Claims

We Claim:

1. A compound of Formula (I):

5

∥≈£:

1

10

wherein

G₁ comprises C₁-C₆ alkylene or (CH₂)_k, where k is 0 to 3;

G₂ comprises a) hydrogen

- b) C₁₋₆ alkyl;
- c) -aryl;
- d) -C₁₋₆ alkylaryi;

e)

15

where R₅ and R₆ independently comprise

- i) -H;
- ii) -C₁₋₆ alkyl;
- iii) -aryl;
- iv) -C₁₋₆ alkylaryl;
- -C(O)-O-C₁₋₆ alkyl; v)
- -C(O)-O-C₁₋₆ alkylaryl; vi)
- -C(O)-O-C₁₋₆ alkylcycloalkylaryl; vii)

20

5

- viii) -C(O)-NH-C₁₋₆ alkyl;
- ix) -C(O)-NH-C₁₋₆ alkylaryl;
- x) -SO₂-C₁₋₆ alkyl;
- xi) -SO₂-C₁₋₆ alkylaryl;
- xii) -SO₂-aryl;
- xiii) -SO₂-NH-C₁₋₆ alkyl;
- xiv) -SO₂-NH-C₁₋₆ alkylaryl;

- xvi) -C(O)-C₁₋₆ alkyl; or
- xvii) -C(O)-C₁₋₆ alkylaryl; or
- f) a group of the formula

xv)

wherein

 $\mathsf{R}_{9},\mathsf{R}_{10},$ and R_{11} may comprise hydrogen; or

 $R_{9},\,R_{10},\,and\,\,R_{11}$ independently comprise

- i) -C₁₋₆ alkyl;
- ii) -aryl;
- iii) -C₁₋₆ alkylaryl;

- iv) -C(O)-O-C₁₋₆ alkyl;
- v) -C(O)-O-C₁₋₆ alkylaryl;
- vi) -C(O)-NH-C₁₋₆ alkyl;
- vii) -C(O)-NH-C₁₋₆ alkylaryl;
- viii) -SO₂-C₁₋₆ alkyl;
- ix) -SO₂-C₁₋₆ alkylaryl;
- x) -SO₂-aryl;
- xi) -SO₂-NH-C₁₋₆ alkyl;
- xii) -SO₂-NH-C₁₋₆ alkylaryl;
- xiii) -C(O)-C₁₋₆ alkyl; or
- xiv) -C(O)-C₁₋₆ alkylaryl;

R₁₀ and R₁₁ may be taken together to constitute a fused cycloalkyl, fused heterocyclyl, or fused aryl ring containing the atoms to which R₁₀ and R₁₁ are bonded;

15

į si

h., []

20 and the control of the control of

5

10

R₁ comprises

- a) hydrogen;
- b) -C₁₋₆ alkyl;
- c) -aryl; or
- d) -C₁₋₆ alkylaryl;

R₂ comprises

- a) -C₁₋₆ alkyl;
- b) -aryl;
- c) -C₁₋₆ alkylaryl; or
 - d) a group of the formula

30

wherein m and n are independently selected from 1, 2, 3, or 4; X comprises a direct bond, CH₂-, -O-, -S-, -S(O₂)-, -C(O)-, -CON(H)-, -NHC(O)-, -NHCON(H)-, -NHSO₂-, -SO₂N(H)-, -C(O)-O-, -O-C(O)-, -NHSO₂NH-,

-Q1- comprises C1-6 alkylene, C2-6 alkenylene, or C2-6 alkynylene;

- 5 R₃ comprises
 - a) hydrogen;
 - b) -C₁₋₆ alkyl;
 - c) -C₁₋₆ alkylaryl; or
 - d) -C₁₋₆ alkoxyaryl;

R₄ comprises

- a) -C₁₋₆ alkylaryl;
- b) -C₁₋₆ alkoxyaryl; or
- c) -aryl;
- R₇, R₈, R₁₂ and R₁₃ independently comprise hydrogen, C₁-C₆ alkyl, C₁-C₆ alkylaryl, or aryl; and wherein

the aryl and/or alkyl group(s) in R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂, and R₁₃ may be optionally substituted 1-4 times with a substituent group, wherein said substituent group(s) or the term substituted refers to groups comprising:

20

THE REAL PROPERTY.

|| #1 || #4 || #4

ď,

The state of the s

#8#

- a) -H;
- b) -Y-C₁₋₆ alkyl;
 - -Y-aryl;
 - -Y-C-1-6 alkylaryl;
 - -Y-C₁₋₆-alkyl-NR₁₄R₁₅;
- 25 -Y-C₁₋₆-alkyl-W-R₁₆;

wherein Y and W independently comprise -CH2-, -O-, -N(H), -S-, SO₂-, -CON(H)-, -NHC(O)-, -NHCON(H)-, NHSO₂-, -SO₂N(H)-, -C(O)-O-, -NHSO₂NH-, -O-CO-,

