Package 'mappoly'

September 14, 2020
Type Package
Title Construction of Genetic Linkage Maps in Autopolyploids
Version 0.2.0
Maintainer Marcelo Mollinari <mmollin@ncsu.edu></mmollin@ncsu.edu>
Description Software to construct genetic maps in autopolyploid full sib populations.
License GPL-3 file LICENSE
LazyData TRUE
Depends R (>= 3.5.0)
Imports Rcpp (>= 0.12.6), RCurl, plotly, fields, ggpubr, ggsci, rstudioapi, plot3D, memuse, dplyr, crayon, cli, magrittr, reshape, ggplot2, smacof, princurve, dendextend
LinkingTo Rcpp
RoxygenNote 7.1.1
SystemRequirements C++11
Encoding UTF-8
Suggests testthat, RColorBrewer, updog
<pre>URL https://github.com/mmollina/MAPpoly</pre>
BugReports https://github.com/mmollina/MAPpoly/issues
NeedsCompilation yes
Author Marcelo Mollinari [aut, cre] (https://orcid.org/0000-0002-7001-8498), Gabriel Gesteira [ctb] (https://orcid.org/0000-0002-7106-8630), Guilhereme Pereira [ctb] (https://orcid.org/0000-0003-0634-3277), Augusto Garcia [ctb] (https://orcid.org/0000-0002-3115-1149)
R topics documented:
add_marker cache_counts_twopt calc_genoprob calc_genoprob_dist calc_genoprob_error 1

calc_homoprob	11
calc_prefpair_profiles	12
check_data_sanity	13
drop_marker	14
elim_redundant	15
est_full_hmm_with_global_error	16
est_full_hmm_with_prior_prob	18
est_pairwise_rf	20
est_rf_hmm	22
est_rf_hmm_sequential	25
export_data_to_polymapR	29
export_map_list	30
extract_map	31
filter_missing	31
filter_segregation	32
	33
	33
	35
	36
	37
	38
ϵ	39
11 7 1	40
1 = -1 &	42
	45
6 =	46
11 7	47
<u>-1 </u>	48
- 1- 11 7	50
•	50
	52
	54
$\mathcal{E} = 1$	56
	57
	58
	59
L - 1-	60
	61
	62
	63
- €	65
<i>=</i> € <i>=</i>	67
<u>-c</u> -1	70
-	72
rev_map	73
	74
- r- · · · · · · · · · · · · · · · · · ·	76
segreg_poly	78
sim_homologous	79
······································	80
· · · · · · · · · · · · · · · · · · ·	81
solcap.mds.map	81

add_marker 3

Index		88
	update_missing	86
	update_map	
	tetra.solcap.geno.dist	85
	tetra.solcap	84
	summary_maps	83
	split_and_rephase	82
	solcap.prior.map	81

Description

add_marker

Creates a new map by adding a marker in a given position in a pre-built map.

Add a single marker to a map

Usage

```
add_marker(
  input.map,
  mrk,
  pos,
  rf.matrix,
  genoprob = NULL,
  phase.config = "best",
  tol = 0.001,
  r.test = NULL
)
```

Arguments

input.map	an object of class mappoly.map
mrk	the name of the marker to be inserted
pos	the name of the marker after which the new marker should be added. One also can inform the numeric position (between markers) were the new marker should be added. To insert a marker at the beginning of a map, use pos = 0
rf.matrix	an object of class mappoly.rf.matrix containing the recombination fractions and the number of homologues sharing alleles between pairwise markers on input.map. It is important that shared.alleles = TRUE in function rf_list_to_matrix when computing rf.matrix.
genoprob	an object of class mappoly.genoprob containing the genotype probabilities for all marker positions on input.map
phase.config	which phase configuration should be used. "best" (default) will choose the maximum likelihood configuration
tol	the desired accuracy (default = 10e-04)
r.test	for internal use only

4 add_marker

Details

add_marker splits the input map into two sub-maps to the left and the right of the given position. Using the genotype probabilities, it computes the log-likelihood of all possible linkage phases under a two-point threshold inherited from function rf_list_to_matrix.

Value

A list of class mappoly.map with two elements:

i) info: a list containing information about the map, regardless of the linkage phase configuration:

m	the ploidy level
n.mrk	number of markers
seq.num	a vector containing the (ordered) indices of markers in the map, according to the input file
mrk.names	the names of markers in the map
seq.dose.p	a vector containing the dosage in parent 1 for all markers in the map
seq.dose.q	a vector containing the dosage in parent 2 for all markers in the map
sequence	a vector indicating the sequence (usually chromosome) each marker belongs as informed in the input file. If not available, sequence = NULL
sequence.pos	physical position (usually in megabase) of the markers into the sequence
seq.ref	reference base used for each marker (i.e. A, T, C, G). If not available, seq.ref = NULL
seq.alt	alternative base used for each marker (i.e. A, T, C, G). If not available, seq.ref = NULL
chisq.pval	a vector containing p-values of the chi-squared test of Mendelian segregation for all markers in the map
data.name	name of the dataset of class mappoly.data
ph.thres	the LOD threshold used to define the linkage phase configurations to test
ii) a list of maps containing	with possible linkage phase configuration. Each map in the list is also a list
seq.num	a vector containing the (ordered) indices of markers in the map, according to the input file
seq.rf	a vector of size (n.mrk \neg 1) containing a sequence of recombination fraction between the adjacent markers in the map
seq.ph	linkage phase configuration for all markers in both parents
loglike	the hmm-based multipoint likelihood

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

add_marker 5

```
## Not run:
sub.map<-get_submap(maps.hexafake[[1]], 1:50, reestimate.rf = FALSE)</pre>
plot(sub.map, mrk.names = TRUE)
s<-make_seq_mappoly(hexafake, sub.map$info$mrk.names)</pre>
tpt <- est_pairwise_rf(s)</pre>
rf.matrix <- rf_list_to_matrix(input.twopt = tpt,</pre>
                                 thresh.LOD.ph = 3,
                                 thresh.LOD.rf = 3,
                                 shared.alleles = TRUE)
##### Removing marker "M_1" (first) ######
mrk.to.remove <- "M_1"</pre>
input.map <- drop_marker(sub.map, mrk.to.remove)</pre>
plot(input.map, mrk.names = TRUE)
## Computing conditional probabilities using the resulting map
genoprob <- calc_genoprob(input.map)</pre>
res.add.M_1<-add_marker(input.map = input.map,</pre>
                         mrk = "M_1",
                         pos = 0,
                         rf.matrix = rf.matrix,
                         genoprob = genoprob,
                         tol = 10e-4)
 plot(res.add.M_1, mrk.names = TRUE)
 best.phase <- res.add.M_1$maps[[1]]$seq.ph</pre>
 names.id<-names(best.phase$P)</pre>
 plot_compare_haplotypes(m = 6,
                          hom.allele.p1 = best.phase$P[names.id],
                          hom.allele.q1 = best.phase$Q[names.id],
                          hom.allele.p2 = sub.map$maps[[1]]$seq.ph$P[names.id],
                          hom.allele.q2 = sub.map$maps[[1]]$seq.ph$Q[names.id])
##### Removing marker "M_20" (middle) ######
mrk.to.remove <- "M_20"
input.map <- drop_marker(sub.map, mrk.to.remove)</pre>
plot(input.map, mrk.names = TRUE)
# Computing conditional probabilities using the resulting map
genoprob <- calc_genoprob(input.map)</pre>
res.add.M_20<-add_marker(input.map = input.map,</pre>
                         mrk = "M_20",
                         pos = "M_19",
                         rf.matrix = rf.matrix,
                         genoprob = genoprob,
                         tol = 10e-4)
 plot(res.add.M_20, mrk.names = TRUE)
 best.phase <- res.add.M_20$maps[[1]]$seq.ph</pre>
 names.id<-names(best.phase$P)</pre>
 plot_compare_haplotypes(m = 6,
                          hom.allele.p1 = best.phase$P[names.id],
                          hom.allele.q1 = best.phase$Q[names.id],
                          hom.allele.p2 = sub.map$maps[[1]]$seq.ph$P[names.id],
                          hom.allele.q2 = sub.map$maps[[1]]$seq.ph$Q[names.id])
##### Removing marker "M_53" (last) ######
mrk.to.remove <- "M_53"</pre>
input.map <- drop_marker(sub.map, mrk.to.remove)</pre>
plot(input.map, mrk.names = TRUE)
```

6 cache_counts_twopt

```
# Computing conditional probabilities using the resulting map
 genoprob <- calc_genoprob(input.map)</pre>
 res.add.M_53<-add_marker(input.map = input.map,</pre>
                           mrk = "M_53",
                           pos = "M_52",
                           rf.matrix = rf.matrix,
                           genoprob = genoprob,
                           tol = 10e-4)
  plot(res.add.M_53, mrk.names = TRUE)
  best.phase <- res.add.M_53$maps[[1]]$seq.ph</pre>
  names.id<-names(best.phase$P)</pre>
  plot_compare_haplotypes(m = 6,
                            hom.allele.p1 = best.phase$P[names.id],
                            hom.allele.q1 = best.phase$Q[names.id],
                            hom.allele.p2 = sub.map$maps[[1]]$seq.ph$P[names.id],
                            hom.allele.q2 = sub.map$maps[[1]]$seq.ph$Q[names.id])
 ## End(Not run)
                          Frequency of genotypes for two-point recombination fraction estima-
cache_counts_twopt
```

Description

Returns the frequency of each genotype for two-point reduction of dimensionality. The frequency is calculated for all pairwise combinations and for all possible linkage phase configurations.

Usage

```
cache_counts_twopt(
  input.seq,
  cached = FALSE,
  cache.prev = NULL,
  ncpus = 1L,
  verbose = TRUE,
  joint.prob = FALSE
)
```

tion

Arguments

input.seq	an object of class mappoly.sequence
cached	If TRUE, access the counts for all linkage phase configurations in a internal file (default = FALSE)
cache.prev	an object of class cache.info containing pre-computed genotype frequencies, obtained with cache_counts_twopt (optional, default = $NULL$)
ncpus	Number of parallel processes to spawn (default = 1)
verbose	If TRUE (default), print the linkage phase configurations. If cached = TRUE, nothing is printed, since all linkage phase configurations will be cached.
joint.prob	If FALSE (default), returns the frequency of genotypes for transition probabilities (conditional probabilities). If TRUE returns the frequency for joint probabilities. The latter is especially important to compute the Fisher's Information for a pair
	of markers.

calc_genoprob 7

Value

An object of class cache.info which contains one (conditional probabilities) or two (both conditional and joint probabilities) lists. Each list contains all pairs of dosages between parents for all markers in the sequence. The names in each list are of the form 'A-B-C-D', where: A represents the dosage in parent 1, marker k; B represents the dosage in parent 1, marker k+1; C represents the dosage in parent 2, marker k; and D represents the dosage in parent 2, marker k+1. For each list, the frequencies were computed for all possible linkage phase configurations. The frequencies for each linkage phase configuration are distributed in matrices whose names represents the number of homologous chromosomes that share alleles. The rows on these matrices represents the dosages in markers k and k+1 for an individual in the offspring. See Table 3 of S3 Appendix in Mollinari and Garcia (2019) for an example.

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu> with updates by Gabriel Gesteira, <gabrielgesteira@usp.br>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

Examples

```
## Not run:
    all.mrk<-make_seq_mappoly(hexafake, 'all')
    ## local computation
    counts<-cache_counts_twopt(all.mrk, ncpus = 8)
    ## load from internal file of web-stored counts (especially important for high ploidy levels)
    counts.cached<-cache_counts_twopt(all.mrk, cached = TRUE)
## End(Not run)</pre>
```

calc_genoprob

Compute conditional probabilities of the genotypes

Description

Conditional genotype probabilities are calculated for each marker position and each individual given a map.

Usage

```
calc_genoprob(input.map, step = 0, phase.config = "best", verbose = TRUE)
```

Arguments

input.map An object of class mappoly.map

step Maximum distance (in cM) between positions at which the genotype probabil-

ities are calculated, though for step = 0, probabilities are calculated only at the

marker locations.

8 calc_genoprob_dist

phase.config which phase configuration should be used. "best" (default) will choose the phase configuration associated with the maximum likelihood verbose if TRUE (default), current progress is shown; if FALSE, no output is produced

Value

An object of class 'mappoly.genoprob' which has two elements: a tridimensional array containing the probabilities of all possible genotypes for each individual in each marker position; and the marker sequence with it's recombination frequencies

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

Examples

calc_genoprob_dist

Compute conditional probabilities of the genotypes using probability distribution of dosages

Description

Conditional genotype probabilities are calculated for each marker position and each individual given a map. In this function, the probabilities are not calculated between markers.

calc_genoprob_dist 9

Usage

```
calc_genoprob_dist(
  input.map,
  dat.prob = NULL,
  phase.config = "best",
  verbose = TRUE
)
```

Arguments

input.map An object of class mappoly.map

dat.prob an object of class mappoly.data containing the probability distribution of the

genotypes

phase.config which phase configuration should be used. "best" (default) will choose the phase

configuration with the maximum likelihood

verbose if TRUE (default), the current progress is shown; if FALSE, no output is produced

Value

An object of class 'mappoly.genoprob' which has two elements: a tridimensional array containing the probabilities of all possible genotypes for each individual in each marker position; and the marker sequence with it's recombination frequencies

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

```
## Not run:
## tetraploid example
probs.t<-calc_genoprob_dist(input.map = solcap.prior.map[[1]],</pre>
                           dat.prob = tetra.solcap.geno.dist,
                           verbose = TRUE)
probs.t
## displaying individual 1, 36 genotypic states
## (rows) across linkage group 1 (columns)
image(t(probs.t$probs[,,1]))
## hexaploid example
probs.h<-calc_genoprob_dist(input.map = maps.hexafake[[1]],</pre>
                             dat.prob = hexafake.geno.dist,
                             verbose = TRUE)
probs.h
## displaying individual 1, 400 genotypic states
## (rows) across linkage group 1 (columns)
image(t(probs.h$probs[,,1]))
```

10 calc_genoprob_error

```
## End(Not run)
```

calc_genoprob_error

Compute conditional probabilities of the genotypes using global error

Description

Conditional genotype probabilities are calculated for each marker position and each individual given a map.

Usage

```
calc_genoprob_error(
  input.map,
  step = 0,
  phase.config = "best",
  error = 0.01,
  th.prob = 0.95,
  restricted = TRUE,
  verbose = TRUE
)
```

Arguments

input.map	An object of class mappoly.map
step	Maximum distance (in cM) between positions at which the genotype probabilities are calculated, though for step = 0 , probabilities are calculated only at the marker locations.
phase.config	which phase configuration should be used. "best" (default) will choose the maximum likelihood configuration
error	the assumed global error rate (default = 0.01)
th.prob	the threshold for using global error or genotype probability distribution contained in the dataset (default $= 0.95$)
restricted	if TRUE (default), restricts the prior to the possible classes under Mendelian non double-reduced segregation given the parental dosages
verbose	if TRUE (default), current progress is shown; if FALSE, no output is produced

Value

An object of class 'mappoly.genoprob' which has two elements: a tridimensional array containing the probabilities of all possible genotypes for each individual in each marker position; and the marker sequence with it's recombination frequencies

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

calc_homoprob 11

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

Examples

```
## Not run:
     probs<-calc_genoprob(input.map = solcap.dose.map[[1]],</pre>
                                 verbose = TRUE)
     probs.error<-calc_genoprob_error(input.map = solcap.err.map[[1]],</pre>
                                 error = 0.05,
                                 verbose = TRUE)
   op < -par(mfrow = c(2,1))
   ## Example: individual 11
   ind<-11
   ## posterior probabilities with no error modeling
   pr1<-probs$probs[,,ind]</pre>
   d1<-probs$map
   image(t(pr1),
         col = RColorBrewer::brewer.pal(n=9 , name = "YlOrRd"),
         axes=FALSE,
         xlab = "Markers",
         ylab = " ",
         main = paste("LG_1, ind ", ind))
   axis(side = 1, at = d1/max(d1),
        labels =rep("", length(d1)), las=2)
   axis(side = 2, at = seq(0,1,length.out = nrow(pr1)),
        labels = rownames(pr1), las=2, cex.axis=.5)
   ## posterior probabilities with error modeling
   pr2<-probs.error$probs[,,ind]</pre>
   d2<-probs.error$map
   image(t(pr2),
         col=RColorBrewer::brewer.pal(n=9 , name = "YlOrRd"),
         axes=FALSE,
         xlab = "Markers",
         ylab = " ",
         main = paste("LG_1, ind ", ind, " - w/ error"))
  axis(side = 1, at = d2/max(d2),
        labels =rep("", length(d2)), las=2)
   axis(side = 2, at = seq(0,1,length.out = nrow(pr2)),
        labels = rownames(pr2), las=2, cex.axis=.5)
   par(op)
## End(Not run)
```

calc_homoprob

Homolog probabilities

Description

Compute homolog probabilities for all individuals in the full-sib population given a map and conditional genotype probabilities.

