Parte Práctica

1. Considere la siguiente tabla de datos:

x	-3	-2	0	2.	3
31	16	15	1	11	40

- (a) Muestre que el polinomio interpolante de Newton tiene grado exactamente 3.
- (b) Supongamos que se agrega como nuevo dato a $x_6=1$ con $y_6=5$. ¿Se mantiene el grado del polinomio interpolante para la nueva tabla de datos? Justifique.
- 2. Se desea aproximar la función $f(x) = x^2 3x + 1$ por una función lineal en el intervalo I = [0,1].
 - (a) Escriba la fórmula del error cuadrático para este problema.
 - (b) Calcule los coeficientes del polinomio que mejor aproxima en el sentido de cuadrados mínimos y escriba el polinomio.
 - (c) Dé el valor del error para el polinomio obtenido en el inciso anterior.

3. Considere:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix}$$
 y $b = \begin{bmatrix} 1 \\ 6 \\ 4 \end{bmatrix}$.

- (a) Calcule la descomposición LU de A.
- (b) Utilice la descomposición LU para calcular el determinante de A.
- (c) Resuelva el sistema lineal Ax = b utilizando la descomposición LU.

- 4. Con el comienzo del curso se va a lanzar unas ofertas de material escolar. Unos almacenes quieren ofrecer 600 cuadernos, 500 carpetas y 400 bolígrafos para la oferta, empaquetándolo de dos formas distintas; en el primer bloque pondrá 2 cuadernos, 1 carpeta y 2 bolígrafos; en el segundo, pondrán 3 cuadernos, 1 carpeta y 1 bolígrafo. Los precios de cada paquete serán \$6500 y \$7000, respectivamente. ¿Cuántos paquetes le conviene poner de cada tipo para obtener el máximo beneficio?
- 5. (Sólo alumnos libres) Realice tres iteraciones del método de bisección para estimar la raíz de la función $f(x) = x 1 + \sqrt{x}$ en el intervalo [0, 1], e indique cuántos pasos serían necesarios para garantizar un error menor a 10^{-3} .

Parte Teórica

- a) De la precisión de las reglas de integración del punto medio, trapecio y Simpson. Explique por qué tienen cada una de ellas esa precisión (diciendo cual será la esperada).
 - b) Defina regla de integración gaussiana y enuncie cuál es su mejora en cuanto a la precisión.
- 2. a) De la definición de diferencias divididas, la relación de recurrencia que satisfacen y su utilización en la interpolación polinomial.
 - b) Explique la interpolación de Hermite para el caso que los datos sean $p(x_0) = f(x_0)$, $p'(x_0) = f'(x_0)$ y $p'(x_1) = f'(x_1)$.