

Metody Obliczeniowe w Nauce i Technice

Sprawozdanie | Wyznaczanie pierwiastków funkcji nieliniowej

Paweł Fornagiel | Informatyka rok II | Grupa 5

Data Wykonania: 17.05.2025 | Data Oddania: 09.05.2025

1. Analiza przypadku

Dana jest funkcja

$$\begin{split} f(x) &= x^n - (1-x)^m,\\ \text{gdzie } n &= 12 \text{ oraz } m = 14,\\ \text{określona dla } x &\in [-1;1] \end{split} \tag{1.1}$$

Rysunek 1: Wykres funkcji $f(x)=x^{12}-(1-x)^{14},$ $y\in [-5;5], x\in [-1,1]$

Rysunek 2: Wykres funkcji $f(x) = x^{12} - (1-x)^{14}$ $y \in [-16383; 1], x \in [-1, 1]$

Wyżej przedstawiona funkcja posiada **jedno miejsce zerowe** dla $x_p \approx 0.47331101329926401751$ (wyznaczone za pomocą WolframAlpha).

W poniższej pracy przeprowadzono analizę funkcji zadanej w problemie wyznaczenia pierwiastków równania f(x) = 0 za pomocą metody Newtona oraz metody Siecznych

W ramach eksperymentów numerycznych rozważono różne wartości dokładności $\rho=10^k$, gdzie $k\in(-2,-3,-4,-5,-7,-10,-15)$, wartości początkowe $x_0=-1.0+0.1\cdot h$, gdzie $h\in\{1,2,...,20\}$ oraz kryteria stopu - przyrostowe oraz rezydualne (Sekcja 2).

Celem badania jest wyznaczenie pierwiastków funkcji w określonych punktach wraz z **liczbą iteracji** potrzebną do ich wyznaczenia, graficzna ilustracja oraz analiza wybranych i interesujących przypadków.

W przypadku **metody Newtona** użyto wzoru iteracyjnego korzystając z analitycznego wyznaczenia pochodnej rozpatrywanej funkcji:

$$f'(x) = 12x^{11} + 14(1-x)^{13} (1.2)$$

Punkty startowe x_0 wybierane są z krokiem 0.1 na przedziale [-1,1] (tzn. bierzemy kolejno -1,-0.9,-0.8,...,1).

W przypadku **metody siecznych** jeden z końców przedziału stanowi wartość punktu startowego x_0 metody Newtona, a drugi – początek, a następnie koniec przedziału [-1,1]. Pierwiastki ponownie zostały wyznaczane za pomocą odpowiedniego wzoru iteracyjnego.

2. Kryteria stopu

W trakcie wyznaczania pierwiastka równania za pomocą obu metod określano liczbę iteracji niezbędnych do spełnienia zadanego kryterium stopu. W badaniach wykorzystano dwa różne kryteria, dla których dobierano różne wartości parametru ρ .

2.1. Kryterium przyrostowe

Kryterium przyrostowe charakteryzuje zależność:

$$\left| x_{i+1} - x_i \right| < \rho \tag{2.1}$$

, gdzie:

- x_i i-te przybliżenie pierwiastka, $i \in \mathbb{N}^+$
- ρ zadana dokładność

2.2. Kryterium rezydualne

Kryterium rezydualne charakteryzuje zależność:

$$|f(x_i)| < \rho \tag{2.2}$$

, gdzie:

- x_i i-te przybliżenie pierwiastka, $i \in \mathbb{N}^+$
- ρ zadana dokładność
- *f* rozpatrywana funkcja

3. Pomiar poprawności wyznaczenia pierwiastka

Pomiar poprawności wyznaczenia pierwiastka przeprowadzony został, porównując prawdziwą wartość pierwiastka z wartością wyznaczoną zadaną metodą. Za metrykę błędu przyjęty został **błąd bezwzględny**.

