

Featherkraken: Bestpreissuche für Flugangebote mit variablen Abflughäfen

STUDIENARBEIT

des Studienganges Informatik
an der Dualen Hochschule Baden-Württemberg Stuttgart
von
Ingo Kuba

Matrikelnummer, Kurs Ausbildungsfirma Betreuer place, holder intension GmbH Place Holder

Erklärung zur Eigenleistung

Hiermit erkläre ich, dass ich die vorliegende Studienarbeit selbständig verfasst und keine anderen als die angegebenen Hilfsmittel benutzt habe.

Die Stellen der Studienarbeit, die anderen Quellen im Wortlaut oder dem Sinn nach entnommen wurden, sind durch Angaben der Herkunft kenntlich gemacht. Dies gilt auch für Zeichnungen, Skizzen, bildliche Darstellungen sowie für Quellen aus dem Internet.

Ostfildern, den 8. Juni 2020 🗼	

Zusammenfassung

Langstreckenflüge sind oftmals sehr kostspielig. Aus diesem Grund kann die Suche nach dem preiswertesten Flug für Reisende viel Zeit in Anspruch nehmen. Jedoch sind die Preise bei der Auswahl eines alternativen Startflughafens oft günstiger. Um diese alternativen Routen zu finden, bieten Flugsuchdienste nur die Eingabe mehrerer Flughäfen an. Da diese für Reisende nicht alle bekannt sein können, wäre es besser einen Radius um den geplanten Abreiseort angeben zu können. Die Suchmaschine sucht darin nach Flughäfen und ermittelt Flüge von diesen zum Ziel.

Im Rahmen dieser Studienarbeit wurde eine Softwarelösung entwickelt, welche diese Funktionalität in Form einer Webanwendung umsetzt.

Abstract

Long distance flights are often very expensive. For this reason, finding the cheapest flight can take a long time for travellers. However, when choosing an alternative departure airport, prices are often lower. In order to find these alternative routes, flight search services only offer the input of several airports. As these cannot all be known to travellers, it would be better to enter a radius around the planned departure point. The search engine will then search for airports and find flights from these airports to the destination.

In the context of this study thesis a software solution was developed, which implements this functionality in form of a web application.

Inhaltsverzeichnis

Abbildungsverzeichnis

1	Einle	eitung	1						
	1.1	Motivation	1						
	1.2	Aufgabenstellung	1						
2	Wiss	Wissenschaftliche Vertiefung							
	2.1	Entity Relationship Model	2						
	2.2	Docker	3						
		2.2.1 Image	3						
		2.2.2 Container	3						
	2.3	Git	3						
		2.3.1 GitHub	4						
	2.4	CircleCl	4						
	2.5	Maven	5						
		2.5.1 Ordnerstruktur	5						
		2.5.2 Dependencies	5						
		2.5.3 Plugins	5						
	2.6	Jakarta EE	6						
	2.7	MicroProfile	6						
	2.8	Payara	6						
	2.9	Postman	6						
	2.10	Heroku	7						
	2.11	React.js	7						
	2.12	TypeScript	7						
3	Entv	vurf	8						
	3.1	Auswahl der externen Schnittstelle	8						
	3.2	Aufbau der Anwendung	9						
	3.3	Datenmodell	9						
		3.3.1 SearchRequest	0						
		3.3.2 SearchResult	0						
	3.4	Framework	2						
4	Impl	ementierung 1	3						
	4.1	Backend	3						
		4.1.1 Services	3						

	4.2	Frontend	16			
5	Testing					
	5.1	Automatische Tests	18			
	5.2	Manuelle Tests	19			
6	Fazit					
	6.1	Ausblick	20			
	6.2	Zusammenfassung	21			
Lit	teratı	ır	22			

Abbildungsverzeichnis

1	Beispiel für eine Entity im ERM	2
2	Verschiedene Arten von Attributen im ERM	2
3	Vergleich der Schnittstellen	8
4	Aufbau der Anwendung	ć
5	ERM SearchRequest	10
6	ERM SearchResult	11
7	Backend in Entwicklungs- und Produktionsumgebung	13
8	Screenshot des Frontend	16
9	Testfälle des Frontends	19

Akronyme

CDI Context Dependency Injection. 6

CI Continuous Integration. 4, 18, 21

EJB Enterprise JavaBeans. 5

ERM Entity Relationship Model. 2, 9-11

IATA IATA airport code. 14, 15

Jakarta EE Jakarta Enterprise Edition. 6

JAR Java Archive. 5, 6, 13

UML Unified Markup Language. 2

WAR Web Application Resource. 5, 13

1 Einleitung

1.1 Motivation

In der Regel möchte ein Fluggast den günstigsten Preis für eine bestimmte Route von A nach B. Jede Flugsuchmaschine im Internet bietet dieses Feature. Manchmal sucht ein Fluggast auch einfach nach Inspiration und möchte Angebote von A nach X, wobei X variabel ist. Einige Suchmaschinen bieten diese Suche ebenfalls bereits an. Worum es in dieser Studienarbeit geht, ist der umgekehrte Fall: X nach B. Also von welchem beliebigen Flughafen man möglich günstig an ein festes Ziel kommt. Gerade auf hochpreisigen Strecken kann es sich lohnen einen Umweg zu fliegen.

