Overlooked model uncertainties may misinform forest management strategies

Victor, Jérôme, Isabelle, and more?

Abstract: Forests play a major role in mitigating climate change, but increasing threats to forests from climate change have heightened the importance of managing these systems. Robust forecasts of forest composition with increasing climate change are critical to this aim, but are currently highly variable. To help guide management in the face of this variability and understand where we can most rapidly reduce uncertainty through improved models, we compare over XX ecological models and climate scenarios in forecasts for forests across Europe. Our approach considers a gradient of more mechanistic ('process-based') to correlative models of species distributions to find that uncertainty in ecological models can drive more variation than vastly different climate scenarios (e.g., SSP2 vs. SSP5), but also areas with relatively consistent projections [give overview of these and say that this could reduce uncertainty in how to manage for these areas]. [Maybe something on using existing range data leads to more pessimistic forecasts?] Our results highlight a new way to approach ecological forecasting that better identifies areas of higher certainty and, conversely, the areas where managers will need more diversified approaches and where more ecological study may be most useful.

Main

10

11

17

19

Forests are key to pursuing climate change mitigation policies and achieving carbon neutrality ^{1,2}. Yet, forests are increasingly under pressure. In Europe, temperatures are rising twice as fast as the global average³, and unprecedented pulses of tree mortality have been reported in the last decade⁴. As a result, some European forests are becoming net CO₂ sources^{5,6}, due to decreased growth^{5,7}, larger burned areas^{8,9}, and increased pest- and drought-induced dieback^{6,10,11}. Forest managers are facing unprecedented challenges, as they must address current threats while also promoting long-term adaptation to climate change. In this context of high uncertainty, better guidance is needed to implement successful strategies.

Given the diversity of predictive ecological models, the challenge of providing practical insights for forest management is even greater. Different models, ranging from correlative to more mechanistic approaches, may provide highly divergent projections ^{12–15}. While it remains unclear under which conditions one approach is more reliable than another ¹⁶, most forecasting studies still rely on a limited set of models ^{17–20}. We thus often lack a comprehensive understanding of what drives differences between projections ²¹. Given the urgency of climate change, we must incorporate this diversity and merge across ecological and climatological models to provide a complete picture of both the threats and opportunities for forests.

Gaining a better understanding of where uncertainties originate and how they relate is crucial to identify opportunities to address policy-relevant questions ²². Species shifts are predicted to have major impacts on timber production and on the forest economic sector ^{18,19}. Forest managers need to know whether the current species will be able to tolerate future climate conditions, whether they can rely on its natural regeneration, or whether they should capitalize on new species opportunities. If the main driver of variation across projections is the different ecological models, even more than different global emissions scenarios, it becomes critical to

Figure 1

encompass the full range of models. Failing to do so could lead to overly confident predictions about which species will or will not be able to survive in future climates, ultimately leading to counterproductive or even detrimental forest management decisions.

To understand the level of confidence we can place in predictions requires a framework that account for all the various components of climatological and biological uncertainties, including socio-economic scenarios, global climate models, ecological models, down to the species level. To this aim, we combined over 1,500 projections of forest tree species distributions, incorporating a wide range of models, from more mechanistic ('process-based') to correlative models. Fully accounting for our current level of knowledge about future climate states and species functioning allows us to quantify the contribution of each component to the total variation across projections. This approach represents a significant advancement over previous studies, which overlooked large portions of uncertainty, and will lead to better informed decision-making to improve the resilience of forests.

Results and discussion

Our dataset included 9 tree species, both deciduous and coniferous, adapted to diverse climatic conditions across Europe. We simulated their suitability from 1970 to 2100, at a 0.1° spatial resolution, using a diverse set of ecological models spanning different hypotheses and calibration methods. For future projections, we used 10 different climate simulations, based on 2 forcing scenarios and 5 global climate models with different climate sensitivities.

