libShower

Manual V0.1 frank.meisel@lhep.unibe.ch

Description

- This manual is intended to make the user familiar on the way showers are dealt with.
- The user should not bother about details.
- To increase the performance, the user may give additional information on the date to obtain a better result.

Overview

- Shower for Event classification.
- Shower characteristics
- Shower implementation in FEDRA

Object description

- A track in fedra
 - One Segment Per Plate
 - N(), Npl(), N0, Theta(), XYZ, P()

Object description

- A shower in fedra
 - Can have More than One Segment Per Plate
 - N(), Npl(), N0, Theta(), XYZ, P()
 - Plus additional information: Iongitudinal&transversal Profile!

Object description

- Using EdbTrackP as object class for Shower is ok, but we lose physical information.
- Compensated by infos in EdbShowerAlgE...
 - May be put later in a extra EdbShowerP class...
- Up to now: how is a shower represented/stored?
- We have Shower.root which uses a TTree to store the variables. Technically equivalent to do storage like EdbTrackP, but it requires complex I/O conversions to get from
 - TTree entry → EdbTrackP

What is to be done for showers?

- In case we have scanback done, vertex found, scanforth done (hadr. re-interaction), we need for the full description of the event some other information: showers?
- Why are showers for the event classification important?
- Electrons: nu_e from beam; tau->e;
- Photons: present in almost any event, mainly through the decay of:
- Pi0: Find two photons, match them in case of more

Finding showers

- Showers are either attached to vertex directly or indirectly:
 - Electrons: start to shower direct from the vertex without flight length; IP to vertex rather small; DeltaZ to vertex very small.
 - Photons: fly then showering happens; therefore IP to vertex bigger than attached tracks; DeltaZ to vertex can be large (mean flight length ca10plates).
- Finding a electron shower can be easier than photon shower (directly attached track or BT)

Properties of Showers

- We need to be sure of the following things.
- We have to find the shower (start)
- We have to reconstruct (collect all the tracks) it having as much of it reconstructed as possibles (lowest loss as possible).
- After shower(s) found and reconstructed we need the main properties:
 - Energy
 - ID
 - 1ry-2ry vtx attachment

Properties of the Shower.root file. a) basic quantities

Name i	n Shower	.root
--------	----------	-------

Description

Analogy in EdbTrackP

->MCEvt()

number eventb/I

sizeb nfilmb[] lengthfilmb

-b[] X, V, Ztx,ty -b[]

plateb -b[] MC event number

Number of Basetracks

Plate ID of BT[i]

Number of Plates Crossed

X,Y,Z Coordinates of BT[i]

TX,TY Coordinates of BT[i]

??(to be looked up)

Numbereventb[]

N()

??(to be looked up)

Npl()

->X(),Y(),Z()

->TX(),TY()

??(to be looked up)

Numbereventb[]

showerID/I

isizeb/l

ntrace1simu[sizeb]/I

ntrace2simu[sizeb]/I

ntrace3simu[sizeb]/I

Ntrace4simu[sizeb]/I

chi2btkb[sizeb]/F

showerID/I isizeb/l

ntrace1simu[sizeb]/I

ntrace2simu[sizeb]/I

ntrace3simu[sizeb]/I

Ntrace4simu[sizeb]/I

chi2btkb[sizeb]/F frank.meisel@lhep.unibe.ch

Numbereventb[]

showerID/I

isizeb/l

ntrace1simu[sizeb]/I

ntrace2simu[sizeb]/I

ntrace3simu[sizeb]/I

Ntrace4simu[sizeb]/I

chi2btkb[sizeb]/F

10

Properties of the Shower.root file. b) derived quantities

Name in Shower . root

Description

Analogy in EdbTrackP

number eventb/I

sizeb nfilmb[] lengthfilmb

-b[] X, V, Ztx,ty -b[]

plateb -b[]

sizeb nfilmb[]

lengthfilmb

number eventb/I

X, Y, Z-b[]

tx.ty -b[]

plateb -b∏ number_eventb/l

sizeb nfilmb[] lengthfilmb

X, Y, Z-b[]

tx,ty -b[]

plateb -b[]

