Bass 数

戚天成

2023年4月23日

这是我 2023.4.24 讨论班上为大家简要介绍交换代数中 Bass 数的讲稿, 主干内容由以下三部分构成:

- (1) 交换 Noether 环 R 的素谱与其上不可分内射模同构类的对应关系, 即 Matlis 定理 (见 [定理1.4]).
- (2) 交换 Noether 环 R 上的内射模 M 可分解为一些不可分内射模的直和 $M = \bigoplus_{i \in \Lambda} M_i$,根据 Matlis 定理,每个不可分内射模 M_i 同构于某个素理想 P 对应的 (R/P) 的,内射包 E(R/P). 事实上,对固定的素理想 P,与 E(R/P) 同构的那些直和项 M_i "项数" 是由 M_i "项数" 是由 M_i "项数" 是由 M_i "项数" 是

 $\dim_{R_P/P_P} \operatorname{Hom}_{R_P}(R_P/P_P, M_P).$

(3) 交换 Noether R 上有限生成模 M 关于素理想 $P \in \operatorname{Spec} R$ 的 Bass 数的概念 (见 [定义1.11]) 以及它和 M 极小内射分解的联系 (见 [命题1.12]).

目录

1	Bas	${f s}$ 数介绍	1
	1.1	内射包方面的准备	1
	1.2	Matlis 定理	2
	1.3	Noether 环上的内射模	3
	1.4	Bass 数和极小内射分解	1

1 Bass 数介绍

1.1 内射包方面的准备

本节先说明交换 Noether 环上的模取内射包和作局部化可交换, 这是后续讨论所需基本工具.

Lemma 1.1. 设 R 是交换 Noether 环, S 是乘闭子集, Q 是内射 R-模, 则 Q_S 是 R_S -内射模.

Proof. 由 Q 是内射模可知对任何模 N 有 $\operatorname{Ext}^i_R(N,Q)=0, \forall i\geq 1, N\in \operatorname{ob}R\operatorname{-Mod.}$ 对任何理想 I, 取 N=R/I 并将 Ext 模关于 S 作局部化可知 $\operatorname{Ext}^i_{R_S}(R_S/I_S,Q_S)=0, \forall i\geq 1$. 因为 R_S 的理想总具备 I_S 的形式, 所以利用 $\operatorname{Ext}^1_{R_S}(R_S/I_S,Q_S)=0$ 以及 Baer 判别法即得 Q_S 的内射性.

Remark 1.2. 当 Noether 条件去掉结论一般不再成立, 反例见 Everett C Dade, Localization of injective modules, Journal of Algebra, Volume 69, Issue 2, 1981(416-425).

根据上述引理我们可以得到:

Proposition 1.3. 设 R 是交换 Noether 环, S 是乘闭子集, R-模 M 有内射包 $E_R(M)$, 则作为 R_S -模有同构 $(E_R(M))_S \cong E_{R_S}(M_S)$. 即取内射包和作局部化可交换.

Proof. 设 $0 \longrightarrow M \xrightarrow{i} E_R(M)$ 是本质单同态,只需说明 $0 \longrightarrow M_S \xrightarrow{i_S} (E_R(M))_S$ 也是本质单同态即可. 任取非零元 $x/s \in (E_R(M))_S$,我们需要说明 $R_S x/s \cap i_S(M_S) \neq 0$. 易见只要验证 s=1 的情形就足够了,作理想集 $T = \{ann_R(tx) | t \in S\}$,那么由 R 是 Noether 环知 T 中有极大元 $ann_R(tx)$,易见 $tx \neq 0$.

