Particle spectrograph

Wave operator and propagator

SO(3) irreps	Fundamental fields	Multiplicities
	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta}==0$	1
$\tau_{0}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	1
$\sigma_0^{\#1} == 0$	$\partial_{\beta}\sigma^{\alpha\beta}_{\alpha} == 0$	1
$\tau_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	е
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	6
$\sigma_{1}^{\#2}\alpha$ == 0	$\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}==0$	8
$\tau_1^{\#1}{}^{\alpha\beta} + ik \ \sigma_1^{\#2}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}t^{\beta\chi} + \partial_{\chi}\partial^{\beta}t^{\chi\alpha} + \partial_{\chi}\partial^{\chi}t^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{etalpha}+2\partial_{\delta}\partial_{\chi}\partial^{eta}\sigma^{lpha\chi\delta}$	
$\sigma_{2}^{\#1}\alpha\beta\chi==0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} \partial_{\delta} +$	5
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta \epsilon} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\beta \delta \epsilon} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\alpha \delta}{}_{\delta} ==$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta\epsilon}_{\delta} +$	
	$3 \eta^{eta\chi} \partial_\phi \partial^\phi \partial_\epsilon \partial_\delta \sigma^{\alpha\delta\epsilon} +$	
	$3~\eta^{lpha\chi}~\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{eta\delta}{}_{\delta}$	
$\tau_2^{\#1}\alpha\beta==0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} t^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} t^{\chi}_{\chi} +$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} ==$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} +$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} +$	
	$2 \eta^{lphaeta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} au_{\chi}^{\chi}$	

$ au_{1}^{\#^2}$	0	0	0	0	0	0	0		
$\sigma_{1}^{\#2}{}_{lpha}$ $ au_{1}^{\#1}{}_{lpha}$ $ au_{1}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0	α	
$r_{1}^{\#_{2}} \alpha$	0	0	0	0	0	0	0	$f_{1}^{#2}$	0
				2 75)				$f_{1^-}^{\#1}$	0
$\sigma_{1^{-}\alpha}^{\#_{1}}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	0	0	0	$\omega_{1}^{\#2}{}_{lpha}f_{1}^{\#1}{}_{lpha}f_{1}^{\#2}{}_{lpha}$	0
$\tau_1^{\#^+_+}\alpha_\beta$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0	$\omega_{1^{-}\alpha}^{\#1}$	0
	-		-					$f_{1}^{\#1}{}_{lphaeta}$	$\frac{2}{2}kt_2$
$\sigma_1^{\#\xi}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0	$\omega_{1}^{\#2}{}_{\alpha\beta}$ $f_{1}^{\#i}$	$\frac{\sqrt{2}t_2}{2}$ $\frac{1}{2}$ \overline{l} $\sqrt{2}$ kt_2
$\sigma_1^{\#^{\pm}} \alpha \beta$	$\frac{1}{k^2 (2 r_3 + r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)} -$	0	0	0	0	$\omega_{1}^{\#1}_{\alpha\beta}$	$\omega_{1}^{\#1} + \alpha \beta \left k^{2} \left(2 r_{3} + r_{5} \right) + \frac{2t_{2}}{2} \right $
•	$\sigma_{1}^{\#1} + \tau^{\alpha\beta}$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_{1}^{\#1} + ^{\alpha \beta}$	$\sigma_{1^{\text{-}}}^{\#1} \dagger^{\alpha}$	$\sigma_1^{\#2} + \alpha$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$		$\omega_1^{\#1} + \alpha^{eta}$

	0	0	0	0	0	0								
	0	0	$\frac{1}{2}k^{2}(r_{3}+2r_{5})$	0	0	0							$\sigma_{2^{-}}^{\#1}\alpha\beta\chi$	
			$\frac{1}{2} k^2$ ($\tau_{2}^{\#1}_{\alpha\beta}$	
	<u>ikt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0		$\sigma_{0}^{\#1}$	$ au_{0^{+}}^{\#1}$	$ au_{0}^{\#2}$	σ_0^{\dagger}	#1)-	$\sigma_{2}^{\#1}$	C
٠							$\sigma_{0^{+}}^{\#1}$ †	0	0	0	C)		,
3	2 2	$-\frac{1}{3}$ \vec{i} k t_2	0	0	0	0	$ au_{0^{+}}^{\#1} + au_{0^{+}}^{\#2} +$	0	0	0	(
3		•						0	0	0	(‡
		kt_2					$\sigma_{0}^{\!$	0	0	0	$\frac{1}{k^2 r_2}$	<u>+</u> t ₂		+
	$\frac{\sqrt{2}t_2}{3}$	$i\sqrt{2} kt_2$	0	0	0	0		($\omega_{2}^{\#1}{}_{\alpha_{i}}$	$_{\beta}$ $f_{2}^{\#}$	÷1 + αβ	$\omega_2^{\#1}$	αβχ	C#2
		- <u>1</u> 3					$\omega_{2}^{\#1}$ †	αβ _	$\frac{3k^2r_3}{2}$	3	0	()	1 6#1
	$+^{\alpha\beta}$	$+^{\alpha \beta}$	$\omega_{1}^{\#1} +^{lpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$	$f_{2}^{#1}$ †	αβ	0		0	()	#
•	$\omega_{1}^{\#2} + \tau^{lphaeta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1}^{\#}$	$\omega_{1}^{\#\widetilde{i}}$	$f_1^{\#}$	$f_1^{\#}$	$\omega_{2}^{\#1}$ †'	αβχ	0		0	C)	

0 0 0 0 0

Massive and massless spectra

	Massive particle								
0	Pole residue:	$-\frac{1}{r_2} > 0$							
	Polarisations:	1							
— ?	Square mass:	$-\frac{t_2}{r_2} > 0$							
	Spin:	0							
	Parity:	Odd							

Unitarity conditions