

MAGIC Documentation

Release 5.3

The MAGIC dev team

CONTENTS

1	ntroduction				
	1.1 Foreword		. 1		
	1.2 Giving credit		. 2		
2	Get MagIC and run it				
	2.1 Download the code		. 3		
	2.2 Setting up the environment variables				
	2.3 Setting up compiler options and compiling				
	2.4 Preparing a production run				
3	Formulation of the (magneto)-hydrodynamics problem		7		
	3.1 The reference state		. 9		
	3.2 Boussinesq approximation				
	3.3 Anelastic approximation				
	3.4 Dimensionless control parameters				
	3.5 Boundary conditions and treatment of inner core				
	5.5 Boundary conditions and deadness of finier core		. 14		
4	Numerical technique		17		
	4.1 Poloidal/toroidal decomposition				
	4.2 Spherical harmonic representation		. 18		
	4.3 Radial representation		. 21		
	4.4 Spectral equations		. 22		
	4.5 Time-stepping schemes		. 26		
	4.6 Coriolis force and nonlinear terms				
	4.7 Boundary conditions and inner core				
5	Contributing to the code		37		
	5.1 Checking the consistency of the code		. 37		
	5.2 Advices when contributing to the code				
	Building the documentation and contributing to it				
6	Input parameters		41		
	6.1 Grid namelist		. 42		
	6.2 Control namelist				
	6.3 Physical parameters namelist				
	6.4 External Magnetic Field Namelist				
	6.5 Start field namelist				
	6.6 Output control namelist				
	6.7 Mantle and Inner Core Namelists		. 68		
7	Interactive communication with the code using signal.TAG		71		

8	Outp	ut files	73
	8.1	Log file: log.TAG	74
	8.2	Default time-series outputs	75
	8.3	Additional optional time-series outputs	80
	8.4	Time-averaged radial profiles	85
	8.5	Transport properties of the reference state	90
	8.6	Nonlinear mapping of the Chebyshev grid	91
	8.7	Spectra	92
	8.8	Graphic files G_#.TAG and G_ave.TAG	
	8.9	Movie files *_mov.TAG	101
	8.10	Restart files rst_*.TAG	104
	8.11	Poloidal and toroidal potentials at given depths	106
	8.12	TO outputs	
	8.13	Radial spectra rB[r p]Spec.TAG	
	8.14	Potential files [V B T]pot_#.TAG	
9	Data	visualisation and post-processing	117
	9.1	Requirements	117
	9.2	Configuration: magic.cfg file	
	9.3	Python functions and classes	119
10	Desci	ription of the Fortran modules	151
	10.1	Main program magic.f90	151
	10.2	Base modules	152
	10.3	MPI related modules	179
	10.4	Code initialization	186
	10.5	Pre-calculations	193
	10.6	Time stepping	201
	10.7	Linear calculation part of the time stepping (LMLoop)	
	10.8	Non-linear part of the time stepping (radial loop)	
	10.9	Chebyshev polynomials and cosine transforms	
		Legendre transforms	
		Fourier transforms	
		Linear algebra	
		Radial derivatives and integration	
		Blocking and LM mapping	
		IO: time series, radial profiles and spectra	
		IO: graphic files, movie files, coeff files and potential files	
		IO: RMS force balance, torsional oscillations, misc	
		Reading and storing check points (restart files)	
		Useful additional libraries	
	10.19	Useful additional horaries	304
Fo	rtran l	Module Index	371
Рy	thon N	Andule Index	373
Ind	dex		375

INTRODUCTION

1.1 Foreword

MagIC is a numerical code that can simulate fluid dynamics in a spherical shell. MagIC solves for the Navier-Stokes equation including Coriolis force, optionally coupled with an induction equation for Magneto-Hydro Dynamics (MHD) and a temperature (or entropy) equation under both the anelastic and the Boussinesq approximations.

MagIC uses Chebyshev polynomials in the radial direction and spherical harmonic decomposition in the azimuthal and latitudinal directions. The time-stepping scheme relies on a semi-implicit Crank-Nicolson for the linear terms of the MHD equations and a Adams-Bashforth scheme for the non-linear terms and the Coriolis force.

MagIC is written in Fortran and designed to be used on supercomputing clusters. It thus relies on a hybrid parallelisation scheme using both OpenMP and MPI. Postprocessing functions written in python (requiring matplotlib and scipy) are also provided to allow a useful data analysis.

Fig. 1.1: Mean walltime of the MagIC code on the supercomputer stampede versus number of CPUs for a dynamo model computed at three different numerical resolutions $(N_{\phi}, N_{\theta}, N_r)$. The solid black lines show the ideal scalings.

MagIC is a free software. It can be used, modified and redistributed under the terms of the GNU GPL v3 licence.

1.2 Giving credit

In case you intend to publish scientific results obtained with the MagIC code or present them in a conference, we (the developers of MagIC) kindly ask to be acknowledged with a reference to the website https://magic-sph.github.io/ or https://github.com/magic-sph/magic.

We also suggest to give appropriate reference to one or several of the following papers:

- Boussinesq equations: Wicht (2002, PEPI, 132, 281-302)
- Anelastic equations: Gastine & Wicht (2012, Icarus, 219, 28-442)
- Boussinesq benchmark: Christensen et al. (2001, PEPI, 128, 25-34)
- Anelastic benchmark: Jones et al. (2011, Icarus, 216, 120-135)
- In case you use the SHTns library for the spherical harmonics transforms (MagIC 5.3 or later), please also cite: Schaeffer (2013, GGG, 14, 751-758)

See also:

A (tentative) comprehensive list of the publications that have been produced to date (october 2015) using **MagIC** is accessible here. To date, more than **70 publications** have been-accepted in more than 10 different peer-reviewed journals: PEPI (19), Icarus (10), E&PSL (6), GJI (6), A&A (4), GRL (4), JFM (3), GAFD (3), Nature (2), etc.

Fig. 1.2: Number of peer-reviewed publications produced using MagIC

CHAPTER

TWO

GET MAGIC AND RUN IT

2.1 Download the code

You can download a snapshot of the code from the Git repository using

```
$ git clone https://github.com/magic-sph/magic.git
```

In case you already have an account on github.com and uploaded a public SSH key on it, you could then rather use SSH:

```
$ git clone ssh://git@github.com/magic-sph/magic.git
```

2.2 Setting up the environment variables

Although not mandatory, it is strongly recommended to correctly source the environment variables of the MagIC code. It will ensure a smoother usage of the post-processing *python classes* and allow to run the *auto-test suite*. To do that, just go to the root directory of the MagIC code (magic) and source sourceme file that corresponds to your \$SHELL environment variable.

In case you use bash, ksh or zsh, just use:

```
$ source sourceme.sh
```

In case you use csh or tcsh, rather use

```
$ source sourceme.csh
```

You can make sure that the environment variables have been correctly sourced by typing:

```
$ echo $MAGIC_HOME
$ echo $PYTHONPATH
```

If you don't want to source sourceme.[c]sh on each session, you can add the following into your .bash_profile (or .profile or .zprofile or .cshrc):

```
$ source whereverYouCheckedOut/magic/sourceme.sh
```

To get started, you then need to compile the code

2.3 Setting up compiler options and compiling

The **recommended way of compiling MagIC** is to use the build system CMake, if available on your platform. Otherwise, a backup solution is provided via the manual edition of a Makefile.

2.3.1 Generic compiling options

For both build systems (cmake or make), several build options can be toggled using the following available options:

- PRECISION Set it to 'dble' for double-precision calculations or to 'sngl' for single-precision calculations
- OUT_PREC Set it to 'dble' for double-precision in binary outputs or to 'sngl' for single precision
- USE MPI Set to yes to use MPI, set it to no if you want a serial version of the code .
- USE_OMP Set it to yes to use the hybrid version of the code, or to no for a pure MPI (or serial) version.
- USE_PRECOND Set to yes to perform some pre-conditioning of the matrices.
- USE_FFTLIB This option lets you select the library you want to use for Fast Fourier Transforms. This can be set to 'JW' or 'MKL'. 'JW' refers to the inbuilt library by **J** ohannes **W** icht, while 'MKL' refers to the Intel Math Kernel Library. Use 'JW' if you don't have Intel MKL installed.
- USE_LAPACKLIB This option allows you to select the library you want to use for LU factorisation. This can be set to 'JW', 'MKL' or 'LAPACK'. 'JW' refers to the built-in library, while 'MKL' refers to the Intel Math Kernel Library and 'LAPACK' to the Lapack library
- USE HDF5 Set to yes if you want the restart file to be written in the HDF5 format
- USE_SHTNS Set to yes to use SHTns library for spherical harmonics transforms. The helper script install-shtns.sh is available in the bin directory to help installing SHTns.
- PRODRUN Set it to yes for production run, no for debugging.
- DEBUG Set to all to enable the full debug flags. While running in debugging mode, set PRODRUN to no.

Warning: MagIC cannot run with openMP alone, therefore a configuration of the form USE_MPI=no, USE_OMP=yes will be overwritten to force USE_OMP=no

2.3.2 Using CMake (recommended)

CMake is a powerful tool that can automatically detects and finds the best appropriate configuration for your platform. To use it, you just need to create a directory where you want to build the sources. For instance:

```
$ mkdir $MAGIC_HOME/build
$ cd $MAGIC_HOME/build
```

In a second step, you might want to specify your C and Fortran compilers (in case you skip this step, CMake will look for compilers for you but it might pick up another compiler as the one you might have wanted). For instance, in case you want to use the Intel compilers, you can export the following environment variables

```
$ export FC=mpiifort
$ export CC=mpiicc
```

for bash/ksh/zsh users and

```
$ setenv FC=mpiifort
$ setenv CC=mpiicc
```

for csh/tcsh users. At this stage you should be ready to build the code. If you simply use:

```
$ cmake ..
```

CMake will try to use the best options available on your machine (for instance it will try to locate and link the Intel Math Kernel Library). Otherwise you can pass the aforementioned available options to CMake using the generic form -DOPTION=value. For instance, in case you want to make use of the built-in libraries of MagIC and want to disable OpenMP, simply use

```
$ cmake .. -DUSE_OMP=no -DUSE_FFTLIB=JW -DUSE_LAPACKLIB=JW
```

Once you're happy with your configuration, just compile the code:

```
$ make -j
```

The executable magic.exe should have been produced in the local directory.

If you want to recompile the code from scratch do

```
$ make clean
```

to remove all the files generated by the compiler.

Once the executable is built, you are now ready to run your first production run!

2.3.3 Using make (backup solution)

In case CMake is not available on your platform, it is still possible to compile the code directly. Go to the directory where the source files of MagIC are contained

```
$ cd $MAGIC_HOME/src
```

Select compiler

Edit the file named Makefile using your favourite editor and set a suitable compiler for your platform using the variable: COMPILER = value. The possible options are intel, gnu or portland compilers.

List of default compilers

Compiler Option	Normal	With MPI	
intel	ifort, icc	mpiifort, mpiicc	
gnu	gfortran, gcc	mpif90, mpicc	
portland	pgf95, pgcc	mpif90, mpicc	

Warning: In case you want to use intel but mpiifort and mpiica are not available, you may also need to adapt the variables COMP_MPFC and COMP_MPCC.

Select compiling options

You can also modify the different compiling options by editing the values of the various parameters defined in the first lines of the Makefile. For instance, in case you want to make use of the built-in libraries and want to disable OpenMP, just define

```
USE_OMP=no
USE_FFTLIB=JW
USE_LAPACKLIB=JW
```

MPI_INCPATH

This variable sets the path for your MPI header file mpif.h. This is in general useless if you already use the MPI wrappers such as mpiifort or mpif90 to compile the code. It might be however required to define this path for some compiler configurations: MPI_INCPATH is usually /usr/include or /usr/include/mpi and should be found by the Makefile automatically thanks to the command mpif90 --showme:incdirs. In case this doesn't work, you may need to specify this variable manually in the Makefile. On supercomputing clusters, this variable is in general not used.

Other compilers

If your available compilers are different from the options provided in the Makefile, then just create a new profile for your desired compiler by changing the options COMP_FC and COMP_CC for serial fortran and C compilers and COMP_MPFC and COMP_MPCC for the possible MPI wrappers.

Once you've set up your compiling options compile the code using

```
$ make -j
```

The compiler should then produce an executable named magic.exe.

If you want to recompile the code from scratch do

```
$ make clean
```

to remove all the files generated by the compiler.

Once the executable is built, you are now ready to run your first production run!

2.4 Preparing a production run

After building the executable, use one of the namelists provided in the \$MAGIC_HOME/samples directory (called input.nml), adapt it to your physical problem (see *here* for an exhaustive description of the possible options) and run **MagIC** as follows:

• Running a serial version of the code (USE MPI=no and USE OMP=no):

```
$ ./magic.exe input.nml
```

• Running the code without OpenMP (USE_MPI=yes and USE_OMP=no) with <n_mpi> MPI ranks:

```
$ mpiexec -n <n_mpi> ./magic.exe input.nml
```

• Running the hybrid code (USE_MPI=yes and USE_OMP=yes) with <n_mpi> MPI ranks and <n_omp> OpenMP threads:

```
$ export OMP_NUM_THREAD = <n_omp>
$ export KMP_AFFINITY=verbose, granularity=core, compact, 1
$ mpiexec -n <n_mpi> ./magic.exe input.nml
```

Note that the n_r_{max} must be a multiple of n_p , where n_r_{max} is the number of radial grid points (see *here*).

FORMULATION OF THE (MAGNETO)-HYDRODYNAMICS PROBLEM

The general equations describing thermal convection and dynamo action of a rotating compressible fluid are the starting point from which the Boussinesq or the anelastic approximations are developed. In MagIC, we consider a spherical shell rotating about the vertical z axis with a constant angular velocity Ω . Equations are solve in the corotating system.

The conservation of momentum is formulated by the Navier-Stokes equation

$$\rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \, \boldsymbol{u} \right) = -\boldsymbol{\nabla} p + \frac{1}{\mu_0} (\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B} + \rho \boldsymbol{g} - 2\rho \boldsymbol{\Omega} \times \boldsymbol{u} + \boldsymbol{\nabla} \cdot \boldsymbol{S}, \tag{3.1}$$

where u is the velocity field, B the magnetic field, and p a modified pressure that includes centrifugal forces. S corresponds to the rate-of-strain tensor given by:

$$S_{ij} = 2\nu\rho \left[e_{ij} - \frac{1}{3}\delta_{ij} \nabla \cdot \boldsymbol{u} \right],$$

$$e_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right).$$

Convection is driven by buoyancy forces acting on variations in density ρ . These variations have a dynamical part formulated by the continuity equation describing the conservation of mass:

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \rho \boldsymbol{u}.\tag{3.2}$$

In addition an equation of state is required to formulate the thermodynamic density changes. For example the relation

$$\frac{1}{\rho}\partial\rho = -\alpha\partial T + \beta\partial p + \delta\partial\chi\tag{3.3}$$

describes density variations cause by variations in temperature T, pressure p, and composition χ . The latter contribution needs to be considered for describing the effects of light elements released from a growing solid iron core in a so-called double diffusive approach. Since this is not an option in the current versions of MagIC, we will neglect the respective contribution or model its effects with the co-density approach further discussed below.

To close the system we also have to formulate the dynamic changes of entropy, pressure, and composition. The evolution equation for pressure can be derived from the Navier-Stokes equation, as will be further discussed below. For entropy variations we use the so-called energy or heat equation

$$\rho T \left(\frac{\partial s}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} s \right) = \boldsymbol{\nabla} \cdot (k \boldsymbol{\nabla} T) + \boldsymbol{\Phi}_{\nu} + \lambda \left(\boldsymbol{\nabla} \times \boldsymbol{B} \right)^{2} + \epsilon, \tag{3.4}$$

where Φ_{ν} corresponds to the viscous heating expressed by

$$\Phi_{\nu} = 2\rho \left[e_{ij}e_{ji} - \frac{1}{3} \left(\boldsymbol{\nabla} \cdot \boldsymbol{u} \right)^{2} \right]$$

Note that we use here the summation convention over the indices i and j. The second last term on the right hand side is the Ohmic heating due to electric currents. The last term is a volumetric sink or source term that can describe various effects, for example radiogenic heating, the mixing-in of the light elements or, when radially dependent, potential variations in the adiabatic gradient (see below). Should compositional effects be considered an additional equivalent evolution equation for χ needs to be considered.

The induction equation is obtained from the Maxwell equations (ignoring displacement current) and Ohm's law (neglecting Hall effect):

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{B} - \lambda \, \boldsymbol{\nabla} \times \boldsymbol{B}). \tag{3.5}$$

When the magnetic diffusivity λ is homogeneous this simplifies to the commonly used form

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{B}) + \lambda \, \boldsymbol{\Delta} \boldsymbol{B}. \tag{3.6}$$

The physical properties determining above equations are rotation rate Ω , the kinematic viscosity ν , the magnetic permeability μ_0 , gravity g, thermal conductivity k, magnetic diffusivity λ . The latter connects to the electrical conductivity σ via $\lambda = 1/(\mu_0 \sigma)$. The thermodynamics properties appearing in (3.3) are the thermal expansivity at constant pressure (and composition)

$$\alpha = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_p, \tag{3.7}$$

the compressibility at constant temperature

$$\beta = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right)_T$$

and an equivalent parameter δ for the dependence of density on composition.

Fig. 3.1: Sketch of the spherical shell model and its system of coordinate.

3.1 The reference state

The convective flow and the related processes including magnetic field generation constitute only small disturbances around a background or reference state. In the following we denote the background state with a tilde and the disturbance we are interested in with a prime. Formally we will solve equations in first order of a smallness parameters ϵ which quantified the ratio of convective disturbances to background state:

$$\epsilon \sim \frac{T'}{\tilde{T}} \sim \frac{p'}{\tilde{p}} \sim \frac{\rho'}{\tilde{\rho}} \sim \dots \ll 1.$$
 (3.8)

The background state is hydrostatic, i.e. obeys the simple force balance

$$\nabla \tilde{p} = \tilde{\rho} \tilde{\boldsymbol{g}}. \tag{3.9}$$

Convective motions are supposed to be strong enough to provide homogeneous entropy (and composition). The reference state is thus adiabatic and its gradients can be expressed in terms of the pressure gradient (3.9):

$$\frac{\nabla \tilde{T}}{\tilde{T}} = \frac{1}{\tilde{T}} \left(\frac{\partial T}{\partial p} \right)_{s} \nabla p = \frac{\alpha}{c_{p}} \tilde{\mathbf{g}}, \tag{3.10}$$

$$\frac{\nabla \tilde{\rho}}{\tilde{\rho}} = \frac{1}{\tilde{\rho}} \left(\frac{\partial \rho}{\partial p} \right)_{s} \nabla p = \beta \tilde{\rho} \tilde{\boldsymbol{g}}. \tag{3.11}$$

The reference state obviously dependence only on radius. Dimensionless numbers quantifying the temperature and density gradients are called dissipation number Di and compressibility parameter Co respectively:

$$Di = \frac{\alpha d}{c_p}\tilde{g},$$

and

$$Co = d\beta \tilde{\rho} \tilde{q}$$

Here d is a typical length scale, for example the shell thickness of the problem. The dissipation number is something like an inverse temperature scale hight while the compressibility parameters is an inverse density scale hight. The ratio of both numbers also helps to quantify the relative impact of temperature and pressure on density variations:

$$\frac{\alpha \nabla T}{\beta \nabla \rho} \approx \alpha \tilde{T} \frac{Di}{Co}.$$
(3.12)

As an example we demonstrate how to derive the first order continuity equation here. Using $\rho = \tilde{\rho} + \rho'$ in (3.2) leads to

$$\frac{\partial \tilde{\rho}}{\partial t} + \frac{\partial \rho'}{\partial t} = -\nabla \cdot (\tilde{\rho} \boldsymbol{u}) - \nabla \cdot (\rho' \boldsymbol{u}).$$

The zero order term vanishes since the background density is considered static (or actually changing very slowly on very long time scales). The second term in the right hand side is obviously of second order. The ratio of the remaining two terms can be estimated to also be of first order in ϵ , meaning that the time derivative of ρ is actually also of second order:

$$\frac{[\partial \rho/\partial t]}{[\boldsymbol{\nabla}\cdot \rho\boldsymbol{u}]}\approx \frac{\rho'}{\tilde{\rho}}\approx \epsilon \ .$$

Square brackets denote order of magnitude estimates here. We have used the fact that the reference state is static and assume time scale of changes are comparable (or slower) ρ' than the time scales represented by u and that length scales associated to the gradient operator are not too small. We can then neglect local variations in ρ' which means that sound waves are filtered out. This first order continuity equation thus simply reads:

$$\nabla \cdot (\tilde{\rho} \boldsymbol{u}) = 0. \tag{3.13}$$

This defines the so-called anelastic approximation where sound waves are filtered out by neglecting the local time derivative of density. This approximation is justified when typical velocities are sufficiently smaller than the speed of sound.

3.2 Boussinesq approximation

For Earth the dissipation number and the compressibility parameter are around 0.2 when temperature and density jump over the whole liquid core are considered. This motivates the so called Boussinesq approximation where Di and Co are assumed to vanish. The continuity equation (3.2) then simplifies further:

$$\frac{1}{\tilde{\rho}} \nabla \cdot \tilde{\rho} \boldsymbol{u} = \frac{\boldsymbol{u}}{\tilde{\rho}} \cdot \nabla \tilde{\rho} + \nabla \cdot \boldsymbol{u} \approx \nabla \cdot \boldsymbol{u} = 0.$$

When using typical number for Earth, (3.12) becomes 0.05 so that pressure effects on density may be neglected. The first order Navier-Stokes equation (after to zero order hydrostatic reference solution has been subtracted) then reads:

$$\tilde{\rho}\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \,\boldsymbol{u}\right) = -\boldsymbol{\nabla} p' - 2\rho \boldsymbol{\Omega} \times \boldsymbol{u} + \alpha \tilde{g}_o T' \frac{\boldsymbol{r}}{r_o} + \frac{1}{\mu_0} (\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B} + \tilde{\rho} \nu \Delta \boldsymbol{u}. \tag{3.14}$$

Here u and B are understood as first order disturbances and p' is the first order non-hydrostatic pressure and T' the super-adiabatic temperature. Above we have adopted a simplification of the buoyancy term. In the Boussinesq limit with vanishing Co and a small density difference between a solid inner and a liquid outer core a linear gravity dependence provides a reasonable approximation:

$$\tilde{\boldsymbol{g}} = \tilde{g}_o \frac{\boldsymbol{r}}{r_o},$$

where we have chosen the gravity \tilde{g}_o at the outer boundary radius r_o as reference.

The first order energy equation becomes

$$\tilde{\rho}\left(\frac{\partial T'}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} T'\right) = \kappa \Delta T' + \epsilon, \tag{3.15}$$

where we have assumed a homogeneous k and neglected viscous and Ohmic heating which can be shown to scale with Di as we discuss below. Further more, we have used the simple relation

$$\partial s \approx \frac{\tilde{\rho}c_p}{\tilde{T}}\partial T,$$

defined the thermal diffusivity

$$\kappa = \frac{k}{\tilde{\rho}c_n},$$

and adjusted the definition of ϵ .

MagIC solves a dimensionless form of the differential equations. Time is scaled in units of the viscous diffusion time d^2/ν , length in units of the shell thickness d, temperature in units of the temperature drop $\Delta T = T_o - T_i$ over the shell, and magnetic field in units $(\mu\lambda\tilde{\rho}\Omega)^{1/2}$. Technically the transition to the dimensionless form is achieved by the substitution

$$r \rightarrow r \; d, t \rightarrow \left(d^2/\nu \right) \; t, T \rightarrow \Delta T \; T, B \rightarrow \left(\mu \lambda \tilde{\rho} \Omega \right)^{1/2} B$$

where r stands for any length. The next step then is to collect the physical properties as few a possible characteristic dimensionless numbers. Note that many different scalings and combinations of dimensionless numbers are possible. For the Navier-Stokes equation in the Boussinesq limit MagIC uses the form:

$$\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \, \boldsymbol{u}\right) = -\boldsymbol{\nabla} p' - \frac{2}{E} \boldsymbol{e}_{\boldsymbol{z}} \times \boldsymbol{u} + \frac{Ra}{Pr} T' \frac{\boldsymbol{r}}{r_o} + \frac{1}{EPm} (\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B} + \Delta \boldsymbol{u}, \tag{3.16}$$

where e_z is the unit vector in the direction of the rotation axis and the meaning of the pressure disturbance p' has been adjusted to the new dimensionless equation form.

3.3 Anelastic approximation

The anelastic approximation adopts the simplified continuity (3.13). The background state can be specified in different ways, for example by providing profiles based on internal models and/or ab initio simulations. We will assume a polytropic ideal gas in the following.

3.3.1 Analytical solution in the limit of an ideal gas

In the limit of an ideal gas which follows $\tilde{p} = \tilde{\rho}\tilde{T}$ and has $\alpha = 1/\tilde{T}$, one directly gets:

$$\begin{split} \frac{d\tilde{T}}{dr} &= -Di\,\tilde{g}(r),\\ \tilde{\rho} &= \tilde{T}^{1/(\gamma-1)}, \end{split}$$

where $\gamma=c_p/c_v$. Note that we have moved to a dimensionless formulations here, where all quantities have been normalized with their outer boundary values and Di refers to the respective outer boundary value. If we in addition make the assumption of a centrally-condensed mass in the center of the spherical shell of radius $r\in [r_i, r_o]$, i.e. $g\propto 1/r^2$, this leads to

$$\tilde{T}(r) = Di \frac{r_o^2}{r} + (1 - Di r_o),$$

$$\tilde{\rho}(r) = \tilde{T}^m,$$

$$Di = \frac{r_i}{r_o} \left(\exp \frac{N_\rho}{m} - 1 \right),$$

where $N_{\rho} = \ln(\tilde{\rho}_i/\tilde{\rho}_o)$ is the number of density scale heights of the reference state and $m = 1/(\gamma - 1)$ is the polytropic index.

Warning:

- The relationship between N_{ρ} and the dissipation number Di directly depends on the gravity profile. The formula above is only valid when $g \propto 1/r^2$.
- In this formulation, when you change the polytropic index m, you also change the nature of the fluid you're modelling since you accordingly modify $\gamma = c_p/c_v$.

3.3.2 Anelastic MHD equations

In the most general formulation, all physical properties defining the background state may vary with depth. Specific reference values must then be chosen to provide a unique dimensionless formulations and we typically chose outer boundary values here. The exception is the magnetic diffusivity where we adopt the inner boundary value instead. The motivation is twofold: (i) it allows an easier control of the possible continuous conductivity value in the inner core; (ii) it is a more natural choice when modelling gas giants planets which exhibit a strong electrical conductivity decay in the outer layer.

The time scale is then the viscous diffusion time d^2/ν_o where ν_o is the kinematic viscosity at the outer boundary. Magnetic field is expressed in units of $(\rho_o\mu_0\lambda_i\Omega)^{1/2}$, where ρ_o is the density at the outer boundary and λ_i is the magnetic diffusivity at the **inner** boundary.

This leads to the following sets of dimensionless equations:

$$\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}\right) = -\boldsymbol{\nabla} \left(\frac{p'}{\tilde{\rho}}\right) - \frac{2}{E} \boldsymbol{e}_{\boldsymbol{z}} \times \boldsymbol{u} + \frac{Ra}{Pr} \tilde{\boldsymbol{g}} \, s' \, \boldsymbol{e}_{\boldsymbol{r}} + \frac{1}{Pm \, E \, \tilde{\rho}} \left(\boldsymbol{\nabla} \times \boldsymbol{B}\right) \times \boldsymbol{B} + \frac{1}{\tilde{\rho}} \boldsymbol{\nabla} \cdot \boldsymbol{S}, \tag{3.17}$$

$$\nabla \cdot \tilde{\rho} \boldsymbol{u} = 0, \tag{3.18}$$

$$\nabla \cdot \boldsymbol{B} = 0, \tag{3.19}$$

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{B}) - \frac{1}{Pm} \boldsymbol{\nabla} \times (\lambda(r) \boldsymbol{\nabla} \times \boldsymbol{B}). \tag{3.20}$$

Here \tilde{g} and $\tilde{\rho}$ are the normalized radial gravity and density profiles that reach one at the outer boundary.

3.3.3 Entropy equation and turbulent diffusion

The entropy equation usually requires an additional assumption in most of the existing anelastic approximations. Indeed, if one simply expands Eq. (3.4) with the classical temperature diffusion an operator of the form:

$$\epsilon \nabla \cdot (K \nabla T') + \nabla \cdot (K \nabla \tilde{T}),$$

will remain the right-hand side of the equation. At first glance, there seems to be a $1/\epsilon$ factor between the first term and the second one, which would suggest to keep only the second term in this expansion. However, for astrophysical objects which exhibit strong convective driving (and hence large Rayleigh numbers), the diffusion of the adiabatic background is actually very small and may be comparable or even smaller in magnitude than the ϵ terms representing the usual convective perturbations. For the Earth core for instance, if one assumes that the typical temperature fluctuations are of the order of 1 mK and the temperature contrast between the inner and outer core is of the order of 1000 K, then $\epsilon \sim 10^{-6}$. The ratio of the two terms can thus be estimated as

$$\epsilon \frac{T'/\delta^2}{T/d^2},\tag{3.21}$$

where d is the thickness of the inner core and δ is the typical thermal boundary layer thickness. This ratio is exactly one when $\delta = 1$ m, a plausible value for the Earth inner core.

In numerical simulations however, the over-estimated diffusivities restrict the computational capabilities to much lower Rayleigh numbers. As a consequence, the actual boundary layers in a global DNS will be much thicker and the ratio (3.21) will be much smaller than unity. The second terms will thus effectively acts as a radial-dependent heat source or sink that will drive or hinder convection. This is one of the physical motivation to rather introduce a **turbulent diffusivity** that will be approximated by

$$\kappa \tilde{\rho} \tilde{T} \nabla s$$
.

where κ is the turbulent diffusivity. Entropy diffusion is assumed to dominate over temperature diffusion in turbulent flows.

The choice of the entropy scale to non-dimensionalize Eq. (3.4) also depends on the nature of the boundary conditions: it can be simply the entropy contrast over the layer Δs when the entropy is held constant at both boundaries, or d(ds/dr) when flux-based boundary conditions are employed. We will restrict to the first option in the following, but keep in mind that depending on your setup, the entropy reference scale (and thus the Rayleigh number definition) might change.

$$\tilde{\rho}\tilde{T}\left(\frac{\partial s'}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla}s'\right) = \frac{1}{Pr}\boldsymbol{\nabla}\cdot\left(\kappa(r)\tilde{\rho}\tilde{T}\boldsymbol{\nabla}s'\right) + \frac{Pr\,Di}{Ra}\boldsymbol{\Phi}_{\nu} + \frac{Pr\,Di}{Pm^2\,E\,Ra}\lambda(r)\left(\boldsymbol{\nabla}\times\boldsymbol{B}\right)^2,\tag{3.22}$$

A comparison with (3.17) reveals meaning of the different non-dimensional numbers that scale viscous and Ohmic heating. The fraction Pr/Ra simply expresses the ratio of entropy and flow in the Navier-Stokes equation, while the additional factor 1/EPm reflects the scale difference of magnetic field and flow. Then remaining dissipation number Di then expresses the relative importance of viscous and Ohmic heating compared to buoyancy and Lorentz force in the Navier-Stokes equation. For small Di both heating terms can be neglected compared to entropy changes due to advection, an limit that is used in the Boussinesq approximation.

3.4 Dimensionless control parameters

The equations (3.17)-(3.22) are governed by four dimensionless numbers: the Ekman number

$$E = \frac{\nu}{\Omega d^2},\tag{3.23}$$

the Rayleigh number

$$Ra = \frac{\alpha_o g_o T_o d^3 \Delta s}{c_p \kappa_o \nu_o},\tag{3.24}$$

the Prandtl number

$$Pr = \frac{\nu_o}{\kappa_o},\tag{3.25}$$

and the magnetic Prandtl number

$$Pm = \frac{\nu_o}{\lambda_i}. (3.26)$$

In addition to these four numbers, the reference state is controlled by the geometry of the spherical shell given by its radius ratio

$$\eta = \frac{r_i}{r_o},\tag{3.27}$$

and the background density and temperature profiles, either controlled by Di or by N_{ρ} and m.

In the Boussinesq approximation all physical properties are assumed to be homogeneous and we can drop the subindices o and i except for gravity. Moreover, the Rayleigh number can be expressed in terms of the temperature jump across the shell:

$$Ra = \frac{\alpha g_o d^3 \Delta T}{\kappa \nu}. (3.28)$$

See also:

In MagIC, those control parameters can be adjusted in the &phys_param section of the input namelist.

Variants of the non-dimensional equations and control parameters result from different choices for the fundamental scales. For the length scale often r_o is chosen instead of d. Other natural scales for time are the magnetic or the thermal diffusion time, or the rotation period. There are also different options for scaling the magnetic field strength. The prefactor of two, which is retained in the Coriolis term in (3.17), is often incorporated into the definition of the Ekman number.

See also:

Those references timescales and length scales can be adjusted by several input parameters in the &control section of the input namelist.

3.4.1 Usual diagnostic quantities

Characteristic properties of the solution are usually expressed in terms of non-dimensional diagnostic parameters. In the context of the geodynamo for instance, the two most important ones are the magnetic Reynolds number Rm and the Elsasser number Λ . Usually the rms-values of the velocity u_{rms} and of the magnetic field B_{rms} inside the spherical shell are taken as characteristic values. The magnetic Reynolds number

$$Rm = \frac{u_{rms}d}{\lambda_i}$$

can be considered as a measure for the flow velocity and describes the ratio of advection of the magnetic field to magnetic diffusion. Other characteristic non-dimensional numbers related to the flow velocity are the (hydrodynamic) Reynolds number

$$Re = \frac{u_{rms}d}{\nu_o},$$

which measures the ratio of inertial forces to viscous forces, and the Rossby number

$$Ro = \frac{u_{rms}}{\Omega d},$$

a measure for the ratio of inertial to Coriolis forces.

$$\Lambda = \frac{B_{rms}^2}{\mu_0 \lambda_i \rho_o \Omega}$$

measures the ratio of Lorentz to Coriolis forces and is equivalent to the square of the non-dimensional magnetic field strength in the scaling chosen here.

See also:

The time-evolution of these diagnostic quantities are stored in the par.TAG file produced during the run of MagIC.

3.5 Boundary conditions and treatment of inner core

3.5.1 Mechanical conditions

In its simplest form, when modelling the geodynamo, the fluid shell is treated as a container with rigid, impenetrable, and co-rotating walls. This implies that within the rotating frame of reference all velocity components vanish at r_o and r_i . In case of modelling the free surface of a gas giant planets or a star, it is preferable to rather replace the condition of zero horizontal velocity by one of vanishing viscous shear stresses (the so-called free-slip condition).

Furthermore, even in case of modelling the liquid iron core of a terrestrial planet, there is no a priori reason why the inner core should necessarily co-rotate with the mantle. Some models for instance allow for differential rotation of the inner core and mantle with respect to the reference frame. The change of rotation rate is determined from the net torque. Viscous, electromagnetic, and torques due to gravitational coupling between density heterogeneities in the mantle and in the inner core contribute.

See also:

The mechanical boundary conditions can be adjusted with the parameters *ktopv* and *kbotv* in the &*phys_param* section of the input namelist.

3.5.2 Magnetic boundary conditions and inner core conductivity

When assuming that the fluid shell is surrounded by electrically insulating regions (inner core and external part), the magnetic field inside the fluid shell matches continuously to a potential field in both the exterior and the interior regions. Alternative magnetic boundary conditions (like cancellation of the horizontal component of the field) are also possible.

Depending on the physical problem you want to model, treating the inner core as an insulator is not realistic either, and it might instead be more appropriate to assume that it has the same electrical conductivity as the fluid shell. In this case, an equation equivalent to (3.20) must be solved for the inner core, where the velocity field simply describes the solid body rotation of the inner core with respect to the reference frame. At the inner core boundary a continuity condition for the magnetic field and the horizontal component of the electrical field apply.

See also:

The magnetic boundary conditions can be adjusted with the parameters *ktopb* and *kbotb* in the *&phys_param* section of the input namelist.

3.5.3 Thermal boundary conditions and distribution of buoyancy sources

In many dynamo models, convection is simply driven by an imposed fixed super-adiabatic entropy contrast between the inner and outer boundaries. This approximation is however not necessarily the best choice, since for instance, in the present Earth, convection is thought to be driven by a combination of thermal and compositional buoyancy. Sources of heat are the release of latent heat of inner core solidification and the secular cooling of the outer and inner core, which can effectively be treated like a heat source. The heat loss from the core is controlled by the convecting mantle, which effectively imposes a condition of fixed heat flux at the core-mantle boundary on the dynamo. The heat flux is in that case spatially and temporally variable.

See also:

The thermal boundary conditions can be adjusted with the parameters *ktops* and *kbots* in the *&phys_param* section of the input namelist.

NUMERICAL TECHNIQUE

MagIC is a pseudo-spectral MHD code. This numerical technique was originally developed by P. Gilman and G. Glatzmaier for the spherical geometry. In this approach the unknowns are expanded into complete sets of functions in radial and angular directions: Chebyshev polynomials in the radial direction and spherical harmonic functions in the azimuthal and latitudinal directions. This allows to express all partial derivatives analytically. Employing orthogonality relations of spherical harmonic functions and using collocation in radius then lead to algebraic equations that are integrated in time with a mixed implicit/explicit time stepping scheme. The nonlinear terms and the Coriolis force are evaluated in the physical (or grid) space rather than in spectral space. Although this approach requires costly numerical transformations between the two representations (from spatial to spectral using Legendre and Fourier transforms), the resulting decoupling of all spherical harmonic modes leads to a net gain in computational speed. Before explaining these methods in more detail, we introduce the poloidal/toroidal decomposition.

4.1 Poloidal/toroidal decomposition

Any vector v that fulfills $\nabla \cdot v = 0$, i.e. a so-called *solenoidal field*, can be decomposed in a poloidal and a toroidal part W and Z, respectively

$$v = \nabla \times (\nabla \times W e_r) + \nabla \times Z e_r.$$

Three unknown vector components are thus replaced by two scalar fields, the poloidal potential W and the toroidal potential Z. This decomposition is unique, aside from an arbitrary radial function f(r) that can be added to W or Z without affecting v.

In the anelastic approximation, such a decomposition can be used for the mass flux $\tilde{\rho}u$ and the magnetic field B. This yields

$$\tilde{\rho}\boldsymbol{u} = \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times W \, \boldsymbol{e_r}) + \boldsymbol{\nabla} \times Z \, \boldsymbol{e_r},
\boldsymbol{B} = \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times g \, \boldsymbol{e_r}) + \boldsymbol{\nabla} \times h \, \boldsymbol{e_r}.$$
(4.1)

The two scalar potentials of a divergence free vector field can be extracted from its radial component and the radial component of its curl using the fact that the toroidal field has not radial component:

$$e_{r} \cdot \tilde{\rho} u = -\Delta_{H} W,$$

$$e_{r} \cdot (\nabla \times u) = -\Delta_{H} Z,$$
(4.2)

where the operator Δ_H denotes the horizontal part of the Laplacian:

$$\Delta_H = \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial^2 \phi}.$$
 (4.3)

The equation (4.1) can be expanded in spherical coordinates. The three components of $\tilde{\rho}u$ are given by

$$\tilde{\rho} \boldsymbol{u} = -(\Delta_H W) \, \boldsymbol{e}_r + \left(\frac{1}{r} \frac{\partial W}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial Z}{\partial \phi} \right) \, \boldsymbol{e}_{\theta} + \left(\frac{1}{r \sin \theta} \frac{\partial W}{\partial \phi} - \frac{1}{r} \frac{\partial Z}{\partial \theta} \right) \, \boldsymbol{e}_{\phi}, \tag{4.4}$$

while the curl of $\tilde{\rho}u$ is expressed by

$$\nabla \times \tilde{\rho} \boldsymbol{u} = -\left(\Delta_{H} Z\right) \boldsymbol{e}_{r} + \left[-\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \left(\frac{\partial^{2}}{\partial r^{2}} + \Delta_{H} \right) W + \frac{1}{r} \frac{\partial^{2} Z}{\partial r \partial \theta} \right] \boldsymbol{e}_{\theta}$$

$$+ \left[\frac{1}{r} \frac{\partial}{\partial \theta} \left(\frac{\partial^{2}}{\partial r^{2}} + \Delta_{H} \right) W + \frac{1}{r \sin \theta} \frac{\partial^{2} Z}{\partial r \partial \phi} \right] \boldsymbol{e}_{\phi},$$

$$(4.5)$$

Using the horizontal part of the divergence operator

$$\nabla_H = r \sin \frac{\partial (\sin \theta)}{\partial \theta} e_{\theta} + r \sin \frac{\partial}{\partial \phi} e_{\phi}$$

above expressions can be simplified to

$$\tilde{\rho} \boldsymbol{u} = -\Delta_H \, \boldsymbol{e_r} \, W + \boldsymbol{\nabla}_H \frac{\partial}{\partial r} \, W + \boldsymbol{\nabla}_H \times \boldsymbol{e_r} \, Z$$

and

$$\nabla \times \tilde{\rho} \boldsymbol{u} = -\Delta_H \, \boldsymbol{e}_r \, Z + \boldsymbol{\nabla}_H \frac{\partial}{\partial r} \, Z - \boldsymbol{\nabla}_H \times \Delta_H \boldsymbol{e}_r \, W \ .$$

Below we will use the fact that the horizontal components of the poloidal field depend on the radial derivative of the poloidal potential.

4.2 Spherical harmonic representation

Spherical harmonic functions Y_{ℓ}^m are a natural choice for the horizontal expansion in colatitude θ and longitude ϕ :

$$Y_{\ell}^{m}(\theta,\phi) = P_{\ell}^{m}(\cos\theta) e^{im\phi},$$

where ℓ and m denote spherical harmonic degree and order, respectively, P_{ℓ}^{m} is an associated Legendre function. Different normalization are in use. Here we adopt a complete normalization so that the orthogonality relation reads

$$\int_0^{2\pi} d\phi \int_0^{\pi} \sin\theta \, d\theta \, Y_\ell^m(\theta,\phi) \, Y_{\ell'}^{m'}(\theta,\phi) = \delta_{\ell\ell'} \delta^{mm'}. \tag{4.6}$$

This means that

$$Y_{\ell}^{m}(\theta,\phi) = \sqrt{\frac{1}{2\pi}} \frac{(2\ell+1)(\ell-|m|)!}{2(\ell+|m|)!} P_{\ell}^{m}(\cos\theta) e^{im\phi} (-1)^{m},$$

As an example, the spherical harmonic representation of the magnetic poloidal potential $g(r, \theta, \phi)$, truncated at degree and order ℓ_{max} , then reads

$$g(r,\theta,\phi) = \sum_{\ell=0}^{\ell_{max}} \sum_{m=-\ell}^{\ell} g_{\ell m}(r) Y_{\ell}^{m}(\theta,\phi),$$
(4.7)

with

$$g_{\ell m}(r) = \frac{1}{\pi} \int_0^{\pi} d\theta \sin\theta \ g_m(r,\theta) \ P_{\ell}^m(\cos\theta), \tag{4.8}$$

$$g_m(r,\theta) = \frac{1}{2\pi} \int_0^{2\pi} d\phi \ g(r,\theta,\phi) \ e^{-im\phi}.$$
 (4.9)

The potential $g(r, \theta, \phi)$ is a real function so that $g_{\ell m}^{\star}(r) = g_{\ell, -m}(r)$, where the asterisk denotes the complex conjugate. Thus, only coefficients with $m \geq 0$ have to be considered. The same kind of expansion is made for the toroidal magnetic potential, the mass flux potentials, pressure and entropy (or temperature).

The equations (4.8) and (4.9) define a two-step transform from the longitude/latitude representation to the spherical harmonic representation $(r, \theta, \phi) \longrightarrow (r, \ell, m)$. The equation (4.7) formulates the inverse procedure $(r, \ell, m) \longrightarrow (r, \theta, \phi)$. Fast-Fourier transforms are employed in the longitudinal direction, requiring (at least) $N_{\phi} = 2\ell_{max} + 1$ evenly spaced grid points ϕ_i . MagIC relies on the Gauss-Legendre quadrature for evaluating the integral (4.8)

$$g_{\ell m}(r) = \frac{1}{N_{\theta}} \sum_{j=1}^{N_{\theta}} w_j g_m(r, \theta_j) P_{\ell}^m(\cos \theta_j),$$

where θ_j are the N_{θ} Gaussian quadrature points defining the latitudinal grid, and w_j are the respective weights. Prestored values of the associated Legendre functions at grid points θ_j in combination with a FFT in ϕ provide the inverse transform (4.7). Generally, $N_{\phi} = 2N_{\theta}$ is chosen, which provides isotropic resolution in the equatorial region. Choosing $\ell_{max} = [\min(2N_{\theta}, N_{\phi}) - 1]/3$ prevents aliasing errors.

See also:

In MagIC, the Legendre functions are defined in the subroutine plm_theta. The Legendre transforms from spectral to grid space are computed in the module legendre_spec_to_grid, while the backward transform (from grid space to spectral space) are computed in the module legendre_grid_to_spec. The fast Fourier transforms are computed in the module fft.

4.2.1 Special recurrence relations

The action of a horizontal Laplacian (4.3) on spherical harmonics can be analytically expressed by

$$\Delta_H Y_{\ell}^m = -\frac{\ell(\ell+1)}{r^2} Y_{\ell}^m \,.$$
 (4.10)

They are several useful recurrence relations for the Legendre polynomials that will be further employed to compute Coriolis forces and the θ and ϕ derivatives of advection and Lorentz forces. Four of these operators are used in **MagIC**. The first one is defined by

$$\vartheta_1 = \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin^2 \theta = \sin \theta \frac{\partial}{\partial \theta} + 2\cos \theta.$$

The action of this operator on a Legendre polynomials is given by

$$\vartheta_1 = (\ell + 2) c_{\ell+1}^m P_{\ell+1}^m (\cos \theta) - (\ell - 1) c_{\ell}^m P_{\ell-1}^m (\cos \theta),$$

where c_{ℓ}^{m} is defined by

$$c_{\ell}^{m} = \sqrt{\frac{(\ell+m)(\ell-m)}{(2\ell-1)(2\ell+1)}}.$$
(4.11)

How is that implemented in the code? Let's assume we want the spherical harmonic contribution of degree ℓ and order m for the expression

$$\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} (\sin \theta f(\theta)).$$

In order to employ the operator ϑ_1 for the derivative, we thus define a new function

$$F(\theta) = f(\theta) / \sin \theta$$
,

so that

$$\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} [\sin \theta f(\theta)] = \vartheta_1 F(\theta).$$

Expanding $F(\theta)$ in Legendre polynomials and using the respective orthogonality relation we can then map out the required contribution in the following way:

$$\int_0^{\pi} d\theta \sin \theta \, P_{\ell}^m \vartheta_1 \sum_{\ell'} F_{\ell'}^m P_{\ell'}^m = (\ell+1) \, c_{\ell}^m \, F_{\ell-1}^m - \ell \, c_{\ell+1}^m \, F_{\ell+1}^m \,.$$
(4.12)

Here, we have assumed that the Legendre functions are completely normalized such that

$$\int_0^{\pi} d\theta \sin \theta \, P_{\ell}^m P_{\ell'}^m = \delta_{\ell\ell'} \,.$$

See also:

This operator is defined in the module horizontal_data by the variables dTheta1S for the first part of the right-hand side of (4.12) and dTheta1A for the second part.

The second operator used to formulate colatitude derivatives is

$$\vartheta_2 = \sin \theta \frac{\partial}{\partial \theta} \,.$$

The action of this operator on the Legendre polynomials reads

$$\vartheta_2 P_{\ell}^m(\cos \theta) = \ell \, c_{\ell+1}^m \, P_{\ell+1}^m(\cos \theta) - (\ell+1) \, c_{\ell}^m \, P_{\ell-1}^m(\cos \theta) \,,$$

so that

$$\int_0^{\pi} d\theta \sin \theta \, P_{\ell}^m \vartheta_2 \sum_{\ell'} f_{\ell'}^m P_{\ell'}^m = (\ell - 1) \, c_{\ell}^m \, f_{\ell-1}^m - (\ell + 2) \, c_{\ell+1}^m \, f_{\ell+1}^m \,. \tag{4.13}$$

See also:

This operator is defined in the module horizontal_data by the variables dTheta2S for the first part of the right-hand side of (4.13) and dTheta2A for the second part.

The third combined operator is defined by:

$$\vartheta_3 = \sin\theta \frac{\partial}{\partial \theta} + \cos\theta L_H \,,$$

where
$$-L_H/r^2 = \Delta_H$$
.

Acting with ϑ_3 on a Legendre function gives:

$$\vartheta_3 P_{\ell}^m(\cos \theta) = \ell(\ell+1) c_{\ell+1}^m P_{\ell+1}^m(\cos \theta) + (\ell-1)(\ell+1) c_{\ell}^m P_{\ell-1}^m(\cos \theta),$$

which results into:

$$\int_0^{\pi} d\theta \sin \theta \, P_{\ell}^m \vartheta_3 \sum_{\ell'} f_{\ell'}^m P_{\ell'}^m = (\ell - 1)(\ell + 1) \, c_{\ell}^m \, f_{\ell-1}^m + \ell(\ell + 2) \, c_{\ell+1}^m \, f_{\ell+1}^m \,. \tag{4.14}$$

See also:

This operator is defined in the module horizontal_data by the variables dTheta3S for the first part of the right-hand side of (4.14) and dTheta3A for the second part.

The fourth (and last) combined operator is defined by:

$$\vartheta_4 = \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin^2 \theta \, L_H = \vartheta 1 \, L_H \,,$$

Acting with ϑ_3 on a Legendre function gives:

$$\vartheta_4 P_{\ell}^m(\cos \theta) = \ell(\ell+1)(\ell+2) c_{\ell+1}^m P_{\ell+1}^m(\cos \theta) - \ell(\ell-1)(\ell+1) c_{\ell}^m P_{\ell-1}^m(\cos \theta),$$

which results into:

$$\int_0^{\pi} d\theta \sin\theta \, P_{\ell}^m \vartheta_4 \sum_{\ell'} f_{\ell'}^m P_{\ell'}^m = \ell(\ell-1)(\ell+1) \, c_{\ell}^m \, f_{\ell-1}^m - \ell(\ell+1)(\ell+2) \, c_{\ell+1}^m \, f_{\ell+1}^m \,.$$
(4.15)

See also:

This operator is defined in the module horizontal_data by the variables dTheta4S for the first part of the right-hand side of (4.15) and dTheta4A for the second part.

4.3 Radial representation

In MagIC, the radial dependencies are expanded into complete sets of functions: the Chebyshev polynomials C(x). The polynomial of degree n is defined by

$$C_n(x) = \cos [n \operatorname{arccos}(x)] - 1 \le x \le 1.$$

When truncating at degree N, the radial expansion of the poloidal magnetic potential reads

$$g_{\ell m}(r) = \sum_{n=0}^{N} g_{\ell m n} \, \mathcal{C}_n(r),$$
 (4.16)

with

$$g_{\ell mn} = \frac{2 - \delta_{n0}}{\pi} \int_{-1}^{1} \frac{dx \, g_{\ell m}(r(x)) \, \mathcal{C}_n(x)}{\sqrt{1 - x^2}}.$$
 (4.17)

The Chebyshev definition space $(-1 \le x \le 1)$ is then linearly mapped onto a radius range $(r_i \le r \le r_o)$ by

$$x(r) = 2\frac{r - r_i}{r_0 - r_i} - 1. (4.18)$$

In addition, nonlinear mapping can be defined to modify the radial dependence of the grid-point density.

When choosing the N_r extrema of \mathcal{C}_{N_r-1} as radial grid points,

$$x_k = \cos\left(\pi \frac{(k-1)}{N_r - 1}\right) , \quad k = 1, 2, \dots, N_r,$$
 (4.19)

the values of the Chebyshev polynomials at these points are simply given by the cosine functions:

$$C_{nk} = C_n(x_k) = \cos\left(\pi \frac{n(k-1)}{N_r - 1}\right).$$

This particular choice has two advantages. For one, the grid points become denser toward the inner and outer radius and better resolve potential thermal and viscous boundary layers. In addition, FFTs can be employed to switch between grid representation (4.16) and Chebyshev representations (4.17), rendering this procedure a fast-Chebyshev transform. Choosing $N_r > N$ provides radial dealiasing.

See also:

The Chebyshev (Gauss-Lobatto) grid is defined in the module <code>chebyshev_polynoms_mod</code>. The cosine transforms are computed in the modules <code>cosine_transform_even</code> and <code>fft_fac_mod</code>.

4.4 Spectral equations

We have now introduced the necessary tools for deriving the spectral equations. Taking the **radial components** of the Navier-Stokes equation and the induction equation provides the equations for the poloidal potentials $W(r, \theta, \phi)$ and $g(r, \theta, \phi)$. The **radial component of the curl** of these equations provides the equations for the toroidal counterparts $Z(r, \theta, \phi)$ and $h(r, \theta, \phi)$. The pressure remains an additional unknown. Hence one more equation involving $W_{\ell mn}$ and $p_{\ell mn}$ is required. It is obtained by taking the **horizontal divergence** of the Navier-Stokes equation.

Expanding all potentials in spherical harmonics and Chebyshev polynomials, multiplying with Y_{ℓ}^{m*} , and integrating over spherical surfaces (while making use of the orthogonality relation (4.6) results in equations for the coefficients $W_{\ell mn}$, $Z_{\ell mn}$, $g_{\ell mn}$, $h_{\ell mn}$, $P_{\ell mn}$ and $s_{\ell mn}$, respectively.

4.4.1 Equation for the poloidal potential W

The temporal evolution of W is obtained by taking e_r of each term entering the Navier-Stokes equation. For the time-derivative, one gets using (4.2):

$$\tilde{\rho} \boldsymbol{e_r} \cdot \left(\frac{\partial \boldsymbol{u}}{\partial t}\right) = \frac{\partial}{\partial t} (\boldsymbol{e_r} \cdot \tilde{\rho} \boldsymbol{u}) = -\Delta_H \frac{\partial W}{\partial t}.$$

For the viscosity term, one gets

$$\begin{split} \boldsymbol{e_r} \cdot \boldsymbol{\nabla} \cdot \mathbf{S} &= - \, \nu \, \Delta_H \left[\frac{\partial^2 W}{\partial r^2} + \left\{ 2 \frac{d \ln \nu}{dr} - \frac{1}{3} \frac{d \ln \tilde{\rho}}{dr} \right\} \frac{\partial W}{\partial r} \right. \\ &- \left. \left\{ -\Delta_H + \frac{4}{3} \left(\frac{d^2 \ln \tilde{\rho}}{dr^2} + \frac{d \ln \nu}{dr} \frac{d \ln \tilde{\rho}}{dr} + \frac{1}{r} \left[3 \frac{d \ln \nu}{dr} + \frac{d \ln \tilde{\rho}}{dr} \right] \right) \right\} W \right], \end{split}$$

Note: In case of a constant kinematic viscosity, the $d \ln \nu / dr$ terms vanish. If in addition, the background density is constant, the $d \ln \tilde{\rho} / dr$ terms also vanish. In that Boussinesq limit, this viscosity term would then be simplified as

$$e_r \cdot \Delta u = -\Delta_H \left[\frac{\partial^2 W}{\partial r^2} + \Delta_H W \right] .$$

Using Eq. (4.10) then allows to finally write the time-evolution equation for the poloidal potential $W_{\ell mn}$:

$$E \frac{\ell(\ell+1)}{r^{2}} \left[\left\{ \frac{\partial}{\partial t} + \nu \frac{\ell(\ell+1)}{r^{2}} + \frac{4}{3} \nu \left(\frac{d^{2} \ln \tilde{\rho}}{dr^{2}} + \frac{d \ln \nu}{dr} \frac{d \ln \tilde{\rho}}{dr} + \frac{1}{r} \left[3 \frac{d \ln \nu}{dr} + \frac{d \ln \tilde{\rho}}{dr} \right] \right) \right\} C_{n}$$

$$-\nu \left\{ 2 \frac{d \ln \nu}{dr} - \frac{1}{3} \frac{d \ln \tilde{\rho}}{dr} \right\} C'_{n}$$

$$-\nu C''_{n} \qquad \right] \quad W_{\ell m n}$$

$$+ \left[C'_{n} - \frac{d \ln \tilde{\rho}}{dr} C_{n} \right] \qquad P_{\ell m n}$$

$$- \left[\frac{Ra E}{Pr} \tilde{\rho} g(r) \right] C_{n} \qquad s_{\ell m n}$$

$$= \mathcal{N}_{\ell m}^{W} = \int d\Omega Y_{\ell}^{m \star} \mathcal{N}^{W} = \int d\Omega Y_{\ell}^{m \star} e_{r} \cdot \mathbf{F}. \qquad (4.20)$$

Here, $d\Omega$ is the spherical surface element. We use the summation convention for the Chebyshev index n. The radial derivatives of Chebyshev polynomials are denoted by primes.

See also:

The exact computation of the linear terms of (4.20) are coded in the subroutines <code>get_wpMat</code>

4.4.2 Equation for the toroidal potential Z

The temporal evolution of Z is obtained by taking the radial component of the curl of the Navier-Stokes equation (i.e. $e_r \cdot \nabla \times$). For the time derivative, one gets using (4.2):

$$e_{r} \cdot \nabla \times \left(\frac{\partial \tilde{\rho} u}{\partial t} \right) = \frac{\partial}{\partial t} (e_{r} \cdot \nabla \times \tilde{\rho} u) = -\frac{\partial}{\partial t} (\Delta_{H} Z) = -\Delta_{H} \frac{\partial Z}{\partial t}$$

The pressure gradient, one has

$$\nabla \times \left[\tilde{\rho} \nabla \left(\frac{p'}{\tilde{\rho}} \right) \right] = \nabla \tilde{\rho} \times \nabla \left(\frac{p'}{\tilde{\rho}} \right) + \underbrace{\tilde{\rho} \nabla \times \left[\nabla \left(\frac{p'}{\tilde{\rho}} \right) \right]}_{=0}.$$

This expression has no component along e_r , as a consequence, there is no pressure gradient contribution here. The gravity term also vanishes as $\nabla \times (\tilde{\rho}g(r)e_r)$ has no radial component.

$$\begin{split} \boldsymbol{e_r} \cdot \boldsymbol{\nabla} \times \left[\boldsymbol{\nabla} \cdot \boldsymbol{\mathsf{S}} \right] &= -\nu \, \Delta_H \left[\frac{\partial^2 Z}{\partial r^2} + \left(\frac{d \ln \nu}{dr} - \frac{d \ln \tilde{\rho}}{dr} \right) \, \frac{\partial Z}{\partial r} \right. \\ &\left. - \left(\frac{d \ln \nu}{dr} \frac{d \ln \tilde{\rho}}{dr} + \frac{2}{r} \frac{d \ln \nu}{dr} + \frac{d^2 \ln \tilde{\rho}}{dr^2} + \frac{2}{r} \frac{d \ln \tilde{\rho}}{dr} - \Delta_H \right) Z \right]. \end{split}$$

Note: Once again, this viscous term can be greatly simplified in the Boussinesq limit:

$$\boldsymbol{e_r} \cdot \boldsymbol{\nabla} \times (\Delta \boldsymbol{u}) = -\Delta_H \left[\frac{\partial^2 Z}{\partial r^2} + \Delta_H \, Z \right] \, .$$

Using Eq. (4.10) then allows to finally write the time-evolution equation for the poloidal potential $Z_{\ell mn}$:

$$E \frac{\ell(\ell+1)}{r^{2}} \left[\left\{ \frac{\partial}{\partial t} + \nu \frac{\ell(\ell+1)}{r^{2}} + \nu \left(\frac{d \ln \nu}{dr} \frac{d \ln \tilde{\rho}}{dr} + \frac{2}{r} \frac{d \ln \nu}{dr} + \frac{d^{2} \ln \tilde{\rho}}{dr^{2}} + \frac{2}{r} \frac{d \ln \tilde{\rho}}{dr} \right) \right\} C_{n}$$

$$-\nu \left(\frac{d \ln \nu}{dr} - \frac{d \ln \tilde{\rho}}{dr} \right) C'_{n}$$

$$-\nu C''_{n} \qquad \right] \quad Z_{\ell m n}$$

$$= \mathcal{N}_{\ell m}^{Z} = \int d\Omega Y_{\ell}^{m \star} \mathcal{N}^{Z} = \int d\Omega Y_{\ell}^{m \star} \mathbf{e}_{\mathbf{r}} \cdot (\nabla \times \mathbf{F}) .$$

$$(4.21)$$

See also:

The exact computation of the linear terms of (4.21) are coded in the subroutines get_zMat

4.4.3 Equation for pressure *P*

The evolution of equation for pressure is obtained by taking the horizontal divergence (i.e. $\nabla_H \cdot$) of the Navier-Stokes equation. This operator is defined such that

$$\nabla_H \cdot \boldsymbol{a} = r \sin \frac{\partial (\sin \theta \, a_\theta)}{\partial \theta} + r \sin \frac{\partial a_\phi}{\partial \phi}$$

This relates to the total divergence via:

$$oldsymbol{
abla} \cdot oldsymbol{a} = rac{1}{r^2} rac{\partial (r^2 a_r)}{\partial r} + oldsymbol{
abla}_H \cdot oldsymbol{a}.$$

The time-derivative term is thus expressed by

$$\begin{split} \boldsymbol{\nabla}_{H} \cdot \left(\tilde{\rho} \frac{\partial \boldsymbol{u}}{\partial t} \right) &= \frac{\partial}{\partial t} \left[\boldsymbol{\nabla}_{H} \cdot \left(\tilde{\rho} \boldsymbol{u} \right) \right], \\ &= \frac{\partial}{\partial t} \left[\boldsymbol{\nabla} \cdot \left(\tilde{\rho} \boldsymbol{u} \right) - \frac{1}{r^{2}} \frac{\partial (r^{2} \tilde{\rho} u_{r})}{\partial r} \right], \\ &= -\frac{\partial}{\partial t} \left[\frac{\partial (\tilde{\rho} u_{r})}{\partial r} + \frac{2 \tilde{\rho} u_{r}}{r} \right], \\ &= \frac{\partial}{\partial t} \left[\frac{\partial (\Delta_{H} W)}{\partial r} + \frac{2}{r} \Delta_{H} W \right], \\ &= \Delta_{H} \frac{\partial}{\partial t} \left(\frac{\partial W}{\partial r} \right). \end{split}$$

We note that the gravity term vanishes since $\nabla_H \cdot (\tilde{\rho}g(r)e_r) = 0$. Concerning the pressure gradient, one has

$$-\boldsymbol{\nabla}_{H}\cdot\left[\tilde{\rho}\boldsymbol{\nabla}\left(\frac{p'}{\tilde{\rho}}\right)\right]=-\left\{\boldsymbol{\nabla}\cdot\left[\tilde{\rho}\boldsymbol{\nabla}\left(\frac{p'}{\tilde{\rho}}\right)\right]-\frac{1}{r^{2}}\frac{\partial}{\partial r}\left[r^{2}\tilde{\rho}\frac{\partial}{\partial r}\left(\frac{p'}{\tilde{\rho}}\right)\right]\right\}=-\Delta_{H}\,p'.$$

The viscosity term then reads

$$\begin{split} \boldsymbol{\nabla}_{H} \cdot (\boldsymbol{\nabla} \cdot \boldsymbol{\mathsf{S}}) = & \nu \, \Delta_{H} \left[\frac{\partial^{3} W}{\partial r^{3}} + \left(\frac{d \ln \nu}{dr} - \frac{d \ln \tilde{\rho}}{dr} \right) \frac{\partial^{2} W}{\partial r^{2}} \right. \\ & - \left[\frac{d^{2} \ln \tilde{\rho}}{dr^{2}} + \frac{d \ln \nu}{dr} \frac{d \ln \tilde{\rho}}{dr} + \frac{2}{r} \left(\frac{d \ln \nu}{dr} + \frac{d \ln \tilde{\rho}}{dr} \right) - \Delta_{H} \right] \frac{\partial W}{\partial r} \\ & - \left(\frac{2}{3} \frac{d \ln \tilde{\rho}}{dr} + \frac{2}{r} + \frac{d \ln \nu}{dr} \right) \Delta_{H} W \right]. \end{split}$$

Note: Once again, this viscous term can be greatly simplified in the Boussinesq limit:

$$\boldsymbol{\nabla}_{H}\cdot(\Delta\boldsymbol{u}) = -\Delta_{H}\left[\frac{\partial^{3}W}{\partial r^{3}} + \Delta_{H}\,\frac{\partial W}{\partial r} - \frac{2}{r}\Delta_{H}\,W\right]\,.$$

Using Eq. (4.10) then allows to finally write the equation for the pressure $P_{\ell mn}$:

$$E \frac{\ell(\ell+1)}{r^2} \left[-\nu \left(\frac{2}{3} \frac{d \ln \tilde{\rho}}{dr} + \frac{2}{r} + \frac{d \ln \nu}{dr} \right) \frac{\ell(\ell+1)}{r^2} C_n \right]$$

$$\left\{ \frac{\partial}{\partial t} + \nu \frac{\ell(\ell+1)}{r^2} + \nu \left[\frac{d^2 \ln \tilde{\rho}}{dr^2} + \frac{d \ln \nu}{dr} \frac{d \ln \tilde{\rho}}{dr} + \frac{2}{r} \left(\frac{d \ln \nu}{dr} + \frac{d \ln \tilde{\rho}}{dr} \right) \right] \right\} C'_n$$

$$-\nu \left(\frac{d \ln \nu}{dr} - \frac{d \ln \tilde{\rho}}{dr} \right) C''_n$$

$$-\nu C'''_n \qquad \right] \quad W_{\ell m n}$$

$$+ \left[\frac{\ell(\ell+1)}{r^2} \right] C_n \qquad P_{\ell m n}$$

$$= \mathcal{N}_{\ell m}^P = -\int d\Omega Y_{\ell}^{m \star} \mathcal{N}^P = -\int d\Omega Y_{\ell}^{m \star} \nabla_H \cdot \mathbf{F} .$$

$$(4.22)$$

See also:

The exact computation of the linear terms of (4.22) are coded in the subroutines get_wpMat

Note: We note that the terms on the left hand side of (4.20), (4.21) and (4.22) resulting from the viscous term, the pressure gradient, the buoyancy term, and the explicit time derivative completely decouple in spherical harmonic degree and order.

The terms that do not decouple, namely Coriolis force, Lorentz force and advection of momentum, are collected on the right-hand side of (4.20), (4.21) and (4.22) into the forcing term F:

$$\boldsymbol{F} = -2\,\tilde{\rho}\,\boldsymbol{e_z} \times \boldsymbol{u} - E\,\tilde{\rho}\,\boldsymbol{u} \cdot \boldsymbol{\nabla}\,\boldsymbol{u} + \frac{1}{Pm}\left(\boldsymbol{\nabla} \times \boldsymbol{B}\right) \times \boldsymbol{B}. \tag{4.23}$$

Resolving F into potential functions is not required. Its numerical evaluation is discussed below.

4.4.4 Equation for entropy s

The equation for the entropy (or temperature in the Boussinesq limit) is given by

$$\frac{1}{Pr} \left[\left(Pr \frac{\partial}{\partial t} + \kappa \frac{\ell(\ell+1)}{r^2} \right) C_n \right]$$

$$-\kappa \left(\frac{d \ln \kappa}{dr} + \frac{d \ln \tilde{\rho}}{dr} + + \frac{d \ln \tilde{T}}{dr} + \frac{2}{r} \right) C'_n$$

$$-\kappa C''_n \qquad \left] \qquad s_{\ell m n} \right]$$

$$= \mathcal{N}_{\ell m}^S = \int d\Omega Y_{\ell}^{m*} \mathcal{N}^S = \int d\Omega Y_{\ell}^{m*} \left[-\mathbf{u} \cdot \nabla s + \frac{Pr Di}{Ra} \frac{1}{\tilde{\rho} \tilde{T}} \left(\Phi_{\nu} + \frac{\lambda}{Pm^2 E} j^2 \right) \right].$$
(4.24)

In this expression, $j = \nabla \times B$ is the current. Once again, the numerical evaluation of the right-hand-side (i.e. the non-linear terms) is discussed *below*.

See also:

The exact computation of the linear terms of (4.24) are coded in the subroutines get_sMat

4.4.5 Equation for the poloidal magnetic potential g

The equation for the poloidal magnetic potential is the radial component of the dynamo equation since

$$\boldsymbol{e_r} \cdot \left(\frac{\partial \boldsymbol{B}}{\partial t}\right) = \frac{\partial}{\partial t}(\boldsymbol{e_r} \cdot \boldsymbol{B}) = -\Delta_H \frac{\partial g}{\partial t}.$$

The spectral form then reads

$$\frac{\ell(\ell+1)}{r^2} \left[\left(\frac{\partial}{\partial t} + \frac{1}{Pm} \lambda \frac{\ell(\ell+1)}{r^2} \right) C_n - \frac{1}{Pm} \lambda C_n'' \right] g_{\ell m n}$$

$$= \mathcal{N}_{\ell m}^g = \int d\Omega Y_{\ell}^{m \star} \mathcal{N}^g = \int d\Omega Y_{\ell}^{m \star} \mathbf{e}_{\mathbf{r}} \cdot \mathbf{D}.$$
(4.25)

See also:

The exact computation of the linear terms of (4.25) are coded in the subroutines get_bMat

4.4.6 Equation for the toroidal magnetic potential h

The equation for the toroidal magnetic field coefficient reads

$$\frac{\ell(\ell+1)}{r^2} \left[\left(\frac{\partial}{\partial t} + \frac{1}{Pm} \lambda \frac{\ell(\ell+1)}{r^2} \right) C_n - \frac{1}{Pm} \frac{d\lambda}{dr} C'_n - \frac{1}{Pm} \lambda C''_n - \frac{1}{Pm} \lambda C''_n \right] h_{\ell m n}$$

$$= \mathcal{N}_{\ell m}^h = \int d\Omega Y_{\ell}^{m \star} \mathcal{N}^h = \int d\Omega Y_{\ell}^{m \star} \mathbf{e}_{\mathbf{r}} \cdot (\mathbf{\nabla} \times \mathbf{D}) . \tag{4.26}$$

See also:

The exact computation of the linear terms of (4.26) are coded in the subroutines get bMat

Note: We note that the terms on the left hand side of (4.25) and (4.26) resulting from the magnetic diffusion term and the explicit time derivative completely decouple in spherical harmonic degree and order.

The dynamo term does not decouple:

$$D = \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) \ . \tag{4.27}$$

We have now derived a full set of equations (4.20), (4.21), (4.22), (4.24), (4.25) and (4.26), each describing the evolution of a single spherical harmonic mode of the six unknown fields (assuming that the terms on the right hand side are given). Each equation couples N+1 Chebyshev coefficients for a given spherical harmonic mode (ℓ, m) . Typically, a collocation method is employed to solve for the Chebyshev coefficients. This means that the equations are required to be exactly satisfied at N-1 grid points defined by the equations (4.18) and (4.19). Excluded are the points $r=r_i$ and $r=r_o$, where the *boundary conditions* provide additional constraints on the set of Chebyshev coefficients.

4.5 Time-stepping schemes

Implicit time stepping schemes theoretically offer increased stability and allow for larger time steps. However, fully implicit approaches have the disadvantage that the nonlinear-terms couple all spherical harmonic modes. The potential gain in computational speed is therefore lost at higher resolution, where one very large matrix has to be dealt with rather than a set of much smaller ones. Similar considerations hold for the Coriolis force, one of the dominating forces in the system and therefore a prime candidate for implicit treatment. However, the Coriolis term couples modes (ℓ, m, n) with $(\ell + 1, m, n)$ and $(\ell - 1, m, n)$ and also couples poloidal and toroidal flow potentials. An implicit treatment of the Coriolis term therefore also results in a much larger (albeit sparse) inversion matrix.

We consequently adopt in MagIC a mixed implicit/explicit algorithm. The general differential equation in time can be written in the form

$$\frac{\partial}{\partial t}x + \mathcal{I}(x,t) = \mathcal{E}(x,t) .$$

where \mathcal{I} denotes the terms treated in an implicit time step and \mathcal{E} the terms treated explicitly, i.e.~the nonlinear and Coriolis contributions. The discretized implicit time step is given by

$$\left(\frac{x(t+\delta t)-x(t)}{\delta t}\right)_{I} = -\alpha \,\mathcal{I}(x,t+\delta t) - (1-\alpha)\,\mathcal{I}(x,t) \ .$$

where α is the weight of the new time step. For $\alpha = 0.5$ we recover a classic Crank-Nicolson algorithm.

A second order Adams-Bashforth scheme is used for the explicit time step:

$$\left(\frac{x(t+\delta t)-x(t)}{\delta t}\right)_E = \frac{3}{2} \mathcal{E}(x,t) - \frac{1}{2} \mathcal{E}(x,t-\delta t) .$$

The combination of both steps yields

$$\frac{x(t+\delta t)}{\delta t} + \alpha \, \mathcal{I}(x,t+\delta t) = \frac{x(t)}{\delta t} - (1-\alpha) \, \mathcal{I}(x,t) + \frac{3}{2} \, \mathcal{E}(x,t) - \frac{1}{2} \, \mathcal{E}(x,t-\delta t) .$$

In the code such an equation is formulated for each unknown spectral coefficient (expect pressure) of spherical harmonic degree ℓ and order m and for each radial grid point r_k . Because non-linear terms and the Coriolis force are treated explicitly, the equations decouple for all spherical modes. The different radial grid points, however, couple via the Chebychev modes and form a linear algebraic system of equations that can be solved with standard methods for the different spectral contributions.

For example the respective system of equations for the modes of the poloidal magnetic potential g results from considering the radial component of the dynamo equation:

$$(\mathcal{A}_{kn} + \alpha \,\mathcal{I}_{kn}) \,g_{\ell mn}(t + \delta t) = (\mathcal{A}_{kn} - (1 - \alpha)\,\mathcal{I}_{kn}) \,g_{\ell mn}(t) + \frac{3}{2}\,\mathcal{E}_{k\ell m}(t) - \frac{1}{2}\,\mathcal{E}_{k\ell m}(t - \delta t) \tag{4.28}$$

with

$$\mathcal{A}_{kn} = \frac{\ell(\ell+1)}{r_k^2} \, \frac{1}{\delta t} \mathcal{C}_{nk} \; ,$$

$$\mathcal{I}_{kn} = \frac{\ell(\ell+1)}{r_k^2} \frac{1}{Pm} \left(\frac{\ell(\ell+1)}{r_k^2} \, \mathcal{C}_{nk} - \mathcal{C}_{nk}'' \right) \,,$$

and $C_{nk} = C_n(r_k)$. A_{kn} is a matrix that converts the poloidal field modes $g_{\ell mn}$ to the radial magnetic field $B_r(r_k, \ell m)$ for a given spherical harmonic contribution with an additional division by the time step δt :

Here k and n number the radial grid points and the Chebychev coefficients, respectively. Note that the Einstein sum convention is used for Chebychev modes n.

 \mathcal{I}_{kn} is the matrix describing the implicit contribution which is purely diffusive here. Neither \mathcal{A}_{kn} nor \mathcal{I}_{kn} depend on time but the former needs to be updated when the time step δt is changed. The only explicit contribution is the nonlinear dynamo term

$$\mathcal{E}_{k\ell m}(t) = \mathcal{N}_{k\ell m}^g = \int d\Omega Y_{\ell}^{m\star} \boldsymbol{e_r} \cdot \boldsymbol{D}(t, r_k, \theta, \phi) .$$

 $\mathcal{E}_{k\ell m}$ is a one dimensional vector for all spherical harmonic combinations ℓm .

How are these operations organized in the code? Within MagIC the poloidal magnetic field potential is called b. The implicit step for the current time t and the explicit step for the previous time $t - \delta t$ is combined into one two-dimensional array

$$\mathrm{dbdtLast}(k,lm) = -\frac{1}{2} \; \mathcal{E}_{k\ell m}(t-\delta t) - (1-\alpha) \; \mathcal{I}_{kn} \; g_{\ell mn}(t) \; .$$

where k numbers the first dimension and the second dimension lm numbers the spherical harmonic modes. The explicit time step part is called dbdt in MagIC:

$$dbdt(k, \ell m) = \mathcal{E}_{k\ell m}.$$

The combination of left hand side of (4.28) provides the time stepping matrix for g:

$$bmat(k, n, \ell) = A_{kn} + \alpha \mathcal{I}_{kn} .$$

There is a different time stepping matrix for each spherical harmonic degree ℓ . The linear system of equations solved for the mode $b(k, \ell m)$ at time $t = t + \delta t$ is then

$$\begin{aligned} \operatorname{bmat}(k,n,\ell) \star \operatorname{b}_{i+1}(n,\ell m) = & \operatorname{wl} \star \operatorname{dbdt}(k,\ell m) + \operatorname{w2} \star \operatorname{dbdtLast}(k,\ell m) + \\ & \operatorname{Odt} \star \operatorname{dLh}(\ell) \star \operatorname{Or2}(k) \star \operatorname{b}_{i}(n,\ell m) \\ = & \operatorname{rhs}(k,\ell m) \end{aligned}$$

with

$${\rm w1} = -1/2 \frac{\delta t}{\delta t_{old}} \ , \ {\rm w2} = 1 - {\rm w2} \ , \ {\rm Odt} = 1/\delta t \ , \ {\rm dLh}(\ell) = \ell(\ell+1) \ , \ {\rm Or2}(k) = 1/r_k^2.$$

The respective equations for the poloidal flow potential are somewhat more complex and involve coupling to the pressure.....

Note: The poloidal flow potential (4.20) and the pressure (4.22) are nevertheless coupled for a given spherical harmonic mode. Likewise the poloidal flow and entropy (or temperature) equations should also couple, but here MagIC takes the shortcut of updating entropy first and using the already updated value for an explicit treatment of buoyancy.

Courant's condition offers a guideline concerning the value of δt , demanding that δt should be smaller than the advection time between two grid points. Strong Lorentz forces require an additional stability criterion that is obtained by replacing the flow speed by Alfvén's velocity in a modified Courant criterion. The explicit treatment of the Coriolis force requires that the time step is limited to a fraction of the rotation period, which may be the relevant criterion at low Ekman number when flow and magnetic field remain weak. Non-homogeneous grids and other numerical effects generally require an additional safety factor in the choice of δt .

4.6 Coriolis force and nonlinear terms

4.6.1 Nonlinear terms entering the equation for W

The nonlinear term \mathcal{N}^W that enters the equation for the poloidal potential (4.20) contains the radial component of the advection, the Lorentz force and Coriolis force. In spherical coordinate, the two first contributions read:

$$\tilde{\rho}\left(\boldsymbol{u}\cdot\boldsymbol{\nabla}\boldsymbol{u}\right) = \begin{cases}
A_{r} \\
A_{\theta} \\
A_{\phi}
\end{cases} = \begin{cases}
-\tilde{\rho}E\left(u_{r}\frac{\partial u_{r}}{\partial r} + \frac{u_{\theta}}{r}\frac{\partial u_{r}}{\partial \theta} + \frac{u_{\phi}}{r\sin\theta}\frac{\partial u_{r}}{\partial \phi} - \frac{u_{\theta}^{2} + u_{\phi}^{2}}{r}\right) + \frac{1}{Pm}\left(j_{\theta}B_{\phi} - j_{\phi}B_{\theta}\right), \\
-\tilde{\rho}E\left(u_{r}\frac{\partial u_{\theta}}{\partial r} + \frac{u_{\theta}}{r}\frac{\partial u_{\theta}}{\partial \theta} + \frac{u_{\phi}}{r\sin\theta}\frac{\partial u_{\theta}}{\partial \phi} + \frac{u_{r}u_{\theta}}{r} - \frac{\cos\theta}{r\sin\theta}u_{\phi}^{2}\right) + \frac{1}{Pm}\left(j_{\phi}B_{r} - j_{r}B_{\phi}\right), \\
-\tilde{\rho}E\left(u_{r}\frac{\partial u_{\phi}}{\partial r} + \frac{u_{\theta}}{r}\frac{\partial u_{\phi}}{\partial \theta} + \frac{u_{\phi}}{r\sin\theta}\frac{\partial u_{\phi}}{\partial \phi} + \frac{u_{r}u_{\phi}}{r} + \frac{\cos\theta}{r\sin\theta}u_{\theta}u_{\phi}\right) + \frac{1}{Pm}\left(j_{r}B_{\theta} - j_{\theta}B_{r}\right), \end{cases}$$
(4.29)

The Coriolis force can be expressed as a function of the potentials W and Z using (4.4)

$$2\tilde{\rho}\boldsymbol{e_r}\cdot(\boldsymbol{u}\times\boldsymbol{e_z})=2\sin\theta\,\tilde{\rho}u_{\phi}=\frac{2}{r}\left(\frac{\partial^2W}{\partial r\partial\phi}-\sin\theta\frac{\partial Z}{\partial\theta}\right).$$

The nonlinear terms that enter the equation for the poloidal potential (4.20) thus reads:

$$\mathcal{N}^{W} = \frac{2}{r} \left(\frac{\partial^{2} W}{\partial r \partial \phi} - \sin \theta \frac{\partial Z}{\partial \theta} \right) + \mathcal{A}_{r}.$$

The θ -derivative entering the radial component of the Coriolis force is thus the operator ϑ_2 defined in (4.12). Using the recurrence relation, one thus finally gets in spherical harmonic space:

$$\mathcal{N}_{\ell m}^{W} = \frac{2}{r} \left[im \frac{\partial W_{\ell}^{m}}{\partial r} - (\ell - 1)c_{\ell}^{m} Z_{\ell-1}^{m} + (\ell + 2)c_{\ell+1}^{m} Z_{\ell+1}^{m} \right] + \mathcal{A}_{r\ell}^{m}.$$
(4.30)

To get this expression, we need to first compute \mathcal{A}_r in the physical space. This term is computed in the subroutine get_nl in the module grid_space_arrays_mod. \mathcal{A}_r is then transformed to the spectral space by using a Legendre and a Fourier transform to produce \mathcal{A}_r^m .

See also:

The final calculations of (4.30) are done in the subroutine get_td .

4.6.2 Nonlinear terms entering the equation for Z

The nonlinear term \mathcal{N}^Z that enters the equation for the toroidal potential (4.21) contains the radial component of the curl of the advection and Coriolis force. The Coriolis force can be rewritten as a function of W and Z:

$$\begin{split} \boldsymbol{e_r} \cdot \boldsymbol{\nabla} \times \left[(2\tilde{\rho} \boldsymbol{u}) \times \boldsymbol{e_z} \right] &= 2\boldsymbol{e_r} \cdot \left[(\boldsymbol{e_z} \cdot \boldsymbol{\nabla})(\tilde{\rho} \boldsymbol{u}) \right], \\ &= 2 \left[\cos\theta \frac{\partial (\tilde{\rho} u_r)}{\partial r} - \frac{\sin\theta}{r} \frac{\partial (\tilde{\rho} u_r)}{\partial \theta} + \frac{\tilde{\rho} u_\theta \sin\theta}{r} \right], \\ &= 2 \left[-\cos\theta \frac{\partial}{\partial r} (\Delta_H W) + \frac{\sin\theta}{r} \frac{\partial}{\partial \theta} (\Delta_H W) + \frac{\sin\theta}{r^2} \frac{\partial^2 W}{\partial r \partial \theta} + \frac{1}{r^2} \frac{\partial Z}{\partial \phi} \right]. \end{split}$$

Using the ϑ operators defined in (4.12)-(4.15) then allows to rewrite the Coriolis force in the following way:

$$[\boldsymbol{e_r} \cdot \nabla \times [(2\tilde{\rho}\boldsymbol{u}) \times \boldsymbol{e_z}] = \frac{2}{r^2} \left(\vartheta_3 \frac{\partial W}{\partial r} - \frac{1}{r} \vartheta_4 W + \frac{\partial Z}{\partial \phi} \right).$$
 (4.31)

The contributions of nonlinear advection and Lorentz forces that enter the equation for the toroidal potential are written this way:

$$\frac{1}{r\sin\theta} \left[\frac{\partial(\sin\theta \mathcal{A}_{\phi})}{\partial\theta} - \frac{\partial\mathcal{A}_{\theta}}{\partial\phi} \right].$$

To make use of the recurrence relations (4.12)-(4.15), the actual strategy is to follow the following steps:

- 1. Compute the quantities $A_{\phi}/r\sin\theta$ and $A_{\theta}/r\sin\theta$ in the physical space. In the code, this step is computed in the subroutine get_nl in the module grid_space_arrays_mod.
- 2. Transform $\mathcal{A}_{\phi}/r\sin\theta$ and $\mathcal{A}_{\theta}/r\sin\theta$ to the spectral space (thanks to a Legendre and a Fourier transform). In MagIC, this step is computed in the modules $legendre_grid_to_spec$ and fft. After this step $\mathcal{A}t_{\ell}^{m}$ and $\mathcal{A}p_{\ell}^{m}$ are defined.
- 3. Calculate the colatitude and theta derivatives using the recurrence relations:

$$\vartheta_1 \mathcal{A} p_\ell^m - \frac{\partial \mathcal{A} t_\ell^m}{\partial \phi} \,. \tag{4.32}$$

Using (4.31) and (4.32), one thus finally gets

$$\mathcal{N}_{\ell m}^{Z} = \frac{2}{r^{2}} \left[(\ell - 1)(\ell + 1) c_{\ell}^{m} \frac{\partial W_{\ell-1}^{m}}{\partial r} + \ell(\ell + 2) c_{\ell+1}^{m} \frac{\partial W_{\ell+1}^{m}}{\partial r} - \frac{\ell(\ell - 1)(\ell + 1)}{r} c_{\ell}^{m} W_{\ell-1}^{m} + \frac{\ell(\ell + 1)(\ell + 2)}{r} c_{\ell+1}^{m} W_{\ell+1}^{m} + im Z_{\ell}^{m} \right] + (\ell + 1) c_{\ell}^{m} \mathcal{A} p_{\ell-1}^{m} - \ell c_{\ell+1}^{m} \mathcal{A} p_{\ell+1}^{m} - im \mathcal{A} t_{\ell}^{m}.$$
(4.33)

See also:

The final calculations of (4.33) are done in the subroutine get td.

4.6.3 Nonlinear terms entering the equation for *P*

The nonlinear term \mathcal{N}^P that enters the equation for the pressure (4.22) contains the horizontal divergence of the advection and Coriolis force. The Coriolis force can be rewritten as a function of W and Z:

$$\begin{split} \boldsymbol{\nabla}_{H} \cdot \left[(2\tilde{\rho}\boldsymbol{u}) \times \boldsymbol{e}_{\boldsymbol{z}} \right] &= 2\boldsymbol{e}_{\boldsymbol{z}} \cdot \left[\boldsymbol{\nabla} \times (\tilde{\rho}\boldsymbol{u}) \right] - \left(\frac{\partial}{\partial r} + \frac{2}{r} \right) \left[\boldsymbol{e}_{\boldsymbol{r}} \cdot (2\tilde{\rho}\boldsymbol{u} \times \boldsymbol{e}_{\boldsymbol{z}}) \right], \\ &= -2\cos\theta \, \Delta_{H} Z - 2\sin\theta \left[-\frac{1}{r\sin\theta} \frac{\partial}{\partial \phi} \left(\frac{\partial^{2}}{\partial r^{2}} + \Delta_{H} \right) W + \frac{1}{r} \frac{\partial^{2}Z}{\partial r\partial\theta} \right] \\ &- \left(\frac{\partial}{\partial r} + \frac{2}{r} \right) \left[2\sin\theta \tilde{\rho} u_{\phi} \right], \\ &= 2 \left[\frac{1}{r} \left(\Delta_{H} + \frac{\partial^{2}}{\partial r^{2}} \right) \frac{\partial W}{\partial \phi} - \cos\theta \Delta_{H} Z - \frac{\sin\theta}{r} \frac{\partial^{2}Z}{\partial r\partial\theta} \right] \\ &- \left(\frac{\partial}{\partial r} + \frac{2}{r} \right) \left[\frac{2}{r} \left(\frac{\partial^{2}W}{\partial r\partial\phi} - \sin\theta \frac{\partial Z}{\partial\theta} \right) \right], \\ &= 2 \left(\frac{\Delta_{H}}{r} \frac{\partial W}{\partial \phi} - \frac{1}{r^{2}} \frac{\partial^{2}W}{\partial \phi\partial r} - \cos\theta \Delta_{H} Z + \frac{\sin\theta}{r^{2}} \frac{\partial Z}{\partial\theta} \right). \end{split}$$

Using the ϑ operators defined in (4.14)-(4.15) then allows to rewrite the Coriolis force in the following way:

$$\nabla_{H} \cdot \left[(2\tilde{\rho}\boldsymbol{u}) \times \boldsymbol{e}_{\boldsymbol{z}} \right] = \frac{2}{r^{2}} \left(-\frac{L_{H}}{r} \frac{\partial W}{\partial \phi} - \frac{\partial^{2} W}{\partial \phi \partial r} + \vartheta_{3} Z \right). \tag{4.34}$$

The contributions of nonlinear advection and Lorentz forces that enter the equation for pressure are written this way:

$$\frac{1}{r\sin\theta} \left[\frac{\partial(\sin\theta\mathcal{A}_{\theta})}{\partial\theta} + \frac{\partial\mathcal{A}_{\phi}}{\partial\phi} \right] .$$

To make use of the recurrence relations (4.12)-(4.15), we then follow the same three steps as for the advection term entering the equation for Z.

$$\vartheta_1 \mathcal{A} t_\ell^m + \frac{\partial \mathcal{A} p_\ell^m}{\partial \phi} \,. \tag{4.35}$$

Using (4.34) and (4.35), one thus finally gets

$$\mathcal{N}_{\ell m}^{P} = \frac{2}{r^{2}} \left[-im \frac{\ell(\ell+1)}{r} W_{\ell}^{m} - im \frac{\partial W_{\ell}^{m}}{\partial r} + (\ell-1)(\ell+1) c_{\ell}^{m} Z_{\ell-1}^{m} + \ell(\ell+2) c_{\ell+1}^{m} Z_{\ell+1}^{m} \right] + (\ell+1) c_{\ell}^{m} \mathcal{A}t_{\ell-1}^{m} - \ell c_{\ell+1}^{m} \mathcal{A}t_{\ell+1}^{m} + im \mathcal{A}p_{\ell}^{m}.$$
(4.36)

See also:

The final calculations of (4.36) are done in the subroutine get_td .

4.6.4 Nonlinear terms entering the equation for s

The nonlinear terms that enter the equation for entropy/temperature (4.24) are twofold: (i) the advection term, (ii) the viscous and Ohmic heating terms (that vanish in the Boussinesq limit of the Navier Stokes equations).

Viscous and Ohmic heating are directly calculated in the physical space by the subroutine get_nl in the module $grid_space_arrays_mod$. Let's introduce \mathcal{H} , the sum of the viscous and Ohmic heating terms.

$$\mathcal{H} = \frac{Pr \, Di}{Ra} \frac{1}{\tilde{\rho}\tilde{T}} \left(\Phi_{\nu} + \frac{\lambda}{Pm^2 \, E} \, j^2 \right) \, .$$

Expanding this term leads to:

$$\mathcal{H} = \frac{Pr \, Di}{Ra} \, \frac{1}{\tilde{\rho}\tilde{T}} \left[\tilde{\rho}\nu \left\{ 2 \left(\frac{\partial u_r}{\partial r} \right)^2 + 2 \left(\frac{1}{r} \frac{\partial u_\theta}{\partial \theta} + \frac{u_r}{r} \right)^2 + 2 \left(\frac{1}{r \sin \theta} \frac{\partial u_\phi}{\partial \phi} + \frac{u_r}{r} + \frac{\cos \theta}{r \sin \theta} u_\theta \right)^2 \right. \\ \left. + \left(r \frac{\partial}{\partial r} \left(\frac{u_\theta}{r} \right) + \frac{1}{r} \frac{\partial u_r}{\partial \theta} \right)^2 + \left(r \frac{\partial}{\partial r} \left(\frac{u_\phi}{r} \right) + \frac{1}{r \sin \theta} \frac{\partial u_r}{\partial \phi} \right)^2 \right. \\ \left. + \left(\frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \left(\frac{u_\phi}{\sin \theta} \right) + \frac{1}{r \sin \theta} \frac{\partial u_\theta}{\partial \phi} \right)^2 - \frac{2}{3} \left(\frac{d \ln \tilde{\rho}}{dr} u_r \right)^2 \right\}$$

$$\left. + \frac{\lambda}{Pm^2 E} \left\{ j_r^2 + j_\theta^2 + j_\phi^2 \right\} \right].$$

$$(4.37)$$

This term is then transformed to the spectral space with a Legendre and a Fourier transform to produce \mathcal{H}^m_ℓ .

The treatment of the advection term $-u \cdot \nabla s$ is a bit different. It is in a first step rearranged as follows

$$-\boldsymbol{u}\cdot\boldsymbol{
abla}s=-rac{1}{ ilde{
ho}}\left[\boldsymbol{
abla}\cdot(ilde{
ho}s\boldsymbol{u})-\underbrace{\boldsymbol{
abla}\cdot(ilde{
ho}\boldsymbol{u})}_{=0}
ight]\,.$$

The quantities that are calculated in the physical space are thus simply the product of entropy/temperature s by the velocity components. This defines three variables defined in the grid space that are computed in the subroutine get_nl:

$$\mathcal{US}_r = \tilde{\rho} s u_r, \quad \mathcal{US}_{\theta} = \tilde{\rho} s u_{\theta}, \quad \mathcal{US}_{\phi} = \tilde{\rho} s u_{\phi},$$

To get the actual advection term, one must then apply the divergence operator to get:

$$-\boldsymbol{u}\cdot\boldsymbol{\nabla}s = -\frac{1}{\tilde{\rho}}\left[\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\mathcal{U}\mathcal{S}_r\right) + \frac{1}{r\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\mathcal{U}\mathcal{S}_\theta\right) + \frac{1}{r\sin\theta}\frac{\partial\mathcal{U}\mathcal{S}_\phi}{\partial\phi}\right].$$

To make use of the recurrence relations (4.12)-(4.15), the actual strategy is then to follow the following steps:

- 1. Compute the quantities $r^2 \mathcal{US}_r$, $\mathcal{US}_{\phi}/r\sin\theta$ and $\mathcal{US}_{\theta}/r\sin\theta$ in the physical space. In the code, this step is computed in the subroutine get_nl in the module grid_space_arrays_mod.
- 2. Transform $r^2 \mathcal{US}_r$, $\mathcal{US}_\phi/r\sin\theta$ and $\mathcal{US}_\theta/r\sin\theta$ to the spectral space (thanks to a Legendre and a Fourier transform). In MagIC, this step is computed in the modules $legendre_grid_to_spec$ and fft. After this step $\mathcal{US}r_\ell^m$, $\mathcal{US}t_\ell^m$ and $\mathcal{US}p_\ell^m$ are defined.
- 3. Calculate the colatitude and theta derivatives using the recurrence relations:

$$-\frac{1}{\tilde{\rho}} \left[\frac{1}{r^2} \frac{\partial \mathcal{U} \mathcal{S} r_{\ell}^m}{\partial r} + \vartheta_1 \mathcal{U} \mathcal{S} t_{\ell}^m + \frac{\partial \mathcal{U} \mathcal{S} p_{\ell}^m}{\partial \phi} \right]. \tag{4.38}$$

Using (4.37) and (4.38), one thus finally gets

$$\left| \mathcal{N}_{\ell m}^{S} = -\frac{1}{\tilde{\rho}} \left[\frac{1}{r^{2}} \frac{\partial \mathcal{U} \mathcal{S} r_{\ell}^{m}}{\partial r} + (\ell + 1) c_{\ell}^{m} \mathcal{U} \mathcal{S} t_{\ell-1}^{m} - \ell c_{\ell+1}^{m} \mathcal{U} \mathcal{S} t_{\ell+1}^{m} + im \mathcal{U} \mathcal{S} p_{\ell}^{m} \right] + \mathcal{H}_{\ell}^{m}. \right|$$
(4.39)

See also:

The θ and ϕ derivatives that enter (4.39) are done in the subroutine get_td . The radial derivative is computed afterwards at the very beginning of updateS.

4.6.5 Nonlinear terms entering the equation for *q*

The nonlinear term that enters the equation for the poloidal potential of the magnetic field (4.25) is the radial component of the induction term (4.27). In the following we introduce the electromotive force $\mathcal{F} = u \times B$ with its three components

$$\mathcal{F}_r = u_\theta B_\phi - u_\phi B_\theta$$
, $\mathcal{F}_\theta = u_\phi B_r - u_r B_\phi$, $\mathcal{F}_\phi = u_r B_\theta - u_\theta B_r$.

The radial component of the induction term then reads:

$$\mathcal{N}^g = m{e_r} \cdot [m{
abla} imes (m{u} imes m{B})] = rac{1}{r \sin heta} \left[rac{\partial \left(\sin heta \mathcal{F}_\phi
ight)}{\partial heta} - rac{\partial \mathcal{F}_ heta}{\partial \phi}
ight] \,.$$

To make use of the recurrence relations (4.12)-(4.15), we then follow the usual following steps:

- 1. Compute the quantities $r^2 \mathcal{F}_r$, $\mathcal{F}_{\phi}/r \sin \theta$ and $\mathcal{F}_{\theta}/r \sin \theta$ in the physical space. In the code, this step is computed in the subroutine get_nl in the module grid_space_arrays_mod.
- 2. Transform $r^2 \mathcal{F}_r$, $\mathcal{F}_{\phi}/r \sin \theta$ and $\mathcal{F}_{\theta}/r \sin \theta$ to the spectral space (thanks to a Legendre and a Fourier transform). In MagIC, this step is computed in the modules $legendre_grid_to_spec$ and fft. After this step $\mathcal{F}_{r\ell}^m$, $\mathcal{F}_{\theta\ell}^m$ and $\mathcal{F}_{\phi\ell}^m$ are defined.
- 3. Calculate the colatitude and theta derivatives using the recurrence relations:

$$\vartheta_1 \mathcal{F}_{\phi\ell}^{\ m} - \frac{\partial \mathcal{F}_{\theta\ell}^{\ m}}{\partial \phi}.$$

We thus finally get

$$\mathcal{N}_{\ell m}^{g} = (\ell+1) c_{\ell}^{m} \mathcal{F}_{\phi \ell-1}^{m} - \ell c_{\ell+1}^{m} \mathcal{F}_{\phi \ell+1}^{m} - im \mathcal{F}_{\theta \ell}^{m}.$$

$$(4.40)$$

See also:

The final calculations of (4.40) are done in the subroutine qet_td .

4.6.6 Nonlinear terms entering the equation for h

The nonlinear term that enters the equation for the toroidal potential of the magnetic field (4.26) is the radial component of the curl of the induction term (4.27):

$$\mathcal{N}^{h} = \boldsymbol{e_r} \cdot \left[\boldsymbol{\nabla} \times \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{B}) \right] = \boldsymbol{e_r} \cdot \left[\boldsymbol{\nabla} \left(\boldsymbol{\nabla} \cdot \boldsymbol{\mathcal{F}} \right) - \Delta \boldsymbol{\mathcal{F}} \right],$$

$$= \frac{\partial}{\partial r} \left[\frac{1}{r^2} \frac{\partial (r^2 \mathcal{F}_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\sin \theta \mathcal{F}_\theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial \mathcal{F}_\phi}{\partial \phi} \right]$$

$$- \Delta \mathcal{F}_r + \frac{2}{r^2} \left[\mathcal{F}_r + \frac{1}{\sin \theta} \frac{\partial (\sin \theta \mathcal{F}_\theta)}{\partial \theta} + \frac{1}{\sin \theta} \frac{\partial \mathcal{F}_\phi}{\partial \phi} \right],$$

$$= \frac{1}{r^2} \frac{\partial}{\partial r} \left[\frac{r}{\sin \theta} \left(\frac{\partial (\sin \theta \mathcal{F}_\theta)}{\partial \theta} + \frac{\partial \mathcal{F}_\phi}{\partial \phi} \right) \right] - \Delta_H \mathcal{F}_r.$$

To make use of the recurrence relations (4.12)-(4.15), we then follow the same steps than for the nonlinear terms that enter the equation for poloidal potential of the magnetic field g:

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 \left(\vartheta_1 \mathcal{F} t_\ell^m + \frac{\partial \mathcal{F} p_\ell^m}{\partial \phi} \right) \right] + L_H \mathcal{F} r_\ell^m.$$

We thus finally get

$$\mathcal{N}_{\ell m}^{h} = \ell(\ell+1) \mathcal{F} r_{\ell}^{m} + \frac{1}{r^{2}} \frac{\partial}{\partial r} \left[r^{2} \left\{ (\ell+1) c_{\ell}^{m} \mathcal{F} t_{\ell-1}^{m} - \ell c_{\ell+1}^{m} \mathcal{F} t_{\ell+1}^{m} + im \mathcal{F} p_{\ell}^{m} \right\} \right].$$
(4.41)

See also:

The θ and ϕ derivatives that enter (4.41) are computed in the subroutine get_td . The remaining radial derivative is computed afterwards at the very beginning of updateB.

