東海大学ハイブリッドロケット打上実験計画書

2016年1月19日 東海大学学生ロケットプロジェクト 団体責任者 教授 那賀川 一郎 実験責任者 教授 那賀川 一郎 学生実験責任者 植松 千春

1. 実験目的

ハイブリッドロケット2機の打上実験の目的を示す。

ハイブリッドロケット 40 号機 (TSRP-H-40)

- ・新型機体構造の打上実証実験
- ・新型バルブシステムの打上試験
- ・ 改良型分離機構の打上動作実証

ハイブリッドロケット 41 号機 (TSRP-H-41)

- ・新型エンジンの性能実証
- ・1kHz ロガーの打上動作実証

2. 実験概要

2.1. TSRP-H-40

打ち上げには、自作の地上支援設備を使用し、全長 5 m の発射台を用いて打ち上げを行う。到達高度は地上から約 930 m を予定している。ロケットは打ち上げ後、頂点付近で 1 段目小型パラシュートの開傘を行い、低高度まで比較的早いスピードで降下する。続いて、高度 150 m 付近まで降下後に 2 段目メインパラシュートの開傘を行い、1 km の指定された保安区域に減速落下させ、着地を確認後、機体に搭載されたテレメトリによって位置を特定し回収を行う。なお、ロケット発射場所の地盤高は平均海面より 3 m である。

2.2. TSRP-H-41

打ち上げには、自作の地上支援設備を使用し、全長 5~m の発射台を用いて打ち上げを行う。到達高度は地上から約 420~m を予定している。ロケットは打ち上げ後、頂点付近でパラシュートの開傘を行い、1~km の指定された保安区域に減速落下させ、着地を確認後、回収を行う。なお、ロケット発射場所の地盤高は平均海面より 3~m である。

3. 機体概要

3.1. TSRP-H-40

機体は、市販の CFRP チューブを主構造とし、一部チューブに GFRP を使用する CFRP/GFRP 併用構造である。機体はモジュール形式を採用し、各チューブはコンポーネントごとにアルミニウム合金製プレートによって結合されている。パラシュートの放出には無火薬式の分離機構を用いる。エンジンは、当団体が開発した自作エンジンである THR-F210L 改-LTD(*1)を使用する。燃料にワックス燃料、酸化剤に亜酸化窒素を使用する。 搭載計器には、加速度センサ、ジャイロセンサ、気圧センサ、温度センサを搭載した共通計器とテレメータ、分離に影響しない教育用共通計器を搭載している。また、機体は全機回収であり、地上への投棄物はない。表1に機体の仕様を示す。

*1 THR-F210L 改-LTD: Tokai Hybrid Rocket-Flightmodel-Limited 2012 年度 1 kN 級 L 型エンジン改良型の略称

名称	TSRP-H-40
全長	2.13 m
直径	183 mm
乾燥質量	16.1 kg
エンジン	THR-F210L 改-LTD
予想到達高度	930 m
回収方法	2段階パラシュートによる減速落下
搭載物	ハイブリッドロケットエンジン
	無火薬式2段分離機構
	小型パラシュート
	メインパラシュート
	共通計器
	テレメータ
	教育用共通計器
	カメラ

表 1 TSRP-H-40 仕様

3.2. TSRP-H-41

機体は、市販の GFRP チューブを主構造として使用する。機体はモジュール形式を採用し、各チューブはコンポーネントごとにアルミニウム合金製プレートによって結合されている。パラシュートの放出には無火薬式の分離機構を用いる。エンジンは、当団体が開発した自作エンジンである THR-E/F406K(*2)を使用する。燃料にワックス燃料、酸化剤に亜

酸化窒素を使用する。搭載計器には、加速度センサ、ジャイロセンサ、気圧センサ、温度 センサを搭載した共通計器とサンプリングレート 1 kHz でロギングを行う加速度ロガーを 搭載している。また、機体は全機回収であり、地上への投棄物はない。表 2 に機体の仕様 を示す。

*2 THR-E/F406K: Tokai Hybrid Rocket-Engineering/Flightmodel 2014 年度 600 N 級 K 型エンジンの略称

名称 TSRP-H-41 全長 1.59 m直径 154 mm 乾燥質量 6.4 kgエンジン THR-E/F406K 予想到達高度 420 m パラシュートによる減速落下 回収方法 ハイブリッドロケットエンジン 無火薬式分離機構 パラシュート 搭載物 共通計器 1 kHz ロガー カメラ

表 2 TSRP-H-41 仕様

4. 日程

実験日程は2016年2月28日(日)~3月7日(月)である。

表 3

2月28日(日)	大樹町到着 物品/射点確認
29 日(月)	物品受取 地上設備設営 機体組立
3月1日(火)	リハーサル
2 日(水)	H-41 打上実験
3 日(木)	H-40 打上実験
4 日(金)	予備日
5 日(土)	予備日

