電磁気学2 レポート問題 第6回

担当:山口 哲

提出締め切り:2017年1月27日金曜日

1. Lorentz 変換の係数 a^{μ}_{ν} は、

$$\eta_{\mu\nu} = \eta_{\rho\sigma} a^{\rho}{}_{\mu} a^{\sigma}{}_{\nu} \tag{1}$$

を満たす。これから、 $\det a=\pm 1$ となることを示せ。また、 $a^0{}_0\geq 1$ または $a^0{}_0\leq -1$ が成り立つことを示せ。(ヒント:(1) は、行列の積の形になっている。その両辺の \det を考えよ。また、 $\mu=\nu=0$ の場合を書いてみよ。)

- 2. A^{μ} を反変ベクトル、 B_{μ} を共変ベクトルとする。このとき $A^{\mu}B_{\mu}$ がスカラーであることを示せ。
- 3. $\Phi(x)$ をスカラー場とする。 $\partial_{\mu}\Phi(x)$ が共変ベクトル場であることを示せ。
- 4. 速度 \vee で走る粒子があったとき、この速度を表すような 4 元反変ベクトル u^{μ} を次の 手順で求めよう。
 - (a) この粒子が静止して見える系を S' 系とする。この系から見た場合、 u'^μ の空間成分は 0 と考えられるので、b を速度によらない定数として、 $u'^0=b,\,u'^i=0$ としてみる。Lorentz 変換することにより、 u^μ を $\beta=|\mathbf{v}|/c,\,v^i,b$ などを用いて表わせ。(ヒント:まずは $\mathbf{v}=(v,0,0)$ の場合を考えてみよ)
 - (b) $|\mathbf{v}| \ll c$ の場合、 $u^i \cong v^i$ になるように b を定めよ。
 - (c) $u^{\mu}u_{\mu}$ がスカラーであることを確かめよ。
- 5. 電磁ポテンシャル ϕ , \mathbb{A} に対して、4 元ベクトルポテンシャル $A^{\mu}(x)$ を $A^{0} = \phi/c$, $A^{i} = A_{i}$, (i = 1, 2, 3) (ベクトル \mathbb{A} の i 成分) とすると、 $A^{\mu}(x)$ は 4 元反変ベクトル場であることが知られている。このことを利用し、Lorentz 変換を用いることにより、x 軸正方向に速さ v で走る電荷 q を持つ荷電粒子の作る電磁ポテンシャルを求めよ。