4.7 Boundary conditions and inner core

4.7.1 Mechanical boundary conditions

Since the system of equations is formulated on a radial grid, boundary conditions can simply be satisfied by replacing the collocation equation at grid points r_i and r_o with appropriate expressions. The condition of zero radial flow on the boundaries implies that the poloidal potential has to vanish, i.e. $W(r_o) = 0$ and $W(r_i) = 0$. In Chebychev representation this implies

$$C_n(r)W_{\ell mn} = 0 \text{ at } r = r_i, r_o . \tag{4.42}$$

Note that the summation convention with respect to radial modes n is used again. The no-slip condition further requires that the horizontal flow components also have to vanish, provided the two boundaries are at rest. This condition is fulfilled for

$$\frac{\partial W}{\partial r} = 0$$
 and $Z = 0$,

at the respective boundary. In spectral space these conditions read

$$C'_{n}(r)W_{\ell mn} = 0 \text{ at } r = r_{i}, r_{o},$$
 (4.43)

and

$$C_n(r)Z_{\ell mn} = 0 \text{ at } r = r_i, r_o, \qquad (4.44)$$

for all spherical harmonic modes (ℓ, m) . The conditions (4.42)-(4.44) replace the poloidal flow potential equations (4.20) and the pressure equation (4.22), respectively, at the collocation points r_i and r_o .

If the inner-core and/or the mantle are allowed to react to torques, a condition based on the conservation of angular momentum replaces condition (4.44) for the mode ($\ell = 1, m = 0$):

$$I \frac{\partial \boldsymbol{\omega}}{\partial t} = \boldsymbol{\Gamma}$$
 .

The tensor I denotes the moment of inertia of inner core or mantle, respectively, ω is the mantle or inner-core rotation rate relative to that of the reference frame, and Γ is the respective torque.

Free-slip boundary conditions require that the viscous stress vanishes, which in turn implies that the non-diagonal components $Sr_{r\phi}$ and $S_{r\theta}$ of the rate-of-strain tensor vanish. Translated to the spectral representation this requires

$$\left[\mathcal{C}_n''(r) - \left(\frac{2}{r} + \frac{d\ln\tilde{\rho}}{dr}\right)\,\mathcal{C}_n'(r)\right]W_{\ell mn} = 0 \ \ \text{and} \ \ \left[\mathcal{C}_n'(r) - \left(\frac{2}{r} + \frac{d\ln\tilde{\rho}}{dr}\right)\,\mathcal{C}_n(r)\right]Z_{\ell mn} = 0 \ .$$

We show the derivation for the somewhat simpler Boussinesq approximation which yields the condition

$$\frac{\partial}{\partial r} \frac{\mathbf{u}_H}{r} = 0$$

where the index H denotes the horizonal flow components. In terms of poloidal and toroidal components this implies

$$\frac{\partial}{\partial r}\frac{1}{r}\left(\boldsymbol{\nabla}_{H}\frac{\partial W}{\partial r}\right)=\boldsymbol{\nabla}_{H}\frac{1}{r}\left(\frac{\partial^{2}}{\partial r^{2}}-\frac{2}{r}\frac{\partial}{\partial r}\right)W=0$$

and

$$\frac{\partial}{\partial r} \frac{1}{r} \nabla \times \mathbf{e}_r Z = \nabla \times \mathbf{e}_r \frac{1}{r} \left(\frac{\partial}{\partial r} - \frac{2}{r} \right) Z = 0$$

which can be fulfilled with

$$\left(\frac{\partial^2}{\partial r^2} - \frac{2}{r}\frac{\partial}{\partial r}\right)W = 0$$

and

$$\left(\frac{\partial}{\partial r} - \frac{2}{r}\right)Z = 0.$$

In spectral representation this then reads

$$\left(\mathcal{C}_n'' - \frac{2}{r}\mathcal{C}_n'\right)W_{\ell mn} = 0 \ \text{ and } \ \left(\mathcal{C}_n' - \frac{2}{r}\mathcal{C}_n\right)Z_{\ell mn} = 0 \ .$$

4.7.2 Thermodynamic boundary conditions

For Entropy or temperature in the Boussinesq approximation either fixed value of fixed flux conditions are used. The former implies

$$s = \text{const.}$$
 or $T = \text{const.}$

at r_i and/or r_o , while the latter means

$$\frac{\partial}{\partial r}s = \text{const.}$$
 or $\frac{\partial}{\partial r}T = \text{const.}$

In spectral representation for example the respective entropy condition read

$$C_n s_{\ell mn} = \text{const.}$$
 or $C'_n s_{\ell mn} = \text{const.}$

Appropriate constant values need to be chosen and are instrumental in driving the dynamo when flux conditions are imposed.

4.7.3 Magnetic boundary conditions and inner core

Three different magnetic boundary conditions are implemented in MagIC. The most simple one is the conceptual condition at the boundary to an infinite conductor. Surface current in this conductor will prevent the internally produced magnetic field from penetrating so that the field has to vanish at the boundary. The condition are thus the same as for a rigid flow (with boundaries at rest). We only provide the spectral representation here:

$$C_n(r)W_{\ell mn} = 0 \quad \text{at} \quad r = r_i, r_o \quad . \tag{4.45}$$

Note that the summation convention with respect to radial modes n is used again. The no-slip condition further requires that the horizontal flow components also have to vanish, provided the two boundaries are at rest. This condition is fulfilled for

$$C_n(r)g_{\ell mn} = 0$$
, $C'_n(r)g_{\ell mn} = 0$ and $C_n(r)h_{\ell mn} = 0$. (4.46)

More complex are the conditions to an electrical insulator. Here we actually use matching condition to a potential field condition that are formulated like boundary conditions. Since the electrical currents have to vanish in the insulator we have $\nabla \times \boldsymbol{B}$, which means that the magnetic field is a potential field $\boldsymbol{B}^I = -\boldsymbol{\nabla} V$ with $\Delta V = 0$. This Laplace equation implies a coupling between radial and horizontal derivatives which is best solved in spectral space. Two potential contributions have to be considered depending whether the field is produced above the interface radius r_{BC} or below. We distinguish these contributions with upper indices I for internal or below and E for external or above. The total potential then has the form:

$$V_{\ell m}(r) = r_{BC} V_{\ell m}^{I} \left(\frac{r_{BC}}{r}\right)^{\ell+1} + r_{BC} V_{\ell m}^{E} \left(\frac{r}{r_{BC}}\right)^{\ell}.$$

with the two spectral potential representations $V_{\ell m}^I$ and $V_{\ell m}^E$. This provides well defined radial derivative for both field contributions. For boundary r_o we have to use the first contribution and match the respective field as well as its radial derivative to the dynamo solution. The toroidal field cannot penetrate the insulator and thus simply vanishes which yields h=0 or

$$C_n h_{\ell mn} = 0$$

in spectral space. The poloidal field then has to match the potential field which implies

$$\nabla_H \frac{\partial}{\partial r} g = -\nabla_H V^I$$

for the horizontal components and

$$\frac{\nabla_H^2}{r^2}g = \frac{\partial}{\partial r}V^I$$

for the radial. In spectral space these condition can be reduce to

$$\mathcal{C'}_n(r)g_{\ell mn} = V^I_{lm} \ \ \text{and} \ \ \frac{\ell(\ell+1)}{r^2}\mathcal{C}_ng_{\ell mn} = -\frac{\ell+1}{r}V^I_{lm}.$$

Combining both allows to eliminate the potential and finally leads to the spectral condition used in MagIC:

$$\left(\mathcal{C'}_n(r_o) + \frac{\ell}{r_o}\mathcal{C}_n(r_o)\right)g_{\ell mn} = 0$$

Analogous consideration lead to the respective condition at the interface to an insulating inner core:

$$\left(\mathcal{C'}_n(r_i) - \frac{\ell+1}{r_i}\mathcal{C}_n(r_i)\right)g_{\ell mn} = 0.$$

If the inner core is modelled as an electrical conductor, a simplified dynamo equation has to be solved in which the fluid flow is replaced by the solid-body rotation of the inner core. The latter is described by a single toroidal flow mode $(\ell=1,m=0)$. The resulting nonlinear terms can be expressed by a simple spherical harmonic expansion, where the superscript I denotes values in the inner core and ω_I its differential rotation rate:

$$\int d\Omega Y_{\ell}^{m\star} \mathbf{e}_{r} \cdot \left[\nabla \times \left(\mathbf{u}^{I} \times \mathbf{B}^{I} \right) \right] = -i \omega_{I} m \frac{\ell(\ell+1)}{r^{2}} g_{\ell m}^{I}(r) , \qquad (4.47)$$

$$\int d\Omega Y_{\ell}^{m\star} \mathbf{e}_{r} \cdot \left[\nabla \times \nabla \times \left(\mathbf{u}^{I} \times \mathbf{B}^{I} \right) \right] = -i \omega_{I} m \frac{\ell(\ell+1)}{r^{2}} h_{\ell m}^{I}(r) . \tag{4.48}$$

The expensive back and forth transformations between spherical harmonic and grid representations are therefore not required for advancing the inner-core magnetic field in time.

In the inner core the magnetic potentials are again conveniently expanded into Chebyshev polynomials. The Chebyshev variable x spans the whole diameter of the inner core, so that grid points are dense near the inner-core boundary but sparse in the center. The mapping is given by:

$$x(r) = \frac{r}{r_i} \quad , \quad -r_i \le r \le r_i \quad . \tag{4.49}$$

Each point in the inner core is thus represented twice, by grid points (r, θ, ϕ) and $(-r, \pi - \theta, \phi + \pi)$. Since both representations must be identical, this imposes a symmetry constraint that can be fulfilled when the radial expansion comprises only polynomials of even order:

$$g_{\ell m}^{I}(r) = \left(\frac{r}{r_i}\right)^{\ell+1} \sum_{i=0}^{M-1} g_{\ell m \, 2i}^{I} \, \mathcal{C}_{2i}(r) . \tag{4.50}$$

An equivalent expression holds for the toroidal potential in the inner core. FFTs can again by employed efficiently for the radial transformation, using the M extrema of $\mathcal{C}_{2M-1}(r)$ with x>0 as grid points.

The sets of spectral magnetic field equations for the inner and the outer core are coupled via continuity equations for the magnetic field and the horizontal electric field. Continuity of the magnetic field is assured by (i) continuity of the toroidal potential, (ii) continuity of the poloidal potential, and (iii) continuity of the radial derivative of the latter. Continuity of the horizontal electric field demands (iv) that the radial derivative of the toroidal potential is continuous, provided that the horizontal flow and the electrical conductivity are continuous at the interface. These four conditions replace the spectral equations (4.25), (4.26) on the outer-core side and equations (4.47), (4.48) on the inner-core side. Employing free-slip conditions or allowing for electrical conductivity differences between inner and outer core leads to more complicated and even non-linear matching conditions.

CHAPTER

FIVE

CONTRIBUTING TO THE CODE

MagIC is an open-source code, we thus value any possible contribution! There are several ways to directly contribute to the code:

Contribute

- **Do you want to contribute to the code?** Just clone the code and start modyfing it. Make sure that your modifications *don't alter the code*, try to *document your changes* as much as you can and follow the recommended *Fortran coding style*.
- Do you want to improve the documentation? Feel free to document some missing features. The documentation is stored in the directory \$MAGIC_HOME/doc/sphinx and relies on the documenting tool Sphinx. Some recommendations regarding documentation can be found *below*.
- Did you find a bug? Issues and feature requests should be raised in the github tracker.

5.1 Checking the consistency of the code

It is frequently required to check the consistency of the code, especially after the implementation of new features. For this reason, we have the Perl script magic_checks.pl, located in the directory \$MAGIC_HOME/samples/, which tests the compilation of the code and it's results against a set of standard solutions in sample directories to check if the code produces the correct output. It has been initially ported from the auto-test subroutines of the pencil-code developed by W. Dobler and adapted to the MagIC code.

You can run it as follows:

```
./magic_checks.pl <options>
```

It supports the following options:

```
-h,
    --help
                        Show usage overview
-c,
    --clean
                        Clean the directories when it is finished
    --all
                        All auto-tests are computed
-a,
    --level=LEV
                        Run only tests from level LEV
    --max-level=LEV
                        Run all tests below with level <= LEV (default: 0)
    --hybrid
                        Run the hybrid version
    --use-cmake
                        Use CMake to build the code instead of make
    --use-mkl
                        Use the Math Kernel Library for FFTs and Lapack calls
```

Note: When using the --use-cmake option, make sure that your environment variables FC and CC are correctly defined

The level=LEV defines the priority level of check and validation of the code. It has the following levels of checking:

Level	Cases to check (subdirectories)			
0	 Boussinesq dynamo benchmark (Christensen et al., 2001) - start from zero (dynamo_benchmark) Variable transport properties (viscosity, thermal diffusivity and electrical diffusivity) in an anelastic convective model (varProps) Boussinesq dynamo benchmark (Christensen et al., 2001) - start from a saturated state (boussBenchSat) 			
1	 Test reading and writing of restart files (testRestart) Test different grid truncations (testTruncations) Test mapping on to a new grid (testMapping) Test different outputs produced (testOutputs) Test different radial outputs - *R.TAG (testRadialOutputs) 			
2	Hydrodynamic anelastic benchmark (Jones et al., 2011) (hydro_bench_anel)			
3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
4	 Test the writing of RMS force balance (testRMSOutputs) Test the writing of Graphic and Movie files (testGraphMovieOutputs) Test the writing of TO and Geos outputs (testTOGeosOutputs) 			

5.2 Advices when contributing to the code

- Before committing your modifications **always** make sure that the auto-tests pass correctly.
- Try to follow the same coding style rules as in the rest of the code:
 - 1. Never use TABS but always SPACES instead
 - 2. Use 3 spaces for indentation

Note: These two rules can be easily set in your \$HOME/.vimrc file if you use vim:

```
au FileType fortran set shiftwidth=3
au FileType fortran set tabstop=3
au FileType fortran set expandtab
```

- 3. Never use capital letters for variable declaration
- 4. Never use dimension (len) for declaring array but rather real (cp) :: data(len)
- 5. Always use the default precisions when introducing new variables (cp)

These rules try to follow the general recommendations on modern fortran programming that can be found on www.fortran90.org or in the book Modern Fortran - style and usage by N. S. Clerman and W. Spector.

5.3 Building the documentation and contributing to it

The documentation is generated using Sphinx. To build it you'll thus need to install this python module on your machine. This is in general directly available on most of the Linux distributions under the name python-sphinx. Once installed, just go to the documentation directory

\$ cd \$MAGIC_HOME/doc/sphinx

and build the html documentation

\$ make html

The complete documentation will then be built in a local directory named $MAGIC_HOME/doc/sphinx/.build/html$.

If LaTeX is installed on your work station, it is also possible to build the corresponding manual of the documentation in the pdf format:

\$ make latexpdf

The resulting pdf is then generated in a local directory named \$MAGIC_HOME/doc/sphinx/.build/latex.

It is pretty straightforward to contribute to the documentation by simply adding some contents to the different rst files. Informations about reStructuredText syntax can be found on www.sphinx-doc.org, while helpful CheatSheet are accessible here or there.

CHAPTER

SIX

INPUT PARAMETERS

True runtime input parameters are read from STDIN as namelists, a Fortran feature. A namelist is identified by its unique name &name. The name-statement is followed by the parameters that are part of the namelist in the format parameter=value,. The namelist is closed by a backslash. The subroutine defaultNamelists (in the module Namelist.f90) defines a default value for each parameter. Only the parameters whose value should differ from its default have to be stated in the namelist.

An example for the short namelist defining inner core parameters is

```
&inner_core
  sigma_ratio = 1.0,
  nRotIc = 1
```

Comas can be used to seperate namelist entries since they are not interpreted by the code.

Magic uses the following eight namelists:

Namelists

- 1. & grid for resolution
- 2. &control for control parameters and numerical parameters.
- 3. &phys_param for the physical parameters.
- 4. &B_external for setting up an external field contribution
- 5. &start field to define the starting fields.
- 6. &output_control for defining the output.
- 7. &mantle for setting mantle parameters.
- 8. &inner_core for setting inner core parameters.

The number of possible input parameters has grown to more than 100/150. Don't be confused by all the possible options though, since all parameters are internally set to a useful default value!

Practically, in a production run, the number of parameters you may want to adjust is thus much smaller. As an example, the following namelist shows you how to initiate and quickly run one of the anelastic benchmarks by (Jones et al., 2011):

```
&arid
             =97,
                             ! 97 radial grid points
n_r_max
n_{cheb_max} = 95,
                             ! 288 points in the azimuthal direction
n_phi_tot
             =288,
n_r_{ic_max} = 17,
n_cheb_ic_max=15,
minc
             =1.
                             ! No azimuthal symmetry
&control
                             ! This is a non-magnetic case
mode
             =1,
```

```
tag ="test",
n_time_steps=50000,
                             ! Number of time steps
courfac =2.5D0,
alffac =1.0D0,
dtmax =1.0D-4,
                             ! Maximum allowed time-step
n_cour_step =5,
alpha =0.6D0,
                            ! Run time (hours)
! Run time (minutes)
runHours =23,
runMinutes =30,
&phys_param
ra =1.48638035D5, ! Rayleigh number
kbots
             =1,
             =1,
                       ! Mechanical boundary condition
ktopv
kbotv
             =1,
&start_field
l_start_file=.FALSE.,
start_file ="rst_end.CJ3",
init_s1 =1919,     ! Initial entropy perturbation pattern
amp_s1 =0.01,     ! Amplitude of the initial perturbation
&output_control
n_log_step =50, ! Store time series every 50 time steps
n_graphs =1, ! 1 G_#.TAG file produced at the end of the run
n_specs =5, ! 5 spectra produced during the run
n_rsts =1, ! 1 rst_end.TAG file produced at the end of the run
n_rsts
runid
             ="C.Jones bench",
&mantle
nRotMa
            =0
&inner core
sigma_ratio =0.d0,
                        ! Non-conducting inner core
nRotIC = 0.
```

This example might then be easily adapted to your desired configuration.

6.1 Grid namelist

This namelist defines the resolution of the computations. Keep in mind that **MagIC** is a 3D pseudo-spectral spherical shell code using Chebyshev polynomial expansions in the radial and spherical harmonic expansions in the angular directions.

6.1.1 Outer Core

• n_r (default n_r max=33) is an integer which gives the number of grid points in the radial direction in the outer core ($[r_i, r_o]$). It must be of the form 4 * n + 1, where n is an integer.

Note: The possible values for n_r_max are thus: 17, 21, 25, 33, 37, 41, 49, 61, 65, 73? 81, 97, 101, 121, 129, 145, 161, 257, 401, 513, ...

• n_cheb_max (default n_cheb_max=31) is an integer which is the number of terms in the Chebyshev polynomial expansion to be used in the radial direction - the highest degree of Chebyshev polynomial used being n_cheb_max-1. Note that n_cheb_max <= n_r_max.

Note: Adopting n_cheb_max=n_r_max-2 is usually a good choice

- n_phi_tot (default n_phi_tot=192) is an integer which gives the number of longitudinal/azimuthal grid points. It has the following contraints:
 - n_phi_tot ' must be a multiple of minc (see below)
 - n_phi_tot/minc must be a multiple of 4
 - n_phi_tot must be a multiple of 16

Note: The possible values for n_phi_max are thus: 16, 32, 48, 64, 96, 128, 192, 256, 288? 320, 384, 400, 512, 576, 640, 768, 864, 1024, 1280, 1536, 1792, 2048, ...

6.1.2 Inner Core

- n_r_{ic} max (default n_r_{ic} max=17) is an integer which gives the number of grid points in the radial direction in the inner core ([0, r_i]). It too, must be of the form 4*n+1, where n is an integer.
- n_cheb_ic_max (default n_cheb_ic_max=15) is the number of terms in the Chebyshev polynomial expansion in the radial direction in the inner core. Only Chebyshev polynomials of even degrees are used in the expansion giving the highest degree used to be 2*n_cheb_ic_max-2. Note that here too, n_cheb_ic_max <= n r max.

6.1.3 Symmetry and aliasing

- minc (default minc=1) is an integer which gives the longitudinal symmetry. e.g: minc=n would give an n-fold rotational symmetry in the azimuthal direction. One can use this to reduce computational costs when the symmetry of the solution is known. The orders of the spherical harmonic expansion (m) are multiples of minc.
- nalias (default nalias=20) is an integer which determines antialiasing used in the spherical harmonic representation. Note that 20 <= nalias <= 30.

The number of grid points in latitude $n_theta_max = n_phi_tot/2$. The maximum degree (1_max) and maximum order (m_max) of the spherical harmonic expansion are determined by nalias:

```
l_max = (nalias * n_theta_max)/30
```

6.2 Control namelist

This namelist defines the numerical parameters of the problem plus the variables that control and organize the run.

6.2. Control namelist 43

• mode (default mode=0) is an integer which controls the type of calculation performed.

mode=0	Self-consistent dynamo		
mode=1	Convection		
mode=2	Kinematic dynamo		
mode=3	Magnetic decay modes		
mode=4	Magneto convection		
mode=5	Linear onset of convection		
mode=6	Self-consistent dynamo, but with no Lorentz force		
mode=7	Super-rotating inner core or mantle, no convection and no magnetic field		
mode=8	Super-rotating inner core or mantle, no convection		
mode=9	Super-rotating inner core or mantle, no convection and no Lorentz force		
mode=10	Super-rotating inner core or mantle, no convection, no magnetic field, no Lorentz force and no		
	advection		

- tag (default tag="default") is a character string, used as an extension for all output files.
- n_time_steps (default n_time_steps=100) is an integer, the number of time steps to be performed.
- **tEND** (default tEND=0.0) is a real, which can be used to force the code to stop when :math:t=tEND. This is only used when t/=tEND.
- alpha (default alpha=0.5) is a real. This is the weight used for current time step in implicit time step.

6.2.1 Default scales

• n_tScale (default n_tScale=0) is an integer, which determines the time scaling

n_tScale=0	Use viscous time scale.
n_tScale=1	Use magnetic time scale.
n_tScale=2	Use thermal time scale.

• n_lScale (default $n_lScale=0$) is an integer which determines the reference length scale.

n_lScale=0	Use outer core.
n_lScale=1	Use total core.

• enscale (default enscale=1.0) is a real. This is the scaling for energies.

6.2.2 Update control

- l_update_v (default l_update_v=.true.) is a logical that specifies whether the velocity field should be time-stepped or not.
- l_update_b (default l_update_b=.true.) is a logical that specifies whether the magnetic field should be time-stepped or not.
- l_update_s (default l_update_s=.true.) is a logical that specifies whether the entropy/temperature should be time-stepped or not.

6.2.3 Time step control

A modified courant criteria including a modified Alfven-velocity is used to account for the magnetic field. The relative and absolute importance of flow and Alfven-velocity can be controlled by **courfac** and **alffac** respectively.

• **dtstart** (default *dtstart=0.0*) is a real, which is used as the initial time step if the starting solution is initialized (see below) and dtstart > 0.

- dtMax (default dtMax=1e-4) is a real. This is the maximum allowed time step δt . If $\delta t >$ dtmax, the time step is decreased to at least dtmax (See routine $dt_courant$). Run is stopped if $\delta t <$ dtmin and dtmin = 10^{-6} dtmax.
- courfac (default courfac=2.5) is a real used to scale velocity in courant criteria.
- alffac (default alffac=1.0) is a real, used to scale Alfven-velocity in courant criteria.
- n_cour_step (default n_cour_step=10) is an integer. This is the number of time steps before consecutive checking of courant criteria. Note: the courant criteria is checked always after the time step has been changed if n_cour_step>0.

6.2.4 Run time

The total desired runtime (in human units and not in CPU units) can be specified with the three variables **runHours**, **runMinutes** and **runSeconds**.

- runHours (default runHours=0) is an integer that controls the number of run hours.
- runMinutes (default runMinutes=0) is an integer that controls the .
- runSeconds (default runSeconds=0) is an integer that controls the number of run hours.

Here is an example for a run of 23h30:

```
runHours = 23,
runMinutes = 30,
```

6.2.5 Hyperdiffusivity

Hyperdiffusion can be applied by multiplying the diffusion operators by a factor of the form

$$d(\ell) = 1 + D \left[\frac{\ell + 1 - \ell_{hd}}{\ell_{max} + 1 - \ell_{hd}} \right]^{\beta}$$

for the spherical harmonic degrees $\ell \geq \ell_{hd}$.

- **difnu** (default difnu=0. 0) is a real. This is the amplitude D of the viscous hyperdiffusion.
- difkappa (default difkappa=0.0) is a real. This is the amplitude D of the thermal hyperdiffusion.
- **difeta** (default difeta=0.0) is a real. This is the amplitude D of the magnetic hyperdiffusion.
- **Idif** (default 1 dif=1) is an integer. This is the degree ℓ_{hd} where hyperdiffusion starts to act.
- **Idifexp** (default 1 difexp=-1) is an integer. This is the exponent β of hyperdiffusion.

6.2.6 Angular momentum correction

In case of the use of stress-free boundary conditions at both boundaries, it is safer to ensure that the angular momentum is correctly conserved. This can be enforced through the following input variables:

- l_correct_AMe (default l_correct_AMe=.false.) is a logical. This is used to correct the equatorial angular momentum.
- l_correct_AMz (default l_correct_AMz=.false.) is a logical. This is used to correct the axial angular momentum.

6.2. Control namelist 45

6.2.7 Mapping of the Gauss-Lobatto grid

Non-linear mapping function to concentrate/diperse grid points around a point inside the domain. For full description, see Bayliss and Turkel (1990). The function that re-distributes the collocation points is

$$r = \alpha_2 + \left\lceil \frac{\tan^{-1} \left(\lambda (r_{cheb} - x_0) \right)}{\alpha_1} \right\rceil ,$$

where the Gauss-Lobatto collocation points are

$$r_{cheb} = \cos\left(\frac{\pi(k-1)}{n_r}\right), \quad k = 1, 2, ..., n_r, \quad n_r = n_r max$$

and $r \in [r_i, r_o]$, $r_{cheb} \in [-1.0, 1.0]$. The parameters to calculate r are

$$\lambda = \frac{\tan^{-1} (\alpha_1 (1 - \alpha_2))}{1 - x_0}$$

$$x_0 = \frac{K - 1}{K + 1}$$

$$K = \frac{\tan^{-1} (\alpha_1 (1 + \alpha_2))}{\tan^{-1} (\alpha_1 (1 - \alpha_2))}$$

The coefficient α_1 determines the degree of concentration/dispersion of the grid points around $r_{cheb} = \alpha_2$. If α_1 is too high, the r function becomes nearly discontinuous. To avoid numerical problems, α_1 should remain close to unity.

- l_newmap (default l_newmap=.false.) is a logical. A radial mapping can be applied to the Chebyshev grid when l_newmap is set to .true.. The radial profile of the mapping function is then stored during the initialisation of the code in the file *rNM.TAG*.
- alph1 (default alph1=2.0) is a real. This is a control parameter of the mapping function.
- alph2 (default alph2=0.0) is a real. This is a control parameter of the mapping function.

6.2.8 Miscellaneous

• l_non_rot (default l_non_rot=.false.) is a logical. Use it when you want to do non-rotating numerical simulations.

6.3 Physical parameters namelist

This namelist contains all the appropriate relevant control physical parameters.

6.3.1 Dimensionless control parameters

• ra (default ra=1.1e5) is a real. This the Rayleigh number expressed by

$$Ra = \frac{\alpha g_o \Delta T d^3}{\kappa \nu}$$

• ek (default ek=1e-3) is a real. This is the Ekman number expressed by

$$E = \frac{\nu}{\Omega d^2}$$

• **pr** (default pr=1. 0) is a real. This is the Prandtl number expressed by

$$Pr = \frac{\nu}{\kappa}$$

• prmag (default prmag=5.0) is a real. This is the magnetic Prandtl number expressed by

$$Pm = \frac{\nu}{\lambda}$$

• radratio (default radratio=0.35) is a real. This is the ratio of the inner core radius r_i to the outer core radius r_o :

$$\eta = \frac{r_i}{r_o}$$

• strat (default strat=0.0) is a real. This is the number of density scale heights of the reference state:

$$N_{\rho} = \ln \frac{\tilde{\rho}(r_i)}{\tilde{\rho}(r_o)}$$

• **polind** (default polind=1.5) is a real. This is the polytropic index, which relates the background temperature to the background density:

$$\tilde{\rho} = \tilde{T}^m$$

Warning: Be careful: in its current version the code only handles **adiabatic** backgrounds, therefore changing polind physically means that the nature of the fluid (in particular its Grüneisen parameter) will change. For an ideal gas, it actually always follows $m+1=\frac{\gamma-1}{\gamma}$

• l_isothermal (default l_isothermal=.false.) is a logical. When set to .true., makes the temperature background isothermal (i.e. $\tilde{T}=cst$.). In that case, the dissipation number Di vanishes and there is no viscous and Ohmic heating left. The only difference with the Boussinesq set of equations are thus restricted to the density background $\tilde{\rho}$ and its radial derivatives that enters the viscous stress. This approximation is also called the **zero Grüneisen parameter** and was extensively explored by Denise Tortorella during her PhD.

6.3.2 Heat sources and sinks

• epsc0 (default epsc0=0.0) is a real. This is the volumetric heat source ϵ_0 that enters the thermal equilibrium relation:

$$-\nabla \cdot \left(\tilde{\rho}\tilde{T}\nabla s\right) + \epsilon_0 f(r) = 0 \tag{6.1}$$

The radial function f(r) can be modified with the variable nVarEps that enters the same input namelist.

• **nVarEps** (default nVarEps=0) is an integer. This is used to modify the radial-dependence of the volumetric heat source, i.e. f(r) that enters equation (6.1).

nVarEps=0	Constant, i.e. $f(r) = \text{cst.}$.
nVarEps=1	Proportional to density, i.e. $f(r) = \tilde{\rho}(r)$.

6.3.3 Realistic interior models

• interior_model (default interior_model="None") is a character string. This defines a polynomial fit of the density profile of the interior structure of several astrophysical objects. Possible options are "earth", "jupiter", "saturn" and "sun" (the naming is not case sensitive).

Warning: When interior_model is defined the variables strat, polind, g0, g1 and g2 are not interpreted.

The subroutine radial gives the exact details of the implementation.

r_cut_model (default r_cut_model=0.98) is a real. This defines the cut-off radius of the reference model,
 i.e. the fluid domain is restricted to radii with r ≤ r_{cut}.

The following input parameters will thus define a polynomial fit to the expected interior structure of Jupiter until 99% of Jupiter's radius (assumed here at the 1 bar level)

```
interior_model="JUP",
r_cut_model =0.99e0,
```

6.3.4 Gravity

The radial dependence of the gravity profile can be adjusted following

$$g(r) = g_0 + g_1 \frac{r}{r_o} + g_2 \left(\frac{r_o}{r}\right)^2 \tag{6.2}$$

The three following parameters are used to set this profile

- g0 (default g0=0) is the pre-factor of the constant part of the gravity profile, i.e. g_0 in equation (6.2).
- g1 (default g1=1) is the pre-factor of the linear part of the gravity profile, i.e. g_1 in equation (6.2).
- g2 (default g2=0) is the pre-factor of the $1/r^2$ part of the gravity profile, i.e. g_2 in equation (6.2).

6.3.5 Transport properties

• **difExp** (default difExp=-0.5) is a real. This is the exponent that is used when nVarVisc=2, nVarDiff=2 or nVarCond=4.

Electrical conductivity

There are several electrical conductivity profiles implemented in the code that can be chosen with the nVarCond input variable. The following one corresponds to a constant electrical conductivity in the deep interior $(r < r_m)$ and an exponential decay in the outer layer.

$$\sigma(r) = 1 + (\sigma_m - 1) \left(\frac{r - r_i}{r_m - r_i}\right)^a \quad \text{for} \quad r < r_m,$$

$$\sigma(r) = \sigma_m \exp\left[a\left(\frac{r - r_m}{r_m - r_i}\right) \frac{\sigma_m - 1}{\sigma_m}\right] \quad \text{for} \quad r \ge r_m.$$
(6.3)

• **nVarCond** (default *nVarCond=0*) is an integer. This is used to modify the radial-dependence of the electrical conductivity.

nVarCond=0	Constant electrical conductivity, i.e. $\sigma = \text{cst.}$		
nVarCond=1	$\sigma \propto \tanh[a(r-r_m)]$		
nVarCond=2	See equation (6.3).		
nVarCond=3	Magnetic diffusivity proportional to $1/\tilde{\rho}$, i.e.		
	$\lambda = rac{ ilde{ ho}_i}{ ilde{ ho}}$		
nVarCond=2	Radial profile of the form:		
	$\lambda = \left(\frac{\tilde{\rho}(r)}{\tilde{\rho}_i}\right)^{\alpha}$		

- con_RadRatio (default $con_RadRatio=0.75$) is a real. This defines the transition radius r_m that enters equation (6.3).
- con_DecRate (default con_DecRate=9) is an integer. This defines the decay rate a that enters equation (6.3).
- con_LambdaMatch (default $con_LambdaMatch=0.6$) is a real. This is the value of the conductivity at the transition point σ_m that enters equation (6.3).
- con_LambdaOut (default con_LambdaOut=0.1) is a real. This is the value of the conduvity at the outer boundary. This parameter is only used when nVarCond=1.
- con_FuncWidth (default con_FuncWidth=0.25) is a real. This parameter is only used when nVarCond=1.
- r_LCR (default $r_LCR=2.0$) is a real. r_LCR possibly defines a low-conductivity region for $r \ge r_{LCR}$, in which the electrical conductivity vanishes, i.e. $\lambda = 0$.

Thermal diffusivity

• **nVarDiff** (default *nVarDiff=0*) is an integer. This is used to change the radial-dependence of the thermal diffusivity:

nVarDiff=0	Constant thermal diffusivity κ		
nVarDiff=1	Constant thermal conductivity, i.e.		
	$\kappa = rac{ ilde{ ho}_i}{ ilde{ ho}(r)}$		
nVarDiff=2	Radial profile of the form:		
	$\kappa = \left(\frac{\tilde{ ho}(r)}{\tilde{ ho}_i}\right)^{lpha}$		
nVarDiff=3	polynomial-fit to an interior model of Jupiter		
nVarDiff=4	polynomial-fit to an interior model of the Earth liquid		
	core		

Viscosity

• nVarVisc (default nVarVisc=0) is an integer. This is used to change the radial-dependence of the viscosity:

nVarVisc=0	Constant kinematic viscosity ν
nVarVisc=1	Constant dynamic viscosity, i.e.
	$ u = rac{ ilde{ ho}_o}{ ilde{ ho}(r)}$
nVarVisc=2	Radial profile of the form:
	$\nu = \left(\frac{\tilde{\rho}(r)}{\tilde{\rho}_i}\right)^{\alpha}$

where α is an exponent set by the namelist input variable difExp.

6.3.6 Anelastic liquid equations

Warning: This part is still work in progress. The input parameters here are likely to be changed in the future.

• **epsS** (default epsS=0.0) is a real. It controls the deviation to the adiabat. It can be related to the small parameter ϵ :

$$\epsilon \simeq \frac{\Delta T}{T} \simeq \frac{\Delta s}{c_p}$$

- **cmbHflux** (default *cmbHflux=0.0*) is a real. This is the CMB heat flux that enters the calculation of the reference state of the liquid core of the Earth, when the anelastic liquid approximation is employed.
- **slopeStrat** (default slopeStrat=20.0) is a real. This parameter controls the transition between the convective layer and the stably-stratified layer below the CMB.

6.3.7 Boundary conditions

Thermal boundary conditions

• **ktops** (default *ktops=1*) is an integer to specify the outer boundary entropy (or temperature) boundary condition:

	Fixed entropy at outer boundary: $s(r_o) = s_{top}$
ktops=2	Fixed entropy flux at outer boundary: $\partial s(r_o)/\partial r = s_{top}$

- **kbots** (default ktops=1) is an integer to specify the inner boundary entropy (or temperature) boundary condition
- s_top (default $s_top=0 0 0.0 0.0$) is a real array of lateraly varying outer heat boundary conditions. Each four consecutive numbers are interpreted as follows:
 - 1. Spherical harmonic degree ℓ
 - 2. Spherical harmonic order m
 - 3. Real amplitude (cos contribution)
 - 4. Imaginary amplitude (sin contribution)

For example, if the boundary condition should be a combination of an $(\ell = 1, m = 0)$ sherical harmonic with the amplitude 1 and an $(\ell = 2, m = 1)$ spherical harmonic with the amplitude (0.5,0.5) the respective namelist entry could read:

 $s_{top} = 1, 0, 1.0, 0.0, 2, 1, 0.5, 0.5, ! The comas could be left away.$

- s_bot (default $s_bot=0 \ 0 \ 0.0 \ 0.0$) is a real array. This is the same as s_top but for the bottom boundary.
- impS (default impS=0) is an integer. This is a flag to indicate if there is a localized entropy disturbance, imposed at the CMB. The number of these input boundary conditions is stored in n_impS (the maximum allowed is 20), and it's given by the number of sCMB defined in the same namelist. The default value of impS is zero (no entropy disturbance). If it is set in the namelist for an integer greater than zero, then sCMB has to be also defined in the namelist, as shown below.
- sCMB (default sCMB=0.0 0.0 0.0 0.0) is a real array of CMB heat boundary conditions (similar to the case of s_bot and s_top). Each four consecutive numbers are interpreted as follows:
 - 1. Highest amplitude value of the entropy boundary condition, stored in array peakS(20). When impS<0, peakS is a relative amplitude in comparison to the $(\ell=0,m=0)$ contribution (for example, the case s_top= 0 0 -1 0).
 - 2. θ coordinate (input has to be given in degrees), stored in array thetaS (20).
 - 3. ϕ coordinate (input has to be given in degrees), stored in array phis (20).
 - 4. Angular width (input has to be given in degrees), stored in array widthS (20).

Mechanical boundary conditions

• **ktopv** (default ktopv=2) is an integer, which corresponds to the mechanical boundary condition for $r=r_o$.

ktopv=1	Stress-free outer boundary for $r=r_o$:		
	$W_{\ell m}(r=r_o) = 0, \frac{\partial}{\partial r} \left(\frac{1}{r^2 \tilde{\rho}} \frac{\partial W_{\ell m}}{\partial r} \right) = 0$		
	$\frac{\partial}{\partial r} \left(\frac{1}{r^2 \tilde{\rho}} Z_{\ell m} \right) = 0$		
ktopv=2	Rigid outer boundary for $r=r_o$:		
	$W_{\ell m} = 0, \frac{\partial W_{\ell m}}{\partial r} = 0,$ $Z_{\ell m} = 0$		
	$Z_{\ell m} = 0$		

• **kbotv** (default kbotv=2) is an integer, which corresponds to the mechanical boundary condition for $r=r_i$.

Magnetic boundary conditions

• **ktopb** (default ktopb=1) is an integer, which corresponds to the magnetic boundary condition for $r=r_o$.

ktopb=1	Insulating outer boundary:		
	$\frac{\partial g_{\ell m}}{\partial r} + \frac{\ell}{r} g_{\ell m} = 0, \frac{\partial h_{\ell m}}{\partial r} = 0$		
ktopb=3	Finitely conducting mantle		
ktopb=4 Pseudo-vacuum outer boundary:			
	$\frac{\partial g_{\ell m}}{\partial r} = 0, h_{\ell m} = 0$		

•	kbotb (default <i>kbotb=1</i>)	is an integer,	which corresponds t	to the magnetic	boundary condition	for $r = r_i$.

kbotb=1	Insulating inner boundary:
	$\frac{\partial g_{\ell m}}{\partial r} - \frac{\ell+1}{r} g_{\ell m} = 0, \frac{\partial h_{\ell m}}{\partial r} = 0$
ktopb=2	Perfectly-conducting innner core:
	$g_{\ell m} = \frac{\partial g_{\ell m}}{\partial r} = 0, \frac{\partial h_{\ell m}}{\partial r} = 0$
ktopb=3	Finitely conducting innner core
ktopb=4	Pseudo-vacuum outer boundary:
	$\frac{\partial g_{\ell m}}{\partial r} = 0, h_{\ell m} = 0$

6.4 External Magnetic Field Namelist

The namelist &B_external provides options for imposing an external magnetic field.

6.4.1 Externally imposed magnetic field

• n_imp (default $n_imp = 0$) is an integer controlling the type of external field applied.

n_imp=0	No external magnetic field
n_imp=1	Follows idea of Uli Christensen of external field compensating internal field such that
	radial component of magnetic field vanishes at $r/r_{cmb} = rrMP$ where rrMP is the
	'magnetopause radius' input by the user (see below)
n_imp=2	Uniform axisymmetric magnetic field of geometry given by l_imp (see below)
n_imp=3	Uniform axisymmetric magnetic field which changes direction according to the direc-
	tion of the axial dipole of the internal magnetic field
n_imp=4	Same as n_imp=3 but the amplitude of the external field is scaled to the amplitude
	of the axial dipole of the internal field
n_imp=7	External field depends on internal axial dipole through Special Heyner feedback func-
	tions

- **rrMP** (default *rrMP* = 0.0) is a real which gives the value of 'magnetopause radius'. In other words, it gives the radius (as a fraction of r_cmb) at which the radial component of the magnetic field vanishes due to cancelling out of external and internal magnetic field components. Used only when n_imp = 1.
- amp_imp (default amp_imp = 0.0) is a real which gives the amplitude of the external magnetic field.
- **expo_imp** (default <code>expo_imp = 0.0</code>) is a real which gives the exponent of dependence of external magnetic field on the axial dipole of the internal magnetic field. Used for n_imp=7.
- bmax_imp (default $bmax_imp = 0.0$) is a real which gives the location of the maximum of the ratio of the poloidal potentials g_{ext}/g_{int} .
- l_imp (default l_imp = 1) is an integer which gives the geometry (degree of spherical harmonic) of the external magnetic field. The external field is always axisymmetric, hence m = 0 always. This option is used when n_imp = 2, 3 or 4.

6.4.2 Current carrying loop

To simulate experiments, an external current carrying loop, concentric to the sphere and in the equatorial plane, has been implemented in the code. It's radius is fixed at a distance $a=r_{cmb}/0.8$ to match conditions of the Maryland 3 metre experiment.

- l_curr (default l_curr = .false.) is a logical that controls switching on or off of the current carrying loop.
- amp_curr (default amp_curr = 0.0) is a real that gives the amplitude of magnetic field produced by the current carring loop.

Warning: Note that an external magnetic field is incompatible with a region of low conductivity inside the spherical shell (i.e, if $r_LCR < r_cmb$). Thus, while imposing an external magnetic field, make sure $r_LCR > r_cmb$ (which is the default case). For details on r_LCR , have a look at the section on *electrical conductivity* in the namelist for *physical parameters*.

6.5 Start field namelist

This namelist controls whether a start field from a previous solution should be used, or a specific field should be initialized.

6.5.1 Reading an input file of start fields

- l_start_file (default l_start_file=.false.) is a logical that controls whether the code should to read a file named start_file or not.
- start_file (default start_file="no_start_file") is a character string. This is the name of the restart file.
- **inform** (default *inform=-1*) is an integer that can be used to specify the format of start_file. This ensures possible backward compatibility with previous versions of the code. You shouldn't change this value except to read very old *rst_end.TAG* files generated by older versions of MagIC.

inform=0	Oldest format used by U. Christensen
inform=1	Newer format used by U. Christensen
inform=2	Inner core introduced by J. Wicht
inform=-1	Default format

- scale_s (default scale_s=1.0) is a real. It can be possibly used to multiply the input entropy field from start_file by a constant factor scale_s.
- scale_v (default scale_v=1.0) is a real. It can be possibly used to multiply the input velocity field from start file by a constant factor scale v.
- scale_b (default scale_b=1.0) is a real. It can be possibly used to multiply the input magnetic field from start_file by a constant factor scale_b.
- **tipdipole** (default tipdipole=0.0) is a real that can be used to add non-axisymmetric disturbances to a start solution if non-axisymmetric parts have been lost due to mapping to a different symmetry. A $(\ell=1, m=1)$ entropy term is added with:

$$s_{10}(r) = \text{tipdipole } \sin[\pi(r - r_i)]$$

If a magnetic field without an m=1 term is mapped into a field that permits this term, the code adds the respective poloidal field using the $(\ell=1, m=0)$ poloidal magnetic field and scaling it with tipdipole.

• l_reset_t (default l_reset_t=.false.) is a logical that can be set to .true. in case one wants to reset the time of start file to zero.

6.5.2 Defining the starting conditions

Initialisation of entropy

The heat equation with possible heat sources and sinks given by $epsc\theta$ is solved for the spherically-symmetric term $(\ell=0,m=0)$ to get its radial dependence. In addition to this initial state, two other laterally varying terms can be initialized. Their radial dependence are assumed to follow:

$$s(r) = 1 - 2x^2 + 3x^4 - x^6,$$

where

$$x = 2r - r_o - r_i.$$

The initial perturbation is thus set to zero at both boundaries r_i and r_o , and reaches its maximum amplitude of amp_s1 or amp_s2 at the mid-shell radius $r_i + 1/2$.

- init_s1 (default init_s1=0) is an integer that controls the initial entropy. The following values are possible:
 - init_s1=0: nothing is initialized
 - init_s1<100: a random-noise of amplitude amp_s1 is initialised. The subroutine initS in init_fields.f90 gives the detail of this implementation.
 - init_s1>100: initialisation of mode with the spherical harmonic order m given by the last two (or three) digits of init_s1 and the spherical harmonic degree ℓ given by the first two (or three) digits. Here are two examples:

```
init_s1 = 0707,
amp_s1 = 0.05,
```

will introduce a perturbation on the mode ($\ell = 7, m = 7$) with an amplitude of 0.05.

```
init_s1 = 121121,
amp_s1 = 0.01,
```

will introduce a perturbation on the mode ($\ell = 121, m = 121$) with an amplitude of 0.01.

- amp_s1 (default amp_s1=0.0) is a real used to contol the amplitude of the perturbation defined by init_s1.
- init_s2 (default init_s2=0) is an integer that controls a second spherical harmonic degee. It follows the same specifications as init_s1.
- amp_s2 (default amp_s2=0.0) is a real used to contol the amplitude of the perturbation defined by init_s2.

Initialisation of magnetic field

- init_b1 (default init_b1=0) is an integer that controls the initial magnetic field. The following values are possible:
 - init_b1<0: random noise initialization of all (ℓ, m) modes, except for $(\ell = 0, m = 0)$. The subroutine initB in the file init_fields.f90 contains the details of the implementation.
 - init_b1=0: nothing is initialized
 - init_b1=1: diffusive toroidal field initialized. Mode determined by imagcon.

- init_b1=2: $(\ell=1, m=0)$ toroidal field with a maximum field strength of amp_b1. The radial dependence is defined, such that the field vanishes at both the inner and outer boundaries. In case of an insulating inner core: $h(r) \approx r \sin[\phi(r-r_o)]$. In case of a conducting inner core: $h(r) \approx r \sin[\pi(r/r_o)]$.
- init_b1=3: $(\ell=1,m=0)$ poloidal field whose field strength is amp_b1 at $r=r_i$. The radial dependence is chosen such that the current density j is independent of r:, i.e. $\partial j/\partial r=0$. $(\ell=2,m=0)$ toroidal field with maximum strength amp_b1.
- init_b1=4: $(\ell = 1, m = 0)$ poloidal field as if the core were an insulator (potential field). Field strength at $r = r_i$ is again given by amp_b1.
- init_b1=5: $(\ell=1, m=0)$ poloidal field with field strength amp_b1 at $r=r_i$. The radial dependence is again defined by $\partial j/\partial r=0$.
- init_b1=6: $(\ell=1, m=0)$ poloidal field independend of r.
- init_b1=7: $(\ell=1,m=0)$ poloidal field which fulfills symmetry condition in inner core: $g(r) \approx \left(\frac{r}{r_i}\right)^2 \left[1-\frac{3}{5}\left(\frac{r}{r_o}\right)^2\right]$. The field strength is given by amp_b1 at $r=r_o$.
- init_b1=8: same poloidal field as for init_b1=7. The toroidal field fulfills symmetry conditions in inner core and has a field strength of amp_b1 at $r=r_i$: $h(r) \approx \left(\frac{r}{r_i}\right)^3 \left[1-\left(\frac{r}{r_o}\right)^2\right]$.
- init_b1=9: $(\ell=2, m=0)$ poloidal field, which is a potential field at the outer boundary.
- init_b1=10: equatorial dipole only.
- init_b1=11: axial and equatorial dipoles.
- init_b1=21: toroidal field created by inner core rotation, equatorially symmetric $(\ell=1, m=0)$: $h(r) = \text{ampb1} \left(\frac{r_i}{r}\right)^6$. The field strength is given by amp_b1 at $r=r_i$.
- init_b1=22: toroidal field created by inner core rotation, equatorially antisymmetric ($\ell=2, m=0$). Same radial function as for init_b1=21.
- amp_b1 (default amp_b1=0.0) is a real used to contol the amplitude of the function defined by init_b1.
- **imagcon** (default *imagcon=0*) is an integer, which determines the imposed magnetic field for magnetoconvection. The magnetic field is imposed at boundaries.
 - imagcon=0: no magneto-convection
 - imageon<0: axial poloidal dipole imposed at ICB with a maximum magnetic field strength amp_b1.
 - imagcon=10: $(\ell=2, m=0)$ toroidal field imposed at ICB and CMB with a maximum amplitude amp_b1 at both boundaries.
 - imagcon=11: same as imagcon=10 but the maximum amplitude is now amp_b1 at the ICB and -amp b1 at the CMB.
 - imagcon=12: $(\ell=1, m=0)$ toroidal field with a maximum amplitude of amp_b1 at the ICB and the CMB.
- tmagcon (tmagcon=0.0) is a real.

Initialisation of velocity field

- init_v1 (default init_v1=0) is an integer that controls the initial velocity. The following values are possible:
 - init_v1=0: nothing is initialized

- init_v1=1: a differential rotation profile of the form

$$\Omega = \Omega_{ma} + 0.5\Omega_{ic} \quad \text{for} \quad s \le r_i$$

$$\Omega = \Omega_{ma} \quad \text{for} \quad s > r_i$$

where $s = r \sin \theta$ is the cylindrical radius. This profile only makes sense when one studies spherical Couette flows.

- init_v1=2: a differential rotation profile of the form $\Omega = \frac{\text{ampv1}}{\sqrt{1+s^4}}$ is introduced.
- init_v1>2: a random-noise of amplitude amp_v1 is initialised. The subroutine initV in init_fields.f90 gives the detail of this implementation.
- amp_v1 (default amp_v1=0.0) is a real used to contol the amplitude of the function defined by init_v1.

6.6 Output control namelist

This namelist contains all the parameters that can be adjusted to control the outputs and diagnostics calculated by the code.

There are four different ways to control at which time step a specific output should be written. Outputs are generally distributed over the total calculation interval unless an output time interval is defined by a start time t_start and a stop time t_stop. If no t_start is provided, the start time of the calculation is used. If no t_stop is provided or t_stop>t_start the total calculation interval is assumed

1. **Prescribed number of outputs**. The outputs are distributed evenly over the total calculation interval so that the number of timesteps between two outputs is always the same, with the possible exception of the first interval. Last output is written for the last time step, and to compensate the interval before the first output may be longer. However, if t_stop is provided, the outputs are distributed evenly over the interval [t_stop, t_start] with equal times intervals between them.

Note: These input variables are usually named with a pattern that follows $n_{\text{outputName}}$, for instance, n_{graphs} , n_{rsts} , n_{specs} , n_{logs} , etc.

In case you want to make use of a specific time interval, the input variables follow a pattern of the form t_outputName_start, t_outputName_stop. For instance, t_graph_start, t_graph_stop, t_log_start, t_log_stop, t_spec_start, t_spec_stop, etc.

2. **User-defined interval between two outputs, given in number of time steps**. Again the last output is performed at the end of the run and a compensation may take place at the beginning.

Note: These input variables are usually named with a pattern that follows n_outputName_step, for instance, n_graph_step, n_rst_step, n_spec_step, n_log_step, n_movie_step, etc.

3. Defined time interval between two outputs.

Note: These input variables are usually named with a pattern that follows $dt_outputName$, for instance, dt_graph , dt_rst , dt_spec , dt_log , dt_movie , etc.

4. **User-defined times for output**. By default 5000 different times can be defined for each output type. This can be increased by increasing n_time_hits in the file output_data.f90. While the first three possibilities can only be used alternatively, the fourth one can be employed in addition to one of the two others.

Note: These input variables are usually named with a pattern that follows t_outputName, for instance,

```
t_graph, t_rst, t_spec, t_log, t_movie, etc.
```

An important parameter in this context is *l_true_time*. If this is set to .true., the time steps of the program are modified to meet a desired output time. This forces a recalculation of the inversion matricies and therefore requires some additional computing time. When l_true_time=.false., the values at the timestep closest to the desired output time are chosen. Since the timesteps are generally small, this option suffices for most applications.

• l_true_time (default l_true_time=.false.) is a logical. It causes the code to change time steps to exactly meet the requested output times.

The different possible outputs control parameters are then extensively described in the following pages:

Possible outputs

- 1. Control standard/common outputs
- 2. CMB and radial coefficients
- 3. Storage of potentials in spectral space
- 4. Torsional oscillations diagnostics
- 5. Additional possible diagnostics

6.6.1 Standard time-series outputs

The **log** outputs controls the output of all the default time series of the file: kinetic and magnetic energies (e_kin.TAG, e_mag_oc.TAG and e_mag_ic.TAG files), dipole information (dipole.TAG file), rotation (rot.TAG) parameters (par.TAG) and various additional diagnostics (misc.TAG):

• n_log_step (default n_log_step=50) is an integer. This is the number of timesteps between two log outputs.

Warning: Be careful: when using too small n_log_step , the disk access will dramatically increases, thus decreasing the code performance.

- \mathbf{n} _logs (default n_10qs=0) is an integer. This is the number of log-information sets to be written.
- t_{\log} (default $t_{10g}=-1.0 -1.0 \dots$) is real array, which contains the times when log outputs are requested.
- dt log (default $dt = 1 \circ q = 0$. 0) is a real, which defines the time interval between log outputs.
- t_{log_start} (default $t_{log_start} = 0.0$) is a real, which defines the time to start writing log outputs.
- t_log_stop (default t_log_stop=0.0) is a real, which defines the time to stop writing log outputs.

6.6.2 Restart files

The **rst** outputs controls the output of restart files ($rst_t_\#.TAG$) (i.e. check points in time from which the code could be restarted):

- n_rst_step (default n_rst_step=0) is an integer. This is the number of timesteps between two restart files.
- n_rsts (default n_rsts=1) is an integer. This is the number of restart files to be written.
- t_rst (default t_rst=-1.0 -1.0 ...) is real array, which contains the times when restart files are requested.
- **dt_rst** (default \(dt_rst=0.0 \)) is a real, which defines the time interval between restart files.
- t_rst_start (default t_rst_start=0.0) is a real, which defines the time to start writing restart files.

- t_rst_stop (default t_rst_stop=0.0) is a real, which defines the time to stop writing restart files.
- n_stores (default n_stores=0) is an integer. This is another way of requesting a certain number of restart files. However, instead of creating each time a new restart file, if n_stores > n_rsts the restart file is overwritten, which can possibly help saving some disk space.

Warning: The rst files can become quite big and writting them too frequently will slow down the code. Except for very special use, the default set up should be sufficient.

6.6.3 Graphic files

The **graph** outputs controls the output of graphic files $(G_\#.TAG)$ which contain a snapshot the entropy, the velocity field and the magnetic fields:

- n_graph_step (default n_graph_step=0) is an integer. This is the number of timesteps between two graphic files.
- n_graphs (default n_graphs=1) is an integer. This is the number of graphic files to be written.
- **t_graph** (default *t_graph=-1.0 -1.0 ...*) is real array, which contains the times when graphic files are requested.
- **dt_graph** (default \(dt_graph=0.0 \)) is a real, which defines the time interval between graphic files.
- t_graph_start (default t_graph_start=0.0) is a real, which defines the time to start writing graphic files.
- t_graph_stop (default $t_graph_stop=0.0$) is a real, which defines the time to stop writing graphic files.

6.6.4 Spectra

The **spec** outputs controls the output of spectra: kinetic energy spectra (*kin_spec_#.TAG*), magnetic energy spectra (*mag_spec_#.TAG*) and thermal spectra (*T_spec_#.TAG*):

- n_spec_step (default n_spec_step=0) is an integer. This is the number of timesteps between two spectra.
- n_specs (default n_specs=0) is an integer. This is the number of spectra to be written.
- **t_spec** (default *t_spec=-1.0 -1.0 ...*) is real array, which contains the times when spectra are requested.
- dt spec (default dt spec=0.0) is a real, which defines the time interval between spectra.
- t_spec_start (default t_spec_start=0.0) is a real, which defines the time to start writing spectra.
- t spec stop (default t spec stop=0.0) is a real, which defines the time to stop writing spectra.

6.6.5 Movie files

The **movie** outputs controls the output of movie files (*_mov.TAG).

Specific inputs

• l_movie (default l_movie=.false.) is a logical. It needs to be turned on to get movie computed.

Several movie-files can be produced during a run (it is now limited to 30 by the variable "n_movies_max" in the module movie). The movies are defined by a keyword determining the fields to be plotted and an expression

that determines the nature of movie (r-slice, θ -slice, ϕ -slice, etc.). The code searches this information in a character string provided for each movie. These strings are elements of the array movie:

• movie (default movie=' ', ' ', ...) is a character string array. It contains the description of the movies one wants to compute.

For example, to invoke a movie(file) that shows (stores) the radial magnetic component of the magnetic field at the CMB, you have to provide the line

```
movie(1)="Br CMB",
```

in the &output namelist. Here, Br is the keyword for the radial component of the magnetic field and CMB is the expression that defines the movie surface. If, in addition, a movie of the temperature field at the meridional slice phi=0 and a movie of the z-vorticity in the equatorial plane are desired, the following line have to be added:

```
movie(2)="Temp phi=0",
movie(3)="Vortz eq",
```

Note that the code does **not interpret spaces and ignores additional characters** that do not form a keyword or a surface definition. Thus, for example Br or Bradial are all interpreted as the same keyword. Furthermore, the interpretation is **not case-sensitive**. The following table gives the possible keywords for movie calculations and their corresponding physical meaning:

Keyword	Fields stored in movie file
Br[radial]	Radial component of the magnetic field B_r .
Bt[heta]	Latitudinal component of the magnetic field B_{θ} .
Bp[hi]	Azimuthal component of the magnetic field B_{ϕ} .
Bh[orizontal]	The two horizontal components of the magnetic field.
Bs	Cylindrically radial component of the magnetic field B_s .
Ba[ll]	All magnetic field components.
Fieldline[s] or FL	Axisymmetric poloidal field lines in a meridional cut.
AX[ISYMMETRIC]	Axisymmetric phi component of the magnetic field for $\phi = cst$.
B or AB	
Vr[adial]	Radial component of the velocity field u_r .
Vt[heta]	Latitudinal component of the velocity field u_{θ} .
Vp[hi]	Azimuthal component of the velocity field u_{ϕ} .
Vh[orizontal]	Horizontal velocity field, two components depending on the surface.
Va[11]	All velocity field components.
Streamline[s] or SL	Field lines of axisymmetric poloidal field for $\phi = cst$.
AX[ISYMMETRIC]	Axisymmetric component of the velocity field for $\phi = cst$.
V or AV	
Vz	Vertical component of the velocity at the equator + vertical component
	of the vorticity at the equator (closest point to equator).
Voz	Vertical component of the vorticity ω_z .
Vor	Radial component of the vorticity ω_r .
Vop	Azimuthal component of vorticity ω_{ϕ}
Tem[perature] or En-	Temperature/Entropy
tropy	
Entropy (or	Axisymmetric temperature/entropy field for $\phi = cst$.
Tem[perature])	
AX[ISYMMETRIC]	
or AT	
Heat t[ransport]	Radial advection of temperature $u_r \frac{\partial s}{\partial r}$
HEATF	Conducting heat flux $\partial s/\partial r$
AX[iSYMMETRIC]	
	Continued on next page

Table 6.1 – continued from previous page

Vormord	Fields stared in mayin file
Keyword	Fields stored in movie file
FL Pro	Axisymmetric field line stretching.
FL Adv	Axisymmetric field line advection.
FL Dif	Axisymmetric field line diffusion.
AB Pro	Toroidal axisymmetric field production.
AB Dif	Toroidal axisymmetric field diffusion.
Br Pro	Production of radial magnetic field B_r .
Br Adv	Advection of radial magnetic field B_r .
Br Dif	Diffusion of radial magnetic field B_r .
Jr	Radial component of the current j_r .
Jr Pro	Production of radial current + Ω -effect.
Jr Adv	Advection of the radial component of the current j_r .
Bz Pol Pro	
Bz Pol Adv	
Bz Pol Dif	
Jz Tor Pro	Production of the toroidal part of the vertical component of the current
	$j_z.$
Jz Tor Adv	Advection of the toroidal part of the vertical component of the current
	$j_z.$
Jz Tor Dif	Diffusion of the toroidal part of the vertical component of the current
	$j_z.$
-	
Bp Tor Pro	
	netic field B_{ϕ} .
Bp Tor Adv	Advection of the toroidal part of the azimuthal component of the mag-
	netic field B_{ϕ} .
Bp Tor Dif	Diffusion of the toroidal part of the azimuthal component of the mag-
	netic field B_{ϕ} .
	Kinetic helicity $\mathcal{H} = oldsymbol{u} \cdot (oldsymbol{ abla} imes oldsymbol{u})$
AX[ISYMMETRIC	Axisymmetric component of the kinetic helicity.
HELICITY] or	
AHEL	
Bt Tor	Toroidal component of the latitudinal component of the magnetic field
	B_{θ} .
Pot Tor	Toroidal potential.
Pol Fieldlines	Poloidal fieldlines.
Br Shear	Azimuthal shear of the radial component of the magnetic field B_r
Lorentz[force] or LF	Lorentz force (only ϕ -component).
Br Inv	Inverse field apperance at CMB.
HELICITY] or AHEL Bt Tor Pot Tor Pol Fieldlines Br Shear Lorentz[force] or LF	Advection of the toroidal part of the vertical component of the curre j_z . Diffusion of the toroidal part of the vertical component of the curre j_z . Toroidal part of the azimuthal component of the magnetic field B_ϕ . Production of the toroidal part of the azimuthal component of the magnetic field B_ϕ . Advection of the toroidal part of the azimuthal component of the magnetic field B_ϕ . Diffusion of the toroidal part of the azimuthal component of the magnetic field B_ϕ . Kinetic helicity $\mathcal{H} = \mathbf{u} \cdot (\nabla \times \mathbf{u})$ Axisymmetric component of the kinetic helicity. Toroidal component of the latitudinal component of the magnetic field B_θ . Toroidal potential. Poloidal fieldlines. Azimuthal shear of the radial component of the magnetic field B_r Lorentz force (only ϕ -component).

The following table gives the possible surface expression for movie calculations and their corresponding physical meaning:

Surface expression	Definition
CMB	Core-mantle boundary
Surface	Earth surface
EQ[uatot]	Equatorial plane
r=radius	Radial cut at r=radius with radius given in units of the outer core radius.
theta=colat	Latitudinal cut at theta=colat given in degrees
phi=phiSlice	Azimuthal cut ath phi=phiSlice given in degrees.
AX[isymmetric]	Axisymmetric quantity in an azimuthal plane
3D	3D array

Here is an additional example of the possible combinations to build your desired movie files.

```
l_movie = .true.,
movie(1) = "Br CMB",
movie(2) = "Vr EQ",
movie(3) = "Vortr r=0.8",
movie(4) = "Bp theta=45",
movie(5) = "Vp phi=10",
movie(6) = "entropy AX",
movie(7) = "vr 3D",
```

Standard inputs

- n_movie_step (default n_movie_step=0) is an integer. This is the number of timesteps between two movie outputs.
- n_movies (default n_movies=1) is an integer. This is the number of movie outputs to be written.
- t_movie (default t_movie=-1.0 -1.0 ...) is real array, which contains the times when movie outputs are requested.
- dt movie (default dt movie=0.0) is a real, which defines the time interval between movie outputs.
- t_movie_start (default t_movie_start=0.0) is a real, which defines the time to start writing movie outputs.
- t_movie_stop (default t_movie_stop=0.0) is a real, which defines the time to stop writing movie outputs.

6.6.6 Field Averages

The code can perform on-the-fly time-averaging of entropy, velocity field and magnetic field. Respective graphic output and spectra are written into the corresponding files (with *G_ave.TAG*, *kin_spec_ave.TAG*, *mag_spec_ave.TAG*). The time-averaged energies are written into the *log.TAG* file.

• l_average (default l_average=.false.) is a logical, which enables the time-averaging of fields when set to .true..

Warning: Time-averaging has a large memory imprint as it requires the storage of 3-D arrays. Be careful, when using large truncations.

6.6.7 Poloidal magnetic field potential at CMB

The **cmb** outputs controls the output of poloidal field potential coefficients at the CMB $b_{\ell m}(r=r_o)$: $B_coeff_cmb.TAG$ up to a maximum spherical harmonic degree 1_max_cmb .

Note: This calculation is only enabled when 1 cmb field=.true. or when 1 dt cmb field=.true..

Specific inputs

- l_cmb_field (default l_cmb_field=.false.) is a logical. It needs to be turned on to get cmb files computed.
- l_dt_cmb_field (default l_dt_cmb_field=.false.) is a logical. When set to .true., it allows the calculation of the secular variation of the magnetic field at the CMB.
- l_max_cmb (default 1_max_cmb=14) is an integer. This is the maximum spherical harmonic degree ℓ stored in B_coeff_cmb.TAG, i.e. only $\ell \leq \ell_{maxcmb}$ are stored. For example, the following input parameter means that the B coeff_cmb.TAG file is stored up to a spherical harmonic degree of ℓ :

```
l_cmb_field = .true.,
l_max_cmb = 20,
```

Standard inputs

- n_cmb_step (default $n_cmb_step=0$) is an integer. This is the number of timesteps between two cmb outputs.
- n_cmbs (default n_cmbs=0) is an integer. This is the number of cmb outputs to be written.
- t_cmb (default t_cmb=-1.0 -1.0 ...) is real array, which contains the times when cmb outputs are requested.
- **dt_cmb** (default \(dt__cmb=0 \). (0) is a real, which defines the time interval between cmb outputs.
- t_{cmb_start} (default $t_{cmb_start}=0.0$) is a real, which defines the time to start writing cmb outputs.
- t_cmb_stop (default t_cmb_stop=0.0) is a real, which defines the time to stop writing cmb outputs.

6.6.8 Poloidal and toroidal potentials at several depths

The coeff_r# outputs controls the output of the poloidal and toroidal potential coefficients at several depths up to a maximum spherical harmonic degree l_{max_r} . The files B_{coeff_r} . The files B_{coeff_r} . The file B_{coeff_r} .

Note: This calculation is **only** enabled when <code>l_r_field=.true</code>. or when <code>l_r_fieldT=.true</code>..

Specific inputs

- l_r_field (default l_r_field=.false.) is a logical. It needs to be turned on to get r_field files computed.
- l_r_fieldT (default l_r_fieldT=.false.) is a logical. When set to .true., the thermal field is also stored in a file named T_coeff_r*.TAG.
- l_max_r (default l_max_r=l_max) is an integer. This is the maximum spherical harmonic degree ℓ stored in the r_field file, i.e. only $\ell \leq \ell_{maxcmb}$ are stored.

There are two ways to specify the radial grid points where you want to store the $[B|V|T]_coeff_r\#$. TAG files. You can specify a stepping n_r_step : in that case 5 coeff $_r\#$. TAG files will be stored at 5 different radial levels every n_r_step grid point:

```
l_r_field = .true.,
n_r_step = 6,
l_max_r = 30,
```

This will produces 5 files that contain the poloidal and toroidal potentials up to spherical harmonic degree $\ell = 30$:

- [B|V|T]_coeff_r1.TAG corresponds to the radial grid point with the index nR=6.
- [B|V|T]_coeff_r2.TAG to nR=12.
- [B|V|T]_coeff_r3.TAG to nR=18.
- [B|V|T]_coeff_r4.TAG to nR=24.
- [B|V|T]_coeff_r5.TAG to nR=30.
- n_r step (default n_r step=2) is an integer. This specifies the stepping between two consecutive [B|V|T]coeff_r#.TAG files.

Alternatively, the input array n_r_array can be used to specify the radial grid points you exactly want to store:

```
l_r_field = .true.,
n_r_array = 8, 24, 47,
l_max_r = 10,
```

This will produces 3 files that contain the poloidal and toroidal potentials up to spherical harmonic degree $\ell = 10$:

- [B|V|T]_coeff_r1.TAG corresponds to the radial grid point with the index nR=8.
- [B|V|T]_coeff_r2.TAG to nR=24.
- [B|V|T]_coeff_r3.TAG to nR=47.
- n_r_array (default n_r_array=0 0 0 ...) a an integer array. You can specify the radial grid points (starting from n_r_cmb=1) where you want to store the coefficients.

Standard inputs

- $n_r_{field_step}$ (default $n_r_{field_step=0}$) is an integer. This is the number of timesteps between two $r_{field_outputs}$.
- n_r_fields (default n_r_fields=0) is an integer. This is the number of r_field outputs to be written.
- t_r_field (default t_r_field=-1.0 -1.0 ...) is real array, which contains the times when r_field outputs are requested.
- dt_r_{field} (default $dt_r_{field}=0.0$) is a real, which defines the time interval between r_{field} outputs.
- t_r_field_start (default t_r_field_start=0.0) is a real, which defines the time to start writing r_field outputs.
- t_r_field_stop (default t_r_field_stop=0.0) is a real, which defines the time to stop writing r_field outputs.

6.6.9 Poloidal and toroidal potentials in spectral and Chebyshev space

The [VIBIT]pot outputs controls the output of potential files (Vpot_#.TAG, Bpot_#.TAG and Tpot_#.TAG). These are files that contain the poloidal and toroidal flow and magnetic field potentials (and entropy/temperature) written in spectral and Chebyshev spaces (for instance w (lm_max, n_cheb_max)). These files can be pretty useful since

they can be possibly used to reconstruct any quantity in the spectral space or in the physical space you may be interested in.

Specific inputs

They are two ways to store those files. The first option is to use <code>l_storePot=.true</code>. and the corresponding time control parameters (<code>n_pot_step</code>, <code>t_pot</code>, <code>n_pots</code>, etc.). In that case the three files <code>Vpot_#.TAG</code>, <code>Bpot_#.TAG</code> and <code>Tpot_#.TAG</code> will be stored. The following example will create new <code>Vpot_#.TAG</code>, <code>Bpot_#.TAG</code> and <code>Tpot_#.TAG</code> files every 1000 time steps:

```
l_storePot = .true.,
n_pot_step = 1000,
```

• **l_storePot** (default *l_storePot=.false.*) is a logical. It needs to be turned on to store all the potentials in three different files: *Vpot_#.TAG*, *Bpot_#.TAG* and *Tpot_#.TAG*.

The second option is control separately the writing of the three files using the three logicals <code>l_storeVpot</code>, <code>l_storeBpot</code> and <code>l_storeTpot</code> and their corresponding time control parameters. The following example wrill create a new <code>Vpot_#.TAG</code> file every 1000 time steps and a new <code>Bpot_#.TAG</code> file every 3000 time steps (no <code>Tpot_#.TAG</code> files are stored in that case):

```
l_storeVpot = .true.,
n_Vpot_step = 1000,
l_storeBpot = .true.,
n_Bpot_step = 3000,
l_storeTpot = .false.,
```

- **l_storeVpot** (default *l_storeVpot=.false.*) is a logical. It needs to be turned on to store the flow poloidal and toroidal potentials. It then writes the *Vpot_#.TAG* file.
- **l_storeBpot** (default *l_storeBpot=.false.*) is a logical. It needs to be turned on to store the magnetic field poloidal and toroidal potentials. It then writes the *Bpot_#.TAG* file.
- **l_storeTpot** (default *l_storeTpot=.false.*) is a logical. It needs to be turned on to store the entropy. It then writes the *Tpot_#.TAG* file.

Standard inputs

- n_pot_step (default $n_pot_step=0$) is an integer. This is the number of timesteps between two [V|B|P] pot outputs.
- **n_pots** (default $n_{pots}=1$) is an integer. This is the number of [V|B|P] pot outputs to be written.
- t_pot (default $t_pot = -1.0 -1.0 \dots$) is real array, which contains the times when [V|B|P]pot outputs are requested.
- **dt_pot** (default $dt_pot=0.0$) is a real, which defines the time interval between two [V|B|P] pot outputs.
- t_pot_start (default t_pot_start=0.0) is a real, which defines the time to start writing [V|B|P]pot outputs.
- t_pot_stop (default t_pot_stop=0.0) is a real, which defines the time to stop writing [V|B|P]pot outputs.
- n_Vpot_step (default n_Vpot_step=0) is an integer. This is the number of timesteps between two Vpot outputs.
- n_Vpots (default n_Vpots=1) is an integer. This is the number of Vpot outputs to be written.

- t_Vpot (default t_Vpot=-1.0 -1.0 ...) is real array, which contains the times when Vpot outputs are requested.
- **dt_Vpot** (default $dt_Vpot=0.0$) is a real, which defines the time interval between Vpot outputs.
- t_Vpot_start (default t_Vpot_start=0.0) is a real, which defines the time to start writing Vpot outputs.
- t_Vpot_stop (default t_Vpot_stop=0.0) is a real, which defines the time to stop writing Vpot outputs.
- n_Bpot_step (default n_Bpot_step=0) is an integer. This is the number of timesteps between two Bpot outputs.
- n_Bpots (default n_Bpots=1) is an integer. This is the number of Bpot outputs to be written.
- t_Bpot (default t_Bpot=-1.0 -1.0 ...) is real array, which contains the times when Bpot outputs are requested.
- **dt_Bpot** (default $dt_Bpot=0.0$) is a real, which defines the time interval between Bpot outputs.
- t_Bpot_start (default t_Bpot_start=0.0) is a real, which defines the time to start writing Bpot outputs.
- t_Bpot_stop (default t_Bpot_stop=0.0) is a real, which defines the time to stop writing Bpot outputs.
- n_Tpot_step (default n_Tpot_step=0) is an integer. This is the number of timesteps between two Tpot outputs.
- n_Tpots (default n_Tpots=1) is an integer. This is the number of Tpot outputs to be written.
- t_Tpot (default t_Tpot=-1.0 -1.0 ...) is real array, which contains the times when Tpot outputs are requested.
- **dt_Tpot** (default $dt_Tpot = 0.0$) is a real, which defines the time interval between Tpot outputs.
- t_Tpot_start (default t_Tpot_start=0.0) is a real, which defines the time to start writing Tpot outputs.
- t_Tpot_stop (default $t_Tpot_stop=0.0$) is a real, which defines the time to stop writing Tpot outputs.

6.6.10 Torsional oscillations (TO)

Specific inputs

- **l_TO** (default *l_TO=.false.*) is a logical. It needs to be turned on to compute the torsional oscillations diagnostics (TO) computed.
- **1_TOmovie** (default 1_TOmovie=.false) is a logical. It needs to be turned on to store the TO_movie.TAG files.
- **sDens** (default *sDens=1*.0) is a float. It gives the relative point density of the cylindrical grid (in the radial direction).
- **zDens** (default *zDens=1.0*) is a float. It gives the relative point density of the cylindrical grid (in the vertical direction).

Standard inputs

- n_TO_step (default n_TO_step=0) is an integer. This is the number of timesteps between two TO outputs.
- n_TOs (default n_TOs=1) is an integer. This is the number of TO outputs to be written.
- $\mathbf{t_TO}$ (default $t_TO=-1.0 -1.0 \dots$) is real array, which contains the times when TO outputs are requested.
- dt_TO (default $dt_TO=0$. 0) is a real, which defines the time interval between TO outputs.

- t_TO_start (default t_TO_start=0.0) is a real, which defines the time to start writing TO outputs.
- t_TO_stop (default $t_TO_stop=0.0$) is a real, which defines the time to stop writing TO outputs.
- n_TOZ_step (default $n_TOZ_step=0$) is an integer. This is the number of timesteps between two TO outputs.
- n_TOZs (default $n_TOZs=1$) is an integer. This is the number of TO outputs to be written.
- t_TOZ (default t_TOZ=-1.0 -1.0 ...) is real array, which contains the times when TO outputs are requested.
- dt_TOZ (default $dt_TOZ=0$. 0) is a real, which defines the time interval between TO outputs.
- t_TOZ_start (default t_TOZ_start=0.0) is a real, which defines the time to start writing TO outputs.
- t_TOZ_stop (default t_TOZ_stop=0.0) is a real, which defines the time to stop writing TO outputs.
- n_TOmovie_step (default n_TOmovie_step=0) is an integer. This is the number of timesteps between two TO_mov outputs.
- n_TOmovie_frames (default n_TOmovies=1) is an integer. This is the number of TO_mov outputs to be written.
- t_TOmovie (default t_TOmovie=-1.0 -1.0 ...) is real array, which contains the times when TO_mov outputs are requested.
- dt_TOmovie (default dt_TOmovie=0.0) is a real, which defines the time interval between TO_mov outputs.
- t_TOmovie_start (default t_TOmovie_start=0.0) is a real, which defines the time to start writing TO_mov outputs.
- t_TOmovie_stop (default t_TOmovie_stop=0.0) is a real, which defines the time to stop writing TO_mov outputs.

6.6.11 RMS force balance

The code can compute the RMS contributions of the different forces that contribute to the Navier-Stokes equation and the the different terms that enter the induction equation.

- **l_RMS** (default *l_RMS=.false.*) is a logical, which enables the calculation of RMS force balance, when set to .true.. The outputs are stored in *dtVrms.TAG* and *dtBrms.TAG*.
- rCut (default rCut=0.0) is a float. This is the thickness of the layer which is left out at both boundaries for the RMS calculation. rCut=0.075 actually means that 7.5% below the CMB and above the ICB are disregarded in the force balance calculation.
- rDea (default rDea=0.0) is a float. This controls the dealiasing in RMS calculations. rDea=0.1 means that the highest 10% of the Chebyshev modes are set to zero.

6.6.12 Additional possible diagnostics

Geostrophy

- **l_par** (default *l_par=.false.*) is a logical. When set to .true., this logical enables additional calculations (for instance the degree of geostrophy). The details of these calculations can be found in the subroutine getEgeos in the Egeos.f90 file. These quantities are then stored in the columns 10-16 of the *misc.TAG* file.
- l_corrMov (default l_corrMov=.false.) is a logical. When set to .true., this logical enables the calculation of a movie file that stores North/South correlation in the CVorz_mov.TAG file.

Helicity

• l_hel (default l_hel=.false.) is a logical. When set to .true., this logical enables the calculation of helicity (RMS, northern and southern hemisphere, etc.). The outputs are stored in the columns 6-9 of the *misc.TAG* file.

Power budget

• l_power (default l_power.false.) is a logical. When set to .true., this logical enables the calculation of input and output power (buoyancy, viscous and ohmic dissipations, torques). The time series are stored in power.TAG and dtE.TAG and the time-averaged radial profiles in powerR.TAG.

Angular momentum

• **l_AM** (default *l_AM=.false.*) is a logical. When set to .true., this logical enables the calculation of angular momentum. The time series are stored in *AM.TAG*.

Drift rates

• l_drift (default l_drift=.false.) is a logical. When set to .true., this logical enables the storage of some selected coefficients to allow the calculation of the drift rate. The time series are stored in drift[V|B][DQ].TAG.

Inertial modes

• l_iner (default l_iner=.false.) is a logical. When set to .true., this logical enables the storage of some selected $w(\ell,m)$ at mid-shell (stored in *inerP.TAG*) and $z(\ell,m)$ at mid-shell (stored in *inerT.TAG*). Those files can be further used to identify inertial modes.

Radial spectra

- l_rMagSpec (default l_rMagSpec=.false) is a logical. When set to .true., the magnetic spectra for the first 6 spherical harmonic degree ℓ for all radii are stored at times of log ouputs. This produces the unformatted fortran files rBrSpec.TAG and rBpSpec.TAG.
- **1_DTrMagSpec** (default *1_DTrMagSpec=.false*) is a logical. When set to .true., the magnetic spectra of the magnetic field production terms for the first 6 spherical harmonic degree ℓ for all radii are stored at times of log ouputs. This produces the unformatted fortran files rBrProSpec.TAG, rBrAdvSpec.TAG, rBrDifSpec.TAG, rBpDifSpec.TAG, rBpDifSpec.TAG and rBpDynSpec.TAG. All those files have exactly the same format as the *rBrSpec.TAG*.

Heat transport

• l_fluxProfs (default l_fluxProfs=.false.) is a logical. When set to .true., this logical enables the calculation of time-averaged radial heat flux profiles (conductive flux, convective flux, kinetic flux, viscous flux, Poynting flux and resistive flux). The time-averaged radial profiles are stored in the fluxesR.TAG file.

Boundary layer analysis

• l_viscBcCalc (default l_viscBcCalc=.false.) is a logical. When set to .true., this logical enables the calculation of time-averaged radial profiles that can be further use to determine the viscous and thermal boundary layer thicknesses: temperature, temperature variance, horizontal velocity, etc. The time-averaged radial profiles are stored in the bLayersR.TAG file.

Parallel/perpendicular decomposition

• l_perpPar (default l_perpPar=.false.) is a logical. When set to .true., this logical enables the decomposition of kinetic energy into components parallel and perpendicular to the rotation axis. The time series are stored in perpPar.TAG and the time-averaged radial profiles in perpParR.TAG.

Potential vorticity

• l_PV (default l_PV=.false.) is a logical. When set to .true., this logical enables some potential vorticity diagnostics. At the end of the run, the results are stored in the the files PVZ.TAG and Vcy.TAG.

Pressure

• **l_PressGraph** (default *l_PressGraph=.true.*) is a logical. When set to .true., this logical enables the storage of pressure in the *graphic files*.

6.6.13 Generic options

- **l_save_out** (default *l_save_out=.false.*) is a logical. When set to .true., the diagnostic files will be safely opened and closed before and after any outputs. When set to .false., the diagnostic files will be opened before the first iteration timestep and close at the end of the run. This may cost some computing time, but guarantees that only minimal information is lost in case of a crash.
- IVerbose (default *lVerbose=.false.*) is a logical. When set to .true., the code displays a lot of debugging informations.

Warning: Never set lVerbose to .true. for a production run!

• **runid** (default, runid="MAGIC default run") is a character string. This can be used to briefly describe your run. This information is then for instance stored in the header of the graphic files.

6.7 Mantle and Inner Core Namelists

6.7.1 Mantle Namelist

This namelist defines mantle properties

- conductance_ma (default conductance_ma=0.0) is a real that defines the conductance (dimensionless) of the mantle.
- **nRotMa** (default nRotMa=0) is an integer that defines the rotation of the mantle:

nRotMa=-1	Mantle rotates with prescribed rate (see omega_ma1 and omega_ma2 below)
nRotMa=0	Fixed, non-rotating mantle
nRotMa=1	Mantle rotates according to torques

- **rho_ratio_ma** (default *rho_ratio_ma=1*) is a real which gives the density of the mantle in terms of that of the outer core.
- omega_ma1 (default omega_ma1=0.0) is a real which defines a mantle rotation rate (used when nRotMa=0).
- omegaOsz_ma1 (default omegaOsz_ma1=0.0) is a real which prescribes the oscillation frequency of the mantle rotation rate. In this case, omega ma1 is the amplitude of the oscillation.
- tShift_ma1 (default tShift_ma1=0.0) is a real which defines the time shift of the mantle rotation rate omega_ma1.
- omega ma2 (default omega ma2=0.0) is a real which defines a second mantle rotation rate.
- omegaOsz_ma2 (default omegaOsz_ma2=0.0) is a real which defines the oscillation frequency of the second mantle rotation rate omega_ma2.
- tShift_ma2 (default tShift_ma2=0.0) is a real which defines the time shift for omega_ma2.

The resultant prescribed mantle rotation rate is computed as:

```
omega_ma = omega_ma1*cos(omegaOsz_ma1*(time+tShift_ma1)) + &
    omega_ma2*cos(omegaOsz_ma2*(time+tShift_ma2))
```

6.7.2 Inner Core Namelist

This namelist defines properties of the inner core

- **sigma_ratio** (default *sigma_ratio=0.0*) is a real that defines the conductivity of the inner core with respect to the value of the outer core. sigma_ratio=0 thus corresponds to a non-conducting inner core.
- **nRotIc** (default *nRotIc=0*) is an integer that defines the rotation of the inner core. Behaves the same way as *nRotMa* (above).
- **rho_ratio_ic** (default rho_ratio_ic=1.0) is a real which defines the density of the inner core in terms of that of the outer core.
- **BIC** (default BIC=0.0) is a real which gives the imposed dipole field strength at the Inner Core Boundary. Having BIC > 0 implies that the inner core acts as a dipole magnet as implemented in the DTS experiment at Grenoble, France.
- Variables prescribing rotation rate of inner core The following variables are used to prescribe rotation rate of the inner core. They behave in the same way as the corresponding variables for the mantle. They are used only when nRotIC=0.

```
omega_ic1 (default omega_ic1=0.0)
omegaOsz_ic1 (default omegaOsz_ic1=0.0)
tShift_ic1 (default tShift_ic1=0.0)
omega_ic2 (default omega_ic2=0.0)
omegaOsz_ic2 (default omegaOsz_ic2=0.0)
tShift ic2 (default tShift ic2=0.0)
```

As with the mantle, the resultant prescribed rotation rate for the inner core is computed as:

INTERACTIVE COMMUNICATION WITH THE CODE USING SIGNAL. TAG

It is possible to interactively communicate with the MagIC code **during a run**, using a file which is systematically created when the simulation starts, called **signal.TAG**. By default, this file contains only the word NOT and does nothing to the simulation. Replacing NOT by one of the following allowed keywords will have some influence on the outputs or possibly force the code to terminate its execution:

- **END**: Changing the word NOT to END will cause the code to finish after the current time step and write all the outputs as if it was programmed to finish at that time from the start. This will thus normally produce the *rst_end.TAG* file that will possibly allow you to continue this run later at your convenience.
- **GRA**: Changing the word NOT to GRA will cause the code to produce a graphic ouptut file *G_#.TAG*. The keyword will be automatically restored to NOT once the graphic file has been produced.
- **RST**: Changing the word NOT to RST will cause the code to produce a restart file *rst_t#.TAG*. The keyword will then be restored to NOT once the restart file has been written.
- **SPE**: Changing the word NOT to SPE will cause the code to produce spectra *kin_spec_#.TAG* (and possibly *mag_spec_#.TAG* and *T_spec_#.TAG* <*secTSpecFile>* depending if the run is magnetic or not, or if it solves a temperature/entropy equation). Once the spectra files have been written, the keyword will be automatically replaced by NOT.

Note: Those keywords are case-insensitive.

Instead of editing the file with your favorite editor to specify the requested keyword, we recommand using instead the shell command echo to avoid some possible crash during the code execution when writing into the signal.TAG file. For instance, if you want a *graphic output file*, just use the following command (adapted to your current *TAG*):

\$ echo GRA > signal.TAG

OUTPUT FILES

While some information of a run is written into STDOUT to monitor its progress, most outputs are printed into dedicated files identified by the chosen *TAG* extension. These files can be parsed and analysed using the *python classes*. The following pages describe the content and the structure of the different type of output files:

- 1. Most of the information found in STDOUT is also written to the **log-file** called *log.TAG*. In addition, this file contains all input parameters, truncation, information on other output files, and some results like the time averaged energies (when *l_average=.true.*).
- 2. There are several ascii files that contain the **time-evolution of integrated quantities** (energies, heat fluxes, rotation rate, Reynolds numbers, etc.) that are systematically produced:
 - Kinetic energies: *e_kin.TAG*,
 - Magnetic energies: e_mag_oc.TAG and e_mag_ic.TAG,
 - Rotation rates: rot. TAG,
 - Informations about the dipolar component of the magnetic field: dipole.TAG,
 - Diagnostic parameters (Reynolds, Elsasser, etc.): par.TAG,
 - Additional diagnostics (heat fluxes, Nusselt numbers, etc.): misc.TAG.
- 3. There are **additional conditional time series** that contain the time-evolution of other physical quantities that depend on the chosen *input parameters*:
 - Angular momentum balance: AM.TAG,
 - Power budget: power.TAG and dtE.TAG,
 - Square velocities: u_square.TAG,
 - Drift rates: drift[V|B][D|Q].TAG and iner[P|T].TAG,
 - Torques: SR[IC|MA].TAG,
 - RMS calculations of the force balances: dtVrms.TAG and dtBrms.TAG,
 - Kinetic energies perpendicular and parallel to the rotation axis: *perpPar.TAG*.
- 4. Time-averaged radial profiles:
 - Kinetic energies: eKinR.TAG,
 - Magnetic energies: *eMagR.TAG*,
 - Diagnostic quantities: parR.TAG,
 - Power budget: powerR.TAG,
 - Heat fluxes: fluxesR.TAG,

- Temperature and horizontal velocities: bLayersR.TAG,
- Kinetic energies perpendicular and parallel to the rotation axis: perpParR.TAG.
- 5. **Radial profiles of the transport properties** of the reference state (those files will only be produced when the appropriate input option is chosen):
 - Temperature, density and gravity: anel.TAG,
 - Electrical conductivity: varCond.TAG,
 - Thermal conductivity: varDiff.TAG,
 - Kinematic viscosity: varVisc.TAG,
 - Mapping of the Chebyshev grid: *rNM.TAG*.
- 6. Kinetic energy, magnetic energy and temperature/entropy spectra:
 - Kinetic energy: kin_spec_#.TAG,
 - Magnetic energy: kin_spec_#.TAG,
 - Velocity square: u2_spec_#.TAG,
 - Temperature/entropy: *T_spec_#.TAG*,
 - Time-averaged kinetic energy: kin_spec_ave.TAG,
 - Time-averaged magnetic energy: mag_spec_ave.TAG,
 - Time-averaged temperature/entropy: *T_spec_ave.TAG*,
 - 2-D ([r,ell] and [r,m]) spectra: $2D_{mag|kin|u2}$ _spec_#.TAG.
- 7. Output snapshot that contains the 3-D components of the velocity field, the magnetic field and the temperature/entropy. Those files are named **graphic files** *G_#.TAG* (or *G_ave.TAG* for its time-averaged counterpart).
- 8. Time evolution of some chosen fields. Those files are named **movie files**: * mov.TAG.
- 9. Checkpoints outputs that will allow the code to restart. Those files are named **restart files**: rst_end.TAG.
- 10. **Time-evolution of the poloidal and toroidal coefficients** at diffent depths:
 - Time evolution of the poloidal magnetic field at the CMB: B_coeff_cmb.TAG,
 - Time evolution of the potentials at several depths: [V|T|B]_coeff_r#.TAG
- 11. Additional specific outputs:
 - Torsional oscillations (see *here*),
 - Potential files: Vpot #.TAG, Bpot #.TAG and Tpot #.TAG,
 - Potential vorticity files: PVZ.TAG and Vcy.TAG,
 - Magnetic spectra for various radii: rB[r|p]Spec.TAG.

8.1 Log file: log. TAG

This is a text file contains information about the run, including many of the things which are printed to STDOUT. It has the following information in order of appearance:

- Code version: the version of the code
- **Parallelization**: information about number of MPI ranks being used, blocking information of OpenMP chunks and processor load balancing

- Namelists: displays values of all namelist variables. The ones input by the user should have the input values
 while the rest of them are set to their default values.
- **Mode** The mode of the run self-consistent/kinematic dynamo, convection, couette flow etc. See the *control namelist* for more information about *mode*.
- **Grid parameters**: information about the grid sizes and truncation being used. More information about this in the *grid namelist*. If a new grid, different from that in the restart file is used, then a comparison is shown between old and new grid parameters and the user is informed that the data is being mapped from the old to the new grid.
- **Progress**: information about the progress of the run for every 10% of the run and the mean wall time for time step.
- Writing of graphic, movie, restart and spectra files: displays the time step and tells the user whenever a $G_{\#}.TAG$, $rst_{\#}.TAG$ or spectra file or a movie frame is written disk.
- Energies: gives kinetic and magnetic energies (total, poloidal, toroidal, total density) at the end of the run.
- **Time averages**: this part gives time averaged kinetic and magnetic energies (total, poloidal, toroidal, total density) and time averaged parameters (Rm, Elsass, Rol etc.). If *l_average=.true*., this section also provides information about average spectra and graphic files being written.
- Wall times: this is the last part of the log file and it provides information about the mean wall time for running different parts of the code. These values can be used to judge the speed and scaling capabilities of your computer.

Most of these informations can be parsed and stored into a python class using MagicSetup:

```
>>> # read log.N0m2
>>> stp = MagicSetup(nml='log.N0m2')
>>> print(stp.ek, stp.prmag) # print Ekman and magnetic Prandtl numbers
>>> print(stp.l_max) # print l_max
```

8.2 Default time-series outputs

8.2.1 e kin. TAG

This file contains the kinetic energy of the outer core, defined by

$$E_{k} = \frac{1}{2} \int_{V} \tilde{\rho} u^{2} \, dV = E_{pol} + E_{tor}$$

$$= \frac{1}{2} \sum_{\ell,m} \ell(\ell+1) \int_{r_{i}}^{r_{o}} \frac{1}{\tilde{\rho}} \left[\frac{\ell(\ell+1)}{r^{2}} |W_{\ell m}|^{2} + \left| \frac{dW_{\ell m}}{dr} \right|^{2} \right] dr$$

$$+ \frac{1}{2} \sum_{\ell,m} \ell(\ell+1) \int_{r_{i}}^{r_{o}} \frac{1}{\tilde{\rho}} |Z_{\ell m}|^{2} dr$$
(8.1)

The detailed calculations are done in the subroutine get_ekin . This file contains the following informations:

No. of column	Contents
1	time
2	poloidal energy
3	toroidal energy
4	axisymmetric poloidal energy
5	axisymmetric toroidal energy
6	equatorial symmetric poloidal energy
7	equatorial symmetric toroidal energy
8	equatorial symmetric and axisymmetric poloidal energy
9	equatorial symmetric and axisymmetric toroidal energy

```
>>> # To stack all the e_kin.TAG files of the current directory
>>> ts = MagicTs(field='e_kin', all=True)
>>> # To only read e_kin.NOm2
>>> ts = MagicTs(field='e_kin', tag='NOm2')
```

8.2.2 e_mag_oc.TAG

This file contains the magnetic energy of the outer core, defined by

$$E_{m} = \frac{1}{2} \int_{V} B^{2} dV = E_{pol} + E_{tor}$$

$$= \frac{1}{2} \sum_{\ell,m} \ell(\ell+1) \int_{r_{i}}^{r_{o}} \left[\frac{\ell(\ell+1)}{r^{2}} |b_{\ell m}|^{2} + \left| \frac{db_{\ell m}}{dr} \right|^{2} \right] dr$$

$$+ \frac{1}{2} \sum_{\ell,m} \ell(\ell+1) \int_{r_{i}}^{r_{o}} |j_{\ell m}|^{2} dr$$
(8.2)

The detailed calculations are done in the subroutine get_e_mag. This file contains the following informations:

No. of column	Contents
1	time
2	outer core poloidal energy
3	outer core toroidal energy
4	outer core axisymmetric poloidal energy
5	outer core axisymmetric toroidal energy
6	outside potential field energy
7	outside axisymmetric potential field energy
8	equatorial symmetric poloidal energy
9	equatorial symmetric toroidal energy
10	equatorial symmetric and axisymmetric poloidal energy
11	equatorial symmetric and axisymmetric toroidal energy
12	outside potential field energy
13	outside potential field axisymmetric energy

```
>>> # To stack all the e_mag_oc.TAG files of the current directory
>>> ts = MagicTs(field='e_mag_oc', all=True)
>>> # To only read e_mag_oc.NOm2
>>> ts = MagicTs(field='e_mag_oc', tag='NOm2')
```

8.2.3 e_mag_ic.TAG

This file contains the magnetic energy of the inner core. The detailed calculations are done in the subroutine get_e_mag . This file contains the following informations:

No. of column	Contents
1	time
2	inner core poloidal energy
3	inner core toroidal energy
4	inner core axisymmetric poloidal energy
5	inner core axisymmetric toroidal energy

This file can be read using MagicTs with the following options:

```
>>> # To stack all the e_mag_ic.TAG files of the current directory
>>> ts = MagicTs(field='e_mag_ic', all=True)
>>> # To only read e_mag_ic.NOm2
>>> ts = MagicTs(field='e_mag_ic', tag='N0m2')
```

8.2.4 rot. TAG

This files contains the rotation of the inner core and the mantle. Output concerning the rotation of inner core and mantle. This file is written by the subroutine write_rot.

No. of column	Contents
1	time
2	Inner core rotation rate
3	Lorentz torque on inner core
4	viscous torque on inner core
5	mantle rotation rate
6	Lorentz torque on mantle
7	viscous torque on mantle

This file can be read using MagicTs with the following options:

```
>>> # To stack all the rot.TAG files of the current directory
>>> ts = MagicTs(field='rot', iplot=False, all=True)
```

8.2.5 dipole. TAG

This file contains several informations about the magnetic dipole. This file is written by the subroutine get_e_mag.

No. of	Contents
column	
1	time
2	tilt angle (colatitude in degrees) of the dipole
3	longitude (in degress) of dipole-pole
4	relative energy of the axisymmetric dipole
5	relative energy of the axisymmetric dipole at the CMB
6	energy of the axisymmetric dipole at the CMB normalized with the total energy up to
	spherical harmonic degree and order 11
7	relative energy of the total (axisymmetric and equatorial) dipole
8	relative energy of the total (axisymmetric and equatorial) dipole in the outer core
9	relative energy of the total dipole (axisymmetric and equatorial) at the CMB
10	energy of the total (axisymmetric and equatorial) dipole at the CMB
11	energy of the axisymmetric dipole at the CMB
12	energy of the dipole
13	energy of the axisymmetric dipole
14	magnetic energy at the CMB
15	magnetic energy up to spherical harmonic degree and order 11
16	ratio between equatorial dipole energy and equatorial poloidal energy
17	difference between energy at the CMB and equatorial symmetric energy at the CMB,
	normalized by energy at the CMB
18	difference between energy at the CMB and axisymmetric energy at the CMB,
	normalized by energy at the CMB
19	difference between total energy and equatorial symmetric part of the total energy,
	normalized by the total energy
20	difference between total energy and axisymmetric part of the total energy, normalized
	by the total energy

```
>>> # To stack all the dipole.TAG files of the current directory
>>> ts = MagicTs(field='dipole', all=True)
```

8.2.6 par. TAG

This files contains the outputs of several parameters that describe flow and magnetic fields (Reynolds number, Elsasser number, flow lengthscales, etc.). This file is written by the subroutine output.

No. of column	Contents
1	time
2	(magnetic) Reynolds number
3	Elsasser number
4	Local Rossby number Rol
5	Realtive geostrophic kinetic energy
6	Total dipolarity
7	CMB dipolarity
8	Axial flow length scale dlV
9	Flow length scale dmV
10	Flow length scale dpV
11	Flow length scale dzV
12	Dissipation length scale lvDiss
13	Dissipation length scale lbDiss
14	Magnetic length scale dlB
15	Magnetic length scale dlB
16	Elsasser number at CMB
17	Local Rol based on non-ax. flow
18	Convective flow length scale dlVc
19	CMB zonal flow at the equator

```
>>> # To stack all the par.TAG files of the current directory
>>> ts = MagicTs(field='par', all=True)
```

8.2.7 misc. TAG

This files contains informations about heat transfer (Nusselt number and temperature at both boundaries), as well as various additional informations (helicity, geostrophy, etc.). This file is written by the subroutine <code>outMisc</code>.

Note: The columns 6-9 and 17-20 are **only** calculated when $l_hel=.true$.. The columns 10-16 are only calculated when $l_par=.true$..

No. of column	Contents
1	time
2	Nusselt number at the inner core
3	CMB Nusselt number at the CMB
4	Entropy at the inner core
5	Entropy at the CMB
6	Helicity (northern hemisphere)
7	Helicity (southern hemisphere)
8	RMS helicity (northern hemisphere)
9	RMS helicity (southern hemisphere)
10	Relative geostrophic kinetic energy
11	Relative kinetic energy in the northern part of the TC
12	Relative kinetic energy in the southern part of the TC
13	Kinetic energy
14	North/South correlation of Vz, outside the TC
15	North/South correlation of vorticity outside the TC
16	North/South correlation of helicity outside the TC

```
>>> # To stack all the misc.TAG files of the current directory
>>> ts = MagicTs(field='misc', all=True)
```

8.3 Additional optional time-series outputs

8.3.1 AM. TAG

Note: This file is **only** written when $l_AM = .true$.

This file contains the time series of the angular momentum of the inner core, the outer core and the mantle. This file is written by the subroutine write_rot.

No. of column	Contents
1	time
2	angular momentum of the outer core
3	angular momentum of the inner core
4	angular momentum of the mantle
5	total angular momentum
6	relative in angular momentum, per time step
7	total kinetic angular momentum
8	relative change in kinetic energy, per time step
9	kinetic angular momentum of the inner core
10	kinetic angular momentum of the outer core
11	kinetic angular momentum of the mantle

This file can be read using MagicTs with the following options:

```
>>> # To stack all the AM.TAG files of the current directory
>>> ts = MagicTs(field='AM', all=True)
```

8.3.2 power. TAG

Note: This file is **only** written when $l_power=.true$.

This file contains the power budget diagnostic. This file is computed by the subroutine get_power.

