Fourier series (FS)

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \qquad a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

Property/signal	$\omega_0 = \tau$ Time domain	Transform domain
Linearity	Ax(t) + By(t)	$Aa_k + Bb_k$
Time shifting	x(t- au)	$e^{-jk\omega_0\tau}a_k$
Time reversal	x(-t)	a_{-k}
Time scaling	$x(at), a > 0$ (periodic $\frac{T}{a}$)	a_k
Conjugation	$x^*(t)$	a_{-k}^*
Symmetry	x(t) real	$a_k = a_{-k}^*$
Differentiation	$\frac{d}{dt}x(t)$	$jk\omega_0a_k$
Integration	$\int_{-\infty}^t x(t)dt, a_0 = 0$	$\frac{a_k}{ik\omega_0}$
Convolution	$\int_T h(au) * x(t- au) d au$	$Ta_{k}b_{k}$
Multiplication	x(t)y(t)	$\sum_{m=-\infty}^{\infty} a_m b_{k-m}$
Cosine	$2A\cos(\omega_0 t + B)$	$a_1 = Ae^{jB}, a_{-1} = Ae^{-jB}$
Parseval	$rac{1}{T}\int_T x(t) ^2 dt$	$\sum_{k=-\infty}^{\infty} a_k ^2$

Fourier transform (FT)

$$x(t)=rac{1}{2\pi}\int_{-\infty}^{\infty}X(j\omega)e^{j\omega t}d\omega \qquad X(j\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt$$

Property/signal	Time domain	Transform domain
Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
Time shifting	x(t- au)	$e^{-j\omega au}X(j\omega)$
Time scaling	x(at)	$rac{1}{ a }X(j\omega/a)$
Conjugation	$x^*(t)$	$X^*(-j\omega)$
Symmetry	x(t) real	$X(j\omega)=X^*(-j\omega)$
Differentiation	$rac{d}{dt}x(t)$	$j\omega X(j\omega)$
Integration	$\int_{-\infty}^t x(au) d au$	$rac{1}{j\omega}X(j\omega)+\pi X(0)\delta(\omega)$
Convolution	$\int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$	
Multiplication	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{\infty} X(ju)Y(j\omega - ju)du$
Delta	$\delta(t)$	1
One	1	$2\pi\delta(\omega)$
Exponent	$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$
Cosine	$\cos(w_0 t)$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
Sine	$\sin(w_0t)$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$
Unit step	u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$
Decaying step	$u(t)e^{-at}, \ a>0$	$\frac{1}{a+j\omega}$
Rectangular pulse	$\Pi(rac{t}{2T})$	$\frac{2\sin(\omega T)}{\omega}$
Sinc (normalized)	$\frac{\sin(Wt)}{\pi t}$	$\Pi(rac{\omega}{2W})$
Parseval	$\int_{-\infty}^{\infty} x(t) ^2 dt =$	$\frac{1}{2\pi}\int_{-\infty}^{\infty} X(j\omega) ^2d\omega$

Discrete-time Fourier transform (DTFT)

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega \qquad X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

Property/signal	Time domain	Transform domain
Linearity	ax[n] + by[n]	$aX(e^{j\omega})+bY(e^{j\omega})$
Time shifting	$x[n-n_0]$	$e^{-j\omega n_0}X(e^{j\omega})$
Time reversal	x[-n]	$X(e^{-j\omega})$
Conjugation	$x^*[n]$	$X^*(e^{-j\omega})$
Symmetry	x[n] real	$X(e^{j\omega}) = X^*(e^{-j\omega})$
Convolution	$\sum_{m=-\infty}^{\infty} x[m]y[n-m]$	$X(e^{j\omega})Y(e^{j\omega})$
Multiplication	x[n]y[n]	$rac{1}{2\pi}\int_{2\pi}X(e^{j heta})Y(e^{j(\omega- heta)})d heta$
Delta	$\delta[n]$	1
One	1	$2\pi\sum_{m=-\infty}^{\infty}\delta(\omega-2\pi m)$
Exponent	$e^{j\omega_0 n}$	$2\pi\sum_{m=-\infty}^{\infty}\delta(\omega-\omega_0-2\pi m)$
Cosine	$\cos[w_0n]$	$\pi \sum_{m=-\infty}^{\infty} [\delta(\omega-\omega_0-2\pi m)+\delta(\omega+\omega_0-2\pi m)]$
Sine	$\sin[w_0t]$	$rac{\pi}{i}\sum_{m=-\infty}^{\infty}[\delta(\omega-\omega_0-2\pi m)-\delta(\omega+\omega_0-2\pi m)]$
Decaying step	$u[n]a^n, a < 1$	$\frac{1}{1-ae^{-j\omega}}$
Rectangular pulse	$\Pi_N[n]$	$rac{\sin[\omega(N+rac{1}{2})]}{\sin(\omega/2)}$
Sinc (normalized)	$\frac{\sin[Wn]}{\pi n}$	$\sum_{m=-\infty}^{\infty} \Pi(\frac{\omega-2\pi m}{2W})$
Parseval	$\sum_{n=-\infty}^{\infty} x[n] ^2 =$	$rac{1}{2\pi}\int_{2\pi} X(e^{j\omega}) ^2$ d ω
	e u[n], «<0	1-e(a+jw)