Claim. $R_S(tx/1) \cap i_S(M_S) \neq 0$. 于是 $(E_R(M))_S \supseteq i_S(M_S)$ 是本质扩张. 假设 $R_S(tx/1) \cap i_S(M_S) = 0$. 因为 $Rtx \cap i(M) = Itx \neq 0$, I 是 R 的理想, 并设 $a_1, ..., a_n \in I$ 使得 $I = (a_1, ..., a_n)$, 所以每个 $a_itx/1 = 0$, 进 而存在 $u \in S$ 使得 $uta_ix = 0$, $\forall 1 \leq i \leq n$. 由此我们看到 $I \subseteq \operatorname{ann}_R(uxt) = \operatorname{ann}_R(tx)$ (这里使用了 $\operatorname{ann}_R(tx)$) 的 极大性), 于是 Itx = 0, 得到矛盾. 故 $R_S(tx/1) \cap i_S(M_S) \neq 0$, 断言得证.

1.2 Matlis 定理

本节介绍一个由 Eben Matlis(美国 1923-2015, Kaplansky 学生) 给出的一个交换代数中的著名定理:

Theorem 1.4 (Matlis,1958). 设 R 是交换 Noether 环, $\mathcal{I}(R)$ 是不可分内射模同构类全体, 那么

$$\alpha: \operatorname{Spec} R \to \mathcal{I}(R), P \mapsto [E(R/P)]$$

是定义合理的双射. 即交换 Noether 环上不可分内射模同构类全体与素谱有一一对应, 特别地, $\mathcal{I}(R)$ 是集合 (严格来说这种表述是错误的, 原因是每个不可分内射模同构类是真类, 它不可能是某个集合的元素, 但我们可以先从每个不可分内射模等价类中选取一个代表元, 将全体代表元构成的类记作 $\mathcal{I}(R)$ 来修正这一点). 并且 R 上任何不可分内射模总同构于某个 R/P 的内射包, 这里 $P \in \operatorname{Spec} R$.

在证明该定理前做一些准备.

Lemma 1.5. 设 R 是交换 Noether 环, 那么

- (1) 任何素理想 P 满足 E(R/P) 是不可分内射模.
- (2) 任给内射 R-模 $I \neq 0$, 对 $P \in AssI$, 有 E(R/P) 同构于 I 的某个直和因子. 特别地, 当 I 是不可分内射模时, $E(R/P) \cong I$.
- (3) 对任何有限生成 R-模 M, 有 AssM = AssE(M). 特别地, 当 M = R/P, $P \in SpecR$ 时, 有

$$AssE(R/P) = AssR/P = \{P\}.$$

Proof. (1) 假设 E(R/P) 可分, 那么有非零子模 N_1, N_2 的交是零, 则 $N_1 \cap R/P$ 与 $N_2 \cap R/P$ 作为 R/P 的非零子模交是零, 但 R/P 是整环表明它任何两个非零子模 (理想) 之交非零, 得到矛盾.

(2) 由条件知有形如 $0 \longrightarrow R/P \stackrel{j}{\longrightarrow} I$ 的正合列, 那么存在使得下图交换的单模同态 k.

$$E_R(R/P)$$

$$\downarrow \uparrow \qquad \downarrow k$$

$$0 \longrightarrow R/P \stackrel{j}{\longrightarrow} I$$

于是由 E(R/P) 是内射模我们马上得到 E(R/P) 同构于 I 的某个直和因子.

(3) 只要说明 $\operatorname{Ass}E_R(M) \subseteq \operatorname{Ass}M$,任取 $Q \in \operatorname{Ass}E_R(M)$,有形如 $0 \longrightarrow R/Q \stackrel{\jmath}{\longrightarrow} E_R(M)$ 的短正 合列,所以 $j(R/Q) \cap M \neq 0$,结合 $\operatorname{Ass}(R/Q) = \{Q\}$ 可知 $\operatorname{Ass}(j(R/Q) \cap M) = \{Q\}$. 从而 $Q \in \operatorname{Ass}M$.

现在我们可以给出 Matlis 定理的证明, 即说明 α : Spec $R \to \mathcal{I}(R), P \mapsto [E(R/P)]$ 是定义合理的双射. 根据 [引理1.5(1)] 得到 α 定义合理, 根据 [引理1.5(3)] 得到 α 是单射, [引理1.5(2)] 表明 α 是满射, 得证.

