BUEC 311: Business Economics, Organization and Management Supply and Demand - The Basics

Fall 2020

Outline

- The Supply-and-Demand Model
 - Demand
 - Supply
 - Market Equilibrium
- Using the Model
 - Changing fundamentals.
 - The effects of government intervention.
- Applying the model in practice.
 - When it works.
 - When if fails.

Outline

- The Supply-and-Demand Model
 - Demand
 - Supply
 - Market Equilibrium
- Using the Model
 - Changing fundamentals.
 - The effects of government intervention.
- Applying the model in practice.
 - When it works.
 - When if fails.

- Supply and demand is the core of almost every economic model
- This simple model is useful for understanding many markets.
 - It works particularly well in markets with many buyers and sellers.
- Why is it useful?
 - We can use it to make clear predictions about how changes in fundamentals affect market outcomes.
 - The limitations are easy to understand

- The first piece of the model: **Demand**
- Demand is consumer's desire to purchase goods and services.
- What factors affect this desire? How?

 While many factors can affect consumer's desire to purchase goods and services, economists primarily focus on how a good's own price affects the quantity demanded.

Definition (Quantity Demanded)

The quantity demanded is the amount of a good or service a consumer is willing to buy at a given price, holding other factors constant.

• Empirical evidence suggests that the quantity demanded by consumers follows the *Law of Demand*.

Definition (Law of Demand)

Consumers demand a higher quantity of a good or service when the price is lower (and a lower quantity of when the price is higher), holding all other factors that influence the amount consumers want to consume constant.

- We can illustrate this relationship graphically using a *demand curve*.
 - To do so, let's use the example of gasoline demand.

Figure: The demand for gasoline

- The demand curve provides a concise answer to the question of what happens to the quantity demanded as price changes, holding all other factors constant.
 - Here: what happens to the demand for gasoline as the price of gasoline increases or decreases.

- Changes in the quantity demanded in response to a price change are referred to as *movements along the demand curve*.
- Why is the demand curve downward sloping?

- The demand curve tells us how a change in the price of a good or service affects the quantity demanded.
 - Change in $p \implies movement along the demand curve$.
- Recall that other factors also affect the quantity demanded.
 - ullet Change in these factors \Longrightarrow shift of the demand curve.
- As an example, let's consider an increase in household income. How would you expect that to change gasoline demand?

- How the demand curve shifts depends on the factor being considered.
 - Income
 - Price of substitute or compliment
 - Tastes
 - Government rules/regulations
- As another example, let's consider the effects of an increase in the price tolls in the core of the city, a complement to gasoline.

Figure: The effects of an increase in road tolls on the demand for gasoline

- The demand curve gives us a precise relationship between price and quantity demanded.
- We can also express this same relationship mathematically using a demand function.
- The demand function is given by:

$$Q = D(p, Y, X)$$

where Q is the quantity demanded, and $D(\cdot)$ is the demand function that depends on the price, p, income, Y, and other factors, X.

 \bullet For simplicity, in what follows we will hold other factors (X) constant.

• In the graphs above, I've used the equation

$$Q = 30 - \frac{p}{5} + 0.1Y$$

where Q is the quantity of gasoline demanded, p is the price of gasoline, and Y is average household income in thousands of dollars per year.

- Functional form reflects available evidence about the demand for gasoline:
 - p is negative.
 - Y is positive.
 - Constant term (30) reflects all other factors.
- The parameters here $(30, \frac{1}{5}, \text{ and } 0.1 \text{ aren't estimated, they are simply illustrative.}$

- We can obtain the demand curve for gasoline by substituting for income, Y.
- If household income is \$100,000. the demand for gasoline is given by:

$$Q = 30 - \frac{p}{5} + 0.1 \times 100$$
$$Q = 40 - \frac{p}{5}$$

• With some algebra we can obtain the *inverse demand curve*:

$$Q = 40 - \frac{p}{5}$$

$$5Q = 200 - p$$

$$p = 200 - 5Q$$

Figure: The demand for gasoline

- The demand function is useful because it allows us to think precisely about how the quantity demanded will respond to a change in price, holding income (and all other factors) fixed.
- To see this, let's use two of the (price, quantity) pairs highlighted by the dotted lines in the figure:
 - Let $p_1 = 100$ denote the initial price, and $p_2 = 50$ denote the new price.
 - The quantity demanded at p_1 is $Q_1 = D(p_1) = 40 \frac{p_1}{5} = 40 \frac{100}{5} = 20$
 - The quantity demanded at p_2 is $Q_2 = D(p_2) = 40 \frac{p_2}{5} = 40 \frac{50}{5} = 30$
- Next we can use these to start thinking about response to price changes

