NASA TECHNICAL MEMORANDUM

NASA TM X-2904

COPY

PERFORMANCE OF TRANSONIC FAN STAGE WITH WEIGHT FLOW PER UNIT ANNULUS AREA OF 178 KILOGRAMS PER SECOND PER SQUARE METER (36.5 (LB/SEC)/(FT²))

by Royce D. Moore, Donald C. Urasek, and George Kovich Lewis Research Center Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • NOVEMBER 1973

		_ 						
1. Report No. NASA TM X-2904	2. Government Access	sion No.	3. Recipient's Catalog No.					
4. Title and Subtitle PERFORMANCE C	F TRANSONIC F	AN STAGE WITH	5. Report Date					
WEIGHT FLOW PER UNIT AN	JULIIS AREA OF	178 KILOGRAMS	November 1	973				
PER SECOND PER SQUARE M		·	6. Performing Organiz	ation Code				
7. Author(s)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		8. Performing Organiz	ation Report No.				
Royce D. Moore, Donald C. Ui	asek, and Georg	e Kovich	E-7081					
·			10. Work Unit No.					
9. Performing Organization Name and Address			501-24					
Lewis Research Center		<u> </u>	11. Contract or Grant	No.				
National Aeronautics and Space	Administration							
Cleveland, Ohio 44135		_	13. Type of Report an	d Period Covered				
12. Sponsoring Agency Name and Address			Technical Me					
National Aeronautics and Space	Administration	-	14. Sponsoring Agency					
Washington, D.C. 20546			17. Sponsoring Agency	₩ue				
15. Supplementary Notes								
15. Supplementary Notes				•				
16. Abstract								
The overall and blade-element	performances ar	e presented over the	e stable flow one	erating range				
from 50 to 100 percent of desig	=	•	-	0 0				
·		=		_				
flow of 26. 4 kg/sec (58.3 lb/se			_	_				
was 7.5 percent based on weigh	-		-					
The rotor minimum losses wer			=	*				
damper region. Stator minimu	m losses were le	ess than design exce	pt in the tip and	damper				
regions.								
				-				
ł								
17. Key Words (Suggested by Author(s))		18. Distribution Statement	· · · · · · · · · · · · · · · · · · ·					
Turbomachinery; Compressors	: Transonic	Unclassified - 1						
compressors; Axial flow compressors	•	JJ						
	CDDULD,							
Turbofans								
1								
				-				
19. Security Classif. (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price* Domestic, \$3.75				

PERFORMANCE OF TRANSONIC FAN STAGE WITH WEIGHT FLOW PER UNIT ANNULUS AREA OF 178 KILOGRAMS PER SECOND PER SQUARE METER (36.5 (LB/SEC)/(FT²))

by Royce D. Moore, Donald C. Urasek, and George Kovich
Lewis Research Center

SUMMARY

The overall performance and blade-element performance of a transonic fan stage are presented. The stage, designed to investigate the effect of weight flow per unit annulus area on the performance of compressors, had a design flow of 178 kilograms per second per square meter. Detailed radial and circumferential (behind stator) surveys of the flow conditions were made over the stable operating range at rotative speeds from 50 to 100 percent of design speed. The stage peak efficiency of 0.834 was obtained at a weight flow of 26.4 kilograms per second and a pressure ratio of 1.581. The stall margin from this stage was 7.5 percent, based on pressure ratio and weight flow at the peak efficiency and stall conditions. The rotor peak efficiency of 0.860 occurred at a weight flow of 26.4 kilograms per second and a pressure ratio of 1.611. Except in the region of the rotor vibration damper, the rotor minimum losses were approximately equal to design values. However, they occurred at less than design incidence angle. The minimum loss values for the stator were less than design values except in the tip and in the region behind the rotor dampers. As with the rotor, the stator minimum losses occurred at less than design incidence angles except behind the damper region.

INTRODUCTION

A research program on axial-flow fans and compressors for advanced airbreathing engines is currently being conducted at the NASA Lewis Research Center. This program is primarily directed toward reducing the size and weight of fans and compressors while maintaining high levels of performance. In support of this program experimental studies are being conducted on the effect of blade solidity, blade aspect ratio, blade

loading, area margin above choke, different blade shapes, weight flow per unit annulus area, velocity ratio, and blade spacing on efficiency and performance (refs. 1 to 7).

A series of tests are being conducted to evaluate the effect of weight flow per unit annulus area on the performance of axial-flow fan stages. The three stages in this series were designed for weight flows per unit annulus area of 178, 198, and 208 kilograms per second per square meter (refs. 8 and 9). All three stages were designed to produce a pressure ratio of 1.57, and all had the same meridional flow path geometry.

In the present investigation an axial-flow fan stage designed for 178 kilograms per second per square meter was tested. This report presents the aerodynamic design parameters and the overall and blade-element performance. Data were obtained over the stable operating range of the stage for six rotative speeds from 50 to 100 percent of design speed. Blade-element data were obtained at 11 radial positions. The stage presented in this report has been designated "stage 16-11" with the rotor being rotor 16 and the stator being stator 11. The data in this report are presented in tabular and in plotted form. The symbols and equations are defined in appendixes A and B. The definitions and units used for the tabular data are presented in appendix C.

AERODYNAMIC DESIGN

Three computer programs were used in the design of this compressor stage: the streamline analysis program, the blade geometry program, and the blade coordinate program. These three computer programs are described in references 1, 4, and 10, respectively; only a brief description of each is presented herein.

The streamline analysis program (ref. 1) was used to calculate the flow field parameters at several axial locations, including planes approximating the blade leading and trailing edges for both the rotor and stator. The weight flow, rotative speed, flow path geometry, and radial distributions of total pressure and temperature are inputs in this program. The program accounts for both streamline curvature and entropy gradients; boundary-layer blockage factors are also included.

The distributions of velocity vector, total pressure, and total temperature calculated in the streamline analysis program are used in the blade geometry program to compute blade geometry parameters (ref. 4). Total loss, which is calculated within the program, is based on a calculated shock loss (as related to the selected blade shape) and a profile loss. The profile losses used for this stage are based on loss - diffusion factor correlations that include the data presented in reference 1 for the rotor and reference 11 for the stator.

The blade geometry parameters are used in the blade coordinate program (ref. 10) to compute blade elements on conical surfaces passing through the blade. The blade

elements are then stacked on a line passing through their centers of gravity, and Cartesian blade coordinates, which are used directly in fabrication, are computed.

The overall design parameters for stage 16-11 are listed in table I, and the flow path is shown in figure 1. This stage was designed for an overall pressure ratio of 1.57 at a weight flow of 26.5 kilograms per second (178.2 (kg/sec)/m² of annulus area). The design tip speed was 425 meters per second. The stage was designed for a tip solidity of 1.3 for both rotor and stator. This resulted in 44 rotor blades with an aspect ratio of 2.6 and 48 stator blades with an aspect ratio of 2.3.

The blade-element design parameters for rotor 16 are presented in table II. This rotor was designed for a radially constant total pressure ratio of 1.6. The stator blade-element design parameters are given in table III. The blade geometry is presented in table IV for rotor 16 and in table V for stator 11. Both the rotor and stator used multiple-circular-arc blade shapes.

APPARATUS AND PROCEDURE

Compressor Test Facility

The compressor stage was tested in the Lewis single-stage compressor facility (described in detail in ref. 4). A schematic is shown in figure 2. Atmospheric air enters the test facility at an inlet located on the roof of the building and flows through the flow measuring orifice and into the plenum chamber upstream of the test stage. The air then passes through the experimental compressor stage into the collector and is exhausted to the atmosphere.

Test Stage

Photographs of the rotor and stator are shown in figures 3 and 4. Each rotor blade has a vibration damper located at about 50 percent span from the outlet rotor tip. The maximum thickness of the damper was 0.215 centimeter. The radial tip clearance of the rotor was a nominal 0.050 centimeter at ambient nonrotating conditions. The axial spacing between the rotor hub trailing edge and the stator hub leading edge was 3.148 centimeters (0.7 rotor tip chord).

Instrumentation

The compressor weight flow was determined from measurements on a calibrated

thin-plate orifice. The orifice temperature was determined from an average of two Chromel/Alumel thermocouples. Orifice pressures were measured by calibrated transducers.

Radial surveys of the flow were made upstream of the rotor, between the rotor and stator, and downstream of the stator (fig. 1). Photographs of the survey probes are shown in figure 5. Total pressure, total temperature, and flow angle were measured with the combination probe (fig. 5(a)), and the static pressure was measured with an 8° C-shaped wedge probe (fig. 5(b)). Each probe was positioned with a null-balancing, stream-directional sensitive control system that automatically alined the probe to the direction of flow. The thermocouple was iron/constantan. The probes were alined in an air calibration tunnel. A combination probe and a wedge static probe were used at each of the three measuring stations.

Inner- and outer-wall static-pressure taps were located at the same axial stations as the survey probes. The circumferential locations of both types of survey probes along with inner- and outer-wall static-pressure taps are shown in figure 6. The combination probe downstream of the stator (station 3) traversed circumferentially one stator blade passage (7.5°) counterclockwise from the nominal value shown.

An electronic speed counter, in conjunction with a magnetic pickup, was used to measure rotative speed (rpm). Strain gages were mounted on both the rotor and stator blades to monitor stresses and vibrations.

The estimated errors of the data based on inherent accuracies of the instrumentation and recording system are as follows:

Weight flow, kg/sec
Rotative speed, rpm
Flow angle, deg
Temperature, K
Rotor inlet total pressure, N/cm^2
Rotor outlet total pressure, N/cm^2
Stator outlet total pressure, N/cm^2
Rotor inlet static pressure, N/cm^2
Rotor outlet static pressure, N/cm ² ±0.07
Stator outlet static pressure, N/cm^2

A further indication of the consistency of the data can be observed by comparing the integrated weight flows at each measuring station with the orifice weight flow in table VII.

Test Procedure

The stage survey data were taken over a range of weight flows from maximum flow to the near-stall conditions. At 70, 90, and 100 percent of design speed, radial surveys were taken at five weight flows. At 50, 60, and 80 percent of design speed, radial surveys were taken for the near-stall weight flow only. Data were recorded at 11 radial positions for each speed and weight flow.

At each radial position the combination probe behind the stator was traversed circumferentially to nine different locations across the stator gap. The wedge probe was set at midgap because previous studies showed that the static pressure across the stator gap was constant. Values of pressure, temperature, and flow angle were recorded at each circumferential position. At the last circumferential position values of pressure, temperature, and flow angle were also recorded at stations 1 and 2. All probes were then traversed to the next radial position, and the circumferential traverse procedure was repeated.

At each of the six rotative speeds the back pressure on the stage was increased by closing the sleeve valve in the collector until a stalled condition was detected by a sudden drop in stage outlet total pressure. This pressure was measured by a probe located at midpassage and was recorded on an X-Y plotter. Stall was corroborated by large increases in the measured blade stresses on both rotor and stator along with a sudden increase in noise level.

Calculation Procedure

The measured total temperatures and pressures were corrected for Mach number and streamline slope. These corrections were based on the instrument probe calibrations given in reference 12. The stream static pressures were corrected for Mach number and streamline slope based on an average calibration for the wedge probes used.

Because of the physical construction of the C-shaped static-pressure wedges, it was not possible to obtain static-pressure measurements at 5, 10, and 95 percent of span. The static pressure at 95 percent span was obtained by assuming a linear variation in static pressure between the values at the inner wall and the probe measurement at 90 percent span. A similar variation was assumed between the static-pressure measurements at the outer wall and the 30 percent span to obtain the static pressure at 5 and 10 percent span.

At each radial position, averaged values of the nine circumferential measurements of pressure, temperature, and flow angle downstream of the stator (station 3) were obtained. The nine values of total temperature were mass averaged to obtain the stator

outlet total temperature. The nine values of total pressure were energy averaged. The measured values of pressure, temperature, and flow angle were used to calculate axial and tangential velocities at each circumferential position. The flow angles presented for each radial position are calculated based on these mass-averaged axial and tangential velocities. To obtain the overall performance, the radial values of total temperature were mass averaged, and the values of total pressure were energy averaged. At each measuring station, the integrated weight flow was computed based on the radial survey data.

The data, measured at the three measuring stations, were translated to the blade leading and trailing edges by the method presented in reference 4.

The weight flow at stall was obtained in the following manner: During operation in the near-stall condition, the sleeve valve was slowly closed in small increments. At each increment the weight flow was obtained. The weight flow obtained just before stall occurred is called the stall weight flow. The pressure ratio at stall was obtained by extrapolating the total pressure obtained from the survey data to the stall weight flow.

Orifice weight flow, total pressures, static pressures, and temperatures were all corrected to sea-level conditions based on the rotor inlet conditions.

RESULTS AND DISCUSSION

The results from this investigation will be presented in three main sections. The overall performances for the rotor and the stage are given first. Radial distributions of several performance parameters are then presented for the rotor and stator followed by the blade-element data. The data presented are computer plotted and occasionally a data point will be omitted because it falls outside the range of the parameters shown in the figure. A brief discussion of the results is included.

All plotted data, together with some additional performance parameters, are listed in tabular form. The overall performance data are given in table VI (p. 25). The blade-element data are presented for the rotor in table VII (p. 27) and for the stator in table VIII (p. 45). The definitions and units used for the tabular data are listed in appendix C.

Overall Performance

The overall performance for rotor 16 and for stage 16-11 are presented in figures 7 and 8. For both of these computer plotted figures, data are presented for speeds from 50 to 100 percent of design speed. For the 50, 60, and 80 percent of design speeds the

overall performance is presented for the near-stall condition, only. For the 70, 90, and 100 percent of design speeds data are presented at several weight flows from choke to the near-stall conditions. Design-point values are shown as solid symbols in both figures. The stall line (dashed line) shown in figure 8 was determined using the method discussed in the section Calculation Procedure.

Rotor. - The peak efficiency for rotor 16 at design speed was 0.860. The peak efficiency occurred at a weight flow of 26.4 kilograms per second. The measured pressure ratio was 1.611, and temperature ratio was 1.170. These compare with the design values of 1.601 and 1.162, respectively. At the lower speeds, values of efficiency up to 0.88 were obtained for this rotor.

Stage. - The peak efficiency for stage 16-11 at the design speed was 0.834. The peak efficiency for this stage occurred at the same weight flow as peak efficiency for the rotor. The measured total pressure ratio of 1.581 was slightly higher than the design value of 1.574. The measured temperature ratio of 1.168 was also higher than the design value of 1.162. The calculated stall margin for stage 16-11 was 7.5 percent at design speed. For the lower speeds measured efficiencies ranged up to 0.86 for this stage.

Radial Distributions

The radial distributions of several parameters are presented for design speed in figure 9 for rotor 16 and in figure 10 for stator 11. In each figure data are presented for three weight flows: near choke, peak efficiency, and near stall. The design values are shown by the solid symbols. Temperature-rise efficiency, temperature ratio, pressure ratio, suction-surface incidence angle, meridional velocity ratio, deviation angle, total loss parameter, total loss coefficient, and diffusion factor are presented as functions of percent span from the blade tip.

Rotor. - As the weight flow was reduced, the pressure ratio and temperature ratio increased across the entire rotor blade span with the larger increases occurring in the tip region. The blade loading (diffusion factor) also continued to increase with decreasing weight flow. The effect of the damper on efficiency is evident at all three weight flows.

The peak efficiency for this rotor occurred at the design weight flow. At this weight flow, the measured pressure ratio is slightly higher than design from the tip to the damper region and less than design from the damper to the hub. The deviation angle was less than design from the tip to the damper and then greater than design from the damper to the hub. Except in the damper region, the measured efficiency and losses were close to design.

Stator. - At the peak efficiency weight flow of 26.4 kilograms per second, the stator deviation angles were less than design except in the tip and hub regions. Although the diffusion factor was less than design in the tip region, the losses in this region were approximately equal to design. The losses in the hub region increased sharply from the 90 to 95 percent span position. The suction-surface incidence angles were less than design except in the damper region.

Variations with Incidence Angle

The variations of selected blade-element parameters with suction-surface incidence angle are presented in figure 11 for the rotor and in figure 12 for the stator. The data are presented for 70, 90, and 100 percent of design speed for blade-element locations of 5, 10, 30, 45, 70, 90, and 95 percent span from the rotor blade tip. Design values are shown by solid symbols. In addition to all the parameters, which were shown in the radial distribution plots, inlet relative Mach number is also presented. The incidence angle curves are presented primarily for future use in comparing the performance of these blades with other blade shapes. Thus, only a few brief observations will be made from the curves at present.

Rotor. - The absolute values of minimum loss are approximately equal to design values except at 45 percent span, where the flow is affected by the midspan dampers. For the 5, 10, 30, 70, and 90 percent spans, the minimum loss occurred at angles less than the design incidence angle of zero degrees. At 45 and 95 percent span, the minimum loss occurred at slightly greater than design incidence angle. At the minimum loss condition the deviation angles were less than design at 5, 10, 30, and 45 percent spans, whereas at the other locations they were greater than design. The rotor pressure ratio and efficiency were greater than design for 5, 10, 30, and 45 percent spans and less than design for the other locations.

Stator. - The absolute values of minimum loss were less than the design loss values except at the 5 and 45 percent spans. The stator blades were designed for minimum loss to occur at zero incidence angle. Except at 5 and 45 percent spans, the minimum loss occurred at large negative incidence angles. For 5 and 45 percent spans, the losses were relatively constant over a range of incidence angles. The deviation angles corresponding to minimum loss were less than the design values except at the 5 percent span.

Discussion of Performance

The measured overall peak efficiency for rotor 16 occurred at a weight flow of

26.4 kilograms per second. However, examination of all the blade-element data at design speed indicates that peak efficiency would have probably occurred at a higher weight flow if the rotor had no dampers. As can be observed from figure 11, the minimum loss for the rotor blade elements occur at incidence angles less than those for the overall peak efficiency for all elements except in the damper and hub regions. (See 50-percent-span locations in table VII(c) and (d), pp. 29 and 30.) Behind the dampers the element efficiency was 0.05 lower for a weight flow of 27.16 kilograms per second than that for the overall peak efficiency weight flow of 26.44 kilograms per second. Although the minimum losses occurred at a flow greater than design over most of the blade height, the high losses in the damper region counterbalanced this trend and maximum efficiency occurred near design weight flow.

It is estimated that the dampers resulted in about a 0.02 decrease in overall efficiency for the higher weight flow and about a 0.01 decrease in overall efficiency for a weight flow of 26.4 kilograms per second. No allowances for damper losses or damper blockages were made in the design of this rotor, and it appears that this rotor could have met design efficiency had it been tested without the vibration dampers.

At the near-stall conditions the blade loadings (as indicated by the diffusion factors) for the rotor tip elements are significantly lower than the loadings obtained from the other two rotors in this weight flow per unit annulus area study (refs. 8 and 9). It may be significant, however, that these three rotors experienced stalling conditions at approximately the same weight flow.

The design stator losses correspond to a decrease in overall efficiency of 0.034 for the stage as compared to the rotor only. Examination of the overall performance data (table VI(a)) indicates that the measured decrease in overall efficiency chargeable to the stator is less than 0.03 for all weight flows except the maximum flow.

SUMMARY OF RESULTS

This report has presented both the aerodynamic design parameters and the overall and blade-element performance of a transonic compressor stage. This stage, which is one of a series to investigate the effects of weight flow per unit annulus area on performance, was designed for 178 kilograms per second per square meter. Detailed radial surveys of the flow conditions in front of the rotor, between the rotor and stator, and behind the stator were made over the stage stable operating flow range at rotative speeds from 50 to 100 percent of design speed. Flow and performance parameters were calculated across 11 radial positions. The following principle results were obtained:

1. The rotor minimum losses were approximately equal to design values except in the region of the dampers. However, minimum loss occurred at less than design incidence angles except in the damper region.

- 2. The stator minimum losses were less than design values except near the tip and in the damper region. The minimum loss occurred at less than design incidence angle except in the region behind the rotor dampers.
- 3. At design speed, the stage peak efficiency of 0.834 occurred at a pressure ratio of 1.581 and a weight flow of 26.4 kilograms per second. Stage stall margin was 7.5 percent based on pressure ratio and weight flow at the peak efficiency and stall conditions.
- 4. The rotor peak efficiency of 0.860 occurred at a pressure ratio of 1.611 and a weight flow of 26.4 kilograms per second.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, July 5, 1973, 501-24.

APPENDIX A

SYMBOLS

- A_{an} annulus area at rotor leading edge, 0.149 m²
- A_f frontal area at rotor leading edge, 0.199 m²
- $C_{
 m p}$ specific heat at constant pressure, 1004 m J/(kg)(K)
- D diffusion factor
- g acceleration of gravity, 9.8 m/sec²
- i_{mc} mean incidence angle, angle between inlet air direction and line tangent to blade mean camber line at leading edge, deg
- i_{ss} suction-surface incidence angle, angle between inlet air direction and line tangent to blade suction surface at leading edge, deg
- J mechanical equivalent of heat
- N rotative speed, rpm
- P total pressure, N/cm²
- p static pressure, N/cm²
- r radius, cm
- SM stall margin
- T total temperature, K
- U wheel speed, m/sec
- V air velocity, m/sec
- W weight flow, kg/sec
- Z axial distance referenced from rotor blade hub leading edge, cm
- α_c cone angle, deg
- $\alpha_{_{\mathbf{S}}}$ slope of streamline, deg
- β air angle, angle between air velocity and axial direction, deg
- eta_{c}^{\prime} relative meridional air angle based on cone angle, arctan (tan eta_{m}^{\prime} cos $lpha_{c}/\cos{lpha_{s}}$), deg
- γ ratio of specific heats, 1.40
- δ ratio of rotor-inlet total pressure to standard pressure of 10.13 N/cm²

- δ^{O} deviation angle, angle between exit air direction and tangent to blade mean camber line at trailing edge, deg
- θ ratio of rotor inlet total temperature to standard temperature of 288.2 K
- η efficiency
- κ_{mc} angle between blade mean camber line and meridional plane, deg
- $\kappa_{\rm SS}$ angle between blade suction-surface camber line at leading edge and meridional plane, deg
- σ solidity, ratio of chord to spacing
- $\overline{\omega}$ total loss coefficient
- $\overline{\omega}_{\mathrm{p}}$ profile loss coefficient
- $\overline{\omega}_{s}$ shock loss coefficient

Subscripts:

- ad adiabatic (temperature rise)
- id ideal
- LE blade leading edge
- m meridional direction
- mom momentum-rise
- p polytropic
- TE blade trailing edge
- z axial direction
- θ tangential direction
- 1 instrumentation plane upstream of rotor
- 2 instrumentation plane between rotor and stator
- 3 instrumentation plane downstream of stator

Superscript:

' relative to blade

APPENDIX B

EQUATIONS

Suction-surface incidence angle -

$$i_{SS} = (\beta_c')_{LE} - \kappa_{SS}$$
 (B1)

Mean incidence angle -

$$i_{mc} = (\beta_c^*)_{LE} - (\kappa_{mc})_{LE}$$
 (B2)

Deviation angle -

$$\delta^{O} = (\beta_{C}')_{TE} - (\kappa_{mc})_{TE}$$
 (B3)

Diffusion factor -

$$D = 1 - \frac{V_{TE}^{\prime}}{V_{LE}^{\prime}} + \frac{\left(rV_{\theta}\right)_{TE} - \left(rV_{\theta}\right)_{LE}}{\left(r_{TE} + r_{LE}\right)\sigma\left(V_{LE}^{\prime}\right)}$$
(B4)

Total loss coefficient -

$$\overline{\omega} = \frac{\left(\mathbf{P'_{id}}\right)_{TE} - \left(\mathbf{P'}\right)_{TE}}{\left(\mathbf{P'}\right)_{LE} - \left(\mathbf{p}\right)_{LE}}$$
(B5)

Profile loss coefficient -

$$\overline{\omega}_{p} = \overline{\omega} - \overline{\omega}_{S} \tag{B6}$$

Total loss parameter -

$$\frac{\overline{\omega}\cos\left(\beta_{\mathrm{m}}^{\prime}\right)_{\mathrm{TE}}}{2\sigma}\tag{B7}$$

Profile loss parameter -

$$\frac{\overline{\omega}_{p} \cos \left(\beta'_{m}\right)_{TE}}{2\sigma} \tag{B8}$$

Adiabatic (temperature rise) efficiency -

$$\eta_{\text{ad}} = \frac{\left(\frac{\mathbf{P}_{\text{TE}}}{\mathbf{P}_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{\mathbf{T}_{\text{TE}}}{\mathbf{T}_{\text{LE}}} - 1}$$
(B9)

Momentum-rise efficiency -

$$\eta_{\text{mom}} = \frac{\left(\frac{\mathbf{P}_{\text{TE}}}{\mathbf{P}_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{\left(\mathbf{U}\mathbf{V}_{\theta}\right)_{\text{TE}} - \left(\mathbf{U}\mathbf{V}_{\theta}\right)_{\text{LE}}}{\mathbf{T}_{\text{LE}}\mathbf{gJC}_{\mathbf{p}}}} \tag{B10}$$

