MSQ-100

SERVICE NOTES

SPECIFICATIONS

First Edition

Current Draw

Memory Capacity : Approx. 6100 steps (one note/step)

: 3200 baud Tape Interface

: 100mA @9VDC

: 226(W) x 223(D) x57(H) mm Dimensions $8-7/8(W) \times 8-3/4(D) \times 2-1/4(H)$ in

: 1.8 kg / 4 lb.

Weight

Roland

Printed in Japan

B-3

PARTS LIST

PARIS LISI
CASE ケース
22215413 Panel パネル
22815427 Chassis シャーシ
22215713 LCD Panel (clear) LCDパネル
22395112 Magnet マグネット
KNOB, BUTTON ツマミ、ボタン
22475327 Knob "YTEMPO"
22475566 Button(orange)ボタン(橙) LOAI
22475572 Button(white) ボタン(白) RESET
STO
22475569 Button(blue) ボタン(青) PLAY
22479306 Button(white) ボタン(白) FWD MEAS, BACK MEAS
22475328 Button(gray) ボタン(灰)
POWER, REPEAT PLAY, TIE, RESET
MEAS EN
SWITCH スイッチ
13169605 KEJ-10901 プッシュ push
13129344 SEA12-1 プッシュ push
13129544 SEA52 ブッシュ push
13159320 SSB023-12PN
13169636 BP-8 \ddot{r}_{1}
1510,050 Bi o Alamana
PCB ASS'Y 基板完
79335100 Sequence Board (pcb 22915925)
シークエンス基板 with LCD Board
LCD基板付
JACK ジャック
13449125 HLJ0520-01-110 START/STOR
13449409 HSJ0785-01-030 LOAD, SAVE
13449706 HEC0470-01-230 DC9V IN
13429626 M-S2 MIDI, SYNO
COIL コイル
12449244 ELE-A120KA 12μH
POTENTIONALTED #11- /
POTENTIOMETER ボリューム
13219788 K162MK20-1MC TEMPO
13299137 RVF8P01-104 100KB trimmer
半固定 RESISTOR ARRAY 抵抗アレイ
13919148 RGSD7x103K 10Kx7
IC
15179188 HD6301X0A11P CPU
15179659 2764-659 EP-ROM
15179335 HM6264 LP-15 RAM
15179322 HM6116 P-4 RAM
15169509 MN1252B LCD driver
15169316 74LS125
quad bus buffer gate with 3-state
output 15159514 TC40H032P
quad 2-input OR gate
15159506 TC40H138P
3 to 8 line decoder/demuitiplexen
15159511 TC40H174P
Hex D-Type Flip-Flop
15159124 TC4093BP
O 1 O Tours MAND Colomba Trainger

Quad 2-Input NAND Schmitt Trigger

15159303	TC4584BP	Hex Schmitt Trigger
15149114	M54527P	Transistor Array
15189146	IR9022	Low-Power OP Amp
or		
15189115	TL022CP	Low-Power OP Amp
DIODE ダ	イオード	
15019120	1S2473	
15019208	1SR35-200	0
150196130	X 05Z5.6X	ツェナー zener
15029109	GL-3AR2	LED
(PO	WER, LOAD	, PLAY, REPEAT PLAY)
15029168	TLUR-124	LED (TEMPO)
15029171	SLB-26UR	LED (LOAD MODE)
TRANSIST	OR トラン	ジスタ
15129815	2SD880	
	(o:	r 15129816 2SD880 Y)
15129141	2SC174	0 Q
	(or	15129113 2SC1740 R)
15119106D	0 2SA933	Q
	(or	15119106DR 2SA933 R)
CAPACITO	R コンデン	・ サ
		0.047F/5.5V
		high-capacitance,

low-leakage,

high-impedance, non-polarized,

for RAM back up

CONNECTOR コネクタ

12389723 PKM37-3A0

15029408 EDD063M04B3

AC ADAPTOR ACアダプタ

reference.) (別売品)

12449509 PSA-100

12449510 PSA-120

12449511 PSA-220

12449512 PSA-240

(Commercially available. Only for

option

option

option

option

15229706 TLP552

OTHERS その他

13439245 3022-19B 19pin 23450905 rubber conductor

23430513 rubber connector

12389715 KMFC1002T 4MHz

miniature capacitor

(ceramic resonator)

LCD Board

ブザー Buzzer

Photo Coupler

フォト・カプラ

contact

spacer

Xtal

LCD

(100V)

(117V)

(220V)

(240V)

