

02450: Introduction to Machine Learning and Data Mining

Data and feature extraction

DTU Compute

Department of Applied Mathematics and Computer Science

Reading Material

Reading material:

C2, C3

Feedback Groups of the day:

- Kåre Jørgensen, Mathias Roikjær
- Martin Vieth, Marianne Louis-Hansen, Markus Færevaag

Tue Herlau, Mikkel N. Schmidt and Morten Mørup

Introduction to Machine Learning and Data Mining

Course notes fall 2016, version 1

August 29, 2016

Technical University of Denmark

Lecture Schedule

Introduction

30 August: C1

Data: Feature extraction, and visualization

Data and feature extraction 6 September: C2. C3

Measures of similarity and summary statistics

13 September: C4

4 Data Visualization and probability 20 September: C5, C6

Supervised learning: Classification and regression

6 Decision trees and linear regression 27 September: TBA (Project 1 due before 13:00)

6 Overfitting and performance evaluation

Nearest Neighbor, Bayes and Naive Bayes

11 October: TBA

 Artificial Neural Networks and Bias/Variance
 Stocker, TBA

AUC, ensemble methods and multi-class classifiers

1 November: TBA

Unsupervised learning: Clustering and density estimation

K-means and hierarchical clustering 8 November: TBA (Project 2 due before 13:00)

Mixture models and association mining
 TRA

Density estimation and anomaly detection

22 November: TBA

Recap

Recap and discussion of the exam 29 November: TBA (Project 3 due before 13:00)

Data modeling framework

Todays learning objectives:

Understand types of data, their attributes and data issues.

Be able to apply principal component analysis for data visualization and feature extraction.

For online help see Piazza: https://piazza.com/dtu.dk/fall2016/02450

4 DTU Informatics, Technical University of Denmark

What is data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Also known as variable, field, characteristic, or feature
- Collection of attributes describe an object
 - Also known as record, point, case, sample, entity, or instance

Attributes

	ID	Age	Gender	Name
	1	31	F	Alex
ts	2	24	М	Ben
Data objects	3	52	F	Cindy
a ob	4			
Jata	5	58	М	Eric
_	6	46	F	Fay
	7	42	М	George
,				

Discrete / continuous attributes

Discrete

- Finite (or countably infinite) set of values
- Examples:
 - · Zip codes
 - Counts
 - · Set of words in a collection of documents
- Often represented as integer variables

Continuous

- Has real numbers as attribute values
- Examples:
 - Temperature
 - Height
 - Weight.
- Often represented as floating point variables

Types of attributes

- Nominal: Objects belong to a category (Equal / Not equal)
 - ID numbers
 - Eye color
 - Zip codes
- Ordinal: Objects can be ranked (Greater than / Less than)
 - Taste of potato chips on a scale from 1-10
 - Grades
 - Height in {short, medium, tall}
- Interval: Distance between objects can be measured (Addition / Subtraction)
 - Calendar dates
 - Temperature in Fahrenheit and Celcius
- Ratio: Zero means absence of what is measured (Multiplication / Division)
 - Length
 - Time
 - Counts
 - Temperature in Kelvin

Discussion

- Classify the following attributes
 - a) Military rank
 - b) Angles measured in degrees
 - c) A persons year of birth
 - d) A persons age in years
 - e) Coat check number
 - f) Distance from center of campus
 - g) Number of patients in a hospital
 - h) Sea level

Discrete

- Finite (or countably infinite) set of values
- Continuous
 - Real number
- Nominal (Equal / Not equal)
 - Objects belong to a category
- Ordinal (Greater than / Less than)
 - Objects can be ranked
- Interval (Addition / Subtraction)
 - Distance between objects can be measured
- Ratio (Multiplication / Division)
 - Zero means absence of what is measured

Types of data sets

- Record data
 - Collection of data objects and their attributes
 - Representation: Table
- Relational data
 - Collection of data objects and their relation
 - Representation: Graph
- Ordered data
 - Ordered collection of data objects
 - Representation: Sequence

Record data example: Market basket data

• Transaction data table

Matrix

ID	Items
1	Bread, Soda, Milk
2	Beer, Bread
3	Beer, Soda, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Soda, Diaper, Milk

ID	Bread	Soda	Milk	Beer	Diaper
1	1	1	1	0	0
2		0	0	1	0
3	0	1	1	1	1
4	1	0	1	1	1
5	0	1	1	0	1

Relational data example: Who knows who?