Equivalent weight flow -

$$\frac{\mathbf{W}\sqrt{\theta}}{\delta} \tag{B11}$$

Equivalent rotative speed -

$$\frac{N}{\sqrt{\theta}}$$
 (B12)

Weight flow per unit annulus area -

$$\underbrace{\begin{pmatrix} \mathbf{W}\sqrt{\theta} \\ \mathbf{\delta} \end{pmatrix}}_{\mathbf{A}_{an}} \tag{B13}$$

Weight flow per unit frontal area -

$$\frac{\left(\frac{\mathbf{W}\sqrt{\theta}}{\delta}\right)}{\mathbf{A_f}} \tag{B14}$$

Head-rise coefficient -

$$\frac{gJC_{p}T_{LE}}{U_{tip}^{2}}\left[\left(\frac{P_{TE}}{P_{LE}}\right)^{(\gamma-1)/\gamma} - 1\right]$$
(B15)

Flow coefficient -

$$\left(\frac{V_{z}}{U_{tip}}\right)_{LE} \tag{B16}$$

Stall margin -

$$SM = \left[\frac{\left(\frac{P_{TE}}{P_{LE}} \right)_{stall}}{\left(\frac{P_{TE}}{P_{LE}} \right)_{ref}} \times \frac{\left(\frac{W\sqrt{\theta}}{\delta} \right)_{ref}}{\left(\frac{W\sqrt{\theta}}{\delta} \right)_{stall}} - 1 \right]$$
 100 (B17)

Polytropic efficiency -

$$\eta_{p} = \exp \left[\frac{\left(\frac{P_{TE}}{P_{LE}} \right)^{(\gamma-1)/\gamma}}{\frac{T_{TE}}{T_{LE}}} \right]$$
(B18)

APPENDIX C

DEFINITIONS AND UNITS USED IN TABLES

ABS absolute

AERO CHORD aerodynamic chord, cm

AREA RATIO ratio of actual flow area to critical area (where local Mach number

is one)

BETAM meridional air angle, deg

CONE ANGLE angle between axial direction and conical surface representing blade

element, deg

DELTA INC difference between mean camber blade angle and suction-surface

blade angle at leading edge, deg

DEV deviation angle (defined by eq. (B3)), deg

D-FACT diffusion factor (defined by eq. (B4))

EFF adiabatic efficiency (defined by eq. (B9))

IN inlet (leading edge of blade)

INCIDENCE incidence angle (suction surface defined by eq. (B1) and mean defined

by eq. (B2)), deg

KIC angle between the blade mean camber line at the leading edge and the

meridional plane, deg

KOC angle between the blade mean camber line at the trailing edge and the

meridional plane, deg

KTC angle between the blade mean camber line at the transition point and

the meridional plane, deg

LOSS COEFF loss coefficient (total defined by eq. (B5) and profile defined by

eq. (B6))

LOSS PARAM loss parameter (total defined by eq. (B7) and profile defined by

eq. (B8))

MERID meridional

MERID VEL R meridional velocity ratio

OUT outlet (trailing edge of blade)

PERCENT SPAN percent of blade span from tip at rotor outlet

PHISS suction-surface camber ahead of assumed shock location, deg

PRESS pressure, N/cm²

PROF profile

RADII radius, cm

REL relative to the blade

RI inlet radius (leading edge of blade), cm

RO outlet radius (trailing edge of blade), cm

RP radial position

RPM equivalent rotative speed, rpm

SETTING ANGLE angle between aerodynamic chord and meridional plane, deg

SOLIDITY ratio of aerodynamic chord to blade spacing

SPEED speed, m/sec

SS suction surface

STREAMLINE slope of streamline, deg

SLOPE

TANG tangential

TEMP temperature, K

TI thickness of blade at leading edge, cm

TM thickness of blade at maximum thickness, cm

TO thickness of blade at trailing edge, cm

TOT total

TOTAL CAMBER difference between inlet and outlet blade mean camber lines, deg

VEL velocity, m/sec

WT FLOW equivalent weight flow, kg/sec

X FACTOR ratio of suction-surface camber ahead of assumed shock location of

a multiple-circular-arc blade section to that of a double-circular-

arc blade section

ZIC axial distance to blade leading edge from inlet, cm

ZMC axial distance to blade maximum thickness point from inlet, cm

ZOC axial distance to blade trailing edge from inlet, cm

ZTC axial distance to transition point from inlet, cm

REFERENCES

- 1. Ball, Calvin L.; Janetzke, David C.; and Reid, Lonnie: Performance of 1380-Foot-Per-Second-Tip-Speed Axial-Flow Compressor Rotor With Blade Tip Solidity of 1.5. NASA TM X-2379, 1972.
- 2. Hager, Roy D.; Janetzke, David C.; and Reid, Lonnie: Performance of a 1380-Foot-Per-Second Tip-Speed Axial-Flow Compressor Rotor With A Blade Tip Solidity of 1.3. NASA TM X-2448, 1972.
- 3. Janetzke, David C.; Ball, Calvin L.; and Hager, Roy D.: Performance of 1380-Foot-Per-Second Tip-Speed Axial-Flow Compressor Rotor With Blade Tip Solidity of 1.1. NASA TM X-2449, 1972.
- 4. Urasek, Donald C.; and Janetzke, David C.: Performance of Tandem-Bladed Transonic Compressor Rotor with Tip Speed of 1375 Feet Per Second. NASA TM X-2484, 1972.
- 5. Lewis, George W., Jr.; and Urasek, Donald C.: Comparison of the Effect of Two Damper Sizes on the Performance of a Low-Solidity Axial-Flow Transonic Compressor Rotor. NASA TM X-2536, 1972.
- 6. Moore, Royce D.; and Reid, Lonnie: Performance of a Single-Stage Axial-Flow Transonic Compressor Stage with a Blade Tip Solidity of 1.7. NASA TM X-2658, 1972.
- 7. Urasek, Donald C.; Moore, Royce D.; and Osborn, Walter M.: Performance of a Single-Stage Transonic Compressor with a Blade-Tip Solidity of 1.3. NASA TM X-2645, 1972.
- 8. Kovich, George; Moore, Royce D.; and Urasek, Donald C.: Performance of Transonic Fan Stage with Weight Flow per Unit Annulus Area of 198 Kilograms per Second per Square Meter (40.6 (lb/sec)/ft²). NASA TM X-2905, 1973.
- 9. Urasek, Donald C.; Kovich, George; and Moore, Royce D.: Performance of Transonic Fan Stage Compressor With Weight Flow per Unit Annulus Area of 208 Kilograms per Second per Square Meter (42.6 (lb/sec)/ft²). NASA TM X-2903, 1973.
- 10. Crouse, James E.; Janetzke, David C.; and Schwirian, Richard E.: A Computer Program for Composing Compressor Blading From Simulated Circular-Arc Elements on Conical Surfaces. NASA TN D-5437, 1969.
- 11. Keenan, M. J.; Harley, K. G.; and Bogardus, G. A.: Experimental Evaluation of Transonic Stators, Data and Performance Report, Multiple-Circular-Arc Stator A. Rep. PWA-3260, Pratt & Whitney Aircraft (NASA CR-54621), 1968.

12. Glawe, George E.; Krause, Lloyd N.; and Dudzinski, Thomas J.: A Small Combination Sensing Probe for Measurement of Temperature, Pressure, and Flow Direction. NASA TN D-4816, 1968.

TABLE I. - DESIGN OVERALL PARAMETERS

FOR STAGE 16-11

ROTOR TOTAL PRESSURE RATIO 1.60	1(
STAGE TOTAL PRESSURE RATIO	14
ROTOR TOTAL TEMPERATURE RATIO 1.16	52
STAGE TOTAL TEMPERATURE RATIO 1.16	32
STAGE TOTAL TEMPERATURE RATIO 1.16 ROTOR ADIABATIC EFFICIENCY	35
STAGE ADIABATIC EFFICIENCY 0.89	51
ROTOR POLYTROPIC EFFICIENCY 0.89	92
_STAGE POLYTROPIC EFFICIENCY 0.86	50
ROTOR HEAD RISE COEFFICIENT 0.23	51
STAGE HEAD RISE COEFFICIENT 0.22	22
FLOW COEFFICIENT	95
MT FLOW PER UNIT FRONTAL AREA 132.99	59
HT FLOW PER UNIT ANNULUS AREA 178.20)5
MT FLOW 26.53	55
RPM16100.00	0 (
TIP SPEED 424.94	13

TABLE II. - DESIGN BLADE-ELEMENT PARAMETERS FOR ROTOR 16

RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	RAD IN 25.204 24.683 24.123 21.814 20.034 19.733 19.430 19.126 18.821 16.946 14.280 13.570 12.700	0UT 24.905 24.364 23.824 21.662 20.041 19.771 19.501 19.231 18.960 17.339 15.178	ABS IN 0. -0. -0. 0. 0. 0. 0. 0.	BETAM OUT 49.5 46.9 43.0 43.6 43.8 44.2 44.4 46.0 49.4 50.7 52.2	REL 1N 70.3 69.4 68.4 65.0 62.7 62.7 62.5 61.5 61.1 58.7 55.0	BETAM 0UT 66.3 64.1 59.5 55.1 54.2 53.3 44.1 29.2 23.9 17.7	TOTAL IN 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2	TEMP RATIO 1.206 1.192 1.181 1.163 1.158 1.156 1.156 1.155 1.155 1.155 1.153 1.154	TOTAL IN 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13	PRESS RATIO 1.601 1.601 1.601 1.601 1.601 1.601 1.601 1.601 1.601
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	ABS IN 152.0 156.4 160.6 171.3 174.4 174.6 174.9 174.9 173.7 166.3 163.9	VEL 0UT 186.7 185.6 185.3 190.0 195.7 196.8 198.1 199.3 200.7 210.0 227.8 234.1 241.3	IN 451.3 444.6 437.3 405.7	VEL OUT 303.3 303.2 301.1 273.6 247.6 243.1 238.6 234.0 229.5 169.7 162.0 155.2	MERII IN 152.0 156.4 160.6 171.3 174.6 174.9 174.9 173.7 168.2 166.3	0 VEL 0UT 121.3 126.9 131.4 138.9 141.7 142.5 142.9 143.3 145.9 148.1 147.9	0. -0. -0. 0.	VEL OUT 141.9 135.4 130.7 129.6 134.9 136.2 137.5 138.9 140.5 151.0 173.0 181.2	WHEEL IN 424.9 416.2 406.7 367.8 337.8 337.6 322.5 317.3 228.8 214.1	SPEED OUT 419.9 410.8 401.7 365.2 337.9 3528.8 324.2 319.7 292.3 255.9 246.8 237.7
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	ABS M IN 0.456 0.470 0.483 0.517 0.526 0.527 0.528 0.528 0.528 0.524 0.507 0.493	ACH NO OUT 0.513 0.512 0.5514 0.552 0.551 0.5558 0.566 0.566 0.5695 0.649	REL M IN 1.354 1.335 1.315 1.214 1.148 1.135 1.121 1.108 1.094 1.094 1.008 0.885 0.852 0.812	ACH NO OUT 0.853 0.855 0.766 0.696 0.696 0.660 0.660 0.647 0.575 0.484 0.444	MERID M IN 0.456 0.473 0.517 0.526 0.527 0.528 0.528 0.528 0.524 0.501 0.493	ACH NO OUT 0.333 0.350 0.364 0.389 0.400 0.402 0.403 0.404 0.413 0.423	STREAML II 1N -5.69 -5.32 -4.81 -1.49 1.65 2.22 2.80 3.39 4.00 8.07 15.13 17.37 20.34	NE SLOPE OUT -8.95 -7.96 -6.94 -2.62 0.54 1.07 1.61 2.14 2.68 6.08 11.27 12.73		PEAK SS MACH NO 1.523 1.504 1.491 1.470 1.450 1.447 1.443 1.443 1.443 1.249 1.255
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	PERCENT SPAN 0. 5.00 10.00 50.00 47.50 50.00 52.50 55.00 90.00 95.00 100.00	INCI MEAN 2.6 2.7 3.0 4.1 4.9 5.2 5.3 7.6 7.6	DENCE SS 0.0 -0.0 -0.0 0.0 0.0 0.0 0.0 0.0 -0.0 -0.0	DEV 4.9 4.4 4.0 5.2 3.3 3.4 5.5 3.6 7.7 4.7 2.2 9.0	D-FACT 0.449 0.432 0.421 0.433 0.459 0.464 0.469 0.475 0.480 0.558 0.558 0.569 0.571	0.699 0.748 0.792 0.879 0.913 0.917 0.921 0.924 0.927 0.943 0.940 0.931	LOSS C TOT 0.249 0.202 0.163 0.096 0.073 0.071 0.068 0.065 0.056 0.056 0.072 0.088 0.114	OEFF PROF 0.171 0.131 0.097 0.046 0.037 0.036 0.035 0.035 0.035 0.035 0.035	LOSS 6 TOT 0.039 0.026 0.015 0.013 0.012 0.012 0.014 0.017 0.022	PARAM PROF 0.027 0.021 0.016 0.007 0.006 0.006 0.006 0.006 0.006 0.007

TABLE III. - DESIGN BLADE-ELEMENT PARAMETERS FOR STATOR 11

RADII ABS BETAM REL BETAM TOTAL TEMP TOTAL PRESS
RP IN OUT IN OUT IN OUT IN RATIO IN RATIO

KI-	114 001	114	001	114	001	114	RAILU	101	RAIJU
TIP	24.394 24.38	4 44.7	0.	44.7	0.	347.1	1.000	16.22	0.976
1	23.974 23.96	8 42.5	-0.	42.5	-0.	343.6	1.000	16.22	0.980
2	23.505 23.52	5 40.7	-0.	40.7	-0.	340.5	1.000	16.22	0.984
3	21.604 21.71	3 39.2	0.	39.2	0.	335.3	1.000	16.22	0.989
4	20.157 20.34	2 39.9	0.	39.9	0.	333.6	1.000	16.22	0.988
5	19.914 20.11	4 40.1	0.	40.1	0.	333.4	1.000	16.22	0.988
6	19.672 19.88	6 40.3	0.	40.3	0.	333.2	1.000	16.22	0.987
7	19.429 19.65	8 40.5	.0.	40.5	0.	333.0	1.000	16.22	0.987
8	19.186 19.43	0 40.7	0.	40.7	0.	332.9	1.000	16.22	0.987
9	17.729 18.07	4 42.1	0.	42.1	٥.	332.1	1.000	16.22	0.985
10	15.788 16.29	5 45.2	0.	45.2	0.	332.2	1.000	16.22	0.973
11	15.306 15.84	8 46.4	0.	46.4	٥.	332.7	1.000	16.22	0.963
HUB	14.643 15.24	0 48.2	-0.	48.2	-0.	333.5	1.000	16.22	0.945

	ABS	VEL	REL	VEL.	MER!	D VEL	TANO	VEL	WHEEL	SPEED
RP.	IN	OUT	IN	OUT	IN	OUT	IN	OUT	IN	OUT
TIP	204.7	149.8	204.7	149.8	145.5	149.8	144.0	٥.	0.	0.
1	203.6	151.9	203.6	151.9	150.0	151.9	137.6	-0.	٥.	٥.
2	203.2	153.8	203.2	153.8	154.0	153.8	132.5	-0.	0.	0.
3	205.5	157.6	205.5	157.6	159.2	157.6	129.9	٥.	٥.	0.
4	209.2	158.5	209.2	158.5	160.5	158.5	134.2	٥.	٥.	0.
5	210.0	158.7	210.0	158.7	160.7	158.7	135.2	٥.	0.	٥.
6	210.9	158.8	210.9	158.8	161.0	158.8	136.3	٥.	٥.	0.
7	211.9	159.0	211.9	159.0	161.2	159.0	137.5	٥.	٥.	٥.
8	212.9	159.2	212.9	159.2	161.5	159.2	138.8	Ó.	0.	0.
و.	220.2	160.6	220.2	160.6	163.3	160.6	147.7	0.	0.	0.
10	234.3	157.3	234.3	157.3	165.1	157.3	166.3	٥.	٥.	0.
11	239.3	154.0	239.3	154.0	165.1	154.0	173.3	٥.	0.	0.
HJB	247.2	148,1	247.2	148.1	164.8	148.1	184.2	-0.	٥.	0.

	ABS M	ACH NO	REL M	ACH NO	MERID M	IACH NO	STREAML	NE SLOPE	MERID	PEAK SS
RP	IN	OUT	IN	OUT	IN	OUT	IN	OUT	VEL R	MACH NO
TIP	0.566	0.408	0.566	0.408	0.402	0.408	-1.18	-0.08	1.029	0.879
1	0.565	0.416	0.565	0.416	0.417	0.416	-0.63	0.16	1.012	0.854
2	0.567	0.423	0.567	0.423	0.430	0.423	-0.08	0.39	0.999	0.835
3	0.578	0.438	0.578	0.438	0.448	0.438	1.62	1.23	0.990	0.824
4	0.591	0.441	0.591	0.441	0.454	0.441	2.98	1.92	0.988	0.836
5	0.594	0.442	0.594	0.442	0.454	0.442	3.23	2.04	0.987	0.839
6	0.597	0.443	0.597	0.443	0.455	0.443	3.48	2.16	0.987	0.843
7	0.600	0.443	0.600	0.443	0.456	0.443	3.74	2.28	0.986	0.847
8	0.603	0.444	0.603	0.444	0.457	0.444	4.01	2.41	0.986	0.851
9	0.626	0.448	0.626	0.448	0.464	0.448	5.82	3.22	0.984	0.882
10	0.670	0.439	0.670	0.439	0.472	0.439	8.89	4.35	0.953	0.949
11	0.685	0.429	0.685	0.429	0.472	0.429	9.75	4.50	0.933	0.974
HUB	0.708	0.411	0.708	0.411	0.472	0.411	10.98	4.61	0.899	1.014

R?	PERCENT SPAN	INCID:	ENCE SS	DEV	D-FACT	EFF	LOSS C	OEFF PROF	LOSS P	ARAM PROF
TIP	0.	6.3	-0.0	14.1	0.545	0.	0.133	0.133	0.053	0.053
1	5.00	6.3	0.0	12.6	0.516	٥.	0.103	0.103	0.040	0.040
2	10.00	6.4	0.0	11.3	0.491	0.	0.083	0.083	0.031	0.031
3	30.00	6.4	0.0	9.7	0.454	٥.	0.055	0.055	0.019	0.019
4	45.00	6.4	0.0	9.4	0.451	0.	0.058	0.058	0.019	0.019
5	47.50	6.4	0.0	9.3	0.451	٥.	0.059	0.059	0.019	0.019
6	50.00	6.4	0.0	9.3	0.452	٥.	0.060	0.060	0.019	0.019
7	52.50	6.4	0.0	9.3	0.453	0	0.060	0.060	0.019	0.019
8	55.00	6.3	0.0	9.2	0.454	0.	0.061	0.061	0.019	0.019
9	70.00	6.3	0.0	9.1	0.462	٥.	0.066	0.066	0.019	0.019
10	90.00	6.3	0.0	9.2	0.508	٥.	0.103	0.103	0.027	0.027
11	95.00	6.3	0.0	9.4	0.534	٥.	0.136	0.136	0.034	0.034
HUB	100.00	6.2	-0.0	9.6	0.575	0.	0.192	0.192	0.046	0.046

TABLE IV. - BLADE GEOMETRY FOR ROTOR 16

RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	5. 10. 30.	RI 25.204 24.683 24.123 21.814 20.034 19.733 19.430 19.126 18.821	R0 24.905 24.364 23.824 21.662 20.041 19.771 19.501 19.231 18.960 17.339 15.178 14.637	BLAI KIC 67.60 66.48 65.30 65.30 57.28 56.76 56.24 55.72 52.48 47.87 46.64 45.12	E ANGLE KTC 66.34 65.43 64.30 54.80 54.80 54.80 54.89 47.42 41.70 40.42 39.00	KOC 61.49 60.78 60.02 56.21 51.78 50.84 49.85 48.79 47.68 39.33 21.76 8.18	DELTA INC 2.51 2.75 3.00 4.07 4.90 5.18 5.18 5.46 6.29 7.35 7.59	CONE ANGLE -9.339 -9.519 -8.557 -3.692 0.161 0.819 1.482 2.149 2.817 7.105 13.772 15.655 19.355
	BLADE	THICKN	ESSES	Δ	KIAL DI	MENS LON	S	
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051	TM 0.151 0.161 0.171 0.213 0.247 0.252 0.258 0.263 0.269 0.304 0.355 0.369 0.386	0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051	ZIC 1.016 0.978 0.935 0.756 0.629 0.608 0.585 0.562 0.538 0.168 0.394 0.168 0.096	ZMC 1.891 1.892 1.894 1.895 1.895 1.894 1.893 1.894 1.892 1.890 1.878 1.827 1.804	ZTC 2.284 2.263 2.239 2.101 1.921 1.889 1.857 1.822 1.591 1.065 0.902	ZOC 2.839 2.879 2.923 3.111 3.258 3.284 3.331 3.357 3.551 3.832 5.904 3.977	
RP T 1 2 3 4 5 6 7 8 9 10 11 HUB	AERO CHORD 4.612 4.629 4.627 4.620 4.618 4.618 4.619 4.620 4.705 4.739 4.846	SETTING ANGLE 66.12 65.10 63.95 58.90 54.11 53.34 52.53 51.70 46.06 35.86 22.48 28.47	TOTAL CANBER 6.11 5.69 5.28 4.70 6.03 6.44 6.91 7.45 8.04 13.12 36.94	SOLIDITY 1.289 1.322 1.352 1.488 1.614 1.637 1.687 1.713 1.893 2.237 2.353 2.533	X FACTOR 0.717 0.725 0.750 0.944 0.993 0.998 1.000 0.978 0.822 0.760	PHISS 4.88 4.88 5.05 6.88 8.10 8.32 8.54 8.77 9.00 10.16 10.77 10.61	AREA RATIO 1.041 1.040 1.040 1.040 1.040 1.041 1.041 1.041 1.040 1.040	

TABLE V. - BLADE GEOMETRY FOR STATOR 11

RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	5. 10. 30. 45. 48. 50. 53. 55. 70. 95.	RI 24.394 23.974 23.505 21.604 20.157 19.914 19.672 19.429	R0 24.384 23.968 23.525 21.713 20.342 20.114 19.886 19.658 19.430 18.074 16.295 15.848	BLAU KIC 38.40 36.19 34.36 32.84 33.53 33.71 33.91 34.12 34.35 35.84 39.05 40.26 42.17	28.44	KOC -14.05 -12.57	DELTA INC 6.31 6.33 6.35 6.36 6.36 6.35 6.35 6.35 6.32 6.24	CONE ANGLE -0.154 -0.088 0.291 1.627 2.773 2.980 3.194 3.434 3.639 5.169 7.636 8.196 9.064
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	BLADE TI 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051	THICKN TM 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279	TO 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051	Z!C 7.098 7.073 7.051 7.033 7.040 7.042 7.044 7.046 7.058 7.089 7.102 7.125	8.838 8.834 8.824	2TC 8.554 8.467 8.388 8.239 8.181 8.173 8.165 8.158 8.151 8.105 8.060 8.054	ZOC 10.875 10.876 10.877 10.877 10.876 10.876 10.876 10.876 10.876 10.874 10.868	
RP TIP 1 2 3 4 5 6 7 8 9 10	AERO CHORD 4.053 4.052 4.055 4.055 4.059 4.059 4.060 4.060 4.068 4.085 4.090	SETTING ANGLE 19.32 18.06 17.07 16.15 16.44 16.53 16.62 16.72 16.82 17.52 19.06		1.607 1.736 1.946	X FACTOR 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600	PHISS 13.50 12.22 11.13 9.68 9.40 9.37 9.35 9.35 9.47 9.64	AREA RATIO 1.317 1.298 1.281 1.245 1.227 1.219 1.214 1.209 1.182 1.148	

TABLE VI. - OVERALL PERFORMANCE FOR STAGE 16-11

(a) 100 Percent of design speed

Parameter	Reading number						
	1057	1058	1059	1060	1061		
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT HT FLOM PER UNIT FRONTAL AREA HT FLOM PER UNIT ANNULUS AREA HT FLOM AT ROTOR OUTLET HT FLOM AT ROTOR OUTLET HT FLOM AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.390 1.362 1.123 1.122 0.802 0.758 0.158 0.147 0.375 138.36 185.44 27.61 27.64 28.69 16123.0	1,480 1,461 1,142 1,141 0,834 0,813 0,863 0,189 0,182 0,372 137,44 184,21 27,45 28,43 27,76 16139,5	1.561 1.553 1.159 1.156 0.855 0.855 0.216 0.207 136.11 182.42 27.16 27.14 28.42 27.16 16159.0	1.611. 1.581 1.170 1.168 0.860 0.834 0.897 0.234 0.355 132.47 177.55 26.44 27.90 27.15 16103.4	1.647 1.612 1.179 1.178 0.855 0.891 0.246 0.234 0.338 127.91 171.43 25.55 25.43 27.13 26.72		

