Calculation

Table 1: Inherent Characteristics

Volta ge (v)	Opening fraction	Flow rate (LPH)	Flow rate (m3 /s)	Flow fraction Q_frac	ΔP (mmH g)	ΔP (N/m^ 2)	y = Q*sqrt(rh o/ΔP)	In(y)	Predcted y	Predicte d Fractiona I Flow Rate	%Err or
5	1	296	8.2222E-05	1.000	24	3199. 74	4.59655 E-05	-9.99	4.76037E- 05	1.000	3.56 4
4.8	0.96	269	7.47222E-05	0.909	24	3199. 74	4.17727 E-05	-10.0 8	4.05516E- 05	0.852	2.92 3
4.6	0.92	225	0.0000625	0.760	24	3199. 74	3.494E-0 5	-10.2 6	3.45442E- 05	0.726	1.13 3
4.4	0.88	193	5.36111E-05	0.652	24	3199. 74	2.99708 E-05	-10.4 2	2.94267E- 05	0.618	1.81 5
4.2	0.84	156	4.33333E-05	0.527	24	3199. 74	2.42251 E-05	-10.6 3	2.50674E- 05	0.527	3.47 7
4	0.8	137	3.80556E-05	0.463	24	3199. 74	2.12746 E-05	-10.7 6	2.13538E- 05	0.449	0.37 2
3.8	0.76	119	3.30556E-05	0.402	24	3199. 74	1.84794 E-05	-10.9 0	1.81904E- 05	0.382	1.56 4
3.6	0.72	100	2.77778E-05	0.338	24	3199. 74	1.55289 E-05	-11.0 7	1.54956E- 05	0.326	0.21 4
3.4	0.68	85	2.36111E-05	0.287	24	3199. 74	1.31996 E-05	-11.2 4	1.32001E- 05	0.277	0.00 4
3.2	0.64	75	2.08333E-05	0.253	24	3199. 74	1.16467 E-05	-11.3 6	1.12446E- 05	0.236	3.45 2
3	0.6	59.5	1.65278E-05	0.201	24	3199. 74	9.23969 E-06	-11.5 9	9.57878E- 06	0.201	3.67 0

Table 2: Inherent Characteristics

Volta ge (v)	Openin g fraction	Flow rate (LPH)	Flow rate (m3 /s)	Flow fraction Q_frac	ΔP (mm Hg)	ΔP (N/m ^2)	y = Q*sqrt(r ho/Δ	ln(y)	Predic ted y	Predicted Fractional Flow Rate	%Er rorP)
3	0.6	59.5	1.65278E-05	0.202	24	3199. 74	9.23969 E-06	-11.59	9.5822 3E-06	0.210	3.70 7
3.2	0.64	74	2.05556E-05	0.251	24	3199. 74	1.14914 E-05	-11.37	1.1201 8E-05	0.245	2.52 0
3.4	0.68	87	2.41667E-05	0.295	24	3199. 74	1.35101 E-05	-11.21	1.3095 E-05	0.287	3.07 3
3.6	0.72	98	2.72222E-05	0.332	24	3199. 74	1.52183 E-05	-11.09	1.5308 2E-05	0.335	0.59 1
3.8	0.76	119	3.30556E-05	0.403	24	3199. 74	1.84794 E-05	-10.90	1.7895 5E-05	0.392	3.15 9
4	0.8	130	3.61111E-05	0.441	24	3199. 74	2.01876 E-05	-10.81	2.0920 1E-05	0.458	3.62 9
4.2	0.84	152	4.2222E-05	0.515	24	3199. 74	2.36039 E-05	-10.65	2.4455 9E-05	0.535	3.60 9
4.4	0.88	185	5.13889E-05	0.627	24	3199. 74	2.87284 E-05	-10.46	2.8589 2E-05	0.626	0.48 5
4.6	0.92	218	6.05556E-05	0.739	24	3199. 74	3.3853E- 05	-10.29	3.3421 2E-05	0.732	1.27 5
4.8	0.96	252	0.00007	0.854	24	3199. 74	3.91328 E-05	-10.15	3.9069 8E-05	0.855	0.16 1
5	1	295	8.19444E-05	1.000	24	3199. 74	4.58102 E-05	-9.99	4.5673 1E-05	1.000	0.29 9

