

© By aefinition $\ell' = Fx \Rightarrow Fx = K't \times K'KK'x$ $\Rightarrow F = [K'^{-T}][t_{\times}][R][K'] + 2$

C4B/200b/R3

Part @/crd.

Any point
$$x'$$
 on line l' has $(x'^T) l' = 0$.

Hence
$$\alpha'^{T}[F] \alpha = 0$$
.

(†2).

(a). Single camera, [K]=[K']=I and $t=[00t_z]^T$.

$$\begin{bmatrix} x' y' 1 \end{bmatrix} \begin{bmatrix} I \end{bmatrix} \begin{bmatrix} 0 & -t_2 & 0 \\ t_2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} I \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0.$$

$$\begin{bmatrix} z' y' 1 \end{bmatrix} \begin{bmatrix} -tzy \\ tzz \end{bmatrix} = 0.$$

$$-t_2 x'y + t_2 xy' = 0.$$

$$\frac{S_0}{x} = \frac{y'}{x'}$$

(+3)

(ii)

We expect the epipolar lives to radiate from the optic centre.

$$\frac{y}{x} = \frac{y'}{x'}$$
 copresses exactly this

C4B/2007

as/chd

$$\Rightarrow \quad \exists \quad \begin{pmatrix} \mathcal{R}_1 & \mathcal{E}_1 \\ \mathcal{D}^{\mathsf{T}} & 1 \end{pmatrix}$$

Also
$$\begin{pmatrix} R_2 & t_2 \\ o^T & 1 \end{pmatrix} \begin{pmatrix} X \\ 1 \end{pmatrix} = \begin{pmatrix} R & t \\ o^T & 1 \end{pmatrix} \in \begin{pmatrix} X \\ 1 \end{pmatrix}$$

Hence
$$\begin{pmatrix} R & t \\ O^{\mathsf{T}} & 1 \end{pmatrix} = \begin{pmatrix} R_2 & t_2 \\ O^{\mathsf{T}} & 1 \end{pmatrix} \begin{pmatrix} R_1 & t_1 \\ O^{\mathsf{T}} & 1 \end{pmatrix}^{-1} = \begin{pmatrix} R_2 & t_2 \\ O^{\mathsf{T}} & 1 \end{pmatrix} \begin{pmatrix} R_1 & \mathsf{T} \\ O^{\mathsf{T}} & 1 \end{pmatrix} \begin{pmatrix} R_1 & \mathsf{T} \\ O^{\mathsf{T}} & 1 \end{pmatrix}$$

$$\Rightarrow (R t) = (R_2 R_1^{\lceil \lceil \rceil \rceil \rceil \rceil \rceil + t_2))$$

(c) The usual.

Useful in merkeling because second is along a line-1D rather them 2D search.

$$\Rightarrow F = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 7 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} x_2 & y_2 & 1 \end{bmatrix} \begin{bmatrix} 0 & -4 & 0 \\ 4 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 2x_1y_2 & 1 \end{bmatrix} \begin{bmatrix} -4y_1 \\ 4x_1 \\ 0 \end{bmatrix}$$

Hence $y_2 = y_1$ radial rensistant with translation x_2 y_4 along optic axis.

(a) (i) Point along back projected ray is
$$\begin{pmatrix} Z & K^{-1} x \\ 1 \end{pmatrix}$$
 and hence the point at be in $\mathcal{R} \stackrel{?}{=} \begin{pmatrix} K^{-1} x \\ 0 \end{pmatrix}$

(ii)
$$e' = k' [R] \frac{k}{2} = k't$$

(iii) l' rus form e' ava q' =>
$$l' = e' \times q' = \frac{k't}{2} \times \frac{k''k'' \times k''}{2}$$
[5]

$$\begin{array}{ccc}
\underline{G} & \underline{\xi'} = F \times \Rightarrow & F = k' \underline{t} \times k' R k' \\
& = (k'^{-T}) (+ k' k') \\
& = k'^{-T} [\underline{t}_{\times}] R k^{-1}
\end{array}$$

Any point on
$$\ell'$$
 is $2^{\prime T}\ell' = 0 \Rightarrow 2^{\prime T} F = 0$ [5]

(c)
$$1x = KX$$
; $1x' = K'RX$ when $t = 0$ (pure rotation)

(a). Retaces, zeroms and translates
$$\Rightarrow \lambda'x' = \kappa'(Rx + t)$$
 but $\hat{n}^T X = d$.

