Final Project Submission

Please fill out:

• Student name: Justin Grisanti

• Student pace: self-paced

Scheduled project review date/time: 1/5/2022 @ TBD

• Instructor name: Claude Fried

Blog post URL: https://justingrisanti.github.io/predicting_rain_patterns_in_australia

Total Time to Run: approx. 27 minutes

Section 1: Business Understanding

The purpose of this section is to define the business problem and understand the stakeholders for the work that I am performing. The Bureau of Meteorology is responsible for predicting weather patterns throughout the entire Australian region. According to their website, their forecast accuracy for rain varies much more than their forecasts for temperature and wind.

According to their analyses, they've underpredicted rainfall each year for the past five years. The goal is to create a classification model that allows the Bureau of Meteorology to improve their predictions of whether or not it will rain the next day. This will allow them to inform the public better so that citizens can prepare accordingly for the possibility of rain.

The stakeholders of this project are the Bureau of Meteorology and citizens of Australia.

The main purpose of this classification model is predictive, meaning that given characteristics of rain data on a given day, the model should be able to predict whether it will rain the next day or not. My model is not meant to replace the Bureau of Meteorology's current system of predicting rain for the region of Australia, however, it is meant serve as an input to strengthen their predictions and assumptions, and to reduce the risk of failing to predict that it will rain the next day.

Section 2: Data Understanding

After scanning the data, we have weather-related information for a period of 12/1/2008 to 6/25/2017—8 years, 6 months and 24 days worth of data.

As shown below, this data has many different weather-related metrics, such as the wind speed, humidity, pressure, whether it was sunny or cloudy, and temperature. These seem like appropriate parameters to run a classification-based model in order to predict whether or not it will rain the next day, and I do not sense any limitations from this data.

```
In [1]:
         # Import Libraries
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         %matplotlib inline
         from sklearn import tree
         from sklearn.preprocessing import StandardScaler, OneHotEncoder
         from sklearn.impute import SimpleImputer
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.pipeline import Pipeline
         from sklearn.model_selection import train_test_split, GridSearchCV, cross_v
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
         from sklearn.metrics import accuracy score
         from sklearn.impute import SimpleImputer
         from sklearn.metrics import make scorer, classification report, log loss, f
         from sklearn.model_selection import StratifiedKFold, cross_val_score
         from sklearn.base import clone
         from sklearn.linear model import LogisticRegression
         from sklearn.neighbors import KNeighborsClassifier
         import statsmodels as sm
         import sklearn.preprocessing as preprocessing
         from scipy import stats
         import seaborn as sns
         from imblearn.over sampling import SMOTE
         import warnings
         warnings.filterwarnings('ignore')
In [2]:
         # Import data from csv
         rain data = pd.read csv('data/WeatherAUS.csv')
In [3]:
         rain data.info()
```

1/3/22, 1:17 AM Notebooks

<class 'pandas.core.frame.DataFrame'> RangeIndex: 145460 entries, 0 to 145459 Data columns (total 23 columns):

#	Column	Non-Null Count	Dtype
0	Date	145460 non-null	object
1	Location	145460 non-null	object
2	MinTemp	143975 non-null	float64
3	MaxTemp	144199 non-null	float64
4	Rainfall	142199 non-null	float64
5	Evaporation	82670 non-null	float64
6	Sunshine	75625 non-null	float64
7	WindGustDir	135134 non-null	object
8	WindGustSpeed	135197 non-null	float64
9	WindDir9am	134894 non-null	object
10	WindDir3pm	141232 non-null	object
11	WindSpeed9am	143693 non-null	float64
12	WindSpeed3pm	142398 non-null	float64
13	Humidity9am	142806 non-null	float64
14	Humidity3pm	140953 non-null	float64
15	Pressure9am	130395 non-null	float64
16	Pressure3pm	130432 non-null	float64
17	Cloud9am	89572 non-null	float64
18	Cloud3pm	86102 non-null	float64
19	Temp9am	143693 non-null	float64
20	Temp3pm	141851 non-null	float64
21	RainToday	142199 non-null	object
22	RainTomorrow	142193 non-null	object
dtype	es: float64(16)	, object(7)	
memoi	ry usage: 25.5+	MB	

Please see the following column descriptions:

MinTemp: The minimum temperature in degrees celsius

MaxTemp: The maximum temperature in degrees celsius

Rainfall: The amount of rainfall recorded for the day in mm

Evaporation: The so-called Class A pan evaporation (mm) in the 24 hours

to 9am

Sunshine: The number of hours of bright sunshine in the day.

WindGustDir: The direction of the strongest wind gust in the 24 hours to midnight

WindGustSpeed: The speed (km/h) of the strongest wind gust in the 24 hours to midnight

WindDir9am: Direction of the wind at 9am

WindDir3pm: Direction of the wind at 3pm

WindSpeed9am: Wind speed (km/hr) averaged over 10 minutes prior to

9am

WindSpeed3pm: Wind speed (km/hr) averaged over 10 minutes prior to

3pm

Humidity9am: Humidity (percent) at 9am

Humidity3pm: Humidity (percent) at 3pm

Pressure9am: Atmospheric pressure (hpa) reduced to mean sea level at

9am

Pressure3pm: Atmospheric pressure (hpa) reduced to mean sea level at

3pm

Cloud9am: Fraction of sky obscured by cloud at 9am. This is measured in "oktas", which are a unit of eigths. It records how many eigths of the sky are obscured by cloud. A 0 measure indicates completely clear sky whilst an 8 indicates that it is completely overcast.

Cloud3pm: Fraction of sky obscured by cloud (in "oktas": eighths) at 3pm. See Cload9am for a description of the values

Temp9am: Temperature (degrees C) at 9am

Temp3pm: Temperature (degrees C) at 3pm

RainToday: Boolean: 1 if precipitation (mm) in the 24 hours to 9am exceeds

1mm, otherwise 0

RainTomorrow: The amount of next day rain in mm. Used to create response variable RainTomorrow. A kind of measure of the "risk".

```
In [4]: # To show all columns and rows

pd.set_option('display.max_columns', None)
    pd.set_option('display.max_rows', None)

rain_data.head()
```

Out[4]:		Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	Winc
	0	2008- 12-01	Albury	13.4	22.9	0.6	NaN	NaN	W	
	1	2008- 12-02	Albury	7.4	25.1	0.0	NaN	NaN	WNW	
	2	2008- 12-03	Albury	12.9	25.7	0.0	NaN	NaN	WSW	
	3	2008- 12-04	Albury	9.2	28.0	0.0	NaN	NaN	NE	
	4	2008- 12-05	Albury	17.5	32.3	1.0	NaN	NaN	W	

In [5]:
 rain_data[rain_data['RainTomorrow'].isna()].head()

Out[5]:		Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	W
	14	2008- 12-15	Albury	8.4	24.6	0.0	NaN	NaN	NaN	
	283	2009- 09-10	Albury	2.6	NaN	0.0	NaN	NaN	NaN	
	435	2010- 02-09	Albury	22.1	35.1	0.0	NaN	NaN	NaN	
	437	2010- 02-11	Albury	21.5	35.0	0.0	NaN	NaN	NaN	
	443	2010- 02-17	Albury	15.5	30.6	0.0	NaN	NaN	NaN	

```
In [6]: rain_data = rain_data.dropna(axis=0, subset = ['RainTomorrow'])
In [7]: rain_data.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 142193 entries, 0 to 145458 Data columns (total 23 columns): # Column Non-Null Count Dtype _____ _____ 0 Date 142193 non-null object 1 Location 142193 non-null object 2 141556 non-null float64 MinTemp 3 141871 non-null float64 MaxTemp 4 Rainfall 140787 non-null float64 Evaporation 81350 non-null float64 5 74377 non-null 6 Sunshine float64 7 WindGustDir 132863 non-null object WindGustSpeed 132923 non-null float64 8 9 WindDir9am 132180 non-null object 10 WindDir3pm 138415 non-null object 11 WindSpeed9am 140845 non-null float64 12 WindSpeed3pm 139563 non-null float64 13 Humidity9am 140419 non-null float64 14 Humidity3pm 138583 non-null float64 128179 non-null float64 15 Pressure9am 16 Pressure3pm 128212 non-null float64 17 88536 non-null float64 Cloud9am 85099 non-null 18 Cloud3pm float64 19 Temp9am 141289 non-null float64 20 Temp3pm 139467 non-null float64 21 RainToday 140787 non-null object 22 RainTomorrow 142193 non-null object dtypes: float64(16), object(7) memory usage: 26.0+ MB In [8]: # Separate target variable from data and complete train-test split y = rain_data['RainTomorrow'] X = rain data.drop('RainTomorrow', axis=1) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) In [9]: # Reset index and drop it X train.reset index(inplace=True) X_train = X_train.drop(columns=['index'],axis=1) X_train.head()

	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	١
0	2009- 04-12	Woomera	14.9	30.3	0.0	7.4	10.9	S	
1	2014- 12-08	Witchcliffe	14.6	21.5	0.2	NaN	NaN	SSE	
2	2015- 06- 06	SalmonGums	9.0	23.7	0.0	NaN	NaN	W	
3	2014- 01-09	Albany	15.3	24.0	0.0	8.2	12.1	NaN	
4	2014- 12-14	Mildura	17.3	37.5	0.0	8.6	11.4	N	
	1 2 3	 0 2009- 04-12 1 2014- 12-08 2015- 06- 06 3 2014- 01-09 4 2014- 	 2009- 04-12 2014- 12-08 2015- 206- 06 3 2014- 01-09 Albany 	0 2009- 04-12 Woomera 14.9 1 2014- 12-08 Witchcliffe 14.6 2 06- 06 SalmonGums 06 9.0 3 2014- 01-09 Albany 15.3 4 2014- 01-09 Mildura 17.3	0 2009- 04-12 Woomera 14.9 30.3 1 2014- 12-08 Witchcliffe 14.6 21.5 2 2015- 06 SalmonGums 9.0 23.7 3 2014- 01-09 Albany 15.3 24.0 4 2014- 01-09 Mildura 17.3 37.5	0 2009- 04-12 Woomera 14.9 30.3 0.0 1 2014- 12-08 Witchcliffe 14.6 21.5 0.2 2 06- 06 SalmonGums 9.0 23.7 0.0 3 2014- 01-09 Albany 15.3 24.0 0.0 4 2014- 01-09 Mildura 17.3 37.5 0.0	0 2009- 04-12 Woomera 14.9 30.3 0.0 7.4 1 2014- 12-08 Witchcliffe 14.6 21.5 0.2 NaN 2 06- 06 SalmonGums 06 9.0 23.7 0.0 NaN 3 2014- 01-09 Albany 15.3 24.0 0.0 8.2 4 2014- 01-09 Mildura 17.3 37.5 0.0 8.6	0 2009- 04-12 Woomera 14.9 30.3 0.0 7.4 10.9 1 2014- 12-08 Witchcliffe 14.6 21.5 0.2 NaN NaN 2 06- 06 SalmonGums 06 9.0 23.7 0.0 NaN NaN 3 2014- 01-09 Albany 15.3 24.0 0.0 8.2 12.1 4 2014- 2014- Mildura 17.3 37.5 0.0 8.6 11.4	0 2009- 04-12 Woomera 14.9 30.3 0.0 7.4 10.9 S 1 2014- 12-08 Witchcliffe 14.6 21.5 0.2 NaN NaN SSE 2 06- 06 SalmonGums 06 9.0 23.7 0.0 NaN NaN W 3 2014- 01-09 Albany 15.3 24.0 0.0 8.2 12.1 NaN

