

Seria repetytoriów dla szkół średnich

MATEMATYKA

DLA GIMNAZJALISTY

ZBIÓR ZADAŃ

GIM TEST OK!

ADAM KONSTANTYNOWICZ

MATEMATYKA

DLA GIMNAZJALISTY

ZBIÓR ZADAŃ

Redaktor serii: **Marek Jannasz** Redakcja: **Inga Linder-Kopiecka**

Korekta: Marek Kowalik

Projekt okładki: Teresa Chylińska-Kur, KurkaStudio

Projekt makiety i opracowanie graficzne: Kaja Mikoszewska

@ Copyright by Wydawnictwo Lingo sp. j., Warszawa 2014

www.gimtestOK.pl

ISBN wydania elektronicznego: 978-83-7892-219-3

Skład i łamanie: Kaja Mikoszewska

LICZBY WYMIERNE	7
POTĘGI I PIERWIASTKI	27
PROCENTY	49
WYRAŻENIA ALGEBRAICZNE	79
RÓWNANIA	99
WYKRESY FUNKCJI	141
STATYSTYKA OPISOWA I WPROWADZENIE DO RACHUNKU	
PRAWDOPODOBIEŃSTWA	165
FIGURY PŁASKIE	187
BRYŁY	231

Zbiór zadań przeznaczony dla uczniów klas I–III gimnazjum jest zgodny z aktualną podstawą programową.

Ćwiczenia prezentują matematykę jako dziedzinę wiedzy użyteczną dla przeciętnego człowieka. Dzięki bogatemu wyborowi zadań osadzonych w kontekście praktycznym – uczniowie poznają zastosowania matematyki w życiu codziennym.

Nowa podstawa programowa zakłada różny stopień opanowania wiadomości i umiejętności przez poszczególnych uczniów, w zależności od ich uzdolnień i zainteresowań. W związku z tym zbiór zawiera zadania o różnym poziomie trudności.

Zadania mają formę zamkniętą lub otwartą. Mniej jest ćwiczeń sprawdzających znajomość algorytmów i umiejętność posługiwania się nimi w typowych zastosowaniach, więcej natomiast – zadań sprawdzających rozumienie pojęć matematycznych oraz zdolność dobierania własnych strategii matematycznych do nietypowych warunków.

Zadania są dobrane zgodnie z zasadą przystępności, poglądowości i stopniowania trudności. Są zróżnicowane, a bogaty ich zestaw daje uczniowi możliwość wyboru i oceny własnych uzdolnień i umiejętności.

Duża liczba starannie dobranych i rozwiązanych zadań umożliwi uczniowi poznanie różnych technik ich rozwiązywania, które będzie mógł zastosować podczas egzaminu do gimnazjum i w dalszej edukacji matematycznej w szkole ponadgimnazjalnej.

Zbiór ten jest doskonałym uzupełnieniem książki "Matematyka. Korepetycje gimnazjalisty" tego samego autora. "Korepetycje" zawierają pełen zakres programowy gimnazjum z przykładami zadań wraz z rozwiązaniami. Najważniejsze treści zilustrowano licznymi wyjaśniającymi przykładami, istotne informacje ujęto w widoczny sposób. Zrozumienie ich powinno wyrobić nawyk prawidłowego rozwiązywania problemów matematycznych, z którymi uczeń spotyka się w czasie nauki w szkole.

"Korepetycje" poszerzone o "Zbiór" są znakomitym uzupełnieniem podręczników do matematyki. Może być on wykorzystany przez nauczycieli i uczniów na lekcjach matematyki, na zajęciach dodatkowych w klasach I–III gimnazjum oraz przez uczniów samodzielnie przygotowujących się do prac klasowych, sprawdzianów oraz egzaminu gimnazjalnego z matematyki.

Powodzenia *Adam Konstantynowicz*

LICZBY WYMIERNE

Zadania

1.1. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Liczbą naturalną jest liczba

A. 0,2. B. -3. C. 101. D. $\frac{3}{4}$.

1.2. Spośród podanych zdań wybierz zdanie fałszywe.

- A. Jeżeli liczba jest podzielna przez 18, to jest podzielna przez 6 i przez 3.
- B. Jeżeli liczba jest podzielna przez 8, to jest podzielna przez 2 i przez 4.
- C. Jeżeli liczba jest podzielna przez 3 i przez 5, to jest podzielna przez 15.
- D. Jeżeli liczba jest podzielna przez 2 i przez 4, to jest podzielna przez 8.

