

CANDIDATE

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www. tremenders.com

1 hour 15 minutes

*	
0	
2	
7	
9	
9	
4	
_	
7	
W	
∞	

NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/31
Paper 3 (Extend	ded)	Octo	ober/November 2011

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use			
1			
2			
3			
4			
5			
6			
7			
Total			

This document consists of 15 printed pages and 1 blank page.

BLANK PAGE

1 This question is concerned with the following oxides.

sulfur dioxide
carbon monoxide
lithium oxide
aluminium oxide
nitrogen dioxide
strontium oxide

(a)	(i)	Which of the above oxides will react with hydrochloric acid but not with aqueous sodium hydroxide?
		[1]
	(ii)	Which of the above oxides will react with aqueous sodium hydroxide but not with hydrochloric acid?
		[1]
	(iii)	Which of the above oxides will react with both hydrochloric acid and aqueous sodium hydroxide?
		[1]
	(iv)	Which of the above oxides will not react with hydrochloric acid or with aqueous sodium hydroxide?
		[1]
(b)		o of the oxides are responsible for acid rain. Intify the two oxides and explain their presence in the atmosphere.
	••••	
		[5]

For
Examiner's
Use

(c)	Lithium	oxide	is an	ionic	compound.
-----	---------	-------	-------	-------	-----------

(i)	Identify another ionic oxide in the list on page 3.	
		[1]

(ii) Draw a diagram which shows the formula of lithium oxide, the charges on the ions and the arrangement of the valency electrons around the negative ion.Use x to represent an electron from an atom of oxygen.Use o to represent an electron from an atom of lithium.

[2]

[Total: 12]

2	Two important	greenhouse	gases	are methane	and	carbon	dioxide

(a)	Methane is twenty times more effective as a greenhouse gas than carbon dioxide. The methane in the atmosphere comes from both natural and industrial sources.				
(i) Describe two natural sources of methane.					
		[2]			
		[-]			
	(ii)	Although methane can persist in the atmosphere for up to 15 years, it is eventually removed by oxidation.			
		What are the products of this oxidation?			
		[2]			
(b)		w do the processes of respiration, combustion and photosynthesis determine the centage of carbon dioxide in the atmosphere?			
		[4]			
		[Total: 8]			

3 Aluminium is extracted by the electrolysis of a molten mixture of alumina, which is aluminium oxide, and cryolite.

- (c) The uses of a metal are determined by its properties.
 - (i) Foods which are acidic can be supplied in aluminium containers.

	Explain why the acid in the food does not react with the aluminium.
	[1]
(ii)	Explain why overhead electrical power cables are made from aluminium with a steel core.
	aluminium
	steel core
	[3]
	[Total: 42]
	[Total: 13]

4	Reversible reactions can come to equilibrium.	The following are three examples of types of
	gaseous equilibria.	

 $A_2(g) + B_2(g) \rightleftharpoons 2AB(g)$ reaction 1 $A_2(g) + 3B_2(g) \rightleftharpoons 2AB_3(g)$ reaction 2 $2AB_2(g) \rightleftharpoons 2AB(g) + B_2(g)$ reaction 3

4	ر (۵	Fy	nlain	the	term	മറ	quilibrium
- (a	, ⊏x	piairi	uie	tenni	eς	Juliibriurii

(b) The following graphs show how the percentage of products of a reversible reaction at equilibrium could vary with pressure.

For each graph, decide whether the percentage of products decreases, increases or stays the same when the pressure is **increased**, then match each graph to one of the above reactions and give a reason for your choice.

(i)

reactionreason

(ii)

reactionreason

reaction reason [3]

[Total: 11]

5 The rate of the reaction between iron and aqueous bromine can be investigated using the apparatus shown below.

(a) A piece of iron was weighed and placed in the apparatus. It was removed at regular intervals and the clock was paused. The piece of iron was washed, dried, weighed and replaced. The clock was restarted.

This was continued until the solution was colourless.

