lab1 虚拟环境下的共享式和交换式以太网组 网实验报告

物联网工程 2111194 胡博程

一、实验要求

摘自学院网站

仿真环境下的共享式以太网组网

- 1. 学习虚拟仿真软件的基本使用方法。
- 2. 在仿真环境下进行单集线器共享式以太网组网,测试网络的连通性。
- 3. 在仿真环境下进行多集线器共享式以太网组网,测试网络的连通性。
- 4. 在仿真环境的"模拟"方式中观察数据包在共享式以太网中的传递过程,并进行分析。

仿真环境下的交换式以太网组网和VLAN配置

- 1. 在仿真环境下进行单交换机以太网组网,测试网络的连通性。
- 2. 在仿真环境下利用终端方式对交换机进行配置。
- 3. 在单台交换机中划分VLAN,测试同一VLAN中主机的连通性和不同VLAN中主机的连通性,并对现象进行分析。
- 4. 在仿真环境下组建多集线器、多交换机混合式网络。划分跨越交换机的VLAN,测试同一VLAN中主机的连通性和不同VLAN中主机的连通性,并对现象进行分析。
- 5. 在仿真环境的"模拟"方式中观察数据包在混合式以太网、虚拟局域网中的传递过程,并进行分析。
- 6. 学习仿真环境提供的简化配置方式。

二、实验准备

- 1. 安装CISCO PACKET TRACER, 注册相关账号
- 2. 学习软件基本用法, 掌握集线器、交换机、直通线、交叉线等使用
- 3. 建立辅助实验完成的网络拓扑结构

三、实验过程

1、共享式以太网组网

(1) 单集线器的简易尝试

首先在仿真软件中连接网络的逻辑结构,**直通线**负责集线器/交换机和主机间的连接,**交叉线**负责集线器之间、交换器之间、交换器集线器之间的连接,**串口线**用于给交换机分配控制主机

网络拓部结构如下:

点击PC主机,使用下面的方法配置主机IP地址,这里我们将PC0的IP地址指定为192.168.1.1,PC1的IP地址指定为192.168.1.2

在PC1上使用ping命令进行测试

```
C:\>ping 192.168.1.2

Pinging 192.168.1.2 with 32 bytes of data:

Reply from 192.168.1.2: bytes=32 time<lms TTL=128

Ping statistics for 192.168.1.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
```

```
C:\>ping 192.168.1.2

Pinging 192.168.1.2 with 32 bytes of data:

Reply from 192.168.1.2: bytes=32 time<lms TTL=128

Ping statistics for 192.168.1.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
```

由此看出两个主机可以互相ping通

(2) 多集线器

网络拓扑结构如下

设置PC2的IP地址为192.168.1.3

在PCO处ping PC2

```
Physical Config Desktop Programming Attributes

Command Prompt

C:\ping 192.168.1.3

Pinging 192.168.1.3 with 32 bytes of data:

Reply from 192.168.1.3: bytes=32 time<lms TTL=128

Reply from 192.168.1.3: bytes=32 time=10ms TTL=128

Reply from 192.168.1.3: bytes=32 time<lms TTL=128

Reply from 192.168.1.3: bytes=32 time<lms TTL=128

Reply from 192.168.1.3: bytes=32 time<lms TTL=128

Ping statistics for 192.168.1.3:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 10ms, Average = 2ms
```

```
Physical Config Desktop Programming Attributes

Command Prompt

Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.1.1

Pinging 192.168.1.1 with 32 bytes of data:

Reply from 192.168.1.1: bytes=32 time<lms TTL=128

Ping statistics for 192.168.1.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = Oms, Maximum = Oms, Average = Oms
```

(3) 模拟冲突和非冲突两情况

由于集线器只支持半双工通信,这意味着数据只能在一个方向上流动,而不能同时在两个方向上流动, 且集线器的非智能性(它不知道连接到它的哪个端口的设备正在发送数据),所以线路中同时只可以有 一个设备可以占用线路发送数据。

我们模拟发送数据包如下 (PC0到PC1; PC2到PC3)

