CIRCUITOS OSCILANTES ACOPLADOS

PROCEDIMENTO

Em relação às ações abaixo descritas, e tendo como referência as imagens acima, os circuitos da esquerda e da direita serão denominados circuito primáro e secundário, respectivamente.

- 1. <u>Determinação do fator Q do circuito oscilante</u>. Faça uso do circuito primário.
- 1a. Registre os valores da resistência R_i e capacitância C_i internas do osciloscópio.
- 1b. Registre os valores nominais da resistência R, da capacitância C e da indutância L do circuito oscilante e, adicionalmente, da resistência R_S . Também meça tais grandezas.
- 1c. Tendo como referência o roteiro do fabricante, você procederá de forma a registrar as dependências das voltagens U_{R_S} (no resistor R_S) e ε (nos extremos da associação RLC) com a frequência v do sinal fornecido pela fonte. Observe que no arranjo do circuito (mostrado nas imagens acima) está se propondo o registro direto da voltagem de saída da fonte, então você deve fazer uso do recurso MATH do osciloscópio para registrar ε indiretamente. Para tanto, consulte o manual de instrução do osciloscópio (TEKTRONIX TDS1000B and TDS2000B series digital storage oscilloscopes).
- 2. <u>Determinação dependência da largura de banda de circuitos acoplados com o espaçamento.</u> Nesta parte do experimento os circuitos primário e secundário estarão separados espacialmente por uma distância predeterminada. Você investigará como o circuito secundário será influenciado pelo circuito primário, este diretamente alimentado por um sinal harmônico
- 2a. Registre os valores nominais da resistência *R*, da capacitância *C* e da indutância *L* de cada circuito oscilante. Também meça tais grandezas.
- 2a. Realize o arranjo experimental conforme mostrado nas imagens.
- 2b. Para um espaçamento s (entre os circuitos) preestabelecido, registre as dependências das voltagens U_{R_S} (no resistor R_S) e ε_2 (nos extremos da associação RLC do circuito secundário) com a frequência v do sinal fornecido pela fonte.

CIRCUITOS OSCILANTES ACOPLADOS Orientação para o relatório.

As tarefas abaixo listadas deverão necessariamente fazer parte do relatório.

1. Determinação do fator Q do circuito oscilante em paralelo. O circuito oscilante consiste de uma associação em paralelo de um resistor (de resistência R), um indutor (de indutância L) e um capacitor (de capacitância C). Em série com esta associação coloca-se um resistor de resistência R_s . Registre os valores da resistência R_i e capacitância C_i internas do osciloscópio. Registre os valores nominais (1 M Ω , 22 k Ω , 1 nF, 75 μ H ou 150 μ H ou 350 μ H) e medidos de R_s e R_i , de C_i de R_i com a frequência R_i quando o mesmo é percorrido por uma corrente R_i de frequência R_i corrente R_i pode ser medida indiretamente através da diferença de potencial R_i em R_i . Trace a curva experimental $\left|\frac{\varepsilon}{R_i}\right|$ versus frequência reduzida "reduzida" R_i vo. Teoricamente, pode-se facilmente mostrar que trata-se de uma curva de ressonância, descrita por

$$\left|\frac{\varepsilon}{I}\right| = \left|\frac{\varepsilon}{U_{R_{S}}}R_{S}\right| = \frac{R}{\sqrt{1 + \left(2\pi \, v\tau_{C} - \frac{1}{2\pi \, v\tau_{L}}\right)^{2}}} = \frac{R}{\sqrt{1 + \left(\eta 2\pi \, v_{0}\tau_{C} - \frac{1}{\eta} \frac{1}{2\pi \, v_{0}\tau_{L}}\right)^{2}}}$$
ou
$$\left|\frac{\varepsilon}{I}\right| = \frac{R_{S}}{I} = \frac{1}{I}$$

$$\left| \frac{\varepsilon}{U_{R_{S}}} \frac{R_{S}}{R} \right| = \frac{1}{\sqrt{1 + \left(\eta 2\pi \nu_{0} \tau_{C} - \frac{1}{\eta} \frac{1}{2\pi \nu_{0} \tau_{L}} \right)^{2}}},$$

onde $\tau_C=RC$, e $\tau_L=L/R$ são constantes de tempo capacitiva e indutiva e $\eta=\nu/\nu_0$. Note que $(2\pi\,\nu_0\tau_C)(\,2\pi\,\nu_0\tau_L)=1$. Temos, então

$$\left| \frac{\varepsilon}{U_{R_{S}}} \frac{R_{S}}{R} \right| = \frac{1}{\sqrt{1 + \left(2\pi \, v_{0} \tau_{C}\right)^{2} \left(\eta - \frac{1}{\eta}\right)^{2}}} = \frac{1}{\sqrt{1 + Q^{2} \left(\eta - \frac{1}{\eta}\right)^{2}}}.$$

