Observations and Insights

```
In [1]: # Dependencies and Setup
        import matplotlib.pyplot as plt
        import pandas as pd
        import numpy as np
        import scipy.stats as st
        # Study data files
        mouse metadata path = "data/Mouse metadata.csv"
        study_results_path = "data/Study_results.csv"
        # Read the mouse data and the study results
        mouse_metadata = pd.read_csv(mouse_metadata_path)
        # print(mouse metadata)
        study results = pd.read csv(study results path)
        # print(study results)
        # Combine the data into a single dataset
        combined_data = pd.merge(study_results,mouse_metadata,on="Mouse ID", how="lef
        t")
        combined data
        # Display the data table for preview
        # combined data
        # drop duplicates()
        # combined data.sort values("Mouse ID",inplace = True)
        # combined data.drop duplicates(subset ="Mouse ID",
                                keep = False, inplace = True)
        # combined data.describe()
```

Out[1]:

	Mouse ID	Timepoint	Tumor Volume (mm3)	Metastatic Sites	Drug Regimen	Sex	Age_months	Weight (g)
0	b128	0	45.000000	0	Capomulin	Female	9	22
1	f932	0	45.000000	0	Ketapril	Male	15	29
2	g107	0	45.000000	0	Ketapril	Female	2	29
3	a457	0	45.000000	0	Ketapril	Female	11	30
4	c819	0	45.000000	0	Ketapril	Male	21	25
1888	r944	45	41.581521	2	Capomulin	Male	12	25
1889	u364	45	31.023923	3	Capomulin	Male	18	17
1890	p438	45	61.433892	1	Ceftamin	Female	11	26
1891	x773	45	58.634971	4	Placebo	Female	21	30
1892	b879	45	72.555239	2	Stelasyn	Female	4	26

1893 rows × 8 columns

```
In [2]: # Checking the number of mice.
number_of_mouse = len(combined_data['Mouse ID'].unique())
number_of_mouse
```

Out[2]: 249

Out[3]: array(['g989'], dtype=object)

In [4]: # Optional: Get all the data for the duplicate mouse ID.
combined_data.loc[combined_data["Mouse ID"]=='g989']

Out[4]:

	Mouse ID	Timepoint	Tumor Volume (mm3)	Metastatic Sites	Drug Regimen	Sex	Age_months	Weight (g)
107	g989	0	45.000000	0	Propriva	Female	21	26
137	g989	0	45.000000	0	Propriva	Female	21	26
329	g989	5	48.786801	0	Propriva	Female	21	26
360	g989	5	47.570392	0	Propriva	Female	21	26
620	g989	10	51.745156	0	Propriva	Female	21	26
681	g989	10	49.880528	0	Propriva	Female	21	26
815	g989	15	51.325852	1	Propriva	Female	21	26
869	g989	15	53.442020	0	Propriva	Female	21	26
950	g989	20	55.326122	1	Propriva	Female	21	26
1111	g989	20	54.657650	1	Propriva	Female	21	26
1195	g989	25	56.045564	1	Propriva	Female	21	26
1380	g989	30	59.082294	1	Propriva	Female	21	26
1592	g989	35	62.570880	2	Propriva	Female	21	26

```
In [5]: # Create a clean DataFrame by dropping the duplicate mouse by its ID.
combined_data = combined_data.loc[combined_data["Mouse ID"]!='g989']
combined_data
```

Out[5]:

Mouse Timepoint ^T ID		Tumor Volume (mm3)	Metastatic Sites	Drug Regimen	Sex	Age_months	Weight (g)	
0	b128	0	45.000000	0	Capomulin	Female	9	22
1	f932	0	45.000000	0	Ketapril	Male	15	29
2	g107	0	45.000000	0	Ketapril	Female	2	29
3	a457	0	45.000000	0	Ketapril	Female	11	30
4	c819	0	45.000000	0	Ketapril	Male	21	25
1888	r944	45	41.581521	2	Capomulin	Male	12	25
1889	u364	45	31.023923	3	Capomulin	Male	18	17
1890	p438	45	61.433892	1	Ceftamin	Female	11	26
1891	x773	45	58.634971	4	Placebo	Female	21	30
1892	b879	45	72.555239	2	Stelasyn	Female	4	26