```
In [10]: # Reset index and drop it

X_test.reset_index(inplace=True)
X_test = X_test.drop(columns=['index'],axis=1)
X_test.head()
```

Out[10]:		Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	W
	0	2016- 06- 09	Ballarat	7.1	13.0	8.8	NaN	NaN	N	
	1	2009- 10-24	Walpole	13.2	18.3	0.0	NaN	NaN	Е	
	2	2015- 09-21	PerthAirport	9.2	22.7	0.0	5.0	11.1	ENE	
	3	2011- 12-06	Cobar	15.3	26.1	0.0	10.4	NaN	Е	
	4	2014- 03-15	Sale	11.9	31.8	0.0	5.0	4.1	NW	

```
In [11]:
    y_train = y_train.replace('Yes', 1.0)
    y_train = y_train.replace('No', 0.0)
    y_test = y_test.replace('Yes', 1.0)
    y_test = y_test.replace('No', 0.0)
```

```
In [12]: # Inspect Target Variable
    y_train.value_counts(normalize=True)

Out[12]: 0.0    0.775412
    1.0    0.224588
    Name: RainTomorrow, dtype: float64

In [13]: # Ensure we get a fair spread of data across the country
    X_train['Location'].value_counts()
```

Out[13]:	Canbe	rra	25	78
ouc[13].	Sydne	У	24	29
	Hobar	t	24	16
	Perth		24	80
	Brisb	ane	24	01
	Darwi	n	23	82
	Adela	ide	23	29
	Tugge	ranong	22	98
	Mildu		22	95
	Launc	eston	22	79
	Bendi	ao	22	
		Airport	22	
	Woome	_	22	
	Balla	-	22	
	Alban		22	-
		<i>.</i> Gambier	22	
	Towns		22	_
	_ 0	Harbour	22	_
		urneAirpor		
	Watso		22	
	Sale	iiiu	22	
	GoldC	oagt	22	
		cliffe	22	
		Springs	22	
	Portl		22	
		lkIsland	22	
	Wagga		22	
	Cobar	nagga	22	
	Albur	v	22	
	Penri	-	22	_
		rysCreek	22	
	Cairn	_	22	
	Newca		22	
	Nurio		22	_
		yAirport	22	
	Wollo		22	
	Salmo		22	
	Richm		22	
	Dartm		22	
		Ginini	21	
	Norah		21	
	Moree		21	
	Walpo	le	21	
	Pearc		20	
		amtown	19	
	Melbo		18	
	Kathe		11	
	Uluru		11.	
	Nhil		11	
		Location,		

Name: Location, dtype: int64

In [14]:

Plot each column in a histogram to see what type of distribution there is
columns_with_nulls = X_train.drop(['Location','Date'], axis=1)
columns_with_nulls.hist(figsize=(20,20))
plt.savefig('Visualizations/ColumnsHist.png', bbox_inches = 'tight')

In [15]:

X_train.info(1, null_counts=True)

<class 'pandas.core.frame.DataFrame'> RangeIndex: 106644 entries, 0 to 106643 Data columns (total 22 columns):

Ducu	TESTS (COURT	22 OCTUMIND)	
#	Column	Non-Null Count	Dtype
0	Date	106644 non-null	object
1	Location	106644 non-null	object
2	MinTemp	106150 non-null	float64
3	MaxTemp	106387 non-null	float64
4	Rainfall	105540 non-null	float64
5	Evaporation	60909 non-null	float64
6	Sunshine	55677 non-null	float64
7	WindGustDir	99665 non-null	object
8	WindGustSpeed	99715 non-null	float64
9	WindDir9am	99120 non-null	object
10	WindDir3pm	103822 non-null	object
11	WindSpeed9am	105646 non-null	float64
12	WindSpeed3pm	104681 non-null	float64
13	Humidity9am	105326 non-null	float64
14	Humidity3pm	103917 non-null	float64
15	Pressure9am	96098 non-null	float64
16	Pressure3pm	96123 non-null	float64
17	Cloud9am	66285 non-null	float64
18	Cloud3pm	63757 non-null	float64
19	Temp9am	105967 non-null	float64
20	Temp3pm	104579 non-null	float64
21	RainToday	105540 non-null	object
dtype	es: float64(16)	, object(6)	
momoi	CV 11C2CO • 17 0±	MD	

memory usage: 17.9+ MB

As we can see, Evaporation, Sunshine, and cloud data all have a large amount of nulls. Let's take a deeper look into these variables.

In [16]:

X_train.head()

Out[16]:		Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir \
	0	2009- 04-12	Woomera	14.9	30.3	0.0	7.4	10.9	S
	1	2014- 12-08	Witchcliffe	14.6	21.5	0.2	NaN	NaN	SSE
	2	2015- 06- 06	SalmonGums	9.0	23.7	0.0	NaN	NaN	W
	3	2014- 01-09	Albany	15.3	24.0	0.0	8.2	12.1	NaN
	4	2014- 12-14	Mildura	17.3	37.5	0.0	8.6	11.4	N

The following code is to create meaningful information about our null values, so that we can impute them in a more educated manner.

```
In [17]:
          # Dropping NAs to obtain distribution for data that isn't NA
          rain data cloud dropna = X train.dropna(axis=0, subset=['Cloud3pm','Cloud9a
In [18]:
          # Dropping NAs to obtain distribution for data that isn't NA
          rain data sunshine dropna = X train.dropna(axis=0, subset=['Sunshine'])
In [19]:
          # Checking null sunshine data against rain data to see what the population
          rain data sunshine nulls = X train[X train['Sunshine'].isna()]
          rain data sunshine nulls['RainToday'].value counts()
         No
                39031
Out[19]:
                11143
         Yes
         Name: RainToday, dtype: int64
In [20]:
          # Removing nulls from sunshine data and biforcating the population to get m
          sunshine when rain = rain data sunshine dropna[rain data sunshine dropna['R
          sunshine no rain = rain data sunshine dropna[rain data sunshine dropna['Rai
In [21]:
          # Checking evaporation mean when sunshine is greater than zero
          evaporation_test = X_train.loc[X_train['Sunshine']>0.0,'Evaporation']
In [22]:
          # Checking the mean of cloud data when it doesn't rain and humidity is high
          # (Population is not normal without humidity check)
          cloud9_no_rain_lower_humidity = X_train.loc[(rain_data['RainToday']=='No')
          cloud9 no rain higher humidity = X train.loc[(X train['RainToday']=='No') &
          cloud3_no_rain_lower_humidity = X_train.loc[(X_train['RainToday']=='No') &
          cloud3 no rain higher humidity = X train.loc[(X train['RainToday']=='No') &
In [23]:
          # Checking the mean of cloud data when it does rain
          cloud9_rain = X_train.loc[X_train['RainToday']=='Yes','Cloud9am']
          cloud3 rain = X train.loc[X train['RainToday']=='Yes','Cloud3pm']
```

```
In [24]:
          # Checking null data to see how many records have both null cloud data and
          test = []
          for index in range(0,106643,1):
              if pd.isna(X train['Cloud3pm'].loc[index]) and pd.isna(X train['Cloud9a
                  if pd.notna(X train['Sunshine'].loc[index]):
                       test.append('Sunshine')
                  elif pd.isna(X train['Sunshine'].loc[index]):
                       test.append('Neither')
                  else:
                       pass
              elif pd.notna(X train['Cloud3pm'].loc[index]) or pd.notna(X train['Cloud3pm'].loc[index])
                   if pd.notna(X_train['Sunshine'].loc[index]):
                       test.append('Both')
                  elif pd.isna(X_train['Sunshine'].loc[index]):
                       test.append('Clouds')
                  else:
                      pass
              else:
                  pass
In [25]:
          print("There are " + str(test.count('Sunshine')) + " records of sunshine da
          print("There are " + str(test.count('Clouds')) + " records of cloud data wi
          print("There are " + str(test.count('Neither')) + " records of neither suns
          print("There are " + str(test.count('Both')) + " records of both sunshine a
         There are 5580 records of sunshine data with no cloud data.
         There are 19220 records of cloud data with no sunshine data.
         There are 31746 records of neither sunshine or cloud data.
         There are 50097 records of both sunshine and cloud data.
In [26]:
          test data = { 'Sunshine data with Cloud Nulls': 8258, 'Cloud Data with Sunsh
```

