CPME 452 Assignment 2 – Backpropagation

Adam Grace 20055169 October 25th, 2020

Model 1 – From Scratch

I create a 784 input, 10 output backpropagation neural network using momentum to classify the handwritten digits from the MNIST dataset. In training and in testing I achieved an overall accuracy of 90.95% and 91.13% respectively. The parameters that I varied while investigating this model include the number nodes in the hidden layer, the number of epochs, the learning rate, the momentum rate, and the initial weight range. After trying a limited number of variable combinations, I settled on 30 hidden nodes, 5 epochs, a learning rate of 0.01, a momentum rate of 0.3 and an initial weight range of negative 1 to 1. Initial weights were chosen randomly from this range. Unfortunately, I was not able to change around the variables more than about 10 times due to the long computation time. For data preprocessing, I flattened the 28x28 2D input array into a 784 element 1D array. I also found that a higher overall accuracy was achieved when I introduced input normalization. The confusion matrices and the precision, recall and overall accuracy statistics are shown below. The confusion matrices goes from 0 to 9, starting from the top left.

TRAINING PHA Overall accu 90.948333333	racy:							Ove		PHAS accu								
	precis	ion	reca.	11 f	1-scor	'e	support				pre	cisio	n	recal	1 f1	-scor	e s	upport
0	0	.93	0.9	97	0.9	95	5923			0		0.9	3	0.9	8	0.9	5	980
1	0	.94	0.9	97	0.9	96	6742			1		0.9	6	0.9	8	0.9	7	1135
2	0	.92	0.8	37	0.8	39	5958			2		0.9	4	0.8	8	0.9	1	1032
3	0	.91	0.88		0.89		6131	3				0.9	0	0.89			0.90	
4	0	.90	0.9	91	0.9	91	5842			4		0.9	0	0.9	1	0.9	1	982
5	0	.88	0.8	86	0.8	37	5421			5		0.8	7	0.8	7	0.8	7	892
6	0	.92	0.9	95	0.9	94	5918			6		0.9	1	0.9	4	0.9	2	958
7	0	.93	0.9	92	0.9	93	6265			7		0.9	3	0.9	0	0.9	2	1028
8	8 0.87 0.87		37	0.87		5851	8				0.8	7	0.86		0.87		974	
9	0	.88	0.8	89	0.8	38	5949			9		0.8	9	0.8	9	0.8	9	1009
accuracy					0.9		60000		acc	uracy						0.9		10000
macro avg		.91	0.9	91	0.9	91	60000			o avg		0.9		0.9		0.9	1	10000
weighted avg	0	.91	0.9	91	0.9	91	60000	wei	ighte	d avg		0.9	1	0.9	1	0.9	1	10000
[[5729 1	17 14	1 7	43	44	4	57	7]]]	958	0	1	2	0	4	9	1	5	0]
[2 6545	30 23	l 11	33	14	18	47	21]	[0	1111	3	2	1	1	3	2	12	0]
[72 70	5194 108	3 96	21	125	105	130	37]	[14	10	913	18	17	5	12	17	21	5]
[45 27	135 5385	5 14	209	34	64	152	66]	[5	1	15	901	2	35	3	12	25	11]
[17 37	23	1 5326	6	83	15	60	274]	[3	3	1	1	894	2	21	2	11	44]
[99 25	36 172	93	4682	113	29	116	56]	[17	2	5	26	13	778	20	6	17	8]
57 23	32 :	1 32	85	5628	6	50	4]	[15	3	3	2	14	17	898	1	5	0]
[33 66	86 26	92	15	2	5749	23	173]	[3	19	23	8	9	2	1	928	6	29]
[46 119	75 129	9 46	177	52	32	5062	113]	[10	7	6	26	7	34	17	11	837	19]
[51 28	26 85	199	43	11	143	94	5269]]	[7	7	1	15	32	13	5	15	19	895]]

Model 2A – Using Predefined Libraries and Parameters from Model 1

Using the same parameters as in Model 1, I created the same neural network using predefined libraries from Keras. In training and in testing I achieved an overall accuracy of 89.98% and 90.60% respectively. The confusion matrices and the precision, recall and overall accuracy statistics are shown below. The confusion matrices goes from 0 to 9, starting from the top left.

