Trabalho de Cálculo II

Pablo Caballero Maciel Agosto 2024

Contents

1	Apı	roximações para PI	3
	1.1	Duplicação do quadrado	8
	1.2	Teorema do quadrado perfeito	11
	1.3	Área do círculo	12
	1.4	Área de hexágonos	13
	1.5	Papiro de Rhind	15
		1.5.1 Quadratura do círculo	17
	1.6	PI via Monte Carlo	18
		1.6.1 Implementação em R	18
		1.6.2 Implementação em C	20
		1.6.3 Exercício: Determine o "valor médio" de π . Interprete	
		estatisticamente o resultado	21
2	Taylor via Série Geométrica		22
	2.1	Exercício	23
	2.2	Série Geométrica de razão a:	26
3	Leil	oniz Aprimorado	2 8
4	Fór	mula de Machin	33
	4.1	Exercício:	35
	4.2	Exercício:	36
5	Exercícios		39
	5.1	Exercício 1:	39
	5.2	Execício 2:	41
	5.3	Exercício 3	42

1 Aproximações para PI

Começaremos abordando alguns métodos geométricos para aproximações de PI. Por definição, adotaremos que

$$\pi = \frac{C}{D}$$

sendo C o comprimento da circunferência e D o diâmetro da mesma.

Em um primeiro momento, vamos criar um quadrado de lado L e inscrever uma circunferência de diâmetro D e comprimento C como a figura abaixo:

Dada a figura, podemos dizer que:

$$2D < C < 4L = 4D$$

$$2 < \frac{C}{D} < 4$$

$$2 < \pi < 4$$

Ou seja, o valor de PI está entre 2 e 4, o que ainda é algo muito vago.

Desta vez vamos inserir um outro quadrado de lado l na figura:

Assim, temos que:

$$4l < C < 4L = 4D$$

e por Teorema de Pitágoras temos que:

$$l^2 = 2\left(\frac{L}{2}\right)^2 = 2\frac{L^2}{4} = \frac{D^2}{2} \Rightarrow l = \frac{D}{\sqrt{2}} = \frac{\sqrt{2}}{2}D$$

Portanto:

$$4\frac{\sqrt{2}}{2}D < C < 4D$$
$$2\sqrt{2} < \frac{C}{D} < 4$$
$$2\sqrt{2} < \pi < 4$$

Isso nos deixa com um valor de PI que está entre aproximadamente 2,82 e 4. Ainda longe do desejado.

Então vamos tentar fazer o mesmo mas dessa vez com um héxagono regular inscrito:

Antes de começarmos o cálculo da aproximação, precisamos descobrir quanto vale o lado do hexágono. E, para isso, vamos desenhar um triângulo nele:

Com isso, temos que:

$$6\alpha = 2\pi \Rightarrow \alpha = \frac{2\pi}{6} = \frac{\pi}{3}$$

Por outro lado:

$$2\beta = \pi - \alpha = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \Rightarrow \beta = \frac{\pi}{3}$$

Portanto, como

$$\alpha = \beta$$

o triângulo é equilátero e descobrimos que:

$$l = \frac{D}{2}$$

Agora vamos encontrar o lado no caso de a circunferência estiver inscrita ao hexágono:

Deste modo:

$$L^{2} = \left(\frac{D}{2}\right)^{2} + \left(\frac{L}{2}\right)^{2} = \frac{D^{2}}{4} + \frac{L^{2}}{4}$$

E:

$$\frac{3}{4}L^2 = L^2(1 - \frac{1}{4}) = \frac{D^2}{4} \Rightarrow L = \frac{D}{\sqrt{3}}$$

Portanto, unindo os dois casos:

$$6l < C < 6L$$

$$6\frac{D}{2} < C < 6\frac{D}{\sqrt{3}} = \frac{2 \cdot 3}{\sqrt{3}}D = 2\sqrt{3}D$$

$$3 < \frac{C}{D} < 2\sqrt{3}$$

$$3 < \pi < 2\sqrt{3}$$

O que revela um intervalo entre 3 e aproximadamente 3,46 para o valor de PI, um pouco melhor do que os anteriores.

Se quando passamos a usar o hexágono no lugar do quadrado para aproximar o valor de PI nós obtivemos valores mais próximos, o que aconteceria se usássemos polígonos de mais lados?

Em 250 a.c, Arquimedes usou um polígono de 96 lados (16 vezes maior que o hexágono) e obteve:

$$\pi \approx \frac{22}{7} = 3,1428571$$

Em 265 d.c, Liu Hui usou um polígono de 3072 lados (512 vezes maior que o hexágono) e estimou:

$$\frac{307}{98} < \pi < \frac{307}{99}$$

$$3,1416 < \pi < 3,1427$$

Em 480 d.c, Zu Chongzhi usou um polígono de 12888 lados (2048 vezes maior que o hexágono) e calculou:

$$\pi \approx \frac{355}{113} = 3,1415929$$

1.1 Duplicação do quadrado

Vamos fazer uma pausa para discutir sobre o problema da duplicação do quadrado.

Supondo que queremos duplicar um quadrado de lado L:

Pelo Teorema de Pitágoras:

$$l^2 = 2\left(\frac{L}{2}\right)^2 = 2\frac{L^2}{4}$$

$$2l^2 = L^2$$

Mas será que isso está certo? vamos tentar provar!

