Continuous Galerkin high order well-balanced discrete kinetic model for shallow water equations

Davide Torlo

Team Cardamom INRIA Bordeaux – Sud-Ouest

26 July 2021

joint work with Mario Ricchiuto and Rémi Abgrall

Outline

- Models
- Residual Distribution
- Time Discretization
 - IMEX
 - Deferred Correction
- Structure preserving
- Numerical tests
- 6 Conclusion and perspective

Outline

- Models
- Residual Distribution
- Time Discretization
 - IMEX
 - Deferred Correction
- Structure preserving
- Numerical tests
- Conclusion and perspective

Modify the kinetic relaxation models by D. Aregba-Driollet and R. Natalini¹ Hyperbolic limit equation is

(1)
$$u_t + \partial_x A(u) = 0, \quad u: \Omega \to \mathbb{R}^K$$

(2)

(3)
$$f^{\varepsilon} = (f_1, f_2, \dots, f_N) = (h_1, q_1, h_2, q_2, \dots, h_N, q_N)$$

(4)
$$f_t^{\varepsilon} + \Lambda \partial_x f^{\varepsilon} = \frac{1}{\varepsilon} \left(M(Pf^{\varepsilon}) - f^{\varepsilon} \right), \quad f^{\varepsilon} : \Omega \to \mathbb{R}^L$$

$$Pf^{\varepsilon} \to u, \quad P(M(u)) = u, \quad P\Lambda M(u) = A(u)$$

¹D. Aregba-Driollet and R. Natalini. SIAM J. Numer. Anal., 37(6):1973–2004, 2000.

Modify the kinetic relaxation models by D. Aregba-Driollet and R. Natalini¹ Hyperbolic limit equation is

(1)
$$u_t + \partial_x A(u) + S_b(u) + S_f(u) = 0, \quad u : \Omega \to \mathbb{R}^K$$

(2)
$$\begin{cases} h_t + q_x = 0 \\ q_t + (q^2/h + \frac{g}{2}h^2)_x + ghb_x = 0 \end{cases}$$

(3)
$$f^{\varepsilon} = (f_1, f_2, \dots, f_N) = (h_1, q_1, h_2, q_2, \dots, h_N, q_N)$$

(4)
$$f_t^{\varepsilon} + \Lambda \partial_x f^{\varepsilon} = \frac{1}{\varepsilon} \left(M(Pf^{\varepsilon}) - f^{\varepsilon} \right), \quad f^{\varepsilon} : \Omega \to \mathbb{R}^L$$

$$Pf^{\varepsilon} \to u, \quad P(M(u)) = u, \quad P\Lambda M(u) = A(u)$$

¹D. Aregba-Driollet and R. Natalini. SIAM J. Numer. Anal., 37(6):1973–2004, 2000.

Modify the kinetic relaxation models by D. Aregba-Driollet and R. Natalini¹ Hyperbolic limit equation is

(1)
$$u_t + \partial_x A(u) + S_b(u) + S_f(u) = 0, \quad u : \Omega \to \mathbb{R}^K$$

(2)
$$\begin{cases} h_t + q_x = 0 \\ q_t + (q^2/h + \frac{g}{2}h^2)_x + ghb_x = 0 \end{cases}$$

(3)
$$f^{\varepsilon} = (f_1, f_2, \dots, f_N) = (h_1, q_1, h_2, q_2, \dots, h_N, q_N)$$

$$(4) f_t^{\varepsilon} + \Lambda \partial_x f^{\varepsilon} + \tilde{S}_b(f^{\varepsilon}) = \frac{1}{\varepsilon} \left(M(Pf^{\varepsilon}) - f^{\varepsilon} \right), f^{\varepsilon} : \Omega \to \mathbb{R}^L, \tilde{S}_b(f) := \begin{pmatrix} S_{b/N}(f_1) \\ \cdots \\ S_{b/N}(f_N) \end{pmatrix},$$

$$Pf^{\varepsilon} \to u$$
, $P(M(u)) = u$, $P\Lambda M(u) = A(u)$, $P\tilde{S}_b(f) = S_b(Pf)$.

¹D. Aregba-Driollet and R. Natalini. SIAM J. Numer. Anal., 37(6):1973–2004, 2000.

Modify the kinetic relaxation models by D. Aregba-Driollet and R. Natalini¹ Hyperbolic limit equation is

(1)
$$u_t + \partial_x A(u) + S_b(u) + S_f(u) = 0, \quad u : \Omega \to \mathbb{R}^K$$

(2)
$$\begin{cases} h_t + q_x = 0 \\ q_t + (q^2/h + \frac{g}{2}(h^2 - b^2))_x + g(h + b)b_x = 0 \end{cases}$$

(3)
$$f^{\varepsilon} = (f_1, f_2, \dots, f_N) = (h_1, q_1, h_2, q_2, \dots, h_N, q_N)$$

$$(4) f_t^{\varepsilon} + \Lambda \partial_x f^{\varepsilon} + \tilde{S}_b(f^{\varepsilon}) = \frac{1}{\varepsilon} \left(M(Pf^{\varepsilon}) - f^{\varepsilon} \right), f^{\varepsilon} : \Omega \to \mathbb{R}^L, \tilde{S}_b(f) := \begin{pmatrix} S_{b/N}(f_1) \\ \cdots \\ S_{b/N}(f_N) \end{pmatrix},$$

$$Pf^{\varepsilon} \to u$$
, $P(M(u)) = u$, $P\Lambda M(u) = A(u)$, $P\tilde{S}_b(f) = S_b(Pf)$.

¹D. Aregba-Driollet and R. Natalini. SIAM J. Numer. Anal., 37(6):1973–2004, 2000.

