DBMS Team Project

노**스트라다무스**

2012011636 김원형 2012011692 민병찬 2012011829 신기한 2012011863 유누리 2013039970 이수환 2014017529 김은서 2014012015 김현우

Problem formulation

Objective

Nasdaq.csv 데이터 최종1개월에서 1일전 close기준으로 최종 1개월 내에 high가 10%이상이 된 적이 있는 종목을 예측

예측 모델 찾기

Training set

Dates: 2015-11-17 ~ Dates: 2016 -02 -24 : 58개 DATA

검증하기

Testing set

Dates: 2016-02-25 ~ Dates: 2016-03-18: 30개 DATA

\geq

예측Count Method

Max margin

Nasdaq.csv 데이터 최 종1개월에서 1일전 close기준으로 최종 1개월 내에 high 가 10%이상이 된 적이 있는 종목을 예측

MAX(기준일 대비 30일의 주가 상승률)

Nasdaq.csv 데이터 최 종1개월에서 1일전 close기준으로 최종 1개월 내에 high 가 10%이상이 된 적이 있는 종목을 예측

Confidence Interval

오늘 사용할 Attribute를 소개합니다

TABLE STOCK [2441669,9]

m <- Max margin

	symbol	type	dates	open	high	low	close	volume	date-seq	m	sym-seq
1	AAAP	D	2015-11-17	24.46	25.51	24.38	24.62	25900	1	1.337124	1
2	AAAP	D	2015-11-18	24.62	26.31	24.06	25	111420	2	1.3168	1
3	AAAP	D	2015-11-19	24.85	26	24.71	25.9	113100	3	1.271042	1
4	AAAP	D	2015-11-20	26	27.01	25.1	25.2	60300	4	1.306349	1
5	AAAP	D	2015-11-23	25.6	25.6	25	25.15	59700	5	1.308946	1
6	AAAP	D	2015-11-24	25.21	27	25.09	25.62	56473	6	1.284934	1
7	AAAP	D	2015-11-25	26.49	26.49	25.19	25.8	11800	7	1.275969	1
8	AAAP	D	2015-11-26	25.8	25.8	25.8	25.8	0	8	1.275969	1
9	AAAP	D	2015-11-27	25.37	26.5	25.01	26.5	15400	9	1.242264	1
10	AAAP	D	2015-11-30	27.67	28.08	25.21	26.44	33100	10	1.245083	1
11	AAAP	D	2015-12-01	26.5	27.5	26.11	26.58	96200	11	1.238525	1
12	AAAP	D	2015–12–02	26.2	27.94	26	26.44	53500	12	1.245083	1

오늘 사용할 Attribute를 소개합니다

TABLE

SYMBOL	TYPE	DATES	OPEN	HIGH	LOW	CLOSE	VOLUME
AAAP	D	20151117	24.46	25.51	24.38	24.62	25900

30개 DATA

MARGIN = HIGH /CLOSE

SELECT MAX(MARGIN)

(1) 주식종목 선택하기

stock <- sqldf("SELECT * FROM stock

WHERE SYMBOL IN

(SELECT SYMBOL FROM stock GROUP BY SYMBOL

HAVING MAX(dates)=20160318 AND COUNT(dates)>=50)")

조건1: 마지막 dates의 데이터가 있어야 한다 Why? 중간에 사라진 종목을 제거 하기 위함

조건2: 데이터 수가 50개 이상은 있어야 한다. Why? 중간에 생긴 종목도 고려하기위함

(2) Stock table, dateList만들기

```
stock$dates <-
paste(substr(stock$dates,1,4),substr(stock$dates,5,6),substr(stock$
dates,7,8),sep="-")
dateList <- sqldf("select distinct dates from stock")
dateList$date_seq <- 1:dim(dateList)[1]
```

날짜데이터에 '표시넣기

STOCK	[2441669,	9]			dates	에 seqei	nce부여	하기
X	symbol	type	dates	open	high	low	close	volume
1	AAAP	D	2015-11-17	24.46	25.51	24.38	24.62	25900

dateList [88,2]

dates	date_seq
2015-11-17	1
2015-11-18	2
2015-11-19	3
2015-11-20	4
2015-11-23	5

(3) Table Stock1, dateList 만들기

STOCK1 [2441669,10]

 X symbol type
 dates
 open high low close volume
 Date_seq

 1 AAAP
 D
 2015-11-17
 24.46
 25.51
 24.38
 24.62
 25900
 1

'm'이라는 속성값을 만들어서 0으로저장

STOCK2 [2441669,10]

,	X	symbol	type	dates	open	high	low	close	volume	Date_seq	m
	1	AAAP	D	2015-11-17	24.46	25.51	24.38	24.62	25900	1	0

(4) Table dl 만들기, Stock2 의 종목 정리하기

마지막데이터가있고, 총데이터의수가50개이상있는주식의 종목만을선택한다

```
sqldf("select distinct(symbol) from stock2")
```

```
dl <- sqldf("select symbol from stock2
group by symbol
```

having max(date_seq)-min(date_seq)+1 !=count(date_seq)")

stock2 <- stock2[!(stock2\$symbol %in% dl\$symbol),]

dl [417,1]

symbol

AAME

AAPC

ABAC

...

