

-Amendments to the Claims-

1. (Currently amended) A compound of Formula (1.0.0):

(1.0.0)

— wherein —

-g is 0 or 1;

-j is 0 or 1; provided that when j is 0, n must be 2;

-k is 0 or 1

-m is 0, 1, or 2;

-n is 1 or 2;

-W¹ is $-O-$; or $S(=O)_t$, where t is 0, 1, or 2; or $N(R^3)$ where R^3 has the same meaning as defined below;

-W² is $-O-$; $S(=O)_t$, where t is 0, 1, or 2; $N(R^3)$ where R^3 has the same meaning as defined below, or $CR^{29}R^{30}$;

— where —

R^{29} and R^{30} are each a member independently selected from the group consisting of H; F; CF_3 ; (C_4-C_8) alkyl; (C_3-C_6) cycloalkyl; phenyl; benzyl; and pyridyl; wherein said alkyl, cycloalkyl, phenyl, or benzyl, and pyridyl moieties are each independently substituted with 0 to 3 substituents R^{10} , where R^{10} has the same meaning as defined below;

-Y is $=C(R_{a})-$, where R_a has the same meaning as defined below; or $[N-(O)_k]$ where k is 0 or 1;

— where —

--R¹_a is a member selected from the group consisting of -H; -F; -Cl; -CN; -NO₂; -(C₁-C₄) alkyl; -(C₂-C₄) alkynyl; fluorinated-(C₁-C₃) alkyl; fluorinated-(C₁-C₃) alkoxy; -OR¹⁶; and -C(=O)NR²²_aR²²_b;

— where —

---R²²_a and R²²_b are each independently -H; -CH₃; -CH₂CH₃; -CH₂CH₂CH₃; -CH₂(CH₃)₂; -CH₂CH₂CH₂CH₃; -CH(CH₃)CH₂CH₃; -CH₂CH(CH₃)₂; -C(CH₃)₃; cyclopropyl; cyclobutyl; or cyclopentyl;

-R^A and R^B are each a member independently selected from the group consisting of -H; -F; -CF₃; -(C₁-C₄) alkyl; -(C₃-C₇) cycloalkyl; phenyl; and benzyl; wherein said cycloalkyl, phenyl, and benzyl moieties are each independently substituted with 0 to 3 substituents R¹⁰;

— where —

--R¹⁰ is a member selected from the group consisting of phenyl; pyridyl; -F; -Cl; -CF₃; oxo (=O); -OR¹⁶; -NO₂; -CN; -C(=O)OR¹⁶; -O-C(=O)R¹⁶; -C(=O)NR¹⁶R¹⁷; -O-C(=O)NR¹⁶R¹⁷; -NR¹⁶R¹⁷; -NR¹⁶C(=O)R¹⁷; -NR¹⁶C(=O)OR¹⁷; -NR¹⁶S(=O)₂R¹⁷; and -S(=O)₂NR¹⁶R¹⁷; wherein said phenyl or pyridyl is substituted by 0 to 3 R¹¹;

— where —

---R¹¹ is -F; -Cl; -CF₃; -CN; -NO₂; -OH; -(C₁-C₃) alkoxy; -(C₁-C₃) alkyl; or -NR¹⁶R¹⁷;

— and —

----R¹⁶ and R¹⁷ are each a member independently selected from the group consisting of -H; -(C₁-C₄) alkyl; -(C₂-C₄) alkenyl; -(C₃-C₆) cycloalkyl; phenyl; and benzyl; and pyridyl; wherein said alkyl, alkenyl, cycloalkyl, phenyl, or benzyl, or pyridyl is substituted by 0 to 3 substituents selected from the group consisting of -F, -Cl, -CF₃, -CN, and -(C₁-C₃) alkyl;

— or —

-R^A and R^B are taken together, but only in the case where m is 1, to form a spiro moiety of Formula (1.2.0):

(1.2.0)

— where —

--r and s are independently 0 to 4 provided that the sum of r + s is at least 1 but not greater than 5;

— and —

$-X^A$ is selected from $-\text{CH}_2-$, $-\text{CH}(\text{R}^{11})-$, or $\text{C}(\text{R}^{11})_2-$, where each R^{11} is selected independently of the other and each has the same meaning as defined above; $-\text{NR}^{16}-$, where R^{16} has the same meaning as defined below; $-\text{O}-$; and $-\text{S}(=\text{O})_t-$, where t is 0, 1, or 2;

