Khôlle nº 1

Exercice 1 On considère quatre cas : a=1, a=-1, |a|<1 et |a|>1. Cas 1 On pose a=1. On étudie donc la convergence de la série $\sum \frac{1}{1+n}$. Or, on sait que

$$\sum \frac{1}{1+n} \sim \sum \frac{1}{n}$$
, et cette série diverge. On en déduit que, si $a=1$, la série $\sum \frac{a^n}{n+a^{2n}}$ diverge.

Cas 2 On pose a=-1. On étudie donc la convergence de la série $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+1}$. Nous savons que la suite $\left(\frac{1}{n+1}\right)$ est décroissante et tend vers 0. D'après le théorème des séries alternées,

la série
$$\sum \frac{(-1)^n}{n+1}$$
 converge donc.

Cas 3 Soit $a \in \mathbb{R} \setminus [-1, 1]$. On sait que, $n = o(a^n)$ quand n tend vers $+\infty$. Et donc,

$$\frac{a^n}{n + a^{2n}} = \frac{a^n}{a^{2n} + o(a^n)} = \frac{1}{a^n + o(1)} = \underset{n \to +\infty}{o} (a^{-n}).$$

Or, comme $|a|>1, \frac{1}{|a|}<1$ et donc $\sum a^{-n}$ converge (car $\sum |a|^{-n}$ converge). On en déduit que $\sum \frac{a^n}{n+a^{2n}}$ converge.

Cas 4 Soit $a \in]-1,1[$. On sait que, comme $|a|<1,\ a^n=\mathfrak{o}(n^2).$ Ainsi, on a

$$\frac{a^n}{n+a^{2n}} = \frac{\mathfrak{o}(n^2)}{n+\mathfrak{o}(n^4)} = \frac{\mathfrak{o}(n)}{1+\mathfrak{o}(n^3)} = \frac{1}{\mathfrak{o}(n^2)}.$$

Mais, comme la série $\sum \frac{1}{n^2}$ converge, on en déduit que la série $\sum \frac{a^n}{n+a^{2n}}$ converge.

Exercice 2

1. Montrons que $(SL_2(\mathbb{R}), \times)$ est un sous-groupe de $GL_2(\mathbb{R})$. On sait que $I_2 \in SL_2(\mathbb{R})$ car $\det I_2 = 1$. Soient A et B deux matrices de $\mathrm{SL}_2(\mathbb{R})$. Montrons que $A \times B^{-1} \in \mathrm{SL}_2(\mathbb{R})$. Tout d'abord, nous savons que B^{-1} existe car det $B=1\neq 0$. Et, $\det(A\times B^{-1})=\det A\times \frac{1}{\det B}=1$. On en conclut que $A\times B^{-1}\in \mathrm{SL}_2(\mathbb{R})$. On a montré

$$\mathrm{SL}_2(\mathbb{R})$$
 est un sous-groupe de $\mathrm{GL}_2(\mathbb{R}).$

2. D'après l'énoncé, nous savons que

$$\varphi: \operatorname{SL}_2(\mathbb{R}) \longrightarrow \mathscr{F}(\mathbb{R}, \mathbb{R})$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto \left(x \mapsto \frac{ax+b}{cx+d} \right).$$

Soient M et N deux matrices de $\mathrm{SL}_2(\mathbb{R})$. Montrons que $\varphi(M\cdot N)=\varphi(M)\circ\varphi(N)$. On pose $M=\binom{a\ b}{c\ d}$ et $N=\binom{u\ v}{w\ z}$. Calculons $M\cdot N$:

$$M \cdot N = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} u & v \\ w & z \end{pmatrix} = \begin{pmatrix} au + bw & av + bz \\ cu + dw & bv + dz \end{pmatrix}.$$

Et, soit $x \in \mathbb{R}$, on a

$$\left(\varphi(M)\circ\varphi(N)\right)(x) = \frac{a\frac{ux+v}{wx+z} + b}{c\frac{ux+v}{wx+z} + d} = \frac{au\,x + av + bw\,x + bz}{cu\,x + cv + dw\,x + dz} = \varphi\left(\begin{matrix} au + vw & av + bz\\ cu + dw & cv + dz \end{matrix}\right)(x)$$

On a bien $\varphi(M\cdot N)=\varphi(M)\circ\varphi(N).$ On cherche, à présent, $\operatorname{Ker}\varphi.$ On procède par analyse-synthèse. Analyse Soit $\binom{a\ b}{c\ d} \in \operatorname{Ker} \varphi$. On a donc

$$\varphi\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \left(x \mapsto \frac{ax+b}{cx+d}\right) = (x \mapsto 0).$$

D'où, on en déduit que $(x \mapsto ax + b) = (x \mapsto 0)$, autrement dit, a = b = 0.