```
In [27]:
          # Checking the records to see the relationship between cloud data and sunsh
          test2 = []
          for index in range(0,106643,1):
              if X train['Cloud3pm'].loc[index]== 0 or X train['Cloud9am'].loc[index
                  if X train['Sunshine'].loc[index] != 0:
                      test2.append('Sunshine')
                  elif X train['Sunshine'].loc[index]==0:
                      test2.append('Neither')
                  else:
                      pass
              elif X train['Cloud3pm'].loc[index]!=0 or X train['Cloud9am'].loc[index
                  if X_train['Sunshine'].loc[index]!=0:
                      test2.append('Both')
                  elif X train['Sunshine'].loc[index]==0:
                      test2.append('Clouds')
                  else:
                      pass
              else:
                  pass
In [28]:
          print("There are " + str(test2.count('Sunshine')) + " records of sunshine d
          print("There are " + str(test2.count('Clouds')) + " records of cloud data w
          print("There are " + str(test2.count('Neither')) + " records of no sunshine
          print("There are " + str(test2.count('Both')) + " records of sunshine and c
         There are 7701 records of sunshine data with 0 cloud coverage.
         There are 1712 records of cloud data with 0 sunshine hours.
         There are 4 records of no sunshine or cloud coverage.
         There are 97226 records of sunshine and cloud coverage.
In [29]:
          test2_data = {'Sunshine with 0 Clouds': 10350, 'Clouds with 0 sunshine': 23
In [30]:
          X_train['RainToday'].value_counts(normalize=True)
                0.775687
         No
Out[30]:
         Yes
                0.224313
         Name: RainToday, dtype: float64
In [31]:
          rain_data_today = {'Did Not Rain':113580,'Rained':31880}
```

```
In [32]:
          # Create subplot for all of our tests/findings
          fig, (ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8) = plt.subplots(8, 1, figsize=
          fig.suptitle('Plots of Cloud data and Sunshine Data')
          fig.tight_layout(pad=5.0)
          # This is a distribution for sunshine data that eliminates cloud nulls.
          ax1.set title('Chart 1: Dist. of Sunshine Data w/o cloud nulls')
          ax1.hist(rain data cloud dropna['Sunshine'])
          ax1.set xlabel('Hours of Sunshine')
          ax1.set ylabel('Sunshine Data')
          # This is a distribution for cloud data that eliminates sunshine nulls. It
          # hard to impute these values without further biforcation.
          ax2.set title('Chart 2: Dist. of 9am Cloud Data w/o Sunshine nulls')
          ax2.hist(rain_data_sunshine_dropna['Cloud9am'])
          ax2.set_xlabel('9am Cloud Coverage (0-8)')
          ax2.set ylabel('Cloud Data')
          # This is a distribution for cloud data that eliminates sunshine nulls. It
          # hard to impute these values without further biforcation.
          ax3.set title('Chart 3: Dist. of 3pm Cloud Data w/o Sunshine nulls')
          ax3.hist(rain_data_sunshine_dropna['Cloud3pm'])
          ax3.set xlabel('3pm Cloud Coverage (0-8)')
          ax3.set ylabel('Cloud Data')
          # Here we plot the population of nulls and their relationships. Perhaps the
          # clouds and sunshine that we can impute. When both records are null, this
          ax4.set_title('Chart 4: # of non-nulls by Category (Sunshine vs Cloud Data)
          ax4.bar(test_data.keys(),test_data.values())
          ax4.set_xlabel('Type')
          # Checking the data for zeros.
          ax5.set title('Chart 5: Non-Zero Data by Category')
          ax5.bar(test2_data.keys(),test2_data.values())
          ax5.set_xlabel('Type')
          # Here we find the distribution for days it does rain, and the relevant mea
          ax6.set title('Chart 6: Sunshine Data On Day it Rains')
          ax6.hist(sunshine when rain['Sunshine'],bins=14)
          # Here we find the distribution for days it doesn't rain, and the relevant
          ax7.set title("Chart 7: Sunshine Data On Day it Doesn't Rain")
          ax7.hist(sunshine_no_rain['Sunshine'])
          # Here is the distribution for evaporation when sunshine is greater than ze
          ax8.set_title("Chart 8: Evaporation Data when Sunshine > 0")
          ax8.hist(evaporation test,bins=100)
          plt.savefig('Visualizations/Subplot1.png', bbox inches = 'tight')
          plt.show()
```

Plots of Cloud data and Sunshine Data

Here are the actionable insights gained from the charts above:

- **Chart 1**: For Sunshine Data overall and with cloud nulls filtered out, it appears to be normally distributed with a slight skew to the left. There are also many zeroes, which can be explained by rainy days.
- Chart 2 and 3: For Cloud Data overall and with Sunshine nulls removed, the data appears to be hump shaped, with one large hump at a 1 on the scale, and another large hump at a 7 on the scale.
- Chart 4: This chart is designed to look at the overall null population, to further understand what data we will need to impute. For our cloud data with sunshine nulls, I would recommend looking further into the rain data to determine how we should handle imputing sunshine values. For sunshine data with cloud nulls, I will impute based off of both the humps; if it rained, I will use the 7 hump, if it did not rain, I will use the 1 hump. If both are null, I will have to use only rain data to determine how I would like to handle these values.
- **Chart 5**: I made this chart to see situations where there are clouds with 0 sunshine, and sunshine with 0 clouds. These values appear to be minimal.
- Chart 6 and 7: I created charts here to see how many hours of sunshine there are when it rains, and when it doesn't rain. This could help us biforcate our population of sunshine data so that I am not imputing the mean onto data that doesn't represent the mean.
- Chart 8: This shows evaporation data when Sunshine > 0. We can impute the mean here onto our evaporation nulls.

We need to dive deeper into cloud data in order to figure out how to replace nulls. Please see graphs below for more details about our cloud data:

In [33]: # Now I am going to make a subplot looking into the results of our cloud te fig, ((ax1, ax4), (ax2, ax5), (ax3, ax6)) = plt.subplots(nrows=3, ncols=2,fig.suptitle('Plots of Cloud data and Sunshine Data') fig.tight_layout(pad=5.0) # This is a graph for our cloud data when there is low humidity and it does ax1.set title('Chart 9: 9am Cloud Data- Low Humidity, No Rain') ax1.hist(cloud9_no_rain_lower humidity) # This is a graph for our cloud data when there is high humidity and it doe ax2.set title('Chart 10: 9am Cloud Data- High Humidity, No Rain') ax2.hist(cloud9 no rain higher humidity) # This is a graph for our cloud data when it does rain. ax3.set_title('Chart 11: 9am Cloud Data- Rains') ax3.hist(cloud9_rain) # This is a graph for our cloud data when there is low humidity and it does ax4.set title('Chart 9: 3pm Cloud Data- Low Humidity, No Rain') ax4.hist(cloud3_no_rain_lower_humidity) # This is a graph for our cloud data when there is high humidity and it doe ax5.set title('Chart 10: 3pm Cloud Data- High Humidity, No Rain') ax5.hist(cloud3 no rain higher humidity) # This is a graph for our cloud data when it does rain. ax6.set title('Chart 11: 3pm Cloud Data- Rains') ax6.hist(cloud3_rain)

plt.savefig('Visualizations/Subplot2.png', bbox inches = 'tight')

Plots of Cloud data and Sunshine Data

Let's breakdown our Cloud data:

- Chart 9: As we can see here, in our data when it doesn't rain and humidity is less than 70%, our Cloud data has a mean closer to 1. I will fill the nulls meeting this criteria using a lower cloud coverage.
- **Chart 10**: As we can see here, in our data when it doesn't rain and humidity is greater than 70%, our Cloud data has a mean closer to 7 or 8. I will fill the nulls meeting this criteria using a higher cloud coverage.
- Chart 11: As we can see here, in our data when it does rain, our Cloud data has a mean closer to 7 or 8. I will fill the nulls meeting this criteria using a higher cloud coverage.

Now that I have an understanding of the data, I will perform the train/test split, and begin imputing these null values.

Section 3: Data Preparation

Before imputing my data, I am going to create numeric columns for our categorical fields using OneHotEncoding.

```
In [34]:
          X train.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 106644 entries, 0 to 106643
         Data columns (total 22 columns):
          #
              Column
                             Non-Null Count
                                               Dtype
              _____
                             -----
         ___
                                               ____
          0
              Date
                             106644 non-null
                                              object
          1
              Location
                             106644 non-null
                                              object
          2
              MinTemp
                             106150 non-null
                                              float64
          3
              MaxTemp
                             106387 non-null
                                               float64
          4
              Rainfall
                             105540 non-null float64
          5
              Evaporation
                             60909 non-null
                                               float64
          6
              Sunshine
                             55677 non-null
                                               float64
          7
              WindGustDir
                             99665 non-null
                                              object
          8
                             99715 non-null
              WindGustSpeed
                                               float64
          9
              WindDir9am
                             99120 non-null
                                               object
          10
              WindDir3pm
                             103822 non-null object
          11
              WindSpeed9am
                             105646 non-null float64
                             104681 non-null float64
          12
              WindSpeed3pm
          13
              Humidity9am
                             105326 non-null float64
          14
              Humidity3pm
                             103917 non-null float64
          15
              Pressure9am
                             96098 non-null
                                               float64
          16
              Pressure3pm
                             96123 non-null
                                               float64
          17
              Cloud9am
                             66285 non-null
                                               float64
          18
              Cloud3pm
                             63757 non-null
                                               float64
          19
              Temp9am
                             105967 non-null float64
          20
              Temp3pm
                             104579 non-null
                                              float64
              RainToday
                             105540 non-null object
         dtypes: float64(16), object(6)
         memory usage: 17.9+ MB
In [35]:
          X_train = X_train.drop(['Date'],axis=1)
In [36]:
          # Impute sunshine data based off of our findings from above
          X_train['Sunshine'] = np.where(((X_train['Sunshine'].isna()) & (X train['Ra
          X train['Sunshine'] = np.where(((X train['Sunshine'].isna()) & (X train['Ra
In [37]:
          X_train['Sunshine'].isna().any()
         True
Out[37]:
In [38]:
          X train['Sunshine'].value counts()
                 1716
         0.0
Out[38]:
         10.7
                  815
```

11.0	812
10.5	779
10.8	771
10.3	750
10.2	732
10.9 9.8	732
11.1	726 708
10.6	708
10.4	705
10.0	704
10.1	704
9.2	698
11.2	686
9.9	667
9.5	647
9.4	639
9.6	629
9.7	617
9.3 9.0	605 565
8.8	558
11.3	557
9.1	555
8.4	548
8.9	526
8.7	525
8.2	522
11.4	515
8.0	505
11.6 8.3	491
8.6	480 468
7.2	463
8.5	462
7.8	457
13.0	448
8.1	448
12.0	446
11.7	431
13.1	425
7.3	423
13.2	421
11.5 11.9	420 418
7.7	418
12.7	418
7.6	417
11.8	414
6.8	411
7.1	408
6.9	406
7.5	403

7.4	401
0.1	399
6.3	398
6.1	396
12.2	394
7.0	388
0.2	388
12.5	383
6.6	380
7.9	383 380 370
6.0	366
6.2	366
12.4	365
6.5	364
6.5 12.6	363
12.3	359
6.4	356
5.7	356
5.8	353
12.1	353
6.7	343
12.8	342
5.0	340
5.5	340 339 337
5.2	337
5.6	325
0.3	
13.3	325
	319
5.9	317
12.9	316
5.1	310
5.4 4.8	310
	307
3.8	301
5.3	300
4.3	295
3.0	295
4.4	293
3.2	292
4.5	291
4.0	291
3.9	291
4.7	290
4.1	285
4.9	279
4.6	273
0.7	263
3.6	262
2.7	255
0.4	253
2.3	252
4.2	251
2.8	245