Kinetic model - DRM

$$f^{\varepsilon} = (f_1, f_2)^T = (h_1, q_1, h_2, q_2)^T$$

Diagonal relaxation method (DRM)

- K = 2
- N = D + 1 = 2
- $L = N \times K = 2 \times 2$
- $P = (I_K, \dots, I_K) = (I_2, I_2)$
- $\bullet \ \Lambda = \begin{pmatrix} -\lambda I_2 \\ \lambda I_2 \end{pmatrix}$
- $M_1(u) = \frac{u\lambda A(u)}{2\lambda}$
- $M_2(u) = \frac{u\lambda + A(u)}{2\lambda}$

Kinetic model – DRM

$$f^{\varepsilon} = (f_1, f_2)^T = (h_1, q_1, h_2, q_2)^T$$

Diagonal relaxation method (DRM)

- K = 2
- N = D + 1 = 2
- \bullet $L = N \times K = 2 \times 2$
- $P = (I_K, \dots, I_K) = (I_2, I_2)$
- $\bullet \ \Lambda = \begin{pmatrix} -\lambda I_2 \\ \lambda I_2 \end{pmatrix}$
- $M_1(u) = \frac{u\lambda A(u)}{2\lambda}$
- $M_2(u) = \frac{u\lambda + A(u)}{2\lambda}$

$$u^{\varepsilon} := Pf^{\varepsilon} = f_1 + f_2$$

$$h^{\varepsilon} = h_1 + h_2, \quad q^{\varepsilon} = q_1 + q_2$$

$$f_t^{\varepsilon} + \Lambda \partial_x f^{\varepsilon} + \tilde{S}_b(f^{\varepsilon}) = \frac{1}{\varepsilon} \left(M(Pf^{\varepsilon}) - f^{\varepsilon} \right)$$

$$\partial_t \begin{pmatrix} h_1 \\ q_1 \\ h_2 \\ q_2 \end{pmatrix} + \partial_x \begin{pmatrix} -\lambda h_1 \\ -\lambda q_1 \\ \lambda h_2 \\ \lambda q_2 \end{pmatrix} - \begin{pmatrix} 0 \\ g(h_1 + \frac{b}{2})\partial_x b \\ 0 \\ g(h_2 + \frac{b}{2})\partial_x b \end{pmatrix} =$$

$$\frac{1}{2\varepsilon} \begin{pmatrix} -2h_1 + h^{\varepsilon} - \frac{q^{\varepsilon}}{\lambda} \\ -2q_1 + q^{\varepsilon} - \frac{(q^{\varepsilon})^2/(h^{\varepsilon}) + g((h^{\varepsilon})^2 - b^2)/2}{\lambda} \\ -2h_2 + h^{\varepsilon} + \frac{q^{\varepsilon}}{\lambda} \\ -2q_2 + q^{\varepsilon} + \frac{(q^{\varepsilon})^2/(h^{\varepsilon}) + g((h^{\varepsilon})^2 - b^2)/2}{\lambda} \end{pmatrix}.$$

Chapman-Enskog

$$\begin{split} f_t^\varepsilon + \Lambda \partial_x f^\varepsilon + \tilde{S}_b(f^\varepsilon) &= \frac{M(Pf^\varepsilon) - f^\varepsilon}{\varepsilon}, \\ + \\ P(M(u)) &= u, \quad P\Lambda M(u) = A(u), \quad P\tilde{S}_b(f) = S_b(Pf). \end{split}$$

Chapman-Enskog

$$\begin{split} f_t^\varepsilon + \Lambda \partial_x f^\varepsilon + \tilde{S}_b(f^\varepsilon) &= \frac{M(Pf^\varepsilon) - f^\varepsilon}{\varepsilon}, \\ &+ \\ P(M(u)) &= u, \quad P\Lambda M(u) = A(u), \quad P\tilde{S}_b(f) = S_b(Pf). \\ \partial_t u^\varepsilon + \partial_x A(u^\varepsilon) + S_b(u^\varepsilon) &= \varepsilon \Xi + \mathcal{O}(\varepsilon^2), \quad u^\varepsilon = Pf^\varepsilon, \\ \text{where } \Xi &:= \underbrace{\partial_x (B(u^\varepsilon) \partial_x u^\varepsilon)}_{\text{diffusion}} + \underbrace{\partial_x (-A'(u^\varepsilon) S_b(u^\varepsilon) + S_b(A(u^\varepsilon)))}_{?}, \\ \text{with } B(u) &:= P\Lambda^2 M'(u) - A'(u)^2 \in \mathbb{R}^{S \times S}. \end{split}$$

Chapman-Enskog

Relaxation system

$$f_t^\varepsilon + \Lambda \partial_x f^\varepsilon + \tilde{S}_b(f^\varepsilon) = \frac{M(Pf^\varepsilon) - f^\varepsilon}{\varepsilon},$$

$$+$$

$$P(M(u)) = u, \quad P\Lambda M(u) = A(u), \quad P\tilde{S}_b(f) = S_b(Pf).$$

$$\partial_t u^\varepsilon + \partial_x A(u^\varepsilon) + S_b(u^\varepsilon) = \varepsilon \Xi + \mathcal{O}(\varepsilon^2), \quad u^\varepsilon = Pf^\varepsilon,$$
 where
$$\Xi := \underbrace{\partial_x (B(u^\varepsilon) \partial_x u^\varepsilon)}_{\text{diffusion}} + \underbrace{\partial_x (-A'(u^\varepsilon) S_b(u^\varepsilon) + S_b(A(u^\varepsilon)))}_{?},$$
 with
$$B(u) := P\Lambda^2 M'(u) - A'(u)^2 \in \mathbb{R}^{S \times S}.$$

Whitham's subcharacteristic condition $B \ge 0 \implies \text{Diffusive}$

Chapman Enskog of Global Flux

Liu et al., SIAM Journal on Scientific Computing, 42 (2020)

(5)
$$\begin{cases} \partial_t h + \partial_x q = 0 \\ \partial_t q + \partial_x w = 0 \\ \partial_t w + a^2 \partial_x q = \frac{G(h,q) - w}{\varepsilon}, \end{cases}$$
$$G(h,q) := F(h,q) + \Sigma(h,q)$$
$$\Sigma(h,q) := \int_x^x S(h,q) dx$$
$$F(h,q) := \frac{q^2}{h} + \frac{g}{2}h^2$$
$$S(h,q) := ghb_x$$

Chapman-Enskog

$$\partial_t q + \partial_x G = \varepsilon \underbrace{\partial_x \left[\left(a^2 - \frac{\partial G}{\partial h} - \left(\frac{\partial G}{\partial q} \right)^2 \right) \partial_x q - \frac{\partial G}{\partial q} \frac{\partial G}{\partial h} \partial_x h \right]}_{\text{Diffusion?}},$$

Chapman Enskog of Global Flux

Liu et al., SIAM Journal on Scientific Computing, 42 (2020)