The mass of iron was plotted against time. The graph shows the results obtained.

(1)	Suggest an explanation for the snape of the graph.
	[3
(ii)	Predict the shape of the graph if a similar piece of iron with a much rougher surface had been used. Explain your answer.
	[2

	(iii)	Describe how you could find out if the rate of this reaction depended on the speed of stirring.
		[2]
(b)		has two oxidation states +2 and +3. There are two possible equations for the redox ction between iron and bromine.
		Fe + $Br_2 \rightarrow Fe^{2+} + 2Br^-$
		2Fe + $3Br_2 \rightarrow 2Fe^{3+} + 6Br^{-}$
	(i)	Indicate, on the first equation, the change which is oxidation. Give a reason for your choice.
		[2]
	(ii)	Which substance in the first equation is the reductant (reducing agent)?
		[1]
(c)	Des	scribe how you could test the solution to find out which ion, Fe ²⁺ or Fe ³⁺ , is present.
		[3]
		[Total: 13]

© UCLES 2011 0620/31/O/N/11 **[Turn over**

6	Stru	ıctur	al formulae are an essential part of Organic Chemistry.
	(a)	Dra	w the structural formula of each of the following. Show all the bonds in the structure.
		(i)	ethanoic acid
		(ii)	[1] ethanol
	(b)	(i)	[1] Ethanoic acid and ethanol react to form an ester.
	(~)	(-)	What is the name of this ester?
			[1]
		(ii)	The same linkage is found in polyesters. Draw the structure of the polyester which can be formed from the monomers shown below.
			$HOOC-C_6H_4-COOH$ and $HO-CH_2-CH_2-OH$
	((iii)	[3] Describe the pollution problems caused by non-biodegradable polymers.
			[2]

(c) Two macromolecules have the same amide linkage. Nylon, a synthetic polymer, has the following structure.

For Examiner's Use

Protein, a natural macromolecule, has the following structure.

How are they different?	
	[2

[Total: 10]

For
Examiner's
Use

7	Some hydroxides,	nitrates ar	nd carbonates	decompose	when	heated
---	------------------	-------------	---------------	-----------	------	--------

(a)	(i)	Name a metal hydroxide which does not decompose when heated.	
			[1]

- (ii) Write the equation for the thermal decomposition of copper(II) hydroxide.
- (iii) Suggest why these two hydroxides behave differently.

 [1]
- (b) (i) Metal nitrates, except those of the Group 1 metals, form three products when heated. Name the products formed when zinc nitrate is heated.

(ii) Write the equation for the thermal decomposition of potassium nitrate.

-[2]
- **(c)** There are three possible equations for the thermal decomposition of sodium hydrogencarbonate.

The following experiment was carried out to determine which one of the above is the correct equation.

A known mass of sodium hydrogencarbonate was heated for ten minutes. It was then allowed to cool and weighed.

Results

Mass of sodium hydrogencarbonate = 3.36 gMass of the residue = 2.12 g

Calculation

$$M_r$$
 for NaHCO₃ = 84 g; M_r for Na₂O = 62 g; M_r for NaOH = 40 g M_r for Na₂CO₃ = 106 g

(i) Number of moles of NaHCO
$$_3$$
 used =[1]

(ii)	If residue is Na ₂ O, number of moles of Na ₂ O =	
	If residue is NaOH, number of moles of NaOH =	
	If residue is Na ₂ CO ₃ , number of moles of Na ₂ CO ₃ =	2]
(iii)	Use the number of moles calculated in (i) and (ii) to decide which one of the three equations is correct. Explain your choice.	е
		•••
	[2]
	[Total: 1	3]

