21. Сопряженное отображение. Свойства сопряженного отображения. Единственность сопряженного отображения.

Сопряженное отображение Пусть L_1 и L_2 - пространства со скалярным произведением. Пусть $f: L_1 \mapsto L_2$ - некоторая функция. Говорят, что Функция $g: L_2 \mapsto L_1$ сопряжена с функцией f, если для любой пары векторов x и y имеет место (f(x),y)=(x,g(y)). Сопряжённую к f функцию принято обозначать f^* .

Теорема о единственности сопряжённой функции

Если для функции f существует сопряжённая функция g, то g - единственна.

Доказательство

От противного. Пусть сопряжённых функций две: g_1 и g_2 . Тогда

$$\forall x,y: (f(x),y)=(x,g_1(y)),\ (f(x),y)=(x,g_2(y)).$$
 Тогда $(x,g_1(y))=(x,g_2(y))\implies (x,g_1(y))-(x,g_2(y))=0.$ Тогда $(x,g_1(y)-g_2(y))=0.$ Но так как это выполняется для всех x , то значения g_1 и g_2 совпадают на всей области определения.

Теорема о линейности сопряжённой функции

Если у функции f существует сопряжённая g, то g - линейная

Доказательство

 $\forall x,y: (f(x),y)=(x,g(y)).$ Проверяем свойства линейности:

- 1. $\forall y_1,y_2\in L_2$ покажем, что $g(y_1+y_2)=g(y_1)+g(y_2)$. $f\forall x\in L_1(f(x),y_1+y_2)=(x,g(y_1+y_2))$. Тогда $(f(x),y_1+y_2)=(f(x),y_1+y_2)=(f(x),y_1)+(f(x),y_2)=(x,g(y_1))+(x,g(y_2))$. Поскольку это имеет место для любого x, то $g(y_1+y_2)=g(y_1)+g(y_2)$
- 2. Расин сказал проверить самостоятельно. Я услышал: "киньте в меня пулл реквестом".

Теорема: свойства сопряжения

Пусть f,g,h - линейные операторы из конечномерного пространства L_1 в L_2 , и lpha - скаляр. Тогда

- I. $(f+g)^st=f^st+g^st$
- 2. $(\alpha f)^* = \overline{\alpha} f^*$
- 3. $(fh)^* = h^*f^*$

Доказательство

3)
$$(fh(x),y)=(h(x),f^*(y))=(x,h^*f^*(y))$$