Searching Patterns in the Bijective BWT

joint work with

- Hideo Bannai
- Juha Kärkkäinen
- Marcin Piątkowski

FM Index

ingredients

- BWT
- wavelet tree

FM Index

ingredients

- BWT
- wavelet tree

operation: backward search

- locate pattern
- time independent on number of occurrences
- O(|P|) rank/select for pattern P

FM Index on bijective BWT

ingredients

- bijective BWT
- wavelet tree

operation: backward search

- locate pattern
- time independent on number of occurrences

O(|P| |g|P|) rank/select for pattern P

bijective BWT is the BWT of the Lyndon factorization of an input text with respect to \leq_{ω}

bijective BWT is the BWT of the Lyndon factorization 1. of an input text with respect to \leq_{ω}

Lyndon words

- a
- aabab

Lyndon word is smaller than

- any proper suffix
- any rotation

Lyndon words

- a
- aabab

Lyndon word is smaller than

- any proper suffix
- any rotation

not Lyndon words:

- abaab (rotation aabab smaller)
- abab (abab not smaller than suffix ab)

Lyndon factorization [Chen+ '58]

- input: text T
- output: factorization $T_1...T_t$ with
 - T_i is Lyndon word
 - $-T_x \geq_{\mathsf{lex}} T_{x+1}$
 - factorization uniquely defined
 - linear time [Duval'88]

properties [Duval' 88]

- *T_t*:
 - smallest Lyndon word
 - smallest suffix of T
- T_x primitive
- T₁ longest Lyndon prefix of T[1...]
- T_{x+1} longest Lyndon prefix of $T[|T_1 \cdots T_x| + 1..]$

1 2 3 4 5 6 7 8 9 10 T s e n e s c e n c e

```
1 2 3 4 5 6 7 8 9 10 
T s e n e s c e n c e 
ISA 10 5 8 6 9 2 4 7 1 3 
fact.
```

Lyndon factorization: s enes cen ce

- use inverse suffix array ISA
- ISA[i] : rank of the suffix T[i...]

- use inverse suffix array ISA
- ISA[i]: rank of the suffix T[i...]
- suppose Lyndon factor T_x starts at T[i], then

- use inverse suffix array ISA
- ISA[i] : rank of the suffix T[i...]
- suppose Lyndon factor T_x starts at T[i], then
 - T_{x+1} starts at next smaller value of ISA[i]

```
:= NSV(i)
```

- use inverse suffix array ISA
- ISA[i]: rank of the suffix T[i...]
- suppose Lyndon factor T_x starts at T[i], then
 - T_{x+1} starts at next smaller value of ISA[i]
 - := NSV(i)
 - \Rightarrow ISA[i+1], ..., ISA[NSV(i)-1] > ISA[i]
 - \Rightarrow all these suffixes larger than T[i...]

- use inverse suffix array ISA
- ISA[i] : rank of the suffix T[i...]
- suppose Lyndon factor T_x starts at T[i], then
 - T_{x+1} starts at next smaller value of ISA[i]
 - := NSV(i)
 - \Rightarrow ISA[i+1], ..., ISA[NSV(i)-1] > ISA[i]
 - \Rightarrow all these suffixes larger than T[i..]
 - T[i..NSV(i)-1] Lyndon word + T[i..NSV(i)] not Lyndon word

- use inverse suffix array ISA
- ISA[i] : rank of the suffix T[i...]
- suppose Lyndon factor T_x starts at T[i], then
 - T_{x+1} starts at next smaller value of ISA[i]
 - := NSV(i)
 - \Rightarrow ISA[i+1], ..., ISA[NSV(i)-1] > ISA[i]
 - \Rightarrow all these suffixes larger than T[i...]
 - T[i..NSV(i)-1] Lyndon word + T[i..NSV(i)] not Lyndon word
 - $\Rightarrow T[i..NSV(i)-1]$ largest Lyndon word starting with T[i..]

