TD 15 : Matrices et applications linéaires

Connaître son cours:

• Soit E, F deux espaces vectoriels de dimension finie, β une base de E et ζ une base de F. Montrer que pour tout $u \in \mathcal{L}(E, F)$ et tout $x \in E$ on a : $\mathrm{Mat}_{\zeta}(u(x)) = \mathrm{Mat}_{\beta,\zeta}(u) \cdot \mathrm{Mat}_{\beta}(x)$.

- Soit E, F, G trois espaces vectoriels de dimension finie, β une base de E, ζ une base de F et γ une base de G. Montrer que pour tout $u \in \mathcal{L}(E, F)$ et tout $v \in \mathcal{L}(F, G)$, on a : $\mathrm{Mat}_{\beta,\gamma}(v \circ u) = \mathrm{Mat}_{\zeta,\gamma}(v) \cdot \mathrm{Mat}_{\beta,\zeta}(u)$
- Soit E un espace vectoriel de dimension finie, $\beta = (e_1, e_2, \dots, e_n)$ et $\beta' = (e'_1, e'_2, \dots, e'_n)$ deux bases de E. Exprimer la matrice de passage $P_{\beta}^{\beta'}$ en lien avec une représentation matricielle de l'endomorphisme Id_E . En déduire que pour tout $x \in E$, on a : $\operatorname{Mat}_{\beta}(x) = P_{\beta}^{\beta'} \cdot \operatorname{Mat}_{\beta'}(x)$
- Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions respectives p et n et $u \in \mathcal{L}(E, F)$ de rang r. Montrer qu'il existe une base β de E et une base ζ de F tel que : $\mathrm{Mat}_{\beta,\zeta}(u) = J_r = \begin{pmatrix} I_r & 0_{r,p-r} \\ 0_{n-r,r} & 0_{n-r,p-r} \end{pmatrix}$.

Matrice d'une application linéaire dans une base :

Exercice 1. (*)

Soient S et T les deux endomorphismes de \mathbb{R}^2 définis par

$$S(x,y) = (2x-5y, -3x+4y)$$
 et $T(x,y) = (-8y, 7x+y)$.

- 1. Déterminer les matrices de S et T dans la base canonique de \mathbb{R}^2 .
- 2. Déterminer les applications linéaires S+T, $S\circ T$, $T\circ S$ et $S\circ S$ ainsi que leurs matrices dans la base canonique de \mathbb{R}^2 .

Exercice 2. (*)

On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$M = \left(\begin{array}{rrr} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{array} \right).$$

Donner une base de $\ker(f)$ et de $\operatorname{Im}(f)$. En déduire que $M^n = 0$ pour tout $n \ge 2$.

Exercice 3. (*)

Soient

$$A = \left(\begin{array}{cc} -1 & 2\\ 1 & 0 \end{array}\right)$$

et f l'application de $M_2(\mathbb{R})$ dans $M_2(\mathbb{R})$ définie par f(M) = AM.

- 1. Montrer que f est linéaire.
- 2. Déterminer sa matrice dans la base canonique de $M_2(\mathbb{R})$.

Exercice 4. (*)

Soit

$$A = \begin{pmatrix} 0 & \dots & 0 & 1 \\ \vdots & & & 1 & 0 \\ & & \ddots & & \\ 0 & 1 & & & \vdots \\ 1 & 0 & & \dots & 0 \end{pmatrix}$$

En utilisant l'application linéaire associée de $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$, calculer A^p pour $p \in \mathbb{Z}$.

Exercice 5. (*)

Soit E un espace vectoriel et f une projection sur E.

- 1. Montrer que $E = \operatorname{Ker} f \oplus \operatorname{Im} f$.
- 2. Supposons que E soit de dimension finie n. Posons r = rg(f). Montrer qu'il existe une base $\mathcal{B} = (e_1, \ldots, e_n)$ de E telle que : $f(e_i) = e_i$ si $i \le r$ et $f(e_i) = 0$ si i > r.

Déterminer la matrice de f dans cette base \mathcal{B} .

Exercice 6. (*)

- Montrer que si f est un endomorphisme d'un espace vectoriel E de dimension n, M sa matrice par rapport à une base e, M' sa matrice par rapport à une base e', alors tr M = tr M'. On note tr f la valeur commune de ces quantités.
- 2. Montrer que si g est un autre endomorphisme de E, $\operatorname{tr}(f \circ g g \circ f) = 0$.

