HDU物理营: 959238750

杭州电子科技大学期末考试卷(A)卷

考试课程	大学物理 2		考试日期	2019. 1. 15	成 绩
课程号	A0715012	教师号		任课教师姓名	
考生姓名		学号(8位)		年级	专业

【请将答案直接写在试卷上,最后两页是草稿纸,不要将答案写在草稿纸上。】

题号	_	=	Ξ	总
得分				

得分

- 一、单项选择题(本大题共27分,每小题3分)
- 1. 一质点作简谐振动,周期为 T. 当它由平衡位置向 x 轴正方向运动时,从二分之一最大位 移处到最大位移处这段路程所需要的时间为
 - (A) T/12. (B) T/8.
 - (C) T/6.
- (D) T/4.
- 2. 一平面简谐波沿 Ox 轴正方向传播,t=0 时刻的波形图如图所示,则 P 处介质质点的振动 方程是

(B)
$$y_P = 0.10\cos(4\pi t - \frac{1}{3}\pi)$$
 (SI).

(C)
$$y_p = 0.10\cos(2\pi t + \frac{1}{3}\pi)$$
 (SI).

(D)
$$y_P = 0.10\cos(2\pi t + \frac{1}{6}\pi)$$
 (SI).

- 3. 在真空中波长为 λ 的单色光,在折射率为n的透明介质中从A沿某路径传播到B,若A、B两点相位差为 3π ,则此路径 AB 的光程为
 - (A) 3 A.

(C) 1.5 n \(\lambda\).

- (B) $1.5 \lambda/n$.
- (D) 1.5 A

4. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是 L

CHAPTER AND THE STATE OF THE SECOND STATE OF T

- (A) 使屏靠近双缝.
- (B) 使两缝的问距变小,
- (C) 把两个缝的宽度稍微调窄.
- (D) 改用波长较小的单色光源.
- 5. 一束波长为2的平行单色光垂直入射到一单缝AB上,装置如图. 在屏幕D上形成衍射图样, 如果P是中央亮纹一侧第一个暗纹所在的位置,则 \overline{BC} 的长度为
 - $(A) \lambda/2.$
- (B) 2\(\lambda\).
- $(C) 3\lambda/2$
- $(D)\lambda$.

- 6. 两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过. 当其中一偏振片慢慢转 动 180° 时透射光强度发生的变化为:
 - (A) 光强单调增加.
 - (B) 光强先增加, 后又减小至零.
 - (C) 光强先增加,后减小,再增加.
 - (D) 光强先增加, 然后减小, 再增加, 再减小至零,
- 7. 在某地发生两件事,静止位于该地的甲测得时间间隔为 4 s, 若相对于甲作匀速直线运动的 乙测得时间间隔为5s,则乙相对于甲的运动速度是(c表示真空中光速)
 - (A) (3/5) c.
- (B) (4/5) c.
- (C) (2/5) c.
- (D) (1/5) c.
- 8. 由氢原子理论知, 当大量氢原子处于 n = 3 的激发态时, 原子跃迁将发出: [
 - (A) 一种波长的光.
- (B) 两种波长的光,
- (C) 三种波长的光.
- (D) 连续光谱.
- 9. 已知粒子在一维矩形无限深势阱中运动, 其波函数为:

$$\psi(x) = \frac{1}{\sqrt{a}} \cdot \cos \frac{3\pi x}{2a}, \quad (-a \le x \le a)$$

