In the new model, equations 1-3 are the same with the older model. Equations 1 and 2 are the basic Wilson-Cowan column.

$$\dot{e_j} = -e_j + (k_e - r_e e_j) \mathcal{F}[c_1 e_j - c_2 i_j + k_s \sum_{k \in \mathbb{N}_j} e_k + P + \phi(t)], \tag{1}$$

$$\dot{i}_j = -i_j + (k_i - r_i e_j) \mathcal{F}[c_3 e_j - c_4 i_j + k_s \sum_{k \in \mathbb{N}_j} e_k + Q];$$
(2)

where

$$\mathcal{F}(x) = \frac{1}{1 + \exp[-a(x - \theta)]} - \frac{1}{1 + \exp(a\theta)}.$$
 (3)

 $\phi(t)$ is the slow gating variable:

$$\dot{\phi} = -\mu_1 \phi + \left(\frac{\mu_2 \exp\left(\kappa (M - \eta)\right)}{1 + \exp\left(\kappa (M - \eta)\right)}\right). \tag{4}$$

M is the metabolic substrate, which is regeneration term minus consumption:

$$\dot{M} = g_r(e) - g_c(e). \tag{5}$$

$$g_r = k_r \beta; g_c = k_c \left(\frac{e^2}{1 + e^2} \right); \tag{6}$$

where β is the recovery variable with homeostatic coupling:

$$\dot{\beta} = -\nu_1 \beta + \left(\frac{\nu_2 \exp(\phi - \zeta)}{1 + \exp(\phi - \zeta)}\right). \tag{7}$$

Using equation 6 as the energy substrate equation, the system behavior is similar as the old system in the previous EMBC paper. There exists a stable periodic solution in the slow gating ϕ so that the fast system manifests burst-like activity.

Synchronization Analysis

Neural Coupling

Consider two coupled burst suppression models with excitatory synaptic coupling in the fast dynamics. Denote them as columns $j, k, j, k = 1, 2, j \neq k$. Then the synaptic input to macrocolumn j, k is $k_f e_k, k_f e_j$ for $j, k = 1, 2, j \neq k$. k_f represents the coupling strength of fast neuronal coupling. The system reads:

$$\dot{e}_j = -e_j + (k_e - r_e e_j) \mathcal{F}[c_1 e_j - c_2 i_j + k_j e_k + P + \phi_j(t)]$$
(8)

$$\dot{i}_j = -i_j + (k_i - r_i e_j) \mathcal{F}[c_3 e_j - c_4 i_j + Q],$$
 (9)

$$\dot{\phi_j} = -\mu_1 \phi_j + \left(\frac{\mu_2 e^{(\kappa M_j)}}{1 + e^{(\kappa M_j)}}\right) \tag{10}$$

$$\dot{M}_j = k_r \beta_j - k_c \left(\frac{e_j^2}{1 + e_j^2}\right) \tag{11}$$

$$\dot{\beta} = -\nu_1 \beta + \left(\frac{\nu_2 e^{\phi}}{1 + e^{\phi}}\right) \tag{12}$$

Since $e_k \ge 0, k_j > 0$, $p_j(t) = k_j e_k + P_j + \phi_j(t) \ge P_j + \phi_j(t)$, meaning the coupling adds more excitation in each column. Thus two columns tend to synchronize under this coupling.

Definition (Burst Synchronization): For columns j, k, burst synchronization occurs when $\|\phi_k(t) - \phi(t)_j\| < \epsilon$, where positive ϵ is arbitrarily small. (Note: Here we use norm $\|x(t)\| = \sup_t |x(t)|$ for continuous functions x(t).)

Statement: There exists a coupling strength value f_f^* so that for $k_f > k_f^*$, burst synchronization occurs.

Proof: Suppose $\mu_k = \mu_j = \mu$, $\kappa = 1$. It suffices to show for $\phi_{\perp} = \phi_j - \phi_k$, $\dot{\phi_{\perp}} \to 0$.

$$\dot{\phi_{\perp}} = \mu(-\phi_{\perp} + \frac{e^{M_j} - e^{M_k}}{(1 + e^{M_j})(1 + e^{M_k})}) \tag{13}$$

Notice $(1+e^{M_j})(1+e^{M_k}) \ge 1 > 0$, if $||e^{M_j} - e^{M_k}|| \to 0$ then the equation above is stable and there is synchronization. Since exponential is monotonic, we want to show $||M_j - M_k|| \to 0$. But $0 \le ||M_j|| - ||M_k|| \le ||M_j - M_k||$, so we seek a coupling value k_f^* s.t. $||M_j|| = ||M_k||$.

