Let A be in $\mathbb{K}^{D\times D}$. Let s_1,\ldots,s_r be the invariant factors of tI-A, ordered in such a way that s_2 divides s_1 , s_3 divides s_2 , etc, and let $d_i = \deg(s_i)$ for all i; for i > r, we let $s_i = 1$, with $d_i = 0$.

We fix an integer M and we define $\nu = d_1 + \cdots + d_M \leq D$ and $\delta = \lceil \nu/M \rceil \leq \lceil D/M \rceil$. We choose matrices $X, Y \in \mathbb{K}^{D \times M}$, and we let $F_X^{A,Y}$ be the minimal generator in Popov form of the sequence $(X^{\perp} A^i Y)_{i \geq 0}$. We also denote by $\sigma_1, \ldots, \sigma_t$ the invariant factors of $F_X^{A,Y}$, for some $t \leq M$. As above, for i > t, we let $\sigma_i = 1$.

Theorem 1. For a generic choice of X and Y, we have:

- $F_X^{A,Y}$ has degree δ ;
- $s_i = \sigma_i \text{ for } 1 \leq i \leq M$.

Proof. Let \mathscr{Y} be a matrix of indeterminates of size $N \times M$. Then, by [?, Proposition 6.1], the minimal generating polynomial $F_{A,\mathscr{Y}}$ for the generic sequence $(A^i\mathscr{Y})_{i\geq 0}$ has determinantal degree ν and degree $\delta = \lceil \nu/n \rceil$.

- $\dim(\langle \mathscr{Y} \rangle) = \nu$. This is proved in the proof of [?, Proposition 6.1].
- For a generic Y in $\mathbb{K}^{N\times n}$, $N_Y = N_{\mathscr{Y}}$, where $N_Y = \dim(\langle Y \rangle)$. This is because $\langle \mathscr{Y} \rangle$ is the span of $K_{\mathscr{Y}} = [\mathscr{Y}|A\mathscr{Y}|\cdots|A^{N-1}\mathscr{Y}]$, whereas $\langle Y \rangle$ is the span of $K_Y = [Y|AY|\cdots|A^{N-1}Y]$. Take a maximal non-zero minor μ of $K_{\mathscr{Y}}$; as soon as $\mu(Y) \neq 0$, we have equality of the dimensions.
- For any Y (including Y), the degree δ_Y of F_{A,Y} is equal to the first index d such that dim(span([Y|AY|···|A^{d-1}Y])) = N_Y.
 This is [?, Lemma 4.3].
- For a generic Y, $\delta_Y = \lceil \nu/n \rceil$. By [?, Proposition 6.1], the minimal generating polynomial $F_{A,\mathscr{Y}}$ for the generic sequence $(A^i\mathscr{Y})_{i\geq 0}$ has degree $\delta_{\mathscr{Y}} = \lceil \nu/n \rceil$. The first restriction on Y is that $N_Y = N_{\mathscr{Y}}$. Then the claim follows from the previous item.
- For any Y in $\mathbb{K}^{N\times n}$, for a generic X in $\mathbb{K}^{n\times N}$, $F_{A,Y,X} = F_{A,Y}$. By [?, Lemma 4.2], there exists matrices P_Y in $\mathbb{K}^{N\times N_Y}$ and $A_Y \in \mathbb{K}^{N_Y\times N_Y}$, with P_Y of full rank N_Y , such that $F_{A,Y,X} = F_{A,Y}$ if and only if the dimension of the span of the rows of $XP_Y, XP_YA_Y, XP_YA_Y^2, \cdots$ is equal to N_Y .
 - Let B_Y be the transpose of A_Y . Then, the dimension above is the dimension of the span of $(XP_Y)^t$, $B_Y(XP_Y)^t$, $B_Y^2(XP_Y)^t$, ... The number of invariant factors of A_Y (and thus of B_Y) is at most n. As a result, for a generic Z in $\mathbb{K}^{N_Y \times n}$, by the previous items, span($[Z|B_YZ|B_Y^2Z|\cdots]$) has dimension N_Y (since the number of columns in Z is at least equal to the number of invariant factors of B_Y).

• $\operatorname{rank}(\operatorname{Hk}(X,Y)) = \operatorname{deg}(\operatorname{det}(F_{A,Y,X})).$

By [?, Eq. (2.6)], $\operatorname{rank}(\operatorname{Hk}_{e,d}) = \operatorname{deg}(\det(F_{A,Y,X}))$ for $d \geq \operatorname{deg}(F_{A,Y,X})$ and $e \geq n$. We take e = n, so that $\operatorname{rank}(\operatorname{Hk}_{n,d}) = \operatorname{deg}(\det(F_{A,Y,X}))$ for $d \geq \operatorname{deg}(F_{A,Y,X})$. On the other hand, for fixed n, the sequence $\operatorname{rank}(\operatorname{Hk}_{n,d})$ is constant for $d \geq n$. As a result, $\operatorname{rank}(\operatorname{Hk}_{n,n}) = \operatorname{deg}(\det(F_{A,Y,X}))$.

• For generic X, Y, the invariant factors of $F_{A,Y,X}$ are s_1, \ldots, s_n .

By [?, Theorem 2.12], for any X and Y in $\mathbb{K}^{n\times N}\times\mathbb{K}^{N\times n}$, for $i=1,\ldots,n$, the i^{th} invariant factor of $F_{A,Y,X}$ divides s_i , so that $\deg(\det(F_{A,Y,X})) \leq \nu$.

Furthermore, there exist matrices X_0, Y_0 such that for i = 1, ..., n, the i^{th} invariant factor of F_{A,Y_0,X_0} is equal to s_i . In this case, $\deg(\det(F_{A,Y_0,X_0})) = \nu$.

Thus, rank(Hk(X, Y)) has rank at most ν , and exactly ν for at least one pair (X_0, Y_0) . So we have equality for a generic (X, Y). When equality holds, the i^{th} invariant factor of $F_{A,Y,X}$ equals s_i for all i.