#### 多变量回归模型

OLS with multiple regressors

#### 杨点溢

Department of Government London School of Economics and Political Science

Spark 社科量化系列课程





# 本节课内容

- 遗漏变量偏差 Omitted Variable Bias(OVB)
- ② 多变量回归模型 Multiple Regression Model
- ③ 多重共线性 Multicollinearity
- ④ 多变量 OLS 的假说检验 (hypothesis testing)
- 5 案例:考试分数数据
- ⑥ 总结



# 单自变量回归模型 Linear Regression with One Regressor

$$Y_i = \alpha + \beta X_i + u_i$$

- 误差项 Error Term  $u_i$  包含了其他影响 Y 但是没有包含在回归函数 里的变量
- 这些变量叫做遗漏变量(Omitted Variables)
- 但是在回归模型中我们不能涵盖所有影响 Y 的变量  $\Rightarrow$  所以这是个问题吗?
- 而且,须知我们需要 u 和 X 独立才能正确地将 β 解读为处理效应 (X 对 Y 的影响)



9 July 2023

# OVB /1

- 假设我们有一个遗漏变量 Z.
  - 或者一个包含很多遗漏变量的向量 Vector Z.
- 当有以下情况时,回归模型中遗漏 Z 将会是一个问题:
  - Z 被包含在 u 中 (Z Y);
  - $corr(X, Z) \neq 0$ ,也就是说,Z 和被包含的变量 ("处理变量" X) 相关。
- 如果 1 和 2 都满足,那么 u 将与 X 相关 ⇒ 选择偏差 (Selection Bias) 不是 0.
- 在回归分析中,这种偏差叫做<mark>遗漏变量偏差 (OVB)(</mark>Omitted Variable Bias),是选择偏差的一种





# OVB /2

• 假设真实的模型是:

$$Y_i = \alpha + \beta X_i + \gamma Z_i + u_i$$

注:  $u_i$  独立于  $X_i$ , 即  $cov(u_i, X_i) = 0$ 

• 但是如果你估计的是:

$$Y_i = \hat{\alpha} + \hat{\beta}X_i + \eta_i$$

你得到的将是:

$$\hat{\beta} = \frac{cov(Y_i, X_i)}{Var(X_i)}$$





#### OVB /3

• 我们再把"对"的模型带入,可得

$$\hat{\beta} = \frac{cov(\alpha + \beta X_i + \gamma Z_i + u_i, X_i)}{var(X_i)}$$

$$= \frac{\beta var(X_i) + \gamma cov(X_i, Z_i) + cov(u_i, X_i)}{var(X_i)}$$

$$= \beta + \gamma \frac{cov(X_i, Z_i)}{var(X_i)}$$

- BIAS = (coefficient of the excluded variable)  $\times$  (coefficient of a regression of the excluded variable on the included variable)
  - 偏差 =(被遗漏变量的系数)×(Z 和 X 回归的系数)





# 案例: 班级大小和留学生

|                                | Student-Teacher Ratio < 20 |     | Student-Teacher Ratio ≥ 20 |     | Difference in Test Scores,<br>Low vs. High STR |             |
|--------------------------------|----------------------------|-----|----------------------------|-----|------------------------------------------------|-------------|
|                                | Average<br>Test Score      | n   | Average<br>Test Score      | n   | Difference                                     | t-statistic |
| All districts                  | 657.4                      | 238 | 650.0                      | 182 | 7.4                                            | 4.04        |
| Percentage of English learners |                            |     |                            |     |                                                |             |
| < 1.9%                         | 664.5                      | 76  | 665.4                      | 27  | -0.9                                           | -0.30       |
| 1.9-8.8%                       | 665.2                      | 64  | 661.8                      | 44  | 3.3                                            | 1.13        |
| 8.8-23.0%                      | 654.9                      | 54  | 649.7                      | 50  | 5.2                                            | 1.72        |
| > 23.0%                        | 636.7                      | 44  | 634.8                      | 61  | 1.9                                            | 0.68        |



# 本节课内容

- □ 遗漏变量偏差 Omitted Variable Bias(OVB)
- ② 多变量回归模型 Multiple Regression Model
- ③ 多重共线性 Multicollinearity
- ④ 多变量 OLS 的假说检验 (hypothesis testing)
- 5 案例:考试分数数据
- ⑥ 总结



