Travaux dirigés CC3 Mécanismes réactionnels

CC3.1. Décomposition de N₂O₅

L'étude expérimentale de la décomposition de N_2O_5 montre que la réaction est d'ordre 1 par rapport à N_2O_5 . Un mécanisme possible est donné ci-dessous :

$$N_2O_5 \xrightarrow{k_1} NO_2 + NO_3$$

$$NO_2 + NO_3 \xrightarrow{k_2} NO + O_2 + NO_2$$

$$NO + N_2O_5 \xrightarrow{k_3} 3 NO_2$$

- 1. À partir du mécanisme, donner l'équation de la réaction.
- 2. Le mécanisme est-il un mécanisme en chaîne ou un mécanisme par stade ?
- 3. Montrer que le mécanisme proposé est en accord avec la cinétique d'ordre 1 observée.

CC3.2. Réduction du dijode

Il pense souvent que la réaction $H_2 + I_2 \rightarrow 2$ HI en phase gaz est un acte élémentaire. Pourtant, dès 1967, Sullivan a proposé un mécanisme rendant mieux compte des faits expérimentaux :

$$I_{2} \xrightarrow{k_{1}} 2I^{\bullet}$$

$$2I^{\bullet} \xrightarrow{k_{2}} I_{2}$$

$$2I^{\bullet} + H_{2} \xrightarrow{k_{3}} 2HI$$

- 1. Déterminer la loi de vitesse dans l'approximation où la réaction est un acte élémentaire et dans le cas du mécanisme de Sullivan.
- 2. Dans quelles conditions la loi de Sullivan se simplifie pour donner celle de l'approximation ?
- 3. Quelle critique peut-on apporter au mécanisme de Sullivan?

CC3.3. Décomposition de l'ozone

La décomposition de l'ozone est catalysée par le dichlore. Un mécanisme possible de décomposition est donné ci-dessous :

$$Cl_{2} + O_{3} \xrightarrow{k_{1}} ClO \cdot + ClO_{2} \cdot$$

$$ClO_{2} \cdot + O_{3} \xrightarrow{k_{2}} ClO_{3} \cdot + O_{2}$$

$$ClO_{3} \cdot + O_{3} \xrightarrow{k_{3}} ClO_{2} \cdot + 2 O_{2}$$

$$ClO_{3} \cdot + ClO_{3} \cdot \xrightarrow{k_{4}} Cl_{2} + 3 O_{2}$$

- 1. Écrire l'équation de la réaction
- 2. Identifier les étapes d'initiation, de propagation et de terminaison.
- 3. Établir la loi de vitesse.
- 4. Commenter la dernière étape.

CC3.4. Sulfonation du benzène

La sulfonation du benzène est une réaction renversable. On donne ci-dessous un mécanisme possible pour cette réaction :

$$+ SO_3 \xrightarrow{k_1} \qquad \bigoplus SO_3^{\bigoplus}$$

$$+ SO_3 \xrightarrow{k_2} \qquad \bigotimes SO_3 + M$$

$$+ SO_3 \xrightarrow{k_2} \qquad \bigotimes SO_3 + M$$

On précise $k_{-1} > k_1 \gg k_2 > k_{-2}$

- 1. Donner l'équation de la réaction
- 2. Établir la loi de vitesse
- 3. Donner l'allure du profil de réaction

CC3.5. Cinétique d'oxydation du monoxyde d'azote

Nous allons montrer que l'existence d'une loi de vitesse simple pour une réaction complexe n'implique pas nécessairement un mécanisme réactionnel unique.

1. Loi de vitesse.

On considère la réaction d'équation : $2 \text{ NO}(g) + O_2(g) = 2 \text{ NO}_2(g)$. La loi de vitesse suivante peut être établie expérimentalement :

$$\frac{1}{2}\frac{d[NO_2]}{dt} = k[NO]^2[O_2]$$

Cette loi de vitesse peut-elle être en accord avec la conclusion que cette réaction est une réaction élémentaire ?

2. Etude de mécanismes.

Des études expérimentales confirment que la réaction n'est pas une réaction élémentaire.

2.1. Premier mécanisme proposé:

$$NO_{(g)} + O_{2(g)} \quad \xleftarrow{\quad k_{_{1}}} \quad NO_{3(g)} \qquad \quad (a)$$

$$NO_{3(g)} + NO_{(g)} \xrightarrow{k_2} 2 NO_{2(g)}$$
 (b)

L'étape (a) est un pré-équilibre rapidement établi. Montrer que la loi de vitesse expérimentale est bien vérifiée. Exprimer *k* en fonction des autres constantes de vitesse.

2.2. Second mécanisme possible :

$$2 \ NO_{(g)} \ \xleftarrow{\quad k_3 \quad} \ N_2O_{2(g)} \qquad (c)$$

$$N_2O_{2(g)} + O_{2(g)} \quad \xrightarrow{\quad k_4 \quad} \quad 2 \ NO_{2(g)} \quad \ (d)$$

Moyennant des approximations que l'on précisera, montrer que la loi de vitesse expérimentale est encore vérifiée. Exprimer *k* en fonction des autres constantes de vitesse.

2.3. Comment peut-on valider l'un ou l'autre des mécanismes proposés ?

CC3.6. Synthèse de l'eau

Le mécanisme de la synthèse de l'eau selon la réaction ci-dessous reste encore indéterminé.

$$H_2 + 1/2 O_2 = H_2O$$

On propose toutefois quelques étapes (dans le désordre) pouvant rendre compte d'une partie des faits expérimentaux :

$$H^{\bullet} + O_{2} \xrightarrow{k_{1}} HO^{\bullet} + O^{\bullet \bullet}$$

$$HO^{\bullet} + H_{2} \xrightarrow{k_{2}} H_{2}O + H^{\bullet}$$

$$H_{\bullet} \xrightarrow{k_{3}} H_{adsorb\acute{e}}$$

$$H_{2} \xrightarrow{k_{4}} 2H^{\bullet}$$

$$O^{\bullet \bullet} + H_{2} \xrightarrow{k_{5}} HO^{\bullet} + H^{\bullet}$$

Remarque : "adsorbé" = lié aux parois du réacteur

- 1. Identifier les étapes d'initiation, propagation et terminaison.
- 2. Exprimer la loi de vitesse de la réaction.
- 3. Que se passe-t-il si $[O_2]=k_3/(2.k_1)$?