Teknologi Informasi

Bab 9

Aljabar Boolean

Pengantar

- Aljabar Boolean ditemukan oleh George Boole, pada tahun 1854.
- Boole melihat bahwa himpunan dan logika proposisi mempunyai sifat-sifat yang serupa (perhatikan kemiripan hukum-hukum aljabar logika dan hukum-hukum aljabar himpunan).
- Dalam buku The Laws of Thought, Boole memaparkan aturan-aturan dasar logika.
- Aturan dasar logika ini membentuk struktur matematika yang disebut Aljabar Boolean.

Aljabar Boolean

- Aljabar boole adalah suatu teknik matematika yang dipakai untuk menyelesaikan masalah-masalah logika.
- Aljabar boole mendasari operasi-operasi aritmatika yang dilakukan oleh komputer dan juga bermanfaat untuk menganalisis dan mendesain rangkaian yang menjadi dasar bagi pembentukkan komputer sendiri

01100 10110 11110

Operasi Logika dan Gerbang Logika

Operasi Aljabar Boolean

- Operasi Invers/NOT
- Operasi AND
- Operasi OR

01100 10110

Operasi Aljabar Boolean - Operasi Invers

- Yaitu operasi logika yang mengubah logika 1 menjadi 0 atau sebaliknya.
- Jika suatu variabel x, maka invers x (dibaca : bukan x, x-invers, x-not, x-bar)
- $\bar{A} = A' = A$ -invers

Α	Ā
0	1
1	0

Operasi Aljabar Boolean - Operasi AND

- Operasi AND antara 2 (dua) variabel A dan B ditulis A . B (dibaca: A and B)
- A. B bernilai 1, hanya jika A dan B bernilai 1
- Tabel kebenaran A . B

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Operasi Aljabar Boolean - Operasi OR

- Operasi OR antara 2 (dua) variabel A dan B ditulis A + B (dibaca: A or B)
- A + B bernilai 0, hanya jika A dan B bernilai 0
- Tabel kebenaran A + B

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

Gerbang Logika

- Gerbang logika adalah piranti dua-keadaan, yaitu mempunyai keluaran dua keadaan,
 - Keluaran dengan nol volt yang menyatakan logika 0 (atau rendah)
 - keluaran dengan tegangan tetap yang menyatakan logika 1 (atau tinggi).
- Gerbang logika dapat mempunyai beberapa masukan yang masing-masing mempunyai salah satu dari dua keadaan logika, yaitu 0 atau 1.

Gerbang Logika (cont.)

- Gerbang logika dapat digunakan untuk melakukan fungsi-fungsi khusus, misalnya NOT, AND, OR, NAND, NOR, EX-OR (XOR) atau EX-NOR (XNOR).
- Komputer digital pada dasarnya tersusun dari rangkaian gerbang-gerbang logika yang sudah diintegrasikan (IC)
- Bagian-bagian yang membentuk IC terdiri dari transistortransistor, dioda-dioda dan komponen zat padat lainnya.

Gerbang Logika (cont.)

- NOT
- **AND**
- OR
- NAND (Not AND)
- NOR (Not OR)
- XOR (Eksklusif OR)
- XNOR (Not XOR)

Gerbang Logika - NOT

Gerbang NOT merupakan gerbang satu-masukan yang berfungsi sebagai pembalik (inverter). Jika masukannya tinggi, maka keluarannya rendah, dan sebaliknya.

Α	Ā
0	1
1	0

Gerbang Logika - AND

Gerbang AND digunakan untuk menghasilkan logika 1 jika semua masukan mempunyai logika 1, jika tidak maka akan dihasilkan logika 0.

Α	В	С
0	0	0
0	1	0
1	0	0
1	1	1

Gerbang Logika - OR

 Gerbang OR akan memberikan keluaran 1 jika salah satu dari masukannya pada keadaan 1. Jika diinginkan keluaran bernilai 0, maka semua masukan harus dalam keadaan 0.

Α	В	С
0	0	0
0	1	1
1	0	1
1	1	1

Gerbang Logika - NAND

- Kata NAND merupakan kependekan dari NOT-AND, yang merupakan ingkaran dari gerbang AND.
- Gerbang NAND akan mempunyai keluaran 0 bila semua masukan pada logika 1.
- Sebaliknya, jika ada sebuah logika 0 pada sembarang masukan pada gerbang NAND, maka keluarannya akan bernilai 1.

Α	В	С
0	0	1
0	1	1
1	0	1
1	1	0

Gerbang Logika - X-NOR

- Kata X-NOR merupakan kependekan dari NOT-XOR, yang merupakan ingkaran dari gerbang XOR.
- Gerbang X-NOR akan memberikan keluaran 1 jika masukanmasukannya mempunyai keadaan yang sama.

Α	В	С
0	0	1
0	1	0
1	0	0
1	1	1

Notasi Boole

- Keluaran dari satu atau kombinasi beberapa buah gerbang dapat dinyatakan dalam suatu ungkapan logika yang disebut ungkapan Boole.
- Teknik ini memanfaatkan aljabar Boole dengan notasi-notasi khusus dan aturan-aturan yang berlaku untuk elemen-elemen logika termasuk gerbang logika.

