Predictive Housing Price Model for Washington State

Group 3

Marriott, Bobby Martinez, Patricio Widjaja, Victoria (Tori)

1. Data Importing

Dataset description:

- 21 columns
- 21613 rows

Price Details:

count	21	L613.00	
mean	540	0088.14	
std	367	7127.20	
min	75	000.00	
25%	321	1950.00	
50%	450	00.00	
75%	645	000.00	
max	7700000.00		
Name:	price,	dtype:	object

Data Types:		Null Data Counts:	Null Data Counts:		
id	int64	id	0		
date	object	date	0		
	•		VI-20		
price	float64	price	0		
bedrooms	float64	bedrooms	1134		
bathrooms	float64	bathrooms	1068		
sqft_living	float64	sqft_living	1110		
sqft_lot	float64	sqft_lot	1044		
floors	float64	floors	0		
waterfront	int64	waterfront	0		
view	int64	view	0		
condition	int64	condition	0		
grade	int64	grade	0		
sqft_above	int64	sqft_above	0		
sqft_basement	int64	sqft_basement	0		
yr_built	int64	yr_built	0		
yr_renovated	int64	yr_renovated	0		
zipcode	int64	zipcode	0		
lat	float64	lat	0		
long	float64	long	0		
sqft_living15	int64	sqft_living15	0		
sqft_lot15	int64	sqft_lot15	0		
dtype: object		dtype: int64			

1. Cleaning and Wrangling Standardizing the date format

```
### working copy ###
   date time cleaned = df orig.copy()
   ### Fixing date format###
   date_time_cleaned['date'] = pd.to_datetime(df_orig['date'], format='%Y%m%dT%H%M%S', errors='coerce')
   ### Save the updated DataFrame to a new CSV file ###
   date time cleaned.to csv(os.path.join(log prefix, "house file v2.csv"), index=False)
   ### sample of the cleaned data ###
   display(HTML("<u>Sample of Cleaned Data:</u>"))
   print(date time cleaned.head())
                            price bedrooms bathrooms
           id
                   date
                                                        sqft living \
  7129300520 2014-10-13 221900.00
                                        3.00
                                                  1.00
                                                            1180.00
  6414100192 2014-12-09 538000.00
                                       3.00
                                                  2.25
                                                            2570.00
                                       2.00
                                                  1.00
                                                             770.00
2 5631500400 2015-02-25 180000.00
  2487200875 2014-12-09 604000.00
                                       4.00
                                                  3.00
                                                            1960.00
  1954400510 2015-02-18 510000.00
                                       3.00
                                                  2.00
                                                            1680.00
```

1. Cleaning and Wrangling Removing Bedrooms and Bathrooms with a value of 0

1. Cleaning and Wrangling Removing the bottom and top 1% of data

```
### Removing the top and bottom 1% of data in the price column ###
   working_data = pd.read_csv(os.path.join(log_prefix, 'filtered_date_time_cleaned.csv'))
   ### Establishing lower and upper bound using the bottom and upper 1% ##
   upper_bound = working_data['price'].quantile(0.99)
   lower bound = working data['price'].quantile(0.01)
   display(HTML("<u>Defining Bounds to Remove Outliers:</u>"))
   print("Upper bound =",round(upper bound,2))
   print("\nLower bound =",round(lower_bound,2))
   ### Only extracting the data in between the values above the lower bound and values lower than the upper bound ###
   working data2 = working data[(working data['price'] >= lower bound) & (working data['price'] <= upper bound)]</pre>
Defining Bounds to Remove Outliers:
Upper bound = 1965006.6
Lower bound = 154000.0
```

Cleaning and Wrangling Imputing Part One

```
### Replace NaN values in 'bathrooms' with values from 'avg bathrooms' ###
df_clean['bathrooms'] = df_clean['bathrooms'].fillna(df_clean['avg_bathrooms'])
### Replace NaN values in 'bathrooms' with values from 'avg bathrooms' ###
df_clean['bathrooms'] = df_clean['bathrooms'].fillna(df_clean['avg_bathrooms'])
### Replace NaN values in 'SQFT' with values from 'avg sqft living bin' ###
df clean['sqft living'] = df clean['sqft living'].fillna(df clean['avg sqft living'])
 ### Replace NaN values in 'sqft lot' with values from 'avg sqft lot' ###
 df_clean['sqft_lot'] = df_clean['sqft_lot'].fillna(df_clean['avg_sqft_lot'])
```

Cleaning and Wrangling Imputing Part Two

```
### Check all Null values have been handled ###
   null data = df clean.isnull().sum()
   display(HTML("<u>Null Data Counts:</u>"))
   print(null_data)
Null Data Counts:
id
                    0
                    0
date
price
                    a
                    0
bedrooms
                    0
bathrooms
sqft_living
                    0
saft lot
                    0
floors
waterfront
                    0
view
                    0
condition
                    ø
grade
                    0
sqft_above
                    0
sqft_basement
                    0
yr_built
yr renovated
                    0
zipcode
                    0
lat
                    0
                    0
                    0
sqft living15
sqft_lot15
                    0
price_group
                    0
                    0
avg_bedrooms
avg_bathrooms
                    0
avg_sqft_living
                    0
avg_sqft_lot
                    0
dtype: int64
```

2. Data Analysis and Visualization

Our goal is to identify key housing features that significantly impact prices in Washington State.

2. Data Analysis and Visualization

2. Data Analysis and Visualization

3. Data Analytics

• Final Algorithm Type: RandomForestRegressor from sklearn.ensemble

Dependent Variable: price

Independent Variables: sqft_living, zipcode, yr_built, sqft_lot

3. Data Analytics

Root Node

Leaf Nodes

3. Data Analytics

- Mean Absolute Error: \$85,425.55
- Root Mean Squared Error (RMSE): \$135,257.50
- Feature Importances:
 - 'sqft_living' 54.71%
 - 'zipcode' 24.54%
 - 'yr built' 10.64%
 - 'sqft lot' 10.11%
- R-squared (R2) Value: 0.7797
- Explained Variance Score: 0.7798

References

Bruce, P., Bruce, A., & Gedeck, P. (2020). Practical Statistics for Data Scientists (Second Edition ed.). O'Reilly Media, Inc.

Koehrsen, W. (2017). Random Forest in Python. Retrieved December 6, 2023 from

https://towardsdatascience.com/random-forest-in-python-24d0893d51c0