Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/002583

International filing date: 18 February 2005 (18.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-044198

Filing date: 20 February 2004 (20.02.2004)

Date of receipt at the International Bureau: 14 April 2005 (14.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

21.02.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2004年 2月20日

出 願 番 号 Application Number:

特願2004-044198

[ST. 10/C]:

[JP2004-044198]

出 願 人 Applicant(s):

HOYA株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 3月31日

ページ:

特許願 【書類名】 03P36006 【整理番号】 平成16年 2月20日 【提出日】 特許庁長官殿 【あて先】 B24B 13/00 【国際特許分類】 B23Q 3/18 【発明者】 東京都新宿区中落合二丁目7番5号 HOYA株式会社内 【住所又は居所】 川久保 淳 【氏名】 【発明者】 東京都新宿区中落合二丁目7番5号 HOYA株式会社内 【住所又は居所】 安中 聡 【氏名】 【特許出願人】 000113263 【識別番号】 HOYA株式会社 【氏名又は名称】 【代理人】 100064621 【識別番号】 【弁理士】 山川 政樹 【氏名又は名称】 03-3580-0961 【電話番号】 【手数料の表示】 【予納台帳番号】 006194 21,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】

図面 1

要約書 1

9717891

【物件名】

【物件名】

【包括委任状番号】

【書類名】特許請求の範囲

【請求項1】

光学レンズとレンズ保持具との間に溶融した接合剤を介在させて冷却固化させることに より、前記光学レンズを前記レンズ保持具に固定する光学レンズのブロッキング装置にお いて、

前記光学レンズがその凹面を上にして載置される載置台と、

前記光学レンズの幾何学中心を前記載置台の中心に一致させるセンタリング機構と、

前記光学レンズの凹面に前記接合剤を滴下させる滴下装置と、

前記光学レンズを前記レンズ保持具のブロック位置に移動させる移動装置とを備えたこ とを特徴とする光学レンズのブロッキング装置。

【請求項2】

請求項1記載の光学レンズのブロッキング装置において、

センタリング機構は、載置台の周囲に該載置台の径方向および周方向に移動自在に設け られ光学レンズのコバ面を押圧する複数本のピンを備え、これらのピンの上端に前記光学 レンズの凹面側外周縁をブロック位置に係止する係止部を設けたことを特徴とする光学レ ンズのブロッキング装置。

【請求項3】

請求項1記載の光学レンズのブロッキング装置において、

センタリング機構は、載置台を取り囲むクランプベースと、このクランプベース内に回 転自在に組み込まれた回転ベースと、この回転ベースを回動させる駆動装置と、前記クラ ンプベースに突設した固定軸に回動自在に設けられた複数個のクランプ板と、前記回転べ ース上に突設され前記各クランプ板に設けた長孔に摺動自在に挿通された移動軸と、前記 各クランプ板の先端部にそれぞれ立設され光学レンズのコバ面を押圧する複数本のピンを 備えていることを特徴とする光学レンズのブロッキング装置。

【請求項4】

請求項1,2,3のうちのいずれか1つに記載の光学レンズのブロッキング装置におい て、

載置台を上昇させ光学レンズをピンに沿ってブロック位置に移動させる駆動装置を備え

前記載置台を揺動機構によって揺動自在に支持したことを特徴とする光学レンズのブロ ッキング装置。

【書類名】明細書

【発明の名称】光学レンズのブロッキング装置

【技術分野】

[0001]

本発明は、光学レンズのブロッキング装置に関するものである。

【背景技術】

[0002]

従来、凸面が未加工な円形のレンズ基材(以下、レンズブランクスと称する)から眼鏡レンズを製造する場合、数値制御の研削機(例えば、LOH社製の汎用の研磨装置 TOROIX2SL)によってレンズブランクスの凸面を所定の面形状に切削または研削することにより、砂かけ代や研磨代を見込んだ仕上げ寸法よりも僅かに厚い肉厚とし、さらに凸面を研磨装置によって所定の曲面に研磨することによって製作している。

[0003]

レンズブランクスの切削工程や研磨工程において、レンズブランクスの非研磨面をレンズ保持具(以下、ヤトイと称する)に接合剤によって固定し、ヤトイを研磨装置に取付けるようにしている(例えば、特許文献 1 参照)。ここでは、ヤトイにレンズブランクスを接合剤を介して固定することをブロッキングまたはブロックと呼ぶ。また、このようなブロッキング装置としては、例えばLOH社製のレイアウトブロッカーと呼ばれる装置が知られている。

[0004]

レンズブランクスのブロッキングに用いられる接合剤としては、一般に低融点合金またはワックスが用いられる。レンズブランクスのブロッキングに際しては、図13に示すようにレンズブランクス1をヤトイ2の上方にブロッキングリング3を介して配置し、レンズブランクス1、ヤトイ2およびブロッキングリング3とによって囲まれた空間に溶融した接合剤4を流し込んで冷却固化させることにより、レンズブランクス1をヤトイ2に固定するようにしている(例えば、特許文献2参照)。なお、図中の符号5は基台である。