(b) 90 Percent of design speed

Parameter	Reading number						
	1062	1063	1064	1065	1066		
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT HIF FLOM APER UNIT FRONTAL AREA HIT FLOM APER UNIT FRONTAL AREA HIT FLOM AT ROTIFICE HIT FLOM AT ROTOR INLET HIT FLOM AT ROTOR OUTLET HIT FLOM AT ROTOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.285 1.264 1.090 0.892 0.768 0.853 0.147 0.137 0.378 128.15 171.75 25.58 25.59 26.49 26.27 14502.6	1.350 1.338 1.105 1.104 0.852 0.836 0.897 0.177 0.171 0.372 126.06 168.96 25.16 25.21 25.69 14506.6	1.426 1.408 1.122 1.120 0.877 0.858 0.910 0.203 0.359 123.06 164.94 24.56 24.56 24.56 24.57 24.97 14511.1	1.473 1.452 1.134 1.132 0.872 0.851 0.205 0.221 0.322 0.337 117.42 157.38 23.43 23.43 24.71 24.04 14513.0	1.497 1.470 1.144 1.142 0.847 0.817 0.241 0.229 0.312 109.51 146.77 21.85 21.74 23.27 22.83 14509.4		

(c) 80 Percent of design speed

Parameter	Reading number
	1067
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT FLOM COEFFICIENT HT FLOM PER UNIT FRONTAL AREA HT FLOM PER UNIT ANNULUS AREA HT FLOM AT ROTOR INLET HT FLOM AT ROTOR OUTLET HT FLOM AT STATOR OUTLET HT FLOM AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.374 1.352 1.115 1.114 0.828 0.792 0.861 0.237 0.224 0.287 92.17 123.54 18.40 18.22 19.74 19.34 12913.1

TABLE VI. - Concluded. OVERALL PERFORMANCE FOR STAGE 16-11

(d) 70 Percent of design speed

Parameter	Reading number					
	1068	1069	1070	1071	1072	
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT HI FLOM PER UNIT FRONTAL AREA HI FLOM PER UNIT ANNULUS AREA HI FLOM AT ROTOR INLET HI FLOM AT ROTOR OUTLET HI FLOM AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.154 1.142 1.049 1.049 0.859 0.915 0.137 0.127 0.383 104.12 139.54 20.80 21.33 21.20	1.193 1.188 1.059 0.874 0.856 0.924 0.171 0.166 0.360 98.67 13.25 19.69 19.68 20.25 19.91	1.224 1.218 1.069 1.069 0.866 0.859 0.917 0.196 0.191 0.337 93.02 124.67 18.55 19.21 18.76	1.250 1.241 1.077 1.076 0.850 0.835 0.904 0.217 0.210 0.312 86.75 116.27 17.31 17.29 18.26 17.66	1.269 1.255 1.087 1.085 0.813 0.788 0.860 0.231 0.220 0.280 78.98 105.85 15.76 15.67 16.87 16.87	

(e) 60 Percent of design speed

Parameter	Reading number 1073
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENT STAGE HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT HIT FLOM PER UNIT FRONTAL AREA HIT FLOM PER UNIT ANNULUS AREA HIT FLOM AT ROTOR INLET HIT FLOM AT ROTOR OUTLET HIT FLOM AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.192 1.182 1.064 1.062 0.806 0.784 0.857 0.231 0.268 65.67 88.01 13.11 12.97 14.04 13.61 9631.0

(f) 50 Percent of design speed

Parameter	Reading number
	1074
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT FLOW COEFFICIENT HIT FLOW PER UNIT FRONTAL AREA HIT FLOW PER UNIT ANNULUS AREA HIT FLOW AT ROTOR INLET HIT FLOW AT ROTOR OUTLET HIT FLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.132 1.125 1.045 1.045 1.044 0.807 0.856 0.251 0.259 55.57 71.79 10.69 10.57 11.51 11.11 8060.5

TABLE VII. - BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 16

(a) 100 Percent of design speed	l; reading number 1057
---------------------------------	------------------------

	ν- ,			_	
RP 1 2 3 4 5 6 7 8 9 10	RADII IN OUT 24.684 24.364 24.122 23.823 21.814 21.661 20.033 20.041 19.733 19.771 19.431 19.500 19.126 19.230 18.821 18.961 16.947 17.338 14.280 15.176 13.571 14.638	ABS BETAM IN OUT -0.2 29.5 0.2 27.9 -0.1 27.3 0.3 32.6 -0.2 33.6 -0.2 33.8 -0.1 34.2 -0.1 35.3 -0.1 36.1 -0.1 38.2	67.3 61.6 64.2 58.8 61.5 53.9 61.0 54.8 60.8 57.3 60.8 57.3 59.9 56.9 57.1 43.7 53.1 32.4	TOTAL TEMP IN RATIO 289.0 1.137 288.8 1.129 288.2 1.115 288.0 1.123 288.1 1.116 288.0 1.112 287.9 1.115 287.9 1.115 287.7 1.126 287.7 1.132	TOTAL PRESS IN RAT [0] 10.07 1.374 10.11 1.382 10.13 1.367 10.14 1.373 10.14 1.297 10.14 1.281 10.14 1.290 10.15 1.432 10.15 1.455 10.13 1.483
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 164.1 187.2 170.1 191.5 178.3 189.7 183.1 199.5 183.4 192.6 184.0 177.7 184.3 171.1 184.8 175.1 185.6 218.8 181.2 232.3 178.6 241.1	REL VEL IN OUT 448.5 358.2 441.1 356.0 409.3 325.6 383.6 285.6 378.2 278.0 376.8 273.7 372.3 269.0 368.1 261.6 341.5 256.9 301.9 222.3 290.9 213.3	MERID VEL. IN OUT 164.1 162.9 170.1 169.3 178.3 168.6 183.1 168.2 185.4 160.4 184.0 147.7 184.3 141.6 184.8 143.0 185.6 185.9 181.2 187.6 178.6 189.5	TANG VEL IN OUT -0.6 92.3 0.7 89.5 -0.3 86.9 0.9 107.3 2.2 106.6 -0.7 98.1 -0.5 101.1 -0.5 115.4 -0.4 136.9 -0.4 149.2	WHEEL SPEED IN OUT 416:8 411.4 407.7 402.6 368.1 365.6 338.0 338.2 335.0 335.6 328.1 329.3 323.0 324.8 317.8 320.2 286.2 292.8 241.0 256.2 229.2 247.2
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.493 0.529 0.512 0.544 0.539 0.543 0.556 0.571 0.556 0.557 0.507 0.558 0.488 0.560 0.563 0.632 0.549 0.672 0.540 0.698	REL MACH NO 1N OUT 1.348 1.013 1.328 1.012 1.237 0.933 1.162 0.817 1.146 0.794 1.141 0.781 1.128 0.768 1.116 0.746 1.035 0.742 0.914 0.643 0.880 0.618	MERID MACH NO IN OUT 0.493 0.461 0.512 0.481 0.539 0.483 0.555 0.461 0.556 0.458 0.557 0.421 0.558 0.404 0.560 0.408 0.563 0.537 0.549 0.549		MERID PEAK SS VEL R MACH NO 0.992 1.486 0.995 1.465 0.945 1.453 0.918 1.419 0.875 1.411 0.802 1.420 0.769 1.417 0.774 1.413 1.001 1.394 1.035 1.275 1.061 1.225
RP 1 23 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 1.9 10.00 3.2 45.00 3.7 47.50 3.7 50.00 4.0 52.50 4.1 55.00 4.2 70.00 4.7 90.00 5.4	DENCE DEV SS -0.9 2.1 -1.1 1.5 -0.8 2.6 -1.2 2.1 -1.3 3.9 -1.2 7.5 -1.2 9.2 -1.6 4.3 -1.9 10.4 -1.9 11.7	D-FACT EFF 0.279 0.693 0.267 0.749 0.276 0.813 0.341 0.762 0.349 0.715 0.353 0.663 0.355 0.655 0.656 0.370 0.655 0.338 0.908 0.368 0.900 0.380 0.902	LOSS COEFF TOT PROF 0.183 0.113 0.146 0.083 0.107 0.059 0.157 0.124 0.189 0.158 0.212 0.181 0.213 0.183 0.222 0.194 0.070 0.052 0.096 0.094 0.105 0.104	LOSS PARAM TOT PROF 0.031 0.019 0.026 0.015 0.019 0.010 0.029 0.023 0.033 0.028 0.034 0.029 0.035 0.029 0.035 0.031 0.013 0.010 0.018 0.018 0.020 0.020

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 16

(b)	100	Percent	of	design	speed;	reading	number	1058
-----	-----	---------	----	--------	--------	---------	--------	------

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.684 24.364 24.122 23.823 21.814 21.661 20.033 20.041 19.733 19.771 19.431 19.500 19.126 19.230 18.821 18.961 16.947 17.338 14.280 15.176 13.571 14.638	ABS BETAM IN OUT -0.2 36.1 -0.2 33.5 -0.2 32.9 -0.2 39.4 -0.2 39.5 -0.1 39.7 -0.1 40.2 -0.1 36.2 -0.1 39.8	REL BETAM 1N OUT 68.6 62.5 67.5 61.3 64.4 58.2 61.8 55.0 61.0 57.2 60.6 57.5 60.1 55.9 57.4 44.7 53.5 33.5 52.5 26.7	TOTAL TEMP IN RATIO 288.9 1.168 288.8 1.155 288.1 1.140 288.1 1.146 288.0 1.143 287.8 1.136 288.0 1.133 288.0 1.134 287.9 1.133 287.7 1.141	TOTAL PRESS IN RATIO 10.07 1.499 10.11 1.498 10.13 1.487 10.14 1.439 10.14 1.399 10.14 1.398 10.14 1.398 10.15 1.488 10.15 1.488
RP 1 2 5 4 5 6 7 8 9 10 11	ABS VEL IN OUT 163.3 192.2 168.7 193.6 177.0 192.8 181.6 202.8 182.0 192.4 182.2 179.8 182.8 176.2 183.1 180.7 183.5 211.1 178.7 223.5 176.4 237.3	REL VEL IN OUT 448.2 336.3 441.0 336.4 409.5 307.4 384.6 265.5 380.4 258.8 376.1 257.4 372.1 252.4 367.2 246.1 340.8 239.6 300.7 206.0 289.7 197.5	MERID VEL IN OUT 163.3 155.3 168.7 161.4 177.0 161.9 181.6 158.9 182.0 148.5 182.2 139.5 182.8 135.6 183.1 138.1 183.5 170.3 178.7 171.8 176.4 176.4	TANG VEL IN OUT -0.4 113.3 -0.5 106.9 -0.5 126.0 -0.5 122.3 -0.5 113.4 -0.5 112.5 -0.5 124.8 -0.4 142.9 -0.4 158.7	WHEEL SPEED IN OUT 417.0 411.6 407.0 402.0 368.8 366.2 338.7 333.5 334.7 323.6 329.7 323.6 329.4 317.9 320.3 286.7 293.3 241.4 256.5 229.4 247.4
RP 1 2 5 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.491 0.537 0.508 0.544 0.555 0.575 0.551 0.544 0.552 0.509 0.553 0.498 0.554 0.512 0.556 0.602 0.541 0.642 0.533 0.683	REL MACH NO IN OUT 1.347 0.939 1.328 0.946 1.237 0.871 1.164 0.753 1.151 0.732 1.139 0.728 1.127 0.714 1.112 0.697 1.032 0.686 0.910 0.598	MERID MACH NO 1N OUT 0.491 0.434 0.508 0.454 0.555 0.459 0.551 0.420 0.552 0.395 0.553 0.384 0.554 0.591 0.554 0.494 0.533 0.508	,	MERID PEAK SS VEL R MACH NO 0.951 1.489 0.957 1.471 0.915 1.461 0.875 1.433 0.816 1.430 0.766 1.428 0.742 1.424 0.754 1.419 0.928 1.405 0.962 1.282 1.000 1.230
RP 1 2 3 4 5 6 7 8 9 10	PERCENT INCI SPAN MEAN 5.00 2.0 10.00 2.1 30.00 4.0 45.00 4.2 50.00 4.3 52.50 4.4 55.00 4.4 70.00 5.0 90.00 5.8 95.00 6.1	DENCE SS -0.8 1.6 -0.9 1.2 -0.6 2.0 -0.9 1.5 -0.9 4.1 -0.9 7.3 -1.0 8.7 -1.0 8.2 -1.3 5.3 -1.5 11.5 -1.5 11.0	D-FACT EFF 0.345 0.731 0.327 0.790 0.335 0.857 0.412 0.816 0.418 0.766 0.407 0.740 0.412 0.737 0.423 0.749 0.395 0.917 0.425 0.906 0.439 0.909	LOSS COEFF TOT PROF 0.191 0.121 0.143 0.079 0.098 0.049 0.140 0.104 0.177 0.143 0.190 0.158 0.191 0.161 0.187 0.159 0.069 0.051 0.096 0.094 0.104 0.104	LOSS PARAM TOT PROF 0.033 0.021 0.025 0.014 0.017 0.009 0.026 0.019 0.031 0.025 0.031 0.026 0.031 0.026 0.031 0.026 0.031 0.026 0.031 0.026 0.031 0.026 0.013 0.009 0.018 0.017 0.020 0.020

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 16

(c) 100 Percent of design speed; reading number 1059

RP 1 2 3 4 5 6 7 8 9 10	RADII IN 0U 24.684 24.3 24.122 23.8 21.814 21.6 20.033 19.7 19.733 19.7 19.431 19.5 19.126 19.2 18.821 18.9 16.947 17.3 14.280 15.1 13.571 14.6	T IN 64 -0.2 23 -0.2 61 -0.2 41 -0.2 71 -0.1 000 -0.2 350 -0.2 358 -0.1 76 -0.1	BETAM OUT 40.9 37.7 37.9 41.8 42.3 42.2 42.7 43.1 40.1 43.2 45.2	REL IN 69.0 67.8 64.7 62.2 61.8 61.4 61.0 60.6 57.9 54.2	BETAM 0UT 60.9 60.6 57.9 52.8 53.1 54.8 55.1 54.8 55.1 34.7 26.3	TOTAL IN 268.9 268.0 268.0 268.0 268.0 268.2 268.0 267.9 267.8	TEMP RATIO 1.198 1.178 1.158 1.161 1.159 1.154 1.151 1.151 1.153 1.151	TOTAL IN 10.05 10.11 10.14 10.14 10.14 10.14 10.14 10.15 10.15	PRESS RAT10 1.630 1.630 1.574 1.567 1.545 1.507 1.492 1.503 1.538 1.516
RP 1 2 3 4 5 6 7 8 9 10 11.	ABS VEL 1N 00 160.5 205 166.4 199 174.5 195 178.5 205 178.8 201 179.9 188 180.2 191 180.4 205 175.0 216 172.9 234	IT IN 10.0 447.9 1.9 441.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	VEL 0UT 318.3 322.0 290.3 253.5 248.3 246.1 241.6 236.3 225.5 191.8 184.3	MER II 180.5 166.4 174.5 178.5 178.8 179.4 179.9 180.2 180.4 175.0 172.9	VEL 0UT 154.9 158.0 153.2 148.9 141.9 138.4 140.2 160.3 157.6 165.2	TAN(IN -0.4 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.4 -0.4	VEL 0UT 134.3 122.3 120.0 136.7 135.7 127.5 131.0 135.0 147.8 166.2	WHEEL IN 417.8 408.0 368.5 533.7 328.6 523.8 318.8 287.0 241.8 229.9	SPEED 0UT 412.3 403.0 365.9 538.7 534.3 525.5 521.2 293.7 225.0 248.0
RP 1		NO REL M JT IN 567 1.345	ACH NO OUT 0.881	MERID M IN 0.482	ACH NO OUT 0.429			VEL R	PEAK SS MACH NO
25 4 5 6 7 8 9 10	0.501 0.505 0.540 0.541 0.50542 0.50544 0.50544 0.50546 0.545 0.55 0.5	557 1.327 550 1.233 579 1.159 568 1.146 539 1.133 530 1.122	0.898 0.817 0.715 0.699 0.693 0.680 0.666 0.642 0.549	0.501 0.527 0.540 0.541 0.542 0.544 0.545 0.546 0.529	0.440 0.434 0.432 0.420 0.399 0.390 0.595 0.456 0.451			0.965 0.950 0.884 0.859 0.833 0.769 0.769 0.789 0.901 0.955	1.499 1.481 1.467 1.443 1.440 1.436 1.434 1.433 1.419 1.292

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 16

(d) 100 Percent of design speed; reading number 1060

RP 1 2 3 4 5 6 7 8 9 10	RADII IN OUT 24.684 24.364 24.122 23.823 21.814 21.661 20.033 20.041 19.735 19.771 19.431 19.500 19.126 19.230 18.821 18.961 16.947 17.338 14.280 15.176 13.571 14.638	ABS BETAM IN OUT -0.2 43.8 -0.2 41.2 -0.2 40.8 -0.1 43.8 -0.1 45.9 -0.2 45.1 -0.2 45.1 -0.1 43.8 -0.1 43.8 -0.1 48.2	REL BETAM IN OUT 69.4 60.5 68.4 60.2 65.4 57.9 63.0 53.2 62.2 53.8 61.9 53.1 61.4 52.0 58.8 45.2 55.3 34.9 54.2 25.6	TOTAL TEMP IN RATIO 289.0 1.218 289.1 1.194 288.0 1.169 287.9 1.167 288.0 1.165 288.0 1.162 287.8 1.162 287.8 1.162 287.8 1.152 287.8 1.156	TOTAL PRESS IN RATIO 10.08 1.693 10.11 1.673 10.14 1.615 10.14 1.593 10.14 1.575 10.14 1.572 10.14 1.572 10.14 1.572 10.14 1.572 10.14 1.578 10.14 1.579 10.14 1.579
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL 1N 0UT 156.2 208.8 161.3 204.0 168.7 196.2 172.2 204.0 172.3 200.3 173.0 196.0 172.9 196.9 173.2 198.3 173.2 206.4 167.4 212.7 165.4 232.1	REL VEL IN OUT 444.7 305.6 438.4 308.6 404.7 279.3 379.3 245.5 374.3 241.4 371.0 238.2 366.5 251.3 362.1 227.4 334.8 211.4 293.8 180.8 283.0 171.5	MERID VEL 1N OUT 156.2 150.6 161.3 153.4 168.7 148.5 172.2 147.2 172.3 144.3 173.0 140.6 172.9 139.0 173.2 139.9 173.2 149.0 167.4 148.2 165.4 154.6	TANG VEL IN OUT -0.4 144.6 -0.4 134.4 -0.5 128.2 -0.5 141.2 -0.4 138.9 -0.5 136.6 -0.5 139.6 -0.5 140.6 -0.4 142.8 -0.4 152.6 -0.4 173.1	WHEEL SPEED IN OUT 416.0 410.6 407.2 402.2 367.4 364.8 337.5 337.7 331.8 332.5 327.7 328.9 322.7 324.5 317.5 319.9 286.1 292.7 241.0 256.1 229.2 247.3
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.468 0.573 0.484 0.565 0.508 0.549 0.522 0.553 0.522 0.553 0.523 0.523 0.523 0.523 0.525 0.525 0.505 0.606 0.498 0.662	REL MACH NO IN OUT 1.335 0.839 1.316 0.855 1.220 0.782 1.145 0.690 1.130 0.678 1.120 0.669 1.107 0.650 1.093 0.639 1.011 0.599 0.886 0.515 0.853 0.489	MERID MACH NO IN OUT 0.468 0.414 0.484 0.425 0.508 0.416 0.520 0.416 0.520 0.405 0.522 0.395 0.522 0.390 0.523 0.393 0.523 0.422 0.505 0.422 0.498 0.441		MERID PEAK SS VEL R MACH NO 0.964 1.503 0.951 1.491 0.885 1.459 0.855 1.454 0.813 1.454 0.804 1.454 0.808 1.452 0.860 1.447 0.885 1.300 0.935 1.249
RP 1 2 3 4 5 6 7 8 9 10	PERCENT INCI SPAN MEAN 5.00 2.8 10.00 3.0 30.00 4.4 45.00 5.2 47.50 5.3 50.00 5.5 52.50 5.6 55.00 5.7 70.00 6.4 90.00 7.5	SS 0.0 -0.4 -0.0 0.1 0.3 1.7 0.3 1.4 0.3 4.0 0.3 4.3 0.1 5.8 0.2 9.9	D-FACT EFF. 0.435 0.746 0.409 0.816 0.416 0.879 0.469 0.863 0.469 0.855 0.469 0.855 0.482 0.852 0.486 0.851 0.483 0.909 0.505 0.923 0.529 0.921	LOSS COEFF TOT PROF 0.224 0.153 0.153 0.087 0.099 0.049 0.107 0.070 0.121 0.086 0.127 0.093 0.132 0.100 0.135 0.104 0.087 0.066 0.088 0.086 0.102 0.102	LOSS PARAM TOT PROF 0.042 0.029 0.028 0.016 0.018 0.009 0.020 0.013 0.022 0.016 0.023 0.017 0.024 0.018 0.024 0.019 0.016 0.012 0.016 0.012

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 16

(e) 100 Percent of design speed; reading number 1061

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.684 24.364 24.122 23.823 21.814 21.661 20.033 20.041 19.733 19.771 19.431 19.500 19.126 19.230 18.821 18.961 16.947 17.338 14.280 15.176 13.571 14.638	ABS BE IN -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.1 -0.1	46.9 70 44.7 69 45.7 64 45.7 64 46.2 63 46.4 63 47.5 62 47.7 62 48.2 56	REL BETAM 1N OUT 0.4 60.8 9.4 59.9 6.5 58.1 53.7 53.8 3.3 53.5 2.9 52.5 2.6 51.5 0.1 45.2 0.6 34.9 5.6 25.0	TOTAL TEMP IN RATIO 289.1 1.227 289.1 1.208 288.2 1.179 287.8 1.174 287.9 1.175 287.9 1.173 287.9 1.173 287.7 1.159 287.7 1.161	TOTAL PRESS IN RATIO 10.07 1.736 10.10 1.724 10.14 1.658 10.14 1.668 10.14 1.619 10.14 1.617 10.15 1.616 10.15 1.598 10.14 1.624
RP 1 23 4 5 6 7 8 9 10 11	ABS VEL IN OUT 148.3 210.0 153.0 208.1 160.3 196.9 164.5 203.7 164.9 200.3 165.0 201.8 164.4 206.1 158.9 211.3 157.0 231.2	442.0 29 435.2 29 401.4 26 376.3 23 572.2 23 3672.9 22 358.2 29 358.2 29 288.6 17	DUT 94.7 144 95.1 155 59.7 166 59.2 166 54.6 166 522.7 166 18.0 166 16.6 166 71.7 156	MERID VEL 1N OUT 8.3 143.6 3.0 147.8 0.3 142.4 4.5 142.3 4.9 138.6 5.0 137.1 5.1 135.5 5.0 135.8 4.4 141.5 8.9 140.9 7.0 147.5	TANG VEL IN OUT -0.4 153.2 -0.4 146.5 -0.4 145.8 -0.4 144.6 -0.4 144.7 -0.4 149.3 -0.4 149.9 -0.4 177.9	WHEEL SPEED IN OUT 416.0 407.0 401.9 367.6 365.0 338.1 333.2 333.8 327.8 329.2 321.5 317.5 319.8 285.6 292.2 240.6 255.7 228.7 246.7
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.444 0.574 0.458 0.574 0.482 0.549 0.561 0.496 0.561 0.497 0.565 0.497 0.565 0.497 0.565 0.497 0.565 0.497 0.565 0.497 0.565 0.497 0.565 0.497 0.565	1.322 0 1.303 0 1.207 0 1.133 0 1.120 0 1.107 0 1.093 0 1.079 0 0.994 0	0UT 1.806 0.813 0.752 0.670 0.656 0.656 0.6644 0.6623 0.6611 0.6566 0.488 0.	NO MACH NO OUT 444 0.393 458 0.407 482 0.397 496 0.388 497 0.384 497 0.380 495 0.399 478 0.400 472 0.420		MERID PEAK SS VEL R MACH NO 0.968 1.525 0.966 1.513 0.888 1.505 0.865 1.485 0.831 1.485 0.821 1.482 0.823 1.482 0.823 1.482 0.823 1.482 0.861 1.479 0.887 1.314 0.940 1.260
RP 1 23 4 5 6 7 8 9 10 11	PERCENT INC SPAN MEAN 5.00 3.7 10.00 4.0 30.00 6.3 47.50 6.4 50.00 6.6 52.50 6.7 75.00 6.9 70.00 7.7 90.00 8.9 95.00 9.2	1.0 1.4 1.4 1.4 1.4 1.4	-0.0 0. -0.2 0. 1.9 0. 1.7 0. 2.9 0. 3.6 0. 3.7 0. 3.8 0. 5.8 0.	FACT EFF 464 0.751 446 0.809 442 0.868 485 0.881 489 0.867 492 0.858 508 0.850 514 0.850 514 0.899 531 0.920 556 0.925	LOSS COEFF TOT PROF 0.229 0.155 0.169 0.101 0.115 0.061 0.110 0.069 0.124 0.085 0.133 0.096 0.144 0.113 0.104 0.080 0.096 0.094 0.102 0.102	LOSS PARAM TOT PROF 0.042 0.029 0.031 0.019 0.020 0.011 0.020 0.015 0.024 0.017 0.026 0.021 0.027 0.021 0.019 0.015 0.018 0.017 0.020 0.020