1880 rows × 8 columns

```
In [6]: # Checking the number of mice in the clean DataFrame.
number_of_mice = len(combined_data["Mouse ID"].unique())
number_of_mice
```

Out[6]: 248

Summary Statistics

```
In [7]: # Generate a summary statistics table of mean, median, variance, standard devi
        ation, and SEM of the tumor volume for each regimen
        mean = combined data.groupby(["Drug Regimen"]).mean()["Tumor Volume (mm3)"]
        mean
        median = combined_data.groupby(["Drug Regimen"]).median()["Tumor Volume (mm3)"
        median
        variance = combined_data.groupby(["Drug Regimen"]).var()["Tumor Volume (mm3)"]
        variance
        st_dev = combined_data.groupby(["Drug Regimen"]).std()["Tumor Volume (mm3)"]
        st dev
        SEM = combined_data.groupby(["Drug Regimen"]).sem()["Tumor Volume (mm3)"]
        # Use groupby and summary statistical methods to calculate the following prope
        rties of each drug regimen:
        # mean, median, variance, standard deviation, and SEM of the tumor volume.
        # Assemble the resulting series into a single summary dataframe.
        statistic = pd.DataFrame({"mean": mean,
                                   "median": median,
                                   "variance": variance,
                                   "standard deviation": st dev,
                                   "SEM": SEM})
        statistic
```

Out[7]:

	mean	median	variance	standard deviation	SEM
Drug Regimen					
Capomulin	40.675741	41.557809	24.947764	4.994774	0.329346
Ceftamin	52.591172	51.776157	39.290177	6.268188	0.469821
Infubinol	52.884795	51.820584	43.128684	6.567243	0.492236
Ketapril	55.235638	53.698743	68.553577	8.279709	0.603860
Naftisol	54.331565	52.509285	66.173479	8.134708	0.596466
Placebo	54.033581	52.288934	61.168083	7.821003	0.581331
Propriva	52.320930	50.446266	43.852013	6.622085	0.544332
Ramicane	40.216745	40.673236	23.486704	4.846308	0.320955
Stelasyn	54.233149	52.431737	59.450562	7.710419	0.573111
Zoniferol	53.236507	51.818479	48.533355	6.966589	0.516398

Out[8]:

Tumor Volume (mm3)

	mean	median	var	std	sem
Drug Regimen					
Capomulin	40.675741	41.557809	24.947764	4.994774	0.329346
Ceftamin	52.591172	51.776157	39.290177	6.268188	0.469821
Infubinol	52.884795	51.820584	43.128684	6.567243	0.492236
Ketapril	55.235638	53.698743	68.553577	8.279709	0.603860
Naftisol	54.331565	52.509285	66.173479	8.134708	0.596466
Placebo	54.033581	52.288934	61.168083	7.821003	0.581331
Propriva	52.320930	50.446266	43.852013	6.622085	0.544332
Ramicane	40.216745	40.673236	23.486704	4.846308	0.320955
Stelasyn	54.233149	52.431737	59.450562	7.710419	0.573111
Zoniferol	53.236507	51.818479	48.533355	6.966589	0.516398

Bar and Pie Charts

In [9]: # Generate a bar plot showing the total number of unique mice tested on each d
 rug regimen using pandas.
 drug_count = combined_data["Drug Regimen"].value_counts()
 drug_count
 drug_count.plot(kind="bar", rot=45)
 plt.xlabel("Drug")
 plt.ylabel("Number of Unique Mice Tested")
 plt.show()