$$\lambda x = \kappa X \Rightarrow X = \kappa^{-1} x \qquad \hat{n}^{-1} X = d \Rightarrow \hat{n}^{-1} X = \hat{n}^{-1} \kappa^{-1} x$$

$$\Rightarrow \hat{n}^{-1} X = d \Rightarrow \hat{n}^{-1} K = \hat{n}^{-1} \kappa^{-1} x$$

$$\Rightarrow \hat{n}^{-1} X = \hat{n}^{-1} \kappa^{-1} x \Rightarrow \hat{n}^{-1} K = \hat{n}^{-1} \kappa^{-1} x$$

$$\Rightarrow \hat{n}^{-1} X = \hat{n}^{-1} \kappa^{-1} x \Rightarrow \hat{n}^{-1} K = \hat{n}^{-1} \kappa^{-1} x$$

$$\Rightarrow \hat{n}^{-1} X = \hat{n}^{-1} \kappa^{-1} x \Rightarrow \hat{n}^{-1} K = \hat{n}^{-1} K$$

$$\Rightarrow z' \sim \kappa' \left(R \kappa^{-1} + \frac{t n^{-1} \kappa^{-1}}{d} \right) z$$

$$\sim J \quad a \quad 3 \times 3 \text{ watrix}$$
[3]

pt of 2 2009/1 CHB DWM Comp Vision Version 1 10/12/08.

(a) Points in the world are first transferred into the Camera's frame $X^{c} = \begin{bmatrix} R & b \\ 0 & 1 \end{bmatrix} X^{w}$

The points undergo projection into the ideal image

$$\tilde{X}_{r} = [I|\delta]\tilde{X}_{c}$$

The intrinsics transferm the ideal point into the actual image

$$\chi = \begin{pmatrix} f & u_0 \\ o & x f & v_0 \\ o & o & d \end{pmatrix} \chi^{T} = K \chi^{T}$$

Comming these & = K[R[t] XW

(+3)

(ii) Take the left hand 3×3 of P as Pleft.

Invert it to give PLEFT = RTK-1

A 2 upper triangular.

rotation meetis.

Perform "QR" decomposition on PLETE

Then R = "R" Ty and K = "R"-1

The scale uncertainty will enter K

Hence temp = K33

Au Kij - Kij/temp /

Also Pij - Pij/temp

Now
$$Kt = \begin{pmatrix} p_{14} \\ p_{24} \\ p_{34} \end{pmatrix}$$
 and $t = K^{-1} \begin{pmatrix} p_{14} \\ p_{24} \\ p_{34} \end{pmatrix}$

(b) $X^{B} = \begin{bmatrix} R_{1}^{T} & -R_{1}^{T}t \\ \sigma^{T} & 1 \end{bmatrix} X^{1} \Rightarrow X^{2} = \begin{bmatrix} R_{2} & t_{2} \\ \sigma^{T} & 1 \end{bmatrix} \begin{bmatrix} R_{1}^{T} - R_{1}^{T}t \\ \sigma^{T} & 1 \end{bmatrix} X^{1}$

$$= \begin{bmatrix} R_2 R_1^T & -R_2 R_1^T t_1 + t_2 \end{bmatrix} \chi^4$$

$$= \begin{bmatrix} 0 & 1 \end{bmatrix}^4$$

But $\chi^2 = \left[\begin{array}{c} R & b \\ 0 & 1 \end{array} \right] \chi^1$

Hence R= R2R1 and t = -R2R1 ty +tz // (+5)

(+2)

(c) Optic centre is
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
. Pt at as is $\begin{bmatrix} K_1^{-1}x_1 \\ 0 \end{bmatrix}$ - both in camera 1 frame.

Project into camena 2:
$$e_{2} \propto K_{2} \left[R \mid t \right] \left[\begin{matrix} 0 \\ 1 \end{matrix} \right] = K_{2} t \qquad q_{2} \sim K_{2} \left[R \mid t \right] \left[\begin{matrix} k_{1} \\ 0 \end{matrix} \right] = K_{2} R K_{1} \mid x_{1} \mid x_{2} \mid x_{3} \mid x_{4} \mid x_{5} \mid$$

Hence
$$\ell_2 \sim K_2 t \times K_2 R K_1^{-1} \times K_2^{-1}$$

and, as $\ell_2 \sim F \times_1$, $\Rightarrow F \sim K_2 t \times K_2 R K_1^{-1}$
 $= K_2^{-T} (t \times R K_1^{-1})$

