Graphes

8. Recherche de plus courts chemins

Solen Quiniou

solen.quiniou@univ-nantes.fr

IUT de Nantes

Année 2021-2022 – BUT 1 (Semestre 2)

[Mise à jour du 23 février 2022]

Plan du cours

Graphes valués

Distance et plus courts chemins

Algorithme de Dijkstra

Graphe valué

Définitions : graphe valué et valuation

Soit G = (S, A, v) un graphe (orienté ou non)

G est un graphe valué s'il est muni d'une application

$$v: A \rightarrow \mathbb{R}$$
 $(x,y) \mapsto v(x,y)$

L'application v est appelée valuation

Remarque

L'application v peut être étendue en une fonction $S \times S \to \mathbb{R} \cup \{+\infty\}$, en posant : $v(x,y) = +\infty$ si $(x,y) \notin A$

Exemples de graphes valués

Graphe non orienté

Graphe orienté

Représentation matricielle

Définition: matrice de valuation

Soit G = (S, A, v) un graphe valué dont on a numéroté les sommets de 1 à n

• La matrice de valuation de G est la matrice carrée $M=(m_{ij})$ de taille $n \times n$ définie par :

$$m_{ij} = \begin{cases} v(i,j) & si(i,j) \in A \\ +\infty & sinon \end{cases}$$

Remarque

Analogie avec la matrice d'adjacence mais les coefficients correspondent cette fois à la valuation des arcs

Exemples de graphes valués avec leur matrice

$$\begin{pmatrix} +\infty & 1 & +\infty & +\infty & +\infty & 5 \\ 1 & +\infty & -9 & +\infty & +\infty & 2 \\ +\infty & -9 & +\infty & 2 & 3 & 15 \\ +\infty & +\infty & 2 & +\infty & -3 & +\infty \\ +\infty & +\infty & 3 & -3 & +\infty & 0 \\ & 5 & 2 & 15 & +\infty & 0 & +\infty \end{pmatrix}$$

$$\begin{pmatrix} +\infty & 2 & 1 & +\infty & -1 \\ 1,6 & +\infty & -2,9 & +\infty & +\infty \\ +\infty & +\infty & +\infty & +\infty & 0,24 \\ +\infty & +\infty & 0 & 3 & +\infty \\ 2 & +\infty & +\infty & 2,1 & +\infty \end{pmatrix}$$

Valuation d'un chemin

Définition: valuation d'un chemin

Soit G = (S, A, v) un graphe valué

- Valuation d'un chemin (ou longueur) : somme des valuations des arcs qui composent le chemin (même chose pour les chaînes)
- Valuation d'un chemin sans arc : 0

Exemple

La valuation de la chaîne [A, F, C, E, D] est 5+15+3-3=20

Plan du cours

Graphes valués

Distance et plus courts chemins

Algorithme de Dijkstra

Distance et plus court chemin

Définitions : distance et plus court chemin

Soit G = (S, A, v) un graphe valué et soient x et y deux sommets de G

- Distance de x à y, notée d(x, y): minimum des valuations des chemins allant de x à y
- Plus court chemin de x à y : tout chemin dont la valuation est égale à d(x, y)
- → Définitions similaires pour les graphes non orientés

Remarque

Distance en nombre d'arcs : cas particulier du calcul de distance, qui correspond au cas où tous les arcs sont de valuation 1

Exemples de plus courts chemins

- Distance de A à E : d(A, E) = 5
- \longrightarrow Plus court(s) chemin(s) : [A, C, B, E]

Exemples de plus courts chemins

- Distance de A à E: d(A, E) = 5
- \longrightarrow Plus court(s) chemin(s) : [A, C, B, E]
 - Distance de $A \stackrel{.}{a} D : d(A, D) = 4$
- \longrightarrow Plus court(s) chemin(s) : [A, D] et [A, C, D]

Exemples de plus courts chemins

- Distance de A à E: d(A, E) = 5
- \rightarrow Plus court(s) chemin(s) : [A, C, B, E]
 - Distance de A à D : d(A, D) = 4
- \longrightarrow Plus court(s) chemin(s) : [A, D] et [A, C, D]
 - Distance de E à A : non définie
- → Plus court(s) chemin(s) : aucun

Exemples d'applications

- Recherche de l'itinéraire le plus rapide en voiture, entre deux villes
- Routage dans des réseaux de communication
- Problèmes d'ordonnancement...