No. of column	Contents
1	time
2	Buoyancy power: $Ra g(r) \langle u_r T' \rangle_s$
3	Viscous power at the inner boundary (ICB)
4	Viscous power at the outer boundary (CMB)
5	Viscous dissipation: $\langle (\nabla \times u)^2 \rangle_s$
6	Ohmic dissipation: $\langle (\nabla \times B)^2 \rangle_s$
7	Total power at the CMB (viscous + Lorentz)
8	Total power at the ICB (viscous + Lorentz)
9	Total power
10	Time variation of total power

```
>>> # To stack the files that match the pattern ``power.N0m2*``
>>> ts = MagicTs(field='power', tags='N0m2*')
```

8.3.3 dtE.TAG

Note: This file is **only** written when $l_power=.true$.

This file contains the time-derivatives of the total energy. It allows to accurately monitor how the total energy varies with time. This file is generated by the subroutine *output*.

No. of column	Contents
1	time
2	time-derivative of the total energy $\partial E/\partial t$
3	integrated time variation of the total energy
4	relative time variation of the total energy

8.3.4 u_square.TAG

Note: This file is **only** written in an elastic models, i.e. either when *strat/=0* or when *interior_model/="None"*

This file contains the square velocity of the outer core. It is actually very similar to the $e_kin.TAG$ file, except that the density background $\tilde{\rho}$ is removed:

$$\mathcal{U} = \frac{1}{2} \int_{V} u^{2} \, dV = \mathcal{U}_{pol} + \mathcal{U}_{tor}$$

$$= \frac{1}{2} \sum_{\ell,m} \ell(\ell+1) \int_{r_{i}}^{r_{o}} \frac{1}{\tilde{\rho}^{2}} \left[\frac{\ell(\ell+1)}{r^{2}} |W_{\ell m}|^{2} + \left| \frac{dW_{\ell m}}{dr} \right|^{2} \right] dr$$

$$+ \frac{1}{2} \sum_{\ell,m} \ell(\ell+1) \int_{r_{i}}^{r_{o}} \frac{1}{\tilde{\rho}^{2}} |Z_{\ell m}|^{2} dr$$

The detailed calculations are done in the subroutine get_u_square . This file contains the following informations:

No. of columns	Contents
1	time
2	poloidal part \mathcal{U}_{pol}
3	toroidal part \mathcal{U}_{pol}
4	axisymmetric contribution to the poloidal part
5	axisymmetric contribution to the toroidal part
6	Rossby number: $Ro = E\sqrt{\frac{2U}{V}}$
7	Magnetic Reynolds number: $Rm = Pm \sqrt{\frac{2\mathcal{U}}{V}}$
8	local Rossby number: $Ro_l = Ro \frac{d}{l}$
9	average flow length scale: l
10	local Rossby number based on the non-axisymmetric components of the flow
11	average flow length scale based on the non-axisymmetric components of the flow

```
>>> # To stack all the u_square.TAG files of the current directory
>>> ts = MagicTs(field='u_square', all=True)
```

8.3.5 drift[V|B][D|Q].TAG

Note: These files are **only** written when $l_drift = .true$.

These files store spherical harmonic coefficients of the toroidal (poloidal) potential of the flow (magnetic) field, only for $\ell=m$ or $\ell=m+1$ depending on the symmetry - D for ${\bf D}$ ipolar and Q for ${\bf Q}$ uadrupolar. The coefficients are stored at different three different radial levels - n_r1, nr_2, n_r3 for the velocity and two different radial levels - n_r1 and n_r2 - for the magnetic field.

The symmetries can be summarized below:

Field	Dipolar	Quadrupolar
Velocity	$\ell = m$	$\ell = m + 1$
Magnetic	$\ell = m + 1$	$\ell = m$

 $\ell+m=$ even for toroidal potential refers to an equatorially antisymmetric field (Dipolar), while the same for a poloidal potential is associated with an equatorially symmetric field (Quadrupolar). The sense is opposite when $\ell+m=$ odd. This is the reason for the choice of selecting these specific coefficients.

The columns of the files look like follows:

For the flow field:

- $n_r1 = (1/3) * n_r_max-1$
- $n_r2 = (2/3) * n_r_max-1$
- $n_r3 = n_r_{max-1}$

Column no.	DriftVD.TAG	DriftVQ.TAG
1	Time	Time
2	z (minc, minc) at n_r1	$z (minc+1, minc)$ at n_r1
3	z (2*minc, 2*minc) at n_r1	z (2*minc+1, 2*minc) at n_r1
4	z (3*minc, 3*minc) at n_r1	z (3*minc+1, 3*minc) at n_r1
5	z (4*minc, 4*minc) at n_r1	z (4*minc+1, 4*minc) at n_r1
6	z (minc, minc) at n_r2	z (minc+1, minc) at n_r2
7	z (2*minc, 2*minc) at n_r2	z (2*minc+1, 2*minc) at n_r2
8	z (3*minc, 3*minc) at n_r2	z (3*minc+1, 3*minc) at n_r2
9	z (4*minc, 4*minc) at n_r2	z (4*minc+1, 4*minc) at n_r2
10	z (minc, minc) at n_r3	z (minc+1, minc) at n_r3
11	z (2*minc, 2*minc) at n_r3	z (2*minc+1, 2*minc) at n_r3
12	z (3*minc, 3*minc) at n_r3	z (3*minc+1, 3*minc) at n_r3
13	z (4*minc, 4*minc) at n_r3	z (4*minc+1, 4*minc) at n_r3

For the magnetic field:

- $n_r1 = n_r ICB$
- $n_r^2 = n_r^{CMB}$

Column no.	DriftBD.TAG	DriftBQ.TAG
1	Time	Time
2	b (minc+1, minc) at n_r1	b (minc, minc) at n_r1
3	b (2*minc+1, 2*minc) at n_r1	b (2*minc, 2*minc) at n_r1
4	b (3*minc+1, 3*minc) at n_r1	<i>b</i> (3*minc, 3*minc) at n_r1
5	b (4*minc+1, 4*minc) at n_r1	b (4*minc, 4*minc) at n_r1
6	b (minc+1, minc) at n_r2	b (minc, minc) at n_r2
7	b (2*minc+1, 2*minc) at n_r2	b (2*minc, 2*minc) at n_r2
8	b (3*minc+1, 3*minc) at n_r2	<i>b</i> (3*minc, 3*minc) at n_r2
9	b (4*minc+1, 4*minc) at n_r2	b (4*minc, 4*minc) at n_r2

Analysis of these files can give you information about the drift frequency of the solution and it's symmetry.

8.3.6 iner[P|T].TAG

Note: These files are **only** written when $l_iner=.true$. and minc = 1.

These files contain time series of spherical harmonic coefficients upto degree, $\ell=6$ at a radius $r=(r_{cmb}-r_{icb})/2$. The inerp.TAG contains coefficients of the poloidal potential while the inerp.TAG contains coefficients of the toroidal potential. These files are written by the subroutine $write_rot$. The oscillations of these coefficients can be analysed to look for inertial modes. The columns of the inerp.TAG look like follows:

No. of column	Coefficient
1	$w(\ell=1, m=1)$
2	$w(\ell=2, m=1)$
3	$w(\ell=2, m=2)$
4	$w(\ell=3, m=1)$
20	$w(\ell = 6, m = 5)$
21	$w(\ell = 6, m = 6)$

where $w(\ell, m)$ is the poloidal potential with degree ℓ and order m.

The columns of the inerT.TAG follow the following structure:

No. of column	Coefficient
1	$z(\ell=1, m=1)$
2	$z(\ell=2, m=1)$
3	$z(\ell=2, m=2)$
4	$z(\ell=3, m=1)$
20	$z(\ell=6, m=5)$
21	$z(\ell=6, m=6)$

where $z(\ell, m)$ is the toroidal potential with degree ℓ and order m.

8.3.7 SR[IC|MA].TAG

Note: These files are **only** written for nRotIc=-1 (for SRIC.TAG) or nRotMa=-1 (for SRMA.TAG). In other words, these outputs are produced **only** when one of the boundaries is made to rotate at a prescribed rotation rate.

These files contain information about power due to torque from viscous and Lorentz forces at the inner core boundary (SRIC.TAG) or core mantle boundary (SRMA.TAG). The columns look like follows:

No. of column	Contents
1	Time
2	$\Omega_{IC} \Omega_{MA}$
3	Total power = Lorentz + Viscous
4	Viscous power
5	Lorentz force power

8.3.8 dtVrms.TAG

Note: This file is **only** written when $l_RMS=.true$.

This files contains the RMS force balance of the Navier Stokes equation. This file is written by the subroutine dt Vrms.

No. of column	Contents
1	time
2	Flow changes: inertia-advection
3	Coriolis force
4	Lorentz force
5	Advection term
6	Diffusion term
7	Buoyancy term
8	Pressure gradient term
9	Sum of force terms: geostrophic balance
10	Sum of force terms: magnetostrophic balance
11	Sum of force terms: Archemidian balance
12	Sum of force terms: Lorentz/Coriolis
13	Sum of force terms: Pressure/Lorentz
14	Sum of force terms: Coriolis/Inertia/Archimedean

This file can be read using MagicTs with the following options:

```
>>> # To stack all the dtVrms.TAG files of the current directory
>>> ts = MagicTs(field='dtVrms', all=True)
```

8.3.9 dtBrms.TAG

Note: This file is **only** written when $l_RMS = .true$.

This files contains the RMS terms that enter the induction equation. This file is written by the subroutine dtBrms.

No. of column	Contents
1	time
2	Changes in magnetic field (poloidal)
3	Changes in magnetic field (toroidal)
4	Poloidal induction term
5	Toroidal induction term
8	Poloidal diffusion term
9	Toroidal diffusion term
10	Omega effect / toroidal induction term
11	Omega effect
12	Production of the dipole field
13	Production of the axisymmetric dipole field

```
>>> # To stack all the dtBrms.TAG files of the current directory
>>> ts = MagicTs(field='dtBrms', all=True)
```

8.3.10 perpPar.TAG

Note: This file is **only** written when $l_perpPar=.true$.

This file contains several time series that decompose the kinetic energy into components parallel and perpendicular to the rotation axis. This file is calculated by the subroutine <code>outPerpPar</code>.

No. of column	Contents
1	radial level
2	Total kinetic energy perpendicular to the rotation axis: $\frac{1}{2}\langle u_s^2 + u_\phi^2 \rangle_V$
3	Total kinetic energy parallel to the rotation axis: $\frac{1}{2}\langle u_z^2\rangle_V$
4	Axisymmetric kinetic energy perpendicular to the rotation axis
5	Axisymmetric kinetic energy parallel to the rotation axis

This file can be read using MagicTs with the following options:

```
>>> # To stack all the perpPar.TAG files of the current directory
>>> ts = MagicTs(field='perpPar', all=True)
```

8.4 Time-averaged radial profiles

8.4.1 eKinR.TAG

This file contains the time and horizontally averaged outer core kinetic energy along the radius. This file is calculated by the subroutine get_e_kin .

No. of	Contents
column	
1	radial level
2	time and horizontally averaged poloidal energy
3	time and horizontally averaged axisymmetric poloidal energy
4	time and horizontally averaged toroidal energy
5	time and horizontally averaged axisymmetric toroidal energy
6	time and horizontally averaged poloidal energy, normalized by surface area at this
	radial level
7	time and horizontally averaged axisymmetric poloidal energy, normalized by surface
	area at this radial level
8	time and horizontally averaged toroidal energy, normalized by surface area at this
	radial level
9	time and horizontally averaged axisymmetric toroidal energy, normalized by surface
	area at this radial level

```
>>> rad = MagicRadial(field='eKinR')
```

8.4.2 eMagR.TAG

This file contains the time and horizontally averaged outer core magnetic energy along the radius. This file is calculated by the subroutine get_e_mag .

No. of	Contents
column	
1	radial level
2	time and horizontally averaged poloidal energy
3	time and horizontally averaged axisymmetric poloidal energy
4	time and horizontally averaged toroidal energy
5	time and horizontally averaged axisymmetric toroidal energy
6	time and horizontally averaged poloidal energy, normalized by surface area at this
	radial level
7	time and horizontally averaged axisymmetric poloidal energy, normalized by surface
	area at this radial level
8	time and horizontally averaged toroidal energy, normalized by surface area at this
	radial level
9	time and horizontally averaged axisymmetric toroidal energy, normalized by surface
	area at this radial level
10	ratio between time-averaged dipole energy and time-averaged total energy

This file can be read using MagicRadial with the following options:

```
>>> rad = MagicRadial(field='eMagR')
```

8.4.3 parR.TAG

This file contains several time and horizontally averaged flow properties (magnetic Reynolds number, Rossby number, etc.). This file is calculated by the subroutine outPar.

No. of	Contents
column	
1	radial level
2	Magnetic Reynolds number
3	Local Rossby number (based on the mass-weighted velocity)
4	Local Rossby number (based on the RMS velocity)
5	Local flow length-scale (based on the mass-weighted velocity)
6	Local flow length-scale based on the non-axisymmetric flow components (based on
	the mass-weighted velocity)
7	Local flow length-scale (based on the RMS velocity)
8	Local flow length-scale based on the non-axisymmetric flow components (based on
	the RMS velocity)

```
>>> rad = MagicRadial(field='parR')
```

8.4.4 powerR.TAG

Note: This file is **only** written when $l_power=.true$.

This file contains the time and horizontally averaged power input (Buoyancy power) and outputs (viscous and Ohmic heating). This file is calculated by the subroutine get_power .

No. of column	Contents
1	radial level
2	Buoyancy power: $Rag(r) \langle u_r T' \rangle_s$
3	Viscous dissipation: $\langle (\nabla \times u)^2 \rangle_s$
4	Ohmic dissipation: $\langle (\nabla \times B)^2 \rangle_s$

This file can be read using MagicRadial with the following options:

```
>>> rad = MagicRadial(field='powerR')
```

8.4.5 fluxesR.TAG

Note: This file is **only** written when *l_fluxProfs=.true*.

This file contains the time and horizontally averaged heat flux carried out by several physical processes: conductive flux, convective flux, kinetic flux, viscous flux, Poynting flux and resistive flux. This file is calculated by the subroutine outPar.

No. of column	Contents
1	radial level
2	conductive flux:
	${\cal F}_{cond} = -rac{1}{Pr}\kappa ilde{ ho} ilde{T}rac{\partial \langle s angle_s}{\partial r}$
3	convective flux:
	$\mathcal{F}_{conv} = \tilde{\rho}\tilde{T}\langle s u_r \rangle_s + \frac{Pr Di}{E Ra} \langle p u_r \rangle_s$
4	kinetic flux:
	$\mathcal{F}_{kin} = \frac{1}{2} \frac{Pr Di}{Ra} \langle u_r(\tilde{\rho}u^2) \rangle_s$
5	viscous flux:
	$\mathcal{F}_{visc} = -rac{PrDi}{Ra}\langle m{u}\cdot S angle_s$
6	Poynting flux:
	${\cal F}_{poyn} = -rac{PrDi}{RaEPm} \langle (m{u} imesm{B}) imesm{B} angle_s$
7	resistive flux:
	$\mathcal{F}_{poyn} = rac{PrDi}{RaEPm^2} \langle (oldsymbol{ abla} imes oldsymbol{B}) imes oldsymbol{B} angle_s$

```
>>> rad = MagicRadial(field='fluxesR')
```

8.4.6 bLayersR.TAG

Note: This file is **only** written when $l_viscBcCalc=.true$.

This file contains several time and horizontally averaged profiles that can be further used to determine thermal and viscous boundary layers: entropy (or temperature), entropy variance, horizontal velocity, radial derivative of the horizontal velocity, thermal dissipation rate. This file is calculated by the subroutine <code>outPar</code>.

No. of column	Contents
1	radial level
2	entropy: $\langle s \rangle_s$
3	entropy variance:
	$\sqrt{\langle (s - \langle s \rangle_s)^2 \rangle_s}$
4	horizontal velocity:
	$u_h = \left\langle \sqrt{u_\theta^2 + u_\phi^2} \right\rangle_s$
5	radial derivative of the horizontal velocity:
	$\partial u_h/\partial r$
6	thermal dissipation rate:
	$\epsilon_T = \langle (\nabla T)^2 \rangle_s$

```
>>> rad = MagicRadial(field='bLayersR')
```

Additional analyses of the boundary layers can then be carried out using BLayers:

```
>>> bl = BLayers(iplot=True)
```

8.4.7 perpParR.TAG

Note: This file is **only** written when *l_perpPar=.true*.

This file contains several time and horizontally averaged profiles that decompose the kinetic energy into components parallel and perpendicular to the rotation axis. This file is calculated by the subroutine <code>outPerpPar</code>.

No. of column	Contents
1	radial level
2	Total kinetic energy perpendicular to the rotation axis:
	$\frac{1}{2}\langle u_s^2 + u_\phi^2 \rangle_s$
3	Total kinetic energy parallel to the rotation axis:
	$rac{1}{2}\langle u_z^2 angle_s$
4	Axisymmetric kinetic energy perpendicular to the rotation axis
5	Axisymmetric kinetic energy parallel to the rotation axis

```
>>> rad = MagicRadial(field='perpParR')
```

8.5 Transport properties of the reference state

These files define the radial transport properties of the reference state. These arrays are calculated in the subroutines radial and transportProperties. The output files are written in the subroutine preCalc.

8.5.1 anel. TAG

Note: This output is only calculated when an anelastic model is run, that is when $l_anel=.true$. or $l_anelastic_liquid=.true$.

This file contains the radial profiles of the reference state (density, temperature, gravity, etc.).

No. of column	Contents
1	radial level: r
2	temperature: $\tilde{T}(r)$
3	density: $\tilde{\rho}(r)$
4	radial derivative of the density: $\beta = d \ln \tilde{\rho}/dr$
5	radial derivative of β : $d\beta/dr$
6	gravity: $g(r)$
7	entropy gradient: ds_0/dr
8	thermal diffusion operator: $\nabla \cdot (K(r)\tilde{T}(r)\nabla s_0)$

This file can be read using MagicRadial with the following options:

```
>>> rad = MagicRadial(field='anel')
>>> # print radius and density
>>> print(rad.radius, rad.rho0)
```

8.5.2 varCond. TAG

Note: This output is only calculated when the electrical conductivity varies with radius, i.e. when $nVarCond \neq 0$

This file contains the radial profiles of the electrical conductivity, the electrical diffusivity and its radial derivative.

No. of column	Contents
1	radial level: r
2	electrical conductivity: $\sigma(r)$
3	electrical diffusivity: $\lambda(r) = 1/\sigma(r)$
4	radial derivative of the electrical diffusivity: $d \ln \lambda / dr$

This file can be read using MagicRadial with the following options:

```
>>> rad = MagicRadial(field='varCond')
>>> print(rad.conduc) # Electrical conductivity
```

8.5.3 varDiff.TAG

Note: This output is only calculated when the thermal diffusivity varies with radius, i.e. when nVarDiff = 0

This file contains the radial profiles of the thermal conductivity, the thermal diffusivity and its radial derivative.

No. of column	Contents
1	radial level: r
2	thermal conductivity: $K(r)$
3	thermal diffusivity: $\kappa(r) = K(r)/\tilde{\rho}(r)$
4	radial derivative of the electrical diffusivity: $d \ln \kappa / dr$
5	Prandtl number: $Pr(r) = \nu(r)/\kappa(r)$

```
>>> rad = MagicRadial(field='varDiff')
>>> print(rad.kappa) # Thermal diffusivity
```

8.5.4 varVisc.TAG

Note: This output is only calculated when the kinematic viscosity varies with radius, i.e. when $nVarVisc \neq 0$

This file contains the radial profiles of the dynamic viscosity, the kinematic viscosity and its radial derivative.

No. of column	Contents
1	radial level: r
2	dynamic viscosity: $\mu(r)$
3	kinetmatic viscosity: $\nu(r) = \mu(r)/\tilde{\rho}(r)$
4	radial derivative of the kinematic viscosity: $d \ln \nu / dr$
5	Prandtl number: $Pr(r) = \nu(r)/\kappa(r)$
6	magnetic Prandtl number $Pm(r) = \nu(r)/\lambda(r)$

This file can be read using MagicRadial with the following options:

```
>>> rad = MagicRadial(field='varVisc')
>>> # print kinematic viscosity and Ekman
>>> print(rad.kinVisc, rad.ekman)
```

8.6 Nonlinear mapping of the Chebyshev grid

8.6.1 rNM. TAG

Note: This file is only written when $l_newmap = .true$..

This file contains the profile of the radial mapping and its derivatives:

No. of column	Contents
1	Grid point index
2	Radius of a grid point
3	First derivative of the mapping at a grid point
4	Second derivative of the mapping at a grid point
5	Third derivative of the mapping at a grid point

8.7 Spectra

8.7.1 kin_spec_#.TAG

This file contains the kinetic energy spectra. This file is written by the subroutine spectrum.

No. of column	Contents
1	degree / order
2	Poloidal kinetic energy versus degree
3	Poloidal kinetic energy versus order
4	Toroidal kinetic energy versus degree
5	Toroidal kinetic energy versus order

This file can be read using MagicSpectrum with the following options:

```
>>> sp = MagicSpectrum(field='ekin')
```

8.7.2 mag_spec_#.TAG

This file contains the magnetic energy spectra. This file is written by the subroutine spectrum.

No. of column	Contents
1	degree / order
2	Poloidal magnetic energy in the outer core versus degree
3	Poloidal magnetic energy in the outer core versus order
4	Toroidal magnetic energy in the outer core versus degree
5	Toroidal magnetic energy in the outer core versus order
6	Poloidal magnetic energy in the inner core versus degree
7	Poloidal magnetic energy in the inner core versus order
8	Toroidal magnetic energy in the inner core versus degree
9	Toroidal magnetic energy in the inner core versus order
10	Poloidal magnetic energy at the CMB versus degree
11	Poloidal magnetic energy at the CMB versus order
12	Poloidal magnetic energy at the CMB

This file can be read using MagicSpectrum with the following options:

```
>>> sp = MagicSpectrum(field='emag')
```

8.7.3 u2_spec_#.TAG

Note: This file is **only** written in an elastic models, i.e. either when *strat/=0* or when *interior_model/="None"*

This file contains the spectra of the square velocity. This file is written by the subroutine spectrum.

No. of column	Contents
1	degree / order
2	Poloidal contribution per degree in the outer core
3	Poloidal contribution per order in the outer core
4	Toroidal contribution per degree in the outer core
5	Toroidal contribution per order in the outer core

```
>>> # To read the file ``u2_spec_1.test``:
>>> sp = MagicSpectrum(field='u2', ispec=1, tag='test')
```

8.7.4 T_spec_#.TAG

This file contains the temperature/entropy spectra. It is written by the subroutine <code>spectrum_temp</code>.

No. of column	Contents
1	degree / order
2	RMS temperature/entropy versus degree
3	RMS temperature/entropy versus order
4	RMS temperature/entropy at the ICB versus degree
5	RMS temperature/entropy at the ICB versus order
6	RMS radial derivative of temperature/entropy at the ICB versus degree
7	RMS radial derivative of temperature/entropy at the ICB versus order

8.7.5 2D spectra [2D_kin|mag|u2_spec]_#.TAG

Those files contain 2-D spectra in the (r,ℓ) and in the (r,m) planes. In other words, the poloidal and toroidal energies versus degree ℓ or versus order m are computed for all radii. There are three kinds of those files that correspond to the aforementioned spectra, namely $2D_kin_spec_\#.TAG$, $2D_mag_spec_\#.TAG$ and $2D_u2_spec_\#.TAG$. The calculations are done in the subroutine spectrum. The structure of the output files are same for these three outputs. They are stored as fortran unformatted files.

Unformatted files are not directly human readable, and are used to store binary data and move it around without changing the internal representation. In fortran, the open, read and write operations for these files are performed as follows:

```
open(unit=4, file='test', form='unformatted')
read(unit=4) readVar
write(unit=n_out, iostat=ios) writeVar !Unformatted write
```

The structure of the 2D spectra files are as follows:

8.7. Spectra 93

Those files can be read using the python class <code>MagicSpectrum2D</code> with the following options:

```
>>> # Read the file 2D_mag_spec_3.ext
>>> sp = MagicRSpec(tag='ext', field=e_mag', ispec=3)
>>> # Print e_pol_1 and e_tor_m
>>> print(sp.e_pol_1, sp.e_tor_m)
```

8.7.6 kin_spec_ave.TAG

Note: This file is **only** written when $l_average = .true$.

This file contains the time-average kinetic energy spectra as well as squared quantities to allow a possible further reconstruction of the standard deviation. This file is written by the subroutine <code>spectrum_average</code>.

No. of column	Contents
1	degree / order
2	Time-averaged poloidal kinetic energy versus degree
3	Time-averaged poloidal kinetic energy versus order
4	Time-averaged toroidal kinetic energy versus degree
5	Time-averaged toroidal kinetic energy versus order
6	Time-averaged poloidal kinetic energy square versus degree
7	Time-averaged poloidal kinetic energy square versus order
8	Time-averaged toroidal kinetic energy square versus degree
9	Time-averaged toroidal kinetic energy square versus order

```
>>> # To read the file ``kin_spec_ave.test``:
>>> sp = MagicSpectrum(field='kin', ave=True, tag='test')
```

8.7.7 mag_spec_ave.TAG

Note: This file is **only** written when $l_average = .true$. and the run is magnetic

This file contains the time-average magnetic energy spectra. This file is written by the subroutine <code>spectrum_average</code>.

No. of	Contents		
column			
1	degree / order		
2	Time-averaged poloidal magnetic energy in the outer core versus degree		
3	Time-averaged poloidal magnetic energy in the outer core versus order		
4	Time-averaged toroidal magnetic energy in the outer core versus degree		
5	Time-averaged toroidal magnetic energy in the outer core versus order		
6	Time-averaged poloidal magnetic energy at the CMB versus degree		
7	Time-averaged poloidal magnetic energy at the CMB versus order		
8	Time-averaged poloidal magnetic energy in the outer core + its standard deviation versus degree		
9	Time-averaged poloidal magnetic energy in the outer core - its standard deviation versus degree		
10	Time-averaged poloidal magnetic energy in the outer core + its standard deviation versus order		
11	Time-averaged poloidal magnetic energy in the outer core - its standard deviation versus order		
12	Time-averaged toroidal magnetic energy in the outer core + its standard deviation versus degree		
13	Time-averaged toroidal magnetic energy in the outer core - its standard deviation versus degree		
14	Time-averaged toroidal magnetic energy in the outer core + its standard deviation versus order		
15	Time-averaged toroidal magnetic energy in the outer core - its standard deviation versus order		
16	Time-averaged poloidal magnetic energy at the CMB + its standard deviation versus order		
17	Time-averaged poloidal magnetic energy at the CMB - its standard deviation versus order		

This file can be read using MagicSpectrum with the following options:

```
>>> # To read the file ``mag_spec_ave.test``:
>>> sp = MagicSpectrum(field='mag', ave=True, tag='test')
```

8.7.8 T_spec_ave.TAG

Note: This file is **only** written when $l_average = .true$.

This file contains the time-averaged temperature/entropy spectra and their standard deviation. It is written by the subroutine <code>spectrum_temp_average</code>.

8.7. Spectra 95

No. of column	Contents
1	Spherical harmonic degree
2	Time-averaged RMS temperature/entropy versus degree
3	Standard deviation of the temperature/entropy versus degree
4	Time-averaged RMS temperature/entropy at the ICB versus degree
5	Standard deviation of the temperature/entropy at the ICB versus degree
6	Time-averaged temperature/entropy gradient at the ICB versus degree
7	Standard deviation of the temperature/entropy gradient at the ICB versus degree

8.8 Graphic files G_#.TAG and G_ave.TAG

These are fortran unformatted files containing 3D data (in the form vector_array(phi, theta, r)) which can be used to visualize the solution. They are written after a fixed number of time steps as specified by the user in the *Output Control namelist* using the parameters listed in the section on *output of graphic files*. In case $l_average$ is set to .true., then an average graphic file, named $G_ave.TAG$, containing time averaged values of 3D data, is also written at the end of the simulation.

These files are written in chunks of latitude for one radial level at a time by the subroutine <code>graphOut</code> or by <code>graphOut_mpi</code> depending on whether <code>USE_MPI</code> is set to <code>Yes</code> or <code>No</code> in the Makefile. The structure of the file looks like below:

```
!----
! Line 1
1_____
version
                     !Graphout_version_9 (using MPI without pressure)
                     !Graphout_version_10 (using MPI, with pressure)
                     !Graphout_version_7 (without MPI, without pressure)
                     !Graphout_version_8 (without MPI, with pressure)
1_____
! Line 2
1_____
runid
! Line 3
time, n_r_max, n_theta_max, n_phi_tot,
                                            !time = Time of writing
n_r_ic_max-1, minc, nThetasBs,
                                            ! (Simulation time),
ra, ek, pr, prmag,
                                             !nThetasBs = no. of
                                             !theta blocks
radratio, sigma_ratio
! Line 4
theta(1:n_theta_max)
!Graphout_version_9/Graphout_version_10
```

```
! These versions are written when the code uses MPI (USE_MPI=yes). Parallel
! chunks of fields are written for different radial levels. Chunks in theta
! are written in parallel using OpenMP
! Data
1_____
! Block N
1_____
!-----
! Line 4 + N
n_r-1, r(n_r)/r(1), n_theta_start, n_theta_stop !Radial index, radius in terms
                                             !of r_cmb, start and stop of
                                             !the theta block
!----
! Line 4 + (N+1)
1_____
sr(1:n_phi_tot, n_theta_start:n_theta_stop, n_r) !Entropy
! Line 4 + (N+2)
!----
vr(1:n_phi_tot, n_theta_start:n_theta_stop, n_r) !Radial velocity
! Line 4 + (N+3)
1_____
vt(1:n_phi_tot, n_theta_start:n_theta_stop, n_r) !Theta component of velocity
! Line 4 + (N+4)
!-----
vp(1:n_phi_tot, n_theta_start:n_theta_stop, n_r) !Zonal (phi component) of
                                             !velocity
if (l_PressGraph):
                                             !If pressure is stored
  1-----
  ! Line 4 + (N+5)
 1-----
 pr(1:n_phi_tot, n_theta_start:n_theta_stop, n_r) !pressure
if (l_mag):
                                               !For a magnetic run
```

```
! Line 4 + (N+5/6)
 br(1:n_phi_tot, n_theta_start:n_theta_stop, n_r) !Radial magnetic field
  ! Line 4 + (N+6/7)
 bt(1:n_phi_tot, n_theta_start:n_theta_stop, n_r) !Theta component of
                                              !magnetic field
  ! Line 4 + (N+7/8)
 bp(1:n_phi_tot, n_theta_start:n_theta_stop, n_r) !Zonal (phi component)
                                              !of magnetic field
!Graphout_version_7/Graphout_version_8
!This version is written when the code does not use MPI (USE_MPI=no).
!Chunks in theta are written in parallel with OpenMP.
! Data
1_____
! Block N
1_____
! Line 4 + (N+1)
1_____
n_r-1, r(n_r)/r(1), n_theta_start, n_theta_stop
! Each of the following data point is written in a new line
!-----
! Entropy
sr(2,n_theta_start,n_r)
                             !n_phi = 2, n_theta = n_theta_start, n_r
sr(n_phi_tot, n_theta_start, n_r)   !n_phi = n_phi_tot, n_theta = n_theta_start, n_r
                             !n_phi = 1, n_theta = n_theta_start+1, n_r
sr(1,n_theta_start+1,n_r)
sr(n_phi_tot,n_theta_start+1,n_r)
sr(1, n_theta_stop, n_r)
                              !n_phi = 1, n_theta = n_theta_stop, n_r
```

```
!n_phi = 2, n_theta = n_theta_stop, n_r
sr(2,n_theta_stop,n_r)
                              !n_phi = n_phi_tot, n_theta = n_theta_stop, n_r
sr(n_phi_tot,n_theta_stop,n_r)
! Radial velocity
vr(1,n_theta_start,n_r)
                              !n_phi = 1, n_theta = n_theta_start, n_r
vr(2,n_theta_start,n_r)
                              !n_phi = 2, n_theta = n_theta_start, n_r
vr(n_phi_tot,n_theta_start,n_r) !n_phi = n_phi_tot, n_theta = n_theta_start, n_r
vr(1, n_theta_start+1, n_r)
                              !n_phi = 1, n_theta = n_theta_start+1, n_r
vr(n_phi_tot,n_theta_start+1,n_r)
vr(1,n_theta_stop,n_r)
                               !n_phi = 1, n_theta = n_theta_stop, n_r
vr(2, n_theta_stop, n_r)
                              !n_phi = 2, n_theta = n_theta_stop, n_r
. . .
vr(n_phi_tot,n_theta_stop,n_r)
                              !n_phi = n_phi_tot, n_theta = n_theta_stop, n_r
! Theta component of velocity
vt(1,n_theta_start,n_r)
                              !n_phi = 1, n_theta = n_theta_start, n_r
                              !n_phi = 2, n_theta = n_theta_start, n_r
vt(2,n_theta_start,n_r)
vt(n_phi_tot, n_theta_start, n_r)   !n_phi = n_phi_tot, n_theta = n_theta_start, n_r
                              !n_phi = 1, n_theta = n_theta_start+1, n_r
vt(1, n_theta_start+1, n_r)
vt(n_phi_tot,n_theta_start+1,n_r)
                              !n_phi = 1, n_theta = n_theta_stop, n_r
vt(1,n_theta_stop,n_r)
                              !n_phi = 2, n_theta = n_theta_stop, n_r
vt(2,n_theta_stop,n_r)
! Zonal (phi component) of velocity
vp(1,n_theta_start,n_r)
                             !n_phi = 1, n_theta = n_theta_start, n_r
vp(2,n_theta_start,n_r)
                              !n_phi = 2, n_theta = n_theta_start, n_r
. . .
vp(1,n_theta_start+1,n_r)
                              !n_phi = 1, n_theta = n_theta_start+1, n_r
vp(n_phi_tot,n_theta_start+1,n_r)
vp(1,n_theta_stop,n_r)
                              !n_phi = 1, n_theta = n_theta_stop, n_r
vp(2,n_theta_stop,n_r)
                              !n_phi = 2, n_theta = n_theta_stop, n_r
vp(n_phi_tot,n_theta_stop,n_r)
                              !n_phi = n_phi_tot, n_theta = n_theta_stop, n_r
if (l_PressGraph):
                              !If pressure is stored
```

```
I Pressure
1-----
pr(1,n_theta_start,n_r)
pr(2,n_theta_start,n_r)
                                  !n_phi = 1, n_theta = n_theta_start, n_r
                                  !n_phi = 2, n_theta = n_theta_start, n_r
. . .
pr(n_{phi_tot,n_theta_start,n_r)   !n_{phi} = n_{phi_tot,n_theta} = n_{theta_start,n_r}
                                 !n_phi = 1, n_theta = n_theta_start+1, n_r
pr(1,n_theta_start+1,n_r)
pr(n_phi_tot,n_theta_start+1,n_r)
pr(1,n_theta_stop,n_r)
                                  !n_phi = 1, n_theta = n_theta_stop, n_r
                                  !n_phi = 2, n_theta = n_theta_stop, n_r
pr(2,n_theta_stop,n_r)
pr(n_phi_tot,n_theta_stop,n_r)
                                  !n_phi = n_phi_tot, n_theta = n_theta_stop, n_r
if (l_mag):
                                  !Only if it is a magnetic case
! Radial magnetic field
br(1,n_theta_start,n_r)
                                  !n_phi = 1, n_theta = n_theta_start, n_r
                                  !n_phi = 2, n_theta = n_theta_start, n_r
br(2,n_theta_start,n_r)
br(n_phi_tot, n_theta_start, n_r) !n_phi = n_phi_tot, n_theta = n_theta_start, n_r
                                 !n_phi = 1, n_theta = n_theta_start+1, n_r
br(1,n_theta_start+1,n_r)
br(n_phi_tot,n_theta_start+1,n_r)
. . .
br(1,n_theta_stop,n_r)
                                  !n_phi = 1, n_theta = n_theta_stop, n_r
br(2,n_theta_stop,n_r)
                                  !n_phi = 2, n_theta = n_theta_stop, n_r
br(n_{phi}tot, n_{theta}stop, n_r) !n_{phi} = n_{phi}tot, n_{theta} = n_{theta}stop, n_r
! Theta component of magnetic field
bt(1,n_theta_start,n_r)
                                  !n_phi = 1, n_theta = n_theta_start, n_r
bt(2,n_theta_start,n_r)
                                  !n_phi = 2, n_theta = n_theta_start, n_r
 bt (n\_phi\_tot, n\_theta\_start, n\_r) \\ !n\_phi = n\_phi\_tot, n\_theta = n\_theta\_start, n\_r 
bt(1,n_theta_start+1,n_r)
                                 !n_phi = 1, n_theta = n_theta_start+1, n_r
bt (n_phi_tot, n_theta_start+1, n_r)
bt(1,n_theta_stop,n_r)
                                  !n_phi = 1, n_theta = n_theta_stop, n_r
                                  !n_phi = 2, n_theta = n_theta_stop, n_r
bt(2,n_theta_stop,n_r)
bt(n_phi_tot,n_theta_stop,n_r)    !n_phi = n_phi_tot, n_theta = n_theta_stop, n_r
! Zonal (phi component) of magnetic field
```

```
bp(1,n_theta_start,n_r)
                                  !n_phi = 1, n_theta = n_theta_start, n_r
                                  !n_phi = 2, n_theta = n_theta_start, n_r
bp(2,n_theta_start,n_r)
bp(n\_phi\_tot, n\_theta\_start, n\_r) \qquad !n\_phi = n\_phi\_tot, n\_theta = n\_theta\_start, n\_r
bp(1,n_theta_start+1,n_r)
                                   !n_phi = 1, n_theta = n_theta_start+1, n_r
bp(n_phi_tot,n_theta_start+1,n_r)
bp(1,n_theta_stop,n_r)
                                  !n_phi = 1, n_theta = n_theta_stop, n_r
                                  !n_phi = 2, n_theta = n_theta_stop, n_r
bp(2,n_theta_stop,n_r)
bp(n_phi_tot, n_theta_stop, n_r)   !n_phi = n_phi_tot, n_theta = n_theta_stop, n_r
!Subsequent blocks
!Block N+1 in both cases have data at the same radial level but the next
!theta chunk (n_theta_start + nThetaB, n_theta_stop + n_thetaB)
!After data for all the theta blocks have been written for one radial
!level, everything above is repeated for the next radial level
```

The graphic files can be read using the python class MagicGraph.

```
>>> G = MagicGraph(ivar = 1, tag='TAG')
```

They can be visualized using the Surf class:

```
>>> s = Surf(tag='TAG')
>>> # Surface map of radial velocity:
>>> s.surf(field = 'vr', r = 0.5, cmap = 'jet', levels = 50)
>>> s.slice(field = 'br', lon_0 = [0]) # Longitudinal Slice of radial magnetic field
>>> s.equat(field = 'entropy') # Equatorial slice of entropy
```

8.9 Movie files *_mov.TAG

Note: These files are written **only** when $l_movie = .true$. or when a finite number of movie frames are asked for using the input parameters described in the *standard inputs section* of the *output control namelist*.

These are unformatted fortran files containing time evolution of fields on different surfaces - constant radius, colatitude or azimuth or on the full 3D grid. The fields can be of various types like radial magnetic field or velocity, entropy, helicity etc. The type of field and the type of surface can be specified using a string that begins with the field name, followed by the surface type (or 'full 3D', when a 3D movie is desired). One such example is as follows:

```
l_movie = .true.,
n_movie_frames = 1000,
movie(1) = "B r r=0.5",
movie(2) = "V all 3D",
movie(3) = "Hel Eq"
```

The code does not interpret any whitespaces and is not case-sensitive so there's no difference between, say, B r cmb and bromb. For further details and a list of keywords for different fields and surfaces, please refer to the *movie* in the *output control namelist*.

These files are written by the subroutine write_movie_frame.

The movie files are suitably named to reflect the type of field and surface. Their names begin with the keyword for the type of movie asked for, followed by the type of surface, followed by the word 'mov'. Thus, a generic movie name looks like:

```
Keyword_SurType_mov.TAG
```

E.g. if one asks for the radial component of magnetic field on surface of CMB, the movie would be named as Br_CMB_mov.TAG.

When asks multiple movies for same surface types but different surface levels, the surfaces are numbered with integers. Thus, for the following namelist input,

```
l_movie = .true.,
n_movie_frames = 1000,
movie(1) = "B r r=0.5",
movie(2) = "V p r=0.5",
movie(3) = "V r r=0.8",
```

one would get the following movie files as output:

```
Br_R=C1_mov.TAG
Vp_R=C1_mov.TAG
Vr_R=C2_mov.TAG
```

The structure of a generic movie file is as follows:

```
! Line 1
1_____
version
                              !Movie version: 'JW_Movie_Version_2'
! Line 2
1----
n_type, n_surface,
                           !Type of movie,
const, n_fields
                             !Type of surface (r,theta,phi,CMB,Eq etc.)
! Line 3
1_____
n_movie_field_type(1:n_fields, n_movie) !Type of fields (velocity,
                                        !mag field, vorticity etc.)
!----
! Line 4
1_____
runid
!----
! Line 5
                        !Total number of
!radial grid points (including IC),
n_r_mov_tot, n_r_max,
n_theta_max, n_phi_max,
minc, ra, ek, pr, prmag,
                              !grid data, physical parameters
radratio, tScale
```

```
!----
! Line 6
!----
r_mov_tot(1:n_r_mov_tot)/r_cmb !All radii in terms of r_CMB
!----
! Line 7
1----
theta(1:n_theta_max) !All theta points
!----
! Line 8
!----
                            !All phi points
phi(1:n_phi_max)
! Frame N
/_____
! Line 8 + N
n_frame, t_movie(N), omega_ic, omega_ma, dipLat, dipLon, dipStr, dipStrGeo
1_____
! Line 8 + (N+1)
frame_data(1:n_fields,n_start:n_stop) !Desired field data on a
                                    !surface or 3D volume
                                    !n_start = start index of a field
                                    !n\_stop = last index of a field
!-----
! Frame N+1
1-----
!-----
! Line 8 + (N+2)
n_frame, t_movie(N+1), omega_ic, omega_ma, dipLat, dipLon, dipStr, dipStrGeo
!-----
! Line 8 + (N+3)
frame_data(1:n_fields,n_start:n_stop) !Desired field data on a
                                    !surface or 3D volume
                                    !n_start = start index of a field
                                    !n\_stop = last index of a field
```

The 2D movie files can be read and displayed using the python class Movie as follows:

```
>>> Movie() #Lists out available movie files to choose from
>>> M = Movie(file = 'Vr_R=C1_mov.TAG')
```

The 3D movie files can be read using the python class Movie3D:

```
>>> M = Movie3D(file = 'V_3D_mov.TAG')
```

8.10 Restart files rst_*.TAG

Note: These frequency of writing these files are determined by the standard inputs mentioned in the section on *restart files* in the *output control namelist*. If nothing is specified then, by default one restart file is written at the end of the run

Note: A restart file is read **only** when $l_start = .true$.

These are unformatted fortran files containing a snapshot of information about spectral coefficients and physical and grid parameters. As the name suggests, these files are used to 'restart' a run from a specific time. One such file is read by the code at the beginning and are used as initial conditions for the run. These are very useful for continuing a simulation for a long time on computing clusters where the time for a single run is limited.

The file to be read at the beginning is specified by the input parameter *start_file* which takes in a string providing path to the file.

These files are written by the subroutine *store*.

The following notations will be used for the coefficients of potentials (note that scalar fields like temperature and pressure do not have a poloidal/toroidal decomposition):

Field	Poloidal	Toroidal
Magnetic	b	aj
Velocity	W	Z
Temperature	S	
Pressure	р	

Time derivatives are denoted with a self-explanatory notation. e.g., about is the first derivative of b.

The word Last appended to a variable name denotes that the value is of the time-step previous to the one during which the file is being written. They are needed for the time-stepping schemes.

_ic with a variable name says that it belongs to the Inner Core.

```
! Line 1
!----
time*tScale, dt*tScale, ra, pr, prmag, ek, radratio, inform, n_r_max,
n_theta_max, n_phi_tot, minc, nalias, n_r_ic_max, sigma_ratio
if (l_heat):
                                 !Run involving heat transport
                                ! (Convection)
!----
! Line 2
  w,z,p,s
!----
! Line 3
   \verb|dsdtLast|, \verb|dwdtLast|, \verb|dzdtLast|, \verb|dpdtLast|
else:
!----
! Line 2
   w,z,p
!----
! Line 3
!-----
  dwdtLast, dzdtLast, dpdtLast
if (l_mag):
                                                !If magnetic run
1_____
! Line 4
 b, aj, dbdtLast, djdtLast
 if(l_mag .and. l_cond_ic):
                                                !If magnetic run
                                                !and conducting inner core
1-----
! Line 5
  b_ic, aj_ic, dbdt_icLast, djdt_icLast
```

8.11 Poloidal and toroidal potentials at given depths

These are fortran unformatted files which store time series of poloidal and toroidal coefficients of different fields (magnetic field, velocity and temperature) at specific depths.

In the following, time (j) is the time during the j^{th} time step, time (N) being the last step. real and imag denote real and imaginary parts, respectively, of spherical harmonic coefficients. Also, the following notations will be used for the coefficients of potentials (note that scalar fields like temperature do not have a poloidal/toroidal decomposition):

Field	Poloidal	Toroidal
Magnetic	b	aj
Velocity	W	Z
Temperature	S	

First and second derivatives are denoted with a differential notation. e.g. dw is the first derivative of w, while ddb is the second derivative of b.

8.11.1 B_coeff_cmb.TAG

Note: This file is **only** written when $l_cmb_field=.true$.

This file contains time series of spherical harmonic coefficients for the poloidal potential of the magnetic field at the outer boundary (CMB) up to a spherical harmonic degree given by l_max_cmb . The detailed calculations are done in the subroutine $write_Bcmb$. The contents of the file look as follows:

- Header The file header consists of the information: l_max_cmb, minc and the number of data points n_data.
- Data Each chunk of data after the header has the same pattern of time followed by a list of real and imaginary
 values of coefficients.

Thus, on a whole, the structure of the file looks like follows:

```
!------
! Line 1
!------

l_max_cmb, minc, n_data

!------

! Line j + 1
!--------
```

This file can be read using MagicCoeffCmb with the following options:

```
>>> # To stack the files B_cmb_coeff.testc to B_cmb_coeff.testf
>>> cmb = MagicCoeffCmb(tag='test[c-f]')
>>> # print Gauss coefficient for (\ell=10, m=3)
>>> print(cmb.glm[:, 10, 3])
```

8.11.2 Coefficients at desired radii

The following files [B|V|T]_coeff_r#.TAG save coefficients at specified depths and are written by the subroutine $write_coeff_r$. See the section on *CMB* and radial coefficients in the ouput control namelist for details of specifying depth, using n_r_step or n_r_array and desired maximum degree of output l_max_r . A separate file for each desired radius is written, numbered suitably as $[B|V|T]_coeff_r1.TAG$, $[B|V|T]_coeff_r2.TAG$ etc.

8.11.3 B coeff r#.TAG

Note: This file is **only** written when $l_r_{field} = .true.$

This file contains output of time series of the spherical harmonic coefficients of the poloidal and toroidal magnetic field potentials and the first and second derivatives of the poloidal potential coefficients in the order b, db, aj and ddb. The output is for a specific radius, r up to degree l_max_r .

- **Header** The file header consists of the information: l_max_r , minc, the number of data points n_data and the radius, r.
- **Data** Each chunk of data after the header contains the time at which the coefficients are stored, followed by the real and imaginary parts of: the poloidal coefficient b, it's first derivative db, the toroidal coefficient a j and the second derivative of the poloidal coefficient ddb.

The complete structure of the file looks like follows:

```
!------
! Line 1
!------
!------
l_max_r, minc, n_data, r
```

```
! Line j + 1
time(j),
real (b (l=1, m=0)), imag(b(l=1, m=0)),
real (b(1=2, m=0)), imag(b(1=2, m=0)),
real(b(l=l_max_cmb, m=l_max_cmb)), imag(b(l=l_max_cmb, m=l_max_cmb)),
real (db(l=1, m=0)), imag(db(l=1, m=0)),
real (db (1=2, m=0)), imag (db (1=2, m=0)),
real(db(l=1_max_cmb, m=1_max_cmb)), imag(db(l=1_max_cmb, m=1_max_cmb)),
real (aj(l=1, m=0)), imag(aj(l=1, m=0)),
real (aj(1=2, m=0)), imag(aj(1=2, m=0)),
real(aj(l=1_max_cmb, m=1_max_cmb)), imag(aj(l=1_max_cmb, m=1_max_cmb)),
real (ddb(1=1, m=0)), imag(ddb(1=1, m=0)),
real (ddb (1=1, m=0)), imag(ddb (1=1, m=0)),
real(ddb(l=l_max_cmb, m=l_max_cmb)), imag(ddb(l=l_max_cmb, m=l_max_cmb)),
!-----
! Line N + 1
time(N),
real (b(1=1, m=0)), imag (b(1=1, m=0)),
real (b(1=2, m=0)), imag(b(1=2, m=0)),
real (b(l=1_max_cmb, m=1_max_cmb)), imag(b(l=1_max_cmb, m=1_max_cmb)),
\textbf{real} \, (\texttt{db} \, (\texttt{l} = \texttt{1} \, , \, \texttt{m} = \texttt{0}) \,) \, \text{, imag} \, (\texttt{db} \, (\texttt{l} = \texttt{1} \, , \, \texttt{m} = \texttt{0}) \,) \, \text{,}
real (db(1=2, m=0)), imag(db(1=2, m=0)),
real (db(l=l_max_cmb, m=l_max_cmb)), imag(db(l=l_max_cmb, m=l_max_cmb)),
real (aj(l=1, m=0)), imag(aj(l=1, m=0)),
real (aj(1=2, m=0)), imag(aj(1=2, m=0)),
real(aj(l=1_max_cmb, m=1_max_cmb)), imag(aj(l=1_max_cmb, m=1_max_cmb)),
real (ddb(1=0, m=0)), imag(ddb(1=0, m=0)),
real (ddb (l=1, m=0)), imag (ddb (l=1, m=0)),
real (ddb(l=l_max_cmb, m=l_max_cmb)), imag(ddb(l=l_max_cmb, m=l_max_cmb))
```

This file can be read using MagicCoeffR with the following options:

```
>>> # To stack the files B_coeff_r3.test* from the working directory
>>> cr = MagicCoeffR(tag='test*', field='B', r=3)
>>> # print the time and the poloidal potential for (\ell=3, m=3)
>>> print(cr.time, cr.wlm[:, 3, 3])
```

8.11.4 V coeff r#.TAG

Note: This file is **only** written when l_r_{field} =.true.

This file contains output of time series of the spherical harmonic coefficients of the poloidal and toroidal velocity field potentials and the first derivatives of the poloidal potential coefficients in the order w, dw, and z. The output is for a specific radius, r up to degree l_max_r .

- **Header** The file header consists of the information: l_max_r , minc, the number of data points n_data and the radius, r.
- Data Each chunk of data after the header contains the time at which the coefficients are stored, followed by the real and imaginary parts of: the poloidal coefficient w, it's first derivative dw and the toroidal coefficient z.

The complete structure of the file looks like follows:

```
! Line 1
l_max_r, minc, n_data, r
!----
! Line j + 1
time(j),
real (w(l=1, m=0)), imag(w(l=1, m=0)),
real (w(1=2, m=0)), imag(w(1=2, m=0)),
real(w(l=1_max_cmb, m=1_max_cmb)), imag(w(l=1_max_cmb, m=1_max_cmb)),
real (dw(1=1, m=0)), imag(dw(1=1, m=0)),
real (dw(1=2, m=0)), imag (dw(1=2, m=0)),
real (dw(l=1_max_cmb, m=1_max_cmb)), imag(dw(l=1_max_cmb, m=1_max_cmb)),
real (z(1=1, m=0)), imag(z(1=1, m=0)),
real (z(1=2, m=0)), imag(z(1=2, m=0)),
real(z(l=l_max_cmb, m=l_max_cmb)), imag(z(l=l_max_cmb, m=l_max_cmb)),
. . .
! Line N + 1
real (w(l=1, m=0)), imag (w(l=1, m=0)),
real (w(1=2, m=0)), imag(w(1=2, m=0)),
real(w(l=l_max_cmb, m=l_max_cmb)), imag(w(l=l_max_cmb, m=l_max_cmb)),
real (dw(l=1, m=0)), imag (dw(l=1, m=0)),
real (dw(1=2, m=0)), imag (dw(1=2, m=0)),
real(dw(l=1_max_cmb, m=1_max_cmb)), imag(dw(l=1_max_cmb, m=1_max_cmb)),
real (z(1=1, m=0)), imag(z(1=1, m=0)),
```

```
real(z(l=2, m=0)), imag(z(l=2, m=0)),
...
real(z(l=1_max_cmb, m=1_max_cmb)), imag(z(l=1_max_cmb, m=1_max_cmb))
```

This file can be read using MagicCoeffR with the following options:

```
>>> # To stack the files V_coeff_r3.test* from the working directory
>>> cr = MagicCoeffR(tag='test*', field='V', r=3)
>>> # print the poloidal and toroidal potentials for (\ell=6, m=0)
>>> print(cr.wlm[:, 6, 0], cr.zlm[:, 6, 0])
```

8.11.5 T coeff r#.TAG

Note: This file is **only** written when $l_r_fieldT = .true$.

This file contains output of time series of the spherical harmonic coefficients of the temperature (or entropy) field. The output is for a specific radius, r up to degree l_max_r .

- **Header** The file header consists of the information: l_max_r , minc, the number of data points n_data and the radius, r.
- Data Each chunk of data after the header contains the time at which the coefficients are stored, followed by the real and imaginary parts of the coefficient s.

The complete structure of the file looks like follows:

```
! Line 1
l_max_r, minc, n_data, r
. . .
!----
! Line j + 1
time(j),
real (s(1=0, m=0)), imag(s(1=0, m=0)),
real (s(l=1, m=0)), imag(s(l=1, m=0)),
real (s(1=2, m=0)), imag(s(1=2, m=0)),
real(s(l=1_max_cmb, m=1_max_cmb)), imag(s(l=1_max_cmb, m=1_max_cmb)),
! Line N + 1
time(N),
real (s(1=0, m=0)), imag(s(1=0, m=0)),
real (s(l=1, m=0)), imag(s(l=1, m=0)),
real (s(1=2, m=0)), imag(s(1=2, m=0)),
\label{eq:real} \textbf{real} ( \texttt{s} ( \texttt{l=l_max\_cmb}, \texttt{m=l_max\_cmb}) ) \text{, } \texttt{imag} ( \texttt{s} ( \texttt{l=l_max\_cmb}, \texttt{m=l_max\_cmb}) ) \text{,} \\
```

8.12 TO outputs

Note: These output files are **only** written when $l_TO=.true$.

8.12.1 TOZ_#.TAG and TOZM.TAG

8.12.2 TO mov. TAG files

Note: This file is **only** written when $l_TOmovie = .true$.

This file contains the time evolution of the different forces that enter the phi-average of the azimuthal component of the Navier-Stokes equation. This is a special kind of *movie file* that contains seven different azimuthally-averaged fields in a (r,θ) plane: the axisymmetric zonal flow component, the azimuthal component of the Reynolds stresses, the azimuthal component of advection, the azimuthal component of viscosity, the azimuthal component of Lorentz force, the azimuthal component of Coriolis force and the azimuthal component of the time-derivative. The structure of the file is similar to a *movie file*, i.e. an unformatted fortran binary file with a header that describes the type of the movie file. The detailed calculations can be found in the subroutine outTO.

On a whole, the structure of the file looks like follows:

8.12. TO outputs 111

```
theta(1), theta(2), ..., theta(n_theta_max)
!----
! Line 7
1_____
phi(1), phi(2), ..., phi(n_theta_max)
1_____
! Line 7+N
n_frame, t_movie(N), omega_ic, omega_ma, dipLat, dipLon, dipStr, dipStrGeo
1_____
! Line 7+(N+1)
vphi(t=t_movie(N),phi=1,theta=1),
vphi(t=t_movie(N),phi=1,theta=2),
vphi(t=t_movie(N),phi=n_phi_max,theta=n_theta_max)
!----
! Line 7+(N+2)
rey(t=t_movie(N),phi=1,theta=1),
rey(t=t_movie(N),phi=1,theta=2),
. . . ,
rey(t=t_movie(N),phi=n_phi_max,theta=n_theta_max)
!----
! Line 7+(N+7)
dtVphi(t=t_movie(N),phi=1,theta=1),
dtVphi(t=t_movie(N),phi=1,theta=2),
dtVphi(t=t_movie(N),phi=n_phi_max,theta=n_theta_max)
```

This file can be read using *TOMovie* with the following options:

```
>>> # To load 'TO_mov.test' and time-average it:
>>> to = TOMOvie(file='TO_mov.test', avg=True, levels=65, cm='seismic')
```

8.13 Radial spectra rB[r|p]Spec.TAG

Note: This files are **only** written when $l_rMagSpec=.true$.

Those files contain the time-evolution of the poloidal (rBrSpec.TAG) and the toroidal (rBpSpec.TAG) magnetic

energies for all radii including the inner core and for spherical harmonic degrees from $\ell=1$ to $\ell=6$. The calculations are done in the subroutines rBrSpec and rBpSpec, respectively. The outputs are stored as a fortran unformatted file which follows the following structure for rBrSpec. TAG:

The rBpSpec. TAG files have exactly the same structure (just replacing the poloidal energy by its toroidal counterpart).

Warning: Be careful that in this file, n_r_t is the **total** number of grid points (thus including the inner core).

Those files can be read using the python class MagicRSpec with the following options:

```
>>> # Read the files BrSpec.testa, BrSpec.testb and BrSpec.testc and stack them
>>> rsp = MagicRSpec(tag='test[a-c]', field='Br')
>>> # Print time and the time evolution of e_pol(\ell=4) at the 10th radial grid point
>>> print(rsp.time, rsp.e_pol[:, 10, 3])
```

8.14 Potential files [V|B|T]pot_#.TAG

8.14.1 Vpot_#.TAG and Vpot_ave.TAG

Note: These output files are **only** written when either when $l_storePot=.true$. or when $l_storeVpot=.true$.

These files contain a snapshot of the poloidal and toroidal flow potentials w and z in the Chebyshev space for all spherical harmonic degrees and orders. They basically contain two arrays of dimension (lm_max , n_cheb_max). The detailed calculations are done in the subroutine storePot. The outputs are stored as a fortran unformatted file which follows the following structure:

8.14.2 Bpot_#.TAG, Bpot_ave.TAG

Note: These output files are **only** written when either when $l_storePot=.true$. or when $l_storeBpot=.true$.

These files contain a snapshot of the poloidal and toroidal magnetic potentials b and aj in the Chebyshev space for all spherical harmonic degrees and orders. The detailed calculations are done in the subroutine storePot. The outputs are stored as a fortran unformatted file which follows the following structure:

```
!------
! Line 1
!------
l_max, n_cheb_max, n_cheb_ic_max, minc, lm_max  ! Header (truncation)

!------
! Line 2
!-------
ra, ek, pr, prmag, sigma_ratio, omega_ma, omega_ic ! Header (physics)

!------
! Line 3
!------
time,
b(lm=1,n_cheb=1), b(lm=2, n_cheb=1), ..., b(lm=lm_max, n_cheb=1),
```

```
b(lm=1,n_cheb=n_cheb_max, ..., b(lm=lm_max,n_cheb=n_cheb_max)
! Line 4
                                          ! Time and toroidal potential
time,
aj(lm=1,n\_cheb=1), aj(lm=2,n\_cheb=1), ..., aj(lm=lm\_max,n\_cheb=1),
aj(lm=1,n_cheb=n_cheb_max, ..., aj(lm=lm_max,n_cheb=n_cheb_max)
! The two following lines are optional and are only written when there is \ !
! an electrically-conducting inner-core
! Line 5
                                          ! Time and poloidal potential
b_ic(lm=1,n_cheb=1), b_ic(lm=2, n_cheb=1), ..., b_ic(lm=lm_max, n_cheb=1),
b_ic(lm=1,n_cheb=n_cheb_max, ..., b_ic(lm=lm_max,n_cheb=n_cheb_max)
1_____
! Line 6
                                          ! Time and toroidal potential
aj_ic(lm=1,n_cheb=1), aj_ic(lm=2, n_cheb=1), ..., aj_ic(lm=lm_max, n_cheb=1),
aj_ic(lm=1,n_cheb=n_cheb_max, ..., aj_ic(lm=lm_max,n_cheb=n_cheb_max)
```

8.14.3 Tpot_#.TAG, Tpot_ave.TAG

Note: These output files are **only** written when either when $l_storePot=.true$. or when $l_storeTpot=.true$.

These files contain a snapshot of the temperature/entropy s in the spectral and Chebyshev spaces for all spherical harmonic degrees and orders. They basically contain one array of dimension (lm_max , n_cheb_max). The detailed calculations are done in the subroutine storePot. The outputs are stored as a fortran unformatted file which follows the following structure:

```
!------
! Line 1
!------

l_max, n_cheb_max, n_cheb_ic_max, minc, lm_max  ! Header (truncation)

!------
! Line 2
!------
ra, ek, pr, prmag, sigma_ratio, omega_ma, omega_ic ! Header (physics)
```

CHAPTER

NINE

DATA VISUALISATION AND POST-PROCESSING

Most of the *output files* written during a run of MagIC can be treated with the python post-processing classes and functions present in the \$MAGIC_HOME/python/magic directory. These classes depend on several python libraries that can be usually found in most of the Linux distributions.

9.1 Requirements

9.1.1 Hard dependencies

- python 2.7/3.3 or higher.
- matplotlib 1.0 or higher.
- scipy 0.10 or higher.

9.1.2 Optional dependencies

- Although entirely optional, the installation of ipython makes the interactive use of the post-processing python functions much more pleasant. Installing it is therefore recommanded for a smoother interactive usage of the python functions.
- The installation of the basemap toolkit is optional. If installed, additional projections for the magic.Surf (Aitoff, orthographic, Mollweide, etc.) class will be provided for 2-D surface plotting. Otherwise, the usage of magic.Surf is limited to the Hammer projection.

9.2 Configuration: magic.cfg file

A file named magic.cfg located in \$MAGIC_HOME/python/magic/magic.cfg should have been created when you used the source path/sourceme.sh command for the first time on your machine. At that stage, it tried to automatically fill the best options that correspond to your setup. Although tested on several various machine configurations, the auto-configuration script might however fail on your setup. The paragraph below details the possible options that you may want to adjust in the magic.cfg file.

9.2.1 Detailed options

In case, the file magic.cfg doesn't exist in the directory \$MAGIC_HOME/python/magic, you can easily copy it from the default configuration magic.cfg.default and then adjust the options manually:

```
$ cp $MAGIC_HOME/python/magic/magic.cfg.default $MAGIC_HOME/python/magic/magic.cfg
```

In that file, you can set up the default matplotlib rendering backend (among the possible options: TkAgg, GTKAgg, Qt4Agg, ...). The default configuration is

```
backend = TkAgg
```

Note: This is usually the default configuration which is the most likely to work on supercomputing clusters.

If LaTeX is installed on your work station, you might also want to make use of the better looking LaTeX fonts for all your displayed matplotlib figures (labels, caption, ticks, etc.). Be careful though that most of the time LaTeX is **not installed** on supercomputers. The default configuration is thus:

```
labTex = False
```

If you want to enable all the features of the python functions (faster reading the $G_{-}\#.TAG$, conversion to the VTK/VTS file format, potential extrapolation of the field lines, etc.), some fortran libraries present in the $$MAGIC_{-}HOME/python/magic/fortranLib$$ directory need to be built using the f2py, which should be available on your Linux workstation if all the required python libraries have been correctly installed. The boolean buildlib can control whether you want to try building the fortran libraries with f2py. The following configuration will try to build the libraries:

```
buildLib = True
```

The exact name of the executable f2py however varies from one Linux distribution to the other. Among possible options, one frequently finds: f2py, f2py2, f2py3. This can be set to your proper configuration using the f2pyexec option of the magic.cfg file. The default configuration is:

```
f2pyexec = f2py2
```

You can also choose the fortran compiler you want to use on your machine. A list of the installed compilers can be obtained by using (where £2py has to be replaced by your own executable):

```
$ f2py -c --help-fcompiler
```

The most frequent options are:

- gnu95 for the GNU gfortran compiler.
- intelem for the Intel ifort compiler.
- pg for the Portlang group pgf compiler.

Once you've decided the ideal configuration for your machine, set it up via the option fcompiler:

```
fcompiler = intelem
```

Finally, he same configuration procedure can be applied to the C compiler using the variable named ccompiler. The possible options are:

- unix for the GNU gcc compiler.
- intelem for the Intelicc compiler.

In most of the configurations, the default configuration should do a good job:

```
ccompiler = unix
```

If you encounter any problem during the building stage, you can try playing with this parameter though.

9.2.2 Ready?!

Once you think you set up your magic.cfg file correctly, you can test your configuration. If you decided to build the fortran libraries (i.e. buildLib=True), you can easily test it with any python shell by typing the following command:

```
>>> from magic import *
```

If the build was successful, it should display:

```
Please wait: building greader_single...
Please wait: building greader_double...
Please wait: building potential extrapolation...
Please wait: building vtklib...
```

Once the libraries have been successfully installed, this message won't be displayed again, except if you remove the *.so files that are now present in the \$MAGIC_HOME/python/magic/directory.

9.3 Python functions and classes

Once the python environment is correctly configured you can use the available functions and classes to analyse and post-process your data. The following pages will give you the detailed API of the available classes, as well as some practical examples:

Python classes

- 1. To read the **log.TAG** files, see *here*.
- 2. To read and analyse the time series, see *here*.
- 3. To read and analyse the radial profiles, see *here*.
- 4. To read and analyse spectra spec #.TAG, see here.
- 5. To read and analyse the **G_#.TAG** files, see *here*.
- 6. To read and analyse movie files **_mov.TAG**, see *here*.
- 7. To read and analyse coeff files **_coeff.TAG**, see *here*.
- 8. To read and analyse coeff files **coeff.TAG**, see *here*.
- 9. To read and analyse radial spectra **B[r|p]Spec.TAG**, see *here*.
- 10. To compare several runs simultaneously, see here.
- 11. To transform the graphic files **G_#.TAG** to a file format readable by paraview, VisIt or mayavi and do some fancy 3-D visualisation, see *here*.
- 12. For additional diagnostics (boundary layer, heat transport, interpolation on cylindrical grids, etc.), see *here*.
- 13. To take a look at the additional useful functions available (derivation, integration, interpolation, etc.), see *here*.

9.3.1 Support for the log. TAG files

class magic.MagicSetup (datadir='.', nml='input.nml', quiet=False)

This class allows to read the input namelist or the log file of a current job and creates an object that contains all the parameters found in the namelist/log file.

```
>>> stp = MagicSetup(nml='log.test', quiet=True)
>>> print(stp.ra) # print the Rayleigh number
>>> print(stp.n_r_max) # print n_r_max
```

```
___init___(datadir='.', nml='input.nml', quiet=False)
```

Parameters

- datadir (str) the working directory
- **nml** (*str*) name of the input namelist/ log file
- quiet (bool) when set to True, makes the output silent (default False)

9.3.2 Support for the time series

class magic .MagicTs (datadir='.', field='e_kin', iplot=True, all=False, tag=None)

This python class is used to read and plot the different time series written by the code:

•Kinetic energy: *e_kin.TAG*

•Magnetic energy of the outer core: *e_mag_oc.TAG*

•Magnetic energy of the inner core: e_mag_ic.TAG

•Dipole information: dipole.TAG

•Rotation: rot.TAG

•Diagnostic parameters: par.TAG

•Miscellaneous: misc.TAG

•Velocity square: u square.TAG

•Angular momentum: AM.TAG

•Power budget: power.TAG

•Parallel and perpendicular decomposition: perpPar.TAG

•RMS force balance: dtVrms.TAG

•RMS induction terms: dtBrms.TAG

Here are a couple of examples of how to use this function.

```
>>> # plot the most recent e_kin.TAG file found in the directoy
>>> MagicTs(field='e_kin')
>>>
>>> # stack **all** the power.TAG file found in the directory
>>> ts = MagicTs(field='power', all=True)
>>> print(ts.time, ts.buoPower) # print time and buoyancy power
>>>
>>> # If you only want to read the file ``misc.NOm2z``
>>> ts = MagicTs(field='misc', tag='NOm2z', iplot=False)
```

__init__ (datadir='.', field='e_kin', iplot=True, all=False, tag=None)

- **field** (*str*) the file you want to plot
- **iplot** (*bool*) when set to True, display the plots (default True)
- **all** (*bool*) when set to True, the complete time series is reconstructed by stacking all the corresponding files from the working directory (default False)
- tag (str) read the time series that exactly corresponds to the specified tag

```
plot()
```

Plotting subroutines. Only called if 'iplot=True'

9.3.3 Averaging the time series

class magic . AvgField (tstart=None, tag=None, dipExtra=False)

This class calculates the time-average properties from time series. It will store the input starting time in a small file named tInitAvg, such that the next time you use it you don't need to give tstart again.

```
>>> # Average from t=2.11 and also store the additional dipole.TAG informations
>>> a = AvgField(tstart=2.11, dipExtra=True)
>>> # Average only the files that match the pattern N0m2[a-c]
>>> a = AvgField(tstart=2.11, tag='N0m2[a-c]')
>>> # Average only the files that match the pattern N0m2Z*
>>> a = AvgField(tstart=2.11, tag='N0m2Z*')
>>> print(a) # print the formatted output
```

```
___init___(tstart=None, tag=None, dipExtra=False)
```

Parameters

- **tstart** (*float*) the starting time for averaging
- tag (str) if you specify an input tag (generic regExp pattern), the averaging process will only happen on the time series that match this input pattern
- **dipExtra** (*bool*) if this parameter is set to True, then additional values extracted from *dipole.TAG* are also computed

```
__str__()
Formatted output
```

9.3.4 Support for time-averaged radial profiles

class magic.**MagicRadial** (*datadir='.'*, *field='eKin'*, *iplot=True*, *tag=None*, *tags=None*)

This class can be used to read and display the time and horizontally averaged files:

```
•Kinetic energy: eKinR.TAG
•Magnetic energy: eMagR.TAG
```

•Anelastic reference state: anel.TAG

• Variable electrical conductivity: varCond.TAG

•Variable thermal diffusivity: varDiff.TAG

•Variable kinematic viscosity: varVisc.TAG

•Diagnostic parameters: parR.TAG

•Power budget: powerR.TAG

•Heat fluxes: fluxesR.TAG

•Radial profiles used for boundary layers: bLayersR.TAG

•Parallel/perpendicular decomposition: perpParR.TAG

```
>>> rad = MagicRadial(field='eKinR') # display the content of eKinR.tag
>>> print(rad.radius, rad.ekin_pol_axi) # print radius and poloidal energy
```

```
___init___ (datadir='.', field='eKin', iplot=True, tag=None, tags=None)
```

Parameters

- **field** (str) the field you want to plot
- **iplot** (*bool*) to plot the output, default is True
- tag (str) a specific tag, default is None
- tags (list) a list that contains multiple tags: useful to sum several radial files

plot()

Display the result when iplot=True

9.3.5 Support for the spectra files (kin|mag|u2) spec #.TAG

```
field='e_kin',
class magic.MagicSpectrum(datadir='.',
                                                          iplot=True,
                                                                       ispec=None,
                                                                                     ave=False,
                              gather=False, tag=None)
```

This class can be used to read and display the spectra:

- •Kinetic energy spectra: kin_spec_#.TAG
- •Magnetic energy spectra: mag_spec_#.TAG
- •Spectra of the velocity square: u2 spec #.TAG

```
>>> # display the content of kin_spec_1.tag
>>> # where tag is the most recent file in the current directory
>>> sp = MagicSpectrum(field='e_kin', ispec=1)
>>> # display the content of mag_spec_ave.test on one single figure
>>> sp = MagicSpectrum(field='e_mag', tag='test', ave=True, gather=True)
```

__init__ (datadir='.', field='e_kin', iplot=True, ispec=None, ave=False, gather=False, tag=None)

Parameters

- field (str) the spectrum you want to plot, 'e_kin' for kinetic energy, 'e_mag' for magnetic
- **iplot** (*bool*) display the output plot when set to True (default is True)
- **ispec** (*int*) the number of the spectrum you want to plot
- tag (str) file suffix (tag), if not specified the most recent one in the current directory is chosen
- ave (bool) plot a time-averaged spectrum when set to True
- gather (bool) gather the spectra on the same figure when set to True, display one figure per spectrum when set to False, (default is False)
- datadir (str) current working directory

plot()

Plotting function

9.3.6 Support for the 2-D spectra files

```
class magic.MagicSpectrum2D (datadir='.', field='e_mag', iplot=True, ispec=None, tag=None,
                                    cm='jet', levels=33, precision='Float64')
     This class can be used to read and display 2-D spectra in the (r, \ell) and in the (r, m) planes
```

- •Kinetic energy spectra: 2D_kin_spec_#.TAG
- Velocity square spectra: 2D_u2_spec_#.TAG
- •Magnetic energy spectra: 2D_mag_spec_#.TAG

```
>>> # display the content of 2D_kin_spec_1.tag
>>> # where tag is the most recent file in the current directory
>>> sp = MagicSpectrum2D(field='e_kin', ispec=1, levels=17, cm='seismic')
>>> # display the content of 2D_mag_spec_3.test
>>> sp = MagicSpectrum2D(field='e_mag', tag='test', ispec=3)
```

__init__ (datadir='.', field='e_mag', iplot=True, ispec=None, tag=None, cm='jet', levels=33, precision='Float64')

Parameters

- **field** (*str*) the spectrum you want to plot, 'e_kin' for kinetic energy, 'e_mag' for magnetic
- **iplot** (*bool*) display the output when set to True (default is True)
- ispec (int) the number of the spectrum you want to plot
- tag (str) file suffix (tag=, if not specified the most recent one in the current directory is chosen
- **cm** (*str*) name of the colormap (default='jet')
- **levels** (*int*) number of contour levels (default 33)
- precision (str) single or double precision
- datadir (str) current working directory

plot (levels, cm)

Plotting function

Parameters

- **levels** (*int*) number of contour levels
- cm(str) name of the colormap

9.3.7 Support for G_#.TAG files

class magic. MagicGraph (ivar=None, datadir='.', format='B', quiet=True, ave=False, tag=None, precision='Float32')

This class allows to read the 3-D graphic outputs of the MagIC code ($G_{\#}.TAG$ and $G_{ave}.TAG$) files. Those are binary unformatted outputs, there are therefore two ways to load them:

- •If buildLib=True in magic.cfg and the fortran libraries were correctly built, then the reader uses a fortran program that is expected to be much faster than the pure python routine.
- •If buildLib=False, then a pure python program is used to read the G files.

```
>>> # Regular G files
>>> gr = MagicGraph(ivar=1, tag='N0m2a')
>>> print(gr.vr.shape) # shape of vr
>>> print(gr.ek) # print ekman number
>>> print(gr.minc) # azimuthal symmetry
>>> # Averaged G file with double precision
>>> gr = MagicGraph(ave=True, tag='N0m2', precision='Float64')
```

__init__(ivar=None, datadir='.', format='B', quiet=True, ave=False, tag=None, precision='Float32')

Parameters

- **format** (*str*) format of binary output: 'n' (native), 'B' (big endian) or 'l' (little endian), (default 'B')
- **ave** (*bool*) when set to True, it tries to find an average G file (G_ave.TAG)
- ivar (int) the number of the G file
- tag (*str*) extension TAG of the G file. If not specified, the most recent G_#.TAG file found in the directory will be selected.
- quiet (bool) when set to True, makes the output silent
- datadir (str) directory of the G file (default is .)
- **precision** (*str*) single or double precision (default 'Float32')

rearangeLat (field)

This function is used to unfold the colatitudes

Parameters field (*numpy.ndarray*) – input array with MagIC ordering of colatitudes (i.e. successively Northern Hemisphere and Southern Hemisphere)

Returns an array with the regular ordering of the colatitudes

Return type numpy.ndarray

class magic. **Surf** (*ivar=None*, *datadir='.'*, *vort=False*, *ave=False*, *tag=None*, *precision='Float32'*)

This class allows to display the content of a graphic file (*G_#.TAG* or *G_ave.TAG*). It allows to plot radial, azimuthal and equatorial cuts as well as phi-averages.

```
>>> # To read G_1.test
>>> s = Surf(ivar=1, ave=False, tag='test')
>>> # To read the latest G file in the working directory (double precision)
>>> s = Surf(precision='Float64')
```

```
>>> # Possible plots
>>> s.equat(field='vr')
>>> s.avg(field='vp')
>>> s.surf(field='entropy', r=0.8)
>>> s.slice(field='Br', lon_0=[0, 30])
```

__init__ (ivar=None, datadir='.', vort=False, ave=False, tag=None, precision='Float32')

- ivar (int) index of the graphic file
- **ave** (bool) when set to True, it tries to read a time-averaged graphic file
- tag (str) TAG suffix extension of the graphic file
- **vort** (*bool*) a boolean to specify whether one wants to compute the 3-D vorticity components (take care of the memory imprint)
- datadir (str) the working directory
- **precision** (*str*) the storage precision of the graphic file (single or double precision). Default is 'Float32' (single)

avg (field='vphi', levels=16, cm='RdYlBu_r', normed=True, vmax=None, vmin=None, cbar=True, tit=True, pol=False, tor=False, mer=False, merLevels=16, polLevels=16)
Plot the azimutal average of a given field.

```
>>> s = Surf()
>>> # Axisymmetric zonal flows, 65 contour levels
>>> s.avg(field='vp', levels=65, cm='seismic')
>>> # Minimal plot (no char, not title)
```

```
>>> # Minimal plot (no cbar, not title)
>>> s.avg(field='Br', tit=False, cbar=False)
```

```
>>> # Axisymmetric Bphi + poloidal field lines
>>> s.avg(field='Bp', pol=True, polLevels=8)
```

```
>>> # Omega-effect, contours truncated from -1e3 to 1e3
>>> s.avg(field='omeffect', vmax=1e3, vmin=-1e3)
```

Parameters

- **field** (str) the field you want to display
- **levels** (*int*) the number of levels in the contourf plot
- cm (str) name of the colormap ('jet', 'seismic', 'RdYlBu_r', etc.)
- tit (bool) display the title of the figure when set to True
- cbar (bool) display the colorbar when set to True
- vmax (float) maximum value of the contour levels
- **vmin** (*float*) minimum value of the contour levels
- **normed** (*bool*) when set to True, the colormap is centered around zero. Default is True, except for entropy/temperature plots.
- pol (bool) diplay the poloidal field lines contours when set to Tru
- mer (bool) display the meridional circulation contours when set to True
- merLevels (int) number of contour levels to display meridional circulation
- pollevels (int) number of contour levels to display poloidal field lines

equat (field='vr', levels=16, cm='RdYlBu_r', normed=True, vmax=None, vmin=None, cbar=True, tit=True, avg=False, normRad=False)
Plot the equatorial cut of a given field

```
>>> s = Surf()
>>> # Equatorial cut of the z-vorticity, 65 contour levels
>>> s.equat(field='vortz', levels=65, cm='seismic')
```

```
>>> # Minimal plot (no cbar, not title)
>>> s.equat(field='bphi', tit=False, cbar=False)
```

```
>>> # Control the limit of the colormap from -1e3 to 1e3
>>> s.equat(field='vr', vmin=-1e3, vmax=1e3, levels=33)
```

```
>>> # Normalise the contour levels radius by radius
>>> s.equat(field='jphi', normRad=True)
```

- **field** (str) the name of the input physical quantity you want to display
- **avg** (*bool*) when set to True, an additional figure which shows the radial profile of the input physical quantity (azimuthal average) is also displayed
- **normRad** (*bool*) when set to True, the contour levels are normalised radius by radius (default is False)
- **levels** (*int*) the number of levels in the contour
- cm (str) name of the colormap ('jet', 'seismic', 'RdYlBu_r', etc.)
- **tit** (*bool*) display the title of the figure when set to True
- cbar (bool) display the colorbar when set to True
- vmax (float) maximum value of the contour levels
- **vmin** (*float*) minimum value of the contour levels
- **normed** (*bool*) when set to True, the colormap is centered around zero. Default is True, except for entropy/temperature plots.

slice (field='Bphi', lon_0=0.0, levels=12, cm='RdYlBu_r', normed=True, vmin=None, vmax=None, cbar=True, tit=True, grid=False, nGridLevs=16)

Plot an azimuthal slice of a given field.

```
>>> s = Surf()
>>> # vphi at 0, 30, 60 degrees in longitude
>>> s.slice(field='vp', lon_0=[0, 30, 60], levels=65, cm='seismic')

>>> # Minimal plot (no cbar, not title)
>>> s.avg(field='vp', lon_0=32, tit=False, cbar=False)

>>> # Axisymmetric Bphi + poloidal field lines
>>> s.avg(field='Bp', pol=True, polLevels=8)

>>> # Omega-effect, contours truncated from -1e3 to 1e3
>>> s.avg(field='omeffect', vmax=1e3, vmin=-1e3)
```

- **field** (str) the field you want to display
- lon_0 (float or list) the longitude of the slice in degrees, or a list of longitudes
- **levels** (*int*) the number of levels in the contourf plot
- cm (str) name of the colormap ('jet', 'seismic', 'RdYlBu_r', etc.)
- **tit** (*bool*) display the title of the figure when set to True
- cbar (bool) display the colorbar when set to True
- vmax (float) maximum value of the contour levels
- **vmin** (*float*) minimum value of the contour levels
- grid (bool) display or hide the grid
- nGridLevs (int) number of grid levels

surf (field='Bphi', proj='hammer', lon_0=0.0, r=0.85, vmax=None, vmin=None, lat_0=30.0, levels=16, cm='RdYlBu_r', normed=True, cbar=True, tit=True, lines=False)
Plot the surface distribution of an input field at a given input radius (normalised by the outer boundary radius).

```
>>> s = Surf()
>>> # Radial flow component at ``r=0.95 r_o``, 65 contour levels
>>> s.surf(field='vr', r=0.95, levels=65, cm='seismic')

>>> # Minimal plot (no cbar, not title)
>>> s.surf(field='entropyfluct', r=0.6, tit=False, cbar=False)

>>> # Control the limit of the colormap from -1e3 to 1e3
>>> s.surf(field='vp', r=1., vmin=-1e3, vmax=1e3, levels=33)

>>> # If basemap is installed, additional projections are available
>>> s.surf(field='Br', r=0.95, proj='ortho', lat_0=45, lon_0=45)
```

Parameters

- **field** (str) the name of the field you want to display
- **proj** (*str*) the type of projection. Default is Hammer, in case you want to use 'ortho' or 'moll', then Basemap is required.
- **r** (*float*) the radius at which you want to display the input data (in normalised units with the radius of the outer boundary)
- **levels** (*int*) the number of levels in the contour
- cm (str) name of the colormap ('jet', 'seismic', 'RdYlBu_r', etc.)
- tit (bool) display the title of the figure when set to True
- cbar (bool) display the colorbar when set to True
- **lines** (*bool*) when set to True, over-plot solid lines to highlight the limits between two adjacent contour levels
- vmax (float) maximum value of the contour levels
- vmin (float) minimum value of the contour levels
- **normed** (*bool*) when set to True, the colormap is centered around zero. Default is True, except for entropy/temperature plots.

9.3.8 Support for movie files *_mov.TAG

This class allows to read the *movie files* generated by the MagIC code.

```
>>> m = Movie()
>>> # This returns a list of the available movies in the directory
>>> # and lets you decide which one you want to read
```

```
>>> # Reads and display AV_mov.test
>>> m = Movie(filed='AV_mov.test')
>>> print(m.data) # access to the data
```

```
>>> # Read three movie files (no display)
>>> m1 = Movie(file='AV_mov.testa', iplot=True)
>>> m2 = Movie(file='AV_mov.testb', iplot=True)
>>> m3 = Movie(file='AV_mov.testc', iplot=True)
>>> # Stack them together
>>> m = m1+m2+m3
>>> # Display
>>> m.plot(levels=33, cm='seismic', cut=0.5)
```

```
>>> # Store the outputs in movie/img_#.png
>>> # Only from the timesteps 280 to 380
>>> m = Movie(file='AB_mov.test', png=True, nvar=100, lastvar=380)
```

___add___(new)

Built-in function to sum two movies

Note: So far this function only works for two movies with the same grid sizes. At some point, we might introduce grid extrapolation to allow any summation/

__init__ (file=None, iplot=True, step=1, png=False, lastvar=None, nvar='all', levels=12, cm='RdYlBu_r', cut=0.5, bgcolor=None, fluct=False, normed=False, avg=False, std=False, dpi=80, normRad=False, precision='Float32')

Parameters

- nvar (int) the number of timesteps of the movie file we want to plot starting from the last line
- png (bool) if png=True, write the png files instead of display
- iplot (bool) if iplot=True, display otherwise just read
- lastvar (int) the number of the last timesteps to be read
- **step** (*int*) the stepping between two timesteps
- **levels** (*int*) the number of contour levels
- cm(str) the name of the color map
- **fluct** (*bool*) if fluct=True, substract the axisymmetric part
- **normed** (*bool*) the colormap is rescaled every timestep when set to True, otherwise it is calculated from the global extrema
- avg (bool) if avg=True, time-average is displayed
- **std** (*bool*) if std=True, standard deviation is displayed
- **dpi** (*int*) dot per inch when saving PNGs
- normRad (bool) if normRad=True, then we normalise for each radial level
- **precision** (*str*) precision of the input file, Float32 for single precision, Float64 for double precision
- cut (float) adjust the contour extrema to max(abs(data))*cut
- **bgcolor** (*str*) background color of the figure

avgStd (*std=False*, *cut=0.5*, *levels=12*, *cmap='RdYlBu_r'*) plot time-average or standard deviation

- std (bool) the standard deviation is computed instead the average when std is True
- **levels** (*int*) number of contour levels
- cmap (str) name of the colormap
- **cut** (*float*) adjust the contour extrema to max(abs(data))*cut

Parameters

- **levels** (*int*) number of contour levels
- cmap (str) name of the colormap
- cut (float) adjust the contour extrema to max(abs(data))*cut
- png (bool) save the movie as a series of png files when set to True
- **dpi** (*int*) dot per inch when saving PNGs
- **bgcolor** (*str*) background color of the figure
- **normed** (*bool*) the colormap is rescaled every timestep when set to True, otherwise it is calculated from the global extrema
- **step** (*int*) the stepping between two timesteps

class magic.Movie3D (file=None, step=1, lastvar=None, nvar='all', nrout=48, $ratio_out=2.0$, potExtra=False, precision='Float32')

This class allows to read the 3D movie files $(B|V)_3D_-$. TAG and transform them into a series of VTS files ./vtsFiles/B3D_#. TAG that can be further read using paraview.

```
>>> Movie3D(file='B_3D.TAG')
```

__init__ (file=None, step=1, lastvar=None, nvar='all', nrout=48, ratio_out=2.0, potExtra=False, precision='Float32')

- **file** (str) file name
- nvar (int) the number of timesteps of the movie file we want to plot starting from the last line
- lastvar (int) the number of the last timestep to be read
- **step** (*int*) the stepping between two timesteps
- **precision** (*str*) precision of the input file, Float32 for single precision, Float64 for double precision
- **potExtra** (*bool*) when set to True, potential extrapolation of the magnetic field outside the fluid domain is also computed
- ratio_out (*float*) ratio of desired external radius to the CMB radius. This is is only used when potExtra=True
- **nrout** (*int*) number of additional radial grid points to compute the potential extrapolation. This is only used when potExtra=True

9.3.9 Support for B_cmb_coeff.TAG and (V|B)_coeff_r#.TAG files

```
 \begin{array}{ll} \textbf{class} \ \texttt{magic.coeff.MagicCoeffCmb} \ (tag, \quad ratio\_cmb\_surface=1, \quad scale\_b=1, \quad iplot=True, \quad precision='Float64') \end{array}
```

This class allows to read the $B_coeff_cmb.TAG$ files. It first read the poloidal potential at the CMB and then transform it to the Gauss coefficients $g_{\ell m}$ and $h_{\ell m}$ using the getGauss function.

```
>>> # Reads the files B_coeff_cmb.testa, B_coeff_cmb.testb
>>> # and B_coeff_cmb.testc and stack them in one single time series
>>> cmb = MagicCoeffCmb(tag='test[a-c]')
>>> print(cmb.ell, cmb.glm) # print \ell and g_{\ell m}
>>> print(cmb.glm[:, 1, 0]) # time-series of the axisymmetric dipole
>>> plot(cmb.time, cmb.dglmdt[:, 1, 0]) # Secular variation of the dipole
```

```
__init__ (tag, ratio_cmb_surface=1, scale_b=1, iplot=True, precision='Float64')
A class to read the B_coeff_cmb files
```

Parameters

- tag (str) if you specify a pattern, it tries to read the corresponding files
- ratio_cmb_surface (float) ratio of surface ratio to CMB radius (default is 1)
- scale_b (float) magnetic field unit (default is 1)
- **iplot** (*int*) a logical to toggle the plot (default is True)
- precision (char) single or double precision

plot()

Display some results when iplot is set to True

```
class magic.coeff.MagicCoeffR (tag, ratio_cmb_surface=1, scale_b=1, iplot=True, field='B', r=1, precision='Float64')
```

This class allows to read the $B_coeff_r\#.TAG$ and $V_coeff_r\#.TAG$ files. It reads the poloidal and toroidal potentials and reconstruct the time series (or the energy) contained in any given mode.

```
>>> # Reads the files V_coeff_r2.test*
>>> cr = MagicCoeffR(tag='test*', field='V', r=2)
>>> print(cr.ell, cr.wlm) # print \ell and w_{\ell m}
>>> # Time-evolution of the poloidal energy in the (\ell=10, m=10) mode
>>> plot(cr.time, cr.epolLM[:, 10, 10])
```

__init__ (tag, ratio_cmb_surface=1, scale_b=1, iplot=True, field='B', r=1, precision='Float64')

Parameters

- tag (str) if you specify a pattern, it tries to read the corresponding files
- ratio_cmb_surface (float) ratio of surface ratio to CMB radius (default is 1)
- **scale_b** (*float*) magnetic field unit (default is 1)
- **iplot** (*bool*) a logical to toggle the plot (default is True)
- **field** (*str*) 'B', 'V' or 'T' (magnetic field, velocity field or temperature)
- **r** (*int*) an integer to characterise which file we want to plot
- **precision** (*str*) single or double precision

```
magic.coeff.deriv(x, y, axis=0)
```

This function is a simple second order derivative

- **x** (*numpy.ndarray*) input x-axis
- **y** (*numpy.ndarray*) input array

Returns an array that contains the derivatives

Return type numpy.ndarray

magic.coeff.getGauss(alm, blm, ell, m, scale_b, ratio_cmb_surface, rcmb)

Get the Gauss coefficients from the real and imaginary parts of the poloidal potential

Parameters

- alm (numpy.ndarray) real part of the poloidal potential
- **blm** (*numpy.ndarray*) imaginary part of the poloidal potential
- ell (numpy.ndarray) spherical harmonic degree ell
- scale_b (*float*) magnetic field unit (default is 1)
- ratio_cmb_surface (float) ratio of surface ratio to CMB radius (default is 1)
- rcmb (float) radius of the outer boundary

9.3.10 Support for B[rp]Spec.TAG

class magic.MagicRSpec (tag, field='Br', precision='Float32', avg=False)

This class allows to read the rB[r|p]Spec.TAG files. Those files contain the time-evolution of the poloidal/toroidal magnetic energy for all radii and for spherical harmonic degrees from 1 to 6. This is an unformatted fortran file.

```
>>> # Read all the `BrSpec.test*` files in the current working directory and
>>> # stack them.
>>> rsp = MagicRSpec(tag='test*', field='Br')
```

```
__init__ (tag, field='Br', precision='Float32', avg=False)
```

Parameters

- tag (str) if you specify a pattern, it tries to read the corresponding files and stack them.
- **field** (*str*) nature of the radial spectra. Possible choices are 'Bt' or 'Bp'
- **precision** (*str*) single or double precision (default single, i.e. 'Float32')
- avg (bool) when set to True, display time averaged quantities

plotAvg()

Plotting function for time-averaged profiles

9.3.11 Support for TO outputs

class magic.TOMovie (file=None, iplot=True, cm='RdYlBu_r', cut=0.8, levels=16, avg=True, precision='Float32')

This class allows to read and display the TO_mov.TAG generated when l_TOmovie=.true. is True.

```
>>> # This will allow you to pick up one TO_mov files among the existing ones >>> t = TOMovie()
```

```
>>> # Read TO_mov.NOm2, time-averaged it and display it with 65 contour levels
>>> t = TOMovie(file='TO_mov.N0m2', avg=True, levels=65, cm='seismic')
```

__init__ (file=None, iplot=True, cm='RdYlBu_r', cut=0.8, levels=16, avg=True, precision='Float32')

Parameters

- **file** (*str*) the filename of the TO_mov file
- **cmap** (*str*) the name of the color map
- **levels** (*int*) the number of contour levels
- cut (float) adjust the contour extrema to max(abs(data))*cut
- iplot (bool) a boolean to specify if one wants to plot or not the results
- **avg** (*bool*) time average of the different forces
- precision (str) precision of the input file, Float32 for single precision, Float64 for double precision

```
plot (cut=0.8, levs=16, avg=True, cmap='RdYlBu_r')
    Plotting function
```

Parameters

- **cut** (*float*) adjust the contour extrema to max(abs(data))*cut
- **levs** (*int*) number of contour levels
- avg (bool) when set to True, quantities are time-averaged
- cmap(str) name of the colormap

9.3.12 Run comparison

```
class magic.CompSims (file='liste', field='ts', ncol=4, cm='RdYlBu_r', dpi=96, normed=True, levels=16, type=None, r=0.9, bw=False, ave=False, cut=1)
```

This class allows to compare an analyse several DNS simultaneously. It is possible to compare time-series or *graphic files*. To set it up, you first need to create a file that contains the list of directories you want to analyse:

```
$ cat inputList
E3e4Eps5e3Q05
E3e4Eps2e3Q07
E3e4Eps2e3Q08
E3e4Eps2e3Q09
```

This list thus contains four directories (one run per directory) that can be further analysed:

```
>>> # Display the time-series of kinetic energy on 2 columns
>>> CompSims(file='inputList', field='ts', ncol=2)
>>> # Display the equatorial cuts of v_r
>>> CompSims(file='inputList', field='vr', type='equat', levels=65, cm='seismic')
>>> # Display the radial cuts of B_r at r=0.8 r_o
>>> CompSims(file='inputList', field='br', type='surf', r=0.8)
>>> # Display the average zonal flow
>>> CompSims(file='inputList', field='vp', type='avg')
```

```
__init__ (file='liste', field='ts', ncol=4, cm='RdYlBu_r', dpi=96, normed=True, levels=16, type=None, r=0.9, bw=False, ave=False, cut=1)
```

Parameters

• **file** (str) – the input file that contains the list of directories that one wants to analyse

- **field** (*str*) name of the input field. Possible options are: 'ts': displaye the time-series of kinetic energy; 'e_mag': display the time-series of magnetic energy; 'flux': display the time-series of the Nusselt numbers; 'zonal': display the surface zonal flow; 'Anything else': try to interpret the field
- **type** (*str*) nature of the plot. Possible values are: 'avg' or 'slice': phi-average or phi-slice; 'equat': equatorial cut; 'surf': radial cut; 'ts*: time series
- ncol (int) number of columns of the figure
- ave (bool) when set to True, it tries to read a time-averaged graphic file
- **r** (*float*) the radius at which you want to display the input data (in normalised units with the radius of the outer boundary)
- **levels** (*int*) the number of levels in the contour
- cm (str) name of the colormap ('jet', 'seismic', 'RdYlBu_r', etc.)
- **normed** (*bool*) when set to True, the colormap is centered around zero. Default is True, except for entropy/temperature plots.
- **dpi** (*int*) dot per inch when saving PNGs
- **bw** (bool) when set to True, display grey-scaled contour levels
- cut (float) adjust the contour extrema to max(abs(data))*cut

plotAvg()

Plot azimutal averages in (theta, r) planes.

plotEmag()

Plot time-series of the magnetic energy

plotEquat()

Plot equatorial cuts in (phi, r) planes.

plotFlux()

Plot time-series of the top and bottom Nusselt numbers

plotSurf()

Plot radial cuts in (phi, theta) planes using the Hammer projection.

plotTs()

Plot time-series of the kinetic energy

plotZonal()

Plot surface zonal flow profiles.

9.3.13 Conversion of G_#.TAG files to vts/vti files

```
class magic.graph2vtk.Graph2Vtk (gr, filename='out', scals=['vr', 'emag', 'tfluct'], vecs=['u', 'B'], potExtra=False, ratio\_out=2, nrout=32, deminc=True, out-Type='vts', nFiles=1, nx=96, ny=96, nz=96)
```

This class allows to transform an input graphic file to a file format readable by paraview/visit or mayavi. It also allows to compute a possible potential extrapolation of the field lines in an arbitrary outer spherical shell domain

```
>>> # Load a graphic file
>>> gr = MagicGraph(ivar=1)
>>> # store myOut.vts
>>> Graph2Vtk(gr, 'myOut', outType='vts')
>>> # store u' and B for the vector fields and vortz and T for the scalars
```

```
>>> Graph2Vtk(gr, scals=['temp', 'vortz'], vecs=['ufluct', 'B'])
>>> # store only T'
>>> Graph2Vtk(gr, scals=['tempfluct'], vecs=[])
>>> # store only B with its potential extrapolation up to 3*r_cmb
>>> Graph2Vtk(gr, scals=[], vecs=['B'], potExtra=True, ratio_out=3)
>>> # Extrapolate on a cartesian grid of size 128^3
>>> Graph2Vtk(gr, outType='vti', nx=128, ny=128, nz=128)
```

__init__(gr, filename='out', scals=['vr', 'emag', 'tfluct'], vecs=['u', 'B'], potExtra=False, ratio_out=2, nrout=32, deminc=True, outType='vts', nFiles=1, nx=96, ny=96, nz=96)

Parameters

- **filename** (*str*) the file name of the output (without extension)
- gr (magic.MagicGraph) the input graphic file one wants to transform to vts/vti
- **scals** (*list(str)*) a list that contains the possible input scalars: 'entropy', 'vr', 'vp', 'tfluct', 'vortz', 'vortzfluct', 'ekin', 'emag', 'vortr'
- **vecs** (*list(str)*) a list that contains the possible input vectors: 'u', 'b', 'ufluct', 'bfluct'
- **potExtra** (*bool*) when set to True, calculates the potential extrapolation of the magnetic field up to ratio_out*r_cmb
- ratio_out (*float*) in case of potential extrapolation, this is the ratio of the external outer radius to r_cmb (rout/rcmb)
- **nrout** (*integer*) in case of potential extrapolation, this input allows to specify thenumber of radial grid points in the outer spherical envelope
- **deminc** (*bool*) a logical to indicate if one wants do get rid of the possible azimuthal symmetry
- **outType** (*str*) nature of the VTK file produced. This can be either 'vts' for the spherical grid or 'vti' for an extrapolation on a cartesian grid
- **nFiles** (*int*) number of output chunks in case of parallel vts file format (pvts)
- **nx** (*int*) number of grid points in the x direction
- **ny** (*int*) number of grid points in the x direction
- **nz** (*int*) number of grid points in the x direction

writeVTI (filename, nx=96, ny=96, nz=96)

In this case, the output is extrapolated on a cartesian grid and then written in a vti file.

Parameters

- **filename** (*str*) the file name of the output (without extension)
- **nx** (*int*) number of grid points in the x direction
- ny (int) number of grid points in the x direction
- **nz** (*int*) number of grid points in the x direction

writeVTS (filename, nFiles)

This function stores the output on a structured-grid vts file.

- **filename** (*str*) the file name of the output (without extension)
- **nFiles** (*int*) number of outpute files (in case of pvts)

magic.graph2vtk.sph2cart scal (scals, radius, nx=96, ny=96, nz=96, minc=1)

This function interpolates a series of scalar fields from the spherical coordinates to the cartesian coordinates.

Parameters

- scals (numpy.ndarray[nscals,nphi,ntheta,nr]) an array that contains the different scalar quantities
- radius (*numpy.ndarray*) the input radius
- nx (int) number of grid points in the x direction
- **ny** (*int*) number of grid points in the x direction
- **nz** (*int*) number of grid points in the x direction
- minc (int) azimuthal symmetry

Returns a tuple that contains the scalars, the max of the grid and the grid spacing

Return type (numpy.ndarray[nscals,nz,ny,nx],float,float)

magic.graph2vtk.sph2cart_vec(vecr, vect, vecp, radius, nx=96, ny=96, nz=96, minc=1)

This function interpolates a series of vector fields from the spherical coordinates to the cartesian coordinates.

Parameters

- vecr (numpy.ndarray[nvecs,nphi,ntheta,nr]) the radial components of the different vector fields
- **vect** (*numpy.ndarray[nvecs,nphi,ntheta,nr]*) the latitudinal components of the different vector fields
- **vecp** (*numpy.ndarray[nvecs,nphi,ntheta,nr]*) the azimuthal components of the different vector fields
- radius (numpy.ndarray) the input radius
- **nx** (*int*) number of grid points in the x direction
- **ny** (*int*) number of grid points in the x direction
- nz (int) number of grid points in the x direction
- minc (int) azimuthal symmetry

Returns a tuple that contains the three vectors components

Return type (numpy.ndarray[nvecs,nz,ny,nx],...)

