
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: markspencer

Timestamp: [year=2008; month=7; day=8; hr=8; min=52; sec=23; ms=875;]

Validated By CRFValidator v 1.0.3

Application No: 10530712 Version No: 3.0

Input Set:

Output Set:

Started: 2008-05-28 11:51:57.050 **Finished:** 2008-05-28 11:51:57.825

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 775 ms

Total Warnings: 11
Total Errors: 0

No. of SeqIDs Defined: 12

Actual SeqID Count: 12

Error code		Error Descripti	ion								
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(1)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(2)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
M	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)
M	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEO	ID	(11)

SEQUENCE LISTING

<110>	ELIOT, MARC KLONJKOWSKI, BERNARD	
<120>	RECOMBINANT ADENOVIRAL VECTORS AND APPLICATIONS THEREOF	
<130>	270423US0XPCT	
<140>	10530712	
<141>	2005-11-08	
<150>	PCT/FR03/02964	
<151>	2003-10-08	
<150>	FR 02/12472	
<151>	2002-10-08	
<160>	12	
<170>	PatentIn version 3.3	
<210>	1	
<211>	32	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic DNA	
<400>	1	
ttggcgd	egee cateateaat aatataeagg ae 32	
<210>	2	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic DNA	
<400>	2	
gctctac	gacc tgcccaaaca tttaacc 27	
<210>	3	
<211>	28	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic DNA	
<400>	3	

gctctagagg gtgattatta acaacgtc

28

```
<210> 4
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 4
                                                                    32
ccgacgtcga ccataaactt tgacattagc cg
<210> 5
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 5
                                                                    38
gctctagagc gaagatctcc aacagcaata cactcttg
<210> 6
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 6
gataaggatc acgcggcctt aaattctcag
                                                                    30
<210> 7
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 7
                                                                    32
gataaggatc aacagaaaca ctctgttctc tg
<210> 8
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
```

```
<400> 8
                                                                     40
agctttgttt aaacggcgcg ccgggatttt ggtcatgaac
<210> 9
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 9
ccggcgcgcc gtttaaacaa agctatccgc tcatgaa
                                                                     37
<210> 10
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 10
                                                                     27
cggccgactc ttgagtgcgc agcgaga
<210> 11
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 11
                                                                     29
ggcgcgccga gagacaacgc tggacacgg
<210> 12
<211> 3609
<212> DNA
<213> Canine adenovirus type 2
<220>
<221> misc_signal
<222> (62)..(99)
<223> Four repeated GGTCA motifs; left ITR sequences
<220>
<221> misc_signal
<222> (197)..(200)
<223> 5'TTTA/G-3' type AII encapsidation signal
```

```
<221> misc_signal
<222> (206)..(209)
<223> 5'TTTA/G-3' type AIII encapsidation signal
<220>
<221> misc_signal
<222> (207)..(219)
<223> 5'TTGN8CG-3' type AI encapsidation signal
<220>
<221> misc_signal
<222> (228)..(212)
<223> 5'TTTA/G-3' type AIV encapsidation signal
<220>
<221> misc_signal
<222> (239)..(242)
<223> 5'-TTTA/G-3' type AV encapsidation signal
<220>
<221> misc_signal
<222> (250)..(253)
<223> 5'-TTTA/G-3' type AVI encapsidation signal
<220>
<221> misc_signal
<222> (258)..(261)
<223> 5'-TTTA/G-3' type AVII encapsidation signal
<220>
<221> misc_signal
<222> (272)..(275)
<223> 5'-TTTA/G-3' type AVIII encapsidation signal
<220>
<221> misc_signal
<222> (306)..(309)
<223> 5'-TTTA/G-3' type AIX encapsidation signal
<220>
<221> misc_signal
<222> (341)..(344)
<223> 5'-TTTA/G-3' type AX encapsidation signal
<220>
<221> misc_signal
<222> (377)..(380)
<223> 5'-TTTA/G-3' type AXI encapsidation signal
<220>
<221> misc_signal
<222> (388)..(391)
<223> 5'-TTTA/G-3' type AXII encapsidation signal
<220>
<221> TATA_signal
```

