}_p -dimension 2 stable under the action of G_K . Let

$$\lambda : G_K \longrightarrow \mathbb{F}_p^\times$$

be the character associated to V in (2.2). For a prime \mathfrak{l} of k (resp. K), let $I_{\mathfrak{l}}$ denote the inertia subgroup of G_k (resp. G_K) at \mathfrak{l} .

Let $\lambda^{\text{ab}} : G_K^{\text{ab}} \longrightarrow \mathbb{F}_p^\times$ be the natural map induced from λ . Put

$$\varphi := \lambda^{\text{ab}} \circ \text{tr}_{K/k} : G_k \longrightarrow G_K^{\text{ab}} \longrightarrow \mathbb{F}_p^\times \quad (5.1)$$

where $\text{tr}_{K/k} : G_k \longrightarrow G_K^{\text{ab}}$ is the transfer map. Notice that the induced map $\text{tr}_{K/k}^{\text{ab}} : G_k^{\text{ab}} \longrightarrow G_K^{\text{ab}}$ from $\text{tr}_{K/k}$ corresponds to the natural inclusion $k_{\mathbb{A}}^\times \hookrightarrow K_{\mathbb{A}}^\times$ via class field theory ([15, Theorem 8 in §9 of Chapter XIII, p.276]). We know that φ^{12} is unramified at every prime of k not dividing p ([4, Corollary 5.2]), and so φ^{12} corresponds to a character of the ideal group $\mathfrak{I}_k(p)$ consisting of fractional ideals of k prime to p . By abuse of notation, let φ^{12} also denote the corresponding character of $\mathfrak{I}_k(p)$.

Let \mathcal{M}^{new} be the set of prime numbers q such that q splits completely in k . Let \mathcal{N}^{new} be the set of primes \mathfrak{q} of k such that \mathfrak{q} divides some prime number $q \in \mathcal{M}^{\text{new}}$. Take a finite subset $\emptyset \neq \mathcal{S}^{\text{new}} \subseteq \mathcal{N}^{\text{new}}$ which generates the ideal class group of k . For each prime $\mathfrak{q} \in \mathcal{S}^{\text{new}}$, fix an element $\alpha_{\mathfrak{q}} \in \mathcal{O}_k \setminus \{0\}$ satisfying $\mathfrak{q}^{h_k} = \alpha_{\mathfrak{q}} \mathcal{O}_k$.

For an integer $n \geq 1$, put

$$\mathcal{FR}(n) := \left\{ \beta \in \mathbb{C} \mid \beta^2 + a\beta + n = 0 \text{ for some integer } a \in \mathbb{Z} \text{ with } |a| \leq 2\sqrt{n} \right\}.$$

For any element $\beta \in \mathcal{FR}(n)$, we have $|\beta| = \sqrt{n}$. For a prime \mathfrak{q} of k , put $N(\mathfrak{q}) = \#\langle \mathcal{O}_k/\mathfrak{q} \rangle$. If $\mathfrak{q} \in \mathcal{S}^{\text{new}}$, then $N(\mathfrak{q})$ is a prime number. Define the sets

$$\mathcal{E}(k) := \left\{ \varepsilon_0 = \sum_{\sigma \in \text{Gal}(k/\mathbb{Q})} a_\sigma \sigma \in \mathbb{Z}[\text{Gal}(k/\mathbb{Q})] \mid a_\sigma \in \{0, 8, 12, 16, 24\} \right\},$$

$$\mathcal{M}_1^{\text{new}}(k) := \left\{ (\mathfrak{q}, \varepsilon_0, \beta_{\mathfrak{q}}) \mid \mathfrak{q} \in \mathcal{S}^{\text{new}}, \varepsilon_0 \in \mathcal{E}(k), \beta_{\mathfrak{q}} \in \mathcal{FR}(N(\mathfrak{q})) \right\},$$

$$\mathcal{M}_2^{\text{new}}(k) := \left\{ \text{Norm}_{k(\beta_{\mathfrak{q}})/\mathbb{Q}}(\alpha_{\mathfrak{q}}^{\varepsilon_0} - \beta_{\mathfrak{q}}^{24h_k}) \in \mathbb{Z} \mid (\mathfrak{q}, \varepsilon_0, \beta_{\mathfrak{q}}) \in \mathcal{M}_1^{\text{new}}(k) \right\} \setminus \{0\},$$

$$\mathcal{N}_0^{\text{new}}(k) := \left\{ l : \text{prime number} \mid l \text{ divides some integer } m \in \mathcal{M}_2^{\text{new}}(k) \right\},$$

$$\mathcal{T}^{\text{new}}(k) := \left\{ l' : \text{prime number} \mid l' \text{ is divisible by some prime } \mathfrak{q}' \in \mathcal{S}^{\text{new}} \right\} \cup \{2, 3\},$$

$$\mathcal{N}_1^{\text{new}}(k) := \mathcal{N}_0^{\text{new}}(k) \cup \mathcal{T}^{\text{new}}(k) \cup \text{Ram}(k).$$

