Hinman, Fundamentals of Mathematical Logic 解答

鴎海

(最終更新日: 2024年6月8日)

本稿では、以下の書籍の演習問題の解答を与えます.

Hinman, P. G. (2005). Fundamentals of Mathematical Logic. A K Peters.

その他、同書で証明が省略されていたり、注意が必要と思われるような箇所についても、補足的に掲載します. また、正誤表も本稿の末尾に掲載します.

本稿の pdf ファイルおよび TpX ソースファイルの最新版は、GitHub の該当リポジトリから入手できます。

目次

1	Propositional Logic and Other Fundamentals	1
1.1	The propositional language	1
	注意: 命題 1.1.5 の補題 (4) の証明]
	演習 1.1.10	1
正誤表		4
第1章	5	2

Propositional Logic and Other Fundamentals

1.1 The propositional language

訳語対応

一意可読性 unique readability

原子命題論理式 atomic sentence

真の始切片 proper initial segment

命題記号 sentence symbol

命題論理式 sentence

命題論理式の帰納法 sentence induction

注意: 命題 1.1.5 の補題 (4) の証明

補題 (4) の証明は, $\phi_0 \dots \phi_k$ の長さに関する帰納法に基づいていますが,帰納法の basis である,長さが 1 の場合に (4) が正しいことの証明が省略されています. これは次のように証明できます. $\phi_0 \dots \phi_k$ と $\psi_0 \dots \psi_l$ の長さに関して 1>k,l であるため,k=l=0 でしかありえず,したがって $\phi_0=\psi_0$ となります.

演習 1.1.10

以下のように定義する.

定義 1 (中置記法での L-命題論理式の集合)

- (i) Sent₀ := L-原子命題論理式の集合
- (ii) 任意の $n \in \omega$ に対して,

$$\mathsf{Sent}_{n+1} \coloneqq \mathsf{Sent}_n \cup \{ (\neg \phi) : \phi \in \mathsf{Sent}_n \}$$

$$\cup \ \{ (\phi \bullet \psi) : \phi, \psi \in \mathsf{Sent}_n, \bullet \ \& \lor, \land, \to, \leftrightarrow \mathit{O}$$
いずれか}

$${\rm (iii)}\ {\sf Sent}_L \coloneqq \bigcup_{n \in \omega} {\sf Sent}_n$$

次は補題 1.1.3 および命題 1.1.4 と全く同じ方法で証明できる.

命題 2 (L-命題論理式の帰納法による証明)

L-表現に関する任意の性質 \mathcal{P} に対して,

(i) 任意の L-原子命題論理式について \mathcal{P} が成り立ち、かつ

(ii) 任意の L-命題論理式 ϕ , ψ に対し、 ϕ , ψ について \mathcal{P} が成り立つならば、 $(\neg \phi)$ 、 $(\phi \lor \psi)$ 、 $(\phi \land \psi)$ 、 $(\phi \to \psi)$ 、 $(\phi \leftrightarrow \psi)$ についても \mathcal{P} が成り立つ

ならば、任意の L-命題論理式に対して P が成り立つ.

次を証明する.

命題3(一意可読件)-

任意の L-命題論理式 θ に対して、以下のちょうど 1 つが成り立つ。

- (i) θ は L-原子命題論理式である.
- (ii) $\theta = (\neg \phi)$ なる L-命題論理式 ϕ が存在する.
- (iii) $\theta = (\phi \lor \psi)$ なる L-命題論理式 ϕ, ψ がそれぞれ一意に存在する.
- (iv) $\theta = (\phi \wedge \psi)$ なる L-命題論理式 ϕ, ψ がそれぞれ一意に存在する.
- (v) $\theta = (\phi \rightarrow \psi)$ なる L-命題論理式 ϕ, ψ がそれぞれ一意に存在する.
- (vi) $\theta = (\phi \leftrightarrow \psi)$ なる L-命題論理式 ϕ, ψ がそれぞれ一意に存在する.

そのために次を証明する. 以下, • は \lor , \land , \rightarrow , \leftrightarrow のいずれかとする.

