

Compiler Design (KCS-502)

3rd year (Semester – V)

Session – 2020 - 21

Unit – II

Notes – 9

Anil Singh Asst. Prof. CSE Dept. UCEM, Prayagraj

- We construct the SLR parsing ACTION and GOTO functions from the DFA that recognizes viable prefixes.
- It will not produce uniquely-defined parsing action tables for all grammar but it does succeed on many grammars for programming languages.

Algorithm:

- 1) Construct an augmented grammar G' for the input grammar G.
- 2) Construct FOLLOW(A), for all A \in N.
- 3) Construct $C = \{I_0, I_1,, I_n\}$, the collection of sets of LR(0) items for G'.
- 4) Construct state I from I_i.
- 5) In order to define the entries for state I of the ACTION table and GOTO table, do steps (i) to (v) for each I_i.

- i. If $[A \rightarrow \alpha.a\beta] \in I_i$ and $GOTO(I_i, a) = I_j$ then $ACTION(I_i, a) = S_j$ which means shift to state j. Here 'a' is the terminal symbol.
- ii. If $[A \rightarrow \alpha] \in I_i$ then ACTION(I_i , a) = r_j for all a \in FOLLOW(A) except A = S'.
- iii. If $[S' \rightarrow S.] \in I_i$ then ACTION(I_i , \$) = Accept. If any conflicting actions are generated by the above rules, we say the grammar is not SLR(1). The algorithm fails to produce a parser in this case.
- iv. For all non-terminals A, if $GOTO(I_i, A) = I_i$ then $GOTO(I_i, A) = j$.
- v. All the remaining entries in the ACTION table and the GOTO table are marked as error.
- 6) The initial table of the parser is the one constructed from the set of items containing [S' \rightarrow .S].

- The parsing table consisting of the parsing ACTION and GOTO functions determined by this algorithm is called the SLR table for G.
- An LR parser using the SLR table for G is called the SLR parser for G and a grammar having an SLR parsing table is said to be SLR(1).

Example 1:

Find the SLR or LR(0) parsing table for the grammar

$$E \rightarrow E+T \mid T$$

$$T \rightarrow T*F \mid F$$

$$F \rightarrow id$$

Solution:

The augmented grammar G' is

$$S \rightarrow E$$
 $E \rightarrow E+T \mid T$
 $T \rightarrow T*F \mid F$
 $F \rightarrow id$

The transition diagram for the given grammar is as follows:

Now we prepare a FOLLOW set for all non-terminals.

The productions are numbered as

- (1) $E \rightarrow E+T$
- (2) $E \rightarrow T$
- (3) $T \rightarrow T^*F$
- (4) $T \rightarrow F$
- (5) $F \rightarrow id$

Now build SLR parsing table as follows:

```
Entry in the action table ACTION(I_0, id) = S_4 because GOTO(I_0, id) = I_4
Similarly, ACTION(I_1, +) = S_5 since GOTO(I_1, +) = I_5
ACTION(I_2, *) = S_6
ACTION(I_5, id) = S_4
ACTION(I_6, id) = S_4
ACTION(I_7, *) = S_6
```

Now we will fill it up with reduce and accept action. We will also fill up the GOTO table for all the non-terminals.

So final SLR table is as follows:

ACTION table					GOTO table			
State	id	+	*	\$	E	Т	F	
I ₀	S ₄				1	2	3	
l ₁		S ₅		Accept				
l ₂		r ₂	S_6	r ₂				
l ₃		r ₄	r ₄	r ₄				
I ₄		r ₅	r ₅	r ₅				
I ₅	S ₄					7	3	
I ₆	S ₄						8	
I ₇		r ₁	S ₆	r ₁				
I ₈		r ₃	r ₃	r ₃				

Example 2:

Construct a SLR or LR(0) parsing table for the following grammar:

$$E \rightarrow E+T \mid T$$

$$T \rightarrow TF \mid F$$

$$F \rightarrow F^* \mid a \mid b$$

Solution:

The augmented grammar G' is

$$S \rightarrow E$$

 $E \rightarrow E+T \mid T$
 $T \rightarrow TF \mid F$
 $F \rightarrow F^* \mid a \mid b$

The transition diagram for the given grammar is as follows:

Now we prepare a FOLLOW set for all non-terminals.

The productions are numbered as

- (1) $E \rightarrow E+T$
- (2) $E \rightarrow T$
- (3) T \rightarrow TF
- $(4) T \rightarrow F$
- (5) $F \rightarrow F^*$
- (6) $F \rightarrow a$
- $(7) F \rightarrow b$

So final SLR table is as follows:

ACTION table							GOTO table		
State	а	b	+	*	\$	E	Т	F	
I ₀	S ₄	S ₅				1	2	3	
l ₁			S ₆		Accept				
l ₂	S ₄	S ₅	r ₂		r ₂			7	
l ₃	r ₄	r ₄	r ₄	S ₉	r ₄				
I ₄	r ₆	r ₆	r ₆	r ₆	r ₆				
I ₅	r ₇	r ₇	r ₇	r ₇	r ₇				
I ₆	S_4	S ₅					8	3	
l ₇	r ₃	r ₃	r ₃	S ₉	r ₃				
I ₈	S ₄	S ₅	r_1		r ₁			7	
l ₉	r ₅	r ₅	r ₅	r ₅	r ₅				

Example 3:

Construct a SLR or LR(0) parsing table for the following grammar:

$$S \rightarrow cA \mid ccB$$

$$A \rightarrow cA \mid a$$

$$B \rightarrow ccB \mid b$$

Solution:

The augmented grammar G' is

$$S' \rightarrow S$$

 $S \rightarrow cA \mid ccB$
 $A \rightarrow cA \mid a$
 $B \rightarrow ccB \mid b$

The transition diagram for the given grammar is as follows:

Now we prepare a FOLLOW set for all non-terminals.

$$FOLLOW(S) = \{\$\}$$

$$FOLLOW(A) = \{\$\}$$

$$FOLLOW(B) = \{\$\}$$

The productions are numbered as

- (1) $S \rightarrow cA$
- (2) $S \rightarrow ccB$
- (3) $A \rightarrow cA$
- (4) $A \rightarrow a$
- (5) $B \rightarrow ccB$
- (6) $B \rightarrow b$

So final SLR table is as follows:

ACTION table					GOTO table			
State	а	b	С	\$	S	Α	В	
I ₀	S ₃	S ₄	S ₂		1			
l ₁				Accept				
l ₂	S_3		S ₆			5		
l ₃				r ₄				
I ₄				r ₆				
I ₅				r_1/r_3				
I ₆	S_3	S ₄	S ₉			8	7	
I ₇				r_2/r_5				
l ₈				r ₃				
l ₉	S_3		S ₁₀			8		
I ₁₀	S ₃	S ₄	S ₉			8	11	
l ₁₁				r ₅				

From table, there occurs **reduce**-**reduce conflict**. So, the given grammar is not LR(0).