Note that all the sets, $\mathcal{FR}(n)$, $\mathcal{M}_1^{\text{new}}(k)$, $\mathcal{M}_2^{\text{new}}(k)$, $\mathcal{N}_0^{\text{new}}(k)$, $\mathcal{T}^{\text{new}}(k)$, and $\mathcal{N}_1^{\text{new}}(k)$, are finite.

Theorem 5.1 (cf. [4, Theorem 5.6]). *Assume that k is Galois over \mathbb{Q} . If $p \notin \mathcal{N}_1^{\text{new}}(k)$ (and if p does not divide d), then the character $\varphi : G_k \longrightarrow \mathbb{F}_p^\times$ is of one of the following types.*

Type 2: $\varphi^{12} = \theta_p^{12}$ and $p \equiv 3 \pmod{4}$.

Type 3: There is an imaginary quadratic field L satisfying the following two conditions.

(a) The Hilbert class field H_L of L is contained in k .

(b) There is a prime \mathfrak{p}_L of L lying over p such that $\varphi^{12}(\mathfrak{a}) \equiv \delta^{24} \pmod{\mathfrak{p}_L}$ holds for any fractional ideal \mathfrak{a} of k prime to p . Here δ is any element of L such that $\text{Norm}_{k/L}(\mathfrak{a}) = \delta \mathcal{O}_L$.

Proof. It suffices to modify the proof of Theorem 5.6 in [4] slightly. First, notice that the abelian surface $A \otimes_K K_{\mathfrak{q}_K}$ over $K_{\mathfrak{q}_K}$ (which corresponds to $x \otimes K_{\mathfrak{q}_K}$) has good reduction after a totally ramified finite extension $M(\mathfrak{q})/K_{\mathfrak{q}_K}$ without assuming $q \geq 5$ ([9, Proposition 3.2, p.101]). Second, in the case where ε is of type 2, notice that $\beta_{\mathfrak{q}}^{24h_k} = q^{12h_k}$ implies $\beta_{\mathfrak{q}}^{24} = q^{12}$ without assuming $q \nmid 6h_k$. Now we show this. Write $\beta = \beta_{\mathfrak{q}}$ for simplicity. Let $\bar{\beta}$ be the complex conjugate of β . Since $\beta^{24h_k} = \bar{\beta}^{24h_k}$, we have $\bar{\beta} = \zeta\beta$ for some $\zeta \in \mathbb{C}$ with $\zeta^{24h_k} = 1$. Since $\mathbb{Q}(\beta) = \mathbb{Q}(\bar{\beta}) = \mathbb{Q}(\zeta\beta) = \mathbb{Q}(\beta, \zeta) \supseteq \mathbb{Q}(\zeta)$ and $[\mathbb{Q}(\beta) : \mathbb{Q}] = 2$, we have $\zeta^4 = 1$ or $\zeta^6 = 1$. Then $\zeta^{12} = 1$. This implies $\bar{\beta}^{12} = \zeta^{12}\beta^{12} = \beta^{12}$, and so $\beta^{12} \in \mathbb{Q}$. Since $|\beta| = \sqrt{q}$, we have $\beta^{12} = \pm q^6$, and hence $\beta^{24} = q^{12}$. Notice that the case $\beta^{12} = -q^6$ really occurs (e.g. $q = 2$ and $\beta = 1 + \sqrt{-1}$). \square

From now to the end of this section, assume that k is Galois over \mathbb{Q} . The set $\mathcal{N}_1^{new}(k)$ may differ from $\mathcal{N}_1(k)$ in [4], nevertheless we have the following.

Lemma 5.2 (cf. [5, Lemma 5.11]). *Suppose $p \geq 11$, $p \neq 13$ and $p \notin \mathcal{N}_1^{new}(k)$. Further assume the following two conditions.*

- (a) *Every prime \mathfrak{p} of k above p is inert in K/k .*
- (b) *Every prime $\mathfrak{q} \in \mathcal{S}^{new}$ is ramified in K/k .*

If φ is of type 2, then we have the following.

