IPSec & OpenVPN

Contents

- 1. Context
- 2. IPSec
 - Authentication Header
 - Encapsulating Security Payload
 - Internet Key Exchange
- 3. IPSec Modes of operation
- 4. Internet Key Exchange
 - Modes of operation
- 5. IPSec Scenarios
- 6. Creating own VPN using OpenVPN

Internet Protocol

Internet Protocol

IP

- no security mechanism
- everyone can read/modify the packets

IP

- no security mechanism
- everyone can read/modify the packets

IP

- no security mechanism
- everyone can read/modify the packets

IPSec

- adds security to IP
- **collection of protocols** to secure IP communications:
 - Authentication Header (**AH**);
 - Encapsulating Security Payload (ESP);
 - Internet Key Exchange (**IKE**).
- technical specifications:
 - RFC 4301 (Security Architecture for the Internet Protocol);
 - RFC 4302 (IP Authentication Header);
 - RFC 4303 (IP Encapsulating Security Payload);
 - RFC 4308 (Cryptographic Suites for IPSec);
 - RFC 7296 (Internet Key Exchange Protocol Version 2 (IKEv2)).

Authentication Header (AH)

- **authenticates** the origins of packets
- ensures the **integrity** of transmitted datagram
- **anti-replay** mechanism

Encapsulating Security Payload (ESP)

- ensures data confidentiality
- verifies data integrity
- **anti-replay** mechanism

Authentication Header (AH)

- **Next Header**: indicates the next protocol to which the payload is addressed (IP=4, TCP=6, UDP=17)
- **Payload Length**: specified in 32-bit word multiple
- **Reserved**: future developments
- Security Parameters Index: 32-bit number used to identify the connection
- Sequence Number: to avoid replay attacks
- Authentication Information: MAC value calculated over IP packet (header + payload)

Modes of operation - AH

- AH->NextHeader = IP->Protocol
- IP->Protocol = 51

- IPv6 Decimal Keyword 🖫 Protocol 🖫 Extension Header 🖫 IPv6 Hop-by-Hop Option 0 HOPOPT Internet Control Message ICMP Internet Group Management **IGMP** Gateway-to-Gateway GGP IPv4 encapsulation IPv4 ST Stream 6 TCP Transmission Control ESP **Encap Security Payload** 50 51 Authentication Header
- NewIP->Protocol = 51
- AH->NextHeader = 4

https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

Encapsulating Security Payload (ESP)

- Payload: encrypted IP payload (without IP header)
- Padding + Padding Length:
 - extends total length to a multiple of encryption block
 - extends ESP Trailer to a 32bit multiple
- **Authentication Information**: MAC value calculated over IP packet (header + payload) => data integrity

Modes of operation - ESP

ESP->NextHeader = IP->Protocol

Encrypted

Authenticated

• IP->Protocol = 50

NewIP->Protocol = 50

Encrypted

Authenticated

• ESP->NextHeader = 4

Internet Key Exchange (IKE)

- Negotiation, creation and managing security associations automatically
- Security Association (SA)
 - Set of information which defines IPSec connection properties
 - Keys and algorithms used by both parties
- Two phases:
 - 1. Setting up **initial SA** (IKE SA)
 - Used to encrypt and authenticate next IKE protocol messages
 - Bidirectional
 - 2. Setting up a **general SA** (IPSec SA)
 - Used to protect data exchanged between IPSec communicating parties
 - Unidirectional
- X.509 PKI certificates for authentication
- Diffie-Hellman to set up a shared session secret key

Modes of operation – IKE

Exchange 1

- Encryption algorithm (e.g. AES-256)
- MAC algorithm (e.g. SHA-256)
- Authentication method (preshared keys / certificates)
- Diffie-Hellman parameters
- Lifetime (e.g. 2 hours)

Exchange 2

- Establish session key (DH)
- Nonce

Exchange 3

- Authentication
- Identity protection (due to encryption)

Main mode

Modes of operation - IKE

Aggressive mode

- Faster than main mode (3 messages instead of 6)
- Same as main mode:
 - Establish protection suite
 - Sets up the session key
 - Authenticate entities
- Identity protection

Quick mode

- Used in second phase
- Before SA expires

- Most important application of IPSec
- VPN = virtual network which allow computers communicate securely across a public network

