Lévijevi procesi in njihova uporaba v financah

Anej Rozman

Mentor: doc. dr. Martin Raič

Lévijev proces

Definicija

Slučajnemu procesu $X = \{X_t \mid t \geq 0\}$ definiranem na verjetnostnemu prostoru $(\Omega, \mathcal{F}, \mathbb{P})$ pravimo Lévijev proces, če zadošča naslednjim pogojem:

- **1** $\mathbb{P}(X_0 = 0) = 1.$
- Trajektorije X so P-skoraj gotovo zvezne z desne (z levimi limitami).
- **③** Za 0 ≤ s ≤ t je $X_t X_s$ enako porazdeljena kot X_{t-s} .
- **4** Za $0 \le s \le t$ je $X_t X_s$ neodvisna od $\{X_u \mid 0 \le u \le s\}$.

Neskončno deljive porazdelitve

Definicija

Pravimo, da ima realno številska slučajna spremenljivka X neskončno deljivo porazdelitev, če za vsak $n \in \mathbb{N}$ obstaja zaporedje neodvisnih enako porazdeljenih slučajnih spremenljivk $(X_i)_{i=1,\dots,n'}$ da velja

$$X \stackrel{d}{=} X_1 + X_2 + \dots X_n,$$

 $kjer \stackrel{d}{=} pomeni enakost v porazdelitvi.$

Nekaj zgledov

Zgled

Normalna porazdelitev je neskončno deljiva.

Naj bo $X\sim N(\mu,\sigma^2)$. Vemo da so linearne kombinacije neodvisnih normalno porazdeljenih slučajnih spremenljivk spet normalno porazdeljene. Torej lahko za poljuben $n\in\mathbb{N}$ zapišemo

$$X \stackrel{d}{=} N(\frac{\mu}{n}, \frac{\sigma^2}{n}) + \dots + N(\frac{\mu}{n}, \frac{\sigma^2}{n}).$$

Nekaj zgledov

Zgled

Poissonova porazdelitev je neskončno deljiva.

Naj bo $X \sim \operatorname{Pois}(\lambda)$. Vemo da so linearne kombinacije neodvisnih Poissonovo porazdeljenih slučajnih spremenljivk spet Poissonovo porazdeljene. Torej lahko za poljuben $n \in \mathbb{N}$ zapišemo

$$X \stackrel{d}{=} Pois(\frac{\lambda}{n}) + \dots + Pois(\frac{\lambda}{n}).$$

Lema

Linearne kombinacije neodvisnih neskončno deljivih slučajnih spremenljivk so neskončno deljive slučajne spremenljivke.

Dokaz.

Naj bodo $X_1, X_2, ..., X_m$ neodvisne neskončno deljive s. s. Tedaj lahko za vsak $n \in \mathbb{N}$ zapišemo $X_i \stackrel{d}{=} X_{i_1} + \cdots + X_{i_n}$, torej za $a_1, \ldots, a_m \in \mathbb{R}$ lahko $a_1X_1 + \cdots + a_mX_m$ zapišemo kot

$$a_1 X_1 + \dots + a_m X_m \stackrel{d}{=}$$

$$\stackrel{d}{=} a_1 (X_{1_1} + \dots + X_{1_n}) + \dots + a_m (X_{m_1} + \dots + X_{m_n})$$

$$\stackrel{d}{=} \sum_{i=1}^m a_i X_{i_1} + \dots + \sum_{i=1}^m a_i X_{i_n}.$$

Lévy-Hinčinova formula

Izrek

(Lévy-Hinčinova formula) Neskončno deljive porazdelitve na \mathbb{R}^+ je možno opisati s pari (σ, ν) , kjer je $\sigma \in \mathbb{R}^+$ in ν mera, ki zadošča pogoju $\int_{\mathbb{R}^+} 1 \wedge x^2 \nu(dx) \leq \infty$, in sicer paru (σ, ν) priredimo karakteristično funkcijo $\varphi_{\sigma,\nu}(t) = e^{-\theta(t)}$,

$$\theta(t) = \left(\sigma it + \int_{\mathbb{R}^+} (1 - e^{-itx}) \nu(dx)\right).$$

Ta predpis predstavlja bijekcijo med omenjenimi pari (σ, ν) in neskončno deljivimi porazdelitvami na \mathbb{R}^+ .

Poissonova porazdelitev