R₁₆, R₁₇, and R₁₈ comprise hydrogen, aryl, C₁-C₆ alkyl, C₁-C₆ alkylaryl, C₁-C₆ alkoxy, or C₁-C₆ alkoxyaryl; or

c) halogen, hydroxyl, cyano, carbamoyl, or carboxyl; and

R₁₄ and R₁₅ independently comprise hydrogen, aryl, C₁-C₆ alkyl, or C₁-C₆ alkylaryl; and wherein

R₁₄ and R₁₅ may be taken together to form a ring having the formula -(CH₂)_o-Z-(CH₂)_pbonded to the nitrogen atom to which R₁₄ and R₁₅ are attached, and/or R₇ and R₈ may, independently, be taken together to form a ring having the formula -(CH₂)₀-Z-(CH₂)₀- bonded to the atoms to which R₇ and R₈ are attached, wherein o and p are, independently, 1, 2, 3, or 4; Z comprises a direct bond, -CH₂-, -O-, -S-, -S(O₂)-, -C(O)-, -CON(H)-, -NHC(O)-, -NHCON(H)-, -NHSO₂-, -SO₂N(H)-, -C(O)-O-, -O-C(O)-, -NHSO₂NH-,

R₁₉ and R₂₀ independently comprise hydrogen, aryl, C₁-C₆ alkyl, or C₁-C₆ alkylaryl.

2. The compound of claim 1, represented by Formula (la)

15

20

5

$$R_{22}$$
 R_{23}
 R_{24}
 R_{24}
 R_{24}
 R_{24}
 R_{24}
 R_{24}
 R_{24}
 R_{25}
 R_{24}
 R_{25}
 R_{24}
 R_{25}
 R_{25}
 R_{25}
 R_{25}
 R_{25}
 R_{25}

wherein G1 comprises a direct bond;

5

$$R_{6}$$

G₂ comprises

R₁ comprises H;

of the first part of the first of the first

15

Constitution of the Consti

() comprises a $-CH_2$ - group or a direct covalent bond, and x and w are independently equal to 0 to 2, with the proviso that x and w can not both be equal to 0;

R₃ comprises

- a) hydrogen;
- b) -C₁₋₆ alkyl;
- c) -C₁₋₆ alkylaryl; or
- d) -C₁₋₆ alkoxyaryl;

R₄ comprises

20

- a) -C₁₋₆ alkylaryl;
- b) -C₁₋₆ alkoxyaryi; or
- c) -aryl;

R₆ comprises

a) ~H;

- b) -C₁₋₆ alkyl;
- c) -aryl;
- d) -C₁₋₆ alkylaryl; or

e) a group selected from -C(O)R₂₅, -C(O)OR₂₅, -C(O)NR₂₆R₂₅, -S(O)₂R₂₅, and - S(O)₂NR₂₆R₂₅; wherein R₂₅ and R₂₆ independently comprise -C₁₋₆ alkyl, aryl, or -C₁₋₆ alkylaryl;

R5 and R2 are taken together to form a ring of structure

5

wherein R21, R22, R23 and R24 independently comprise

- i) -H;
- ii) -C1-6 alkyl;
- iii) -aryl;
- iv) -C1-6 alkylaryl; or
- v) a group of the formula –U-R₂₇, wherein U comprises –C(O)-,

-C(O)O-, -O-, -S-, -S(O)-, -S(O)₂-, or -NR₂₈-,

wherein R₂₇ and R₂₈ independently comprise –H, -aryl, -C₁₋₆ alkyl, or -C₁₋₆ alkylaryl;

15

*

463

The same

the aryl and/or alkyl group(s) in R₃, R₄, and R₆ may be optionally substituted 1-4 times with a substituent group, wherein said substituent group(s) or the term substituted refers to groups comprising:

- a) -H;
- 20
- b) -Y-C₁₋₆ alkyl;
 - -Y-aryl;
 - -Y-C-1-6 alkylaryl;
 - -Y-C₁₋₆-alkyl-NR₁₄R₁₅;
 - -Y-C₁₋₆-alkyl-W-R₁₆;

25

wherein Y and W independently comprise -CH₂-, -O-, -N(H), -S-, SO₂-, -CON(H)-, -NHC(O)-, -NHCON(H)-, -O-CO-, NHSO₂-, -SO₂N(H)-, -C(O)-O-, -NHSO₂NH-, -O-CO-,

$$R_{17}$$
 R_{17} R_{17} R_{17} R_{17} R_{18} R_{18} R_{18}

 $R_{16},\,R_{17},\,and\,\,R_{18}\,\,independently\,\,comprise\,\,hydrogen,\,\,aryl,\,\,C_1\text{--}C_6\,\,alkyl,\\ C_1\text{--}C_6\,\,alkylaryl,\,\,C_1\text{--}C_6\,\,alkoxy,\,\,or\,\,C_1\text{--}C_6\,\,alkoxyaryl;}\,\,or\,\,$

c) halogen, hydroxyl, cyano, carbamoyl, or carboxyl; and

 R_{14} and R_{15} independently comprise hydrogen, aryl, C_1 - C_6 alkyl, and C_1 - C_6 alkylaryl; or wherein

R₁₄ and R₁₅ may be taken together to form a ring having the formula -(CH₂)₀-Z-(CH₂)_p-bonded to the nitrogen atom to which R₁₄ and R₁₅ are attached, wherein o and p are, independently, 1, 2, 3, or 4; Z comprises a direct bond, -CH₂-, -O-, -S-, -S(O₂)-, -C(O)-, -CON(H)-, -NHC(O)-, -NHCON(H)-, -NHSO₂-, -SO₂N(H)-, -C(O)-O-, -O-C(O)-, -NHSO₂NH-,

R₁₉ and R₂₀ comprise hydrogen, aryl, C₁-C₆ alkyl, or C₁-C₆ alkylaryl.

