TD n°4

Thompson - Autres constructions d'automates (1h)

Exercice 1 (Complétion d'automates) Complétez les deux automates A_1 et A_2 sur les alphabets $\{a,b\}$ et $\{a,b,c\}$ respectivement.

Automate A2

Exercice 2 Montrez que si un langage \mathcal{L} est reconnaissable, alors le langage formé des préfixes de tous les mots de \mathcal{L} est lui aussi reconnaissable. Est-ce vrai aussi pour les suffixes? Les facteurs? Les sous-mots? Illustrez ceci dans le cas ou $\mathcal{L} = \{\text{tete}, \text{terre}\}.$

Exercice 3 (De l'Expression Rationnelle à l'Automate)

Utilisez l'algorithme de Thompson pour trouver des automates reconnaissant les langages décrits par les expressions rationnelles suivantes. Vous ferez le E_1 exactement comme dans le cours, pour les autres vous avez le droit de simplifier les mots simples, c-a-d traiter bba sans mettre de ε -transitions entre les transitions représentant chaque lettre. Les autres ε -transitions doivent apparaître. Les exercices notés (*) sont facultatifs.

 $-E_1 = (aa + b)^*,$ $-E_2 = (aa + b)^*(a + bb)^*,$ $-(*) E_3 = (a + ba + bba)^*,$ $-(*) E_4 = (a + ba + bba)^*(\varepsilon + b + bb),$ $-(*)E_5 = (aa + bb + (ab + ba)(aa + bb)^*(ab + ba))^*,$ $-E_6 = (a^*b^*)^*,$ $-(*)E_7 = b(ab)^* + (ba)^*b,$ $-(*)E_8 = (a + bb)^*(b + aa)^*,$ $-(*)E_9 = (a + ab)^*b(a + ba),$ $-(*)E_{10} = ((ab + c)(d + e))^*.$

(L) 2 $W = U \cdot V$ -> u est un préfixe de co, u est un préfixe people de ve se est un suffixe de w, v u # E. w= abcd préfixe (a, ab, abc, abcd, préfixer propries É, a, ab, abc Suffixes E, f, cd, bcd, abcd

facteur: préféres 0 suffines U l'et, evr, er, rry tous les états acceptants et cuitains?