1.3. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Punkty o współrzędnych –4, –1, 0, 2, 5 zaznaczono na osi liczbowej

1.4. Określ prawdziwość zdań, zaznaczając P, jeśli zdanie jest prawdziwe,

Odległość między punktami o współrzędnych –3 i 2 wynosi 7.	Р	F
Odległość między punktami o współrzędnych -7 i -2 wynosi -5 .		F
Odległość między punktami o współrzędnych 3 i 8 wynosi 5.	Р	F

1.5. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Liczba odległa od liczby przeciwnej do liczby 7 na osi liczbowej o 8 jednostek to

A. tylko –15. B. tylko 1.

lub F, jeśli zdanie jest fałszywe.

C. 1 lub –15. D. –1 lub 15.

1.6. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Ułamkiem równym ułamkowi
$$\frac{9}{24}$$
 jest: A. $\frac{33}{80}$. B. $\frac{15}{40}$. C. $\frac{75}{160}$. D. $\frac{36}{96}$.

1.7. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Liczbami odwrotnymi nie są liczby

B.
$$-5 i - \frac{1}{5}$$
.

C.
$$2\frac{1}{2}$$
 i 0,4.

D.
$$1,75 i - \frac{4}{7}$$
.

1.8. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Rozwinięciem dziesiętnym ułamka $\frac{5}{12}$ jest liczba

1.9. Wybierz T, jeśli stwierdzenie jest prawdziwe, lub N, jeśli stwierdzenie jest fałszywe.

Rozwinięciem dziesiętnym ułamka $\frac{1}{6}$ jest liczba 0,1666		N
Ułamek $\frac{3}{5}$ ma rozwinięcie dziesiętne równe liczbie 0,65.	T	N
Zamieniając ułamek zwykły $\frac{1}{13}$ na ułamek dziesiętny, otrzymamy 0,(076923).	T	N
Wszystkie liczby wymierne mają rozwinięcia dziesiętne skończone.	T	N

1.10. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Zaokrąglając ułamek 27,1(35) do części tysięcznych, otrzymamy

1.11. Dane są liczby: $a = \frac{1}{3}$, b = 0,3, c = 0,33. Określ prawdziwość zdań, zaznaczając P, jeśli zdanie jest prawdziwe, lub F, jeśli zdanie jest fałszywe.

Kolejność liczb od najmniejszej do największej to <i>a, b, c</i> .		F
Kolejność liczb od najmniejszej do największej to a, c, b .	Р	F
Kolejność liczb od najmniejszej do największej to $b,a,c.$		F
Kolejność liczb od najmniejszej do największej to b, c, a .		F

1.12. Bartek porównał cztery pary liczb.

I.
$$-8.3 < -8.03$$
; II. $\frac{2}{7} > \frac{2}{9}$; III. $-2\frac{1}{3} < \frac{7}{3}$; IV. $1\frac{7}{8} = 1.875$.

Bartek poprawnie wykonał zadanie dla:

- A. I i III pary liczb;
- B. I, II i IV pary liczb;
- C. tylko II pary liczb;
- D. wszystkich par liczb.
- 1.13. Kto zapłacił więcej: Marta, kupując 75 dag cukierków czekoladowych po 28 zł za kilogram, czy Wojtek, kupując 1,2 kg krówek po 14 zł za 1 kg? Wybierz odpowiedź spośród podanych.
 - A. Marta;
 - B. obydwoje zapłacili po tyle samo;
 - C. Wojtek;
 - D. nie da się obliczyć.
- 1.14. W pewnym mieście w pierwszych 10 dniach marca zanotowano następujące temperatury: 0°C, -2°C, -3°C, 1°C, 0°C, 2°C, 5°C, 7°C, 3°C i -3°C. Określ prawdziwość zdań, zaznaczając P, jeśli zdanie jest prawdziwe, lub F, jeśli zdanie jest fałszywe.

Najniższa temperatura była trzeciego i dziesiątego marca.		F
Różnica pomiędzy najwyższą a najniższą temperaturą wynosi 9°C.		F
Temperatury nieujemne zanotowano w ciągu siedmiu dni.		F
Średnia temperatura tych dni wynosiła 0°C.		F

1.15. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Liczbą dodatnią jest wynik odejmowania

A.
$$-5,6 - (-23,1)$$
.

B.
$$4,2-4,33$$
.

C.
$$-9.8 - (-7.07)$$
. D. $-0.14 - 1.5$.

D.
$$-0.14 - 1.5$$
.

1.16. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

W wyrażeniu $(\frac{1}{2} + 3, 6 \cdot \frac{1}{4}) : (1, 5 - \frac{1}{3}) + 1$ jako ostatnie należy wykonać

- A. dodawanie.
- B. mnożenie.
- C. dzielenie.
- D. odejmowanie.

1.17. Dane są liczby a = 5 + (-6) : 3 oraz b = -5 + 6 : 3. Określ prawdziwość zdań, zaznaczając P, jeśli zdanie jest prawdziwe, lub F, jeśli zdanie jest fałszywe.

