Descriptive Statistics — Quantitative

PSYC 203

Agenda

- Central Tendency
 - Mode, Median, and Mean
 - Sampling Stability
- Dispersion
 - Range, Interquartile Range, Average Deviation,
 Variance, and Standard Deviation
 - Sampling Stability

Where is the center?

Where is the center?

Where is the center?

Mode — most frequently occurring score(s)

- In these data, the modes are
 - 41, 51

	Freq	%	% Cum.
26	1	1.00	1.00
30	1	1.00	2.00
31	1	1.00	3.00
32	1	1.00	4.00
34	1	1.00	5.00
36	3	3.00	8.00
38	3	3.00	11.00
39	4	4.00	15.00
40	3	3.00	18.00
41	7	7.00	25.00
42	5	5.00	30.00
43	3	3.00	33.00
44	1	1.00	34.00
45	4	4.00	38.00
47	1	1.00	39.00
48	1	1.00	40.00
49	4	4.00	44.00
50	6	6.00	50.00
51	7	7.00	57.00
52	6	6.00	63.00
53	3	3.00	66.00
54	3	3.00	69.00
55	1	1.00	70.00
56	2	2.00	72.00
58	3	3.00	75.00
59	2	2.00	77.00
60	3	3.00	80.00
61	1	1.00	81.00
62	6	6.00	87.00
63	3	3.00	90.00
65	1	1.00	91.00
66	2	2.00	93.00
67	3	3.00	96.00
72	1	1.00	97.00
7 3	1	1.00	98.00
80	1	1.00	99.00
88	1	1.00	100.00
Total	100	100.00	100.00

- Mode most frequently occurring score(s)
- Median 50/50 point $\left(\frac{n+1}{2}\right)^{tn}$

Central Tendency: Median

• There are 100 cases, so average of 50th and 51st case.

$$\left(\frac{100+1}{2}\right)^{th} = 50.5$$

	Freq	%	% Cum.	
26	1	1.00	1.00	
30	1	1.00	2.00	
31	1	1.00	3.00	
32	1	1.00	4.00	
34	1	1.00	5.00	
36	3	3.00	8.00	
38	3	3.00	11.00	
39	4	4.00	15.00	
40	3	3.00	18.00	
41	7	7.00	25.00	
42	5	5.00	30.00	
43	3	3.00	33.00	
44	1	1.00	34.00	
45	4	4.00	38.00	
47	1	1.00	39.00	
48	1	1.00	40.00	
49	4	4.00	44.00	
50	6	6.00	50.00	
51	7	7.00	57.00	
52	6	6.00	63.00	
53	3	3.00	66.00	
54	3	3.00	69.00	
55	1	1.00	70.00	
56	2	2.00	72.00	
58	3	3.00	75.00	
59	2	2.00	77.00	
60	3	3.00	80.00	
61	1	1.00	81.00	
62	6	6.00	87.00	
63	3	3.00	90.00	
65	1	1.00	91.00	
66	2	2.00	93.00	
67	3	3.00	96.00	
72	1	1.00	97.00	
73	1	1.00	98.00	
80	1	1.00	99.00	
88	1	1.00	100.00	
otal	100	100.00	100.00	

- Mode most frequently occurring score(s)
- Median 50/50 point
- Mean the arithmetic average $\bar{X} = \frac{\sum X}{n}$

Central Tendency — Mean

- Numerator is (26 + 30 + 31 + 32 + 34...88)
 - *n* is 100

$$\overline{X} = \frac{\sum X}{n} = 50.54$$

	Freq	%	% Cum.
26	1	1.00	1.00
30	1	1.00	2.00
31	1	1.00	3.00
32	1	1.00	4.00
34	1	1.00	5.00
36	3	3.00	8.00
38	3	3.00	11.00
39	4	4.00	15.00
40	3	3.00	18.00
41	7	7.00	25.00
42	5	5.00	30.00
43	3	3.00	33.00
44	1	1.00	34.00
45	4	4.00	38.00
47	1	1.00	39.00
48	1	1.00	40.00
49	4	4.00	44.00
50	6	6.00	50.00
51	7	7.00	57.00
52	6	6.00	63.00
53	3	3.00	66.00
54	3	3.00	69.00
55	1	1.00	70.00
56	2	2.00	72.00
58	3	3.00	75.00
59	2	2.00	77.00
60	3	3.00	80.00
61	1	1.00	81.00
62	6	6.00	87.00
63	3	3.00	90.00
65	1	1.00	91.00
66	2	2.00	93.00
67	3	3.00	96.00
72	1	1.00	97.00
73	1	1.00	98.00
80	1	1.00	99.00
88	1	1.00	100.00
Total	100	100.00	100.00