- Most important application of IPSec
- VPN = virtual network which allow computers communicate securely across a public network
 - Secure transfer of data

- Most important application of IPSec
- VPN = virtual network which allow computers communicate securely across a public network
 - Secure transfer of data
 - Less expensive than dedicated network lines

- Most important application of IPSec
- VPN = virtual network which allow computers communicate securely across a public network
 - Secure transfer of data
 - Less expensive than dedicated network lines
 - Remote access

- Most important application of IPSec
- VPN = virtual network which allow computers communicate securely across a public network
 - Secure transfer of data
 - Less expensive than dedicated network lines
 - Remote access
- Arhitecture
 - Gateway-to-Gateway
 - Host-to-Gateway
 - Host-to-Host

- Usually, for securing communication between two networks

- Usually, for securing communication between two networks
- Establish an IPSec tunnel between gateways

- Usually, for securing communication between two networks
- Establish an IPSec tunnel between gateways
- Protects data only between gateways

- Usually, for securing communication between two networks
- Establish an IPSec tunnel between gateways
- Protects data only between gateways
- A.k.a. Site-to-Site VPN
- Easy to implement, easy to manage
- Transparent

- Recently, most used (work-from-home)

- Recently, most used (work-from-home)
- Establish an IPSec tunnel between host and VPN gateway

- Recently, most used (work-from-home)
- Establish an IPSec tunnel between host and VPN gateway
- Data is protected only between host and gateway

- Recently, most used (work-from-home)
- Establish an IPSec tunnel between host and VPN gateway
- Data is protected only between host and gateway
- A.k.a. Remote Access VPN

- Recently, most used (work-from-home)
- Establish an IPSec tunnel between host and VPN gateway
- Data is protected only between host and gateway
- A.k.a. Remote Access VPN
- Client VPN software required

Host-to-Host VPN

- Use-case: system administrator which wants to configure a server remotely

Host-to-Host VPN

- Use-case: system administrator which wants to configure a server remotely
- Data is end-to-end protected

Host-to-Host VPN

- Use-case: system administrator which wants to configure a server remotely
- Data is end-to-end protected
- Firewall/IDS can't inspect content

- StrongSwan = Strong Secure WAN

Case 1

- a) StrongSwan AH
- b) Ping Host1 -> Host2
- c) Wireshark

Case 2

- a) StrongSwan ESP
- b) Ping Host1 -> Host2
- c) Wireshark

Case 3

- a) Securing HTTP communication
- b) Apache Web Server
- c) IPSec
- d) WireShark

Start the infrastructure

docker-compose up -d

Display the containers

docker ps

Retrieve IPs

docker inspect -f '{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' alice docker inspect -f '{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' bob

Access containers

docker exec –it alice /bin/bash docker exec –it bob /bin/bash

Display network interfaces

ip a

Listen traffic between Alice and BOB

sudo tcpdump -i <INTERFACE>host <IP_ALICE> and host <IP_BOB> -s0 -vv -X -c 1000

Case 1

- StrongSwan AH
- Ping Host1 -> Host2
- Tcpdump + Wireshark
- a) Check strongswan service status
 - > ipsec status
- b) Edit config files: /etc/ipsec.conf and /etc/ipsec.secrets
- c) (Re)start strongswan service
 - > ipsec restart
- d) Capture network traffic between Alice and Bob

ALICE

/etc/ipsec.conf

conn alice-to-bob

keyexchange=ikev1
authby=secret
left=172.18.0.2
right=172.18.0.3
auto=start
type=transport
ah=sha256-sha512-modp2048!

ALICE & BOB

/etc/ipsec.secrets

: PSK "This is a strong password"

BOB

/etc/ipsec.conf

conn alice-to-bob
keyexchange=ikev1
authby=secret
left=172.18.0.3
right=172.18.0.2
auto=start
type=transport
ah=sha256-sha512-modp2048!

