А. Н. Афанасьев, В. С. Хородов

АГЕНТНЫЙ ПОДХОД К ПОСТРОЕНИЮ СИСТЕМЫ РАСПРЕДЕЛЕННОГО ПРОЕКТИРОВАНИЯ VHDL-ОБЪЕКТОВ И ЕЕ МОДЕЛИРОВАНИЕ НА БАЗЕ ЦВЕТНЫХ СЕТЕЙ ПЕТРИ

Ульяновский государственный технический университет

a.afanasev@ulstu.ru, v.khorodov73@gmail.com

Предложена многоагентная система распределенного проектирования сложных VHDL-программ. Разработана модель системы на основе цветных сетей Петри. Описаны результаты моделирования.

Ключевые слова: распределенное проектирование, многоагентная система, VHDL, цветные сети Петри.

A. N. Afanasev, V. S. Khorodov

AGENT APPROACH TO BUILDING A SYSTEM DISTRIBUTED DESIGN VHDL-OBJECTS AND ITS SIMULATION BASED ON COLORED PETRI NETS

Ulyanovsk State Technical University

Multiagent system of distributed designing complex VHDL-program is proposed. Model of system based on colored Petri nets is developed. The results of modeling are presented.

Keywords: distributed design, multiagent system, VHDL, colored Petri nets.

Введение

В настоящее время проектирование сложных устройств на кристалле ведется преимущественно с использованием высокоуровневых языков, таких как VHDL, Verilog и др. Вследствие сложности подобных проектов [1] разработчики сталкиваются с проблемами, аналогичными при разработке программно-информационного обеспечения сложных автоматизированных систем. Одной из основных проблем является успешность проекта, под которой понимают реализацию в заданные сроки, финансовые средства и функциональные возможности. Парадигмой современного промышленного проектирования сложных программных продуктов, позволяющей повысить успешность проекта, является коллективная работа с ролевым распределением функций и организацией единого проектного пространства с активным взаимодействием в нем проектировщиков. Практическое применение данного подхода связано с использованием инструментария мастертехнологий (например, RUP, ARIS) или разработкой и применением веб-ориентированных систем распределенного проектирования. Последний вариант выступает в качестве основы предлагаемой системы проектирования.

Создание описываемого приложения направлено на сокращение затрат и повышение качества проектирования за счет реализации методов и средств наполнения библиотеки VHDL-программ и коллективного распределенного проектирования [2], позволяющих организовать взаимодействие между проектировщиками и повторно использовать разработанный код.

В основе предложенной системы лежит агентный подход, обеспечивающий повышение гибкости, масштабируемости и эффективное распределение проектной нагрузки между аген-тами.

Система распределенного проектирования работает со структурно-функциональными лингвистическими моделями (СФЛМ), которые хранятся в базе знаний и с которыми взаимодействуют агенты и проектировщики. Под СФЛМ понимаются объекты, представленные на языке типа VHDL, состоящие из структурной и функциональной частей [3].

Для представления работы системы опишем назначение агентов.

Агенты

Описания агентов позволяют определить их роль и место в системе. *Интерфейсный агент* (interface agent [INA]) - выполняет связующую роль агентов в многоагентной системе.

Агент управления проектными задачами (management agent project tasks [MAPT]) – выполняет формирование параллельной сетевой схемы задач (ПССЗ) [4] и распределение проектных задач между проектировщиками.

Агент разработки проектного решения (agent designer project solution [ADPS]) — выполняет операции связанные с созданием проектного решения на языке VHDL, т. е. формированием структурно-функциональной лингвистической модели (СФЛМ), шаблона СФЛМ и проведением лексического и семантического анализа кода.

Агент синтеза проектных решений (agent synthesis project solution [ASPS]) — выполняет поиск готовых к объединению проектных решений, созданных проектировщиками, а также их синтез в единое проектное решение.

Агент маршрутизации (router agent [ROA]) — выполняет связующую роль между локальными или распределенными агентами, расположенными на разных серверах, которые исполняют роль хранения или разработки проектных ре-шений.

Поисковый агент (search agent [SEA]) — выполняет формирование запроса на поиск проектного решения и кластеризацию данных с целью сокращения времени поиска данных.

Агент базы знаний (agent knowledge base [AKB]) — выполняет операции по работе с базой знаний.

