

Analytic Study of Rotating Black-Hole Quasinormal Modes

Uri Keshet

Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA *

Shahar Hod

*The Ruppin Academic Center, Emeq Hefer 40250, Israel
and The Hadassah Institute, Jerusalem 91010, Israel*

(Dated: February 1, 2008)

A Bohr-Sommerfeld equation is derived for the highly-damped quasinormal mode frequencies $\omega(n \gg 1)$ of rotating black holes. It may be written as $2 \int_C (p_r + ip_0) dr = (n + 1/2)\hbar$, where p_r is the canonical momentum conjugate to the radial coordinate r along a null geodesic of energy $\hbar\omega$ and angular momentum $\hbar m$, $p_0 = O(\omega^0)$, and the contour C connects two complex turning points of p_r . The solutions are $\omega(n) = -m\hat{\omega} - i(\hat{\phi} + n\hat{\delta})$, where $\{\hat{\omega}, \hat{\delta}\} > 0$ are functions of the black-hole parameters alone. Some physical implications are discussed.

PACS numbers: 04.70.Bw, 03.65.Pm, 04.30.-w, 04.70.Dy

Quantizing black holes may become an important step towards quantum gravity, analogous to the role played by atomic models in the development of quantum mechanics. Thus, the "no-hair" conjecture [1] suggests that in a quantum theory of gravity, a black hole may be described by few quantum numbers related to its mass M , electric charge Q , and angular momentum J . The existence of classically reversible changes in the state of a nonextremal black hole [2] suggests that its area A is an adiabatic invariant, possibly corresponding to a quantum entity with a discrete spectrum [3].

Classical black holes, like most systems with radiative boundary conditions, are characterized by a discrete set of complex ringing frequencies $\omega(n) = \omega_R + i\omega_I$ known as quasinormal modes (QNMs) [4]. In the spirit of Bohr's correspondence principle, the classical QNM spectrum of a black-hole should be reproduced as resonances in a quantum theory of gravity. QNM spectroscopy may thus provide valuable clues towards such a theory. In particular, the asymptotically damped frequency $\tilde{\omega}_R \equiv \omega_R(n \rightarrow \infty)$, which for a spherically-symmetric black hole depends only on the black hole parameters [e.g. 5], may have a simple counterpart in quantum gravity [6]. Indeed, for a Schwarzschild black hole $\tilde{\omega}_R = (8\pi M)^{-1} \ln 3$, such that the change in black hole entropy associated with $\Delta M = \hbar\tilde{\omega}_R$, $\Delta S = \Delta(4\pi M^2/\hbar) = \ln 3$, admits a (triply-) degenerate quantum-state interpretation [6, 7]. We use geometrized units where $G = c = k_B = 1$.

Although $\tilde{\omega}$ was analytically derived for spherically-symmetric black holes [5, 7], little is known about the generic and more complicated case of rotating black holes. Contradicting results for $\tilde{\omega}$ have appeared in the literature, although numerical convergence has recently been reported [8]. An analytical solution is essential in order to test and physically interpret these results.

We analytically derive $\tilde{\omega}$ for rotating black holes in a method similar to the spherical black-hole analysis of [5], by analytically continuing the relevant solution of Teukolsky's radial equation [9] to the complex plane, and matching the monodromy of the wave-function along two different contours. Our analytical results confirm and generalize the numerical results of [8], as well as admit a physical interpretation. In this Rapid Communication we outline the derivation and present the main results, deferring a more elaborate description of the analysis to a future, detailed paper.