1.3 Noether 环上的内射模

本节先介绍 Noether 环上的内射模可分解为一些不可分内射模的直和, 再说明对交换情形时, 内射模 M 的不可分分解 $M = \bigoplus_{i \in \Lambda} M_i$ 中与 E(R/P) 同构的 M_i 数目是由 M,P 决定的不变量 (见 [定理1.9]).

Lemma 1.6. 设 R 是左 Noether 环, 那么任何内射左 R-模 M 是一些不可分内射模的直和.

Proof. 注意任何非零内射模 $_RE$ 必定存在不可分内射子模, 因为取 $_X \neq 0 \in E$, 考虑内射包 $E(Rx) \subseteq E$, 我们用反证法说明 E(Rx) 含有不可分内射子模. 若不然, 则存在非零真内射子模 I_{11} , I_{12} 使得 $E(Rx) = I_{11} \oplus I_{12}$, I_{11} 不是不可分内射子模表明存在 I_{11} 的非零真内射子模 I_{21} , I_{22} 使得 $I_{11} = I_{21} \oplus I_{22}$, 如此继续, 递归地可得到非零内射子模序列 $\{I_{k1}\}_{k>1}$ 以及 $\{I_{k2}\}_{k>1}$ 使得 $I_{1} = I_{11} \oplus I_{12}$, $I_{k1} = I_{k+1,1} \oplus I_{k+1,2}$, $\forall k \geq 1$. 易见

$$I_1 = I_{12} \oplus I_{22} \oplus \cdots \oplus I_{n2} \oplus I_{n1}, \forall n \geq 1.$$

所以我们有 E(Rx) 的子模严格升链 $I_{12} \subseteq I_{12} \oplus I_{22} \subseteq I_{12} \oplus I_{32} \subseteq \cdots$, 它诱导 Rx 的子模严格升链

$$I_{12} \cap Rx \subsetneq (I_{12} \oplus I_{22}) \cap Rx \subseteq (I_{12} \oplus I_{22} \oplus I_{32}) \cap Rx \subsetneq \cdots$$

这与 Rx 是 Noether 模矛盾. 因而 E(Rx) 有不可分內射子模, 这也说明 E 有不可分內射子模. 现在我们说明 內射模 M 是一些不可分內射模的直和. 不妨设 $M \neq 0$, 考虑集合

$$S = \{\{M_i\}_{i \in \Lambda} | \{M_i\}_{i \in \Lambda}$$
是 M 的不可分内射子模族且 $\sum_{i \in \Lambda} M_i = \bigoplus_{i \in \Lambda} M_i \}$

那么根据前面的讨论知道 (S,\subseteq) 是非空偏序集,可直接验证它任何全序子集有上界,所以应用 Zorn 引理知 S 有极大元 $\{M_i\}_{i\in\Lambda}$. 依 Bass-Papp 定理,左 Noether 环上任何一族内射左模的直和仍内射,所以 $\oplus_{i\in\Lambda}M_i$ 是 M 的直和因子,设为 $M=E\oplus(\oplus_{i\in\Lambda}M_i)$,假设 $E\neq 0$,则由前面的讨论知道 E 有不可分内射子模,这会与子模族 $\{M_i\}_{i\in\Lambda}$ 的极大性矛盾,所以 E=0,从而 $M=\oplus_{i\in\Lambda}M_i$.

Lemma 1.7. 设 R 是交换 Noether 环, P 是素理想, M 是有限生成 R-模, 那么有 R_P/P_P -线性同构

$$R_P/P_P \cong \operatorname{Hom}_{R_P}(R_P/P_P, (E(R/P))_P).$$

Proof. 因为 R_P -模同构 $E_{R_P}(R_P/P_P)\cong (E(R/P))_P$,所以只要证 $R_P/P_P\cong \operatorname{Hom}_{R_P}(R_P/P_P,E_{R_P}(R_P/P_P))$. 为此,用 R 替换 R_P ,m 替换 P_P 并记 k=R/m,只要证 R 是局部环的情形就够了. 下证 k-线性同构 $k\cong \operatorname{Hom}_R(k,E_R(k))$. 注意到 k-线性同构

$$\eta: \{x \in E_R(k) | mx = 0\} \to \operatorname{Hom}_R(k, E_R(k))$$
$$x \mapsto x_r : k \to E_R(k), c \mapsto cx$$