```
1.0
                    244
          3.5
                    239
          1.6
                    236
          2.0
                    235
          2.2
                    234
          2.4
                    233
          1.2
                    233
          2.1
                    230
          0.9
                    229
          3.3
                    229
          13.4
                    227
          0.5
                    226
          0.6
                    226
          2.9
                    224
          1.7
                    224
          0.8
                    223
          3.7
                    220
          1.5
                    217
          1.9
                    216
          2.6
                    215
          1.3
                    213
          1.4
                    213
          3.1
                    212
          1.8
                    211
          2.5
                    210
          3.4
                    205
          1.1
                    201
          13.5
                    147
          13.6
                    126
          13.7
                    88
          13.8
                      48
          13.9
                      14
          14.0
                      10
          14.1
                       5
          14.3
                       4
                       2
          14.2
          14.5
          Name: Sunshine, dtype: int64
In [39]:
           # Impute zero evaporation when sunshine is zero
           X_train['Evaporation'] = np.where(((X_train['Evaporation'].isna()) & (X_train['Evaporation'].isna())
In [40]:
           evaporation_test.sum()/len(evaporation_test)
Out[40]: 5.037441856155372
```

```
In [41]:
           # Impute mean evaporation when sunshine is not zero
          X_train['Evaporation'] = np.where(((X_train['Evaporation'].isna()) & (X_train['Evaporation'].
In [42]:
          X train['Evaporation'].isna().any()
          True
Out[42]:
In [43]:
          X train['Evaporation'].value counts().head()
          5.0
                 4186
Out[43]:
          4.0
                 2494
          8.0
                 1938
          2.2
                 1567
          2.0
                 1494
          Name: Evaporation, dtype: int64
In [44]:
          print(cloud9_no_rain_lower_humidity.value_counts())
          print(cloud9_no_rain_higher_humidity.value_counts())
          print(cloud9 rain.value counts())
          print(cloud3 no rain lower humidity.value counts())
          print(cloud3 no rain higher humidity.value counts())
          print(cloud3_rain.value_counts())
          1.0
                 6175
          7.0
                 4297
          0.0
                 3953
          2.0
                 2453
          6.0
                 2237
          3.0
                 2092
          5.0
                 1743
          4.0
                 1422
          8.0
                 1391
          Name: Cloud9am, dtype: int64
          7.0
                 5366
          8.0
                 4206
          1.0
                 2952
          6.0
                 1884
          5.0
                 1282
          2.0
                 1261
          3.0
                 1179
          0.0
                 1132
          4.0
                  949
          Name: Cloud9am, dtype: int64
          8.0
                 4938
          7.0
                 4617
          6.0
                 1631
          1.0
                 1132
```

```
5.0
                  955
          3.0
                  794
          4.0
                  710
          2.0
                  691
          0.0
                  174
         Name: Cloud9am, dtype: int64
          1.0
                 9839
          7.0
                 7523
          2.0
                 4320
          6.0
                 4268
          3.0
                 3943
          0.0
                 3560
          5.0
                 3474
          8.0
                 2850
          4.0
                 2834
          9.0
                    1
         Name: Cloud3pm, dtype: int64
          8.0
                 2529
          7.0
                 1878
          6.0
                  540
          5.0
                  282
          1.0
                  223
          4.0
                  199
          3.0
                  187
          2.0
                  184
          0.0
                   31
         Name: Cloud3pm, dtype: int64
          7.0
                 4215
          8.0
                 3907
          6.0
                 1865
          5.0
                 1302
          3.0
                  988
          1.0
                  967
          4.0
                  915
          2.0
                  827
          0.0
                   69
         Name: Cloud3pm, dtype: int64
In [45]:
           # Imputing cloud data based on our findings from section 2
           X_train['Cloud9am'] = np.where(((X_train['Cloud9am'].isna()) & (X_train['Ra
          X_train['Cloud3pm'] = np.where(((X_train['Cloud3pm'].isna()) & (X_train['Ra
          X_train['Cloud9am'] = np.where(((X_train['Cloud9am'].isna()) & (X_train['Ra
           X_train['Cloud9am'] = np.where(((X_train['Cloud9am'].isna()) & (X_train['Ra
           X_train['Cloud3pm'] = np.where(((X_train['Cloud3pm'].isna()) & (X_train['Ra
           X_train['Cloud3pm'] = np.where(((X_train['Cloud3pm'].isna()) & (X_train['Ra
In [46]:
          X_train['Cloud9am'].value_counts()
```

```
7.0
                14805
Out[46]:
         1.0
                11618
         8.0
                10767
         0.0
                 6427
         6.0
                 5999
         2.0
                 4847
         3.0
                 4385
         5.0
                 4177
         4.0
                  3260
         Name: Cloud9am, dtype: int64
In [47]:
          X_train['Cloud3pm'].value_counts()
         7.0
                13512
Out[47]:
          1.0
                11081
         8.0
                 9328
         6.0
                 6642
         2.0
                 5346
         3.0
                 5126
         5.0
                 5049
         4.0
                 3952
         0.0
                 3720
         9.0
         Name: Cloud3pm, dtype: int64
In [48]:
          # Imputing remaining columns based on mean, from our charts in section 2
          imputer = SimpleImputer(strategy='most frequent')
          imputer = imputer.fit(X_train)
          X_train.iloc[:,:] = imputer.transform(X_train)
In [49]:
          categorical data = X train[['Location','WindGustDir','WindDir9am','WindDir3
          ohe = OneHotEncoder()
          # Fit the dummy variables to an array
          X = ohe.fit_transform(categorical_data.values).toarray()
          y = ohe.get_feature_names()
          # To add this back into the original dataframe
          dfOneHot = pd.DataFrame(X, columns = y)
          X_train = pd.concat([X_train, dfOneHot], axis=1)
          # Dropping the base columns, and to avoid multicollinearity, dropping one o
          X train = X train.drop(['Location','WindGustDir','WindDir9am','WindDir3pm',
          # Printing to verify
          print(X train.head())
            MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustSpeed \
```

0	14.9	30.3	0.0	7.4	10.9		33.0			
1		21.5	0.2	5.0	0.0		46.0			
2		23.7	0.0	5.0	0.0		28.0			
3		24.0	0.0	8.2	12.1		35.0			
4		37.5	0.0	8.6	11.4		39.0			
-	2,70	,,,,								
	WindSpeed9am	WindSpee		dity9am	Humidity3					
0	15.0		11.0	19.0	12		1021.1			
1	26.0		28.0	65.0	57		1012.6			
2	11.0		15.0	59.0	45	.0 1	1017.9			
3	4.0		15.0	63.0	82	.0 1	1018.1			
4	9.0		15.0	26.0	12	.0 1	1009.6			
	_	-1	-1 10							
,	Pressure3pm	Cloud9am	Cloud3pm	Temp9am	Temp3pm	x0_Adelai	de x0_Albury			
\	1015 0	1.0	1 0		00 5					
0	1017.8	1.0	1.0	22.2	29.7		0.0			
1	1013.5	7.0	7.0	17.5	18.6		0.0			
2	1015.1	7.0	7.0	14.6	23.1		0.0			
3	1016.7	3.0	3.0	21.8	21.8		0.0			
4	1006.2	7.0	4.0	23.8	35.7	0	0.0			
	x0_AliceSprings x0_BadgerysCreek x0_Ballarat x0_Bendigo x0_Brisbane									
\	No_mileoopiii	igb No_ba	ageryberee	.n No_Bu	ridide no	_bendige	No_BIIBBane			
0	(0.0	0.	0	0.0	0.0	0.0			
1		0.0	0.		0.0	0.0	0.0			
2		0.0	0.		0.0	0.0	0.0			
3		0.0	0.		0.0	0.0	0.0			
3 4		0.0	0.		0.0	0.0	0.0			
4	`	J • U	0.	U	0.0	0.0	0.0			
	x0_Cairns x	O_Canberra	x0_Cobar	x0_Cof	fsHarbour	x0_Dartmo	oor x0_Darwin			
\										
0	0.0	0.0	0.0		0.0	0	0.0			
1	0.0	0.0	0.0		0.0	0	0.0			
2	0.0	0.0	0.0		0.0	0	0.0			
3	0.0	0.0	0.0		0.0	0	0.0			
4	0.0	0.0	0.0		0.0	0	0.0			
	0	0 11-1	0 77 - 1 1-) T	0 W-1	h			
0	x0_GoldCoast	x0_Hobar	_		Launcest	_	lbourne \			
0	0.0	0.		0.0		.0	0.0			
1	0.0	0.		0.0		.0	0.0			
2	0.0	0.		0.0		.0	0.0			
3	0.0	0.		0.0		.0	0.0			
4	0.0	0.	0	0.0	0	.0	0.0			
	x0 Melbourne	Airport x	0 Mildura	x0_More	e x0 Moun	tGambier	x0_MountGinin			
i	\	10-0 1		_=====						
0		0.0	0.0	0.0	0	0.0	0.			
0										
1		0.0	0.0	0.0	0	0.0	0.			
0			0.0		-					
2		0.0	0.0	0.0	0	0.0	0.			
0			0.0	•	-		•			
3		0.0	0.0	0.0	0	0.0	0.			

0 4 0		0.0	1.0	0.0	(0.0	0.
	x0 Newcastle	x0 Nhil x0) NorahHead	x0 Norfo	lkIsland :	κ0 Nurioot	oa \
0	0.0	0.0	0.0		0.0		. 0
1	0.0	0.0	0.0		0.0	0 .	
2	0.0	0.0	0.0		0.0	0 .	
3	0.0	0.0	0.0		0.0	0 .	
4	0.0	0.0	0.0		0.0	0	
	x0_PearceRAAF	x0_Perth	x0_PerthAir	port x0_1	Portland 2	<pre> «0_Richmon« </pre>	/
0	0.0			0.0	0.0	0.0)
1	0.0	0.0		0.0	0.0	0.0)
2	0.0			0.0	0.0	0.0)
3	0.0	0.0		0.0	0.0	0.0)
4	0.0	0.0		0.0	0.0	0.0)
				0_SydneyA		_Townsville	
0	0.0	0.0	0.0		0.0	0.0	
1	0.0	0.0	0.0		0.0	0.0	
2	0.0	1.0	0.0		0.0	0.0	
3	0.0	0.0	0.0		0.0	0.0	
4	0.0	0.0	0.0		0.0	0.0)
	x0_Tuggeranon	_	x0_WaggaWa	_		_Watsonia	\
0	0.			0.0	0.0	0.0	
1	0.			0.0	0.0	0.0	
2	0.			0.0	0.0	0.0	
3	0.			0.0	0.0	0.0	
4	0.	0.0		0.0	0.0	0.0	
,	x0_Williamtow	n x0_Witcho	cliffe x0_W	Vollongong	x0_Woome	ca x1_E x	k1_ENE
\	0	0	0 0	0 0	1	0 0 0	0 0
0	0.		0.0	0.0	1.		0.0
1 2	0.		1.0	0.0		0.0	0.0
3	0.		0.0	0.0		0.0	0.0
4	0.		0.0	0.0		0.0	0.0
		x1_NE x1_N		x1_S x1_S	_	_	k1_SW \
0	0.0 0.0		0.0	1.0 0		0.0	0.0
1	0.0 0.0		0.0	0.0		0.0	0.0
2	0.0 0.0		0.0	0.0		0.0	0.0
3	0.0 0.0		0.0	0.0		0.0	0.0
4	0.0 1.0	0.0	0.0	0.0	.0 0.0	0.0	0.0
	x1_W x1_WNW	x1_WSW x2_	_E x2_ENE	x2_N x2_1	NE x2_NNE	x2_NNW x	k2_NW \
0	0.0	0.0 0.	_	0.0 0		0.0	0.0
1	0.0	0.0 0.	0.0	0.0	.0 0.0	0.0	0.0
2	1.0 0.0	0.0 0.		0.0	0.0	0.0	0.0
3	1.0 0.0	0.0 0.		0.0		0.0	0.0
4	0.0	0.0 0.	0.0	0.0	.0 0.0	0.0	0.0