$$E_b = |x_p - x_w| \tag{3.1}$$

, gdzie

- $x_p \approx 0.47331101329926401751$ prawdziwe, znane miejsce zerowe.
- x_w wyznaczone miejsce zerowe

4. Dane techniczne

Zadanie zostało przeprowadzone z użyciem narzędzi o następujących parametrach:

- Komputer HP EliteBook 840 G6:
 - ► System operacyjny: Windows 11 x64
 - Procesor Intel(R) Core(TM) i5-8365U CPU 1.60GHz 1.90 GHz
 - ► Pamięć RAM: 8GB
- Środowisko: Jupyter Notebook
- Jezyk: Python 3.12.0
- Biblioteki języka: Numpy, Pandas, Matplotlib, Seaborn

5. Wyniki wyznaczone Metodą Newtona

5.1. Wartości przybliżonych miejsc zerowych dla zadanych parametrów

Kryterium stopu: Przyrostowe											
Punkt	Dokładność ρ										
x_0	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-7}	10^{-10}	10^{-15}				
-1.0	0.47307847	0.47331098	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
-0.9	0.47330996	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
-0.8	0.47329903	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
-0.7	0.47324327	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
-0.6	0.47309306	0.47331098	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
-0.5	0.47331087	0.47331087	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
-0.4	0.47331071	0.47331071	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
-0.3	0.47331071	0.47331071	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
-0.2	0.47331088	0.47331088	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
-0.1	0.47315598	0.47331100	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
0.0	0.47329024	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
0.1	0.47331056	0.47331056	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
0.2	0.47329197	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
0.3	0.47322957	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
0.4	0.47326617	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
0.5	0.47330973	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
0.6	0.47331405	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
0.7	0.47330987	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
0.8	0.47331100	0.47331100	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
0.9	0.47331042	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
1.0	0.47330986	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				

Tabela 1: Wyznaczone wartości pierwiastków w przypadku **Kryterium Przyrostowego** dla zadanych ρ oraz x_0

Kryterium stopu: Rezydualne											
Punkt	Dokładność ρ										
x_0	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-7}	10^{-10}	10^{-15}				
-1.0	0.47307847	0.47331098	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
-0.9	0.47330996	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
-0.8	0.47329903	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
-0.7	0.47324327	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
-0.6	0.47309306	0.47331098	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
-0.5	0.47331087	0.47331087	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
-0.4	0.47331071	0.47331071	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
-0.3	0.47331071	0.47331071	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
-0.2	0.47331088	0.47331088	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
-0.1	0.47315598	0.47331100	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
0.0	0.47329024	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
0.1	0.47331056	0.47331056	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
0.2	0.47329197	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
0.3	0.47322957	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
0.4	0.47326617	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
0.5	0.47330973	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
0.6	0.47331405	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
0.7	0.47330987	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
0.8	0.47331100	0.47331100	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
0.9	0.47331042	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				
1.0	0.47330986	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101				

Tabela 2: Wyznaczone wartości pierwiastków w przypadku **Kryterium Rezydualnego** dla zadanych ρ oraz x_0

5.2. Liczba iteracji dla zadanych parametrów

Rysunek 3: Liczba iteracji, potrzebna do wyznaczenia pierwiastka w przypadku Kryterium Przyrostowego dla zadanych ρ oraz x_0

Rysunek 4: Liczba iteracji, potrzebna do wyznaczenia pierwiastka w przypadku Kryterium Rezydualnego dla zadanych ρ oraz x_0

5.3. Wartości błędu bezwzględnego ${\cal E}_b$ dla zadanych parametrów

Rysunek 5: Liczba iteracji, potrzebna do wyznaczenia pierwiastka w przypadku **Kryterium Przyrostowego** dla zadanych ρ oraz x_0

Rysunek 6: Liczba iteracji, potrzebna do wyznaczenia pierwiastka w przypadku Kryterium Rezydualnego dla zadanych ρ oraz x_0