12 calc_prefpair_profiles

Usage

```
calc_homoprob(input.genoprobs)
```

Arguments

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari M., Olukolu B. A., Pereira G. da S., Khan A., Gemenet D., Yencho G. C., Zeng Z-B. (2020), Unraveling the Hexaploid Sweetpotato Inheritance Using Ultra-Dense Multilocus Mapping, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400620

Examples

```
## Not run:
  ## tetraploid solcap example
  w2<-lapply(solcap.dose.map, calc_genoprob)</pre>
  h.prob.solcap<-calc_homoprob(w2)</pre>
  print(h.prob.solcap)
  plot(h.prob.solcap, ind = "ind_10")
  plot(h.prob.solcap, stack = TRUE, ind = 5)
  plot(h.prob.solcap, stack = TRUE, ind = 5, lg = "all")
  w3<-lapply(solcap.err.map, calc_genoprob_error, error = 0.05)</pre>
  h.prob.solcap.err<-calc_homoprob(w3)</pre>
  plot(h.prob.solcap, lg = 1, ind = 100, use.plotly = FALSE)
  plot(h.prob.solcap.err, lg = 1, ind = 100, use.plotly = FALSE)
  ## hexaploid example
  w1 <- lapply(maps.hexafake, calc_genoprob)</pre>
  h.prob <- calc_homoprob(w1)</pre>
  print(h.prob)
  plot(h.prob)
  plot(h.prob, lg = 1, ind = 5, use.plotly = FALSE)
  plot(h.prob, lg = c(1,3), ind = 15, use.plotly = FALSE)
  plot(h.prob, lg = "all")
## End(Not run)
```

calc_prefpair_profiles

Preferential pairing profiles

check_data_sanity 13

Description

Given the genotype conditional probabilities for a map, this function computes the probability profiles for all possible homolog pairing configurations in both parents.

Usage

```
calc_prefpair_profiles(input.genoprobs)
```

Arguments

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu> and Guilherme Pereira, <g.pereira@cgiar.org>

References

```
Mollinari M., Olukolu B. A., Pereira G. da S., Khan A., Gemenet D., Yencho G. C., Zeng Z-B. (2020), Unraveling the Hexaploid Sweetpotato Inheritance Using Ultra-Dense Multilocus Mapping, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400620
```

Examples

```
## Not run:
    ## hexaploid example
    w1 <- lapply(maps.hexafake, calc_genoprob)
    x1 <- calc_prefpair_profiles(w1)
    print(x1)
    plot(x1, min.y.prof = 0.05, max.y.prof = .15, thresh = 0.01)

## tetraploid example
    w2 <- lapply(solcap.err.map, calc_genoprob_error, error = 0.05)
    x2 <- calc_prefpair_profiles(w2)
    print(x2)
    plot(x2, min.y.prof = 0.15, max.y.prof = .50)
    plot(x2, type = "hom.pairs", min.y.prof = 0.15, max.y.prof = .50)

## End(Not run)</pre>
```

check_data_sanity

Data sanity check

Description

Checks the consistency of a dataset

Usage

```
check_data_sanity(x)
```

14 drop_marker

Arguments

Х

an object of class mappoly. data

Value

if consistent, returns 0. If not consistent, returns a vector with a number of tests, where TRUE indicates a failed test.

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

Examples

```
### Not run:
#### Tetraploid example
fl1 = "https://raw.githubusercontent.com/mmollina/MAPpoly_vignettes/master/data/SolCAP_dosage"
tempfl <- tempfile()
download.file(fl1, destfile = tempfl)
SolCAP.dose <- read_geno(file.in = tempfl)
check_data_sanity(SolCAP.dose)

#### Hexaploid example
fl2 = "https://raw.githubusercontent.com/mmollina/MAPpoly_vignettes/master/data/hexafake"
tempfl <- tempfile()
download.file(fl2, destfile = tempfl)
hexa.dose <- read_geno(file.in = tempfl)
check_data_sanity(hexa.dose)

## End(Not run)</pre>
```

drop_marker

Remove markers from a map

Description

This function creates a new map by removing markers from an existing one.

Usage

```
drop_marker(input.map, mrk)
```

Arguments

input.map an object of class mappoly.map

mrk a vector containing markers to be removed from the input map, identified by

their names or positions

elim_redundant 15

Value

```
an object of class mappoly.map
```

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

Examples

```
## Not run:
sub.map<-get_submap(maps.hexafake[[1]], 1:50, reestimate.rf = FALSE)
plot(sub.map, mrk.names = TRUE)
mrk.to.remove <- c("M_1", "M_23", "M_34")
red.map <- drop_marker(sub.map, mrk.to.remove)
plot(red.map, mrk.names = TRUE)
## End(Not run)</pre>
```

elim_redundant

Eliminate redundant markers

Description

Eliminate markers with identical dosage information for all individuals.

Usage

```
elim_redundant(input.seq, data = NULL)
```

Arguments

input.seq an object of class mappoly.sequence

data name of the dataset that contains sequence markers (optional, default = NULL)

Value

An object of class mappoly.unique.seq which is a list containing the following components:

unique.seq an object of class mappoly.sequence with the redundant markers removed

kept a vector containing the name of the informative markers

eliminated a vector containing the name of the non-informative (eliminated) markers

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>, with minor modifications by Gabriel Gesteira, <gabrielgesteira@usp.br>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

Examples

```
all.mrk<-make_seq_mappoly(hexafake, 'all')
red.mrk<-elim_redundant(all.mrk)
plot(red.mrk)
unique.mrks<-make_seq_mappoly(red.mrk)</pre>
```

```
est_full_hmm_with_global_error
```

Re-estimate genetic map given a global genotyping error

Description

This function considers a global error when re-estimating a genetic map using Hidden Markov models. Since this function uses the whole transition space in the HMM, its computation can take a while, especially for hexaploid maps.

Usage

```
est_full_hmm_with_global_error(
  input.map,
  error = NULL,
  tol = 0.001,
  restricted = TRUE,
  th.prob = 0.95,
  verbose = FALSE
)
```

Arguments

input.map an object of class mappoly.map

error the assumed global error rate (default = NULL)

tol the desired accuracy (default = 10e-04)

restricted if TRUE (default), restricts the prior to the possible classes under Mendelian, non

double-reduced segregation given dosage of the parents

th. prob the threshold for using global error or genotype probability distribution if present

in the dataset (default = 0.95)

verbose if TRUE, current progress is shown; if FALSE (default), no output is produced

Value

A list of class mappoly. map with two elements:

i) info: a list containing information about the map, regardless of the linkage phase configuration:

m the ploidy leveln.mrk number of markers

seq.num a vector containing the (ordered) indices of markers in the map, according to the

input file

mrk.names the names of markers in the map

seq.dose.p	a vector containing the dosage in parent 1 for all markers in the map
seq.dose.q	a vector containing the dosage in parent 2 for all markers in the map
sequence	a vector indicating the sequence (usually chromosome) each marker belongs as informed in the input file. If not available, sequence = NULL
sequence.pos	physical position (usually in megabase) of the markers into the sequence
seq.ref	reference base used for each marker (i.e. A, T, C, G). If not available, seq.ref = NULL
seq.alt	alternative base used for each marker (i.e. A, T, C, G). If not available, seq.ref = NULL
chisq.pval	a vector containing p-values of the chi-squared test of Mendelian segregation for all markers in the map
data.name	name of the dataset of class mappoly.data
ph.thres	the LOD threshold used to define the linkage phase configurations to test
ii) a list of maps containing	with possible linkage phase configuration. Each map in the list is also a list
seq.num	a vector containing the (ordered) indices of markers in the map, according to the input file
seq.rf	a vector of size $(n.mrk-1)$ containing a sequence of recombination fraction between the adjacent markers in the map
seq.ph	linkage phase configuration for all markers in both parents
loglike	the hmm-based multipoint likelihood

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

```
tol=10e-4,
verbose = TRUE)
subset.map.reest
plot(subset.map.reest)
## End(Not run)
```

```
est_full_hmm_with_prior_prob
```

Re-estimate genetic map using dosage prior probability distribution

Description

This function considers dosage prior distribution when re-estimating a genetic map using Hidden Markov models

Usage

```
est_full_hmm_with_prior_prob(
  input.map,
  dat.prob = NULL,
  phase.config = "best",
  tol = 0.001,
  verbose = TRUE
)
```

Arguments

input.map an object of class mappoly.map

dat.prob an object of class mappoly.data containing the probability distribution of the

genotypes

phase.config which phase configuration should be used. "best" (default) will choose the max-

imum likelihood configuration

tol the desired accuracy (default = 10e-04)

verbose if TRUE, current progress is shown; if FALSE (default), no output is produced

Value

A list of class mappoly.map with two elements:

i) info: a list containing information about the map, regardless of the linkage phase configuration:

m the ploidy level

n.mrk number of markers

seq.num a vector containing the (ordered) indices of markers in the map, according to the input file

mrk.names the names of markers in the map

seq.dose.p a vector containing the dosage in parent 1 for all markers in the map

seq.dose.q a vector containing the dosage in parent 2 for all markers in the map

sequence	a vector indicating the sequence (usually chromosome) each marker belongs as informed in the input file. If not available, sequence = NULL
sequence.pos	physical position (usually in megabase) of the markers into the sequence
seq.ref	reference base used for each marker (i.e. A, T, C, G). If not available, seq.ref = NULL
seq.alt	alternative base used for each marker (i.e. A, T, C, G). If not available, seq.ref = NULL
chisq.pval	a vector containing p-values of the chi-squared test of Mendelian segregation for all markers in the map
data.name	name of the dataset of class mappoly.data
ph.thres	the LOD threshold used to define the linkage phase configurations to test
ii) a list of maps containing	with possible linkage phase configuration. Each map in the list is also a list
seq.num	a vector containing the (ordered) indices of markers in the map, according to the input file
seq.rf	a vector of size $(n.mrk-1)$ containing a sequence of recombination fraction between the adjacent markers in the map
seq.ph	linkage phase configuration for all markers in both parents
loglike	the hmm-based multipoint likelihood

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

```
## Not run:
solcap.p<-vector("list", 12)</pre>
names(solcap.p)<-names(solcap.dose.map)</pre>
for(i in 1:12){
   cat("Lg ", i, "...")
   solcap.p[[i]] <- est_full_hmm_with_prior_prob(solcap.dose.map[[i]],</pre>
                                                    dat.prob = tetra.solcap.geno.dist,
                                                    verbose = FALSE)
   cat("\n")
}
w < -NULL
for(i in 1:12)
 w<-c(w, c(solcap.dose.map[i],</pre>
            solcap.p[i]))
names(w) <- apply(expand.grid(c("dose", "prior"), paste0("LG_", 1:12),</pre>
                             stringsAsFactors = FALSE)[,2:1], 1, paste,
                 collapse = "_")
op <- par(cex.axis = .7)
plot_map_list(w, horiz = FALSE, col = rep(gg_color_hue(2), 12))
```

20 est_pairwise_rf

est_pairwise_rf

Pairwise two-point analysis

Description

Performs the two-point pairwise analysis between all markers in a sequence. For each pair, the function estimates the recombination fraction for all possible linkage phase configurations and associated LOD Scores.

Usage

```
est_pairwise_rf(
  input.seq,
  count.cache = NULL,
  ncpus = 1L,
  mrk.pairs = NULL,
  n.batches = 1L,
  verbose = TRUE,
  memory.warning = TRUE,
  parallelization.type = c("PSOCK", "FORK"),
  tol = .Machine$double.eps^0.25
)
```

Arguments

input.seq	an object of class mappoly. sequence	
count.cache	an object of class cache.info containing pre-computed genotype frequencies, obtained with cache_counts_twopt. If NULL (default), genotype frequencies are internally loaded.	
ncpus	Number of parallel processes (cores) to spawn (default = 1)	
mrk.pairs	a matrix of dimensions $2*N$, containing N pairs of markers to be analyzed. If NULL (default), all pairs are considered	
n.batches	The number of batches of marker pairs that should be analyzed in parallel. Using $n.batches > 1$, will usually result in more processing time. However, it will require less memory. See examples.	
verbose	If TRUE (default), current progress is shown; if FALSE, no output is produced	
memory.warning	if TRUE, prints a memory warning if the number of markers is greater than 10000 for ploidy levels up to 4, and 3000 for ploidy levels $>$ 4.	
parallelization.type		
	one of the supported cluster types. This should be either PSOCK (default) or FORK.	
tol	the desired accuracy. See optimize() for details	

est_pairwise_rf 21

Value

An object of class poly.est.two.pts.pairwise which is a list containing the following components:

data.name name of the object of class mappoly.data with the raw data

n.mrk number of markers in the sequence

seq.num a vector containing the (ordered) indices of markers in the sequence, according

to the input file

pairwise a list of size choose(length(input.seq\$seq.num), 2), each of them contain-

ing a matrix where the name of the rows have the form x-y, where x and y indicate how many homologues share the same allelic variant in parents P and Q, respectively (see Mollinari and Garcia, 2019 for notation). The first column indicates the LOD Score in relation to the most likely linkage phase configuration. The second column shows the estimated recombination fraction for each configuration, and the third indicates the LOD Score comparing the likelihood under no linkage (r=0.5) with the estimated recombination fraction (evidence of

linkage).

chisq.pval.thresthreshold used to perform the segregation tests chisq.pvalp-values associated with the performed segregation tests

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

```
## Not run:
## Tetraploid example:
all.mrk <- make_seq_mappoly(tetra.solcap, 'all')</pre>
red.mrk <- elim_redundant(all.mrk)</pre>
unique.mrks <- make_seq_mappoly(red.mrk)</pre>
# will take ~ 13 min
all.pairs <- est_pairwise_rf(input.seq = unique.mrks,</pre>
                              ncpus = 7,
                               verbose=TRUE)
 all.pairs
 plot(all.pairs, 90, 91)
 mat <- rf_list_to_matrix(all.pairs)</pre>
 plot(mat)
 ## Hexaploid example
fl = "https://github.com/mmollina/MAPpoly_vignettes/raw/master/data/BT/sweetpotato_chr1.vcf.gz"
 tempfl <- tempfile(pattern = 'chr1_', fileext = '.vcf.gz')</pre>
 download.file(fl, destfile = tempfl)
 dat.dose.vcf = read_vcf(file = tempfl, parent.1 = "PARENT1", parent.2 = "PARENT2")
 ## Filtering dataset by marker
```

22 est_rf_hmm

```
dat.filt.mrk <- filter_missing(input.data = dat.dose.vcf,</pre>
                                     type = "marker",
                                     filter.thres = 0.10,
                                     inter = FALSE)
   ## Filtering dataset by individual
   dat.filt.ind <- filter_missing(input.data = dat.filt.mrk,</pre>
                                     type = "individual",
                                     filter.thres = 0.10,
                                     inter = FALSE)
  ## Segregation test
  pval.bonf <- 0.05/dat.filt.ind$n.mrk</pre>
  mrks.chi.filt <- filter_segregation(dat.filt.ind,</pre>
                                         chisq.pval.thres = pval.bonf,
                                         inter = FALSE)
  seq.ch1<-make_seq_mappoly(mrks.chi.filt)</pre>
  plot(seq.ch1)
  ## will take \sim 19 min / peak of memory usage \sim 10GB
  all.pairs.1 <- est_pairwise_rf(input.seq = seq.ch1,</pre>
                                   ncpus = 7,
                                   verbose=TRUE)
  ## same thing, but it will take \sim 21 min / peak of memory usage \sim 6GB
  all.pairs.2 <- est_pairwise_rf(input.seq = seq.ch1,</pre>
                                   ncpus = 7,
                                   n.batch = 10,
                                   verbose=TRUE)
   plot(all.pairs, 90, 91)
   mat <- rf_list_to_matrix(all.pairs.1)</pre>
   plot(mat)
## End(Not run)
```

est_rf_hmm

Multipoint analysis using Hidden Markov Models in autopolyploids

Description

Performs the multipoint analysis proposed by Mollinari and Garcia (2019) in a sequence of markers

Usage

```
est_rf_hmm(
  input.seq,
  input.ph = NULL,
  thres = 0.5,
  twopt = NULL,
  verbose = FALSE,
  tol = 1e-04,
  est.given.0.rf = FALSE,
  reestimate.single.ph.configuration = TRUE,
  high.prec = TRUE
)
```

est_rf_hmm 23

```
## S3 method for class 'mappoly.map'
print(x, detailed = FALSE, ...)

## S3 method for class 'mappoly.map'
plot(
    x,
    left.lim = 0,
    right.lim = Inf,
    phase = TRUE,
    mrk.names = FALSE,
    cex = 1,
    config = "best",
    ...
)
```

Arguments

input.seq an object of class mappoly.sequence

input.ph an object of class two.pts.linkage.phases. If not available (default = NULL),

it will be computed

thres LOD Score threshold used to determine if the linkage phases compared via two-

point analysis should be considered. Smaller values will result in smaller number of linkage phase configurations to be evaluated by the multipoint algorithm.

twopt an object of class poly.est.two.pts.pairwise containing two-point informa-

tion

verbose if TRUE, current progress is shown; if FALSE (default), no output is produced

tol the desired accuracy (default = 1e-04)

est.given.0.rf logical. If TRUE returns a map forcing all recombination fractions equals to 0

(1e-5, for internal use only. Default = FALSE)

reestimate.single.ph.configuration

logical. If TRUE returns a map without re-estimating the map parameters for cases where there is only one possible linkage phase configuration. This argu-

ment is intended to be used in a sequential map construction

high.prec logical. If TRUE (default) uses high precision long double numbers in the HMM

procedure

x an object of the class mappoly.map

detailed logical. if TRUE, prints the linkage phase configuration and the marker position

for all maps. If FALSE (default), prints a map summary

... currently ignored

left.lim the left limit of the plot (in cM, default = 0).

right.lim the right limit of the plot (in cM, default = Inf, i.e., will print the entire map)

phase logical. If TRUE (default) plots the phase configuration for both parents

mrk.names if TRUE, marker names are displayed (default = FALSE)

cex The magnification to be used for marker names

config should be 'best' or the position of the configuration to be plotted. If 'best',

plot the configuration with the highest likelihood

24 est_rf_hmm

Details

This function first enumerates a set of linkage phase configurations based on two-point recombination fraction information using a threshold provided by the user (argument thresh). After that, for each configuration, it reconstructs the genetic map using the HMM approach described in Mollinari and Garcia (2019). As result, it returns the multipoint likelihood for each configuration in form of LOD Score comparing each configuration to the most likely one. It is recommended to use a small number of markers (e.g. 50 markers for hexaploids) since the possible linkage phase combinations bounded only by the two-point information can be huge. Also, it can be quite sensible to small changes in 'thresh'. For a large number of markers, please see est_rf_hmm_sequential.