Case 1

- StrongSwan AH
- Ping Host1 -> Host2
- Tcpdump + Wireshark
- a) Check strongswan service status
 - > ipsec status
- b) Edit config files: /etc/ipsec.conf and /etc/ipsec.secrets
- c) (Re)start strongswan service
 - > ipsec restart
- d) Capture network traffic between Alice and Bob

sudo tcpdump -i <INTERFACE> -vv -s0 -X -c 1000 -w ping_capture.pcap

Copy file configs to containers

docker cp alice/ipsec_ah.conf alice:/etc/ipsec.conf docker cp bob/ipsec_ah.conf bob:/etc/ipsec.conf docker cp ipsec.secrets alice:/etc/ipsec.secrets docker cp ipsec.secrets bob:/etc/ipsec.secrets

Case 2

- StrongSwan ESP
- Ping Host1 -> Host2
- Tcpdump + Wireshark
- a) Check strongswan service status
 - > ipsec status
- b) Edit config files: /etc/ipsec.conf and /etc/ipsec.secrets
- c) (Re)start strongswan service
 - > ipsec restart
- d) Capture network traffic between Alice and Bob

ALICE

/etc/ipsec.conf

conn alice-to-bob

keyexchange=ikev1 authby=secret left=172.18.0.2 right=172.18.0.3 auto=start type=transport esp=aes128-sha256

ALICE & BOB

/etc/ipsec.secrets

: PSK "This is a strong password"

BOB /etc/ipsec.conf

conn alice-to-bob

keyexchange=ikev1
authby=secret
left=172.18.0.3
right=172.18.0.2
auto=start
type=transport
esp=aes128-sha256

Case 2

- StrongSwan ESP
- Ping Host1 -> Host2
- Tcpdump + Wireshark
- a) Check strongswan service status
 - > ipsec status
- b) Edit config files: /etc/ipsec.conf and /etc/ipsec.secrets
- c) (Re)start strongswan service
 - > ipsec restart
- d) Capture network traffic between Alice and Bob

sudo tcpdump -i <INTERFACE> -vv -s0 -X -c 1000 -w ping_capture.pcap

Copy file configs to containers

docker cp alice/ipsec_esp.conf alice:/etc/ipsec.conf docker cp bob/ipsec_esp.conf bob:/etc/ipsec.conf docker cp ipsec.secrets alice:/etc/ipsec.secrets docker cp ipsec.secrets bob:/etc/ipsec.secrets

Case 3

- Securing HTTP communication
- Apache Web Server
- Tcpdump + WireShark

- > service apache2 status
- b) Start apache2 service
 - > service start apache2 start
- c) Capture network traffic between Alice and Bob while accessing http://ALICE_IP from Bob curl -X POST -d'{"username": "bob", "password": "secret" }' -H "Content-Type: application/json" http://ALICE_IP
- a) Check strongswan service status
 - > ipsec status
- b) Edit config files: /etc/ipsec.conf and /etc/ipsec.secrets
- c) (Re)start strongswan service
 - > ipsec restart
- d) Capture network traffic between Alice and Bob while accessing http://ALICE_IP from Bob

Case 3

- Securing HTTP communication
- Apache Web Server
- Tcpdump + WireShark

curl -X POST -d'{"username": "bob", "password": "secret" }' -H "Content-Type: application/json" http://172.18.0.2

```
Frame 4: 235 bytes on wire (1880 bits), 235 bytes captured (1880 bits)
Ethernet II, Src: 5a:59:d9:bc:42:b0 (5a:59:d9:bc:42:b0), Dst: 3e:af:1f:96:89:5b (3e:af:1f:96:89:5b)
 Internet Protocol Version 4, Src: 172.18.0.3, Dst: 172.18.0.2
> Transmission Control Protocol, Src Port: 48602, Dst Port: 80, Seq: 1, Ack: 1, Len: 169

    Hypertext Transfer Protocol

  POST / HTTP/1.1\r\n
     Host: 172.18.0.2\r\n
    User-Agent: curl/7.81.0\r\n
     Accept: */*\r\n
     Content-Type: application/json\r\n
   ▶ Content-Length: 42\r\n
     File Data: 42 bytes
  JavaScript Object Notation: application/json
   ▼ Object
     ▼ Member: username
           [Path with value: /username:bob]
          [Member with value: username:bob]
          String value: bob
          Key: username
          [Path: /username]
     ▼ Member: password
           [Path with value: /password:secret]
          [Member with value: password:secret]
          String value: secret
          Key: password
           [Path: /password]
```

```
Host

APACHE

A 172.18.0.2

Host

172.18.0.3
```

```
    ▶ Frame 9: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits)
    ▶ Ethernet II, Src: 3e:af:1f:96:89:5b (3e:af:1f:96:89:5b), Dst: 5a:59:d9:bc:42:b0 (5a:59:d9:bc:42:b0)
    ▶ Internet Protocol Version 4, Src: 172.18.0.2, Dst: 172.18.0.3
    ▼ Encapsulating Security Payload
        ESP SPI: 0xca3bb9b0 (3392911792)
        ESP Sequence: 5
```