Discrete Fourier transform (DFT)

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi}{N}nk} \qquad X(k) = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}nk}$$

Property/signal	Time domain	Transform domain
Linearity	ax[n] + by[n]	aX(k) + bY(k)
Time shifting	$x[n-n_0]_{modN}$	$e^{-j\left(rac{2\pi}{N}n_0k ight)}X(k)$
Time reversal	$x^*[-n]_{modN}$	$X^*(k)$
Conjugation	$x^*[n]$	$X^*(-k)_{modN}$
Symmetry	x[n] real	$X(k) = X^*(-k)_{modN}$
Convolution	$\sum_{m=0}^{N-1} x[m]_{modN} y[n-m]_{modN}$	X(k)Y(k)
Multiplication	x[n]y[n]	$\frac{1}{N} \sum_{l=0}^{N-1} X(l)_{modN} Y(k-l)_{modN}$
Parseval	$\sum_{n=0}^{N-1} x[n] ^2 =$	$\frac{1}{N} \sum_{k=0}^{N-1} X(k) ^2$

Laplace transform

$$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) e^{st} ds$$
 $X(s) = \int_{-\infty}^{\infty} x(t) e^{-st} dt$

Time domain	Transform domain
ax(t) + by(t)	aX(s) + bY(s)
x(t- au)	$e^{-s au}X(s)$
x(at)	$\frac{1}{ a }X(s/a)$
$x^*(t)$	$X^*(s^*)$
$rac{d}{dt}x(t)$	sX(s)
$\int_{-\infty}^t x(au)d au$	$\frac{1}{s}X(s)$
$\int_{-\infty}^{\infty} x(au) y(t- au) d au$	X(s)Y(s)
$\delta(t)$	1
u(t)	$\frac{1}{s} (Re\{s\} > 0)$
$e^{-at}u(t)$	$\frac{1}{s+a}$ $(Re\{s\} > -a)$
$-e^{-at}u(-t)$	$\frac{1}{s+a} (Re\{s\} < -a)$
$\cos(w_0t)u(t)$	$\frac{s}{s^2 + \omega_0^2} \ (Re\{s\} > 0)$
$\sin(w_0t)u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2} \ (Re\{s\} > 0)$
	$ax(t) + by(t)$ $x(t - \tau)$ $x(at)$ $x^*(t)$ $\frac{d}{dt}x(t)$ $\int_{-\infty}^{t} x(\tau)d\tau$ $\int_{-\infty}^{\infty} x(\tau)y(t - \tau)d\tau$ $\delta(t)$ $u(t)$ $e^{-at}u(t)$ $-e^{-at}u(-t)$ $\cos(w_0t)u(t)$

Z transform

$$x[n] = \frac{1}{2\pi j} \oint X(z)z^{n-1}dz \qquad X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

Property/signal	Time domain	Transform domain
Linearity	ax[n] + by[n]	aX(z) + bY(z)
Time shifting	$x[n-n_0]$	$z^{-n_0}X(z)$
time reversal	x[-n]	$X(z^{-1})$
Conjugation	$x^*[n]$	$X^*(z^*)$
Convolution	$\sum_{m=-\infty}^{\infty} x[m]y[n-m]$	X(z)Y(z)
Delta	$\delta[n]$	1
Unit step	u[n]	$\frac{1}{1-z^{-1}} \ (z >1)$
Decaying step	$a^nu[n]$	$\frac{1}{1-az^{-1}} \ (z >a)$
Decaying step	$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$ $(z < a)$

General

Description	Equation
Rectangular pulse in continuous-time	$\Pi(x) = \left\{egin{array}{ll} 1 & x < rac{1}{2} \ rac{1}{2} & x = rac{1}{2} \ 0 & elsewhere \end{array} ight.$
Rectangular pulse in discrete-time	$\Pi_N[n] = \begin{cases} 1 & n \leq N \\ 0 & elsewhere \end{cases}$
Unit step in continuous-time	$u(x) = \left\{egin{array}{ll} 1 & x > 0 \ rac{1}{2} & x = 0 \ 0 & elsewhere \end{array} ight. \ u[n] = \left\{egin{array}{ll} 1 & n \geq 0 \ 0 & elsewhere \end{array} ight.$
Unit step in discrete-time	$u[n] = \begin{cases} 1 & n \geq 0 \\ 0 & elsewhere \end{cases}$
Sinc in continuous-time	$\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$
Cosine of sum of angles	$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$
Sine of sum of angles	$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$
$\cos x = \frac{e^{ix} + e^{-ix}}{2}$ $\sin x = \frac{e^{ix} - e^{-ix}}{2j}$ $e^{ix} = \cos x + j\sin x$ $e^{-ix} = \cos x - j\sin x$	
$\sum_{k=0}^{n-1} (a)^{k} = \frac{1-a^{n}}{1-a}$ $\sum_{k=0}^{6} (a)^{k} = \frac{1-a^{7}}{1-a}.$	DIFT X(W) = { 1, 0 & W & We OTHER X(W) = { 0, We < IWIS T
$\sum_{k=1}^{2} a^{k} \Rightarrow \sum_{k=0}^{1} a^{k+1}$	