BT ÔN TẬP HỆ THỰC LƯỢNG SỐ 1

- **CÂU 1.** Giá trị lượng giác nào sau đây là số dương?
 - (**A**) $\sin 120^{\circ}$.
- **(B)** $\cos 137^{\circ}$.
- (**C**) $\tan 160^{\circ}$.
- (**D**) $\cot 160^{\circ}$.
- **CÂU 2.** Cho $\sin \alpha = \frac{4}{5}$, $(90^{\circ} < \alpha < 180^{\circ})$. Tính $\cos \alpha$.

 - (A) $\cos \alpha = -\frac{4}{5}$. (B) $\cos \alpha = -\frac{3}{5}$. (C) $\cos \alpha = \frac{5}{3}$.
- $\bigcirc \cos \alpha = \frac{3}{5}.$

ĐIỂM:

"It's not how much time

you have, it's how you use

QUICK NOTE

- **CÂU 3.** Cho $x \in (0^{\circ}, 90^{\circ})$. Phát biểu nào sau đây là đúng?
 - (A) $\sin x > 0$.
- **(B)** $\cos x > 0$.
- (**C**) $\tan x > 0$.
- (**D**) $\cot x > 0$.

- **CÂU 4.** Giá trị $\cos 45^{\circ} + \sin 45^{\circ}$ bằng bao nhiêu?
- $(\mathbf{B})\sqrt{2}$.
- $(\mathbf{D}) 0.$

- CÂU 5. Giá tri của cot 18° là
- (\mathbf{C}) 0.
- **(D)** $\sqrt{5+2\sqrt{5}}$.
- **CÂU 6.** Trên nửa đường tròn đơn vị cho góc α sao cho $\sin \alpha = \frac{2}{3}$ và $\cos \alpha < 0$. Tính
- \bigcirc $\frac{2\sqrt{5}}{5}$.
- $\mathbf{c} \frac{2}{\mathbf{r}}$.
- **CÂU 7.** Cho $\sin x + \cos x = \frac{1}{2}$ và $0 < x < 90^{\circ}$. Tính giá trị của $\sin x$

- **CÂU 8.** Chọn phát biểu đúng trong các phát biểu sau?
 - **(A)** $\sin 156^{\circ} \cdot \cos 70^{\circ} < 0$.

- **(B)** $\tan 137^{\circ} \cdot \tan 156^{\circ} < 0$.
- (**c**) $\tan 150^{\circ} \cdot \cot 85^{\circ} < 0$.
- $(\mathbf{D}) \sin 110^{\circ} \cdot \cos 110^{\circ} > 0.$
- **CÂU 9.** Phát biểu nào sau đây là đúng?
 - $(A) \sqrt{1 \sin^2 140^\circ} = \cos 140^\circ.$
- **B**) $\sqrt{1 \cos^2 140^\circ} = \sin 140^\circ$.
- $\sqrt{\frac{1}{\cos^2 140^\circ} 1} = \tan 140^\circ.$
- \bigcirc $\frac{1}{\sqrt{\tan^2 140^\circ + 1}} = \cos 140^\circ.$
- CÂU 10. Tìm mệnh đề sai trong các mệnh đề sau
 - **(A)** $\cos 0^{\circ} = 1$.
- **(B)** $\sin 0^{\circ} = 0$.
- **©** $\cos 120^\circ = \frac{2}{\sqrt{2}}$. **D** $\sin 120^\circ = \frac{\sqrt{3}}{2}$.
- **CÂU 11.** Cho α là góc tù. Mệnh đề nào đúng trong các mệnh đề sau?
- (B) $\cos \alpha > 0$.
- (**c**) $\tan \alpha < 0$.
- (**D**) $\cot \alpha > 0$.
- CÂU 12. Trong các mệnh đề sau, mệnh đề nào sai?
 - $(\mathbf{A})\cos 45^{\circ} = \sin 45^{\circ}.$

(B) $\cos 45^{\circ} = \sin 135^{\circ}$.

 $(\mathbf{C})\cos 30^{\circ} = \sin 120^{\circ}.$

- $(\mathbf{D}) \sin 60^{\circ} = \cos 120^{\circ}.$
- **CÂU 13.** Cho hai góc nhọn α và β với $\alpha < \beta$. Tìm mệnh đề sai.
 - (A) $\sin \alpha < \sin \beta$.

