CÁC CÔNG THỨC VÀ BẢNG TRA CỦA PHƯƠNG PHÁP KHOAN

(Trích từ " Applied machinning technology" của tác giả Heinz Tschätsch)

1 Momen

1.1 Lực cắt đơn vị

$$k_c = \frac{1}{h^z} . k_{c1,1} . K_v . K_{st} . K_{ver}$$

Trong đó:

- k_c lực cắt đơn vị (N/mm²)
- z là hằng số vật liệu
- $k_{c1,1}$ lực cắt đơn vị với h = 1mm, b = 1mm
- K_v hệ số ảnh hưởng vật liệu dao, $K_v = 1,15$ khi vật liệu dao là thép gió, $K_v = 1,0$ khi vật liệu dao là cemented carbide
- K_{ver} hệ số hao mòn, $K_{\text{ver}} = 1.3$
- K_{st} hệ số nén phoi, $K_{st} = 1,2$.

1.2 Khoan thường

$$M = \frac{d^2}{8}.s.k_c.10^{-3}$$

Trong đó:

- M mô men (Nm)
- d đường kính mũi khoan (mm)
- s lượng chạy dao

1.3 Khoét

$$M = \frac{D^2 - d^2}{8}. s. k_c. 10^{-3}$$

Trong đó:

- D đường kính lỗ khoét (mm)
- d đường kính lỗ khoan (mm)

1.4 Taro

$$M = \frac{p^2. d. k_c. K}{8. \, 10^3}$$

Trong đó:

- p bước ren (mm)
- d đường kính lớn nhất của lưỡi cắt (mm)
- K hằng số công cụ

Bảng 1. Hằng số công cụ K của một số kiểu taro

Số đầu mối ren	•			
1	1	1		
2	1	0,8		
	2	0,6		
3	1	0,6		
	2	0,3		
	3	0,2		

2 Công suất yêu cầu

$$P = \frac{M.n}{9,55.10^3.\eta}$$

Trong đó:

- P công suất yêu cầu (kW)
- M mô men (Nm)
- n số vòng quay (v/ph)
- η hiệu suất máy (0,7-0,9)

3 Thời gian gia công

$$t_h = \frac{L.i}{f.n}$$

Trong đó:

- Thời gian gia công t_h (ph)
- Tổng chiều dài chạy dao L (mm)
- Số lượng lỗ khoan i
- Lượng chạy dao s (mm/v)
- Số vòng quay n (v/ph)

3.1 Khoan thường

Lỗ thông:
$$L = \frac{d}{2 \cdot tan\frac{\sigma}{2}} + l + 3$$

Lỗ không thông:
$$L = \frac{d}{2 \cdot tan_{\frac{\sigma}{2}}^{\sigma}} + l + 1$$

Trong đó:

- Đường kính mũi khoan d (mm)
- Góc mũi khoan σ°
- Chiều sâu lỗ khoan l (mm)

3.2 Khoét

Lỗ thông:
$$L = \frac{D-d}{2 \cdot tan\frac{\sigma}{2}} + l + 3$$

Lỗ không thông:
$$L = \frac{D-d}{2 \cdot tan\frac{\sigma}{2}} + l + 1$$

Trong đó:

Trong đó:

- D đường kính lỗ khoét (mm)
- d đường kính lỗ khoan (mm)

3.3 Taro

Lỗ thông:
$$L = 3p + l + 2$$

Lỗ không thông:
$$L = 3p + l + 1$$

Trong đó: p bước ren (mm)

4 Một số bảng tra tham khảo

Bảng 2. Tốc độ cắt và lượng chạy dao khi khoét bằng dao khoét làm từ thép gió

Phôi	Tốc độ cắt	Đường kính lỗ khoan D (mm)						
Piloi	v	5	6.3	10	16	25	40	
Unalloyed steels to 700 N/mm ²	10–13	0,05	0,06	0,07	0,09	0,11	0,14	
Unalloyed steels 700–900 N/mm2	7–9	0,04	0,04	0.05	0,05	0,06	0,07	
Grey cast iron GJL 200-GJL 250	10–14	0,05	0,06	0,07	0,09	0.11	0,14	
Brass CuZn 37	14–20	0,05	0,05	0,07	0,08	0,10	0,12	
Al alloys	28–50	0,05	0,06	0,07	0,09	0,11	0,14	