· R code

two different functions from two different packages

Symbols Matter

- · What is the difference? \bar{X},μ
- Alternative expressions of the mean
 - include all data points $\overline{\overline{X}} = \frac{\sum_{i=1}^{n} X_{i}}{n}$
 - sum values of x starting at x4 and ending with x30

$$\bar{X} = \frac{\sum_{i=4}^{30} X_i}{n}$$

Which Measure to Use

· Mode

- Only appropriate CT measure for nominal data
- Must be an observed score
- Rather simple measure that can create interpretation problems (relatively unstable)
- Not useful for any advanced analyses

Median

- Not influenced by extreme scores (both positive and negative)
- Appropriate for ordinal data (no assumptions about units) or higher

 Often useful in a descriptive sense, but (like the mode) is not useful for any advanced analyses

· Mean

- Only appropriate with interval/ratio data
- A distribution's "center of gravity"
- Mathematically advantageous for operations
- Better estimator of population parameter than mode or median
- Heavily influenced by extreme scores

Distributions & CT

Distributions & CT

Measures of CT and Levels of Measurement

	Mode	Median	Mean
Nominal	YES	NO	NO
Ordinal	YES	YES	NO
Interval/Ratio	YES	YES	YES

Sampling Stability and Central Tendency

- Our sample statistics provide estimates of population parameters
- We have a population and draw a random sample of 5 cases.
 - How close will the mean of the sample be to the population?
 - Let's simulate
 - How about if we draw a sample of 10, 20, or more?

Agenda

- Central Tendency
 - Mode, Median, and Mean
 - Sampling Stability
- Dispersion
 - Range, Interquartile Range, Average Deviation,
 Variance, and Standard Deviation
 - Sampling Stability

Variability / Dispersion

- Fundamentally important for our research
 - individual differences
- Do the mean, median, or mode tell us anything about individual differences?
 - NO!!!
- We want a measure that quantifies the extent to which cases vary.

Variability / Dispersion

- Range
 - Difference of lowest and highest score in a distribution
 - PROS: Easy to compute and understand
 - CONS: Often related to sample size and tends to be unstable
- Interquartile Range
 - Range between 25th and 75th percentile
 - PROS: More stable than Range
 - CONS: Not a particularly rich statistic in terms of inferences
- Average Deviation
 - 'simple' measure of dispersion

$$AD = \frac{\sum |X_i - \overline{X}|}{n}$$

Dispersion is

- Range
 - 88-26 = 62
- IQR
 - 58-41 = 8
- AD
 - · 8.7

	Freq	%	% Cum.
26	1	1.00	1.00
30	1	1.00	2.00
31	1	1.00	3.00
32	1	1.00	4.00
34	1	1.00	5.00
36	3	3.00	8.00
38	3	3.00	11.00
39	4	4.00	15.00
40	3	3.00	18.00
41	7	7.00	25.00
42	5	5.00	30.00
43	3	3.00	33.00
44	1	1.00	34.00
45	4	4.00	38.00
47	1	1.00	39.00
48	1	1.00	40.00
49	4	4.00	44.00
50	6	6.00	50.00
51	7	7.00	57.00
52	6	6.00	63.00
53	3	3.00	66.00
54	3	3.00	69.00
55	1	1.00	70.00
56	2	2.00	72.00
58	3	3.00	75.00
59	2	2.00	77.00
60	3	3.00	80.00
61	1	1.00	81.00
62	6	6.00	87.00
63	3	3.00	90.00
65	1	1.00	91.00
66	2	2.00	93.00
67	3	3.00	96.00
72	1	1.00	97.00
73	1	1.00	98.00
80	1	1.00	99.00
88	1	1.00	100.00
Total	100	100.00	100.00

Variability/Dispersion: Variance

Summarizes the magnitude of individual differences

$$\cdot \text{ population - } \sigma^2 = \frac{\sum \left(X - \mu\right)^2}{N}$$

$$\cdot \text{ sample - } s^2 = \frac{\sum \left(X - \overline{X}\right)^2}{n-1}$$

- Why two different formulas?
- Notation

Dispersion

- Variance (Population)
 - · 121.88
- Variance (Sample)
 - · 123.11

	Freq	%	% Cum.
26	1	1.00	1.00
30	1	1.00	2.00
31	1	1.00	3.00
32	1	1.00	4.00
34	1	1.00	5.00
36	3	3.00	8.00
38	3	3.00	11.00
39	4	4.00	15.00
40	3	3.00	18.00
41	7	7.00	25.00
42	5	5.00	30.00
43	3	3.00	33.00
44	1	1.00	34.00
45	4	4.00	38.00
47	1	1.00	39.00
48	1	1.00	40.00
49	4	4.00	44.00
50	6	6.00	50.00
51	7	7.00	57.00
52	6	6.00	63.00
53	3	3.00	66.00
54	3	3.00	69.00
55	1	1.00	70.00
56	2	2.00	72.00
58	3	3.00	75.00
59	2	2.00	77.00
60	3	3.00	80.00
61	1	1.00	81.00
62	6	6.00	87.00
63	3	3.00	90.00
65	1	1.00	91.00
66	2	2.00	93.00
67	3	3.00	96.00
72	1	1.00	97.00
7 3	1	1.00	98.00
80	1	1.00	99.00
88	1	1.00	100.00
Total	100	100.00	100.00