Across species, ecological models drive more variation than vastly different climate scenarios. They consistently represent the major source of uncertainty across major European biomes (explaining between 42.9% and 63.9% of the variation between projections), with the exception of the Alpine biome. At the species-level, the differences between ecological models is also the main source of uncertainty for all the species considered here, and represents between 40% and 62% of the total uncertainty on average. One of the striking example is the climatic suitability change of sessile oak in the Atlantic region, where this species represents an important cultural and economic value, and for which more than 80% of the uncertainty in climate change impact projections was due to variations among ecological models.

Failing to account for a broad range of ecological models bias our level of confidence in them. Considering only correlative models would have misled to an overestimation of the contribution of climate projections (forcing scenarios, climate models, and their two-way interaction) to the total projection uncertainty in all regions, except the Mediterranean. In particular, divergence

Figure 2: Temporary figure

between climate models would have appeared to contribute as much as ecological models to projection uncertainty (on average, 36.6% and 37.5%, respectively). By accounting for more diverse ecological models, as done in our study, the uncertainty introduced by different ecological models (51.0% on average) is greater than that introduced by climate models (19.9% on average) for all the species. One of the key challenges for reducing uncertainty remains at the biological and ecological levels, even before considering the broad variations across future climate projections.

Our results also revealed that the divergent projections between ecological models followed a regular pattern. Models (correlative or mechanistic) calibrated using current species range data consistently projected stronger decrease in climatic suitability for all species than models calibrated using other data (e.g. experimental). predict greater extinctions at the southern edge of species ranges greater extinctions at the warmer limits (generally southern) These discrepancies between models can significantly alter country-level projections, and impact national strategies derived from them. In Germany for example, beech showed an average suitability decrease of $-0.04~(\pm 0.09)$ in 2090 when considering only models entirely calibrated with current species distribution data, whereas... Distribution data may not capture the full climatic niche of a species, underestimating the range of conditions where it could survive 23,24 . Relying on a narrow set of models—especially derived from the same calibration process (too technical?)—undermines the robustness of projections!

Comparing diverse models enable to identify areas with relatively consistent projections that differ in terms of future climate risks and levers of action to address them. Around the Mediterranean Basin, the models consistently predict less favorable climatic conditions for the species we considered here. In areas where most species are threatened, forest managers may consider introducing new species, more drought-tolerant. In the Atlantic margin, the suitability of most species is also projected to decrease, except for the two Mediterranean species (pubescent and evergreen oaks). In some areas, evergreen oak has already replaced beech ²⁵. Mechanistic model projections are less pessimistic for deciduous oaks and beech in France, suggesting that some better-adapted populations could survive if the existing standing genetic variation is maintained and promoted by forest managers ²⁶. An other lever of action, practices: reduce forest density. Continental: exhibit less clear trends, notable low agreement among ecological models, as well as the mountainous regions at the transition between Mediterranean and Continental/Atlantic climates (Pyrenees, Massif Central, Balkans). Boreal biomes in Scandinavian and Baltic countries are projected to get an overall increase of climatic suitability. These are mostly dominated by two conifers species, favoured by commercial forest management Thanks to a more favourable

Figure 3: Temporary figure

climate and an extended growing season, temperate deciduous species can become more competitive at the northern margin of their range ²⁷. Lever of action: convert pure coniferous stands into mixed forest in order to increase their resilience ²⁸

Looking ahead: a call to action for the scientific community...