# 多变量回归模型 Multiple Regression Model

#### 假设我们有两个自变量,人口方程是:

$$Y_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i, i = 1, ..., n$$

- Y 是因变量 (DV)
- X<sub>1</sub> 和 X<sub>2</sub> 是自变量 (regressors)
- α 是人口截距 (intercept)
- $\beta_1$  是控制  $X_2$  不变的情况下  $X_1$  的 1 个单位变化对 Y 的影响
- $\beta_2$  是控制  $X_1$  不变的情况下  $X_2$  的 1 个单位变化对 Y 的影响
- u<sub>i</sub> 是回归残差项(包含其他遗漏变量)



#### 系数的解读

- 想象 X<sub>i</sub> 变化了 △X<sub>1</sub>, 控制 X<sub>2</sub> 不变
- 变化之前的回归线为:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2$$

• 变化之后为:

$$Y + \Delta Y = \alpha + \beta_1 (X_1 + \Delta X_1) + \beta_2 X_2$$

• 两者之差:

$$\Delta Y = \beta_1 \Delta X_1$$

• 因此

$$eta_1 = rac{\Delta Y}{\Delta X_1}$$
控制  $X_2$  不变  $eta_2 = rac{\Delta Y}{\Delta X_2}$ 控制  $X_1$  不变  $lpha = \exists X_1 = X_2 = 0$ 时 $Y$ 的预测值





#### 举例: 班级大小

● 简单回归——考试分数和学校师生比 (Student-Teacher Ratio)

$$TestScore = 698.9 - 2.28 \times STR$$

• 现在我们把英语非母语的人占区域的比重 (PctEL) 加进模型

$$TestScore = 686 - 1.1 \times STR - 0.65 \times PctEL$$

- 师生比 (STR) 的系数会怎样变化了呢? 为什么呢?
  - 提示: corr(STR, PctEL) = 0.19



11 / 40



#### R 的产出: fixest



#### Stata 的产出

```
reg testscr str pctel, robust;
```

Regression with robust standard errors

| testscr | Coef.     | Robust<br>Std. Err. | t      | P> t               | [95% Conf. | . Interval] |
|---------|-----------|---------------------|--------|--------------------|------------|-------------|
| str     | -1.101296 | .4328472            | -2.54  | 0.011 <sup>*</sup> | -1.95213   | 2504616     |
| pctel   | 6497768   | .0310318            | -20.94 | 0.000 <sup>*</sup> | 710775     | 5887786     |
| _cons   | 686.0322  | 8.728224            | 78.60  | 0.000 <sup>*</sup> | 668.8754   | 703.189     |



# 拟合程度 Measures of fit /1

- 计算拟合程度的方法和只有一个自变量时是一样的
  - Standard Error of the Regression (SER): 衡量 Y<sub>i</sub> 相对于回归线的离散 程度

$$SER = \sqrt{\frac{1}{n-k-1} \sum_{i=1}^{n} \hat{u}_i^2}$$

• R<sup>2</sup> 代表 Y 的方差中有多少被所有自变量解释

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{SSR}{TSS}$$



# 拟合程度 Measures of fit /2

新概念: "Adjusted R<sup>2</sup>" 或者 R̄<sup>2</sup> 考虑到自变量的数量: 自变量越多, R<sup>2</sup> 永远增加, 而 R̄<sup>2</sup> 就修复了这个问题

$$\bar{R}^2 = 1 - \left(\frac{n-1}{n-k-1}\right) \frac{SSR}{TSS}$$

- k 是自变量的数量
- 自变量变多时, R<sup>2</sup> 不见得增加
- $\bar{R}^2 < R^2$  (但是当 n 很大时两者区别不大)





#### 回到 R 的回归表格

|             | (1)                       |
|-------------|---------------------------|
| (Intercept) | 686.032                   |
|             | (8.728)                   |
| str         | -1.101                    |
|             | (0.433)                   |
| PctEL       | -0.650                    |
|             | (0.031)                   |
| Num.Obs.    | 420                       |
| R2          | 0.426                     |
| R2 Adj.     | 0.424                     |
| AIC         | 3439.1                    |
| BIC         | 3451.2                    |
| RMSE        | 14.41                     |
| Std.Errors  | Heteroskedasticity-robust |

