Metody Numeryczne Zajęcia nr 2

Michał Bernardelli

Do zapamiętania: normy wektorowe, normy macierzy, wartości własne, współczynnik uwarunkowania macierzy, twierdzenie Gerszgorina, eliminacja Gaussa, wybór elementu głównego, wskaźnik uwarunkowania macierzy, dekompozycja LU, LDL^T , LL^T

1 Normy wektorów i macierzy

Normą nazywamy funkcję, która każdemu elementowi x z przestrzeni liniowej \mathbb{R}^n przyporządkowuje liczbę rzeczywistą ||x|| i spełnia dla dowolnych $x, y \in \mathbb{R}^n$ i skalarów $\alpha \in \mathbb{R}$ następujące aksjomaty:

- 1. $||x|| \ge 0$, a ||x|| = 0 wtedy i tylko wtedy, gdy x = 0,
- 2. $\|\alpha x\| = |\alpha| \|x\|$,
- 3. $||x + y|| \le ||x|| + ||y||$.

Najczęściej w przypadku wektorów używa się norm p-tych $\|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$. W szczególności dla:

- p = 1 dostajemy normę pierwszą $||x||_1 = \sum_{i=1}^n |x_i|$,
- p=2 dostajemy normę drugą zwaną inaczej euklidesową $\|x\|_2 = \sqrt{x^T x} = \sqrt{\sum_{i=1}^n |x_i|^2}$,
- $p = \infty$ dostajemy normę maksimum $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$.

Normy $||x||_a$ i $||x||_b$ są **równoważne**, jeżeli istnieją stałe c i C takie, że dla każdego $x \in \mathbb{R}^n$ zachodzi

$$c \|x\|_a \leq \|x\|_b \leq C \|x\|_a$$
.

W przestrzeniach liniowych skończenie wymiarowych każde dwie normy są równoważne.

Wśród norm macierzy $A \in \mathbb{R}^{m \times n}$ wyróżniamy między innymi:

• normę euklidesową zwaną inaczej normą Frobeniusa

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} = \sqrt{\sum_{i=1}^n \lambda_i(A^T A)},$$

• normę indukowaną przez normę wektorową

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||x|| = 1} ||Ax||.$$

Podkreślmy, że w definicji tej mamy do czynienia z dwoma rodzajami norm: ||Ax|| jest normą w przestrzeni \mathbb{R}^m , a ||x|| w \mathbb{R}^n . W szczególności dostajemy normy indukowane przez normy p-te:

$$- \|A\|_{1} = \max_{1 \leq j \leq n} \sum_{i=1}^{m} |a_{ij}|,$$

$$- \|A\|_{2} = \max_{\|x\|_{2}=1} \|Ax\|_{2} = \sqrt{\lambda_{\max}(A^{T}A)}, \text{ nazywana } normq \text{ } spektralnq,$$

$$- \|A\|_{\infty} = \max_{1 \leq i \leq m} \sum_{j=1}^{n} |a_{ij}|.$$

Ważniejsze nierówności:

• Nierówność Minkowskiego $\|x+y\|_p \leq \|x\|_p + \|y\|_p$ dla 1 < $p < \infty,$ czyli

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{\frac{1}{p}}.$$

• Nierówność Höldera dla p,q>1, gdzie $\frac{1}{p}+\frac{1}{q}=1$:

$$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|^q\right)^{\frac{1}{q}}.$$

• Nierówność Schwarza jest to nierówność Höldera dla p=q=2

$$\sum_{i=1}^{n} x_i y_i \le \sqrt{\sum_{i=1}^{n} |x_i|^2} \sqrt{\sum_{i=1}^{n} |y_i|^2}.$$

2 Macierze

Macierz kwadratową A rozmiaru n nazywamy:

