TP8 - Introducción a la teoría de la Información y Compresión de datos

Alumno: Juan Cruz Mateos

Mat. 15134

1) Calcule el árbol de Huffman para el siguiente texto: CALIDO AMANECER SOLEADO

Char	Frec	Prob
A	4	0.17391
0	3	0.13043
E	3	0.13043
С	2	0.08696
L	2	0.08696
D	2	0.08696
• •	2	0.08696
I	1	0.04347
M	1	0.04347
N	1	0.04347
R	1	0.04347
S	1	0.04347

Arbol de codificacion resultante:

Codigos de huffman:

Simbolo	Codigo Huffman
	000
I	0010
M	0011
N	0100
R	0101
0	011
E	100
S	1010
С	1011
A	110
L	1110
D	1111

La implementacion del algorimo para la obtecion de los codigos de huffman obtenidos puede consultarse en *huffman.py*

2) ¿Cómo quedarían los siguientes textos luego de aplicar compresión RLE ?

- b) wwwiiiihhhHhhhhqqqqwwqq
- c) PPOPTTTKKKKLLLLLVVVVV
- a) 7A10BGAAB7DS3H
- b) 3w4i3hH4h4qwwqq
- c) PPOP3T4K5L5V

La implementacion del algorimo para la obtecion de los codigos obtenidos aplicando RLE puede consultarse en *rlc.py*