Consider two isolated macrocolumns j, k, and they have bursts from 0 to time τ_j, τ_k respectively. For example, in column j, at time $\tau_j, \phi_j(\tau_j)$ starts to drop below the threshold for bursting, i.e. $\phi_j(t) + P < P^*$ for $t > \tau_j$ and consequently $e_j(t) = 0$. By continuity in e_j , there is a small neighborhood of $\phi_j(\tau_j)$ over which $e_j(t)$ and $\phi_j(t)$ have one-to-one correspondence.

In each column, the energy substrate $\dot{M} = k_r \beta - k_c \left(\frac{e^2}{1+e^2}\right)$ where $\beta \ge 0$ is close to a constant by choosing $\nu_1 \approx 0$ due to slow homeostasis. Thus:

$$M(t) = k_r \beta t - k_c \mathcal{C}(\min(t, \tau)) \tag{14}$$

where C(t) is the consumption term:

$$C(t) = \int_0^t (\frac{e^2}{1 + e^2}) dt \tag{15}$$

Notice that M(t) has an extreme value at time τ . If there exists a coupling strength k_f^* s.t. $||M_j|| = ||M_k||$, then $|M_j(\tau_j)| = |M_k(\tau_k)|$. Moreover, burst synchronization occurs when two columns have the same burst duration $\tau_j = \tau_k = \tau$. Therefore we seek a k_f^* so that after the fast neuronal coupling, two columns j, k have

$$|k_r \beta_j \tau - k_c \mathcal{C}(e_j, \tau)| = |k_r \beta_k \tau - k_c \mathcal{C}(e_k, \tau)| \tag{16}$$

If $\beta_j = \beta_k$, the problem simplifies to showing there exists a k_f^* so that

$$\int_0^{\tau} \frac{e_j^2}{1 + e_j^2} dt - \int_0^{\tau} \frac{e_k^2}{1 + e_k^2} dt = 0$$
 (17)

Integral has a solution over finite interval $[0,\tau]$. If the integral has a solution $\mathcal{G}(e)$, then $\mathcal{G}(e_j(t))|_0^{\tau} - \mathcal{G}(e_k(t))|_0^{\tau} = 0$, by one-to-one correspondence of e(t) and $\phi(t)$ around time τ , we can write:

$$\mathcal{G}(\phi_j(\tau) + k_f^* \phi_k(\tau)) = \mathcal{G}(\phi_k(\tau) + k_f^* \phi_j(\tau)) \tag{18}$$

Observe that $k_f^* = 1$ is the threshold value. For $k_f > k_f^*$, $\phi_j(t) = \phi_k(t)$ and burst synchronization between two columns can be observed.

Substrate Coupling

Consider two columns coupled through diffusive coupling in the slow metabolic process. For columns $j, k = 1, 2, j \neq k$, the metabolic substrate variable equations are:

$$\dot{M}_j = k_r \beta_j - k_c \left(\frac{e_j^2}{1 + e_j^2} \right) + k_s (M_k - M_j)$$
(19)

where k_s represents the slow metabolic substrate coupling strength.

Statement: There exists a coupling strength (threshold) value k_s^* so that burst synchronization occurs for $k_s > k_s^*$. Proof: From previous analysis, burst synchronization occurs when $||M_j - M_k|| \to 0$, or $M_{\perp}(t) = M_j(t) - M_k(t) \to 0$ as $t \to \infty$. So it suffices to show M_{\perp} is stable at $M_{\perp} = 0$ under the slow coupling. Compute:

$$\dot{M}_{\perp} = -2k_s M_{\perp} + k_r (\beta_i - \beta_k) + k_c (g_c(e_k) - g_c(e_j)) \tag{20}$$

where $g_c(e_{k,j}) = \frac{e_{k,j}^2}{1+e_{k,j}^2}$, and β_j, β_k can be viewed as constants. We want to show that exists a k_s^* , so that for $k_s > k_s^*$,

$$-2k_s + k_c \frac{d(g_c(e_k) - g_c(e_j))}{dM_{\perp}} < 0 \tag{21}$$

Or

$$\inf\left\{k_s\right\} > \sup\left|\frac{1}{2}k_c \frac{d(g_c(e_k) - g_c(e_j))}{dM_\perp}\right| \tag{22}$$

Then it suffices to show that $\frac{d(g_c(e_k) - g_c(e_j))}{dM_{\perp}}$ has a bounded derivative. To calculate $\frac{1}{2}k_c\frac{d(g_c(e_k) - g_c(e_j))}{dM_{\perp}}$:

$$\frac{1}{2}k_c \frac{d(g_c(e_k) - g_c(e_j))}{dM_\perp} = \frac{1}{2}k_c \frac{d(g_c(e_k) - g_c(e_j))}{dt} \frac{dt}{dM_\perp} = \frac{1}{2}k_c \left(\frac{2e_k\dot{e_k}}{(1 + e_k^2)^2} - \frac{2e_j\dot{e_j}}{(1 + e_j^2)^2}\right) \frac{dt}{dM_\perp}$$
(23)

and since $|e| \leq 1, |\dot{e}| \leq 1$:

$$\frac{1}{2}k_c \left(\frac{2e_k \dot{e_k}}{(1 + e_k^2)^2} - \frac{2e_j \dot{e_j}}{(1 + e_j^2)^2} \right) \le k_c \left(\left| \frac{e_k \dot{e_k}}{(1 + e_k^2)^2} \right| + \left| \frac{e_j \dot{e_j}}{(1 + e_j^2)^2} \right| \right) \le 2k_c$$
 (24)

