

Indian Currency Recognition for Visually Impaired People

Zeroth-Level Project Presentation

Kevin S Monachan

Department of MCA

Guide: Smt. Premy P Jacob

Introduction

Introduction

This project is designed to assist visually impaired individuals in recognizing and managing Indian currency notes independently. It offers an easy-to-use system with voice-guided support and audio feedback, allowing users to identify notes and keep track of their total amount without visual assistance.

Problem Statement

Problem Statement

Need: An accessible, user-friendly solution enabling independent recognition and handling of Indian currency notes through non-visual methods

Project Objective

Project Objective

- Provide a reliable currency recognition service
- Enable real-time auditory feedback
- Maintain a digital virtual purse
- Offer an accessible, keyboard- and voice-driven interface Enhance financial independence and security

Goal: To develop an accessible system that empowers users to recognize and manage currency independently and securely.

Literature Survey

Papper Title	Description	Advantage	Disadvantage
A Robust System for Indian Paper Currency Recognition using Deep Learning	Uses a fine-tuned VGG-16 CNN model with transfer learning and data augmentation for robust currency note recognition	High accuracy and robustness in real-world conditions.	Computationally intensive, hard to deploy on low-power devices.
Deep Learning Based Paper Currency Recognition and Verification	Deep Learning Based Paper Currency Recognition and Verification	Efficient training via transfer learning.	Heavy model not suitable for embedded systems.
An Automated Indian Paper Currency Recognition System Using SURF Features	An Automated Indian Paper Currency Recognition System Using SURF Features	Fast processing with low resource requirements.	Fast processing with low resource requirements.
A Survey on Paper Currency Recognition Systems	Reviews and analyzes various currency recognition techniques across the research pipeline.	Reviews and analyzes various currency recognition techniques across the research pipeline.	Does not propose new methods or improvements.

Existing System Limitations

Current System Issues

Depends on subtle differences in size and texture

Limits user independence and privacy

Methodology

Core Methodologies

- Deep Learning with Transfer Learning
- EfficientNet B3 (CNN-based)

Project Development Steps

- Dataset Preparation
- Model Development
- Training & Validation
- Integration
- Deployment

System Design/Architecture

Implementation

Proposed System

Proposed System

- Deep learning model based on ResNet architecture
- Currency recognition via webcam or image upload
 Voice command integration using Web Speech API
- Keyboard-driven interface requiring no mouse
- Continuous audio feedback for seamless interaction
- Virtual purse to track total currency amount

Tech Stack:

TensorFlow, ResNet, HTML, CSS, JavaScript, Web Speech API, Flask

System Configuration

System Configuration

Hardware Configuration

Operating System: Windows

Processor: AMD Ryzen 5 5600H

Memory: 8GB RAM

Software Configuration

\language: Python

Machine Learning Library: TensorFlow

Model Architecture: ResNet (CNN)

Front End: HTML, CSS3, JavaScript, Web Speech API

Back End: Python Flask

Conclusion

Conclusion

This project addresses a critical need in society by empowering visually impaired individuals to independently identify and manage currency. It promotes financial autonomy, reduces reliance on others, and enhances the dignity and confidence of users in their daily transactions.

By focusing on accessibility, usability, and inclusion, the system contributes meaningfully toward building a more equitable and supportive digital environment for all.

Thank You!