• In our gasoline example, if the price changes from p_1 to p_2 , the change in quantity demanded is given by:

$$\Delta Q = D(p_2) - D(p_1) = \left[40 - \frac{p_2}{5}\right] - \left[40 - \frac{p_1}{5}\right]$$

$$\Delta Q = D(p_2) - D(p_1) = \frac{p_1}{5} - \frac{p_2}{5}$$

$$\Delta Q = D(p_2) - D(p_1) = -\frac{1}{5}\Delta P, \ \Delta P = p_2 - p_1$$

• So, we know that for a given change in price ΔP , the quantity consumed will change by $\Delta Q = -\frac{1}{5}\Delta P$

• How do we see this? Check the graph:

- Changing the price from 50 to 100 decreases Q from 30 to 20, so $\Delta Q = -10$
- From the previous slide, $\Delta Q = -\frac{1}{5}\Delta P = -\frac{50}{5} = -10$

Market Demand

- In many cases we might have an estimate of the demand from all consumers in a market, but in some scenarios, we may only know the demands of individual consumers or groups of consumers.
- In these cases, we need to add up the demand from each consumer (or group).
- Key point: Total quantity demanded at a given price is equal to the sum of individual consumer demands at that price.

• As an example, suppose there are two people in the market for gasoline. They both have demand functions given by:

$$Q = 40 - \frac{p}{5}$$

What is the market demand for gasoline in this case?

• Again, check the graph to find yourself an easy anchor point:

- What's the demand from one person at price p=100? It's 20.
- So, if the demand from one person at price p=100 is 20, what's the demand from 2 people?

Okay, now let's do the math

- If $Q = 40 \frac{p}{5}$, adding both sides shows that $2Q = 80 \frac{2 \times p}{5}$.
- Now let's check. If p = 100, $Q = 80 \frac{2 \times p}{5} = 80 \frac{2 \times 100}{5} = 40$.

Definition (Horizontal Summation)

When summing demand for a *private good*, you add up the quantity demanded of each individual at each price.

Trap: don't look at the graph and add the curves vertically. Just remember, if no one person demands gasoline above price p_max , the market doesn't demand any at prices above p_max either.

Determining Market Demand Test yourself: what's the aggregate demand in this case?

Figure: The demand for gasoline

Supply

- The second piece of the model: Supply
- Supply is producers' willingness to sell goods and services.
- What factors affect this willingness? How?

Supply

 As with demand, economists focus on how the *price* of a good or service affects the quantity supplied.

Definition (Quantity Supplied)

The amount of a good or service that producers want to sell at a given price, holding other factors that influence supply decisions constant.

Supply

- Is there a Law of Supply?
- We can illustrate the relationship between the price of a good or service and the quantity producers want to sell via a *supply curve*.

The Supply Curve

Figure: The supply of gasoline

The Supply Curve

- The supply curve provides us an answer to the question of what happens to the quantity supplied as price changes, holding all other factors fixed.
 - Here: what happens to the supply of gasoline as the price of gasoline increases or decreases.

• Changes in the quantity supplied in response to a price change are referred to as movements along the supply curve.

• Do supply curves always need to slope upward?

The Supply Curve

- The supply curve tells us how a change in the price of a good or service affects the quantity supplied.
 - Change in $p \implies$ movement along the supply curve.
- Recall that other factors also affect the quantity supplied.
 - ullet Change in these factors \Longrightarrow shift of the supply curve.
- As an example, let's suppose that the price of an alternative product, yoghurt, increases in price from \$2.00 per kg to \$4.00 per kg.

Figure: The effect of a crude oil price increase on the supply of gasoline

- How the supply curve shifts depends on the factor being considered.
 - Prices.
 - Production costs.
 - Technological change.
 - Government regulation.
- As another example, let's consider the effects of a decrease in the price of blending components.

Figure: The effect of a blending component cost decreases on the supply of gasoline

- The supply curve displays the relationship between price and quantity supplied.
- We can also express this same relationship mathematically using a *supply* function.
- The supply function is given by:

$$Q = S(p, p_y, X)$$

where Q is the quantity supplied, and $\overline{S(-)}$ is the supply function that depends on the price, p, the price of other possible inputs or outputs p_y , and other factors, X.

