

CLR(1) Parsing

Dr. Shashank Gupta
Assistant Professor
Department of Computer Science and Information Systems

SLR (1) Parsing

Construct the LR(0) collection of items for the following Grammar and design the SLR(1) parsing table and find out whether this grammar is SLR(1) or not

SLR (1) Parsing

BLANK CELLS ARE ERROR ENTRIES

SLR (1) PARSING TABLE

	ACTION			GOTO
	a	b	\$	S
0	S2			1
1			ACCEPT	
2	S2	R2	R2	3
3		S4		
4	S2			5
5		R1	R1	

Construct the LR(0) collection of items for the following Grammar and design the SLR(1) parsing table and find out whether this grammar is SLR(1) or not.

$$S \rightarrow L = R$$

 $S \rightarrow R$
 $L \rightarrow *R$
 $L \rightarrow id$
 $R \rightarrow L$

SLR (1) PARSING TABLE

LR (1) Items

An LR(1) item has the form [I, t] where I is an LR(0) item and t is a lookahead token.

As the dot moves through the right-hand side of I, token t remains attached to it. LR(1) item $[A \rightarrow \alpha \cdot, t]$ calls for a reduce action when the lookahead is t.

CANONICALLR(1) PARSER

Canonical LR Parsing

Revised LR (0) items needs to add a terminal symbol as a second component (look ahead symbol)

The general form of the item becomes

$$[A \rightarrow \alpha.\beta, a]$$

which is called LR(1) item.

Closure Operation

repeat

```
for each item [A \rightarrow \alpha.B\beta, a] in I for each production B \rightarrow \gamma in G' and for each terminal b in First(\beta a) add item [B \rightarrow .\gamma, b] to I
```

until no more additions to I

Example

Construct the LR(1) collection of items for the following Grammar and design the CLR(1) parsing table and find out whether this grammar is CLR(1) or not.

$$A \rightarrow b$$

GOTO Graph

0S' -> S 1S -> AA 2A -> aA 3A -> b

innovate	achieve

BLANK	CELLS	ARE	ERROR		
ENTRIES					

	ACTION			GOTO	
	a	b	\$	S	A
0	S3	S4		1	2
1			accept		
2	S6	S7			5
3	S3	S4			8
4	R3	R3			
5			R1		
6	S6	S7			9
7			R3		
8	R2	R2			
9			R2		

A -> aA., \$

⁹CLR (1) PARSING TABLE

$$0S' -> S$$

$$1S \rightarrow AA$$

$$2A \rightarrow aA$$

$$3A \rightarrow b$$