Supondo um régua onde "u" seja a unidade de medição e "m" e "n" sejam números tais que:

$$m\cdot u=L$$

$$n \cdot u = l$$

Resgatando o resultado do Teorema de Pitágoras:

$$2 = \frac{L^2}{l^2} = \frac{m^2 \cdot u^2}{n^2 \cdot u^2} = \left(\frac{m}{n}\right)^2$$

Teorema: não existe nenhum número irracional tal que:

$$r^2 = 2$$

Demostração: por redução ao absurdo, suponha que:

$$r = \frac{m}{n}$$

tal que:

$$2 = r^2 = \frac{m^2}{n^2} \Rightarrow 2n = \frac{m^2}{n} \Rightarrow 2n - m = \frac{m^2}{n} - m \cdot \frac{n}{n} = \frac{m}{n} (m - n) \Rightarrow$$
$$\Rightarrow \frac{2n - m}{m - n} = \frac{m}{n}$$

Agora, observe que:

A partir disso:

$$\frac{m}{2} < n \Rightarrow m < 2n$$

$$n < \frac{m}{2} + \frac{m}{2} = m$$

Portanto:

$$2n - m > 0$$

е

$$m-n>0$$

são inteiros positivos! Além disso, tem-se que:

$$n < m < 2n \Rightarrow 0 < m - n < n$$

е

$$n < m < 2n \Rightarrow 2n < 2m = m + m \Rightarrow 2n - m < m$$

Em suma:

$$m, 2n - m, \cdots$$

é uma sequência estritamente decrescente de inteiros positivos, o que é um absurdo!

Prova alternativa: Seja

$$\left(\frac{m}{n}\right)^2 = 2$$

e suponha, sem perda de generalidade, que "m" e "n" são coprimos, ou seja, $(\mathbf{m},\mathbf{n})=1.$

Agora, observe que:

$$\frac{m^2}{n^2} = 2 \Rightarrow m^2 = 2n^2$$

"m" será par se:

$$\begin{cases} m = 2k + 1 \Rightarrow m^2 = 4k^2 + 4k + 1 = 2k(2k + 2) + 1. & \textbf{impar, absurdo!} \\ m = 2k & \textbf{par} \end{cases}$$

Portanto:

$$m^2 = (2k)^2 = 4k^2 = 2n^2 \Rightarrow n^2 = 2k^2 \Rightarrow \mathbf{n} \text{ par}$$

Porém:

$$n=2k \ e \ m=2k \Rightarrow (m,n) \geq 2$$
 absurdo!

Corolário: Ou a duplicação do quadrado é impossível (falso) ou existe em magnitudes incomensuráveis.

1.2 Teorema do quadrado perfeito

Teorema: Se "N" não é um quadrado perfeito, então \sqrt{N} é irracional **Demonstração:** Se $\sqrt{N}=\frac{m}{n}$, então:

$$N = \frac{m^2}{n^2} \Rightarrow m^2 = N \cdot n^2 = N \cdot n \cdot n$$

$$\frac{n}{m^2} = m \cdot m \Rightarrow \frac{n}{m} \text{ se } (m, n) = 1$$

Agora dado que obviamente $\frac{n}{n}$ segue que $(m, n) \ge n$.

Portanto, é um **absurdo** ou n = 1, em cujo caso $N=m^2$, sendo um quadrado perfeito.

1.3 Área do círculo

Voltando às aproximações de PI, vamos usar a área do circulo para chegar nos resultados. Lembrando que adotamos PI como $\pi = \frac{C}{D}$ Em um primeiro momento, podemos dividir o círculo em quatro setores:

E vamos distribuir os setores de tal forma:

Tal que:

$$A \approx \frac{C}{2} \cdot \frac{D}{2}$$

Se dividirmos mais:

Ficamos com:

E concluímos que:

$$A \approx \frac{C}{2} \cdot \frac{D}{2}$$

Se continuarmos com fatias menores, obteremos:

$$A = \frac{C}{2} \cdot \frac{D}{2} = \frac{C}{D} \cdot \frac{D^2}{4} = \pi \left(\frac{D}{2}\right)^2$$

1.4 Área de hexágonos

Agora vamos tentar usando a área de hexágonos:

Desse modo:

$$\left(\frac{D}{2}\right)^2 = \left(\frac{l}{2}\right)^2 + h^2$$

$$h^2 = \frac{D^2}{4} - \frac{D^2}{4^2} = \frac{D^2}{4^2}(4-1) = \frac{3}{4^2}D^2$$

$$h = \frac{\sqrt{3}}{4}D$$

E, portanto:

$$\begin{aligned} 6 \cdot l \cdot h \cdot \frac{1}{2} &= 6 \cdot \frac{D}{2} \cdot \frac{\sqrt{3}}{4} D \cdot \frac{1}{2} < \pi \frac{D^2}{4} \\ &\qquad \qquad \frac{3\sqrt{3}}{2} < \pi \end{aligned}$$

Por outro lado, se usarmos a circunferência inscrita ao hexágono:

Temos que:

$$\pi \cdot \frac{D^2}{4} < 6 \cdot L \cdot h \cdot \frac{1}{2} = 6 \cdot \frac{D}{\sqrt{3}} \cdot \frac{D}{2} \cdot \frac{1}{2}$$
$$\pi < \frac{6}{\sqrt{3}} = \frac{2 \cdot 3}{\sqrt{3}} = \frac{2 \cdot \sqrt{3} \cdot \sqrt{3}}{\sqrt{3}} = 2\sqrt{3}$$

Concluindo que:

$$\frac{3\sqrt{3}}{2} < \pi < 2\sqrt{3}$$

Ou seja, descobrimos que PI está entre aproximadamente 2,6 e 3,46

1.5 Papiro de Rhind

O Papiro de Rhind, datado de 1550 a.C., é um dos mais antigos tratados matemáticos conhecidos, oferecendo uma visão detalhada sobre a matemática praticada no Antigo Egito. Escrito pelo escriba Ahmes, o documento abrange problemas que envolvem aritmética, álgebra simples e geometria.¹

As técnicas que vamos ver a seguir foram utilizadas para calcular a área do círculo, mas que também resultou em uma aproximação de PI não intencional.

Comecemos com uma circunferência inscrita a um octógono:

A partir disso, temos que:

$$A \approx \left(\frac{D^2}{3}\right) \cdot (9-2) = \frac{7}{9}D^2$$

Então:

$$\pi \frac{D^2}{4} = A \approx \frac{7}{9}D^2$$

$$\pi \approx \frac{28}{9} = 3, \bar{1}$$

¹Gillings, R. J. (1972). Mathematics in the Time of the Pharaohs. Dover Publications.