Ordered data example: Time series

Matrix

Time	Value
0	1.3
	1.8
2	2.5
3	3.6
4	4.4
5	4.7
6	4.6
7	4.3
8	2.4
9	2.1
10	2.0
11	2.3
12	3.1

Data quality

- Data is of high quality if they
 - Are fit for their intended use
 - Correctly represent the phenomena they correspond to
- Examples of quality problems
 - Noise
 - Outliers
 - Missing values

Noise

Definition

- Unwanted pertubation to a signal
- Unwanted data

· Reasons for noise

- Limits in measurement accuracy
- Interference from other signals
- Measurement of attributes not related to the data modeling task

Handling noise

- Exclude noisy attributes
- Remove noise by filtering
- Include a model of the noise

Outliers

Definition

Data objects which are significantly different from most others

· Reasons for outliers

- Measurement error
- Natural property of data

Handling outliers

- Identify & exclude outliers
- Model the outliers

Missing values

Definition

No value is stored for an attribute in a data object

· Reasons for missing values

- Information is not collected
 - People decline to give their age
- Attribute is not applicable
 - Annual income is not applicable to children

Handling missing values

- Eliminate data objects
- Estimate missing values (e.g. an average)
- Ignore the missing value in analysis

ID	Age	Gender	Name
1	31	F	Alex
2		М	Ben
3	52	F	Cindy
4	35		Dan
5		М	Eric
6		F	Fay
7	42	M	

- A group of people were asked to write how many children they have
 - Their response was this

- A research assistant typed the results into a table
 - His table looked like this

Children

- · Are there any data quality issues?
 - Noise?
 - Outliers?
 - Missing values?
- Why have these issues occured, and how should they be handled?

Dataset manipulation

- Sampling
 - Selecting a representative subset of data points
- · Feature subset selection
 - Choose a subset of attributes
- Feature extraction/transformation
 - Create new features from existing attributes
 - Discretization and binarization
 - Apply a fixed transformation to an attribute
 - Aggregation several attributes into a single attribute
- Dimensionality reduction
 - Project data to a low-dimensional subspace (PCA in lecture 2)

Feature processing

- Eliminating, suppressing, or attenuating certain aspects of the data
 - Noise removal in audio signals
 - Elimination of common words in text documents
 - Removal of background in images
 - Removal of examples which are corrupted
 - De-trending data (if it is not stationary)

Common feature transformations

ID	MPG	Cylinders	Horsepower	Weight	Year	Safety	Acceleration	Origin
1	18	8	150	3436	70	4	11	France
2	28	4	79	2625	82	4	18.6	USA
3	26	4	79	2255	76	3	17.7	USA
3	29	4	70	1937	76	1	14.2	Germany
1	NaN	8	175	3850	70	2	11	USA
5	24	4	90	2430	70	3	14.5	Germany
3	17.5	6	95	3193	76	4	17.8	USA
7	25	4	87	2672	70	-100	17.5	France
:	:	:	:	:	:	:	:	:
142	15	8	198	4341	70	2	10	USA

$$\boldsymbol{X} = \begin{bmatrix} 18 & 8 & 150 & 3436 & 70 & 4 & 11 & 3 \\ 28 & 4 & 79 & 2625 & 82 & 4 & 18.6 & 1 \\ \vdots & \vdots \\ 15 & 8 & 198 & 4341 & 70 & 2 & 10 & 1 \end{bmatrix}$$

