In case G = C(K) these conditions are equivalent to the following:

- (iv) if $(f_n) \subset C(K)$ is a bounded sequence then (Rf_n) has a subsequence which converges pointwise to a continuous function.
- (b) If R is weakly compact then it maps weakly convergent sequences into norm convergent sequences. In particular, the square of a weakly compact operator $T: C(K) \to C(K)$ is a compact operator.
- Proof.(a) (i) + (ii) follows from the following characterization of weakly compact operators (see e.g., II.Prop.9.4 of Schaefer (1974)): An operator is weakly compact if and only if its second adjoint maps the bidual into the original space.
- (ii)+(iii) is trivial and it remains to show that (iii) implies (i): On the Borel field B we define m by m(C) := R"(χ_C). Then m is a G-valued additive set function. For y' \in G' we have y' \circ m = R'y' \in M(K). Hence for every y' \in G' y' \circ m is a countable additive set function, i.e., m is weakly countably additive. By Pettis' Theorem (see IV.Thm.10.1 in Dunford-Schwartz (1958)) we have that m is countably additive with respect to the norm. In particular, for a sequence Un of mutually disjoint Borel sets we have $\lim_{n\to\infty} \|m(U_n)\| = 0 \text{ . It follows that } \lim_{n\to\infty} y' \circ m(U_n) = 0 \text{ uniformly for } y' \in G'$, $\|y'\| \le 1$. Now condition (iii) of Prop.2.3 shows that $\{R'y': y' \in G', \|y'\| \le 1\}$ is relatively weakly compact, i.e., R' is weakly compact. Thus R is weakly compact as well.

In case G=C(K) the equivalence of (i) and (iv) is a consequence of two results: First, Eberlein's Theorem states that for the weak topology in any Banach space compactness and sequential compactness are equivalent. Second, Lebesgue's Dominated Convergence Theorem assures that a sequence $(f_n) \subset C(K)$ converges weakly to $f \in C(K)$ if and only if it is bounded and $f_n(x) \to f(x)$ for every $x \in K$.

(b) Suppose (f_n) is a sequence in C(K) which converges to 0 for the weak topology. Since R is weakly compact the same is true for the adjoint R', i.e., {R'y': y' \in G', $\|y'\| \le 1$ } is relatively weakly compact in M(K). From Prop.2.3 (i)+(ii) we obtain that <Rf_n,y'> = <f_n,R'y'> + 0 as n + ∞ uniformly for y' \in G', $\|y'\| \le 1$. That is $\lim_{n\to\infty} \|Rf_n\| = 0$.

The final assertion follows from the first and the characterization of weakly compact operators stated in (iv) of (a) .