Properties of fuzzy set

Huan Huang

Department of Mathematics, Jimei University, Xiamen 361021, China

Abstract

In this paper, we give some properties related to platform points of a fuzzy set and their applications.

Keywords: Fuzzy set; platform points; Γ -convergence

1. Main results

Let (X, d) be a metric space. For $u \in F(X)$, let $[u]_{\alpha}$ denote the α -cut of u, i.e.

$$[u]_{\alpha} = \begin{cases} \{x \in X : u(x) \ge \alpha\}, & \alpha \in (0, 1], \\ \text{supp } u = \overline{\{u > 0\}}, & \alpha = 0, \end{cases}$$

where \overline{S} denotes the closure of S in (X,d). $F_{USC}(X)$ is the set of upper semi-continuous fuzzy sets in X.

For $u \in F(X)$,

$$D(u) := \{ \alpha \in (0,1) : [u]_{\alpha} \nsubseteq \overline{\{u > \alpha\}} \},$$

$$P(u) := \{ \alpha \in (0,1) : \overline{\{u > \alpha\}} \subsetneq [u]_{\alpha} \}.$$

 $\alpha \in P(u)$ is called a platform point of u. Clearly $P(u) \subseteq D(u)$.

We show that D(u) is at most countable when $u \in F(\mathbb{R}^m)$ (Theorem 5.1 of [1]).

In this paper, we show that D(u) is at most countable for fuzzy set $u \in F(X)$ with $([u]_0, d)$ being separable. This result follows directly from the proof of Theorem 5.1 of [1] and the fact that each separable metric space is homeomorphic to a subspace of the Hilbert space $l^2 := \{(x_i)_{i=1}^{+\infty} : \sum_{i=1}^{+\infty} x_i^2 < +\infty\}$. We also give some applications of this conclusion.

Email address: hhuangjy@126.com (Huan Huang)

Theorem 1.1. Let $u \in F(l^2)$. Then the set D(u) is at most countable.

Proof. The proof is similar to that of Theorem 5.1 in [1].

A sketch of the proof is given as follows

Similarly as in [1], for $u \in F(l^2)$, $t \in l^2$ and $r \in \mathbb{R}^+$, we can define $S_{u,t,r}(\cdot,\cdot): \mathbf{S}^1 \times [0,1] \to \{-\infty\} \cup \mathbb{R}$ by

$$S_{u,t,r}(e,\alpha) = \begin{cases} -\infty, & \text{if } [u]_{\alpha} \cap \overline{B(t,r)} = \emptyset, \\ \sup\{\langle e, x - t \rangle : x \in [u]_{\alpha} \cap \overline{B(t,r)}\}, & \text{if } [u]_{\alpha} \cap \overline{B(t,r)} \neq \emptyset, \end{cases}$$

where $\mathbf{S}^1 := \{e \in l^2 : ||e|| = 1\} \text{ and } \overline{B(t,r)} := \{x \in l^2 : ||x - t|| \le r\}.$

Similarly as in [1], we can define D(u, t, r, e), which is the discontinuous point of $S_{u,t,r}(e,\cdot)$.

Proceed as in the proof of Lemma A.1. of [1], we can show the conclusion corresponding to Lemma A.1. of [1]: $D(u,t,r) = \bigcup_{e \in \mathbf{S}^1} D(u,t,r,e)$ is countable.

Note that $2\langle a,b\rangle = ||a||^2 + ||b||^2 - ||a-b||^2$ for each $a,b \in l^2$. So proceed as in the proof of Theorem 5.1, we obtain that D(u) is at most countable.

Remark 1.2. In the proof of Theorem 5.1, the fact that $2\langle a,b\rangle = ||a||^2 + ||b||^2 - ||a - b||^2$ for each $a, b \in \mathbb{R}^m$ is used.

Clearly, (A.6) in the proof of Theorem 5.1 can be shown by using the equality $\langle e, x - q \rangle = \frac{\langle y - q, x - q \rangle}{\|y - q\|} = \frac{\|x - q\|^2 + \|y - q\|^2 - \|x - y\|^2}{2\|y - q\|}$.

Theorem 1.3. Let (X, d) be a metric space and $u \in F(X)$. If $([u]_0, d)$ is separable, then the set D(u) is at most countable.

Proof. Let f be a homeomorphism from $([u]_0, d)$ to a subspace of l^2 . Consider $u_f \in F(l^2)$ defined by

$$u_f(t) = \begin{cases} u(f^{-1}(t)), & t \in f([u]_0), \\ 0, & t \in l^2 \setminus f([u]_0). \end{cases}$$

Note that $D(u) = D(u_f)$, thus D(u) is at most countable from Theorem 1.1.