6. Wyniki wyznaczone Metodą Siecznych

6.1. Wartości przybliżonych miejsc zerowych dla zadanych parametrów

Kryterium stopu: Przyrostowe									
D 14	Punkt x_2	Dokładność ρ							
Punkt x_1		10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-7}	10^{-10}	10^{-15}	
-0.9	-1.0	0.47224887	0.473311	0.473311	0.47331101	0.47331101	0.47331101	0.47331101	
-0.8	-1.0	0.47326712	0.47331095	0.47331095	0.47331101	0.47331101	0.47331101	0.47331101	
-0.7	-1.0	0.47325233	0.47331091	0.47331091	0.47331101	0.47331101	0.47331101	0.47331101	
-0.6	-1.0	0.4732689	0.47331095	0.47331095	0.47331101	0.47331101	0.47331101	0.47331101	
-0.5	-1.0	-0.49092885	0.473311	0.473311	0.47331101	0.47331101	0.47331101	0.47331101	
-0.4	-1.0	-0.39590262	0.47330851	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	
-0.3	-1.0	-0.29831362	0.47331089	0.47331089	0.47331101	0.47331101	0.47331101	0.47331101	
-0.2	-1.0	-0.19937256	-0.19937256	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	
-0.1	-1.0	-0.09979134	-0.09979134	0.473311	0.47331101	0.47331101	0.47331101	0.47331101	
0.0	-1.0	6.104e-05	6.104e-05	6.104e-05	0.47331101	0.47331101	0.47331101	0.47331101	
0.1	-1.0	0.10001536	0.10001536	0.10001536	0.47331101	0.47331101	0.47331101	0.47331101	
0.2	-1.0	0.20000322	0.20000322	0.20000322	0.20000322	0.47331101	0.47331101	0.47331101	
0.3	-1.0	0.30000054	0.30000054	0.30000054	0.30000054	0.47331101	0.47331101	0.47331101	
0.4	-1.0	0.40000007	0.40000007	0.40000007	0.40000007	0.40000007	0.47331101	0.47331101	
0.5	-1.0	0.49999998	0.49999998	0.49999998	0.49999998	0.49999998	0.47331101	0.47331101	
0.6	-1.0	0.59999979	0.59999979	0.59999979	0.59999979	0.47331101	0.47331101	0.47331101	
0.7	-1.0	0.69999856	0.69999856	0.69999856	0.69999856	0.47331101	0.47331101	0.47331101	
0.8	-1.0	0.79999245	0.79999245	0.79999245	0.79999245	0.47331101	0.47331101	0.47331101	
0.9	-1.0	0.89996725	0.89996725	0.89996725	0.47331101	0.47331101	0.47331101	0.47331101	
1.0	-1.0	0.99987793	0.99987793	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	
-1.0	1.0	0.99987793	0.99987793	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	
-0.9	1.0	0.99976223	0.99976223	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	
-0.8	1.0	0.99951988	0.99951988	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	
-0.7	1.0	0.99899096	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	
-0.6	1.0	0.99778262	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	
-0.5	1.0	0.99487931	0.47331399	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	
-0.4	1.0	0.47400082	0.47331222	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	
-0.3	1.0	0.47359279	0.47331085	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	
-0.2	1.0	0.47424503	0.47331419	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	
-0.1	1.0	0.47347937	0.47331084	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	
0.0	1.0	0.49990843	0.49990843	0.49990843	0.47331101	0.47331101	0.47331101	0.47331101	
0.1	1.0	0.2768074	0.47329832	0.473311	0.47331101	0.47331101	0.47331101	0.47331101	
0.2	1.0	0.47292572	0.47330842	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	
0.3	1.0	0.3089783	0.473311	0.473311	0.47331101	0.47331101	0.47331101	0.47331101	
0.4	1.0	0.40091403	0.40091403	0.47331094	0.47331101	0.47331101	0.47331101	0.47331101	
0.5	1.0	0.49981719	0.49981719	0.49981719	0.47331101	0.47331101	0.47331101	0.47331101	
0.6	1.0	0.59827022	0.59827022	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	
0.7	1.0	0.6918217	0.47331344	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	
0.8	1.0	0.47389178	0.47331162	0.47331101	0.47331101	0.47331101	0.47331101	0.47331101	
0.9	1.0	0.47332938	0.473311	0.473311	0.47331101	0.47331101	0.47331101	0.47331101	

