Cinematica, trasformazioni di Lorentz

esercizio 1.1

Consideriamo due sistemi di riferimento S e S', con S' in moto con velocità costante V rispetto a S lungo l'asse x: i punti A e B sono fermi in S e sono situati a una stessa distanza L dal punto O, da parti opposte. All'istante t = t' = 0 da O viene emesso un impulso luminoso che si propaga in tutte le direzioni con velocità c e raggiunge i punti A e B contemporaneamente al tempo $t_A = t_B = L/c$. Quali sono i tempi di arrivo t'_A e t'_B dei due segnali luminosi nei punti A e B misurati nel sistema di riferimento S'?

esercizio 1.2

Due eventi avvengono nello stesso punto in un sistema di riferimento inerziale S. Dimostrare che la sequenza temporale con la quale i due eventi si susseguono è la stessa in tutti i possibili sistemi di riferimento inerziali. Dimostrare inoltre che l'intervallo di tempo minimo tra i due eventi è quello misurato nel sistema di riferimento S.

esercizio 1.3

In un sistema di riferimento S, 2 eventi sono separati da una distanza Δx = 600 m e da un intervallo di tempo di Δt = 0.8 μ s. Nel sistema di riferimento S' che si muove a una velocità costante V = V $_x$ rispetto a S, i 2 eventi avvengono nello stesso istante. Trovare il valore della velocità V e la distanza $\Delta x'$ tra i 2 eventi in S'.

$$[v = 0.4c, \Delta x' = 550 m]$$

esercizio 1.4

Una astronave si allontana dalla Terra con velocità v costante. Un segnale radar viene trasmesso dalla Terra alle 12:00. Il segnale viene riflesso dalla coda dell'astronave e viene ricevuto dalla stazione radar alle 12:02. Lo stesso segnale, riflesso dal muso dell'astronave, viene ricevuto $2\mu s$ dopo. Un secondo segnale viene inviato alle 12:04 e, dopo essere stato riflesso dalla coda dell'astronave, viene ricevuto dalla stazione radar alle 12:18. Trovare la velocità dell'astronave e la sua lunghezza propria.

$$[v = 0.6c, L_0 = 150 m]$$

esercizio 1.5

Dati 3 sistemi di riferimento S_0 , S_1 , S_2 come quelli in figura, determinare:

- 1. la lunghezza L₂ del segmento A₂B₂, di lunghezza propria L, nel sistema S₀
- 2. la velocità relativa u dei sistemi S_1 e S_2
- 3. la lunghezza L'1 del segmento A1B1 in S2 in funzione della velocità V

esercizio 1.6

Una astronave A parte dalla Terra alla volta di α *Centauri*, viaggiando a velocità costante. La distanza della stella dalla Terra è di 4 anni luce. Si consideri la Terra come un sistema di riferimento inerziale S e l'astronave come un sistema di riferimento S' che si muove ad una velocità V rispetto alla Terra.

- 1. quale deve essere il modulo della velocità V perché il viaggio abbia una durata di 4 anni per i passeggeri dell'astronave?
- 2. quant'è la durata del viaggio per un osservatore sulla Terra?
- 3. una seconda astronave B sta tornando da α *Centauri* con una velocità $v_{Bx} = -c/\sqrt{2}$ rispetto alla Terra; qual è la velocità di B misurata da un osservatore in A?
- 4. Se B ha una lunghezza a riposo di l_{B0} = 48 m, quant'è la sua lunghezza misurata da un osservatore sull'astronave A?

 $[v = c/\sqrt{2}, t = 5.66 \text{ anni, } u = 0.94c, l'_{B0} = 16 \text{ m}]$

esercizio 1.7

Un sistema di riferimento S' si muove con velocità costante v = 0.5c lungo la direzione x di un sistema di riferimento S. In S, una sbarra di lunghezza L = 1 m si muove con velocità costante $v_Y = 0.5c$ lungo la direzione positiva dell'asse y mantenendosi parallela all'asse x. Il centro della sbarra passa per il punto x = y = x' = y' = 0 al tempo t = t' = 0. Quanto vale in S' l'angolo θ ' formato dall'asse della sbarra e l'asse x'?

