EE325

ASSIGNMENT - 1

-> KALPIT BORKAR 200070029

→ NAVNEET 200070048

- SANJHI PRIYA 20 DO 700 70

-> YUVRAT SINGH 200070093

Camlin	Page
Date /	1

b) (i) METHOD 1: Case-1: K=10

Calculated average (guess) = 117.902 Calculated standard de viation (quess)

= 12.37

Case-2: K=20

Calculated Average = 119.031 Calculated Standard deviation = 18.43

Case-3: K= 50

Calculated Average = 119.959 Calculated standard deviation = 19.798

Standard deviation = 19.5 Case-4: K= 100

Calculated Average = 119.981 Calculated Standard deviation = 19.537

Case-5: K=200

Calculated Average = 121.040

Calculated Standard deviation = 18.893

Method 1

Ç	METHOD: 2
	(about stendand deviation (quess)
	Case-1: K= 10
1	10 8 . 5 1 =
	A Calculated Average = 121.675
	Calculated Standard deviation = 17.158
	Case-2: K=20
15	5 P11 Case-2: K=20 spazova hatalusta)
8	Colculated Standard devication = 18.1
	Calculated Standard deviation = 18.855
20	SC - A CF JEAU
9 3 9	.PI Case - 3: K=50 parent A betalula
	Charloted standard deviction: 19.
	Calculated Augusta
	Colombatal Ct. 1. 1 1 1 1.
25	Standard deviation = 19.514
	-A F- 20
19P.	Case- 4: K= 100
137	Cal culated Hyprogram devicuos = 19.0
	Calculated augus
30	Calculated Standard deviation = 19.638
	14.638

Camlin Page
Date / /

Case-5: K=200

Calculated Average - = 121.732 Calculated Standard deviation = 19.728

Method 2

METHODE ISTORY TOURS AND ADDITION	- in
Art Actual Standard deviation = 19-975	*
Case-1: K=10	i-
Calculated Average =	120.727
calculated Standard deviation =	18.236
A) · According to the calculated value	
Case-2: K=20 Ham (2220)	
the smoot arrapatic answer as	
Calculated Average =	121.547
calculated standard deviation =	19.512
· Method 3 is the complex of	
asay of sampling, and hence	
Case-3 & K=50	
to the octual values.	
Calculated Average =	121.103
Calculated Standard deviation =	19.976
Case-4: K=100	
^	
Calculated Average =	121.934
Calculated Standard deviation =	19.747

Case-5: K=200

Calculated Average = 120.968

Calculated Standard deviation = 19.783

Method 3

* Actual Average: 120.133
 * Actual Standard deviation = 19.97

120.727	intoted Avenue
388.86	Standard deviation
15	A.) · According to the calculated value
	(quess), method-3 seems to
101 647	and most accurated ancwes as
0.30	compared to the actual values.
C C F I	at cultated standard action of
20	· Method 3 is the 66 most grandom 99
5.1	way of sampling, and hence the
	caracter l'allier tend
501 102	to the actual values.
18.100	Appropriate Literal Commencer
3 T P 25 P 1	Colculated Stan dand deviation =

Carr	lin	Page	
Date	1	1	

	B) - Based on the calculated data,
	it can be observed that the
	calculated value is more accurate
	for higher values of K.
5	
	· For a quantative measure of « sureness of our estimate?"
	" sureness of our estimate",
	we can défine something callec Confidence interval:
10	Con l'dence interval:
	Let's suppose
	U= actual average
15	U= actual average û= calculated average
	we can say that for E>0,5>0
	$\mathbb{P}(\mathbf{x}-\mathbf{y}) \in \mathcal{S}$
30	
	where $S = 2 \exp(-n\epsilon^2)$
	So, this inequality says that
25	less than δ .
	less than S.
	$2e_{xp}(-n\epsilon^{2})=S=\int n=\int ln(\frac{2}{S})$
	ϵ
30	Here we can see that if we decrease the ruline of E or S, we need to increase n. This relation of E, n, S can be used as a gra quantitative measure.
	of E or S, we need to increase n.
	U This relation of E, n, d can be used as
	a gua quantitative measure.

Question - 2

define: Pi = probability of events: {H}}
calculated after the i'th tous.

for the ideal case, i.e. when the coin is fair, this probability Pi should converge to 0.5.

-rellhen P; is plotted v/s i, the amount of deviation from 0.5 gives measure of bias of the coin.

Which describes the quantitative measure of our 'sureness' that the coin is brased.

Pi are less significant as compared to later
Pi while calculating deviation, and hence we
should calculate weighted average of error.

Mughted average of error , i.e.

$$Pi - 0.5 = \underbrace{\sum_{n=1}^{2 \times i \times (Pi - 0.5)}}_{n(n+1)}$$

- This weighted average takes value in (-0.5,0.5) and more the value is away from zero, the more we are sure that the coin is 'beased'.

Plots:

b. In this situation, one can never be sure about his initial assumptions being wrong with this much amount of data, one can only say about the chances / probability of its assumption being wrong.

For any conclusion we would have to look for large number of results, and then determine the convergence of the probability walve.

I Standard deviation of error signifies how much the weight of people with same height wary among themselves.

I greater the value of standard deviation, greater will be the variation among them.

-> coefficient of warrance = standard deveation

→ if coefficient of warrance < 1:

→ low variance data → our model in more "accurate".

- higher the warrance, lesser our model is