- 对比  $R^2$  和  $\bar{R}^2$
- Root  $MSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \hat{u}_i^2}$ .
  - 当 n 足够大时, Root MSE ~ SER





#### OLS 的假设

- 假设 1:  $E(e|X) = 0:e_i$  关于  $x_{1i}, x_{2i}, ..., x_{ki}$  的条件分部平均数为 0.
- 假设 2:  $(x_{1i}, x_{2i}, ..., x_{ki}, y_i)$  是独立且相同分布的 (i.i.d) 随机变量.
- 假设 3: 异常值 (outliers) 不多. 有限峰度 (finite kurtosis):
  - $E(x_i^4) < \infty . E(y_i^4) < \infty$ .

#### 假设 4: 没有完美多重共线性 perfect multicollinearity

- 假设 1 和只有一个自变量时一样,只不过排除了 OVB
- 假设2和3没有区别
- 假设 4 是新的



# 本节课内容

- ① 遗漏变量偏差 Omitted Variable Bias(OVB)
- ② 多变量回归模型 Multiple Regression Model
- ③ 多重共线性 Multicollinearity
- 4 多变量 OLS 的假说检验 (hypothesis testing)
- 5 案例:考试分数数据
- ⑥ 总结



#### 多重共线性 Multicollinearity /1

- 当一个自变量是另一个自变量的完美函数时,会出现完美多重共线性 (perfect multicollinearity).
- 在这种情况下,R/Stata 会自动取消 (drop) 掉一个变量,如果你看到有一个变量被拿出,你应该考虑一下发生了什么
- 情况 1: 你把同一个变量加了两次



# 多重共线性 Multicollinearity /2

● 情况 2:

$$TestScore_i = \alpha + \beta_1 D_i + \beta_2 + u_i$$
 where  $D_i = 1$  if class size  $\leq 20$  and 0 otherwise  $B_i = 1$  if class size  $> 20$  and 0 otherwise  $\Rightarrow B_i = 1 - D_i \Rightarrow$ 完美多重共线性

• 这种情况被叫做"虚拟变量陷阱" (dummy variable trap).



#### 虚拟变量陷阱 Dummy Variable Trap

- 假设我们有好几个虚拟变量,他们互斥且是有限的 (mutually exclusive and exhaustive):每个观察值都属于且只属于一个分类 (every observation falls in one category only)
  - 例: LSE 的学生可以被分为本科生、硕士生和博士生。假如我们因此设置三个虚拟变量: *U<sub>i</sub>*, *M<sub>i</sub>*, *P<sub>i</sub>*.
- 如果我们把三个分类都设成虚拟变量,并在回归模型 (regression)
   中保留了常数项/截距 (constant term/intercept),我们将会得到完美多重共线性 (multicollinearity)
- 解决办法
  - 省略一个分类(比如说本科生)
    - 作为参考组 (reference)
  - 或者省略截距/常数项



#### 不完美多重共线性 imperfect multicollinearity

- 发生于两个自变量 (regressors) 高度相关 (但  $|corr| \neq 1$ )
- 这意味着 OLS 估计的系数 (coefficients)将会不精确 (imprecisely estimated)
  - 说人话: SE 很大
  - $X_1$  的系数是控制  $X_2$  不变的情况下, $X_1$  的影响。如果  $X_1$  和  $X_2$  高度相关,那么控制住  $X_2$  不变时, $X_1$  也很难有变化空间  $\Rightarrow var(\hat{\beta_1})$  会很高  $\Rightarrow SE(\hat{\beta_1})$  会高
  - 数据很难向我们提供 X₁ 变化但是 X₂ 不变的信息



# 本节课内容

- ① 遗漏变量偏差 Omitted Variable Bias(OVB)
- ② 多变量回归模型 Multiple Regression Model
- ③ 多重共线性 Multicollinearity
- 4 多变量 OLS 的假说检验 (hypothesis testing)
- 5 案例:考试分数数据
- ⑥ 总结





