Mathematics 300. Solutions to practice problems for Quiz 2

Problem 1: Let v(x, y) = 5x - xy + 4.

- (a) Show that v(x, y) is harmonic in the entire plane.
- (b) Construct an entire function f(z) such that Im(f(z)) = v(x, y).

Solution: (a) One readily checks that $\frac{\partial^2 v}{\partial x^2} = \frac{\partial^2 v}{\partial y^2} = 0$. Hence, v satisfies Laplace's equation, i.e., v is harmonic.

(b) Suppose f(z) = u(x, y) + v(x, y)i. We want to solve the Cauchy-Riemann equations for u(x, y). The first Cauchy-Riemann equation tells us that

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = -x.$$

Anti-differentiating with respect to x, we obtain

$$u(x,y) = -\frac{x^2}{2} + \phi(y)$$

for some function $\phi(y)$. Note that $\phi(y)$ depends only on y, not on x. The second Cauchy-Riemann equation tells us that

$$\phi'(y) = \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} = -(5-y).$$

Thus $\phi'(y) = y - 5$, and $\phi(y) = \frac{y^2}{2} - 5y + C$, where C is a real constant.

In summary,
$$u(x,y) = -\frac{x^2}{2} + \frac{y^{\overline{2}}}{2} - 5y + C$$
 and $f(z) = -\frac{x^2}{2} + \frac{y^2}{2} - 5y + C + (5x - xy + 4)i$.

Problem 2: Find the partial fraction decomposition of

$$R(z) = \frac{2}{z(1-z)^2}$$
.

Solution: The partial fraction decomposition of R(z) is of the form

$$\frac{2}{z(1-z)^2} = \frac{A}{z} + \frac{B}{1-z} + \frac{C}{(1-z)^2}.$$

To solve for A, B, and C, clear denominators:

$$2 = A(1-z)^{2} + Bz(1-z) + Cz.$$

Setting z=0, we obtain A=2. Setting z=1, we obtain C=2. Comparing the coefficients of z^2 on both sides, we obtain 0=A-B. Thus B=A=2. The final answer is

$$\frac{2}{z(1-z)^2} = \frac{2}{z} + \frac{2}{1-z} + \frac{2}{(1-z)^2}.$$

Problem 3: Show that the function $f(z) = \text{Log}(-z) + i\pi$ is a branch of $\log(z)$ that is analytic in the open subset D of the complex plane, where D is the entire complex plane with the non-negative real axis removed.

Solution: To show that f(z) is a branch of $\log(z)$, we need to check that $e^{f(z)} = z$. Indeed,

$$e^{\text{Log}(-z)+\pi i} = e^{\text{Log}(-z)}e^{\pi i} = (-z)(-1) = z.$$

To show that f(z) is analytic in D, note that since D is an open subset of \mathbb{C} it is enough to show that f(z) is differentiable at every z_0 in D. Recall that Log(z) is differentiable at any z_0 away from the non-positive real axis, and the constant function $i\pi$ is analytic in the entire complex plane. Hence, using the sum rule and the Chain rule for complex derivatives, we see that f(z) is differentiable at z_0 whenever $-z_0$ lies away from the non-positive real axis, i.e., for every z_0 in D.

Problem 4: Find all complex solutions to the equation $\sinh(z) = i$. Here, as usual, $\sinh(z)$ denotes the hyperbolic sine function, $\sinh(z) = \frac{e^z - e^{-z}}{2}$.

