CSCI/MATH 2113 Discrete Structures

Chapter 5 Relations and Functions

Alyssa Motas

March 2, 2021

Contents

1	(5.1	.) Cart	tesian Products and Relations	4
	1.1	Cartes	sian Product	4
		1.1.1	Definition	4
		1.1.2	Example	4
		1.1.3	Notation	4
	1.2	Relati	ions	4
		1.2.1	Definition	4
		1.2.2	Notation	4
		1.2.3	Examples	4
		1.2.4	Counting	5
		1.2.5	Standard Relations	5
		1.2.6	Theorem	5
		1.2.7	Recursive Relation	6
2	(5.2)) Fund	ctions Plain and One-to-One	6
	2.1	Defint	ion of a function	6
		2.1.1	Image and Preimage	6
		2.1.2	Domain and codomain	7
		2.1.3	Examples	7
		2.1.4	Counting functions	7
	2.2	One-te	o-one Correspondence	8
		2.2.1	Definition	8
		2.2.2	Examples	8
		2.2.3	Counting injective functions	9
		2.2.4	Direct Image	9
		2.2.5	Set Operations	9
		2.2.6	Restriction	10
		2.2.7	Extension	10
3	(5.3)	3) Onto	o Functions Stirling Numbers of the Second Kind	10
	3.1	Surjec	etive Functions	10
		3.1.1	Definition	10
		3.1.2	Examples	10
		3.1.3	Counting	10
	3.2	Stirlin	ng Numbers	11
		3.2.1	A combinatorial interpretation	11
		3 2 2	Definition	11

4	(5.4)	4) Special Functions	11
	4.1	Binary operations	11
		4.1.1 Definition	11
		4.1.2 Examples of Binary Operations	12
		4.1.3 Commutativity and Associativity	12
		4.1.4 Examples of Commutativity and Associativity	12
		4.1.5 Symmetry	13
	4.2	Identity Element	13
		4.2.1 Definition	13
		4.2.2 Examples	13
		4.2.3 Theorem	14
	4.3		14
	4.4	Counting Binary Operations	14
5	(5.5	5) The Pigeonhole Principle	16
	5.1	, -	16
	5.2		16
6	(E 6	3) Function Composition and Inverse Functions	17
U	6.1	· -	17
	6.2	<u>o</u>	17
	6.2		17
	0.0	i v	17
	6.4	1	17
	0.4	•	18
			18
			18
			19
	6.5		19
	0.5		19
			19 19
			19 19
		1	20
	6.6		20
	6.6	O .	20
	c =	1	20
	6.7		21
	6.8	Finite sets	21

1 (5.1) Cartesian Products and Relations

1.1 Cartesian Product

1.1.1 Definition

For sets A, B the Cartesian product, or cross product, of A and B is denoted by $A \times B$ and equals $\{(a, b) \mid a \in A, b \in B\}$.

1.1.2 Example

Suppose that $A = \{2, 3, 4\}$ and $B = \{4, 5\}$ then we have

$$A \times B = \{(2,4), (2,5), (3,4), (3,5), (4,4), (4,5)\}.$$

Note that

$$A \times B \neq B \times A$$
.

Another example of a Cartesian product is the real plane $\mathbb{R} \times \mathbb{R}$.

1.1.3 Notation

$$A^n = \underbrace{A \times A \times A \times \cdots \times A}_{n \text{ times}}.$$

1.2 Relations

1.2.1 Definition

For sets A, B, any subset of $A \times B$ is called a (binary) relation from A to B. Any subset of $A \times A$ is called a (binary) relation on A.

1.2.2 Notation

If R is a relation on A and $(a, a') \in R$, then we write aRa'.

1.2.3 Examples

Suppose that $A = \{2, 3, 4\}$ and $B = \{4, 5\}$. Then,

- $\{(2,5),(2,4)\}$
- \bullet $A \times B$
- Ø

are relations from A to B.

1.2.4 Counting

For finite sets A, B with |A| = m and |B| = n, there are 2^{mn} relations from A to B, including the empty relation as well as the relation $A \times B$ itself.