Algorithmes et cas considérés

Exemples d'applications

- Recherche de l'itinéraire le plus rapide en voiture, entre deux villes
- Routage dans des réseaux de communication
- Problèmes d'ordonnancement...

Algorithmes et cas considérés

Algorithmes étudiés pour résoudre le problème suivant :
 Étant donné un sommet x, on veut déterminer, pour chaque sommet y, la distance et un plus court chemin de x à y

Exemples d'applications

- Recherche de l'itinéraire le plus rapide en voiture, entre deux villes
- Routage dans des réseaux de communication
- Problèmes d'ordonnancement...

Algorithmes et cas considérés

- Algorithmes étudiés pour résoudre le problème suivant :
 Étant donné un sommet x, on veut déterminer, pour chaque sommet y, la distance et un plus court chemin de x à y
- Étant donné deux sommets x et y, il existe plusieurs cas :
 - Il n'existe pas de chemins de x à y
 - Il existe un ou plusieurs plus courts chemins de x à y
 - 3 Il existe des chemins de x à y mais pas de plus courts

Exemples d'applications

- Recherche de l'itinéraire le plus rapide en voiture, entre deux villes
- Routage dans des réseaux de communication
- Problèmes d'ordonnancement...

Algorithmes et cas considérés

- Algorithmes étudiés pour résoudre le problème suivant :
 Étant donné un sommet x, on veut déterminer, pour chaque sommet y, la distance et un plus court chemin de x à y
- Étant donné deux sommets x et y, il existe plusieurs cas :
 - Il n'existe pas de chemins de x à y
 - ② Il existe un ou plusieurs plus courts chemins de x à y
 - 3 Il existe des chemins de x à y mais pas de plus courts
- ightarrow Problématiques similaires pour les graphes non orientés

Circuit absorbant

Définition : circuit absorbant

Circuit absorbant : circuit de valuation négative

ightarrow Si un graphe possède un circuit absorbant alors il n'existe pas de plus courts chemins entre certains de ses sommets

Théorème

Soit G un graphe orienté valué sans circuit absorbant et x et y deux sommets de G

S'il existe un chemin allant de x à y alors la distance d(x,y) est bien définie et il existe au moins un plus court chemin de x à y

→ Définition et théorème similaires pour les graphes non orientés

Graphes considérés considérés dans la suite : sans circuits (ou cycles) absorbants

 De A à B : il existe un unique plus court chemin, [A, K, B]

13/21

- De A à B : il existe un unique plus court chemin, [A, K, B]
- De A à G: il existe 2 plus courts chemins,
 [A, K, G] et [A, G]

- De A à B: il existe un unique plus court chemin, [A, K, B]
- De A à G: il existe 2 plus courts chemins,
 [A, K, G] et [A, G]
- De E à A : il n'existe pas de chemin donc aucun plus court chemin

- De A à B: il existe un unique plus court chemin, [A, K, B]
- De A à G: il existe 2 plus courts chemins,
 [A, K, G] et [A, G]
- De E à A : il n'existe pas de chemin donc aucun plus court chemin
- De A à E: il existe une infinité de plus courts chemins, tels que [A, K, B, D, E],
 [A, K, B, D, E, C, D, E], à-cause du circuit
 [C, D, E, C] de valuation nulle

- De A à B : il existe un unique plus court chemin, [A, K, B]
- De A à G: il existe 2 plus courts chemins,
 [A, K, G] et [A, G]
- De E à A : il n'existe pas de chemin donc aucun plus court chemin
- De A à E: il existe une infinité de plus courts chemins, tels que [A, K, B, D, E],
 [A, K, B, D, E, C, D, E], à-cause du circuit
 [C, D, E, C] de valuation nulle
- De A à J: il existe des chemins mais aucun plus court chemin, à-cause du circuit absorbant [F, I, H, F] qui réduit la valuation du chemin de A à J à chaque passage dans le circuit

