

LECTURE 2: BASICS OF DIGITAL LOGIC

DR. ARIJIT ROY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY PATNA

THE ART OF MANAGING COMPLEXITY

- > Abstraction
- > Discipline
- \rightarrow The Three –Y's
 - > Hierarchy
 - Modularity
 - Regularity

1-<2> Copyright © 2007 Elsevier

ABSTRACTION

THE PROPERTY OF TECHNOLOGY

➤ Hiding details when they aren't important

Application programs Software Operating device drivers Systems instructions Architecture registers focus of this course Microdatapaths controllers architecture adders Logic memories **AND** gates Digital Circuits **NOT** gates amplifiers Analog Circuits filters transistors Devices diodes **Physics** electrons

1-<3> Copyright © 2007 Elsevier

DISCIPLINE

- > Intentionally restricting your design choices
 - to work more productively at a higher level of abstraction
- > Example: Digital discipline
 - > Considering discrete voltages instead of continuous voltages used by analog circuits
 - ➤ Digital circuits are simpler to design than analog circuits can build more sophisticated systems
 - ➤ Digital systems replacing analog predecessors:
 - ➤i.e., digital cameras, digital television, cell phones, CDs

1-<4>

THE THREE -Y'S

> Hierarchy

➤ A system divided into modules and submodules

> Modularity

➤ Having well-defined functions and interfaces

> Regularity

Encouraging uniformity, so modules can be easily reused

EXAMPLE: FLINTLOCK RIFLE

> Hierarchy

- Three main modules: lock, stock, and barrel
- ➤ Submodules of lock: hammer, flint, frizzen, etc.

> Modularity

- Function of stock: mount barrel and lock
- ➤ Interface of stock: length and location of mounting pins

> Regularity

➤ Interchangeable parts

1-<6> Copyright © 2007 Elsevier

THE DIGITAL ABSTRACTION

- ➤ Most physical variables are continuous, for example
 - ➤ Voltage on a wire
 - > Frequency of an oscillation
 - > Position of a mass
- ➤ Instead of considering all values, the digital abstraction considers only a discrete subset of values

1-<7>

THE ANALYTICAL ENGINE

- Designed by Charles Babbage from 1834 1871
- > Considered to be the first digital computer
- ➤ Built from mechanical gears, where each gear represented a discrete value (0-9)
- ➤ Babbage died before it was finished

1-<8>
Copyright © 2007 Elsevier

- > Typically consider only two discrete values:
 - > 1's and 0's
 - > 1, TRUE, HIGH
 - > 0, FALSE, LOW
- ➤ 1 and 0 can be represented by specific voltage levels, rotating gears, fluid levels, etc.
- ➤ Digital circuits usually depend on specific voltage levels to represent 1 and 0
- ➤ Bit: Binary digit

1-<9>

GEORGE BOOLE, 1815 - 1864

- > Born to working class parents
- Taught himself mathematics and joined the faculty of Queen's College in Ireland.
- ➤ Wrote An Investigation of the Laws of Thought (1854)
- > Introduced binary variables
- ➤ Introduced the three fundamental logic operations: AND, OR, and NOT.

Scanned at the American Institute of Physics

1-<10>

NUMBER SYSTEMS

• Decimal numbers

$$5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$$
five three seven four thousands hundreds tens ones

• Binary numbers

$$\frac{88 \times 10^{10} \times 10^{10}}{1101_{2}} = 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 13_{10}$$
one
eight
one
four
one
one
one
one
one
one
one
one
one

