ЗАВДАННЯ ДЛЯ ЗАХИСТУ АКАДЕМІЧНОЇ РІЗНИЦІ З ДИСЦИПЛІНИ «КОМП'ЮТЕРНА ЛОГІКА» ЗА ПЕРШИЙ СЕМЕСТР БІЛЕТ №91

Виконав:

студент ННІКІТ СП-224

Каверін Олександр Миколайович

КОМП'ЮТЕРНА ЛОГІКА. 1-Й СЕМЕСТР

БІЛЕТ №91

1. Що таке досконала диз'юнктивна нормальна форма (ДДНФ)?

Досконалою диз'юнктивною нормальною формою (ДДНФ) булевої функції називається диз'юнкція елементарних кон'юнкцій, які перетворюються в одиницю на тих самих наборах змінних, що й задана функція. ДДНФ повинна задовольняти наступним умовам:

- в ній немає однакових доданків;
- жоден із доданків не містить двох однакових співмножників;
- жоден із доданків не містить змінну разом із її запереченням;
- в кожному окремому доданку є як співмножник або змінна хі, або її заперечення для будь-якого і = 1, 2, ..., n.

Для будь-якої функції булевої алгебри існує своя ДДНФ, причому тільки одна.

2. Для даної функції побудувати таблицю істинності: $F(x,y,z)=x\overline{y\overline{z}} o (x\downarrow y)\overline{z}$

x	У	Z	\overline{y}	\overline{Z}	F
0	0	0	1	1	1
0	0	1	1	0	1
0	1	0	0	1	1
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	1	0	0
1	1	0	0	1	1
1	1	1	0	0	1

3.1. Виконайте спрощення логічного виразу: $L = (X_3 X_1 \vee X_1) \wedge (X_1 \vee X_2)$

$$L = (X_3X_1 + X_1)(X_1 + X_2)$$

$$L = (X_1(1+X_1))(X_1+X_2)$$

$$L = X_1(X_1 + X_2)$$

$$L = X_1^2 + X_1 X_2 \implies L = X_1 + X_1 X_2$$

$$L = X_1(1 + X_2)$$

$$L = X_1$$

Відповідь: $L = (X_3 X_1 \vee X_1) \wedge (X_1 \vee X_2) \equiv L = X_1$

3.2. Виконайте мінімізацію логічного виразу

$$F = X_1 X_2 \overline{X_3} \overline{X_4} \vee \overline{X_1} X_2 \overline{X_3} \overline{X_4} \vee \overline{X_1} \overline{X_2} X_3 \overline{X_4} \vee X_1 X_2 X_3 \overline{X_4} \vee \overline{X_1} \overline{X_2} \overline{X_3} X_4 \vee X_1 X_2 \overline{X_3} X_4 \vee \overline{X_1} \overline{X_2} \overline{X_3} \overline{X_4} \vee \overline{X_1} \overline{X_1} \overline{X_2} \overline{X_3} \overline{X_4} \vee \overline{X_1} \overline{X_1} \overline{X_1} \overline{X_2} \overline{X_1} \overline{X_1} \overline{X_1} \overline{X_1} \overline{X_2} \overline{X_1} \overline{$$

	$\overline{X_3X_4}$	$\overline{X_3}X_4$	X_3X_4	$X_3\overline{X_4}$
$\overline{X_1X_2}$		1	1	1
$\overline{X_1}X_2$	1			
X_1X_2	1	1	1	1
$X_1\overline{X_2}$				

$$1. F' = \overline{X_1} X_2 \overline{X_3} \overline{X_4} \vee \overline{X_1} \overline{X_2} \overline{X_3} X_4$$

$$2.\,F'=\overline{X_1}X_2\overline{X_3X_4}\vee\overline{X_1X_2X_3}X_4\vee\overline{X_1X_2}X_3$$

3.
$$F' = \overline{X_1} X_2 \overline{X_3} \overline{X_4} \vee \overline{X_1} \overline{X_2} \overline{X_3} X_4 \vee \overline{X_1} \overline{X_2} \overline{X_3} \vee X_1 \overline{X_2}$$

4.1. Отримати МДНФ перемикальних функції, що задані діаграмами Вейча.

Мінімізація методом Квайна.

Побудуємо таблицю істинності згідно з даної діаграмою Вейча. Після чого визначимо усі мінтерми, що дорівнюють одиниці.

X ₁	X ₂	Хз	X 4	F	Склеювання. Ітер. 1	Склеювання. Ітер. 2
0	0	0	0	0	-	-
0	0	0	1	1	$\overline{X_1X_2X_3}X_4$	-
0	0	1	0	0	-	-
0	0	1	1	1	$\overline{X_1X_2}X_3X_4$	$\overline{X_1X_2}X_4$
0	1	0	0	0	-	-
0	1	0	1	1	$\overline{X_1}X_2\overline{X_3}X_4$	$\overline{X_1X_3}X_4$
0	1	1	0	0	-	-
0	1	1	1	0	-	-
1	0	0	0	0	-	-
1	0	0	1	0	-	-
1	0	1	0	1	$X_1\overline{X_2}X_3\overline{X_4}$	-
1	0	1	1	0	-	-
1	1	0	0	0	-	-
1	1	0	1	0	-	-
1	1	1	0	1	$X_1X_2X_3\overline{X_4}$	$X_1X_3\overline{X_4}$
1	1	1	1	0	-	-

Побудуємо таблицю покриття (виділимо стовпчики з обов'язковими мінтермами):

	$\overline{X_1X_2X_3}X_4$	$\overline{X_1X_2}X_3X_4$	$\overline{X_1}X_2\overline{X_3}X_4$	$X_1\overline{X_2}X_3\overline{X_4}$	$X_1X_2X_3\overline{X_4}$
$\overline{X_1X_2}X_4$	Х	X			
$\overline{X_1X_3}X_4$	Х		Х		
$X_1X_3\overline{X_4}$				х	х

3 обов'язкових мінтермів складемо МДНФ:

МДН
$$\Phi = \overline{X_1 X_2} X_4 \vee \overline{X_1 X_3} X_4 \vee X_1 X_3 \overline{X_4}$$

Реалізувати перемикальну функцію в елементному базисі І-НЕ

5. За заданим графом автомата виконати синтез керуючого автомата

at	a _{t+1}	X ₁ X ₂	y 1 y 2	T1T2
00	01		00	01
01	01	_1	10	01
01	10	_0	10	10
10	10	0_	11	10
10	00	1_	11	00

D-trigger				
0	0	0		
0	1	1		
1	0	0		
1	1	1		

$$T_1 = a_1 \overline{a_2 x_1} \vee \overline{a_1} a_2 \overline{x_2}$$

$$T_2 = a_1 x_2 \vee \overline{a_1} \overline{a_2}$$

$$y_1 = \overline{a_1} a_2 \vee a_1 \overline{a_2}$$

$$y_2 = a_1 \overline{a_2}$$

