

Revisiting the Bethe-Hessian: Improved Community Detection in Sparse Heterogeneous Graphs

Lorenzo Dall'Amico, lorenzo.dall-amico@gipsa-lab.fr Romain Couillet, romain.couillet@gipsa-lab.fr Nicolas Tremblay, nicolas.tremblay@gipsa-lab.fr

Abstract

Problem position

- ullet **Problem**: detect communities of unweighted and undirected graph ${\mathcal G}$
- **Technique**: statistical physics-inspired spectral clustering
- Model constraints: sparse and heterogenous networks

Contribution

- Spectral algorithm based on $H_r = (r^2 1)I_n + D rA$, provably performing down to the detectability threshold. Caracterization of optimal r.
- Connection with main spectral algorithms based on B, $D_{\tau}^{-1}A$, D-A, $D^{-1}A$.

Model and notation

Degree-corrected stochastic block model

- $\bullet n$ nodes, k classes
- $\bullet \ell \in \{1, \cdots, k\}^n$ label vector. $\boldsymbol{\pi}_p$ fraction of nodes with label p
- C: class affinity matrix, $\Pi = \operatorname{diag}(\boldsymbol{\pi})$. $C, \Pi \in \mathcal{M}_{k \times k}$.
- A: adjacency matrix; $D = \text{diag}(A\mathbf{1})$: degree matrix. $A, D \in \mathcal{M}_{n \times n}$.
- $\boldsymbol{\theta}$: node connectivity predisposition. $\boldsymbol{\theta} \in \mathbb{R}^n$; $\frac{1}{n}\mathbf{1}^T\boldsymbol{\theta} = 1$; $\frac{1}{n}\mathbf{1}^T\boldsymbol{\theta}^2 = \Phi = O_n(1)$.
- $c = \frac{1}{n} \mathbf{1}^T A \mathbf{1} = O_n(1)$ average degree; $C\Pi \mathbf{1} = c\mathbf{1}$.

$$\mathbb{P}(A_{ij} = 1) = \theta_i \theta_j \frac{C_{\ell_i, \ell_j}}{n}$$

Detectability threshold

For k=2 communities of equal size: $C_{\ell_i,\ell_j}=c_{\rm in}$ if $\ell_i=\ell_j$ and $c_{\rm out}$ otherwise, non trivial reconstruction iff

$$\alpha := \frac{c_{\text{in}} - c_{\text{out}}}{\sqrt{c}} > \frac{2}{\sqrt{\Phi}} := \alpha_c$$

 \bullet Gulikers et al. – An impossibility result for reconstruction in a degree-corrected planted-partition model – 2015

Resilience to degree heterogeneity (II)

for large n, $\mathcal{G} \to \text{GWT}$ locally

$$\begin{bmatrix} \mathbb{P}(\ell_j|\ell_i, A_{ij} = 1) = \frac{C_{\ell_i, \ell_j}}{c} \\ C\Pi \boldsymbol{v}_p = s_p(C\Pi)\boldsymbol{v}_p \\ \boldsymbol{u}_i = \boldsymbol{v}_{p, \ell_i} \end{bmatrix} \boldsymbol{u}_p \end{bmatrix} \boldsymbol{u}_p$$

$$\mathbb{E}[H_r \boldsymbol{u}_p | A] = \left[(r^2 - 1)I_n + D \underbrace{\left(1 - r \frac{s_p(C\Pi)}{c} \right)}_{=0} \right] \boldsymbol{u}_p$$

For
$$r = \zeta_p \equiv \frac{c}{s_p(C\Pi)}$$
 then $H_{\zeta_p} \boldsymbol{u}_p \approx \lambda_p \boldsymbol{u}_p$.

 H_{ζ_p} has an informative eigenvector not spoiled by D.

 $Ov = \max_{\hat{\ell} \in \mathcal{D}} \frac{1}{1 - \frac{1}{k}} \left(\sum_{i=1}^{n} \delta(\hat{\ell}_i, \ell_i) - \frac{1}{k} \right)$ we have theoretical prediction of Ov for k = 2

For easy problems, $\zeta_p \to 1$ and $H_{\zeta_p} \to D - A$.