(5)
$$\begin{cases} \partial_t h + \partial_x q = 0 & G(h,q) := F(h,q) + \Sigma(h,q) \\ \partial_t q + \partial_x w = 0 & \Sigma(h,q) := \int_t^x S(h,q) dx \\ \partial_t w + a^2 \partial_x q = \frac{G(h,q) - w}{\varepsilon}, & F(h,q) := \frac{q^2}{h} + \frac{g}{2}h^2 \\ S(h,q) := ghb_x \end{cases}$$

Chapman-Enskog

$$\partial_{t}q + \partial_{x}G = \varepsilon \partial_{x} \left[\left(a^{2} - \frac{\partial F}{\partial h} - \frac{\partial \Sigma}{\partial h} - \left(\frac{\partial F}{\partial q} \right)^{2} - \frac{\partial F}{\partial q} \frac{\partial \Sigma}{\partial q} - \left(\frac{\partial \Sigma}{\partial q} \right)^{2} \right) \partial_{x}q - \left(\frac{\partial F}{\partial h} \frac{\partial F}{\partial q} + \frac{\partial F}{\partial h} \frac{\partial \Sigma}{\partial q} + \frac{\partial \Sigma}{\partial h} \frac{\partial \Sigma}{\partial q} \right) \partial_{x}h - \underbrace{\frac{\partial F}{\partial q} S}_{2} \right].$$

Outline

- Models
- Residual Distribution
- Time Discretization
 - IMEX
 - Deferred Correction
- Structure preserving
- Numerical tests
- Conclusion and perspective

Residual Distribution²

- High order
- FE based
- Compact stencil
- No need of conservative variables
- Can recast some other FV, FE, GF, DG schemes²

Finite Element Setting

$$\partial_t f + \nabla_x \cdot A(f) = S(f)$$

$$V_h = \{ f \in L^2(\Omega_h, \mathbb{R}^L) \cap \mathcal{C}^0(\Omega_h),$$

$$f|_K \in \mathbb{P}^p, \, \forall K \in \Omega_h \}$$

$$f(x) = \sum_{\sigma \in D_h} f_{\sigma} \varphi_{\sigma}(x)$$
$$= \sum_{K \in \Omega_h} \sum_{\sigma \in K} f_{\sigma} \varphi_{\sigma}(x)|_{K}$$

²R. Abgrall. Some remarks about conservation for residual distribution schemes. Computational Methods in Applied Mathematics, 2018. DOI: https://doi.org/10.1515/cmam-2017-0056.

Residual Distribution - Spatial Discretization

1 Define $\forall K \in \Omega_h$ a fluctuation term (total residual) $\phi^K = \int_K \nabla \cdot A(f) - S(f) dx$

Residual Distribution - Spatial Discretization

- Define $\forall K \in \Omega_h$ a fluctuation term (total residual) $\phi^K = \int_K \nabla \cdot A(f) S(f) dx$
- ② Define nodal residuals $\phi_{\sigma}^{K} \ \forall \sigma \in K : \phi^{K} = \sum_{\sigma \in K} \phi_{\sigma}^{K}, \quad \forall K \in \Omega_{h}.$

Choice of Residuals

Basic algorithm (Galerkin), numerical fluxes (Rusanov), linear stabilization terms (SUPG, jump derivative penalty), non linear stabilization (PSI).

Residual Distribution - Spatial Discretization

- **1** Define $\forall K \in \Omega_h$ a fluctuation term (total residual) $\phi^K = \int_K \nabla \cdot A(f) S(f) dx$
- ② Define nodal residuals $\phi_{\sigma}^{K} \ \forall \sigma \in K : \phi^{K} = \sum_{\sigma \in K} \phi_{\sigma}^{K}, \quad \forall K \in \Omega_{h}.$

Choice of Residuals

Basic algorithm (Galerkin), numerical fluxes (Rusanov), linear stabilization terms (SUPG, jump derivative penalty), non linear stabilization (PSI).

1 The resulting scheme is $\partial_t f_{\sigma} + \sum_{K|\sigma \in K} \phi_{\sigma}^K = 0$, $\forall \sigma \in D_h$.

Outline

- Models
- 2 Residual Distribution
- Time Discretization
 - IMEX
 - Deferred Correction
- Structure preserving
- Numerical tests
- 6 Conclusion and perspective

Stiff source term \Rightarrow unstable for $\varepsilon \ll \Delta t \Rightarrow$ IMEX approach: IMplicit for stiff source term, EXplicit for advection term and bathymetry source

(6)
$$\frac{f^{n+1,\varepsilon} - f^{n,\varepsilon}}{\Delta t} + \Lambda \partial_x f^{n,\varepsilon} + \tilde{S}_b(f^{n,\varepsilon}) = \frac{1}{\varepsilon} \left(M(Pf^{n+1,\varepsilon}) - f^{n+1,\varepsilon} \right).$$

Stiff source term \Rightarrow unstable for $\varepsilon \ll \Delta t \Rightarrow$ IMEX approach: IMplicit for stiff source term, EXplicit for advection term and bathymetry source

(6)
$$\frac{f^{n+1,\varepsilon} - f^{n,\varepsilon}}{\Delta t} + \Lambda \partial_x f^{n,\varepsilon} + \tilde{S}_b(f^{n,\varepsilon}) = \frac{1}{\varepsilon} \left(M(Pf^{n+1,\varepsilon}) - f^{n+1,\varepsilon} \right).$$

How to treat non-linear implicit functions?

Recall: PM(u) = u and $Pf^{\varepsilon} = u^{\varepsilon}$, so

(7)
$$\frac{u^{n+1,\varepsilon} - u^{n,\varepsilon}}{\Delta t} + P\Lambda \partial_x f^{n,\varepsilon} + S_b(u^{n,\varepsilon}) = 0.$$

Find $u^{n+1,\varepsilon}=Pf^{n+1,\varepsilon}$ and substitute it in the Maxwellian in (6).

Stiff source term \Rightarrow unstable for $\varepsilon \ll \Delta t \Rightarrow$ IMEX approach: IMplicit for stiff source term, EXplicit for advection term and bathymetry source

(6)
$$\frac{f^{n+1,\varepsilon} - f^{n,\varepsilon}}{\Delta t} + \Lambda \partial_x f^{n,\varepsilon} + \tilde{S}_b(f^{n,\varepsilon}) = \frac{1}{\varepsilon} \left(M(Pf^{n+1,\varepsilon}) - f^{n+1,\varepsilon} \right).$$

How to treat non-linear implicit functions?

