Geometric Data Analysis HW 2

Gilad Turok, gt2453 gt2453@columbia.edu

March 12, 2023

1 LLE

1.1 Solving for Reconstruction Weights

Consider that the optimal weights w for reconstructing x_i from an affine combination of its neighbors x_j . This is given by the solution to w_i that solves $G_i w_i = 1$ for Gram matrix G and normalized weight vector w_i .

Proof. Consider the (squared) cost function that quantifies how accurately we reconstruct data point x_i from an affine combination $(\sum_j w_{ij} = 1)$ of its k nearest neighbors:

$$\mathcal{E}_{i} = ||x_{i} - \sum_{j=1}^{k} w_{ij} x_{j}||^{2}$$

$$||(w_{i1} \dots w_{ik}) x_{i} - \sum_{j} w_{ij} x_{j}||^{2}$$

$$= ||\sum_{j} w_{ij} (x_{i} - x_{j})||^{2}$$

Note that if data points $x_1
dots x_n$ are scaled, rotated, or translated, the weights w_i are the same. Now let z be the difference between x_i and its neighbors x_j :

$$z = \begin{bmatrix} x_i - x_1 \\ \vdots \\ x_i - x_k \end{bmatrix}$$

Rewrite our cost function:

$$\mathcal{E}_i = ||\sum_j w_{ij}z||^2 = (w_i^T z)(w_i^T z)^T = w_i^T (zz^T)w_i$$

Now define the gram matrix such that $G_{jk} = (x_i - x_j) \cdot (x_i - x_k)$:

$$G_{i} = \begin{bmatrix} (x_{i} - x_{1}) \cdot (x_{i} - x_{1}) & \dots & (x_{i} - x_{1}) \cdot (x_{i} - x_{k}) \\ \vdots & \ddots & \vdots \\ (x_{i} - x_{k}) \cdot (x_{i} - x_{1}) & \dots & (x_{i} - x_{k}) \cdot (x_{i} - x_{k}) \end{bmatrix}$$

Rewrite cost function again:

$$\mathcal{E}_i = w_i^T G_i w_i$$

Now we have a constrained optimization problem, minimizing the cost function subject to the weights summing to 1 – mathematically written as $\mathbf{1}^T w_i = 1$. Consider the Lagrange multiplier problem:

$$\mathcal{L}(w_i, \lambda) = w_i^T G_i w_i - \lambda (\mathbf{1}^T w_i - 1)$$
$$\frac{\partial \mathcal{L}}{\partial w_i} = 2G_i w_i - \lambda \mathbf{1}$$
$$\frac{\partial \mathcal{L}}{\partial \lambda} = \mathbf{1}^T w_i - 1$$

Thus we find the optimal weights must solve $2G_iw_i = \lambda \mathbf{1}$ with a λ chosen such that the weights sum up to one. To do so, we can simply solve $G_iw_i = \mathbf{1}$ then normalize w_i .

1.2 Solving for Lower Dimensional Embedding

Want to show that for fixed weight matrix $W = [w_1 \dots w_n]$, the ideal lower dimensional embeddings $y_i \in \mathbb{R}^m$ are given by the smallest m eigenvectors of $M = (I - W)^T (I - W)$ after discarding the smallest eigenvector.

Proof. Seek to minimize the cost of lower dimensional dimensional data points $Y = [y_1 \dots y_n]$ given a fixed weight matrix $W = [w_1 \dots w_n]$:

$$\phi(Y) = \sum_{i} ||y_i - \sum_{j} w_{ij}y_j||^2$$

$$= Y^T (I - W)^T (I - W)Y$$

$$= Y^T MY \quad \text{for } M = (I - W)^T (I - W)$$

Consider two constraints for lower dimensional embeddings y_i : ensure y_i has dimension/rank m and embedding is centered at the origin. Mathematically, these constraints are:

$$\frac{1}{n}Y^TY = 1 \qquad \sum Y_i = 0$$

Our cost function is (trivially) translationally equivariant with respect to y_i so the second constraint is taken care of. To satisfy the first constraint, consider the Lagrange multiplier:

$$\mathcal{L}(Y,\mu) = Y^T M Y - \mu (\frac{1}{n} Y^T Y - 1)$$
$$\frac{\partial \mathcal{L}}{\partial Y} = 2MY - \frac{2\mu}{n} Y = 0$$
$$\frac{\partial \mathcal{L}}{\partial \mu} = Y^T M Y$$

From the second equation, we observe that $MY = \frac{\mu}{n}Y$ which is satisfied by setting y_i equal to the eigenvectors of M. Therefore, to minimize Y^TMY , we set Y to the m smallest eigenvectors of matrix M.

However, note that the smallest eigenvector-eigenvalue pair of (1,0) is trivial. Thus we ultimately minimize the cost by setting Y to the smallest m eigenvalues after discarding the very smallest eigenvector.

2 Non-Manifold Spaces

An example of a non-manifold space is two unit circles, one centered at (-1,0) and the other at (1,0), that touch at a single point (0,0):

$$(x-1)^2 + y^2 = 1$$

 $(x+1)^2 + y^2 = 1$

This space is not a manifold because at the overlapping point (0,0), a propert chart cannot be constructed. It's neighborhood looks like a rotated '+' sign which is not homeomorphic to a line segment in \mathbb{R}^1 .

3 Chart Mapping to Zero

Show that given any point $m \in \mathcal{M}$, where \mathcal{M} is a topoligical manifold, we can choose a chart $\theta: U \to \mathbb{R}^n$ such that $\theta(m) = 0$.