— and —

said spiro moiety of partial Formula (1.2.0) is substituted as to any one or more carbon atoms thereof, other than that defining X^A , by 0 to 3 substituents R^{14} , where R^{14} has the same meaning as defined below; as to a nitrogen atom thereof by 0 or 1 substituent R^{16} , where R^{16} has the same meaning as defined below; and as to a sulfur atom thereof by 0 or 2 oxygen atoms;

$-\text{R}^C$ and R^D have the same meaning as defined above for R^A and R^B except that one of R^C or R^D them must be $-\text{H}$, and R^C and R^D they are selected independently of each other and of R^A and R^B ;

$-\text{R}^1$ and R^2 may individually or together appear on any ring or rings comprising a meaning of the moiety Q^2 as defined below; and R^1 and R^2 are each a member independently selected from the group consisting of $-\text{H}$; $-\text{F}$; $-\text{Cl}$; $-\text{CN}$; $-\text{NO}_2$; $-(\text{C}_1\text{-}\text{C}_4)$ alkyl; $-(\text{C}_2\text{-}\text{C}_4)$ alkynyl; fluorinated- $(\text{C}_1\text{-}\text{C}_3)$ alkyl; $-\text{OR}^{16}$; and $-\text{C}(=\text{O})\text{NR}^{22\text{a}}\text{R}^{22\text{b}}$, where R^{16} , $\text{R}^{22\text{a}}$, and $\text{R}^{22\text{b}}$ have the same meanings as defined above;

$-\text{R}^3$ is $-\text{H}$; $-(\text{C}_1\text{-}\text{C}_3)$ alkyl; phenyl; benzyl; or $-\text{OR}^{16}$, where R^{16} has the same meaning as defined above;

$-\text{R}^4$, R^5 and R^6 may individually or together appear on any ring or rings comprising a meaning of the moiety Q^1 as defined below; and

R^4 , R^5 and R^6 are each a member independently is selected from the group consisting of

— the following: —

$-(a)$ $-\text{H}$; $-\text{F}$; $-\text{Cl}$; $-(\text{C}_2\text{-}\text{C}_4)$ alkynyl; $-\text{R}^{16}$; $-\text{OR}^{16}$; $-\text{S}(=\text{O})_p\text{R}^{16}$; $-\text{C}(=\text{O})\text{R}^{16}$; $-\text{C}(=\text{O})\text{OR}^{16}$; $-\text{OC}(=\text{O})\text{R}^{16}$; $-\text{CN}$; $-\text{NO}_2$; $-\text{C}(=\text{O})\text{NR}^{16}\text{R}^{17}$; $-\text{OC}(=\text{O})\text{NR}^{16}\text{R}^{17}$; $-\text{NR}^{22\text{a}}\text{C}(=\text{O})\text{NR}^{16}\text{R}^{17}$; $-\text{NR}^{22\text{a}}\text{C}(\text{=NR}^{12})\text{NR}^{16}\text{R}^{17}$; $-\text{NR}^{22\text{a}}\text{C}(\text{=NCN})\text{NR}^{16}\text{R}^{17}$; $-\text{NR}^{22\text{a}}\text{C}(\text{=N-NO}_2)\text{NR}^{16}\text{R}^{17}$; $-\text{C}(\text{=NR}^{22\text{a}})\text{NR}^{16}\text{R}^{17}$; $-\text{CH}_2\text{C}(\text{=NR}^{22\text{a}})\text{NR}^{16}\text{R}^{17}$; $-\text{OC}(\text{=NR}^{22\text{a}})\text{NR}^{16}\text{R}^{17}$; $-\text{OC}(\text{=N-NO}_2)\text{NR}^{16}\text{R}^{17}$; $-\text{NR}^{16}\text{R}^{17}$; $-\text{CH}_2\text{NR}^{16}\text{R}^{17}$; $-\text{NR}^{22\text{a}}\text{C}(=\text{O})\text{R}^{16}$; $-\text{NR}^{22\text{a}}\text{C}(=\text{O})\text{OR}^{16}$; $=\text{NOR}^{16}$; $-\text{NR}^{22\text{a}}\text{S}(=\text{O})_p\text{R}^{17}$; $-\text{S}(=\text{O})_p\text{NR}^{16}\text{R}^{17}$; and $-\text{CH}_2\text{C}(\text{=NR}^{22\text{a}})\text{NR}^{16}\text{R}^{17}$;