过滤ICMP协议,得到模拟发包的具体流程

详细解释冲突的产生:

集线器广播数据包,导致在红蓝交接的线路上冲突,而PC1接到由hub1转向PC1的数据包,将发回一个回复

回复的过程中绿色的箭头表示回复数据包方向,红蓝为两个主机发出包的方向,据上图仍旧有冲突 **详细解释没有冲突**: PCO给PC2发包,一次ping过程中数据包的流向如下图所示

如上图所示,集线器是一种非智能设备,将会把其接受的数据包以广播的形式转发给其联通的所有设备

上图展现了数据包到达目标主机PC2, PC3也会收到包但是PC3不接收

PC2开始回复

如上图,回复消息回到PCO并被主机接受

2、交换式以太网组网

(1) 单交换机组网

拓扑结构如下

PCO给PC1发包,发现可以ping通,详见下图

此时查看交换机的mac地址映射表可以找到对应端口下地址映射关系、端口虚拟局域网信息、MAC地址的类型等信息,可以发现我们分配了设备的以太网接口情况,如下图

(2) 使用终端配置交换机

具体步骤如下:

- 1. 使用 enable 命令进入特权用户模式
- 2. 输入 setup 进入设置

3. 配置交换机名称、交换机配置管理密码、进入特权用户模式时的密码

```
Enter host name [Switch]: sl

The enable secret is a password used to protect access to privileged EXEC and configuration modes. This password, after entered, becomes encrypted in the configuration.

Enter enable secret: 123456

The enable password is used when you do not specify an enable secret password, with some older software versions, and some boot images.

Enter enable password: 1234567

The virtual terminal password is used to protect access to the router over a network interface.

Enter virtual terminal password: 1234567

Configure SNMP Network Management? [no]:no
```

4. 不需要配置SNMP(简单网络管理协议)——因为我们不需要远程监控,输出交换机接口概况

Current interface sum	mary		
Interface	IP-Address	OK? Method Status	Protocol
FastEthernet0/1	unassigned	YES manual up	ир
FastEthernet0/2	unassigned	YES manual up	up
FastEthernet0/3	unassigned	YES manual up	up
FastEthernet0/4	unassigned	YES manual up	up
FastEthernet0/5	unassigned	YES manual down	down
FastEthernet0/6	unassigned	YES manual down	down
FastEthernet0/7	unassigned	YES manual down	down
FastEthernet0/8	unassigned	YES manual down	down
FastEthernet0/9	unassigned	YES manual down	down
FastEthernet0/10	unassigned	YES manual down	down
FastEthernet0/11	unassigned	YES manual down	down
FastEthernet0/12	unassigned	YES manual down	down
FastEthernet0/13	unassigned	YES manual down	down
FastEthernet0/14	unassigned	YES manual down	down
FastEthernet0/15	unassigned	YES manual down	down
FastEthernet0/16	unassigned	YES manual down	down
FastEthernet0/17	unassigned	YES manual down	down

5. 输入想要配置接口的名称,如 FastEthernet0/1 ,紧接着配置这个端口的IP地址和子网掩码

```
nterface name used to connect to the ent network from the above interface summary: FastEthernet0/1 ring interface FastEthernet0/1: gure IP on this interface? [yes]: 192.168.1.2 e answer 'yes' or 'no'. gure IP on this interface? [yes]: yes address for this interface: 192.168.2.1 net mask for this interface [255.255.255.0]: bu like to enable as a cluster command switch? [yes/no]:
```

6. 最后直接回车保存一切配置信息

```
So to the IOS command prompt without saving this config.
Return back to the setup without saving this config.
Save this configuration to nvram and exit.

r your selection [2]:
ding configuration...

the enabled mode 'configure' command to modify this configuration.

-5-CONFIG_I: Configured from console by console
```

