

## Graphic Processor Unit (GPU)

**Instructor: Ching-Te Chiu** 



## outline

- **■**Graphic basics
- **GPU Evolution**
- **GPU** for PC
- **GPU for machine learning**





### **Graphic Processing Unit**

#### **GPU** (Graphic Processing Unit)

- > Definition
  - Rapidly manipulate and alter memory to accelerate the creation of images in a <u>frame buffer</u> intended for output to a display device
- > Applications
  - Embedded Systems
  - ➤ Mobile phones
  - > Personal computers
  - > Workstations
  - ➤ Game Consoles



#### **Graphic Card Component**







Nvidia A100 SXM4

SXM is a high bandwidth socket solution for connecting Nvidia Compute Accelerators to a system.

### **Image Frame forming Steps**

- Image Frame forming steps
  - Transform(座標轉換)
  - □ Triangle Setup(三角形設定)
  - Fragments
  - Texture/Lighting(光線投影)
  - Rendering(渲染)。











- NVIDIA GeForce 256 and GeForce 2 MX
  - Replace Transform and Lighting(T&L) in CPU





### **Graphic Workflow (1/3)**







**Vertices** 



**Primitives** 



Fragments (shaded)

Step 4

**Pixels** 

Step 5



## **Graphic Workflow (2/3)**











#### **Vertex processing**

Vertices are transformed into "screen space"

EACH VERTEX IS TRANSFORMED INDEPENDENTLY

#### Primitive processing (triangles)

Then organized into primitives that are clipped and reduced...

#### Rasterization

Primitives are rasterized into "pixel fragments"

EACH PRIMITIVE IS RASTERIZED INDEPENDENTLY

#### Fragment processing

Fragments are shaded to compute a color at each pixel

EACH FRAGMENT IS PROCESSED INDEPENDENTLY

#### Pixel operations

Fragments are blended into the frame buffer at their pixel locations (z-buffer determines visibility)





## Graphic workflow (3/3)









#### Silicon Graphics Reality Engine (1993)





# Compute Unified Device Architecture (CUDA) Processing







#### **CPU vs GPU Architectures**



#### **CPU**

- Powerful ALU
  - Reduced operation latency
- Large caches
  - Covert long latency memory accesses to short latency cache accesses
- Sophisticated Control
  - Branch prediction for reduced branch latency
  - Data forwarding for reduced data latency



#### **GPU**

- Hundreds of Cores
- **■** Thousands of Threads
- **Single Process Execution**
- Compute Unified Device Architecture (CUDA)
  - Parallel computing



## **CPU vs GPU GFLOP/s Comparison**

#### Theoretical GFLOP/s







- GPU integrates with CPU in SoC
- Intel aquires notebook chip maker Chips and Technologies at 1997
- AMD aquires ATI (graphic ard company) at 2006



Intel SoC integrates CPU and GPU gen9





#### **Nvidia Trademarks Hierarchy**





#### What is Nvidia Tesla GPU

- **Tesla** GPU microarchitecture developed by Nvidia, and released in 2006.
- Nvidia Tesla targeted at stream processing or general-purpose graphics processing units (GPGPU)
- The Nvidia Tesla product competed with
  - AMD's Radeon Instinct
  - Intel Xeon Phi lines of deep learning and GPU cards.
- Nvidia retired the Tesla brand in May 2020, reportedly because of potential confusion with the brand of cars.
- Its new GPUs are branded Nvidia Data Center GPUs, as in the Ampere A100 GPU.