# OLS 估计量的样本分布 (sampling distribution)

- 基本跟之前讲的一样:
  - $E(\hat{\beta_1}) = \beta_1$
  - $var(\hat{\beta_1})$  和 n 是反比例关系 (inversely proportional).
  - $\bullet \ \hat{\beta_1} \xrightarrow{p} \beta_1$
  - $\frac{\hat{\beta}_1 E(\hat{\beta}_1)}{\sqrt{var(\hat{\beta}_1)}} \sim N(0,1)$  when n is large.
- Same for  $\hat{\beta_2},...,\hat{\beta_k}$





# 对于单个系数 (coefficient) 的检验

- 使用平常的 t 统计量
- 使用置信区间 (confidence interval):  $\hat{\beta}_1 \pm 1.96 \times \textit{SE}(\hat{\beta}_1)$
- 对于  $\hat{\beta}_2,...,\hat{\beta}_k$  同理
- 跟之前讲的完全一样





• 设 Expn = expenditure per pupil(每学生教育支出),考虑以下模型:

$$TestScore = \alpha + \beta_1 STR + \beta_2 Expn + \beta_3 PctEL + u$$



• 设 Expn =expenditure per pupil(每学生教育支出),考虑以下模型:

$$TestScore = \alpha + \beta_1 STR + \beta_2 Expn + \beta_3 PctEL + u$$

• 我们可能对如下假说感兴趣:"学校资源不重要"以及"学校资源重要"。



• 设 Expn =expenditure per pupil(每学生教育支出),考虑以下模型:

$$TestScore = \alpha + \beta_1 STR + \beta_2 Expn + \beta_3 PctEL + u$$

- 我们可能对如下假说感兴趣:"学校资源不重要"以及"学校资源重要"。
- 普遍化:对于多个自变量系数 (coefficients),我们可能对联合假 说的检验感兴趣:

$$H_0$$
:  $\beta_1 = 0$  and  $\beta_2 = 0$ 

 $vs\ H_1$ : either  $\beta_1 \neq 0$  or  $\beta_2 \neq 0$  or both



• 设 Expn =expenditure per pupil(每学生教育支出),考虑以下模型:

$$TestScore = \alpha + \beta_1 STR + \beta_2 Expn + \beta_3 PctEL + u$$

- 我们可能对如下假说感兴趣:"学校资源不重要"以及"学校资源重要"。
- 普遍化: 对于多个自变量系数 (coefficients), 我们可能对联合假 说的检验感兴趣:

$${\cal H}_0$$
 :  $eta_1=0$  and  $eta_2=0$  vs  ${\cal H}_1$  : either  $eta_1 
eq 0$  or  $eta_2 
eq 0$  or both

- 联合假说 (joint hypotheses)明确了两个或以上系数的值。
  - 或者说,对两个或多个系数施加限制 (imposes a restriction on two or more coefficients)

• 设 Expn =expenditure per pupil(每学生教育支出),考虑以下模型:

$$TestScore = \alpha + \beta_1 STR + \beta_2 Expn + \beta_3 PctEL + u$$

- 我们可能对如下假说感兴趣:"学校资源不重要"以及"学校资源重要"。
- 普遍化: 对于多个自变量系数 (coefficients), 我们可能对联合假 说的检验感兴趣:

$$H_0$$
 :  $\beta_1=0$  and  $\beta_2=0$  vs  $H_1$  : either  $\beta_1 \neq 0$  or  $\beta_2 \neq 0$  or both

- 联合假说 (joint hypotheses)明确了两个或以上系数的值。
  - 或者说,对两个或多个系数施加限制 (imposes a restriction on two or more coefficients)
  - 我们常用 q 来表示限制的数量 (number of restrictions)。在这个例子中, q=2.

#### 我们为什么不能一个一个地分别检验这些系数呢?

- 你可能非常想通过单个系数的 t 统计量来验证联合假说
  - 在任意 t 统计量大于 1.96 时拒绝 H<sub>0</sub>.