1.2 Aufgabenstellung

Bei der Suche sollen die klassischen Filterkriterien implementiert werden, welche als Pflichtanforderungen bezeichnet werden. Das heißt, die Unterscheidung ob man nur einen Hinflug oder Hin- und Rückflug buchen möchte. Des Weiteren soll man jeweils ein Datum für An- und Abreise festlegen können, welches um drei Tage flexibel sein soll. Neben der Buchungsklasse (Economy, Business, First Class) soll auch die Wahl der Airline oder Allianz eingeschränkt werden können. Außerdem soll man Passagier- und Umsteigeanzahl wählen können.

Zusätzlich soll ein Entfernungsfilter um einen möglichen Abflughafen bereitgestellt werden. Zum Beispiel wird nur nach Angeboten gesucht, bei denen sich der Startflughafen maximal 800km (Entfernungsfilter) vom Flughafen Stuttgart (möglicher Abflughafen) entfernt befindet.

Diese Flugsuchmaschine soll über ein Web-Frontend vom Nutzer bedient werden können.

2 Wissenschaftliche Vertiefung

In diesem Kapitel werden technische Grundlagen aufgeführt und erläutert, welche für die Entwicklung des Projekts benötigt wurden.

2.1 Entity Relationship Model

Um das Datenmodell der Anwendung darzustellen, wurde eine vereinfachte Variante des Entity Relationship Model (ERM) verwendet. Hier werden zunächst nur die Grundlagen zu dieser Modellvariante beschrieben ohne auf das eigentliche Datenmodell einzugehen, welches dann in Kapitel 3.3 vorgestellt wird.

Entities

Ein Objekt oder auch Entity wird in einem Rechteck dargestellt und kann Attribute besitzen, wobei komplexe Attribute als Beziehungen zu anderen Objekten dargestellt werden. Der Name der Beziehung entspricht hierbei dem Attributnamen. Die Anzahl der möglichen Relationen wird in UML-Notation angegeben. Zum Beispiel ist hier in Abbildung 1 zu sehen, dass eine Person null bis n Autos besitzen kann.

Abbildung 1: Beispiel für eine Entity mit Attributen und einer Beziehung

Attribute

Attribute können dabei eindeutig, optional oder mehrwertig sein. Die Unterscheidung zwischen Datum, Zahl oder Zeichenkette wird dabei in einem Entity Relationship Model nicht dargestellt.

Abbildung 2: Attribute (v.l.): eindeutig, optional und mehrwertig

2.2 Docker

Docker ist eine quelloffene Software zur Isolierung von Anwendungen in sogenannten Containern. Mit ihr können zum Beispiel Webserver oder Datenbanken schnell eingerichtet werden, ohne diese vorher aufsetzen zu müssen.

2.2.1 Image

Images sind die Vorlage zur Erstellung neuer Container. Sie können aus mehreren Schichten von anderen Images bestehen und dadurch können komplexe Systeme leichtgewichtig und portabel erstellt werden.

2.2.2 Container

Ein *Container* ist die aktive Instanz eines Docker images und kann beliebig konfiguriert und bearbeitet werden. Wird ein Container beendet und ein neuer nach der Vorlage desselben Images gestartet, gehen alle Änderungen verloren. Dies lässt sich durch die Verwendung von *Volumes* verhindern, welche die Konfiguration eines Containers persistieren.

2.3 Git

Git ist eine kostenlose Softwarelösung zur verteilten Versions-Verwaltung von Dateien und eignet sich ideal für Softwareprojekte. Git wurde 2005 von Linus Torvalds entwickelt, welcher als der Erfinder von Linux gilt. (McMillan, 2012) Versionen eines Projekts werden dabei in sogenannten *commits* festgehalten. Außerdem gibt es *branches* um verschiedene Entwicklungsstände zu repräsentieren. Dabei gibt es immer einen Branch mit der aktuell validen Version des Projekts (meistens 'master'). Dateiänderungen können zwischen verschiedenen Branches ausgetauscht werden, wobei hauptsächlich der Befehl *merge* benutzt wird um Änderungen auf den *master*-Branch zu erhalten.

Das Projekt befindet sich in einem lokalen *repository* auf dem Computer des Bearbeiters, aber kann auch mit einem Repository im Internet synchronisiert werden. Um Änderungen vom lokalen Repository in das Webrepository zu veröffentlichen, wird der Befehl *push* benutzt. Für den umgekehrten Fall (also Internet → Lokal) wird der Befehl *pull* verwendet.

