Отчёт по лабораторной работе №4

Дисциплина: Архитектура компьютера

Наговицын Арсений Владимирович

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы 4.1 Программа Hello world! 4.2 Работа с транслятором NASM. 4.3 Работа с расширенным синтаксисом командной строки NASM. 4.4 Работа с компоновщиком LD. 4.5 Запуск исполняемого файла. 4.6 Задание для самостоятельной работы.	9 10 10 11 11 11
5	Выволы	15

Список иллюстраций

4.1	Создание каталога	9
4.2	Создание файла	9
4.3	Заполнение файла	10
4.4	Компиляция текста программы	10
4.5	Компиляция текста программы	11
4.6	Компиляция текста программы	11
4.7	Запуск исполняемого файла	11
4.8	Создание копии файла	12
4.9	Изменение программы	12
4.10	Компиляция текста программы	12
4.11	Компиляция текста программы	13
4.12	Компиляция текста программы	13
4.13	Запуск исполняемого файла	13
4.14	Копирование файлов	13
4.15	Файлы в каталоге	14
4.16	Файлы в каталоге	14
4 17	Файлы в каталоге	14

Список таблиц

1 Цель работы

Цель данной работы: освоение процедуры компиляции и сборки программ, написанных на ассемблере NASM.

2 Задание

- 1. Программа Hello world!
- 2. Работа с транслятором NASM.
- 3. Работа с расширенным синтаксисом командной строки NASM.
- 4. Работа с компоновщиком LD.
- 5. Запуск исполняемого файла.
- 6. Задание для самостоятельной работы.

3 Теоретическое введение

Основными функциональными элементами любой ЭВМ являются центральный процессор, память и периферийные устройства. Эти устройства взаимодействуют друг с другом через общую шину, которая соединяет их. В современных компьютерах проводники шины представлены в виде электропроводящих дорожек на материнской плате. Центральный процессор выполняет обработку информации и координирует работу всех узлов компьютера. Он состоит из нескольких устройств, включая арифметико-логическое устройство (АЛУ), которое выполняет логические и арифметические операции над данными, и устройство управления (УУ), которое обеспечивает управление и контроль всех устройств компьютера. Также в состав процессора входят регистры - сверхбыстрая оперативная память небольшого объема, используемая для хранения промежуточных результатов выполнения инструкций.

Для написания программ на ассемблере необходимо знать, какие регистры процессора существуют и как их использовать. Примерами основных регистров общего назначения в архитектуре х86 являются RAX, RCX, RDX, RBX, RSI, RDI (64-битные), EAX, ECX, EDX, EBX, ESI, EDI (32-битные), AX, CX, DX, BX, SI, DI (16-битные) и АН, AL, CH, CL, DH, DL, BH, BL (8-битные). Оперативное запоминающее устройство (ОЗУ) является важным элементом ЭВМ. Оно предназначено для хранения программ и данных, с которыми процессор работает в текущий момент. ОЗУ состоит из ячеек памяти с уникальными номерами, которые служат адресами для хранящихся данных.

Периферийные устройства включают устройства внешней памяти, предна-

значенные для хранения больших объемов данных, и устройства ввода-вывода, которые обеспечивают взаимодействие с внешней средой.

Вычислительный процесс ЭВМ основан на программном управлении, где задача решается последовательностью действий, записанных в программе. Коды команд представляют собой двоичные комбинации, где операционная часть содержит код выполняемой команды, а адресная часть содержит данные или адреса данных, необходимых для выполнения операции. При выполнении команды процессор выполняет командный цикл, который включает формирование адреса команды, считывание кода команды, выполнение команды и переход к следующей команде.

Язык ассемблера (assembly language) является машинно-ориентированным языком низкого уровня. NASM (Netwide Assembler) - это проект ассемблера, который поддерживает Intel-синтаксис и инструкции х86-64. NASM доступен для различных операционных систем и позволяет получать объектные файлы для этих систем.

4 Выполнение лабораторной работы

4.1 Программа Hello world!

Перехожу в каталог, с помощью утилиты cd, и создаю папку lab04 (рис. 4.1).

```
(avnagovicihn® avnagovicihn)-[~]
$ cd RUDN/study/2023-2024/Архитектура\ копьютера/arch-pc

(avnagovicihn® avnagovicihn)-[~/../study/2023-2024/Архитектура копьютера/arch-pc]
$ mkdir lab04

(avnagovicihn® avnagovicihn)-[~/../study/2023-2024/Архитектура копьютера/arch-pc]
$ ls
lab04 labs
```