Standardize:

$$\boldsymbol{X} = \begin{bmatrix} \cdots & (X_{1j} - \hat{\mu}_j)/\hat{\sigma}_j & \cdots \\ \cdots & (X_{2j} - \hat{\mu}_j)/\hat{\sigma}_j & \cdots \\ & \vdots & & \vdots \\ \cdots & (X_{Nj} - \hat{\mu}_j)/\hat{\sigma}_j & \cdots \end{bmatrix}$$

$$\hat{\mu}_j = \frac{1}{N} \sum_{i=1}^N X_{ij}, \quad \hat{\sigma}_j = \sqrt{\frac{1}{N-1} \sum_{i=1}^N (X_{ij} - \mu_j)^2}$$

Binarize/threshold:

$$\boldsymbol{X} = \begin{bmatrix} \cdots & 1_{[\theta,\infty[}(x_{1j}) & \cdots \\ \cdots & 1_{[\theta,\infty[}(x_{2j}) & \cdots \\ & \vdots & & \vdots \\ \cdots & 1_{[\theta,\infty[}(x_{Nj}) & \cdots \end{bmatrix}$$

$$1_{[\theta,\infty[}(x)=1 \text{ if } x \geq \theta \text{ otherwise } 0$$

One-out-of K coding

Age Height Weight Nationality

-0.2248 -0.5890 -0.2938 -0.8479 -1.1201 2.5260 1.6555 0.3075 -1.2571 -0.8655 -0.1765 -0.1765 -0.7914 -1.3320 -2.3299	-0.4762 0.8620 -1.3617 0.4550 -0.8487 -0.3349 0.5528 1.0391 -1.1176 1.2607 0.6601 -0.0679 -0.1952 -0.2176	-0.2097 0.6252 0.1832 -1.0298 0.9492 0.3071 0.1352 0.5152 0.2614 -0.9415 -0.1623 -0.1461 -0.5320 1.6821	'Sweden' 'Sweden' 'Sweden' 'Sweden' 'Norway' 'Norway' 'Norway' 'Norway' 'Sweden' 'Norway' 'Denmark' 'Denmark' 'Sweden'
-1.2571	-1.1176	0.2614	'Norway'
-0.8655	1.2607	-0.9415	'Sweden'
-0.1765	0.6601	-0.1623	'Norway'
0.7914	-0.0679	-0.1461	'Denmark'
-1.3320	-0.1952	-0.5320	'Denmark'
-2.3299	-0.2176	1.6821	'Sweden'
-1.4491	-0.3031	-0.8757	'Sweden'
0.3335	0.0230	-0.4838	'Sweden'
0.3914	0.0513	-0.7120	'Denmark'
0.4517	0.8261	-1.1742	'Sweden'
-0.1303	1.5270	-0.1922	'Norway'
0.1837	0.4669	-0.2741	'Denmark'

Age	Height	Weight	Denmark	Norv	ay Swede
-0.2248	-0.4762	-0.2097	0	0	1
-0.5890	0.8620	0.6252	0	0	1
-0.2938	-1.3617	0.1832	0	0	1
-0.8479	0.4550	-1.0298	0	0	1
-1.1201	-0.8487	0.9492	0	1	0
2.5260	-0.3349	0.3071	0	1	0
1.6555	0.5528	0.1352	0	1	0
0.3075	1.0391	0.5152	0	1	0
-1.2571	-1.1176	0.2614	0	1	0
-0.8655	1.2607	-0.9415	0	0	1
-0.1765	0.6601	-0.1623	0	1	0
0.7914	-0.0679	-0.1461	1	0	0
-1.3320	-0.1952	-0.5320	1	0	0
-2.3299	-0.2176	1.6821	0	0	1
-1.4491	-0.3031	-0.8757	0	0	1
0.3335	0.0230	-0.4838	0	0	1
0.3914	0.0513	-0.7120	1	0	0
0.4517	0.8261	-1.1742	0	0	1
-0.1303	1.5270	-0.1922	0	1	0
0.1837	0.4669	-0.2741	1	0	0

X=

- First three sentences on wikipedia.org
 - The bag-of-words model is a simplifying assumption used in natural language processing and information retrieval
 - In this model, a text (such as a sentence or a document) is represented as an unordered collection of words, disregarding grammar and even word order
 - The bag-of-words model is used in some methods of document classification

