情感分类

2018011359 计84 乐阳

简介

本次实验完成了一个简单的中文文本的情感分类任务。选择pytorch深度学习平台,尝试了不同类型的神经网络模型,包含MLP、DAN、RNN、CNN以及RCNN,调整参数并比较性能。文本预处理时,取每篇文章的前512个中文词汇(无其他符号)作为训练数据,词汇嵌入使用预训练词向量sgns.sougou.char。运行说明见README.md。

模型结构

MLP

全连接网络(Multilayer Perceptron)是最简单的神经网络模型。实验中采用带有一个隐层的两层网络,以ReLU为激活函数,添加Dropout层来做正则化。每篇文章的词向量矩阵展成一维后输入网络。该模型参数数量大,加之本次训练的数据集规模较小,很容易过拟合。

DAN

DAN(Deep Average Network)是有较深网络层次的词袋模型(BOW)。其最显著的特点在于直接对一篇文章的所有词向量求平均,再输入到全连接网络中去学习,如下图中绿色的层次所示。相比朴素的MLP而言,DAN的网络规模和参数数目明显更小,训练更快且泛化能力更强。

此外,还可以采用Word Dropout策略,即在求平均前随机使某些词语失效,只对未失效的词求平均。 该策略可能使模型的性能有所提升。一方面,与网络结构的Dropout策略一样,会带来数据增强或类似 集成学习的作用;此外一篇文本的非关键的、中立的词汇占大多数,因此丢弃一些词是可行的。

$$egin{aligned} r_w &\sim \mathrm{Bernoulli}(p) \ \hat{X} &= \{w | w \in X \quad \&\& \quad r_w > 0\} \ & \mathrm{average}(v) = rac{\sum_{w \in \hat{X}} v_w}{|\hat{X}|} \end{aligned}$$

CNN

卷积神经网络(Convolutional Neural Network)使用不同大小的卷积核与词向量做卷积,再将各核的卷积结果连接在一起,最后利用全连接网络输出分类信息。使用卷积的优势在于提取局部信息,每次卷积同时检查相邻的几个词语,相当于实现了一个N-gram。针对卷积网络的防止过拟合的方法有Dropout,Batchnorm, Pooling等等。

RNN

循环神经网络(Recurrent Neural Network)是一类可以接受序列输入的神经网络,常见的模型有LSTM、GRU等等。本次实验中首先尝试了双向LSTM模型,将两个方向的输出向量(最终状态)连接在一起作为文本特征交给全连接网络。经过实验,这种架构的RNN收敛很慢且效果不佳,有可能是因为文本序列较长,不考虑各中间状态的输出会损失一定的信息。

一种改进的策略是采用注意力机制(Attention),该机制综合利用了每个状态的输出。具体来讲,设LSTM的全部输出构成矩阵 $H=[h_1,\cdots,h_T]$,此外还有一个模型参数w,则按照如下过程计算文本的表示r:

$$M = anh(H)$$
 $lpha = ext{softmax}(w^T M)$ $r = H lpha^T$

该流程可表示为下图

RCNN

RCNN是一种结合RNN与CNN优势的模型。RNN提取全局特征,CNN捕捉局部特征,二者相结合能够做到优势互补。但也注意到这个模型相对前述模型变得更加复杂、参数更多,在本实验的小规模训练集上效果不一定更优。

该模型的关键一步操作是利用双向LSTM获取上下文信息的能力,将词向量与对应状态的前向、后向输出连接在一起。然后再做卷积操作,由于连接后的向量已经获得了上下文信息,因此只需要设置卷积核的大小为1即可,相当于是对每个 x_i 做同样的线性变换。

$$egin{aligned} x_i &= [c_l(w_i); e(w_i); c_r(w_i)] \ y_i^{(2)} &= anh(W^{(2)}x_i + b^{(2)}) \end{aligned}$$

上式中 c_l, c_r 为前向、后项的输出, $e(w_i)$ 为词向量。随后再经过MaxPooling和全连接得到输出。

$$egin{aligned} y^{(3)} &= \max_{i=1}^n y_i^{(2)} \ y^{(4)} &= W^{(4)} y^{(3)} + b^{(4)} \end{aligned}$$

实验结果

实验中将 sinanews.test 的前1000条数据作为测试集,后1000条作为验证集。下面的测试中模型的参数已调整完毕。

单次训练的性能有一定的上下浮动,因此对以上每种模型各训练5次,对结果的准确率、F-Score、相关系数取平均值以得到性能的准确反映。其中F-Score的计算方法为宏平均(Marco)。更多的测试结果以及参数设置可见 log/test.txt。

Model	Accuracy	Marco F1	Correlation
MLP	59.3372	22.3285	0.5946
DAN	63.8402	32.1285	0.5904
CNN	64.3665	33.6428	0.6581
RNN (Without Att)	54.9513	19.7955	0.5181
RNN (With Att)	63.8012	32.5017	0.6261
RCNN	63.4698	30.2243	0.6659

可见CNN在准确率和F-Score方面表现最优,RCNN在相关系数方面表现最优。DAN和MLP本质上都是全连接结构,但DAN明显更高效。加入注意力机制让RNN的性能有大幅提升。

参数调整

本次实验的几个模型的主要超参数有学习率、训练轮数、网络规模(隐层数、通道数)以及正则化强度。正则化方法包括Dropout、DAN的Word Dropout以及Adam优化器的权重衰减选项。下面对部分参数的调整分别举例。

学习率

学习率是每次迭代中参数更新的步幅,在调参过程中一般最先考虑。如果步幅过小则收敛缓慢,步幅过大则可能导致跳过最优解、很难收敛。在训练过程中也可以看出学习率过小时(训练集)正确率增长缓慢,学习率过大时正确率迅速增大到一定幅度后就不再增加。

