Graphs with 2n - 2 edges

Lothar Narins, Alexey Pokrovskiy, Tibor Szabó

Methods for Discrete Structures, Berlin. alja123@gmail.com

February 19, 2014

Why study graphs with 2n - 2 edges?

Theorem (Nash-Williams)

For a graph G with 2|G|-2 edges, the following are equivalent

- *G* is the union of two spanning trees.
- Every subgraph $H \leq G$ has at most 2|H| 2 edges.

Why study graphs with 2n - 2 edges?

Theorem (Nash-Williams)

For a graph G with 2|G|-2 edges, the following are equivalent

- G is the union of two spanning trees.
- Every subgraph $H \le G$ has at most 2|H| 2 edges.

Theorem (Laman)

For a graph G with 2|G|-3 edges, the following are equivalent

- G is minimally rigid in the plane.
- Every subgraph $H \le G$ has at most 2|H| 3 edges.

Why study graphs with 2n - 2 edges?

Theorem (Nash-Williams)

For a graph G with 2|G|-2 edges, the following are equivalent

- G is the union of two spanning trees.
- Every subgraph $H \leq G$ has at most 2|H| 2 edges.

Theorem (Laman)

For a graph G with 2|G|-3 edges, the following are equivalent

- G is minimally rigid in the plane.
- Every subgraph $H \le G$ has at most 2|H| 3 edges.

We'll look at graphs with 2|G|-2 edges and no proper induced subgraphs with minimum degree 3.

Examples

We'll look at graphs with 2|G|-2 edges and no proper induced subgraphs with minimum degree 3.

The conjecture

Conjecture (Erdős, Faudree, Gyárfás, and Schelp)

There is an increasing function C(n) such that the following holds. Every graph G with n vertices, 2n-2 edges, and no proper induced subgraphs of minimal degree 3 contains cycles of lengths $3, 4, 5, 6, \ldots, C(n)$.

The conjecture

Conjecture (Erdős, Faudree, Gyárfás, and Schelp)

There is an increasing function C(n) such that the following holds. Every graph G with n vertices, 2n-2 edges, and no proper induced subgraphs of minimal degree 3 contains cycles of lengths $3,4,5,6,\ldots,C(n)$.

Theorem (Erdős, Faudree, Gyárfás, and Schelp)

Every graph G with n vertices, 2n-2 edges, and no proper induced subgraphs of minimal degree 3 contains cycles of lengths 3, 4, 5.

Known results: long cycles

Theorem (Erdős, Faudree, Gyárfás, and Schelp)

Every graph G with n vertices, 2n-2 edges, and no proper induced subgraphs of minimal degree 3 contains a cycle of length at least $\log_2 n$.

Known results: long cycles

Theorem (Erdős, Faudree, Gyárfás, and Schelp)

Every graph G with n vertices, 2n-2 edges, and no proper induced subgraphs of minimal degree 3 contains a cycle of length at least $\log_2 n$.

Theorem (Bollobás and Brightwell)

Every graph G with n vertices, 2n-2 edges, and no proper induced subgraphs of minimal degree 3 contains a cycle of length at least $4\log_2 n - o(\log n)$.

There are graphs with n vertices, 2n-2 edges, and no proper induced subgraphs of minimal degree 3 and no cycles of length at least $4 \log_2 n + O(1)$.

Known results

Theorem (Erdős, Faudree, Gyárfás, and Schelp)

Every graph G with n vertices, 2n-2 edges, and no proper induced subgraphs of minimal degree 3 contains cycles of lengths 3,4,5.

Proof uses the following characterization.

Lemma

Let G be a graph on n vertices with 2n-2 edges and no proper, induced subgraphs with minimum degree 3. Then there is an ordering of the vertices of G x_1, \ldots, x_n such that the following hold.

- (i) The edge x_1x_2 is present.
- (ii) For i = 2, 3, ..., n-1, the vertex x_i has exactly 2 neighbours in $\{x_1, ..., x_{i-1}\}$.
- (iii) $d(x_n) = 3$.

Counterexamples

Theorem (Narins, P., and Szabó)

There is an infinite sequence of graphs $(G_n)_{n=1}^{\infty}$ with the following properties.

- (i) $e(G_n) = 2|G_n| 2$.
- (ii) G_n contains no proper, induced subgraphs with minimum degree 3.
- (iii) G_n contains no cycle on 23 vertices.

