项目一	Wi-Fi 串口第1部分	. 3
1.1	硬件原理	3
1.2	OpenWrt 支持串口 2	. 4
1.3	串口 2 的简单测试	6

WM · Wostech.

项目一 Wi-Fi 串口第1部分

本项目目标

- 掌握 RT5350 串口 2 的使用方法
- 实现 Wi-Fi 串口

1.1 硬件原理

从RT5350的芯片手册上可以得知,RT5350一共有两个串口,分别为UART Lite、UART Full,详细定义如下:

	to:			
UART Lite inte	erface : 2 pins			
P3	RXD2	I, IPD	4mA	UART Lite RXD
N2	TXD2	O, IPD	4mA	UART Lite TXD
UART Full inte	erface : 8 pins			•
N3	RXD	I, IPD	4mA	UART RXD.
M3	RIN	I, IPD	4mA	UART RIN.
K4	CTS_N	I, IPD	4mA	UART CTS_N.
L3	DSR_N	I, IPD	4mA	UART DSR_N.
J4	DCD_N	I, IPD	4mA	UART DCD_N.
K2	TXD	O, IPD	4mA	UART TXD.
N4	DTR_N	O, IPD	4mA	UART DTR.
P2	RTS_N	O, IPD	4mA	UART RTS.

UART Lite 就是我们惯称为的串口 1,作为系统调试串口,通过这个串口,我们可以看到 OpenWrt (Linux)系统的启动信息,并且可以通过该串口来控制开发板。

UART Full 就是我们惯称为的串口 2,我们通常就是用它来做 Wi-Fi 串口,然后用来控制其他串口设备。

UARTL	RXD2	GPIO#16
UARIL	TXD2	GPIO#15
	RIN	GPIO#14
	DSR_N	GPIO#13
	DCD_N	GPIO#12
UARTF	DTR_N	GPIO#11
UARTE	RXD	GPIO#10
	CTS_N	GPIO#9
	TXD	GPIO#8
	RTS_N	GPIO#7

通过上表,我们发现串口 1 是和 GPI015、16 复用的,而串口 2 是和 $GPI07^{\sim}14$ 复用的。如果我们再详细的看芯片手册,我们就会发现,串口 2 其实也是和 I2S 复用的,具体如下。

ι	JAR	IΕI	oin	shar	e sch	eme

	3'b000	3'b001	3'b010	3'b011	3'b100	3'b101	3'b110	3'b111
Pin	UARTF	PCM,	PCM,	125	PCM,	GPIO,	GPIO	GPIO
Name		UARTF	125	UARTF	GPIO	UARTF	125	
RIN	RIN	PCMDTX	PCMDTX	RXD	PCMDTX	GPIO#14	GPIO#14	GPIO#14
DSR_N	DSR_N	PCMDRX	PCMDRX	CTS_N	PCMDRX	GPIO#13	GPIO#13	GPIO#13
DCD_N	DCD_N	PCMCLK	PCMCLK	TXD	PCMCLK	GPIO#12	GPIO#12	GPIO#12
DTR_N	DTR_N	PCMFS	PCMFS	RTS_N	PCMFS	GPIO#11	GPIO#11	GPIO#11
RXD	RXD	RXD	12SSDI	12SSDI	GPIO#10	RXD	12SSDI	GPIO#10
CTS_N	CTS_N	CTS_N	12SSDO	I2SSDO	GPIO#9	CTS_N	12SSDO	GPIO#9
TXD	TXD	TXD	12SWS	12SWS	GPIO#8	TXD	I2SWS	GPIO#8
RTS_N	RTS_N	RTS_N	12SCLK	I2SCLK	GPIO#7	RTS_N	12SCLK	GPIO#7

在答疑过程中,经常有人问 RT5350 的串口 2 是哪些管脚,那么通过这张表格,我们就能找出串口 2 对应的管脚了。对于串口,我们其实也只用关系发送(TXD)、接受(RXD)和地(GND)三个引脚。因此,对于串口 2,也就是 I2SSDI、I2SWS、GND 三个引脚了。

1.2 OpenWrt 支持串口2

为了使用开发板的串口 2,必须首先把串口使能(由于我们是使用的 MPRA2 这款路由的配置,在它的配置上串口被配置成了 GPI0,用于控制 LEDs,所以这里需要把它改为串口模式。修改非常简单,只要修改 dts 配置文件就可以,这里就不啰嗦了,直接讲述如何修改串口的配置。

首先修改 openwrt/trunk/target/linux/ramips/dts 目录下的 rt5350. dtsi 配置文件。 默认的 rt5350. dtsi 配置文件,是将那个扩展串口状态给禁用了,所以我们看不到扩展串口。 这里需要把那行去掉或者将状态改为 okay,详细如下。

```
uart@500 {
    compatible = "ralink,rt5350-uart", "ralink,rt2880-uart",
    reg = <0x500 0x100>;
    resets = <&rstctrl 12>;
    reset-names = "uart";
    interrupt-parent = <&intc>;
    interrupts = <5>;
    reg-shift = <2>;
    pinctrl-names = "default";
    pinctrl-0 = <&uartf_pins>;
    status = "disabled";
};
```

默认的 rt5350. dtsi 配置文件

修改后的 rt5350. dtsi 配置文件

rt5350. dtsi 配置文件中除了修改扩展串口状态外,还需要修改设备节点。

因为我们把扩展串口状态使能后,它将在调试串口的前面,扩展串口变为 ttyS0, 而调试串口变为 ttyS1, 所以这里需要把调试串口的 ttyS0, 变为 ttyS1, 具体如下。

```
chosen {
          bootargs = "console=ttyS0,57600";
};
```

默认的 rt5350. dtsi 配置文件

```
chosen {
                bootargs = "console=ttyS1,57600";
};
```

修改后的 rt5350. dtsi 配置文件

这样,rt5350. dtsi 配置文件就改完了,但是扩展串口相应引脚被设置为了 GPI0 模式,怎么样才能变为串口模式了呢?需要修改 MPRA2. dts 这个配置文件,同样位于 openwrt/trunk/target/linux/ramips/dts 以录下。

把 GPIO 模式去掉,把设置 GPIO 的设置项中 uartf 去掉,详细如下。

默认的 MPRA2. dts 配置文件

修改后的 MPRA2. dts 配置文件

1.3 串口2的简单测试

经过前面的努力,扩展串口2就可以使用了,扩展串口2的名字为ttyS0,我们可以通过echo hello f403tech > /dev/ttyS0这个命令进行测试,如果对方接收到hello f403tech 这个字符串,那说明串口2已经可以正常使用了。注意,此时串口2默认的波特率是9600。

```
root@openWrt:/# ls /dev/tty*
/dev/tty /de
root@openWrt:/#
            /dev/ttyS0 /dev/ttyS1
                               扩展串口2为ttvS0
root@openWrt:/#
root@openWrt:/# echo hello f403tech > /dev/ttyS@
root@openWrt:/#
                                  输入测试命令
serial-com6 9600 - SecureCRT
 File Edit View Options Transfer Script
                                 iools Help
 Enter host <Alt+R>

✓ serial-com6 9600

hello f403tech
                                    测试结果
```

注意:

- 1). 该教程为我司(www.f403tech.com)原创教程,版权所有;
- 2). 该教程会不断更新、不断深入,详情请咨询我司客服;
- 3). 针对该教程,我们还有 QQ 群和论坛,专门负责技术答疑,详情请咨询我司客服。