Design Verification and Testing Design for Testability (DFT) - 2 Mohammad Tehranipoor Electrical and Computer Engineering University of Connecticut

Scan Flip-Flop Selection Methods Testability measure based: Use of SCOAP: limited success. Structure based: Cycle breaking Balanced structure Sometimes requires high scan percentage ATPG based: Use of combinational and sequential TG

Poor initializability. Poor controllability/observability of state variables. Gate count, number of flip-flops, and sequential depth do not explain the problem. Cycles are mainly responsible for complexity. A Sequential ATPG experiment: Circuit Number of Number of Sequential ATPG Fault coverage flip-flops depth CPU s coverage Cyclic Acyclic Chip A 1,112 39 14 269 98.80% * Maximum number of flip-flops on a PI to PO path

Circuit	s1196	s1238	s1488	s1494
PI	14	14	8	8
PO	14	14	19	19
FF	18	18	6	6
Gates	529	508	653	647
Structure	Cycle-free	Cycle-free	Cyclic	Cyclic
Sequential depth	4	4		
Total faults	1242	1355	1486	1506
Detected faults	1239	1283	1384	1379
Potentially detected faults	0	0	2	2
Untestable faults	3	72	26	30
Abandoned faults	0	0	76	97
Fault coverage (%)	99.8	94.7	93.1	91.6
Fault efficiency (%)	100.0	100.0	94.8	93.4
Max. sequence length Total test vectors	313	3 308	24 525	28 559
		308 15		
Gentest CPU s (Sparc 2)	10	15	19941	19183

Select a minimal set of flip-flops for scan to eliminate all cycles. Alternatively, to keep the overhead low only long cycles may be eliminated. In some circuits with a large number of self-loops, all cycles other than self-loops may be eliminated. April 2008 April 2008

Scan Variations Integrated and Isolated scan methods Scan path: NEC 1968 Serial scan: 1973 LSSD: IBM 1977 Scan set: Univac 1977 RAS: Fujitsu/Amdahl 1980

Scan Set Applications

- Advantages
 - Potentially useable in delay testing.
 - Concurrent testing: can sample the system state while the system is running
 - Used in *microrollback*
- Disadvantages
 - □ Higher overhead due to routing difficulties

ril 2008

Random-Access Scan (RAS)

- The scan function is implemented like a randomaccess memory (RAM)
- All flip-flops form a RAM in scan mode
- A subset of flip-flops can be included in the RAM if partial scan is desired
- In scan mode, any flip-flop can be read or written

8 April 2008 20

RAS Applications

- Logic test: reduced test length. We don't have shift an entire pattern again as in full scan method. Only the differences between existing data in flip-flops
- Delay test: Easy to generate single-input-change (SIC) delay tests.
- Advantage:
 - RAS may be suitable for certain architecture, e.g., where memory is implemented as a RAM block.
- Disadvantages:
 - Not suitable for random logic architecture
 - High overhead gates added to SFF, address decoder, address register, extra pins and routing

8 April 2008

Summary

- Partial-scan is a generalized scan method; scan can vary from 0 to 100%.
 Elimination of long cycles can improve testability via sequential ATPG.
- Elimination of all cycles and self-loops allows combinational ATPG.
- Partial-scan has lower overheads (area and delay) and reduced test length.
- Partial-scan allows limited violations of scan design rules, e.g., a flip-flop on a critical path may not be scanned.

8 April 2008