Template Matching Aim: To match image with template. need. (1). Space of images. (2) distance of smapes: "norm"/" metric" -> to measure how similar on given image is compare compared to the template Image template: T(i,j), the brightness distribution around pixel (i,j) Gren mage: I(ij) "Postance" between 2 images: - Eulidean norm: 12-horn Matchel (m,n) = [$\sum_{i,j} (T(i,j)-T(i-m,j-n)^2]$ inj s.t. (i-m,j-n) \(\text{Dom(T)} \) Matchel (m,n) = $\sum_{i,j} (T(i,j)-2(i,j)) = \sum_{i,j} (T(i,$ tempiale energy. · Gon Correlation = [[(i,j)] T(i-m, i-h) ty st. (i-m,j-n) + Dombt) Normalized Cross Cornelation = Cross Cornelation [[[] Lij]^27 = Lij st. (im.j-n) = DemlT)

constation as their podust.

The moe shalar the two images. the smaller the angle, il-the smaller the inner produce

-> This idea gives rise to E-means dustering!

Leetuve 5-6 Limilus theans in Freguency

The physical domain

The frequency domain.

$$an = \frac{2}{T} \int_0^T I(t) \cos(n\omega t) dt.$$

$$bn = \frac{2}{T} \int_0^T I(t) \sinh(n\omega t) dt.$$

$$project onto sin/as.$$

extraponal:
$$\int_{-\pi}^{\pi} \phi_i \phi_j dx = 0 \quad \forall i \neq j$$
.

unt length:
$$\int_{-\pi}^{\pi} b_i^2 = 1 \quad \forall i$$
.

Holbert space:

- · so dim
- · spanned by omplex experiential, .
- · inner product 2 mm

Fourier Transform: change in basis.

$$PF(f(x)) = F(w) = \int_{-\infty}^{+\infty} f(t) e^{-twt} dt$$
.

$$\mathcal{F}^{-1}(F(w)) = f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \mathcal{F}(w) e^{i\omega t} dw$$

(OH MY Prof. is Wallions 00:58:00)

Action of linear system with shi input:
$ \begin{array}{ccc} \downarrow & e^{iwt} & = \int_{-\infty}^{+\infty} h(u) e^{iw(t-u)} du. \end{array} $
chear a shuroid = eint state h(u) ein(u) du.
= 71 (w) eint.
a scalar · a shusoid ·
significance of this: output of almear operator on singoid
ghes a scalar thes sinuspid.
=) Sinusoids are eigenfunctions of a linear system!!
Link back to REU.
De the tourier transfor of the input verpouse, H(w)
are the eigenvalues associated with the eigenfunces
Filtering in the frequency domain
consolution in the physical domain is multiplication in the frequency domain
T(D*h) = store e-itw (store z(t-u)h(u)du) att
(t, u) +> (v=t-u, u) = f+00 f+00 e-i(u+v)w L(v)h(u) dudv.
= (stoo e-2 vw I(v) dv). (stoo e-2 when) du)
= I(w) (H(w)). moduration transfer function
Fourier's duality theorem:
I(x) x h(x) () T(w). H(w)
$I(x) \cdot h(x) \longleftrightarrow I(w) * H(w)$

"learning how to think in the frequency domain is really important for undertaining pereption & life in general!"

Fourier Transform in 1D.

$$\int F(\xi) = \int_{-\infty}^{\infty} f(t) e^{-2\pi i \xi t} dt.$$

$$\int f(t) = \int_{-\infty}^{\infty} F(\xi) e^{2\pi i \xi t} d\xi.$$

Property	fit) physical domi	in F(G) frequency down
Linearry	afi(t)+bfi(t)	a F1(8) + 6 F2(8)
Pualtry	F(t)	f(-4)
Consolvotion	(f*g)(t)	F(6) G(6)
product	fitigct)	(F*G)(G)
Time shift	f(t-to)	e-2118 to F(4)
Freg shife	eznifot f(t)	F(\ \ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Afferentiada	df(t)	211 f F()
Mult. by t	tf(t)	1 dF(4)
Time scally	f(ot)	1/101 F(8/a)

+ Parsevol's Tolentry
$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \int_{-\infty}^{\infty} |F(\xi)|^2 d\xi$$
.
 $fenergy = Fenergy$.

Discrete FT in 1D

$$\int F(k) = \int_{N=0}^{N-1} f(n) e^{-\frac{2\pi i}{N}kn} \quad \text{in analogous to } t.$$

$$f(n) = \int_{N=0}^{N-1} F(k) e^{-\frac{2\pi i}{N}kn} \quad \text{k analogous to } f.$$

Fourter Transform M 2D.

The idea: To decompose the maje function f(x,y) to a linear confination of harmonic functions (neights given by F(u,v)) (sin & cos, or more generally orthogonal functions).

UN are spatial frequencies:

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-2\pi i (xu+yv)} dx dy,$$

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{2\pi i (xu+yv)} du dv.$$

(linear systems are the gates that control has much power out couch frequency is passed through)

Because of Guler formla, to eit = coset isin ? $\frac{\partial \pi i(\lambda u + yv)}{\partial x} = \cos(-2\pi i x u) + i \sin(-2\pi i x u)$

real part incoming part.

F(u,u) ghos the neights of harmonic components in the linear contination

Divete FT h 2D

$$\int F(u,v) = \frac{1}{MN} \sum_{m=0}^{M-1} \int f(m,n) \exp[-2\pi i (\frac{mu}{M} + \frac{nv}{N})],$$

$$U = 0,1,...,M-1, V = 0,1,...,N-1.$$

$$\int (u,n) = \int_{u=0}^{M-1} \int_{v=0}^{N-1} F(u,v) \exp[2\pi i (\frac{mu}{M} + \frac{nv}{N})].$$

M=0,1,..,M-1,n=0,1,..,N-1.