Theoretische Informatik

Lucien Perret, Jil Zerndt May 2024

Alphabete, Wörter, Sprachen

Alphabete endliche, nichtleere Mengen von Symbolen.

• $\Sigma_{\text{Bool}} = \{0, 1\}$ Boolsches Alphabet

Keine Alphabete: $\mathbb{N}, \mathbb{R}, \mathbb{Z}$ usw. (unendliche Mächtigkeit)

Wort endliche Folge von Symbolen eines bestimmten Alphabets.

• ε Leeres Wort (über jedem Alphabet)

Schreibweisen $|\omega| =$ Länge eines Wortes

 $|\omega|_x =$ Häufigkeit eines Symbols x in einem Wort

 $\omega^R =$ Spiegelwort/Reflection zu ω

Teilwort (Infix) v ist ein Teilwort (Infix) von ω ist, wenn $\omega = xvy$. $\omega \neq v \rightarrow$ Echtes Teilwort, Präfix = Anfang, Suffix = Ende

Mengen von Wörtern Σ^k = Wörter der Länge k über Alphabet Σ

- $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \Sigma^3$ Kleensche Hülle

Konkatenation = Verkettung von zwei beliebigen Wörtern x und y $x \circ y = xy := (x_1, x_2 \dots x_n, y_1, y_2 \dots y_m)$

Wortpotenzen Sei x ein Wort über einem Alphabet Σ

•
$$x^{n+1} = x^n \circ x = x^n x$$

Sprache über Alphabet $\Sigma = \text{Teilmenge } L \subseteq \Sigma^* \text{ von Wörtern}$

- $\Sigma_1 \subseteq \Sigma_2 \wedge L$ Sprache über $\Sigma_1 \to L$ Sprache über Σ_2
- Σ^* Sprache über jedem Alphabet Σ
- $\{\}=\emptyset$ ist die leere Sprache

Konkatenation von A und B: $AB = \{uv \mid u \in A \text{ und } v \in B\}$ **Kleenesche Hülle** A^* von A: $\{\varepsilon\} \cup A \cup AA \cup AAA \cup ...$

Reguläre Ausdrücke und Sprachen

Reguläre Sprache A über dem Alphabet Σ heisst regulär, falls

- A = L(R) für einen regulären Ausdruck $R \in RA_{\Sigma}$ gilt.
- $L(R_1)$: Menge der ganzen Zahlen in Dezimaldarstellung
- $((- | \varepsilon)(1, 2, 3, 4, 5, 6, 7, 8, 9)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) | 0).0$

Reguläre Ausdrücke Wörter, die Sprachen beschreiben

- $\emptyset, \epsilon \in RA_{\Sigma}$
- $R \in RA_{\Sigma} \Rightarrow (R^*) \in RA_{\Sigma}$
- $\Sigma \subset RA_{\Sigma}$
- $R, S \in RA_{\Sigma} \Rightarrow (RS) \in RA_{\Sigma}$
- $R, S \in RA_{\Sigma} \Rightarrow (R \mid S) \in RA_{\Sigma}$

 RA_{Σ} : Sprache der Regulären Ausdrücke über $\{\emptyset, \epsilon, *, (), , | \} \cup \Sigma$

Eigenschaften und Konventionen RA_{Σ}

Priorisierung von Operatoren

• (1) * = Wiederholung \rightarrow (2) Konkatenation \rightarrow (3) |= Oder Erweiterter Syntax

$$R^+ = R(R^*)$$
 $R^? = (R \mid \epsilon)$ $[R_1, \dots, R_k] = R_1 \mid R_2 \mid \dots \mid R_k$

Endliche Automaten

Endliche Automaten Maschinen, die Entscheidungsprobleme lösen

- Links nach rechts
- Keinen Speicher
- Speichert aktuellen Zustand • Ausgabe über akzeptierende
- Keine Variablen
- Zustände

DEA deterministischer endlicher Automat: $M = (Q, \Sigma, \delta, q_0, F)$

- Q endliche Menge von Zuständen
- Σ endliches Eingabealphabet
- $\delta: Q \times \Sigma \to Q$ Übergangsfunktion
- $q_0 \in Q$ Startzustand
- $F \subseteq Q$ Menge der akzeptierenden Zustände