2.3.1 GitHub

Ein kostenloser Anbieter für ein Webrepository ist zum Beispiel *GitHub*, welches in diesem Bereich zu den bekanntesten zählt. Neben einer Weboberfläche zum Verwalten der Branches bietet GitHub unter anderem Verwaltung von Zugriffsrechten, Aufgabenorganisation und eine eingebaute CI.

Um Änderungen zwischen Branches auszutauschen, bietet GitHub sogenannte *pull requests*. In diesen werden die Änderungen übersichtich dargestellt und ein Akzeptieren des Pull Request hat einen *merge* in den Ziel-Branch zur Folge.

Die Aufgabenorganisation wird mithilfe von *Issues* durchgeführt, welche sich zusammensetzen aus Titel, Beschreibung und Metadaten wie Bearbeitender, Label oder Bearbeitungsstatus. Der Bearbeitungsstatus der Issues lässt sich in einem *Project*-Board (zum Beispiel Kanban/Scrum) organisieren.

Des Weiteren bietet *GitHub Pages* die Möglichkeit kostenlos statische Web-Inhalte zu hosten. Dabei kann eine CI benutzt werden, um die Inhalte aus dem jeweiligen Projekt automatisch zu generieren und veröffentlichen.

Auf GitHub befinden sich für diese Studienarbeit sowohl die Repositories als auch das automatisierte Project-Board dazu. Außerdem wurden die aktuellen Versionen des Frontends und dieses Dokuments in GitHub Pages veröffentlicht.

2.4 CircleCl

Da die eingebaute CI von GitHub nicht zufriedenstellend mit Docker zusammen funktioniert, wurde die externe Lösung CircleCI verwendet. Dabei lassen sich Docker-Container zum Ausführen von Befehlen verwenden um komplexere Szenarien umsetzen zu können. Die gute Integration von GitHub und CircleCI hat zur Folge, dass Tests und andere Überprüfungen automatisch mit jedem *push* ausgelöst werden können. Diese Überprüfungen lassen sich im *pull request* des betroffenen Branches nachvollziehen und auftretende Fehler werden sofort dargestellt.

2.5 Mayen

Maven ist ein Management-Tool für Softwareprojekte und wird dabei hauptsächlich für Java-Projekte verwendet. Die Konfiguration des Projekts befindet sich in einem XML-Dokument (standardmäßig *pom.xml*), in dem Bibliotheken und Plugins verwaltet werden. Mit Maven lässt sich ein ausführbares Artefakt des Projekts bauen, zum Beispiel als Java Archive (JAR), Web Application Resource (WAR) oder Enterprise JavaBeans (EJB).

(POM Reference: packaging, o. J.)

2.5.1 Ordnerstruktur

Maven zeichnet sich durch eine bestimmte Ordnerstruktur aus, welche strikt eingehalten werden muss.

src/main/java Enthält die Java-Klassen für die Funktion des Projekts.

src/main/resources Enthält Ressourcen für die Funktion des Projekts.

src/test/java Enthält die Java-Klassen für Software-Tests.

src/test/resources Enthält Ressourcen für die Software-Tests.

Darüber hinaus gibt es noch weitere Ordner für spezielle Zwecke.

(Introduction to the Standard Directory Layout, o. J.)

2.5.2 Dependencies

Externe Bibliotheken lassen sich leicht als *dependency* einbinden, wobei die jeweiligen Artefakte aus Maven-Repositories im Internet heruntergeladen werden. Eine Dependency wird eindeutig durch Gruppen-ID (groupId), Artefakt-ID (artifactId) und Version (version) definiert. Dadurch wird sichergestellt, dass immer die gewünschte Bibliothek benutzt wird.

2.5.3 Plugins

Um verschiedene Befehle auf dem Projekt auszuführen, können Plugins verwendet werden. Diese lassen sich mit den gewünschten Parametern konfigurieren, um zum Beispiel Unit- und Integrations-Tests auszuführen oder die Testabdeckung dessen zu überprüfen.

2.6 Jakarta EE

Jakarta Enterprise Edition (Jakarta EE) ist eine Java-Spezifikation, welche Java SE (Standard Edition) erweitert und ermöglicht damit das Entwickeln von mehrschichtigen, zuverlässigen und sicheren Netzwerkanwendungen. Zuvor war Jakarta EE als Java EE bekannt.

(Differences between Java EE and Java SE, 2012)

2.7 MicroProfile

Eclipse MicroProfile ist eine Erweiterung von Jakarta EE und eine Alternative zu Spring, welches ein Framework der Firma Pivotal und vielgenutzte Lösung für Jakarta EE Anwendungen und Microservices ist.

