

PRELIMINARY

IRL3502

HEXFET® Power MOSFET

- Advanced Process Technology
- Optimized for 4.5V-7.0V Gate Drive
- Ideal for CPU Core DC-DC Converters
- Fast Switching

Description

These HEXFET Power MOSFETs were designed specifically to meet the demands of CPU core DC-DC converters. Advanced processing techniques combined with an optimized gate oxide design results in a die sized specifically to offer maximum efficiency at minimum cost.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 5.0V	110⑤	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 5.0V	67	A
I _{DM}	Pulsed Drain Current ①	420	
P _D @T _C = 25°C	Power Dissipation	140	W
	Linear Derating Factor	1.1	W/°C
V_{GS}	Gate-to-Source Voltage	± 10	V
V_{GSM}	Gate-to-Source Voltage	14	V
	(Start Up Transient, tp = 100µs)		
E _{AS}	Single Pulse Avalanche Energy®	390	mJ
I _{AR}	Avalanche Current①	64	А
E _{AR}	Repetitive Avalanche Energy①	14	mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
T _J	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.89	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20			V	V _{GS} = 0V, I _D = 250μA	
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.019		V/°C	Reference to 25°C, I _D = 1mA	
-				0.008		V _{GS} = 4.5V, I _D = 64A ④	
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.007	Ω	V _{GS} = 7.0V, I _D = 64A ④	
V _{GS(th)}	Gate Threshold Voltage	0.70			V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	
g _{fs}	Forward Transconductance	77			S	$V_{DS} = 10V, I_D = 64A$	
	Business Comment			25		V _{DS} = 20V, V _{GS} = 0V	
I _{DSS}	Drain-to-Source Leakage Current			250	μA	V _{DS} = 10V, V _{GS} = 0V, T _J = 150°C	
	Gate-to-Source Forward Leakage			100	- A	V _{GS} = -10V	
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = 10V	
Qg	Total Gate Charge			110		I _D = 64A	
Q _{gs}	Gate-to-Source Charge			27	nC	$V_{DS} = 16V$	
Q _{gd}	Gate-to-Drain ("Miller") Charge			39		$V_{GS} = 4.5V$, See Fig. 6 \oplus	
t _{d(on)}	Turn-On Delay Time		10			V _{DD} = 10V	
t _r	Rise Time		140		ns	$I_D = 64A$	
t _{d(off)}	Turn-Off Delay Time		96		115	$R_G = 3.8\Omega, V_{GS} = 4.5V$	
t _f	Fall Time		130			$R_D = 0.15\Omega$, ④	
			4			Between lead,	
L _D	Internal Drain Inductance		4.5				6mm (0.25in.)
	Internal Source Inductance		7.5		nH	from package	
L _S						and center of die contact	
C _{iss}	Input Capacitance		4700			V _{GS} = 0V	
Coss	Output Capacitance		1900		pF	$V_{DS} = 15V$	
C _{rss}	Reverse Transfer Capacitance		640			f = 1.0MHz, See Fig. 5	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			440@		MOSFET symbol
	(Body Diode)			- 110©	A	showing the
I _{SM}	Pulsed Source Current			400	^	integral reverse
	(Body Diode) ①	4	420	420	p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.3	٧	T _J = 25°C, I _S = 64A, V _{GS} = 0V ④
t _{rr}	Reverse Recovery Time		87	130	ns	$T_J = 25^{\circ}C$, $I_F = 64A$
Q _{rr}	Reverse RecoveryCharge		200	310	nC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, $L = 190\mu H$ $R_G = 25Ω$, $I_{AS} = 64A$.
- $\label{eq:local_problem} \begin{tabular}{ll} \begin{tabular}{ll} $\mathbb{I}_{\text{SD}} \leq 64A$, di/dt} \leq 86A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ $T_{J} \leq 150 ^{\circ}C$ \end{tabular}$
- ④ Pulse width ≤ 300 μ s; duty cycle ≤ 2%.
- ⑤ Calculated continuous current based on maximum allowable junction temperature; for recommended current-handling of the package refer to Design Tip # 93-4

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

800 I_D E_{AS} , Single Pulse Avalanche Energy (mJ) TOP 29A 40A **BOTTOM** 64A 600 400 200 25 50 75 100 125 150 Starting T_J, Junction Temperature (°C)

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Maximum Avalanche Energy Vs. Drain Current

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12. On-Resistance Vs. Drain Current

Fig 13. On-Resistance Vs. Gate Voltage

Package Outline

TO-220AB Outline

Dimensions are shown in millimeters (inches)

Part Marking Information TO-220AB

International TOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371

http://www.irf.com/ Data and specifications subject to change without notice. 11/97

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/