DEA Funktionen $M = (Q, \Sigma, \delta, q_0, F) : EA.$

Konfiguration von M auf ω ist ein Element aus $Q \times \Sigma^*$

- Startkonfiguration von M auf ω $\{q_0, \omega\} \in \{q_0\} \times \Sigma^*$
- Endkonfiguration (q_n, ε)

Berechnungsschritt \vdash_M von $M(q, \omega) \vdash_M (p, x)$

Berechnung ist eine endliche Folge von Berechnungsschritten $(q_a, \omega_1 \omega_2 \dots \omega_n) \vdash_M \dots \vdash_M (q_e, \omega_j \dots \omega_n) \to (q_a, \omega_1 \omega_2 \dots \omega_n) \vdash_M^* (q_e, \omega_j \dots \omega_n)$

Beispiel DEA (eindeutig) Sprache: $L(M) = \{1x1 \mid x \in \{0\}^*\}$

Konfiguration auf $\omega = 101$

- Startkonfiguration $\rightarrow (q_0, 101)$
- Endkonfiguration $\rightarrow (q_2, \varepsilon)$

Berechnung

 $\begin{array}{l} \omega = 101 \rightarrow (q_0, 101) \vdash_M (q_1, 01) \vdash_M (q_1, 1) \vdash_M (q_2, \varepsilon) \rightarrow \text{akzeptierend} \\ \omega = 10 \rightarrow (q_0, 10) \vdash_M (q_1, 0) \vdash_M (q_1, \varepsilon) \rightarrow \text{verwerfend} \end{array}$

Nichtdeterministischer endlicher Automat (NEA)

Unterschied zum DEA: Übergangsfunktion δ Übergangsfunktion $\delta: Q \times \Sigma \to P(Q)$ Ein ε -NEA erlaubt zusätzlich noch ε -Übergänge

NEA (nicht eindeutig) Sprache: $L(M) = \{x01 \mid x \in \{0,1\}^*\}$

Teilmengenkonstruktion ∀ NEA kann in DEA umgewandelt werden

- 1. $Q_{NEA} \rightarrow P(Q_{NEA}) = Q_{DEA}$ (Potenzmenge)
- 2. Verbinden mit Vereinigung aller möglichen Zielzustände
- 3. Nicht erreichbare Zustände eliminieren
- 4. Enthält akzeptierenden Zustand = $F_{NEA} \rightarrow$ akzeptierend

Reguläre Sprachen und endliche Automaten -

Reguläre Sprachen durch äguivalente Mechanismen beschreibbar

Eigenschaften Seien L, L_1 und L_2 reguläre Sprachen über Σ

- Vereinigung: $L_1 \cup L_2 = \{ \omega \mid \omega \in L_1 \vee \omega \in L_2 \}$
- Schnitt: $L_1 \cap L_2 = \{ \omega \mid \omega \in L_1 \land \omega \in L_2 \}$
- Differenz: $L_1 L_2 = \{ \omega \mid \omega \in L_1 \land \omega \notin L_2 \}$
- Komplement: $\bar{L} = \Sigma^* L = \{ \omega \in \Sigma^* \mid \omega \notin L \}$
- Konkatenation:

$$L_1 \cdot L_2 = L_1 L_2 = \left\{ \omega = \omega_1 \omega_2 \mid \omega_1 \in L_1 \land \omega_1 \in L_2 \right\}$$

• Kleenesche Hülle:

$$L^* = \left\{ \omega = \omega_1 \omega_2 \dots \omega_n \mid \omega_i \in L \text{ für alle } i \in \{1, 2, \dots, n\} \right\}$$

Zustandsklasse Jedes Wort landet in einem Zustand

$$\Sigma^* = \bigcup_{p \in Q} [p] \quad [p] \cap [q] = \emptyset, \text{ für alle } p \neq q, p, q \in Q$$

Aber kein Wort landet nach dem Lesen in zwei Zuständen! Nach dem Lesen von ω landet man im Zustand p.