Value

A list of class mappoly.map with two elements:

i) info: a list containing information about the map, regardless of the linkage phase configuration:

m	the ploidy level
n.mrk	number of markers
seq.num	a vector containing the (ordered) indices of markers in the map, according to the input file
mrk.names	the names of markers in the map
seq.dose.p	a vector containing the dosage in parent 1 for all markers in the map
seq.dose.q	a vector containing the dosage in parent 2 for all markers in the map
sequence	a vector indicating the sequence (usually chromosome) each marker belongs as informed in the input file. If not available, sequence = NULL
sequence.pos	physical position (usually in megabase) of the markers into the sequence
seq.ref	reference base used for each marker (i.e. A, T, C, G). If not available, seq.ref = NULL
seq.alt	alternative base used for each marker (i.e. A, T, C, G). If not available, seq.ref = NULL
chisq.pval	a vector containing p-values of the chi-squared test of Mendelian segregation for all markers in the map
data.name	name of the dataset of class mappoly.data
ph.thres	the LOD threshold used to define the linkage phase configurations to test
ii) a list of maps containing	with possible linkage phase configuration. Each map in the list is also a list
seq.num	a vector containing the (ordered) indices of markers in the map, according to the input file
seq.rf	a vector of size (n.mrk \neg 1) containing a sequence of recombination fraction between the adjacent markers in the map
seq.ph	linkage phase configuration for all markers in both parents
loglike	the hmm-based multipoint likelihood

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

Examples

```
## Not run:
    mrk.subset<-make_seq_mappoly(hexafake, 1:50)</pre>
    red.mrk<-elim_redundant(mrk.subset)</pre>
    unique.mrks<-make_seq_mappoly(red.mrk)</pre>
    subset.pairs<-est_pairwise_rf(input.seq = unique.mrks,</pre>
                                    ncpus = 1,
                                    verbose=TRUE)
    ## Estimating subset map with a low tolerance for the E.M. procedure
    subset.map <- est_rf_hmm(input.seq = unique.mrks,</pre>
                               thres = 2,
                               twopt = subset.pairs,
                               verbose = TRUE.
                               tol = 0.1,
                               est.given.0.rf = FALSE)
    ## Re-estimating the map with the most likely configuration
    subset.map1 <- est_rf_hmm_single(input.seq = unique.mrks,</pre>
                                       input.ph.single = subset.map$maps[[1]]$seq.ph,
                                      tol = 10e-3,
                                      verbose = TRUE)
    subset.map$maps[[1]]$seq.ph <- subset.map1$seq.ph</pre>
    plot(subset.map)
     ## Retrieving simulated linkage phase
     ph.P <- maps.hexafake[[1]]$maps[[1]]$seq.ph$P</pre>
     ph.Q <- maps.hexafake[[1]]$maps[[1]]$seq.ph$Q</pre>
     ## Estimated linkage phase
     ph.P.est <- subset.map$maps[[1]]$seq.ph$P</pre>
     ph.Q.est <- subset.map$maps[[1]]$seq.ph$Q</pre>
     compare_haplotypes(m = 6, h1 = ph.P[names(ph.P.est)], h2 = ph.P.est)
     compare_haplotypes(m = 6, h1 = ph.Q[names(ph.Q.est)], h2 = ph.Q.est)
## End(Not run)
```

est_rf_hmm_sequential Multipoint analysis using Hidden Markov Models: Sequential phase elimination

Description

Performs the multipoint analysis proposed by *Mollinari and Garcia* (2019) in a sequence of markers removing unlikely phases using sequential multipoint information.

Usage

```
est_rf_hmm_sequential(
  input.seq,
  twopt,
  start.set = 4,
  thres.twopt = 5,
  thres.hmm = 50,
  extend.tail = NULL,
  phase.number.limit = Inf,
  sub.map.size.diff.limit = Inf,
  info.tail = TRUE,
  reestimate.single.ph.configuration = FALSE,
  tol = 0.1,
  tol.final = 0.001,
  verbose = TRUE,
 detailed.verbose = FALSE,
 high.prec = FALSE
)
```

Arguments

input.seq an object of class mappoly.sequence

twopt an object of class poly.est.two.pts.pairwise containing the two-point in-

formation

start.set number of markers to start the phasing procedure (default = 4)

thres.twopt the LOD threshold used to determine if the linkage phases compared via two-

point analysis should be considered for the search space reduction (A.K.A. η in

Mollinari and Garcia (2019), default = 5)

thres.hmm the LOD threshold used to determine if the linkage phases compared via hmm

analysis should be evaluated in the next round of marker inclusion (default = 50)

extend.tail the length of the chain's tail that should be used to calculate the likelihood of

the map. If NULL (default), the function uses all markers positioned. Even if

info.tail = TRUE, it uses at least extend.tail as the tail length

phase.number.limit

the maximum number of linkage phases of the sub-maps defined by arguments info.tail and extend.tail. If the size exceeds this limit, the marker will not be inserted. If NULL, then it will insert all markers (default = Inf)

sub.map.size.diff.limit

the maximum accepted length difference between the current and the previous sub-map defined by arguments info.tail and extend.tail. If the size exceeds this limit, the marker will not be inserted. If NULL, then it will insert all

markers (default = Inf)

info.tail if TRUE (default), it uses the complete informative tail of the chain (i.e. number of markers where all homologous (ploidyx2) can be distinguished) to calculate

the map likelihood

reestimate.single.ph.configuration

logical. If FALSE (default) returns a map without re-estimating the map parameters in cases where there are only one possible linkage phase configuration

tol the desired accuracy during the sequential phase (default = 10e-02)

to1.final the desired accuracy for the final map (default = 10e-04)

verbose If TRUE (default), current progress is shown; if FALSE, no output is produced

detailed.verbose

If TRUE, the expansion of the current submap is shown;

high.prec logical. If TRUE uses high precision (long double) numbers in the HMM pro-

cedure implemented in C++, which can take a long time to perform (default =

FALSE)

Details

This function sequentially includes markers into a map given an ordered sequence. It uses two-point information to eliminate unlikely linkage phase configurations given thres.twopt. The search is made within a window of size extend.tail. For the remaining configurations, the HMM-based likelihood is computed and the ones that pass the HMM threshold (thres.hmm) are eliminated.

Value

loglike

A list of class mappoly.map with two elements:

i) info: a list containing information about the map, regardless of the linkage phase configuration:

m	the ploidy level
n.mrk	number of markers
seq.num	a vector containing the (ordered) indices of markers in the map, according to the input file
mrk.names	the names of markers in the map
seq.dose.p	a vector containing the dosage in parent 1 for all markers in the map
seq.dose.q	a vector containing the dosage in parent 2 for all markers in the map
sequence	a vector indicating the sequence (usually chromosome) each marker belongs as informed in the input file. If not available, sequence = NULL
sequence.pos	physical position (usually in megabase) of the markers into the sequence
seq.ref	reference base used for each marker (i.e. A, T, C, G). If not available, seq.ref = NULL
seq.alt	alternative base used for each marker (i.e. A, T, C, G). If not available, seq.ref = NULL
chisq.pval	a vector containing p-values of the chi-squared test of Mendelian segregation for all markers in the map
data.name	name of the dataset of class mappoly.data
ph.thres	the LOD threshold used to define the linkage phase configurations to test
ii) a list of maps containing	with possible linkage phase configuration. Each map in the list is also a list
seq.num	a vector containing the (ordered) indices of markers in the map, according to the input file
seq.rf	a vector of size $(n.mrk -1)$ containing a sequence of recombination fraction between the adjacent markers in the map
seq.ph	linkage phase configuration for all markers in both parents

the hmm-based multipoint likelihood

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

```
## Not run:
   #### Autotetraploid example
   s1<-make_seq_mappoly(tetra.solcap, 'seq1')</pre>
   red.mrk<-elim_redundant(s1)</pre>
   s1.unique.mrks<-make_seq_mappoly(red.mrk)</pre>
   s1.pairs<-est_pairwise_rf(input.seq = s1.unique.mrks,</pre>
                                   ncpus = 7,
                                   verbose=TRUE)
   unique.gen.ord<-get_genomic_order(s1.unique.mrks)</pre>
   ## Selecting a subset of 100 markers at the beginning of chromosome 1
   s1.gen.subset<-make_seq_mappoly(tetra.solcap, rownames(unique.gen.ord)[1:100])</pre>
   s1.gen.subset.map <- est_rf_hmm_sequential(input.seq = s1.gen.subset,</pre>
                                                 start.set = 10,
                                                 thres.twopt = 10,
                                                 thres.hmm = 10,
                                                 extend.tail = 30,
                                                 info.tail = TRUE,
                                                 twopt = s1.pairs,
                                                 sub.map.size.diff.limit = 5,
                                                 phase.number.limit = 40,
                                                reestimate.single.ph.configuration = TRUE,
                                                 tol = 10e-3,
                                                 tol.final = 10e-5)
    print(s1.gen.subset.map, detailed = TRUE)
    plot(s1.gen.subset.map)
    plot(s1.gen.subset.map, phase = FALSE)
   #### Autohexaploid example
   mrk.subset<-make_seq_mappoly(hexafake, 1:50)</pre>
   red.mrk<-elim_redundant(mrk.subset)</pre>
   unique.mrks<-make_seq_mappoly(red.mrk)</pre>
   subset.pairs<-est_pairwise_rf(input.seq = unique.mrks,</pre>
                                   ncpus = 1,
                                   verbose=TRUE)
   subset.map <- est_rf_hmm_sequential(input.seq = unique.mrks,</pre>
                                          thres.twopt = 5,
                                         thres.hmm = 10,
                                         extend.tail = 10,
                                         tol = 0.1,
                                          tol.final = 10e-3,
                                          twopt = subset.pairs,
                                          verbose = TRUE)
    print(subset.map, detailed = TRUE)
    plot(subset.map)
    plot(subset.map, left.lim = 0, right.lim = 1, mrk.names = TRUE)
```

```
plot(subset.map, phase = FALSE)

## Retrieving simulated linkage phase
ph.P <- maps.hexafake[[1]]$maps[[1]]$seq.ph$P
ph.Q <- maps.hexafake[[1]]$maps[[1]]$seq.ph$Q
## Estimated linkage phase
ph.P.est <- subset.map$maps[[1]]$seq.ph$P
ph.Q.est <- subset.map$maps[[1]]$seq.ph$Q
compare_haplotypes(m = 6, h1 = ph.P[names(ph.P.est)], h2 = ph.P.est)
compare_haplotypes(m = 6, h1 = ph.Q[names(ph.Q.est)], h2 = ph.Q.est)
## End(Not run)</pre>
```

```
export_data_to_polymapR
```

Export data to polymapR

Description

Export data to polymapR

Usage

```
export_data_to_polymapR(data.in)
```

Arguments

```
data.in an object of class mappoly.data
```

Value

```
a dosage matrix
```

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

30 export_map_list

```
colors = "red")
## End(Not run)
```

export_map_list

Export a genetic map to a CSV file

Description

Function to export genetic linkage map(s) generated by MAPpoly. The map(s) should be passed as a single object or a list of objects of class mappoly. map.

Usage

```
export_map_list(map.list, file = "map_output.csv")
```

Arguments

map.list A list of objects or a single object of class mappoly.map

file either a character string naming a file or a connection open for writing. "" indi-

cates output to the console.

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

```
## Not run:
export_map_list(solcap.err.map[[1]], file = "")
export_map_list(maps.hexafake)

## End(Not run)
```

extract_map 31

extract_map

Extract the maker position from an object of class 'mappoly.map'

Description

Extract the maker position from an object of class 'mappoly.map'

Usage

```
extract_map(input.map, phase.config = "best")
```

Arguments

input.map An object of class mappoly.map

phase.config which phase configuration should be used. "best" (default) will choose the max-

imum likelihood configuration

Examples

```
## Not run:
x <- maps.hexafake[[1]]$info$sequence.pos/1e6
y <- extract_map(maps.hexafake[[1]])
plot(y~x, ylab = "Map position (cM)", xlab = "Genome Position (Mbp)")
## End(Not run)</pre>
```

filter_missing

Filter missing genotypes

Description

Excludes markers or individuals based on their proportion of missing data

Usage

```
filter_missing(
  input.data,
  type = c("marker", "individual"),
  filter.thres = 0.2,
  inter = TRUE
)
```

Arguments

input.data an object

an object of class mappoly. data

type

one of the following options: 'marker' filter out markers based on their percentage of missing data (default) 'individual' filter out individuals based on their percentage of missing data Please notice that removing individuals with certain amount of data can change some marker parameters (such as depth), and can also change the estimated genotypes for other individuals. So be careful when removing individuals.

32 filter_segregation

```
filter.thres maximum percentage of missing data (default = 0.2) inter if TRUE (default), it plots markers or individuals vs. frequency of missing data
```

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

Examples

filter_segregation

Filter markers based on chi-square test

Description

This function filter markers based on p-values of a chi-square test. The chi-square test assumes that markers follow the expected segregation patterns under Mendelian inheritance, random chromosome bivalent pairing and no double reduction.

Usage

```
filter_segregation(input.data, chisq.pval.thres = 1e-04, inter = TRUE)
```

Arguments

Value

An object of class mappoly.chitest.seq which contains a list with the following components:

keep markers that follow Mendelian segregation pattern exclude markers with distorted segregation chisq.pval.thres threshold p-value used for chi-square tests

input dataset used to perform the chi-square tests

Author(s)

data.name

Marcelo Mollinari, <mmollin@ncsu.edu>

get_genomic_order 33

Examples

get_genomic_order

Get the genomic position of markers in a sequence

Description

This functions gets the genomic position of markers in a sequence and return an ordered data frame with the name and position of each marker

Usage

```
get_genomic_order(input.seq)
```

Arguments

```
input.seq a sequence object of class mappoly.sequence
```

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

Examples

```
## Not run:
s1<-make_seq_mappoly(tetra.solcap, "all")
o1<-get_genomic_order(s1)
head(o1)
## End(Not run)</pre>
```

get_submap

Extract sub-map from map

Description

Given a pre-constructed map, it extracts a sub-map for a provided sequence of marker positions. Optionally, it can update the linkage phase configurations and respective recombination fractions.