(Image source: https://pixabay.com/p-297223/)

- First three sentences on wikipedia.org
 - The bag-of-words model is a simplifying assumption used in natural language processing and information retrieval
 - In this model, a text (such as a sentence or a document) is represented as an unordered collection of words, disregarding grammar and even word order
 - The bag-of-words model is used in some methods of document classification

• We will treat this text as a data set and create a bag-of-words model of it

- Elimination of common words (so-called stop words)
 - The bag-of-words model is a simplifying assumption used in natural language processing and information retrieval
 - In this model, a text (such as a sentence or a document) is represented as an unordered collection of words, disregarding grammar and even word order
 - The bag-of-words model is used in some methods of document classification

• Representation as matrix

Word	Se	enten	се
	1	2	3
bag-of-words			
model			
simplifying			
assumption			
natural			
language			
processing			
information			
retrieval			
text			
sentence			
document			
represented			
unordered			
collection			
words			
disregarding			
grammar			
word			
order			
methods			
classification			

• Stemming

Word	Se	enten	ice
	1	2	3
bag-of-word*			
model*			
simplif*			
assum*			
natural*			
languag*			
process*			
information*			
retriev*			
text*			
sentence*			
document*			
represent*			
unorder*			
collect*			
word*		2	
disregard*			
grammar*			
order*			
method*			
classif*			

Image representation

- Example: Handwritten digits
- Preprocessing
 - Digitalization
 - Centering
 - Rotation
 - Scaling

$$M_0 = \begin{bmatrix} 0 & \dots & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & \dots & 0.3 & 1 & 0.2 & 0 & \dots & 0 \\ \vdots & & & & & & \vdots \\ 0 & \dots & 0 & 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

$$1 \times 784$$

Matrix representation of data set

then X is a $N \times 784$ matrix.

Vector space representation

• All these data objects have a vector space representation

$$x = \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ | \\ x_N \end{array} \right]$$

Plan for the rest of today:

- Data represented as vectors and matrices
 - Linear algebra useful for manipulating and analyzing data
- We will derive the Principal Component Analysis (PCA) and discuss the Singular Value Decomposition (SVD)
 - First a (brief) highlight of linear algebra
 - PCA is very important for data visualization

Vectors and matrices

Common matrix notation

$$oldsymbol{A}, A, \overline{\overline{A}}$$

$$m{A}, A, \overline{\overline{A}}$$
 $m{A} = \left[egin{array}{ccc} a_{1,1} & \cdots & a_{1,M} \ dots & & dots \ a_{N,1} & \cdots & a_{N,M} \end{array}
ight] \in \mathbb{R}^{N imes M}$

Common vector notation

$$\boldsymbol{x}, x, \overline{x}, \vec{x}$$

$$oldsymbol{x} = \left[egin{array}{c} x_1 \ x_2 \ x_3 \ dots \ x_N \end{array}
ight] \in \mathbb{R}^N$$

Matrix Multiplication

- ullet Two matrices can be multiplied AB=C
 - if the number of columns in the first equals the number of rows in the second

Matrix transpose

• The transpose of a matrix

$$m{A} = \left[egin{array}{ccc} 1 & 2 & 3 \ 3 & 4 & 6 \ 7 & 8 & 9 \end{array}
ight] \quad m{A}^ op = \left[egin{array}{ccc} 1 & 3 & 7 \ 2 & 4 & 8 \ 3 & 6 & 9 \end{array}
ight]$$

• Transpose of a sum

$$(\boldsymbol{A} + \boldsymbol{B})^{ op} = \boldsymbol{A}^{ op} + \boldsymbol{B}^{ op}$$

Transpose of a product

$$(oldsymbol{A}oldsymbol{B})^ op = oldsymbol{B}^ op oldsymbol{A}^ op$$
 $(oldsymbol{A}oldsymbol{x})^ op oldsymbol{y} = oldsymbol{x}^ op oldsymbol{A}^ op oldsymbol{y} = oldsymbol{x}^ op oldsymbol{A}^ op oldsymbol{y}$

