

Capteur de position angulaire absolue sur 360° d'un organe rotatif

L'invention concerne un capteur de position angulaire absolue sur 360° d'un organe rotatif.

Bien que l'invention ait des applications très étendues, on la décrit dans une application particulière qui impose des conditions très sévères. Ainsi, on la 5 décrit dans le cadre de la détermination de la position angulaire absolue sur 360° de l'arbre à cames d'un moteur à combustion interne, le capteur étant disposé directement dans le compartiment moteur d'un véhicule automobile.

Plus précisément, on envisage d'assurer le démarrage des moteurs à combustion interne à plusieurs cylindres sans démarreur, par simple création 10 d'une détente d'un mélange air-carburant convenablement allumé dans un ou plusieurs cylindres qui ont la position la plus avantageuse à cet effet dans le cycle de combustion. Il est donc essentiel de connaître la position exacte de chaque piston dans chaque cylindre pour pouvoir sélectionner le cylindre ou les cylindres à utiliser.

15 Dans cette application particulière très contraignante, il est impossible d'effectuer une initialisation, car cette initialisation nécessiterait déjà un fonctionnement du moteur. Les technologies mettant en œuvre des codeurs ou des dispositifs de types résistifs, optiques ou capacitifs sont délicates à mettre en œuvre. Parmi les technologies magnétiques, seules les technologies 20 magnétorésistives et à effet Hall peuvent être sérieusement envisagées.

Les capteurs magnétiques magnétorésistifs et à effet Hall comportent une partie magnétique donnant un signal à variation graduelle d'intensité ou d'orientation de champ magnétique, et une partie électronique destinée à mesurer et transformer le champ en un signal électrique. Comme le champ varie de 25 manière sinusoïdale, les sondes magnétorésistives ou à effet Hall qui transforment le champ magnétique en un signal de sortie ne permettent pas d'obtenir un signal linéaire avec l'angle de rotation.

Les sondes magnétorésistives, qui sont très précises mais coûteuses, présentent des ambiguïtés dans les signaux de sortie, car il n'est pas possible de 30 déterminer si l'élément rotatif est compris entre 0 et 180° ou entre 180° et 360°.

Pour la solution de ce problème, le document US6212783 décrit l'utilisation de deux sondes, une sonde magnétorésistive donnant une mesure angulaire, et une sonde à effet Hall à fonctionnement binaire, destinée à identifier

le fait que l'angle est compris entre 0 et 180° ou entre 180° et 360°. Cette solution, indépendamment du coût élevé de la sonde magnétorésistive, présente plusieurs inconvénients qui en interdisent l'utilisation dans l'application précitée de la détermination de l'angle absolu d'un arbre à cames de moteur. Ces 5 inconvenients sont d'abord le fait qu'un défaut d'alignement même réduit entre les deux sondes peut introduire des erreurs pouvant aller jusqu'à 180°, même lorsque la sonde à effet Hall présente le phénomène d'hystérésis. Ensuite, l'absence d'hystérésis de la sonde magnétorésistive, compte tenu du bruit de sortie, peut créer des ambiguïtés de mesure autour de l'angle de 360°, valeur à laquelle le 10 signal présente une grande discontinuité. Ensuite, les sondes magnétorésistives comportent un aimant fritté à base de terres rares dont le coût est élevé. Enfin, les signaux obtenus doivent être traités si bien qu'un microprocesseur est nécessaire pour l'exécution d'un algorithme de calcul d'angle à partir des signaux des deux sondes. Si le microprocesseur est placé à distance du capteur, les inconvenients 15 sont encore plus importants puisqu'il est nécessaire de disposer d'une connexion pour chacune des deux sondes, et le nombre de fils est accru, le nombre de cosses de connexion est accru, et le calculateur nécessite une entrée supplémentaire. Cette situation constitue un inconvénient très important dans le domaine automobile dans lequel on sait que les problèmes de connectique sont la 20 principale cause de panne des capteurs.

Ainsi, la technologie précitée présente deux inconvénients essentiels pour l'application envisagée : d'une part les risques d'ambiguïté sur la valeur de l'angle, et d'autre part le coût élevé.

L'invention a pour objet un capteur de position angulaire absolue sur 360° 25 ne présentant pas ces ambiguïtés, ayant un faible coût et possédant une grande robustesse afin qu'il puisse être utilisé dans le compartiment moteur d'un véhicule automobile.