- (i) *The character $\lambda^{12}\theta_p^{-6} : G_K \rightarrow \mathbb{F}_p^\times$ is unramified everywhere.*
- (ii) *The map $Cl_K \rightarrow \mathbb{F}_p^\times$ induced from $\lambda^{12}\theta_p^{-6}$ is trivial on $C_{K/k} := \text{Im}(Cl_k \rightarrow Cl_K)$, where Cl_K is the ideal class group of K and $Cl_k \rightarrow Cl_K$ is the map defined by $[\mathfrak{a}] \mapsto [\mathfrak{a}\mathcal{O}_K]$.*

Proof. (ii) The argument in the proof of Lemma 5.11 (ii) in [5] works here, but we may not have $\beta = \pm\sqrt{-q}$. Nevertheless we have $\beta^{24} = q^{12}$ as seen in the proof of Theorem 5.1, and so we are done. \square

We also have the following with the same proof as before.

Lemma 5.3 (cf. [3, Lemma 5.6], [4, Lemma 5.12], [5, 3]). *Suppose $p \geq 11$, $p \neq 13$ and $p \notin \mathcal{N}_1^{new}(k)$. Assume that φ is of type 2. Let $q < \frac{p}{4}$ be a prime number which splits completely in k . Then we have $\left(\frac{q}{p}\right) = -1$ and $q^{\frac{p-1}{2}} \equiv -1 \pmod{p}$. Furthermore, we have $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \cong M_2(\mathbb{Q}(\sqrt{-q}))$.*

6 Irreducibility result

Let k be a number field, and let (A, i) be a QM-abelian surface by \mathcal{O} over k . For a prime number p not dividing d , assume that the representation $\bar{\rho}_{A,p}$ in (2.1) is reducible. Then there is a 1-dimensional sub-representation of $\bar{\rho}_{A,p}$; let ν be its associated character. In this case notice that there is a left \mathcal{O} -submodule V of $A[p](\bar{k})$ with \mathbb{F}_p -dimension 2 on which G_k acts by ν , and so the triple (A, i, V) determines a point $x \in M_0^B(p)(k)$. Take any quadratic extension K of k . Then we have the

characters $\lambda : G_K \longrightarrow \mathbb{F}_p^\times$ and $\varphi : G_k \longrightarrow \mathbb{F}_p^\times$ associated to the triple $(A \otimes_k K, i, V)$. We know $\varphi = \nu^2$ by construction of φ .

Theorem 6.1. *Let k be a finite Galois extension of \mathbb{Q} which does not contain the Hilbert class field of any imaginary quadratic field. Assume that there is a prime number q which splits completely in k and satisfies $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \not\cong M_2(\mathbb{Q}(\sqrt{-q}))$. Let $p > 4q$ be a prime number which also satisfies $p \geq 11$, $p \neq 13$, $p \nmid d$ and $p \notin \mathcal{N}_1^{new}(k)$. Then the representation*

$$\bar{\rho}_{A,p} : G_k \longrightarrow \mathrm{GL}_2(\mathbb{F}_p)$$

is irreducible.

Proof. Assume that $\bar{\rho}_{A,p}$ is reducible. Then the associated character φ is of type 2 in Theorem 5.1, because k does not contain the Hilbert class field of any imaginary quadratic field. By Lemma 5.3, we have $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \cong M_2(\mathbb{Q}(\sqrt{-q}))$, which is a contradiction. \square

Theorem 6.2. *Let k be a finite Galois extension of \mathbb{Q} which does not contain the Hilbert class field of any imaginary quadratic field. Assume that there is a prime number q which splits completely in k and satisfies $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \not\cong M_2(\mathbb{Q}(\sqrt{-q}))$, and let $p > 4q$ be a prime number which also satisfies $p \geq 11$, $p \neq 13$, $p \nmid d$ and $p \notin \mathcal{N}_1^{new}(k)$.*

- (1) If $B \otimes_{\mathbb{Q}} k \cong M_2(k)$, then $M_0^B(p)(k) = \emptyset$.
- (2) If $B \otimes_{\mathbb{Q}} k \not\cong M_2(k)$, then $M_0^B(p)(k) \subseteq \{\text{elliptic points of order 2 or 3}\}$.