如果能说明 $\{x \in E_R(k)|mx = 0\} = k$,便得到结果. 易见 $k \subseteq \{x \in E_R(k)|mx = 0\}$,假设 $k \subsetneq \{x \in E_R(k)|mx = 0\}$,那么线性空间 $\{x \in E_R(k)|mx = 0\}$ 有非零子空间 W 和 k 交为零,将 W 视作非零 R-子模,那么这和 $E_R(k)$ 任何非零子模与 k 相交非零矛盾. 故 $k = \{x \in E_R(k)|mx = 0\}$,证毕.

Remark 1.8. 证明过程给出了 k-线性同构 $k \cong \operatorname{Hom}_R(k, E_R(k))$, 这也是 R-模同构, 故总有 R-模同构

$$\operatorname{Ext}_R^i(k, E_R(k)) \cong \begin{cases} k, & i = 0, \\ 0, & i > 0. \end{cases}$$

Theorem 1.9. 设 R 是交换 Noether 环, 那么任何内射 R-模 M 可分解为一些不可分内射 R-模的直和 $M = \bigoplus_{i \in \Lambda} M_i$, 那么对 R 的每个素理想 P, 指标集 Λ 中满足 $M_i \cong E(R/P)$ 的指标全体的势由维数

$$\dim_{R_P/P_P} \operatorname{Hom}_{R_P}(R_P/P_P, M_P)$$

给出. 即 $\dim_{R_P/P_P} \operatorname{Hom}_{R_P}(R_P/P_P, M_P) = |\{i \in \Lambda | M_i \cong E(R/P)\}|$,该定理表明直和分解 $M = \bigoplus_{i \in \Lambda} M_i$ 中与 E(R/P) 同构的 M_i 数量是由 M, P 决定的不变量. 当 M 有限生成时, $\dim_{R_P/P_P} \operatorname{Hom}_{R_P}(R_P/P_P, M_P) \in \mathbb{N}$.

Proof. 直和分解的存在性由前面的引理即得. 要证的只有

$$\dim_{R_P/P_P} \operatorname{Hom}_{R_P}(R_P/P_P, M_P) = |\{i \in \Lambda | M_i \cong E(R/P)\}|.$$

现在证明结论: 首先由局部化与直和可交换得到 R_P/P_P -线性同构

$$\operatorname{Hom}_{R_P}(R_P/P_P, M_P) \cong \operatorname{Hom}_{R_P}(R_P/P_P, \bigoplus_{i \in \Lambda} (M_i)_P),$$

因为 R_P/P_P 作为 R_P -模是不可约模, 所以由下面的 [引理1.10] 马上得到 R_P/P_P -线性同构

$$\operatorname{Hom}_{R_P}(R_P/P_P, \bigoplus_{i \in \Lambda} (M_i)_P) \cong \bigoplus_{i \in \Lambda} \operatorname{Hom}_{R_P}(R_P/P_P, (M_i)_P)$$

每个不可分內射模 M_i 同构于某个 $R/Q,Q \in \operatorname{Spec} R$,当 $Q \neq P$ 时,仅可能 $Q \subsetneq P$ 或 $Q \not\subseteq P$. 下面我们说明 这两种情况都将导致 $\operatorname{Hom}_{R_P}(R_P/P_P,E(R_P/Q_P))=0$. 一旦证明该断言,应用 [引理1.10] 我们可以立即得到 R_P/P_P -线性同构 $\bigoplus_{i\in\Lambda}\operatorname{Hom}_{R_P}(R_P/P_P,(M_i)_P)\cong \bigoplus_{i\in\Lambda_0}\operatorname{Hom}_{R_P}(R_P/P_P,E(R_P/P_P))$,其中 $\Lambda_0=\{i\in\Lambda|M_i\cong E(R/P)\}$,从而由 [引理1.7] 来得到

$$\operatorname{Hom}_{R_P}(R_P/P_P, M_P) \cong \bigoplus_{i \in \Lambda_0} \operatorname{Hom}_{R_P}(R_P/P_P, E(R_P/P_P)) \cong \bigoplus_{i \in \Lambda_0} R_P/P_P,$$