There are also $2^{nm} (= 2^{mn})$ relations from B to A, one of which is also \emptyset and another of which is $B \times A$. The reason we get the same number of relations from B to A as we have from A to B is that any relation R_1 from B to A can be obtained from a unique relation R_2 from A to B by simply reversing the components of each ordered pair in R_2 (and vice versa).

1.2.5 Standard Relations

Standard relations can be expressed in this way:

$$R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid b = a + n \text{ for } n \in \mathbb{N}\}.$$

This is the relation "is less than or equal to." Indeed

$$(a,b) \in R$$
 if and only if $a \leq b$.

Suppose that $A = \{1\}$ and let $R \subseteq \mathcal{P}(A)^2$ defined by

$$R = \{(\varnothing, \varnothing), (\varnothing, \{1\}), (\{1\}, \{1\})\}.$$

This is the relation "is a subset of." Indeed,

$$(S, S') \in R$$
 if and only if $S \subseteq S'$.

1.2.6 Theorem

For sets A, B, and C:

- \bullet $A \times \varnothing = \varnothing = \varnothing \times A$
- $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- $(B \cap C) \times A = (B \times A) \cap (C \times A)$
- $(B \cup C) \times A = (B \times A) \cup (C \times A)$

Proof. Let $x \in A \times (B \cap C)$. Then x = (a, d) when $a \in A, d \in B \cap C$. So, x = (a, d) with $a \in A$ and $d \in B$ which implies that $x \in A \times B$. But x = (a, d) with $a \in A$ and $d \in C$, which implies $x \in A \times C$. Hence, we have $x \in (A \times B) \cap (A \times C)$ which implies $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$. The converse inclusion is shown similarly. Hence we have the desired equality. The other statements are proved similarly as well.

1.2.7 Recursive Relation

An example of a recursively defined relation is on $\mathbb{N} \times \mathbb{N}$:

- 1. $(0,0) \in R$
- 2. If $(s,t) \in R$ then $(s+1,t+7) \in R$.

In fact, we have

$$R = \{(m, n) \mid n = 7m\}.$$

2 (5.2) Functions Plain and One-to-One

2.1 Defintion of a function

For nonempty sets A, B, a function, or mapping, f from A to B, denoted $f:A\to B$, is a relation from A to B in which every lement of A appears exactly once as the first component of an ordered pair in the relation.

We have $f \subseteq A \times B$ and

(1) Existence:

$$\forall a \in A, \exists b \in B, (a, b) \in f.$$

(2) Uniqueness: If $(a,b) \in f$ and $(a,b') \in f$ then

$$b = b'$$
.

2.1.1 Image and Preimage

If $(a, b) \in f$, we write f(a) = b. We then say that b is the *image* of a under f, and that a is the *preimage* of b under f.

Example. The absolute value is the function $|x|: \mathbb{R} \to \mathbb{R}$. Here, 2 and -2 are two preimages of 2 since

$$|2| = 2 = |-2|$$
.

So a given element can have more than one preimage.

2.1.2 Domain and codomain

For the function $f: A \to B$, A is called the *domain* of f and B the *codomain* of f. The subset of B consisting of those elements that appear as second components in the ordered pairs of f is called the *range* of f and is also denoted by f(A) because it is the set of images (of the elements of A) under f.

Note: Range does not imply that it is equal to codomain.

2.1.3 Examples

1. The greatest integer function, or floor function. This function $f: \mathbb{R} \to \mathbb{R}$, is given by

f(x) = |x| = the greatest integer less than or equal to x

Example. |7.7 + 8.4| = |16.1| = 16.

2. The *ceiling function*. This function $g: \mathbb{R} \to \mathbb{Z}$ is defined by

g(x) = [x] = the least integer greater than or equal to x.

Example. [3.3 + 4.2] = [7.5] = 8.

- 3. The function trunc (for truncation). It deletes the fractional part of a real number. Note that $\text{trunc}(3.78) = \lfloor 3.78 \rfloor = 3$ while $\text{trunc}(-3.78) = \lfloor -3.78 \rfloor = -3$.
- 4. The access function. In storing a matrix in a one-dimensional array, many computer languages use the row major implementation. If $A = (a_{ij})_{m \times n}$ is an $m \times n$ matrix, to determine the location of an entry a_{ij} from A, where $1 \le i \le m, 1 \le j \le n$, we can use the formula for the access function:

$$f(a_{ij}) = (i-1)n + j.$$

2.1.4 Counting functions

Let A, B be nonempty sets with |A| = m, |B| = n. How many functions are there in $f: A \to B$?