<222> (409)..(415) <223> TATA box of the E1A promoter

<220>

<221> misc_feature

<222> (439)..(439)

<223> E1A transcription initiation site

<400> 12

<400> 12						
catcatcaat	aatatacagg	acaaagaggt	gtggcttaaa	tttgggtgtt	gcaaggggcg	60
gggtcatggg	acggtcaggt	tcaggtcacg	ccctggtcag	ggtgttccca	cgggaatgtc	120
cagtgacgtc	aaaggcgtgg	ttttacgaca	gggcgagttc	cgcggacttt	tggccggcgc	180
cccgggtttt	tgggcgttta	ttgattttgc	ggtttagcgg	gtggtgcttt	taccactgtt	240
tgcggaagat	ttagttgttt	atggagctgg	ttttggtgcc	agttcctcca	cggctaatgt	300
caaagtttat	gtcaatataa	cagaaacact	ctgttctctg	tttacagcac	cccacccggt	360
ggtttttcgc	cacgcctttg	ggttaatttt	atttccctat	acgcggcctt	aaattctcag	420
tgcagacgaa	agaggactac	tcttgagtgc	gcagcgagaa	gagttttctc	ttcgctgtgt	480
ctcatatatt	ttctgaaaaa	tgaaatatac	tattgtgccg	gcgccgcgca	atctccatga	540
ttatgtttta	gagctactgg	aagagtggca	gccggactgc	cttgactgtg	agtattctca	600
tggcagcccc	tegeegeeta	ctctgcacga	tctttttgat	gttgagctgg	agacttctca	660
cagccctttt	gtgggcctgt	gtgattcctg	tgcggaggct	gacactgatt	cgagtgcgag	720
cactgaggct	gattctgggt	ttagtccttt	atccactccg	ccggtttcac	ctattccacc	780
gcatcccacc	tctcctgcta	gcatttctga	cgacatgttg	ctgtgcttag	aggaaatgcc	840
cacctttgat	gacgaggacg	aggttcgaag	cgcggcgacc	acctttgagc	ggtgggaaaa	900
cacttttgac	ccccatgtgg	gtcctatttt	tggctgtttg	cgctgtgctt	tttatcaaga	960
gcaggatgat	aatgcacttt	gtgggctttg	ctatctaaag	gcccttgccg	aaggtaagtt	1020
ttaatttaaa	tgtttgggca	ggttaaatgt	ttgggcaggt	taaatgtttt	aggtgtgtat	1080
tgatttttaa	ttttgctttt	tagtgccttt	tgctatgcct	gtacgttcag	aacccgcttc	1140
ggctggagct	gaggaggaag	atgatgaagt	tatttttgtg	tctgccaaac	ctgggggcag	1200
aaagaggtca	gcagctactc	cctgtgagcc	agatggggtc	agcaaacgcc	cttgcgtgcc	1260
agagcctgag	caaacagaac	ctttggattt	gtctttgaag	ccacgcccga	actaatctcc	1320
ttgagcacaa	agcaataaag	taatcttgtt	taacaagttt	gcctacattt	gtggttttac	1380
ggggcggggc	gaggagtata	taatgccaaa	agccagtgcc	tgcttcatta	agcttttaga	1440