Tesla V100s 2019
GPU Computing Solutions for HPC
PCIE





#### **Nvidia Graphics Processor Comparison**











| Graphics<br>Processor | Curie                    | Tesla                  | Fermi                  | Kepler                  | Maxwell                 |
|-----------------------|--------------------------|------------------------|------------------------|-------------------------|-------------------------|
| GPU Name              | G70                      | G80                    | GF100                  | GK104                   | GM200                   |
| Codename              | NV47                     | NV50                   | NVC0                   | NVE4                    | NV120                   |
| Architecture          | Curie                    | Tesla                  | Fermi                  | Kepler                  | Maxwell 2.0             |
| Foundry               | TSMC                     | TSMC                   | TSMC                   | TSMC                    | TSMC                    |
| <b>Process Size</b>   | 110 nm                   | 90 nm                  | 40 nm                  | 28 nm                   | 28 nm                   |
| <b>Transistors</b>    | 302 million              | 681 million            | 3,100 million          | 3,540 million           | 8,000 million           |
| Density               | 906.9K / mm <sup>2</sup> | 1.4M / mm <sup>2</sup> | 5.9M / mm <sup>2</sup> | 12.0M / mm <sup>2</sup> | 13.3M / mm <sup>2</sup> |
| Die Size              | 333 mm <sup>2</sup>      | 484 mm <sup>2</sup>    | 529 mm <sup>2</sup>    | 294 mm <sup>2</sup>     | 601 mm <sup>2</sup>     |
| Released              | Jun 22nd, 2005           | Nov 8th, 2006          | Mar 26th, 2010         | Mar 22nd, 2012          | Mar 17th, 2015          |



#### Why GPU is suitable for Machine Learning

- Machine Learning
  - Big Data for high accuracy
  - Large Training Dataset
  - Layers of convolutional computations (Multiplication/Add)
- GPU has the following three features
  - High Bandwidith (number of data per second accessed from memory) from DRAM
    - ■100GB/s
  - Parallel
    - ■Thousands of cores
  - Faster memory access from cache
    - ■40TB/s



#### Why GPU is suitable for Machine Learning

- CPU
  - Sequential Complex computation (Weather forcast)
- GPU
  - Parallel simple computation (Yolo data training)



### Comparison memory of CPU and GPU

| _                                       | CPU                              | GPU                                    | CPU                       |
|-----------------------------------------|----------------------------------|----------------------------------------|---------------------------|
|                                         | Intel 8 core Sandy<br>Bridge CPU | Nvidia GK 110 GPU                      | AMD Firestorm             |
| Registers<br>(capacity/<br>Bandwidth)   | 4kB (5TB/s)                      | 4MB (40TB/s)                           | -                         |
| Cache L1                                | 512KB (1TB/s)                    | 1MB Constant                           | 192KB(I)                  |
| (capacity/<br>Bandwidth)                |                                  | mem(13TB/s)                            | +128KB(d)                 |
|                                         |                                  | 1MB Shared mem(1TB/s)                  |                           |
| Cache L2<br>(capacity/<br>Bandwidth)    | 2MB (1TB/s)                      | 1.5MB (500GB/s)                        | 8MB                       |
| Cache L3<br>(capacity/<br>Bandwidth)    | 8MB (500 GB/s)                   | _                                      | -                         |
| Main Memory<br>(capacity/<br>Bandwidth) | 10GB (20GB/s)                    | 4GB (150GB/s)                          | 64GB (400GB/s)            |
| Access data from memory                 | Fewer data/low bandwidth         | Large amount of data/high<br>bandwidth | High bandwidth  19  Usten |

#### **Fowler-Nordheim**



#### Fowler-Nordheim(FN)

It directly applies high voltage on both sides of the insulating layer to form a high-strength electric field to help electrons enter and exit the floating gate through the oxide layer channel.





Diagram of the energy-level scheme for field emission from a metal at absolute zero temperature

#### **Write and Erase**

Program(1 to 0) with CHE (channel hot electron) injection or Flowler Nordheim (FN) electron tunneling Erase(0 to 1): with FN (Fowler-Nordheim) tunneling







