

NBA 5420: Investment and Portfolio Management Class 7: Fixed Income I

Professor Matt Baron March 16, 2016

Midterm

- We need to split the class into two classrooms
 - so you have enough space to take the exam
- Morning class (10:10 11:25 AM)
 - last name starts with A-H: go to Sage B10
 - last name starts with I-Z: normal classroom (Sage B09)
- Afternoon class (1:25 2:40 PM)
 - last name starts with A-L: go to Sage B08
 - last name starts with M-Z: normal classroom (Sage B05)

Midterm Review

- You can choose which of these (if any) you want to attend:
- Thursday, March 17, Sage B05
 - 6:30 7:15 PM: Kate will go over selected problems on the board from the practice midterm questions
 - 7:15 8:00 PM: Kate will informally answer individual questions officehours-style
- Friday, March 18, Sage B05
 - 2:00 2:45 PM: Sam will go over selected problems on the board from the practice midterm questions
 - 2:45 3:30 PM: Sam will informally answer individual questions office hours-style
- My office hours
 - I will also have office hours on Friday from 3:30 4:30 PM

For midterm day

Bring a pen and calculator

Bring double-sided 8.5' x 11' "cheat sheet"

No books, computers, tablets, cell phones allowed

Fixed Income

- 1. Overview of bond markets
- 2. Bond pricing
- 3. Duration and convexity
- 4. The term structure & the expectations hypothesis

Chart 3

Expanding markets

Global bond and equity markets have witnessed unprecedented growth in the past 15 years.

(trillion dollars)

Sources: IMF staff estimates based on S&P/IFC Emerging Market database; World Federation of Exchanges; Datastream; Bank for International Settlements; and International Finance Corporation.

Bond characteristics

- Issuers
 - Governments or sovereigns
 - US Treasuries:
 - "Bills" < 1 yr maturity</p>
 - "Notes" between 1 and 10 year maturities
 - "Bonds" > 10 maturity
 - UK bonds are called "gilts"
 - Corporations (investment grade vs. junk)
 - Municipalities (usually tax-advantaged)
 - Structured Finance
 - Mortgage backed securities (MBS)
 - Collateralized default obligations (CDOs)

Trading

- Over the Counter (OTC) search markets
 - Intermediated via broker-dealers
 - Buyers and sellers are usually large institutional investors who hold long-term
 - e.g. insurance companies and pension funds
- Illiquid, high transaction costs
 - SEC mandated TRACE (post-trade transparency) hopefully is leading to more liquidity and competitive pricing

Bond characteristics

- Credit Ratings
 - Moody's, Standard and Poor's, Fitch

Grade	Risk	Moody's	S&P/Fitch
Investment	Quality Highest	Aaa	AAA
Investment	High Quality	AA	Aa
Investment	Strong	Α	Α
Investment	Medium Grade	Baa	BBB
Junk	Speculative	Ba.B	BB,B
Junk	Highly Speculative	Caa/Ca/C	CCC/CC/C
Junk	In Default	С	D

$$P_B = \sum_{t=1}^{T} \frac{C}{(1+y)^t} + \frac{Par}{(1+y)^T}$$

- 1. Par = Par Value (or Face Value)
 - the cash you get paid at maturity T (e.g., \$1000)
- 2. C = Coupon Rate
 - e.g., 5% semi-annually (meaning \$25 paid twice a year)
 - in this class, we'll assume everything is annual for simplicity
 - In practice, coupon could also be floating or inflation-indexed
- 3. y = yield to maturity (i.e. the discount rate)
 - The effective interest rate of the bond
 - Which is determined by market forces and varies over time

An example

 What is the price of a 5% coupon bond (Par = \$1000) making <u>annual</u> coupon payments if it has 5 years until maturity and YTM of 6%?

Years	Cash Flow	Discounted Cash Flow
1	50	47.17
2	50	44.50
3	50	41.98
4	50	39.60
5	1050	784.62
	SUM:	957.88

Bond pricing

- 4. Extra Features/Provisions will affect pricing
 - Secured v. unsecured
 - Priority in bankruptcy (junior vs. senior)
 - Options:
 - Call provisions
 - Pre-payment option
 - Convertibility (into equity)

BALLOF OCANO HATCH AND AND STATEMENT OF A

WILL PAY TO BEARER ON AT THE DEPARTMENT OF THE TREASURY, WAR-INCIDON, OR AT A DESIGNATION AGENCY, ATTENDED TROUDER OF

AUG. 15, 1986 \$45.00

\$1,000 Transury Note, Series 8-1667

10656

W.M. Ramblet 15

Shall a factory

WILL PAY TO BEARDE ON AT THE DEPARTMENT OF THE THEASURY, WASHINGTON, OR AT A DESIGNATED WASHING,

AUG. 15, 1985 \$45.00

\$1,000 Treasury Note, Series 8-1987

10656

W. Benefic 13

DOLLAR BOOK OF A SECTION OF A S

WILL PAY TO BEARER ON AT THE DEPARTMENT OF THE TREASURY, WASHINGTON, OR AT A DESIGNATED AGENCY, INTERESTIBLE CALON,

FEB. 15, 1987 \$45.00

\$1,000 Tressery Note, Series 8-1987

6 bin Santal 16

DOTTED BY THE PROPERTY OF THE

WILL PAY TO BEAMER ON AT THE DEPARTMENT OF THE TREASURY, WASHINGTON, OR AT A DESIGNATED AGENCY,

FEB. 15, 1988 \$45.00

BUTTERS OUR ORE BY

\$1,000 Treasury Note, Series B-1987

10656

W.M. Franket 14

Coupons

Yield to maturity (YTM)

