Quantum Consensus

By Quantum Disconsensus

Team Members

- Matthias Hudobnik
- Marc Gaensler
- Oleksandr Mykhalevych
- Anton Karazeev
- Takahiko Satoh

- Anders Rehult
- Takaaki Matsuo
- Bram Dobbelaar
- Wojciech Kozlowski

Motivation

- BitCoin runs a leader election algorithm to elect the next node to add a block to the blockchain
- These nodes do not trust each other
- This algorithm is very CPU intensive and has some known vulnerabilities (51% attack)
- Can we do better using quantum?

Coin Flipping Leader Election

arXiv:0910.4952v2

2.4.1 Protocol:

- 1. Let $W_1 = A_1$.
- 2. For i = 2 to n
 - (a) W_{i-1} plays A_i a $P_{\frac{i-1}{i},\epsilon'}$ unbalanced weak coin flipping protocol. Namely, $P_{q',\epsilon'}$ such that $\left|q'-\left(\frac{i-1}{i}\right)\right| \leq \epsilon'$. Except when i=2, then the protocol is simply $P_{\epsilon'}$.
 - (b) W_i is the winner.
- 3. W_n is declared as the leader.

W State Leader Election

Let the processors share the state

$$W_n = |10...0\rangle + |010...0\rangle + \dots + |0...01\rangle$$

 $W_n = |2^{n-1}\rangle + |2^{n-2}\rangle + \dots + |2\rangle + |1\rangle$

- Algorithm
 - Let each processors measure its qubit
 - If measurement is 1, then elect itself as leader

First W state created in SimulaQron!

Success!

- Both have been merged into the main SimulaQron repository earlier today
- https://github.com/SoftwareQuTech/SimulaQron/pull/90

Byzantine Leader Election

- An algorithm already exists:
 - https://en.wikipedia.org/wiki/Quantum Byzantine agreement
- Too challenging for hackathon
- Uses qutrits need to port to qubits
- Uses quantum verifiable secret sharing
- Means Quantum BitCoin as intended is possible

Exploring the Legal Side

- Can Quantum BitCoin make cryptocurrency a better candidate for legal tender?
- Increased security leads to auto-regulation by social norms due to increased trust

Lessig – four modalities of regulation

Lessons Learned

- Main difficulty is preparing the quantum state
- Not trivial to prepare W state
- Preparing the state for the biased coin flip was the most challenging part of that algorithm