- odwracalną, jeżeli istnieje taka macierz A^{-1} , że $A^{-1}A = AA^{-1} = I$.
- **nieosobliwą**, jeżeli det $A \neq 0$.
- symetryczną, jeżeli $A=A^T$, czyli $a_{ij}=a_{ji}$ dla każdych $i,j=1,2,\ldots,n$.
- diagonalną dominującą, jeżeli $2|a_{ii}| \geq \sum_{j=1}^{n} |a_{ij}| dla \ 1 \leq i \leq n.$
- dodatnio określoną (ozn. A > 0), jeżeli dla każdego $x \neq 0$ zachodzi $x^T A x > 0$. W wielu przypadkach określoność macierzy pozwala określić kryterium Sylvestera.
- ortogonalną, jeżeli $A^TA = AA^T = I$, czyli $A^T = A^{-1}$.

Istnieje wiele innych rodzajów macierzy, np. diagonalne, trójkątna górne, trójkątne dolne, trójdiagonalne, blokowe, blokowo-diagonalne, itp.

Kilka faktów związanych z macierzami:

- $A \in \mathbb{R}^{m \times n} \implies A^T A$ jest symetryczna i nieujemnie określona.
- Twierdzenie Cauchy'ego: det(AB) = det(A) det(B).
- Wartość własna λ macierzy A oraz odpowiadający jej niezerowy wektor własny v spełniają zależność $Av = \lambda v$.
- Wartości własne macierzy rzeczywistej i symetrycznej są rzeczywiste. Różnym wartościom własnym odpowiadają liniowo niezależne wektory własne.
- Wartości własne macierzy rzeczywistej, symetrycznej i dodatnio określonej są rzeczywiste i dodatnie.
- Twierdzenie Gerszgorina. Każda wartość własna $\lambda \in \mathbb{C}$ macierzy $A \in \mathbb{C}^{n \times n}$ leży przynajmniej w jednym z kół

$$K_i = \left\{ \lambda \in \mathbb{C} \colon |\lambda - a_{ii}| \le \sum_{\substack{j=1\\ j \ne i}}^n |a_{ij}| \right\}, \qquad i = 1, 2, \dots, n.$$

- Spektrum lub widmem macierzy nazywamy zbiór jej wartości własnych.
- Promień spektralny macierzy kwadratowej A oznaczamy przez $\rho(A)$ i definiujemy

$$\rho(A) = \max_{i} |\lambda_i(A)|.$$

• Wskaźnikiem uwarunkowania układu równań liniowych Ax = b, popularnie zwanym **współ- czynnikiem uwarunkowania** macierzy A, jest wielkość

$$cond(A) = \kappa = ||A^{-1}|| \, ||A||.$$

Dla normy spektralnej, mamy

$$\operatorname{cond}_2(A) = \sqrt{\frac{\lambda_{\max}(A^T A)}{\lambda_{\min}(A^T A)}},$$

gdzie λ_{\max} jest największą co do modułu wartością własną macierzy A, zaś λ_{\min} najmniejszą. Dla macierzy symetrycznych zaś

$$\operatorname{cond}_2(A) = \frac{\lambda_{\max}(A)}{\lambda_{\min}(A)} = \rho(A^{-1})\rho(A).$$

Mówimy, że macierz A jest źle uwarunkowana jeżeli $\operatorname{cond}(A) \gg 1$.

3 Dekompozycje macierzy

- Dekompozycja LU, trójkątno-trójkątna. Każdą macierz rzeczywistą, kwadratową, nieosobliwą A rozmiaru n można przedstawić w postaci A=LU, gdzie L jest macierzą trójkątną dolną (z jedynkami na diagonali), a U trójkątną górną. Jest to wynik działania algorytmu eliminacji Gaussa bez przestawień.
- dekompozycja LDL^T, \widetilde{LL}^T , Cholesky'ego-Banachiewicza. Każdą macierz kwadratową, rzeczywistą i symetryczną A rozmiaru n można przedstawić w postaci $A = LDL^T$, gdzie D jest macierzą diagonalną, a L trójkątną dolną (z jedynkami na diagonali). Jeżeli ponadto A jest dodatnio określona, to D ma dodatnie elementy na diagonali. Można ją też wtedy przedstawić w postaci $A = \widetilde{LL}^T$ gdzie \widetilde{L} jest macierzą trójkątną dolną z dodatnimi elementami na diagonali. Wszystkie te dekompozycje zwane są dekompozycjami Choleskiego, Banachiewicza, Choleskiego-Banachiewicza.

