Dioda PIN

Diody PIN są używane jako elementy o zmiennej impedancji w układach elektronicznych bardzo wielkich częstotliwości. Posiadają małą rezystancję w kierunku przewodzenia i małą pojemność w kierunku zaporowym.

Przy polaryzacji w kierunku przewodzenia do obszaru samoistnego są wstrzykiwane nośniki większościowe z obszaru P oraz N. W obszarze typu I tworzy się plazma o bardzo dużym przewodnictwie. Przewodność diody gwałtownie wzrasta.

Przy polaryzacji w kierunku zaporowym warstwa zaporowa zajmuje cały obszar półprzewodnika samoistnego. Pojemność złączowa jest ustalona i zależy od dość szerokiej warstwy zaporowej.

- □ Diody PIN odznaczają się niskim tłumieniem gdy są załączone, a wysokim tłumieniem kiedy nie przewodzą.
- ☐ Charakterystyczna dla tej diody jest bezwładność przy przełączaniu. Oznacza to, że dioda nie nadąża ze swoją charakterystyką za zmianami sygnałów wejściowych.
- ☐ W zasadzie dioda ta funkcjonuje jak rezystor dla wysokich częstotliwości. Bezwładność, czas powrotu do napięcia zaporowego, zależy od czasu życia nośników mniejszościowych.
- Diody PIN dla zakresu mikrofal, mogą mieć τ równe kilka ns, ale istnieją również diody, które można stosować aż do kilku MHz z czasem życia τ równym ms. Dolna granica częstotliwości = $1/2\pi$ τ . Poniżej tej granicy dioda funkcjonuje jak zwykłe złącze P-N.

Dioda Read'a - lawinowo - przelotowa.

Przy polaryzacji zaporowej złącza (n+ - p) warstwa zaporowa rozszerza się zajmując obszar typu "p".
Pole elektryczne w tym obszarze o wartości $E \geq E_k$ powoduje jonizację lawinową. Powstają pary elektron - dziura. [Dodatnia połówka napięcia sinusoidalnego].
Elektrony, jako nośniki mniejszościowe, unoszone są do obszaru n ⁺ . Gromadzi się ładunek dziur. (Przez diodę przepływa bardzo mały prąd).
Jeżeli wartość natężenia pola elektrycznego $E < E_k$ dziury przemieszczają się przez obszar półprzewodnika samoistnego w stronę anody. [Ujemna połówka napięcia sinusoidalnego]. Przez strukturę przepływa prąd.
Między prądem i napięciem występuje przesunięcie fazowe. – Zjawisko ujemnej rezystancji dynamicznej.

Dioda Gunna – Dioda TE (Transferred Electron)

Zjawisko Gunna polega na wytwarzaniu oscylacji prądu w półprzewodniku polaryzowanym stałym napięciem.

Zasada działania – zmniejszenie się ruchliwości elektronów (spadek konduktancji diody) w obecności silnego pola elektrycznego – oscylacje prądu – w półprzewodnikach, w których są możliwe elektronowe przejścia energetyczne przy dużym natężeniu pola elektrycznego (InP, GaAs).

Energetyczny model pasmowy arsenku galu GaAs

Przenoszenie elektronów z doliny centralnej do satelitarnej

W strukturze pasmowej występuje dolina centralna i satelitarna.
Dla GaAs dno doliny satelitarnej ma energie o 0.36 eV większą od dna doliny centralnej.
Elektrony w dolinie satelitarnej maja inną wartość wektora falowego niż w dolinie centralnej oraz inną wartości masy efektywnej (20-razy cięższe, znacznie mniej ruchliwe).
Dla małych wartości pola elektrycznego dolina satelitarna jest pusta.
Od pewnej wartości krytycznej E_K pola elektrycznego elektrony przemieszczają się z doliny centralnej do satelitarnej.

Powstawanie domeny

Prędkość unoszenia elektronów w funkcji natężenia pola elektrycznego

eżenie pola $E \ge E_k$ uzyskuje się w ob	szarze niejednorodności w krysztale.	
iodzie Gunna obszar niejednorodnoś	ci wytworzony jest przy katodzie.	
ytworzeniu natężenia pola większeg	go od E _k przy katodzie tworzy się dor	nena.
	3 6	mają
omenie gromadzą się elektrony o mr	niejszej ruchliwości.	
bszarze przed domeną przewodność	półprzewodnika jest mniejsza niż za	nią.
i (1)	odzie Gunna obszar niejednorodnoś ytworzeniu natężenia pola większeg rony z doliny centralnej są przeneszą masę efektywną i mniejszą ruch omenie gromadzą się elektrony o mr	żenie pola $E \ge E_k$ uzyskuje się w obszarze niejednorodności w krysztale. odzie Gunna obszar niejednorodności wytworzony jest przy katodzie. ytworzeniu natężenia pola większego od E_k przy katodzie tworzy się dorony z doliny centralnej są przenoszone do doliny satelitarnej gdzie szą masę efektywną i mniejszą ruchliwość. omenie gromadzą się elektrony o mniejszej ruchliwości. oszarze przed domeną przewodność półprzewodnika jest mniejsza niż za

Po dojściu domeny do anody A przewodność półprzewodnika wzrasta i pojawia się prąd. W obszarze niejednorodności w krysztale przy katodzie K, natężenie pola uzyskuje wartość $E \ge E_k$ co powoduje tworzenie się nowej domeny.

Impulsy prądowe w diodzie Gunna.

Odstęp między impulsami jest proporcjonalny do odległości między katodą i anodą i odwrotnie proporcjonalny do średniej prędkości przemieszczania się domeny.