자! Stock2에서 d의 종목과 겹치는 종목을 제거한다

Dim(stock2)

STOCK2 [2441669,10]

STOCK2 [209557,10]

Table d은전체 date 개수만큼의데이터수가 없는 주식 종목을 거장한다

(5) STOCK2에 sym_seq 속성 집어넣기

• Dates갯수가88개없는주식을종목과날짜를보여준다

sqldf("select symbol, count(dates) from stock2
group by symbol
having count(dates)!=88")
symbolList <- sqldf("select distinct symbol from stock2 order by symbol")

dim(symbolList) symbolList [2385,1]

symbolList\$sym_seq <- 1:dim(symbolList)[1]</pre>

stock2 <- sqldf("select a.*, b.sym_seq from stock2 a, symbolList b where a.symbol=b.symbol

order by symbol, dates")

Stock2에 sym_seq 속성을추기한다

	symbol	Count(Dates)
1	AMTD	69
2	AXSM	86
3	CCRC	87
26	XRDC	76

symbolList [2385,2]

symbol	Sym_seq
AAAP	1
AAL	2
AAOI	3
ZYNE	2385

```
> head(stock2)
  symbol type
                   dates open high low close volume date_seq m sym_seq
            D 2015-11-17 24.46 25.51 24.38 24.62
   AAAP
                                                               1 0
                                                  25900
   AAAP
            D 2015-11-18 24.62 26.31 24.06 25.00 111420
                                                               2 0
            D 2015-11-19 24.85 26.00 24.71 25.90 113100
   AAAP
                                                               3 0
           D 2015-11-20 26.00 27.01 25.10 25.20 60300
                                                               4 0
   AAAP
           D 2015-11-23 25.60 25.60 25.00 25.15 59700
                                                               5 0
   AAAP
            D 2015-11-24 25.21 27.00 25.09 25.62 56473
   AAAP
                                                               6 0
```

(6) count_date 로 종목별로 데이터 개수 알아보기

```
count_date = sqldf("select symbol, count(dates) cnt from stock2
group by symbol")
head(count_date)
```

Count_date[2385,2]

	symbol	cnt
1	AAAP	88
2	AAL	88
3	AAOI	88
26	ZYNE	88

주식종목과 Dates갯수(cnt)를보여주는 TABLE COUNT_date만들기

STRATEGY CODE

(7) 각 종목의 해당 date까지의 max(margin)값을 m으로 설정

```
cum seq = 0
                                   각 <del>종목</del>별로가지고있는 cnt기준으로 첫날다음날부터 마지막날에
                                   30일을 뺀만큼의 개수만큼의 반복문이돌아간다.
for (i in 1:2385){
       for (j in (cum_seq+1):(cum_seq+count_date$cnt[i]-30)){
               max_margin = 0
               for (k in (j+1):(j+30)){
                      margin = stock2$high[k]/stock2$close[j]
                      if (margin > max_margin){ max_margin = margin }
       stock2$m[j] = max_margin}
                                                  j=1일 때, k는2:31이 되며,
       cum_seq <- cum_seq + count_date$cnt[i] }</pre>
                                                  k in 2:31 'margin' = high[k]/close[1] 중
write.csv(stock2, file="KIHAN2.csv")
                                                  에 max값이 m[1] 에 들어간다.
```

STRATEGY CODE

How to make margin?

SYMBOL	TYPE	DATES	OPEN	HIGH	LOW	CLOSE	VOLUME
AAAP	D	20151117	24.46	25.51	24.38	24.62	25900

SYMBOL	DATES	HIGH
AAAP	20151118	24.62
AAAP	20151119	24.72
AAAP	20151120	22.83
AAAP	20151121	21.50
	••••	
AAAP	20151221	32.92
	••••	
AAAP	20151229	30

MARGIN = HIGH[K] /CLOSE [1]

SELECT MAX(MARGIN)

STRATEGY CODE

stock2 <- read.csv("KIHAN2.csv")

Stock2 [209557:12]

