

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Визуализация кубика льда, содержащего воздушные пузырьки

Студент: Леонов Владислав Вячеславович ИУ7-56Б

Научный руководитель: Строганов Юрий Владимирович

Цель и задачи

- Цель проектирование программного обеспечения, реализующего построение реалистичного изображения с учетом оптических свойств объекта, на примере визуализации кубика льда, имеющего пузырьки воздуха внутри.
- Для достижения указанной выше цели следует выполнить задачи:
 - о проанализировать предметную область;
 - сравнить алгоритмы для решения поставленной задачи и выбрать наиболее подходящие;
 - о реализовать выбранные алгоритмы визуализации;
 - о протестировать разработанное ПО.

Формализация объектов сцены

- Сцена состоит из следующих объектов:
 - трехмерная модель кубика льда, которая описывается положением в пространстве и оптическими свойствами;
 - трехмерные пузырьки воздуха внутри кубика льда – в рамках поставленной задачи представляют собой сферические объекты. Каждый пузырек имеет свой размер;
 - о источниками света являются материальные точки, испускающие свет. Положение источника задается трехмерными координатами, а направление распространения вектором.

Анализ способов задания трехмерных моделей

- Каркасная модель
- Поверхностная модель
- Объемная модель

Анализ способов поверхностных моделей

- Аналитический подход
- Полигональная сетка

Анализ способов удаления невидимых ребер и поверхностей

- Алгоритм Робертса
- Алгоритм Z-Буфера
- Алгоритм прямой трассировки лучей
- Алгоритм обратной трассировки лучей

Анализ модели освещения

• Глобальная — в данной модели учитывается только свет от источников и ориентация поверхности

• Локальная – в данной модели, помимо составляющих локальной, учитывается еще и свет, отраженный от других поверхностей или пропущенный через них

Общий принцип работы программы

Выбор языка программирования

- Для решения поставленной задачи был выбран язык программирования С++ ввиду ряда причин:
 - поддержка объектно-ориентированного подхода к программированию дает возможность создавать четко структурированные и легко модифицируемые программы;
 - строгая типизация и стандартизация позволяет избежать множество ошибок, перекладывая ответственность за контролем типов компилятору;
 - о будучи представителем компилируемых языков, обеспечивает высокую скорость исполнения, что особенно важно в трудоемких алгоритмах трехмерной компьютерной графики.

Зависимость времени отрисовки кадра от количества потоков

Количество потоков	Время обработки сцены
1	953
2	453
4	247
8	121
12	107
16	117
24	109
32	113

Заключение

- Были выполнены следующие задачи:
 - о проанализировать предметную область;
 - о сравнить алгоритмы для решения поставленной задачи и выбрать наиболее подходящие;
 - о реализовать выбранные алгоритмы визуализации;
 - о протестировать разработанное ПО.
- Цель работы была достигнута.