- $y^* = YTM$
 - Interest rate that makes the present value of the bond's payments equal to its price

$$P_B = \sum_{t=1}^{T} \frac{C}{(1+y^*)^t} + \frac{Par}{(1+y^*)^T}$$

Where P_B is the observed bond price

Yield to maturity (YTM)

- Example:
 - What's the YTM of a bond with 10yr maturity, 7% coupon, face value of 1000, semi-annual payments, and a price of 950?

$$950 = \sum_{t=1}^{20} \frac{35}{(1+y)^{t/2}} + \frac{1000}{(1+y)^{10}}$$

- y = 7.12%
 - Have to solve by guess-and-check

Yield to maturity (YTM)

- Consider a 1-yr bond:
 - -P = 900, Par = 1000, C = 50
- The return (YTM) comes from two sources:
 - 1. The discount
 - Since you buy at P=900, get paid Par=1000 in a year:
 - Return = (1000-900)/1000 = 11.1%
 - 2. The coupon
 - You get a coupon C=50 in a year on a price of 900
 - Coupon yield = 50/900 = 5.6%
 - Total return = YTM = 11.1% + 5.6% = 16.7%

Another example

- 10-year bond, face value = \$1000
- C = semi-annual 8% coupon
- YTM = 6% annualized

$$P = \sum_{t=1}^{20} \frac{40}{1.06^{t/2}} + \frac{1000}{1.06^{10}} = 1155.9$$

- Decomposing the YTM
 - 10-year coupon return = $\frac{\sum_{t=1}^{20} 40*1.06^{t/2}}{1155.9}$ = 92.6%
 - 10-year capital gain = $(\frac{1000-1155.9}{1155.9}) = -13.6\%$
 - 10-year total return = 92.6% + (-13.6%) = 79.0%
 - YTM = (1 + 10-year total return)^{1/10} 1 = 6%

Facts about YTM

- 1. When p = par
 - Then: YTM = the coupon rate
 - Because only source of returns is the coupon
- 2. For a zero-coupon bond
 - Then: YTM = $\sqrt[T]{(p / par)}$ 1
 - because the only source of returns is the discount
 - For example, if p=90, par = 100 on a zero-coupon bond:
 - Then YTM would be $\frac{100}{90} 1 \approx 11\%$
- 3. If p < par, then coupon rate < YTM (& vice versa)

Main risks with bonds

Interest rate risk

When interest rates rise, the YTM of all bonds must rise (by no arbitrage), so the bond price will fall

2. Inflation risk

Fixed, nominal coupon payments are less valuable if there's an increase in inflation

3. Credit risk

Borrower goes bankrupt, doesn't repay loan

4. Pre-payment risk

- If interest rates fall, borrower will prepay their loans by re-financing at a lower interest rate
- You no longer get the high interest payments you were receiving

Interest rate risk

A simple example with a "perpetuity" (an infinite maturity bond)

Before:

- Market interest rates = 5%
- $C = 5, 5, 5, 5, 5, \dots$
- P must be 100
- To make YTM = 5 / 100 = 5% equal to the going market rate

After:

- Market interest rates increase to 10%
- C is unchanged = 5, 5, 5, 5, 5,
- So P must fall: P = 50
- To make YTM = 5 / 50 = 10% equal to the going market rate

Interest rate risk

$$P_B = \sum_{t=1}^{T} \frac{C}{(1+y)^t} + \frac{Par}{(1+y)^T}$$

 Easy to see that, in general, y and P are inversely related

So when market rates (and thus y) go up,
 P must go down

Modified duration:

$$D = \frac{1}{(1+y)} \sum_{t=1}^{T} t \frac{Cashflows_t/(1+y)^t}{P}$$
Discounted value weights

- Intuitively, it's the average time (weighted by the discounted-value of when the cash gets paid out)
 - And divided by (1+y) we'll see in a bit why
- Cashflows_t here represents both coupon payments and principal repayment (par value).