Zadanie 1

Dany jest zbiór wartości własnych $\{\lambda_i\}$ oraz odpowiadających im wektorów własnych $\{v_i\}$ macierzy A. Wyznaczyć wartości i wektory własne macierzy A^2 , A^3 i A^{-1} .

Zadanie 2

Dana jest macierz A:

$$A = \left(\begin{array}{ccccc} 5 & 1 & 1 & 1 & 1 \\ 1 & 5 & 1 & 1 & 1 \\ 1 & 1 & 5 & 1 & 1 \\ 1 & 1 & 1 & 5 & 1 \\ 1 & 1 & 1 & 1 & 5 \end{array}\right).$$

Wyznaczyć możliwie mały przedział zawierający wartości własne macierzy A. Czy macierz jest odwracalna?

Zadanie 3

Dana jest macierz A wymiaru n+1 dla $n \ge 1$:

$$A = \begin{pmatrix} 2 & \frac{1}{n} & \frac{1}{n} & \dots & \frac{1}{n} \\ \frac{1}{n} & 2 & \frac{1}{n} & \dots & \frac{1}{n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \dots & 2 \end{pmatrix}.$$

 $Udowodni\acute{c}$, $\acute{z}e\ cond_2(A) \leq 3$.

Zadanie 4

Pokazać, że jeśli macierz A jest ściśle diagonalnie dominująca, to jest nieosobliwa.

Zadanie 5

 $\label{eq:narrange} \begin{aligned} & \text{Narysowa\'e kule jednostkowe } B = \Big\{ x \in \mathbb{R}^n \colon \ \|x\|_p \leq 1 \Big\} \ dla \ n = 2 \ i \ p = 1, 2, \infty. \end{aligned}$

Zadanie 6

 $Majac\ dana\ dekompozycje\ LU\ macierzy\ A\ podać\ kolejne\ kroki\ rozwiązania\ układu\ równań\ <math>Ax=b.$

Zadanie 7

Wykonać dekompozycję LU macierzy (bez wyboru elementu głównego)

$$A = \left(\begin{array}{cccc} 2 & 3 & -4 & 1\\ 1 & -2 & -5 & 1\\ 5 & -3 & 1 & -4\\ 10 & 1 & -18 & 2 \end{array}\right).$$

Rozwiązanie:

$$A = A_{1} = \begin{pmatrix} 2 & 3 & -4 & 1 \\ 1 & -2 & -5 & 1 \\ 5 & -3 & 1 & -4 \\ 10 & 1 & -18 & 2 \end{pmatrix} \longrightarrow$$

$$A_{2} = L_{1}A_{1} \begin{pmatrix} 2 & 3 & -4 & 1 \\ 0 & -\frac{7}{2} & -3 & \frac{1}{2} \\ 0 & -\frac{21}{2} & 11 & -\frac{13}{2} \\ 0 & -14 & 2 & -3 \end{pmatrix} = A_{2}, \qquad L_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 & 0 \\ -\frac{5}{2} & 0 & 1 & 0 \\ -5 & 0 & 0 & 1 \end{pmatrix}$$

$$A_{3} = L_{2}A_{2} \begin{pmatrix} 2 & 3 & -4 & 1 \\ 0 & -\frac{7}{2} & -3 & \frac{1}{2} \\ 0 & 0 & 20 & -8 \\ 0 & 0 & 14 & -5 \end{pmatrix} = A_{3}, \qquad L_{2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -3 & 1 & 0 \\ 0 & -4 & 0 & 1 \end{pmatrix}$$