Teukolsky's equation.— Linear, massless field perturbations of a neutral, rotating black hole are described by Teukolsky's equation. For a scalar field, this equation can be generalized to accommodate electrically charged black holes [10]; in what follows, $Q \neq 0$ is understood to apply only to such fields. The wave-function is separated into two ordinary differential equations using $\psi(x) = e^{i(m\phi - \omega t)} S_{lm}(\cos\theta) R_{lm}(r)$, where $x = (t, r, \theta, \phi)$ are Boyer-Lindquist coordinates. This yields radial and angular equations coupled by a separation constant A_{lm} , where $A_{lm}(\omega_I \rightarrow -\infty) = iA_1\omega + (A_0 + m^2) + O(|\omega|^{-1})$, with $A_1 \in \mathbb{R}$ [8, 11]. The radial equation then becomes

$$\left[\frac{\partial^2}{\partial r^2} + \frac{q_0(r)\omega^2 + q_1(r)\omega + q_2(r)}{\Delta^2} \right] \tilde{R}_{lm} = 0 , \quad (1)$$

where $\tilde{R}_{lm} \equiv \Delta^{(s+1)/2} R_{lm}$, $\Delta \equiv r^2 - 2Mr + a^2 + Q^2$, $a \equiv J/M$, and we have defined

$$q_0 \equiv (r^2 + a^2)^2 - a^2\Delta , \quad (2)$$

$$\begin{aligned} q_1 \equiv & -2am(2Mr - Q^2) - iaA_1\Delta \\ & + 2is[r(\Delta + Q^2) - M(r^2 - a^2)] , \end{aligned} \quad (3)$$

and

$$\begin{aligned} q_2 \equiv & -m^2(\Delta - a^2) - \Delta(s + A_0) + M^2 - a^2 - Q^2 \\ & - s(M - r)[2iam + s(M - r)] . \end{aligned} \quad (4)$$

*Friends of the Institute for Advanced Study member; Electronic address: keshet@sns.ias.edu

The spin-weight parameter s specifies the equation to gravitational ($s = -2$), electromagnetic ($s = -1$), scalar ($s = 0$), or two-component neutrino ($s = -1/2$) fields. For physical boundary conditions of purely outgoing waves at both spatial infinity and the event horizon (i.e. crossing the horizon into the black hole), Eq. (1) admits solutions only for a discrete set of QNM frequencies $\omega(n)$, where $\omega_I < 0$ (time decay) diverges as $n \rightarrow \infty$.

Analysis.— By defining $z \equiv \int^r V(r') dr'$, with $V \equiv \Delta^{-1}(q_0 + \omega^{-1}q_1)^{1/2}$, Eq. (1) becomes

$$\left(-\frac{\partial^2}{\partial z^2} + V_1 - \omega^2 \right) \hat{R} = 0 , \quad (5)$$

where $\hat{R} = V^{1/2} \tilde{R}$ and $V_1 = V''/(2V^3) - 3(V')^2/(4V^4) - q_2/(V\Delta)^2$. A nonconventional tortoise coordinate z was defined such that the effective potential $V_1 = O(|\omega|^0)$. The boundary condition at the horizon becomes $\hat{R}(r \rightarrow r_+) \sim \exp(-i\omega z) \propto (r - r_+)^{-i\omega\sigma_+}$, where

$$\omega\sigma_+ = \omega \operatorname{Res}_{r \rightarrow r_+} (V) = \beta(\omega - m\Omega) - \frac{is}{2} + O(|\omega|^{-1}) . \quad (6)$$

Here, $\Omega \equiv a/(r_+^2 + a^2)$ is the angular velocity of the event horizon, $\beta \equiv \hbar/(4\pi T) = (r_+^2 + a^2)/(r_+ - r_-)$, T is the Bekenstein-Hawking temperature, $r_{\pm} = M \pm (M^2 - a^2 - Q^2)^{1/2}$ are the outer and inner horizon radii, and the tilde in $\tilde{\omega}$ is omitted unless necessary (henceforth). $\hat{R}(r \simeq r_+)$ is multivalued, such that a clockwise rotation around r_+ multiplies \hat{R} by a factor $\Phi_1 = \exp(-2\pi\omega\sigma_+)$.