- **(B)** $\cos \alpha < \cos \beta$.
- (C) $\cos \alpha = \sin \beta \Leftrightarrow \alpha + \beta = 90^{\circ}$.
- (**D**) $\tan \alpha + \tan \beta > 0$.
- **CÂU 14.** Cho $0^{\circ} \le \alpha \le 180^{\circ}$. Khẳng định nào sau đây là đúng?
 - $(\mathbf{A})\sin\alpha = \sin(180^{\circ} \alpha).$
- **(B)** $\cos \alpha = \cos(180^{\circ} \alpha)$.
- (**C**) $\tan \alpha = \tan(180^{\circ} \alpha)$.
- (**D**) $\cot \alpha = \cot(180^{\circ} \alpha)$.

CÂU 15.

QUICK NOTE

Trên nửa đường tròn đơn vị, vị trí nào trong các vị trí dưới đây xác đinh điểm M sao cho $\tan xOM = 1$.

- (**A**) Vị trí (1).
- (**B**) Vi trí (2).
- **(C)** Vị trí (3).
- **(D)** Vi trí (4).

CÂU 16. Cho hai góc α và β với $\alpha + \beta = 180^{\circ}$. Tính giá trị của biểu thức $P = \cos \alpha \cos \beta - 180^{\circ}$ $\sin \beta \sin \alpha$.

- **(A)** P = 0.
- **B** P = 1.
- **(C)** P = -1.
- **(D)** P = 2.

CÂU 17. Khẳng định nào sau đây sai?

 $(\mathbf{A})\cos 75^{\circ} > \cos 50^{\circ}.$

B $) \sin 80^{\circ} > \sin 50^{\circ}.$

(C) $\tan 45^{\circ} < \tan 60^{\circ}$.

 $(\mathbf{D})\cos 30^{\circ} = \sin 60^{\circ}.$

CÂU 18. Cho tam giác MNP không vuông có diện tích là S, p là nửa chu vi, r là bán kính đường tròn nội tiếp và R là bán kính đường tròn ngoại tiếp. Khẳng định nào sau đây là khẳng định **sai**?

- $(\mathbf{B}) S = p \cdot r.$
- $\widehat{\textbf{A}} \ S = \frac{1}{2} MN \cdot MP.$ $\widehat{\textbf{C}} \ S = \frac{MN \cdot MP \cdot NP}{4R}.$
- $\mathbf{D} S = \frac{1}{2} NM \cdot NP \cdot \sin N.$

CÂU 19. Tam giác ABC vuông tại A và có AB = AC = a. Tính độ dài đường trung tuyến BM của tam giác đã cho.

- **(B)** BM = 1.5a.
- $\mathbf{(C)} BM = \sqrt{2}a.$
- $(\mathbf{D}) BM = \sqrt{3}a.$

CÂU 20. Cho tam giác ABC có 3 cạnh là 4 cm, 8 cm và 6 cm. Tính bán kính r của đường tròn nôi tiếp tam giác ABC.

- **B** $r = \sqrt{5} \text{ cm.}$ **C** $r = \sqrt{15} \text{ cm.}$

CÂU 21. Cho tam giác ABC có $\widehat{A}=30^\circ,$ $\widehat{B}=45^\circ$ và $AC=10\sqrt{2}.$ Độ dài cạnh BC là

- **(A)** 10.

- \mathbf{C}) $a^2 = b^2 + c^2 + 2bc \cos A$.
- $\widehat{\mathbf{D}}) S = r(a+b+c).$

CÂU 23. Tính diện tích của tam giác ABC có $b=2,\,\widehat{B}=30^\circ,\,\widehat{C}=45^\circ.$

CÂU 24. Trong tam giác ABC có góc $\widehat{A} = 60^{\circ}$, AC = 10, AB = 6. Khi đó, độ dài cạnh BC là

- **(A)** $2\sqrt{19}$.
- **(B)** 76.
- **(C)** 14.
- **(D)** $6\sqrt{2}$.

CÂU 25. Cho $\triangle ABC$ có AB = 6 cm, BC = 7 cm, CA = 8 cm. Giá trị của $\cos B$ là \bigcirc $\frac{1}{2}$. \bigcirc $\frac{17}{32}$. \bigcirc \bigcirc $\frac{11}{16}$.

CÂU 26.

