

Clase 9: Distribuciones de probabilidad conjuntas (discretas y continuas), marginales y condicionales

Profesora: Olga Alexandra Bustos Giraldo

Escuela de Estadística
Universidad Nacional de Colombia, Sede Medellín
oabustos@unal.edu.co

Estadística I (Clase 9).

Ilustración de una distribución bivariada discreta

Ilustración de una distribución bivariada continua

Distribuciones Bivariadas

Muchos de los fenómenos que usualmente estudiamos, involucran diferentes y diversos factores, los cuales son identificados por medio de variables. El comportamiento de estos fenómenos se rige por el comportamiento conjunto de las variables involucradas.

Si X e Y son variables aleatorias, la distribución que rige el comportamiento conjunto de ambas variables es llamada DISTRIBUCIÓN BIVARIADA o BIVARIABLE. Si se tienen más de dos variables se le llama MULTIVARIABLE.

Estadística I (Clase 9).

Stribuciones Bivariadas Discretas

Sean X e Y variables aleatorias discretas definidas en un espacio muestral S y sea \mathcal{A} el espacio de las variables (X,Y). La distribución de probabilidad conjunta de X e Y (la f.m.p. conjunta), la cual denotamos $p(x\,,\,y)$, se define como:

$$p(x, y) := P(X = x, Y = y)$$
, $\forall (x, y) \in \mathcal{A} \subseteq \mathbb{R}^2$

Para que p(x,y) sea f.m.p.c debe satisfacer:

1.
$$p(x, y) \ge 0 \quad \forall (x, y) \in \mathcal{A}$$

2.
$$\sum_{x} \sum_{y} p(x, y) = \sum_{(x,y) \in \mathcal{A}} p(x, y) = 1$$

3. Si
$$A \subseteq \mathbb{R}^2 \quad \Rightarrow \quad P((X,Y) \in A) = \sum_{(x,y) \in A} p(x,y)$$

Sean X e Y dos v.a.s discretas con f.m.p. conjunta dada por:

\mathcal{X}	0	0	1	1	2	2
y	0	1	0	1	0	1
p(x, y)	$\frac{1}{18}$	$\frac{3}{18}$	$\frac{4}{18}$	$\frac{3}{18}$	6 18	$\frac{1}{18}$

Calcule

a.
$$P(X \le 1, Y \le 1)$$

b.
$$P(X > 1, Y < 2)$$

c.
$$P(X = 0 | Y = 1)$$

Solución

a. Sea $A = \{(x, y) \mid x \le 1, y \le 1\}$. Entonces:

$$P(X \le 1, Y \le 1) = P((X, Y) \in A)$$

$$= \sum_{(x,y)\in A} p(x,y) = \sum_{x=0}^{1} \sum_{y=0}^{1} p(x,y)$$

$$= p(0,0) + p(0,1) + p(1,0) + p(1,1) = \frac{11}{18}$$

b. Sea $B = \{(x, y) / x > 1, y < 2\}.$

$$P(X > 1, Y < 2) = P((X, Y) \in B) = \sum_{x=2}^{2} \sum_{y=0}^{1} p(x, y)$$
$$= p(2, 0) + p(2, 1) = \frac{7}{18}$$

C.

$$P(X = 0 | Y = 1) = \frac{P(X = 0, Y = 1)}{P(Y = 1)}$$

$$= \frac{p(0, 1)}{p(0, 1) + p(1, 1) + p(2, 1)}$$

$$= \frac{3/18}{3/18 + 3/18 + 1/18} = \frac{3}{7}$$

Variables aletorias Continuas

Sean X e Y variables aleatorias continuas definidas en \mathcal{A} (espacio de las variables), diremos que f(x,y) es una función de densidad de probabilidad conjunta (f.d.p.c), si satisface que:

Variables aletorias Continuas

Propiedades

1.

$$f(x, y) \ge 0. \quad \forall (x, y) \in \mathbb{R}^2$$

2.

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \, dy \, dx = 1.$$

3. Si $B \subseteq \mathbb{R}^2 \implies$

$$P((X,Y) \in B) = \iint_B f(x,y) \, dy \, dx$$

Sean X, Y v.a. continuas con f.d.p. conjunta dada por:

$$f(x, y) = c(x+y)$$
; $0 < x < 3$, $x < y < x+2$.

- a. Halle el valor de c, para que f sea una f.d.p. conjunta
- b. Calcule P(X < 1, Y < 2).
- c. Calcule P(1 < X < 2).
- d. Calcule P(X < 2 | Y > 2).