那么粒子在 x = 5a/6 处出现的概率密度为
(A) $1/(2a)$. (B) $1/a$.
(C) $1/\sqrt{2a}$. (D) $1/\sqrt{a}$
得分 二、填空题(本大题7小题,共21分)
10. (本题 3 分) 质量 $M=1.2$ kg 的物体,挂在一个轻弹簧上振动.用秒表测得此系统在 45 s
内振动了 90 次. 若在此弹簧上再加挂质量 $m=0.6$ kg 的物体,而弹簧所受的力未超过弹性限
度.则该系统新的振动周期为
11. (本题 3 分) 一声波在空气中的波长是 0.25 m, 传播速度是 340 m/s, 当它进入另一介质
时,波长变成了 0.37 m,它在该介质中传播速度为
12. (本题 3 分) 在迈克耳孙干涉仪的一支光路上, 垂直于光路放入折射率为 n、厚度为 h 的
透明介质薄膜. 与未放入此薄膜时相比较,两光束光程差的改变量为
13. (本题 3 分)某单色光垂直入射到一个每毫米有 800 条刻线的光栅上,如果第一级谱线的
衍射角为30°,则入射光的波长应为
14. (本题 3 分) 使光强为 I_0 的自然光依次垂直通过三块偏振片 P_1 , P_2 和 P_3 . P_1 与 P_2 的偏振
化方向成 45° 角, P_2 与 P_3 的偏振化方向成 45° 角. 则透过三块偏振片的光强 I
为
15. (本题 3 分)质子在加速器中被加速,当其动能为静止能量的 3 倍时,其质量为静止质量
的倍.
16. (本题 3 分) 在 $B=1.25\times10^{-2}$ T 的匀强磁场中沿半径为 $R=1.66$ cm 的圆轨道运动的α粒子
的德布罗意波长是

(普朗克常量 $h = 6.63 \times 10^{-34} \,\text{J} \cdot \text{s}$, 基本电荷 $e = 1.60 \times 10^{-19} \,\text{C}$)

三、计算题(本大题8小题,共52分)

得分

17. (本题 5 分) 一物体同时参与两个同方向的简谐振动: $x_1 = 0.04\cos(2\pi t + \frac{1}{2}\pi)$ (SI), $x_2 = 0.03\cos(2\pi t + \pi)$ (SI) 求此物体的振动方程.

得分

18. (本题 8 分) 两波在一很长的弦线上传播, 其表达式分别为: $y_1 = 4.00 \times 10^{-2} \cos \frac{1}{3} \pi (4x - 24t) \quad (SI)$

 $y_2 = 4.00 \times 10^{-2} \cos \frac{1}{3} \pi (4x + 24t)$ (SI) 求: (1) 两波的频率、波长、波速:

- (2) 两波叠加后的节点位置;
- (3) 叠加后振幅最大的那些点的位置.

19. (本题 5 分)在双缝干涉实验中,所用单色光的波长为 600 nm, 双缝 问距为 1.2 mm,双缝与屏相距 500 mm,求相邻干涉明条纹的间距

得分

20. (本题 8 分) 图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触。 透镜凸表面的曲率半径是 R=400 cm. 用某单色平行光垂直入射, 观察反

射光形成的牛顿环,测得第5个明环的半径是0.30 cm.

(1) 求入射光的波长.

(2) 设图中 OA=1.00 cm, 求在半径为 OA 的范围内可观察到的明环数目.

得分

- 21. (本题 8 分)波长 λ =600nm(1nm=10°m)的单色光垂直入射到一光栅上, 测得第二级主极大的衍射角为 30°, 且第三级是缺级。
- (1) 光栅常数(a+b)等于多少?
- (2) 透光缝可能的最小宽度 "等于多少?
- (3) 在选定了上述(a+b)和 a 之后,求在衍射角 $-\frac{1}{2}\pi < \varphi < \frac{1}{2}\pi$ 范围内可能观察到的全部 主极大的级次.

22. (本题 5 分) 一束自然光自水中入射到空气界面上, 若水的折射率为 1.33, 空气的折射率为 1.00, 求布儒斯特角.

得分

23. (本题 5 分) 一体积为 V_0 ,静止质量为 m_0 的立方体沿其一棱的方向相 对于观察者 A 以速度 v 运动. 求: 观察者 A 测得其密度是多少?

得分

24. (本题 8 分) 光电管的阴极用逸出功为 A = 2.2 eV 的金属制成, 今用

一单色光照射此光电管, 阴极发射出光电子, 测得遏止电势差为

 $|U_a| = 5.0 \text{ V}$, 试求: (1) 光电管阴极金属的光电效应红限波长;

(2) 入射光波长.

(普朗克常量 $h = 6.63 \times 10^{-34} \,\text{J} \cdot \text{s}$, 基本电荷 $e = 1.6 \times 10^{-19} \,\text{C}$)

