APELLIDO Y NOMBRE:	TEMA A

COMISIÓN:

1	2	3	4	5	Total
-	0	С	4	0	1

Segunda evaluación parcial

Ejercicio 1: (2 puntos) Considere la función definida por:

$$f(x) = \frac{x^2 - 1}{x - 1}.$$

- a) Analice la continuidad de f en el punto x = 1. Si es discontinua clasifique el tipo de discontinuidad.
- b) Defina una función F que sea igual a f en el dominio de f, y continua en todos los reales
- c) Calcule la recta tangente al gráfico que pasa por el punto (2, 3).

Ejercicio 2: (1,5 puntos) Calcule el límite de la siguiente función utilizando LHôpital

$$\lim_{y\to\infty}(e^{\frac{1}{y}}-1)y.$$

Ejercicio 3: (1,5 puntos) Calcule la derivada de la siguiente función

$$f(x) = \ln(\sqrt{1 + \sin x}).$$

Ejercicio 4: (3 puntos) Considere la función $f(x) = -\frac{x}{4+x^2}$

- a) Determine el dominio de f y señale, si los hay, los puntos donde el gráfico de f corta a los ejes y las asíntotas verticales y horizontales.
- b) Encuentre los puntos críticos, y determine los intervalos de crecimiento y decrecimiento. Determine los máximos y mínimos locales y absolutos, si existen.
- c) Encuentre los puntos de inflexión y los intervalos en que la función es cóncava hacia arriba o hacia abajo.
- d) Grafique la función haciendo uso de toda la información anterior.

Ejercicio 5: (2 puntos)

- a) Calcule la primitiva F de la función $f(x) = \cos x + \sin x + x^2$ sabiendo que $F(\pi) = 0$.
- b) Dé la definción de integral indefinida.