Solution: In the calculation below \iff stands for "if and only if".

$$\sinh(z) = i \iff \frac{e^z - e^{-z}}{2} = i \iff e^z - e^{-z} = 2i \iff e^{2z} - 1 = 2ie^z$$

$$\iff e^{2z} - 2ie^z - 1 = 0 \iff (e^z - i)^2 = 0 \iff e^z = i \iff e^z = e^{\frac{\pi}{2}i}$$

$$\iff z = (\frac{\pi}{2} + 2\pi n)i, \text{ where } n \text{ is an integer.}$$

Problem 5: Let Γ be the piece of the parabola $y=x^2$ from 0 to 2+4i. Find

$$\int_{\Gamma} |z|^2 dz.$$

Solution: Parametrize the parabola as follows: $z(t) = t + t^2i$, where $0 \le t \le 2$. Now

$$\begin{split} \int_{\Gamma} |z|^2 dz &= \int_0^2 |z(t)|^2 z'(t) dt = \int_0^2 (t^2 + t^4) (1 + 2ti) dt = \\ \int_0^2 (t^2 + t^4) dt + 2i (\int_0^2 (t^3 + t^5) dt) &= (\frac{t^3}{3} + \frac{t^5}{5})|_0^2 + 2i (\frac{t^4}{4} + \frac{t^6}{6})|_0^2 = \\ (\frac{8}{3} + \frac{32}{5}) + 2i (\frac{16}{4} + \frac{64}{6}) &= 9\frac{1}{15} + 29\frac{1}{3}i \,. \end{split}$$

Problem 6: Compute

$$\int_{\Gamma} \frac{dz}{(z-1)(z+1)} \,,$$

where Γ is the circle |z|=2 traversed once in the counterclockwise direction.

Hint: Use partial fractions.

Solution: Following the hint, we decompose $\frac{1}{(z-1)(z+1)}$ as a sum of partial fractions. To obtain the partial fraction decomposition, we set

$$\frac{1}{(z-1)(z+1)} = \frac{a}{z-1} + \frac{b}{z+1}.$$

To solve for a and b, we first multiply both sides by (z-1)(z+1):

$$1 = a(z+1) + b(z-1).$$

Substituting z=1, we obtain 1=2a. Thus $a=\frac{1}{2}$. Similarly, substituting -1 for z, we obtain $b=-\frac{1}{2}$. We have thus decomposed $\frac{1}{(z-1)(z+1)}$ as a sum of partial fractions:

$$\frac{1}{(z-1)(z+1)} = \frac{1}{2} \frac{1}{z-1} - \frac{1}{2} \frac{1}{z+1} \,,$$

Integrating both sides over Γ , we obtain

$$\int_{\Gamma} \frac{dz}{(z-1)(z+1)} = \frac{1}{2} \int_{\Gamma} \frac{dz}{z-1} - \frac{1}{2} \int_{\Gamma} \frac{dz}{z+1} ,$$

The two integrals on the right will turn out to be easier to evaluate than the integral on the left. The reason is that $\frac{1}{(z-1)(z+1)}$ is non-analytic at two points inside Γ , namely,

-1 and 1, where as each of the partial fractions $\frac{dz}{z-1}$ and $\frac{dz}{z+1}$ non-analytic at only one point. This gives us greater freedom to deform Γ into a simpler contour.

To evaluate the first integral, we deform Γ to Γ_1 , where Γ_1 is a positively oriented circle of radius 1 centered at 1. This can be done within the open set $\mathbb{C} \setminus \{1\}$, where $\frac{1}{z-1}$ is analytic. By Theorem 2 from lecture 14,

$$\int_{\Gamma} \frac{dz}{z-1} = \int_{\Gamma_1} \frac{dz}{z-1} \,,$$

and we know that the latter integral is $2\pi i$. Similarly,

$$\int_{\Gamma} \frac{dz}{z+1} = \int_{\Gamma_2} \frac{dz}{z+1} = 2\pi i \,,$$

where Γ_2 is a positively oriented circle of radius 1 centered at -1. Note that Γ can be deformed to Γ_2 within the open set $\mathbb{C} \setminus \{-1\}$, where $\frac{1}{z+1}$ is analytic. We conclude that

$$\int_{\Gamma} \frac{dz}{(z-1)(z+1)} = \int_{\Gamma} \frac{1}{2} \frac{dz}{z-1} - \int_{\Gamma} \frac{1}{2} \frac{dz}{z+1} = \frac{1}{2} \cdot 2\pi i - \frac{1}{2} \cdot 2\pi i = 0.$$