(3) 单交换机划分VLAN并尝试PING

网络拓扑结构如图所示

具体步骤如下

- 1. 进入交换机的CLI界面,输入 enable 命令进入特权模式。
- 2. 输入 configure terminal 命令进入全局配置模式。
- 3. 使用 v1an 命令创建虚拟局域网
- 4. 输入 interface 命令,选择要配置的接口,如 interface fa0/1
- 5. 使用命令 switchport mode access 命令配置交换机的一个物理端口为访问 (access) 模式,使其成为只能属于单一VLAN (虚拟局域网) 的端口
- 6. 使用命令 switchport access vlan +虚拟局域网号,如 switchport access vlan 2,将一个 访问模式的端口分配给一个特定的VLAN (虚拟局域网)
- 7. 使用 exit 命令退出这个接口配置的命令行, 重复上述步骤

本机配置vlan的命令截图如下

```
sl>enable
Password:
sl#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
sl(config)#vlan 2
sl(config-vlan)#exit
sl(config)#vlan 3
sl(config-vlan)#exit
sl(config)#interface fa0/l
sl(config-if) #switchport mode access
sl(config-if)#switchport access vlan 2
sl(config-if) #exit
sl(config)#interface fa0/2
sl(config-if) #switchport mode access
sl(config-if)#switchport access vlan 3
sl(config-if)#exit
sl(config)#interface fa0/3
sl(config-if)#switchport mode access
sl(config-if)#switchport access vlan 2
sl(config-if)#interface fa0/4
sl(config-if)#switchport mode access
sl(config-if)#switchport access vlan 3
sl(config-if)#exit
sl(config)#
```

小结一下:就是PC1和PC3属于虚拟局域网vlan2,PC2和PC4属于虚拟局域网vlan3,也可以使用 show v1an 命令查看交换机各接口对应的vlan情况

```
sl>show vlan
VLAN Name
                                                               Status
                                                                                Fa0/5, Fa0/6, Fa0/7, Fa0/8
Fa0/9, Fa0/10, Fa0/11, Fa0/12
        default
                                                               active
                                                                                Fa0/13, Fa0/14, Fa0/15, Fa0/16
Fa0/17, Fa0/18, Fa0/19, Fa0/20
Fa0/21, Fa0/22, Fa0/23, Fa0/24
Gig0/1, Gig0/2
                                                                                Fa0/1, Fa0/3
Fa0/2, Fa0/4
                                                               active
        VLAN0003
1002 fddi-default
                                                               active
1003 token-ring-default
1004 fddinet-default
                                                                active
                                                                active
1005 trnet-default
                                                               active
```

在PC2中 PING PC3和PC4的结果如图,发现PC2 PING PC3不可以ping通,但是可以ping通PC4,所以我们可以验证结论:只有在同一个虚拟局域网(vlan)中的设备之间才可以相互传递信息

(4) 多集线器多交换机混合网络

网络拓扑结构如图

按第二部分【2、(2)】中的终端配置方法配置交换机1和交换机2

配置交换机1:

```
Switch>enable
Switch#configure t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) #vlan 2
Switch (config-vlan) #exit
Switch(config) #vlan 3
Switch (config-vlan) #exit
Switch(config)#interface fa0/1
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 2
Switch (config-if) #exit
Switch(config)#interface fa0/1
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 1
Switch (config-if) #exit
Switch(config)#interface fa0/2
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 2
Switch (config-if) #exit
Switch(config) #switchport mode access
% Invalid input detected at '^' marker.
Switch(config)#interface fa0/3
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 3
Switch(config-if)#exit
Switch (config) #exit
Switch#exit
```

```
Switch>enable
Switch#configure t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) #interface 0/5

* Invalid input detected at '^' marker.

Switch(config) #interface fa0/5
Switch(config-if) #switch mode trunk

Switch(config-if) #exit
Switch(config) #exit
```

P.S.这里需要将多个交换机相互连接的端口模式设置为trunk(主干模式),以允许在交换机之间传递 VLAN信息,这样连接的设备可以知道每个VLAN的存在和配置。