3. The compound of claim 1, represented by Formula (lb)

$$\begin{array}{c|c}
R_{30} & R_{6} \\
R_{29} & R_{3}
\end{array}$$
(Ib)

wherein, G₁ comprises a direct bond;

15

20

 $R_6 - N - 1$

G₂ comprises

R₁ comprises H;

() comprises a $-CH_2$ - group or a direct covalent bond, and y and z are, independently,an integer of from 0 to 3;

R₃ comprises

- a) hydrogen;
- 10 b) -C₁₋₆ alkyl;
 - c) -C₁₋₆ alkylaryl; or
 - d) -C₁₋₆ alkoxyaryl;

15 15

April 1

5

R₄ comprises

- a) -C₁₋₆ alkylaryl;
- b) -C₁₋₆ alkoxyaryí; or
- c) -aryl;

R₆ comprises

- a) –H;
- b) -C₁₋₆ alkyl;
- c) -aryl;
- d) -C₁₋₆ alkylaryl; or
- e) a group selected from –C(O)R₂₅, -C(O)OR₂₅, -C(O)NR₂₆R₂₅, -S(O)₂R₂₅, and S(O)₂NR₂₆R₂₅; wherein R₂₅ and R₂₆ independently comprise -C₁₋₆ alkyl, aryl, or –C₁₋₆ alkylaryl;

25

30

20

the aryl and/or alkyl group(s) in R_3 , R_4 , and R_6 may be optionally substituted 1-4 times with a substituent group, wherein said substituent group(s) or the term substituted refers to groups comprising:

- a) -H;
- b) -Y-C₁₋₆ alkyl; -Y-aryl;

-Y-C₁₋₆-alkyl-NR₁₄R₁₅;

-Y-C1-6-alkyl-W-R16;

5

wherein Y and W independently comprise -CH₂-, -O-, -N(H), -S-, SO₂-, -CON(H)-, -NHC(O)-, -NHCON(H)-, -O-CO-, NHSO₂-, -SO₂N(H)-, -C(O)-O-, -NHSO₂NH-, -O-CO-,

10

#£

Mark of the state of

|| a \$

1

| #5 | [2]

100 A 100 A

15

 R_{16} , R_{17} , and R_{18} comprise hydrogen, aryl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, or C_1 - C_6 alkoxyaryl; or

c) halogen, hydroxyl, cyano, carbamoyl, or carboxyl; and

R₁₄ and R₁₅ independently comprise hydrogen, aryl, C₁-C₆ alkyl, or C₁-C₆ alkylaryl; and wherein

 R_{14} and R_{15} may be taken together to form a ring having the formula $-(CH_2)_o$ -Z- $(CH_2)_p$ -bonded to the nitrogen atom to which R_{14} and R_{15} are attached, wherein o and p are, independently, 1, 2, 3, or 4; Z comprises a direct bond, $-CH_2$ -, -O-, -S-, $-S(O_2)$ -, -C(O)-, -C(O)-, -NHCON(H)-, -NHCON(H)-, $-NHSO_2$ -, $-SO_2N(H)$ -, -C(O)-O-, -O--C(O)-, $-NHSO_2NH$ -,

20

 R_{19} and R_{20} comprise hydrogen, aryl, C_1 - C_6 alkyl, or C_1 - C_6 alkylaryl;

R5 and R2 are taken together to form a ring of structure

wherein R₂₉ and R₃₀ independently comprise

- a) -H
- b) -C₁₋₆ alkyl;
- c) -aryl;
 - d) -C₁₋₆ alkylaryl;
 - e) -C(O)-O-C₁₋₆ alkyl;
 - f) -C(O)-O-C₁₋₆ alkylaryl;
 - g) -C(O)-NH-C₁₋₆ alkyl;
 - h) -C(O)-NH-C₁₋₆ alkylaryl;

 - i) -SO₂-C₁₋₆ alkyl;
 - j) -SO₂-C₁₋₆ alkylaryl;
 - k) -SO₂-aryl;
 - I) -SO₂-NH-C₁₋₆ alkyl;
- m) -SO₂-NH-C₁₋₆ alkylaryl;
- n) -C(O)-C₁₋₆ alkyl;
- o) -C(O)-C₁₋₆ alkylaryl; or
- p) a group of the formula -V-R31, wherein V comprises a group of the formula -C(O), -OC(O)-, -O-, -S-, -

