

Explicabilidade em Redes Neurais de Grafos para a Avaliação de Autismo Usando Análise de fMRI

Matheo Angelo Pereira Dantas¹, André Carlos Ponce de Leon Ferreira de Carvalho²

^{1,2} Instituto de Ciências Matemáticas e de Computação (ICMC) - Universidade de São Paulo, Brasil matheoangelo@usp.br¹ e andre@icmc.usp.br²

Introdução

A identificação do Transtorno do Espectro Autista (TEA) é importante para assegurar direitos e qualidade de vida, mas é dificultada pela ausência de um marcador biológico conhecido pela ciência. Assim, têm sido estudados algoritmos de Inteligência Artificial para procurar padrões além da compreensão humana atual e tentar diagnosticar o TEA de forma automática a partir de dados biológicos, e dentre esses, um dos métodos mais estudados consiste em constuir grafos a partir de exames de Ressonância Magnética Funcional (fMRI), que filmam a circulação sanguínea no cérebro por meio do sinal BOLD (Blood Oxygenation Level Dependent), e processá-los usando Redes Neurais de Grafos [1]. Entretanto, esses algoritmos necessitam de um tratamento especial na explicabilidade, pois dados neurológicos são altamente complexos e modelos de Redes Neurais funcionam como "caixas-pretas" que fazem cálculos grandes e ininteligíveis.

As abordagens da explicabilidade podem ser divididas em dois grupos: a explicabilidade post-hoc e os modelos auto-explicáveis. Na explicabilidade post-hoc, são aplicados algoritmos prontos [2] para explicar modelos já treinados. Por outro lado, as GNNs autoexplicáveis [3] têm uma arquitetura projetada para a explicabilidade e explicações podem ser obtidas a partir de mecanismos interpretáveis internos. A última abordagem geralmente é mais desejável, pois gera explicações mais fiéis ao modelo [4].

Figura 1: Pipeline do BrainGNN [5], modelo utilizado no experimento.

O código do experimento está disponível no GitHub¹.

Dados e pré-processamento

Foram utilizados os dados de rs-fMRI (fMRI em Estado de Repouso) da Autism Brain Imaging Data Exchange I (ABIDE I), com 539 indivíduos autistas e 573 no grupo de controle. Os dados foram obtidos a partir do Preprocessed Connectomes Project (PCP)², que possui os exames da ABIDE préprocessados com diversos atlas cerebrais. Foi escolhido o atlas Harvard-Oxford, que mapeia 110 ROIs (Regions Of Interest) no cérebro, com seus respectivos nomes. Com esses exames pré-processados, foram criados os grafos correspondentes a cada amostra, construindo a matriz de adjacência a partir dos maiores valores da matriz de correlação das séries BOLD de cada ROI.

Modelo

Utilizamos o modelo BrainGNN [5], um dos mais influentes em aplicações de neurociência. O BrainGNN possui alguns mecanismos de auto-explicabilidade, como o pooling de nós importantes e a detecção de comunidades. O código do modelo foi extraído diretamente do repositório do artigo original, e adaptações foram feitas para permitir a aplicação da explicabilidade.

Interpretabilidade do modelo

Usamos como explicação do modelo a nível individual uma máscara de nós, o conjunto de nós (correspondentes a ROIs) restante após as duas camadas de TopK Pooling. Para sugestões de possíveis marcadores biológicos, observamos as regiões do cérebro mais frequentes nas explicações a nível individual dos exemplos classificados como autistas.

Hiperparâmetros testados

Foram testados diferentes combinações de hiperparâmetros para avaliar os efeitos na acurácia e na explicabilidade. Os hiperparâmetros avaliados foram:

- Pooling ratio: após cada camada de passagem de mensagem, diz qual fração dos nós anteriores será mantida no TopK Pooling. Padrão: 0.5.
- TopK Pooling Loss: É incluída na função Loss do treinamento para encorajar o modelo a atribuir pesos ou muito altos ou muito baixos aos nós ao ordená-los para a seleção do TopK Pooling. Peso padrão: 0.1.
- Group Consistency Loss: É incluída na função Loss do treinamento para forçar o modelo a dar escores de importância parecidos para os nós, de forma a obter explicações de nível individual consistentes entre si. Peso padrão: 0.1.

