Week3. Enhancing Vision with Convolutional Neural Networks

Fashion MNIST

- 70k Images
- 10 Categories
- Images are 28x28
- Can train a neural net!

Pooling is a way of compressing an image

Pooling is a way of compressing an image

3*3크기를 가진 64개의 filter

```
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(64, (3,3), activation='relu',
                       input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
```


https://bit.ly/2UGa7uH

```
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(64, (3,3), activation='relu',
                       input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
```

Convolution layer 추가로 dense layer 생성

```
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(64, (3,3), activation='relu',
                       input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
```

model.summary()

Layer (type)	Output	Shape	Param #
conv2d_12 (Conv2D)		26, 26, 64)	640
max_pooling2d_12 (MaxPooling	(None,	13, 13, 64)	0
conv2d_13 (Conv2D)	(None,	11, 11, 64)	36928
max_pooling2d_13 (MaxPooling	(None,	5, 5, 64)	0
flatten_5 (Flatten)	(None,	1600)	0
dense_10 (Dense)	(None,	128)	204928
dense_11 (Dense)	(None,	10)	1290