9.3.14 Potential extrapolation

class magic.potExtra.ExtraPot (rcmb, brcmb, minc, ratio_out=2.0, nrout=32, cutCMB=False, deminc=True)

This class is used to compute the potential field extrapolation of the magnetic field in an arbitrary outer spherical shell domain. It takes as an input the magnetic field at the CMB.

__init__ (rcmb, brcmb, minc, ratio_out=2.0, nrout=32, cutCMB=False, deminc=True)

- bcmb (numpy.ndarary) the surface radial field, array of dimension [np, nt]
- rcmb (float) the value of the radius at the surface
- minc (int) azimuthal symmetry

- ratio_out (float) the ratio of the outer sphere radius to the surface radius
- **nrout** (*int*) the number of radial point (linearly spaced) of the extrapolated field in the outer spherical domain
- **cutCMB** (*bool*) a logical if one wants to remove the first grid point (useful if one then wants to merge the graphic file with the extrapolation)
- **deminc** (*bool*) a logical to indicate if one wants do get rid of the possible azimuthal symmetry

avg (field='br', levels=12, cm='RdYlBu_r', normed=True, vmax=None, vmin=None)
A small routine to plot the azimuthal averages of the extrapolated fields.

Parameters

- **field** (*str*) the quantity you want to plot: 'br' or 'bp'
- **levels** (*int*) the number of contour levels
- cm (str) the name of the colormap
- vmax (float) maximum value of the contour levels
- **vmin** (*float*) minimum value of the contour levels
- **normed** (*bool*) when set to True, the colormap is centered around zero. Default is True, except for entropy/temperature plots.

9.3.15 Additional possible analyses

class magic.bLayers.BLayers (iplot=False, quiet=False)

This class allows to determine the viscous and thermal boundary layers using several classical methods (slope method, peak values, dissipation rates, etc.). It uses the following files:

- Kinetic energy: eKinR.TAGPower budget: powerR.TAG
- •Radial profiles used for boundary layers: bLayersR.TAG

This function can thus **only** be used when both *powerR.TAG* and *bLayersR.TAG* exist in the working directory.

Warning: This function works well as long as rigid boundaries and fixed temperature boundary conditions are employed. Other combination of boundary conditions (fixed fluxes and/or stress-free) might give wrong results, since boundary layers become awkward to define in that case.

Since this function is supposed to use time-averaged quantities, the usual procedure is first to define the initial averaging time using AvgField: (this needs to be done only once)

```
>>> a = AvgField(tstart=2.58)
```

Once the tInitAvg file exists, the boundary layer calculation can be done:

```
>>> bl = BLayers(iplot=True)
>>> # print the formatted output
>>> print(bl)
```

```
___init___(iplot=False, quiet=False)
```

Parameters

ullet iplot (bool) – display the result when set to True (default False)

• quiet (bool) – less verbose when set to True (default is False)

__str__()

Formatted output

plot()

Plotting function

magic.bLayers.getAccuratePeaks(rad, uh, uhTop, uhBot, ri, ro)

This functions performs a spline extrapolation around the maxima of the input array uh to define a more accurate location of the boundary layer.

Parameters

- rad (numpy.ndarray) radius
- **uh** (*numpy.ndarray*) the horizontal velocity profile
- **uhTop** (*float*) first peak value of uh close to the outer boundary
- uhBot (float) first peak value of uh close to the inner boundary
- ri (float) the inner core radius
- ro (float) the outer core radius

Returns four floats: thickness of the bottom boundary layer, thickness of the top boundary layer, extrapolated value of uh at the bottom boundary layer, extrapolated value of uh at the top boundary layer

Return type list

magic.bLayers.getMaxima(field)

This function determines the local maxima of the input array field

Parameters field (numpy.ndarray) – the input array

Returns a list containing the indices of the local maxima

Return type list

magic.bLayers.integBotTop(rad, field, ri, ro, lambdai, lambdao, normed=False)

This function evaluates the radial integral of the input array field in the bottom and top boundary layers separately.

Parameters

- rad (numpy.ndarray) radius
- **field** (*numpy.ndarray*) the input radial profile
- ri (float) the inner core radius
- **ro** (*float*) the outer core radius
- lambdai (float) thickness of the inner boundary layer
- lambdao (*float*) thickness of the outer boundary layer
- **normed** (*bool*) when set to True, the outputs are normalised by the volumes of the boundary layers. In that case, the outputs are volume-averaged quantities.

Returns two floats that contains the bottom and top boundary layers integrations (integBot, integTop)

Return type list

magic.bLayers.integBulkBc(rad, field, ri, ro, lambdai, lambdao, normed=False)

This function evaluates the radial integral of the input array field in the boundary layer and in the bulk separately.

Parameters

- rad (numpy.ndarray) radius
- **field** (*numpy.ndarray*) the input radial profile
- ri (float) the inner core radius
- **ro** (*float*) the outer core radius
- lambdai (*float*) thickness of the inner boundary layer
- lambdao (*float*) thickness of the outer boundary layer
- **normed** (*bool*) when set to True, the outputs are normalised by the volumes of the boundary layers and the fluid bulk, respectively. In that case, the outputs are volume-averaged quantities.

Returns two floats that contains the boundary layer and the bulk integrations (integBc, integBulk)

Return type list

```
class magic.ThetaHeat (iplot=False, angle=10, pickleName='thHeat.pickle')
```

This class allows to conduct some analysis of the latitudinal variation of the heat transfer. It relies on the movie files *ATmov.TAG* and *AHF_mov.TAG*. As it's a bit time-consuming, the calculations are stored in a python.pickle file to quicken future usage of the data.

This function can **only** be used when *bLayersR.TAG* exist in the working directory.

Since this function is supposed to use time-averaged quantities, the usual procedure is first to define the initial averaging time using AvgField: (this needs to be done only once)

```
>>> a = AvgField(tstart=2.58)
```

Once the tInitAvq file exists, the latitudinal heat transfer analysis can be done using:

```
>>> # For chunk-averages over 10^\degree in the polar and equatorial regions.
>>> th = ThetaHeat(angle=10)
>>> # Formatted output
>>> print(th)
```

__init__ (iplot=False, angle=10, pickleName='thHeat.pickle')

Parameters

- iplot (bool) a boolean to toggle the plots on/off
- **angle** (*float*) the integration angle in degrees

PickleName calculations a

```
__str__()
Formatted outputs
```

```
>>> th = ThetaHeat()
>>> print(th)
```

```
plot()
```

Plotting function

```
class magic.cyl.Cyl(ivar=1, datadir='.', ns=None)
```

This class allows to extrapolate a given graphic file on a cylindrical grid. Once done, the extrapolated file is

stored in a python.pickle file. It is then possible to display 2-D cuts of the extrapolated arrays (radial cuts, phi-averages, equatorial cuts, z-averages and phi-slices)

Warning: This process is actually **very demanding** and it might take a lot of time to extrapolate the G_#.TAG file. Be careful when choosing the input value of ns!

```
>>> # Extrapolate the G file to the cylindrical grid (ns=128, nz=2*ns)
>>> c = Cyl(ivar=1, ns=128)
>>> # Radial cut of v_r
>>> c.surf(field='vr', r=0.8)
>>> # Vertical average of B_\phi
>>> c.avgz(field='Bphi', cm='seismic', levels=33)
>>> # Azimuthal average of v_\phi
>>> c.avg(field='Bphi')
>>> c.avg(field='Bphi')
>>> # Equatorial cut of of v_theta
>>> c.equat(field='vtheta')
```

```
___init___(ivar=1, datadir='.', ns=None)
```

Parameters

- **ivar** (*int*) the number of the Graphic file
- datadir (str) working directory
- **ns** (*int*) number of grid points in the radial direction

avg (field='Bphi', levels=16, cm='RdYlBu_r', normed=True, vmax=None, vmin=None) Plot the azimutal average of a given field.

```
>>> c = Cyl(ns=65)
>>> # Azimuthal average of B_r
>>> c.avg(field='Br', cm='seismic', levels=33)
```

Parameters

- **field** (*str*) name of the input field
- **levels** (*int*) number of contour levels
- cm (str) name of the color map
- normed (bool) when set to True, the contours are normalised fro -max(field), max(field)
- **vmin** (*float*) truncate the contour levels to values > vmin
- vmax (float) truncate the contour levels to values < vmax

avgz (field='vs', levels=16, cm='RdYlBu_r', normed=True, vmin=None, vmax=None, avg=False)
Plot the vertical average of a given field.

```
>>> c = Cyl(ns=65)
>>> # Vertical average of v_s
>>> c.avg(field='vs', cm='seismic', levels=33)
```

- field (str) name of the input field
- **levels** (*int*) number of contour levels
- cm (str) name of the color map

- normed (bool) when set to True, the contours are normalised fro -max(field), max(field)
- **vmin** (*float*) truncate the contour levels to values > vmin
- vmax (float) truncate the contour levels to values < vmax
- avg (bool) when set to True, an additional figure with the phi-average profile is also displayed

equat (*field='vs'*, *levels=16*, *cm='RdYlBu_r'*, *normed=True*, *vmax=None*, *vmin=None*) Plot an input field in the equatorial plane.

```
>>> c = Cyl(ns=65)
>>> # Equatorial cut of v_\phi
>>> c.equat(field='vphi', cm='seismic', levels=33)
```

Parameters

- **field** (*str*) name of the input field
- **levels** (*int*) number of contour levels
- cm (str) name of the color map
- normed (bool) when set to True, the contours are normalised fro -max(field), max(field)
- **vmin** (*float*) truncate the contour levels to values > vmin
- vmax (float) truncate the contour levels to values < vmax

slice (*field='Bphi'*, *lon_0=0.0*, *levels=16*, *cm='RdYlBu_r'*, *normed=True*) Plot an azimuthal slice of a given field.

```
>>> c = Cyl(ns=65)
>>> # Slices of v_r at 30 and 60 degrees
>>> c.slice(field='vr', lon_0=[30, 60])
```

Parameters

- **field** (*str*) name of the input field
- lon_0 (*float or list*) the longitude of the slice in degrees, or a list of longitudes
- **levels** (*int*) number of contour levels
- cm (str) name of the color map
- normed (bool) when set to True, the contours are normalised fro -max(field), max(field)

Plot the surface distribution of an input field at a given input radius (normalised by the outer boundary radius).

```
>>> c = Cyl(ns=65)
>>> # Surface plot of B_\phi from -10 to 10
>>> c.surf(field='Bphi', r=0.6, vmin=-10, vmax=10, levels=65)
```

- **field** (str) name of the input field
- **r** (*float*) radial level (normalised to the outer boundary radius)

- **levels** (*int*) number of contour levels
- cm (str) name of the color map
- **normed** (*bool*) when set to True, the contours are normalised fro -max(field), max(field)
- **vmin** (*float*) truncate the contour levels to values > vmin
- vmax (float) truncate the contour levels to values < vmax

magic.cyl.sph2cyl(g, ns=None, nz=None)

This function interpolates the three flow (or magnetic field) component of a $G_{\#}.TAG$ file on a cylindrical grid of size (ns, nz).

Warning: This might be really slow!

Parameters

- **g** (magic.MagicGraph) input graphic output file
- **ns** (*int*) number of grid points in the radial direction
- nz (int) number of grid points in the vertical direction

Returns a python tuple of five numpy.ndarray (S,Z,vs,vp_cyl,vz). S[nz,ns] is a meshgrid that contains the radial coordinate. Z[nz,ns] is a meshgrid that contains the vertical coordinate. vs[nz,ns] is the radial component of the velocity (or magnetic field), vp_cyl[nz,ns] the azimuthal component and vz[nz,ns] the vertical component.

Return type tuple

magic.cyl.sph2cyl_plane(data, rad, ns, nz)

This function extrapolates a phi-slice of a spherical shell on a cylindrical grid

```
>>> # Read G_1.test
>>> gr = MagicGraph(ivar=1, tag='test')
>>> # phi-average v_\phi and s
>>> vpm = gr.vphi.mean(axis=0)
>>> sm = gr.entropy.mean(axis=0)
>>> # Interpolate on a cylindrical grid
>>> S, Z, outputs = sph2cyl_plane([vpm, sm], gr.radius, 512, 1024)
>>> vpm_cyl, sm_cyl = outputs
```

Parameters

- data (list(numpy.ndarray)) a list of 2-D arrays [(ntheta, nr), (ntheta, nr), ...]
- rad (numpy.ndarray) radius
- **ns** (*int*) number of grid points in s direction
- **nz** (*int*) number of grid points in z direction

Returns a python tuple that contains two numpy.ndarray and a list (S,Z,output). S[nz,ns] is a meshgrid that contains the radial coordinate. Z[nz,ns] is a meshgrid that contains the vertical coordinate. output=[arr1[nz,ns], ..., arrN[nz,ns]] is a list of the interpolated array on the cylindrical grid.

Return type tuple

 $\verb|magic.cyl.zavg| (input, radius, ns, minc, save=True, filename='vp.pickle', normed=True)|$

This function computes a z-integration of a list of input arrays (on the spherical grid). This works well for 2-D (phi-slice) arrays. In case of 3-D arrays, only one element is allowed (too demanding otherwise).

Parameters

- input (list(numpy.ndarray)) a list of 2-D or 3-D arrays
- radius (numpy.ndarray) spherical radius
- **ns** (*int*) radial resolution of the cylindrical grid (nz=2*ns)
- minc (int) azimuthal symmetry
- **save** (*bool*) a boolean to specify if one wants to save the outputs into a pickle (default is True)
- **filename** (*str*) name of the output pickle when save=True
- **normed** (*bool*) a boolean to specify if ones wants to simply integrate over z or compute a z-average (default is True: average)

Returns a python tuple that contains two numpy.ndarray and a list (height,cylRad,output) height[ns] is the height of the spherical shell for all radii. cylRad[ns] is the cylindrical radius. output=[arr1[ns], ..., arrN[ns]] contains the z-integrated output arrays.

Return type tuple

This class can be used to display the time evolution of the magnetic field for various latitudes (i.e. the well-known butterfly diagrams). These diagrams are usually constructed using MagIC's *movie files*: either radial cuts (like Br_CMB_mov.TAG) or azimuthal-average (like AB_mov.TAG).

add (new)

Overload of the addition operator

```
>>> # Read 2 files
>>> b1 = Butterfly(file='AB_mov.test1', iplot=False)
>>> b2 = Butterfly(file='AB_mov.test2', iplot=False)
>>> # Stack them and display the whole thing
>>> b = b1+b2
>>> b.plot(levels=33, contour=True, cut=0.8, cm='seismic')
```

__init__ (file=None, step=1, iplot=True, rad=0.8, lastvar=None, nvar='all', levels=20, cm='RdYlBu_r', precision='Float32', cut=0.8)

Parameters

- **file** (*str*) when specified, the constructor reads this file, otherwise a list with the possible options is displayed
- rad (*float*) radial level (normalised to the outer boundary radius)
- **iplot** (*bool*) display/hide the plots (default is True)
- **nvar** (*int*) the number of time steps (lines) of the movie file we want to plot starting from the last line
- **lastvar** (*int*) the number of the last time step to be read
- **step** (*int*) the stepping between two lines

- **levels** (*int*) the number of contour levels
- cm(str) the name of the color map
- cut (float) adjust the contour extrema to max(abs(data))*cut
- **precision** (*bool*) precision of the input file, Float32 for single precision, Float64 for double precision

fourier2D (renorm=False)

This function allows to conduct some basic Fourier analysis on the data. It displays two figures: the first one is a contour levels in the (Frequency, Latitude) plane, the second one is integrated over latitudes (thus a simple, power vs Frequency plot)

```
>>> # Load the data without plotting
>>> b1 = Butterfly(file='AB_mov.test1', iplot=False)
>>> # Fourier analysis
>>> b1.fourier2D()
```

Parameters renorm (*bool*) – when set to True, it rebins the time series in case of irregularly spaced data

```
plot (levels=12, contour=False, renorm=False, cut=0.5, mesh=3, cm='RdYlBu_R')
    Plotting function
```

Parameters

- cm (str) name of the colormap
- **levels** (*int*) the number of contour levels (only used when iplot=True and contour=True)
- **contour** (*bool*) when set to True, display contour levels (pylab.contourf), when set to False, display an image (pylab.imshow)
- renorm (bool) when set to True, it re-bins the time series in case of irregularly time-spaced data
- mesh (int) when renorm=True, factor of regriding: NewTime = mesh*OldTime
- cut (float) adjust the contour extrema to max(abs(data))*cut

9.3.16 Various useful functions

```
magic.libmagic.anelprof (radius, strat, polind, g0=0.0, g1=0.0, g2=1.0)

This functions calculates the reference temperature and density profiles of an anelastic model.
```

```
>>> rad = chebgrid(65, 1.5, 2.5)
>>> temp, rho, beta = anelprof(rad, strat=5., polind=2.)
```

Parameters

- radius (numpy.ndarray) the radial gridpoints
- polind (*float*) the polytropic index
- **strat** (*float*) the number of the density scale heights between the inner and the outer boundary
- **g0** (*float*) gravity profile: g=g0
- **g1** (*float*) gravity profile: g=g1*r/r_o

• **g2** (float) – gravity profile: $g=g2*(r_o/r)**2$

Returns a tuple that contains the temperature profile, the density profile and the log-derivative of the density profile versus radius

Return type (numpy.ndarray, numpy.ndarray, numpy.ndarray)

```
magic.libmagic.avgField(time, field, tstart)
```

This subroutine computes the time-average of a time series

```
>>> ts = MagicTs(field='misc', iplot=False, all=True)
>>> nuavg = avgField(ts.time, ts.topnuss, 0.35)
>>> print(nuavg)
```

Parameters

- time (numpy.ndarray) time
- **field** (*numpy.ndarray*) the time series of a given field
- **tstart** (*float*) the starting time of the averaging

Returns the time-averaged quantity

Return type float

```
magic.libmagic.chebgrid(nr, a, b)
```

This function defines a Gauss-Lobatto grid from a to b.

```
>>> r_icb = 0.5; r_cmb = 1.5; n_r_max=65
>>> rr = chebgrid(n_r_max, r_icb, r_cmb)
```

Parameters

- **nr** (*int*) number of radial grid points
- a (float) lower limit of the Gauss-Lobatto grid
- **b** (*float*) upper limit of the Gauss-Lobatto grid

Returns the Gauss-Lobatto grid

Return type numpy.ndarray

```
magic.libmagic.cut (dat, vmax=None, vmin=None)
```

This functions truncates the values of an input array that are beyond vmax or below vmin and replace them by vmax and vmin, respectively.

```
>>> # Keep only values between -1e3 and 1e3
>>> datNew = cut(dat, vmin=-1e3, vmax=1e3)
```

Parameters

- dat (numpy.ndarray) an input array
- vmax (float) maximum upper bound
- vmin (float) minimum lower bound

Returns an array where the values >=vmax have been replaced by vmax and the values <=vmin have been replaced by vmin

Return type numpy.ndarray

magic.libmagic.cylSder(radius, data)

This function computes the s derivative of an input array defined on a regularly-spaced cylindrical grid.

```
>>> s = linspace(0., 1., 129; dat = cos(s)
>>> ddatds = cylSder(s, dat)
```

Parameters

- radius (numpy.ndarray) cylindrical radius
- data (numpy.ndarray) input data

Returns s derivative

Return type numpy.ndarray

```
magic.libmagic.cylZder(z, data)
```

This function computes the z derivative of an input array defined on a regularly-spaced cylindrical grid.

```
>>> z = linspace(-1., 1., 129; dat = cos(z)
>>> ddatdz = cylZder(z, dat)
```

Parameters

- **z** (*numpy.ndarray*) height of the cylinder
- data (numpy.ndarray) input data

Returns z derivative

Return type numpy.ndarray

magic.libmagic.fast_read(file, skiplines=0, binary=False, precision='Float64')

This function reads an input ascii table (can read both formatted or unformatted fortran)

```
>>> # Read 'e_kin.test', skip the first 10 lines
>>> data = fast_read('e_kin.test', skiplines=10)
```

Parameters

- **file** (*str*) name of the input file
- **skiplines** (*int*) number of header lines to be skept during reading
- **binary** (*bool*) when set to True, try to read an unformatted binray Fortran file (default is False)
- **precision** (*str*) single ('Float32') or double precision ('Float64')

Returns an array[nlines, ncols] that contains the data of the ascii file

Return type numpy.ndarray

```
magic.libmagic.getCpuTime (file)
```

This function calculates the CPU time from one given log file

Parameters file (*file*) – the log file you want to analyze

Returns the total CPU time

Return type float

```
magic.libmagic.getTotalRunTime()
```

This function calculates the total CPU time of one run directory

Returns the total RUN time

Return type float

magic.libmagic.hammer2cart (ttheta, pphi, colat=False)

This function is used to define the Hammer projection used when plotting surface contours in magic. Surf

```
>>> # Load Graphic file
>>> gr = MagicGraph()
>>> # Meshgrid
>>> pphi, ttheta = mgrid[-N.pi:N.pi:gr.nphi*1j, N.pi/2.:-N.pi/2.:gr.ntheta*1j]
>>> x,y = hammer2cart(ttheta, pphi)
>>> # Contour plots
>>> contourf(x, y, gr.vphi)
```

Parameters

- ttheta (numpy.ndarray) meshgrid [nphi, ntheta] for the latitudinal direction
- pphi meshgrid [nphi, ntheta] for the azimuthal direction
- colat (numpy.ndarray) colatitudes (when not specified a regular grid is assumed)

Returns a tuple that contains two [nphi, ntheta] arrays: the x, y meshgrid used in contour plots

Return type (numpy.ndarray, numpy.ndarray)

```
magic.libmagic.intcheb (f, nr, z1, z2)
```

This function integrates an input function f defined on the Gauss-Lobatto grid.

```
>>> print(intcheb(f, 65, 0.5, 1.5))
```

Parameters

- **f** an input array
- **nr** (*int*) number of radial grid points
- **z1** (*float*) lower limit of the Gauss-Lobatto grid
- **z2** (*float*) upper limit of the Gauss-Lobatto grid

Type numpy.ndarray

Returns the integrated quantity

Return type float

```
magic.libmagic.matder (nr, z1, z2)
```

This function calculates the derivative in Chebyshev space.

```
>>> r_icb = 0.5; r_cmb = 1.5; n_r_max=65
>>> d1 = matder(n_r_max, r_icb, r_cmb)
>>> # Chebyshev grid and data
>>> rr = chebgrid(n_r_max, r_icb, r_cmb)
>>> f = sin(rr)
>>> # Radial derivative
>>> df = dot(d1, f)
```

Parameters

- **nr** (*int*) number of radial grid points
- **z1** (*float*) lower limit of the Gauss-Lobatto grid
- **z2** (*float*) upper limit of the Gauss-Lobatto grid

Returns a matrix of dimension (nr,nr) to calculate the derivatives

Return type numpy.ndarray

magic.libmagic.phideravg(data, minc=1, order=4)
phi-derivative of an input array

```
>>> gr = MagicGraph()
>>> dvphidp = phideravg(gr.vphi, minc=gr.minc)
```

Parameters

- data (numpy.ndarray) input array
- minc (int) azimuthal symmetry
- order (int) order of the finite-difference scheme (possible values are 2 or 4)

Returns the phi-derivative of the input array

Return type numpy.ndarray

```
magic.libmagic.progressbar(it, prefix='', size=60)
```

Fancy progress-bar for loops

```
for i in progressbar(range(1000000)):
    x = i
```

Parameters

- **prefix** (str) prefix string before progress bar
- **size** (*int*) width of the progress bar (in points of xterm width)

magic.libmagic.rderavg (data, eta=0.35, spectral=True, exclude=False)
Radial derivative of an input array

```
>>> gr = MagiGraph()
>>> dvrdr = rderavg(gr.vr, eta=gr.radratio)
```

Parameters

- data (numpy.ndarray) input array
- eta (float) aspect ratio of the spherical shell
- **spectral** (*bool*) when set to True use Chebyshev derivatives, otherwise use finite differences (default is True)
- **exclude** (*bool*) when set to True, exclude the first and last radial grid points and replace them by a spline extrapolation (default is False)

Returns the radial derivative of the input array

Return type numpy.ndarray

```
magic.libmagic.scanDir (pattern, tfix=None)
```

This function sorts the files which match a given input pattern from the oldest to the most recent one (in the current working directory)

```
>>> dat = scanDir('log.*')
>>> print(log)
```

Parameters

- pattern (str) a classical regexp pattern
- **tfix** (*float*) in case you want to add only the files that are more recent than a certain date, use tfix (computer 1970 format!!)

Returns a list of files that match the input pattern

Return type list

magic.libmagic.sderavg(data, eta=0.35, spectral=True, colat=None, exclude=False) s derivative of an input array

```
>>> gr = MagiGraph()
>>> dvpds = sderavg(gr.vphi, eta=gr.radratio, colat=gr.colatitude)
```

Parameters

- data (numpy.ndarray) input array
- eta (float) aspect ratio of the spherical shell
- **spectral** (*bool*) when set to True use Chebyshev derivatives, otherwise use finite differences (default is True)
- **exclude** (*bool*) when set to True, exclude the first and last radial grid points and replace them by a spline extrapolation (default is False)
- colat (numpy.ndarray) colatitudes (when not specified a regular grid is assumed)

Returns the s derivative of the input array

Return type numpy.ndarray

```
magic.libmagic.selectField(obj, field, labTex=True)
```

This function selects for you which field you want to display. It actually allows to avoid possible variables miss-spelling: i.e. 'Bphi'='bp'='Bp'='bphi'

Parameters

- obj (magic.MagicGraph) a graphic output file
- **field** (*str*) the name of the field one wants to select
- labTex (bool) when set to True, format the labels using LaTeX fonts

Returns a tuple that contains the selected physical field and its label

Return type (numpy.ndarray, str)

```
magic.libmagic.symmetrize(data, ms, reversed=False)
```

Symmetrise an array which is defined only with an azimuthal symmetry minc=ms

Parameters

• data (numpy.ndarray) – the input array

- **ms** (*int*) the azimuthal symmetry
- reversed (bool) set to True, in case the array is reversed (i.e. n_phi is the last column)

Returns an output array of dimension (data.shape[0]*ms+1)

Return type numpy.ndarray

magic.libmagic.thetaderavg(data, order=4)

Theta-derivative of an input array (finite differences)

```
>>> gr = MagiGraph()
>>> dvtdt = thetaderavg(gr.vtheta)
```

Parameters

- data (*numpy.ndarray*) input array
- order (int) order of the finite-difference scheme (possible values are 2 or 4)

Returns the theta-derivative of the input array

Return type numpy.ndarray

```
magic.libmagic.writeVpEq(par, tstart)
```

This function computes the time-averaged surface zonal flow (and Rolc) and format the output

```
>>> # Reads all the par.* files from the current directory
>>> par = MagicTs(field='par', iplot=False, all=True)
>>> # Time-average
>>> st = writeVpEq(par, tstart=2.1)
>>> print(st)
```

Parameters

- par (magic.MagicTs) a MagicTs object containing the par file
- **tstart** (*float*) the starting time of the averaging

Returns a formatted string

Return type str

magic.libmagic.zderavg(data, eta=0.35, spectral=True, colat=None, exclude=False) z derivative of an input array

```
>>> gr = MagiGraph()
>>> dvrdz = zderavg(gr.vr, eta=gr.radratio, colat=gr.colatitude)
```

Parameters

- data (numpy.ndarray) input array
- eta (float) aspect ratio of the spherical shell
- **spectral** (*bool*) when set to True use Chebyshev derivatives, otherwise use finite differences (default is True)
- **exclude** (*bool*) when set to True, exclude the first and last radial grid points and replace them by a spline extrapolation (default is False)
- colat (numpy.ndarray) colatitudes (when not specified a regular grid is assumed)

Returns the z derivative of the input array

Return type numpy.ndarray

CHAPTER

TEN

DESCRIPTION OF THE FORTRAN MODULES

The following pages contain an exhaustive description of the different variables, subroutines and modules used in MagIC. This documentation is automatically generated from the source code docstrings using the Sphinx extention for the Fortran domain.

Fortran modules

- 1. For the main program file magic.f90, see *here*.
- 2. For the core modules that contain most of the global variables, see *here*.
- 3. For the MPI related modules, see *here*.
- 4. For the code initialization and the pre-calculations done in the initial stage of the computation (before the time-stepping loop), see *here* and *there*.
- 5. For the time-stepping loop, see *here*.
- 6. For the calculation of the non-linear terms (in the physical space) and their time-advance, see here.
- 7. For the calculation of the linear terms (in spectral space) and their time-advance, see *here*.
- 8. For the Chebyshev, Fourier and Legendre transforms, see *here*.
- 9. For the computation of the radial derivatives (Chebyshev) and the integration, see *here*.
- 10. For the definition of the blocking, see *here*.
- 11. For the calculation of the standard outputs (time-series, spectra and radial files), see *here*.
- 12. For the calculation of binary outputs (graphic files, movie files, potential and coeff files), see *here*.
- 13. For the additional calculations of specific outputs (torsional oscillations, RMS force balance, etc.), see *here*.
- 14. For reading and writing the check points (restart files), see *here*.
- 15. For additional useful functions (string manipulation, HDF5 support, etc.), see here.

10.1 Main program magic.f90

program magic

A dynamic dynamo model driven by thermal convection in a rotating spherical fluid shell. This version can solve for both Boussinesq and anelastic fluids and non-dimensional variables are used throughout the whole code.

```
Use horizontal data,
                                  (initialize rms()),
                                                           output mod
   (initialize_output()),
                                              (finalize_movie_data(),
                               movie_data
   initialize_movie_data()),
                                                (initialize_lmloop()),
                                 lmloop mod
   lmloop data (initialize lmloop data()), init fields, precision mod,
   precalculations.
                          fields average mod,
                                                     magnetic energy,
                       (initialize_communications()),
   communications
   parallel_mod, step_time_mod (step_time(), initialize_step_time()),
   num_param, physical_parameters, radial_functions, output_data,
```

```
constants (codeversion()), truncation, fieldslast, egeos_mod, fields,
   spectra (initialize_spectra()), dtb_mod (initialize_dtb_mod()),
   radial data (initialize radial data()), radialloop, outpar mod
   (initialize_outpar_mod()), logic, outpv3 (initialize_outpv3()),
   start fields(getstartfields())
Call to parallel(),
                  walltime(), writetime(), readnamelists(),
   openfiles(),
   initialize_blocking(),
                                         initialize_radial_data(),
   initialize_radial_functions(),
                                        initialize_radialloop(),
   initialize_lmloop_data(),
                                               initialize_lmloop(),
   initialize_num_param(), initialize_to(), initialize_outto_mod(),
                                           initialize_grenoble(),
   initialize_init_fields(),
  initialize_init_ireius(),
initialize_horizontal_data(),
initialize_fields(),
initialize_dtb_mod(),
initialize_kinetic_energy(),
  initialize_magnetic_energy(), initialize_fields_average_mod(),
   initialize_egeos_mod(), initialize_spectra(), initialize_outpv3(),
   initialize_step_time(),
                                       initialize_communications(),
   initialize_outpar_mod(), initialize_output_power(), precalc(),
```

getstartfields(), precalctimes(), writeinfo(), step_time(),

(initialize_output_power()), namelists, outto_mod

initialize rms(), writenamelists(),

(initialize_outto_mod()), torsional_oscillations, timing
(writetime(), walltime()), kinetic energy, matrices, blocking,

10.2 Base modules

10.2.1 precision.f90

Description

This module controls the precision used in MagIC

initialize movie data(),

finalize movie data(), closefiles()

Quick access

```
Variables sizeof_character, sizeof_integer, mpi_def_complex, mpi_out_real, mpi_def_real, lip, cp, outp, sizeof_def_complex, sizeof_out_real, sizeof_def_real
```

Needed modules

• mpi

Variables

- precision_mod/outp [integer,parameter=selected_real_kind(6)/public]
- precision_mod/mpi_out_real [integer,parameter=mpi_real4/public]

- precision_mod/sizeof_integer[integer,parameter=4/public]
- precision_mod/sizeof_character[integer,parameter=1/public]
- precision_mod/mpi_def_complex [integer,parameter=mpi_complex16/public]
- precision_mod/mpi_def_real [integer,parameter=mpi_real8/public]
- precision_mod/sizeof_def_real [integer,parameter=8/public]
- precision_mod/sizeof_out_real [integer,parameter=4/public]
- precision_mod/lip[integer,parameter=selected_int_kind(12)/public]
- precision_mod/cp [integer,parameter=selected_real_kind(15)/public]
- precision_mod/sizeof_def_complex [integer,parameter=16/public]

10.2.2 truncation.f90

Description

This module defines the grid points and the truncation

Quick access

Variables ncp, ncpgeos, 1_maxmag, 1m_maxmag, 1geos, 1avemem, 1magmem, 1dtbmem, 1moviemem, 1stressmem, n_r_ic_max_dtb, n_r_ic_max_ave, nrpgeos, 1m_maxgeos, 1m_max_dtb, 1mp_max_dtb, 1m_max_ave, n_phi_maxstr, n_r_maxgeos, n_r_max_dtb, n_r_maxstr, n_r_max_ave, n_r_ic_maxmag, n_r_maxmag, n_theta_maxstr, n_phi_max, minc, nalias, nrp, 1_max, n_cheb_max, n_m_max, m_max, n_r_totmag, n_cheb_ic_max, n_r_ic_max, 1m_max_real, 1mp_max, 1m_max, n_phi_tot, n_r_max, n_theta_max, n_r_tot

Routines checktruncation(), initialize_truncation()

Variables

- truncation/n_r_ic_max [integer]
 number of grid points in inner core
- truncation/1_max [integer] max degree of Plms
- truncation/minc[integer]
 basic wavenumber, longitude symmetry
- truncation/n_cheb_ic_max [integer] number of chebs in inner core
- truncation/lstressmem[integer]

 Memory for stress output
- truncation/**lgeos** [integer]

 Memory for Geostrophic output
- truncation/n_r_maxmag [integer]
 Number of radial points to calculate magnetic field

- truncation/n_phi_maxstr [integer]
 Number of phi points for stress output
- truncation/n_theta_max [integer] number of theta grid-points
- truncation/lm_maxmag [integer]

 Max. number of l/m combinations for magnetic field calculation
- truncation/**nrp** [integer] dimension of phi points in for real/complex arrays
- truncation/n_r_max_ave [integer]

 Number of radial points for time average
- truncation/ldtbmem[integer]

 Memory for movie output
- truncation/**lm_maxgeos** [integer]

 Number of l/m combinations for Geostrophic output
- truncation/nrpgeos [integer]
 Number of cyl. radial points for Geostrophic output
- truncation/n_r_max [integer] number of radial grid points
- truncation/n_theta_maxstr [integer]

 Number of theta points for stress output
- truncation/**lmoviemem** [integer]

 Memory for movies
- truncation/nalias [integer] controls dealiasing in latitude and
- truncation/n_r_maxgeos [integer]

 Number of radial points for Geostrophic output
- truncation/n_r_tot [integer]
 total number of radial grid points
- truncation/ncp [integer]
- truncation/lmp_max_dtb [integer]

 Number of l/m combinations for movie output if l runs to l_max+1
- truncation/lmp_max [integer]
 number of l/m combination if l runs to l max+1
- truncation/n_m_max [integer]
 max number of ms (different oders)
- truncation/m_max [integer]
 max order of Plms
- truncation/lm_max[integer] number of l/m combinations
- truncation/lavemem[integer]

 Memory for calculating time averages
- truncation/lm_max_ave [integer]

 Number of I/m combinations for time average

- truncation/n_r_ic_max_ave [integer]
 Number of IC radial points for time average
- truncation/n_phi_tot [integer] number of longitude grid points
- truncation/lm_max_real [integer]
 number of l/m combination for real representation (cos/sin)
- truncation/n_r_ic_maxmag [integer]

 Number of radial points to calculate IC magnetic field
- truncation/n_r_maxstr[integer]

 Number of radial points for stress output
- truncation/ncpgeos [integer]
- truncation/n_phi_max [integer] absolute number of phi grid-points
- truncation/n_r_ic_max_dtb [integer]
 Number of IC radial points for movie output
- truncation/n_r_max_dtb [integer]

 Number of radial points for movie output
- truncation/1_maxmag [integer]
 Max. degree for magnetic field calculation
- truncation/lm_max_dtb [integer]
 Number of l/m combinations for movie output
- truncation/n_r_totmag[integer]
 n_r_maxMag + n_r_ic_maxMag
- truncation/n_cheb_max [integer] max degree-1 of cheb polynomia
- truncation/**lmagmem** [integer]

 Memory for magnetic field calculation

Subroutines and functions

subroutine truncation/initialize_truncation()

Called from readnamelists()

subroutine truncation/checktruncation()

This function checks truncations and writes it into STDOUT and the log-file. MPI: called only by the processor responsible for output !

Called from magic

10.2.3 num_param.f90

Description

Module containing numerical and control parameters

Quick access

Variables n_lscale, n_tscale, ldif, ldifexp, n_cour_step, n_time_steps, istop, amstart, pscale, difeta, difkap, difnu, enscale, escale, dtstart, lscale, dtmax, runtimelimit, dtmin, tend, timestart, runtime, tscale, intfac, alffac, courfac, vscale, runtimestart, alpha, delxh2, delxr2

Routines initialize_num_param()

Needed modules

- precision_mod: This module controls the precision used in MagIC
- truncation (n_r_max()): This module defines the grid points and the truncation

Variables

- num_param/amstart [real,public]
- num_param/n_time_steps [integer,public]
 Total number of time steps requested in the name list
- num_param/difnu [real,public]
 Amplitude of viscous hyperdiffusion
- num_param/timestart [real,public]
 Numerical time where run should start
- num_param/dtmin [real,public]

 Minimum allowed time step
- num_param/delxr2 (:) [real,allocatable/public]
- num_param/ldifexp[integer,public]
 Exponent for hyperdiffusion function
- num_param/difkap [real,public]
 Amplitude of thermal hyperdiffusion
- num_param/dtstart [real,public]
 Initial time step if start solution is initialized
- num_param/n_lscale [integer,public]
 Control length scale
- num_param/tend[real,public]

 Numerical time where run should end
- num_param/runtimelimit (4) [integer,public]

 Maximum running time
- num_param/istop [integer,public]
 Variable used in FFT soubroutine
- num_param/ldif [integer,public]

 Degree where hyperdiffusion starts to act
- num_param/alffac [real,public]
 Value to scale Alfen-velocity in courant criteria

- num_param/vscale [real,public]
 Velocity scale
- num_param/escale [real,public]
 Energy scale
- num_param/delxh2 (:) [real,allocatable/public]
- num_param/courfac [real,public]

 Value to scale velocity in courant criteria
- num_param/tscale [real,public]
 Time scale
- num_param/dtmax [real,public]

 Maximum allowed time step
- num_param/alpha [real,public]
 Weight for implicit time step
- num_param/n_tscale [integer,public]
 Control time scale
- num_param/pscale [real,public]
- num_param/runtimestart (4) [integer,public]
 Wall clock time of start of the run
- num_param/difeta[real,public]
 Amplitude of magnetic hyperdiffusion
- num_param/enscale [real,public]
 Energies scale
- num_param/n_cour_step [integer,public]
 Step for controlling Courant criteria
- num_param/intfac[real,public]

 Value to re-scale dtMax during simulation
- num_param/runtime (4) [integer,public]
 Running time
- num_param/lscale [real,public]
 Length scale

Subroutines and functions

subroutine num_param/initialize_num_param()

Called from magic

10.2.4 phys_param.f90

Description

Module containing the physical parameters

Quick access

Variables kbotb, kbots, kbotv, ktops, imps, n_imps, imagcon, ktopb, mode, n_r_lcr, nvareps, nvarcond, nvardiff, nvarvisc, ktopv, interior_model, ekscaled, rascaled, epss, dissnb, ek, con_lambdamatch, epsc0, lffac, opr, corfac, opm, o_sr, conductance_ma, r_cut_model, pr, ohmlossfac, vischeatfac, r_lcr, buofac, ra, epsc, rho_ratio_ic, rho_ratio_ma, g2, g0, g1, con_decrate, difexp, tmagcon, con_radratio, sigma_ratio, radratio, prmag, con_funcwidth, con_lambdaout, strat, polind, cmbhflux, slopestrat, n_imps_max, peaks, phis, thetas, widths

Needed modules

• precision_mod: This module controls the precision used in MagIC

Variables

- physical_parameters/n_imps [integer]
 Heat boundary condition
- physical_parameters/lffac[real]
 Inverse of Pr*Ekman
- physical_parameters/**ek** [real] Ekman number
- physical_parameters/**ktopb** [integer]

 Magnetic boundary condition
- physical_parameters/**strat** [real] number of density scale heights
- physical_parameters/polind[real] polytropic index
- physical_parameters/**epsc0** [real]
 Internal heat source magnitude
- physical_parameters/**vischeatfac** [real]
 Prefactor for viscous heating: Di Pr/Ra
- physical_parameters/ktopv [integer]
 Velocity boundary condition
- physical_parameters/con_decrate [real] Slope of electrical conductivity profile (nVarCond=2)
- physical_parameters/dissnb [real]
 Dissipation number
- physical_parameters/ktops [integer]
 Entropy boundary condition
- physical_parameters/**opm** [real]
 Inverse of magnetic Prandtl number
- physical_parameters/rho_ratio_ic [real]
 Same density as outer core

- physical_parameters/conductance_ma [real]
 OC conductivity
- physical_parameters/peaks (20) [real]
- physical_parameters/**pr**[real]
 Prandtl number
- physical_parameters/con_lambdamatch [real]
 Electrical conductivity at con RadRatio (nVarCond=2)
- physical_parameters/cmbhflux [real] stratified Layer
- physical_parameters/**sigma_ratio** [real] Value of IC rotation
- physical_parameters/epsc[real]
 Renormalisation of epsc0
- physical_parameters/**r_cut_model** [real]

 Percentage on the inner part of the interior model to be used
- physical_parameters/ra [real]
 Rayleigh number
- physical_parameters/n_r_lcr [integer]

 Number of radial points where conductivity is zero
- physical_parameters/o_sr[real]
 Inverse of sigma_ratio
- physical_parameters/rho_ratio_ma [real]
 Same density as outer core
- physical_parameters/corfac[real]
 Inverse of ekScaled
- physical_parameters/ohmlossfac [real] Prefactor for Ohmic heating: $Di Pr/(Ra E Pm^2)$
- physical_parameters/mode [integer]
 Mode of calculation
- physical_parameters/thetas(20)[real]
- physical_parameters/buofac [real]
 Ratio of Rayleigh number over Prandtl number
- physical_parameters/kbots[integer]
- physical_parameters/ $\mathbf{g2}$ [real] Set to 1.0 for $1/r^2$ gravity
- physical_parameters/**g1** [real] Set to 1.0 for linear gravity
- physical_parameters/**g0** [real] Set to 1.0 for constant gravity
- physical_parameters/radratio [real] aspect ratio
- physical_parameters/con_funcwidth [real]
 nVarCond=1

```
• physical_parameters/kbotb [integer]
• physical_parameters/nvareps[integer]
      Selection of internal heating profile
• physical_parameters/con_radratio [real]
      Transition between branches of electrical conductivity profile (nVarCond=1,2)
• physical_parameters/slopestrat [real]
      stratified Layer
• physical_parameters/nvarvisc[integer]
      Selection of variable viscosity profile
• physical_parameters/n_imps_max [integer,parameter=20]
      Heat boundary condition
• physical_parameters/imps[integer]
      Heat boundary condition
• physical_parameters/prmag[real]
      magnetic Prandtl number
• physical_parameters/r_lcr [real]
      Radius beyond which conductivity is zero
• physical_parameters/difexp[real]
      Thermal diffusivity variation
• physical_parameters/nvardiff[integer]
      Selection of variable diffusivity profile
• physical_parameters/con_lambdaout [real]
      nVarCond=1
• physical_parameters/opr [real]
      Inverse of Prandtl number
• physical_parameters/kbotv[integer]
• physical_parameters/epss[real]
      Deviation from the adiabat
• physical_parameters/phis (20) [real]
• physical_parameters/imagcon[integer]
      Imposed magnetic field for magnetoconvection, at the boundaries
• physical parameters/widths (20) [real]
• physical_parameters/interior_model [character]
      name of the interior model
• physical_parameters/nvarcond[integer]
      Selection of variable conductivity profile
• physical_parameters/ekscaled[real]
      E l^2
• physical_parameters/rascaled[real]
```

 $Ra l^3$

physical_parameters/tmagcon [real]
 Time for magnetoconvection calculation

10.2.5 logic.f90

Description

Module containing the logicals that control the run

Quick access

```
Variables 1_pressgraph, 1_cmb_field, 1_dt_cmb_field, 1_corrmov, 1_rms, 1_tomovie, 1_to, 1_runtimelimit, 1_par, 1_anel, 1_anelastic_liquid, 1_am, 1_perppar, 1_fluxprofs, 1_average, 1_cond_ic, 1_cond_ma, 1_correct_amz, 1_correct_ame, 1verbose, 1_viscbccalc, 1_drift, 1_dtbmovie, 1_ht, 1_htmovie, 1_hel, 1_iner, 1_isothermal, 1_rmagspec, 1_dtrmagspec, 1_b_n1_icb, 1_b_n1_cmb, 1_newmap, 1_pv, 1_power, 1_r_fieldt, 1_r_field, 1_movie, 1_movie_ic, 1_movie_oc, 1_z10mat, 1_storepot, 1_storetpot, 1_storebpot, 1_store_frame, 1_storevpot, 1_time_hits, 1_true_time, 1_lcr, 1_rot_ic, 1_mag_lf, 1_rot_ma, 1_conv, 1_update_s, 1_heat, 1_update_b, 1_mag, 1_conv_n1, 1_heat_n1, 1_mag_n1, 1_save_out, 1_corr, 1_update_v, 1_mag_kin, 1_non_rot, 1_dtb, 1_sric, 1_srma
```

Variables

- logic/l_time_hits [logical]
 Switch for time for outputs
- logic/l_to [logical]
 Switch for TO output in TOnhs.TAG, TOshs.TAG
- logic/l_dtrmagspec [logical]
 Switch for magnetic spectra at different depths at movie output times
- logic/l_lcr [logical]
 Switch for zero electrical conductivity beyond r_LCR
- logic/**1_dtbmovie** [logical]
 Switch for dtB movie
- logic/lverbose [logical]
 Switch for detailed information about run progress
- logic/l_correct_amz [logical]
 Switch for correction of axial angular momentum
- logic/l_correct_ame [logical]
 Switch for correction of equatorial angular mom.
- logic/l_pv [logical]
 Switch for potential vorticity calculation
- logic/**1_heat** [logical]
 Switch off heat terms calculation
- logic/l_srma [logical]
 Switch to rotating OC with prescribed rot. rate
- logic/l_mag_lf [logical]
 Switch off Lorentz force term

• logic/l_perppar [logical]

Switch for calculation of of kinetic energy perpendicular+parallel to the rotation axis

• logic/l_sric[logical]

Switch to rotating IC with prescribed rot. rate

• logic/l_mag[logical]

Switch off magnetic terms calculation

• logic/l_non_rot [logical]

Switch to non-rotating

• logic/l_update_b [logical]

Switch off magnetic field update

• logic/l_r_fieldt [logical]

Switch for radial T coefficients

• logic/l_average [logical]

Switch for calculation of time-averages

• logic/l_update_v[logical]

Switch off velocity field update

• logic/l_cond_ic[logical]

Switch for conducting IC

• logic/l_update_s [logical]

Switch off entropy update

• logic/l_storevpot [logical]

Switch for storing velocity field potentials

• logic/**l_am** [logical]

Switch for angular momentum calculation

• logic/l_storebpot [logical]

Switch for storing magnetic field potentials

• logic/l_viscbccalc[logical]

Switch for dissipation layer for stress-free BCs plots

• logic/l_conv [logical]

Switch off convection

• logic/l_pressgraph [logical]

Store pressure in graphic files

• logic/l_true_time [logical]

Switch for times of outputs

• logic/l_movie_ic [logical]

Switch for recording of movie files for IC

• logic/l_store_frame [logical]

Switch for storing movie frames

• logic/l_isothermal[logical]

Switch for isothermal calculation

• logic/l_mag_nl [logical]

Switch off non-linear magnetic terms calculation

• logic/l_z10mat [logical]

Switch for solid body rotation

• logic/l_rmagspec [logical]

Switch for magnetic spectra at different depths at log times

• logic/l_drift [logical]

Switch for drift rates calculation

• logic/l dt cmb field[logical]

Switch for Bcoef files for secular variation of gauss coefs.

• logic/l_hel [logical]

Switch for helicity calculation, output in misc.TAG

• logic/l_corrmov [logical]

Switch for North/south correlation movie (see s_getEgeos.f)

• logic/l_newmap [logical]

Switch for non-linear mapping (see Bayliss and Turkel, 1990)

• logic/l_storetpot [logical]

Switch for storing entropy field potentials

• logic/l_cond_ma [logical]

Switch for conducting OC

• logic/l_save_out [logical]

Switch off outputs

• logic/l_rot_ic [logical]

Switch off IC rotation

• logic/l_anelastic_liquid[logical]

Switch for anelastic liquid calculation

• logic/l_b_nl_icb [logical]

Switch for non-linear magnetic field at IC

• logic/l_conv_nl [logical]

Switch off non-linear convection terms

• logic/l_htmovie [logical]

Switch for heat flux movie output

• logic/l_movie [logical]

Switch for recording of movie files

• logic/l anel[logical]

Switch for anelastic calculation

• logic/l_runtimelimit [logical]

Switch for absolute time limit of the run

• logic/l_fluxprofs [logical]

Switch for calculation of radial profiles of flux contributions

• logic/l_movie_oc[logical]

Switch for recording of movie files for OC

• logic/l_cmb_field[logical]

Switch for Booef files for gauss coefficients

- logic/l_mag_kin [logical]
 Switch related for kinematic dynamo
- logic/l_heat_nl [logical]
 Switch off non-linear heat terms calculation
- logic/l_iner [logical]
 Switch for inertial modes calculation
- logic/l_rot_ma [logical]
 Switch off OC rotation
- logic/l_ht [logical]
 Switch for heat flux movie frame output
- logic/**1_storepot** [logical]
 Switch for storing all field potentials
- logic/l_tomovie [logical]
 Switch for TO movie output
- logic/l_power [logical]
 Switch for power budget terms calculation
- logic/l_dtb [logical]
 Switch to reserve memory for dtB movie
- logic/l_par [logical]
 Switch for additional parameters calculation in s getEgeos.f
- logic/l_b_nl_cmb [logical]
 Switch for non-linear magnetic field at OC
- logic/l_rms [logical]
 Switch for RMS force balances calculation
- logic/l_r_field [logical]
 Switch for radial coefficients
- logic/l_corr [logical]
 Switch off rotation

10.2.6 fields.f90

Description

This module contains the potential fields and their radial derivatives

Quick access

Variables omega_ic, omega_ma, aj, aj_ic, aj_ic_lmloc, b, b_ic, b_ic_lmloc, db, db_ic, db_ic_lmloc, ddb, ddb_ic, ddb_ic_lmloc, ddj, ddj_ic, ddj_ic_lmloc, ddw, dj, dj_ic, dj_ic_lmloc, dp, ds, dw, dz, p, s, w, z, aj_lmloc, aj_rloc, b_lmloc, b_rloc, db_lmloc, db_rloc, ddb_lmloc, ddb_rloc, ddj_lmloc, ddw_lmloc, ddw_rloc, dj_lmloc, dj_rloc, dp_lmloc, dp_rloc, ds_lmloc, ds_rloc, dw_lmloc, dw_rloc, dz_lmloc, dz_rloc, p_lmloc, p_rloc, s_lmloc, s_rloc, w_lmloc, w_rloc, z_lmloc, z_rloc, aj_lmloc_container, aj_rloc_container, b_lmloc_container,

```
b\_rloc\_container, \qquad p\_lmloc\_container, \qquad p\_rloc\_container, \\ s\_lmloc\_container, \qquad s\_rloc\_container, \qquad w\_lmloc\_container, \\ w\_rloc\_container, z\_lmloc\_container, z\_rloc\_container
```

Routines initialize_fields()

Needed modules

- precision_mod: This module controls the precision used in MagIC
- parallel_mod (rank ()): This module contains the blocking information
- radial_data(nrstart(), nrstop())
- lmloop_data(ulmmag(), llmmag(), llm(), ulm())
- truncation (lm_max(), lm_maxmag(), n_r_ic_maxmag(), n_r_max(), n_r_maxmag()): This module defines the grid points and the truncation

Variables

- fields/aj_lmloc(:,:) [complex,pointer/public]
- fields/ddj_ic(:,:) [complex,allocatable/public]
- fields/ddw_rloc(:,:) [complex,pointer/public]
- fields/ddw_lmloc(:,:) [complex,pointer/public]
- fields/b_lmloc(:,:) [complex,pointer/public]
- fields/dj_lmloc(:,:) [complex,pointer/public]
- fields/p_rloc(:,:) [complex,pointer/public]
- fields/aj_lmloc_container(:,:,:) [complex,target/allocatable/public]
- fields/db_lmloc(:,:) [complex,pointer/public]
- fields/s_lmloc(:,:) [complex,pointer/public]
- fields/**b_ic**(:,:) [complex,allocatable/public]
- fields/**z_rloc**(:,:) [complex,pointer/public]
- fields/dj_rloc(:,:) [complex,pointer/public]
- fields/**p_lmloc**(:,:) [complex,pointer/public]
- fields/dw_lmloc(:,:) [complex,pointer/public]
- fields/dp_lmloc(:,:) [complex,pointer/public]
- fields/dj_ic_lmloc(:,:) [complex,allocatable/public]
- fields/ddb_ic(:,:) [complex,allocatable/public]
- fields/dj(:,:) [complex,allocatable/public]
- fields/s_lmloc_container(:,:,:) [complex,target/allocatable/public]
- fields/db(:,:) [complex,allocatable/public]
- fields/aj_ic_lmloc(:,:) [complex,allocatable/public]
- fields/dz (:,:) [complex,allocatable/public]

- fields/**z_lmloc**(:,:) [complex,pointer/public]
- fields/dz_rloc(:,:) [complex,pointer/public]
- fields/dw (:,:) [complex,allocatable/public]
- fields/w_lmloc(:,:) [complex,pointer/public]
- fields/ds (:,:) [complex,allocatable/public]
- fields/**dp**(:,:) [complex,allocatable/public]
- fields/b(:,:) [complex,allocatable/public]
- fields/ddj_ic_lmloc(:,:) [complex,allocatable/public]
- fields/ddb_rloc(:,:) [complex,pointer/public]
- fields/db_rloc(:,:) [complex,pointer/public]
- fields/w_rloc(:,:) [complex,pointer/public]
- fields/p(:,:) [complex,allocatable/public]
- fields/w_rloc_container(:,:,:) [complex,target/allocatable/public]
- fields/z(:,:) [complex,allocatable/public]
- fields/s_rloc_container(:,:,:) [complex,target/allocatable/public]
- fields/aj_rloc_container(:,:,:) [complex,target/allocatable/public]
- fields/aj_ic(:,:) [complex,allocatable/public]
- fields/aj(:,:) [complex,allocatable/public]
- fields/dw_rloc(:,:) [complex,pointer/public]
- fields/dp_rloc(:,:) [complex,pointer/public]
- fields/s_rloc(:,:) [complex,pointer/public]
- fields/ddb_lmloc(:,:) [complex,pointer/public]
- fields/w_lmloc_container(:,:,:) [complex,target/allocatable/public]
- fields/ds_lmloc(:,:) [complex,pointer/public]
- fields/b_rloc_container(:,:,:) [complex,target/allocatable/public]
- fields/ddb_ic_lmloc(:,:) [complex,allocatable/public]
- fields/ddw (:,:) [complex,allocatable/public]
- fields/**ddj**(:,:) [complex,allocatable/public]
- fields/ddb (:,:) [complex,allocatable/public]
- fields/db_ic_lmloc(:,:) [complex,allocatable/public]
- fields/**db_ic**(:,:) [complex,allocatable/public]
- fields/dj_ic(:,:) [complex,allocatable/public]
- fields/p_rloc_container(:,:,:) [complex,target/allocatable/public]
- fields/**z_lmloc_container** (:,:,:) [complex,target/allocatable/public]
- fields/omega_ic[real,public]
- fields/p_lmloc_container(:,:,:) [complex,target/allocatable/public]

- fields/ds_rloc(:,:) [complex,pointer/public]
- fields/omega_ma[real,public]
- fields/b_lmloc_container(:,:,:) [complex,target/allocatable/public]
- fields/aj_rloc(:,:) [complex,pointer/public]
- fields/b_ic_lmloc(:,:) [complex,allocatable/public]
- fields/b_rloc(:,:) [complex,pointer/public]
- fields/**z_rloc_container**(:,:,:) [complex,target/allocatable/public]
- fields/s(:,:) [complex,allocatable/public]
- fields/ddj_lmloc(:,:) [complex,pointer/public]
- fields/w(:,:) [complex,allocatable/public]
- fields/dz_lmloc(:,:) [complex,pointer/public]

Subroutines and functions

10.2.7 dt fieldsLast.f90

Description

This module contains time-derivaties array of the previous time-step They are needed in the time-stepping scheme.

The variables labeled with a suffix 'Last' are provided by the restart file for the first time step or calculated here or by the update routines for the following time step. These fields remain in the LM-distributed space

Quick access

```
Variables d_omega_ic_dtlast, d_omega_ma_dtlast, lorentz_torque_iclast, lorentz_torque_malast, dbdt_iclast, dbdt_iclast_lmloc, dbdtlast, dbdtlast_lmloc, djdt_iclast, djdt_iclast_lmloc, djdtlast, djdtlast_lmloc, dpdtlast, dpdtlast_lmloc, dsdtlast, dsdtlast_lmloc, dwdtlast, dwdtlast_lmloc, dzdtlast, dzdtlast_lo
```

 $Routines \ \textit{initialize_fieldslast()}$

Needed modules

- precision_mod: This module controls the precision used in MagIC
- parallel_mod (rank ()): This module contains the blocking information
- lmloop_data(ulmmag(), llmmag(), llm(), ulm())
- truncation (lm_max(), lm_maxmag(), n_r_ic_maxmag(), n_r_max(), n_r_maxmag()): This module defines the grid points and the truncation

Variables

- fieldslast/dbdt_iclast_lmloc(:,:) [complex,allocatable/public]
- fieldslast/djdtlast_lmloc(:,:) [complex,allocatable/public]
- fieldslast/dpdtlast(:,:) [complex,allocatable/public]
- fieldslast/dpdtlast_lmloc(:,:) [complex,allocatable/public]
- fieldslast/lorentz_torque_malast [real,public]
- fieldslast/djdt_iclast(:,:) [complex,allocatable/public]
- fieldslast/dsdtlast(:,:) [complex,allocatable/public]
- fieldslast/dwdtlast_lmloc(:,:) [complex,allocatable/public]
- fieldslast/dzdtlast(:,:) [complex,allocatable/public]
- fieldslast/dzdtlast_lo(:,:) [complex,allocatable/public]
- fieldslast/lorentz_torque_iclast [real,public]
- fieldslast/djdt_iclast_lmloc(:,:) [complex,allocatable/public]
- fieldslast/d_omega_ma_dtlast [real,public]
- fieldslast/djdtlast(:,:) [complex,allocatable/public]
- fieldslast/d_omega_ic_dtlast [real,public]
- fieldslast/dbdtlast(:,:) [complex,allocatable/public]
- fieldslast/dsdtlast_lmloc(:,:) [complex,allocatable/public]
- fieldslast/dbdtlast_lmloc(:,:) [complex,allocatable/public]
- fieldslast/dbdt_iclast(:,:) [complex,allocatable/public]
- fieldslast/dwdtlast(:,:) [complex,allocatable/public]

Subroutines and functions

```
\begin{array}{c} \textbf{subroutine} \ \texttt{fieldslast/initialize\_fieldslast} \ () \\ \textbf{Memory allocation} \end{array}
```

Called from magic

10.2.8 mat. f90

Description

This module contains matricies for internal time step

Quick access

Variables 1z10mat, 1bmat, 1smat, 1wpmat, 1zmat, p0pivot, s0pivot, z10pivot, bpivot, jpivot, spivot, wppivot, zpivot, s0mat_fac, z10mat_fac, bmat_fac, jmat_fac, p0mat, s0mat, smat_fac, z10mat, zmat_fac, bmat, jmat, smat, wpmat, wpmat_fac, zmat

```
Routines initialize_matrices()
```

Needed modules

- precision_mod: This module controls the precision used in MagIC
- truncation(n_r_totmag(), 1_max(), 1_maxmag(), n_r_max(), n_r_tot()): This module defines the grid points and the truncation

Variables

- matrices/jpivot(:,:) [integer,allocatable/public]
- matrices/lbmat (:) [logical,allocatable/public]
- matrices/**smat** (:,:,:) [real,allocatable/public]
- matrices/zmat(:,:,:) [real,allocatable/public]
- matrices/p0pivot (:) [integer,allocatable/public]
- matrices/smat_fac(:,:) [real,allocatable/public]
- matrices/lz10mat [logical,public]
- matrices/z10mat_fac(:) [real,allocatable/public]
- matrices/jmat_fac(:,:) [real,allocatable/public]
- matrices/s0mat(:,:) [real,allocatable/public]
- matrices/lsmat(:)[logical,allocatable/public]
- matrices/lwpmat (:) [logical,allocatable/public]
- matrices/s0pivot (:) [integer,allocatable/public]
- matrices/lzmat(:)[logical,allocatable/public]
- matrices/wpmat_fac(:,:,:) [real,allocatable/public]
- matrices/wppivot (:,:) [integer,allocatable/public]
- matrices/p0mat(:,:) [real,allocatable/public]
- matrices/**zmat_fac**(:,:) [real,allocatable/public]
- matrices/bpivot (:,:) [integer,allocatable/public]
- matrices/bmat_fac(:,:) [real,allocatable/public]
- matrices/bmat(:,:,:) [real,allocatable/public]
- matrices/wpmat (:,:,:) [real,allocatable/public]
- matrices/**z10pivot** (:) [integer,allocatable/public]
- matrices/jmat(:,:,:) [real,allocatable/public]
- matrices/**zpivot** (:,:) [integer,allocatable/public]
- matrices/s0mat_fac(:)[real,allocatable/public]
- matrices/**z10mat** (:,:) [real,allocatable/public]
- matrices/**spivot** (:,:) [integer,allocatable/public]

Subroutines and functions

subroutine matrices/initialize_matrices()

Called from magic

10.2.9 output_data.f90

Description

This module contains the parameters for output control

Quick access

Variables graph_mpi_fh, l_graph_time, l_max_cmb, l_max_r, n_angular_file, n bpot step, n bpots, n cmb file, n cmb step, n cmbmov file, n_cmbs, n_coeff_r_max, n_dipole_file, n_dt_cmb_file, n_dtbrms_file, n_dtvrms_file, n_e_kin_file, n_e_mag_ic_file, n_e_mag_oc_file, n_graph_file, n_graph_step, n_graphs, n_kin_spec_file, n_log_file, n_log_step, n_logs , n_lp_file , n_mag_spec_file, n misc file. n_movie_frames, n_movie_step, n_par_file, n_perppar_file, n_pot_step, n_pots, n_power_file, n_r_field_step, n_r_fields, n_r_step, n_rot_file, n_rst_file, n_rst_step, n_rsts, n_signal_file, n_spec_step, n_specs, n_sric_file , n_srma_file , n_stores , n_t_bpot , n_t_cmb , n_t_graph , n_t_log, n_t_movie, n_t_pot, n_t_r_field, n_t_rst, n_t_spec, n_t_to, n_t_tomovie, n_t_toz, n_t_tpot, n_t_vpot, n_to_step, n_tomovie_frames, n tomovie step, n tos, n toz step, n tozs, n tpot step, n tpots, n_u2_spec_file, n_u_square_file, n_vpot_step, n_vpots, nlf, rst_mpi_fh, n_time_hits, nsmaxa, n_b_r_file, n_coeff_r, n_t_r_file, n_v_r_file, tag, runid, angular_file, cmb_file, cmbmov_file, dipole_file, dt_cmb_file, dtbrms file, dtvrms file, e kin file, e mag ic file, e mag oc file, graph_file, log_file, lp_file, misc_file, par_file, perppar_file, power_file, rot_file, rst_file, sric_file, srma_file, u_square_file, n_r_array, dt_bpot, dt_cmb, dt_graph, dt_log, dt_movie, dt_pot, dt_r_field, dt_rst, dt_spec, dt_to, dt_tomovie, dt_toz, dt_tpot, dt_vpot, rcut, rdea, sdens, t_bpot_start, t_bpot_stop, t_cmb_start, t_cmb_stop, t_graph_start, t_graph_stop, t_log_start, t_log_stop, t_movie_start, t_movie_stop, t_pot_start, t_pot_stop, t_r_field_start, t_r_field_stop, t_rst_start, t_rst_stop, t_spec_start, t_spec_stop, t_to_start, t_to_stop, t_tomovie_start, t_tomovie_stop, t_toz_start, t_toz_stop, t_tpot_start, t_tpot_stop, t_vpot_start, t_vpot_stop, zdens, nzmaxa, b_r_file, t_r_file, v_r_file, t_bpot, t_cmb, t_graph, t_log, t_movie, t_pot, t_r_field, t_rst, t_spec, t_to, t_tomovie, t_toz, t_tpot, t_vpot

Routines closefiles(), openfiles()

Needed modules

- precision_mod: This module controls the precision used in MagIC
- parallel_mod (rank ()): This module contains the blocking information

- charmanip (length_to_blank()): This module contains several useful routines to manipule character strings
- logic (l_rot_ic(), l_sric(), l_dt_cmb_field(), l_power(), l_r_fieldt(), l_cmb_field(), l_rot_ma(), l_save_out(), l_srma(), l_movie(), l_anel(), l_perppar(), l_am(), l_rms(), l_r_field(), l_mag()): Module containing the logicals that control the run

Variables

- output_data/n_tozs[integer,public]
- output_data/n_graphs [integer,public]
- output_data/t_toz_start [real,public]
- output_data/rst_file [character,public]
- output_data/t_spec (5000) [real,public]
- output_data/n_tpots [integer,public]
- output_data/runid[character,public]
- output_data/**nlf** [integer,public]
- output_data/n_movie_frames [integer,public]
- output_data/n_rst_file [integer,public]
- output_data/dt_spec [real,public]
- output_data/dt_tpot [real,public]
- output_data/power_file [character,public]
- output_data/n_r_step[integer,public]
- output_data/n_par_file [integer,public]
- output_data/dt_cmb_file [character,public]
- output_data/t_r_file (:) [character,allocatable/public]
- output_data/t_movie_start [real,public]
- output_data/n_t_toz [integer,public]
- output_data/n_t_cmb [integer,public]
- output_data/sdens [real,public]
- output_data/n_tpot_step[integer,public]
- output_data/n_t_spec [integer,public]
- output_data/t_rst_start [real,public]
- output_data/n_time_hits [integer,parameter=5000/public]
- output_data/t_bpot_start [real,public]
- output_data/dt_graph [real,public]
- output_data/dt_tomovie [real,public]
- output_data/t_rst_stop [real,public]

- output_data/t_vpot_start [real,public]
- output_data/n_r_array (100) [integer,public]
- output_data/rst_mpi_fh [integer,public]
- output_data/n_t_tomovie [integer,public]
- output data/1 max cmb [integer, public]
- output_data/n_to_step[integer,public]
- output_data/n_u_square_file [integer,public]
- output_data/n_t_log[integer,public]
- output_data/n_log_step[integer,public]
- output_data/dt_movie [real, public]
- output_data/par_file [character,public]
- output_data/t_rst (5000) [real,public]
- output_data/t_log_stop [real,public]
- output_data/dt_cmb [real,public]
- output_data/v_r_file (:) [character,allocatable/public]
- output_data/n_power_file [integer,public]
- output_data/n_cmb_step[integer,public]
- output_data/l_graph_time [logical,public]
- output_data/dt_r_field[real,public]
- output_data/n_dt_cmb_file [integer,public]
- output_data/nzmaxa [integer,parameter=194/public]
- output_data/t_graph_start [real,public]
- output_data/dt_vpot [real,public]
- output_data/n_t_r_file (:) [integer,allocatable/public]
- output_data/e_mag_ic_file [character,public]
- output_data/dt_log[real,public]
- output_data/t_cmb (5000) [real,public]
- output_data/n_t_pot [integer,public]
- output_data/n_graph_step[integer,public]
- output_data/n_t_bpot [integer,public]
- output_data/zdens [real,public]
- output_data/t_graph (5000) [real,public]
- output_data/t_to_start [real,public]
- output_data/dt_toz [real,public]
- output_data/n_dtvrms_file [integer,public]
- output_data/n_bpots[integer,public]

- output_data/perppar_file [character,public]
- output_data/n_misc_file [integer,public]
- output_data/graph_mpi_fh [integer,public]
- output_data/t_r_field_stop [real,public]
- output_data/n_log_file [integer,public]
- output data/cmbmov file [character, public]
- output_data/n_rot_file [integer,public]
- output_data/n_specs[integer,public]
- output_data/t_cmb_start [real,public]
- output_data/t_tomovie_stop [real,public]
- output_data/t_r_field_start [real,public]
- output_data/n_tos[integer,public]
- output_data/n_rst_step [integer,public]
- output_data/dt_pot [real,public]
- output_data/b_r_file (:) [character,allocatable/public]
- output_data/t_vpot (5000) [real,public]
- output_data/n_graph_file [integer,public]
- output_data/n_perppar_file [integer,public]
- output_data/n_vpot_step [integer,public]
- output_data/dtvrms_file [character,public]
- output_data/t_tpot_start [real,public]
- output_data/n_sric_file [integer,public]
- output_data/n_t_movie [integer,public]
- output_data/n_t_to[integer,public]
- output_data/n_dtbrms_file [integer,public]
- output_data/rot_file [character,public]
- output_data/n_tomovie_step [integer,public]
- output_data/t_cmb_stop [real,public]
- output_data/n_vpots [integer,public]
- output_data/n_rsts[integer,public]
- output_data/t_log_start [real,public]
- output_data/t_toz_stop [real,public]
- output_data/t_to (5000) [real, public]
- output_data/n_tomovie_frames [integer,public]
- output_data/n_pots[integer,public]
- output_data/n_kin_spec_file [integer,public]

- output_data/t_tpot (5000) [real, public]
- output_data/n_cmbmov_file [integer,public]
- output_data/n_u2_spec_file [integer,public]
- output_data/n_cmbs [integer,public]
- output_data/n_t_graph [integer,public]
- output_data/dt_rst [real,public]
- output_data/n_srma_file [integer,public]
- output_data/t_tomovie_start [real,public]
- output_data/t_toz (5000) [real,public]
- output_data/dt_to [real,public]
- output_data/dtbrms_file [character,public]
- output_data/n_e_mag_oc_file [integer,public]
- output_data/n_v_r_file (:) [integer,allocatable/public]
- output_data/n_stores [integer,public]
- output_data/n_t_vpot [integer,public]
- output_data/t_pot_start [real,public]
- output_data/sric_file [character,public]
- output_data/e_mag_oc_file [character,public]
- output_data/n_coeff_r(:) [integer,allocatable/public]
- output_data/e_kin_file [character,public]
- output_data/misc_file [character,public]
- output_data/n_logs [integer,public]
- output_data/t_movie (5000) [real,public]
- output_data/n_t_tpot [integer,public]
- output_data/t_tpot_stop [real,public]
- output_data/angular_file [character,public]
- output_data/n_signal_file [integer,public]
- output_data/l_max_r [integer,public]
- output_data/n_r_fields [integer,public]
- output_data/n_movie_step[integer,public]
- output_data/t_r_field(5000)[real,public]
- output_data/n_t_r_field[integer,public]
- output_data/n_pot_step [integer,public]
- output_data/t_pot (5000) [real,public]
- output_data/t_graph_stop[real,public]
- output_data/nsmaxa[integer,parameter=97/public]

- output_data/n_e_kin_file [integer,public]
- output_data/n_r_field_step [integer,public]
- output_data/rcut [real,public]
- output_data/t_movie_stop [real,public]
- output_data/t_log(5000)[real,public]
- output_data/tag[character,public]
- output_data/n_toz_step[integer,public]
- output_data/n_coeff_r_max [integer,public]
- output_data/dipole_file [character,public]
- output_data/n_bpot_step[integer,public]
- output_data/lp_file [character,public]
- output_data/u_square_file [character,public]
- output_data/t_spec_start [real,public]
- output_data/n_angular_file [integer,public]
- output_data/n_t_rst [integer,public]
- output_data/cmb_file [character,public]
- output_data/graph_file [character,public]
- output_data/n_spec_step [integer,public]
- output_data/t_bpot_stop [real,public]
- output_data/t_spec_stop [real,public]
- output_data/t_bpot (5000) [real,public]
- output_data/n_e_mag_ic_file [integer,public]
- output_data/srma_file [character,public]
- output_data/t_tomovie (5000) [real,public]
- output_data/dt_bpot [real,public]
- output_data/n_cmb_file [integer,public]
- output_data/n_lp_file [integer,public]
- output_data/t_pot_stop [real,public]
- output_data/t_to_stop [real,public]
- output_data/t_vpot_stop [real,public]
- output_data/n_b_r_file (:) [integer,allocatable/public]
- output_data/n_dipole_file [integer,public]
- output_data/n_mag_spec_file [integer, public]
- output_data/log_file [character,public]
- output_data/rdea[real,public]

Subroutines and functions

```
subroutine output_data/openfiles()
```

Defines names and unit for output files and opens then.

```
Called from magic
```

```
Call to length_to_blank()
```

subroutine output_data/closefiles()

Defines names and unit for output files and opens then. MPI: called only by the processor responsible for output.

Called from magic

10.2.10 Bext.f90

Description

Module containing the external field parameters

Quick access

```
Variables n_imp, 1_imp, 1_curr, amp_curr, amp_imp, expo_imp, bmax_imp, rrmp, fac loop
```

Needed modules

• precision_mod: This module controls the precision used in MagIC

Variables

- bext/bmax_imp [real]
 - Location of maximum in g_ext/g_int
- bext/l_curr [logical]

Switch for current loop at the equator

- bext/amp curr[real]
 - Amplitude of magnetic field of current loop
- bext/fac_loop(:) [real, allocatable]
- bext/rrmp [real]

Magnetopause radius

• bext/n_imp[integer]

Controls external field model

• bext/l_imp [integer]

Mode of external field (dipole, quadrupole etc.)

- bext/expo_imp [real]
 - Exponent for decay
- bext/amp_imp [real]

Amplitude of the time varying osc

10.2.11 constants.f90

Description

module containing constants and parameters used in the code.

Quick access

```
Variables c_dt_z10_ic, c_dt_z10_ma, c_lorentz_ic, c_lorentz_ma, c_z10_omega_ic, c_z10_omega_ma, y10_norm, y11_norm, mass, c_moi_ic, c_moi_ma, c_moi_oc, surf_cmb, vol_ic, vol_oc, codeversion, zero, ci, half, sin60, one, two, three, four, pi, osq4pi, cos36, cos72, third, sin36, sin72, sq4pi
```

Needed modules

• precision_mod: This module controls the precision used in MagIC

Variables

- constants/ci[complex,parameter=(0.0_cp,1.0_cp)]
- constants/c_z10_omega_ma [real]
- constants/c_lorentz_ic[real]
- constants/one [real,parameter=1.0_cp]
- constants/**four** [real,parameter=4.0_cp]
- constants/sin60 [real,parameter=0.5_cp*sqrt(3.0_cp)]
- constants/**zero** [complex,parameter=(0.0_cp,0.0_cp)]
- constants/**surf_cmb** [real]

 Outer boundary surface
- constants/c_moi_oc [real]
 Moment of inertia of the outer core
- constants/**three** [real,parameter=3.0_cp]
- constants/c_dt_z10_ic [real]
- constants/c_z10_omega_ic[real]
- constants/c_moi_ic [real]

 Moment of inertia of the inner core
- constants/c_moi_ma [real]
 Moment of inertia of the mantle
- constants/pi [real,parameter=4.0_cp*atan(1.0_cp)]
- constants/osq4pi [real,parameter=1.0_cp/sq4pi]
- constants/cos36 [real,parameter=cos(36.0_cp*pi/180.0_cp)]
- constants/y10_norm[real]

10.2. Base modules 177

- constants/cos72 [real,parameter=cos(72.0_cp*pi/180.0_cp)]
- constants/sin72 [real,parameter=sin(72.0_cp*pi/180.0_cp)]
- constants/c_dt_z10_ma [real]
- constants/**two** [real,parameter=2.0_cp]
- constants/half [real,parameter=0.5_cp]
- constants/vol_oc [real]
 Volume of the outer core
- constants/vol_ic [real]

 Volume of the inner core
- constants/y11_norm[real]
- constants/**sq4pi** [real,parameter=sqrt(4.0_cp*pi)]
- constants/c_lorentz_ma [real]
- constants/third[real,parameter=onelthree]
- constants/codeversion [character,parameter='5.3']
- constants/sin36 [real,parameter=sin(36.0_cp*pi/180.0_cp)]
- constants/mass [real]

 Mass of the outer core

10.2.12 Grenoble.f90

Description

This module contains all variables for the case of an imposed IC dipole

Quick access

```
Variables lgrenoble, bic, b0, db0, ddb0

Routines initialize_grenoble()
```

Needed modules

- precision_mod: This module controls the precision used in MagIC
- truncation (n_r_maxmag()): This module defines the grid points and the truncation

- grenoble/b0 (:) [real, allocatable/public]
- grenoble/ddb0 (:) [real, allocatable/public]
- grenoble/db0 (:) [real,allocatable/public]
- grenoble/lgrenoble [logical,public]

• grenoble/bic[real,public]

Subroutines and functions

```
subroutine grenoble/initialize_grenoble()
Called from magic
```

10.3 MPI related modules

10.3.1 parallel.f90

Description

This module contains the blocking information

Quick access

Needed modules

- omp_lib
- mpi

- parallel_mod/nr_on_last_rank [integer]
- parallel_mod/rank_with_l1m0 [integer]
- parallel_mod/nthreads [integer]
- parallel_mod/rank_bn [integer]
- parallel_mod/n_procs [integer]
- parallel_mod/nlmbs_per_rank [integer]
- parallel_mod/ierr[integer]
- parallel_mod/nr_per_rank [integer]
- parallel_mod/chunksize [integer]

```
subroutine parallel_mod/parallel()
Called from magic
```

10.3.2 radial data.f90

Quick access

```
Variables n_r_cmb, n_r_icb, nrstart, nrstartmag, nrstop, nrstopmag

Routines initialize_radial_data()
```

Needed modules

- parallel_mod (nr_on_last_rank(), nr_per_rank(), n_procs(), rank()): This module contains the blocking information
- logic (l_mag(), lverbose()): Module containing the logicals that control the run
- truncation (n_r_max()): This module defines the grid points and the truncation

Variables

- radial_data/n_r_cmb [integer,public]
- radial_data/n_r_icb [integer,public]
- radial_data/nrstopmag[integer,public]
- radial_data/nrstartmag[integer,public]
- radial_data/nrstop[integer,public]
- radial_data/nrstart[integer,public]

Subroutines and functions

```
subroutine radial_data/initialize_radial_data()
Called from magic
```

10.3.3 LMLoop_data.f90

Quick access

```
Variables 11m, 11mmag, 1m_on_last_rank, 1m_per_rank, ulm, ulmmag
Routines initialize_lmloop_data()
```

Needed modules

- parallel_mod(n_procs(), nlmbs_per_rank(), rank()): This module contains the blocking information
- blocking (sizelmb(), nlmbs(), lmstartb(), lmstopb()): Module containing blocking information
- logic (1 mag ()): Module containing the logicals that control the run

Variables

- lmloop_data/llmmag[integer,public]
- lmloop_data/lm_per_rank[integer,public]
- lmloop_data/lm_on_last_rank [integer,public]
- lmloop_data/ulmmag[integer,public]
- lmloop_data/llm[integer,public]
- lmloop_data/ulm[integer,public]

Subroutines and functions

```
subroutine lmloop_data/initialize_lmloop_data()
Called from magic
```

10.3.4 communications.f90

Quick access

```
Variables get_global_sum, r_lm_gather_type, r_lm_gather_type_lm_end,
   final_wait_array, r_request, s_request, array_of_statuses, r_transfer_type, r_transfer_type_nr_end, s_transfer_type,
    s_transfer_type_nr_end,
                                                    r transfer type cont,
    r_transfer_type_nr_end_cont,
                                                    s_transfer_type_cont,
    s_transfer_type_nr_end_cont, gt_cheb, gt_ic, gt_oc, lo2r_aj, lo2r_b,
    lo2r_p, lo2r_s, lo2r_w, lo2r_z, temp_gather_lo, temp_r2lo
Routines initialize_communications(),
                                              scatter_from_rank0_to_lo(),
    lm2lo_redist(), gather_from_lo_to_rank0(), lo2lm_redist(),
    r21m_redist(),
                         r2lo_redist(), destroy_gather_type(),
   \label{local_destroy_lm2r_type(),} $$ lm2r\_redist\_wait(), $$ lo2r\_redist\_wait(),
    lm2r_redist_start(),
                                           gather_all_from_lo_to_rank0(),
   lo2r_redist_start(), create_lm2r_type(), create_gather_type(),
    myallgather(), get_global_sum_cmplx_1d(), get_global_sum_cmplx_2d(),
    get_global_sum_real_2d()
```

Needed modules

- parallel_mod (nr_on_last_rank(), nr_per_rank(), n_procs(), ierr(), rank()): This module contains the blocking information
- lmloop_data(llm(), ulm())
- mpi
- precision_mod: This module controls the precision used in MagIC
- logic(l_heat(), l_mag(), l_conv()): Module containing the logicals that control the run
- radial_data(nrstart(), nrstop())
- blocking (lo_map(), lmstartb(), st_map(), lmstopb()): Module containing blocking information
- truncation(lm_max(), n_r_ic_max(), l_max(), minc(), n_r_max()): This module defines the grid points and the truncation

Types

• type communications/unknown_type

Type fields

- % count [integer]
- % temp_rloc (,,*) [complex,pointer]
- % r_request (*) [integer,allocatable]
- % arr_rloc (,,*) [complex,pointer]
- % final_wait_array (*) [integer,allocatable]
- % s_request (*) [integer, allocatable]
- type communications/unknown_type

Type fields

- % dim2 [integer]
- % gather_mpi_type (*) [integer,allocatable]

- communications/s_transfer_type_cont(:,:) [integer,private/allocatable/save]
- communications/**gt_ic**[gather_type,public]
- communications/gt_oc[gather_type,public]
- communications/get_global_sum[public]
- communications/s_transfer_type(:)[integer,private/allocatable/save]
- communications/array of statuses (:,:) [integer,private/allocatable]
- communications/r_lm_gather_type [integer,private]
- communications/s_transfer_type_nr_end_cont (:,:) [integer,private/allocatable/save]

- communications/r_request(:) [integer, private/allocatable]
- communications/r_transfer_type(:)[integer,private/allocatable/save]
- communications/final_wait_array(:)[integer,private/allocatable]
- communications/s_request(:)[integer,private/allocatable]
- communications/r_transfer_type_cont (:,:) [integer,private/allocatable/save]
- communications/r_transfer_type_nr_end_cont(:,:) [integer,private/allocatable/save]
- communications/r_transfer_type_nr_end(:) [integer,private/allocatable/save]
- communications/lo2r_aj[lm2r_type,public]
- communications/s_transfer_type_nr_end(:) [integer,private/allocatable/save]
- communications/gt_cheb [gather_type,public]
- communications/r_lm_gather_type_lm_end[integer,private]
- communications/lo2r_z [lm2r_type,public]
- communications/lo2r_w [lm2r_type,public]
- communications/lo2r_p [lm2r_type,public]
- communications/lo2r_s [lm2r_type,public]
- communications/temp_r2lo(:,:) [complex,private/allocatable]
- communications/temp_gather_lo(:) [complex,private/allocatable]
- communications/lo2r_b [lm2r_type,public]

function communications/get_global_sum_cmplx_1d (arr_local)

Kahan summation algorithm

```
c = (t - sum) - y //(t - sum) recovers the high-order part of y;
                                  //subtracting y recovers -(low part of y)
                                  //Algebraically, c should always be zero.
            sum = t
                                  //Beware eagerly optimising compilers!
             //Next time around, the lost low part will be added to y in a fresh attempt.
         return sum
         Parameters arr_local (*) [complex,in]
         Return global_sum [real]
subroutine communications/gather all from lo to rank0 (self, arr lo, arr full)
         Parameters
               • self [gather_type]
               • arr_lo (ulm-(llm)+1,self%dim2) [complex]
               • arr_full (lm_max,self%dim2) [complex]
         Called from fields_average(), output(), outpv(), get_dtblmfinish(),
             getegeos(), outto()
subroutine communications/create_gather_type (self, dim2)
         Define the datatypes for gather_all_from_lo_to_rank0 the sending array has dimension
         (llm:ulm,1:dim2) receiving array has dimension (1:lm_max,1:dim2)
         Parameters
               • self [gather type]
               • dim2 [integer]
         Called from initialize communications ()
subroutine communications/destroy_gather_type (self)
         Parameters self [gather_type]
subroutine communications/gather_from_lo_to_rank0 (arr_lo, arr_full)
         Parameters
               • arr_lo (ulm-(llm)+1) [complex]
               • arr_full (lm_max) [complex]
         Called from fields average(), storepotw()
subroutine communications/scatter_from_rank0_to_lo (arr_full, arr_lo)
         Parameters
               • arr full (lm max) [complex]
               • arr lo (ulm-(llm)+1) [complex]
         Called from getstartfields()
subroutine communications/create_lm2r_type (self[, count])
         Parameters self [lm2r_type]
```

Options count [integer,in,optional]

```
Called from initialize communications()
subroutine communications/destroy_lm2r_type (self)
         Parameters self [lm2r_type]
subroutine communications/lm2r_redist_start (self, arr_lmloc, arr_rloc)
         Parameters
               • self [lm2r_type]
               • arr_lmloc (ulm-(llm)+1,n_r_max,*) [complex,in]
               • arr_rloc (lm_max,nrstop-(nrstart)+1,*) [complex,out]
         Called from lo2r_redist_start()
subroutine communications/lm2r_redist_wait (self)
         Parameters self [lm2r_type]
         Called from lo2r_redist_wait()
subroutine communications/lo2r redist start(self, arr lo, arr rloc)
         Parameters
               • self [lm2r_type]
               • arr lo (ulm-(llm)+1, n r max, *) [complex,in]
               • arr_rloc (lm_max,nrstop-(nrstart)+1,*) [complex,out,target]
         Called from lmloop(), getstartfields()
         Call to lm2r_redist_start()
subroutine communications/lo2r redist wait (self)
         Parameters self [lm2r_type]
         Called from step_time()
         Call to lm2r_redist_wait()
subroutine communications/r2lm redist(arr rloc, arr lmloc)
         Parameters
               • arr_rloc (lm_max,nrstop-(nrstart)+1) [complex,in]
               • arr_lmloc (ulm-(llm)+1,n_r_max) [complex,out]
         Called from r21o redist()
subroutine communications/r2lo_redist (arr_rloc, arr_lo)
         Parameters
               • arr_rloc (lm_max,nrstop-(nrstart)+1) [complex,in]
               • arr_lo (ulm-(llm)+1,n_r_max) [complex,out]
         Called from step_time()
         Call to r21m_redist()
subroutine communications/lm2lo_redist (arr_lmloc, arr_lo)
         Parameters
```

- arr_lmloc (ulm-(llm)+1,n_r_max) [complex,in]
- arr_lo (ulm-(llm)+1,n_r_max) [complex,out]

subroutine communications/lo2lm_redist (arr_lo, arr_lmloc)

Parameters

- arr_lo (ulm-(llm)+1,n_r_max) [complex,in]
- arr_lmloc (ulm-(llm)+1,n_r_max) [complex,out]

subroutine communications/myallgather (arr, dim1, dim2)

Parameters

- arr (dim1,dim2) [complex,inout]
- dim1 [integer,in,]
- dim2 [integer,in,]

Use parallel_mod, blocking

Called from dtvrms(), dtbrms()

10.4 Code initialization

10.4.1 Namelists.f90

Description

Read and print the input namelist

Quick access

Routines readnamelists(), defaultnamelists(), writenamelists()

Needed modules

- torsional_oscillations: This module contains information for TO calculation and output
- bext: Module containing the external field parameters
- movie_data(movie(), n_movies(), n_movies_max())
- output_data: This module contains the parameters for output control
- logic: Module containing the logicals that control the run
- precision_mod: This module controls the precision used in MagIC
- init_fields
- parallel_mod: This module contains the blocking information
- num_param: Module containing numerical and control parameters
- physical_parameters: Module containing the physical parameters

- charmanip (capitalize(), length_to_blank()): This module contains several useful routines to manipule character strings
- truncation: This module defines the grid points and the truncation
- grenoble: This module contains all variables for the case of an imposed IC dipole
- blocking (cacheblock_size_in_b()): Module containing blocking information
- constants: module containing constants and parameters used in the code.
- radial_functions: This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

Subroutines and functions

subroutine namelists/readnamelists()

Purpose of this subroutine is to read the input namelists. This program also determins logical parameters that are stored in logic.f90.

```
Called from magic
```

```
Call to defaultnamelists(), length_to_blank(), capitalize(),
  initialize_truncation()
```

subroutine namelists/writenamelists(n_out)

Purpose of this subroutine is to write the namelist to file unit n_out. This file has to be open before calling this routine.

```
Parameters n_out [integer,in]
```

Called from magic

Call to length_to_blank()

subroutine namelists/defaultnamelists()

Purpose of this subroutine is to set default parameters for the namelists.

Called from readnamelists()

10.4.2 startFiels.f90

Quick access

```
Routines getstartfields()
```

Needed modules

- readcheckpoints (readstartfields()): This module contains the functions that can help reading and mapping of the restart files
- fieldslast: This module contains time-derivaties array of the previous time-step They are needed in the time-stepping scheme.
- useful (logwrite(), cc2real()): library with several useful subroutines

- communications (lo2r_z(), lo2r_w(), lo2r_p(), scatter_from_rank0_to_lo(), lo2r_s(), get_global_sum(), lo2r_aj(), lo2r_redist_start(), lo2r_b())
- fields: This module contains the potential fields and their radial derivatives
- mpi
- logic (l_rot_ic(), l_z10mat(), l_lcr(), l_mag_kin(), l_mag(), l_heat(), l_srma(), l_mag_lf(), l_rot_ma(), l_sric(), l_cond_ic(), l_conv()): Module containing the logicals that control the run
- lmloop_data(llmmag(), lm_per_rank(), lm_on_last_rank(), ulm(), llm(), ulmmag())
- radial_data(n_r_cmb(), n_r_icb())
- precision_mod: This module controls the precision used in MagIC
- init_fields (s_cond(), initb(), init_b1(), l_start_file(), tops(), start_file(), initv(), inits(), init_s1())
- radial_der_even(get_ddr_even())
- parallel_mod(n_procs(), nlmbs_per_rank(), rank()): This module contains the blocking information
- num_param (alpha(), dtmax()): Module containing numerical and control parameters
- radial_der(get_dr(), get_ddr()): Radial derivatives functions
- physical_parameters (imps(), lffac(), kbotv(), n_r_lcr(), ktopv(), imagcon(), interior_model(), epss()): Module containing the physical parameters
- radial_functions (botcond(), drx(), ddrx(), chebt_oc(), chebt_ic_even(), or1(), topcond(), r(), dr_fac_ic(), chebt_ic(), dtemp0()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)
- grenoble (lgrenoble ()): This module contains all variables for the case of an imposed IC dipole
- blocking (nlmbs(), lmstartb(), lo_map(), lmstopb()): Module containing blocking information
- constants (one (), osq4pi(), c_lorentz_ic(), two(), zero(), c_lorentz_ma()): module containing constants and parameters used in the code.
- truncation: This module defines the grid points and the truncation

Variables

Subroutines and functions

subroutine start_fields/getstartfields(time, dt, dtnew, n_time_step)

Purpose of this subroutine is to initialize the fields and other auxiliary parameters.

Parameters

- time [real,out]
- **dt** [real,out]
- dtnew [real,out]
- **n_time_step** [integer,out]

Called from magic

10.4.3 init fields.f90

Quick access

Variables init_b1, init_s1, init_s2, init_v1, nrotic, nrotma, n_start_file, inform, l_reset_t, l_start_file, n_s_bounds, start_file, amp_b1, amp_s1, amp_s2, amp_v1, bpeakbot, bpeaktop, omega_ic1, omega_ic2, omega_ma1, omega_ma2, omegaosz_ic1, omegaosz_ic2, omegaosz_ma1, omegaosz_ma2, scale_b, scale_s, scale_v, tomega_ic1, tomega_ic2, tomega_ma1, tomega_ma2, tshift_ic1, tshift_ic2, tshift_ma1, tshift_ma2, tipdipole, bots, tops, s top, s bot

Routines initialize_init_fields(), initb(), j_cond(), inits(), s_cond(),
 initv()

Needed modules

- horizontal_data(hdif_b(), d_lp1(), dlh()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- legendre_grid_to_spec(legtf1())
- cosine_transform_odd
- useful (random()): library with several useful subroutines
- algebra (sgesl(), sgefa(), cgesl())
- fft: This file contains the subroutines called by fftJW: fft99a, fft99b, wpass2, wpass3, wpass4 and wpass5
- lmloop_data(ulmmag(), llmmag(), llm(), ulm())
- radial_data(n_r_cmb(), n_r_icb())
- precision_mod: This module controls the precision used in MagIC
- logic (l_rot_ic(), l_anelastic_liquid(), l_cond_ic(), l_srma(), l_rot_ma(), l_sric()): Module containing the logicals that control the run
- physical_parameters(imps(), n_imps(), kbots(), peaks(), sigma_ratio(), thetas(), widths(), radratio(), opr(), epsc(), phis(), imagcon(), ktops(), o_sr(), opm(), n_imps_max()): Module containing the physical parameters
- truncation: This module defines the grid points and the truncation
- matrices (jmat(), s0mat(), jpivot(), s0pivot()): This module contains matrices for internal time step
- blocking (st_map(), nthetabs(), nfs(), lmp2lmps(), sizethetab()): Module containing blocking information
- constants (osq4pi(), third(), y10_norm(), c_z10_omega_ma(), two(), one(), four(), zero(), c_z10_omega_ic(), three(), half(), pi()): module containing constants and parameters used in the code.

• radial_functions (jvarcon(), or2(), or3(), or1(), cheb(), otemp1(), orho1(), d2cheb_ic(), dlkappa(), chebt_oc(), cheb_norm_ic(), dllambda(), dcheb_ic(), cheb_norm(), cheb_ic(), beta(), dcheb(), chebt_ic(), dtemp0(), d2cheb(), kappa(), r_cmb(), epscprof(), r_ic(), r(), r_icb(), lambda()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

- init_fields/tshift_ma1 [real,public]
- init_fields/tshift_ma2 [real,public]
- init_fields/amp_b1 [real, public]
- init_fields/s_bot (80) [real,public] input variables for tops,bots
- init_fields/init_b1 [integer,public]
- init_fields/omegaosz_ic2 [real,public]
- init_fields/n_s_bounds [integer,parameter=20/public]
- init_fields/omegaosz_ic1 [real,public]
- init_fields/**n_start_file** [integer,public]

 I/O unit of start_file
- init_fields/tomega_ma1 [real,public]
- init_fields/tomega_ma2 [real,public]
- init_fields/omega_ic2 [real,public]
- init fields/scale b[real,public]
- init_fields/**1_start_file** [logical,public] taking fields from startfile ?
- init_fields/omega_ic1 [real,public]
- init_fields/**start_file** [character,public] name of start file
- init_fields/scale_s [real, public]
- init_fields/init_v1[integer,public]
- init_fields/scale_v [real, public]
- init_fields/amp_v1 [real,public]
- init_fields/init_s1[integer,public]
- init_fields/**tipdipole** [real,public] adding to symetric field
- init_fields/tomega_ic2 [real,public]
- init_fields/tomega_ic1 [real,public]
- init_fields/bpeaktop[real,public]
- init_fields/tops (:,:) [complex,allocatable/public]
- init fields/nrotma[integer,public]

- init_fields/omega_ma1 [real,public]
- init_fields/omega_ma2 [real,public]
- init_fields/init_s2 [integer,public]
- init_fields/tshift_ic2 [real,public]
- init_fields/tshift_ic1 [real,public]
- init_fields/s_top(80)[real,public]
- init_fields/inform[integer,public] format of start file
- init_fields/bpeakbot [real,public]
- init_fields/amp_s2 [real, public]
- init_fields/omegaosz_ma1 [real,public]
- init_fields/omegaosz_ma2[real,public]
- init_fields/amp_s1 [real, public]
- init_fields/l_reset_t [logical,public] reset time from startfile?
- init_fields/bots(:,:) [complex,allocatable/public]
- init_fields/nrotic[integer,public]

Purpose of this subroutine is to initialize the velocity field So far it is only rudimentary and will be expanded later. Because s is needed for dwdt init_s has to be called before.

Parameters

- w (lm_max,n_r_max) [complex,inout]
- **z** (lm_max,n_r_max) [complex,inout]
- omega_ic [real,out]
- omega_ma [real,out]
- **Imstart** [integer,in]
- **Imstop** [integer,in]

```
Called from getstartfields()
```

Call to fft_thetab(), legtf1(), random()

subroutine init_fields/inits(s, lmstart, lmstop)

Durnosa	f this subrou	itina ic to	initializa	the entropy	field accou	ding to th	innut	control no	romotore
I ui posc oi	i uns subiot	mine is w	minanzc	the chuopy	neiu accor	umg to m	mput	common pa	ranneters.

Input	value			
init_s1	random noise initialized the noise spectrum decays as 1 ^ (init_s1-1) with peak			
< 100:	amplitude amp_s1 for l=1			
init_s1	a specific harmonic mode initialized with amplitude amp_s1. init_s1 is interpreted as			
>=100:	number llmm where ll: harmonic degree, mm: harmonic order.			
init_s2	a second harmonic mode initialized with amplitude amp_s2. init_s2 is again			
>100:	interpreted as number llmm where ll: harmonic degree, mm: harmonic order.			

Parameters

- **s** (*lm_max*,*n_r_max*) [*complex*,*inout*]
- **Imstart** [integer,in]
- **Imstop** [integer,in]

```
Called from getstartfields()
```

```
\textbf{Call to} \ \textit{s\_cond(), random(), fft\_thetab(), legtf1(), sgefa(), sgesl()}
```

subroutine init_fields/initb(b, aj, b_ic, aj_ic, lorentz_torque_ic, lorentz_torque_ma, lmstart, lmstop)

Parameters

- **b** (*lm_maxmag*,*n_r_maxmag*) [*complex*,*inout*]
- **aj** (lm_maxmag,n_r_maxmag) [complex,inout]
- **b_ic** (*lm_maxmag*,*n_r_ic_max*) [*complex*,*inout*]
- aj_ic (lm_maxmag,n_r_ic_max) [complex,inout]
- **lorentz torque ic** [real,out]
- lorentz_torque_ma [real,out]
- **Imstart** [integer,in]
- **lmstop** [integer,in]

Called from getstartfields()

Call to j_cond(), random()

subroutine init_fields/j_cond(lm0, aj0, aj0_ic)

Purpose of this subroutine is to solve the diffusion equation for an initial toroidal magnetic field.

Parameters

- lm0 [integer,in]
- **aj0** (*) [complex,out]
- **aj0_ic** (*) [complex,out]

Called from initb()

Call to sgefa(), cgesl()

subroutine init_fields/s_cond(s0)

Purpose of this subroutine is to solve the entropy equation for an the conductive (l=0,m=0)-mode. Output is the radial dependence of the solution in s0.

```
Parameters s0 (*) [real,out]
Called from inits(), getstartfields()
Call to sgefa(), sgesl()
```

10.5 Pre-calculations

10.5.1 preCalc.f90

Quick access

```
Routines precalc(), writeinfo(), get_hit_times(), precalctimes()
```

Needed modules

- horizontal_data (horizontal()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- parallel_mod (rank ()): This module contains the blocking information
- bext (fac_loop(), l_curr()): Module containing the external field parameters
- useful (logwrite()): library with several useful subroutines
- output_data: This module contains the parameters for output control
- logic (l_time_hits(), l_non_rot(), l_anelastic_liquid(), l_tomovie(), l_cmb_field(), l_dt_cmb_field(), l_newmap(), l_storetpot(), l_storepot(), l_lcr(), l_cond_ic(), l_mag_lf(), l_storevpot(), l_anel(), l_heat(), l_to(), l_storebpot(), l_save_out(), l_mag(), l_movie(), l_r_field()): Module containing the logicals that control the run
- integration (rint_r()): Radial integration functions
- precision_mod: This module controls the precision used in MagIC
- init_fields(s_top(), tops(), s_bot(), l_reset_t(), n_s_bounds(), bots())
- num_param: Module containing numerical and control parameters
- physical_parameters (polind(), lffac(), ek(), epsc0(), tmagcon(), ktops(), rho_ratio_ic(), pr(), sigma_ratio(), epsc(), ra(), n_r_lcr(), o_sr(), rho_ratio_ma(), nvardiff(), buofac(), kbots(), opr(), radratio(), nvareps(), opm(), nvarvisc(), prmag(), r_lcr(), corfac(), mode(), interior_model(), nvarcond(), ekscaled(), rascaled()): Module containing the physical parameters
- radial_functions (ddrx(), rho0(), dlvisc(), temp0(), dlkappa(), transportproperties(), chebt_oc(), dddrx(), dllambda(), rgrav(), r_surface(), visc(), beta(), divktemp0(), drx(), kappa(), r_cmb(), dbeta(), r(), radial(), r_icb(), dentropy0(), sigma(), lambda()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)
- constants: module containing constants and parameters used in the code.

