Continuité dérivabilité

Exercice 1

Les fonctions f, g et $h: \mathbb{R} \to \mathbb{R}$ définies par :

$$f(x) = x|x|;$$
 $g(x) = x^{\frac{3}{5}};$ $h(x) = \cos\left(\sqrt{|x|}\right)$

Sont-elles dérivables en 0 ?

Exercice 2:

Soit f la fonction définie sur [0,1] par

$$f(x) = \begin{cases} 0 & \text{si } x = 0\\ x + \frac{x \ln(x)}{1 - x} & \text{si } 0 < x < 1\\ 0 & \text{si } x = 1 \end{cases}$$

- 1. Montrer que f est continue sur [0,1].
- 2. Montrer qu'il existe $c \in]0,1[$ telle que f'(c) = 0. (on ne demande pas la valeur de c).

Exercice 3. .

Soit $f:]0, +\infty[\to \mathbb{R}$ l'application définie par

$$f(x) = \frac{e^x}{x^e}$$

- 1. Etudier les variations de f.
- 2. Comparer les réels e^{π} et π^{e} .

Exercice 4

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{si } x \neq 0\\ 0 & \text{si } x = 0 \end{cases}$$

- 1. Montrer que f est continue sur \mathbb{R} .
- 2. Pour tout $x \neq 0$ calculer f'(x).
- 3. Calculer

$$\lim_{\substack{x\to 0\\x\neq 0}}f'(x)$$

Que peut-on en déduire ?

- 4. Déterminer les limites de f en $\pm \infty$.
- 5. Dresser le tableau de variation de f et tracer sommairement son graphe.

Exercice 5

Calculer les dérivées des fonctions $f: \mathbb{R} \to \mathbb{R}$ $g: \mathbb{R} \setminus \{k\pi, k \in \mathbb{N}\}$ et $h: \mathbb{R} \to \mathbb{R}$ définies par

$$f(x) = \ln(e^x)$$
; $g(x) = \ln(\sin^2(x))$; $h(x) = x + \sqrt{1 + x^2}$

Montrer aussi que

$$h'(x) = \frac{h(x)}{\sqrt{1+x^2}}$$

Exercice 6:

Calculer, lorsqu'elles existent, les dérivées des fonctions suivantes :

- 1. $f_1: x \mapsto \ln(3 + \sin(x))$
- 2. $f_2: x \mapsto \ln(\sqrt{1+x^2})$
- 3. $f_3: x \mapsto \ln\left(\frac{2+\cos(x)}{2-\cos(x)}\right)$
- 4. $f_4: x \mapsto x^{x+1}$
- 5. $f_5: x \mapsto \sin((e^x)^2)$ 6. $f_6: x \mapsto x \frac{\sin(x)}{x}$

Théorème de Rolle, théorème des accroissements finis.

Exercice 7

Soit f la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} \frac{3 - x^2}{2} & \text{si } x \le 1\\ \frac{1}{x} & \text{si } 1 < x \end{cases}$$

Montrer qu'il existe $c \in]02[$ tel que : f(2) - f(0) = (2 - 0)f'(c)Déterminer les valeurs possible de c.

Exercice 8

Soit f une application de l'intervalle [0,1] dans \mathbb{R} .

On suppose que f est continue sur [0,1], dérivable sur]0,1[, que f(0)=0 et que pour tout $x \in]0,1[$, on a $f'(x) \neq 0$.

Montrer que f conserve un signe constant sur]0,1[.

Exercice 9:

Soit p un entier, $p \ge 2$.

1. Montrer, en utilisant le théorème des accroissements finis qu'il existe un réel *c* dans l'intervalle]0,1[tel que :

$$\ln(\ln(p+1)) - \ln(\ln(p)) = \frac{1}{(p+c)\ln(p+c)}$$

2. En déduire l'inégalité :

$$\ln(\ln(p+1)) - \ln(\ln(p)) < \frac{1}{p\ln(p)}$$

3. Démontrer que

$$\lim_{n \to +\infty} \left(\frac{1}{2\ln(2)} + \frac{1}{3\ln(3)} + \dots + \frac{1}{n\ln(n)} \right) = +\infty$$

Exercice 10:

Soit $f:[0,1] \to \mathbb{R}$ une fonction continue telle que f(0) = f(1). Montrer qu'il existe $c \in \left[0, \frac{1}{2}\right]$ telle que :

$$f(c) = f\left(c + \frac{1}{2}\right)$$

Exercice 11:

Soient a et b deux réels tels que a < b. Soit f une fonction deux fois dérivable sur [a, b] telle que f(a) = f(b) = 0 et pour tout $x \in [a, b]$, $f''(x) \le 0$. Montrer que, pour tout $x \in [a, b]$, $f(x) \ge 0$.