DERIVARE ȘI INTEGRARE NUMERICĂ

DERIVARE NUMERICĂ

Acest calcul are drept scop rezolvarea numerică a limitei:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Aproximarea numerică a derivatei utilizând două puncte ale graficului funcției

Pentru valori mici ale diferenței $\Delta x = x - x_0$ se poate aproxima valoarea derivatei funcției în punctul de abscisă x_0 fie cu panta dreptei $MQ(\mathbf{L}_+)$ fie cu panta dreptei $MP(\mathbf{L}_-)$ când $\Delta x < 0$.

$$\Delta x > 0 \implies f'(x_0) = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

$$\Delta x < 0 \implies f'(x_0) = \frac{f(x_0 - \Delta x) - f(x_0)}{-\Delta x}$$

Se poate aproxima derivata și prin panta dreptei PQ a cărei valoare este egală cu media aritmetică a pantelor dreptelor (L_+) și (L_-) , deci:

$$f'(x_0) = \frac{f(x_0 + \Delta x) + f(x_0 - \Delta x)}{2 \cdot \Delta x}$$

notând $h = 2\Delta x$ se obține în final relația:

$$f'(x_0) = \frac{f\left(x_0 + \frac{h}{2}\right) + f\left(x_0 - \frac{h}{2}\right)}{h}$$

care reprezintă formula de aproximare numerică a derivatei unei funcții utilizând <u>două puncte</u> ale graficului. Această expresie poate fi utilizată și pentru obținerea unei relații de calcul pentru derivata de ordinul 2 a unei funcții:

$$f''(x_0) = \frac{f'(x_0 + \frac{h}{2}) + f'(x_0 - \frac{h}{2})}{h} = \frac{f(x_0 + h) - f(x_0) + f(x_0 - h) - f(x_0)}{h^2}$$

Rezultă deci:

$$f''(x_0) = \frac{f(x_0 + h) - 2 \cdot f(x_0) + f(x_0 - h)}{h^2}$$

Aproximarea numerică a derivatei utilizând trei puncte ale graficului funcției

Notăm abscisele celor trei puncte astfel: $x_{-1} = x_0 - h_1$; x_0 ; $x_{+1} = x_0 + h_2$ și exprimăm derivata funcției în punctul de abscisă ca o combinație liniară a valorilor funcției calculate pentru cele trei abscise:

$$f'(x_0) = p_{-1} \cdot f(x_{-1}) + p_0 \cdot f(x_0) + p_{+1} \cdot f(x_{+1})$$

Coeficienții reali p_{-1} ; p_0 ; p_{+1} se determină punând condiția ca relația de calcul care se obține să fie exactă pentru funcții de gradul 0, 1 și 2 adică să fie îndeplinite relațiile:

Gradul 0
$$f(x)=1 \rightarrow f'(x_0)=0$$

$$f(x)=x-x_0 \rightarrow f'(x_0)=1$$

$$f(x)=(x-x_0)^2 \rightarrow f'(x_0)=0$$

Prin înlocuire se obține sistemul:

$$\begin{cases} p_{-1} & + & p_0 & + & p_{+1} & = & 0 \\ -h_1 \cdot p_{-1} & & + & h_2 \cdot p_{+1} & = & 1 \\ h_1^2 \cdot p_{-1} & & + & h_2^2 \cdot p_{+1} & = & 0 \end{cases}$$

care are soluțiile:

$$p_{-1} = \frac{-h_2^2}{h_1 \cdot h_2 \cdot (h_1 + h_2)} \qquad p_0 = \frac{h_2^2 - h_1^2}{h_1 \cdot h_2 \cdot (h_1 + h_2)} \qquad p_{-1} = \frac{h_1^2}{h_1 \cdot h_2 \cdot (h_1 + h_2)}$$

Ca urmare se obține următoarea relație de calcul a derivatei:

$$f'(x_0) = \frac{-h_2^2 \cdot f(x_0 - h_1) + (h_2^2 - h_1^2) \cdot f(x_0) + h_1^2 \cdot f(x_0 + h_2)}{h_1 \cdot h_2 \cdot (h_1 + h_2)}$$

INTEGRARE NUMERICĂ

Calculul are drept scop determinarea numerică a valorii integralei definite:

$$I = \int_{a}^{b} f(x) \cdot dx$$

Metoda trapezelor

Calculul constă în aproximarea suprafeței cuprinsă între graficul funcției, axa orizontală și verticalele duse în dreptul absciselor a și b, prin suma unor suprafețe elementare în formă de trapez, care rezultă prin împărțirea intervalului [a, b] într-un număr n de subintervale.