— where —

$-\text{p}$ is 0, 1, or 2; and $\text{R}^{22\text{a}}$, R^{16} , and R^{17} have the same meanings as defined above;

$-(b)$ $-(\text{C}_1\text{-}\text{C}_4)$ alkyl; and $-(\text{C}_1\text{-}\text{C}_4)$ alkoxy in the case where one or more of R^4 , R^5 , or R^6 has the meaning of $-\text{OR}^{16}$ under (a) above and R^{16} is defined as $-(\text{C}_1\text{-}\text{C}_4)$ alkyl; wherein said alkyl and alkoxy are each independently substituted with 0 to 3 substituents $-\text{F}$ or $-\text{Cl}$; or 0 or 1 substituent $(\text{C}_1\text{-}\text{C}_2)$ alkoxy carbonyl-; $(\text{C}_1\text{-}\text{C}_2)$ alkyl carbonyl-; or $(\text{C}_1\text{-}\text{C}_2)$ alkyl carbonyloxy-;

— and —

-(c) an aryl or heterocyclyl moiety selected from the group consisting of phenyl [[:]], or benzyl; furanyl; tetrahydrofuranyl; oxetanyl; thienyl; tetrahydrothienyl; pyrrolyl; pyrrolidinyl; oxazetyl; oxazolidinyl; isoxazetyl; isoxazolidinyl; thiazetyl; thiazolidinyl; isothiazetyl; isothiazolidinyl; pyrazetyl; pyrazolidinyl; oxadiazetyl; thiadiazetyl; imidazetyl; imidazolidinyl; pyridinyl; pyrazinyl; pyrimidinyl; pyridazinyl; piperidinyl; piperazinyl; triazetyl; triazinyl; tetrazetyl; pyranyl; azetidinyl; morpholinyl; parathiazinyl; indetyl; indolinyl; benzene[b]furanyl; 2,3-dihydrobenzofuranyl; 2-H chremenyl; chremanyl; benzothienyl; 1-H indazolyl; benzimidazetyl; benzoxazetyl; benzisoxazetyl; benzthiazetyl; quinolinyl; isoquinolinyl; phthalazinyl; quinazolinyl; quinoxalinyl; and purinyl; wherein said phenyl or benzyl aryl and heterocyclyl-moieties are each independently substituted with 0 to 2 substituents R¹⁴;

— where —

--R¹⁴ is a member selected from the group consisting of -(C₁-C₄) alkyl; -(C₃-C₇) cycloalkyl; phenyl; and benzyl; pyridyl; and quinolinyl; where said alkyl, cycloalkyl, phenyl, or benzyl, pyridyl, or quinolinyl is substituted by 0, 1, or 2 substituents -F, -Cl, -CH₃, -OR¹⁶, -NO₂, -CN, or -NR¹⁶R¹⁷; and said R¹⁴ group further consists of -F; -Cl; -CF₃; oxo (=O); -OR¹⁶; -NO₂; -CN; -C(=O)OR¹⁶; -O-C(=O)R¹⁶; -C(=O)NR¹⁶R¹⁷; -O-C(=O)NR¹⁶R¹⁷; -NR¹⁶R¹⁷; -NR¹⁶C(=O)R¹⁷; -NR¹⁶C(=O)OR¹⁷; -NR¹⁶S(=O)₂R¹⁷; or -S(=O)₂NR¹⁶R¹⁷; where R¹⁶ and R¹⁷ have the same meanings as defined above;

— and further where —

--R¹⁵ is a member independently selected from the group consisting of H; NR¹⁶R¹⁷; C(=O)R¹⁶; OR¹⁶; (C₁-C₄) alkyl-OR¹⁶; C(=O)OR¹⁶; (C₁-C₂) alkyl-C(=O)OR¹⁶; C(=O)NR¹⁶R¹⁷; (C₁-C₄) alkyl; (C₂-C₄) alkenyl; (CH₂)_u(C₃-C₇) cycloalkyl where u is 0, 1 or 2; phenyl; and benzyl; pyridyl; and quinolinyl; wherein said alkyl, alkenyl, alkoxy, cycloalkyl, phenyl, or benzyl, pyridyl or quinolinyl is substituted with 0 to 3 substituents R¹²; where R¹⁶ and R¹⁷ have the same meanings as defined above; and