Métricas de explicabilidade

Esparsidade [2]: as explicações devem ser boas em resumir o comportamento de modo sucinto, sem usar o grafo de input inteiro.

$$Sparsity = \frac{1}{N} \sum_{i=1}^{N} \left(1 - \frac{|m_i|}{|M_i|} \right)$$

Fidelidade positiva e negativa [2]: as explicações devem ser fiéis ao modelo. A fidelidade positiva mede se a informação da explicação é relevante, e a fidelidade negativa mede se a informação fora da explicação é irrelevante.

$$Fidelity_{+} = \frac{1}{N} \sum_{i=1}^{N} |f(G_i) - f(G_i^{1-m_i})| \qquad Fidelity_{-} = \frac{1}{N} \sum_{i=1}^{N} |f(G_i) - f(G_i^{m_i})|$$

Consistência de marcador biológico: para além de usar as métricas conhecidas na literatura para avaliar a explicação a nível individual, queremos o quanto as regiões apontadas como marcador biológico são representativas do conjunto de explicações individuais.

$$Consistency = \frac{\sum_{i=1}^{B} n_i}{\sum_{i=1}^{N} n_i}$$

Onde B é o número de ROIs escolhidas para compor a sugestão de marcador biológico (aqui, foi escolhido B=10), e n_i é a quantidade de vezes que a i-ésima ROI mais frequente apareceu nas explicações individuais.

Resultados

	Padrão	Ratio=0.3	$Ratio{=}0.3,\ TopK{=}0.5$	Group=0.5
Acurácia	0.51	0.57	0.59	0.56
Fidelidade+	0.050	0.025	0.032	0.078
Fidelidade-	0.79	0.85	0.88	0.85
Esparsidade	0.75	0.90	0.90	0.75
Consistência	0.23	0.34	0.26	0.19
Biomarcador	 Left Parahippocampal Gyrus; posterior division Left Heschl's Gyrus (includes H1 and H2) Left Frontal Orbital Cortex Right Temporal Fusiform Cortex; anterior division Right Lingual Gyrus Right Planum Temporale Right Supracalcarine Cortex Left Intracalcarine Cortex Left Temporal Fusiform Cortex; posterior division Left Putamen 	 Left Supramarginal Gyrus; posterior division Left Frontal Medial Cortex Left Superior Parietal Lobule Right Thalamus Left Juxtapositional Lobule Cortex (formerly Supplementary Motor Cortex) Left Angular Gyrus Right Juxtapositional Lobule Cortex (formerly Supplementary Motor Cortex) Left Planum Temporale Left Inferior Frontal Gyrus; pars triangularis Right Amygdala 	 Left Supramarginal Gyrus; posterior division Right Angular Gyrus Left Frontal Medial Cortex Right Subcallosal Cortex Right Superior Temporal Gyrus; anterior division Right Amygdala Right Paracingulate Gyrus Left Planum Temporale Left Superior Parietal Lobule Left Juxtapositional Lobule Cortex (formerly Supplementary Motor Cortex) 	 Left Supramarginal Gyrus; posterior division Right Angular Gyrus Left Planum Temporale Left Superior Parietal Lobule Right Occipital Pole Right Subcallosal Cortex Left Frontal Medial Cortex Right Thalamus Right Juxtapositional Lobule Cortex (formerly Supplementary Motor Cortex) Right Amygdala

Tabela 1: Tabela com os resultados dos experimentos no BrainGNN. Cada coluna corresponde a uma combinação de mudanças de hiperparâmetros no treinamento, e cada linha corresponde a uma métrica de desempenho.

Conclusões

A acurácia dos modelos, apesar de demonstrar alguma capacidade de detectar padrões, foi relativamente baixa, evidenciando a dificuldade do problema. Em particular, foi muito menor do que no experimento original do BrainGNN (79.8%), que usava um conjunto de dados de task-fMRI (o Biopoint), sugerindo que sinais de autismo são mais visíveis quando o cérebro é submetido a estímulos específicos. Esse nível de acurácia se refletiu na baixa fidelidade positiva e na alta fidelidade negativa. Além disso, o *Ratio* pareceu ter uma influéncia considerável sobre a consistência de biomarcador.

Agradecimentos

Este trabalho foi apoiado pela FAPESP, no processo 24/09181-2.

Referências

- [1] S. Zhang, J. Yang, Y. Zhang, J. Zhong, W. Hu, C. Li, and J. Jiang, "The combination of a graph neural network technique and brain imaging to diagnose neurological disorders: A review and outlook," *Brain Sciences*, vol. 13, no. 10, p. 1462, 2023.
- [2] H. Yuan, H. Yu, S. Gui, and S. Ji, "Explainability in graph neural networks: A taxonomic survey," IEEE transactions on pattern analysis and machine intelligence, vol. 45, no. 5, pp. 5782–5799, 2022.
- [3] E. Dai, T. Zhao, H. Zhu, J. Xu, Z. Guo, H. Liu, J. Tang, and S. Wang, "A comprehensive survey on trustworthy graph neural networks: Privacy, robustness, fairness, and explainability," Machine Intelligence Research, vol. 21, no. 6, pp. 1011–1061, 2024.
- [4] C. Rudin, "Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead," Nature machine intelligence, vol. 1, no. 5, pp. 206–215, 2019.
- [5] X. Li, Y. Zhou, N. Dvornek, M. Zhang, S. Gao, J. Zhuang, D. Scheinost, L. H. Staib, P. Ventola, and J. S. Duncan, "Braingnn: Interpretable brain graph neural network for fmri analysis," Medical Image Analysis, vol. 74, p. 102233, 2021.