Statistical Learning

Linear Models for Regression

Spring 2024

Outline

- Linear Regression Review
- Training vs. Testing Errors
- Model Selection Criteria and Algorithms

Linear Models for Regression

Regression Models

Observe a collection of n i.i.d. training samples

$$\mathcal{D}_n = \{x_i, y_i\}_{i=1}^n$$

where x_i is a p dimensional vector (predictors, covariates, features, inputs)

$$x_i = (x_{i1}, \dots, x_{ip})^\mathsf{T}$$

and $y_i \in \mathbb{R}$ is a continuous response (outcome, output).

- We assume the underlying model $Y = f(X) + \epsilon$
- Estimate f using \widehat{f}

Notation

• \mathbf{x}_j is a n dimensional vector of the jth feature, i.e.,

$$\mathbf{x}_j = (x_{1j}, x_{2j}, \dots, x_{nj})^\mathsf{T}$$

• The design matrix \mathbf{X} is $n \times p$:

$$\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p)$$

• \mathbf{x}_j is one column in \mathbf{X}

Loss and Risk

- What is a good model fitting?
- · Loss function, risk, and empirical risk
- A loss function L measures the discrepancy between Y and any function f(X)
- Risk is the expected loss over the entire population

$$R(f) = E[L(Y, f(X))]$$

• The true function f(x) would minimize this risk.

Loss and Risk

• In regression, the squared error loss is commonly used:

$$L(Y, f(X)) = (Y - f(X))^{2}$$

$$R(f) = E[(Y - f(X))^{2}]$$

- Other examples for regression: Huber loss
- For classification: 0/1, logistic, hinge, etc.

The Empirical Risk

• With the training data \mathcal{D}_n , estimate f(x) by minimizing the empirical risk

$$\mathsf{R}_n(f) = \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i))$$

$$\widehat{f}(x) = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \quad \mathsf{R}_n(f)$$

where \mathcal{F} is some space of models

· Using the squared error loss for regression, we have

$$\widehat{f} = \underset{f \in \mathcal{F}}{\operatorname{arg \, min}} \quad \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2.$$

Regression

Estimating f(X), figure from ESL

Linear Regression

- A linear regression model assumes a functional form of \boldsymbol{f}

$$f(X) = X^{\mathsf{T}} \boldsymbol{\beta}$$

- Note: set $X_1 = 1$ as the intercept term.
- We express the regression problem in the matrix form

$$\mathbf{y}_{n\times 1} = \mathbf{X}_{n\times p} \boldsymbol{\beta}_{p\times 1} + \mathbf{e}_{n\times 1}$$

Linear Regression

• Solve β by minimizing the residual sum of squares (RSS)

$$RSS = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2$$
$$= ||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||^2$$
$$= (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

The ordinary least squares estimator (OLS) is

$$\widehat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \quad (\mathbf{y} - \mathbf{X} \boldsymbol{\beta})^{\mathsf{T}} (\mathbf{y} - \mathbf{X} \boldsymbol{\beta})$$

Linear Regression

Solving linear regression, figure from ESL

Estimate β

• To estimate β , we set the derivative equal to 0

$$\begin{split} \frac{\partial \mathsf{RSS}}{\partial \boldsymbol{\beta}} &= -2\mathbf{X}^\top (\mathbf{y} - \mathbf{X} \boldsymbol{\beta}) = 0 \\ \Longrightarrow & \mathbf{X}^\top \mathbf{y} = & \mathbf{X}^\top \mathbf{X} \boldsymbol{\beta} \end{split}$$

which is the normal equation.

• We then have, if X^TX is invertible,

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}.$$

• X full rank $\iff X^{\top}X$ invertible

Hat Matrix

• The fitted values (i.e., prediction at observed x_i 's) are

$$\widehat{\mathbf{y}} = \mathbf{X} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y} \doteq \mathbf{H}_{n \times n} \mathbf{y}$$

- H ("hat matrix") is a project matrix
 - symmetric: $\mathbf{H}^T = \mathbf{H}$
 - idempotent: HH = H
- The residual $\mathbf{r}_{n\times 1} = \widehat{\mathbf{e}} = \mathbf{y} \widehat{\mathbf{y}} = (\mathbf{I} \mathbf{H})\mathbf{y}$
- r can be used to estimate the error variance

$$\widehat{\sigma}^2 = \frac{1}{n-p} \sum_{i=1}^n r_i^2 = \frac{\mathsf{RSS}}{n-p}$$

Hat Matrix

- · The essential machinery of linear regression is projection
- Decompose the outcome vector y into two orthogonal vectors

$$\mathbf{y}=\widehat{\mathbf{y}}+\mathbf{r}$$

- $\hat{\mathbf{y}}$ lives in the column space of \mathbf{X} , since $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$
- ${\bf r}$ is orthogonal to ${\bf X}$, i.e., ${\bf X}^{\sf T}{\bf r}={\bf 0}$