Recall: PM(u) = u and $Pf^{\varepsilon} = u^{\varepsilon}$, so

(7)
$$\frac{u^{n+1,\varepsilon} - u^{n,\varepsilon}}{\Delta t} + P\Lambda \partial_x f^{n,\varepsilon} + S_b(u^{n,\varepsilon}) = 0.$$

Find $u^{n+1,\varepsilon} = Pf^{n+1,\varepsilon}$ and substitute it in the Maxwellian in (6).

Stiff source term \Rightarrow unstable for $\varepsilon \ll \Delta t \Rightarrow$ IMEX approach: IMplicit for stiff source term, EXplicit for advection term and bathymetry source

(6)
$$\frac{f^{n+1,\varepsilon} - f^{n,\varepsilon}}{\Delta t} + \Lambda \partial_x f^{n,\varepsilon} + \tilde{S}_b(f^{n,\varepsilon}) = \frac{1}{\varepsilon} \left(M(Pf^{n+1,\varepsilon}) - f^{n+1,\varepsilon} \right).$$

How to treat non-linear implicit functions?

Recall: PM(u) = u and $Pf^{\varepsilon} = u^{\varepsilon}$, so

(7)
$$\frac{u^{n+1,\varepsilon} - u^{n,\varepsilon}}{\Delta t} + P\Lambda \partial_x f^{n,\varepsilon} + S_b(u^{n,\varepsilon}) = 0.$$

Find $u^{n+1,\varepsilon} = Pf^{n+1,\varepsilon}$ and substitute it in the Maxwellian in (6).

- IMEX formulation is first order accurate =: \mathcal{L}^1
- IMEX formulation is asymptotic preserving (AP) (as $\varepsilon \to 0$ we recast SW)

³A. Dutt, L. Greengard, and V. Rokhlin. BIT Numerical Mathematics, 40(2):241–266, 2000.

³A. Dutt, L. Greengard, and V. Rokhlin. BIT Numerical Mathematics, 40(2):241–266, 2000.

How to combine two methods keeping the accuracy of the second and the stability and

simplicity of the first one?

$$\begin{split} f^{0,(k)} &:= f(t^n), \quad k = 0, \dots, K, \\ f^{m,(0)} &:= f(t^n), \quad m = 1, \dots, M \\ \mathcal{L}^1(\underline{f}^{(k)}) &= \mathcal{L}^1(\underline{f}^{(k-1)}) - \mathcal{L}^2(\underline{f}^{(k-1)}), k \leq K. \end{split}$$

DeC Theorem

- ullet \mathcal{L}^1 coercive
- $\mathcal{L}^1 \mathcal{L}^2$ Lipschitz

DeC order accuracy min(K, M + 1).

AP Theorem

$$\mathcal{L}^1$$
 AP \Longrightarrow DeC AP

$\mathcal{L}^1(f) = 0$

- IMEX
- First order accurate
- Mass lumping
- Computationally explicit

$\mathcal{L}^2(f) = 0$

- Order M+1
- Quadrature in timestep
- Nonlinearly implicit
- Implicit Runge–Kutta

³A. Dutt, L. Greengard, and V. Rokhlin. BIT Numerical Mathematics, 40(2):241–266, 2000.

How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$f^{0,(k)} := f(t^n), \quad k = 0, \dots, K,$$

$$f^{m,(0)} := f(t^n), \quad m = 1, \dots, M$$

$$\mathcal{L}^1(\underline{f}^{(k)}) = \mathcal{L}^1(\underline{f}^{(k-1)}) - \mathcal{L}^2(\underline{f}^{(k-1)}), k \le K.$$

DeC Theorem

- ullet \mathcal{L}^1 coercive
- ullet $\mathcal{L}^1-\mathcal{L}^2$ Lipschitz

DeC order accuracy min(K, M + 1).

AP Theorem⁴

$$\mathcal{L}^1 \mathsf{AP} \Longrightarrow \mathsf{DeC} \mathsf{AP}$$

• $\mathcal{L}^2(f) = 0$, high order M + 1.

AP \Longrightarrow Dec AP

 $[\]begin{array}{l} \bullet \ \mathcal{L}^1(\underline{f}) = 0, \mbox{first order} \\ \mbox{accuracy, easily invertible.} \end{array} f^M$

⁴R. Abgrall, and D.T.. SIAM Journal on Scientific Computing, 42(3):B816–B845, 2020.

How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$f^{0,(k)} := f(t^n), \quad k = 0, \dots, K,$$

$$f^{m,(0)} := f(t^n), \quad m = 1, \dots, M$$

$$\mathcal{L}^1(\underline{f}^{(k)}) = \mathcal{L}^1(\underline{f}^{(k-1)}) - \mathcal{L}^2(\underline{f}^{(k-1)}), k \le K.$$

- $\begin{array}{l} \bullet \ \mathcal{L}^1(\underline{f}) = 0, \mbox{first order} \\ \mbox{accuracy, easily invertible.} \end{array} f^M$
- $\mathcal{L}^2(f) = 0$, high order M + 1.

DeC Theorem

- ullet \mathcal{L}^1 coercive
- ullet $\mathcal{L}^1-\mathcal{L}^2$ Lipschitz

DeC order accuracy min(K, M + 1).

AP Theorem4

 \mathcal{L}^1 AP \Longrightarrow DeC AP

⁴R. Abgrall, and D.T.. SIAM Journal on Scientific Computing, 42(3):B816–B845, 2020.

How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$f^{0,(k)} := f(t^n), \quad k = 0, \dots, K,$$

$$f^{m,(0)} := f(t^n), \quad m = 1, \dots, M$$

$$\mathcal{L}^1(\underline{f}^{(k)}) = \mathcal{L}^1(\underline{f}^{(k-1)}) - \mathcal{L}^2(\underline{f}^{(k-1)}), k \le K.$$

DeC Theorem

- ullet \mathcal{L}^1 coercive
- ullet $\mathcal{L}^1 \mathcal{L}^2$ Lipschitz

DeC order accuracy min(K, M + 1).