 \bullet For simplicity, in what follows, we will hold other factors (X) constant.

The Supply Function

• Suppose that the estimated supply function for gasoline is given by:

$$Q = 10 + \frac{1}{3} - 0.5 p_y$$

where Q is the quantity of gasoline supplied, p is the price of gasoline, and p_y is the price of crude oil (these are just placeholder parameters).

- the own-price effect, p, is positive: higher p means higher Q.
- the impact of crude price changes, p_y is negative: higher crude prices means less gasoline supplied at a given price.
- The constant term (10) reflects all other factors.

The Supply Function

- ullet We can obtain the supply curve by substituting for the price of crude oil, p_y .
- Suppose the price of oil is \$40 per barrel. Then the supply of gasoline is given by:

$$Q = 10 + \frac{p}{3} - 0.5p_y = 10 + \frac{p}{3} - 20$$

$$Q = \frac{p}{3} - 10$$

$$Q = \frac{p}{3} - 30$$

$$Q = \frac{p}{3} - 30$$

- Rearranging we can obtain the *inverse supply curve*, p = 30 + 30
- This is the same relationship depicted on the next slide.

Figure: The supply of gasoline

Gasoline supplied (q, in hundreds of litres per year)

The Supply Function

- The supply function allows us to think precisely about how price changes affect the quantity supplied, holding all other factors fixed.
- Let's use a simpler example here of Q=2p and let p_1 denote the initial price, and p_2 denote the new price.
- The quantity supplied at p_1 is $Q_1=S(p_1)=2p_1$, and the quantity supplied at p_2 is $Q_2=S(p_2)=2p_2$
- The change in quantity supplied as price goes from p_1 to p_2 is $\Delta Q = Q_2 Q_1 = S(p_2) S(p_1)$.
- In our simplified example, if the price changes from p_1 to p_2 , the change in quantity supplied is given by:

$$\Delta Q = S(p_2) - S(p_1) = [2p_2] - [2p_1]$$

= 2[p_2 - p_1] = 2\Delta p

Determining Market Supply

- In some cases, we may not have an estimate of total market supply, but rather estimates of the supply curves of each producer in the market.
- To obtain total market supply, we need to add up the supply from each producer.
- Hint: Are you adding up prices or quantities?

Determining Market Supply

• As an example, suppose there are 3 producers in the market for gasoline. They both have supply functions given by:

Determining Market Supply

Figure: The aggregate supply of gasoline using the same equations as above

• Once we know supply and demand in the market, we can determine the market equilibrium.

Definition (Market Equilibrium)

The market is in equilibrium when all market participants are able to buy or sell as much as they want; no participant wants to change their behaviour given what other market participants are doing.

 How can we determine the market equilibrium from the supply and demand curves?

Figure: Equilibrium in the market

Definition (Equilibrium Price)

The equilibrium price is the p at which consumers can buy as much as they want, and sellers can sell as much as they want.

Definition (Equilibrium Quantity)

The equilibrium quantity is the q such that the quantity demanded equals the quantity supplied.

Figure: Our modern understanding of equilibrium in the market is largely due to this economist. Image: PBS

Figure: They even made a movie about him: A Beautiful Mind (2001)

Figure: Off-equilibrium points, and the rationale of equilibrium

Figure: Off-equilibrium points, and the rationale of equilibrium

Figure: Off-equilibrium points, and the rationale of equilibrium

Figure: Off-equilibrium points, and the rationale of equilibrium

• We can also solve for the market equilibrium analytically using algebra:

• Substituting in the equilibrium price into Q_D or Q_S yields the equilibrium quantity of 21.25.

Market Equilibrium Check

- We can do the same off-equilibrium checks with algebra too. For example, let's consider whether Q=25 is an equilibrium.
- Start with the marginal willingness to pay (or demand) at Q=25:

$$Q_D = 40 - \frac{p}{5}$$
 so if $25 = 40 - \frac{p}{5}$, p must be $\frac{p}{5} = 15$, $p = 75$

• But, at p=75, how much are firms willing to supply?

$$Q_S = \frac{75}{3} - 10Q_S = 15$$

 So, at a quantity of Q=25, the marginal consumer who sets the price is willing to pay p=75, but at a price of p=75, there's only going to be a supply of Q=15. Not an equilibrium

Market Equilibrium Remember this graph? Same thing as the algebra in the previous slide

Figure: Off-equilibrium points, and the rationale of equilibrium