[0005]

レンズブランクス1をヤトイ2によってブロックする際には、レンズブランクス1とヤトイ2の中心を正確に一致させる必要がある。このため、レンズブランクス1をクランプして芯出しを行う(例えば、特許文献3,4参照)。また、レンズブランクス1の種類に対応させて各種のヤトイ2とブロッキングリング3を用意しておき、ブロック時にレンズブランクス1に対応するヤトイ2とブロッキングリング3を選択して使用することにより接合剤4の中心肉厚を所定の厚さになるようにしている(例えば、特許文献2参照)。

【特許文献1】米国特許5,421,770号

【特許文献2】特願2002-138105号

【特許文献3】特開平09-290340号公報

【特許文献4】特開平11-325828号公報

[0006]

特開平 0 9 - 2 9 0 3 4 0 号公報に記載されている円形体の芯出し装置は、円形体(レンズ)の外周を基準として機械的に芯出しを行う装置で、外周に円形状のカム面を有してベース部材の一側に突出して設けられる案内部と、この案内部の前記カム面の外周に等角に接して配置された 3 個のローラと、前記案内部の外側に配置され前記ローラを支持する回転可能なリング部材と、前記ベース部材における前記リング部材の外側の等角な位置に支点を有し先端に前記円形体の外周を把持する 3 つのレバー部材と、これらのレバー部材の把持部を前記各ローラにそれぞれ押圧するレバー部材付勢手段と、前記リング部材を前記レバー部材の把持部が前記ローラを介して内側に移動する方向に回動するように付勢するリング部材付勢手段と、前記リング部材を前記レバー部材の把持部が前記円形体から離間する位置に位置させる把持部開放手段とを備えている。

[0007]

前記特開平11-325828号公報は、凹面レンズまたは凹面鏡等の凹面をもつ工学

部材に凹面の中心位置と光学部品の外形の中心位置を求める測定方法および装置に関する もので、光学部品の凹面の周縁を切削して平面を形成し、この平面で囲まれた円上の少な くとも3点の座標を微分干渉顕微鏡と、移動台の移動量を測定する測距装置とによって測 定し、この座標から円の中心位置を算出し、この算出した中心位置を凹面の中心位置と定 めている。

【発明の開示】

【発明が解決しようとする課題】

[0008]

しかしながら、上記した特開平09-290340号公報に記載されている円形体の芯 出し装置は、カム面を有する案内部やローラを必要とするため、構造が複雑で部品点数が 多く、製造コストが高くなるという問題があり、実用的ではない。

[0009]

前記特開平11-325828号公報に記載された凹面の中心位置測定方法、偏心量測 定方法および測定装置は、光学部品が載置される移動台を互いに直交する方向に移動する X移動台とY移動台とで構成し、これら移動台の移動量を測距装置によって測定し、この 測距装置から発信される前記各移動台の移動量に対応した信号を演算装置によって演算処 理することにより、光学部品の中心位置、偏心方向を求めるようにしているため、装置自 体が高価になるという問題があった。

[0010]

したがって、安価な芯出し(センタリング)機構の開発が要望されている。

[0011]

また、レンズブランクスのブロッキングに際しては、レンズブランクスをそのブロック される面(被ブロッキング面)を上にして基台等に載置したとき、外周面の厚さ(コバ厚) によってブロッキングされる光学面の高さが変化するため、レンズブランクス 1 の厚さ に応じたブロッキングリング3を必要とする。このため、ブロッキングリング3の種類が 多く、その保管、管理が煩雑になるという問題があった。

[0012]

本発明は上記したような従来の問題を解決するためになされたもので、その目的とする ところは、ブロッキングリングを必要とせず、またコバ厚が異なる光学レンズを所定のブ ロック位置に確実に移動させることができるようにした光学レンズのブロッキング装置を 提供することにある。

また、本発明は簡易なセンタリング装置を備えた光学レンズのブロッキング装置を提供 することにある。

【課題を解決するための手段】

$[0\ 0\ 1\ 3]$

上記目的を達成するために第1の発明は、光学レンズとレンズ保持具との間に溶融した 接合剤を介在させて冷却固化させることにより、前記光学レンズを前記レンズ保持具に固 定する光学レンズのブロッキング装置において、前記光学レンズがその凹面を上にして載 置される載置台と、前記光学レンズの幾何学中心を前記載置台の中心に一致させるセンタ リング機構と、前記光学レンズの凹面に前記接合剤を滴下させる滴下装置と、前記光学レ ンズを前記レンズ保持具のブロック位置に移動させる移動装置とを備えたものである。

[0014]

