

JPL Innovation Foundry

2017 Low-Cost Planetary Missions Conference Caltech Pasadena, CA

Steve Matousek, Advanced Concept Methods Manager

JPL's Innovation Foundry

jplfoundry.jpl.nasa.gov

JPL's Innovation Foundry

jplfoundry.jpl.nasa.gov

- JPL supports the science community to ideate, mature, and propose concepts for new NASA missions
- Continuously "system engineer" requirements and solutions to develop compelling new missions
- The JPL Innovation Foundry is JPL's engine for formulation of exciting, new space mission concepts

The Foundry Provides

Method

- Stable, reliable, clear, understood, exercised
- Tailored for each stage of the formulation lifecycle
- Smart access to Subject Matter Experts (SMEs)
 - Standout SMEs (technical and programmatic)
 - On-demand when (but only when) needed
- Facilities
 - Optimized for pace and interactions of formulation
- Smart access to prior work
 - Thousands of engineered concepts, hundreds of vetted proposals, tens of PI-led missions already "in the can"
- Hands-on coaching of the formulation craft

Every mission starts with a spark

...then the concept is developed

or

One person's concept is another's doodle...

The Foundry Infrastructure

JPL Innovation Foundry

Study Management

Stand-alone Databases

Model Repository

Model Construction & Execution Environment

Execution Engine

Concept Maturity Level

© 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.

CMLs: A Powerful Communication Tool

Early Concept Challenges

A-TEAM

Salient kernal documented

Fundamental feasibility of one approach validated

Trade space understood

Concept baseline engineered, costed, benchmarked

The A-Team

A guided conversation with set objectives and proven methods

A early focal point for concept teams to build and mature ideas

A network of experts, leaders, and innovators

A center for intellectual honesty and exploration

A-Team Study Types

CML 1: Idea Generation	• Produce 100's of ideas for
CML 2: Feasibility Assessment CML 3: Track	 Produce 100's of ideas from a single question or topic Organize and potentially rank ideas based on figures of merit Quantitatively examine an idea or set of ideas for both technical and programmatic feasibility using advanced analysis tools Efficient
CML 3: Trade Space Exploration	and programmatic feasibility using advanced analysis tools • Efficiently explore the value, cost, and risk trade space for concepts and new processes
Science	• Devole
Technology	 Develop the science story and investigation - link goals, objectives, Generate list of potential applications are including assessing relative science value Quantitatively on
Architecture	• Design #
Strategy	Design "prototype" concepts based on science "seeds" Rapidly analyze options with multiple design iterations to find key drivers directions, decision support, and proposal strategy

A-Team Study Timeline

A-Team Study Types and Statistics From Over 200 Studies

Idea Generation

67% of studies included CML 1

Only 24% of studies ended at CML 1

Feasibility Assessment

76% of studies included CML 2

Most studies, 51% ended at CML 2 Trade Space Exploration

25% of studies included CML 3

9% of studies went to Team X

Science

Primary focus for 37% of studies

Secondary focus for 13% of studies

Technology

Primary focus for 25% of studies

Secondary focus for 20% of studies

Architecture

Primary focus for 28% of studies

Secondary focus for 25% of studies Strategy

Primary focus for 10% of studies

Secondary focus for 42% of studies

Missions

A-Team Study Types and Examples

Return

Missions

A-Team Process Overview

Example: Planning a Session

Example Study: Origami in Space

Design Thinking and Visual Strategy

PLATFORM

- 1 GEO SATELLITES
- 2 COMMERCIAL COMM SATELITTES
- 3 NAVY COMM SATELLITES
- 4 INMAR SAT
- S IRIDIUM
- 6 STATIONARY SITE
- 7 SATELLITE CONSTELLATION
- B ISS
- 9 CUBESAT CONSTELLATION
- 10 COMMERCIAL AIRCRAFTS
- 11 STRATOSPHERIC LONG-ENDURANCE DRONES
- 12 STRATOSPHERIC LONG-ENDURANCE DRONES
- 13 NANOSATELLITES
- 14 CONSTELLATION OF GNSS+KB+L-BAND
- 15 SEA SURFACE GNSS CONSTELLATION
- 16 UNMANNED AERIAL VEHICLE
- 17 SATELLIT
- 18 SHORELINE, GROUND-BASED, FIXED
- 19 MID-INCLINATION
- 20 LEO CONSTELLATIO
- 21 LEO CONSTELLATION 22 ORBIT PLANES