S(O)-, $-S(O_2)$ -, -NH-, or -N(R₃₂)-;

wherein R₃₁ and R₃₂ comprise

- i) -H
- ii) -C₁₋₆ alkyl;
- iii) -aryl;
- -C₁₋₆ alkylaryl; iv)
- -C(O)-O-C₁₋₆ alkyl; V)
- -C(O)-O-C₁₋₆ alkylaryl; vi)
- -C(O)-NH-C₁₋₆ alkyl;-C(O)-NH-C₁₋₆ alkylaryl; vii)
- -SO₂-C₁₋₆ alkyl; viii)
- -SO₂-C₁₋₆ alkylaryl; ix)
- -SO₂-aryl; x)

5

10

15

20

- xi) -SO₂-NH-C₁₋₆ alkyl;
- xii) -SO₂-NH-C₁₋₆ alkylaryl;
- xiii) -C(O)-C₁₋₆ alkyl; or
- xiv) -C(O)-C₁₋₆ alkylaryl;

10

15

#£

The Street of th

Mary Thurs of Marie

100 mm

wherein R₂₉, R₃₀, R₃₁, and R₃₂ may be optionally substituted 1-4 times with a substituent group, wherein said substituent group(s) or the term substituted refers to groups comprising:

- a) -H;
- b) -L-C₁₋₆ alkyl;

-L-aryl;

-L-C-1-6 alkylaryl;

-L-C₁₋₆-alkyl-NR₃₃R₃₄;

-L-C₁₋₆ alkyl-Q₂-R₃₅;

wherein L and Q₂ independently comprise -CH₂-, -O-, -N(H), -S-, SO₂-, -CON(H)-, -NHC(O)-, -NHCON(H)-, -O-CO-, NHSO₂-, -SO₂N(H)-, -C(O)-O-, -NHSO₂NH-, -O-CO-,

 R_{35} , R_{36} , and R_{37} comprise hydrogen, aryl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, or C_1 - C_6 alkoxyaryl; or

20

c) halogen, hydroxyl, cyano, carbamoyl, or carboxyl; and

 R_{33} and R_{34} independently comprise hydrogen, aryl, C_1 - C_6 alkyl, or C_1 - C_6 alkylaryl; and wherein

25

R₃₃ and R₃₄ may be taken together to form a ring having the formula -(CH₂)_e-J-(CH₂)_k-bonded to the nitrogen atom to which R₃₃ and R₃₄ are attached, wherein e and k are, independently, 1, 2, 3, or 4; J comprises a direct bond, -CH₂-, -O-, -S-, -S(O₂)-, -C(O)-, -CON(H)-, -NHC(O)-, -NHCON(H)-, -NHSO₂-, -SO₂N(H)-, -C(O)-O-, -O-C(O)-, -NHSO₂NH-,

 R_{38} and R_{39} comprises hydrogen, aryl, $C_1\text{-}C_6$ alkyl, or $C_1\text{-}C_6$ alkylaryl.

4. The compound of claim 1, represented by Formula (Ic):

$$G_{2}$$
 R_{1}
 G_{1}
 R_{2}
 R_{3}
 R_{3}

wherein,

5

|| #1 || #3

AT THE AT THE

1,00

15

20

10

R₁ comprises hydrogen, or C₁₋₃ alkylaryl wherein the aryl is substituted with -Y-C₋₁₋₆ alkylaryl;

 R_2 comprises $C_{1\text{--}3}$ alkylaryl wherein the aryl is substituted with $-Y\text{--}C_{-1\text{--}6}$ alkylaryl,

wherein Y comprises -CH₂-, -O-, -N(H), -S-, SO₂-, -CON(H)-, -NHC(O)-, -NHCON(H)-, -NHSO₂-, -SO₂N(H)-, -C(O)-O-, -NHSO₂NH-, -O-CO-,

$$R_{17}$$
 R_{17} R_{17} R_{17} R_{17} R_{18} R_{18} R_{18}

 R_{17} , and R_{18} independently comprises hydrogen, aryl, C_1 - C_6 alkyl, C_1 - C_6 alkylaryl, C_1 - C_6 alkoxy, or C_1 - C_6 alkoxyaryl.

5. The compound of claim 1, represented by Formula (ld):

wherein,

R₁ comprises hydrogen, or C₁₋₃ alkylaryl wherein the aryl is substituted with -Y-C-₁₋₆ alkylaryl;

R₂ comprises C₁₋₃ alkylaryl wherein the aryl is substituted with -Y-C-₁₋₆ alkylaryl;

10

15 15

111

20

5

wherein Y comprises -CH2-, -O-, -N(H), -S-, SO2-, -CON(H)-, -NHC(O)-, -NHCON(H)-, -NHSO₂-, -SO₂N(H)-, -C(O)-O-, -NHSO₂NH-, -O-CO-,

$$R_{17}$$
 R_{17} R

R₁₇, and R₁₈ independently comprises hydrogen, aryl, C₁-C₆ alkyl, C₁-C₆ alkylaryl, C1-C6 alkoxy, or C1-C6 alkoxyaryl;

R₃ comprises hydrogen or -L-C₁-6-alkyl-N(alkyl)₂;

R4 comprises -L-C₁₋₆-alkyl-N(alkyl)₂;

wherein L comprises -CH₂-, -O-, -N(H)-, -S-, SO₂-, -CON(H)-, -NHC(O)-, - $NHCON(H)_{-}, -NHSO_{2-}, -SO_{2}N(H)_{-}, -C(O)_{-}O_{-}, -NHSO_{2}NH_{-}, -O_{-}CO_{-}, -NHSO_{2}NH_{-}, -O_{2}NH_{-}, -O_{2$

$$R_{36}$$
 R_{36} R

25

R₃₅, R₃₆, and R₃₇ independently comprise hydrogen, aryl, C₁-C₆ alkyl, C₁-C₆ alkylaryl, C₁-C₆ alkoxy, or C₁-C₆ alkoxyaryl.

