2016학년도 1학기 (중간고사)		학 과		감!	독교수확인
과 목 명	일반수학 1	학 번			
출제교수명	공	교수명	분 반		
시 혐 일 시	2016년 4월 18일 (오전 10:00-11:40)	성 명		점 수	

1번 - 10번은 단답형 문제(각 5점 만점)입니다. 풀 3. 함수 y=f(x)의 역함수가 $x=f^{-1}(y)=\frac{3^y}{2+3^y}$ 이다. 이과정은 쓸 필요 없고 답만 쓰면 됩니다.

1. 극한 $\lim_{x\to 0+} \tan^{-1}\left(\frac{1}{x^x-1}\right)$ 을 구하여라.

 $x = \frac{1}{3}$ 일 때 y = f(x)의 법선의 방정식을 구하여라.

답:

답:

2. $\sin y + \cos x = 1$ 일 때, $y'' = \frac{d^2y}{dx^2}\Big|_{(\pi/3,\pi/6)}$ 를 구하여 4. 곡선 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$ 에서 1사분면에 속하는 길이를 구 되었고 라.

답:

2016학년도 1학기 (중간고사)		학 과		감:	독교수확인
과 목 명	일반수학 1	학 번			
출제교수명	용	교수명	분 반		
시 혐 일 시	2016년 4월 18일 (오전 10:00-11:40)	성 명		점 수	

5. 함수 $g(x) = \int_0^{\sin^{-1}x} \sqrt{1 - \sin t} dt \ (0 < x < 1)$ 일	때,
$g^{'}\!\!\left(rac{1}{2} ight)$ 의 값을 구하여라.	

7. 한 변의 길이가 $\sqrt{1.1}$ 인 정육면체의 부피의 근삿값 을, x = 0 근방에서 $f(x) = \sqrt{(1+x)^3}$ 의 선형근사식을 이 용하여 구하여라.

답:

6. 한 점이 곡선 $y = 2\sin\left(\frac{\pi}{2}x\right)$ 를 따라 움직이고 있다. 점 $\left(\frac{1}{3},1\right)$ 에 도달할 때 x 좌표는 $\sqrt{10}$ cm/sec의 속력으 을 중심으로 회전하여 생긴 회전곡면의 넓이를 구하여라. 로 증가한다. 그 순간 원점에서부터 그 점까지의 거리의 변화율을 구하여라.

답:

8. x = 0과 x = 2사이의 곡선 $y = \left(\frac{x}{2}\right)^{\frac{2}{3}}$ 를 직선 $y = -\frac{1}{9}$

답:

답:

2016학년도 1학기 (중간고사)		학 과		감!	독교수확인
과 목 명	일반수학 1	학 번			
출제교수명	용	교수명	분 반		
시 혐 일 시	2016년 4월 18일 (오전 10:00-11:40)	성 명		점 수	

9.	정적분	$\int_0^{\frac{1}{\sqrt{2}}}$	$\frac{x\sin^{-1}(x^2)}{\sqrt{1-x^4}}dx \stackrel{\Xi}{=}$	구하여라.
----	-----	-------------------------------	--	-------

11번~15번은 서술형 문제(각 10점 만점)입니다. 풀 이과정을 모두 서술하여야 합니다.

 $\frac{2}{3} + \frac{2}{3} = 4 (x, y > 0)$ 위의 점 (s, t)에서 그은 접선이 x축과 만나는 점을 P, y축과 만나는 점을 Q 라할 때 삼각형 OPQ의 넓이의 최댓값을 구하여라. (단, 점 O는 원점이다.)

답:

10. 함수 $f(x) = \sin^{-1} \left(\frac{x}{\sqrt{1+x^2}} \right) + \tan^{-1} \frac{1}{x}$ 의 정의역과 치역을 구하여라.

답: 정의역=

치역=

2016학년도 1학기 (중간고사)		학 과		감!	독교수확인
과 목 명	일반수학 1	학 번			
출제교수명	용	교수명	분 반		
시 험 일 시	2016년 4월 18일 (오전 10:00-11:40)	성 명		점 수	

시 험 일 시	2016년 4월 18일 (오전 10:00-11:40) 성 명		점 수
12. 매끈한 함수 $f(x)$)의 フ래프가 두 전	13. 두 포물선 $y = ax^2 (a > 0, x)$	> 0) of $u = 1$ m^2 of \overline{M}
(0, 3), (6, 11) 을 지		13. 구 포물인 $y = ax$ ($a > 0, x = ax$) 점을 A 라 하자. 직선 OA 와 포될	
		인 1 사분면 영역을 y 축으로 회장	
$\lim_{n\to\infty}\sum_{k=1}\sqrt{1+\left\{f'\left(\frac{\partial k}{n}\right)\right\}}$	$\left \frac{3}{n} \right ^2$ • $\frac{3}{n}$ 의 최솟값을 구하여라.	V라고 하자. V가 최대일 때 as	
		구하여라. (단, 점 <i>O</i> 는 원점이다.)	

2016학년도 1학기 (중간고사)		학 과		감!	독교수확인
과 목 명	일반수학 1	학 번			
출제교수명	공 동	교수명	분 반		
시 험 일 시	2016년 4월 18일 (오전 10:00-11:40)	성 명		점 수	

1	15. 평균값 정리를 이용하여 $x>0$ 일 때
14 . 함수 $y=e^{\frac{1}{x}}$ 의 그래프의 개형을 그려라.	
	$\ln x + \frac{1}{x+1} < \ln(x+1) < \ln x + \frac{1}{x}$ 임을
	증명하여라.