CS 292C Computer-Aided Reasoning for Software

Lecture 8: Combining Theories

Yu Feng Fall 2019

Summary of previous lecture

- 2nd homework is out
- 3rd paper review is also due now
- SAT Modulo Theories

Theory of equality with uninterpreted functions

Signature: {=, x, y, z, ..., f, g, ..., p, q, ...}

- The binary predicate = is *interpreted*.
- All constant, function, and predicate symbols are uninterpreted.

Axioms

- $\forall x. x = x$
- ∀x,y. x=y →y=x
- $\forall x,y,z. \ x=y \land y=z \rightarrow x=z$
- $\forall x \mid ,...,x_n,y \mid ,...,y_n.(x \mid = y \mid \land ... \land x_n = y_n) \rightarrow (f(x \mid ,...,x_n) = f(y \mid ,...,y_n))$
- $\forall x | ,...,x_n,y | ,...,y_n.(x | = y | \land ... \land x_n = y_n) \rightarrow (p(x | ,...,x_n) \leftrightarrow p(y | ,...,y_n))$

Deciding T=

• Conjunctions of literals modulo T= is decidable in polynomial time.

Theory of linear integer and real

Signature

- Integers (or reals)
- Arithmetic operations: multiplication by an integer (or real) number, +, -.
- Predicates: =, \leq .
- Expanded with all constant symbols: x, y, z, ...

Deciding T_{LIA} and T_{LRA}

- NP-complete for linear integer arithmetic (LIA). Polynomial time for linear real arithmetic (LRA).
- Polynomial time for difference logic (conjunctions of the form $x y \le c$, where c is an integer or real number).

Outline of this lecture

- Deciding a combination of theories
- The Nelson-Oppen algorithm

SMT solver

$$1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$$

SMT solver

$$1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$$

This formula does not belong to any individual theory. $T_= \cup T_{LIA}$

Combination solver

Theory $T_1 \cup ... \cup T_n$ with signature $\Sigma_1 \cup ... \cup \Sigma_n$ and axioms $A_1 \cup ... \cup A_n$

 Σ_1 -theory T_1 with axioms A_1

Theory solver

 Σ_n -theory T_n with axioms A_n

Theory solver

Combination solver

Theory $T_1 \cup ... \cup T_n$ with signature $\Sigma_1 \cup ... \cup \Sigma_n$ and axioms $A_1 \cup ... \cup A_n$

The combination problem is undecidable for arbitrary (decidable) theories. It becomes decidable under **Nelson-Oppen restrictions**.

 Σ_1 -theory T_1 with axioms A_1

Theory solver

 Σ_n -theory T_n with axioms A_n

Theory solver

We will study how to combine two theories in this lecture

Combination solver

Theory $T_1 \cup ... \cup T_n$ with signature $\Sigma_1 \cup ... \cup \Sigma_n$ and axioms $A_1 \cup ... \cup A_n$

The combination problem is undecidable for arbitrary (decidable) theories. It becomes decidable under **Nelson-Oppen restrictions**.

Nelson-Oppen restrictions

T_1 and T_2 can be combined when

- Both are decidable, quantifier-free conjunctive fragments
- Equality (=) is the only interpreted symbol in the
- intersection of their signatures: $\Sigma_1 \cap \Sigma_2 = \{ = \}$
- Both are stably infinite

A theory T is stably infinite if for every satisfiable Σ_T -formula F, there is a T-model that satisfies F and that has a universe of infinite cardinality.

Stably infinite

 Σ_T : {a,b,=}

 $A_T: \forall x. x=a \lor x=b$

Stably infinite

 Σ_T : {a,b,=} A_T : $\forall x. x=a \lor x=b$

Stably infinite

Equality and uninterpreted functions (T=)

Arrays (T_A)

Linear real arithmetic (T_{LRA})

Linear integer arithmetic (T_{LIA})

Overview of Nelson-Oppen

Overview of Nelson-Oppen

Overview of Nelson-Oppen

Transforms a $(\Sigma_1 \cup \Sigma_2)$ -formula F into an **equisatisfiable** formula $F_1 \wedge F_2$ with F_1 in T_1 and F_2 in T_2

Repeat until fix point:

• If f is in T_i and t is not, and u is fresh:

$$F[f(...,t,...)] \rightsquigarrow F[f(...,u,...)] \land u = t$$

• If p is inT_i and t is not, and v is fresh:

$$F[p(...,t,...)] \rightsquigarrow F[p(...,v,...)] \land v = t$$

Purification

$$\Sigma_R$$

$$\Sigma = x \leq u+1 \qquad \land \qquad u = f(x)$$

$$f(f(x)-f(y)) \neq f(z) \land x \leq y \land y + z \leq x \land 0 \leq z$$

$$f(f(x)-f(y)) \neq f(z) \land x \leq y \land y + z \leq x \land 0 \leq z$$

$$f(f(x)-f(y)) \neq f(z) \land x \leq y \land y + z \leq x \land 0 \leq z$$

A constant is shared if it occurs in both F₁ and F₂

A constant is *shared* if it occurs in both F₁ and F₂

 $f(f(x)-f(y)) \neq f(z) \land x \leq y \land y + z \leq x \land 0 \leq z$

Purification

 Σ_{R}

 $\sum_{=}$

Shared:
$$\{w_3, w_1, w_2, x, y, z\}$$

Local: $\{\}$

$$w_3 = w_1 - w_2 \wedge x \leq y$$

$$w_1 = f(x) \wedge w_2 = f(y)$$

$$\wedge y + z \leq x \wedge 0 \leq z$$

$$\wedge f(w_3) \neq f(z)$$

Equality propagation

- Convex theories
- Non-convex theories

A theory T is *convex* if for every conjunctive formula F, the following holds:

If
$$F \Rightarrow x_1 = y_1 \lor ... \lor x_n = y_n$$
 for $n > 1$, then

 $F \Rightarrow x_i = y_i$ for some $i \in \{1,...,n\}$.

Linear integer arithmetic (T_{LIA})

A theory T is *convex* if for every conjunctive formula F, the following holds:

If
$$F \Rightarrow x_1 = y_1 \lor ... \lor x_n = y_n$$
 for $n > 1$, then

$$F \Rightarrow x_i = y_i$$
 for some $i \in \{1,...,n\}$.

If F implies a disjunction of equalities, then it also implies at least one of the equalities.

Linear integer arithmetic (T_{LIA})

A theory T is *convex* if for every conjunctive formula F, the following holds:

If
$$F \Rightarrow x_1 = y_1 \lor ... \lor x_n = y_n$$
 for $n > 1$, then

$$F \Rightarrow x_i = y_i$$
 for some $i \in \{1,...,n\}$.

If F implies a disjunction of equalities, then it also implies at least one of the equalities.

Linear integer arithmetic (T_{LIA})

A theory T is *convex* if for every conjunctive formula F, the following holds:

If
$$F \Rightarrow x_1 = y_1 \lor ... \lor x_n = y_n$$
 for $n > 1$, then

$$F \Rightarrow x_i = y_i$$
 for some $i \in \{1,...,n\}$.

If F implies a disjunction of equalities, then it also implies at least one of the equalities.

Linear integer arithmetic (T_{LIA})

$$1 \le x \land x \le 2 \Rightarrow x = 1 \lor x = 2$$

but not $1 \le x \land x \le 2 \Rightarrow x = 1$
not $1 \le x \land x \le 2 \Rightarrow x = 2$

A theory T is *convex* if for every conjunctive formula F, the following holds:

If
$$F \Rightarrow x_1 = y_1 \lor ... \lor x_n = y_n$$
 for $n > 1$, then

 $F \Rightarrow x_i = y_i$ for some $i \in \{1,...,n\}$.

Linear integer arithmetic (T_{LIA})

$$1 \le x \land x \le 2 \Rightarrow x = 1 \lor x = 2$$

but not $1 \le x \land x \le 2 \Rightarrow x = 1$
not $1 \le x \land x \le 2 \Rightarrow x = 2$

If F implies a disjunction of equalities, then it also implies at least one of the equalities.

Equality and uninterpreted functions (T=)

Linear real arithmetic (T_{LRA})

Nelson-Oppen for convex theories

NELSON-OPPEN-CONVEX(F)

- I. Purify F into $F_1 \wedge F_2$
- 2. Run T_1 -solver on F_1 and T_2 -solver on F_2 and return UNSAT if either is unsatisfiable
- 3. If there are shared constants x and y such that $F_i \Rightarrow x = y$ but F_j does not
 - $I.F_j \leftarrow F_j \land x=y$
 - 2. Go to step 2.
- 4. Return SAT

TODOs by next lecture

- Guest lecture about string solver and model counting
- Proposal will be due