Numbereventb[]

showerID/I

Ntrace4simu[sizeb]/I

chi2btkb[sizeb]/F

isizeb/l ntrace1simu[sizeb]/I ntrace2simu[sizeb]/I ntrace3simu[sizeb]/I

Numbereventb[] showerID/I

isizeb/l

ntrace1simu[sizeb]/I

ntrace2simu[sizeb]/I

ntrace3simu[sizeb]/I

Ntrace4simu[sizeb]/I

chi2btkb[sizeb]/F frank.meisel@lhep.unibe.ch

Numbereventb[]

showerID/I

isizeb/l

ntrace1simu[sizeb]/I

ntrace2simu[sizeb]/I

ntrace3simu[sizeb]/I

Ntrace4simu[sizeb]/I

chi2btkb[sizeb]/F

Reconstruction: Mode A

ShowerInstance = new EdbShowerRec();

 Choose Initiator Basetracks:

ShowerInstance-> SetInBTArray(TObjArray* InBTArray);

- Set the PVR object on ShowerInstance-> SetEdbPVRec(EdbPVRec* Ali); which the reconstruction shall operate:
- Start Reconstruction

ShowerInstance-> Execute();

Retrieve Reconstructed
 ShowerInstance-> GetRecoShowerArray();

Reconstruction: Mode B Frederics Algo Implementation

- To be filled and explained...:
- void recdown(int num, int MAXPLATE, int DATA, int Ncand, double* x0, double* y0, double* z0, double* tx0, double* ty0, double* chi20, int* W0, double* P0, int* Flag0, int* plate0, int* id0, int* TRid, double* Esim, int piece2, int piece2par)

Shower Energy Measurement

- The Shower Energy is measured using:
 - Basic Properties of the Shower
 - Conditions from Brick Scanning
- Shower Properties
 - Shape
 - Density
 - Angle

- Scan Conditions
 - Reco Efficiency
 - BG Level

Block diagram: energy

Implemented ScanEfficiencies

09.04.1 Example Brick: Bern 144320, Mic4

Energy: Technical

- Get Reconstructed Shower Array
- Start Energy Estimation
- Retrieve Reconstructed Shower Array, with P() filled.

```
// Instantate ShowerAlgorithmEnergy Class
EdbShowerAlgESimple* ShowerAlgEnergyInstance = new EdbShowerAlgESimple();
```

// Run Shower Energy Algorithm on all shower/tracks ShowerAlgEnergyInstance->DoRun(RecoShowerArray);

// All tracks contain now in P() the estimated energy.

Energy: stat. Results: sigma(E)/E gamma

Energy/NPl	0.5	0.75	1	1.5	2	3	4	6	8	16	32	64
10	0.68	0.64	0.63	0.62	0.6	0.54	0.49	0.45	0.45	0.43	0.33	0.33
12	0.61	0.56	0.54	0.54	0.52	0.47	0.44	0.4	0.4	0.41	0.32	0.38
14	0.59	0.51	0.49	0.49	0.48	0.45	0.42	0.38	0.36	0.41	0.31	0.37
16	0.59	0.51	0.47	0.42	0.4	0.38	0.36	0.32	0.32	0.37	0.29	0.31
18	0.56	0.47	0.44	0.42	0.4	0.38	0.36	0.31	0.3	0.36	0.28	0.39
20	0.7	0.55	0.48	0.39	0.36	0.34	0.32	0.29	0.27	0.32	0.26	0.37
23	0.57	0.49	0.45	0.39	0.37	0.33	0.31	0.27	0.25	0.29	0.25	0.31
26	0.64	0.52	0.46	0.4	0.35	0.3	0.29	0.25	0.22	0.25	0.22	0.25
29	0.55	0.47	0.44	0.38	0.34	0.29	0.28	0.24	0.21	0.23	0.2	0.24
32	0.58	0.49	0.44	0.38	0.34	0.3	0.27	0.23	0.21	0.21	0.19	0.23
35	0.59	0.49	0.44	0.38	0.35	0.3	0.27	0.23	0.2	0.2	0.18	0.21
40	0.58	0.48	0.44	0.39	0.35	0.29	0.27	0.23	0.2	0.18	0.17	0.21
45	0.58	0.48	0.45	0.39	0.35	0.29	0.27	0.23	0.2	0.18	0.16	0.19