Agora se pegarmos apenas um quadrante e dividirmos ele em 9:

Podemos ver que:

$$A \approx \left(\frac{D}{9}\right)^2 \cdot (9^2 - 4 \cdot \frac{9}{2}) = \frac{D^2}{9^2} \cdot (9 - 2)$$

$$\frac{7}{9}D^2$$

Porém:

$$A \approx \left(\frac{D}{9}\right)^2 \cdot (9^2 - 4 \cdot \frac{9}{2}) = \left(\frac{D}{9}\right)^2 \cdot (81 - 18)$$
$$\left(\frac{D}{9}\right)^2 \cdot 63 \approx \left(\frac{D}{9}\right)^2 \cdot 64 = \left(\frac{8}{9}D\right)^2$$

1.5.1 Quadratura do círculo

A partir disso, parece que a área do círculo tende a área do quadrado. Então, vamos verificar:

$$L^2 = A = \frac{7}{9}D^2$$

$$L = \sqrt{\frac{7}{9}}D$$

Por outro lado:

$$L^{2} = A = \left(\frac{8}{9}D\right)^{2}$$
$$L = \frac{8}{9}D$$

Por fim, obtemos como subproduto uma estimativa de PI:

$$\pi \cdot \frac{D^2}{4} = A = \left(\frac{8}{9}\right)^2 \cdot D^2$$
$$\pi \approx \frac{4 \cdot 8^2}{9^2} = \frac{2^8}{9^2}$$
$$\pi \approx \frac{256}{81} \approx 3,16$$

1.6 PI via Monte Carlo

O método de Monte Carlo é uma técnica estatística que utiliza a geração de números aleatórios para resolver problemas matemáticos. Neste experimento, usaremos esse método para estimar o valor de π . A ideia é gerar pontos aleatórios em um quadrado, verificar quantos caem dentro de um círculo inscrito, e usar essa proporção para calcular uma aproximação de π .

1.6.1 Implementação em R

```
n = 100000
  m = 1000
  var = numeric(m)
  for (i in 1:m) var[i] = single_shot(n)
  single_shot = function(n) {
    x = runif(n)
    y = runif(n)
    z = x * x + y * y
    ins = which(z \le 1)
    pi = 4 * length(ins) / n
12
    return(pi)
13
  }
14
  plot(x[ins], y[ins], col='red', pch=19, cex=0.1, xlim=c
     (0,1), ylim=c(0,1)
  points(x[-ins], y[-ins], col='blue', pch=19, cex=0.1)
18
  mean(var)
  sd(var) / sqrt(m)
```

Listing 1: Pi via Monte Carlo em R

1.6.2 Implementação em C

```
#include <stdio.h>
  #include <stdlib.h>
  #include <time.h>
  int main(){
       double x, y;
       int n = 1000000;
       unsigned long long i, j;
       j = 0;
9
       srand(time(0));
       for (i = 1; i <= n; i++){</pre>
11
           x = (double)rand()/RAND_MAX;
12
           y = (double)rand()/RAND_MAX;
13
           if ((x*x + y*y) <= 1) j+=1;</pre>
14
       }
15
```

```
double PI = 4*((double) j/n);
printf("Valor de PI: %f", PI);
return 0;
}
```

Listing 2: Pi via Monte Carlo em C

1.6.3 Exercício: Determine o "valor médio" de π . Interprete estatisticamente o resultado.

Após realizar 100.000 simulações utilizando o método de Monte Carlo, o valor médio estimado de π foi 3,1416.

O valor médio de π obtido (3,1416) está muito próximo do valor real de π (3,14159), o que indica que o método de Monte Carlo é eficaz para estimar π com alta precisão. Além disso, o desvio padrão das estimativas foi baixo, refletindo que as simulações são consistentes e que a variabilidade das estimativas individuais de π é mínima. Isso reforça a confiabilidade da média calculada como uma boa aproximação do valor verdadeiro de π .

2 Taylor via Série Geométrica

Seja:

$$f(x) = -\ln(1-x) \qquad \qquad f(0) = -\ln(1) = 0$$

$$f'(x) = +(1-x)^{-1} \qquad \qquad f'(0) = 1$$

$$f''(x) = +(1-x)^{-2} \qquad \qquad f''(0) = 1$$

$$f'''(x) = +(1-x)^{-3} \qquad \qquad f'''(0) = 2$$

$$f^{4}(x) = +(1-x)^{-4} \qquad \qquad f^{4}(0) = 3!$$

$$\vdots \qquad \qquad \vdots$$

$$f^{n}(x) = (n-1)! \cdot (1-x)^{-n} \qquad \qquad f^{n}(0) = (n-1)!$$

Portanto:

$$-ln(1-x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=1}^{\infty} \frac{(n-1)!}{n!} x^n$$
$$\sum_{n=1}^{\infty} \frac{x^n}{n} = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$$

Prova da convergência:

$$\frac{a_n+1}{a_n} = \frac{x^{n+1}}{n+1} \cdot \frac{n}{x^n} = \frac{n}{n+1}x$$
, tal que $n+1 < 1 \ \forall n \in \mathbb{N}$

Assim:

$$r = \lim_{n \to \infty} \left| \frac{a_n + 1}{a_n} \right| = |x| , se |x| < 1$$

Então:

$$-ln(1-x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$$
, se $|x| < 1$

Em particular, se $x = \frac{1}{2}$ tem-se:

$$0 = \ln(1) = \ln\left(\frac{2}{2}\right) = \ln(2) + \ln\left(\frac{1}{2}\right)$$
$$\ln(2) = -\ln\left(\frac{1}{2}\right) = -\ln\left(1 - \frac{1}{2}\right)$$
$$\sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{1}{n}$$

Esta fórmula era conhecida por Jakob Bernoulli e serve para calcular os dígitos binários de ln(2), ou seja, em base 2.