6 日(日)	片付け 物品梱包/輸送
7日(月)	大樹町出発 帰宅

5. 打上実施日時

打上実験は、予備日を含めて3月1日(火)から6日(日)の9:50~12:50を予定している。この時間 帯内に打上実験ができなかった場合、同日の8:50~9:00,,14:10~14:20,

14:50~15:10,15:40~15:50,16:20~日没(JST)に実施する。

7. 安全対策

(1)打上げ点火作業者との距離 150 m

(2)指定保安区域 北緯 42° 30′51.56" 東経 143°26′ 22.34"

を中心とした半径 1 km 内(付図 1 を参照)

(3)風速制限 地上において 7 m/s 以下、および上空 500 m 地点で

10 m/s 以下

(4)発射仰角 76°~86°程度

(風向と風速に応じて,事前の飛翔予測計算を参考

に決定)

(5)立入制限区域 見学位置は射点西側、距離は射点から 560 m の位置

とする。また、打ち上げ 30 分前には最後に射点に 残るメンバー以外の人員の退避を開始する。(駐車

場での見学は不可とする)

(6)打上げ時の連絡 付表 2 に記載する関係各所に、打ち上げ実験実施日

前日17時まで、実施15分前、実施後に電話連絡を

入れる。

(7)その他の気象条件

雷雲等の天候及び気象条件は以下の制限を設ける。この制限は JAXA の打上げ 気象制限を参考に設けた。以下の制限を満たしていなければ原則として打上げを 延期または中止とする。ただし、PM 判断及び会場側の判断で行うものとする。

・雷による制限

射点を中心として、気象レーダーで半径 20 km 圏内に雷雲または稲妻がない、気象レーダーで検出された場合、雷雲が半径 20 km をすぎるまで延期または中止とする。 (ランチャが避雷針になるため、雷の移動量が 14 km 程度なので安全範囲を設けた)

・雨による視界遮蔽距離制限

降雨または降雪によって目視による 1 km 以内の観測が不可能であると判断される大樹町の気象観測データの単位時間あたりの降雨降雪量が 11.3 mm/h 以上を観測した場合打ち上げを中止

○視程距離 (V) と光波減衰量 (σ) の関係式は

 $\sigma = 13/V \text{ dB/km}$

で示され、10分間降雨降雪量(R)と光波減衰量(σ)の関係は

 $\sigma = 4.9 R^{0.63} dB/km$

で示されるので 1km の視程を確保するためには

10 分間降雨降雪量が 4.7 mm/10 min である必要があり 1 時間当たりの降雨降雪量に直すと約 28.2 mm/h である。

また、10 分間平均の降雨降雪量は実際の1 時間あたりの降雨降雪量の $2\sim2.5$ 倍 となるので28.2 mm/h の4割とすると1 時間あたり11.3 mm/h である。よって、11.3 mm/h を上限とする。

それ以降増加するようならその日は延期(その場判断)

・地震による制限

発生時:ランチャ横転の危険性、GSE 周りのボンベがある場合その場から避難 震度 4 以上:ランチャが横転する可能性があり、準備所に避難

→発生後、ロケット及び GSE を含む打ち上げシステムに破損がないか確認する

・竜巻による制限

巻き込まれる危険性があるため、発生確認後は、準備所に避難、規模が大きい場合は避難

・濃霧による制限

観測隊及び点火所、待避所で射点の様子が確認できないときは打上げ延期

・雪による制限

風雪の場合、その日の打上げを中止する

[天候情報取得源]

- ・気象庁 気象警報・注意報:北海道 雷注意報,警報
- ・ ウェザーニュース
- 日本気象協会 (http://tenki.jp/)
- · 国際気象海洋株式会社
- NCEP (http://www.ncep.noaa.gov/)
- ・大樹町公式ホームページ/気象観測データ

(<u>http://www.town.taiki.hokkaido.jp/mamedasu/index.html</u>)

8. 連絡先

東海大学チャレンジセンター学生ロケットプロジェクト

E mail: tokai.srp(a)gmail.com ※(a)を@に置き換えてください。

付表 1 ハイブリッドロケット機体仕様

♦H-40

名称	TSRP-H-40
全長	2.13 m
直径	183 mm
乾燥質量	16.1 kg
エンジン	THR-F210L改-LTD
予想到達高度	930 m
回収方法	2段階パラシュートによる減速落下
搭載物	ハイブリッドロケットエンジン 無火薬式2段分離機構 小型パラシュート メインパラシュート 共通計器 テレメータ 教育用共通計器 カメラ

♦**H-**41

名称	TSRP-H-41
全長	1.59 m
直径	154 mm
乾燥質量	6.4 kg
エンジン	THR-E/F406K
予想到達高度	420 m
回収方法	パラシュートによる減速落下
搭載物	ハイブリッドロケットエンジン 無火薬式分離機構 パラシュート 共通計器 1 kHzロガー カメラ

付図1 保安区域図