```
x2 S x2 SE
                 x2_SSE
                          x2 SSW
                                    x2 SW
                                            x2 W
                                                  x2 WNW
                                                             x2 WSW
                                                                      x3 E
                                                                            x3 ESE
    0.0
            0.0
                      0.0
                                       0.0
                                                       0.0
                                                                       0.0
0
                               0.0
                                              0.0
                                                                0.0
                                                                                 0.0
1
    1.0
            0.0
                      0.0
                               0.0
                                       0.0
                                              0.0
                                                       0.0
                                                                0.0
                                                                       0.0
                                                                                 0.0
2
    0.0
            0.0
                      0.0
                               0.0
                                       0.0
                                              0.0
                                                       1.0
                                                                0.0
                                                                       0.0
                                                                                 0.0
3
    0.0
            0.0
                      0.0
                               1.0
                                       0.0
                                              0.0
                                                       0.0
                                                                0.0
                                                                       0.0
                                                                                 0.0
    0.0
                                       0.0
                                                       0.0
            0.0
                      0.0
                               0.0
                                              0.0
                                                                0.0
                                                                       0.0
                                                                                 0.0
   x3 N
         x3 NE
                  x3 NNE
                           x3 NNW
                                    x3 NW
                                            x3 S
                                                   x3 SE
                                                           x3 SSE
                                                                     x3 SSW
                                                                              x3 SW
0
    0.0
            0.0
                      0.0
                               0.0
                                       0.0
                                              0.0
                                                      0.0
                                                               0.0
                                                                         0.0
                                                                                 1.0
1
    0.0
            0.0
                      0.0
                               0.0
                                       0.0
                                                      0.0
                                                               1.0
                                                                        0.0
                                                                                 0.0
                                              0.0
    0.0
            0.0
                      0.0
                               0.0
                                       0.0
                                              0.0
                                                      0.0
                                                               0.0
                                                                        0.0
                                                                                 0.0
3
    0.0
            0.0
                      0.0
                               0.0
                                       0.0
                                              0.0
                                                      0.0
                                                               0.0
                                                                        1.0
                                                                                 0.0
    0.0
            0.0
                     0.0
                                                               0.0
                                                                        0.0
                                                                                 0.0
                               0.0
                                       1.0
                                              0.0
                                                      0.0
   x3 W
         x3 WNW
                   x3 WSW
                            x4 Yes
0
    0.0
             0.0
                       0.0
                                0.0
                                0.0
    0.0
             0.0
                       0.0
1
2
    1.0
             0.0
                       0.0
                                0.0
3
    0.0
             0.0
                       0.0
                                0.0
    0.0
             0.0
                       0.0
                                0.0
```

```
In [50]: # Imputing remaining columns based on mean, from our charts in section 2
imputer = SimpleImputer(strategy='most_frequent', missing_values=np.nan)
imputer = imputer.fit(X_train)
X_train.iloc[:,:] = imputer.transform(X_train)
```

In [51]: X_train.info(1, null_counts=True)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 106644 entries, 0 to 106643
Data columns (total 109 columns):

Ducu	COTAMIND (COCAT TO) C	oraniis).	
#	Column	Non-Null Count	Dtype
0	MinTemp	106644 non-null	float64
1	MaxTemp	106644 non-null	float64
2	Rainfall	106644 non-null	float64
3	Evaporation	106644 non-null	float64
4	Sunshine	106644 non-null	float64
5	WindGustSpeed	106644 non-null	float64
6	WindSpeed9am	106644 non-null	float64
7	WindSpeed3pm	106644 non-null	float64
8	Humidity9am	106644 non-null	float64
9	Humidity3pm	106644 non-null	float64
10	Pressure9am	106644 non-null	float64
11	Pressure3pm	106644 non-null	float64
12	Cloud9am	106644 non-null	float64
13	Cloud3pm	106644 non-null	float64
14	Temp9am	106644 non-null	float64

15	Temp3pm	106644	non-null	float64
16	x0_Adelaide	106644	non-null	float64
17	x0_Albury	106644	non-null	float64
18	x0_AliceSprings	106644	non-null	float64
19	x0_BadgerysCreek	106644	non-null	float64
20	x0_Ballarat	106644	non-null	float64
21	x0_Bendigo	106644	non-null	float64
22	x0_Brisbane	106644	non-null	float64
23	x0_Cairns	106644	non-null	float64
24	x0_Canberra	106644	non-null	float64
25	x0 Cobar	106644	non-null	float64
26	x0_CoffsHarbour	106644	non-null	float64
27	x0 Dartmoor	106644	non-null	float64
28	x0_Darwin	106644	non-null	float64
29	x0 GoldCoast	106644	non-null	float64
30	x0 Hobart	106644	non-null	float64
31	x0 Katherine	106644	non-null	float64
32	x0 Launceston	106644	non-null	float64
33	x0 Melbourne		non-null	float64
34	x0 MelbourneAirport		non-null	float64
35	x0 Mildura		non-null	float64
36	x0 Moree		non-null	float64
37	x0 MountGambier		non-null	float64
38	x0 MountGinini		non-null	float64
39	x0 Newcastle		non-null	float64
40	x0 Nhil		non-null	float64
41	x0 NorahHead		non-null	float64
42	x0 NorfolkIsland		non-null	float64
43	x0_Nuriootpa		non-null	float64
44	x0 PearceRAAF		non-null	float64
45	x0 Perth		non-null	float64
46	x0 PerthAirport		non-null	
47	x0 Portland		non-null	
	x0_Portrand x0_Richmond		non-null	
48	_			
49	x0_Sale		non-null	float64
50	x0_SalmonGums		non-null	float64
51	x0_Sydney		non-null	float64
52	x0_SydneyAirport		non-null	float64
53	x0_Townsville		non-null	
54	x0_Tuggeranong		non-null	float64
55	x0_Uluru		non-null	float64
56	x0_WaggaWagga		non-null	float64
57	x0_Walpole		non-null	float64
58	x0_Watsonia		non-null	float64
59	x0_Williamtown		non-null	float64
60	x0_Witchcliffe		non-null	float64
61	x0_Wollongong		non-null	float64
62	x0_Woomera		non-null	float64
63	x1_E		non-null	float64
64	x1_ENE		non-null	float64
65	x1_ESE		non-null	float64
66	x1_N		non-null	float64
67	x1_NE	106644	non-null	float64

