Kholle 11 filière MPSI/MP2I Planche 1

- 1. Énoncer et démontrer l'égalité des accroissements finis.
- 2. Étudier la dérivabilité de $g: \mathbb{R} \to \mathbb{R}, x \mapsto (x \lfloor x \rfloor)(x \lfloor x \rfloor 1)$
- 3. Soit a un réel strictement positif et f une fonction de classe C^1 de [0,a] dans $\mathbb R$ telle que

$$f(0) = 0$$
, $f'(0) = 0$, $f(a)f'(a) < 0$

Montrer que f' s'annule sur]0, a[.

Kholle 11 filière MPSI/MP2I Planche 2

1. Énoncer et démontrer le théorème de la limite de la dérivée

2. On note
$$f: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} x^3 \sin(1/x) & \sin x \neq 0 \\ 0 & \sin x = 0 \end{cases}$$

Montrer que f est de classe C^1 sur \mathbb{R} .

3. Déterminer les fonctions dérivables f de $\mathbb R$ dans $\mathbb R$ telles que

$$\forall x \in \mathbb{R}, \quad f'(x) = f(1-x)$$

Kholle 11 filière MPSI/MP2I Planche 3

- 1. Que dire d'une composée de fonctions dérivables? Le démontrer.
- 2. On note $f: \mathbb{R} \setminus \{-1,1\}, x \mapsto x^3/(x^2-1)$. Calculer pour tout entier n la dérivée n-ième de f.
- 3. Soit f une application de classe C^2 sur le segment réel [a,b]. On suppose que f(a)=f'(a) et que f(b)=f'(b). Montrer que

$$\exists c \in]a, b[, f''(c) = f(c)$$

Kholle 11 filière MPSI/MP2I Bonus

1. Soit $(f,g) \in C([a,b],\mathbb{R})^2$. On suppose que $g \ge 0$. Montrer qu'il existe un réel c dans [a,b] tel que

$$\int_{a}^{b} f(x)g(x)dx = f(c)\int_{a}^{b} g(x)dx$$

2. Soit α un réel. On suppose qu'il existe un polynôme P à coefficients dans $\mathbb Q$ de degré $d\geqslant 2$ tel que $P(\alpha)=0$ et que c'est le polynôme de plus petit degré le vérifiant. Montrer à l'aide des accroissements finis que

$$\exists C \in \mathbb{R}^{+*}, \forall r = \frac{p}{q} \in \mathbb{Q}, \quad \left| \alpha - \frac{p}{q} \right| \geqslant \frac{C}{q^d}$$
