Interações intermoleculares

Prof. Diego J. Raposo UPE – Poli 2024.2

Sec. 11.1 - 11.3

Quais tipos de interação permitem que acetona seja solúvel em água e que CCI₄ seja insolúvel em água.

Fases

- Ligações químicas são fortes interações entre átomos visando preencher as camadas de valência;
- Uma vez preenchidas, os átomos podem interagir de maneira mais fraca, formando agregados que chamamos de fases. As interações são chamadas de interações intermoleculares;
- As fases mais relevantes são a gasosa, a líquida e a sólida;
- As características das substâncias nessas fases são determinadas pelas energias cinética
 (K) e potencial (V) de todas as partículas entre si;

Energia cinética

da partículas

(separam partículas)

V Energia potencial de interação
entre partículas (juntam partículas)

K « V

K»V

Interações limitam movimento das partículas Interações <mark>limitam muito</mark> o Ocupam um volume definido, mas flui para movimento das partículas. adaptar-se a forma do espaço e à forças ocupam um volume definido, mecânicas com forma própria que resiste a deformações Sólido Líquido Gás

K ≈ V

Espaços vazios

Gases

Líquidos

Sólidos

K»V

Muito espaço vazio: Alta compressibilidade

Baixa densidade

K ≈ V

Pouco espaço vazio:

Baixa compressibilidade

Densidade alta

K « V

Sem espaço vazio:

Incompressíveis

Densidade alta

Espaço

Gases

Líquidos

K»V

K ≈ V

Fluidez diminui, Viscosidade aumenta

V constante, varia K

- A quantidade de energia cinética das partículas está relacionada a temperatura da substância: quanto maior T, maior o valor de K para cada partícula;
- O fator de interação, ou energia potencial, depende da natureza da substância (quais átomos e com quais outros estão ligados). Se temos apenas uma substância, então podemos assumir que V é constante.
- Quando a temperatura é tal que K « V, ela estará na fase sólida. Com o aquecimento K aumentará, até o ponto de fusão ser atingido (PF), e se formará um líquido a partir do sólido. Neste caso as partículas possuem tanto K e V comparáveis. Caso aumentemos T ainda mais, o líquido vaporizá no ponto de ebulição (PE), formando um gás. Dessa vez as partículas tem energia cinética grande o suficiente para não interagirem significativamente, K « V.

V constante, varia K

V constante, varia K

- Como V é fixo, podemos usar a mudança de fase como uma referência para o quão forte as interações entre partículas de uma substância são. Caso sejam muito elevadas, maiores serão as temperaturas de fusão e ebulição (mais energia cinética precisa ser fornecida para K » V);
- Em uma temperatura fixa, o estado físico reflete a força relativa de interação entre as substâncias (isto é, K é aproximadamente constante, V varia).

Figura 11.2 Gases, líquidos e sólidos. O cloro, o bromo e o iodo são formados por moléculas diatômicas, sendo o resultado de ligações covalentes. No entanto, em razão de diferenças na intensidade das forças intermoleculares, eles são encontrados em três estados diferentes à temperatura ambiente e pressão padrão: Cl₂ gasoso, Br₂ líquido, I₂ sólido.

Comparando PF(ou PE)

 Mas se duas substâncias possuem o mesmo tipo de fase (por exemplo, duas são líquidas), como saber qual possui interações moleculares mais fortes? Pelos pontos de fusão ou de ebulição: quanto maior PF ou PE maior a força.

Halogênio	PF (K)	PE (K)
F ₂	53,5	85,0
Cl ₂	172,2	238,6
Br ₂	265,9	331,9
I ₂	386,7	457,5

Como:

$$PF(F_2) < PF(Cl_2) < PF(Br_2) < PF(l_2)$$

Então força relativa das interações é tal que:

$$V(F_2) < V(Cl_2) < V(Br_2) < V(l_2)$$

Mas por que?

Esquema básico

Quando Q ≠ 0

Íon-íon:

- Potencial de coulomb (ligação iônica);
- Energia entre 400 e 4000 kJ mol⁻¹.

