Problém ILP (celočíselné lineární programování)

Vstup: Celočíselná matice A a celočíselný vektor b.

Otázka: Existuje celočíselný vektor x, takový že $Ax \leq b$?

Příklad instance problému:

$$A = \begin{pmatrix} 3 & -2 & 5 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix} \qquad b = \begin{pmatrix} 8 \\ -3 \\ 5 \end{pmatrix}$$

Ptáme se tedy, zda existuje celočíselné řešení následující soustavy nerovnic:

$$\begin{array}{rcl} 3x_1 - 2x_2 + 5x_3 & \leq & 8 \\ x_1 + x_3 & \leq & -3 \\ 2x_1 + x_2 & \leq & 5 \end{array}$$

Jedním z řešení soustavy

$$3x_1 - 2x_2 + 5x_3 \leq 8$$

$$x_1 + x_3 \leq -3$$

$$2x_1 + x_2 \leq 5$$

je například $x_1 = -4$, $x_2 = 1$, $x_3 = 1$, tj.

$$x = \left(\begin{array}{c} -4\\1\\1\end{array}\right)$$

neboť

$$3 \cdot (-4) - 2 \cdot 1 + 5 \cdot 1 = -9 \le 8$$

 $-4 + 1 = -3 \le -3$
 $2 \cdot (-4) + 1 = -7 \le 5$

Pro tuto instanci je tedy odpověď ANO.

Věta

Problém ILP je NP-těžký.

NP-obtížnost problému ILP dokážeme tak, že ukážeme polynomiální redukci z následujícího známého NP-úplného problému:

3-SAT

Vstup: Booleovská formule φ v konjunktivní normální formě,

kde každá klauzule obsahuje právě tři literály.

Otázka: Je φ splnitelná?

Předpokládejme, že máme dánu nějakou konkrétní instanci problému 3-SAT, například následující formuli φ :

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (x_2 \vee \neg x_3 \vee x_4) \wedge (x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_2 \vee x_4)$$

Naším úkolem je vyrobit k formuli φ soustavu lineárních nerovnic takovou, že tato soustava bude mít řešení v oboru celých čísel právě tehdy, když je formule φ splnitelná.

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (x_2 \vee \neg x_3 \vee x_4) \wedge (x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_2 \vee x_4)$$

Krok 1:

Každé booleovské proměnné x_i ve formuli φ bude v soustavě nerovnic odpovídat neznámá x_i' .

Například pro formuli φ uvedenou výše bude soustava nerovnic obsahovat neznámé x_1' , x_2' , x_3' , x_4' .

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (x_2 \vee \neg x_3 \vee x_4) \wedge (x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_2 \vee x_4)$$

Krok 2:

Nejprve do soustavy přidáme pro každou neznámou x_i' dvojici nerovnic $x_i' \geq 0$ a $x_i' \leq 1$:

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (x_2 \vee \neg x_3 \vee x_4) \wedge (x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_2 \vee x_4)$$

Krok 2:

Nejprve do soustavy přidáme pro každou neznámou x_i' dvojici nerovnic $x_i' \geq 0$ a $x_i' \leq 1$:

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (x_2 \vee \neg x_3 \vee x_4) \wedge (x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_2 \vee x_4)$$

Krok 2:

Nejprve do soustavy přidáme pro každou neznámou x_i' dvojici nerovnic $x_i' \geq 0$ a $x_i' \leq 1$:

Poznámka: Tyto nerovnice zaručují, že v libovolném řešení výsledné soustavy bude muset pro všechna x_i' platit $x_i' \in \{0, 1\}$.

Krok 3:

Pro každou klauzuli tvaru $(L_1 \lor L_2 \lor L_3)$, kde L_i jsou jednotlivé literály, přidáme do soustavy nerovnic nerovnici

$$f_1+f_2+f_3\geq 1$$

kde

$$f_i = \left\{ egin{array}{ll} x_i' & ext{pokud } L_i = x_i \ (1 - x_i') & ext{pokud } L_i = \neg x_i \end{array}
ight.$$

Krok 3:

Pro každou klauzuli tvaru $(L_1 \lor L_2 \lor L_3)$, kde L_i jsou jednotlivé literály, přidáme do soustavy nerovnic nerovnici

$$f_1+f_2+f_3\geq 1$$

kde

$$f_i = \left\{ egin{array}{ll} x_i' & ext{pokud } L_i = x_i \ (1 - x_i') & ext{pokud } L_i = \neg x_i \end{array}
ight.$$

Příklad: Pro klauzuli $(x_1 \lor \neg x_3 \lor \neg x_4)$ přidáme nerovnici

$$x_1' + (1 - x_3') + (1 - x_4') \ge 1$$

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (x_2 \vee \neg x_3 \vee x_4) \wedge (x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_2 \vee x_4)$$

Takto vypadá celá odpovídající soustava nerovnic:

Krok 4:

Soustavu nerovnic převedeme pomocí jednoduchých aritmetických úprav do požadovaného maticového tvaru tak, aby všechny nerovnice byly tvaru

$$c_1 \cdot x_1' + c_2 \cdot x_2' + \cdots + c_n \cdot x_n' \leq d$$

kde c_1, c_2, \ldots, c_n a d jsou konstanty.