Plan du cours

Graphes valués

Distance et plus courts chemins

Algorithme de Dijkstra

Présentation de l'algorithme de Dijkstra

 Un des algorithmes les plus connus et efficaces pour la recherche de distance et de plus courts chemins

Présentation de l'algorithme de Dijkstra

- Un des algorithmes les plus connus et efficaces pour la recherche de distance et de plus courts chemins
- Calcul des distances et d'un plus court chemin entre un sommet x₀ et tous les autres sommets du graphe

Présentation de l'algorithme de Dijkstra

- Un des algorithmes les plus connus et efficaces pour la recherche de distance et de plus courts chemins
- Calcul des distances et d'un plus court chemin entre un sommet x₀ et tous les autres sommets du graphe
- Limitations : ne peut être utilisé que dans le cas où toutes les valuations des arcs (ou arêtes) sont positives (donc pas de circuits absorbants)

Présentation de l'algorithme de Dijkstra

- Un des algorithmes les plus connus et efficaces pour la recherche de distance et de plus courts chemins
- Calcul des distances et d'un plus court chemin entre un sommet x₀ et tous les autres sommets du graphe
- Limitations : ne peut être utilisé que dans le cas où toutes les valuations des arcs (ou arêtes) sont positives (donc pas de circuits absorbants)

- Construction itérative d'un ensemble de sommets marqués, noté M
 - \rightarrow Pour tout sommet marqué s: estimation d(s) = distance $d(x_0, s)$
- À chaque étape

Présentation de l'algorithme de Dijkstra

- Un des algorithmes les plus connus et efficaces pour la recherche de distance et de plus courts chemins
- Calcul des distances et d'un plus court chemin entre un sommet x₀ et tous les autres sommets du graphe
- Limitations : ne peut être utilisé que dans le cas où toutes les valuations des arcs (ou arêtes) sont positives (donc pas de circuits absorbants)

- Construction itérative d'un ensemble de sommets marqués, noté M
 - \rightarrow Pour tout sommet marqué s: estimation d(s) = distance $d(x_0, s)$
- À chaque étape
 - lackSélection d'un sommet non marqué x dont la distance estimée d(x) est la plus petite parmi les distances estimées des sommets non marqués

Présentation de l'algorithme de Dijkstra

- Un des algorithmes les plus connus et efficaces pour la recherche de distance et de plus courts chemins
- Calcul des distances et d'un plus court chemin entre un sommet x₀ et tous les autres sommets du graphe
- Limitations : ne peut être utilisé que dans le cas où toutes les valuations des arcs (ou arêtes) sont positives (donc pas de circuits absorbants)

- Construction itérative d'un ensemble de sommets marqués, noté M
 - \rightarrow Pour tout sommet marqué s: estimation d(s) = distance $d(x_0, s)$
- À chaque étape
 - ① Sélection d'un sommet non marqué x dont la distance estimée d(x) est la plus petite parmi les distances estimées des sommets non marqués
 - Ajout de x à l'ensemble M

Présentation de l'algorithme de Dijkstra

- Un des algorithmes les plus connus et efficaces pour la recherche de distance et de plus courts chemins
- Calcul des distances et d'un plus court chemin entre un sommet x₀ et tous les autres sommets du graphe
- Limitations : ne peut être utilisé que dans le cas où toutes les valuations des arcs (ou arêtes) sont positives (donc pas de circuits absorbants)

- Construction itérative d'un ensemble de sommets marqués, noté M
 - \rightarrow Pour tout sommet marqué s: estimation d(s) = distance $d(x_0, s)$
- À chaque étape
 - **③** Sélection d'un sommet non marqué x dont la distance estimée d(x) est la plus petite parmi les distances estimées des sommets non marqués
 - 2 Ajout de x à l'ensemble M
 - Mise à jour des distances estimées des successeurs non marqués de x

Présentation de l'algorithme de Dijkstra

- Un des algorithmes les plus connus et efficaces pour la recherche de distance et de plus courts chemins
- Calcul des distances et d'un plus court chemin entre un sommet x₀ et tous les autres sommets du graphe
- Limitations : ne peut être utilisé que dans le cas où toutes les valuations des arcs (ou arêtes) sont positives (donc pas de circuits absorbants)