10.5. Pre-calculations 193

• truncation(n_r_ic_max(), n_cheb_ic_max(), minc(), n_phi_max(), l_max(), nalias(), n_r_max(), m_max(), lm_max(), n_cheb_max(), n_theta_max()): This module defines the grid points and the truncation

Variables

Subroutines and functions

```
subroutine precalculations/precalc()
```

Purpose of this subroutine is to initialize the calc values, arrays, constants that are used all over the code. The stuff is stored in the common blocks. MPI: This is called by every processors.

```
Called from magic
```

```
Call to radial(), transportproperties(), horizontal(), rint_r(),
logwrite()
```

subroutine precalculations/precalctimes (time, n_time_step)

Precalc. after time, time and dthas been read from startfile.

Parameters

- time [real,out]
- n_time_step [integer,out]

Called from magic

Call to get_hit_times()

Parameters

- t (n_t_max) [real,inout] :: Times for output
- n_t_max [integer,in,] :: Dimension of t(*)
- **n_t** [integer,out] :: No. of output times
- l_t [logical,out] :: =.true. if output times are defined
- t_start [real,inout] :: Starting time for output
- $t_stop[real,inout]$:: Stop time for output
- **dt** [real,inout] :: Time step for output
- **n_tot** [integer,inout] :: No. of output (times) if no times defined
- n_step [integer,inout] :: Ouput step in no. of time steps
- string_bn [character,in]
- **time** [real,in] :: Time of start file
- tscale [real,in]

Called from precalctimes()

subroutine precalculations/writeinfo(n_out)

Purpose of this subroutine is to write the namelist to file unit n_out. This file has to be open before calling this routine.

Parameters n_out [integer,in]
Called from magic

10.5.2 radial.f90

Description

This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Quick access

Variables ndd_costf1, ndd_costf1_ic, ndd_costf2_ic, ndi_costf1, ndi_costf1_ic, ndi_costf1_ic, chebt_ic, chebt_ic_even, chebt_oc, dr_fac, cheb_norm, cheb_norm_ic, dr_fac_ic, botcond, topcond, r_icb, alph2, alph2, alph1, alpha1, r_cmb, r_surface, agrav, beta, cheb_int, cheb_int_ic, d2temp0, dbeta, dddrx, ddrx, dentropy0, divktemp0, dlkappa, dllambda, dlvisc, drx, dtemp0, epscprof, jvarcon, kappa, lambda, o_r_ic, o_r_ic2, or1, or2, or3, or4, orho1, orho2, otemp1, r, r_ic, rgrav, rho0, sigma, temp0, visc, cheb, cheb ic, d2cheb, d2cheb ic, d3cheb, dcheb, dcheb ic

Routines initialize_radial_functions(), transportproperties(), radial(), getbackground()

Needed modules

- cosine_transform_odd
- algebra(sgesl(), sgefa())
- logic(l_anelastic_liquid(), l_newmap(), l_mag(), l_heat(), l_anel(), l_cond_ic(), l isothermal()): Module containing the logicals that control the run
- cosine_transform_even
- num_param(alpha()): Module containing numerical and control parameters
- chebyshev_polynoms_mod
- physical_parameters: Module containing the physical parameters
- matrices (s0mat(), s0pivot()): This module contains matrices for internal time step
- radial_der (get_dr ()): Radial derivatives functions
- constants (four (), three (), two (), sq4pi (), half (), one ()): module containing constants and parameters used in the code.
- truncation (n_r_ic_max(), n_cheb_max(), n_r_max()): This module defines the grid points and the truncation

10.5. Pre-calculations 195

```
• radial_functions/ddrx(:)[real,allocatable/public]
• radial_functions/jvarcon(:) [real,allocatable/public]
• radial_functions/dlvisc(:) [real,allocatable/public]
• radial_functions/dentropy0 (:) [real,allocatable/public]
• radial_functions/otemp1 (:) [real,allocatable/public]
• radial_functions/dlkappa (:) [real,allocatable/public]
• radial_functions/chebt_oc [costf_odd_t,public]
• radial functions/dr fac[real,public]
      2/d, where d = r_o - r_i
• radial_functions/ndi_costf2_ic[integer,public]
      Radii for transform
• radial_functions/dddrx (:) [real,allocatable/public]
• radial_functions/dllambda (:) [real, allocatable/public]
• radial_functions/dcheb_ic(:,:) [real,allocatable/public]
• radial_functions/alph2 [real,public]
      Input parameter for non-linear map to define central point of different spacing (-1.0:1.0)
• radial_functions/cheb_int_ic(:) [real,allocatable/public]
• radial_functions/orho1 (:) [real,allocatable/public]
• radial_functions/orho2 (:) [real,allocatable/public]
• radial_functions/dr_fac_ic [real,public]
      For IC: 2/(2r_i)
• radial_functions/o_r_ic2(:) [real, allocatable/public]
• radial_functions/dcheb (:,:) [real,allocatable/public]
• radial_functions/dtemp0 (:) [real,allocatable/public]
• radial_functions/d2cheb (:,:) [real,allocatable/public]
• radial_functions/agrav(:) [real,allocatable/public]
```

- radial_functions/kappa (:) [real,allocatable/public] • radial_functions/r_cmb [real,public]
- OC radius
- radial_functions/**epscprof** (:) [real,allocatable/public]
- radial_functions/**dbeta**(:)[real,allocatable/public]
- radial_functions/ndd_costf2_ic[integer,public] Radii for transform
- radial_functions/topcond[real,public] Heat flux at OC boundary
- radial_functions/**r**(:)[real,allocatable/public]

```
• radial_functions/r_icb [real,public]
      IC radius
• radial_functions/alph1 [real,public]
      Input parameter for non-linear map to define degree of spacing (0.0:2.0)
• radial_functions/or4 (:) [real,allocatable/public]
• radial_functions/rho0 (:) [real,allocatable/public]
• radial_functions/or2 (:) [real,allocatable/public]
• radial_functions/or3(:)[real,allocatable/public]
• radial_functions/or1 (:) [real,allocatable/public]
• radial_functions/temp0 (:) [real,allocatable/public]
```

- radial_functions/cheb(:,:) [real,allocatable/public]
- radial_functions/o_r_ic(:) [real,allocatable/public]
- radial functions/ndi costf1 [integer, public] Radii for transform
- radial_functions/alpha2 [real,public] Input parameter for non-linear map to define central point of different spacing (-1.0:1.0)
- radial_functions/alpha1 [real, public] Input parameter for non-linear map to define degree of spacing (0.0:2.0)
- radial functions/ndd costf1 [integer, public] Radii for transform
- radial_functions/cheb_norm_ic[real,public] Chebyshev normalisation for IC
- radial_functions/rgrav(:) [real,allocatable/public]
- radial_functions/cheb_int (:) [real,allocatable/public]
- radial_functions/r_surface [real,public] Surface radius for extrapolation
- radial functions/d2cheb ic(:,:) [real,allocatable/public]
- radial_functions/cheb_norm[real,public] Chebyshev normalisation
- radial_functions/cheb_ic(:,:) [real,allocatable/public]
- radial_functions/ndi_costfl_ic[integer,public] Radii for transform
- radial_functions/**visc**(:) [real,allocatable/public]
- radial_functions/beta(:)[real,allocatable/public]
- radial_functions/chebt_ic_even[costf_even_t,public]
- radial_functions/chebt_ic[costf_odd_t,public]
- radial_functions/d3cheb(:,:) [real,allocatable/public]
- radial_functions/divktemp0 (:) [real, allocatable/public]
- radial_functions/botcond[real,public] Heat flux at IC boundary

10.5. Pre-calculations 197

- radial_functions/drx (:) [real, allocatable/public]
- radial_functions/d2temp0 (:) [real,allocatable/public]
- radial_functions/**r_ic**(:)[real,allocatable/public]
- radial_functions/ndd_costf1_ic [integer,public]
 Radii for transform
- radial_functions/**sigma** (:) [real,allocatable/public]
- radial_functions/lambda (:) [real,allocatable/public]

subroutine radial_functions/transportproperties()

Calculates the transport properties: electrical conductivity, kinematic viscosity and thermal conductivity.

```
Called from precalc()
```

subroutine radial_functions/getbackground(input, boundaryval, output)

Call to cheb_grid(), getbackground(), get_chebs_even()

Linear solver of the form: df/dx = input with f(1)=boundaryVal

Parameters

- **input** (*n_r_max*) [*real,in*]
- boundaryval [real,in]
- **output** (*n_r_max*) [real,out]

```
Called from radial()
Call to sqefa(), sqesl()
```

10.5.3 horizontal, f90

Description

Module containing functions depending on longitude and latitude plus help arrays depending on degree and order

Quick access

Variables 1modd, 1moddp, 1start, 1startp, 1stop, 1stopp, n_theta_cal2ord, cosn2, costheta, d_1, d_1p1, d_m, d_mc2m, dlh, dphi, dphi0, dphi02, dpl0eq, dtheta1a, dtheta1s, dtheta2a, dtheta2s, dtheta3a, dtheta3s, dtheta4a, dtheta4s,

```
gauss, hdif_b, hdif_s, hdif_v, o_sin_theta, o_sin_theta_e2, osn1, osn2, phi, sintheta, sn2, theta, theta_ord, dplm, plm, wplm
```

Routines initialize_horizontal_data(), horizontal(), gauleg()

Needed modules

- fft: This file contains the subroutines called by fftJW: fft99a, fft99b, wpass2, wpass3, wpass4 and wpass5
- num_param (ldif(), ldifexp(), difeta(), difkap(), difnu()): Module containing numerical and control parameters
- precision_mod: This module controls the precision used in MagIC
- plms_theta(plm_theta(),plm_thetaas())
- logic (l_non_rot ()): Module containing the logicals that control the run
- physical_parameters (ek ()): Module containing the physical parameters
- truncation (l_max(), minc(), n_phi_max(), lmp_max(), n_m_max(), m_max(), lm_max(), n_theta_max()): This module defines the grid points and the truncation
- blocking (1mp21(), 1m2m(), 1m21(), 1mp21m()): Module containing blocking information
- constants (zero(), pi(), two(), half(), one()): module containing constants and parameters used in the code.
- radial_functions (r_cmb ()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

- horizontal_data/dplm(:,:) [real,allocatable/public]
- horizontal_data/dphi02 (:) [complex,allocatable/public]
- horizontal_data/osn1 (:) [real,allocatable/public]
- horizontal_data/osn2 (:) [real,allocatable/public]
- horizontal_data/sn2(:)[real,allocatable/public]
- horizontal_data/o_sin_theta(:)[real,allocatable/public]
- horizontal_data/dphi(:) [complex,allocatable/public]
- horizontal_data/lstopp (:) [integer,allocatable/public]
- horizontal_data/plm(:,:) [real,allocatable/public]
- horizontal_data/costheta(:)[real,allocatable/public]
- horizontal_data/hdif_b (:) [real,allocatable/public]
- horizontal_data/lstop(:)[integer,allocatable/public]
- horizontal_data/dphi0(:)[complex,allocatable/public]
- horizontal_data/dtheta4a(:)[real,allocatable/public]
- horizontal_data/lmodd(:)[logical,allocatable/public]
- horizontal_data/dlh(:)[real,allocatable/public]

10.5. Pre-calculations 199

- horizontal_data/dtheta3s(:) [real,allocatable/public]
- horizontal_data/dtheta2a(:)[real,allocatable/public]
- horizontal_data/hdif_s (:) [real,allocatable/public]
- horizontal_data/hdif_v(:) [real,allocatable/public]
- horizontal_data/dtheta4s(:)[real,allocatable/public]
- horizontal_data/theta(:)[real,allocatable/public]
- horizontal_data/dtheta2s(:)[real,allocatable/public]
- horizontal_data/lstart(:)[integer,allocatable/public]
- horizontal_data/**phi** (:) [real,allocatable/public]
- horizontal_data/theta_ord(:) [real,allocatable/public]
- horizontal_data/d_mc2m(:) [real,allocatable/public]
- horizontal_data/o_sin_theta_e2(:) [real,allocatable/public]
- horizontal_data/gauss (:) [real,allocatable/public]
- horizontal_data/wplm(:,:) [real,allocatable/public]
- horizontal_data/d_lp1(:) [real,allocatable/public]
- horizontal_data/lstartp(:)[integer,allocatable/public]
- horizontal_data/dtheta3a(:)[real,allocatable/public]
- horizontal_data/cosn2 (:) [real,allocatable/public]
- horizontal_data/dthetala(:)[real,allocatable/public]
- horizontal_data/dpl0eq(:) [real,allocatable/public]
- horizontal_data/lmoddp (:) [logical,allocatable/public]
- horizontal_data/d_1(:) [real,allocatable/public]
- horizontal_data/d_m(:) [real,allocatable/public]
- horizontal_data/dthetals(:)[real,allocatable/public]
- horizontal_data/n_theta_cal2ord(:) [integer, allocatable/public]
- horizontal_data/sintheta(:)[real,allocatable/public]

```
subroutine horizontal_data/initialize_horizontal_data()
```

```
Called from magic
```

```
subroutine horizontal_data/horizontal()
```

Calculates functions of theta and phi, for exmample the Legendre functions, and functions of degree l and order m of the legendres.

```
Called from precalc()
```

```
Call to gauleg(), plm_theta(), plm_thetaas(), init_fft()
```

subroutine horizontal data/**gauleg** (sinthmin, sinthmax, theta ord, gauss, n th max)

Subroutine is based on a NR code. Calculates N zeros of legendre polynomial P(l=N) in the interval [sinThMin,sinThMax]. Zeros are returned in radiants theta_ord(i) The respective weights for Gauss-integration are given in gauss(i).

Parameters

- **sinthmin** [real,in] :: lower bound in radiants
- **sinthmax** [real,in] :: upper bound in radiants
- **theta_ord** (n_th_max) [real,out] :: zeros cos(theta)
- gauss (n_th_max) [real,out] :: associated Gauss-Legendre weights
- **n_th_max** [integer,in] :: desired maximum degree

Called from horizontal()

10.6 Time stepping

10.6.1 step_time.f90

Quick access

```
Variables dbdt_lmloc, djdt_lmloc, djdt_rloc, dpdt_lmloc, dpdt_rloc, dsdt_lmloc, dsdt_rloc, dvsrlm_lmloc, dvsrlm_rloc, dvxbhlm_lmloc, dvxbhlm_rloc, dwdt_lmloc, dwdt_rloc, dzdt_lmloc, dzdt_rloc, dbdt_rloc
```

Routines initialize_step_time(), check_time_hits(), step_time()

Needed modules

- movie data(t movies())
- output_mod(output())
- lmloop_mod(lmloop())
- lmloop_data(llmmag(), lm_per_rank(), lm_on_last_rank(), ulm(), llm(), ulmmag())
- courant mod(dt courant())
- useful (safeclose(), l_correct_step(), safeopen(), logwrite()): library with several useful subroutines
- radialloop(radialloopg())
- parallel_mod: This module contains the blocking information
- constants (zero(), half(), one()): module containing constants and parameters used in the code.
- num_param (tscale(), n_time_steps(), tend(), runtimelimit(), alpha(), dtmax(), dtmin(), runtime()): Module containing numerical and control parameters
- logic(l_time_hits(), l_hel(), l_to(), l_dtrmagspec(), l_storetpot(), lverbose(), l_heat(), l_mag_lf(), l_perppar(), l_b_nl_icb(), l_tomovie(), l_mag(), l_dtbmovie(), l_htmovie(), l_storevpot(), l_runtimelimit(), l_fluxprofs(), l_storebpot(), l_viscbccalc(), l_conv(), l_movie(), l_cmb_field(),

 $l_true_time(), l_ht(), l_dtb(), l_save_out(), l_b_nl_cmb(), l_rms(), l_r_field())$: Module containing the logicals that control the run

- precision_mod: This module controls the precision used in MagIC
- timing: Useful functions for time-stepping
- charmanip (dble2str(), capitalize()): This module contains several useful routines to manipule character strings
- blocking (nlmbs(), lmstartb(), lmstopb()): Module containing blocking information
- nonlinear_bcs(get_b_nl_bcs())
- truncation (l_max(), lm_maxmag(), lmp_max(), l_maxmag(), n_r_max(), lm_max(), n_r_maxmag()): This module defines the grid points and the truncation
- fieldslast: This module contains time-derivaties array of the previous time-step They are needed in the time-stepping scheme.
- output_data (n_cmb_step(), n_t_to(), n_tozs(), n_graphs(), n_tomovie_step(), n_r_field_step(), n_vpots(), tag(), n_tpots(), n_cmbs(), n_t_cmb(), nlf(), t_to(), n_logs(), t_cmb(), n_tomovie_frames(), n_bpot_step(), t_log(), n_tos(), n_tpot_step(), n_t_bpot(), n_rsts(), t_graph(), n_t_graph(), n_t_rst(), n_t_toz(), n_toz_step(), t_toz(), n_rst_step(), n_spec_step(), graph_mpi_fh(), n_stores(), n_t_vpot(), t_bpot(), n_t_spec(), n_log_file(), n_time_hits(), n_movie_frames(), graph_file(), n_specs(), t_tomovie(), n_graph_step(), t_spec(), n_bpots(), t_tpot(), t_movie(), n_t_tpot(), n_t_tomovie(), n_to_step(), n_t_log(), t_vpot(), l_graph_time(), n_log_step(), n_r_fields(), n_movie_step(), t_r_field(), n_vpot_step(), n_t_r_field(), t_rst(), log_file(), n_t_movie()): This module contains the parameters for output control
- radial_data (n_r_cmb(), n_r_icb(), nrstopmag(), nrstartmag(), nrstop(), nrstart())
- communications (lo2r_redist_wait(), lm2r_type(), lo2r_z(), lo2r_w(), lo2r_p(), lo2r_s(), r2lo_redist(), get_global_sum(), lo2r_aj(), lo2r_redist_start(), lo2r_b())
- fields: This module contains the potential fields and their radial derivatives

- step_time_mod/**dbdt_lmloc**(:,:) [complex,private/allocatable]
- step_time_mod/dzdt_lmloc(:,:) [complex,private/allocatable]
- step_time_mod/dvsrlm_lmloc(:,:) [complex,private/allocatable]
- step_time_mod/**dbdt_rloc** (:,:) [complex,private/target/allocatable]
- step_time_mod/**dpdt_rloc** (:,:) [complex,private/allocatable]
- step_time_mod/dwdt_rloc(:,:) [complex,private/allocatable]
- step_time_mod/**dsdt_rloc** (:,:) [complex,private/allocatable]
- step_time_mod/djdt_rloc(:,:) [complex,private/allocatable]
- step_time_mod/**dsdt_lmloc**(:,:) [complex,private/allocatable]
- step time mod/dvxbhlm rloc(:,:) [complex,private/allocatable]

```
• step_time_mod/dzdt_rloc(:,:) [complex,private/allocatable]
```

- step_time_mod/**dpdt_lmloc** (:,:) [complex,private/allocatable]
- step_time_mod/**dvxbhlm_lmloc**(:,:) [complex,private/allocatable]
- step_time_mod/dwdt_lmloc(:,:) [complex,private/allocatable]
- step_time_mod/dvsrlm_rloc(:,:) [complex,private/allocatable]
- step_time_mod/djdt_lmloc(:,:) [complex,private/allocatable]

```
subroutine step_time_mod/initialize_step_time()

Called from magic
subroutine step_time_mod/step_time(time, dt, dtnew, n_time_step)
```

This subroutine performs the actual time-stepping.

Parameters

- time [real,inout]
- **dt** [real,inout]
- dtnew [real,inout]
- n_time_step [integer,inout]

Called from magic

```
Call to walltime(), lo2r_redist_wait(), capitalize(), time2ms(),
    ms2time(), ltimelimit(), logwrite(), l_correct_step(), dble2str(),
    safeopen(), safeclose(), radialloopg(), lnegtime(), subtime(),
    addtime(), r2lo_redist(), output(), get_b_nl_bcs(), dt_courant(),
    check_time_hits(), lmloop(), meantime(), writetime()
```

subroutine step_time_mod/check_time_hits(l_new_dt, time, dt, dt_new)

Checks whether a certain dt is required to hit a specific output-time.

Parameters

- l_new_dt [logical,out] :: signfies change of dt !
- time [real,inout]
- **dt** [real,inout]
- **dt_new** [real,inout]

Called from step_time()

10.6.2 courant.f90

Quick access

```
Routines dt_courant(), courant()
```

Needed modules

- horizontal_data(osn2()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- precision_mod: This module controls the precision used in MagIC
- useful (logwrite()): library with several useful subroutines
- logic (1_mag(), 1_mag_kin(), 1_mag_lf()): Module containing the logicals that control the run
- radial_data(nrstart(), nrstop())
- parallel_mod: This module contains the blocking information
- num_param(delxh2(), delxr2(), courfac(), alffac()): Module containing numerical and control parameters
- physical_parameters (opm(), 1ffac()): Module containing the physical parameters
- truncation (nrp(), n_phi_max()): This module defines the grid points and the truncation
- blocking (nfs ()): Module containing blocking information
- constants (one (), two (), half ()): module containing constants and parameters used in the code.
- radial_functions (or2(), or4(), orho1(), orho2()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

Subroutines and functions

subroutine courant_mod/**courant** (*n_r*, *dtrkc*, *dthkc*, *vr*, *vt*, *vp*, *br*, *bt*, *bp*, *n_theta_min*, *n_theta_block*)

Parameters

- **n_r** [integer,in] :: radial level
- **dtrkc** [real,inout] :: Courant step (based on radial advection)
- dthkc [real,inout] :: Courant step based on horizontal advection
- **vr** (*nrp*,*nfs*) [real,in] :: radial velocity
- vt (nrp,nfs) [real,in] :: longitudinal velocity
- **vp** (*nrp*,*nfs*) [real,in] :: azimuthal velocity
- **br** (nrp,nfs) [real,in] :: radial magnetic field
- **bt** (*nrp*,*nfs*) [real,in] :: longitudinal magnetic field
- **bp** (nrp,nfs) [real,in] :: azimuthal magnetic field
- n_theta_min [integer,in] :: first theta in block stored in fields
- n_theta_block [integer,in] :: size of theta block

subroutine courant_mod/dt_courant (dt_r, dt_h, l_new_dt, dt, dt_new, dtmax, dtrkc, dthkc)

Check if Courant criterion based on combined fluid and Alfven velocity is satisfied Returns new value of time step dtnew

dtr,dth: (output) radial/horizontal Courant time step n_time_step: (input) time step number l_new_dt: (output) flag indicating that time step is changed (=1) or not (=0) dt: (input) old time step dtnew: (output) new time step dtMin: (input) lower limit for time step (termination if dtnew < dtMin) dtMax: (input) upper limit for time step dtrkc: (input) radial Courant time step as function of radial level dthkc: (input) horizontal Courant time step as function of radial level

Parameters

- **dt_r** [real,out]
- dt_h [real,out]
- l_new_dt [logical,out]
- **dt** [real,in]
- dt_new [real,out]
- dtmax [real,in]
- dtrkc (nrstop-(nrstart)+1) [real,in]
- **dthkc** (*nrstop*-(*nrstart*)+1) [*real*,*in*]

```
Called from step_time()
Call to logwrite()
```

10.6.3 timing.f90

Description

Useful functions for time-stepping

Quick access

Needed modules

- precision_mod: This module controls the precision used in MagIC
- parallel_mod (rank ()): This module contains the blocking information
- mpi

- timing/msechour [integer,private/parameter=3600000]
- timing/msecsecond [integer, private/parameter=1000]

• timing/msecminute [integer, private/parameter=60000]

Subroutines and functions

```
subroutine timing/walltime (time)
```

This routine returns the wallclock time in four integer arguments.

```
Parameters time (4) [integer,out]
Called from step_time(), lmloop(), magic
Call to ms2time()
```

```
subroutine timing/ms2time (ms, time)
```

Transforms accumulated milliseconds ms into an four-element integer arrays time(4) containing the time in hours=time(1), minutes=time(2), seconds=time(3), and milliseconds=time(4).

Parameters

- ms [integer,in]
- **time** (4) [integer,out]

```
Called from step_time(), meantime(), addtime(), subtime(), walltime()
```

```
function timing/time2ms (time)
```

Transforms a four-element integer arrays time(4) containing the time in hours=time(1), minutes=time(2), seconds=time(3), and milliseconds=time(4) into accumulated milliseconds.

```
Parameters time (4) [integer,in]
```

Return time2ms [integer]

```
Called from step_time(), meantime(), lnegtime(), addtime(), subtime()
```

```
subroutine timing/subtime (timestart, timestop, timed)
```

Returns time passed between timeStop and timeStart. Note timeStop has to be younger than timeStart, otherwise 24 hours are added. This is necessary on systems like the IBM where the time counter as reset every day at midnight.

Parameters

- timestart (4) [integer,in]
- timestop (4) [integer,in]
- **timed** (4) [integer,out]

```
Called from step_time(), lmloop()
Call to time2ms(), ms2time()
```

function timing/ltimelimit (time, timemax)

True when time exeeds timeMax

Parameters

```
• time (4) [integer,in]
• timemax (4) [integer,in]
Return Itimelimit [logical]
Called from step_time()
subroutine timing/addtime (time1, time2)
Parameters
• time1 (4) [integer]
• time2 (4) [integer]
Called from step_time()
Call to time2ms(), ms2time()
subroutine timing/meantime (time, n)
```

Parameters

- time (4) [integer]
- **n** [integer,in]

```
Called from step_time()
```

Call to time2ms(), ms2time()

function timing/lnegtime (time1, time2)

Negative passed time? Means we have passed midnight. The wallclock time is reset to zero on some computers at midnight.

Parameters

- **time1** (4) [integer,in]
- **time2** (4) [integer,in]

Return Inegtime [logical]

Called from step_time()

Call to time2ms()

 $\textbf{subroutine} \; \texttt{timing/writetime} \; (\textit{nout}, \textit{text}, \textit{time})$

Returns time passed between timeStop and timeStart. Note timeStop has to be younger than timeStart, otherwise 24 hours are added. This is necessary on systems like the IBM where the time counter are reset every day at midnight.

Parameters

- **nout** [integer,in]
- **text** [character,in]
- time (4) [integer,in]

Called from step_time(), lmloop(), magic

10.7 Linear calculation part of the time stepping (LMLoop)

10.7.1 LMLoop.f90

Quick access

Routines initialize_lmloop(), lmloop()

Needed modules

- debugging (debug_write())
- parallel_mod (rank ()): This module contains the blocking information
- updatewp_mod(updatewp(), initialize_updatewp())
- output_data (log_file(), nlf()): This module contains the parameters for output control
- useful (safeclose(), safeopen()): library with several useful subroutines
- fieldslast: This module contains time-derivaties array of the previous time-step They are needed in the time-stepping scheme.
- updates_mod(initialize_updates(), updates_ala(), updates())
- fields: This module contains the potential fields and their radial derivatives
- updatez_mod(initialize_updatez(), updatez())
- lmloop_data(ulmmag(), llmmag(), llm(), ulm())
- radial_data(n_r_cmb(), n_r_icb())
- precision_mod: This module controls the precision used in MagIC
- communications (lo2r_z(), lo2r_w(), lo2r_p(), lo2r_s(), get_global_sum(), lo2r_aj(), lo2r_redist_start(), lo2r_b())
- updateb_mod(initialize_updateb(), updateb())
- logic (l_heat(), l_anelastic_liquid(), l_mag(), lverbose(), l_conv()): Module containing the logicals that control the run
- timing (writetime(), subtime(), walltime()): Useful functions for time-stepping
- omp_lib
- matrices (lbmat(), lz10mat(), lwpmat(), lsmat(), lzmat()): This module contains matrices for internal time step
- blocking (lmstartb(), lmstopb()): Module containing blocking information
- truncation(lm_max(), l_max(), n_r_max(), n_r_maxmag()): This module defines the grid points and the truncation

Variables

Subroutines and functions

subroutine lmloop_mod/initialize_lmloop()

Called from magic

```
Call to initialize_updates(),
    initialize_updatewp(), initialize_updateb()
```

subroutine lmloop_mod/**lmloop** (w1, coex, time, dt, lmat, lrmsnext, dvxbhlm, dvsrlm, dsdt, dwdt, dzdt, dpdt, dbdt, djdt, lorentz_torque_ma, lorentz_torque_ic, b_nl_cmb, aj_nl_cmb, aj_nl_icb)

This subroutine performs the actual time-stepping.

Parameters

- **w1** [real,in]
- coex [real,in]
- time [real,in]
- dt [real,in]
- lmat [logical,in]
- **lrmsnext** [logical,in]
- **dvxbhlm** (*ulmmag*-(*llmmag*)+1,*n_r_maxmag*) [*complex*,*inout*]
- **dvsrlm** (*ulm*-(*llm*)+1,*n_r_max*) [complex,inout]
- **dsdt** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*inout*]
- **dwdt** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [complex,in]
- **dzdt** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- **dpdt** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- **dbdt** (*ulmmag-(llmmag)+1,n_r_maxmag*) [*complex,in*]
- **djdt** (*ulmmag*-(*llmmag*)+1,*n_r_maxmag*) [*complex*,*inout*]
- lorentz_torque_ma [real,in]
- lorentz_torque_ic [real,in]
- **b_nl_cmb** (*lm_max*) [*complex,in*] :: nonlinear bc for b at CMB
- aj_nl_cmb (lm_max) [complex,in] :: nonlinear bc for aj at CMB
- aj_nl_icb (lm_max) [complex,in] :: nonlinear bc for dr aj at ICB

Called from step_time()

```
Call to safeopen(), walltime(), updates_ala(), updates(),
    lo2r_redist_start(), updatewp(), updateb(), subtime(), writetime(),
    safeclose()
```

10.7.2 updateWP.f90

Quick access

Needed modules

- horizontal_data(dlh(), hdif_v()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- rms (difpol2hint(), dtvpol1mr(), dtvpol2hint(), difpol1mr()): This module contains the calculation of thr RMS force balance and induction terms.
- truncation (lm_max(), n_cheb_max(), n_r_max()): This module defines the grid points and the truncation
- algebra (sgesl(), sgefa(), cgeslml())
- cosine_transform_odd
- rms_helpers (hint2pol()): This module contains several useful subroutines required to compute RMS diagnostics
- logic (l_update_v()): Module containing the logicals that control the run
- lmloop_data(llm(), ulm())
- radial_data(n_r_cmb(), n_r_icb())
- precision_mod: This module controls the precision used in MagIC
- communications (get_global_sum())
- parallel_mod (chunksize()): This module contains the blocking information
- num_param(alpha()): Module containing numerical and control parameters
- radial_der (get_dr(), get_dddr()): Radial derivatives functions
- physical_parameters (kbotv(), ktopv(), ra()): Module containing the physical parameters
- omp_lib
- matrices (p0mat(), wppivot(), wpmat(), p0pivot(), lwpmat(), wpmat_fac()): This module contains matrices for internal time step
- blocking (lo_sub_map(), lmstartb(), nlmbs(), lmstopb(), lo_map(), st_map(), st_sub_map()): Module containing blocking information
- constants (third(), three(), two(), four(), zero(), half(), one()): module containing constants and parameters used in the code.
- radial_functions (d2cheb(), drx(), ddrx(), cheb_norm(), chebt_oc(), rho0(), or2(), agrav(), or1(), visc(), beta(), dlvisc(), cheb(), rgrav(), dcheb(), dddrx(), d3cheb(), dbeta()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

- updatewp_mod/pre (:) [complex,private/allocatable]
- updatewp_mod/maxthreads [integer,private]
- updatewp_mod/worka (:,:) [complex,private/allocatable]
- updatewp_mod/workb (:,:) [complex,private/allocatable]
- updatewp_mod/**rhs1** (:,:,:) [complex,private/allocatable]
- updatewp_mod/buo(:) [complex,private/allocatable]

- updatewp_mod/dif(:)[complex,private/allocatable]
- updatewp_mod/dtv(:) [complex,private/allocatable]

```
subroutine updatewp_mod/initialize_updatewp()

Called from initialize_lmloop()
subroutine updatewp_mod/finalize_updatewp()
subroutine updatewp_mod/updatewp(w, dw, ddw, dwdt, dwdtlast, p, dp, dpdt, dpdtlast, s, w1, coex, dt, nlmb, lrmsnext)
```

updates the poloidal velocity potential w, the pressure p, and their derivatives adds explicit part to time derivatives of w and p

Parameters

- **w** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [complex,inout]
- **dw** (*ulm*-(*llm*)+1,*n_r_max*) [complex,inout]
- **ddw** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [complex,out]
- **dwdt** (*ulm*-(*llm*)+1,*n_r_max*) [*complex*,*in*]
- **dwdtlast** (*ulm*-(*llm*)+1,*n_r_max*) [complex,inout]
- **p** (ulm-(llm)+1,n_r_max) [complex,inout]
- **dp** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*, *out*]
- **dpdt** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- $\bullet \ \ \mathbf{dpdtlast} \ (\mathit{ulm-(llm)+1,n_r_max}) \ [\mathit{complex,inout}] \\$
- $s(ulm-(llm)+1,n_r_max)[complex,in]$
- w1 [real,in] :: weight for time step!
- coex [real,in] :: factor depending on alpha
- **dt** [real,in] :: time step
- nlmb [integer,in] :: block number
- **lrmsnext** [logical,in]

```
Called from lmloop()
```

```
Call to get_p0mat(), get_wpmat(), sgesl(), cgeslml(), get_dddr(),
hint2pol()
```

subroutine updatewp_mod/get_wpmat (dt, l, hdif, wpmat, wppivot, wpmat_fac)

Purpose of this subroutine is to contruct the time step matrix wpmat for the NS equation.

Parameters

- **dt** [real,in]
- I [integer,in]
- hdif [real,in]

```
    wpmat (2*n_r_max,2*n_r_max) [real,out]
    wppivot (2*n_r_max) [integer,out]
    wpmat_fac (2*n_r_max,2) [real,out]
    Called from updatewp()
    Call to sgefa()
    subroutine updatewp_mod/get_p0mat (pmat, ppivot)
    Parameters

            pmat (n_r_max,n_r_max) [real,out]
            ppivot (n_r_max) [integer,out]

    Called from updatewp()
```

10.7.3 updateZ.f90

Call to sqefa()

Quick access

```
Variables maxthreads, dif, dtv, worka, workb, workc, rhs1
Routines initialize_updatez(), get_z10mat(), get_zmat(), updatez()
```

Needed modules

- horizontal_data(dlh(), hdif_v()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- rms (dtvtor2hint (), diftor2hint ()): This module contains the calculation of thr RMS force balance and induction terms.
- lmloop_data(llm(), ulm())
- init_fields
- radial_der (get_ddr ()): Radial derivatives functions
- cosine_transform_odd
- parallel_mod: This module contains the blocking information
- num_param (alpha(), amstart()): Module containing numerical and control parameters
- physical_parameters (kbotv(), ktopv(), lffac()): Module containing the physical parameters
- omp_lib
- radial_functions (d2cheb(), drx(), ddrx(), cheb_norm(), r_cmb(), chebt_oc(), rho0(), or2(), or1(), visc(), beta(), dlvisc(), cheb(), r_icb(), dcheb(), r(), dbeta()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)
- algebra (cgesl(), sgefa(), cgeslml())
- torsional_oscillations (ddzasl()): This module contains information for TO calculation and output

- rms_helpers (hint2tor()): This module contains several useful subroutines required to compute RMS diagnostics
- matrices (lz10mat(), zmat_fac(), zmat(), z10mat(), z10mat_fac(), z10pivot(), zpivot(), lzmat()): This module contains matricies for internal time step
- blocking (lo_sub_map(), lmstartb(), nlmbs(), lmstopb(), lo_map(), st_map(), st_sub_map()): Module containing blocking information
- constants (c_moi_oc(), y11_norm(), y10_norm(), c_z10_omega_ma(), c_lorentz_ic(), c_dt_z10_ic(), one(), four(), c_moi_ma(), zero(), c_z10_omega_ic(), two(), c_moi_ic(), half(), c_dt_z10_ma(), c_lorentz_ma()): module containing constants and parameters used in the code.
- truncation(lm_max(), l_max(), n_cheb_max(), n_r_max()): This module defines the grid points and the truncation
- precision_mod: This module controls the precision used in MagIC
- outrot (get_angular_moment())
- radial_data(n_r_cmb(), n_r_icb())
- communications (get_global_sum())
- logic (l_rot_ic(), l_to(), l_z10mat(), l_correct_amz(), l_correct_ame(), l_update_v(), l_srma(), l_rot_ma(), l_sric()): Module containing the logicals that control the run

Variables

- updatez_mod/maxthreads [integer,private]
- updatez_mod/worka(:,:) [complex,private/allocatable]
- updatez_mod/workb(:,:) [complex,private/allocatable]
- updatez_mod/workc(:,:) [complex,private/allocatable]
- updatez_mod/**rhs1** (:,:,:) [complex,private/allocatable]
- updatez_mod/dtv(:) [complex,private/allocatable]
- updatez_mod/dif(:) [complex,private/allocatable]

Subroutines and functions

```
subroutine updatez_mod/initialize_updatez()
```

```
Called from initialize_lmloop()
```

updates the toroidal potential z and its radial derivatives adds explicit part to time derivatives of z

- **z** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [complex,inout]
- **dz** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*, *out*]

- **dzdt** (*ulm*-(*llm*)+1,*n_r_max*) [complex,in]
- **dzdtlast** (*ulm*-(*llm*)+1,*n* r max) [complex,inout]
- **time** [real,in] :: Current time
- omega_ma [real,out] :: Calculated OC rotation
- d omega ma dtlast [real,inout]:: Time derivative of OC rotation of previous step
- omega ic [real,out] :: Calculated IC rotation
- d_omega_ic_dtlast [real,inout] :: Time derivative of IC rotation of previous step
- lorentz_torque_ma [real,in] :: Lorentz torque (for OC rotation)
- lorentz_torque_malast [real,in] :: Lorentz torque (for OC rotation) of previous step
- **lorentz_torque_ic** [real,in] :: Lorentz torque (for IC rotation)
- lorentz_torque_iclast [real,in] :: Lorentz torque (for IC rotation) of previous step
- w1 [real,in] :: Weight for time step
- coex [real,in] :: Factor depending on alpha
- **dt** [real,in] :: Time step interval
- **Irmsnext** [logical,in] :: Logical for storing update if (l_RMS.and.l_logNext)

```
Call to get_zmat(), get_z10mat(), cgesl(), cgeslml(), get_ddr(),
    get_angular_moment(), hint2tor()
```

```
subroutine updatez_mod/get_z10mat (dt, l, hdif, zmat, zpivot, zmat_fac)
```

Purpose of this subroutine is to construct and LU-decompose the inversion matrix z10mat for the implicit time step of the toroidal velocity potential z of degree l=1 and order m=0. This differs from the the normal zmat only if either the ICB or CMB have no-slip boundary condition and inner core or mantle are chosen to rotate freely (either kbotv=1 and/or ktopv=1).

Parameters

- **dt** [real,in] :: Time step internal
- 1 [integer,in] :: Variable to loop over 1's
- hdif [real,in] :: Value of hyperdiffusivity in zMat terms
- **zmat** (n_r_max,n_r_max) [real,out] :: LHS matrix to calculate z
- **zpivot** (n r max) [integer,out] :: Pivot to invert zMat
- **zmat_fac** (*n_r_max*) [*real,out*] :: Inverse of max(zMat) for inversion

Called from updatez()

Call to sgefa()

 $\textbf{subroutine} \; \texttt{updatez_mod/get_zmat} \; (\textit{dt}, \textit{l}, \textit{hdif}, \textit{zmat}, \textit{zpivot}, \textit{zmat_fac})$

Purpose of this subroutine is to contruct the time step matricies zmat(i,j) for the NS equation.

- **dt** [real,in] :: Time interval
- I [integer,in] :: Variable to loop over degrees

- hdif [real,in] :: Hyperdiffusivity
- **zmat** (*n_r_max*,*n_r_max*) [real,out] :: Matrix with LHS of z equation
- **zpivot** (*n_r_max*) [integer,out] :: Pivot for zMat inversion
- **zmat_fac** (*n_r_max*) [*real,out*] :: Inverse of max(zMat) for the inversion

```
Called from updatez()
Call to sqefa()
```

10.7.4 updateS.f90

Quick access

```
Routines initialize_updates(), get_smat(), get_s0mat(), updates(), updates_ala()
```

Needed modules

- horizontal_data(hdif_s(), dlh()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- parallel_mod (chunksize(), rank()): This module contains the blocking information
- truncation (lm_max(), n_cheb_max(), n_r_max()): This module defines the grid points and the truncation
- algebra(sgesl(), sgefa(), cgeslml())
- cosine_transform_odd
- logic(l_anelastic_liquid(), l_update_s()): Module containing the logicals that control the run
- lmloop_data(llm(), ulm())
- radial_data(n_r_cmb(), n_r_icb())
- precision_mod: This module controls the precision used in MagIC
- init_fields(bots(), tops())
- num param(alpha()): Module containing numerical and control parameters
- radial_der (get_drns (), get_ddr ()): Radial derivatives functions
- physical_parameters (kbots(), ktops(), opr()): Module containing the physical parameters
- omp_lib
- matrices (smat(), smat_fac(), s0mat(), lsmat(), s0mat_fac(), s0pivot(), spivot()): This module contains matrices for internal time step
- blocking (lo_sub_map(), lmstartb(), nlmbs(), lmstopb(), lo_map(), st_map()): Module containing blocking information
- constants (zero(), half(), two(), one()): module containing constants and parameters used in the code.

• radial_functions (d2cheb(), drx(), ddrx(), orho1(), dlkappa(), chebt_oc(), or2(), or1(), beta(), temp0(), dentropy0(), kappa(), dcheb(), otemp1(), cheb_norm(), dtemp0(), cheb()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

- updates_mod/maxthreads [integer,private]
- updates_mod/worka (:,:) [complex,private/allocatable]
- updates_mod/workb (:,:) [complex,private/allocatable]
- updates_mod/**rhs1** (:,:,:) [complex,private/allocatable]

Subroutines and functions

```
subroutine updates_mod/initialize_updates()
```

```
Called from initialize_lmloop()
```

subroutine updates_mod/**updates** (s, ds, dvsrlm, dsdt, dsdtlast, w1, coex, dt, nlmb)

updates the entropy field s and its radial derivatives adds explicit part to time derivatives of s

Parameters

- **s** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*, *inout*]
- **ds** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*out*]
- **dvsrlm** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [complex,inout]
- **dsdt** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*, *inout*]
- **dsdtlast** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [complex,inout]
- w1 [real,in] :: weight for time step!
- coex [real,in] :: factor depending on alpha
- **dt** [real,in] :: time step
- **nlmb** [integer,in]

Called from lmloop()

```
Call to get_drns(), get_s0mat(), get_smat(), sgesl(), cgeslml(), get_ddr()
```

subroutine updates_mod/**updates_ala** (s, ds, w, dvsrlm, dsdt, dsdtlast, w1, coex, dt, nlmb)

updates the entropy field s and its radial derivatives adds explicit part to time derivatives of s

- **s** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*inout*]
- ds (ulm-(llm)+1,n_r_max) [complex,out]
- \mathbf{w} (ulm-(llm)+1,n_r_max) [complex,in]
- **dvsrlm** (*ulm*-(*llm*)+1,*n_r_max*) [complex,inout]
- **dsdt** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*inout*]

```
dsdtlast (ulm-(llm)+1,n_r_max) [complex,inout]
w1 [real,in] :: weight for time step!
coex [real,in] :: factor depending on alpha
dt [real,in] :: time step
nlmb [integer,in]
Called from lmloop()
Call to get_drns(), get_s0mat(), get_smat(), sgesl(), cgeslml(), get_ddr()
```

subroutine updates_mod/get_s0mat (dt, smat, spivot, smat_fac)

Purpose of this subroutine is to contruct the time step matrix sMat0

Parameters

- **dt** [real,in]
- **smat** (*n_r_max*,*n_r_max*) [*real*,*out*]
- **spivot** (*n_r_max*) [integer,out]
- smat_fac (n_r_max) [real,out]

Called from updates(), updates_ala()

Call to sgefa()

subroutine updates_mod/get_smat (dt, l, hdif, smat, spivot, smat_fac)

Purpose of this subroutine is to contruct the time step matricies sMat(i,j) and s0mat for the entropy equation.

Parameters

- **dt** [real,in]
- I [integer,in]
- hdif [real,in]
- **smat** (*n_r_max*,*n_r_max*) [*real*,*out*]
- **spivot** (*n_r_max*) [integer,out]
- smat_fac (n_r_max) [real,out]

Called from updates(), updates_ala()

Call to sgefa()

10.7.5 updateB.f90

Quick access

```
Variables dtp, dtt, rhs2
Routines initialize_updateb(), updateb(), get_bmat()
```

Needed modules

- horizontal_data (hdif_b(), dphi(), dlh(), d_l(), d_lp1()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- rms (dtbtor2hint(), dtbpollmr(), dtbpol2hint()): This module contains the calculation of thr RMS force balance and induction terms.
- lmloop data(llmmag(), ulmmag())
- init_fields(bpeakbot(), bpeaktop())
- radial_der_even(get_ddr_even())
- radial_der (get_drns (), get_ddr ()): Radial derivatives functions
- cosine transform odd
- parallel_mod (chunksize(), rank()): This module contains the blocking information
- num_param(alpha()): Module containing numerical and control parameters
- physical_parameters (sigma_ratio(), ktopb(), tmagcon(), imagcon(), o_sr(), n_r_lcr(), opm(), conductance_ma(), kbotb()): Module containing the physical parameters
- omp_lib
- radial_functions (d2cheb_ic(), drx(), ddrx(), cheb_norm(), dcheb_ic(), r_cmb(), chebt_oc(), cheb_norm_ic(), or2(), dr_fac_ic(), or1(), dllambda(), r(), cheb(), o_r_ic(), chebt_ic_even(), dcheb(), chebt_ic(), cheb_ic(), d2cheb(), lambda()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)
- algebra (sgefa(), cgeslml())
- precision mod: This module controls the precision used in MagIC
- rms_helpers (hint2torlm(), hint2pollm()): This module contains several useful subroutines required to compute RMS diagnostics
- matrices (jpivot(), lbmat(), bpivot(), bmat_fac(), bmat(), jmat_fac(), jmat()): This module contains matrices for internal time step
- blocking (lo_sub_map(), lmstartb(), nlmbs(), lmstopb(), lo_map(), st_map(), st_sub_map()): Module containing blocking information
- constants (one (), three (), two (), zero (), half (), pi ()): module containing constants and parameters used in the code.
- truncation(n_r_ic_max(), n_cheb_ic_max(), n_r_ic_maxmag(), n_r_tot(), lm_max(), n_r_max(), n_r_totmag(), n_cheb_max(), n_r_maxmag()): This module defines the grid points and the truncation
- bext: Module containing the external field parameters
- radial_data(n_r_cmb(), n_r_icb())
- logic (l_rot_ic(), l_mag_nl(), l_lcr(), l_cond_ic(), l_b_nl_cmb(), l_b_nl_icb(), l_update_b()): Module containing the logicals that control the run

Variables

- updateb_mod/maxthreads [integer,private]
- updateb_mod/worka(:,:) [complex,private/allocatable]

- updateb_mod/workb (:,:) [complex,private/allocatable]
- updateb_mod/rhs2 (:,:,:) [complex,private/allocatable]
- updateb_mod/**rhs1** (:,:,:) [complex,private/allocatable]
- updateb_mod/dtp(:)[complex,private/allocatable]
- updateb mod/dtt(:)[complex,private/allocatable]

Subroutines and functions

subroutine updateb_mod/initialize_updateb()

```
Called from initialize_lmloop()
```

subroutine updateb_mod/**updateb** (*b*, *db*, *ddb*, *aj*, *dj*, *ddj*, *dvxbhlm*, *dbdt*, *dbdtlast*, *djdt*, *djdtlast*, *b_ic*, *db_ic*, *ddb_ic*, *aj_ic*, *dj_ic*, *ddj_ic*, *dbdt_iclast*, *djdt_iclast*, *b_nl_cmb*, *aj_nl_icb*, *omega_ic*, *w1*, *coex*, *dt*, *time*, *nlmb*, *lrmsnext*)

Calculated update of magnetic field potential and the time stepping arrays dbdtLast, ...

updates the magnetic field potentials b, aj and their derivatives, adds explicit part to time derivatives of b and j

- **b** (ulmmag-(llmmag)+1,n_r_maxmag) [complex,inout]
- **db** (ulmmag-(llmmag)+1,n_r_maxmag) [complex,out]
- **ddb** (ulmmag-(llmmag)+1,n_r_maxmag) [complex,out]
- **aj** (ulmmag-(llmmag)+1,n_r_maxmag) [complex,inout]
- **dj** (ulmmag-(llmmag)+1,n_r_maxmag) [complex,out]
- **ddj** (ulmmag-(llmmag)+1,n_r_maxmag) [complex,out]
- **dvxbhlm** (*ulmmag*-(*llmmag*)+1,*n r maxmag*) [*complex*,*inout*]
- **dbdt** (*ulmmag*-(*llmmag*)+1,*n_r_maxmag*) [*complex*,*in*]
- **dbdtlast** (*ulmmag-(llmmag)+1,n_r_maxmag*) [complex,inout]
- **djdt** (*ulmmag*-(*llmmag*)+1,*n* r maxmag) [complex,inout]
- **djdtlast** (*ulmmag*-(*llmmag*)+1,*n_r_maxmag*) [*complex*,*inout*]
- **b_ic** (*ulmmag-(llmmag*)+1,*n_r_ic_maxmag*) [*complex,inout*]
- **db_ic** (*ulmmag-(llmmag)+1,n_r_ic_maxmag*) [*complex,out*]
- **ddb_ic** (ulmmag-(llmmag)+1,n_r_ic_maxmag) [complex,out]
- aj_ic (ulmmag-(llmmag)+1,n_r_ic_maxmag) [complex,inout]
- $\bullet \ \ \mathbf{dj_ic} \ (ulmmag-(llmmag)+1, n_r_ic_maxmag) \ [complex, out] \\$
- **ddj_ic** (ulmmag-(llmmag)+1,n_r_ic_maxmag) [complex,out]
- **dbdt_iclast** (*ulmmag-(llmmag)+1,n_r_ic_maxmag*) [*complex,inout*]
- **djdt_iclast** (*ulmmag-(llmmag)+1,n_r_ic_maxmag*) [*complex,inout*]
- **b_nl_cmb** (*) [complex,in]
- aj_nl_cmb (*) [complex,in]

• aj_nl_icb (*) [complex,in]

```
omega_ic [real,in]
w1 [real,in] :: weight for time step!
coex [real,in] :: factor depending on alpha
dt [real,in]
time [real,in]
nlmb [integer,in]
lrmsnext [logical,in]
Called from lmloop()
Call to get_drns(), get_bmat(), cgeslml(), get_ddr(), get_ddr_even(), hint2pollm(), hint2torlm()
```

subroutine updateb_mod/**get_bmat** (dt, l, hdif, bmat, bpivot, bmat_fac, jmat, jpivot, jmat_fac)

Purpose of this subroutine is to contruct the time step matrices bmat(i,j) and ajmat for the dynamo equations.

Parameters

- **dt** [real,in]
- l [integer,in]
- hdif [real,in]
- **bmat** (*n_r_totmag*,*n_r_totmag*) [real,out]
- **bpivot** (*n_r_totmag*) [integer,out]
- bmat_fac (n_r_totmag) [real,out]
- **jmat** (*n_r_totmag*,*n_r_totmag*) [real,out]
- **jpivot** (*n_r_totmag*) [integer,out]
- jmat_fac (n_r_totmag) [real,out]

```
Called from updateb()
Call to sgefa()
```

10.8 Non-linear part of the time stepping (radial loop)

10.8.1 radialLoop.f90

Quick access

Routines finalize_radialloop(), initialize_radialloop(), radialloopg()

Needed modules

- parallel_mod (n_procs (), rank ()): This module contains the blocking information
- graphout_mod(graphout_mpi_header())
- riterthetablocking_mod(riterthetablocking_t())
- fft: This file contains the subroutines called by fftJW: fft99a, fft99b, wpass2, wpass3, wpass4 and wpass5
- radial_data (n_r_cmb(), n_r_icb(), nrstopmag(), nrstartmag(), nrstop(), nrstart())
- precision_mod: This module controls the precision used in MagIC
- logic (l_pressgraph(), l_rot_ic(), l_mag_nl(), l_dtb(), l_cond_ma(), lverbose(), l_mag_kin(), l_cond_ic(), l_mag_lf(), l_rot_ma(), l_mag()): Module containing the logicals that control the run
- riteration_mod(riteration_t())
- physical_parameters (kbotv(), ktopv()): Module containing the physical parameters
- riterthetablocking_seq_mod(riterthetablocking_seq_t())
- blocking (nthetabs (), sizethetab ()): Module containing blocking information
- constants (zero ()): module containing constants and parameters used in the code.
- truncation(lm_max(), lm_maxmag(), lmp_max(), l_maxmag(), l_max()): This module defines the grid points and the truncation

Variables

Subroutines and functions

```
subroutine radialloop/finalize_radialloop()
```

subroutine radialloop/radialloopg (l_graph, l_cour, l_frame, time, dt, dtlast, ltocalc, ltonext, ltonext2, lhelcalc, lrmscalc, lviscbccalc, lfluxprofcalc, lperp-parcalc, dsdt, dwdt, dzdt, dpdt, dbdt, djdt, dvxbhlm, dvsrlm, lorentz_torque_ic, lorentz_torque_ma, br_vt_lm_cmb, br_vp_lm_cmb, br_vt_lm_icb, br_vp_lm_icb, hellmr, helalmr, helna2lmr, uhlmr, duhlmr, gradslmr, fconvlmr, fkinlmr, fvisclmr, fpoynlmr, freslmr, eperplmr, eperparilmr, eperparilmr, eparaxilmr, dtrkc, dthkc)

This subroutine performs the actual time-stepping.

- l_graph [logical,in]
- **l_cour** [logical,in]
- l_frame [logical,in]
- time [real,in]

- **dt** [real,in]
- dtlast [real,in]
- **ltocalc** [logical,in]
- **Itonext** [logical,in]
- **ltonext2** [logical,in]
- **lhelcalc** [logical,in]
- **lrmscalc** [logical,in]
- lviscbccalc [logical,in]
- Ifluxprofcalc [logical,in]
- **lperpparcalc** [logical,in]
- **dsdt** (*lm_max,nrstop-(nrstart)*+1) [*complex,out*]
- **dwdt** (*lm_max,nrstop-(nrstart*)+1) [*complex,out*]
- **dzdt** (*lm_max,nrstop-(nrstart*)+1) [*complex,out*]
- **dpdt** (*lm_max,nrstop-(nrstart)*+1) [*complex,out*]
- **dbdt** (lm_maxmag,nrstopmag-(nrstartmag)+1) [complex,out]
- **djdt** (lm_maxmag,nrstopmag-(nrstartmag)+1) [complex,out]
- **dvxbhlm** (*lm_maxmag,nrstopmag-(nrstartmag)*+1) [*complex,out*]
- **dvsrlm** (*lm_max,nrstop-*(*nrstart*)+1) [*complex,out*]
- lorentz_torque_ic [real,out]
- lorentz_torque_ma [real,out]
- **br_vt_lm_cmb** (*lmp_max*) [complex,out] :: product br*vt at CMB
- **br_vp_lm_cmb** (*lmp_max*) [complex,out] :: product br*vp at CMB
- br_vt_lm_icb (lmp_max) [complex,out] :: product br*vt at ICB
- **br_vp_lm_icb** (*lmp_max*) [*complex,out*] :: product br*vp at ICB
- **hellmr** (*l* max+1,nrstop-(nrstart)+1) [real,out]
- **hel2lmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*out*]
- **helnalmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*out*]
- helna2lmr (l max+1,nrstop-(nrstart)+1) [real,out]
- **uhlmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*out*]
- **duhlmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*out*]
- $\mathbf{gradsImr}(l_max+1,nrstop-(nrstart)+1)[real,out]$
- **fconvlmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [real,out]
- **fkinlmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*out*]
- **fvisclmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*out*]
- **fpoynlmr** (*l_maxmag+1,nrstopmag-(nrstartmag)+1*) [real,out]
- **freslmr** (*l_maxmag+1,nrstopmag-(nrstartmag)+1*) [real,out]

```
eperplmr (l_max+1,nrstop-(nrstart)+1) [real,out]
eparlmr (l_max+1,nrstop-(nrstart)+1) [real,out]
eperpaxilmr (l_max+1,nrstop-(nrstart)+1) [real,out]
eparaxilmr (l_max+1,nrstop-(nrstart)+1) [real,out]
dtrkc (nrstop-(nrstart)+1) [real,out]
dthkc (nrstop-(nrstart)+1) [real,out]
Called from step_time()
Call to graphout_mpi_header()
```

10.8.2 rIteration.f90

Quick access

Routines set_steering_variables()

Needed modules

• precision_mod: This module controls the precision used in MagIC

Types

• type riteration_mod/unknown_type

Type fields

- % lfluxprofcalc [logical]
- % dthkc[real]
- % lhelcalc[logical]
- % lpresscalc [logical]
- % isradialboundarypoint [logical]
- % nbc[integer]
- % lderiv[logical]
- % nr [integer]
- % 1_frame [logical]
- % l_graph [logical]
- % lperpparcalc [logical]
- % dtrkc[real]
- % ltonext2 [logical]
- % 1_cour [logical]
- % ltocalc [logical]
- % ltonext [logical]

- % lmagnlbc [logical]
- % lviscbccalc [logical]
- % lrmscalc[logical]

Subroutines and functions

Parameters

- this [real]
- **l_cour** [logical,in]
- **ltocalc** [logical,in]
- **Itonext** [logical,in]
- ltonext2 [logical,in]
- **Ideriv** [logical,in]
- **lrmscalc** [logical,in]
- **lhelcalc** [logical,in]
- l_frame [logical,in]
- **lmagnlbc** [logical,in]
- l_graph [logical,in]
- lviscbccalc [logical,in]
- **Ifluxprofcalc** [logical,in]
- **lperpparcalc** [logical,in]
- **lpresscalc** [logical,in]

10.8.3 rIterThetaBlocking.f90

Quick access

```
Routines allocate_common_arrays(),
    set_thetablocking(),
    transform_to_lm_space()
deallocate_common_arrays(),
    transform_to_grid_space(),
```

Needed modules

- grid_space_arrays_mod(grid_space_arrays_t())
- nonlinear_lm_mod(nonlinear_lm_t())
- fft: This file contains the subroutines called by fftJW: fft99a, fft99b, wpass2, wpass3, wpass4 and wpass5

- legendre_spec_to_grid(legtfgnomag(), legtfg())
- radial_data(n_r_cmb(), nrstart(), n_r_icb(), nrstop())
- precision_mod: This module controls the precision used in MagIC
- legendre_grid_to_spec
- logic (l_rot_ic(), l_b_nl_icb(), l_mag_nl(), l_dtb(), l_movie_oc(), l_rot_ma(), l_cond_ic(), l_cond_ma(), l_mag_kin(), l_conv_nl(), l_b_nl_cmb(), l_store_frame(), l_heat(), l_mag_lf(), l_anel(), l_ht(), l_mag(), l_conv()): Module containing the logicals that control the run
- riteration_mod(riteration_t())
- physical_parameters (n_r_lcr(), kbots(), ktops()): Module containing the physical parameters
- radial_functions (orho1(), or2()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)
- leg_helper_mod(leg_helper_t())
- blocking (nfs ()): Module containing blocking information
- nonlinear_bcs(v_rigid_boundary())
- truncation (l_max(), n_r_maxstr(), lm_maxmag(), lmp_max_dtb(), lmp_max(), n_theta_maxstr(), lm_max(), nrp(), n_phi_maxstr(): This module defines the grid points and the truncation

Types

• type riterthetablocking_mod/unknown_type

Type fields

- % bslast (,,*) [real,allocatable]
- % bplast (,,*) [real, allocatable]
- % leg_helper_t]
- % bzlast (,,*) [real, allocatable]
- % nthetabs [integer]
- % sizethetab [integer]

Subroutines and functions

```
subroutine riterthetablocking_mod/allocate_common_arrays(this)
```

Parameters this [real]

subroutine riterthetablocking_mod/deallocate_common_arrays (this)

Parameters this [real]

subroutine riterthetablocking_mod/set_thetablocking(this, nthetabs, sizethetab)

Parameters

• this [real]

- **nthetabs** [integer,in]
- **sizethetab** [integer,in]

subroutine riterthetablocking_mod/transform_to_grid_space(this, nthetastart, nthetastart, nthetastart, nthetastart)

Parameters

- this [real]
- nthetastart [integer,in]
- **nthetastop** [integer,in]
- **gsa** [grid_space_arrays_t]

Call to legtfg(), legtfgnomag(), fft_thetab(), v_rigid_boundary()

subroutine riterthetablocking_mod/transform_to_lm_space (this, nthetastart, nthetastart, nthetastart, gsa, nl_lm)

Parameters

- this [real]
- **nthetastart** [integer,in]
- **nthetastop** [integer,in]
- **gsa** [grid_space_arrays_t]
- **nl_lm** [nonlinear_lm_t]

Call to fft_thetab(), legtf3(), legtf2(), legtf1()

10.8.4 rIterThetaBlocking_OpenMP.f90

Quick access

Routines finalize_riterthetablocking_openmp(), initialize_riterthetablocking_openmp(), do_iteration_thetablocking_openmp()

Needed modules

- grid_space_arrays_mod(grid_space_arrays_t())
- dtb_arrays_mod(dtb_arrays_t())
- outrot(get_lorentz_torque())
- riterthetablocking_mod(riterthetablocking_t())
- graphout_mod(graphout_mpi())
- out_movie(store_movie_frame())
- nonlinear_lm_mod(nonlinear_lm_t())
- torsional_oscillations (gettonext(), getto(), gettofinish()): This module contains information for TO calculation and output
- radial_data(n_r_cmb(), n_r_icb())
- precision_mod: This module controls the precision used in MagIC

- dtb_mod (get_dh_dtblm(), get_dtblm()): This module contains magnetic field stretching and advection terms plus a separate omega-effect. It is used for movie output....
- to_arrays_mod(to_arrays_t())
- nonlinear_bcs(get_br_v_bcs())
- logic (l_rot_ic(), l_b_nl_icb(), l_mag_nl(), l_dtb(), l_movie_oc(), l_rot_ma(), l_cond_ic(), l_cond_ma(), l_mag_kin(), l_conv_nl(), l_b_nl_cmb(), l_store_frame(), l_heat(), l_mag_lf(), l_anel(), l_to(), l_ht(), l_mag(), l_conv()): Module containing the logicals that control the run
- courant_mod(courant())
- nl_special_calc: This module allows to calculcate several diagnostics that need to be computed in the physical space (non-linear quantities)
- radial_functions (orho1(), or2()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)
- leg_helper_mod(leg_helper_t())
- blocking (nfs ()): Module containing blocking information
- constants (zero ()): module containing constants and parameters used in the code.
- truncation (l_max(), n_r_maxstr(), lmp_max_dtb(), lmp_max(), n_theta_maxstr(), lm_max(), nrp(), n_phi_maxstr()): This module defines the grid points and the truncation

Types

• type riterthetablocking_openmp_mod/unknown_type

Type fields

- % gsa (*) [grid_space_arrays_t,allocatable]
- % lorentz_torque_ic (*) [real,allocatable]
- % nthreads [integer]
- % dtb_arrays (*) [dtb_arrays_t,allocatable]
- % nl lm(*) [nonlinear lm t,allocatable]
- % to_arrays(*) [to_arrays_t,allocatable]
- % lorentz_torque_ma (*) [real,allocatable]

Subroutines and functions

function riterthetablocking_openmp_mod/**getthistype** (*this*)

Parameters this [real]

Return getthistype [character]

subroutine riterthetablocking_openmp_mod/initialize_riterthetablocking_openmp (this)

Parameters this [real]

subroutine riterthetablocking_openmp_mod/finalize_riterthetablocking_openmp (this)

Parameters this [real]

subroutine riterthetablocking_openmp_mod/do_iteration_thetablocking_openmp (this,

nr, nbc, time, dt, dtlast, dsdt, dwdt, dzdt, dpdt, dbdt, djdt, dvxbhlm, dvsrlm, $br_vt_lm_cmb$, $br_vp_lm_cmb$, $br_vt_lm_icb,$ br_vp_lm_icb, lorentz_torque_ic, lorentz_torque_ma, hellmr, hel2lmr, helnalmr, helna 2lmr,uhlmr, duhlmr, gradslmr, fconvlmr, fkinlmr, fvisclmr, fpoynlmr, freslmr, eperplmr, eparlmr, eperрахilmr, eparax-

ilmr)

- this [real]
- **nr** [integer,in]
- **nbc** [integer,in]
- time [real,in]

- **dt** [real,in]
- dtlast [real,in]
- **dsdt** (*) [complex,out]
- **dwdt** (*) [complex,out]
- **dzdt** (*) [complex,out]
- **dpdt** (*) [complex,out]
- **dbdt** (*) [complex,out]
- **djdt** (*) [complex,out]
- dvxbhlm (*) [complex,out]
- **dvsrlm** (*) [complex,out]
- **br_vt_lm_cmb** (*) [complex,out]
- br_vp_lm_cmb (*) [complex,out]
- **br_vt_lm_icb** (*) [complex,out]
- **br_vp_lm_icb** (*) [complex,out]
- lorentz_torque_ic [real,out]
- lorentz_torque_ma [real,out]
- hellmr (*) [real,out]
- **hel2lmr** (*) [real,out]
- helnalmr (*) [real,out]
- helna2lmr (*) [real,out]
- uhlmr (*) [real,out]
- duhlmr (*) [real,out]
- gradslmr (*) [real,out]
- fconvlmr (*) [real,out]
- **fkinlmr** (*) [real,out]
- **fvisclmr** (*) [real,out]
- **fpoynlmr** (*) [real,out]
- freslmr (*) [real,out]
- **eperplmr** (*) [real,out]
- eparlmr (*) [real,out]
- eperpaxilmr (*) [real,out]
- eparaxilmr (*) [real,out]

```
Call to get_br_v_bcs(), get_lorentz_torque(), courant(), graphout_mpi(),
    get_helicity(), get_nlblayers(), get_fluxes(), get_perppar(),
    store_movie_frame(), get_dtblm(), gettonext(), getto(),
    gettofinish(), get_dh_dtblm()
```

10.8.5 get_nl.f90

Types

• type general_arrays_mod/unknown_type

10.8.6 get_td.f90

Quick access

Routines finalize(), set_zero(), get_td()

Needed modules

- horizontal_data (dtheta3a(), hdif_b(), dphi0(), dtheta4a(), dtheta1a(), dlh(), dtheta2a(), dtheta3s(), hdif_v(), dtheta4s(), dtheta1s(), dphi(), dtheta2s()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- rms (lf2hint(), pre2hint(), clf2hint(), geo2hint(), arc2hint(), cia2hint(), cor2hint(), adv2hint(), mag2hint(), buo2hint(), plf2hint()): This module contains the calculation of thr RMS force balance and induction terms.
- fields (w_rloc(), z_rloc(), dw_rloc()): This module contains the potential fields and their radial derivatives
- rms_helpers (hintrms ()): This module contains several useful subroutines required to compute RMS diagnostics
- precision_mod: This module controls the precision used in MagIC
- logic (l_anelastic_liquid(), l_mag_nl(), l_mag_kin(), l_conv_nl(), l_mag_lf(), l_anel(), l_heat(), l_rms(), l_conv(), l_mag(), l_corr()): Module containing the logicals that control the run
- physical_parameters (epsc(), vischeatfac(), ra(), n_r_lcr(), corfac(), ohmlossfac()): Module containing the physical parameters
- truncation (lm_max(), l_max(), lmp_max(), lm_maxmag()): This module defines the grid points and the truncation
- leg_helper_mod(leg_helper_t())
- blocking (lmp2lmps(), lm2lms(), lm2lmp(), lm2m(), lm2l(), lmp2lmpa(), st_map(), lm2lma()): Module containing blocking information
- constants (zero(), two()): module containing constants and parameters used in the code.
- radial_functions (epscprof(), or4(), rho0(), or2(), or1(), beta(), r(), temp0(), rgrav()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Types

• type nonlinear_lm_mod/unknown_type

Type fields

```
- % vxbrlm(*)[complex,allocatable]
```

- % vstlm(*)[complex,allocatable]
- % p1lm (*) [complex,allocatable]
- % vsplm(*)[complex,allocatable]
- % lft2lm(*)[complex,allocatable]
- % lfplm (*) [complex,allocatable]
- % lfrlm (*) [complex, allocatable]
- % lftlm(*) [complex,allocatable]
- % advtlm(*)[complex,allocatable]
- % advrlm(*)[complex,allocatable]
- % advplm(*)[complex,allocatable]
- % vxbtlm(*) [complex,allocatable]
- % cfp2lm(*)[complex,allocatable]
- % advt2lm(*)[complex,allocatable]
- % vsrlm(*)[complex,allocatable]
- % lfp2lm(*)[complex,allocatable]
- % vxbplm(*)[complex,allocatable]
- % p2lm (*) [complex, allocatable]
- % ohmlosslm(*)[complex,allocatable]
- % vischeatlm(*)[complex,allocatable]
- % cft2lm(*)[complex,allocatable]
- % advp21m(*)[complex,allocatable]

Subroutines and functions

```
subroutine nonlinear_lm_mod/initialize (this, lmp_max)
```

Parameters

- this [real]
- lmp_max [integer,in]

subroutine nonlinear_lm_mod/finalize (this)

Parameters this [real]

subroutine nonlinear_lm_mod/set_zero (this)

Parameters this [real]

subroutine nonlinear_lm_mod/output (this)

Parameters this [real]

subroutine nonlinear_lm_mod/**get_td** (*this*, *nr*, *nbc*, *lrmscalc*, *dvsrlm*, *dvxbhlm*, *dwdt*, *dzdt*, *dpdt*, *dsdt*, *dbdt*, *djdt*, *leg_helper*)

Purpose of this to calculate time derivatives dwdt,dzdt,dpdt,dsdt,dbdt,djdt and auxiliary arrays dVS-rLM and dVxBhLM from non-linear terms in spectral form, contained in flmw1-3,flms1-3, flmb1-3 (input)

Parameters

- this [real]
- **nr** [integer,in]
- **nbc** [integer,in] :: signifies boundary conditions
- **Irmscalc** [logical,in]
- **dvsrlm** (*lm_max*) [complex,out]
- **dvxbhlm** (*lm_maxmag*) [complex,out]
- **dwdt** (*lm_max*) [complex,out]
- **dzdt** (*lm_max*) [*complex,out*]
- **dpdt** (*lm_max*) [*complex,out*]
- **dsdt** (*lm_max*) [*complex,out*]
- **dbdt** (*lm_maxmag*) [*complex*, *out*]
- **djdt** (*lm_maxmag*) [*complex,out*]
- **leg_helper** [leg_helper_t,in]

Call to hintrms()

10.8.7 nonlinear bcs.f90

Quick access

```
Routines get_b_nl_bcs(), get_br_v_bcs(), v_rigid_boundary()
```

Needed modules

- horizontal_data (dthetala(), dlh(), sn2(), o_sin_theta(), dthetals(), dphi(), costheta()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- legendre_grid_to_spec(legtf2())
- fft (fft_thetab()): This file contains the subroutines called by fftJW: fft99a, fft99b, wpass2, wpass3, wpass4 and wpass5
- radial_data(n_r_cmb(), n_r_icb())
- precision_mod: This module controls the precision used in MagIC
- physical_parameters (prmag(), conductance_ma(), sigma_ratio()): Module containing the physical parameters
- truncation(nrp(), n_phi_max(), 1mp_max()): This module defines the grid points and the truncation
- blocking (lmp2lmps(), lm2lmp(), sizethetab(), lm2m(), lm2l(), nfs(), lmp2lmpa()): Module containing blocking information

- constants (two ()): module containing constants and parameters used in the code.
- radial_functions (r_cmb(), r_icb(), rho0()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

Subroutines and functions

Purpose of this subroutine is to calculate the nonlinear term of the magnetic boundary condition for a conducting mantle or inner core in space (r,lm). Calculation is performed for the theta block:

```
n_theta_min<=n_theta<=n_theta_min+n_theta_block-1
```

On input br, vt and vp are given on all phi points and thetas in the specific block. On output the contribution of these grid points to all degree and orders is stored in br_vt_lm and br_vp_lm. Output is [r/sin(theta)*Br*U]=[(0,br_vt_lm,br_vp_lm)]

Parameters

```
• br (nrp,*) [real,in] :: r**2 * B_r
```

```
• vt (nrp,*) [real,in] :: r*sin(theta) U_theta
```

```
• vp (nrp,*) [real,in] :: r*sin(theta) U phi
```

• omega [real,in] :: rotation rate of mantle or IC

```
• o_r_e_2 [real,in] :: 1/r**2
```

• **o_rho** [real,in] :: 1/rho0 (anelastic)

• n_theta_min [integer,in] :: start of theta block

• n_theta_block [integer,in] :: size of theta_block

• **br_vt_lm** (*lmp_max*) [complex,inout]

• **br vp lm** (*lmp max*) [complex,inout]

```
Call to fft_thetab(), legtf2()
```

- **bc** [character,in] :: Distinguishes 'CMB' and 'ICB'
- **br_vt_lm** (*lmp_max*) [*complex,in*] :: [br*vt/(r**2*sin(theta)**2)]
- **br_vp_lm** (*lmp_max*) [*complex,in*] :: [br*vp/(r**2*sin(theta)**2)
- lm_min_b [integer,in] :: limits of lm-block
- lm_max_b [integer,in] :: nonlinear bc for aj
- **b_nl_bc** (lm_max_b-lm_min_b+1) [complex,out]

• aj_nl_bc (lm_max_b-lm_min_b+1) [complex,out]

```
Called from step_time()
```

subroutine nonlinear_bcs/**v_rigid_boundary** (*nr*, *omega*, *lderiv*, *vrr*, *vtr*, *vpr*, *cvrr*, *dvrdtr*, *dvrdpr*, *dvtdpr*, *dvpdpr*, *nthetastart*)

Purpose of this subroutine is to set the velocities and their derivatives at a fixed boundary. While vt is zero, since we only allow for rotation about the z-axix, vp= $r \sin(theta) v_phi = r^**2 \sin(theta)^**2$ omega cvr= $r^**2 radial$ component of (curl v) = $r^**2 cos(theta)$ omega

Parameters

- nr [integer,in] :: no of radial grid point
- omega [real,in]
- **Ideriv** [logical,in] :: derivatives required?
- **vrr** (*nrp*,*nfs*) [real,out]
- **vtr** (*nrp*,*nfs*) [real,out]
- **vpr** (*nrp*,*nfs*) [real,out]
- cvrr (nrp,nfs) [real,out]
- **dvrdtr** (*nrp*,*nfs*) [real,out]
- **dvrdpr** (*nrp*,*nfs*) [real,out]
- **dvtdpr** (*nrp*,*nfs*) [real,out]
- **dvpdpr** (*nrp*,*nfs*) [real,out]
- **nthetastart** [integer,in] :: no of theta to start with

Called from transform_to_grid_space_shtns(), transform_to_grid_space()

10.9 Chebyshev polynomials and cosine transforms

10.9.1 chebyshev_polynoms.f90

Quick access

Needed modules

- precision_mod: This module controls the precision used in MagIC
- constants (one (), four (), pi (), two (), half ()): module containing constants and parameters used in the code.
- logic (1 newmap ()): Module containing the logicals that control the run

Variables

• chebyshev_polynoms_mod/get_chebs [public]

Subroutines and functions

Construct Chebychev polynomials and their first, second, and third derivative up to degree n_r at n_r points x in the interval [a,b]. Since the Chebs are only defined in [-1,1] we have to use a map, mapping the points x points y in the interval [-1,1]. This map is executed by the subroutine cheb_grid and has to be done before calling this program.

Parameters

- **n_r** [integer,in] :: number of grid points
- a [real,in] :: interval boundaries [a,b]
- **b** [real,in]
- y (n_r_max) [real,in] :: n_r grid points in interval [a,b]
- **n_r_max** [integer,in,] :: leading dimension of
- **cheb** (dim1,dim2) [real,out] :: cheb(i,j) is Chebychev pol.
- **dcheb** (dim1,dim2) [real,out] :: first derivative of cheb
- **d2cheb** (dim1,dim2) [real,out] :: second derivative o cheb
- d3cheb (dim1,dim2) [real,out] :: third derivative of cheb
- **dim1** [integer,in] :: dimensions of cheb,dcheb,....
- dim2 [integer,in]
- map_fac1 (n_r_max) [real,in]
- map_fac2 (n_r_max) [real,in]
- map_fac3 (*n_r_max*) [real,in]

- **n_r** [integer,in] :: number of grid points
- a [real,in] :: interval boundaries [a,b]
- **b** [real,in]
- y (n_r_max) [real,in] :: n_r grid points in interval [a,b]
- n r max [integer, in,] :: max number of radial points, dims of y
- **cheb** (dim1,dim2) [real,out] :: cheb(i,j) is Chebychev pol.
- **dcheb** (dim1,dim2) [real,out] :: first derivative of cheb
- **d2cheb** (dim1,dim2) [real,out] :: second derivative o cheb

- dim1 [integer,in] :: dimensions of cheb,dcheb,.....
- dim2 [integer,in]

Called from radial()

Construct Chebychev polynomials and their first, second, and third derivative up to degree n_r at n_r points x in the interval [a,b]. Since the Chebs are only defined in [-1,1] we have to use a map, mapping the points x points y in the interval [-1,1]. This map is executed by the subroutine cheb_grid and has to be done before calling this program.

Parameters

- **n_r** [integer,in] :: number of grid points
- a [real,in] :: interval boundaries [a,b]
- **b** [real,in]
- y (n_r_max) [real,in] :: n_r grid points in interval [a,b]
- **n_r_max** [integer,in,] :: leading dimension of
- **cheb** (dim1,dim2) [real,out] :: cheb(i,j) is Chebychev pol.
- **dcheb** (dim1,dim2) [real,out] :: first derivative of cheb
- **d2cheb** (dim1,dim2) [real,out] :: second derivative o cheb
- **d3cheb** (dim1,dim2) [real,out] :: third derivative of cheb
- **dim1** [integer,in] :: dimensions of cheb,dcheb,....
- dim2 [integer,in]
- map_fac1 (n_r_max) [real,in]
- map_fac2 (n_r_max) [real,in]
- map_fac3 (*n_r_max*) [real,in]

subroutine chebyshev_polynoms_mod/**cheb_grid** (a, b, n, x, y, a1, a2, x0, lbd)

Given the interval [a,b] the routine returns the n+1 points that should be used to support a Chebychev expansion. These are the n+1 extrema y(i) of the Chebychev polynomial of degree n in the interval [-1,1]. The respective points mapped into the interval of question [a,b] are the x(i).

Note: x(i) and y(i) are stored in the reversed order: x(1)=b, x(n+1)=a, y(1)=1, y(n+1)=-1

- a [real,in] :: interval boundaries
- **b** [real,in]
- n [integer,in]:: degree of Cheb polynomial to be represented by the grid points
- **x** (*) [real,out] :: grid points in interval [a,b]
- y (*) [real,out] :: grid points in interval [-1,1]
- **a1** [real,in]

- **a2** [real,in]
- **x0** [real,in]
- **lbd** [real,in]

Called from chebintinit(), init_rnb(), radial()

10.9.2 cosine_transform_odd.f90

Quick access

```
Routines costf1_complex_1d(), costf1_real_1d(), costf1_real()
```

Needed modules

- precision_mod: This module controls the precision used in MagIC
- fft_fac_mod(fft_fac_complex(), fft_fac_real())
- useful (factorise()): library with several useful subroutines
- constants (cos36(), sin36(), cos72(), two(), one(), sin72(), sin60(), half(), pi()): module containing constants and parameters used in the code.
- truncation (lm_max(), lm_max_real()): This module defines the grid points and the truncation

Types

• type cosine_transform_odd/unknown_type

Type fields

- % i_costf_init (*) [integer,allocatable]
- % d_costf_init (*) [real,allocatable]

Subroutines and functions

```
subroutine cosine_transform_odd/initialize (this, n, ni, nd)
```

Purpose of this subroutine is to calculate and store several values that will be needed for a fast cosine transform of the first kind. The actual transform is performed by the subroutine costf1.

Parameters

- this [real]
- **n** [integer,in]
- **ni** [integer,in]
- nd [integer,in]

Call to factorise()

subroutine cosine_transform_odd/finalize(this)

Parameters this [real]

```
subroutine cosine_transform_odd/costf1_complex (this, f, n_f_max, n_f_start, n_f_stop, f2)
```

Purpose of this subroutine is to perform a multiple cosine transforms for n+1 datapoints on the columns numbered n_f_start to n_f_stop in the array f(n_f_max,n+1) Depending whether the input f contains data or coeff arrays coeffs or data are returned in f.

Parameters

- this [real]
- **f** (n_f_max,*) /complex,inout] :: data/coeff input
- **n_f_max** [integer,in,] :: number of columns in f,f2
- **n_f_start** [integer,in] :: columns to be transformed
- **n_f_stop** [integer,in]
- **f2** (n_f_max,*) [complex,out] :: work array of the same size as f

Call to fft fac complex()

subroutine cosine_transform_odd/**costf1_complex_1d** (this, f, f2)

Parameters

- this [real]
- **f** (*) [complex,inout] :: data/coeff input
- **f2** (*) [complex,out] :: work array of the same size as f

Call to fft_fac_complex()

subroutine cosine_transform_odd/costf1_real (this, f, n_f_max, n_f_start, n_f_start

Parameters

- this [real]
- **f** (n_f_max,*) [real,inout] :: data/coeff input
- **n_f_max** [integer,in,] :: number of columns in f,f2
- **n_f_start** [integer,in] :: columns to be transformed
- n_f_stop [integer,in]
- **f2** (n_f_max,*) [real,out] :: work array of the same size as f

Call to fft fac real()

subroutine cosine_transform_odd/costf1_real_1d (this, f, f2)

Parameters

- this [real]
- **f** (*) [real,inout] :: data/coeff input
- **f2** (*) [real,out] :: work array

Call to fft_fac_real()

10.9.3 cosine transform even.f90

Quick access

```
Routines costf2()
```

Needed modules

- precision_mod: This module controls the precision used in MagIC
- fft_fac_mod(fft_fac_complex())
- useful (factorise()): library with several useful subroutines
- constants (cos36(), sin36(), cos72(), two(), one(), sin72(), sin60(), half(), pi()): module containing constants and parameters used in the code.
- truncation (lm_max()): This module defines the grid points and the truncation

Types

• type cosine_transform_even/unknown_type

Type fields

- % i_costf_init (*) [integer,allocatable]
- % d_costf_init (*) [real,allocatable]

Subroutines and functions

```
subroutine cosine_transform_even/initialize (this, n, ni, nd)
```

Purpose of this subroutine is to calculate several things needed for the cheb transform. Prepares costf2 for even number of grid points.

Parameters

- this [real]
- **n** [integer,in]
- **ni** [integer,in]
- nd [integer,in]

Call to factorise()

subroutine cosine_transform_even/finalize(this)

Parameters this [real]

```
subroutine cosine_transform_even/costf2 (this, f, n_f_max, n_f_start, n_f_stop, f2, isign)
```

Purpose of this subroutine is to perform a multiple cosine transforms for n+1 datapoints on the columns numbered n_f _start to n_f _stop in the array $y(n_f_max,n+1)$ Depending whether the input y contains data or coeff arrays coeffs or data are returned in y.

- this [real]
- **f** (n_f_max,*) [complex,inout] :: data/coeff input
- **n_f_max** [integer,in,] :: number of columns in y,y2
- n_f_start [integer,in] :: columns to be transformed
- **n_f_stop** [integer,in]
- **f2** (n_f_max,*) [complex,out] :: work array of the same size as y
- **isign** [integer,in] :: = +1 (-1) for forward (backward) transform

Call to fft_fac_complex()

10.9.4 fft_fac.f90

Quick access

Routines fft_fac_complex(), fft_fac_real()

Needed modules

- precision_mod: This module controls the precision used in MagIC
- constants (cos36(), sin36(), cos72(), sin72(), sin60(), half()): module containing constants and parameters used in the code.

Variables

Subroutines and functions

```
subroutine fft_fac_mod/fft_fac_real (a, b, c, d, trigs, nv, l1, l2, n, ifac, la) main part of Fourier / Chebychev transform called in costf1, costf2
```

- **a** (*) [real,in]
- **b** (*) [real,in]
- **c** (*) [real,out]
- **d** (*) [real,out]
- **trigs** (2 * n) [real,in]
- **nv** [integer,in]
- **l1** [integer,in]
- **12** [integer,in]
- **n** [integer,in,]
- ifac [integer,in]
- la [integer,in]

```
Called from costf1_real_1d(), costf1_real()
subroutine fft_fac_mod/fft_fac_complex (a, b, c, d, trigs, nv, l1, l2, n, ifac, la)
main part of Fourier / Chebychev transform called in costf1, costf2
```

Parameters

- **a** (*) [complex,in]
- **b** (*) [complex,in]
- **c** (*) [complex,out]
- **d** (*) [complex,out]
- **trigs** (2 * n) [real,in]
- **nv** [integer,in]
- 11 [integer,in]
- **12** [integer,in]
- **n** [integer,in,]
- ifac [integer,in]
- la [integer,in]

Called from costf1_complex_1d(), costf2(), costf1_complex()

10.10 Legendre transforms

10.10.1 plms.f90

Quick access

```
Routines plm_theta(), plm_thetaas()
```

Needed modules

- precision_mod: This module controls the precision used in MagIC
- constants (osq4pi(), two(), one()): module containing constants and parameters used in the code.

Variables

Subroutines and functions

- theta [real,in] :: angle in degrees
- max_degree [integer,in] :: required max degree of plm

- max_order [integer,in] :: required max order of plm
- m0 [integer,in] :: basic wave number
- plma (ndim_plma) [real,out] :: ass. legendres at theta
- **dtheta_plma** (ndim_plma) [real,out] :: their theta derivative
- **ndim plma** [integer,in] :: dimension of plma and dtheta plma
- **norm** [integer,in] :: =0 fully normalised

Called from outpv(), getegeos(), lnpas2tr(), horizontal(), outto()

subroutine plms_theta/**plm_thetaas** (theta, max_degree, plma, dtheta_plma, ndim_plma, norm)

The produces the plm for all degrees and order=0 for a given theta plus dtheta_plma=sin(theta)* (d plm)/(d theta)

Norm determins the normalisation: n=0 – surface normalised, n=1 – Schmidt normalised, n=2 – fully normalised.

Parameters

- theta [real,in] :: angle in degrees
- max_degree [integer,in] :: required max degree of plm
- **plma** (ndim_plma) [real,out] :: ass. legendres at theta
- **dtheta_plma** (ndim_plma) [real,out] :: their theta derivative
- **ndim_plma** [integer,in] :: dimension of plma and dtheta_plma
- **norm** [integer,in] :: =0 fully normalised

Called from horizontal()

10.10.2 legendre helpers.f90

Quick access

Routines initialize(), legprepg(), legprep(), legprep_ic()

Needed modules

- horizontal_data (dlh ()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- torsional_oscillations (ddzasl()): This module contains information for TO calculation and output
- fields(z_rloc(), s_rloc(), ddw_rloc(), dj_rloc(), b_rloc(), ddb_rloc(), db_rloc(), dw_rloc(), w_rloc(), p_rloc(), aj_rloc(), dp_rloc(), dz_rloc(), ds_rloc(), omega_ma(), omega_ic()): This module contains the potential fields and their radial derivatives
- radial_data(n_r_cmb(), n_r_icb())
- precision_mod: This module controls the precision used in MagIC
- logic (l_movie_oc(), l_mag_kin(), l_heat(), l_mag_lf(), l_fluxprofs(), l_mag(), l_conv()): Module containing the logicals that control the run

- truncation (1m_max(), 1_max(), n_m_max()): This module defines the grid points and the truncation
- grenoble (lgrenoble (), ddb0 (), b0 (), db0 ()): This module contains all variables for the case of an imposed IC dipole
- blocking (lm2m(), lm21(), lm2()): Module containing blocking information
- constants (zero(), two(), one()): module containing constants and parameters used in the code.
- radial_functions (or2 ()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Types

• type leg_helper_mod/unknown_type

Type fields

- % bcmb (*) [complex, allocatable]
- % omegaic [real]
- % dlhz (*) [complex,allocatable]
- % bhc (*) [complex,allocatable]
- % **dlhw** (*) [complex, allocatable]
- % bhg (*) [complex,allocatable]
- % omegama [real]
- % dlhj(*)[complex,allocatable]
- % dlhb (*) [complex,allocatable]
- % zas (*) [real, allocatable]
- % dzas (*) [real,allocatable]
- % ddzas (*) [real,allocatable]
- % dpr (*) [complex,allocatable]
- % dlhdw (*) [complex,allocatable]
- % **sr**(*)[complex,allocatable]
- % dsr(*) [complex, allocatable]
- % dvhdrg (*) [complex,allocatable]
- % dvhdrc (*) [complex,allocatable]
- % cbhg (*) [complex, allocatable]
- % vhg (*) [complex,allocatable]
- % cbhc (*) [complex, allocatable]
- % vhc (*) [complex,allocatable]
- % prer (*) [complex,allocatable]

Variables

Subroutines and functions

subroutine leg_helper_mod/initialize (this, lm_max, lm_maxmag, l_max)

Parameters

- this [real]
- lm_max [integer,in]
- Im maxmag [integer,in]
- 1 max [integer,in]

Purpose of this subroutine is to prepare Legendre transforms from (r,l,m) space to (r,theta,m) space by calculating auxiliary arrays dpdw,dpddw, dLhj which contain combinations of harmonic coeffs multiplied with (l,m)-dependend factors as well as the radial dependence:

- •nBc =0 standard inner radial grid point
- •nBc =1 radial velocity zero, spatial derivs not needed
- •nBc =2 all velocity comp. zero, spatial derivs not needed

lDeriv=.true. field derivatives required

Parameters

- this [real]
- **nr** [integer,in] :: radial level
- **nbc** [integer,in] :: boundary condition
- **Ideriv** [logical,in] :: get also field derivatives!
- **Irmscalc** [logical,in] :: Rms force balance ?
- **lpresscalc** [logical,in] :: Pressure ?
- **l_frame** [logical,in] :: Calculate movie frame?
- **Itonext** [logical,in] :: for TO output
- ltonext2 [logical,in]
- **ltocalc** [logical,in]

subroutine leg_helper_mod/**legprep** (w, dw, ddw, z, dz, dlh, lm_max, l_max, minc, r, lderiv, lhor, dlhw, vhg, vhc, dlhz, cvhg, cvhc)

Purpose of this subroutine is to prepare Legendre transforms from (r,l,m) space to (r,theta,m) space by calculating auxiliary arrays w, dw, ddw, which contain combinations of harmonic coeffs multiplied with (l,m)-dependend factors as well as possible the radial dependencies.

lDeriv=.true. field derivatives required for curl of field

Parameters

• w (lm_max) [complex,in]

- **dw** (*lm_max*) [*complex*,*in*]
- **ddw** (*lm_max*) [complex,in]
- **z** (lm_max) [complex,in]
- **dz** (*lm_max*) [*complex*,*in*]
- **dlh** (*lm_max*) [*real,in*]
- lm_max [integer,in,]
- l_max [integer,in]
- minc [integer,in]
- **r** [real,in]
- Ideriv [logical,in]
- lhor [logical,in]
- dlhw (*) [complex,out]
- **vhg** (*) [complex,out]
- **vhc** (*) [complex,out]
- dlhz (*) [complex,out]
- cvhg (*) [complex,out]
- cvhc (*) [complex,out]

Called from fields_average()

subroutine leg_helper_mod/**legprep_ic** (w, dw, ddw, z, dz, dlh, lm_max, l_max, minc, r, r_icb, lderiv, lhor, lcondic, dlhw, vhg, vhc, dlhz, cvhg, cvhc)

Purpose of this subroutine is to prepare Legendre transforms from (r,l,m) space to (r,theta,m) space by calculating auxiliary arrays dLhw,vhG, which contain combinations of harmonic coeffs multiplied with (l,m)-dependend factors as well as possible the radial dependencies.

1Deriv=.true. field derivatives required for curl of field

Note: This routine is used for the inner core magnetic field which has a special radial function ansatz. It can also be used to prepare the calculation of a field in an insulating inner core for ICondIC=.false.. For this the w has to be the outer core poloidal field and nR is the grid point for the ICB. In any case legTF can be used for the following Legendre transform and fftJW for the Fourier transform.

- w (lm_max) [complex,in]
- **dw** (*lm_max*) [complex,in]
- **ddw** (*lm_max*) [*complex*,*in*]
- **z** (lm_max) [complex,in]
- **dz** (*lm_max*) [*complex*,*in*]
- **dlh** (*lm_max*) [*real,in*]
- lm_max [integer,in,]
- l_max [integer,in]
- minc [integer,in]

- **r** [real,in]
- r icb [real,in]
- **Ideriv** [logical,in]
- **lhor** [logical,in]
- **lcondic** [logical,in]
- dlhw (lm max) [complex,out]
- **vhg** (*lm_max*) [*complex,out*]
- **vhc** (*lm_max*) [*complex,out*]
- **dlhz** (*lm_max*) [complex,out]
- **cvhg** (*lm_max*) [complex,out]
- **cvhc** (*lm_max*) [complex,out]

Called from store_movie_frame_ic(), graphout_ic()

10.10.3 legendre_spec_to_grid.f90

Quick access

Routines lmas2pt(), legtf(), legtfg(), legtfgnomag()

Needed modules

- horizontal_data(dplm(), d_mc2m(), lstop(), lmodd(), osn2(), plm(), lstart()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- parallel_mod (rank ()): This module contains the blocking information
- precision_mod: This module controls the precision used in MagIC
- logic (l_heat (), l_ht ()): Module containing the logicals that control the run
- leg_helper_mod(leg_helper_t())
- blocking (lm2mc(), lm2(), nfs(), sizethetab()): Module containing blocking information
- constants (zero (), one (), half ()): module containing constants and parameters used in the code.
- truncation (lm_max(), l_max(), nrp(), n_m_max()): This module defines the grid points and the truncation

Variables

Subroutines and functions

Legendre transform from (nR,l,m) to (nR,nTheta,m) [spectral to grid] where nTheta numbers the colatitudes and l is the degree of the spherical harmonic representation.

Transforms entropy, velocity and magnetic field components and terms involving spatial derivatives. The symmetry properties of the P_lm with respect to the equator are used. The equatorially antisymmetric (EA) contribution is added to (subracted from) the equatorially symmetric (ES) contribution in northern (southern) hemisphere.

- •nBc: (input) accounts for special conditions on radial boundaries
 - -nBc=2 [we are dealing with a no slip boundary, v_r and v_theta are] zero and v_phi=r sin(theta) omega, where omega is the rotation rate of the boundary (mantle of IC), only magn. field terms are calculated, v is set later.
 - -nBc=1 [a free slip bounday: v_r is zero, derivatives of v and B] are not needed, only components of v,B and entropy are calculated
 - -nBc=0: normal case, interior grid point
- •lDeriv=.true. : (input) calculate derivatives
- •nThetaStart : (input) transformation is done for the range of points nThetaStart <= nTheta <= nThetaStart-1+sizeThetaB
- •Plm: associated Legendre polynomials
- •dPlm: sin(theta) d Plm / d theta
- •osn2: 1/sin(theta)^2
- •vrc, ..., drSc: (output) components in (nTheta,m)-space
- •dLhw,...,cbhC: (input) help arrays calculated in s_legPrep.f

- **nbc** [integer,in]
- Ideriv [logical,in]
- lviscbccalc [logical,in]
- **lpresscalc** [logical,in]
- nthetastart [integer,in]
- **vrc** (*nrp*,*nfs*) [real,out]
- **vtc** (*nrp*,*nfs*) [real,out]
- **vpc** (nrp,nfs) [real,out]
- **dvrdrc** (nrp,nfs) [real,out]
- **dvtdrc** (nrp,nfs) [real,out]
- **dvpdrc** (nrp,nfs) [real,out]
- **cvrc** (*nrp*,*nfs*) [real,out]
- **dvrdtc** (*nrp*,*nfs*) [real,out]
- **dvrdpc** (*nrp*,*nfs*) [real,out]
- **dvtdpc** (*nrp*,*nfs*) [real,out]
- **dvpdpc** (*nrp*,*nfs*) [real,out]

- **brc** (*nrp*,*nfs*) [real,out]
- **btc** (*nrp*,*nfs*) [real,out]
- **bpc** (*nrp*,*nfs*) [real,out]
- **cbrc** (*nrp*,*nfs*) [real,out]
- **cbtc** (*nrp*,*nfs*) [real,out]
- **cbpc** (*nrp*,*nfs*) [real,out]
- **sc** (*nrp*,*nfs*) [real,out]
- **drsc** (nrp,nfs) [real,out]
- **dsdtc** (*nrp*,*nfs*) [real,out]
- **dsdpc** (nrp,nfs) [real,out]
- **pc** (*nrp*,*nfs*) [real,out]
- **leg_helper** [leg_helper_t]

Called from transform_to_grid_space()

Same as legTFG for non-magnetic cases

- **nbc** [integer,in]
- **Ideriv** [logical,in]
- lviscbccalc [logical,in]
- **lpresscalc** [logical,in]
- **nthetastart** [integer,in]
- **vrc** (*nrp*,*nfs*) [real,out]
- **vtc** (*nrp*,*nfs*) [real,out]
- **vpc** (*nrp*,*nfs*) [real,out]
- **dvrdrc** (nrp,nfs) [real,out]
- **dvtdrc** (*nrp*,*nfs*) [real,out]
- **dvpdrc** (*nrp*,*nfs*) [real,out]
- cvrc (nrp,nfs) [real,out]
- **dvrdtc** (nrp,nfs) [real,out]
- **dvrdpc** (*nrp*,*nfs*) [real,out]
- **dvtdpc** (*nrp*,*nfs*) [real,out]
- **dvpdpc** (*nrp*,*nfs*) [real,out]
- sc (nrp,nfs) [real,out]
- **drsc** (nrp,nfs) [real,out]

- **dsdtc** (nrp,nfs) [real,out]
- **dsdpc** (nrp,nfs) [real,out]
- **pc** (*nrp*,*nfs*) [real,out]
- **leg_helper** [leg_helper_t]

Called from transform to grid space()

'Legendre transform' from (nR,l,m) to (nR,nTheta,m) [spectral to grid] where nTheta numbers the colatitudes and l and m are degree and order of the spherical harmonic representation.

Calculates all three spherical components vrc,vtc,vpc of a field as well as its curl (cvrc,cvtc,cvpc) that is given a spherical harmonis poloidal toroidal decomposition. s_legPrep.f has to be called first and provides the input fields dLhW, The symmetry properties of the P_lm with respect to the equator are used. The equatorially anti-symmetric (EA) contribution is added to (subracted from) the equatorially symmetric (ES) contribution in northern (southern) hemisphere.

Output is given for all sizeThetaB colatitudes in a colatitude block that starts with colatitude nThetaS-tart. At output, each component in the northern hemisphere is followed by the component in the southern hemisphere. The Plms and dPlms=sin(theta) d Plm / d theta are only given for the colatitudes in the northern hemisphere.