Rezultă trapeze de înălțime: $h = \frac{b-a}{a}$

$$h = \frac{b - a}{n}$$

Astfel se aproximează liniar funcția pe fiecare subinterval. Ca urmare se va face aproximarea:

$$I_i = \int_{x_i}^{x_{i+1}} f(x) \cdot dx \cong \frac{h}{2} \cdot (y_i + y_{i+1})$$

Această aproximare permite determinarea valorii integralei prin relația:

$$I = \sum_{i=0}^{n} I_i = \frac{h}{2} \cdot \left(y_0 + y_1 + y_1 + y_2 + y_2 + \dots + y_{n-1} + y_{n-1} + y_n \right)$$

Prin urmare relația de calcul a integralei definite, prin metoda trapezelor, va fi următoarea:

$$I = \frac{h}{2} \cdot (y_0 + 2 \cdot y_1 + 2 \cdot y_2 + 2 \cdot y_3 + \dots + 2 \cdot y_{n-2} + 2 \cdot y_{n-1} + y_n)$$

Pentru a putea evalua **eroarea de trunchiere** se va utiliza relația de dezvoltare în serie Taylor a funcției f(x). Din relația de dezvoltare vom păstra termenii până la derivata de ordinul 2, adică primii trei termeni. Pentru punctul de abscisă x_i se obține:

$$f_1(x) = f(x_i) + (x - x_i) \cdot f'(x_i) + \frac{(x - x_i)^2}{2} \cdot f''(x_i)$$

Pentru punctul de abscisă x_{i+1} se obține:

$$f_2(x) = f(x_{i+1}) + (x - x_{i+1}) \cdot f'(x_{i+1}) + \frac{(x - x_{i+1})^2}{2} \cdot f''(x_{i+1})$$

Pentru simplificare se vor introduce notațiile:

$$f_1(x) = y_i + (x - x_i) \cdot y_i' + \frac{(x - x_i)^2}{2} \cdot y_i''$$

$$f_2(x) = y_{i+1} + (x - x_i - h) \cdot y_{i+1}' + \frac{(x - x_i - h)^2}{2} \cdot y_{i+1}''$$

$$f_1(x) = y_i + (x - x_i) \cdot y_i' + \frac{(x - x_i)^2}{2} \cdot y_i''$$

$$f_2(x) = y_{i+1} + (x - x_i - h) \cdot y_{i+1}' + \frac{(x - x_i - h)^2}{2} \cdot y_{i+1}''$$

Pe intervalul $[x_i, x_{i+1}]$ aproximăm funcția prin expresia:

$$f(x) = \frac{f_1(x) + f_2(x)}{2}$$

ca urmare rezultă:

$$f(x) = \frac{y_i + y_{i+1}}{2} + (x - x_i) \cdot \frac{y_i' + y_{i+1}'}{2} - \frac{h}{2} \cdot y_{i+1}' + \frac{(x - x_i)^2}{4} \cdot (y_{i+1}'' + y_i'') - \frac{(x - x_i) \cdot h}{2} \cdot y_{i+1}'' + \frac{h^2}{4} \cdot y_{i+1}''$$

Utilizând această expresie se recalculează valoarea integralei pe intervalul $[x_i, x_{i+1}]$:

$$I_i = \int_{x_i}^{x_{i+1}} f(x) \cdot \mathrm{d}x$$

După efectuarea calculelor și reducerea termenilor asemenea se obține:

$$I_{i} = \frac{h}{2} \cdot (y_{i+1} + y_{i}) - \frac{h^{2}}{4} \cdot (y_{i+1}' - y_{i}') - \frac{h^{3}}{6} \cdot (y_{i+1}'' - 2 \cdot y_{i}'')$$

$$I_{i} = \frac{h}{2} \cdot (y_{i+1} + y_{i}) - \frac{h^{2}}{4} \cdot (y_{i+1}' - y_{i}') - \frac{h^{3}}{6} \cdot (y_{i+1}'' - 2 \cdot y_{i}'')$$

$$I_{i} = \int_{x_{i}}^{x_{i+1}} f(x) \cdot dx \cong \frac{h}{2} \cdot (y_{i} + y_{i+1})$$