Vector Space Interpretation

Figure from Wiki

Properties of $\widehat{oldsymbol{eta}}$

We assume that the samples are generated from the model

$$Y = X^{\mathsf{T}} \boldsymbol{\beta} + \epsilon,$$

where the errors ϵ_i are i.i.d. with $\mathsf{E}(\epsilon_i) = 0$ and $\mathsf{Var}(\epsilon_i) = \sigma^2$

- Then $\widehat{\boldsymbol{\beta}}$ is unbiased: $\mathsf{E}(\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$
- · Variance-covariance

$$\mathsf{Var}(\widehat{\boldsymbol{\beta}}) = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\sigma^2$$

• σ^2 can be estimated using $\hat{\sigma}^2$

Properties of $\widehat{oldsymbol{eta}}$

- Among all unbiased linear estimators, $\widehat{\beta}$ has the smallest variance. (Gauss-Markov Theorem)
- · An unbiased linear estimator is defined as

$$\widehat{\boldsymbol{\beta}} = \mathbf{A}\mathbf{y}, \text{ and } \mathsf{E}(\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$$

- Further assuming ϵ is normal, $\widehat{\beta}$ is also UMVUE
- Question: What if we have a biased estimator? Can we trade a little bias for a large reduction in variance?

Training vs. Testing Errors

Dealing with large p

- In many applications nowadays, we have many explanatory variables, i.e., p is large or even $p \gg n$.
 - There are more than 20,000 human protein-coding genes
 - About 10 million single nucleotide polymorphisms (SNPs)
 - Number of subjects, n, is usually in hundreds or thousands
- In some applications, the key question is to identify a subset of X
 variables that are most relevant to Y
- Let's examine the training and testing errors from a linear model

Training vs. Testing error

- Training data $\mathcal{D}_n = \{x_i, y_i\}_{i=1}^n$
- Suppose $\{x_i,y_i^*\}_{i=1}^n$ is an independent (imaginary) testing dataset collected at the same location x_i 's (aka, in-sample prediction)
- Assume that the data are indeed from a linear model

$$\mathbf{y} = \boldsymbol{\mu} + \mathbf{e} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$
 $\mathbf{y}^* = \boldsymbol{\mu} + \mathbf{e}^* = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}^*$

where both \mathbf{y} and \mathbf{y}^* are $n \times 1$ response vectors, \mathbf{e} and \mathbf{e}^* are i.i.d. error terms with mean 0 and variance σ^2 .

• The true model is indeed linear: $\mu = X\beta$

Training vs. Testing error

$$\begin{split} \mathsf{E}[\mathsf{Test}\ \mathsf{Err}] &= \mathsf{E} \|\mathbf{y}^* - \mathbf{X}\widehat{\boldsymbol{\beta}}\|^2 \\ &= \mathsf{E} \|(\mathbf{y}^* - \mathbf{X}\boldsymbol{\beta}) + (\mathbf{X}\boldsymbol{\beta} - \mathbf{X}\widehat{\boldsymbol{\beta}})\|^2 \\ &= \mathsf{E} \|\mathbf{y}^* - \boldsymbol{\mu}\|^2 + \mathsf{E} \|\mathbf{X}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})\|^2 \\ &= \mathsf{E} \|\mathbf{e}^*\|^2 + \mathsf{Trace} \big(\mathbf{X}^\mathsf{T}\mathbf{X}\mathsf{Cov}(\widehat{\boldsymbol{\beta}})\big) \\ &= n\sigma^2 + p\sigma^2 \end{split}$$

Training vs. Testing error

$$\begin{split} \mathsf{E}[\mathsf{Train}\;\mathsf{Err}] &= \mathsf{E} \|\mathbf{y} - \widehat{\mathbf{y}}\|^2 = \mathsf{E} \|(\mathbf{I} - \mathbf{H})\mathbf{y}\|^2 \\ &= \mathsf{E} \|(\mathbf{I} - \mathbf{H})\mathbf{e}\|^2 \\ &= \mathsf{Trace} \big((\mathbf{I} - \mathbf{H})^\mathsf{T}(\mathbf{I} - \mathbf{H})\mathsf{Cov}(\mathbf{e})\big) \\ &= (n-p)\sigma^2 \end{split}$$

 Hence, the testing error increases with p and training error decreases with p. As p gets larger, this could be a big trouble...

