INFO 284 - Machine Learning

Linear Regression

Bjørnar Tessem

Supervised learning reminder

- Supervised learning involves observing several examples of a random vector x and an associated value or vector y, then learning to predict y from x, often by estimating p(y|x).
- Given a training set of N example input-output pairs (x₁,y₁), (x₂,y₂),...,(x_N,y_N) where each y_i was generated by an unknown function y=f(x), discover a function h that approximates the true function f.

hypothesis

FO284

Capacity

Capacity of a hypothesis = the amount of functions it is able to model.

- Control Overfitting/underfitting
 - · Control the capacity of the hypothesis
- Too low capacity struggle to fit the training set.
- Too high capacity learn features that are specific to the training set

Vapnik-Chervonenki

- Control capacity → Choose hypothesis space.
 - Example: only linear functions can be used as hypothesis.
- Statistical learning theory
 - measure capacity of hypothesis space
- Vapnik-Chervonenkis dimension
 - Capacity of a binary classifier.
 - = Cardinality of the largest set of points the algorithm can shatter
 - Linear regression VC = d+1

FO284

Linear regression

Find the line that fits the data best

INFO284 5

Linear Models for Regression

- Linear models for regression are regression models for which the hypothesis is
 - a line when one feature is used.
 - a plane when two features are used.
 - a hyper-plane when more features are used

 Linear models for regression can only be used when the features are real numbers!

FO284

Linear Regression

The hypothesis is a linear function of the input features.

$$\hat{y} = w[0] * x[0] + w[1] * x[1] + \dots + w[p] * x[p] + b$$

Learning = trying to find the parameters w[i] and b

Linear Models for Regression

- There are many models/algorithms for linear regression depending on:
 - how the parameters w and b are learned
 - how model/hypothesis complexity can be controlled
- Here: ordinary least squares, ridge regression, lasso

Univariate linear regression

Ordinary Least Squares

$$\hat{y} = w[0] * x[0] + b$$

Gaussian (Normal) distribution:

 Gauss showed that if the y values have normally distributed noise, then the most likely values of w[0] and b are obtained by minimising the sum of the square of errors.

$$Error(\hat{y}) = \sum_{i=1}^{N} (y_i - (w[0] * x_i[0] + b))^2$$

- We are looking for w[0] and b that make $\operatorname{Error}(\hat{y})$ minimal

IFO284

Ordinary Least Squares

$$Error(\hat{y}) = \sum_{i=1}^{N} (y_i - (w[0] * x_i[0] + b))^2$$

• We are looking for w[0] and b that make $\mathrm{Error}(\hat{y})$ minimal. Can be found by solving the above as a differential equation

- The problem has a unique solution
 - the «bottom» of the surface

The solution

$$w_{0} = \frac{N(\sum x_{j}y_{j}) - (\sum x_{j})(\sum y_{j})}{N(\sum x_{j}^{2}) - (\sum x_{j})^{2}}$$
$$b = \frac{\sum y_{j} - w_{0}(\sum x_{j})}{N}$$

Coefficient of determination R²

 R^2 =evaluates how good a regression algorithm performs = 1.0: perfect prediction predicts average → 0.0 Negative: even worse

R² and overfitting

Few data and/or many features will increase chance of overfitting

R² close to 1 for training set, R² significantly smaller for

test set → Overfitting

R² similar for test
 and training set
 → good model

Ridge Regression

- Ridge regression is also a linear regression algorithm.
- In addition to fitting to a line we also try to make the coefficients to be as small as possible

$$Error(\hat{y}) = \sum_{i=1}^{N} (y_i - (w[0]) * x_i[0] + b))^2 + \alpha * \sqrt{w[0]^2}$$

$$\hat{y}_i$$

L2 Regularisation

Ridge regularisation

- The Ridge model makes a trade-off between the simplicity of the model and its performance on the training set
- · Fine-tuning with the alpha parameter
- Large alpha → coefficients move towards zero
 - decreases the performance on the training set
 - might help generalisation
- Alpha close to 0.0
 - similar results to OLS

On Norms

- In mathematics a norm is a function that assigns a positive number to each vector in a vector space.
- The norm of a mathematical object is a quantity that in some (possibly abstract) sense describes the length, size, or extent of the object.

Various Norms

• The **L2** norm

$$\left\|x\right\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

The L1 norm is just the sum of the absolute values

$$||x||_1 = \sum_{i=1}^n |x_i|$$

 The L0 norm = how many non zero values are there in the vector

Regularisation

 Regularisation adds a penalty on the different parameters of the hypothesis to reduce its complexity.

$$\hat{y} = w[0] * x[0] + w[1] * x[1] + \dots + w[p] * x[p] + b$$

LASSO

- Least Absolute Shrinkage and Selection Operator
- Also restricts coefficients to values close to zero but in a different way
 - L1 regularisation.
- Consequence
 - some w[i] are set to zero, which is the same as ignoring the x[i] features

$$\hat{y} = w[0] * x[0] + w[1] * x[1] + \dots + w[p] * x[p] + b$$

LASSO

- Ridge regression is usually the choice over Lasso
- When there are a lot of features, and you expect some of them are not needed, then Lasso is a better choice

Types of regularisation

No regularisation - Ordinary least squares.
 Learning = finding the minima for the function:

$$Error(\hat{y}) = \sum_{i=1}^{N} (y_i - \hat{y_i})^2$$

L2 regularisation - Ridge penalisation.
 Learning = finding the minima for the function:

$$Error_{L2}(\hat{y}) = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 + \alpha * \|\boldsymbol{w}\|_2$$

L1 regularisation - LASSO penalisation.
 Learning = finding the minima for the function:

$$Error_{L1}(\hat{y}) = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 + \alpha * \|\boldsymbol{w}\|_1$$

uib.no

