UNIVERSIDAD DE LOS ANDES, VENEZUELA FACULTAD DE CIENCIAS.
DEPARTAMENTO DE FÍSICA.

Polarización de la Luz

Experimento

Javier A Salcedo Castañeda

Laboratorio 3 de Física.

Julio, 2025

Fig. 1. Étienne-Louis Malus. [8]

Fig. 2. Filtrado de luz polarizada mediante un polarizador óptico. **[9]**

Objetivos

- Confirmar experimentalmente la Ley de Malus.
- Estudiar los efectos de un material retardador sobre la luz polarizada.
- Analizar la polarización por reflexión y validar el ángulo de Brewster.
- Cuantificar la variación de la intensidad de la luz refractada en función del número de placas de un material transparente.

Montaje experimental

Confirmación la Ley de Malus.

Fig. 4. Diagrama de polarización de la polarización de la luz por refracción. [1]

$$I = I_0 \cos^2(\theta)$$

Fig. 5. Diagrama de polarización de la Ley de Malus. [1]

TABLA I VERIFICACIÓN DE LA LEY DE MALUS

$\theta_{Filtro}(Gra)$	I_{Exp}
0	8.8
10	8.4
20	7.6
30	6.4
40	5.2
50	3.6
60	2.0
70	0.8
80	0.2
90	0.0
100	0.2
110	0.8
120	2.2
130	3.6
140	5.2
150	6.6
160	7.8
170	8.4
180	8.8
190	8.4
200	7.8
210	6.6
220	5.0
230	3.4
240	2.0
250	0.8
260	0.2
270	0.0
280	0.2
290	0.8
300	2.0
310	3.6
320	5.2
330	6.4
340	7.8
350	8.6
360	8.8
$\Delta \theta = 2$	$\Delta I_{Exp} = 0.2$

Fig. 6. Gráfica experimental y teórica de la Ley de Malus.

Estudiar los efectos de un material retardador sobre la luz polarizada.

Fig. 7. Representación esquemática de la birrefringencia. [7]

TABLA II POLARIZACIÓN POR BIRREFRINGENCIA CON UN RETARDADOR

	00	10°	20°	30°	40°	50°
$\theta_{Filtro}(Gra)$	$I_{Exp,0}$ °	$I_{Exp,10^{ m o}}$	$I_{Exp,20}$ o	$I_{Exp,30}$ °	$I_{Exp,40}$ °	$I_{Exp,50}$ °
0	8.0	7.4	6.0	4.6	3.8	4.0
10	7.8	7.6	6.8	5.2	4.0	3.6
20	7.2	7.6	7.0	5.4	4.2	3.2
30	6.2	7.0	6.8	5.8	4.4	3.0
40	4.8	6.2	6.4	5.8	4.6	3.0
50	3.4	4.8	5.6	5.6	4.6	3.0
60	2.2	3.6	4.8	5.0	4.6	3.0
70	1.0	2.4	3.6	4.4	4.2	3.2
80	0.2	1.2	2.6	3.8	4.2	3.6
90	0.0	0.4	1.8	3.2	4.0	4.0
100	0.2	0.2	1.2	2.6	3.8	4.2
110	0.8	0.4	1.0	2.2	3.6	4.4
120	1.6	0.8	1.0	2.0	3.2	4.6
130	3.0	1.8	1.4	2.0	3.2	4.6
140	4.4	3.0	2.2	2.2	3.2	4.8
150	5.6	4.2	3.0	2.6	3.2	4.6
160	6.8	5.4	4.0	3.2	3.2	4.4
170	7.4	6.6	5.2	4.0	3.4	4.2
180	8.0	7.4	5.8	4.6	3.6	3.8

Fig. 8. Gráfica experimental de polarización por birrefringencia con un retardador.

Demostración de de Fotoelasticidad

Fig. 9. Demostración de Fotoelasticidad.

Analizar la polarización por reflexión y validar el ángulo de Brewster.