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 16

(f)	90	Percent	of design	speed;	reading	number	1062
-----	----	---------	-----------	--------	---------	--------	------

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.684 24.364 24.122 23.823 21.814 21.661 20.033 20.041 19.733 19.771 19.431 19.500 19.126 19.230 18.821 18.961 16.947 17.338 14.280 15.176 13.571 14.638	ABS BETAM IN OUT -0.2 24.3 -0.2 25.2 -0.1 26.4 -0.2 27.5 -0.2 29.6 -0.2 31.7 -0.1 29.5 -0.1 34.0 -0.1 36.2	REL BETAM IN OUT 68.6 63.1 67.3 62.5 64.1 59.1 61.5 54.4 60.7 54.7 60.3 55.2 59.8 53.8 57.1 43.3 53.2 31.5 52.1 26.4	TOTAL TEMP IN RATIO 289.5 1.091 289.1 1.086 288.0 1.086 287.8 1.086 287.7 1.087 287.9 1.087 287.9 1.089 288.0 1.093 287.8 1.094 287.6 1.100	TOTAL PRESS IN RATIO 10.05 1.253 10.11 1.244 10.14 1.254 10.14 1.261 10.14 1.261 10.14 1.231 10.15 1.237 10.15 1.356 10.14 1.382
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 146.9 167.7 153.3 167.5 161.2 170.4 165.2 178.6 165.3 176.8 165.9 167.3 166.5 170.7 167.1 200.7 162.6 215.5 160.6 224.2	REL VEL IN OUT 403.1 337.7 397.7 333.1 369.0 305.3 346.3 275.9 342.8 271.4 339.2 265.4 339.2 265.6 331.2 245.7 307.3 240.2 271.2 209.5 261.6 202.0	MERID VEL IN OUT 146.9 152.8 153.3 153.7 161.2 156.6 165.2 160.0 165.3 157.8 165.9 145.5 166.5 145.2 167.1 174.7 162.6 178.6 160.6 180.9	TANG VEL IN OUT -0.4 69.1 -0.4 66.5 -0.5 67.1 -0.4 79.3 -0.4 79.7 -0.5 79.8 -0.4 82.6 -0.4 89.7 -0.4 98.7 -0.4 132.4	WHEEL SPEED NO OUT 375.0 370.1 366.5 362.0 331.5 329.1 303.9 304.1 299.9 300.5 295.4 296.0 297.5 263.4 216.6 230.2 206.1 222.3
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.439 0.482 0.459 0.482 0.493 0.512 0.500 0.499 0.500 0.482 0.501 0.504 0.503 0.628 0.483 0.653	REL MACH NO IN OUT 1.204 0.969 1.191 0.959 1.110 0.984 1.043 0.796 1.022 0.767 1.008 0.734 0.998 0.707 0.926 0.698 0.817 0.610 0.787 0.589	MERID MACH NO 1N 0UT 0.439 0.439 0.459 0.465 0.465 0.465 0.465 0.498 0.457 0.500 0.419 0.501 0.418 0.504 0.508 0.490 0.527		MERID PEAK SS VEL R MACH NO 1.040 1.357 1.003 1.339 0.971 1.347 0.965 1.346 0.923 1.347 0.877 1.349 0.872 1.351 1.046 1.282 1.098 1.140 1.127 1.096
RP 1 23 4 5 6 7 8 9 10 11	PERCENT INC SPAN MEAN 5.00 2.0 10.00 1.3 30.00 3.1 45.00 3.7 47.50 3.9 50.00 4.0 52.50 4.1 55.00 4.1 90.00 5.5 95.00 5.5	0 -0.8 2.2 0 -1.1 2.4 -0.9 2.9 7 -1.2 2.8 0 -1.1 3.6 0 -1.2 4.9 1 -1.3 6.4 -1.3 6.1 6 -1.7 3.9 5 -1.9 9.5	D-FACT EFF 0.227 0.735 0.224 0.750 0.234 0.834 0.275 0.816 0.280 0.790 0.281 0.691 0.313 0.691 0.338 0.675 0.305 0.894 0.330 0.912 0.340 0.914	LOSS COEFF TOT PROF 0.126 0.097 0.114 0.088 0.079 0.060 0.101 0.088 0.117 0.104 0.140 0.128 0.180 0.169 0.199 0.189 0.076 0.073 0.080 0.080 0.088 0.088	LOSS PARAM TOT PROF 0.022 0.017 0.019 0.015 0.014 0.010 0.018 0.016 0.021 0.018 0.024 0.022 0.030 0.029 0.034 0.033 0.015 0.014 0.015 0.017

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 16

(g) 90 Percent of design speed; reading number 1063

RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 24.684 24.122 21.814 20.033 19.733 19.431 19.126 18.821 16.947 14.280 13.571	II 0UT 24.364 23.823 21.661 20.041 19.771 19.500 19.230 18.961 17.338 15.176 14.638	ABS 1N -0.2 -0.2 -0.2 -0.2 -0.2 -0.1 4.9 -0.1	BETAM OUT 31.2	1N 68.8 67.6 64.4 61.9	BETAM OUT 62.4 61.9 58.5 53.2 53.2 53.7 59.4 44.5 32.2 26.0	1N 289.6 289.3 288.0 287.9 287.9 287.6 287.6 287.7	1.115 1.107 1.099 1.107 1.105 1.105 1.106 1.101	IN 10.06 10.11 10.14 10.14 10.14 10.14	1.341 1.342 1.351 1.342 1.325 1.316 1.294 1.358 1.379
RP 1 25 4 5 6 7 8 9 10 11	ABS IN 145.2 151.5 159.4 162.9 163.3 163.2 156.8 163.7 159.2 157.4	001	REL 1N 402-5 397-2 368-4 345-6 341-3 333-5 313-7 305-1 269-6 259-6	VEL 0UT 317.3 312.8 288.2 255.7 250.9 247.7 240.7 239.5 223.3 192.5 186.9	MERI 1N 145.2 151.5 159.4 162.9 162.7 163.3 156.2 156.2 156.2 157.4	146.8 147.2 150.8 152.6 150.3	TAN(IN -0.4 -0.4 -0.4 -0.5 -0.4 -13.5 -0.4 -0.4	88.8 86.2 83.8 99.2 96.6 97.9 81.4 106.5 128.1	IN 375.0 366.8 331.7 304.3 299.5 295.6 290.5	292.0 287.7 263.0 230.7
RP 1 2 3 4 5 6 7 8 9 10	ABS M IN 0.454 0.453 0.479 0.490 0.491 0.491 0.471 0.473	0.487 0.487 0.487 0.525 0.517 0.502 0.495 0.417 0.553 0.600 0.635	REL M IN 1.202 1.169 1.040 1.027 1.018 1.004 0.943 0.919 0.811	0.902 0.892 0.828 0.734 0.720 0.710 0.690 0.682 0.558 0.542	MERID M .434 0.453 0.479 0.490 0.492 0.491 0.470 0.493 0.473	0.417 0.417 0.420 0.433 0.438 0.431 0.419 0.408 0.347 0.460 0.472			MERID VEL R 1.011 0.972 0.946 0.937 0.924 0.895 0.873 0.779 0.973 1.023	PEAK SS MACH NO 1.363 1.346 1.355 1.353 1.356 1.364 1.287 1.287 1.150
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 45.00 47.50 50.00 52.50 55.00 70.00 90.00	MEAN 2.2 2.1 3.4 4.1 4.3 4.4 4.5	-1.2 -1.3	DEV 1.6 1.8 2.2 1.6 2.4 4.0 4.9 11.8 5.1 10.2	D-FACT 0.295 0.293 0.294 0.349 0.354 0.366 0.366 0.360 0.362	0.778 0.815 0.884 0.843 0.823 0.796 0.775 0.724 0.908 0.909	LOSS C TOT 0.130 0.103 0.067 0.105 0.120 0.138 0.155 0.206 0.070	OEFF PROF 0.100 0.077 0.047 0.091 0.107 0.125 0.125 0.202 0.068 0.089	LOSS F TOT 0.023 0.018 0.012 0.019 0.024 0.024 0.027 0.031 0.013	PROF 0.017 0.013 0.008 0.017 0.020

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 16

(h) 90 Percent of design speed; reading number 1064

RP 1 2 3 4 5 6 7 8 9 10 11	RADII iN 0UT 24.684 24.364 24.122 23.823 21.814 21.661 20.033 20.041 19.733 19.771 19.451 19.500 19.126 19.230 18.821 18.961 16.947 17.338 14.280 15.176 13.571 14.638	ABS BETAM IN OUT -0.2 38.0 -0.2 35.4 -0.2 37.5 -0.2 37.5 -0.2 39.5 -0.2 39.5 -0.2 39.6 -0.1 42.0 -0.1 44.1	68.3 61.2 65.1 58.2 62.7 53.6 62.4 53.1 6 62.0 52.9 61.6 52.0 8 61.3 50.9 2 58.7 44.5 55.2 31.9	TOTAL TEMP IN RATIO 289.9 1.146 289.4 1.130 288.2 1.116 287.8 1.119 287.8 1.119 287.8 1.121 287.5 1.122 287.5 1.114 287.5 1.115 287.5 1.112	TOTAL PRESS IN RATIO 10.06 1.459 10.11 1.438 10.14 1.421 10.15 1.417 10.14 1.406 10.14 1.408 10.14 1.410 10.15 1.413 10.15 1.425 10.13 1.450
RP 1 234 567 8 9 111	ABS VEL IN OUT 140.0 180.4 146.1 175.2 154.0 173.3 156.7 180.4 157.3 180.4 157.3 180.0 157.2 182.0 156.7 189.3 151.3 204.2 149.1 215.3	REL VEL IN OUT 400.6 295.6 394.7 296.7 365.6 271.0 342.2 241.2 339.2 238.4 232.5 330.7 225.5 327.1 221.8 302.1 205.6 265.1 178.7 254.8 170.8	MERID VEL IN OUT 140.0 142.2 146.1 142.8 154.0 142.6 156.7 143.2 157.3 143.0 156.9 140.1 157.3 138.9 157.2 139.9 156.7 146.7 151.3 151.7 149.1 154.6	TANG VEL IN OUT -0.4 111.0 -0.4 101.6 -0.4 98.5 -0.4 110.0 -0.4 110.0 -0.4 110.4 -0.4 116.4 -0.4 119.8 -0.4 136.7 -0.4 149.9	NHEEL SPEED IN OUT 375.0 370.1 366.3 361.7 331.2 328.9 303.8 303.9 300.1 300.7 294.9 295.9 290.5 292.1 286.5 288.6 257.8 263.8 217.3 231.0 206.3 222.5
RP 1 25 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.417 0.506 0.437 0.495 0.462 0.515 0.472 0.514 0.472 0.513 0.473 0.513 0.473 0.513 0.474 0.543 0.454 0.589 0.447 0.621	REL MACH NO IN OUT 1.194 0.830 1.179 0.838 1.097 0.772 1.028 0.663 0.994 0.643 0.984 0.632 0.998 0.590 0.765 0.492	MERID MACH NO		MERID PEAK SS VEL R MACH NO 1.016 1.381 0.977 1.363 0.926 1.374 0.914 1.384 0.893 1.387 0.893 1.382 0.936 1.309 1.003 1.167 1.037 1.119
RP 12 34 56 78 910	PERCENT INC. SPAN MEAN 5.00 2.9 10.00 2.8 30.00 4.1 45.00 5.0 47.50 5.1 50.00 5.3 52.50 5.4 55.00 6.3 90.00 7.5 95.00 7.8	DENCE DEY SS 0.1 0.4 -0.2 1.1 0.1 2.0 0.1 1.8 0.1 3.1 0.1 3.2 0.1 3.2 0.1 5.1 0.1 9.9	D-FACT EFF 0.367 0.782 0.343 0.840 0.349 0.908 0.395 0.887 0.395 0.860 0.421 0.849 0.426 0.845 0.426 0.908 0.445 0.929	LOSS COEFF TOT PROF 0.158 0.126 0.108 0.080 0.062 0.041 0.085 0.069 0.092 0.007 0.108 0.093 0.120 0.107 0.126 0.114 0.080 0.077 0.076 0.076	LOSS PARAM TOT PROF 0.029 0.023 0.019 0.014 0.011 0.007 0.016 0.013 0.017 0.014 0.020 0.017 0.022 0.019 0.023 0.021 0.015 0.014 0.015 0.015

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 16

(i) 90 Percent of design speed; reading number 1065

RP 1 2 3 4 5 6 7 8 9 10 11 RP 1 2 3 4 5 6 7 8 9 10 11 RP 1 2 3 4 5	RAD I I IN OUT 24.684 24.364 24.122 23.823 21.814 21.661 20.033 20.041 19.733 19.771 19.431 19.500 19.126 19.230 18.821 18.961 16.947 17.338 14.280 15.176 13.571 14.638 ABS VEL IN OUT 132.7 185.5 138.4 181.9 145.7 173.4 148.6 182.1 148.6 182.1 148.6 183.4 147.1 186.4 147.1 186.4 147.1 188.4 148.6 183.4 141.1 198.2 139.1 212.2 ABS MACH NO IN OUT 0.395 0.517 0.412 0.510 0.445 0.510	ABS BETAM IN OUT -0.2 43.5 -0.2 44.6 -0.2 38.6 -0.2 41.6 -0.2 43.7 -0.2 43.7 -0.2 43.9 -0.1 45.8 -0.1 45.8 -0.1 45.8 -0.1 47.6 REL VEL IN OUT 398.7 277.8 392.4 279.7 362.4 259.1 339.2 227.1 330.9 219.7 362.4 259.1 335.2 227.1 330.9 219.7 366.8 212.2 322.7 208.4 258.8 164.0 249.0 157.5 REL MACH NO IN OUT 1.185 0.774 1.169 0.784 1.085 0.778 1.169 0.784 1.085 0.778 1.107 0.650 1.107 0.655 1.107 0.655	69.3 60.5 66.3 58.5 64.1 54.1 63.7 53.7 63.3 52.9 62.9 51.7 62.6 50.6 60.3 44.8 57.0 32.5 56.0 24.7 MER ID VEL IN OUT 132.7 134.6 138.4 137.8 145.7 135.5 148.4 134.4 148.5 134.6 148.6 132.2 147.1 134.5 148.6 132.2 147.1 134.5 141.1 138.3 139.1 143.1 MERID MACH NO IN OUT 0.395 0.375 0.412 0.386 0.436 0.386 0.445 0.382	TOTAL TEMP IN RATIO 290.3 1.165 289.8 1.150 287.9 1.130 287.7 1.129 287.8 1.129 287.6 1.133 287.4 1.124 287.5 1.120 287.4 1.127 TANG VEL IN OUT -0.4 127.7 -0.4 118.8 -0.4 118.8 -0.4 119.4 -0.4 117.8 -0.4 125.8 -0.4 127.8 -0.3 142.1 -0.3 156.7	TOTAL PRI 1N R 10.06 1.1 10.10 1.1 10.15 1 1
1	IN OUT 0.395 0.517 0.412 0.510 0.436 0.491 0.445 0.510	IN 0UT 1.185 0.774 1.169 0.784 1.085 0.735 1.017 0.650	IN OUT 0.395 0.375 0.412 0.386 0.436 0.384 0.445 0.382		MERID PEA VEL R MAC 1.014 1. 0.996 1. 0.950 1.
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT IN SPAN MEAN 5.00 3.10.00 3.10.00 5.145.00 6.47.50 6.50.00 6.652.50 6.55.00 7.50.00 7.50.00 9.00 9.	9 1.2 0.1 9 0.9 0.4 5 1.3 2.2 5 1.4 2.3 4 1.4 2.8 1.4 3.1 7 1.4 2.9 9 1.6 5.4	D-FACT EFF 0.424 0.781 0.399 0.834 0.3898 0.434 0.898 0.430 0.884 0.446 0.874 0.465 0.857 0.470 0.853 0.478 0.893 0.493 0.922	LOSS COEFF TOT PROF 0.177 0.142 0.127 0.097 0.077 0.068 0.087 0.068 0.096 0.078 0.107 0.090 0.125 0.111 0.132 0.119 0.101 0.097 0.091 0.091	LOSS PARA TOT PR 0.032 0. 0.023 0. 0.014 0. 0.017 0. 0.019 0. 0.024 0. 0.019 0. 0.017 0.

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 16

(j) 90 Percent of design speed; reading number 1066

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.684 24.364 24.122 23.823 21.814 21.661 20.035 20.041 19.733 19.771 19.431 19.500 19.126 19.230 18.821 18.961 16.947 17.338 14.280 15.176 13.571 14.638	ABS BETAM IN OUT -0.2 47.1 -0.2 45.3 -0.2 42.3 -0.2 46.4 -0.2 46.7 -0.2 49.5 -0.2 50.8 -0.1 47.9 -0.1 49.2	REL BETAM 1N OUT 72.2 61.2 71.0 59.5 68.1 59.0 65.9 55.7 65.6 55.0 65.3 54.5 65.0 53.9 64.6 52.8 62.5 44.7 59.0 33.5 58.0 25.5	TOTAL TEMP IN RATIO 290.8 1.177 290.1 1.166 288.0 1.139 287.5 1.138 287.4 1.139 287.4 1.140 287.4 1.143 287.4 1.134 287.4 1.134 287.4 1.135	TOTAL PRESS IN RATIO 10.05 1.565 10.10 1.564 10.14 1.495 10.14 1.473 10.15 1.469 10.15 1.464 10.15 1.464 10.15 1.465 10.14 1.485
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 120.8 188.1 126.3 190.0 133.7 172.8 136.0 175.8 135.9 175.8 135.9 177.1 135.9 177.1 135.9 179.3 134.3 187.1 130.6 194.8 129.1 208.2	REL VEL IN OUT 394.5 265.4 387.9 263.2 357.7 248.3 333.6 217.8 329.5 210.2 325.5 202.7 321.2 195.1 316.9 187.4 290.5 176.7 253.7 157.3 243.7 150.9	MERID VEL 1N OUT 120.8 128.0 126.3 133.6 133.7 127.8 136.0 122.7 135.9 120.5 136.2 117.8 135.9 115.0 135.9 113.4 134.3 125.5 130.6 131.2 129.1 136.2	TANG VEL IN OUT -0.3 137.9 -0.3 135.1 -0.4 116.3 -0.4 128.0 -0.4 131.4 -0.4 134.7 -0.4 138.9 -0.4 138.8 -0.3 144.0 -0.3 157.6	WHEEL SPEED IN OUT 375.3 370.4 366.4 361.9 351.4 329.1 304.3 304.4 299.7 300.3 295.3 296.4 290.6 292.2 285.9 288.1 257.2 263.2 217.1 230.7 206.3 222.6
RP 1 2 5 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.358 0.521 0.375 0.530 0.399 0.487 0.407 0.494 0.407 0.498 0.407 0.500 0.406 0.506 0.402 0.531 0.390 0.557 0.386 0.597	REL MACH NO IN OUT 1.169 0.735 1.152 0.733 1.068 0.700 0.998 0.615 0.594 0.572 0.961 0.550 0.948 0.529 0.869 0.502 0.758 0.432	MERID MACH NO IN OUT 0.358 0.354 0.375 0.372 0.360 0.407 0.332 0.407 0.325 0.406 0.320 0.402 0.356 0.390 0.386 0.390		MERID PEAK SS VEL R MACH NO 1.059 1.451 1.057 1.436 0.956 1.459 0.903 1.478 0.886 1.469 0.865 1.460 0.846 1.450 0.834 1.440 0.934 1.361 1.004 1.208 1.055 1.158
RP 1 2 3 4 5 6 7 8 9 10	PERCENT INCI SPAN MEAN 5.00 5.5 10.00 5.6 30.00 7.1 45.00 8.2 47.50 8.4 50.00 8.5 52.50 8.7 55.00 8.9 70.00 10.0 90.00 11.3	DENCE SS 2.8 0.3 2.6 -0.6 3.0 2.8 3.3 3.9 3.3 4.6 3.4 5.1 3.5 5.1 3.7 5.3 3.9 11.5 4.0 9.8	D-FACT EFF 0.459 0.773 0.450 0.819 0.415 0.873 0.463 0.851 0.481 0.844 0.499 0.830 0.518 0.811 0.537 0.802 0.520 0.860 0.511 0.928 0.524 0.923	LOSS COEFF TOT PROF 0.197 0.158 0.153 0.118 0.103 0.074 0.131 0.107 0.140 0.118 0.157 0.137 0.179 0.162 0.193 0.178 0.149 0.145 0.090 0.090 0.106 0.106	LOSS PARAM TOT PROF 0.036 0.029 0.029 0.022 0.018 0.013 0.025 0.019 0.025 0.024 0.031 0.028 0.034 0.031 0.028 0.027 0.017 0.017 0.020 0.020

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 16

(k) 80 Percent of design speed; reading number 1067

RP 1 2 3 4 5 6 7 8 9 10	RADII IN OUT 24.684 24.364 24.122 23.823 21.814 21.661 20.033 20.041 19.733 19.771 19.431 19.500 19.126 19.230 18.821 18.961 16.947 17.338 14.280 15.176 13.571 14.638	ABS BETAM IN OUT -0.2 47.4 -0.2 44.8 -0.2 44.6 -0.2 49.2 -0.1 49.2 -0.2 51.5 -0.2 51.9 -0.1 47.1 -0.1 46.6 -0.1 48.2	72.4 60.6 69.8 60.0 67.9 55.6 67.6 54.8 67.3 54.3 67.0 53.1 66.6 53.1 64.3 44.3 60.7 31.9	TOTAL TEMP IN RATIO 290.4 1.137 289.3 1.130 288.0 1.113 287.7 1.115 287.6 1.115 287.8 1.115 287.6 1.115 287.7 1.105 287.7 1.105 287.6 1.105 287.7 1.105	TOTAL PRESS IN RATIO 10.09 1.413 10.12 1.410 10.13 1.365 10.14 1.363 10.14 1.353 10.14 1.353 10.14 1.352 10.14 1.364 10.15 1.375
RP 1 2 3 4 5 6 7 8 9 10	ABS VEL 1N 0UT 98.6 163.7 103.4 164.1 108.4 151.1 109.9 158.0 110.1 159.0 110.1 158.0 110.1 159.5 110.3 168.1 108.5 177.9 107.3 186.8	REL VEL IN OUT 348.7 237.0 342.3 237.0 314.4 215.5 292.4 184.6 289.0 180.1 284.9 175.0 281.3 168.1 277.5 163.6 254.9 159.7 221.8 143.9 212.8 137.6	MERID VEL IN OUT 98.6 110.9 103.4 116.5 108.4 107.7 109.9 104.4 110.1 103.9 110.0 102.2 110.1 98.4 110.1 98.3 110.5 114.3 108.5 122.2 107.3 124.5	TANG YEL IN OUT -0.3 120.5 -0.3 115.6 -0.5 106.0 -0.5 118.6 -0.3 120.3 -0.3 121.3 -0.3 123.7 -0.5 125.6 -0.3 125.6 -0.3 129.3 -0.3 139.3	NHEEL SPEED IN OUT 334.2 329.9 326.1 322.0 294.8 292.7 270.7 270.8 266.9 267.5 263.5 269.5 254.4 256.3 229.5 234.7 193.2 205.3 183.5 197.9
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.291 0.459 0.306 0.462 0.327 0.449 0.327 0.451 0.327 0.451 0.327 0.453 0.328 0.481 0.323 0.512 0.319 0.538	REL MACH NO IN OUT 1.030 0.664 1.013 0.668 0.934 0.611 0.869 0.524 0.859 0.512 0.847 0.497 0.836 0.478 0.825 0.465 0.758 0.457 0.659 0.414 0.632 0.396	MERID MACH NO 1N OUT 0.291 0.311 0.306 0.328 0.327 0.295 0.327 0.297 0.327 0.290 0.327 0.280 0.327 0.280 0.327 0.328 0.327 0.323 0.352 0.319 0.359	·	MERID PEAK SS VEL R MACH NO 1.124 1.411 1.126 1.404 0.995 1.394 0.950 1.338 0.929 1.328 0.929 1.328 0.894 1.319 0.892 1.309 1.036 1.236 1.126 1.089 1.160 1.043
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 6.9 10.00 7.0 30.00 8.9 45.00 10.1 47.50 10.3 50.00 10.5 52.50 10.7 55.00 10.9 70.00 11.9 90.00 13.0 95.00 13.3	DENCE DEV SS 4.2 1.2 4.0 0.5 4.8 3.8 5.2 3.8 5.3 3.9 5.4 4.4 5.5 5.4 5.6 4.9 5.6 9.9 5.7 9.5	D-FACT EFF 0.451 0.759 0.432 0.791 0.428 0.822 0.495 0.806 0.505 0.803 0.514 0.796 0.533 0.784 0.503 0.868 0.486 0.938 0.498 0.924	LOSS COEFF TOT PROF 0.198 0.179 0.168 0.151 0.143 0.133 0.175 0.172 0.182 0.179 0.192 0.190 0.205 0.204 0.212 0.211 0.139 0.139 0.078 0.078 0.108 0.108	LOSS PARAM TOT PROF 0.035 0.032 0.030 0.027 0.024 0.022 0.031 0.030 0.032 0.032 0.034 0.035 0.036 0.035 0.037 0.037 0.026 0.026 0.015 0.015 0.021 0.021