Suppose that $A = \{a_1, a_2, a_3, ..., a_m\}$ and $B = \{b_1, b_2, b_3, ..., b_n\}$, then a typical function can be described by $\{(a_1, x_1), (a_2, x_2), ..., (a_m, x_m)\}$. We

can select any n elements of B for x_1 then do the same for x_2 . We continue this selection until one of the n elements of B is finally selected for x_m . Using the product rule, there are

$$n^m = |B|^{|A|}$$

functions from A to B.

Example. Suppose that $A = \{1, 2, 3\}$ and $B = \{w, x, y, z\}$. There are $4^3 = 64$ functions from A to B.

In general, we do not expect $|A|^{|B|} = |B|^{|A|}$.

2.2 One-to-one Correspondence

2.2.1 Definition

A function $f: A \to B$ is called *one-to-one*, or *injective*, if each element of B appears at most once as the image of an element of A.

If $f: A \to B$ is one-to-one, with A, B finite, we must have $|A| \le |B|$. For arbitrary sets A, B, $f: A \to B$ is one-to-one if and only if for all $a_1, a_2 \in A$, $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$. Consequently, we also have $a_1 \ne a_2 \Rightarrow f(a_1) \ne f(a_2)$.

2.2.2 Examples

1. Suppose that $f: \mathbb{R} \to \mathbb{R}$ where f(x) = 3x + 7 for all $x \in \mathbb{R}$. Then for all $x_1, x_2 \in \mathbb{R}$, we find that

$$f(x_1) = f(x_2) \Rightarrow 3x_1 + 7 = 3x_2 + 7 \Rightarrow 3x_1 = 3x_2 \Rightarrow x_1 = x_2,$$

so the given function f is one-to-one.

2. Suppose that $g: \mathbb{R} \to \mathbb{R}$ is the function defined by $g(x) = x^4 - x$ for each real number x. Then

$$g(0) = (0)^4 - 0 = 0$$
 and $g(1) = (1)^4 - (1) = 1 - 1 = 0$.

Consequently, g is not one-to-one since g(0) = g(1) but $0 \neq 1$.

2.2.3 Counting injective functions

Let A, B be nonempty sets with |A| = m, |B| = n. How many injective functions are there in $f: A \to B$?

Suppose that $A = \{a_1, \ldots, a_m\}$, $B = \{b_1, \ldots, b_n\}$, and that $m \leq n$. The one-to-one function has the form $\{(a_1, x_1), \ldots, (a_m, x_m)\}$, where there are n choices for x_1 , n-1 choices for x_2 , n-2 choices for x_3 , and so on, finishing with n-(m-1)=n-m+1 choices for x_m . By the rule of product, we have

$$n(n-1)(n-2)\dots(n-m+1) = \frac{n!}{(n-m)!} = P(n,m) = P(|B|,|A|).$$

2.2.4 Direct Image

If $f: A \to B$ and $A_1 \subseteq A$, then

$$f(A_1) = f[A_1] = \{b \in B \mid b = f(a), \text{ for some } a \in A_1\},\$$

and $f(A_1)$ is called the *direct image* of A_1 under f.

Example. Let $g: \mathbb{R} \to \mathbb{R}$ be given by x^2 . Then $g(\mathbb{R}) =$ the range of $g = [0, +\infty)$. The *image* of \mathbb{Z} under g is

$$q(\mathbb{Z}) = \{0, 1, 4, 9, 16, \dots\}$$

and for $A_1 = [-2, 1]$ we get

$$g(A_1) = [0, 4].$$

2.2.5 Set Operations

Let $f: A \to B$, with $A_1, a_2 \subseteq A$. Then

- (a) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$;
- (b) $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$;
- (c) $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$ when f is one-to-one.