Klasse
$$[q_0] = \left\{ \omega \in \{0, 1\}^* | |\omega|_0 \mod(3) = 1 \right\}$$

Von M akzeptierte Sprache

$$L(M) = \bigcup_{p \in F} [p]$$

Kontextfreie Grammatiken

Kontextfreie Grammatik (KFG) ist ein 4-Tupel (N, Σ, P, A) mit

- N: Alphabet der Nichtterminale (Variablen)
- Σ: Alphabet der Terminale
- P: endliche Menge von Produktionen mit der Form $X \to \beta$ Mit Kopf $X \in N$ und Rumpf $\beta \in (N \cup \Sigma)^*$
- A: Startsymbol, wobei $A \in N$

Ein Wort $\beta \in (N \cup \Sigma)^*$ nennen wir Satzform.

Seien α, β und γ Satzformen und $A \rightarrow \gamma$ eine Produktion.

- Ableitungsschritt mit Produktion $A \to \gamma$ $\alpha A\beta \to \alpha \gamma\beta$
- Ableitung Folge von Ableitungsschritten $\alpha \to \cdots \to \omega$

Ableitungsbaum (Parsebaum) mögliche Darstellung einer Ableitung

- $G_1 = \{\{A, B, C\}, \{0, 1\}, P, A\}$
- $P = \{A \to BC, B \to 0B | 0 | \varepsilon, C \to 1C | 1 | \varepsilon \}$

Ableitung von $\omega_1 = 011$

• $A \rightarrow BC \rightarrow 0AA \rightarrow 01C \rightarrow 011 \rightarrow ... \rightarrow 011$

Mehrdeutigkeit

Eine KFG nennen wir mehrdeutig, wenn es ein Wort gibt, das mehrere Ableitungsbäume besitzt.

Mehrdeutigkeiten eliminieren:

- Korrekte Klammerung vom Benutzer erzwingen
- Grammatik anpassen
- Den Produktionen einen Vorrang vergeben

KFG für Sprache L

Jede reguläre Sprache kann durch eine kontextfreie Grammatik beschrieben werden. Sei L eine reguläre Sprache. Dann gibt es einen DEA $M=(Q,\Sigma,\delta,q_0,F)$ mit L(M)=L

Dann können wir einen KFG für L wie folgt bauen:

- Für jeden Zustand q_i gibt es ein Nichtterminal Q_i
- Für jede Transition $\delta\left(q_i,a\right)=q_j$ erstellen wir die Produktion $Q_i\to aQ_j$
- Für jeden akzeptierenden Zustand $q_i \in F$ erstellen wir die Produktion $Q_i \to \varepsilon$
- Das Nichtterminal Q_0 wird zum Startsymbol A.

Kellerautomaten

Kellerautomaten haben einen «Speicher». PDA = Push Down Automat.

Ein deterministischer Kellerautomat KA ist ein 7-Tupel

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \$, F)$$

- Menge von Zuständen: Q
- Alphabet der Eingabe: Σ
- Alphabet des Kellers: Γ
- Übergangsfunktion: $\delta: Q \times (\Sigma \cup \varepsilon) \times \Gamma \to Q \times \Gamma^*$
- Anfangszustand: $q_0 \in Q$
- Symbol vom Alphabet des Kellers: $\$ \in \Gamma$
- Akzeptierende Zustände: $F \subseteq Q$

Zusätzliche Einschränkungen für DKAs

Für jeden Zustand q und alle Symbole x, b gilt, wenn $\delta(q, b, c)$ definiert ist, dann ist $\delta(q, \varepsilon, x)$ undefiniert.