BLOCK DIAGRAM

CIRCUIT DESCRIPTIONS

CPU 6301XOA11P Pin Connection

DESIGNATION	PIN NO	FUNCTION	NOTE
Port-1 P1	0 50 1 49 2 48 3 47 4 46 5 45 6 44 7 43	Address LSB 8 bit out (A0—A7)	
Port-2 P2	1 10 2 11	* During Tape Mode: Reads data from the tape. * During SYNC Mode: Reads Clock through SYNC. Data write strobe to LCD driver LCD driver Chip Select MIDI Serial Input MIDI Serial Output	
	5 14 6 15	SYNC Clock Enable TAPE DATA Enable	Both of these signals don't go HIGH simultaneously.
	7 16	N.C.	
	0 58 1 57 2 56 3 55 4 54 5 53 6 52 7 51	DATA BUS (D0-D7) Program read (EXT. ROM) Data read & write (RAM) Data write (Latch)	
	0 41 1 40 2 39 3 38 4 37 5 36 6 35 7 34	Address MSB 8 bit out (A8–A15)	MSB 3 bits are decoded at IC2 (40H138)
	0 17 1 18 2 19 3 20 4 21 5 22 6 23 7 24	SYNC START/STOP Input N.C. SW read	Constantly HIGH

DESIGNATION	PIN NO.	FUNCTION	NOTE
Port-6 P6-0	25	Program mode read	
1	26	Tempo OSC control	High = Start
			Low = Stop
2	27	SYNC start/stop output	
3	28	SYNC clock output	
4	29	Metronome trigger out	
5	30	Metronome accent control	
6	31	Output for Tape Save Data	
7	32	J Gutput for Tape Save Bata	
XTAL	2	Input for internal clock OSC.	
EXTAL	3	Input for internal clock OSC.	
MP0	4	Sets Operation Mode in	Low 7 Mode 2
MP1	5	the CPU.	High J Wode 2
RES	6	Reset Input	
STBY	7	Constantly high	
NMI	8	Tempo OSC Input	
WR	62	RAM/LATCH write pulse out	
RD	63	RAM/ROM read pulse out	
BA	59	٦	
LIR	60	N.C.	
R/W	61	14.0.	
E	64		
Vcc	33	+5V	
Vss	1	GND	
Vss	42] 5,75	

CPU IC8 HD6301XOA11P

IC8 HD6301XOA11P is a CMOS 8-bit microcomputer unit (MCU) that incorporates a 4k-byte ROM, a 192-byte RAM, a serial communication interface (SCI), parallel I/O ports, a 16-bit programmable timer, and an 8-bit re-load type timer. IC8 has three operation modes. Of these, MSQ-100 uses the expanded mode which is Mode 2.

ROM, RAM, & LATCH

Functions of each device are described below.

IC4-IC16(RAM): Store a sequence of the note and associated data.

The DC rail to V_{DD} of these RAMs bypasses the Power Switch, keeping the data even the switch is OFF as

long as AC adaptor is live.

Moreover, these RAMs can retain data for about 24 hours after disconnection of the AC sources; a super capacitor C1 in the VDD rail has a capacitance of 0.047F (no that's not a typographical error of μ F—it's 0.047 farads)

IC3 (Working RAM): A general-purpose RAM used by the CPU.

IC7 (ROM): IC12 (LATCH): External program area Latches the LED drive data.

IC13 (LATCH):

Outputs the LED drive, LCD display, and the switch

scan signal.

Data Latch Timing Chart (IC13 to IC16)

RESET

The MSQ-100 incorporates the hardware that provides the software with enough time for completing initialization. The hardware includes the Reset and associated circuit. The hardware also protects RAM memories against transients on power-up and power-down.

RESET

During power ON, TR10 remains ON and TR9 OFF. On power-up, pin 12 of IC15 is forced to and remains low until currents flowing through R51 charge C34 to the threshold voltage at pin 1 of IC15 (A in the figure). This low disables RAMs IC4—IC6 and resets IC8.

INVERTED/STRETCHED RESET

Transients of RESET output are fed through RC time constant to pin 9 of IC15 (B in the figure) where they are inverted (C in the figure) and routed to the following points.

TO TR5 which cuts off DC supply to MIDI OUT sockets, muting MIDI bus until the CPU is ready for output useful information.

TO TR15 which forces $\overline{\text{NMI}}$ (pin 8 of CPU IC8) to high through IC14, letting the CPU not to accept any input to the NMI terminal. Otherwise, the CPU may run out of program.

TO PIN 13 OF IC10 which connect to P5-3 (pin 20) of IC8 CPU.