30

6. The compound of claim 1, represented by Formula (le):

wherein,

5 G₁ comprises a direct bond;

G2 comprises a group of the formula

$$R_{10}$$
 R_{11}
 R_{9}

or

10

The same is a second

44

Control of the Contro

wherein

R₉, R₁₀, and R₁₁ may be hydrogen; or

R₉, R₁₀, and R₁₁ independently comprise

- 15
- 20
- 25

- -C₁₋₆ alkyl; i)
- ii) -aryl;
- iii) -C₁₋₆ alkylaryl;
- -C(O)-O-C₁₋₆ alkyl; iv)
- -C(O)-O-C₁₋₆ alkylaryl; V)
- -C(O)-NH-C₁₋₆ alkyl; vi)
- vii) -C(O)-NH-C₁₋₆ alkylaryl;
- viii) -SO₂-C₁₋₆ alkyl;
- -SO₂-C₁₋₆ alkylaryl; ix)
- x) -SO₂-aryl;
- -SO₂-NH-C₁₋₆ alkyl; xi)
- -SO₂-NH-C₁₋₆ alkylaryl; xii)

 R_{10} and R_{11} may be taken together to constitute a fused cycloalkyl, fused heterocyclyl, or fused aryl ring containing the atoms to which R_{10} and R_{11} are bonded;

R₁ comprises H;

R₂ comprises

10 a) -C₁₋₆ alkyl;

5

- b) -aryl; or
- c) -C₁₋₆ alkylaryl;

R₃ comprises

- a) hydrogen;
- b) -C₁₋₆ alkyl;
- c) -C₁₋₆ alkylaryl; or
- d) -C₁₋₆ alkoxyaryl;

20 R₄ comprises

- a) -C₁₋₆ alkylaryl;
- b) -C₁₋₆ alkoxyaryl; or
- c) -aryl;

the aryl and/or alkyl group(s) in R₂, R₃, R₄, R₉, R₁₀, R₁₁ may be optionally substituted 1-4 times with a substituent group, wherein said substituent group(s) or the term substituted refers to groups comprising:

- a) -H;
- b) -Y-C₁₋₆ alkyl;
 - -Y-aryl;
 - -Y-C-1-6 alkylaryl;
 - -Y-C₁₋₆-alkyl-NR₁₄R₁₅;
 - -Y-C₁₋₆-alkyl-W-R₁₆;

16.11

25

30

1 .1.

20

5

wherein Y and W independently comprise -CH₂-, -O-, -N(H), -S-, SO₂-, -CON(H)-, -NHC(O)-, -NHCON(H)-, -NHSO₂-, -SO₂N(H)-, -C(O)-O-, -NHSO₂NH-, -O-CO-,

 $R_{16},\,R_{17},$ and R_{18} comprise hydrogen, aryl, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ alkylaryl, $C_1\text{-}C_6$ alkoxy, or $C_1\text{-}C_6$ alkoxyaryl; or

- c) halogen, hydroxyl, cyano, carbamoyl, or carboxyl; and
- 10 R₁₄ and R₁₅ independently comprise hydrogen, aryl, C₁-C₆ alkyl, or C₁-C₆ alkylaryl; and wherein

 R_{14} and R_{15} may be taken together to form a ring having the formula $-(CH_2)_o$ -Z- $(CH_2)_p$ -bonded to the nitrogen atom to which R_{14} and R_{15} are attached, wherein o and p are, independently, 1, 2, 3, or 4; Z comprises a direct bond, $-CH_2$ -, -O-, -S-, $-S(O_2)$ -, -C(O)-, -C(O)-, -NHCON(H)-, -NHCON(H)-, -NHCON(H)-, $-SO_2N(H)$ -, -C(O)-O-, -O--C(O)-, $-NHSO_2NH$ -,

R₁₉ and R₂₀ independently comprise hydrogen, aryl, C₁-C₆ alkyl, or C₁-C₆ alkylaryl;

7. The compound of claim 1, represented by Formula (If):

$$G_{2} \xrightarrow{R_{1}} N - R_{4}$$

$$R_{2} \qquad R_{3}$$
(If)

wherein,

G₁ comprises a direct bond;

$$R_{6}$$
 R_{6}

G₂ comprises

R₁ comprises H;