9 n tro skew symmetric
$$[t_x]$$
 ... $= k_2^{-T}[t_x]Rk_1^{-1}$ $+2$

4

(d)
$$K_1 = I$$
, but $K_2 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow K_2^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$

R = I as parallel

$$t_{x} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\ell_{2} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -in_{1} \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -ir_{2} \\ 1 \end{pmatrix}$$

This is the line $0x + \frac{1}{2}y + 1 = 0$

$$\Rightarrow$$
 $y = 2$ (

Agrees with expectations parallel epipolar lines along rows bout y value downled because of downled found long it.

DWM computer	Vision (1) C48	2010	v1 17/1/10
$\frac{(a)}{\chi^{1}} = \begin{bmatrix} R_{1} & t_{1} \\ 0^{T} & 1 \end{bmatrix}$	$\frac{X^{B}}{2} \Rightarrow X^{B} = \int_{0}^{R} R_{1}^{T} - R_{2}^{T}$	$\begin{bmatrix} x^1 \\ 1 \end{bmatrix} \underline{x}^1$	
$\frac{1}{2} \text{ and } X^2 = \begin{cases} R_2 \\ 0 \end{cases}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} R_1^T - R_1^T L_1 \end{bmatrix} \times^T$	·
_			
	$R_2 R_1$	$\begin{array}{c c} -R_2 R_1^T t_1 + t_2 \end{array} x^1$	
			
→	R= R2R1 and	$t = -R_2R_1 t_4 + t_2$	[3]
6 Projection of	C ₄ 's optic centre is s	$e' = k_2 \{R[t] \begin{pmatrix} Q \\ 1 \end{pmatrix} =$	K ₂ t
	tion of 2, to peril as		
Projection	of this into camera	2 is q'= K2[R/t] / K1	$ = k_2 R k_1 z_1 $
Epipolar	line l' ~ e' x		
		$= \kappa_2^{-7} (t \times$	
		$= \kappa_2^{-T}[t_x]\kappa$	κ ₁ . χ ₁
		= F ₂₁	[5]
(c) (1) 9nver	t the left hand 3×3	of Pn	
(i) (x) As Pn	# KR, [Photo] = P-1	K-1 ⇒ Performed RR :	deamposition "R" ← K ⁻¹
	0 · "0T" b	110-17	
	Ra-"a" and K		ect this using
(3)" K in	properly sealed, but		
(4) Righ	P 4 P/K33 , hand column of P14 P24 P34	$kt \Rightarrow t = K^{-1}$	• /
* There are	certain sign ambiguities	that require connection,	but these [3]
do not s	certain sign autiquities need elucidating here.		

DWM computer vision (1) $C48/2010$ R direction. © (ii) Square pixels suggest $k_{11} = k_{22}$ K -field q view is 60° $f_{x} = 384 = 665$	v1 17/410.
© (ii) Square pixels suggest $K_{11} = K_{22}$	
@(ii) Square pixels suggest K11 = K22	
(C) (ii) Square pixels suggest $K_{11} = K_{22}$ X-field of view is 60°	
X-field of view is 60° 384	
$f_{x} = \frac{384}{\tan 30^{\circ}} = 665$	
	Han A
Expect tiny Skew, and 20, vo in Centre of sinage - all	-tong a
Key wan't be! Hence K = 665 20 2384	
0 665 2 288	[4]
	· : .
(1) E ~	
(d) x_3 must be on ℓ_3 $\sim F_{31} x_1$	
and on $\binom{3}{3}$ $r F_{32} \frac{x_2}{x_2}$	
3-7-2	
(1) (2)	
$\Rightarrow \chi_{3} \sim \ell_{3}^{(1)} \times \ell_{3}^{(2)} = F_{3}, \chi_{1} \times F_{32} \chi_{2}^{2}$	
	[K]
Hogiogeneous wordinale property.	- 0 -
Violet Garage Control of the Control	· · · · · · · · · · · · · · · · · · ·
	
•	

2011 C4B Computer Vision (DWM) K'[RIt] [KIZ] [+1] Epipole e' = K'[R|t][0] = k'te x q' = K't x K'RK-12 Hence [F] = K'- [[tx] RK" (c) Covergent cameras have epipolar lines which radiate from the epipoles (cat's whishers). By rectifying the images so that they appear to anse from parallel cameras with the same wiringic calibrations, the epipoles became pts at is (in 2D) and thus the epipolar lines are parallel and follow the enrige rows. Hence matching easier /quicker. (d)

