Q1. The first step to any project is understanding the data. So for this step, generate the summary statistics for each of the variables. What do you observe?

Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness	68.574901 1.2513695 77.5 100 28.148861 792.3584 - 0.9677156
Median Mode Standard Deviation Sample Variance Kurtosis	77.5 100 28.148861 792.3584
Mode Standard Deviation Sample Variance Kurtosis	100 28.148861 792.3584
Standard Deviation Sample Variance Kurtosis	28.148861 792.3584
Sample Variance Kurtosis	792.3584
Kurtosis	-
	0.9677156 -
Skewness	
CINCWITCOO	0.5989626
Range	97.1
Minimum	2.9
Maximum	100
Sum	34698.9
Count	506
PTDAT	
	Sum

TAX	·	PTRAT	IO
Mean	408.23715	Mean	18.455534
Standard Error	7.4923887	Standard Error	0.0962436
Median	330	Median	19.05
Mode	666	Mode	20.2
Standard		Standard	
Deviation	168.53712	Deviation	2.1649455
Sample Variance	28404.759	Sample Variance	4.686989
Kurtosis	-1.142408	Kurtosis	0.2850914
Skewness	0.6699559	Skewness	0.8023249
Range	524	Range	9.
Minimum	187	Minimum	12.0
Maximum	711	Maximum	2:
Sum	206568	Sum	9338.
Count	506	Count	50

INDU	15	NOX	,
Mean	11.136779	Mean	0.5546951
Standard Error	0.3049799	Standard Error	0.0051514

Median	9.69	Median	0.538
Mode	18.1	Mode	0.538
Standard		Standard	
Deviation	6.8603529	Deviation	0.1158777
Sample Variance	47.064442	Sample Variance	0.0134276
	=		=
Kurtosis	1.2335396	Kurtosis	0.0646671
Skewness	0.2950216	Skewness	0.7293079
Range	27.28	Range	0.486
Minimum	0.46	Minimum	0.385
Maximum	27.74	Maximum	0.871
Sum	5635.21	Sum	280.6757
Count	506	Count	506

AVG_RO	ОМ	LSTA	Т
Mean	6.2846344	Mean	12.653063
Standard Error	0.0312351	Standard Error	0.3174589
Median	6.2085	Median	11.36
Mode Standard	5.713	Mode Standard	8.05
Deviation	0.7026171	Deviation	7.1410615
Sample Variance	0.4936709	Sample Variance	50.99476
Kurtosis	1.8915004	Kurtosis	0.4932395
Skewness	0.4036121	Skewness	0.9064601
Range	5.219	Range	36.24
Minimum	3.561	Minimum	1.73
Maximum	8.78	Maximum	37.97
Sum	3180.025	Sum	6402.45
Count	506	Count	506

Q2 .Plot the histogram of the Avg_Price Variable. What do you infer?

As clearly we can observe from the figure that it is skewed towards right and have a positive kurtosis (that means it has values at extreme ends).

We can observe that Avg_price of the most properties are nearly towards mean but there are some extreme/large values of the properties.

Q3. Compute the covariance matrix. Share your observations.

Covariance	matrix									
	CRIME_RATE	AGE	INDUS	NOX	DISTANCE	TAX	PTRATIO	AVG_ROOM	LSTAT	AVG_PRICE
CRIME_RAT	8.5161479									
AGE	0.5629152	790.79247								
INDUS	-0.1102152	124.26783	46.97143							
NOX	0.0006253	2.3812119	0.6058739	0.0134011						
DISTANCE	-0.2298605	111.54996	35.479714	0.6157102	75.666531					
TAX	-8.2293224	2397.9417	831.71333	13.020502	1333.1167	28348.624				
PTRATIO	0.0681689	15.905425	5.6808548	0.0473037	8.7434025	167.82082	4.6777263			
AVG_ROOM	0.0561178	-4.742538	-1.8842254	-0.0245548	-1.2812774	-34.515101	-0.5396945	0.4926952		
LSTAT	-0.8826804	120.83844	29.521811	0.4879799	30.325392	653.42062	5.7713002	-3.073655	50.893979	
AVG_PRICE	1.1620122	-97.396153	-30.460505	-0.4545124	-30.50083	-724.82043	-10.090676	4.4845656	-48.351792	84.419556

Covariance matrix is used to describe the relationship between the variables, either the variable's follow a positive relationship or negative. But problem with covariance matrix is that it gives random numbers between negative infinity to positive infinity, so we can't have a comparison between variable. So here correlation matrix comes into the picture, this matrix comprises of values between -1 to +1. So, it is ease to compare.