Ein Übergang $\delta(q, b, c) = (p, \omega)$ wird graphisch dargestellt

$$q - b, c/\omega \longrightarrow p$$

Berechnungsschritte

Ein Berechnungsschritt $\delta(q, b, c) = (p, \omega)$ wird wie folgt interpretiert

- q = Aktueller Zustand
- b = Symbol der Eingabe
- c = Symbol wird entfernt
- $\omega = \text{Wort auf Stack geschrieben}$
- p =Neuer Zustand

Sprache eines Kellerautomaten Die Sprache L(M) des Kellerautomaten M ist definiert durch

$$L(M) = \left\{ \omega \in \Sigma^* \mid \left(q_0, \omega, \$ \right) \vdash^* (q, \varepsilon, \gamma) \text{ für ein } q \in F \text{ und ein } \gamma \in \Gamma^* \right\}$$

Elemente von L(M) werden von M akzeptierte Wörter genannt.

Kellerautomat für eine Sprache erstellen

Ein Kellerautomat für die kontextfreie Sprache $\{0^n1^n \mid n>0\}$

- 0,0/00 Read 0 Add 0 (00-0)=0
- 0, \$/0\$ Read 0 Add 0 (\$0 \$) = 0
- $1,0/\varepsilon$ Read 1 Remove 0 Read $(\varepsilon 0) = -0$
- ε , \$/\$ Read ε (\$ \$) = ε

• $\omega_1 = 011 : (q_0, 011, \$) \vdash (q_1, 11, 0\$) \vdash (q_1, 1, \$) \to \omega_1$ verwerfend

Das Zeichen \$ zeigt an, dass der «Stack» leer ist.

NKA: Übergangsfunktion

• $\delta: Q \times (\Sigma \cup \varepsilon) \times \Gamma \to P(Q \times \Gamma^*)$ Kellerautomat für die Sprache $\left\{\omega\omega^R \mid \omega \in \{0,1\}^*\right\}$

Turingmaschinen

Turingmaschinen (TM)

- Einen Lese- / Schreib-Kopf
- Ein unendliches Band von Zellen

Eine deterministischer Turing-Maschine TM ist ein 7-Tupel

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \sqcup, F)$$

- Menge von Zuständen: Q
- Alphabet der Eingabe: Σ
- Bandalphabet: Γ und $\Sigma \subset \Gamma$
- Übergangsfunktion: $\delta: Q \times \Gamma \to Q \times \Gamma \times D, D = \{L, R\}$
- Anfangszustand: $q_0 \in Q$
- Akzeptierende Zustände: $F \subseteq Q$
- Leerzeichen \sqsubseteq , mit $\mu \in \Gamma$ und $\mu \notin \Sigma$

Sie bildet das 2-Tupel (q, X) auf das Tripel (p, Y, D)

- $q, p \in Q$ und $X, Y \in \Gamma$
- D = Direction
- X = Read
- Y = Overwrite

$$q - X/Y, D \rightarrow p$$

land

- Unterteilt in einzelne Zellen mit jeweils einem beliebigen Symbol
- Beinhaltet zu Beginn die Eingabe, d.h. ein endliches Wort aus Σ^* . Alle anderen Zellen enthalten das besondere Symbol 4 .

Konfiguration einer Turing-Maschine M ist durch die folgenden Angaben eindeutig spezifiziert

- Zustand der Zustandssteuerung
- Position des Lese- / Schreibkopfes
- Bandinhalt

Semi-Unendliches Band

Das Band der Turingmaschine ist nur in eine Richtung unendlich. Jede Sprache L die von einer TM T akzeptiert wird, wird auch von einer TM mit semi-unendlichem Band akzeptiert.

Mehrere Stacks

Jede Sprache L die von einer TM T akzeptiert wird, wird auch von einer 2Stack-Maschine S akzeptiert.

Zähler-Maschinen

Eine Zähler-Maschine (Counter Machine) mit k Zählern entspricht einer k Stack-Maschine mit dem Unterschied, dass die Stacks durch einfache Zähler ersetzt werden.

 Jede Sprache Ldie von einer T
MTakzeptiert wird, wird auch von einer 2 Zähler-Maschin
eZmit 2 Zählern akzeptiert.

TM mit Speicher

In der endlichen Zustandssteuerung einer TM können ausser dem SteuerZustand zusätzlich endlich viele Daten-Zustände gespeichert werden.

Mehrere Spuren

- Das Band der TM setzt sich aus mehreren «Spuren» zusammen.
- Jede Spur kann ein Symbol des Bandalphabets speichern.