AP Theorem4

$$\mathcal{L}^1 \mathsf{AP} \Longrightarrow \mathsf{DeC} \mathsf{AP}$$

• $\mathcal{L}^2(f) = 0$, high order M + 1.

AP \Longrightarrow Dec AP

[•] $\mathcal{L}^1(\underline{f}) = 0$, first order accuracy, easily invertible.

⁴R. Abgrall, and D.T.. SIAM Journal on Scientific Computing, 42(3):B816–B845, 2020.

How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$f^{0,(k)} := f(t^n), \quad k = 0, \dots, K,$$

$$f^{m,(0)} := f(t^n), \quad m = 1, \dots, M$$

$$\mathcal{L}^1(\underline{f}^{(k)}) = \mathcal{L}^1(\underline{f}^{(k-1)}) - \mathcal{L}^2(\underline{f}^{(k-1)}), k \le K.$$

• $\mathcal{L}^1(\underline{f}) = 0$, first order accuracy, easily invertible.

• $\mathcal{L}^2(f) = 0$, high order M + 1.

DeC Theorem

- ullet \mathcal{L}^1 coercive
- ullet $\mathcal{L}^1-\mathcal{L}^2$ Lipschitz

DeC order accuracy min(K, M + 1).

AP Theorem4

 \mathcal{L}^1 AP \Longrightarrow DeC AP

⁴R. Abgrall, and D.T. SIAM Journal on Scientific Computing, 42(3):B816–B845, 2020.

How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$f^{0,(k)} := f(t^n), \quad k = 0, \dots, K,$$

$$f^{m,(0)} := f(t^n), \quad m = 1, \dots, M$$

$$\mathcal{L}^1(\underline{f}^{(k)}) = \mathcal{L}^1(\underline{f}^{(k-1)}) - \mathcal{L}^2(\underline{f}^{(k-1)}), k \le K.$$

DeC Theorem

- ullet \mathcal{L}^1 coercive
- ullet $\mathcal{L}^1 \mathcal{L}^2$ Lipschitz

DeC order accuracy min(K, M + 1).

AP Theorem4

$$\mathcal{L}^1$$
 AP \Longrightarrow DeC AP

• $\mathcal{L}^2(f) = 0$, high order M + 1.

⁴R. Abgrall, and D.T. SIAM Journal on Scientific Computing, 42(3):B816–B845, 2020.

Outline

- Models
- Residual Distribution
- Time Discretization
 - IMEX
 - Deferred Correction
- Structure preserving
- Numerical tests
- Conclusion and perspective

Other properties

- Well balancedness: lake at rest steady state preservation
 - Match of the discretizations of the source term and the flux when v=0 and $n(x)=h^{\varepsilon}(x)+b(x)\equiv n_0$

•
$$\phi_{\sigma}^K = \int_K g \varphi^{\sigma} \partial_x \frac{(h^{\varepsilon})^2 - b^2}{2} dx + \int_E g \varphi^{\sigma} (h^{\varepsilon} + b) \partial_x b dx = 0$$

$$\int_{K} g\varphi^{\sigma} \partial_{x} \varphi^{i}(x) \underbrace{\frac{h^{\varepsilon}(x_{i}) - b(x_{i})}{2}}_{=\frac{\eta_{0}}{2} - b(x_{i})} \underbrace{(h^{\varepsilon}(x_{i}) + b(x_{i}))}_{=\eta_{0}} dx = \int_{K} -g\varphi^{\sigma} \eta_{0} \partial_{x} \varphi^{i}(x) b(x_{i}) dx = \int_{K} g\varphi^{\sigma} (h^{\varepsilon} + b) \partial_{x} b \, dx.$$

- Recipe for all sources \tilde{S}_b
- Stabilization techniques depends on η instead of h
- Depth non-negativity: mark dry cells, use positive schemes (Rusanov, modified Rusanov, PSI)

Outline

- Models
- 2 Residual Distribution
- Time Discretization
 - IMEX
 - Deferred Correction
- Structure preserving
- Numerical tests
- Conclusion and perspective

Simulations: Subcritical Flow

Figure: Subcritical flow: simulation \mathbb{C}^2 , N=100 (left) perturbation propagating (right)

$$b(x) = \begin{cases} 0.2 \exp\left(\frac{((x-10)/5)^2}{1-((x-10)/5)^2}\right), & \text{if } x \in B_5(10), \\ 0, & \text{else.} \end{cases} \qquad h^{\varepsilon}(0,x) = 2 - b(x) \qquad q^{\varepsilon}(0,t) = 4.42 \\ \lambda = 6.5, \quad \varepsilon = 10^{-14}, \qquad f^{\varepsilon}(0,x) = M(u^{\varepsilon}(0,x)) \qquad T = 100 \end{cases}$$

Simulations: Subcritical Flow

Figure: Subcritical flow: simulation with friction \mathbb{C}^2 , N=100 (left) perturbation propagating (right)

$$b(x) = \begin{cases} 0.2 \exp\left(\frac{((x-10)/5)^2}{1-((x-10)/5)^2}\right), & \text{if } x \in B_5(10), \\ 0, & \text{else.} \end{cases} \qquad h^{\varepsilon}(0,x) = 2 - b(x) \qquad q^{\varepsilon}(0,t) = 4.42 \\ \lambda = 6.5, \quad \varepsilon = 10^{-14}, \qquad f^{\varepsilon}(0,x) = 4.42 \qquad h^{\varepsilon}(25,t) = 2 \end{cases}$$

Simulations: Subcritical Flow

Figure: Subcritical flow: convergence for $\eta^{\varepsilon}=h^{\varepsilon}+b$ and $h^{\varepsilon}v^{\varepsilon}$

$$b(x) = \begin{cases} 0.2 \exp\left(\frac{((x-10)/5)^2}{1-((x-10)/5)^2}\right), & \text{if } x \in B_5(10), \\ 0, & \text{else.} \end{cases} \qquad h^{\varepsilon}(0,x) = 2 - b(x) \qquad q^{\varepsilon}(0,t) = 4.42 \\ \lambda = 6.5, \quad \varepsilon = 10^{-14}, \qquad f^{\varepsilon}(0,x) = M(u^{\varepsilon}(0,x)) \quad T = 100 \end{cases}$$