5 R₂ comprises a group of the formula

$$Q_1$$
 $(CH_2)n$ $(CH_2)m$

wherein m and n are independently selected from 1, 2, 3, or 4; X comprises a direct bond, CH_{2^-} , $-O_-$, $-S_-$, $-S(O_2)_-$, $-C(O)_-$, $-CON(H)_-$, $-NHC(O)_-$, $-NHCON(H)_-$, $-NHSO_2$, $-SO_2N(H)_-$, $-C(O)_-O_-$, $-O_-C(O)_-$, $-NHSO_2NH_-$,

-Q1- comprises $C_{1\text{--}6}$ alkylene, $C_{2\text{--}6}$ alkenylene, or $C_{2\text{--}6}$ alkynylene;

 R_{12} and R_{13} independently comprises hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkylaryl, or aryl; and wherein

R₃ comprises

20

- a) hydrogen;
- b) -C₁₋₆ alkyl;
- c) -C₁₋₆ alkylaryl; or
- d) -C₁₋₆ alkoxyaryl;

- a) -C₁₋₆ alkylaryl;
- b) -C₁₋₆ alkoxyaryl; or
- c) -aryl;
- 5 R₅ and R₆ independently comprise
 - a) -H;
 - b) -C₁₋₆ alkyl;
 - c) -aryl;
 - d) -C₁₋₆ alkylaryl; or
- 10

j si

THE REAL PROPERTY.

] ph

e) a group selected from $-C(O)R_{25}$, $-C(O)OR_{25}$, $-C(O)NR_{26}R_{25}$, $-S(O)_2R_{25}$, and $-S(O)_2NR_{26}R_{25}$; wherein R_{25} and R_{26} independently comprise $-C_{1-6}$ alkyl, aryl, and $-C_{1-6}$ alkylaryl;

the aryl and/or alkyl group(s) in R₃, R₄, R₅, R₆, R₁₂, and R₁₃ may be optionally substituted 1-4 times with a substituent group, wherein said substituent group(s) or the term substituted refers to groups comprising:

- a) -H;
- b) -Y-C₁₋₆ alkyl;
 - -Y-aryl;
 - -Y-C-1-6 alkylaryl;
 - -Y-C₁₋₆-alkyl-NR₁₄R₁₅;
 - -Y-C₁₋₆-alkyl-W-R₁₆;

25

20

wherein Y and W independently comprise -CH₂-, -O-, -N(H), -S-, SO₂-, -CON(H)-, -NHC(O)-, -NHCON(H)-, -NHSO₂-, -SO₂N(H)-, -C(O)-O-, -NHSO₂NH-, -O-CO-,

$$R_{17}$$
 R_{17} R_{17} R_{17} R_{17} R_{18} R_{18} R_{18}

 R_{16} , R_{17} , and R_{18} independently comprise hydrogen, aryl, C_1 - C_6 alkyl, C_1 - C_6 alkylaryl, C_1 - C_6 alkoxy, or C_1 - C_6 alkoxyaryl; or

c) halogen, hydroxyl, cyano, carbamoyl, or carboxyl; and

 R_{14} and R_{15} independently comprises hydrogen, aryl, C_1 - C_6 alkyl, or C_1 - C_6 alkylaryl; and wherein

R₁₄ and R₁₅ may be taken together to form a ring having the formula -(CH₂)₀-Z-(CH₂)_p-bonded to the nitrogen atom to which R₁₄ and R₁₅ are attached, wherein o and p are, independently, 1, 2, 3, or 4; Z comprises a direct bond, -CH₂-, -O-, -S-, -S(O₂)-, -C(O)-, -CON(H)-, -NHC(O)-, -NHCON(H)-, -NHSO₂-, -SO₂N(H)-, -C(O)-O-, -O-C(O)-, -NHSO₂NH-,

R₁₉ and R₂₀ independently comprise hydrogen, aryl, C₁-C₆ alkyl, or C₁-C₆ alkylaryl.

10

5

8. The compound of claim 1, wherein the compound comprises 3-(4-Benzyloxyphenyl)propionic Acid 2,4-Di-(3-Diethylamino-1-propoxy)aniline Amide.

15

9. The compound of claim 1, wherein the compound comprises 3-(3-Tert-butoxyphenyl)-3-(9-fluorenylmethoxycarbonylamino)propionic Acid 2,4-Di-(3-diethylaminopropoxy)aniline Amide.

20

10. The compound of claim 1, wherein the compound comprises 3-(3-Tert-butoxyphenyl)-3-aminopropionic Acid 2,4-Di-(3-diethylaminopropoxy)aniline Amide.

11. The compound of claim 1, wherein the compound comprises 3-(4-Benzyloxyphenyl)propionic Acid 2,4-Di-(3-Diethylamino-1-propoxy)aniline Amide.

25

12. The compound of claim 1, wherein the compound comprises 3-(3-Tert-butoxyphenyl)-3-(9-fluorenylmethoxycarbonylamino)propionic Acid 2,4-Di-(3-diethylaminopropoxy)aniline Amide.

