01 Project Scope

Benefits of the Project

\$

Saving Labeling Cost (reduce ~80% of labeled data needed)

Broad Use Cases (support development of other ML projects)

Improve Model Maintenance Process

Model Pipeline

 Label the large dataset with small amount of handlabeled data

- Classify unwanted spam emails
- Extract the topics of remaining emails for future use

O2 Model Development

Spam Classifier - Planning

Dataset

Enron Emails Dataset – Jeff Dasovich's Email

26,371 emails

63 folders

From 1999 to 2002

	Date	From	То	Subject	body_msg	X- Folder_Category
65772	2000-12-13 08:51:00-08:00	rochmanm@spurr.org	tomb@crossborderenergy.com, michael.alexander	RE: Change in Wood All-party Meeting\nCc: ask	\n\n?That is extremely bush league, to make a	Notes inbox
59957	2002-01-02 16:35:52-08:00	paul.kaufman@enron.com	jeff.dasovich@enron.com	RE:	\n\nIf you pursue my ideadon't refer to the	Deleted Items

Goal of the Spam Classifier

Precision

90%+

Coverage

O2 Model Development

Labeling Model - Snorkel

Snorkel

External Emails (1999 – 2002, ~8000 emails)

600 latest emails

Snorkel Set

- Manually Labeled
- Tuning Label Functions
- Randomly selected from unlabeled data

Unlabeled Set

For training Snorkel Label Model

Validation Set

- Manually Labeled
- Held-out for testing discriminative model
- Latest Emails in the dataset

Developing Label Model

Labeling Functions

	j	Polarity	Coverage	Overlaps	Conflicts	Correct	Incorrect	Emp. Acc.
newswire	0	[1]	0.0175	0.0125	0.0075	7	0	1.000000
career	1	[1]	0.0425	0.0425	0.0100	15	2	0.882353
haas_promotion_address	2	[1]	0.0700	0.0500	0.0075	28	0	1.000000

count_to_enron	15	[0]	0.2875	0.1625	0.0100	113	2	0.982609
reply	16	[0]	0.3325	0.2600	0.0375	119	14	0.894737
jeff_count	17	[0]	0.2025	0.1950	0.0225	77	4	0.950617

Label Model - Performance on Snorkel Set

```
validation value count: 0 242
1 105
-1 53
Name: label, dtype: int64
{'accuracy': 0.9394812680115274, 'precision': 0.8857142857142857, 'recall': 0.9117647058823529, 'f1': 0.8985507246376812}
```

Precision	88.57%
Recall	91.18%
% of Data Labeled	86.75%

Label Model - Performance on Validation Set

```
validation value count: 1 269
0 242
-1 89
Name: label, dtype: int64
{'accuracy': 0.9256360078277887, 'precision': 0.9479553903345725,
'recall': 0.9139784946236559, 'f1': 0.9306569343065693}
```


Label Model - Model Output

```
labeled_data['label'].value_counts() ---
0 4031
1 1939
```

Output: 4031 Ham Emails 1939 Spam Emails

O2 Model Development

Spam Classifier

Labeled External Emails (1999 – 2002, ~6600 emails)

Randomly select 70% of emails

Randomly select 30% of emails

Randomly select and a select and a

Train Set

 Data to be used to train the classifiers

Test Set

For hyperparameters tuning

Validation Set

- Manually Labeled
- Held-out for testing discriminative model

Evaluation Methods

Precision

90%+

Coverage

Preprocessing Approaches

Pre-trained Word Embeddings

- Google's Pretrained Word2Vec Model
- Vector size: 300

Word Embeddings

- Trained by training set emails
- Vector size: 300

TF-IDF

- Trained by training set emails
- Vocabulary Size: 944

Classifiers

Decision Tree

XGBoost

Random Forest

- Support VectorMachine
- Logistic Regression

Final Ensemble Model

Considering the size of the dataset. Deep Learning Algorithms is not used.

Model Result

	Google Word2Vec	Word2Vec	TF-IDF
Train Set	Precision: 94.43%	Precision: 94.39%	Precision: 95.07%
	Recall: 87.51%	Recall: 89.30%	Recall: 86.61%
Test Set	Precision: 91.56%	Precision: 92.25%	Precision: 94.53%
	Recall: 84.71 %	Recall: 89.04%	Recall: 86.21%
Validation Set	Precision: 94.46%	Precision: 90.60%	Precision: 95.88%
	Recall: 84.49%	Recall: 89.10%	Recall: 84.49%
Snorkel Set	Precision: 86.09%	Precision: 90.09%	Precision: 90.57%
	Recall: 83.19%	Recall: 84.03%	Recall: 80.67%

Other Model Result

W2V with Bigram & Lemmatization TF-IDF with Bigram & Lemmatization

```
snorkel set result:
[[268 13]
    [ 14 105]]
precision: 0.8898305084745762
recall: 0.8823529411764706
accuracy: 0.9325
f1_score: 0.8860759493670887
```



```
snorkel set result:
[[263   18]
      [ 22   97]]
precision: 0.8434782608695652
recall: 0.8151260504201681
accuracy: 0.9
f1_score: 0.829059829059829
```

Spam Classifier - Model Output

Output:

5256 Ham Emails – To be used in Topic Model 2852 Spam Emails

O2 Model Development

Topic Model

Model Selection

Latent Dirichlet Allocation (LDA)

```
Coherence Score of 1-topics: 0.3212744020059067

Coherence Score of test data: 0.24797148806455938

Coherence Score of 2-topics: 0.5963888291927538

Coherence Score of test data: 0.5510887949473797

Coherence Score of 3-topics: 0.5830304509603105

Coherence Score of test data: 0.5771009383239412

Coherence Score of 4-topics: 0.6328632041573607

Coherence Score of test data: 0.6048475795126138

Coherence Score of 5-topics: 0.6116075659057547

Coherence Score of test data: 0.5677539480593501
```