補題 4 -

- (i) L-命題論理式に含まれる(の個数と)の個数は同じである.
- (ii) L—命題論理式の真の始切片aに含まれる(の個数は)の個数より多い.
- (iii) L-命題論理式の真の始切片は L-命題論理式ではない.
- (iv) \bullet' は \lor , \land , \rightarrow , \leftrightarrow のいずれかとし, ϕ , ψ , ϕ' , ψ' は L-命題論理式とする. $(\phi \bullet \psi) = (\phi' \bullet' \psi')$ ならば, $\phi = \phi'$, $\bullet = \bullet'$, $\psi = \psi'$ である.

a 演習 1.1.11 参照.

- (i) ϕ に対してこれが成り立つことを $\mathcal{P}(\phi)$ と書く. 任意の L-命題論理式 ϕ に対して $\mathcal{P}(\phi)$ をL-命題 論理式の帰納法で示す.
 - (1) ϕ が L-原始命題論理式の場合, (2) は含まれないので, $\mathcal{P}(\phi)$ である.
 - (2) L—命題論理式 ϕ,ψ を任意に取り, $\mathcal{P}(\phi)$ と $\mathcal{P}(\psi)$ を仮定する.仮定より, $\mathcal{P}((\neg \phi))$, $\mathcal{P}(\phi \bullet \psi)$ であることは明らかである.
- (ii) ϕ に対してこれが成り立つことを $\mathcal{P}(\phi)$ と書く. 任意の L-命題論理式 ϕ に対して $\mathcal{P}(\phi)$ をL-命題論理式の帰納法で示す.
 - (1) ϕ が L-原始命題論理式の場合,真の始切片が存在しないので, $\mathcal{P}(\phi)$ である.
 - (2) L-命題論理式 ϕ, ψ を任意に取り, $\mathcal{P}(\phi)$ と $\mathcal{P}(\psi)$ を仮定する。 $(\neg \phi)$, $(\phi \bullet \psi)$ のいずれについても,その真の始切片は右端の)を持たず,従って(i) より,そこに含まれる(の個数は) の個数より多い.つまり, $\mathcal{P}((\neg \phi))$, $\mathcal{P}((\phi \bullet \psi))$ である.
- (iii) (i)と(ii)から従う.
- (iv) $(\phi \bullet \psi) = (\phi' \bullet' \psi')$ であれば, $\phi \bullet \psi) = \phi' \bullet' \psi'$ であり,(iii)より, ϕ と ϕ' の一方は他方の真の始切片になりえないので, $\phi = \phi'$ である.よって, $\bullet = \bullet'$,次いで $\psi = \psi'$ が従う.

命題 3を証明する.

(i)-(vi) のちょうど 1 つが θ について成り立つことを $\mathcal{P}(\theta)$ と書く.任意の L-命題論理式 θ に対して $\mathcal{P}(\theta)$ をL-命題論理式の帰納法で示す.

(1) θ が L-原始命題論理式の場合, (i) のみが成り立つので, $\mathcal{P}(\theta)$ である.

L-命題論理式 θ , θ' を任意に取り、 $\mathcal{P}(\theta)$ と $\mathcal{P}(\theta')$ を仮定する.

- (2) $(\neg \theta) = (\neg \phi)$ なる L-命題論理式 ϕ は一意に存在するので,(ii) が成り立ち,また左端から 2 番目の記号が \neg であるのは (ii) の場合だけである.よって $\mathcal{P}((\neg \theta))$ である.
- (3) $(\theta \lor \theta') = (\phi \lor \psi)$ なる L-命題論理式 ϕ, ψ の存在は明らかである (θ, θ') 自身)。 また, $(\theta \lor \theta')$ について,(1),(2)と同様の理由で,(i) と (ii) は成り立たない.また補題 (iv) より,(iii) –(vi) のうち (iii) のみが成り立つ.よって $((\theta \lor \theta'))$ である.
- (4) (3)と同様に、 $\mathcal{P}((\theta \wedge \theta'))$ 、 $\mathcal{P}((\theta \rightarrow \theta'))$ 、 $\mathcal{P}((\theta \leftrightarrow \theta'))$ である.

正誤表

第1章

修正箇所	誤	正
p. 21, ↑ 1	$H(x_0,\dots,x_{k_h-1})\in Y$	$H(x_0,\dots,x_{k_{\mathbf{H}}-1})\in Y$
p. 22, ↑ 10	x_0, \dots, x_{k_h-1}	x_0,\dots,x_{k_H-1}
″, ↑ 8	$\mathcal{P}(H(x_0,\dots,x_{k_h-1}))$	$\mathcal{P}(H(x_0,\dots,x_{k_H-1}))$