

Introduction: Hardware Trends and List Homomorphism

Cosmin E. Oancea and Troels Henriksen [cosmin.oancea,athas]@diku.dk

Department of Computer Science (DIKU) University of Copenhagen

September 2015 PMPH Lecture Notes

- 1 Introduction²
 - Brief History
 - Computer Architecture Definition
 - Course Organization
 - Trends of Critical Components of a Parallel System
 - Processor
 - Memory
 - Interconnect
- Technological Challenges/Constraints
 - Power
 - Reliability
 - Wire Delays
 - Design Complexity
 - CMOS Endpoint
- 4 How to Reason about Parallelism?
 - Amdahl's Law
 - List Homomorphism
 - ullet List-Homomorphism \equiv Map-Reduce

Introduction²

- Past > 20 years Information Revolution:
 Explosive growth of semiconductor integration + Internet.
- Moore's Low 1960s:
 - computing power doubles every 19-24 months
 - system cost effectiveness = performance/cost grows exp.
 - CMOS endpoint is near: miniaturization reaches its limits (complementary metal-oxide semiconductor).

Introduction²

- Past > 20 years Information Revolution:
 Explosive growth of semiconductor integration + Internet.
- Moore's Low 1960s:
 - computing power doubles every 19-24 months
 - system cost effectiveness = performance/cost grows exp.
 - CMOS endpoint is near: miniaturization reaches its limits (complementary metal-oxide semiconductor).
- Improved Chip Design:
 - each new process generation ⇒ higher clock rates
 - logic switching speed & amount of on-chip logic increase (†)
 - ullet better circuit design & deep pipelines \Rightarrow fewer gate delays / stage
 - \bullet \uparrow on-chip resources \Rightarrow \uparrow throughput by parallelism at all stages.
- Computer Architecture goes back to before 1970s:
 How to Best Utilize the ever-increasing (↑) Wealth of Resources?

Brief History

- ICPP, ISCA 1980/90s: parallel architectures popular topic.
 Demise of SingleCPU System: inevitable & fast approaching.
- Whatever happened? Mid90 Killer-Micro:
 - ullet The rapid increase (\uparrow) transistor density \Rightarrow
 - path of least resistance: ever-increasing speed of SingleCPU
 - Complex Out-Of-Order (OoO) processors: 100s instructions/cycle.
 - Commercial arena: multiprocessors just an uniprocessor extension.
- What Changed? Multiprocessors Trend: Academia & Industry:
 - power complexity
 - Memory WALL: ↑ performance gap between processor & memory
- All Future Architectures adopt some form of massive parallelism!

What used to Be Computer Architecture?

Old Definition ISA – critical role in the success of computer industry:

- ullet Early on, used to be the hallmark of system design \Rightarrow
- Non-Portable Software & No Compiler at that time
- ullet 1960s IBM System360 ISA guarantees backward compatibility \Rightarrow
- Strategy endured test of time & Behemoth company today

What Is Computer Architecture Today?

- Much Broader Definition: how best to build the computer (includes ISA, but focus changed on organization).
- North Bridge: sys bus connects cores to memory & IO devs.
- PCI bus: IO bus connecting North Bridge to high-speed IO to disk. network & slower dev
- ← Generic Multiprocessor with Distributed Memory
- Parallel Sys Main Componen (1) Processor, (2) Memory Hierarchy and (3) Interconnection

Software-Hardware Synergy & Biggest Challenge

- software: flexible approach to simplifying hardware, e.g., TLB exceptions, FP ops,
- hardware faster ⇒ world of tradeoff in between
- ullet guided by the common case \Rightarrow trends are important.
- Important Juncture:
 - Higher performance requires Parallel Hardware
 - Biggest Challenge: develop efficient Massively-Parallel Software!

LAB/CUDA

Intro & Simple

Course	Organization
W	HARDWARE

Trends

	Vector Machine	\leftarrow	(Map-Reduce)	Map Programming	
2	In Order	\longrightarrow	VLIW Instr	Scan &	
	Processor	\longleftarrow	Scheduling	Reduce	
3	Cache		Reasoning About	Sparse Vect	
	Coherence		Parallelism	Matrix Mult	
4	Interconnection		Case Studies &	Transpose & Matrix	
	Networks		Optimizations	Matrix Mult	
5	Memory		Optimising	Sorting & Profiling &	
	Consistency		Locality	Mem Optimizations	
6	OoO, Spec		Thread-Level	Project	
	Processor		Speculation	Work	

Three narative threads: the path to complex & good design: • Design Space tradeoffs, constraints, common case, trends. Reasoning: from simple to complex, Applying Concepts.

