Bachmann Lautaro

Tarea 9

1. (60 pts)

(i) Encontrar todas las soluciones de la ecuación en congruencia

$$30 x \equiv 2$$
 (67)

usando el método visto en clase.

- (ii) Dar todas las soluciones x de la ecuación anterior tales que 0 < x < 300.
- 2. (40 pts) Encontrar los últimos dos dígitos de 2^{338} . (*Ayuda*: Se cumple que $2^{22} \equiv 4 \ (100)$).

1) i) Calculemos el mcd (30,67) para saber si 30 y 67 son coprimos:

Divisores
$$30 = 1, 2, 3, 5, 6, 10, 15, 30$$
 $30 = 1$ $30 = 1$ Divisores $67 = 1, 67$

Como el mod estigual a 1,30 y 67 son coptimos, por ende, la ecuación lineal de congruencia tiene solución.

Ahore, usemos el algoritmo de euclides para eventualmente poder armer las ecuaciones del resto.

$$67 = 30.2 + 7 \implies 7 = 67 + 30.(-2)$$
 4 partit de estar euvarones podemos $30 = 7.4 + 2 \implies 2 = 30 + 7.(-4)$ elaborar una combinación lancal $7 = 2.3 + 1 \implies 1 = 7 + 2.(-3)$ tal que $1 = 5.30 + t.67$ $2 = 1.2 + 0$

$$1 = 7 + 2 \cdot (-3)$$

$$1 = 7 + (30 + 7 \cdot (-4)) \cdot (-3)$$

$$1 = 7 + 30 \cdot (-3) + 7 \cdot 12$$

$$1 = 7 \cdot 13 + 30 \cdot (-3)$$

$$1 = (67 + 30 \cdot (-2)) \cdot 13 + 30 \cdot (-3)$$

$$1 = 67 \cdot 13 + 30 \cdot (-26) + 30 \cdot (-3)$$

••
$$S = -29 , t = 13$$

A partir de haber encontrado 5 y t, podemos armar entonces la ecuación lineal de congruencia, intentando llegar a algo similar a $2 = 30 x_0 \pmod{67}$

$$1 \equiv 67.13 + 30.(-29) \pmod{67}$$

 $1 \equiv 0.13 + 30.(-29) \pmod{67}$
 $1 \equiv 30.(-29) \pmod{67}$
 $1.2 \equiv 30.(-29).2 \pmod{67}$

$$2 \equiv 30.(-58) \pmod{67}$$

Ahora que llegamos a la estrudura que buscabamos, podemos decir que Xo = -58

Jabiendo esto, podemos armar la formula para encontrar todas las soluciones:

$$X = X_0 + K \cdot \left(\frac{M}{d}\right) \Rightarrow X = -58 + K \cdot 67$$

ii) Conociendo la ecuación x = -58 + k + 67 y teniendo en cuenta que x debe de ser mayor que o x menor que 300, x $k \in \mathbb{Z}$ entonces:

0 < X < 300 0 < 58 + K.67 < 300 58 < K.67 < 358 58 < K < 358 67 67 $K \in \left(\frac{58}{67}, \frac{358}{67}\right)$

Sin embergo, como $k \in \mathbb{Z}$, hay que ver cudes son los enteros gresentes en este intervalo $\frac{58}{67} < k < \frac{358}{67} \approx 0,865 < k < 5,343$

•• los exeros presentes son 1,2,3,4,5 es decir, $K = \{1,2,3,4,5\}$

Por lo tanto, encontramos los números K que dan Jolución a 0 < k < 200. Ahora, reemplacemos los respectivos números K en la formula X = -58 + K.67

X = -58+1.67	X = -58+2.67	X = -58+3.67	X = -58+4.67	X = -58+5.67
	X = -58+134			
X = 9			X = 210	X = 277
•	, , ,	-		

En conclusión, todas las soluciones x de la eccución, tal que 0 < x < 300 son 9, 76, 143, 210, 277.

2) A partir del número 2338 y operando con propradades de las potancias:

Al habet llegado a un número de dos cifras, sabemos que este número son las últimar dos cifras, es decir, 238 termina en 44.