Suma liczb a i b wynosi 0.		F
Różnica liczb a i b wynosi -4 .		F
Różnica liczb b i a jest równa 4.	Р	F
Iloczyn liczb a i b jest równy -9 .	Р	F

1.18. Jaką liczbę trzeba podzielić przez $-1\frac{1}{4}$, aby otrzymać $3\frac{1}{2}$? Wybierz odpowiedź spośród podanych.

A.
$$-\frac{5}{14}$$
;

1.19. Długopis i ołówek kosztuja 25,60 zł. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Długopis, który jest trzy razy droższy od ołówka, kosztuje:

A. 6,40 zł; B. 12,80 zł; C. 8,50 zł; D. 19,20 zł.

1.20. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Obliczając wartość liczbową ułamka

Obliczając wartość liczbową ułamka
$$\frac{12 \cdot 1\frac{1}{3} - \left[1\frac{6}{15} : \frac{21}{45} - \left(13 - 12\frac{16}{21}\right) \cdot \left(-4\frac{1}{5}\right)\right]}{\frac{1}{4} : \frac{1}{2} + 1\frac{13}{15} \cdot 1\frac{7}{8}}, \text{ otrzymamy}$$

A. 1. B. 2. C. 3. D. $2\frac{7}{15}$.

1.21. Pewien dowcipniś podał swoją datę urodzenia zapisaną cyframi rzymskimi XIII.IX.MCMLXXIX. Zapisz datę jego urodzin cyframi arabskimi.

1.22. Odszukaj w tabeli błędne zapisy.

9	511	110	1555	176	67	660	140
VIIII	VII	XC	MDLV	CLXXVI	XLVII	DCLX	CXXXX

1.23. Które spośród liczb $-\frac{2}{3}$; $-\frac{3}{4}$; $-\frac{2}{5}$; $-\frac{7}{15}$; $-\frac{1}{2}$ spełniają warunek $-\frac{5}{9} < a < -\frac{4}{9}$?

1.24. Zapisz warunek, który spełniają liczby z zaznaczonego na rysunku zbioru:

1.25. Zaznacz na osi liczbowej zbiory liczb spełniających określone warunki.

a)
$$x > -3$$
; b) $x < 5$; c) $x \ge 1$; d) $x \le -4$.

- **1.26**. **Uporządkuj rosnąco liczby:** $-2\frac{1}{2}$; $1\frac{1}{4}$; 0; $2\frac{1}{5}$; $-2\frac{1}{3}$.
- 1.27. Przed wyjściem na wycieczkę uczniowie otrzymali paczki składające się z tej samej liczby jabłek i tej samej liczby gruszek. Do sporządzenia paczek zużyto 120 jabłek i 180 gruszek. Zakładając, że owoców nie krojono, oblicz, ile najwięcej paczek można było przygotować.
- 1.28. Grupa rowerzystów przeznaczyła na zakup soków 25 zł. W pijalni soków kupili 4 porcje soku ananasowego, 3 soku pomarańczowego i 2 soku wiśniowego. Co najwyżej ile porcji soku jabłkowego mogą kupić za resztę pieniędzy?

SOKI			
Nazwa	Wielkość	Cena	
Ananasowy	250 ml	2,15 zł	
Jabłkowy	250 ml	1,25 zł	
Pomarańczowy	250 ml	2,05 zł	
Wiśniowy	250 ml	1,75 zł	

1.29. Znajdź różnicę między liczbami pięciocyfrowymi, największą i najmniejszą, utworzonymi ze wszystkich cyfr: 3, 8, 2, 0, 5.

- 1.30. Uzasadnij, że jeśli liczba jest podzielna przez 15 i przez 14, to jest podzielna przez 10.
- 1.31. Od sumy liczb 2.5; $-3\frac{1}{5}$ i -1.8 odejmij różnicę liczb $-\frac{5}{8}$ i 0.125.
- 1.32. Do różnicy liczb $2\frac{1}{3}$ i -1,3 dodaj sumę liczb $-6\frac{3}{4}$ i 4,35.
- 1.33. Iloraz liczb $12\frac{2}{9}$ i $-36\frac{2}{3}$ pomnóż przez sumę liczb -0.5 i 4.
- 1.34. Liczbę –144 przedstaw w postaci:
 - a) iloczynu dwóch liczb całkowitych;
 - b) iloczynu trzech liczb całkowitych;
 - c) iloczynu czterech liczb całkowitych;
 - d) ilorazu dwóch liczb całkowitych.
- 1.35. O ile liczba a jest mniejsza od liczby b, jeśli: $a = -3 \left(1\frac{1}{7} + 1 : 1\frac{1}{6}\right)$ oraz $b = \left(0, 3 \frac{1}{4}\right) \cdot \left[-4, 2 \left(-5\frac{3}{5}\right)\right]$?
- 1.36. Znajdź liczbę, której $\frac{3}{4}$ jest równe wartości liczbowej wyrażenia $\frac{\left(1-\frac{2}{3}\right)+0.5\cdot(-4)}{-12\cdot\left(\frac{1}{6}+0.5\right)}.$
- 1.37. Na zakup biletów do teatru klasa 3a zebrała 450 zł, klasa 3b 360 zł, a klasa 3c 540 zł. Szkole udzielono rabatu w wysokości 150 zł. Uzyskany rabat podzielono między trzy klasy proporcjonalnie do zebranych kwot. Jaką kwotę zwrócono klasie 3c?

