

DORO Antoine HOUTMANN Cylian-Nataï CHÉLONÉ Émilie CALPÉTARD Mahé

Sommaire

- Configuration de la Raspberry PI
- Configuration du broker sur Ubidots
- Configuration du broker sur la Raspberry Pl
- Vérification du bon fonctionnement du système

Configuration de la Raspberry PI

- Installation de Raspberry Pi OS
- Configuration de premier démarrage
- Installation de SSH

Installation de l'image Raspberry Pi OS sur une carte SD

- Installer le client sur sa machine
- Insérer la carte SD sur sa machine
- Sur le support, sélectionner
 l'image à copier sur la carte
 SD
- Sélectionner la carte SD
- Lancer la copie

Installation de l'OS sur la Raspberry Pl

Mise à jour de la Raspberry PI après l'installation :

sudo apt-get update && sudo apt fullupgrade && sudo apt autoremove

Activation de SSH

```
maheuseriprasphen
                           Fichier Edition Onglets Aide
                                inet 127.0.0.1/8 scope host to
                                    valid_lft forever preferred_lft forever
                               inet6 ::1/128 scope host
                             valid lft forever preferred lft forever
etho: etho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:cho:</pr
                               tink/ether e4:5f:61:27:ed:ba brd ff:ff:ff:ff:ff:ff
                               inet 192,168,40,171/23 brd 192,168,41,255 scope glabal dynamic appreferous,
                                   valid ift 85801sec preferred ift 75143sec
                               inets fe00::31bm:c0a5:sf7f;5ab0/64 scope link
                                   valid_ift forever preferred_ift forever
                              WLEND: KNO-CARRIER, BROADCAST, MULTICAST, UP> MEN 3500 QUISC PFEFE FACE STATE BY
                            group default glen 1000
                               link/ether e4:5f:01:27:ad:bc brd ff:ff:ff:ff:ff:ff:ff
                               user@raspberrypl: # sudo systemati enable --now ash
                             nebronizing state of ash.service with SysV service script with /lib/systemd/s
                           tond-nyev-install.
                          | Recuting: /lib/systemd/systemd-syst-install enable sah
                           reated symlink /etc/systemd/system/sshd.service _ /lib/systemd system/ssh.serv
                          Created symlink /etc/systemd/system/multi-user.target.wants/ssh.service .. /lil
                                paerdraspherrypl:- *
```


Commandes utilisées :

sudo apt install ssh

- sudo systemctl enable --now ssh
- Sudo timedatectl set-timezone Indian/Reunion

Configuration du broker en ligne

- Création d'un compte sur Ubidots
- Création d'un appareil sur Ubidots avec comme mesures "temperature" et "humidite"

Création du compte sur Ubidots et connexion au dashboard

Création d'un appareil sur Ubidots

Configuration du broker sur la Raspberry Pl

- Configuration du script python

```
# Importation des librairies
import board
import digitalio
import time
import adafruit_dht
import paho.mqtt.client as mqtt
import ssl
# Sélection de la led
led = digitalio.DigitalInOut(board.D27)
led.direction = digitalio.Direction.OUTPUT
# Sélection du DHT
dht_device = adafruit_dht.DHT11(board.D17)
# CLIENT MOTT
topic = "/v1.6/devices/capteur"
TLS_CERT_PATH="/home/user/Documents/tls.pem"
client = mqtt.Client()
client.username_pw_set("BBFF-SQbdy4VWB1xfAqrjU8DYkXntB55NQu","")
client.tls_set(ca_certs=TLS_CERT_PATH, certfile=None,keyfile=None, cert_reqs=ssl.CERT_REQUIRED, tls_version=ssl.PROTOCOL_TLSv1_2, ciphers=None)
client.tls_insecure_set(False)
client.connect("industrial.api.ubidots.com", 8883)
# Boucle de données
while (1) :
    msg = '{"Température" : %s, "Humidité" : %s}' % (dht_device.temperature, dht_device.humidity)
   client.publish(topic,msg)
   led.value = False
   time.sleep(30)
   led.value = True
```

Vérification du bon fonctionnement du système

- Réception des données du capteur

Conclusion

Site de mesure

Cette SAE nous a permis d'apprendre le protocole MQTT par le biais d'une Raspberry pi prélevant des mesures grâce à l'utilisation d'un DHT11.