DÉTERMINATION DE β ET DE n (une moyenne)

Test de H_0 : $\mu = \mu_0$ niveau (seuil) critique α . $X \sim N(\mu, \sigma^2)$ avec σ^2 connue. n = taille de l'échantillon.

Hypothèses	valeur de β	valeur de n
$H_0: \ \mu = \mu_0$ $contre$ $H_1: \ \mu < \mu_0$	$\beta(\mu) = \Phi\left(z_{\alpha} + \frac{(\mu - \mu_0)\sqrt{n}}{\sigma}\right)$	$n = \frac{(z_{\alpha} + z_{\beta})^2 \sigma^2}{(\mu - \mu_0)^2}$
$H_0: \ \mu = \mu_0$ $contre$ $H_1: \ \mu > \mu_0$	$\beta(\mu) = \Phi\left(z_{\alpha} - \frac{(\mu - \mu_0)\sqrt{n}}{\sigma}\right)$	$n = \frac{(z_{\alpha} + z_{\beta})^2 \sigma^2}{(\mu - \mu_0)^2}$
$H_0: \ \mu = \mu_0$ $contre$ $H_1: \ \mu \neq \mu_0$	$\beta(\mu) = \Phi\left(z_{\alpha/2} - \frac{(\mu - \mu_0)\sqrt{n}}{\sigma}\right) - \Phi\left(-z_{\alpha/2} - \frac{(\mu - \mu_0)\sqrt{n}}{\sigma}\right)$	$n \approx \frac{(z_{\alpha/2} + z_{\beta})^2 \sigma^2}{(\mu - \mu_0)^2}$

DÉTERMINATION DE β ET DE n (deux moyennes)

Test de H_0 : $\mu_1 = \mu_2$ au niveau (seuil) critique α . $X_1 \sim N(\mu_1, \ \sigma_1^2)$; $X_2 \sim N(\mu_2, \ \sigma_2^2)$ avec σ_1^2 et σ_2^2 connues. $n_i =$ taille de l'échantillon provenant de $X_i, i = 1, 2$.

Hypothèses	valeur de β	valeur de n
		(on suppose $n = n_1 = n_2$)
$H_0: \ \mu_1 = \mu_2$	$\rho(\mu_1 - \mu_2)$	$(z_{\alpha} + z_{\beta})^2 (\sigma_1^2 + \sigma_2^2)$
contre	$eta(\mu_1, \mu_2) = \Phi \left(z_{lpha} + rac{(\mu_1 - \mu_2)}{\sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}} ight)$	$n = \frac{(z_{\alpha} + z_{\beta})^{2} (\sigma_{1}^{2} + \sigma_{2}^{2})}{(\mu_{1} - \mu_{2})^{2}}$
$H_1: \mu_1 < \mu_2$	$\bigvee n_1 - n_2$	
$H_0: \mu_1 = \mu_2$		
$\mu_1 = \mu_2$	$\left(\left(u_{1}-u_{0}\right) \right)$	$(z_1 + z_2)^2(\sigma_2^2 + \sigma_2^2)$
contre	$\beta(\mu_1,\mu_2) = \Phi\left(z_{\alpha} - \frac{(\mu_1 - \mu_2)}{\sqrt{2}}\right)$	$n = \frac{(z_{\alpha} + z_{\beta})^{2} (\sigma_{1}^{2} + \sigma_{2}^{2})}{(u_{\alpha} - u_{\alpha})^{2}}$
	$\beta(\mu_1, \mu_2) = \Phi\left(z_\alpha - \frac{(\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}\right)$	$(\mu_1 - \mu_2)^2$
	$\bigvee n_1 \ \ n_2$	
$H_1: \mu_1 > \mu_2$		
$H_0: \ \mu_1 = \mu_2$		
contre	$\beta(\mu_1, \mu_2) = \Phi\left(z_{\alpha/2} - \frac{(\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}\right) - \Phi\left(-z_{\alpha/2} - \frac{(\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}\right)$	$n \approx \frac{(z_{\alpha/2} + z_{\beta})^2 (\sigma_1^2 + \sigma_2^2)}{(\mu_1 - \mu_2)^2}$
	$\sqrt{\frac{s_1}{n_1} + \frac{s_2}{n_2}} \qquad \sqrt{\frac{s_1}{n_1} + \frac{s_2}{n_2}}$	
$H_1: \mu_1 \neq \mu_2$		