34 get_submap

Usage

```
get_submap(
  input.map,
  mrk.pos,
  phase.config = "best",
  reestimate.rf = TRUE,
  reestimate.phase = FALSE,
  thres.twopt = 5,
  thres.hmm = 3,
  extend.tail = 50,
  tol = 0.1,
  tol.final = 0.001,
  use.high.precision = FALSE,
  verbose = TRUE
)
```

Arguments

input.map	An object of class mappoly.map	
mrk.pos	positions of the markers that should be considered in the new map. This can be in any order	
phase.config	which phase configuration should be used. "best" (default) will choose the configuration associated with the maximum likelihood	
reestimate.rf	logical. If TRUE (default) the recombination fractions between markers are reestimated $% \left(\frac{1}{2}\right) =0$	
reestimate.phase		
	logical. If TRUE, the linkage phase configurations are re-estimated (default = $FALSE$)	
thres.twopt	the LOD threshold used to determine if the linkage phases compared via two-point analysis should be considered (default $= 5$)	
thres.hmm	the threshold used to determine if the linkage phases compared via hmm analysis should be considered (default $= 3$)	
extend.tail	the length of the tail of the chain that should be used to calculate the likelihood of the linkage phases. If $info.tail = TRUE$, the function uses at least extend.tail as the length of the tail (default = 50)	
tol	the desired accuracy during the sequential phase (default = 0.1)	
tol.final	the desired accuracy for the final map (default = 10e-04)	
use.high.precision		
	logical. If TRUE uses high precision (long double) numbers in the HMM procedure implemented in C++, which can take a long time to perform (default = FALSE)	
verbose	If TRUE (default), current progress is shown; if FALSE, no output is produced	

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

get_tab_mrks 35

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

Examples

```
## Not run:
    ## selecting the 20 first markers in linkage group 1
    ## re-estimating recombination fractions
    submap1.lg1<-get_submap(input.map = maps.hexafake[[1]],</pre>
                           mrk.pos = 1:20, verbose = TRUE,
                           tol.final = 10e-3)
    ## re-estimating the recombination fractions and linkage phases
    submap2.lg1<-get_submap(input.map = maps.hexafake[[1]],</pre>
                           mrk.pos = 1:20, verbose = TRUE,
                           reestimate.phase = TRUE,
                            tol.final = 10e-3)
   ## no recombination fraction re-estimation
   submap3.lg1<-get_submap(input.map = maps.hexafake[[1]],</pre>
                           mrk.pos = 1:20, reestimate.rf = FALSE,
                           verbose = TRUE,
                            tol.final = 10e-3)
  plot(maps.hexafake[[1]])
  plot(submap1.lg1, mrk.names = T, cex = .8)
  plot(submap2.lg1, mrk.names = T, cex = .8)
  plot(submap3.lg1, mrk.names = T, cex = .8)
## End(Not run)
```

get_tab_mrks

Get table of dosage combinations

Description

Internal function

Usage

```
get_tab_mrks(x)
```

Arguments

Х

an object of class mappoly.map

Author(s)

Gabriel Gesteira, <gabrielgesteira@usp.br>

36 group_mappoly

<pre>group_mappoly</pre>	Assign markers to linkage groups
group_mappory	Assign markers to unkage groups

Description

Identifies linkage groups of markers using the results of two-point (pairwise) analysis.

Usage

```
group_mappoly(
  input.mat,
  expected.groups = NULL,
  inter = TRUE,
  comp.mat = FALSE,
  verbose = TRUE
)
```

Arguments

input.mat an object of class mappoly.rf.matrix

expected.groups

when available, inform the number of expected linkage groups (i.e. chromo-

somes) for the species

inter if TRUE (default), plots a dendrogram highlighting the expected groups before

continue

comp.mat if TRUE, shows a comparison between the reference based and the linkage based

grouping, if the sequence information is available (default = FALSE)

verbose logical. If TRUE (default), current progress is shown; if FALSE, no output is

produced

Value

Returns an object of class mappoly. group, which is a list containing the following components:

data.name the referred dataset name

hc.snp a list containing information related to the UPGMA grouping method

expected.groups

the number of expected linkage groups

groups.snp the groups to which each of the markers belong

seq.vs.grouped.snp

comparison between the genomic group information (when available) and the

groups provided by group_mappoly

chisq.pval.thres

the threshold used on the segregation test when reading the dataset

chisq.pval the p-values associated with the segregation test for all markers in the sequence

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

hexafake 37

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

Examples

```
## Not run:
    all.mrk <- make_seq_mappoly(hexafake, 'all')</pre>
    red.mrk <- elim_redundant(all.mrk)</pre>
    unique.mrks <- make_seq_mappoly(red.mrk)</pre>
    counts <- cache_counts_twopt(unique.mrks, cached = TRUE)</pre>
    ##will take \sim 7 minutes
    all.pairs <- est_pairwise_rf(input.seq = unique.mrks,
                                   count.cache = counts,
                                   ncpus = 7,
                                   verbose=TRUE)
    ## Full recombination fraction matrix
    mat.full<-rf_list_to_matrix(input.twopt=all.pairs)</pre>
    plot(mat.full, index = FALSE)
    lgs <- group_mappoly(input.mat = mat.full,</pre>
                           expected.groups = 3,
                           inter = TRUE,
                           comp.mat = TRUE, #this data has physical information
                           verbose = TRUE)
    lgs
    plot(lgs)
    lg1 <- make_seq_mappoly(lgs, 1)</pre>
    lg2 <- make_seq_mappoly(lgs, 2)</pre>
    lg3 <- make_seq_mappoly(lgs, 3)</pre>
    ##Plot matrices
    m1<-make_mat_mappoly(input.seq = lg1, input.mat = mat.full)</pre>
    m2<-make_mat_mappoly(input.seq = lg2, input.mat = mat.full)</pre>
    m3<-make_mat_mappoly(input.seq = lg3, input.mat = mat.full)</pre>
    op < -par(mfrow = c(1,3), pty = "s")
    plot(m1, main.text = "LG1", index = FALSE)
    plot(m2, main.text = "LG2", index = FALSE)
    plot(m3, main.text = "LG3", index = FALSE)
    par(op)
## End(Not run)
```

hexafake

Simulated autohexaploid dataset.

Description

A dataset of a hypothetical autohexaploid full-sib population containing three homology groups

38 hexafake.geno.dist

Usage

hexafake

Format

An object of class mappoly data which contains a list with the following components:

 \mathbf{m} ploidy level = 6

n.ind number individuals = 300

n.mrk total number of markers = 1500

ind.names the names of the individuals

mrk.names the names of the markers

dosage.p a vector containing the dosage in parent P for all n.mrk markers

dosage.q a vector containing the dosage in parent Q for all n.mrk markers

sequence a vector indicating the sequence each marker belongs. Zero indicates that the marker was not assigned to any sequence

sequence.pos Physical position of the markers into the sequence

geno.dose a matrix containing the dosage for each markers (rows) for each individual (columns). Missing data are represented by ploidy_level + 1 = 7

n.phen There are no phenotypes in this simulation

phen There are no phenotypes in this simulation

chisq.pval vector containing p-values for all markers associated to the chi-square test for the expected segregation patterns under Mendelian segregation

hexafake.geno.dist

Simulated autohexaploid dataset with genotype probabilities.

Description

A dataset of a hypothetical autohexaploid full-sib population containing three homology groups. This dataset contains the probability distribution of the genotypes and 2% of missing data, but is essentially the same dataset found in hexafake

Usage

hexafake.geno.dist

Format

An object of class mappoly data which contains a list with the following components:

 \mathbf{m} ploidy level = 6

n.ind number individuals = 300

n.mrk total number of markers = 1500

ind.names the names of the individuals

mrk.names the names of the markers

dosage.p a vector containing the dosage in parent P for all n.mrk markers

dosage.q a vector containing the dosage in parent Q for all n.mrk markers

sequence a vector indicating which sequence each marker belongs. Zero indicates that the marker was not assigned to any sequence

sequence.pos Physical position of the markers into the sequence

prob.thres = 0.95 probability threshold to associate a marker call to a dosage. Markers with maximum genotype probability smaller than 'prob.thres' are considered as missing data for the dosage calling purposes

geno a data.frame containing the probability distribution for each combination of marker and offspring. The first two columns represent the marker and the offspring, respectively. The remaining elements represent the probability associated to each one of the possible dosages

geno.dose a matrix containing the dosage for each markers (rows) for each individual (columns). Missing data are represented by ploidy_level + 1 = 7

n.phen There are no phenotypes in this simulation

phen There are no phenotypes in this simulation

```
{\tt import\_data\_from\_polymapR}
```

Import data from polymapR

Description

Function to import datasets from polymapR

Usage

```
import_data_from_polymapR(
  input.data,
  ploidy,
  parent1 = "P1",
  parent2 = "P2",
  filter.non.conforming = TRUE
)
```

Arguments

if TRUE (default) exclude samples with non expected genotypes under no double reduction

Author(s)

Marcelo Mollinari <mmollin@ncsu.edu>

40 import_from_updog

References

Bourke PM et al: (2019) PolymapR — linkage analysis and genetic map construction from F1 populations of outcrossing polyploids. _Bioinformatics_ 34:3496–3502. https://doi.org/10.1093/bioinformatics/bty1002

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

Examples

```
## Not run:
require(polymapR)
data("screened_data3")
mappoly.data <- import_data_from_polymapR(screened_data3, 4)
plot(mappoly.data)
## End(Not run)</pre>
```

import_from_updog

Import from updog

Description

Read objects with information related to genotype calling in polyploids. Currently this function supports output objects created with the updog (output of multidog function) package. This function creates an object of class mappoly.data

Usage

```
import_from_updog(object, prob.thres = NULL, filter.non.conforming = FALSE)
```

Arguments

object the name of the object of class multidog

prob. thres probability threshold to associate a marker call to a dosage. Markers with max-

imum genotype probability smaller than 'prob.thres' are considered as missing

data for the dosage calling purposes

filter.non.conforming

if TRUE (default) exclude samples with non expected genotypes under random

chromosome pairing and no double reduction

Value

An object of class mappoly. data which contains a list with the following components:

m ploidy leveln.ind number individualsn.mrk total number of markers

ind.names the names of the individuals

import_from_updog 41

mrk.names	the names of the markers
dosage.p	a vector containing the dosage in parent P for all n.mrk markers
dosage.q	a vector containing the dosage in parent Q for all n.mrk markers
sequence	a vector indicating which sequence each marker belongs. Zero indicates that the marker was not assigned to any sequence
sequence.pos	physical position of the markers into the sequence
prob.thres	probability threshold to associate a marker call to a dosage. Markers with maximum genotype probability smaller than 'prob.thres' were considered as missing data in the 'geno.dose' matrix
geno.dose	a matrix containing the dosage for each markers (rows) for each individual (columns). Missing data are represented by ploidy_level + 1
geno	a data.frame containing the probability distribution for each combination of marker and offspring. The first two columns represent the marker and the offspring, respectively. The remaining elements represent the probability associated to each one of the possible dosages. Missing data are converted from NA to the expected segregation ratio using function segreg_poly
n.phen	number of phenotypic traits
phen	a matrix containing the phenotypic data. The rows correspond to the traits and the columns correspond to the individuals
chisq.pval	a vector containing p-values related to the chi-squared test of Mendelian segregation performed for all markers

Author(s)

Gabriel Gesteira, <gabrielgesteira@usp.br>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

```
## Not run:
library("updog")
data("uitdewilligen")
mout = multidog(refmat = t(uitdewilligen$refmat),
                sizemat = t(uitdewilligen$sizemat),
                ploidy = uitdewilligen$ploidy,
                model = "f1",
                p1_id = colnames(t(uitdewilligen$sizemat))[1],
                p2_id = colnames(t(uitdewilligen$sizemat))[2],
                nc = 4)
mydata = import_from_updog(mout)
mydata
plot(mydata)
mydata = import_from_updog(mout, filter.non.conforming = TRUE)
mydata
plot(mydata)
## End(Not run)
```

Description

Function to import phased map lists from polymapR

Usage

```
import_phased_maplist_from_polymapR(maplist, mappoly.data, ploidy = NULL)
```

Arguments

maplist a list of phased maps obtained using function create_phased_maplist from

package polymapR

mappoly.data a dataset used to obtain maplist, converted into class mappoly.data

ploidy the ploidy level

Author(s)

Marcelo Mollinari <mmollin@ncsu.edu>

References

Bourke PM et al: (2019) PolymapR — linkage analysis and genetic map construction from F1 populations of outcrossing polyploids. _Bioinformatics_ 34:3496–3502. https://doi.org/10.1093/bioinformatics/bty1002

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

```
## Not run:
require(polymapR)
## Loading polymapR example
data("integrated.maplist", "screened_data3", "marker_assignments_P1", "marker_assignments_P2")
maplist <- create_phased_maplist(maplist = integrated.maplist,</pre>
                                  dosage_matrix.conv = screened_data3,
                                  marker_assignment.1=marker_assignments_P1,
                                  marker_assignment.2=marker_assignments_P2,
                                  ploidy = 4)
 ## Importing polymapR dataset
 mappoly.data <- import_data_from_polymapR(screened_data3, 4)</pre>
 plot(mappoly.data)
 ## Importing polymapR phased maplist
 mappoly.maplist <- import_phased_maplist_from_polymapR(maplist, mappoly.data)</pre>
 plot_map_list(mappoly.maplist)
 ## plot phased map
 plot(mappoly.maplist[[1]])
```

```
## plot a segment of phased map (from 0 to 20 cM)
plot(mappoly.maplist[[1]], mrk.names = T, left.lim = 0, right.lim = 20, cex = .7)
plot(mappoly.maplist[[2]])
plot(mappoly.maplist[[3]])
plot(mappoly.maplist[[4]])
plot(mappoly.maplist[[5]])
## Computing conditional genotype probabilities
genoprob0 <- lapply(mappoly.maplist, calc_genoprob, step = 1)</pre>
## Computing preferential pairing profiles
pref.pair0 <- calc_prefpair_profiles(genoprob0)</pre>
plot(pref.pair0, min.y.prof = .25, max.y.prof = 0.4, P = "P1", Q = "P2")
## Computing homolog probabilities
h.prob0<-calc_homoprob(genoprob0)</pre>
plot(h.prob0, ind = "F1_030") ## plot haplotype of individual "F1_030"
#### Computing conditional genotype probabilities including error
genoprob1 <- lapply(mappoly.maplist, calc_genoprob_error, step = 1, error = 0.05)</pre>
## Computing preferential pairing profiles
pref.pair1 <- calc_prefpair_profiles(genoprob1)</pre>
plot(pref.pair1, min.y.prof = .25, max.y.prof = 0.4, P = "P1", Q = "P2")
## Computing homolog probabilities
h.prob1<-calc_homoprob(genoprob1)</pre>
plot(h.prob1, ind = "F1_030") ## plot haplotype of individual "F1_030"
#### Reestimating recombination fractions using HMM
cl <- parallel::makeCluster(5)</pre>
parallel::clusterEvalQ(cl, require(mappoly))
parallel::clusterExport(cl, "mappoly.data")
reest.maps <- parallel::parLapply(cl, mappoly.maplist,</pre>
                                    est_full_hmm_with_global_error,
                                   error = 0.05)
parallel::stopCluster(cl)
## Computing conditional genotype probabilities
genoprob2 <- lapply(reest.maps, calc_genoprob_error, step = 1, error = 0.05)</pre>
## Computing preferential pairing profiles
pref.pair2 <- calc_prefpair_profiles(genoprob2)</pre>
plot(pref.pair2, min.y.prof = .25, max.y.prof = 0.4, P = "P1", Q = "P2")
## Computing homolog probabilities
h.prob2<-calc_homoprob(genoprob2)</pre>
plot(h.prob2, ind = "F1_030")
#### Reconstructing the map using MAPpoly
s <- make_seq_mappoly(mappoly.data, "all")</pre>
tpt <- est_pairwise_rf(input.seq = s, ncpus = 7)</pre>
mat <- rf_list_to_matrix(make_pairs_mappoly(tpt, s))</pre>
grs <- group_mappoly(input.mat = mat,</pre>
                      expected.groups = 5,
                      inter = TRUE)
grs
```

```
LG <- vector("list", 5)
op \leftarrow par(mfrow = c(2,3))
for(i in 1:5){
  s.temp <- make_seq_mappoly(grs, arg = i)</pre>
  tpt.temp <- make_pairs_mappoly(tpt, s.temp)</pre>
  sf<-rf_snp_filter(input.twopt = tpt.temp,</pre>
                     thresh.LOD.ph = 1,
                     thresh.LOD.rf = 1,
                     thresh.perc = 0.02)
  M <- make_mat_mappoly(input.mat = mat, sf)</pre>
  o <- mds_mappoly(M)</pre>
  so<-make_seq_mappoly(o)</pre>
  plot(M, ord = so$seq.mrk.names, main.text = paste("LG", i), index = FALSE)
  LG[[i]] <- list(s = so, tpt = tpt.temp)
}
par(op)
MAPs <- vector("list", 5)
for(i in 1:5){
MAPs[[i]] <- est_rf_hmm_sequential(input.seq = LG[[i]]$s,</pre>
                                     start.set = 6,
                                     thres.twopt = 10,
                                     thres.hmm = 50,
                                     extend.tail = 30,
                                     twopt = LG[[i]]$tpt,
                                     verbose = TRUE,
                                     tol = 10e-2,
                                     tol.final = 10e-4,
                                     phase.number.limit = 20,
                                     sub.map.size.diff.limit = 5,
                                     info.tail = TRUE,
                                     reestimate.single.ph.configuration = TRUE)
cl <- parallel::makeCluster(5)</pre>
parallel::clusterEvalQ(cl, require(mappoly))
parallel::clusterExport(cl, "mappoly.data")
recons.maps <- parallel::parLapply(cl, MAPs,</pre>
                                     est_full_hmm_with_global_error,
                                     error = 0.05)
parallel::stopCluster(cl)
## Comparing resulting maps
## polymapR
summary_maps(mappoly.maplist)
## MAPpoly
summary_maps(recons.maps)
## Computing conditional genotype probabilities
genoprob3 <- lapply(recons.maps,</pre>
                     calc_genoprob_error,
                     step = 1,
                     error = 0.05)
## Computing preferential pairing profiles
pref.pair3 <- calc_prefpair_profiles(genoprob3)</pre>
plot(pref.pair3, min.y.prof = .25, max.y.prof = 0.4, P = "P1", Q = "P2")
```

loglike_hmm 45

```
## Comparing homolog probabilities with different mapping approaches
h.prob3<-calc_homoprob(genoprob3)
## plot haplotype of individual 10 (polymapR)
plot(h.prob0, ind = "F1_030", use.plotly = FALSE)
## plot haplotype of individual 10 (polymapR + HMM error modeling)
plot(h.prob1, ind = "F1_030", use.plotly = FALSE)
## plot haplotype of individual 10 (reestimated: MAPpoly)
plot(h.prob2, ind = "F1_030", use.plotly = FALSE)
## plot haplotype of individual 10 (reconstructed: MAPpoly)
plot(h.prob3, ind = "F1_030", use.plotly = FALSE)
## End(Not run)</pre>
```

loglike_hmm

Multipoint log-likelihood computation

Description

Update the multipoint log-likelihood of a given map using the method proposed by *Mollinari and Garcia* (2019).