2.1 Exercício

Analogamente, prove que:

$$ln(x+1) = -\sum_{k=1}^{\infty} \frac{(-x)^k}{k} = -\sum_{k=0}^{\infty} \frac{(-1)^{k+1} \cdot x^{k+1}}{(k+1)} = \sum_{k=0}^{\infty} (-1)^k \cdot \frac{x^{k+1}}{k+1}$$

Prove convergência no caso x = 1.

Resolução:

$$\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k$$

Reescrevendo:

$$\ln(1+x) = -\sum_{k=1}^{\infty} \frac{(-x)^k}{k}$$

Expandindo os primeiros termos da série:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

Por outro lado:

$$\sum_{k=1}^{\infty} \frac{(-x)^k}{k} = -\left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots\right)$$

Portanto:

$$\ln(1+x) = -\sum_{k=1}^{\infty} \frac{(-x)^k}{k}$$

Prova da convergência:

$$\ln(2) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$$

Pelo Teste de Leibniz, se os termos de uma série alternada diminuem monotonamente para zero, a série converge.

Portanto:

$$\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k$$

converge para (x = 1):

$$\ln(2) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$$

2.2 Série Geométrica de razão a:

$$S_n = 1 + a + a^2 + \dots + a^n$$

$$- a \cdot S_n = a + a^2 + \dots + a^n + a^{n+1}$$

$$S_n - aS_n = 1 - a^{n+1}$$

$$(1 - a)S_n = 1 - a^{n+1}$$

$$S_n = \frac{1 - a^{n+1}}{1 - a} = \frac{1}{1 - a} - \frac{a^{n+1}}{1 - a}$$

$$\frac{1}{1 - a} = S_n + \frac{a^{n+1}}{1 - a} = \sum_{n=1}^{n} a^n + \frac{a^{n+1}}{1 - a}$$

Portanto:

$$\frac{1}{1-a} = S_n + \frac{a^{n+1}}{1-a} = \sum_{k=0}^n a^k + \frac{a^{n+1}}{1-a}$$
$$\frac{1}{1-x} = \sum_{k=0}^n x^k + \frac{x^{n+1}}{1-x}$$
$$f'(x) \qquad \left(\frac{x^{k+1}}{k+1}\right)'$$

Então:

$$-ln(1-x) = \sum_{k=0}^{n} \frac{x^{k+1}}{k+1} = \sum_{k=1}^{n+1} \frac{x^k}{k} ?$$

Teorema: $P_{n+1}(x) = \sum_{k=0}^{n} \frac{x^{k+1}}{k+1}$ é o polinômio de Taylor da função -ln(1-x) na origem.

Demonstração:

$$0 = \lim_{x \to 0} \frac{-\ln(1-x) - P_{n+1}(x)}{x^{n+1}} \xrightarrow{L'H\hat{o}pital} \lim_{x \to 0} \frac{x^{n+1}}{1-x} \cdot \frac{1}{(n+1)x^n} =$$
$$= \frac{1}{n+1} \cdot \lim_{x \to 0} \frac{1}{1-x} = 0.$$

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + \frac{x^{n+1}}{1-x}$$

Trocando x por $-x^2$:

$$\underbrace{\frac{1}{1+x^2}}_{k=0} = \sum_{k=0}^{n} (-1)^k \cdot \underbrace{x^2 k}_{k} + \underbrace{\frac{(-1)^{n+1}}{1+x^2}}_{k} \cdot x^{2n+2}$$

$$arctg'(x)$$
 $\left(\frac{x^{2k+1}}{2k+1}\right)'$

Teorema: $P_{2n+1}(x) = \sum_{k=0}^{n} (-1)^k \cdot \frac{x^{2k+1}}{2k+1}$ é o polinomio de Taylor da função arctg(x) de ordem 2n+1 na origem.

Analogamente:

$$\frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k + \frac{(-x)^{n+1}}{1+x} =$$
$$= \sum_{k=0}^{n} (-1)^k x^k + (-1)^{n+1} \cdot \frac{x^{n+1}}{1+x}$$

Portanto:

$$ln(1+x) = \underbrace{\sum_{k=0}^{n} (-1)^k \cdot \frac{x^{k+1}}{k+1}}_{P_{n+1}} + R_{n+1}(x)$$

$$\frac{R_{n+1}(x) + R_{n+1}(0)}{x - 0} = \frac{R_{n+1}(x)}{x} = R'_{n+1}(\xi) = (-1)^{n+1} \cdot \frac{\xi^{n+1}}{1+x} , \ \xi \in (0, x)$$

Assim:

$$|R_{n+1}(x)| = |x| \cdot \frac{|\xi|^{n+1}}{|1+x|} < |x| \cdot |\xi| \le |\xi|^{n+1}$$

$$0 < x < 1$$

3 Leibniz Aprimorado

$$arctg(x) = \underbrace{\sum_{k=0}^{n} (-1)^k \cdot \frac{x^{2k+1}}{2k+1}}_{P_n(x)} + R_n(x) \; ; \; |R_n(x)| \le \frac{x^{2n+3}}{2n+3}$$

$$arctg(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \frac{x^1 1}{11} + \cdots$$
$$\frac{\pi}{4} = arctg(1) = \left(1 - \frac{1}{3}\right) + \left(\frac{1}{5} - \frac{1}{7}\right) + \left(\frac{1}{9} - \frac{1}{11}\right) + \cdots + \left(\frac{1}{2n+1} - \frac{1}{2n+3}\right)$$