 \overrightarrow{D} ể đo khoảng cách từ A đến B ngang qua một cái hồ nước, người ta chọn điểm C, sau đó đo độ dài các cạnh AC, BC và góc C. Biết AC = 112 m, $BC = 145 \text{ m}, \widehat{C} = 75^{\circ}, \text{ khoảng cách từ } A \text{ đến } B$ gần nhất với giá trị nào dưới đây?

- (**A**) 155 m.
- **(B)** 160 m.
- **(C)** 165 m.
- (**D**) 170 m.

CÂU 27.

 $D^{\hat{e}}$ đo chiều cao CH của một tháp truyền thông, người ta chọn hai điểm quan sát A, B trên mặt đất (hình vẽ). Biết $CAH = 50^{\circ}$, $\widehat{C}B\widehat{H} = 60^{\circ}$ và AB = 80 m, tính chiều cao của tháp.

(**A**) 300,3 m. (**B**) 305,6 m. (**C**) 301,8 m.

(D) 306,9 m.

CÂU 28. Cho tam giác ABC có $\widehat{B}=135^{\circ}$. Khẳng định nào sau đây là đúng?

B $S = -\frac{\sqrt{2}}{4}ac$. **C** $S = \frac{\sqrt{2}}{4}bc$.

CÂU 29. Cho $\triangle ABC$ có $S=84,\,a=13,\,b=14,\,c=15.$ Độ dài bán kính đường tròn ngoại tiếp R của tam giác trên là

(**A**) 8,125.

(B) 130.

 (\mathbf{C}) 8.5.

CÂU 30. Cho $\triangle ABC$ với các cạnh AB=c, AC=b, BC=a. Gọi R, r, S lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp và diện tích của tam giác ABC. Trong các phát biểu sau, phát biểu nào sai?

 $\mathbf{B} R = \frac{a}{\sin A} \ .$

 $(\mathbf{D}) a^2 + b^2 - c^2 = 2ac \cos C$

CÂU 31. Cho tam giác ABC thỏa mãn hệ thức b+c=2a. Trong các mệnh đề sau, mệnh đề nào đúng?

 $(\mathbf{A})\cos B + \cos C = 2\cos A.$

(B) $\sin B + \sin C = 2\sin A$.

 $(\mathbf{C} \sin B + \sin C = \frac{1}{2} \sin A.$

 $(\mathbf{D})\sin B + \cos C = 2\sin A.$

CÂU 32. Tam giác có độ dài ba cạnh là 3, 8, 9. Góc lớn nhất của tam giác có số đo bằng bao nhiêu?

(**A**) $93,5^{\circ}$.

(**B**) 88,6°.

(C) 99.6°.

(D) $101,3^{\circ}$.

CÂU 33.

Từ một vị trí quan sát A, một người nhìn đỉnh Bvà chân C của nhà cao tầng với các góc tương ứng là 43° và 16° so với phương nằm ngang. Biết chiều cao của tòa nhà là 18 m, tính khoảng cách từ Ađến C (làm tròn kết quả đến hàng phần mười).

(**A**) 27 m. (**B**) 28 m. (**C**) 29 m. (**D**) 31 m.

CÂU 34. Cho tam giác ABC có ba cạnh a, b, c và $m_a; m_b; m_c$ là ba đường trung tuyến lần lượt xuất phát từ A, B, C. Tính tổng $S = m_a^2 + m_b^2 + m_c^2$.

CÂU 35. Cho tam giác ABC có a=49.4; b=26.4; $\widehat{C}=47^{\circ}20'$. Cạnh c gần bằng với số nào sau đây?

(A) 38.

(B) 37.

(D) 36.

CÂU 36. Chứng minh biểu thức sau độc lập với đối với x.

$$P = \frac{\tan^2 x - \cos^2 x}{\sin^2 x} + \frac{\cot^2 x - \sin^2 x}{\cos^2 x}.$$

CÂU 37. Cho tam giác ABC, chứng minh rằng $\cos \frac{A}{2} = \sqrt{\frac{p(p-a)}{bc}}$.

•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	•	•	
																															•	
																															•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	

·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																																	•
																																	•

QUICK NOTE
 •
 •
 •••••
 •••••
 •
 •••••
 •••••
 •

CÂU 38. Cho tam giác ABC có trọng tâm G và độ dài ba cạnh AB, BC, CA lần lượt là 15, 18, 27.

- a) Tính diện tích và bán kính đường tròn nội tiếp tam giác ABC.
- b) Tính diện tích tam giác GBC.