SOFTWARE

List HOM

- - Brief History
 - Computer Architecture Definition
 - Course Organization
 - Trends of Critical Components of a Parallel System
 - Processor
 - Memory
 - Interconnect
- - Power
 - Reliability
 - Wire Delays
 - Design Complexity
 - CMOS Endpoint
 - - Amdahl's Law
 - List Homomorphism

Abstractions

- A program is to a process/thread what a recipe is for cooking.
- Processor (core): hardware entity capable of sequencing & executing thread's instructions.
- MT Cores multiple threads, each running in its thread context.
- Multiprocessor: set of processors connected to execute a workload
 - mass produced, off-the-shelf, each several cores & levels of cache
 - trend towards migrating system functions on the chip: memory controllers, external cache directories, network interface

Processor: Clock Frequency/Rate

Historically the clock rate (at which instr are executed) has increased exponentially (1990-2004).

Processor: Clock Frequency/Rate

Historically the clock rate (at which instr are executed) has increased exponentially (1990-2004).

Closer Look at Clock Rate

 Technology (process shrinkage): every generation transistors' switching speed increases 41%.

Pipeline Depth: more stages \Rightarrow less complex \Rightarrow less gates/stage

- # of gates delays dropped by 25% every process generation.
- Improved Circuit Design

Closer Look at Clock Rate

- Technology (process shrinkage): every generation transistors' switching speed increases 41%.
 - Pipeline Depth: more stages ⇒ less complex \Rightarrow less gates/stage
 - # of gates delays dropped by 25% every process generation.

Improved Circuit Design

Clock Rate Increase is Not Sustainable:

- Deeper pipelines: difficult to build useful stages with < 10 gates
- Wire delays: wire-transm speed \(\ \) much slower than switching,
- Circuits clocked at higher rates consume more power!

Processor: Feature Size & Number of Transistors

Each process generation offers new resources. How best to use the > 100 billion transistors? Large-Scale CMPs (100s-1000s cores):

- more cache, better memory-system design
- fetch and decode multiple instr per clock
- running multiple threads per core and on multiple cores Sept 2015

Memory Systems

- (Main) Memory Wall: growing gap between processor and memory speed. Processor cannot execute faster than memory system can deliver data and instructions!
- Want Big, Fast & Cheap Memory System
 - access time increases with memory size as it is dominated by wire delays this will not change in future technologies
 - multi-level hierarchies (relies on principle of locality)
 - efficient management is KEY, e.g., cache coherence.
 - Cost and Size memories in a basic PC in 2008:

Memory	Size	Marginal Cost	Cost Per MB	Access Time
L2 Cache	1MB	\$20/MB	\$20	5nsec
Main Memory	1 GB	\$50/GB	5c	200 nsec
Disk	500GB	\$100/500GB	0.02c	5 msec •

Memory Wall? Which Memory Wall??

- ullet DRAM density increases 4× every 3 years, BUT
- DRAM speed ↑ only with 7% per year! (processor speed by 50%)
- Perception was that Memory Wall will last forever!
- Memory Wall Stopped Growing around 2002.
- Multi/Many-Cores ⇒ shifted from Latency to Bandwidth WALL

Disk Memory

- Historically disk performance improved by 40% per year
- DiskTime=AccessTime+TransferTime (AccessTime=Seek+Latency)
- Historically, transfer time have dominated, but
- Today: transfer and access time are of the same msecs order
- Future, Access Time will dominate, but proc-disk gap still large

Seek Time: head to reach right track, latency: time to reach the first record on track, both depend on rotation speed & independent on block size.

Interconnection Networks

Present at many layers:

- On-Chip Interconnects: forward values between pipeline stages, AND between execution units AND connect cores to shared cache banks.
- System Interconnects: connect processors (CMPs) to memory and IO
- I/O Interconnects, usually bus e.g., PCI, connect various devices to the System Bus
- Inter-Systems Interconnects: connect separate systems (chassis or boxes) & include
 - SANs: connect systems at very short distance
 - LANs, WANs (not interesting for us).
- Internet: global world-wide interconnect (not interesting for us).

