Pranav Atreya

J 408-784-1910

✓ pranavatreya@utexas.edu

in linkedin.com/in/pranav-d-atreya

I am a student pursuing my undergraduate degree in Computer Science and Physics. I have experience in a wide range of programming paradigms, from systems to full-stack development to machine learning. I am an avid learner and problem solver, evidenced by my coursework, projects, work experience, and publications.

Education

University of Texas at Austin

Aug 2019 - May 2023

BS in Computer Science & Physics. Turing Scholar (CS Honors) & Dean's Scholar (Physics Honors)

Austin, TX

Relevant Coursework

- Quantum Computing
- Natural Language Processing
- Concurrency
- Operating Systems
- Algorithms/Complexity Theory
- Computer Architecture
- Data Structures
- Information Retrieval & Web Search
- Linear Algebra
- Discrete Math
- Classical Dynamics
- Classical Electrodynamics
- Waves & Optics

Technical Skills

Languages: Java, C/C++, Python, Go, Rust, SQL, Javascript, HTML/CSS, Shell, x86 Assembly, LATEX Domain Skills: AI/ML, Deep Learning, Robotics, Computer Vision, Systems, Linux, Android, Web

Other Skills: REST, Databases, Microservices, Docker, Jenkins, AWS, Git

Experience

Software Engineering Intern at Citi

Jun 2022 - Aug 2022

• Developed a Spring microservice to perform CRUD operations on a SQL database and interact with a front-end user application. Containerized microservice and deployed on OpenShift.

Research Assistant at UT Austin Robotics

Jan 2020 - Present

- Member of the Autonomous Mobile Robotics Laboratory (AMRL) since January 2020 and the Robot Perception and Learning (RPL) lab since January 2022. I have two first author publications: one on novel learning-based motion planning algorithms and the other on the application of numerical optimization to high fidelity robot control systems, both at top computer science conferences. Additionally, a collaboration resulted in my third authorship of an accepted paper on the application of computer vision to offroad robotic control. I am currently working on photorealistic object-centric image rendering for robotic manipulation and grasping and a project at the intersection of deep reinforcement learning and program synthesis.
- Summer 2021 Paid Internship: Conducted research in robot control systems and computer vision. As part of my research, I (1) developed two control systems for ground robots, one based on Model Predictive Control (MPC) and the other on inverse kinodynamics, (2) demonstrated their effectiveness in controlling a real robot at high speeds, and (3) built a custom camera mount for a d435i depth camera and fitted it on the robot car.
- Summer 2020 Paid Internship: Conducted research in robotic motion planning. As part of my research, I (1) wrote a parallelized implementation of PPO, a state-of-the-art reinforcement learning algorithm, (2) developed a simulator in C++ for a drone, robot car, and a tractor trailer system, and (3) developed a novel learning-based approach for robot motion planning and empirically demonstrated its superiority.

Independent Researcher

Jan 2017 - May 2019

• Conducted research in different areas such as mathematics, bioinformatics, ML, CV and NLP. I presented my work at multiple science fair competitions where it won several regional and state awards.

Projects

Custom Operating System | C++, Assembly, QEMU, Git

• Built a functional OS from scratch with preemptive scheduling, virtual memory, file IO, and system calls.

Two-Phase Commit Protocol Implementation | Rust

• Implemented the 2PC protocol for execution of a distributed atomic transaction. Uses memory safety and concurrency features of the Rust language.

GPU Accelerated Fluid Dynamics Simulation | CUDA, C++, Java

• Simulated 2D and 3D fluid dynamics using the Navier-Stokes equations. Computation was accelerated with GPU code written in CUDA.

DyslexiAR - Assistive Technology iOS App for Dyslexic Individuals | Swift, C, Objective-C, EchoAR

• DyslexiAR helps dyslexic individuals read and write by recognizing words via OCR and displaying augmented reality models representing the words.

Funlang $\mid C$

• Wrote an interpreter and compiler for a programming language with data types, dynamic memory allocation, functions, control structures, and file IO. Compiler is self-hosting (the compiler is written in the language it compiles).

Custom Deep Learning Library | Java

• Implemented an efficient neural network training library from scratch. Library implements many deep learning primitives such as various activation functions, L1 and L2 regularization, and dropout.

Custom Search Engine | Java

• Developed software that crawls web pages and efficiently indexes them using a compressed trie. Built a search engine using relevance feedback and the PageRank algorithm.

Pipelined CPU with Branch Predictor | Verilog

• Implemented a five stage processor in Verilog based off a custom ISA. Can handle data, resource, and control hazards. Implemented a branch predictor with a direct-mapped cache.

Ultrasound based Tumor Identification Device | Python, Raspberry Pi

• Fitted Raspberry Pi with ultrasound sensor to take ultrasound scans of the body part in question. The Pi is programmed to process scan image with a CNN and determine the likelihood of the presence of five different deleterious growth types.

AI and NLP for Determining Credibility of News Articles | Java, Android, JSoup

• Analyzes biases of the publisher, recency of the articles, and performs fact checking with other news sources to evaluate credibility of news article.

Honors/Awards

- Winner of the Capital of Texas Undergraduate Research Conference (CTURC) [2022]
- Best Virtual Reality Hack @Hack The Northeast [2021]
- Best iOS App @Orion Hacks [2021]
- First Award, Physical Science & Engineering, Synopsys Technology Championship [2019]
- Mu Alpha Theta Award for Excellence in Mathematics [2019]
- Honorable Mention, Computational Systems & Analysis, California Science and Engineering Fair [2018]
- First Award, Biological Science & Engineering, Synopsys Technology Championship [2018]
- Naval Science Award, United States Navy & Marine Corps [2018]
- Special Congressional Recognition Congressional App Challenge [2017]
- AP National Scholar with Distinction, National Merit Scholarship Commended [2019]
- Recognition for Science Research, Mayor of Cupertino [2018, 2019]
- Inspire Award, Silicon Valley Regional Robotics Competition [2017]
- USA Computing Olympiad (USACO) Gold Level [2017]

Publications

Atreya, P., Karnan, H., Sikand K., Xiao X., Rabiee, S., & Biswas, J. (in press). High-Speed Accurate Robot Control using Learned Forward Kinodynamics and Non-linear Least Squares Optimization. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems.

Karnan, H., Sikand K., **Atreya, P.**, Rabiee, S., Xiao X., Warnell, G., Stone, P., & Biswas, J. (in press). VI-IKD: High-Speed Accurate Off-Road Navigation using Learned Visual-Inertial Inverse Kinodynamics. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems.

Atreya, P., & Biswas, J. 2022. State Supervised Steering Function for Sampling-based Kinodynamic Planning. In Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems (AAMAS '22). International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 35–43.

Volunteer Experience

Research Ambassador at UT Austin

2021 - Present

• My responsibilities include serving in a Q&A panel in bimonthly undergraduate research events, participating in research photoshoots and interviews, and motivating undergraduate students to get involved in research.

Kaiser Permanente 2018 - 2019

• 200+ hours of volunteer experience.

Literature Tutor, Math & Physics TA

2016 - 2019

- Tutored high-school students in English Literature after school for one week out of every month.
- Teaching Assistant for Calculus BC and Physics AP classes.