Dagegen bietet MicroProfile neben der Unterstützung für Context Dependency Injection eine bessere Konfigurierbarkeit der Anwendung. (Monteiro, 2018)

2.8 Payara

Payara ist ein Application Server für Java-Anwendungen, insbesondere Jakarta EE. Ein Application Server führt Anwendungsprogramme aus und bietet zum Beispiel Dienste für Restschnittstellen, Authentifizierung, Autorisierung oder Datenbankzugriff. (Ottinger, 2008)

Payara basiert auf dem GlassFish Server, erweitert diesen jedoch um besseren Support sowie regelmäßigere Releases und Sicherheitsupdates. Außerdem bietet Payara mit Payara Micro eine leichtgewichtige Variante des vollen Servers in Form eines Java Archive. Damit können Anwendungen jederzeit und überall schnell gestartet werden. Dies ist zum Beispiel in einer Cloud-Umgebung oder auf einem Raspberry PI nützlich, da diese über begrenzten Speicherplatz verfügen könnten. (*Payara Server vs GlassFish*, o. J.)

2.9 Postman

Postman ist ein Programm, mit dem HTTP-Schnittstellen zum Testen aufgerufen werden können. Die einzelnen Aufrufe können in sogenannten *Collections* in Json-Format gespeichert werden, sodass sie in einer anderen Postman-Instanz importiert und wiederverwendet werden können. Durch diese beispielhaften Aufrufe ist es einfach, den Aufbau einer Schnittstelle zu verstehen.

2.10 Heroku

Heroku ist eine Plattform für Cloud-Anwendungen, wobei einige Dienste kostenlos zur Verfügung gestellt und viele Programmiersprachen unterstützt werden. Es besteht die Möglichkeit eine Heroku- Application mit einem GitHub-Repository zu verbinden, um automatisch den neuesten Stand einer Anwendung in einem sogenannten *Dyno* zu starten. Die Konfiguration einer Anwendung ist äußerst simpel und wird mit einer Datei namens Procfile im Projekt definiert.

(What is Heroku?, o. J.)

2.11 React.js

Bei React.js handelt es sich um eine JavaScript-Bibliothek zur Entwicklung von Webanwendungen. Interaktive Oberflächen lassen sich leicht erstellen, wobei für jede Komponente der Anwendung sogenannte *Views* definiert werden. Dabei rendert React.js eine Komponente nur neu, wenn sich dessen Daten ändern. Dadurch wird die Anwendung effizient und der Code wird übersichtlicher und einfacher zu debuggen. Außerdem lassen sich Komponenten abstrakt definieren und mehrfach verwenden, wodurch die gesamte Anwendung ein einheitliches Aussehen erhält. (*React*, 2020)

2.12 TypeScript

TypeScript ist eine auf JavaScript basierende Programmiersprache und erweitert diese um viele Funktionen aus der objektorientierten Programmierung. Der geschriebene Code wird zu JavaScript kompiliert, was den Einsatz von Bibliotheken und Syntax von JavaScript ermöglicht. Ein großer Vorteil gegenüber JavaScript ist, dass TypeScript strikter sein kann und somit logischer und verständlicher Code entsteht. (Technologies, 2020)

3 Entwurf

In diesem Kapitel werden Ansätze zur Implementierung der Anwendung verglichen und die jeweils gewählte Lösung aufgeführt. Die Ansätze reichen durch alle Abstraktionsebenen von Überlegungen zum Aufbau des Projekts, über Modellierung der Daten bis hin zu gewählten Frameworks.

3.1 Auswahl der externen Schnittstelle

Um Flugdaten zu erhalten, muss eine externe Schnittstelle benutzt werden, welche die Pflichtanforderungen^{1,2} erfüllt und dabei leicht zu verwenden ist. Die Wahl der Schnittstelle fiel dabei auf eine Rest-Schnittstelle, da diese sehr einfach zu benutzen sind. Für die Auswahl des Anbieters wurde eine Tabelle (siehe Abbildung 3) erstellt, welche die Pflichtanforderungen mit den Funktionalitäten der jeweiligen Schnittstelle abgleicht. Dabei erfüllte die Schnittstelle von Kiwi nicht nur alle Anforderungen, sondern war auch sehr gut dokumentiert und mit Beispielen beschrieben. Ein weiterer Vorteil von Kiwi war das Angebot einer Rest-Schnittstelle, welche sowohl die Suche von Flughäfen mit Teilen des Städte- und Flughafennamens als auch die Suche in einem Radius um bestimmte Koordinaten bereitstellt. Diese Aspekte kommen der Aufgabenstellung entgegen.

