Grundlagen der Programmierung (Vorlesung 18)

Ralf Möller, FH-Wedel

- Vorige Vorlesung
 - Asymptotische Komplexität von Algorithmen
- Inhalt dieser Vorlesung
 - Sortieralgorithmen und deren Analyse
- Lernziele
 - Grundlagen der Analyse von Algorithmen

Danksagung

- Das Material ist angelehnt an die Materialien aus der Vorlesung Datenstrukturen und Algorithmen von Prof. Dr. M. Jarke, M. Gebhardt, T. v. d. Maßen, A. Nowack, Dr. J.-C. Töbermann, RWTH Aachen
- http://www-i5.informatik.rwth-aachen.de/lehrstuhl/lehre/DA01/

Vorabbemerkungen (1)

Definition: Partielle Ordnung

Es sei \mathcal{M} eine nicht leere Menge und $\leq \subseteq \mathcal{M} \times \mathcal{M}$ eine binäre Relation auf \mathcal{M} . Das Paar $< \mathcal{M}, \leq >$ heißt eine partielle Ordnung auf \mathcal{M} , genau dann wenn \leq die folgenden Eigenschaften erfüllt:

- Reflexivität: $\forall x \in \mathcal{M}: x \leq x$
- Transitivität: $\forall x, y, z \in \mathcal{M}: x \leq y \land y \leq z \longrightarrow x \leq z$
- Antisymmetrie: $\forall x, y \in \mathcal{M}: x \leq y \land y \leq x \longrightarrow x = y$

Vorabbemerkungen (2)

Definition: Strikter Anteil einer Ordnungsrelation

Für eine partielle Ordnung \leq auf einer Menge \mathcal{M} definieren wir die Relation < durch:

$$x < y := x \le y \land x \ne y$$

Die Relation < heißt auch der strikte Anteil von \leq .

Definition: Totale Ordnung

Es sei \mathcal{M} eine nicht leere Menge und $\leq \subseteq \mathcal{M} \times \mathcal{M}$ eine binäre Relation über \mathcal{M} . \leq heißt eine totale Ordnung auf \mathcal{M} , genau dann wenn gilt:

- $<\mathcal{M}, \le>$ ist eine partielle Ordnung und
- Trichotomie: $\forall x, y \in \mathcal{M}: \quad x < y \lor x = y \lor y < x$

Sortierung von Reihungen

- Sortierproblem Definition:
 - Gegeben sei eine Reihung a der Form array [1..n] of M und eine totale Ordnung ≤ definiert auf M.
 - Gesucht in eine Reihung b : array [1..n] of M, so daß gilt: \forall 1 \le i < n . (b[i] \le b[i+1] \lambda \exists j \in \{1, ...,n\} . (a[j] = b[i]))

Unterscheidungskriterien (1)

- M kann eine Menge zusammengesetzer Objekte sein
 - Die Elemente aus M können wieder Reihungen (Arrays) sein
 - Andere Beispiele sind (Name, Vorname) usw.
- M kann auch No sein

Unterscheidungskriterien (2)

Üblicherweise wird für die Ordnungsrelation bei zusammengesetzten Reihungselementen nur eine Teilkomponente als Schlüssel verwendet

Liste	Schlüsselelement	Ordnung
Telefonbuch	Nachname	lexikographische Ordnung
Klausurergebnisse	Punktezahl	$\leq \operatorname{auf} \mathbb{Q}$
Lexikon	Stichwort	lexikographische Ordnung
Studentenverzeichnis	Matrikelnummer	$\leq \text{auf } \mathbb{N}$
Entfernungstabelle	Distanz	$\leq \operatorname{auf} \mathbb{R}$
Fahrplan	Abfahrtszeit	"früher als"

Unterscheidungskriterien (3)

Stabilität

- Ein Sortierverfahren heißt stabil, wenn sich in der Ergebnisreihung die Reihenfolge gleicher Elemente nicht ändert
- Relevant ist dieses für Reihungen mit zusammengesetzten Elementen

Vereinfachung

- Wir betrachten hier zur Vereinfachung nur $M = N_0$
- Wir suchen eine Sortier<u>funktion</u>, d.h. das Eingabearray wird nicht verändert. Der Algorithmus arbeitet auf einer vorher erstellten Kopie der Eingabe
- Wird als Ergebnis die gleiche Reihung verwendet, spricht man von In-situ-Sortieren

Abkürzung: For-Schleife

```
for i := a to b by X do <Rumpf> end for steht für:

i := a;
while ¬(i = b) do
```

<Rumpf>;
i := i + X
end while

Sortieren durch Auswahl: selection-sort

selection-sort(a : array [1..n] of N_0) : array [1..n] of N_0 begin var i, j, min : N_0 ; 6 for i := 1 to n-1 do min := i; 6 for j := i + 1 to n do if a[j] < a[min] $^{3}1$ 6 then min := j end if 8 3 end for; a[i],a[min] := a[min], a[i]3 end for; **a** 3 6 end