• $u \prec_{\omega} w : \iff uuuuu... \prec_{lex} wwww...$

- ab <_{lex} aba
- aba ≺_ω ab

• $u <_{\omega} w : \iff uuuuu... <_{lex} wwww...$

- ab <_{lex} aba
- aba ≺_ω ab

ab<mark>ababab...</mark> aba<mark>abaaba...</mark>

s | enes | cen | ce

s enes cen ce

```
s enes cen ce
nese enc ec
esen nce
sene
```

s enes cen ce

s enes cen ce

result: enccsneees

connection to BWT

- bijective BWT : BWT of Lyndon words of T
- suffix-enduced BWT uses \$ delimiter
 - \$ appears only once
 - \$ lexico. smallest character
- Lyndon factorization of \$T is \$T itself
 - \Rightarrow bijective-BWT(\$T) = BWT(\$T) = BWT(T\$)

connection to eBWT

- extended BWT (eBWT):
 - set of strings
 - all strings primitive
- bijective BWT:
 - Lyndon factors of a string
 - Lyndon word is primitive
 (aa >_{lex} a ⇒ aa is not Lyndon word)
 - ⇒ bijective BWT ∈ eBWT

bijective BWT eBWT

Lyndon factorization set of primitive strings

same:

- take all cyclic rotations
- sort by \prec_{ω} order
- return each last character

bijective BWT Lyndon factorization

eBWT set of primitive strings

same:

- take all cyclic rotations
- sort by \prec_{ω} order
- return each last character

Hon+ '11: index of circular strings based on eBWT

e e S e n e

```
e
           e
S
           e
n
           e
```


s enes cen ce	F	L
	С	ce
	C	cen
	e	ec
	e	enc
	e	enes
	e	esen
	n	nce
	n	nese
	S	sene
	9	S

```
s enes cen ce
                              ce
                             cen
                              ec
                             enc
                     e
                            enes
                            esen
                             nce
                            nese
                            sene
```

s enes cen ce ce cen ec enc enes range esen nese sene

s enes cen ce ce cen ec enc enes range esen nese sene

s enes cen ce	F	L
	С	ce
	C	cen
	e	ec
	e	enc
	e	enes
	e	esen
	n	nce
	n	nese
	S	sene
	S	S

s enes cen ce	F	L
	C	ce
	C	cen
	e	ec
	e	enc
	e	enes
	e	esen
	n	nce
	n	nese
	(S)	sene
	S	S

```
s enes cen ce
                               ce
                              cen
                      e
                               ec
                              enc
                      e
                      e
                             enes
                             esen
                      e
                              nce
                      n
                             nese
                             sene
```

```
s enes cen ce
                                ce
                               cen
                                ec
                      e
                               enc
                      e
                             enes
                      e
                             esen
                      e
                               nce
                      n
                      n
                             nese
                             sene
```

s enes cen ce ce cen ec enc enes e esen e • cen is Lyndon word nce n n nese • ss is not sene S

$$T = \boxed{ }$$

cannot cross Lyndon factor border

cannot cross Lyndon factor border

- ⇒ occur inside factors
- ⇒ found within cycles

backward search \cong FM-index

pattern P is not a Lyndon word

- Lyndon factorization: $P = P_1 \cdots P_m$
- P_y substring of T_x or equal to T_x

algorithm:

- search P_m
- take care when starting with P_{m-1} !

s | enes | cen | ce

F	L
С	ce
C	cen
e	ec
e	enc
e	enes
e	esen
n	nce
n	nese
S	sene
S	S

s | enes | cen | ce

•
$$P_2 = e$$

C ce
C cen
e ec
e enc
e enc
e esen
n nce
n nese
s sene

S

s | enes | cen | ce

•
$$P_2 = e$$

C

C

C

C

e

e

e

e

e

n

n

n

n

n

n

n

s

s

s

s

s

s

s | enes | cen | ce

•
$$P_2 = e$$

• $P_1 = S$

s enes cen ce

•
$$P_2 = e$$

• $P_1 = s$

x enes cen ce

•
$$P_2 = e$$

• $P_1 = s$

$$T =$$

• backward search P_m

$$T =$$

• backward search $\overline{P_m}$

- backward search P_m
- continue search $P_{m-1}P_m$

•
$$X \neq P_{m-1}$$

- after finding range of P_m:
 - for border $P_{m-1}P_m$ maintain
 - pointer to not-counted occurrence
 - pointer to false occurrence
- in total backward search on
 - range
 - at most 2*m* individual values
- smallest/largest factor with P_m as prefix = ?


```
s | enes | cen | ce
  ce
 cen
  ec
 enc
enes
esen
 nce
nese
sene
```

```
s | enes | cen | ce
  ce
               rank / select
 cen
  ec
 enc
enes
esen
 nce
nese
sene
   S
```


worst case setting:

P =

worst case setting:

- P_m is proper prefix of P_{m-1}

worst case setting:

- P_m is proper prefix of P_{m-1}
- $-P_{m-1}P_m$ is proper prefix of P_{m-2}

worst case setting:

- P_m is proper prefix of P_{m-1}
- $P_{m-1}P_m$ is proper prefix of P_{m-2}
- $\overline{P_{m-2}P_{m-1}P_m}$ is proper prefix of P_{m-3}

worst case setting:

- P_m is proper prefix of P_{m-1}

- after $P_{m-4} = T_x$: $P_{m-4-j} = T_{x-j}$ for all j until (mis)match
- \Rightarrow O(|P| | g |P|) rank/select queries necessary

- after $P_{m-4} = T_x$: $P_{m-4-j} = T_{x-j}$ for all j until (mis)match
- \Rightarrow O(|P| | lg |P|) rank/select queries necessary
- skipped:

$$P_1 >_{lex} P_2 >_{lex} P_3 >_{lex} P_4$$

- after $P_{m-4} = T_x$: $P_{m-4-j} = T_{x-j}$ for all j until (mis)match
- \Rightarrow O(|P| | g |P|) rank/select queries necessary
- skipped:
 - composed Lyndon factorization:

$$-P = P_1 P_1 P_2 P_2 P_2 P_3 P_4 P_4$$

$$-P = P_1^2 P_2^3 P_3^1 P_4^2$$

$$P_1 >_{\text{lex}} P_2 >_{\text{lex}} P_3 >_{\text{lex}} P_4$$

$$|P_1^2|_{\text{lex}} |P_2^3|_{\text{lex}} |P_3^1|_{\text{lex}} |P_4^2|$$

- $P = P_1 P_1 P_2 P_2 P_2 P_3 P_4 P_4$
- $P = P_1^2 P_2^3 P_3^1 P_4^2$

- $P = P_1 P_1 P_2 P_2 P_2 P_3 P_4 P_4$
- $P = P_1^2 P_2^3 P_3^1 P_4^2$
- match $P_2 P_3^1 P_4^2$ at T_x with $|T_x| \le |P_2 P_3^1 P_4^2|$

$$T = \begin{bmatrix} T_x \end{bmatrix}$$

- $P = P_1 P_1 P_2 P_2 P_2 P_3 P_4 P_4$
- $P = P_1^2 P_2^3 P_3^1 P_4^2$
- match $P_2 P_3^1 P_4^2$ at T_x with $|T_x| \le |P_2 P_3^1 P_4^2|$
- T_x and P_2 are longest Lyndon words $\Rightarrow T_x = P_2$

$$T = \begin{bmatrix} T_x \end{bmatrix}$$

- $P = P_1 P_1 P_2 P_2 P_2 P_3 P_4 P_4$
- $P = P_1^2 P_2^3 P_3^1 P_4^2$
- match $P_2 P_3^1 P_4^2$ at T_x with $|T_x| \le |P_2 P_3^1 P_4^2|$
- T_x and P_2 are longest Lyndon words $\Rightarrow T_x = P_2$
- can match $P_2^3 P_3^1 P_4^2$ directly if $T_{x-1} = T_{x-2} = T_x = P_2$

$$T = \begin{bmatrix} T_x & T_x & T_x \end{bmatrix}$$

- $P = P_1 P_1 P_2 P_2 P_2 P_3 P_4 P_4$
- $P = P_1^2 P_2^3 P_3^1 P_4^2$
- match $P_2 P_3^1 P_4^2$ at T_x with $|T_x| \le |P_2 P_3^1 P_4^2|$
- T_x and P_2 are longest Lyndon words $\Rightarrow T_x = P_2$
- can match $P_2^3 P_3^1 P_4^2$ directly if $T_{x-1} = T_{x-2} = T_x = P_2$

$$T = \begin{bmatrix} T_x & T_x & T_x \end{bmatrix}$$

for $|T_x| > |P_2|^3 P_3^4 |P_4|$ use border property (read paper)

open problems

- construct extended BWT in O(n) time solved by Juha yesterday (probably)
- apply tunneling [1]
- bijective Wheeler Graphs?
- generalized index on the extended BWT?
 (problem: no Lyndon word properties)
- composed Lyndon factorization + RLE = compression?

[1] Baier: On Undetected Redundancy in the Burrows-Wheeler Transform. CPM'18

conclusion

- FM index with bijective BWT
 - for each pattern character O(lg |P|) additional rank/selects
 - \Rightarrow O($\lg |P|$) times slower than FM index
- uses properties of Lyndon factorization on
 - text
 - pattern *P*

conclusion

- FM index with bijective BWT
 - for each pattern character O(lg |P|) additional rank/selects
 - \Rightarrow O(|g|P|) times slower than FM index
- uses properties of Lyndon factorization on
 - text
 - pattern P

Thank you for your attention. Any questions are welcome!