Krok 4:

Soustavu nerovnic převedeme pomocí jednoduchých aritmetických úprav do požadovaného maticového tvaru tak, aby všechny nerovnice byly tvaru

$$c_1 \cdot x_1' + c_2 \cdot x_2' + \cdots + c_n \cdot x_n' \leq d$$

kde c_1, c_2, \ldots, c_n a d jsou konstanty.

Poznámka:

Pokud se v nerovnici vyskytuje nerovnost ' \geq ' místo ' \leq ', můžeme využít toho, že $x \geq y$ právě tehdy, když $-x \leq -y$.

$$x_1' + (1 - x_3') + (1 - x_4') \geq 1$$

$$x_1'+(1-x_3')+(1-x_4')\geq 1$$
 // sečteme jednotlivé členy $x_1'-x_3'-x_4'+2\geq 1$

```
x_1'+(1-x_3')+(1-x_4')\geq 1 // sečteme jednotlivé členy x_1'-x_3'-x_4'+2\geq 1 // odečteme 2 od obou stran x_1'-x_3'-x_4'\geq -1
```

```
x_1' + (1-x_3') + (1-x_4') \geq 1 // sečteme jednotlivé členy x_1' - x_3' - x_4' + 2 \geq 1 // odečteme 2 od obou stran x_1' - x_3' - x_4' \geq -1 // vynásobíme obě strany -1 -x_1' + x_3' + x_4' \leq 1
```

Příklad:

$$x_1' + (1-x_3') + (1-x_4') \geq 1$$
 // sečteme jednotlivé členy $x_1' - x_3' - x_4' + 2 \geq 1$ // odečteme 2 od obou stran $x_1' - x_3' - x_4' \geq -1$ // vynásobíme obě strany -1 $-x_1' + x_3' + x_4' \leq 1$

Po doplnění chybějících členů (s koeficienty 0) tedy výsledná nerovnice vypadá takto:

$$(-1) \cdot x_1' + 0 \cdot x_2' + 1 \cdot x_3' + 1 \cdot x_4' \leq 1$$

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (x_2 \vee \neg x_3 \vee x_4) \wedge (x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_2 \vee x_4)$$

Po úpravě všech nerovnic tedy dostaneme soustavu:

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (x_2 \vee \neg x_3 \vee x_4) \wedge (x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_1 \vee \neg x_2 \vee x_4)$$

Tuto soustavu můžeme zapsat maticovým zápisem jako:

$$\begin{pmatrix} -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 \\ -1 & 1 & -1 & 0 \\ 0 & -1 & 1 & -1 \\ -1 & 0 & 1 & 1 \\ 1 & 1 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1' \\ x_2' \\ x_3' \\ x_4' \end{pmatrix} \leq \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

Je zřejmé, že tuto konstrukci můžeme provést v čase $O(n^2)$, kde n je velikost formule φ .

Poznámka:

Ve skutečnosti nejvíce času zabere vyplňování matice A nulami. Není těžké ověřit, že vše ostatní (vyplnění nenulových prvků v matici A a vytvoření vektoru b) je možné provést v čase O(n).

Je zřejmé, že tuto konstrukci můžeme provést v čase $O(n^2)$, kde n je velikost formule φ .

Poznámka:

Ve skutečnosti nejvíce času zabere vyplňování matice A nulami. Není těžké ověřit, že vše ostatní (vyplnění nenulových prvků v matici A a vytvoření vektoru b) je možné provést v čase O(n).

Poznámka:

Není těžké si rozmyslet, jak by vypadal algoritmus, který by vytvářel matici A a vektor b přímo, bez mezikroku s úpravami nerovnic.

Tento mezikrok zavádíme pro lepší pochopení konstrukce.

Nyní ještě zbývá ukázat korektnost konstrukce.

Nejprve si všimněme, že vzhledem k tomu, že vytvořená soustava obsahuje pro každé x_i' nerovnice

$$x_i' \ge 0$$
 $x_i' \le 1$

musí jakékoliv řešení celé soustavy (pokud vůbec nějaké existuje) být toho typu, že jednotlivá x_i' nabývají pouze hodnot 0 nebo 1.