Рис. 4.1: Создание каталога

Создаю в текущем каталоге файл и открываю файл в текстовом редакторе (рис. 4.2).

```
(avnagovicihn® avnagovicihn)-[~/_/2023-2024/Архитектура копьютера/arch-pc/lab04]
$ touch hello.asm

(avnagovicihn® avnagovicihn)-[~/_/2023-2024/Архитектура копьютера/arch-pc/lab04]
$ ls
hello.asm

(avnagovicihn® avnagovicihn)-[~/_/2023-2024/Архитектура копьютера/arch-pc/lab04]
$ gedit hello.asm
```

Рис. 4.2: Создание файла

Заполняю файл, вставляя в него программу для вывода "Hello world!" (рис. 4.3).

```
hello.asm
  Open ▼ 🛨
 1; hello.asm
 2 SECTION .data ; Начало секции данных
          hello: DB 'Hello world!',10 ; 'Hello world!' плюс
                                       ; символ перевода строки
          helloLen: EQU $-hello ; Длина строки hello
 7 SECTION .text ; Начало секции кода
 8
          GLOBAL _start
   _start: ; Точка входа в программу
          mov eax,4 ; Системный вызов для записи (sys_write)
11
12
13
14
15
16
17
18
          mov ebx,1 ; Описатель файла '1' - стандартный вывод
          mov ecx, hello ; Адрес строки hello в есх
          mov edx, helloLen ; Размер строки hello
          int 80h ; Вызов ядра
          mov eax,1 ; Системный вызов для выхода (sys_exit)
          mov ebx,0 ; Выход с кодом возврата '0' (без ошибок)
          int 80h ; Вызов ядра
```

Рис. 4.3: Заполнение файла

4.2 Работа с транслятором NASM.

Превращаю текст программы в объектный код с помощью транслятора NASM (рис. 4.4).

```
(avnagovicihn⊕ avnagovicihn)-[~/.../2023-2024/Архитектура копьютера/arch-pc/lab04]
$ nasm -f elf hello.asm

—(avnagovicihn⊕ avnagovicihn)-[~/.../2023-2024/Архитектура копьютера/arch-pc/lab04]
$ ls
hello.asm hello.o
```

Рис. 4.4: Компиляция текста программы

4.3 Работа с расширенным синтаксисом командной строки NASM.

Ввожу команду, которая скомпилирует файл Hello.asm в файл obj.o (рис. 4.5).

```
(avnagovicihn® avnagovicihn)-[~/_/2023-2024/Архитектура кольютера/arch-pc/lab04]
$ nasm -o obj.o -f elf -g -l list.lst hello.asm

(avnagovicihn® avnagovicihn)-[~/_/2023-2024/Архитектура кольютера/arch-pc/lab04]
$ ls
hello.asm hello.o list.lst obj.o
```

Рис. 4.5: Компиляция текста программы

4.4 Работа с компоновщиком LD.

Передаю объектный файл hello.o на обработку компоновщику ld (рис. 4.6).

```
(avnagovicihn® avnagovicihn)-[~/.../2023-2024/Архитектура копьютера/arch-pc/lab04]
$ ld -m elf_i386 hello.o -o hello

(avnagovicihn® avnagovicihn)-[~/.../2023-2024/Архитектура копьютера/arch-pc/lab04]
$ ls
hello hello.asm hello.o list.lst obj.o
```

Рис. 4.6: Компиляция текста программы

4.5 Запуск исполняемого файла.

Запускаю на выполнение созданный исполняемый файл hello (рис. 4.7).

```
(avnagovicihn® avnagovicihn)-[~/_/2023-2024/Архитектура кольютера/arch-pc/lab04] $ ./hello world!
```

Рис. 4.7: Запуск исполняемого файла

4.6 Задание для самостоятельной работы.

Создаю в текущем каталоге копию файла hello.asm с именем lab4.asm и запускаю в текстовом редакторе (рис. 4.8).

```
(avnagovicihn® avnagovicihn)-[~/.../2023-2024/Архитектура кольютера/arch-pc/lab04]

$ cp hello.asm lab4.asm

(avnagovicihn® avnagovicihn)-[~/.../2023-2024/Архитектура кольютера/arch-pc/lab04]

$ ls
hello hello.asm hello.o lab4.asm list.lst obj.o

(avnagovicihn® avnagovicihn)-[~/.../2023-2024/Архитектура кольютера/arch-pc/lab04]

$ gedit lab4.asm
```

Рис. 4.8: Создание копии файла

Вношу изменения в программу, чтобы она выводила мое имя и фамилию (рис. 4.9).

```
lab4.asm
1; lab4.asm
2 SECTION .data ; Начало секции данных
           lab4: DB 'Nagovitcyn Arseniy ',10
           lab4Len: EQU $-lab4
6
7 SECTION .text ; Начало секции кода
  GLOBAL _start
_start: ; Точка входа в программу
8
9
10
12
13
14
15
16
          mov eax,4 ; Системный вызов для записи (sys_write)
          mov ebx,1 ; Описатель файла '1' - стандартный вывод
          mov ecx,lab4 ; Адрес строки hello в есх
          mov edx,lab4Len ; Размер строки hello
          int 80h ; Вызов ядра
          mov eax,1 ; Системный вызов для выхода (sys_exit)
          mov ebx,0 ; Выход с кодом возврата '0' (без ошибок)
           int 80h ; Вызов ядра
```

