Exercice 1

1.	Laquelle des expressions suivantes correspond à l'équation de la tangente $t_{x_0}(x)$ de la fonction $f(x) = (1+x)^{-1}$ au point $x_0 = 0$?
	\Box $-x$
	$\Box 1 + x$
	$\boxtimes 1-x$
	$\square x-1$
	□ Aucune des réponses ci-dessus
2.	Laquelle des expressions suivantes correspond à l'équation de la tangente $t_{x_0}(x)$ de la fonction $f(x) = (1+x)^5$ au point $x_0 = -2$?
	$\Box -2x$
	$\boxtimes 5x + 9$
	$\Box 5x-11$
	$\Box 5x-9$
	\Box Aucune des réponses ci-dessus
3.	On considère la fonction $f(x) = \sqrt{1+x}$. Quelle valeur approximative de $f(3.1)$ obtient-on en utilisant l'approximation linéaire $t_{x_0}(3.1)$ au point $x_0 = 3$?
	\square 2.125
	$\square \ 2.0125$
	$\boxtimes 2.025$
	$\square \ 2.25$
	\Box Aucune des réponses ci-dessus
4.	On considère la fonction $f(x)=\sqrt{6x-8}$. Quelle valeur approximative de $f(1.9)$ obtient-on en utilisant l'approximation linéaire $t_{x_0}(1.9)$ au point $x_0=2$?
	\square 1.975
	\Box 1.844
	\square 1.75
	$\boxtimes 1.85$
	\Box Aucune des réponses ci-dessus
5.	Quel est le développement limité à l'ordre 2 de la fonction $f(x)=e^{3x}$ au voisinage de $x_0=0$?
	$\Box 1 + 6x + \frac{3x^2}{2}$
	$\boxtimes 1 + 3x + \frac{9x^2}{2}$
	$\Box 1 + 3x + 9x^2$
	$\boxtimes 1 + 3x + \frac{9}{2}x^2$
	☐ Aucune des réponses ci-dessus

- 6. Quel est le développement limité à l'ordre 2 de la fonction $f(x)=e^{x+1}$ au voisinage de $x_0=-1$?
 - $\Box 1 + (x-1) + \frac{1}{2}(x-1)^2$
 - $\boxtimes 1 + (x+1) + \frac{1}{2}(x+1)^2$
 - $\Box 1 + (1-x) + \frac{1}{2}(1-x)^2$
 - $\boxtimes 1 + (x+1) + \frac{x^2 + 2x + 1}{2}$
 - \square Aucune des réponses ci-dessus
- 7. En utilisant la différentielle, approximer la variation de la fonction $f(x) = \ln(x)$ lorsque x varie entre 1 et 1.1 (poser $x_0 = 1$).
 - $\boxtimes \frac{1}{10}$
 - \square 0.001
 - $\Box \ln(0.1)$
 - $\boxtimes 0.1$
 - ☐ Aucune des réponses ci-dessus
- 8. En utilisant la différentielle, approximer la variation de la fonction $f(x) = x^{20}$ lorsque x varie entre 1 et 1.01 (poser $x_0 = 1$).
 - \square 0.02
 - \square 0.002
 - \square 2
 - $\boxtimes 0.2$
 - ☐ Aucune des réponses ci-dessus
- 9. On considère la fonction $f(x) = \sqrt[3]{x}$ et l'approximation linéaire $t_{x_0}(x)$ en un point x_0 . Quelle valeur de x_0 donne la meilleure approximation $t_{x_0}(400)$ de f(400)?
 - $\boxtimes x_0 = 7^3$

 - $\Box x_0 = 10^3$
 - ☐ Aucune des réponses ci-dessus
- 10. Quel argument garantit que la fonction $f(x) = |x^2 + x 2|$ définie sur [-3,3] atteint son minimum?
 - \Box cette fonction possède un point critique dans l'intervalle [-3,3],
 - ⊠ cette fonction est continue et définie sur un compact,
 - □ ça paraît assez clair, non?
 - ☐ Aucune des réponses ci-dessus

11. Le minimum du graphe suivant est-il un point critique ?

- \boxtimes Oui
- \square Non
- 12. En supposant que le graphe ci-dessous correspond à une fonction définie uniquement sur l'intervalle a, b. Peut-on conclure que cette fonction atteint son maximum?

