TUTORIAL 2: Tree Inference

Building Phylogenetic Trees using RAxML and FastTree algorithms

Assignment

- Build trees for the 16S rRNA sequence using RaxML and FastTree algorithms
- Explain how underlying algorithms work

What are Trees?

- Trees show how groups of organisms, nucleic acids, or protein sequences are related evolutionarily
- Show how these groups came about through evolution
- Allows scientists to follow evolutionary changes that have occurred over time

Types of Tree Algorithms

- Maximum Likelihood (ML) uses an evolutionary model and tree topology finds the tree
 which has the highest likelihood of giving the observed data
- ML scores represent the probability of the observed sequence data given a specific phylogenetic tree and evolutionary model
- Distance Methods calculate evolutionary distances and build trees based off of these distances. Are also much less computationally intensive
- Maximum Parsimony (MP) makes tree that has minimum number of changes to explain observed data

Parsimony

https://evolution.berkeley.edu/phylogenetic-systematics/reconstructing-trees-cladistics/reconstructing-trees-parsimony/

Bootstrapping

- Bootstrapping is like taking many different snapshots of your data by randomly selecting observations from it.
- Each bootstrap sample is the same size as the original dataset, but it's created by randomly selecting sites from the original dataset
- Some observations may be selected more than once, while others may not be selected at all
- Reconstruct a phylogenetic tree for each replicate, and then evaluate the frequency that branches appear
- The support value associated with each branch indicates the proportion of bootstrap replicates
 that support that specific branch. Higher support values indicate greater confidence in the
 presence of that branch in the true evolutionary tree.

RAXML

- RAxML (Randomized Axelerated Maximum Likelihood) is an ML algorithm
- Uses randomly generated trees and parsimony based starting trees
- Uses variety of heuristic search algorithms to explore possible tree topologies and parameter values Subtree prune and regraft (SPR) and Nearest-Neighbor Interchange (NNI)
- Iteratively adjusts the tree topology and branch lengths to improve the likelihood score
- RAxML can do bootstrapping to assess the confidence levels of each branch
- Can calculate Robinson-Foulds (RF) distances between tree iterations
- The current leading method for large-scale ML estimation
- Can require weeks for datasets with thousands of molecular sequences

RAxML – Bootstrap

FastTree

- Algorithm used to construct phylogenetic trees from alignments of nucleotide or protein sequences
- Specifically designed to efficiently build phylogenetic trees from large datasets
- Can handle alignments with up to a million sequences
- Jukes-Cantor or generalized time-reversible (GTR) models of nucleotide evolution
- Jones-Taylor-Thornton (JJT), Whelan & Goldman (WAG), or Le and Gascuel (LG) models of amino acid evolutions
- Nearest Neighbor Interchange (NNI)
- A limitation of FastTree's neighbor joining phase is that it does not correct the distance for multiple for multiple substitutions, but it gets corrected in later steps

FastTree - Xsede

Rooted Tree

External Nodes: 42 Internal Nodes: 26

Comparing RAxML and FastTree

Comparing RAxML and FastTree

RAxML - Best Tree

Haemophilus influenzae 86 028NP uid58093 1 Haemophilus influenzae 86 028NP uid58093 4 Haemophilus influenzae 86 028NP uid58093 6 Haemophilus influenzae 86 028NP uid58093 3 Haemophilus influenzae 86 028NP uid58093 5

FastTree - Xsede

Haemophilus influenzae 86 028NP uid58093 1
Haemophilus influenzae 86 028NP uid58093 6
Haemophilus influenzae 86 028NP uid58093 5
Haemophilus influenzae 86 028NP uid58093 4
Haemophilus influenzae 86 028NP uid58093 3

Comparing RAxML and FastTree

- RAxML generally considered more accurate and FastTree considered faster
- "We find that when RAxML and FastTree are constrained to the same running time, FastTree produces topologically much more accurate trees in almost all cases. We also find that when RAxML is allowed to run to completion, it provides an advantage over FastTree in terms of the ML score, but does not produce substantially more accurate tree topologies."

$\times \times \times \times$

Build a Tree using iTOL

	PROCESS_OUTPUT	STDOUT	104.59 KB	View	Download
0		STDERR	189.00 bytes	View	Download
	all_outputfiles	stderr.txt	189.00 bytes	View	Download
0		RAxML_bestTree.result	3.59 KB	View	Download
0		scheduler.conf	114.00 bytes	View	Download
		stdout.txt	104.59 KB	View	Download
0		start.txt	40.00 bytes	View	Download
		RAxML_bootstrap.result	1.55 MB	View	Download
0		done.txt	49.00 bytes	View	Download
0		RAxML_info.result	100.94 KB	View	Download
		_scheduler_stderr.txt	870.00 bytes	View	Download
0		RAxML_bipartitions.result	3.66 KB	View	Download
		infile.reduced	37.17 KB	View	Download
0		term.txt	314.00 bytes	View	Download
0		RAxML_bipartitionsBranchLabels.result	3.73 KB	View	Download
0		infile	75.56 KB	View	Download
0		_JOBINFO.TXT	402.00 bytes	View	Download

PROCESS_OUTPUT	STDOUT	166.00 bytes	View	Download
	STDERR	1.28 KB	View	Download
all_results	logfile.txt	38.10 KB	View	Download
	stderr.txt	1.28 KB	View	Download
	scheduler.conf	76.00 bytes	View	Download
	stdout.txt	166.00 bytes	View	Download
	start.txt	40.00 bytes	View	Download
	fastree_result.tree	2.40 KB	View	Download
	done.txt	49.00 bytes	View	Download
	_scheduler_stderr.txt	870.00 bytes	View	Download
	term.txt	314.00 bytes	View	Download
	infile	75.56 KB	View	Download
	_JOBINFO.TXT	347.00 bytes	View	Download

Download output data from CIPRES

Build a Tree using iTOL

Upload a new tree					
Tree name:					
optional					
Paste your tree into the box below, or select a file using the Tree file selector. You can also simply drag and drop the tree file onto the page (only a regular plain text file, not QIIME QZA files).					
Tree text:					
Tree file:	10				
Choose File No file chosen					
Upload					

Build a Tree using iTOL

Edit the tree

Build a Tree using iTOL

Q&A

