

Recap

- A sentence is either <u>True</u> or <u>False</u> under an interpretation (or a world).
 - When it is <u>True</u>, we say that it is <u>satisfiable</u> (or is a model).
 - When it is <u>False</u>, then we say that it is <u>unsatisfiable</u>.
 - When a sentence is satisfiable under <u>all</u> interpretations (or worlds), then we say that it is a <u>valid</u> sentence or a <u>tautology</u>.
- Given that N objects are used in a KB, there will be 2^N possible interpretations (or worlds).

Recap

Soundness and Completeness

- Refer to an <u>inference procedure</u>
- We do not say a sentence is sound or complete.
 An <u>inference procedure</u> is <u>sound</u> if we can derive <u>True</u> sentence from <u>True</u> sentences. That is, it implements entailment.
 - MP implements entailments
- An <u>inference procedure</u> is <u>complete</u> if we can derive the proof of all entailed sentences (or valid sentences).

Representing Knowledge

Knowledge-based agent

- Have representations of the world in which they operate
- Use those representations to infer what actions to take

Ontological commitments

The world as <u>facts</u> (propositional logic)

The world as <u>objects</u> (first-order logic) with <u>properties</u> about each object, and <u>relations</u> between objects

• e.g. the blocks world:

Objects: cubes, cylinders, cones, ...
 Properties: shape, colour, location, ...
 Relations: above, under, next-to, ...

First-Order Logic (FOL)

A very powerful KR scheme

- Essential representation of the world
 - Deal with objects, properties, and relations.
- Simple, generic representation
 - Does <u>not</u> deal with specialized concepts such as categories, time, and events.
- Universal language
 - Can express anything that can be programmed.
- Most studied and best understood
 - More powerful proposals still debated.
 - Less powerful schemes too limited.

Propositional vs. First-Order Logic

Aristotle's syllogism

- Socrates is a man. All men are mortal. Therefore Socrates is mortal.

Statement	Propositional Logic	First-Order Logic
"Socrates is a man."	SocratesMan, S43	Man(Socrates), P52(S21)
"Plato is a man."	PlatoMan, S157	Man(Plato), P52(S99)
"All men are mortal."	MortalMan 5421 Man ⇒ Mortal 59⇒54	$Man(x) \Rightarrow Mortal(x),$ $P52(V1) \Rightarrow P66(V1)$
"Socrates is mortal."	MortalSocrates S957 S43 Λ S421 – S957 ?!?	Mortal(Socrates) V1←S21, – P66(S21)

Syntax and Semantics of FOL

Sentences

Built from quantifiers, predicate symbols, and terms

Terms

- Represent objects
- Built from variables, constant and function symbols

Constant symbols

- Refer to ("name") particular objects of the world
 - The object is specified by the interpretation
 - e.g. "John" is a constant, may refer to "John, king of England from 1199 to 1216 and younger brother of Richard Lionheart", or my uncle, or ...

Syntax and Semantics of FOL

Variables

- Refer to any object of the world
 - e.g. x, person, ... as in Brother(KingJohn, person).
- Can be substituted by a constant symbol
 - e.g. person ← Richard, yielding Brother(KingJohn, Richard).

Terms

- Logical expressions referring to objects
 - Include constant symbols ("names") and variables.
 - Make use of function symbols.
 e.g. LeftLegOf(KingJohn) to refer to his leg without naming it
- Compositional interpretation
 - e.g. LeftLegOf(), KingJohn -> LeftLegOf(KingJohn).

Predicate and Function Symbols

Predicate symbols

- Refer to particular relations on objects
 - Binary relation specified by the interpretation
 e.g. Brother(KingJohn, RichardLionheart) -> T or F
- A n-ary relation if defined by a set of n-tuples
 - Collection of objects arranged in a fixed order
 e.g. { (KingJohn, RichardLionheart), (KingJohn, Henry), ... }

Function symbols

- Refer to functional relations on objects
 - Many-to-one relation specified by the interpretation e.g. BrotherOf(KingJohn) -> a person, e.g. Richard (not T/F)
- Defined by a set of n+1-tuples
 - Last element is the function value for the first *n* elements.

Functions

- A <u>function</u> of arity n takes n <u>objects</u> of type $W_1,...,W_n$ as inputs and returns an <u>object</u> of type W.
- Example:

Predicates

- <u>Predicates</u> are like functions except that their return type is <u>True</u> or <u>False</u>.
- Example:
 - Greater-Than(3, 4)=False

Sentences in FOL

Atomic sentences

- State facts, using terms and predicate symbols
 - e.g. Brother(Richard, John).
- Can have complex terms as arguments
 - e.g. Married(FatherOf(Richard), MotherOf(John)).
- Have a truth value
 - Depends on both the interpretation and the world.

