Notes on Taxation

Free Market Given the following supply and demand equations:

Supply:
$$q_S = \alpha_0 + \alpha_1 p$$
 (1)
Demand: $q_D = \beta_0 - \beta_1 p$

, where q_S and q_D denote respectively quantity supplied and quantity demanded.

In the absence of tax, the equilibrium is solved by equating $q_S = q_D$.

Per-unit Tax Now suppose we have a per-unit tax T, then in equilibrium, we have:

Supply:
$$q = \alpha_0 + \alpha_1 p^s$$
 (2)
Demand: $q = \beta_0 - \beta_1 p^b$
 $p^b = p^s + T$

, where p^b is the price that buyers pay and p^s is the price that sellers receive. Solving (2) $\Rightarrow \{p^b, p^s, q\}$.

What is the observed equilibrium market price? That depends on whether the tax is levied on the buyer or the seller.

- If levied on the buyer: $p = p^s$. The buyer pays p^s on the market, and then pays an additional T to the government.
- If levied on the seller: $p = p^b$. The seller receives p^b on the market, and then pays T to the government.

Equivalently, if the tax is levied on the buyer, then (2) can also be written as:

Supply:
$$q = \alpha_0 + \alpha_1 p$$

Demand: $q = \beta_0 - \beta_1 (p + T)$

, i.e. the buyer pays the market price +T.

If the tax is levied on the seller, then (2) can also be written as:

Supply:
$$q = \alpha_0 + \alpha_1 (p - T)$$

Demand: $q = \beta_0 - \beta_1 p$

, i.e. the seller receives market price -T.

Ad-valorem Tax Now suppose the government imposes an ad-valorem tax $\tau \in (0, 1)$ such that the seller receives a percentage $(1 - \tau)$ of what the buyer pays. Then in equilibrium, we have:

Supply:
$$q = \alpha_0 + \alpha_1 p^s$$
 (3)
Demand: $q = \beta_0 - \beta_1 p^b$
 $p^b (1 - \tau) = p^s$

Alternatively, the government can impose an ad-valorem tax τ such that the buyer pays a percentage $(1 + \tau)$ of what the seller receives, in which case the equilibrium is given by:

Supply:
$$q = \alpha_0 + \alpha_1 p^s$$
 (4)
Demand: $q = \beta_0 - \beta_1 p^b$

$$p^b = p^s (1 + \tau)$$