Mehrere Bänder

- TM mit endlich vielen Bändern und Lese- / Schreibköpfen
- Jeder Lese- / Schreibkopf kann unabhängig auf ein Band zugreifen

Mehrband-Maschine

Spezifizieren Sie eine TM M_4 , welche die Subtraktion von zwei natürlichen Zahlen (a - b, mit a > b) realisiert.

Beispiel: 4-2=2

			1	2	3	4	5	6	7	8	9
1	q_0 000100 \vdash	<i>0</i> ⊔ / ⊔ <i>0 , RR</i>	0	0	0	0	1	0	0		
2	$q_0 \sqcup \vdash$	0 U / U 0, AA									
1	⊔ <i>q</i> ₀ 00100 ⊢	<i>0</i> ⊔ / ⊔ 0, <i>RR</i>		0	0	0	1	0	0		
2	$0q_0 \sqcup \vdash$	0 1 / 1 0, KK	0								
1	⊔⊔ <i>q</i> ₀ 00100 ⊢	0 / 0. P.P.			0	0	1	0	0		
2	00 <i>q</i> ₀ ⊔ ⊢	<i>0</i> ⊔ / ⊔ 0 , <i>RR</i>	0	0							
1	⊔⊔⊔ <i>q</i> ₀ 0100 ⊢	0 / 0. BB				0	1	0	0		
2	000 <i>q</i> ₀ ⊔ ⊢	<i>0</i> ⊔ / ⊔ 0, <i>RR</i>	0	0	0						
1	⊔⊔⊔⊔ <i>q</i> ₀ 100 ⊢	1 / DI					1	0	0		
2	0000 <i>q</i> ₀ ⊔ ⊢	<i>1</i> ⊔ / ⊔⊔ , <i>RL</i>	0	0	0	0					
1	⊔⊔⊔⊔⊔ <i>q</i> ₁ 00 ⊢	00 / BI						0	0		
2	$000q_10 \vdash$	00/⊔⊔, <i>RL</i>	0	0	0	0					
1	⊔⊔⊔⊔⊔⊔ q ₁ 0 ⊢	00 / 07							0		
2	$00q_1$ 0 \vdash	00/⊔⊔, <i>RL</i>	0	0	0						
1	UUUUUUU q_1	24 2 88									
2	$0q_10 \vdash$	⊔ 0/⊔ 0, RR	0	0							
1	UUUUUUU q_2 U										
2	$00q_2 \sqcup \vdash$		0	0							

Berechnungsmodelle

Turing-berechenbar

Jedes algorithmisch lösbare Berechnungsproblem kann von einer Turing-Maschine gelöst werden.

• Computer und Turing-Maschinen sind äquivalent.

Turing-berechenbare Funktion: Turing-Maschine T $(Q, \Sigma, \Gamma, \delta, q_0, \sqcup, F)$

$$T: \Sigma^* \to \delta^*$$

 $T(\omega) = \begin{cases} u & \text{falls T auf } \omega \in \Sigma^* \text{ angesetzt, nach endlich vielen} \\ & \text{Schritten mit u auf dem Band anhält} \\ \uparrow & \text{falls T bei Input } \omega \in \Sigma^* \text{ nicht hält} \end{cases}$

Primitiv rekursive Grundfunktionen

Für jedes $n\in\mathbb{N}$ und jede Konstante $k\in\mathbb{N}$ die n-stellige konstante Funktion:

$$c_k^n = \mathbb{N}^n \to \mathbb{N} \text{ mit } c_k^n(x_1, ..., x_n) = k$$

Nachfolgerfunktion:

$$\eta: \mathbb{N} \to \mathbb{N} \text{ mit } \eta(x) = x+1$$

Für jedes $n \in \mathbb{N}$ und jedes 1 < k < n die n-stellige Projektion auf die k-te Komponente:

$$\pi_k^n: \mathbb{N}^n \to \mathbb{N} \text{ mit } \pi_k^n(x_1, ..., x_k, ..., x_n) = k$$

n = Anzahl der Argumente, k = Position des Arguments

Loop (primitiv-rekursiv)