Energy: stat. Results: sigma(E)/E ele

Energy/NPl	0.5	0.75	1	1.5	2	3	4	6	8	16	32	64
10	0.94	0.92	0.91	0.86	0.78	0.68	0.62	0.55	0.52	0.45	0.34	0.25
12	0.74	0.73	0.72	0.69	0.65	0.58	0.53	0.49	0.47	0.44	0.34	0.27
14	0.72	0.64	0.62	0.6	0.58	0.52	0.48	0.44	0.44	0.43	0.34	0.29
16	0.67	0.6	0.55	0.5	0.49	0.45	0.42	0.39	0.39	0.4	0.32	0.32
18	0.61	0.55	0.51	0.47	0.46	0.42	0.4	0.37	0.36	0.4	0.31	0.36
20	0.56	0.52	0.48	0.43	0.4	0.39	0.38	0.34	0.33	0.37	0.29	0.27
23	0.57	0.51	0.46	0.41	0.37	0.35	0.34	0.31	0.29	0.33	0.27	0.36
26	0.6	0.52	0.46	0.39	0.35	0.33	0.32	0.29	0.26	0.29	0.25	0.31
29	0.63	0.54	0.47	0.38	0.34	0.31	0.3	0.27	0.25	0.27	0.23	0.28
32	0.64	0.54	0.47	0.39	0.34	0.3	0.29	0.26	0.24	0.25	0.21	0.28
35	0.65	0.54	0.47	0.39	0.34	0.3	0.28	0.26	0.23	0.23	0.2	0.26
40	0.62	0.53	0.46	0.38	0.34	0.3	0.28	0.26	0.23	0.21	0.19	0.22
45	0.62	0.53	0.46	0.38	0.34	0.3	0.28	0.25	0.23	0.21	0.18	0.23

Interpolation

- Interpolate energy statistic uncertanties with ROOT Tspline3 class (between energies)
- (No interpolation done between plate binnings.)

More here: SYSTEMATICS

- Calculating energy gives you stat. AND sys. On the screen. Saved is then the quadratic sum.
 - (Attention: at the moment (svn1056) in fedra there is no additional variable to store momentum/energy error of a track/shower. Uncertainty is now *only* written in shower.root file.)
- Different sources have been investigated.
- See the following table for an overview.
 - (Details will be written up in the thesis, also many plots and tables; *explanations will follow here*)

	DEPENDS ON ENERGY ??	DEPENDS ON NPLATES ??	E/G IMPACT ??	PRIORITY	Sample Resolution/E gamma @ 1GeV@20Pl	Sample Resolution/E Electron @ 4GeV@20Pl	
		FROM THE	SCANNING METH	IOD			
EFFICIENCY MISMATCH	YES	YES	NO	HIGH	0.12	0.16	
BG LEVEL	YES	YES	YES	HIGH	?	?	
NPL, Before,After match	YES	YES	NO	MIDDLE	0.026	0.081	
DISALIGNMENT	YES	YES	NO	(SKIP)	-	-	
		FROM T	HE RECO METHO	D			
E/G MISMATCH	YES	YES	NO	LOW	0.04	0.03	
Shower Alg							
		FROM THE	Multivariate METH	HOD			
N TRAININGS CYLCES	YES	YES	NO	LOW	-	-	
N TRAININGS EVENTS	YES	YES	NO	LOW		-	
TYPE TRAININGS FILE	YES	YES	NO	MIDDLE	-	-	
Cycles&Events(File fixed)	YES	YES	NO	LOW	0.012	0.0068	
		FROM THE M	MONTE CARLO ME	THOD			
QUALITY CUT	-	-	-	LOW	?	?	
SHOWER PARAMETRISATION	-	-	-	(SKIP)	-	-	
ESTIMATED SUN (+linear, i.e. Overestimate					<0.33	<0.4	
STATISTICAL					0.48	0.38	

E: Systematics

- Show uncertainties from different sources.
- Electrons left, Photons right.
- (Tables with full valueset will be put later)

•

Take Care of different Y-axis scaling!