第2の発明は、上記第1の発明において、センタリング機構は、載置台の周囲に該載置 台の径方向および周方向に移動自在に設けられ光学レンズのコバ面を押圧する複数本のピ ンを備え、これらのピンの上端に前記光学レンズの凹面側外周縁をブロック位置に係止す。 る係止部を設けたものである。

[0015]

第3の発明は、上記第1の発明において、センタリング機構は、載置台を取り囲むクラ ンプベースと、このクランプベース内に回転自在に組み込まれた回転ベースと、この回転 ベースを回動させる駆動装置と、前記クランプベース上に突設した固定軸に回動自在に設

けられた複数個のクランプ板と、前記回転ベース上に突設され前記各クランプ板に設けた 長孔に摺動自在に挿通された移動軸と、前記各クランプ板の先端部にそれぞれ立設され光 学レンズのコバ面を押圧する複数本のピンを備えているものである。

[0.016]

第4の発明は、上記第1、第2、第3の発明のうちのいずれか1つにおいて、載置台を 上昇させ光学レンズをピンに沿ってブロック位置に移動させる駆動装置を備え、前記載置 台を揺動機構によって揺動自在に支持したものである。

【発明の効果】

[0017]

第1の発明においては、光学レンズをブロック位置に移動させる移動装置を備えている ので、コバ厚が異なる各種の光学レンズをブロック位置に確実に移動させることができ、 レンズ保持具によるブロッキングを可能にする。

また、滴下手段によって接合剤をレンズ凹面上に滴下させているので、ブロッキングリ ングを用いる必要がなく、接合剤の供給量を正確に制御することが可能である。

[0018]

第2、第3の発明においては、部品点数が少なく簡素なセンタリング機構を得ることが できる。

[0019]

第4の発明においては、載置台が揺動機構によって傾動するため、コバ厚が周方向にお いて異なる光学レンズであっても凹面側を水平な状態に維持することができ、凹面に滴下 された接合剤が流れ落ちるのを防止することができる。

【発明を実施するための最良の形態】

[0020]

以下、本発明を図面に示す実施の形態に基づいて詳細に説明する。

図1はレンズブランクスをヤトイによってブロックした状態を示す図、図2は本発明に 係るブロッキング装置の要部の外観斜視図、図3は同装置のセンタリング機構部の斜視図 図4は同センタリング機構部の断面図、図5はレンズブランクスをブロック位置に係止 した状態を示す図、図6は滴下装置を示す図、図7は歯車ポンプの内部を示す図、図8は ワックスの滴下量とパルス数との関係を示す図である。

[0021]

図1において、1はレンズブランクス、2はレンズ保持具としてのヤトイ、4はレンズ ブランクス1とヤトイ2を一体的に接合するための接合剤、6は保護フィルムである。レ ンズブランクス1は、プラスチック製のセミフィニッシュレンズで、例えばジエチレング リコールビスアリルカーボネート系樹脂(屈折率=1.50)、ウレタン系樹脂やエピチ オ系樹脂(屈折率=1.55~1.75)等によって製作されている。レンズブランクス 1の凹面 1 a は所定の曲率半径に加工されており、所定の光学面に仕上げられており、前 記ヤトイ2によってブロックされる面である。一方、凸面1 b は本発明によるブロッキン グ装置によってレンズブランクス1をブロックした後、研磨加工機によって研磨される面 である。レンズブランクス1の種類としては、大きさによって分類すると、外径(LDb) が例えば80,75,70,65mmの4種類がある。

[0022]

前記レンズブランクス1をブロックする前記ヤトイ2は、最大外径(YDh)がレンズ ブランクス1の外径(LDb)より小さい円板部2A(アルミニウム)と、この円板部2 Aの背面中央に一体に突設された環状の突起部2B(SUS303)とで構成されている 。円板部2Aの前面2aは、レンズブランクス1をブロックする面(以下、ブロッキング 面という)で、レンズブランクス1の凹面1aの曲率半径(R)と略同一または近似した 曲率半径(Ch)の凸面に形成されており、アルマイト処理によって表面に薄い酸化皮膜 が形成されている。また、本実施の形態においてはアルマイトによる酸化被膜の細孔を利 用してブロッキング面2aを着色している。円板部2Aの背面2bは、ヤトイ2を研磨装 置や切削装置に装着するときの基準面を形成しており、突起部2Bが研磨装置や切削装置

のチャック部に嵌合する嵌合部を形成している。このようなヤトイ2は、レンズブランクス1の種類に対応させて複数種用意される。なお、ヤトイ2のブロッキング面2aをレンズブランクス1の凹面1aの形状と略一致させると、レンズブランクス1の凹面1aとブロッキング面2aの間隔を全面にわたって略一定にすることができるため、接合剤4の使用量を適正な量にすることができ、また接合剤4の冷却時間を短縮できる。

[0023]

【0024】 【表1】

	ヤトイ外径 (mm)			
曲率半径mm(設定色)	φ80	φ75	φ70	φ65
R162 (緑)	0	0	0	0
R105(青)	0	0	0	0
R 7 6 (赤)	0	0 -	0	0
R 6 1 (橙)	×	0	Ο.	.0
R 5 5 (白)	×	×	×	0