Variable Selection

- It might be necessary to select a set of most relevant variables, especially when p is large.
- · Variable selection may improve
 - Prediction accuracy
 - Interpretability
- This is a difficult task
 - No natural ordering of importance for the variables
 - The role of a variable needs be measured conditioning on others, high correlation causes trouble
 - It is essential to check all possible combinations, however, this may be computationally expensive

Model Selection Criteria and

Algorithms

Model Selection Criteria

- Model selection is usually done in the following way
 - 1) Give each model a score
 - 2) Design an algorithm to find the model with the best (smallest) score
- The score of a model fitting takes the form

Goodness-of-fit + Complexity-Penalty

- The first term decreases as the model gets more complicated (recall 1NN)
- The second term increases with the number of predictor variables (recall degrees of freedom), which prefers "smaller" model

Model Selection Criteria

- · Popular choices of scores:
 - Mallows' C_p (Mallows, 1973): RSS + $2\hat{\sigma}_{\text{full}}^2 \cdot p$
 - AIC (Akaike, 1970): -2 Log-likelihood $+ 2 \cdot p$
 - BIC (Schwarz, 1978): $-2 \operatorname{Log-likelihood} + \frac{\log n}{n} \cdot p$
- When n is large, adding an additional predictor costs a lot more in BIC than AIC (or C_p). So AIC tends to pick a larger model than BIC.
- C_p performs similarly to AIC.

Justification of Mallows' C_p

- Recall our previous analysis of the training and testing errors with y and y*
- Now, lets assume that the model is not necessarily a linear model, i.e.,

$$\mathbf{y} = \boldsymbol{\mu} + \mathbf{e}$$
 $\mathbf{y}^* = \boldsymbol{\mu} + \mathbf{e}^*$

• We assume mean 0 and variance σ^2 for the two error vectors, but we don't have $\mu = \mathbf{X}\boldsymbol{\beta}$. However, we still perform linear regression regardless. This will introduce bias of the estimations.

Justification of Mallows' C_p

$$\begin{split} \mathsf{E}[\mathsf{Test}\,\mathsf{Err}] &= \mathsf{E} \|\mathbf{y}^* - \mathbf{X}\widehat{\boldsymbol{\beta}}\|^2 = \|\mathbf{y}^* - \mathbf{H}\mathbf{y}\|^2 \\ &= \mathsf{E} \|(\mathbf{y}^* - \boldsymbol{\mu}) + (\boldsymbol{\mu} - \mathbf{H}\boldsymbol{\mu}) + (\mathbf{H}\boldsymbol{\mu} - \mathbf{H}\mathbf{y})\|^2 \\ &= \mathsf{E} \|\mathbf{y}^* - \boldsymbol{\mu}\|^2 + \mathsf{E} \|\boldsymbol{\mu} - \mathbf{H}\boldsymbol{\mu}\|^2 + \mathsf{E} \|\mathbf{H}\boldsymbol{\mu} - \mathbf{H}\mathbf{y}\|^2 \\ &= \mathsf{E} \|\mathbf{e}^*\|^2 + \mathsf{E} \|\boldsymbol{\mu} - \mathbf{H}\boldsymbol{\mu}\|^2 + \mathsf{E} \|\mathbf{H}\mathbf{e}\|^2 \\ &= n\sigma^2 + \mathsf{Bias}^2 + p\sigma^2 \end{split}$$

$$\begin{aligned} \mathsf{E}[\mathsf{Train}\;\mathsf{Err}] &= \mathsf{E} \|\mathbf{y} - \widehat{\mathbf{y}}\|^2 = \mathsf{E} \|(\mathbf{I} - \mathbf{H})\boldsymbol{\mu} + (\mathbf{I} - \mathbf{H})\mathbf{e}\|^2 \\ &= \mathsf{E} \|(\mathbf{I} - \mathbf{H})\boldsymbol{\mu}\|^2 + \mathsf{E} \|(\mathbf{I} - \mathbf{H})\mathbf{e}\|^2 \\ &= \mathsf{Bias}^2 + (n - p)\sigma^2 \end{aligned}$$

Hence, Test Err is approximately Train Err $+ 2\sigma^2 p$, which justifies Mallows' C_p .

Model Selection

- To perform linear model selection, we need to decide on a selection criterion and use an computational algorithm to find the solution
 - Criteria: Mallows' Cp; AIC; BIC
 - Algorithm: Best subset (Brute force); stepwise (forward/backward/...) selection
- Different algorithms may have different advantage

Best Subset Selection

- Best subset selection is a level-wise search algorithm, which returns the global optimal solution for a given model size.
- Only feasible for p not very large (< 50)
- · Algorithm:
 - 1 For each $k=1,\dots,p,$ check 2^k possible combinations, and find the model with smallest RSS
 - The penalty term is the same for models with the same size
 - 2 To choose the best k, use model selection criteria

Best Subset Selection

- Note: if ${\sf RSS}(X_1,X_2)<{\sf RSS}(X_3,X_4,X_5,X_6)$ then we do not need to visit any size 2 or 3 sub-models of (X_3,X_4,X_5,X_6) , which can be leaped over.
- Implemented in $\mathbb R$ package leaps, using the leaps and bounds algorithm by Furnival and Wilson (1974)

Stepwise Regression

- Greedy algorithms: fast, but only return a local optimal solution (which might be good enough in practice).
 - Backward: start with the full model and sequentially delete predictors until the score does not improve.
 - Forward: start with the null model and sequentially add predictors until the score does not improve.
 - Stepwise: consider both deleting and adding one predictor at each stage.