Proof. Part (b): For each $b \in B, b \in f(A_1 \cap A_2) \Rightarrow b = f(a)$, for some $a \in A_1 \cap A_2 \implies [b = f(a) \text{ for some } a \in A_1] \text{ and } [b = f(a) \text{ for some } a \in A_2] \Rightarrow b \in f(A_1) \text{ and } b \in f(A_2) \Rightarrow b \in f(A_1) \cap f(A_2), \text{ so } f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2).$

2.2.6 Restriction

If $f: A \to B$ and $A_1 \subseteq A$, then $f|_{A_1}: A_1 \to B$ is called the *restriction of* f to A_1 if $f|_{A_1}(a) = f(a)$ for all $a \in A_1$.

2.2.7 Extension

Let $A_1 \subseteq A$ and $f: A_1 \to B$. If $g: A \to B$ and g(a) = f(a) for all $a \in A_1$, then we call g an extension of f to A.

3 (5.3) Onto Functions Stirling Numbers of the Second Kind

3.1 Surjective Functions

3.1.1 Definition

 $f: A \to B$ is onto or surjective if $\forall b \in B, \exists a \in A \text{ such that } f(a) = b.$

Remark. A function is onto if its range is equal to the codomain.

If A, B are finite sets, then for an onto function $f: A \to B$ to possibly exist we must have $|A| \leq |B|$.

3.1.2 Examples

- For the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3$ we have: if $x \in \mathbb{R}$, then $f(\sqrt[3]{x}) = (\sqrt[3]{x})^3 = x$. This means that f is onto.
- For the function $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = x^2$ we have: no such $y \in \mathbb{R}$ that satisfies $y^2 = -1$. For instance,

$$g(x) = x^2 = -9 \Rightarrow r = 3i, -3i \in \mathbb{C}.$$

Therefore, g is not onto.

3.1.3 Counting

Suppose that $A = \{x, y, z\}$ and $B = \{1, 2\}$. How many $f : A \to B$ are onto?

Proof. The function $f: A \to B$ is not onto if and only if f(a) = 1 for all $a \in A$ or f(a) = 2 for all $a \in A$. Hence, the number we seek is

$$|B|^{|A|} - 2 = 2^3 - 2 = 6.$$

In general, if A and B are sets with |A| = m and |B| = n, then this quantity is

$$\sum_{k=0}^{n} (-1)^k \binom{n}{n-k} (n-k)^m$$

onto functions from A to B.

3.2 Stirling Numbers

3.2.1 A combinatorial interpretation

In how many ways can you distribute 4 objects into 3 labelled cotainers with no container empty? We just need to count the number of surjections from A to B. By the previous formula, this is

$$\sum_{k=0}^{3} (-1)^k \binom{3}{3-k} (3-k)^4 = 36.$$

What if we had the same situation but with containers that aren't labelled? The number of such distributions is

$$S(m,n) = \frac{1}{n!} \sum_{k=0}^{n} (-1)^k \binom{n}{n-k} (n-k)^m$$

where the factor of $\frac{1}{n!}$ corrects for the fact that certain distributions are equivalent.

So S(m, n) is the number of ways to distribute m objects into n identical containers with no container left empty.

3.2.2 Definition

S(m,n) is a Stirling number of the 2nd kind.

4 (5.4) Special Functions

4.1 Binary operations

4.1.1 Definition

For any nonempty sets A, B, any function $f: A \times A \to B$ is called binary operation on A. If $B \subseteq A$, then the binary operation is said to be closed (on A). (When $B \subseteq A$ we may also say that A is closed under f.)

Remark. Similarly, $f: A^n \to B$ is an n-ary operation on A. When n = 1, the operation is unary or monary.

4.1.2 Examples of Binary Operations

- For $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined by f(a,b) = a b, it is a closed binary operation on \mathbb{Z} .
- For $g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ defined by $g(a,b) = a^b$, it is a non-closed binary operation.
- For $h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ defined by h(a,b) = a+b, it is a binary operation.
- For $j: \mathcal{P}(A) \times \mathcal{P}(A) \to \mathcal{P}(A)$ defined by $j(S,T) = S \cup T$, it is a closed binary operation.
- For $k: \mathcal{P}(A) \to \mathcal{P}(A)$ defined by $k(S) = S^c$, it is a closed unary operation.

