Fundamentals of Electrical Engineering

Equivalent Circuits

- What does a source "see"?
- Series and parallel combinations

Our Simple Circuit

$$v_{\text{out}}(t) = \frac{R_2}{R_1 + R_2} v_{\text{in}}(t)$$

$$\uparrow$$
voltage divider

Our Simple Circuit

Resistors in series appear to be a *single* resistor, the value of which is the sum of the component values

Another Simple Circuit

v-i:
$$v_1 = R_1 i_1$$

 $v_2 = R_2 i_{\text{out}}$

KCL:
$$i_{in} = i_1 + i_{out}$$

KVL:
$$v = v_1$$
 $v_2 = v_1$

$$i_{\text{out}} = \frac{R_1}{R_1 + R_2} i_{\text{in}}$$

current divider

Another Simple Circuit

$$R_1 \| R_2 \equiv \frac{R_1 R_2}{R_1 + R_2}$$

Using Equivalent Resistance

$$R_1 || (R_2 || R_3 + R_4)$$

Solving a Circuit "the Easy Way"

$$v_{\text{out}} = \frac{R_2 || R_L}{R_1 + R_2 || R_L} v_{\text{in}}$$

$$= \frac{\frac{R_2 R_L}{R_2 + R_L}}{R_1 + \frac{R_2 R_L}{R_2 + R_L}} v_{\text{in}}$$

$$= \frac{R_2 R_L}{R_1 R_2 + R_1 R_L + R_2 R_L} v_{\text{in}}$$

Resistor Equivalents

$$R_T = \sum_{n=1}^{N} R_n \qquad v_2 = \frac{R_2}{R_T} \cdot v$$

$$\mathbf{G_T} \overset{\mathsf{G_1}}{\longrightarrow} \mathbf{G_1} \overset{\mathsf{Vi}_2}{\longrightarrow} \dots \mathbf{G_N} \qquad \qquad i_2 = \frac{G_2}{G_T} \cdot i$$

Solving Circuits

- Equivalent resistance, along with voltage and current divider, allows us to *easily* solve any circuit with resistors and sources
- Structure of a circuit: where are the series and parallel combinations?

