A Poster Presentation of IPE-205 on

"Haberman's survival: Exploratory Data Analy

DATASET

Α	В	С	D
30	64	1	
30	62	3	
30	65	0	
31	59	2	
31	65	4	
33	58	10	
33	60	0	
34	59	0	
34	66	9	
34	58	30	

Summary of the Poster:

The poster is on Haberman's survival-Exploratory Data Analysis. It represents some statistical graphical figures on this dataset. It has 306 rows and 4 columns.

print(cancer

df.info())

Code

check for the input dataset import os print(os.listdir('../input')) # import necessary packages import numpy as np import pandas as pd mport matplotlib.pyplot as plt import seaborn as sns sns.set()

fig, axes = plt.subplots(1, 3,figsize=(15, 5)for idx, feature in enumerate(list(cancer df.columns)[: sns.violinplot(

x='survival_status_after_5_years', y=feature, data=cancer_df, ax=axes[idx]plt.show()

Pair plot in seaborn plots the scatter plot between every two data columns in a given dataframe. It is used to visualize the relationship between two variables

sns.pairplot(cancer df, hue='survival_status_after_5_years', size=4)

cancer df = pd.read_csv('../input/haberman.csv ', header=None, names=['age', 'year of treatment', 'positive lymph nodes'. 'survival_status_after_5_years']) print(cancer_df.head())

load the dataset

modify the target column values to be meaningful as well as categorical cancer_df['survival_status_after_5_years'] = cancer_df['survival_status_after_5_years'].map({1 "yes", 2:"no"}) cancer_df['survival_status_after_5_years'] = cancer_df['survival_status_after_5_years'].astype(' category')

print(cancer_df.head())

print the unique valuesof the target column print(list(cancer_df['survival_st atus_after_5_years'].unique()))

for idx, feature in

enumerate(list(cancer_df.colum

ns)[:-1]):

sns.FacetGrid(cancer_df,

hue='survival_status_after_5_

years', size=5)

feature).add_legend()

fg.map(sns.distplot,

plt.show()

fg =

0.035

Distribution Plot

Box Plot

Violin Plot

Kaggle link: https://www.kaggle.com/tanzilislam021/haberman-s-survival-Github link: https://github.com/mdtanzilislam/Poster

TECHNOLOGY FOR ADVANCEMENT

Scatter Plot

Graphical

Representation

70

0.4

0.2

Submitted by:

Submitted to:

Tanmoy Das