- - Brief History
 - Computer Architecture Definition
 - Course Organization
 - - Processor
 - Memory
 - Interconnect
 - Technological Challenges/Constraints
 - Power
 - Reliability
 - Wire Delays
 - Design Complexity
 - CMOS Endpoint
 - - Amdahl's Law
 - List Homomorphism

Technological Contraints

- In the Past: tradeoff between cost (area) and time (performance).
- Today: design is challenged by several technological limits
 - Major new contraint is Power
 - wire delays
 - reliability
 - complexity of design
- It seems that parallelism addresses well all these constraints.

Power

- Total Power = Dynamic + Static (Leakage) $P_{dynamic} = \alpha CV^2 f$ consumed by a gate when it switches state $P_{static} = VI_{sub} \sim Ve^{-kV_T/T}$ (caches)
- Dynamic power favors parallel processing over higher clock rate
 - ullet $P_{dynamic} \sim F^3$ mostly dissipated in processor

Power

- Total Power = Dynamic + Static (Leakage) $P_{dynamic} = \alpha CV^2 f$ consumed by a gate when it switches state $P_{static} = VI_{sub} \sim Ve^{-kV_T/T}$ (caches)
- Dynamic power favors parallel processing over higher clock rate
 - ullet $P_{dynamic}\sim F^3$ mostly dissipated in processor
 - ullet increase clock freq 4× \Rightarrow

Power

- Total Power = Dynamic + Static (Leakage) $P_{dynamic} = \alpha CV^2 f$ consumed by a gate when it switches state $P_{static} = VI_{sub} \sim Ve^{-kV_T/T}$ (caches)
- Dynamic power favors parallel processing over higher clock rate
 - $P_{dynamic} \sim F^3$ mostly dissipated in processor
 - increase clock freq $4 \times \Rightarrow 4 \times$ speedup @ $64 \times$ dynamic power!
 - replicate a uniprocessor $4 \times \Rightarrow 4 \times$ speedup @ $4 \times$ power
- Static Power: dissipated in all circuits, at all time, nomatter of frequency and whether it switches or not.
 - negligible 15 years ago, but as feature size decreased so did the threshold voltage V_T every generation
 - Recently overtook dynamic power as major source of dissipation!
- Power/Energy are Critical Problems
 e.g., costly & many battery operated devices.

Reliability

- Transient Failures (Soft Errors):
 - Charge stored in a transistor Q = C V
 - Supply voltage V decreases every generation (consequence of features-size shrinking)
 - As Q decreases, it is easier to flip bits
 - Corruption Sources: cosmic rays, alpha particles radiating from the packaging material, electrical noise
 - Device operational but values have been corrupted
 - DRAM/SRAM error detection and correction capability
- Intermittent/Temporary Failures:
 - last longer, should try to continue execution
 - aging or temporary environmental variation, e.g., temperature
- Permanent Failures: device will never function again, must be isolated & replaced by spare
- Chip Mutiprocessors: promote better reliability
 - using threads for redundant execution,
 - ullet faulty cores can be disabled \Rightarrow natural failsafe degradation

Wire Delays

- Miniaturization ⇒ transistors switch faster, but the propagation delay of signals on wire does not scale as well.
- Wire Delay Propagation \sim RC. $R \sim L/CS_{area}$. Miniaturization \Rightarrow cross-section area keeps shrinking each generation, annuls the benefit of length shrinking.
- Wires can be pipelined like logic.
- Deeper pipelines are better because communication limited to only few stages.
- Impact of wire delays also favors multiprocessors, since communication traffic is hierarchical:
 - most communication is local
 - inter-core communication is occasional

Design Complexity

- Design Verification has become the dominant cost of chip development today, major design constraint.
- Chip density increases much faster than the productivity of verification engineers (new tools and speed of systems):
 - register-transfer language level, i.e., logic is correct
 - core level, i.e., correctness of forwarding, memory disambiguation,
 - multi-core level, e.g., cache coherence, memory consistency.
- Vast majority of chip resources dedicated to storage also due to verification complexity:
 - trivial to increase the size of: caches, store buffers, load/store/ fetch queues, reorder buffers, directory for cache coherence, etc.
- Design Trend Favors Multiprocessors: easier to replicate the same structure multiple times than to design a large, complex one.

