Notes

Xinyu Zhong Wolfson College

November 16, 2022

Contents

	-	time Curvature ubsection 1	
2	Gravi	Gravitation filed equations	
	2.1 E	Energy Momentum Tensor	
	2.	.1.1 Properties of Energy-momentum tensor	
	2.2 E	Energy-momentum Tensor in Ideal Fluid	
	2.	.2.1 Continuity Equation	

Abstract

Abstract of this course

1 Spacetime Curvature

Definition Riemann Curvature Tensor:

$$R_{abc}^d = \nabla_a \nabla_b v_c - \nabla_b \nabla_a v_c$$

The reason for doing so is that covariant derivative of dual vector field is not commutative

1.1 Subsection 1

2 Gravitation filed equations

2.1 Energy Momentum Tensor

Definition Energy Momentum Tensor:

$$T^{\mu\nu}(x) = \rho_0(x)u^{\mu}(x)u^{\nu}(x)$$

 T^{00} : energy density

 T^{i0} : i-th component of 3-momentum density (times c) T^{ij} : flux of i-component of 3-momentum in j-direction

2.1.1 Properties of Energy-momentum tensor

• Always symmetric

2.2 Energy-momentum Tensor in Ideal Fluid

Consider Ideal Fluid:

We can find a local inertial frame so that $T^{i0}=0$; and the spatial components are isotropic: $T^{ij}\propto \delta^{ij}$. Hence, in **instantaneous rest frame**:

$$T^{\mu\nu} = \operatorname{diag}(\rho c^2, p, p, p)$$

where ρc^2 is the rest frame energy density and p is isotropic pressure. While in general:

$$T^{\mu\nu} = (\rho + \frac{p}{c^2})u^{\mu}u^{\nu} - pg^{\mu\nu} \tag{1}$$

Equation 1 is the energy momentum tensor, valid in any coordinate system.

2.2.1 Continuity Equation

The energy-momentum tensor satisfies continuity equation:

$$\nabla_{\mu}T^{\mu\nu} = 0$$