$$U = L_{3}A_{3} \begin{pmatrix} 2 & 3 & -4 & 1 \\ 0 & -\frac{7}{2} & -3 & \frac{1}{2} \\ 0 & 0 & 20 & -8 \\ 0 & 0 & 0 & \frac{3}{5} \end{pmatrix} = U, \qquad L_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{7}{10} & 1 \end{pmatrix}.$$

$$L_3L_2L_1A = U \implies A = (L_3L_2L_1)^{-1}U = L_1^{-1}L_2^{-1}L_3^{-1}U = LU,$$

gdzie

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & 0 & 0 \\ \frac{5}{2} & 0 & 1 & 0 \\ 5 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 4 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{7}{10} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & 0 & 0 \\ \frac{5}{2} & 3 & 1 & 0 \\ 5 & 4 & \frac{7}{10} & 1 \end{pmatrix}.$$

Ostatecznie

$$A = \begin{pmatrix} 2 & 3 & -4 & 1 \\ 1 & -2 & -5 & 1 \\ 5 & -3 & 1 & -4 \\ 10 & 1 & -18 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & 0 & 0 \\ \frac{5}{2} & 3 & 1 & 0 \\ 5 & 4 & \frac{7}{10} & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & -4 & 1 \\ 0 & -\frac{7}{2} & -3 & \frac{1}{2} \\ 0 & 0 & 20 & -8 \\ 0 & 0 & 0 & \frac{3}{5} \end{pmatrix} = LU.$$

Zadanie 8

Wykonać dekompozycję LU macierzy A z wyborem elementu głównego w kolumnie, czyli z przestawieniami wierszy.

$$A = \left(\begin{array}{cccc} 2 & 3 & -4 & 1\\ 1 & -2 & -5 & 1\\ 5 & -3 & 1 & -4\\ 10 & 1 & -18 & 2 \end{array}\right).$$

Rozwiązanie:

$$A = \begin{pmatrix} 2 & 3 & -4 & 1 \\ 1 & -2 & -5 & 1 \\ 5 & -3 & 1 & -4 \\ \hline 10 & 1 & -18 & 2 \end{pmatrix} = A_1, \quad P_1 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \quad L_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -\frac{1}{10} & 1 & 0 & 0 \\ -\frac{1}{2} & 0 & 1 & 0 \\ -\frac{1}{5} & 0 & 0 & 1 \end{pmatrix}$$

$$L_1P_1A_1 = A_2$$

$$\rightarrow \begin{pmatrix} 10 & 1 & -18 & 2 \\ 0 & -\frac{21}{10} & -\frac{16}{5} & \frac{4}{5} \\ 0 & \boxed{-\frac{7}{2}} & 10 & -5 \\ 0 & \frac{14}{5} & -\frac{2}{5} & \frac{3}{5} \end{pmatrix} = A_2, \quad P_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad L_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & \frac{4}{5} & 0 & 1 \end{pmatrix}$$

$$L_2P_2A_2 = A_3$$

$$\rightarrow \begin{pmatrix} 10 & 1 & -18 & 2 \\ 0 & -\frac{7}{2} & 10 & -5 \\ 0 & 0 & \frac{38}{5} & -\frac{17}{5} \end{pmatrix} = A_3, \quad P_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad L_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{19}{23} & 1 \end{pmatrix}$$

$$L_3P_3A_3 = U$$

$$\rightarrow \begin{pmatrix} 10 & 1 & -18 & 2 \\ 0 & -\frac{7}{2} & 10 & -5 \\ 0 & 0 & -\frac{46}{5} & \frac{19}{5} \\ 0 & 0 & 0 & -\frac{46}{5} & \frac{19}{5} \\ 0 & 0 & 0 & -\frac{46}{5} & \frac{19}{5} \\ 0 & 0 & 0 & -\frac{46}{5} & \frac{19}{5} \\ 0 & 0 & 0 & -\frac{6}{23} \end{pmatrix} = U.$$