即 $|\{i \in \Lambda | M_i \cong E(R/P)\}| = |\Lambda_0| = \dim_{R_P/P_P} \operatorname{Hom}_{R_P}(R_P/P_P, M_P)$. 下面来证明断言.

Case1. 当素理想 $Q \nsubseteq P$, $P \notin V(Q) = V(\operatorname{Ann}_R R/Q) = \operatorname{Supp}(R/Q)$, 这表明 $R_P/Q_P = 0$, 所以内射包 $E_{R_P}(R_P/Q_P) = 0$, 结论成立.

Case2. 当素理想 $Q \subsetneq P$ 时, 取 $x \in P - Q$, 那么 $x/1 \in P_P - Q_P$, 因此它决定的左乘变换给出 R_P/Q_P 上的单射, 考虑下述交换图:

$$R_P/Q_P \xrightarrow{i} E_{R_P}(R_P/Q_P)$$

$$(x/1)_l \downarrow \qquad \qquad \downarrow (x/1)_l$$

$$R_P/Q_P \xrightarrow{i} E_{R_P}(R_P/Q_P)$$

因为 $i: R_P/Q_P \to E_{R_P}(R_P/Q_P)$ 是本质单同态, $i(x/1)_l$ 是单同态且 $E_{R_P}(R_P/Q_P)$ 是内射模, 故 $E_{R_P}(R_P/Q_P)$ 上的左乘变换 $(x/1)_l$ 也是单射,下面使用反证法说明 $\operatorname{Hom}_{R_P}(R_P/P_P, E(R_P/Q_P)) = 0$. 若不然,存在非零 R_P -模同态 $f: R_P/P_P \to E(R_P/Q_P)$,那么存在某个 $a \in R_P/P_P$ 使得 $f(a) \neq 0$,那么 $(x/1)f(a) \neq 0$,这与 $(x/1)a = 0 \in R_P/P_P$ 矛盾. 故 $\operatorname{Hom}_{R_P}(R_P/P_P, E(R_P/Q_P)) = 0$,证毕.

Lemma 1.10. 设 R 是含幺环, $M, N_i (i \in \Lambda)$ 均是左 R-模, 如果 M 是不可约模, 那么有加群同构

$$\varphi: \bigoplus_{i \in \Lambda} \operatorname{Hom}_{R}(M, N_{i}) \to \operatorname{Hom}_{R}(M, \bigoplus_{i \in \Lambda} N_{i})$$
$$(f_{i})_{i \in \Lambda} \mapsto \varphi((f_{i})_{i \in \Lambda}): M \to \bigoplus_{i \in \Lambda} N_{i}, x \mapsto (f_{i}(x))_{i \in \Lambda}$$

并且当 M 有双模结构时, 例如 $_RM_S$ 是 R-S 双模, 那么 φ 是左 S-模同构.

1.4 Bass 数和极小内射分解

下面的概念由 Hyman Bass(美国, 1932-) 于 1963 年引入, 马上会说明它携带了极小内射分解结构信息.

Definition 1.11 (Bass 数). 设 R 是交换 Noether 环, M 是有限生成 R-模, $P \in \operatorname{Spec} R$, 称

$$\mu_i(P, M) = \dim_{R_P/P_P} \operatorname{Ext}_{R_P}^i(R_P/P_P, M_P)$$

是 M 关于 P 的 i 次 Bass 数 (the i-th Bass number of M with respect to P), 易见它是自然数.