Solución

a. Para hallar el valor de c, se debe dibujar la región de integración así:

$$\int_{0}^{3} \int_{x}^{x+2} c(x+y) \, dy \, dx = 1 \Leftrightarrow c \int_{0}^{3} \left(xy + \frac{y^2}{2} \Big|_{x}^{x+2} \, dx = 1 \right)$$

Estadística I (Clase 9).

$$c\int_{0}^{3} \left[x(x+2) + \frac{(x+2)^{2}}{2} - x^{2} - \frac{x^{2}}{2} \right] dx = 1 \Leftrightarrow c\int_{0}^{3} \left[x^{2} + 2x + \frac{x^{2} + 4x + 4}{2} - \frac{3x^{2}}{2} \right] dx = 1$$

$$\Leftrightarrow c \int_{0}^{3} (4x + 2) dx = 1 \Leftrightarrow c \left(2x^{2} + 2x \Big|_{0}^{3} = 1 \Leftrightarrow 24c = 1 \right)$$

Luego, $c = \frac{1}{24}$, con esto

$$f(x,y) = \frac{x+y}{24}$$
; $0 < x < 3$, $x < y < x+2$.

b. Para hallar P(X < 1, Y < 2), se debe dibujar la región de integración así:

$$P(X < 1, Y < 2) = \int_{0}^{1} \int_{x}^{2} \frac{1}{24} (x + y) \, dy \, dx = \int_{0}^{1} \frac{1}{24} \left(xy + \frac{y^{2}}{2} \right) \Big|_{x}^{2} \, dx.$$

$$P(X < 1, Y < 2) = \int_{0}^{1} \frac{1}{24} \left(2x + 2 - x^{2} - \frac{x^{2}}{2} \right) dx = \int_{0}^{1} \frac{1}{24} \left(2x + 2 - \frac{3x^{2}}{2} \right) dx.$$

$$P(X < 1, Y < 2) = \frac{1}{24} \left(x^2 + 2x - \frac{x^3}{2} \right)_0^1 = \frac{1}{24} \left(1 + 2 - \frac{1}{2} \right) = \frac{5}{48}.$$

c. Para hallar P(1 < X < 2), se debe dibujar la región de integración así:

$$P(1 < X < 2) = \int_{1}^{2} \int_{x}^{x+2} \frac{x+y}{24} dy dx = \frac{1}{24} \int_{1}^{2} \left(xy + \frac{y^{2}}{2} \Big|_{x}^{x+2} dx \right)$$

$$P(1 < X < 2) = \frac{1}{24} \int_{1}^{2} (4x + 2) dx = \frac{1}{24} \left[2x^{2} + 2x \Big|_{1}^{2} = \frac{1}{3} \right].$$
Estadística L (Clase 9)

d. Para hallar P(X < 2 | Y > 2), se debe dibujar la región de integración así:

$$P(X < 2 | Y > 2) = \frac{P(X < 2, Y > 2)}{P(Y > 2)}$$

$$= \frac{\int_{0}^{2} \int_{2}^{x+2} \frac{1}{24} (x+y) \, dy \, dx}{1 - P(Y \le 2)}$$

$$= \frac{1/3}{1 - \int_{0}^{2} \int_{x}^{2} \frac{1}{24} (x+y) \, dy \, dx} = \frac{\frac{1}{3}}{1 - \frac{1}{6}} = \frac{2}{5}$$

Marginales y Condicionales

Sean *X* e *Y* variables aleatorias (Discretas o Continuas).

La *Distribución Marginal de X*, está dada por:

$$p_X(x) = \sum_{y} p(x, y)$$
, Caso Discreto.

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$
, Caso Continuo.

Analógamente se define la *Distribución Marginal de Y* como:

$$p_Y(y) = \sum_{x} p(x, y)$$
, Caso Discreto.

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$
, Caso Continuo.

Marginales y Condicionales

La *Distribución Condicional* de "Y dado X=x" la cual se denotará: $p_{Y|x}(y), f_{Y|x}(y), y$ y se define como:

$$p_{Y|X}(y) = \frac{p(x, y)}{p_X(x)}$$
 , $p_X(x) > 0$.

$$p_{X|y}(x) = \frac{p(x, y)}{p_Y(y)}$$
 , $p_Y(y) > 0$.

$$f_{Y|X}(y) = \frac{f(x, y)}{f_X(x)}$$
, $f_X(x) > 0$.

$$f_{X|y}(x) = \frac{f(x, y)}{f_Y(y)}$$
 , $f_Y(y) > 0$.

De lo anterior se deduce que:

$$f(x, y) = f_X(x) f_{Y|x}(y) = f_Y(y) f_{X|y}(x)$$

Emplo Marginales y Condicionales

Sean X e Y variables aleatorias discretas con f.m.p. conjunta dada por:

\mathcal{X}	0	0	1	1	2	2
y	0	1	0	1	0	1
p(x,y)	1/18	3/18	4/18	3/18	6/18	1/18

Halle $p_X(x)$, $p_Y(y)$, $p_{Y|X}(y)$

emplo Marginales y Condicionales

Solución

		Y		
	p(x,y)	0	1	$p_X(x)$
	0	1/18	3/18	4/18
X	1	4/18	3/18	7/18
	2	6/18	1/18	7/18
	$p_Y(y)$	11/18	7/18	1

$$p_X(x) = \sum_{y=0}^{1} p(x, y) = p(x, 0) + p(x, 1)$$
; para $x = 0, 1, 2$.