TRAINING PHASE		TESTING PHASE										
Overall accuracy:		Overall accuracy:										
89.975 %		90.6 %										
precision recall	f1-score support	precision	recall f1-score support									
0 000 007	0.05 5023											
0 0.93 0.97	0.95 5923	0 0.92	0.98 0.95 980									
1 0.92 0.97	0.94 6742	1 0.95	0.98 0.96 1135									
2 0.90 0.87	0.88 5958	2 0.92	0.87 0.89 1032									
3 0.90 0.86	0.88 6131	3 0.90	0.89 0.90 1010									
4 0.89 0.91	0.90 5842	4 0.89	0.91 0.90 982									
5 0.89 0.80	0.84 5421	5 0.91	0.81 0.86 892									
6 0.91 0.95	0.93 5918	6 0.91	0.95 0.93 958									
7 0.92 0.91	0.92 6265	7 0.91	0.90 0.91 1028									
8 0.88 0.86	0.87 5851	8 0.88	0.86 0.87 974									
9 0.86 0.88	0.87 5949	9 0.87	0.88 0.88 1009									
accuracy	0.90 60000	accuracy	0.91 10000									
macro avg 0.90 0.90	0.90 60000	macro avg 0.91	0.90 0.90 10000									
weighted avg 0.90 0.90	0.90 60000	weighted avg 0.91	0.91 0.91 10000									
[[5728 0 29 13 19 20	46 5 58 5]	[[963	0 9 1 4 0]									
[0 6536 39 22 5 37	13 19 58 13]	[0 1108 1 5 1	1 5 2 12 0]									
2	125 124 134 29]	[14 7 901 16 17	0 17 21 33 6]									
[36 43 180 5283 8 229	53 87 118 94]	[4 2 21 902 1	27 5 17 18 13]									
[8 48 35 2 5310 4	83 14 39 299]	[1 5 5 0 898	1 14 2 5 51]									
[137 78 58 231 105 4346	144 35 203 84]	[20 4 7 45 16	723 19 13 37 8]									
[58 24 49 4 40 69 5	542 0 31 1]	[16 3 4 1 8	12 910 1 3 0]									
[39 109 81 15 82 9	3 5730 13 184]	[6 22 27 2 11	0 0 926 1 33]									
[49 177 85 150 41 137	67 29 5006 110]	[10 12 11 22 9	21 18 14 841 16]									
[62 38 33 104 214 38	6 187 46 5221]]	[18 8 3 11 45	9 2 18 7 888]]									

Model 2B – Using Predefined Libraries and New Parameters

Model 2A was used with new parameters in an attempt to achieve better results. 100 hidden nodes, 5 epochs, a learning rate of 0.1, a momentum rate of 0.5 and an initial weight range of negative 1 to 1 was used. In training and in testing I improved upon previous models, achieving an overall accuracy of 89.98% and 90.60% respectively. The confusion matrices and the precision, recall and overall accuracy statistics are shown below. The confusion matrices goes from 0 to 9, starting from the top left.

TRAINING PHAS									т	STING	DHΔS	F							
Overall accu	racy	:								/erall									
96.29 %										5.86 %		· ucy ·							
	pre	ecisio	n	reca.	11 f	1-sco	re	support		7.00 %		pre	cisio	n	recal	1 f1	-scor	e s	upport
0		0.9	97	0.9	98	0.9	98	5923			0		0.9	5	0.9	a	0.9	7	980
1		0.9	8	0.9	98	0.	98	6742			1		0.9		0.9		0.9		1135
2		0.9	96	0.9	96	0.	96	5958			2		0.9		0.9		0.9		1032
3		0.9	95	0.9	95	0.	95	6131			3		0.9		0.9		0.9		1010
4		0.9	94	0.9	97	0.	95	5842			4		0.9		0.9		0.9		982
5		0.9	7	0.9	95	0.	96	5421			5		0.9		0.9		0.9		892
6		0.9	8	0.9	97	0.	98	5918			6		0.9	_	0.9		0.9		958
7		0.9	97	0.9	97	0.	97	6265			7		0.9		0.9		0.9		1028
8		0.9)4	0.9	97	0.	95	5851			8		0.9		0.9		0.9		974
9		0.9	97	0.9	92	0.	95	5949			9		0.9		0.9		0.9		1009
											9		0.5	,	0.5	1	0.5	+	1003
accuracy						0.	96	60000		200	uracy						0.9	6	10000
macro avg		0.9	96	0.9	96	0.	96	60000			o avg		0.9	6	0.9	6	0.9		10000
weighted avg		0.9	96	0.9	96	0.	96	60000	14/4	eighte			0.9		0.9		0.9		10000
									000	. I gii c c	u uvg	'	0.5	0	0.5	0	0.5	0	10000
[[5818 1	7	5	9	9	24			4]	[]	968	0	0	4	0	3	2	1	1	1]
[1 6581	37	36	15		2		40	6]		0	1115	2	3	0	1	5	2	7	0]
L	5701	42	53	3	11					8	0	988	7	8	0	4	7	10	0]
[3 10		5850	5	53	14	46		1	ĺ	0	0	10	978	0	6	1	9	6	0]
[13 10	23		5677	2	21	9	19	65]	ĺ	2	1	4	1	949	0	5	3	5	12]
[25 6	17	82		5171	32	6	36	21]	ĺ	8	1	1	25	3	827	14	1	8	4]
[37 10	8	3	27	56	5755	0	22	0]	ĺ	10	3	3	2	6	10	917	0	7	0]
[12 20	40	20	44	5	2	6078	14	30]	j	3	10	16	3	4	0	0	983	2	7]
[19 35	21	47	17	26	18	7	5651	10]	j	5	1	2	7	5	4	5	3	942	0]
[28 10	12	82	181	17	1	68	58	5492]]	j	10	6	1	13	39	6	0	10	5	919]]

Discussion

Interestingly, on all models the testing overall accuracy was greater than the training overall accuracy. This was unexpected since neural networks tend to fit to the data it is trained on. This indicates that overfitting was not an issue. In Model 2B, I achieved much better overall accuracy, precision and recall. I believe that the greater part of this improvement is due to the increase in hidden nodes from 30 to 100. It was observed that models 1 and 2A had some difficulty classifying 5 and 9, possibly due to not enough hidden nodes. Unrelated to the results, I also noticed that the predefined libraries were able to train the network in less time than my program from scratch, liekly due to operation optimization.