Ces résultats sont obtenus selon l'invention par l'utilisation de deux sondes à effet Hall dans un capteur capable d'assurer le traitement passif du 30 signal par lui-même pour donner un signal de sortie représentatif sans ambiguïté (univoque) d'un angle sur 360°. Ce résultat est obtenu par les caractéristiques suivantes :

l'utilisation d'une sonde à effet Hall à fonctionnement binaire, comme dans le document précité US6212783, pour distinguer les plages de 0 à 180° et de 180 à 360°,

l'utilisation de deux sondes travaillant en mode source de courant dont les 5 courants de sortie sont ajoutés, et

l'introduction d'un décalage entre les plages de variation des signaux des deux sondes, afin qu'il n'existe aucune ambiguïté pour les valeurs obtenues à 180° et 360°.

Plus précisément, l'invention concerne un capteur de position angulaire 10 absolue sur 360° d'un organe rotatif qui comprend une partie rotative dont la rotation est liée à celle de l'organe rotatif et qui crée un flux magnétique variable, et une partie fixe de support de sondes ; deux sondes au moins sont portées par la partie fixe et ont chacune un signal de sortie en courant, une première des deux sondes étant soumise à un premier flux magnétique variable périodiquement 15 avec la rotation de la partie rotative, et présentant un signal de sortie ayant des discontinuités au passage dans chaque sens à une valeur déterminée du flux magnétique, et la deuxième des deux sondes étant soumise à un second flux magnétique variable périodiquement avec la rotation de la partie rotative avec des variations déphasées de 90° par rapport aux variations du premier flux 20 magnétique, et présentant un signal de sortie qui est une fonction continue du flux magnétique, et le capteur comporte aussi un dispositif d'addition des courants des deux sondes, donnant un signal de sortie en courant n'ayant pas deux fois la même valeur sur 360°.

De préférence, la caractéristique selon laquelle le signal de sortie en 25 courant du capteur n'a pas deux fois la même valeur sur 360° est due au fait que la plage de variation du courant de sortie de la première sonde est un peu supérieure à la plage de variation du courant de sortie de la seconde sonde.

Dans un mode de réalisation, la partie rotative comprend un aimant dont la direction d'aimantation est perpendiculaire à l'axe de rotation de la partie 30 rotative, et la partie fixe qui entoure l'aimant délimite deux entrefer dans lesquels les flux magnétiques sont décalés de 90°, les sondes étant placées dans ces deux entrefer.

De préférence, la valeur déterminée du flux magnétique pour laquelle se produit la discontinuité du signal de la première sonde correspond à l'inversion du signe du flux magnétique auquel est soumise la première sonde.

Le plus couramment, les variations des premier et second flux magnétiques sont sinusoïdales.

Bien que les sondes puissent être de type magnétorésistif, il est avantageux, pour des raisons de coût, que les sondes soient du type à effet Hall.

De préférence, la première sonde donne un signal binaire ayant deux valeurs constantes différentes d'intensité entre deux plages angulaires couvrant 10 chacune 180° , et la seconde sonde donne un signal de sortie en courant représenté par une fonction comprenant deux parties variant linéairement avec l'angle de rotation, ces deux parties ayant des pentes opposées.

Dans un mode de réalisation très simple, le dispositif d'addition est constitué par la simple connexion des sorties des deux sondes.

Il est avantageux que la partie fixe formant un élément polaire soit constituée d'un matériau produisant un phénomène d'hystérésis.

Dans une application avantageuse, le capteur comporte en outre une résistance de charge qui reçoit le signal de sortie du dispositif d'addition et aux bornes de laquelle est disponible une tension de mesure.

Lorsque le signal de sortie des sondes présente une modulation, il est avantageux que le capteur comporte un filtre, de préférence de type passif.

D'autres caractéristiques et avantages de l'invention ressortiront mieux de la description qui va suivre, faite en référence aux dessins annexés sur lesquels :

la figure 1 est une vue schématique en coupe partielle d'un capteur de 25 position angulaire absolue sur 360° selon l'invention ;

la figure 2 est un graphique représentant la densité de flux vue par chacune des sondes de la figure 1 ;

la figure 3 est un graphique indiquant le courant moyen de sortie de la seconde sonde en fonction de l'angle de rotation ;

30 la figure 4 est un graphique qui représente le signal de la première sonde et le signal global obtenu à la sortie du capteur ; et

la figure 5 est un schéma qui représente un exemple d'utilisation du capteur de la figure 1.

