	\vec{v} = (1, 0, 7)	
	\vec{w} = (0, -1, 2)	
	find the distance between them, $d(ec{v},ec{w})$.	
	O 5	
	\bigcirc -2	
	\odot $\sqrt{(27)}$	
	\bigcirc $\sqrt{(23)}$	
	\bigcirc Correct Correct! $d(ec{v},ec{w})=\sqrt{(0-1)^2+(-1-0)^2+(2-7)^2}$	
2.	You are given the points P : (1, 0, -3) and Q : (-1,0,-3). The magnitude of the vector from P to Q is:	1/1 point
	○ -2	
	2	
	○ 3	
	\bigcirc Correct Correct! The magnitude of the vector is the distance between points P and Q, which you find by using the following: $\sqrt{((-1)-1)^2+0^2+((-3)-(-3))}=\sqrt{4}=2$	
3.	Select the correct statements pertaining to the dot product.	1/1 point
	✓ The dot product of orthogonal vectors is always 0.	
	 Correct Correct! Since both vectors are perpendicular to each other, the dot product is always 0. 	
	$oxed{\Box}$ The dot product vector is the diagonal in a parallelogram formed by the two vectors $ec{u}$ and $ec{v}$.	
	☐ The dot product of orthogonal vectors is always 1.	
	✓ The dot product of two vectors is always a scalar.	
	○ Correct Correct! The dot product gives us a real number, therfore a scalar.	

1. Given the vectors:

1/1 point

4. Calculate the norm ||v|| of the vector \vec{v} = (1, -5, 2, 0, -3) and select the correct answer.

1/1 point

- $\bigcirc \|v\| = 39$
- $\bigcirc \ \|v\| = \sqrt{35}$
- $\bigcirc \ \|v\| = 5$
 - \odot Correct Correct! $\|v\| = \sqrt{((1^2) + (-5)^2 + 2^2 + 0^2 + (-3)^2)} = \sqrt{39}$

5. Which of the vectors has the greatest norm?

1/1 point

- $\begin{bmatrix}
 2 \\
 2 \\
 2 \\
 2
 \end{bmatrix}$
- $\bigcirc \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$
- $\begin{array}{c|c}
 & 1 \\
 & 0 \\
 & -2 \\
 & 0 \\
 & -1
 \end{array}$
- $\begin{bmatrix}
 0 \\
 0 \\
 0 \\
 0
 \end{bmatrix}$
- **⊘** Correct

Correct! The norm of the vector is $\sqrt{(2^2)+(5^2)}=\sqrt{29}$ which is larger than the other vectors in the options given.

$$\vec{a} = egin{bmatrix} 3 \\ 7 \\ 1 \end{bmatrix}, \vec{b} = egin{bmatrix} 4 \\ 0 \\ 3 \end{bmatrix}$$

- $\begin{bmatrix}
 1 \\
 0 \\
 1
 \end{bmatrix}$
- $\begin{bmatrix}
 12 \\
 0 \\
 3
 \end{bmatrix}$
- 15
- O 30

⊘ Correct

$$ec{a}\cdotec{b}=ax\cdot bx+ay\cdot by+az\cdot bz$$
 , you have:

$$\vec{a} \cdot \vec{b} = 3 \cdot 4 + 7 \cdot 0 + 1 \cdot 3 = 12 + 0 + 3 = 15.$$

- 7. Which of the following is the result of performing the multiplication $M_1\cdot M_2$? Where M_1 and M_2 are given by:
- 1/1 point

1/1 point

- $M_1 = egin{bmatrix} 2 & -1 \ 3 & -3 \end{bmatrix}, M_2 = egin{bmatrix} 5 & -2 \ 0 & 1 \end{bmatrix}.$
- $\bigcirc \begin{bmatrix}
 10 & -3 & 1 \\
 15 & -4 & 0 \\
 1 & 0 & 1
 \end{bmatrix}$
- $\bigcirc \begin{bmatrix} 10 & 15 \\ -3 & -4 \end{bmatrix}$
- $\bigcirc
 \begin{bmatrix}
 10 & 3 \\
 15 & 4
 \end{bmatrix}$
- - **⊘** Correct
 - Correct! Remember from the video Matrix Multiplication ☐, to multiply matrices, you have:
 - $egin{bmatrix} c_1 & c_2 \ c_3 & c_4 \end{bmatrix}$ where in the matrices given:

$$c_1 = 2 \cdot 5 + (-1) \cdot 0 = 10$$
,

$$c_2 = 2 \cdot (-2) + (-1) \cdot 1 = -5,$$

$$c_3 = 3 \cdot 5 + (-3) \cdot 0 = 15,$$

$$c_4 = 3 \cdot (-2) + (-3) \cdot 1 = -9.$$

- When you replace these values back onto the matrix, you obtain: $\begin{bmatrix} 10 & -5 \\ 15 & -9 \end{bmatrix}.$
- 8. Calculate the dot product $\vec{w}\cdot\vec{z}$ and select the correct answer.
 - $ec{w} = egin{bmatrix} -9 \ -1 \end{bmatrix}, ec{z} = egin{bmatrix} -3 \ -5 \end{bmatrix}$

- 35
- $\bigcirc \begin{bmatrix} 27 \\ 5 \end{bmatrix}$
- $\bigcirc \begin{bmatrix} -27 \\ -5 \end{bmatrix}$
- 32
- Correct

Correct!
$$\vec{w} \cdot \vec{z} = \begin{bmatrix} -9 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ -5 \end{bmatrix} = (-9)(-3) + (-1)(-5) = 32$$