Remark 1.4. Here we mention that the closure operator in the definition of D(u) is taken in (X, d) and the closure operator in the definition of $D(u_f)$ is taken in l^2 .

2

Theorem 1.5. Let (X, d) be a metric space and $u \in F(X)$. If $([u]_0, d)$ is separable, then the set P(u) is at most countable.

Proof. The desired result follows immediately from Theorem 1.3 and the fact that $P(u) \subseteq D(u)$.

There are various kinds of fuzzy sets [2]. Since the corresponding discussion in [3] is in the framework of normal fuzzy sets, we only discuss normal fuzzy sets in the following.

$$F_{USCG}^{1}(X) := \{ u \in F(X) : [u]_{\alpha} \in K(X) \text{ for all } \alpha \in (0,1] \},$$

$$F_{USC}^{1}(X) := \{ u \in F(X) : [u]_{\alpha} \in C(X) \text{ for all } \alpha \in (0,1] \},$$

$$F_{USC}(X) = \{ u \in F(X) : [u]_{\alpha} \in C(X) \cup \emptyset \text{ for all } \alpha \in (0,1] \},$$

where K(X) and C(X) denote the set of all non-empty compact subsets of (X, d) and the set of all non-empty closed subsets of (X, d), respectively.

Theorem 1.6. Suppose that $u, u_n, n = 1, 2, ...,$ are fuzzy sets in $F^1_{USC}(X)$. If $([u]_0, d)$ is separable, then the following statements are true.

- (i) $u_n \stackrel{\Gamma}{\longrightarrow} u$
- (ii) $u_n \stackrel{a.e.}{\longrightarrow} u(K)$.
- (iii) $[u]_{\alpha} = \lim_{n \to \infty} [u_n]_{\alpha}(K)$ for all $\alpha \in (0,1) \setminus P(u)$
- (iv) $\lim_{n\to\infty} [u_n]_{\alpha}(K) = [u]_{\alpha}$ holds when $\alpha \in P$, where P is a dense subset of $(0,1)\backslash P(u)$.
- (v) $\lim_{n\to\infty} [u_n]_{\alpha}(K) = [u]_{\alpha}$ holds when $\alpha \in P$, where P is a countable dense subset of $(0,1)\backslash P(u)$.

Proof. The desired result follows immediately from Theorem 1.5 and Theorem 3.8 in [3].

Remark 1.7. Note that each compact metric space is separable. So if $u \in F^1_{USCG}(X)$, then $([u]_0, d)$ is separable. Thus Theorem 1.6 improves Theorem 3.9 in [3].

For $u \in F^1_{USC}(X)$, the set $P_0(u)$ is defined by $P_0(u) := \{\alpha \in (0,1) : \lim_{\beta \to \alpha} H([u]_{\beta}, [u]_{\alpha}) \neq 0\}$, where H is the Hausdorff metric on C(X) induced by d.

By Theorem 1.5 and Lemma 3.6 in [3], we have that $P_0(u)$ is at most countable for each $u \in F^1_{USCG}(X)$.

Lemma 3.6 in [3] is listed as follows

- Let $U_n \in K(X)$ for $n = 1, 2, \ldots$
 - (i) If $U_1 \supseteq U_2 \supseteq \ldots \supseteq U_n \supseteq \ldots$, then $U = \bigcap_{n=1}^{+\infty} U_n \in K(X)$ and $H(U_n, U) \to 0$ as $n \to +\infty$.
 - (ii) If $U_1 \subseteq U_2 \subseteq \ldots \subseteq U_n \subseteq \ldots$ and $V = \overline{\bigcup_{n=1}^{+\infty} U_n} \in K(X)$, then $H(U_n, V) \to 0$ as $n \to +\infty$.

However, for $u \in F^1_{USC}(X)$ with $([u]_0, d)$ being separable, $P_0(u)$ need not be at most countable. A counterexample is given in page 7 of [3].

- [1] H. Huang, Characterizations of endograph metric and Γ -convergence on fuzzy sets, Fuzzy Sets Syst. 350 (2018) 55-84
- [2] C. Wu, M. Ma, The Basic of Fuzzy Analysis (in Chinese), National Defence Industry press, Beijing, 1991
- [3] H. Huang, Properties of several fuzzy set spaces, chinaX-iv:202107.00011