Notes on assigning Quot-scheme-type statistics to cells of GL_n affine Springer fibers.

- 8.1. Affine Flag Varieties and Springer Fibers
- 8.1. Throughout, **F** is an algebraically closed field of characteristic zero or p. Let $F = \mathbf{F}(\varpi)$ and $\mathcal{O} = \mathbf{F}[\varpi]$.

Let G be a connected, reductive algebraic group over \mathbf{F} of Coxeter number n < p. Here, we define the Coxeter number to be 1 plus the height of the highest root(s) in any root datum for G. Let LG be the loop group of G.

8.2. Fix a maximal torus $T \subseteq G$ and a Borel $B \subseteq G$ containing T. These data define a root datum $(X, \mathfrak{R}, X^{\vee}, \mathfrak{R}^{\vee})$ and a system of simple roots $\{\alpha_1, \ldots, \alpha_r\} \subseteq \mathfrak{R}$. Let W be the Weyl group of \mathfrak{R} , and let $W^{\text{aff}} = W \ltimes X^{\vee}$.

For each $\alpha \in \mathfrak{R}$, we fix a generator ξ_{α} of the corresponding root subspace of \mathfrak{g} . We set $\rho^{\vee} = \frac{1}{2} \sum_{i} \alpha_{i}^{\vee} \in X^{\vee} \otimes \mathbf{Q}$, so that $\langle \alpha_{i}, \rho^{\vee} \rangle = 1$ for all i.

8.3. For all $x \in X^{\vee} \otimes \mathbf{R}$, let $P_x \subseteq LG$ be the corresponding parahoric subgroup. Let L_x be the Levi quotient of P_x , and let W_x be the Weyl group of L_x . Writing

$$\mathfrak{g}(F)_{x,\kappa} = \mathbf{F}\langle \varpi^k \xi_\alpha \mid \langle \alpha, x \rangle + k = \kappa \rangle,$$

we know that on the level of points, the Lie algebras of P_x and L_x are

$$\mathfrak{p}_{x}(\mathbf{F}) = \bigoplus_{\kappa \geq 0} \mathfrak{g}(F)_{x,\kappa},$$

$$\mathfrak{l}_{x}(\mathbf{F}) = \mathfrak{g}(F)_{x,0}.$$

Let $\mathcal{F}\ell_x = LG/P_x$, the affine flag variety of G of type x.

8.4. Fix an integer d coprime to n. Since $-n < \langle \alpha, \rho^{\vee} \rangle < n$ for all $\alpha \in \mathfrak{R}$, we know that $I_d := P_{\frac{d}{n}\rho^{\vee}}$ is an Iwahori subgroup of LG, with Levi quotient T. Let $-\cdot_d$ — be the G_m -action on LG defined by

$$c \cdot_d g(\varpi) = c^{2d\rho^{\vee}} g(c^{2n}\varpi)c^{-2\rho^{\vee}}.$$

This is the action used by Oblomkov–Yun. If we take d=1, then we recover the action in the papers of Lusztig–Smelt, C.-K. Fan, and Sommers.

Since $T \subseteq L_x$, we know that $-\cdot_d$ – descends to a G_m -action on $\mathcal{F}\ell_x$. Via the Bruhat-type decomposition

$$\mathcal{F}\ell_x = \coprod_{wW_x \in W^{\mathrm{aff}}/W_x} I_d \dot{w} P_x / P_x,$$

where \dot{w} is any lift of w to $N_{G(F)}(T(\mathcal{O}))/T(\mathcal{O})$, we see that the fixed points of $\mathcal{F}\ell_x$ under $-\cdot_d$ – are precisely the cosets of the form $\dot{w}P_x$ for $wW_x \in W^{\mathrm{aff}}/W_x$.

8.5. Let $L\mathfrak{g}$ be the Lie algebra of LG. The action $-\cdot_d$ – induces a G_m -action on $L\mathfrak{g}$ that we again denote $-\cdot_d$ –. Explicitly,

$$c \cdot_d \gamma(\varpi) = \operatorname{Ad}(c^{2d\rho^{\vee}}) \gamma(c^{2n}\varpi).$$

For any $\gamma \in \mathfrak{g}(F)$, the affine Springer fiber over γ of type x is

$$\mathcal{F}\ell_x(\gamma) = \{ gP_x \in \mathcal{F}\ell_x \mid \operatorname{Ad}(g^{-1})\gamma \in \mathfrak{p}_x \}.$$