Q4. Create a correlation matrix of all the variables as shown in the Videos and various case studies. State top 3 positively correlated pairs and top 3 negatively correlated pairs.

Correlation i	matrix									
	CRIME_RATE	AGE	INDUS	NOX	DISTANCE	TAX	PTRATIO	AVG_ROOM	LSTAT	AVG_PRICE
CRIME_RATI	1									
AGE	0.0068595	1								
INDUS	-0.0055107	0.6447785	1							
NOX	0.001851	0.7314701	0.7636514	1						
DISTANCE	-0.009055	0.4560225	0.5951293	0.6114406	1					
TAX	-0.0167485	0.5064556	0.7207602	0.6680232	0.9102282	1				
PTRATIO	0.0108006	0.261515	0.3832476	0.1889327	0.4647412	0.460853	1			
AVG_ROOM	0.0273962	-0.2402649	-0.3916759	-0.3021882	-0.2098467	-0.2920478	-0.3555015	1		
LSTAT	-0.0423983	0.6023385	0.6037997	0.5908789	0.4886763	0.5439934	0.3740443	-0.6138083	1	
AVG_PRICE	0.0433379	-0.3769546	-0.4837252	-0.4273208	-0.3816262	-0.4685359	-0.5077867	0.6953599	-0.7376627	1

Top 3 Positively Corre	elated Pairs	Top 3 Negatively Correlated	Pairs
Tax And Distance	0.9102282	Avg_Price And Lstat -0	.7376627
Nox And Indus	0.7636514	Lstat And Avg_Room -0	.6138083
Nox And Age	0.7314701	Avg_Price And Ptratio -0	.5077867

. Build an initial regression model with AVG_PRICE as the y or the Dependent variable and LSTAT variable as the Independent Variable. Generate the residual plot too.

a. What do you infer from the Regression Summary Output in terms of variance explained, coefficient value, Intercept and the Residual plot?

Regression	Statistics							
Multiple R	0.7376627							
R Square	0.5441463							
Adjusted R S	0.5432418							
Standard Err	6.2157604							
Observation	506							
ANOVA								
4	df	SS	MS	F	Significance F			
Regression	1	23243.914	23243.914	601.61787	5.081E-88			
Residual	504	19472.381	38.635677					
Total	505	42716.295						
	Coefficients	tandard Erro	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	34.553841	0.5626274	61.415146	3.74E-236	33.448457	35.659225	33.448457	35.659225
LSTAT	-0.9500494	0.0387334	-24,5279	5.081E-88	-1.0261482	-0.8739505	-1.0261482	-0.8739505

B. Is LSTAT variable significant for the analysis based on your model?

Lstat is for sure a important variable for analysis for building the model.

Q6. Build another instance of the Regression model but this time include LSTAT and AVG_ROOM together as independent variables and AVG_ROOM together as independent variables.

SUMMARY C	DUTPUT							
Regression	n Statistics							
Multiple R	0.7991005							
R Square	0.6385616							
Adjusted R S	0.6371245							
Standard Err	5.5402574							
Observation	506							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	2	27276.986	13638.493	444.33089	7.01E-112			
Residual	503	15439.309	30.694452					
Total	505	42716.295						
	Coefficients	tandard Erro	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-1.3582728	3.1728278	-0.4280953	0.6687649	-7.5919003	4.8753547	-7.5919003	4.8753547
AVG_ROOM	5.094788	0.4444655	11.46273	3.472E-27	4.2215504	5.9680255	4.2215504	5.9680255
LSTAT	-0.6423583	0.0437315	-14.688699	6.669E-41	-0.7282772	-0.5564395	-0.7282772	-0.5564395

a. Write the Regression equation. If a new house in this locality has 7 rooms (on an average) and has a value of 20 for L-STAT, then what will be the value of AVG_PRICE ? How does it compare

to the company quoting a value of 30000 USD for this locality? Is the company Overcharging/ Undercharging?

```
Linear equation is -> y=m1x1+m2x2+c
```

Y= dependent variable (avg_price)

x1= independent variable 1 (avg_room)

x2= independent variable 2 (Lstat)

m1= coeff. independent variable 1 (avg_room)

m2= coeff. independent variable 2 (Lstat)

 $y=m_1x_1+m_2x_2+c$

y=(5.095)*(7)+(-0.6423)*(20)+(-1.35)

y= 21.469

According to regression formula 21.469 is the predicted price and company is quoting 30.000 as the price for the locality. Company is quoting overcharging the price of the location.

b. Is the performance of this model better than the previous model you built in Question 5? Compare in terms of adjusted R-square. Explain.