- Construction itérative d'un ensemble de sommets marqués, noté M
 - \rightarrow Pour tout sommet marqué s: estimation d(s) = distance $d(x_0, s)$
- À chaque étape
 - **③** Sélection d'un sommet non marqué x dont la distance estimée d(x) est la plus petite parmi les distances estimées des sommets non marqués
 - Ajout de x à l'ensemble M
 - Mise à jour des distances estimées des successeurs non marqués de x
 - → À recommencer jusqu'à ce que tous les sommets soient marqués

```
Données : Graphe valué G = (S, A, v) sans valuations négatives ; sommet x_0
   // Initialisation des tableaux d et P et de l'ensemble M
1 M = \emptyset:
                                                        // Aucun sommet marqué
2 pour chaque s \in S faire
      P[s] = nul;
      si s = x_0 alors
4
          d[s] = 0;
 5
      fin si
6
      sinon
7
          d[s] = +\infty;
8
      fin si
10 fin pour chaque
   // Boucle principale
11 tant que M \neq S faire
      x = arg \min_{s \in S, s \notin M} d[s];
                                // Sommet non marqué de distance min.
12
13
      M = M \cup \{x\};
                                          // Ajout de X aux sommets marqués
      pour chaque y \in \Gamma^+(x), y \notin M faire
14
15
           si d[x] + v(x, y) < d[y] alors
               d[y] = d[x] + v(x, y);
16
                                             // Mise à jour de la distance
               P[y] = x:
                                                        // Mise à jour du père
17
18
           fin si
      fin pour chaque
19
```

20 fin tq

Exemple (1)

Soit le graphe G dont les sommets sont nommés de A à D et défini par la matrice de valuation suivante :

$$G = \begin{pmatrix} +\infty & 8 & 6 & 2 \\ +\infty & +\infty & +\infty & +\infty \\ +\infty & 3 & +\infty & +\infty \\ +\infty & 5 & 1 & +\infty \end{pmatrix}$$

Initialisation de l'algorithme

	X	М	$d[A]_{P[A]}$	$d[B]_{P[B]}$	$d[C]_{P[C]}$	$d[D]_{P[D]}$
ſ	$x_0 = A$	Ø	0 _{nul}	$+\infty$ nul	$+\infty$ nul	$+\infty$ nul

Exemple (1)

Soit le graphe G dont les sommets sont nommés de A à D et défini par la matrice de valuation suivante :

$$G = \begin{pmatrix} +\infty & 8 & 6 & 2 \\ +\infty & +\infty & +\infty & +\infty \\ +\infty & 3 & +\infty & +\infty \\ +\infty & 5 & 1 & +\infty \end{pmatrix}$$

Initialisation de l'algorithme

	Х	М	$d[A]_{P[A]}$	$d[B]_{P[B]}$	$d[C]_{P[C]}$	$d[D]_{P[D]}$
ſ	$x_0 = A$	Ø	0 _{nul}	+∞ _{nul}	$+\infty$ nul	$+\infty$ nul

2 Itération 1 : choix du sommet x = A, de distance 0

Х	М	$d[A]_{P[A]}$	$d[B]_{P[B]}$	$d[C]_{P[C]}$	$d[D]_{P[D]}$
$x_0 = A$	Ø	0 _{nul}	$+\infty$ nul	$+\infty$ nul	$+\infty$ nul
Α	A {A} -		$0 + 8 < +\infty$?	$0+6 < +\infty$?	$0+2 < +\infty$?
			oui donc : 8 A	oui donc : 6 A	oui donc : 2 A

Exemple (2)

1 Itération 2 : choix du sommet x = D, de distance 2

				,		
	X	М	$d[A]_{P[A]}$	$d[B]_{P[B]}$	$d[C]_{P[C]}$	$d[D]_{P[D]}$
ĺ	$x_0 = A$	Ø	0 _{nul}	+∞ _{nul}	+∞ _{nul}	$+\infty$ nul
ĺ	Α	{ <i>A</i> }	-	8 _A	6 _A	2 _A
	D	{A, D}	-	2+5 < 8?	2+1<6?	-
				oui donc : 7 D	oui donc : 3 D	