1.38. Podczas pracy klasowej z matematyki uczniowie musieli rozwiązać 12 zadań. Za poprawne rozwiązanie uczeń otrzymywał 4 punkty, za błędną –1 punkt, za brak rozwiązania zero punktów. Kinga rozwiązała bezbłędnie 8 zadań, w 3 popełniła błędy, a 1 nie rozwiązała w ogóle. Wiktoria natomiast rozwiązała poprawnie tylko 6 zadań, 3 nie rozwiązała, a w pozostałych popełniła błędy. Która z nich uzyskała większą liczbę punktów i o ile?

1.39. Ostatnim zadaniem w konkursie Mądra Głowa jest otworzenie sejfu, w którym znajdują się nagrody. Aby to zrobić, należy znaleźć sto trzydziestą piątą cyfrę rozwinięcia dziesiętnego każdego z trzech ułamków: $\frac{4}{7}$; $\frac{1}{11}$; $\frac{121}{333}$. Znajdź i ty ten szyfr.

1.40. Do mostu o nośności 30 t zbliżają się dwie całkowicie wypełnione cysterny paliwowe. Pierwsza, o pojemności 22 200 l i masie własnej 4848 kg, wiezie benzynę, której 1 l waży 0,75 kg. Druga cysterna, o pojemności 34 600 l i masie własnej 5,98 t, wiezie olej napędowy, którego 1 l waży 0,85 kg. Która z nich może bezpiecznie przejechać przez most? Ile litrów oleju napędowego może przewozić druga cysterna, aby bezpiecznie mogła minąć się na tym moście z pierwszą cysterną wiozącą pełen ładunek benzyny?

Rozwiązania

1.1. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Liczbą naturalną jest liczba

C. 101.

- 1.2. Spośród podanych zdań wybierz zdanie fałszywe.
- D. Jeżeli liczba jest podzielna przez 2 i przez 4, to jest podzielna przez 8.
- 1.3. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Punkty o współrzędnych -4, -1, 0, 2, 5 zaznaczono na osi liczbowej

1.4. Określ prawdziwość zdań, zaznaczając P, jeśli zdanie jest prawdziwe, lub F, jeśli zdanie jest fałszywe.

Odległość między punktami o współrzędnych –3 i 2 wynosi 7.	Р	F
Odległość między punktami o współrzędnych -7 i -2 wynosi -5 .	Р	F
Odległość między punktami o współrzędnych 3 i 8 wynosi 5.	Р	F

1.5. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Liczba odległa od liczby przeciwnej do liczby 7 na osi liczbowej o 8 jednostek to

C. 1 lub –15.

1.6. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Ułamkiem równym ułamkowi $\frac{9}{24}$ jest:

D.
$$\frac{9}{24} = \frac{9 \cdot 4}{24 \cdot 4} = \frac{36}{96}$$
.

1.7. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Liczbami odwrotnymi nie są liczby

D.
$$1,75 i - \frac{4}{7}$$
.

1.8. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Rozwinięciem dziesiętnym ułamka $\frac{5}{12}$ jest liczba

B.
$$\frac{5}{12}$$
 = 041666... = 0,41(6).

1.9. Wybierz T, jeśli stwierdzenie jest prawdziwe, lub N, jeśli stwierdzenie jest fałszywe.

Rozwinięciem dziesiętnym ułamka $\frac{1}{6}$ jest liczba 0,1666	T	N
Ułamek $\frac{3}{5}$ ma rozwinięcie dziesiętne równe liczbie 0,65.	T	N
Zamieniając ułamek zwykły $\frac{1}{13}$ na ułamek dziesiętny, otrzymamy 0,(076923).	T	N
Wszystkie liczby wymierne mają rozwinięcia dziesiętne skończone.	T	N

1.10. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe. Zaokrąglając ułamek 27,1(35) do części tysięcznych, otrzymamy A. $27,1(35)=27,1353535...\approx 27,135$.

