Lecture Four

Section 4.1 – Matrix Transformations from R^n to R^m

Definition

If V and W are vector spaces, and if f is a function with domain V and codomain W, then we say that f is a transformation from V to W or that f maps V to W, which we denote by writing

$$f:V\to W$$

In the special case where V = W, the transformation is also called an operator on V.

Matrix Transformation

$$w_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n}$$

$$w_{2} = a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$w_{m} = a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n}$$

Which we can write in matrix formation

$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{1n} \\ a_{21} & a_{22} & a_{2n} \\ a_{m1} & a_{m2} & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$w = Ax$$

Although we could view this as a linear system, we will view it instead as a transformation that maps the column vector x in \mathbb{R}^n into the column vector \mathbf{w} in \mathbb{R}^m by multiplying \mathbf{w} on the left by A. We call this a *matrix transformation* (or *matrix operator* if m = n) and we denote it by

$$T_A: \mathbb{R}^n \to \mathbb{R}^m$$

Reflection about the y-axis $T(x,y) = (-x,y)$	$(-x, y) \xrightarrow{x} (x, y)$	$T(e_1) = T(1,0) = (-1,0)$ $T(e_2) = T(0,1) = (0,1)$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Reflection about the <i>x</i> -axis $T(x,y) = (x,-y)$	$T(\mathbf{x})$ (x, y) (x, y)	$T(e_1) = T(1,0) = (1,0)$ $T(e_2) = T(0,1) = (0,-1)$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Reflection about the line $y = x$ $T(x,y) = (x,-y)$	$T(x) \qquad y = x$ $(x, y) \qquad x$	$T(e_1) = T(1,0) = (0,1)$ $T(e_2) = T(0,1) = (1,0)$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Reflection about the xy -plane $T(x, y, z) = (x, y, -z)$	x (x, y, z) y $(x, y, -z)$	$T(e_1) = T(1,0,0) = (1,0,0)$ $T(e_2) = T(0,1,0) = (0,1,0)$ $T(e_3) = T(0,0,1) = (0,0,-1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
Reflection about the xy -plane $T(x, y, z) = (x, -y, z)$	(x, -y, z) $T(x)$ x (x, y, z) y	$T(e_1) = T(1,0,0) = (1,0,0)$ $T(e_2) = T(0,1,0) = (0,-1,0)$ $T(e_3) = T(0,0,1) = (0,0,1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Reflection about the yz-plane $T(x, y, z) = (-x, y, z)$	$T(\mathbf{x}) = \begin{cases} (-x, y, z) \\ x \end{cases}$	$T(e_1) = T(1,0,0) = (-1,0,0)$ $T(e_2) = T(0,1,0) = (0,1,0)$ $T(e_3) = T(0,0,1) = (0,0,1)$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Orthogonal projection on the <i>x</i> -axis $T(x,y) = (x,0)$	(x, y) $T(x)$ $T(x)$	$T(e_1) = T(1,0) = (1,0)$ $T(e_2) = T(0,1) = (0,0)$	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
Orthogonal projection on the y-axis $T(x,y) = (0,y)$	(0, y) $T(x)$ x (x, y)	$T(e_1) = T(1,0) = (0,0)$ $T(e_2) = T(0,1) = (0,1)$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Orthogonal projection on the xy-Plane T(x, y, z) = (x, y, 0)	x (x, y, z) y $(x, y, 0)$	T(1,0,0) = (1,0,0) $T(0,1,0) = (0,1,0)$ $T(0,0,1) = (0,0,0)$	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} $	
Orthogonal projection on the xz-Plane T(x, y, z) = (x, 0, z)	(x, 0, z) $T(x)$ x (x, y, z) y	T(1,0,0) = (1,0,0) $T(0,1,0) = (0,0,0)$ $T(0,0,1) = (0,0,1)$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	
Orthogonal projection on the yz-Plane T(x, y, z) = (0, y, z)	$T(\mathbf{x})$ $(0, y, z)$ \mathbf{x} (x, y, z) \mathbf{y}	T(1,0,0) = (0,0,0) $T(0,1,0) = (0,1,0)$ $T(0,0,1) = (0,0,1)$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	
Rotation Operators				
Rotation through an angle θ	(w_1, w_2) (x, y)	$w_{1} = x\cos\theta - y\sin\theta$ $w_{2} = x\sin\theta + y\cos\theta$	$\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$	
Counterclockwise rotation about the positive x -axis through an angle θ	y x	$w_{1} = x$ $w_{2} = y\cos\theta - z\sin\theta$ $w_{3} = x\sin\theta + z\cos\theta$	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix} $	
Counterclockwise rotation about the positive y-axis through an angle θ	x y y	$w_{1} = x\cos\theta + z\sin\theta$ $w_{2} = y$ $w_{3} = -x\sin\theta + z\cos\theta$	$ \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} $	
Counterclockwise rotation about the positive <i>z</i> -axis through an angle θ	x w y	$w_{1} = x\cos\theta - y\sin\theta$ $w_{2} = x\sin\theta + y\cos\theta$ $w_{3} = z$	$ \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} $	

