МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

Санкт-Петербургский национальный исследовательский университет ИТМО

Мегафакультет трансляционных информационных технологий

Факультет информационных технологий и программирования

Домашнее задание №4. Расширение системы команд ЭВМ.

Вариант № 6

Выполнил студент группы №М3117 Никитина Мария Дмитриевна

Проверил

Повышев Владислав Вячеславович

Санкт-Петербург 2024

Цель работы

Практическое завершение второй части домашнего задания №4. В ней производится загрузка в память микропрограмм микрокоманд новых команд базовой ЭВМ, загрузка в память ЭВМ программы для проверки правильности выполнения синтезированных команд, а также проверка и отладка этих микропрограмм.

Подготовка к выполнению работы

Завершите домашнее задание №4 и подготовьте две таблицы по форме, приведенной в лаб. работе №7. Строки первой из этих таблиц (теоретически) должны быть заполнены содержимым регистров базовой ЭВМ при пошаговом выполнении за нее тестовой программы (синтезированные команды должны выполняться по тактам, остальные - по командам). Строку с содержимым регистров ЭВМ после исполнения (или первой микрокоманды новой команды) следует предворять заголовком:

КОМАНДА хххх, РАСПОЛОЖЕННАЯ ПО АДРЕСУ ххх

Вторая таблица (экспериментальная) заполняется в лаборатории.

Порядок выполнения работы

Занесите в память ЭВМ текст тестовой программы.

Занесите в память микрокоманд (ПМ) микрокоманды новых команд.

Выполните в пошаговом режиме тестовую программу, занося в таблицу содержимое регистров процессора после выполнения каждой команды (для синтезированных команд) или каждой команды (для остальных команд).

Часть І

Напишите последовательность адресов микрокоманд, которые должны быть выполнены при реализации заданного фрагмента программы, начинающегося с команды, расположенной по адресу 002 (перед выполнением программы исполняется команда "Пуск", очищающая аккумулятор и регистр переноса).

Часть II

А. Написать вертикальные микрокоманды

Написать завершающие вертикальные микрокоманды цикла "ИСПОЛНЕНИЕ" следующих команд:

Команда 7ХХХ

6 вариант - ПЕРЕСЫЛКА УДВОЕННАЯ

(записать в ячейку памяти, на которую указывает адресная часть команды, удвоенное содержимое аккумулятора).

Команда DXXX

Организовать переход к команде, расположенной по адресу, на которую указывает адресная часть команды, если:

6 вариант - 7-й бит аккумулятора равен единице;

Безадресные команды

6 вариант - циклический сдвиг вправо с очисткой регистра C (FE00);

Б. Написать тестовые программы

Написать тестовые программы для проверки правильности исполнения всех трех синтезированных команд базовой ЭВМ и подготовиться к выполнению лабораторной работы №8. Тестовые программы должны отвечать следующим требованиям:

- 1) Для синтезированных арифметических и без адресных команд результат их выполнения должен быть зафиксирован в памяти базовой ЭВМ, а не только в регистрах,
- 2) Если проверяемая арифметическая или безадресная команда устанавливает признаки результата (C,Z,N), необходимо проверить правильную установку одного из них, используя соответствующую команду перехода. Результат проверки признака зафиксировать в памяти базовой ЭВМ,
- 3) Для синтезированных команд переходов необходимо проверить команду как при выполнении условия перехода, так и при его невыполнении. Результат проверки в обоих случаях зафиксировать в памяти базовой ЭВМ.

Таким образом, после выполнения правильно разработанной тестовой программы в автоматическом режиме в памяти базовой ЭВМ будет размещена информация, позволяющая однозначно подтвердить правильность выполнения синтезированной команды.

- В. При разработке микропрограмм заданных команд следует иметь в виду:
 - 1. В процессе дешифрации команды 7ххх в РА записывается адрес операнда (может использоваться для команд пересылки), а в РД сам операнд (может использоваться для команд загрузки и сравнения). Затем осуществляется переход к ячейке памяти микрокоманд ВО, где надо разместить первую синтезируемую микрокоманду команды 7ххх.
 - 2. После выборки команды перехода ххх в РД сохраняется адрес перехода (адресная часть команды), который может быть переписан в СК при выполнении условия перехода. Последняя микрокоманда дешифрации команды Dxxx передает управление в ячейку с адресом D0, где надо разместить первую синтезируемую микрокоманду команды Dxxx.
 - 3. Когда в процессе дешифрации безадресных команд выясняется, что в 10-м и 11-м разрядах РК содержатся единицы(т.е. выбрана одна из команд:FC00, FD00, FE00 или FF00), управление передается в ячейку с адресом Е0. Здесь должны начинаться микрокоманды дополнительной дешифрации, выделяющие заданную команду путем анализа 9-го и 8-го разрядов РК и передающие управление в свободную область памяти микрокоманд(от Ех до

- FF), где следует разместить микрокоманды реализации безадресной команды.
- 4. Все микропрограммы реализуемых команд должны заканчиваться микрокомандой 838F (GOTO ПРЕ(8F)), осуществляющей переход к микрокомандам, завершающим исполнение любой команды базовой микро ЭВМ.