— where —

---R¹² is a member independently selected from the group consisting of -F; -Cl; -CO₂R¹⁸; -OR¹⁶; -CN; -C(=O)NR¹⁸R¹⁹; -NR¹⁸R¹⁹; -NR¹⁸C(=O)R¹⁹; -NR¹⁸C(=O)OR¹⁹; -NR¹⁸S(=O)_pR¹⁹; -S(=O)_pNR¹⁸R¹⁹, where p is 1 or 2; -(C₁-C₄) alkyl; and -(C₁-C₄) alkoxy in the case where R¹² has the meaning of -OR¹⁶ above and R¹⁶ is defined as -(C₁-C₄) alkyl; wherein said alkyl and alkoxy are each independently substituted with 0 to 3 substituents independently selected from -F; -Cl; -(C₁-C₂) alkoxy carbonyl; -(C₁-C₂) alkyl carbonyl; and -(C₁-C₂) alkyl carbonyloxy; where R¹⁶ has the same meaning as defined above; and

— where —

-----R¹⁸ and R¹⁹ are independently selected from the group consisting of -H; -(C₁-C₄) alkyl; and phenyl; where said alkyl or phenyl is substituted by 0-3 of -F; or -Cl;

— or in the case where Q' is phenyl —

-(d) R^5 and R^6 are taken together to form a moiety which is a member selected from the group consisting of partial Formulas (1.3.11) through (1.3.15) (1.3.1) through (1.3.15):

— wherein —

R^{20} and R^{24} are each a member independently selected from the group consisting of H; F; Cl; CH_3 ; CH_2F ; CHF_2 ; CF_3 ; OCH_3 ; and OCF_3 ;

R^{23} and R^{24} are each independently $-H$; $-CH_3$; $-OCH_3$; $-CH_2CH_3$; $-OCH_2CH_3$; $-CH_2CH_2CH_3$; $-CH_2(CH_3)_2$; $-CH_2CH_2CH_2CH_3$; $-CH(CH_3)CH_2CH_3$; $-CH_2CH(CH_3)_2$; $-C(CH_3)_3$; or absent, in which case the dashed line — — — represents a double bond;

Q' is phenyl a moiety comprising a saturated or unsaturated carbon ring system that is a 3 to 7-membered monocyclic, or that is a 7 to 12-membered, fused polycyclic; provided that Q' is not a discontinuous or restricted biaryl moiety as defined under Q^2 below; and wherein optionally one carbon atom of said carbon ring system may be replaced by a heteroatom selected from N, O, and S; where optionally a second carbon atom thereof, and further optionally a third carbon atom thereof may be replaced by N;

— wherein —

said phenyl moiety defining Q' is substituted on any ring or rings thereof by R^4 , R^5 and R^6 , which have the same meaning as defined above;

Q^2 is a discontinuous or restricted biaryl moiety consisting of a saturated or unsaturated carbon ring system that is a 3 to 7-membered monocyclic, or that is a 7 to 12-membered, fused polycyclic; wherein optionally one carbon atom of said carbon ring system

~~may be replaced by a heteroatom selected from N, O, and S; where optionally a second carbon atom thereof, and further optionally a third carbon atom thereof may be replaced by N;~~

or

~~-Z is a member independently selected from the group consisting of~~

~~the following~~

~~(a) the group consisting of partial Formulas (1.1.1) through (1.1.15):~~

~~wherein~~

where R^{16} and R^{17} have the same meanings as defined above; and R^9 has the same meaning as defined below;

--"**" indicates the point of attachment of each partial Formula (1.1.1) through (1.1.15) to the remaining portion of Formula (1.0.0);

--q is 1, 2, or 3, provided that where q is 2 or 3, R^9 has the meaning of H in at least one instance, or two instances, respectively;

--v 0 or 1;

--W³ is O; N(R^9), where R^9 has the same meaning as defined below; or OC(=O);

--R⁷_A is a member independently selected from the group consisting of

— the following: —

--(1) -H;

--(2) -(C₁-C₆) alkyl; -(C₂-C₆) alkenyl; or -(C₂-C₆) alkynyl; where said alkyl, alkenyl or alkynyl is substituted by 0 to 3 substituents R¹⁰, where R¹⁰ has the same meaning as defined above;

--(3) -(CH₂)_u-(C₃-C₇) cycloalkyl; where u is 0, 1 or 2; and further where said (C₃-C₇) cycloalkyl is substituted by 0 to 3 substituents R¹⁰ where R¹⁰ has the same meaning as defined above;