注:○設定あり ×設定なし

[0025]

[0026]

前記レンズブランクス1をヤトイ2によってブロックする際は、通常保護フィルム6を介してブロックする。保護フィルム6は、研磨加工時に凹面1aに傷がつくのを防止するとともに、ワックス4の除去を容易にするために用いられるもので、表面層、中間層、粘着層の3層構造から構成されており、表面層および中間層はポリエチレン、粘着層はポリオレフィンからなり、それぞれの層の厚みは表面層が10 μ m、中間層が85 μ m、粘着層が25 μ m程度である。保護フィルム6の物性は、常温でフィルム状の固体であり、融点は110~130 $\,^{\circ}$ 、比重0.9~1.0である。また、保護フィルム6のその他の例としては、ポリエチレンよりなる基材層と、ポリオレフィンよりなる粘着層の2層構造であってもよい。その物性は常温でフィルム状の固体であり、融点は110~130 $\,^{\circ}$ 、比重0.9~1.0である。

[0027]

図2において、全体を符号10で示すブロッキング装置は、前記レンズブランクス1を ヤトイ2によってブロックさせる装置を示し、このブロッキング装置10は、レンズブラ ンクス1が凹面1aを上に向けて載置される載置台11と、レンズブランクス1をセンタ リング位置 H_1 からブロック位置 H_2 (図 5)に移動させる移動装置 1 2 (図 4)と、レ ンズブランクス1を芯出しするセンタリング機構13と、レンズブランクス1にワックス 4を滴下する滴下装置14と、ブロック時にレンズブランクス1とヤトイ2の間隔を所定 の間隔に設定する間隔設定機構15と、装置全体を制御する図示を省略した制御部等を備 えている。

[0028]

図4において、前記載置台11は、上下動自在な支持軸17の上端に取付けられ、上面 に〇リング18を介してバッド19が載置されている。パッド19は、センタリング時の レンズブランクス1の移動を容易にするために用いられる。また、載置台11は、各種の レンズブランクス1に対して対応し得るように支持軸17に対して揺動機構20によって 全方向に揺動自在(首振り自在)に取付けられている。このため、レンズブランクス1が 極端なプリズム形状でコバ厚が周方向において異なるものであっても、揺動機構20によ って載置台11が水平面に対して傾動することにより、後述する3本のクランプピン31 の係止部下面にレンズブランクス1の凹面側外周縁を突き当ててレンズブランクス1の凹 面を水平に保持することができる。なお、載置台11は、支持軸17の上端に揺動自在に 取付けられ、支持軸17の周囲に配置した複数個の引張りコイルばね21によって下方に 付勢されている。

[0029]

前記レンズブランクス1をセンタリング位置 H_1 からブロック位置 H_2 に移動させる前 記移動装置12は、スライド板22の下面にブラケット23を介して上向きに取付けられ たスピードコントローラ24付きのエアシリンダからなり、上端部がスライド板22に設 けた挿通孔25を貫通して上方に延在し、作動ロッド26によって前記支持軸17を上下 動させるように構成されている。前記スライド板22は、図示を省略したシリンダー等の 駆動装置によって前記ブロック位置H2 とワックス4の滴下位置H3 (図2)間を往復移 動されるように構成されている。センタリング位置 H1は、前記センタリング機構 13に よってレンズブランクス1を芯出しする位置であって、図2において前記滴下装置14の 右方で、かつ間隔設定機構15より前方の位置であって、載置台11の上面位置である。 ブロック位置 H_2 は、センタリング位置 H_1 の上方位置であって、レンズブランクス1の 凹面側外周縁が前記クランプピン31の係止部31Aによって係止される位置である。ブ ロック位置 H_2 をセンタリング位置 H_1 より上方に設けた理由は、コバ厚1 c が異なる各 種のレンズブランクス1であっても、ブロック時における凹面1aの外周縁を所定の高さ 位置に位置決めすることができるようにするためである。滴下位置H3 は、滴下装置14 によってワックス4をレンズブランクス1の凹面1aに滴下する位置で、ブロック位置H 2 の左方でかつ同一高さ位置である。

[0030]

図3および図4において、前記センタリング機構13は、レンズブランクス1のセンタ リングを行い、その幾何学中心を前記載置台11の中心に一致させる機構で、載置台11 の周囲に配置された3本のクランプ板30と、各クランプ板30にそれぞれ立設した前記 ピン(以下、クランプピンという)31とを備えている。前記クランプ板30は、基端が クランプベース33の上面に立設した固定軸34によってクランプベース33の半径方向 に回動自在に軸支され、先端部に前記クランプピン31が立設されている。