Let r_1 and $r_2 = r_1^*$ be the two complex conjugate roots of $q_0(r)$ lying in the fourth and in the first quadrants, respectively. Denote t_1 and t_2 as the turning points of V [defined by $V(r = t_i) = 0$] which lie near (a factor $\sim |\omega|^{-1}$ away from) r_1 and r_2 , respectively (see Figure 1). The monodromy Φ_2 of \hat{R} along a clockwise contour C , which passes through t_1 and t_2 and encloses r_+ , is used to determine ω by demanding $\Phi_1 = \Phi_2$, as in [5]. A reader uninterested in details of the derivation may skip directly to the result, Eq. (8).

Near the turning points, $(z - z_i) \propto (r - t_i)^{3/2}$, where $z_i \equiv z(t_i)$. Therefore three anti-Stokes lines, defined by $\Re(i\omega z) = 0$, emanate from t_i . Two anti-Stokes lines connect t_1 to t_2 ; one (denoted l_2) crosses the real axis between r_- and r_+ , while the other crosses it at $r > r_+$. The third anti-Stokes line (l_1) emanating from t_1 extends to P_1 , where $|P_1| \rightarrow \infty$ and $\arg(P_1) = -\pi/2$. A similar line (l_3) runs from t_2 to P_2 , with $|P_2| \rightarrow \infty$ and $\arg(P_2) = +\pi/2$. A Stokes line, defined by $\Im(i\omega z) = 0$, emanates between every two anti-Stokes lines of t_i . Let C be the closed, clockwise contour running from P_1 to P_2 along the anti-Stokes lines l_1 , l_2 and l_3 , and closing back on P_1 through the large semicircle l_∞ , where $|r| \rightarrow \infty$ and $-\pi/2 < \arg(r) < \pi/2$. The turning points t_1 and t_2 are excluded from C by partially rotating around them counterclockwise. Figure 1 illustrates these features in the r -plane.

Along anti-Stokes lines, the WKB approximation $\hat{R}(z, z_0) \simeq c_+ \exp[+i\omega(z - z_0)] + c_- \exp[-i\omega(z - z_0)]$

FIG. 1: Illustration of anti-Stokes (solid) and Stokes (dashed) lines emanating from the turning points t_1 and t_2 (disks) in the complex r -plane, for $a = 0.3$, $Q = 0$ in the highly damped limit. The inner and outer horizon radii (diamonds) and components of the contour C are also shown. Arrows along anti-Stokes lines denote the direction of increasing $\Im z$.

holds. Off the lines, this may also be written as $c_d f_d + c_s f_s$, where f_d is exponentially large (dominant) and f_s is exponentially small (subdominant). For $\omega_R < 0$, the boundary condition at spatial infinity can be analytically continued to P_1 [5] such that $\hat{R}(P_1) \sim \exp(+i\omega z)$, i.e. $\{c_+, c_-; z_0\} = \{1, 0; z_1\}$ up to a multiplicative factor. This remains invariant along l_1 till the vicinity of t_1 , so we denote $\hat{R}(l_1) = \{1, 0; z_1\}$. When an anti-Stokes line is crossed, the dominant and subdominant parts exchange roles. When a Stokes line is crossed while circling a regular turning point, $c_d f_d + c_s f_s$ becomes $c_d f_d + (c_s \pm i c_d) f_d$, where the positive (negative) sign corresponds to a counterclockwise (clockwise) rotation. This so-called Stokes phenomenon [12] implies that after rotating around t_1 from l_1 to l_2 , thus crossing two Stokes lines and the anti-Stokes line between them, $\hat{R}(l_2) = \{0, i; z_1\} = \{0, i \exp(-i\omega\delta); z_2\}$, where

$$\delta \equiv z_2 - z_1 = \int_{l_2} V dr . \quad (7)$$

Similarly, after rotating from l_2 to l_3 , $\hat{R}(l_3) = \{-\exp(-2i\omega\delta), 0; z_1\}$. Finally, along l_∞ the coefficient of the dominant part of the solution c_+ remains invariant till P_1 . In addition to the above changes in c_+ , it accumulates a phase $e^{+2\pi\omega\sigma_+}$ due to the (only) singularity at r_+ enclosed by C . Thus, the total phase accumulated by \hat{R} along C is $\Phi_2 = -\exp(-2i\omega\delta + 2\pi\omega\sigma_+)$. For $\omega_R > 0$, the boundary condition at spatial infinity is continued to P_2 and the two contours are chosen counterclockwise, such that the resulting equation $\Phi_1 = \Phi_2$ is unchanged.