La figure 1 représente schématiquement en coupe partielle un capteur selon l'invention.

Ce capteur, qui porte la référence générale 10, est destiné à transmettre un signal à un dispositif utilisateur 12, ayant par exemple une résistance de 5 charge.

Le capteur comporte un aimant 14 monté sur l'organe rotatif dont la position absolue doit être détectée, par exemple un arbre à cames de moteur à combustion interne. La direction d'aimantation de l'aimant 14 est diamétrale, c'est-à-dire pratiquement perpendiculaire à l'axe de rotation de l'aimant 14, cet axe 10 étant lui-même perpendiculaire au plan de la figure 1. L'aimant 14 peut être d'un type relativement peu coûteux, par exemple à base de NdFeB dans un liant de matière plastique.

Un élément polaire 16, qui est fixe par rapport au moteur, est monté autour de l'aimant 14 et délimite plusieurs entrefers comprenant au moins un 15 premier entrefer 18 et un second entrefer 20 placés à 90° l'un de l'autre. Les flux magnétiques dans ces entrefers sont ainsi décalés de 90°. Chacun des entrefers 18, 20 contient une sonde à effet Hall.

Le premier entrefer 18 contient une première sonde à effet Hall 22 qui transmet un courant constituant son signal de sortie par un fil 24. Ce signal de 20 sortie est de préférence un signal binaire ayant deux niveaux constants différents entre 0 et 180° d'une part et entre 180 et 360° d'autre part, obtenus par programmation préalable convenable.

Le second entrefer 20 contient une seconde sonde à effet Hall 26 qui transmet un courant constituant son signal de sortie par un fil 28. Par 25 programmation préalable, la seconde sonde à effet Hall donne un courant de sortie qui varie linéairement avec l'angle de rotation suivant une courbe décroissante de 0 à 180° (première pente), puis suivant une courbe croissante de 180 à 360° (seconde pente opposée à la première) comme indiqué sur la figure 3. On note que, pour toute valeur du courant comprise dans la plage de variation, il 30 existe deux valeurs de l'angle de rotation. L'utilisation d'une seule sonde ne permet donc pas de connaître la position absolue sur 360°.

Pour que le signal de sortie de la seconde sonde soit précis, il est avantageux d'utiliser la plus grande pente possible permise par la sonde à effet Hall particulière. Selon l'invention, la différence entre les deux niveaux différents

entre lesquels varie le second signal de sortie est un peu inférieure à la différence entre les deux niveaux constants du premier signal de sortie.

Dans le capteur selon l'invention, les courants de sortie des deux sondes 22, 26 sont ajoutés, c'est-à-dire que les deux fils 24 et 28 sont connectés en un 5 point 30 de connexion qui représente un dispositif d'addition des signaux des deux sondes.

On note sur la figure 1 que, si l'on tient compte des deux fils nécessaires à l'alimentation des sondes 22 et 26 (et qui ne sont pas représentés), le capteur 10 n'a que trois fils, c'est-à-dire trois connexions avec l'extérieur.

10 On décrit maintenant, en référence aux figures 1 à 4, le montage et le fonctionnement du capteur qu'on vient de décrire en référence à la figure 1.

Le capteur est monté sur un moteur à combustion interne. L'aimant 14 est solidaire de l'arbre à came, et il est entraîné en rotation comme l'indique la flèche 32 de la figure 1. Pendant cette rotation, les densités de flux dans les entrefer 15 18 et 20 varient comme indiqué sur la figure 2. On note que ces densités de flux sont décalées de 90°.

La figure 3 représente le courant moyen constituant le signal de sortie de la seconde sonde à effet Hall 26 avec la densité de flux correspondante. Sur la 20 figure 4, la courbe en trait plein représente le signal de sortie de la première sonde à effet Hall 22. Ses deux niveaux constants de courant sont séparés par une plage de variation qui, selon l'invention, est supérieure à la plage de variation du signal donné par la seconde sonde et tel que représenté sur la figure 3. De cette manière, le courant moyen formant le signal résultant de sortie obtenu par addition des signaux de sortie des deux sondes à effet Hall, comme indiqué par la 25 courbe à trait interrompu court de la figure 4, présente deux plages de variation linéaire qui non seulement ne se recouvrent pas, mais encore sont séparées par un espace 34. De cette manière, chaque valeur du courant moyen de sortie du capteur correspond de façon biunivoque à un seul angle entre 0 et 360°.