COPYRIGHT © 2007 ELSEVIER 1-<11>

POWERS OF TWO

•
$$2^0 =$$

•
$$2^1 =$$

•
$$2^2 =$$

•
$$2^{10} =$$

• $2^8 =$

• $2^9 =$

•
$$2^3 =$$

•
$$2^{11} =$$

•
$$2^4 =$$

•
$$2^{12} =$$

•
$$2^5 =$$

•
$$2^{13} =$$

•
$$2^6 =$$

•
$$2^{14} =$$

•
$$2^7 =$$

•
$$2^{15} =$$

• Handy to memorize up to 29

POWERS OF TWO

•
$$2^0 = 1$$

•
$$2^1 = 2$$

•
$$2^2 = 4$$

•
$$2^3 = 8$$

•
$$2^4 = 16$$

•
$$2^5 = 32$$

•
$$2^6 = 64$$

•
$$2^7 = 128$$

•
$$2^8 = 256$$

•
$$2^9 = 512$$

•
$$2^{10} = 1024$$

•
$$2^{11} = 2048$$

•
$$2^{12} = 4096$$

•
$$2^{13} = 8192$$

•
$$2^{14} = 16384$$

•
$$2^{15} = 32768$$

• Handy to memorize up to 29

NUMBER CONVERSION

- Decimal to binary conversion:
 - Convert 10101₂ to decimal

- Decimal to binary conversion:
 - Convert 47₁₀ to binary

COPYRIGHT © 2007 ELSEVIER 1-<14>

NUMBER CONVERSION

- Decimal to binary conversion:
 - Convert 10011₂ to decimal

$$-16\times1+8\times0+4\times0+2\times1+1\times1=19_{10}$$

- Decimal to binary conversion:
 - Convert 47₁₀ to binary

$$-32\times1+16\times0+8\times1+4\times1+2\times1+1\times1=101111_2$$

COPYRIGHT © 2007 ELSEVIER 1-<15>

BINARY VALUES AND RANGE

- > *N*-digit decimal number
 - \triangleright How many values? 10^N
 - \triangleright Range? [0, 10^N 1]
 - > Example: 3-digit decimal number:
 - $\gt 10^3 = 1000$ possible values
 - > Range: [0, 999]
- > *N*-bit binary number
 - \triangleright How many values? 2^N
 - ightharpoonup Range: [0, 2^N 1]
 - > Example: 3-digit binary number:
 - > 2³ = 8 possible values
 - ightharpoonup Range: $[0, 7] = [000_2 \text{ to } 111_2]$

HEXADECIMAL NUMBERS

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
A	10	
В	11	
С	12	
D	13	
Е	14	
F	15	

COPYRIGHT © 2007 ELSEVIER

HEXADECIMAL NUMBERS

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

COPYRIGHT © 2007 ELSEVIER

HEXADECIMAL NUMBERS

- Base 16
- Shorthand to write long binary numbers

COPYRIGHT © 2007 ELSEVIER 1-<19>

HEXADECIMAL TO BINARY CONVERSION

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary

- Hexadecimal to decimal conversion:
 - Convert 4AF₁₆ to decimal

COPYRIGHT © 2007 ELSEVIER 1-<20>

HEXADECIMAL TO BINARY CONVERSION

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary
 - 0100 1010 1111₂
- Hexadecimal to decimal conversion:
 - Convert 4AF₁₆ to decimal
 - $-16^{2}\times4+16^{1}\times10+16^{0}\times15=1199_{10}$

1-<21>

BITS, BYTES, NIBBLES...

Bits

Bytes & Nibbles

Bytes

POWERS OF TWO

$$> 2^{10} = 1 \text{ kilo } \approx 1000 \text{ (1024)}$$

$$> 2^{20} = 1 \text{ mega} \approx 1 \text{ million } (1,048,576)$$

$$\geq 2^{30} = 1 \text{ giga} \approx 1 \text{ billion } (1,073,741,824)$$

COPYRIGHT © 2007 ELSEVIER 1-<23>

ESTIMATING POWERS OF TWO

 \triangleright What is the value of 2^{24} ?

➤ How many values can a 32-bit variable represent?

COPYRIGHT © 2007 ELSEVIER 1-<24>

ESTIMATING POWERS OF TWO

 \triangleright What is the value of 2^{24} ?

$$2^4 \times 2^{20} \approx 16$$
 million

➤ How many values can a 32-bit variable represent?

$$2^2 \times 2^{30} \approx 4$$
 billion

COPYRIGHT © 2007 ELSEVIER 1-<25>

ADDITION

> Decimal

Binary

1-<26>

BINARY ADDITION EXAMPLES

• Add the following 4-bit binary numbers

• Add the following 4-bit binary numbers

BINARY ADDITION EXAMPLES

THE STREET STREET

• Add the following 4-bit binary numbers

• Add the following 4-bit binary numbers

OVERFLOW

- > Digital systems operate on a fixed number of bits
- Addition overflows when the result is too big to fit in the available number of bits
- \triangleright See previous example of 11 + 6

1-<29>

SIGNED BINARY NUMBERS

- Sign/Magnitude Numbers
- Two's Complement Numbers

SIGN/MAGNITUDE NUMBERS

- 1 sign bit, *N*-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0
 - Negative number: sign bit = 1

$$A:\{a_{N-1},a_{N-2},\cdots a_2,a_1,a_0\}$$

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

• Example, 4-bit sign/mag representations of ± 6:

• Range of an *N*-bit sign/magnitude number:

SIGN/MAGNITUDE NUMBERS

- 1 sign bit, *N*-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0
 - Negative number: sign bit = 1

$$A:\{a_{N-1},a_{N-2},\cdots a_2,a_1,a_0\}$$

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

• Example, 4-bit sign/mag representations of ± 6:

$$+6 = 0110$$

• Range of an N-bit sign/magnitude number: $[-(2^{N-1}-1), 2^{N-1}-1]$

SIGN/MAGNITUDE NUMBERS

> Problems:

Addition doesn't work, for example -6 + 6:

```
1110
+ 0110
10100 (wrong!)
```

- Two representations of $0 (\pm 0)$:

```
1000
0000
```

1-<33> Copyright © 2007 Elsevier

TWO'S COMPLEMENT NUMBERS

- Don't have same problems as sign/magnitude numbers:
 - Addition works
 - Single representation for 0

1-<34>

TWO'S COMPLEMENT NUMBERS

 \triangleright Same as unsigned binary, but the most significant bit (msb) has value of -2^{N-1}

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- ➤ Most positive 4-bit number:
- ➤ Most negative 4-bit number:
- \triangleright The most significant bit still indicates the sign (1 = negative, 0 = positive)
- Range of an *N*-bit two's comp number:

TWO'S COMPLEMENT NUMBERS

 \triangleright Same as unsigned binary, but the most significant bit (msb) has value of -2^{N-1}

$$A = a_{n-1} \left(-2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- ➤ Most positive 4-bit number: 0111
- ➤ Most negative 4-bit number: 1000
- \triangleright The most significant bit still indicates the sign (1 = negative, 0 = positive)
- \triangleright Range of an *N*-bit two's comp number: [-(2^{N-1}), 2^{N-1}-1]

"TAKING THE TWO'S COMPLEMENT"

- Flip the sign of a two's complement number
- Method:
 - > Invert the bits
 - > Add 1
- \triangleright Example: Flip the sign of $3_{10} = 0011_2$

1-<37>

"TAKING THE TWO'S COMPLEMENT"

- Flip the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $3_{10} = 0011_2$
 - 1. 1100
 - $2. + 1 \over 1101 = -3_{10}$

TWO'S COMPLEMENT EXAMPLES

• Take the two's complement of $6_{10} = 0110_2$

• What is the decimal value of 1001_2 ?

TWO'S COMPLEMENT EXAMPLES

- Take the two's complement of $6_{10} = 0110_2$
 - 1. 1001

$$2. \ \underline{+ \ 1} \\ 1010_2 = -6_{10}$$

- What is the decimal value of the two's complement number 1001_2 ?
 - 1. 0110

2. + 1
$$0111_2 = 7_{10}, \text{ so } 1001_2 = -7_{10}$$

TWO'S COMPLEMENT ADDITION

• Add 6 + (-6) using two's complement numbers

• Add -2 + 3 using two's complement numbers

TWO'S COMPLEMENT ADDITION

• Add 6 + (-6) using two's complement numbers

• Add -2 + 3 using two's complement numbers

INCREASING BIT WIDTH

- A value can be extended from N bits to M bits (where M > N) by using:
 - Sign-extension
 - Zero-extension

COPYRIGHT © 2007 ELSEVIER

SIGN-EXTENSION

- Sign bit is copied into most significant bits.
- Number value remains the same.

• Example 1:

- 4-bit representation of 3 = 0011
- 8-bit sign-extended value: 00000011

• Example 2:

- 4-bit representation of -5 = 1011
- 8-bit sign-extended value: 11111011

1-<44>

ZERO-EXTENSION

- Zeros are copied into most significant bits.
- Value will change for negative numbers.

• Example 1:

- 4-bit value = $0011_2 = 3_{10}$
- 8-bit zero-extended value: $00000011 = 3_{10}$

• Example 2:

- 4-bit value = $1011 = -5_{10}$
- 8-bit zero-extended value: $00001011 = 11_{10}$

LOGIC GATES

- > Perform logic functions:
 - inversion (NOT), AND, OR, NAND, NOR, etc.
- ➤ Single-input:
 - ➤ NOT gate, buffer
- > Two-input:
 - > AND, OR, XOR, NAND, NOR, XNOR
- > Multiple-input

1-<46>

THANK YOU!