În relația obținută, primul termen corespunde valorii calculate prin metoda trapezelor. Ca urmare eroarea de trunchiere produsă la această metodă poate fi apreciată ca fiind egală cu:

$$e_{Ti} = -\frac{h^2}{2} \cdot (y'_{i+1} - y'_{i}) - \frac{h^3}{6} \cdot (y''_{i+1} - 2 \cdot y'_{i})$$

Pentru valori mici ale lui *h* primul termen are valoarea dominantă. Vom presupune că eroarea de trunchiere are expresia:

$$e_{Ti} = K \cdot h^2 \cdot \left(y_{i+1}' - y_i' \right)$$

Presupunând derivatele de ordinul unu ca fiind aproximativ constante pe intervalul de integrare, eroarea de trunchiere poate fi aproximată prin relația:

$$e_T = c \cdot h^2$$

unde *c* reprezintă o constantă.

Evaluarea erorii de trunchiere se poate face pe baza următorului raționament: Presupunem:

 $h = \frac{b - a}{n}$

$$k = \frac{b - a}{m}$$

I valoarea exactă a integralei;

 I_h valoarea integralei calculate prin metoda trapezelor utilizând pasul h;

 I_k valoarea integralei calculate prin metoda trapezelor utilizând pasul k. Următoarele relații pot fi scrise:

$$I = I_h + c \cdot h^2 \qquad \qquad I = I_k + c \cdot k^2$$

Prin scădere se obține: $c = \frac{I_h - I_k}{k^2 - h^2}$

Valoarea integralei se poate scrie sub forma:

$$I = I_h + \frac{I_h - I_k}{k^2 - h^2} \cdot h^2$$
 sau: $I = I_h + \frac{I_h - I_k}{\frac{k^2}{h^2} - 1}$

Rezultat care dă o mai bună aproximare a valorii integralei I.

Metoda Simpson

Metoda este similară metodei trapezelor deoarece presupune divizarea intervalului de integrare în subintervale iar funcția de integrat trebuie evaluată la capetele acestor subintervale.

Permite o aproximare mai bună a valorii integralei deoarece pe când în metoda trapezelor sa folosit o dreaptă (polinom de gradul 1) pentru aproximarea ariei unui interval mic (rezultând un trapez) în metoda Simpson este utilizată o parabolă (polinom de gradul 2) pentru aproximarea ariei corespunzătoare la două intervale adiacente.

Formula de calcul a integralei se obține cu ajutorul relației obținute la metoda trapezelor. Presupunem numărul de subintervale n, din relația , ca fiind par și alegem . Scriind relația dată de metoda trapezelor respectiv pentru subintervalele h și k obținem

$$I_h = \frac{h}{2} \cdot (y_0 + 2 \cdot y_1 + 2 \cdot y_2 + 2 \cdot y_3 + 2 \cdot y_4 + 2 \cdot y_5 + \cdots)$$

respectiv

$$I_k = h \cdot (y_0 + 2 \cdot y_2 + 2 \cdot y_4 + 2 \cdot y_6 + \cdots)$$

Pentru $k = 2 \cdot h$ relația:

$$I = I_h + \frac{I_h - I_k}{\frac{k^2}{h^2} - 1}$$
 devine: $I = I_h + \frac{I_h - I_k}{4 - 1} = \frac{1}{3} \cdot (4 \cdot I_h - I_k)$

Înlocuind:

$$I_h = \frac{h}{2} \cdot (y_0 + 2 \cdot y_1 + 2 \cdot y_2 + 2 \cdot y_3 + 2 \cdot y_4 + 2 \cdot y_5 + \cdots)$$

$$I_k = h \cdot (y_0 + 2 \cdot y_2 + 2 \cdot y_4 + 2 \cdot y_6 + \cdots)$$

Obţinem:

$$I = \frac{h}{3} \cdot (y_0 + 4 \cdot y_1 + 2 \cdot y_2 + 4 \cdot y_3 + 2 \cdot y_4 + 4 \cdot y_5 + 2 \cdot y_6 \cdots)$$

relație care reprezintă formula de calcul a lui Simpson.

