Занятие от 11.03.

Геометрия и топология. 1 курс. Решения.

Глеб Минаев @ 102 (20.Б02-мкн)

18 марта 2021 г.

Задача 105. Рассмотрим картину происходящего со стороны векторных пространств, проективизациями которых и являются X, Y, Z_1 и Z_2 .

Нам даны векторное пространство V_X и его векторные подпространства V_Y , V_{Z_1} и V_{Z_2} , что $\dim(V_X) = n+1$, $\dim(V_Y) = k+1$, $\dim(V_{Z_1}) = \dim(V_{Z_2}) = n-k = \dim(V_X) - \dim(V_Y)$ и $V_Y \cap V_{Z_1} = V_Y \cap V_{Z_2} = \{ \overrightarrow{0} \}$. Тогда понятно, что

$$V_X = V_Y \oplus V_{Z_1} = V_Y \oplus V_{Z_2}$$

и следовательно $V_{Z_1} \simeq V_X/V_Y \simeq V_{Z_2}$, и при этом отображения

$$g_1: V_{Z_1} \to V_X/V_Y, v \mapsto v + V_Y$$
 $g_2: V_{Z_2} \to V_X/V_Y, v \mapsto v + V_Y$

являются изоморфизмами.

Обозначим также канонические проекции Z_1 и Z_2 за p_1 и p_2 соответственно.

Теперь перепишем определение f на языке рассматриваемых векторных пространств. Для всякого $x \in Z_1$ рассматривается соответствующее одномерное подпространство $V_x := p_1(x)$, затем оболочка

$$U_x := \langle V_x, V_Y \rangle$$

и наконец f(x) определяется как точка, соответствующая одномерному подпространству в пересечении U_x и V_{Z_2} . На деле несложно видеть, что

$$(g_2^{-1} \circ g_1)(v) : V_{Z_1} \to v_{Z_2}, v \mapsto (v + V_Y) \cap V_{Z_2}$$

и является изоморфизмом. Следовательно

$$U_x \cap V_{Z^2} = g_2^{-1}(U_x) = g_2^{-1}(g_1(V_x))$$

и является одномерным подпространством V_{Z_2} , так как является образом одномерного подпространства при изоморфизме. Следовательно мы просто имеем, что

$$f = p_2^{-1} \circ g_2^{-1} \circ g_1 \circ p_1$$

т.е. f есть проективизация $g_2^{-1} \circ g_1$. Поэтому f корректно определено и является проективным отображением.

Задача 107. Заметим, что $PGL(2,\mathbb{C})$ (она же группа автоморфизмов $\mathbb{C}P^1$, и она же изоморфна $SL(2,\mathbb{C})$) сохраняет ориентацию $\mathbb{C}P^1$ как сферы. Действительно, всякие проективный автоморфизм можно представить в виде

$$z \mapsto a + \frac{1}{bz + c}$$

для некоторых $a,b,c\in\mathbb{C}$, а соответственно в виде композиции преобразований видов $z\mapsto z+a,$ $z\mapsto bz$ и $z\mapsto 1/z.$ И действительно:

- $z \mapsto z + a$ просто параллельный перенос, поэтому ориентация очевидно сохраняется;
- $z \mapsto bz$ поворотная гомотетия относительно нуля, которая тоже очевидно сохраняет ориентацию;
- $z \mapsto 1/z$ инверсия в нуле вкупе с симметрией относительно вещественной оси; поскольку обе меняют ориентацию сферы, то их композиция ориентацию не меняет.

Следовательно всякий автоморфизм $\mathbb{C}P^1$ сохраняет H на месте тогда и только тогда, когда оставляет на месте $\mathbb{R}P^1$ и не меняет её ориентации. Действительно:

- \Rightarrow) Если H остаётся на месте, то $\mathbb{R}P^1$ как граница H на сфере остаётся на месте (понятно, что всякий автоморфизм $\mathbb{C}P^1$ является непрерывным в смысле топологии сферы), а значит $\mathbb{R}P^1$ перейдёт в себя. Да и то, что H перешло в себя, а не в другую полусферу будет означать сохранение ориентации $\mathbb{R}P^1$. Действительно, из того, что всякий автоморфизм сохраняет ориентацию $\mathbb{C}P^1$, то понятно, что при сохранении ориентации $\mathbb{R}P^1$ H перейдёт в себя, а при смене в другую полусферу. Следовательно то, что H осталась на месте значит, что $\mathbb{R}P^1$ не поменяла ориентации.
- \Leftarrow) Если $\mathbb{R}P^1$ переходит в себя, то H и другая полусфера переходят либо в себя, либо в друг друга. И как мы выяснили, сохранение ориентации $\mathbb{R}P^1$ отбрасывает второй случай, что значит, что H переходит в себя.

Несложно видеть, что если оператор переводит $\mathbb{R}P^1$ в себя, то он лежит в $\mathrm{PGL}(2,\mathbb{R})$, т.е. можно считать, что имеет вещественные коэффициенты. Также рассматривая вместо $\mathbb{R}P^1$ его образующее векторное пространство, получим, что сохранение ориентации $\mathbb{R}P^1$ равносильно неотрицательности определителя. Но поскольку нам матрица оператора нужна с точностью до гомотетии, а определители гомотетий достигают всех положительных значений, то можно считать, что определитель равен 1.

Таким образом можно считать, что наша матрица лежит в $\mathrm{SL}(2,\mathbb{R})$.

Это действительно сочетается с пунктом (1), а вот с пунктом (2) есть вопросы:

- Если в (2) просится рассмотреть матрицы из $SL(2,\mathbb{R})$, то там получаются матрицы вида $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, что не покрывает всё $SL(2,\mathbb{R})$. Например, остаётся матрица $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- Если в (2) просится рассмотреть матрицы из $SL(2,\mathbb{C})$, то там получаются матрицы, которые не переводят H в себя. Например, матрица

$$\begin{pmatrix} 1 & i \\ \frac{1}{2i} & \frac{3}{2} \end{pmatrix})$$

лежит в $\mathrm{SL}(2,\mathbb{C})$, оставляет i на месте, но 0 отправляет в $\frac{2i}{3}$, т.е. не переводит $\mathbb{R}P^1$ в себя, а значит не переводит и H в себя.

Поэтому непонятно, как требуется сравнить группы в (2) и (3).