EEE119 Digital Systems – N.J.Powell

Problem Sheet 3 - Solutions

1. (A + B + C)' = A'B'C' is proven below. By the Duality Principle (ABC)' = A' + B' + C' Remember that X' represents the complement of X, or NOT X.

ABC	A'	B'	C'	A'B'C'	A + B + C	(A+B+C)
0 0 0	1	1	1	1	0	1
0 0 1	1	1	0	0	1	0
0 1 0	1	0	1	0	1	0
0 1 1	1	0	0	0	1	0
1 0 0	0	1	1	0	1	0
1 0 1	0	1	0	0	1	0
1 1 0	0	0	1	0	1	0
1 1 1	0	0	0	0	1	0

Columns 5 and 7 are the same, proving De Morgan's theorem for three variables.

- 2. (X + Y)'(X' + Y')' = X'Y'XY = 0
- 3. (i) X.Y = 10010000 (ii) $X \oplus Y = 01001101$

4.

(i)
$$F = (\overline{AB}C)$$
 $B = (\overline{D}O - \overline{D}O - \overline{D$

- 5. F = A'B + A'BC' + AC F = A'B(C + C') + A'BC' + AC(B + B') F = A'BC + A'BC' + A'BC' + ABC + AB'C
 - F = A'BC + A'BC' + ABC + AB'C

6.

8.

A = A, A.	77	Zι	75	Z4	Z ₃ 5	2,7	= 1 =	<u> </u>
000	٥.	0	٥	೦	0	0	0	1
0 0	٥	\circ	٥	Ü	0	0	Į	0
0 10	೦	C	0	0	0	1	O	0
0 (U	ಌ	೨	Ů.	- {	0	0	0
100	ث	σ	0	. 1	Ç	0	0	0
101	ن	ర	į	0	0	0	0	3
110	0	{	ن	Ö	O	O	Ó	0
1 1 1	1	ن	Ü	Ü	ن	0	0	0

$$F(x,4,2) = \leq (1,2,3,4,6)$$

$$Z_0 = A_1 A_0 = A_1 + A_0$$

$$Z_1 = A_1 A_0 = A_1 + A_0$$

$$Z_2 = A_1 A_0 = \overline{A_1 + A_0}$$

$$Z_3 = A_1 A_0 = \overline{A_1 + A_0}$$

$$Z_3 = A_1 A_0 = \overline{A_1 + A_0}$$
(involvtion then Demorgan)

10.

ABCD!	F
0000	0
0001	
0010	0
0011	0
0100	O
0101	0_
0 (0	1
0111	1,1
1000	0
1001	1
1010	\[\
1011	1
100	1
1101	0.
1110	0
11.13	U

$$F(A_1B_1C_1B) = \sum_{i=1}^{n} (1, 6, 7, 9, 10, 11, 12)$$

full Boolean expression, which notation is easier?