Counterexamples

Theorem (Narins, P., and Szabó)

There is an infinite sequence of graphs $(G_n)_{n=1}^{\infty}$ with the following properties.

- (i) $e(G_n) = 2|G_n| 2$.
- (ii) G_n contains no proper, induced subgraphs with minimum degree 3.
- (iii) G_n contains no cycle on 23 vertices.

The number 23 can be replaced by any odd number larger than 23.

Binary trees

Given a tree T, define G(T) to be the graph formed from T by adding two new vertices x and y, the edge xy as well as every edge between $\{x, y\}$ and the leaves of T.

Binary trees

Given a tree T, define G(T) to be the graph formed from T by adding two new vertices x and y, the edge xy as well as every edge between $\{x,y\}$ and the leaves of T.

Lemma

Let T be a binary tree such that all the leaves of T are in the same bipartition of T.

- (i) The graph G(T) contains an odd cycle on 2k + 1 vertices $\iff T$ contains a leaf-leaf path of length 2k 2.
- (ii) The graph G(T) contains an even cycle on 2k vertices $\iff T$ contains two vertex-disjoint leaf-leaf path P_1 and P_2 such that $|P_1| + |P_2| = 2k 2$ or T contains a leaf-leaf path of length 2k 2.

Binary trees

Given a tree T, define G(T) to be the graph formed from T by adding two new vertices x and y, the edge xy as well as every edge between $\{x,y\}$ and the leaves of T.

Theorem

There are arbitrarily large binary trees T such that all the leaves of T are in the same bipartition of T and T contains no leaf-leaf paths of length 20.

Constructing the trees from sequences

We construct our binary trees from certain sequences of numbers.

We construct a sequence of numbers a_n such that $a_i + a_j + |i - j| \neq 20$ for all i and j.

We construct a sequence of numbers a_n such that $a_i + a_j + |i - j| \neq 20$ for all i and j.

We construct a sequence of numbers a_n such that $a_i + a_j + |i - j| \neq 20$ for all i and j.

We construct a sequence of numbers a_n such that $a_i + a_j + |i - j| \neq 20$ for all i and j.

We construct a sequence of numbers a_n such that $a_i + a_j + |i - j| \neq 20$ for all i and j.

We construct a sequence of numbers a_n such that $a_i + a_j + |i - j| \neq 20$ for all i and j.

We construct a sequence of numbers a_n such that $a_i + a_j + |i - j| \neq 20$ for all i and j.

We construct a sequence of numbers a_n such that $a_i + a_j + |i - j| \neq 20$ for all i and j.

We construct a sequence of numbers a_n such that $a_i + a_j + |i - j| \neq 20$ for all i and j.

Positive results

Theorem (Narins, P., and Szabó)

There is a number N_0 such that the following holds. Let T be a binary tree, such that $|T| \ge N_0$ and all the leaves of T are in the same class of the bipartition of T. Then T contains leaf-leaf paths of lengths $0, 2, 4, \ldots, 18$.

Positive results

Theorem (Narins, P., and Szabó)

There is a number N_0 such that the following holds. Let T be a binary tree, such that $|T| \ge N_0$ and all the leaves of T are in the same class of the bipartition of T. Then T contains leaf-leaf paths of lengths $0, 2, 4, \ldots, 18$.

Theorem (Narins, P., and Szabó)

Let G be a graph with n vertices, 2n-2 edges and no (not necessarily induced) subgraphs with minimum degree 3. Then G contains cycles of lengths $3, 4, 5, \ldots, n$.

Open problems

Problem

Is there an increasing function C(n) such that the following holds. Every graph G with n vertices, 2n-2 edges, and no proper induced subgraphs of minimal degree 3 contains cycles of lengths $4,6,8,\ldots,2C(n)$.

Conjecture

There is a constant $\alpha > 0$, and an increasing function C(n) such that the following holds. Every binary tree T of order n contains at least $\alpha C(n)$ of distinct leaf-leaf path lengths between 0 and C(n).

Open problems

Conjecture

Let G be a graph with n vertices, 2n-2 edges, and having no proper induced subgraphs of minimal degree 3. Then there are cycles in G of at least $\log_2 n$ distinct lengths.

Conjecture

Let T be a binary tree. Then there are leaf-leaf paths in T of at least $\log_2 n$ distinct lengths.