Neural Network Model Evaluation for Neutron Star Equation of State Reconstruction

André G. da Silva, Ricardo L. S. Farias, Arthur E. B. Pasqualotto, Dyana C. Duarte

• The TOV^{1,2} equations link the equation of state (EoS) of neutron stars to mass and radius observations.

$$egin{split} rac{dp}{dr} &= -rac{[\epsilon(r)+p(r)][m(r)+4\pi r^3p(r)]}{r[r-2m(r)]} \ rac{dm}{dr} &= 4\pi r^2\epsilon(r) \end{split}$$

¹R. C. Tolman, Phys. Rev. **55**, 364-373 (1939)

²J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. **55**, 364-373 (1939)

• The inverse of this map is non-trivial, specially when accounting for uncertainties;

arXiv:2106.03890v1 [astro-ph.HE]

• Several machine learning methods were proposed, including bayesian analysis and neural networks (see ³ for an overview).

³ arXiv:2303.15136v2 [hep-ph]

• Here we implement a neural network (NN) model from ^{4,5}. A NN can represent a given function with some set of parameters, here weights and biases.

⁴ arXiv:1903.03400v3 [nucl-th]

⁵ <u>arXiv:2401.12688v2</u> [nucl-th]

- To fit the NN model parameters, we need training data;
- ullet We assume polytropic equations of state $\,P = K \epsilon^{\Gamma}$
- Starting from a crust EoS, we can generate equations of state from the average speed of sound in 5 intervals, by matching the pressure and energy density at the boundary⁶:

⁶ <u>arXiv:2101.08156v1</u> [nucl-th]

 We solve the TOV equations for a given EoS and sample points from the M-R diagram obtained;

• We proceed to generate 4000 EoSs for two crust models, SLy and SKa^{7,8,9}, of which 200 are only used for monitoring performance (validation). A neural network model is trained for each crust model according to the table.

Layer	Number of neurons	Activation function
Input	d_{in}	N/A
Hidden layer 1	$4d_{in}$	ReLU
Hidden layer 2	$4d_{in}$	ReLU
Hidden layer 3	$2d_{in}$	ReLU
Hidden layer 4	$2d_{in}$	ReLU
Output	d_{out}	sigmoid

Neural network architecture used following 4,5

$$d_{
m in} = 56 \ d_{
m out} = 5$$

⁷ <u>arXiv:astro-ph/0111092v2</u>

⁸ <u>arXiv:1504.04493v2</u> [nucl-th]

⁹ <u>arXiv:2203.03209v1</u> [astro-ph.HE]

M-R observations

Parameterized equation of state

• Another 2000 EoS dataset is generated for both models, and evaluated to generate histograms of each prediction of the NNs:

SLy and SKa models predictions and errors on SLy data

SLy and SKa models predictions and errors on SKa data

SLy and SKa models predictions and errors on SLy data