We claim that if γ is an eigenvector under $-\cdot_d$ -, then $\mathcal{F}\ell_x(\gamma)$ is stable under $-\cdot_d$ -. Indeed, for all $g \in G(F)$, we have

$$c \cdot_d (\operatorname{Ad}(g^{-1})\gamma(\varpi)) = \operatorname{Ad}(c^{2d\rho^{\vee}} g^{-1})\gamma(c^{2n}\varpi)$$
$$= \operatorname{Ad}(c \cdot_d g^{-1})(c \cdot_d \gamma(\varpi)),$$

which shows that if γ is an eigenvector under $-\cdot_d$ -, then

$$gP_x \in \mathcal{F}\ell_x(\gamma) \iff \operatorname{Ad}(g^{-1})\gamma \in \mathfrak{p}_x$$
 $\iff c \cdot_d \operatorname{Ad}(g^{-1})\gamma \in \mathfrak{p}_x \qquad \text{because } \mathfrak{p}_x \text{ is stable under } -\cdot_d \iff \operatorname{Ad}(c \cdot_d g^{-1})(c \cdot_d \gamma) \in \mathfrak{p}_x$
 $\iff \operatorname{Ad}(c \cdot_d g^{-1})\gamma \in \mathfrak{p}_x$
 $\iff (c \cdot_d g)P_x \in \mathcal{F}\ell_x(\gamma) \qquad \text{because } (c \cdot_d g)^{-1} = c \cdot_d g^{-1}.$

8.6. Note that $\mathfrak{g}(F)_{\frac{d}{n}\rho^{\vee},\kappa}$ is the eigenspace of $-\cdot_d$ of weight $2n\kappa$. Indeed,

$$\langle \alpha^{\vee}, \frac{d}{n} \rho^{\vee} \rangle + k = \kappa \quad \iff \quad c \cdot_d \varpi^k \xi_{\alpha} = c^{2n\kappa} \varpi^k \xi_{\alpha}.$$

For any integer ℓ , let $e_{\ell} \in \mathfrak{g}$ be the sum of the elements ξ_{α} such that $\langle \alpha, \rho^{\vee} \rangle = \ell$. For all k and ℓ , we see that $\varpi^k e_{\ell} \in \mathfrak{g}(F)_{\frac{d}{n}\rho^{\vee},\frac{\ell d}{n}+k}$. In particular,

$$\gamma_d := e_1 + \varpi^d e_{1-n}$$

is an eigenvector of $-\cdot_d$ – of weight 2d.

8.7. We parametrize the fixed points of the affine Springer fiber over γ_d as follows:

$$(\mathcal{F}\ell_{x}(\gamma_{d}))^{\mathbf{G}_{m}} = \{\dot{w}P_{x} \in \mathcal{F}\ell_{x} \mid \operatorname{Ad}(\dot{w}^{-1})\gamma \in \mathfrak{p}_{x}\}\$$

$$= \{\dot{w}P_{x} \in \mathcal{F}\ell_{x} \mid \gamma \in \mathfrak{p}_{w \cdot x}\}\$$

$$= \left\{\varpi^{w \cdot x}P_{x} \in \mathcal{F}\ell_{x} \middle| \begin{array}{c} \langle \alpha, w \cdot x \rangle \geq 0 \text{ when } \langle \alpha, \rho^{\vee} \rangle = 1, \\ \langle \alpha, w \cdot x \rangle \geq -d \text{ when } \langle \alpha, \rho^{\vee} \rangle = 1 - n \end{array}\right\}$$

$$\simeq \left\{\varpi^{y}P_{x} \in \mathcal{F}\ell_{x} \middle| \begin{array}{c} \langle \alpha, y \rangle \geq 0 \text{ when } \langle \alpha, \rho^{\vee} \rangle = 1, \\ \langle \alpha, y \rangle \leq d \text{ when } \langle \alpha, \rho^{\vee} \rangle = n - 1 \end{array}\right\}.$$

Let $D_d(x)$ be the set of $y \in W^{\text{aff}} \cdot x$ satisfying the inequalities in the last expression.

8.8. Recall that if $\gamma = \mathrm{Ad}(h)\gamma'$, then left multiplication by h is an isomorphism of ind-schemes from $\mathcal{F}\ell_x(\gamma')$ onto $\mathcal{F}\ell_x(\gamma)$.

