

$Re = \frac{\rho VL}{\mu}$

$$St = \frac{fL}{V}$$

EGF320 - Fluid Flow

Dr Chennakesava Kapada

Email: c.kadapa@swansea.ac.uk

Website: http://engweb.swan.ac.uk/~c.kadapa/teaching.html

Module Synopsis

(1) Dimensional analysis and modelling

Analysis of relationship between physical quantities

(2) Internal flows

- Flow through pipes and piping networks
- Flow rate and velocity measurement

(3) External flows

Prediction of lift and drag for flows over common geometries

(4) Fluid kinematics and differential analysis of fluid flow

Fluid velocity fields, Streamlines, Pathlines etc.

Learning Outcomes

After completing this module you should be able to demonstrate a knowledge and understanding of:

- Dimensional analysis
- Flow through pipes and piping systems
- Flow rates and velocity measurement techniques
- Drag and lift coefficients; flow over flat plates, cylinders and spheres.
- Lagrangian and Eulerian descriptions of flow and the Reynolds Transport theorem

Reading List

- 1.) Fluid Mechanics: Fundamentals and Applications, by Yunus A. Cengel and John M. Cimbala.
- 2.) Fluid Mechanics, by John F. Douglas, Janusz M. Gasiorek, John A. Swaffield, Lynne B. Jack

Module Delivery

- Four 3-4 hour lectures; every other Wednesday
- Theory followed by worked examples
- Tutorial problems
- Lecture notes will be placed on Blackboard and my personal website.
- Past exam papers will be placed on Blackboard at appropriate times

Teaching Plan

- Week 1 Dimensional Analysis
- Week 2 Internal Flows
 - Class Test
- Week 3 External Flows
- Week 4 Fluid Kinematics
 - Summary and Revision

Module Assessment

Examination

- Open book examination
- Data/Formula sheet will be provided
- Class Test 30%
- Final Exam 70%

Note: The College of Engineering has a ZERO TOLERANCE penalty policy for late submission of all coursework

Fluid Flow - Introduction

www.pumpfundamentals.com

Asme.org

- States of matter
 - Solid, Liquid, Gas, Plasma, Bose-Einstein condensate
- Liquids and gases can be grouped together as fluids.
- Fluids flow under the action of external forces, deforming continuously, for as long as the force is applied.
- Fluid takes the shape of any solid body with which it comes into contact.
- In fluids, the deformation is caused by shearing forces.

A fluid is a substance which deforms continuously under the action of shearing forces, however small they may be.

Fluid Flow - stresses

Rate of shear strain, x/y/t = (x/t)y = u/y

Shear stress, $\tau = \mu \, du/dy$

μ is the coefficient of dynamic viscosity

For a solid, the stress is a function of strain (in the elastic limite). For a fluid, the stress is a function of rate of strain.

Uniform flow: velocity at a given instant is the same in magnitude and direction at every point in the domain.

Non-uniform flow: velocity changes from point to point.

Steady flow: velocity at a point does not change with time.

Unsteady flow: velocity at a point changes with time.

Steady uniform flow
Steady non-uniform flow
Unsteady uniform flow
Unsteady non-uniform flow

- 1. Steady uniform flow. Conditions do not change with position or time. The velocity and cross-sectional area of the stream of fluid are the same at each cross-section: for example, flow of a liquid through a pipe of uniform bore running completely full at constant velocity.
- 2. Steady non-uniform flow. Conditions change from point to point but not with time. The velocity and cross-sectional area of the stream may vary from cross-section to cross-section, but, for each cross-section, they will not vary with time: for example, flow of a liquid at a constant rate through a tapering pipe running completely full.
- 3. Unsteady uniform flow. At a given instant of time the velocity at every point is the same, but this velocity will change with time: for example, accelerating flow of a liquid through a pipe of uniform bore running full, such as would occur when a pump is started up.
- **4.** Unsteady non-uniform flow. The cross-sectional area and velocity vary from point to point and also change with time: for example, a wave travelling along a channel.

Energy equation