Ein Beispiellauf

- Ein Kasten zeigt das Array a zu einem Zeitpunkt
- Ein Punkt kennzeichnet einen Arraywert
 (Wert durch Höhe kodiert, Index durch Position)
- Annahme: Zufällige Sortierung am Anfang

Komplexitätsanalyse

Komplexitätsanalyse

Zum Sortieren der gesamten Folge $a[1], \ldots, a[N]$ werden N-1 Durchläufe benötigt. Pro Schleifendurchgang i gibt es eine Vertauschung, die sich aus je drei Bewegungen und N-i Vergleichen zusammensetzt, wobei N-i die Anzahl der noch nicht sortierten Elemente ist. Insgesamt ergeben sich:

• $3 \cdot (N-1)$ Bewegungen und

•
$$(N-1) + (N-2) + \ldots + 2 + 1 = \frac{N \cdot (N-1)}{2}$$
 Vergleiche.

Da die Anzahl der Bewegungen nur linear in der Anzahl der Datensätze wächst, ist SelectionSort besonders für Sortieraufgaben geeignet, in denen die einzelnen Datensätze sehr groß sind.

Sortieren durch Einfügen: insertion-sort

insertion-sort(a : array [1..n] of N_0): array [1..n] of N_0 begin var i, j, $w : N_0$; for i := 2 to n do w := a[i];j := i ; while $1 < j \land a[j-1] > w do$ a[j] := a[j-1];j := j - 1end; a[j] := w;end; 3 4 6 7 **a**

end

Bemerkung

Nicht-strikte Auswertung von \land sichert, daß im Falle j = 1 nicht auf a[0] zugegriffen wird.

Ein Beispiellauf

Komplexitätsanalyse (1)

Vergleiche: Das Einfügen des Elements a[i] in die bereits sortierte Anfangsfolge $a[1], \ldots, a[i-1]$ erfordert mindestens einen Vergleich, höchstens jedoch i Vergleiche. Im Mittel sind dies i/2 Vergleiche, da bei zufälliger Verteilung der Schlüssel die Hälfte der bereits eingefügten Elemente größer ist als das Element a[i].

- Best Case Bei vollständig vorsortierten Folgen ergeben sich N-1 Vergleiche.
- Worst Case Bei umgekehrt sortierten Folgen gilt für die Anzahl der Vergleiche:

$$\sum_{i=2}^{N} i = \left(\sum_{i=1}^{N} i\right) - 1 = \frac{N(N+1)}{2} - 1$$
$$= \frac{N^2}{2} + \frac{N}{2} - 1$$

 \bullet Average Case – Die Anzahl der Vergleiche ist etwa $N^2/4$

Komplexitätsanalyse (2)

Bewegungen: Im Schleifendurchgang i (i = 2,...,N) wird bei bereits sortierter Anfangsfolge a[1],...,a[i-1] das einzufügende Element a[i] zunächst in die Hilfsvariable v kopiert (eine Bewegung) und anschließend mit höchstens i Schlüsseln

wenigstens jedoch mit einem Schlüssel und im Mittel mit i/2 Schlüsseln verglichen. Bis auf das letzte Vergleichselement werden die Datensätze um je eine Position nach rechts verschoben (jeweils eine Bewegung). Anschließend wird der in v zwischengespeicherte Datensatz an die gefundene Position eingefügt (eine Bewegung). Für den Schleifendurchgang i sind somit mindestens zwei Bewegungen, höchstens jedoch i+1 und im Mittel i/2+2 Bewegungen erforderlich.

Komplexitätsanalyse (3)

- Best Case Bei vollständig vorsortierten Folgen 2(N-1) Bewegungen
- Worst Case Bei umgekehrt sortierten Folgen $N^2/2$ Bewegungen
- Average Case $\sim N^2/4$ Bewegungen

Für "fast sortierte" Folgen verhält sich InsertionSort nahezu linear. Im Unterschied zu SelectionSort vermag InsertionSort somit eine in der zu sortierenden Datei bereits vorhandene Ordnung besser auszunutzen.

Bubblesort

function bubble-sort (a : array [1..n] of N_0) : array [1..n] of N_0 begin

```
var i,j:N_0;
 for i := n to 1 by -1 do
  for j := 2 to i do
    if a[j-1] > a[j]
     then a[j-1], a[j] := a[j], a[j-1]
    end
  end
 end;
 0
end
```

Eine Beispiellauf

Komplexitätsanalyse (1)

Vergleiche: Die Anzahl der Vergleiche ist unabhängig vom Vorsortierungsgrad der Folge. Daher sind der worst case, average case und best case identisch, denn es werden stets alle Elemente der noch nicht sortierten Teilfolge miteinander verglichen. Im i-ten Schleifendurchgang (i = N, N - 1, ..., 2) enthält die noch unsortierte Anfangsfolge N - i + 1 Elemente, für die N - i Vergleiche benötigt werden.

