LEARNING LAB, Part 2

Machine Learning

Machine Learning is a branch of Data Science which uses a whole suite of algorithms to understand data and make predictions from it.

"Field of study that gives computers the ability to learn without being explicitly programmed".

✓ Medical image analysis
 ✓ Driverless cars
 ✓ Voice and image recognition
 ✓ Artificial intelligence(?)

IF
average(mostpixels) = Yellow
THEN

Lemon = True

Why is it important?

Computers are great at following orders that have simple logical inputs or outputs. e.g. Calculate the amount of tax I should pay... There are certain problems that rule based programming **can't** deal with. e.g. What is this a picture of?

It would be enormously time consuming, long winded and error prone to code rules to detect this!

Types of algorithms

Large array of algorithms available, depending on the problem you want to solve.

Classification

Predict a class

Image recognition

Digit recognition

Spam email detection

Regression

Predict a number

"How do house prices in Leeds vary with number of rooms, floors, neighbourhood"? "How does the probability of diabetes correlate with diet, family history?

Types of algorithms

Most of these are examples of supervised learning.

The dataset has the right answers within it, for the algorithm to learn from.

This is called the **training set**.

Classification

Regression

Rooms	Bathroom	Floorspace (m2)	Post Code	Price
3	2	600	LS1	£145,343.00
2	1	500	LS2	£130,321.00
1	1	400	LS1	£104,000.00
2	1	300	LS1	£134,000.00
2	1	300	LS2	£132,000.00

Source: Yan LeCun, MNIST

There are lots of different algorithms – using them appropriately is key! ...

Decision Tree

Algorithms

Unsupervised Learning Algorithms

Dimensional Reduction Algorithms

Clustering Algorithms

Supervised Learning Algorithms

Deep Learning Algorithms

Artificial Neural Network
Algorithms

Bayesian Algorithms

... As is training them appropriately!

Linear regression example:

d=1 works poorly on training set and would likely work poorly on new, test data.

d=2 works well and is likely to generalize reasonably well, given data is within bounds.

d=6 Models 3 fits training data perfectly, but will fail on new data!

Source: Wintellect.com

Logistic Regression Classification

Let's use Machine Learning to predict determine importance of factors in the development of diabetes.

This demo is in R, a powerful open source statistical programming tool that can seem a bit daunting. Feel free to follow along with the process or explore the code for yourself. The code is publicly available.

Cool videos – shows what can be done!

Drifting RC Car

OCR – early days

Real Car On Race Track

Resources

Wiki Complete Guide to Machine Learning

Andrew NG Machine
Learning Course on
Coursera (enrolment ends
today!)

Microsoft ML Course on EDX