	Skyscanner	Hipmunk	Kajak	Flight Data	Flight Bookings	Kiwi Flights
Single flight	yes	yes	yes	yes	yes	yes
Two directions	no	no	no	yes	no	yes
Specific date	yes	yes	yes	yes	yes	yes
Flexible date	no	limited	limited	yes	no	yes
Class	yes	yes	yes	limited	yes	yes
Passengers	yes	yes	yes	no	yes	yes
Airline	yes	no	no	no	no	yes
Stops	no	no	no	no	no	yes

Abbildung 3: Tabelle zum Vergleich der Schnittstellen

3.2 Aufbau der Anwendung

Bei dem ersten Entwurf der Anwendung fiel auf, dass die gesamte Funktionalität mit zwei verschiedenen Ansätzen gelöst werden kann. Zum einen könnten externe Schnittstellen direkt aus dem Frontend aufgerufen werden, sodass eine Serveranwendung nicht notwendig wäre. Dies hätte den Vorteil, dass der Technologie-Stack reduziert werden würde. Allerdings besteht der Nachteil, dass das Projekt unübersichtlich werden könnte. Deshalb ist es sinnvoll, ein clientseitiges User Interface und eine separate Serveranwendung für die Funktionalität zu entwickeln, wofür jeweils passende Technologien für beide zu finden sind.

Abbildung 4: Aufbau der Anwendung

3.3 Datenmodell

Das Entity Relationship Model für das Datenmodell wurde hier aufgeteilt in Suchanfrage (SearchRequest) und Suchergebnis (SearchResult). Sowohl die Serveranwendung als auch das User Interface implementieren jeweils dieses Datenmodell, sodass Daten in einem einheitlichen und überschaubaren Format ausgetauscht werden können.

3.3.1 SearchRequest

Eingehende Anfragen an den Service (SearchRequest) haben verschiedene Parameter, welche die zu Beginn genannten Pflichtanforderungen^{1,2} abdecken. Komplexe Attribute, wie die Zeitspanne (Timespan) für An- und Abreise sowie der Ursprungs- und Ziel-Flughafen (Airport), wurden in eigene Objekte ausgelagert, damit sie auf diese Weise wiederverwendet werden können.

Abbildung 5: Entity Relationship Model des SearchRequest Objekts

3.3.2 SearchResult

Antworten des Service (SearchResult) sind etwas komplexer als Anfragen aufgebaut, teilen jedoch manche Attribute mit diesen. Dabei enthält ein Suchergebnis eine Ansammlung von sogenannten Trips, welche sich aus Flügen (Flight) der An- und Abreise zusammensetzen. Diese Flügen haben widerrum selbstverständlich jeweils einen Start- und Zielflughafen, welche in dem Route-Objekt mit Informationen zu Abflug- und Ankunftzeiten sowie der Airline enthalten sind. Bei erster Betrachtung fällt auf, dass Informationen über Airlines und Zeiten redundant sind, was jedoch für die optimale Verarbeitung in der Oberfläche von Vorteil ist.

Abbildung 6: Entity Relationship Model des SearchResult Objekts

3.4 Framework

Die Anwendung wurde in eine Server- und eine Web-Anwendung unterteilt, für welche jeweils eine Framework-Technologie gewählt werden muss. Die Serveranwendung übersetzt Suchanfragen von der Oberfläche zu einem Format, welches die externe Schnittstelle akzeptiert und leitet das Sucherergebnis daraufhin an die Oberfläche zurück. Dies bedeutet, dass die Serveranwendung als Rest-Client für die externe Schnittstelle und selbst als Rest-Schnittstelle für die Oberfläche dient. Für die Komponenten war das Thema Plattformunabhängigkeit sehr wichtig und aus eigener Erfahrung eignet sich dafür Java sehr gut, da es eine große Community hat und eine Anwendung in kurzer Zeit aufgesetzt werden kann. Außerdem bietet Java einfache Möglichkeiten eine externe Rest-Schnittstelle anzusprechen. Als Bedingung für die Web-Oberfläche ist es unabdingbar, dass die Anwendung intuitiv bedienbar ist und auf allen Endgeräten gut dargestellt werden kann. Als Programmiersprache wurde dabei JavaScript gewählt, aus denselben Gründen der Dokumentation und persönlicher Erfahrung. Dabei kommen drei bekannte Frameworks in Frage: Angular, React.is und Vue.is. Die Wahl fiel auf React.is, da es sich um eine kleinere Anwendung handelt und sich dieses Framework dafür am besten eignet. Bei dem hier vorliegenden Fall handelt es sich sogar um eine sogenannte Single-Page-Webapplication, das heißt die gesamte Funktion kann auf einer Webseite dargestellt werden.

4 Implementierung

Dieses Kapitel befasst sich mit der Beschreibung der Anwendungsumsetzung. Wie bereits erwähnt, wurde die Anwendung in eine Serveranwendung (Backend) und eine Webanwendung (Frontend) unterteilt.