CMOS (Endpoint) Meets Quantum Physics

- CMOS is rapidly reaching the limits of miniaturization,
- Feature size: half pitch distance (half the distance between two metal wires). Gate length $\sim 1/2$ feature size.
- ullet If present trends continues feature size < 10 nm by 2020
- Radius of atom: $0.1 \sim 0.2 nm \Rightarrow$ gate length quickly reaches atomic distances that are governed by quantum physics, i.e., binary logics replaced with probabilistic states.
- Not clear what will follow (?)

- - Brief History
 - Computer Architecture Definition
 - Course Organization
 - - Processor
 - Memory Interconnect
 - - Power
 - Reliability
 - Wire Delays
 - Design Complexity
 - CMOS Endpoint
 - How to Reason about Parallelism?
 - Amdahl's Law
 - List Homomorphism

Amdahl's Law

Enhancement accelerates a fraction F of the task by a factor S:

$$T_{\mathsf{exe}}(\mathsf{withE}) = T_{\mathsf{exe}}(\mathsf{withoutE}) \times [(1-F) + \frac{F}{5}]$$

Speedup(E) =
$$\frac{T_{exe}(withoutE)}{T_{exe}(withE)} = \frac{1}{(1-F) + \frac{F}{S}}$$

Amdahl's Law

- 1 Improvement is limited by the 1-F part of the execution that cannot be optimized: $Speedup(E) < \frac{1}{1-E}$
- 2 Optimize the common case & execute the rare case in software.
- 3 Low of diminishing returns

F = 0.5

Amdahl's Law

- 1 Improvement is limited by the 1 F part of the execution that cannot be optimized: $Speedup(E) < \frac{1}{1-E}$
- 2 Optimize the common case & execute the rare case in software.
- 3 Low of diminishing returns

F = 0.5

- every increment of S consumes new resources and is less rewarding:
- $S = 2 \Rightarrow 33\%$ speedup.
- $S = 5 \Rightarrow 6.67\%$ speedup.

Amdahl's Law: Parallel Speedup

$$S_P = \frac{T_1}{T_P} = \frac{P}{F + P(1 - F)} < \frac{1}{1 - F}$$

F=0 95

- Typically: speedup is sublinear, e.g., due to inter-thread communic.
- Sometimes superlinear speedup due to cache effects.
- Unforgiving Law: even if 99% is parallelized, $S_{\infty} < 100$.

Amdahl's Law: Parallel Speedup

$$S_P = \frac{T_1}{T_P} = \frac{P}{F + P(1 - F)} < \frac{1}{1 - F}$$

F=0.95

- Typically: speedup is sublinear, e.g., due to inter-thread communic.
- Sometimes superlinear speedup due to cache effects.
- Unforgiving Law: even if 99% is parallelized, $S_{\infty} < 100$.

Hardware Trend is to ever increase the number of cores.

Amdhal's Law: reason about parallelism asymptotically (∞ # cores), i.e., systematically exploit all levels of application's parallelism.

- Introduction²
 - Brief History
 - Computer Architecture Definition
 - Course Organization
 - Trends of Critical Components of a Parallel System
 - Processor
 - Memory
 - Interconnect
 - Technological Challenges/Constraints
 - Power
 - Reliability
 - Wire Delays
 - Design Complexity
 - CMOS Endpoint
 - How to Reason about Parallelism?
 - Amdahl's Law
 - List Homomorphism

Math Preliminaries: Monoid & Homomorphism

Definition (Monoid)

Assume set S and $\odot: S \times S \to S$. (S, \odot) is called a Monoid if it satisfies the following two axioms:

- (1) Associativity: $\forall x, y, z \in S$ we have $(x \odot y) \odot z \equiv x \odot (y \odot z)$ and
- (2) Identity Element: $\exists e \in S$ such that $\forall a \in S$, $e \odot a \equiv a \odot e \equiv a$.

 $((S, \odot))$ is called a group if it also satisfies that any element is invertible, i.e., $\forall a, \exists a^{-1}$ such that $a \odot a^{-1} \equiv a^{-1} \odot a \equiv e$.)

E.g., $(\mathbb{N}, +)$, (\mathbb{Z}, \times) , $(\mathbb{L}_T, ++)$, where \mathbb{L}_T denotes lists of elements of type T, and ++ list concatenation.