WAVELENGTHS

..... Ka-band
.... Ku-band
.... Ku-band
.... L-band
.... S-band
.... X-band
.... C-band

GNSS Multiple

The "A-Frame"

- Each A-Team study
 has a 3-6 person "AFrame Team" from two
 points of view:
 - Innovative Methods
 - Technical Expertise
- Additional subject matter experts are brought in as needed (customized)
- The client may also add members from the Concept Team

The A-Team Core

- The A-Team core is a set group of leaders to build best practices and expertise in the following areas:
 - Facilitation
 - Study Leadership
 - Knowledge Capture
 - Design Thinking
 - Tools and Infrastructure
 - Science
 - Instruments: Remote Sensing, In Situ, and Radar
 - Mission Design
 - Flight Systems and Architecture
 - Configuration
 - Technology
 - Cost and Risk
 - Data Science
- Positions are inherently rotational (1-3 year time frame)
- This group also leads the bulk of our studies

Key Aspect to A-Team Innovation: People

A-Team Methods

CML₁

Capturing ideas and linking associated ideas

Research, bringing in previous studies

CML 2

Testing assumptions, relationships, and links

Analyzing feasibility, finding FOMs and thresholds

CML₃

Building seed science cases and concept architectures

Analysis and trade space exploration

Rapid prototyping of concepts

"A-Team" Mindsets

- If you are in the room, you participate
 - Be mindful, aware and in the moment
 - Make an effort to listen more than you speak
 - Be proactive if you see a gap or missing role, fill it
- We are a team of peers that includes YOU
 - Empathize and put yourself in different roles
 - Make your team members look good
 - Build on the ideas of others "Yes, and..."
- Foster trust and work at building respect
 - Talk about crazy ideas not crazy people
 - What's said in session stays in session
 - You have to give it to earn it
- Encourage wild ideas and constructive play
 - They inspire innovative, get that "last piece" concepts
 - Don't ask for permission, plenty of forgiveness
 - Prepare yourself to be wrong (and be ok with it)
- Prototype to create, test, learn, teach, then repeat to improve
 - Get ideas quickly into the physical world and share
 - Discovery is key learn something new every day
 - Celebrate failure laugh it off!

Science-driven Study Process

- Often early parts of the study include scientists and instrument specialists to help define the science "seeds"
- CML 3 study requires multiple sessions, but the people are always involved as needed – no "flies on the wall"; updates available on wiki

A-Team Tools

- Knowledge Capture and Management
 - Wiki-based information sharing
 - IT software and capture hardware
- Science Traceability, Thresholds, and Value
- Mission, Flight System, and Payload Design
 - 5 minute mission design
 - "Baseball Cards" for flight systems
 - Physics-based instrument sizing tools
- Cost, Complexity, and Risk
 - CML 1, 2, and multiple CML 3 cost tools
- Mission Design for Chemical and SEP
- Trade-space rapid analysis tool
- Model-based tools and databases soon to be operational

Future Improvements

- Three new major initiatives
 - "Forging" Sessions
 - Technology Infusion
 - Trade Space Exploration
- Using our new infrastructure
- Getting out to a broader community
- Training new people and more roles
- Product development, speed, and quality
- Reviewing what we've done
- Tracking results post-study

Summary

From >200 studies, The A-Team is:

- An accessible and proven way for JPL to explore trade spaces and mature ideas into concepts
- A wealth of knowledge on early concepts, science investigations, and technology needs and impacts
- A reliable and configurable process
- A collection of people, ideas, and objects that promotes new connections and innovations at JPL
- A testing ground for new processes, tools and developing best practices in early concept formulation

CMLs: A Powerful Communication Tool

>>10³ Team X Studies

Team X is a concurrent engineering team for rapid design and analysis of novel space mission concepts

- Backed by refined and validated, institutionally supported, integrated tools, models, and processes
- Staffed and backed by doing organizations
- Well-suited for all aspects of Pre-Phase A and Phase A design activities

What is Concurrent Engineering?

Traditional Mission Concept Method – Serial

- Concurrent Engineering Approach Parallel
 - Diverse specialists working in real time, in the same place, with shared data, to yield an integrated design

High Visibility Products for NASA

California institute of Technology, U.S. Government sponsorship acknowledged.

Broad Mission Concept Capabilities

Space Missions

- Planetary
- Mars
- Earth
- Lunar
- Astrophysics
- Human/Robotics
- S/C Constellations

Flight Systems

- Orbiters
- Rovers
- Landers
- Aerobots
- Smallsats

Instruments

- Remote sensing
- In situ