4.1 Backend

Das Backend der Anwendung dient als Proxy zwischen Frontend und externer Schnittstelle und wurde in Java geschrieben. Dabei wurde Jakarta EE^{2.6} und Eclipse Microprofile^{2.7} verwendet, um eine Rest-Schnittstelle für das Frontend zu bieten. Durch das Verwenden von MicroProfile lässt sich die Anwendung einfach in einem Payara Application Server starten. Dieser wurde für die Entwicklungsumgebung mithilfe eines Docker Images umgesetzt, wodurch er sich schnell starten lässt.

Abbildung 7: Vergleich: Entwicklungsumgebung (I.) & Produktionsumgebung (r.)

Für die Produktionsumgebung wurde ein anderer Ansatz gewählt. Das WAR wird direkt mit Payara Micro auf Heroku^{2.10} gestartet. Diese Lösung war notwendig, da der Einsatz eines Docker-Containers nicht für Heroku eignet. Das Projekt wird dabei automatisch als Maven-Projekt erkannt und benötigte Bibliotheken werden installiert. Die Konfiguration kann in dem Procfile gesehen werden. Um die Anwendung zu starten, wird das Payara Micro JAR heruntergeladen und ausgeführt, um die Anwendung zu starten.

4.1.1 Services

Zur Suche nach Flughäfen und Flügen bietet das Backend verschiedene Rest-Services für ein User Interface an. Flughafensuche: GET /airports Um bestimmte Flughäfen mit einem Teil des Flughafen- oder Städtenamens suchen zu können, gibt es den Endpoint /airports, der mit einem GET-Request erreicht werden kann. Die Eingabe wird über den Query-Parameter 'query' in der URL des Requests übergeben. Ein beispielhafter Request für die Suche von Flughäfen in Amsterdam kann zum Beispiel folgendermaßen aufgebaut sein:

GET www.featherkraken-example.com/airports?query=Ams

Damit werden alle Flughäfen gesucht, welche den Wortteil 'Ams' im IATA airport code oder Städtenamen enthalten. Die Antwort des Services besteht aus einer Liste gefundener Flughäfen, welche jeweils IATA airport code, vollen Anzeigenamen und Koordinaten enthalten.

Heroku: https://featherkraken.herokuapp.com/featherkraken/rest/airports

Flugsuche: POST /flights Die Kernfunktion des Backends steckt hinter dem Endpoint /flights, welcher eingehende Suchanfragen in ein für die externe Schnittstelle verständliches Format übersetzt und das Suchergebnis dann zurückgibt. Suchparameter werden hier nicht in der URL des Requests übergeben, sondern mit einem POST im Request-Body, da die Suchanfrage so übersichtlicher und leichter zu dokumentieren ist. Bei der Suche kann optional ein Radius angegeben werden, dann werden Flüge von umliegenden Abflughäfen gesucht.

Eine Suchanfrage für Flüge von Frankfurt und Umgebung (100km) kann zum Beispiel folgendermaßen aussehen:

```
{
        "source": {
                 "name": "FRA",
                 "displayName": "Frankfurt International Airport",
                 "latitude": 50.033056,
                 "longitude": 8.570556
        },
        "target": {
                 "name": "LAX",
                 "displayName": "Los Angeles International",
                "latitude": 33.9425,
                 "longitude": -118.40806
        },
        "radius": 100,
        "passengers": 1,
        "departure": {
                 "from": "11.11.2020"
                "to": "13.11.2020"
        },
        "return": {
                "from": "22.11.2020"
        },
        "classType": "Business",
        "mixClasses": false,
        "tripType": "Round trip"
}
```

Für die Flughafenobjekte in source und target ist nur der eindeutige IATA airport code in source.name entscheidend. Der Radius wird in Kilometern angegeben. In diesem Beispiel werden Hin- und Rückflüge zwischen Frankfurt und Los Angeles in der Klasse 'Business' gesucht, wobei auch geringere Klassen benutzt werden können (mixClasses). Außerdem ist zu erkennen, wie ein variables Abflugdatum (11.11. - 13.11.2020) angegeben werden kann.

Heroku: https://featherkraken.herokuapp.com/featherkraken/rest/flights

4.2 Frontend

Das Frontend ist eine Web-Anwendung, die mit dem Framework React.js^{2.11} in TypeScript^{2.12} geschrieben wurde.

Durch den Einsatz von der Bibliothek react-bootstrap lassen sich Komponenten im Material Design einfach zusammenbauen. Material Design wurde von Google entwickelt und ist eine Design-Richtlinie für Oberflächen. Der Vorteil liegt darin, dass nicht unbedingt ein Grafikdesigner von Nöten ist, um eine ansprechende Webanwendung zu bauen.