E: Systematics: Eff mismatch

Energy/NPl	0.5	0.75	1	1.5	2	3	4	6	8	16	32	64
10	0.13	0.18	0.23	0.25	0.25	0.21	0.19	0.15	0.13	0.085	0.051	0.028
12	0.099	0.13	0.18	0.21	0.22	0.2	0.18	0.15	0.14	0.096	0.059	0.032
14	0.054	0.11	0.15	0.18	0.19	0.18	0.17	0.15	0.14	0.098	0.054	0.025
16	0.052	0.099	0.13	0.16	0.18	0.18	0.17	0.16	0.14	0.11	0.059	0.027
18	0.05	0.088	0.11	0.14	0.16	0.17	0.17	0.16	0.15	0.11	0.059	0.025
20	0.053	0.088	0.11	0.13	0.15	0.16	0.16	0.16	0.15	0.12	0.062	0.022
23	0.053	0.084	0.1	0.12	0.13	0.15	0.16	0.15	0.15	0.13	0.07	0.029
26	0.04	0.079	0.1	0.12	0.13	0.14	0.15	0.15	0.15	0.14	0.058	0.017
29	0.053	0.088	0.11	0.12	0.12	0.14	0.14	0.15	0.15	0.14	0.064	0.018
32	0.042	0.082	0.098	0.11	0.12	0.14	0.14	0.14	0.15	0.15	0.068	0.029
35	0.036	0.083	0.1	0.11	0.12	0.13	0.14	0.14	0.14	0.14	0.068	0.023
40	0.037	0.084	0.1	0.11	0.12	0.13	0.14	0.14	0.14	0.14	0.072	0.02
45	0.022	0.068	0.091	0.11	0.12	0.13	0.14	0.14	0.14	0.14	0.067	0.023

	Energy/NPl	0.5	0.75	1	1.5	2	3	4	6	8	16	32	64
	10	0.066	0.11	0.16	0.21	0.22	0.21	0.19	0.17	0.15	0.1	0.061	0.03
	12	0.063	0.11	0.15	0.18	0.19	0.19	0.18	0.16	0.15	0.11	0.069	0.036
	14	0.071	0.099	0.13	0.17	0.18	0.18	0.18	0.17	0.15	0.11	0.066	0.033
	16	0.064	0.1	0.13	0.15	0.17	0.17	0.17	0.16	0.15	0.12	0.068	0.028
	18	0.059	0.093	0.11	0.14	0.15	0.16	0.16	0.16	0.16	0.12	0.071	0.029
	20	0.081	0.099	0.12	0.14	0.15	0.16	0.16	0.16	0.15	0.13	0.076	0.036
	23	0.071	0.092	0.11	0.12	0.13	0.15	0.15	0.15	0.15	0.13	0.073	0.031
	26	0.079	0.099	0.11	0.12	0.13	0.14	0.14	0.15	0.15	0.14	0.063	0.022
	29	0.089	0.1	0.11	0.12	0.13	0.14	0.14	0.14	0.14	0.14	0.064	0.017
	32	0.067	0.091	0.1	0.12	0.12	0.13	0.14	0.14	0.14	0.15	0.069	0.023
	35	0.079	0.091	0.1	0.12	0.13	0.13	0.13	0.14	0.14	0.14	0.067	0.021
l@lhe	40	0.076	0.094	0.1	0.12	0.12	0.13	0.13	0.14	0.14	0.14	0.059	0.026
-	45	0.072	0.096	0.11	0.12	0.13	0.13	0.13	0.14	0.14	0.14	0.057	0.011