4.1.3 Commutativity and Associativity

Let $f: A \times A \to B$; that is, f is a binary operation on A.

- (a) f is said to be *commutative* if f(a,b) = f(b,a) for all $(a,b) \in A \times A$.
- (b) When $B \subseteq A$ (that is, when f is closed), f is said tot be associative if for all $a, b, c \in A$, f(f(a, b), c) = f(a, f(b, c)).

4.1.4 Examples of Commutativity and Associativity

Binary operations that are both commutative and associative:

- + on \mathbb{Z} : n+m=m+n and n+(m+r)=(n+m)+r
- \bullet × on \mathbb{Z}
- \bullet \cup on $\mathcal{P}(A)$

Binary operations that are associative but not commutative:

• \times on $Mat_{n\times n}(\mathbb{R})$ which is the multiplication of $n\times n$ real matrices.

Binary operations that are both not commutative and associative:

• - on \mathbb{Z} :

$$2-3 = -1 \neq 1 = 3-2$$
$$((3-3)-2) = -2 \neq 2 = 3 - (3-2)$$

4.1.5 Symmetry

Suppose that $f: A \times A \to A$ is a binary operation where $A = \{a_1, \dots, a_n\}$. We can represent f using a table.

f	a_1	a_2	 a_n
a_1	$f(a_1,a_1)$	$f(a_1, a_2)$	
a_2	$f(a_2,a_1)$		
:			
a_n		$f(a_n, a_2)$	$f(a_n, a_n)$

If the operation is commutative, then the table is symmetric.

Now let $f:\{a,b,c\}\times\{a,b,c\}\to\{a,b,c\}$ be defined by the table:

f	a	b	c
a	b	a	a
b	a	c	a
c	a	a	c

Here we have

$$f(a, f(b, c)) = f(a, a) = b \neq a = f(a, c) = f(f(a, b), c)$$

so the operation is *not associative* but it is commutative since the table is symmetric.

4.2 Identity Element

4.2.1 Definition

Let $f: A \times A \to B$ be a binary operation on A. An element $x \in A$ is called an *identity* (or *identity element*) for f if f(a,x) = f(x,a) = a, for all $a \in A$.

4.2.2 Examples

• 0 for + on \mathbb{Z} since

$$a + 0 = 0 + a = a$$

for all $a \in \mathbb{Z}$.

- I_n (identity matrix) of x on $Mat_{n\times n}(\mathbb{R})$.
- \varnothing for \cup on $\mathcal{P}(A)$.
- A for \cap on $\mathcal{P}(A)$.

4.2.3 Theorem

Let $f: A \times A \to B$ be a binary operation. If f has an identity, then that identity is unique.

Proof. If f has more than one identity, let $x_1, x_2 \in A$ with

$$f(a, x_1) = a = f(x_1, a),$$
 for all $a \in A$,

$$f(a, x_2) = a = f(x_2, a),$$
 for all $a \in A$.

Consider x_1 as an element of A and x_2 as an identity. Then $f(x_1, x_2) = x_1$. Now reverse the roles of x_1 and x_2 , that is, consider x_2 as an element of A and x_1 as an identity. We find that $f(x_1, x_2) = x_2$. Consequently, $x_1 = x_2$, and f has at most one identity. \square

4.3 Projections

For sets A and B, if $D \subseteq A \times B$, then $\pi_A : D \to A$, defined by $\pi_A(a,b) = a$, is called the *projection* on the first coordinate. The function $\pi_B : D \to B$, defined by $\pi_B(a,b) = b$, is called the *projection* on the second coordinate.

4.4 Counting Binary Operations

• For the set $A = \{a, b, c, d\}$, how many closed binary operations are there on A?

A binary operation is a function $A \times A \to A$. Hence this number is

$$|A|^{|A| \times |A|} = 4^{16}.$$

In other words, we need to fill the table below.

	a	b	c	d
a				
b				
c				
d				

There are 4 choices for each cell.

• How many of these operations are commutative?

Commutative operations correspond to symmetric tables.

	a	b	c	d
a				
b	X			
c	X	X		
d	X	X	X	

Since only 10 cells need to be filled, there are

$$4^{10}$$

binary operations.