Агент рабочей памяти (agent working memory [AWM]) – управляет состоянием системы и распределением нагрузки, как на агентов, так и на всю систему.

Для наглядного представления и последующего анализа функционирования как агентов, так и подсистем, проведем моделирование с использованием математического аппарата сети Петри.

Описание функционирования системы в виде сети Петри

Для моделирования используется цветная сеть Петри второго рода, представленная в виде иерархической композиции объектов. Путем перехода от одного уровня детализации описания системы к другому осуществляется анализ и детальное рассмотрение процесса функционирования отдельных блоков системы. На рис. 1. представлен пример иерархической композиции подсистемы в виде сети Петри.

Рис. 1. Пример иерархической композиции в сети Петри

Для визуализации сети Петри, описанной с помощью языка Colored Petri Net Markup Language (CPN ML), используется программный продукт CPN Tools. Общий вид сети Петри представлен на рис. 2. Описание ее позиций приведено в табл. 1.

Рис. 2. Модель сценария функционирования системы

Обозначение элемента	Описание	
P1	Были выявлены ошибки при авторизации пользователя в системе	
P2	Осуществлен переход на стартовую страницу системы	
Р3	Были выявлены ошибки при регистрации пользователя в системе	
P4	Авторизация в системе пройдена. Осуществлен вход в систему	
P5	Выбран элемент основного меню	
P7	Передан запрос на регистрацию пользователя в системе	
P8	Передан запрос на авторизацию пользователя в системе	
P9	Осуществлен переход на страницу управления проектами	
P10	Осуществлен переход в личный кабинет	
P11	Осуществлен переход на страницу поиска	
P17	Осуществлен переход к конструктору проектного решения	
P101	Осуществлен переход к управлению проектными задачами	
P135	Передан запрос интерфейсному агенту	
P67	Осуществлен переход на страницу создания проекта	
P68	Выбран проект. Осуществлен переход к странице проекта	
P104	Осуществлен переход к проектной задаче	
P103	Осуществлен переход к странице управления результатами поиска ПССЗ	
P18	Осуществлен переход к странице управления результатами поиска СФЛМ	
P100	Осуществлен переход к меню.	
P102	Осуществлен переход к просмотру списка проектных задач с фильтрацией по проекту и/или проектировщику	
P66	Осуществлен переход к странице создания / редактирования проектного решения	
P128	Осуществлен переход на страницу создания проектной задачи	
P179	Пользователю переданы уведомления	
P136	Передан запрос на получение уведомлений для пользователя	
P137	Передано сообщение от агента ROA агенту INA	
P209	Сформировано и передано сообщение агенту ROA	
P249	Передано сообщение от агента ROA агенту МАРТ	
P283	Передано сообщение от агента ROA агенту SEA	
P311	Передано сообщение от агента АКВ агенту SEA	
P312	Сформировано и передано сообщение агенту AKB агентом SEA	
P351	Передано сообщение от агента ASPS агенту AKB	
P352	Передано сообщение от агента ADPS агенту AKB	
P378	Сформировано и передано сообщение агенту ADPS агентом ROA	
P353	Сформировано и передано сообщение агенту ASPS агентом AKB	
P377	Передано сообщение от агента ADPS агенту ASPS	
P378	Передано сообщение от агента ROA агенту ADPS	
P410	Передано сообщение от агента ROA агенту AWM	

В сетевой модели сценария кроме агентов присутствуют функциональные блоки системы распределенного проектирования: system entry

(SEN) – подсистема входа; system search (SSE) – подсистема поиска; constructor project solution (SCPS) – подсистема конструктора проектного

решения; system personal cabinet (SPC) – подсистема личного кабинета; system managing projects (SMP) – подсистема управления проектами; system managing project tasks (SMPT) – подсистема управления проектными зада-

чами; messenger (MES) – подсистема уведомлений.

В качестве примера на рис. 3 и в табл. 2 представлена модель подсистемы SEN в виде цветной сети Петри.