Some facts about duration:

1. For a zero-coupon bond:

(modified duration) =
$$\frac{1}{(1+y)}$$
 * (maturity)

- 2. Holding everything else fixed, duration:
 - increases with maturity
 - decreases with higher coupon rate
 - decreases with higher YTM

 But the most important thing about duration is that it's also the interest rate risk:

$$\frac{1}{P}\frac{dP}{dy} = -D$$
Bond return

- D = modified duration
- Higher duration bonds will be hit harder if interest rates rise

Bond price

A proof

1. Start with the standard bond pricing formula:

$$P = \sum_{t=1}^{T} \frac{Cashflows_t}{(1+y)^t}$$

2. Differentiate with respect to y:

$$\frac{dP}{dy} = -\frac{1}{(1+y)} \sum_{t=1}^{T} t \frac{Cashflows_t}{(1+y)^t}$$

3. Divide both sides by P and recognize that the RHS is -D:

$$\frac{1}{P}\frac{dP}{dy} = -\frac{1}{(1+y)}\sum_{t=1}^{T} t \frac{\frac{Cashflows_t}{(1+y)^t}}{P} = -D$$

Approximation of the bond pricing curve

Linear approximation:

bond return =
$$\frac{\Delta P}{P}$$
 = $-D \cdot \Delta y$

Duration & Convexity

Approximation of the bond pricing curve

Linear approximation:

bond return =
$$\frac{\Delta P}{P}$$
 = $-D \cdot \Delta y$

Quadratic approximation

bond return =
$$\frac{\Delta P}{P} = -D \cdot \Delta y + \frac{1}{2} \text{ Convexity} \cdot (\Delta y)^2$$

where Convexity =
$$\frac{1}{P} \frac{d^2 P}{dy^2}$$

= $\frac{1}{(1+y)^2} \sum_{t=1}^{T} t(t+1) \frac{Cashflows_t/(1+y)^t}{P}$

Various convexity

What is the actual safe asset?

"If one uses conventional mean-variance analysis, it is hard to explain why any investors hold large positions in bonds. Mean-variance analysis treats cash as the riskless asset and bonds as merely another risky asset like stocks. Bonds are valued only for their potential contribution to the short-run excess return, relative to risk, of a diversified risky portfolio. ...

"A long-horizon analysis treats bonds very differently, and assigns them a much more important role in the optimal portfolio. For long-term investors, [long-term bonds are the riskless asset] and money market investments are not riskless because they must be rolled over at uncertain future interest rates."

John Campbell and Luis Viceira, Strategic Asset Allocation

Interest rate risk

Recall the simple example with a "perpetuity" (an infinite maturity bond)

Before:

- Market interest rates = 5%
- $C = 5, 5, 5, 5, 5, \dots$
- P must be 100
- To make YTM = 5 / 100 = 5% equal to the going market rate

After:

- Market interest rates increase to 10%
- C is unchanged = 5, 5, 5, 5, 5,
- So P must fall: P = 50
- To make YTM = 5 / 50 = 10% equal to the going market rate

The riskiness of the risk-free rate

THE TERM STRUCTURE OF INTEREST RATES

3/24/2016 38

Term structure of interest rates

The Expectations Hypothesis

Consider two ways to invest for 2 years:

- Buy and hold 2-year bond
- 2. Buy 1-year bond and reinvest proceeds in another 1-year zero one year from now (i.e. roll it over)
- By No-Arbitrage Pricing:

$$(1+r_{0,2})^2 = (1+r_{0,1})(1+Er_{1,2})$$

- $r_{0.1} =$ one-year bond yield
- $r_{0.2} = two-year bond yield$
- $Er_{1,2}$ = expected one-year bond yield a year from now

The Expectations Hypothesis

In general,

$$(1+r_{0,n})^n = (1+r_{0,n-i})^{n-i} (1+Er_{n-i,n})^i$$

- $r_{0,n} = n$ -year bond yield
- Er_{n-i,n} = expected i-year bond yield (n-i) years from now
- So long-term rates should predict the forward path of short-term rates

An example

- Inverted yield curve:
 - -1yr = 12%, 2yr = 11.75%, 3yr = 11.25%, 4yr = 10%, 5yr = 9.25%
- Then, expected forward rates are:
 - $-Er_{1.2} = [(1.1175)^2 / 1.12] 1 = 11.5\%$
 - $Er_{2.3} = [(1.1125)^3 / (1.1175)^2] = 10.3\%$
 - $Er_{3.4} = [(1.1)^4 / (1.1125)^3] = 6.3\%$
 - $Er_{4.5} = [(1.0925)^5 / (1.11)^4] = 6.3\%$

Term structure of interest rates

The Expectations Hypothesis (the benchmark):

 Downward (upward) sloping means expectation for future interest rates to be falling (rising)

The Expectations Hypothesis

Term structure of interest rates

Deviations from the Expectations Hypothesis:

- Term premium:
 - "liquidity premium": Long-term bonds less liquid and pay a higher interest rates relative to the Expectations Hypothesis
 - "safety premium": Short-term bonds are like cash and pay a lower interest rates relative to the Expectations Hypoth.
- Habitat hypothesis:
 - Markets are somewhat segmented; different types of investors buy/trade long-term vs. short-term bonds
 - Long-term bonds: pension funds, insurance companies
 - Short-term bonds: individual investors, corporate cash holdings

Actual 2-year change in interest rates

Actual vs. predicted short-rates (2-years-ahead, 1984-2012)

Predicted 2-years-ahead short-rate based on the yield curve