Observație: Pentru ambele metode prezentate cu cât numărul de puncte în care se evaluează funcția este mai mare (pasul de integrare este mai mic) cu atât rezultatul este mai precis.

Metoda Gauss

Metoda permite reducerea numărului de puncte în care se evaluează funcția la două. Aplicarea metodei presupune efectuarea unei schimbări de variabilă astfel încât intervalul

[a,b] să fie reprezentat pe intervalul [-1,1]

Schimbarea de variabilă va fi următoarea:

$$\frac{u-(-1)}{1-(-1)} = \frac{x-a}{b-a}$$

Rezultă:

$$u = \frac{2}{b-a} \cdot x - \frac{b+a}{b-a}$$

respectiv:

$$\mathrm{d}u = \frac{2}{b-a} \cdot \mathrm{d}x$$

Prin urmare va fi îndeplinită o egalitate de forma:

Metoda constă în determinarea unei drepte $y = \alpha_0 + \alpha_1 \cdot u$

pentru care să se obțină aceeași valoare a integralei pentru intervalul [-1,1]

adică să fie îndeplinită egalitatea:

$$I = \int_{-1}^{1} \psi(u) \cdot du = \int_{-1}^{1} (\alpha_0 + \alpha_1 \cdot u) \cdot du$$

Grafic această condiție revine la egalitatea dintre aria S_1 cuprinsă între graficul funcției și dreaptă, aflată deasupra dreptei și aria S_2 cuprinsă între graficul funcției și dreaptă, aflată sub dreaptă.

Pentru a calcula integrala utilizând numai două evaluări ale funcției se mai pune condiția:

$$I = \int_{-1}^{1} \psi(u) \cdot du = \int_{-1}^{1} (\alpha_0 + \alpha_1 \cdot u) \cdot du = A_1 \cdot \psi(u_0) + A_2 \cdot \psi(u_1)$$

Valorile reale ale mărimilor
$$\alpha_0$$
, α_1 , A_1 , A_2 , u_0 , u_1

se obțin punând condiția de a se obține un rezultat exact în cazul unui polinom de gradul 3.

Se alege un polinom de gradul 3 având următoarea formă particulară:

$$\psi(u) = \alpha_0 + \alpha_1 \cdot u + (u - u_0) \cdot (u - u_1) \cdot (\beta_0 + \beta_1 \cdot u)$$

Valorile u_0 și u_1 se obțin punând condiția de a fi îndeplinită egalitatea:

$$I = \int_{-1}^{1} (\alpha_0 + \alpha_1 \cdot u + (u - u_0) \cdot (u - u_1) \cdot (\beta_0 + \beta_1 \cdot u)) \cdot du = \int_{-1}^{1} (\alpha_0 + \alpha_1 \cdot u) \cdot du$$

care, după reducerea termenilor asemenea, devine:

$$\int_{-1}^{1} (u - u_0) \cdot (u - u_1) \cdot (\beta_0 + \beta_1 \cdot u) \cdot du = 0$$

În continuare se pune condiția ca această egalitate să fie îndeplinită oricare ar fi valorile coeficienților β_0 și β_1 . Ca urmare:

Pentru perechea de valori $\beta_0 = 1$ și $\beta_1 = 0$ se obține egalitatea:

$$\int_{-1}^{1} (u - u_0) \cdot (u - u_1) \cdot du = 0$$

care devine:

$$\int_{-1}^{1} u^{2} \cdot du + (u_{0} + u_{1}) \cdot \int_{-1}^{1} u \cdot du + u_{0} \cdot u_{1} \cdot \int_{-1}^{1} du = 0$$

iar după rezolvarea integralelor:
$$\frac{2}{3} + 2 \cdot u_0 \cdot u_1 = 0$$

adică:
$$u_0 \cdot u_1 = -\frac{1}{3}$$

Pentru perechea de valori $\beta_0 = 0$ și $\beta_1 = 1$ se obține egalitatea:

