

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Основы электроники Лабораторный практикум №4 "ИССЛЕДОВАНИЕ ВАХ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ НА МОДЕЛИ ЛАБОРАТОРНОГО СТЕНДА В ПРОГРАММЕ MULTISIM"

Студент: Факирзаи Амджад

Группа : ИУ7 - 36Б

Цель работы:

Получение и исследование статических и динамических характеристик германиевого и кремниевого полупроводниковых диодов с целью определение по ним параметров модели полупроводниковых диодов, размещения моделей в базе данных программ схемотехнического анализа. Приобретение навыков расчета моделей полупроводниковых приборов в программах Multisim и Mathcad по данным, полученным в экспериментальных исследованиях, а также включение модели в базу компонентов.

Эксперимент 5

ИССЛЕДОВАНИЕ КАРАКТЕРИСТИК ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК ПОЛУПРОВОДНИКОВЫХ ДИОДОВ С ПРИМЕНЕНИЕМ ПРИБОРА IV АНАЛИЗА

Получаем вольт-амперные характеристики своего типа диода в программе Multisim с использованием виртуального анализатора IV.

Для выбранной точки вычислим сопротивление R1, необходимое для работы диода в данной рабочей точке с источником 1. Для этого подставим параметры выбранной точки в соответствующую формулу.

Проверка корректности расчета рабочей точки диода.

Запускаем (simulate) и получаем:

- а) график зависимости V1, V2 напряжения на источнике и диоде от температуры в выбранной рабочей точке;
- б) график зависимости тока I(R1), который равен току диода, от температуры.

Эксперимент 6

ИССЛЕДОВАНИЕ ВОЛЬТ-ФАРАДНОЙ ХАРАКТЕРИСТИКИ ПОЛУПРОВОДНИКОВОГО ДИОДА

Построить схему параллельного колебательного контура с использованием полупроводникового диода в качестве переменной емкости.

Пределы анализа определяются при открытии окна настроек анализа и задании переменных для визуализации.

Строим график зависимости резонансной частоты от напряжения управления.

Исходя из вольт-фарадной характеристики, определяем параметры модели диода (CJO, M, VJ) с использованием метода Given Minerr в MATCAD.

M = 0.	5 VJO := 0.6	$CJO := 10^{-9}$
Constraivables	$3.377 \cdot 10^{-12} = CJO \cdot \left(1 - \frac{1}{V}\right)$	$\frac{0}{VJO}$) $^{-M}$
	$1.562 \cdot 10^{-12} = CJO \cdot \left(1 - \frac{1}{V}\right)$	\[\frac{1}{JO} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	$1.168 \cdot 10^{-12} = CJO \cdot \left(1 - \frac{1}{V}\right)$	$\frac{-8}{\sqrt{JO}}$
Solver		[3 377 10-12]
-		