In [10]: # Generate a bar plot showing the total number of unique mice tested on each d
 rug regimen using pyplot.
 plt.bar(drug_count.index.values,drug_count.values)
 plt.xticks(rotation=45)
 plt.xlabel("Drug")
 plt.ylabel("Number of Unique Mice Tested")
 plt.show()


```
In [11]: # Generate a pie plot showing the distribution of female versus male mice usin
g pandas

gender_count = combined_data["Sex"].value_counts()
gender_count
gender_count.plot(kind="pie",autopct="%1.1f%%")
plt.show()
```


Quartiles, Outliers and Boxplots

```
In [14]:
         # Merge this group of with the original dataframe to get the tumor volume at t
          he last timepoint
          Capomulin merge = pd.merge(Capomulin df,combined data,on=["Mouse ID","Drug Reg
          imen", "Sex", "Age months", "Weight (g)", "Timepoint", "Tumor Volume (mm3)", "Metast
          atic Sites"],how='left')
          Capomulin_merge
          Ramicane merge = pd.merge(Capomulin merge, Ramicane df, on=["Mouse ID", "Drug Reg
          imen", "Sex", "Age months", "Weight (g)", "Timepoint", "Tumor Volume (mm3)", "Metast
          atic Sites"],how='outer')
          Ramicane merge
          Infubinol merge = pd.merge(Ramicane merge, Infubinol df, on=["Mouse ID", "Drug Re
          gimen", "Sex", "Age_months", "Weight (g)", "Timepoint", "Tumor Volume (mm3)", "Metas
          tatic Sites"],how='outer')
          Infubinol merge
          Total merge = pd.merge(Infubinol merge, Ceftamin df, on=["Mouse ID", "Drug Regime
          n", "Sex", "Age_months", "Weight (g)", "Timepoint", "Tumor Volume (mm3)", "Metastati
          c Sites"],how='outer')
          Total_merge.head
```

```
Out[14]: <bound method NDFrame.head of
                                               Mouse ID Timepoint Tumor Volume (mm3)
                                                                                             Met
          astatic Sites Drug Regimen \
                                               39.952347
                                                                                  Capomulin
                  w150
                                 10
                                                                            0
          1
                  r157
                                 15
                                               46.539206
                                                                            0
                                                                                  Capomulin
          2
                                 20
                                                                                  Capomulin
                  f966
                                               30.485985
                                                                            0
                                 35
          3
                  i246
                                               38.753265
                                                                            1
                                                                                  Capomulin
          4
                                 45
                                               38.982878
                                                                            2
                                                                                  Capomulin
                  b128
                   . . .
                                . . .
                                                                           . .
          . .
          95
                  k210
                                 45
                                               68.923185
                                                                            3
                                                                                   Ceftamin
          96
                  x822
                                 45
                                               61.386660
                                                                            3
                                                                                   Ceftamin
          97
                                 45
                                                                            1
                  1733
                                               64.299830
                                                                                   Ceftamin
          98
                  o287
                                 45
                                               59.741901
                                                                            4
                                                                                   Ceftamin
                                                                                   Ceftamin
          99
                  p438
                                 45
                                               61.433892
                                                                            1
                  Sex
                       Age months
                                     Weight (g)
          0
                 Male
                                 23
                                              23
          1
                 Male
                                 22
                                              25
                                              17
          2
                 Male
                                 16
                                 21
                                              21
          3
               Female
          4
               Female
                                  9
                                              22
                                             . . .
                  . . .
                                . . .
          95
                 Male
                                 15
                                              28
                                              29
          96
                 Male
                                  3
          97
               Female
                                  4
                                              30
                                  2
                                              28
          98
                 Male
          99
              Female
                                 11
                                              26
```

[100 rows x 8 columns]>

```
In [15]: # Put treatments into a list for for loop (and later for plot labels)
         # Create empty list to fill with tumor vol data (for plotting)
         # Calculate the IQR and quantitatively determine if there are any potential ou
         tliers.
             # Locate the rows which contain mice on each drug and get the tumor volume
         S
             # add subset
             # Determine outliers using upper and lower bounds
         Total tumor vol data = Total merge['Tumor Volume (mm3)']
         quartiles = Total tumor vol data.quantile([.25,.5,.75])
         lowerq = quartiles[0.25]
         upperq = quartiles[0.75]
         iqr = upperq-lowerq
         lower bound = lowerg - (1.5*igr)
         upper bound = upperq + (1.5*iqr)
         print(f"The four treatments potential outliers could be values below {lower_bo
         und} and above {upper bound} could be outliers.")
```