(Proof of Theorem 6.2)

Let k be a finite Galois extension of \mathbb{Q} which does not contain the Hilbert class field of any imaginary quadratic field, and let q be a prime number which splits completely in k and satisfies $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \not\cong M_2(\mathbb{Q}(\sqrt{-q}))$. Let $p > 4q$ be a prime number which also satisfies $p \geq 11$, $p \neq 13$ and $p \nmid d$. Take a point $x \in M_0^B(p)(k)$.

- (1) Suppose $B \otimes_{\mathbb{Q}} k \cong M_2(k)$.

(1-i) Assume $\mathrm{Aut}(x) \neq \{\pm 1\}$ or $\mathrm{Aut}(x') \not\cong \mathbb{Z}/4\mathbb{Z}$. Then x is represented by a triple (A, i, V) defined over k by Proposition 4.2 (1), and the representation $\bar{\rho}_{A,p}$ is reducible. By Theorem 6.1, we have $p \in \mathcal{N}_1^{new}(k)$.

(1-ii) Assume otherwise (i.e. $\mathrm{Aut}(x) = \{\pm 1\}$ and $\mathrm{Aut}(x') \cong \mathbb{Z}/4\mathbb{Z}$). Then x is represented by a triple (A, i, V) defined over a quadratic extension of k by Proposition 4.2 (2), and we have a character $\varphi : G_k \longrightarrow \mathbb{F}_p^\times$ as in (5.1). By Theorem 5.1 and Lemma 5.3, we have $p \in \mathcal{N}_1^{new}(k)$.

(2) Suppose $B \otimes_{\mathbb{Q}} k \not\cong M_2(k)$. Further assume that x is not an elliptic point of order 2 or 3; this implies $\mathrm{Aut}(x) = \{\pm 1\}$. By the same argument as in (1-ii), we conclude $p \in \mathcal{N}_1^{new}(k)$. \square

7 Estimate of $\mathcal{N}_1^{new}(k)$

We estimate the set $\mathcal{N}_1^{new}(k)$ in the method of [8].

Theorem 7.1 ([11, Theorem 1.1, p.272]). *There is an absolute, effectively computable constant $A_1 > 1$ such that for every finite extension k_1 of \mathbb{Q} , every finite Galois extension k_2 of k_1 and every conjugacy class C of $\text{Gal}(k_2/k_1)$, there is a prime \mathfrak{q} of k_1 which is unramified in k_2 , for which $\text{Frob}_{\mathfrak{q}} = C$, for which $N(\mathfrak{q})$ is a prime number, and which satisfies the bound $N(\mathfrak{q}) \leq 2d_{k_2}^{A_1}$. Here $\text{Frob}_{\mathfrak{q}}$ is the (arithmetic) Frobenius conjugacy class at \mathfrak{q} in $\text{Gal}(k_2/k_1)$.*

Proposition 7.2 ([8, Proposition 4.2]). *Let A_1 be the constant in Theorem 7.1. Then we can take \mathcal{S}^{new} so that every prime $\mathfrak{q} \in \mathcal{S}^{new}$ satisfies $N(\mathfrak{q}) \leq 2d_k^{A_1 h_k}$.*

For a place v of k and an element $\alpha \in k$, define $\|\alpha\|_v$ as follows.

- If v is finite, let \mathfrak{q} be the prime of k corresponding to v , and let $\|\alpha\|_v := N(\mathfrak{q})^{-\text{ord}_{\mathfrak{q}}(\alpha)}$ where $\text{ord}_{\mathfrak{q}}(\alpha)$ is the order of α at \mathfrak{q} . Here we put $\|\alpha\|_v := 0$ if $\alpha = 0$.
- If v is real, let $\tau : k \hookrightarrow \mathbb{R}$ be the embedding corresponding to v , and let $\|\alpha\|_v := |\tau(\alpha)|$.
- If v is complex, let $\tau : k \hookrightarrow \mathbb{C}$ be one of the embeddings corresponding to v , and let $\|\alpha\|_v := |\tau(\alpha)|^2$.

For an element $\alpha \in k$, let $H(\alpha)$ denote the absolute height of α defined by

$$H(\alpha) := \left(\prod_v \max(1, \|\alpha\|_v) \right)^{\frac{1}{n_k}},$$

where v runs through all places of k . We know that there is a positive constant δ_k , depending only on k , such that for every non-zero element $\alpha \in k$ that is not a root of unity we have $\log H(\alpha) \geq \delta_k/n_k$ (cf. [6, p.70]). Fix such a constant δ_k . Define the constant $C_1(k) := \frac{r_k^{1+r_k} \delta_k^{1-r_k}}{2}$.