- •dLhw,...,cvhC: (input) arrays provided by s_legPrep.f
- •l_max: (input) maximum spherical harmonic degree
- •minc: (input) azimuthal symmetry
- •nThetaStart : (input) transformation is done for the range of points nThetaStart <= nTheta <= nThetaStart-1+sizeThetaB
- •sizeThetaB: (input) size theta block
- •Plm: (input) associated Legendre polynomials
- •dPlm: (input) sin(theta) d Plm / d theta
- •lHor=.true. : (input) calculate horizontal componenst
- •lDeriv=.true. : (input) calculate curl of field
- •vrc,,cvpc: (output) components in (nTheta,m)-space

- **dlhw** (*) [complex,in]
- **vhg** (*) [complex,in]
- **vhc** (*) [complex,in]
- **dlhz** (*) [complex,in]
- cvhg (*) [complex,in]
- **cvhc** (*) [complex,in]
- l_max [integer,in]
- minc [integer,in]

```
• nthetastart [integer,in]
```

- **sizethetab** [integer,in]
- **plm** (*lm_max*,*) [*real,in*]
- **dplm** (*lm_max*,*) [*real,in*]
- **lhor** [logical,in]
- Ideriv [logical,in]
- **vrc** (*nrp*,*) [real,out]
- **vtc** (*nrp*,*) [real,out]
- **vpc** (*nrp*,*) [*real*,*out*]
- **cvrc** (*nrp*,*) [*real*,*out*]
- **cvtc** (*nrp*,*) [*real*,*out*]
- **cvpc** (*nrp*,*) [*real*,*out*]

Called from fields_average(), store_movie_frame_ic(), graphout_ic()

subroutine legendre_spec_to_grid/lmas2pt (alm, aij, nthetastart, nthetablocksize)

Spherical harmonic transform from alm(l) to aij(theta) Done within the range [nThetaStart,n_thetaStart+nThetaBlockSize-1] only considering axisymmetric contributions. alm contains only m=0 coefficients

Parameters

- **alm** (*) [real,in] :: field in (l,m)-space
- aij (*) [real,out] :: field in (theta,phi)-space
- **nthetastart** [integer,in] :: first theta to be treated
- **nthetablocksize** [integer,in]

Called from outperppar(), outmisc(), outpar()

10.10.4 legendre_grid_to_spec.f90

Quick access

Routines legtfas2(), legtf1(), legtf2(), legtf3(), legtfas()

- precision_mod: This module controls the precision used in MagIC
- horizontal_data (wplm(), lmoddp(), lstopp(), lstartp()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- blocking (nfs(), sizethetab()): Module containing blocking information
- truncation(n_theta_max(), nrp(), n_m_max(), lmp_max()): This module defines the grid points and the truncation

Subroutines and functions

```
subroutine legendre_grid_to_spec/legtf1 (nthetastart, fllm, fltm)
```

Legendre transform (n_r,n_theta,m) to (n_r,l,m) [grid to spectral] for 2 arrays f1TM (input) to f1LM (output) One call to this routine does part of the transform by summation over theta points in one theta block: nThetaStart,..,nThetaStart+n_theta_block-1

Parameters

- **nthetastart** [integer,in] :: First no of theta on block
- **f1lm** (*lmp_max*) [*complex,inout*]
- **f1tm** (*nrp*,*nfs*) [real,in]

Called from transform_to_lm_space(), initv(), inits()

```
subroutine legendre_grid_to_spec/legtf2 (nthetastart, fllm, f2lm, f1tm, f2tm)
```

Legendre transform (n_r,n_theta,m) to (n_r,l,m) [grid to spectral] for 2 arrays f1TM,f2TM (input) to f1LM,f2LM (output) One call to this routine does part of the transform by summation over theta points in on theta block: nThetaStart,...,nThetaStart+n_theta_block-1

Parameters

- **nthetastart** [integer,in] :: First no of theta on block
- **f1lm** (*lmp_max*) [*complex*, *inout*]
- **f2lm** (*lmp max*) [complex,inout]
- **f1tm** (*nrp*,*nfs*) [real,in]
- **f2tm** (*nrp*,*nfs*) [real,in]

Called from transform_to_lm_space(), get_dtblm(), get_br_v_bcs()

```
subroutine legendre_grid_to_spec/legtf3 (nthetastart, fllm, f2lm, f3lm, f1tm, f2tm, f3tm)
```

Legendre transform (n_r,n_theta,m) to (n_r,l,m) [grid to spectral] for 2 arrays ancl1/2/3 (input) to flm1/2/3 (output) One call to this routine does part of the transform by summation over theta points in on theta block: nThetaStart,...,nThetaStart+n_theta_block-1

Parameters

- **nthetastart** [integer,in] :: First no of theta on block
- **f1lm** (*lmp_max*) [*complex*, *inout*]
- **f2lm** (*lmp_max*) [*complex*, *inout*]
- **f3lm** (*lmp_max*) [*complex*, *inout*]
- **f1tm** (*nrp*,*nfs*) [*real*,*in*]
- **f2tm** (*nrp*,*nfs*) [real,in]
- **f3tm** (*nrp*,*nfs*) [real,in]

Called from transform_to_lm_space(), get_dtblm()

subroutine legendre_grid_to_spec/**legtfas** (flm1, ft1, lmmax, nthetastart, sizethetab)

Legendre transform (n_r,n_theta,m) to (n_r,l,m) [grid to spectral] for 2 arrays ancl1/2 (input) to flm1/2 (output) One call to this routine does part of the transform by summation over theta points in on theta block: n_theta_min,..,n_theta_min+n_theta_block-1

Parameters

- flm1 (*) [real,out]
- ft1 (*) [real,in]
- Immax [integer,in] :: Number of modes to be processed
- **nthetastart** [integer,in] :: First no of theta on block
- **sizethetab** [integer,in] :: Size of theta block

Called from get_fluxes(), get_nlblayers(), outto()

subroutine legendre_grid_to_spec/legtfas2 (flm1, flm2, ft1, ft2, lmmax, nthetastart, sizethetab)

Legendre transform (n_r,n_theta,m) to (n_r,l,m) [grid to spectral] for 2 arrays ancl1/2 (input) to flm1/2 (output) One call to this routine does part of the transform by summation over theta points in on theta block: n_theta_min,..,n_theta_min+n_theta_block-1

Parameters

- **flm1** (*) [real,out]
- flm2 (*) [real,out]
- ft1 (*) [real,in]
- ft2 (*) [real,in]
- **Immax** [integer,in] :: Number of modes to be processed
- **nthetastart** [integer,in] :: First no of theta on block
- **sizethetab** [integer,in] :: Size of theta block

Called from get_fluxes(), get_helicity(), get_nlblayers(), getto(),
 get_perppar(), outto()

10.11 Fourier transforms

10.11.1 fft.f90

Description

This file contains the subroutines called by fftJW: fft99a, fft99b, wpass2, wpass3, wpass4 and wpass5

Quick access

Needed modules

- parallel_mod: This module contains the blocking information
- useful (factorise()): library with several useful subroutines
- precision_mod: This module controls the precision used in MagIC
- blocking: Module containing blocking information
- constants (cos36(), sin36(), cos72(), two(), one(), sin72(), sin60(), half(), pi()): module containing constants and parameters used in the code.
- truncation: This module defines the grid points and the truncation

Variables

- fft/ni [integer,private/parameter=100]
- fft/nd[integer,private]
- fft/d_fft_init(:)[real,private/allocatable]
- fft/i_fft_init (100) [integer,private]

Subroutines and functions

```
subroutine fft/init_fft(n)
```

Purpose of this subroutine is to calculate and store several values that will be needed for a fast fft transform. The actual transform is performed by the subroutine fftJW.

```
Parameters n [integer,in] :: Dimension of problem, number of grid points
```

```
Called from horizontal ()
```

Call to factorise()

$\textbf{subroutine} \ \texttt{fft}/\textbf{fft_to_real} \ (\textit{f}, \textit{ld_f}, \textit{nrep})$

Parameters

- **f** (ld_f,nrep) [real,inout]
- ld_f [integer,in,]
- **nrep** [integer,in,]

Called from getdvptr(), getpvptr()

Call to fft jw()

subroutine fft/fft_thetab (f, dir)

- **f** (*nrp*,*nfs*) [real,inout]
- **dir** [integer,in] :: back or forth transform

```
Called from transform_to_lm_space(), fields_average(), initv(),
  inits(), get_btor(), transform_to_grid_space(), get_b_surface(),
  store_movie_frame_ic(), get_bpol(), get_dtblm(), lm2pt(),
  get_br_v_bcs(), graphout_ic()
```

Call to fft jw()

subroutine fft/**fftjw** (a, ld_a, n, isign, nsize, wrk, wd1, wd2, i_fft_init, d_fft_init)

The routines has been adopted by Gary Glatzmaier and has subsequently been modified by Uli Christensen and Johannes Wicht

It performs a number of simultaneous real/half-complex periodic fast fourier transforms or corresponding inverse transforms, using ordinary spatial order of gridpoint values. given a set of real data vectors, the package returns a set of "half-complex" fourier coefficient vectors, or vice versa. the length of the transforms must be an even number that has no other factors except possibly powers of 2, 3, and 5. this version of fft991 is optimized for use on the cray-1.

on input a(ld_a,*)

an array of length (ld_a,nsize) containing the input data or coefficient vectors. This array is overwritten by the results.

n the length of each transform (see definition of transforms, below).

nsize the number of transforms to be done simultaneously.

isign

- = +1 for a transform from fourier coefficients to gridpoint values.
- = -1 for a transform from gridpoint values to fourier coefficients.

on output a if isign = +1, and n_theta_max coefficient vectors are supplied each containing the sequence

```
a(0),b(0),a(1),b(1),...,a(n/2),b(n/2) (n+2 values)
```

then the result consists of n_theta_max data vectors each containing the corresponding n+2 gridpoint values

```
for fft991, x(0), x(1), x(2),...,x(n-1),0,0. (n+2) real values with x(n)=x(n+1)=0
```

```
when isign = +1, the transform is defined by x(j)=sum(k=0,...,n-1)(c(k)*exp(2*i*j*k*pi/n)) where c(k)=a(k)+i*b(k) and c(n-k)=a(k)-i*b(k) and i=sqrt (-1) for k=0,...,n/2 i.e., (n/2+1) complex values with c(0)=c(n)=a(0) and c(n/2)=a(n/2)=0
```

if isign = -1, and n_theta_max data vectors are supplied each containing a sequence of gridpoint values x(j) as defined above, then the result consists of n_theta_max vectors each containing the corresponding fourier cofficients a(k), b(k), $0 \le k$. le n/2.

```
when isign = -1, the inverse transform is defined by c(k)=(1/n)*sum(j=0,...,n-1)(x(j)*exp(-2*i*j*k*pi/n)) where c(k)=a(k)+i*b(k) and i=sqrt(-1) for k=0,...,n/2
```

a call with isign=+1 followed by a call with isign=-1 (or vice versa) returns the original data.

note the fact that the gridpoint values x(j) are real implies that b(0)=b(n/2)=0. for a call with isign=+1, it is not actually necessary to supply these zeros. note starting from grid with x(n)=x(n+1)=0 then transforming to spectral (sign=-1) then c(n/2)=a(n/2) is not necessarily 0 unless there is no aliasing.

```
• a (ld_a,*) [real,inout] :: fields to be transformed
                 • ld_a [integer,in,] :: leading dimension of a
                 • n [integer,in] :: dimension of problem
                 • isign [integer,in] :: back/forth transform for isign=1/-1
                 • nsize [integer,in] :: number of fields for
                 • wrk (wd1,wd2) [real,inout] :: work array
                 • wd1 [integer,in,]
                 • wd2 [integer,in,]
                 • i_fft_init (*) [integer,in] :: factorization information from init_fft
                 • d_fft_init (*) [real,in] :: trigonometric functions from init_fft
           Called from fft_thetab(), fft_to_real()
           Call to fft99ajw(), wpass2jw(), wpass3jw(), wpass4jw(), wpass5jw(),
                fft99bjw()
subroutine fft/fft99ajw(a, work, trigs, nrp, nsize)
           Parameters
                 • a (*) [real,inout]
                 • work (*) [real,inout]
                 • trigs (*) [real,in]
                 • nrp [integer,in]
                 • nsize [integer,in]
           Called from fft jw()
subroutine fft/fft99bjw (work, a, trigsf, nrp, nsize)
           postprocessing step (isign=-1) (gridpoint to spectral transform)
           Parameters
                 • work (*) [real,inout]
                 • a (*) [real,inout]
                 • trigsf (*) [real,in]
                 • nrp [integer,in]
                 • nsize [integer,in]
           Called from fftjw()
subroutine fft/wpass2jw (a, b, c, d, trigs, nrp, nsize)
           reduction for factor 2
           if(la \neq 1) stop 'call to wpass2 with la \neq 1'
           Parameters
                 • a (*) [real,in]
```

```
• b (*) [real,in]
                  • c (*) [real,out]
                  • d (*) [real,out]
                  • trigs (*) [real,in]
                  • nrp [integer,in]
                  • nsize [integer,in]
           Called from fftjw()
subroutine fft/wpass3jw (a, b, c, d, trigs, nrp, la, nsize)
           called in fftJW
           Parameters
                  • a (*) [real,in]
                  • b (*) [real,in]
                  • c (*) [real,out]
                  • d (*) [real,out]
                  • trigs (*) [real,in]
                  • nrp [integer,in]
                  • la [integer,in]
                  • nsize [integer,in]
           Called from fftjw()
subroutine fft/wpass4jw (a, b, c, d, trigs, nrp, la, nsize)
           called in fftJW reduction for factor 4
           Parameters
                  • a (*) [real,in]
                  • b (*) [real,in]
                  • c (*) [real,out]
                  • d (*) [real,out]
                  • trigs (*) [real,in]
                  • nrp [integer,in]
                  • la [integer,in]
                  • nsize [integer,in]
           Called from fftjw()
subroutine fft/wpass5jw (a, b, c, d, trigs, nrp, la, nsize)
```

Parameters

called in fftJW reduction for factor 5

```
• a (*) [real,in]
```

- **b** (*) [real,in]
- **c** (*) [real,out]
- **d** (*) [real,out]
- **trigs** (*) [real,in]
- **nrp** [integer,in]
- la [integer,in]
- nsize [integer,in]

Called from fft jw()

10.12 Linear algebra

10.12.1 algebra.f90

Quick access

```
Variables zero_tolerance
Routines sgesl(), cgeslml(), cgesl(), sgefa()
```

Needed modules

- precision_mod: This module controls the precision used in MagIC
- omp_lib
- constants (one ()): module containing constants and parameters used in the code.

Variables

• algebra/zero_tolerance [real,private/parameter=1.0e-15_cp]

Subroutines and functions

```
subroutine algebra/cgesl (a, ia, n, ip, bc1)
```

This routine does the backward substitution into a lu-decomposed real matrix a (to solve a * x = bc1) were bc1 is the right hand side vector. On return x is stored in bc1.

- a (ia,*) [real,in] :: real n X n matrix
- ia [integer,in,] :: first dim of a
- **n** [integer,in] :: dimension of problem
- ip (*) [integer,in] :: pivot pointer of legth n

• **bc1** (*) [complex,inout] :: on input RHS of problem

```
Called from j_cond(), updatez()
```

```
subroutine algebra/cgeslml (a, ia, n, ip, bc, ldbc, nrhss)
```

This routine does the backward substitution into a lu-decomposed real matrix a (to solve a *x = bc) simultaneously for nRHSs complex vectors bc. On return the results are stored in the bc.

Parameters

- a (ia,n) [real,in] :: real n X n matrix
- ia [integer,in,] :: leading dimension of a
- **n** [integer,in,] :: dimension of problem
- **ip** (n) [integer,in] :: pivot pointer of length n
- **bc** (ldbc,nrhss) [complex,inout] :: on input RHS of problem
- **ldbc** [integer,in,] :: leading dimension of bc
- **nrhss** [integer,in,] :: number of right-hand sides

Called from updatez(), updateb(), updates(), updatewp(), updates_ala()

```
subroutine algebra/sgesl(a, ia, n, ip, b)
```

like the linpack routine backward substitution of vector b into lu-decomposed matrix a to solve a * x = b for a single real vector b

sub sgefa must be called once first to initialize a and ip

a: (input) nxn real matrix n: (input) size of a and b ip: (input) pivot pointer array of length n b: (in/output) rhs-vector on input, solution on output

Parameters

- **a** (ia,*) [real,in]
- ia [integer, in,] :: first dim of a
- **n** [integer,in] :: dim of problem
- **ip** (*) [integer,in] :: pivot information
- **b** (*) [real,inout]

Called from inits(), updates(), s_cond(), getbackground(), updatewp(),
 updates_ala()

subroutine algebra/**sgefa** (a, ia, n, ip, info)

like the linpack routine

lu decomposes the real matrix a(n,n) via gaussian elimination

a: (in/output) real nxn matrix on input, lu-decomposed matrix on output ia: (input) first dimension of a (must be >= n) n: (input) 2nd dimension and rank of a ip: (output) pivot pointer array info: (output) error message when /= 0

Parameters

• **a** (ia,*) [real,inout]

- ia [integer,in,]
- **n** [integer,in]
- **ip** (*) [integer,out] :: pivoting information
- **info** [integer,out]

```
Called from j_cond(), get_z10mat(), inits(), s_cond(), get_bmat(),
  getbackground(), get_p0mat(), get_s0mat(), get_smat(), get_zmat(),
  get_wpmat()
```

10.13 Radial derivatives and integration

10.13.1 radial derivatives.f90

Description

Radial derivatives functions

Quick access

Needed modules

- precision_mod: This module controls the precision used in MagIC
- cosine_transform_odd
- constants (zero(), three(), one()): module containing constants and parameters used in the code.

Variables

- radial_der/get_dcheb [public]
- radial_der/get_dr [public]

Subroutines and functions

Returns first radial derivative df of the input function f. Array $f(n_f_max,*)$ may contain several functions numbered by the first index. The subroutine calculates the derivaties of the functions $f(n_f_start,*)$ to $f(n_f_stop)$ by transforming to a Chebychev representation using n_r_max radial grid points .

- \mathbf{f} (n_f_max,n_r_max) [complex,in]
- **df** (n_f_max,n_r_max) [complex,out] :: first derivative of f
- n_f_max [integer,in,] :: first dim of f
- **n_f_start** [integer,in] :: first function to be treated
- **n_f_stop** [integer,in] :: last function to be treated
- n_r_max [integer,in,] :: number of radial grid points
- n_cheb_max [integer,in] :: max number of cheb modes
- work1 (n_f_max,n_r_max) [complex,out] :: work array needed for costf
- work2 (n_f_max,n_r_max) [complex,out] :: work array for f transfer
- **chebt** [costf_odd_t,in]
- **drx** (*n_r_max*) [real,in] :: first derivatives of x(r)

subroutine radial_der/get_dr_real_ld(f, df, n_r_max, n_cheb_max, work1, work2, chebt, drx)

Parameters

- **f** (*n*_*r*_*max*) [*real*,*in*]
- **df** (*n_r_max*) [*real,out*] :: first derivative of f
- n_r_max [integer,in,] :: number of radial grid points
- **n_cheb_max** [integer,in] :: max number of cheb modes
- work1 (n_r_max) [real,out] :: work array needed for costf
- work2 (n_r_max) [real,out] :: work array for f transfer
- **chebt** [costf_odd_t,in]
- **drx** (n_r_max) [real,in] :: first derivatives of x(r)

Returns first radial derivative df of the input function f. Array $f(n_f_max,*)$ may contain several functions numbered by the first index. The subroutine calculates the derivatives of the functions $f(n_f_start,*)$ to $f(n_f_stop,*)$ by transforming to a Chebychev representation using n_f_max radial grid points. Note: when using this function the input field f is slightly changed by the back and forth transform. Use s_gt_drf to avoid this.

- **f** (n_f_max,n_r_max) [complex,inout]
- **df** (n_f_max,n_r_max) [complex,out] :: first derivative of f
- n_f_max [integer,in,] :: first dim of f
- n_f_start [integer,in] :: first function to be treated
- **n_f_stop** [integer,in] :: last function to be treated
- **n_r_max** [integer,in,] :: number of radial grid points
- **n_cheb_max** [integer,in] :: max number of cheb modes
- work1 (n_f_max,n_r_max) [complex,out] :: work array needed for costf

- **chebt** [costf_odd_t,in]
- drx (*) [real,in] :: first derivatives of x(r)

```
Called from fields_average(), updateb(), updates(), dtvrms(), dtbrms(),
    get_dtblmfinish(), updates_ala(), write_dtb_frame()
```

Returns first radial derivative df and second radial derivative ddf of the input function f. Array $f(n_f_max,^*)$ may contain several functions numbered by the first index. The subroutine calculates the derivatives of the functions $f(n_f_start,^*)$ to $f(n_f_stop)$ by transforming to a Chebychev representation using n_f max radial grid points.

Parameters

- **f** (n_f_max,n_r_max) [complex,in]
- **df** (n_f_max,n_r_max) [complex,out] :: first derivative of f
- **ddf** (n_f_max,n_r_max) [complex,out] :: second derivative of f
- n_f_max [integer,in,] :: first dim of f
- n_f_start [integer,in] :: first function to be treated
- **n_f_stop** [integer,in] :: last function to be treated
- n_r_max [integer,in,] :: number of radial grid points
- n_cheb_max [integer,in] :: number of cheb modes
- work1 (n_f_max,n_r_max) [complex,out] :: work array needed for costf
- work2 (n_f_max,n_r_max) [complex,out] :: work array for f transfer
- **chebt** [costf_odd_t,in]
- **drx** (*n_r_max*) [real,in] :: first derivatives of x(r)
- **ddrx** (n_r_max) [real,in] :: second derivatives of x(r)

```
Called from updatez(), updateb(), updates(), getstartfields(),
    updates_ala()
```

Call to get_ddcheb()

Returns first radial derivative df, the second radial deriv. ddf, and the third radial derivative dddf of the input function f. Array $f(n_f_max,^*)$ may contain several functions numbered by the first index. The subroutine calculates the derivatives of the functions $f(n_f_start,^*)$ to $f(n_f_stop)$ by transforming to a Chebychev representation using n_r_max radial grid points.

- \mathbf{f} (n f max, n r max) [complex, in]
- **df** (n_f_max,n_r_max) [complex,out] :: first derivative of f
- **ddf** (n_f_max,n_r_max) [complex,out] :: second derivative of f
- **dddf** (n_f_max,n_r_max) [complex,out] :: third derivative of f

n_f_max [integer,in,] :: first dim of f
n_f_start [integer,in] :: first function to be treated
n_f_stop [integer,in] :: last function to be treated
n_r_max [integer,in,] :: number of radial grid points
n_cheb_max [integer,in] :: number of cheb_modes
work1 (n_f_max,n_r_max) [complex,out] :: work array needed for costf
work2 (n_f_max,n_r_max) [complex,out] :: work array needed for costf
chebt [costf_odd_t,in]
drx (n_r_max) [real,in] :: first derivatives of x(r)
ddrx (n_r_max) [real,in] :: second derivatives of x(r)
ddrx (n_r_max) [real,in] :: third derivatives of x(r)

Called from updatewp()

subroutine radial_der/get_dcheb_complex (f, df, n_f_max, n_f_start, n_f_stop, n_r_max,

n cheb max, d fac)

Parameters

- **f** (n_f_max,n_r_max) [complex,in]
- **df** (n_f_max,n_r_max) [complex,out]
- **n_f_max** [integer,in,] :: Max no of functions
- n_f_start [integer,in] :: No of function to start with
- **n_f_stop** [integer,in] :: No of function to stop with
- n_r_max [integer,in,] :: second dimension of f,df,ddf
- n_cheb_max [integer,in] :: Number of cheb modes
- **d_fac** [real,in] :: factor for interval mapping

subroutine radial_der/get_dcheb_real_1d(f, df, n_r_max, n_cheb_max, d_fac)

Parameters

- **f** (*n*_*r*_*max*) [*real*,*in*]
- **df** (*n_r_max*) [real,out]
- n r max [integer, in,] :: Dimension of f,df,ddf
- **n_cheb_max** [integer,in] :: Number of cheb modes
- **d_fac** [real,in] :: factor for interval mapping

Returns chebychev coefficents of first derivative df and second derivative ddf for a function whose cheb-coeff. are given as columns in array f(n_c_tot,n_r_max).

Parameters

• **f** (n_f_max,n_r_max) [complex,in]

```
• df (n_f_max,n_r_max) [complex,out]
```

- **ddf** (n_f_max,n_r_max) [complex,out]
- n_f_max [integer,in,] :: First dimension of f,df,ddf
- n_f_start [integer,in] :: No of column to start with
- **n f stop** [integer,in] :: No of column to stop with
- n_r_max [integer,in,] :: second dimension of f,df,ddf
- n_cheb_max [integer,in] :: Number of cheb modes
- **d_fac** [real,in] :: factor for interval mapping

Called from get_ddr()

Parameters

- **f** (n_f_max,n_r_max) [complex,in]
- **df** (n_f_max,n_r_max) [complex,out]
- **ddf** (n_f_max,n_r_max) [complex,out]
- **dddf** (n_f_max,n_r_max) [complex,out]
- **n_f_max** [integer,in,] :: First dimension of f,df,ddf
- **n_f_start** [integer,in] :: No of column to start with
- **n_f_stop** [integer,in] :: No of column to stop with
- n_r_max [integer,in,] :: second dimension of f,df,ddf
- n_cheb_max [integer,in] :: Number of cheb modes
- **d_fac** [real,in] :: factor for interval mapping

Called from get_dddr()

10.13.2 radial_derivatives_even.f90

Quick access

```
Routines get_ddcheb_even(), get_ddrns_even(), get_dcheb_even(), get_drns_even()
```

- precision_mod: This module controls the precision used in MagIC
- cosine transform odd
- cosine_transform_even
- constants (zero ()): module containing constants and parameters used in the code.

Subroutines and functions

Returns first rarial derivative df and second radial derivative ddf of the input function f. Array $f(n_f_max,^*)$ may contain several functions numbered by the first index. The subroutine calculates the derivaties of the functions $f(n_f_start,^*)$ to $f(n_f_start)$ by transforming to a Chebychev representation using n_r_max radial grid points. The cheb transforms have to be initialized by calling init_costf1 and init_costf2.

Parameters

```
• f (n_f_max,n_r_max) [complex,in]
```

```
• df (n_f_max,n_r_max) [complex,out] :: first derivative of f
```

- **ddf** (n_f_max,n_r_max) [complex,out] :: second derivative of f
- **n_f_max** [integer,in,] :: first dim of f
- **n_f_start** [integer,in] :: first function to be treated
- **n_f_stop** [integer,in] :: last function to be treated
- **n_r_max** [integer,in,] :: number of radial grid points
- **n_cheb_max** [integer,in] :: number of cheb modes
- **dr_fac** [real,in] :: mapping factor
- work1 (n_f_max,n_r_max) [complex,out] :: work array needed for costf
- work2 (n_f_max,n_r_max) [complex,out] :: work array needed for costf
- **chebt_odd** [costf_odd_t,in]
- **chebt_even** [costf_even_t,in]

```
Called from updateb(), getstartfields()
```

Call to get_ddcheb_even()

```
subroutine radial_der_even/get_drns_even (f, df, n\_f\_max, n\_f\_start, n\_f\_stop, n\_r\_max, n\_cheb\_max, dr\_fac, dr\_fac
```

Returns first rarial derivative df and second radial derivative ddf of the input function f. Array $f(n_f_{max},*)$ may contain several functions numbered by the first index. The subroutine calculates the derivaties of the functions $f(n_f_{start},*)$ to $f(n_f_{start})$ by transforming to a Chebychev representation using n_f_{max} radial grid points. The cheb transforms have to be initialized by calling init_costf1 and init_costf2.

- **f** (n_f_max,n_r_max) [complex,inout]
- **df** (n_f_max,n_r_max) [complex,out] :: first derivative of f
- **n_f_max** [integer,in,] :: first dim of f
- **n_f_start** [integer,in] :: first function to be treated

```
• n_f_stop [integer,in] :: last function to be treated
```

- n_r_max [integer,in,] :: number of radial grid points
- n_cheb_max [integer,in] :: number of cheb modes
- **dr_fac** [real,in] :: mapping factor
- work1 (n_f_max,n_r_max) [complex,out] :: work array needed for costf
- chebt_odd [costf_odd_t,in]
- chebt_even [costf_even_t,in]

```
Called from fields_average(), write_dtb_frame()
```

Call to get_dcheb_even()

Returns first rarial derivative df and second radial derivative ddf of the input function f. Array $f(n_f_max,*)$ may contain several functions numbered by the first index. The subroutine calculates the derivatives of the functions $f(n_f_start,*)$ to $f(n_f_stop)$ by transforming to a Chebychev representation using n_r_max radial grid points. The cheb transforms have to be initialized by calling init_costf1 and init_costf2.

Parameters

- **f** (n_f_max,n_r_max) [complex,inout]
- **df** (n_f_max,n_r_max) [complex,out] :: first derivative of f
- **ddf** (n_f_max,n_r_max) [complex,out] :: second derivative of f
- n_f_max [integer,in,] :: first dim of f
- **n_f_start** [integer,in] :: first function to be treated
- **n_f_stop** [integer,in] :: last function to be treated
- n_r_max [integer,in,] :: number of radial grid points
- n_cheb_max [integer,in] :: number of cheb modes
- **dr_fac** [real,in] :: mapping factor
- work1 (n_f_max,n_r_max) [complex,out] :: work array needed for costf
- chebt_odd [costf_odd_t,in]
- chebt_even [costf_even_t,in]

Called from fields average()

Call to get_ddcheb_even()

subroutine radial_der_even/**get_dcheb_even** (f, df, n_f_max , n_f_start , n_f_stop , n_r_max , n_cheb_max , d_fac)

- \mathbf{f} (n_f_max,n_r_max) [complex,in]
- **df** (n_f_max,n_r_max) [complex,out]
- **n_f_max** [integer,in,] :: First dimension of f,df

- n_f_start [integer,in] :: No of function to start with
- **n_f_stop** [integer,in] :: No of function to stop with
- n_r_max [integer,in,] :: second dimension of f,df
- n_cheb_max [integer,in] :: Number of cheb modes
- **d_fac** [real,in] :: factor for interval mapping

Called from get drns even()

Parameters

- \mathbf{f} (n_f_max,n_r_max) [complex,in]
- **df** (n_f_max,n_r_max) [complex,out]
- **ddf** (n_f_max,n_r_max) [complex,out]
- n_f_max [integer,in,] :: First dimension of f,df,ddf
- **n_f_start** [integer,in] :: No of function to start with
- **n_f_stop** [integer,in] :: No of function to stop with
- n_r_max [integer,in,] :: second dimension of f,df,ddf
- n_cheb_max [integer,in] :: Number of cheb modes
- **d_fac** [real,in] :: factor for interval mapping

Called from get_ddr_even(), get_ddrns_even()

10.13.3 integration.f90

Description

Radial integration functions

Quick access

Routines rint_r(), rint(), rintic()

- precision_mod: This module controls the precision used in MagIC
- cosine_transform_odd
- constants (one (), two (), half ()): module containing constants and parameters used in the code.

Subroutines and functions

function integration/rint (f, nrmax, drfac, chebt)

This function performs the radial integral over a function f that is given on the appropriate nRmax radial Chebychev grid points.

Note: drFac maps radius to cheb space [-1,1] drFac=two/(rMax-rMin)

Parameters

- **f** (nrmax) [real,in]
- nrmax [integer,in,]
- **drfac** [real,in]
- **chebt** [costf_odd_t,in]

Return rint [real]

```
Called from outperppar(), outmisc(), dtbrms(), spectrum_temp_average(),
    spectrum_temp()
```

function integration/rintic(f, nrmax, drfac, chebt)

This function performs the radial integral over a function f that is given on the appropriate nRmax radial Chebychev grid points.

Parameters

- **f** (nrmax) [real,inout]
- nrmax [integer,in,]
- drfac [real,in]
- chebt [costf_odd_t,in]

Return rintic [real]

Called from spectrum(), get_power(), get_e_mag()

function integration/rint_r (f, n_r_max, n_cheb_max, dr_fac, chebt)

Same as function rInt but for a radial dependent mapping function dr_fac2.

Parameters

- **f** (*n*_*r*_*max*) [real,in]
- n_r_max [integer,in,]
- n_cheb_max [integer,in]
- **dr_fac** (*n_r_max*) [real,in]
- **chebt** [costf_odd_t,in]

Return rint_r [real]

```
Called from dtvrms(), output(), spectrum_average(), spectrum(), precalc(),
    get_angular_moment(),    getdlm(),    get_power(),    get_u_square(),
    get_e_kin(), get_poltorrms(), get_e_mag(), outto()
```

10.14 Blocking and LM mapping

10.14.1 blocking.f90

Description

Module containing blocking information

Quick access

```
Variables get_theta_blocking, nfs, nlmbs, nthetabs, sizelmb, sizerb, sizethetab, nbsave, sizethetabi, cacheblock_size_in_b, nbdown, lmstartb, lmstopb, 121mas, 1m21, 1m21ma, 1m21mp, 1m21ms, 1m2m, 1m2mc, 1mp21, 1mp21m, 1mp21mpa, 1mp21mps, nlmbs2, 1m2, 1mp2, sizelmb2, 1m221, 1m221m, 1m22m, 1o_map, 1o_sub_map, sn_sub_map, st_map, st_sub_map
```

```
Routines initialize_blocking(), get_lorder_lm_blocking(), get_snake_lm_blocking(), get_standard_lm_blocking(), get_subblocks(), get_theta_blocking_cache(), get_theta_blocking_openmp()
```

Needed modules

- parallel_mod(n_procs(), rank_with_l1m0(), nthreads(), rank(), nlmbs_per_rank()): This module contains the blocking information
- useful (logwrite()): library with several useful subroutines
- output_data (log_file(), nlf()): This module contains the parameters for output control
- precision_mod: This module controls the precision used in MagIC
- logic(l_save_out()): Module containing the logicals that control the run
- lmmapping (subblocks_mappings(),
 allocate_mappings(), mappings())
- constants (one ()): module containing constants and parameters used in the code.
- truncation(l_max(), minc(), lmp_max(), n_r_max(), lm_max(), nrp(), n_theta_max()): This module defines the grid points and the truncation

Variables

- blocking/nbsave[integer,private/parameter=16]
- blocking/lmstartb(:)[integer,allocatable/public]
- blocking/lm2 (:,:) [integer,pointer/public]
- blocking/lmp2 (:,:) [integer,pointer/public]

- blocking/sizerb[integer,public]
- blocking/lm2lms (:) [integer,pointer/public]
- blocking/lmp21 (:) [integer,pointer/public]
- blocking/lm221 (:,:,:) [integer,pointer/public]
- blocking/lm22m(:,:,:) [integer,pointer/public]
- blocking/lmp2lm(:)[integer,pointer/public]
- blocking/lm2lmp(:)[integer,pointer/public]
- blocking/get_theta_blocking[public]
- blocking/lo_sub_map [subblocks_mappings,target/public]
- blocking/lmp2lmps (:) [integer,pointer/public]
- blocking/nthetabs [integer,public]
- blocking/sn_sub_map [subblocks_mappings,target/public]
- blocking/lm2m(:) [integer,pointer/public]
- blocking/lm21(:) [integer,pointer/public]
- blocking/lmp2lmpa (:) [integer, pointer/public]
- blocking/lm2mc(:)[integer,pointer/public]
- blocking/nlmbs [integer, public]
- blocking/sizethetab[integer,public]
- blocking/st_map [mappings,target/public]
- blocking/lo_map [mappings,target/public]
- blocking/nlmbs2 (:) [integer, pointer/public]
- blocking/sizelmb[integer,public]
- blocking/sizethetabi [integer,private/parameter=284]
- blocking/lm22lm(:,:,:) [integer,pointer/public]
- blocking/**nfs** [integer,public]
- blocking/lmstopb(:)[integer,allocatable/public]
- blocking/121mas (:) [integer, pointer/public]
- blocking/cacheblock_size_in_b [integer,public]
- blocking/nbdown [integer,private/parameter=8]
- blocking/lm2lma(:)[integer,pointer/public]
- blocking/sizelmb2 (:,:) [integer, pointer/public]
- blocking/st_sub_map[subblocks_mappings,target/public]

Subroutines and functions

```
subroutine blocking/initialize_blocking()
         Called from magic
         Call to allocate_mappings(), logwrite(), get_standard_lm_blocking(),
             get_snake_lm_blocking(),
                                                         get_lorder_lm_blocking(),
             allocate subblocks mappings(),
                                                                      get subblocks(),
             get_theta_blocking_cache(), get_theta_blocking_openmp()
subroutine blocking/get_subblocks (map, sub_map)
         Parameters
              • map [mappings,in]
              • sub map [subblocks mappings,inout]
         Called from initialize_blocking()
subroutine blocking/get_standard_lm_blocking (map, minc)
         Parameters
              • map [mappings,inout]
              • minc [integer,in]
         Called from initialize_blocking()
subroutine blocking/get lorder lm blocking(map, minc)
         Parameters
              • map [mappings,inout]
              • minc [integer,in]
         Called from initialize blocking()
subroutine blocking/get_snake_lm_blocking(map, minc)
         Parameters
              • map [mappings,inout]
              • minc [integer,in]
         Called from initialize_blocking()
subroutine blocking/get_theta_blocking_cache (n_theta_max,
                                                               nrp,
                                                                      cacheblock_size_in_b,
                                                  nthetabs, sizethetab)
         Parameters
              • n_theta_max [integer,in]
              • nrp [integer,in]
              cacheblock_size_in_b [integer,in]
              • nthetabs [integer,out]
              • sizethetab [integer,out]
         Called from initialize blocking()
subroutine blocking/get_theta_blocking_openmp (n_theta_max, nthreads, nthetabs, sizethetab)
```

This routine determines the number of theta blocks and the blocksize with respect to the number of threads.

Parameters

- n_theta_max [integer,in]
- **nthreads** [integer,in]
- **nthetabs** [integer,out]
- sizethetab [integer,out]

Called from initialize_blocking()

10.14.2 LMmapping.f90

Quick access

Routines allocate_mappings(), allocate_subblocks_mappings()

Types

• type lmmapping/unknown_type

Type fields

- % 1_max [integer]
- % lm2mc (*) [integer,allocatable]
- % lm2 (,) [integer, allocatable]
- % lmp21 (*) [integer,allocatable]
- % lmp2m (*) [integer,allocatable]
- % lmp_max [integer]
- % lmp2lm(*)[integer,allocatable]
- % lmp2 (,) [integer, allocatable]
- % lm_max [integer]
- % lmp2lmps (*) [integer, allocatable]
- % lm2lms (*) [integer,allocatable]
- % lm2lmp (*) [integer,allocatable]
- % lm2m (*) [integer,allocatable]
- % lm21 (*) [integer,allocatable]
- % 121mas (*) [integer, allocatable]
- % lmp2lmpa (*) [integer,allocatable]
- % lm2lma (*) [integer,allocatable]
- type lmmapping/unknown_type

Type fields

- % 1_max [integer]
- % nlmbs [integer]
- % lm22lm (,,*) [integer, allocatable]
- % lm221 (,,*) [integer, allocatable]
- % lm22m (,,*) [integer, allocatable]
- % sizelmb2 (,) [integer,allocatable]
- % sizelmb2max [integer]
- % nlmbs2 (*) [integer, allocatable]

Subroutines and functions

subroutine lmmapping/allocate_mappings (self, l_max, lm_max, lmp_max)

Parameters

- **self** [mappings]
- l_max [integer,in]
- lm_max [integer,in]
- lmp_max [integer,in]

Called from initialize_blocking()

subroutine lmmapping/allocate_subblocks_mappings (self, map, nlmbs, l_max, lmstartb, lmstopb)

Parameters

- **self** [subblocks_mappings]
- map [mappings,in]
- nlmbs [integer,in,]
- l_max [integer,in]
- **Imstartb** (*nlmbs*) [integer,in]
- **Imstopb** (*nlmbs*) [integer,in]

Called from initialize_blocking()

10.15 IO: time series, radial profiles and spectra

10.15.1 output.f90

Quick access

Variables n_cmb_setsmov, n_dt_cmb_sets, n_e_sets, n_spec, nbpotsets, nlogs, npvsets, nrms_sets, ntomovsets, ntormssets, ntosets, ntpotsets, nvpotsets, dteint, e_kin_pmean, e_kin_tmean, e_mag_pmean, e_mag_tmean, etot,

etotold, timenormlog, timenormrms, timepassedlog, timepassedrms, $n_b_r_sets$, $n_t_r_sets$, $n_v_r_sets$, dipcmbmean, dipmean, dlbmean, dlvcmean, dlvcmean, dlvmean, dmvmean, dpvmean, dzvmean, elcmbmean, geosmean, lbdissmean, lvdissmean, rmmean, rolmean

Routines initialize_output(), output()

- horizontal_data (hdif_b(), dpl0eq(), dlh()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- movie_data(movie_gather_frames_to_rank0())
- useful (safeclose(), safeopen(), logwrite()): library with several useful subroutines
- fields (aj_lmloc(), aj_ic(), ddw_lmloc(), aj(), b_lmloc(), dj_lmloc(), ddj_ic_lmloc(), db_lmloc(), db_ic(), db_lmloc(), ddb_lmloc(), ddb_lmloc(), ddb_lc_lmloc(), ddb_lc_lml
- rms (dtvrms (), zerorms (), dtbrms ()): This module contains the calculation of thr RMS force balance and induction terms.
- lmloop_data(llmmag(), lm_per_rank(), lm_on_last_rank(), ulm(), llm(), ulmmag())
- radial_spectra
- getdlm_mod(getdlm())
- charmanip (dble2str()): This module contains several useful routines to manipule character strings
- magnetic_energy (get_e_mag())
- store_pot_mod (storepot ()): This module contains the subroutines that can be used to write unformatted fortran files that contain the flow/magnetic field potentials (in both Chebyshev and spectral space)
- integration (rint r()): Radial integration functions
- graphout mod (graphout ic())
- parallel_mod (rank ()): This module contains the blocking information
- num_param(tscale()): Module containing numerical and control parameters
- out_movie_ic(store_movie_frame_ic())
- physical_parameters(prmag(), lffac(), ek(), ktopv(), nvarcond(), opm()): Module containing the physical parameters
- radial_functions (drx(), r_cmb(), chebt_oc(), or2(), or1(), r(), r_icb()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)
- power (get_power())
- logic (l_rmagspec(), l_power(), l_sric(), l_dt_cmb_field(), l_movie_ic(), l_non_rot(), l_dtb(), l_store_frame(), l_r_fieldt(), l_cmb_field(), l_average(), lverbose(), l_save_out(), l_pv(), l_cond_ic(), l_mag_lf(), l_anel(), l_perppar(), l_rms(), l_r field(), l_mag()): Module containing the logicals that control the run

- precision mod: This module controls the precision used in MagIC
- storecheckpoints: This module contains several subroutines that can be used to store the rst #.TAG files
- kinetic_energy (get_e_kin(), get_u_square())
- out_coeff (write_coeff_r(), write_bcmb()): This module contains the subroutines that calculate the Bcmb files and the [BIVIT]_coeff_r files
- omega (outomega ()): This module allows to compute the axisymmetric zonal flow versus the cylindrical radius s. By
- blocking (1m2(), st_map(), 1o_map()): Module containing blocking information
- constants (mass(), vol_oc(), surf_cmb(), vol_ic(), two()): module containing constants and parameters used in the code.
- truncation (n_r_ic_max(), l_max(), minc(), l_maxmag(), n_r_max(), lm_max(), n_r_maxmag()): This module defines the grid points and the truncation
- fieldslast (dbdt_iclast_lmloc(), dzdtlast_lo(), djdtlast_lmloc(), djdt_iclast_lmloc(), djdtlast(), dpdtlast(), djdt_iclast(), dpdtlast_lmloc(), dbdtlast(), dsdtlast(), dwdtlast_lmloc(), dsdtlast_lmloc(), dzdtlast(), dbdtlast_lmloc(), dbdtlast_lmloc(), dwdtlast()): This module contains time-derivaties array of the previous time-step They are needed in the time-stepping scheme.
- outrot(write rot())
- out_movie(write_movie_frame())
- output_data (n_cmbmov_file(), n_dt_cmb_file(), rst_file(), n_coeff_r(), tag(), nlf(), n_t_rfile(), n_coeff_r_max(), n_rst_file(), n_r_step(), n_par_file(), dt_cmb_file(), t_r_file(), cmb_file(), par_file(), n_v_r_file(), cmbmov_file(), n_cmb_file(), n_r_array(), l_max_cmb(), b_r_file(), v_r_file(), l_max_r(), n_b_rfile(), log_file()): This module contains the parameters for output control
- spectra (spectrum_temp(), spectrum_average(), spectrum_temp_average(), spectrum())
- dtb_mod (get_dtblmfinish()): This module contains magnetic field stretching and advection terms plus a separate omega-effect. It is used for movie output....
- outmisc_mod(outmisc())
- radial_data(nrstartmag(), n_r_cmb(), nrstart(), nrstopmag(), nrstop())
- communications(gather_all_from_lo_to_rank0(), gt_ic(), gt_oc())
- outpar mod(outpar(), outperppar())
- outto_mod(outto())
- outpv3(outpv())
- fields_average_mod (fields_average()): This module is used when one wants to store time-averaged quantities

- output mod/dlvmean [real,private/save]
- output_mod/ntpotsets [integer,private]
- output_mod/etot [real,private]

- output_mod/n_v_r_sets(:)[integer,private/allocatable]
- output_mod/dmbmean [real,private/save]
- output_mod/ntosets[integer,private]
- output_mod/n_spec [integer,private]
- output_mod/n_b_r_sets(:)[integer,private/allocatable]
- output_mod/timepassedlog[real,private]
- output_mod/ntormssets[integer,private]
- output_mod/n_e_sets[integer,private]
- output_mod/nlogs [integer,private]
- output_mod/e_kin_pmean [real,private]
- output_mod/nbpotsets[integer,private]
- output_mod/dpvmean [real,private/save]
- output_mod/dipmean [real,private/save]
- output_mod/dteint [real,private]
- output_mod/nvpotsets[integer,private]
- output_mod/rolmean [real,private/save]
- output_mod/etotold[real,private]
- output_mod/dmvmean [real,private/save]
- output_mod/elmean [real,private/save]
- output_mod/lvdissmean [real,private/save]
- output_mod/n_dt_cmb_sets[integer,private]
- output_mod/e_mag_pmean [real,private]
- output_mod/elcmbmean [real,private/save]
- output_mod/timenormlog [real,private]
- output_mod/ntomovsets[integer,private]
- output_mod/geosmean [real,private/save]
- output_mod/timenormrms [real,private]
- output_mod/e_mag_tmean [real,private]
- output_mod/timepassedrms [real,private]
- output_mod/dzvmean [real,private/save]
- output_mod/dlvcmean [real,private/save]
- output_mod/n_cmb_setsmov [integer,private]
- output_mod/n_t_r_sets(:) [integer,private/allocatable]
- output_mod/npvsets [integer,private]
- output_mod/dlbmean [real,private/save]
- output mod/dipcmbmean [real, private/save]

- output_mod/e_kin_tmean [real,private]
- output_mod/lbdissmean [real,private/save]
- output_mod/nrms_sets[integer,private]
- output_mod/rmmean [real,private/save]

Subroutines and functions

subroutine output_mod/initialize_output()

Called from magic

subroutine output_mod/output (time, dt, dtnew, n_time_step, l_stop_time, l_bpot, l_vpot, l_tpot, l_log, l_graph, lrmscalc, l_store, l_new_rst_file, l_spectrum, ltocalc, ltoframe, ltozwrite, l_frame, n_frame, l_cmb, n_cmb_sets, l_r, lorentz_torque_ic, lorentz_torque_ma, dbdt_at_cmb, hellmr, hel2lmr, helnalmr, helna2lmr, uhlmr, duhlmr, gradslmr, fconvlmr, fkinlmr, fvisclmr, fpoynlmr, freslmr, eperplmr, eparlmr, eperpaxilmr, eparaxilmr)

This subroutine controls most of the output.

- time [real,in]
- **dt** [real,in]
- dtnew [real,in]
- n_time_step [integer,in]
- l_stop_time [logical,in]
- **l_bpot** [logical,in]
- l_vpot [logical,in]
- **l_tpot** [logical,in]
- l_log [logical,in]
- l_graph [logical,in]
- **lrmscalc** [logical,in]
- **l_store** [logical,in]
- l_new_rst_file [logical,in]
- l_spectrum [logical,in]
- **ltocalc** [logical,in]
- **Itoframe** [logical,in]
- **ltozwrite** [logical,inout]
- **l_frame** [logical,in]
- **n_frame** [integer,inout]
- l_cmb [logical,in]
- n_cmb_sets [integer,inout]

```
• l_r [logical,in]
```

- lorentz torque ic [real,in]
- lorentz_torque_ma [real,in]
- dbdt_at_cmb (*) [complex,in,pointer]
- **hellmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*in*]
- hel2lmr (l max+1,nrstop-(nrstart)+1) [real,in]
- **helnalmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*in*]
- helna2lmr (l_max+1,nrstop-(nrstart)+1) [real,in]
- **uhlmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*in*]
- **duhlmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*in*]
- **gradslmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*in*]
- **fconvlmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*in*]
- **fkinlmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*in*]
- **fvisclmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*in*]
- **fpoynlmr** (*l_maxmag+1,nrstopmag-(nrstartmag)+1*) [real,in]
- **freslmr** (*l_maxmag+1,nrstopmag-(nrstartmag)+1*) [real,in]
- **eperplmr** (*l* max+1,nrstop-(nrstart)+1) [real,in]
- **eparlmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*in*]
- **eperpaxilmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*in*]
- **eparaxilmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*in*]

Called from step_time()

```
Call to write_rot(), get_e_kin(), get_e_mag(), spectrum_average(),
    spectrum_temp_average(), fields_average(), get_power(),
    get_u_square(), outperppar(), getdlm(), outpar(), outmisc(),
    spectrum(), spectrum_temp(), outto(), get_dtblmfinish(),
    zerorms(), dtvrms(), dtbrms(), gather_all_from_lo_to_rank0(),
    movie_gather_frames_to_rank0(), graphout_ic(), rbrspec(),
    rbpspec(), store_movie_frame_ic(), logwrite(), write_movie_frame(),
    write_bcmb(), write_coeff_r(), rint_r(), safeopen(), safeclose(),
    storepot(), dble2str(), store(), outomega(), outpv()
```

10.15.2 kinetic energy.f90

Quick access

```
\textbf{Routines} \ \textit{initialize\_kinetic\_energy(), get\_e\_kin(), get\_u\_square()}
```

Needed modules

• horizontal_data (dlh ()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order

- precision_mod: This module controls the precision used in MagIC
- useful (cc2real ()): library with several useful subroutines
- output_data (e_kin_file(), n_u_square_file(), tag(), n_e_kin_file(), u_square_file()): This module contains the parameters for output control
- logic(l_non_rot(), l_save_out()): Module containing the logicals that control the run
- lmloop_data(llm(), ulm())
- integration (rint_r()): Radial integration functions
- parallel_mod: This module contains the blocking information
- communications (get_global_sum())
- num_param (escale (), tscale ()): Module containing numerical and control parameters
- physical_parameters (nvarcond(), prmag(), ek()): Module containing the physical parameters
- truncation (1_max(), n_r_max()): This module defines the grid points and the truncation
- blocking (lo_map(), st_map()): Module containing blocking information
- constants (two(), one(), four(), half(), vol_oc(), pi()): module containing constants and parameters used in the code.
- radial_functions (drx(), orho1(), orho2(), r_cmb(), chebt_oc(), or2(), or1(), r(), r_icb(), sigma()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

- kinetic_energy/e_pa(:) [real,private/allocatable]
- kinetic_energy/e_ta(:)[real,private/allocatable]
- kinetic_energy/e_p_asa(:) [real,private/allocatable]
- kinetic_energy/e_t_asa(:) [real,private/allocatable]

Subroutines and functions

```
subroutine kinetic_energy/initialize_kinetic_energy()
```

Called from magic

subroutine kinetic_energy/**get_e_kin** (time, l_write , l_stop_time , n_e_sets , w, dw, z, e_p , e_t , e_p_as , e_t_as [, ekinr])

- **time** [real,in] :: Current time
- **l_write** [logical,in] :: Switch to write output
- **l_stop_time** [logical,in] :: Indicates when last time step of the run is reached for radial output
- n e sets [integer,in] :: Switch for time-average and to determine first time step
- \mathbf{w} (ulm-(llm)+1,n r max) [complex,in]
- **dw** (*ulm*-(*llm*)+1,*n_r_max*) [*complex*,*in*]

```
• z (ulm-(llm)+1,n_r_max) [complex,in]
```

- **e_p** [real,out] :: poloidal energy
- e_t [real,out] :: toroidal energy
- e_p_as [real,out] :: axisymmetric poloidal energy
- e_t_as [real,out] :: axisymmetric toroidal energy

Options ekinr (n_r_max) [real,out,optional] :: Radial profile of kinetic energy

```
Called from fields_average(), output()
Call to cc2real(), rint_r()
```

subroutine kinetic_energy/get_u_square (time, w, dw, z, rolr, dlr, dlrc)

calculates square velocity = 1/2 Integral ($v^2 dV$) integration in theta,phi by summation of spherical harmonics integration in r by using Chebychef integrals

Write the different contributions in u_square.TAG file

Parameters

- **time** [real,in] :: Current time
- **w** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- **dw** (*ulm*-(*llm*)+1,*n_r_max*) [*complex*,*in*]
- **z** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- rolr (n_r_max) [real,out] :: local Rossby number
- **dlr** (*n_r_max*) [real,out] :: Length scale
- **dlrc** (*n_r_max*) [*real,out*] :: Convective length scale

```
Called from output ()
```

Call to cc2real(), rint_r()

10.15.3 magnetic_energy.f90

Quick access

```
Variables e_dipa, e_p_asa, e_pa, e_t_asa, e_ta

Routines initialize_magnetic_energy(), get_e_mag()
```

- horizontal_data (dlh ()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- precision_mod: This module controls the precision used in MagIC
- bext (n_imp(), rrmp()): Module containing the external field parameters
- useful (cc22real (), cc2real ()): library with several useful subroutines
- movie_data (moviedipstrengthgeo(), moviedipstrength(), moviedipcolat(), moviediplon())

- output_data (n_e_mag_ic_file(), e_mag_oc_file(), tag(), n_dipole_file(), n_e_mag_oc_file(), e_mag_ic_file(), dipole_file()): This module contains the parameters for output control
- logic(l_save_out(), l_cond_ic(), l_mag(), l_mag_lf()): Module containing the logicals that control the run
- lmloop_data(llmmag(), ulmmag())
- radial data(n r cmb())
- parallel_mod: This module contains the blocking information
- integration(rint_r(), rintic()): Radial integration functions
- num_param (escale(), tscale()): Module containing numerical and control parameters
- physical_parameters (ktopb(), lffac(), kbotb()): Module containing the physical parameters
- truncation (n_r_ic_max(), n_r_max(), n_r_maxmag(), n_r_ic_maxmag()): This module defines the grid points and the truncation
- blocking (lo_map(), lmstartb(), st_map(), lmstopb()): Module containing blocking information
- constants (two(), one(), four(), zero(), half(), pi()): module containing constants and parameters used in the code.
- radial_functions (drx(), orho1(), r_cmb(), chebt_oc(), or2(), r_ic(), r(), dr_fac_ic(), r_icb(), chebt_ic(), sigma()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

- magnetic energy/e pa(:) [real,private/allocatable]
- magnetic_energy/e_ta(:) [real,private/allocatable]
- magnetic_energy/e_dipa (:) [real,private/allocatable]
- magnetic_energy/e_p_asa(:)[real,private/allocatable]
- magnetic_energy/e_t_asa(:)[real,private/allocatable]

Subroutines and functions

```
subroutine magnetic_energy/initialize_magnetic_energy()
```

Called from magic

calculates magnetic energy = 1/2 Integral(B² dV) integration in theta,phi by summation over harmonic coeffs. integration in r by Chebycheff integrals

- **time** [real,in] :: Current time
- **l_write** [logical,in] :: Switch to write output

- **l_stop_time** [logical,in] :: Indicates when last time step of the run is reached for radial output
- n_e_sets [integer,in] :: Switch for time-average and to determine first time step
- **b** (*ulmmag*-(*llmmag*)+1,*n_r_maxmag*) [*complex*,*in*]
- **db** (*ulmmag-(llmmag*)+1,*n_r_maxmag*) [*complex*,*in*]
- **aj** (ulmmag-(llmmag)+1,n_r_maxmag) [complex,in]
- **b_ic** (*ulmmag-(llmmag)+1,n_r_ic_maxmag*) [*complex,in*]
- **db_ic** (ulmmag-(llmmag)+1,n_r_ic_maxmag) [complex,in]
- aj_ic (ulmmag-(llmmag)+1,n_r_ic_maxmag) [complex,in]
- **e_p** [real,out] :: Volume averaged poloidal magnetic energy
- e_t [real,out] :: Volume averaged toroidal magnetic energy
- e_p_as [real,out] :: Volume averaged axisymmetric poloidal magnetic energy
- e_t_as [real,out] :: Volume averaged axisymmetric toroidal magnetic energy
- **e_p_ic** [real,out] :: IC poloidal magnetic energy
- e_t_ic [real,out] :: IC toroidal magnetic energy
- e_p_as_ic [real,out] :: IC axisymmetric poloidal magnetic energy
- e_t_as_ic [real,out] :: IC axisymmetric toroidal magnetic energy
- e_p_os [real,out] :: Outside poloidal magnetic energy
- e_p_as_os [real,out] :: Outside axisymmetric poloidal magnetic energy
- e_cmb [real,out] :: Magnetic energy at the CMB
- **dip** [real,out] :: Relative magnetic energy of axial dipole
- dipcmb [real,out] :: Relative magnetic energy of axial dipole at the CMB
- elsanel [real, out] :: Radially averaged Elsasser number

```
Called from fields_average(), output()
Call to cc2real(), rint r(), cc22real(), rintic()
```

10.15.4 getDlm.f90

Quick access

Routines getdlm()

- horizontal_data (dlh ()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- precision_mod: This module controls the precision used in MagIC
- useful (cc22real (), cc2real ()): library with several useful subroutines
- lmloop_data(llm(), ulm())

- integration (rint_r()): Radial integration functions
- parallel_mod: This module contains the blocking information
- num_param (escale()): Module containing numerical and control parameters
- truncation (l_max(), minc(), n_r_max(), m_max()): This module defines the grid points and the truncation
- blocking (lo_map(), st_map()): Module containing blocking information
- constants (pi(), half()): module containing constants and parameters used in the code.
- radial_functions (orho1 (), drx (), or2 (), chebt_oc ()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Subroutines and functions

```
subroutine getdlm_mod/getdlm(w, dw, z, dl, dlr, dm, dlc, dlrc, switch_bn)
```

calculates energy = 1/2 Integral(B² dV) integration in theta,phi by summation over harmonic coeffs. integration in r by Chebycheff integrals

Output: enbp: Total poloidal enbt: Total toroidal apome: Axisym. poloidal atome: Axisym. toroidal

Parameters

- $\mathbf{w} (ulm (llm) + 1, n_r max) [complex, in]$
- **dw** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- **z** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- **dl** [real,out]
- **dlr** (*n_r_max*) [real,out]
- dm [real,out]
- dlc [real,out]
- **dlrc** (*n_r_max*) [*real*, *out*]
- switch_bn [character,in]

```
Called from output ()
```

Call to cc2real(), rint_r()

10.15.5 outMisc.f90

Quick access

Routines outmisc()

Needed modules

- horizontal_data(gauss()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- precision_mod: This module controls the precision used in MagIC
- egeos_mod(getegeos())
- useful (cc2real ()): library with several useful subroutines
- output_data(misc_file(), tag(), n_misc_file()): This module contains the parameters for output control
- logic(l_heat(), l_par(), l_save_out(), l_anelastic_liquid(), l_hel()): Module containing the logicals that control the run
- legendre_spec_to_grid(lmas2pt())
- integration(rint(), rint_r()): Radial integration functions
- radial_data(n_r_cmb(), nrstart(), n_r_icb(), nrstop())
- parallel_mod: This module contains the blocking information
- num_param (1scale()): Module containing numerical and control parameters
- lmloop_data(llm(), ulm())
- physical_parameters (epss()): Module containing the physical parameters
- truncation (lm_max(), l_max(), n_r_max()): This module defines the grid points and the truncation
- blocking (lo_map(), nthetabs(), nfs(), sizethetab()): Module containing blocking information
- constants (four (), osq4pi (), two (), one (), sq4pi (), vol_oc(), pi ()): module containing constants and parameters used in the code.
- radial_functions (botcond(), rho0(), kappa(), r_cmb(), chebt_oc(), dr_fac(), topcond(), temp0(), r_icb(), r(), dtemp0()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

Subroutines and functions

subroutine outmisc_mod/**outmisc** (*timescaled*, *hellmr*, *hel2lmr*, *helnalmr*, *helna2lmr*, *nlogs*, *w*, *dw*, *ddw*, *z*, *dz*, *s*, *ds*, *geos*, *dpflow*, *dzflow*)

- timescaled [real,in]
- **hellmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*in*]
- hel2lmr (l_max+1,nrstop-(nrstart)+1) [real,in]
- **helnalmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*in*]
- helna2lmr (l_max+1,nrstop-(nrstart)+1) [real,in]
- **nlogs** [integer,in]
- **w** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]

```
dw (ulm-(llm)+1,n_r_max) [complex,in]
ddw (ulm-(llm)+1,n_r_max) [complex,in]
z (ulm-(llm)+1,n_r_max) [complex,in]
dz (ulm-(llm)+1,n_r_max) [complex,in]
s (ulm-(llm)+1,n_r_max) [complex,in]
ds (ulm-(llm)+1,n_r_max) [complex,in]
geos [real,out]
dpflow [real,out]
dzflow [real,out]
```

Called from output ()

Call to lmas2pt(), rint(), getegeos()

10.15.6 outRot.f90

Quick access

- horizontal_data (gauss (), costheta ()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- precision_mod: This module controls the precision used in MagIC
- output_data (angular_file(), n_angular_file(), srma_file(), sric_file(), rot_file(), tag(), n_srma_file(), n_rot_file(), n_sric_file()): This module contains the parameters for output control
- logic (l_rot_ic(), l_drift(), l_iner(), l_save_out(), l_srma(), l_mag_lf(), l_rot_ma(), l_am(), l_sric(), l_mag()): Module containing the logicals that control the run
- lmloop_data(ulmmag(), llmmag(), llm(), ulm())
- radial_data(n_r_cmb(), n_r_icb())
- parallel_mod: This module contains the blocking information
- integration(rint(), rint_r()): Radial integration functions
- num_param (tscale(), 1scale(), vscale()): Module containing numerical and control parameters
- physical_parameters (kbotv(), ktopv()): Module containing the physical parameters
- truncation (nrp(), minc(), n_phi_max(), n_r_max(), n_r_maxmag()): This module defines the grid points and the truncation
- grenoble (lgrenoble (), bic ()): This module contains all variables for the case of an imposed IC dipole

- blocking (lo_map(), lmstartb(), st_map(), lm2(), lmstopb()): Module containing blocking information
- constants (c_moi_oc(), y11_norm(), third(), y10_norm(), two(), four(), zero(), c_moi_ic(), half(), c_moi_ma(), pi()): module containing constants and parameters used in the code.
- radial_functions (r_icb(), r_cmb(), r(), chebt_oc(), drx()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

• outrot/get_viscous_torque [public]

Subroutines and functions

Parameters

- time [real,in]
- **dt** [real,in]
- ekinic [real,out]
- ekinma [real,out]
- **w** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- **z** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- dz (ulm-(llm)+1, n_r_max) [complex,in]
- **b** (ulmmag-(llmmag)+1,n_r_maxmag) [complex,in]
- omega_ic [real,in]
- omega_ma [real,in]
- lorentz_torque_ic [real,in]
- lorentz_torque_ma [real,in]

Called from output ()

Call to sendvals_to_rank0(), get_angular_moment()

 ${f subroutine outrot/get_viscous_torque_real}\ ({\it viscous_torque}, {\it z10}, {\it dz10}, {\it r})$

Purpose of this subroutine is to calculate the viscous torque on mantle or inner core respectively. NOTE: sign is wrong for torque on mantle!

- viscous_torque [real,out]
- **z10** [real,in] :: z10 coefficient and its radial deriv.
- **dz10** [real,in]
- **r** [real,in] :: radius (ICB or CMB)

```
subroutine outrot/get_viscous_torque_complex (viscous_torque, z10, dz10, r)
          Purpose of this subroutine is to calculate the viscous torque on mantle or inner core respectively.
          NOTE: sign is wrong for torque on mantle!
          Parameters
                • viscous torque [real,out]
                • z10 [complex,in] :: z10 coefficient and its radial deriv.
                • dz10 [complex,in]
                • r [real,in] :: radius (ICB or CMB)
subroutine outrot/get_lorentz_torque (lorentz_torque, nthetastart, sizethetab, br, bp, nr)
          Parameters
                • lorentz_torque [real,inout] :: lorentz_torque for theta(1:n_theta)
                • nthetastart [integer,in] :: first number of theta in block
                • sizethetab [integer,in] :: size of theta bloching
                • br (nrp,*) [real,in] :: array containing
                • bp (nrp,*) [real,in] :: array containing
                • nr [integer,in]
          Called from do iteration thetablocking openmp(), do iteration thetablocking seq(),
              do_iteration_thetablocking_shtns()
subroutine outrot/get_angular_moment (z10, z11, omega_ic, omega_ma, angular_moment_oc, angu-
                                              lar_moment_ic, angular_moment_ma)
          Parameters
                • z10 (n_r_max) [complex,in]
                • z11 (n_r_max) [complex,in]
                • omega_ic [real,in]
                • omega_ma [real,in]
                angular_moment_oc (*) [real,out]
                • angular_moment_ic (*) [real,out]
                • angular_moment_ma (*) [real,out]
          Called from updatez(), write_rot()
          Call to rint r()
subroutine outrot/sendvals_to_rank0 (field, n_r, lm_vals, vals_on_rank0)
```

Parameters

- **field** $(ulm-(llm)+1,n_r_max)$ [complex,in]
- **n_r** [integer,in]
- lm_vals (*) [integer,in]
- vals_on_rank0 (*) [complex,out]

Called from write_rot()

10.15.7 outPar.f90

Quick access

```
Variables dlvcmeanr, dlvmeanr, dlvu2cmeanr, dlvu2meanr, duhmeanr, eparaximeanr, eparmeanr, eperpaximeanr, eperpmeanr, fcondmeanr, fconvmeanr, fkinmeanr, fpoynmeanr, fresmeanr, fviscmeanr, gradt2meanr, mvar, rmmeanr, rolmeanr, rolmeanru2, smeanr, svar, uhmeanr
```

Routines initialize_outpar_mod(), outperppar(), outpar()

Needed modules

- horizontal_data(gauss()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- precision_mod: This module controls the precision used in MagIC
- output_data(tag(), perppar_file(), n_perppar_file()): This module contains the parameters for output control
- useful (cc2real ()): library with several useful subroutines
- fields (ds_rloc(), s_rloc()): This module contains the potential fields and their radial derivatives
- num_param(tscale()): Module containing numerical and control parameters
- legendre_spec_to_grid(lmas2pt())
- integration (rint()): Radial integration functions
- radial_data(nrstartmag(), nrstart(), nrstopmag(), n_r_icb(), nrstop())
- parallel_mod: This module contains the blocking information
- logic (l_mag_nl(), l_save_out(), l_anel(), l_perppar(), l_fluxprofs(), l_viscbccalc()): Module containing the logicals that control the run
- physical_parameters (prmag(), kbots(), ek(), opr(), vischeatfac(), ktops(), ohmlossfac()): Module containing the physical parameters
- radial_functions (dr_fac(), kappa(), chebt_oc(), rho0(), or2(), temp0(), r(), sigma()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)
- blocking (lm2m(), nthetabs(), nfs(), sizethetab()): Module containing blocking information
- constants (four (), osq4pi (), two (), sq4pi (), mass (), half (), pi ()): module containing constants and parameters used in the code.
- truncation (lm_max(), l_max(), l_maxmag(), n_r_max(), n_r_maxmag()): This module defines the grid points and the truncation

Variables

- outpar_mod/fconvmeanr (:) [real,private/allocatable]
- outpar_mod/eparmeanr (:) [real,private/allocatable]
- outpar_mod/dlvcmeanr (:) [real,private/allocatable]

- outpar_mod/dlvu2cmeanr (:) [real,private/allocatable]
- outpar_mod/fcondmeanr (:) [real,private/allocatable]
- outpar_mod/rolmeanru2 (:) [real,private/allocatable]
- outpar_mod/eparaximeanr (:) [real,private/allocatable]
- outpar_mod/fpoynmeanr (:) [real,private/allocatable]
- outpar mod/rolmeanr(:) [real, private/allocatable]
- outpar_mod/fresmeanr (:) [real,private/allocatable]
- outpar_mod/fviscmeanr(:) [real,private/allocatable]
- outpar_mod/duhmeanr (:) [real,private/allocatable]
- outpar_mod/rmmeanr(:) [real,private/allocatable]
- outpar_mod/mvar (:) [real,private/allocatable]
- outpar_mod/smeanr (:) [real,private/allocatable]
- outpar_mod/gradt2meanr(:) [real,private/allocatable]
- outpar_mod/dlvu2meanr (:) [real,private/allocatable]
- outpar_mod/**fkinmeanr** (:) [real,private/allocatable]
- outpar_mod/uhmeanr(:) [real,private/allocatable]
- outpar_mod/svar(:) [real,private/allocatable]
- outpar_mod/eperpaximeanr(:) [real,private/allocatable]
- outpar_mod/dlvmeanr(:) [real,private/allocatable]
- outpar_mod/eperpmeanr (:) [real,private/allocatable]

Subroutines and functions

```
subroutine outpar_mod/initialize_outpar_mod()
```

Called from magic

subroutine outpar_mod/**outpar** (timepassed, timenorm, nlogs, l_stop_time, ekinr, rolru2, dlvr, dlvrc, dlvru2, dlvru2c, uhlmr, duhlmr, gradslmr, fconvlmr, fkinlmr, fvisclmr, fpoynlmr, freslmr, rmr)

- timepassed [real,in]
- timenorm [real,in]
- nlogs [integer,in]
- l_stop_time [logical,in]
- **ekinr** (*n_r_max*) [*real,in*] :: kinetic energy w radius
- **rolru2** (*n_r_max*) [real,in]
- **dlvr** (*n_r_max*) [real,in]
- **dlvrc** (*n_r_max*) [*real,in*]
- **dlvru2** (*n_r_max*) [real,in]

```
dlvru2c (n_r_max) [real,in]
uhlmr (l_max+1,nrstop-(nrstart)+1) [real,in]
duhlmr (l_max+1,nrstop-(nrstart)+1) [real,in]
gradslmr (l_max+1,nrstop-(nrstart)+1) [real,in]
fconvlmr (l_max+1,nrstop-(nrstart)+1) [real,in]
fkinlmr (l_max+1,nrstop-(nrstart)+1) [real,in]
fvisclmr (l_max+1,nrstop-(nrstart)+1) [real,in]
fpoynlmr (l_maxmag+1,nrstopmag-(nrstartmag)+1) [real,in]
freslmr (l_maxmag+1,nrstopmag-(nrstartmag)+1) [real,in]
rmr (n_r_max) [real,out]
Called from output ()
Call to cc2real (), lmas2pt ()
subroutine outpar mod/outperppar (time, timepassed, timenorm, l stop time)
```

subroutine outpar_mod/**outperppar** (*time*, *timepassed*, *timenorm*, *l_stop_time*, *eperplmr*, *eparlmr*, *eperpaxilmr*, *eparaxilmr*)

Parameters

- time [real,in]
- timepassed [real,in]
- timenorm [real,in]
- l_stop_time [logical,in]
- **eperplmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*in*]
- **eparlmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*in*]
- **eperpaxilmr** (*l_max*+1,*nrstop*-(*nrstart*)+1) [*real*,*in*]
- eparaxilmr (l_max+1,nrstop-(nrstart)+1) [real,in]

```
Called from output()
Call to lmas2pt(), rint()
```

10.15.8 power.f90

Quick access

```
Variables buomeanr, curlu2meanr, ohmdissr
Routines initialize_output_power(), get_power()
```

Needed modules

- horizontal_data (dlh ()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- precision_mod: This module controls the precision used in MagIC
- useful (cc22real (), cc2real ()): library with several useful subroutines

- outrot (get viscous torque())
- output_data(tag(), n_power_file(), power_file()): This module contains the parameters for output control
- logic(l_rot_ic(), l_mag(), l_save_out(), l_srma(), l_rot_ma(), l_heat(), l_sric(), l_cond_ic(), l_conv()): Module containing the logicals that control the run
- lmloop_data(ulmmag(), llmmag(), llm(), ulm())
- radial_data(n_r_cmb(), n_r_icb())
- parallel_mod: This module contains the blocking information
- integration(rint_r(), rintic()): Radial integration functions
- num_param (escale (), tscale ()): Module containing numerical and control parameters
- physical_parameters (kbotv(), ktopv(), lffac(), opm()): Module containing the physical parameters
- truncation(n_r_ic_max(), n_r_maxmag(), n_r_ic_maxmag(), n_r_max()): This module defines the grid points and the truncation
- blocking (lo_map(), lmstartb(), st_map(), lmstopb()): Module containing blocking information
- constants (half(), two(), one()): module containing constants and parameters used in the code.
- radial_functions (drx(), o_r_ic2(), r_ic(), r_cmb(), chebt_oc(), or2(), rgrav(), r(), o_r_ic(), dr_fac_ic(), r_icb(), chebt_ic(), lambda()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

- power/ohmdissr(:) [real,private/allocatable]
- power/curlu2meanr (:) [real,private/allocatable]
- power/buomeanr (:) [real,private/allocatable]

Subroutines and functions

```
subroutine power/initialize_output_power()
```

Called from magic

subroutine power/get_power (time, timepassed, timenorm, l_stop_time, omega_ic, omega_ma, lorentz_torque_ic, lorentz_torque_ma, w, ddw, z, dz, s, b, ddb, aj, dj, db ic, ddb ic, aj ic, dj ic, viscdiss, ohmdiss)

This subroutine calculates power and dissipation of the core/mantle system. Energy input into the outer core is by buoyancy and possibly viscous accelarations at the boundaries if the rotation rates of inner core or mantle are prescribed and kept fixed. The losses are due to Ohmic and viscous dissipation. If inner core and mantel are allowed to change their rotation rates due to viscous forces this power is not lost from the system and has to be respected.

The output is written into a file power.TAG.

Parameters

• time [real,in]

- timepassed [real,in]
- **timenorm** [real,in]
- l_stop_time [logical,in]
- omega_ic [real,in]
- omega_ma [real,in]
- lorentz torque ic [real,in]
- lorentz_torque_ma [real,in]
- $\mathbf{w} (ulm (llm) + 1, n_r max) [complex, in]$
- **ddw** (*ulm*-(*llm*)+1,*n_r_max*) [*complex*,*in*]
- **z** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- **dz** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- **s** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- **b** (*ulmmag-(llmmag)+1,n_r_maxmag*) [*complex,in*]
- **ddb** (ulmmag-(llmmag)+1,n_r_maxmag) [complex,in]
- **aj** (ulmmag-(llmmag)+1,n_r_maxmag) [complex,in]
- **dj** (ulmmag-(llmmag)+1,n_r_maxmag) [complex,in]
- **db_ic** (ulmmag-(llmmag)+1,n_r_ic_maxmag) [complex,in]
- **ddb_ic** (*ulmmag-(llmmag)+1,n_r_ic_maxmag*) [*complex,in*]
- aj_ic (ulmmag-(llmmag)+1,n_r_ic_maxmag) [complex,in]
- **dj_ic** (ulmmag-(llmmag)+1,n_r_ic_maxmag) [complex,in]
- viscdiss [real,out]
- **ohmdiss** [real,out]

```
Called from output ()
```

Call to cc2real(), cc22real(), rint_r(), rintic()

10.15.9 spectra.f90

Quick access

```
Variables dt_icb2_ave, dt_icb_ave, e_cmb2_l_ave, e_cmb2_m_ave, e_cmb_l_ave, e_cmb_m_ave, e_p2_l_ave, e_p2_m_ave, e_p1_ave, e_p_m_ave, e_t2_l_ave, e_t2_m_ave, e_t2_l_ave, ek_p2_l_ave, ek_p2_m_ave, ek_p1_ave, ek_p_m_ave, ek_t2_l_ave, ek_t2_m_ave, ek_t1_ave, ek_t2_ave, t_ave, t_icb2_ave, t_icb_ave
```

Routines initialize_spectra(), spectrum_average(), spectrum_temp_average(), spectrum_temp(), spectrum(), get_standard_deviation()

Needed modules

- horizontal_data (dlh ()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- precision_mod: This module controls the precision used in MagIC
- useful (safeclose(), safeopen(), cc22real(), cc2real()): library with several useful subroutines
- output_data (n_kin_spec_file(), n_u2_spec_file(), tag(), nlf(), n_mag_spec_file(), log_file()): This module contains the parameters for output control
- logic(l_heat(), l_cond_ic(), l_mag(), l_anel()): Module containing the logicals that control the run
- lmloop_data(ulmmag(), llmmag(), llm(), ulm())
- radial_data(n_r_cmb(), n_r_icb())
- parallel_mod: This module contains the blocking information
- integration(rint(), rint_r(), rintic()): Radial integration functions
- num_param (escale (), tscale ()): Module containing numerical and control parameters
- physical_parameters (1ffac()): Module containing the physical parameters
- truncation (n_r_ic_max(), l_max(), n_r_ic_maxmag(), minc(), n_r_max(), n_r_maxmag()): This module defines the grid points and the truncation
- blocking (lo_map(), st_map()): Module containing blocking information
- constants (one (), four (), vol_oc(), pi(), half()): module containing constants and parameters used in the code.
- radial_functions(drx(), orho1(), orho2(), chebt_oc(), dr_fac(), or2(), r_ic(), r(), dr_fac_ic(), r_icb(), chebt_ic()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

- spectra/e_cmb2_m_ave (:) [real,private/allocatable]
- spectra/ek_p_l_ave(:) [real,private/allocatable]
- spectra/e_t2_1_ave (:) [real,private/allocatable]
- spectra/ek_t_l_ave(:) [real,private/allocatable]
- spectra/t_icb2_ave (:) [real,private/allocatable]
- spectra/**e_p_l_ave** (:) [real,private/allocatable]
- spectra/e_cmb2_1_ave (:) [real,private/allocatable]
- spectra/e_cmb_1_ave (:) [real,private/allocatable]
- spectra/ek_p_m_ave(:) [real,private/allocatable]
- spectra/e_p2_1_ave(:) [real,private/allocatable]
- spectra/t_icb_ave(:) [real,private/allocatable]
- spectra/e_p_m_ave (:) [real,private/allocatable]

- spectra/dt_icb2_ave (:) [real,private/allocatable]
- spectra/e_t_m_ave (:) [real,private/allocatable]
- spectra/t_ave(:) [real,private/allocatable]
- spectra/e_p2_m_ave(:) [real,private/allocatable]
- spectra/ek_p2_m_ave(:) [real,private/allocatable]
- spectra/e_t2_m_ave(:) [real,private/allocatable]
- spectra/dt_icb_ave(:) [real,private/allocatable]
- spectra/ek_t_m_ave(:) [real,private/allocatable]
- spectra/t2_ave(:) [real,private/allocatable]
- spectra/ek_p2_1_ave (:) [real,private/allocatable]
- spectra/ek_t2_m_ave(:) [real,private/allocatable]
- spectra/e_t_l_ave (:) [real,private/allocatable]
- spectra/e_cmb_m_ave(:) [real,private/allocatable]
- spectra/ek_t2_1_ave (:) [real,private/allocatable]

Subroutines and functions

```
subroutine spectra/initialize_spectra()
```

Called from magic

Parameters

- **n_time_ave** [integer,in]
- l_stop_time [logical,in]
- time_passed [real,in]
- time_norm [real,in]
- **b** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- $aj (ulm-(llm)+1,n_r_max) [complex,in]$
- **db** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [complex,in]
- **bv** [character,in]

Called from output ()

Call to cc2real(), rint_r(), get_standard_deviation(), safeopen(),
 safeclose()

function spectra/**get_standard_deviation** (*dt_norm*, *mean*, *sum_of_squares*)

- dt_norm [real,in]
- mean [real,in]
- sum_of_squares [real,in]

```
Return stdev [real]
          Called from spectrum_average(), spectrum_temp_average()
subroutine spectra/spectrum(time, n_spec, w, dw, z, b, db, aj, b_ic, db_ic, aj_ic)
          calculates magnetic energy = 1/2 Integral(B^2 dV) integration in theta,phi by summation over har-
          monic coeffs. integration in r by Chebycheff integrals
          Output: enbp: Total poloidal enbt: Total toroidal apome: Axisym. poloidal atome: Axisym. toroidal
          Parameters
                • time [real,in]
                • n_spec [integer,in] :: number of spectrum/call, file
                • w (ulm-(llm)+1,n_r_max) [complex,in]
                • dw (ulm-(llm)+1,n_r_max) [complex,in]
                • z (ulm-(llm)+1,n_r_max) [complex,in]
                • b (ulmmag-(llmmag)+1,n_r_maxmag) [complex,in]
                • db (ulmmag-(llmmag)+1,n_r_maxmag) [complex,in]
                • aj (ulmmag-(llmmag)+1,n_r_maxmag) [complex,in]
                • b ic (ulmmag-(llmmag)+1,n r ic maxmag) [complex,in]
                • db_ic (ulmmag-(llmmag)+1,n_r_ic_maxmag) [complex,in]
                • aj_ic (ulmmag-(llmmag)+1,n_r_ic_maxmag) [complex,in]
          Called from fields_average(), output()
          Call to cc2real(), rint r(), cc22real(), rintic()
subroutine spectra/spectrum_temp_average (n_time_ave, l_stop_time, time_passed, time_norm, s,
                                                  ds)
          Parameters
                • n_time_ave [integer,in]
                • l_stop_time [logical,in]
                • time passed [real,in]
                • time norm [real,in]
                • s (ulm-(llm)+1,n_r_max) [complex,in]
                • ds (ulm-(llm)+1,n_r_max) [complex,in]
          Called from output ()
          Call to cc2real(),
                                rint(), get_standard_deviation(), safeopen(),
```

subroutine spectra/**spectrum_temp** (*time*, *n_spec*, *s*, *ds*)

calculates spectra of temperature and composition

Parameters

• time [real,in]

safeclose()

- **n_spec** [integer,in] :: number of spectrum/call, file
- **s** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- **ds** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]

Called from fields_average(), output()

Call to cc2real(), rint()

10.16 IO: graphic files, movie files, coeff files and potential files

10.16.1 out_graph_file.f90

Quick access

```
Routines graphout_ic(), graph_write_mpi(), graph_write(), graphout_header(), graphout_mpi_header(), graphout_mpi(), graphout()
```

Needed modules

- horizontal_data(dplm(), plm(), dlh(), theta_ord(), o_sin_theta()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- precision_mod: This module controls the precision used in MagIC
- fft: This file contains the subroutines called by fftJW: fft99a, fft99b, wpass2, wpass3, wpass4 and wpass5
- output_data(n_graph_file(), runid(), graph_mpi_fh()): This module contains the parameters for output control
- logic (l_pressgraph(), l_cond_ic(), l_mag()): Module containing the logicals that control the run
- legendre_spec_to_grid(legtf())
- radial_data(n_r_icb())
- parallel_mod: This module contains the blocking information
- num_param (vscale()): Module containing numerical and control parameters
- physical_parameters (pr(), prmag(), ek(), sigma_ratio(), radratio(), ra()): Module containing the physical parameters
- truncation (n_r_ic_max(), lm_maxmag(), nrp(), n_r_ic_maxmag(), minc(), n_phi_max(), l_max(), n_r_max(), lm_max(), n_theta_max(), n_r_maxmag(), n_phi_tot()): This module defines the grid points and the truncation
- leg_helper_mod(legprep_ic())
- blocking (nthetabs (), nfs (), sizethetab ()): Module containing blocking information
- radial_functions (orho1(), r_cmb(), o_r_ic2(), or2(), or1(), r_ic(), r(), o_r_ic(), r_icb()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

Subroutines and functions

```
subroutine graphout_mod/graphout (time, n_r, vr, vt, vp, br, bt, bp, sr, prer, n_theta_start, n_theta_block_size, lgraphheader)
```

Output of components of velocity, magnetic field vector and entropy for graphics.

- •n_r: (input) for $n_r = 0$ a header is written. for $n_r > 0$ values at radial level n_r are written
- •vr...sr: (input) arrays with grid-point values
- •n_theta_start : (input) values are written for theta-points : n_theta_start <= n_theta
 <= n_theta_start-1+n_theta_block</pre>

Parameters

- time [real,in]
- **n_r** [integer,in] :: radial grod point no.
- **vr** (*nrp*,*) [real,in]
- **vt** (*nrp*,*) [real,in]
- **vp** (*nrp*,*) [real,in]
- **br** (*nrp*,*) [*real*,*in*]
- **bt** (*nrp*,*) [*real*,*in*]
- **bp** (*nrp*,*) [*real*,*in*]
- **sr** (*nrp*,*) [*real*,*in*]
- **prer** (*nrp*,*) [real,in]
- n_theta_start [integer,in] :: start theta no.
- n_theta_block_size [integer,in] :: size of theta block
- **lgraphheader** [logical,inout]

Called from fields_average()

Call to graph_write()

subroutine graphout_mod/graphout_header (time)

Parameters time [real,in]

subroutine graphout_mod/**graphout_mpi** (*time*, *n_r*, *vr*, *vt*, *vp*, *br*, *bt*, *bp*, *sr*, *prer*, *n_theta_start*, *n_theta_block_size*, *lgraphheader*)

MPI version of the graphOut subroutine (use of MPI_IO)

- **time** [real,in]
- **n_r** [integer,in] :: radial grod point no.
- **vr** (*nrp*,*) [real,in]
- **vt** (*nrp*,*) [real,in]

```
• vp (nrp,*) [real,in]
```

- **br** (*nrp*,*) [*real*,*in*]
- **bt** (*nrp*,*) [*real*,*in*]
- **bp** (*nrp*,*) [real,in]
- **sr** (*nrp*,*) [real,in]
- **prer** (*nrp*,*) [real,in]
- n_theta_start [integer,in] :: start theta no.
- n_theta_block_size [integer,in] :: size of theta block
- lgraphheader [logical,inout]

```
Called from do_iteration_thetablocking_openmp(), do_iteration_thetablocking_seq(),
    do_iteration_thetablocking_shtns()
```

```
Call to graph_write_mpi()
```

subroutine graphout_mod/**graphout_mpi_header** (time, n_r, n_theta_start, n_theta_block_size)

Writes the header (MPI version)

Parameters

- time [real,in]
- **n r** [integer,in] :: radial grod point no.
- n_theta_start [integer,in] :: start theta no.
- n_theta_block_size [integer,in] :: size of theta block

Called from radialloopg()

```
subroutine graphout_mod/graphout_ic (b_ic, db_ic, ddb_ic, aj_ic, dj_ic, b)
```

Purpose of this subroutine is to write inner core magnetic field onto graphic output file. If the inner core is insulating (l_cond_ic=false) the potential field is calculated from the outer core field at r=r_cmb. This version assumes that the fields are fully local on the rank which is calling this routine (usually rank 0).

Parameters

- **b_ic** (lm_maxmag,n_r_ic_maxmag) [complex,in]
- **db_ic** (lm_maxmag,n_r_ic_maxmag) [complex,in]
- **ddb_ic** (lm_maxmag,n_r_ic_maxmag) [complex,in]
- aj_ic (lm_maxmag,n_r_ic_maxmag) [complex,in]
- **dj_ic** (lm_maxmag,n_r_ic_maxmag) [complex,in]
- **b** (lm_maxmag,n_r_maxmag) [complex,in]

```
Called from fields_average(), output()
```

Call to legprep_ic(), legtf(), fft_thetab(), graph_write_mpi()

subroutine graphout_mod/graph_write (n_phis, n_thetas, dummy, n_graph_file)

This subroutine writes the data for one theta-band (stored in 'dummy'). Version May, 5, 2000.

Parameters

- **n_phis** [integer,in] :: number of logitudes to be printed
- n_thetas [integer,in] :: number of first colatitude value
- **dummy** (n_phi_max,*) [real,in] :: data
- n graph file [integer,in] :: output unit

Called from graphout ()

subroutine graphout_mod/graph_write_mpi (n_phis, n_thetas, dummy, graph_mpi_fh)

Parameters

- **n_phis** [integer,in] :: number of logitudes to be printed
- **n_thetas** [integer,in] :: number of first colatitude value
- **dummy** (n_phi_max,*) [real,in] :: data
- graph mpi fh [integer,in]:: mpi handle of the mpi file

Called from graphout_mpi(), graphout_ic()

10.16.2 movie.f90

Quick access

Variables n_frame_work, n_md, n_movies, n_movies_max, n_movie_fields_max, licfield, lstoremov, n_movie_const, n_movie_fields, n_movie_fields_ic, n_movie_file, n_movie_surface, n_movie_type, n_movie_field_start, n_movie_field_stop, n_movie_field_type, moviedipcolat, moviediplon, moviedipstrength, moviedipstrengthgeo, frames, movie_file, movie, t_movies, movie_const

Routines get_movie_type(), finalize_movie_data(), initialize_movie_data(), movie_gather_frames_to_rank0()

Needed modules

- horizontal_data(theta(), phi()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- precision_mod: This module controls the precision used in MagIC
- useful (logwrite()): library with several useful subroutines
- output_data(n_log_file(), log_file(), tag()): This module contains the parameters for output control
- radial_data(n_r_cmb(), nrstart(), n_r_icb(), nrstop())
- parallel_mod: This module contains the blocking information
- logic (l_movie_oc(), l_dtbmovie(), l_movie_ic(), l_store_frame(), l_save_out(), l_htmovie(), l_movie()): Module containing the logicals that control the run
- charmanip (length_to_blank(), delete_string(), capitalize(), str2dble()): This module contains several useful routines to manipule character strings

- truncation (n_r_ic_max(), lmoviemem(), ldtbmem(), minc(), n_phi_max(), n_r_tot(), n_r_max(), n_theta_max()): This module defines the grid points and the truncation
- constants (pi(), one()): module containing constants and parameters used in the code.
- radial_functions (r_cmb(), r_icb(), r(), r_ic()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

- movie_data/n_frame_work [integer, public]
- movie_data/n_movies [integer,public]
- movie_data/n_movie_field_stop (6,30) [integer,public]
- movie_data/n_movie_surface (30) [integer, public]
- movie_data/n_movie_field_start (6,30) [integer,public]
- movie data/movie const (30) [real, public]
- movie_data/n_movies_max [integer,parameter=30/public]
 Max no. of different movies
- movie_data/n_movie_fields_max [integer,parameter=6/public]
 Max no. of fields per movie
- movie_data/n_md [integer, public]
- movie_data/frames (:) [real, allocatable/public]
- movie_data/moviediplon [real,public]
- movie_data/n_movie_fields_ic (30) [integer, public]
- movie_data/moviedipstrengthgeo [real,public]
- movie_data/n_movie_field_type (6,30) [integer,public]
- movie_data/licfield(30)[logical,public]
- movie_data/movie (30) [character,public]
 Only for input
- movie_data/n_movie_file (30) [integer, public]
- movie_data/n_movie_fields (30) [integer, public]
- movie_data/t_movies (10000) [real, public]
- movie_data/n_movie_const (30) [integer, public]
- movie_data/moviedipcolat [real,public]
- movie_data/movie_file (30) [character,public]
- movie_data/lstoremov (30) [logical,public]
- movie_data/moviedipstrength [real,public]
- movie_data/n_movie_type (30) [integer,public]

Subroutines and functions

```
subroutine movie_data/initialize_movie_data()
```

This routine is called during the initialization of the code. It allows to:

- •Estimate the required memory imprint and allocate the arrays accordingly
- •Open the requested movie files

```
Called from magic
```

```
Call to get_movie_type(), logwrite()
```

subroutine movie_data/finalize_movie_data()

Close movie files

Called from magic

```
subroutine movie_data/get_movie_type()
```

Purpose of this subroutine is to identify the different movie types from the input string movies(*). Note that generally blanks are not interpreted and that the interpretation is not case sensitive. In general two informations are needed:

- 1.A word FIELDINFO that identifies the field to be plotted (e.g. Br for radial magnetic field, see list below) Possible keywords are (optional text in brackets):
 - •B r[adial]: radial magnetic field
 - •B t[heta]: theta component
 - •B p[hi]: azimuthal component
 - •B h[orizontal] : the two horizontal components
 - •B a[ll]: all three components
 - •FIELDLINE[S]: field lines of axisymmetric or FL poloidal field for phi=constant
 - •AX[ISYMMETRIC] B or AB: axisymmetric phi component of the magnetic field for phi=constant
 - •V r[adial]: radial velocity field
 - •V t[heta]: theta component
 - •V p[hi]: azimuthal component
 - •V h[orizontal] : the two horizontal components
 - •V a[ll]: all three components
 - $\bullet STREAMLINE[S]: field\ lines\ of\ axisymmetric\ or\ SL: poloidal\ field\ for\ phi=constant$
 - •AX[ISYMMETRIC] V or AV : axisymmetric phi component of the velocity field for phi=constant
 - •V z : z component of velocity at equator and z component of the vorticity at the equator (closest point to equator)
 - •Vo z : z-component of vorticity
 - •Vo r : r-component of vorticity
 - •Vo p : phi-component of vorticity
 - •T[emperature]: sic
 - •AX[ISYMMETRIC] T or AT: axisymmetric T field for phi=constant

- •Heat t[ransport]: radial derivative of T
- •FL Pro: axisymmetric field line stretching
- •FL Adv: axisymmetric field line advection
- •FL Dif: axisymmetric field line diffusion
- •AB Pro: axisymmetric (tor.) Bphi production
- •AB Dif: axisymmetric (tor.) Bphi diffusion
- •Br Pro: Br production
- •Br Adv : Br advection
- •Br Dif: Br diffusion
- •Jr: Jr production
- •Jr Pro: Jr production + omega effects
- •Jr Adv: Jr advection
- •Jr Dif: Jr diffusion
- •Bz Pol : poloidal Bz
- •Bz Pol Pro: poloidal Bz production
- •Bz Pol Adv: poloidal Bz advection
- •Bz Pol Dif: poloidal Bz diffusion
- •Jz Tor: poloidal Jz
- •Jz Tor Pro: poloidal Jz production
- •Jz Tor Adv: poloidal Jz advection
- •Jz Tor Dif: poloidal Jz diffusion
- •Bp Tor: toriodal Bphi
- •Bp Tor Pro: toriodal Bphi production
- •Bp Tor Adv: toriodal Bphi advection
- •Bp Tor Dif: toriodal Bphi diffusion
- •HEL[ICITY]: sic
- •AX[ISYMMETRIC HELICITY] or AHEL: axisymmetric helicity
- •Bt Tor: toroidal Btheta
- •Pot Tor: toroidal Potential
- •Pol Fieldlines: toroidal Potential
- •Br Shear: azimuthal Shear of Br
- •Lorentz[force] : Lorentz force (only phi component)
- •Br Inv: Inverse field apperance at CMB
- 2.A second information that identifies the coordinate to be kept constant (surface). E.g. r=number for surface r=constant with number given in units of the total core radius or theta/phi=number with number given in degrees Four keywords are also possible:
 - •CMB: core mantle boundary

- •EQ[UATOR] : equatorial plane
- •SUR[FACE] : Earth surface (only magnetic field)
- •3[D]: 3D field throughout the OC [and IC for B]

On output the necessary information is coded into integers and is used in this form by further subroutines:

- •n movies = total number of movies
- •n type(n movie) = movie type:
 - -= 1 : Radial magnetic field
 - -= 2: Theta component of magnetic field
 - -= 3 : Azimuthal magnetic field
 - -= 4 : Horizontal magnetic field
 - -= 5 : Total magnetic field (all compnents)
 - -= 8 : Axisymmetric azimuthal magnetic field (phi=constant)
 - -= 9 : 3d magnetic field
 - -= 11 : Radial velocity field
 - -= 12: Theta component of velocity field
 - -= 13 : Azimuthal velocity field
 - -= 14: Horizontal velocity field
 - -= 15 : Total velocity field (all compnents)
 - -= 17 : Scalar field whose contours are the stream lines of the axisymm. poloidal velocity field (phi=constant)
 - -= 18 : Axisymmetric azimuthal velocity field (phi=constant)
 - -= 19: 3d velocity field
 - -= 20 : z component of vorticity
 - -= 21 : Temperature field
 - -= 22 : radial conv. heat transport
 - **-=** 23 : helicity
 - -= 24 : axisymmetric helicity
 - -= 25 : phi component of vorticity
 - -= 26 : radial component of vorticity
 - -= 28 : axisymmetric Temperature field for phi=const.
 - -= 29 : 3d temperature field
 - -=30: Scalar field whose contours are the fieldlines of the axisymm. poloidal magnetic field (phi=constant)
 - -= 31 : field line production
 - -= 32 : field line advection
 - -= 33 : field line diffusion
 - -= 40 : Axisymmetric azimuthal magnetic field (phi=constant)

- -= 41 : Axis. Bphi production + omega eff.
- -= 42 : Axis. Bphi advection
- -= 43 : Axis. Bphi diffusion
- -= 44 : Axis. Bphi str.,dyn.,omega,diff.
- -= 50 : Bz
- -= 51 : Bz production
- -= 52 : Bz advection
- -= 53 : Bz diffusion
- -= 60 : toroidal Bphi
- -= 61 : toroidal Bphi production + omega eff.
- -= 62 : toroidal Bphi advection
- -= 63 : toroidal Bphi diffusion
- -= 71 : Br production
- -=72: Br advection
- -= 73 : Br diffusion
- **−=** 80 : Jr
- -= 81 : Jr production
- -= 82 : Jr advection
- -= 83 : Jr diffusion
- -= 90 : poloidal Jz pol.
- -= 91 : poloidal Jz pol. production
- -= 92 : poloidal Jz advection
- -= 93 : poloidal Jz diffusion
- -= 94 : z component of velovity
- -= 95 : toroidal Btheta
- -= 96: toroidal Potential
- -= 97 : Function for Poloidal Fieldlines
- -= 98 : azimuthal shear of Br
- -= 99 : phi component of Lorentz force
- -=101: Stress fields
- -=102 : Force fields
- -=103: Br Inverse appearence at CMB
- -=110: radial heat flow
- -=111: Vz and Vorz north/south correlation
- -=112: axisymm dtB tersm for Br and Bp
- -=113: axisymm dSdr

-=114: Cylindrically radial magnetic field •n_movie_surface(n_movie) = defines surface •n_movie_surface = 1 : r=constant: -2: theta=constant -3: phi=constant -- 1: r=constant, Earth surface **-**0 : 3d volume •n_movie_fields(n_movie) = no. of fields for outer core •n_movie_fields_ic(n_movie) = no. of fields for inner core •n_movie_field_type(n_field,n_movie) = defines field •n_movie_field_type: -= 1 : radial magnetic field -= 2 : theta comp. of the magnetic field -= 3 : azimuthal magnetic field -= 4 : radial velocity field -= 5: theta comp. of the velocity field -= 6: azimuthal velocity field **−=** 7 : temperature field -= 8 : scalar field for field lines -= 9: axisymm. toroidal mag. field -=10: scalar field for stream lines -=11 : axisymm. v_phi -=12: axisymm. T -=13 : z-comp. of poloidal Bz −=14 : z-comp. of poloidal Jz -=15 : z-comp. of velocity −=16 : z-comp. of vorticity -=17 : radial derivative of T * vr -=18: helicity -=19: axisymmetric helicity -=20: axisymm field-line production

-=21: axisymm field-line advection
-=22: axisymm field-line diffusion
-=23: axisymm Bphi production
-=24: axisymm Bphi omega effect
-=25: axisymm Bphi advection

- -=26: axisymm Bphi diffusion
- -=27: Br production
- -=28: Br advection
- -=29: Br diffusion
- -=30 : Jr
- -=31: Jr production
- -=32 : Jr omega effect
- -=33: Jr advection
- -=34 : Jr diffusion
- -=35 : poloidal Bz production
- -=36: poloidal Bz advection
- -=37 : poloidal Bz diffusion
- -=38: poloidal Jz production
- -=39 : poloidal Jz omega effect
- -=40: poloidal Jz advection
- -=41: poloidal Jz diffusion
- -=42: toroidal Bp
- -=43: toroidal Bp production
- -=44: toroidal Bp omega effect
- -=45: toroidal Bp advection
- -=46: toroidal Bp diffusion
- -=47 : phi-comp. of vorticity
- =48 : r-comp. of vorticity
- -=49: toroidal Bp omega effect
- -=50: toroidal Bt
- -=51: toroidal Potential
- -=52: poloidal Fieldlines in theta=const
- -=53: Br dr (vp/(r sin(theta))
- -=54 : phi Lorentz force
- -=61 : AS phi reynolds stress force
- -=62: AS phi advective stress force
- -=63: AS phi viscous stress force
- -=64 : AS phi Lorentz force
- -=66: time derivative of axisym. v phi
- -=67: relative strength of axisym. v phi
- -=81: Br inverse appearence at CMB

```
-=91 : radial derivative of T
             -=92 : Vz north/south correlation
             -=93 : Vorz north/south correlation
             =94: Hel north/south correlation
             -=101: AS poloidal Br production
             -=102: AS poloidal Br dynamo term
             -=103: AS poloidal Br diffusion
             -=104: AS toroidal Bp production
             -=105: AS toroidal Bp dynamo term
             -=106: AS toroidal Bp omega effect
             -=107: AS toroidal Bp diffusion
             -=108: Bs
         •n movie field start(n field,n movie) = defines where first element of a field is stored in frames (*)
         •n movie field stop(n field,n movie) = defines where last element of a field is stored in frames (*)
         •The subroutine also defines appropriate file names for the movie files. These generally have the form
          TYPE_mov.TAG
          Called from initialize movie data()
          Call to delete_string(), capitalize(), length_to_blank(), str2dble()
subroutine movie_data/movie_gather_frames_to_rank0()
     MPI communicators for movie files
          Called from output ()
10.16.3 out movie file.f90
```

Quick access

```
Routines get_b_surface(), get_fl(), write_movie_frame(), store_movie_frame(), store_fields_sur(), get_sl(), store_fields_p(), store_fields_sur()
```

Needed modules

- horizontal_data (dplm(), phi(), dlh(), d_l(), theta_ord(), osn1(), o_sin_theta_e2(), o_sin_theta(), dphi(), plm(), n_theta_cal2ord(), sintheta(), costheta()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- movie_data (movie_const(), n_movie_fields_ic(), n_movies(), n_movie_field_type(), n_movie_surface(), n_movie_file(), n_movie_field_stop(), n_movie_field_start(), n_movie_fields(), t_movies(), moviedipstrengthgeo(), n_movie_const(), moviedipcolat(), movie_file(), frames(), lstoremov(), moviedipstrength(), moviediplon(), n_movie_type())

- output_data (runid()): This module contains the parameters for output control
- fields (w_rloc(), b_ic(), b_rloc(), b()): This module contains the potential fields and their radial derivatives
- fft (fft_thetab()): This file contains the subroutines called by fftJW: fft99a, fft99b, wpass2, wpass3, wpass4 and wpass5
- out_dtb_frame(write_dtb_frame())
- radial_data(n_r_icb())
- precision_mod: This module controls the precision used in MagIC
- constants (zero(), two(), one()): module containing constants and parameters used in the code.
- num_param (tscale(), vscale()): Module containing numerical and control parameters
- physical_parameters (pr(), prmag(), lffac(), ek(), radratio(), ra()): Module containing the physical parameters
- truncation (n_r_ic_max(), l_max(), n_r_ic_maxmag(), minc(), n_phi_max(), lm_maxmag(), n_r_max(), n_m_max(), lm_max(), nrp(), n_r_maxmag(), n_theta_max()): This module defines the grid points and the truncation
- blocking (1m2(), 1m21(), nfs()): Module containing blocking information
- logic(l_save_out(), l_cond_ic()): Module containing the logicals that control the run
- radial_functions (orho1(), orho2(), r_cmb(), or4(), or2(), or3(), or1(), r_ic(), beta(), r(), r_surface()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

Subroutines and functions

subroutine out_movie/**store_movie_frame** (*n_r*, *vr*, *vt*, *vp*, *br*, *bt*, *bp*, *sr*, *drsr*, *dvrdp*, *dvpdr*, *dvtdr*, *dvrdt*, *cvr*, *cbr*, *cbt*, *n_theta_start*, *n_theta_block*, *bcmb*)

Controls output of movie frames. Usually called from radialLoop.