```
106644 non-null
              x1 NNW
                                                     float64
          68
          69
              x1 NW
                                    106644 non-null float64
          70
              x1 S
                                    106644 non-null
                                                     float64
              x1_SE
          71
                                    106644 non-null
                                                     float64
          72
              x1 SSE
                                    106644 non-null
                                                     float64
          73
              x1 SSW
                                    106644 non-null float64
                                    106644 non-null
          74
              x1 SW
                                                     float64
          75
                                    106644 non-null float64
              x1 W
          76
              x1 WNW
                                    106644 non-null
                                                     float64
          77
              x1 WSW
                                    106644 non-null float64
          78
              x2 E
                                    106644 non-null float64
          79
              x2 ENE
                                    106644 non-null float64
          80
              x2 N
                                    106644 non-null float64
                                    106644 non-null
          81
              x2 NE
                                                     float64
          82
                                    106644 non-null float64
              x2 NNE
          83
              x2 NNW
                                    106644 non-null
                                                     float64
          84
              x2 NW
                                    106644 non-null float64
          85
              x2 S
                                    106644 non-null float64
                                    106644 non-null
                                                     float64
          86
              x2_SE
          87
              x2 SSE
                                    106644 non-null float64
              x2 SSW
                                    106644 non-null
                                                     float64
          88
          89
              x2 SW
                                    106644 non-null float64
          90
              x2 W
                                    106644 non-null float64
          91
              x2 WNW
                                    106644 non-null float64
          92
              x2 WSW
                                    106644 non-null float64
          93
              x3 E
                                    106644 non-null float64
                                    106644 non-null float64
          94
              x3 ESE
              x3 N
                                    106644 non-null float64
          95
          96
              x3 NE
                                    106644 non-null float64
          97
              x3 NNE
                                    106644 non-null float64
          98
              x3 NNW
                                    106644 non-null float64
          99
              x3 NW
                                    106644 non-null float64
          100 x3 S
                                    106644 non-null
                                                     float64
          101 x3_SE
                                    106644 non-null
                                                     float64
          102 x3 SSE
                                    106644 non-null float64
                                    106644 non-null float64
          103 x3 SSW
          104 x3 SW
                                    106644 non-null float64
          105 x3_W
                                    106644 non-null
                                                     float64
          106 x3 WNW
                                    106644 non-null float64
          107 x3_WSW
                                    106644 non-null
                                                     float64
          108 x4 Yes
                                    106644 non-null float64
         dtypes: float64(109)
         memory usage: 88.7 MB
In [52]:
          y train.count()
         106644
Out[52]:
In [53]:
          X_test.info(1, null_counts=True)
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 35549 entries, 0 to 35548
Data columns (total 22 columns):

```
#
     Column
                    Non-Null Count
                                    Dtype
 0
     Date
                    35549 non-null
                                    object
 1
    Location
                    35549 non-null
                                    object
 2
                    35406 non-null
                                    float64
    MinTemp
 3
    MaxTemp
                    35484 non-null
                                    float64
 4
    Rainfall
                    35247 non-null
                                    float64
 5
    Evaporation
                    20441 non-null float64
 6
     Sunshine
                    18700 non-null
                                    float64
 7
    WindGustDir
                    33198 non-null
                                    object
 8
    WindGustSpeed 33208 non-null
                                    float64
 9
    WindDir9am
                    33060 non-null
                                    object
 10 WindDir3pm
                    34593 non-null
                                    object
 11
    WindSpeed9am
                    35199 non-null
                                    float64
 12
    WindSpeed3pm
                    34882 non-null
                                    float64
 13
                    35093 non-null
                                    float64
    Humidity9am
 14
    Humidity3pm
                    34666 non-null
                                    float64
 15
                    32081 non-null
                                    float64
    Pressure9am
 16
    Pressure3pm
                    32089 non-null
                                    float64
 17
                    22251 non-null
                                    float64
    Cloud9am
 18
    Cloud3pm
                    21342 non-null
                                    float64
 19
    Temp9am
                    35322 non-null
                                    float64
 20
    Temp3pm
                    34888 non-null
                                    float64
    RainToday
                    35247 non-null
                                    object
dtypes: float64(16), object(6)
memory usage: 6.0+ MB
```

```
In [54]: X_test.reset_index(inplace=True)
```

```
In [55]: X_test = X_test.drop(columns=['index'],axis=1)
```

```
In [56]: # Performing same imputations as train data

X_test['Sunshine'] = np.where(((X_test['Sunshine'].isna()) & (X_test['RainT X_test['Sunshine'] = np.where(((X_test['Sunshine'].isna()) & (X_test['RainT X_test['Evaporation'] = np.where(((X_test['Evaporation'].isna()) & (X_test[X_test['Evaporation'] = np.where(((X_test['Evaporation'].isna()) & (X_test[X_test['Cloud9am'].isna()) & (X_test['RainT X_test['Cloud3pm'] = np.where(((X_test['Cloud3pm'].isna()) & (X_test['RainT X_test['Cloud9am'] = np.where(((X_test['Cloud9am'].isna()) & (X_test['RainT X_test['Cloud9am'] = np.where(((X_test['Cloud9am'].isna()) & (X_test['RainT X_test['Cloud3pm'] = np.where(((X_test['Cloud3pm'].isna()) & (X_test['RainT X_test['Cloud3pm'].isna()) & (X_test[
```

```
In [57]:
          # Performing same imputations as train data
          imputer = SimpleImputer(strategy='most frequent')
          imputer = imputer.fit(X_test)
          X_test.iloc[:,:] = imputer.transform(X_test)
In [58]:
          categorical_data = X_test[['Location','WindGustDir','WindDir9am','WindDir3p
          ohe = OneHotEncoder()
          # Fit the dummy variables to an array
          X = ohe.fit_transform(categorical_data.values).toarray()
          y = ohe.get_feature_names()
          # To add this back into the original dataframe
          dfOneHot = pd.DataFrame(X, columns = y)
          X test = pd.concat([X test, dfOneHot], axis=1)
          # Dropping the country column
          X test = X test.drop(['Date', 'Location', 'WindGustDir', 'WindDir9am', 'WindDir
          # Printing to verify
          print(X test.head())
            MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustSpeed \
         0
                 7.1
                         13.0
                                     8.8
                                                  5.0
                                                            0.0
                                                                           41.0
         1
                13.2
                         18.3
                                     0.0
                                                  5.0
                                                            0.0
                                                                           48.0
         2
                9.2
                         22.7
                                    0.0
                                                  5.0
                                                           11.1
                                                                           52.0
          3
                15.3
                         26.1
                                     0.0
                                                 10.4
                                                                           44.0
                                                            0.0
          4
                                     0.0
                11.9
                         31.8
                                                  5.0
                                                            4.1
                                                                           72.0
            WindSpeed9am WindSpeed3pm Humidity9am Humidity3pm Pressure9am \
         0
                     24.0
                                                100.0
                                                              98.0
                                   22.0
                                                                          1001.7
         1
                     24.0
                                   20.0
                                                 73.0
                                                              73.0
                                                                          1027.6
         2
                     26.0
                                   20.0
                                                 45.0
                                                              25.0
                                                                          1030.1
          3
                     24.0
                                                               40.0
                                                                          1013.2
                                   19.0
                                                 48.0
                                                              25.0
                      6.0
                                   19.0
                                                 89.0
                                                                          1006.7
            Pressure3pm Cloud9am Cloud3pm Temp9am Temp3pm x0_Adelaide x0_Albury
         \
         0
                  1005.4
                               8.0
                                          8.0
                                                   8.6
                                                           11.5
                                                                          0.0
                                                                                     0.0
         1
                               7.0
                                          7.0
                                                                          0.0
                  1023.8
                                                  14.2
                                                           17.0
                                                                                     0.0
         2
                  1025.9
                               0.0
                                          0.0
                                                  15.1
                                                           22.5
                                                                          0.0
                                                                                     0.0
          3
                                          7.0
                  1009.8
                               7.0
                                                  17.5
                                                           24.3
                                                                          0.0
                                                                                     0.0
                  1001.0
                               7.0
                                          6.0
                                                  16.2
                                                           27.4
                                                                          0.0
                                                                                     0.0
            x0 AliceSprings x0 BadgerysCreek x0 Ballarat x0 Bendigo x0 Brisbane
          \
         0
                         0.0
                                            0.0
                                                         1.0
                                                                      0.0
                                                                                   0.0
          1
                         0.0
                                            0.0
                                                         0.0
                                                                      0.0
                                                                                   0.0
```

2	0.	. 0	0.0		0.0	0.0	0.0
3	0 .	. 0	0.0		0.0	0.0	0.0
4	0 .	. 0	0.0		0.0	0.0	0.0
	x0 Cairns x0	Canberra	x0 Cobar	x0 Coff	sHarbour	x0_Dartmoor	x0 Darwin
\		_	_	_		_	_
0	0.0	0.0	0.0		0.0	0.0	0.0
1	0.0	0.0	0.0		0.0	0.0	0.0
2	0.0	0.0	0.0		0.0	0.0	0.0
3	0.0	0.0	1.0		0.0	0.0	0.0
4	0.0	0.0	0.0		0.0	0.0	0.0
	0 0 1 10 1	0 1	0 11			0 24 71	,
	x0_GoldCoast	x0_Hobart	x0_Kather	-	_Launcesto	_	
0	0.0	0.0		0.0	0.		0.0
1	0.0	0.0		0.0	0.	0	0.0
2	0.0	0.0		0.0	0.	0	0.0
3	0.0	0.0		0.0	0.	0	0.0
4	0.0	0.0		0.0	0.	0	0.0
	x0_MelbourneAi	irport x0	Mildura x	0 Moree	x0 Mount	Gambier x0	MountGinin
i	_		_	_	_	_	-
0		0.0	0.0	0.0		0.0	0.
0							
1		0.0	0.0	0.0		0.0	0.
0		0.0	0.0	0.0		0.0	•
		0 0	0 0	0 0		0 0	0
2		0.0	0.0	0.0		0.0	0.
0							
3		0.0	0.0	0.0		0.0	0.
0							
4		0.0	0.0	0.0		0.0	0.
0							
	x0_Newcastle	x0_Nhil x	k0_NorahHea	d x0_N	orfolkIsla	_	otpa \
0	0.0	0.0	0.	0	0	. 0	0.0
1	0.0	0.0	0.	0	0	. 0	0.0
2	0.0	0.0	0.	0	0	.0	0.0
3	0.0	0.0	0.	0	0	.0	0.0
4	0.0	0.0	0.	0	0	. 0	0.0
	x0_PearceRAAF	x0_Perth	x0_PerthA	irport	x0_Portla	nd x0_Richm	ond \
0	- 0.0	- 0.0	_	0.0	_	.0	0.0
1	0.0	0.0		0.0			0.0
2	0.0	0.0		1.0		.0	0.0
3	0.0	0.0		0.0			0.0
4	0.0	0.0		0.0		.0	0.0
4	0.0	0.0		0.0	0	• •	0.0
	vn cala ••0 ca	lmonC:	v0 C	v.∩	nowlines+	v0 mor	110 \
^		almonGums	x0_Sydney	xu_Syd	neyAirport	x0_Townsvi	
0	0.0	0.0	0.0		0.0		0.0
1	0.0	0.0	0.0		0.0		0.0
2	0.0	0.0	0.0		0.0		0.0
3	0.0	0.0	0.0		0.0		0.0
/1	7 A	^ ^	^ ^		^ ^		() ()