9 July 2023

#### 我们为什么不能一个一个地分别检验这些系数呢?

- 你可能非常想通过单个系数的 t 统计量来验证联合假说
  - 在任意 t 统计量大于 1.96 时拒绝 H<sub>0</sub>.
- 但是如果我们这么做的话,我们的显著性(假阳的概率)还会是 0.05 吗?

$$\begin{split} ⪻[|t_1|>1.96\text{ and/or }|t_2|>1.96] = \\ ⪻[|t_1|>1.96,|t_2|>1.96] + Pr[|t_1|>1.96,|t_2|\leq 1.96] \\ &+Pr[|t_1|\leq 1.96,|t_2|>1.96] \\ =⪻[|t_1|>1.96]\times Pr[|t_2|>1.96] + Pr[|t_1|>1.96]\times Pr[|t_2|\leq 1.96] \\ &+Pr[|t_1|\leq 1.96]\times Pr[|t_2|>1.96] \\ =&0.05\times 0.05 + 0.05\times 0.95 + 0.95\times 0.05 \\ =&0.0975 \end{split}$$



#### 我们为什么不能一个一个地分别检验这些系数呢?

- 你可能非常想通过单个系数的 t 统计量来验证联合假说
  - 在任意 t 统计量大于 1.96 时拒绝 H<sub>0</sub>.
- 但是如果我们这么做的话,我们的显著性(假阳的概率)还会是 0.05 吗?

$$\begin{split} ⪻[|t_1|>1.96\text{ and/or }|t_2|>1.96] = \\ ⪻[|t_1|>1.96,|t_2|>1.96] + Pr[|t_1|>1.96,|t_2|\leq 1.96] \\ &+Pr[|t_1|\leq 1.96,|t_2|>1.96] \\ =⪻[|t_1|>1.96]\times Pr[|t_2|>1.96] + Pr[|t_1|>1.96]\times Pr[|t_2|\leq 1.96] \\ &+Pr[|t_1|\leq 1.96]\times Pr[|t_2|>1.96] \\ &=0.05\times 0.05 + 0.05\times 0.95 + 0.95\times 0.05 \\ =&0.0975 \end{split}$$

这么做的话实际的显著水平会是 0.0975, 即 9.75%, 高于我们想要
 的 5%。

#### F 检验 (F-test)

● 我们刚刚使用"常理 (common sense) 得到的显著水平(假阳概率) 并不是 5%;这种分别检验的方式实际的显著水平(假阳概率)高 于我们想要的 5%⇒ 不够保守。



#### F 检验 (F-test)

- 我们刚刚使用"常理 (common sense) 得到的显著水平(假阳概率) 并不是 5%; 这种分别检验的方式实际的显著水平(假阳概率)高 于我们想要的 5%⇒ 不够保守。
- 与此同时、我们忽略了 t₁ 和 t₂ 之间的相关性



# F 检验 (F-test)

- 我们刚刚使用"常理 (common sense) 得到的显著水平(假阳概率) 并不是 5%;这种分别检验的方式实际的显著水平(假阳概率)高 于我们想要的 5%⇒ 不够保守。
- 与此同时,我们忽略了 t<sub>1</sub> 和 t<sub>2</sub> 之间的相关性
   → 当 β<sub>1</sub> 和 β<sub>2</sub> 相关时。t<sub>1</sub> 和 t<sub>2</sub> 也会相关。
- 要检验联合假说,我们需要一个新的统计量: F 统计量。当只有两

$$F = \frac{1}{2} \left( \frac{t_1^2 + t_2^2 - 2\hat{\rho}t_1t_2}{1 - \hat{\rho}^2} \right)$$

- $\rho$  为  $t_1$  和  $t_2$  之间相关性的估计值。
- F 统计量修正了(考虑到了) $t_1$  和  $t_2$  之间的相关性





### 卡方分布 Chi-square distribution

- 考略一个特殊情况:  $t_1$  独立于  $t_2 \Rightarrow \hat{\rho} \stackrel{p}{\rightarrow} = 0$
- 那么

$$F = \frac{1}{2} \left( \frac{t_1^2 + t_2^2 - 2\hat{\rho}t_1t_2}{1 - \hat{\rho}^2} \right) \simeq \frac{1}{2} (t_1^2 + t_2^2)$$