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 16

(1) 70 Percent of design speed; reading number 1068

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN 0UT 24.684 24.364 24.122 23.823 21.814 21.661 20.033 20.041 19.733 19.771 19.431 19.500 19.126 19.230 18.921 18.961 16.947 17.338 14.280 15.176 13.571 14.638	ABS BETAM IN OUT -0.2 18.8 -0.2 18.4 -0.2 18.9 -0.2 21.3 -0.2 22.2 -0.2 25.4 -0.1 26.3 -0.1 31.6 -0.1 33.5	REL BETAM 1N OUT 68.4 63.2 67.1 62.3 64.0 59.7 61.6 55.3 61.1 54.6 60.8 53.4 60.3 51.7 59.9 50.4 57.2 43.4 53.1 30.9 52.1 26.0	TOTAL TEMP IN RATIO 288.8 1.046 288.5 1.043 288.3 1.040 287.9 1.043 288.1 1.044 288.1 1.051 288.1 1.051 288.1 1.051 288.1 1.053 287.8 1.053 287.8 1.058	TOTAL PRESS IN RATIO 10.10 1.124 10.13 1.126 10.13 1.127 10.14 1.140 10.14 1.144 10.14 1.147 10.14 1.147 10.14 1.147 10.14 1.147 10.14 1.201 10.15 1.215
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 114.7 129.7 119.9 132.1 125.1 131.2 127.8 138.1 128.2 139.0 128.2 141.3 128.4 143.7 128.6 145.8 129.0 158.3 126.2 172.9 124.7 179.8	REL VEL IN OUT 311.5 272.7 308.4 269.4 285.5 226.7 265.6 223.4 262.5 219.2 259.3 209.6 256.4 204.3 237.9 195.3 210.4 171.6 202.9 166.9	MERID VEL IN OUT 114.7 122.8 119.9 125.3 125.1 124.6 127.8 129.0 128.2 129.4 128.2 130.8 128.4 129.8 128.6 130.2 129.0 141.9 126.2 147.3 124.6 150.0	TANG VEL IN OUT -0.3 41.8 -0.3 41.7 -0.3 41.1 -0.5 49.3 -0.4 50.5 -0.4 61.5 -0.4 65.7 -0.3 70.0 -0.3 99.1	WHEEL SPEED IN OUT 289.1 285.3 283.7 280.2 256.3 254.5 235.7 235.8 232.2 232.7 228.6 229.5 224.9 226.2 221.4 223.1 199.5 204.1 168.0 178.6 159.8 172.4
RP 1 25 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.341 0.378 0.357 0.385 0.375 0.384 0.404 0.382 0.406 0.382 0.413 0.383 0.419 0.384 0.425 0.385 0.463 0.376 0.507 0.372 0.527	REL MACH NO 1N OUT 0.924 0.794 0.917 0.786 0.850 0.722 0.801 0.663 0.783 0.641 0.773 0.611 0.765 0.595 0.710 0.571 0.627 0.503 0.605 0.489	MERID MACH NO 1N OUT 0.341 0.357 0.357 0.366 0.373 0.364 0.381 0.377 0.382 0.379 0.382 0.379 0.384 0.379 0.384 0.379 0.385 0.415 0.376 0.432 0.372 0.440		MERID PEAK SS VEL R MACH NO 1.071 1.120 1.045 1.106 0.996 1.096 1.009 1.064 1.010 1.058 1.020 1.051 1.011 1.044 1.012 1.037 1.100 0.984 1.167 0.876 1.203 0.841
RP 1 2 3 4 5 6 7 8 9 10	PERCENT INC SPAN MEAN 5.00 1.7 10.00 1.7 30.00 3.1 45.00 3.8 47.50 3.9 50.00 4.0 52.50 4.1 55.00 4.2 70.00 4.7 90.00 5.4	-1.6 4.0 -1.9 8.9	D-FACT EFF 0.175 0.739 0.176 0.808 0.183 0.868 0.213 0.882 0.217 0.875 0.227 0.845 0.262 0.785 0.279 0.747 0.258 0.902 0.284 0.919 0.285 0.930	LOSS COEFF TOT PROF 0.092 0.092 0.064 0.064 0.047 0.047 0.049 0.049 0.054 0.054 0.072 0.072 0.111 0.111 0.141 0.141 0.061 0.061 0.068 0.068 0.066 0.066	LOSS PARAM TOT PROF 0.016 0.016 0.011 0.011 0.008 0.008 0.009 0.009 0.013 0.013 0.020 0.026 0.012 0.012 0.013 0.013 0.013 0.013

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 16

(m) 70 Percent of design speed; reading number 1069

RP 1 2 5 4 5 6 7 8 9 10 11	RADII IN OUT 24.684 24.364 24.122 23.823 21.814 21.661 20.035 20.041 19.735 19.771 19.431 19.500 19.126 19.230 18.821 18.961 16.947 17.338 14.280 15.176 13.571 14.638	ABS BETAM IN OUT -0.2 26.9 -0.2 24.7 -0.2 26.0 -0.2 28.1 -0.2 29.8 -0.2 31.9 -0.2 32.6 -0.1 32.9 -0.1 36.7	REL BETAM IN OUT 69.5 63.0 68.3 62.2 65.3 59.3 63.0 55.4 62.6 54.6 62.2 53.3 61.8 51.7 61.5 50.3 58.9 43.8 55.1 31.3 54.1 25.5	TOTAL TEMP IN RATIO 288.8 1.065 288.4 1.058 288.2 1.053 288.1 1.055 288.1 1.057 288.1 1.061 288.1 1.063 287.9 1.063 287.9 1.063	TOTAL PRESS IN RATIO 10.09 1.182 10.13 1.179 10.14 1.182 10.14 1.187 10.14 1.191 10.14 1.29 10.14 1.295
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL 1N OUT 108.6 130.2 113.3 131.0 118.0 130.5 120.4 134.8 120.7 138.2 120.7 141.1 120.4 143.3 120.1 150.6 117.1 164.3 115.6 172.8	REL VEL IN OUT 310.1 255.3 305.7 254.8 282.8 229.9 264.9 209.3 261.1 204.7 258.9 200.8 255.6 193.3 252.0 189.1 232.4 175.3 204.9 154.1 197.1 150.1 5	MERID VEL IN OUT 108.6 116.1 113.3 119.0 118.0 117.3 120.4 118.6 120.7 120.0 120.7 120.0 120.7 119.8 120.4 120.7 120.1 126.4 117.1 131.7 115.6 135.5	TANG VEL IN OUT -0.3 58.9 -0.3 57.1 -0.3 65.1 -0.3 65.1 -0.3 68.6 -0.3 74.5 -0.3 77.2 -0.3 81.8 -0.3 98.3 -0.3 107.3	WHEEL SPEED IN OUT 290.1 286.4 283.6 280.1 256.6 255.9 235.7 231.5 231.9 228.8 229.6 225.0 226.2 221.1 222.7 198.6 203.2 167.9 178.4 159.3 171.9
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.322 0.375 0.356 0.379 0.358 0.391 0.358 0.393 0.359 0.401 0.359 0.409 0.358 0.415 0.358 0.415 0.358 0.438 0.348 0.479 0.344 0.504	REL MACH NO IN OUT 0.920 0.736 0.908 0.738 0.608 0.777 0.595 0.771 0.583 0.761 0.750 0.548 0.692 0.510 0.610 0.449 0.586 0.438	MERID MACH NO 1N OUT 0.322 0.535 0.345 0.345 0.358 0.345 0.359 0.359 0.359 0.359 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.368 0.348 0.344 0.396		MERIO PEAK SS YEL R MACH NO 1.069 1.154 1.050 1.136 0.994 1.125 0.986 1.077 0.995 1.075 0.993 1.067 1.003 1.059 1.053 1.001 1.125 0.893 1.172 0.856

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 16

(n) 70 Percent of design speed; reading number 1070

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN 0UT 24.684 24.364 24.122 23.823 21.814 21.661 20.033 20.041 19.733 19.771 19.451 19.500 19.126 19.230 18.821 18.961 16.947 17.338 14.280 15.176 13.571 14.638	ABS BETAM IN OUT -0.2 34.1 -0.2 32.0 -0.2 31.9 -0.2 35.3 -0.2 35.3 -0.2 37.0 -0.2 38.1 -0.2 37.6 -0.1 40.7 -0.1 42.4	66.7 59.8 64.5 55.9 64.1 54.9 63.8 53.3 63.5 55.3 63.1 51.3 60.7 44.0 57.1 30.8	TOTAL TEMP IN RATIO 288.7 1.081 288.7 1.071 288.2 1.063 288.1 1.065 287.9 1.067 288.0 1.069 287.9 1.070 287.8 1.069 287.9 1.069 287.9 1.069 287.9 1.072	TOTAL PRESS IN RATIO 10.11 1.228 10.15 1.223 10.15 1.211 10.15 1.212 10.14 1.214 10.15 1.218 10.14 1.218 10.14 1.228 10.15 1.240 10.15 1.240 10.15 1.240 10.15 1.240
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 102.5 134.1 106.8 132.7 110.8 128.1 112.4 132.3 112.5 137.2 112.5 138.1 112.3 139.4 111.9 148.3 108.6 161.4 107.2 169.5	REL VEL IN OUT 307.7 238.4 238.2 279.6 216.3 196.1 258.2 191.0 255.1 187.4 251.8 180.6 248.4 175.5 228.8 163.2 200.1 142.4 192.5 138.0	MERID VEL IN OUT 102.5 111.1 106.8 112.5 110.8 108.8 112.4 110.1 112.6 109.8 112.5 112.0 112.5 110.2 112.3 109.7 111.9 117.4 108.6 122.3 107.2 125.2	TANG VEL IN OUT -0.3 75.2 -0.3 70.3 -0.3 67.6 -0.3 73.4 -0.3 76.2 -0.3 83.1 -0.3 86.0 -0.3 90.5 -0.3 114.3	NHEEL SPEED IN OUT 289.9 286.1 283.7 280.2 256.4 254.6 235.6 235.7 232.1 232.5 228.7 229.1 221.3 222.9 199.3 204.0 167.8 1.78.3 159.6 172.2
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.304 0.384 0.317 0.382 0.329 0.370 0.385 0.386 0.335 0.397 0.334 0.403 0.333 0.430 0.323 0.469 0.318 0.493	REL MACH NO IN OUT 0.912 0.683 0.900 0.685 0.777 0.567 0.767 0.552 0.758 0.542 0.748 0.521 0.738 0.507 0.680 0.473 0.572 0.401	MERID MACH NO 1N OUT 0.304 0.318 0.317 0.324 0.514 0.335 0.517 0.335 0.324 0.334 0.318 0.334 0.317 0.333 0.340 0.323 0.355 0.318 0.364		MERID PEAK SS VEL R MACH NO 1.084 1.181 1.054 1.164 0.982 1.149 0.979 1.105 0.975 1.105 0.996 1.100 0.980 1.091 0.977 1.084 1.050 1.027 1.126 0.911 1.168 0.874
RP 1 2 3 4 5 6 7 8 9 10	PERCENT INCI SPAN MEAN 5.00 3.9 10.00 4.0 30.00 5.7 45.00 6.7 47.50 6.9 50.00 7.1 52.50 7.2 55.00 7.4 70.00 8.3 90.00 9.4 95.00 9.7	DENCE DEV SS 1.2 1.4 1.0 1.7 1.6 3.6 1.8 4.1 1.9 3.4 1.9 3.4 1.9 3.6 2.0 4.6 2.1 8.8 2.2 9.1	D-FACT EFF 0.317 0.742 0.301 0.831 0.308 0.891 0.337 0.882 0.351 0.875 0.360 0.875 0.360 0.873 0.381 0.840 0.395 0.824 0.393 0.893 0.410 0.923 0.415 0.927	LOSS COEFF TOT PROF 0.158 0.157 0.094 0.094 0.062 0.062 0.075 0.075 0.082 0.082 0.087 0.087 0.115 0.115 0.132 0.132 0.089 0.089 0.082 0.082 0.088 0.088	LOSS PARAM TOT PROF 0.028 0.028 0.016 0.016 0.010 0.013 0.013 0.013 0.014 0.014 0.016 0.016 0.021 0.021 0.024 0.024 0.017 0.017 0.016 0.016 0.017 0.017

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 16

(o) 70 Percent of design speed; reading number 1071

RP 1 2 3 4 5 6 7 8 9 10	RADII 1N OUT 24.684 24.364 24.122 23.825 21.814 21.661 20.033 20.041 19.733 19.771 19.431 19.500 19.126 19.230 18.821 18.961 16.947 17.338 14.280 15.176 13.571 14.638	ABS BETAM (N OUT -0.2 39.9 -0.2 36.5 -0.2 37.6 -0.2 40.2 -0.2 41.3 -0.2 44.2 -0.1 42.6 -0.1 43.5	5 70.9 61.4 6 68.2 59.7 7 66.2 56.1 2 65.9 54.8 6 65.6 53.5 6 65.2 52.9 2 64.9 51.6 0 62.6 43.6 0 59.1 31.0	TOTAL TEMP (N RAT(0) 288.7 1.092 288.4 1.084 288.1 1.075 288.0 1.074 288.1 1.076 288.2 1.077 288.0 1.079 288.0 1.075 287.9 1.075	TOTAL PRESS IN RATIO 10.11 1.262 10.13 1.260 10.13 1.243 10.13 1.241 10.13 1.242 10.13 1.242 10.14 1.242 10.15 1.249 10.13 1.255
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 95.4 135.5 98.7 135.6 102.5 129.8 104.0 132.1 103.9 134.8 103.9 139.3 103.2 147.9 100.8 158.7 99.5 166.4	REL VEL IN OUT 306.9 226.0 301.0 227.6 276.7 203.6 258.0 182.4 254.7 178.4 251.2 172.8 248.4 167.5 244.9 160.7 224.4 151.7 196.3 133.3 188.4 128.3	MERID VEL IN OUT 95.4 103.9 98.7 109.0 102.5 102.8 104.0 101.6 103.9 102.9 104.0 101.1 103.9 99.8 103.2 109.8 100.8 114.3 99.5 116.6	TANG VEL IN OUT -0.3 87.0 -0.3 80.7 -0.3 79.3 -0.3 84.4 -0.3 87.0 -0.3 90.3 -0.3 93.0 -0.3 97.2 -0.3 99.0 -0.2 110.1 -0.2 118.7	WHEEL SPEED OUT 291.4 287.7 284.1 280.6 256.7 254.9 235.8 235.9 232.2 232.7 228.4 229.2 225.3 226.6 221.5 223.1 199.1 203.6 168.2 178.7 159.8 172.5
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.282 0.386 0.292 0.388 0.304 0.373 0.309 0.398 0.308 0.308 0.309 0.309 0.306 0.400 0.306 0.427 0.299 0.460 0.295 0.483	REL MACH NO IN OUT 0.908 0.644 0.892 0.652 0.765 0.765 0.756 0.513 0.745 0.497 0.737 0.482 0.727 0.462 0.666 0.438 0.582 0.386 0.559 0.372	MERID MACH NO 1N OUT 0.282 0.296 0.292 0.312 0.304 0.296 0.308 0.296 0.308 0.295 0.309 0.291 0.308 0.287 0.306 0.317 0.299 0.331		MERID PEAK SS VEL R MACH NO 1.090 1.220 1.104 1.201 1.003 1.181 0.977 1.141 0.991 1.134 0.989 1.125 0.972 1.120 0.960 1.111 1.064 1.048 1.133 0.930 1.172 0.892
RP 1 2 3 4 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 5.3 10.00 5.4 30.00 7.3 45.00 8.4 47.50 8.7 50.00 8.9 52.50 9.0 55.00 9.2 70.00 10.2 90.00 11.4 95.00 11.7	DENCE SS 2.5 1.7 2.4 1.3 3.2 3.4 3.5 4.4 3.6 3.7 3.7 3.7 3.7 3.7 3.9 4.2 4.0 9.0 4.1 9.0	D-FACT EFF 0.370 0.746 0.343 0.817 0.361 0.857 0.395 0.854 0.404 0.860 0.421 0.846 0.437 0.828 0.460 0.812 0.442 0.878 0.451 0.927 0.458 0.925	LOSS COEFF TOT PROF 0.175 0.174 0.119 0.119 0.096 0.096 0.108 0.108 0.106 0.106 0.121 0.121 0.141 0.141 0.160 0.160 0.116 0.116 0.085 0.085 0.098 0.098	LOSS PARAM TOT PROF 0.030 0.030 0.021 0.021 0.016 0.016 0.019 0.019 0.022 0.022 0.025 0.025 0.029 0.029 0.022 0.022 0.016 0.016 0.019 0.019

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 16

(p) 70 Percent of design speed; reading number 1072

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.684 24.364 24.122 23.823 21.814 21.661 20.033 20.041 19.733 19.771 19.431 19.500 19.126 19.230 18.821 18.961 16.947 17.338 14.280 15.176 13.571 14.638	ABS BETAM IN OUT -0.2 49.4 -0.2 44.3 -0.2 45.4 -0.2 45.4 -0.2 47.9 -0.2 49.5 -0.2 40.7 -0.2 46.3 -0.1 46.0	REL BETAM IN OUT 75.8 63.1 72.8 61.6 70.4 59.7 68.5 55.0 68.2 55.0 67.9 54.3 67.5 53.7 67.2 52.9 64.9 44.3 61.3 60.3 25.1	TOTAL TEMP IN RATIO 288.6 1.111 288.5 1.099 288.3 1.086 288.2 1.083 288.0 1.083 288.0 1.084 288.0 1.085 288.0 1.085 287.9 1.079 287.8 1.078	TOTAL PRESS IN RATIO 10.11 1.290 10.13 1.265 10.14 1.260 10.13 1.261 10.13 1.258 10.13 1.256 10.13 1.256 10.13 1.265 10.13 1.265 10.13 1.265 10.13 1.265 10.13 1.265
RP 1 2 3 4 5 5 6 7 8 9 1.0 11	ABS VEL IN OUT 84.4 140.7 87.8 138.8 91.6 132.3 93.0 135.2 93.0 136.2 93.2 137.0 93.3 137.8 93.1 138.6 93.4 146.2 92.0 155.6 91.0 163.6	REL VEL IN OUT 303.0 202.1 297.6 208.9 273.0 189.2 253.5 166.7 250.7 164.0 247.3 157.5 244.2 151.1 240.8 145.7 220.5 140.9 192.0 127.0 184.0 122.2	MERID VEL IN OUT 84.4 91.5 87.8 99.4 91.6 95.3 93.0 95.0 93.2 91.9 93.3 89.5 93.1 87.8 93.4 100.9 92.0 108.0 91.0 110.7	TANG VEL IN OUT -0.2 106.8 -0.2 96.9 -0.3 91.8 -0.3 98.6 -0.2 101.6 -0.3 104.8 -0.3 107.2 -0.2 105.7 -0.2 112.0 -0.2 120.4	WHEEL SPEED IN OUT 290.8 287.0 284.1 280.6 257.0 255.2 235.6 255.7 232.5 229.6 225.4 226.7 221.8 225.5 199.5 204.1 168.2 178.8 159.7 172.3
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.249 0.398 0.260 0.395 0.275 0.387 0.276 0.391 0.276 0.395 0.276 0.395 0.276 0.395 0.276 0.397 0.277 0.421 0.273 0.450 0.270 0.474	REL MACH NO IN OUT 0.895 0.572 0.880 0.594 0.751 0.484 0.742 0.470 0.732 0.452 0.723 0.418 0.653 0.406 0.569 0.367 0.545	MERID MACH NO 1N OUT 0.249 0.259 0.260 0.283 0.271 0.273 0.275 0.272 0.276 0.263 0.276 0.256 0.276 0.252 0.277 0.291 0.273 0.312 0.270 0.320		MERID PEAK SS VEL R MACH NO 1.084 1.264 1.132 1.247 1.040 1.222 1.021 1.176 1.010 1.172 0.986 1.162 0.959 1.155 0.943 1.147 1.081 1.079 1.174 0.952 1.216 0.911
RP 1 2 3 4 5 6 7 8 9 10	PERCENT INCL SPAN MEAN 5.00 7.2 10.00 7.4 30.00 9.5 45.00 10.7 47.50 10.9 50.00 11.1 52.50 11.3 55.00 12.5 90.00 13.6 95.00 13.9	IDENCE DEV SS 4.5 2.2 4.4 1.5 5.4 3.5 5.8 4.0 5.9 4.2 5.9 4.9 6.1 5.2 6.2 4.9 6.3 9.7 6.3 9.4	D-FACT EFF 0.466 0.678 0.418 0.749 0.420 0.811 0.452 0.823 0.466 0.822 0.487 0.813 0.509 0.800 0.526 0.789 0.489 0.864 0.473 0.925 0.480 0.923	LOSS COEFF TOT PROF 0.264 0.262 0.193 0.192 0.146 0.146 0.149 0.149 0.154 0.154 0.166 0.166 0.183 0.183 0.199 0.199 0.140 0.140 0.093 0.093 0.108 0.108	LOSS PARAM TOT PROF 0.045 0.045 0.034 0.034 0.025 0.025 0.026 0.026 0.027 0.027 0.029 0.032 0.032 0.032 0.035 0.035 0.026 0.026 0.018 0.018 0.021 0.021

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 16

(q) 60 Percent of design speed; reading number 1073

	(4) -				•	_			
RP 1 2 3 4 5 6 7 8 9 10	RADII IN OU 24.684 24.30 24.122 23.80 21.814 21.6 20.033 19.7 19.733 19.7 19.431 19.5 19.126 19.2 18.821 18.9 16.947 17.3 14.280 15.1 13.571 14.6	23 -0.2 61 -0.2 41 -0.2	BETAM OUT 53.3 45.8 43.3 45.1 45.8 47.3 48.9 50.3 46.3 47.2	74.9 73.6 71.3 69.3 69.0 68.7 68.4 68.1	BETAM OUT 63.4 62.0 60.0 55.0 55.0 54.5 53.8 53.8 44.8 31.1 25.7	1N 289.0 288.5 288.3 288.0 288.0 287.8 288.0 288.1		TOTAL IN 10.11 10.13 10.13 10.13 10.13 10.13 10.13 10.13	1.192
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN 00 67.4 123 71.4 118 74.7 112 76.3 115 76.4 116 76.4 117 76.5 118 76.7 124 75.9 134 75.2 139	.2 258.2 .4 253.8 .3 232.8 .1 216.2 .4 213.2 .6 210.2 .5 207.8 .4 205.0 .3 187.6 .3 162.9	VEL 0UT 164.4 175.9 163.6 145.4 135.9 130.8 125.6 120.8 109.0 105.0	MER (I IN 67.4 71.4 74.7 76.3 76.4 76.6 76.5 76.7 75.9 75.2	VEL OUT 73.6 82.5 81.8 81.2 81.1 79.0 77.3 75.6 85.8 93.3 94.6	TAN(IN -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2	98.8 84.9 77.0 81.5 83.4 85.7 88.6 91.1 89.9 96.6	WHEEL IN 249.0 243.3 220.3 202.0 198.8 195.6 195.0 171.0 143.9 136.8	SPEED OUT 245.8 240.3 218.7 199.2 1.96.3 194.1 191.4 175.0 153.0 147.6
RP 1 25 4 5 6 7 8 9 10 11	ABS MACH IN OU 0.199 0.3 0.211 0.3 0.225 0.3 0.226 0.3 0.226 0.3 0.226 0.3 0.226 0.3 0.227 0.3 0.224 0.3 0.224 0.3	T IN 1751 0.761 0.761 0.749 0.687 32 0.639 36 0.630 36 0.621 39 0.614 41 0.606 0.555 90 0.481	ACH NO 0UT 0.469 0.504 0.471 0.420 0.408 0.392 0.372 0.350 0.350	MERID M IN 0.199 0.211 0.225 0.225 0.226 0.226 0.226 0.226 0.227 0.224	ACH NO OUT 0.210 0.236 0.236 0.234 0.234 0.228 0.228 0.218 0.218 0.271 0.275				PEAK SS MACH NO 1.001 1.060 1.019 1.011 1.003 0.998 0.991 0.933 0.933 0.786
RP 1 2 3 4 5 6 7 8 9 10 11	SPAN M 5.00 10.00 30.00 1 45.00 1 47.50 1 50.00 1 52.50 1 55.00 1 90.00 1	INCIDENCE EAN SS 8.3 5.5 8.2 5.2 0.4 6.3 1.5 6.6 1.7 6.7 1.9 6.8 2.2 6.8 2.4 6.9 3.4 7.1 4.5 7.1	DEV 2.5 1.9 3.8 4.3 4.1 4.6 5.0 5.3 5.4 9.1	D-FACT 0.507 0.430 0.408 0.444 0.457 0.477 0.478 0.518 0.484 0.467	EFF 0.664 0.709 0.816 0.820 0.818 0.808 0.799 0.789 0.789 0.932 0.932	LOSS C 70T 0.278 0.226 0.137 0.149 0.155 0.168 0.180 0.196 0.140 0.085 0.109	OEFF PROF 0.278 0.226 0.137 0.149 0.155 0.168 0.180 0.196 0.140 0.085 0.109	LOSS P TOT 0.047 0.039 0.023 0.026 0.027 0.032 0.034 0.026 0.016 0.021	PR0F

