# Performances des mécanismes de sécurité du framework 6TiSCH

Défense de mémoire

Rémy Decocq

Faculté des Sciences Université de Mons





#### Outline

- 1 Introduction
  - Les réseaux IIoT (WSNs)
  - 6TiSCH
- État de l'art de la pile 6TiSCH
  - Principes fondamentaux de TSCH
  - La joining phase
- 3 Méthode NPEB et expérimentations
  - Principes de la méthode NPEB
  - Évaluation de l'impact de sécurité sur la joining phase
  - Évaluation des performances de la méthode NPEB
- 4 Conclusion

### Contexte

#### Équipements de l'Industrial IoT :

- Limités en ressources : mémoire, CPU, stockage, radio
- Limités en capacité énergétique (batteries)

#### Caractéristiques des Wireless Sensors Networks :

- Multipath fading et interférences
- Forte densité de noeuds déployés de façon imprécise
- Transmissions multi-hops
- Changements dans la topologie
- Phénomène de clock drifting entre horloges



FIGURE 1 – Architecture type d'un WSN où 6TiSCH est déployable

Méthode NPEB et expérimentations

## 6TiSCH

Groupe de travail IETF IPv6 over the TSCH mode of IEEE802.15.4e

Standardisation de la pile 6TiSCH complète pour :

- Communications IPv6 → interopérabilité avec Internet
- Intégration du mode TSCH décrit par l'amendement IEEE802.15.4e
- Encadrer sécurité du réseau et joining phase

### Outline

- 1 Introduction
  - Les réseaux IIoT (WSNs)
  - 6TiSCH
- État de l'art de la pile 6TiSCH
  - Principes fondamentaux de TSCH
  - La joining phase
- 3 Méthode NPEB et expérimentations
  - Principes de la méthode NPEB
  - Évaluation de l'impact de sécurité sur la joining phase
  - Évaluation des performances de la méthode NPEB
- 4 Conclusion

田



FIGURE 2 – Pile réseau 6TiSCH

田

FIGURE 3 – Pile réseau 6TiSCH

## Principes fondamentaux de TSCH

#### Combinaison de :

- **I** TDMA  $\rightarrow$  multiplexage en temps (*timeslot*)
- **2** FDMA  $\rightarrow$  multiplexage en fréquences (*channelOffset*)

Une communication entre noeuds voisins est caractérisée par un couple (timeslot, channelOffset) où

- 1 timeslot donne le moment de la communication
- channelOffset donne la fréquence à laquelle elle a lieu

Les noeuds communiquant possèdent et partagent cette information → communications déterministes sur base d'un *schedule* 







FIGURE 4 – Matrice des communications



FIGURE 5 - Noeuds communiquant

$$f_{eff} = HoppSeq[f \mod n_{ch}]$$
 où  $f = ASN + channelOffset$ 



FIGURE 6 - Effet de sauts de fréquence d'un cycle à l'autre de slotframe

## La joining phase

Réseau 6TiSCH de noeuds déjà raccordés protégé au niveau L2 par les mécanismes de protection IEEE802.15.4. et **clés** distribuées par l'autorité du réseau (*JRC*).

Un noeud qui veut rejoindre (pledge) n'a pas ces clés.

Un noeud déjà raccordé fait office de *Join Proxy* intermédiaire entre le pledge et l'autorité du réseau.

- ightarrow émission de frame spéciales (EBs) par les noeuds déjà raccordés
- ightarrow joining phase pour se synchroniser + obtenir les clés

Le pledge possède un contexte de sécurité pré-établi (PSK) partagé avec le JRC.

 $\rightarrow$  échanges pledge  $\leftrightarrow$  JRC (*Join Exchange CoJP*) protégés au niveau applicatif par un contexte partagé (*OSCORE*)



FIGURE 7 – Join Exchange CoJP opéré lors de la joining phase d'un pledge

8

## Outline

- 1 Introduction
  - Les réseaux IIoT (WSNs)
  - 6TiSCH
- État de l'art de la pile 6TiSCH
  - Principes fondamentaux de TSCH
  - La joining phase
- 3 Méthode NPEB et expérimentations
  - Principes de la méthode NPEB
  - Évaluation de l'impact de sécurité sur la joining phase
  - Évaluation des performances de la méthode NPEB
- 4 Conclusion



## Principes de la méthode NPEB



14

26/06/20



FIGURE 8 – [Cycle t] État initial du réseau où les NPtables des nœuds sont déjà alimentées

田





FIGURE 9 – [Cycle t+1] Une itération de slotframe écoulée, deux NPEBs programmés pour ce nouveau cycle





FIGURE 10 – [Cycle t+2] sommeil du pledge jusqu'à la cell d'annonce indiquée par N1





FIGURE 11 – [Cycle t+4] sommeil du pledge jusqu'à la cell d'annonce indiquée par root et lancement de la suite du processus de join avec celui-ci

Impact de sécurité sur la joining phase



## Performances de la méthode NPEB

## Conclusion

Q&A