If, moreover, γ' is an eigenvector under $-\cdot_d$ —, then this isomorphism transports the induced \mathbf{G}_m -action on $\mathcal{F}\ell_x(\gamma')$ to a conjugate action on $\mathcal{F}\ell_x(\gamma)$. Explicitly, the latter is induced by the \mathbf{G}_m -action on LG defined by

(8.1)
$$c \cdot_{d,h} g := h(c \cdot_d (h^{-1}g)).$$

We deduce that gP_x is fixed under $-\cdot_{d,h}$ – if and only if $gP_x = hg'P_x$ for some g' such that $g'P_x$ is fixed under $-\cdot_d$ –.

We are most interested in the case where $h = \varpi^{\mu}$ for some $\mu \in X^{\vee}$. Setting

$$\gamma_{d,\mu} = \operatorname{Ad}(\varpi^{\mu})\gamma_d,$$

$$D_{d,\mu}(x) = D_d(x) + \mu,$$

we conclude that

$$\mathcal{F}\ell_x(\gamma_{d,\mu})^{\mathbf{G}_m} = \varpi^{\mu}(\mathcal{F}\ell_x(\gamma_d)^{\mathbf{G}_m})$$
$$= \{\varpi^y P_x \mid y \in D_{d,\mu}(x)\},\$$

where $\mathcal{F}\ell_x(\gamma_d)^{\mathbf{G}_m}$, resp. $\mathcal{F}\ell_x(\gamma_{d,\mu})^{\mathbf{G}_m}$, is defined using $-\cdot_d$ -, resp. $-\cdot_{d,\varpi^{\mu}}$ -. Also note that here, (8.1) simplifies to $c\cdot_{d,h}g=c^{-\mu}(c\cdot_dg)$.

- 8.2. Quot Schemes of Curve Singularities
- 8.9. Now we take $G = \operatorname{GL}_n$ and T to be the subgroup of diagonal matrices. Here we can fix identifications $X^{\vee} = \mathbf{Z}^n$ and $W = S_n$. Writing δ_i for the ith standard basis vector of \mathbf{Z}^n , we can set $\alpha_i^{\vee} = \delta_i \delta_{i+1}$ for $i = 1, \ldots, n-1$. Let

$$X_{\geq 0}^{\vee} = \mathbf{Z}_{\geq 0}^{n},$$

$$W_{\geq 0}^{\text{aff}} = W \rtimes X_{\geq 0}^{\vee}.$$

Let $\mathcal{F}\ell_{x,\geq 0}$ be the union of the loci $P_0\varpi^{\mu}P_x/P_x\subseteq \mathcal{F}\ell_x$ where $\mu\in X_{\geq 0}^{\vee}$. That is,

$$\begin{split} \mathcal{F}\ell_{x,\geq 0} &= \coprod_{[w] \in W^{\mathrm{aff}}_{\geq 0}/W_x} I_d \dot{w} P_x/P_x \\ &= \coprod_{[\mu] \in X^{\vee}_{\geq 0}/W_x} P_0 \varpi^{\mu} P_x/P_x. \end{split}$$

(Here, note that $P_0 = G(\mathcal{O})$.) For all $\gamma \in \mathfrak{g}(F)$, let

$$\mathcal{F}\ell_{x,\geq 0}(\gamma) = \mathcal{F}\ell_x(\gamma) \cap \mathcal{F}\ell_{x,\geq 0}.$$

In what follows, we will show how ind-schemes of the form $\mathcal{F}\ell_{0,\geq 0}(\gamma_{d,\mu})$ can be interpreted as Quot schemes of plane curve singularities with \mathbf{G}_m -actions.

8.10. Let $\mathfrak{g}(F)$ act on F^n by right multiplication. For an arbitrary element $\gamma \in \gamma(F)$, let $\mathcal{M}(\gamma)$ be the ind-scheme over \mathbf{F} that, at the level of points, parametrizes $\mathcal{O}[\gamma]$ -submodules $M \subseteq F^n$ that are projective over \mathcal{O} and satisfy $M \otimes F \simeq F^n$. Then there is an isomorphism

$$\mathcal{F}\ell_0(\gamma) \stackrel{\sim}{\to} \mathcal{M}(\gamma),$$

$$gP_0 \mapsto \mathcal{O}^n \cdot g^{-1}.$$

We write [M] for the **F**-point of $\mathcal{M}(\gamma)$ corresponding to an $\mathcal{O}[\gamma]$ -submodule $M \subseteq F[\gamma]$. Let $\mathcal{M}_{\geq 0}(\gamma) \subseteq \mathcal{M}(\gamma)$ be the sub-ind-scheme defined at the level of points by

$$\mathcal{M}_{>0}(\gamma) = \{ [M] \in \mathcal{M}(\gamma) \mid M \subseteq \mathcal{O}^n \}.$$

The preceding isomorphism restricts to an isomorphism $\mathcal{F}\ell_{0,\geq 0}(\gamma) \xrightarrow{\sim} \mathcal{M}_{\geq 0}(\gamma)$.

