BOYER MOORE HORSPOOL

Pattern Matching Algorithm

Algorithm

Construct "Bad Match Table"

 Compare pattern to text, starting from rightmost character in pattern

 If mismatch, move pattern forward corresponding to value in the Bad Match Table.

Bad Match Table

- Construct Bad Match Table
- Value = length index 1

Word	Т	0	0	Т	Н
Index	0	1	2	3	4

Letter	Т	0	Н	*
Value				

Letter	Т	0	Н	*
Value	4			

$$T = 5 - 0 - 1 = 4$$

Letter	Т	0	н	*
Value	4	3		

$$0 = 5 - 1 - 1 = 3$$

Letter	Т	0	Н	*
Value	4	2		

$$0 = 5 - 2 - 1 = 2$$

Letter	Т	0	н	*
Value	1	2		

$$T = 5 - 3 - 1 = 1$$

Letter	Т	0	н	*
Value	1	2	5	5

Last letter = length if not already used

Letter	Т	0	Н	*
Value	1	2	5	5

- Start comparing with right-most character at length.
- T!= H
- Lookup T in table and shift right 1

Letter	Т	0	Н	*
Value	1	2	5	5

- H == H, T == T, O != S.
- S not in table so shift right 5

Letter	Т	0	Н	*
Value	1	2	5	5

- H!= O
- Lookup O in table and shift right 2

Letter	Т	0	н	*
Value	1	2	5	5

- H!=T
- Lookup T in table and shift right 1

Letter	Т	0	н	*
Value	1	2	5	5

- H == H, T == T, O == O, O == O, T == T
- Match

Analysis

- Length of Text N
- Length of Pattern M
- Worst case is O(N * M) = O(N^2)
- Best case is O(M / N)
- Average case O(M / ∑)