

Keys

В новата игра за бягство има n стаи, номерирани от 0 до n-1. В началото всяка стая съдържа точно един ключ. Всеки ключ има тип, който е цяло число между 0 и n-1, включително. Типът на ключа в стая i ($0 \le i \le n-1$) е r[i]. Възможно е няколко стаи да съдържат ключове от един и същ тип, т.е. стойностите r[i] не са задължително различни.

В играта има m двустранни връзки, номерирани от 0 до m-1. Връзката j ($0 \le j \le m-1$) свързва двойка различни стаи u[j] и v[j]. Две стаи могат да бъдат свързани и с повече от една връзка.

Играта се играе от един играч, който събира ключовете и се придвижва от стая в стая, минавайки по връзките.

Казваме, че играчът **преминава** по връзката j, когато той използва тази връзка, за да отиде от стая u[j] в стая v[j], или обратното. Играчът може да премине по връзка j само ако преди това той е взел ключ от тип c[j].

Във всеки момент от играта, играчът е в някоя стая x и може да извърши два вида действия:

- да вземе ключът от стая x, чийто тип е r[x] (ако вече не е бил взет),
- да премине по връзка j, при което или u[j]=x или v[j]=x, като това може да стане, ако играчът вече е взел ключ от тип c[j]. Играчът **никога** не изхвърля ключ, който е взел.

Играчът **започва** играта в някоя стая s, като няма в себе си нито един ключ.

Стая t е **достижима** от стая s, ако играчът, който е започнал играта от стая s може да изпълни последователност от действия, описани по-горе, така че да отиде в стая t.

За всяка стая i ($0 \le i \le n-1$) означаваме с p[i] броя на стаите, които са достижими от стая i. Искаме да намерим тези индекси i ($0 \le i \le n-1$), за които се получава минимална стойност на p[i].

Детайли по реализацията

Вие трябва да реализирате следната функция:

```
int[] find_reachable(int[] r, int[] u, int[] v, int[] c)
```

- r: масив с дължина n. За всяко i ($0 \leq i \leq n-1$), ключът в стая i е от тип r[i].
- u,v: два масива с дължина $\,m.$ За всяко $\,j$ ($0\leq j\leq m-1$), връзката $\,j$ свързва стаи u[j] и $\,v[j].$

- c: масив с дължина m. За всяко j ($0 \le j \le m-1$), типът на ключа, необходим да се премине по връзка j е c[j].
- Фукцията трябва да върне масив s с дължина n. За всяко $0 \le i \le n-1$, стойността на a[i] трябва да е 1, ако за всяко $0 \le j \le n-1$, $p[i] \le p[j]$. В противен случай стойността на a[i] трябва да е 0.

Примери

Пример 1

Разглеждаме следното извикване:

```
find_reachable([0, 1, 1, 2],
       [0, 0, 1, 1, 3], [1, 2, 2, 3, 1], [0, 0, 1, 0, 2])
```

Ако играчът започне играта от стая 0, той може да изпълни следната последователност от действия:

Текуща стая	Действие
0	Взема ключ от тип 0
0	Преминава по връзка 0 към стая 1
1	Взема ключ от тип 1
1	Преминава по връзка 2 към стая 2
2	Преминава по връзка 2 към стая 1
1	Преминава по връзка 3 към стая 3

Следователно, стая 3 е достижима от стая 0. Аналогично, може да конструираме последователности от действия, с които да покажем, че всички стаи са достижими от стая 0, от което следва, че p[0]=4. Таблицата по-долу показва достижимите стаи, при тръгване от всяка възможна начална стая:

Начална стая i	Достижими стаи	p[i]
0	[0,1,2,3]	4
1	[1,2]	2
2	[1,2]	2
3	[1,2,3]	3

Най-малката стойност на $\,p[i]\,$ в таблицата е $\,2\,$ и тази стойност се достига за $\,i=1\,$ и $\,i=2\,$. Следователно, функцията find_reachable трябва да върне $\,[0,1,1,0].\,$

Пример 2

Таблицата по-долу показва достижимите стаи:

Начална стая i	Достижими стаи	p[i]
0	[0, 1, 2, 3, 4, 5, 6]	7
1	[1,2]	2
2	[1,2]	2
3	[3,4,5,6]	4
4	[4,6]	2
5	[3,4,5,6]	4
6	[4,6]	2

Най-малката стойност на p[i] е 2 и се достига за $i\in\{1,2,4,6\}$. Следователно, функцията find_reachable трябва да върне [0,1,1,0,1,0,1].

Пример 3

```
find_reachable([0, 0, 0], [0], [1], [0])
```

Таблицата по-долу показва достижимите стаи:

Начална стая i	Достижими стаи	p[i]
0	[0,1]	2
1	[0,1]	2
2	[2]	1

Най-малката стойност на $\,p[i]\,$ е $\,1\,$ и се достига за $\,i=2.$ Следователно, функцията find_reachable трябва да върне $\,[0,0,1].$

Ограничения

- $2 \le n \le 300\,000$
- $1 \le m \le 300\,000$

- $0 \leq r[i] \leq n-1$ sa $0 \leq i \leq n-1$
- $0 \leq u[j], v[j] \leq n-1$ и u[j]
 eq v[j] за $0 \leq j \leq m-1$
- $0 \le c[j] \le n-1$ sa $0 \le j \le m-1$

Подзадачи

- 1. (9 точки) $\,c[j]=0$ за $\,0\leq j\leq m-1\,$ и $\,n,m\leq 200\,$
- 2. (11 точки) $\, n,m \leq 200 \,$
- 3. (17 точки) $n,m \leq 2000$
- 4. (30 точки) $c[j] \leq 29$ (за $0 \leq j \leq m-1$) и $r[i] \leq 29$ (за $0 \leq i \leq n-1$)
- 5. (33 точки) няма допълнителни ограничения.

Примерен грейдер

Примерният грейдер чете входа в следния формат:

- ред 1: *n m*
- ред 2: r[0] r[1] ... r[n-1]
- ред 3+j ($0 \le j \le m-1$): u[j] v[j] c[j]

Примерният грейдер отпечатва стойността, която връща find reachable в следния формат:

• ред 1: a[0] a[1] ... a[n-1]