Každému ohodnocení ν booleovských proměnných x_1, x_2, \ldots, x_k ve formuli φ jednoznačně odpovídá přiřazení hodnot neznámým x_1', x_2', \ldots, x_k' ve vytvořené soustavě nerovnic:

$$x_i' = \begin{cases} 0 & \text{když } [x_i]_{\nu} = \text{FALSE} \\ 1 & \text{když } [x_i]_{\nu} = \text{TRUE} \end{cases}$$

Každému ohodnocení ν booleovských proměnných x_1, x_2, \ldots, x_k ve formuli φ jednoznačně odpovídá přiřazení hodnot neznámým x_1', x_2', \ldots, x_k' ve vytvořené soustavě nerovnic:

$$x_i' = \left\{ egin{array}{ll} 0 & \mathrm{kdy}\check{\mathrm{z}} \; [x_i]_{
u} = \mathrm{FALSE} \ 1 & \mathrm{kdy}\check{\mathrm{z}} \; [x_i]_{
u} = \mathrm{TRUE} \end{array}
ight.$$

Tento vztah je vzájemně jednoznačný.

Ke každému přiřazení celočíselných hodnot neznámým x_1', x_2', \ldots, x_k' takovému, že pro všechna x_i' platí $x_i' \in \{0, 1\}$, existuje odpovídající přiřazení booleovských hodnot ν .

Vezměme si nyní nějaké ohodnocení booleovských proměnných ν a jemu odpovídající přiřazení hodnot 0 a 1 neznámým x_1', x_2', \ldots, x_k' .

Připomeňme, že ve vytvořené soustavě nerovnic odpovídá každé klauzuli $(L_1 \lor L_2 \lor L_3)$ vyskytující se ve formuli φ nerovnice tvaru

$$f_1+f_2+f_3\geq 1$$

kde f_i je tvaru x'_j , pokud $L_i = x_j$, nebo $(1 - x'_j)$, pokud $L_i = \neg x_j$.

Vezměme si nyní nějaké ohodnocení booleovských proměnných ν a jemu odpovídající přiřazení hodnot 0 a 1 neznámým x_1', x_2', \ldots, x_k' .

Připomeňme, že ve vytvořené soustavě nerovnic odpovídá každé klauzuli ($L_1 \lor L_2 \lor L_3$) vyskytující se ve formuli φ nerovnice tvaru

$$f_1+f_2+f_3\geq 1$$

kde f_i je tvaru x'_j , pokud $L_i = x_j$, nebo $(1 - x'_j)$, pokud $L_i = \neg x_j$.

Vidíme, že ať už je literál L_i tvaru x_j nebo $\neg x_j$, platí, že:

- $f_i = 1$, pokud $[L_i]_{\nu} = \text{TRUE}$
- $f_i = 0$, pokud $[L_i]_{\nu} = \text{FALSE}$

Hodnota výrazu $f_1+f_2+f_3$ při daném přiřazení je tedy počtem literálů v klauzuli $(L_1\vee L_2\vee L_3)$, které mají při ohodnocení ν hodnotu TRUE.

Vzhledem k tomu, že $[L_1 \lor L_2 \lor L_3]_{\nu} = \text{TRUE}$ právě tehdy, když pro alespoň jeden z literálů L_1, L_2, L_3 platí $[L_i]_{\nu} = \text{TRUE}$, je očividné, že nerovnost

$$f_1+f_2+f_3\geq 1$$

platí při daném přiřazení právě tehdy, když

$$[L_1 \vee L_2 \vee L_3]_{\nu} = \text{TRUE}.$$

Tvrzení

Pokud je formule φ splnitelná, pak existuje celočíselné řešení vytvořené soustavy nerovnic.

Důkaz: Jestliže je φ splnitelná, existuje nějaké ohodnocení ν takové, že $[\varphi]_{\nu} = \text{TRUE}$, tj. takové, kde $[C_i]_{\nu} = \text{TRUE}$ pro všechny klauzule C_i formule φ .

Z předchozího je zřejmé, že pokud vezmeme jemu odpovídající přiřazení hodnot 0 a 1 neznámým x_1', x_2', \ldots, x_k' , budou při tomto přiřazení platit všechny vytvořené nerovnice:

- Nerovnice tvaru $x_i' \ge 0$ a $x_i' \le 1$ proto, že $x_i \in \{0, 1\}$.
- Nerovnice odpovídající klauzulím proto, že při ohodnocení ν má každá klauzule hodnotu TRUE.

Tvrzení

Jestliže existuje řešení vytvořené soustavy nerovnic, pak je formule φ splnitelná.

Důkaz: Je zřejmé, že pokud má soustava nerovnic řešení, tak musí toto řešení pro všechna x_i' splňovat podmínku $x_i' \in \{0,1\}$.

Tomuto řešení tedy jednoznačně odpovídá nějaké ohodnocení ν a z předchozího je zřejmé, že každá klauzule formule φ při tomto ohodnocení nabývá hodnoty TRUE, takže platí

$$[\varphi]_{\nu} = \text{TRUE}$$

a formule φ je tedy splnitelná.

Vidíme, že formule φ je splnitelná právě tehdy, když existuje celočíselné řešení k ní vytvořené soustavy nerovnic.

Tím je důkaz korektnosti konstrukce hotov.