Proposition 1.12. 设 R 是交换 Noether 环, M 是有限生成 R-模, 并设 M 有极小内射分解

$$0 \longrightarrow M \stackrel{j}{\longrightarrow} E^0(M) \stackrel{d^0}{\longrightarrow} E^1(M) \stackrel{d^1}{\longrightarrow} \cdots$$

那么对每个自然数 i, 有 R-模同构 $E^{i}(M) \cong \bigoplus_{P \in \text{Spec} R} E(R/P)^{\mu_{i}(P,M)}$.

Proof. 由局部化函子的正合性以及这时模取内射包与作局部化可交换 (回忆 [命题1.3]) 知对每个素理想 P,

$$0 \longrightarrow M_P \xrightarrow{j_P} (E^0(M))_P \xrightarrow{(d^0)_P} (E^1(M))_P \xrightarrow{(d^1)_P} \cdots$$

是 M_P 作为 R_P -模的极小内射分解, 下面说明 R_P/P_P -线性同构

$$\operatorname{Ext}_{R_P}^i(R_P/P_P, M_P) \cong \operatorname{Hom}_{R_P}(R_P/P_P, (E^i(M))_P),$$

一旦证明该断言,则由 [定理1.9] 得到 R-模同构

$$E^i(M) \cong \bigoplus_{P \in \operatorname{Spec} R} E(R/P)^{\dim_{R_P/P_P} \operatorname{Hom}_{R_P}(R_P/P_P, (E(M))_P)} \cong \bigoplus_{P \in \operatorname{Spec} R} E(R/P)^{\mu_i(P,M)}.$$

为计算 $\operatorname{Ext}_{R_P}^i(R_P/P_P, M_P)$,用 Hom 函子 $\operatorname{Hom}_{R_P}(R_P/P_P, -)$ 作用 M_P 的极小内射分解得到复形

$$0 \longrightarrow \operatorname{Hom}_{R_P}(R_P/P_P, (E^0(M))_P) \xrightarrow{((d^0)_P)_*} \operatorname{Hom}_{R_P}(R_P/P_P, (E^1(M))_P) \xrightarrow{((d^1)_P)_*} \cdots$$

对每个自然数 i, 命 $C^i = \{x \in (E^i(M))_P | P_P x = 0\} \subseteq (E^i(M))_P$, 那么

$$\eta^i: \operatorname{Hom}_{R_P}(R_P/P_P, (E^i(M))_P) \to C^i, f \mapsto f(\overline{1})$$

是 R_P/P_P -线性同构, 并且 $\eta = \{\eta^i\}_{i \in \mathbb{N}}$ 给出下述两复形间的链同构:

$$0 \longrightarrow \operatorname{Hom}_{R_{P}}(R_{P}/P_{P}, (E^{0}(M))_{P}) \xrightarrow{((d^{0})_{P})_{*}} \operatorname{Hom}_{R_{P}}(R_{P}/P_{P}, (E^{1}(M))_{P}) \xrightarrow{((d^{1})_{P})_{*}} \cdots$$

$$0 \longrightarrow C^{0} \xrightarrow{(d^{0})_{P}|} C^{1} \xrightarrow{(d^{1})_{P}|} \cdots$$

下面通过说明每个 $(d^i)_P$ 是零同态的方式来得到 $\operatorname{Ext}^i_{R_P}(R_P/P_P,M_P)\cong \operatorname{Hom}_{R_P}(R_P/P_P,(E^i(M))_P)$. 任取 $x\neq 0\in C^i$, 那么根据 $(E^i(M))_P$ 是 $\operatorname{Im}(d^{i-1})_P$ 的本质扩张 (这里记 j_P 为 $(d^{-1})_P$) 知存在 $a\in R_P$ 使得 $ax\neq 0\in \operatorname{Im}(d^{i-1})_P$, 注意到 $a\notin P_P$ 必定是 R_P 中可逆元得到 $x\in \operatorname{Im}(d^{i-1})_P$, 那么我们当然有 $(d^i)_P(x)=0$.