配置交换机2:

```
Switch>enable
Switch#configure t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#interface fa0/1
Switch(config-if) #switch mode access
Switch (config-if) #exit
Switch(config)#vlan 2
Switch (config-vlan) #exit
Switch(config) #vlan 4
Switch (config-vlan) #exit
Switch(config)#interface fa0/1
Switch(config-if) #switch mode access
Switch(config-if)#exit
Switch(config)#interface fa0/2
Switch(config-if) #switch mode access
Switch(config-if) #switch access vlan2
% Invalid input detected at '^' marker.
Switch(config-if) #switch access vlan 2
Switch(config-if)#exit
Switch(config)#interface fa0/3
Switch(config-if) #switch mode access
Switch(config-if) #switch access vlan 3
% Access VLAN does not exist. Creating vlan 3
Switch(config-if) #switch access vlan 4
Switch(config-if)#exit
Switch(config)#
```

设置主干模式

```
tch(config) #interface fa0/4
tch(config-if) #switch mode trunk
tch(config-if) #exit
tch(config) #
tch(config) #
tch(config) #
tch(config) #exit
tch(config) #exit
tch#
S-5-CONFIG_I: Configured from console by console
```

使用show vlan命令查看交换机vlan情况:

e Name: Switch1

m Device Model: 2960 IOS15

ame: Switch

	Link	VLAN	IP Address	MAC Address
thernet0/1	$\mathbf{v}_{\mathbf{p}}$	1		0060.2F8C.6
thernet0/2	$\mathbf{v}_{\mathbf{p}}$	2		0060.2F8C.6
thernet0/3	Up	3		0060.2F8C.6
thernet0/4	$\mathbf{v}_{\mathbf{p}}$	1		0060.2F8C.6
thernet0/5	$\mathbf{v}_{\mathbf{p}}$			0060.2F8C.6

ce Name: Switch2

om Device Model: 2960 IOS15

name: Switch

	Link	VLAN	IP Address	MAC Address
Ethernet0/1	Up	1		0001.4320.7D
Ethernet0/2	Up	2		0001.4320.7D
Ethernet0/3	Up	4		0001.4320.7D
Ethernet0/4	Up			0001.4320.7D
Ethernet0/5	Up	1		0001.4320.7D

进行跨交换机or跨集线器的ping——使用PC6分别 PING PC9和PC8, 结果如图

```
Physical Config Desktop Programming Attributes

Command Prompt

Cisco Packet Tracer PC Command Line 1.0

C:\>ping 192.168.1.9

Pinging 192.168.1.9: bytes=32 time<\lms TTL=128

Reply from 192.168.1.9: bytes=32 time<\lms TTL=128

Ping statistics for 192.168.1.9:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = Oms, Maximum = Oms, Average = Oms

C:\>ping 192.168.1.8

Pinging 192.168.1.8 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.1.8:
Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

C:\>
```

由此我们可以验证结论:在多集线器、多交换机混合式网络中。即使划分跨越交换机的VLAN,也是在同一VLAN下的主机之间可以通信,不同VLAN的不行

(5) 使用模拟方式观察数据包在混合式以太网、虚拟局域网中的传递过程

首先观察同一VLAN下的情况——使用PC1 PING PC8,并只过滤出ICMP数据包,得到数据包输出过程如图

使用PC1 PING PC3:

都可以PING通

随后观察不同VLAN下情况——PC1 ping PC9,只过滤出ICMP数据包,发现情况如下图所示,PC1无法在自己本身的vlan中找到PC9的地址,导致数据包发送失败,下图所示的模拟界面中只有两个ICMP的数据包

相关思考:按理说集线器是一种非智能设备,不会阻止任何广播或单播流量,会将接收到的任何数据包发送到它的所有其他端口,所以应该PC1发出的数据包应该最远可以达到交换机switch1,在这里找不到其VLAN中的目标设备导致ping失败。更详细的数据包模拟分析请见3、(2)部分

(6) 仿真环境提供的简化配置方式

可以直接使用图形化界面或者CLI界面来配置交换机的具体设置,不需要使用命令行

可以在setting部分设置交换器的展示名称、主机名称并执行清空配置、保存配置等操作;在VLAN database中可以添加或删除VLAN,在INTERFACE标签下的各个具体接口中可以设置其对应的VLAN和模式(access或trunk)