Usage

```
loglike_hmm(input.map, input.data = NULL, verbose = FALSE)
```

Arguments

input.map An object of class mappoly.map

input.data An object of class mappoly.data, which was used to generate input.map verbose If TRUE, map information is shown; if FALSE(default), no output is produced

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

```
## Not run:
hexa.map1<-reest_rf(solcap.dose.map[[1]], verbose = FALSE, tol = 10e-4)
hexa.map2<-loglike_hmm(hexa.map1)
hexa.map1;hexa.map2
## End(Not run)</pre>
```

46 make_mat_mappoly

make_mat_mappoly

Subset recombination fraction matrices

Description

Get a subset of an object of class mappoly.rf.matrix, i.e. recombination fraction and LOD score matrices based in a sequence of markers.

Usage

```
make_mat_mappoly(input.mat, input.seq)
```

Arguments

Value

an object of class mappoly.rf.matrix, which is a subset of 'input.mat'. See rf_list_to_matrix for details

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

make_pairs_mappoly 47

make_pairs_mappoly

Subset pairwise recombination fractions

Description

Get a subset of an object of class poly.est.two.pts.pairwise (i.e. recombination fraction) and LOD score statistics for all possible linkage phase combinations based on a sequence of markers.

Usage

```
make_pairs_mappoly(input.twopt, input.seq)
```

Arguments

```
input.twopt an object of class poly.est.two.pts.pairwise
input.seq an object of class mappoly.sequence, with a sequence of markers contained in
    input.twopt
```

Value

an object of class poly.est.two.pts.pairwise which is a subset of input.twopt. See est_pairwise_rf for details

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

```
## Not run:
   all.mrk<-make_seq_mappoly(hexafake, sort(sample(1:1500, 200)))</pre>
   red.mrk<-elim_redundant(all.mrk)</pre>
   unique.mrks<-make_seq_mappoly(red.mrk)</pre>
   all.pairs<-est_pairwise_rf(input.seq = unique.mrks,</pre>
                                 ncpus = 7,
                                 verbose=TRUE)
   ## Full recombination fraction matrix
   mat.full<-rf_list_to_matrix(input.twopt = all.pairs)</pre>
   plot(mat.full)
   lgs <- group_mappoly(input.mat = mat.full,</pre>
                          expected.groups = 3,
                          verbose=TRUE)
   lgs
   plot(lgs)
   lg1 <- make_seq_mappoly(lgs, 1)</pre>
```

48 make_seq_mappoly

```
lg2 <- make_seq_mappoly(lgs, 2)
lg3 <- make_seq_mappoly(lgs, 3)

##Plot matrices
p1<-make_pairs_mappoly(input.seq = lg1, input.twopt = all.pairs)
p2<-make_pairs_mappoly(input.seq = lg2, input.twopt = all.pairs)
p3<-make_pairs_mappoly(input.seq = lg3, input.twopt = all.pairs)

m1<-rf_list_to_matrix(input.twopt = p1)
m2<-rf_list_to_matrix(input.twopt = p2)
m3<-rf_list_to_matrix(input.twopt = p3)

op<-par(mfrow = c(1,3), pty = "s")
plot(m1, main.text = "LG1")
plot(m2, main.text = "LG2")
plot(m3, main.text = "LG3")
par(op)

## End(Not run)</pre>
```

make_seq_mappoly

Create a sequence of markers

Description

Makes a sequence of markers based on an object of another class.

Usage

```
make_seq_mappoly(input.obj, arg = NULL, data.name = NULL, genomic.info = NULL)
## S3 method for class 'mappoly.sequence'
print(x, ...)
## S3 method for class 'mappoly.sequence'
plot(x, ...)
```

Arguments

input.obj an object of one of the following classes: mappoly.data, mappoly.map, mappoly.group, mappoly.unique.seq, mappoly.pcmap or mappoly.pcmap3d can be one of the following objects: i) a string 'all', resulting in a sequence with arg all markers in the raw data; ii) a string or a vector of strings 'seqx', where x is the sequence (x=0 indicates unassigned markers); iii) a vector of integers specifying which markers comprise the sequence; iv) an integer representing linkage group if input.object has class mappoly.group; or v) NULL if input.object has class mappoly.pcmap, mappoly.pcmap3d or mappoly.unique.seq name of the object of class mappoly.data data.name optional argument applied for mappoly.group objects only. This argument genomic.info can be NULL, or can hold the numeric combination of sequences from genomic information to be used when making the sequences. When genomic.info =

make_seq_mappoly 49

NULL (default), the function returns a sequence containing all markers defined by the grouping function. When genomic.info = 1, the function returns a sequence with markers that matched the intersection between grouping function and genomic information, considering the sequence from genomic information that holds the maximum number of markers matching the group; when genomic.info = c(1,2), the function returns a sequence with markers that matched the intersection between grouping function and genomic information, considering two sequences from genomic information that presented the maximum number of markers matching the group; and so on.

x an object of the class mappoly.sequence

... currently ignored

Value

An object of class mappoly. sequence, which is a list containing the following components:

seq. num a vector containing the (ordered) indices of markers in the sequence, according

to the input file

seq.phases a list with the linkage phases between markers in the sequence, in correspond-

ing positions. -1 means that there are no defined linkage phases

seq.rf a vector with the recombination frequencies between markers in the sequence.

-1 means that there are no estimated recombination frequencies

loglike log-likelihood of the corresponding linkage map

data.name name of the object of class mappoly.data with the raw data

twopt name of the object of class mappoly. twopt with the 2-point analyses. -1 means

that the twopt estimates were not computed

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>, with modifications by Gabriel Gesteira, <gabrielgesteira@usp.br>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

```
## Not run:
    all.mrk<-make_seq_mappoly(hexafake, 'all')
    seq1.mrk<-make_seq_mappoly(hexafake, 'seq1')
    plot(seq1.mrk)
    some.mrk.pos<-c(1,4,28,32,45)
    (some.mrk.1<-make_seq_mappoly(hexafake, some.mrk.pos))
    plot(some.mrk.1)
    #same thing
    (some.mrk.names<-hexafake$mrk.names[c(1,4,28,32,45)])
    some.mrk.2<-make_seq_mappoly(hexafake, some.mrk.names)
    identical(some.mrk.1, some.mrk.2)

## Removing redundant markers and makeing a new sequence
    red.mrk<-elim_redundant(all.mrk)</pre>
```

50 mds_mappoly

maps.hexafake

Resulting maps from hexafake

Description

A list containing three linkage groups estimated using the procedure available in [MAPpoly's tutorial](https://mmollina.github.io/MAPpoly/#estimating_the_map_for_a_given_order)

Usage

maps.hexafake

Format

A list containing three objects of class mappoly.map, each one representing one linkage group in the simulated data.

mds_mappoly

Estimates loci position using Multidimensional Scaling

Description

Estimates loci position using Multidimensional Scaling proposed by *Preedy and Hackett* (2016). The code is an adaptation from the package TetraploidSNPMap, available under GNU GENERAL PUBLIC LICENSE, Version 3, at https://github.com/BiomathematicsAndStatisticsScotland/TetraploidSNPMap

Usage

```
mds_mappoly(
  input.mat,
  p = NULL,
  n = NULL,
  ndim = 2,
  weight.exponent = 2,
  verbose = TRUE
```

mds_mappoly 51

```
## S3 method for class 'mappoly.pcmap'
print(x, ...)
## S3 method for class 'mappoly.pcmap3d'
print(x, ...)
```

Arguments

input.mat an object of class mappoly.input.matrix

p integer. The smoothing parameter for the principal curve. If NULL (default) this

will be done using the leave-one-out cross validation

n vector of integers or strings containing loci to be omitted from the analysis

ndim number of dimensions to be considered in the multidimensional scaling proce-

dure (default = 2)

weight.exponent

the exponent that should be used in the LOD score values to weight the MDS

procedure (default = 2)

verbose if TRUE (default), display information about the analysis

x an object of class mappoly.mds

... currently ignored

Value

A list containing:

M the input distance map

sm the unconstrained MDS results
pc the principal curve results

distmap a matrix of pairwise distances between loci where the columns are in the esti-

mated order

locimap a data frame of the loci containing the name and position of each locus in order

of increasing distance

length integer giving the total length of the segment

removed a vector of the names of loci removed from the analysis

scale the scaling factor from the MDS

locikey a data frame showing the number associated with each locus name for interpret-

ing the MDS configuration plot

confplotno a data frame showing locus name associated with each number on the MDS

configuration plots

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu> mostly adapted from TetraploidSNPMap codes

References

Preedy, K. F., & Hackett, C. A. (2016). A rapid marker ordering approach for high-density genetic linkage maps in experimental autotetraploid populations using multidimensional scaling. _Theoretical and Applied Genetics_, 129(11), 2117-2132. https://doi.org/10.1007/s00122-016-2761-8

52 merge_datasets

Examples

```
## Not run:
    s1 <- make_seq_mappoly(hexafake, 'seq1')</pre>
    t1 <- est_pairwise_rf(s1, ncpus = 7)</pre>
    m1 <- rf_list_to_matrix(t1)</pre>
    plot(m1, ord = rownames(get_genomic_order(s1)))
    ## Removing disruptive SNPs
    s1f \leftarrow rf_snp_filter(t1, 5, 5, 0.15, thresh.perc = 0.05)
    m1f <- make_mat_mappoly(m1, s1f)</pre>
    mds.ord <- mds_mappoly(m1f)</pre>
    plot(mds.ord)
    so <- make_seq_mappoly(mds.ord)</pre>
    plot(m1f, ord = rownames(get_genomic_order(so)))
    plot(so$seq.num ~ I(so$sequence.pos/1e6),
         xlab = "Genome Position",
         ylab = "MDS position")
## End(Not run)
```

merge_datasets

Merge datasets

Description

This function merges two datasets of class mappoly.data. This can be useful when individuals of a population were genotyped using two or more techniques and have datasets in different files or formats. Please notice that the datasets should contain the same number of individuals and they must be represented identically in both datasets (e.g. Ind_1 in both datasets, not Ind_1 in one dataset and ind_1 or Ind.1 in the other).

Usage

```
merge_datasets(dat.1 = NULL, dat.2 = NULL)
```

Arguments

dat.1	the first dataset of class mappoly. data to be merged
dat.2	the second dataset of class mappoly.data to be merged (default = NULL); if
	dat.2 = NULL, the function returns dat.1 only

Value

An object of class mappoly.data which contains all markers from both datasets. It will be a list with the following components:

```
    m ploidy level
    n.ind number individuals
    n.mrk total number of markers
    ind.names the names of the individuals
```

merge_datasets 53

mrk.names	the names of the markers
dosage.p	a vector containing the dosage in parent P for all n.mrk markers
dosage.q	a vector containing the dosage in parent Q for all n.mrk markers
sequence	a vector indicating which sequence each marker belongs. Zero indicates that the marker was not assigned to any sequence
sequence.pos	Physical position of the markers into the sequence
seq.ref	if one or both datasets originated from read_vcf, it keeps reference alleles from sequencing platform, otherwise is NULL
seq.alt	if one or both datasets originated from read_vcf, it keeps alternative alleles from sequencing platform, otherwise is NULL
all.mrk.depth	if one or both datasets originated from read_vcf, it keeps marker read depths from sequencing, otherwise is NULL
prob.thres	(unused field)
geno.dose	a matrix containing the dosage for each markers (rows) for each individual (columns). Missing data are represented by ploidy_level + 1
geno	if both datasets contain genotype distribution information, the final object will contain 'geno'. This is set to NULL otherwise
nphen	(0)
phen	(NULL)
chisq.pval	a vector containing p-values related to the chi-squared test of Mendelian segregation performed for all markers in both datasets
kept	if elim.redundant=TRUE when reading any dataset, holds all non-redundant markers
elim.correspon	
	if elim.redundant=TRUE when reading any dataset, holds all non-redundant markers and its equivalence to the redundant ones

Author(s)

Gabriel Gesteira, <gabrielgesteira@usp.br>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

```
## Not run:
## Loading three chromosomes of sweetpotato dataset (SNPs anchored to Ipomoea trifida genome)
dat <- NULL
for(i in 1:3){
   cat("Loading chromosome", i, "...\n")
   invisible(capture.output(y <- {
      tempfl <- tempfile(pattern = paste0("ch", i), fileext = ".vcf.gz")
   x <- "https://github.com/mmollina/MAPpoly_vignettes/raw/master/data/BT/sweetpotato_chr"
   address <- paste0(x, i, ".vcf.gz")
   download.file(url = address, destfile = tempfl)
   dattemp <- read_vcf(file = tempfl, parent.1 = "PARENT1", parent.2 = "PARENT2", ploidy = 6)</pre>
```

54 merge_maps

```
dat <- merge_datasets(dat, dattemp)</pre>
  }))
  cat("\n")
## Filtering dataset by marker
dat <- filter_missing(input.data = dat, type = "marker",</pre>
                       filter.thres = 0.05, inter = FALSE)
## Filtering dataset by individual
dat <- filter_missing(input.data = dat, type = "individual",</pre>
                       filter.thres = 0.05, inter = TRUE)
print(dat, detailed = TRUE)
## Segregation test
pval.bonf <- 0.05/dat$n.mrk</pre>
mrks.chi.filt <- filter_segregation(dat,</pre>
                                      chisq.pval.thres = pval.bonf,
                                      inter = TRUE)
seq.init<-make_seq_mappoly(mrks.chi.filt)</pre>
length(seq.init$seq.mrk.names)
plot(seq.init)
print(seq.init, detailed = TRUE)
## End(Not run)
```

merge_maps

Merge two maps

Description

Estimates the linkage phase and recombination fraction between pre-built maps and creates a new map by merging them.

Usage

```
merge_maps(
  map.list,
  twopt,
  thres.twopt = 10,
  genoprob.list = NULL,
  thres.hmm = "best",
  tol = 1e-04
)
```

Arguments

map.list a list of objects of class mappoly.map to be merged.

twopt an object of class poly.est.two.pts.pairwise containing the two-point in-

formation for all pairs of markers present in the original maps

 $thres.\,twopt \qquad the \,\,threshold \,\,used \,\,to \,\,determine \,\,if \,\,the \,\,linkage \,\,phases \,\,compared \,\,via \,\,two-point$

analysis should be considered for the search space reduction (default = 3)

merge_maps 55

genoprob.list a list of objects of class mappoly.genoprob containing the genotype probabili-

ties for the maps to be merged. If NULL (default), the probabilities are computed.

thres.hmm the threshold used to determine which linkage phase configurations should be

returned when merging two maps. If "best" (default), returns only the best linkage phase configuration. NOTE: if merging multiple maps, it always uses the

"best" linkage phase configuration at each block insertion.

tol the desired accuracy (default = 10e-04)

Details

merge_maps uses two-point information, under a given LOD threshold, to reduce the linkage phase search space. The remaining linkage phases are tested using the genotype probabilities.

