Phys 2010 (NSCC), Spring 2007 Problem Set #8

1. Convert 8.5 radians to: (a) Revolutions. (b) Degrees.

2. If a rotating object has a constant angular velocity of 8.17 $\frac{\text{rad}}{\text{s}}$, how many revolutions does it make in one minute?

		s rotating from r rolutions. What	_		ngular acceleration the wheel?	i. In 10.0 s
4. I	n problem 3,	what was the a	ngular velocity	at the end of t	he 10.0 s?	

5.	An object is rotat	ting at a	rate of 1	$30 \frac{\text{rad}}{\text{s}}$.	It undergoes	a constant	angular	deceleration
an	d comes to rest in	$12.0 \mathrm{s}.$						

What is the magnitude of the angular acceleration of the object? How many turns did it make in coming to a halt?

6. A wheel of radius 46.0 cm is turning at a rate of 90.0 $\frac{\text{rev}}{\text{min}}$. What is the speed of a point on its rim?

7. A motorcyle is traveling at a speed of $25.0 \frac{m}{s}$ has wheels of radius 30.0 cm. What is the angular velocity of its wheels?

If the motorcycle decelerates uniformly from $25.0 \frac{m}{s}$ to rest in 20.0 s, what is the magnitude of the angular acceleration of the wheels?

8. Three forces are exerted on a rotating object at the distances and in the directions shown.

What is the total torque on the object? (Take "counter-clockwise" to be the positive sense of rotation.)