Tabela 3: Wyznaczone wartości pierwiastków w przypadku Kryterium Przyrostowego dla zadanych ρ oraz x_0

Kryterium stopu: Rezydualne									
Punkt x_1	Punkt x_2	Dokładność $ ho$							
		10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-7}	10^{-10}	10^{-15}	
-0.9	-1.0	0.28407226	0.41647558	0.46371529	0.47224887	0.473311	0.473311	0.473311	
-0.8	-1.0	0.31314726	0.41082632	0.46064389	0.47326712	0.47331095	0.47331101	0.47331101	
-0.7	-1.0	0.31104992	0.4090675	0.45960862	0.47325233	0.47331091	0.47331101	0.47331101	
-0.6	-1.0	0.31343983	0.41107136	0.46078527	0.4732689	0.47331095	0.47331101	0.47331101	
-0.5	-1.0	0.2841988	0.41657543	0.4637659	0.4722599	0.473311	0.473311	0.473311	
-0.4	-1.0	0.2953152	0.39577819	0.46764082	0.47293306	0.47330851	0.47331101	0.47331101	
-0.3	-1.0	0.31045525	0.40856825	0.45930833	0.47324742	0.47331089	0.47331101	0.47331101	
-0.2	-1.0	0.29428756	0.39490667	0.46733127	0.47289172	0.473308	0.47331101	0.47331101	
-0.1	-1.0	0.2829491	0.41559303	0.46326225	0.47214761	0.473311	0.47331101	0.47331101	
0.0	-1.0	0.31373829	0.4113091	0.46092208	0.47327057	0.47331096	0.47331101	0.47331101	
0.1	-1.0	0.31559549	0.4127932	0.4617605	0.47327975	0.47331098	0.47331101	0.47331101	
0.2	-1.0	0.28850402	0.39149596	0.46599089	0.47268829	0.47330494	0.47331101	0.47331101	
0.3	-1.0	0.30000054	0.41013429	0.45998249	0.47325747	0.47331092	0.47331101	0.47331101	
0.4	-1.0	0.40000007	0.40000007	0.45923116	0.47325725	0.47331093	0.47331101	0.47331101	
0.5	-1.0	0.49999998	0.49999998	0.47580645	0.47343203	0.47331089	0.47331101	0.47331101	
0.6	-1.0	0.59999979	0.5501691	0.47801671	0.47347018	0.47331085	0.47331101	0.47331101	
0.7	-1.0	0.64166676	0.5397209	0.48586492	0.47475347	0.47332144	0.47331101	0.47331101	
0.8	-1.0	0.65381111	0.54643069	0.4759733	0.47335694	0.47331096	0.47331101	0.47331101	
0.9	-1.0	0.65252798	0.54486314	0.47565656	0.4733451	0.47331098	0.47331101	0.47331101	
1.0	-1.0	0.64269463	0.53672149	0.48430732	0.47440091	0.47331595	0.47331101	0.47331101	
-1.0	1.0	0.64269463	0.53672149	0.48430732	0.47440091	0.47331595	0.47331101	0.47331101	
-0.9	1.0	0.64264856	0.53668383	0.48428714	0.4743966	0.47331589	0.47331101	0.47331101	
-0.8	1.0	0.64255201	0.53660491	0.4842449	0.4743876	0.47331578	0.47331101	0.47331101	
-0.7	1.0	0.64234102	0.53643248	0.48415288	0.47436812	0.47331554	0.47331101	0.47331101	
-0.6	1.0	0.64185763	0.53603757	0.48394351	0.47432449	0.47331504	0.47331101	0.47331101	
-0.5	1.0	0.68057077	0.53508309	0.48344545	0.47422451	0.47331399	0.47331101	0.47331101	
-0.4	1.0	0.67735923	0.53262668	0.48221697	0.47400082	0.47331222	0.47331101	0.47331101	
-0.3	1.0	0.6683968	0.55787126	0.47923772	0.47359279	0.47331085	0.47331101	0.47331101	
-0.2	1.0	0.68084318	0.53528528	0.48354994	0.47424503	0.47331419	0.47331101	0.47331101	
-0.1	1.0	0.66533647	0.55413344	0.47801704	0.47347937	0.47331084	0.47331101	0.47331101	
0.0	1.0	0.5	0.5	0.4757941	0.47343049	0.47331089	0.47331101	0.47331101	
0.1	1.0	0.32430401	0.41751324	0.46429518	0.47237506	0.47329832	0.473311	0.473311	
0.2	1.0	0.29729786	0.39551294	0.46758803	0.47292572	0.47330842	0.47331101	0.47331101	
0.3	1.0	0.30471521	0.41612885	0.46334541	0.47215483	0.473311	0.47331101	0.47331101	
0.4	1.0	0.40045977	0.40045977	0.45968055	0.47326334	0.47331094	0.47331101	0.47331101	
0.5	1.0	0.49990843	0.49990843	0.47576956	0.47342832	0.47331089	0.47331101	0.47331101	
0.6	1.0	0.59912847	0.54898721	0.47762694	0.47344192	0.47331087	0.47331101	0.47331101	
0.7	1.0	0.63596695	0.53465037	0.48314121	0.4741618	0.47331344	0.47331101	0.47331101	
0.8	1.0	0.67681055	0.53122898	0.48154456	0.47389178	0.47331162	0.47331101	0.47331101	
0.9	1.0	0.6491749	0.5419152	0.48725322	0.47332938	0.473311	0.47331101	0.47331101	