This terminal is designed to serve as a HALT terminal once the CPU is reset. This function, however, is not required for the MSQ-100 performance and will be canceled by the program when the initialization is finished. During the initialization, HALT is kept high by a high-impedance state buffer (pins 11—13) in IC10 LS125. The reason is as follows.

If P5-3 receives a low such as caused by START/STOP pedal, CLOCK INT or MIDI OUT, the CPU enters unwanted HALT mode, stopping entire operation until the release of that switch.

POWER-DOWN RESET

Discharge from C32 reverse-biases TR10, turning it OFF and turning TR9 ON. This causes collector of TR9 (and A in the figure) to quickly go low as soon as the power is OFF. As a result, access to RAMs is inhibited.

SWITCH READ

The CPU reads the scan pulses sent out of IC13 pins 5, 7, 10, and 12 through P5-3, 4, 5, 6, and 7 (pin 20–24). This allows the CPU to constantly recognize the status of all switches. Scan pulses are sent out, e.g. at about 400μ s intervals during STOP mode.

SWITCH MATRIX

IC8	PIN 5	PIN 7	PIN 10	PIN 12
P5-3	MIDI OUT	MIDI CH.	START/STOP	CLOCK INT
PIN 20	SW15-5	SW14	PEDAL	SW-4
P5-4	AFTER TOUCH	DISPLAY	PLAY/SAVE	CLOCK SYNC
PIN 21	SW15-4	SW13	SW8	SW-4
P5-5	CONT. CHANGE	LOAD MODE	STOP	PLAY ONLY
PIN 22	SW15-3	SW12	SW7	SW-2a
P5-6	KEY VELOCITY	FWD MEAS	LOAD	DATA TRANS
PIN 23	SW15-2	SW11	SW6	SW2a
P5-7	METRONOME	BACK MEAS	RESET/VERIFY	REPEAT PLAY
PIN 24	BEAT SW15-1	SW10	SW5	SW9a

TEMPO CLOCK OSCILLATOR

With INT (internal) selected from the front panel, notes are stored or reproduced in tempo with the internal clock, the rate of which is controlled via TEMPO knob on the panel. The time base is 120 clocks/quarter note.

This oscillator is enabled whenever pin 8 of IC14 is high. When the pin 8 is low, the output (NMI) remains high.

METRONOME

When the unit is either in Real Time Load, Tape or Play mode, TR12 turns ON at the negative going rate of P6-4 of IC8, switching ON and OFF the buzzer return path. Dynamics control is accomplished by turning ON and OFF of TR11. That is, TR11 turns ON only when a low is applied to the base of TR14 from P6-5, reducing the impedance of the return path, thus making the sound louder.

TAPE INTERFACE

SAVE

The CPU first reads data stored in RAMs and sends them to the TAPE INTERFACE circuit via P6-6 pin 31 and P6-7 pin 32 in the form of 2-bit codes. These data are then converted into four level analog wave chain at the output of D/A converter comprising R3, 5, and 6. Using TAPE SAVE LEVEL SW15-7, the output signal level can be switched either to the MIC level or LINE level before reaching the SAVE jack.

LOAD

When the unit enters TAPE LOAD Modes, IC8 P2-6 is high and P2-5 low, ignoring all signals from SYNC IN socket. The serial data from the tape is differentiated, aplified 120 times and then shaped into a rectangular by the comparator IC9a before entering IC8 P2-0 pin 9.

The CPU IC8 measures every edge of the rectangular and judges it as a 1 or a 0 according to the length: shorter than $256\mu s$ as a 0 and 256-1,024 as a 1. If the measurement accounts a period to be more than $1,024\mu s$, the CPU ignores it and displays ERROR. The CPU stores valid data into RAM memories.

The differential circuit changes its frequency response either to +6dB/oct or +12dB/oct by the switching of TAPE LOAD MODE SW15-6.

VERIFY

The CPU checks the data loaded from the tape against the data stored in RAM for verification.

IC DATA

Roland MSQ-100 Sync in Jk6 Sync out Jk5 Res Sync in Jk6 Sync out Jk6 Res Sync in Jk6 Sync out

PCB Assembly 20 21 22 23 24 SEQUENCE BOARD 31 32 33 34 35 36 37 38

79335100 (pcb 22915925)

ADJUSTMENT

TEMPO

- 1. Turn TEMPO (VR1) fully clockwise (FAST).
- 2. While depressing SHIFT button (SW7), press T.CHECK button (SW14). The MSQ-100 is now in TEMPO CHECK mode and indicates a tempo in the display window.
- 3. Adjust VR2 for tempo reading 250 (up to SN 472949) or 260 (SN 472950-up).
- 4. Turn TEMPO fully counterclockwise (SLOW). The reading should be 35 and below.
- 5. Press STOP (SW7) to exit the Check mode.

