

ETF3231/5231: Business forecasting

Week 2: Time series graphics

https://bf.numbat.space/

- 1 Time series in R
- 2 Time series graphics
- 3 Time series patterns
- 4 Seasonal and seasonal subseries plots
- 5 Lag plots and autocorrelation
- 6 White noise

- 1 Time series in R
- 2 Time series graphics
- 3 Time series patterns
- 4 Seasonal and seasonal subseries plots
- 5 Lag plots and autocorrelation
- 6 White noise

Included in week 1:

- tsibble objects
- The tsibble index

dplyr funtions

- filter: choose rows
- select: choose columns
- mutate: make new columns
- group_by: group rows
- summarise: summarise across groups
- reframe: summarise multiple rows across groups

- 1 Time series in R
- 2 Time series graphics
- 3 Time series patterns
- 4 Seasonal and seasonal subseries plots
- 5 Lag plots and autocorrelation
- 6 White noise

Time series graphics

- Time plots: autoplot()
- Seasonal plots: gg_season()
- Seasonal subseries plots: gg_subseries()
- Lag plots: gg_lag()
- ACF plots: ACF() |> autoplot()

Time plots

- First in any modelling/forecasting task should be to plot your data.
- Plots allow us to identify:
 - Patterns:
 - Unusual observations:
 - Changes over time;
 - Relationships between variables.

Time plots

- First in any modelling/forecasting task should be to plot your data.
- Plots allow us to identify:
 - Patterns:
 - Unusual observations:
 - Changes over time;
 - Relationships between variables.

- 1 Time series in R
- 2 Time series graphics
- 3 Time series patterns
- 4 Seasonal and seasonal subseries plots
- 5 Lag plots and autocorrelation
- 6 White noise

Time series patterns

Trend pattern exists when there is a long-term increase or decrease in the data.

Seasonal pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week).

Cyclic pattern exists when data exhibit rises and falls that are not of fixed period (duration usually of at least 2 years).

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

- 1 Time series in R
- 2 Time series graphics
- 3 Time series patterns
- 4 Seasonal and seasonal subseries plots
- 5 Lag plots and autocorrelation
- 6 White noise

Seasonal plots

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: gg_season()

Seasonal subseries plots

- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: gg_subseries()

- 1 Time series in R
- 2 Time series graphics
- 3 Time series patterns
- 4 Seasonal and seasonal subseries plots
- 5 Lag plots and autocorrelation
- 6 White noise

Correlation coefficient

■ Which one has the highest correlation?

Autocorrelation

Autocovariance (c_k) and autocorrelation (r_k) : measure linear relationship between lagged values of a time series y.

Autocorrelation

Autocovariance (c_k) and autocorrelation (r_k) : measure linear relationship between lagged values of a time series y.

We measure the relationship between:

- y_t and y_{t-1}
- y_t and y_{t-2}
- y_t and y_{t-3}
- **...**
- y_t and y_{t-k}
- etc.

Autocorrelation

We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k . Then define

$$r_k = \frac{c_k}{c_0} = \frac{\sum_{t=k+1}^{T} (y_t - \bar{y})(y_{t-k} - \bar{y})}{\sum_{t=1}^{T} (y_t - \bar{y})}$$

- \blacksquare r_1 indicates how successive values of y relate to each other
- \blacksquare r_2 indicates how y values two periods apart relate to each other
- \blacksquare r_k is almost the same as the sample correlation between y_t and y_{t-k} .

Trend and seasonality in ACF plots

- When data have a trend, the autocorrelations for small lags tend to be large and positive.
- When data are seasonal, the autocorrelations will be larger at the seasonal lags (i.e., at multiples of the seasonal frequency)
- When data are trended and seasonal, you see a combination of these effects.

- 1 Time series in R
- 2 Time series graphics
- 3 Time series patterns
- 4 Seasonal and seasonal subseries plots
- 5 Lag plots and autocorrelation
- 6 White noise

White noise and random walks

White noise

 ε_t independent and identically distributed with mean zero and constant variance.

Random walk

 $y_t = y_{t-1} + \varepsilon_t$ where ε_t is a white noise variable.

Sampling distribution of autocorrelations

Sampling distribution of r_k for white noise data is asymptotically N(0,1/T).

- 95% of all r_k for white noise must lie within $\pm 1.96/\sqrt{T}$.
- If this is not the case, the series is probably not WN.
- Common to plot lines at $\pm 1.96/\sqrt{T}$ when plotting ACF. These are the critical values.

Example: White noise autocorrelation

Example:

T = 36 and so critical values at $\pm 1.96/\sqrt{36} = \pm 0.327$.

All autocorrelations lie within these limits, confirming that the data are white noise. (More precisely, the data cannot be distinguished from white noise.)

Note: 5% chance to be outside the critical values (Type I error). You want to see spikes a long way out or many of them. Don't get too excited for 1 just outside especially at longer lags.