Íon-dipolo permanente:

- Entre íons e moléculas polares;
- Responsável pela solvatação de sais em solventes polares;
- Energia entre 40 e 600 kJ mol⁻¹;

Íon-dipolo induzido:

- Entre dipolos induzidos e íons;
- Energia entre 3 e 15 kJ mol⁻¹;

NaCl

 $Fe^{2+\cdots O_2}$

Íon-íon vs. Íon-dipolo permanente: solubilidade do sal

Quando Q = 0

Forças de van der Waals:

Polaridade das moléculas

- Dipolo-dipolo (forças de Debye);
 Entre moléculas polares
- Dipolo-dipolo induzido (forças de Keesom);
 Entre moléculas polares e apolares
- Interações específicas:
 - Ligação de hidrogênio.

 $I\!-\!CI\cdots I\!-\!CI$

Moléculas polares: $\mu_R \neq 0$ Moléculas apolares: $\mu_R = 0$ $F-F\cdots F-F$

H-CI····CI-CI

Interações dipolo-dipolo

- Também chamadas de interações dipolo permanentedipolo permanente, ocorre entre moléculas polares, sejam de um mesmo tipo (substâncias puras) ou de tipos diferentes (misturas);
- <u>Líquidos puros:</u> quanto maior o dipolo, maior esse tipo de interação, e maior os PF e PE comparando diferentes substâncias.
- <u>Misturas:</u> misturas de substâncias polares são frequentemente homogêneas (uma fase), porque *igual* dissolve igual: substâncias que interagem pelo mesmo tipo de força tendem a se misturarem melhor;
- Varia de 5 a 25 kJ/mol.

O que é dipolo induzido?

 Todo átomo ou molécula possui uma nuvem eletrônica que, como é composta de cargas elétricas, é suscetível a ser distorcida pela ação de um campo elétrico;

- Quanto mais elétrons maior a distorção, maior o momento de dipolo instantâneo criado.
 Quanto maior a área superficial da molécula, maior o dipolo instantâneo, pois mais expostos estão os elétrons ao campo elétrico gerado.
- O campo é gerado por partículas carregadas e por outros dipolos (instantâneos ou não).

Dipolo induzido-dipolo induzido

- Forças de dispersão de London envolvem a interação entre dipolos instantâneos em moléculas apolares;
- Moléculas apolares interagem apenas através dessa interação, pois basta haver uma nuvem eletrônica para que a formação do dipolo instantâneo seja possível;
- Moléculas polares também podem interagir dessa forma, mas as interações dipolo-dipolo permanente são normalmente mais fortes nesses casos.

Dipolo induzido-dipolo induzido

- É a força responsável pelos padrões nos pontos de ebulição de gases nobres e halogênios, por exemplo;
- É afetado pelo número de elétrons e pela área superficial das moléculas;
- É proporcional a polarizabilidade do átomo ou molécula;
- O processo de indução do dipolo instantâneo é chamado de polarização: uma molécula com dipolo induz a formação do dipolo em outra;
- Energia entre 0,05 a 40 kJ/mol

Ligação de hidrogênio

- Ligação covalente formada entre moléculas com hidrogênio ligados a um dos três átomos muito pequenos e eletronegativos (F, N ou O) e o átomo eletronegativo de outra molécula (pode ser F, N, O ou outro);
- Particularmente forte, ela possui uma direcionalidade, dependendo não só da distância entre as moléculas (como as outras interações) mas da orientação relativa entre elas;
- Tipicamente fica entre 10 e 40 kJ/mol

Água

Tensão superficial

- Força necessária para criar uma área na superfície de um líquido: quanto mais forte a interação maior a tensão;
- Na ausência de interações favoráveis na interface, líquidos minimizam a área superficial, pois assim um menor número de moléculas estarão desestabilizadas por estarem na superfície.

Tensão superficial

- Caso haja uma superfície, ela atrairá o líquido (que maximizará sua área), ou o repelirá (levando a minimização da área por formação da esfera).
- Superfícies hidrofóbicas: repelem a água;
- Superfícies hidrofílicas: atraem a água.