Um die ganze Folge zu sortieren, sind N-1 Schritte erforderlich. Die Gesamtzahl der Vergleiche wächst damit quadratisch in der Anzahl der Schlüsselelemente:

$$\sum_{i=1}^{N-1} (N-i) = \sum_{i=1}^{N-1} i$$

$$= \frac{N(N-1)}{2}$$

Komplexitätsanalyse (2)

Bewegungen: Aus der Analyse der Bewegungen für den gesamten Durchlauf ergeben sich:

- im Best Case: 0 Bewegungen
- im Worst Case: $\sim \frac{3N^2}{2}$ Bewegungen
- im Average Case: $\sim \frac{3N^2}{4}$ Bewegungen.

Vergleich elementarer Sortierverfahren

Anzahl der Vergleiche:

Verfahren	Best Case	Average Case	Worst Case
SelectionSort	$N^{2}/2$	$N^{2}/2$	$N^2/2$
InsertionSort	N	$N^{2}/4$	$N^2/2$
BubbleSort	$N^{2}/2$	$N^2/2$	$N^2/2$

Anzahl der Bewegungen:

Verfahren	Best Case	Average Case	Worst Case
SelectionSort	3(N-1)	3(N-1)	3(N-1)
InsertionSort	2(N-1)	$N^{2}/4$	$N^2/2$
BubbleSort	0	$3N^2/4$	$3N^{2}/2$

Folgerungen

BubbleSort: ineffizient, da immer $N^2/2$ Vergleiche

InsertionSort: gut für fast sortierte Folgen

SelectionSort: gut für große Datensätze aufgrund konstanter Zahl der Bewegungen, je-

doch stets $N^2/2$ Vergleiche

Fazit: InsertionSort und SelectionSort sollten nur für $N \leq 50$ eingesetzt werden.

Höhere Sortierverfahren: Quicksort

QuickSort wurde 1962 von C.A.R. Hoare entwickelt.

Prinzip: Das Prinzip folgt dem Divide-and-Conquer-Ansatz:

Gegeben sei eine Folge F von Schlüsselelementen.

1. Zerlege F bzgl. eines partitionierenden Elementes (engl.: pivot = Drehpunkt) $p \in F$ in zwei Teilfolgen F_1 und F_2 , so daß gilt:

$$x_1 \le p$$
 $\forall x_1 \in F_1$
 $p \le x_2$ $\forall x_2 \in F_2$

2. Wende dasselbe Schema auf jede der so erzeugten Teilfolgen F_1 und F_2 an, bis diese nur noch höchstens ein Element enthalten.

Quicksort: Kernidee

• **Ziel:** Zerlegung (Partitionierung) des Arrays a[l..r] bzgl. eines Pivot-Elementes a[k] in zwei Teilarrays a[l..k-1] und a[k+1..r]

$$\forall i \in \{l, \dots, k-1\} : a[i] \le a[k]$$

 $\forall j \in \{k+1, \dots, r\} : a[k] \le a[j]$

• Methode: Austausch von Schlüsseln zwischen beiden Teilarrays

Quicksort

```
quicksort(a : array [1..n] of N_0) : array [1..n] of N_0
    quicksort'(a, 1, n)
quicksort'(a : array [1..n] of N_0; p, r : N_0) :
                                         array [1..n] of N_0
begin
 var q : N0;
 if p < r
    then q := partition(a, p, r);
          quicksort'(quicksort'(a, p, q), q+1, r)
 end if:
 end
```

Partition

```
partition(a : array [1..n] of N_0; p, r : N_0) : N_0
begin
  var x, i, j, result : N_0;
  x, i, j, result := a[p], p -1, r + 1, -1;
  while result < 0 do
     repeat j := j - 1 until a[j] \leftarrow x end repeat;
     repeat i := i + 1 until a[i] >= x end repeat;
     if i < j
       then a[i], a[j] := a[j], a[i]
       else result := j
     end if
  end while;
  result
end
```

Komplexitätsabschätzung

1. Schritt

N

2. Schritt

 $\frac{N}{2}$

 $\frac{N}{2}$

3. Schritt

 $\frac{N}{4}$

 $\frac{N}{4}$

 $\frac{N}{4}$

 $\frac{N}{4}$

4. Schritt

 $\frac{N}{8}$

 $\frac{N}{8}$

 $\frac{N}{8}$

 $\frac{N}{8}$

 $\frac{N}{8}$

 $\frac{N}{8}$

 $\frac{N}{8}$

 $\frac{N}{8}$

:

÷

(ld N)-ter Schritt

1 1 1 1 1 1

..

1

Zusammenfassung, Kernpunkte

- Einfache Sortierverfahren
 - Sortieren durch Auswahl
 - Sortieren durch Einfügen
 - Sortieren durch paarweises Vertauschen (Bubblesort)
- Höhere Sortierverfahren
 - Quicksort
- Komplexitätsabschätzung
 - I n^2 vs. n log n
 - Teile-und-herrsche-Prinzip

Was kommt beim nächsten Mal?

- Abstrakte Maschinen für spezielle Aufgaben
- Automatentheorie und Formale Sprachen