Notasi Boole

Fungsi	Notasi Boole
NOT	Ā
AND	A . B = AB
OR	A + B
NAND	A . B
NOR	$\overline{A + B}$
EX-OR	$A \oplus B$
EX-NOR	$\overline{A \oplus B}$

NAND GATE (GERBANG NAND)	A B	A B	Gerbang NAND terdiri dari dua input atau lebih. Jika salah satu input = 0 maka output akan = 1 Y = A.B	A B Y 0 0 1 0 1 1 1 0 1 1 1 0
NOR GATE (GERBANG NOR)	A — ≥1 B — ⊃ Y	A D	Gerbang NOR terdiri dari dua input atau lebih. Jika salah satu input = 0 maka output akan = 0 Y = A + B	A B Y 0 0 1 0 1 0 1 0 0 1 1 0
X-OR GATE (GERBANG X-OR)	A =1 Y	A B	Gerbang X-OR hanya terdiri dari dua input. Jika input sama maka output akan = 0 Y = A ⊕ B	A B Y 0 0 0 0 1 1 1 0 1 1 1 0
X-NOR GATE (GERBANG X-NOR)	A =1 B =1	A DO-Y	Gerbang X-NOR hanya terdiri dari dua input. Jika input sama maka output akan = 1 Y = A ⊕ B	A B Y 0 0 1 0 1 0 1 0 0 1 1 1

Menentukan Fungsi Boole dari Gerbang Logika

Tentukan persamaan boole-nya

Definisi Aljabar Boolean

Definisi Aljabar Boolean

- Misalkan terdapat
 - Dua operator biner: + dan •
 - Sebuah operator uner: '
 - B: himpunan yang didefinisikan pada operator +, ·, dan '
 - 0 dan 1 adalah dua elemen yang berbeda dari B.
- Tupel

disebut *Aljabar Boolean* jika untuk setiap a, b, $c \in B$ berlaku **aksioma**-aksioma atau *Postulat Huntington* berikut:

Aksioma / Postulat Huntington

1. Closure: (i)
$$a + b \in B$$

(ii)
$$a \cdot b \in B$$

2. Identitas: (i)
$$a + 0 = a$$

(ii)
$$a \cdot 1 = a$$

3. Komutatif: (i)
$$a + b = b + a$$

(ii)
$$a \cdot b = b \cdot a$$

4. Distributif: (i)
$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

(ii)
$$a + (b \cdot c) = (a + b) \cdot (a + c)$$

5. Komplemen: (i)
$$a + a' = 1$$

(ii)
$$a \cdot a' = 0$$

Aksioma / Postulat Huntington (cont.)

- Berhubung elemen-elemen B tidak didefinisikan nilainya (kita bebas menentukan anggota-anggota B), maka terdapat banyak sekali aljabar boolean.
- Untuk mempunyai sebuah aljabar Boolean, maka harus memperlihatkan:
 - 1. Elemen-elemen himpunan B,
 - 2. Kaidah/aturan operasi untuk dua operator biner dan operator uner
 - 3. Himpunan *B*, bersama-sama dengan dua operator tersebut, memenuhi aksioma/ Postulat Huntington

Urutan Operasi (Parentheses)

- Operasi bilangan biner hanya mengenal AND dan OR
- Jika terjadi operasi AND dan OR bersamaan tanpa ada kurung, maka yang didahulukan adalah AND
- Misal : $x = A.B+C = (A.B)+C \rightarrow A$ dan B di-**and**-kan dulu, baru di-**or**-kan dengan C
- \blacksquare A.B+C \neq A.(B+C)

Aturan Aljabar Boolean

1.
$$A + 0 = A$$

$$2. A + 1 = 1$$

3.
$$A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

5.
$$A + A = A$$

6.
$$A + \bar{A} = 1$$

7.
$$A \cdot A = A$$

$$8. A \cdot \bar{A} = 0$$

9.
$$\bar{A} = A$$

$$10. A + AB = A$$

11. A +
$$\bar{A}B = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

Aljabar Boolean Dua-Nilai

Aljabar Boolean Dua-Nilai

$$\blacksquare B = \{0, 1\}$$

- Operator Biner: + dan •
- Operator Uner: *
- Kaidah untuk operator biner dan operator uner

Α	В	A-B
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

Α	Ā		
0	1		
1	0		

Aljabar Boolean Dua-Nilai (cont.)

Cek apakah Boolean tersebut memenuhi Postulat Huntington:

- 1. Closure: jelas berlaku
- 2. Identitas: jelas berlaku karena dari table dapat diketahui
 - (i) 1 + 0 = 1
 - $(ii) 1 \cdot 1 = 1$
- 3. Komutatif: jelas berlaku karena dari table dapat diketahui
 - (i) 0 + 1 = 1 + 0 = 1
 - $(ii) 1 \cdot 0 = 0 \cdot 1 = 0$

Aljabar Boolean Dua-Nilai (cont.)