(d)
$$\chi = K[I|0] \chi_{4x_1} = K \chi_{3x_1}$$

 $\chi_{rect} = K'[R|0] \chi_{4x_1} = K'R \chi_{3x_1} = K'R K'\chi_{3x_1}$

ie.
$$H = K'RK^{-1}$$
 [+4]

(e) We know z' = K'[RIt] X 4x1

The sting here is to realize that the require projection mulinx is $\frac{x'}{n}$ rect = $K[I|R't]X_{4x1}$

Then a' = K'(RX + t) (a) $a'_{\text{rect}} = K(X + P^{-1}t)$ $= KR^{-1}(RX + t) = KR^{-1}K'^{-1}x'$ from (b)

[+4]

dii) For three correspondences:

$$A_{t} = \begin{bmatrix} (y_{1} - y_{1}^{i}) & (x_{1}^{i} - \lambda_{1}) & (\lambda_{1}y_{1}^{i} - y_{1}^{i} \times x_{1}^{i}) \\ (y_{2} - y_{2}^{i}) & (x_{1}^{i} - x_{2}) & (x_{2}y_{2}^{i} - y_{2} \times x_{2}^{i}) \end{bmatrix} = 0$$

$$\begin{bmatrix} (y_{3} - y_{3}^{i}) & (x_{3}^{i} - x_{3}) & (x_{3}y_{3}^{i} - y_{3} \times x_{3}^{i}) \end{bmatrix}$$

t is in the mull space of A3x3

$$A = \begin{cases} (2-3/2) & (1-1) & (1.\frac{3}{2} - 2.1) \\ (-1+\sqrt{3}) & (2\frac{1}{3}-\sqrt{2}) & (\frac{1}{2}-\frac{1}{3} + 1.\frac{2}{3}) \\ (\frac{1}{2}-\frac{2}{3}) & (\frac{1}{3}-0) & (0.\frac{2}{3}-\frac{1}{2},\frac{1}{3}) \end{cases}$$

$$\text{ like } t = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } At = \begin{bmatrix} 1/2 + 0 - 1/2 \\ -2/3 + 1/2 + 1/2 \\ -1/6 + 1/3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \text{ as required}$$

(a) When the world coordinates and country coordinates coincide, [II0] projects a homogeneous seene point $X = \begin{pmatrix} X \\ Y \end{pmatrix}$ into the "ideal" image. The intrinsic matrix K maps positions in the ideal emage into those in the actual image $K = \begin{pmatrix} f_X & S & u_0 \\ O & f_Y & V_0 \end{pmatrix}$

fx, fy are the focal lengths in the x and y directive, 320 is the skew and no, vo the principal paint. If world and camera coordinates do not wincide a robation and translation is required

- the ethinnic parameters. $X^{c} : \begin{bmatrix} R & t \end{bmatrix} X$ So the projection is $\begin{bmatrix} J/D \end{bmatrix} \begin{bmatrix} R & t \end{bmatrix} X = \begin{bmatrix} R & t \end{bmatrix} X$. (Then k' transforms into the actual ringe of this second carmera.)

[3]

(1) Back projected projection centre centre epipole line Epipole projection centre

Given a point x, the scene point lies somewhere on the back projected ray. The correspondence lies somewhere on the intersection of
the epipolar plane with the secend einage plane. This is the epipolar line of
The limits are given as e' and q. e' is the epipole: the untersection
of the base line with the 2nd image plane, quis point where a line
parallel to the back projected ray interesects the image. [3]

(b) e' = k'[R[t]][Q] = k't and Q = k'[R[t]][k'x] = k'Rk'x(ii) $e' = e' \times Q = k't \times k'Rk'x = k'^{-T}(t \times Rk')x$ using relationship gives.

C18/2013

(a)

C18|2013

(b) /ctd. We can write
$$t \times as$$
 a matrix $[t_x] = \begin{pmatrix} 0 & t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{pmatrix}$

So $F = K' - 7[t_x]RK'$

[+3]

(c) The only requirement for a homogeneous
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 is that $x = \frac{x_1}{2}$ $y = \frac{x_2}{x_3}$

Obviously $\frac{x^2}{z} = x$, $\frac{y^2}{z} = y$ — >> good rep.