Faz sentido propor-se um ajuste na forma

$$\left| \frac{\varepsilon}{U_{R_{S}}} \frac{R_{S}}{R} \right| = \frac{P_{1}}{\sqrt{1 + P_{2}^{2} \left(\frac{\eta}{P_{3}} - \frac{P_{3}}{\eta}\right)^{2}}}$$

Efetue um tal ajuste e obtenha os parâmetros P_1 , P_2 e P_3 . Calcule o valor teórico de Q, usando os valores medidos de R, L, e C (veja o texto "circuitos oscilantes acoplados-teoria"). A partir do valor obtido para P_1 calcule um correspondente valor de ajuste para R (Sugestão: um valor para P_1 superior à unidade nos traria um valor correspondentemente menor que o valor medido de R. Porquê?). Obtenha valores de ajuste para R das seguintes formas (i) a partir dos valores medidos de R e do valor de ajuste de R e (ii) do valor medido de R e dos valores de ajuste de R e R e dos valores de R e R e dos valores de ajuste de R e R e dos valores de R e R e dos valores de R e R e R e dos valores de R e R e dos valores de R e R e dos valores de R e R e R e dos valores de R e R

2. Determinação das curvas de ressonância para diversos espaçamentos entre bobinas. Registre os valores nominais e medidos da resistência R, da capacitância C e da indutância L de cada circuito oscilante. Registre a dependência de $\left|\frac{\varepsilon_2/R_2}{I_1}\right| \left(=\left|\frac{\varepsilon_2}{U_{R_S}}\frac{R_S}{R_2}\right|\right)$ versus V (onde $|\varepsilon_2|$ é o valor eficaz da diferença de potencial induzida no circuito secundário por uma corrente no primário de valor eficaz |L| e frequência V) para cada

induzida no circuito secundário por uma corrente no primário de valor eficaz $|I_1|$ e frequência v) para cada espaçamento s selecionado (faça s variar no intervalo de 1 cm a 10 cm, de 1 cm em 1 cm). A curva deve ser registrada com suficiente detalhe nas regiões dos pontos críticos. A corrente I_1 será medida indiretamente através da diferença de potencial U_{R_S} em R_S ($U_{R_S} = I_1 R_S$).

- 3. Construa, para cada espaçamento s, um gráfico que mostre a dependência de $\left| \frac{\varepsilon_2}{U_{R_S}} \frac{R_S}{R_2} \right|$ com a frequência reduzida v / v_0 .
- 4. Pode-se mostrar que a dependência entre as grandezas ε_2 e I_1 para circuitos oscilantes com primário e secundário com parâmetros R, L e C idênticos, e indutância mútua M, é dada por (notação complexa)

$$\frac{\varepsilon_2}{I_1} = \frac{R}{2} \left\{ \frac{1}{1 + i \left[\omega \tau_{\text{C}} - \frac{1}{\omega \tau_{\text{L}} (1 + k)} \right]} - \frac{1}{1 + i \left[\omega \tau_{\text{C}} - \frac{1}{\omega \tau_{\text{L}} (1 - k)} \right]} \right\}$$
(1),

onde $\tau_C = RC$ e $\tau_L = \frac{L}{R}$ são as constantes de tempo capacitiva e indutiva, respectivamente, e $k = \frac{M}{L}$ (inferior à unidade) é a constante de acoplamento. A amplitude ε_2 é a superposição de dois números complexos cujos módulos atingem um valor máximo igual a $\frac{RI_1}{2}$ quando a frequência angular ω assume, respectivamente, os valores

$$\omega^2 = \omega_{(-)}^2 = \frac{1}{\tau_C \tau_L(1+k)} = \frac{1}{LC(1+k)} \quad \text{e} \quad \omega^2 = \omega_{(+)}^2 = \frac{1}{\tau_C \tau_L(1-k)} = \frac{1}{LC(1-k)}.$$

A diferença $\Delta\omega_2=\omega_{(+)}-\omega_{(-)}$ pode ser interpretada como uma medida da banda de passagem do circuito secundário (acoplado ao primário). Obtém-se $\Delta\omega_2=\frac{1}{2\pi\sqrt{LC}}\Big(\frac{1}{\sqrt{1-k}}-\frac{1}{\sqrt{1+k}}\Big)$, ou, em termos da freqüência ordinária (em Hz),

$$\Delta v_2 = \frac{1}{2\pi\sqrt{LC}} \left(\frac{1}{\sqrt{1-k}} - \frac{1}{\sqrt{1+k}} \right) \quad (2).$$

Note, tendo em mente $\tau_C \tau_L = LC$, e definindo $Q = \omega_0 \tau_C$, que a equação (1) pode ser rescrita na forma

$$\frac{\varepsilon_2}{I_1} = \frac{R}{2} \left\{ \frac{1}{1 + iQ\left[\left(\frac{\omega}{\omega_0}\right) - \frac{1}{\left(\frac{\omega}{\omega_0}\right)(1+k)}\right]} - \frac{1}{1 + iQ\left[\left(\frac{\omega}{\omega_0}\right) - \frac{1}{\left(\frac{\omega}{\omega_0}\right)(1-k)}\right]} \right\}.$$

Lembre-se de que Q é o fator de qualidade do circuito RLC em paralelo.