Fig. 10. Diagrama de rayos de polarización de la luz por reflexión. [1]

TABLA III POLARIZACIÓN POR REFLEXIÓN

$\theta_{Cristal}(Gra)$	$\theta_{Filtro, 0} \circ (Gra)$	$I_{Exp,90}$ ° 2.0	
54	0.0		
20	0.0	2.0	
22	0.0	2.0	
24	0.0	1.8	
26	0.0	1.8	
28	0.0	1.8	
30	0.0	1.6	
32	0.0	1.6	
34	0.0	1.6	
36	0.0	1.6	
38	0.0	1.4	
40	0.2	1.4	
42	0.2	1.4	
44	0.2	1.4	
46	0.2	1.2	
48	0.4	1.2	
50	0.4	1.2	
52	0.8	1.2	
56	1.0	1.2	
58	1.2	1.2	
60	1.4	1.2	
62	1.6	1.2	
64	2.0	1.4	
66	2.2	1.4	
68	2.4	1.6	
70	2.6	2.2	
72	2.8	2.4	
74	3.4	3.0	
76	4.0	3.6	
78	4.6	4.4	
80	5.8	6.0	
$\Delta \theta = 2$	$\Delta I_{Exp} = 0.2$		

Fig. 11. Gráfica experimental de polarización por reflexión.

Cálculo Experimental:

$$heta_{B,Exp} = rac{(48+50+52+54+56+58+60+62)}{8} = 55.0^{\circ}$$

Cálculo Teórico:

$$heta_B= an^{-1}\left(rac{n_2}{n_1}
ight)=56.3^\circ \qquad egin{array}{c} n_1=1 & (Aire) \ n_2=1.5 & (Cristal) \end{array}$$

$$Discrepancia = rac{|56.3 - 55.0|}{56.3} imes 100 \% pprox 2.31 \%$$

Variación de la Intensidad del Rayo Refractado con el Número de Placas

Fig. 12. Placas en el montaje a usar.

TABLA IV
VARIACIÓN DE LA INTENSIDAD DEL RAYO REFRACTADO CON EL
NÚMERO DE PLACAS

Numero de placas	$I_{Exp,0}$ °	$I_{Exp,45}$ °	$I_{Exp,90^{\circ}}$
0	6.0	2.8	0.0
1	5.2	2.4	0.0
2	4.4	2.0	0.0
3	3.6	1.6	0.0
4	2.8	1.2	0.0
5	2.4	1.0	0.0
6	1.8	0.8	0.0
7	1.4	0.6	0.0
8	1.0	0.4	0.0
9	0.6	0.2	0.0
10	0.4	0.2	0.0
11	0.2	0.0	0.0
12	0.0	0.0	0.0
$\Delta \; heta = 2$	$\Delta I_{Exp} = 0.2$		

Conclusión

- Ley de Malus: Se validó la relación, con excelente ajuste experimental.
- Birrefringencia: El uso de retardadores demostró cambios de intensidad según la orientación del material.
- Fotoelasticidad: La deformación generó patrones coloridos que revelan tensiones internas en materiales plásticos.
- Reflexión: El ángulo de Brewster obtenido coincide con el teórico, con solo un 2.31 % de discrepancia.
- Transmisión: Un mayor número de placas transparentes es igual a una menor intensidad de luz transmitida.

Referencias

- [1] F. W. Sears, M. W. Zemansky, H. D. Young, and R. A. Freedman, Física Universitaria con Física Moderna, 12th ed. México: Pearson Educación, 2009, vol. 2.
- [2] D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics, 10th ed. United States of America: Wiley, 2014, vol. Extended.
- [3] R. A. Serway and J. W. Jewett, Física para ciencias e ingeniería con Física Moderna, 7th ed. México: Cengage Learning, 2009, vol. 2.
- [4] J. Martín and F. Dugarte, Guías de laboratorio (Laboratorio III), Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela, (Material no publicado).
- [6] E. Hecht, Optics, 4th ed. USA: Addison-Wesley, 2002.
- [7] Departamento de Física, Resumen de polarización 2, Universidad de Buenos Aires, 2012. [En línea]. Disponible:
 - http://materias.df.uba.ar/f2bygaa2016c1/files/2012/07/RESUMEN_POLARIZACION2.pdf
- [8] Wikipedia contributors, "Étienne-Louis Malus," Wikipedia, The Free Encyclopedia, 2023. [En línea]. Disponible: https://es.wikipedia.org/wiki/%C3%89tienne-Louis_Malus
- [9] Histoptica, "Interferencias, difracción y polarización," Apuntes de Óptica, 2023. [En línea]. Disponible: https://histoptica.wordpress.com/apuntes-de-optica/conceptos-basicos/la-luz/interferencias-difraccion-polarizacion/