(第10講) 混成軌道の活用

教養教育研究院 秋山 好嗣

271

nemical structure	Name	Targets	Approved indications (year)	Corporation
F	Larotrectinib (Vitrakvi)	TRKA/B/C	Solid tumors with NTRK fusion (2018)	Bayer
N N HN N	ОН			
HN HN	Entrectinib (Rozlytrek)	TRKA/B/C/ROS1/ALK	Solid tumors with NTRK fusion (2019)	Roche
F N S				

例題2

次の分子がもつ部分電荷(δ)とこの結合のイオン性%を求 めよ。ただし、電気素量(陽子の電荷)は、1.60 x 10⁻¹⁹ Cとし て、結合距離(r)と双極子モーメント(μ)は以下の値を用い ること。

•H-CI(結合距離: 127.5 pm、μ=3.70 x 10⁻³⁰ Cm)

$$\mu = \delta \times r$$
 $= \frac{3.70 \times 10^{-30} \text{ Cm}}{127.5 \times 10^{-12} \text{ m}} = 2.90 \times 10^{-20} \text{ C}$

イオン性 =
$$\frac{0.290 \times 10^{-19} \text{ C}}{1.60 \times 10^{-19} \text{ C}} \times 100 = 18.1\%$$

•H-F (結合距離: 91.7 pm、 μ = 6.09 x 10⁻³⁰ Cm) $\delta = \frac{6.09 \times 10^{-30} \text{ Cm}}{91.7 \times 10^{-12} \text{ m}} = 6.64 \times 10^{-20} \text{ C}$

$$S = \frac{6.09 \times 10^{-30} \text{ Cm}}{91.7 \times 10^{-12} \text{ m}} = 6.64 \times 10^{-20} \text{ C}$$

イオン性 =
$$\frac{0.664 \times 10^{-19} \text{ C}}{1.60 \times 10^{-19} \text{ C}} \times 100 = 41.5\%$$

280

演習3

以下の分子を極性分子と無極性分子に分類せよ。

(a) CH₃Cl (b) CCI₄ (c) NH₃ (d) CH₃NH₂

δ+ δ- $\begin{array}{c} \delta + \ \delta - \\ H_3C-NH_2 \end{array}$ H₃C-Cl C δ+ C1 δ-

極性分子 無極性分子 極性分子 極性分子