- 在这种情况下, F 统计量的大样本分布即为两个独立分布 (indepedently distributed) 的标准正态分布(standard normal distribution, or N(0,1)) 的平方的平均
- q 个独立的 N(0.1) 的平方之和的分布叫做卡方分布  $(\chi_q^2)$
- 当 n 足够大时,F 的分布近似为  $\chi_q^2/q$ 
  - 即为  $\chi_q^2/q \sim F_{q,\infty}$
  - 当 n > 100 时,F 分布基本等同于  $\chi_q^2/q$





#### R的F检验应用

```
> linearHypothesis(lm1, c("str=0", "expn_stu=0"), test="F")
Linear hypothesis test
Hypothesis:
str = 0
expn_stu = 0
Model 1: restricted model
Model 2: testscr ~ str + expn_stu + PctEL
 Res.Df Df F Pr(>F)
   418
2 416 2 5.4337 0.004682 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```



#### Stata 的 F 检验应用

reg testscr str expn\_stu pctel, r;

Regression with robust standard errors

Number of obs = 420 F(3, 416) = 147.20Prob > F = 0.0000 R-squared = 0.4366 Root MSE = 14.353

| testscr  | Coef.    | Robust<br>Std. Err. | t      | P> t  | [95% Conf. | Interval] |
|----------|----------|---------------------|--------|-------|------------|-----------|
| str      | 2863992  | .4820728            | -0.59  | 0.553 | -1.234001  | .661203   |
| expn_stu | .0038679 | .0015807            | 2.45   | 0.015 | .0007607   | .0069751  |
| pctel    | 6560227  | .0317844            | -20.64 | 0.000 | 7185008    | 5935446   |
| _cons    | 649.5779 | 15.45834            | 42.02  | 0.000 | 619.1917   | 679.9641  |

#### NOTE



The test command follows the regression

- (1) str = 0.0 (A ) There are q=2 restrictions being tested (2) expn\_stu = 0.0
- Prob > F = 0.0047

F(2, 416) = 5.43 The 5% critical value for q=2 is 3.00 Stata computes the p-value for you



## 多系数的单限制检验 Testing single restrictions on multiple coefficients

$$Y_i = \alpha + \beta X_i + \gamma Z_i + u_i, i = 1, ..., n$$

思考以下假说:

$$H_0: \beta_1 = \beta_2 \text{ vs } H_1: \beta_1 \neq \beta_2$$





## 多系数的单限制检验 Testing single restrictions on multiple coefficients

$$Y_i = \alpha + \beta X_i + \gamma Z_i + u_i, \ i = 1, ..., n$$

思考以下假说:

$$H_0: \beta_1 = \beta_2 \text{ vs } H_1: \beta_1 \neq \beta_2$$

• 零假说对多个系数赋予了一个限制 (q=1) The null imposes a single restriction (q=1) on multiple coefficients.





### 多系数的单限制检验 Testing single restrictions on multiple coefficients

$$Y_i = \alpha + \beta X_i + \gamma Z_i + u_i, \ i = 1, ..., n$$

思考以下假说:

$$H_0: \beta_1 = \beta_2 \text{ vs } H_1: \beta_1 \neq \beta_2$$

- 零假说对多个系数赋予了一个限制 (q=1) The null imposes a single restriction (q = 1) on multiple coefficients.
- 两个方法:
  - 把模型重新整理 (rearrange) 为对于单一系数的单限制检验 (详见 Stock and Watson, 2014, p.276)





9 July 2023

# 多系数的单限制检验 Testing single restrictions on multiple coefficients

$$Y_i = \alpha + \beta X_i + \gamma Z_i + u_i, \ i = 1, ..., n$$

思考以下假说:

$$H_0: \beta_1 = \beta_2 \text{ vs } H_1: \beta_1 \neq \beta_2$$

- 零假说对多个系数赋予了一个限制 (q = 1) The null imposes a single restriction (q = 1) on multiple coefficients.
- 两个方法:
  - 把模型重新整理 (rearrange) 为对于单一系数的单限制检验 (详见 Stock and Watson, 2014, p.276)
  - 直接使用软件:
    - Stata: test str=expn
    - R: linearHypothesis(lm1, "str=expn\_stu", test="F")



### 本节课内容

- □ 遗漏变量偏差 Omitted Variable Bias(OVB)
- ② 多变量回归模型 Multiple Regression Model
- ③ 多重共线性 Multicollinearity
- ④ 多变量 OLS 的假说检验 (hypothesis testing)
- 5 案例:考试分数数据
- ⑥ 总结



我们想要得到无偏 (unbiased) 地估计班级大小对考试分数的影响 (控制学生和学校的特征不变)。



- 我们想要得到无偏 (unbiased) 地估计班级大小对考试分数的影响 (控制学生和学校的特征不变)。
- 以上目标需要我们思考加入什么变量、跑怎样的回归模型



- 我们想要得到无偏 (unbiased) 地估计班级大小对考试分数的影响 (控制学生和学校的特征不变)。