Simple Example

Test Score A			
90			
90			
89			
87			
85			
84			
83			
Mode = 90			
Median = 87			
Mean = 86.86			
Sample Variance = 8.48			
Population Variance = 7.27			

Test Score B
90
90
89
87
85
84
20
Mode = 90
Median = 87
Mean = 77.86
Sample Variance = 656.48
Population Variance = 562.69

Variability/Dispersion: Standard Deviation

statistic that indicates distance of any single score from the mean

$$\sigma = \sqrt{\frac{\sum (X - \mu)^2}{N}}$$

population

sample
$$s = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$$

•

square root of the variance

Dispersion

- Standard Deviation (Population)
 - · 11.04
- Standard Deviation (Sample)
 - · 11.09

	Freq	%	% Cum.
26	1	1.00	1.00
30	1	1.00	2.00
31	1	1.00	3.00
32	1	1.00	4.00
34	1	1.00	5.00
36	3	3.00	8.00
38	3	3.00	11.00
39	4	4.00	15.00
40	3	3.00	18.00
41	7	7.00	25.00
42	5	5.00	30.00
43	3	3.00	33.00
44	1	1.00	34.00
45	4	4.00	38.00
47	1	1.00	39.00
48	1	1.00	40.00
49	4	4.00	44.00
50	6	6.00	50.00
51	7	7.00	57.00
52	6	6.00	63.00
53	3	3.00	66.00
54	3	3.00	69.00
55	1	1.00	70.00
56	2	2.00	72.00
58	3	3.00	75.00
59	2	2.00	77.00
60	3	3.00	80.00
61	1	1.00	81.00
62	6	6.00	87.00
63	3	3.00	90.00
65	1	1.00	91.00
66	2	2.00	93.00
67	3	3.00	96.00
72	1	1.00	97.00
73	1	1.00	98.00
80	1	1.00	99.00
88	1	1.00	100.00
Total	100	100.00	100.00

Example continued

Test Score A
90
90
89
87
85
84
83
Sample SD = 2.91
Population SD = 2.70

Test Score B
90
90
89
87
85
84
20
Sample SD = 25.62
Population SD = 23.72

What Does Variance Mean?

· Case A

- 10-item T/F test
- Mel answers 10 correct and Chris answers 0 correct
- Mean = 5, Variance = 25, SD = 5

· Case B

- 10-item T/F test
- Mel answers 6 correct and Chris answers 4 correct
- Mean = 5, Variance = 1, SD = 1

· Case C

- 10-item T/F test
- Mel answers 6 correct and Chris answers 4 correct (each item is worth 10 points)
- Mean = 50, Variance = 100, SD = 10

Comparing Variability

- Coefficient of Variation comparison across contexts
- Cases on previous slides

$$CV_A = \left(\frac{s}{\overline{X}}\right) 100 = \left(\frac{5}{5}\right) 100 = 100$$

$$CV_B = \left(\frac{s}{\overline{X}}\right) 100 = \left(\frac{1}{5}\right) 100 = 20$$

$$CV_C = \left(\frac{s}{\overline{X}}\right) 100 = \left(\frac{1}{50}\right) 100 = 20$$

Sampling Stability and Variability

- We again have a population and draw a random sample of 5 cases.
 - How close will the variance of the sample be to the population?
 - Let's <u>simulate</u>
 - How about if we draw a sample of 10, 20, or more?

Symbols Matter Here Too...

TABLE 4-2. Variance and Standard Deviation in Symbols

The variance or standard deviation of a sample is an example of a statistic, whereas the variance or standard deviation of a population is an example of a parameter. The symbols we use depend on whether we are referring to the spread of a sample or a population.

Number	Used for	Standard Deviation Symbol	Pronounced	Variance Symbol	Pronounced
Statistic	Sample	SD or s	As written	SD2, s2, or MS	Letters as written; if superscript ² , then followed by "squared" (e.g., "ess squared")
Parameter	Population	σ	"Sigma"	σ^2	"Sigma squared"

Statistics as Estimators of Parameters

- Sufficient
 - extent to which a statistic uses available information
- Unbiased
 - extent to which statistic's expected value is equal to the parameter (not systematically too large or small)
- Efficient
 - · speaks to the variability of a statistic's value relative to the population parameter
- Resistant
 - extent to which a statistic is influenced by outliers