Therefore

$$\frac{1}{2}k_c \frac{d(g_c(e_k) - g_c(e_j))}{dM_\perp} \le 2k_c \frac{dt}{dM_\perp} \tag{25}$$

To evaluate $\frac{dt}{dM_{\perp}}$ we consider the metabolic substrate difference M_{\perp} of two isolated columns before the coupling is introduced. For each column, recall the consumption equation over one burst interval $(0 \le t \le \tau)$, $C(t) = \int_0^t g_c(e)dt$. Due to periodicity in the fast activity e, C(t) is monotonically increasing with an increment $\Delta C = C(t + \Delta T) - C(t) = \int_0^{\Delta T} g_c(e)dt$, where ΔT is the period of fast oscillatory activity. Define consumption rate $R := \Delta C/\Delta T$. Claim: $C(t) \approx Rt$, $R \le 1/2$ with a bounded error that vanishes at multiple times of ΔT .

(proof:) Observe that for $0 \le t \le \tau$, $C(t) \le \frac{1}{2}t$ is bounded since $|e| \le 1$. Also for t being multiple times of ΔT , C(t) = Rt, $R \le \frac{1}{2}$ is a bounded linear operator. The approximation error is v(t) = C(t) - Rt, then $||v|| = \max |v(t)| = \max \left| \int_0^t g_c(e) dt - Rt \right|$. The maximal value occurs within the interval $[0, \Delta T]$, and $||v|| \le (\frac{1}{2} - R)\Delta T$ is bounded is small. Thus the approximation is reasonable. (end)

Then the energy substrate variable can be simplified as $M(t) = k_r \beta t - k_c R \min(t, \tau)$. For two columns $j, k = 1, 2, j \neq k$, we assume column k has longer burst $(\tau_k > \tau_j)$, then:

$$\begin{cases}
\dot{M}_{\perp} = k_r(\beta_j - \beta_k) + k_c(R_k - R_j), t \leq \min(\tau_j, \tau_k) \\
\dot{M}_{\perp} = k_r(\beta_j - \beta_k) + k_cR_k, \min(\tau_j, \tau_k) \leq t \leq \max(\tau_j, \tau_k) \\
\dot{M}_{\perp} = k_r(\beta_j - \beta_k), t > \max(\tau_j, \tau_k)
\end{cases}$$
(26)

Notice that $\left|\dot{M}_{\perp}\right| \geq k_r \left|\beta_j - \beta_k\right| > 0.$

$$\left| \frac{dt}{dM_{\perp}} \right| \le \left| \frac{1}{k_r(\beta_j - \beta_k)} \right| = \frac{1}{k_r |\beta_j - \beta_k|} \tag{27}$$

Hence

$$\sup \left| \frac{1}{2} k_c \frac{d(g_c(e_k) - g_c(e_j))}{dM_\perp} \right| \le \frac{2k_c}{k_r |\beta_j - \beta_k|} < \infty$$
(28)

If we let $k_s^* = \frac{2k_c}{k_r|\beta_j - \beta_k|}$, then for $k_s > k_s^*$, the diffusive coupling strength is sufficient for burst synchronization.

Table	1:	Parameterization

Parameter	Definition	Typical Value
k_e, k_i	The maximal values of the excitatory, inhibitory response functions	1,1
r_e, r_i	The absolute refractory period of the excitatory, inhibitory subpopulation	1,1
k_s	Synaptic coupling strength between columns	1.5
P	Level of background excitation in the excitatory subpopulation	-4
Q	Level of background excitation in the inhibitory subpopulation	0
c_1, c_3	Average number of excitatory synapses per cell	16,15
c_{2}, c_{4}	Average number of inhibitory synapses per cell	12,3
$\theta_e, \theta_i, a_e, a_i$	Maximal slope parameters of the logistic curve for the excitatory, inhibitory subpopulation	4,3.7,1.3,2
μ_1, μ_2	Modulation time scale constant	0.008, 0.008
κ	Sensitivity to the variations of the metabolic substrate	50
η,ζ	Threshold values to changes in the metabolic substrate, slow gating process	0,0
k_r, k_c	Metabolic recovery and consumption rate	0.24, 0.36
$ u_1, u_2 $	Homeostatic autoregulation time scale constant	0.09, 0.09