 \bullet How many of these operations have a as an identity?

	a	b	c	d
a	a	b	c	d
b	b			
c	c	X		
d	d	X	X	

Since a is the identity, we have f(d, a) = d for every $d \in A$. In total, there are 4^6 such operations since there are 6 cells to fill.

5 (5.5) The Pigeonhole Principle

5.1 Definition

If m pigeons occupy n pigeonholes and m > n then at least one pigeonhole has two or more pigeons in it.

5.2 Example

If there are 5 points in a 2×2 square in the real plane, then two of these points are no more than $\sqrt{2}$ away from each other.

6 (5.6) Function Composition and Inverse Functions

6.1 Bijective functions

If $f: A \to B$, then f is said to be *bijective*, or to be a *one-to-one corespondence*, if f is both one-to-one and onto.

6.2 Identity function

The function $1_A: A \to A$, defined by $1_A(a) = a$ for all $a \in A$, is called the *identity function*.

6.3 Equality of functions

If $f, g: A \to B$, we say that f and g are equal and write f = g, if f(a) = g(a) for all $a \in A$.

A common pitfall in dealing with the equality of functions occurs when f and g are functions with a common domain A and f(a) = g(a) for all $a \in A$. It may *not* be the case that f = g. The pitfall results from not paying attention to the codomains of the functions.

6.3.1 Example

Let $f: \mathbb{Z} \to \mathbb{Z}, g: \mathbb{Z} \to \mathbb{Q}$ where f(x) = x = g(x), for all $x \in \mathbb{Z}$. Then, f, g share the common domain \mathbb{Z} , have the same range \mathbb{Z} , and act the same on every element of \mathbb{Z} . Yet $f \neq g$ because f is injective and g is injective but surjective; so the codomains do not make a difference.

6.4 Composite functions

If $f: A \to B$ and $g: B \to C$, we define the *composite function*, which is denoted $g \circ f: A \to C$, by $(g \circ f)(a) = g(f(a))$, for each $a \in A$. f and g are composable. However, if $C \neq A$ then $f \circ g$ is not defined.

The definition and examples for composite functions required that the codomain of f = domain of g. If range of $f \subseteq g$, this will actually be enough to yield the composite function $g \circ f : A \to C$. Also, for any $f : A \to B$, we observe that $f \circ 1_A = f = 1_B \circ f$.

6.4.1 Theorem

Let $f: A \to B$ and $g: B \to C$.

- (a) If f and g are one-to-one, then $g \circ f$ is one-to-one.
- (b) If f and g are onto, then $g \circ f$ is onto.

Proof. Let us prove the following theorem above.

(a) Let $a_1, a_2 \in A$ with $(g \circ f)(a_1) = (g \circ f)(a_2)$. Then

$$(g \circ f)(a_1) = (g \circ f)(a_2) \Rightarrow g(f(a_1)) = g(f(a_2)) \Rightarrow f(a_1) = f(a_2)$$

since g is one-to-one. Also, $a_1 = a_2$ because f is one-to-one. Consequently, $g \circ f$ is one-to-one.

(b) Let $z \in C$. Since g is onto, there exists $y \in B$ with g(y) = z. With f onto and $y \in B$, there exists $x \in A$ with f(x) = y. Hence, $z = g(y) = g(f(x)) = (g \circ f)(x)$, so the range of $g \circ f = C =$ the codomain of $g \circ f$, and $g \circ f$ is onto.

Function composition is not commutative, but it is associative.

6.4.2 Collection of functions

If A is a set then

$$A^A = \{ f \mid f : A \to A \}$$

is the collection of functions $A \to A$. So the function composition is a binary operation on A^A .

6.4.3 Theorem

If $f: A \to B, g: B \to C$, and $h: C \to D$, then

$$(h \circ g) \circ f = h \circ (g \circ f).$$

Proof. We have

$$(h \circ g) \circ f(x) = h(g(f(x)))$$

and

$$h \circ (g \circ f)(x) = h(g(f(x))).$$

Therefore, we have $(h \circ g) \circ f = h \circ (g \circ f)$.