The four treatments potential outliers could be values below 3.07396687374998 12 and above 94.04403868375002 could be outliers.

```
In [16]: | #### CAPOMULIN
         # Merge this group df with the original dataframe to get the tumor volume at t
         he last timepoint
         Capomulin merge = pd.merge(Capomulin df,combined data,on=["Mouse ID","Drug Reg
         imen", "Sex", "Age months", "Weight (g)", "Timepoint", "Tumor Volume (mm3)", "Metast
         atic Sites"],how='left')
         Capomulin merge.head()
         # Preparing Tumor volume data for Capomulin
         cap tumor vol data = Capomulin merge['Tumor Volume (mm3)']
         quartiles = cap_tumor_vol_data.quantile([.25,.5,.75])
         lowerq = quartiles[0.25]
         upperq = quartiles[0.75]
         iqr = upperq-lowerq
         lower bound = lowerq - (1.5*iqr)
         upper bound = upperq + (1.5*iqr)
         print(f"Capomulin potential outliers could be values below {lower bound} and a
         bove {upper bound} could be outliers.")
```

Capomulin potential outliers could be values below 20.70456164999999 and above 51.83201549 could be outliers.

```
In [17]:
         #### RAMICANE
         # Merge this group df with the original dataframe to get the tumor volume at t
         he last timepoint
         Ramicane merge = pd.merge(Ramicane df,combined data,on=["Mouse ID","Drug Regim
         en", "Sex", "Age_months", "Weight (g)", "Timepoint", "Tumor Volume (mm3)", "Metastat
         ic Sites"],how='left')
         Ramicane merge.head()
         # Preparing Tumor volume data for Ramicane
         ram_tumor_vol_data = Ramicane_merge['Tumor Volume (mm3)']
         quartiles2 = ram_tumor_vol_data.quantile([.25,.5,.75])
         lowerq2 = quartiles2[0.25]
         upperg2 = quartiles2[0.75]
         iqr2 = upperq2-lowerq2
         lower bound2 = lowerg2 - (1.5*iqr2)
         upper bound2 = upperq2 + (1.5*iqr2)
         print(f"Capomulin potential outliers could be values below {lower bound2} and
          above {upper bound2} could be outliers.")
```

Capomulin potential outliers could be values below 17.912664470000003 and above 54.30681135 could be outliers.

```
In [18]:
         #### INFUBINOL
         # Merge this group df with the original dataframe to get the tumor volume at t
         he last timepoint
         Infubinol merge = pd.merge(Infubinol df,combined data,on=["Mouse ID","Drug Reg
         imen", "Sex", "Age_months", "Weight (g)", "Timepoint", "Tumor Volume (mm3)", "Metast
         atic Sites"],how='left')
         Infubinol merge.head()
         # Preparing Tumor volume data for infubinol
         infu tumor vol data = Infubinol merge['Tumor Volume (mm3)']
         quartiles3 = infu tumor vol data.quantile([.25,.5,.75])
         lowerq3 = quartiles3[0.25]
         upperq3 = quartiles3[0.75]
         iqr3 = upperq3-lowerq3
         lower bound3 = lowerq3 - (1.5*iqr3)
         upper bound3 = upperq3 + (1.5*iqr3)
         print(f"Capomulin potential outliers could be values below {lower bound3} and
          above {upper bound3} could be outliers.")
```