93

94 References

106

107

108

- [1] Anu Korosuo, Roberto Pilli, Raúl Abad Viñas, Viorel N. B. Blujdea, Rene R. Colditz, Giulia Fiorese, Simone Rossi, Matteo Vizzarri, and Giacomo Grassi. The role of forests in the EU climate policy: are we on the right track? Carbon Balance and Management, 18(1):15, July 2023. ISSN 1750-0680. doi: 10.1186/s13021-023-00234-0. URL https://doi.org/10.1186/s13021-023-00234-0.
- [2] Matti Hyyrynen, Markku Ollikainen, and Jyri Seppälä. European forest sinks and climate targets: past trends, main drivers, and future forecasts. European Journal of Forest Research, 142(5):1207–1224, October 2023. ISSN 1612-4677. doi: 10.1007/s10342-023-01587-4.
 URL https://doi.org/10.1007/s10342-023-01587-4.
- [3] Copernicus Climate Change Service. European state of the climate 2023. Technical report, 2024. URL https://climate.copernicus.eu/esotc/2023.
 - [4] Cornelius Senf, Allan Buras, Christian S. Zang, Anja Rammig, and Rupert Seidl. Excess forest mortality is consistently linked to drought across Europe. *Nature Communications*, 11(1):6200, December 2020. ISSN 2041-1723. doi: 10.1038/s41467-020-19924-1. URL https://www.nature.com/articles/s41467-020-19924-1.
- 110 [5] David Hadden and Achim Grelle. Changing temperature response of respiration turns 111 boreal forest from carbon sink into carbon source. Agricultural and Forest Meteorology, 112 223:30-38, June 2016. ISSN 0168-1923. doi: 10.1016/j.agrformet.2016.03.020. URL https: 113 //www.sciencedirect.com/science/article/pii/S0168192316302131.
- 114 [6] D. V. Karelin, D. G. Zamolodchikov, A. V. Shilkin, S. Yu. Popov, A. S. Kumanyaev, V. O. Lopes de Gerenyu, N. O. Tel'nova, and Michael L. Gitarskiy. The effect of tree mortality on CO2 fluxes in an old-growth spruce forest. European Journal of Forest Research, 140(2):287–305, April 2021. ISSN 1612-4677. doi: 10.1007/s10342-020-01330-3. URL https://doi.org/10.1007/s10342-020-01330-3.
- [7] Auke M. van der Woude, Wouter Peters, Emilie Joetzjer, Sébastien Lafont, Gerbrand Koren,
 Philippe Ciais, Michel Ramonet, Yidi Xu, Ana Bastos, Santiago Botía, Stephen Sitch,
 Remco de Kok, Tobias Kneuer, Dagmar Kubistin, Adrien Jacotot, Benjamin Loubet, PedroHenrique Herig-Coimbra, Denis Loustau, and Ingrid T. Luijkx. Temperature extremes of
 2022 reduced carbon uptake by forests in Europe. Nature Communications, 14(1):6218,
 October 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-41851-0. URL https://www.
 nature.com/articles/s41467-023-41851-0.
- [8] Jofre Carnicer, Andrés Alegria, Christos Giannakopoulos, Francesca Di Giuseppe, Anna Karali, Nikos Koutsias, Piero Lionello, Mark Parrington, and Claudia Vitolo. Global warming is shifting the relationships between fire weather and realized fire-induced CO2 emissions in Europe. Scientific Reports, 12(1):10365, June 2022. ISSN 2045-2322. doi: 10.1038/s41598-022-14480-8. URL https://www.nature.com/articles/s41598-022-14480-8.
- [9] Julia Kelly, Natascha Kljun, Zhanzhang Cai, Stefan H. Doerr, Claudio D'Onofrio, Thomas Holst, Irene Lehner, Anders Lindroth, Shangharsha Thapa, Patrik Vestin, and Cristina Santín. Wildfire impacts on the carbon budget of a managed Nordic boreal forest. Agricultural and Forest Meteorology, 351:110016, May 2024. ISSN 0168-1923. doi: 10.1016/j. agrformet.2024.110016. URL https://www.sciencedirect.com/science/article/pii/S016819232400131X.
- [10] Emil Cienciala and Jan Melichar. Forest carbon stock development following extreme drought-induced dieback of coniferous stands in Central Europe: a CBM-CFS3 model ap-

- plication. Carbon Balance and Management, 19(1):1, January 2024. ISSN 1750-0680. doi: 10.1186/s13021-023-00246-w. URL https://doi.org/10.1186/s13021-023-00246-w.
- [11] Lejla Latifovic and M. Altaf Arain. The impact of spongy moth (*Lymantria dispar dispar*) defoliation on carbon balance of a temperate deciduous forest in North America. Agricultural and Forest Meteorology, 354:110076, July 2024. ISSN 0168-1923.