#### **Nvidia GPU Microarchitecture list**

1999 - World's First GPU: GeForce 256

2001 - First Programmable GPU: GeForce3

2004 - GeForce 6 (HDR), Scalable Link Interface

2006 - CUDA Architecture Announced

| Year | Arch    | Main Technology                          | Consumer<br>Series | Data Center<br>Series                      | Die   |       | ab<br>ocess | Enthusiast<br>Consumer<br>Card | Enthusiast<br>Server Card |
|------|---------|------------------------------------------|--------------------|--------------------------------------------|-------|-------|-------------|--------------------------------|---------------------------|
| 2006 | Tesla   | CUDA                                     | GeForce 8          | Tesla<br>S00,C1000,S1000,<br>Quadro Plex   | G80   | 90 nm | CMOS        | GTX8800                        | S870                      |
| 2010 | Fermi   | FP64<br>ECC                              |                    | Tesla<br>C2000,M2000,S20<br>00             | GF100 | 40 nm |             | GTX 480                        | S2050                     |
| 2012 | Kepler  | Dynamic<br>Parallelism                   | GeForce 600        | GRID:<br>K1,K2,K340,K520<br>Tesla: K10,K20 | GK104 | 28 nm |             | GTX 860                        | GRID K520<br>Tesla K10    |
| 2014 | Maxwell | Higher Pref/Watt                         | GeForce 900        | Tesla M                                    | GM204 | 28 nm |             | GTX 980 Ti                     | Tesla M60                 |
| 2016 | Pascal  | Unified Memory<br>Stacked DRAM<br>NVLINK | GeForce 10         | Tesla P                                    | GP102 | 16 nm | FinFET      | GTX 1080 Ti                    | Tesla P40<br>Tesla P100   |
| 2017 | Volta*  | Tensor core                              | Titan V            | Tesla V100                                 | GV100 | 12 nm | FinFET      | Titan V                        | Tesla V100                |
| 2018 | Turing  | RTX                                      | GeForce 20         | Tesla T4                                   | TU102 | 12 nm | FinFET      | RTX 2080 Ti                    | Tesla T4                  |
| 2020 | Ampere  | MIG                                      | GeForce 30         | Tesla A100                                 | GA102 | 8 nm  |             | RTX 3080                       | Tesla A100                |

<sup>\*</sup>Quadro GV100 is the first application of Tensor core designed for deep learning

RTX:Ray Tracing

MIG: Multi-Instanace GPU



## Nvidia Graphics Processor Comparison (cont'd)









| Graphics<br>Processor | Pascal                  | Volta                   | Turing              | Ampere                  |
|-----------------------|-------------------------|-------------------------|---------------------|-------------------------|
| <b>GPU Name</b>       | GP100                   | GV100                   | TU102               | GA100                   |
| Codename              | NV130                   | NV140                   | NV162               | NV170                   |
| Architecture          | Pascal                  | Volta                   | Turing              | Ampere                  |
| Foundry               | TSMC                    | TSMC                    | TSMC                | TSMC                    |
| <b>Process Size</b>   | 16 nm                   | 12 nm                   | 12 nm               | 7 nm                    |
| <b>Transistors</b>    | 15,300 million          | 21,100 million          | 18,600 million      | 54,200 million          |
| Density               | 25.1M / mm <sup>2</sup> | 25.9M / mm <sup>2</sup> | 24.7M / mm²         | 65.6M / mm <sup>2</sup> |
| Die Size              | 610 mm <sup>2</sup>     | 815 mm <sup>2</sup>     | 754 mm <sup>2</sup> | 826 mm <sup>2</sup>     |
| Released              | Apr 5th, 2016           | Jun 21st, 2017          | Aug 13th, 2018      | May 14th, 2020          |



#### **2020 Ampere Microarchitecture-GA100**



GA100 GPU with 128 SM includes Multiple GPU processing clusters (GPCs)

Texture processing clusters (TPCs)
Streaming multiprocessors (SMs)
Second generation High bandwdith Memory (HBM2) controllers



- The full implementation of the GA100 GPU includes the following units:
  - 8 GPCs (GPU processing clusters)
  - 8 TPCs/GPC (texture processing clusters)
  - 2 SMs/TPC (streaming multiprocessors)
  - 16 SMs/GPC, 128 SMs per full GPU
  - 64 FP32 CUDA Cores/SM,
  - 8192 FP32 CUDA Cores per full GPU
  - 4 Third-generation Tensor Cores/SM,
  - 512 Third-generation Tensor Cores per full GPU
  - 6 HBM2 stacks
  - 12- 512-bit Memory Controllers
  - A100 7nm TSMC Process, RTX30(real-time raytracing) 8nm Samsung



#### 2020 Ampere Microarchitecture-GA100 (cont'd)



A Compute Instance is defined as including one Sys Pipe with up to 7 GPCs within a GPU Instance



