CO2008 - KIẾN TRÚC MÁY TÍNH

Khoa Khoa học và Kỹ thuật Máy tính Đại học Bách Khoa – Tp.HCM

9/2017

Bài tập chương 1 KHÁI NIÊM VÀ HIỀU SUẤT MÁY TÍNH

1. Tìm đáp án đúng nhất cho mỗi câu miêu tả bên dưới (mỗi đáp án chỉ dùng 1 lần).

1. Virtual worlds	14. Operating system
2. Desktop computers	15. Compiler
3. Servers	16. Bit
4. Low-end servers	17. Instruction
5. Supercomputers	18. Assembly language
6. Terabyte	19. Machine language
7. Petabyte	20. C
8. Data centre	21. Assembler
9. Embedded computers	22. High-level language
10. Multicore processors	23. System software
11. VHDL	24. Application software
12. RAM	25. Cobol
13. CPU	26. Fortran

- (a) Computer used to run large problems and usually accessed via a network.
- (b) 10^{15} or 2^{50} bytes.
- (c) A class of computers composed of hundred to thousand processors and terabytes of memory and having the highest performance and cost.
- (d) Today's science fiction application that probably will be available in the near future.
- (e) A kind of memory called random access memory.
- (f) Part of a computer called central processor unit.
- (g) Thousands of processors forming a large cluster.
- (h) Microprocessors containing several processors in the same chip.
- (i) Desktop computer without a screen or keyboard usually accessed via a network.
- (j) A computer used to running one predetermined application or collection of software.
- (k) Special language used to describe hardware components.
- (l) Personal computer delivering good performance to single users at low cost.
- (m) Program that translates statements in high-level language to assembly language.
- (n) Program that translates symbolic instructions to binary instructions.
- (o) High-level language for business data processing.
- (p) Binary language that the processor can understand.
- (q) Commands that the processors understand.
- (r) High-level language for scientific computation.
- (s) Symbolic representation of machine instructions.
- (t) Interface between user's program and hardware providing a variety of services and supervision functions.
- (u) Software/programs developed by the users.
- (v) Binary digit (value 0 or 1).
- (w) Software layer between the application software and the hardware that includes the operating system and the compilers.

- (x) High-level language used to write application and system software.
- (y) Portable language composed of words and algebraic expressions that must be translated into assembly language before run in a computer.
- (z) 10^{12} or 2^{40} Bytes.
- 2. Xem xét các cấu hình ở bảng bên dưới.

Configuration	Resolution	Main Memory	Ethernet Network
1	640×480	2 Gbytes	100 Mbit
2	1280×1024	4 Gbytes	1 Gbit

- (a) Mỗi màu được biểu diễn 8-bit, mỗi pixel gồm 3 màu cơ bản (red, green, blue). Xác định dung lượng tối thiểu của mỗi khung hình.
- (b) Giả sử bộ nhớ chính không chứa thêm các thông tin khác, thì nó có thể chứa được tối đa bao nhiêu khung hình?
- (c) Nếu truyền 1 file 256Kbyte qua đường kết nối Ethernet, thì sẽ mất bao lâu?
- 3. Xem xét 3 bộ xử lý thực thi cùng tập lệnh với tần số, CPI như bảng dưới.

Processor	Clock Rate	CPI
P1	3 GHz	1.5
P2	$2.5~\mathrm{GHz}$	1.0
P3	4 GHz	2.2

- (a) Bộ xử lý nào có hiệu suất cao nhất tính theo số lệnh trên giây (instructions per second- IPS)?
- (b) Nếu một bộ xử lý thực thi một chương trình mất 10 giây. Tìm tổng số lệnh, tổng số chu kỳ đã thực thi.
- (c) Người ta giảm thời gian thực thi của chương trình đi 30%, điều đó làm cho CPI tăng lên 20%, Khi đó tần số của hệ thống là bao nhiêu để đạt được thời gian đó?
- 4. Xem xét bảng thông tin bên dưới.

Processor	Clock Rate	No. Instructions	Time
P1	$3 \mathrm{GHz}$	2.00E+10	$7\mathrm{s}$
P2	$2.5 \mathrm{GHz}$	3.00E+10	10s
P3	4GHz	9.00E+10	9s

- (a) Tìm số lệnh mỗi chu kỳ IPC (instructions per cycle) của mỗi bộ xử lý.
- (b) Tìm tần số của P2 sao cho thời gian thực thi của nó giảm xuống bằng thời gian thực thi của P1.
- (c) Tìm tổng số lệnh của P2 sao cho thời gian thực thi của nó giảm xuống bằng thời gian thực thi của P3.
- 5. Xem xét 2 bộ xử lý thực thi cùng kiến trúc tập lệnh. Tập lệnh được chia ra thành 4 loại lệnh, A, B, C, và D. Tần số và CPI của mỗi bộ xử lý được trình bày ở bảng bên dưới.

Processor	Clock Rate	CPI Class A	CPI Class B	CPI Class C	CPI Class D
P1	2.5 GHz	1	2	3	3
P2	3 GHz	2	2	2	2

- (a) Cho một chương trình với 10^6 lệnh, biết các lệnh chi theo tỉ lệ:10% class A, 20% class B, 50% class C, and 20% class D. Bộ xử lý nào thực thi chương trình trên nhanh hơn?
- (b) Xác định CPI trung bình
- (c) Tìm tổng số chu kỳ thực thi của mỗi chương trình.
- 6. Số lệnh của một chương trình được trình bày ở bảng dưới

Arith	Store	Load	Branch	Total
650	100	600	50	1400

- (a) Giả sử lệnh đại số (arith) thực thi trong 1 chu kỳ, lệnh load và store thực thi trong 5 chu kỳ, lệnh rẽ nhánh (Branchs) thực thi trong 2 chu kỳ. Chương trình thực thi trên máy tính có tần số 2 Ghz. Tính thời gian thực thi của chương trình trên.
- (b) Tính CPI của chương trình trên
- (c) Khi cải tiến chương trình, số lệnh load giảm đi một nửa. Tính speedup của hệ thống sau khi cải tiến. Tính CPI sau khi cải tiến.

THAM KHẢO

CPU time = CPU clock cycles * clock cycle time = CPU Clock cycles / Clock rate.

Thời gian thực thi = tổng số chu kỳ thực thi * thời gian của một chu kỳ.

 $Clock\ cycles = IC * CPI$

Tổng số chu kỳ = Tổng số lệnh * Số chu kỳ thực thi mỗi trên mỗi lệnh.

CPU time = IC * CPI * clock cycle time = (IC * CPI) / Clock rate.

CPU time: thời gian xử lý (không tính thời gian giao tiếp I/O, thời gian chờ ...)

Clock frequency (rate): Số chu kỳ trên một giây hay còn gọi là tần số, ví dụ: $4 \text{GHz} = \text{trong 1 giây có} 4 \text{x} 10^9 \text{ giao động}$

Clock cycles: Tổng số chu kỳ thực thi.

IC: instruction count, tổng số lệnh thực thi.

CPI: cycle per instruction (số chu kỳ thực thi trên một lệnh)