Como n = 2k:

$$\frac{1}{2(2k)+1} - \frac{1}{2(2k)+3} = \frac{1}{4k+1} - \frac{1}{4k+3}$$

Então:

$$\frac{\pi}{4} = \sum_{k=0}^{\infty} \left(\frac{1}{4k+1} - \frac{1}{4k+3} \right) = \sum_{k=0}^{\infty} \frac{4k+3-4k-1}{(4k+1)(4k+3)}$$
$$\pi = 8 \cdot \sum_{k=0}^{\infty} \frac{1}{(4k+1)(4k+3)}$$

Sabe-se que $ln(1+x) = \sum_{k=0}^{\infty} (-1)^k \cdot \frac{x^{k+1}}{k+1} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$

E também que:

$$\sum_{k=0}^{\infty} \frac{\cos(k\pi)}{k+1} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} = \ln(1+1) = \ln(2).$$

E:

$$\sum_{k=0}^{\infty} \frac{sen(\frac{k\pi}{2})}{k+1} = \sum_{k=0}^{\infty} \frac{sen(2k+1) \cdot \frac{\pi}{2}}{(2k+1)+1}.$$

$$= \frac{1}{2} \cdot \sum_{k=0}^{\infty} \frac{sen(k\pi) \cdot cos(\frac{\pi}{2}) + cos(k\pi) \cdot sen(\frac{\pi}{2})}{k+1}$$

$$= \frac{1}{2} \cdot \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} = \frac{1}{2} \cdot ln(1+1) = \frac{1}{2} \cdot ln(2)$$

Portanto:

$$\sum_{k=0}^{\infty} \frac{\cos(k\pi) - 2\operatorname{sen}(\frac{k\pi}{2})}{k+1} = 0$$

Teorema: $\sum_{k=0}^{\infty} \frac{a(k)}{k+1} = 0$; onde $a(k) = cos(k\pi) - 2sen(\frac{k\pi}{2})$

Agora, observe que: n = 4k + r, $0 \le r < 4$.

Assim:

$$cos(n\pi) = cos(4k+r)\pi = cos(4k\pi) \cdot cos(r\pi) - sen(4k\pi) \cdot sen(r\pi)$$
$$= (-1)^r$$

E:

$$sen(\frac{n\pi}{2}) = sen(4k+r)\frac{\pi}{2} = sen(2k\pi) \cdot cos(r \cdot \frac{\pi}{2}) + cos(2k\pi) \cdot sen(r \cdot \frac{\pi}{2})$$

$$= sen(r \cdot \frac{\pi}{2}) \begin{cases} 0 & se \ r = 0 \\ 1 & se \ r = 1 \\ 0 & se \ r = 2 \\ -1 & se \ r = 3 \end{cases}$$

Portanto:

$$a(k) = cos(k\pi) - 2sen(k \cdot \frac{\pi}{2})$$

$$= (-1)^k - 2\{0, 1, 0, -1\} \mod 4$$

$$= \{1, -1, 1, -1\} - 2\{0, 1, 0, -1\} \mod 4$$

$$= \{1, -3, 1, 1\} \mod 4$$

Então:

$$0 = \sum_{k=0}^{\infty} \left(\frac{1}{4k+1} - \frac{3}{4k+2} + \frac{1}{4k+3} + \frac{1}{4k+4} \right) + \frac{\pi}{4} = \sum_{k=0}^{\infty} \left(\frac{1}{4k+1} - \frac{1}{4k+3} \right)$$

$$\frac{\pi}{4} = \sum_{k=0}^{\infty} \left(\frac{2}{4k+1} - \frac{3}{4k+2} + \frac{1}{4k+4} \right)$$

Continuando:

$$\frac{2}{4k+1} - \frac{3}{4k+2} + \frac{1}{4k+4} = \frac{A}{(4k+1) \cdot 2(2k+1) \cdot 4(k+1)}$$

$$A = 4^2 \cdot (2k+1)(k+1) - 3 \cdot 4(4k+1)(k+1) + 2(4k+1)(2k+1)$$

$$A = 4^2 \left(2k^2 + 3k + 1\right) - 3 \cdot 4\left(4k^2 + 5k + 1\right) + 2\left(8k^2 - 6k + 1\right)$$

$$= k^2 \left(2 \cdot 16 - 3 \cdot 16 + 16\right) = 0$$

$$+k\left(3 \cdot 16 - 3 \cdot 20 + 3 \cdot 4\right) = 0$$

$$+16 - 12 + 2 = 6$$

Portanto:

$$\pi = \frac{4 \cdot 6}{2 \cdot 4} \sum_{k=0}^{\infty} \frac{1}{(4k+1)(2k+1)(k+1)}$$

Alternativamente:

$$\pi = 24 \sum_{k=0}^{\infty} \frac{1}{(4k+1)(4k+2)(4k+4)}$$

Adotando (4k+1)(4k+2)(4k+4) como (i+1)(i+2)(i+4) temos que:

$$(i+1)(i+2)(i+4) = (i+1)(i+2)(i+2+2)$$

$$= (i+1) [(i+2)^2 + 2(i+2)]$$

$$= (i+1) [(i+1)^2 + 2(i+1) + 1 + 2(i+1) + 2]$$

$$= (i+1) [(i+1)^2 + 4(i+1) + 3]$$

$$= (i+1) [(i+1) {(i+1) + 4} + 3]$$

Além disso:

$$(k+a)(k+b) = k^2 + (a+b)k + ab$$

Então:

$$(k+a)(k+b)(k+c) = k^3 + ck^2 + (a+b)k^2 + (a+b)ck + abk + abc$$

$$= k^3 + (a+b+c)k^2 + (ab+ac+bc)k + abc$$

$$\frac{1}{k+1} - \frac{3}{k+2} = \frac{k+2-3k-3}{(k+1)(k+2)} = \frac{-(2k+1)}{(k+1)(k+2)}$$

