title: Tarea

3

Profesor:

Leo

Fer-

res

Valor:

4

pun-

tos

de

home-

work

Li-

br-

erías

clave:

geopandas,

pandas,

matplotlib,

rasterio,

rasterstats,

xarray,

netCDF4,

seaborn,

scikit-learn

##

Análi-

 \mathbf{sis}

Espacio-

 ${\bf Temporal}$

 $\mathbf{d}\mathbf{e}$

Datos

Climáti-

 \cos

Ob-

je-

tivo:

 En

 ${\rm esta}$

tarea,

apren-

derás

a

 ${\rm tra}\text{-}$

ba-

jar

con

datos

am-

bi-

entales

у

climáti-

 \cos

us-

ando

Python

para

vi-

su-

alizar

у

analizar

pa-

trones

climáti-

 \cos

por

re-

giones

en

un

país,

con

én-

fa-

sis

en

el

análi-

sis

 ${\rm de}$

se-

ri2s

tem-

po-

rales.

Crearás ma-

pas

temáti-

##
Parte
1:
Búsqueda
de

Datos

1. País asignado: Usa el ${\rm mismo}$ delas tareas an- ${\it teri-}$ ores. 2. Datos requeri- \mathbf{dos} (búscalostú): Divisionesadministrativas (nivel 1 o 2): usa el ${\rm mismo}$ shapefile limpio ${\rm de}$ la tareaanterior. _ 4 Datos climáti-

> cos temporales: busca

 $\frac{\overline{\#\#}}{\mathbf{Parte}}$

2:

Ma-

pas

 $\mathbf{d}\mathbf{e}$

Vari-

ables

Climáti-

cas

y Se-

 \mathbf{ries}

Tem-

po-

rales

```
1.
Carga
el
shape-
{\rm file}
de
di-
vi-
{\rm siones}
ad-
min-
is-
{\rm tra}\text{-}
ti-
vas
con
GeoPandas.
2.
Para
cada
vari-
able
\operatorname{clim\'atica}
(tem-
per-
atura,
pre-
cip-
itación,
humedad,
viento):
Carga
los
datos
tem-
po-
{\rm rales}
us-
ando
xarray
{\tt netCDF4}.
Cal-
cula
prome-
dfos
men-
su-
```

ales y anuales por ##
Parte
3:
Clasi-

fi-

cación Climática

1.

Carga

los

datos

 ${\rm de}$

clasi-

fi-

cación

 ${\it clim\'atica}$

de

Köppen-

Geiger.

2.

 ${\rm Crea}$

un

mapa

mostrando

las

 ${\it difer-}$

entes

zonas

climáti-

cas

en

tu

país.

3.

 ${\rm Para}$

cada

zona

climática,

ex-

trae

У

grafica las

se-

ries

tem-

ро-

rales

 ${\rm de}$

tem-

per-

atura

У

pre-

ci%-

itación.

4.

Com-

para los

pa-

trones

##
Parte
4:

Análi-

 \mathbf{sis}

 $d\mathbf{e}$

Ten-

den-

 \mathbf{cias}

Tem-

po-

rales

```
1.
Para
cada
vari-
able
\operatorname{clim\'atica}
у
por
{\rm unidad}
ad-
min-
is-
tra-
tiva:
Cal-
{\rm cula}
prome-
{\rm dios}
an-
uales
para
el
período
disponible.
Uti-
liza
re-
gre-
sión
lin-
eal
para
iden-
ti-
ficar
ten-
den-
cias
{\tt sklearn.linear\_model.LinearRegression}).
{\rm Crea}
un
mapa
tem\'atico
n^{1}\thetastrando
{\rm donde}
las
ten-
den-
cias
son
```

más

Parte 5:

Análi-

sis

 $d\mathbf{e}$

Even-

 \mathbf{tos}

Ex-

 ${f tremos}$

1.

Para

pre-

cip-

 $itaci\'{o}n$

у

tem-

per-

atura:

 ${\rm Iden}\text{-}$

ti-

fica

val-

ores

ex-

 ${\rm tremos}$

(per-

centiles

95

y 5)

en

las

se-

ries

tem-

po-

 ${\it rales.}$

 ${\rm Crea}$

ma-

pas

mostrando

la

fre-

cuen-

cia

de

even-

 \cos

ex-

 ${\rm tremos}$

por

región.

Anal-

iza

 ${\rm s}12{\rm a}$

fre-

cuen-

ciade

even-

 \cos

ex-

##
Parte
6:
Correlaciones
EspacioTemporales

1.

Cal-

cula

cor-

rela-

ciones

en-

 $\begin{array}{c} \text{tre} \\ \text{vari-} \end{array}$

ables

climáti-

cas

a lo

 ${\rm largo}$

 del

tiempo.

2.

In-

ves-

tiga

si

es-

tas

cor-

rela-

 ${\rm ciones}$

varían

esta-

cional-

mente.

3.

 ${\rm Crea}$

un

mod-

elo

pre-

dic-

tivo

 $\operatorname{sim-}$

ple

que

util-

ice

datos

de

un

mes

plafa

pre-

de-

 cir

 $\text{val-} \\
 \text{ores}$

del

mes

Entrega

```
1.
Un
\operatorname{archivo}
.ipynb
o
.ру
con
\operatorname{tu}
c\'{o}digo
bien
co-
men-
tado.\\
2.
\operatorname{Un}
\operatorname{archivo}
Mark-
\operatorname{down}
(\mathtt{README.md})
ex-
pli-
cando:
Fuentes
{\rm de}
datos
uti-
lizadas.
Metodología
proce-
samiento.\\
Re-
sul-
ta-
\operatorname{dos}
у
con-
clu-
siones
prin-
ci-
pales.
3.
In-
cl-6ye:
Cu-
a-
{f tro}
```

mapas temáti## Es-

truc-

 \mathbf{tura}

 $\mathbf{d}\mathbf{e}$

Di-

rec-

to-

 \mathbf{rios}

Organiza

 tu

proyecto

con

la

 $\operatorname{sigu-}$

iente

estructura:

```
project/
data/
1 1
raw/
#
Datos
originales
sin
procesar
+-
processed/
#
Datos
procesados
listos
para
análisis
1 1
climate/
Variables
climáticas
procesadas
+-
timeseries/
#
Series
temporales
{\tt procesadas}
+-
geo/
#
{\tt Datos}
geoespaciales
procesados
+-
notebooks/
#18
Jupyter
notebooks
1
output/
Gráficos
```

##
Fecha
de
entrega:
Viernes
11,
2025
##
Criterios
de
evaluación:

```
Cri-
te-
rio |
Pun-
tos
|-|-|
Ma-
pas
de
vari-
ables
climáti-
cas
cor-
rec-
ta-
\quad \text{mente} \quad
gen-
era-
\operatorname{dos}
0.75
Análi-
sis
de
se-
ries
{\rm tem}\text{-}
po-
rales
climáti-
cas
| 1 |
{\it Clasi-}
fi-
\operatorname{caci\'{o}n}
climática
\operatorname{im}-
ple-
men-
tada
{\it ade-}
c^{20}_{d}da
\quad \text{mente} \quad
0.5
Análi-
```

 $_{\rm de}^{\rm sis}$

Re-

cur-

 \mathbf{sos}

Recomen-

da-

 \mathbf{dos} :

Para datos climáti- \cos temporales: ERA5Monthly, CHIRPS, Tutorialon downloadingERA5datawith Python, or ${\bf may be}$ Copernicus Para trabajar con ${\rm NetCDF}$ (tutorial) Para clasificación climática: Beck et al. 2018

> Para aprender sobre series tem-