Simulations: lake at rest

Height, Lake at rest immersed bump test, N=200

1.5 1e-14Velocity, Lake at rest immersed bump test, N=200

Figure: Lake at rest with immersed bump test: η^{ε} and v^{ϵ} with N=200

$$b(x) = (0.2 - 0.05(x - 10)^{2}) \mathbb{1}_{\{8 < x < 12\}} \qquad q^{\varepsilon}(0, t) = 0 \qquad q - q^{ex} = \mathcal{O}(N_{t}\varepsilon)$$

$$\eta^{\varepsilon}(0, x) = 0.5 \qquad q^{\varepsilon}(25, t) = 0 \qquad T = 3$$

$$q^{\varepsilon}(0, x) = 0 \qquad \lambda = 2 \qquad \varepsilon = 10^{-14}$$

Simulations: lake at rest

Figure: Lake at rest with immersed bump perturbed: η^{ε} and v^{ε} with N=200

$$b(x) = (0.2 - 0.05(x - 10)^{2}) \mathbb{1}_{\{8 < x < 12\}} \qquad q^{\varepsilon}(0, t) = 0 \qquad q - q^{ex} = \mathcal{O}(N_{t}\varepsilon)$$
$$\eta^{\varepsilon}(0, x) = 0.5 \qquad q^{\varepsilon}(25, t) = 0 \qquad T = 3$$
$$q^{\varepsilon}(0, x) = 0 \qquad \lambda = 2 \qquad \varepsilon = 10^{-14}$$

Simulations: wet and dry lake at rest

Figure: Lake at rest in parabola test: η^{ε} and v^{ε} with N=64

$$b(x) = (x - 2)^{2} - 0.5$$

$$\eta^{\varepsilon}(0, x) = \max(0.5, b(x))$$

$$\lambda = 4$$

$$q - q^{ex} = \mathcal{O}(N_{t}\varepsilon)$$

$$T = 3$$

$$\varepsilon = 10^{-14}$$

Simulations: Thacker's Oscillations

Figure: Thacker oscillations in parabola test: η^{ε} and $h^{\varepsilon}v^{\varepsilon}$ with \mathbb{C}^1 and N=300

$$b(x) = (x-2)^2 - 0.5 \qquad \text{period} = 2.0606$$

$$\eta^{\varepsilon}(0,x) = \max(-0.5x + 0.875, b(x)) \qquad T = 5 \cdot 2.0606$$

$$\lambda = 6.5 \qquad \varepsilon = 10^{-14}$$

Simulations: Thacker's Oscillations

Figure: Thacker oscillations in parabola test: η^{ε} and $h^{\varepsilon}v^{\varepsilon}$ with \mathbb{C}^2 and N=300

$$b(x) = (x-2)^2 - 0.5 \qquad \text{period} = 2.0606$$

$$\eta^{\varepsilon}(0,x) = \max(-0.5x + 0.875, b(x)) \qquad T = 5 \cdot 2.0606$$

$$\lambda = 6.5 \qquad \varepsilon = 10^{-14}$$

21/27

Simulations: Thacker's Oscillations

Figure: Thacker oscillations in parabola test: η^{ε} and $h^{\varepsilon}v^{\varepsilon}$ with \mathbb{C}^3 and N=150

$$b(x) = (x-2)^2 - 0.5$$
 period = 2.0606
 $\eta^{\varepsilon}(0,x) = \max(-0.5x + 0.875, b(x))$ $T = 5 \cdot 2.0606$
 $\lambda = 6.5$ $\varepsilon = 10^{-14}$

Inclined plane with friction

$$\partial_x b(x) \equiv 0.002$$

$$\eta^{\varepsilon}(0, x) = 2$$

$$q^{\varepsilon}(0, x) = 2.75$$

$$q^{\varepsilon}(0, t) = 2.5$$

$$h^{\varepsilon}(300, t) = 2$$

$$\lambda = 22$$

$$n = 0.2515597$$

$$T = 1000$$

$$\varepsilon = 10^{-14}$$

Figure: Subcritical flow: η^{ε} and $h^{\varepsilon}v^{\varepsilon}$ with \mathbb{C}^2 and N=400

Inclined plane with friction

Figure: Supercritical flow: η^{ε} and $h^{\varepsilon}v^{\varepsilon}$ with \mathbb{C}^2 and N=400

$$\partial_x b(x) \equiv 0.01$$

$$\eta^{\varepsilon}(0, x) = 0.75$$

$$q^{\varepsilon}(0, x) = 2.75$$

$$h^{\varepsilon}(0, t) = 0.75$$

$$q^{\varepsilon}(0, t) = 2.5$$

$$\lambda = 22$$

$$n = 0.067820251$$

$$T = 1000$$

$$\varepsilon = 10^{-14}$$

Relaxation as Diffusion

Relaxation as diffusion

- Smooth problems
- Set $\varepsilon \approx \Delta t^{p+1}$
- Relaxation term is diffusive in Chapman–Eskong
- Pure Galerkin discretization

Figure: Subcritical flow \mathbb{C}^1 N=400, \mathbb{C}^2 N=200. η^ε and $h_p^\varepsilon - h^\varepsilon$ T=0.76.

Relaxation as Diffusion

Relaxation as diffusion

- Smooth problems
- Set $\varepsilon \approx \Delta t^{p+1}$
- Relaxation term is diffusive in Chapman–Eskong
- Pure Galerkin discretization

Figure: Subcritical flow \mathbb{C}^1 N=200, \mathbb{C}^2 N=100 and N=400 Perturbations of bump test cases with *cubature* elements: top to down η^{ε} , $h^{\varepsilon}_{p} - h^{\varepsilon}$ and q^{ε} ; left T = 0.76 right T = 2.