8.11. Now suppose that $\gamma = \operatorname{Ad}(h)\sigma_a = h\sigma_a h^{-1}$ for some $a \in F^n$ and $h \in G(F)$, where σ_a is the companion matrix

$$\sigma_a = \begin{pmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ -a_n & -a_{n-1} & \cdots & -a_1 \end{pmatrix}.$$

Let e_i be the *i*th standard basis vector of F^n . At the same time, let

$$p_a(T) = T^n + a_1 T^{n-1} + \dots + a_{n-1} T + a_n \in F[T],$$

and let γ act on $F[T]/p_a(T)$ by T. Then, by Cayley–Hamilton, there is a γ -equivariant isomorphism of F-vector spaces

(8.2)
$$F^{n} \xrightarrow{\sim} F[T]/p_{a}(T)$$

$$e_{i} \cdot h^{-1} \mapsto T^{i-1}.$$

Writing $h = (h_{i,j})_{i,j}$, we see that (8.2) sends

$$e_i \mapsto f_h^{(i)} := \sum_{j=1}^n h_{i,j} T^{j-1}.$$

Let $M(\gamma, h)$ be the \mathcal{O} -submodule of $F[\gamma]$ spanned by the elements $f_h^{(i)}$, and let $\mathcal{Q}(\gamma, h)$ be the Quot scheme whose points parametrize $\mathcal{O}[\gamma]$ -submodules of $M(\gamma, h)$ of finite colength. Then (8.2) induces an isomorphism

$$\mathcal{M}_{\geq 0}(\gamma) \xrightarrow{\sim} \mathcal{Q}(\gamma, h).$$

8.12. We now study the induced isomorphism

(8.3)
$$\mathcal{F}\ell_{0,\geq 0}(\gamma) \xrightarrow{\sim} \mathcal{Q}(\gamma,h)$$

in the special case where

$$(a_0, \dots, a_{n-1}, a_n) = (0, \dots, 0, \varpi^d),$$

 $h = \varpi^{\mu}$

for some positive integer d coprime to n and $\mu \in X^{\vee}$. Thus $\gamma = \gamma_{d,\mu}$.

Note that the general case where $h \in T(F)$ can be reduced to the case where $h = \varpi^{\mu}$ for some μ , since the T(F)-action on $\mathcal{F}\ell_0 = G(F)/G(\mathcal{O})$ factors through $T(F)/T(\mathcal{O}) \simeq \varpi^{X^{\vee}}$.

Let $\mu = \sum_i \mu_i \delta_i$ be the expansion of μ under $X^{\vee} = \mathbf{Z}^n$. For the above choice of a and h, we see that (8.2) sends

$$e_i \mapsto f_{\varpi^{\mu}}^{(i)} = \varpi^{\mu_i} T^{i-1}$$

for all i, and therefore sends

$$e_i \cdot g^{-1} \mapsto f_{g^{-1}\varpi^{\mu}}^{(i)} := \sum_{i=1}^n g_{i,j}^{-1} \varpi^{\mu_j} T^{j-1}$$

for all $g \in G(F)$, where we have written $g^{-1} = (g_{i,j}^{-1})_{i,j}$.

Recall that $\mathcal{F}\ell_0(\gamma)$ is stable under the \mathbf{G}_m -action $-\cdot_{d,h}$ – coming from (8.1). The action further restricts to $\mathcal{F}\ell_{0,\geq 0}(\gamma)$, as as we can check by bootstrapping the h=1 case. The isomorphism (8.3) transports $-\cdot_{d,h}$ – to a \mathbf{G}_m -action on $\mathcal{Q}(\gamma,h)$. We now describe the latter.

Lemma 8.1. Let $\gamma = \gamma_{d,\mu}$ and $h = \varpi^{\mu}$. Let \mathbf{G}_m act on $F[T]/(T^n - \varpi^d)$, hence on $M(\gamma, h)$, according to

$$c \cdot \varpi = c^{2n} \varpi,$$
$$c \cdot T = c^{2d} T.$$

Then (8.3) transports the \mathbf{G}_m -action $-\cdot_{d,h}$ – on $\mathcal{F}\ell_{0,\geq 0}(\gamma)$ to the \mathbf{G}_m -action on $\mathcal{Q}(\gamma,h)$ induced by the action on $M(\gamma,h)$ above.