\mathcal{X}	0	1	2
$p_X(x)$	4/18	7/18	7/18

$$p_Y(y) = \sum_{x=0}^{2} p(x, y) = p(0, y) + p(1, y) + p(2, y)$$
; para $y = 0, 1$.

У	0	1
$p_Y(y)$	11/18	7/18

emplo Marginales y Condicionales

La distribución condicional de Y dado x, se obtiene como:

$$p_{Y|x}(y) = \frac{p(x, y)}{p_X(x)}$$
 ; para $y = 0, 1$

Por ejemplo, para x = 0 se tiene que:

$$p_{Y|0}(y) = \frac{p(0,y)}{p_X(0)} = \frac{p(0,y)}{\frac{4}{18}}$$
; para $y = 0,1$.

La distribución resultante se muestra en la siguiente tabla.

y	0	1
$p_{Y 0}(y)$	1/4	3/4

Emplo Marginales y Condicionales

De manera análoga se hayan las distribuciones condicionales de Y dado x=1 y x=2.

Estas se muestran a continuación.

У	0	1	y	0	1
$p_{Y 1}(y)$	4/7	3/7	$p_{Y 2}(y)$	6/7	1/7

emplo Marginales y Condicionales

Sean *X* e *Y* variables aleatorias continuas con f.d.p conjunta dada por:

$$f(x, y) = e^{-x}$$
 ; $0 \le y < x$.

Calcule las distribuciones marginales y las condicionales.

Solución

$$f_X(x) = \int_0^x e^{-x} dy = (ye^{-x}|_0^x = xe^{-x}, \quad x > 0.$$

emplo Marginales y Condicionales

$$f_Y(y) = \int_{y}^{+\infty} e^{-x} dx = (-e^{-x}|_{y}^{\infty} = e^{-y}, \quad y > 0.$$

$$f_{Y|x}(y) = \frac{f(x,y)}{f_X(x)} = \frac{e^{-x}}{x e^{-x}} = \frac{1}{x}$$
; $0 < y < x$.

$$f_{X|y}(x) = \frac{f(x,y)}{f_Y(y)} = \frac{e^{-x}}{e^{-y}} = e^{-(x-y)}$$
; $x > y$.

Variables Independientes

Definición

Sean X e Y variables aleatorias, diremos que X e Y son *Estadísticamente Independientes* (E.I.), si:

$$f(x, y) = f_X(x) f_Y(y)$$
, $\forall (x, y) \in \mathcal{A}$.

$$p(x, y) = p_X(x) p_Y(y)$$
, $\forall (x, y) \in \mathcal{A}$.

Si existe un par (x, y), para el cual la igualdad no es cierta, diremos que X e Y son *Estadísticamente Dependientes*.

Sean X e Y variables aleatorias discretas con f.m.p. conjunta dada por:

\mathcal{X}	0	0	1	1	2	2
У	0	1	0	1	0	1
p(x, y)	1/18	3/18	4/18	3/18	6/18	1/18

¿Son X e Y estadísticamente independientes?

Solución

Las distribuciones marginales para X e Y son, respectivamente:

\mathcal{X}	0	1	2	У	0	1
$p_X(x)$	4/18	7/18	7/18	$p_Y(y)$	11/18	7/18

Observe que:

$$p(0,0) = \frac{1}{18}$$
 , $p_X(0) = \frac{4}{18}$ y $p_Y(0) = \frac{11}{18}$.

Con lo cual se muestra que $p(0,0) \neq p_X(0)$ $p_Y(0)$ y por lo tanto, X e Y no son E.I.

jemplo Variables Independientes

Sean *X* y *Y* variables aleatorias continuas con f.d.p. conjunta dada por:

$$f(x, y) = 4x(1-y)$$
; $0 < x < 1, 0 < y < 1$.

Verifique que X e Y son v.a. estadísticamente independientes

Solución

$$f_X(x) = \int_0^1 4x(1-y)dy = 4x\left(y - \frac{y^2}{2}\right)\Big|_0^1 = 4x\left(\frac{1}{2}\right) = 2x, \quad 0 < x < 1$$

$$f_Y(y) = \int_0^1 4x (1-y) dx = 2x^2 (1-y) \Big|_0^1 = 2(1-y), \quad 0 < y < 1$$

$$f(x, y) = f_X(x) f_Y(y)$$
; $\forall (x, y) \in \mathbb{R}^2$,

es decir, X y Y son E.I.

Ejercicio

Sean X y Y variables aleatorias continuas con f.d.p. conjunta dada por:

$$f(x, y) = 24xy$$
; $0 < x < 1, 0 < y < 1, x + y \le 1$

hallar las marginales para X e Y, $f_{X|Y=\frac{1}{2}}(x)$, $f_{Y|X=\frac{1}{2}}(y)$