Домашняя работа №1

А-13а-19 Самсонова Мария

8 апреля 2022 г.

1 Построить конечный автомат, распознающий язык

$$\mathbf{L}_1 = \{ \omega \in \{a, b, c\}^* | |\omega_c| = 1 \}$$

$$\mathbf{L}_2 = \{\omega \in \{a, b\}^* | |\omega_a| \le 2|\omega_b| \ge 2\}$$

Воспользуемся прямым произведением к языкам L_{21} и L_{22}

$$L_{21} = \{ \omega \in \{a\}^* | |\omega_a| \le 2 \}$$

$$L_{22} = \{ \omega \in \{b\}^* | |\omega_b| \ge 2 \}$$

$$\mathbf{L}_3 = \{ \omega \in \{a, b\}^* | |\omega_a| \neq |\omega_b| \}$$

Воспользуемся дополнением к языку L_3

$$\overline{L_3} = \{ \omega \in \{a, b\}^* | |\omega_a| = |\omega_b| \}$$

Докажем, что $\overline{L_3}$ нерегулярный язык, для этого воспользуемся леммой о накачке

- Зафиксируем n
- Возьмем слово $a^nb^n \in \overline{L_3}$
- Разобьем его на x,y,z такие, что $|xy| \le n$ и $|y| \ge 1$
 - при 0 < m < n
 - $-x = a^{n-m}$
 - $-y=a^m$
 - $-z=b^n$
- $\bullet\,$ Тогда при накачке y полученное слово $\not\in \overline{L_3}$

Из нерегулярности дополнения к языку следует нерегулярность языка

$$\mathbf{L}_4 = \{\omega \in \{a, b\}^* | \omega\omega = \omega\omega\omega\}$$

2 Построить конечный автомат, используя прямое произведение

$$\mathbf{L}_1 = \{ \omega \in \{a, b\}^* | |\omega_a| \ge 2 \land |\omega_b| \ge 2 \}$$

Воспользуемся прямым произведением к языкам L_{11} и L_{12}

$$L_{11} = \{ \omega \in \{a\}^* | |\omega_a| \ge 2 \}$$

$$L_{12} = \{ \omega \in \{b\}^* | |\omega_b| \ge 2 \}$$

Жирным выделена терминальная вершина

Узел	a	b
q1q4	q2q4	q1q5
q1q5	q2q5	q1q6
q1q6	q2q6	q1q6
q2q4	q3q4	q2q5
q2q5	q3q5	q2q6
q2q6	q3q6	q2q6
q3q4	q3q4	q3q5
q3q5	q3q5	q3q6
q3q6	q3q6	q3q6

$$\mathbf{L}_2 = \{\omega \in \{a,b\}^* | |\omega| \leq 3 \land |\omega| \text{нечетное} \}$$

Воспользуемся прямым произведением к языкам L_{21} и L_{22}

$$L_{21} = \{\omega \in \{a, b\}^* | |\omega| \le 3\}$$

$$L_{22} = \{\omega \in \{a,b\}^* | |\omega| \text{нечетное}\}$$

Жирным выделена терминальная вершина

Узел	a	b
q1q5	q2q6	q2q6
q1q6	q2q5	q2q5
q2q5	q3q6	q3q6
q2q6	q3q5	q3q5
q3q5	q4q6	q4q6
q3q6	q4q5	q4q5
q4q5	q4q6	q4q6
q4q6	q4q5	q4q5

Одна из ветвей графа является излишней, так как в нее невозможно попасть из начального узла ${\bf q}15$

$$\mathbf{L}_3 = \{\omega \in \{a,b\}^* | |\omega_a| \text{четное} \wedge |\omega_b| \mathbf{:} 3\}$$

Воспользуемся прямым произведением к языкам L_{31} и L_{32}

$$L_{31} = \{\omega \in \{a, b\}^* | |\omega_a| \text{четное}\}$$

$$L_{32} = \{ \omega \in \{a, b\}^* | |\omega_b| : 3 \}$$

Жирным выделена терминальная вершина

Узел	a	b
q1q3	q2q3	q1q4
q1q4	q2q4	q2q5
q2q5	q2q5	q2q3
q2q3	q1q3	q2q4
q3q4	q1q4	q1q5
q3q5	q1q5	q1q3

$$\mathbf{L}_4 = \overline{L_3}$$

Воспользуемся свойством обратного языка - заменим терминальные узлы на обычные, и наоборот - обычные на терминальные.

$$\mathbf{L}_5 = L_2 \setminus L_3$$

Разность двух языков можно представить как $\mathbf{L}_2 \cap \overline{L_3}$

В графе содержатся лишние узлы, так как в них невозможно попасть из начального узла q16, удалим их

3 Построить минимальный ДКА по регулярному выражению

(ab + aba)a

Построим НКА с использованием λ -переходов, затем удалим их

С помощью алгоритма Томсона построим ДКА

Q: $\{1\}$ $\{4,7,12\}$ $\{1,5,8\}$ $\{1,4,7,9,12\}$

Узел	a	b
1	4,7,12	Ø
4,7,12	Ø	1,5,8
1,5,8	1,4,7,9,12	Ø
1,4,7,9,12	1,4,7,9,12	1,5,8