 \Box Oui

⊠ Non

- 13. On considère la fonction $f(x) = \frac{1}{2}x^4 x^2 + 1$. Combien de points critiques possède-t-elle ?
 - \Box 0
 - \Box 1
 - \square 2
 - \Box 4
 - ☑ Aucune des réponses ci-dessus
- 14. Les points critiques de $f(x) = 2x^3 24x + 5$ définis sur]-5,5[sont
 - \Box -2, 0 et 2
 - \square 1, 2 et 3
 - \boxtimes -2 et 2
 - \square -5 et 5
 - □ Aucune des réponses ci-dessus
- 15. On considère la fonction $f(x) = 2x^2 4x + 5$ définie sur [-5, 5]. Cochez ce qui est vrai:
 - \Box -1 est minimum local
 - \boxtimes 5 est un maximum global
 - \square 1 est un maximum local
 - \Box -5 est un minimum global
 - ☐ Aucune des réponses ci-dessus

Exercice 2

Calculer le développement de Taylor à l'ordre 4 au voisinage de $x_0 = 0$ des fonctions suivantes:

- 1. $f(x) = 6x^3 + 2x 4$
- 2. $f(x) = \frac{1}{1+x}$
- 1. Le développement de Taylor au voisinage de $x_0=0$ est aussi appelé développement de Maclaurin.

$$f^{'}(x) = 18x^{2} + 2$$
 $f^{''}(x) = 36x$ $f^{'''}(x) = 36$ $f^{''''}(x) = 0$
 $f^{'}(0) = 2$ $f^{''}(0) = 0$ $f^{'''}(0) = 36$ $f^{''''}(0) = 0$

Nous avons: $f(x) \simeq f(0) + f'(0) \cdot x + f''(0) \cdot \frac{x^2}{2} + f'''(0) \cdot \frac{x^3}{2 \cdot 3} + f''''(0) \cdot \frac{x^4}{2 \cdot 3 \cdot 4} = -4 + 2x + 0 + 6x^3 + 0$

2.
$$f'(x) = \frac{-1}{(1+x)^2}$$
 $f''(x) = \frac{2}{(1+x)^3}$ $f''(x) = \frac{-6}{(1+x)^4}$ $f''(x) = \frac{24}{(1+x)^5}$ $f''(0) = -1$ $f'''(0) = 2$ $f''''(0) = -6$ $f''''(0) = 24$

Nous avons: $f(x) \simeq f(0) + f^{'}(0) \cdot x + f^{''}(0) \cdot \frac{x^2}{2} + f^{'''}(0) \cdot \frac{x^3}{2 \cdot 3} + f^{''''}(0) \cdot \frac{x^4}{2 \cdot 3 \cdot 4} = 1 - x + x^2 - x^3 + x^4 + x^4 - x^4 + x^4 - x^4 -$

Exercice 3

Les fonctions suivantes admettent-elles des extrema locaux ? Si oui, quels sont-ils ? Lesquels sont des extrema globaux ?

- 1. $f(x) = \frac{x+1}{x-1}$ définie sur $\mathbb{R} \setminus \{1\}$.
- 2. $g(x) = x^2 2x 3$ définie sur l'intervalle [-2, 3].
- 3. $h(x) = |x^2 1|$ définie sur l'intervalle [-2, 2].
- 4. $k(x) = -\frac{1}{3}x^3 + 4x^2 + 20x + 2$ définie sur \mathbb{R}_+ .
- 1. $f'(x) = \frac{x-1-(x+1)}{(x-1)^2} = \frac{-2}{(x-1)^2} < 0$ avec $x \neq 0$. Non. Il n'y a pas d'extrema locaux.
- 2. x = -2, 3 sont extrema locaux.

$$g'(x) = 2x - 2 = 0 \Rightarrow x = 1$$
 est un extremum local avec $g''(1) = 2 > 0$

1 est un minimum global.

$$g(-2) = 5$$
 et $g(3) = 0 \Rightarrow -2$ est un maximum global

3. La fonction h(x) est continue sur [-2, 3].

$$h(x) = \begin{cases} x^2 - 1 & \text{si} \quad -2 \le x < -1 \\ 1 - x^2 & \text{si} \quad -1 \le x \le 1 \\ x^2 - 1 & \text{si} \quad 1 < x \le 2 \end{cases} \Rightarrow h'(x) = \begin{cases} 2x & \text{si} \quad -2 \le x < -1 \\ -2x & \text{si} \quad -1 \le x \le 1 \\ 2x & \text{si} \quad 1 < x \le 2 \end{cases}$$

$$h'(x) = 0 \Rightarrow x = 0$$
 avec $h''(x) = -2 < 0$. -2 est un maximum local

$$\lim_{x \to -1^-} h'(x) = -2 \quad \text{et } \lim_{x \to -1^+} h'(x) = 2 \Rightarrow x = -1 \text{ est un minimum local}$$

$$\lim_{x\to 1^-} h'(x) = -2 \quad \text{et } \lim_{x\to 1^+} h'(x) = 2 \Rightarrow x = 1 \text{ est un minimum local}$$

-2, -1, 0, 1, 2 sont extrema locaux.

$$h(-2) = h(2) = 3$$
, $h(0) = 1$ et $h(-1) = h(1) = 0$

-2, 2 sont maxima globaux. -1, 1 sont minima globaux

4.
$$k'(x) = -x^2 + 8x + 20 = 0 \Rightarrow x = -2(\text{exclu}), 10 \ (\text{x} \in [0, +\infty[) \text{ avec } k''(10) = -12 < 0)$$

0, 10 sont extrema locaux. 10 est un maximum globaux