The identity matrix

• Ones on the diagonal and zeros everywhere else

$$oldsymbol{I} = \left[egin{array}{cccc} 1 & 0 & \cdots & 0 \ 0 & 1 & & 0 \ dots & \ddots & dots \ 0 & 0 & \cdots & 1 \end{array}
ight] oldsymbol{I}^ op = oldsymbol{I}$$

Multiplying by the identity does not change anything

$$egin{aligned} oldsymbol{IA} &= oldsymbol{A} \ oldsymbol{I}_2 = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}, & oldsymbol{A} = egin{bmatrix} a & b \ c & d \end{bmatrix} \ oldsymbol{I}_2 oldsymbol{A} = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} egin{bmatrix} a & b \ c & d \end{bmatrix} = egin{bmatrix} a & b \ c & d \end{bmatrix}$$

Matrix inverses

• For a square matrix, the inverse satisfies

$$AA^{-1} = A^{-1}A = I$$

• Inverse of a product of square matrices

$$(AB)^{-1} = B^{-1}A^{-1}$$

Transpose of inverse

$$(A^{-1})^{\top} = (A^{\top})^{-1}$$

Norms

• The (Euclidian) norm of a vector measures it's length (magnitude):

$$\|x\|_2 = \sqrt{\sum_{n=1}^N |x_n|^2} = \sqrt{x^\top x}$$

The Frobenius norm of a matrix measures it's magnitude:

$$\|\boldsymbol{X}\|_F^2 = \sum_{i,j} x_{i,j}^2 = \operatorname{trace}(\boldsymbol{X}\boldsymbol{X}^T) = \operatorname{trace}(\boldsymbol{X}^T\boldsymbol{X})$$

Where trace takes the sum of the diagonal elements, i.e. $\operatorname{trace}(m{A}) = \sum_{i=1}^{n} a_{i,i}$

Vector spaces

- ullet A M-dimensional vector space is just ${\mathbb R}^M$
- This is the set of all M-dimensional vectors
- A vector space is closed under linear combinations

$$a_1\boldsymbol{x}_1 + a_2\boldsymbol{x}_2 + \dots + a_n\boldsymbol{x}_n$$

$$oldsymbol{x}_1,\dots,oldsymbol{x}_n$$
 Vectors \mathbf{a}_1,\dots,a_n Numbers

Vector spaces

- ullet A M-dimensional vector space is just ${\mathbb R}^M$
- This is the set of all M-dimensional vectors
- A vector space is closed under linear combinations

$$a_1\boldsymbol{x}_1 + a_2\boldsymbol{x}_2 + \dots + a_n\boldsymbol{x}_n$$

$$oldsymbol{x}_1,\dots,oldsymbol{x}_n$$
 Vectors $\mathbf{a}_1,\dots,\mathbf{a}_n$ Numbers

Subspaces

- A **subspace** generalizes the concept of a line/plane
- ullet If we consider n vectors $oldsymbol{x}_1,\ldots,oldsymbol{x}_n$ the **span** is then all linear combinations

$$z = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

and it is said to be a subspace

$$V = \operatorname{span}(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)$$

Basis of a (sub)space

 $oldsymbol{x}_1,\dots,oldsymbol{x}_n$ are said to be linearly independent if

$$\mathbf{0} = a_1 \mathbf{x}_1 + a_2 \mathbf{x}_2 + \dots + a_n \mathbf{x}_n$$

implies
$$a_1=a_2=\cdots=a_n=0$$

 \bullet A basis of a vector space V are n linearly independent vectors such that

$$V = \operatorname{span}(\boldsymbol{v}_1, \dots, \boldsymbol{v}_n)$$

 A basis is orthonormal if the basis is orthogonal and of unit length

$$\mathbf{v}_i^T \mathbf{v}_j = 0 \text{ for } i \neq j$$

 $\|\mathbf{v}_i\| = 1$

Basis of a (sub)space

- A **basis** of a vector space V are n linearly independent vectors such that $V = \operatorname{span}(\boldsymbol{v}_1, \dots, \boldsymbol{v}_n)$
- We collect the basis into a matrix

