Project

Using SQLite or Mysql...etc

1. Hospital Management System

Tables:

- Patients: patient_id, name, age, gender, contact_info, admission_date
- Doctors: doctor_id, name, specialization, contact_info, department
- Appointments: appointment_id, patient_id, doctor_id, appointment_date, status

Use Cases:

- Retrieve all patients admitted under a specific doctor.
- Identify appointments within a date range.
- Find patients who have missed appointments.

2. Company Employee Management

Tables:

- Employees: employee_id, name, designation, department, salary
- **Departments:** department_id, name, location
- Projects: project_id, name, deadline, department_id

Use Cases:

- List employees working on projects in a specific department.
- Update project deadlines and track overdue projects.
- Identify employees earning above a certain threshold.

3. Online Retail Store

Tables:

- Products: product_id, name, category, price, stock
- Customers: customer_id, name, email, phone_number

• Orders: order id, customer id, product id, order date, quantity

Use Cases:

- Generate sales reports for specific products or categories.
- Identify customers who made repeat purchases.
- Analyze stock levels to determine reordering requirements.

4. University Management System

Tables:

- Students: student_id, name, age, major, enrollment_date
- Courses: course_id, name, credits, instructor
- Enrollments: enrollment_id, student_id, course_id, grade

Use Cases:

- Identify students enrolled in a specific course.
- Calculate the average grade for a course.
- Update course details and track student progress.

Implementation Plan:

1. Create Schema and ERD:

- Design an Entity-Relationship Diagram (ERD) showing the relationships among the tables.
- Implement the schema creation in SQL (CREATE TABLE commands).

2. Create Tables and Relationships:

- Define tables with primary keys, foreign keys, and constraints.
- Insert rows in tables.

3. Update Tables:

Use UPDATE to modify records (e.g., update a patient's status or order quantity).

4. Select with Multiple Conditions:

- o Use SELECT queries with WHERE, logical operators (AND, OR), and filtering.
- Update Values in rows .

5. **Joins:**

- o Perform inner joins to combine related data (e.g., patients with doctors).
- Use left or right joins for advanced queries.

6. Multiple Joins:

 Query data from three or more tables (e.g., orders linked with customers and products).

7. Subqueries:

 Use subqueries for advanced filtering or calculations (e.g., find customers who ordered most).

Python and Pandas:

1. Read Data:

Use pandas.read_sql() to load data from the database.

2. Manipulate Data:

- o Add columns: df['new_column'] = df['existing_column'] * 2
- Delete columns: df.drop(columns=['column_name'], inplace=True)

3. Indexing:

Access rows using loc and iloc for specific slicing.

4. Export Data:

Export modified data using df.to_csv() or df.to_excel().

5. Upload All Work In Github