				_
TR3-5			2SC1740 Q or R 2SA993 Q or R 2SD880	
D 9 D 11 D 10,22- D 13	-24		1S2473 1SR35-200 05Z5.6X GL-3AR2 TLUR-124 SLB-26UR	•
Highest IC17 R93		D42 SW15	C47 JK9	

View from foil side

MIDI IMPLEMENTATION

1. RECOGNIZED RECEIVE DATA

March 30, 1984

*1

1.1 Memorized messages while in LOAD mode

Status	Second	Third	Description	
1000 nnnn	0kkk kkkk	0000 0000	Note OFF	*1,2
1001 nnnn	0kkk kkkk	0000 0000	Note OFF	*1
1001 nnnn	0kkk kkkk	0v v v vvvv	Note ON	*1,2
1010 nnnn	0kkk kkkk	0vvv vvv v	Polyphonic Key Pressure	*3,4
1011 nnnn	Occc cccc	0vvv vvvv	Control Change	*3,5
1100 nnnn	Оррр рррр		Program Change	*3
1101 nnnn	Ovvv vvvv		Channel Pressure	*3,4
1110 nnnn	0vvv vvvv	0vvv vvvv	Pitch Wheel Change	*3,6
1111 0000	0100 0001	0101 0111	0111 0000 0xxx xxxx	•
	1111 0 111 (EOX)		Sequence Data (Exclusive message)	* 7

1.2 Recognized only

Status	Status Second		Description			
1011 nnnn	01.11 1011	0000 0000	All NOTES OFF	*8		
1011 nnnn	0111 1100	0000 0000	OMNI OFF	*9		
1011 nnnn	0111 1101	0000 0000	OMNI ON	*9		
1011 nnnn	0111 1110	0000 mmmm	MONO ON	* 9		
1011 nnnn	0111 1111	0000 0000	POLY ON	*9		
1111 0010	Oppp pppp	Оррр рррр	Song Position Pointer	*10		

1.3 Recognized messages for sync.

Status	Description	
1111 1000	Timing Clock	*11
1111 1010	Start	*11
1111 1011	Continue	*11
1111 1100	Stop	*11

- *1 kkkkkkk = 0 thru 120 (real), 0 thru 127 (recognized).
 - *2 When KEY VELOCITY switch is OFF, vvvvvvv = 10000000.
 - *3 Memorized while in REALTIME LOAD mode.

 - *4 When AFTER TOUCH switch on the rear panel is ON.

 *5 cccccc = 0 thru 122 (BENDER/CONTROL CHANGE switch ON),

 64 thru 95 (BENDER/CONTROL CHANGE switch OFF).
 - *6 When BENDER/CONTROL CHANGE switch is ON.
 - *7 While in MIDI LOAD or MIDI VERIFY mode.
 - $\star 8$ $\,$ When any one of notes is ON, this unit creates NOTE OFF messages for all ON notes.
 - *9 Recognized as only an ALL NOTES OFF.
 - *10 While in STOP mode.
 - *11 When the CLOCK switch is set to MIDI.

2. TRANSMITTED DATA

- 2.1 All memorized messages while in PLAY mode.
- 2.2 All received messages.
- 2.3 Internally created messages.

Status	Second	Second Third Description					
1111 1000 1111 1010 1111 1011 1111 1100			Timing Clock Start Continue Stop				
1011 nnnn 1011 nnnn 1011 nnnn	0111 1011 0111 1100 0111 1111	0000 0000 0000 0000 0 00 0 0000	ALL NOTES OFF OMNI OFF POLY ON	*2 *3 *3			
1111 0010	Оррр рррр	Оррр рррр	Song Position Pointer	*4			
1111 0000	0100 0001 1111 0111 (EOX)	0101 0111	0111 0000 0xxx xxxx Sequence Data (Exclusive message)	*5			

- Notes: *1 When MIDI OUT switch is set to MIX. (While in PLAY or OVER-DUB mode, received Mode Messages are
 - not transmitted.) *2 When all notes turn OFF.
 - *3 On power up, these MODE MESSAGES are transmitted for all channels.

- *4 When one of FWD MEAS, BACK MEAS or RESET is pressed.
- *5 While in MIDI SAVE mode.

