MAU22101: Solutions Week 5

Problem 1 Let $G \times X \to X$ be a transitive G-action and let $x \in X$. Show that there is an isomorphism of G-sets

$$\phi \colon G/\mathrm{Stab}_G(x) \to X$$

$$[g] \mapsto g.x,$$

where $\operatorname{Stab}_G(x) := \{g \in G \mid g.x = x\}$ is the stabilizer subgroup of G. That is, show that

- i) ϕ is well-defined,
- ii) ϕ is a homomorphism of G-sets,
- iii) ϕ is a bijection.

Solution 1

i) We verify that whenever $[g_1] = [g_2]$ then also $g_1.x = g_2.x$. But $[g_1] = [g_2]$ implies that $g_2^{-1}g_1 \in \operatorname{Stab}_G(X)$ and thus

$$g_1.x = (g_2g_2^{-1}g_1).x = g_2.((g_2^{-1}g_1).x) = g_2.x,$$

where we used that $g_2^{-1}g_1.x = x$ in the last equation.

ii) Recall that the set of left cosets G/H is a G-set via the action h.[g] = h.(gH) = hgH = [hg]. We thus compute

$$\phi(h.[g]) = \phi([hg]) = (hg).x = h.(g.x) = h.\phi([g]).$$

iii) Since the action is assumed to be transitive, i.e. there is exactly one orbit, we conclude that G.x = X. But this is exactly surjectivity for ϕ . Namely, it says that for every $y \in X$ there exists $g \in G$ such that $y = g.x = \phi([g])$ showing that ϕ is surjective. For injectivity, suppose we have $[g_1], [g_2] \in G/\operatorname{Stab}_G(X)$ such that

$$\phi([g_1]) = \phi([g_2]),$$

which we write out as

$$g_1.x = g_2.x.$$

From this we get that

$$(g_2^{-1}g_1).x = g_2^{-1}.(g_1.x) = g_2^{-1}.(g_2.x) = (g_2^{-1}.g_2).x = x,$$

which implies that $g_2^{-1}g_1 \in \operatorname{Stab}_G(X)$ and thus $[g_1] = [g_2]$.

Problem 2 Let $G \times X \to X$ be a G-action and let $V \subset X$ be a G-orbit. Given $x, y \in V$ show that there exists $g \in G$ such that

$$\operatorname{Stab}_G(x) = g\operatorname{Stab}_G(y)g^{-1}$$

(i.e. the corresponding stabilizer subgroups are conjugate).

Solution 2 Since x and y lie in the same orbit (and distinct orbits are disjoint) we obtain that G.x = V = G.y. In particular, we obtain that $x \in G.y$ and thus there exists $y \in G$ such that x = g.y (and hence also $y = g^{-1}.x$). We now show that

$$\operatorname{Stab}_G(x) = g \operatorname{Stab}_G(y) g^{-1}$$

for our choice of g by showing the two inclusions. Let $ghg^{-1} \in g\operatorname{Stab}_G(Y)g^{-1}$ (that is, $h \in \operatorname{Stab}_G(y)$), then

$$ghg^{-1}.x = gh.y = g.y = x$$

and thus $ghg^{-1} \in \operatorname{Stab}_G(x)$. For the other inclusion, let $h \in \operatorname{Stab}_G(x)$ and compute

$$g^{-1}hg.y = g^{-1}h.x = g^{-1}x = y,$$

which implies that $g^{-1}hg \in \operatorname{Stab}_G(y)$ and thus $h = g(g^{-1}hg)g^{-1} \in g\operatorname{Stab}_G(y)g^{-1}$.

Problem 3 Let $N \triangleleft G$ be a normal subgroup and let $\pi \colon G \to G/N$ be the canonical projection map $\pi(x) = [x]$. Show that there is a one-to-one correspondence

{subgroups of
$$G/N$$
} \longleftrightarrow {subgroups of G containing N }
$$H \mapsto \pi^{-1}(H)$$

$$K/N \hookleftarrow K.$$

Moreover, show that $\pi^{-1}(K/N) = KN$ for any subgroup $K \leq G$ (not necessarily containing N).

