4. Control Signal: PCSrc (1/2)

- The "isZero?" signal from the ALU gives us the actual branch outcome (taken/not taken)
- Idea: "If instruction is a branch AND taken, then..."

5. One Bit At A Time (Aha!)

- Can you see how the ALUcontrol (4-bit) signal controls the ALU?
 - Note: implementation for slt not shown

	Function		
Ainvert	Binvert	Binvert Operation	
0	0	00	AND
0	0	01	OR
0	0	10	add
0	1	10	subtract
0	1	11	slt
1	1	00	NOR

5. Generating ALUcontrol Signal

Opcode	ALUop	Instruction Operation	Funct field	ALU action	ALU control
lw	00	load word	XXXXXX	add	0010
sw	00	store word	XXXXXX	add	0010
beq	01	branch equal	XXXXXX	subtract	0110
R-type	10	add	10 0000	add	0010
R-type	10	subtract	10 0010	subtract	0110
R-type	10	AND	10 0100	AND	0000
R-type	10	OR	10 0101	OR	0001
R-type	10	set on less than	10 1010	set on less than	0111

Instruction Type	ALUop
lw/sw	00
beq	01
R-type	10

Generation of 2-bit ALUop signal
will be discussed later

ALUcontrol	Function
0000	AND
0001	OR
0010	add
0110	subtract
0111	slt
1100	NOR

5. Design of ALU Control Unit (1/2)

Input: 6-bit Funct field and 2-bit ALUop

ALUcontrol3 = 0

Output: 4-bit ALUcontrol

ALUcontrol2 = ?

Find the simplified expressions

ALUop0 + ALUop1 · F1

	ALUop			(F	Funct Field (F[5:0] == Inst[5:0])					
	MSB	LSB	F5	F4	F3	F2	F1	F0	control	
lw	0	0	Х	Х	Х	Х	X	X	0010	
sw	0	0	Х	Х	Х	X	X	X	0010	
beq	ØΧ	1	X	Х	X	Х	X	X	0(1)1 0	
add	1	8 X	XΧ	ØX	0	0	0	0	0010	
sub	1	Ø X	X	ØX	0	0	1	0	0(1)1 0	
and	1	ØX	X	ØX	0	1	0	0	0000	
or	1	Ø X	X	ØX	0	1	0	1	0001	
slt	1	ØX	X	øχ	1	0	1	0	0(1)1 1	

5. Control Design: Outputs

	PogDat	ALUSrc	MemTo	Reg	Mem	Mem	Branch	ALUop	
	RegDst	ALUSIC	Reg	Write	Read	Write		op1	op0
R-type	1	0	0	1	0	0	0	1	0
lw	0	1	1	1	1	0	0	0	0
SW	X	1	X	0	0	1	0	0	0
beq	X	0	X	0	0	0	1	0	1

5. Control Design: Inputs

	Opcode (Op[5:0] == Inst[31:26])									
	Op5	Op5 Op4 Op3 Op2 Op1 Op0 Value in Hexadecimal								
R-type	0	0	0	0	0	0	0			
lw	1	0	0	0	1	1	23			
sw	1	0	1	0	1	1	2B			
beq	0	0	0	1	0	0	4			

 With the input (opcode) and output (control signals), let's design the circuit

5. Combinational Circuit Implementation

5. Combinational Circuit Implementation

