27 de Junho de 2019

Nome:			

Nº mecanográfico:

- Este exame contém 7 questões em 4 páginas e tem uma duração de 2h(+30m).
- Responda às questões no espaço marcado no enunciado.
- Pode usar funções auxiliares e/ou do prelúdio-padrão de Haskell.
- Nas questões 2 a 7, indique sempre o tipo da função definida.
- 1. (30%) Responda a cada uma das seguintes questões, indicando apenas o resultado de cada expressão.

```
(a) []:[]:[] ++ []:[]:[] = _____
```

- (b) length ([]:[]:[] ++ []:[]:[]) = _____
- (c) map ('div' 4) [1..10] = ____
- (d) takeWhile (<100) (iterate (3*) 1) = ______
- (e) (filter even.(!!2)) [[3,5,8],[4],[7,4,1,8],[9,11]] = _____
- (f) take 10 [2*x*y | x<-[1..], y <-[1..]] = _____
- (g) Defina a lista infinita $[0,1,4,7,8,31,12,127,16,511,\ldots]$ em compreensão:
- (h) Considere a seguinte definição em Haskell:

```
f p [] = True
f p (x:xs) = p x && f p xs
```

A avaliação da expressão f (>3) [3,4,5] tem como resultado: ____

- (i) Indique um tipo admissível para [even, (==2), (>1)]:
- (j) Indique o tipo mais geral de length.(filter (>'a')):
- (k) Considere as seguintes definições em Haskell:

data ???

O que falta em ??? para que a função f esteja bem definida?

(l) Indique o tipo mais geral de flip f x y = f y x:

2. (15%) Considere a função imparDiv3, que dada uma lista de inteiros, verifica que cada inteiro na lista que divisível por 3 é ímpar. Por exemplo imparDiv3 [1,15,153,83,64,9] = True e imparDiv3 [1,12,153,83,9] = False.		
(a) Defina a função imparDiv3 usando listas em compreensão e funções do prelúdio, mas não recursão.		
 (b) Defina a função imparDiv3 usando funções de ordem-superior (map, filter, foldr), mas não recursão ou listas em compreensão. 		
3. (10%) Considere o seguinte tipo Rel a, definido como type Rel a = [(a,[a])], para representar relações binárias, como uma lista de adjacências (Nota: a ordem dos elementos na lista de nós adjacentes não é importante, nas não devem aparecer elementos repetidos na lista de nós adjacentes, nem devem existir dois pares na relação com o mesmo primeiro elemento). Por exemplo a relação $R = \{(1,1),(1,3),(2,2),(3,2),(3,3)\}$ é representada por $r = [(1,[1,3]),(2,[2]),(3,[2,3])]$. Defina uma função composta, que dadas duas relações R_1 e R_2 , representadas la forma descrita acima, calcule a relação composta das duas. (Nota: $R_1 \cdot R_2 = \{(x,z) \mid (x,y) \in R_1 \land (y,z) \in R_2\}$.) Por exemplo composta $r = [(1,[1,3,2]),(2,[2]),(3,[2,3])]$. Sugestão: poderá utilizar a função nub do nódulo Data.List para remover elementos repetidos.		
1. (5%) Considere a seguinte série definida por recorrência da seguinte forma: $a_1 = 1$, $a_n = 2 * a_{n-1} + n + 1$, $n > 1$. Defina em Haskell a lista infinita [1,5,14,33,72,151,310,629,], contendo todos os termos da série. Nota: $a_n = a_n + a_$		

LIIu	e,True,False,False].
(a)	Defina recursivamente a função duplicada, que dada uma lista xs, verifica que a lista satisfaz a condição acima. Por exemplo duplicada [1,1,2,2,3,3] = True e duplicada [True,False,False] = False.
(b)	Usando ordem superior e/ou listas em compreensão, defina a função duplica, que dada uma lista xs, constrói uma nova lista de valores duplicados. Por exemplo, duplica [1,2,3,4] = [1,1,2,2,3,3,4,4] e duplica [True,False] = [True,True,False,False].
	(15%) Considere a seguinte declaração de tipo para árvores binárias com valores nas folhas: Arv a = Folha a No (Arv a) (Arv a)
(a)	Defina a função emOrdem, que dada uma árvore do tipo Arv a, retorna a lista de elementos na árvore, seguindo
	a ordem da esquerda para a direita.
(b)	a ordem da esquerda para a direita. Recorde a função de ordem-superior any:: (a->Bool) -> [a] -> Bool definida para listas. Defina uma função anyArv, que se comporte como a função any, mas opere sobre árvores do tipo Arv a.
(b)	Recorde a função de ordem-superior any:: (a->Bool) -> [a] -> Bool definida para listas. Defina uma
(b)	Recorde a função de ordem-superior any:: (a->Bool) -> [a] -> Bool definida para listas. Defina uma
(b)	Recorde a função de ordem-superior any:: (a->Bool) -> [a] -> Bool definida para listas. Defina uma
(b)	Recorde a função de ordem-superior any:: (a->Bool) -> [a] -> Bool definida para listas. Defina uma
(b)	Recorde a função de ordem-superior any:: (a->Bool) -> [a] -> Bool definida para listas. Defina uma
(b)	Recorde a função de ordem-superior any:: (a->Bool) -> [a] -> Bool definida para listas. Defina uma
(b)	Recorde a função de ordem-superior any:: (a->Bool) -> [a] -> Bool definida para listas. Defina uma
(b)	Recorde a função de ordem-superior any:: (a->Bool) -> [a] -> Bool definida para listas. Defina uma
(b)	Recorde a função de ordem-superior any:: (a->Bool) -> [a] -> Bool definida para listas. Defina uma

5. (15%) Considere listas em que cada valor aparece sequencialmente duplicado. Por exemplo [1,1,2,2,3,3] ou

(a)	Considerando as funções emOrdem e anyArv definidas na questão anterior e a função any do prelúdio, mostre que para qualquer árvore t e predicado p, anyArv p t = any p (emOrdem t).
(b)	Considerando as definições das funções foldr e concat dadas nas aulas, assim como a função flip do prelúdio, definida como flip f x y = f y x, mostre que para quaisquer f e v e xs: foldr f v (concat xs) = foldr (flip (foldr f)) v xs.

7. (10%) Responda (apenas) a uma das seguintes alíneas, usando indução matemática.

Nota: pode utilizar qualquer propriedade que tenha sido demostrada nas aulas. Pode ainda usar sem demonstrar as seguintes propriedades sobre listas: any $(xs++ys) = any xs \mid \mid any ys e foldr f v (xs ++ ys) = foldr f$