Dans un exemple de réalisation, les deux sondes sont de type Micronas 30 IC 856, et elles ont une plage maximale de variation de 11 mA. Cette plage maximale de variation est utilisée comme différence entre les deux niveaux constants de la première sonde à effet Hall. Cependant, la plage de variation utilisée pour la seconde sonde est par exemple de 10,7 mA, soit plus petite de 0,3 mA. De cette manière, il existe une différence de 0,3 mA entre le signal de

sortie du capteur à 360° et le signal à 180°. Cette différence de 0,3 mA est largement suffisante, compte tenu des différents phénomènes de bruit et des phénomènes éventuels d'hystérésis, pour que la valeur absolue de l'angle soit toujours connue sans ambiguïté.

5 Dans le cas d'un mauvais alignement des sondes, c'est-à-dire si le déphasage entre les deux sondes n'est pas exactement égal à 90°, le signal ne présente pas d'ambiguïté. La précision autour des valeurs 180 et 360° est simplement un peu réduite.

La figure 5 représente un exemple d'utilisation du capteur selon
10 l'invention. Il faut noter que les sondes à effet Hall (Micronas IC 856) considérées dans la description qui précède ont un courant de sortie modulé par impulsions de largeur variable à une fréquence maximale de 1 kHz. Le signal de sortie du capteur doit donc être filtré pour que le signal analogique obtenu soit lissé. La figure 5 représente un exemple de filtre utilisé à cet effet.

15 Sur la figure 5, une résistance de charge 12 est séparée de la sortie, placée à droite de la figure 5, par un filtre 36 représenté sous forme d'un filtre passif du second ordre comprenant deux résistances 38 et 40 et deux condensateurs 42 et 44. L'ensemble représenté sur la figure 5, comprenant le capteur, la résistance de charge et le filtre, peut former un composant
20 indépendant qui donne un signal analogique lissé indiquant la position absolue de l'organe rotatif sans aucune ambiguïté et d'une manière entièrement passive.

Le capteur ainsi réalisé est entièrement autonome et ne comporte aucun élément de calcul, tel qu'un microcontrôleur, et il est donc peu coûteux.

En résumé, le capteur selon l'invention présente donc les avantages
25 suivants.

Comme il ne nécessite aucun élément actif de traitement du signal, par exemple un microcontrôleur, il est autonome.

Etant donné l'absence de microcontrôleur et comme le capteur ne comporte que trois fils de connexion, il possède une grande fiabilité de
30 fonctionnement.

Grâce à l'absence d'un microcontrôleur coûteux, à la réduction du nombre de connexions, et à l'utilisation d'un aimant peu coûteux à liant de matière plastique, le capteur peut avoir un coût réduit.

Ainsi, l'invention concerne un capteur de position angulaire absolue sur 360° qui est autonome, c'est-à-dire dont le signal de sortie peut être utilisé directement, dont le signal peut être sous forme d'un courant ou d'une tension, qui ne nécessite aucun traitement actif du signal pendant l'utilisation, qui a une 5 grande robustesse grâce à l'utilisation d'un seul élément mobile par simple rotation, qui est peu coûteux, et qui présente une grande fiabilité due au petit nombre de connexions nécessaire.

Bien entendu, diverses modifications peuvent être apportées par l'homme de l'art aux capteurs qui viennent d'être décrits uniquement à titre d'exemple non 10 limitatif sans sortir du cadre de l'invention.

REVENDICATIONS

1. Capteur de position angulaire absolue sur 360° d'un organe rotatif, caractérisé en ce qu'il comprend :

une partie rotative (14) dont la rotation est liée à celle de l'organe rotatif et qui crée un flux magnétique variable,

5 une partie fixe (16) de support de sondes,

au moins deux sondes (22, 26) portées par la partie fixe et ayant chacune un signal de sortie en courant,

une première (22) des deux sondes étant soumise à un premier flux magnétique variable périodiquement avec la rotation de la partie rotative, et

10 présentant un signal de sortie ayant des discontinuités au passage dans chaque sens à une valeur déterminée du flux magnétique,

la deuxième (26) des deux sondes étant soumise à un second flux magnétique variable périodiquement avec la rotation de la partie rotative, les variations du second flux magnétique étant déphasées de 90° par rapport aux

15 variations du premier flux magnétique, et présentant un signal de sortie qui est une fonction continue du flux magnétique, et

un dispositif (30) d'addition des courants des deux sondes, donnant un signal de sortie en courant n'ayant pas deux fois la même valeur sur 360°, constitué par la connexion (30) des deux fils (24, 28) de signaux de sortie

20 desdites sondes.