Proof. Consider all neighborhoods that contain m in its domain i.e. $m \in U_1, U_2, \ldots$ By definition of a manifold, for each neighborhood U_i , there exists

some corresponding chart $\theta_i: U_i \to \mathbb{R}^n$ where m is mapped to some arbitrary location $p \in \mathbb{R}^n$.

To instead make $\theta_i(m) = 0$, we can simply translate the chart by -p. Thus we can construct entirely new charts:

$$\theta_i'(x) = \theta_i(x) - p = \theta_i(x) - \theta_i(m)$$

which ensures $\theta_i(m) = 0$ always.

4 Coordinate Charts and Transition Functions for Circles

We will explicitly construct coordinate charts and transition functions for a circle defined by the angle and x, y projections respectively. To do so, consider S, the unit circle $x^2 + y^2 = 1$ defined for $[0, 2\pi]$.

4.1 Angle Construction

Let α be some angle less than π and let ϕ be the angle between a point $(x, y) \in S$ and the x axis. Now divide the circle into two coordinate patches:

$$U_1 = \{(x, y) \in S | -\alpha \le \phi \le \pi + \alpha\}$$

$$U_2 = \{(x, y) \in S | \pi \le \phi \le 2\pi\}$$

Now define two corresponding charts $\theta:U\to\mathbb{R}$. I do so based on the arctan2 function, which uniquely computes the angle between a point (x,y) and the x axis.

$$\theta_1(x,y) = \begin{cases} \arctan(\frac{y}{x}) & \text{if } x > 0\\ \arctan(\frac{y}{x}) + \pi & \text{if } x < 0, y \ge 0\\ \arctan(\frac{y}{x}) - \pi & \text{if } x < 0, y < 0\\ \frac{\pi}{2} & \text{if } x = 0, y > 0\\ -\frac{\pi}{2} & \text{if } x = 0, y < 0\\ \text{undefined} & \text{if } x = 0, y = 0 \end{cases}$$

$$\theta_2(x,y) = \begin{cases} \arctan(\frac{y}{x}) & \text{if } x > 0\\ \arctan(\frac{y}{x}) + \pi & \text{if } x < 0, y \ge 0\\ \arctan(\frac{y}{x}) - \pi & \text{if } x < 0, y < 0\\ \frac{\pi}{2} & \text{if } x = 0, y > 0\\ -\frac{\pi}{2} & \text{if } x = 0, y < 0\\ \text{undefined} & \text{if } x = 0, y = 0 \end{cases}$$

These charts sufficiently cover the circle, thus forming at atlas. We now construct two transition functions from $\mathbb{R} \to S \to \mathbb{R}$ for some point $p \in \mathbb{R}$. These overlaps occur below the x-axis on the left and right hand sides of the circle, between $[\pi, \pi + \alpha]$ and $[-\alpha, 2\pi]$ respectively.

$$T_1 : [\pi, \pi + \alpha] \to (x, y) \to [\pi, \pi + \alpha]$$

 $T_1(p) = \theta_1(\theta_2^{-1}(p)) = \theta_2(\theta_1^{-1}(p)) = p$

$$T_1: [-\alpha, 2\pi] \to (x, y) \to [-\alpha, 2\pi]$$

 $T_1(p) = \theta_1(\theta_2^{-1}(p)) = \theta_2(\theta_1^{-1}(p)) = p$

4.2 Projection Construction

Divide the circle into four coordinate patches, each of which is a half-plane:

$$U_{top} = \{(x, y) \in S | y \ge 0\}$$

$$U_{bottom} = \{(x, y) \in S | y \le 0\}$$

$$U_{right} = \{(x, y) \in S | x \ge 0\}$$

$$U_{left} = \{(x, y) \in S | x \le 0\}$$

Now define four corresponding charts $\theta:U\to\mathbb{R}$ and their inverses $X^{-1}:\mathbb{R}\to U$:

$$X_{top}(x, y) = x X_{top}^{-1}(x) = (x, \sqrt{1 - x^2})$$

$$X_{bottom}(x, y) = x X_{bottom}^{-1}(x) = (x, \sqrt{1 - x^2})$$

$$X_{left}(x, y) = y X_{left}^{-1}(y) = (\sqrt{1 - y^2}, y)$$

$$X_{right}(x, y) = y X_{right}^{-1}(y) = (\sqrt{1 - y^2}, y)$$

This sufficently covers the entire circle, forming an atlas. Where the charts overlap, we construct four transition functions $T: R \to R$ for some point $p \in \mathbb{R}$:

$$\begin{split} T_1(p) &= X_{right}(X_{top}^{-1}(p)) = X_{right}(p, \sqrt{1-p^2}) = \sqrt{1-p^2} \\ T_2(p) &= X_{right}(X_{bottom}^{-1}(p)) = X_{right}(p, \sqrt{1-p^2}) = \sqrt{1-p^2} \\ T_3(p) &= X_{left}(X_{bottom}^{-1}(p)) = X_{left}(p, \sqrt{1-p^2}) = \sqrt{1-p^2} \\ T_4(p) &= X_{left}(X_{top}^{-1}(p)) = X_{left}(p, \sqrt{1-p^2}) = \sqrt{1-p^2} \end{split}$$

Note that the order of function composition does not matter here. sub-matrix along the diagonal is the same dissimilarity matrix via paper.