MISTRZ PROGRAMOWANIA

Sok z kumkwatu

Limit pamięci: 512 MB

Autor zadania: Mateusz Wesołowski

Przedsiębiorstwo Bitbark niedawno rozpoczęło produkcję soku z kumkwatu. Zgodnie z feng shui lub inną genialną wizją prezesa Bajtazara sok z kumkwatu jest produkowany na n stojących w jednym rzędzie stanowiskach ponumerowanych od lewej do prawej liczbami od 1 do n. Przy każdym stanowisku pracuje co najwyżej jeden pracownik, każdy z nich oprócz płacy minimalnej i siedmiodniowego tygodnia pracy ma również zapewniony świeży sok z kumkwatu. W ciągu jednego dnia i-ty pracownik produkuje v_i litrów soku.

Prezes Bajtazar urządził konkurs na najlepszy przedział stanowisk produkcyjnych. Kryteria oceniania są owiane tajemnicą, ale do jednego z nich potrzebne jest policzenie całkowitej ilości litrów soku z kumkwatu wyprodukowanych od pierwszego dnia pomiarów do chwili $0 \le t \le 10^9$ przez **obecnie zatrudnionych pracowników** na przedziałach stanowisk wybranych przez prezesa.

Jednak odkąd Bajtockie prawo pracy zostało zastąpione przywilejem pracy (miało to miejsce przed pierwszym dniem pomiarów) prezes Bajtazar może w dowolnej chwili zwolnić dowolnego pracownika lub zatrudnić kogoś na wolne stanowisko (przyjmujemy, że jeśli ktoś zostanie wyrzucony, to nie zostanie przyjęty z powrotem). Ponadto, w wyniku różnych okoliczności (m.in. niedoboru soku z kumkwatu), prędkość pracy *i*-tego pracownika może ulec zmianie. Pomóż prezesowi Bajtazarowi obliczyć ilość soku wyprodukowanego przez pracowników ze stanowisk na wybranych przez niego przedziałach do danej chwili.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite $1 \le n \le 10^6$, $1 \le q \le 10^6$ oznaczające liczbę stanowiski zapytań. W dniu t=0 przy każdym stanowisku pracuje dokładnie jeden pracownik.

W drugim wierszu znajduje się n liczb całkowitych $0 \le v_i \le 10^3$ oznaczających wydajność i-tego pracownika (liczbę produkowanych dziennie litrów soku z kumkwatu).

W następnych q wierszach znajdują się uporządkowane chronologicznie zapytania postaci:

- V i v t zmień wydajność pracownika z i-tego stanowiska na <math>v w dniu t (zakładamy, że na stanowisku i jest pracownik).
- F i t zwolnij pracownika przy stanowisku <math>i w dniu t (zakładamy, że na stanowisku i jest pracownik).
- H i v t zatrudnij pracownika przy stanowisku i z wydajnością v w dniu t (zakładamy, że stanowisko i jest wolne).
- Q i j t wypisz sumaryczną ilość soku z kumkwatu wyprodukowaną przez pracowników przy stanowiskach i, i + 1, ..., j do dnia t.

Dla każdego zapytania zachodzi $0 \le t \le 10^9$, ponadto dla zapytania F zachodzi $1 \le i \le n$, dla zapytań V i H zachodzi $1 \le i \le n$, $0 \le v \le 10^3$ oraz dla zapytań Q zachodzi $1 \le i \le j \le n$. Zakładamy, że wszystkie operacje w dniu t zostaną wykonane przed rozpoczęciem produkcji soku tego dnia.

Sok z kumkwatu

Limit pamięci: 512 MB

Wyjście

Wypisz wszystkie odpowiedzi na zapytania typu $\mathbb Q$ – po jednej w każdym wierszu. Gwarantowane jest, że pojawi się przynajmniej jedno takie zapytanie.

Przykłady

Wejście dla testu r2d0a:

5	7											
1	2	3 2	2	4								
Q	1	5 2	2									
Q	2	3 2	2									
F	2	3										
V	3	5 3	3									
Q	2	4 4	4									
Н	2	5 (6									
Q	1	5 8	8									

Wyjście dla testu r2d0a:

24		
10		
22		
100)	
1		

Wejście dla testu r2d0b:

	-	0.0	ara	testa 12aob.
1	7			
2				
Q	1	1	1	
F	1	1		
Н	1	6	2	
Q	1	1	3	
Q	1	1	4	
Q	1	1	7	
Q	1	1	8	

Wyjście dla testu r2d0b:

2			
2 6 12 30 36			
12			
30			
36			

Autor zadania: Mateusz Wesołowski

Ocenianie

Podzadanie	Ograniczenia	Limit czasu	Punkty
1	Z powodu strajku, który trwał przez cały czas konkursu, wydajność każdego pracownika wynosiła 0	4 s (C++) / 60 s (Python)	2
2	n = 1	4 s (C++) / 60 s (Python)	5
3	Wydajność każdego pracownika jest stała, nikt nie zostaje zwolniony – tylko zapytania typu Q	4 s (C++) / 60 s (Python)	10
4	W zapytaniach typu Q zachodzi $i=j$	4 s (C++) / 60 s (Python)	10
5	$n \le 10^3, \ q \le 10^3$	4 s (C++) / 60 s (Python)	15
6	Brak dodatkowych ograniczeń	4 s (C++) / 60 s (Python)	58