Структурна теорія цифрових автоматів Лабораторна робота №5

Тема: Проектування і дослідження суматорів

Куценко Євгеній, ІПС-31

Варіант: 11

1

Робота однорозрядного повного суматора може бути описана наступною таблицею:

x_i	y_i	z_i	s_i	p_i
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

МДНФ:

$$s_i = x_i y_i z_i \vee x_i \overline{y_i z_i} \vee \overline{x_i y_i} z_i \vee \overline{x_i} y_i \overline{z_i}$$

$$p_i = x_i y_i \vee x_i z_i \vee y_i z_i$$

$MKH\Phi$:

$$s_i = (x_i \vee y_i \vee z_i) \cdot (\overline{x_i} \vee y_i \vee \overline{z_i}) \cdot (x_i \vee \overline{y_i} \vee \overline{z_i}) \cdot (\overline{x_i} \vee \overline{y_i} \vee z_i)$$

$$p_i = (x_i \vee y_i) \cdot (x_i \vee z_i) \cdot (y_i \vee z_i)$$

Побудуємо операторні форми та відповідні схеми на різних типах елементів:

1. I-HI

$$s_{i} = x_{i}y_{i}z_{i} \lor x_{i}\overline{y_{i}}\overline{z_{i}} \lor \overline{x_{i}}y_{i}\overline{z_{i}} = \overline{x_{i}y_{i}z_{i} \lor x_{i}\overline{y_{i}}\overline{z_{i}} \lor \overline{x_{i}y_{i}}z_{i} \lor \overline{x_{i}}y_{i}\overline{z_{i}}} = \overline{(x_{i}y_{i}z_{i}) \cdot (x_{i}\overline{y_{i}}\overline{z_{i}}) \cdot (\overline{x_{i}}\overline{y_{i}}\overline{z_{i}}) \cdot (\overline{x_{i}}y_{i}\overline{z_{i}})}} = \overline{(x_{i}y_{i}) \cdot (x_{i}\overline{y_{i}}\overline{z_{i}}) \cdot (\overline{x_{i}}\overline{y_{i}}\overline{z_{i}})}} = \overline{(x_{i}y_{i}) \cdot (x_{i}z_{i}) \cdot (y_{i}z_{i})}} = \overline{(x_{i}y_{i}) \cdot (x_{i}z_{i}) \cdot (y_{i}z_{i})}}$$

Рис. 1

$$M = 8 + 3 + 1 = 12$$

 $K = 8 \cdot 3 + 3 \cdot 2 + 4 \cdot 1 = 24 + 6 + 4 = 34$

2. АБО-НІ

$$s_{i} = (x_{i} \vee y_{i} \vee z_{i}) \cdot (\overline{x_{i}} \vee y_{i} \vee \overline{z_{i}}) \cdot (x_{i} \vee \overline{y_{i}} \vee \overline{z_{i}}) \cdot (\overline{x_{i}} \vee \overline{y_{i}} \vee z_{i}) =$$

$$= \overline{(x_{i} \vee y_{i} \vee z_{i}) \cdot (\overline{x_{i}} \vee y_{i} \vee \overline{z_{i}}) \cdot (x_{i} \vee \overline{y_{i}} \vee \overline{z_{i}}) \cdot (\overline{x_{i}} \vee \overline{y_{i}} \vee z_{i})} =$$

$$= \overline{(x_{i} \vee y_{i} \vee z_{i}) \vee (\overline{x_{i}} \vee y_{i} \vee \overline{z_{i}}) \vee (\overline{x_{i}} \vee \overline{y_{i}} \vee \overline{z_{i}}) \vee (\overline{x_{i}} \vee \overline{y_{i}} \vee z_{i})} =$$

$$= \overline{(x_{i} \vee y_{i}) \cdot (x_{i} \vee z_{i}) \cdot (y_{i} \vee z_{i})} =$$

$$= \overline{(x_{i} \vee y_{i}) \vee (\overline{x_{i}} \vee z_{i}) \vee (\overline{y_{i}} \vee z_{i})} =$$

$$= \overline{(x_{i} \vee y_{i}) \vee (\overline{x_{i}} \vee z_{i}) \vee (\overline{y_{i}} \vee z_{i})} =$$