- 13. The compound of claim 1, wherein the compound comprises 3-(3-Tert-butoxyphenyl)-3-aminopropionic Acid 2,4-Di-(3-diethylaminopropoxy)aniline Amide.
- 14. The compound of claim 1, wherein the compound comprises 3-(4-Tetrahydropyranyl)-2-aminopropionic Acid 4-Diethylaminoethoxycarbonyl-2-butoxyaniline Amide Dihydrochloride.
 - 15. The compound of claim 1, wherein the compound comprises (2S, 4R)-4-Tert-Butoxypyrrolidine-2-carboxylic acid 2,4-Di(3-diethylamino-1-propoxy)aniline Amide.
 - 16. The compound of claim 1, wherein the compound comprises (3S)-1,2,3,4-Tetrahydroisoquinoline-3-carboxylic Acid 4-Diethylaminoethoxycarbonyl-2-butoxyaniline Amide Dihydrochloride.
 - 17. The compound of claim 1, wherein the compound comprises (R)-3-(4-Benzyloxyphenyl)-2-(1-imidazolyl)propionic Acid 4-Diethylaminoethoxycarbonyl-2-butoxyaniline Amide.
 - 18. The compound of claim 1, wherein the compound comprises 3-(4-Tert-butoxyphenyl)-3-(9-fluorenylmethoxycarbonylamino)propionic Acid 2,4-Di-(3-diethylaminopropoxy)aniline Amide.
 - 19. The compound of claim 1, wherein the compound comprises 3-amino-3-(4-tert-butoxyphenyl)propionic Acid 2,4-Di-(3-diethylaminopropoxy)aniline Amide.
 - 20. The compound of claim 1, wherein the compound comprises 3-(9-fluorenylmethoxycarbonylamino)-3-(2-tert-butoxyphenyl)propionic Acid 2,4-Di-(3-diethylaminopropoxy)aniline Amide.
 - 21. The compound of claim 1, wherein the compound comprises 3-amino-3-(2-tert-butoxyphenyl)propionic Acid 2,4-Di-(3-diethylaminopropoxy)aniline Amide.
 - 22. The compound of claim 1, wherein the compound comprises 3-Isopropylamino-3-(3-tert-butoxyphenyl)propionic Acid 2,4-Di-(3-diethylaminopropoxy)aniline Amide.

10

15

20

25

30

A Chart of the Control of the Contro

The series

ų[]

#

Contraction of the second

20

25

30

5

10

j si 4j || # £: 14 ı[]i H

- 23. The compound of claim 1, wherein the compound comprises (2R)-2-tertbutoxycarbonylamino-3-[4-(benzyloxy)phenyl]propionic Acid 4-(3-diethylaminopropoxy)-Nbenzylaniline Amide.
- 24. The compound of claim 1, wherein the compound comprises (2R)-2-tertbutoxycarbonylamino-3-[4-(benzyloxy)phenyl]propionic Acid 4-(3-diethylaminopropoxy)-Ncyclopentylmethylaniline Amide.
- 25. The compound of claim 1, wherein the compound comprises (2R)-2-tertbutoxycarbonylamino-3-[4-(benzyloxy)phenyl]propionic Acid 4-(3-diethylaminopropoxy)-Nisopropylaniline Amide.
- 26. The compound of claim 1, wherein the compound comprises (2R)-2-amino-3-[4-(benzyloxy)phenyl]propionic Acid 4-(3-diethylaminopropoxy)-N- cyclohexylmethylaniline Amide.
- 27. The compound of claim 1, wherein the compound comprises (2R)-2-amino-3-[4-(benzyloxy)phenyl]propionic Acid 4-(3-diethylaminopropoxy)-N- cyclopentylmethylaniline Amide.
- 28. The compound of claim 1, wherein the compound comprises (2R)-2-tertbutoxycarbonylamino-3-J4-(benzyloxy)phenyl]propionic Acid 4-(3-diethylaminopropoxy)-Nbutylaniline Amide.
- 29. The compound of claim 1, wherein the compound comprises (2R)-2-amino-3-[4-(benzyloxy)phenyl]propionic Acid 4-(3-diethylaminopropoxy)-N- butylaniline Amide.
- 30. The compound of claim 1, wherein the compound comprises (2R)-2-tertbutoxycarbonylamino-3-[4-(benzyloxy)phenyl]propionic Acid 3-(3-diethylaminopropoxy)-Nbutylaniline Amide.
- 31. The compound of claim 1, wherein the compound comprises (2R)-2-amino-3-[4-(benzyloxy)phenyl]propionic Acid 3-(3-diethylaminopropoxy)-N- butylaniline Amide.
- 35 32. The compound of claim 1, wherein the compound comprises 3-(1-Tertbutoxycarbonylpiperidin-4-yl)-2-(9-fluorenylmethoxycarbonylamino)propionic Acid 4-Diethylaminopropoxy-2-butoxyaniline Amide.

