Niveau: Première année de PCSI

COLLE 5 = SUITES NUMÉRIQUES

Connaître son cours:

- 1. On suppose que $(u_{2n})_n$, $(u_{2n+1})_n$ convergent vers une même limite. En déduire que $(u_n)_n$ converge.
- 2. Montrer que : si $u_n \sim_{+\infty} v_n$ alors $v_n \sim_{+\infty} u_n$.
- 3. Énoncer la proposition de la moyenne de *Cesáro* et donner la preuve de celle-ci dans le cas d'une suite convergente vers une limite finie.

Suites numériques :

Exercice 1.

Propriété 1. Tous les sous groupe de $(\mathbb{R},+)$ sont dense dans \mathbb{R} , ou bien de la forme $a\mathbb{Z}$ pour $a \in \mathbb{R}$.

Soit G une partie non vide de \mathbb{R} stable par addition et différence (un sous-groupe de $(\mathbb{R},+)$).

$$\forall a, b, \in G \quad a + b \in G \text{ et } a - b \in G$$

- 1. Montrer que $0 \in G$ et que pour tout $x \in G$ alors $-x \in G$.
- 2. Si $G = \{0\}$, montrer que G est un sous groupe $(\mathbb{R}, +)$ vérifiant la propriété énoncée. On suppose que $G \neq \{0\}$ et on pose $a = \inf G \cap \mathbb{R}^{+*}$.
- 3. Si a > 0.
 - (a) Montrer que a est le plus petit élément de G.

 (Revenir à la propriété de la borne inférieure en étudiant l'intervalle a, 2a)
 - (b) Montrer par double-inclusion que $G = a\mathbb{Z}$.
- 4. Si a = 0. Montrer que G est dense dans \mathbb{R} .
- 5. Application:
 - (a) Montrer que l'ensemble $\mathbb{Z}+2\mathbb{Z}$ est un sous-groupe de \mathbb{R}
 - (b) Montrer que $\mathbb{Z} + 2\mathbb{Z}$ n'est pas de la forme $a\mathbb{R}$.
 - (c) Conclure

Exercice 2.

Considérons la suite définie, pour tout $n \in \mathbb{N}$, par $u_n = \sqrt{n} - |\sqrt{n}|$.

- 1. Soit $p \in \mathbb{N}$. Montrer que $(u_n)_n$ est croissante pour $p^2 < n < (p+1)^2$.
- 2. Exhiber des suites extraites de $(u_n)_n$ de limite 0 et 1.
- 3. Montrer que tout réel $x \in]0,1[$ est une valeur d'adhérence de $(u_n)_n$.

Exercice 3.

Soit $(u_n)_n$ une suite telle que $u_{n+1} - u_n \to 0$.

Alors, l'ensemble des valeurs d'adhérence est un intervalle (éventuellement vide).

Niveau: Première année de PCSI

Exercice 4.

Posons $u_2 = 1 - \frac{1}{2^2}$ et pour tout entier $n \ge 3$,

$$u_n = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right).$$

Calculer u_n et en déduire sa limite.

Exercice 5.

Soit u une suite complexe et v la suite définie par $v_n = |u_n|$. On suppose que la suite $(\sqrt[n]{v_n})$ converge vers un réel positif l. Montrer que si $0 \le l < 1$, la suite (u_n) converge vers 0 et si l > 1, la suite (v_n) tend vers $+\infty$. Montrer que si l = 1, tout est possible.

Exercice 6.

On considère la suite

$$u_n = \left(2\sin\left(\frac{1}{n}\right) + \frac{3}{4}\cos(n)\right)^n$$

- 1. Justifier qu'il existe $l\in \]0,1[$ et $N\in \mathbb{N}$ tels pour tout $n\in \mathbb{N},\ n\geq N \ \Rightarrow |u_n|\leq l$
- 2. Quelle est la nature de la suite u_n ?