Value

A list of class mappoly.map with two elements:

i) info: a list containing information about the map, regardless of the linkage phase configuration:

the ploidy level m number of markers n.mrk a vector containing the (ordered) indices of markers in the map, according to the seq.num input file mrk.names the names of markers in the map seq.dose.p a vector containing the dosage in parent 1 for all markers in the map seq.dose.q a vector containing the dosage in parent 2 for all markers in the map sequence a vector indicating the sequence (usually chromosome) each marker belongs as informed in the input file. If not available, sequence = NULL physical position (usually in megabase) of the markers into the sequence sequence.pos seq.ref reference base used for each marker (i.e. A, T, C, G). If not available, seq. ref = NULL alternative base used for each marker (i.e. A, T, C, G). If not available, seq.ref seq.alt a vector containing p-values of the chi-squared test of Mendelian segregation for chisq.pval all markers in the map data.name name of the dataset of class mappoly.data ph.thres the LOD threshold used to define the linkage phase configurations to test ii) a list of maps with possible linkage phase configuration. Each map in the list is also a list

ii) a list of maps with possible linkage phase configuration. Each map in the list is also a list containing

seq.num a vector containing the (ordered) indices of markers in the map, according to the

input file

seq.rf a vector of size (n.mrk -1) containing a sequence of recombination fraction be-

tween the adjacent markers in the map

seq.ph linkage phase configuration for all markers in both parents

loglike the hmm-based multipoint likelihood

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

Examples

```
## Not run:
#### Tetraploid example #####
map1<-get_submap(solcap.dose.map[[1]], 1:5)</pre>
map2<-get_submap(solcap.dose.map[[1]], 6:15)</pre>
map3<-get_submap(solcap.dose.map[[1]], 16:30)</pre>
full.map<-get_submap(solcap.dose.map[[1]], 1:30)</pre>
s<-make_seq_mappoly(tetra.solcap, full.map$maps[[1]]$seq.num)</pre>
twopt <- est_pairwise_rf(input.seq = s)</pre>
merged.maps<-merge_maps(map.list = list(map1, map2, map3),</pre>
                          twopt = twopt,
                          thres.twopt = 3)
plot(merged.maps, mrk.names = TRUE)
plot(full.map, mrk.names = TRUE)
best.phase <- merged.maps$maps[[1]]$seq.ph</pre>
names.id<-names(best.phase$P)</pre>
compare_haplotypes(m = 4, best.phase$P[names.id],
                    full.map$maps[[1]]$seq.ph$P[names.id])
compare_haplotypes(m = 4, best.phase$Q[names.id],
                    full.map$maps[[1]]$seq.ph$Q[names.id])
#### Hexaploid example #####
map1<-get_submap(maps.hexafake[[1]], 1:5)</pre>
map2<-get_submap(maps.hexafake[[1]], 6:15)</pre>
map3<-get_submap(maps.hexafake[[1]], 16:30)</pre>
full.map<-get_submap(maps.hexafake[[1]], 1:30)</pre>
s<-make_seq_mappoly(hexafake, full.map$maps[[1]]$seq.num)</pre>
twopt <- est_pairwise_rf(input.seq = s)</pre>
merged.maps<-merge_maps(map.list = list(map1, map2, map3),</pre>
                          twopt = twopt,
                          thres.twopt = 3)
plot(merged.maps, mrk.names = TRUE)
plot(full.map, mrk.names = TRUE)
best.phase <- merged.maps$maps[[1]]$seq.ph</pre>
names.id<-names(best.phase$P)</pre>
compare_haplotypes(m = 6, best.phase$P[names.id],
                    full.map$maps[[1]]$seq.ph$P[names.id])
compare_haplotypes(m = 6, best.phase$Q[names.id],
                    full.map$maps[[1]]$seq.ph$Q[names.id])
## End(Not run)
```

plot.mappoly.homoprob *Plots mappoly.homoprob*

Description

Plots mappoly.homoprob

Usage

```
## S3 method for class 'mappoly.homoprob'
plot(x, stack = FALSE, lg = NULL, ind = NULL, use.plotly = TRUE, ...)
```

Arguments

X	an object of class mappoly.homoprob
stack	logical. If TRUE, probability profiles of all homologues are stacked in the plot (default = FALSE) $$
lg	indicates which linkage group should be plotted. If NULL (default), it plots the first linkage group. If "all", it plots all linkage groups
ind	indicates which individuals should be plotted. It can be the position of the individuals in the dataset or it's name. If $NULL$ (default), the function plots the first individual
use.plotly	if TRUE (default), it uses plotly interactive graphics
	unused arguments

```
plot.mappoly.prefpair.profiles
```

Plots mappoly.prefpair.profiles

Description

Plots mappoly.prefpair.profiles

Usage

```
## S3 method for class 'mappoly.prefpair.profiles'
plot(
    x,
    type = c("pair.configs", "hom.pairs"),
    min.y.prof = 0,
    max.y.prof = 1,
    thresh = 0.01,
    P = "P",
    Q = "Q",
    ...
)
```

Arguments

x	an object of class mappoly.prefpair.profiles
type	a character string indicating which type of graphic is plotted: "pair.configs" (default) plots the preferential pairing profile for the pairing configurations or "hom.pairs" plots the preferential pairing profile for the homolog pairs
min.y.prof	lower bound for y axis on the probability profile graphic (default = 0)
max.y.prof	upper bound for y axis on the probability profile graphic (default = 1)
thresh	threshold for chi-square test (default = 0.01)
Р	a string containing the name of parent P
Q	a string containing the name of parent Q
	unused arguments

58 plot_genome_vs_map

plot_genome_vs_map

Physical versus genetic distance

Description

This function plots scatterplot(s) of physical distance (in Mbp) versus the genetic distance (in cM). Map(s) should be passed as a single object or a list of objects of class mappoly.map.

Usage

```
plot_genome_vs_map(map.list, phase.config = "best", same.ch.lg = FALSE)
```

Arguments

map.list A list or a single object of class mappoly.map

phase.config A vector containing which phase configuration should be plotted. If 'best' (default), plots the configuration with the highest likelihood for all elements in 'map.list'

same.ch.lg Logical. If TRUE displays only the scatterplots between the chromosomes and linkage groups with the same number. Default is FALSE.

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

```
## Not run:
## tetraploid example
plot_genome_vs_map(solcap.mds.map)
plot_genome_vs_map(solcap.mds.map, same.ch.lg = TRUE)

## hexaploid example
plot_genome_vs_map(maps.hexafake)
plot_genome_vs_map(maps.hexafake, same.ch.lg = TRUE)

## End(Not run)
```

plot_map_list 59

plot_map_list Plot a genetic map	plot_map_list	Plot a genetic map	
----------------------------------	---------------	--------------------	--

Description

This function plots a genetic linkage map(s) generated by MAPpoly. The map(s) should be passed as a single object or a list of objects of class mappoly.map.

Usage

```
plot_map_list(
  map.list,
  horiz = TRUE,
  col = "lightgray",
  title = "Linkage group"
)
```

Arguments

map.list	A list of objects or a single object of class mappoly.map
horiz	logical. If FALSE, the maps are plotted vertically with the first map to the left. If TRUE (default), the maps are plotted horizontally with the first at the bottom
col	a vector of colors for the bars or bar components (default = 'lightgrey') ggstyle produces maps using the default ggplot color palette
title	a title (string) for the maps (default = 'Linkage group')

Value

A data. frame object containing the name of the markers and their genetic position

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

```
## Not run:
## hexafake map
plot_map_list(maps.hexafake, horiz = FALSE)
plot_map_list(maps.hexafake, col = c("#999999", "#E69F00", "#56B4E9"))
## solcap map
plot_map_list(solcap.dose.map, col = "ggstyle")
## Comparing mapping approaches
```

60 plot_mrk_info

plot_mrk_info

Plot marker information

Description

Plots summary statistics for a given marker

Usage

```
plot_mrk_info(input.data, mrk)
```

Arguments

input.data an object of class mappoly.data mrk marker name or position in the dataset

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

```
## Not run:
plot_mrk_info(tetra.solcap.geno.dist, 2680)
plot_mrk_info(tetra.solcap.geno.dist, "solcap_snp_c2_23828")
## End(Not run)
```

poly_cross_simulate 61

 ${\tt poly_cross_simulate} \quad \textit{Simulate an autopolyploid full-sib population}$

Description

Simulate an autopolyploid full-sib population with one or two informative parents under random chromosome segregation.

Usage

```
poly_cross_simulate(
    m,
    rf.vec,
    n.mrk,
    n.ind,
    hom.allele,
    draw = FALSE,
    file = "output.pdf",
    seed = NULL,
    width = 12,
    height = 6,
    prob.P = NULL,
    prob.Q = NULL
)
```

Arguments

m	ploidy level. Must be an even number
rf.vec	vector containing the recombination fractions between adjacent markers. If a single recombination fraction is provided, it is repeated $n.mrk-1$ times
n.mrk	number of markers
n.ind	number of individuals in the offspring
hom.allele	a list containing the linkage phase information for both parents
draw	if TRUE, draws a graphical representation of the parental map, including the linkage phase configuration, in a pdf output (default = FALSE)
file	name of the output file. It is ignored if draw = TRUE
seed	random number generator seed (default = NULL)
width	the width of the graphics region in inches (default = 12)
height	the height of the graphics region in inches (default = 6)
prob.P	a vector indicating the proportion of preferential pairing in parent P (currently ignored)
prob.Q	a vector indicating the proportion of preferential pairing in parent \boldsymbol{Q} (currently ignored)

62 print_mrk

Details

hom.allele.p and hom.allele.q are lists of vectors containing linkage phase configurations. Each vector contains the numbers of the homologous chromosomes in which the alleles are located. For instance, a vector containing (1,3,4) means that the marker has three doses located in the chromosomes 1, 3 and 4. For zero doses, use 0. For more sophisticated simulations, we strongly recommend using PedigreeSim V2.0 https://www.wur.nl/en/show/Software-PedigreeSim.htm

Value

an object of class mappoly.data. See read_geno for more information

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

Examples

print_mrk

Summary of a set of markers

Description

Returns information related to a given set of markers

Usage

```
print_mrk(input.data, mrks)
```

Arguments

```
input.data an object 'mappoly.data'
mrks marker sequence index (integer vector)
```

```
## Not run:
print_mrk(tetra.solcap.geno.dist, 1:5)
print_mrk(hexafake, 256)
## End(Not run)
```

read_geno 63

|--|

Description

Reads an external data file. The format of the file is described in the Details section. This function creates an object of class mappoly.data

Usage

```
read_geno(file.in, filter.non.conforming = TRUE, elim.redundant = TRUE)
## S3 method for class 'mappoly.data'
print(x, detailed = FALSE, ...)
## S3 method for class 'mappoly.data'
plot(x, thresh.line = 1e-05, ...)
```

Arguments

file.in a character string with the name of (or full path to) the input file which contains the data to be read filter.non.conforming if TRUE (default) converts data points with unexpected genotypes (i.e. no dou-

ble reduction) to 'NA'. See function segreg_poly for information on expected classes and their respective frequencies.

elim. redundant logical. If TRUE (default), removes redundant markers during map construction,

keeping them annotated to export to the final map.

x an object of class mappoly.data

detailed if available, print the number of markers per sequence (default = FALSE)

... currently ignored

thresh.line position of a threshold line for p values of the segregation test (default = 10e-06)

Details

The first line of the input file contains the string ploidy followed by the ploidy level of the parents. The second and third lines contain the strings nind and nmrk followed by the number of individuals in the dataset and the total number of markers, respectively. Lines number 4 and 5 contain the strings mrknames and indnames followed by a sequence of the names of the markers and the name of the individuals, respectively. Lines 6 and 7 contain the strings dosageP and dosageQ followed by a sequence of numbers containing the dosage of all markers in parent P and Q. Line 8, contains the string seq followed by a sequence of integer numbers indicating the sequence each marker belongs. It can be any 'a priori' information regarding the physical distance between markers. For example, these numbers could refer to chromosomes, scaffolds or even contigs, in which the markers are positioned. If this information is not available for a particular marker, NA should be used. If this information is not available for any of the markers, the string seq should be followed by a single NA. Line number 9 contains the string seqpos followed by the physical position of the markers into the sequence. The physical position can be given in any unity of physical genomic distance (base pairs, for instance). However, the user should be able to make decisions based on these values, such

64 read_geno

as the occurrence of crossing overs, etc. Line number 10 should contain the string nphen followed by the number of phenotypic traits. Line number 11 is skipped (Usually used as a spacer). The next elements are strings containing the name of the phenotypic trait with no space characters followed by the phenotypic values. The number of lines should be the same number of phenotypic traits. NA represents missing values. The line number 12 + nphen is skipped. Finally, the last element is a table containing the dosage for each marker (rows) for each individual (columns). NA represents missing values.

Value

An object of class mappoly. data which contains a list with the following components:

ploidy level n.ind number individuals total number of markers n.mrk the names of the individuals ind.names the names of the markers mrk.names a vector containing the dosage in parent P for all n.mrk markers dosage.p dosage.q a vector containing the dosage in parent Q for all n.mrk markers a vector indicating which sequence each marker belongs. Zero indicates that the sequence marker was not assigned to any sequence Physical position of the markers into the sequence sequence.pos seq.ref NULL (unused in this type of data) seq.alt NULL (unused in this type of data) NULL (unused in this type of data) all.mrk.depth a matrix containing the dosage for each markers (rows) for each individual geno.dose (columns). Missing data are represented by ploidy_level + 1 n.phen number of phenotypic traits a matrix containing the phenotypic data. The rows correspond to the traits and phen the columns correspond to the individuals kept if elim.redundant=TRUE, holds all non-redundant markers elim.correspondence

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

to the redundant ones

References

Mollinari M., Olukolu B. A., Pereira G. da S., Khan A., Gemenet D., Yencho G. C., Zeng Z-B. (2020), Unraveling the Hexaploid Sweetpotato Inheritance Using Ultra-Dense Multilocus Mapping, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400620

if elim.redundant=TRUE, holds all non-redundant markers and its equivalence

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

read_geno_csv 65

Examples

```
## Not run:
#### Tetraploid Example
fl1 = "https://raw.githubusercontent.com/mmollina/MAPpoly_vignettes/master/data/SolCAP\_dosage" in the content of the content
tempfl <- tempfile()</pre>
download.file(fl1, destfile = tempfl)
SolCAP.dose <- read_geno(file.in = tempfl)</pre>
print(SolCAP.dose, detailed = TRUE)
plot(SolCAP.dose)
#### Hexaploid example
tempfl <- tempfile()</pre>
download.file(fl2, destfile = tempfl)
hexa.dose <- read_geno(file.in = tempfl)</pre>
print(hexa.dose, detailed = TRUE)
plot(hexa.dose)
## End(Not run)
```

read_geno_csv

Data Input in CSV format

Description

Reads an external comma-separated values (CSV) data file. The format of the file is described in the Details section. This function creates an object of class mappoly.data.

Usage

```
read_geno_csv(
   file.in,
   ploidy,
   filter.non.conforming = TRUE,
   elim.redundant = TRUE
)
```

Arguments

file.in a character string with the name of (or full path to) the input file containing the data to be read

ploidy the ploidy level

filter.non.conforming

if TRUE (default) converts data points with unexpected genotypes (i.e. no double reduction) to 'NA'. See function segreg_poly for information on expected classes and their respective frequencies.

elim. redundant logical. If TRUE (default), removes redundant markers during map construction, keeping them annotated to export to the final map.

66 read_geno_csv

Details

This is an alternative and a somewhat more straightforward version of the function <code>read_geno</code>. The input is a standard CSV file where the rows represent the markers, except for the first row which is used as a header. The first five columns contain the marker names, the dosage in parents 1 and 2, the sequence information (i.e. chromosome, scaffold, contig, etc) and the position of the marker within the sequence. The remaining columns contain the dosage of the full-sib population. A tetraploid example of such file can be found in the <code>Examples</code> section.