- **n_r** [integer,in] :: radial grid point no.
- **vr** (*nrp*,*) [real,in]
- **vt** (*nrp*,*) [real,in]
- **vp** (*nrp*,*) [real,in]
- **br** (*nrp*,*) [real,in]
- **bt** (*nrp*,*) [*real*,*in*]
- **bp** (*nrp*,*) [real,in]
- **sr** (*nrp*,*) [real,in]
- **drsr** (*nrp*,*) [*real*,*in*]
- **dvrdp** (*nrp*,*) [*real*,*in*]
- **dvpdr** (*nrp*,*) [*real*,*in*]

```
• dvtdr (nrp,*) [real,in]
                • dvrdt (nrp,*) [real,in]
                • cvr (nrp,*) [real,in]
                • cbr (nrp,*) [real,in]
                • cbt (nrp,*) [real,in]
                • n_theta_start [integer,in] :: start theta no.
                • n_theta_block [integer,in] :: size of theta block
                • bcmb (lm_max) [complex, in]
          Called from do_iteration_thetablocking_openmp(), do_iteration_thetablocking_seq(),
              do_iteration_thetablocking_shtns()
          Call to store_fields_sur(),
                                               store_fields_3d(), store_fields_r(),
              store_fields_t(), store_fields_p()
subroutine out_movie/write_movie_frame (n_frame, time, b, db, aj, dj, b_ic, db_ic, aj_ic, dj_ic,
                                               omega_ic, omega_ma)
          Writes different movie frames into respective output files. Called from rank 0 with full arrays in
          standard LM order.
          Parameters
                • n frame [integer,in]
```

- time [real,in]
- **b** (lm_maxmag,n_r_maxmag) [complex,in]
- **db** (*lm_maxmag*,*n_r_maxmag*) [*complex*,*in*]
- **aj** (lm_maxmag,n_r_maxmag) [complex,in]
- **dj** (lm_maxmag,n_r_maxmag) [complex,in]
- **b_ic** (lm_maxmag,n_r_ic_maxmag) [complex,in]
- **db_ic** (lm_maxmag,n_r_ic_maxmag) [complex,in]
- aj_ic (lm_maxmag,n_r_ic_maxmag) [complex,in]
- **dj_ic** (lm_maxmag,n_r_ic_maxmag) [complex,in]
- omega ic [real,in]
- omega_ma [real,in]

Called from output ()

Call to write_dtb_frame()

subroutine out_movie/store_fields_sur(n_store_last, n_field_type, n_theta_start, n_theta_block, bcmb)

Purpose of this subroutine is to store movie frames for surfaces r=const. into array frame(,)

- **n store last** [integer,in] :: Start position for storing -1
- **n_field_type** [integer,in] :: Defines field type

```
• n_theta_start [integer,in] :: Beginning of theta block
```

- n_theta_block [integer,in] :: Size of theta block
- bcmb (lm_max) [complex,in]

```
Called from store_movie_frame()
```

Call to get_b_surface()

subroutine out_movie/**store_fields_r** (*vr*, *vt*, *vp*, *br*, *bt*, *bp*, *sr*, *drsr*, *dvrdp*, *dvpdr*, *dvtdr*, *dvrdt*, *cvr*, n_r , n_s tore_last, n_s teld_type, n_s theta_start, n_s theta_block)

Purpose of this subroutine is to store movie frames for surfaces r=const. into array frame(,)

Parameters

- **vr** (*nrp*,*) [real,in]
- **vt** (*nrp*,*) [real,in]
- **vp** (*nrp*,*) [real,in]
- **br** (*nrp*,*) [*real*,*in*]
- **bt** (*nrp*,*) [*real*,*in*]
- **bp** (*nrp*,*) [*real*,*in*]
- **sr** (*nrp*,*) [*real*,*in*]
- **drsr** (*nrp*,*) [*real*,*in*]
- **dvrdp** (*nrp*,*) [*real*,*in*]
- **dvpdr** (*nrp*,*) [*real*,*in*]
- **dvtdr** (*nrp*,*) [real,in]
- **dvrdt** (nrp,*) [real,in]
- **cvr** (*nrp*,*) [real,in]
- **n_r** [integer,in]
- **n_store_last** [integer,in] :: Start position in frame(*)-1
- **n_field_type** [integer,in] :: Defines field type
- n_theta_start [integer,in] :: Beginning of theta block
- n_theta_block [integer,in] :: Size of theta block

Called from store_movie_frame()

Purpose of this subroutine is to store movie frames for surfaces phi=const. into array frames(,)

- **vr** (*nrp*,*) [real,in]
- **vt** (*nrp*,*) [real,in]
- **vp** (*nrp*,*) [real,in]

- **br** (*nrp*,*) [real,in] • **bp** (*nrp*,*) [*real*,*in*] • **bt** (*nrp*,*) [*real*,*in*] • **sr** (*nrp*,*) [*real*,*in*] • **drsr** (*nrp*,*) [*real,in*] • **dvrdp** (*nrp*,*) [*real*,*in*] • **dvpdr** (*nrp*,*) [*real*,*in*] • **dvtdr** (*nrp*,*) [real,in] • **dvrdt** (*nrp*,*) [*real*,*in*] • **cvr** (*nrp*,*) [real,in] • **cbr** (*nrp*,*) [*real*,*in*] • **cbt** (*nrp*,*) [real,in] • **n_r** [integer,in] :: No. of radial point

 - **n_store_last** [integer,in] :: Start position in frame(*)-1
 - **n_field_type** [integer,in] :: Defines field type
 - n phi const [integer,in] :: No. of surface phi
 - n_field_size [integer,in] :: Size of field
 - **n_theta_start** [integer,in] :: Beginning of theta block
 - n_theta_block [integer,in] :: Size of theta block

```
Called from store movie frame()
Call to get_fl(), get_sl()
```

subroutine out_movie/store_fields_t (vr, vt, vp, br, bt, bp, sr, drsr, dvrdp, dvpdr, dvtdr, dvrdt, cvr, cbt, n_r, n_store_last, n_field_type, n_theta_const, n_theta)

Purpose of this subroutine is to store movie frames for surfaces r=const. into array frame(,)

- **vr** (*nrp*,*) [real,in]
- **vt** (*nrp*,*) [real,in]
- **vp** (*nrp*,*) [real,in]
- **br** (*nrp*,*) [*real*,*in*]
- **bt** (*nrp*,*) [*real*,*in*]
- **bp** (*nrp*,*) [*real*,*in*]
- **sr** (*nrp*,*) [*real*,*in*]
- **drsr** (*nrp*,*) [real,in]
- **dvrdp** (*nrp*,*) [*real,in*]
- **dvpdr** (*nrp*,*) [*real*,*in*]
- **dvtdr** (*nrp*,*) [*real*,*in*]

```
• dvrdt (nrp,*) [real,in]
```

- **cvr** (*nrp*,*) [real,in]
- **cbt** (*nrp*,*) [*real*,*in*]
- n_r [integer,in] :: No. of radial grid point
- **n_store_last** [integer,in] :: Position in frame(*)-1
- n_field_type [integer,in] :: Defines field
- n_theta_const [integer,in] :: No. of theta to be stored
- **n_theta** [integer,in] :: No. of theta in block

Called from store_movie_frame()

Purpose of this subroutine is to store movie frames for surfaces r=const. into array frame(,)

Parameters

- **vr** (*nrp*,*) [real,in]
- **vt** (*nrp*,*) [real,in]
- **vp** (*nrp*,*) [real,in]
- **br** (*nrp*,*) [*real*,*in*]
- **bt** (*nrp*,*) [real,in]
- **bp** (*nrp*,*) [*real*,*in*]
- **sr** (*nrp*,*) [*real*,*in*]
- **drsr** (*nrp*,*) [real,in]
- **dvrdp** (*nrp*,*) [*real,in*]
- **dvpdr** (*nrp*,*) [*real*,*in*]
- **dvtdr** (*nrp*,*) [real,in]
- **dvrdt** (*nrp*,*) [*real*,*in*]
- **cvr** (*nrp*,*) [real,in]
- **cbr** (*nrp*,*) [*real*,*in*]
- **cbt** (*nrp*,*) [*real*,*in*]
- **n_r** [integer,in] :: No. of radial grid point
- **n_store_last** [integer,in] :: Position in frame(*)-1
- n_field_type [integer,in] :: Defines field
- n_theta_start [integer,in] :: No. of first theta to block
- n_theta_block [integer,in] :: Size of theta block

Called from store_movie_frame()

subroutine out_movie/get_sl (sl, n_r, n_theta_start, n_theta_block)

Return field sl whose contourlines are the stream lines of the axisymmetric poloidal velocity field. sl(r,theta)=d theta v(r,theta,m=0)/r

Parameters

- sl (*) [real,out] :: Field for field lines
- **n_r** [integer,in] :: No. of radial grid point
- n theta start [integer, in] :: No. of theta to start with
- n_theta_block [integer,in] :: Size of theta block

Called from store_fields_p()

```
subroutine out_movie/get_fl (fl, n_r, n_theta_start, n_theta_block, l_ic)
```

Return field fl whose contourlines are the fields lines of the axisymmetric poloidal mangetic field.

```
fl(r,theta)=d_theta b(r,theta,m=0)/r
```

Parameters

- fl (*) [real,out] :: Field for field lines
- n_r [integer,in] :: No. of radial grid point
- n_theta_start [integer,in] :: No. of theta to start with
- n theta block [integer,in] :: Size of theta block
- 1 ic [logical,in] :: =true if inner core field

Called from store_fields_p(), store_movie_frame_ic()

```
subroutine out_movie/get_b_surface (b_r, b_t, b_p, bcmb, n_theta_start, n_theta_block)
```

Upward continuation of laplacian field to Earths surface. Field is given by poloidal harmonic coefficients b at CMB. Spherical harmonic transforms of upward continued field to r/theta/phi vector components for all logitudes and latitude are returned in br/bt/bp. Note that this routine given the real components of the magnetic fields while other transforms in the code provide only:

```
r^{**}2 br, r^{**}2 sin(theta) bt, r^{**}2 sin(theta) bp
```

- **b_r** (*nrp*,*) [real,out] :: Radial magnetic field in (phi,theta)-space
- **b t** (nrp,*) [real,out] :: Latitudinal magnetic field
- **b_p** (*nrp*,*) [real,out] :: Azimuthal magnetic field.
- bcmb (lm_max) [complex,in]
- n_theta_start [integer,in] :: No. of theta to start with
- n_theta_block [integer,in] :: Size of theta block

```
Called from store_fields_sur()
```

```
Call to fft_thetab()
```

10.16.4 store movie IC.f90

Quick access

Routines store_movie_frame_ic()

Needed modules

- horizontal_data (dplm(), plm(), dlh(), n_theta_cal2ord(), o_sin_theta()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- movie_data (n_movie_fields_ic(), n_movies(), n_movie_field_stop(), n_movie_surface(), n_movie_field_type(), n_movie_field_start(), n_movie_fields(), n_movie_const(), frames(), n_movie_type())
- out_movie(get_fl())
- fft (fft_thetab()): This file contains the subroutines called by fftJW: fft99a, fft99b, wpass2, wpass3, wpass4 and wpass5
- legendre_spec_to_grid(legtf())
- radial_data(n_r_icb())
- precision_mod: This module controls the precision used in MagIC
- logic (l_cond_ic()): Module containing the logicals that control the run
- physical_parameters (lffac()): Module containing the physical parameters
- truncation (n_r_ic_max(), lm_maxmag(), n_r_ic_maxmag(), minc(), n_phi_max(), l_max(), lm_max(), nrp(), n_r_maxmag(), n_theta_max()): This module defines the grid points and the truncation
- leg_helper_mod(legprep_ic())
- blocking (nthetabs (), nfs (), sizethetab ()): Module containing blocking information
- constants (one ()): module containing constants and parameters used in the code.
- radial_functions (r_icb(), r_ic(), o_r_ic2(), o_r_ic()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

Subroutines and functions

subroutine out_movie_ic/**store_movie_frame_ic** (b, b_ic, db_ic, ddb_ic, aj_ic, dj_ic)

Controls storage of IC magnetic field in movie frame.

- **b** (lm_maxmag,n_r_maxmag) [complex,in]
- **b_ic** (lm_maxmag,n_r_ic_maxmag) [complex,in]
- **db_ic** (lm_maxmag,n_r_ic_maxmag) [complex,in]
- **ddb_ic** (lm_maxmag,n_r_ic_maxmag) [complex,in]

```
• aj_ic (lm_maxmag,n_r_ic_maxmag) [complex,in]
```

```
• dj_ic (lm_maxmag,n_r_ic_maxmag) [complex,in]
```

```
Called from output ()
```

```
Call to legprep_ic(), legtf(), fft_thetab(), get_fl()
```

10.16.5 out coeff.f90

Description

This module contains the subroutines that calculate the Bcmb files and the [B|V|T]_coeff_r files

Quick access

```
Routines write_bcmb(), write_coeff_r()
```

Needed modules

- precision_mod: This module controls the precision used in MagIC
- logic (l_save_out ()): Module containing the logicals that control the run

Variables

Subroutines and functions

Each call of this subroutine writes time and the poloidal magnetic potential coefficients b at the CMB up to degree and order l_max_cmb at the end of output file \$cmb_file. The parameters l_max_cmb, minc and the number of stored coeffs. are written into the first line of \$cmb_file. Each further set contains:

```
time,
real(b(1=0, m=0)), imag(b(1=0, m=0)),
real(b(1=1, m=0)), imag(b(1=1, m=0)),
```

Real and imaginary part of b(*) for all orders m<=l are written for a specific degree l, then for the degrees l+1, l+2, l_max_cmb.

- **time** [real,in] :: Time
- **b** (*ulm-llm*+1) [*complex*, *in*]
- **llm** [integer,in]
- **ulm** [integer,in] :: Poloidal field potential
- l_max [integer,in,] :: Gives position of (l,m) coeff
- l_max_cmb [integer,inout] :: Max degree of output

```
minc [integer,in] :: Basic wave-number
lm2 (l_max + 1,l_max + 1) [integer,in]
n_cmb_sets [integer,inout] :: Total no. of cmb sets,
cmb_file [character,in] :: Name of output file
n_cmb_file [integer,in] :: Output unit for $cmb_file
Called from fields average(), output()
```

Each call of this subroutine writes time and the poloidal and toroidal coeffitients w,dw,z at a specific radius up to degree and order l_max_r at the end of output file \$file. If the input is magnetic field (nVBS=2) ddw is stored as well. If the input is entropy field (nVBS=3) only ddw=s is stored. The parameters l_max_r, minc, the number of stored coeffs and radius in the outer core are written into the first line of \$file. Each further set contains:

```
time,
    real(w(l=0, m=0)), imag(w(l=0, m=0)),
    real(w(l=1, m=0)), imag(w(l=1, m=0)),
    ...
    real(dw(l=0, m=0)), imag(dw(l=0, m=0)),
    real(dw(l=1, m=0)), imag(dw(l=1, m=0)),
    ...
    real(z(l=0, m=0)), imag(z(l=0, m=0)),
    real(z(l=1, m=0)), imag(z(l=1, m=0)),
    ...
    real(ddw(l=0, m=0)), imag(ddw(l=0, m=0)),
    real(ddw(l=0, m=0)), imag(ddw(l=1, m=0)),
```

Real and imaginary part of w(*) for all orders $m \le 1$ are written for a specific degree 1, then for the degrees 1+1, 1+2, 1_max_r .

- **time** [real,in] :: Time
- w (ulm-llm+1) [complex,in]
- **dw** (*ulm-llm*+1) [complex,in]
- **ddw** (*ulm-llm*+1) [complex,in]
- **z** (*ulm-llm*+1) [*complex*,*in*]
- **r** [real,in] :: radius of coeffs
- **llm** [integer,in]
- **ulm** [integer,in] :: Toroidal field potential
- l_max [integer,in,] :: Max degree of b(,)
- l_max_r [integer,inout] :: Max degree of output
- minc [integer,in] :: Basic wave-number
- $lm2 (l_max + 1, l_max + 1) [integer, in]$
- **n_sets** [integer,inout] :: Total no. of cmb sets,

- **file** [character,in] :: Name of output file
- **n file** [integer, in] :: Output unit for \$file
- **nvbs** [integer,in] :: True if output is flow

Called from output ()

10.16.6 store_pot.f90

Description

This module contains the subroutines that can be used to write unformatted fortran files that contain the flow/magnetic field potentials (in both Chebyshev and spectral space)

Quick access

```
Routines storepot(), storepotw()
```

Needed modules

- parallel_mod (rank ()): This module contains the blocking information
- cosine transform odd
- output_data(tag()): This module contains the parameters for output control
- lmloop_data(llm(), ulm())
- precision_mod: This module controls the precision used in MagIC
- communications (gather_from_lo_to_rank0())
- logic (l_cond_ic()): Module containing the logicals that control the run
- physical_parameters (pr(), prmag(), ek(), sigma_ratio(), radratio(), ra()): Module containing the physical parameters
- truncation (n_r_ic_max(), n_cheb_ic_max(), minc(), l_max(), n_r_max(), lm_max(), n_cheb_max()): This module defines the grid points and the truncation
- constants (two (), half ()): module containing constants and parameters used in the code.
- radial_functions (chebt_oc(), chebt_ic()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

Subroutines and functions

subroutine store_pot_mod/**storepot** (*time*, *b*, *aj*, *b_ic*, *aj_ic*, *npotsets*, *root*, *omega_ma*, *omega_ic*)

- time [real,in]
- **b** (*lm_max*,*n_r_max*) [*complex*,*in*]

```
• aj (lm_max,n_r_max) [complex,in]
```

- **b_ic** (lm_max,n_r_ic_max) [complex,in]
- aj_ic (lm_max,n_r_ic_max) [complex,in]
- **npotsets** [integer,inout]
- **root** [character,in]
- omega ma [real,in]
- omega_ic [real,in]

Called from output()

subroutine store_pot_mod/**storepotw**(*time*, *b*, *aj*, *b_ic*, *aj_ic*, *worka*, *workb*, *workc*, *npotsets*, *root*, *omega_ma*, *omega_ic*)

Parameters

- time [real,in]
- **b** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- $aj(ulm-(llm)+1,n_r_max)[complex,in]$
- **b_ic** (*ulm*-(*llm*)+1,*n_r_ic_max*) [*complex*,*in*]
- **aj_ic** (*ulm*-(*llm*)+1,*n_r_ic_max*) [*complex*,*in*]
- worka (ulm-(llm)+1,n_r_max) [complex]
- workb (ulm-(llm)+1,n_r_max) [complex]
- workc (ulm-(llm)+1,n_r_max) [complex]
- **npotsets** [integer,inout]
- root [character,in]
- omega_ma [real,in]
- omega_ic [real,in]

Called from fields_average()

Call to gather_from_lo_to_rank0()

10.16.7 field_average.f90

Description

This module is used when one wants to store time-averaged quantities

Quick access

```
Variables aj_ave_global, db_ave_global, dw_ave_global, p_ave_global, s_ave_global, w_ave_global, z_ave_global, aj_ave, aj_ic_ave, b_ave, b_ic_ave, p_ave, s_ave, w_ave, z_ave
```

Routines initialize_fields_average_mod(), fields_average()

Needed modules

- horizontal_data(dplm(), plm(), dlh()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- fft (fft_thetab()): This file contains the subroutines called by fftJW: fft99a, fft99b, wpass2, wpass3, wpass4 and wpass5
- !mloop data(ulmmag(), llmmag(), llm(), ulm())
- radial_der_even(get_drns_even(), get_ddrns_even())
- radial_der (get_drns ()): Radial derivatives functions
- graphout_mod(graphout(), graphout_ic())
- magnetic_energy (get_e_mag())
- store_pot_mod (storepotw()): This module contains the subroutines that can be used to write unformatted fortran files that contain the flow/magnetic field potentials (in both Chebyshev and spectral space)
- parallel_mod (rank ()): This module contains the blocking information
- radial_functions (drx(), dr_fac_ic(), chebt_ic_even(), r(), chebt_oc(), chebt_ic()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)
- leg_helper_mod(legprep())
- precision_mod: This module controls the precision used in MagIC
- kinetic_energy (get_e_kin())
- out_coeff (write_bcmb()): This module contains the subroutines that calculate the Bcmb files and the [BIVIT]_coeff_r files
- blocking (lmstartb(), lm2(), nthetabs(), sizethetab(), nfs(), lmstopb()): Module containing blocking information
- constants (zero(), vol_ic(), vol_oc(), one()): module containing constants and parameters used in the code.
- truncation: This module defines the grid points and the truncation
- output_data(l_max_cmb(), n_graphs(), graph_file(), n_graph_file(), tag(), nlf(), log_file()): This module contains the parameters for output control
- spectra(spectrum(), spectrum_temp())
- legendre_spec_to_grid(legtf())
- radial_data(n_r_cmb())
- communications (get_global_sum(), gather_from_lo_to_rank0(), gather_all_from_lo_to_rank0(), gt_ic(), gt_oc())
- logic (l_heat(), l_save_out(), l_cond_ic(), l_mag(), l_conv()): Module containing the logicals that control the run

Variables

- fields_average_mod/**z_ave** (:,:) [complex,private/allocatable]
- fields_average_mod/b_ic_ave (:,:) [complex,private/allocatable]

- fields_average_mod/db_ave_global(:) [complex,private/allocatable]
- fields_average_mod/**s_ave_global** (:) [complex,private/allocatable]
- fields_average_mod/**z_ave_global** (:) [complex,private/allocatable]
- fields_average_mod/**p_ave** (:,:) [complex,private/allocatable]
- fields_average_mod/**b_ave** (:,:) [complex,private/allocatable]
- fields_average_mod/w_ave_global (:) [complex,private/allocatable]
- fields_average_mod/**p_ave_global** (:) [complex,private/allocatable]
- fields_average_mod/aj_ave_global(:) [complex,private/allocatable]
- fields_average_mod/**s_ave** (:,:) [complex,private/allocatable]
- fields_average_mod/aj_ave(:,:) [complex,private/allocatable]
- fields_average_mod/w_ave(:,:) [complex,private/allocatable]
- fields_average_mod/aj_ic_ave(:,:) [complex,private/allocatable]
- fields_average_mod/dw_ave_global(:) [complex,private/allocatable]

Subroutines and functions

This subroutine averages fields b and v over time.

- nave [integer,in] :: number for averaged time steps
- **l_stop_time** [logical,in] :: true if this is the last time step
- time_passed [real,in] :: time passed since last log
- time norm [real,in]:: time passed since start of time loop
- omega_ic [real,in]
- omega_ma [real,in]
- **w** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- **z** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- **p** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- **s** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- **b** (ulmmag-(llmmag)+1,n_r_maxmag) [complex,in]
- **aj** (*ulmmag-(llmmag)+1,n_r_maxmag*) [*complex,in*]
- **b_ic** (*ulmmag-(llmmag*)+1,*n_r_ic_maxmag*) [*complex*,*in*]
- $\bullet \ \ \mathbf{aj_ic} \ (ulmmag-(llmmag)+1, n_r_ic_maxmag) \ [complex, in] \\$

```
Called from output()

Call to get_drns(), get_ddrns_even(), get_drns_even(), spectrum(),
    spectrum_temp(), get_e_kin(), get_e_mag(), graphout(),
    gather_all_from_lo_to_rank0(), gather_from_lo_to_rank0(),
    legprep(), legtf(), fft_thetab(), graphout_ic(), write_bcmb(),
    storepotw()
```

10.17 IO: RMS force balance, torsional oscillations, misc

10.17.1 RMS.f90

Description

This module contains the calculation of thr RMS force balance and induction terms.

Quick access

```
Variables n_cheb_maxc, ncut, n_r_maxc, chebt_rms, eps, advrmsl_sd, advrmsl_ta, advrmssd, arcrmsl_sd, arcrmsl_ta, arcrmssd, buormsl_sd, buormsl_ta, buormssd, ciarmsl_sd, ciarmsl_ta, ciarmssd, clfrmsl_sd, clfrmsl_ta, clfrmssd, corrmsl_sd, corrmsl_ta, corrmssd, difrmsl_sd, difrmsl_ta, difrmssd, dtvrmsl_sd, dtvrmsl_ta, dtvrmssd, geormsl_sd, geormsl_ta, geormssd, lfrmsl_sd, lfrmsl_ta, lfrmssd, magrmsl_sd, magrmsl_ta, magrmssd, plfrmsl_sd, plfrmsl_ta, plfrmssd, prermsl_sd, prermsl_ta, prermssd, rc, dr_facc, adv2hint, arc2hint, buo2hint, cia2hint, clf2hint, cor2hint, difpollmr, dtbpollmr, dtvpollmr, geo2hint, lf2hint, mag2hint, plf2hint, pre2hint, difpol2hint, diftor2hint, dtbpol2hint, dtbtor2hint, dtvpol2hint, dtvtor2hint
```

Routines initialize rms(), zerorms(), init rnb(), dtbrms(), dtvrms()

Needed modules

- horizontal_data (phi(), theta_ord()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- precision_mod: This module controls the precision used in MagIC
- cosine_transform_odd
- output_data (rcut(), n_dtbrms_file(), tag(), runid(), dtvrms_file(), dtbrms_file(), n_dtvrms_file(), rdea()): This module contains the parameters for output control
- useful (getmsd2 ()): library with several useful subroutines
- radial_der (get_drns (), get_dr ()): Radial derivatives functions
- rms_helpers (hint2dpollm(), get_poltorrms(), hint2dpol(), get_ras(), get_paslm()): This module contains several useful subroutines required to compute RMS diagnostics
- num_param(tscale()): Module containing numerical and control parameters

- dtb_mod (tdifasrms(), pstrlm(), tadvrms(), pdiflm(), tstrrms(), tadvlm(), pdifasrms(), tstrasrms(), tdiflm(), tomeasrms(), tadvasrms(), padvrms(), pstrasrms(), padvlm(), tstrlm(), padvasrms(), pdifrms(), pstrrms(), tomerms(), tdifrms(), tomelm()): This module contains magnetic field stretching and advection terms plus a separate omega-effect. It is used for movie output....
- integration(rint(), rint_r()): Radial integration functions
- radial_data(nrstart(), nrstop())
- parallel_mod: This module contains the blocking information
- communications (myallgather())
- logic(l_corr(), l_heat(), l_mag_lf(), l_save_out(), l_conv_nl(), l_conv()): Module containing the logicals that control the run
- chebyshev_polynoms_mod(cheb_grid())
- physical_parameters(pr(), prmag(), radratio(), ra(), ek()): Module containing the physical parameters
- radial_functions (r(), ndd_costf1(), ndi_costf1()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)
- blocking (lm2(), nthetabs(), sizethetab(), lm2m(), nfs(), lo_map(), st_map()): Module containing blocking information
- constants(third(), one(), four(), zero(), half(), vol_oc(), pi()): module containing constants and parameters used in the code.
- truncation (l_max(), minc(), n_phi_max(), lm_maxmag(), n_r_max_dtb(), n_r_max(), lm_max_dtb(), lm_max(), n_cheb_max(), n_r_maxmag(), n_theta_max()): This module defines the grid points and the truncation

Variables

- rms/buormsl_sd(:) [real,private/allocatable]
- rms/dtbpol2hint (:,:,:) [real,allocatable/public]
- rms/geo2hint (:,:) [real,allocatable/public]
- rms/dtvrmssd(:) [real,private/allocatable]
- rms/corrmsl_ta(:) [real,private/allocatable]
- rms/dtvtor2hint (:,:,:) [real,allocatable/public]
- rms/advrmsl_ta(:) [real,private/allocatable]
- rms/cia2hint (:,:) [real,allocatable/public]
- rms/plfrmsl_sd(:) [real,private/allocatable]
- rms/ncut [integer,public]

 Number of points for the cut-off
- rms/advrmsl_sd(:) [real,private/allocatable]
- rms/chebt_rms [costf_odd_t,public]
- rms/diftor2hint(:,:,:) [real,allocatable/public]
- rms/lfrmssd(:) [real,private/allocatable]

- rms/dtvrmsl_sd(:) [real,private/allocatable]
- rms/prermssd(:) [real,private/allocatable]
- rms/lf2hint (:,:) [real,allocatable/public]
- rms/ciarmsl_ta(:) [real,private/allocatable]
- rms/buormssd(:) [real,private/allocatable]
- rms/corrmssd(:) [real,private/allocatable]
- rms/plfrmsl_ta(:) [real,private/allocatable]
- rms/magrmsl_sd(:) [real,private/allocatable]
- rms/geormsl_ta(:)[real,private/allocatable]
- rms/dtbpollmr(:,:) [complex,allocatable/public]
- rms/advrmssd(:) [real,private/allocatable]
- rms/dtvpollmr (:,:) [complex,allocatable/public]
- rms/plfrmssd(:) [real,private/allocatable]
- rms/dtvrmsl_ta(:) [real,private/allocatable]
- rms/arc2hint (:,:) [real,allocatable/public]
- rms/clfrmssd(:) [real,private/allocatable]
- rms/dtbtor2hint (:,:,:) [real,allocatable/public]
- rms/buormsl_ta(:)[real,private/allocatable]
- rms/clfrmsl_ta(:) [real,private/allocatable]
- rms/arcrmssd(:) [real,private/allocatable]
- rms/adv2hint (:,:) [real,allocatable/public]
- rms/clf2hint (:,:) [real,allocatable/public]
- rms/difpol2hint (:,:,:) [real,allocatable/public]
- rms/n_cheb_maxc [integer,public]
 Number of Chebyshevs
- rms/lfrmsl_sd(:) [real,private/allocatable]
- $\bullet \ \texttt{rms/arcrmsl_sd} \ (:) \ [\textit{real,private/allocatable}]$
- rms/geormsl_sd(:) [real,private/allocatable]
- rms/ciarmsl_sd(:) [real,private/allocatable]
- rms/dr_facc(:) [real,allocatable/public]
- rms/dtvpol2hint(:,:,:) [real,allocatable/public]
- rms/difrmssd(:) [real, private/allocatable]
- rms/clfrmsl_sd(:) [real,private/allocatable]
- rms/prermsl_ta(:) [real,private/allocatable]
- rms/ciarmssd(:) [real,private/allocatable]
- rms/rc(:) [real,private/allocatable]

- rms/buo2hint (:,:) [real,allocatable/public]
- rms/difrmsl_ta(:) [real,private/allocatable]
- rms/difpollmr(:,:) [complex,allocatable/public]
- rms/prermsl_sd(:) [real,private/allocatable]
- rms/lfrmsl ta(:) [real,private/allocatable]
- rms/cor2hint (:,:) [real, allocatable/public]
- rms/mag2hint (:,:) [real,allocatable/public]
- rms/arcrmsl_ta(:) [real,private/allocatable]
- rms/plf2hint (:,:) [real,allocatable/public]
- rms/magrmsl_ta(:)[real,private/allocatable]
- rms/pre2hint (:,:) [real,allocatable/public]
- rms/eps[real,private/parameter=10.0_cp*epsilon(one)]
- rms/magrmssd(:) [real,private/allocatable]
- rms/difrmsl_sd(:) [real,private/allocatable]
- rms/geormssd(:) [real,private/allocatable]
- rms/n_r_maxc [integer,public]
 Number of radial points
- rms/corrmsl_sd(:) [real,private/allocatable]

Subroutines and functions

```
subroutine rms/initialize_rms()
    Memory allocation
    Called from magic
    Call to init_rnb()
subroutine rms/zerorms()
    Zeros integrals that are set in get_td, update_z, update_wp, update_b, dtVrms and dtBrms
```

```
Called from output ()
```

subroutine rms/init_rnb (r, rcut, rdea, r2, n_r_max2, n_cheb_max2, ns, dr_fac2, chebt_rms, ndi_costf1, ndd_costf1)

Prepares the usage of a cut back radial grid where nS points on both boundaries are discarded. The aim actually is to discard boundary effects, but just not considering the boundary grid points does not work when you also want radial derivatives and integrals. For these we use the Chebychev transform which needs are particular number of grid points so that the fast cosine transform can be applied. Therefor more than just 2 points have to be thrown away, which may make sense anyway.

- **r** (*n*_*r*_*max*) [real,in]
- rcut [real,in]
- rdea [real,in]

```
• r2 (*) [real,out,allocatable]
                • n_r_max2 [integer,out]
                • n_cheb_max2 [integer,out]
                • ns [integer,out]
                • dr_fac2 (*) [real,out,allocatable]
                • chebt_rms [costf_odd_t,out]
                • ndi_costf1 [integer,in]
                • ndd_costf1 [integer,in]
          Called from initialize_rms()
          Call to cheb_grid()
subroutine rms/dtvrms (time, nrms_sets, timepassed, timenorm)
          This routine calculates and stores the different contributions of the forces entering the Navier-Stokes
          equation.
          Parameters
                • time [real,in]
                • nrms sets [integer,inout]
                • timepassed [real,in]
                • timenorm [real,in]
          Called from output ()
          Call to myallgather(), rint_r(), getmsd2(), get_drns(), hint2dpol()
subroutine rms/dtbrms (time)
          Parameters time [real,in]
          Called from output ()
          Call to myallgather(), get_drns(), get_poltorrms(), hint2dpollm(), rint(),
              get_ras(), get_paslm()
```

10.17.2 RMS_helpers.f90

Description

This module contains several useful subroutines required to compute RMS diagnostics

Quick access

```
Routines get_ras(), hint2dpollm(), hint2dpol(), hintrms(), get_poltorrms(),
    hint2pollm(), hint2pol(), get_paslm(), hint2torlm(), hint2tor()
```

Needed modules

- horizontal_data(osn1(), plm(), dlh(), dplm()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- useful (cc2real ()): library with several useful subroutines
- integration (rint_r()): Radial integration functions
- precision_mod: This module controls the precision used in MagIC
- truncation(lm_max(), l_max(), n_r_max(), lm_max_dtb()): This module defines the grid points and the truncation
- lmmapping (mappings())
- blocking (1m2(), st_map()): Module containing blocking information
- constants (vol_oc(), one()): module containing constants and parameters used in the code.
- radial_functions (drx(), r(), or2(), chebt_oc()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

Subroutines and functions

subroutine rms helpers/**get paslm**(*tlm*, *bp*, *rt*, *nthetastart*, *sizethetablock*)

Purpose of this subroutine is to calculated the axisymmetric phi component Bp of an axisymmetric toroidal field Tlm given in spherical harmonic space (1,m=0).

Parameters

- tlm (lm_max_dtb) [complex,in] :: field in (l,m)-space for rT
- **bp** (*) [real,out]
- **rt** [real,in] :: radius
- **nthetastart** [integer,in] :: first theta to be treated
- **sizethetablock** [integer,in] :: size of theta block

Called from dtbrms()

subroutine rms helpers/qet poltorrms (pol, drpol, tor, polrms, torrms, polasrms, torasrms, map)

calculates integral PolRms=sqrt(Integral (pol 2 dV)) calculates integral TorRms=sqrt(Integral (tor 2 dV)) plus axisymmetric parts. integration in theta,phi by summation of spherical harmonics integration in r by using Chebycheff integrals The mapping map gives the mapping lm to l,m for the input arrays Pol,drPol and Tor Output: PolRms,TorRms,PolAsRms,TorAsRms

- **pol** (*lm_max,n_r_max*) [*complex,in*] :: Poloidal field Potential
- **drpol** (*lm_max,n_r_max*) [*complex,in*] :: Radial derivative of Pol
- tor $(lm \ max, n \ r \ max)$ [complex, in] :: Toroidal field Potential
- polrms [real,out]

```
• torrms [real,out]
                 • polasrms [real,out]
                 • torasrms [real,out]
                • map [mappings,in]
          Called from dtbrms()
          Call to cc2real(), rint r()
subroutine rms_helpers/hint2dpol (dpol, lmstart, lmstop, pol2hint, map)
          Parameters
                • dpol (lm_max) [complex,in] :: Toroidal field Potential
                • Imstart [integer,in]
                • lmstop [integer,in]
                • pol2hint (l_max)+1) [real,inout]
                • map [mappings,in]
          Called from dtvrms()
          Call to cc2real()
subroutine rms_helpers/hint2dpollm(dpol, lmstart, lmstop, pol2hint, map)
          Parameters
                • dpol (lm_max) [complex,in]
                • lmstart [integer,in]
                • lmstop [integer,in]
                 • pol2hint (lm_max) [real,inout]
                • map [mappings,in]
          Called from dtbrms()
          Call to cc2real()
subroutine rms_helpers/hint2pol (pol, lb, ub, nr, lmstart, lmstop, pollmr, pol2hint, map)
          Parameters
                • pol (ub-lb+1) [complex,in]
                • lb [integer,in]
                • ub [integer,in] :: Poloidal field Potential
                • nr [integer,in]
                • Imstart [integer,in]
                • lmstop [integer,in]
                • pollmr (lm_max) [complex,out]
                 • pol2hint (l_max)+1) [real,inout]
                • map [mappings,in]
          Called from updatewp()
```

```
Call to cc2real()
subroutine rms_helpers/hint2pollm (pol, lb, ub, nr, lmstart, lmstop, pollmr, pol2hint, map)
           Parameters
                 • pol (ub-lb+1) [complex,in]
                 • lb [integer,in]
                 • ub [integer,in] :: Poloidal field Potential
                 • nr [integer,in]
                 • lmstart [integer,in]
                 • lmstop [integer,in]
                 • pollmr (lm_max) [complex,out]
                 • pol2hint (lm_max) [real,inout]
                 • map [mappings,in]
           Called from updateb()
           Call to cc2real()
subroutine rms_helpers/hintrms (f, nr, lmstart, lmstop, lmp, f2hint, map)
          Parameters
                 • f (*) [complex,in]
                 • nr [integer,in]
                 • Imstart [integer,in]
                 • lmstop [integer,in]
                 • lmp [integer,in]
                 • f2hint (l_max)+1) [real,inout]
                 • map [mappings,in]
           Called from get_td()
           Call to cc2real()
subroutine rms_helpers/hint2tor (tor, lb, ub, nr, lmstart, lmstop, tor2hint, map)
           Parameters
                 • tor (ub-lb+1) [complex,in]
                 • lb [integer,in]
                 • ub [integer,in] :: Toroidal field Potential
                 • nr [integer,in]
                 • Imstart [integer,in]
                 • lmstop [integer,in]
                 • tor2hint (l_max)+1) [real,inout]
                 • map [mappings,in]
```

Called from updatez()

```
Call to cc2real()
```

subroutine rms_helpers/hint2torlm(tor, lb, ub, nr, lmstart, lmstop, tor2hint, map)

Parameters

- **tor** (ub-lb+1) [complex,in]
- **lb** [integer,in]
- **ub** [integer,in] :: Toroidal field Potential
- **nr** [integer,in]
- **Imstart** [integer,in]
- **Imstop** [integer,in]
- tor2hint (lm_max) [real,inout]
- map [mappings,in]

Called from updateb()

Call to cc2real()

subroutine rms_helpers/get_ras (blm, br, rt, nthetastart, sizethetablock)

Purpose of this subroutine is to calculate the axisymmetric radial component Br of an axisymmetric ploidal field Blm given in spherical harmonic space (l,m=0).

Parameters

- **blm** (*lm_max_dtb*) [*complex,in*] :: field in (l,m)-space for rT
- **br** (*) [real,out]
- **rt** [real,in] :: radius
- **nthetastart** [integer,in] :: first theta to be treated
- sizethetablock [integer,in] :: last theta

Called from dtbrms()

10.17.3 dtB.f90

Description

This module contains magnetic field stretching and advection terms plus a separate omega-effect. It is used for movie output.

Quick access

Variables padvasrms, padvrms, pdifasrms, pdifrms, pstrasrms, pstrrms, tadvasrms, tadvrms, tdifasrms, tdifrms, tomeasrms, tomerms, tstrasrms, tstrrms, padvlm, padvlm_rloc, padvlmic, padvlmic_lmloc, pdiflm, pdiflm_lmloc, pdiflmic, pdiflmic_lmloc, pstrlm, pstrlm_rloc, tadvlm, tadvlm_rloc, tadvlmic, tadvlmic_lmloc, tadvrlm, tadvrlm_rloc, tdiflm, tdiflm_lmloc, tdiflmic, tdiflmic_lmloc, tomelm, tomelm_rloc, tomerlm, tomerlm_rloc, tstrlm, tstrlm_rloc, tstrrlm, tstrrlm_rloc

Routines dtb_gather_rloc_on_rank0(), initialize_dtb_mod(), get_dh_dtblm(), get_dtblm(), get_dtblmfinish()

Needed modules

- horizontal_data (hdif_b(), osn1(), osn2(), dlh(), cosn2(), d_lp1(), dtheta1s(), dphi(), dtheta1a()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- parallel_mod: This module contains the blocking information
- fft: This file contains the subroutines called by fftJW: fft99a, fft99b, wpass2, wpass3, wpass4 and wpass5
- !mloop_data(ulm(), llmmag(), llm(), ulmmag())
- radial_spectra
- radial_data(nrstart(), nrstop())
- precision_mod: This module controls the precision used in MagIC
- communications (gather_all_from_lo_to_rank0(), gt_ic(), gt_oc())
- legendre_grid_to_spec(legtf2(), legtf3())
- logic(l_cond_ic(), l_dtrmagspec()): Module containing the logicals that control the run
- radial_der (get_drns ()): Radial derivatives functions
- physical_parameters (opm (), o_sr ()): Module containing the physical parameters
- truncation (n_r_ic_max(), l_max(), n_r_ic_maxmag(), n_r_ic_max_dtb(), ldtbmem(), n_phi_max(), n_r_max_dtb(), n_r_max(), lm_max_dtb(), lm_max(), nrp(), n_cheb_max(), n_r_maxmag()): This module defines the grid points and the truncation
- blocking (121mas(), 1m21mp(), 1m2m(), 1m21(), nfs(), 1mp21mps(), 1o_map(), 1mp21mpa(), st_map()): Module containing blocking information
- constants (two ()): module containing constants and parameters used in the code.
- radial_functions (drx(), orho1(), chebt_oc(), or2(), or1(), dllambda(), o_r_ic(), lambda()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

- dtb_mod/tadvlmic(:,:) [complex,allocatable/public]
- dtb mod/pdifrms [real, public]
- dtb_mod/pdifasrms [real,public]
- dtb_mod/tadvlmic_lmloc(:,:) [complex,allocatable/public]
- dtb_mod/tadvlm_rloc(:,:) [complex,allocatable/public]
- dtb_mod/padvlm(:,:) [complex,allocatable/public]
- dtb_mod/padvasrms [real,public]
- dtb_mod/tdifrms [real,public]
- dtb_mod/tstrlm(:,:) [complex,allocatable/public]

- dtb_mod/pdiflm_lmloc(:,:) [complex,allocatable/public]
- dtb_mod/tdiflm(:,:) [complex,allocatable/public]
- dtb_mod/tdiflmic(:,:) [complex,allocatable/public]
- dtb_mod/tomerms [real, public]
- dtb mod/tstrrms[real,public]
- dtb mod/tadvlm(:,:) [complex,allocatable/public]
- dtb_mod/pstrasrms [real,public]
- dtb_mod/tdiflm_lmloc(:,:) [complex,allocatable/public]
- dtb_mod/tstrlm_rloc(:,:) [complex,allocatable/public]
- dtb_mod/tadvrlm_rloc(:,:) [complex,allocatable/public]
- dtb_mod/padvlmic(:,:) [complex,allocatable/public]
- dtb_mod/**pdiflm** (:,:) [complex,allocatable/public]
- dtb_mod/tdiflmic_lmloc(:,:) [complex,allocatable/public]
- dtb_mod/pdiflmic(:,:) [complex,allocatable/public]
- dtb_mod/tstrasrms [real,public]
- dtb_mod/pdiflmic_lmloc(:,:) [complex,allocatable/public]
- dtb_mod/tadvasrms [real,public]
- dtb_mod/pstrlm_rloc(:,:) [complex,allocatable/public]
- dtb_mod/tstrrlm_rloc(:,:) [complex,allocatable/public]
- dtb_mod/tomelm_rloc(:,:) [complex,allocatable/public]
- dtb_mod/tadvrms [real,public]
- dtb_mod/pstrrms [real,public]
- dtb_mod/tomerlm(:,:) [complex,allocatable/public]
- dtb_mod/padvlmic_lmloc(:,:) [complex,allocatable/public]
- dtb_mod/padvrms [real,public]
- dtb_mod/tdifasrms [real,public]
- dtb_mod/tomeasrms [real,public]
- dtb_mod/tomerlm_rloc(:,:) [complex,allocatable/public]
- dtb_mod/pstrlm(:,:) [complex,allocatable/public]
- dtb_mod/padvlm_rloc(:,:) [complex,allocatable/public]
- dtb_mod/tadvrlm(:,:) [complex,allocatable/public]
- dtb_mod/tomelm(:,:) [complex,allocatable/public]
- dtb_mod/tstrrlm(:,:) [complex,allocatable/public]

Subroutines and functions

```
subroutine dtb_mod/initialize_dtb_mod()
     Memory allocation
          Called from magic
subroutine dtb_mod/dtb_gather_rloc_on_rank0()
     MPI communicators for dtB outputs
          Called from get dtblmfinish()
subroutine dtb_mod/get_dtblm (nr, vr, vt, vp, br, bt, bp, n_theta_start, n_theta_block, btvrlm, bpvrlm,
                                  brvtlm, brvplm, btvplm, bpvtlm, brvzlm, btvzlm, btvpcotlm, bpvtcotlm,
                                  btvzcotlm, btvpsn2lm, bpvtsn2lm, btvzsn2lm)
          Parameters
                • nr [integer,in]
                • vr (nrp,nfs) [real,in]
                • vt (nrp,nfs) [real,in]
                • vp (nrp,nfs) [real,in]
                • br (nrp,nfs) [real,in]
                • bt (nrp,nfs) [real,in]
                • bp (nrp,nfs) [real,in]
                • n_theta_start [integer,in]
                • n theta block [integer,in]
                • btvrlm (*) [complex,out]
                • bpvrlm (*) [complex,out]
                • brvtlm (*) [complex,out]
                • brvplm (*) [complex,out]
                • btvplm (*) [complex,out]
                • bpvtlm (*) [complex,out]
                • brvzlm (*) [complex,out]
                • btvzlm (*) [complex,out]
                • btvpcotlm (*) [complex,out]
                • bpvtcotlm (*) [complex,out]
                • btvzcotlm (*) [complex,out]
                • btvpsn2lm (*) [complex,out]
                • bpvtsn2lm (*) [complex,out]
                • btvzsn2lm (*) [complex,out]
          Called from do iteration thetablocking openmp(), do iteration thetablocking seq(),
              do_iteration_thetablocking_shtns()
          Call to fft_thetab(), legtf3(), legtf2()
```

Parameters

- time [real,in]
- n_time_step [integer,in]
- omega_ic [real,in]
- **b** (*ulmmag*-(*llmmag*)+1,*n_r_maxmag*) [*complex*,*in*]
- **ddb** (*ulmmag-(llmmag)+1,n_r_maxmag*) [*complex,in*]
- **aj** (ulmmag-(llmmag)+1,n_r_maxmag) [complex,in]
- **dj** (*ulmmag-*(*llmmag*)+1,*n_r_maxmag*) [*complex*,*in*]
- **ddj** (ulmmag-(llmmag)+1,n_r_maxmag) [complex,in]
- **b_ic** (ulmmag-(llmmag)+1,n_r_ic_maxmag) [complex,in]
- **db_ic** (*ulmmag-(llmmag)+1,n_r_ic_maxmag*) [*complex,in*]
- **ddb_ic** (ulmmag-(llmmag)+1,n_r_ic_maxmag) [complex,in]
- aj_ic (ulmmag-(llmmag)+1,n_r_ic_maxmag) [complex,in]
- **dj_ic** (ulmmag-(llmmag)+1,n_r_ic_maxmag) [complex,in]
- **ddj_ic** (ulmmag-(llmmag)+1,n_r_ic_maxmag) [complex,in]

Called from output ()

Call to dtb_gather_rloc_on_rank0(), get_drns(), gather_all_from_lo_to_rank0(),
 rbrspec(), rbpspec()

subroutine dtb_mod/get_dh_dtblm(nr, btvrlm, bpvrlm, brvtlm, brvplm, btvplm, bpvtlm, brvzlm, btvpcotlm, bpvtcotlm, btvpsn2lm, bpvtsn2lm)

Purpose of this routine is to calculate theta and phi derivative related terms of the magnetic production and advection terms and store them.

- **nr** [integer,in]
- **btvrlm** (*) [complex,in]
- **bpvrlm** (*) [complex,in]
- **brvtlm** (*) [complex,in]
- **brvplm** (*) [complex,in]
- btvplm (*) [complex,in]
- **bpvtlm** (*) [complex,in]
- brvzlm (*) [complex,in]
- **btvzlm** (*) [complex,in]
- btvpcotlm (*) [complex,in]
- **bpvtcotlm** (*) [complex,in]
- btvpsn2lm (*) [complex,in]

• bpvtsn2lm (*) [complex,in]

10.17.4 dtB_arrays.f90

Needed modules

- precision_mod(cp()): This module controls the precision used in MagIC
- constants (zero ()): module containing constants and parameters used in the code.
- truncation (Imp_max_dtb()): This module defines the grid points and the truncation

Types

• type dtb_arrays_mod/unknown_type

Type fields

- % bpvtsn2lm(*)[complex,allocatable]
- % btvrlm(*)[complex,allocatable]
- % brvzlm(*) [complex,allocatable]
- % btvzlm(*) [complex,allocatable]
- % btvpcotlm(*)[complex,allocatable]
- % btvpsn21m(*)[complex,allocatable]
- % btvzsn2lm(*)[complex,allocatable]
- % bpvtcotlm(*)[complex,allocatable]
- % bpvtlm(*)[complex,allocatable]
- % brvplm (*) [complex,allocatable]
- % bpvrlm(*) [complex,allocatable]
- % btvzcotlm(*)[complex,allocatable]
- % brvtlm (*) [complex,allocatable]
- % btvplm(*)[complex,allocatable]

Subroutines and functions

```
subroutine dtb_arrays_mod/initialize (this)
```

Parameters this [real]

subroutine dtb_arrays_mod/finalize(this)

Parameters this [real]

subroutine dtb_arrays_mod/set_zero (this)

Parameters this [real]

10.17.5 out dtB frame.f90

Quick access

```
Routines lm2pt(), get_dtb(), write_dtb_frame(), get_bpol(), get_btor()
```

Needed modules

- horizontal_data(dplm(), osn1(), dlh(), d_lp1(), dphi(), n_theta_cal2ord(), plm(), sintheta(), costheta()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- movie_data (n_movie_fields_ic(), n_movie_field_type(), n_movie_surface(), movie_const(), n_movie_file(), n_movie_fields(), n_movie_const(), n_movie_type())
- fft: This file contains the subroutines called by fftJW: fft99a, fft99b, wpass2, wpass3, wpass4 and wpass5
- dtb_mod (pstrlm(), tdiflmic(), tadvlm(), tomelm(), tadvlmic(), tdiflm(), pdiflmic(), padvlm(), pdiflm(), padvlmic(), tstrlm()): This module contains magnetic field stretching and advection terms plus a separate omega-effect. It is used for movie output....
- precision_mod: This module controls the precision used in MagIC
- radial_der_even(get_drns_even())
- logic(l_cond_ic()): Module containing the logicals that control the run
- radial_der (get_drns ()): Radial derivatives functions
- truncation: This module defines the grid points and the truncation
- blocking (lm2(), nthetabs(), sizethetab(), lm2m(), lm2l(), nfs()): Module containing blocking information
- constants (zero(), ci(), one()): module containing constants and parameters used in the code.
- radial_functions (drx(), chebt_oc(), chebt_ic_even(), or1(), r_ic(), r(), dr_fac_ic(), r_icb(), chebt_ic()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

Subroutines and functions

```
subroutine out_dtb_frame/write_dtb_frame(n_movie, b, db, aj, dj, b_ic, db_ic, aj_ic, dj_ic)
```

Controls output of specific movie frames related to magnetic field production and diffusion.

- **n movie** [integer,in]
- **b** (lm_maxmag,n_r_maxmag) [complex,in]
- **db** (lm_maxmag,n_r_maxmag) [complex,in]
- **aj** (lm_maxmag,n_r_maxmag) [complex,in]
- **dj** (lm_maxmag,n_r_maxmag) [complex,in]

```
• b_ic (lm_maxmag,n_r_ic_maxmag) [complex,in]
```

- **db_ic** (lm_maxmag,n_r_ic_maxmag) [complex,in]
- **aj_ic** (lm_maxmag,n_r_ic_maxmag) [complex,in]
- **dj_ic** (lm_maxmag,n_r_ic_maxmag) [complex,in]

```
Called from write movie frame()
```

```
Call to get_dtb(), get_drns(), get_bpol(), get_btor(), lm2pt(),
    get_drns_even()
```

subroutine out_dtb_frame/**get_dtb**(dtb, dtblm, dimb1, dimb2, n_r, n_theta_start, n_theta_block, l_ic)

Parameters

- **dtb** (*) [real,out]
- **dtblm** (dimb1,dimb2) [complex,in]
- dimb1 [integer,in,]
- dimb2 [integer,in,]
- **n_r** [integer,in] :: No. of radial grid point
- n_theta_start [integer,in] :: No. of theta to start with
- n_theta_block [integer,in] :: Size of theta block
- l_ic [logical,in] :: =true if inner core field

Called from write_dtb_frame()

subroutine out_dtb_frame/**get_bpol** (pollm, dpollm, br, bt, bp, rt, n_theta_start, n_theta_block, lic)

Purpose of this subroutine is to calculate the components Br, Bt, and Bp of the poloidal magnetic field PolLM (l,m space) at the radial grid point r=rT and the block of theta grid points from n_theta=n_theta_start to n_theta=n_theta_start+n_theta_block-1 and for all phis. For IIC=.true. the inner core field is calculated, to get the IC field for a conducting inner core PolLM has to be the poloidal field at the ICB.

Parameters

- **pollm** (*lm_max*) [*complex,in*] :: field in (l,m)-space for rT
- **dpollm** (*lm_max*) [complex,in] :: dr field in (l,m)-space for rT
- **br** (*nrp*,*) [*real*, *out*]
- **bt** (*nrp*,*) [real,out]
- **bp** (*nrp*,*) [*real*,*out*]
- rt [real,in] :: radius
- n_theta_start [integer,in] :: first theta to be treated
- n_theta_block [integer,in] :: last theta
- **lic** [logical,in] :: true for inner core, special rDep!

Called from write_dtb_frame()

Call to fft_thetab()

subroutine out_dtb_frame/get_btor(tlm, bt, bp, rt, n_theta_start, n_theta_block, lic)

Purpose of this subroutine is to calculate the components Bt and Bp of the toroidal magnetic field Tlm (in l,m space) at the radial grid point r=rT and the block of theta grid points from n_theta=n_theta_start to n_theta=n_theta_start+n_theta_block-1 and for all phis. For IIC=.true. the inner core field is calculated, to get the IC field for a conducting inner core Plm has to be the toroidal field at the ICB.

Parameters

```
tlm (lm_max) [complex,in] :: field in (l,m)-space for rT
bt (nrp,*) [real,out]
bp (nrp,*) [real,out]
rt [real,in] :: radius
n_theta_start [integer,in] :: first theta to be treated
n_theta_block [integer,in] :: last theta
lic [logical,in] :: true for inner core, special rDep!
Called from write_dtb_frame()
Call to fft_thetab()
```

subroutine out_dtb_frame/lm2pt (alm, aij, rt, nthetastart, lic, lrcomp)

Spherical harmonic transform from alm(l,m) to aij(phi,theta) Radial field components are calculated for lrComp=.true. Done within the range [n_theta_min,n_theta_min+n_theta_block-1] Used only for graphic output.

Parameters

- alm (*) [complex,in] :: field in (l,m)-space
- aij (nrp,*) [real,out] :: field in (theta,phi)-space
- **rt** [real,in]
- **nthetastart** [integer,in] :: first theta to be treated
- **lic** [logical,in] :: true for inner core, extra factor !
- **lrcomp** [logical,in] :: true for radial field components

```
Called from write_dtb_frame()
Call to fft_thetab()
```

10.17.6 TO.f90

Description

This module contains information for TO calculation and output

Quick access

Variables bpsdas, bpsdas_rloc, bpzas, bpzas_rloc, bpzdas, bpzdas_rloc, bs2as, bs2as_rloc, bspas, bspas_rloc, bspdas, bspdas_rloc, bszas, bszas_rloc, bzpdas, bzpdas_rloc, ddzasl, dzastrlmr, dzastrlmr_rloc, dzcorlmr, dzcorlmr_rloc, dzddvplmr, dzddvplmr_rloc, dzdvplmr, dzdvplmr_rloc, dzflmr, dzflmr_rloc, dzrstrlmr, dzrstrlmr_rloc, dzstrlmr, dzstrlmr_rloc, dzstrlmr, dzstrlmr_rloc, v2as, v2as_rloc

Routines initialize_to(), to_gather_rloc_on_rank0(), gettofinish(), getto(), gettonext()

Needed modules

- horizontal_data(dthetala(), dlh(), hdif_v(), dthetals(), sintheta(), costheta()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- precision_mod: This module controls the precision used in MagIC
- lmloop_data(llmmag(), ulmmag())
- radial_data(n_r_cmb(), nrstart(), nrstop())
- parallel_mod: This module contains the blocking information
- legendre_grid_to_spec(legtfas2())
- logic(l_mag(), lverbose()): Module containing the logicals that control the run
- physical_parameters (kbotv(), ktopv(), corfac()): Module containing the physical parameters
- truncation (n_r_maxstr(), l_max(), nrp(), n_phi_maxstr(), n_theta_maxstr()): This module defines the grid points and the truncation
- blocking (1m2(), nfs()): Module containing blocking information
- constants (two (), one ()): module containing constants and parameters used in the code.
- radial_functions (orho1 (), or4 (), or2 (), or3 (), or1 (), beta (), r (), dbeta ()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

- torsional_oscillations/v2as(:,:) [real,allocatable/public]
- torsional_oscillations/dzastrlmr_rloc(:,:) [real,allocatable/public]
- torsional_oscillations/dzrstrlmr_rloc(:,:) [real,allocatable/public]
- torsional oscillations/v2as rloc(:,:) [real,allocatable/public]
- torsional_oscillations/**bspas**(:,:) [real,allocatable/public]
- torsional_oscillations/dzdvplmr(:,:) [real,allocatable/public]
- torsional_oscillations/ddzasl(:,:) [real,allocatable/public]
- torsional_oscillations/bspdas(:,:) [real,allocatable/public]
- torsional_oscillations/bzpdas(:,:) [real,allocatable/public]

- torsional_oscillations/bspdas_rloc(:,:) [real,allocatable/public]
- torsional_oscillations/dzdvplmr_rloc(:,:) [real,allocatable/public]
- torsional_oscillations/bpsdas(:,:) [real,allocatable/public]
- torsional_oscillations/dzstrlmr_rloc(:,:) [real,allocatable/public]
- torsional_oscillations/dzcorlmr_rloc(:,:) [real,allocatable/public]
- torsional oscillations/bpzas(:,:) [real,allocatable/public]
- torsional_oscillations/bzpdas_rloc(:,:) [real,allocatable/public]
- torsional_oscillations/dzddvplmr_rloc(:,:) [real,allocatable/public]
- torsional_oscillations/dzastrlmr(:,:) [real,allocatable/public]
- torsional_oscillations/bszas(:,:) [real,allocatable/public]
- torsional_oscillations/dzddvplmr(:,:) [real,allocatable/public]
- torsional_oscillations/dzlflmr(:,:) [real,allocatable/public]
- torsional_oscillations/dzcorlmr(:,:) [real,allocatable/public]
- torsional_oscillations/bs2as_rloc(:,:) [real,allocatable/public]
- torsional_oscillations/dzrstrlmr(:,:) [real,allocatable/public]
- torsional_oscillations/bspas_rloc(:,:) [real,allocatable/public]
- torsional_oscillations/bpzas_rloc(:,:) [real,allocatable/public]
- torsional_oscillations/dzlflmr_rloc(:,:) [real,allocatable/public]
- torsional_oscillations/bs2as(:,:) [real,allocatable/public]
- torsional_oscillations/dzstrlmr(:,:) [real,allocatable/public]
- torsional_oscillations/bpsdas_rloc(:,:) [real,allocatable/public]
- torsional_oscillations/bpzdas_rloc(:,:) [real,allocatable/public]
- torsional_oscillations/bpzdas(:,:) [real,allocatable/public]
- torsional_oscillations/bszas_rloc(:,:) [real,allocatable/public]

Subroutines and functions

subroutine torsional_oscillations/initialize_to()
 Allocate the memory needed

Called from magic

This program calculates various axisymmetric linear and nonlinear variables for a radial grid point nR and a theta-block. Input are the fields vr,vt,vp,cvr,dvpdr Output are linear azimuthally averaged field VpAS (flow phi component), VpAS2 (square of flow phi component), V2AS (V*V), and Coriolis force Cor. These are give in (r,theta)-space. Also in (r,theta)-space

are azimuthally averaged correlations of non-axisymmetric flow components and the respective squares: Vsp=Vs*Vp,Vzp,Vsz,VspC,VzpC,VszC. These are used to calulcate the respective correlations and Reynolds stress. In addition three output field are given in (lm,r) space: dzRstrLMr,dzAstrLMr,dzAcorLM,dzLFLM.

These are used to calculate the total Reynolds stress, advection and viscous stress later. Their calculation retraces the calculations done in the time-stepping part of the code.

Parameters

```
• vr (nrp,nfs) [real,in]
```

- **vt** (*nrp*,*nfs*) [real,in]
- **vp** (*nrp*,*nfs*) [*real*,*in*]
- cvr (nrp,nfs) [real,in]
- **dvpdr** (nrp,nfs) [real,in]
- **br** (*nrp*,*nfs*) [real,in]
- **bt** (*nrp*,*nfs*) [*real*,*in*]
- **bp** (*nrp*,*nfs*) [*real*,*in*]
- **cbr** (*nrp*,*nfs*) [real,in]
- **cbt** (*nrp*,*nfs*) [real,in]
- **bslast** (*n_phi_maxstr*,*n_theta_maxstr*,*nrstop*-(*nrstart*)+1) [real,in]
- **bplast** (*n_phi_maxstr*,*n_theta_maxstr*,*nrstop-*(*nrstart*)+1) [real,in]
- **bzlast** (n_phi_maxstr,n_theta_maxstr,nrstop-(nrstart)+1) [real,in]
- **dzrstrlm** (*l_max*+2) [real,out]
- **dzastrlm** (*l_max*+2) [real,out]
- **dzcorlm** (*l_max*+2) [real,out]
- **dzlflm** (*l_max*+2) [real,out]
- **dtlast** [real,in] :: last time step
- **nr** [integer,in] :: radial grid point
- **nthetastart** [integer,in] :: theta block
- **nthetablocksize** [integer,in]

```
Call to legtfas2()
```

Preparing TO calculation by storing flow and magnetic field contribution to build time derivative.

- **zas** (*l max*+1) [real,in]
- **br** (*nrp*,*nfs*) [real,in]

```
• bt (nrp,nfs) [real,in]
                 • bp (nrp,nfs) [real,in]
                 • Itonext [logical,in]
                 • ltonext2 [logical,in]
                 • dt [real,in]
                 • dtlast [real,in]
                 • nr [integer,in]
                 • nthetastart [integer,in]
                 • nthetablocksize [integer,in]
                 • bslast (n_phi_maxstr,n_theta_maxstr,nrstop-(nrstart)+1) [real,out]
                 • bplast (n_phi_maxstr,n_theta_maxstr,nrstop-(nrstart)+1) [real,out]
                 • bzlast (n_phi_maxstr,n_theta_maxstr,nrstop-(nrstart)+1) [real,out]
          Called from do_iteration_thetablocking_openmp(), do_iteration_thetablocking_seq(),
               do_iteration_thetablocking_shtns()
subroutine torsional_oscillations/gettofinish (nr, dtlast, zas, dzas, ddzas, dzrstrlm, dzastrlm,
                                                           dzcorlm, dzlflm)
          Parameters
                 • nr [integer,in]
                 • dtlast [real,in]
                 • zas (l_max+1) [real,in]
                 • dzas (l_max+1) [real,in]
                 • ddzas (l_max+1) [real,in]
                 • dzrstrlm (l_max+2) [real,in]
                 • dzastrlm (l_max+2) [real,in]
                 • dzcorlm (l_max+2) [real,in]
```

• **dzlflm** (*l_max*+2) [real,in]

Called from outto()

10.17.7 TO_helpers.f90

Description

This module contains several helpful subroutines used in the TO calculations

Quick access

```
Routines getpastr(), getastr(), get_pas()
```

Needed modules

- precision_mod: This module controls the precision used in MagIC
- horizontal_data(dplm(), osn1()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- blocking (1m2 ()): Module containing blocking information
- constants (half(), two(), one()): module containing constants and parameters used in the code.
- truncation (1_max()): This module defines the grid points and the truncation

Variables

Subroutines and functions

Parameters

- **fz** (*) [real,out]
- flmn (lmmax,*) [real,in]
- nzmax [integer,in]
- nzmaxa [integer,in,]
- **lmmax** [integer,in,]
- lmax [integer,in]
- rmin [real,in]
- rmax [real,in]
- nchebmax [integer,in]
- rz (0.5 * nzmaxa + 1.0) [real, in]
- **dplm** (lmmax,0.5 * nzmaxa + 1.0) [real,in]
- **osints** (0.5 * *nzmaxa* + 1.0) [*real,in*]

Called from outpv(), outto()

subroutine to_helpers/get_pas (tlm, bp, rt, nthetastart, sizethetablock)

Purpose of this subroutine is to calculate the axisymmetric phi component Bp of an axisymmetric toroidal field Tlm given in spherical harmonic space (1,m=0).

- tlm (*) [real,in] :: field in (l,m)-space for rT
- **bp** (*) [real,out]

- **rt** [real,in] :: radius
- **nthetastart** [integer,in] :: first theta to be treated
- sizethetablock [integer,in] :: size of theta block

Called from outto()

subroutine to_helpers/getastr (fz, flmn, nzmax, nzmaxa, lmmax, lmax, rmin, rmax, nchebmax, rz, plm)

Calculates function value at radii rZ(nZmax) and colatitudes for which Plm(theta) is given from the spherical harmonic/Chebychev coefficients of an axisymmetric function (order=0).

Parameters

- **fz** (*) [real,out]
- flmn (lmmax,*) [real,in]
- nzmax [integer,in]
- nzmaxa [integer,in,]
- **lmmax** [integer,in,]
- lmax [integer,in]
- rmin [real,in]
- rmax [real,in]
- nchebmax [integer,in]
- rz (0.5 * nzmaxa + 1.0) [real, in]
- **plm** (lmmax,0.5 * *nzmaxa* + 1.0) [*real,in*]

Called from outto()

10.17.8 TO_arrays.f90

Needed modules

- precision_mod(cp()): This module controls the precision used in MagIC
- truncation (l_max()): This module defines the grid points and the truncation

Types

• type to_arrays_mod/unknown_type

Type fields

- % dzcorlm(*)[real,allocatable]
- % dzlflm (*) [real,allocatable]
- % dzrstrlm(*)[real,allocatable]
- % dzastrlm(*)[real,allocatable]

Subroutines and functions

10.17.9 out_TO.f90

Quick access

Needed modules

- horizontal_data (phi(), gauss(), theta_ord(), sintheta()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- chebint_mod(chebint(), chebintinit())
- useful (logwrite()): library with several useful subroutines
- lmloop_data(llm(), ulm())
- to_helpers(getpastr(), get_pas(), getastr()): This module contains several helpful subroutines used in the TO calculations
- legendre_grid_to_spec(legtfas2(), legtfas())
- cosine_transform_odd
- integration(rint_r()): Radial integration functions
- parallel_mod (rank ()): This module contains the blocking information
- num_param (tscale()): Module containing numerical and control parameters
- physical_parameters(pr(), prmag(), lffac(), ek(), radratio(), ra()): Module containing the physical parameters
- radial_functions (drx(), orho1(), r_cmb(), chebt_oc(), r(), r_icb()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)
- precision_mod: This module controls the precision used in MagIC
- plms_theta(plm_theta())
- charmanip (dble2str()): This module contains several useful routines to manipule character strings
- blocking (st_map(), nthetabs(), nfs(), sizethetab()): Module containing blocking information

- constants (two(), one(), four(), half(), vol_oc(), pi()): module containing constants and parameters used in the code.
- truncation (l_max(), n_r_maxstr(), minc(), n_phi_max(), lstressmem(), n_r_max(), n_theta_maxstr(), lm_max(), n_theta_max()): This module defines the grid points and the truncation
- torsional_oscillations (bs2as(), dzstrlmr(), dzlflmr(), dzrstrlmr(), bpzas(), to_gather_rloc_on_rank0(), dzcorlmr(), bspas(), dzrstrlmr_rloc(), dzastrlmr(), dzdvplmr(), bpsdas(), dzddvplmr(), v2as(), bpzdas(), bspdas(), bszas(), bzpdas()): This module contains information for TO calculation and output
- output_data(nsmaxa(), n_log_file(), nzmaxa(), zdens(), tag(), runid(), log_file(), sdens()): This module contains the parameters for output control
- communications (gather_all_from_lo_to_rank0(), gt_oc())
- logic(l_save_out(), lverbose()): Module containing the logicals that control the run

Variables

- outto mod/rstrm(:,:) [real,private/allocatable]
- outto_mod/chebt_z (:) [costf_odd_t,private/allocatable]
- outto_mod/lmmaxs [integer,private]
- outto_mod/lfm(:,:) [real,private/allocatable]
- outto_mod/corm(:,:) [real,private/allocatable]
- outto_mod/astrm(:,:) [real,private/allocatable]
- outto_mod/**dvpm** (:,:) [real,private/allocatable]
- outto_mod/zz(:,:) [real,private/allocatable]
- outto_mod/**vpm**(:,:) [real,private/allocatable]
- outto_mod/nzmaxs (:) [integer,private/allocatable]
- outto_mod/clm(:,:) [real,private/allocatable]
- outto_mod/osints(:,:) [real,private/allocatable]
- outto_mod/rz(:,:) [real,private/allocatable]
- outto_mod/strm(:,:) [real,private/allocatable]
- outto_mod/dplms (:,:,:) [real,private/allocatable]
- outto_mod/plms (:,:,:) [real,private/allocatable]

Subroutines and functions

```
subroutine outto_mod/initialize_outto_mod()
```

Called from magic

subroutine outto_mod/**outto** (time, n_time_step, ekin, ekintas, noutfile, noutfile2, tofilenhs, tofileshs, mov-file, tayfile, ntosets, ntomovsets, ntormssets, ltomov, ltorms, ltozwrite, z, omega_ic, omega_ma)

Output of axisymmetric zonal flow, its relative strength, its time variation, and all forces acting on it. The slowest part in the TO process is the repetitious calculation of plms by subroutine plm_theta. They are needed in getAStr and getPAStr when I transform on the cylindrical grid. The necessary plms could simply be calculated one and then be stored for later use!

Parameters

- time [real,in]
- n_time_step [integer,in]
- ekin [real,in]
- ekintas [real,in]
- **noutfile** [integer,in]
- **noutfile2** [integer,in]
- tofilenhs [character,in]
- tofileshs [character,in]
- movfile [character,in]
- tayfile [character,in]
- **ntosets** [integer,inout]
- ntomovsets [integer,inout]
- **ntormssets** [integer,inout]
- **Itomov** [logical,in]
- **Itorms** [logical,inout]
- **ltozwrite** [logical,inout]
- **z** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- omega_ic [real,in]
- omega_ma [real,in]

Called from output ()

10.17.10 radial_spectra.f90

Quick access

```
Routines rbrspec(), rbpspec()
```

Needed modules

- horizontal_data (dlh ()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- useful (cc2real ()): library with several useful subroutines

- output_data (tag()): This module contains the parameters for output control
- logic(l_cond_ic()): Module containing the logicals that control the run
- radial_data(n_r_icb())
- precision_mod: This module controls the precision used in MagIC
- num_param (escale ()): Module containing numerical and control parameters
- truncation(lm_max(), n_r_ic_max(), l_max(), n_r_tot(), n_r_max()): This module defines the grid points and the truncation
- lmmapping (mappings())
- blocking (st_map()): Module containing blocking information
- constants (four(), half(), pi(), one()): module containing constants and parameters used in the code.
- radial_functions (r_icb(), r_ic(), or2()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

Subroutines and functions

subroutine radial_spectra/rbrspec (time, pol, polic, fileroot, lic, map)

Parameters

- time [real,in]
- **pol** (*lm_max*,*n_r_max*) [*complex*,*in*]
- **polic** (lm_max,n_r_ic_max) [complex,in]
- **fileroot** [character,in]
- lic [logical,in]
- map [mappings,in]

Called from output(), get_dtblmfinish()

Call to cc2real()

subroutine radial_spectra/**rbpspec** (time, tor, toric, fileroot, lic, map)

Called from rank0, map gives the lm order of Tor and TorIC

Parameters

- time [real,in]
- **tor** (*lm_max*,*n_r_max*) [*complex*,*in*]
- **toric** (*lm_max*,*n_r_ic_max*) [*complex*,*in*]
- **fileroot** [character,in]
- lic [logical,in]
- map [mappings,in]

Called from output(), get_dtblmfinish()

Call to cc2real()

10.17.11 Egeos.f90

Quick access

Routines initialize_egeos_mod(), getegeos(), getdvptr()

Needed modules

- horizontal_data(dphi(), phi(), dlh()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- parallel_mod (rank ()): This module contains the blocking information
- cosine_transform_odd
- fft (fft_to_real()): This file contains the subroutines called by fftJW: fft99a, fft99b, wpass2, wpass3, wpass4 and wpass5
- chebint_mod
- output_data(nsmaxa(), nzmaxa(), zdens(), tag(), runid(), sdens()): This module contains the parameters for output control
- logic(l_corrmov(), lverbose(), l_anel()): Module containing the logicals that control the run
- lmloop_data(llm(), ulm())
- precision_mod: This module controls the precision used in MagIC
- communications (gather_all_from_lo_to_rank0(), gt_oc())
- plms_theta(plm_theta())
- num_param (tscale()): Module containing numerical and control parameters
- physical_parameters(pr(), prmag(), ek(), g1(), g0(), radratio(), strat(), polind(), ra(), g2()): Module containing the physical parameters
- truncation (l_max(), minc(), n_phi_max(), nrpgeos(), lm_maxgeos(), n_r_max(), n_m_max(), m_max(), lm_max(), n_r_maxgeos()): This module defines the grid points and the truncation
- blocking (1m2m(), 1m21(), 1m2mc()): Module containing blocking information
- constants (ci(), two(), one(), zero(), half(), pi()): module containing constants and parameters used in the code.
- radial_functions (r_icb(), r_cmb(), cheb_norm(), chebt_oc()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

- egeos_mod/**chebt_z** (:) [costf_odd_t,private/allocatable]
- egeos mod/osints(:,:) [real,private/allocatable]
- egeos_mod/**eps** [real,private/parameter=10.0_cp*epsilon(one)]

- egeos_mod/rz(:,:) [real,private/allocatable]
- egeos_mod/zz(:,:) [real,private/allocatable]
- egeos_mod/**dplms** (:,:,:) [real,private/allocatable]
- egeos_mod/nzmaxs (:) [integer,private/allocatable]
- egeos_mod/plms (:,:,:) [real,private/allocatable]

Subroutines and functions

```
subroutine egeos_mod/initialize_egeos_mod()
```

Called from magic

subroutine egeos_mod/**getegeos** (*time*, *ngeossets*, *w*, *dw*, *ddw*, *z*, *dz*, *egeos*, *ekntc*, *ekstc*, *ekin*, *dpflow*, *dzflow*, *cvzotc*, *cvorotc*, *chelotc*)

Output of axisymmetric zonal flow, its relative strength, its time variation, and all forces acting on it. The slowest part in the TO process is the repitions calculation of Plms by subroutine plm_theta. They are needed in getDVptr when I transform on the cylindrical grid. The necessary plms could simply be calculated one and then be stored for later use! See s outTOnew.f.

Parameters

```
• time [real,in]
```

- **ngeossets** [integer,in]
- **w** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- **dw** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- **ddw** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- **z** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- **dz** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- **egeos** [real,out]
- ekntc [real,out]
- ekstc [real,out]
- ekin [real,out]
- **dpflow** [real,out] :: RMS length scales
- dzflow [real,out]
- cvzotc [real,out]
- cvorotc [real,out]
- chelotc [real,out]

Called from outmisc()

```
Call to gather_all_from_lo_to_rank0(), chebintinit(), plm_theta(),
    getdvptr(), chebintd(), chebint()
```

subroutine egeos_mod/**getdvptr** (ws, dws, ddws, zs, dzs, rmin, rmax, rs, nzmax, nzmaxa, plms, dplms, osints, lderiv, vrs, vts, vps, vors, dpek)

This subroutine calculates the three flow components VrS,VtS,VpS at a (r,theta,all phis) and (t,pi=theta, all phis). Here r=rS, PlmS=Plm(theta), dPlmS=sin(theta)*dTheta Plm(theta), and OsinTS=1/sin(theta). The flow is calculated for all n_phi_max azimuthal points used in the code, and for corresponding latitudes north and south of the equator. For lDeriv=.true. the subroutine also calculates dpEk and dzEk which are phi averages of (d Vr/d phi)**2 + (d Vtheta/d phi)**2 + (d Vphi/d phi)**2 and (d Vr/d z)**2 + (d Vtheta/d z)**2 + (d Vphi/d z)**2, respectively. These two quantities are used to calculate z and phi scale of the flow in s_getEgeos.f

Note: on input wS=w/r^2, dwS=dw/r, ddwS=ddw/r, zS=z/r

Parameters

```
• ws (lm_max,n_r_max) [complex,in]
```

```
• dws (lm_max,n_r_max) [complex,in]
```

- ddws (lm_maxgeos,n_r_maxgeos) [complex,in]
- **zs** (lm_maxgeos,n_r_maxgeos) [complex,in]
- **dzs** (lm_maxgeos,n_r_maxgeos) [complex,in]
- **rmin** [real,in] :: radial bounds
- rmax [real,in]
- **rs** (*nzmaxa*) [real,in]
- nzmax [integer,in] :: number of (r,theta) points
- nzmaxa [integer,in,]
- plms $(lm_maxgeos, 0.5 * nzmaxa + 1.0)$ [real, in]
- **dplms** $(lm_maxgeos, 0.5 * nzmaxa + 1.0)$ [real, in]
- osints (0.5 * nzmaxa + 1.0) [real,in]
- **Ideriv** [logical,in]
- vrs (nrpgeos,nzmaxa) [real,out]
- vts (nrpgeos,nzmaxa) [real,out]
- **vps** (*nrpgeos*,*nzmaxa*) [*real*,*out*]
- **vors** (nrpgeos,nzmaxa) [real,out]
- **dpek** (nzmaxa) [real,out]

```
Called from getegeos()
Call to fft_to_real()
```

10.17.12 outPV3.f90

Quick access

```
Variables dplmz, plmz, vorold
Routines initialize_outpv3(), outpv(), getpvptr()
```

Needed modules

- horizontal_data (dphi (), dlh ()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- parallel_mod (rank ()): This module contains the blocking information
- cosine_transform_odd
- output_data(nzmaxa(), tag(), nsmaxa(), sdens()): This module contains the parameters for output control
- fft (fft_to_real()): This file contains the subroutines called by fftJW: fft99a, fft99b, wpass2, wpass3, wpass4 and wpass5
- lmloop_data(llm(), ulm())
- to_helpers (getpastr()): This module contains several helpful subroutines used in the TO calculations
- precision_mod: This module controls the precision used in MagIC
- communications (gather_all_from_lo_to_rank0(), gt_oc())
- plms_theta(plm_theta())
- logic(l_sric(), lverbose()): Module containing the logicals that control the run
- physical_parameters (radratio()): Module containing the physical parameters
- truncation (l_max(), minc(), n_phi_max(), n_r_max(), n_m_max(), m_max(), lm_max(), nrp()): This module defines the grid points and the truncation
- blocking (1m2 (), 1m21 (), 1m2mc (), 1m2m ()): Module containing blocking information
- constants (ci(), two(), one(), zero(), half(), pi()): module containing constants and parameters used in the code.
- radial_functions (r_icb(), chebt_oc(), cheb_norm(), r_cmb()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

- outpv3/osints(:,:) [real,private/allocatable]
- outpv3/rz(:,:) [real,private/allocatable]
- outpv3/**dplmz** (:,:,:) [real,private/allocatable]
- outpv3/plmz (:,:,:) [real,private/allocatable]
- outpv3/vorold(:,:,:) [real,private/allocatable]
- outpv3/**dplms** (:,:,:) [real,private/allocatable]
- outpv3/plms (:,:,:) [real,private/allocatable]

Subroutines and functions

```
subroutine outpv3/initialize outpv3()
```

Called from magic

subroutine outpv3/outpv (time, l_stop_time, npvsets, w, dw, ddw, z, dz, omega_ic, omega_ma)

Output of z-integrated axisymmetric rotation rate Vp/s and s derivatives

Parameters

```
• time [real,in]
```

- l_stop_time [logical,in]
- **npvsets** [integer,inout]
- **w** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- \mathbf{dw} (ulm-(llm)+1,n_r_max) [complex,in]
- **ddw** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- **z** (*ulm*-(*llm*)+1,*n*_*r*_*max*) [*complex*,*in*]
- dz (ulm-(llm)+1, n_r_max) [complex,in]
- omega_ic [real,in]
- omega_ma [real,in]

```
Called from output ()
```

subroutine outpv3/**getpvptr** (*w*, *dw*, *ddw*, *z*, *dz*, *rmin*, *rmax*, *rs*, *nzmax*, *nzmaxa*, *plms*, *dplms*, *osints*, *vrs*, *vps*, *vts*, *vors*, *dpvors*)

This subroutine calculates the three flow conponents VrS,VtS,VpS at (r,theta,all phis) and (r,pitheta, all phis). Here r=rS, PlmS=Plm(theta), dPlmS=sin(theta)*dTheta Plm(theta), and OsinTS=1/sin(theta). The flow is calculated for all n_phi_max azimuthal points used in the code, and for corresponding latitudes north and south of the equator. For lDeriv=.true. the subroutine also calculates dpEk and dzEk which are phi averages of (d Vr/d phi)**2 + (d Vtheta/d phi)**2 + (d Vphi/d phi)**2 and (d Vr/d z)**2 + (d Vtheta/d z)**2 + (d Vphi/d z)**2, respectively. These two quantities are used ot calculate z and phi scale of the flow in s_getEgeos.f NOTE: on input w=l*(l+1)*w

- w (lm_max,n_r_max) [complex,in]
- **dw** (*lm_max*,*n_r_max*) [*complex*,*in*]
- **ddw** (*lm max,n r max*) [complex,in]
- **z** (lm_max,n_r_max) [complex,in]
- **dz** (*lm_max*,*n_r_max*) [*complex*,*in*]
- **rmin** [real,in] :: radial bounds
- rmax [real,in]
- rs (nzmaxa) [real,in]
- nzmax [integer,in] :: number of (r,theta) points
- nzmaxa [integer,in,]
- plms $(lm_max, 0.5 * nzmaxa + 1.0)$ [real, in]
- **dplms** $(lm_max, 0.5 * nzmaxa + 1.0)$ [real, in]
- osints (0.5 * nzmaxa + 1.0) [real,in]

```
• vrs (nrp,nzmaxa) [real,out]
```

- **vps** (*nrp*,*nzmaxa*) [real,out]
- vts (nrp,nzmaxa) [real,out]
- **vors** (*nrp*,*nzmaxa*) [real,out]
- **dpvors** (nrp,nzmaxa) [real,out]

```
Called from outpv()
Call to fft_to_real()
```

10.17.13 chebInt.f90

Quick access

```
Routines chebintinit(), chebintd(), chebint()
```

Needed modules

- precision_mod: This module controls the precision used in MagIC
- chebyshev_polynoms_mod(cheb_grid())
- cosine_transform_odd
- constants (four (), two (), half ()): module containing constants and parameters used in the code.
- radial_der (get_dcheb()): Radial derivatives functions

Variables

Subroutines and functions

Parameters

- **zmin** [real,in] :: integration interval!
- zmax [real,in]
- **znorm** [real,in] :: norm interval length
- **nnorm** [integer,in] :: suggested number of grid points for norm length
- **ngridpointsmax** [integer, in] :: dimension of z on input
- **z** (ngridpointsmax) [real,out] :: grid points, dimension at >= nGridPointsMax
- ngridpoints [integer,out] :: number of used grid points
- **chebt** [costf_odd_t,out]

```
Called from getegeos(), outto()
Call to cheb_grid()
```

function chebint_mod/chebint (f, zmin, zmax, ngridpoints, ngridpointsmax, chebt)

Parameters

- **f** (ngridpointsmax) [real,in] :: function on grid points
- **zmin** [real,in] :: integration boundaries
- zmax [real,in]
- **ngridpoints** [integer,in] :: No of grid points
- ngridpointsmax [integer,in,] :: No of max grid points
- **chebt** [costf_odd_t,in]

Return chebint [real]

Called from getegeos(), outto()

function chebint_mod/**chebintd** (f, lderiv, zmin, zmax, ngridpoints, ngridpointsmax, chebt)

Parameters

- f (ngridpointsmax) [real,inout] :: function on grid points
- **Ideriv** [logical,in]
- **zmin** [real,in] :: integration boundaries
- zmax [real,in]
- **ngridpoints** [integer,in] :: No of grid points
- ngridpointsmax [integer,in,] :: No of max grid points
- **chebt** [costf_odd_t,in]

Return chebintd [real]

Called from getegeos()

10.17.14 outOmega.f90

Description

This module allows to compute the axisymmetric zonal flow versus the cylindrical radius s. By

Quick access

Variables nsmax

Routines outomega(), lnpas2tr()

Needed modules

- cosine transform odd
- output_data(tag()): This module contains the parameters for output control
- precision mod: This module controls the precision used in MagIC
- plms_theta(plm_theta())
- logic (lverbose ()): Module containing the logicals that control the run

- truncation (lm_max(), l_max(), minc(), n_r_max()): This module defines the grid points and the truncation
- blocking (1m2 ()): Module containing blocking information
- constants (half(), two(), one()): module containing constants and parameters used in the code.
- radial_functions (r_cmb(), r_icb(), chebt_oc()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

• omega/nsmax [integer,private/parameter=300] Number of cylindrical radial grid points

Subroutines and functions

```
subroutine omega/outomega (z, omega_ic)
```

Output of axisymmetric zonal flow omega(s) into field omega. TAG, where s is the cylindrical radius. This is done for the southern and norther hemispheres at $z=+-(r_icb+0.5)$

Parameters

- **z** (lm_max,n_r_max) [complex,in]
- omega_ic [real,in]

Called from output ()

Call to Inpas2tr()

function omega/lnpas2tr(f, lmmax, a, b, lmax, minc, nchebmax, theta, r)

Parameters

- **f** (lmmax,*) [real,in]
- Immax [integer,in,]
- **a** [real,in]
- **b** [real,in]
- lmax [integer,in]
- minc [integer,in]
- nchebmax [integer,in]
- theta [real,in]
- **r** [real,in]

Return Inpas2tr [real]

Called from outomega()

Call to plm_theta()

10.17.15 nl_special_calc.f90

Description

This module allows to calculcate several diagnostics that need to be computed in the physical space (non-linear quantities)

Quick access

```
Routines get_helicity(), get_fluxes(), get_perppar(), get_nlblayers()
```

Needed modules

- horizontal_data (osn2(), o_sin_theta_e2(), sn2(), costheta()): Module containing functions depending on longitude and latitude plus help arrays depending on degree and order
- legendre_grid_to_spec(legtfas2(), legtfas())
- radial_data(n_r_cmb(), n_r_icb())
- precision_mod: This module controls the precision used in MagIC
- logic (l_maq_nl()): Module containing the logicals that control the run
- physical_parameters (vischeatfac(), ek()): Module containing the physical parameters
- radial_functions (orho1(), orho2(), or4(), or2(), or1(), visc(), beta(), temp0()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)
- blocking (nfs(), sizethetab()): Module containing blocking information
- constants (half(), pi(), two(), third(), one()): module containing constants and parameters used in the code
- truncation(l_maxmag(), l_max(), nrp(), n_phi_max()): This module defines the grid points and the truncation

Variables

Subroutines and functions

Calculates axisymmetric contributions of:

- •the horizontal velocity $u_h = \sqrt{u_{\theta}^2 + u_{\phi}^2}$
- •its radial derivative $|\partial u_h/\partial r|$
- •The thermal dissipation rate $(\nabla T)^2$

This subroutine is used when one wants to evaluate viscous and thermal dissipation layers

Parameters

• **vt** (*nrp*,*nfs*) [real,in]

```
• vp (nrp,nfs) [real,in]
                 • dvtdr (nrp,nfs) [real,in]
                 • dvpdr (nrp,nfs) [real,in]
                 • dsdr (nrp,nfs) [real,in]
                 • dsdt (nrp,nfs) [real,in]
                 • dsdp (nrp,nfs) [real,in]
                 • uhlmr (l_max+1) [real,out]
                 • duhlmr (l_max+1) [real,out]
                 • gradslmr (l_max+1) [real,out]
                 • nr [integer,in]
                 • nthetastart [integer,in]
           Called from do_iteration_thetablocking_openmp(), do_iteration_thetablocking_seq(),
               do iteration thetablocking shtns()
           Call to legtfas2(), legtfas()
subroutine nl_special_calc/get_perppar (vr, vt, vp, eperplmr, eparlmr, eperpaxilmr, eparaxilmr,
                                                    nr, nthetastart)
           Calculates the energies parallel and perpendicular to the rotation axis
              •E_{\perp} = 0.5(v_s^2 + v_{\theta}^2) with v_s = v_r \sin \theta + v_{\theta} \cos \theta
              •E_{\parallel} = 0.5v_z^2 with v_z = v_r \cos \theta - v_{\theta} * \sin \theta
           Parameters
                 • vr (nrp,nfs) [real,in]
                 • vt (nrp,nfs) [real,in]
                 • vp (nrp,nfs) [real,in]
                 • eperplmr (l_max+1) [real,out]
                 • eparlmr (l_max+1) [real,out]
                 • eperpaxilmr (l max+1) [real,out]
                 • eparaxilmr (l_max+1) [real,out]
                 • nr [integer,in]
                 • nthetastart [integer,in]
           Called from do_iteration_thetablocking_openmp(), do_iteration_thetablocking_seq(),
               do_iteration_thetablocking_shtns()
           Call to legtfas2()
subroutine nl_special_calc/get_fluxes (vr, vt, vp, dvrdr, dvtdr, dvpdr, dvrdt, dvrdp, sr, pr, br, bt,
                                                  bp, cbt, cbp, fconvlmr, fkinlmr, fvisclmr, fpoynlmr, freslmr,
                                                  nr, nthetastart)
           Calculates the fluxes:
               •Convective flux: F_c = \rho T(u_r s)
```

```
•Kinetic flux: F_k = 1/2 \rho u_r (u_r^2 + u_\theta^2 + u_\phi^2)
```

•Viscous flux: $F_{=} - (u \cdot S)_r$)

If the run is magnetic, then this routine also computes:

- •Poynting flux
- •resistive flux

Parameters

- vr (nrp,nfs) [real,in]
- **vt** (*nrp*,*nfs*) [*real*,*in*]
- **vp** (*nrp*,*nfs*) [*real*,*in*]
- **dvrdr** (nrp,nfs) [real,in]
- **dvtdr** (nrp,nfs) [real,in]
- **dvpdr** (nrp,nfs) [real,in]
- **dvrdt** (nrp,nfs) [real,in]
- **dvrdp** (*nrp*,*nfs*) [real,in]
- **sr** (*nrp*,*nfs*) [real,in]
- **pr** (*nrp*,*nfs*) [real,in]
- **br** (*nrp*,*nfs*) [real,in]
- **bt** (*nrp*,*nfs*) [real,in]
- **bp** (*nrp*,*nfs*) [*real*,*in*]
- **cbt** (*nrp*,*nfs*) [real,in]
- **cbp** (*nrp*,*nfs*) [*real*,*in*]
- **fconvlmr** (*l_max*+1) [real,out]
- **fkinlmr** (*l_max*+1) [real,out]
- **fvisclmr** (*l_max*+1) [real,out]
- **fpoynlmr** (*l_maxmag+1*) [real,out]
- **freslmr** (*l_maxmag+1*) [real,out]
- **nr** [integer,in]
- **nthetastart** [integer,in]

Call to legtfas2(), legtfas()

Calculates axisymmetric contributions of helicity HelLMr and helicity**2 Hel2LMr in (l,m=0,r) space.

Parameters

```
vr (nrp,nfs) [real,in]
vt (nrp,nfs) [real,in]
vp (nrp,nfs) [real,in]
cvr (nrp,nfs) [real,in]
dvrdt (nrp,nfs) [real,in]
dvrdp (nrp,nfs) [real,in]
dvtdr (nrp,nfs) [real,in]
```

```
• \mathbf{hellmr}(l\_max+1)[real,out]
```

• **dvpdr** (*nrp*,*nfs*) [real,in]

- **hel2lmr** (*l_max*+1) [real,out]
- helnalmr (l_max+1) [real,out]
- **helna2lmr** (*l_max*+1) [real,out]
- **nr** [integer,in]
- nthetastart [integer,in]

10.18 Reading and storing check points (restart files)

10.18.1 readCheckPoints.f90

Description

This module contains the functions that can help reading and mapping of the restart files

Quick access

Needed modules

- cosine_transform_odd
- radial_data(n_r_cmb(), n_r_icb())
- precision_mod: This module controls the precision used in MagIC

- init_fields (tshift_ma1(), tshift_ma2(), omegaosz_ic2(), omegaosz_ic1(), n_start_file(), tomega_ma1(), tomega_ma2(), start_file(), scale_b(), omega_ic1(), omega_ic2(), scale_s(), scale_v(), tipdipole(), tomega_ic2(), tomega_ic1(), omega_ma2(), omega_ma1(), tshift_ic2(), tshift_ic1(), inform(), omegaosz_ma1(), omegaosz_ma2())
- logic (l_rot_ic(), l_mag(), l_heat(), l_srma(), l_mag_lf(), l_rot_ma(), l_sric(), l_cond_ic()): Module containing the logicals that control the run
- physical_parameters (pr(), kbotv(), prmag(), ek(), sigma_ratio(), radratio(), ktopv(), ra()): Module containing the physical parameters
- truncation(n_r_ic_max(), lm_maxmag(), n_r_ic_maxmag(), minc(), l_max(), nalias(), n_r_max(), m_max(), lm_max(), lmagmem(), n_r_maxmag(), n_phi_tot()): This module defines the grid points and the truncation
- blocking (lmstartb(), lm2(), nlmbs(), lm2m(), lm2l(), lmstopb()): Module containing blocking information
- constants (c_z10_omega_ma(), pi(), c_z10_omega_ic(), zero(), two()): module containing constants and parameters used in the code.
- radial_functions (chebt_oc(), r(), chebt_ic(), cheb_norm(), cheb_norm_ic()): This module initiates all the radial functions (transport properties, density, temperature, cheb transforms, etc.)

Variables

readcheckpoints/bytes_allocated[integer,private]

Subroutines and functions

read initial condition from restart file

Parameters

- w (lm_max,n_r_max) [complex,out]
- **dwdt** (*lm_max*,*n_r_max*) [*complex*,*out*]
- **z** (lm_max,n_r_max) [complex,out]
- **dzdt** (*lm_max*,*n_r_max*) [*complex*,*out*]
- **p** (lm_max,n_r_max) [complex,out]
- **dpdt** (*lm_max,n_r_max*) [*complex,out*]
- **s** (*lm_max*,*n_r_max*) [*complex*,*out*]
- **dsdt** (*lm_max*,*n_r_max*) [*complex*,*out*]
- **b** (lm_maxmag,n_r_maxmag) [complex,out]
- **dbdt** (lm_maxmag,n_r_maxmag) [complex,out]
- **aj** (lm_maxmag,n_r_maxmag) [complex,out]

```
• djdt (lm_maxmag,n_r_maxmag) [complex,out]
                • b_ic (lm_maxmag,n_r_ic_maxmag) [complex,out]
                • dbdt_ic (lm_maxmag,n_r_ic_maxmag) [complex,out]
                • aj_ic (lm_maxmag,n_r_ic_maxmag) [complex,out]
                • djdt_ic (lm_maxmag,n_r_ic_maxmag) [complex,out]
                • omega_ic [real,out]
                • omega_ma [real,out]
                • lorentz_torque_ic [real,out]
                • lorentz_torque_ma [real,out]
                • time [real,out]
                • dt_old [real,out]
                • dt_new [real,out]
                • n_time_step [integer,out]
          Called from getstartfields()
          Call to get1m21mo(), mapdatahydro(), mapdatamag()
subroutine readcheckpoints/getlm2lmo (n_r_max, n_r_max_old, l_max, l_max_old, m_max, minc,
                                            minc_old, inform, lm_max, lm_max_old, n_data_oldp,
                                            lm2lmo)
                • n_r_max [integer,in]
                • n_r_max_old [integer,in]
                • l_max [integer,in]
                • l_max_old [integer,in]
```

Parameters

- m_max [integer,in]
- minc [integer,in]
- minc old [integer,in]
- **inform** [integer,in]
- lm_max [integer,in]
- lm_max_old [integer,out]
- n_data_oldp [integer,out]
- lm2lmo (lm_max) [integer,out]

Called from readstartfields()

subroutine readcheckpoints/mapdatahydro (wo, zo, po, so, n_data_oldp, lm2lmo, n_r_max_old, lm_max_old, n_r_maxl, lbc1, lbc2, lbc3, lbc4, w, z, p, S)

Parameters

• wo (n_data_oldp) [complex,in]

- **zo** (n_data_oldp) [complex,in]
- **po** (n_data_oldp) [complex,in]
- so (n_data_oldp) [complex,in]
- n_data_oldp [integer,in,]
- lm2lmo (lm_max) [integer,in]
- n_r_max_old [integer,in]
- lm_max_old [integer,in]
- n_r_maxl [integer,in]
- **lbc1** [logical,in]
- **lbc2** [logical,in]
- lbc3 [logical,in]
- **lbc4** [logical,in]
- w (lm_max,n_r_max) [complex,out]
- **z** (lm_max,n_r_max) [complex,out]
- **p** (*lm_max*,*n_r_max*) [*complex*,*out*]
- **s** (lm_max,n_r_max) [complex,out]

Called from readstartfields()

Call to mapdatar()

Parameters

- wo (n_data_oldp) [complex,in]
- **zo** (n_data_oldp) [complex,in]
- **po** (n_data_oldp) [complex,in]
- so (n_data_oldp) [complex,in]
- n_data_oldp [integer,in,]
- n_rad_tot [integer,in]
- n_r_max_old [integer,in]
- lm_max_old [integer,in]
- n_r_maxl [integer,in]
- lm2lmo (lm_max) [integer,in]
- dim1 [integer,in]
- **l_ic** [logical,in]
- w (lm_maxmag,dim1) [complex,out]
- **z** (*lm_maxmag*,dim1) [*complex*,*out*]
- **p** (*lm_maxmag*,dim1) [*complex*,out]
- **s** (*lm_maxmag*,dim1) [*complex*,out]

```
Called from readstartfields()
```

Call to mapdatar()

subroutine readcheckpoints/mapdatar(datar, n_rad_tot, n_r_max_old, n_r_maxl, lbc, l_ic)

Copy (interpolate) data (read from disc file) from old grid structure to new grid. Linear interploation is used in r if the radial grid structure differs

called in mapdata

Parameters

- datar (*) [complex,out]
- n_rad_tot [integer,in]
- n_r_max_old [integer,in]
- n_r_maxl [integer,in]
- **lbc** [logical,in]
- l_ic [logical,in]

Called from mapdatamag(), mapdatahydro()

10.18.2 storeCheckPoints.f90

Description

This module contains several subroutines that can be used to store the rst_#.TAG files

Quick access

```
Routines store()
```

Needed modules

- fieldslast (d_omega_ma_dtlast(), d_omega_ic_dtlast(), lorentz_torque_iclast(), lorentz_torque_malast()): This module contains time-derivaties array of the previous time-step They are needed in the time-stepping scheme.
- output_data (n_rst_file(), rst_file()): This module contains the parameters for output control
- logic(l_heat(), l_mag(), l_cond_ic()): Module containing the logicals that control the run
- precision_mod: This module controls the precision used in MagIC
- init_fields (tomega_ic2(), tomega_ic1(), omegaosz_ic2(), omega_ic1(), omega_ma2(), omega_ma1(), omega_ic2(), inform(), omegaosz_ma1(), omegaosz_ma2(), tomega_ma1(), tomega_ma2(), omegaosz_ic1())
- num_param(tscale()): Module containing numerical and control parameters
- physical_parameters (pr(), prmag(), ek(), sigma_ratio(), radratio(), ra()): Module containing the physical parameters

• truncation(n_r_ic_max(), lm_maxmag(), n_r_ic_maxmag(), minc(), l_max(), nalias(), n_r_max(), lm_max(), n_theta_max(), n_r_maxmag(), n_phi_tot()): This module defines the grid points and the truncation

Variables

Subroutines and functions

subroutine storecheckpoints/**store**(*time*, *dt*, *dtnew*, *w*, *z*, *p*, *s*, *b*, *aj*, *b_ic*, *aj_ic*, *dwdtlast*, *dzdtlast*, *dpdtlast*, *dsdtlast*, *dbdtlast*, *djdtlast*, *djdt_iclast*)

store results on disc file (restart file) In addition to the magnetic field and velocity potentials we store the time derivative terms djdt(lm,nR),dbdt(lm,nR),.....