TABLE VII. - Concluded. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 16

(r) 50 Percent of design speed	reading number	1074
--------------------------------	----------------	------

RP 1 2 3 4 5 6 7 8 9 10 11	RADII 1N OUT 24.684 24.364 24.122 23.823 21.814 21.661 20.033 20.041 19.733 19.771 19.431 19.500 19.126 19.230 18.821 18.961 16.947 17.338 14.280 15.176 13.571 14.638	ABS BETAM 1N OUT -0.2 54.1 -0.2 46.6 -0.2 43.3 -0.2 45.7 -0.2 47.4 -0.2 49.0 -0.2 50.5 -0.1 45.6 -0.1 47.0	REL BETAM 1N OUT 75.5 63.9 74.2 62.3 71.9 59.9 70.0 56.0 69.7 55.2 69.4 54.5 69.1 54.2 68.7 53.4 66.5 44.7 62.9 31.3 62.1 25.6	TOTAL TEMP IN RATIO 288.8 1.059 288.7 1.053 288.3 1.044 288.1 1.043 288.0 1.043 287.9 1.043 287.8 1.044 287.8 1.044 287.8 1.040 287.7 1.040	TOTAL PRESS IN RATIO 10.11 1.146 10.13 1.139 10.13 1.128 10.13 1.127 10.13 1.126 10.13 1.126 10.13 1.125 10.13 1.125 10.13 1.125 10.13 1.135
RP 1 2 3 4 5 6 7 8 9 10 11	ABS YEL 1N OUT 53.9 102.5 57.5 98.7 60.2 94.1 61.6 96.4 61.8 97.1 61.7 97.7 61.8 97.5 62.1 98.2 62.3 104.1 61.6 112.2 60.8 117.1	REL VEL IN OUT 215.3 136.6 211.5 145.8 193.9 136.7 180.2 121.6 177.8 118.7 175.3 113.6 173.1 109.5 170.7 105.0 156.2 100.4 135.4 91.9 130.1 88.6	MERID VEL IN OUT 53.9 60.2 57.5 67.8 60.2 68.5 61.6 67.8 61.8 67.8 61.7 66.0 61.8 64.0 62.1 62.5 62.3 71.4 61.6 78.5 60.8 79.9	TANG VEL IN OUT -0.1 83.0 -0.2 71.7 -0.2 64.5 -0.2 68.3 -0.2 72.0 -0.2 72.5 -0.2 75.7 -0.2 75.8 -0.2 85.6	WHEEL SPEED IN OUT 208.3 205.6 203.3 200.8 184.1 182.9 169.1 169.2 166.6 166.9 165.9 164.4 158.9 160.0 143.1 146.4 120.4 128.0 114.9 123.9
RP 1 2 3 4 5 6 7 8 9 10	ABS MACH NO IN OUT 0.159 0.295 0.169 0.285 0.177 0.273 0.182 0.280 0.182 0.283 0.182 0.283 0.182 0.283 0.183 0.285 0.184 0.303 0.185 0.327 0.179 0.342	REL MACH NO IN OUT 0.634 0.593 0.623 0.421 0.571 0.356 0.551 0.354 0.517 0.330 0.511 0.318 0.504 0.305 0.461 0.259 0.268 0.384 0.259	MERID MACH NO 1N OUT 0.159 0.173 0.169 0.195 0.177 0.198 0.192 0.192 0.182 0.192 0.182 0.182 0.184 0.299 0.189 0.253		MERID PEAK SS VEL R MACH NO 1.117 0.932 1.180 0.912 1.138 0.893 1.103 0.863 1.070 0.847 1.035 0.842 1.007 0.834 1.146 0.785 1.275 0.690 1.314 0.665
RP 1 2 3 4 5 6 7 8 9 10	PERCENT INCI SPAN MEAN 5.00 8.9 10.00 8.8 30.00 11.0 45.00 12.2 47.50 12.4 50.00 12.6 52.50 12.8 55.00 13.0 70.00 14.1 90.00 15.7	IDENCE SS 6.1 3.0 5.8 2.2 6.9 3.7 7.3 4.3 7.5 4.6 7.5 5.4 7.5 5.8 7.8 5.3 7.9 9.3 8.1 10.0	D-FACT EFF 0.511 0.672 0.435 0.711 0.407 0.817 0.443 0.826 0.452 0.817 0.476 0.808 0.494 0.800 0.515 0.789 0.487 0.850 0.457 0.936 0.464 0.928	LOSS COEFF TOT PROF 0.263 0.263 0.218 0.218 0.133 0.133 0.140 0.140 0.153 0.153 0.165 0.165 0.176 0.176 0.192 0.192 0.153 0.153 0.080 0.080 0.100 0.100	LOSS PARAM TOT PROF 0.044 0.044 0.037 0.037 0.022 0.022 0.024 0.024 0.027 0.027 0.029 0.029 0.030 0.030 0.033 0.033 0.029 0.029 0.015 0.015 0.019 0.019

TABLE VIII. - BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 11

(a) 100 Percent of design speed; reading number 1057

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 23.973 23.967 23.505 23.525 21.605 21.714 20.157 20.343 19.914 20.114 19.672 19.886 19.428 19.657 19.187 19.431 17.729 18.075 15.789 16.294 15.306 15.847	ABS BETAM IN OUT 25.4 0.7 24.0 -0.7 23.9 -4.6 30.0 -4.5 30.4 -5.6 30.7 -5.6 31.8 -5.6 27.8 -4.3 31.5 -4.3	24.0 -0.7 23.9 -4.8 28.9 -3.8 30.0 -4.1 2 30.4 -5.2 3 31.8 -5.8 27.8 -4.1 2 31.5 -4.2	TOTAL TEMP IN RATIO 328.6 0.999 326.1 0.999 321.3 1.002 323.8 0.994 323.4 0.994 321.6 0.999 320.1 1.002 321.0 0.998 322.1 0.999 323.8 0.997 325.7 1.001	TOTAL PRESS IN RATIO 13.83 0.956 13.97 0.978 13.85 0.992 13.92 0.970 13.63 0.980 13.15 1.007 12.99 1.015 13.08 1.006 14.53 0.978 14.77 0.968 15.02 0.965
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 218.4 178.5 223.1 192.9 215.3 194.3 220.9 188.8 211.6 184.3 194.0 186.1 178.6 189.7 178.0 241.7 216.5 252.2 230.4 260.2 244.6	REL VEL IN OUT 218.4 178.5 223.1 192.9 215.3 194.3 220.9 188.8 211.6 184.3 194.0 180.9 186.1 178.6 189.7 178.0 241.7 216.5 252.2 230.4 260.2 244.6	MERID VEL IN OUT 197.3 178.4 203.8 192.9 196.8 193.6 193.5 188.4 183.3 183.8 167.4 180.1 159.9 177.8 161.3 177.1 213.7 215.9 215.1 229.7 217.6 244.5	TANG VEL IN OUT 93.8 2.2 90.7 -2.4 87.2 -16.2 106.7 -12.4 105.8 -13.2 98.0 -16.4 95.1 -17.6 99.9 -18.1 112.8 -15.6 131.6 -17.0 142.7 -9.0	HHEEL SPEED IN OUT 0.
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.624 0.504 0.641 0.549 0.622 0.557 0.637 0.540 0.608 0.527 0.556 0.517 0.533 0.511 0.544 0.509 0.704 0.625 0.736 0.667 0.760 0.709	REL MACH NO IN OUT 0.624 0.504 0.504 0.627 0.557 0.637 0.556 0.517 0.533 0.511 0.544 0.509 0.704 0.625 0.736 0.667 0.709	MERID MACH NO IN OUT 0.564 0.504 0.566 0.549 0.569 0.555 0.558 0.539 0.527 0.525 0.480 0.515 0.458 0.508 0.462 0.506 0.623 0.623 0.628 0.666 0.635 0.709		MERID PEAK SS VEL R MACH NO 0.904 0.624 0.946 0.641 0.984 0.637 1.003 0.608 1.076 0.556 1.112 0.533 1.098 0.568 1.010 0.704 1.068 0.736 1.124 0.760
RP 1 23 4 5 6 7 8 9 10 11	PERCENT INC SPAN MEAN 5.00 -10.8 10.00 -10.4 30.00 -4.7 47.50 -3.7 50.00 -3.5 52.50 -3.4 55.00 -2.6 70.00 -8.0 90.00 -7.5 95.00 -6.9	IDENCE DEV SS -17.1 13.3 -15.7 10.6 -15.3 5.0 -11.0 5.6 -10.1 -9.9 4.6 -9.7 -8.9 3.4 -14.3 5.0 -13.8 5.0 -13.1 7.3	D-FACT EFF 0.345 0. 0.294 0. 0.265 0. 0.321 0. 0.310 0. 0.255 0. 0.250 0. 0.256 0. 0.256 0. 0.256 0. 0.256 0.	LOSS COEFF TOT PROF 0.192 0.192 0.091 0.091 0.034 0.034 0.126 0.126 0.089 0.089 -0.038 -0.038 -0.085 -0.085 -0.032 -0.032 0.079 0.079 0.105 0.105 0.112 0.112	COSS PARÁM TOT PROF 0.075 0.075 0.034 0.034 0.012 0.012 0.041 0.041 0.029 0.029 -0.012 -0.012 -0.012 -0.012 -0.010 -0.010 0.023 0.023 0.027 0.027 0.028 0.028

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 11

(b) 100 Percent of design speed; reading number 1058

	(10) = 01		- ,	=	
RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.973 23.967 23.505 23.525 21.605 21.714 20.157 20.343 19.914 20.114 19.672 19.886 19.428 19.657 19.187 19.431 17.729 18.075 15.789 16.294 15.306 15.847	29.2 -4.1 34.6 -2.7 35.8 -3.7 35.5 -4.7	31.6 0.3 29.3 -1.3 29.2 -4.1 34.6 -2.7 35.8 -3.7 35.5 -4.7 36.1 -5.8 36.5 -6.0 32.3 -4.2 35.2 -5.1	TOTAL TEMP IN RATIO 337.3 0.998 333.5 1.000 328.4 1.002 330.1 0.995 326.9 0.999 326.3 1.000 326.6 0.997 325.4 0.999 326.4 0.999 326.0 0.997 328.4 1.000	TOTAL PRESS IN RATIO 15.10 0.973 15.15 0.994 15.03 0.971 14.60 0.991 14.18 1.009 14.07 1.011 14.18 1.004 15.03 0.983 15.47 0.963
RP 1 2 3 4 5 6 7 8 9 10	ABS VEL IN OUT 219.4 174.7 221.1 185.1 215.3 181.1 220.5 171.8 207.7 167.2 193.5 161.8 188.9 158.6 193.4 159.5 228.6 186.3 238.1 193.4 251.2 201.6	REL VEL IN OUT 219.4 174.7 221.1 185.1 215.3 181.1 220.5 171.8 207.7 167.2 193.5 161.8 188.9 158.6 193.4 159.5 228.6 186.3 238.1 193.4 251.2 201.6		TANG VEL IN OUT 115.1 0.8 108.3 -4.1 105.1 -12.8 125.3 -8.0 121.4 -10.9 112.4 -13.3 111.3 -15.9 115.2 -16.6 122.0 -13.5 137.4 -17.2 151.8 -8.1	IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.618 0.486 0.627 0.519 0.615 0.511 0.629 0.484 0.590 0.471 0.550 0.456 0.537 0.447 0.550 0.450 0.659 0.530 0.688 0.551 0.727 0.573	REL MACH NO IN OUT 0.618 0.486 0.627 0.519 0.615 0.511 0.629 0.484 0.590 0.471 0.550 0.456 0.537 0.447 0.550 0.450 0.659 0.551 0.688 0.551 0.727 0.573	MERID MACH NO IN OUT 0.526 0.486 0.547 0.519 0.537 0.510 0.518 0.479 0.479 0.448 0.444 0.442 0.447 0.557 0.528 0.562 0.572		MERID PEAK SS YEL R MACH NO 0.935 0.680 0.960 0.627 0.961 0.615 0.946 0.764 1.024 0.682 1.034 0.674 1.021 0.695 0.990 0.688 1.006 0.760
RP 1 2 3 4 5 6 7 8 9 10	PERCENT INC SPAN MEAN 5.00 -4.5 10.00 -5.0 30.00 -3.6 45.00 1.1 47.50 2.1 50.00 1.6 52.50 2.0 55.00 2.2 70.00 -3.6 90.00 -3.7	IDENCE SS -10.9 12.8 -11.4 10.1 -10.0 5.7 -5.3 6.7 -4.3 5.6 -4.8 4.6 -4.3 3.5 -4.1 3.3 -9.9 5.0 -10.0 4.2	D-FACT EFF 0.406 0. 0.356 0. 0.350 0. 0.417 0. 0.400 0. 0.370 0. 0.372 0. 0.386 0.	LOSS COEFF TOT PROF 0.121 0.121 0.028 0.028 0.029 0.029 0.122 0.122 0.043 0.045 -0.047 -0.047 -0.062 -0.062 -0.022 -0.022 0.044 0.044 0.062 0.062 0.124 0.124	LOSS PARAM TOT PROF 0.047 0.047 0.011 0.011 0.010 0.010 0.040 0.040

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 11

(c) 100 Percent of design speed; reading number 1059

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.973 23.967 23.505 23.525 21.605 21.714 20.157 20.343 19.914 20.114 19.672 19.886 19.428 19.657 19.187 19.431 17.729 18.075 15.789 16.294 15.306 15.847	ABS BETAM IN OUT 36.2 1.5 33.4 -0.2 34.0 -2.6 37.9 -1.9 38.6 -2.9 38.5 -3.7 39.0 -4.6 39.4 -4.6 36.1 -2.7 38.8 -3.7 40.5 -0.4	REL BETAM 1N OUT 36.2 1.5 33.4 -0.2 34.0 -2.6 37.9 -1.9 38.6 -2.9 38.5 -3.7 39.0 -4.6 39.4 -4.6 36.1 -2.7 38.8 -3.7 40.5 -0.4	TOTAL TEMP IN RATIO 346.0 0.994 340.3 0.999 333.6 1.001 334.3 0.994 332.6 0.995 331.4 0.998 331.5 0.997 329.1 0.997 327.3 1.001 330.8 0.999	TOTAL PRESS IN RATIO 16.39 0.973 16.27 0.988 15.96 0.989 15.89 0.977 15.28 0.995 15.14 1.000 15.24 0.993 15.61 0.982 15.39 0.989 15.88 0.954
RP 1 2 3 4 5 6 7 8 9 10	ABS VEL 1N OUT 230.8 179.9 225.3 183.1 215.0 173.0 221.2 165.1 216.1 161.0 204.8 157.3 200.5 154.6 204.0 154.8 223.8 165.7 227.0 169.6 244.6 171.7	REL VEL IN 0UT 230.8 179.9 225.3 183.1 215.0 173.0 221.2 165.1 216.1 161.0 204.8 157.3 200.5 154.6 204.0 154.8 223.8 165.7 227.0 169.6 244.6 171.7	MERID VEL IN OUT 186.2 179.8 188.1 183.1 178.2 172.8 174.4 165.0 168.9 160.3 157.0 155.9 154.1 157.7 154.3 180.8 165.5 177.0 169.2 185.9 171.7	TANG VEL IN OUT 136.4 4.7 124.0 -0.5 120.3 -7.9 136.0 -5.6 134.7 -8.1 127.5 -10.2 126.2 -12.4 129.4 -12.3 132.0 -7.9 142.1 -11.1 159.0 -1.1	WHEEL SPEED IN OUT 0.
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.496 0.635 0.508 0.609 0.485 0.627 0.462 0.612 0.450 0.579 0.439 0.567 0.432 0.577 0.433 0.640 0.466 0.652 0.478 0.703 0.482	REL MACH NO (IN OUT) 0.644 0.496 0.633 0.508 0.609 0.483 0.627 0.462 0.612 0.450 0.579 0.439 0.567 0.432 0.577 0.433 0.640 0.466 0.652 0.478 0.703 0.482	MERID MACH NO IN OUT 0.520 0.495 0.529 0.508 0.504 0.485 0.449 0.453 0.459 0.441 0.430 0.446 0.431 0.535 0.459 0.442 0.453 0.458 0.4		MERID PEAK SS VEL R MACH NO 0.966 0.832 0.973 0.766 0.970 0.753 0.946 0.833 0.979 0.782 0.989 0.772 0.978 0.789 0.916 0.766 0.956 0.767 0.923 0.851

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 11

(d) 100 Percent of design speed; reading number 1060

RP 1 23 4 5 6 7 8 9 10 11	RADII IN 0 23.973 23. 23.505 23. 21.605 21. 20.157 20. 19.672 19. 19.428 19. 19.187 19. 17.729 18. 15.789 16.	.525 .714 .343 .114 .886 .657 .431 .075	ABS 1N 39.2 36.8 37.0 40.0 40.5 41.5 39.5 41.7	BETAM OUT 2.1 0.9 -2.3 -1.6 -2.4 -2.9 -2.9 -2.5 -1.8 -2.0	REL 1N 39.2 36.8 37.0 40.0 40.2 40.5 41.4 41.5 39.9 41.5 43.7	BETAM OUT 2.1 0.9 -2.3 -1.6 -2.4 -2.9 -2.9 -2.5 -1.8 -2.0 1.7	TOTA 1N 352.0 345.2 336.7 336.0 335.5 334.7 334.5 334.4 331.4 329.3	TEMP RAT10 0.990 0.998 1.001 0.997 0.997 0.999 0.998 1.001 0.998	TOTAL IN 17.06 16.90 16.46 16.37 15.98 15.95 15.94 15.93 15.71	PRESS RATIO 0.969 0.985 0.987 0.974 0.981 0.989 0.987 0.988 0.988 0.987
RP 1 2 3 4 5 6 7 8 9 11	232.8 17 227.4 17 213.9 16 218.2 15 213.7 15 208.7 15 208.7 15 209.9 15 217.8 15	0UT 76.9 79.2 65.4 68.9 65.9 63.9 63.8 63.8	REL IN 232.8 227.4 213.9 218.2 213.7 208.6 208.7 209.9 217.8 221.2 239.4	VEL 0UT 176.9 179.2 165.4 158.9 155.9 152.6 153.8 153.7 155.2 150.8	MER II IN 180.5 182.1 170.9 167.1 163.3 158.6 156.5 157.3 167.1 165.6 173.0	0UT 176.8 179.2 165.3 158.8 155.8 153.7 152.4 153.6	TAN IN 147.0 136.2 128.6 140.4 135.4 139.0 139.7 146.7 165.5	G VEL OUT 6.4 2.7 -6.7 -4.5 -6.4 -7.7 -7.8 -6.8 -4.9 -5.3 4.4	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT
RP 1 2 3 4 5 6 7 8 9 10	0.644 0.635 0.662 0.666 0.663 0.588 0.589 0.589 0.6619 0.6632 0.6632	484 .493 .459 .441 .433 .428 .424 .428 .429	NO.644 0.635 0.602 0.603 0.588 0.588 0.589 0.592 0.619 0.632	ACH NO OUT 0.484 0.495 0.4451 0.435 0.428 0.428 0.428 0.429 0.434	MERID M IN 0.499 0.508 0.481 0.472 0.461 0.447 0.441 0.444 0.475 0.473	OUT 0.483 0.493 0.459 0.441 0.433 0.427 0.424 0.427 0.429 0.434	·			PEAK SS MACH NO 0.899 0.849 0.875 0.855 0.855 0.855 0.852 0.824 0.813

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 11

(e)	100 Percent	of design	speed;	reading	number	1061
-----	-------------	-----------	--------	---------	--------	------

RP 1 23 4 5 6 7 8 9 10 11	RADII IN OUT 23.973 23.967 23.505 23.525 21.605 21.714 20.157 20.343 19.914 20.114 19.672 19.886 19.428 19.657 19.187 19.431 17.729 18.075 15.789 16.294 15.306 15.847	ABS BETAM IN OUT 42.3 2.2 40.3 1.5 39.8 -1.3 42.0 -0.6 42.5 -1.1 42.8 -1.3 43.8 -1.1 44.1 -0.7 42.8 -0.9 44.0 -0.3 46.0 2.2	40.3 1.5 39.8 -1.3 42.0 -0.6 42.5 -1.1 42.8 -1.3 43.8 -1.3 44.1 -0.7 42.8 -0.9 44.0 -0.3	TOTAL TEMP IN RATIO 354.8 0.994 349.3 0.999 339.8 1.000 338.0 0.998 337.4 0.998 337.6 0.996 337.6 0.995 333.6 0.995 333.6 0.998 333.9 0.998	TOTAL PRESS IN RATIO 17.48 0.974 17.41 0.982 16.80 0.985 16.72 0.972 16.42 0.981 16.40 0.979 16.39 0.979 16.22 0.976 15.96 0.981 16.46 0.939
RP 1 2 3 4 5 6 7 8 9 10	ABS VEL IN OUT 231.5 178.3 229.3 180.3 212.8 161.7 216.7 154.0 212.3 151.5 210.3 149.8 211.2 148.7 212.1 148.9 215.6 143.6 218.0 143.9 236.7 138.0	REL VEL 1N OUT 231.5 178.3 229.3 180.3 212.8 161.7 216.7 154.0 212.3 151.5 210.3 149.8 211.2 148.7 212.1 148.9 215.6 143.6 218.0 143.9 236.7 138.0	MERID VEL IN OUT 171.2 178.2 174.8 180.2 163.4 161.7 161.1 154.0 156.5 151.5 154.4 149.8 152.4 148.9 158.1 143.6 156.9 143.9 164.5 137.9	TANG VEL IN OUT 155.7 6.8 148.5 4.6 136.3 -3.7 145.0 -1.6 143.6 -2.9 142.8 -3.4 146.2 -2.7 147.5 -1.8 146.6 -2.3 151.4 -0.8 170.2 5.2	IN OUT 0.
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.637 0.485 0.637 0.495 0.596 0.446 0.596 0.419 0.591 0.414 0.593 0.411 0.596 0.412 0.610 0.399 0.621 0.401 0.675 0.385	REL MACH NO IN OUT 0.637 0.485 0.637 0.493 0.596 0.446 0.596 0.419 0.591 0.414 0.593 0.411 0.596 0.412 0.610 0.399 0.621 0.401 0.675 0.383	MERID MACH NO 1N OUT 0.472 0.484 0.485 0.493 0.458 0.466 0.453 0.426 0.434 0.414 0.428 0.411 0.428 0.412 0.448 0.399 0.447 0.401 0.469 0.382		MERID PEAK SS YEL R MACH NO 1.040 0.958 1.031 0.930 0.989 0.861 0.956 0.893 0.970 0.886 0.976 0.906 0.977 0.910 0.908 0.875 0.917 0.853 0.839 0.951
RP 1 2 3 4 5 6 7 8	PERCENT INCI SPAN MEAN 5.00 6.1 10.00 6.0 30.00 7.0 45.00 8.5 47.50 8.8 50.00 8.9 52.50 9.7	IDENCE DEV SS -0.2 14.9 -0.4 12.8 0.6 8.4 2.1 8.8 2.5 8.2 2.5 8.2 3.4 8.2	D-FACT EFF 0.479 0. 0.452 0. 0.470 0. 0.509 0. 0.508 0. 0.508 0.	LOSS COEFF TOT PROF 0.110 0.110 0.073 0.073 0.069 0.069 0.127 0.127 0.101 0.101 0.089 0.089 0.097 0.097	LOSS PARAM TOT PROF 0.043 0.043 0.028 0.028 0.024 0.024 0.041 0.041 0.035 0.035 0.028 0.028 0.031 0.031