Assim:

$$\frac{1}{k+1} - \frac{3}{k+2} + \frac{1}{k+4} = \frac{-(2k+1)(k+4) + k^2 + 3k + 2}{(k+1)(k+2)(k+4)}$$
$$= \frac{-2k^2 - 9k - 4 + k^2 + 3k + 2}{(k+1)(k+2)(k+4)} = \frac{-k^2 - 6k - 2}{(k+1)(k+2)(k+4)}$$

Desse modo:

$$\frac{1}{k+1} - \frac{3}{k+2} + \frac{1}{k+4} + \frac{1}{k+3} = \frac{-(k^2 + 6k + 2)(k+3) + k^3 + 7k^2 + 14k + 8}{(k+1)(k+2)(k+3)(k+4)}$$

$$= \frac{-k^3 - 9k^2 - 20k - 6 + k^3 + 7k^2 + 14k + 8}{\prod_{i=1}^4 (k+i)}$$

$$= \frac{-2k^2 - 6k + 2}{\prod_{i=1}^4 (k+i)} = \frac{-2(k^2 + 3k - 1)}{(k+1)(k+2)(k+3)(k+4)}$$

Pegando a equação quadrática:

$$k^{2} + 3k - 1 = 0 \Leftrightarrow k = \frac{-3 \pm \sqrt{9 + 4}}{2} = \frac{-3 \pm \sqrt{13}}{2}$$
$$b(k) = \frac{1}{k+1} - \frac{3}{k+2} + \frac{1}{k+3} + \frac{1}{k+4}$$

E, portanto:

$$b(k) < 0 \quad \forall k \ge 1.$$

$$b(0) = \frac{2}{24} = \frac{1}{12} \; ; \; b(1) = \frac{-6}{24 \cdot 5} = -\frac{1}{20}$$

4 Fórmula de Machin

$$\frac{\pi}{6} = arctg\left(\frac{1}{\sqrt{3}}\right) = \frac{1}{\sqrt{3}} \sum_{k=0}^{\infty} (-1)^k \cdot \frac{1}{3^k (2k+1)} + R_n\left(\frac{1}{\sqrt{3}}\right)$$
$$|R_n| \le \frac{1}{\sqrt{3}} \cdot \frac{1}{3^{n+1}} \cdot \frac{1}{2n+3}$$
$$arctg(x) = \sum_{k=0}^{\infty} \frac{x^{4k+1}}{4k+1} - \frac{x^{4k+3}}{4k+3} = x^{4k+1} \left(\frac{1}{4k+1} - \frac{x^2}{4k+3}\right)$$

Portanto:

$$\frac{\pi}{6} = arctg\left(\frac{1}{\sqrt{3}}\right) = \frac{1}{\sqrt{3}} \sum_{k=0}^{\infty} \frac{1}{3^{2k}} \cdot \frac{12k+9-4k-1}{3(4k+1)(4k+3)}$$

$$\pi = \frac{6 \cdot 4}{\sqrt{3} \cdot 3} \sum_{k=0}^{\infty} \frac{1}{3^{2k}} \cdot \frac{2k+2}{(2(2k)+1)(2(2k)+3)}$$
$$\pi = \frac{8\sqrt{3}}{3} \sum_{k=0}^{\infty} \frac{1}{3^i} \cdot \frac{i+2}{(2i+1)(2i+3)} , \quad i = i+2$$

Tratamento do erro: $2(m+1) = 2m + 2 < 2m + 3 \Rightarrow \frac{1}{2m+3} < \frac{1}{2(m+1)}$

Assim:

$$6R_n \le \frac{6}{2n+3} \cdot \frac{1}{\sqrt{3}} \cdot \frac{1}{3^{n+1}} < \frac{6}{2(n+1)} \cdot \frac{1}{\sqrt{3}} \cdot \frac{1}{3^{n+1}} < \varepsilon$$
?

Então:

$$\frac{1}{\varepsilon} \cdot \frac{6}{2\sqrt{3}} < 3^{n+1}(n+1)$$
$$= \frac{1}{\varepsilon} \cdot \sqrt{3}$$

Tratamento do erro no caso geral:

$$A \cdot arctg\left(\frac{1}{a}\right) = A \cdot P_n\left(\frac{1}{a}\right) + A \cdot R_n\left(\frac{1}{a}\right)$$
$$= A \sum_{k=0}^{m} (-1)^k \cdot \frac{\left(\frac{1}{a}\right)^{2k+1}}{2k+1} + A \cdot R_n\left(\frac{1}{a}\right) , |R_n| \le \frac{\left(\frac{1}{a}\right)^{2m+3}}{2m+3}$$

Seguindo:

$$A \cdot \frac{1}{a^{2m+3}} \cdot \frac{1}{2m+3} < \frac{1}{a^{2m+3}} \cdot \frac{1}{2(m+1)} < \frac{\varepsilon}{q} ?$$

$$\frac{1}{\varepsilon} \cdot \frac{qA}{2a} < a^{2(m+1)} \cdot (m+1)$$

Se $\varepsilon = 10^{-d}$ tem-se:

$$10^d \cdot \frac{qA}{2a} < a^{2(m+1)} \cdot (m+1)$$

4.1 Exercício:

Integrando por partes, tem-se:

$$\int arctg(x)dx = x \cdot arctg(x) - \frac{1}{2} \cdot \int \frac{2x}{1+x^2}dx = x \cdot arctg(x) - \frac{1}{2} \cdot ln(1+x^2)$$

Então:

$$\frac{\pi}{4} = \int_0^1 arctg(x)dx + \frac{1}{2} \cdot ln(2)$$

Agora:

$$\int_0^1 arct g(x) dx = \sum_{k=0}^\infty (-1)^k \cdot \int_0^1 \frac{x^{2k+1}}{2k+1}$$
$$= \sum_{k=0}^\infty (-1)^k \cdot \frac{1}{(2k+1)(2k+2)}$$
$$= \sum_{k=0}^\infty (-1)^k \cdot \left[\frac{1}{(2k+1)} - \frac{1}{2k+2} \right]$$