The constraint $\Phi_1 = \Phi_2$ finally yields the highly-

damped QNM equation [16]

$$e^{-2\pi\omega\sigma_+} = -e^{-2i\omega\delta+2\pi\omega\sigma_+}. \quad (8)$$

Explicitly, to order $O(|\omega|^{-1})$ this may be written as

$$4\pi\beta(\omega - m\Omega) - 2\pi i s = 2i\omega \int_{C_{t,i}} V dr - \pi i(2n+1), \quad (9)$$

or in a more compact form as

$$2\omega \int_{C_{t,o}} V dr = 2\pi \left(n + \frac{1}{2}\right), \quad (10)$$

where $n \in \mathbb{Z}$. Here, $C_{t,i}$ ($C_{t,o}$) is a complex-plane contour running from t_1 to t_2 , crossing the real axis in (out) of the event horizon, at some point $r_- < r < r_+$ ($r > r_+$).

Before solving for $\tilde{\omega}$, note that in the highly-damped limit the real and the imaginary contributions to the integrals of Eqs. (7)-(10) are easily separated. For example, the real part of Eq. (9) may be written in the form [17]

$$4\pi\beta(\omega_R - m\Omega) = \Re \left(2i \int_{C_{t,i}} \omega V_R dr \right), \quad (11)$$

where the complex potential V_R is given by

$$(\omega V_R)^2 = \frac{q_0\omega^2 - 2am(2Mr - Q^2)\omega - m^2(\Delta - a^2)}{\Delta^2}. \quad (12)$$

The last term ($\propto \omega^0$, taken from q_2) was added to V_R for future use and has no effect in the highly-damped limit. An equation analogous to Eq. (11) is found for the imaginary part $4\pi\beta\omega_I - 2\pi s$.

QNM frequencies.— In order to obtain a closed-form expression for ω , expand $2i\delta - 4\pi\sigma_+ = \delta_0 + (m\delta_m + is\delta_s + iA_1\delta_A)\omega^{-1} + O(|\omega|^{-2})$. Here

$$\delta_j \equiv 2i \int_{C_{r,o}} V_j dr, \quad (13)$$

with $V_0 = q_0^{1/2}\Delta^{-1}$, $V_m = -a(2Mr - Q^2)\Delta^{-1}q_0^{-1/2}$, $V_s = [r(\Delta + Q^2) - M(r^2 - a^2)]\Delta^{-1}q_0^{-1/2}$, and $V_A = -q_0^{-1/2}a/2$. The integration contour $C_{r,o}$ runs from r_1 to r_2 , crossing the real axis outside the event horizon. Since $r_2 = r_1^*$, $\{\delta_0, \delta_s, \delta_A, \delta_m\}$ are all real. Analytic expressions for these δ_j functions are readily found in terms of elliptic integrals.

With the above definitions we finally obtain

$$\omega = -m\hat{\omega} - i(\hat{\phi} + n\hat{\delta}), \quad (14)$$

where $\hat{\omega} = \delta_m/\delta_0$, $\hat{\delta} = 2\pi/\delta_0$, and $\hat{\phi} = (s\delta_s + A_1\delta_A - \pi)/\delta_0$. As shown in Figures 2 and 3, these analytic results agree with the numerical calculations of [8].

Eq. (14) yields one branch of solutions $\omega_m(n)$ in the asymptotic limit. Interestingly, in the low- n regime (and in spherically-symmetric black holes) two branches of solutions are identified, for given field and black-hole parameters [13].