Table 3: Installed Characteristics

Voltag e (v)	Opening fraction	Flow rate (LPH)	Flow rate (m3 /s)	Flow fraction Q_frac	ΔP (mmH g)	ΔP (N/m^2)	y = Q*sqrt(rho/ ΔP)	ln(y)	Predicted y	Predicte d Fractiona I Flow Rate	%Err or
5	1	300	8.33333E -05	1.00	23	3066.4 1	4.75886E- 05	-9.95	4.54136E-0 5	1.000	4.57
4.8	0.96	280	7.77778E -05	0.93	30	3999.6 7	3.88905E- 05	-10.1 5	3.88784E-0 5	0.856	0.03
4.6	0.92	270	0.000075	0.90	35	4666.2 8	3.47197E- 05	-10.2 7	3.32837E-0 5	0.733	4.14
4.4	0.88	252	0.00007	0.84	42	5599.5 4	2.95816E- 05	-10.4 3	2.8494E-05	0.627	3.68
4.2	0.84	236	6.55556E -05	0.79	48	6399.4 7	2.59142E- 05	-10.5 6	2.43936E-0 5	0.537	5.87
4	0.8	217	6.02778E -05	0.72	55	7332.7 3	2.226E-05	-10.7 1	2.08833E-0 5	0.460	6.18
3.8	0.76	195	5.41667E -05	0.65	63	8399.3 1	1.869E-05	-10.8 9	1.78781E-0 5	0.394	4.34
3.6	0.72	176	4.88889E -05	0.59	70	9332.5 7	1.60033E- 05	-11.0 4	1.53054E-0 5	0.337	4.36
3.4	0.68	158	4.38889E -05	0.53	76	10132. 50	1.37878E- 05	-11.1 9	1.31029E-0 5	0.289	4.97
3.2	0.64	137	3.80556E -05	0.46	82	10932. 43	1.15096E- 05	-11.3 7	1.12174E-0 5	0.247	2.54
3	0.6	121	3.36111E -05	0.40	88	11732. 37	9.81273E- 06	-11.5 3	9.60314E-0 6	0.211	2.14

Table 4: Installed Characteristics

Voltag e (v)	Opening fraction	Flow rate (LPH)	Flow rate (m3 /s)	Flow fraction Q_frac	ΔP (mmHg)	ΔP (N/m^2)	y = Q*sqrt(rho/ ΔP)	ln(y)	Predicted y	Predicte d Fraction al Flow Rate	%Erro r
3	0.6	121	3.36111E-0 5	0.41	88	11732. 37	9.81273E- 06	-11.53	9.92474E-0 6	0.211	1.14
3.2	0.64	136	3.77778E-0 5	0.46	83	11065. 76	1.13565E- 05	-11.39	1.1593E-05	0.247	2.08
3.4	0.68	155	4.30556E-0 5	0.52	75	9999.1 8	1.36159E- 05	-11.20	1.35416E-0 5	0.289	0.55
3.6	0.72	175	4.86111E-0 5	0.59	69	9199.2 4	1.60273E- 05	-11.04	1.58178E-0 5	0.337	1.31
3.8	0.76	198	0.000055	0.67	63	8399.3 1	1.89776E- 05	-10.8 7	1.84766E-0 5	0.394	2.64
4	0.8	214	5.94444E-0 5	0.72	59	7866.0 2	2.1195E-0 5	-10.7 6	2.15822E-0 5	0.460	1.83
4.2	0.84	236	6.55556E-0 5	0.80	50	6666.1 2	2.53906E- 05	-10.5 8	2.52099E-0 5	0.537	0.71
4.4	0.88	257	7.13889E-0 5	0.87	41	5466.2 2	3.05342E- 05	-10.4 0	2.94474E-0 5	0.627	3.56
4.6	0.92	269	7.47222E-0 5	0.91	36	4799.6 1	3.41073E- 05	-10.2 9	3.43972E-0 5	0.733	0.85
4.8	0.96	283	7.86111E-0 5	0.96	29	3866.3 5	3.99791E- 05	-10.1 3	4.01789E-0 5	0.856	0.50
5	1	296	8.2222E-0 5	1.00	24	3199.7 4	4.59655E- 05	-9.99	4.69325E-0 5	1.000	2.10

Table 5: Installed Characteristics for y=ax^b

Also Corresponding to the values of Table 3:

Ī			Predicted v	%Error in
				v
į				<i>'</i>
	ln(y)	In(x)		
	-9.9529	0	4.97898E-05	4.62543
	-10.155	-0.0408	4.42215E-05	13.7077
	-10.268	-0.0834	3.90781E-05	12.5531
	-10.428	-0.1278	3.43436E-05	16.0979
	-10.561	-0.1744	3.00019E-05	15.7742
	-10.713	-0.2231	2.60368E-05	16.967
	-10.888	-0.2744	2.2432E-05	20.0212
	-11.043	-0.3285	1.91712E-05	19.7951
	-11.192	-0.3857	1.62379E-05	17.7694
	-11.372	-0.4463	1.36156E-05	18.2975
	-11.532	-0.5108	1.12876E-05	15.0306
			Mean Error=	15.5126

A regression model was fit for $y = ax^b$

Plots
Corresponding with Table1: For inherent Characteristics

Corresponding with Table 2: For inherent Characteristics

Corresponding with Table 3: For Installed Characteristics

Corresponding with Table 4: For Installed Characteristics

Corresponding to Table 5: for $y = ax^b$

Plot for corresponding 3v - 5v values

Obse	royalions & Conclusions.
With ,	maximum event lying well under 10%. modul for equal to value was validated.
as ey	m; (4.71 ×10-5)(51.7) X-1 JAP/9
The model obtained	for equal % voyer was used to fit the olata while studying the inherent characteristics. was observed that the model was able to the installed characteristics of the control volve.
Ja v foodiet	was observed that the model was able to the installed characteristics of the control volve.
	V