Eco 4306 Economic and Business Forecasting

Lecture 29

Chapter 15: Financial Applications of Time Varying Volatility

Motivation

- investors and financial institutions allocate capital among different assets with different amount of risk
- some of the applications of modeling and forecasting the time-varying conditional variance: risk management, portfolio allocation, asset pricing, and option pricing

- suppose that we find optimal allocation of financial capital between two risky assets in order to minimize our risk exposure
- ▶ the question is how much money we should invest in each asset
- this is the problem of portfolio allocation
- \blacktriangleright let r_1 denote the return to asset 1 and r_2 the return to asset 2
- ▶ portfolio return is a weighted average of both returns $r_p=w_1r_1+w_2r_2$ where w_1 and w_2 are the weights corresponding to asset 1 and 2
- ▶ let μ_1 , μ_2 and σ_1^2 , σ_2^2 be their respective means and variances

- to simplify the problem, we assume that both assets are uncorrelated so that their covariance is zero
- under this assumption the mean and variance of this portfolio are

$$\mu_p = w_1 \mu_1 + w_2 \mu_2$$

$$\sigma_p^2 = w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2$$

- given that we want to minimize risk exposure, the optimization problem that consists of minimizing the portfolio variance image with respect to the weights w_1 and w_2 subject to a fixed desired portfolio return
- lacktriangle that is, the optimal weights w_1^*, w_2^* are the solution to the following problem

$$\min_{w_1,w_2} w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2$$
 subject to

$$\mu_p = w_1 \mu_1 + w_2 \mu_2$$

▶ the optimal weights w_1^*, w_2^* are thus

$$w_1^* = \frac{\mu_1/\sigma_1^2}{\mu_1^2/\sigma_1^2 + \mu_2^2/\sigma_2^2} \mu_p \qquad w_2^* = \frac{\mu_2/\sigma_2^2}{\mu_1^2/\sigma_1^2 + \mu_2^2/\sigma_2^2} \mu_p$$

- optimal weights are proportional to the ratio mean/variance of each asset, the larger the ratio the more capital is allocated to the asset
- ratio mean/variance can be interpreted as a risk-corrected return (i.e., return per unit of variance), which considers the trade-off between profitability and risk

- consider two stocks, Apple (AAPL) in the computer industry, and Freeport-McMoRan Copper (FCX) in the mining industry
- sample: daily prices from January 2, 1998, to August 8, 2008, for a total of 2.667 observations
- correlation coefficient of their returns is 0.09, which is practically zero, consistent with our assumptions that the two stocks should be uncorrelated
- ▶ daily average return is $\mu_1 = 0.13$ for APPL and $\mu_2 = 0.07$ for FCX

- next step: build a model for their conditional means and conditional variances
- for both assets, we estimate a model with GARCH(1,1) process for conditional volatility

$$\begin{split} r_t &= \mu + \varepsilon_t \\ \varepsilon_t &= \sigma_{t|t-1} z_t \\ \sigma_{t|t-1}^2 &= \omega + \alpha_1 \varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1|t-2}^2 \end{split}$$

 \blacktriangleright based on the GARCH model, we then calculate the 1-step-ahead conditional variances $\sigma_{t+1|t}^2$

Dependent Variable: R_APL_ADJ
Method: ML ARCH - Students t distribution (BFGS / Marquardt steps)
Date: 0.56/1/18 T Imie: 04:10
Sample (adjusted): 1/06/1998 8/08/2008
Included observations: 2665 after adjustments
Convergence achieved after 41 iterations
Coefficient covariance computed using outer product of gradients
Presample variance: backcast (parameter = 0.7)
GARCH = C(3) + C(4)*RESID(-1)*2 + C(5)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.		
C AR(1)	0.194199 -0.052906	0.048525 0.019317	4.002057 -2.738879	0.0001 0.0062		
Variance Equation						
C RESID(-1)^2 GARCH(-1)	0.401780 0.083618 0.878571	0.094963 0.013466 0.017437	4.230913 6.209598 50.38528	0.0000 0.0000 0.0000		
T-DIST. DOF	5.648556	0.486053	11.62127	0.0000		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.002347 0.001972 3.450640 31708.12 -6670.444 1.981548	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.140889 3.454047 5.010464 5.023720 5.015261		
Inverted AR Roots	05					