前記クランプピン31は全て同一長さで、上端には図5に示すように係止部31Aが一 体に突設されている。係止部 3 1 A は鍔状に形成され、その下面がレンズブランクス1の 凹面1a側外周縁を受け止めレンズブランクス1の上昇限を規定しており、この係止部3 1 Aの下面の高さ位置がヤトイ2によってレンズブランクス1をブロックするときのブロ ック位置 H2 である。

[0032]

前記クランプベース33は円筒状に形成され、前記スライド板22の上面中央に突設し た複数本の支柱35上に固定されており、内側に回転ベース36がベアリング37を介し て回転自在に組み込まれている。前記各クランプ板30の基端部を軸支する3本の固定軸 34は、クランプベース30の周方向に等間隔をおいて設けられている。

[0033]

前記回転ベース36は、前記載置台11の支持軸17が貫通する貫通孔38を有する円 筒体に形成され、前記スライド板22上に設置したエアシリンダ39によって所定角度往 復回動するように構成されている。前記エアシリンダ39は、直動型のエアシリンダでは あるが、ロッド40の直線往復運動を円運動に変換し、その円運動をシャフト41を介し て前記回転ベース36に伝達するように構成されている。

[0034]

前記回転ベース36の上面には、3本の移動軸44が周方向に等間隔をおいて立設され ており、これらの移動軸44は前記各クランプ板30の中央に形成した長孔43を摺動自 在に貫通して上方に突出している。したがって、レンズブランクス1のセンタリング時に エアシリンダ39によって回転ベース36を図3において矢印A方向に回動させると、各 クランプ板30は固定軸34を回動中心として閉じ方向(矢印B方向)に同一角度回動し 、クランプピン31によるレンズブランクス1のセンタリングを行なわせる。すなわち、 回転ベース36が矢印A方向に回動すると、移動軸44は長孔43内を固定軸34から遠 のく方向に移動するため、クランプ板30を矢印B方向に回動させる。これによりクラン プピン31も矢印B方向に移動してレンズブランクス1のコバ面1 c に当たるため、その 幾何学中心が載置台11の中心から偏心している場合はレンズブランクス1を偏心方向と は反対方向に移動させ、レンズブランクス1の幾何学中心を載置台11の中心に一致させ る。反対に回転ベース36が矢印C方向に回動すると、各クランプ板30は開き方向(矢 印D方向)に同一角度回動し、クランプピン31をレンズブランクス1から離間させる。

[0035]

前記クランプベース30の上面にはさらに3つの位置決めブロック50が前記各クラン プ板30の前方に位置するように、かつクランプ板30と略直交するように設けられてい る。この位置決めブロック50は、水平アーム部50Aと、脚部50Bとからなる逆L字 状に形成され、水平アーム部50Aが回転ベース36の中心方向に延在して対応するクラ ンプ板30の前方に位置し、脚部50Bが前記クランプベース30の上面に固定されてい る。前記各クランプ板30の先端部には、前記回転ベース36と前記位置決めブロック5 0の水平アーム部50Aとの間に介在されるベアリング51 (図3)が取付けられている 。ベアリング51は、前記固定軸34とともにクランプ板30を両端支持構造とし、レン ズブランクス1を載置台11とともに上昇させてクランプピン31の係止部31Aの下面 に押し付けたとき、位置決めブロック50の水平アーム部50Aの下面に押し付けられ、 これによってクランプ板30の浮き上がりを防止している。

[0036]

図6において、レンズブランクス1の凹面1a上にワックス4を滴下させる前記滴下装 置14は、ワックス4を収納するタンク61と、ワックス4をレンズブランクス1に滴下 させるノズル62と、前記タンク61とノズル62を接続するパイプ63と、前記タンク 61からワックス4を間欠的に定量送り出すポンプ64と、ポンプ64を駆動するステッ ピングモータ65と、前記ノズル62を開閉する滴下弁66と、前記タンク61およびパ イプ63を加熱する加熱ヒーター67、68と、前記滴下弁66を開閉させるスピードコ ントローラ付きのエアシリンダ69等で構成されている。

[0037]

前記ワックス4は固体の状態でタンク61に投入され、加熱ヒータ67によって加熱溶 融される。タンク61内の温度は、温度調節器によって制御される。温度調節器は、タイ マースイッチによって設定した時間に自動的にオン、オフする。タンク61の加熱ヒータ -67は、ワックス4を固体状態から70℃まで加熱して溶融させるまでに2時間要する

が、タイマーの使用によって予め溶解しておくことにより作業開始時に溶解を待たずにレ ンズブランクス1のブロック作業を開始することができる。滴下装置14の溶融物質使用 可能温度は、 $0 \sim 1 \ 2 \ 0$ \mathbb{C} であるが、ワックス 4 の溶融温度は $6 \ 8 \sim 7 \ 2$ \mathbb{C} が好適である 。また、いずれの温度においても、一定温度に保持することが好ましい。タンク61内の 溶融したワックス4はポンプ64によって排出口70より一定量ずつ間欠的にパイプ63 に送り出される。ポンプ64としては、図7に示すように互いに噛合する2つの歯車71 a,71bを用いた周知の歯車ポンプが用いられる。このような歯車ポンプ64は、粘性 が高いワックス4を一定量ずつ円滑かつ確実に供給することができ好適である。歯車ポン プ64によって送り出されるワックス4の量は、ステッピングモータ65に加えられるパ ルス数を変えることによって正確に制御される。