1.11. Dane są liczby: $a=\frac{1}{3}, b=0,3, c=0,33$. Określ prawdziwość zdań, zaznaczając P, jeśli zdanie jest prawdziwe, lub F, jeśli zdanie jest fałszywe.

Kolejność liczb od najmniejszej do największej to <i>a, b, c</i> .	Р	F
Kolejność liczb od najmniejszej do największej to $a,c,b.$	Р	F
Kolejność liczb od najmniejszej do największej to $b,a,c.$	Р	F
Kolejność liczb od najmniejszej do największej to b, c, a.	Р	F

1.12. Bartek porównał cztery pary liczb.

I.
$$-8.3 < -8.03$$
; II. $\frac{2}{7} > \frac{2}{9}$; III. $-2\frac{1}{3} < \frac{7}{3}$; IV. $1\frac{7}{8} = 1.875$.

Bartek poprawnie wykonał zadanie dla:

- D. wszystkich par liczb.
- 1.13. Kto zapłacił więcej: Marta, kupując 75 dag cukierków czekoladowych po 28 zł za kilogram, czy Wojtek, kupując 1,2 kg krówek po 14 zł za 1 kg? Wybierz odpowiedź spośród podanych.

A. Marta:
$$0.75 \cdot 28 = 21$$
 (zł); $1.2 \cdot 14 = 16.80$ (zł).

1.14. W pewnym mieście w pierwszych dziesięciu dniach marca zanotowano następujące temperatury: 0°C , -2°C , -3°C , 1°C , 0°C , 2°C , 5°C , 7°C , 3°C i -3°C . Określ prawdziwość zdań, zaznaczając P, jeśli zdanie jest prawdziwe, lub F, jeśli zdanie jest fałszywe.

Najniższa temperatura była trzeciego i dziesiątego marca.		F
Różnica pomiędzy najwyższą a najniższą temperaturą wynosi 9°C.	Р	F
Temperatury nieujemne zanotowano w ciągu siedmiu dni.		F
Średnia temperatura tych dni wynosiła 0°C.		F

1.15. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Liczbą dodatnią jest wynik odejmowania

A.
$$-5.6 - (-23.1) = -5.6 + 23.1 = 17.5$$
.

1.16. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

W wyrażeniu $(\frac{1}{2}+3,6\cdot\frac{1}{4}):(1,5-\frac{1}{3})+1$ jako ostatnie należy wykonać A. dodawanie.

1.17. Dane są liczby a = 5 + (-6): 3 oraz b = -5 + 6: 3. Określ prawdziwość zdań, zaznaczając P, jeśli zdanie jest prawdziwe, lub F, jeśli zdanie jest fałszywe.

$$a = 5 + (-2) = 3; b = -5 + 2 = -3$$

Suma liczb a i b wynosi 0.	Р	F
Różnica liczb a i b wynosi -4 .	P	F
Różnica liczb b i a jest równa 4.	Р	F
Iloczyn liczb a i b jest równy -9 .	Р	F

1.18. Jaką liczbę trzeba podzielić przez $-1\frac{1}{4}$, aby otrzymać $3\frac{1}{2}$? Wybierz odpowiedź spośród podanych.

C. -4,375, ponieważ
$$3\frac{1}{2} \cdot \left(-1\frac{1}{4}\right) = \frac{7}{2} \cdot \left(-\frac{5}{4}\right) = -\frac{35}{8} = -4\frac{3}{8} = -4,375$$
.

1.19. Długopis i ołówek kosztują 25,60 zł. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Długopis, który jest trzy razy droższy od ołówka, kosztuje:

D.
$$x$$
 – cena ołówka; $3x + x = 25,60$; $4x = 25,60$; $x = 6,40$; $3x = 19,20$ zł.

1.20. Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Obliczając wartość liczbową ułamka

$$\frac{12\cdot 1\frac{1}{3} - \left[1\frac{6}{15} : \frac{21}{45} - \left(13 - 12\frac{16}{21}\right) \cdot \left(-4\frac{1}{5}\right)\right]}{\frac{1}{4} : \frac{1}{2} + 1\frac{13}{15} \cdot 1\frac{7}{8}}, \text{ otrzymamy}$$

$$\text{C.}\ \frac{12\cdot 1\frac{1}{3} - \left[1\frac{6}{15} : \frac{21}{45} - \left(13 - 12\frac{16}{21}\right) \cdot \left(-4\frac{1}{5}\right)\right]}{\frac{1}{4} : \frac{1}{2} + 1\frac{13}{15} \cdot 1\frac{7}{8}} =$$

$$=\frac{12\cdot\frac{4}{3}-\left[\frac{21}{15}\cdot\frac{45}{21}-\frac{5}{21}\cdot\left(-\frac{21}{5}\right)\right]}{\frac{1}{4}\cdot2+\frac{28}{15}\cdot\frac{15}{8}}=\frac{16-\left(3+1\right)}{\frac{1}{2}+\frac{7}{2}}=\frac{16-4}{4}=\frac{12}{4}=3.$$

1.21. Pewien dowcipniś podał swoją datę urodzenia zapisaną cyframi rzymskimi XIII.IX.MCMLXXIX. Zapisz datę jego urodzin cyframi arabskimi. 13.09.1979.