- Zuweisungen: x = y + c und x = y c
- Sequenzen: P und $Q \to P$; Q
- Schleifen: $P \to \text{Loop } x \text{ do } P$ until End

Addition von natürlichen Zahlen Add(x, y) = x + y

LOOP x1 D0

$$x2 = x2 + 1$$

END
 $x0 = x2 + 0$

While (Turing vollständig)

Erweiterung deer Sprache Loop

• While $x_i > 0$ do ... until End

Multiplikation von natürlichen Zahlen Mul(x, y) = x * y

GoTo (Turing vollständig)

- Zuweisungen: $x_i = x_i + c$ und $x_i = x_i c$
- Sprunganweisung: IF $x_i = c$ THEN GOTO L_k ELSE GOTO L_t or simple: GOTO L_k
- Schleifen: WHILE $x_i > 0$ DO ... HALT

Case distinction

Entscheidbarkeit

Entscheidbarkeit

- Ein Problem ist entscheidbar, wenn es einen Algorithmus gibt, der für jede Eingabe eine Antwort liefert.
- Ein Problem ist semi-entscheidbar, wenn es einen Algorithmus gibt, der für jede Eingabe eine Antwort liefert, falls die Antwort

Eine Sprache $A \subset \Sigma^*$ ist genau dann entscheidbar, wenn sowohl A als auch \bar{A} semi-entscheidbar ist.

• \bar{A} steht für das Komplement von A in Σ^* : $\bar{A} = \Sigma^* \backslash A =$ $\{\omega \in \Sigma^* \mid \omega \notin A\}$

Entscheidbarkeit und Turingmaschinen Eine Sprache $A \subset \Sigma^*$ heisst entscheidbar, wenn eine TM T existiert, die sich wie folgt verhält:

- Bandinhalt $x \in A$ T hält mit Bandinhalt «1» (Ja) an
- Bandinhalt $x \in \Sigma^* \backslash A$ T hält mit Bandinhalt «0» (Nein) an Äquivalente Aussagen:
- $A \subset \Sigma^*$ ist entscheidbar
- Es existiert eine TM, die das Entscheidungsproblem $T(\Sigma, A)$ löst
- Es existiert ein WHILE-Programm, dass bei einem zu A gehörenden Wort stets terminiert \rightarrow Entscheidungsverfahren für A

Semi-Entscheidbarkeit Turingmaschinen

Eine Sprache $A \subset \Sigma^*$ heisst semi-entscheidbar, wenn eine TM T existiert, die sich wie folgt verhält:

- Bandinhalt $x \in A$ T hält mit Bandinhalt «1» (Ja) an
- Bandinhalt $x \in \Sigma^* \backslash A$ T hält nie an

Äquivalente Aussagen

- $A \subset \Sigma^*$ ist semi-entscheidbar
- $A \subset \Sigma^*$ ist rekursiv aufzählbar
- Es gibt eine TM, die zum Entscheidungsproblem $T(\Sigma, A)$ nur die positiven («Ja») Antworten liefert und sonst gar keine Antwort
- Es gibt ein WHILE-Programm, dass bei einem zu A gehörenden Wort stets terminiert und bei Eingabe von Wörtern die nicht zu A gehören nicht terminiert

Reduzierbarkeit

Eine Sprache $A \subset \Sigma^*$ heisst auf eine Sprache $B \subset \Gamma^*$ reduzierbar, wenn es eine totale, Turing-berechenbare Funktion $F: \Sigma^* \to \Gamma^*$ gibt, so dass für alle $\omega \in \Sigma^*$

$$\omega \in A \Leftrightarrow F(\omega) \in B$$

- $A \leq B$ A ist reduzierbar auf B
- $A \leq B$ und $B \leq C \rightarrow A \leq C$

Halteproblem

Das allgemeine Halteproblem H ist die Sprache (# = Delimiter)

• $H := \{ \omega \# x \in \{0, 1, \#\}^* \mid T_\omega \text{ angesetzt auf } x \text{ hält } \}$

Sprachen der Halteprobleme (HP): leeres HPH_0 und spezielles HP H_S

- $H_0 := \{ \omega \in \{0,1\}^* \mid T_\omega \text{ angesetzt auf das leere Band hält } \}$
- $H_S := \{ \omega \in \{0,1\}^* \mid T_\omega \text{ angesetzt auf } \omega \text{ hält } \}$

 H_0, H_S und H sind semi-entscheidbar.

