

Magnet Design

JUAS 2022 : Course 2

Exercise 1 : Analytical Design

Date: 21 Feb, 2022

Coordinated by Jérémie Bauche

Marvin Noll
Abhishek Panchal
Sophie Morard
Gael Craveiro
Katyayni Tiwari

Introduction

Outline:

- 1. Magnet type
- 2. Magnetic Measurements
- 3. Coil parameters
- 4. Cooling

MedAustron accelerator layout

Magnet type

Because,

- It is symmetrical
- Mechanical rigid
- less iron
- size of the yoke smaller

Geometric Parameters

• Aperture height, $h = h_{GFR} + 2 \cdot d_{vaccum} + d_{tolerance}$ 52 mm

• Taking saggita into account, we got *pole width* approx. 140.13 mm.

1: Cross section of the copper winding showing insulation(■) and water channel(■) unoptimized x_{unoptimized} = 1.5898

Copper conductor cross-section =

Magnetic Parameters

★ Calculated magnetic strengths,

$$B_{\min} = \frac{(B\rho)_{\min}}{\rho} = \frac{0.383 \,\mathrm{T\,m}}{0.642 \,\mathrm{m}} = 0.596 \,\mathrm{T}$$

$$B_{\max} = \frac{(B\rho)_{\max}}{\rho} = \frac{0.766 \,\mathrm{T\,m}}{0.642 \,\mathrm{m}} = 1.19 \,\mathrm{T}$$

calculated excitation currents,

$$(NI)_{\text{dipole, min}} = \frac{B_{\text{min}} h}{2 \mu_0} = \frac{0.596 \,\text{T} \cdot 52 \,\text{mm}}{2 \cdot \mu_0} = 12.331 \,\text{kA}$$
 $(NI)_{\text{dipole, max}} = \frac{B_{\text{max}} h}{2 \mu_0} = \frac{1.19 \,\text{T} \cdot 52 \,\text{mm}}{2 \cdot \mu_0} = 24.621 \,\text{kA}$

Para	ameters	Values				
*	Flux density B	B_min≈0. 6 T B_max ≈ 1.2 T				
	Excitation current NI (ampere-turns)	min-12.33 A max-24.66 A				
•	Nominal current I	Max possible current ~ 492.4 A				
*	Number of turns	min- 23 max- 45				

< max. current of
power supply 600 A</pre>

N= N_horizonta*N_vertical = 50; we are choosing, 50 no. of turns.

Coil Parameters

									$a + d_i = 11 \mathrm{mm} + 1 \mathrm{mm} = 12 \mathrm{mm}$
width	128	mm							
height	68	mm			100	0 mm —			$\rightarrow d_i/2 = 0.5\mathrm{mm}$
pole perimeter	960	mm	****			0 mm —		•	$r_c = 3m_m$
avg turn length	1472	mm			—— 120.	0 mm —			ro Linn
R_c	13.4	mΩ							
V _m	13.2	V							
m									68.0 mm 64.0 mm
V_{total}	39.6	V							
P _m	6.5	kW							6

Cooling

First try with cooling system in series, led to a pressure drop around 40 bar -> Not good!

Parameter	Value	Unit
Water flow	3.098	L/min
Average flow velocity	1.827	m/s
Cooling circuit length	73.6	m
Pressure drop	6.43	bar
Reynold number	16 600 Turbulent flow!	dimensionless

Conclusion and Discussion