Abbildung 8: Screenshot des Frontend

Im Folgenden werden zunächst die Suchfilter in den Dropdowns der ersten Zeile in Abbildung 8 erläutert. Zuerst kann nach Art des Fluges (nur Hinflug oder Hinund Rückflug) gefiltert werden. Ist nur Hinflug ausgewählt, wird das Feld für das Rückreisedatum nicht dargestellt. Über das zweite Dropdown kann die Anzahl erwachsener Passagiere ausgewählt werden. Daneben kann die gewünschte Klasse (Economy, Premium Economy, Business, First class) angegeben werden und ob die Ergebnisse Flüge mit geringeren Klassen enthalten soll. Die Auswahl zur Anzahl der Zwischenstopps bietet die Optionen beliebig viele Stops, Non-Stop und bis zu ein oder zwei Stops. Im letzten Dropdown kann die gewünschte Anzahl der Suchergebnisse ausgewählt werden.

In den Eingabefeldern darunter können Suchparameter wie Startflughafen, Entfernungsfilter, Zielflughafen und An- und Abreisedatum eingegeben werden. Die Eingabefelder für Start- und Zielflughafen benutzen den Service zur Flughafensuche^{4.1.1}, um Flughäfen mit dem eingegebenen Wortteil in Echtzeit zu suchen. Ist das Feld für den Entfernungsfilter leer oder null, wird nur von dem angegebenen Flughafen gesucht. Die Felder für das An- und Abreisedatum können mit einem Klick auf das Kalender-Icon zwischen klassisch und flexibel wechseln. In Abbildung 8 ist zu sehen, dass das Abreisedatum fest auf einen Tag und das Abreisedatum dahingegen auf eine Zeitspanne gesetzt ist.

Liefert das Backend nach Anklicken des Suchbuttons Suchergebnisse zurück, lassen sich diese nach bestimmten Flughäfen und Airlines filtern. Letzteres ist an dem Dropdown auf dem Screenshot beispielhaft zu sehen.

Die Suchergebnisse sind in einer Liste aufgeführt und unterteilen sich jeweils in Hin- und Rückflug, wenn nicht nur nach Hinflug gesucht wurde. Alle Informationen über den Flug wie Flugdauer, Start- und Landezeiten und Klasse werden dargestellt. Außerdem informiert ein Logo den Benutzer über die Airline des jeweiligen Flugs.

5 Testing

Das Testen der Anwendung war ein wichtiger Teil für den Erfolg des Projekts. Deshalb wurden nicht nur alle Software-Komponenten mit Unit-Tests abgedeckt, sondern auch Integrations-Tests geschrieben. All diese Tests werden programmatisch ausgeführt und werden von einer CI in GitHub automatisch bei jedem *push* ausgeführt. Ein *merge* in den Master ist nur möglich, wenn alle Tests erfolgreich ausgeführt wurden. Für alle Testfälle wurden realitätsnahe Bedingungen und Daten gewählt.

Zu guter Letzt wurden die Rest-Schnittstelle und die Oberfläche mit der Erwartung der gewünschten Ergebnisse regelmäßig manuell getestet und abgeglichen.

5.1 Automatische Tests

Das Java-Backend wurde mit Unit- und Integrationstests getestet, welche mit dem Testframework JUnit 5 geschrieben wurden. Dadurch fallen neue Bugs schon direkt bei der Entwicklung auf. Des Weiteren wird die Qualität des Codes mit *Sonar* überprüft. Dazu zählen unter anderem Aspekte wie Bugs, Schwachstellen (*Vulnerabilities*) oder Verletzung von Java-Richtlinien (sogenannte *Code Smells*). Um Schwachstellen in externen Bibliotheken der Anwendung aufzudecken, wird *OWASP* verwendet.

All diese Tests werden automatisch in der Continuous Integration (CI) von *CircleCI* ausgeführt, wenn die Änderungen in das GitHub Repository gepusht werden. Pull Requests sind so konfiguriert, dass sie nur nach erfolgreichem Durchlauf der Tests akzeptiert werden können. Außerdem wird die Testabdeckung bei jedem Durchlauf dokumentiert und überprüft und darf niemals abnehmen. Die Konfiguration dieser Überprüfungen kann dem Dokument featherkraken/.circleci/config.yml entnommen werden.

Die Komponenten des React.js-Frontends wurden aus Zeitgründen nicht mit automatischen Tests abgedeckt, jedoch wird die Kompilierbarkeit der Anwendung in *CircleCI* überprüft und der Stand des *master*-Branches in GitHub Pages automatisch veröffentlicht. Dies kann in featherkraken-ui/.circleci/config.yml eingesehen werden.