Komplexitätstheorie

Quantitative Gesetze und Grenzen der algorithmischen Informationsverarbeitung

- Zeitkomplexität: Laufzeit des besten Programms, welches das Problem löst
- Platzkomplexität: Speicherplatz des besten Programms
- Beschreibungskomplexität: Länge des kürzesten Programms

Zeitbedarf Der Zeitbedarf von M auf Eingaben der Länge $n \in \mathbb{N}$ im schlechtesten Fall definiert als

$$\operatorname{Time}_{M}(n) = \max \left\{ \operatorname{Time}_{M}(\omega) | |\omega| = n \right\}$$

Sei M eine TM, die immer hält und sei $\omega \in \Sigma^*$. Der Zeitbedarf von M auf der Eingabe ω ist

• Time $M(\omega) = \text{Anzahl von Konfigurations}$ übergängen in der Berechnung von M auf ω

P vs NP Klassifizierung von Problemen

Ein Problem U heisst in Polynomzeit lösbar, wenn es eine obere Schranke $O(n^c)$ gibt für eine Konstante c > 1.

- $P \doteq \text{L\"osung finden in Polynomzeit}$
- $NP \doteq \text{L\"osung verifizieren in Polynomzeit}$

Eine Sprache L heisst NP-schwer, falls für alle Sprachen

$$L' \in NP$$
 gilt, dass $L' \leq_n L$

Eine Sprache L heisst NP-vollständig, falls $L \in NP$ und L ist NPschwer.

Polynomzeit-Verifizierer: Überprüft die einzelnen Eingaben in einem

Zeuge: Informationen einer gültigen Eingabe

Asymptotische Komplexitätsmessung O-Notation (Landau Symbole)

- $f \in O(q)$: Es existiert ein $n_0 \in \mathbb{N}$ und ein $c \in \mathbb{N}$, so dass für alle $n > n_0$ gilt
- $-f(n) \le c \cdot g(n)f$ wächst asymptotisch nicht schneller als g
- $f \in \Omega(q)$: Es existiert ein $n_0 \in \mathbb{N}$ und ein $d \in \mathbb{N}$, so dass für alle
 - $-f(n) > \frac{1}{4} \cdot q(n)f$ wächst asymptotisch mindestens so schnell
- $f \in \Theta(g)$: Es gilt $f(n) \in O(g(n))$ und $f(n) \in \Omega(g(n))$
 - f und a sind asymptotisch gleich

Schranken für die Zeitkomplexität von U

• O(f(n)) ist eine obere Schranke, falls Eine TM existiert, die U löst und eine Zeitkomplexität in O(f(n))

• $\Omega(q(n))$ ist eine untere Schranke, falls Für alle TM M, die U lösen, gilt dass Time_M $(n) \in \Omega(q(n))$

Rechenregeln

- Konstante Vorfaktoren c ignorieren $(c \in O(1))$.
- Bei Polynomen ist nur die höchste Potenz entscheidend:

$$a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0 \in O(n^k)$$

- $\bullet~$ Die O-Notation ist transitiv.
- $f(n) \in O(q(n)) \land q(n) \in O(h(n)) \rightarrow f(n) \in O(h(n))$
- O(n) 7n + 4• $O(n^3)$ $25n^2 + n^3 + 100n$
- $O(n^2 \cdot \log(n))$ $n^2 + n \cdot n \cdot (\log(n)) + 20n^2 + 50n \cdot 100$ $O(2^n)$ $10^{20} + 3n^3 + 2^n + 2^{10} \cdot 2^{30}$

Übersicht wichtigste Laufzeiten TODO: Tabelle mit Laufzeiten

Übersicht