E: Systematics: NPL mismatch

E	nergy/NPl	0.5	0.75	1	1.5	2	3	4	6	8	16
	10	0.1	0.053	0.055	0.067	0.084	0.11	0.14	0.19	0.21	0.18
	12	0.067	0.032	0.063	0.11	0.15	0.18	0.21	0.24	0.26	0.24
	14	0.049	0.033	0.044	0.087	0.12	0.16	0.19	0.23	0.25	0.24
	16	0.06	0.036	0.033	0.052	0.085	0.13	0.15	0.17	0.19	0.2
	18	0.054	0.036	0.027	0.027	0.056	0.098	0.12	0.15	0.17	0.2
	20	0.058	0.046	0.044	0.029	0.035	0.073	0.1	0.14	0.15	0.18
	23	0.054	0.048	0.043	0.025	0.014	0.034	0.057	0.087	0.1	0.15
	26	0.079	0.069	0.062	0.042	0.024	0.015	0.031	0.06	0.077	0.12
	29	0.044	0.049	0.047	0.031	0.019	0.0051	0.015	0.041	0.058	0.098
	32	0.051	0.046	0.043	0.031	0.022	0.0082	0.0073	0.023	0.037	0.069
	35	0.12	0.095	0.077	0.05	0.033	0.017	0.0089	0.013	0.023	0.052
	40	0.035	0.032	0.03	0.023	0.018	0.0085	0.0083	0.0064	0.0066	0.021
	45	0.1	0.08	0.065	0.045	0.031	0.02	0.014	0.0088	0.0064	0.0095

=	Energy/NPl	0.5	0.75	1	1.5	2	3	4	6	8	16
_	10	0.074	0.04	0.03	0.042	0.056	0.078	0.092	0.12	0.13	0.15
	12	0.038	0.019	0.024	0.065	0.098	0.14	0.17	0.2	0.22	0.23
	14	0.042	0.032	0.02	0.039	0.069	0.12	0.15	0.19	0.22	0.23
	16	0.031	0.022	0.015	0.022	0.045	0.09	0.12	0.15	0.17	0.19
	18	0.044	0.035	0.022	0.011	0.024	0.062	0.089	0.12	0.14	0.17
	20	0.045	0.038	0.03	0.018	0.014	0.042	0.07	0.11	0.13	0.16
	23	0.062	0.038	0.026	0.016	0.012	0.019	0.035	0.062	0.08	0.13
	26	0.052	0.039	0.025	0.017	0.014	0.0096	0.018	0.041	0.058	0.1
	29	0.085	0.051	0.037	0.028	0.022	0.012	0.01	0.026	0.04	0.081
	32	0.049	0.032	0.025	0.02	0.016	0.011	0.0091	0.015	0.025	0.054
	35	0.082	0.059	0.045	0.031	0.022	0.014	0.0091	0.0074	0.016	0.04
l@lhe	40	0.066	0.051	0.04	0.027	0.02	0.012	0.0073	0.0056	0.0042	0.018
=	45	0.18	0.13	0.1	0.066	0.049	0.031	0.021	0.01	0.0045	0.0094