**54 BILLION XTORS** 











- HMB: high-speed memory interface for 3D stacked SDRAM
  - Applications: GPU/network devices/Al accelerator
  - Stacking DRAM dies with an optional base die through a substrate (silicon interposer)
  - HBM2
    - Eight DRAM dies/ stack
    - 2GT/s (giga transfer/second)
    - 1024 bit width
    - 256GB/s memory bandwidth per package



**GPU** with HBM







## **Comparison of GDDR and High Bandwidth Memory**

#### ■ HMB:

- Applications: GPU/network devices/Al accelerator
- Stacking DRAM dies with an optional base die through a substrate (silicon interposer)
- HBM2





#### **Nvidia Competitors or Alternative**

- Below are the top 4 Nvidia competitors:
- 1. AMD (Advanced Micro Devices)
- 2. Intel
- 3. Marvell technology group
- 4. Qualcomm

#### TOP COMPETITORS OR ALTERNATIVES

| RANK | COMPANY           | CEO                               | CEO RATING | EMPLOYEES | FUNDING | REVENUE  |
|------|-------------------|-----------------------------------|------------|-----------|---------|----------|
|      | <b>INVIDIA</b> .  | Jen-Hsun Huang<br>President & CEO | 63/100     | 13,277    | \$42M   | \$10.9B  |
| 1    | <b>∆</b> DMA      | Lisa Su<br>President & CEO        | 80/100     | 10,100    | \$1.8B  | \$7.6B   |
| 2    | (intel)           | Robert H. Swan<br>CEO             | 58/100     | 107,400   | \$3B    | \$79B    |
| 3    | E XILINX.         | Victor Peng President & CEO       | 76/100     | 4,433     | \$750M  | \$3B     |
| 4    | Ambarella         | Fermi Wang<br>CEO                 | 71/100     | 750       | \$36M   | \$229.9M |
| 5    | <b>⊕</b> BROADCOM | Hock E. Tan President & CEO       | 63/100     | 10,650    | \$78.1M | \$8.5B   |



# ,

## PC graphics processing unit (GPU) shipment share worldwide from 3rd quarter 2013 to 2nd quarter 2020, by vendor









#### **GPU Market Share forecast**

- The microprocessor and GPU market was valued at USD 83.1 billion in 2019 and is projected to reach USD 112.7 billion by 2025
- it is projected to grow at a compound annual growth rate (CAGR) of 7.3% between 2020 and 2025.







#### **GPU in Cloud Data Center Provider**

## Share of Compute Instance Types with Dedicated Accelerators Offered by the Top Four Public Clouds

(Alibaba Cloud, Amazon Web Services, Google Cloud & Microsoft Azure)

| Company     | Accelerator | March 2019 | April 2019 | May 2019 |
|-------------|-------------|------------|------------|----------|
| NVIDIA      | GPU         | 97.0%      | 97.3%      | 97.4%    |
| AMD         | GPU         | 1.2%       | 1.1%       | 1.0%     |
| Xilinx      | FPGA        | 1.1%       | 1.0%       | 1.0%     |
| Intel       | FPGA        | 0.6%       | 0.6%       | 0.6%     |
| Total Types | All         | 1,852      | 1,990      | 2,003    |

Source: Liftr Cloud Insights, June 2019



#### Reference

- http://www.nvidia.com.tw/page/products.html
- http://zh.wikipedia.org/wiki/NVIDIA
- http://www.anandtech.com/show/2911
- http://mag.udn.com/mag/digital/storypage.jsp?f\_ART\_ID=29 7019
- http://www.anandtech.com/show/5762/nvidia-plots-mobilesoc-gpu-performance-surpassing-xbox-360-by-2014
- http://chinese.engadget.com/2011/05/26/android-3-0-main-processor-introducing-nvidia-tegra-2/
- http://www.ciol.com/Semicon/Biz-Watch/News-Reports/Fabless-IC-suppliers-ranking/162275/0/
- http://www.techbang.com/posts/7491-41-core-tegra-3-5-speed-performance-nda-11-9-1400-ban