Math Preliminaries: Monoid & Homomorphism

Definition (Monoid)

Assume set S and $\odot: S \times S \to S$. (S, \odot) is called a Monoid if it satisfies the following two axioms:

- (1) Associativity: $\forall x, y, z \in S$ we have $(x \odot y) \odot z \equiv x \odot (y \odot z)$ and
- (2) Identity Element: $\exists e \in S$ such that $\forall a \in S$, $e \odot a \equiv a \odot e \equiv a$.

 $((S, \odot))$ is called a group if it also satisfies that any element is invertible, i.e., $\forall a, \exists a^{-1}$ such that $a \odot a^{-1} \equiv a^{-1} \odot a \equiv e$.)

E.g., $(\mathbb{N},+)$, (\mathbb{Z},\times) , $(\mathbb{L}_T,++)$, where \mathbb{L}_T denotes lists of elements of type T, and ++ list concatenation.

Definition (Monoid Homomorphism)

A monoid homomorphism from monoid (S, \oplus) to monoid (T, \odot) is a function $h: S \to T$ such that $\forall u, v \in S$, $h(u \oplus v) \equiv h(u) \odot h(v)$.

List Homomorphism (LH)

- Finite lists with concatenation, denoted ++, forms a Monoid:
 - [1,2,3,4] ++ [5,6,7,8] = [1,2,3,4,5,6,7,8],
 - neutral elem e_{++} is the empty list [], i.e., [1,2]++[] = [1,2],
 - later we will look at them as vectors rather than linked lists.

List Homomorphism (LH)

- Finite lists with concatenation, denoted ++, forms a Monoid:
 - \bullet [1,2,3,4] ++ [5,6,7,8] = [1,2,3,4,5,6,7,8],
 - neutral elem e_{++} is the empty list [], i.e., [1,2]++[] = [1,2],
 - later we will look at them as vectors rather than linked lists.

Definition (List Homomorphism)

 $h:[T_1] \to T_2$ over finite lists is a list homomorphism if there exists a(n associative) binary operator $\odot :: T_2 \to T_2 \to T_2$, such that: $h(x++y) = (h x) \odot (h y)$

We denote
$$h = hom(\odot) f e$$
, where $f(x) = h([x])$ and $e = h([])$.

- If the program is well behaved, i.e., same result for any x++ysplitting of the input list, then (T_2, \odot) is necessarily a Monoid.
- Similar to a divide and conquer algorithm, where h(x) and h(y) can be computed in parallel and results can be merged.

List Homomorphism (LH) Examples

Definition (List Homomorphism)

 $h: [T_1] \to T_2$ over finite lists is a list homomorphism if there exists an associative binary operator $\odot:: T_2 \to T_2 \to T_2$, such that:

$$h(x++y)=(h x) \odot (h y)$$

We denote $h = hom(\odot) f e$, where f x = h[x] and e = h[].

Examples of List Homomorphisms, id x = x is the identity function

```
-- maxList = hom (max) id -\infty
-- len = hom (+) one 0, one x = 1
len :: [T] -> Integer
                                             maxList :: [Int] -> Int
len [] = 0
                                             \max \text{List} [] = -\infty
len [x] = 1
                                             \max \text{List} [x] = x
len (x++y) = (len x) + (len y)
                                             \max \text{List } (x++y) = (\max \text{List } x) \text{ 'max'}
                                                              (maxList y)
-- flatten = hom (++) id []
                                             -- Assume p :: T -> Bool given,
flatten :: [[T]] -> [T]
                                             -- all<sub>p</sub> = hom (&&) p True
                                             all_p :: [T] \rightarrow Bool
flatten [] = []
flatten [x] = x
                                             all_p [] = ???
flatten (x++y) = (flatten x) ++
                                             all_p[x] = ???
                   (flatten y)
                                             all_{D} (x++y) = ???
                                                           C. Oancea: Intro Sept 2015
```