 $x = \begin{pmatrix} x^2 \\ y^2 \end{pmatrix} = K \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = K \begin{pmatrix} x_3 \\ y \\ z \\ 1 \end{pmatrix}$

$$\Rightarrow \chi_3 = k^{-1} \chi$$

$$\chi' = \kappa' [R] \frac{\chi}{\chi} = \kappa' R \kappa' \chi + \kappa' \chi$$

$$= A \chi + b$$

$$= A \chi + b$$

$$x' = \kappa' \left[\frac{R}{L} \right] \begin{pmatrix} x_3 \\ 1 \end{pmatrix} = \kappa' R \kappa' x + \kappa' t$$

$$= A x + b$$

$$x^{T} = x^{T} \left[k^{-T} R^{T} \left[b_{x} \right]^{T} k'^{-1} \right] \left[k' R k^{-1} x + k' t \right]$$

$$= x^{T} \left[k^{-T} R^{T} \left[b_{x} \right] R k^{-1} x \right]$$

$$+ x^{T} k^{-T} R^{T} \left[b_{x} \right] k^{-1} k t$$

=
$$(RK^{-1}x)^{T}[-tx](RK^{-1}x) + 0$$
 as $[tx]t = 0$.

This is a scalar
$$\alpha \Rightarrow \alpha = \alpha^{T}$$

$$\Rightarrow \alpha = (R k^{-1} x)^{T} [-tx]^{T} (R k^{-1} x)$$
But $tx^{T} = tx \Rightarrow \alpha = -\alpha \Rightarrow \alpha = 0$
Hence $x^{T} \in Tx^{T} = 0$ is substituted.

[+4]

 $\Re(a)$. The projection equation is $z = K[R]t]x = K[I/o][a_1]x$.

The 3D homogeneous point X is given in the world frame, and rotation R and translation & define its Enclidean transformation in to comera frame.

[I/O] is the vanilla projection mainix, projecting a point in the camera frame into an idealized image. K, the camera intrinsic matrix, is an affine transfermation morring the ideal projection into the actual pixelected image.

K = (f sf no), where f is the food length, & the aspect ratio, S the skew, and no, vo the position of the principal point in The actual linage.

once P = K[R|t] is recovered up to scale: - to Piet = KR, resterming QR decomposition on Piet = $R^{-1}K^{-1}$ yields $R^{-1} = "Q"$ and $K^{-1} = "R"$.

Hence R = "R" and K = "R" , up to scale in the case of K.

Adjust scale K4 K/K33, and similarly for P - P/K33.

[5] Then as $P_4 = Kt$, $t = K^{-1}P_4$.

(b) Points on the back-projected vay are $\begin{bmatrix} ak^{-1}x \\ 1 \end{bmatrix}$. Choose optic centre (a=0)and point at infinity $(\alpha = 00)$, $\binom{Q}{1}$ and $\binom{K^{-1} \times}{0}$ respectively.

Project both into C' as e' = K'[R][t][t] = K't and q' = K'[R][t][t][t]

Epipolar line $\ell' = \ell' \times q' = k' t \times k' [R] k' x = k'^{-1} [t \times][R] k' x = Fx$

F = [k'-1][tx] RK' where [tx] is the shew symmetry "vactor production" water.

(c) We are Told n X3:1. We know to exact point with back projected ray, which in turn projects to a known puret in c'.

Point is $\begin{bmatrix} d \ K'z \end{bmatrix} \Rightarrow n \ d \ K'z = 1 \Rightarrow \frac{1}{\alpha} = n^T K'x$. Point is $\begin{bmatrix} E \ 1/\alpha \end{bmatrix} = \begin{bmatrix} K'x \\ n^T K'z \end{bmatrix}$ [3]

(d) Obvious that $X = \begin{bmatrix} K'x \\ n^T k^{-1}x \end{bmatrix} = \begin{bmatrix} I \\ n^T \end{bmatrix} k^{-1}x \Rightarrow x' = K'[R]t] \begin{bmatrix} I \\ n^T \end{bmatrix} k^{-1}x$

But, as z= Hz, H= K[RIt][h] K

The fundamental matrix requires $\chi^T F \chi = 0 \Rightarrow \chi^T [H^T F] \chi = 0$ for all χ > HTF is cutisquelic Now [x Ax] = -[x Ax]. But this requires x Ax = 0 for antisymmetric A