Dependent Variable: R_FCX_ADJ
Method: ML ARCH - Students t distribution (BFGS / Marquardt steps)
Date: 0.56/1/18 T Imie: 04:10
Sample (adjusted): 1/05/1998 8/08/2008
Included observations: 2666 after adjustments
Convergence achieved after 38 iterations
Coefficient covariance computed using outer product of gradients
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1)*2 + C(4)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.		
С	0.149191	0.051349	2.905425	0.0037		
Variance Equation						
C RESID(-1)^2 GARCH(-1)	0.198557 0.055560 0.924442	0.068232 0.010346 0.014194	2.910031 5.370078 65.12815	0.0036 0.0000 0.0000		
T-DIST. DOF	6.948719	0.928432	7.484359	0.0000		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000581 -0.000581 3.031814 24496.40 -6594.274 2.065892	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.076149 3.030933 4.950693 4.961737 4.954690		

- ightharpoonup suppose that our goal is to obtain a daily return of 0.10% so $\mu_p=0.1$
- ▶ note that the desired return is the equal-weighted average of both returns, since $0.10=0.5\times0.13+0.5\times0.07$
- thus if we were to put half of the money in AAPL and the other half in FCX, we would obtain an average return of 0.10 over the sample period
- our goal is however to minimize the variance of the portfolio
- using the preceding formulas for optimal weights, we compute the daily weights

to calculate the optimal weights for AAPL and FCX in EViews

- first, use the GARCH(1,1) model for AAPL to construct the conditional volatility forecast: click on Forecast button, enter r_aapl_f into "Forecast name" box and sigmasq_aapl_f into "GARCH (optional)" box", change"Method" to "Static forecast"
- use the GARCH(1,1) model for FCX to construct the conditional volatility forecast sigmasq_fcx_f in a similar way
- ▶ construct w_1^* for AAPL: select **Object** \rightarrow **Generate Series** and enter w_aapl = @mean(r_aapl) / sigmasq_aapl_f / (@mean(r_aapl)^2/sigmasq_aapl_f + @mean(r_fcx)^2/sigmasq_fcx_f) *0.1
- ▶ construct w_2^* for FCX: select **Object** \rightarrow **Generate Series** and enter w_fcx = @mean(r_fcx) / sigmasq_fcx_f / (@mean(r_aapl)^2/sigmasq_aapl_f + @mean(r_fcx)^2/sigmasq_fcx_f) *0.1

Date: 05/01/18 Time: 04:10 Sample: 1/02/1998 8/08/2008

	AAPL weight	FCX weight	sum of weights
Mean	0.532616	0.334275	0.866890
Median	0.544344	0.312719	0.857062
Maximum	0.676902	1.228552	1.274611
Minimum	0.046059	0.069079	0.745982
Std. Dev.	0.074259	0.136485	0.062227
Skewness	-2.368201	2.368201	2.368201
Kurtosis	12.86333	12.86333	12.86333
Jarque-Bera	13293.77	13293.77	13293.77
Probability	0.000000	0.000000	0.000000
Sum	1419.421	890.8416	2310.262
Sum Sq. Dev.	14.69023	49.62566	10.31543
Observations	2665	2665	2665

- ▶ note that the sum of the weights does not have to equal 1
- ▶ in the optimization problem, we did not impose this restriction
- this is why sometimes FCX has a weight larger than one rendering the sum higher than 1
- example 1: on October 2, 2000, FCX weight is 1.36 and AAPL weight is 0.03
- because we do not have the sum restriction, we allow for the possibility of borrowing and lending at the risk-free rate
- ▶ thus, for a total weight of 1.39, investor needs to supplement the actual capital by borrowing an additional 39%
- example 2: on August 8, 2008, the FCX weight is 0.12 and APPL weight 0.65 for a sum of 0.77, which means that investor lends 23% of capital
- descriptive summary of the weights shows that on average, weight for FCX is 0.34 and for AAPL 0.54
- ▶ so on average 88% of capital is allocated to stocks and 12% to lending