E: Systematics: ID mismatch

Energy/NPl	0.5	0.75	1	1.5	2	3	4	6	8	16
10	0.011	0.045	0.015	0.033	0.0049	0.0016	0.0063	0.0041	0.018	0.0022
12	0.048	0.022	0.011	0.051	0.086	0.091	0.089	0.011	0.073	0.05
14	0.13	0.032	0.008	0.029	0.061	0.079	0.08	0.044	0.067	0.034
16	0.042	0.043	0.012	0.0012	0.023	0.04	0.043	0.031	0.012	0.023
18	0.048	0.061	0.041	0.005	0.0051	0.018	0.034	0.045	0.0024	0.0073
20	0.016	0.038	0.027	0.0013	0.0017	0.012	0.026	0.02	0.021	0.01
23	0.058	0.0043	0.035	0.0052	0.017	0.0039	0.0071	0.021	0.016	0.029
26	0.025	0.062	0.055	0.045	0.037	0.0016	0.0016	0.015	0.018	0.024
29	0.043	0.043	0.022	0.014	0.028	0.004	0.00087	0.0032	0.0033	0.003
32	0.042	0.064	0.047	0.035	0.044	0.014	0.00063	0.0036	0.0027	0.0073
35	0.03	0.02	0.014	0.033	0.025	0.0099	0.0055	0.0054	0.00013	0.011
40	0.0083	0.014	0.029	0.032	0.011	0.0019	0.0034	0.0033	0.003	0.0039
45	0.059	0.039	0.035	0.034	0.038	0.022	0.0045	0.0037	0.0055	0.0048

:	Energy/NPl	0.5	0.75	1	1.5	2	3	4	6	8	16
	10	0.038	0.0041	0.0045	0.0066	0.0036	0.003	0.0037	0.0047	0.0026	5.5e-05
	12	0.0052	0.034	0.011	0.077	0.092	0.11	0.093	0.019	0.088	0.062
	14	0.034	0.029	0.032	0.019	0.049	0.076	0.084	0.037	0.066	0.044
	16	0.062	0.053	0.0023	2.7e-05	0.02	0.021	0.035	0.039	0.016	0.031
	18	0.046	0.056	0.05	0.0046	0.013	0.02	0.038	0.035	0.0086	0.0043
	20	0.053	0.014	0.055	0.0012	0.0051	0.0022	0.02	0.023	0.038	0.0096
	23	0.044	0.043	0.025	0.0066	0.023	0.0031	0.0055	0.021	0.024	0.028
	26	0.055	0.076	0.058	0.061	0.039	0.004	0.0036	0.0066	0.024	0.026
	29	0.033	0.032	0.029	0.017	0.018	0.003	0.0027	0.00024	0.0086	0.0096
	32	0.048	0.036	0.038	0.022	0.045	0.016	0.0035	0.0088	0.013	0.021
	35	0.03	0.027	0.025	0.022	0.037	0.01	0.012	5.2e-05	0.0091	0.013
@lhe	40	0.064	0.032	0.007	0.018	0.021	0.021	0.015	0.0019	0.0034	0.0049
	45	0.035	0.044	0.029	0.042	0.035	0.025	0.0025	0.0032	0.0054	0.0032

E: Systematics: ANN uncertainty

Energy/NPl	0.5	0.75	1	1.5	2	3	4	6	8	16
10	0.32	0.17	0.16	0.078	0.072	0.026	0.021	0.0051	0.00096	0.00072
12	0.1	0.005	0.05	0.012	0.03	0.017	0.021	0.013	0.014	0.012
14	0.0032	0.018	0.0067	0.021	0.019	0.016	0.018	0.0082	0.0074	0.0053
16	0.055	0.036	0.026	0.012	0.022	0.012	0.031	0.024	0.025	0.027
18	0.013	0.037	0.0082	0.011	0.0098	0.0019	0.0092	0.00087	0.0019	0.015
20	0.03	0.049	0.018	0.018	0.0095	0.0065	0.0068	0.002	0.0063	0.0063
23	0.013	0.0092	0.0087	0.0052	0.011	0.0017	0.015	0.0072	0.0087	0.0039
26	0.0082	0.014	0.0074	0.0026	0.0072	0.0029	0.013	0.001	0.00095	0.0072
29	0.012	0.026	0.015	0.011	0.0073	0.0078	0.013	0.0017	0.0022	0.0081
32	0.013	0.025	0.014	0.0051	0.012	0.01	0.014	0.0024	0.0039	0.0024
35	0.0049	0.057	0.0087	0.012	0.0018	0.0049	0.0053	0.00089	0.00055	0.00029
40	0.012	0.029	0.019	0.014	0.015	0.0099	0.012	0.00064	0.0011	0.0014
45	0.0015	0.042	0.013	0.015	0.011	0.01	0.009	8.9e-05	0.00088	0.00085

