2006 级《微积分 A》期末试卷 (A 卷)

- 一、完成下列各题(每小题6分)
 - 1. 已知直线 $L: \frac{x-1}{k} = \frac{y-a}{1} = \frac{z-2}{-4}$ 在平面 $\pi: 3x-2y+z=7$ 内,求 k 与 a 的值.
 - 2. 设 $z = \frac{1}{x} f(xy) + y \varphi(x+y)$, 其中 f, φ 二阶可导, 求 $\frac{\partial^2 z}{\partial x \partial y}$.
 - 3. 已知 \vec{n} 是曲面 $x^2 + 2y^2 + \frac{z^2}{2} = 5$ 在点 (1,1,2) 处指向 x 增大方向的单位法向量, $u = e^x + \ln(1 + y^2 + z^2)$, 求 $\frac{\partial u}{\partial \vec{n}}\Big|_{(0,1,1)}$.
 - 4. 计算二重积分 $I = \iint_D y^2 dx dy$, 其中 D 是由直线 y = x 与曲线 $y = x^2$ 所围成的平面有界闭区域.
 - 5. 判断级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{4n-1}} \ln(1+\frac{1}{\sqrt{n}})$ 的敛散性;若收敛,指出是条件收敛还是绝对收敛.
- 二、求解下列各题(每小题7分)
 - 1. 求二元函数 $z = f(x, y) = x^3 + y^2 2xy$ 的极值点与极值.
 - 2. 计算曲面积分 $I = \iint_{\Sigma} (x+y+z) dS$, 其中曲面 Σ 为: $z = \sqrt{1-x^2-y^2}$.
 - 3. 计算第二类曲线积分 $I = \int_L (e^y yx^2) dx + (xe^y 2\sin y + xy^2) dy$, 其中 L 为上半圆周 $x^2 + y^2 = 1$ ($y \ge 0$),积分沿从 A(1,0) 到 B(-1,0) 的方向.
 - 4. 设 $f(x) = \pi 2|x|$, $-\pi \le x \le \pi$, 将 f(x) 展开成以 2π 为周期的傅里叶级数.
- 三、(8 分) 求证: 曲线 Γ : $\begin{cases} x^2 z = 0 \\ 3x + 2y + 1 = 0 \end{cases}$ 上点 P(1, -2, 1) 处的切线与直线 L: $\begin{cases} 3x 5y + 5z = 0 \\ x + 5z = 1 \end{cases}$ 垂直.
- 四、(8 分) 求幂级数 $\sum_{n=1}^{\infty} \frac{(x-1)^n}{3^n n}$ 的收敛域与和函数.
- 五、(8 分) 计算第二类曲面积分 $I = \iint_S xy^2 dydz + yx^2 dzdx + zdxdy$, 其中 S 为曲面 $z = x^2 + y^2$ ($0 \le z \le 1$) 的上侧.
- 六、(10 分) 设Ω是由半球面 $z = \sqrt{1 x^2 y^2}$ 与锥面 $3z^2 = x^2 + y^2$ ($z \ge 0$) 围成的实心

体, 假设其质量分布是均匀的. 求 Ω 的体积 V和质心坐标(\bar{x} , \bar{y} , \bar{z}).

七、(8分) 设 $\Omega(t) = \{(x, y, z) \mid x^2 + y^2 + z^2 \le t^2 \}$, 其中t > 0. 已知f(x)在 $[0, +\infty)$ 内连续,又设 $F(t) = \iiint_{\Omega(t)} f(x^2 + y^2 + z^2) dx dy dz$.

- (1) 求证: F(t) 在 $(0,+\infty)$ 内可导,并求F'(t) 的表达式;
- (2) 设 $f(0) \neq 0$,求证:级数 $\sum_{n=1}^{\infty} n^{1-\lambda} F'(\frac{1}{n})$ 在 $\lambda > 0$ 时收敛, $\lambda \leq 0$ 时发散.