Exercise: Implement the above LHs in Haskell

```
Implementation Sample for all<sub>n</sub>:
import System. Environment -- access to arguments etc.
-- helper to simulate (x++y) pattern
split :: [a] -> ([a], [a])
split [] = ([],[])
split[x] = ([],[x])
split xs = let mid = (length xs) 'div' 2 in (take mid xs, drop mid xs)
-- all<sub>p</sub> \equiv all<sub>n</sub> p = hom (&&) p True
alln :: (a -> Bool) -> [a] -> Bool
alln p [] = True
alln p [x] = p x
alln p xs = let (x, y) = split xs in (alln p x) && (alln p y)
---- Compile with: ghc -02 -o test LHegHaskell.hs -----
main :: IO()
main = do args <- getArgs
          let inp = if null args then [0,2,4,6] else read (head args)
              p x = x 'mod' 2 == 0
              res = alln p inp
          putStrLn ("Computed: " ++ show res)
```

- Introduction²
 - Brief History
 - Computer Architecture Definition
 - Course Organization
 - Trends of Critical Components of a Parallel System
 - Processor
 - Memory
 - Interconnect
 - Technological Challenges/Constraints
 - Power
 - Reliability
 - Wire Delays
 - Design Complexity
 - CMOS Endpoint
 - How to Reason about Parallelism?
 - Amdahl's Law
 - List Homomorphism

Basic Blocks of Parallel Programming: Map

map :: $((\alpha \to \beta), [\alpha]) \to [\beta]$ has inherently parallel semantics.

$$x = map(f, \{ a_1, a_2, ..., a_n \})$$
 $x \equiv \{ f(a_1), f(a_2), ..., f(a_n) \}$

```
Map Fusion: (higher-order transformation)
                                                a = \{ a_1, a_2, ..., a_n \}
 a = \{ a_1, a_2, ..., a_n \}
 x = map(f, a)
                             \equiv y = map(g o f, a)
              map(g, x)
 \vee =
 y \equiv \{g(f(a_1)), g(f(a_2)), ..., g(f(a_n))\} \equiv \{g(f(a_1)), g(f(a_2)), ..., g(f(a_n))\}
```

Basic Blocks of Parallel Programming: Reduce

reduce ::
$$((\alpha \to \alpha \to \alpha), \alpha, [\alpha]) \to \alpha$$

reduce $(\odot, e, \{a_1, a_2, ..., a_n\}) \equiv e \odot a_1 \odot a_2 \odot ... \odot a_n$
where \odot is an associative binary operator.

Build programs by combining map, reduce and other such operators.

Map, Reduce, and Scan Types and Semantics

- map :: $(\alpha \to \beta) \to [\alpha] \to [\beta]$ map f $[x_1, ..., x_n] = [f(x_1), ..., f(x_n)],$ i.e., $x_i :: \alpha, \forall i$, and $f :: \alpha \to \beta$.
- reduce :: $(\alpha \to \alpha \to \alpha) \to \alpha \to [\alpha] \to \alpha$ reduce \odot e $[x_1, x_2, ..., x_n] = e \odot x_1 \odot x_2 \odot ... \odot x_n$, i.e., e:: α , x_i :: α , $\forall i$, and \odot :: $\alpha \to \alpha \to \alpha$.
- $\operatorname{scan}^{\operatorname{exc}} :: (\alpha \to \alpha \to \alpha) \to \alpha \to [\alpha] \to [\alpha]$ $\operatorname{scan}^{\operatorname{exc}} \odot \operatorname{e} [x_1, \dots, x_n] = [\operatorname{e}, \operatorname{e} \odot x_1, \dots, \operatorname{e} \odot x_1 \odot \dots x_{n-1}]$ i.e., $\operatorname{e} :: \alpha, x_i :: \alpha, \forall i, \text{ and } \odot :: \alpha \to \alpha \to \alpha.$
- $\operatorname{scan}^{inc} :: (\alpha \to \alpha \to \alpha) \to \alpha \to [\alpha] \to [\alpha]$ $\operatorname{scan}^{inc} \odot \operatorname{e} [x_1, \dots, x_n] = [\operatorname{e} \odot x_1, \dots, \operatorname{e} \odot x_1 \odot \dots x_n]$ i.e., $\operatorname{e} :: \alpha, \ x_i :: \alpha, \forall i, \ \text{and} \ \odot :: \alpha \to \alpha \to \alpha.$

1st List-Homomorphism Theorem [Meertens]

Theorem (1st List Homomorphism Theorem (Meertens))

Any homomorphism $h = hom(\odot)$ $f \in C$ can be written as the functional composition of a reduce and a map:

```
h = hom \ (\odot) \ f \ e_{\odot} = (reduce \ (\odot) \ e_{\odot}) \ . \ (map \ f)
```

Conversely, each such composition is a homomorphism.