[θ' = 16°]

esercizio 1.8

Due astronavi si dirigono una contro l'altra con velocità costante. Un osservatore in quiete sulla Terra misura una velocità pari a $v_1 = 0.8c$ per l'astronave S_1 e $v_2 = 0.6c$ per S_2 , una lunghezza di 50 m per entrambe ed una distanza iniziale di 2.52 10^{12} m.

- 1. quali sono le lunghezze proprie di S_1 ed S_2 ?
- 2. quale è la lunghezza di S_1 e S_2 misurata da osservatori stazionari sulle due astronavi?
- 3. quanto tempo impiegano le due astronavi per scontrarsi (in S)?
- 4. per un osservatore solidale con S_1 , quanto tempo passa prima della collisione?
- 5. per un osservatore solidale con S_2 , quanto tempo passa prima della collisione?
- 6. quanto vale la distanza iniziale tra le due astronavi misurata da un osservatore su S₁?

 $[L_{01} = 83.3 \text{ m}, L_{02} = 62.5 \text{ m}, t = 6000 \text{ s}, t_1 = 60 \text{ min}, t_2 = 80 \text{ min}, d_1 = 1.02 \text{ x } 10^{12} \text{ m}]$

esercizio 1.9

Una sbarra rigida di lunghezza L_{θ} si trova nel piano xy di un sistema di riferimento S e forma un angolo θ rispetto alla direzione positiva dell'asse x. Un secondo sistema di riferimento S' si muove con una velocità costante $V = V_x$ rispetto ad S. Calcolare l'angolo θ ' formato dalla sbarra in S' rispetto all'asse x'. $[\theta' = arctg(g tg\theta)]$

esercizio 1.10

Una sbarra rigida di lunghezza L si muove in un sistema di riferimento S con una velocità costante $u = u_x$ ed ha una pendenza α rispetto all'asse x. Un secondo sistema di riferimento S' si muove con una velocità costante $V = V_x$ rispetto a S. Calcolare la pendenza della sbarra in S' rispetto all'asse x'.

$$[\alpha' = \gamma \alpha (1 - V_x u_x / c^2)]$$

esercizio 1.11

Un pione π^0 (massa m_π = 135 MeV/ c^2) si muove con velocità β = 0.8 e decade in due fotoni con un angolo di 90° rispetto alla direzione di volo (nel sistema di riferimento del pione). Trovare l'angolo tra i due fotoni nel sistema di riferimento del laboratorio.

$$[2\vartheta = 73.6^{\circ}]$$

esercizio 1.12

Un osservatore O osserva la luce emessa da un oggetto X ad un angolo di 45° rispetto alla linea di volo dell'oggetto. Se il corrispondente angolo di emissione nel sistema di riferimento di X è di 60° , calcolare la velocità di X. [v = 0.32c]

esercizio 1.13

Un pione si muove lungo l'asse x del sistema di riferimento del laboratorio con β = 0.8 ed emette un muone con β_1 ' = 0.268 nel sistema di riferimento del pione. Calcolare:

- 1. la velocità (modulo e direzione) del muone nel laboratorio se emesso lungo l'asse x'
- 2. la velocità del muone nel laboratorio se emesso lungo l'asse y'
- 3. il muone è emesso lungo la direzione positiva dell'asse y. Trovare la velocità del muone nel laboratorio e l'angolo di emissione nel sistema di riferimento del pione (si assuma ora β = 0.2).

$$[\beta_1 = 0.88c, \beta_1 = 0.82c, \beta_1 = 0.185c]$$

esercizio 1.14

La vita media propria di un muone è approssimativamente di 2 10^{-6} s. Si supponga che un gran numero di muoni, prodotti in una esplosione ad una certa altezza nell'atmosfera, viaggi verso la terra a v=0.99c. Il numero di urti nell'atmosfera durante il percorso è piccolo. Se l'1% dei muoni originali sopravvive fino a raggiungere la superficie della terra, si calcoli l'altezza iniziale. $[d=19.3\ km]$

Effetto Doppler

esercizio 2.1

Una galassia si allontana da noi, in una particolare direzione, con velocità pari a 0.3c e un'altra si allontana, in direzione opposta, con la stessa velocità. Qual è lo spostamento dovuto a effetto Doppler misurato da una galassia rispetto all'altra? $[\Delta\lambda/\lambda_0 = 0.86]$

esercizio 2.2

Una sorgente luminosa si muove su di un'orbita circolare ad una velocità di 0.5*c*. Qual è lo spostamento dovuto all'effetto Doppler della riga gialla del Sodio osservato nel centro della circonferenza (la riga ha una lunghezza d'onda di 589 nm misurata in laboratorio)?