DATA SHEET
The Periodic Table of the Elements

Nitrogen 1 14 16 16 O O O O O O O O O O O O O O O O O		=							Gro	Group			≡	≥	>	5		0
1	_							←:										4 ;
1			I					Hydrogen										Helium
15 15 15 15 15 15 15 15		6											1	12	14	16	19	20
Titeling Signature Signa		Be											Δ		z	0	ш	Ne
Title Titl		Beryllium 4											Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
4.6 5.1 5.2 5.5		24											27	28	31	32		40
1,1 1,1 1,2 1,2 1,2 1,2 1,3		Mg											ΡI	Si	凸	တ	CI	Ar
1		Magnesium 12											Aluminium 13	Silicon 14	Phosphorus 15	Sulfur 16	17	Argon 18
Time		40	45	48	51			56	59	59	64	65	20	73	75	62	80	84
Transfur		Ca	Sc	F	>			Бe	ပိ	Z	ე ე	Zn	Ga		As	Se	ğ	궃
Zr Nb Mb Modernman Transperation 101 103 106 108 112 115 116		72	Scandium 21	Titanium 22	nadiu			Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31		Arsenic 33	Selenium 34	Bromine 35	Krypton 36
Zr Nb Mb TC Rubenium Rhodium Pdaadium Pdaadium Application Application<		88	68	91		96		101	103	106	108	112	115		122	128	127	131
20 cm 20 c		ഗ്	>	Zr	q	W	ည			Pd	Ag	ဦ	I			ē	Ι	Xe
Hit		Strontium 38	39	Zirconium 40	Niobiun	Molybdenum 42	Technetium 43			Palladium 46	Silver 47	Cadmium 48	Indium 49	ПП		Tellurium 52	lodine 53	Xenor 54
House Ho		137	139	178	181			190	192						509			
Fairtium		Ba	Га	Ξ	<u>ra</u>		Re	Os				Нg	11		Ξ	Ъ		R
140		Barium 56	ınthanum	72	Tantalum 73	ungsten	Rhenium 75	Osmium 76				Mercury 80	Thallium 81	Lead	Bismuth 83	Polonium 84	Astatine 85	Radon 86
140		226	227															
140 141 144 148 150 152 157 159 162 165 167 169 162 162 163		Ra	Ac															
Ce Pr Nd Pr Sm 150 157 159 169 165 167 169		Radium 88	ctinium															
Cerum Praseodymlum Nod Promethum Smartium Europium Gadolinum Tholinum Tholinum Hondrum Errotum Tmulum tomic mass 232 232 238 U Np Pubriorium Americium Cum Bk Cf Essertium Finalium Finalium Mid tomic) number Thorium Protactivium Nepturium Pubriorium Americium Cum Bekkelium Californium Feminium Feminium Markelevium Markelevi		anthanoi.	id series			141	144		150	152	157		162			169	173	175
a a = relative atomic mass 58 59 60 61 62 63 64 65 66 67 68 69 69 X a = relative atomic symbol Th Page 100 Np Np Punorium American American Continu Berkelium Californium Final munication Mendebrium b = proton (atomic) number 91 91 92 93 94 95 96 97 98 99 100 101 100 101		Actinoid	series		Ce	Praseodymium	Neodymium	Promethium			Gd Gadolinium	gi D	Dy Dysprosium	H olmium	T migu	Thulium	_	Lutetium
a = relative atomic mass 232 238 N Np Pu American American Continumber Berkelum Californium Einsteinium Femilum Mondebrium						59	09	61			64		99	29		69		71
X = atomic symbol Th Pa Uranium Uranium Plutonium Putonium Curium Berkelium Californium Einsteinium Fermum Medelevium Medelevium Populuum Putonium			a = relative atom	ic mass			238											
b = proton (atomic) number 90 91 92 93 93 94 95 96 97 98 99 100 100			X = atomic sym	loc	드	Ъа	-				S	益	ັວ	Es		Md	8	בֿ
			b = proton (atom	ic) number	horium	Protactinium 91	Uranium 92				Curium 96	Berkelium 97	Californium 98	Einsteinium 99		Mendelevium 101	Nobelium 102	Lawrendu 103

The volume of one mole of any gas is 24 dm 3 at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.