Tensão superficial

Ligações fortes na superfície

Substance	Formula	Surface Tension (J/m²) at 20°C	Major Force(s)
Diethyl ether	CH ₃ CH ₂ OCH ₂ CH ₃	1.7×10 ⁻²	Dipole-dipole; dispersion
Ethanol	CH ₃ CH ₂ OH	2.3×10^{-2}	H bonding
Butanol	CH ₃ CH ₂ CH ₂ CH ₂ OH	2.5×10^{-2}	H bonding; dispersion
Water	H_2O	7.3×10^{-2}	H bonding
Mercury	Hg	48×10^{-2}	Metallic bonding

Viscosidade

- Viscosidade: resistência do fluido a fluir;
- Fricção entre líquidos;
- Gases também possuem viscosidade, mas muito menor.

nematic Visc	
scosity, v (Pa	cosity, μ s ×10 ⁵)
792 1.72	4
307 1.77	3
004 1.82	.2
801 1.86	9
658 1.91	5

FIGURE 11.20

Comparison of the viscosities of two liquids

Similar steel balls were dropped simultaneously into two graduated cylinders, the right one containing water and the left one glycerol. A steel ball takes considerably longer to fall through a column of glycerol than through a similar column of water, because glycerol has a greater viscosity than water.

Ação capilar (capilaridade)

- Maximização ou minimização do contato com uma superfície;
- Há uma competição entre as forças de adesão (que "molham" o sólido com o líquido) e as forças de coesão (o quão firmemente as partículas do líquido estão unidas entre si).

Atenção

Ligações químicas (forças de ligação) são diferentes de interações intermoleculares (forças intermoleculares). As primeiras são causadas pela busca de estabilidade eletrônica dos átomos (regra do octeto), e as segundas pela interação eletrostática entre partículas parcialmente ou totalmente carregadas, salvo algumas exceções específicas. As primeiras são muito mais fortes do que as segundas.

Força que une as particulas	Substância	Ponto de fusão (K)	Ponto de ebulição (K)
Ligações químicas	XX - COLUMN		
Ligações iônicas	Fluoreto de lítio (LiF)	1.118	1.949
Ligações metálicas	Berilio (Be)	1.560	2.742
Ligações covalentes	Diamante (C)	3.800	4.300
Forças intermoleculares			
Força de dispersão	Nitrogênio (N ₂)	63	77
Força dipolo-dipolo	Cloreto de hidrogênio (HCI)	158	188
Ligação de hidrogênio	Fluoreto de hidrogênio (HF)	190	293

Table 12.2 Comparison of Bonding and Nonbonding (Intermolecular) Forces					
Force	Model	Basis of Attraction	Energy (kJ/mol)	Example	
Bonding Ionic		Cation-anion	400-4000	NaCl	
Covalent	0:0	Nuclei-shared e pair	150-1100	н—н	
Metallic		Cations—delocalized electrons	75–1000	Fe	
Nonbonding (Inte	ermolecular)			· ü	
Ion-dipole	······	Ion charge— dipole charge	40-600	Na+····O	
H bond	δ− δ+ δ− −A−H·····:B−	Polar bond to H- dipole charge (high EN of N, O, F	10–40	:Ö—H····:Ö—F 	
Dipole-dipole		Dipole charges	5-25	I-CII-CI	
Ion-induced dipole	•••••••••••••••••••••••••••••••••••••••	Ion charge— polarizable e cloud	3–15	Fe ²⁺ ····O ₂	
Dipole-induced dipole		Dipole charge— polarizable e [—] cloud	2–10	H—CI····CI—CI	
Dispersion (London)	——	Polarizable e clouds	0.05-40	F—F····F—F	

Atenção

Moléculas diferentes podem interagir por mais de um tipo de interação molecular! Embora seja importante determinar qual delas é a mais forte (se houver uma que se destaque).
 Mas todas interagem via dipolo induzido-dipolo induzido (pois possuem elétrons), algumas por dipolo-dipolo induzido (caso uma tenha dipolo não nulo) e outras por dipolo-dipolo (caso todas tenham dipolo não nulo).

Quais tipos de interação permitem que acetona seja solúvel em água e que CCI₄ seja insolúvel em água.

Quais as propriedades das moléculas envolvidas?

Todas são neutras (interações com íons não são possíveis)

Algumas são polares (acetona e água) e uma é apolar (CCl₄)

Em geral moléculas polares se misturam bem devido a interação dipolo-dipolo.

Ela é responsável pela solubilidade da água em acetona.

Já o tetracloreto de carbono não possui momento de dipolo resultante.

Portanto ele não pode interagir tão facilmente com a molécula da água.

Isso torna a água insolúvel no CCl₄.

Obrigado e boa sorte!