Exercice 7. (**)

Soit \mathbb{R}^2 muni de la base canonique $\mathcal{B} = (e_1, e_2)$. Soit $f : \mathbb{R}^2 \to \mathbb{R}^2$ la projection sur l'axe des abscisses $\operatorname{Vect}(e_1)$ parallèlement à $\operatorname{Vect}(e_1 + e_2)$. Déterminer $\operatorname{Mat}_{\mathcal{B},\mathcal{B}}(f)$, la matrice de f dans la base \mathcal{B} . Même question avec $\operatorname{Mat}_{\mathcal{B}',\mathcal{B}}(f)$ où \mathcal{B}' est la base $(e_1 - e_2, -2e_1 + 3e_2)$ de \mathbb{R}^2 . Même question avec $\operatorname{Mat}_{\mathcal{B}',\mathcal{B}'}(f)$.

Exercice 8. (**)

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice par rapport à la base canonique (e_1, e_2, e_3) est

$$A = \left(\begin{array}{rrr} 15 & -11 & 5 \\ 20 & -15 & 8 \\ 8 & -7 & 6 \end{array}\right).$$

Montrer que les vecteurs : $e_1' = 2e_1 + 3e_2 + e_3$, $e_2' = 3e_1 + 4e_2 + e_3$, $e_3' = e_1 + 2e_2 + 2e_3$ forment une base de \mathbb{R}^3 et calculer la matrice de f par rapport à cette base.

Exercice 9. (**)

Soient trois vecteurs e_1, e_2, e_3 formant une base de \mathbb{R}^3 . On note ϕ l'application linéaire définie par $\phi(e_1) = e_3$, $\phi(e_2) = -e_1 + e_2 + e_3$ et $\phi(e_3) = e_3$.

1. Écrire la matrice A de ϕ dans la base (e_1, e_2, e_3) .

Déterminer le noyau de cette application.

- 2. On pose $f_1 = e_1 e_3$, $f_2 = e_1 e_2$, $f_3 = -e_1 + e_2 + e_3.$ Calculer e_1, e_2, e_3 en fonction de f_1, f_2, f_3 . Les vecteurs f_1, f_2, f_3 forment-ils une base de \mathbb{R}^3 ?
- 3. Calculer $\phi(f_1), \phi(f_2), \phi(f_3)$ en fonction de f_1, f_2, f_3 . Écrire la matrice B de ϕ dans la base (f_1, f_2, f_3) et trouver la nature de l'application ϕ .
- 4. On pose $P = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{pmatrix}$. Vérifier que P est inversible et calculer P^{-1} .

 Quelle relation lie A, B, P et P^{-1} ?

Exercice 10. (***)

Soit f l'application de $\mathbb{R}_n[X]$ dans $\mathbb{R}[X]$ définie en posant pour tout

$$P \in \mathbb{R}_n[X], f(P)(X) = P(X+1) + P(X-1) - 2P(X).$$

- 1. Montrer que f est linéaire et que son image est incluse dans $\mathbb{R}_n[X]$.
- 2. Dans le cas où n = 3, donner la matrice de f dans la base $1, X, X^2, X^3$. Déterminer ensuite, pour une valeur de n quelconque, la matrice de f dans la base $1, X, \ldots, X^n$.
- 3. Déterminer le noyau et l'image de f. Calculer leur dimension respective.
- 4. Soit Q un élément de l'image de f. Montrer qu'il existe un unique $P \in \mathbb{R}_n[X]$ tel que : f(P) = Q et P(0) = P'(0) = 0.

Exercice 11. (**)

Soit $E = \mathbb{K}_n[X]$. u est l'endomorphisme de E défini par : $\forall P \in E$, u(P)(X) = P(X+1) - P(X).

- 1. Donner la représentation matricielle de cet endomorphisme dans la base canonique de E.
- 2. Déterminer Keru et Imu.
- 3. Déterminer explicitement une base dans laquelle la matrice de *u* est

$$\begin{pmatrix}
0 & 1 & 0 & \dots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
& & & \ddots & 0 \\
\vdots & & & \ddots & 1 \\
0 & \dots & & \dots & 0
\end{pmatrix}$$

4. En déduire que u est nilpotent et donner son indice de nilpotence.

Exercice 12. (**)

Calculer l'inverse de la matrice suivante :

$$\begin{pmatrix} \binom{0}{0} & \binom{1}{0} & \binom{2}{0} & \cdots & \binom{n-1}{0} & \binom{n}{0} \\ 0 & \binom{1}{1} & \binom{2}{1} & \cdots & \cdots & \binom{n}{1} \\ \vdots & \ddots & \binom{2}{2} & & \vdots \\ & & \ddots & & \vdots \\ \vdots & & \ddots & \binom{n-1}{n-1} & \vdots \\ 0 & \cdots & & \cdots & 0 & \binom{n}{n} \end{pmatrix}$$

Exercice 13. (**)

Soient E un espace vectoriel de dimension finie, a un réel non nul et $u, v \in \mathcal{L}(E)$.