 doi: 10.1016/j.agrformet.2024.110076. URL https://www.sciencedirect.com/science/article/pii/S0168192324001916.
- 146 [12] Xavier Morin and Wilfried Thuiller. Comparing niche- and process-based models to reduce
 147 prediction uncertainty in species range shifts under climate change. *Ecology*, 90(5):1301–
 148 1313, 2009. ISSN 1939-9170. doi: 10.1890/08-0134.1. URL https://onlinelibrary.
 149 wiley.com/doi/abs/10.1890/08-0134.1.
- Trevor Keenan, Josep Maria Serra, Francisco Lloret, Miquel Ninyerola, and Santiago Sabate. Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters! Global Change Biology, 17(1): 565-579, 2011. ISSN 1365-2486. doi: 10.1111/j.1365-2486.2010.02254.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2486.2010.02254.x.
- 155 [14] Alissar Cheaib, Vincent Badeau, Julien Boe, Isabelle Chuine, Christine Delire, Eric Dufrêne,
 156 Christophe François, Emmanuel S. Gritti, Myriam Legay, Christian Pagé, Wilfried Thuiller,
 157 Nicolas Viovy, and Paul Leadley. Climate change impacts on tree ranges: model in158 tercomparison facilitates understanding and quantification of uncertainty. Ecology Let159 ters, 15(6):533–544, 2012. ISSN 1461-0248. doi: 10.1111/j.1461-0248.2012.01764.x. URL
 160 https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.2012.01764.x.
- 161 [15] Antti Takolander, Thomas Hickler, Laura Meller, and Mar Cabeza. Comparing future shifts in tree species distributions across Europe projected by statistical and dynamic process-based models. Regional Environmental Change, 19(1):251–266, January 2019.

 164 ISSN 1436-378X. doi: 10.1007/s10113-018-1403-x. URL https://doi.org/10.1007/s10113-018-1403-x.
- [16] Victor Van der Meersch, Edward Armstrong, Florent Mouillot, Anne Duputié, Hendrik
 Davi, Frédérik Saltré, and Isabelle Chuine. Biological mechanisms are necessary to improve
 projections of species range shifts. bioRxiv, 2024. doi: 10.1101/2024.05.06.592679. URL
 https://www.biorxiv.org/content/early/2024/05/08/2024.05.06.592679.
- 170 [17] Marcin K. Dyderski, Sonia Paz, Lee E. Frelich, and Andrzej M. Jagodzinski. How much does climate change threaten European forest tree species distributions? *Global Change* 172 *Biology*, 24(3):1150–1163, 2018. ISSN 1365-2486. doi: 10.1111/gcb.13925. URL https: //onlinelibrary.wiley.com/doi/abs/10.1111/gcb.13925.
- 174 [18] Johannes Wessely, Franz Essl, Konrad Fiedler, Andreas Gattringer, Bernhard Hülber, Olesia Ignateva, Dietmar Moser, Werner Rammer, Stefan Dullinger, and Rupert Seidl. A climate-induced tree species bottleneck for forest management in Europe. Nature Ecology & Evolution, 8(6):1109–1117, June 2024. ISSN 2397-334X. doi: 10.1038/s41559-024-02406-8. URL https://www-nature-com.inee.bib.cnrs.fr/articles/s41559-024-02406-8.
- [19] Marc Hanewinkel, Dominik A. Cullmann, Mart-Jan Schelhaas, Gert-Jan Nabuurs, and Niklaus E. Zimmermann. Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3(3):203–207, March 2013. ISSN 1758-6798. doi: 10.1038/nclimate1687. URL https://www.nature.com/articles/nclimate1687.
- [20] Silvio Schueler, Wolfgang Falk, Jarkko Koskela, François Lefèvre, Michele Bozzano, Jason Hubert, Hojka Kraigher, Roman Longauer, and Ditte C. Olrik. Vulnerability of dynamic