$$\Delta \lambda = 91 \text{ nm}$$

esercizio 2.3

Un fascio luminoso di frequenza f è inviato perpendicolarmente contro uno specchio in moto in verso opposto con velocità V. Determinare:

- 1. la frequenza f_1 della luce nel sistema S solidale con lo specchio;
- 2. la frequenza f_2 della luce riflessa, nel sistema del laboratorio, in funzione di f e V.

$$[f_2 = f(1 + b)/(1 - b)]$$

esercizio 2.4

C'è un servizio di navette spaziali tra la Terra e Marte. Ogni astronave è equipaggiata con due fari identici, uno davanti e uno sul posteriore della nave. Le astronavi normalmente viaggiano ad una velocità costante v_0 rispetto alla Terra, così che la luce anteriore quando una astronave si avvicina alla Terra appare verde (λ = 500 nm) mentre quella posteriore di una in partenza appare rossa (λ = 600 nm).

- 1. quanto vale v_0 ?
- 2. una astronave accelera per superare una davanti a lei. A quale velocità deve andare (relativamente alla Terra) affinché la luce posteriore della nave che la precede le appaia verde ($\lambda = 500 \text{ nm}$)?

$$[\beta_0 = 1/11, \beta = 11/61]$$

Dinamica Relativistica

esercizio 3.1

Una particella ha una energia cinetica pari a 250 MeV e un impulso di 368 MeV/c. Qual è la massa a riposo di tale particella?

 $[m_0 = 146 \text{ MeV/}c^2]$

esercizio 3.2

Un fascio di π^+ di energia pari a 1 GeV ha un flusso di 10^6 particelle/s. Il fascio percorre una distanza di 10 m in laboratorio; qual è il flusso di particelle alla fine del percorso, assumendo una massa a riposo per i pioni di 140 MeV/ c^2 e una vita media di $2.56\ 10^{-8}\ s$?

 $[\phi = 0.83 \times 10^6 \text{ particelle/s}]$

esercizio 3.3

Un mesone K^0 (m_{K0} = 494 MeV/ c^2) decade in volo in una coppia π^+ π^- (m_π = 140 MeV/ c^2). Se il pione negativo è prodotto a riposo nel sistema di riferimento del laboratorio, calcolare l'energia cinetica del pione positivo.

 $[E_k = 591.6 \text{ MeV}]$

esercizio 3.4

Un pione si muove con una velocità v e decade via $\pi^+ \rightarrow \mu^+ + v$. Se il neutrino (si assuma $m_v = 0$) forma un angolo di 90° con la direzione di volo del pione nel laboratorio, trovare l'angolo θ_μ tra la direzione del muone e quella del pione (nel sistema di riferimento del laboratorio).

$$[tg\theta_{\mu} = (m\pi^2 - m\mu^2)/2m\pi^2\gamma^2\beta]$$

esercizio 3.5

Una particella con massa a riposo m si trova in quiete nel sistema del laboratorio. La particella decade in due particelle: una con massa a riposo m_1 che si muove con velocità $V_1 = (3/5)c$ ed un'altra di massa m_2 che si muove con velocità $V_2 = (4/5)c$. Trovare:

- 1. i valori di m_1 e m_2 in funzione di m;
- 2. le energie cinetiche delle due particelle in funzione di *m*.

 $[m_1 = (16/35)m, m_2 = (9/35)m]$

esercizio 3.6

Una particella in quiete di massa M decade in una particella di massa a riposo m e in un fotone. Trovare le energie della nuova particella e del fotone.

$$[E_{\gamma} = (M^2 - m^2)c^2/2M, E_m = (M^2 + m^2)c^2/2M]$$

esercizio 3.7

Consideriamo un urto tra un fotone di energia E_{γ} ed un elettrone inizialmente fermo nel laboratorio. Dopo l'urto il fotone rimbalza all'indietro. Determinare l'impulso finale dell'elettrone p_e e del fotone p'_{γ} dopo l'urto.

$$[p'_{\gamma} = E_{\gamma} m_e c^2 / (2E_{\gamma} + m_e c^2)]$$

esercizio 3.8

Un pione (massa $m_{\pi} = 140 \text{ MeV}/c^2$), inizialmente in moto con velocità V = 0.5c diretta lungo l'asse x del sistema di riferimento del laboratorio S, decade in un muone ed un neutrino ($\pi \rightarrow \mu + \nu_{\mu}$).