FIG. 2: The real part of the highly damped QNM frequency $\hat{\omega}(a) = \tilde{\omega}_R(a; m = -1)$ for $Q = 0$, according to Eq. (14) (line) and according to the numerical results of [8] (circles).

The asymptotic QNMs are not continuous at $a = 0$ [18]. For $Q = 0$, $\hat{\omega}(a \rightarrow 0) \propto a^{1/3} \rightarrow 0$, whereas $\omega_R(a = 0) = (8\pi M)^{-1} \ln 3$. Such discontinuous behavior sometimes occurs in the Schwarzschild limit, for example in the inner structure of the black hole [14]. Note that the level spacing $\hat{\delta}$ does continuously asymptote to the Schwarzschild result $\Delta\omega = 2\pi T/\hbar$ [7] as $\{a, Q\} \rightarrow 0$.

Discussion.— We have analytically studied the highly-damped QNM frequencies $\omega(n)$ of a rotating black hole. A Bohr-Sommerfeld-like equation for ω was derived [Eqs. (9)-(10)], analytically solved [Eq. (14)], and shown to agree and generalize previous numerical results [8] (Figures 2 and 3).

It is instructive to quantize the linear field perturbations described by the QNM [19]. A quantum of complex energy $\hbar\omega(n)$ and angular momentum $\hbar m$ may thus be associated with the highly-damped QNM frequency $\omega_m(n)$. Multiplying Eq. (10) by \hbar yields

$$2 \int_{C_{t,o}} p dr = \left(n + \frac{1}{2}\right) \hbar, \quad (15)$$

where $p = \hbar\omega V$. This equation strongly resembles the Bohr-Sommerfeld quantization rule $\oint p dq = (n + 1/2)\hbar$,

FIG. 3: Level spacing $|\Delta\omega(a)| = \hat{\delta}$ for $Q = 0$ according to Eq. (14) (line) and the numerical fit in [8] (circles).

where p is the canonical momentum conjugate to some coordinate q , and the integration is carried out along a closed orbit. To elucidate the connection, recall that the covariant radial momentum p_r for geodesic motion of a neutral, massless particle of energy E and angular momentum p_ϕ , is given by

$$(p_r \Delta)^2 = [(r^2 + a^2)^2 - a^2 \Delta] E^2 - 2a(2Mr - Q^2)Ep_\phi - (\Delta - a^2)p_\phi^2 - Q_C \Delta , \quad (16)$$

where Q_C is Carter's (fourth) constant of motion [15]. Comparing this with Eq. (12) indicates that $V_R \approx p_r$, provided that $E = \hbar\omega$, $p_\phi = \hbar m$, and $Q_C = O(E^0)$. Hence, up to an $O(\omega^0)$ term which leads to an imaginary offset in $\omega(n)$, the integrand in Eq. (15) truly is of the form $p dq$ for the above QNM quantization. The implied physical content of Eq. (15) suggests that the full QNM spectrum may be determined by a generalized Bohr-Sommerfeld equation, which reduces to Eq. (15) as $\omega_I \rightarrow -\infty$. The general form of p is not uniquely determined by our highly-damped analysis. Up to $O(|\omega|^{-1})$ corrections, we may write

$$p = p_r + i\hbar s V_s + i\hbar A_1 V_A . \quad (17)$$

The preceding discussion implies that Eq. (15) can be interpreted as a complex version of the Bohr-Sommerfeld quantization rule. This rule was used in (the old) quantum mechanics to determine the quantum-mechanically allowed trajectories, as well as the quantized values of

the associated constants of motion. Realizing the full meaning of Eq. (15) may well require a quantum theory of gravity. Conversely, this equation can possibly be used to constrain and shed light on the theory.

