Click-Through Rate Prediction

Team 7:

Po-Han Yen, Shih-Siang Lin, Hsin-Yu Tsai, Yun-Jung Fan, Shu-Ping Chen

Agenda

01

Introduction

- Motivation
- Workflow

04

Methodology

02

Data

- Description
- Challenges

05

Results & Findings

03

Research Question

06

Introduction - Motivation

- Online advertisements have a significant influence on the success of a business
- Click-through rate (CTR) is commonly used to evaluate ad performance

Introduction - Workflow

Data - Description

id	click	hour (C1	banner_pos site_id	site_domair	site_catego	ry app_id	app_domair	app_catego	ry device_id	device_ip	device_mode	device_type	device_con	n_ C14	C15	C16	C17	C1	.8	C19	C20) c	21
1E+18		14102100	1005	0 1fbe01fe	f3845767	28905ebd	ecad2386	7801e8d9	07d7df22	a99f214a	ddd2926e	44956a24	1		2	15706	320	50	1722	C		35	-1	79
1E+19	(14102100	1005	0 1fbe01fe	f3845767	28905ebd	ecad2386	7801e8d9	07d7df22	a99f214a	96809ac8	711ee120	1		0	15704	320	50	1722	0		35	100084	79
1E+19		14102100	1005	0 1fbe01fe	f3845767	28905ebd	ecad2386	7801e8d9	07d7df22	a99f214a	b3cf8def	8a4875bd	1		0	15704	320	50	1722	C		35	100084	79
1.0001E+19		14102100	1005	0 1fbe01fe	f3845767	28905ebd	ecad2386	7801e8d9	07d7df22	a99f214a	e8275b8f	6332421a	1		0	15706	320	50	1722	0		35	100084	79
1.0001E+19	(14102100	1005	1 fe8cc448	9166c161	0569f928	ecad2386	7801e8d9	07d7df22	a99f214a	9644d0bf	779d90c2	1		0	18993	320	50	2161	C		35	-1	157

Data source: Kaggle CTR prediction contest

Observations: 45 million records

Variables: 23 in total

dependent variable: click

Data - Challenges

Big data

Anonymized features

Imbalanced classes of the dependent variable

Research Question - 1

There is a positive relationship between Click Through Rate and Quality Scores.

➤ Is it possible to predict whether an ad would be clicked by viewers or not based on historical data? Furthermore, is it possible to successfully identify both clicked ads and non-clicked ads?

Research Question - 2

The challenge of the humongous data sets:
Is it possible to drive values from the data in an efficient way under constraints?

Methodology

Anonymized features

Feature Category

Group Mean CTR vs Total Mean CTR

Very Low, Low, Median, High, Very High

Big data

Imbalanced classes

- Weights
- Synthetic
- Downsample

https://livebook.manning.com/concept/machine-learning/ensemble-method

Auto modeling

Reprocess (if needed)

Our Ensemble Algorithm

Randomly choose a subset of data & 2-6 features

Build NaiveBayes, Logistic Regression or Classification Tree

Choose proper prediction method based on input model

Average the predictive probabilities to get final result

Results & Findings

Stage I	Accuracy	Sensitivity	Specificity			
NaiveBayes	0.637	0.271	0.894			
KNN	0.636	0.609	0.641			
Prune Tree	0.608	0.267	0.907			
Bagging	0.591	0.666	0.575			
Gradient Boosting	0.562	0.216	0.863			
XGB	0.635	0.402	0.684			
Random Forest	0.627	0.775	0.595			

Results & Findings

Stage II	Accuracy	Sensitivity	Specificity
125 Tree	0.651	0.638	0.653
125 NB	0.598	0.706	0.575
125 LR	0.609	0.695	0.59
125 Tree + 125 NB	0.623	0.666	0.613
125 Tree + 125 LR	0.64	0.666	0.634
125 NB + 125 LR	0.604	0.683	0.587
125 Tree + 125 NB + 125 LR	0.628	0.666	0.619
375 Tree	0.652	0.638	0.655

Results & Findings

Conclusion

Conclusion

Recommended prediction model:

- Self-build ensemble tree-based model
 - Accuracy: 65.2%
 - Sensitivity: 63.79%
 - Specificity: 65.5%
 - o AUC: 70%

Future works:

- More data and models
- Deep learning algorithms
- Process data on big data platforms
 - Hadoop and Spark

Thank You!