$$oldsymbol{V} = \left[egin{array}{cccc} oldsymbol{v}_1 & oldsymbol{v}_2 --- oldsymbol{v}_N \ oldsymbol{v}_1 & oldsymbol{v}_2 --- oldsymbol{v}_N \ oldsymbol{v}_1 & oldsymbol{v}_2 --- oldsymbol{v}_N \end{array}
ight]$$

$$V^{\top}V = I, \quad V^{\top} = V^{-1}$$

Visualization of hand written digits

Data matrix

If each image is 28 x 28 pixels then X is a N x 784 matrix

• Principal component analysis

Eigenvectors and eigenvalues

• Suppose

$$Av = \lambda v$$
, A is a $N \times N$ matrix

- We say $oldsymbol{v}$ is an eigenvector with eigenvalue λ
- If ${\pmb A}$ is symmetric: ${\pmb A}={\pmb A}^{\top}$ then ${\pmb A}$ has N linearly independent eigenvectors with positive eigenvalues

Projection

• Projection onto a vector

• Angle between vectors

$$\cos(\phi) = \frac{\boldsymbol{v}^{\top} \boldsymbol{x}}{\|\boldsymbol{x}\|_2 \|\boldsymbol{v}\|_2}$$

• Length of projection

$$p = \|\boldsymbol{x}\|_2 \cos(\phi) = \frac{\boldsymbol{v}^{\top} \boldsymbol{x}}{\|\boldsymbol{v}\|_2}$$

• Projection onto unit vector

$$p = \boldsymbol{v}^{\top} \boldsymbol{x}$$

Projection onto subspace

- Projection onto a subspace
 - Subspace of dimension $\,\eta\,$ defined by a orthonormal basis matrix $oldsymbol{V}$
 - Projection of $oldsymbol{x}$ (M dimensional) onto V given by

$$\boldsymbol{b}^T = \boldsymbol{x}^T \boldsymbol{V}$$

– 'Reconstruction' can be found as: $oldsymbol{x}' = oldsymbol{V} oldsymbol{b}$

Example: Projection of 3-D vector onto the (x,z) plane

$$oldsymbol{V} = \left[egin{array}{ccc} 1 & 0 \ 0 & 0 \ 0 & 1 \end{array}
ight] \qquad oldsymbol{x} = \left[egin{array}{c} x \ y \ z \end{array}
ight]$$

$$oldsymbol{x} = \left[egin{array}{c} x \ y \ z \end{array}
ight]$$

$$oldsymbol{x}^{ op}V = \left[egin{array}{ccc} x & y & z \end{array}
ight] \left[egin{array}{ccc} 1 & 0 \ 0 & 0 \ 0 & 1 \end{array}
ight] = \left[egin{array}{ccc} x & z \end{array}
ight] oldsymbol{v}_2$$

Projection onto subspace

- Projection onto a subspace
 - Subspace of dimension $\,\eta\,$ defined by a orthonormal basis matrix $oldsymbol{V}$
 - Projection of $oldsymbol{x}$ (M dimensional) onto V given by

$$\boldsymbol{b}^T = \boldsymbol{x}^T \boldsymbol{V}$$

– 'Reconstruction' can be found as: x'=Vb

Example 2:

PCA for high dimensional data

- · Much data is high-dimensional
- We want to find a **lower**-dimensional representation of the **high**-dimensional data

(2 dimensional but really 1 dimensional)

(784 dimensional but really 1 dimensional)

PCA for high dimensional data

- Much data is high-dimensional
- We can project high dimensional data to a lower dimensional subspace
- But what is a good projection?