Apply Theorem to Re-Write LH to Map-Reduce!

```
-- maxList = hom (max) id -\infty
-- len = hom (+) one 0, one x = 1
len :: [T] -> Integer
                                             maxList :: [Int] -> Int
len []
                                             \max \text{List} [] = -\infty
len [x] = 1
                                             \max \text{List} [x] = x
len (x++y) = (len x) + (len y)
                                             \max \text{List } (x++y) = (\max \text{List } x) \text{ 'max'}
                                                                (maxList y)
-- flatten = hom (++) id []
                                             -- Assume p :: T -> Bool given,
flatten :: [[T]] -> [T]
                                             -- all<sub>p</sub> = hom (&&) p True
                                             all_p :: [T] \rightarrow Bool
flatten [] = []
flatten [x] = x
                                             all_p [] = ???
                                             all_p[x] = ???
flatten (x++y) = (flatten x) ++
                                             all_{p} (x++y) = ???
                   (flatten y)
                                                           C. Oancea: Intro Sept 2015
```

1st List-Homomorphism Theorem [Meertens]

Theorem (1st List Homomorphism Theorem (Meertens))

Any homomorphism $h = hom(\odot)$ f e can be written as the functional composition of a reduce and a map:

```
h = hom \ (\odot) \ f \ e_{\odot} = (reduce \ (\odot) \ e_{\odot}) \ . \ (map \ f)
Conversely, each such composition is a homomorphism.
```

Theorem tells how to parallelize LHs based on map-reduce skeletons.

Map-Reduce Definition for the Discussed LH Examples

List Homomorphism Invariants

Theorem (List-Homomorphism Promotions)

Given unary functions f, g and an associative binary operator \odot then:

- 1. $(map f) \cdot (map g) \equiv map (f \cdot g)$
- 2. (map f). $(reduce (++) []) \equiv (reduce (++) [])$. (map (map f))
- 3. (reduce \odot e_{\odot}). (reduce (++) []) \equiv (reduce \odot e_{\odot}). (map (reduce \odot e_{\odot}))
 - 2. 3. ⇒ code generation: list is segmented, segments are distributed on different processors, computation proceeds locally on each processor, and the local results are reduced.
 - 2. 3. \Leftarrow flattening optimization: uncovers more parallelism
 - e.g., map f $[1..4] = (map f) \cdot (red ++) [[1,2],[3,4]] = ^{prom2}$?

Optimizing Map-Reduce Computation (Exercise)

Theorem (Optimized Map Reduce)

Assume $\operatorname{distr}_p :: [\alpha] \to [[\alpha]]$ distributes a list into p sublists, each containing about the same number of elements. Denoting redomap \odot f $e_{\odot} \equiv (\operatorname{reduce} \odot e_{\odot}) \cdot (\operatorname{map} f)$, the equality holds:

- Prove it using the promotion Lemmas before!
- Hint: (reduce (++) []) . distr_p $\equiv id$, hence
- ullet redomap \odot f $e_{\odot} \equiv$ (reduce \odot e_{\odot}). (map f). (reduce (++) []). distr_p

Are All List Homomorphism Efficient?

If the combine operator involves concatenation then does map-reduce provides efficient parallelization?

```
Merge Sort
-- merge two sorted lists
                                           -- mSort = hom merge [.] []
merge :: Ord T \Rightarrow [T] \rightarrow [T] \rightarrow [T]
                                           -- [.] x = [x]
merge [] v = v
                                           mSort :: Ord T => [T] -> [T]
merge x [] = x
                                           mSort []
merge (x:xs) (y:ys) =
                                           mSort[x] = [x]
  if (x \le y)
                                           mSort (x++y) = (mSort x) 'merge'
  then x : merge xs (y:ys)
                                                           (mSort v)
  else y : merge (x:xs) ys
```

In the naive merged sort, the merge reduction operator traverses sequentially the whole list, hence this map-reduce does not give efficient parallelization!

Conclusion

What have we talked about today?

- Hardware Parallelism: the only way of scalably increasing the compute power.
 - demonstrated by hardware trends:
 - power, reliability, wire delays, design complexity.
- Big Challenge: having parallel commodity software.
- List-Homomorphism: a way of reasoning about parallelism and of building inherently parallel programs.

