Data ex Machina Machine Learning with Public Collider Data

Al & Physics, Applied Machine Learning Days 2020

Eric M. Metodiev

Center for Theoretical Physics

Massachusetts Institute of Technology

Patrick Komiske

Radha Mastandrea

Preksha Naik

Jesse Thaler

Collision Course

Collision Course New Unsupervised Optimal Transport Collider Analyses [OTML Workshop, NeurlPS 2019] opendata New Insights into Public Collider Data Quantum Field Theory [opendata.cern.ch]

[h/t Jesse Thaler]

opendata.cern.ch

Explore more than **two petabytes** of open data from particle physics!

jet primary dataset

search examples: collision datasets, keywords:education, energy:7TeV

Explore

<u>datasets</u>

<u>software</u>

<u>environments</u>

documentation

Search

CMS Open Data

Download a CMS "AOD" file: 2011A Jet Primary Dataset

04913DA0-8B3F-E311-924F-0025901AD38A.root

966.3 MB

Fifteen lines of code later...

```
import uproot

# Load in the specified file with uproot
file = uproot.open('~/Downloads/04913DAO-8B3F-E311-924F-0025901AD38A.root')
events = file[b'Events;1']

# read particle transverse momenta (pts), pseudorapidity (eta), and azimuth (phi)
PFCkey = b'recoPFCandidates_particleFlow__RECO.obj'
pts = events[PFCkey + b'.pt_'].array()
etas = events[PFCkey + b'.eta_'].array()
phis = events[PFCkey + b'.phi_'].array()
```

```
import numpy as np
import matplotlib.pyplot as plt

# choose an event
ind = 6457

# plot the collision event of interest
plt.scatter(etas[ind], phis[ind], s=pts[ind], lw=0, color='red')

# plot settings
plt.xlim(-5, 5)
plt.ylim(-np.pi, np.pi)
plt.xlabel('Pseudorapidity $\eta$')
plt.ylabel('Azimuthal Angle $\phi$')
plt.show()
```

Thanks to the <u>uproot</u> package! <u>uproot</u>

When are two collisions similar?

Many unsupervised methods rely on a **distance matrix**. Need a physically-sensible **metric** between events!

When are two collisions similar?

The Earth Mover's (or Wasserstein) Distance

The "work" required to rearrange one collision event into another!

Plus a cost to create or destroy energy.

Optimal Transport Problem

Here using python optimal transport

[Komiske, EMM, Thaler, PRL 2019]

Six Decades of Collider Techniques

Six Decades of Collider Techniques as Optimal Transport!

[Komiske, **EMM**, Thaler, to appear]

Smooth function of energy Event shapes as distances lets are N-particle event Subtract a pileup as a distribution are finite in OFT to the 2-particle manifold approximations uniform distribution $EMD(\mathcal{E}, \mathcal{E}') < \delta$ $t(\mathcal{E}) = \min_{|\mathcal{E}'|=2} \text{EMD}(\mathcal{E}, \mathcal{E}')$ $\mathcal{I}(\mathcal{E}) = \operatorname{argmin} \operatorname{EMD}(\mathcal{E}, \mathcal{E}')$ E-U $|\mathcal{E}'| = N$ $\rightarrow |\mathcal{O}(\mathcal{E}) - \mathcal{O}(\mathcal{E}')| < \epsilon$ Taming infinities **Event Shapes** Jet Algorithms Jet Substructure Pileup 1960 2020 1997-1998 2014-2019 1977 C/A jet clustering Thrust, Sphericity Constituent Subtraction [Wobisch, Wengler, 1998] [Berta, Spousta, Miller, Leitner, JHEP 2014] [Farhi, PRL 1977] [Doskhitzer, Leder, Moretti, Webber, JHEP 1997] [Berta, Masetti, Miller, Spousta, JHEP 2019] [Georgi, Machacek, PRL 1977] 2010-2015 1962-1964 1993 N-(sub)jettiness, XCone And many more! k_T jet clustering Infrared Safety [Stewart, Tackmann, Waalewijn, PRL 2010] [Kinoshita, JMP 1962] [Ellis, Soper, PRD 1993] [Thaler, Van Tilburg, JHEP 2011] [Lee, Nauenberg, PR 1964] [Catani, Dokshitzer, Seymour, Webber, NPB 1993] [Stewart, Tackmann, Thaler, Vermilion, Wilkason, JHEP 2015]

Exploring the Space of Jets

Most Representative Jets

Jet Mass:
$$m = \left(\sum_{i=1}^{M} p_i^{\mu}\right)^2$$

Measures how "wide" the jet is.

Towards Anomaly Detection

Mean EMD to Dataset:

$$\bar{Q}(\mathbf{E}) = \sum_{i=1}^{N} \text{EMD}(\mathbf{E}, \mathbf{E}_i)$$

Complements recent developments in anomaly detection for collider physics.

[Collins, Howe, Nachman, 1805.02664] [Heimel, Kasieczka, Plehn, Thompson, 1808.08979] [Farina, Nakai, Shih, 1808.08992] [Cerri, Nguyen, Pierini, Spiropulu, Vlimant, 1811.10276]

Visualizing the Manifold

What does the space of jets look like?

[van der Maaten, Hinton, JMLR 2008]

t-SNE embedding

Visualizing the Manifold

What does the space of jets look like?