Tabela 4: Wyznaczone wartości pierwiastków w przypadku **Kryterium Rezydualnego** dla zadanych ρ oraz x_0

6.2. Liczba iteracji dla zadanych parametrów

Rysunek 7: Liczba iteracji, potrzebna do wyznaczenia pierwiastka w przypadku **Kryterium Przyrostowego** dla zadanych ρ oraz x_0

Rysunek 8: Liczba iteracji, potrzebna do wyznaczenia pierwiastka w przypadku **Kryterium Rezydualnego** dla zadanych ρ oraz x_0

6.3. Wartości błędu bezwzględnego ${\cal E}_b$ dla zadanych parametrów

Rysunek 9: Liczba iteracji, potrzebna do wyznaczenia pierwiastka w przypadku Kryterium Przyrostowego dla zadanych ρ oraz x_0

Rysunek 10: Liczba iteracji, potrzebna do wyznaczenia pierwiastka w przypadku **Kryterium Rezydualnego** dla zadanych ρ oraz x_0

7. Analiza wyników

Liczba potrzebnych iteracji

Tak jak można było oczekiwać, wzrost dokładności ρ w największym stopniu wpływał na liczbę iteracji potrzebnych do wyznaczenia miejsca zerowego. W miarę wzrostu dokładności, liczb potrzebnych iteracji także wzrastała. Wartym uwagi jest fakt, że w metodzie **Newtona wzrost liczby potrzebnych iteracji był o wiele mniej gwałtowny** niezależnie od punktu startowego w porównaniu z metodą siecznych.

Można zauważyć, że najmniejsza ilość iteracji pokrywa się z sytuacjami, gdy w wartość startowa jest bliska prawdziwemu miejscu zerowemu(w metodzie Newtona x_0 lub w metodzie siecznych x_1).