Por outro lado:

$$ln(1+x) = \sum_{k=0}^{\infty} (-1)^k \cdot \frac{x^{k+1}}{k+1} , -1 < x \le 1 \implies$$

$$\Rightarrow ln(2) = ln(1+1) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} = \sum_{k=0}^{\infty} \left[\frac{1}{2k+1} - \frac{1}{2k+2} \right]$$

E:

$$\frac{\pi}{4} = \sum_{k=0}^{\infty} (1 + \frac{1}{2}) \cdot \left[\frac{1}{4k+1} - \frac{1}{4k+2} \right] + (-1 + \frac{1}{2}) \cdot \left[\frac{1}{4k+3} - \frac{1}{4k+4} \right]$$

Portanto:

$$\pi = 2 \cdot \sum_{k=0}^{\infty} \left[\frac{3}{4k+1} - \frac{3}{4k+2} - \frac{1}{4k+3} + \frac{1}{4k+4} \right]$$

4.2 Exercício:

Sejam a > 0 e $0 < \varepsilon < a^2$.

Prove que
$$min(a - \sqrt{a^2 - \varepsilon}, \sqrt{a^2 - \varepsilon} - a) = \sqrt{a^2 - \varepsilon} - a$$

Demonstração: Observe que:

$$(a^{2} - \varepsilon)(a^{2} + \varepsilon) = a^{4} - \varepsilon^{2} < a^{4} \Rightarrow$$

$$\Rightarrow \sqrt{a^{2} - \varepsilon} \cdot \sqrt{a^{2} + \varepsilon} < a^{2}$$

$$2 \cdot \sqrt{a^{2} - \varepsilon} \cdot \sqrt{a^{2} + \varepsilon} < 2a^{2}$$

$$2 \cdot \sqrt{a^{2} - \varepsilon} \cdot \sqrt{a^{2} + \varepsilon} < 2a^{2} = 4a^{2} = (2a)^{2}$$

$$a^{2} + a^{2} = (a^{2} + \varepsilon) + (a^{2} - \varepsilon)$$

 $(a^2 + \varepsilon) + 2 \cdot \sqrt{a^2 - \varepsilon} \cdot \sqrt{a^2 + \varepsilon} + (a^2 - \varepsilon) < (2a)^2$

Assim:

$$\left(\sqrt{a^2 - \varepsilon} + \sqrt{a^2 + \varepsilon}\right)^2 < (2a)^2$$

$$\sqrt{a^2 - \varepsilon} + \sqrt{a^2 + \varepsilon} < (2a) = a + a \ (*)$$

se
$$a > 0$$

Portanto:

$$\sqrt{a^2 + \varepsilon} - a < a - \sqrt{a^2 - \varepsilon}$$

O/F:

$$* \Rightarrow 1 < \frac{2a}{\sqrt{a^2 + \varepsilon} + \sqrt{a^2 - \varepsilon}} \Rightarrow$$

$$\Rightarrow 1 - \frac{2a}{\sqrt{a^2 + \varepsilon} + \sqrt{a^2 - \varepsilon}} < 0 \Rightarrow$$

$$= \varepsilon + \varepsilon = a^2 + \varepsilon - a^2 + \varepsilon = (a^2 + \varepsilon) - (a^2 - \varepsilon)$$

$$\Rightarrow -2\varepsilon + \frac{2a \cdot 2\varepsilon}{\sqrt{a^2 + \varepsilon} + \sqrt{a^2 - \varepsilon}} > 0$$

$$-2\varepsilon + 2a \cdot \frac{(a^2 + \varepsilon) - (a^2 - \varepsilon)}{\sqrt{a^2 + \varepsilon} + \sqrt{a^2 - \varepsilon}} > 0$$

$$-2\varepsilon + 2a \cdot \frac{(\sqrt{a^2 + \varepsilon} - \sqrt{a^2 - \varepsilon})(\sqrt{a^2 + \varepsilon} + \sqrt{a^2 - \varepsilon})}{\sqrt{a^2 + \varepsilon} + \sqrt{a^2 - \varepsilon}} > 0$$

$$-2\varepsilon + 2a \cdot (\sqrt{a^2 + \varepsilon} - \sqrt{a^2 - \varepsilon}) > 0$$

Então:

$$0 < 2a\sqrt{a^2 + \varepsilon} - 2a\sqrt{a^2 - \varepsilon} \underbrace{-\varepsilon + 2a^2 - 2a^2 - \varepsilon}$$

$$(a^2 - \varepsilon) + a^2 - (a^2 + \varepsilon) - a^2$$

$$= 2a\sqrt{a^2 + \varepsilon} - (a^2 + \varepsilon) - a^2 + (a^2 - \varepsilon) - 2a\sqrt{a^2 - \varepsilon} + a^2$$

$$= (\sqrt{a^2 - \varepsilon} - a)^2 - (\sqrt{a^2 + \varepsilon} - a)^2$$

$$= (\underbrace{a - \sqrt{a^2 - \varepsilon}})^2 - (\underbrace{\sqrt{a^2 + \varepsilon} - a})^2$$

$$=: \delta_1 \qquad =: \delta_2$$

Portanto:

$$\delta_1^2 - \delta_2^2 > 0 \ (*)$$

Por outro lado, tem-se:

$$a^2 - \varepsilon < a^2 \Rightarrow \sqrt{a^2 - \varepsilon} < a \Rightarrow 0 < a - \sqrt{a^2 - \varepsilon} = \delta_1$$

E, analogamente:

$$a^2 + \varepsilon > a^2 \Rightarrow \sqrt{a^2 + \varepsilon} > a \Rightarrow 0 < \sqrt{a^2 + \varepsilon} - a = \delta_2$$

Desse modo:

$$\delta_1 > 0 \ e \ \delta_2 > 0 \ \Rightarrow \ \delta_1 + \delta_2 > 0 \ (**)$$

