Graph Theory Set 8

38. Cal Poly has six colleges: Agriculture (cagr), Architecture (caed), Engineering (ceng), Liberal Arts (cla), Business (ocob), and Science & Math (csm). The probability that a freshman will change majors from college *i* to a major in college *i* is:

	cagr	caed	ceng	cla	ocob	csm
cagr	0	0	1/913	2/593	1/516	3/511
caed	2/753	0	0	0	0	0
ceng	2/753	0	0	0	0	4/511
cla	6/753	0	0	0	1/516	5/511
ocob	3/753	0	0	1/593	0	1/511
csm	11/753	0	5/913	1/593	2/516	0

Consider this matrix as the adjacency matrix of a network. Find (using a machine) and interpret the Perron value and the Perron vector in this setting.

39. A *d*-**regular** graph is a graph with every vertex degree *d*. Let *G* be a connected *d*-regular graph.

- **a.** Let 1 be the vector of all 1's. Show that d is the Perron value and (1/n)1 is the Perron vector for G.
- **b.** The Courant-Fischer theorem implies that if \mathbf{v} is an eigenvector that is not a multiple of the Perron vector, then \mathbf{v} is orthogonal to 1, meaning that $\mathbf{1}^{\top}\mathbf{v} = 0$. Show that if $\lambda \neq d$ is an eigenvalue for G, then -1λ is an eigenvalue for G^c .
- **40.** Find the eigenvalues for the complete graph K_n .
- **41. a.** Find the eigenvalues and eigenvectors for the cube Q_1 .
 - **b.** Show that the vertices of Q_{n+1} can ordered so that $A(Q_{n+1}) = \begin{bmatrix} A(Q_n) & I \\ I & A(Q_n) \end{bmatrix}$.
 - **c.** Show that if λ is an eigenvalue for Q_n with eigenvector \mathbf{x} , then $\lambda \pm 1$ are eigenvalues for Q_{n+1} with eigenvectors $\begin{bmatrix} \mathbf{x} \\ \pm \mathbf{x} \end{bmatrix}$.
 - **d.** Show that n-2i appears as an eigenvalue for Q_n with multiplicity $\binom{n}{i}$. Hint: It may be helpful to use the identity $\binom{n-1}{i}+\binom{n-1}{i-1}=\binom{n}{i}$.
 - **e.** Prove the identities $\sum_{i=0}^{n} \binom{n}{i} (n-2i)^2 = n2^n$ and $\sum_{i=0}^{n} \binom{n}{i} (n-2i)^3 = 0$.

42. Let $\lambda_{\max}(G)$ denote the largest eigenvalue of a graph G. Use the Courant-Fischer theorem to show that if H is subgraph of G, then $\lambda_{\max}(H) \leq \lambda_{\max}(G)$.