Capomulin potential outliers could be values below 36.83290494999999 and above 82.74144559000001 could be outliers.

```
In [19]:
         #### CEFTAMINE
         # Merge this group df with the original dataframe to get the tumor volume at t
         he last timepoint
         Ceftamin_merge = pd.merge(Ceftamin_df,combined_data,on=["Mouse ID","Drug Regim
         en", "Sex", "Age_months", "Weight (g)", "Timepoint", "Tumor Volume (mm3)", "Metastat
         ic Sites"],how='left')
         Ceftamin merge.head()
         # Preparing Tumor volume data for Ceftmaine
         ceft_tumor_vol_data = Ceftamin_merge['Tumor Volume (mm3)']
         quartiles4 = ceft_tumor_vol_data.quantile([.25,.5,.75])
         lowerq4 = quartiles4[0.25]
         upperq4 = quartiles4[0.75]
         iqr4 = upperq4-lowerq4
         lower bound4 = lowerg4 - (1.5*igr4)
         upper bound4 = upperq4 + (1.5*iqr4)
         print(f"Capomulin potential outliers could be values below {lower_bound4} and
          above {upper bound4} could be outliers.")
```

Capomulin potential outliers could be values below 25.355449580000002 and above 87.66645829999999 could be outliers.

Line and Scatter Plots

Out[21]:

	Mouse ID	Timepoint	Tumor Volume (mm3)	Metastatic Sites	Drug Regimen	Sex	Age_months	Weight (g)
0	b128	0	45.000000	0	Capomulin	Female	9	22
472	b128	5	45.651331	0	Capomulin	Female	9	22
679	b128	10	43.270852	0	Capomulin	Female	9	22
719	b128	15	43.784893	0	Capomulin	Female	9	22
933	b128	20	42.731552	0	Capomulin	Female	9	22

```
In [22]: x_axisTP = forline_df["Timepoint"]
    tumsiz = forline_df["Tumor Volume (mm3)"]

plt.title('Capomulin treatmeant of mouse b128')
    plt.plot(x_axisTP, tumsiz,linewidth=2, markersize=12)
    plt.xlabel('Timepoint (Days)')
    plt.ylabel('Tumor Volume (mm3)')

plt.savefig('linechart')
    plt.show()
```


Correlation and Regression

The correlation between mouse weight and average tumor volume is 0.84

Out[25]: LinregressResult(slope=0.9544396890241045, intercept=21.552160532685015, rval ue=0.8419363424694718, pvalue=1.3225722434712642e-07, stderr=0.12754359033201 34)

```
In [26]: #capavg['Weight (g)']
    m_slope = 0.9544396890241045
    m_intercept = 21.552160532685015
```

```
In [39]: # # for mouse weight and average tumor volume for the Capomulin regimen
         x values = cap regimen["Weight (g)"]
         y values = cap regimen["Tumor Volume (mm3)"]
         m_slope, m_intercept, m_rvalue, m_pvalue, m_std_err = st.linregress(x_values,
         y_values)
         regress_values = x_values * m_slope + m_intercept
         line eq = "y = " + str(round(m slope,2)) + "x + " + str(round(m intercept,2))
         plt.scatter(x_values,y_values)
         plt.plot(x values, regress values, "r-")
         plt.annotate(line_eq,(20,40),fontsize=15,color="red")
         plt.xlabel('Weight(g)')
         plt.ylabel('Average Tumore Volume (mm3)')
         plt.show()
         # # murder rate = crime data.iloc[:, 5]
         # # m_slope, m_int, m_r, m_p, m_std_err = stats.linregress(year, murder_rate)
         # # m_fit = m_slope * year + m_int
         # # plt.scatter(year, murder rate)
         # # plt.plot(year,m fit,"--")
         # # plt.xticks(year, rotation=90)
         # # plt.xlabel('Year')
         # # plt.ylabel('Murder Rate')
         # # plt.show()
         # y_values = cap_regimen['Weight (g)']*m_slope+m_intercept
         # plt.scatter(cap_regimen['Weight (g)'],cap_regimen['Tumor Volume (mm3)'])
         # plt.plot(cap_regimen['Weight (g)'],y_values,color="red")
         # plt.xlabel('Weight(q)')
         # plt.ylabel('Average Tumore Volume (mm3)')
         # plt.savefig('linearregression')
         # plt.show()
```



```
In [ ]:
```