(Q1)

Theorem 1. Let $f: A \to B$. Then there exists a subset $C \subseteq B$ such that $f: A \to C$ is bijective.

Proof. In order to prove that $f:A\to C$ is bijective, we prove that it is both surjective and injective.

Let C = f(A), that is, C is the image of f. Thus, f is surjective on C by construction. Since f is injective on B and $C \subseteq B$ by definition of function image, f is also injective on C.

Since $f: A \to C$ is both surjective and injective, it is therefore bijective.