Exploiting Structure in Representation of Named Entities using Active Learning

Nikita Bhutani*
Kun Qian†
Yunyao Li†
H. V. Jagadish*
Mauricio A. Hernandez†
Mitesh Vasa†

- * University of Michigan, Ann Arbor
- † IBM Research, Almaden

Entities lack unique representation

Barclays

GE Corporation

IBM UK Ltd.

IBM - United Kingdom

Company

Kumagai Professor of Engineering

The Helen L. Crocker Faculty Scholar

Professor of Public Policy

Kumagai Prof. of Engg.

Academic Title

Entity Linking/Resolution/De-duplication

Entities have an internal structured representation

Structural similarity is more reliable than textual similarity

reasoning over structured representations is more robust!

General Electric Corporation

GE Corp.

textual similarity can be misleading!

How do we obtain these structured representations?

 $\langle name \rangle \langle suffix \rangle$ "General Electric Corp." $\langle name \rangle \langle suffix \rangle$ + structured representations "programs"

Manually¹

- incorporate domain knowledge (e.g. \suffix\) lexicon)
- error-prone, specialized skills, expensive tuning

Programmable Framework²

- directly manipulate representation of entities
- user has to define a program of grammar rules to parse each mention

Reducing user-effort

1. help discover structured representations

2. reduce manual effort in learning structured representations and their programs

3. incorporate domain knowledge in programs

Key notations and task

Learn a model of mapping rules with minimal user effort by:

- Iteratively seeking labels for **informative** mentions (Active Learning)
- Automatically infer mapping rules from user labels (Rule Generation)

LUSTRE System

Inputs and Pre-processing

Preprocessing

Evaluate matchers against unlabeled mentions for candidate selection and rule generation

Rank matchers to resolve ties: $d_{concept} > caps > alphanum > num > special > wild$

Selecting Informative Mention - Query Strategy

Informative Mention

Similar structure as unlabeled mentions

e.g. IBM Ltd. ~ Apple Inc., GE Corp.

Correlation Score:

 $c(m_i) = g(sim(s_i, s_u))$, where $u \in U$

 $sim(s_i, s_u) = 1 - edit distance(s_i, s_u)$

max edit distance

where s_i is the structure of m_i edit distance(IBM Ltd., GE Corp.) = 0

edit distance(IBM Ltd., Microsoft Asia Inc.) = 1

Unknown or Uncertain structure e.g. GE Oil & Gas

Uncertainty Score:

$$f(m_i) = \mathbf{f}(P_{r_s})$$

where r_s is the mapping rule of s

Higher the reliability of a mapping rule, lower the uncertainty of its structure

Utility Score:

$$u(m_i) = c(m_i) \times f(m_i)$$

$$m^* = \underset{m_i}{\operatorname{argmax}} u(m_i)$$

Seeking user labels for selected mentions

Generating mapping rule

Non-Trivial: semantic units can span multiple tokens and matchers

Solution: reliable rule as the sequence of most **selective**³ matchers where selectivity is expected number of matches of a matcher in a dataset

 $\langle name:: caps\{1,2\} \rangle \langle country:: d_{country} \rangle \langle suffix::d_{suffix} \rangle$

Updating model with learned rule

Rule Reliability: for query strategy and for resolving structural ambiguities

$$P_{r_s} = 1 - selectivity(p^*)$$

where $p^* = \underset{i}{argmin} selectivity(p_i \mid p_i \in r_s)$

For a new rule, estimate as a function of selectivity of matchers in the rule

$$P_{r_s}^j = P_{r_s}^i x$$
 (1 - λ frac. incorrect pred)

For a learned rule, update based on the fraction of predictions of the rule marked incorrect by user

Experiments - Datasets, Baselines and Metrics

Datasets

Туре	Train	In-Domain	Out-of-domain
Person	200	200	200
Company	200	100	200
Tournament	50	50	_
Academic Title	175	175	_

ACE 2005, Freebase

Baselines

STG¹: hand-crafted programs used in production

Linear-Chain CRF: sequence labeling with matchers as features

LUSTRE^t: LUSTRE with tf-idf based query strategy

Evaluation Metric

Precision, P: fraction of predictions that are correct

Recall, R: fraction of correct structures that are predicted

Manual effort, a: F-score of method X $X \in \{CRF, LUSTRE\}$ # labels requested by X