Outline

- Models
- 2 Residual Distribution
- Time Discretization
 - IMEX
 - Deferred Correction
- Structure preserving
- Numerical tests
- 6 Conclusion and perspective

Conclusion and perspective

Conclusions

- Kinetic Model with extra source terms (bathymetry and friction)
- Chapman–Enskog: diffusive, but extra term
- Discretization:
 - IMEX in time
 - Residual distribution
 - Deferred Correction
 - Well balanced for late at rest
 - Wet and dry area
 - Positive water height

Perspective

- MOOD
- Entropy stability
- Multi dimension

IMEX DeC RD - Bibliography

- R. Abgrall, and D.T.. High Order Asymptotic Preserving Deferred Correction Implicit-Explicit Schemes for Kinetic Models. SIAM Journal on Scientific Computing, 42(3):B816–B845, 2020.
- D. Aregba-Driollet, and R. Natalini. Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal., 37(6):1973–2004, 2000.
- A. Dutt, L. Greengard, and V. Rokhlin. Spectral Deferred Correction Methods for Ordinary Differential Equations. BIT Numerical Mathematics, 40(2):241–266, 2000.
- R. Abgrall. High Order Schemes for Hyperbolic Problems Using Globally Continuous Approximation and Avoiding Mass Matrices. Journal of Scientific Computing, 73(2):461–494, 2017.
- M. Ricchiuto, and A. Bollermann. Stabilized residual distribution for shallow water simulations. Journal of Computational Physics, 228(4):1071–1115, 2009.

IMEX DeC RD

Thank you for the attention!

Residual Distribution - Choice of the scheme

(8)
$$\phi_{\sigma}^{K,LxF}(U_h) = \int_K \varphi_{\sigma} \left(\nabla \cdot A(U_h) - S(U_h) \right) dx + \alpha_K (U_{\sigma} - \overline{U}_h^K),$$

where \overline{U}_h^K is the average of U_h over the cell K and α_K is defined as

(9)
$$\alpha_K = \max_{e \text{ edge } \in K} \left(\rho_S \left(\nabla A(U_h) \cdot \mathbf{n}_e \right) \right),$$

 ρ_S is the spectral radius.

For monotonicity near strong discontinuities, PSI limiter:

(10)
$$\beta_{\sigma}^{K}(U_{h}) = \max\left(\frac{\Phi_{\sigma}^{K,LxF}}{\Phi^{K}}, 0\right) \left(\sum_{j \in K} \max\left(\frac{\Phi_{j}^{K,LxF}}{\Phi^{K}}, 0\right)\right)^{-1}$$

Residual Distribution - Choice of the scheme

Blending between LxF and PSI:

(11)
$$\phi_{\sigma}^{*,K} = (1 - \Theta)\beta_{\sigma}^{K}\phi_{\sigma}^{K} + \Theta\Phi_{\sigma}^{K,LxF},$$

$$\Theta = \frac{|\Phi^{K}|}{\sum_{j \in K} |\Phi_{j}^{K,LxF}|}.$$

Nodal residual is finally given by

(12)
$$\phi_{\sigma}^{K} = \phi_{\sigma}^{*,K} + \sum_{e \mid \text{edge of } K} \theta h_{e}^{2} \int_{e} [\nabla U_{h}] \cdot [\nabla \varphi_{\sigma}] d\Gamma.$$

DeC - Proof

Proof.

Let U^* be the solution of $\mathcal{L}^2(U^*)=0$. We know that $\mathcal{L}^1(U^*)=\mathcal{L}^1(U^*)-\mathcal{L}^2(U^*)$, so that

$$\mathcal{L}^{1}(U^{(k+1)}) - \mathcal{L}^{1}(U^{*}) = \left(\mathcal{L}^{1}(U^{(k)}) - \mathcal{L}^{2}(U^{(k)})\right) - \left(\mathcal{L}^{1}(U^{*}) - \mathcal{L}^{2}(U^{*})\right)$$

$$= \left(\mathcal{L}^{1}(U^{(k)}) - \mathcal{L}^{1}(U^{*})\right) - \left(\mathcal{L}^{2}(U^{(k)}) - \mathcal{L}^{2}(U^{*})\right)$$

$$\alpha_{1}||U^{(k+1)} - U^{*}|| \leq ||\mathcal{L}^{1}(U^{(k+1)}) - \mathcal{L}^{1}(U^{*})|| =$$

$$= ||\mathcal{L}^{1}(U^{(k)}) - \mathcal{L}^{2}(U^{(k)}) - (\mathcal{L}^{1}(U^{*}) - \mathcal{L}^{2}(U^{*}))|| \leq$$

$$\leq \alpha_{2}\Delta||U^{(k)} - U^{*}||.$$

$$||U^{(k+1)} - U^{*}|| \leq \left(\frac{\alpha_{2}}{\alpha_{1}}\Delta\right)||U^{(k)} - U^{*}|| \leq \left(\frac{\alpha_{2}}{\alpha_{1}}\Delta\right)^{k+1}||U^{(0)} - U^{*}||.$$

After K iteration we have an error at most of $\eta^K \cdot ||U^{(0)} - U^*||$.

Friction - Model

$$\partial_t u(x,t) + \partial_x A(u(x,t)) + S_b(u(x,t)) + S_f(u(x,t)) = 0,$$

$$S_f(u) := \begin{pmatrix} 0 \\ c_f(h,q)q \end{pmatrix}.$$

Manning's law

$$c_f(h,q) = \frac{n^2 \|q\|}{h^{10/3}},$$

with n being Manning's coefficient.

$$\begin{split} &\partial_t f^\varepsilon + \Lambda \partial_x f^\varepsilon + \tilde{S}_b(f^\varepsilon) + \tilde{S}_f(f^\varepsilon) \\ &= \frac{M(Pf^\varepsilon) - f^\varepsilon}{\varepsilon}, \end{split}$$

with

$$ilde{S}_f(f^{arepsilon}) := egin{pmatrix} 0 \\ c_f(h^{arepsilon}, q^{arepsilon})q_1 \\ 0 \\ c_f(h^{arepsilon}, q^{arepsilon})q_2 \end{pmatrix},$$

so that the projection of this source term is equal to the friction in the SW equations, i.e., $P\tilde{S}_f(f^\varepsilon) = S_f(Pf^\varepsilon)$, and it verifies also $P\Lambda \tilde{S}_f(f) = S_f(P\Lambda f)$.

Friction - Implicit Discretization

Implicit Friction, without nonlinear solver.