5.2 Manuelle Tests

gibt Zusätzlich den automatischen zu Tests es eine Postman-Collection^{2.9} für die Rest-Schnittstellen des Backends. Diese kann unter src/test/postman/Collection.json gefunden und in Postman importiert werden. Diese Anfragen wurden regelmäßig bei der Entwicklung des Backends verwendet, um Fehlerursachen zu finden und die Funktion sicherzustellen. Außerdem gibt es Testfälle für das Frontend, um die Umsetzung der Anwendung mit den tatsächlichen Anforderungen vergleichen zu können. Folgend sind einige dieser Testfälle aufgeführt:

Abflughafen	Zielflughafen	Klasse	Erwartung
Inverness INV	John F. Kennedy International JFK	First class	Umstieg mit Economy Klasse wird gefunden
Heathrow LHR	John F. Kennedy International JFK	First class	Flüge werden gefunden
Munich MUC (+600km)	Kyiv International Airport (Zhuliany) IEV	Economy	Flug von LEJ gefunden
Stockholm Arlanda ARN	Dubai International DXB	First class	Umstieg mit Business Klasse wird gefunden
Sofia SOF	San Francisco International	Business	Umstieg mit Economy wird gefunden

Abbildung 9: Tabelle für die Testfälle des Frontends

6 Fazit

In diesem Kapitel wird zunächst in einem Ausblick auf Möglichkeiten zur Verbesserung der Anwendung eingegangen, denn Software-Entwicklung ist ein niemals abgeschlossener Vorgang. Alle Punkte sind in GitHub Issues festgehalten, sodass sie nicht in Vergessenheit geraten können. Zum Abschluss wird das gesamte Projekt noch einmal zusammengefasst.

6.1 Ausblick

Für die Erweiterung der Anwendung könnten beispielsweise weitere externe Schnittstellen angebunden werden, um eventuell zu Kiwi.com vergleichsweise günstigere Flüge zu finden. Dazu wurden die betroffenen Klassen des Java-Backends schon so abstrakt geschrieben, sodass dies mit angemessenen Aufwand umsetzbar ist.

Dabei ist jedoch anzumerken, dass diese externen Aufrufe bist jetzt nicht asynchron erfolgen. Das heißt, dass gewartet wird bis alle externen Schnittstellen geantwortet haben. Das hat zur Folge, dass die Antwortzeit äquivalent zur langsamsten Schnittstelle ist. Um das zu ändern, muss zunächst evaluiert werden, ob diese asynchron beantwortet werden können.

Als weitere Verbesserung kann die Geschwindigkeit der Aufrufe dokumentiert werden. Damit kann entschieden werden, ob bestimmte externe Schnittstellen zu langsam sind und damit wieder entfernt werden sollten. Für diese Art von Monitoring gibt es bereits Lösungen wie *Prometheus* oder die eingebaute Funktion von Eclipse Microprofile mithilfe sogenannter *Metrics*.

Des Weiteren kann auch ein Entfernungsfilter für den Zielflughafen auf die selbe Art wie für den Startflughafen hinzugefügt werden. Dazu müsste das Backend und die Oberfläche angepasst werden. Da dies aber nicht im Fokus der Aufgabe stand, sei das jedoch nur als Idee anzumerken.

6.2 Zusammenfassung

Nachdem die Aufgabenstellung evaluiert wurde, konnte schrittweise eine Softwarelösung entworfen werden. Dabei wurden verschiedene Abstraktionsebenen des Problems betrachtet und jeweilige Lösungen gefunden. Mit den gewählten Technologien wurde eine Webanwendung und eine Serveranwendung entwickelt, welche sich durch hohe Plattformunabhängigkeit auszeichnen. Es wurde darauf geachtet, dass die Anwendung leicht erweitert werden kann und der Code verständlich ist. Die Anwendungen werden mit Continuous Integration (CI) automatisch getestet und im Falle der Webanwendung auch immer mit dem neuesten Stand im Internet veröffentlicht. Abschließend wurde ein Ausblick auf Verbesserungsmöglichkeiten und Ansätze dafür aufgeführt.

Literatur

- Differences between Java EE and Java SE. (2012). Zugriff auf https://docs.oracle.com/javaee/6/firstcup/doc/gkhoy.html
- Introduction to the Standard Directory Layout. (o.J.). Zugriff auf https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
- McMillan, R. (2012). The Legacy of Linus Torvalds: Linux, Git, and One Giant Flamethrower. Zugriff auf https://www.wired.com/2012/11/linus-torvalds-isoc/
- Monteiro, J.-L. (2018). What is Eclipse MicroProfile? Zugriff auf https://www.tomitribe.com/blog/what-is-eclipse-microprofile/
- Ottinger, J. (2008). What is an App Server? Zugriff auf https://www.theserverside.com/news/1363671/What-is-an-App-Server
- Payara Server vs GlassFish. (o. J.). Zugriff auf http://www.payara.org/payara -server-vs-glassfish
- POM Reference: packaging. (o. J.). Zugriff auf https://maven.apache.org/pom.html#packaging
- React. (2020). Zugriff auf https://reactjs.org/
- Technologies, I. A. . (2020). JavaScript VS TypeScript: Which is better? (2020 Updated). Zugriff auf https://medium.com/@infinijith/javascript-vs-typescript-which-is-better-2020-updated-871866a3c68c
- What is Heroku? (o. J.). Zugriff auf https://www.heroku.com/what