W obu metodach, **liczba iteracji** potrzebna do osiągnięcia podanej dokładności jest **mniejsza dla kryterium Rezydualnego**.

Wartości błędu bezwzględnego

Analiza wartości błędu bezwzględnego prowadzi do wniosku, że **kryterium stopu przyrostowe prowadzi do znacznie szybszego zmniejszenia się błędu bezwzględnego w miarę przyrostu dokładności** ρ (za wyjątkiem sytuacji Rysunek 9 związanej ze stromym spadkiem funkcji na przedziale [-1.0, -0.6]).

Po osiągnięciu dokładności $\rho=10^{-5}$ wszystkie metody, niezależnie od punktu startowego, dają podobne wartości odchyłu od prawdziwego miejsca zerowego rzędu $<10^{-6}$.

Nagły skok liczby iteracji w metodzie siecznych

W przypadku metody siecznych oraz przyrostowym kryterium stopu można zauważyć nagłe skoki liczby potrzebnych iteracji dla punktów startowych $x_1=-1.0, x_2\in\{-0.5, -0.4, ..., 1.0\}$ oraz $x_1\in\{-1.0, -0.9, ..., -0.5\}, x_2=1.0$. Tłumaczyć to zjawisko można **stromym spadkiem funkcji na przedziale** [-1.0, -0.6], który powoduje, że podczas weryfikacji kryterium przyrostowym, algorytm niemal natychmiastowo kończy działanie przez bliskie sąsiedztwo punktu wyznaczonego do jednego z punktów początkowych (Rysunek 11 - dla $\rho=10^{-2}$ algorytm kontynuuje działanie, zaś dla Rysunek 12 oraz tej samej dokładności ρ program kończy działanie).

Rysunek 11: Pierwsze trzy kolejne sieczne w metodzie siecznych, wyznaczające przybliżenia miejsca zerowego, począwszy od punktów ($x_0=-1.0,x_1=-0.7$)

Rysunek 12: Pierwsze trzy kolejne sieczne w metodzie siecznych, wyznaczające przybliżenia miejsca zerowego, począwszy od punktów ($x_0=-1.0,x_1=-0.5$)

W przypadku wyboru obu punktów startowych z przedziału [-1.0, -0.6] mamy do czynienia z sytuacją, gdzie w metodzie siecznych, niewielka zmiana jedno z punktów startowych wpływa znacznie na współczynnik kierunkowy siecznej (Rysunek 13), przez co liczba iteracji potrzebna do wyznaczenia prawidłowego pierwiastka gwałtownie wzrasta.

Rysunek 13: Pierwsze trzy kolejne sieczne w metodzie siecznych, wyznaczające przybliżenia miejsca zerowego, począwszy od punktów $(x_0=-1.0,x_1=-0.9)$

Przypadek przedziału funkcji, w którym jej pochodna jest bliska zeru

Pochodna rozpatrywanej funkcji na odcinku $\approx [0.4, 0.6]$ jest bliska zeru, a co za tym idzie, funkcja jest niemal stała. Mimo tej zależności, przez fakt, że miejsce zerowe znajduje się wewnątrz tego odcinka, zarówno używając metody Newtona jak i metody Siecznych z obydwoma warunkami stopu, znalezienie miejsca zerowego **wymaga mniejszej liczby iteracji** niż w przypadku innych miejsc startowych. Związane jest to z faktem, że **styczna będzie dobrym przybliżeniem miejscowym prawdziwej funkcji**, a dodatkowo **nie będzie doznawała gwałtownych zmian współczynnika kierunkowego**

Rysunek 14: Kolejne styczne wyznaczane metodą Newtona w punktach x_0, x_1, x_2 , skala $y \in [-1.0, 1.0], x \in [0.0, 1.0]$

Rysunek 15: Kolejne styczne wyznaczane metodą Newtona w punktach x_0, x_1, x_2 , skala $y \in [-0.001, 0.001], x \in [0.46, 0.51]$