MA1201 Calculus and Basic Linear Algebra II Area of the region

Problem Set 3

Application of Integration

Problem 1

- (a) Find the area of the region bounded by the curve $y = 1 + e^{3x}$, x-axis, x = 1 and x = 3.
- (b) Find the area of the region bounded by $y = \ln x$, x-axis, $x = \frac{1}{2}$ and x = 2.
- (c) Find the area of the region bounded by $y = 1 + x^2$, $y = e^{-x}$, y-axis and x = 2.
- (d) Find the area of the region bounded by $y = -x^2 + 2x + 1$, x + y = 1.

Problem 2

In this problem, we would like to find the area of the region bounded by the curves $y=e^{2x}-3e^x-1$ and $y=e^x-4$ for $-2 \le x \le 2$. In order to find the area, it is important to compare the values between $f_1(x)=e^{2x}-3e^x-1$ and $f_2(x)=e^x-4$ for $-2 \le x \le 2$ so that we can determine the "upper curve" and "lower curve". This problem will show you a general technique (which is taught in the lecture) to achieve this goal.

- (a) Find all *critical points* by solving the equation $f_1(x) = f_2(x)$ for $-2 \le x \le 2$. These critical points are the points where the relative magnitude between $f_1(x)$ and $f_2(x)$ changes.
- (b) With the critical points obtained in (a), we divide the interval [-2,2] into several small intervals with the critical points as the "cutoff" points. For each small interval, determine which function $(f_1(x) \text{ or } f_2(x))$ is larger.

(Hint: You may compare the values by simply substituting some value of x within the small interval.)

(c) Using the information obtained in (b), find the area of the region bounded by the curves $y=e^{2x}-3e^x-1$ and $y=e^x-4$ for $-2 \le x \le 2$.

Problem 3

Using similar technique as in Problem 2, find the area of the region bounded by the curves $y = (x^2 - x + 1)e^x$ and $y = xe^x$ for $0 \le x \le 2$.

Volume

Problem 4

- (a) Find the volume of the solid generated by rotating the region bounded by $y = \sin 3x$, x-axis for $0 \le x \le \pi$ about the x-axis for one complete revolution.
- (b) Find the volume of the solid generated by rotating the region bounded by $y=1+\cos 3x$ and $y=1+\cos x$ for $0\leq x\leq \frac{\pi}{2}$ about the x-axis for one complete revolution.
- (c) Find the volume of the solid generated by rotating the region bounded by $y=e^{2x}$, x-axis, y-axis and $x=\ln 3$ about
 - (i) the x-axis for 1 complete revolution.
 - (ii) the y-axis for 1 complete revolution.
 - (iii) y = -1 for 1 complete revolution.
 - (iv) x = -1 for 1 complete revolution.
- (d) Find the volume of the solid generated by rotating the region above $y=\frac{1}{2}$ and below $y=\sin x$ for $0 \le x \le \pi$ about
 - (i) the x-axis for 1 complete revolution.

- the y-axis for 1 complete revolution. (ii)
- the line $y = \frac{1}{2}$ for 1 complete revolution. (iii)

Arc Length

Problem 5

- (a) Find the arc length of the curve $y = \ln(\sec x)$ for $0 \le x \le \frac{\pi}{4}$.
- (b) Find the arc length of the curve $y = \frac{1}{3}x^{\frac{3}{2}}$ for $0 \le x \le 5$.
- (c) Find the arc length of the curve $(y-1)^3 = \frac{9}{4}x^2$ for $0 \le x \le \frac{2}{3}(3)^{\frac{3}{2}}$.
- (d) Find the arc length of the curve $y = \frac{a}{2} \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}} \right)$ for $0 \le x \le a$ where a > 0.
- (e) Find the arc length of the curve $\begin{cases} x(t) = \cos t + t \sin t \\ y(t) = \sin t t \cos t \end{cases}, \quad 0 \le t \le \frac{\pi}{2}.$ (f) Find the arc length of the curve $\begin{cases} x(t) = t \sin t \\ y(t) = 1 \cos t \end{cases} \text{ for } 0 \le t \le 2\pi.$
- (g) Find the length of the parabolic arc with equation $\begin{cases} x(t) = at^2 \\ v(t) = 2at \end{cases}$ for $0 \le t \le a$, where a > 0.

Surface Area

Problem 6

- (a) Find the surface area of the surface generated by rotating the region bounded by the curves $y=x^3$, x-axis, x=0 and x=2 about the x-axis for one complete revolution.
- (b) Find the surface area of the surface generated by rotating the region in the first quadrant bounded by the curve $y^2 = 4 - x$ and the x-axis about the x-axis for 1 complete revolution.
- (c) Find the surface area of the surface generated by rotating the region bounded by the curve $y = e^x$, x = 0, x = 1 and the x-axis about the x-axis for 1 complete revolution. (Hint: The substitution $e^x = \tan \theta$ may be useful in computing the resulting integral. Try this when you get stuck.)
- (d) Let R be the region bounded by the four straight lines y = x, x + y = 4, y = x 2 and x + y = 2. Find the surface area of the surface obtained by rotating the region R about the x-axis for 1 complete revolution.

Miscellaneous Problems

Problem 7

- Let R be the region bounded by $y = e^x$, $y = e^{-x}$ and the vertical line x = 2.
 - (a) Find the area of the region R.
 - (b) (i) Find the volume of the solid generated by rotating the region R about the x-axis.
 - (ii) Find the volume of the solid generated by rotating the region R about the y-axis.
 - (iii) Find the volume of the solid generated by rotating the region R about y = -1.

Problem 8

- Let R be the region bounded by $y = x^2$ and $x = y^2$.
 - (a) Find the area of the region R.
 - (b) (i) Find the volume of the solid generated by rotating the region R about the x-axis.
 - (ii) Find the volume of the solid generated by rotating the region R about the y-axis.
 - (iii) Find the volume of the solid generated by rotating the region R about y = -1.
 - (c) Find the arc length of the boundary curve of the region R.

Problem 9

Let S be the region (in the first quadrant) bounded by a circle $x^2 + y^2 = 2$, $y^2 = x$ and the x-axis (as shown below)

- (a) Find the area of the region S.
- (b) (i) Find the volume of the solid generated by rotating the region S about the x-axis.
 - (ii) Find the volume of the solid generated by rotating the region S about the \underline{v} -axis
- (c) Find the surface area of the solid generated by rotating the region S about the x-axis.