1.22. Odszukaj w tabeli błędne zapisy.

9	511	110	1555	176	67	660	140
VIIII	VII	XC	MDLV	CLXXVI	XLVII	DCLX	CXXXX

1.23. Które spośród liczb
$$-\frac{2}{3}$$
; $-\frac{3}{4}$; $-\frac{2}{5}$; $-\frac{7}{15}$; $-\frac{1}{2}$ spełniają warunek $-\frac{5}{9} < \alpha < -\frac{4}{9}$?

$$-\frac{2}{3} = -\frac{6}{9} < -\frac{5}{9}$$
 nie spełnia;

$$-\frac{3}{4} = -\frac{27}{36} < -\frac{20}{36} = -\frac{5}{9}$$
 nie spełnia;

$$-\frac{2}{5} = -\frac{18}{45} > -\frac{20}{45} = -\frac{4}{9}$$
 nie spełnia;

$$-\frac{7}{15} = -\frac{21}{45}; -\frac{5}{9} = -\frac{25}{45}; -\frac{4}{9} = -\frac{20}{45}; -\frac{25}{45} < -\frac{21}{45} < -\frac{20}{45} \text{ spełnia};$$

$$-\frac{1}{2} = -\frac{9}{18}; -\frac{5}{9} = -\frac{10}{18}; -\frac{4}{9} = -\frac{8}{18}; -\frac{10}{18} < -\frac{9}{18} < -\frac{8}{18}$$
 spełnia.

1.24. Zapisz warunek, który spełniają liczby z zaznaczonego na rysunku zbioru:

a)
$$x > -1.5$$
; b) $x \le -2$; c) $x \ge 1\frac{1}{4}$; d) $x < 2$.

1.25. Zaznacz na osi liczbowej zbiory liczb spełniających określone warunki.

a)
$$x > -3$$
; b) $x < 5$; c) $x \ge 1$; d) $x \le -4$.

1.26. Uporządkuj rosnąco liczby:
$$-2\frac{1}{2}$$
; $1\frac{1}{4}$; 0; $2\frac{1}{5}$; $-2\frac{1}{3}$. $-2\frac{1}{2} < -2\frac{1}{3} < 0 < 1\frac{1}{4} < 2\frac{1}{5}$.

1.27. Przed wyjściem na wycieczkę uczniowie otrzymali paczki składające się z tej samej liczby jabłek i tej samej liczby gruszek. Do sporządzenia paczek zużyto 120 jabłek i 180 gruszek. Zakładając, że owoców nie krojono, oblicz, ile najwięcej paczek można było przygotować.

I sposób

Liczymy NWD (120, 180), rozkładając na czynniki pierwsze obie liczby.

Otrzymujemy:

$$120 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5$$
; $180 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5$.

Mnożymy powtarzające się liczby pierwsze i otrzymujemy:

NWD
$$(120, 180) = 2 \cdot 2 \cdot 3 \cdot 5 = 60.$$

Obliczamy liczbę owoców w paczce:

$$120:60=2;180:60=3.$$

II sposób

Zakładamy, że w paczce było po jednym jabłku, zatem powinno być 120 paczek, ale 180 gruszek nie dzieli się przez 120 bez dzielenia owoców.

Zakładamy, że w paczce były po dwa jabłka, zatem 120:2=60 paczek.

Sprawdzamy, czy 180 gruszek dzieli się przez 60 - tak, bo 180 : 60 = 3.

Przygotowano 60 paczek, w których znalazły się po 3 gruszki i po 2 jabłka.

1.28. Grupa rowerzystów przeznaczyła na zakup soków 25 zł. W pijalni soków kupili 4 porcje soku ananasowego, 3 soku pomarańczowego i 2 soku wiśniowego. Co najwyżej ile porcji soku jabłkowego mogą kupić za resztę pieniędzy?

SOKI					
Nazwa	Wielkość	Cena			
Ananasowy	250 ml	2,15 zł			
Jabłkowy	250 ml	1,25 zł			
Pomarańczowy	250 ml	2,05 zł			
Wiśniowy	250 ml	1,75 zł			

Obliczamy, ile zapłacili rowerzyści za soki ananasowe, pomarańczowe i wiśniowe.

$$4 \cdot 2,15 + 3 \cdot 2,05 + 2 \cdot 1,75 = 8,60 + 6,15 + 3,50 = 18,25$$
 (zł)

Obliczamy, ile pozostało im reszty.

$$25 - 18,25 = 6,75$$
 (zł)

Obliczamy, ile soków jabłkowych mogą kupić.

$$6,75:1,25=5,4$$

Odp. Rowerzyści mogą kupić co najwyżej 5 porcji soku jabłkowego.

