REVIEW OF PROBABILITY

Another example: X = "the sum of two die rolls"

X can take on values in [2..12]
Assignment Project Exam Help
• e.g. X = 5 can result from one of $\{(1,4),(2,3),(3,2),(4,1)\}$

Probability of each outcome is 1/36 so Pr[X] tutores. $4 \cdot \frac{1}{36} = \frac{1}{36}$

Sum	eC	nat:	CS 4	utc 5	CS 6	7	8	9	10	11	12
Probability (× 36)	1	2	3	4	5	6	5	4	3	2	1

Expectation of a random variable: weighted average of the values it can take

$$\mathbf{E}[X] = \sum_{x=2}^{12} (x \cdot \Pr[X = x]) = 2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + \dots + 12 \cdot \frac{1}{36} = 7$$

EXPECTATION

Could do a messy sum to find that E[X] = 7 but there is a better way.

Let us define two random variables: $X_{f 1}$ and $X_{f 2}$, the results of the first and second die rolls, respectively. It's easy

to see that

Assignment Project Exam Help
$$E[X_1] = E[X_2] = 3.5$$

$$E[X_1] = E[X_2] = 3.5$$

(note that E[X] doesn't have to be in the range of X for any X).

Since

WeChat: cstutorcs
$$X = X_1 + X_2$$

by definition of X, X_1 , and X_2 , we get:

Linearity of Expectation:
$$E[X] = E[X_1] + E[X_2]$$

EXPERIMENT: TOSS 10 COINS

Random Variables: X_1, X_2, \dots, X_{10}

We define $X_i=1$ if $i^{ ext{th}}$ toss is H and 0 if T . Then

$$\Pr[X_i = 0] = 0.5 = \Pr[X_i = 1] \Rightarrow \operatorname{E}[X_i]_{10} = 0 \cdot 0.5 + 1 \cdot 0.5 = 0.5$$

$$\underset{X}{\text{https://tutorcs.com}} X_i$$

$$\operatorname{E}[X] = \sum_{i=1}^{10} \operatorname{E}[X_i] = 10 \cdot 0.5 = 5$$

Indicator random variable: random variable that is 1 if some event occurs and 0 otherwise

ullet e.g. the $X_{f i}$ here are indicator random variables

If X_i is an indicator random variable, $\mathrm{E}[X_i] = \mathrm{Pr}[X_i = 1]$

EXPECTATION EXAMPLE: HAT CHECKING

- n people go to a restaurant, take off their hats and throw them in a pile.
- Afterwards, they each take a random hat from the pile.
- What is the expected number of people who get their hat back?

Let $X_i =$ the indicator random variable the content of the cont

WeChatxqstutoxcs

Define X to be the number of people getting their hat back.

$$X = \sum_{i=1}^{n} X_i \Rightarrow E[X] = \sum_{i=1}^{n} E[X_i] = n \cdot \frac{1}{n} = 1$$

On average, 1 person gets their hat back!