[0038]

図8は、ステッピングモータ65に加えられる駆動用のパルス数とワックス4の滴下量 との関係を示す図である。この図から明らかなようにワックス4の滴下量は、パルス数に 対してきわめて高い直線性を示している。

[0039]

ワックス4の滴下量の制御は、図13に示した従来のブロッキングリング3を必要とし ない滴下装置14を実現するうえで重要な要素であり、滴下量を正確に制御することがで きないと、多すぎてレンズブランクス1の凹面1aからワックス4が溢れたり、少なすぎ てブロックの保持力低下などの問題を生じるが、本発明においては滴下装置14によって 高精度に制御することができるため、そのような問題が生じることがなく、各種のレンズ ブランクス1に応じて最適な量のワックス4を滴下することが可能である。

[0040]

タンク61の容量は10.56リットル(横440×奥行240×高さ100mm)、 タンク61の加熱ヒーター67は、100V、300W、パイプ63の加熱ヒータ68は 100V、17Wである。ノズル62の開口部の直径は3mm、ノズル62を開閉させ る滴下弁66はSMC製のピンシリンダー(CDJPL10-5D-97LS)が用いら れる。

[0041]

再び図2において、前記ヤトイ2を上下動させレンズブランクス1との間隔を所定の間 隔に設定する前記間隔設定機構15は、前記センタリング機構13の後方に設けられてお り、前記ヤトイ2を保持する保持アーム80と、この保持アーム80を上下動自在に支持 するボールねじ81と、このボールねじ81を回転させる図示を省略したステッピングモ ータ等で構成されている。保持アーム80の先端部は、前記載置台11の上方に延在し、 下面に前記ヤトイ2を着脱可能に保持する図示を省略したバキュームチャックが設けられ ている。バキュームチャックの中心は、載置台11の中心と一致している。保持アーム8 0は、ボールねじ81の回転によって上下動され、ブロック時に下降してヤトイ2をレン ズブランクス1上に滴下されているワックス4に押し付ける。このため、ワックス4は広 がってヤトイ2のブロック面2 a 全体に広がり、ヤトイ2によるレンズブランクス1のブ ロッキングを可能する。ヤトイ2の下降量は、レンズブランクス1の凹面1aの外周縁が 当接するクランプピン31の係止部31Aの下面を基準高さ(ブロック位置H2 の高さ) としてステッピングモータに加えられるパルス数によって正確に制御され、レンズブラン クス1とヤトイ2との間に所定の間隔 d、言い換えればワックス4の端部厚さを所定の厚 さになるように設定する。具体的には、前記隙間 d およびワックス 4 の滴下量 Q を、ワッ クス4の拡がり後の端部における厚さTe、レンズブランクス1の凹面1aの曲率半径R 、外径LDb、ヤトイ2のコバ厚YH(図1、図5において円板部2Aの背面から凸面2 aの外周縁までの厚さ)、ヤトイ2の外径YDh、ヤトイ2の凸面2aの曲率半径Chの 少なくとも1つから算出する。

[0042]ここで、本発明においては、ブロック時のヤトイ2とレンズブランクス1の位置関係に ついて、「ヤトイコバ厚YH+ワックスの端部厚さTe」というパラメータを定義し、こ

れを7mmとした。またヤトイ2のコバ厚YHを4mmとすることにより、ワックス4の 端部厚さTeを3mmとした。具体的なデータは図示しない公知の受注データを管理する サーバーにリクエストを行い、サーバーから送られてくる各パラメータ値より次式によっ て算出される。

[0043]

ヤトイ2を下降させてレンズブランクス1上のワックス4を押圧し、その端部厚さTe を所定の厚さにするときのレンズブランクス1の凹面側外周縁とヤトイ2のブロッキング 面側外周縁の垂直方向の隙間 d は、次式(1)によって算出される。

[0044]

【数1】

$$d = -\sqrt{R^2 - \frac{L D b^2}{4}} + \sqrt{R^2 - \frac{Y D h^2}{4}} \qquad (1)$$

[0045]

ただし、Rはレンズブランクス1の凹面1aの曲率半径、LDbはレンズブランクス1 の外径、YDhはヤトイ2の外径である。

[0046]