6.4.4 Powers of functions

If $f: A \to A$, we define $f^1 = 1$, and for $n \in \mathbb{Z}^+$, $f^{n+1} = f \circ f^n$.

This definition is another example wherein the result is defined *recursively*. With $f^{n+1} = f \circ (f^n)$, we see the dependence of f^{n+1} on a previous power, namely, f^n .

6.5 Invertible functions

6.5.1 Converse of a relation

For sets A, B, if R is a relation from A to B, then the *converse* of R, denoted R^c , is the relation from B to A defined by

$$R^c = \{(b, a) \mid (a, b) \in R\}.$$

We simply interchange the components of each ordered pair in R.

6.5.2 Invertible function

If $f: A \to B$, then f is said to be *invertible* if there is a function $g: B \to A$ such that $g \circ f = 1_A$ and $f \circ g = 1_B$.

6.5.3 Uniqueness

If a function $f: A \to B$ is invertible and a function $g: B \to A$ satisfies $g \circ f = 1_A$ and $f \circ g = 1_B$, then this function g is unique.

Proof. If g is not unique, then there is another function $h: B \to A$ with $h \circ f = 1_A$ and $f \circ h = 1_B$. Consequently,

$$h = h \circ 1_B = h \circ (f \circ g) = (h \circ f) \circ g = 1_A \circ g = g.$$

As a result of this theorem, we shall call the function g the inverse of f and shall adopt the notation $g = f^{-1}$. Note that $f^{-1} = f^c$ and $(f^{-1})^{-1} = f$.

6.5.4 Theorem

 $f: A \to B$ is invertible if and only if f is bijective.

Proof. Assuming that f is invertible, we have a unique function $g: B \to A$ with $g \circ f = 1_A, f \circ g = 1_B$. If $a_1, a_2 \in A$ with $f(a_1) = f(a_2)$, then $g(f(a_1)) = g(f(a_2))$. It follows that $a_1 = a_2$, so f is one-to-one. For the onto property, let $b \in B$, then $g(b) \in A$. We have $b = 1_B(b) = (f \circ g)(b) = f(g(b))$, so f is onto.

For the other direction, suppose $f: A \to B$ is bijective. Since f is onto, for each $b \in B$, there is an $a \in A$ with f(a) = b. Consequently, we define the function $g: B \to A$ by g(b) = a, where f(a) = b. Our definition of g such that $g \circ f = 1_A$ and $f \circ g = 1_B$, so we find that f is invertible, with $g = f^{-1}$.

6.5.5 Theorem

If $f:A\to B, g:B\to C$ are invertible functions, then $g\circ f:A\to C$ is invertible and

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

6.6 Inverse image

If $f: A \to B$ and $B_1 \subseteq B$, then $f^{-1}(B_1) = \{x \in A \mid f(x) \in B_1\}$. The set $f^{-1}(B_1)$ is called the *preimage or inverse image* of B_1 under f.

Note. $f^{-1}(B_1)$ is defined even if f is not invertible.

6.6.1 Examples

• For $f: \mathbb{Z} \to \mathbb{Z}$, we have

$$f^{-1}[\{2\}] = \{2\}.$$

• For $f: \mathbb{Z} \to \mathbb{Z}$, we have

$$f^{-1}[\{0\}] = \{x \in \mathbb{Z} \mid f(x) \in \{0\}\} = \{x \in \mathbb{Z} \mid f(x) = 0\}$$

and

$$f^{-1}[\{1,2\}] = \varnothing.$$

• For $f: \mathbb{Z} \to \mathbb{Z}_2$, we have

$$f^{-1}[\{0\}] = 2\mathbb{Z}$$
 even integers

and

$$f^{-1}[\{1\}] = 2\mathbb{Z} + 1$$
 odd integers

6.7 Theorem

If $f: A \to B$ and $B_1, B_2 \subseteq B$, then

(a)
$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2);$$

(b)
$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2);$$

(c)
$$f^{-1}(\overline{B_1}) = \overline{f^{-1}(B_1)}$$
.

6.8 Finite sets

Let $f: A \to B$ for finite sets A and B, where |A| = |B|. Then the following statements are equivalence: (a) f is one-to-one; (b) f is onto; and (c) f is invertible.