The nature of the AS-level graph 1997 – 2009. And beyond?

Stephen Strowes ENDS Seminar, 03-02-2009 Glasgow University

Introduction

- Routeviews.org stores archived BGP routing state, stretching back to 1997
 - Here, using data between 1997-11-08 and 2009-12-31
 - Only looking at relationships; not looking at prefixes
- The network continues to grow, but some properties or relationships do not seem to change
 - These invariants may be useful to evaluate models of future Internet graphs

Network Growth

Network Growth

Network Growth

... Normalised.

Preferential Attachment

Preferential Attachment

- "The better-connected get better-connected"?
- Arriving nodes tend to connect via well-connected nodess
 - Which helps maintain low hop counts
- Nodes then create additional links to other networks to increase network availability, bandwidth, reduce costs, etc

Degree distribution

Node Degree Distribution

Node Degree Distribution

Node Degree Distribution

... Normalised.

K-shell Decomposition

- Node degree alone is not a good indicator of connectivity with the rest of the network
 - Many connections to single-homed stubs inflate a simple degree measure

K-shell Decomposition

- Recursively remove nodes of increasing degree
 - Remove all nodes of degree 1
 - ... then degree 2
 - ... then degree 3
- Generates small, reasonably consistent sets of nodes

K-shell Decomposition

Consistency of k-shells

- Nucleus consists networks such as:
 - Cogent
 - Sprint
 - Level3
 - BT European backbone
 - Google, Microsoft (for low RTT and ease of content distribution, presumably)
 - Akamai (more content distribution)

Consistency of k-shells

- Requires more analysis, but...
- This seems to be a (reasonably) consistent set
 - Arbitrarily choosing the nucleus of a 2006 graph, 75% of it remains in 2009

"Growing" a Future Network?

- Modelling of the future...
 - Node arrivals, & likelihood of attachment point
 - Node removals
 - Rate of increase on node degree
 - Edge creation/destruction rates

Continued growth...

- Invariants provide tests for validity of model:
 - Diameter of network
 - Rate of nucleus growth
 - Degree distribution
- Potential additional metrics:
 - Global clustering coefficient

Conclusions

- Despite continued growth, many nodes connect via heavily-connected nodes, and grow from there
 - Nodes never become considerably more distant
- While the past can never be used to properly predict the future...
 - ... it seems to offer some invariants which may be useful to "grow" and evaluate networks representing a future AS graph

Questions?

sds@dcs.gla.ac.uk