

Taller 2

Entrega: hasta el 21 de noviembre de 2023

Indicaciones generales

- Resolver todos los problemas, este taller servirá como preparación para el tercer parcial. Se deben entregar solamente los problemas marcados con *.
- \circ A menos que se especifique lo contrario consideramos siempre a \mathbb{R} con la topología estandar (la topología euclidiana).
- o Las respuestas deben estar totalmente justificadas.
- ¡Éxitos!

Conexos y arco-conexos

- 1. Pruebe que cada intervalo en \mathbb{R} es conexo.
- 2. Pruebe que todo espacio topológico irreducible es conexo.
- 3. * Es cierto que si \bar{A} es conexo entonces A es conexo? Justifique su respuesta ya sea con una demostración o con un contraejemplo.
- 4. * Considere el conjunto $A = \{a, b, c\}$ con la topología $\mathcal{T} = \{\emptyset, A, \{a\}, \{c\}, \{a, c\}\}\}$. Pruebe que A conexo. ¿Es A arco-conexo? **Ayuda:** Existe una función continua y sobreyectiva $f : \mathbb{R} \to A$.
- 5. Pruebe que una función continua envía arco-conexos a arco-conexos.
- 6. Pruebe si $\pi \colon X \to Y$ es una función cociente y X es conexo, entonces Y es conexo.
- 7. Pruebe si $\pi: X \to Y$ es una función cociente tal que Y es conexo y todas las fibras $\pi^{-1}(y) = \{x \in X : \pi(x) = y\}$ son conexas, entonces X es conexo.
- 8. Pruebe que la banda de Möbius, la botella de Klein, el toro, y el plano proyectivo real son espacios topológicos conexos y en efecto arco-conexos.
- 9. * Sea X us espacio topológico conexo. Pruebe que si $f: X \to \mathbb{R}$ es una función continua tal que para cada $x \in X$ existe un abierto $U_x \subseteq X$ con $x \in U_x$ tal que f es constante en U_x , entonces f es constante en todo X.
- 10. * Pruebe que si $f: [0,1] \to [0,1]$ es continua, entonces existe un $x \in [0,1]$ tal que f(x) = x. ¿Es esto cierto para funciones $[0,1) \to [0,1)$ o para funciones $(0,1) \to (0,1)$?
- 11. Pruebe que si $f \colon S^1 \to \mathbb{R}$ es continua, entonces existe un $x \in S^1$ tal que f(x) = f(-x).
- 12. * Pruebe que si $U\subseteq\mathbb{R}^n$ es abierto y conexo (en la topología euclidiana), entonces U es arco-conexo.
- 13. Pruebe que si $A\subset X$ es conexo y $S\subset X$ es un subespacio tal que $A\subset S\subset \bar{A}$, entonces S es conexo.

Compactos

- 1. Pruebe que la imagen de compactos por funciones continuas es compacto.
- 2. Pruebe que unión finita de compactos es compacto.
- 3. Muestre que si (X, d) es un espacio métrico y $\{x_n\}$ es una sucesión infinita con un punto límite $x \in X$, entonces existe $\{x_n\}$ tiene una subsucesión que converge a x.
- 4. Muestre que si $Y = \{a, b\}$ tiene la topología trivial, entonces el producto $\mathbb{Z} \times Y$ es compacto de punto límite pero no es compacto.
- 5. Muestre que si X es compacto entonces X tiene un número finito de componentes conexas.
- 6. Muestre que si $\{x_n\} \subset \mathbb{R}$ es una sucesión acotada, entonces $\{x_n\}$ tiene una subsucesión convergente.
- 7. Muestre que si (X, d) es un espacio métrico y $A \subset X$ es un subespacio compacto, entonces A es cerrado y acotado.
- 8. Sea (X,d) un espacio métrico y $A\subset X$ un subconjunto no vacío. Defina para cada $x\in X$ la distancia de x al subconjunto A por medio de la fórmula

$$d(x, A) = \inf\{d(x, a) \colon a \in A\}.$$

- a) Pruebe que d(x, A) = 0 si y solo si $x \in \bar{A}$.
- b) Pruebe que si A es compacto, entonces existe un $a \in A$ tal que

$$d(x,A) = d(x,a)$$

para todo $x \in X$. **Ayuda:** Pruebe que para cada $x \in X$, la función $f: A \to \mathbb{R}$ definida por f(a) = d(x, a) es continua.

- 9. Un espacio topológico se dice **totalmente disconexo** si sus únicos subespacios conexos consisten de un solo punto. Pruebe que si X tiene la topología discreta entonces X es totalmente disconexo.
- 10. Sea $A_0 = [0, 1] \subset \mathbb{R}$. Sea A_1 el conjunto obtenido luego de remover el intervalo $(\frac{1}{3}, \frac{2}{3})$ de A_0 . Sea A_2 el conjunto obtenido luego de remover los intervalos centrales $(\frac{1}{9}, \frac{2}{9})$ y $(\frac{7}{9}, \frac{8}{9})$ de A_1 . En general, definimos

$$A_n = A_{n-1} - \bigcup_{k=0}^{\infty} \left(\frac{1+3k}{3^n}, \frac{2+3k}{3^n} \right).$$

La intersección

$$C = \bigcap_{n \in \mathbb{N}} A_n$$

se conoce como el conjunto de Cantor. Pruebe que:

- a) C es totalmente disconexo.
- b) C es compacto.
- $c)\ C$ no tiene la topología discreta.