Para os acoplamentos investigados no laboratório os parâmetros resistivo, indutivo e capacitivo não são exatamente iguais no circuito primário e secundário. Propomos, então uma dependência aproximada na forma (notação complexa)

$$\frac{\varepsilon_2}{I_1} = \frac{1}{2} \left\{ \frac{R_1}{1 + iQ_1 \left[\left(\frac{\omega}{\omega_{01}} \right) - \frac{1}{\left(\frac{\omega}{\omega_{01}} \right) (1+k)} \right]} - \frac{R_2}{1 + iQ_2 \left[\left(\frac{\omega}{\omega_{02}} \right) - \frac{1}{\left(\frac{\omega}{\omega_{02}} \right) (1-k)} \right]} \right\}.$$

onde $\omega_{01} = \frac{1}{\sqrt{L_1C_1}}$, $\omega_{02} = \frac{1}{\sqrt{L_2C_2}}$, $Q_1 = \omega_{01}\tau_{1C}$, $Q_2 = \omega_{02}\tau_{2C}$, tendo definido $\tau_{1C} = R_1C_1$, $\tau_{2C} = R_2C_2$, $\tau_{1L} = \frac{L_1}{R_1}$ e $\tau_{2L} = \frac{L_2}{R_2}$.

Adotamos a aproximação, para o quociente entre os valores eficazes de ϵ_2 e I_1 :

$$\left|\frac{\varepsilon_{2}}{I_{1}}\right| = \left|\frac{\varepsilon_{2}}{U_{R_{S}}}R_{S}\right| = \frac{1}{2} \left\{ \frac{R_{1}}{\sqrt{1 + Q_{1}^{2} \left[\eta_{1} - \frac{1}{\eta_{1}} \frac{1}{(1+k)}\right]^{2}}} + \frac{R_{2}}{\sqrt{1 + Q_{2}^{2} \left[\eta_{2} - \frac{1}{\eta_{2}} \frac{1}{(1-k)}\right]^{2}}} \right\}$$

ou

$$\left|\frac{\varepsilon_2/R_2}{I_1}\right| = \left|\frac{\varepsilon_2}{U_{R_S}} \frac{R_S}{R_2}\right| = \frac{1}{2} \left\{ \frac{\frac{R_1}{R_2}}{\sqrt{1 + Q_1^2 \left[\eta_1 - \frac{1}{\eta_1} \frac{1}{(1+k)}\right]^2}} + \frac{1}{\sqrt{1 + Q_2^2 \left[\eta_2 - \frac{1}{\eta_2} \frac{1}{(1-k)}\right]^2}} \right\}.$$

Para obter um ajuste menos complexo, vamos simplificar a expressão acima <mark>admitindo uma igualdade entre as frequências de ressonância e entre os fatores de qualidade para os dois circuitos</mark>

 $(\omega_{01} = \omega_{02} = \omega_0 \text{ e } Q_1 = Q_2 = Q)$. Esta aproximação é bastante aceitável tendo em mente os valores obtidos nas medições de R_1 , R_2 , C_1 , C_2 , L_1 e L_2 .

Neste caso teriamos

$$\left| \frac{\varepsilon_2}{U_{R_S}} \frac{R_S}{R_2} \right| = \frac{1}{2} \left\{ \frac{\alpha_1}{\sqrt{1 + Q^2 \left[\eta - \frac{1}{\eta} \frac{1}{(1+k)} \right]^2}} + \frac{\alpha_2}{\sqrt{1 + Q^2 \left[\eta - \frac{1}{\eta} \frac{1}{(1-k)} \right]^2}} \right\}.$$

Vamos fornecer à última expressão um apresentação um pouco mais geral, colocando-a na forma

$$\left| \frac{\varepsilon_2}{U_{R_S}} \frac{R_S}{R_2} \right| = \frac{1}{2} \left\{ \frac{\alpha_1}{\sqrt{1 + Q^2 \left[\frac{\eta}{\beta} - \frac{\beta}{\eta} \frac{1}{(1+k)} \right]^2}} + \frac{\alpha_2}{\sqrt{1 + Q^2 \left[\frac{\eta}{\beta} - \frac{\beta}{\eta} \frac{1}{(1-k)} \right]^2}} \right\}.$$

Você deverá fazer uso desta última expressão para realizar o ajuste da dependência de $\begin{bmatrix} \frac{\varepsilon_2}{U_{Ro}} & \frac{R_S}{R_2} \\ U_{Ro} & R_2 \end{bmatrix}$ com η ,

$$\frac{\varepsilon_2}{U_{R_S}} \frac{R_S}{R_2}$$
 com η

onde as grandezas α_1 , α_2 , β , Q e k deverão ser adotados como parâmetros de ajuste.