— and —

--(4) phenyl or benzyl, where said phenyl or benzyl is independently substituted by 0 to 3 substituents R¹⁰ where R¹⁰ has the same meaning as defined above;

--R⁷_B is a member independently selected from the group consisting of

— the following: —

--(1) tetrazol-5-yl; 1,2,4-triazol-3-yl; 1,2,4-triazol-3-on-5-yl; 1,2,3-triazol-5-yl; imidazol-2-yl; imidazol-4-yl; imidazolidin-2-en-4-yl; 1,3,4-oxadiazolyl; 1,3,4-oxadiazol-2-en-5-yl; 1,2,4-oxadiazol-3-yl; 1,2,4-oxadiazol-5-en-3-yl; 1,2,4-oxadiazol-5-yl; 1,2,4-oxadiazol-3-en-5-yl; 1,2,5-thiadiazolyl; 1,3,4-thiadiazolyl; morpholinyl; parathiazinyl; oxazolyl; isoxazolyl; thiazolyl; isothiazolyl; pyrrolyl; pyrazolyl; succinimidyl; glutarimidyl; pyrrolidonyl; 2-piperidonyl; 2-pyridonyl; 4-pyridonyl; pyridazin-3-onyl; pyridyl; pyrimidinyl; pyrazinyl; pyridazinyl;

— and —

--(2) indolyl; indolinyl; isoindolinyl; benzo[b]furanyl; 2,3-dihydrobenzofuranyl; 1,3-dihydroisobenzofuranyl; 2H-1-benzopyranyl; 2H-chromenyl; chromanyl; benzothienyl; 1H-indazolyl; benzimidazolyl; benzoxazolyl; benzisoxazolyl; benzothiazolyl; benzotriazolyl;

~~benzotriazinyl; phthalazinyl; 1,8-naphthyridinyl; quinolinyl; isoquinolinyl; quinazolinyl; quinoxalinyl; pyrazolo[3,4-d]pyrimidinyl; pyrimido[4,5-d]pyrimidinyl; imidazo[1,2-a]pyridinyl; pyridopyridinyl; pteridinyl; and 1*H*-purinyl;~~

—where—

~~any moiety recited in (1) or (2) above is optionally substituted with respect to (i) any one or more carbon atoms thereof optionally by a substituent R¹⁴ where R¹⁴ has the same meaning as defined above; (ii) any one or more nitrogen atoms thereof that is not a point of attachment of said moiety, optionally by a substituent R¹⁶ where R¹⁶ has the same meaning as defined above, and all tautomer forms thereof; and (iii) any sulfur atom thereof that is not a point of attachment of said moiety, by 0, 1, or 2 oxygen atoms;~~

~~R⁹ is a member selected from the group consisting of H; (C₁-C₄) alkyl; (C₃-C₇) cycloalkyl; phenyl; benzyl; pyridyl; C(=O)OR¹⁶; C(=O)R¹⁶; OR¹⁶; (C₁-C₂) alkyl OR¹⁶; and (C₁-C₂) alkyl C(=O)OR¹⁶; where R¹⁶ has the same meaning as defined above;~~

~~R⁷_C is a member independently selected from the group consisting of the meanings of R⁷_A and the meanings of R⁷_B defined above;~~

—and further wherein—

(1.1.15)

~~comprises a saturated or unsaturated, 4 to 8 membered monocyclic, or 5 to 10 membered fused or open bicyclic, carbocyclic ring system containing a nitrogen heteroatom as shown in partial Formula (1.1.15); wherein optionally from 1 to 3 carbon atoms of said carbocyclic ring system may be individually replaced by a nitrogen heteroatom; or optionally 1 carbon atom thereof may be replaced by an oxygen heteroatom or by a sulfur heteroatom; or optionally 2 carbon atoms thereof may be individually replaced by a nitrogen heteroatom and an oxygen heteroatom, or by a nitrogen heteroatom and a sulfur heteroatom;~~

—where—

~~any moiety of partial Formula (1.1.15) recited above is optionally substituted with respect to (1) any one or more carbon atoms thereof, by a substituent R¹⁴ where R¹⁴ has the same meaning as defined above; (2) any one or more nitrogen atoms thereof by a substituent R¹⁶ where R¹⁶ has the same meaning as defined above, and all tautomer forms, and optionally N-oxide forms thereof; or (3) any sulfur atom thereof by 0, 1, or 2 oxygen atoms;~~

