# Lecture 15: The energetics of the ocean circulation

Atmosphere, Ocean, Climate Dynamics
EESS 146B/246B

## The energetics of the circulation

- Sources and sinks of the kinetic energy of the large scale circulation.
- The release of available potential energy by baroclinic instability.
- The dissipation of the large scale circulation's kinetic energy.

### Sources and sinks of kinetic energy

•Equation for the total kinetic energy:  $\overline{KE} = \frac{\rho_{ref}}{2} \int \mathbf{u}_h^2 dV$ 

$$\frac{\partial \overline{KE}}{\partial t} = \int \tau_{wind} \cdot \mathbf{u}_h|_{z=0} dA$$

WIND-DRIVEN SOURCE/SINK OF KE

$$-\int \tau_{bot} \cdot \mathbf{u}_h|_{z=-h} dA -$$

SINK OF KE VIA BOTTOM FRICTION

$$+ \rho_{ref} \int wbdV$$

CONVERSION OF PE TO KE

$$-\rho_{ref}\int \epsilon dV$$

DISSIPATION

$$\epsilon = \nu \left[ \left( \frac{\partial \mathbf{u}}{\partial x} \right)^2 + \left( \frac{\partial \mathbf{u}}{\partial y} \right)^2 + \left( \frac{\partial \mathbf{u}}{\partial z} \right)^2 \right]$$

#### Wind-work on the circulation

WIND-WORK  $oldsymbol{ au}^w \cdot \mathbf{u}^s_g$   $oldsymbol{ au}^w_g$  wind-stress  $oldsymbol{u}^s_g$  velocity of circulation at sea surface



•Integrated over the area of the ocean, the winds input energy at a rate equal to 1 TW.

## How the winds input energy to the ocean circulation

#### Ekman Pumping (m/y)



Copyright © 2008, Elsevier Inc. All rights reserved.

## How the winds input energy to the ocean circulation



### How much energy is in the form of APE versus KE?



$$\frac{KE}{APE} \sim \frac{N^2H^2}{f^2L^2} = \frac{L_r^2}{L^2}$$

•Flows with length scales larger than the Rossby radius contain more APE than KE.

## Energy budget of the ocean



## Available potential energy

$$PE = MgZ_c$$

M total mass of water

 $Z_c$  center of mass of water



STATE WITH LOWEST PE

LIGHT  $\bullet \, \overline{Z}_c$ DENSE

 $\overline{PE} = Mq\overline{Z}_c$ 

•The available potential energy is the PE that can be converted to kinetic energy

$$APE = PE - \overline{PE} = Mg(Z_c - \overline{Z}_c)$$

•Eddies that form at fronts draw their kinetic energy from the APE and in doing so reduce the APE by generating a net overturning motion.

### Eddy versus mean kinetic energy



•Eddy kinetic energy tends to be greatest where the mean circulation is strongest → eddies derive their energy from the mean circulation.

## Eddy versus mean kinetic energy





From Wunsch 2002

- •Oceanic kinetic energy is dominated by eddies, on average by a factor of 150.
  - •The ocean circulation is to first order turbulent and dynamic.

## How do eddies drive a net transport?



•If the average of an eddy quantity is zero:  $\overline{v'}=0$ 

how can it generate a mean overturning circulation?

## How eddies generate a net transport



Thomas, Dynamics of Atm. and Ocean, (2008)

Quantity that measures Isopycnal layer thickness

### How eddies generate a net overturning



•Eddies subduct surface waters with greater isopycnal layer thickness while upwelling water from the interior with thinner isopycnal layer thickness.

## Quantifying the eddy-induced transport



•A correlation develops between the eddy's modification of isopycnal thickness and velocity



Net transport along

Net transport along an isopycnal per unit length 
$$= \frac{1}{L_x} \int_0^{L_x} vh dx$$
 
$$= \overline{v'h'} \quad \begin{array}{l} \textit{EDDY-INDUCED} \\ \textit{TRANSPORT} \end{array}$$

#### Two-dimensional turbulence: the inverse cascade

Evolution of the vorticity  $\zeta = (\nabla \times \mathbf{u}) \cdot \hat{k}$ 



- •In turbulence strongly constrained by rotation, smaller eddies are engulfed and merge with larger eddies.
- •Energy is transferred from small to large scales, following an *inverse cascade* of energy.

## Vortex mergers in the lab









## Jovian example of a vortex merger



The Great Red Spot viewed from the Voyager 1 1979. JPL/NASA

•Fluids strongly constrained by rotation such as the atmosphere of Jupiter are characterized by mesoscale turbulence that exhibits an inverse cascade.

### The energy budget of the ocean



- •The inverse cascade short circuits the transfer of energy from the large-scale circulation to viscous dissipation.
- •How is the kinetic energy budget for the ocean circulation closed?
- •How can energy be transferred from the mesoscale to small scale turbulence where viscous dissipation can act?

## Removal of kinetic energy from the circulation by bottom friction.

•Bottom friction removes KE from bottom currents at a rate:  $m{ au}^b \cdot \mathbf{u}^b_g$  bottom stress near bottom velocity

•Sen et al, GRL 2008 estimate using current meter observations that bottom drag removes KE from the circulation at a rate 0.2 TW.



•Bottom friction alone cannot close the energy budget, other processes are needed to transfer energy from the mesoscale to the small scales where friction can act.

## Generation of internal gravity waves by mean circulation flowing over rough topography



Fig. from Nikurashin and Ferrari JPO 2010

## Submesoscale instabilities in the upper ocean





The correlation between the vertical and horizontal turbulent velocity shows how the submesoscale instabilities extract energy from the mean flow

$$\tau_{Reynolds_x} = -\rho_{ref} \overline{u'w'}$$