一方、ヤトイ2のブロッキング面2aの外周縁の垂直方向の位置座標は、ヤトイ2の基 準面2bに対して一定値YH(コバ厚)となっている。したがって、ワックス4の端部厚 さがTe (本実施例では3mm)となるようにヤトイ2を制御する。すなわち、ヤトイ2 の基準面2bの高さが、ブロック位置H2の高さ(レンズブランクス1の凹面外周縁部が 当たるクランプピン31の係止部31Aの下面高さ)よりYH+dだけ上方に位置するよ うにヤトイ2を下降させる。

[0047]

レンズブランクス1に滴下されるワックス4の滴下量Qは、次式(2)によって算出さ れる。

[0048]

【数2】

$$Q = \pi \, \text{Te D h}^{2} + \pi \left[-\frac{1}{3} \left(R - \sqrt{R^{2} - D h^{2}} \right)^{3} + R \left(R - \sqrt{R^{2} - D h^{2}} \right)^{2} \right]$$

$$- \pi \left[-\frac{1}{3} \left(C h - \sqrt{C h^{2} - D h^{2}} \right)^{3} + C h \left(C h - \sqrt{C h^{2} - D h^{2}} \right)^{2} \right]$$

$$\cdot \cdot \cdot (2)^{3}$$

[0049]

ただし、Teはワックス4の端部厚さ、Cbはレンズブランクス1の凹面1a側の曲率 半径、Chはヤトイ2のブロッキング面(凸面)の曲率半径、2Dhはワックス4の拡が り後の外径である。

[0050]

また、レンズブランクス1に滴下されるワックス4の滴下量Qは、次式(3)によって も算出される。

[0051]

【数3】

$$Q = \pi \left(T c + \sqrt{R^2 - D h^2} - \sqrt{C h^2 - D h^2} \right) D h^2$$

$$+ \pi \left[-\frac{1}{3} \left(R - \sqrt{R^2 - D h^2} \right)^3 + R \left(R - \sqrt{R^2 - D h^2} \right)^2 \right]$$

$$- \pi \left[-\frac{1}{3} \left(C h - \sqrt{C h^2 - D h^2} \right)^3 + C h \left(C h - \sqrt{C h^2 - D h^2} \right)^2 \right] \cdot \cdot \cdot (3)$$

[0052]

ただし、Tcはワックス4の拡がり後における中心部の厚さ、2Dhはワックス4の広 がり後の外径、Chはヤトイ2のブロッキング面2aの曲率半径、Rはレンズブランクス 1の凹面の曲率半径である。

[0053]

ワックス4の滴下量Qが算出されると、制御部からそれに応じた所定のパルス数が歯車 ポンプ64の回転量を制御するステッピングモータ65に送られる。

[0054]

ブロッキング装置10の制御部は、ウインドーズ(2000)をOSとするパーソナル コンピュータが使用される。通信方式は、アークネット(ArcNet)通信ボードを介 してI/〇基板、モータコントローラを接続しセンタリング機構13、ワックス4の滴下 装置14および間隔設定機構15を制御する。

[0055]

次に、上記構造からなるブロッキング装置10によるレンズブランクス1のブロック動 作を主として図3、図9~図12に基づいて説明する。

先ず載置台11上にOリング18とパッド19を載置し(図3)、さらにその上にレン ズブランクス1をその凸面1bを下にして載置する(図9)。

[0056]

また、保持アーム80の先端部下面に前記レンズブランクス1に応じたヤトイ2をその ブロッキング面2aを下にして取付ける(図4)。

[0057]

次に、レンズブランクス1のセンタリングを行う。このセンタリング作業は、エアシリ ンダ39を駆動して回転ベース36を図3において矢印A方向に所定角度回動させること により、各クランプ板30を矢印Bで示す閉じ方向に回動させる。これにより、各クラン プピン31は回転ベース36の中心方向に移動してレンズブランクス1のコバ面1cを押 圧し、レンズブランクス1の幾何学中心を載置台11の中心と一致させる(図4)。

[0058]

レンズブランクス1のセンタリング作業が終了すると、レンズブランクス1をエアシリ ンダ12によって上昇させてブロック位置 H_2 に移動させる。すなわち、エアシリンダ12を駆動すると、支持軸17および載置台11は一体に上昇するため、レンズブランクス 1はクランプピン31に沿ってブロック位置H2 (図10)に上昇し、凹面1aの外周縁 がクランプピン31の係止部31Aの下面に押し付けられることにより固定される。

[0059]

次に、スライド板22をエアシリンダ等の駆動装置によってブロック位置H2から滴下 位置 H₃ (図2) に移動させて停止し、滴下装置 1-4 によってワックス 4 をレンズブラン クス1の凹面1aの中央に所定量滴下する。ワックス4の滴下は、図6に示すようにステ ッピングモータ65の駆動によって歯車ポンプ64を一定時間駆動することによりタンク 61から所定量のワックス4をパイプ63に押し出し、その押出圧力によってパイプ63 の先端部内に溜まっているワックス4をノズル62からレンズブランクス1の凹面1a上 に所定量滴下させることにより行われる。このとき、滴下弁66は歯車ポンプ64と同期

