4. A negatív visszacsatolás

- 1. Egy zárt szabályozási körben a *felnyitott kör* átviteli függvénye (hurokátviteli függvény) $L(s) = \frac{9}{s(s+4)}$. Merev, negatív visszacsatolást feltételezve határozza meg a zárt rendszer ξ csillapítását!
- 2. Egy folytonos szakasz átviteli függvénye: $P(s) = \frac{10}{(s+2)(s+4)}$. Merev, negatív visszacsatolást feltételezve határozza meg a *zárt* rendszer ξ csillapítását!
- 3. Egy zárt szabályozási körben a *felnyitott kör* átviteli függvénye $L(s) = \frac{5}{s(s+3)}$. Merev, negatív visszacsatolást feltételezve határozza meg a zárt rendszer túllendülését százalékos értékben!
- 4. A $P(s) = \frac{1}{1+sT}$ átviteli függvénnyel adott egytárolós tagot *pozitívan* visszacsatoljuk. Milyen jellegű tagot eredményez a zárt kör?
- 5. A $P(s) = \frac{17}{(1+2s)(1+3s)}$ átviteli függvénnyel adott folyamatot negatívan, mereven visszacsatoljuk. Határozza meg a *zárt* rendszer százalékos túllendülését és a zárt kör átmeneti függvényében megjelenő csillapodó oszcilláció periódusidejét!
- 6. Az alábbi zárt rendszerben adja meg az $\frac{Y(s)}{R(s)}$ és az $\frac{Y(s)}{Z(s)}$ átviteli függvényeket!

- 7. Egy zárt szabályozási körben a *felnyitott kör* átviteli függvénye $L(s) = \frac{5s+10}{s^3+8s^2+15s}$. Adja meg a rendszer típusszámát!
- 8. Egy zárt szabályozási körben a *felnyitott kör* átviteli függvénye $L(s) = \frac{5s+10}{s^3+8s^2+15s}$. Adja meg a zárt rendszer állandósult hibáját, ha az alapjel egység-sebességugrás!

- 9. Egy *zárt* szabályozási kör eredő átviteli függvénye $T(s) = \frac{10}{s^3 + 6s^2 + 8s + 10}$. Adja meg a *felnyitott kör* típusszámát!
- 10. A $P(s) = \frac{a}{s+b}$ átviteli függvényű tagot mereven visszacsatolva a statikus hiba értéke egységugrás alakú alapjel esetén 0.1. A körbe a soros $C(s) = \frac{s+b}{s}$ szabályozót is beiktatva a statikus hiba értéke egységsebesség ugrás alakú alapjel esetén szintén 0.1. Határozza meg a és b értékét!
- 11. A $P(s) = \frac{1000}{s+100}$ átviteli függvénnyel adott folyamatot negatívan, mereven visszacsatoljuk. Határozza meg a nyitott rendszer és a zárt rendszer sávszélességét!
- 12. A $P(s) = \frac{K}{s(s+\alpha)}$ átviteli függvénnyel adott folyamatot egy állandó β erősítésű tagon keresztül negatívan visszacsatoljuk. K = 10 és $\alpha = 2$ névleges értékek mellett határozza meg az $S_{\rm K}^{\rm P} = \frac{\Delta P/P}{\Delta K/K}$, $S_{\alpha}^{\rm P} = \frac{\Delta P/P}{\Delta \alpha/\alpha}$, $S_{\beta}^{\rm P} = \frac{\Delta P/P}{\Delta \beta/\beta}$, $S_{\rm K}^{\rm T} = \frac{\Delta T/T}{\Delta K/K}$, $S_{\alpha}^{\rm T} = \frac{\Delta T/T}{\Delta \alpha/\alpha}$, és $S_{\beta}^{\rm T} = \frac{\Delta T/T}{\Delta \beta/\beta}$ érzékenységi függvényeket!
- 13. Egy merev, negatív visszacsatolású zárt szabályozási kör hurokátviteli függvénye $L(s) = \frac{K}{s+b}$. A zárt kör alapjele $r(t) = e^{-at}$, $t \ge 0$. Határozza meg a statikus hiba értékét, ha

a/
$$a = b > 0$$

b/ $a = 0$, $b > 0$.

14. Az alábbi ábrán egy integrátort mereven csatolunk vissza egy statikus nemlineáris tagon keresztül. Határozza meg a zárt kör által megvalósított y = f(r) függvénykapcsolatot!