Value

An object of class mappoly. data which contains a list with the following components:

m	ploidy level	
n.ind	number individuals	
n.mrk	total number of markers	
ind.names	the names of the individuals	
mrk.names	the names of the markers	
dosage.p	a vector containing the dosage in parent P for all n.mrk markers	
dosage.q	a vector containing the dosage in parent Q for all n.mrk markers	
sequence	a vector indicating which sequence each marker belongs. Zero indicates that the marker was not assigned to any sequence	
sequence.pos	Physical position of the markers into the sequence	
seq.ref	NULL (unused in this type of data)	
seq.alt	NULL (unused in this type of data)	
all.mrk.depth	NULL (unused in this type of data)	
geno.dose	a matrix containing the dosage for each markers (rows) for each individual (columns). Missing data are represented by ploidy_level + 1	
n.phen	number of phenotypic traits	
phen	a matrix containing the phenotypic data. The rows correspond to the traits and the columns correspond to the individuals	
kept	if elim.redundant=TRUE, holds all non-redundant markers	
elim.correspondence		
	if elim.redundant=TRUE, holds all non-redundant markers and its equivalence	

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

to the redundant ones

References

Mollinari M., Olukolu B. A., Pereira G. da S., Khan A., Gemenet D., Yencho G. C., Zeng Z-B. (2020), Unraveling the Hexaploid Sweetpotato Inheritance Using Ultra-Dense Multilocus Mapping, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400620

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

read_geno_prob 67

Examples

```
### Not run:
#### Tetraploid Example
ft="https://raw.githubusercontent.com/mmollina/MAPpoly_vignettes/master/data/tetra_solcap.csv"
tempfl <- tempfile()
download.file(ft, destfile = tempfl)
SolCAP.dose <- read_geno_csv(file.in = tempfl, ploidy = 4)
print(SolCAP.dose, detailed = TRUE)
plot(SolCAP.dose)
## End(Not run)</pre>
```

read_geno_prob

Data Input

Description

Reads an external data file. The format of the file is described in the Details section. This function creates an object of class mappoly.data

Usage

```
read_geno_prob(
   file.in,
   prob.thres = 0.95,
   filter.non.conforming = TRUE,
   elim.redundant = TRUE
)
```

Arguments

file.in a character string with the name of (or full path to) the input file which contains

the data to be read

prob. thres probability threshold to associate a marker call to a dosage. Markers with max-

imum genotype probability smaller than prob. thres are considered as missing

data for the dosage calling purposes (default = 0.95)

filter.non.conforming

if TRUE (default) converts data points with unexpected genotypes (i.e. no double reduction) to 'NA'. See function segreg_poly for information on expected

classes and their respective frequencies.

 $\verb|elim.redundant| logical|. If TRUE (default), removes redundant markers during map construction,$

keeping them annotated to export to the final map.

Details

The first line of the input file contains the string ploidy followed by the ploidy level of the parents. The second and third lines contains the strings nind and nmrk followed by the number of individuals in the dataset and the total number of markers, respectively. Lines number 4 and 5 contain the string mrknames and indnames followed by a sequence of the names of the markers and the name of the individuals, respectively. Lines 6 and 7 contain the strings dosageP and dosageQ followed by a sequence of numbers containing the dosage of all markers in parent P and Q. Line 8, contains the

68 read_geno_prob

string seq followed by a sequence of integer numbers indicating the sequence each marker belongs. It can be any 'a priori' information regarding the physical distance between markers. For example, these numbers could refer to chromosomes, scaffolds or even contigs, in which the markers are positioned. If this information is not available for a particular marker, NA should be used. If this information is not available for any of the markers, the string seq should be followed by a single NA. Line number 9 contains the string seqpos followed by the physical position of the markers into the sequence. The physical position can be given in any unity of physical genomic distance (base pairs, for instance). However, the user should be able to make decisions based on these values, such as the occurrence of crossing overs, etc. Line number 10 should contain the string nphen followed by the number of phenotypic traits. Line number 11 is skipped (Usually used as a spacer). The next elements are strings containing the name of the phenotypic trait with no space characters followed by the phenotypic values. The number of lines should be the same number of phenotypic traits. NA represents missing values. The line number 12 + nphen is skipped. Finally, the last element is a table containing the probability distribution for each combination of marker and offspring. The first two columns represent the marker and the offspring, respectively. The remaining elements represent the probability associated with each one of the possible dosages. NA represents missing data.

Value

n.phen

phen

an object of class mappoly. data which contains a list with the following components:

3	
m	ploidy level
n.ind	number individuals
n.mrk	total number of markers
ind.names	the names of the individuals
mrk.names	the names of the markers
dosage.p	a vector containing the dosage in parent P for all n.mrk markers
dosage.q	a vector containing the dosage in parent Q for all n.mrk markers
sequence	a vector indicating which sequence each marker belongs. Zero indicates that the marker was not assigned to any sequence
sequence.pos	physical position of the markers into the sequence
seq.ref	NULL (unused in this type of data)
seq.alt	NULL (unused in this type of data)
all.mrk.depth	NULL (unused in this type of data)
prob.thres	probability threshold to associate a marker call to a dosage. Markers with maximum genotype probability smaller than 'prob.thres' were considered as missing data in the 'geno.dose' matrix
geno.dose	a matrix containing the dosage for each markers (rows) for each individual (columns). Missing data are represented by ploidy_level + 1
geno	a data.frame containing the probability distribution for each combination of marker and offspring. The first two columns represent the marker and the offspring, respectively. The remaining elements represent the probability associated to each one of the possible dosages. Missing data are converted from NA to the expected segregation ratio using function segreg_poly

a matrix containing the phenotypic data. The rows correspond to the traits and

number of phenotypic traits

the columns correspond to the individuals

read_geno_prob 69

chisq.pval a vector containing p-values related to the chi-squared test of Mendelian segre-

gation performed for all markers

kept if elim.redundant=TRUE, holds all non-redundant markers

elim.correspondence

if elim.redundant=TRUE, holds all non-redundant markers and its equivalence

to the redundant ones

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari M., Olukolu B. A., Pereira G. da S., Khan A., Gemenet D., Yencho G. C., Zeng Z-B. (2020), Unraveling the Hexaploid Sweetpotato Inheritance Using Ultra-Dense Multilocus Mapping, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400620

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

```
## Not run:
#### Tetraploid Example
ft="https://raw.githubusercontent.com/mmollina/MAPpoly_vignettes/master/data/SolCAP"
tempfl <- tempfile()</pre>
download.file(ft, destfile = tempfl)
SolCAP.dose.prob <- read_geno_prob(file.in = tempfl)</pre>
print(SolCAP.dose.prob, detailed = TRUE)
plot(SolCAP.dose.prob)
## save dataset for future uses
saveRDS(SolCAP.dose.prob, file = "solcap.rds")
SolCAP.dose.prob <- readRDS("solcap.rds")</pre>
#### Hexaploid example
fh="https://raw.githubusercontent.com/mmollina/MAPpoly_vignettes/master/data/hexafake_geno_dist"
tempfl <- tempfile()</pre>
download.file(fh, destfile = tempfl)
hexa.dose.prob <- read_geno_prob(file.in = tempfl, prob.thres = 0.8)</pre>
print(hexa.dose.prob, detailed = TRUE)
plot(hexa.dose.prob)
## save dataset for future uses
saveRDS(hexa.dose.prob, file = "hexa.rds")
hexa.dose.prob <- readRDS("hexa.rds")</pre>
## End(Not run)
```

70 read_vcf

read_vcf

Data Input VCF

Description

Reads an external VCF file and creates an object of class mappoly.data

Usage

```
read_vcf(
  file.in,
  parent.1,
  parent.2,
  ploidy = NA,
  filter.non.conforming = TRUE,
  thresh.line = 0.05,
  min.gt.depth = 0,
  min.av.depth = 0,
  max.missing = 1,
  elim.redundant = TRUE
)
```

Arguments

f:	ile.in	a character string with the name of (or full path to) the input file which contains the data (VCF format)
pa	arent.1	a character string containing the name of parent 1
pa	arent.2	a character string containing the name of parent 2
p.	loidy	the species ploidy (optional, it will be automatically detected)
f:	ilter.non.conf	Forming
		if TRUE (default) converts data points with unexpected genotypes (i.e. no double reduction) to 'NA'. See function <pre>segreg_poly</pre> for information on expected classes and their respective frequencies.
tŀ	nresh.line	threshold used for p-values on segregation test (default = 0.05)
m	in.gt.depth	minimum genotype depth to keep information. If the genotype depth is below $\min. gt.depth$, it will be replaced with NA (default = 0)
m:	in.av.depth	minimum average depth to keep markers (default = 0)
ma	ax.missing	maximum proportion of missing data to keep markers (range = $0-1$; default = 1)
e.	lim.redundant	logical. If TRUE (default), removes redundant markers during map construction, keeping them annotated to export to the final map.

Details

This function can handle .vcf files versions 4.0 or higher. The ploidy can be automatically detected, but it is highly recommended that you inform it to check for mismatches. All individual and marker names will be kept as they are in the .vcf file.

read_vcf 71

Value

An object of class mappoly. data which contains a list with the following components:

m	ploidy level
n.ind	number individuals
n.mrk	total number of markers
ind.names	the names of the individuals
mrk.names	the names of the markers
dosage.p	a vector containing the dosage in parent P for all n.mrk markers
dosage.q	a vector containing the dosage in parent Q for all n.mrk markers
sequence	a vector indicating which sequence each marker belongs. Zero indicates that the marker was not assigned to any sequence
sequence.pos	Physical position of the markers into the sequence
seq.ref	Reference base used for each marker (i.e. A, T, C, G)
seq.alt	Alternative base used for each marker (i.e. A, T, C, G)
prob.thres	(unused field)
geno.dose	a matrix containing the dosage for each markers (rows) for each individual (columns). Missing data are represented by ploidy_level + 1
nphen	(unused field)
phen	(unused field)
all.mrk.depth	DP information for all markers on VCF file
chisq.pval	a vector containing p-values related to the chi-squared test of Mendelian segregation performed for all markers
kept	if elim.redundant=TRUE, holds all non-redundant markers
elim.correspondence	
	if elim.redundant=TRUE, holds all non-redundant markers and its equivalence to the redundant ones

Author(s)

Gabriel Gesteira, <gabrielgesteira@usp.br>

References

Mollinari M., Olukolu B. A., Pereira G. da S., Khan A., Gemenet D., Yencho G. C., Zeng Z-B. (2020), Unraveling the Hexaploid Sweetpotato Inheritance Using Ultra-Dense Multilocus Mapping, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400620

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

72 reest_rf

Examples

```
## Not run:
fl = "https://github.com/mmollina/MAPpoly_vignettes/raw/master/data/BT/sweetpotato_chr1.vcf.gz"
tempfl <- tempfile(pattern = 'chr1_', fileext = '.vcf.gz')</pre>
download.file(f1, destfile = tempf1)
dat.dose.vcf = read_vcf(file = tempfl, parent.1 = "PARENT1", parent.2 = "PARENT2")
plot(dat.dose.vcf)
## Loading full sweetpotato dataset (SNPs anchored to Ipomoea trifida genome)
## Needs ~ 3GB
dat <- NULL
for(i in 1:15){
  cat("Loading chromosome", i, "...\n")
  invisible(capture.output(y <- {</pre>
    tempfl <- tempfile(pattern = paste0("ch", i), fileext = ".vcf.gz")</pre>
  x <- "https://github.com/mmollina/MAPpoly_vignettes/raw/master/data/BT/sweetpotato\_chr"
    address <- paste0(x, i, ".vcf.gz")
    download.file(url = address, destfile = tempfl)
  dattemp <- read_vcf(file = tempfl, parent.1 = "PARENT1", parent.2 = "PARENT2", ploidy = 6)</pre>
    dat <- merge_datasets(dat, dattemp)</pre>
  }))
  cat("\n")
}
## Filtering dataset by marker
dat <- filter_missing(input.data = dat, type = "marker",</pre>
                       filter.thres = 0.05, inter = TRUE)
## Filtering dataset by individual
dat <- filter_missing(input.data = dat, type = "individual",</pre>
                       filter.thres = 0.05, inter = TRUE)
print(dat, detailed = TRUE)
## Segregation test
pval.bonf <- 0.05/dat$n.mrk</pre>
mrks.chi.filt <- filter_segregation(dat,</pre>
                                      chisq.pval.thres = pval.bonf,
                                      inter = TRUE)
seq.init<-make_seq_mappoly(mrks.chi.filt)</pre>
length(seq.init$seq.mrk.names)
plot(seq.init)
print(seq.init, detailed = TRUE)
## End(Not run)
```

reest_rf

Re-estimate the recombination fractions in a genetic map

Description

This function re-estimates the recombination fractions between all markers in a given map.

Usage

```
reest_rf(
```

rev_map 73

```
input.map,
input.mat = NULL,
tol = 0.01,
phase.config = "all",
method = c("hmm", "ols"),
weight = TRUE,
verbose = TRUE,
high.prec = FALSE,
max.rf.to.break.EM = 0.5
```

Arguments

input.map	An object of class mappoly.map	
input.mat	An object of class mappoly.rf.matrix	
tol	tolerance for determining convergence (default = 10e-03)	
phase.config	which phase configuration should be used. "best" (default) will choose the maximum likelihood configuration	
method	indicates whether to use 'hmm' (Hidden Markov Models) or 'ols' (Ordinary Least Squares) to re-estimate the recombination fractions	
weight	if TRUE (default), it uses the LOD scores to perform a weighted regression when the Ordinary Least Squares is chosen	
verbose	if TRUE (default), current progress is shown; if FALSE, no output is produced	
high.prec	logical. If TRUE uses high precision (long double) numbers in the HMM procedure implemented in C++, which can take a long time to perform (default = FALSE)	
max.rf.to.break.EM		
	for internal use only.	

Value

An updated object of class mappoly.map

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

Stam P (1993) Construction of integrated genetic-linkage maps by means of a new computer package: Joinmap. _Plant J_ 3:739-744 https://doi.org/10.1111/j.1365-313X.1993.00739.x

rev_map Reverse map

Description

Provides the reverse of a given map.

74 rf_list_to_matrix

Usage

```
rev_map(input.map)
```

Arguments

```
input.map an object of class mappoly.map
```

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

Examples

```
## Not run:
    plot_genome_vs_map(solcap.mds.map[[1]])
    plot_genome_vs_map(rev_map(solcap.mds.map[[1]]))
## End(Not run)
```

rf_list_to_matrix

Recombination fraction list to matrix

Description

Transforms the recombination fraction list contained in an object of class poly.est.two.pts.pairwise into a recombination fraction matrix

Usage

```
rf_list_to_matrix(
  input.twopt,
  thresh.LOD.ph = 0,
  thresh.LOD.rf = 0,
  thresh.rf = 0.5,
  ncpus = 1L,
  shared.alleles = FALSE,
  verbose = TRUE
)
## S3 method for class 'mappoly.rf.matrix'
print(x, ...)
## S3 method for class 'mappoly.rf.matrix'
plot(
  type = c("rf", "lod"),
  ord = NULL,
  rem = NULL,
  main.text = NULL,
  index = FALSE,
)
```

rf_list_to_matrix 75

Arguments

an object of class poly.est.two.pts.pairwise input.twopt thresh.LOD.ph LOD score threshold for linkage phase configurations (default = 0) thresh.LOD.rf LOD score threshold for recombination fractions (default = 0) thresh.rf the threshold used for recombination fraction filtering (default = 0.5) ncpus number of parallel processes (i.e. cores) to spawn (default = 1) shared.alleles if TRUE, computes two matrices (for both parents) indicating the number of homologues that share alleles (default = FALSE) verbose if TRUE (default), current progress is shown; if FALSE, no output is produced an object of class mappoly.rf.matrix Х currently ignored . . . type of matrix that should be printed. Can be one of the following: "rf", for type recombination fraction or "lod" for LOD Score the order in which the markers should be plotted (default = NULL) ord which markers should be removed from the heatmap (default = NULL) rem main.text a character string as the title of the heatmap (default = NULL) logical should the name of the markers be printed in the diagonal of the index

Details

thresh_LOD_ph should be set in order to only select recombination fractions that have LOD scores associated to the linkage phase configuration higher than thresh_LOD_ph when compared to the second most likely linkage phase configuration.

Value

A list containing two matrices. The first one contains the filtered recombination fraction and the second one contains the information matrix

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

Examples

heatmap? (default = FALSE)

rf_snp_filter

rf_snp_filter

Remove markers that do not meet a LOD criteria

Description

Remove markers that do not meet a LOD and recombination fraction criteria for at least a percentage of the pairwise marker combinations. It also removes markers with strong evidence of linkage across the whole linkage group (false positive).

Usage

```
rf_snp_filter(
  input.twopt,
  thresh.LOD.ph = 5,
  thresh.rf = 0.15,
  thresh.perc = 0.05,
  remove.fp = NULL,
  ncpus = 1L
)
```

Arguments

input.twopt	an object of class poly.est.two.pts.pairwise
thresh.LOD.ph	LOD score threshold for linkage phase configuration (default = 5)
thresh.LOD.rf	LOD score threshold for recombination fraction (default = 5)
thresh.rf	threshold for recombination fractions (default = 0.15) #'
thresh.perc	threshold for the percentage of the pairwise marker combinations that should be considered in order to keep the marker. For example, thresh.perc = 0.05 means that at least 5% of the pairwise combinations should be present in order to keep the marker (default = 0.05)
remove.fp	numeric value from 0.0 to 0.5 (default = NULL). When defined, this parameter identifies and removes markers that presented more than 90% of its pairwise recombination fractions below remove. fp value throughout the linkage group
ncpus	number of parallel processes (i.e. cores) to spawn (default = 1)

rf_snp_filter 77

Details

thresh.LOD.ph should be set in order to only select recombination fractions that have LOD scores associated to the linkage phase configuration higher than thresh_LOD_ph when compared to the second most likely linkage phase configuration. That action usually eliminates markers that are unlinked to the set of analyzed markers.

