

Convex Optimization for Computer Vision Data Selection

David Jose Florez Rodriguez, ¹ Benjamin Jose Martinez, ² Gabriel Dean Magaña ²

¹ M.S. Candidate, Electrical Engineering, Stanford University ²B.S. Candidate, Computer Science, Stanford University

CS231N, Spring 2022

Introduction

To assist with X-ray image classification we present the 'Convex Pseudo-Spread Maximizer' (CPSM) for optimized data selection, this has multiple advantages:

- Decreased need for massive datasets
- Faster computation than alternative data selection methods

Related Work & Motivation

- Demand for radiology and its data
- Data selection: pick valuable data points to boost performance and evaluate individual samples.
- Truncated Monte Carlo Data Shapley (TMC) method is our benchmark

Data

- PadChest, 1000 (1800 x 1800) PA images
- classes:[Normal, COPD, pneumonia, scoliosis, infiltrates, cardiomegaly, pleural effusion, OTHER]

Predictors

We train raw models and sandwich existing ResNet and EfficientNet in trainable layers.

Pseudo-Spread

New metric for evaluating a subset of training data:

$$S = \sum \omega^T D + \frac{\alpha}{N} \sum \omega^T \left((A - \Theta)^T (A - \Theta) \right)$$

 $\underline{\mathcal{D}}$ is the distance matrix for vectors in dataset $\underline{\mathcal{A}}$, an $\underline{\mathcal{M}}$ by $\underline{\mathcal{K}}$ matrix Diagonal matrix $\underline{\omega}$ selects datapoints Matrix $\underline{\Theta}$ is a repeated vector of $\underline{\theta}$, the median of $\underline{\mathcal{A}}$.

Weigh $\underline{\alpha}$ regulates the impact of each side.

Left element is a sum of distances of all points with chosen points' columns present.

Right element is a convex adaptation of variance with respect to $\underline{\omega}$, the problem variable.

Convex Optimization

Maximize S.

such that $0 \le \omega \le I_M$, and $\sum \omega \le N$

Where I_M is the size M identity matrix and N is the number of points to sample from A.

Feature Space

A pre-trained conv model generates size 1200 vectors in its second dense layer. Training images (600) fed through the model produce <u>A</u> of size 600 by 1200. CPSM acts on this <u>A</u>.

A plot of **t-SNE** representation of \underline{A} and samples selected by CPSM and TMC methods. TMC's subset is denser than CPSM's, which includes outliers.

Results

- CPSM and TMC outperform methods without data selection
- CPSM on our CNN architecture increased accuracy by 10% compared to TMC method
- · Transfer learning models failed

Conclusion

CPSM outperforms TMC and runs 100x faster, but requires high RAM Future Work:

- Improve transfer learning
- Investigate density in chosen subsets
- Tune α and N hyperparameters

Acknowledgements

Doctors Manuel Acosta and Antonio Bueso for their medical expertise. Professor Stephen Boyd for EE364A

Find the code at:

https://github.com/elsirdavid/Convex_Pseudo_Spread_Maximizer