Que valores iniciais para tais parâmetros você propõe? Tendo obtido o parâmetro de ajuste k, você poderá calcular a largura de banda Δv_2 por intermédio da relação (2). Para tanto, você poderá adotar para \bar{C} e L os valores médios das medidas correspondentes.

- 5. Determinação dependência do coeficiente de acoplamento com o espaçamento entre bobinas. Construa um gráfico k versus s.
- 6. Determinação dependência da largura de banda com o espaçamento entre bobinas. Construa um gráfico Δv_2 versus s.

FOLHA DE DADOS E RESULTADOS

Experimento: Circuitos Oscilantes Acoplados

Parte A - Determinação do fator ${\it Q}$ do circuito oscilante em paralelo

IMPEDÂNCIA DE ENTRADA DO OSCILOSCÓPIO

	Valor Nominal
R _i (MΩ)	
C _i (pF)	

ELEMENTOS DE CIRCUITO

	Valor Nominal	Medida	Valor de Ajuste
$R_{\rm S}$ (M Ω)			
$R(k\Omega)$			
C (nF)			
L (µH)			(i)
			(ii)

FREQUÊNCIA DE RESSONÂNCIA

$$v_0 = \frac{1}{2\pi\sqrt{LC}} = \left(\underline{}\right) kHz$$

DADOS PARA A CURVA DE RESSONÂNCIA PARA CIRCUIRO RLC PARALELO

ν (kHz)	$U_{R_{S}}$ (mV)	ε (mV)	$\eta = \nu / \nu_0$	$\frac{\varepsilon}{U_{R_{\rm S}}} \frac{R_{\rm S}}{R}$

PARÂMETROS DE AJUSTE DA CURVA DE RESSONÂNCIA

$$\left| \frac{\varepsilon}{U_{R_{S}}} \frac{R_{S}}{R} \right| = \frac{P_{1}}{\sqrt{1 + P_{2}^{2} \left(\frac{\eta}{P_{3}} - \frac{P_{3}}{\eta} \right)^{2}}}$$

	teoria	experimento (ajuste)
P_1	1	
P_2		
P_3	1	

Parte B - Determinação das curvas de ressonância para diversos espaçamentos entre bobinas

ELEMENTOS DE CIRCUITO

	Valor Nominal	Medida
$R_{\rm S}\left({ m M}\Omega ight)$		
R_1 (k Ω)		
R_2 (k Ω)		
C_1 (nF)		
C ₂ (nF)		
L_1 (μ H)		
L ₂ (μH)		

DADOS PARA A CURVA DE RESSONÂNCIA PARA CIRCUITOS ACOPLADOS para espaçamento $s = \underline{\hspace{1cm}} mm$

ν (kHz)	$U_{R_{\mathbf{S}}}(\mathbf{mV})$	$\varepsilon_2 (\text{mV})$	$\eta = v/v_0$	$\frac{\varepsilon_2}{U_{R_{\rm S}}} \frac{R_{\rm S}}{R_2}$

PARÂMETROS DE AJUSTE DA CURVA DE RESSONÂNCIA para espaçamento $s = \underline{\hspace{1cm}} mm$

$$\left| \frac{\varepsilon_2}{U_{R_S}} \frac{R_S}{R_2} \right| = \frac{1}{2} \left\{ \frac{\alpha_1}{\sqrt{1 + Q^2 \left[\frac{\eta}{\beta} - \frac{\beta}{\eta} \frac{1}{(1+k)} \right]^2}} + \frac{\alpha_2}{\sqrt{1 + Q^2 \left[\frac{\eta}{\beta} - \frac{\beta}{\eta} \frac{1}{(1-k)} \right]^2}} \right\}$$

$$\alpha_1 \ = \ \underline{\hspace{1cm}} \pm \underline{\hspace{1cm}}$$

$$\alpha_2 = \underline{\qquad} \pm \underline{\qquad}$$

$$\beta = \underline{\qquad} \pm \underline{\qquad}$$

$$k = \underline{\qquad} \pm \underline{\qquad}$$

DEPENDÊNCIA DO FATOR DE ACOPLAMENTO COM O ESPAÇAMENTO ENTRE BOBINAS

s (cm)	k

DEPENDÊNCIA DA LARGURA DE BANDA COM O ESPAÇAMENTO ENTRE BOBINAS

s (mm)	$\frac{\Delta v_2}{v_0}$