42707 ANÁLISE MATEMÁTICA II LIÇÕES VII

Vítor Neves

2009/2010

Capítulo 5

Transformada de Laplace

5.1 Definição e linearidade

Definição 5.1.1

- 1. A função $f: [0, +\infty[\to \mathbb{R} \ diz\text{-se } seccionalmente \ contínua \ (em [0, +\infty[) \ quando, \ seja \ qual \ for [0, b] \ (0 < b \in \mathbb{R}), \ a \ restrição \ de \ f \ a [0, b] \ é \ seccionalmente \ contínua.$
- 2. Suponha-se que para certo $S \subseteq \mathbb{R}$, $\phi : S \times [0, +\infty[\to \mathbb{R}])$. Os integrais $\int_0^{+\infty} \phi(s, t) dt$ $(s \in S)$ convergem
 - (a) **Absolutamente** se $\int_0^{+\infty} |\phi(s,t)| dt$ converge, seja qual for $s \in S$.
 - (b) **Uniformemente** se qualquer das condições seguintes se verifica

$$\forall \varepsilon > 0 \; \exists \tau_0 > 0 \; \forall \tau \ge \tau_0 \forall s \in S \quad \left| \int_{\tau}^{+\infty} \phi(s, t) dt \right| \; < \; \varepsilon$$

$$\lim_{\tau \to +\infty} \sup \left\{ \left| \int_{\tau}^{+\infty} \phi(s, t) dt \right| \; | \; s \in S \right\} \; \to \; 0$$

Definição 5.1.2 Suponha que $f: [0, +\infty[\to \mathbb{R} \ e \ existe \ S_f \subseteq \mathbb{R} \ tal \ que para qualquer <math>s \in S_f \ est\'a \ definido \int_0^{+\infty} e^{-st} f(t) dt$. A **transformada de Laplace** de $f \ \'e \ a \ função \ definida \ por$

$$\mathcal{L}[f](s) := \int_0^{+\infty} e^{-st} f(t) dt \qquad (s \in S_f)$$

42707 AM II VN 09-10 33

Teorema 5.1.1 Se $\lambda \in \mathbb{R}$, as funções f, g têm transformada de Laplace $e S_f \cap S_g \neq \emptyset$, então

1. λf tem transformada de Laplace e

$$\mathcal{L}[\lambda f](s) = \lambda \mathcal{L}[f](s) \quad (s \in S_f)$$

2. f + g tem transformada de Laplace e

$$\mathcal{L}[f+g](s) = \mathcal{L}[f](s) + \mathcal{L}[g](s) \qquad (s \in S_f \cap S_g)$$

5.2 Existência

Definição 5.2.1 A função seccionalmente contínua $f:[0,+\infty[\to \mathbb{R} \ diz\text{-se de ordem exponencial }\alpha\in\mathbb{R} \ se \ existir M>0 \ e \ t_0\geq 0 \ tais que$

$$\forall t > t_0 \quad |f(t)| < Me^{\alpha t}$$

Designe-se \mathcal{L} o conjunto das funções seccionalmente contínuas $f:[0,+\infty[\to \mathbb{R} \ de \ ordem \ exponencial$

Teorema 5.2.1

- 1. \mathcal{L} é um espaço vectorial real
- 2. Todos os elementos de \mathcal{L} têm transformada de Laplace.

Teorema 5.2.2 Quando $f \in \mathcal{L}$

- 1. Se tem ordem exponencial α , $\mathcal{L}[f](s)$ converge absolutamente em $S := \{s \in \mathbb{R} | s > \alpha\}$ e uniformemente em qualquer conjunto da forma $\{s \in \mathbb{R} | s \geq a > \alpha\}$ $(a \in \mathbb{R})$.
- 2. $\lim_{s\to+\infty} \mathcal{L}[f](s)=0$

Teorema 5.2.3 Suponha-se que

$$f(t) := \sum_{n\geq 0} a_n t^n \quad (t \geq 0),$$

$$\exists \alpha, K \in \mathbb{R}^+; N \in \mathbb{N} \quad |a_n| \leq \frac{K\alpha^n}{n!} \quad (n \geq N),$$

 $ent ilde{a}o$

$$\mathcal{L}[f](s) = \sum_{n>0} a_n \mathcal{L}[t^n](s) = \sum_{n>0} a_n \frac{n!}{s^{n+1}} \qquad (s > \alpha)$$

5.3 Translações

Teorema 5.3.1

$$\mathcal{L}[e^{a(\cdot)}f](s) = \mathcal{L}[f](s-a) \quad (s > a \in \mathbb{R})$$
 (5.1)

$$u_a(t) := \begin{cases} 1 & t > a \\ 0 & t < a \end{cases} \quad (a \in \mathbb{R}) \tag{5.2}$$

$$\mathcal{L}[u_a f(\cdot - a)](s) = e^{-as} \mathcal{L}[f](s) \quad (s > a \ge 0)$$
 (5.3)