—and Z is further selected from—

~~(b) a moiety comprising a member selected from the group consisting of —OP(=O)(OH)₂ (phosphoric); —PH(=O)OH (phosphinic); —P(=O)(OH)₂ (phosphonic);~~

~~(P(=O)(OH)O(C₁-C₄)alkyl (alkylphosphone); P(=O)(OH)O(C₁-C₄)alkyl (alkylphosphinyl); P(=O)(OH)NH₂ (phosphoramido); P(=O)(OH)NH(C₁-C₄)alkyl and P(=O)(OH)NHR²⁶ (substituted phosphoramido); O-S(=O)₂OH (sulfuric); S(=O)₂OH (sulfonic); S(=O)₂NHR²⁶ or NHS(=O)₂R²⁶ (sulfonamide) where R²⁶ is CH₃, CF₃, or o-tolyl; and acylsulfonamide selected from the group consisting of C(=O)NHS(=O)₂R²⁶; C(=O)NHS(=O)₂NH₂; C(=O)NHS(=O)₂(C₁-C₄)alkyl; C(=O)NHS(=O)₂N[(C₁-C₄)alkyl]; S(=O)₂NHC(=O)(C₁-C₄)alkyl; S(=O)₂NHC(=O)NH₂; S(=O)₂NHC(=O)NH(C₁-C₄)alkyl; S(=O)₂NHC(=O)N[(C₁-C₄)alkyl]; S(=O)₂NHC(=O)R²⁶; S(=O)₂NHCN; S(=O)₂NHC(=S)NH₂; S(=O)₂NHC(=S)NH(C₁-C₄)alkyl; S(=O)₂NHC(=S)N[(C₁-C₄)alkyl]; and S(=O)₂NHS(=O)₂R²⁶;~~

—where—

~~R²⁵ is H; (C₁-C₄)alkyl; phenyl; or OR¹⁸, where R¹⁸ has the same meaning as defined above;~~

~~provided that when Q¹ is phenyl, R⁵ and R⁶ are taken together to form a moiety which is a member selected from the group consisting of partial Formulas (1.3.1), (1.3.2), (1.3.3) and (1.3.6), g is 0 and Q² is biphenyl, then Z is not~~

— or —

a pharmaceutically acceptable salt thereof.

2. - 5. (Canceled)

6. (Currently amended) A compound according to Claim 1 wherein Q¹ is phenyl or pyridyl; Q² is biphenyl, 3-phenylpyridine, cyclohexylbenzene, [2,2']bipyridinyl, bicyclohexyl, naphthalene, or biphenylene; j is 1; m is 0 or 1; and n is 1; Z is a moiety selected from partial Formulas (1.1.1) through (1.1.3), (1.1.5), (1.1.6), and (1.1.10) through (1.1.14) where R^{7_A} is (a) H, or CH₃ substituted by 0-3 R¹⁰ where R¹⁰ is F; or is CH₃ substituted by 0 or 1 R¹⁰ where R¹⁰ is CN, OR¹⁶ where R¹⁶ is CH₃ or CH₂CH₃, or NR¹⁶R¹⁷ or NR¹⁶C(=O)R¹⁷ where R¹⁶ and R¹⁷ are H or CH₃; (b) cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl; or (c) phenyl or benzyl substituted by 0-2 R¹⁰ where R¹⁰ is F, Cl, CF₃, CH₃, CH₂OH, SCH₃, CN, NO₂, OR¹⁶, or NR¹⁶R¹⁷ where R¹⁶ and R¹⁷ are H, CH₃, or CH₂CH₃; R⁸ is H or CH₃; W¹ is O; g is 1 and W² is O or CR²⁹R³⁰ where R²⁹ and R³⁰ are both H, or g is 0 and W² is thus absent; Y is C(R^{4_a}); R^{4_a} is H, or F; R^A and R^B are independently H or CH₃; or R^A and R^B are taken together to form a (C₃-C₇)cycloalkyl spiro moiety; one of R^C and R^D is H and the other is H or CH₃; R^E

and R² are H, F, or OCH₃; and R³ is H or CH₃; and R⁴, R⁵ and R⁶ are H provided that R⁵ and R⁶ are not both H at the same time, F, Cl, OCH₃, CN, NO₂, or C(=O)R³ or -C(=O)OR³ where R³ is CH₃; or R⁵ and R⁶ are taken together to form a moiety of partial Formula (1.3.1), (1.3.2), (1.3.3), (1.3.4), (1.3.11), (1.3.12), or (1.3.15).

