fixed-design metrix ERnxd € ER "two" parameter g = Xw*+8 (ele N(0, 0 Inxn) (A1) For each i=1,...,d, \frac{1}{\int_n}\(X_1 \) \((AZ) Whis k-sporse. Performance metric for $\hat{w} = \hat{w}(X, y)$ E(w) = E [+ 1/xw - xw+1/2] No cargain \frac{1}{2n} || \text{Xw} - y || \frac{2}{2}

weight $\frac{\sum \left(\sqrt[4]{\log \left(\frac{d}{k}\right)}\right)}{\sum \left(\sqrt[4]{\log \left(\frac{d}{k}\right)}\right)}$ wt sup IE[| | | Xw-xnbllz] > hortogan

f(w) My E argunin [1/1/Xw-yll2 + > Hwll1}
weigh Basic proporties All solutions to the above provide the same productions. Proof By contradiction.

Assume that why we was two

predictions such that $X\hat{\omega}_{1} \neq X\hat{\omega}_{2}$ $f(\hat{w}_1) = f(\hat{w}_2)$ $u \in (0,1)$. Consider $\hat{w}_u = u \hat{w}_1 + (1-u) \hat{w}_2$ flw) < flw) (by strict convexity) < u flw, 1+ (1-u) flw2) x of a r> 11 a - y 112 $= n f(\hat{w}_1) + (1-u) f(\hat{w}_1)$ = $f(\omega_{\alpha})$ flon / < flon which is impossible.

1 11 Xw -y 112 + > 1 w/1 w is a solution to the where if Pw = 11xw-y12 + 15=0 TSEDINI $S = \begin{cases} +1 & \text{if } \sqrt[3]{i} > 0 \\ -1 & \text{if } \sqrt[3]{i} < 0 \end{cases}$ $\begin{cases} +1 & \text{if } \sqrt[3]{i} > 0 \\ +1 & \text{if } \sqrt[3]{i} < 0 \end{cases}$ $\left[\frac{1}{n} x^{\dagger} (y - X \vec{\omega}) = \lambda s \right]$ catisfies this. what is the smallest 1>0 S.t. $\vec{w} = 0$ is a solution? Suppose: 1 > 11 xyllos tale w=0, S= xy 115112 <1 What I should we choose? Suppose XIX = I (hypothetical) $\frac{1}{2} \chi^{T} (y - \chi \hat{\omega}) = \lambda S$ LxT(Xw+3- Xw)=15

	What can we prove for the lano?
	· Example. $\lambda \geq \lambda / x^{\frac{1}{5}} $
	let û be a lang solution.
	$\frac{1}{2n} \ X \hat{\omega} - y \ _2^2 + \lambda \ \hat{\omega} \ _1 \leq \frac{1}{2n} \ X \hat{\omega} - y \ _1 + \lambda \ \hat{\omega} \ _1$
	Baric Inequality (Recording)
0 <	$\frac{1}{n} \times \sqrt{n} - \times \sqrt{n} _{2} \leq 2 < \times \sqrt{n} - \sqrt{n} > + 2 \lambda (\sqrt{n} _{1} - \sqrt{n} _{2} + 2 \lambda (\sqrt{n} _{1} - \sqrt{n} _{1} - \sqrt{n} _{2} + 2 \lambda (\sqrt{n} _{1} - \sqrt{n} _{2} + 2 \lambda (\sqrt{n} _{1} - \sqrt{n} _{2} + 2 \lambda (\sqrt{n} _{1} - \sqrt{n} _{2} + 2 \lambda (\sqrt{n} _{1} - \sqrt{n} _{2} + 2 \lambda (\sqrt{n} _{1} - \sqrt{n} _{2} + 2 \lambda (\sqrt{n} _{1} - \sqrt{n} _{2} + 2 \lambda (\sqrt{n} _{1} - \sqrt{n} _{2} + 2 \lambda (\sqrt{n} _{1} - \sqrt{n} _{2} + 2 \lambda (\sqrt{n} _{1} - \sqrt{n} _{2} + 2 \lambda (\sqrt{n} _{1} - \sqrt{n} _{2} + 2 \lambda (\sqrt{n} _{1} - \sqrt{n} _{2} + 2 \lambda (\sqrt{n} _{1} - \sqrt{n} _{2} + 2 \lambda (\sqrt{n} _{1} + \sqrt{n} _{2} + 2 \lambda (\sqrt{n} _{1} + \sqrt{n} _{2} + 2 \lambda (\sqrt{n} _{2} + 2 \lambda $
	$\frac{2 x ^{2} \sqrt{ x ^{2} $
(3/(11/2/11/2/11/2/11/2/11/2/11/2/11/2/11
	=> 11211/ < 3112+11/
	1 11xw - X well < 1 . 4 11wty + 2/11wth
	€6/ 11w+11,
	1= 211xts 1/2 y o Jlagd
	Sn

Induition on
$$2x^2$$
 natrices

Let $A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
 $\|Ax\|_2 = 1$
 $\|Ax\|_2 = 1$
 $\|Ax\|_2 = 1$
 $A^T(y - Ax) = \lambda S$

AFIAW + $S - Ax$ = λS

AFIAW + $S - Ax$ = λS

Noise

Signal

ATA = $\begin{bmatrix} 1 & S - 1 \\ S - 1 \end{bmatrix}$

ATA $w = 0$

IIA · $0 - A$ while = $1 + A$

$$||A_{1}||_{2} = 1$$

$$||A_$$