Dilations and Contractions

Expansion or Compression

Shear

Orthogonal Projections on Lines through the Origin

$$T(e_1) = \begin{bmatrix} \cos^2 \theta \\ \sin \theta \cos \theta \end{bmatrix} \quad T(e_2) = \begin{bmatrix} \sin \theta \cos \theta \\ \sin^2 \theta \end{bmatrix}$$

$$P_0 = \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix}$$

Example

Find the orthogonal projection of the vector $\mathbf{x} = (1, 5)$ on the line through the origin that makes an angle of $\frac{\pi}{6}$ (= 30°) with the x-axis

Solution

$$P_{0} = \begin{pmatrix} \cos^{2}\theta & \sin\theta\cos\theta \\ \sin\theta\cos\theta & \sin^{2}\theta \end{pmatrix}$$

$$= \begin{pmatrix} \cos^{2}\left(\frac{\pi}{6}\right) & \sin\left(\frac{\pi}{6}\right)\cos\left(\frac{\pi}{6}\right) \\ \sin\left(\frac{\pi}{6}\right)\cos\left(\frac{\pi}{6}\right) & \sin^{2}\left(\frac{\pi}{6}\right) \end{pmatrix}$$

$$= \begin{pmatrix} \left(\frac{\sqrt{3}}{2}\right)^{2} & \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) \\ \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) & \left(\frac{1}{2}\right)^{2} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{3}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{1}{4} \end{pmatrix}$$

$$P_{0}x = \begin{pmatrix} \frac{3}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{1}{4} \end{pmatrix} \begin{pmatrix} 1 \\ 5 \end{pmatrix} = \begin{pmatrix} \frac{3+5\sqrt{3}}{4} \\ \frac{\sqrt{3}+5}{4} \end{pmatrix} \approx \begin{pmatrix} 2.91 \\ 1.68 \end{pmatrix}$$

Four Fundamental Subspaces

- 1. The **row space** is $C(A^T)$, a subspace of \mathbb{R}^n .
- 2. The *column space* is C(A), a subspace of R^m .
- **3.** The *nullspace* is N(A), a subspace of \mathbb{R}^n .
- **4.** The *left nullspace* is $N(A^T)$, a subspace of R^m .

The Four Subspaces for R

Consider the matrix 3 by 5:

$$\begin{bmatrix} 1 & 3 & 5 & 0 & 9 \\ 0 & 0 & 0 & 1 & 8 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} m=3 \\ n=5 \\ r=2 \end{array} \quad \begin{array}{c} pivot \ rows \ 1 \ and \ 2 \\ r=2 \end{array}$$

1. Rows 1 and 2 are a basis. The row space contains combination of all 3 rows.

The **row space** of R has dimension 2 (= rank).

The dimension of the row space is r. The nonzero rows of R form a basis.

2. The *column space* of R has dimension r = 2.

The pivot columns 1 and 4 form a basis. They are independent because they start with the r by r identity matrix.

There are 3 special solutions:

$$\begin{aligned} C_2 &= 3C_1 & \textit{The special solution is } \left(-3,\ 1,\ 0,\ 0,\ 0\right) \\ C_3 &= 5C_1 & \textit{The special solution is } \left(-5,\ 0,\ 1,\ 0,\ 0\right) \\ C_5 &= 9C_1 + 8C_2 & \textit{The special solution is } \left(-9,\ 0,\ 0,\ -8,\ 1\right) \end{aligned}$$

The dimension of the column space is r. The pivot columns form a basis.

3. The *nullspace* has dimension n-r=5-2=3 (free variables). Here x_2 , x_3 , x_5 are free (no pivots in those columns). They yield the three special solutions to Rx=0. Set a free variable to 1, and solve for x_1 and x_4 .

7

$$s_{2} = \begin{bmatrix} -3\\1\\0\\0\\0 \end{bmatrix} \quad s_{3} = \begin{bmatrix} -5\\0\\1\\0\\0 \end{bmatrix} \quad s_{5} = \begin{bmatrix} -9\\0\\0\\-8\\1 \end{bmatrix}$$

Rx = 0 has the complete solution: $x = x_2 s_2 + x_3 s_3 + x_5 s_5$

The nullspace has dimension n-r. The special solutions form a basis.