Полученный ДКА минимальный

a(a(ab)b)(ab)

Построим НКА с использованием λ -переходов, затем удалим их

 ${\bf C}$ помощью алгоритма Томсона построим ДКА

Q: $\{1\}$ $\{2\}$ $\{4,12\}$ $\{6\}$ $\{9,13\}$ $\{7\}$ $\{9\}$

Узел	a	b
1	2	Ø
2	4,12	Ø
4,12	6	9,13
6	Ø	7
9,13	4,12	Ø
7	6	9
9	4,12	Ø

$$(\mathbf{a} + (\mathbf{a} + \mathbf{b})(\mathbf{a} + \mathbf{b})\mathbf{b})$$

Построим НКА с использованием λ -переходов, затем удалим их

С помощью алгоритма Томсона построим ДКА

Q: $\{1\}$ $\{1,7\}$ $\{9\}$ $\{1,7,12\}$ $\{9,14\}$ $\{12\}$ $\{14\}$ $\{1,9,14\}$ $\{1,14\}$ $\{1,9\}$

Узел	a	b
1	1,7	9
1,7	1,7,12	9,14
9	12	14
1,7,12	1,7,12	1,9,14
9,14	12	1,14
12	Ø	1
14	Ø	1
1,9,14	1,7,12	1,9,14
1,14	1	1,9
1,9	1,7,12	9,14

$$(b+c)((ab)c+(ba))$$

Построим НКА с использованием λ -переходов, затем удалим их

С помощью алгоритма Томсона построим ДКА

Q: $\{1\}$ $\{3,14\}$ $\{11\}$ $\{17\}$ $\{14\}$ $\{3,12\}$ $\{18\}$

Узел	a	b	c
1	Ø	3,14	3,14
3,14	11	17	14
11	Ø	3,12	Ø
17	18	Ø	Ø
14	11	17	14
3,12	11	17	3,14
18	11	17	14

$$(a + b)^{+}(aa + bb + abab + baba)(a + b)^{+}$$

Построим НКА с использованием λ -переходов, затем удалим их

С помощью алгоритма Томсона построим ДКА

Q: $\{1\}$ $\{3\}$ $\{3,8\}$ $\{3,15\}$ $\{3,8,10\}$ $\{3,12,15\}$ $\{3,8,19\}$ $\{3,15,17\}$ $\{3,8,10,26\}$ $\{3,12,15,26\}$ $\{3,8,13,19,26\}$ $\{3,12,15,20\}$ $\{3,8,13,19,21\}$ $\{3,12,14,15,20,26\}$ $\{3,8,13,19,21,26\}$ $\{3,12,15,20,26\}$

Узел	a	b
1	2	2
2	3	4
3	5	6
4	7	8
5	9	10
6	11	8
7	5	12
8	15	14
9	9	10
10	13	14
11	5	16
12	17	8
13	9	18
14	15	14
15	9	20
16	19	14
17	9	18
18	19	14
19	9	18
20	19	14

4 Определить является ли язык регулярным или нет

$$L = \{(aab)^n b (aba)^m | n \ge 0, m \ge 0\}$$

Язык является регулярным, так как возможно построить автомат

$$L = \{uaav | u \in \{a, b\}^*, v \in a, b^*, |u|_b \ge |v|_a\}$$

Для удобства, докажем что дополнение к языку является регулярным, воспользовавшись леммой о накачке

$$\overline{L} = \{uaav | u \in \{a,b\}^*, v \in a, b^*, |u|_b > |v|_a\}$$

- Зафиксируем n
- Возьмем слово $b^naaa^{n+1} \in \overline{L}$
- Разобьем его на x,y,z такие, что $|xy| \leq n$ и $|y| \geq 1$
 - при 0 < m < n
 - $-x = b^{n-m}$
 - $-y=b^m$
 - $z = aaa^{n+1}$
- Тогда при накачке y полученное слово $\notin \overline{L}$

Так как дополнение - нерегулярный язык, то и L нерегулярный.

$$L = \{a^m w | w \in \{a,b\}^*, 1 \leq |w|_b \leq m\}$$

Докажем, что язык регулярный с помощью дополнения

$$\overline{L}=\{a^mw|w\in\{a,b\}^*,1>|w|_b>m\}$$

Таким образом, так как не может быть отрицательного кол-ва букв, получаем язык $w=a^k$, гдеk>0

Данный автомат легко построить

$$L = \{a^k b^m a^n | k = n \lor m > 0\}$$

$$L = \{ucv | u \in \{a, b\}^*, v \in \{a, b\}^*, u \neq v^R\}$$

Для удобства, докажем что дополнение к языку является регулярным, воспользовавшись леммой о накачке

$$\overline{L} = \{ucv | u \in \{a,b\}^*, v \in \{a,b\}^*, u = v^R\}$$

- Зафиксируем n
- Возьмем слово $a^{2(n+1)}ca^{n+1}\in \overline{L}$
- Разобьем его на x,y,z такие, что $|xy| \leq n$ и $|y| \geq 1$

$$-x = a^{n-p}$$

$$-y=a^p$$

$$-z = a^{n+2}ca^{n+1}$$

• Тогда при накачке y полученное слово $\notin \overline{L}$

Так как дополнение - нерегулярный язык, то и L нерегулярный.