Рис. 2

$$M = 8 + 3 + 1 = 12$$

 $K = 8 \cdot 3 + 3 \cdot 2 + 4 \cdot 1 = 24 + 6 + 4 = 34$

3. АБО-І-НІ

$$s_{i} = x_{i}y_{i}z_{i} \vee x_{i}\overline{y_{i}z_{i}} \vee \overline{x_{i}y_{i}}z_{i} \vee \overline{x_{i}}y_{i}\overline{z_{i}}$$

$$= \overline{x_{i}y_{i}z_{i} \vee x_{i}\overline{y_{i}z_{i}} \vee \overline{x_{i}y_{i}}z_{i} \vee \overline{x_{i}}y_{i}\overline{z_{i}}}$$

$$p_{i} = x_{i}y_{i} \vee x_{i}z_{i} \vee y_{i}z_{i} =$$

$$= \overline{x_{i}y_{i} \vee x_{i}z_{i} \vee y_{i}z_{i}}$$

Рис. 3

Рис. 4

$$M = 1 + 1 + 5 = 6$$

 $K = 1 \cdot 12 + 1 \cdot 6 + 5 \cdot 1 = 12 + 6 + 5 = 23$

ДДК згідно варіанту: 7, 4, 2, 1 Для того, щоб побудувати двоїсто-десятковий суматор для заданого ДДК, потрібно перетворити вхідний код на адативний ДДК 8, 4, 2, 1

d	c	b	a		F_8	F_4	F_2	F_1
7	4	2	_1	DEC	8	4	2	1
0	0	0	0	0	0	0	0	0
0	0	0	1	1 1	0	0	0	1
0	0	1	0	2	0	0	1	0
0	0	1	1	3	0	0	1	1
0	1	0	0	4	0	1	0	0
0	1	0	1	5	0	1	0	1
0	1	1	0	6	0	1	1	0
0	1	1	1	7	0	1	1	1
1	0	0	0	7	0	1	1	1
1	0	0	1	8	1	0	0	0
1	0	1	0	9	1	0	0	1
1	0	1	1	10	1	0	1	0
1	1	0	0	11	1	0	1	1
1	1	0	1	12	1	1	0	0
1	1	1	0	13	1	1	0	1
1	1	1	1	14	1	1	1	0

F_8		ba					
1	1'8		01	11	10		
	00	0	0	0	0		
dc			0	0	0		
3	11	1	1	1	1		
	10	0	1	1	1		

F_8	=	dc	\/	da	\/	db
1 X	_	uc	V	uu	V	uv

$oldsymbol{E}$		ba					
1	F_2		01	11	10		
00		0	0	1	1		
dc	p 01		0	1	1		
	11	1	0	1	0		
	10	1	0	1	0		

$$F_2 = ba \vee \overline{d}b \vee d\overline{ba}$$

E.		ba					
1	F_4		01	11	10		
	$\begin{array}{c c} & 00 \\ c & 01 \end{array}$		0	0	0		
dc			1	1	1		
	11	0	1	1	1		
	10	1	0	0	0		

$$F_4 = \overline{d}c \vee ca \vee cb \vee d\overline{cba}$$

F_1		ba					
		00	01	11	10		
00		0	1	1	0		
dc	01	0	1	1	0		
	11	1	0	0	1		
	10	1	0	0	1		

$$F_1 = \overline{d}a \vee d\overline{a}$$

Використаємо схеми з мультиплексорами (обчислення винесено в окремий файл). Зауваження: вважаємо, що початковий код подано у коректному двійково-десятковому форматі, тобто $x_{10} < 10$

	викл. змінні	f_0	f_1	f_2	f_4
F_8	c, b	da	d	d	d
F_4	d, a	c	c	$c \equiv b$	c
F_2	d, a	b	b	\overline{b}	b
F_1	d, c	a	a	\overline{a}	\overline{a}

Рис. 5