PCA for high dimensional data

- · Much data is high-dimensional
- We can project high dimensional data to a lower dimensional subspace
- But what is a good projection?
- Select projection that maximizes the variance of the projected data

Singular Value Decomposition (SVD)

(Eugino Beltrami & Camille Jordan, independently, 1873-1874)

Any N x M matrix can be decomposed as follows:

 σ_1,\ldots,σ_M is known as the singular values

$$\boldsymbol{\Sigma} = \left[\begin{array}{cccc} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_M \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{array} \right]$$

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_M \ge 0$$

if
$$i \neq j$$
: $\Sigma_{i,j} = 0$, $\boldsymbol{U}^{\top} \boldsymbol{U} = \boldsymbol{I}_{N \times N}$, $\boldsymbol{V}^{\top} \boldsymbol{V} = \boldsymbol{I}_{M \times M}$

Principal component analysis (PCA)

(Karl Pearson, 1901)

- 1) Subtract the mean from each attribute
- 2) Apply singular value decomposition (SVD) $oldsymbol{X} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^{\perp}$

 $N \times K$

(PCA components or PCA projection of the data)

$$oldsymbol{V}_{(K}$$

 $M \times K$

(PCA loadings)

Principal component analysis $X = U\Sigma V^{\top}$

- Entries in the diagonal matrix Σ are called **singular values**
 - They are sorted (largest first)
 - Indicate how much variability is explained by the corresponding component
 - 1st component explains most of the variability
 - 2nd component explains most of the remaining variability

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_N \end{bmatrix} \qquad \sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_N \ge 0$$

$$\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_N \ge 0$$

Singular value spectrum

Show that

$$\|oldsymbol{X}\|_F^2 = \sum_i \sigma_i^2$$
 where $\sigma_i = oldsymbol{\Sigma}_{i,i}$

Fraction of the variation in the data explained by the ith principal component is given by:

$$\frac{\sigma_i^2}{\sum_i \sigma_i^2}$$

And by the first K principal components

$$\frac{\sum_{i=1}^{K} \sigma_i^2}{\sum_{i} \sigma_i^2}$$

Hints:

$$\|\boldsymbol{X}\|_F^2 = \operatorname{trace}(\boldsymbol{X}\boldsymbol{X}^{ op})$$

 $\operatorname{trace}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{trace}(\boldsymbol{B}\boldsymbol{A})$

Fishers Iris Data

Three types of flowers: Iris Setosa, Iris Versicolor, Iris Virginica

Flower ID				
	Sepal Length	Sepal Width	Petal Length	Petal Width
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2
4	4.6	3.1	1.5	0.2
150	5.9	3.0	5.1	1.8

We will presently consider the first 3 attributes, i.e. Sepal length, Sepal Width and Petal Length.

3D scatter plot of the data

What fraction of the total variation in the data will the first principal component account for?

3D scatter plot of the data

- 1) Subtract the mean
- 2) Apply singular value decomposition (SVD)

2 5 Sepal Width Sepal Length

What fraction of the total variation in the data will the first principal component account for?

Evaluate the singular values to determine how much of the dynamics is lost when reducing the dimensionality

Visualizing the data projected onto the space of the principal components $_{\it \pm}$

The principal directions V

Sepal Length		-0.64	-0.66
Sepal Width Petal Length $V=$	0.09	-0.74	0.66
64 DTILlete	[-0.92]	0.20	0.35

 $PCA1: p_1 = Xv_1 = u_1\sigma_1$ $PCA2: p_2 = Xv_2 = u_2\sigma_2$ $PCA3: p_3 = Xv_3 = u_3\sigma_3$

Visualization of hand written digits

Compression

Only include a few components: $oldsymbol{x}' = oldsymbol{V} oldsymbol{b}$

n=2,5,20,50,100

Data and Domain driven feature extraction

PCA is an example of a data driven approach for feature extraction

i.e., we define from data the features extracted in terms of the projections $V^{(PCA)}$ that preserve most of the variance in the data

The fourier transform is an example of a domain driven approach for feature extraction

i.e., in the analysis of sound good features are often to use spectral representations. These can be found by projecting the data using the so-called fourier transform matrix $V^{(rr)}$ where the components are defined as specific frequencies such that the projection of the data onto these frequencies defines the extend to which these frequencies are present in the data. (you can learn much more about this in 02451 Digital Signal Processing)