Adjusted R^2 is a corrected goodness-of-fit (model accuracy) measure for linear models. Previous model has Adjusted R^2 (0.5432418) and Current model has Adjusted R^2 (0.6371245). So defiantly the model accuracy is increased.

7. Now, build a Regression model with all variables. AVG_PRICE shall be the Dependent Variable. Interpret the output in terms of adjusted R-square, coefficient and Intercept values, Significance of variables with respect to AVG_price. Explain.

	Coefficients
Intercept	29.241315
CRIME_RATE	0.0487251
AGE	0.0327707
INDUS	0.1305514
NOX	-10.321183
DISTANCE	0.2610936
TAX	-0.0144012
PTRATIO	-1.0743053
AVG_ROOM	4.1254092
LSTAT	-0.6034866

Regression Statistics							
Multiple R	0.8329788						
R Square	0.6938537						
Adjusted R							
Square	0.6882986						
Standard Error	5.1347635						
Observations	506						

Adjusted R square of this model is 0.688 which is higher then all the previous model, this model definitely increases a little bit. But adding so many variables and accuracy of the model is not that much increase, and this will unnecessarily increase the complexity of the model.

And from seeing weights from coefficients table we can observe that AVG_ROOM and DISTANCE, these variables has more impact on the equation (so these variable are more important).

8. Pick out only the significant variables from the previous question. Make another instance of the Regression model using only the significant variables you just picked. (HINT: Significant variables are those whose p-values are less than 0.05. If the p-value is greater than 0.05 then it is insignificant)

Answer the questions below:

a. Interpret the output of this model.

SUMMARY OUTPUT		
Regression	Statistics	
Multiple R	0.8328358	
R Square	0.6936154	
Adjusted R S	0.6886837	
Standard Err	5.1315911	
Observation	506	

Based on p-values below are more appropriate variables for making a

regression equations.

	Coefficients	tandard Erro	t Stat	P-value
Intercept	29.428473	4.8047286	6.1248982	1.846E-09
AGE	0.032935	0.0130871	2.516606	0.0121629
INDUS	0.13071	0.0630778	2.0722023	0.0387617
NOX	-10.272705	3.8908492	-2.6402218	0.0085457
DISTANCE	0.2615064	0.0679018	3.851242	0.0001329
TAX	-0.0144523	0.0039019	-3.7039464	0.0002361
PTRATIO	-1.0717025	0.1334535	-8.0305293	7.083E-15
AVG_ROOM	4.125469	0.4424854	9.3234005	3.69E-19
LSTAT	-0.6051593	0.0529801	-11.422388	5.418E-27

b. Compare the adjusted R-square value of this model with the model in the previous question, which model performs better according to the value of adjusted R-square?

The adjusted r-square is slightest high then previous model, the value is not that significant.

Current model r- square -> 0.6886837

Previous model r - square -> 0.6882986

c. Sort the values of the Coefficients in ascending order. What will happen to the average price if value of NOX is more in a locality in this town?

	Coefficients
NOX	-10.321183
PTRATIO	-1.0743053
LSTAT	-0.6034866
TAX	-0.0144012
AGE	0.0327707

CRIME_RATE	0.0487251
INDUS	0.1305514
DISTANCE	0.2610936
AVG_ROOM	4.1254092
Intercept	29.241315

The weight/coefficient of Nox is -10.3, so if Nox is in more in a locality then the price of the house is less than average because they have a negative relationship.

d. Write the regression equation from this model.

Y=m1x1+ m2x2+ m3x3+ m4x4+ m5x5+ m6x6+ m7x7+ m8x8+ m9x9+ Intercept

Y=(-10.3)*x1+(-

1.07)*x2+(0.603)*x3+(0.014)*x4+(0.03)*x5+(0.048)*x6+(0.130)*x7+(0.261)*x8+(4.125)*x9+29.241

Y= dependent variable

X1-9 = independent variables