Résoudre dans $\mathcal{L}(E)$ l'équation d'inconnue w:

$$a \cdot w + \operatorname{Tr}(w) \cdot u = v$$

Exercice 14. (**)

Soit f une forme linéaire sur $\mathcal{M}_n(\mathbb{C})$ telle que $\forall (A, B) \in (\mathcal{M}_n(\mathbb{C}))^2$, f(AB) = f(BA). Montrer qu'il existe un complexe a tel que f = aTr.

Exercice 15. (***)

Soit $A = (a_{i,j})_{1 \le i,j \le n}$ définie par $a_{i,j} = 1$ si i = j, j si i = j - 1 et 0 sinon.

Montrer que A est inversible et calculer A^{-1} .

Exercice 16. (***) (Matrice de Vandermonde)

Soient $x_1, \ldots, x_n \in \mathbb{K}$.

$$(x_i^{j-1})_{1 \le i, j \le n} = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}$$

Montrer que cette matrice est inversible si et seulement si les scalaires x_1, \ldots, x_n sont deux à deux distincts.

Rang d'une matrice et propriétés :

Exercice 17. (**)

Soient α, β deux réels et

$$M_{\alpha,\beta} = \left(\begin{array}{cccc} 1 & 3 & \alpha & \beta \\ 2 & -1 & 2 & 1 \\ -1 & 1 & 2 & 0 \end{array} \right).$$

Déterminer les valeurs de α et β pour les quelles l'application linéaire associée à $M_{\alpha,\beta}$ est surjective.

Exercice 18. (**)

Soient
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 1 \\ 5 & 6 & 1 \\ 7 & 8 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 2 & -1 & 7 \\ 4 & 3 & -1 & 11 \\ 0 & -1 & 2 & -4 \\ 3 & 3 & -2 & 11 \end{pmatrix}.$$

Calculer rg(A) et rg(B). Déterminer une base du noyau et une base de l'image pour chacune des applications linéaires associées f_A et f_B .

Exercice 19. (*)

Soient A, B deux matrices semblables (i.e. il existe P inversible telle que $B = P^{-1}AP$). Montrer que si l'une est inversible, l'autre aussi ; que si l'une est idempotente, l'autre aussi ; que si l'une est nilpotente, l'autre aussi ; que si $A = \lambda I$, alors A = B.

Exercice 20. (**)

Trouver toutes les matrices de $\mathcal{M}_3(\mathbb{R})$ qui vérifient

- 1. $M^2 = 0$;
- 2. $M^2 = M$;
- 3. $M^2 = I$.

Exercice 21. (**)

Prouver qu'une matrice A de $M_{n,p}(\mathbb{K})$ de rang r s'écrit comme somme de r matrices de rang 1.

Exercice 22. (***)

Montrer qu'une matrice de $\mathcal{M}_n(\mathbb{K})$ qui n'est pas inversible est équivalente à une matrice nilpotente.

Exercice 23. (**)

Soit B la matrice diagonale par blocs

$$B = \begin{pmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \ddots & \vdots \\ \vdots & \dots & \ddots & \vdots \\ 0 & \dots & 0 & A_n \end{pmatrix}.$$

Calculer le rang de B en fonction du rang des A_i .

Exercice 24. (**) (Théorème de HADAMARD)

Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{C})$ telle que $\forall i \in [1, n],$ $|a_{i,i}| > \sum_{j \neq i} |a_{i,j}|$. Montrer que $A \in \mathcal{G}l_n(\mathbb{C})$.

Exercice 25. (**)

Donner le rang de la matrice $(i + j + ij)_{1 \le i,j \le n}$.

Exercice 26. (***)

Soit $M \in \mathcal{M}_3(\mathbb{R})$. Montrer que les deux propriétés suivantes sont équivalentes :

(1)
$$M^2 = 0$$
 et (2) $rgM \le 1$ et $trM = 0$.