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 11

(f) 90 Percent of design speed; reading number 1062

RP 1 2 3 4 5 6 7 8 9 10	RADII IN OUT 23.973 23.967 23.505 23.525 21.605 21.714 20.157 20.343 19.914 20.114 19.672 19.886 19.428 19.657 19.187 19.431 17.729 18.075 15.789 16.294 15.306 15.847	ABS BETAM IN OUT 20.9 0.9 20.2 -0.9 20.3 -4.7 23.3 -4.8 25.7 -4.8 24.4 -5.3 26.4 -5.4 28.4 -5.4 29.6 -4.1 29.6 -4.3 31.4 -2.2	20.2 -0.9 20.3 -4.7 23.3 -4.8 23.7 -4.8 24.4 -5.3 26.4 -5.4 28.4 -5.4 25.8 -4.1 29.6 -4.3	TOTAL TEMP IN RATIO 315.9 1.001 314.0 1.003 311.1 1.001 312.6 0.998 312.9 0.998 313.4 0.998 314.7 0.995 314.8 0.999 316.3 0.999 318.1 1.001	TOTAL PRESS IN RATIO 12.60 0.946 12.58 0.985 12.72 0.989 12.87 0.986 12.66 0.994 12.49 1.006 12.55 1.001 13.45 0.985 13.76 0.976 14.01 0.969
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VFL IN OUT 196.8 159.8 194.9 177.8 193.7 183.4 199.6 187.9 196.9 186.9 191.4 186.2 183.9 186.1 186.5 186.0 221.7 212.7 234.5 230.7 242.7 243.9	REL VEL IN OUT 196.8 159.8 194.9 177.8 193.7 183.4 199.6 187.9 196.9 186.9 191.4 186.5 186.0 221.7 212.7 234.5 230.7 242.7 243.9	MERID VEL IN OUT 183.8 159.8 182.8 177.8 181.6 182.8 183.4 187.3 180.4 186.2 174.3 185.4 164.7 185.3 164.1 185.1 199.6 212.1 203.9 230.0 207.1 243.7	TANG VEL IN OUT 70.2 2.4 67.4 -2.7 67.3 -15.2 78.9 -15.8 79.1 -15.7 79.1 -17.2 81.8 -17.4 88.7 -17.4 96.5 -15.1 115.9 -17.5 126.6 -9.2	WHEEL SPEED IN OUT 0.
RP 1 2 3	ABS MACH NO IN OUT 0.570 0.458 0.566 0.513	REL MACH NO IN OUT 0.570 0.458 0.566 0.513 0.565 0.533	MERID MACH NO IN OUT 0.532 0.458 0.531 0.513		MERID PEAK SS VEL R MACH NO 0.870 0.570 0.972 0.566 1.006 0.565
5 6 7 8 9 10	0.565 0.533 0.582 0.546 0.574 0.543 0.556 0.541 0.533 0.540 0.539 0.539 0.649 0.621 0.688 0.676 0.713 0.716	0.582 0.546 0.574 0.543 0.556 0.541 0.533 0.540 0.539 0.539 0.649 0.621 0.688 0.676 0.713 0.716	0.530 0.531 0.535 0.544 0.525 0.545 0.507 0.539 0.477 0.538 0.475 0.537 0.584 0.619 0.598 0.674 0.608 0.715		1.005 0.585 1.021 0.582 1.032 0.574 1.064 0.556 1.125 0.533 1.128 0.539 1.064 0.649 1.128 0.688 1.177 0.713

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 11

(g) 90 Percent of design speed;	reading number	1063
---------------------------------	----------------	------

	νο,				
RP 1 23 4 5 6 7 8 9 10 11	RADII IN OUT 23.973 23.967 23.505 23.525 21.605 21.714 20.157 20.343 19.914 20.114 19.672 19.886 19.428 19.657 19.187 19.431 17.729 18.075 15.789 16.294 15.306 15.847	ABS BETAM IN OUT 27.2 0.3 26.6 -1.2 25.8 -5.0 29.5 -4.3 30.0 -4.9 31.1 -5.2 30.5 -5.4 30.0 -4.8 33.8 -5.3 35.2 -2.9	26.6 -1.2 25.8 -5.0 29.5 -4.0 29.9 -4.3 30.0 -4.9 31.1 -5.2 30.5 -5.4 30.0 -4.8 33.8 -5.3	TOTAL TEMP IN RATIO 322.9 0.998 320.3 1.001 316.6 1.001 318.6 0.995 318.2 0.997 317.9 0.996 318.0 0.996 316.7 1.000 318.1 0.998 320.0 1.000	TOTAL PRESS IN RATIO 13.57 0.970 13.55 0.993 13.60 0.994 13.71 0.985 13.61 0.988 13.44 0.996 13.34 0.999 13.13 1.015 13.78 0.995 13.99 0.985 14.29 0.978
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL 1N OUT 197.4 158.8 194.9 169.2 193.3 170.4 200.1 171.8 197.2 169.7 191.3 168.2 187.8 166.3 158.4 166.4 208.0 183.7 221.3 195.5 232.9 207.9	REL VEL 1N OUT 197.4 158.8 194.9 169.2 193.3 170.4 200.1 171.8 197.2 169.7 191.3 168.2 187.8 166.3 158.4 166.4 208.0 183.7 221.3 195.5 232.9 207.9	MERID VEL IN OUT 175.6 158.8 174.2 169.1 174.1 169.7 174.1 171.4 170.9 169.2 165.6 167.5 160.9 165.6 136.4 165.7 180.0 183.0 183.9 194.7 190.3 207.7	TANG VEL IN OUT 90.2 0.7 87.4 -3.5 84.0 -14.9 98.7 -12.1 98.4 -12.8 95.8 -14.4 96.9 -15.6 104.1 -15.4 123.1 -18.0 134.2 -10.6	WHEEL SPEED IN OUT 0.
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.565 0.450 0.559 0.482 0.578 0.493 0.569 0.482 0.541 0.477 0.452 0.477 0.604 0.529 0.644 0.565 0.679 0.600	REL MACH NO IN OUT 0.565 0.450 0.569 0.489 0.578 0.493 0.561 0.482 0.551 0.482 0.561 0.477 0.452 0.477 0.604 0.529 0.644 0.565 0.679 0.600	MERID MACH NO (N OUT) (1,503 0,450 0,501 0.482 0,503 0.487 0,502 0.492 0,493 0.485 0,477 0.880 0,463 0,475 0,523 0,527 0,535 0,562 0,555 0,600		MERID PEAK SS VEL R MACH NO 0.904 0.565 0.971 0.560 0.975 0.559 0.985 0.578 0.990 0.561 1.029 0.541 1.215 0.452 1.017 0.604 1.059 0.644 1.091 0.679
RP 1 23 4 5 6 7 8 9	SPAN MEAN 5.00 -9.0 10.00 -7.7 30.00 -7.1 45.00 -4.0 47.50 -3.8 50.00 -3.9 52.50 -5.0 55.00 -5.8 90.00 -5.2	DENCE SS -15.3 12.8 -14.1 10.2 -13.4 4.7 -10.3 5.3 -10.1 5.0 -10.2 4.4 -9.4 4.0 -10.2 3.9 -12.1 4.3 -11.4 4.0 -11.2 6.5	D-FACT EFF 0.371 0. 0.309 0. 0.297 0. 0.321 0. 0.321 0. 0.304 0. 0.302 0. 0.137 0. 0.281 0. 0.278 0. 0.260 0.	LOSS COEFF TOT PROF 0.156 0.156 0.034 0.034 0.031 0.031 0.073 0.073 0.063 0.063 0.019 0.019 0.004 0.004 -0.118 -0.118 0.023 0.023 0.061 0.061 0.085 0.085	LOSS PARAM TOT PROF 0.060 0.060 0.013 0.013 0.011 0.011 0.024 0.024 0.020 0.020 0.006 0.006 0.001 0.001 -0.037 -0.037 0.007 0.007 0.016 0.016 0.021 0.021

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 11

(h) 90 Percent of design s	peed; reading	number	1064
----------------------------	---------------	--------	------

RP 1 2 3 4 5 6 7 8 9 10	RADII IN OUT 23.973 23.967 23.505 23.525 21.605 21.714 20.157 20.343 19.914 20.114 19.672 19.886 19.428 19.657 19.187 19.451 17.729 18.075 15.789 16.294 15.306 15.847	ABS BETAM IN OUT 33.6 1.1 31.4 -0.3 31.1 -3.7 33.9 -3.4 35.9 -3.4 35.9 -3.4 35.1 -3.1 35.4 -3.1 35.4 -3.4 37.7 -4.3 39.5 -1.5	33.6 1.1 31.4 -0.3 31.1 -2.9 34.0 -3.3 34.7 -3.4 35.9 -3.4 36.1 -3.4 37.7 -4.3	TOTAL TEMP IN RATIO 332.1 0.994 327.1 1.001 321.6 1.000 321.9 0.998 322.4 0.996 322.0 0.998 322.6 0.996 322.8 0.996 320.4 0.998 320.4 0.998 320.4 0.998 320.5 0.999	TOTAL PRESS IN RATIO 14.67 0.977 14.54 0.995 14.40 0.987 14.38 0.987 14.26 0.993 14.28 0.991 14.34 0.990 14.46 0.984 14.68 0.967
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 203.7 160.7 197.4 164.9 191.3 156.9 195.7 156.2 195.4 155.3 192.5 154.8 193.3 154.7 195.1 156.0 202.1 160.1 215.0 168.7 225.1 172.6	REL VEL 1N OUT 203.7 160.7 197.4 164.9 191.3 156.9 195.7 156.2 195.4 155.3 192.5 154.8 193.3 154.7 195.1 156.0 202.1 160.1 215.0 168.7 225.1 172.6	MERID VEL IN OUT 169.6 160.6 168.4 164.9 163.9 156.6 162.5 156.0 162.0 155.1 158.3 154.6 156.6 154.4 157.6 155.8 164.7 159.8 170.2 168.2 173.6 172.5	TANG VEL IN OUT 112.8 3.2 103.0 -1.0 98.7 -10.1 109.1 -8.0 109.2 -9.0 109.5 -9.3 113.3 -9.1 115.0 -8.4 117.1 -9.4 131.4 -12.6 143.3 -4.5	WHEEL SPEED IN OUT 0.
RP 1 23345678910	ABS MACH NO IN OUT 0.576 0.450 0.561 0.464 0.561 0.443 0.560 0.441 0.551 0.439 0.553 0.439 0.558 0.442 0.582 0.456 0.622 0.481 0.651 0.491	REL MACH NO IN OUT 0.576 0.450 0.561 0.464 0.548 0.445 0.561 0.443 0.560 0.441 0.551 0.439 0.553 0.439 0.558 0.442 0.592 0.456 0.622 0.481 0.651 0.491	MERID MACH NO IN OUT 0.479 0.450 0.479 0.464 0.469 0.444 0.466 0.443 0.453 0.458 0.448 0.438 0.451 0.442 0.473 0.455 0.492 0.480 0.502 0.491		MERID PEAK SS VEL R MACH NO 0.947 0.685 0.979 0.632 0.955 0.608 0.960 0.670 0.957 0.666 0.976 0.666 0.986 0.690 0.989 0.697 0.971 0.674 0.988 0.702 0.994 0.761
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 -2.6 10.00 -2.9 30.00 -1.8 45.00 0.4 47.50 0.3 50.00 0.8 52.50 1.8 55.00 1.8 70.00 -0.4 90.00 -1.4 95.00 -0.6	DENCE SS -8.9 13.7 -9.3 11.0 -8.1 6.1 -6.0 6.4 -6.1 6.0 -5.6 5.9 -4.6 5.9 -4.6 6.2 -6.7 5.8 -7.6 5.0	D-FACT EFF 0.419 0. 0.365 0. 0.378 0. 0.397 0. 0.400 0. 0.391 0. 0.398 0. 0.396 0. 0.386 0. 0.385 0. 0.394 0.	LOSS COEFF TOT PROF 0.116 0.116 0.025 0.025 0.044 0.044 0.069 0.069 0.068 0.068 0.038 0.038 0.048 0.048 0.048 0.048 0.047 0.047 0.070 0.070 0.133 0.133	LOSS PARAM TOT PROF 0.045 0.045 0.009 0.009 0.015 0.015 0.023 0.023 0.022 0.022 0.012 0.015 0.015 0.015 0.015 0.015 0.013 0.013 0.018 0.018 0.033 0.033

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 11

(i) 90 Percent of design speed; reading number 1065

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.973 23.967 23.505 23.525 21.605 21.714 20.157 20.343 19.914 20.114 19.672 19.886 19.428 19.657 19.187 19.451 17.729 18.075 15.789 16.294 15.306 15.847	ABS BETAM IN OUT 39.1 2.4 36.6 1.2 35.0 -2.5 38.0 -2.5 38.8 -2.4 40.1 -2.0 40.2 -3.0 41.5 -2.4 43.2 0.0	2 36.6 1.2 35.0 -2.9 38.0 -2.5 37.6 -2.4 38.8 -2.4 40.1 -2.0 40.2 -2.0 40.2 -3.0 41.5 -2.4	TOTAL TEMP IN RATIO 338.1 0.992 333.2 0.998 325.4 1.000 324.9 0.998 325.1 0.998 325.9 0.996 326.1 0.996 326.1 0.996 323.0 0.998 322.0 1.000 324.0 0.999	TOTAL PRESS IN RAT10 15.36 0.977 15.26 0.989 14.93 0.992 14.88 0.985 14.81 0.988 14.78 0.987 14.80 0.987 14.79 0.987 14.64 0.998 14.94 0.958
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 205.8 158.3 201.9 161.2 189.3 149.5 192.8 145.9 191.7 145.1 191.4 145.2 193.4 144.8 194.4 145.4 196.7 140.9 205.9 151.8 219.0 146.9	REL VEL IN OUT 205.8 158.3 201.9 161.2 189.3 149.5 192.8 145.9 191.7 145.1 191.4 145.4 196.7 140.9 205.9 151.8 219.0 146.9	MERID VEL IN OUT 159.8 158.2 162.1 161.2 155.1 149.4 151.9 145.7 151.9 144.9 149.2 145.1 148.0 144.8 148.4 145.3 150.3 140.7 154.2 151.7 159.8 146.9	TANG VEL IN OUT 129.8 6.7 120.4 3.3 108.5 -7.6 118.7 -6.5 117.0 -6.1 119.9 -5.1 125.6 -5.0 126.9 -7.4 136.6 -6.4 149.9 0.1	WHEEL SPEED IN OUT 0.
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.577 0.440 0.569 0.450 0.538 0.421 0.546 0.408 0.545 0.409 0.550 0.408 0.553 0.409 0.563 0.398 0.592 0.430 0.631 0.414	REL MACH NO IN OUT 0.577 0.440 0.569 0.450 0.450 0.546 0.408 0.553 0.409 0.553 0.409 0.563 0.398 0.592 0.414	MERID MACH NO 1N OUT 0.448 0.459 0.457 0.450 0.441 0.420 0.433 0.400 0.425 0.408 0.421 0.407 0.422 0.409 0.430 0.397 0.443 0.429 0.460 0.414		MERID PEAK SS VEL R MACH NO 0.990 0.804 0.995 0.758 0.963 0.686 0.954 0.725 0.972 0.742 0.978 0.770 0.979 0.772 0.936 0.755 0.984 0.762 0.920 0.826
RP 1234567891011	PERCENT INCI SPAN MEAN 5.00 2.9 10.00 2.1 45.00 4.5 47.50 3.9 50.00 4.9 52.50 6.0 55.00 5.9 70.00 4.4 90.00 2.6 95.00 3.0	DENCE SS -3.4 15.0 -4.: 12.5 -4.2 6.8 -2.5 6.9 -1.5 6.9 -0.4 7.2 -0.5 7.3 -1.9 6.1 -3.7 6.1 -3.2 9.4	D-FACT EFF 0.462 0. 0.421 0. 0.424 0. 0.455 0. 0.450 0. 0.450 0. 0.461 0. 0.460 0. 0.479 0. 0.439 0. 0.497 0.	LOSS COEFF TOT PROF 0.115 0.115 0.058 0.058 0.042 0.042 0.081 0.081 0.067 0.067 0.060 0.060 0.071 0.071 0.069 0.069 0.081 0.081 0.046 0.046 0.179 0.179	LOSS PARAM TOT PROF 0.044 0.044 0.022 0.022 0.015 0.015 0.026 0.026 0.022 0.022 0.019 0.019 0.022 0.022 0.022 0.022 0.023 0.022 0.012 0.012 0.012 0.012

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 11

(i)	90	Percent	of de	sign	speed:	reading	number	1066
-----	----	---------	-------	------	--------	---------	--------	------

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.973 23.967 23.505 23.525 21.605 21.714 20.157 20.343 19.914 20.114 19.672 19.886 19.428 19.657 19.187 19.431 17.729 18.075 15.789 16.294 15.306 15.847	ABS BETAM IN OUT 42.8 2.8 41.1 1.7 38.6 -1.9 41.9 -1.8 43.2 -2.0 44.6 -1.4 46.0 -1.3 47.3 -1.2 44.2 -0.6 43.5 -0.5 44.8 1.1	41.1 1.7 38.6 -1.9 41.2 -2.0 44.6 -1.4 46.0 -1.3 47.3 -1.2 44.2 -0.5	TOTAL TEMP IN RATIO 342.2 0.993 338.4 0.997 328.1 1.000 327.3 0.998 327.3 0.998 327.6 0.997 328.2 0.995 328.6 0.994 326.0 0.996 322.8 1.002 324.6 1.000	TOTAL PRESS IN RATIO 15.74 0.978 15.80 0.982 15.16 0.987 14.96 0.982 14.97 0.980 14.86 0.983 14.86 0.982 14.87 0.977 14.81 0.986 15.06 0.956
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 208.2 163.4 186.7 141.3 185.4 131.0 185.6 129.5 185.4 128.8 185.2 128.8 186.6 128.5 194.8 128.8 201.1 139.4 213.8 132.1	REL VEL IN OUT 206.3 159.8 208.2 163.4 186.7 141.3 185.4 131.0 185.6 129.5 185.4 128.8 185.2 128.8 186.6 128.5 194.8 128.8 201.1 139.4 213.8 132.1	MERID VEL. IN 0UT 151.4 159.6 156.8 163.3 145.9 141.2 138.1 130.9 135.3 129.4 131.9 128.8 128.6 128.7 126.5 128.4 139.7 128.8 145.9 139.4 151.6 132.1	TANG VEL IN OUT 140.1 7.8 137.0 4.7 116.6 -4.7 123.7 -4.2 127.1 -4.5 130.2 -3.1 133.3 -2.9 137.2 -2.6 135.8 -1.3 138.4 -1.3 150.7 2.5	
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.574 0.441 0.584 0.453 0.528 0.395 0.525 0.366 0.526 0.362 0.525 0.360 0.524 0.360 0.528 0.359 0.554 0.361	REL MACH NO IN OUT 0.574 0.441 0.584 0.453 0.528 0.395 0.525 0.366 0.526 0.362 0.525 0.360 0.524 0.360 0.528 0.359 0.554 0.361	MERID MACH NO IN OUT 0.422 0.440 0.453 0.395 0.391 0.366 0.383 0.362 0.373 0.360 0.358 0.358 0.358 0.358 0.358		MERID PEAK SS VEL R MACH NO 1.054 0.875 1.042 0.868 0.968 0.772 0.948 0.778 0.957 0.800 0.976 0.820 1.015 0.864 0.922 0.821
	0.577 0.393 0.614 0.371	0.577 0.393 0.614 0.371	0.418 0.393 0.435 0.371		0.956 0.782 0.871 0.840

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 11

(k)	80	Percent	of de	sign s	peed;	reading	number	1067
-----	----	---------	-------	--------	-------	---------	--------	------

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.973 23.967 23.505 23.525 21.605 21.714 20.157 20.343 19.914 20.114 19.672 19.886 19.428 19.657 19.187 19.431 17.729 18.075 15.789 16.294 15.306 15.847	ABS BETAM IN OUT 43.2 4.0 40.8 3.0 41.0 -1.4 45.3 -0.4 45.8 -0.7 46.5 -0.7 48.2 -0.8 48.6 -0.7 43.5 -0.4 42.5 -0.6 43.9 0.8	REL BETAM IN OUT 43.2 4.0 40.8 3.0 41.0 -1.4 45.3 -0.7 46.5 -0.7 48.2 -0.8 48.6 -0.7 43.5 -0.4 42.5 -0.4 42.5 -0.4 42.5 -0.6 43.9 0.8	TOTAL TEMP IN RATIO 350.1 0.997 326.9 0.999 320.5 0.999 320.7 0.997 320.8 0.997 320.6 0.997 320.7 0.997 320.7 0.997 318.2 0.998 316.0 1.001 317.2 1.000	TOTAL PRESS IN RATIO 14.26 0.985 14.27 0.986 13.83 0.989 13.81 0.981 15.82 0.979 15.77 0.985 15.71 0.986 15.80 0.982 15.83 0.986 13.93 0.966
RP 1 23 4 5 6 7 8 9 10 11	ABS VEL IN OUT 178.7 138.9 179.2 140.0 161.9 119.8 166.0 115.0 166.7 114.4 165.7 114.5 175.1 118.1 184.1 129.6 192.1 121.7	REL VEL IN OUT 178.7 138.9 179.2 140.0 161.9 119.8 166.0 115.0 166.7 114.4 165.7 114.5 164.3 114.6 165.4 114.5 175.1 118.1 184.1 129.6 192.1 121.7	MERIO VEL IN OUT 130.2 138.5 135.7 139.8 122.1 119.8 116.9 115.0 116.2 114.4 114.0 114.5 109.6 114.6 109.3 114.5 127.0 118.1 135.7 129.5 138.4 121.7	TANG VEL IN OUT 122.4 9.7 117.1 7.4 106.3 -2.9 117.9 -0.8 119.5 -1.4 120.3 -1.3 122.4 -1.6 124.1 -1.4 120.5 -0.7 124.3 -1.3 133.2 1.6	WHEEL SPEED IN OUT 0.
RP 1 25 4 56 7 8 9 10	ABS MACH NO IN OUT 0.503 0.387 0.507 0.392 0.460 0.358 0.473 0.324 0.474 0.322 0.472 0.323 0.468 0.323 0.471 0.323 0.502 0.334 0.531 0.368 0.554 0.345	REL MACH NO IN OUT 0.503 0.587 0.507 0.592 0.460 0.558 0.473 0.524 0.474 0.522 0.472 0.325 0.468 0.323 0.471 0.523 0.551 0.368 0.554 0.345	MERID MACH NO IN OUT 0.366 0.387 0.384 0.392 0.347 0.358 0.323 0.325 0.325 0.312 0.325 0.312 0.325 0.364 0.334 0.399 0.345		MERID PEAK SS VEL R MACH NO 1.064 0.772 1.031 0.749 0.981 0.685 0.984 0.765 1.004 0.767 1.046 0.762 1.047 0.792 0.930 0.731 0.954 0.701 0.879 0.741
RP 1 2 3 4 5 6 7 8 9 10	PERCENT INC SPAN MEAN 5.00 7.1 10.00 6.4 30.00 8.2 45.00 11.7 47.50 12.1 50.00 12.6 52.50 14.0 55.00 14.3 70.00 7.7 90.00 3.5 95.00 3.8	DENCE DEV SS 0.7 16.6 0.1 14.4 1.8 8.4 5.4 8.9 5.7 8.6 7.7 8.5 7.9 8.5 1.4 8.7 -2.7 8.7 -2.5 10.1	D-FACT EFF 0.467 0. 0.451 0. 0.495 0. 0.546 0. 0.542 0. 0.539 0. 0.542 0. 0.523 0. 0.469 0. 0.534 0.	LOSS COEFF TOT PROF 0.094 0.094 0.086 0.086 0.084 0.084 0.137 0.137 0.144 0.144 0.124 0.124 0.100 0.100 0.100 0.100 0.117 0.117 0.077 0.077	LOSS PARAM TOT PROF 0.037 0.037 0.033 0.033 0.029 0.029 0.045 0.046 0.046 0.046 0.039 0.039 0.031 0.031 0.031 0.031 0.034 0.034 0.020 0.020