1

Synthèse On en déduit que

$$\boxed{\operatorname{Ker} \varphi = \operatorname{Vect} \left(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right).}$$

En effet, soient $\alpha, \beta \in \mathbb{R}$, on calcule $\varphi\begin{pmatrix} 0 & 0 \\ \alpha & \beta \end{pmatrix}(x) = \frac{0x+0}{\alpha x+\beta} = 0$.

Exercice 3

- 1. Montrons que $(\sqrt{I}, +)$ est un sous-groupe de A et que $\forall i \in \sqrt{I}, \forall a \in A, i \times a \in \sqrt{I}$.

 - $0 \in I$ (car c'est un sous-groupe de (A, +)) et donc $0 \in \sqrt{I}$ (car $x^1 \in I$). Soient x et y deux éléments de \sqrt{I} . On pose n et m deux entiers tels que $x^m \in I$ et $y^n \in I$. Quitte à intervertir x et y ainsi que m et n, on peut suppose que n < m. Ainsi, en posant k = n + m, on calcule, à l'aide de la formule du binôme de Newton (qui est applicable car A est un anneau commutatif), $(x-y)^k$:

$$\sum_{i=0}^{n} \binom{k}{i} (-1)^{k-i} x^i y^{k-i} = \sum_{i=0}^{m} \binom{k}{i} (-1)^{k-i} x^i y^{k-i} + \sum_{i=m+1}^{m+n} \binom{k}{i} (-1)^{k-i} x^i y^{k-i}.$$

Or, avec $i \in [\![0,m]\!]$, on a $k-i \geqslant n$ et donc $y^{k-i} \in I$ (car I est un idéal). De même, avec $i \in [m+1, m+n], i \ge m$ et donc $x^i \in I$ (car I est un idéal). On en déduit, comme I est un idéal et que c'est, par conséquent, un sous groupe de (A, +), que

$$(x-y)^k = \underbrace{\sum_{i=0}^m \binom{k}{i} (-1)^{k-i} x^i y^{k-i}}_{\in I} + \underbrace{\sum_{i=m+1}^{m+n} \binom{k}{i} (-1)^{k-i} x^i y^{k-i}}_{\in I} \in I.$$

On en déduit que $(\sqrt{I}, +)$ est un sous-groupe de A.

- En posant n=1, on a $\sqrt{I}\supset \{x\in A\mid x^n\in I\}=\{x\in I\}=I.$ D'où $I\subset \sqrt{I}.$
- 2. (a) On sait que $I \cap J$ est un sous-groupe de (A,+). Soit $i \in I \cap J$. Soit $a \in A$. Comme $i \in I$, on sait que $a \cdot i \in I$. De même, comme $i \in J$, $a \cdot i \in J$. On en déduit que $a\cdot i\in I\cap J.$ On en déduit que $I\cap J$ est un idéal de A.
 - (b) On suppose $I \subset J$. Soit $i \in \sqrt{I}$. Soit $n \in \mathbb{N}^*$ tel que $i^n \in I \subset J$. D'où $i^n \in J$ et donc $i \in \sqrt{J}$.
 - (c) "C" Soit $x \in \sqrt{I \cap J}$. Il existe $n \in \mathbb{N}^*$ tel que $x^n \in I \cap J$ donc $x^n \in I$ et $x^n \in J$. On en déduit que $x \in \sqrt{I}$ et $x \in \sqrt{J}$, d'où $x \in \sqrt{I} \cap \sqrt{J}$.
 - "" Soit $x \in \sqrt{I} \cap \sqrt{J}$. Comme $x \in \sqrt{I}$, soit $n \in \mathbb{N}^*$ tel que $x^n \in I$. De même, comme $x \in \sqrt{J},$ soit $m \in \mathbb{N}^*$ tel que $x^m \in J.$ Ainsi, en posant N = m + n, on a $x^{m+n} \in I$ (car I est un idéal) et $x^{m+n} \in J$ (car J est un idéal). On en déduit que $x^{m+n} \in I \cap J$ et donc $x^{m+n} \in \sqrt{I \cap J}$.
- 3. Si I et J deux idéaux tels que $I \subset J$, alors $\sqrt{I} \subset \sqrt{J}$. Mais \sqrt{I} est un idéal et, $I \subset \sqrt{I}$, d'où $\sqrt{I} \subset \sqrt{\sqrt{I}}$. On montre donc $\sqrt{\sqrt{I}} \subset \sqrt{I}$. Soit $x \in \sqrt{\sqrt{I}}$. Soit $n \in \mathbb{N}^*$ tel que $x^n \in \sqrt{I}$. Soit $m \in \mathbb{N}^*$ tel que $x^n \in \sqrt{I}$. Soit $x \in \sqrt{I}$. Soit $x \in \sqrt{I}$.