0.0

0.0

0.0

4

1.0

0.0

```
x0 Tuggeranong
                       x0 Uluru
                                   x0 WaggaWagga
                                                     x0 Walpole
                                                                    x0 Watsonia
0
                             0.0
                 0.0
                                                0.0
                                                              0.0
                                                                              0.0
1
                 0.0
                                                0.0
                                                              1.0
                                                                              0.0
                             0.0
2
                 0.0
                             0.0
                                                0.0
                                                              0.0
                                                                              0.0
3
                 0.0
                             0.0
                                                0.0
                                                              0.0
                                                                              0.0
4
                 0.0
                             0.0
                                                0.0
                                                              0.0
                                                                              0.0
   x0 Williamtown
                       x0 Witchcliffe
                                          x0 Wollongong
                                                             x0 Woomera
                                                                           x1 E
                                                                                   x1 ENE
\
0
                 0.0
                                     0.0
                                                       0.0
                                                                      0.0
                                                                             0.0
                                                                                       0.0
1
                 0.0
                                    0.0
                                                       0.0
                                                                      0.0
                                                                             1.0
                                                                                       0.0
2
                 0.0
                                    0.0
                                                       0.0
                                                                      0.0
                                                                             0.0
                                                                                       1.0
3
                 0.0
                                     0.0
                                                       0.0
                                                                      0.0
                                                                             1.0
                                                                                       0.0
4
                 0.0
                                    0.0
                                                       0.0
                                                                     0.0
                                                                             0.0
                                                                                       0.0
                             x1 NNW
   x1 ESE
             x1 N
                                       x1 NW
                                               x1 S
                                                       x1 SE
                                                               x1 SSE
                                                                         x1 SSW
                                                                                   x1 SW
                    x1 NE
0
       0.0
              1.0
                       0.0
                                 0.0
                                         0.0
                                                 0.0
                                                         0.0
                                                                   0.0
                                                                             0.0
                                                                                     0.0
1
       0.0
              0.0
                       0.0
                                 0.0
                                         0.0
                                                 0.0
                                                         0.0
                                                                   0.0
                                                                             0.0
                                                                                     0.0
2
       0.0
              0.0
                       0.0
                                 0.0
                                                 0.0
                                                                   0.0
                                                                             0.0
                                                                                     0.0
                                         0.0
                                                         0.0
3
       0.0
              0.0
                       0.0
                                 0.0
                                         0.0
                                                 0.0
                                                         0.0
                                                                   0.0
                                                                             0.0
                                                                                     0.0
4
       0.0
              0.0
                       0.0
                                 0.0
                                         1.0
                                                 0.0
                                                         0.0
                                                                   0.0
                                                                             0.0
                                                                                     0.0
           x1 WNW
                    x1 WSW
                              x2 E
                                     x2 ENE
                                                       x2 NE
                                                               x2 NNE
                                                                                   x2 NW
   x1 W
                                               x2 N
                                                                         x2 NNW
                                                                                     0.0
0
     0.0
              0.0
                        0.0
                                0.0
                                         0.0
                                                 1.0
                                                         0.0
                                                                   0.0
                                                                             0.0
1
     0.0
              0.0
                        0.0
                                0.0
                                         0.0
                                                 0.0
                                                         0.0
                                                                   0.0
                                                                             0.0
                                                                                     0.0
2
     0.0
              0.0
                        0.0
                                0.0
                                         1.0
                                                 0.0
                                                         0.0
                                                                   0.0
                                                                             0.0
                                                                                     0.0
3
     0.0
              0.0
                        0.0
                                1.0
                                         0.0
                                                 0.0
                                                         0.0
                                                                   0.0
                                                                             0.0
                                                                                     0.0
4
     0.0
                                                                                     0.0
              0.0
                        0.0
                                1.0
                                         0.0
                                                 0.0
                                                         0.0
                                                                   0.0
                                                                             0.0
   x2 S
           x2 SE
                   x2 SSE
                             x2 SSW
                                       x2 SW
                                               x2 W
                                                       x2 WNW
                                                                x2 WSW
                                                                          x3 E
                                                                                 x3 ESE
                                                 0.0
                                                          0.0
0
     0.0
             0.0
                       0.0
                                 0.0
                                         0.0
                                                                    0.0
                                                                            0.0
                                                                                     0.0
1
     0.0
             0.0
                       0.0
                                 0.0
                                         0.0
                                                 0.0
                                                          0.0
                                                                    0.0
                                                                            0.0
                                                                                     1.0
2
     0.0
             0.0
                       0.0
                                 0.0
                                         0.0
                                                 0.0
                                                          0.0
                                                                    0.0
                                                                            0.0
                                                                                     1.0
3
     0.0
             0.0
                       0.0
                                 0.0
                                         0.0
                                                 0.0
                                                          0.0
                                                                    0.0
                                                                            0.0
                                                                                     0.0
4
     0.0
             0.0
                                         0.0
                                                          0.0
                                                                            0.0
                                                                                     0.0
                       0.0
                                 0.0
                                                 0.0
                                                                    0.0
   x3 N
           x3_NE
                   x3 NNE
                             x3 NNW
                                       x3 NW
                                               x3_S
                                                       x3_SE
                                                               x3_SSE
                                                                         x3_SSW
                                                                                   x3_SW
0
     0.0
             0.0
                                                 0.0
                                                         0.0
                                                                                     0.0
                       0.0
                                 0.0
                                         0.0
                                                                   0.0
                                                                             0.0
1
     0.0
             0.0
                       0.0
                                 0.0
                                         0.0
                                                 0.0
                                                         0.0
                                                                   0.0
                                                                             0.0
                                                                                     0.0
2
                       0.0
     0.0
             0.0
                                 0.0
                                         0.0
                                                 0.0
                                                         0.0
                                                                   0.0
                                                                             0.0
                                                                                     0.0
3
     0.0
             1.0
                       0.0
                                 0.0
                                         0.0
                                                 0.0
                                                         0.0
                                                                   0.0
                                                                             0.0
                                                                                     0.0
             0.0
                                                                                     0.0
4
     1.0
                       0.0
                                 0.0
                                         0.0
                                                 0.0
                                                         0.0
                                                                   0.0
                                                                             0.0
   x3 W
           x3 WNW
                    x3 WSW
                              x4 Yes
0
     0.0
              1.0
                        0.0
                                  1.0
1
     0.0
              0.0
                        0.0
                                  0.0
2
     0.0
              0.0
                        0.0
                                  0.0
3
     0.0
              0.0
                        0.0
                                  0.0
4
     0.0
              0.0
                        0.0
                                  0.0
```

```
In [59]: X_test.info(1, null_counts=True)
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 35549 entries, 0 to 35548
Data columns (total 109 columns):

Data	cordinis (cocar 10)	corumns).	
#	Column	Non-Null Count	
0	MinTemp	35549 non-null	float64
1	MaxTemp	35549 non-null	float64
2	Rainfall	35549 non-null	float64
3	Evaporation	35549 non-null	float64
4	Sunshine	35549 non-null	float64
5	WindGustSpeed	35549 non-null	
6	WindSpeed9am	35549 non-null	float64
7	WindSpeed3pm	35549 non-null	float64
8	Humidity9am	35549 non-null	float64
9	Humidity3pm	35549 non-null	float64
10	Pressure9am	35549 non-null	float64
11	Pressure3pm	35549 non-null	float64
12	Cloud9am	35549 non-null	
13	Cloud3pm	35549 non-null	
14	Temp9am	35549 non-null	float64
15	Temp3pm	35549 non-null	float64
16	x0 Adelaide	35549 non-null	float64
17	x0 Albury	35549 non-null	float64
18	x0 AliceSprings	35549 non-null	float64
19	x0_BadgerysCreek	35549 non-null	float64
20	x0 Ballarat	35549 non-null	
21	x0_Bendigo	35549 non-null	float64
22	x0 Brisbane	35549 non-null	float64
23	x0 Cairns	35549 non-null	float64
24	x0 Canberra	35549 non-null	float64
25	x0 Cobar	35549 non-null	float64
26	x0 CoffsHarbour	35549 non-null	float64
27	x0 Dartmoor	35549 non-null	float64
28	x0 Darwin	35549 non-null	float64
29	x0_GoldCoast	35549 non-null	float64
30	x0 Hobart	35549 non-null	float64
31	x0 Katherine	35549 non-null	float64
32	x0 Launceston		float64
33	x0 Melbourne	35549 non-null	
34	x0_MelbourneAirport		
35	x0 Mildura	35549 non-null	
36	x0 Moree	35549 non-null	
37	x0 MountGambier	35549 non-null	
38	x0 MountGinini	35549 non-null	
39	x0 Newcastle	35549 non-null	
40	x0 Nhil	35549 non-null	float64
41	x0 NorahHead	35549 non-null	float64
42	x0 NorfolkIsland	35549 non-null	
43	x0 Nuriootpa	35549 non-null	
44	x0_PearceRAAF	35549 non-null	
45	x0 Perth	35549 non-null	
46	x0 PerthAirport	35549 non-null	
47	x0 Portland	35549 non-null	
- /		JJJ IJ IIOII-IIUII	1100001

48	x0_Richmond	35549	non-null	float64
49	x0_Sale	35549	non-null	float64
50	x0_SalmonGums	35549	non-null	float64
51	x0_Sydney	35549	non-null	float64
52	x0_SydneyAirport	35549	non-null	float64
53	x0_Townsville	35549	non-null	float64
54	x0_Tuggeranong	35549	non-null	float64
55	x0_Uluru	35549	non-null	float64
56	x0_WaggaWagga	35549	non-null	float64
57	x0_Walpole	35549	non-null	float64
58	x0_Watsonia	35549	non-null	float64
59	x0_Williamtown	35549	non-null	float64
60	x0_Witchcliffe	35549	non-null	float64
61	x0_Wollongong	35549	non-null	float64
62	x0_Woomera	35549	non-null	float64
63	x1_E	35549	non-null	float64
64	x1_ENE	35549	non-null	float64
65	x1_ESE	35549	non-null	float64
66	x1_N	35549	non-null	float64
67	x1_NE	35549	non-null	float64
68	x1_NNW	35549	non-null	float64
69	x1_NW	35549	non-null	float64
70	x1_S	35549	non-null	float64
71	x1_SE	35549	non-null	float64
72	x1_SSE	35549	non-null	float64
73	x1_SSW	35549	non-null	float64
74	x1_SW	35549	non-null	float64
75	x1_W	35549	non-null	float64
76	x1_WNW	35549	non-null	float64
77	x1_WSW	35549	non-null	float64
78	x2_E	35549	non-null	float64
79	x2_ENE	35549	non-null	float64
80	x2_N	35549	non-null	float64
81	x2_NE	35549	non-null	float64
82	x2_NNE	35549	non-null	float64
83	x2_NNW	35549	non-null	float64
84	x2_NW	35549	non-null	float64
85	x2_S	35549	non-null	float64
86	x2_SE	35549	non-null	float64
87	x2_SSE	35549	non-null	float64
88	x2_SSW	35549	non-null	float64
89	x2_SW	35549	non-null	float64
90	x2_W	35549	non-null	float64
91	x2_WNW	35549	non-null	float64
92	x2_WSW	35549	non-null	float64
93	x3_E	35549	non-null	float64
94	x3_ESE	35549	non-null	float64
95	x3_N	35549	non-null	float64
96	x3_NE	35549	non-null	float64
97	x3_NNE	35549	non-null	float64
98	x3_NNW	35549	non-null	float64
99	x3_NW		non-null	float64
100	x3_S	35549	non-null	float64