Bảng 3. Tốc độ cắt, lượng chạy dao khi doa với dao làm từ thép gió

**	Tốc độ	Đường kính mũi khoan d (mm)						
Phôi	cắt v	5	12	16	25	40		
Unalloyed steel ≤ 700 N/mm ²	8–10	0,1	0,2	0,25	0,35	0,4		
Unalloyed steel ≤ 900 N/mm ²	6–8	0,1	0,2	0,25	0,35	0,4		
Alloyed steel > 900 N/mm ²	4–6	0,08	0,15	0,2	0,25	0,35		
Grey cast irom < 250 N/mm ²	8–10	0,15	0,25	0,3	0,4	0,5		
Grey cast irom > 250 N/mm ²	4–6	0,1	0,2	0,25	0,3	0,4		
Brass Ms 63 (CuZn 37)	15–20	0,15	0,25	0,3	0,4	0,5		

Bảng 4. Đường kính lỗ khoan để taro với bước ren thô theo tiêu chuẩn DIN 13

Đường kính ren danh nghĩa	Bước ren p	Đường kính lỗ khoan D				
M 3	0,5	2,5				
M 4	0,7	3,3				
M 5	0,8	4,2				
M 6	1,0	5,0				
M 8	1,25	6,8				
M 10	1,5	8,5				
M 12	1,75	10,2				
M 16	2,0	14,0				
M 20	2,5	17,5				
M 24	3,0	21,0				
M 27	3,0	24,0				
M 30	3,5	26,5				

Bảng 5. Tốc độ cắt, lượng chạy dao và số vòng quay khi khoan với mũi khoan làm từ thép gió với chiều sâu khoan l=5d, các giá trị trong ngoặc [] có thể áp dụng cho mũi khoan làm từ cemented carbide (khi chiều sâu khoan $5d < l \le 10d$ các giá trị này giảm đi 20%).

Phoi	Tốc độ	Lượng chạy dao s và số	Đường kính mũi khoan d (mm)						
	cắt v	vòng quay n	2,5	4	6,3	10	16	25	40
C10, C15,	32	n	4000	2500	1600	1000	630	400	250
C35, S275JR, C35E	32	S	0,05	0,08	0,12	0,18	0,25	0,32	0,4
C45, CK45, 34Cr4,		n	2500	1600	1000	630	400	250	160
22NrCr14, 25CrMo5	20	S	0,05	0,08	0,12	0,18	0,25	0,32	0,4
36CrNiMo4,	10	n	1600	1000	630	400	250	160	100
20MnCr5,50CrMo4, 37MnSi5	12	s	0,04	0,06	0,1	0,14	0,18	0,25	0,32
		n	2500	1600	1000	630	400	250	160
CH 150 CH 250	20 [22]		[4000]	[2500]	[1600]	[1000]	[630]	[400]	[250]
GJL150–GJL250 2	20 [32]	S	0,08	0,12	0,2	0,28	0,38	0,5	0,63
			[0,04]	[0,06]	[0,1]	[0,14]	[0,18]	[0,25]	[0,32]
	n	2000	1250	800	500	320	200	125	
GJL300-GJL400	16 [32]	n	[4000]	[2500]	[1600]	[1000]	[630]	[400]	[250]
GJL300-GJL400 10 [32]	10 [32]	S	0,06	0,1	0,16	0,22	0,3	0,4	0,5
			[0,03]	[0,05]	[0,08]	[0,11]	[0,15]	[0,2]	[0,25]
Ms58 (CuZn42)	63	n	8000	5000	3200	2000	1250	800	500
MS36 (CuZii42)	0.5	S	0,08	0,12	0,2	0,28	0,38	0,5	0,63
Ms63 (CuZn37)	40	40 n s	5000	3200	2000	1250	800	500	320
1VISO3 (CUZII37) 40	40		0,06	0,1	0,16	0,22	0,3	0,4	0,5
AlMgSiPb,	63	n	8000	5000	3200	2000	1250	800	500
AlCuMg1	03	S	0,08	0,12	0,2	0,28	0,38	0,5	0,63
G-AlSi5Cu1, G-	*	n	6300	4000	2500	1600	1000	630	400
AlSi7 Cu3, G-AlSi9 (Cu)		S	0,08	0,12	0,2	0,28	0,38	0,5	0,63