Dept: CSE Semester: 5th

Sub: Software Engineering(PCC-CS501)

- What are the different parameters of a software product? Write down the problems with using Lines of Code to measure the size of a product. What is the importance of SRS documents? 1+2+2
- Explain prototyping model. Does the construction of prototype always increase the overall cost of software development? Write down the differences between prototyping model and evolutionary model. 2+1+2 Gerio
- A device driver software is to be developed of size 60,000 LOC. The following cost drivers are considered: low reliability: 0.88, high product complexity: 1.15, low application experience: 1.13, other cost drivers assumed to be nomial:1.00. Calculate Effort, Development Time and number of engineers required. 2+2+1

Dept: CSE

Semester: 5th

Sub: Artificial Intelligence(PEC-CS502)

- Define Rational Agent? Explain utility-based agent with block diagram. Write down the difference between utility-based agent and goal-based agent.
- 2. Explain generation cost and heuristic cost, where are they used? Write down the limitations of Hill climbing algorithm.
- 3. Write down the differences between informed search and uninformed search. Apply alpha-beta pruning algorithm for the given graph and show the pruned vertices.

JALPAIGURI GOVERNMENT ENGINEERING COLLEGE JGEC/B.TECH./CSE/PCC-CS502/2023 DISCRETE MATHEMATICS (FIRST CLASS TEST)

Full Marks: 15

Time: 45 Minutes

Full Marks: 15	Time: 45 Minutes
Answer any three questions	3x5=15
1. iii) Define Cartesian Product of sets, power set of a set, and Partition with the help rove that $[A \cap (B \cup C)] \cap [\bar{A} \cup (B \cap \bar{C})] = \emptyset$ 2. iii) Define Binary relation and equivalence relation with example suitable example	es. 2
A relation ρ is defined on the set Z by app if and only if a-b is divisible by 5, ρ is an equivalence relation on Z .	$ \begin{array}{ccc} & & & & & & & & & & & & & & & & & & & $
 3. iii) Define Partial order relation (<i>Poset</i>) with example. iv) Let S be the set of all positive divisor 30. S = {1, 2, 3, 5, 6, 10, 15, 30}. Prove that (S, ≤) is a Poset, where a ≤ b means a is a divisor of b, for a, b Draw the covering diagram of the poset (S, ≤). 	∑ 2 2+1 ∈ S.
4. iii) Define Group, Ring and Field with examples. iv) Examine if the following system is group (Z, o) , where $a \circ b = a + b + ab$, where $a, b \in Z$	F(911)
5. Find $f.g.$, $g.f.$, f^{-1} and g^{-1} where $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 3 & 5 & 6 & 1 \end{pmatrix} \text{ and } g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 6 & 4 & 5 & 3 & 6 \end{pmatrix}$	- (6) 4 ⁶ ₂)
iv) Prove that the following mapping is bijection. $f: Z \times Z \to Z$ defined by $f(m,n) = mn$, where $(m,n) \in Z \times Z$	1

JALPAIGURI GOVERNMENT ENGINEERING COLLEGE SW

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING **ODD SEM 2023**

nouter, n

Paper Name: Operating System

Paper code: PCC-CS504

Time: 40 minutes

Full Marks: 15

Class Test: 1ST

Date: 13/09/2023

Answer any three questions.

What is semaphore? Give a solution of second reader-writers problem with semaphore.

(1+4)

- 2. What is indefinite postponement? What is the solution of it? If a computer has six tape drives, with n processes competing for them and each process may need two drives, what is the maximum value of n for the system to be deadlock free? (2+1+2)
- 3. Given that at a particular time of computation, the value of a counting semaphore is 7, then if 20 P operations and 15 V operations were completed on this semaphore, what is the resulting value of the semaphore? Write an algorithm to find out safe sequence of a system when several process request for several resources.
- (2 + 3)4. "Context switching is a pure overhead to the system" -Justify the statement. What are the necessary and sufficient conditions for deadlock? (2 + 3)

DATABASE MANAGEMENT SYSTEMS (PCG-CS503) CSE, Internal-1 Full Marks: 15

Date of Exam-12.09.23 Time: 45 Minutes

Answer any three questions: (3 X 5 Marks = 15 Marks)

1	What is Foreign key? Describe the concept of specialization and generalization in context of E-R data model. What do you mean by data independence? a) Explain in brief 3-schema architecture of DBMS. b) Let the following relation schemas be given: Sailors(sid, sname, rating, age) Boats(bid, bname, color) Reserves(sid, bid, day) A+3+1 2+3 Let the following relation schemas be given: Sailors(sid, sname, rating, age) Reserves(sid, bid, day)	Arse
Z	2 a) Explain in brief 3-schema architecture of DBMS.	DD ac
	b) Let the following relation schemas be given:	100 -15
	Sailors(sid, sname, rating, age)	MD 30
	Boats(bid, bname, color)	
	Reserves(\underline{sid} , \underline{bid} , \underline{day})	A-> 12
	Perform the following queries on the tables in relational algebra:	
	Find the color of the boats reserves by Rohit.	Enc
	ii) Find the name of the sailors who have reserves boat 1019(bid).	0 > 0
3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19-20
	$A \rightarrow E, E \rightarrow C$ minima como	BX
4	Explain Different Anomalies that can arise while designing relations in a Database. 5	0/0
	'apel-, or pet	1943-5C
		200

4925

Operation Research PEC-CS501D CSE, 3rd Year, 1st Semester, 2023 Class test 1, Full Marks-15, Time- 45 minutes, Date: 13.09.23

(1). Solve the given transportation table using N/W Corner, Least Cost Method and VAM. Calculate the transportation cost in each

372-3						
1500	1	2	3 \	4	5	Availability
Α	55	30	40	50	50	40
В	35	30	100	45	60	20
C	40	60	. 95	35	30	40
Requirement	25	10	20	30 -	15	

or (1) (Solve using simplex method) Maximize $z = 3x_1 + 2x_2$, subject to $5x_1 + x_2 \le 10$, $4x_1 + 5x_2 \le 60$, $x_1, x_2 \ge 0$ 9

2. Using the following cost matrix, determine (a) optimal job assignment (b) the cost of assignments 5+1

1250			2-	JOB		1207 (17
		1	2	3 ·	4	5
Mechanic	Δ	20	25	33	35	36 .
1.1%	B	22	29	38	23	26
	C	20 .	27	22 · `	22	20 ,
	D	25	31	29 1	27	32
	<u> </u>	25	29	30	24	32
	LE	21	300			32