X	symbol	type	dates	open	high	low	close	volume	date-seq	m	sym-seq
1	AAAP	D	2015-11-17	24.46	25.51	24.38	24.62	25900	1	1.337124	1
2	AAAP	D	2015-11-18	24.62	26.31	24.06	25	111420	2	1.3168	1
3	AAAP	D	2015-11-19	24.85	26	24.71	25.9	113100	3	1.271042	1
4	AAAP	D	2015-11-20	26	27.01	25.1	25.2	60300	4	1.306349	1
5	AAAP	D	2015-11-23	25.6	25.6	25	25.15	59700	5	1.308946	1
6	AAAP	D	2015-11-24	25.21	27	25.09	25.62	56473	6	1.284934	1
7	AAAP	D	2015-11-25	26.49	26.49	25.19	25.8	11800	7	1.275969	1
8	AAAP	D	2015-11-26	25.8	25.8	25.8	25.8	0	8	1.275969	1
9	AAAP	D	2015-11-27	25.37	26.5	25.01	26.5	15400	9	1.242264	1
10	AAAP	D	2015-11-30	27.67	28.08	25.21	26.44	33100	10	1.245083	1
11	AAAP	D	2015-12-01	26.5	27.5	26.11	26.58	96200	11	1.238525	1
12	AAAP	D	2015-12-02	26.2	27.94	26	26.44	53500	12	1.245083	1

Symbol별로 m 값 >=1.1의 개수를 • symbol과 num 속성으로 table m1을 만든다.

m1 <- sqldf("select symbol, count(symbol) as num from stock2 where m>=1.1 group by symbol order by symbol")

Symbol별로 m 값 >=1.1이 있는 것의 symbol만을 table name으로 만든다.

m1[2137,2]

	symbol	num
1	AAAP	43
2	AAL	11
3	AAOI	23
2137	ZYNE	29

П

name[2137,1]

"Idi" [2 07, 1]	
	symbol
1	AAAP
2137	ZYNE

stock2.symbol= name.symbol ?
m 값 >=1.1이 있는 것의 symbol 값만을 찾기 위함!

m2 <- sqldf("select b.symbol, count(date_seq)-30 as datenum from stock2 a, name b where a.symbol=b.symbol group by a.symbol order by a.symbol")

그 symbol의 전체 date_seq에서 30을 뺀 값을 datenum으로 저장

m2[2137,2]

	symbol	datenum
1	AAAP	58
2	AAL	58
3	AAOI	58
26	ZYNE	58

stock2.symbol= name.symbol ?
m 값 >=1.1이 있는 것의 symbol 값만을 찾기 위함!

m2 <- sqldf("select b.symbol, count(date_seq)-30 as datenum from stock2 a, name b where a.symbol=b.symbol group by a.symbol order by a.symbol")

그 symbol의 전체 date_seq에서 30을 뺀 값을 datenum으로 저장

m2[2137,2]

	symbol	datenum
1	AAAP	58
2	AAL	58
3	AAOI	58
26	ZYNE	58

m3\(-sqldf("select a.*, b.datenum, 0 ratio from m1 a, m2 b where a.symbol=b.symbol")

for(i in 1:2137) m3\$ratio[i] = m3\$num[i] / m3\$datenum[i]

m3 (- sqldf("select a.* from m3 a order by ratio desc")

M3 table에 m1 table의 모든 속성과 m1.symbol에 일치하는 m2의 symbol의 Datenum 속성을 추가 그리고 ratio 속성을 모두 '0' default 값으로 추가한다

m3[2137,4]

	symbol	num	Datenum	ratio
1	AAAP	43	58	0
2	AAL	11	58	0
3	AAOI	23	58	0
26	ZYNE	29	58	0

Ratio[i] = num[i] /date num[i]

단순히 m>=1.1 이상의 개수를 세는 것이 아니라, date의 개수를 고려하여 상대도수로 나타내어 정 확성을 높이고자 하였다. (중간 시점부터 시작하는 주식이 있기 때문)

STRATEGY CODE - Confidence interval method

- t1 <- sqldf("select distinct symbol, avg(m) ave, stdev(m) std, 0 YN from stock2 where m > 0 group by symbol")
- t1 <- sqldf("select a.*, count(date_seq)-30 cnt from t1 a, stock2 b where a.symbol = b.symbol group by a.symbol")
- MAX margin 에 대한 명균하고 표준편차를 구해 준다.
 - 몇 개의 date 를 가지고 있는지에 대한 정보를 'cnt'속성을 추가시켜 보여준다

STRATEGY CODE - Confidence interval method

MAX margin ~N(m, std^2)일때, 해당 MAX margi의 값이 1.25 이상이라면 YN = 'o'로 분류한다.

> 휴리스틱 enumeration으로 얻은 결과 1.25의 정확도가 가장 놓아서 1.25 선택

T1

symbol	YN	
AAAP	0	
AAL	0	
AAOI	0	
AAON	0	
AAPL	0	

symbol	YN
AAAP	0
AAL	X
AAOI	0
AAON	0
AAPL	X

Testing 결과—what is result of our predict?

```
answer <-
read.csv("C:\\Users\\USER\\Documents\\answer_march.csv")
our_answer <- sqldf("select symbol from m3 where ratio < 0.05")
dim(our_answer)
y_answer <- sqldf("select symbol from answer where YN == 'O'")
compare <- sqldf("select a.symbol from y_answer a, our_answer b
where a.symbol=b.symbol")
dim(compare)
compare
1069/1420
794/1042
```