RÉSOLUTION GRAPHIQUE D'ÉQUATIONS, D'INÉQUATIONS

5.1 Résolution graphique d'équations

5.1.1 Équations du type f(x) = k

Ce genre d'équations a déjà été traité dans le chapitre précédent :

Méthode

- 1. On trace, si besoin (si elle n'est pas donnée), \mathcal{C}_f dans un repère (orthogonal);
- 2. on trace la droite d'équation y = k, c'est-à-dire la droite passant par le point de coordonnées (0; k) et parallèle à l'axe des abscisses;
- 3. on recherche les abscisses des points d'intersection de \mathscr{C}_f et de la droite d'équation y=k.

Exemple 1.5.

Résoudre sur l'intervalle [-6; 6] l'équation f(x) = -1:

5.1.2 Équation du type f(x) = g(x)

On cherche à résoudre graphiquement l'équation f(x) = g(x). Cela revient à chercher graphiquement (pour le moment) les éléments de l'ensemble de départ qui ont $m \hat{e} m e i mage$ par f et g dont les courbes sont notées respectivement \mathscr{C}_f et \mathscr{C}_g . Autrement dit, on cherche les abscisses des points d'intersection éventuels entre \mathscr{C}_f et \mathscr{C}_g .

Exemple 2.5.

Résoudre graphiquement l'équation f(x) = g(x):

5.2 Résolution graphique d'inéquations

5.2.1 Premier type

On souhaite résoudre graphiquement les inéquations de la forme $f(x) \leq k$.

Méthode

- 1. On trace \mathcal{C}_f dans un repère (orthogonal);
- 2. on trace la droite d'équation y=k, c'est-à-dire la droite passant par le point de coordonnées $(0\,;\,k)$ et parallèle à l'axe des abscisses ;
- 3. on recherche les points de la courbe situés sous la droite;
- 4. l'ensemble des solutions est constitué des abscisses de ces points.

Exemple 3.5.

Résoudre graphiquement l'équation $f(x) \leq 1$:

► Note 1.5.

1. On résout de la même façon les inéquations du type $f(x) \ge k$. On retient alors les abscisses des points situés au-dessus de la droite d'équation y = k. Dans l'exemple précédent,

$$f(x) \geqslant 1 \iff x \in \underline{\hspace{1cm}}$$

2. De même pour les inéquations strictes f(x) < k ou f(x) > k on exclura alors les abscisses des points d'intersection de la courbe et de la droite. Dans l'exemple précédent,

$$f(x) < 2 \iff$$

5.2.2 Deuxième type

On souhaite résoudre les inéquations de la forme $f(x) \leq g(x)$.

Méthode

- 1. On commence par tracer soigneusement les deux courbes \mathscr{C}_f et \mathscr{C}_g dans un repère orthogonal;
- 2. l'ensemble des solutions est constitué des abscisses des points de la courbe \mathscr{C}_f situés en dessous de \mathscr{C}_q .

Exemple 4.5.

Reprenons l'exemple 2.5 et résolvons l'inéquation $f(x) \leq g(x)$.

▶ Note 2.5.

1. On résout de la même manière les inéquations du type $f(x) \ge g(x)$. On retient alors les abscisses des points de \mathscr{C}_f situés au dessus de \mathscr{C}_g .

Dans l'exemple 2.5 $f(x) \geqslant g(x) \iff$

2. De même pour les inégalités strictes f(x) > g(x) ou f(x) < g(x), on exclura alors les abscisses des points d'intersection des deux courbes.

Dans l'exemple 2.5,

$$f(x) < g(x) \Longleftrightarrow \underline{\hspace{1cm}}$$