4. The *nullspace* of R^T has dimension m - r = 3 - 2 = 1

The equation
$$R^T y = 0$$
:
$$\begin{pmatrix} 1 & 0 & 0 \\ 3 & 0 & 0 \\ 5 & 0 & 0 \\ 0 & 1 & 0 \\ 9 & 8 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} y_1 = 0 \\ y_2 = 0 \\ y_3 \text{ anything} \end{cases}$$

The nullspace of R^T contains all vectors $y = (0, 0, y_3)$ and it is the line of the basis vector (0, 0, 1).

The left nullspace has dimension m-r. The solutions are $y = (0,..., y_{r+1},..., y_m)$

- \blacksquare In \mathbb{R}^n the row space and nullspace have dimensions r and n-r (adding to n)
- \blacksquare In \mathbb{R}^m the column space and left nullspace have dimensions r and m-r (total m)

The Four Subspaces for A

The subspace dimensions for A are the same as for R.

These matrices are connected by an invertible matrix E. EA = R and $A = E^{-1}R$

- **1.** A has the same row space as R. Same dimension r and same basis Every row of A is a combination of the rows of R. Also every row of R is a combination of the rows of A.
- **2.** The column space of A has dimension r. The number of independent columns equals the number of independent rows.
- **3.** A has the same nullspace as R. Dimension n r and same basis.

 $(dimension \ of \ column \ space) + (dimension \ of \ null space) = dimension \ of \ R^n$

4. The left nullspace A (the nullspace of A^T) has dimension m-r.

Fundamental Theorem of Linear Algebra, (Part 1)

The column space and row space both have dimension r.

The nullspaces have dimensions n - r and m - r.

Example

Consider $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

A has m = 1, n = 3, and rank: r = 1.

The row space is a line in \mathbb{R}^3 .

The nullspace is the plane $Ax = x_1 + 2x_2 + 3x_3 = 0$. This plane has dimension 2 (which is 3 – 1).

The columns of this is 1 by 3 matrix are in \mathbb{R}^1 . The column space is all of \mathbb{R}^1 .

The left nullspace contains only the zero vector.

The only solution to $A^T y = 0$ is y = 0, the only combination of the row that gives the zero row. Thus $N(A^T)$ is \mathbf{Z} , the zero space with dimension 0 (m - r). In \mathbf{R}^m the dimensions (1 + 0) = 1.

9

Example

Consider
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

A has m = 2, n = 3, and rank: r = 1.

The row space is a line in \mathbb{R}^3 .

The nullspace is the plane $x_1 + 2x_2 + 3x_3 = 0$. This plane has dimension 3 (1 + 2).

The columns are multiples of the first column (1, 1).

The left nullspace contains more than one zero vector. The solution to $A^T y = 0$ has the solution y = (1, -1).

The column space and nullspace are perpendicular lines in \mathbb{R}^2 . Their dimensions are 1 and 1 = 2.

Column space = line through $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Left nullspace=line through $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

1. Find the standard matrix for the transformation defined by the equations

a)
$$\begin{cases} w_1 = 2x_1 - 3x_2 + 4x_4 \\ w_2 = 3x_1 + 5x_2 - x_4 \end{cases}$$

$$b) \begin{cases} w_1 = 7x_1 + 2x_2 - 8x_3 \\ w_2 = -x_2 + 5x_3 \\ w_3 = 4x_1 + 7x_2 - x_3 \end{cases}$$

c)
$$\begin{cases} w_1 = x_1 \\ w_2 = x_1 + x_2 \\ w_3 = x_1 + x_2 + x_3 \\ w_4 = x_1 + x_2 + x_3 + x_4 \end{cases}$$

2. Find the standard matrix for the operator T defined by the formula

a)
$$T(x_1, x_2) = (2x_1 - x_2, x_1 + x_2)$$

b)
$$T(x_1, x_2, x_3) = (x_1 + 2x_2 + x_3, x_1 + 5x_2, x_3)$$

c)
$$T(x_1, x_2, x_3) = (4x_1, 7x_2, -8x_3)$$

3. Find the standard matrix for the transformation T defined by the formula

a)
$$T(x_1, x_2) = (x_2, -x_1, x_1 + 3x_2, x_1 - x_2)$$

b)
$$T(x_1, x_2, x_3) = (0, 0, 0, 0, 0)$$

c)
$$T(x_1, x_2, x_3, x_4) = (x_4, x_1, x_3, x_2, x_1 - x_3)$$

d)
$$T(x_1, x_2, x_3, x_4) = (7x_1 + 2x_2 - x_3 + x_4, x_2 + x_3, -x_1)$$