Exemple (2)

1 Itération 2 : choix du sommet x = D, de distance 2

X	М	$d[A]_{P[A]}$	$d[B]_{P[B]}$	$d[C]_{P[C]}$	$d[D]_{P[D]}$
$x_0 = A$	Ø	0 _{nul}	+∞ nul	+∞ nul	+∞ nul
Α	{ <i>A</i> }	-	8 _A	6 _A	2 _A
D	{A, D}	-	2+5 < 8?	2+1<6?	-
			oui donc : 7 D	oui donc : 3 D	

1 Itération 3 : choix du sommet x = C, de distance 3

Х	М	$d[A]_{P[A]}$	$d[B]_{P[B]}$	$d[C]_{P[C]}$	$d[D]_{P[D]}$
$x_0 = A$	Ø	0 _{nul}	+∞ _{nul}	$+\infty$ nul	$+\infty$ nul
Α	{ <i>A</i> }	-	8 _A	6 _A	2 _A
D	{A, D}	-	7 _D	3 _D	-
С	$\{A, D, C\}$	-	3+3<7?	-	-
			oui donc : 6 _C		

Exemple (2)

1 Itération 2 : choix du sommet x = D, de distance 2

X	М	$d[A]_{P[A]}$	$d[B]_{P[B]}$	$d[C]_{P[C]}$	$d[D]_{P[D]}$
$x_0 = A$	Ø	0 _{nul}	$+\infty$ nul	$+\infty$ nul	$+\infty$ nul
Α	{ A }	-	8 _A	6 _A	2 _A
D	{ <i>A</i> , <i>D</i> }	_	2+5 < 8?	2+1 < 6?	-
			oui donc : 7 D	oui donc : 3 D	

1 Itération 3 : choix du sommet x = C, de distance 3

Х	М	$d[A]_{P[A]}$	$d[B]_{P[B]}$	$d[C]_{P[C]}$	$d[D]_{P[D]}$
$x_0 = A$	Ø	0 _{nul}	+∞ _{nul}	$+\infty$ nul	$+\infty$ nul
Α	{ <i>A</i> }	-	8 _A	6 _A	2 _A
D	{A, D}	-	7 _D	3 _D	-
С	$\{A, D, C\}$	_	3+3<7?	_	_
			oui donc : 6 _C		

1 Itération 4 : choix du sommet x = B, de distance 6

Х	М	$d[A]_{P[A]}$	$d[B]_{P[B]}$	$d[C]_{P[C]}$	$d[D]_{P[D]}$
$x_0 = A$	Ø	0 _{nul}	$+\infty$ nul	$+\infty$ nul	$+\infty$ nul
Α	{ <i>A</i> }	-	8 _A	6 _A	2 _A
D	{A, D}	-	7 _D	3 _D	-
С	$\{A, D, C\}$	-	6 _C	-	-
В	$\{A, D, C, B\}$	0 _{nul}	6 _C	3 _D	2 _A

S. Quiniou (IUT de Nantes) Graphes 18/21

Présentation de la construction des plus courts chemins

À la fin de l'algo. de Dijkstra : distances calculées, de x₀ à tout sommet s

Présentation de la construction des plus courts chemins

- ullet À la fin de l'algo. de Dijkstra : distances calculées, de x_0 à tout sommet s
- On peut déterminer un plus court chemin de x_0 à s, pour tout sommet s

Présentation de la construction des plus courts chemins

- À la fin de l'algo. de Dijkstra : distances calculées, de x_0 à tout sommet s
- On peut déterminer un plus court chemin de x₀ à s, pour tout sommet s
- → Utilisation du tableau des pères pour construire les plus courts chemins

Présentation de la construction des plus courts chemins

- ullet À la fin de l'algo. de Dijkstra : distances calculées, de x_0 à tout sommet s
- On peut déterminer un plus court chemin de x_0 à s, pour tout sommet s
- → Utilisation du tableau des pères pour construire les plus courts chemins