3、实验拓展尝试

在跨交换机与集线器的连通性测试实验中,若不过滤ICMP数据包发现了ARP协议、STP协议、CDP协议与DTP协议,并且发现这些协议在主机之间通信非常重要

(1) 五种协议介绍

ARP协议:一个**地址解析协议**,用于发现网络上设备的IP地址和MAC地址之间映射关系的协议。当一个设备需要向网络上的另一个设备发送数据包时,它需要知道目标设备的MAC地址。如果发送方知道目标IP地址,但不知道与之关联的MAC地址,它将使用ARP来发现这一信息。

举例:如果两个主机(主机A和主机B)正在通信,那么ARP协议将以如下步骤完成:

- **主机A尝试与主机B通信**: 主机A有主机B的IP地址,但可能不知道其MAC地址。为了得知这一信息,主机A发送一个ARP请求,询问拥有主机B IP地址的设备的MAC地址是什么。
- **主机B响应ARP请求**: 主机B接收到ARP请求,并响应,提供其MAC地址。
- 通信开始:一旦主机A知道主机B的MAC地址,它就可以开始向主机B发送数据包。

STP协议: **生成树协议**, 目的是防止在以太网网络中的逻辑环路(loop)。 STP能够检测到网络中的环路, 然后禁用一些网络路径来消除环路, 但是仍然保留可能导致环路的路径, 防止可能的广播风暴和其他与环路相关的问题。

在我们的实验环境中,只要涉及到交换机或桥接器,STP协议通常也会**在后台运行**。思科的交换机在默认配置下会运行STP,所以在模拟过程中会出现很多STP协议数据包,此外在多VLAN环境中,交换机需要**为每个VLAN或实例分别运行STP**。这将导致每个VLAN/实例都发送自己的BPDU消息,从而增加了网络上的STP消息数量。

BPDU消息: 桥接协议数据单元,是在STP协议中使用的数据包,交换机使用BPDU来选举网络中的根桥,通过交换BPDU,交换机可以确定其端口在生成树中的角色(例如,根端口、指定端口等)和状态(例如,阻塞或转发)

CDP协议:

思科专有的一种协议,用于在**直接相连**的网络设备之间发现信息(设备标识符、IP地址等),Cisco设备默认启用CDP。这是一个数据链路层协议,它允许在直接相连的网络设备之间交换信息,即使它们运行的是不同的网络层协议。

在我们的实验环境中,CDP也在背景中运行,并会周期性地在其接口上发送CDP通告,以便相邻的 Cisco设备可以发现它们。在虚拟局域网中,CDP还可以传递VLAN和VTP(VLAN Trunking Protocol——主干接口)的信息。此部分可**以通过软件相关设置来禁用**

DTP协议: 思科动态中继协议DTP, 用于协商两台设备间链路上的中继过程以及中继封装802.1Q类型, 模拟网络中的交换机被配置为多个VLAN, 交换机可能会使用DTP来尝试与相邻的交换机协商VLAN截断的建立。

所以在我们的实验中,当数据包出现跨交换机传输的行为的时候则会出现DTP协议,用于多个交换机之间协商VLAN截断的建立。

ICMP协议

互联网控制消息协议,是一个核心的**网络层**协议,用于在IP网络上提供错误报告和诊断功能。它是 TCP/IP 协议族的一部分,经常被用于诊断网络连接问题。我们使用的ping命令测试网络连接的时候主机就会发送ICMP数据包。

ICMP数据包传输有一个**生存时间**,当一个主机发送数据包后,在这个时间以内没有接到返回的数据包,则认为网络不连通

(2) 过滤出五种协议的跨交换机与集线器的连通性测试模拟分析

使用的例子依旧是PC1 PING PC9, 图像见部分2、(5)

首先,PC1广播ARP数据包,整个线路中在vlan1中的的设备都会收到ARP数据包,这个过程其实是根据 PC的IP地址找到MAC地址的过程,但是**只有同一vlan中的设备会受到这个数据包**