Supposto che il decadimento in S' avvenga lungo l'asse y', ed assumendo m_{ν} = 0 e m_{μ} = 106 MeV/ c^2 , trovare:

- 1. l'espressione della velocità del muone nel sistema S' ed il suo valore numerico;
- 2. le componenti della velocità del muone nel sistema S ed il suo valore numerico;
- 3. le componenti della velocità del neutrino nel sistema S ed il suo valore numerico.

$$[v'_{\mu} = 0.27c, v_{\mu} = 0.55c, v_{\nu} = c]$$

esercizio 3.9

Una particella Σ decade in moto in 3 pioni carichi A, B e C. La massa a riposo di ogni pione è 140 MeV/ c^2 . Le loro energie cinetiche sono, rispettivamente, K_A = 190 MeV, K_B = 321 MeV e K_C = 58 MeV. Le velocità dei pioni formano con l'asse x del laboratorio i seguenti angoli: ϑ_A = 22.4°, ϑ_B = 0° e ϑ_C = -12.25°. Trovare la massa a riposo della particella iniziale e la sua direzione di moto.

$$[m_{\Sigma} = 495 \text{ MeV/}c^2, \vartheta_{\Sigma} = 5.6^{\circ}]$$

esercizio 3.10

Due particelle identiche con massa a riposo m_0 si muovono una contro l'altra, nel sistema di riferimento del laboratorio, con la stessa velocità β c. Trovare l'energia di una delle due particelle nel sistema di riferimento dell'altra.

$$[E'_2 = m_0 c^2 (1 + \beta^2)/(1 - \beta^2)]$$

esercizio 3.11

Un neutrino di energia E_0 e massa trascurabile collide con un elettrone fermo nel laboratorio. Trovare l'angolo di emissione dell'elettrone nel laboratorio assumendo E_0 = 2 GeV e E_e = 0.5 GeV (massa elettrone m_e = 0.5 MeV/ c^2). [θ_e = 2.22°]

esercizio 3.12

Consideriamo un fotone di energia E_{γ} che colpisca un protone fermo nel sistema del laboratorio. Calcolare la velocità del centro di massa nel sistema del laboratorio. Quanto valgono le energie del fotone e del protone nel centro di massa?

$$[\beta = E_{\gamma} / (E_{\gamma} + m_p c^2)]$$

esercizio 3.13

Qual è l'energia minima che deve avere un fotone perché avvenga la seguente reazione di fotoproduzione di un pione $\gamma + p \rightarrow p + \pi^0$ (il protone si trova a riposo nel laboratorio)? Le masse a riposo del protone e del pione sono di 0.938 GeV/ c^2 e 140 MeV/ c^2 , rispettivamente.

$$[E_{\gamma} = 150.4 \text{ MeV}]$$

esercizio 3.14

Una collisione tra un elettrone ($m_e = 0.5 \text{ MeV/}c^2$) ed un protone ($m_p = 938 \text{ MeV/}c^2$) può dare origine ad un processo di fusione in cui tutta l'energia disponibile è trasferita ad un neutrone ($m_n = 940 \text{ MeV/}c^2$). Nella reazione viene creato anche un neutrino le cui energia ed impulso possono essere al momento trascurate. Quale è la velocità che deve avere un elettrone per creare un neutrone scontrandosi con un protone a riposo?

 $[v = 2.8 \times 10^8 \text{ m/s}]$

esercizio 3.15

Un fascio di protoni viene fatto collidere contro un fascio di luce laser con lunghezza d'onda di $0.5\ 10^{-6}$ m. Determinare il valore minimo per l'energia cinetica dei protoni affinché si possa realizzare la reazione protone + fotone \rightarrow protone + pione (massa riposo del protone = $0.938\ \text{GeV}/c^2$ e del pione = $0.14\ \text{GeV}/c^2$, h = $4.135\ 10^{-15}\ \text{eV}$ s)

 $[E_k = 2.85 \times 10^7 \text{ GeV}]$

esercizio 3.16

Un mesone π con energia cinetica di 140 MeV decade in volo in un muone e un neutrino. Calcolare l'energia massima che il muone e il neutrino posso avere nel sistema di riferimento del laboratorio (massa pione = 140 MeV/ c^2 , massa muone = 106 MeV/ c^2 , massa neutrino = 0).