Рис. 3. Модель подсистемы SEN

Таблица 2 Описание сети Петри подсистемы SEN

Обозначение элемента	Описание
P1	Ошибки в данных регистрации
P2	Осуществлен вход на начальную страницу системы
P4	Авторизация успешна. Осуществлен вход в систему
P5	Выбран элемент основного меню
Р3	Ошибки в данных авторизации
P7	Отправлен запрос на регистрацию
P8	Отправлен запрос на авторизацию
Р9	Выполнен переход на страницу создания проекта
P10	Выполнен переход в личный кабинет
P11	Выполнен переход на страницу поиска
P12	Выполнен переход к конструктору проектных решений
P6	Ожидание авторизации / регистрации
P101	Выполнен переход на страницу управления проектными задачами
T1	Исправление ошибок в данных регистрации

ИЗВЕСТИЯ ВолгГТУ 51

Окончание табл. 2

Обозначение элемента	Описание
T2	Вход в систему
Т3	Регистрация и вход в систему
T4	Авторизация и вход в систему
T5	Исправление ошибок в данных авторизации
Т6	Выбор элемента основного меню
Т7	Выход из системы
Т8	Переход на страницу создания проекта
Т9	Переход в личный кабинет
T10	Переход на страницу поиска
T11	Переход к конструктору проектных решений
T12	Переход на страницу управления проектными задачами

Моделирование и анализ сети Петри

Моделирование активности проектировщиков в системе выполняется путем создания токенов в стартовой позиции сети Петри через случайные интервалы времени. Действия проектировщиков моделируется путем запуска переходов в сети. Остальные события в сети представляют собой реакцию интерфейсных агентов на запрос проектировщиков и взаимодействие агентов между собой. Основными типами токенов являются сообщения взаимодействия агентов на языке Agent Communication Language (ACL) и запросы проектировщиков к системе в ходе работы.

К позициям сети Петри добавляется информация о типах токенов, а к дугам — информация, которая может быть представлена в виде типа токена или совокупности атрибутов этого типа токена. За счет добавления такой информации в качестве предиката возбуждения перехода можно осуществить проверку на наличие внутреннего правила работы агента или системы, а также его корректного выполнения. Внутренние правила работы агента основаны на обработке ACL от других агентов.

Тип токена, описывающего сообщения агентов (acl_mes), характеризуется следующими атрибутами: uid – идентификатор пользователя в системе; sender – идентификатор агента-отправителя сообщения; receiver – кортеж идентификаторов агентов-получателей; content – содержимое сообщения или объект действия; reply-with – выражение, которое будет использоваться агентом, чтобы определить исходное сообщение при ответе на полученное сообщение; in-reply-to – выражение, ссылающееся на

раннее действие, к которому текущее сообщение является ответом; envelope - конверт, содержащий полезную информацию о сообщении, представляет собой список пар значений ключевых слов; language - обозначает кодировку содержимого; ontology - онтология, которая используется, чтобы дать смысл содержимому; reply-by - крайний срок отправки ответа на сообщение в виде времени и/или даты; protocol идентификатор протокола, который использует агент-отправитель (протокол предназначен для формирования дополнительного контекста, служащего для интерпретации сообщения); conversation-id – выражение для идентификации последовательности коммуникативных актов, которые вместе образуют «разговор» [5].

Тип токена, описывающего запрос проектировщика в системе (request), характеризуется следующими атрибутами: uid – идентификатор пользователя в системе; action – метод, отвечающий на действие проектировщика; controller – контроллер, в котором находится вызываемый метод; content – параметры запроса проектировщика.

Среди позиций P137-P410 преобладает тип токена [acl_mes], а среди позиций P1-P135 – тип токена [request].

Формирование токена для выходной позиции происходит с учетом выражения на дугах. Таким образом, переход может порождать токены нового типа путем объединения данных [6]. В описываемой системе такое преобразование происходит в том случае, когда данные типа токена request участвуют в формировании acl_mes с сохранением определенных данных, например, идентификатора пользователя, сделавшего запрос.

В цветных сетях Петри анализ проводится с учетом цвета токена. Данная особенность позволяет моделировать коллективную работу проектировщиков путем применения токеновидентификаторов.

При моделировании работы системы распределенного проектирования задача достижимости интерпретируется как возможность перехода к некоторой типовой ситуации. Под типовой ситуацией понимается совокупность последовательных маркировок, которые нужно пройти для перехода в интересующее состояние системы. Строится дерево типовых ситуаций, переходы по которому переводят систему в выбранное состояние, минуя определенное количество промежуточных этапов с полуавтоматическим выполнением промежуточных действий. Анализируя достижимость, строится карта внутрисистемных переходов. На ней отображаются все переходы, но активны будут только те, в которые можно перейти из текушего состояния.