4. **Distributif:** (i) $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ dapat ditunjukkan

а	b	С		b + c	a · (b + c)		a · b	а∙с	(a · b) + (a · c)
0	0	0		0	0		0	0	0
0	0	1		1	0		0	0	0
0	1	0	_	1	0		0	0	0
0	1	1	7	1	0	<u> </u>	0	0	0
1	0	0		0	0		0	0	0
1	0	1		1	1		0	1	1
1	1	0		1	1		1	0	1
1	1	1		1	1		1	1	1

Aljabar Boolean Dua-Nilai (cont.)

- 4. (ii) $a + (b \cdot c) = (a + b) \cdot (a + c)$ dapat ditunjukkan seperti poin (i)
- 5. Komplemen: jelas berlaku

(i)
$$a + a' = 1 \rightarrow 1 + 0 = 1$$

(ii) $a \cdot a' = 0 \rightarrow 1 \cdot 0 = 0$

Karena kelima postulat Huntington dipenuhi, maka terbukti bahwa $B = \{0, 1\}$ bersama dengan operator biner $(+, \cdot)$ dan uner (') merupakan aljabar Boolean.

Ekspresi Boolean

Ekspresi Boolean

Misalkan (B, +, ·, ') adalah sebuah aljabar Boolean. Suatu ekspresi Boolean dalam (B, +, ·, ') adalah:

- i. Setiap elemen di dalam B,
- ii. Setiap peubah,
- iii. Jika e_1 dan e_2 adalah ekspresi Boolean, maka $e_1 + e_2$, $e_1 \cdot e_2$, e_1' adalah ekspresi Boolean

Contoh: 0
$$a + b$$

1 $a \cdot b$
a $a' \cdot (b + c)$
b $a \cdot b' + a \cdot b$, dan sebagainya...

Evaluasi Ekspresi Boolean

- Contoh: $a' \cdot (b + c)$ jika a = 0, b = 1, c = 0, maka hasil evaluasi ekspresi: $0' \cdot (1 + 0)$
- Dua ekspresi Boolean dikatakan **ekivalen** (dilambangkan dengan "=") jika keduanya mempunyai nilai yang sama untuk setiap pemberian nilai-nilai kepada *n* peubah.
 Contoh

$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

Hukum Aljabar Boolean

1. Hukum identitas:	2. Hukum idempoten:
(i) $a + 0 = a$	(i) $a + a = a$
(ii) $a \cdot 1 = a$	(ii) $a \cdot a = a$
3. Hukum komplemen:	4. Hukum dominansi:
(i) $a + a' = 1$	(i) $a \cdot 0 = 0$
(ii) $aa' = 0$	(ii) $a + 1 = 1$
5. Hukum involusi:	6. Hukum penyerapan:
(i) $(a')' = a$	(i) $a + ab = a$
	(ii) $a(a + b) = a$
7. Hukum komutatif:	8. Hukum asosiatif:
(i) $a + b = b + a$	(i) $a + (b + c) = (a + b) + c$
(ii) ab = ba	(ii) $a (b c) = (a b) c$
9. Hukum distributif:	10.Hukum De Morgan:
(i) $a + (b c) = (a + b) (a + c)$	(i) $(a + b)' = a'b'$
(ii) $a (b + c) = a b + a$	(ii) $(ab)' = a' + b'$
11. Hukum 0/1	
(i) $0' = 1$	
(ii) $1' = 0$	

Contoh

Buktikan (i)
$$\mathbf{a} + \mathbf{a}'\mathbf{b} = \mathbf{a} + \mathbf{b}$$
 dan (ii) $\mathbf{a}(\mathbf{a}' + \mathbf{b}) = \mathbf{a}\mathbf{b}$

Penyelesaian:

(i)
$$a + a'b = (a + ab) + a'b$$
 (Penyerapan)
 $= a + (ab + a'b)$ (Asosiatif)
 $= a + (a + a')b$ (Distributif)
 $= a + 1 \cdot b$ (Komplemen)
 $= a + b$ (Identitas)

(ii)
$$a(a' + b) = (a \cdot a') + (a \cdot b)$$
 (Distributif)
= $\theta + (a \cdot b)$ (Identitas)
= ab

Fungsi Boolean

Fungsi Boolean

■ Fungsi Boolean (disebut juga fungsi biner) adalah pemetaan dari Bⁿ ke B melalui ekspresi Boolean, kita menuliskannya sebagai

$$f: B^n \to B$$

yang dalam hal ini B^n adalah himpunan yang beranggotakan pasangan terurut ganda-n (ordered n-tuple) di dalam daerah asal B.

Setiap ekspresi Boolean tidak lain merupakan fungsi Boolean.

Fungsi Boolean

Misalkan sebuah fungsi Boolean adalah

$$f(x, y, z) = xyz + x'y + y'z$$

Fungsi f memetakan nilai-nilai pasangan terurut ganda-3 (x, y, z) ke himpunan $\{0, 1\}$.

Contohnya, (1, 0, 1) yang berarti x = 1, y = 0, dan z = 1 sehingga $f(1, 0, 1) = 1 \cdot 0 \cdot 1 + 1' \cdot 0 + 0' \cdot 1 = 0 + 0 + 1 = 1$.

Pertanyaan?