$$\int_{-1}^{1} (u - u_0) \cdot (u - u_1) \cdot u \cdot du = 0$$
 care devine:

$$\int_{-1}^{1} u^{3} \cdot du + (u_{0} + u_{1}) \cdot \int_{-1}^{1} u^{2} \cdot du + u_{0} \cdot u_{1} \cdot \int_{-1}^{1} u \cdot du = 0$$

iar după rezolvarea integralelor: $-\frac{2}{3} \cdot (u_0 + u_1) = 0$ adică: $u_0 + u_1 = 0$

$$I = \int_{-1}^{1} \psi(u) \cdot du = \int_{-1}^{1} (\alpha_0 + \alpha_1 \cdot u) \cdot du = A_1 \cdot \psi(u_0) + A_2 \cdot \psi(u_1)$$

Prin urmare se obține sistemul de ecuații:

$$\begin{cases} u_0 + u_1 &= 0 \\ u_0 \cdot u_1 &= -\frac{1}{3} \end{cases}$$

care are soluțiile: $u_0 = -\frac{\sqrt{3}}{3}$ și $u_1 = \frac{\sqrt{3}}{3}$

Coeficienții A_1 și A_2 se obțin punând condiția de a fi îndeplinită egalitatea:

$$I = \int_{-1}^{1} (\alpha_0 + \alpha_1 \cdot u) \cdot du = A_1 \cdot \psi(u_0) + A_2 \cdot \psi(u_1)$$

care se poate scrie sub forma:

$$\alpha_0 \int_{-1}^{1} du + \alpha_1 \int_{-1}^{1} u \cdot du = A_1 \cdot \psi(u_0) + A_2 \cdot \psi(u_1)$$

$$I = \int_{-1}^{1} \psi(u) \cdot du = \int_{-1}^{1} (\alpha_0 + \alpha_1 \cdot u) \cdot du = A_1 \cdot \psi(u_0) + A_2 \cdot \psi(u_1)$$

Deoarece:

$$\psi(u_0) = \alpha_0 + \alpha_1 \cdot u_0 \qquad \text{si} \qquad \psi(u_1) = \alpha_0 + \alpha_1 \cdot u_1$$

după rezolvarea integralelor, egalitatea devine:

$$2 \cdot \alpha_0 = A_1 \cdot (\alpha_0 + \alpha_1 \cdot u_0) + A_2 \cdot (\alpha_0 + \alpha_1 \cdot u_1)$$

După înlocuirea valorilor
$$u_0 = -\frac{\sqrt{3}}{3}$$
 și $u_1 = \frac{\sqrt{3}}{3}$

și gruparea termenilor se obține egalitatea:

$$\alpha_0 \cdot (A_1 + A_2) + \frac{\sqrt{3}}{3} \cdot \alpha_1 \cdot (-A_1 + A_2) = 2 \cdot \alpha_0$$

În continuare se pune condiția ca această egalitate să fie îndeplinită oricare ar fi valorile coeficienților α_0 și α_1 . Ca urmare: $\alpha_0 \cdot (A_1 + A_2) + \frac{\sqrt{3}}{3} \cdot \alpha_1 \cdot (-A_1 + A_2) = 2 \cdot \alpha_0$

Pentru perechea de valori $\alpha_0 = 1$ și $\alpha_1 = 0$ se obține egalitatea:

$$A_1 + A_2 = 2$$

Pentru perechea de valori $\alpha_0 = 0$ și $\alpha_1 = 1$ se obține egalitatea:

$$-A_1 + A_2 = 0$$

Deci se obține sistemul:

$$\begin{cases} A_2 + A_1 = 2 \\ A_2 - A_1 = 0 \end{cases}$$
 care are soluţiile: $A_1 = 1$ şi $A_2 = 1$

În consecința formula de integrare prin metoda Gauss va avea expresia:

$$I = \int_{-1}^{1} \psi(u) \cdot du = \int_{-1}^{1} (\alpha_0 + \alpha_1 \cdot u) \cdot du = A_1 \cdot \psi(u_0) + A_2 \cdot \psi(u_1)$$

$$I = \psi\left(-\frac{\sqrt{3}}{3}\right) + \psi\left(\frac{\sqrt{3}}{3}\right)$$