- genetic conservation units of forest trees in Europe to climate change. Global Change Biology, 20(5):1498-1511, 2014. ISSN 1365-2486. doi: 10.1111/gcb.12476. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.12476.
- [21] Emily G. Simmonds, Kwaku P. Adjei, Benjamin Cretois, Lisa Dickel, Ricardo González-Gil,
 Jack H. Laverick, Caitlin P. Mandeville, Elizabeth G. Mandeville, Otso Ovaskainen, Jorge
 Sicacha-Parada, Emma S. Skarstein, and Bob O'Hara. Recommendations for quantitative
 uncertainty consideration in ecology and evolution. Trends in Ecology & Evolution, 39
 (4):328–337, April 2024. ISSN 0169-5347. doi: 10.1016/j.tree.2023.10.012. URL https:
 //www.sciencedirect.com/science/article/pii/S0169534723002793.
- [22] M. C. Urban, G. Bocedi, A. P. Hendry, J.-B. Mihoub, G. Pe'er, A. Singer, J. R. Bridle, L. G. Crozier, L. De Meester, W. Godsoe, A. Gonzalez, J. J. Hellmann, R. D. Holt, A. Huth, K. Johst, C. B. Krug, P. W. Leadley, S. C. F. Palmer, J. H. Pantel, A. Schmitz, P. A. Zollner, and J. M. J. Travis. Improving the forecast for biodiversity under climate change. Science, 353(6304):aad8466, September 2016. doi: 10.1126/science.aad8466. URL https://www.science.org/doi/10.1126/science.aad8466.
- 200 [23] Mathieu Chevalier, Olivier Broennimann, and Antoine Guisan. Climate change may reveal currently unavailable parts of species' ecological niches. *Nature Ecology & Evolution*, pages 1–13, May 2024. ISSN 2397-334X. doi: 10.1038/s41559-024-02426-4. URL https://www.nature.com/articles/s41559-024-02426-4.
- [24] D. Nogués-Bravo, S. Veloz, B. G. Holt, J. Singarayer, P. Valdes, B. Davis, S. C. Brewer, J. W. Williams, and C. Rahbek. Amplified plant turnover in response to climate change forecast by Late Quaternary records. *Nature Climate Change*, 6(12):1115–1119, December 2016. ISSN 1758-6798. doi: 10.1038/nclimate3146. URL https://www.nature.com/articles/nclimate3146.
- [25] Josep Peñuelas and Martí Boada. A global change-induced biome shift in the Montseny mountains (NE Spain). Global Change Biology, 9(2):131-140, 2003. ISSN 1365-2486.
 doi: 10.1046/j.1365-2486.2003.00566.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2486.2003.00566.x.
- [26] Peter Brang, Peter Spathelf, J. Bo Larsen, Jürgen Bauhus, Andrej Bonccina, Christophe Chauvin, Lars Drössler, Carlos García-Güemes, Caroline Heiri, Gary Kerr, Manfred J. Lexer, Bill Mason, Frits Mohren, Urs Mühlethaler, Susanna Nocentini, and Miroslav Svoboda. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry: An International Journal of Forest Research, 87 (4):492–503, October 2014. ISSN 0015-752X. doi: 10.1093/forestry/cpu018. URL https://doi.org/10.1093/forestry/cpu018.
- 220 [27] Andreas Bolte, Lutz Hilbrig, Britt Grundmann, Friederike Kampf, Jörg Brunet, and
 221 Andreas Roloff. Climate change impacts on stand structure and competitive interac222 tions in a southern Swedish spruce—beech forest. European Journal of Forest Research,
 223 129(3):261–276, May 2010. ISSN 1612-4677. doi: 10.1007/s10342-009-0323-1. URL
 224 https://doi.org/10.1007/s10342-009-0323-1.
- 225 [28] Bastian Schauer, Simon Thorn, Markus Blaschke, and Thomas Kudernatsch. Conversion of pure spruce to mixed spruce beech stands: Effects on alpha and beta diversity of multiple taxonomic groups. Forest Ecology and Management, 545:121297, October 2023. ISSN 0378-1127. doi: 10.1016/j.foreco.2023.121297. URL https://www.sciencedirect.com/science/article/pii/S0378112723005315.