2. Capteur selon la revendication 1, caractérisé en ce que la caractéristique selon laquelle le signal de sortie en courant du capteur n'a pas deux fois la même valeur sur 360° est le résultat du fait que la plage de variation du courant de sortie de la première sonde (22) est un peu supérieure à la plage 25 de variation du courant de sortie de la seconde sonde (26).

3. Capteur selon l'une des revendications 1 et 2, caractérisé en ce que la partie rotative comprend un aimant (14) dont la direction d'aimantation est perpendiculaire à l'axe de rotation de la partie rotative, et la partie fixe (16) qui entoure l'aimant délimite deux entrefers (18, 20) dans lesquels les flux 30 magnétiques sont décalés de 90°, les sondes (22, 26) étant placées dans ces deux entrefers (18, 20).

4. Capteur selon l'une quelconque des revendications précédentes, caractérisé en ce que la valeur déterminée du flux magnétique pour laquelle se

produisent les discontinuités du signal de la première sonde (22) correspond à l'inversion du signe du flux magnétique auquel est soumise la première sonde.

5. Capteur selon l'une quelconque des revendications précédentes, caractérisé en ce que les sondes (22, 26) sont des sondes à effet Hall.

5 6. Capteur selon l'une quelconque des revendications précédentes, caractérisé en ce que la première sonde donne (22) un signal binaire ayant deux valeurs constantes différentes d'intensité entre deux plages angulaires couvrant chacune 180°.

7. Capteur selon l'une quelconque des revendications précédentes,
10 caractérisé en ce que la seconde sonde (26) donne un signal de sortie en courant représenté par une fonction comprenant deux parties variant linéairement avec l'angle de rotation, ces deux parties ayant des pentes opposées.

8. Capteur selon l'une quelconque des revendications précédentes,
15 caractérisé en ce que la partie fixe formant un élément polaire (16) est constituée d'un matériau produisant un phénomène d'hystéresis.

9. Capteur selon l'une quelconque des revendications précédentes,
caractérisé en ce que le capteur comporte en outre une résistance de charge (12)
qui reçoit le signal de sortie du dispositif d'addition (30) et aux bornes de laquelle
est disponible une tension de mesure.

20 10. Capteur selon la revendication 9, caractérisé en ce que il comporte en
outre un filtre passif (36).

1 / 3

FIG.1FIG.2

2 / 3

FIG.3

FIG.4

3 / 3

FIG.5

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/005137

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 G01D5/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 G01D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 6 212 783 B1 (LEHNER MICHAEL ET AL) 10 April 2001 (2001-04-10) cited in the application claims; figures 2a,2b,4 column 4, lines 29-63 column 5, line 54 - column 6, line 17	1,4,6,9
A	US 6 064 197 A (PETERSEN AUGUST ET AL) 16 May 2000 (2000-05-16) column 6, lines 5-43 figure 4	1,4,6
A	US 5 880 586 A (STEINLECHNER SIEGBERT ET AL) 9 March 1999 (1999-03-09) column 3, line 34 - column 4, line 16 column 5, line 1 - column 6, line 2 column 9, line 17 - line 60 column 10, lines 22-63	1,5

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

22 February 2005

Date of mailing of the International search report

02/03/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patenttaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax. (+31-70) 340-3016

Authorized officer

Moulara, G

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No	
PCT/EP2004/005137	

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 6212783	B1	10-04-2001	DE WO EP JP KR	19722016 A1 9854541 A1 0916070 A1 2000515639 T 2000029475 A		03-12-1998 03-12-1998 19-05-1999 21-11-2000 25-05-2000
US 6064197	A	16-05-2000	EP JP	0893668 A1 11094512 A		27-01-1999 09-04-1999
US 5880586	A	09-03-1999	WO DE DE DE EP JP	9616316 A1 19543562 A1 19543564 A1 59510243 D1 0740776 A1 9508214 T		30-05-1996 23-05-1996 23-05-1996 18-07-2002 06-11-1996 19-08-1997