Многоуровневая модель OSI

Процесс передачи данных по компьютерной сети очень сложен, поэтому специалисты из организации ISO (International Standards Organization) решили разделить его на семь логических независимых уровней в виде модели OSI (Open Systems Interconnection).

семь логических независимых уровней в виде модели OSI (Open Systems Interconnection).			
Nº	Название уровня OSI	Название уровня ТСР/ІР	
7	прикладной (application)	взаимодействие программы или пользователя с ОС при передаче данных по сети; ввод логина/пароля, имени сайта	
6	уровень представления	стороны договариваются о формате передаваемых данных	
5	сеансовый (session)	согласование параметров соединения	
4	транспортный (transport)	Управление передачей «из-конца-в-конец», реагирование на потери/задержки	
3	сетевой (network)	выбор маршрута следования, пересечение границ сетей	
2	канальный (data link)	передача внутри локальной сети	
1	физический (physical)	физические характеристики каналов связи и сигналов	

"пользователь" \Leftrightarrow 7 \Leftrightarrow 6 \Leftrightarrow 5 \Leftrightarrow 4 \Leftrightarrow 3 \Leftrightarrow 2 \Leftrightarrow 1 \Leftrightarrow "сеть"

- Установка/разрыв/поддержание соединения
- Обнаружение и обработка ошибок
- Адресация
- Управление качеством обслуживания (QoS)
 - → задержка передачи
 - → вариация задержки (джиттер)
 - → доля потерянных/ошибочных блоков данных
 - → доступная пропускная способность канала связи и т.п.

Субъекты взаимодействия	 пользовательская программа на передающем/принимающем компьютере; ОС. 	
Объект взаимодействия	Пользовательские данные, представленные в «родном» понятном виде для приёмной и передающей программы.	
Основные функции	Вызов специальных функций ОС для работы с сетью (API). Программист не обязан знать о внутреннем устройстве сети, для него передача данных по сети не отличается от сохранения в файл (просто надо вызвать нужную функцию API ОС).	

Уровень представления OSI-модели

Субъекты взаимодействия	1) ОС; 2) спец. ПО для шифрования, сжатия, кодирования.	
Объект взаимодействия	Закодированные пользовательские данные (пользовательская программа уже не может работать с такими данными без декодирования).	
Основные функции	Шифрование, сжатие, выбор кодировки, выбор способа представления порядка байт (little-endian, big-endian). Каждый этап может выполняться несколько раз разными субъектами (см. пунктирные стрелки)	

- Установка соединения и согласование параметров соединения, при этом фактическая реализация запрошенных требований осуществляется на нижележащих уровнях.
- Процедура разрыва соединения
 - → разрыв при запросе пользователя
 - → разрыв при невозможности обеспечить затребованные параметры передачи
 - → разрыв без потери данных пользователя
 - → быстрый "жёсткий" сброс соединения с риском потери данных.
- Управление **точками синхронизации** соединения (сброс соединения до общей оговоренной точки синхронизации с возможной потерей данных).

Транспортный уровень OSI-модели

Описывает процесс межоконечной передачи данных по сети (end-to-end, "из конца в конец"), т.е. передачу с точки зрения наблюдателя, для которого вся сеть с промежуточными сетевыми устройствами между абонентами рассматриваются как единый "чёрный ящик", структура которого неизвестна.

• Управление соединением таким образом, чтобы соблюсти требования QoS, запрошенные сеансовым уровем (повторные передачи, контроль скорости передачи и т.п.).

• Контроль порядка поступления блоков данных (например, с помощью порядковых номеров, добавляемых к блокам данных)

• Манипуляции размерами блоков данных: разбиение больших блоков на более мелкие, объединение маленьких в большие и т.п.

Сетевой уровень OSI-модели

Описывает процесс процесс передачи блока данных через границы разнотипных локальных сетей. Каждая локальная сеть выглядит на сетевом уровня как «чёрный ящик», структура которого неизвестна.

- Контроль порядка поступления блоков данных.
- Манипуляции размерами блока данных.
- Правила маршрутизации и построения маршрутных таблиц при пересечении границ сетей.

Описывает **логические** правила передачи блока данных в пределах локальной сети, построенной в рамках единой технологии с одинаковыми однотипными линиями связи. Все физические особенности каналов связи выглядят для канального уровня как чёрный ящик, структура которого неизвестна.

- Распознавание границ блоков данных в физических сигналах.
- Контроль порядка поступления блоков данных.
- Разделения/объединение потока данных на несколько подпотоков для их одновременной передачи по нескольким физическим линиям связи
- Правила маршрутизации и построения маршрутных таблиц.

