Al Driven Crop Recommendation and **Decision Support System**

F Karthic (MSA23006)

Indian Institute of Information Technology, Lucknow

Under the guidance of Dr. Sushil Kumar Tiwari

2023-25

Outline

- Introduction
- Problem Statement
- Literature Review
- Methodology
- Results and Discussions
- Conclusion and Future Work

Introduction

Agriculture: Backbone of economy and vital for food security

• Current Challenges:

- Unpredictable weather conditions
- Decreasing soil fertility
- Water scarcity
- Overuse of chemical fertilizers
- Economic losses for farmers

• Project Focus:

- Real-world data analysis
- Integration of ML models with agricultural data
- Risk management capabilities
- Timely decision support
- Bridging the Gap

Problem Statement

Major Problems:

- Heavy reliance on traditional practices
- Limited soil and crop-specific knowledge
- Inadequate for modern challenges
- Need for precision agriculture
- Poor crop choices leading to resource inefficiency

• Infrastructure Limitations:

- Lack of timely guidance
- Limited personalized support
- Inadequate risk management strategies

Literature Review (2018-2021)

2018: Crop Recommendation System Using ML

- Algorithms: Decision Trees, SVM, Naive Bayes
- Focus on soil characteristics and weather conditions.
- Region-specific agricultural challenges addressed
- Regional tuning needs

2021: Advanced ML Algorithms Study

- Multiple classifier comparison
- Integration of environmental factors
- Emphasis on performance metrics
- IoT sensor integration challenges

Literature Review (2023-2024)

2023: Data-Driven Analysis

- Combined crop and fertilizer recommendation
- 97% accuracy achievement
- Focus majorly on soil content levels
- Regional scalability challenges

2024: Recent Developments

- Agriculture 5.0 integration
- Sensor data implementation
- Emphasis on precision agriculture
- Deep learning applications

Methodology Workflow

Model Training - Part 1

1. Logistic Regression

- C=1.0
- solver='lbfgs'
- max iter=500

2. Decision Tree

- max_depth=10
- min_samples_split=5
- min_samples_leaf=4

3. Random Forest

- n_estimators=300
- max_depth=10
- class_weight='balanced'

Model Training - Part 2

4. Support Vector Machine (SVM)

- C=1.2
- kernel='rbf'
- gamma='scale'

5. Gaussian Naive Bayes

var_smoothing=1e-12

6. Multilayer Perceptron

- hidden_layer_sizes=(100, 50)
- activation='relu'
- learning_rate_init=0.001

Model Training - Part 3

7. K-Nearest Neighbors

- n_neighbors=10
- weights='uniform'
- metric='minkowski'

8. Bagging Classifier

- n_estimators=150
- max_samples=0.6
- max features=0.6

9. Gradient Boosting

- n estimators=250
- learning_rate=0.01
- subsample=0.8

Model Performance Comparison

Figure: Training, Validation, and Testing Accuracies Comparison

Evaluation Metrics

Figure: Precision, Recall, and F1 Score Comparison

Model Analysis

Performance Analysis:

- Random Forest:
 - Highest overall performance
 - Excellent generalization
 - Robust across metrics
- Gradient Boosting:
 - Strong alternative
 - Consistent performance
- Gaussian Naive Bayes:
 - Surprisingly strong results
 - Good feature handling

User Interface Design

Figure: Al-Driven Crop Recommendation System Interface

- Multi-language support
- Weather Stress Index integration
- User-friendly design

Conclusion

Key Achievements:

- Successful Al integration in agriculture
- Data-driven recommendation system
- Enhanced decision support capabilities
- User-friendly implementation

Impact:

- Improved farming practices
- Enhanced crop yield potential
- Better resource utilization
- Sustainable agriculture promotion

Future Work

Planned Enhancements:

- Dataset Expansion:
 - Integration of localized information
 - Real-time satellite data
 - Enhanced weather monitoring
- System Improvements:
 - Extended multilingual support
 - **Enhanced UI features**
 - Mobile application development
- Continuous Development:
 - Regular feedback integration
 - Model optimization
 - Feature enhancement

References I

- "Crop Recommendation System using Machine Learning Algorithms," 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), 2021.
- "Data-Driven Analysis and Machine Learning-Based Crop and Fertilizer Recommendation System," Agriculture, 2023.

References II

Thank You