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 11

(1) 70 Percent of design speed; reading number 1068

RP 1 2 3 4 5 6 7 8 9 10	RAD11 IN 0UT 23.973 23.967 23.505 23.525 21.605 21.714 20.157 20.343 19.914 20.114 19.672 19.886 19.428 19.657 19.187 19.431 17.729 18.075 15.789 16.294 15.306 15.847	ABS BETAM IN OUT 16.3 0.5 16.1 -1.8 16.1 -4.8 18.6 -5.6 19.8 -5.4 22.6 -5.1 23.9 -4.5 23.2 -5.4 27.7 -5.6 29.2 -3.8	REL BETAM IN OUT 16.3 0.5 16.1 -1.8 18.6 -5.7 19.0 -5.6 19.8 -5.4 22.6 -5.1 23.9 -4.5 23.2 -5.6 29.2 -3.8	TOTAL TEMP IN RATIO 302.1 1.002 300.8 1.003 299.8 1.000 300.2 1.000 301.5 0.999 302.8 0.996 303.8 0.995 303.1 1.000 304.6 0.999 305.5 1.001	TOTAL PRESS IN RATIO 11.34 0.957 11.41 0.985 11.42 0.994 11.55 0.993 11.60 0.992 11.65 0.992 11.65 0.994 11.94 0.990 12.17 0.987 12.31 0.987
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 151.0 123.1 152.6 143.3 148.1 148.2 153.8 152.9 154.5 155.0 156.7 157.2 158.4 159.0 160.2 160.9 173.6 173.9 187.2 190.5 194.0 201.2	REL VEL IN OUT 151.0 123.1 152.6 143.3 148.1 148.2 153.8 152.9 154.5 155.0 156.7 157.2 158.4 159.0 160.2 160.9 173.6 173.9 187.2 190.5 194.0 201.2	MERID VEL IN OUT 144.9 123.1 146.6 143.2 142.3 147.7 145.8 152.1 146.1 154.5 147.5 156.5 146.2 158.4 146.4 160.4 159.6 173.1 165.7 189.6 169.3 200.7	TANG VEL IN OUT 42.5 1.0 42.2 -4.5 41.2 -12.4 49.1 -15.1 50.2 -15.2 53.0 -14.9 60.9 -14.1 64.9 -12.7 68.5 -16.3 87.0 -18.5 94.8 -13.3	HHEEL SPEED IN OUT 0.
	ABS MACH NO	REL MACH NO	MERID MACH NO		MERID PEAK SS
RP 1 23 4 5 6 7 8 9 10 11	IN OUT 0.442 0.557 0.448 0.419 0.435 0.435 0.452 0.449 0.454 0.455 0.460 0.461 0.464 0.467 0.468 0.472 0.510 0.511 0.551 0.562 0.572 0.594	IN OUT 0.442 0.357 0.448 0.419 0.435 0.445 0.452 0.449 0.454 0.455 0.460 0.461 0.464 0.467 0.468 0.472 0.510 0.511 0.551 0.562 0.572 0.594	IN 0UT 0.424 0.357 0.430 0.419 0.418 0.435 0.428 0.447 0.429 0.453 0.433 0.459 0.428 0.465 0.428 0.470 0.469 0.509 0.488 0.559 0.499 0.592		VEL R MACH NO 0.849 0.442 0.977 0.448 1.038 0.435 1.044 0.452 1.056 0.454 1.084 0.464 1.096 0.468 1.085 0.510 1.144 0.551 1.186 0.572

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 11

(m) 70 Percent of design speed;	reading number	1069
---------------------------------	----------------	------

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.973 23.967 23.505 23.525 21.605 21.714 20.157 20.343 19.914 20.114 19.672 19.886 19.428 19.657 19.187 19.431 17.729 18.075 15.789 16.294 15.306 15.847	ABS BETAM (N OUT 23.7 -0.1 21.8 -1.9 23.2 -5.3 25.2 -5.9 25.8 -5.8 26.8 -5.7 28.8 -5.2 29.4 -4.7 29.5 -5.2 32.7 -5.7 34.0 -3.6	25.8 -5.8 26.8 -5.7 28.8 -5.2 29.4 -4.7 29.5 -5.2 32.7 -5.7	TOTAL TEMP IN RATIO 307.6 0.997 305.1 1.001 303.4 1.001 303.9 0.999 304.1 0.999 304.7 0.998 305.6 0.997 306.3 0.996 305.2 1.000 306.1 1.000	TOTAL PRESS IN RATIO 11.92 0.984 11.94 0.996 11.98 0.996 11.98 0.996 12.03 0.995 12.07 0.992 12.09 0.993 12.20 0.999 12.36 0.994 12.51 0.990
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 149.1 124.3 149.4 132.4 145.3 132.3 148.0 135.5 151.0 137.3 153.4 138.3 155.3 140.0 162.3 150.8 174.9 162.9 183.3 171.4	REL VEL IN 0UT 149.1 124.3 149.4 132.4 145.3 132.3 148.0 135.0 148.2 135.5 151.0 137.3 153.4 138.3 155.3 140.0 162.3 150.8 174.9 162.9 183.3 171.4	MERID VEL IN OUT 136.5 124.3 138.7 132.4 133.5 131.7 135.9 134.2 133.4 134.8 134.8 136.6 134.4 137.7 135.3 139.6 141.3 150.2 147.2 162.1 151.9 171.1	TANG VEL IN OUT 59.9 -0.3 55.5 -4.5 57.3 -12.3 63.1 -13.8 64.6 -13.6 73.8 -12.6 76.2 -11.5 79.9 -13.7 94.5 -16.3 102.6 -10.8	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1	ABS MACH NO IN OUT 0.432 0.358 0.435 0.384	REL MACH NO IN OUT 0.432 0.358 0.435 0.384	MERID MACH NO IN OUT 0.396 0.358 0.404 0.383		MERID PEAK SS VEL R MACH NO 0.910 0.432 0.954 0.435
254567891011	0.424 0.384 0.431 0.392 0.432 0.394 0.440 0.399 0.446 0.402 0.452 0.407 0.474 0.439 0.512 0.475 0.537 0.500	0.424 0.384 0.431 0.392 0.432 0.394 0.440 0.399 0.446 0.402 0.452 0.407 0.474 0.439 0.512 0.475 0.537 0.500	0.389 0.383 0.390 0.390 0.389 0.392 0.393 0.397 0.391 0.400 0.393 0.405 0.412 0.437 0.430 0.473 0.445 0.499		0.986 0.424 1.003 0.431 1.011 0.432 1.013 0.446 1.032 0.452 1.063 0.474 1.101 0.512 1.127 0.537

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 11

(n) 70 Percent of design speed; reading number 1070

1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.973 23.967 23.505 23.525 21.605 21.714 20.157 20.343 19.914 20.114 19.672 19.886 19.428 19.657 19.187 19.431 17.729 18.075 15.789 16.294 15.306 15.847	ABS BETAM IN OUT 30.4 0.1 28.6 -1.7 28.8 -4.9 30.5 -5.4 31.6 -5.2 32.0 -4.8 33.7 -4.3 34.7 -3.9 34.1 -4.5 36.6 -4.8 38.0 -2.8	REL BETAM IN OUT 30.4 0.1 28.6 -1.7 28.8 -4.9 30.5 -5.4 31.6 -5.2 32.0 -4.8 33.7 -4.3 34.7 -3.9 34.1 -4.5 36.6 -4.9 38.0 -2.8	TOTAL TEMP IN RATIO 312.2 0.996 309.2 1.000 306.4 1.000 306.8 0.999 307.1 0.999 308.0 0.997 308.2 0.997 307.3 0.999 307.6 0.999 308.6 1.000	TOTAL PRESS IN RATIO 12.41 0.988 12.39 0.997 12.27 1.000 12.29 0.997 12.35 0.992 12.35 0.994 12.35 0.996 12.45 0.995 12.59 0.984
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 151.1 122.0 149.0 127.0 140.8 122.1 143.5 122.1 144.5 122.3 148.2 124.5 149.1 125.7 157.9 133.0 169.7 144.7 177.4 147.9	REL VEL 1N OUT 151.1 122.0 149.0 127.0 140.8 122.1 145.5 122.1 144.5 122.7 148.1 123.3 148.2 124.5 149.1 125.7 157.9 133.0 169.7 144.7 177.4 147.9	MERID VEL IN OUT 130.4 122.0 130.9 127.0 123.4 121.6 123.6 121.5 123.1 122.2 125.5 122.8 123.3 124.1 122.6 125.4 130.7 132.5 136.1 144.2 139.7 147.7	TANG VEL IN OUT 76.4 0.1 71.3 -3.7 67.8 -10.5 72.9 -11.5 75.6 -11.1 78.6 -10.4 82.3 -9.2 84.9 -8.6 88.5 -10.4 101.3 -12.4 109.3 -7.3	NHEEL SPEED IN OUT 0.
RP 1	ABS MACH NO IN OUT 0.435 0.350 0.431 0.365 0.408 0.352	REL MACH NO IN OUT 0.435 0.350 0.431 0.365 0.408 0.352 0.416 0.352	MERID MACH NO IN OUT 0.375 0.350 0.378 0.365 0.358 0.351		MERID PEAK SS VEL R MACH NO 0.936 0.440 0.970 0.431 0.985 0.408
25 4 5 6 7 8 9 10	0.416 0.352 0.419 0.554 0.429 0.356 0.429 0.359 0.432 0.363 0.459 0.384 0.494 0.419 0.517 0.428	0.419 0.352 0.429 0.356 0.429 0.359 0.432 0.363 0.459 0.384 0.494 0.419 0.517 0.428	0.358 0.351 0.357 0.353 0.364 0.354 0.357 0.358 0.355 0.362 0.380 0.383 0.397 0.418 0.407 0.427		0.983 0.421 0.993 0.450 0.979 0.468 1.007 0.498 1.023 0.515 1.014 0.502 1.059 0.531 1.057 0.568

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 11

(o) 70 Percent of design speed; reading number 1071

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.973 23.967 23.505 23.525 21.605 21.714 20.157 20.343 19.914 20.114 19.672 19.886 19.428 19.657 19.187 19.451 17.729 18.075 15.789 16.294 15.306 15.847	ABS BETAM IN OUT 36.0 1.1 32.9 0.3 34.3 -5.2 36.4 -3.1 36.9 -2.8 37.9 -2.6 39.2 -2.4 40.8 -2.3 38.4 -3.1 39.8 -2.7 41.2 -0.5	32.9 0.3 34.3 -3.2 36.4 -3.1 36.9 -2.8 37.9 -2.4 40.8 -2.3 38.4 -3.1 39.8 -2.7	TOTAL TEMP IN RATIO 315.4 0.997 312.6 1.000 309.7 0.999 309.1 1.000 309.4 0.999 310.4 0.997 310.7 0.997 310.7 0.997 308.8 0.999 309.6 1.000	TOTAL PRESS IN RAT10 12.76 0.991 12.76 0.996 12.60 0.996 12.53 0.993 12.59 0.992 12.58 0.993 12.58 0.993 12.66 0.991 12.72 0.995 12.82 0.978
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 150.4 120.1 150.7 123.0 141.0 113.6 141.4 112.2 143.9 112.1 145.5 112.6 145.6 113.1 146.9 113.4 155.7 118.5 165.3 129.9 172.4 125.9	REL VEL IN OUT 150.4 120.1 150.7 123.0 141.0 113.6 141.4 112.2 143.9 112.1 145.5 112.6 145.6 113.1 146.9 113.4 155.7 118.5 165.3 129.9 172.4 125.9	MERID VEL IN OUT 121.7 120.1 126.6 123.0 116.5 113.5 113.8 112.0 115.2 111.9 114.7 112.5 112.8 113.0 111.1 113.3 122.0 118.4 126.9 129.8 129.7 125.9	TANG VEL IN OUT 88.4 2.3 81.8 0.7 79.5 -6.4 83.9 -6.0 86.4 -5.4 89.5 -5.1 92.1 -4.7 96.0 -4.5 96.8 -6.3 105.9 -6.1 113.5 -1.1	WHEEL SPEED IN OUT 0.
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.430 0.342 0.433 0.351 0.406 0.326 0.415 0.321 0.420 0.323 0.419 0.324 0.423 0.325 0.451 0.340 0.374 0.501 0.361	REL MACH NO IN OUT 0.430 0.342 0.433 0.351 0.406 0.326 0.408 0.322 0.415 0.323 0.419 0.324 0.423 0.325 0.451 0.340 0.374 0.501 0.361	MERID MACH NO 1N OUT 0.548 0.542 0.364 0.351 0.325 0.321 0.332 0.321 0.322 0.325 0.324 0.320 0.325 0.326 0.369 0.374 0.377 0.361		MERID PEAK SS VEL R MACH NO 0.987 0.552 0.972 0.515 0.974 0.507 0.984 0.550 0.972 0.540 0.980 0.559 1.002 0.574 1.020 0.576 1.023 0.586 0.970 0.619
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 -0.2 10.00 -1.5 30.00 1.5 45.00 2.9 47.50 3.2 50.00 4.0 52.50 5.1 55.00 6.5 70.00 2.6 90.00 0.9	DENCE SS -6.5 13.7 -7.6 11.7 -4.9 6.5 -3.5 6.3 -3.2 6.6 -2.3 6.6 -2.3 6.9 0.1 7.0 -3.7 6.0 -5.4 6.8	D-FACT EFF 0.423 0. 0.589 0. 0.407 0. 0.413 0. 0.426 0. 0.432 0. 0.431 0. 0.440 0. 0.428 0. 0.386 0. 0.433 0.	LOSS COEFF TOT PROF 0.073 0.073 0.037 0.037 0.037 0.025 0.025 0.025 0.063 0.063 0.069 0.069 0.062 0.061 0.069 0.061 0.069 0.065 0.035 0.035 0.040 0.040	LOSS PARAM TOT PROF 0.028 0.028 0.014 0.014 0.013 0.013 0.008 0.008 0.020 0.020 0.022 0.022 0.020 0.020 0.019 0.019 0.020 0.020 0.009 0.009 0.035 0.035

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 11

(p) 70 Percent of design speed; reading number 1072

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.973 23.967 23.505 23.525 21.605 21.714 20.157 20.343 19.914 20.114 19.672 19.886 19.428 19.657 19.187 19.431 17.729 18.075 15.789 16.294 15.306 15.847	ABS BETAM 1N OUT 45.5 3.9 40.5 -1.4 42.0 -0.9 43.0 -0.9 44.5 -0.7 46.2 -0.8 47.3 -0.7 42.7 -0.3 42.0 -0.6 43.1 0.9	REL BETAM IN OUT 45.5 3.9 40.5 2.3 40.5 -1.4 42.0 -0.9 43.0 -0.9 44.5 -0.7 46.2 -0.8 47.3 -0.7 42.7 -0.3 42.0 -0.6 45.1 0.9	TOTAL TEMP IN RATIO 320.7 0.993 317.2 0.999 313.0 0.998 312.1 0.999 312.1 0.999 312.1 0.999 312.4 0.997 312.6 0.997 310.8 0.997 310.8 0.997 310.8 1.000	TOTAL PRESS IN RATIO 13.04 0.987 13.02 0.990 12.82 0.992 12.77 0.989 12.77 0.989 12.75 0.989 12.78 0.989 12.78 0.989 12.78 0.985 12.82 0.992 12.91 0.975
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 152.3 115.7 151.3 117.1 141.7 105.9 142.9 102.0 143.5 101.8 143.6 101.2 143.8 101.2 144.0 101.6 152.3 105.5 161.0 116.4 168.4 110.0	REL VEL IN OUT 152.3 115.7 151.3 117.1 141.7 105.9 142.9 102.0 143.5 101.2 143.8 101.2 144.0 101.6 152.3 105.5 161.0 116.4 168.4 110.0	MERID VEL IN OUT 106.7 115.4 115.2 117.0 107.8 105.9 106.2 102.0 104.9 101.8 102.4 101.2 97.6 101.6 111.9 105.5 119.7 116.3 122.9 110.0	TANG VEL IN OUT 108.6 7.8 98.2 4.8 92.0 -2.5 95.6 -1.5 97.9 -1.6 100.7 -1.2 103.8 -1.5 105.9 -1.2 103.4 -0.5 107.6 -1.3 115.2 1.8	WHEEL SPEED IN OUT 0.
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.432 0.327 0.432 0.332 0.406 0.302 0.410 0.291 0.412 0.298 0.413 0.288 0.413 0.288 0.413 0.290 0.439 0.301 0.466 0.334 0.488 0.315	REL MACH NO IN OUT 0.432 0.327 0.452 0.352 0.406 0.302 0.412 0.291 0.412 0.288 0.413 0.288 0.413 0.290 0.459 0.301 0.466 0.334 0.488 0.315	MERID MACH NO IN OUT 0.305 0.326 0.329 0.331 0.309 0.302 0.305 0.291 0.301 0.290 0.294 0.288 0.286 0.288 0.280 0.290 0.323 0.301 0.347 0.334 0.356 0.315		MERID PEAK SS VEL R MACH NO 1.082 0.696 1.016 0.632 0.983 0.596 0.961 0.610 0.970 0.624 0.988 0.643 1.017 0.663 1.041 0.677 0.943 0.629 0.972 0.607 0.895 0.639

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 11

	(q	l) 60 Pe	rcent of d	esign spe	eed; rea	ıding nu	mber 1	1073	
RP 1 2 3 4 5 6 7 8 9 10	RADII IN 23.973 23 23.505 23 21.605 21 20.157 20 19.914 20 19.672 19 19.428 19 19.187 19 17.729 18 15.789 16 15.306 15	.525 .714 .343 .114 .886 .657 .431 .075	ABS BETAI IN OU' 49.6 4 42.1 2 39.9 -1 41.8 -0 42.5 -0 44.1 -0 45.6 -1 47.1 -1 42.8 -0 41.9 -0	IN.9 49.6 .6 42.1 .6 39.9 .7 41.8 .7 42.5 .8 44.1 .0 45.6 .0 47.1 .4 42.8 .5 41.9	OUT 4.9 2.6 -1.6 -0.7 -0.7 -0.8 -1.0 -1.0 -0.4 -0.5	IN 313.5 310.6	. TEMP RATIO 0.993 0.997 0.999 0.999 0.999 0.997 1.000 1.001	TOTAL IN 12.25 12.19 12.05 12.02 12.02 12.01 12.00 12.00 12.02 12.08 12.10	PRESS RATIO 0.986 0.992 0.994 0.993 0.991 0.992 0.992 0.992 0.993 0.984
RP 1 2 3 4 5 6 7 8 9 10 11	131.9 128.3 120.3 121.5 122.6 122.2 122.7 123.0 129.3 138.9	0UT 98.5 1 98.9 1 90.2 1 87.1 1 86.5 1 86.4 1 86.4 1 90.2 1	REL VEL IN OUT 31.9 98.1 28.3 98.2 20.3 90.2 21.5 87.2 22.6 86.2 22.7 86.2 22.7 86.2 23.0 86.2 29.3 90.3 38.9 100.4 43.2 95.4	IN 5 85.5 9 95.1 2 92.2 1 90.6 5 90.4 85.8 85.8 85.8 94.9 103.3	D VEL OUT 98.1 98.8 90.1 87.1 86.5 86.4 86.4 86.2 90.2 100.6 95.3	TAN(IN 100.4 86.1 77.2 81.0 82.8 85.0 87.6 90.0 87.9 92.8 97.6	VEL OUT 8.4 4.4 -2.6 -1.1 -1.3 -1.5 -1.4 -0.6 -0.8	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9 10 11	0.377 0 0.368 0 0.347 0 0.351 0 0.354 0 0.353 0 0.354 0 0.355 0 0.375 0	OUT .281 0 .283 0 .259 0 .250 0 .248 0 .248 0 .248 0 .248 0 .248 0 .248 0 .260 0 .290 0	REL MACH N OUT .377 0.28 0.28 0.25 .351 0.25 .353 0.24 .353 0.24 .355 0.24 .355 0.24 0.25 0.24 0.29 0.27 0.27 0.27	IN 1 0.244 3 0.273 9 0.266 0 0.262 8 0.261 8 0.254 8 0.248 8 0.242 0 0.275 0 0.300	1ACH NO 0UT 0.280 0.259 0.259 0.248 0.248 0.248 0.248 0.248 0.259 0.275				PEAK SS MACH NO 0.660 0.560 0.520 0.530 0.545 0.562 0.537 0.526 0.542
RP: 254567891011	PERCENT SPAN 5.00 10.00 30.00 45.00 47.50 50.00 52.50 55.00 70.00 90.00		NCE DE SS 7.1 17.1 1.4 13. 0.7 8. 1.9 8. 2.4 8. 3.8 8. 5.2 8. 0.7 8. 0.7 8. -3.3 8.	0.524 9 0.470 1 0.482 6 0.503 6 0.517 3 0.523 7 0.498 8 0.446	0. 0. 0. 0. 0. 0. 0.	LOSS CO TOT 0.149 0.092 0.070 0.103 0.103 0.102 0.099 0.099 0.065 0.146	DEFF PROF 0.149 0.092 0.070 0.092 0.110 0.103 0.102 0.099 0.090 0.063 0.146	LOSS P. TOT 0.035 0.024 0.030 0.035 0.035 0.033 0.033 0.031 0.026 0.016 0.036	ARAM PROF 0.058 0.024 0.030 0.035 0.035 0.035 0.035 0.036 0.036

TABLE VIII. ~ Concluded. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 11

(r) 50 Percent of design	speed;	reading	number	1074	
--------------------------	--------	---------	--------	------	--

RP 1 2 3 4 5 6 7 8 9 10 11	RADII INOUT_	ABS BETAM IN OUT 50.5 6.0 45.0 3.4 40.0 -1.4 41.9 -0.2 42.5 -0.3 44.2 -0.4 45.7 -0.5 47.2 -0.5 47.2 -0.3 41.6 -0.4 42.8 0.8	IN OUT	305.9 0.996 304.1 0.999 300.3 0.999 300.3 0.999 300.4 0.999 300.4 0.999 300.4 0.999 299.7 0.999 298.8 1.000	TOTAL PRESS IN RATIO 11.59 0.989 11.45 0.996 11.45 0.994 11.42 0.994 11.41 0.995 11.41 0.995 11.42 0.994 11.41 0.995 11.45 0.998
RP 1 2 3 4 5 6 7 8 9 10	ABS VEL IN OUT 109.4 81.3 106.5 82.8 100.6 75.1 101.7 72.5 102.2 72.1 102.3 71.7 101.9 71.7 108.2 75.3 116.1 84.4 120.5 80.1	REL VEL IN OUT 109.4 81.3 106.5 92.8 100.6 75.1 101.7 72.5 102.2 72.1 102.3 71.7 101.9 71.7 108.2 75.3 116.1 84.4 120.5 80.1	77.9 82.7 77.0 75.1 75.6 72.5 75.4 72.1 73.3 71.7 70.9 71.7 78.8 75.2 86.8 84.4 88.4 80.1		WHEEL SPEED IN OUT 0.
RP 1 23 4 5 6 7	ABS MACH NO IN OUT 0.315 0.234 0.308 0.239 0.292 0.217 0.295 0.210 0.297 0.209 0.297 0.208	IN OUT 0.315 0.254 0.308 0.259 0.292 0.217 0.295 0.210 0.297 0.209	MERID MACH NO IN OUT 0.201 0.232 0.225 0.238 0.223 0.217 0.220 0.210 0.219 0.209		MERID PEAK SS VEL R MACH NO 1.161 0.561 1.062 0.477 0.975 0.424 0.959 0.438 0.957 0.444
8 9 10 11	0.295 0.208 0.296 0.207 0.315 0.218 0.339 0.245 0.352 0.232	0.297 0.208 0.295 0.208 0.296 0.207 0.315 0.218 0.339 0.245 0.352 0.232	0.213 0.208 0.206 0.208 0.201 0.207 0.229 0.218 0.253 0.245 0.258 0.232		0.978 0.460 1.011 0.470 1.035 0.484 0.955 0.456 0.973 0.436 0.906 0.456

Figure 1. - Flow path for stage 16-11 showing axial location of instrumentation.

Figure 2. - Compressor test facility.

Figure 3. - Rotor 16.

Figure 4. - Stator 11.

(a) Combination probe.

(b) Wedge probe.

Figure 5. - Survey probes.

Figure 6. - Circumferential locations of measurements (looking downstream; clockwise rotation).

FIGURE 9 .- CONCLUDED. RADIAL DISTRIBUTION OF PERFORMANCE FOR ROTOR 16. 100 PERCENT DESIGN SPEED.

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 16.

(B) 10.0 PERCENT SPAN. FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 16.

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 16.

FIGURE 11, - BLADE ELEMENT PERFORMANCE FOR ROTOR 16,

FIGURE 11. - BLADE ELEMENT PERFORMANCE FOR ROTOR 16.

FIGURE 12. - BLADĖ ELEMENT PERFORMANCE FOR STATOR 11.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR STATOR 11.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR STATOR 11.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR STATOR 11.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR STATOR 11.

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

SPECIAL FOURTH-CLASS RATE BOOK

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546