15

- 33. The compound of claim 1, wherein the compound comprises 3-(Piperidin-4-yl)-2-(9-fluorenylmethoxycarbonylamino)propionic Acid 4-Diethylaminopropoxy-2-butoxyaniline Amide.
- 34. The compound of claim 1, wherein the compound comprises 3-(1-Benzylpiperidin-4-yl)-2-(9-fluorenylmethoxycarbonylamino)propionic Acid 4-Diethylaminopropoxy-2-butoxyaniline Amide.
- 10 35. The compound of claim 1, wherein the compound comprises 3-(1-Benzylpiperidin-4-yl)-2-aminopropionic Acid 4-Diethylaminopropoxy-2-butoxyaniline Amide.
 - 36. The compound of claim 1, wherein the compound comprises 3-(1-Benzyloxycarbonylpiperidin-4-yl)-2-(9-fluorenylmethoxycarbonyamino)propionic Acid 4-Diethylaminopropoxy-2-butoxyaniline Amide.
 - 37. The compound of claim 1, wherein the compound comprises 3-(1-Benzoylpiperidin-4-yl)-2-(9-fluorenylmethoxycarbonylamino)propionic Acid 4-Diethylaminopropoxy-2-butoxyaniline Amide.
 - 38. The compound of claim 1, wherein the compound comprises 3-(1-Benzoylpiperidin-4-yl)-2-benzoylaminopropionic Acid 4-Diethylaminopropoxy-2-butoxyaniline Amide.
- 25 39. The compound of claim 1, wherein the compound comprises 3-(Tert-butoxycarbonylpiperidin-3-yl)-2-(9-fluorenylmethoxycarbonylamino)propionic Acid 4-Diethylaminopropoxy-2-butoxyaniline Amide.
- 40. The compound of claim 1, wherein the compound comprises 3-(Piperidin-3-yl)-2-30 (9-fluorenylmethoxycarbonylamino)propionic Acid 4-Diethylaminopropoxy-2-butoxyaniline Amide.
- 41. A pharmaceutical composition comprising the compound of Formula (I) as claimed in claim 1, and one or more pharmaceutically acceptable carriers, excipients, or diluents.

10

15

20

25

- 42. The pharmaceutical composition of claim 41, in the form of an oral dosage or parenteral dosage unit.
- 43. The pharmaceutical composition of claim 41, wherein said compound is administered as a dose in a range from about 0.01 to 500 mg/kg of body weight per day.
- 44. The pharmaceutical composition of claim 41, wherein said compound is administered as a dose in a range from about 0.1 to 200 mg/kg of body weight per day.
- 45. The pharmaceutical composition of claim 41, wherein said compound is administered as a dose in a range from about 0.1 to 100 mg/kg of body weight per day.
 - 46. The pharmaceutical composition of claim 41, further comprising one or more therapeutic agents selected from the group consisting of alkylating agents, antimetabolites, plant alkaloids, antibiotics, hormones, biologic response modifiers, analgesics, NSAIDs, DMARDs, glucocorticoids, sulfonylureas, biguanides, insulin, cholinesterase inhibitors, antipsychotics, antidepressants, and anticonvulsants.
 - 47. A method for the inhibition of the interaction of RAGE with its physiological ligands, which comprises administering to a subject in need thereof, at least one compound of Formula (I) as claimed in claim 1.
 - 48. The method of claim 47, wherein the ligand(s) is(are) selected from advanced glycated end products (AGEs), S100/calgranulin/EN-RAGE, β -amyloid and amphoterin.
 - 49. A method for treating a disease state selected from the group consisting of acute and chronic inflammation, symptoms of diabetes, vascular permeability, nephropathy, atherosclerosis, retinopathy, Alzheimer's disease, erectile dysfunction, and tumor invasion and/or metastasis, which comprises administering to a subject in need thereof a therapeutically effective amount of at least one compound of Formula (I) as claimed in claim 1.
 - 50. A method of prevention and/or treatment of RAGE mediated human diseases comprising administration to a human in need thereof a therapeutically effective amount of a compound of Formula (I) as claimed in claim 1, wherein a therapeutically effective amount

10

15

comprises sufficient compound to at least partially inhibit the binding of a ligand to the RAGE receptor.

- 51. The method of claim 50, further comprising administering to a subject in need thereof at least one adjuvant and/or additional therapeutic agent(s).
- 52. A method of claim 51, wherein therapeutic agents selected from the group consisting of alkylating agents, antimetabolites, plant alkaloids, antibiotics, hormones, biologic response modifiers, analgesics, NSAIDs, DMARDs, glucocorticoids, sulfonylureas, biguanides, insulin, cholinesterase inhibitors, antipsychotics, antidepressants, and anticonvulsants.
- 53. The method claim 50, wherein the RAGE mediated human disease comprises acute and/or chronic inflammation.
- 54. The method claim 50, wherein the RAGE mediated human disease comprising vascular permeability.
- 55. The method claim 50, wherein the RAGE mediated human disease comprising ephropathy.
- 56. The method claim 50, wherein the RAGE mediated human disease comprising atherosclerosis.
- 57. The method claim 50, wherein the RAGE mediated human disease comprising retinopathy.
- 58. The method claim 50, wherein the RAGE mediated human disease comprising Alzheimer's disease.
- 59. The method claim 50, wherein the RAGE mediated human disease comprises erectile dysfunction.
 - 60. The method claim 50, wherein the RAGE mediated human disease comprises tumor invasion and/or metastasis.

25