5.4 Derivadas e primitivas

Teorema 5.4.1

1. Quando existem ambas as transformadas para s > a

$$\mathcal{L}[f'](s) = s\mathcal{L}[f](s) - f(0^{+}) \qquad (s > a)$$

- 2. Se f está em \mathcal{L} e é seccionalmente contínua, também $\phi \equiv t \mapsto \int_0^t f(u)du \in \mathcal{L}$.
 - (a) Se f é de ordem exponencial $\alpha > 0$, também ϕ é da mesma ordem
 - (b) Se f é de ordem exponencial $\alpha \leq 0$, ϕ é de ordem exponencial 0.
 - (c) Se f é de ordem exponencial α

$$\mathcal{L}[\phi](s) = \frac{1}{s}\mathcal{L}[f](s) \quad (s > \max\{\alpha, 0\})$$

Corolário 5.4.1 Suponha-se que $f \in \mathcal{L}$ com ordem exponencial α . Suponha-se ainda que f é de classe C^{n-1} , $f^{(n)}$ é seccionalmente contínua em $[0, +\infty[$ e $f^{(n-1)} \in \mathcal{L}$ com ordem exponencial α , então

$$\mathcal{L}\left[f^{(n)}\right](s) = s^{n}\mathcal{L}[f](s) - \left[\sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0)\right] \quad (s > \max\{0, \alpha\})$$

Teorema 5.4.2 Se $f \in \mathcal{L}$ e tem ordem exponencial α , então

1.
$$\frac{d}{ds}\mathcal{L}[f](s) = \mathcal{L}[-tf(t)](s) \quad (s > \alpha)$$

2.
$$\frac{d^n}{ds^n} \mathcal{L}[f](s) = \mathcal{L}[(-1)^n t^n f(t)]$$

3. Se
$$g(t) := t^n f(t)$$
 $(t \ge 0)$, então

$$\mathcal{L}[g](s) = (-1)^n \frac{d^n}{ds^n} \mathcal{L}[f](s) \qquad (s > \alpha)$$

4. Quando existe $\lim_{t\to 0^+} \frac{f(t)}{t}$ tem-se

$$\int_{s}^{+\infty} \mathcal{L}[f](\sigma) d\sigma = \mathcal{L}\left[\frac{f(t)}{t}\right](s) \qquad (s > \alpha)$$

5.5 Inversão

Teorema 5.5.1 $Se \ f \in \mathcal{L} \ ent \tilde{a}o$

$$\lim_{s \to +\infty} \mathcal{L}[f](s) = 0$$

Teorema 5.5.2 (de Lerch)

Se $f, g \in \mathcal{L}$, $\mathcal{L}[f] = \mathcal{L}[g]$ então f(a) = g(a) sempre que f e g são contínuas em a; em particular se f e g são contínuas, então f = g.

42707 AM II VN 09-10

36

Definição 5.5.1 Suponha-se que as funções $\phi, \psi : [0, +\infty[\to \mathbb{R} \ são localmente integráveis. Um$ **produto de convolução** $de <math>\phi$ por ψ , $\phi * \psi$, define-se por

$$(\phi * \psi)(t) := \int_0^t \phi(t - u)\psi(u)du \quad (t \in [0, +\infty[)$$

Teorema 5.5.3

- 1. O produto de convolução é comutativo.
- 2. O produto de convolução é bilinear
- 3. Quando todos os operadores estão definidos,

$$\mathcal{L}^{-1}(\mathcal{L}[f]\mathcal{L}[g])(t) = (f * g)(t)$$

ou

$$\mathcal{L}[f * g](s) = \mathcal{L}[f]\mathcal{L}[g](t)$$

5.6 [...]. Dilatações

Esta é de facto a continuação da secção 5.3

Teorema 5.6.1 Quando f é de ordem exponencial α ,

$$\mathcal{L}[f(\lambda t)](s) = \frac{1}{\lambda} \mathcal{L}[f]\left(\frac{s}{\lambda}\right) \quad (\lambda > 0; s > \lambda \alpha)$$

5.7 Aplicações

5.7.1 Equações diferenciais ordinárias lineares de coeficientes constantes

Problema de Cauchy ou de valores iniciais

Suponha-se que $c_i \in \mathbb{R}$ $(1 \le i \le n \in \mathbb{N})$, $k_i \in \mathbb{R}$ $(0 \le i \le n - 1)$ e que a função $f : [0, +\infty[\to \mathbb{R} \text{ \'e contínua e de ordem exponencial}]$

$$\begin{cases} y^{(n)} + \sum_{i=1}^{n} c_i y^{(n-i)} = f(x) \\ \\ y^{(i)}(0) = k_i & 1 \le i \le n-1 \end{cases}$$

se só se

$$\left[s^{n} + \sum_{i=1}^{n} c_{i} s^{n-i}\right] \mathcal{L}[y](s) - \sum_{j=1}^{n-1} c_{j} \left[\sum_{i=0}^{n-1-j} k_{i} s^{n-1-i}\right] = \mathcal{L}[f](s)$$

Problemas integrais com convolução

Suponha-se que todas a funções em presença têm transformada de Laplace

$$y(x) = f(x) + \int_0^x y(x-t)g(t)dt$$

se e só se

$$\mathcal{L}[y](s) = \mathcal{L}[f](s) + \mathcal{L}[y](s)\mathcal{L}[g](s)$$