 $[E_{max}(\mu) = 271.8 \text{ MeV}, E_{max}(\nu) = 111.6 \text{ MeV}]$

esercizio 3.17

Al Large Hadron Collider (LHC) del CERN vengono fatti collidere protoni di 7 TeV di energia. Calcolare:

- 1. l'energia disponibile nell'urto;
- 2. l'energia necessaria per ottenere la stessa energia totale con un urto protone-protone con bersaglio fisso.

 $[E = 14 \text{ TeV}, E = 9.8 \ 10^4 \text{ TeV}]$

esercizio 3.18

L'acceleratore Tevatron al Fermilab di Chicago può accelerare protoni fino ad una energia di circa 1 TeV. Assumiamo per semplicità che la massa del protone sia pari ad 1 GeV/ c^2 . Una forza F deve essere applicata dai magneti dell'acceleratore per mantenere i protoni a queste velocità in un'orbita fissa di raggio 1 km. Quanto valgono F, il campo magnetico B e l'accelerazione propria a' dovuta a tale forza F misurata nel sistema di riferimento istantaneo S' del protone? Un protone collide contro un protone di un bersaglio fermo nel laboratorio e produce una particella X attraverso la reazione $p + p \rightarrow X$; quale è il massimo valore della massa m_x della particella X?

 $[F = 1.6 \ 10^{-10} \ N, B = 3.33 \ T, \alpha' = 9 \ 10^{19} \ m/s^2, m_X = 44.7 \ GeV/c^2]$

esercizio 3.19

Sia dato un sistema costituito da due corpi uguali di massa m, collegati da una molla di massa trascurabile. Inizialmente i corpi siano fermi e la molla sia carica. Successivamente la molla scatta e i due corpi vengono lanciati in versi opposti con uguale velocità. Trovare la velocità v dei due corpi in funzione di m e dell'energia potenziale U presente nello stato iniziale.

Elettromagnetismo

esercizio 4.1

Un condensatore a piani paralleli di capacità C si trova a riposo, nel vuoto, in un sistema di riferimento S, con i piani paralleli al piano xz. I due piani hanno una carica pari a +Q e -Q e si trovano ad una distanza d. Trovare il campo elettrico e magnetico misurato da un osservatore in un sistema inerziale S' in moto con velocità parallela all'asse x.

esercizio 4.2

Un condensatore a piani paralleli e rettangolari di lato a e b si trova a riposo, nel vuoto, in un sistema di riferimento S, con i piani paralleli al piano yz. I due piani hanno una carica pari a +Q e -Q e si trovano ad una distanza d. In S non è presente alcun campo magnetico. Trovare i valori di C, ΔV , E e B misurati da un osservatore in un sistema inerziale S' in moto con velocità parallela all'asse x.

$$[C' = \gamma C, \Delta V' = \Delta V/\gamma, E'_x = Q/(Cd), \mathbf{B} = 0]$$

esercizio 4.3

Una particella di massa m inizialmente in quiete si trova in una regione dello spazio immersa in un campo elettrico costante E. Calcolare la velocità della particella al tempo t. Quanto vale al tempo t l'accelerazione della particella? $[v = c / sqrt(1 + (mc/qEt)^2), a = (qE/m) (1 - v^2/c^2)^{3/2}]$

esercizio 4.4

Calcolare la frequenza di ciclotrone di una particella di massa a riposo m ed energia cinetica E_K che si muove su di un'orbita circolare di raggio r sotto l'effetto di un campo magnetico B.

$$[f = qB / (2\pi m (1 + E_k/mc^2))]$$

esercizio 4.5

Un elettrone (massa $9.11\ 10^{-31}\ Kg$) si muove con una energia cinetica pari alla sua energia a riposo in un campo magnetico $B=1\ T$. Trovare velocità, raggio e passo dell'orbita elicoidale seguita dall'elettrone, supposto che l'angolo formato dalla velocità e dal campo sia α .

$$[v = 2.6 \ 10^8 \ [m/s], R = 2.96 \ 10^{-3} \ sen \alpha \ [m], p = 1.86 \ 10^{-2} \ cos \alpha \ [m]]$$