7. - 12. (Canceled)

13. (Currently amended) A compound according to Claim 1 wherein said compound is a member selected from the group consisting of the following:

[4'-(2-(Benzo[2,1,3]thiadiazol-5-yloxy)-pyridine-3-carbonyl]-amino)-methyl]-biphenyl-4-yloxy]-acetic acid;

[4'-(2-(Benzo[2,1,3]oxadiazol-5-yloxy)-pyridine-3-carbonyl]-amino)-methyl]-biphenyl-4-yloxy]-acetic acid;

(±)-2-[4'-(2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino)-methyl]-biphenyl-4-yloxy]-acetic acid;

(±)-2-[4'-(2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino)-methyl]-2-fluoro-biphenyl-4-yloxy]-propionic acid;

(±)-2-(Benzo[1,3]dioxol-5-yloxy)-N-(2'-fluoro-4'[1-(1H-tetrazol-5-yl)-ethoxy]-biphenyl-4-ylmethyl)-nicotinamide;

(±)-2-[4'-(2-(Benzo[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino)-methyl]-3'-fluoro-biphenyl-2-yloxy]-propionic acid;

(±)-2-(Benzo[1,3]dioxol-5-yloxy)-N-(2'-fluoro-4'[1-(5-methyl-4H-[1,2,4]triazol-3-yl)-ethoxy]-biphenyl-4-ylmethyl)-nicotinamide;

(±)-N-[4'-(1-Carbamoyl-ethoxy)-2'-fluoro-biphenyl-4-ylmethyl]-2-(3-cyano-phenoxy)-nicotinamide;

(±)-2-[2,3'-Difluoro-4'-(2-(3-methoxy-phenoxy)-pyridine-3-carbonyl]-amino)-methyl]-biphenyl-4-yloxy]-propionic acid;

2-(Benzo[1,3]dioxol-5-yloxy)-N-(4'-carbamoylmethyl-3-fluoro-biphenyl-4-ylmethyl)-nicotinamide;

2-(Benzo[1,3]dioxol-5-yloxy)-N-(4'[(2-cyano-benzoylamino)-methyl]-2'-fluoro-biphenyl-4-ylmethyl)-5-fluoro-nicotinamide;

Pyridine-2-carboxylic acid-(3'-fluoro-4'-(2-(4-fluoro-phenoxy)-nicotinamide)-methyl)-biphenyl-4-ylmethyl)-amide;

2-(Benzo[1,3]dioxol-5-yloxy)-N-(2'-fluoro-4'[1-methyl-1-(1H-tetrazol-5-yl)-ethyl]-biphenyl-4-ylmethyl)-nicotinamide;

5-Fluoro-N-(3-fluoro-4'-(5-methyl-4H-[1,2,4]triazole-3-carbonyl)-amino)-methyl)-biphenyl-4-ylmethyl)-2-(3-methoxy-phenoxy)-nicotinamide;

2-(Benzo[1,3]dioxol-5-yloxy)-N-[2'-fluoro-4'[(2-methoxybenzoyl)amino]-methyl]-biphenyl-4-ylmethylnicotinamide;

N-[4'-(1,3-Dioxo-1,3-dihydro-isindol-2-yl)methyl]-2'-fluoro-biphenyl-4-ylmethylnicotinamide;

N-[2'-Fluoro-4'[(3H-imidazole-4-carbonyl)amino]-methyl]-biphenyl-4-ylmethylnicotinamide;

(\pm)-3-[4'-(2-(3-Chloro-4-fluoro-phenoxy)-pyridine-3-carbonyl)amino]-methyl]-2-fluoro-biphenyl-4-yloxybutyric acid;

2-[4'-(2-Benzo[2,1,3]thiadiazol-5-yloxy)-pyridine-3-carbonyl)amino]-methyl]-2-fluoro-biphenyl-4-yl-2-methylpropionic acid;

(\pm)-2-[4'-(2-(Benzo[2,1,3]oxadiazol-5-yloxy)-pyridine-3-carbonyl)-amino]-methyl]-2-fluoro-biphenyl-4-yloxypropionic acid; and