Solution 3 Let us first give names to the two assignments. Let $\mathcal{F}(H) := \pi^{-1}(H)$ and $\mathcal{G}(K) := K/N$.

• \mathcal{F} is well-defined: We first check that $\pi^{-1}(H)$ is indeed a group. Given $x, y \in \pi^{-1}(H)$ we have that $\pi(xy^{-1}) = \pi(x)\pi(y)^{-1} \in H$ hence $xy^{-1} \in \pi^{-1}(H)$, showing that $\pi^{-1}(H)$ is indeed a subgroup of G. Moreover, since $\{e\} \in H$ we have

$$N = \ker(\pi) = \pi^{-1}(\{e\}) \subset \pi^{-1}(H).$$

• $\mathcal{G} \circ \mathcal{F} = \mathrm{id}$: We first note that $\mathcal{G}(K) = \pi(K)$. Since π is surjective we obtain that

$$\mathcal{G}(\mathcal{F}(H)) = \pi(\pi^{-1}(H)) = \pi(\pi^{-1}(H)) = H$$

holds for any subset $H \subset G$, in particular for subgroups.

• $\mathcal{F} \circ \mathcal{G} = id$: Let $K \leq G$ be a subgroup. Then $x \in \mathcal{F}(\mathcal{G}(K))$ if and only if

$$\pi(x) \in \mathcal{G}(K)) \iff [x] \in K/N$$

$$\iff xN = kN \text{ for some } h \in K$$

$$\iff k^{-1}x \in N \text{ for some } k \in K$$

$$\iff x = kn \text{ for some } k \in K \text{ and } n \in N$$

$$\iff x \in KN$$

This shows the "moreover" part of the problem. If K already contains N then we have KN = N and thus $\mathcal{F}(\mathcal{G}(K)) = K$.

Problem 4 Prove that the additive group of rational numbers $(\mathbb{Q}, +)$ has no proper subgroups of finite index.

Solution 4 Let $H \leq \mathbb{Q}$ be a finite-index subgroup of \mathbb{Q} . Since \mathbb{Q} is abelian, we obtain that the quotient is a group \mathbb{Q}/H , which is assumed to be finite. In particular, by a consequence of Lagrange's theorem, we have $[x]^n = e$ for $n = |\mathbb{Q}/H|$. This means that for any $q \in \mathbb{Q}$ we have that $nq \in H$ (recall that the group operation is addition). But this implies that $H = \mathbb{Q}$ as

$$q = n(q/n) \in H$$
.

Problem 5 Prove Fermat's little theorem that for $a \in \mathbb{Z}$ and a prime p we have

$$a^p \equiv a \pmod{p}$$
.

(Hint: use Lagrange's theorem in the group $(\mathbb{Z}/p\mathbb{Z})^{\times}$.)

Solution 5 Recall that the group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ contains an element $\bar{k} \in \mathbb{Z}/p\mathbb{Z}$ if and only if (k,p)=1. Since p is prime, this means that

$$(\mathbb{Z}/p\mathbb{Z})^{\times} = \{\overline{1}, \overline{2}, \dots, \overline{p-1}\}.$$

That is, the only element that is excluded is $\bar{0}$, and so we get

$$|(\mathbb{Z}/p\mathbb{Z})^{\times}| = p - 1.$$

By Lagrange's theorem we have that

$$a^{p-1} = \bar{1}$$
,

for all $p \in (\mathbb{Z}/p\mathbb{Z})^{\times}$. Or in other words, we have

$$a^{p-1} \equiv 1 \pmod{p}$$
,

for all $a \in \mathbb{Z}$ such that (a, p) = 1. But then we also have

$$a^p \equiv a \pmod{p}$$
,

for the same a's. In the case $(a, p) \neq 1$ we have that $p \mid a$ but then the equation is also true.