Trabajo de Laboratorio Nº 1: Realimentación Lineal de estados

Considerar el siguiente circuito y suponer que el mismo es la simulación mediante computación analógica de un sistema físico.

Se pide:

- 1) Calcular la función de transferencia de la planta $G_p(s)$ a Lazo Abierto.
- 2) Escribir las ecuaciones de Estado Correspondientes.
- 3) Aplicar Realimentación Lineal de Estados tal que el sistema a lazo cerrado tenga el término independiente de su polinomio denominador igual a la ganancia del sistema a lazo cerrado (numerador) y tenga un Sobrepico Porcentual $OS\% \le 20\%$.
- 4) Indicar la función transferencia a lazo cerrado resultante T(s), determinar el factor de amortiguamiento correspondiente y los valores de resistencias R_1 y R_2 necesarios, como así también las ganancias de realimentación k_1 y k_2 . Considerar como variable de estados x_1 a la correspondiente a la salida y, e x_2 a la variable de estados intermedia. k_1 será la ganancia asociada a x_1 y x_2 a x_2 .
- 5) Verificar los resultados mediante una simulación utilizando Matlab.
- 6) Implementar el circuito correspondiente, medir y registrar la respuesta del sistema a lazo cerrado a una entrada escalón unitario. (Utilizar una onda cuadrada de $4V_{pp}$ y 0.5Hz).
- 7) Comparar los datos obtenidos en los dos puntos anteriores y justificar diferencias entre las respuestas obtenidas de la simulación y experimentalmente.
- 8) Justificar si es necesario aplicar Control integral.
- 9) Analizar que sucede si abre el camino de k_2 , obtener la función de transferencia a lazo cerrado para este caso particular, simular, medir experimentalmente y comparar ambos resultados.
- 10) Efectuar para todos los casos la simulación por Simulink.
- 11) Graficar el plano de fase en la simulación y compararla experimentalmente para los puntos 6 y 9.