下面是CNN在不同学习率下的性能对比,可见对于CNN而言1e-3的学习率是更好的选择。

Lr	Acc	F1	Corr
1e-4	59.8246	16.8074	0.5783
1e-3	64.3665	33.6428	0.6581
1e-2	61.9688	30.3732	0.6087

Dropout

Dropout即随机失活,往往能给模型带来额外的性能提升。它能够一定程度上缓解复杂网络的过拟合,同时加快训练速度。对于复杂网络结构的惩罚迫使模型去学习更鲁棒的数据特征;随机失活的大网络相当于很多小规模的网络的组合,起到"从人群中学习"(集成学习)的作用。

经验上讲Dropout率的默认值为0.5,在该条件下(从概率意义上)可以获得最多的网络结构。下表展示了CNN模型中Dropout率对性能的影响。本次任务中,Dropout率为0.5时性能略好,但是不同Dropout率的影响并不显著。

Dropout Rate	Acc	F1	Corr
0.1	64.2495	32.4895	0.5979
0.3	64.1520	31.3941	0.6606
0.5	64.3665	33.6428	0.6581
0.7	64.2495	32.2472	0.6639

Word Dropout

在DAN模型求平均之间,可以随机丢弃一些词汇,只对剩余词汇求平均。DAN作为词袋模型对语言的顺序关系没有要求,而且扔掉的大多是中性的、非关键的词语。与前述的网络节点Dropout类似,资料显示其对性能有所提升。

下表展示了不同的Word Dropout概率下的DAN性能,在0.5的丢弃概率下性能略有提升。

Word Dropout Rate	Acc	F1	Corr
0	63.5478	31.6139	0.5862
0.3	63.4893	31.9507	0.5660
0.5	63.8402	32.1285	0.5904

网络规模

对于神经网络而言,网络规模(隐层大小、卷积核通道数)决定了其复杂度。隐层更大的模型表示训练 集数据的能力更强,但是也更容易过拟合,消耗的计算资源也更多。一个经验准则是"只有需要的时候, 才使用复杂的模型"。

本次实验的数据集中,训练集与测试集的规模相等且数目不大,而且训练集与测试集的分布似乎有所差异。在实际操作过程中,往往发现网络在前10个迭代轮次里就基本将训练集拟合完毕,而测试集的正确率持续挣扎。在这种条件下使用大规模的网络并不是一个好选择。

下表中展示了CNN在不同的卷积核通道数下的性能。可见通道数最少的模型反而性能最佳。

num_filters	Acc	F1	Corr
128	64.3665	33.6428	0.6581
256	64.0741	32.6130	0.6626
512	63.9181	31.3795	0.6595

模型比较

全连接网络

全连接网络的实质即词袋模型,不考虑文本的排列顺序。朴素的MLP模型参数量巨大、训练迟缓且效果平庸。但是对数据先做一定处理,比如DAN中直接求平均词向量,再输入神经网络就能获得一个简单而快速的模型。

从统计数据可以看出DAN的性能CNN和RNN所差无几,而且实际测试中DAN是所有模型中训练最快的(只处理平均词向量,网络规模小)。此外,DAN还能有效防止过拟合,训练集acc不过高的情况下,验证集就有较好的效果。

卷积网络

卷积的优势在于提取局部信息,在NLP领域是相邻几个词的关系,CV领域则是一小块图像。这种观察让模型对数据有了更深层次的认知。每次卷积同时检查相邻的几个词语,相当于实现了一个N-gram。一层卷积不能像RNN那样获得全局信息,使用更深的卷积网络可以增加神经元的视野(本次没有实现)。

在本次实验中,CNN是表现最优的模型,且性能波动较小。不过,CNN与RNN(Att)和RCNN在本次实验中都会很快过拟合训练集(几乎百分之百),因此需要限制训练的轮数。

循环网络

循环神经网络能够处理流式的输入和输出,这个特性让它在很多文本或音频任务中有独特的地位。循环网络可以直接获取到整个序列的特征,是CNN无法比拟的。对于较长的文本序列,只采用最后一个状态的输出会丢失很多信息,需要引入Attention机制。在实验中,RNN相比其他模型训练时间更长,加入Attention机制能显著提高性能。

RCNN是RNN和CNN优势的结合,综合了CNN获取局部信息的能力和RNN获取全局信息的能力。但在本次实验中RCNN并没能体现出明显的优势。

问题思考

1. 实验训练什么时候停止是最合适的?简要陈述你的实现方式,并分析固定迭代次数与通过验证集调整等方法的优缺点。

答:本次我使用的是固定迭代次数的方式,选择每轮迭代中在测试集正确率高的模型保存,期间也尝试了不同的迭代轮数以提高训练效率。固定迭代次数消耗计算资源更多,

2. 参数初始化是怎么做的? 不同的方法适合哪些地方?

答:本次实验没有使用特殊的初始化方式,直接采用Pytorch的默认方法。均匀分布初始化适用于卷积层、全连接层,这也是Pytorch的默认策略。正交初始能够防止梯度消失和梯度爆炸,常用于RNN。高斯初始化应用范围广,适用于各种需要随机初始化的模型。

3. 过拟合是深度学习常见的问题,有什么方法可以防止训练过程陷入过拟合?

答: Dropout通过随机失活节点防止过拟合,迫使网络去学习更鲁棒的特征。对权重添加L2正则化项可以惩罚数值过大的权重,降低模型对噪声的敏感性。数据增强(从原始数据中抽样构成新数据集)、利用多个不同模型学习等方式也能够防止过拟合。

心得体会

本次实验是我第一次接触NLP领域,见识了很多经典的模型,并对Pytorch有了更熟练的掌握。