The quantum manifestation of a QNM may be complicated. A simple example is motivated by the outgoing boundary conditions of the QNMs and the symmetry of their frequencies $\omega_{-m} = -\omega_m^*$ [13], evident in Eq. (14). These suggest that a quantum pair of opposite angular momentum may fundamentally correspond to a QNM; a positive energy quantum escaping to infinity and a negative energy quantum falling into the black hole, in resemblance of Hawking's semiclassical radiation. Under such circumstances, a quantum process corresponding to a QNM changes the black-hole mass by $\Delta M = \hbar\omega_R$ and its angular momentum by $\Delta J = \hbar m$. For such small changes in the black-hole parameters, the corresponding change in its entropy, $\Delta S = T^{-1}(\Delta M - \Omega\Delta J)$, is given directly by Eq. (11), which we may now write as

$$\hbar\Delta S = \Delta A/4 = \Re \left(2i \int_{C_{t,i}} p_r dr \right) . \quad (18)$$

This is another indication of the adiabatic invariance of the area/entropy [3].

We thank A. Neitzke, J. Maldacena, P. Goldreich and J. Bekenstein for helpful discussions. U.K. is supported by the NSF (grant PHY-0503584).

-
- [1] R. Ruffini and J. A. Wheeler, Physics Today, **24**, 30 (1971).
[2] D. Christodoulou, Phys. Rev. Lett. **25**, 1596 (1970); D. Christodoulou and R. Ruffini, Phys. Rev. D **4**, 3552 (1971).
[3] J. D. Bekenstein, Lett. Nuovo Cimento **11**, 467 (1974); J. D. Bekenstein, Phys. Rev. D **7**, 2333 (1973).
[4] For a review see H. P. Nollert, Class. Quantum Grav. **16**, R159 (1999).
[5] L. Motl and A. Neitzke, Adv. Theor. Math. Phys. **7**, 307 (2003).
[6] S. Hod, Phys. Rev. Lett. **81**, 4293 (1998).
[7] L. Motl, Adv. Theor. Math. Phys. **6**, 1135 (2003).
[8] E. Berti, V. Cardoso, and S. Yoshida, Phys. Rev. D **69**, 124017 (2004).
[9] S. A. Teukolsky, Phys. Rev. Lett. **29**, 1114 (1972).
[10] A. L. Dudley and J. D. Finley III, J. Math. Phys. **20**, 311 (1979).
[11] E. Berti, V. Cardoso, and M. Casals, Phys. Rev. D **73**, 024013 (2006); R. A. Breuer, M. P. Ryan and s. Waller, Proc. R. Soc. Lon. A **358**, 71 (1977).
[12] N. Fröman and P.O. Fröman, JWKB approximation: Contributions to the Theory, Amsterdam: North Hol- land 1965.
[13] E. W. Leaver, Proc. R. Soc. Lond. A **402**, 285 (1985).
[14] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space Time, Cambridge Univ. Press (1973); S. Hod and T. Piran, Phys. Rev. Lett. **81**, 1554 (1998) and the references therein.
[15] B. Carter, Phys. Rev., **174**, 5, 1559 (1968).
[16] Eq. (8) can also be derived as in Ref. [5], by solving for \hat{R} near the the turning points where $V_1 \simeq -(5/36)(z-z_i)^{-2}$.
[17] Using $\int_{r_1}^{r_2} i|f|dr \in \mathbb{R}$. The integration endpoints $\{t_i\}$ and $\{r_i\}$ may be used interchangeably, as $q_0(t_i) = 0$ ensures that the resulting $O(|\omega|^{-1})$ correction terms vanish.
[18] The analysis is valid only for $0 < a^2 < M^2 - Q^2$. It does not apply for $a = 0$, where r_1 and r_2 coalesce to 0, nor in the extremal case $M^2 - a^2 - Q^2 = 0$, where r_- and r_+ merge to cut off the anti-Stokes line l_2 . It does apply in the extremal limit, where numerical calculations fail and we find $\hat{\omega}(a \rightarrow M) \simeq 0.051704/M$.
[19] The analysis can alternatively proceed in the geometrical optics approximation, where radiation follows null geodesics.