• limit equation: $P\mathcal{L}_1$, where $h^{\varepsilon,n+1}$ explicit and $q^{\varepsilon,n+1}$

$$|K_{\sigma}| \left(q_{\sigma}^{\varepsilon,n,m} - q_{\sigma}^{\varepsilon,n,0} \right) + \Delta t \beta^m \sum_{K|\sigma \in K} P \Phi_K^{\sigma,ex}(f^{n,0}) + \Delta t \beta^m |K_{\sigma}| S_{f,q}(u_{\sigma}^{\varepsilon,n,m}) = 0,$$

ullet $\mathcal{E}^n_{q,\sigma}=$ all the explicit terms

$$q_{\sigma}^{\varepsilon,n,m}\left(1+\Delta t\beta^{m}\frac{n^{2}|q_{\sigma}^{\varepsilon,n,m}|}{(h_{\sigma}^{\varepsilon,n,m})^{10/3}}\right)=\mathcal{E}_{q,\sigma}^{n}.$$

• $\Delta t, n, h_{\sigma}^{\varepsilon,n,m} > 0$ known, solve for the absolute value of $q_{\sigma}^{\varepsilon,n,m}$

$$|q_{\sigma}^{\varepsilon,n,m}| \left(1 + \Delta t \beta^m \frac{n^2 |q_{\sigma}^{\varepsilon,n,m}|}{(h_{\sigma}^{\varepsilon,n,m})^{10/3}} \right) = |\mathcal{E}_{q,\sigma}^n|,$$

• Only 1 positive solution $|q^{\varepsilon,n,m}_{\sigma}| \Longrightarrow q^{\varepsilon,n,m}_{\sigma}$.

Friction - Implicit Discretization

- Only 1 positive solution $|q_{\sigma}^{\varepsilon,n,m}| \Longrightarrow q_{\sigma}^{\varepsilon,n,m}$.
- Kinetic model

$$|K_{\sigma}|(f_{\sigma}^{n,m} - f_{\sigma}^{n,0}) + \Delta t \beta^{m} \left(\sum_{K|\sigma \in K} \Phi_{K}^{\sigma,ex}(f^{n,0}) + |K_{\sigma}| \left(\tilde{S}_{f}(f_{\sigma}^{n,m}) + \frac{f_{\sigma}^{n,m} - M(Pf_{\sigma}^{n,m})}{\varepsilon} \right) \right) = 0,$$

• Friction coefficient $c_{f,\sigma}^{n,m}:=c_f(h_\sigma^{\varepsilon,n,m},q_\sigma^{\varepsilon,n,m})$ known, \mathcal{E}_σ^n all the explicit terms,

$$\begin{pmatrix} h_{1,\sigma}^{n,m} \left(1 + \frac{\Delta t \beta^m}{\varepsilon} \right) \\ q_{1,\sigma}^{n,m} \left(1 + \frac{\Delta t \beta^m}{\varepsilon} + \Delta t \beta^m c_{f,\sigma}^{n,m} \right) \\ h_{2,\sigma}^{n,m} \left(1 + \frac{\Delta t \beta^m}{\varepsilon} \right) \\ q_{2,\sigma}^{n,m} \left(1 + \frac{\Delta t \beta^m}{\varepsilon} + \Delta t \beta^m c_{f,\sigma}^{n,m} \right) \end{pmatrix} - \Delta t \beta^m \frac{M(u_{\sigma}^{\varepsilon,n,m})}{\varepsilon} + \mathcal{E}_{\sigma}^n = 0.$$

Again, also this final step can be computed explicitly and, hence, all the variables $f_{\sigma}^{n,m}$ can be obtained efficiently.

Global flux (GF) formulation

Global flux:

- Cheng et al., Journal of Scientific Computing, 80 (2019)
- Liu et al., SIAM Journal on Scientific Computing, 42 (2020)

Main Idea

$$u_t + \partial_x A(u) = S(u)$$

$$u_t + \partial_x G(u) = 0$$

$$\partial_x G(u) = \partial_x A(u) - S(u)$$

$$G(u(x), x) = \int_{x_0}^x \partial_x A(u) - S(u, s) ds$$

Global flux (GF) formulation

Global flux:

- Cheng et al., Journal of Scientific Computing, 80 (2019)
- Liu et al., SIAM Journal on Scientific Computing, 42 (2020)

Main Idea

$$u_t + \partial_x A(u) = S(u)$$

$$u_t + \partial_x G(u) = 0$$

$$\partial_x G(u) = \partial_x A(u) - S(u)$$

$$G(u(x), x) = \int_{x_0}^x \partial_x A(u) - S(u, s) ds$$

RD as GF

$$\operatorname{RD} \begin{cases} K = [a,b] \text{ with } p+1 \text{ degrees of freedom} \\ \phi_i^K = \int_K \omega_i (\partial_x A(u) + S(u)) \mathrm{d}x, \ 0 \leq i \leq p, \\ \sum_{i \in K} \omega_i \equiv 1 \\ \partial_t u_i = -\frac{1}{\Delta x} \sum_K \phi_i^K, \end{cases}$$

- $S_h(u) \in \mathbb{P}^{p-1}(K)$,
- $\bullet \partial_x \Sigma(x) = S_h(u(x)),$
- $G(u) := A(u) \Sigma(u)$.

Equivalence between RD and GF

Search: Global numerical flux $\hat{G}_{i+\frac{1}{2}}$ for $i=0,\ldots,p-1$

$$\begin{cases} \phi_i^K = \hat{G}_{i+\frac{1}{2}} - \hat{G}_{i-\frac{1}{2}}, & i = 1, \dots, p-1, \\ \phi_0^K = \hat{G}_{\frac{1}{2}} - G(a), \\ \phi_p^K = G(b) - \hat{G}_{p-\frac{1}{2}}. \end{cases}$$

Update formula

$$\partial_t u_i = -\frac{1}{\Delta x} \sum_K \phi_i^K$$

$$\partial_t u_i = -\frac{\hat{G}_{i+\frac{1}{2}} - \hat{G}_{i-\frac{1}{2}}}{\Delta x}$$

Solution for numerical global flux

- ullet p+1 equations p unknowns
- One linear dependent equation as $\phi^K = G(b) G(a)$
- $\bullet \ \ \text{Explicit solution} \ \hat{G}_{\frac{1}{2}} = G(a) + \phi_0^K; \ \hat{G}_{i+\frac{1}{2}} = \hat{G}_{i-\frac{1}{2}} + \phi_i^K.$

Consistency of RD GF

$$G(a) = \hat{G}_{i+\frac{1}{2}} = G(b), \forall i$$

$$\iff \phi_i^K = 0, \forall i$$