Физический уровень OSI-модели

Описывает с физической точки зрения процессы передачи сигналов по некоторой конкретной линии связи. Специфицирует только физические свойства.

Субъекты взаимодействия	 модуль сетевой карты, который генерирует физические сигналы (ток, пучок света, радиоволна); проводник сигнала (медный кабель, оптоволокно, радиоэфир). 	
Объект взаимодействия	Физические сигналы (ток, пучок света, радиоволна).	
Основные функции	Выбор носителя сигнала (ток, свет, радиоволна). Выбор свойств проводника сигнала (материал: медь, оптоволокно; диаметр сечения, сопротивление, предельно допустимая длина). Выбор способа представления цифровых данных в виде физического сигнала (кодирование, модуляция).	

О и 1 можно представить в виде разного напряжения электрического тока. Самый интуитивно-понятный способ называется NRZ. Существует много других способов, устраняющих недостатки NRZ (например, проблему вырождения переменного сигнала в постоянный ток, если передаются много единиц подряд).

Если сетевая карта умеет генерировать физический сигнал в виде синусоиды, то управляя **а**мплитудой/**ч**астотой/**ф**азой этой синусоиды, можно кодировать 0 и 1.

Сопоставление OSI-модели и TCP/IP-модели

Модель OSI – недостижимый идеал. Модель TCP/IP – реальность.

Nº	Название уровня OSI	Название уровня ТСР/ІР	Что передаётся (блок данных)	
7	прикладной (application)	прикладной (работа с сетью, видимая пользователю или программисту)	Несегментированные «сырые» данные пользователя. Пример ftp:	
6	уровень представления		open 192.168.1.1 - открыть соединение с ftp-сервером user admin – аторизововаться (запрос пароля)	
5	сеансовый (session)		ls – отобразить содержимое каталога get myfile.txt – скачать файл myfile.txt	
4	транспортный (transport)	транспортный (управление передачей из-конца-в-конец, когда сеть – это чёрный ящик)	TCP-сегменты, UDP-датаграммы и т. п. с указанием порта приложения	
3	сетевой (network)	сетевой (передача через несколько объединённых сетей)	IP-пакеты с указанием IP-адресов отправителя и адресата	
2	канальный (data link)	канальный (передача внутри локальной сети)	Кадры с указанием МАС-адресов отправителя и адресата, а затем сигналы (биты)	
1	физический (physical)			

Не существует ни одной сетевой технологии, в которой бы была идеально реализована вся OSI-модель с чётким разделением уровней.

Реальность	OSI-уровни
Skype	7, 6, 5
FTP	7, 3
TCP	7, 5, 4, 3
IP	3, 4
Wi-Fi, Fast Ethernet	1, 2

Вывод: модель OSI далека от реальности, её назначение – быть идеальной абстракцией.

Различия протоколов TCP и UDP

Свойство	ТСР	UDP
Установка соединения	$\overline{\checkmark}$	×
Разрыв соединения	V	×
Подтверждение доставки	V	×
Проверка контрольной суммы	V	V
Обнаружение искажённых пакетов	V	V
Обнаружение потерянных пакетов	V	×
Повторная передача потерянных/искажённых	V	×

TCP применяют, если необходимо удостовериться, что все данные дошли корректно, получив об этом подтверждение и организовав повторную передачу поврежденных данных, а также для возможности автоматически **подстраивать скорость передачи** под текущую загрузку сети (пример: скачивание файла).

UDP применяют *либо* если канал связи абсолютно надёжен, *либо* если нет смысла повторно передавать потерянные/искажённые пакеты, но при этом хочется сэкономить на передаче ненужных служебных данных, используемых в TCP (пример: Скайп-звонок).

Сетевые устройства на примере домашней сети

Сравнение коммутатора и маршрутизатора

Свойство	Коммутатор (switch)	Маршрутизатор (Router)
Наличие МАС- адреса	Нет	Много (ровно по одному на каждый порт/антенну)
Наличие IP-адреса	Нет	Много (как минимум по одному на каждый порт/антенну)
Уровни OSI-модели	1, 2	1, 2, 3
Умение выбирать маршруты	Нет (т.к. в локальной сети всегда есть только один маршрут)	Да
Назначение	Обмен данными между компьютерами внутри локальной сети	Обмен данными между несколькими локальными сетями

Примечание: существуют гибридные устройства, совмещающие в себе коммутатор и маршрутизатор (они используются у большинства пользователей домашнего интернета, однако в корпоративных сетях применяются реже).