Proof. First, observe that if $g' = c \cdot_{d,h} g = c^{-2n\mu} (c \cdot_d g)$, then $(g')^{-1} = (c \cdot_d g^{-1}) c^{2n\mu}$. We deduce that

$$g'(\varpi)_{i,j}^{-1} = c^{2d(j-i)+2n\mu_j} g(c^{2n}\varpi)_{i,j}^{-1},$$

from which we get

$$e_{i} \cdot g'(\varpi)^{-1} \mapsto \sum_{j=1}^{n} g'(\varpi)_{i,j}^{-1} \varpi^{\mu_{j}} T^{j-1}$$

$$= \sum_{j=1}^{n} c^{2d(j-i)+2n\mu_{j}} g(c^{2n} \varpi)_{i,j}^{-1} \varpi^{\mu_{j}} T^{j-1}$$

$$= c^{-2d(i-1)} \sum_{j=1}^{n} g(c^{2n} \varpi)_{i,j}^{-1} (c^{2n} \varpi)^{\mu_{j}} (c^{2d} T)^{j-1}$$

$$= c^{-2d(i-1)} (c \cdot f_{g^{-1} \varpi^{\mu}}^{(i)}).$$

Since $c^{-2d(i-1)}$ is just a nonzero scalar, we conclude that the $\mathcal{O}[\gamma]$ -submodule of $M(\gamma,h)$ corresponding to $(c \cdot_{d,h} g)P_0 = g'P_0 \in \mathcal{F}\ell_{0,\geq 0}(\gamma)$ is the one generated by the elements $c \cdot f_{g^{-1}\varpi^{\mu}}^{(i)}$, as needed.

8.3. Cells

8.13. Henceforth, we set $M_{d,\mu} = M(\gamma_{d,\mu}, \varpi^{\mu})$ and $Q_{d,\mu} = Q(\gamma_{d,\mu}, \varpi^{\mu})$. It will be convenient to change coordinates via the isomorphism of **F**-algebras:

$$F[T]/(T^{n} - \varpi^{d}) \xrightarrow{\sim} \mathbf{F}[\varrho^{n}, \varrho^{d}]$$

$$\varpi \mapsto \varrho^{n},$$

$$T \mapsto \varrho^{d}.$$

Under this isomorphism, the \mathbf{G}_m -action on $F[T]/(T^n - \varpi^d)$ from above corresponds to the \mathbf{G}_m -action on $\mathbf{F}[\varrho^n, \varrho^d]$ given by $c \cdot \varrho = c\varrho$. Moreover, $f_{\varpi^\mu}^{(i)} = \varpi^{\mu_i} T^{i-1}$ corresponds to $\varrho^{a_i(\mu)}$, where

$$a_i(\mu) = n\mu_i + d(i-1)$$
 for $1 \le i \le n$.

Observe that at the same time,

$$\gamma_{d,\mu} = \begin{pmatrix} 0 & \varpi^{b_1} & & \\ & 0 & \ddots & \\ & & \ddots & \varpi^{b_{n-1}} \\ \varpi^{b_0} & & & 0 \end{pmatrix}$$

where the integers $b_i = b_i(\mu)$ are defined by

$$b_i(\mu) = \begin{cases} \mu_i - \mu_{i+1} & i = 1, \dots, n-1, \\ d + \mu_n - \mu_1 & i = 0. \end{cases}$$

Thus, the tuple $a(\mu)$ determines the tuple $b(\mu)$ via the identity

$$nb_i(\mu) = a_i(\mu) + d - a_{i+1}(\mu),$$

where we set $a_0 := a_n$, i.e., interpreting the index i as a residue modulo n.