Complex sentences

- Combine sentences with connectives
 - e.g. Father(Henry, KingJohn) ∧ Mother(Mary, KingJohn)
- Connectives identical to propositional logic
 - i.e.: ∧, ∨, ⇔, ⇒, ¬

Sentence Equivalence

- There are many ways to write a logical statement in FOL
 - Example
 - A \Rightarrow B equivalent to $\neg A \lor B$ "rule form" "complementary cases"

 $Dog(x) \Rightarrow Mammal(x)$ $\neg Dog(x) \lor Mammal(x)$ "either it's not a dog or it's a mammal"

- A \wedge B \Rightarrow C equivalent to A \Rightarrow (B \Rightarrow C)
- Proof: $A \land B \Rightarrow C \Leftrightarrow \neg (A \land B) \lor C \Leftrightarrow (\neg A \lor \neg B) \lor C$ $\Rightarrow \neg A \lor \neg B \lor C \Leftrightarrow \neg A \lor (\neg B \lor C)$ $\Rightarrow \neg A \lor (B \Rightarrow C) \Leftrightarrow A \Rightarrow (B \Rightarrow C)$

Sentences in Normal Form

- There is only one way to write a logical statement using a Normal Form of FOL
 - Example

$$\neg B \Rightarrow \neg A$$

- $A \Rightarrow B$, $A \land B \Rightarrow C$ equivalent to $\neg A \lor B$, $\neg A \lor \neg B \lor C$ "Implicative Normal Form" "Conjunctive Normal Form"
- Rewriting logical sentences allows to determine whether they are equivalent or not
 - Example
 - A Λ B \Rightarrow C and A \Rightarrow (B \Rightarrow C) both have the same CNF: \neg A \vee \neg B \vee C
- Using FOL is the most convenient, but using a Normal Form is the most efficient

Sentence Verification

- Rewriting logical sentences helps to understand their meaning
 - Example
 - Owns $(x,y) \Rightarrow (Dog(y) \Rightarrow AnimalLover(x)) A \Rightarrow (B \Rightarrow C)$
 - Owns(x,y) Λ Dog(y) \Rightarrow AnimalLover(x) $A \Lambda B \Rightarrow C$ "A dog owner is an animal lover"
- Rewriting logical sentences helps to verify their meaning is as intended
 - Example
 - "Dogs all have the same enemies" $Dog(x) \Lambda Enemy(z, x) \Rightarrow (Dog(y) \Rightarrow Enemy(z, y))$ same as $Dog(x) \Lambda Dog(y) \Lambda Enemy(z, x) \Rightarrow Enemy(z, y)$

Universal Quantifier ∀

Express properties of collections of objects

- Make a statement about every objects w/out enumerating
 - e.g. "All kings are mortal

```
King(Henry) \Rightarrow Mortal(Henry) \Lambda

King(John) \Rightarrow Mortal(John) \Lambda

King(Richard) \Rightarrow Mortal(Richard) \Lambda

King(London) \Rightarrow Mortal(London) \Lambda
```

- instead: \forall x, King(x) ⇒ Mortal(x)
 - Note: the semantics of the implication says $F \Rightarrow F$ is TRUE.
 - Thus, for those individuals that satisfy the premise King(x), the rule asserts the conclusion Mortal(x)
 - But, for those individuals that do not satisfy the premise, the rule makes no assertion.

Using the Universal Quantifier

- The implication (⇒) is the natural connective to use with the universal quantifier (∀)
 - Example
 - General form: $\forall x P(x) \Rightarrow Q(x)$
 - e.g. $\forall x Dog(x) \Rightarrow Mammal(x)$ "all dogs are mammals"
 - Use conjunction? $\forall x P(x) \Lambda Q(x)$
 - e.g. \forall x Dog(x) Λ Mammal(x)
 - same as $\forall x P(x)$ and $\forall x Q(x)$

e.g. $\forall x \text{ Dog}(x)$ and $\forall x \text{ Mammal}(x)$

All dogs are mammals. All mammals are dogs.

-> yields a very strong statement (too strong! i.e. incorrect)

Existential Quantifier 3

- Express properties of some particular objects
 - Make a statement about <u>one</u> object without naming it
 - e.g., "King John has a brother who is king"
 - $\exists x$, Brother(x, KingJohn) Λ King(x)
 - instead of

```
Brother(Henry, KingJohn) \Lambda King(Henry) \vee Brother(London, KingJohn) \Lambda King(London) \vee Brother(Richard, KingJohn) \Lambda King(Richard) \vee
```

• • •

Using the Existential Quantifier

- The conjunction (Λ) is the natural connective to use with the existential quantifier (∃)
 - Example
 - General form: $\exists x P(x) \land Q(x)$
 - e.g., $\exists x \text{ Dog }(x) \land \text{ Owns(John, } x)$, "John owns a dog"
 - Use Implication? $\exists x P(x) \Rightarrow Q(x)$
 - e.g., $\exists x Dog(x) \Rightarrow Owns(John, x)$
 - Could be true for all x such that P(x) is false
 e.g., Dog(Garfield_the_cat) ⇒ Owns(John, Garfield_the_cat)
 - -> yields a very weak statement (too weak! i.e. useless)

Thank you!

