#### Tree Structures and Tree Traversals

Readings - Chapter 8

#### Trees

- Abstract model of a hierarchical structure
- A tree consists of nodeswith a parent-childrelation



google images

# Trees - Examples



organization structure of a corporation

# Trees - Examples (2)



Portion of a file system

# Trees - Terminology

- □ *A* is the *root* node
- $\Box$  B is parent of E and F
- □ *A* is *ancestor* of *E* and *F*
- E and F are descendants
   of A
- □ C is the *sibling* of B
- □ E and F are children of B
- □ *E, I, J, K, G, H,* and *D* are leaves
- A, B, C, and F are internal nodes



# Trees - Terminology (2)

- □ *A* is the *root* node
- B is parent of E and F
- □ *A* is *ancestor* of *E* and *F*
- E and F are descendants
   of A
- □ C is the *sibling* of B
- □ E and F are children of B
- □ *E, I, J, K, G, H,* and *D* are leaves
- A, B, C, and F are internal nodes

Subtree: tree
 consisting of node and
 its descendants



# Trees - Terminology (3)

- □ The *depth* (*level*) of *E* is 2
- □ The *height* of the tree is 3
- □ The *degree* of node F is 3



# **Binary Trees**

- An ordered tree is one in which the children of each node are ordered
- Binary tree: orderedtree with all nodeshaving at most 2children
  - left child and right child



# **Binary Trees**

- Recursive definition of binary tree
  - either a leaf or
  - an internal node (the root) and one/two binary trees (left subtree and/or right subtree)



## Example of Binary Trees - Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
  - internal nodes: operators
  - external nodes: operands



# Example of Binary Trees - Decision Tree

- Binary tree associated with a decision process
  - internal nodes: questions with yes/no answer
  - external nodes: decisions
- Example: dining decision



# Proper, Full, Complete Binary Trees

Proper/Full - Every node has either zero or two children



 Complete - every level except possibly the last is completely filled and all leaf nodes are as left as possible.



# Binary tree from a complete binary tree

 A binary tree can be obtained from appropriate complete binary tree by pruning.



# Properties of a Binary Tree

- Notations
  - n number of nodes
  - n<sub>E</sub> number of leaves (external nodes)
  - $\bullet$   $n_T$  number of internal nodes
  - h height of the tree
- $h+1 \le n \le 2^{h+1} -1$
- $\Box 1 \le n_E \le 2^h$
- $h \le n_T \le 2^h 1$
- $\log(n+1) -1 \le h \le n-1$

# Properties of Binary Trees (2)

- $\square n_E \leq n_I + 1$
- $\Box$  proof by induction on  $n_I$ 
  - Tree with 1 node has a leaf but no internal node
  - Assume  $n_F \le n_I + 1$  for tree with k-1 internal nodes
  - A tree with k internal nodes has  $k_1$  internal nodes in the left subtree and  $k-k_1-1$  internal nodes in the right subtree
  - By induction  $n_E \le (k_1 + 1) + (k k_1 1 + 1) = k + 1$

# Complete Binary Tree

- □ level *i* has 2<sup>i</sup> nodes
- □ In a tree of height h
  - leaves are at level h

$$n_F = 2^h$$

$$n_I = 1 + 2 + 2^2 + ... + 2^{h-1} = 2^h - 1$$

$$n_I = n_F - 1$$

$$n = 2^{h+1}-1$$

- □ In a tree of *n* nodes
  - $n_E$  is (n+1)/2
  - $h = \log_2(n_F)$



#### Tree ADT

- We use positions to abstract nodes
- Generic methods:
  - Integer len()
  - Boolean is\_empty()
  - Iterator positions()
  - Iterator iter()
- Accessor methods:
  - position root()
  - position parent(p)
  - Iterator children(p)
  - Integer num\_children(p)

- Query methods:
  - Boolean is\_leaf(p)
  - Boolean is\_root(p)
- Update method:
  - element replace (p, o)
- Additional update methods may be defined by data structures implementing the Tree ADT