1.29. Znajdź różnicę między liczbami pięciocyfrowymi, największą i najmniejszą, utworzonymi ze wszystkich cyfr: 3, 8, 2, 0, 5.

Największa liczba to 85 320, najmniejsza to 20 358. Różnica wynosi 64 962.

1.30. Uzasadnij, że jeśli liczba jest podzielna przez 15 i przez 14, to jest podzielna przez 10.

Jeżeli liczba jest podzielna przez 15, to jest podzielna przez 3 i przez 5.

Jeżeli liczba jest podzielna przez 14, to jest podzielna przez 2 i przez 7.

Jeżeli liczba jest podzielna przez 2, 3, 5 i 7, to jest podzielna przez $5 \cdot 2 = 10$.

1.31. Od sumy liczb 2,5;
$$-3\frac{1}{5}$$
 i -1 ,8 odejmij różnicę liczb $-\frac{5}{8}$ i 0,125. $[2,5+\left(-3\frac{1}{5}\right)+(-1,8)]-\left(-\frac{5}{8}-0,125\right)=(2,5-3,2-1,8)-(-0,625-0,125)=-2,5+0,75=-1,75$

1.32. Do różnicy liczb
$$2\frac{1}{3}$$
 i $-1,3$ dodaj sumę liczb $-6\frac{3}{4}$ i $4,35$.
$$\left[\left(2\frac{1}{3}-\left(-1,3\right)\right]+\left(-6\frac{3}{4}+4,35\right)=\left(2\frac{1}{3}+1\frac{3}{10}\right)+\left(-6,75+4,35\right)=\left(2\frac{10}{30}+1\frac{9}{30}\right)+\left(-2,4\right)=3\frac{19}{30}-2\frac{4}{10}=3\frac{12}{30}-2\frac{12}{30}=1\frac{7}{30}$$

1.33. Iloraz liczb
$$12\frac{2}{9}$$
 i $-36\frac{2}{3}$ pomnóż przez sumę liczb -0.5 i 4.
$$\left[12\frac{2}{9}:\left(-36\frac{2}{3}\right)\right]\cdot\left(-0.5+4\right)=\left[\frac{110}{9}:\left(-\frac{110}{3}\right)\right]\cdot3.5=-\frac{110}{9}\cdot\frac{3}{110}\cdot3.5=-\frac{1}{3}\cdot\frac{35}{10}=-\frac{35}{30}=-1\frac{5}{30}=-1\frac{1}{6}$$

- 1.34. Liczbę –144 przedstaw w postaci:
- a) iloczynu dwóch liczb całkowitych: np. $12 \cdot (-12)$;
- b) iloczynu trzech liczb całkowitych: np. $2 \cdot 6 \cdot (-12)$;
- c) iloczynu czterech liczb całkowitych: np. $(-2) \cdot 2 \cdot (-3) \cdot (-12)$;
- d) ilorazu dwóch liczb całkowitych: np. $\frac{-1440}{10}$.

$$\begin{array}{l} \textbf{1.35.} \text{ O ile liczba } a \text{ jest mniejsza od liczby } b, \text{ jeśli: } a = -3 - \left(1\frac{1}{7} + 1 : 1\frac{1}{6}\right) \\ \text{oraz } b = \left(0, 3 - \frac{1}{4}\right) \cdot \left[-4, 2 - \left(-5\frac{3}{5}\right)\right]? \\ a = -3 - \left(1\frac{1}{7} + 1 : 1\frac{1}{6}\right) = -3 - \left(\frac{8}{7} + 1 \cdot \frac{6}{7}\right) = -3 - \left(\frac{8}{7} + \frac{6}{7}\right) = -3 - \frac{14}{7} = -3 - 2 = -5; \\ b = \left(0, 3 - \frac{1}{4}\right) \cdot \left[-4, 2 - \left(-5\frac{3}{5}\right)\right] = \left(0, 3 - 0, 25\right) \cdot \left(-4, 2 + 5, 6\right) = 0,05 \cdot 1,4 = 0,07; \\ b - a = 0,07 - \left(-5\right) = 0,07 + 5 = 5,07. \end{array}$$

Liczba a jest mniejsza od liczby b o 5,07.

