Introductio

Solution

tability Analysi

Controllability
and Observability

Controller Design

Controller Design

Results

Control Systems Project

Ali Asghar 21PWCSE2059 Section C DCSE UET Peshawar.

January 8, 2025

Introduction to Project

Introduction

Solution
Stability Analysi
Controllability
and Observabilit

Controller D

Perform the following for Problem 22 at Page 148:

- a. Consider the state-space of Problem 22, Page 148 of Norman Nise Book Edition 5.
- b. Check the stability of the system using all the methods that you know.
- c. Compute the controllability and observability for the system. If the system is unstable, design a suitable controller for it.
- d. Simulate the system using the controller that you design and show all the responses.
- e. Design a PID Controller and show the response of the system using PID Controller. Compare the results obtained in part d and e.
- f. Compute the steady state errors before and after designing controller.

Introduction to Project

Introduction

Carbilla Arabai

Controllability

Controller Desig

Controller Design

22. In the past, Type-1 diabetes patients had to inject themselves with insulin three to four times a day. New delayed-action insulin analogues such as insulin Glargine require a single daily dose. A similar procedure to the one described in the Pharmaceutical Drug Absorption case study of this chapter is used to find a model for the concentration-time evolution of plasma for insulin Glargine. For a specific patient, state-space model matrices are given by (Tarín, 2007)

$$\mathbf{A} = \begin{bmatrix} -0.435 & 0.209 & 0.02 \\ 0.268 & -0.394 & 0 \\ 0.227 & 0 & -0.02 \end{bmatrix}; \quad \mathbf{B} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix};$$

$$\mathbf{C} = \begin{bmatrix} 0.0003 & 0 & 0 \end{bmatrix}; \quad \mathbf{D} = \mathbf{0}$$

where the state vector is given by

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

The state variables are

 x_1 = insulin amount in plasma compartment

 x_2 = insulin amount in liver compartment

x₃ = insulin amount in interstitial (in body tissue) compartment

The system's input is u =external insulin flow. The system's output is y =plasma insulin concentration.

State-space Representation of the System

Introduction

Solution

Stability Analysis
Controllability
and Observability

Controller Design

Controller Design

The state-space representation of the system can be written as follows:

$$\begin{bmatrix} \vec{x}_1 \\ \vec{x}_2 \\ \vec{x}_3 \end{bmatrix} = \begin{bmatrix} -0.435 & 0.209 & 0.02 \\ 0.268 & -0.394 & 0 \\ 0.227 & 0 & -0.02 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u(t) \quad (1)$$

$$y = \begin{bmatrix} 0.003 & 0 & 0 \end{bmatrix} x \tag{2}$$

Introduction

Stability Analysis

Controllability

C . II D .

Result

Transfer Function

The eigen values of the system are:

$$\lambda_1 = -0.6560, \lambda_2 = -0.1889, \lambda_3 = -0.0042$$
 (3)

The poles of the system are:

$$p_1 = -0.6560, p_2 = -0.1889, p_3 = -0.0042$$
 (4)

The step response of the system is:

Solution
Stability Analysis
Controllability
and Observability
Controller Design

The Pole-Zero Map of the system is:

Introduction
Solution
Stability Analysis
Controllability
and Observability
Controller Design
Controller Design

The Root Locus of the system is:

Introduction
Solution
Stability Analysis

Controllability and Observability

Controller Desig

Controller Desi

Controllability and Observability Analysis

Introductioi

Solution

itability Analy

Controllability and Observability

Controller Desig

Controller Design

No Need for Controllability and Observability Analysis as the system is stable already.

Controller Design

ntroductio

Solution

Stability Analysi

Controllability

Controller Design

.

D. Iv

Steady State Error Computation

Controller Design

ntroduction

Solution

tability Analysis

Controllability

.

Controller Design

PID Controller Design

Results

Steady-State Error before PID pprox 0.9955

Plot of SSE Before PID.

Results

Steady-State Error After PID pprox 0

Plot of SSE after PID

Plot of Step Response in Simulink

Plot of Ramp Response in Simulink After PID

Plot of Parabolic Response in Simulink After PID

MATLAB Results

ntroduction solution

ability Analysis

Controllability and Observability

Controller Design

Controller Design

Results

Before PID

RiseTime: 493.7075 TransientTime: 878.9076 SettlingTime: 878.9076

SettlingMin: 0.0041

SettlingMax: 0.0045

Overshoot: 0

Peak: 0.0045

PeakTime: 2.2123e+03

Steady-State Error (Step Input): 0.99592

After PID

RiseTime: 181.0784
TransientTime: 642.7400
SettlingTime: 642.7400

SettlingMin: 0.9166

SettlingMax: 1.1164 Overshoot: 11.6443

Undershoot: 0
Peak: 1.1164

Peak: 1.1164 PeakTime: 376.8098

Steady-State Error (Step Input): 0.083

Comparison of Step Response before and after PID Controller

MATLAB Results

ntroduction iolution itability Analysis Controllability Ind Observability Controller Design

Plot of Step Response in MATLAB

MATLAB Results

Solution
Stability Analysi
Controllability
and Observabilit
Controller Desig

