Distributed Breadth-First Search

Introduction

- 1. Approaching the problem of BFS on a distributed memory system from the persepective of linear algebra
 - Represent graph of a matrix
 - Use ideas from distributed matrix multiply

Graphs and Adjacency Matrices

- 1. Adjacency matrix: Number the nodes, use NxN matrix to represent edges
 - 0 = not connected, 1 = connected
- 2. For an undirected graph G with n vertices and m edges, it's adjacency matrix is nxn
 - G = (V,E)
 - |V| = n
 - |E| = m
 - Number of non-zero entries = 2 * m

Adjacency Matrix

The Adjacency Matrix of a Directed Graph

1. Number the verices and fill in the adjacency matrix

Adjacency Matrix Quiz

Losing Your Direction

- 1. Given the directed graph, how do you compute the boolean adjacency of the undirected graph for rmatrix B?
 - or(B, trans(B))

Breadth-First Search Review

- 1. Level-synchronous BFS
 - G = (V,E)
 - Source vertex S
 - Distance vector d[:]
- 2. At each level l, gather the vertices in the frontier of l
 - Frontier: All adjacent nodes that haven't been visited
 - Mark their distance as the level + 1
 - Repeat
- 3. Algorithmic complexity
 - Running time: O(m + n)

Matrix-Based BFS

- 1. Adjacency matrix A contains true where edges exist and false otherwise
- 2. Frontier f is a vector with true in the nodes that are in the current frontier
- 3. Update u is a vector containing the nodes for any vertex j that is in the frontier and adjacency matrix
 - $u[i] \leftarrow OR(AND(f[j], A[j][i]))$ for all j
 - u < -transpose(A) * f
 - Matrix-vector multiply
- 4. Because the adjacency matrix and frontier vector are sparse, we can implement this in a work-optimal way by only looping over vertices that exist

```
// going from update vector to distance
for-all ui = 1 and di = inf do
```

```
di <- 1 + 1 fnext <- 1
```

Matrix-Based BFS Quiz

1. Mark the entries o fu that may need updates, given f.

1D Distributed BFS

- 1. Partition the columns across processes (corresponds of a partitioning of the vertices)
 - Also implies a partitioning of u
 - Must replicate the frontier vector across processes
 - Creating the next frontier requires an all-to-all communication
- 2. Algorithm description
 - Partition columns of A and entries of u
 - Compute $u \leftarrow tranpose(A) * f$
 - Locally update distances
 - Identify local vertices of the next frontier
 - All-to-all, to exchange frontier
- 3. Algorithmic complexity

• Closed-form solution depends on the graph structure, but due to the all-to-all communication, we expect that the communication cost scales linearly according to number of processors

2D Distributed BFS Quiz

- 1. How might the O(P) scaling of the 1D algorithm change if we switch to a 2D scheme?
 - If we split the grid across both rows and columns, we might be able to achieve sqrt(P) scaling as each node will have $\sim sqrt(P)$ of the matrix
 - We would only need to merge across columns or rows, not both

Conclusion

- 1. Key idea: Recast BFS in terms of a matrix to make distribution easier
 - Allows us to reuse basic ideas from matrix computations
 - Might be able to frame other graph computations in this way
- 2. Other graph algorithms:
 - Depth first search
 - All pairs shortest path
 - Triangle counting
 - Computing betweeness centrality