LDA Mallet

Coherence Score of 1-topics: 0.3203094152523298

Coherence Score of 2-topics: 0.5939300876088229

Coherence Score of 3-topics: 0.5818415781661549

Coherence Score of 4-topics: 0.6009294347324005

Coherence Score of 5-topics: 0.5529872781430463

Latent Semantic Analysis (LSA)

Coherence Score of 1-topics: 0.23144560306583434

Coherence Score of 2-topics: 0.3007698711546833

Coherence Score of 3-topics: 0.38806370223833747

Coherence Score of 4-topics: 0.4638299192789817

Coherence Score of 5-topics: 0.4545758453201181

Number of Topics

Coherence Score of 4-topics: 0.6328632041573607

Coherence Score of test data: 0.6048475795126138

Coherence Score of 5-topics: 0.6116075659057547

Coherence Score of test data: 0.5677539480593501

Coherence Score of 6-topics: 0.5262818742912393

Coherence Score of test data: 0.4827635734183347

Coherence Score of 7-topics: 0.5633251190008167

Coherence Score of test data: 0.5220360879213233

Coherence Score of 8-topics: 0.6005059633081636

Coherence Score of test data: 0.5251150218544316

Top 15 words in each topic

_	
Topic: 0	
	weight
"com"	0.210
"e-mail"	0.041
"ca"	0.027
"gov"	0.020
"cpuc"	0.013
"net"	0.012
"org"	0.012
"energy"	0.009
"bill"	0.009
"u"	0.009
"bracepatt"	0.006
"williams"	0.006
"john"	0.005
"state"	0.005
"doc"	0.005

Topic: 1	
	weight
"say"	0.018
"power"	0.014
"california"	0.012
"state"	0.012
"energy"	0.011
"rate"	0.008
"price"	0.008
"would"	0.007
"electricity"	0.006
"utility"	0.006
"gas"	0.006
"plan"	0.005
"customer"	0.005
"market"	0.005

Topic: 2	
	weight
"enron"	0.182
"com"	0.049
"na"	0.041
"hou"	0.032
"ect"	0.030
"ee"	0.028
"ees"	0.022
"jeff"	0.019
"dasovich"	0.016
"pm"	0.014
"steffes"	0.014
"subject"	0.014
"james"	0.013
"corp"	0.011
"richard"	0.011

Topic: 3	
	weight
"com"	0.030
"jeff"	0.025
"enron"	0.021
"call"	0.017
"dasovich"	0.014
"pm"	0.012
"subject"	0.012
"meeting"	0.011
"get"	0.011
"send"	0.010
"please"	0.010
"may"	0.009
"best"	800.0
"message"	0.007
"work"	0.007

LDA topic 1 – California Energy Issues

67694 NEWS: St... * from A... 0 0.999413... 0 0

- * from Associated Press (4/9/01)
- * discusses rates and blackout potential for each state
- * Louisiana on verge of power crisis, they say...
- * I think I might move to Nebraska!

Here's an attachment for easy distribution:

Here's the full article for quick scanning:
Monday April 9 4:23 PM ET
Power Situation by State
By The Associated Press,
A state-by-state look at the electric power situation for summer:

Alabama: Blackouts and rolling brownouts are unlikely as utilities are required to maintain a reserve 15 percent above what is needed to meet peak demand. Residential and business customers will pay rates about 1.1 percent above a year ago.

Alaska: Blackouts and brownouts are unlikely. Hydroelectric power is plentiful, and generating systems are not being taxed. Electric bills are expected to fall slightly.

Arizona: There is little likelihood of a power interruption. Utilities are prepared to handle the summer electricity demand, and price caps prevent the major utilities from increasing...

Topic Model - Model Output

Output:

Emails are sorted into 4 topics

- 1. government parties
- 2. California Energy Issue
- 3. Meetings related
- 4. others

A Vector indicating the likelihood of the email in each topic

Model Maintenance

Snorkel + Spam Classifier

- Metrics: Drop in Precision (Validation vs New Emails)
- Redevelopment: Precision drops > 2.5%
- Evaluation Frequency: 1 year

Topic Model

- Metrics: Drop in Coherence Score (Test vs New Emails)
- Redevelopment: Coherence score drops > 3%
- Evaluation Frequency: 6 months
- Remark: Other ML models need to re-tune hyperparameters if the redevelopment is performed

O3 Business Use Case

Use Cases in business

Email Classification Engine

- Spam classification
- Segmenting emails into topics.
- As an input in other email ML models

Snorkel + Spam Classifier

- The development process can be applied to other topic classification (e.g. casual chat, meeting frequency)
- Can be applied to imbalance classes problem (requires extra steps, e.g. data augmentation, up-sampling, down-sampling)

Example of using Topic Model as Input

Without Topic Vector

```
snorkel set result:
[[271   10]
      [ 23   96]]
precision: 0.9056603773584906
recall: 0.8067226890756303
accuracy: 0.9175
f1_score: 0.8533333333333333334
```

With Topic Vector

```
snorkel set result:
[[271   10]
     [ 20   99]]
precision: 0.908256880733945
recall: 0.8319327731092437
accuracy: 0.925
f1_score: 0.868421052631579
```

Thank you!