Portanto:

$$\delta_1 - \delta_2 = \underbrace{\frac{\delta_1^2 - \delta_2^2}{\delta_1 + \delta_2}}_{>0 \text{ por } (*)} > 0 \Rightarrow \delta_1 > \delta_2$$
$$> 0 \text{ por } (**)$$

Ou seja:

$$\sqrt{a^2 + \varepsilon} - a < a - \sqrt{a^2 - \varepsilon}$$

5 Exercícios

5.1 Exercício 1:

Nicole Oresme (1320–1382) foi um clérigo e matemático francês associado à Universidade de Paris, na Baixa Idade Média. (Katz, p. 392). Oresme determinou o espaço total percorrido por um móvel com velocidade variável, supondo que na primeira metade do tempo a velocidade é 1, no próximo quarto igual a 2, etc. (Katz, p. 398). Portanto, o cálculo equivale a determinar a soma da série:

$$r_n = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \dots + \frac{1}{2^n} \cdot n + \dots$$

Ou seja, $r_n = \sum_{k=1}^n k \cdot a^k$, onde $a = \frac{1}{2}$.

- 1. Determine o valor de r_n em função de a.
- 2. Calcule o valor do limite $\lim_{n\to\infty} r_n$, no caso |a|<1.

Resolução:

1)

$$r_n = \sum_{k=1}^n ka^k$$

Reescrevendo:

$$r_n = a \sum_{k=1}^n k a^{k-1}$$

Seguindo a sugestão:

$$r_n = a \cdot \frac{-(n+1)a^n \cdot (1-a) + (1-a^{n+1})}{(1-a)^2}$$

$$= a \cdot \frac{1 - a^{n+1} + (n+1)a^{n+1} - n \cdot a^n - a^n}{(1-a)^2}$$

$$= a \cdot \frac{1 - a^{n+1} + n \cdot a^{n+1} + a^{n+1} - n \cdot a^n - a^n}{(1 - a)^2}$$
$$= a \cdot \frac{1 - a^n - n \cdot a^n (1 - a)}{(1 - a)^2}$$

Portanto:

$$r_n = \frac{a(1-a^n)}{(1-a)^2} - \frac{a \cdot n \cdot a^n}{1-a}$$

2)

Sabe-se que quando |a| < 1, $\lim_{n \to \infty} a^n = 0$.

Então, basta provar que $\lim_{n\to\infty} n \cdot a^n = 0$:

$$\lim_{n \to \infty} n \cdot a^n = \lim_{n \to \infty} \frac{n}{a^{-n}} = \frac{\infty}{\infty}.$$

Aplicando a regra de L'Hôpital:

$$\lim_{n \to \infty} \frac{n}{a^{-n}} = \lim_{n \to \infty} \frac{1}{-n \cdot \ln(a) \cdot a^{-n}} = \lim_{n \to \infty} \frac{a^n}{-n \cdot \ln(a)}$$

Como o numerador cresce muito mais rápido que o denominador, o limite será 0:

$$\lim_{n \to \infty} n \cdot a^n = 0.$$

Portanto:

$$\lim_{n \to \infty} r_n = \lim_{n \to \infty} \left(\frac{a(1 - a^n)}{(1 - a)^2} - \frac{a \cdot n \cdot a^n}{1 - a} \right) \Rightarrow \lim_{n \to \infty} r_n = \frac{a}{(1 - a)^2}$$

5.2 Execício 2:

Calcule as 100 primeiras casas decimais de π usando a fórmula de Machin original, ou seja,

$$\frac{\pi}{4} = 4 \cdot \arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right)$$

Para isso, implemente o código em alguma linguagem de programação com precisão arbitrária, por exemplo Python.

Resolução:

```
from mpmath import mp

# calcula as 100 casas decimais

mp.dps = 100

# formula de Machin

pi = 4 * (4 * mp.atan(1/5) - mp.atan(1/239))

print(pi)
```

Listing 3: Implementação do cálculo em Python

O valor de π com 100 casas decimais é:

 $\pi \approx 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068.$

5.3 Exercício 3

Calcule as casas decimais de π quebrando algum recorde histórico pós-1949. Por exemplo, 2.037 casas obtidas pelo ENIAC em setembro de 1949. Para tanto, use as fórmulas:

$$\frac{\pi}{4} = 12 \cdot \arctan\left(\frac{1}{49}\right) + 32 \cdot \arctan\left(\frac{1}{57}\right) - 5 \cdot \arctan\left(\frac{1}{239}\right) + 12 \cdot \arctan\left(\frac{1}{110443}\right)$$
(W. This problem)

$$\frac{\pi}{4} = 44 \cdot \arctan\left(\frac{1}{57}\right) + 7 \cdot \arctan\left(\frac{1}{239}\right) - 12 \cdot \arctan\left(\frac{1}{682}\right) + 24 \cdot \arctan\left(\frac{1}{12943}\right)$$

(F.C.M. Størmer, 1896)

Usando a segunda fórmula para verificar o resultado obtido pela primeira. **Resolução:** Implementando o código em Python, como no exercício anterior:

```
print("Valor de pi usando F.C.M. Stormer: ", pi_stormer)
```

Listing 4: Calculando 2100 casas decimais de PI

O valor de π com 2100 casas decimais usando a fórmula de **K. Takano** é:

```
3.141592653589793042929663938552056294267246929749682\cdots
```

O valor de π com 2100 casas decimais usando a fórmula de **F.C.M. Størmer** é:

```
3.141592653589793056924425796766148906536443774591942 \cdots
```

Assim, vemos que o resultado obtido através da segunda fórmula coincide com o da primeira até as 16 primeiras casas decimais, divergindo posteriormente.

Comparando também com o resultado obtido pela Fórmula de Machin original (1706):

```
3.141592653589793238462643383279502884197169399375105 \cdots
```

Vemos que do resultado dela coincidem apenas as 15 primeiras casas decimais quando comparadas com os resultados acima.