Linearization of belief propagation

From the linearization of BP, $\boldsymbol{\delta_p}$ are informative

• Coste, Yizhe – Eigenvalues of the non-backtracking operator detached from the bulk – 2019

Two ways to estimate ζ_p

 $B_{(ij)(kl)} = \delta_{jk}(1-\delta_{il}), \forall (ij), (kl) \in \mathcal{E}^d$ $B\boldsymbol{\delta}_p = \zeta_p \boldsymbol{\delta}_p$

$$s_p(B) = s_p(C\Pi)\Phi$$
 for $1 \le p \le k$
$$\zeta_p = \frac{s_1(B)}{s_n(B)}$$

Est 1

Ihara-Bass formula:

$$\boldsymbol{x}_p = \sum_{j \in \partial i} \delta_{p,ij} , \quad H_{\zeta_p} \boldsymbol{x}_p = 0$$

Est 2

Regularized Laplacian matrix

Proposition: For $\tau = \zeta_p^2 - 1$ and $n \gg 1$ then, with high probability, the p eigenvalues of $D_{\tau}^{-1}A$ with largest modulus are isolated.

Proposition: If the p largest eigenvalues of $D_{\tau}^{-1}A$ are isolated, then the p largest eigenvalues of $D_{\tau'}^{-1}A$ are also isolated for $\tau' > \tau > 0$.

 $H_{\zeta_p} \boldsymbol{x}_p = 0$, then $D_{\zeta_p^2 - 1}^{-1} A \boldsymbol{x}_p = \frac{1}{\zeta_p} \boldsymbol{x}_p$ $D_{\tau} = D + \tau I_n$

For easy problems $D_{\zeta_n^2-1}^{-1}A \to D^{-1}A$

Algorithm

Input: adjacency matrix of undirected graph \mathcal{G}

• Detect the number of classes: $\hat{k} \leftarrow \left| \left\{ i : s_i \left((\rho(B) - 1) I_n + D - \sqrt{\rho(B)} A \right) < 0 \right\} \right|$

• For $1 \le p \le k$: $\zeta_p \leftarrow s_{n-p+1}[(\zeta_p^2 - 1)I_n + D - \zeta_p A] = 0$

 $X_{:k} \leftarrow \boldsymbol{x}_p : [(\zeta_p^2 - 1)I_n + D - \zeta_p A]\boldsymbol{x}_p = 0$

Output: community labels obtained from k-means on the rows of X.

Some real networks

Dataset	n	c	Φ	$\mid k \mid$	Est 1	Est 2	A	$H_{\sqrt{c\Phi}}$	B	$L^{ m rw}$	$oxedsymbol{L_{ au}^{ ext{sym}}}$
Polblogs	1222	27,4	3	2	0.43	0.43			0.24	0	0.43
Tv	3892	8.9	3	41	0.57	0.8	0.51	0.58	0.55	0.55	0.8
Facebook	4039	43.7	2.4	55	0.53	0.78	0.43	0.49	0.49	0.78	0.57
Power grid	4941	2.7	1.5	25	0.38	0.93	0.18	0.37	0.31	0.93	0.85
GrQc	5242	5.5	3.1	29	0.53	0.53	0.45	0.49	0.49	0.42	0.79
Politicians	5908	14.1	3	62	0.65	0.85	0.48	0.54	0.5	0.83	0.74
GNutella P2P	6301	6.6	2.7	5	0.22	0.34	0.15	0.15	0.20	0	0.34
Wikipedia	7115	28.3	5.1	22	0.22	0.23	0.15	0.17	0.17	0.23	0.27
Vip	11565	11.6	4.4	53	0.35	0.62	0.27	0.33	0.3	0.55	0.54
HepPh	12008	19.7	6.6	60	0.41	0.37	0.42	0.42	0.42	0.11	0.52

Research openings

- Embed node available information: graph semi-supervised learning
- Extension to dynamical models