Proposition 7.3. *Let \mathfrak{q} be a prime of k . Then there is an element $\alpha'_{\mathfrak{q}} \in \mathcal{O}_k \setminus \{0\}$ which satisfies $\mathfrak{q}^{h_k} = \alpha'_{\mathfrak{q}} \mathcal{O}_k$ and $H(\alpha'_{\mathfrak{q}}) \leq |\text{Norm}_{k/\mathbb{Q}}(\alpha'_{\mathfrak{q}})|^{\frac{1}{n_k}} \exp(C_1(k)R_k)$.*

Proof. Take an element $\gamma \in \mathcal{O}_k \setminus \{0\}$ which satisfies $\mathfrak{q}^{h_k} = \gamma \mathcal{O}_k$. Then, by [8, Lemme 3], there is an element $u \in \mathcal{O}_k^{\times}$ satisfying $H(u\gamma) \leq |\text{Norm}_{k/\mathbb{Q}}(\gamma)|^{\frac{1}{n_k}} \exp(C_1(k)R_k)$. If we put $\alpha'_{\mathfrak{q}} = u\gamma$, then $\mathfrak{q}^{h_k} = \alpha'_{\mathfrak{q}} \mathcal{O}_k$ and $H(\alpha'_{\mathfrak{q}}) \leq |\text{Norm}_{k/\mathbb{Q}}(u^{-1}\alpha'_{\mathfrak{q}})|^{\frac{1}{n_k}} \exp(C_1(k)R_k) = |\text{Norm}_{k/\mathbb{Q}}(\alpha'_{\mathfrak{q}})|^{\frac{1}{n_k}} \exp(C_1(k)R_k)$. The last equality holds because $\text{Norm}_{k/\mathbb{Q}}(u^{-1}) \in \mathbb{Z}^{\times} = \{\pm 1\}$. \square

Define the constant $C_2(k) := \exp(24n_k C_1(k)R_k)$.

Proposition 7.4. *Under the situation in Proposition 7.3, we have $|(\alpha'_q)^\varepsilon| \leq N(q)^{24h_k} C_2(k)$ for any $\varepsilon \in \mathcal{E}(k)$.*

Proof. Let $\varepsilon = \sum_{\sigma \in \text{Gal}(k/\mathbb{Q})} a_\sigma \sigma$. Then

$$\begin{aligned} |(\alpha'_q)^\varepsilon| &= \left| \prod_{\sigma \in \text{Gal}(k/\mathbb{Q})} (\alpha'_q)^{a_\sigma \sigma} \right| \leq \left(\prod_{\sigma \in \text{Gal}(k/\mathbb{Q})} \max(1, |(\alpha'_q)^\sigma|) \right)^{24} = \prod_{v \mid \infty} \max(1, ||\alpha'_q||_v)^{24} \\ &= H(\alpha'_q)^{24n_k} \leq |\text{Norm}_{k/\mathbb{Q}}(\alpha'_q)|^{24} \exp(24n_k C_1(k) R_k) = N(q)^{24h_k} C_2(k). \end{aligned}$$

Note that the third equality holds because $\alpha'_q \in \mathcal{O}_k \setminus \{0\}$. □

For $a > 0$, define the constant $C(k, a) := (a^{24h_k} C_2(k) + a^{12h_k})^{2n_k}$.

Proposition 7.5. *Under the situation in Proposition 7.3, we have $|\text{Norm}_{k(\beta_q)/\mathbb{Q}}((\alpha'_q)^\varepsilon - \beta_q^{24h_k})| \leq C(k, N(q))$ for any $\varepsilon \in \mathcal{E}(k)$ and any $\beta_q \in \mathcal{FR}(N(q))$.*

Proof. For any $\tau \in \text{Gal}(k(\beta_q)/\mathbb{Q})$, we have $|((\alpha'_q)^\varepsilon - \beta_q^{24h_k})^\tau| \leq |(\alpha'_q)^\varepsilon| + |\beta_q^{24h_k}| \leq N(q)^{24h_k} C_2(k) + N(q)^{12h_k}$. Then $|\text{Norm}_{k(\beta_q)/\mathbb{Q}}((\alpha'_q)^\varepsilon - \beta_q^{24h_k})| = \prod_{\tau \in \text{Gal}(k(\beta_q)/\mathbb{Q})} |((\alpha'_q)^\varepsilon - \beta_q^{24h_k})^\tau| \leq (N(q)^{24h_k} C_2(k) + N(q)^{12h_k})^{2n_k} = C(k, N(q))$. □

From now to the end of this section, take \mathcal{S}^{new} as in Proposition 7.2, and take α_q to be α'_q in Proposition 7.3 for any $q \in \mathcal{S}^{\text{new}}$.