_											
-	Energy/NPl	0.5	0.75	1	1.5	2	3	4	6	8	16
_	10	0.23	0.13	0.11	0.027	0.0012	0.035	0.05	0.062	0.069	0.067
	12	0.19	0.092	0.11	0.076	0.11	0.087	0.1	0.083	0.079	0.064
	14	0.099	0.39	0.048	0.37	0.091	0.16	0.12	0.077	0.061	0.065
	16	0.12	0.039	0.036	0.011	0.038	0.038	0.057	0.051	0.055	0.059
	18	0.077	0.06	0.022	0.021	0.041	0.069	0.097	0.098	0.096	0.097
	20	0.035	0.032	0.012	0.0046	0.0013	0.0063	0.013	0.012	0.0087	0.0047
	23	0.012	0.32	0.03	0.26	0.017	0.18	0.01	0.12	0.12	0.12
	26	0.044	0.023	0.013	0.018	0.011	0.0057	0.029	0.032	0.035	0.042
	29	0.029	0.013	0.013	0.0012	0.015	0.0057	0.021	0.014	0.013	0.021
	32	0.039	0.018	0.035	0.0021	0.04	0.017	0.035	0.026	0.031	0.032
	35	0.022	0.018	0.008	0.02	0.019	0.009	0.013	0.001	0.00036	0.001
,	40	0.014	0.027	0.0076	0.025	0.013	0.012	0.012	0.0033	0.0016	0.0033
] _	45	0.023	0.023	0.0065	0.0091	0.015	0.00047	0.013	0.0014	0.0049	0.0038

E: Systematics: Addition

- As we know, systematic sources are neither totally independent nor totally dependent...
- But to derive an analytical form for the covariance elements is even more impossible in experimental cases (no analytical function to describe the dependencies)
- To calculate ALL variations by means of MC estimates would require tooo much computing power.
- So tradeoff here: take the sources listed in table and add them
 - Quadratically: sigma^sys_tot= QSUM(sigma^sys_i)
 - Linear: sigma^sys_tot= LSUM(sigma^sys_i)
- "True" error will be in between…..
- The more systematic sources considered, the larger the error we get.
- We think that the most important we have investigated...

Shower ID

Problem:

 One single Shower can originate from either photons, electrons or (charged) pions

Solution:

Shower ID class, which does a differentiation!

Technicalities:

The ID class determines Shower from its originating particle

Shower ID

- Instead of assigning the ANN one number for
 - Gamma, Electron, Pion(+-)
- We do decions based on "X vs Y", i.e.
 - Gamma vs Electron
 - Electron vs Pion
- Because the ANN is better in discriminating two-by-two variable discrimination.
- In continuation with former implementations, we save these results in eProb1,eProb90_X_vs_Y

Shower ID

- Two type of variables:
 - SHID: 0(G),1(E),2(P)
 - SPID: 0,1,2
 - So we can assign a unique
 - ID for each combination:
 - Example:
 - gamma_vs_e: SHID=0,SPID=1
 - e vs pi: SHID=1,SPID=2
 - Always put 0 if it belongs to Type 0 (SHID)
 - Always put 1 if it belongs to Type 1 (SPID)

Block diagram: ID

More here...

The Cleaning of High BG level...

- We try to keep a constant BT density level of not more than 40BT/mm2
- To get this, we have the EdbPVRec patterns object, which we use for checks:
- We calculate BT density plate by plate and can adapt the Quality Cut plate by plate accordingly.

EdbPVRQuality

- This class does BG cleaning... How it works:
- EdbPVRQuality* Qualityobject = new EdbPVRQuality(gAli);
 - gAli is the filled EdbPVRec object. Usually this implicates the data coming from cp.root files.
 - LinkedTracks.root EdbPVRec object usually is already very "clean", i.e. that linked tracks are often "good" (physically) objects.
- Qualityobject->Print();
- Qualityobject->Help();