一阶线性微分方程

$$y^{'}+P(x)y=Q(x)$$

齐次方程通解 $y = Ce^{-\int P(x)dx}$

非齐次方程通解
$$y=e^{-\int P(x)dx} \left[C + \int Q(x)e^{\int P(x)dx}dx\right]$$

由常数变易法推出

=

- 1° 先求出对应齐次方程的通解 $y = Ce^{-\int P(x)dx}$;
- 2^0 常数变易 $C \to C(x)$;
- $\mathbf{3}^{0}$ 将 $y = C(x)e^{-\int P(x)dx}$ 代入非齐次方程,求 C(x);
- 4° 写出非齐次方程的通解.

一阶微分方程常见模型

形如

$$\frac{dy}{dx} = f(\frac{y}{x})$$

- 2. 形如 y' = f(ax + by + c) 的方程

$$y' = f(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2})$$
型方程

$$2^{0}$$
 c_{1}, c_{2} 不全为零,而 $\begin{vmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \end{vmatrix} = a_{1}b_{2} - a_{2}b_{1} = 0$ 时,

说明
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \lambda \Rightarrow a_1 = \lambda a_2, \quad b_1 = \lambda b_2.$$

$$v = a_2 x + b_2 y$$
,则

$$\frac{dv}{dx} = a_2 + b_2 \frac{dy}{dx} = a_2 + b_2 f\left(\frac{\lambda v + c_1}{v + c_2}\right).$$

$$3^{0}$$
 c_{1},c_{2} 不全为零,而 $\begin{vmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \end{vmatrix} \neq 0$,即 $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ 时,可令 $\begin{cases} x = u + k \\ y = v + h \end{cases}$,取常数 k,h ,使 $\begin{cases} a_{1}k + b_{1}h + c_{1} = 0 \\ a_{2}k + b_{2}h + c_{2} = 0 \end{cases}$.

可令
$$\begin{cases} x = u + k \\ y = v + h \end{cases}$$
,取常数 k, h ,使 $\begin{cases} a_1 k + b_1 h + c_1 = 0 \\ a_2 k + b_2 h + c_2 = 0 \end{cases}$

- 4. 以y作为自变量
- 5. 伯努利方程

形如
$$\frac{dy}{dx} + P(x)y = Q(x)y^n \quad (n \neq 0, 1)$$
 的方程

其中P(x)、Q(x)为x 的连续函数.

用 y^n 除方程两端,得到 $y^{-n} \frac{dy}{dx} + P(x)y^{1-n} = Q(x)$,

$$\therefore \frac{d(y^{1-n})}{dx} = (1-n)y^{-n}\frac{dy}{dx}, \qquad z' + P(x)z = Q(x)$$

∴有
$$\frac{1}{1-n}$$
· $\frac{d(y^{1-n})}{dx}$ + $P(x)y^{1-n}$ = $Q(x)$,

$$\Leftrightarrow z = y^{1-n}, \quad \text{if} \quad \frac{dz}{dx} + (1-n)P(x)z = (1-n)Q(x),$$

可降阶高阶微分方程

$$2. \quad y''=f(x, y')$$
 型

2.

$$\Leftrightarrow y'=z , \quad \emptyset y''=z'=\frac{dz}{dx} ,$$

3. $y^{''}=f(y,y^{'})$ 型

二阶线性微分方程解法(仅含 $y^{''},y^{'},y$)

线性相关与线性无关

Def.6.5.1 设函数 $y_1(x), y_2(x), \dots, y_m(x)$ 在区间 I 上有定义,若存在不全为零的常数 k_1, k_2, \dots, k_m ,使对任意的 $x \in I$,都有 $k_1 y_1(x) + k_2 y_2(x) + \dots + k_m y_m(x) \equiv 0$,则称函数 $y_1(x), y_2(x), \dots, y_m(x)$ 在区间 I 上线性相关。 否则就称 $y_1(x), y_2(x), \dots, y_m(x)$ 在区间 I 上线性无关。

由于是存在,故0与任何函数线性相关

为函数 $y_1(x), y_2(x), \dots, y_m(x)$ 的 Wronski (朗斯基) 行列式. 结论:

 1^0 若 $y_1(x), y_2(x), \dots, y_m(x)$ 在区间 I 上线性相关,则 $W(x) \equiv 0$, $\forall x \in I$;

充分不必要条件

 2^{0} 若 $y_{1}(x), y_{2}(x), \dots, y_{m}(x)$ 为 m 阶线性齐次微分方程 $a_{\circ}(x)y^{(m)} + a_{1}(x)y^{(m-1)} + \dots + a_{m-1}(x)y' + a_{m}(x)y = 0$ 的 m 个解,则 $y_{1}(x), y_{2}(x), \dots, y_{m}(x)$ 在区间 I 上线性 相关的充要条件是 $W(x) \equiv 0$, $\forall x \in I$.

2. 两个函数的线性关系可由除数是否为常数判断

特征方程求解齐次通解

特征方程 $ar^2 + br + c = 0$	方程 ay"+by'+cy=0 的通解
有两个不相等实根 r_1 , r_2	$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
有两个相等实根 $r=r_1=r_2$	$y=e^{rx}(C_1+C_2x)$
有一对共轭复根 $r_1, 2=\alpha \pm i\beta$	$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

高阶特征方程:

单实根 r	给出一项 Ce ^{rx}
k 重实根 r	给出 k 项 $e^{rx}(C_1+C_2x+\cdots+C_kx^{k-1})$
一对单复根 $r_{1,2} = \alpha \pm i\beta$	给出两项 $e^{\alpha x}(C_1\cos\beta x + C_2\sin\beta x)$
一对 k 重复根 $r_{1,2} = \alpha \pm i\beta$	给出 $2k$ 项 $e^{\alpha x}[(C_1+C_2x+\cdots+C_kx^{k-1})\cos\beta x\\+(D_1+D_2x+\cdots+D_kx^{k-1})\sin\beta x]$

非齐次特解求法

$$ay^{''}+by^{'}+cy=P_m(x)e^{ax}$$

具有如下形式的特解:

$$y^* = x^k Q_m(x) e^{\alpha x}$$

其中 $Q_m(x)$ 是与 $P_m(x)$ 同次但系数待定的多项式,

$$k = \begin{cases} 0, & \alpha \overline{\Lambda} = 0, \\ 1, & \alpha \overline{\Lambda} = 0, \end{cases}$$
 $\alpha \overline{\Lambda} = \alpha \overline{\Lambda} =$

 $ay^{''}+by^{'}+cy=P_m(x)e^{ax}\coseta x$ 或 $P_m(x)e^{ax}\sineta x$

$$ay'' + by' + cy = e^{\alpha x} [P_m(x) \cos \beta x + Q_n(x) \sin \beta x]$$

具有如下形式的特解:

$$y^* = x^k e^{\alpha x} [\mathbf{U}_L^{(1)}(x) \cos \beta x + \mathbf{U}_L^{(2)}(x) \sin \beta x]$$

其中,
$$L = \max\{m, n\}$$
, $k = \begin{cases} 0, & \alpha \pm i\beta \text{ 不是特征方程的根} \\ 1, & \alpha \pm i\beta \text{ 是特征方程的根} \end{cases}$