Вариант программы:

Адрес	Вариант 6					
1	1					
2	CMC					
3	BCS 05					
4	NOP					
5	+ ADC 01					

<u>Часть 1:</u>

Команда	Машинный цикл	Последовательность адресов микрокоманд			
1					
(0001)					
CMC		89			
(F500)	Выборка команды	01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 5E			
	Исполнение	61, 62, 65, 7B, 7C, 8F			
		88			
BCS 05		89			
(8005)	Выборка команды	01, 02, 03, 04, 05, 06, 07, 08, 0C			
	Выборка адреса операнда				
	Исполнение	1D, 2D, 30, 33, 34, 4A, 4B, 47, 48, 49, 8F			
		88			
NOP		89			
(F100)	Выборка команды	01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 5E			
	Исполнение	61, 67, 6A, 6B, 87, 8F			
		88			

+ADC 01		89		
(5001)	Выборка команды	01, 02, 03, 04, 05, 06, 07, 0C		
	Выборка адреса операнда	1D, 1E, 1F, 20, 27		
	Исполнение	28, 2B, 2C, 3C , 3D , 3E , 8F , 90 , F5		
		88		

Часть 2:

А. Написать завершающие вертикальные микрокоманды цикла "ИСПОЛНЕНИЕ" следующих команд:

*Команда ТУХУ ПЕРЕСЫЛКА УЛВОЕННАЯ (записать в прейку памяти, на которую

Команда 7XXX ПЕРЕСЫЛКА УДВОЕННАЯ (записать в ячейку памяти, на которую указывает адресная часть команды, удвоенное содержимое аккумулятора).

Адрес МП	Микрокоманда (верт.)	Комментарии
B0	1000 (MOV)	А => БР
B1	4002	БР => РД
B2	1100 (ADD)	А + РД => БР
B3	4002	БР => РД
B4	0002	РД ⇒ ОП(РА)

Команда DXXX Организовать переход к команде, расположенной по адресу, на которую указывает адресная часть команды, если 7-й бит аккумулятора равен единице;

Адрес МП	Микрокоманда	Комментарии		
	(верт.)			
D0	F68F	IF BIT(6, A) = 1 THEN Π PE(8F)		
D1	0200	РК => <u>Б</u> Р		
D2	4004	БР => СК		
D3	838F	GOTO ПРЕ(8F)		

Безадресные команды циклический сдвиг вправо с очисткой регистра С (FE00);

Адрес МП	Микрокоманда	Комментарии		
	(верт.)			
E0	E88F	IF BIT(8, PK) = 1 THEN Π PE(8F)		
E1	0004	RAR(A) => БР		
E2	4075	БР => A, C, N, Z		
E3	0020	0 => Pb		
E4	838F	GOТО ПРЕ(8F)		

Б. Написать тестовые программы для проверки правильности исполнения всех трех синтезированных команд базовой ЭВМ:

7xxx:

Адрес	Код команды	Мнемоника	Комментарии
010	-	-	X

• • •	•••	•••			
020	3010	MOV 10	Пересылка значений из А в ячейку памяти		
021	4010	ADD 10	Суммирование значения в ячейке со		
			значением А, сохранение в А		
022	3010	MOV 10	Пересылка значений из А в ячейку памяти		
023	F000	HTL	Конец программы		

Dxxx:

Адрес	Код команды	Мнемоника	Комментарии
010	4001	ADD	
011	D014	-	Проверка на содержимое А
012	4001	ADD	
013	D010	-	
014	F000	HTL	Конец программы

Безадресные команды:

Адрес	Код команды	Мнемоника	Комментарии		
010	F200	CLA	Очистка А		
011	F700	ROR Циклический сдвиг вправо			
012	F300	СLС Очистка рег. переноса			
013	F000	HTL	Конец программы		

Программа для проверки правильности исполнения всех трех синтезированных команд базовой ЭВМ:

Адрес	Код команды	Мнемоника	Комментарии		
010	0000		Ячейка для хранения 7ххх		
011	0000		Ячейка для хранения FDxx		
012	0000		Ячейка для вычисления(А%2)		
013	F200	CLA	Очищаем А		
014	4012	ADD 012	Сохраняем значения в А		
015	7010	7ххх Запись значения с сброс А			
016	D019	Dxxx	Если A%2 = 1, то переход в 01E		
017	FD00	FDxx Сдвиг вправо на разряд			
018	3011	MOV 011 Запись значения			
019	F000	HTL	Конец программы		

Трассировка:

теоретическая

Адрес	Код	СК	PA	РК	РД	A	C	Адрес	Новый код
013	F200	0014	0013	F200	F200	0000	0		
014	4012	0015	0012	4012	0000	0000	0		

015	7010	0016	0010	7010	0000	0000 0	10	1C01
016	D019	0017	0016	D019	D019	0000 0		
017	FD00	0018	0017	FD00	FD00	0000 0		
018	3011	0019	0011	3011	0000	0000 0	11	0000
019	F000	001A	0019	F000	F000	0000 0		

Практическая:

Адресс	Код	СК	PA	РК	РД	A	C	Адрес	Новый код
000	0000	0002	0000	0000	0001	0000	0	000	0001
002	F800	0003	0002	F800	F800	0001	0		
003	9005	0005	0003	9005	9005	0001	0		
005	4001	0006	0001	4001	0001	0002	0		
006	0000	8000	0000	0000	0002	0002	0	000	0002
008	0000	000A	0000	0000	0003	0002	0	000	0003
00A	0000	000C	0000	0000	0004	0002	0	000	0004
00C	0000	000E	0000	0000	0005	0002	0	000	0005
00E	0000	0010	0000	0000	0006	0002	0	000	0006
010	0000	0012	0000	0000	0007	0002	0	000	0007
012	0000	0014	0000	0000	8000	0002	0	000	0008
014	0000	0016	0000	0000	0009	0002	0	000	0009
016	0000	0018	0000	0000	000A	0002	0	000	000A
018	F200	0019	0018	F200	F200	0000	0		
019	4017	001A	0017	4017	0000	0000	0		
01A	7015	001B	0015	7015	0000	0000	0		
01B	D01E	001C	001B	D01E	D01E	0000	0		
01C	FD00	001D	001C	FD00	FD00	0000	0		
01D	3016	001E	0016	3016	0000	0000	0		
01E	F000	001F	001E	F000	F000	0000	0		