Experiments - Qualitative Analysis

Туре	Method		In-Domain			Out-of-domain	
туре	Method	Р	R	F ₁	Р	R	F ₁
	STG	0.92	0.92	0.92	0.85	0.85	0.85
Davasa	CRF	0.97	0.97	0.97	0.90	0.90	0.90
Person	LUSTREt	0.98	0.95	0.96	0.92	0.90	0.91
	LUSTRE	0.99	0.97	0.98	0.92	0.95	0.93
	STG	0.83	0.83	0.83	0.79	0.79	0.79
Company	CRF	0.87	0.87	0.87	0.85	0.85	0.85
	LUSTREt	0.84	0.77	0.80	0.78	0.60	0.68
	LUSTRE	0.95	0.86	0.90	0.91	0.85	0.88
	CRF	0.70	0.70	0.70	-	-	-
Tournament	LUSTREt	0.96	0.68	0.79	-	-	-
	LUSTRE	0.96	0.90	0.93	-	-	-
Academic Title	CRF	0.69	0.69	0.69	_	-	-
	LUSTREt	0.36	0.23	0.28	-	-	-
	LUSTRE	0.79	0.65	0.72	-	-	-

Learned Models (LUSTRE, CRF) > Manually Crafted (STG)

Experiments - Qualitative Analysis

Typo	Method		In-Domain			Out-of-domain	
Туре	F	Р	R	F ₁	Р	R	F ₁
	STG	0.92	0.92	0.92	0.85	0.85	0.85
Doroon	CRF	0.97	0.97	0.97	0.90	0.90	0.90
Person	LUSTREt	0.98	0.95	0.96	0.92	0.90	0.91
	LUSTRE	0.99	0.97	0.98	0.92	0.95	0.93
	STG	0.83	0.83	0.83	0.79	0.79	0.79
Company	CRF	0.87	0.87	0.87	0.85	0.85	0.85
	LUSTREt	0.84	0.77	0.80	0.78	0.60	0.68
	LUSTRE	0.95	0.86	0.90	0.91	0.85	0.88
	CRF	0.70	0.70	0.70	-	-	-
Tournament	LUSTREt	0.96	0.68	0.79	-	-	-
	LUSTRE	0.96	0.90	0.93	-	-	-
	CRF	0.69	0.69	0.69	_	_	-
Academic Title	LUSTREt	0.36	0.23	0.28	-	-	-
	LUSTRE	0.79	0.65	0.72	-	-	_

Complex entities have more variations. LUSTRE outperforms other methods for complex types.

Experiments - Qualitative Analysis

Typo	Method P		In-Domai	n		Out-of-domain	
Туре		Р	R	F_1	Р	R	F ₁
	STG	0.92	0.92	0.92	0.85	0.85	0.85
Person	CRF	0.97	0.97	0.97	0.90	0.90	0.90
1 615011	LUSTREt	0.98	0.95	0.96	0.92	0.90	0.91
	LUSTRE	0.99	0.97	0.98	0.92	0.95	0.93
	STG	0.83	0.83	0.83	0.79	0.79	0.79
C = 100 = 100 t	CRF	0.87	0.87	0.87	0.85	0.85	0.85
Company	LUSTREt	0.84	0.77	0.80	0.78	0.60	0.68
	LUSTRE	0.95	0.86	0.90	0.91	0.85	0.88
	CRF	0.70	0.70	0.70	-	-	-
Tournament	LUSTREt	0.96	0.68	0.79	-	-	-
	LUSTRE	0.96	0.90	0.93	-	-	-
	CRF	0.69	0.69	0.69	_	-	-
Academic Title	LUSTREt	0.36	0.23	0.28	-	-	-
	LUSTRE	0.79	0.65	0.72	-	-	_

Good out-of-domain performance indicates LUSTRE captures structures regardless of data source.

Experiments - Effectiveness

Constant precision indicates "quality" rules are learned - effective program synthesis Increasing recall indicates new rules are learned - effective query strategy

Few iterations (8-13) indicate low manual effort

Туре	LUSTRE	CRF	
Person	0.089	0.005	
Company	0.125	0.004	
Tournament	0.072	0.014	
Title	0.060	0.004	

Manual effort, a

Experiments - Usefulness

Relation Extraction

MULTIR⁵: uses weak supervision data created by **exact matching** textual mentions to Freebase entities

matching variations: textual mentions to variations of Freebase entities of type *Person* and *Company*

of exact matches: 24,882 sentences

of matches to variations: 34,197 sentences

F1-score: Increased by 3%

Entity Resolution⁴

Refer paper for more details

Conclusion

Framework to reason about name variations of entities based on their structured representations

An active-learning approach to learn structures for an entity type with minimal human input

Automatically synthesize generalizable programs from human-understandable labels for structures

Demo Paper: An Interactive System for Entity Structured Representation and Variant Generation, ICDE 2018

Video Link: https://www.youtube.com/watch?v=llaT4Sz6ul4

Thank You