Principe de la construction du plus court chemin du sommet s

• Construction itérative du plus court chemin de x_0 à s, à partir de la fin

Présentation de la construction des plus courts chemins

- À la fin de l'algo. de Dijkstra : distances calculées, de x₀ à tout sommet s
- On peut déterminer un plus court chemin de x_0 à s, pour tout sommet s
- → Utilisation du tableau des pères pour construire les plus courts chemins

- Construction itérative du plus court chemin de x_0 à s, à partir de la fin
- Initialisation
 - Initialisation du sommet courant x avec le sommet $s: x \leftarrow s$
 - Initialiation du plus court chemin de x_0 à s avec le sommet $x: c \leftarrow [x]$

Présentation de la construction des plus courts chemins

- À la fin de l'algo. de Dijkstra : distances calculées, de x₀ à tout sommet s
- On peut déterminer un plus court chemin de x_0 à s, pour tout sommet s
- → Utilisation du tableau des pères pour construire les plus courts chemins

- Construction itérative du plus court chemin de x_0 à s, à partir de la fin
- Initialisation
 - Initialisation du sommet courant x avec le sommet $s: x \leftarrow s$
 - Initialiation du plus court chemin de x_0 à s avec le sommet $x: c \leftarrow [x]$
- À chaque étape

Présentation de la construction des plus courts chemins

- À la fin de l'algo. de Dijkstra : distances calculées, de x₀ à tout sommet s
- On peut déterminer un plus court chemin de x_0 à s, pour tout sommet s
- → Utilisation du tableau des pères pour construire les plus courts chemins

- Construction itérative du plus court chemin de x_0 à s, à partir de la fin
- Initialisation
 - Initialisation du sommet courant x avec le sommet $s: x \leftarrow s$
 - ► Initialiation du plus court chemin de x_0 à s avec le sommet $x : c \leftarrow [x]$
- À chaque étape
 - **③** Sélection du nouveau sommet courant x en choisissant son père : $x \leftarrow P[x]$

Présentation de la construction des plus courts chemins

- À la fin de l'algo. de Dijkstra : distances calculées, de x_0 à tout sommet s
- On peut déterminer un plus court chemin de x_0 à s, pour tout sommet s
- → Utilisation du tableau des pères pour construire les plus courts chemins

- Construction itérative du plus court chemin de x_0 à s, à partir de la fin
- Initialisation
 - Initialisation du sommet courant x avec le sommet $s: x \leftarrow s$
 - ▶ Initialiation du plus court chemin de x_0 à s avec le sommet $x : c \leftarrow [x]$
- À chaque étape
 - **1** Sélection du nouveau sommet courant x en choisissant son père : $x \leftarrow P[x]$
 - 2 Ajout de x au début du plus court chemin : $c \leftarrow x + c$

Présentation de la construction des plus courts chemins

- À la fin de l'algo. de Dijkstra : distances calculées, de x_0 à tout sommet s
- On peut déterminer un plus court chemin de x_0 à s, pour tout sommet s
- → Utilisation du tableau des pères pour construire les plus courts chemins

- Construction itérative du plus court chemin de x_0 à s, à partir de la fin
- Initialisation
 - Initialisation du sommet courant x avec le sommet $s: x \leftarrow s$
 - Initialiation du plus court chemin de x_0 à s avec le sommet $x: c \leftarrow [x]$
- À chaque étape
 - **1** Sélection du nouveau sommet courant x en choisissant son père : $x \leftarrow P[x]$
 - 2 Ajout de x au début du plus court chemin : $c \leftarrow x + c$
 - \rightarrow À recommencer jusqu'à ce que le sommet courant soit le sommet x_0

Exemple

P[A]	P[B]	P[C]	P[D]
nul	С	D	Α

• Un plus court chemin de A à B est : $A \rightarrow D \rightarrow C \rightarrow B$

Propriétés

Propriété

A toutes les étapes de l'algorithme, chaque sommet s marqué vérifie $d(s) = d(x_0, s)$

Propriété

Après *i* itérations de la boucle principale de l'algorithme, ensemble des sommets marqués : $M = \{x_0, x_1, \dots, x_{i-1}\}$

 \rightarrow Cela implique : à la fin de l'algorithme, on a bien calculé les distances de x_0 à s