- 以上目标需要我们思考加入什么变量、跑怎样的回归模型
- 我们需要在电脑上写代码前就把这些问题考虑清楚 ⇒ 提前思考模型参数



- 我们想要得到无偏 (unbiased) 地估计班级大小对考试分数的影响 (控制学生和学校的特征不变)。
- 以上目标需要我们思考加入什么变量、跑怎样的回归模型
- 我们需要在电脑上写代码前就把这些问题考虑清楚 ⇒ 提前思考模型参数
  - 先明确一个"基准" (baseline/benchmark)模型,再想一些涵盖其他不同变量的替代 (alternative) 的模型



- 我们想要得到无偏 (unbiased) 地估计班级大小对考试分数的影响 (控制学生和学校的特征不变)。
- 以上目标需要我们思考加入什么变量、跑怎样的回归模型
- 我们需要在电脑上写代码前就把这些问题考虑清楚 ⇒ 提前思考模型参数
  - 先明确一个"基准" (baseline/benchmark)模型,再想一些涵盖其他不同变量的替代 (alternative) 的模型
  - 加入一个新的变量会不会改变  $\hat{\beta}_1$  ? 为什么 ? 这个改变显著吗 ?





- 我们想要得到无偏 (unbiased) 地估计班级大小对考试分数的影响 (控制学生和学校的特征不变)。
- 以上目标需要我们思考加入什么变量、跑怎样的回归模型
- 我们需要在电脑上写代码前就把这些问题考虑清楚 ⇒ 提前思考模型参数
  - 先明确一个"基准" (baseline/benchmark)模型,再想一些涵盖其他不同变量的替代 (alternative) 的模型
  - 加入一个新的变量会不会改变  $\hat{\beta}_1$  ? 为什么 ? 这个改变显著吗 ?
  - 没有固定的公式: 使用你的判断
  - 不要只想着最大化 R<sup>2</sup>.



9 July 2023

#### 使用散点图





(b) Percentage qualifying for reduced price lunch



(c) Percentage qualifying for income assistance



- 我们会有好几个回归模型,我们想把他们的结果一并展示
- 国际惯例: 做成个表格
- 一个回归结果表格应该包括:



- 我们会有好几个回归模型,我们想把他们的结果一并展示
- 国际惯例: 做成个表格
- 一个回归结果表格应该包括:
  - 估计的回归系数 (β)





- 我们会有好几个回归模型,我们想把他们的结果一并展示
- 国际惯例: 做成个表格
- 一个回归结果表格应该包括:
  - 估计的回归系数 (β)
  - 系数对应的标准误差 (se)
    - 有争议需不需要点星星
    - 有些模型没有 se, 可以用置信区间代替





- 我们会有好几个回归模型,我们想把他们的结果一并展示
- 国际惯例: 做成个表格
- 一个回归结果表格应该包括:
  - 估计的回归系数 (β)
  - 系数对应的标准误差 (se)
    - 有争议需不需要点星星
    - 有些模型没有 se, 可以用置信区间代替
  - 拟合程度 (measures of fit)
    - 通常是 R<sup>2</sup> 或者 R̄<sup>2</sup>.





- 我们会有好几个回归模型,我们想把他们的结果一并展示
- 国际惯例: 做成个表格
- 一个回归结果表格应该包括:
  - 估计的回归系数 (β)
  - 系数对应的标准误差 (se)
    - 有争议需不需要点星星
    - 有些模型没有 se, 可以用置信区间代替
  - 拟合程度 (measures of fit)
    - 通常是 R<sup>2</sup> 或者 R̄<sup>2</sup>.
  - 观察量 (number of observations) (n)



- 我们会有好几个回归模型,我们想把他们的结果一并展示
- 国际惯例: 做成个表格
- 一个回归结果表格应该包括:
  - 估计的回归系数 (β)
  - 系数对应的标准误差 (se)
    - 有争议需不需要点星星
    - 有些模型没有 se, 可以用置信区间代替
  - 拟合程度 (measures of fit)
    - 通常是 R<sup>2</sup> 或者 R̄<sup>2</sup>.
  - 观察量 (number of observations) (n)
  - 如果需要, F 统计量
  - 其他重要的信息



### 学生分数结果表格 (Stock and Watson, 2014, p.287)

| TABLE 7.1 Results of Regressions of Test Scores on the Student–Teacher Ratio and Student Characteristic Control Variables Using California Elementary School Districts |                   |                     |                     |                     |                     |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|---------------------|---------------------|---------------------|--|--|--|--|
| Dependent variable: average test score in the district.                                                                                                                |                   |                     |                     |                     |                     |  |  |  |  |
| Regressor                                                                                                                                                              | (1)               | (2)                 | (3)                 | (4)                 | (5)                 |  |  |  |  |
| Student–teacher ratio $(X_1)$                                                                                                                                          | -2.28**<br>(0.52) | -1.10*<br>(0.43)    | -1.00**<br>(0.27)   | -1.31**<br>(0.34)   | -1.01**<br>(0.27)   |  |  |  |  |