- Virtual private network system for creating point-to-point / site-to-site connections;
- Its own security protocol with the same name;
- Uses OpenSSL library;
- TCP / UDP (recommended);

Authentication methods

- a) Pre-shared keys;
- b) Certificates;
- c) Username & password.

Ref: https://www.virtuozzo.com/company/blog/private-openvpn-access-server/

- a) Creating a Virtual Private Server (VPS)
 - A brief list of VPS providers: https://www.g2.com/categories/virtual-private-servers-vps;
 - We'll go with Azure: https://azure.microsoft.com/en-us/free/;
 - Create an Ubuntu Server with one of the latest versions, after 18.04, preferably;
 - Save its public IP address.
- b) Generating SSH keys for authentication
 - > ssh-keygen -t rsa -b 4096 -f PRIVATE_KEY_FILENAME
 - > Ssh-keygen –f PRIVATE_KEY_FILENAME -y PUBLIC_KEY_FILENAME
- c) Log in to the server
 - > ssh USERNAME@VPS_PUBLIC_IP
- d) Update the operating system
 - > sudo apt-get update && apt-get upgrade
- e) Create a non-root user and set a password
 - > sudo useradd -G sudo -m USERNAME_2 -s /bin/bash
 - > sudo passwd USERNAME_2

- f) Setup SSH key authentication;
 - > cat PUBLIC_KEY_PATH | ssh USERNAME_2@VPS_PUBLIC_IP "mkdir .ssh && cat >> .ssh/authorized_keys"
 - sudo nano /etc/ssh/sshd_config
 - > sudo nano /etc/ssh/sshd_config.d/50-cloud-init.conf

```
#LoginGraceTime 2m
PermitRootLogin no

#StrictModes yes
#MaxAuthTries 6
#MaxSessions 10

# To disable tunneled clear text passwords, change to no here!
PasswordAuthentication no
#PermitEmptyPasswords no

# Change to yes to enable challenge-response passwords (beware issues with # some PAM modules and threads)
ChallengeResponseAuthentication no
```

- sudo systemctl restart sshd
- g) Open a new terminal window on your local machine, and try login using the key
 - > ssh USERNAME_2@VPS_PUBLIC_IP -i PRIVATE_KEY_PATH

- h) Install (and configure) OpenVPN on server-side (https://github.com/Nyr/openvpn-install)
 - > sudo apt install wget
 - > wget https://git.io/vpn -O openvpn-install.sh && bash openvpn-install.sh
 - > sudo bash openvpn-install.sh

```
Welcome to this OpenVPN road warrior installer!
This server is behind NAT. What is the public IPv4 address or hostname?
Public IPv4 address / hostname [4.233.217.24]:
Which protocol should OpenVPN use?

    UDP (recommended)

   2) TCP
Protocol [1]:
What port should OpenVPN listen to?
Port [1194]: 443
Select a DNS server for the clients:
   1) Current system resolvers
   2) Google
   3) 1.1.1.1
   4) OpenDNS
   5) Quad9
   6) AdGuard
DNS server [1]: 2
Enter a name for the first client:
Name [client]: client_1
```

- i) Send the newly created OpenVPN profile to the client
 - > sudo mv /root/CLIENT_NAME.ovpn ~
 - > sudo chown USERNAME2 CLIENT_NAME.ovpn
 - > scp -i PRIVATE_KEY_PATH USERNAME_2@VPS_PUBLIC_IP:CLIENT_NAME.ovpn .
- j) Install OpenVPN on client-side and connect using the received profile.
 - https://openvpn.net/client-connect-vpn-for-windows/