1.36. Znajdź liczbę, której $\frac{3}{4}$ jest równe wartości liczbowej wyrażenia $\frac{\left(1-\frac{2}{3}\right)+0,5\cdot(-4)}{-12\cdot\left(\frac{1}{6}+0,5\right)}.$

x – szukana liczba;

$$\frac{3}{4} \cdot x = \frac{5}{24}; \quad x = \frac{5}{24} : \frac{3}{4} = \frac{5}{24} \cdot \frac{4}{3} = \frac{5}{18}.$$
 Szukaną liczbą jest $\frac{5}{18}$.

1.37. Na zakup biletów do teatru klasa 3a zebrała 450 zł, klasa 3b – 360 zł, a klasa 3c – 540 zł. Szkole udzielono rabatu w wysokości 150 zł. Uzyskany rabat podzielono między trzy klasy proporcjonalnie do zebranych kwot. Jaką kwotę zwrócono klasie 3c?

Obliczamy, ile zebrały razem klasy trzecie: 450 + 360 + 540 = 1350.

Obliczamy, jaką częścią całej kwoty jest kwota zebrana przez klasę 3c:

$$\frac{540}{1350} = \frac{6}{15}$$

Taką samą część rabatu zwrócono klasie 3c: $\frac{6}{15} \cdot 150 = 60$ (zł).

1.38. Podczas pracy klasowej z matematyki uczniowie musieli rozwiązać 12 zadań. Za poprawne rozwiązanie uczeń otrzymywał 4 punkty, za błędną -1 punkt, za brak rozwiązania zero punktów. Kinga rozwiązała bezbłędnie 8 zadań, w 3 popełniła błędy, a 1 nie rozwiązała w ogóle. Wiktoria natomiast rozwiązała poprawnie tylko 6 zadań, 3 nie rozwiązała, a w pozostałych popełniła błędy. Która z nich uzyskała większą liczbę punktów i o ile?

Kinga:
$$8 \cdot 4 + 3 \cdot (-1) + 1 \cdot 0 = 32 - 3 = 29$$
.

Wiktoria:
$$6 \cdot 4 + 3 \cdot 0 + 3 \cdot (-1) = 24 - 3 = 21$$
.

29 - 21 = 8. Kinga uzyskała 8 punktów więcej.

1.39. Ostatnim zadaniem w konkursie Mądra Głowa jest otworzenie sejfu, w którym znajdują się nagrody. Aby to zrobić, należy znaleźć sto trzydziestą piątą cyfrę rozwinięcia dziesiętnego każdego z trzech ułamków: $\frac{4}{7}$; $\frac{1}{11}$; $\frac{121}{333}$. Znajdź i ty ten szyfr.

 $\frac{4}{7}$ = 0,571428571428... = 0,(571428); okres zawiera 6 cyfr, więc 135 : 6 = 22 reszty 3, zatem szukaną cyfrą jest 1.

```
\frac{1}{11} = 0,0909... = 0,(09); okres zawiera 2 cyfry, więc 135 : 2 = 67 reszty 1, zatem szukaną cyfrą jest 0.
```

 $\frac{121}{333}$ = 0,363363... = 0,(363); okres zawiera 3 cyfry, więc 135 : 3 = 45 reszty 0, zatem szukaną cyfrą jest 3.

Szyfr to 103.

1.40. Do mostu o nośności 30 t zbliżają się dwie całkowicie wypełnione cysterny paliwowe. Pierwsza, o pojemności 22 200 l i masie własnej 4848 kg, wiezie benzynę, której 1 l waży 0,75 kg. Druga cysterna, o pojemności 34 600 l i masie własnej 5,98 t, wiezie olej napędowy, którego 1 l waży 0,85 kg. Która z nich może bezpiecznie przejechać przez most? Ile litrów oleju napędowego może przewozić druga cysterna, aby bezpiecznie mogła minąć się na tym moście z pierwszą cysterną wiozącą pełen ładunek benzyny?

Obliczamy, ile ważą cysterny z ładunkiem:

I cysterna: $22200 \cdot 0.75 \text{ kg} + 4848 \text{ kg} = 21498 \text{ kg} = 21.498 \text{ t}$.

II cysterna: $34600 \cdot 0.85 \text{ kg} + 5980 \text{ kg} = 35390 \text{ kg} = 35.39 \text{ t}.$

Bezpiecznie przez most może przejechać I cysterna z benzyną.

Obliczamy, ile może się jeszcze zmieścić na moście, gdy wjedzie na niego pełna cysterna z benzyną: 30000 - 21498 = 8502 (kg).

Odejmujemy masę własną drugiej cysterny: 8502 - 5980 = 2522 (kg).

Dzielimy ten wynik przez wagę 1 l oleju napędowego:

 $2522:0.85 = 2967.06 \approx 2967$ (1).

Druga cysterna może przewozić 2967 l oleju.