| Percent English learners $(X_2)$                                                                                                                                       |                   | -0.650**<br>(0.031) | -0.122**<br>(0.033) | -0.488**<br>(0.030) | -0.130**<br>(0.036) |  |  |  |  |
| Percent eligible for subsidized lunch $(X_3)$                                                                                                                          |                   |                     | -0.547**<br>(0.024) |                     | -0.529**<br>(0.038) |  |  |  |  |
| Percent on public income assistance $(X_4)$                                                                                                                            |                   |                     |                     | -0.790**<br>(0.068) | 0.048<br>(0.059)    |  |  |  |  |
| Intercept                                                                                                                                                              | 698.9**<br>(10.4) | 686.0**<br>(8.7)    | 700.2**<br>(5.6)    | 698.0**<br>(6.9)    | 700.4**<br>(5.5)    |  |  |  |  |
| Summary Statistics                                                                                                                                                     |                   |                     |                     |                     |                     |  |  |  |  |
| SER                                                                                                                                                                    | 18.58             | 14.46               | 9.08                | 11.65               | 9.08                |  |  |  |  |
| $\overline{R}^2$                                                                                                                                                       | 0.049             | 0.424               | 0.773               | 0.626               | 0.773               |  |  |  |  |
| n                                                                                                                                                                      | 420               | 420                 | 420                 | 420                 | 420                 |  |  |  |  |

These regressions were estimated using the data on K-8 school districts in California, described in Appendix 4.1. Standard errors are given in parentheses under coefficients. The individual coefficient is statistically significant at the \*5% level or \*\*1% significance level using a two-sided test.



### 本节课内容

- ① 遗漏变量偏差 Omitted Variable Bias(OVB)
- ② 多变量回归模型 Multiple Regression Model
- ③ 多重共线性 Multicollinearity
- 4 多变量 OLS 的假说检验 (hypothesis testing)
- 5 案例:考试分数数据
- ⑥ 总结





#### 总结

- 多元线性回归可以分析在控制  $X_2$  不变的情况下, $X_1$  对 Y 的影响
- OVB 公式:

```
OVB = (coeff. of excluded variable) \times \\ (coeff. of regression of excluded on included variable)
```

- 如果你可以测量到一个变量,你可以通过把他包含在你的模型里来减少选择偏差
- 但是我们往往不能观察/测量所有的变量
- 对于应该涵盖哪些变量,没有一个固定的配方——你得有自己的判断。





#### References I

Stock, J., & Watson, M. (2014). *Econometrics, Update PDF Ebook, Global Edtion*. Pearson Education, Limited. Retrieved July 19, 2023, from http://ebookcentral.proquest.com/lib/londonschoolecons/detail.action?docID=5174962