[van der Maaten, Hinton, JMLR 2008]

[Komiske, Mastandrea, EMM, Naik, Thaler, 1908.08542]

t-SNE embedding: 25-medoid jets shown

Visualizing the Manifold

What does the space of jets look like?

[van der Maaten, Hinton, JMLR 2008]

[Komiske, Mastandrea, EMM, Naik, Thaler, 1908.08542]

t-SNE embedding: 25-medoid jets shown

Correlation Dimension

Conceptual Idea

[Grassberger, Procaccia, PRL 1983] [Kegl, NeurlPS 2002]

Experimental Data

Dimension blows up at low energies.

Theoretical Calculation

[Komiske, Mastandrea, EMM, Naik, Thaler, 1908.08542]

Thank You!

Publicly released jet dataset

Extra Slides

N-(sub)jettiness is the EMD between the event and the closest N-particle event.

$$\tau_{N}(\mathcal{E}) = \min_{N \text{ axes}} \sum_{i=1}^{M} E_{i} \min\{\theta_{1,i}^{\beta}, \theta_{2,i}^{\beta}, ..., \theta_{N,i}^{\beta}\} \qquad \longrightarrow \qquad \tau_{N}(\mathcal{E}) = \min_{|\mathcal{E}'|=N} \text{EMD}(\mathcal{E}, \mathcal{E}').$$

$$\beta \text{-Wasserstein distance}$$

Thrust is the EMD between the event and the closest two-particle event.

Isotropy is a new observable to probe how "uniform" an event is.

It is sensitive to very different new physics signals than existing event shapes.

e.g. uniform radiation from micro black holes [Cari Cesarotti and Jesse Thaler, coming soon!]

$$i(\mathcal{E}) = \mathrm{EMD}(\mathcal{E}, \mathcal{E}_{iso})$$
 where \mathcal{E}_{iso} is a fully isotropic event

Eric M. Metodiev, MIT

Events close in EMD are close in any infrared and collinear safe observable!

Additive IRC-safe observables:

$$\mathcal{O}(\mathcal{E}) = \sum_{i=1}^{M} \underline{E}_{i} \, \Phi(\hat{n}_{i})$$

Energy Mover's Distance

$$EMD(\mathbf{\mathcal{E}}, \mathbf{\mathcal{E}}') \ge \frac{1}{RL} |\mathcal{O}(\mathbf{\mathcal{E}}) - \mathcal{O}(\mathbf{\mathcal{E}}')|$$

Difference in observable values

"Lipschitz constant" of Φ i.e. bound on its derivative

Events close in EMD are close in any infrared and collinear safe observable!

Jet angularities with $\beta \geq 1$:

[C. Berger, T. Kucs, and G. Sterman, 0303051]
[A. Larkoski, J. Thaler, and W. Waalewijn, 1408.3122]

$$\lambda^{(\beta)} = \sum_{i=1}^{M} \mathbf{E}_{i} \, \theta_{i}^{\beta}$$

$$\left|\lambda^{(\beta)}(\mathbf{E}) - \lambda^{(\beta)}(\mathbf{E}')\right| \le \beta \text{ EMD}(\mathbf{E}, \mathbf{E}')$$

Training on pure samples: Cat jets vs. Dog jets

Training on mixed samples: Cat jets vs. Dog jets

(CWoLa)

This defines an equivalent classifier to the pure case!

Training on pure samples: Quark jets vs. Gluon jets

Training on mixed samples: Quark jets vs. Gluon jets

[EMM, B. Nachman, J. Thaler, 1708.02949]

[P.T. Komiske, EMM, B. Nachman, M.D. Schwartz, 1801.10158]

[L. Dery, B. Nachman, F. Rubbo, A. Schwartzman, 1702.00414] [T. Cohen, M. Freytsis, B. Ostdiek, 1706.09451]

Training on Data!

Central Jets ($|\eta^{\rm jet}| < 0.7$): ~45% quark jets Forward Jets ($|\eta^{\rm jet}| > 0.7$): ~65% quark jets

To reduce sample dependence, we train an EFN on tracks with $p_T^{\rm PFC}>1~{\rm GeV}$ and remove pileup.

Or high-dimensional unfolding? See Patrick's Talk

What is the model learning?

Visualizing 256 filters for EFN (weakly) trained on data

Exploring the Space of Jets: Correlation Dimension

Sketch of leading log (one emission) calculation:

$$\begin{aligned} \dim_{q/g}(Q) &= Q \frac{\partial}{\partial Q} \ln \sum_{i=1}^{N} \sum_{j=1}^{N} \Theta[\text{EMD} \left(\mathcal{E}_{i}, \mathcal{E}_{j} \right) < Q] \\ &= Q \frac{\partial}{\partial Q} \ln \Pr\left[\text{EMD} < Q \right] \\ &= Q \frac{\partial}{\partial Q} \ln \Pr\left[\lambda^{(\beta=1)} < Q; C_{q/g} \rightarrow 2 \ C_{q/g} \right] \\ &= Q \frac{\partial}{\partial Q} \ln \exp\left(-\frac{4\alpha_{S} C_{q/g}}{\pi} \ln^{2} \frac{Q}{p_{T}/2} \right) \\ &= -\frac{8\alpha_{S} C_{q/g}}{\pi} \ln \frac{Q}{p_{T}/2} & C_{q} = C_{F} = \frac{4}{3} \\ &+ \text{1-loop running of } \alpha_{S} & C_{g} = C_{A} = 3 \end{aligned}$$