Proposition 7.6. *For any $m \in \mathcal{M}_2^{\text{new}}(k)$, we have $|m| \leq C(k, 2d_k^{A_1 h_k})$.*

Proof. We have $m = \text{Norm}_{k(\beta_q)/\mathbb{Q}}(\alpha_q^\varepsilon - \beta_q^{24h_k})$ for some elements $q \in \mathcal{S}^{\text{new}}$, $\varepsilon \in \mathcal{E}(k)$ and $\beta_q \in \mathcal{FR}(N(q))$. Then we obtain $|m| \leq C(k, N(q)) \leq C(k, 2d_k^{A_1 h_k})$ by Propositions 7.2 and 7.5. □

Theorem 7.7. *For any $p \in \mathcal{N}_1^{\text{new}}(k)$, we have $p \leq C(k, 2d_k^{A_1 h_k})$.*

Proof. Let $p \in \mathcal{N}_1^{\text{new}}(k)$. If $p \in \mathcal{N}_0^{\text{new}}(k)$, then $p \leq C(k, 2d_k^{A_1 h_k})$. If $p \in \mathcal{T}^{\text{new}}(k)$, then $p \leq \max(3, 2d_k^{A_1 h_k})$. If $p \in \mathbf{Ram}(k)$, then $p \leq d_k$. Therefore we conclude $p \leq C(k, 2d_k^{A_1 h_k})$. □

References

- [1] K. Arai, On the Galois images associated to QM-abelian surfaces, Proceedings of the Symposium on Algebraic Number Theory and Related Topics, 165–187, RIMS Kôkyûroku Bessatsu, **B4**, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007.

- [2] *K. Arai*, Galois images and modular curves, Proceedings of the Symposium on Algebraic Number Theory and Related Topics, 145–161, RIMS Kôkyûroku Bessatsu, **B32**, Res. Inst. Math. Sci. (RIMS), Kyoto, 2012.
- [3] *K. Arai*, Algebraic points on Shimura curves of $\Gamma_0(p)$ -type (II), preprint, available at the web page (<http://arxiv.org/pdf/1205.3596v2.pdf>).
- [4] *K. Arai, F. Momose*, Algebraic points on Shimura curves of $\Gamma_0(p)$ -type, J. Reine Angew. Math., published online (ahead of print).
- [5] *K. Arai, F. Momose*, Errata to Algebraic points on Shimura curves of $\Gamma_0(p)$ -type, J. Reine Angew. Math., published online (ahead of print).
- [6] *Y. Bugeaud, K. Győry*, Bounds for the solutions of unit equations, Acta Arith. 74 (1996), no. 1, 67–80.
- [7] *K. Buzzard*, Integral models of certain Shimura curves, Duke Math. J. **87** (1997), no. 3, 591–612.
- [8] *A. David*, Caractère d’isogénie et critères d’irréductibilité, preprint, available at the web page (<http://arxiv.org/pdf/1103.3892.pdf>).
- [9] *B. Jordan*, Points on Shimura curves rational over number fields, J. Reine Angew. Math. **371** (1986), 92–114.
- [10] *A. Kurihara*, On some examples of equations defining Shimura curves and the Mumford uniformization, J. Fac. Sci. Univ. Tokyo Sect. IA Math. **25** (1979), no. 3, 277–300.
- [11] *J. C. Lagarias, H. L. Montgomery, A. M. Odlyzko*, A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math. 54 (1979), no. 3, 271–296.
- [12] *B. Mazur*, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. **44** (1978), no. 2, 129–162.
- [13] *F. Momose*, Isogenies of prime degree over number fields, Compositio Math. **97** (1995), no. 3, 329–348.
- [14] *G. Shimura*, On the real points of an arithmetic quotient of a bounded symmetric domain, Math. Ann. **215** (1975), 135–164.
- [15] *A. Weil*, Basic number theory, Reprint of the second (1973) edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.

(Keisuke Arai) Department of Mathematics, School of Engineering, Tokyo Denki University, 5 Senju Asahi-cho, Adachi-ku, Tokyo 120-8551 Japan

E-mail address: `araik@mail.dendai.ac.jp`