Value

A filtered object of class mappoly. sequence. See make_seq_mappoly for details

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu> with updates by Gabriel Gesteira, <gabrielgesteira@usp.br>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

Examples

```
## Not run:
  all.mrk<-make_seq_mappoly(hexafake, 'all')
  red.mrk<-elim_redundant(all.mrk)</pre>
  unique.mrks<-make_seq_mappoly(red.mrk)</pre>
  all.pairs<-est_pairwise_rf(input.seq = unique.mrks,</pre>
                                ncpus = 7,
                                verbose=TRUE)
  ## Full recombination fraction matrix
  mat.full<-rf_list_to_matrix(input.twopt=all.pairs)</pre>
  plot(mat.full)
  lgs <- group_mappoly(input.mat = mat.full,</pre>
                          expected.groups = 3,
                          inter = TRUE,
                          comp.mat = TRUE, #this data has physical information
                          verbose=TRUE)
  lgs
  plot(lgs)
  lg1 <- make_seq_mappoly(lgs, 1)</pre>
  lg2 <- make_seq_mappoly(lgs, 2)</pre>
  lg3 <- make_seq_mappoly(lgs, 3)</pre>
  ##Plot matrices
  p1<-make_pairs_mappoly(input.seq = lg1, input.twopt = all.pairs)</pre>
  p2<-make_pairs_mappoly(input.seq = lg2, input.twopt = all.pairs)</pre>
  p3<-make_pairs_mappoly(input.seq = lg3, input.twopt = all.pairs)
  m1<-rf_list_to_matrix(input.twopt = p1)</pre>
  m2<-rf_list_to_matrix(input.twopt = p2)</pre>
  m3<-rf_list_to_matrix(input.twopt = p3)</pre>
  op < -par(mfrow = c(1,3), pty = "s")
  plot(m1, main.text = "LG1")
  plot(m2, main.text = "LG2")
```

78 segreg_poly

```
plot(m3, main.text = "LG3")
    par(op)
    ## Removing disruptive SNPs
    lg1.filt<-rf_snp_filter(p1, 5, 5, 0.15, thresh.perc = 0.05)</pre>
    lg2.filt<-rf\_snp\_filter(p2, 5, 5, 0.15, thresh.perc = 0.05)
    lg3.filt<-rf\_snp\_filter(p3, 5, 5, 0.15, thresh.perc = 0.05)
    p1.filt<-make_pairs_mappoly(input.seq = lg1.filt, input.twopt = all.pairs)</pre>
    p2.filt<-make_pairs_mappoly(input.seq = lg2.filt, input.twopt = all.pairs)</pre>
    p3.filt<-make_pairs_mappoly(input.seq = lg3.filt, input.twopt = all.pairs)
    m1.filt<-rf_list_to_matrix(input.twopt = p1.filt)</pre>
    m2.filt<-rf_list_to_matrix(input.twopt = p2.filt)</pre>
    m3.filt<-rf_list_to_matrix(input.twopt = p3.filt)</pre>
    op < -par(mfrow = c(2,3), pty = "s")
    plot(m1, main.text = "LG1")
    plot(m2, main.text = "LG2")
    plot(m3, main.text = "LG3")
    plot(m1.filt, main.text = "LG1.filt")
    plot(m2.filt, main.text = "LG2.filt")
    plot(m3.filt, main.text = "LG3.filt")
    par(op)
## End(Not run)
```

segreg_poly

Polysomic segregation frequency

Description

Computes the polysomic segregation frequency given a ploidy level and the dosage of the locus in both parents. It does not consider double reduction.

Usage

```
segreg_poly(m, dP, dQ)
```

Arguments

m	the ploidy level
dP	the dosage in parent P
d0	the dosage in parent O

Value

a vector containing the expected segregation frequency for all possible genotypic classes.

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

sim_homologous 79

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

Serang O, Mollinari M, Garcia AAF (2012) Efficient Exact Maximum a Posteriori Computation for Bayesian SNP Genotyping in Polyploids. _PLoS ONE_ 7(2): e30906. https://doi.org/10.1371/journal.pone.0030906

Examples

```
# autohexaploid with two and three doses in parents P and Q,
# respectively
seg<-segreg_poly(m=6, dP=2, dQ=3)
barplot(seg, las=2)</pre>
```

sim_homologous

Simulate homology groups

Description

Simulate two homology groups (one for each parent) and their linkage phase configuration.

Usage

```
sim_homologous(
    m,
    n.mrk,
    min.d = 0,
    max.d = m + 1,
    prob.dose = NULL,
    max.ph,
    restriction = TRUE,
    seed = NULL
)
```

Arguments

m	ploidy level. Must be an even number
n.mrk	number of markers
min.d	minimum dosage to be simulated (default = 0)
max.d	maximum dosage to be simulated (default = $m + 1$)
prob.dose	a vector indicating the proportion of markers for different dosage to be simulated (default = $NULL$)
max.ph	maximum phase difference
restriction	if TRUE (default), avoid cases where it is impossible to estimate recombination fraction and/or linkage phases via two-point analysis
seed	random number generator seed

80 solcap.dose.map

Details

This function prevents the simulation of linkage phase configurations which are impossible to estimate via two point methods

Value

a list containing the following components:

hom.allele.p a list of vectors containing linkage phase configurations. Each vector contains

the numbers of the homologous chromosomes in which the alleles are located. For instance, a vector containing (1,3,4) means that the marker has three doses

located in the chromosomes 1, 3 and 4. For zero doses, use 0

p contains the indices of the starting positions of the dosages, considering that the

vectors contained in p are concatenated. Markers with no doses (zero doses are

also considered)

hom.allele.q Analogously to hom.allele.p

q Analogously to p

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

Examples

solcap.dose.map

Resulting maps from tetra.solcap

Description

A list containing 12 linkage groups estimated using genomic order and dosage call

Usage

```
solcap.dose.map
```

Format

A list containing 12 objects of class mappoly.map, each one representing one linkage group in the tetra.solcap dataset.

solcap.err.map 81

solcap.err.map

Resulting maps from tetra.solcap

Description

A list containing 12 linkage groups estimated using genomic order, dosage call and global calling error

Usage

```
solcap.err.map
```

Format

A list containing 12 objects of class mappoly.map, each one representing one linkage group in the tetra.solcap dataset.

solcap.mds.map

Resulting maps from tetra. solcap

Description

A list containing 12 linkage groups estimated using mds_mappoly order and dosage call

Usage

```
solcap.mds.map
```

Format

A list containing 12 objects of class mappoly.map, each one representing one linkage group in the tetra.solcap dataset.

solcap.prior.map

Resulting maps from tetra.solcap.geno.dist

Description

A list containing 12 linkage groups estimated using genomic order and prior probability distribution

Usage

```
solcap.prior.map
```

Format

A list containing 12 objects of class mappoly.map, each one representing one linkage group in the tetra.solcap.geno.dist dataset.

82 split_and_rephase

split_and_rephase Divides map in sub-maps and re-phase them

Description

The function splits the input map in sub-maps given a distance threshold of neighboring markers and evaluates alternative phases between the sub-maps.

Usage

```
split_and_rephase(
  input.map,
  twopt,
  gap.threshold = 5,
  remove.single = TRUE,
  phase.config = "best",
  tol.final = 0.001
)
```

Arguments

input.map an object of class mappoly.map

twopt an object of class poly.est.two.pts.pairwise containing the two-point information for the markers contained in input.map

gap.threshold distance threshold of neighboring markers where the map should be spitted. The default value is 5 cM

remove.single Should isolated markers be removed?

phase.config which phase configuration should be used. "best" (default) will choose the phase configuration associated with the maximum likelihood

tol.final the desired accuracy for the final map (default = 10e-04)

Value

An object of class mappoly.map

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

References

Mollinari, M., and Garcia, A. A. F. (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models, _G3: Genes, Genomes, Genetics_. https://doi.org/10.1534/g3.119.400378

summary_maps 83

Examples

```
## Not run:
map <- solcap.err.map[[1]]
tpt <- est_pairwise_rf(make_seq_mappoly(map))
new.map <- split_and_rephase(map, tpt, 5)
plot_map_list(list(map, new.map))
map
new.map
plot_map_list(list(old.map = map, new.map = new.map))
## End(Not run)</pre>
```

summary_maps

Summary map

Description

This function generates a brief summary table of a list of mappoly.map objects

Usage

```
summary_maps(map.list)
```

Arguments

```
map.list a list of objects of class mappoly.map
```

Value

a data frame containing a brief summary of all maps contained in map.list

Author(s)

```
Gabriel Gesteira, <gabrielgesteira@usp.br>
```

Examples

```
## Not run:
(tetra.sum <- summary_maps(solcap.err.map))
formattable::formattable(tetra.sum)
(hexa.sum <- summary_maps(maps.hexafake))
formattable::formattable(hexa.sum)
## End(Not run)</pre>
```

84 tetra.solcap

tetra.solcap

Autotetraploid potato dataset.

Description

A dataset of the B2721 population which derived from a cross between two tetraploid potato varieties: Atlantic × B1829-5. The population comprises 160 offsprings genotyped with the SolCAP Infinium 8303 potato array. The original data set can be found in [The Solanaceae Coordinated Agricultural Project (SolCAP) webpage](http://solcap.msu.edu/potato_infinium.shtml) The dataset also contains the genomic order of the SNPs from the Solanum tuberosum genome version 4.03. The genotype calling was performed using the fitPoly R package.

Usage

tetra.solcap

Format

An object of class mappoly. data which contains a list with the following components:

 \mathbf{m} ploidy level = 4

n.ind number individuals = 160

n.mrk total number of markers = 4017

ind.names the names of the individuals

mrk.names the names of the markers

dosage.p a vector containing the dosage in parent P for all n.mrk markers

dosage.q a vector containing the dosage in parent Q for all n.mrk markers

sequence a vector indicating the sequence each marker belongs. Zero indicates that the marker was not assigned to any sequence

sequence.pos Physical position of the markers into the sequence

geno.dose a matrix containing the dosage for each markers (rows) for each individual (columns). Missing data are represented by ploidy_level + 1 = 5

n.phen There are no phenotypes in this simulation

phen There are no phenotypes in this simulation

chisq.pval vector containing p-values for all markers associated to the chi-square test for the expected segregation patterns under Mendelian segregation

tetra.solcap.geno.dist 85

tetra.solcap.geno.dist

Autotetraploid potato dataset with genotype probabilities.

Description

A dataset of the B2721 population which derived from a cross between two tetraploid potato varieties: Atlantic × B1829-5. The population comprises 160 offsprings genotyped with the SolCAP Infinium 8303 potato array. The original data set can be found in [The Solanaceae Coordinated Agricultural Project (SolCAP) webpage](http://solcap.msu.edu/potato_infinium.shtml) The dataset also contains the genomic order of the SNPs from the Solanum tuberosum genome version 4.03. The genotype calling was performed using the fitPoly R package. Although this dataset contains the probability distribution of the genotypes, it is essentially the same dataset found in tetra.solcap

Usage

```
tetra.solcap.geno.dist
```

Format

An object of class mappoly. data which contains a list with the following components:

 \mathbf{m} ploidy level = 4

n.ind number individuals = 160

n.mrk total number of markers = 4017

ind.names the names of the individuals

mrk.names the names of the markers

dosage.p a vector containing the dosage in parent P for all n.mrk markers

dosage.q a vector containing the dosage in parent Q for all n.mrk markers

sequence a vector indicating which sequence each marker belongs. Zero indicates that the marker was not assigned to any sequence

sequence.pos Physical position of the markers into the sequence

prob.thres = 0.95 probability threshold to associate a marker call to a dosage. Markers with maximum genotype probability smaller than 'prob.thres' are considered as missing data for the dosage calling purposes

geno a data.frame containing the probability distribution for each combination of marker and offspring. The first two columns represent the marker and the offspring, respectively. The remaining elements represent the probability associated to each one of the possible dosages

geno.dose a matrix containing the dosage for each markers (rows) for each individual (columns). Missing data are represented by ploidy_level + 1 = 5

n.phen There are no phenotypes in this simulation

phen There are no phenotypes in this simulation

86 update_missing

update_map

Update map

Description

This function takes an object of class mappoly.map and checks for removed redundant markers in the original dataset. Once redundant markers are found, they are re-added to the map in their respective equivalent positions and another HMM round is performed.

Usage

```
update_map(input.map)
```

Arguments

```
input.map an map object of class mappoly.map
```

Value

an updated object of class mappoly.map, containing the original map plus redundant markers

Author(s)

```
Gabriel Gesteira, <gabrielgesteira@usp.br>
```

Examples

```
## Not run:
orig.map <- solcap.err.map
up.map <- lapply(solcap.err.map, update_map)
formattable::formattable(summary_maps(orig.map))
formattable::formattable(summary_maps(up.map))
## End(Not run)</pre>
```

update_missing

Update missing information

Description

Updates the missing data in the dosage matrix of an object of class mappoly.data given a new probability threshold

Usage

```
update_missing(input.data, prob.thres = 0.95)
```

update_missing 87

Arguments

input.data an object of class mappoly.data

prob. thres probability threshold to associate a marker call to a dosage. Markers with max-

imum genotype probability smaller than 'prob.thres' are considered as missing

data for the dosage calling purposes

Author(s)

Marcelo Mollinari, <mmollin@ncsu.edu>

Examples

```
## Not run:
data.updated = update_missing(tetra.solcap.geno.dist, prob.thres = 0.5)
print(tetra.solcap.geno.dist)
print(data.updated)
## End(Not run)
```

Index

* analysis	hexafake, 37, 38, 50	
<pre>cache_counts_twopt, 6</pre>	hexafake.geno.dist,38	
* datasets		
hexafake, 37	<pre>import_data_from_polymapR, 39</pre>	
hexafake.geno.dist,38	import_from_updog, 40	
maps.hexafake, 50	<pre>import_phased_maplist_from_polymapR,</pre>	
solcap.dose.map, 80	42	
solcap.err.map, 81	1 111 / 45	
solcap.mds.map, 81	loglike_hmm, 45	
solcap.prior.map, 81	make_mat_mappoly,46	
tetra.solcap, 84	make_mate_mappoly, 40 make_pairs_mappoly, 47	
tetra.solcap.geno.dist,85	make_seq_mappoly, 48, 77	
* two-point	maps.hexafake, 50	
cache_counts_twopt, 6	mds_mappoly, 50, 81	
<i>'</i> /	merge_datasets, 52	
add_marker, 3	merge_maps, 54	
	iliei ge_iliaps, 54	
cache_counts_twopt, 6 , 6 , 20	plot.mappoly.data(read_geno), 63	
calc_genoprob, 7	plot.mappoly.homoprob, 56	
calc_genoprob_dist,8	plot.mappoly.map(est_rf_hmm), 22	
calc_genoprob_error, 10	plot.mappoly.prefpair.profiles, 57	
calc_homoprob, 11	plot.mappoly.rf.matrix	
calc_prefpair_profiles, 12	(rf_list_to_matrix), 74	
check_data_sanity, 13	plot.mappoly.sequence	
	(make_seq_mappoly), 48	
drop_marker, 14	plot_genome_vs_map, 58	
	plot_map_list, 59	
elim_redundant, 15	plot_mrk_info,60	
est_full_hmm_with_global_error,16	poly_cross_simulate, 61	
est_full_hmm_with_prior_prob, 18	print.mappoly.data(read_geno), 63	
est_pairwise_rf,20,47	print.mappoly.map(est_rf_hmm), 22	
est_rf_hmm, 22	<pre>print.mappoly.pcmap (mds_mappoly), 50</pre>	
est_rf_hmm_sequential, 24, 25	<pre>print.mappoly.pcmap3d (mds_mappoly), 50</pre>	
export_data_to_polymapR,29	<pre>print.mappoly.rf.matrix</pre>	
export_map_list,30	<pre>(rf_list_to_matrix), 74</pre>	
extract_map, 31	<pre>print.mappoly.sequence</pre>	
	(make_seq_mappoly), 48	
filter_missing, 31	print_mrk, 62	
filter_segregation, 32		
	read_geno, 62, 63, 66	
get_genomic_order,33	read_geno_csv, 65	
get_submap, 33	read_geno_prob, 67	
get_tab_mrks,35	read_vcf, 70	
group_mappoly, 36	reest_rf,72	

INDEX 89

```
rev_map, 73
rf_list_to_matrix, 3, 4, 46, 74
rf_snp_filter, 76
segreg_poly, 41, 63, 65, 67, 68, 70, 78
sim_homologous, 79
solcap.dose.map, 80
solcap.err.map, 81
solcap.mds.map, 81
solcap.prior.map, 81
split_and_rephase, 82
summary_maps, 83
tetra.solcap, 80, 81, 84, 85
tetra.solcap.geno.dist, 81, 85
update_map, 86
update_missing, 86
```