して動作しノズル62を開閉する。

[0060]

ワックス4の滴下が終了すると、スライド板22は滴下位置H3からブロック位置H2 に戻る。スライド板22をブロック位置H2 に復帰させると、間隔設定機構15が作動し てヤトイ2を保持している保持アーム80を所定量下降させ(図11)、ヤトイ2のブロ ッキング面2aをレンズブランクス1の凹面1aに滴下されているワックス4に押し付け て所定の厚さに拡げる(図12)。そして、この状態でワックス4を一定時間自然冷却ま たは強制冷却して固化させると、レンズブランクス1がヤトイ2にブロックされる。しか る後、各クランクピン31をレンズブランクス1から離し、保持アーム80を元の高さ位 置に上昇復帰させ、載置台11を下降させて元のセンタリング位置H1 に復帰させると、 レンズブランクス1のブロッキング作業を終了する。

[0061]

このように本発明においては、レンズブランクス1に応じてワックス4の滴下量Qを過 不足なく制御するとともに、レンズブランクス1の凹面1aとヤトイ2との間隔が所定の 間隔 d になるようにヤトイ2の下降量を制御するように構成したので、ワックス4の滴下 量Qが多すぎたり少なすぎたりすることがなく、ワックス4を所定の厚さに押し拡げるこ とができる。また、ブロック時にレンズブランクス1を上昇させてブロッキング位置H2 に移動させるようにしているので、コバ厚が異なる各種のレンズブランクス1であっても 凹面 1 a をブロッキング位置 H2 に確実に位置付けることができる。

また、センタリング機構13は、構成が簡単で部品点数が少なく、安価に製作すること ができる。

また、載置台11を揺動機構20によって揺動自在に支持しているので、コバ厚が周方 向において異なるレンズブランクスであっても、凹面1aを水平な状態にすることができ 、ワックス4の滴下時にワックス4が凹面1aから溢れ出るおそれがなく、確実にブロッ クすることができる。

さらに、ワックス4がレンズブランクス3の凹面1aから溢れ出すことがなければ、図 13に示した従来のブロッキングリング3を必要とせず、ブロッキングのための部品点数 を削減することができる。

[0062]

なお、上記した実施の形態においては、ポリエチレン系ワックスを用いたが、その他パ ラフィン系ワックス、マイクロクリスタリン系ワックス、フィッシャー・トロプシュ系ワ ックス、油脂系合成ワックス、その他常温で固体で加熱すれば比較的低粘度な液体となる ものであれば、本発明の接合剤として使用可能である。また、ワックスに限らず低融点合 金を用いてもよい。

さらに、本発明は上記した実施の形態に限定されるものではなく、種々の変形、変更が 可能である。

【図面の簡単な説明】

[0063]

- 【図1】レンズブランクスをヤトイによってブロックした状態を示す図である。
- 【図2】本発明に係るブロッキング装置の要部の外観斜視図である。
- 【図3】同装置のセンタリング機構部の斜視図である。
- 【図4】同センタリング機構部の断面図である。
- 【図5】レンズブランクスをブロック位置に係止した状態を示す図である。
- 【図6】滴下装置を示す図である。
- 【図7】歯車ポンプの内部を示す図である。
- 【図8】ワックスの滴下量とパルス数との関係を示す図である。
- 【図9】レンズブランクスのブロック動作を説明するための図である。
- 【図10】レンズブランクスのブロック動作を説明するための図である。
- 【図11】レンズブランクスのブロック動作を説明するための図である。
- 【図12】レンズブランクスのブロック動作を説明するための図である。

【図13】ブロッキングリングを用いてレンズブランクスをブロックするときの従来 例を示す断面図である。

【符号の説明】

[0064]

1…レンズブランクス、2…ヤトイ、3…ワックス、10…ブロッキング装置、11…載 置台、12…移動装置、13…センタリング機構、14…滴下装置、15…間隔設定機構 、20…揺動機構、30…クランプ板、31…クランプピン、31A…係止部、33…ク ランプベース、34…固定軸、36…回転ベース36、40…センタリング機構、43… 長孔、44…移動軸、45…クランプピン、62…ノズル、64…歯車ポンプ、65…ス テッピングモータ、H1 …センタリング位置、H2 …ブロック位置、H3 …滴下位置。

【書類名】図面 【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図12】

【図13】

【書類名】要約書

【要約】

【課題】ブロッキングリングを必要とせず、またコバ厚が異なる光学レンズを所定のブロック位置に確実に移動させることができるようにするとともに、簡易なセンタリング機構を備えた光学レンズのブロッキング装置を提供することを目的とする。

【選択図】 図4

特願2004-044198

出願人履歴情報

識別番号

[000113263]

1. 変更年月日 [変更理由] 住 所

氏 名

2002年12月10日

名称変更

東京都新宿区中落合2丁目7番5号

HOYA株式会社