Leinster - Basic Category Theory - Selected problem solutions for Chapter 2

Adam Barber

November 18, 2021

2.1.16

(a) Interesting adjoint functors to G-sets.

The trivial group functor I sends a set to a **G**-set with the trivial action gx = x. Interesting functors

Orbit functor sends a G-set with underlying set elements a of A to:

$$A_G = \{g \cdot a, g \in G\}$$

Fixed point functor sends a G-set with underlying set elements a of A to:

$$A^G = \{a \text{ such that } g \cdot a = a \text{ for all } g \in G, a \in A\}$$

Fixed point functor - right adjoint Morphisms in a G-set are functions on the underlying set, where f commutes with g for every $g \in G$.

There is a bijection for each $A \in \mathbf{Set}$ and $B \in [G, \mathbf{Set}]$ as follows

$$[G,\mathbf{Set}](I(A),B) \to \mathbf{Set}(A,B^G)$$

 $\psi \mapsto \overline{\psi}$

 $\overline{\psi}$ sends each element a of A to $\psi(a)$ if $g \cdot a = a$, otherwise it sends a to $\psi(\emptyset)$.

$$\mathbf{Set}(A, B^G) \to [G, \mathbf{Set}](I(A), B)$$

 $\phi \mapsto \overline{\phi}$

 ϕ sends each $a\in A$ in the underlying set of the G-set to the G-set $(g,\overline{\phi}(a)),g\in G.$

Orbit functor - left adjoint There is a bijection for each $A \in [G, \mathbf{Set}]$ and $B \in \mathbf{Set}$ as follows

$$\mathbf{Set}(A_G, B) \to [G, \mathbf{Set}](A, I(B))$$
$$\psi \mapsto \overline{\psi}$$

So each morphism in **Set** sends the set formed by the orbits of an element a of A, call this a_G , to $\psi(a_G)$, where ψ is a function of sets. Choose a G-set morphism $\overline{\psi} = \psi$, where $\overline{\psi}$ commutes with g for every g in G.

$$[G, \mathbf{Set}](A, I(B)) \to \mathbf{Set}(A_G, B)$$

 $\phi \mapsto \overline{\phi}$

Choose $\overline{\phi}$ to be a disjoint union of each orbit of a in A, $\overline{\phi}(a) = \coprod \{\phi(q \cdot a), q \in G\}$

2.1.17

Write $\mathcal{O}(X)$ for the poset of open subsets of a topological space X ordered by inclusion.

$$\Delta : \mathbf{Set} \to [\mathcal{O}(X)^{op}, \mathbf{Set}]$$

Write \mathcal{P} for the presheaf functor category, and $P \in \mathcal{P}$ for the functor which maps $\mathcal{O}(X)^{op}$ to **Set**. Take open sets U, V, such that $U \subseteq V$ in X. A presheaf consists of

- restriction maps, $P(V) \to P(U)$, these are morphisms which enforce some sort of ordering of the mapped sets,
- and the actual mapped sets P(U), P(V) which are called sections.

Since the question specifies a constant presheaf, by definition, the restriction maps of ΔA are identity maps. And the sections are just the A. Specifically $\Delta A(U) = A$ for subsets U of X, and $\Delta A(\rightarrow) = 1_A$ for morphisms.

Write $\Gamma P = P(X)$ for the **global** sections functor which takes an element of \mathcal{P} to a **Set**.

We are required to show a bijection:

For A in **Set** and B in \mathcal{P}

$$\mathbf{Set}(A, \Gamma B) \to \mathcal{P}(\Delta A, B)$$

and

$$\mathcal{P}(\Delta A, B) \to \mathbf{Set}(A, \Gamma B)$$

The maps between the presheaf functors in \mathcal{P} are natural transformations. Natural transformations are a collection of maps α_A : $\{\Delta A(A) \to B(A)\}_{A \in \mathcal{A}}$. For $U \subseteq V \subseteq X$ we have the commuting square:

$$\Delta A(X) \xrightarrow{1_A} \Delta A(V) \xrightarrow{1_A} \Delta A(U)$$

$$\downarrow^{\alpha_X} \qquad \downarrow^{\alpha_V} \qquad \downarrow^{\alpha_U}$$

$$B(X) \xrightarrow{B(f)} B(V) \xrightarrow{B(f)} B(U)$$

$$(1)$$

Recall $\Delta A(\cdot) = A$. Then the morphism in **Set** is represented by α_X above. As visible from the figure above this corresponds one to one with each α_A in \mathcal{A} , so the bijection holds. Dually using the exact same reasoning Π , the left adjoint of Δ is the presheaf evaluation at the empty set, $\Pi(P) = P(\emptyset)$.

For the left adjoint to Π , Λ , and for A in **Set** and B in \mathcal{P} , we need to show a bijection between:

$$\mathcal{P}(\Lambda A, B) \leftrightarrow \mathbf{Set}(A, \Pi(B))$$

To try and cobble together a definition of the presheaf functor Λ , start with the naturality diagram representing morphisms in \mathcal{P} :

$$\Lambda(U) \xrightarrow{A(f)} \Lambda(\emptyset)
\downarrow^{\alpha_U} \qquad \downarrow^{\alpha_\emptyset}
B(U) \xrightarrow{B(f)} B(\emptyset)$$

Note that $\Pi(B) = B(\emptyset)$. Start by choosing $\Lambda(\emptyset) = A$, so the morphism in **Set** is α_{\emptyset} . Our choice of Λ needs to make this diagram commute for all U in $\mathcal{O}(X)^{op}$. For $U \neq \emptyset$ we could try $\Lambda(U) = A$, however to force the square above to commute with this choice, will impose some structure on the presheaf B. Rather, try setting $\Lambda(U) = \emptyset$ for $U \neq \emptyset$. Choosing the initial object \emptyset of $\mathcal{O}(X)^{op}$, means there is one map out of the top LHS of the square in the above diagram, and the square commutes as required.

