

UNIVERSIDAD NACIONAL DE SAN AGUSTÍN ESCUELA PROFESIONAL DE CIENCIA DE LA COMPUTACIÓN COMPUTACIÓN BIOINSPIRADA PRÁCTICA 04 – PROGRAMACIÓN GENÉTICA

1. Muestre una iteración para encontrar la función matemática que se ajuste al siguiente conjunto de ejemplo usando Programación Genética (20 puntos):

Entrada	Salida
0	0
0.1	0.005
0.2	0.02
0.3	0.045
0.4	0.08
0.5	0.125
0.6	0.18
0.7	0.245
0.8	0.32
0.9	0.405

- Considere una población de 4 a 6 individuos.
- Conjunto de terminales: una variable (para la entrada), y los terminales -5 . . .+ 5 (números enteros).
- Conjunto de funciones: +, -, *, %, / (considerar algunos inconvenientes, por ejemplo, división entre 0).
- Función de calidad: Error cuadrático medio sobre los 10 ejemplos:

$$ext{ECM} = rac{1}{n}\sum_{i=1}^n (\hat{Y_i} - Y_i)^2.$$

- Utilizar codificación vista en clase (tamaño fijo)
- Utilizar cruzamiento de un punto.
- Utilizar reproducción y mutación vistas en clase (las probabiliades también pueden ser las mismas).
- Muestre los individuos de la población, funciones objetivos, padres y descendientes resultado del cruzamiento, individuos mutados, nuevo población.

- Respuesta: (/ (* x x) (/ 2 1))
$$f(x) = \frac{x^2}{2}$$