ctgagctaag agcaggtag	atggaccctc	ttaagatttg	tgaaaactac	cttactttta	1500
gagctataat taggggaagi	actttgtcgc	ctggattttt	taggcggtgg	tgttttcctg	1560
ccttggctga tgtggtggg	c aatatagtgg	aacaggagga	aggcaggttt	tggcaaattt	1620
tacctgaaaa ccacgcttt	tggggtcttt	tgcgcagggg	ctttactgtt	gcttctttta	1680
ctgaaattat tacagcagct	cagctggaaa	atagaggtag	acagttggcc	tttttagctt	1740
ttatatcatt tttgctacgo	c aactggcctt	ctgactctgt	agtgcctgaa	gctgacagac	1800
ttgacctggt ctgtgcgcc	g gcatggagca	gaatgagata	tggagccaga	ccgccaggtt	1860
aatcaacgac ctccaagatt	ccgtgctcga	ggagcagggg	tccgcggaag	aggaagagtg	1920
cgaagaagcg cttttagcad	g gggacagcga	cgacccatta	ttcgggtaga	tgacttgcag	1980
ctgcccgacc ccctgtatg	tatgcaagct	ttgcaacggg	accacacttt	agaaatgccc	2040
agagggcagg tagattttad	g ctggattgag	gctgaagaga	ggcgggtagg	teccacagae	2100
gagtggtact ttgaggctgt	gaagacttac	aaagctaagc	cgggagatga	cttgcaaact	2160
ataatcaaaa actatgccaa	a gatttcctta	gaatgtgggg	ccgtgtatga	aattaattct	2220
aagattaggg ttacggggg	c ttgctacatt	attggtaatt	gtgccgtgct	taggcctaac	2280
ctgcctgctg gagaagcaa	gtttgaggtt	ttgaatgttg	attttattcc	ttctattggt	2340
tttatggaaa ggatagtgti	ttccaatgtt	atttttgatt	gcaggaccac	cgcaactgta	2400
gtgtgttgca ttagtgaaad	g aaacaccttg	tttcacaatt	gtgtttttc	tggccctcac	2460
atgttatgtt tggaccttad	dacaaaaaca	gaggtgaggg	gctgtcactt	tgtgggggcg	2520
gtgtgtgcgt tgcgtagcaa	a ggggctgtac	agtattcgag	tcaaaaatag	catttttgaa	2580
aagtgtgctt ttggggtgg	gaccgggtca	aaggcttcta	ttagccattg	catgtttaag	2640
gattgtacct gctctatta	gctgggggt	cagggcacta	ttgcccatag	tcagtttatt	2700
gtaactactt ctgctgaggo	c ccccatgaac	ctgcaactgt	gcacttgcga	gggtaatgga	2760
agtcatgtag ttccattgg	g gaatattcac	tttgcttctc	accgggaagc	ttcgtggcct	2820
acgttttatg caaacacctt	ggttcgggtg	cgcttgtata	tgggccggcg	ccggggagtt	2880
tttcacccca agcagtctac	c tttgtcaatg	tgtgtaattg	cagcccctcg	gggggttgtg	2940
cagagaattt atttgtttgd	g tgtgtatgat	gctacttgtg	ccattatgca	actgggcgag	3000
gcaggcaatg ctgctagtga	a aagactgtgt	acttgcgggt	tcagacacag	caccccttcc	3060
ctgcgggcca cctatgtaad	tgacaccagg	attgaccggg	agctgaactc	tcaagacacg	3120

gctgagttct	ttagcagtga	tgaagataat	ttttaggtga	gtagatgggc	gtggtttggg	3180
ggagtataaa	aggggcgcgg	tacgtggctg	tgtatttaca	gccatggacc	ctcaacagaa	3240
ggggcttgtg	aacacgtgtt	ttgtgactac	gcgtattccg	tcttgggcag	gagcaagaca	3300
gaatgtcacc	gggtcagatt	tagaaggaaa	gcccgtgccc	tcagatgtgc	tggaaagtgg	3360
acgcccgctt	gcagccccgc	gcatcagaac	tttgtatgag	gagcagcagc	tgaacatgct	3420
tgcggtgaat	gttcttttgg	atgagctgaa	gatccaggtg	gctgccatgc	aaaactctgt	3480
gactgctatt	cagcgagaag	taaatgatct	aaagcaacga	atcgcccgag	attaatgtaa	3540
aaataaaatt	tatttctttt	ttgaatgata	ataccgtgtc	cagcgttgtc	tgtctgtaat	3600
agttctatg						3609