We also have

$$\mathcal{P}(A, \nabla B) \leftrightarrow \mathbf{Set}(\Gamma A, B)$$

 ∇ , the right adjoint to Γ can be obtained dually, by swapping **Set** with **Set**^{op} and $\mathcal{O}(X)^{op}$ with $\mathcal{O}(X)$. This is simply a relabelling which has the effect of reversing the chain of adjoint functors stated in the question. We then apply analogous reasoning, take $\nabla(U) = \{*\}$, for $U \neq X$, and $\nabla(X) = B$.

2.2.11

The full subcategory where η_a is an isomorphism

2.2.13

(a) We have sets S, T, a function $f: S \to T$. P(S) denotes the set of all subsets of S. The functor f^* takes elements of T to their inverse under f. Looking for left and right adjoints of f^* . We can immediately see the left adjoint of f^* is f from below.

$$P(S)(A, f^{-1}(B)) \cong P(T)(f(A), B) \tag{2}$$

Now to find the right adjoint of f^* , G below:

$$P(T)(A, G(B)) \cong P(S)(f^{-1}(A), B)$$

Dualising

$$P(T)^{op}(G(B), A) \cong P(S)^{op}(B, f^{-1}(A))$$
 (3)

Equation (3) is (2) up to an isomorphism. So we choose G = f here. In fact the power set P is self adjoint. Loosely, this means we have an isomorphism between the opposite category and the original category. We use this isomorphism to get a representation of G in P(T), with the right adjoint sending B to $\overline{f(\overline{B})}$.

Because f is a bijection, elements in T that are not in $f(\overline{B})$ must have elements in B as their preimage. So $\overline{f(\overline{B})}$ consists of all sets of T where $f^{-1}(T) \subseteq B$. In summary the left adjoint of f^* is

$$F(S) = \{t \in T : \exists s \in S \text{ such that } s \in f^{-1}(t)\}$$

and the right adjoint

$$G(S) = \{t \in T : s \in f^{-1}(t) \ \forall s \in S\}$$

(b) We are asked to interpret, in light of the results in (a.), the unit $\eta: 1_T \to G \circ F$, and counit $\epsilon: F \circ G \to 1_S$, for all adjunctions.

Consider the R(x,y) as a set in $X \times Y$ and S as a set in X. In all of the below I interpret set inclusion as logical implication.

Description of the functors used follows.

• \forall_y takes a set R(x,y) and returns S(x) with preimage in R(x,y) for all y. So each element in R(x,y) inducing S(x) is fully contained in R(x,y).

- p^* the inverse image functor takes a set S(x) and returns its preimage R(x,y). This inclusion of X into $X \times Y$ adds a 'dummy' dimension to our set in Y, it is the equivalent of $\iota = x_i e_i$ in n-dimensional Euclidean space.
- \exists_Y takes a set R(x,y) and returns S(x) with preimage in R(x,y) for at least one y.

We know from (a) that $\exists_Y \dashv p^* \dashv \forall_Y$

$p^*\dashv \forall_Y$

- $\eta: 1_X \to \forall_Y \circ p^*$ takes as argument the set S(x). Applying p^* results in the product of S(x) with Y, the set R(x,y). Applying \forall_Y in turn results in the set S'(x), where $R(x,y) \subseteq p^*(S'(x))$, for all y. But the for all qualification here is trivial, as y is just a dummy dimension, so S'(x) = S(x). There is no real interesting logical implication here, η is the identity.
- $\epsilon: p^* \circ \forall_Y \to 1_{X \times Y}$ takes as argument the set R(x,y). Applying \forall_Y yields the set of S(x) where $R(x,y) \subseteq p^*(S(x))$ for all y in R(x,y). To S(x), p^* is applied in turn to return a set R'(x,y). My intuition here is ϵ takes the R(x,y) with a X and Y predicate, projects it to a X-predicate using \forall_Y , which essentially adds a dummy Y-variable to this X-condition, then returns R'(x,y). The key observation here is that $R'(x,y) \subseteq R(x,y)$. So $S(x) \Longrightarrow R(x,y) \forall y$.

$\exists_Y\dashv p^*$

- $\eta: 1_{X\times Y} \to p^* \circ \exists_Y$ Applying \exists_Y to R(x,y) returns the projection S(x) with preimage in R(x,y) for some y. Applying p^* to S(x) returns the set R'(x,y). Note that $R(x,y) \subseteq R'(x,y)$. So interpreting the unit statement, $\exists y: R(x,y) \Longrightarrow S(x)$
- $\epsilon: \exists_Y \circ p^* \to 1_X$ takes as argument the set S(x). Applying p^* returns the set R(x,y). Applying \exists_Y in turn returns S(x) with preimage R(x,y) for some y.