Vis.	Time(sec)	Last Device	At Device	Туре
	0.000	-	PC1	ICMP
	0.000	-	PC1	ARP
	0.001	PC1	Hub1	ARP
	0.002	Hub1	PC2	ARP
	0.002	Hub1	Switch1	ARP
	0.003	Switch1	PC5	ARP
	0.003	Switch1	Switch2	ARP
	0.004	Switch2	PC8	ARP
	0.004	Switch2	Hub2	ARP
(9)	0.005	Hub2	PC3	ARP
(9)	0.005	Hub2	PC4	ARP

注:有时候ARP数据包并不会出现,可能的原因是系统缓存问题,系统缓存好了每个设备的MAC地址,预先不需要使用ARP去查

随后将进入漫长的发送接收STP数据包的过程,自动检测网络环路,由于相关设置问题,这个过程持续时间比较久。具体情况如下图所示。

nt Lis				
is.	Time(sec)	Last Device	At Device	Туре
	0.836		Switch1	STP
	0.837	Switch1	PC5	STP
	0.837	Switch1	Hub1	STP
	0.837	Switch1	Switch2	STP
	0.837	-	Switch1	STP
	0.838	Switch1	Switch2	STP
	0.838	Hub1	PC1	STP
	0.838	Hub1	PC2	STP
	0.838	Switch2	PC8	STP
	0.843		Switch2	STP
	0.844	Switch2	Hub2	STP
	0.845	Hub2	PC3	STP
	0.845	Hub2	PC4	STP
	0.858	-	Switch1	STP
	0.859	Switch1	PC6	STP
	0.859	Switch1	Switch2	STP
	0.860	Switch2	PC9	STP
(9)	0.880	-	Switch2	STP

随后PC1发送的ICMP数据包无法找到路径到达指定的目的主机(PC9),产生错误,此时两个交换机将会广播CDP数据包,询问各端口各VLAN的情况

随后查看switch2的,DTP数据包从switch2发送,一直发回到PC1,如下图

随后将会一直重复CDP数据包分发和DTP数据包的分发,这可能意味着通信尚未成功建立或者数据包捕获过滤器设置有误

(3) 禁用测试

可以在交换机中设置禁用STP/CDP协议,只要我们知晓这样做的后果

- 在禁用 STP 之前,需要确保网络拓扑中没有环路,以防止广播风暴和不可预测的网络行为。
- CDP 可以帮助网络管理员了解设备的邻居和网络拓扑,禁用它可能使网络故障排除和文档记录变得更加复杂。

使用如下命令在交换机中进行设置来完成禁用相关协议

在特定vlan下禁用STP

```
Switch> enable
Switch# configure terminal
Switch(config)# no spanning-tree vlan [vlan-id]
```

在特定接口下禁用CDP

```
Switch> enable
Switch# configure terminal
Switch(config)# interface Ethernet 0/1
Switch(config-if)# no cdp enable
```

全局禁用CDP

```
Switch> enable
Switch# configure terminal
Switch(config)# no cdp run
```

随后事件列表中将不显示CDP和STP协议,如下图,但是由于不同虚拟局域网中主机间通信尚未成功建立,DTP协议会一直循环执行。

Simulation Panel				
Event Li	ist			
Vis.	Time(sec)	Last Device	At Device	Туре
	0.000		PC1	ICMP
	0.000	-	PC1	ARP
	0.001	PC1	Hub1	ARP
	0.002	Hub1	PC2	ARP
	0.002	Hub1	Switch1	ARP
	0.003	Switch1	PC5	ARP
	0.003	Switch1	Switch2	ARP
	0.004	Switch2	PC8	ARP
	0.004	Switch2	Hub2	ARP
	0.005	Hub2	PC3	ARP
	0.005	Hub2	PC4	ARP
	2.004		PC1	ICMP
	20.556	-	Switch1	DTP
	20.557	Switch1	Hub1	DTP
	20.558	Hub1	PC1	DTP
	20.558	Hub1	PC2	DTP
	20.558	-	Switch1	DTP
	20.559	Switch1	Switch2	DTP
	20 571		Switch?	NTD