Zatem

$$U = (L_{3}P_{3}) \underbrace{(L_{2}P_{2})}_{A_{2}} \underbrace{(L_{1}P_{1})A}_{A_{2}}$$

$$= L_{3}P_{3}L_{2} \underbrace{(P_{3}P_{3})}_{1} \underbrace{P_{2}L_{1}}_{1} \underbrace{(P_{2}P_{3}P_{3}P_{2})}_{1} \underbrace{P_{1}A}_{1}$$

$$= \underbrace{(L_{3})}_{\widetilde{L}_{3}} \underbrace{(P_{3}L_{2}P_{3})}_{\widetilde{L}_{2}} \underbrace{(P_{3}P_{2}L_{1}P_{2}P_{3})}_{\widetilde{L}_{1}} \underbrace{(P_{3}P_{2}P_{1})}_{P} A$$

 $Stad\ PA = LU,\ gdzie$

$$P = P_3 P_2 P_1 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \qquad L = \widetilde{L}_1^{-1} \widetilde{L}_2^{-1} \widetilde{L}_3^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & 0 & 0 \\ \frac{1}{10} & \frac{3}{5} & 1 & 0 \\ \frac{1}{5} & -\frac{4}{5} & -\frac{19}{22} & 1 \end{pmatrix}$$

oraz
$$\widetilde{L}_k = P_n P_{n-1} \dots P_{k+1} L_k P_{k+1} \dots P_{n-1} P_n$$
.

Zadanie 9

Podać przykłady klas macierzy, dla których algorytm eliminacji Gaussa bez wyboru elementu głównego jest poprawny numerycznie.

Zadanie 10

Zapisać algorytm mnożenia przez macierz trójdiagonalną.

Zadanie 11

Podać efektywny algorytm rozwiązywania układów równań z macierzą kwadratową trójdiagonalną. Zapisać go w Octave i policzyć koszt.

Zadanie 12 (odwracanie macierzy vs. rozkłady vs. operator \)

Porównać dokładność i czasy rozwiązywania trzema metodami układów dla układów n równań z macierzą

$$\bullet \ A = \begin{bmatrix} \frac{1}{1+1-1} & \frac{1}{1+2-1} & \cdots & \frac{1}{1+n-1} \\ \frac{1}{2+1-1} & \frac{1}{2+2-1} & \cdots & \frac{1}{2+n-1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{n+1-1} & \frac{1}{n+2-1} & \cdots & \frac{1}{n+n-1} \end{bmatrix},$$

$$\bullet \ B(\alpha) = \begin{bmatrix} \alpha & \frac{1}{n} & \cdots & \frac{1}{n} \\ \frac{1}{n} & \alpha & \cdots & \frac{1}{n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{n} & \frac{1}{n} & \cdots & \alpha \end{bmatrix}, \ dla \ \alpha \in \{3, 30, 300\},$$

oraz wektorem b prawej strony o wszystkich współrzędnych równych jeden. Rozpatrywane metody, to:

- 1. wykorzystanie macierzy odwrotnej: x = inv(Z) * b,
- 2. wykorzystanie rozkładu: [L, U, P] = lu(Z); $y = L \setminus (P * b);$ $x = U \setminus y,$
- 3. wykorzystanie operatora $\ : \ x = Z \setminus b$.

Dla każdego z układów narysować wykresy obrazujące jak zmienia się w zależności od parametru n:

- uwarunkowanie macierzy układu w normie drugiej,
- wielkości residuum w normie drugiej, to jest $||b Zx||_2$, $gdzie Z \in \{A, B, C\}$,
- zależność czasu rozwiązywania układu n równań.

Czy istnieje związek pomiędzy residuum z uwarunkowaniem macierzy? Uwaga: do rozwiązania zadania można wykorzystać funkcje: $\operatorname{tic}(), \operatorname{toc}(), \operatorname{norm}(), \operatorname{cond}(), \operatorname{hilb}(), \operatorname{ones}(), \operatorname{zeros}(), \operatorname{diag}(), \operatorname{eye}(), \operatorname{rand}(), \operatorname{plot}(), \operatorname{subplot}().$ Rozwiązanie: plik rozw rownanie.m