### Abstract Tree Class in Python

```
class Tree:
     """Abstract base class representing a tree structure."""
            ----- nested Position class ---
      class Position:
        """An abstraction representing the location of a single element."""
       def element(self):
         """Return the element stored at this Position."""
10
         raise NotImplementedError('must be implemented by subclass')
        def __eq__(self, other):
         """Return True if other Position represents the same location."""
13
         raise NotImplementedError('must be implemented by subclass')
       def __ne__(self, other):
16
         """Return True if other does not represent the same location."""
         return not (self == other)
                                               # opposite of _eq_
19
```

```
# ----- abstract methods that concrete subclass must support ----
     def root(self):
       """Return Position representing the tree<sup>l</sup>s root (or None if empty)."""
       raise NotImplementedError('must be implemented by subclass')
     def parent(self, p):
       """Return Position representing pls parent (or None if p is root)."""
       raise NotImplementedError('must be implemented by subclass')
     def num_children(self, p):
       """Return the number of children that Position p has."""
       raise NotImplementedError('must be implemented by subclass')
33
     def children(self, p):
       """Generate an iteration of Positions representing pls children."""
35
       raise NotImplementedError('must be implemented by subclass')
     def __len__(self):
       """Return the total number of elements in the tree."""
38
       raise NotImplementedError('must be implemented by subclass')
```

```
# ------ concrete methods implemented in this class ------

def is_root(self, p):

"""Return True if Position p represents the root of the tree."""

return self.root() == p

def is_leaf(self, p):

"""Return True if Position p does not have any children."""

return self.num_children(p) == 0

def is_empty(self):

"""Return True if the tree is empty."""

return len(self) == 0
```

# Linked Structure for Binary Trees



# Linked Structure for Binary Trees



#### Linked Structure for General Trees

#### **Node Structure**



#### Linked Structure for General Trees



# Computing Depth

- p be a position within the tree T
- calculate depth(p)

```
def depth(self, p):
"""Return the number of levels separating Position p
from the root."""
    if self.is_root(p):
        return 0
    else:
        return 1 + self.depth(self.parent(p))
```

# Computing Height

```
def _height1(self): # works, but O(n^2) worst-case time
"""Return the height of the tree."""
return max(self.depth(p) for p in self.positions() if
self.is_leaf(p))
```

```
Analysis: 0(n + \Sigma_{p \in L}(d_p+1)) is 0(n^2)
```

# Computing Height

```
def _height2(self, p): # time is linear in size of subtree
"""Return the height of the subtree rooted at Position
if self.is_leaf(p):
return 0
else:
return 1 + max(self._height2(c) for c in self.children(p))
Analysis
  0(\Sigma_p(c_p+1)) is 0(n)
```

#### Tree Traversals

- Systematic way of visiting all nodes in a tree in a specified order
  - preorder processes each node before processing its children
  - postorder processes each node after processing its children

#### **Preorder Traversal**



# Preorder Traversal - Algorithm

- Algorithm preorder(p)
  - perform the "visit" action for position p
  - for each child c in children(p) do
    - preorder(c)
- Example:
  - reading a document from beginning to end

#### Postorder Traversal



29

# Postorder Traversal - Algorithm

- Algorithm postorder(p)
  - for each child c in children(p) do
    - postorder(c)
  - perform the "visit" action for position p
- Example
  - du disk usage command in Unix

# Traversals of Binary Trees

- preorder(v)
  - visit(v)
  - preorder(v.leftchild())
  - preorder(v.rightchild())
- postorder(v)
  - postorder(v.leftchild())
  - postorder(v.rightchild())
  - visit(v)

# More Example of Traversals

- Visit printing the data in the node
- Preorder traversal
  - abdehicfg
- Postorder traversal
  - dhiebfgca



Evaluating Arithmetic Expressions



Tree Traversals

Evaluating Arithmetic Expressions



Evaluating Arithmetic Expressions



Evaluating Arithmetic Expressions



Tree Traversals

Evaluating Arithmetic Expressions



Evaluating Arithmetic Expressions



#### Inorder traversals

- Visit the node between the visit to the left and right subtree
- Algorithm inorder(p)
  - If p has a left child lc then
    - inorder(lc)
  - perform "visit" action for position p
  - If p has a right child rc then
    - inorder(rc)

#### Example - Inorder Traversal

- Inorder
  - dbheiafcg



#### **Euler Tour Traversal**

- Generic traversal of a binary tree
- Includes as special cases the preorder, postorder and inorder traversals
- □ Walk around the tree and visit each node three times:
  - on the left (preorder)
  - from below (inorder)
  - on the right (postorder)



#### Building Tree from Preorder Traversal

Given the preorder traversal, can we uniquely determine the binary tree?