8.14. To summarize: In the new coordinate ϱ , we have

$$M_{d,\mu} = \mathcal{O}\langle \varrho^{a_1(\mu)}, \dots, \varrho^{a_n(\mu)} \rangle.$$

We write [N] for the **F**-point of $\mathcal{Q}_{d,\mu}$ corresponding to an $\mathbf{F}[\varrho^n,\varrho^d]$ -submodule $N\subseteq M_{d,\mu}$. Such a submodule is stable under the \mathbf{G}_m -action on $M_{d,\mu}$ if and only if it can be generated by a set of monomials in ϱ . In this case, under the isomorphism $\mathcal{Q}_{d,\mu} \simeq \mathcal{F}\ell_{0,\geq 0}(\gamma_{d,\mu})$, the point [N] corresponds to a point of $\mathcal{F}\ell_{0,\geq 0}(\gamma_{d,\mu})$ fixed under the \mathbf{G}_m -action (8.1), hence to a point of the form

$$\overline{w}^{\nu} P_0 \in \mathcal{F}\ell_{0, \geq 0}(\gamma_{d,\mu})^{\mathbf{G}_m}$$
 for some $\nu \in D_{d,\mu}(0) \cap X_{\geq 0}^{\vee}$.

In this case, we set $N_{\nu} = N$. Writing

$$a_i(\mu + \nu) = n(\mu_i + \nu_i) + d(i-1),$$

similarly to before, we can check that

$$N_{\nu} = \mathcal{O}\langle \varrho^{a_1(\mu+\nu)}, \dots, \varrho^{a_n(\mu+\nu)} \rangle.$$

8.15. To each point $\nu \in D_{d,\mu}(0) \cap X_{\geq 0}^{\vee}$, we assign two numerical invariants, in a way that depends on the pair (d, μ) . Namely, let

$$\mathbf{a}_{d,\mu}(\nu) = \dim_{\mathbf{F}}(M_{d,\mu}/N_{\nu}),$$

$$\mathbf{d}_{d,\mu}(\nu) = \dim_{\mathbf{F}}(\mathcal{Q}_{d,\mu}(\nu)),$$

where, in the second formula,

$$\mathcal{Q}_{d,\mu}(\nu) = \{ [N] \in \mathcal{Q}_{d,\mu} \mid c \cdot [N] \to [N_{\nu}] \text{ as } c \to 0 \}.$$

Both of these invariants admit formulas that are explicitly combinatorial. First, since $\varpi = \varrho^n$, we see that

$$a_{d,\mu}(\nu) = \nu_1 + \dots + \nu_n.$$

Second, by modifying a formula of Piontkowski,

$$d_{d,\mu}(\nu) = \sum_{i=1}^{n} \operatorname{gap}_{d,\mu,i}(\nu),$$

where we set

$$\begin{split} \mathsf{gap}_{d,\mu,i}(\nu) &= |\{a_i(\mu + \nu) \leq a < a_i(\mu + \nu) + d \mid \varrho^a \in M_{d,\mu} - N_\nu\}| \\ &= |\{0 \leq j < d \mid \varrho^{a_i(\mu + \nu) + j} \in M_{d,\mu} - N_\nu\}|. \end{split}$$

To rewrite $\operatorname{gap}_{d,\mu,i}$ solely in terms of $d,\mu,i,\nu,$ let

$$\sigma_d: \{1, 2, \dots, n\} \times \mathbb{Z} \to \{1, 2, \dots, n\}$$

be the map defined by

$$d\sigma_d(i, j) \equiv di + j \pmod{n}$$
.

This gives $a_i(\mu + \nu) + j \equiv d(i-1) + j \equiv a_{\sigma_d(i,j)}(\mu) \pmod{n}$, from which

$$\begin{split} \text{gap}_{d,\mu,i}(\nu) &= |\{0 \leq j < d \mid a_{\sigma_d(i,j)}(\mu) \leq a_i(\mu + \nu) + j < a_{\sigma_d(i,j)}(\mu + \nu)\}| \\ &= |\{0 \leq j < d \mid 0 \leq a_i(\mu + \nu) - a_{\sigma_d(i,j)}(\mu) + j < n\nu_{\sigma_d(i,j)}\}|. \end{split}$$

Above, $a_i(\mu + \nu) - a_{\sigma_d(i,j)}(\mu) + j$ is a multiple of n, explicitly given by

$$a_{i}(\mu + \nu) - a_{\sigma_{d}(i,j)}(\mu) + j$$

$$= n(\mu_{i} + \nu_{i}) + d(i-1) + j - n(\mu_{\sigma_{d}(i,j)} + \nu_{\sigma_{d}(i,j)}) + d(\sigma_{d}(i,j) - 1)$$

$$= n(\alpha_{i,\sigma_{d}(i,j)}, \mu + \nu) + d(i - \sigma_{d}(i,j)) + j,$$

where in general, $\alpha_{i,k}: \mathbb{Z}^n \to \mathbb{Z}$ is the root $\alpha_{i,k}(x_1,\ldots,x_n) = x_i - x_k$.