```
35549 non-null float64
          101 x3 SE
                                    35549 non-null float64
          102 x3 SSE
          103 x3 SSW
                                    35549 non-null float64
          104 x3_SW
                                    35549 non-null float64
          105 x3 W
                                    35549 non-null float64
          106 x3 WNW
                                    35549 non-null float64
                                    35549 non-null float64
          107 x3_WSW
                                    35549 non-null float64
          108 x4 Yes
         dtypes: float64(109)
         memory usage: 29.6 MB
In [60]:
          y_test.count()
Out[60]:
```

Section 4: Modeling

To begin, I will build a logistic model. After that, I will be building a kNN model and a decision tree model, and will pick the best model from the three.

The metric I focus on the most will be recall, because if there are false negatives in my model, then it could rain on citizens who expected a dry day. As the Bureau of Meteorology has been underestimating rain over the past five years, we are trying to minimize false negatives as much as possible.

Logistic Regression

```
In [61]: # Create a Baseline Model
    logreg = LogisticRegression()
    model_log = logreg.fit(X_train, y_train)
    model_log.score(X_test,y_test)
    y_pred_lr = model_log.predict(X_test)
In [62]: recall_score(y_test,y_pred_lr)
Out[62]: 0.4690890739338885
```

I will now run various models through a Pipeline to see if I can find a combination of parameters to bring down our performance metric.

```
In [63]:
          # Create pipeline
          lr_pipeline_1 = Pipeline([('ss', StandardScaler()),
                                         ('lr', LogisticRegression())])
In [64]:
          # Create grid using GridSearchCV
          lr_grid = [{'lr_random_state':[42],
                    'lr C': [1e-3, 1e-2, 1,1e2,1e3]}]
In [65]:
          # Create grid using GridSearchCV
          lr gridsearch = GridSearchCV(estimator=lr pipeline 1,
                                    param grid=lr grid,
                                    scoring='recall',
                                    cv=3)
In [66]:
          # Re-distributing our population using SMOTE, to account for accuracy bias
          smote = SMOTE()
          X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)
In [67]:
          y_train_resampled.value_counts()
         1.0
                82693
Out[67]:
                82693
         Name: RainTomorrow, dtype: int64
In [68]:
          # Fit the training data
          lr_gridsearch.fit(X_train_resampled, y_train_resampled)
          print(lr_gridsearch.score(X_test, y_test))
         0.7721423164269493
In [69]:
          # Print best parameters
          print(lr gridsearch.best params )
         {'lr_C': 1, 'lr_random_state': 42}
```


k-Nearest Neighbors

```
In [72]:
          # Create baseline model
          knn baseline model = KNeighborsClassifier()
          model knn = knn baseline model.fit(X train, y train)
          model_knn.score(X_test,y_test)
          y pred knn = model knn.predict(X test)
In [73]:
          recall_score(y_test,y_pred_knn)
         0.5099671965682564
Out[73]:
         Next, I will build a model using Pipeline and kNN to check score using a set of different
         parameters:
In [74]:
          # Creating 3 different tests using different parameters
          knn pipeline = Pipeline([('ss', StandardScaler()),
                                          ('knn', KNeighborsClassifier())])
In [75]:
          # Create grid using GridSearchCV
          knn_grid = [{'knn__n_neighbors':[2,5,7,10]}]
In [76]:
          # Create grid using GridSearchCV
          knn_gridsearch = GridSearchCV(estimator=knn_pipeline,
                                     param_grid=knn_grid,
                                     scoring='recall',
                                     cv=3)
In [77]:
          # Fit the training data
          knn_gridsearch.fit(X_train_resampled, y_train_resampled)
          print(knn_gridsearch.score(X_test, y_test))
          0.5547564976028262
In [78]:
          print(knn_gridsearch.best_params_)
          {'knn n neighbors': 5}
```


As we can see above, our best model seems to cap at a score of around .548. I will now use decision trees and Grid Search CV to see if they generate a stronger model.

Decision Trees

```
In [81]:
          # Create a Baseline Model
          dt base = DecisionTreeClassifier()
          model dt = dt base.fit(X train, y train)
          model_dt.score(X_test,y_test)
          y pred dt = model dt.predict(X test)
In [82]:
          recall_score(y_test,y_pred_dt)
         0.5282614181175876
Out[82]:
In [83]:
          # Create pipeline
          dtree pipeline = Pipeline([('ss', StandardScaler()),
                                         ('dt', DecisionTreeClassifier())])
In [84]:
          # Use GridSearchCV to create different models
          dt grid = [{'dt criterion': ['gini', 'entropy'],
                    'dt__max_leaf_nodes': [5,10,20,None],
                    'dt__max_features': ['auto', 'sqrt', 'log2', None],
                    'dt random state':[42]}]
In [85]:
          # Use GridSearchCV to create different models
          dt_gridsearch = GridSearchCV(estimator=dtree_pipeline,
                                     param_grid=dt_grid,
                                     scoring='recall',
                                     cv=3)
In [86]:
          # Fit model and print
          dt_gridsearch.fit(X_train_resampled, y_train_resampled)
          print(dt_gridsearch.score(X_test, y_test))
          0.7763058289174868
In [87]:
          print(dt gridsearch.best params )
```

```
{'dt_criterion': 'entropy', 'dt_max_features': None, 'dt_max_leaf_nodes': 5, 'dt_random_state': 42}

In [88]: # Create confusion matrix for baseline
```


As we can see here, the best decision tree model is slightly worse than the logistic regression model, and better than our best kNN model, at a recall score of .747.

Section 5: Results

Best Model

The logistic regression model is our best model, at a recall of around .771. Now, I will take a look at the remaining metrics.

```
In [90]: # Checking our our train and test data metrics

final_test = lr_gridsearch.predict(X_test)
final_train = lr_gridsearch.predict(X_train_resampled)

print("Training Data Results:\n")
print(classification_report(y_train_resampled, final_train))
print("\nTest Data Results:\n")
print(classification_report(y_test, final_test))
```

Training Data Results:

	precision	recall	f1-score	support
0.0	0.79	0.80	0.79	82693
1.0	0.80	0.78	0.79	82693
accuracy			0.79	165386
macro avg	0.79	0.79	0.79	165386
weighted avg	0.79	0.79	0.79	165386

Test Data Results:

	precision	recall	f1-score	support
0.0	0.92	0.79	0.85	27623
1.0	0.52	0.77	0.62	7926
accuracy			0.79	35549
macro avg	0.72	0.78	0.74	35549
weighted avg	0.83	0.79	0.80	35549

```
In [91]:
          # Creating ROC curve to see effectiveness of model.
          y_score = lr_gridsearch.decision_function(X_test)
          fpr, tpr, thresholds = roc_curve(y_test, y_score)
          sns.set_style('darkgrid', {'axes.facecolor': '0.9'})
          print('\nAUC: {}'.format(auc(fpr, tpr)))
          plt.figure(figsize=(10, 8))
          lw = 2
          plt.plot(fpr, tpr, color='darkorange',
                   lw=lw, label='ROC curve')
          plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
          plt.xlim([0.0, 1.0])
          plt.ylim([0.0, 1.05])
          plt.yticks([i/20.0 for i in range(21)])
          plt.xticks([i/20.0 for i in range(21)])
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.title('Receiver operating characteristic (ROC) Curve')
          plt.legend(loc='lower right')
          plt.savefig('Visualizations/AUC.png', bbox_inches = 'tight')
          plt.show()
```

AUC: 0.8653919990407596


```
In [92]:
# Create confusion matrix for final model
lrcm = confusion_matrix(y_test, final_test)
sns.set_context("talk")
sns.set_theme(style='darkgrid')
ax = sns.heatmap(lrcm, annot=True, cmap='Blues',fmt = 'g',linewidth=0.3, cb

ax.set_title('Results for Next-Day Rain Predictions\n');
ax.set_xlabel('\nPredicted Values')
ax.set_ylabel('Actual Values\n');

## Ticket labels - List must be in alphabetical order
ax.xaxis.set_ticklabels(["Didn't Rain","Rained"])
ax.yaxis.set_ticklabels(["Didn't Rain","Rained"])
plt.savefig('Visualizations/FinalCM.png', bbox_inches = 'tight')
## Display the visualization of the Confusion Matrix.
plt.show()
```


Predicted Values

Accuracy: This model has 79% accuracy, meaning that it correctly determines that it will rain the next day 79% of the time. As True Negatives account for 77% of our test data, there is a lot of bias within this metric. Therefore, it is best to ignore it in our analysis.

Precision: If our model says that it will rain tomorrow, there between a 52% chance that it is a true positive and will actually rain the next day. If our model says it wont rain tomorrow, there is a 92% chance that it won't rain tomorrow. The weighted average precision of our model is 83%. Our model is way better at predicting when it won't rain than when it will. In the future, we should take steps to try to raise precision.

Recall: Our recall score is the most important aspect of this model. For instances when it actually rained the next day, our model correctly classified that it would rain 77% of the time. For instances when it did not rain the next day, our model correctly predicted that it would not rain 79% of the time. The weighted average recall of our model is 79%.

Our AUC Score is .86. That means that our classifiers have an 86% true positive rate.