(\pm)-2-[3'-Fluoro-4'-(2-(2-methyl-2H-benzotriazol-5-yloxy)-pyridine-3-carbonyl)-amino]-methyl]-biphenyl-4-yloxypropionic acid;

2-(3-Cyano-phenoxy)-N-[2'-fluoro-4'[(pyridin-2-yl)methyl]carbamoyl]-biphenyl-4-ylmethylnicotinamide;

2-(Benzo[1,3]dioxol-5-yloxy)-N-[2'-fluoro-4'[(quinolin-2-yl)methyl]carbamoyl]-biphenyl-4-ylmethylnicotinamide;

5-Fluoro-2-(4-fluoro-phenoxy)-N-[3-fluoro-3'-(1H-tetrazol-5-yl)biphenyl-4-ylmethyl]nicotinamide;

N-[3-Fluoro-4'[(1-hydroxy-pyridin-2-yl)methyl]carbamoyl]-biphenyl-4-ylmethylnicotinamide;

(\pm)-N-[3-Fluoro-4'-(2-hydroxy-1,2-dimethyl-propoxy)-biphenyl-4-ylmethyl]-2-(4-fluoro-phenoxy)nicotinamide;

N-[2'-Fluoro-4'-(1-hydroxy-1-methyl-ethyl)-biphenyl-4-ylmethyl]-2-(4-fluoro-phenoxy)nicotinamide; and

2-(3-Chloro-4-fluoro-phenoxy)-N-[4'-(pyridin-2-ylmethoxy)-biphenyl-4-ylmethyl]nicotinamide.

14. - 18. (Canceled)

19. (Withdrawn) A method of treating a disease, disorder or condition mediated by the PDE4 isozyme in a mammal, said method comprising administering to said mammal in need of such mediation, a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt thereof.

20. (Withdrawn) A method of claim 19 wherein said PDE4 isozyme is the PDE4-D subtype isozyme.

21. (Withdrawn) A method of claim 19 wherein said disease, disorder or condition is atopic asthma; non-atopic asthma; allergic asthma; bronchial asthma; essential asthma; true asthma; intrinsic asthma caused by pathophysiologic disturbances; extrinsic asthma caused by environmental factors; essential asthma of unknown or inapparent cause; bronchitic asthma; emphysematous asthma; exercise-induced asthma; occupational asthma; infective asthma caused by bacterial, fungal, protozoal or viral infection; non-allergic asthma; incipient asthma; or wheezy infant syndrome.

22. (Withdrawn) A method of claim 19 wherein said disease, disorder or condition is chronic or acute bronchoconstriction; chronic bronchitis; small airways obstruction; emphysema; pneumoconiosis; chronic eosinophilic pneumonia; chronic obstructive pulmonary disease; adult respiratory distress syndrome; or exacerbation of airways hyper-reactivity consequent to other drug therapy.

23. (Withdrawn) A method of claim 22 wherein said chronic obstructive pulmonary disease is characterized by irreversible, progressive airways obstruction.

24. (Withdrawn) A method of claim 22 wherein said pneumonconiosis is aluminosis; bauxite workers' disease; anthracosis; miners' disease; asbestosis; steam-fitters' asthma; chalcosis; flint disease; ptilosis caused by inhaling the dust from ostrich feathers; siderosis caused by the inhalation of iron particles; silicosis; grinders' disease; byssinosis; cotton-dust asthma; or talc pneumoconiosis.

25. (Withdrawn) A method of claim 19 wherein said disease, disorder or condition is bronchitis; acute bronchitis; chronic bronchitis; acute laryngotracheal bronchitis; arachidic bronchitis; catarrhal bronchitis; croupus bronchitis; dry bronchitis; infectious asthmatic bronchitis; productive bronchitis; staphylococcus bronchitis; streptococcal bronchitis; or vesicular bronchitis.

26. (Withdrawn) A method of claim 19 wherein said disease, disorder or condition is bronchiectasis; cylindric bronchiectasis; sacculated bronchiectasis; fusiform bronchiectasis; capillary bronchiectasis; cystic bronchiectasis; dry bronchiectasis or follicular bronchiectasis.

27. (Withdrawn) A method of claim 19 wherein said disease, disorder or condition is seasonal allergic rhinitis; perennial allergic rhinitis; sinusitis; purulent sinusitis; nonpurulent sinusitis; acute sinusitis; chronic sinusitis; ethmoid sinusitis; frontal sinusitis; or sphenoid sinusitis.