Анализ живости позволяет определить работоспособность всех подсистем. Наличие тупиковых разметок и выявление зацикливаний локализует места неисправностей.

Таблица 3 Результаты моделирования в пакете CPN Tools

Статистика	Комментарии
State Space Nodes: 42096 Arcs: 101652 Secs: 73 Status: Full Scc Graph Nodes: 344 Arcs: 1086 Secs: 6	Пространство состояний модели содержит 42096 узлов и 101652 дуг
Home Markings None	Модель не имеет домашних маркировок
Dead Transition Instances None Live Transition Instances None	В модели отсутствуют мертвые переходы
Impartial Transition Instances None	Бесконечная последовательность срабатывания отсутствует

Обязательное наличие позиции-очереди у агента позволяет организовать контроль путем проверки позиции на свойство ограничен-

ности. В случае превышения предельно допустимого количество задач, установленного в системе, запускается механизм создания копии агента и переназначение на него части задач. Освобождение ресурсов путем удаления копии агента из системы происходит при отсутствии задач в позиции-очереди агента.

Результаты моделирования в пакете CPN Tools [7] приведены в табл. 3.

В ходе моделирования путем оценки количества меток в ключевых позициях (например, позиции-очереди агентов, такие как Р135, Р209 и др.) были выявлены узкие места в системе, из-за которых производительность или пропускная способность ограничена одним или несколькими компонентами или ресурсами. В сети отсутствуют мертвые маркировки и переходы, это свидетельствует о том, что при работе проектировщиков не будут возникать тупиковые состояния, выход из которых потребует перезапуска системы. Результаты моделирования показали работоспособность системы в целом и эффективное распределение проектной нагрузки между проектировщиками.

Заключение

Применение многоагентной технологии при построении системы распределенного проектировании позволяет сократить время, затрачиваемое проектировщиками на поиск проектных решений, упростить процесс взаимодействия пользователей с системой, модифицировать работу системы при высоких нагрузках путем создания копий исполняющих агентов. Использование цветных сетей Петри с различными типами токенов позволило адекватно построить модель и провести ее анализ.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Афанасьев А. Н., Хородов В.С. Распределенное проектирование структурно-функциональных моделей представленных на языке VHDL // Вестник ульяновского государственного технического университета. -2014. -№2 (66). С. 41-45.
- 2. Глушань, В. М. Обобщение некоторых результатов исследования когнитивной модели распределенной САПР / В.М. Глушань, Р.В. Иванько, П.В. Лаврик, Н.Н. Орлов // Изв. ВолгГТУ. Серия "Актуальные проблемы управления, вычислительной техники и информатики в технических системах". Вып. 5 : межвуз. сб. науч. ст. / ВолгГТУ. Волгоград, 2008. №8. С. 130—134.
- 3. Афанасьев А.Н., Игонин А.Г. Применение нейросемантического подхода для анализа и синтеза функциональных моделей в системах проектирования // Вестник ижевского государственного технического университета. 2007. №1. С. 66—69.

- 4. *Афанасьев А.Н.* Методология графо-аналитического подхода к анализу и контролю потоков работ в автоматизированном проектировании сложных компьютеризованных систем // Вестник Ульяновского государственного технического университета. 2011. №3(55). –С. 48–52.
- 5. FIPA. ACL Message Structure Specification [Электронный ресурс] // http://www.fipa.org : The Foundation for Intelligent Physical Agents: Режим доступа : http://www.fipa.org/specs/ fipa00061/SC00061G.pdf/ (дата обращения: 12.06.2014).
- 6. Коваль А.А. Применение цветных сетей Петри для моделирования сценария работы приложений // Научная сессия МИФИ-2005. Т.2 Технологии разработки программных систем. Информационные технологии. 2005. С. 99—100.
- 7. Романников Д.О., Марков А.В. Об использовании программного пакета CPN Tools для анализа сетей Петри // Сборник научных трудов НГТУ. Новосибирск: Изд–во НГТУ. 2012. №2(68). С. 105–116.