3. EXCLUSIVE MESSAGE for MSQ-100 Sequence data

	Byte Description				
a	1111 0000	Exclusive status			
b	0100 0001	Roland ID #			
С	0101 0111	function type			
d	0111 0000	Data type = 7-8 conversion			
e	Onnn nnnn	message #, 0 - 127			
f	0xxx xxxx	Encoded data, 256 bytes max (See note)			
	0				
g	0sss ssss	Check sum (encoded data only)			
h	1111 0111	(EOX)			

Each 8 bytes includes encoded 7 data bytes as follows: Check sum: $f1 + f2 + \ldots = g$

Bit format of data to be encoded.

Bit	7	6	5	4	3	2	1	0
byte of data								
first	1-7	1-6	1-5	1-4	1-3	1-2	1-1	1-0
second	2-7	2-6	2-5	2-4	2-3	2-2	2-1	2-0
third	3-7	3-6	3-5	3-4	3-3	3-2	3-1	3-0
4th	4-7	4-6	4-5	4-4	4-3	4-2	4-1	4-0
5th	5-7	5-6	5-5	5-4	5-3	5-2	5-1	5-0
óth	6-7	6-6	6-5	6-4	6-3	6-2	6-1	6-0
7th	7-7	7-6	7-5	7-4	7-3	7-2	7-1	7-0

Encoding Bit format for MIDI.

Bit	7	6	5	4	3	2	1	0
byte of MIDI								
first	'0'	7-7	6-7	5-7	4-7	3-7	2-7	1-7
second	'0'	1-6	1-5	1-4	1-3	1-2	1-1	1-0
third	'0'	2-6	2-5	2-4	2-3	2-2	2-1	2-0
4th	101	3-6	3-5	3-4	3-3	3-2	3-1	3-0
5th	101	4-6	4-5	4-4	4-3	4-2	4-1	4-0
6th	101	5-6	5-5	5-4	5-3	5-2	5-1	5-0
7th	'0'	6-6	6-5	6-4	6-3	6-2	6-1	6-0
8th	'0'	7-6	7-5	7-4	7-3	7-2	7-1	7-0

* The sequence data is formatted as 'Q1' type data format.

4. 'Q1' type data format

A file of sequence data consists of a [FCB], [PD]s and a [ED].

4.1 [FCB] File control block

This is the file control block which contains fixed 40 bytes total. It is sent under an exclusive message.

Name	# of bytes	Description			
a) Header	l byte	\$FD			
b) Block Type	l byte	'F' in ascii			
c) Data type	2 bytes	'Q' in ascii			
d) File Name	30 bytes	'MSQ-100.0', 21 spaces			
e) Conductor sw	l byte	\$00, off			
f) track #	l byte	\$00, none of tracks			
g) phrase #	2 bytes	\$01, \$00			
h) time base	l byte	\$78, time base = 120			
i) tempo	l byte	\$64, (no function)			
j) EOB	2 bytes	\$FE, \$FE			

4.2 [PD] Phrase data block

This block contains actual sequence data with time values. If the data is long, it may be divided.

Name	# of bytes	Description		
a) Headerb) Block typec) Pharase id #d) datae) EOB	1 byte 1 byte 2 bytes n bytes 1 or 2 bytes	<pre>\$FD 'P' in ascii \$00, \$00 MIDI data with time \$FE, (\$FE)</pre>		

4.3 [ED] End block

This block is sent at the end of a file.

Name	# of bytes	Description
a) Headerb) Block typec) Data typed) EOB	1 byte 1 byte 2 bytes 2 bytes	\$FD 'E' in ascii \$00, \$00 (dummy) \$FE, \$FE

5. Phrase data format

1st byte	2nd byte	3rd byte	4th byte		
normal MIDI voice me 0 - 239	ssages (\$80 - \$EF) *	0 - 127	0 - 127		
time time overflow 248 (\$F8)	MIDI status	key ∦	vel		
CPU status measure end 0 - 239	\$ F 9				
time	MPU mark				
BPM change (beat per					
0	\$FA	0	0 - 8 **		
time	special func	BPM	# of beat		
change internal form		_			
0	\$FA	1	0, 127 ***		
time	special func	INT format	switch		
data end					
0	\$FC				
time	MPU mark				

Notes:

- Same MIDI status will not be sent.
- 0: data does not contain the MEASURE ENDS.
- 0: set internal data format not to maintain NOTE ON VELOCITY. 127: set internal data format to maintain NOTE ON VELOCITY.

Example

0 tl=0	\$90 status	60 do	54 on	120 t2=120	64 mi	43 on	
2 t3=2	60 do	0 off	\$F8 t=240	120 t4=120	64 mi	0 off	
118 t5=118	\$F9 ME	\$F8 t=240	\$F8 t=240	0 t=0	\$F9 ME	\$17 t=23	\$FC

tl - t5 time value, ME: measure end

do, mi: name of note