Lezione 4

- (1) Determinare il dominio delle seguenti funzioni:
 - (a) $\frac{x}{2-x}$;
 - (b) $\sqrt{x+1}$;
 - (c) $\sqrt{\frac{x}{2x-3}}$;
 - (d) $\sqrt{x+1} x + \sqrt{2-x}$;
 - (e) $\sqrt{\sin(x)}$;
 - (f) $\ln(x^2 + 2x + 1)$;
 - (g) $\ln(\frac{1-3x}{7x+2});$
- (2) Calcolare il dominio delle seguenti funzioni:
 - (a) $2x + \arcsin(\sqrt{x^2 2x})$;
 - (b) $\frac{\ln(1+x^2)}{\sin(x)-x}$;
 - (c) $\sin(x^2 + x + 1) \arcsin(\frac{1}{2+x^2});$
 - (d) $\sqrt{\sin(x) + \frac{1}{2}}$;
 - (e) $\ln(3 + 2\cos(x) \cos^2(x))$;
- (3) Considerando che:

$$f(x) = 2x - x^2$$

non è iniettiva in \mathbb{R} , trovare un intervallo [a,b] tale che la restrizione di f a tale intervallo sia invertibile, e scrivere la funzione inversa

- 4 Determinare iniettività, suriettività e determinare l'inversa (effettuando opportune restrizioni e corestrizioni ove necessario) delle seguenti funzioni:
 - (a) $\frac{1}{1-3^x}$;
 - (b) $\ln(x^2 3x + 1)$;
 - (c) $\frac{1}{x^2-x+3} \frac{3}{11}$;
- (5) Dato $A \subseteq \mathbb{R}$, sapendo che $\inf(A) = 0$ allora possiamo dire che:
 - (a) Esiste $x_0 \in A$ tale che $x_0 = 0$;
 - (b) Per ogni $x \in A$ si ha x > 0;
 - (c) 0 non è minimo di A;
 - (d) Per ogni $n \in \mathbb{N}$ esiste $x_0 \in A$ tale che $x_0 \leq \frac{1}{n}$;
 - (e) Per ogni $\epsilon > 0$ esiste $x \in A$ tale che $x > \epsilon$;

6 Data f: $\mathbb{R} \to \mathbb{R}$, sapendo che $\lim_{x\to 0} f(x) = -2$ si può affermare che

- (a) $\exists \delta > 0$ tale che f(x) < -1 per $x \in]-\delta, \delta[, \text{ con } x \neq 0;$
- (b) f(0) = -2;
- (c) $f(x) \neq -2$ per ogni $x \neq 0$;
- (d) $\forall \epsilon > 0$ si ha che f(x) < 0 per ogni x $\neq 0$ e |x| < $\epsilon;$
- (e) $\inf\{f(x)|x\in\mathbb{R}\}\geq -2;$

(7) Calcolare il seguente limite:

$${\rm lim}_{x\to 0}\frac{6x^6-\sin^2(2x^2)}{\cos(x^2)-1-5x^5}=\dots$$

Se il limite è $+\infty$ scrivere 2022. Se il limite è $-\infty$ scrivere -2022.

(8) Data la seguente equazione:

$$f(x) = \sqrt{\ln\left(\frac{\sqrt{x} + \sqrt{1 - x}}{\alpha}\right)}$$

con $\alpha > 0$. Trovare l'insieme di definizione di f(x).