Hálózati alapismeretek

Hálózati réteg

IP Protokoll

IP (Internet Protocol) RFC 791

- Széles körben használt, az Internet alapeleme.
- A TCP/IP referenciamodell hálózati réteg protokollja.
- Legfontosabb jellemzői:
 - IP fejrész szerkezete.
 - » 32 bites szavakból áll.
 - » Minimum 5, maximum 15 szó hosszú. IP címzés, címosztályok.
 - Darabolás (fragment) támogatás.
 - Összeköttetés mentes (datagram) szolgáltatás a transzport réteg felé

IP hálózati címzés

Miért van szükség hálózati címekre? Nem elegendő a fizikai címek használata?

- A fizikai címek elhelyezkedése struktúrálatlan.
- Útvonalválasztást struktúrálatlan címrendszerrel lehetetlen megoldani.
- A fizikai cím csak egy alhálózatba kapcsolt csomópontok kommunikációjához megfelelő.
- Szükség van egy másik, struktúrált címrendszerre: a hálózati címekre.

IP fejrész szerkezete

Verzió	IHL	Szolgáltatás típusa	Teljes hossz	
Azonosító		nosító	D M Fragment offset	
T	ΓL	Transzport réteg protokoll Fejrész ellenőrző összeg		
Feladó (forrás) IP címe				
Címzett (cél) IP címe				
Opcionális mező(k)				

IP fejrész szerkezete -1

1 1 1 1			
Verzió	IHL	Szolgáltatás típusa	Teljes hossz

Az első szó tartalma - általános információk:

- •4 bit: Verziószám (IPv4).
- •4 bit: IP fejrész hossza (szavakban mérve).
- •8 bit: Szolgáltatás típusa (pl. hang vagy fájl átvitel).
- 16 bit: Teljes csomaghossz (bájtokban mérve).

IP fejrész szerkezete -2

A második szó tartalma - darabolási (fragment) információk:

- 16 bit: Azonosító, a fragment sorozat azonosítója.
- 1 bit: Nem használt.
- 1 bit: DF nem darabolható (pl. boot program).
- 1 bit: MF további fragment-ek léteznek.
- 13 bit: Fragment offset (a fragment helye a sorozatban).

IP csomagok darabolása (fregmentálás)

- 1./ Az azonosítót az adó állomás adja, és minden fregmentben változatlan marad. Az offset kezdetben nulla étékű.
- 2./ Darabolást bármely állomás (router) végezhet a csomag ill. csomagdarab küldése előtt. (Tipikusan datalink MTU miatt).
- 3./ Darabolás 8 bájtos határon következhet be. Az offset értékben a fregment első bájtjának az eredeti (nem darabolt) csomagbeli helyét jelezzük 8 bájtos egységben számolva.
- 4./ A darabok összeillesztését a célállomás végzi az IP fejrész második szavának adatai alapján.

IP fejrész szerkezete -3

TTL	Transzport réteg protokoll	Fejrész ellenőrző összeg

A harmadik szó adatai - általános információk:

- 8 bit: TTL a csomag "hátralevő életidejének" jelzése.
- 8 bit: Felsőbb (transzport) rétegbeli protokoll kódja – RFC 1700.
- 16 bit: A fejrész ellenőrző összege.

IP fejrész szerkezete – 4,5

A negyedik, ötödik szó adatai - címzések:

- 32 bit: A "forrás" IP címe.
- 32 bit: A "cél" IP címe.

IP fejrész szerkezete – 6 ...

Opcionális mező(k)

A hatodik szótól - 32 bites opcionális információk pl.:

- ✓ Biztonság Meghatározza mennyire titkos.
- ✓ Szigorú forrás általi útválasztás.
- ✓ Laza forrás általi útválasztás.
- √Útvonal feljegyzése.
- √ldőbélyeg.

IP címek

- A csomópont hálózati rétegbeli azonosítója.
- Pontozott decimális megjelenítés pl. 157.45.190.57
- Nem egyedi címeket, hanem címtartományokat (hálózat azonosítókat) osztanak ki az intézményeknek.
- Az IP forgalomirányítás a hálózati azonosítókra épül.
- Hány bit hosszú legyen a hálózat azonosítója?
 - Ha túl kicsi, akkor a nagy tartományok kihasználatlanok.
 - Ha túl nagy, akkor csak kis alhálózatok kezelhetők

IP Cimek

- A hálózati azonosító egy IP címből az alhálózati maszk segítségével nyerhető ki.
- IP cím AND alhálózati maszk = hálózat címe
- Minden hálózatban két ki nem osztható cím van:
 - A hálózati címet nem lehet kiosztani végpontnak
 - Valamint a brodecast címet sem.
- A brodecast cím az, ahol az állomás címbitek értéke csupa egyes.

IP Cím osztályok

Kezdőbit(ek)	1. Bájt értéke	Osztály
0	0 - 127	A
10	128 - 191	В
110	192 - 223	C

Alapértelmezett hálózati maszk

A osztály:

Hálózati maszk: 255.0.0.0 Prefix hossz: 8.

B osztály:

Hálózati maszk: 255.255.0.0 Prefix hossz:

16.

C osztály:

Hálózati maszk: 255.255.255.0 Prefix hossz: 24.

Speciális IP címek

00000000.000000	000.00000000.000000000	Az aktuális gép (nem specifikált host).
000000000000	Host	Az aktuális hálózat megadott gépe.
11111111.11111	111.11111111111111111	Broadcast az aktuális hálózaton.
Network	000000000000000000	A megadott hálózat azonosítója.
Network	111111111111111111	Broadcast a megadott hálózaton.
01111111	Bármi	Loopback

További IP címosztályok

D osztály:

224 – 239.x.x.x Nem használható üzleti célra mint állomás. (Multicasting – többesküldés)

E osztály:

240 – 255.x.x.x Internet saját céljaira fenntartva

IP alhálózatok

Miért van szükség alhálózatok létrehozására?

 Az intézmény logikai működése, felépítése, térbeli

elhelyezkedése indokolja.

 Egy IP hálózaton több (tipikusan azonos méretű) üzenetszórási (broadcast) tartományt kell létrehozni.

IP alhálózatok

Hogyan hozunk létre alhálózatokat?

- Az IP cím host részének legmagasabb helyiértékű bitjeiből néhányat az alhálózat (subnet) azonosítására használunk.
- Az új hálózat-csomópont határt a hálózati maszk (netmask) értékkel jelöljük (hosszabb prefix-et alkalmazunk).

Példa feladat

- 197.45.112.0/24 hálózat felbontása 4 alhálózatra.
 - Hálózati maszk meghatározása
 - Alhálózatok címének és brodecast címeinek meghatározása
 - Alhálózatok címtartományának meghatározása
- 192.168.100.0/24 hálózaton belül kell kialakítani alhálózatokat.
 - 30db gép fogadására alkalmas alhálózat
 - 26db gép fogadására alkalmas alhálózat
 - Számoljuk ki az alhálózatok paramétereit!