> Preorder a b d e h i c f g

#### **Building Tree from Postorder Traversal**

Given the postorder traversal, can we uniquely determine the binary tree?

> Postorder d h i e b f g c a

 Given the preorder and inorder traversals of a binary tree we can uniquely determine the tree

```
Preorder Inorder a b d e h i c f g d b h e i a f c g
```



 Given the preorder and inorder traversals of a binary tree we can uniquely determine the tree



 Given the preorder and inorder traversals of a binary tree we can uniquely determine the tree

Tree Traversals



 Given the preorder and inorder traversals of a binary tree we can uniquely determine the tree



Tree Traversals

 Given the preorder and inorder traversals of a binary tree we can uniquely determine the tree











 Given the preorder and inorder traversals of a binary tree we can uniquely determine the tree



 Given the preorder and inorder traversals of a binary tree we can uniquely determine the tree



Tree Traversals

 Given the preorder and inorder traversals of a binary tree we can uniquely determine the tree



 Given the preorder and inorder traversals of a binary tree we can uniquely determine the tree





 Given the preorder and inorder traversals of a binary tree we can uniquely determine the tree









 Given the preorder and inorder traversals of a binary tree we can uniquely determine the tree



- Given the postorder and inorder traversals of a binary tree we can uniquely determine the tree
- The last node visited in the postorder traversal is the root of the binary tree

```
Postorder

d h i e b f g c a d b h e i a f c g
```

- Given the postorder and inorder traversals of a binary tree we can uniquely determine the tree
- The last node visited in the postorder traversal is the root of the binary tree

Postorder
d h i e b f g c a d b h e i a f c g

A

- Given the postorder and inorder traversals of a binary tree we can uniquely determine the tree
- The last node visited in the postorder traversal is the root of the binary tree



- Given the postorder and inorder traversals of a binary tree we can uniquely determine the tree
- The last node visited in the postorder traversal is the root of the binary tree



- Given the postorder and inorder traversals of a binary tree we can uniquely determine the tree
- The last node visited in the postorder traversal is the root of the binary tree



- Given the postorder and inorder traversals of a binary tree we can uniquely determine the tree
- The last node visited in the postorder traversal is the root of the binary tree





- Given the postorder and inorder traversals of a binary tree we can uniquely determine the tree
- The last node visited in the postorder traversal is the root of the binary tree



- Given the postorder and inorder traversals of a binary tree we can uniquely determine the tree
- The last node visited in the postorder traversal is the root of the binary tree



- Given the postorder and inorder traversals of a binary tree we can uniquely determine the tree
- The last node visited in the postorder traversal is the root of the binary tree



- Given the postorder and inorder traversals of a binary tree we can uniquely determine the tree
- The last node visited in the postorder traversal is the root of the binary tree



77

Given the pre and postorder traversal of a binary tree, can we uniquely reconstruct the tree?

Preorder Postorder
a b d e h i c f g d h i e b f g c a

Tree Traversals

Given the pre and postorder traversal of a binary tree, can we uniquely reconstruct the tree?

Preorder Postorder

a b d e h i c f g d h i e b f g c a

Tree Traversals

Given the pre and postorder traversal of a binary tree, can we uniquely reconstruct the tree?

Preorder

a b d e h i c f g d h i e b f g c a

Tree Traversals

Given the pre and postorder traversal of a binary tree, can we uniquely reconstruct the tree?



81





















Given the pre and postorder traversal of a binary tree, can we uniquely reconstruct the tree?

Preorder a b e i c Postorder i e b c a

Given the pre and postorder traversal of a binary tree, can we uniquely reconstruct the tree?



92

Given the pre and postorder traversal of a binary tree, can we uniquely reconstruct the tree?

Preorder a b e i c Postorder i e b c a

Only if the internal nodes in a binary tree have exactly two children

