Embedded Communication Introduction

Chapter 8
"Mastering STM32" by Carmine Noviello
https://leanpub.com/mastering-stm32

What is an Embedded System?

- An "Embedded System" refers to a processor with a specific function that is part of a larger mechanical/electrical system
- Microcontrollers are components of an "Embedded System"
- Embedded Systems can be found in mp3 players, DVD players,
 GPS receivers, printers, washing machines, dishwashers,

What is Embedded Communication?

 "Embedded Communication" refers to the transfer of data between components of an embedded system

A basic embedded system

Embedded Communication Why is it important?

 Embedded Communication allows the microcontroller and the external peripherals to exchange data

A basic embedded system

Y. Abdul Gaffar

Embedded Communication Conceptual example

 Temperature sensor sends the value '6' to the microcontroller that represents a temperature of 28°C

A basic embedded system

Embedded Communication Types of data exchange

- Parallel communication
 - All data bits d₀, d₁, d₂ are transferred simultaneously
- Serial communication
 - One bit of data is transferred at a time
 - First LSB ('0'), then '1' and last MSB '1'

The temperature sensor transferring a value of '6' to the microcontroller

Embedded Communication Types of data exchange

- Parallel communication
 - All data bits d₀, d₁, d₂ are transferred simultaneously
- Serial communication
 - One bit of data is transferred at a time
 - First LSB ('0'), then '1' and last MSB '1'

The temperature sensor transferring a value of '6' to the microcontroller

Embedded Communication Serial Communication: timing of data exchange

- Asynchronous transmission
 - Two devices need to agree on how long it takes to transmit one bit of information. No clock signal is shared between the two devices.
- Synchronous transmission
 - Two devices share a common clock that influences timing

Asynchronous serial communication

Synchronous serial communication

Embedded Communication Serial Communication: transmit/receive data

- Full Duplex: two devices can communicate simultaneously
 - Separate data lines for transmit (Tx) and receive (Rx)
- Half Duplex: two devices communicate, one at a time
 - Transmit and receive share the same data line
- Simplex: two devices communication in one directly only
 - Unidirectional communication (ie. only transmit or only receive)

Embedded Communication A Basic Message Structure

- Data is transferred as part of a bigger message structure
 - Start command: signals the start of data transfer
 - Data: the data is transferred between devices
 - Stop command: signals the end of data transfer

A basic message structure

Embedded Systems II - EEE3096

R. Verrinder

Y. Abdul Gaffar

Embedded Communication Protocols

- Serial Protocols
 - UART: Universal Asynchronous Receiver Transmitter
 - I²C: Inter-Integrated Circuit
 - SPI: Serial Peripheral Interface

Overview of embedded communication

Embedded Communication Properties of Serial Protocols

- Physical interface
 - Number of 'lines' x (data, clock, chip select, ...)
 - Voltage levels
 - Connectors

Physical interface between two devices

Embedded Communication Properties of Serial Protocols

- Physical interface
 - Number of 'lines' x (data, clock, chip select, ...)
 - Voltage levels
 - Connectors
- Message structure
 - Start command
 - Data
 - Stop command
 - Other

A basic message structure

Embedded Communication Properties of Serial Protocols

- Physical interface
 - Number of 'lines' x (data, clock, chip select, ...)
 - Voltage levels
 - Connectors
- Message structure
 - Start command
 - Data
 - Stop command
 - Other
- Timing
 - When the next bit of data is sent
 - When the received signal is sampled

Asynchronous serial communication

Synchronous serial communication