Parameters

- time [real,in]
- **dt** [real,in]
- dtnew [real,in]
- w (lm_max,n_r_max) [complex,in]
- **z** (lm_max,n_r_max) [complex,in]
- **p** (lm_max,n_r_max) [complex,in]
- **s** (lm_max,n_r_max) [complex,in]
- **b** (lm_maxmag,n_r_maxmag) [complex,in]
- **aj** (lm_maxmag,n_r_maxmag) [complex,in]
- **b_ic** (lm_maxmag,n_r_ic_maxmag) [complex,in]
- aj_ic (lm_maxmag,n_r_ic_maxmag) [complex,in]
- **dwdtlast** (*lm_max*,*n_r_max*) [*complex*,*in*]
- **dzdtlast** (*lm_max*,*n_r_max*) [*complex*,*in*]
- **dpdtlast** (*lm_max*,*n_r_max*) [*complex*,*in*]
- **dsdtlast** (*lm_max*,*n_r_max*) [*complex*,*in*]
- **dbdtlast** (*lm_maxmag*,*n_r_maxmag*) [*complex*,*in*]
- **djdtlast** (lm_maxmag,n_r_maxmag) [complex,in]
- **dbdt_iclast** (*lm_maxmag*,*n_r_ic_maxmag*) [*complex*,*in*]
- **djdt_iclast** (lm_maxmag,n_r_ic_maxmag) [complex,in]

Called from output()

10.19 Useful additional libraries

10.19.1 useful.f90

Description

library with several useful subroutines

Quick access

```
Routines getmsd2(), logwrite(), factorise(), safeclose(), safeopen(), cc2real(),cc22real(),l_correct_step(),random()
```

Needed modules

- precision_mod: This module controls the precision used in MagIC
- parallel_mod (rank ()): This module contains the blocking information
- logic(l_save_out()): Module containing the logicals that control the run
- constants (one (), two (), half ()): module containing constants and parameters used in the code.
- output_data (n_log_file(), log_file()): This module contains the parameters for output control

Variables

Subroutines and functions

function useful/**1_correct_step** (*n*, *t*, *t_last*, *n_max*, *n_step*, *n_intervals*, *n_ts*, *times*, *n_eo*)

Parameters

- n [integer,in] :: current step
- t [real,in] :: time at current step
- t_last [real,in] :: last time at current step
- n_max [integer,in] :: max number of steps
- **n_step** [integer,in] :: action interval
- **n_intervals** [integer,in] :: number of actions
- **n_ts** [integer,in] :: number of times t
- **times** (*) [real,in] :: times where l_correct_step == true
- **n_eo** [integer,in] :: even/odd controller

Return l_correct_step [logical]

```
Called from step_time()
```

function useful/random(r)

random number generator

```
if (r == 0) then random(r) = next random number (between 0. and 1.)
          if (r < 0) then random(r) = previous random number
          if (r > 0) then
              random(r) = a new sequence of random numbers is started with seed r mod 1 note: r must
                 be a non-integer to get a different seq
          called in sinit
          Parameters r [real,in]
          Return random [real]
          Called from initb(), initv(), inits()
subroutine useful/factorise (n, n_facs, fac, n_factors, factor)
          Purpose of this subroutine is factorize n into a number of given factors fac(i).
          Parameters
                • n [integer,in] :: number to be factorised!
                • n_facs [integer,in] :: number of facs to be tried!
                • fac (*) [integer,in] :: list of fators to be tried!
                • n factors [integer,out] :: number of factors used
                • factor (*) [integer, out] :: list of factors used
          Called from init_fft()
function useful/cc2real (c, m)
          Parameters
                • c [complex,in]
                • m [integer,in]
          Return cc2real [real]
          Called from hint2pol(), rbpspec(), hint2tor(), spectrum average(),
              spectrum(), getdlm(), get_power(), hintrms(), hint2dpol(), rbrspec(),
              get_u_square(), spectrum_temp_average(), hint2dpollm(), outpar(),
              hint2pollm(), spectrum_temp(), getstartfields(), get_e_kin(),
              get poltorrms(), hint2torlm(), get e mag()
function useful/cc22real (c1, c2, m)
          Parameters
                • c1 [complex,in]
                • c2 [complex,in]
                • m [integer,in]
          Return cc22real [real]
          Called from spectrum(), get_power(), get_e_mag()
subroutine useful/safeopen (nf, file_name)
```

Parameters

```
• nf [integer,in]
```

• **file_name** [character,in]

```
Called from step_time(), output(), spectrum_average(),
    spectrum_temp_average(), lmloop()
```

subroutine useful/safeclose(nf)

```
Parameters nf [integer,in]
```

```
Called from step_time(), output(), spectrum_average(),
    spectrum_temp_average(), lmloop()
```

subroutine useful/logwrite (message)

Parameters message [character,in]

```
Called from step_time(), initialize_movie_data(), output(), precalc(),
    dt_courant(), initialize_blocking(), getstartfields(), outto()
```

```
subroutine useful/getmsd2 (mean, sd, x, n, dt, totaltime)
```

This subroutine computes the mean and standard deviation according to a method introduced by Donald Knuth (1962). I rederived his formulas for a variable time step. On output SD still needs to be normalized with the totalTime and then you have to take the square root!! The input integer counts the number of calls. For n=1 initialisation is necessary.

Parameters

- **mean** [real,out] :: Time-average
- sd [real,out] :: Standard-deviation
- x [real,in] :: quantity to be averaged
- **n** [integer,in] :: number of calls(only n=1 needed)
- **dt** [real,in] :: time since last averaging step
- totaltime [real,in]:: total averaging time up to now

Called from dtvrms()

10.19.2 char_manip.f90

Description

This module contains several useful routines to manipule character strings

Quick access

```
Routines dble2str(), capitalize(), str2dble(), delete_string(), length_to_blank(), length_to_char()
```

Needed modules

• precision_mod: This module controls the precision used in MagIC

Subroutines and functions

```
subroutine charmanip/capitalize (string_bn)
          Convert lower-case letters into capital letters
          Parameters string_bn [character,inout]
          Called from get_movie_type(), step_time(), readnamelists()
subroutine charmanip/delete_string (string_bn, string_del, length)
          Deletes string_del from string and returns new length of string.
          Parameters
                • string bn [character,inout]
                • string_del [character,in]
                • length [integer,out]
          Called from get_movie_type()
subroutine charmanip/str2dble (string_bn, num)
          interprets next word in string as an 1 real number deletes leading blanks and next_word from string
          Parameters
                • string bn [character,in]
                • num [real,out] :: output
          Called from get_movie_type()
function charmanip/length_to_blank(string_bn)
          determines number of characters before first blank in string
          Parameters string_bn [character,in]
          Return length_to_blank [integer]
          Called from openfiles(),
                                              get_movie_type(), writenamelists(),
              readnamelists()
function charmanip/length_to_char (string_bn, char_bn)
          Parameters
                • string_bn [character,in]
                • char_bn [character,in]
          Return length_to_char [integer]
subroutine charmanip/dble2str(num, str)
          converts a 1 number num into a character str
```

Parameters

• num [real,in]

• **str** [character,out]

Called from step_time(), output(), outto()

10.19.3 hdf5Helpers.f90

Description

This module contains several useful tools to manipulate HDF5 files

Quick access

Needed modules

- precision_mod: This module controls the precision used in MagIC
- hdf5
- blocking (lo_map(), st_map()): Module containing blocking information
- lmloop_data(llm(), ulm())

Variables

- hdf5helpers/writehdf5_attribute[public]
- hdf5helpers/readhdf5_attribute[public]

Subroutines and functions

subroutine hdf5helpers/write_dataset (loc_id, dataset_name, dataset_type, dat, dim1, dims_full)

Parameters

- loc_id [integer,in]
- dataset_name [character,in]
- dataset_type [integer,in]
- dat (ulm-(llm)+1,dim1) [complex,in]
- dim1 [integer,in,]
- dims_full (2) [integer,in]

subroutine hdf5helpers/readhdf5_attr_dble (loc_id, attr_name, attr_value)

Parameters

- loc_id [integer,in]
- attr_name [character,in]

• attr_value [real,out]

subroutine hdf5helpers/readhdf5_attr_int (loc_id, attr_name, attr_value)

Parameters

- loc_id [integer,in]
- attr_name [character,in]
- attr_value [integer,out]

subroutine hdf5helpers/writehdf5_attr_dble (loc_id, aspace_id, attr_name, attr_value)

Parameters

- loc_id [integer,in]
- aspace_id [integer,in]
- attr_name [character,in]
- attr_value [real,in]

subroutine hdf5helpers/writehdf5_attr_int (loc_id, aspace_id, attr_name, attr_value)

Parameters

- loc_id [integer,in]
- aspace_id [integer,in]
- attr_name [character,in]
- attr_value [integer,in]

FORTRAN MODULE INDEX

a	integration, 266
algebra, 257	k
b	kinetic_energy,277
bext, 176 blocking, 268	leg_helper_mod, 242
C charmanip, 366 chebint_mod, 352 chebyshev_polynoms_mod, 234 communications, 181 constants, 177 cosine_transform_even, 239	legendre_grid_to_spec, 250 legendre_spec_to_grid, 246 lmloop_data, 180 lmloop_mod, 208 lmmapping, 271 logic, 161
cosine_transform_odd, 237	m
<pre>courant_mod, 203 d dtb_arrays_mod, 333</pre>	magnetic_energy,279 matrices,168 movie_data,298
dtb_mod, 328	n
<pre>e egeos_mod, 347 f fft, 252</pre>	namelists, 186 nl_special_calc, 355 nonlinear_bcs, 232 nonlinear_lm_mod, 230 num_param, 155
fft_fac_mod, 240 fields, 164 fields_average_mod, 317 fieldslast, 167	O omega, 353 out_coeff, 314 out_dtb_frame, 334
<pre>g general_arrays_mod, 230 getdlm_mod, 281 graphout_mod, 295 grenoble, 178</pre>	out_movie, 306 out_movie_ic, 313 outmisc_mod, 282 outpar_mod, 287 output_data, 170 output_mod, 272
h	outpv3,349
hdf5helpers, 368 horizontal_data, 198	outrot, 284 outto_mod, 343
<pre>i init_fields, 189</pre>	<pre>p parallel_mod, 179</pre>

```
physical_parameters, 157
plms_theta, 241
power, 289
precalculations, 193
precision_mod, 152
radial_data, 180
radial_der, 259
radial_der_even, 263
radial_functions, 195
radial_spectra, 345
radialloop, 220
readcheckpoints, 358
riteration_mod, 223
riterthetablocking_mod, 224
riterthetablocking_openmp_mod, 226
rms, 320
rms_helpers, 324
S
spectra, 291
start_fields, 187
step_time_mod, 201
store_pot_mod, 316
storecheckpoints, 362
timing, 205
to_arrays_mod, 342
to_helpers, 340
torsional_oscillations, 336
truncation, 153
updateb_mod, 217
updates_mod, 215
updatewp_mod, 209
updatez_mod, 212
useful, 364
```

372 Fortran Module Index

PYTHON MODULE INDEX

m

```
magic.bLayers, 136
magic.coeff, 130
magic.cyl, 138
magic.graph2vtk, 133
magic.libmagic, 143
magic.potExtra, 135
```

374 Python Module Index

Symbols	agrav (fortran variable in module radial_functions), 196
('general_arrays_mod/unknown_type', None) (fortran	aj (fortran variable in module fields), 166
type in module general_arrays_mod), 230	aj_ave (fortran variable in module fields_average_mod),
('lmmapping/allocate_mappings', None)() (fortran sub-	319
routine in module lmmapping), 272	aj_ave_global (fortran variable in module
('lmmapping/allocate_subblocks_mappings', None)()	fields_average_mod), 319
(fortran subroutine in module lmmapping), 272	aj_ic (fortran variable in module fields), 166
('lmmapping/unknown_type', None) (fortran type in	aj_ic_ave (fortran variable in module
module lmmapping), 271	fields_average_mod), 319
add() (magic.Butterfly method), 142	aj_ic_lmloc (fortran variable in module fields), 165
add() (magic.Movie method), 128	aj_lmloc (fortran variable in module fields), 165
init() (magic.AvgField method), 121	aj_lmloc_container (fortran variable in module fields),
init() (magic.Butterfly method), 142	165
init() (magic.CompSims method), 132	aj_rloc (fortran variable in module fields), 167
init() (magic.MagicGraph method), 123	aj_rloc_container (fortran variable in module fields), 166
init() (magic.MagicRSpec method), 131	alffac (fortran variable in module num_param), 156
init() (magic.MagicRadial method), 121	algebra (module), 257
init() (magic.MagicSetup method), 119	allocate_common_arrays() (fortran subroutine in module
init() (magic.MagicSpectrum method), 122	riterthetablocking_mod), 225
init() (magic.MagicSpectrum2D method), 123	alph1 (fortran variable in module radial_functions), 197
init() (magic.MagicTs method), 120	alph2 (fortran variable in module radial_functions), 196
init() (magic.Movie method), 128	alpha (fortran variable in module num_param), 157
init() (magic.Movie3D method), 129	alpha1 (fortran variable in module radial_functions), 197
init() (magic.Surf method), 124	alpha2 (fortran variable in module radial_functions), 197
init() (magic.TOMovie method), 131	amp_b1 (fortran variable in module init_fields), 190
init() (magic.ThetaHeat method), 138	amp_curr (fortran variable in module bext), 176
init() (magic.bLayers.BLayers method), 136	amp_imp (fortran variable in module bext), 176
init() (magic.coeff.MagicCoeffCmb method), 130	amp_s1 (fortran variable in module init_fields), 191
init() (magic.coeff.MagicCoeffR method), 130	amp_s2 (fortran variable in module init_fields), 191
init() (magic.cyl.Cyl method), 139	amp_v1 (fortran variable in module init_fields), 190
init() (magic.graph2vtk.Graph2Vtk method), 134	amstart (fortran variable in module num_param), 156
init() (magic.potExtra.ExtraPot method), 135	anelprof() (in module magic.libmagic), 143
str() (magic.AvgField method), 121	angular_file (fortran variable in module output_data), 174
str() (magic.ThetaHeat method), 138	arc2hint (fortran variable in module rms), 322
str() (magic.bLayers.BLayers method), 137	arcrmsl_sd (fortran variable in module rms), 322
Λ	arcrmsl_ta (fortran variable in module rms), 323
A	arcrmssd (fortran variable in module rms), 322
addtime() (fortran subroutine in module timing), 207	array_of_statuses (fortran variable in module communications), 182
adv2hint (fortran variable in module rms), 322	astrm (fortran variable in module outto_mod), 344
advrmsl_sd (fortran variable in module rms), 321	avg() (magic.cyl.Cyl method), 139
advrmsl_ta (fortran variable in module rms), 321	avg() (magic.cyr.Cyr method), 139 avg() (magic.potExtra.ExtraPot method), 136
advrmssd (fortran variable in module rms), 322	avg() (magic.potextra.extrar of method), 130

avg() (magic.Surf method), 124 AvgField (class in magic), 121	bspdas (fortran variable in module torsional_oscillations), 337
avgField() (in module magic.libmagic), 144 avgStd() (magic.Movie method), 128	bspdas_rloc (fortran variable in module torsional_oscillations), 338
avgz() (magic.cyl.Cyl method), 139	bszas (fortran variable in module torsional_oscillations),
В	338 bszas_rloc (fortran variable in module tor-
b (fortran variable in module fields), 166	sional_oscillations), 338
b0 (fortran variable in module grenoble), 178	buo (fortran variable in module updatewp_mod), 210
b_ave (fortran variable in module fields_average_mod),	buo2hint (fortran variable in module rms), 323
319	buofac (fortran variable in module physical_parameters), 159
b_ic (fortran variable in module fields), 165	
b_ic_ave (fortran variable in module	buomeanr (fortran variable in module power), 290 buormsl_sd (fortran variable in module rms), 321
fields_average_mod), 318	buormsl_ta (fortran variable in module rms), 321
b_ic_lmloc (fortran variable in module fields), 167	buormssd (fortran variable in module rms), 322
b_lmloc (fortran variable in module fields), 165 b_lmloc container (fortran variable in module fields), 167	Butterfly (class in magic), 142
b_lmloc_container (fortran variable in module fields), 167 b_r_file (fortran variable in module output_data), 173	bytes_allocated (fortran variable in module readcheck-
b_rloc (fortran variable in module fields), 167	points), 359
b_rloc_container (fortran variable in module fields), 166	bzpdas (fortran variable in module torsional_oscillations),
beta (fortran variable in module radial_functions), 197	337
bext (module), 176	bzpdas_rloc (fortran variable in module tor-
bic (fortran variable in module grenoble), 179	sional_oscillations), 338
BLayers (class in magic.bLayers), 136	
blocking (module), 268	C
bmat (fortran variable in module matrices), 169	c_dt_z10_ic (fortran variable in module constants), 177
bmat_fac (fortran variable in module matrices), 169	c_dt_z10_ma (fortran variable in module constants), 178
bmax_imp (fortran variable in module bext), 176	c_lorentz_ic (fortran variable in module constants), 177
botcond (fortran variable in module radial_functions), 197	c_lorentz_ma (fortran variable in module constants), 178
bots (fortran variable in module init_fields), 191	c_moi_ic (fortran variable in module constants), 177
bpeakbot (fortran variable in module init_fields), 191	c_moi_ma (fortran variable in module constants), 177
bpeaktop (fortran variable in module init_fields), 190	c_moi_oc (fortran variable in module constants), 177
bpivot (fortran variable in module matrices), 169	c_z10_omega_ic (fortran variable in module constants),
bpsdas (fortran variable in module torsional_oscillations),	177
338	c_z10_omega_ma (fortran variable in module constants),
bpsdas_rloc (fortran variable in module tor-	177
sional_oscillations), 338	cacheblock_size_in_b (fortran variable in module block-
bpzas (fortran variable in module torsional_oscillations),	ing), 269
338	capitalize() (fortran subroutine in module charmanip),
bpzas_rloc (fortran variable in module tor-	367
sional_oscillations), 338	cc22real() (fortran function in module useful), 365
bpzdas (fortran variable in module torsional_oscillations), 338	cc2real() (fortran function in module useful), 365 cgesl() (fortran subroutine in module algebra), 257
bpzdas_rloc (fortran variable in module tor-	cgeslml() (fortran subroutine in module algebra), 258
sional_oscillations), 338	charmanip (module), 366
bs2as (fortran variable in module torsional_oscillations),	cheb (fortran variable in module radial_functions), 197
338	cheb_grid() (fortran subroutine in module cheby-
bs2as_rloc (fortran variable in module tor-	shev_polynoms_mod), 236
sional_oscillations), 338	cheb_ic (fortran variable in module radial_functions), 197
bspas (fortran variable in module torsional_oscillations),	cheb_int (fortran variable in module radial_functions),
337	197
bspas_rloc (fortran variable in module torsional_oscillations), 338	cheb_int_ic (fortran variable in module radial_functions), 196

cheb_norm (fortran variable in module radial_functions), 197	con_radratio (fortran variable in module physical_parameters), 160
cheb_norm_ic (fortran variable in module ra-	conductance_ma (fortran variable in module physi-
dial_functions), 197	cal_parameters), 159
chebgrid() (in module magic.libmagic), 144	constants (module), 177
chebint() (fortran function in module chebint_mod), 352	cor2hint (fortran variable in module rms), 323
chebint_mod (module), 352	corfac (fortran variable in module physical_parameters),
chebintd() (fortran function in module chebint_mod), 353	159
chebintinit() (fortran subroutine in module chebint_mod),	corm (fortran variable in module outto_mod), 344
352	corrmsl_sd (fortran variable in module rms), 323
chebt_ic (fortran variable in module radial_functions),	corrmsl_ta (fortran variable in module rms), 321
197	corrmssd (fortran variable in module rms), 321
chebt_ic_even (fortran variable in module ra-	cos36 (fortran variable in module constants), 177
dial_functions), 197	cos72 (fortran variable in module constants), 178
chebt_oc (fortran variable in module radial_functions),	cosine_transform_even (module), 239
196	cosine_transform_odd (module), 237
chebt_rms (fortran variable in module rms), 321	cosn2 (fortran variable in module horizontal_data), 200
chebt_z (fortran variable in module egeos_mod), 347	costf1_complex() (fortran subroutine in module co-
chebt_z (fortran variable in module egeos_mod), 347	sine_transform_odd), 238
chebyshev_polynoms_mod (module), 234	costf1_complex_1d() (fortran subroutine in module co-
check_time_hits() (fortran subroutine in module	sine_transform_odd), 238
,	
step_time_mod), 203	
checktruncation() (fortran subroutine in module trunca-	sine_transform_odd), 238
tion), 155	costf1_real_1d() (fortran subroutine in module co-
chunksize (fortran variable in module parallel_mod), 179	sine_transform_odd), 238
ci (fortran variable in module constants), 177	costf2() (fortran subroutine in module co-
cia2hint (fortran variable in module rms), 321	sine_transform_even), 239
ciarmsl_sd (fortran variable in module rms), 322	costheta (fortran variable in module horizontal_data), 199
ciarmsl_ta (fortran variable in module rms), 322	courant() (fortran subroutine in module courant_mod), 204
ciarmssd (fortran variable in module rms), 322	
clf2hint (fortran variable in module rms), 322	courant_mod (module), 203
clfrmsl_sd (fortran variable in module rms), 322	courfac (fortran variable in module num_param), 157
clfrmsl_ta (fortran variable in module rms), 322	cp (fortran variable in module precision_mod), 153
clfrmssd (fortran variable in module rms), 322	create_gather_type() (fortran subroutine in module com-
clm (fortran variable in module outto_mod), 344	munications), 184
closefiles() (fortran subroutine in module output_data), 176	create_lm2r_type() (fortran subroutine in module communications), 184
cmb_file (fortran variable in module output_data), 175	curlu2meanr (fortran variable in module power), 290
cmbhflux (fortran variable in module physi-	cut() (in module magic.libmagic), 144
cal_parameters), 159	Cyl (class in magic.cyl), 138
cmbmov_file (fortran variable in module output_data),	cylSder() (in module magic.libmagic), 145
173	cylZder() (in module magic.libmagic), 145
codeversion (fortran variable in module constants), 178	D
communications (module), 181	D
CompSims (class in magic), 132	d2cheb (fortran variable in module radial_functions), 196
con_decrate (fortran variable in module physical_parameters), 158	d2cheb_ic (fortran variable in module radial_functions), 197
con_funcwidth (fortran variable in module physical_parameters), 159	d2temp0 (fortran variable in module radial_functions),
con_lambdamatch (fortran variable in module physi-	198 d2 shah (fartran yariahla in madula radial functions) 107
cal_parameters), 159	d3cheb (fortran variable in module radial_functions), 197
con_lambdaout (fortran variable in module physi-	d_fft_init (fortran variable in module fft), 253
cal_parameters), 160	d_l (fortran variable in module horizontal_data), 200
	d_lp1 (fortran variable in module horizontal_data), 200 d_m (fortran variable in module horizontal_data), 200
	u_m (mana variable m module nonzontal_uata), 200

d_mc2m (fortran variable in module horizontal_data), 200	deriv() (in module magic.coeff), 130
d_omega_ic_dtlast (fortran variable in module fieldslast), 168	destroy_gather_type() (fortran subroutine in module communications), 184
d_omega_ma_dtlast (fortran variable in module field-slast), 168	destroy_lm2r_type() (fortran subroutine in module communications), 185
db (fortran variable in module fields), 165	dif (fortran variable in module updatewp_mod), 211
db0 (fortran variable in module grenoble), 178	dif (fortran variable in module updatez_mod), 213
db_ave_global (fortran variable in module	difeta (fortran variable in module num_param), 157
fields_average_mod), 319 db_ic (fortran variable in module fields), 166	difexp (fortran variable in module physical_parameters), 160
db_ic_lmloc (fortran variable in module fields), 166	difkap (fortran variable in module num_param), 156
db_lmloc (fortran variable in module fields), 165	difnu (fortran variable in module num_param), 156
db_rloc (fortran variable in module fields), 166	difpol2hint (fortran variable in module rms), 322
dbdt_iclast (fortran variable in module fieldslast), 168	difpollmr (fortran variable in module rms), 323
dbdt_iclast_lmloc (fortran variable in module fieldslast),	difrmsl_sd (fortran variable in module rms), 323
168	difrmsl_ta (fortran variable in module rms), 323
dbdt_lmloc (fortran variable in module step_time_mod),	difrmssd (fortran variable in module rms), 323
202	diftor2hint (fortran variable in module rms), 321
dbdt_rloc (fortran variable in module step_time_mod),	dipembrean (fortran variable in module output_mod),
202	275
dbdtlast (fortran variable in module fieldslast), 168	dipmean (fortran variable in module output_mod), 275
dbdtlast_lmloc (fortran variable in module fieldslast), 168	dipole_file (fortran variable in module output_data), 175
dbeta (fortran variable in module radial_functions), 196	dissnb (fortran variable in module physical_parameters),
dble2str() (fortran subroutine in module charmanip), 367	158
dcheb (fortran variable in module radial_functions), 196	divktemp0 (fortran variable in module radial_functions),
dcheb_ic (fortran variable in module radial_functions),	197
196	dj (fortran variable in module fields), 165
ddb (fortran variable in module fields), 166	dj_ic (fortran variable in module fields), 166
ddb0 (fortran variable in module grenoble), 178	dj_ic_lmloc (fortran variable in module fields), 165
ddb_ic (fortran variable in module fields), 165	dj_lmloc (fortran variable in module fields), 165
ddb_ic_lmloc (fortran variable in module fields), 166	dj_rloc (fortran variable in module fields), 165
ddb_lmloc (fortran variable in module fields), 166	djdt_iclast (fortran variable in module fieldslast), 168
ddb_rloc (fortran variable in module fields), 166	djdt_iclast_lmloc (fortran variable in module fieldslast),
dddrx (fortran variable in module radial_functions), 196	168
ddj (fortran variable in module fields), 166	djdt_lmloc (fortran variable in module step_time_mod),
ddj_ic (fortran variable in module fields), 165	203
ddj_ic_lmloc (fortran variable in module fields), 166 ddj_lmloc (fortran variable in module fields), 167	djdt_rloc (fortran variable in module step_time_mod), 202
ddrx (fortran variable in module radial_functions), 196	djdtlast (fortran variable in module fieldslast), 168
ddw (fortran variable in module fields), 166	djdtlast_lmloc (fortran variable in module fieldslast), 168
ddw_lmloc (fortran variable in module fields), 165	dlbmean (fortran variable in module output_mod), 275
ddw_rloc (fortran variable in module fields), 165	dlh (fortran variable in module horizontal_data), 199
ddzasl (fortran variable in module torsional_oscillations),	dlkappa (fortran variable in module radial_functions), 196
337	dllambda (fortran variable in module radial_functions),
deallocate_common_arrays() (fortran subroutine in mod-	196
ule riterthetablocking_mod), 225	dlvcmean (fortran variable in module output_mod), 275
defaultnamelists() (fortran subroutine in module	dlvcmeanr (fortran variable in module outpar_mod), 287
namelists), 187	dlvisc (fortran variable in module radial_functions), 196
delete_string() (fortran subroutine in module charmanip),	dlvmean (fortran variable in module output_mod), 274
367	dlvmeanr (fortran variable in module outpar_mod), 288
delxh2 (fortran variable in module num_param), 157	dlvu2cmeanr (fortran variable in module outpar_mod),
delxr2 (fortran variable in module num_param), 156	288
dentropy0 (fortran variable in module radial_functions),	dlvu2meanr (fortran variable in module outpar_mod), 288
196	dmbmean (fortran variable in module output mod). 275

dmvmean (fortran variable in module output_mod), 275	dt_tpot (fortran variable in module output_data), 171
do_iteration_thetablocking_openmp() (fortran subroutine	dt_vpot (fortran variable in module output_data), 172
in module riterthetablocking_openmp_mod),	dtb_arrays_mod (module), 333
227	dtb_gather_rloc_on_rank0() (fortran subroutine in mod-
dp (fortran variable in module fields), 166	ule dtb_mod), 331
dp_lmloc (fortran variable in module fields), 165	dtb_mod (module), 328
dp_rloc (fortran variable in module fields), 166	dtbpol2hint (fortran variable in module rms), 321
dpdt_lmloc (fortran variable in module step_time_mod),	dtbpollmr (fortran variable in module rms), 322
203	dtbrms() (fortran subroutine in module rms), 324
dpdt_rloc (fortran variable in module step_time_mod),	dtbrms_file (fortran variable in module output_data), 174
202	dtbtor2hint (fortran variable in module rms), 322
dpdtlast (fortran variable in module fieldslast), 168	dteint (fortran variable in module output_mod), 275
dpdtlast_lmloc (fortran variable in module fieldslast), 168	dtemp0 (fortran variable in module radial_functions), 196
dphi (fortran variable in module horizontal_data), 199	dtheta1a (fortran variable in module horizontal_data), 200
dphi0 (fortran variable in module horizontal_data), 199	dtheta1s (fortran variable in module horizontal_data), 200
dphi02 (fortran variable in module horizontal_data), 199	dtheta2a (fortran variable in module horizontal_data), 200
dpl0eq (fortran variable in module horizontal_data), 200	dtheta2s (fortran variable in module horizontal_data), 200
dplm (fortran variable in module horizontal_data), 199	dtheta3a (fortran variable in module horizontal_data), 200
dplms (fortran variable in module egeos_mod), 348	dtheta3s (fortran variable in module horizontal_data), 200
dplms (fortran variable in module outpv3), 350	dtheta4a (fortran variable in module horizontal_data), 199
dplms (fortran variable in module outto_mod), 344	dtheta4s (fortran variable in module horizontal_data), 200
dplmz (fortran variable in module outpv3), 350	dtmax (fortran variable in module num_param), 157
dpvmean (fortran variable in module output_mod), 275	dtmin (fortran variable in module num_param), 156
dr_fac (fortran variable in module radial_functions), 196	dtp (fortran variable in module updateb_mod), 219
dr_fac_ic (fortran variable in module radial_functions),	dtstart (fortran variable in module num_param), 156
196	dtt (fortran variable in module updateb_mod), 219
dr_facc (fortran variable in module rms), 322	dtv (fortran variable in module updatewp_mod), 211
drx (fortran variable in module radial_functions), 198	dtv (fortran variable in module updatez_mod), 213
ds (fortran variable in module fields), 166	dtvpol2hint (fortran variable in module rms), 322
ds_lmloc (fortran variable in module fields), 166	dtvpollmr (fortran variable in module rms), 322
ds_rloc (fortran variable in module fields), 167	dtvrms() (fortran subroutine in module rms), 324
dsdt_lmloc (fortran variable in module step_time_mod),	dtvrms_file (fortran variable in module output_data), 173
202	dtvrmsl_sd (fortran variable in module rms), 322
dsdt_rloc (fortran variable in module step_time_mod),	dtvrmsl_ta (fortran variable in module rms), 322
202	dtvrmssd (fortran variable in module rms), 321
dsdtlast (fortran variable in module fieldslast), 168	dtvtor2hint (fortran variable in module rms), 321
dsdtlast_lmloc (fortran variable in module fieldslast), 168	duhmeanr (fortran variable in module outpar_mod), 288
dt_bpot (fortran variable in module output_data), 175	dvpm (fortran variable in module outto_mod), 344
dt_cmb (fortran variable in module output_data), 172	dvsrlm_lmloc (fortran variable in module
dt_cmb_file (fortran variable in module output_data), 171	step_time_mod), 202
<pre>dt_courant() (fortran subroutine in module courant_mod),</pre>	dvsrlm_rloc (fortran variable in module step_time_mod),
204	203
dt_graph (fortran variable in module output_data), 171	dvxbhlm_lmloc (fortran variable in module
dt_icb2_ave (fortran variable in module spectra), 293	step_time_mod), 203
dt_icb_ave (fortran variable in module spectra), 293	dvxbhlm_rloc (fortran variable in module
dt_log (fortran variable in module output_data), 172	step_time_mod), 202
dt_movie (fortran variable in module output_data), 172	dw (fortran variable in module fields), 166
dt_pot (fortran variable in module output_data), 173	dw_ave_global (fortran variable in module
dt_r_field (fortran variable in module output_data), 172	fields_average_mod), 319
dt_rst (fortran variable in module output_data), 174	dw_lmloc (fortran variable in module fields), 165
dt_spec (fortran variable in module output_data), 171	dw_rloc (fortran variable in module fields), 166
dt_to (fortran variable in module output_data), 174	dwdt_lmloc (fortran variable in module step_time_mod),
dt_tomovie (fortran variable in module output_data), 171	203
dt_toz (fortran variable in module output_data), 172	

276

<pre>dwdt_rloc (fortran variable in module step_time_mod),</pre>	e_mag_ic_file (fortran variable in module output_data), 172
dwdtlast (fortran variable in module fieldslast), 168 dwdtlast_lmloc (fortran variable in module fieldslast), 168	e_mag_oc_file (fortran variable in module output_data), 174
dz (fortran variable in module fields), 165	e_mag_pmean (fortran variable in module output_mod),
dz_lmloc (fortran variable in module fields), 167	275
dz_rloc (fortran variable in module fields), 166	e_mag_tmean (fortran variable in module output_mod),
	275
· ·	
sional_oscillations), 338	e_p2_l_ave (fortran variable in module spectra), 292
dzastrlmr_rloc (fortran variable in module tor-	e_p2_m_ave (fortran variable in module spectra), 293
sional_oscillations), 337	e_p_asa (fortran variable in module kinetic_energy), 278
dzcorlmr (fortran variable in module torsional_oscillations), 338	e_p_asa (fortran variable in module magnetic_energy), 280
dzcorlmr_rloc (fortran variable in module tor-	e_p_l_ave (fortran variable in module spectra), 292
sional_oscillations), 338	e_p_m_ave (fortran variable in module spectra), 292
dzddvplmr (fortran variable in module tor-	e_pa (fortran variable in module kinetic_energy), 278
sional_oscillations), 338	e_pa (fortran variable in module magnetic_energy), 280
dzddvplmr_rloc (fortran variable in module tor-	e_t2_l_ave (fortran variable in module spectra), 292
sional_oscillations), 338	e_t2_m_ave (fortran variable in module spectra), 293
dzdt_lmloc (fortran variable in module step_time_mod),	e_t_asa (fortran variable in module kinetic_energy), 278
202	e_t_asa (fortran variable in module magnetic_energy),
dzdt_rloc (fortran variable in module step_time_mod),	280
203	e_t_l_ave (fortran variable in module spectra), 293
dzdtlast (fortran variable in module fieldslast), 168	e_t_m_ave (fortran variable in module spectra), 293
dzdtlast_lo (fortran variable in module fieldslast), 168	e_ta (fortran variable in module kinetic_energy), 278
— ·	•
dzdvplmr (fortran variable in module tor-	e_ta (fortran variable in module magnetic_energy), 280
sional_oscillations), 337	egeos_mod (module), 347
dzdvplmr_rloc (fortran variable in module tor-	ek (fortran variable in module physical_parameters), 158
sional_oscillations), 338	ek_p2_l_ave (fortran variable in module spectra), 293
dzlflmr (fortran variable in module tor-	ek_p2_m_ave (fortran variable in module spectra), 293
sional_oscillations), 338	ek_p_l_ave (fortran variable in module spectra), 292
dzlflmr_rloc (fortran variable in module tor-	ek_p_m_ave (fortran variable in module spectra), 292
sional_oscillations), 338	ek_t2_l_ave (fortran variable in module spectra), 293
dzrstrlmr (fortran variable in module tor-	ek_t2_m_ave (fortran variable in module spectra), 293
sional_oscillations), 338	ek_t_l_ave (fortran variable in module spectra), 292
dzrstrlmr_rloc (fortran variable in module tor-	ek_t_m_ave (fortran variable in module spectra), 293
sional_oscillations), 337	ekscaled (fortran variable in module physi-
dzstrlmr (fortran variable in module tor-	cal_parameters), 160
sional_oscillations), 338	elcmbmean (fortran variable in module output_mod), 275
dzstrlmr_rloc (fortran variable in module tor-	elmean (fortran variable in module output_mod), 275
sional_oscillations), 338	enscale (fortran variable in module num_param), 157
dzvmean (fortran variable in module output_mod), 275	eparaximeanr (fortran variable in module outpar_mod), 288
E	eparmeanr (fortran variable in module outpar_mod), 287
e_cmb2_l_ave (fortran variable in module spectra), 292	eperpaximeanr (fortran variable in module outpar_mod),
e_cmb2_m_ave (fortran variable in module spectra), 292	288
	eperpmeanr (fortran variable in module outpar_mod), 288
e_cmb_l_ave (fortran variable in module spectra), 292	eps (fortran variable in module egeos_mod), 347
e_cmb_m_ave (fortran variable in module spectra), 293	eps (fortran variable in module rms), 323
e_dipa (fortran variable in module magnetic_energy), 280	epsc (fortran variable in module physical_parameters),
e_kin_file (fortran variable in module output_data), 174	159
e_kin_pmean (fortran variable in module output_mod),	
275	epsc0 (fortran variable in module physical_parameters),
e_kin_tmean (fortran variable in module output_mod),	158

epscprof (fortran variable in module radial_functions), 196	finalize_updatewp() (fortran subroutine in module updatewp_mod), 211
epss (fortran variable in module physical_parameters),	fkinmeanr (fortran variable in module outpar_mod), 288
160	four (fortran variable in module constants), 177
equat() (magic.cyl.Cyl method), 140 equat() (magic.Surf method), 125	fourier2D() (magic.Butterfly method), 143 fpoynmeanr (fortran variable in module outpar_mod), 288
escale (fortran variable in module num_param), 157	frames (fortran variable in module movie_data), 299
etot (fortran variable in module output_mod), 274	fresmeanr (fortran variable in module outpar_mod), 288
etotold (fortran variable in module output_mod), 275	fviscmeanr (fortran variable in module outpar_mod), 288
expo_imp (fortran variable in module bext), 176	
ExtraPot (class in magic.potExtra), 135	G
F	g0 (fortran variable in module physical_parameters), 159 g1 (fortran variable in module physical_parameters), 159
fac_loop (fortran variable in module bext), 176	g2 (fortran variable in module physical_parameters), 159
factorise() (fortran subroutine in module useful), 365	gather_all_from_lo_to_rank0() (fortran subroutine in
fast_read() (in module magic.libmagic), 145	module communications), 184
fcondmeanr (fortran variable in module outpar_mod), 288	gather_from_lo_to_rank0() (fortran subroutine in module
fconvmeanr (fortran variable in module outpar_mod), 287	communications), 184
fft (module), 252	gauleg() (fortran subroutine in module horizontal_data),
fft99ajw() (fortran subroutine in module fft), 255	200
fft99bjw() (fortran subroutine in module fft), 255	gauss (fortran variable in module horizontal_data), 200
fft_fac_complex() (fortran subroutine in module	general_arrays_mod (module), 230
fft_fac_mod), 241 fft_fac_mod (module), 240	geo2hint (fortran variable in module rms), 321 geormsl_sd (fortran variable in module rms), 322
fft_fac_real() (fortran subroutine in module fft_fac_mod),	geormsl_ta (fortran variable in module rms), 322
240	geormssd (fortran variable in module rms), 323
fft_thetab() (fortran subroutine in module fft), 253	geosmean (fortran variable in module output_mod), 275
fft_to_real() (fortran subroutine in module fft), 253	get_angular_moment() (fortran subroutine in module out-
fftjw() (fortran subroutine in module fft), 254	rot), 286
fields (module), 164	get_b_nl_bcs() (fortran subroutine in module nonlin-
fields_average() (fortran subroutine in module	ear_bcs), 233
fields_average_mod), 319 fields_average_mod (module), 317	get_b_surface() (fortran subroutine in module out_movie), 312
fieldslast (module), 167	get_bmat() (fortran subroutine in module updateb_mod),
final_wait_array (fortran variable in module communica-	220
tions), 183	<pre>get_bpol() (fortran subroutine in module out_dtb_frame),</pre>
finalize() (fortran subroutine in module co-	335
sine_transform_even), 239	get_br_v_bcs() (fortran subroutine in module nonlin-
finalize() (fortran subroutine in module co- sine_transform_odd), 237	ear_bcs), 233 get_btor() (fortran subroutine in module out_dtb_frame),
finalize() (fortran subroutine in module dtb_arrays_mod),	335
333	get_chebs (fortran variable in module cheby-
finalize() (fortran subroutine in module nonlin-	shev_polynoms_mod), 235
ear_lm_mod), 231	get_chebs_direct() (fortran subroutine in module cheby-
finalize() (fortran subroutine in module to_arrays_mod),	shev_polynoms_mod), 236
343	get_chebs_even() (fortran subroutine in module cheby-
finalize_movie_data() (fortran subroutine in module	shev_polynoms_mod), 235
movie_data), 300 finalize_radialloop() (fortran subroutine in module radial-	get_chebs_recurr() (fortran subroutine in module cheby-shev_polynoms_mod), 235
loop), 221	get_dcheb (fortran variable in module radial_der), 259
finalize_riterthetablocking_openmp() (fortran subroutine	get_dcheb_complex() (fortran subroutine in module ra-
in module riterthetablocking_openmp_mod),	dial_der), 262
227	get_dcheb_even() (fortran subroutine in module ra-
	dial_der_even), 265

- get_dcheb_real_1d() (fortran subroutine in module radial der), 262
- get_ddcheb() (fortran subroutine in module radial_der), 262
- get_ddcheb_even() (fortran subroutine in module radial_der_even), **266**
- get_dddcheb() (fortran subroutine in module radial_der), 263
- get_dddr() (fortran subroutine in module radial_der), **261** get_ddr() (fortran subroutine in module radial_der), **261**
- get_ddr_even() (fortran subroutine in module radial_der_even), 264
- get_ddrns_even() (fortran subroutine in module radial_der_even), 265
- get_dh_dtblm() (fortran subroutine in module dtb_mod), 332
- get_dr (fortran variable in module radial_der), 259
- get_dr_complex() (fortran subroutine in module radial_der), 259
- get_drns() (fortran subroutine in module radial_der), 260 get_drns_even() (fortran subroutine in module radial_der even), 264
- get_dtb() (fortran subroutine in module out_dtb_frame), 335
- get_dtblm() (fortran subroutine in module dtb_mod), 331 get_dtblmfinish() (fortran subroutine in module dtb_mod), 331
- get_e_kin() (fortran subroutine in module kinetic_energy), 278
- get_e_mag() (fortran subroutine in module magnetic_energy), 280
- get_fl() (fortran subroutine in module out_movie), 312
- get_fluxes() (fortran subroutine in module nl_special_calc), 356
- get_global_sum (fortran variable in module communications), 182
- get_global_sum_cmplx_2d() (fortran function in module communications), **183**
- get_helicity() (fortran subroutine in module nl_special_calc), 357
- get_hit_times() (fortran subroutine in module precalculations), 194
- get_lorder_lm_blocking() (fortran subroutine in module blocking), 270
- $\begin{tabular}{ll} \tt get_lorentz_torque() & (fortran subroutine in module outrot), {\color{red} 286} \end{tabular}$
- get_movie_type() (fortran subroutine in module movie data), 300

- get_nlblayers() (fortran subroutine in module nl special calc), 355
- get_p0mat() (fortran subroutine in module updatewp_mod), 212
- get_perppar() (fortran subroutine in module nl_special_calc), 356
- get_poltorrms() (fortran subroutine in module rms_helpers), 325
- get_power() (fortran subroutine in module power), 290 get_ras() (fortran subroutine in module rms_helpers), 328 get_s0mat() (fortran subroutine in module updates_mod), 217
- get_sl() (fortran subroutine in module out_movie), 311 get_smat() (fortran subroutine in module updates_mod), 217
- get_standard_deviation() (fortran function in module spectra), 293
- get_standard_lm_blocking() (fortran subroutine in module blocking), 270
- $\begin{tabular}{ll} \tt get_subblocks() & (fortran subroutine in module blocking), \\ & 270 \end{tabular}$
- get_td() (fortran subroutine in module nonlinear_lm_mod), 231
- get_theta_blocking (fortran variable in module blocking), 269
- $get_theta_blocking_openmp() \ (fortran \ subroutine \ in \ module \ blocking), \ {\color{red}270}$
- get_viscous_torque (fortran variable in module outrot), 285
- get_viscous_torque_complex() (fortran subroutine in module outrot), 285
- $\begin{tabular}{ll} get_viscous_torque_real() & (fortran subroutine in module outrot), 285 \end{tabular}$
- get_wpmat() (fortran subroutine in module updatewp_mod), 211

- getAccuratePeaks() (in module magic.bLayers), 137 getastr() (fortran subroutine in module to_helpers), 342
- getbackground() (fortran subroutine in module radial_functions), 198
- getCpuTime() (in module magic.libmagic), 145
- getdlm() (fortran subroutine in module getdlm mod), 282

getdlm_mod (module), 281 getdvptr() (fortran subroutine in module egeos_mod), 348 getegeos() (fortran subroutine in module egeos_mod), 348	hdif_v (fortran variable in module horizontal_data), 200 hint2dpol() (fortran subroutine in module rms_helpers), 326
getGauss() (in module magic.coeff), 131	hint2dpollm() (fortran subroutine in module
getlm2lmo() (fortran subroutine in module readcheck-points), 360	rms_helpers), 326 hint2pol() (fortran subroutine in module rms_helpers),
getMaxima() (in module magic.bLayers), 137	326
getmsd2() (fortran subroutine in module useful), 366	hint2pollm() (fortran subroutine in module rms_helpers),
getpastr() (fortran subroutine in module to_helpers), 341 getpvptr() (fortran subroutine in module outpv3), 351	327 hint2tor() (fortran subroutine in module rms_helpers),
getstartfields() (fortran subroutine in module start_fields), 188	hint2torlm() (fortran subroutine in module rms_helpers),
getthistype() (fortran function in module riterthetablock-	328
ing_openmp_mod), 227 getto() (fortran subroutine in module tor-	hintrms() (fortran subroutine in module rms_helpers), 327 horizontal() (fortran subroutine in module horizon-
sional_oscillations), 338 gettofinish() (fortran subroutine in module tor-	tal_data), 200 horizontal_data (module), 198
sional_oscillations), 340	inorizontai_data (inodule), 120
gettonext() (fortran subroutine in module tor-	I
sional_oscillations), 339 getTotalRunTime() (in module magic.libmagic), 145 gradt2meanr (fortran variable in module outpar_mod), 288	i_fft_init (fortran variable in module fft), 253 ierr (fortran variable in module parallel_mod), 179 imagcon (fortran variable in module physi-
Graph2Vtk (class in magic.graph2vtk), 133	cal_parameters), 160 imps (fortran variable in module physical_parameters),
graph_file (fortran variable in module output_data), 175	160
graph_mpi_fh (fortran variable in module output_data), 173	inform (fortran variable in module init_fields), 191 init_b1 (fortran variable in module init_fields), 190
graph_write() (fortran subroutine in module graphout_mod), 297	init_fft() (fortran subroutine in module fft), 253 init_fields (module), 189
graph_write_mpi() (fortran subroutine in module	init_rnb() (fortran subroutine in module rms), 323
graphout_mod), 298 graphout() (fortran subroutine in module graphout_mod),	init_s1 (fortran variable in module init_fields), 190 init_s2 (fortran variable in module init_fields), 191
296	init_v1 (fortran variable in module init_fields), 190
graphout_header() (fortran subroutine in module	initb() (fortran subroutine in module init_fields), 192
graphout_mod), 296 graphout_ic() (fortran subroutine in module	initialize() (fortran subroutine in module co- sine_transform_even), 239
graphout_mod), 297	initialize() (fortran subroutine in module co-
graphout_mod (module), 295 graphout mpi() (fortran subroutine in module	sine_transform_odd), 237
graphout_mpi() (fortran subroutine in module graphout_mod), 296	initialize() (fortran subroutine in module dtb_arrays_mod), 333
graphout_mpi_header() (fortran subroutine in module	initialize() (fortran subroutine in module
graphout_mod), 297	leg_helper_mod), 244
grenoble (module), 178 gt_cheb (fortran variable in module communications),	initialize() (fortran subroutine in module nonlinear_lm_mod), 231
183	initialize() (fortran subroutine in module to_arrays_mod),
gt_ic (fortran variable in module communications), 182	343
gt_oc (fortran variable in module communications), 182	initialize_blocking() (fortran subroutine in module blocking), 270
H	initialize_communications() (fortran subroutine in mod-
half (fortran variable in module constants), 178 hammer2cart() (in module magic.libmagic), 146	ule communications), 183 initialize_dtb_mod() (fortran subroutine in module
hdf5helpers (module), 368	dtb_mod), 331
hdif_b (fortran variable in module horizontal_data), 199 hdif_s (fortran variable in module horizontal_data), 200	initialize_egeos_mod() (fortran subroutine in module egeos_mod), 348

initialize fields() (fortran subroutine in module fields), initialize updateb() (fortran subroutine in module up-167 initialize fields average mod() (fortran subroutine in module fields_average_mod), 319 initialize fieldslast() (fortran subroutine in module fieldslast), 168 initialize grenoble() (fortran subroutine in module grenoble), 179 initialize horizontal data() (fortran subroutine in module horizontal_data), 200 initialize_init_fields() (fortran subroutine in module init_fields), 191 initialize_kinetic_energy() (fortran subroutine in module kinetic_energy), 278 initialize_lmloop() (fortran subroutine in module lmloop_mod), 208 initialize_lmloop_data() (fortran subroutine in module Imloop data), 181 initialize_magnetic_energy() (fortran subroutine in module magnetic energy), 280 initialize matrices() (fortran subroutine in module matrices), 170 initialize_movie_data() (fortran subroutine in module movie data), 300 initialize num param() (fortran subroutine in module num param), 157 initialize_outpar_mod() (fortran subroutine in module outpar_mod), 288 initialize_output() (fortran subroutine in module output mod), 276 initialize_output_power() (fortran subroutine in module power), 290 initialize_outpv3() (fortran subroutine in module outpv3), initialize outto mod() (fortran subroutine in module outto mod), 344 initialize radial data() (fortran subroutine in module radial data), 180 initialize radial functions() (fortran subroutine in module radial_functions), 198 initialize radialloop() (fortran subroutine in module radialloop), 221 initialize riterthetablocking openmp() (fortran subroutine in module riterthetablocking_openmp_mod), 227 initialize_rms() (fortran subroutine in module rms), 323 initialize_spectra() (fortran subroutine in module spectra), initialize_step_time() (fortran subroutine in module step_time_mod), 203 initialize_to() (fortran subroutine in module tor-

sional oscillations), 338

cation), 155

initialize truncation() (fortran subroutine in module trun-

```
dateb mod), 219
initialize updates() (fortran subroutine in module up-
          dates_mod), 216
initialize updatewp() (fortran subroutine in module up-
          datewp mod), 211
initialize updatez() (fortran subroutine in module up-
          datez mod), 213
inits() (fortran subroutine in module init fields), 191
inity() (fortran subroutine in module init_fields), 191
intcheb() (in module magic.libmagic), 146
integBotTop() (in module magic.bLayers), 137
integBulkBc() (in module magic.bLayers), 137
integration (module), 266
interior_model (fortran variable in module physi-
          cal_parameters), 160
intfac (fortran variable in module num_param), 157
istop (fortran variable in module num param), 156
J
j_cond() (fortran subroutine in module init_fields), 192
imat (fortran variable in module matrices), 169
imat fac (fortran variable in module matrices), 169
jpivot (fortran variable in module matrices), 169
jvarcon (fortran variable in module radial_functions), 196
K
kappa (fortran variable in module radial_functions), 196
kbotb (fortran variable in module physical parameters),
kbots (fortran variable in module physical_parameters),
          159
kbotv (fortran variable in module physical_parameters),
          160
kinetic_energy (module), 277
ktopb (fortran variable in module physical_parameters),
ktops (fortran variable in module physical parameters),
          158
ktopy (fortran variable in module physical parameters),
          158
12lmas (fortran variable in module blocking), 269
1_am (fortran variable in module logic), 162
l_anel (fortran variable in module logic), 163
l_anelastic_liquid (fortran variable in module logic), 163
l_average (fortran variable in module logic), 162
1 b nl cmb (fortran variable in module logic), 164
l_b_nl_icb (fortran variable in module logic), 163
1 cmb field (fortran variable in module logic), 163
```

l_cond_ic (fortran variable in module logic), 162

1 cond ma (fortran variable in module logic), 163

1 conv (fortran variable in module logic), 162

l_conv_nl (fortran variable in module logic), 163	l_store_frame (fortran variable in module logic), 162
l_corr (fortran variable in module logic), 164	l_storebpot (fortran variable in module logic), 162
l_correct_ame (fortran variable in module logic), 161	l_storepot (fortran variable in module logic), 164
l_correct_amz (fortran variable in module logic), 161	l_storetpot (fortran variable in module logic), 163
l_correct_step() (fortran function in module useful), 364	l_storevpot (fortran variable in module logic), 162
l_corrmov (fortran variable in module logic), 163	l_time_hits (fortran variable in module logic), 161
l_curr (fortran variable in module bext), 176	l_to (fortran variable in module logic), 161
l_drift (fortran variable in module logic), 163	l_tomovie (fortran variable in module logic), 164
l_dt_cmb_field (fortran variable in module logic), 163	l_true_time (fortran variable in module logic), 162
l_dtb (fortran variable in module logic), 164	l_update_b (fortran variable in module logic), 162
l_dtbmovie (fortran variable in module logic), 161	l_update_s (fortran variable in module logic), 162
l_dtrmagspec (fortran variable in module logic), 161	l_update_v (fortran variable in module logic), 162
l_fluxprofs (fortran variable in module logic), 163	l_viscbccalc (fortran variable in module logic), 162
l_graph_time (fortran variable in module output_data),	l_z10mat (fortran variable in module logic), 163
172	lambda (fortran variable in module radial_functions), 198
l_heat (fortran variable in module logic), 161	lavemem (fortran variable in module truncation), 154
l_heat_nl (fortran variable in module logic), 164	lbdissmean (fortran variable in module output_mod), 276
l_hel (fortran variable in module logic), 163	lbmat (fortran variable in module matrices), 169
l_ht (fortran variable in module logic), 164	ldif (fortran variable in module num_param), 156
l_htmovie (fortran variable in module logic), 163	ldifexp (fortran variable in module num_param), 156
l_imp (fortran variable in module bext), 176	ldtbmem (fortran variable in module truncation), 154
l_iner (fortran variable in module logic), 164	leg_helper_mod (module), 242
l_isothermal (fortran variable in module logic), 162	legendre_grid_to_spec (module), 250
l_lcr (fortran variable in module logic), 161	legendre_spec_to_grid (module), 246
l_mag (fortran variable in module logic), 162	legprep() (fortran subroutine in module leg_helper_mod),
l_mag_kin (fortran variable in module logic), 164	244
l_mag_lf (fortran variable in module logic), 161	legprep_ic() (fortran subroutine in module
l_mag_nl (fortran variable in module logic), 162	leg_helper_mod), 245
l_max (fortran variable in module truncation), 153	legprepg() (fortran subroutine in module
l_max_cmb (fortran variable in module output_data), 172	leg_helper_mod), 244
l_max_r (fortran variable in module output_data), 174	legtf() (fortran subroutine in module legen-
l_maxmag (fortran variable in module truncation), 155	dre_spec_to_grid), 249
l_movie (fortran variable in module logic), 163	legtf1() (fortran subroutine in module legen-
l_movie_ic (fortran variable in module logic), 162	dre_grid_to_spec), 251
l_movie_oc (fortran variable in module logic), 163	legtf2() (fortran subroutine in module legen-
l_newmap (fortran variable in module logic), 163	dre_grid_to_spec), 251
l_non_rot (fortran variable in module logic), 162	legtf3() (fortran subroutine in module legen-
l_par (fortran variable in module logic), 164	dre_grid_to_spec), 251
l_perppar (fortran variable in module logic), 162	legtfas() (fortran subroutine in module legen-
l_power (fortran variable in module logic), 164	dre_grid_to_spec), 251
l_pressgraph (fortran variable in module logic), 162	legtfas2() (fortran subroutine in module legen-
l_pv (fortran variable in module logic), 161	dre_grid_to_spec), 252
l_r_field (fortran variable in module logic), 164	legtfg() (fortran subroutine in module legen-
l_r_fieldt (fortran variable in module logic), 162	dre_spec_to_grid), 246
l_reset_t (fortran variable in module init_fields), 191	legtfgnomag() (fortran subroutine in module legen-
l_rmagspec (fortran variable in module logic), 163	dre_spec_to_grid), 248
l_rms (fortran variable in module logic), 164	length_to_blank() (fortran function in module charma-
l_rot_ic (fortran variable in module logic), 163	nip), 367
l_rot_ma (fortran variable in module logic), 164	length_to_char() (fortran function in module charmanip),
l_runtimelimit (fortran variable in module logic), 163	367 167 hint (fortron variable in module rms) 322
l_save_out (fortran variable in module logic), 163	lf2hint (fortran variable in module rms), 322
l_sric (fortran variable in module logic), 162	lffac (fortran variable in module physical_parameters), 158
l_srma (fortran variable in module logic), 161 l_start_file (fortran variable in module init_fields), 190	lfm (fortran variable in module outto_mod), 344
1_start_ine (tortian variable in module init_netus), 190	mm (tornam variable in module outto_mod), 544

Ifrmsl_sd (fortran variable in module rms), 322 Ifrmsl_ta (fortran variable in module rms), 323 Ifrmssd (fortran variable in module rms), 321 Igeos (fortran variable in module truncation), 153 Igrenoble (fortran variable in module grenoble), 178 Ilicfield (fortran variable in module movie_data), 299	Imp_max_dtb (fortran variable in module truncation), 154 Imstartb (fortran variable in module blocking), 268 Imstopb (fortran variable in module blocking), 269 Inegtime() (fortran function in module timing), 207 Inpas2tr() (fortran function in module omega), 354 Io2Im_redist() (fortran subroutine in module communica-
lip (fortran variable in module precision_mod), 153	tions), 186
llm (fortran variable in module lmloop_data), 181	lo2r_aj (fortran variable in module communications), 183
llmmag (fortran variable in module lmloop_data), 181	lo2r_b (fortran variable in module communications), 183
lm2 (fortran variable in module blocking), 268	lo2r_p (fortran variable in module communications), 183
lm22l (fortran variable in module blocking), 269	lo2r_redist_start() (fortran subroutine in module commu-
lm22lm (fortran variable in module blocking), 269	nications), 185
lm22m (fortran variable in module blocking), 269	lo2r_redist_wait() (fortran subroutine in module commu-
lm21 (fortran variable in module blocking), 269	nications), 185
lm2lma (fortran variable in module blocking), 269	lo2r_s (fortran variable in module communications), 183
lm2lmp (fortran variable in module blocking), 269	lo2r_w (fortran variable in module communications), 183
lm2lms (fortran variable in module blocking), 269	lo2r_z (fortran variable in module communications), 183
lm2lo_redist() (fortran subroutine in module communica-	lo_map (fortran variable in module blocking), 269
tions), 185	lo_sub_map (fortran variable in module blocking), 269
lm2m (fortran variable in module blocking), 269	log_file (fortran variable in module output_data), 175
lm2mc (fortran variable in module blocking), 269	logic (module), 161
lm2pt() (fortran subroutine in module out_dtb_frame),	logwrite() (fortran subroutine in module useful), 366
336	lorentz_torque_iclast (fortran variable in module field-
lm2r_redist_start() (fortran subroutine in module commu-	slast), 168
nications), 185	lorentz_torque_malast (fortran variable in module field-
lm2r_redist_wait() (fortran subroutine in module commu-	slast), 168
nications), 185	lp_file (fortran variable in module output_data), 175
lm_max (fortran variable in module truncation), 154	lscale (fortran variable in module num_param), 157
lm_max_ave (fortran variable in module truncation), 154	Ismat (fortran variable in module matrices), 169
lm_max_dtb (fortran variable in module truncation), 155	lstart (fortran variable in module horizontal_data), 200
lm_max_real (fortran variable in module truncation), 155 lm_maxgeos (fortran variable in module truncation), 154	lstartp (fortran variable in module horizontal_data), 200 lstop (fortran variable in module horizontal_data), 199
lm_maxmag (fortran variable in module truncation), 154	lstopp (fortran variable in module horizontal_data), 199
lm_on_last_rank (fortran variable in module lm-	lstoremov (fortran variable in module movie_data), 299
loop_data), 181	lstressmem (fortran variable in module truncation), 153
lm_per_rank (fortran variable in module lmloop_data),	ltimelimit() (fortran function in module timing), 206
181	lvdissmean (fortran variable in module output_mod), 275
lmagmem (fortran variable in module truncation), 155	lverbose (fortran variable in module logic), 161
lmas2pt() (fortran subroutine in module legen-	lwpmat (fortran variable in module matrices), 169
dre_spec_to_grid), 250	lz10mat (fortran variable in module matrices), 169
lmloop() (fortran subroutine in module lmloop_mod), 209	lzmat (fortran variable in module matrices), 169
lmloop_data (module), 180	
lmloop_mod (module), 208	M
Immapping (module), 271	m_max (fortran variable in module truncation), 154
lmmaxs (fortran variable in module outto_mod), 344	mag2hint (fortran variable in module rms), 323
lmodd (fortran variable in module horizontal_data), 199	magic (fortran program), 151
lmoddp (fortran variable in module horizontal_data), 200	magic.bLayers (module), 136
Imoviemem (fortran variable in module truncation), 154	magic.coeff (module), 130
lmp2 (fortran variable in module blocking), 268	magic.cyl (module), 138
lmp2l (fortran variable in module blocking), 269	magic.graph2vtk (module), 133
lmp2lm (fortran variable in module blocking), 269	magic.libmagic (module), 143
lmp2lmpa (fortran variable in module blocking), 269	magic.potExtra (module), 135
lmp2lmps (fortran variable in module blocking), 269	MagicCoeffCmb (class in magic.coeff), 130
lmp_max (fortran variable in module truncation), 154	MagicCoeffR (class in magic.coeff), 130

MagicGraph (class in magic), 123	152
MagicRadial (class in magic), 121	ms2time() (fortran subroutine in module timing), 206
MagicRSpec (class in magic), 131	msechour (fortran variable in module timing), 205
MagicSetup (class in magic), 119	msecminute (fortran variable in module timing), 206
MagicSpectrum (class in magic), 122	msecsecond (fortran variable in module timing), 205
MagicSpectrum2D (class in magic), 122	mvar (fortran variable in module outpar_mod), 288
MagicTs (class in magic), 120	myallgather() (fortran subroutine in module communica-
magnetic_energy (module), 279	tions), 186
magrmsl_sd (fortran variable in module rms), 322	N I
magrmsl_ta (fortran variable in module rms), 323	N
magrmssd (fortran variable in module rms), 323	n_angular_file (fortran variable in module output_data),
mapdatahydro() (fortran subroutine in module readcheck-	175
points), 360	n_b_r_file (fortran variable in module output_data), 175
mapdatamag() (fortran subroutine in module readcheck-	n_b_r_sets (fortran variable in module output_mod), 275
points), 361	n_bpot_step (fortran variable in module output_data), 175
mapdatar() (fortran subroutine in module readcheck-	n_bpots (fortran variable in module output_data), 172
points), 362	n_cheb_ic_max (fortran variable in module truncation),
mass (fortran variable in module constants), 178	153
matder() (in module magic.libmagic), 146	n_cheb_max (fortran variable in module truncation), 155
matrices (module), 168	n_cheb_maxc (fortran variable in module rms), 322
maxthreads (fortran variable in module updateb_mod),	n_cmb_file (fortran variable in module output_data), 175
218	n_cmb_setsmov (fortran variable in module output_mod),
maxthreads (fortran variable in module updates_mod),	275
216	n_cmb_step (fortran variable in module output_data), 172
maxthreads (fortran variable in module updatewp_mod),	n_cmbmov_file (fortran variable in module output_data),
210	174
maxthreads (fortran variable in module updatez_mod),	n_cmbs (fortran variable in module output_data), 174
213	n_coeff_r (fortran variable in module output_data), 174
meantime() (fortran subroutine in module timing), 207	n_coeff_r_max (fortran variable in module output_data),
minc (fortran variable in module truncation), 153	175
misc_file (fortran variable in module output_data), 174	n_cour_step (fortran variable in module num_param), 157
mode (fortran variable in module physical_parameters),	n_dipole_file (fortran variable in module output_data),
159	175
Movie (class in magic), 127	n_dt_cmb_file (fortran variable in module output_data),
movie (fortran variable in module movie_data), 299	172
Movie3D (class in magic), 129	n_dt_cmb_sets (fortran variable in module output_mod),
movie_const (fortran variable in module movie_data),	275
299	n_dtbrms_file (fortran variable in module output_data),
movie_data (module), 298	173
movie_file (fortran variable in module movie_data), 299	n_dtvrms_file (fortran variable in module output_data),
movie_gather_frames_to_rank0() (fortran subroutine in	172
module movie_data), 306	n_e_kin_file (fortran variable in module output_data), 175
moviedipcolat (fortran variable in module movie_data),	n_e_mag_ic_file (fortran variable in module output_data),
299	175
moviediplon (fortran variable in module movie_data), 299	n_e_mag_oc_file (fortran variable in module out-
moviedipstrength (fortran variable in module	put_data), 174
movie_data), 299 moviedipstrengthgeo (fortran variable in module	n_e_sets (fortran variable in module output_mod), 275
	n_frame_work (fortran variable in module movie_data),
movie_data), 299	299
mpi_def_complex (fortran variable in module preci-	n_graph_file (fortran variable in module output_data),
sion_mod), 153 mpi_def_real (fortran variable in module precision_mod),	173
153	n_graph_step (fortran variable in module output_data),
mpi_out_real (fortran variable in module precision_mod),	172
mpi_out_ical (lortiali variable ili illoudie precisioli_illou),	n graphs (fortran variable in module output data), 171

n_imp (fortran variable in module bext), 176	n_procs (fortran variable in module parallel_mod), 179
n_imps (fortran variable in module physical_parameters),	n_r_array (fortran variable in module output_data), 172
158	n_r_cmb (fortran variable in module radial_data), 180
n_imps_max (fortran variable in module physical_parameters), 160	n_r_field_step (fortran variable in module output_data), 175
n_kin_spec_file (fortran variable in module output_data),	n_r_fields (fortran variable in module output_data), 174
173	n_r_ic_max (fortran variable in module truncation), 153
n_log_file (fortran variable in module output_data), 173 n_log_step (fortran variable in module output_data), 172	<pre>n_r_ic_max_ave (fortran variable in module truncation),</pre>
n_logs (fortran variable in module output_data), 174	n_r_ic_max_dtb (fortran variable in module truncation),
n_lp_file (fortran variable in module output_data), 175	155
n_lscale (fortran variable in module num_param), 156	n_r_ic_maxmag (fortran variable in module truncation),
n_m_max (fortran variable in module truncation), 154	155
n_mag_spec_file (fortran variable in module out-	n_r_icb (fortran variable in module radial_data), 180
put_data), 175	n_r_lcr (fortran variable in module physical_parameters),
n_md (fortran variable in module movie_data), 299	159
n_misc_file (fortran variable in module output_data), 173	n_r_max (fortran variable in module truncation), 154
n_movie_const (fortran variable in module movie_data),	n_r_max_ave (fortran variable in module truncation), 154
299	n_r_max_dtb (fortran variable in module truncation), 155
n_movie_field_start (fortran variable in module	n_r_maxc (fortran variable in module rms), 323
movie_data), 299	n_r_maxgeos (fortran variable in module truncation), 154
n_movie_field_stop (fortran variable in module	n_r_maxmag (fortran variable in module truncation), 153
movie_data), 299	n_r_maxstr (fortran variable in module truncation), 155
n_movie_field_type (fortran variable in module movie_data), 299	n_r_step (fortran variable in module output_data), 171 n_r_tot (fortran variable in module truncation), 154
n_movie_fields (fortran variable in module movie_data),	n_r_totmag (fortran variable in module truncation), 155
299	n_rot_file (fortran variable in module output_data), 173
n_movie_fields_ic (fortran variable in module	n_rst_file (fortran variable in module output_data), 171
movie_data), 299	n_rst_step (fortran variable in module output_data), 173
n_movie_fields_max (fortran variable in module	n_rsts (fortran variable in module output_data), 173
movie_data), 299	n_s_bounds (fortran variable in module init_fields), 190
n_movie_file (fortran variable in module movie_data),	n_signal_file (fortran variable in module output_data),
299	174
n_movie_frames (fortran variable in module out-	n_spec (fortran variable in module output_mod), 275
put_data), 171	n_spec_step (fortran variable in module output_data), 175
n_movie_step (fortran variable in module output_data),	n_specs (fortran variable in module output_data), 173
174	n_sric_file (fortran variable in module output_data), 173
	n_srma_file (fortran variable in module output_data), 174
movie_data), 299 n_movie_type (fortran variable in module movie_data),	n_start_file (fortran variable in module init_fields), 190 n_stores (fortran variable in module output_data), 174
11_movie_type (fortian variable in module movie_data),	n_t_bpot (fortran variable in module output_data), 172
n_movies (fortran variable in module movie_data), 299	n_t_cmb (fortran variable in module output_data), 171
n_movies_max (fortran variable in module movie_data),	n_t_graph (fortran variable in module output_data), 174
299	n_t_log (fortran variable in module output_data), 172
n_par_file (fortran variable in module output_data), 171	n_t_movie (fortran variable in module output_data), 173
n_perppar_file (fortran variable in module output_data),	n_t_pot (fortran variable in module output_data), 172
173	n_t_r_field (fortran variable in module output_data), 174
n_phi_max (fortran variable in module truncation), 155	n_t_r_file (fortran variable in module output_data), 172
n_phi_maxstr (fortran variable in module truncation), 154	n_t_r_sets (fortran variable in module output_mod), 275
n_phi_tot (fortran variable in module truncation), 155	n_t_rst (fortran variable in module output_data), 175
n_pot_step (fortran variable in module output_data), 174	n_t_spec (fortran variable in module output_data), 171
n_pots (fortran variable in module output_data), 173	n_t_to (fortran variable in module output_data), 173
n_power_file (fortran variable in module output_data),	n_t_tomovie (fortran variable in module output_data),
172	172

n_t_toz (fortran variable in module output_data), 171 n_t_tpot (fortran variable in module output_data), 174 n_t_vpot (fortran variable in module output_data), 174 n_theta_cal2ord (fortran variable in module horizon-	nlf (fortran variable in module output_data), 171 nlmbs (fortran variable in module blocking), 269 nlmbs2 (fortran variable in module blocking), 269 nlmbs_per_rank (fortran variable in module paral-
tal data), 200	lel_mod), 179
n_theta_max (fortran variable in module truncation), 154	nlogs (fortran variable in module output_mod), 275
n_theta_maxstr (fortran variable in module truncation),	nonlinear_bcs (module), 232
154	nonlinear_lm_mod (module), 230
n_time_hits (fortran variable in module output_data), 171	npvsets (fortran variable in module output_mod), 275
n_time_steps (fortran variable in module num_param), 156	nr_on_last_rank (fortran variable in module paral- lel_mod), 179
n_to_step (fortran variable in module output_data), 172	nr_per_rank (fortran variable in module parallel_mod),
n_tomovie_frames (fortran variable in module output_data), 173	179 nrms_sets (fortran variable in module output_mod), 276
n_tomovie_step (fortran variable in module output_data),	nrotic (fortran variable in module init_fields), 191
173	nrotma (fortran variable in module init_fields), 190
n_tos (fortran variable in module output_data), 173	nrp (fortran variable in module truncation), 154
n_toz_step (fortran variable in module output_data), 175	nrpgeos (fortran variable in module truncation), 154
n_tozs (fortran variable in module output_data), 171	nrstart (fortran variable in module radial_data), 180
n_tpot_step (fortran variable in module output_data), 171	nrstartmag (fortran variable in module radial_data), 180
n_tpots (fortran variable in module output_data), 171	nrstop (fortran variable in module radial_data), 180
n_tscale (fortran variable in module num_param), 157	nrstopmag (fortran variable in module radial_data), 180
n_u2_spec_file (fortran variable in module output_data),	nsmax (fortran variable in module omega), 354
174	nsmaxa (fortran variable in module output_data), 174
n_u_square_file (fortran variable in module output_data), 172	nthetabs (fortran variable in module blocking), 269
n_v_r_file (fortran variable in module output_data), 174	nthreads (fortran variable in module parallel_mod), 179 ntomovsets (fortran variable in module output_mod), 275
n_v_r_sets (fortran variable in module output_mod), 275	ntormssets (fortran variable in module output_mod), 275
n_vpot_step (fortran variable in module output_data), 173	ntosets (fortran variable in module output_mod), 275
n_vpots (fortran variable in module output_data), 173	ntpotsets (fortran variable in module output_mod), 274
nalias (fortran variable in module truncation), 154	num_param (module), 155
namelists (module), 186	nvarcond (fortran variable in module physi-
nbdown (fortran variable in module blocking), 269	cal_parameters), 160
nbpotsets (fortran variable in module output_mod), 275	nvardiff (fortran variable in module physical_parameters),
nbsave (fortran variable in module blocking), 268	160
ncp (fortran variable in module truncation), 154	nvareps (fortran variable in module physical_parameters),
ncpgeos (fortran variable in module truncation), 155	160
ncut (fortran variable in module rms), 321	nvarvisc (fortran variable in module physi-
nd (fortran variable in module fft), 253	cal_parameters), 160
ndd_costf1 (fortran variable in module radial_functions), 197	nvpotsets (fortran variable in module output_mod), 275 nzmaxa (fortran variable in module output_data), 172
ndd_costf1_ic (fortran variable in module ra-	nzmaxs (fortran variable in module egeos_mod), 348
dial_functions), 198	nzmaxs (fortran variable in module outto_mod), 344
ndd_costf2_ic (fortran variable in module ra-	
dial_functions), 196	0
ndi_costf1 (fortran variable in module radial_functions),	o_r_ic (fortran variable in module radial_functions), 197
197	o_r_ic2 (fortran variable in module radial_functions), 196
ndi_costf1_ic (fortran variable in module radial_functions), 197	o_sin_theta (fortran variable in module horizontal_data), 199
ndi_costf2_ic (fortran variable in module ra-	o_sin_theta_e2 (fortran variable in module horizon-
dial_functions), 196	tal_data), 200
nfs (fortran variable in module blocking), 269	o_sr (fortran variable in module physical_parameters),
ni (fortran variable in module fft), 253	159
nl special calc (module), 355	ohmdissr (fortran variable in module power) 290

ohmlossfac (fortran variable in module physical_parameters), 159 omega (module), 353	outrot (module), 284 outto() (fortran subroutine in module outto_mod), 344 outto_mod (module), 343
omega_ic (fortran variable in module fields), 166 omega_ic1 (fortran variable in module init_fields), 190	P
omega_ic2 (fortran variable in module init_fields), 190 omega_ma (fortran variable in module fields), 167 omega_ma1 (fortran variable in module init_fields), 191 omega_ma2 (fortran variable in module init_fields), 191 omegaosz_ic1 (fortran variable in module init_fields), 190 omegaosz_ic2 (fortran variable in module init_fields), 190 omegaosz_ma1 (fortran variable in module init_fields), 191 omegaosz_ma2 (fortran variable in module init_fields), 191	p (fortran variable in module fields), 166 p0mat (fortran variable in module matrices), 169 p0pivot (fortran variable in module matrices), 169 p_ave (fortran variable in module fields_average_mod), 319 p_ave_global (fortran variable in module fields_average_mod), 319 p_lmloc (fortran variable in module fields), 165 p_lmloc_container (fortran variable in module fields), 166 p_rloc (fortran variable in module fields), 165
one (fortran variable in module constants), 177 openfiles() (fortran subroutine in module output_data), 176	p_rloc_container (fortran variable in module fields), 166 padvasrms (fortran variable in module dtb_mod), 329
opm (fortran variable in module physical_parameters), 158 opr (fortran variable in module physical_parameters), 160	padvlm (fortran variable in module dtb_mod), 329 padvlm_rloc (fortran variable in module dtb_mod), 330 padvlmic (fortran variable in module dtb_mod), 330 padvlmic_lmloc (fortran variable in module dtb_mod),
or1 (fortran variable in module radial_functions), 197 or2 (fortran variable in module radial_functions), 197 or3 (fortran variable in module radial_functions), 197 or4 (fortran variable in module radial_functions), 197 orho1 (fortran variable in module radial_functions), 196	padvimic_innoc (fortrain variable in module dtb_mod), 330 padvrms (fortran variable in module dtb_mod), 330 par_file (fortran variable in module output_data), 172 parallel() (fortran subroutine in module parallel_mod), 180
orho2 (fortran variable in module radial_functions), 196 osints (fortran variable in module egeos_mod), 347 osints (fortran variable in module outpv3), 350 osints (fortran variable in module outto_mod), 344 osn1 (fortran variable in module horizontal_data), 199 osn2 (fortran variable in module horizontal_data), 199 osq4pi (fortran variable in module constants), 177 otemp1 (fortran variable in module radial_functions), 196 out_coeff (module), 314	parallel_mod (module), 179 pdifasrms (fortran variable in module dtb_mod), 329 pdiflm (fortran variable in module dtb_mod), 330 pdiflm_lmloc (fortran variable in module dtb_mod), 330 pdiflmic (fortran variable in module dtb_mod), 330 pdiflmic_lmloc (fortran variable in module dtb_mod), 330 pdifrms (fortran variable in module dtb_mod), 329 peaks (fortran variable in module physical_parameters), 159
out_dtb_frame (module), 334 out_movie (module), 306 out_movie_ic (module), 313 outmisc() (fortran subroutine in module outmisc_mod), 283	perppar_file (fortran variable in module output_data), 173 phi (fortran variable in module horizontal_data), 200 phideravg() (in module magic.libmagic), 147 phis (fortran variable in module physical_parameters), 160
outmisc_mod (module), 282 outomega() (fortran subroutine in module omega), 354 outp (fortran variable in module precision_mod), 152 outpar() (fortran subroutine in module outpar_mod), 288 outpar_mod (module), 287 outperppar() (fortran subroutine in module outpar_mod), 289 output() (fortran subroutine in module nonlinear_lm_mod), 231	physical_parameters (module), 157 pi (fortran variable in module constants), 177 plf2hint (fortran variable in module rms), 323 plfrmsl_sd (fortran variable in module rms), 321 plfrmsl_ta (fortran variable in module rms), 322 plfrmssd (fortran variable in module rms), 322 plm (fortran variable in module horizontal_data), 199 plm_theta() (fortran subroutine in module plms_theta), 241
output() (fortran subroutine in module output_mod), 276 output_data (module), 170 output_mod (module), 272 outpv() (fortran subroutine in module outpv3), 350 outpv3 (module), 349	plm_thetaas() (fortran subroutine in module plms_theta), 242 plms (fortran variable in module egeos_mod), 348 plms (fortran variable in module outpv3), 350 plms (fortran variable in module outto_mod), 344

$ \begin{array}{l} r_ic \ (fortran \ variable \ in \ module \ radial_functions), \ 198 \\ r_icb \ (fortran \ variable \ in \ module \ radial_functions), \ 197 \\ r_lcr \ (fortran \ variable \ in \ module \ physical_parameters), \end{array} $
r_lm_gather_type (fortran variable in module communi-
cations), 182 r_lm_gather_type_lm_end (fortran variable in module
communications), 183 r_request (fortran variable in module communications), 183
r_surface (fortran variable in module radial_functions), 197
r_transfer_type (fortran variable in module communications), 183
r_transfer_type_cont (fortran variable in module communications), 183
r_transfer_type_nr_end (fortran variable in module communications), 183
r_transfer_type_nr_end_cont (fortran variable in module communications), 183
ra (fortran variable in module physical_parameters), 159 radial() (fortran subroutine in module radial_functions),
198
radial_data (module), 180
radial_der (module), 259
radial_der_even (module), 263 radial_functions (module), 195
radial_spectra (module), 345 radialloop (module), 220
radialloopg() (fortran subroutine in module radialloop), 221
radratio (fortran variable in module physical_parameters),
159
random() (fortran function in module useful), 364
rank_bn (fortran variable in module parallel_mod), 179 rank_with_l1m0 (fortran variable in module parallel_mod), 179
rascaled (fortran variable in module physical_parameters), 160
rbpspec() (fortran subroutine in module radial_spectra), 346
rbrspec() (fortran subroutine in module radial_spectra), 346
rc (fortran variable in module rms), 322 rcut (fortran variable in module output_data), 175
rdea (fortran variable in module output_data), 175
rderavg() (in module magic.libmagic), 147 readcheckpoints (module), 358 readhdf5_attr_dble() (fortran subroutine in module
hdf5helpers), 368 readhdf5_attr_int() (fortran subroutine in module
hdf5helpers), 369
readhdf5_attribute (fortran variable in module hdf5helpers), 368

$\begin{tabular}{ll} readname lists() (for tran subroutine in module name lists), \\ 187 \end{tabular}$	s_lmloc (fortran variable in module fields), 165 s_lmloc_container (fortran variable in module fields), 165
readstartfields() (fortran subroutine in module readcheck-points), 359	s_request (fortran variable in module communications), 183
rearangeLat() (magic.MagicGraph method), 124	s_rloc (fortran variable in module fields), 166
rgrav (fortran variable in module radial_functions), 197	s_rloc_container (fortran variable in module fields), 166
rho0 (fortran variable in module radial_functions), 197	s_top (fortran variable in module init_fields), 191
rho_ratio_ic (fortran variable in module physical_parameters), 158	s_transfer_type (fortran variable in module communications), 182
rho_ratio_ma (fortran variable in module physical_parameters), 159	s_transfer_type_cont (fortran variable in module communications), 182
rhs1 (fortran variable in module updateb_mod), 219 rhs1 (fortran variable in module updates_mod), 216	s_transfer_type_nr_end (fortran variable in module communications), 183
rhs1 (fortran variable in module updatewp_mod), 210	s_transfer_type_nr_end_cont (fortran variable in module
rhs1 (fortran variable in module updatez_mod), 213	communications), 182
rhs2 (fortran variable in module updateb_mod), 219	safeclose() (fortran subroutine in module useful), 366
rint() (fortran function in module integration), 267	safeopen() (fortran subroutine in module useful), 365
rint_r() (fortran function in module integration), 267	scale_b (fortran variable in module init_fields), 190
rintic() (fortran function in module integration), 267	scale_s (fortran variable in module init_fields), 190
riteration_mod (module), 223	scale_v (fortran variable in module init_fields), 190
riterthetablocking_mod (module), 224	scanDir() (in module magic.libmagic), 147
riterthetablocking_openmp_mod (module), 226	scatter_from_rank0_to_lo() (fortran subroutine in module
rmmean (fortran variable in module output_mod), 276	communications), 184
rmmeanr (fortran variable in module outpar_mod), 288	sdens (fortran variable in module output_data), 171
rms (module), 320	sderavg() (in module magic.libmagic), 148
rms_helpers (module), 324	selectField() (in module magic.libmagic), 148
rolmean (fortran variable in module output_mod), 275	sendvals_to_rank0() (fortran subroutine in module out-
rolmeanr (fortran variable in module outpar_mod), 288	rot), 286
rolmeanru2 (fortran variable in module outpar_mod), 288	set_steering_variables() (fortran subroutine in module rit-
rot_file (fortran variable in module output_data), 173	eration_mod), 224
rrmp (fortran variable in module bext), 176	set_thetablocking() (fortran subroutine in module riter-
rst_file (fortran variable in module output_data), 171	thetablocking_mod), 225
rst_mpi_fh (fortran variable in module output_data), 172	set_zero() (fortran subroutine in module
rstrm (fortran variable in module outto_mod), 344	dtb_arrays_mod), 333
runid (fortran variable in module output_data), 171	set_zero() (fortran subroutine in module nonlin-
runtime (fortran variable in module num_param), 157	ear_lm_mod), 231
runtimelimit (fortran variable in module num_param), 156	set_zero() (fortran subroutine in module to_arrays_mod), 343
runtimestart (fortran variable in module num_param), 157	sgefa() (fortran subroutine in module algebra), 258
rz (fortran variable in module egeos_mod), 348	sgesl() (fortran subroutine in module algebra), 258
rz (fortran variable in module outpv3), 350	sigma (fortran variable in module radial_functions), 198
rz (fortran variable in module outto_mod), 344	sigma_ratio (fortran variable in module physical_parameters), 159
S	sin36 (fortran variable in module constants), 178
s (fortran variable in module fields), 167	sin60 (fortran variable in module constants), 177
s0mat (fortran variable in module matrices), 169	sin72 (fortran variable in module constants), 178
s0mat_fac (fortran variable in module matrices), 169	sintheta (fortran variable in module horizontal_data), 200
s0pivot (fortran variable in module matrices), 169	sizelmb (fortran variable in module blocking), 269
s_ave (fortran variable in module fields_average_mod), 319	sizelmb2 (fortran variable in module blocking), 269 sizeof_character (fortran variable in module preci-
s_ave_global (fortran variable in module	sion_mod), 153
fields_average_mod), 319	sizeof_def_complex (fortran variable in module preci-
s_bot (fortran variable in module init_fields), 190	sion_mod), 153
s_cond() (fortran subroutine in module init_fields), 192	

sizeof_def_real (fortran variable in module precision_mod), 153	store_movie_frame() (fortran subroutine in module out_movie), 307
sizeof_integer (fortran variable in module preci-	store_movie_frame_ic() (fortran subroutine in module
sion_mod), 153	out_movie_ic), 313
sizeof_out_real (fortran variable in module preci-	store_pot_mod (module), 316
sion_mod), 153	storecheckpoints (module), 362
sizerb (fortran variable in module blocking), 269	storepot() (fortran subroutine in module store_pot_mod),
sizethetab (fortran variable in module blocking), 269	316
sizethetabi (fortran variable in module blocking), 269	storepotw() (fortran subroutine in module
slice() (magic.cyl.Cyl method), 140	store_pot_mod), 317
slice() (magic.Surf method), 126	str2dble() (fortran subroutine in module charmanip), 367
slopestrat (fortran variable in module physi-	strat (fortran variable in module physical_parameters),
cal_parameters), 160	158
smat (fortran variable in module matrices), 169	strm (fortran variable in module outto_mod), 344
smat_fac (fortran variable in module matrices), 169	subtime() (fortran subroutine in module timing), 206
smeanr (fortran variable in module outpar_mod), 288	Surf (class in magic), 124
sn2 (fortran variable in module horizontal_data), 199	surf() (magic.cyl.Cyl method), 140
sn_sub_map (fortran variable in module blocking), 269	surf() (magic.Surf method), 126
spectra (module), 291	surf_cmb (fortran variable in module constants), 177
spectrum() (fortran subroutine in module spectra), 294	svar (fortran variable in module outpar_mod), 288
spectrum_average() (fortran subroutine in module spec-	symmetrize() (in module magic.libmagic), 148
tra), 293	-
spectrum_temp() (fortran subroutine in module spectra),	Т
294	t2_ave (fortran variable in module spectra), 293
spectrum_temp_average() (fortran subroutine in module	t_ave (fortran variable in module spectra), 293
spectra), 294	t_bpot (fortran variable in module output_data), 175
sph2cart_scal() (in module magic.graph2vtk), 134	t_bpot_start (fortran variable in module output_data), 171
sph2cart_vec() (in module magic.graph2vtk), 135	t_bpot_stop (fortran variable in module output_data), 175
sph2cyl() (in module magic.cyl), 141	t_cmb (fortran variable in module output_data), 172
sph2cyl_plane() (in module magic.cyl), 141	t_cmb_start (fortran variable in module output_data), 173
spivot (fortran variable in module matrices), 169	t_cmb_stop (fortran variable in module output_data), 173
sq4pi (fortran variable in module constants), 178	t_graph (fortran variable in module output_data), 172
sric_file (fortran variable in module output_data), 174	t_graph_start (fortran variable in module output_data),
srma_file (fortran variable in module output_data), 175	172
st_map (fortran variable in module blocking), 269	t_graph_stop (fortran variable in module output_data),
st_sub_map (fortran variable in module blocking), 269	174
start_fields (module), 187	t_icb2_ave (fortran variable in module spectra), 292
start_file (fortran variable in module init_fields), 190	t_icb_ave (fortran variable in module spectra), 292
step_time() (fortran subroutine in module	t_log (fortran variable in module output_data), 175
step_time_mod), 203	t_log_start (fortran variable in module output_data), 173
step_time_mod (module), 201	t_log_stop (fortran variable in module output_data), 172
store() (fortran subroutine in module storecheckpoints),	t_movie (fortran variable in module output_data), 174
363 store_fields_3d() (fortran subroutine in module	t_movie_start (fortran variable in module output_data),
out_movie), 311	171
store_fields_p() (fortran subroutine in module	t_movie_stop (fortran variable in module output_data),
out_movie), 309	175
store_fields_r() (fortran subroutine in module out_movie),	t_movies (fortran variable in module movie_data), 299
309	t_pot (fortran variable in module output_data), 174
store_fields_sur() (fortran subroutine in module	t_pot_start (fortran variable in module output_data), 174
out_movie), 308	t_pot_stop (fortran variable in module output_data), 175
store_fields_t() (fortran subroutine in module out_movie),	t_r_field (fortran variable in module output_data), 174 t_r_field_start (fortran variable in module output_data),
	i_i_noid_stati (tornan variable in module output_data),

_r_field_stop (fortran variable in module output_data), 173	thetas (fortran variable in module physical_parameters) 159
_r_file (fortran variable in module output_data), 171	third (fortran variable in module constants), 178
rst (fortran variable in module output_data), 172	three (fortran variable in module constants), 177
s_rst_start (fortran variable in module output_data), 171	time2ms() (fortran function in module timing), 206
rst_stop (fortran variable in module output_data), 171	timenormlog (fortran variable in module output_mod)
spec (fortran variable in module output_data), 171	275
spec_start (fortran variable in module output_data), 175	timenormrms (fortran variable in module output_mod)
_spec_stop (fortran variable in module output_data), 175	275
_to (fortran variable in module output_data), 173	timepassedlog (fortran variable in module output_mod)
_to_start (fortran variable in module output_data), 172	275
_to_stop (fortran variable in module output_data), 175	timepassedrms (fortran variable in module output_mod)
_tomovie (fortran variable in module output_data), 175	275
_tomovie_start (fortran variable in module output_data),	timestart (fortran variable in module num_param), 156
174	timing (module), 205
_tomovie_stop (fortran variable in module output_data),	tipdipole (fortran variable in module init_fields), 190
173	tmagcon (fortran variable in module physi-
_toz (fortran variable in module output_data), 174	cal_parameters), 160
_toz_start (fortran variable in module output_data), 171	to_arrays_mod (module), 342
_toz_stop (fortran variable in module output_data), 173	to_gather_rloc_on_rank0() (fortran subroutine in module
_tpot (fortran variable in module output_data), 174	torsional_oscillations), 340
_tpot_start (fortran variable in module output_data), 173	to_helpers (module), 340
_tpot_stop (fortran variable in module output_data), 174	tomeasrms (fortran variable in module dtb_mod), 330
_vpot (fortran variable in module output_data), 173	tomega_ic1 (fortran variable in module init_fields), 190
_vpot_start (fortran variable in module output_data), 172	tomega_ic2 (fortran variable in module init_fields), 190
_vpot_stop (fortran variable in module output_data), 175	tomega_ma1 (fortran variable in module init_fields), 190
advasrms (fortran variable in module dtb_mod), 330	tomega_ma2 (fortran variable in module init_fields), 190
advlm (fortran variable in module dtb_mod), 330	tomelm (fortran variable in module dtb_mod), 330
advlm_rloc (fortran variable in module dtb_mod), 329	tomelm_rloc (fortran variable in module dtb_mod), 330
advlmic (fortran variable in module dtb_mod), 329	tomerlm (fortran variable in module dtb_mod), 330
advlmic_lmloc (fortran variable in module dtb_mod),	tomerlm_rloc (fortran variable in module dtb_mod), 330
329	tomerms (fortran variable in module dtb_mod), 330
advrlm (fortran variable in module dtb_mod), 330	TOMovie (class in magic), 131
advrlm_rloc (fortran variable in module dtb_mod), 330	topcond (fortran variable in module radial_functions), 196
advrms (fortran variable in module dtb_mod), 330	tops (fortran variable in module init_fields), 190
ag (fortran variable in module output_data), 175	torsional_oscillations (module), 336
difasrms (fortran variable in module dtb_mod), 330	transform_to_grid_space() (fortran subroutine in module
diflm (fortran variable in module dtb_mod), 330	riterthetablocking_mod), 226
diflm_lmloc (fortran variable in module dtb_mod), 330	transform_to_lm_space() (fortran subroutine in module
diflmic (fortran variable in module dtb_mod), 330	riterthetablocking_mod), 226
diflmic_lmloc (fortran variable in module dtb_mod), 330	transportproperties() (fortran subroutine in module ra-
difrms (fortran variable in module dtb_mod), 329	dial_functions), 198
emp0 (fortran variable in module radial_functions), 197	truncation (module), 153
emp_gather_lo (fortran variable in module communica-	tscale (fortran variable in module num_param), 157
tions), 183	tshift_ic1 (fortran variable in module init_fields), 191
emp_r2lo (fortran variable in module communications),	tshift_ic2 (fortran variable in module init_fields), 191
183	tshift_ma1 (fortran variable in module init_fields), 190
end (fortran variable in module num_param), 156	tshift_ma2 (fortran variable in module init_fields), 190
heta (fortran variable in module horizontal_data), 200	tstrasrms (fortran variable in module dtb_mod), 330
heta_ord (fortran variable in module horizontal_data),	tstrlm (fortran variable in module dtb_mod), 329
200	tstrlm_rloc (fortran variable in module dtb_mod), 330
hetaderavg() (in module magic.libmagic), 149	tstrrlm (fortran variable in module dtb_mod), 330
FhetaHeat (class in magic), 138	tstrrlm_rloc (fortran variable in module dtb_mod), 330
The man (class in magic), 150	tstrrms (fortran variable in module dtb_mod), 330
	tourne (formali farable in module dio_mod), 550

two (fortran variable in module constants), 178	vischeatfac (fortran variable in module physi-
U	cal_parameters), 158 vol_ic (fortran variable in module constants), 178
u_square_file (fortran variable in module output_data), 175	vol_oc (fortran variable in module constants), 178 vorold (fortran variable in module outpv3), 350
uhmeanr (fortran variable in module outpar_mod), 288 ulm (fortran variable in module lmloop_data), 181	vpm (fortran variable in module outto_mod), 344 vscale (fortran variable in module num_param), 157
ulmmag (fortran variable in module lmloop_data), 181 unknown_type (fortran type in module communications), 182	W w (fortran variable in module fields), 167
unknown_type (fortran type in module co- sine_transform_even), 239	w_ave (fortran variable in module fields_average_mod), 319
unknown_type (fortran type in module co- sine_transform_odd), 237	w_ave_global (fortran variable in module fields_average_mod), 319
unknown_type (fortran type in module dtb_arrays_mod), 333	w_lmloc (fortran variable in module fields), 166w_lmloc_container (fortran variable in module fields),
unknown_type (fortran type in module leg_helper_mod), 243	w_rloc (fortran variable in module fields), 166
unknown_type (fortran type in module nonlinear_lm_mod), 230	w_rloc_container (fortran variable in module fields), 166 walltime() (fortran subroutine in module timing), 206
unknown_type (fortran type in module riteration_mod), 223	widths (fortran variable in module physical_parameters), 160
unknown_type (fortran type in module riterthetablock-ing_mod), 225	worka (fortran variable in module updateb_mod), 218 worka (fortran variable in module updates_mod), 216
unknown_type (fortran type in module riterthetablock-ing_openmp_mod), 227	worka (fortran variable in module updatewp_mod), 210 worka (fortran variable in module updatez_mod), 213
unknown_type (fortran type in module to_arrays_mod),	workb (fortran variable in module updateb_mod), 219 workb (fortran variable in module updates_mod), 216
updateb() (fortran subroutine in module updateb_mod), 219	workb (fortran variable in module updatewp_mod), 210 workb (fortran variable in module updatez_mod), 210 workb (fortran variable in module updatez_mod), 213
updateb_mod (module), 217	workc (fortran variable in module updatez_mod), 213
updates() (fortran subroutine in module updates_mod), 216	wpass2jw() (fortran subroutine in module fft), 255 wpass3jw() (fortran subroutine in module fft), 256
updates_ala() (fortran subroutine in module up-	wpass4jw() (fortran subroutine in module fft), 256
dates_mod), 216 updates_mod (module), 215	wpass5jw() (fortran subroutine in module fft), 256 wplm (fortran variable in module horizontal_data), 200
updatewp() (fortran subroutine in module up-	wpmt (fortran variable in module matrices), 169
datewp_mod), 211	wpmat_fac (fortran variable in module matrices), 169
updatewp_mod (module), 209	wppivot (fortran variable in module matrices), 169
updatez() (fortran subroutine in module updatez_mod), 213	write_bcmb() (fortran subroutine in module out_coeff), 314
updatez_mod (module), 212 useful (module), 364	write_coeff_r() (fortran subroutine in module out_coeff), 315
	write_dataset() (fortran subroutine in module
V	hdf5helpers), 368
v2as (fortran variable in module torsional_oscillations), 337	write_dtb_frame() (fortran subroutine in module out_dtb_frame), 334
v2as_rloc (fortran variable in module torsional_oscillations), 337	write_movie_frame() (fortran subroutine in module out_movie), 308
v_r_file (fortran variable in module output_data), 172	write_rot() (fortran subroutine in module outrot), 285
v_rigid_boundary() (fortran subroutine in module nonlinear_bcs), 234	writehdf5_attr_dble() (fortran subroutine in module hdf5helpers), 369
visc (fortran variable in module radial_functions), 197	writehdf5_attr_int() (fortran subroutine in module hdf5helpers), 369

```
writehdf5 attribute (fortran
                                variable
                                                module
         hdf5helpers), 368
writeinfo() (fortran subroutine in module precalculations),
writenamelists() (fortran subroutine in module namelists),
writetime() (fortran subroutine in module timing), 207
writeVpEq() (in module magic.libmagic), 149
writeVTI() (magic.graph2vtk.Graph2Vtk method), 134
writeVTS() (magic.graph2vtk.Graph2Vtk method), 134
Υ
y10_norm (fortran variable in module constants), 177
y11_norm (fortran variable in module constants), 178
Ζ
z (fortran variable in module fields), 166
z10mat (fortran variable in module matrices), 169
z10mat fac (fortran variable in module matrices), 169
z10pivot (fortran variable in module matrices), 169
z ave (fortran variable in module fields average mod),
          318
z_ave_global
                 (fortran
                              variable
                                                 module
                                          in
          fields_average_mod), 319
z Imloc (fortran variable in module fields), 166
z Imloc container (fortran variable in module fields), 166
z_rloc (fortran variable in module fields), 165
z_rloc_container (fortran variable in module fields), 167
zavg() (in module magic.cyl), 141
zdens (fortran variable in module output_data), 172
zderavg() (in module magic.libmagic), 149
zero (fortran variable in module constants), 177
zero_tolerance (fortran variable in module algebra), 257
zerorms() (fortran subroutine in module rms), 323
zmat (fortran variable in module matrices), 169
zmat fac (fortran variable in module matrices), 169
zpivot (fortran variable in module matrices), 169
zz (fortran variable in module egeos mod), 348
zz (fortran variable in module outto_mod), 344
```