Рис. 4.9: Изменение программы

Компилирую текст программы в объектный код с помощью транслятора NASM (рис. 4.10).

```
(avnagovicihn⊕ avnagovicihn)-[~/_/2023-2024/Архитектура копьютера/arch-pc/lab04]

$\frac{\avnagovicihn⊕ avnagovicihn}{\sqrt{s} \sqrt{s}} = \frac{\avnagovicihn⊕ avnagovicihn}{\sqrt{s} \sqrt{s} \sqrt{s} \sqrt{s} \sqrt{s} = \frac{\avnagovicihn⊕ avnagovicihn}{\sqrt{s} \sqrt{s} \sqrt{s} \sqrt{s} = \frac{\avnagovicihn⊕ avnagovicihn}{\sqrt{s} \sqrt{s} = \frac{\avnagovicihn⊕ avnagovicihn}{\sqrt{s} \sqrt{s} = \frac{\avnagovicihn⊕ avnagovicihn}{\sqrt{s} \sqrt{s} = \frac{\avnagovicihn⊕ avnagovicihn}{\sqrt{s} = \frac{\avnagovicihn⊕ avnagovicihn}
```

Рис. 4.10: Компиляция текста программы

Ввожу команду, которая скомпилирует файл lab4.asm в файл lab4.o (рис. 4.11).

```
(avnagovicihn® avnagovicihn)-[~/"/2023-2024/Архитектура кольютера/arch-pc/lab04]
$ nasm -o lab4.o -f elf -g -l list.lst lab4.asm

(avnagovicihn® avnagovicihn)-[~/"/2023-2024/Архитектура кольютера/arch-pc/lab04]
$ ls
hello hello.asm hello.o lab4.asm lab4.o list.lst obj.o
```

Рис. 4.11: Компиляция текста программы

Передаю объектный файл lab4.o на обработку компоновщику LD (рис. 4.12).

```
(avnagovicihn@ avnagovicihn)-[~/.../2023-2024/Архитектура копьютера/arch-pc/lab04]
$ ld -m elf_i386 lab4.o -o lab4

(avnagovicihn@ avnagovicihn)-[~/.../2023-2024/Архитектура копьютера/arch-pc/lab04]
$ ls
hello hello.asm hello.o lab4 lab4.asm lab4.o list.lst obj.o
```

Рис. 4.12: Компиляция текста программы

Запускаю на выполнение созданный исполняемый файл lab4 (рис. 4.13).

```
(avnagovicihn⊕ avnagovicihn)-[~/.../2023-2024/Архитектура копьютера/arch-pc/lab04]
$ ./lab4
Nagovitcyn Arseniy
```

Рис. 4.13: Запуск исполняемого файла

Копирую файлы hello.asm и lab4.asm в каталог (рис. 4.14).

```
(avnagovicihn⊕ avnagovicihn)-[~/.../2023-2024/Архитектура кольютера/arch-р c/lab04]
$ cp hello.asm lab4.asm ~/RUDN/study/2023-2024/Архитектура\ кольютера/arch-pc/labs/lab04

(avnagovicihn⊕ avnagovicihn)-[~/.../2023-2024/Архитектура кольютера/arch-pc/lab04]
```

Рис. 4.14: Копирование файлов

Проверяю нахождение файлов в каталоге (рис. 4.15).

Рис. 4.15: Файлы в каталоге

Добавляю файлы на GitHub (рис. 4.16).

```
[avnagovicihn@fedora arch-pc]$ git add .
[avnagovicihn@fedora arch-pc]$ git commit -m "Add new files"
[master 4236e15] Add new files
30 files changed, 264 insertions(+), 119 deletions(-)
create mode 100755 lab04/hello
create mode 100644 lab04/hello.asm
create mode 100644 lab04/hello.o
create mode 100755 lab04/lab4
```

Рис. 4.16: Файлы в каталоге

Загружаю на сервера GitHub (рис. 4.17).

```
[avnagovicihn@fedora arch-pc]$ git push
Перечисление объектов: 37, готово.
Подсчет объектов: 100% (37/37), готово.
При сжатии изменений используется до 6 потоков
```

Рис. 4.17: Файлы в каталоге

5 Выводы

При выполнении данной лабораторной работы я освоил процедуры компиляции и сборки программ, написанных на ассемблере NASM.