- ▶ modern finance theory: expected asset returns is a function of risk
- ▶ investors demand a higher return if they are to buy risky assets
- capital asset pricing model (CAPM) and the arbitrage pricing theory (APT) state that there is a linear relationship between expected returns and risk
- CAPM model defines risk as the covariance of the asset return with the market portfolio return, expected return of an asset is given by

$$E(r_i) = r_f + \frac{cov(r_i, r_m)}{var(r_m)} (E(r_m) - r_f)$$

where r_f is the risk-free rate, r_i is the return to asset i, and r_m is the return to the market portfolio

 $eta=rac{cov(r_i,r_m)}{var(r_m)}$ is the *beta of an asset*, it captures systematic risk which cannot be diversified away

- ho is the expected change in the asset return when a marginal change occurs in the market portfolio return
- $\beta>1$ classifies the asset as risky because a 1% movement in the market return translates into a change larger than 1% in the asset return
- \blacktriangleright $\beta < 1$ indicates that the asset return does not fully mimic movements in the market

- arbitrage pricing theory claims that there are more risk factors than the market risk and allows for a richer relationship between other factors and the asset return
- conditional CAPM model exploits the information set so that the conditional expected return of the asset is a linear function of its conditional beta

$$E(r_{it}|I_{t-1}) = r_f + \frac{cov(r_{it}, r_{mt}|I_{t-1})}{var(r_{mt}|I_{t-1})} (E(r_{mt}|I_{t-1}) - r_f)$$

which makes $\beta_{it}=\frac{cov(r_{it},r_{mt})}{var(r_{mt})}$ time varying because it is a function of time-varying covariance and variance

 time-varying covariance can be calculated using formula of the correlation coefficient

$$cov(r_{it}, r_{mt}|I_{t-1}) = corr(r_{it}, r_{mt}|I_{t-1})\sqrt{var(r_{it}|I_{t-1})}\sqrt{var(r_{mt}|I_{t-1})}$$

to calculate time varying beta for AAPL in EViews

- ▶ first construct 200 period moving correlation coefficient select Object \rightarrow Generate Series and enter movcorr_aapl_sp500 = @movcor(r_aapl, r_sp500, 200)
- next, use the GARCH(1,1) model for AAPL to construct the conditional volatility forecast: click on Forecast button, enter r_aapl_f into "Forecast name" box and sigmasq_aapl_f into "GARCH (optional)" box", change"Method" to "Static forecast"
- use the GARCH(1,1) model for S&P500 to construct the conditional volatility forecast sigmasq_sp500_f in a similar way
- ▶ finally, construct $\beta_{i,t}$ for AAPL by selecting **Object** → **Generate Series** and entering **beta_aapl** = **movcorr_aapl_sp500** * **sigmasq_aapl_f^0.5** / **sigmasq_sp500_f^0.5**

Dependent Variable: R_SP500_ADJ
Method: ML ARCH - Students t distribution (BFGS / Marquardt steps)
Date: 0.501/18. Time: 04:10
Sample (adjusted): 1/06/1998 8/08/2008
Included observations: 2665 after adjustments
Convergence achieved after 35 iterations
Coefficient covariance computed using outer product of gradients
Presample variance: backcast (parameter = 0.7)
GARCH = C(31 + C(4)*RESID(-1)*2 + C(5)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.		
C AR(1)	0.045450 -0.048884	0.016266 0.021303	2.794136 -2.294756	0.0052 0.0217		
Variance Equation						
C RESID(-1)^2 GARCH(-1)	0.006907 0.066257 0.930759	0.002768 0.009329 0.009314	2.495573 7.102511 99.93263	0.0126 0.0000 0.0000		
T-DIST. DOF	9.258718	1.345500	6.881246	0.0000		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000741 0.000366 1.149919 3521.319 -3817.148 1.985377	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.010609 1.150129 2.869154 2.882410 2.873951		
Inverted AR Roots	05					

- AAPL is riskier than FCX: for AAPL the average beta is 1.48, the average beta of FCX is 1.07
- ightharpoonup over time beta for FCX increased significantly, due to an increase in its covariance $cov(r_{it}, r_{mt})$
- AAPL's beta is quite volatile, largest betas occured during the 2001 tech bubble