

Verbale Esterno 2019-02-23

Informazioni sul documento

Nome documento | Verbale Esterno 2019-02-23

Data approvazione | 2019-02-23

Responsabile | Eleonora Signor

Redattore | Elton Stafa

Verificatore | Niccolò Vettorello

Stato | Approvato

Lista distribuzione | Gruppo DStack

Prof. Tullio Vardanega Prof. Riccardo Cardin Imola Informatica S.P.A.

Uso | Esterno

Sommario

Il presente verbale riporta la comunicazione esterna effettuata dal gruppo DStack il giorno 2019-02-23 con Imola Informatica S.P.A..

Indice

1	Informazioni sulla riunione	1
2	Ordine del giorno	1
3	Resoconto della riunione	2
	3.1 Decisioni proposte	2
	3.2 Tracciamento delle decisioni	

1 Informazioni sulla riunione

• Luogo della riunione: Piattaforma Gmail per comunicazione esterna tra il gruppo DStack e Imola Informatica S.P.A.

• Ora di inizio: 11:00

• Ora di fine: 11.30

• Segretario: Elton Stafa

- Partecipanti: Davide Zanetti, il referente per *Imola Informatica S.P.A.*, e tutti i membri del gruppo DStack:
 - Federico Rispo;
 - Alberto Schiabel;
 - Eleonora Signor;
 - Harwinder Singh;
 - Elton Stafa;
 - Enrico Trinco;
 - Niccolò Vettorello.

2 Ordine del giorno

• Proposta e discussione dello stack tecnologico individuato per la progettazione del sistema Butterfly.

3 Resoconto della riunione

3.1 Decisioni proposte

Tramite email sono state proposte al signor Zanetti le decisioni progettuali prese nella riunione interna del 2019-02-15, riguardante lo stack tecnologico individuato al fine di realizzare il sistema Butterfly.

In particolare è stato proposto di:

• Utilizzare $Java_{\mathbf{G}}$, alla versione 11, per la codifica dei $Producer_{\mathbf{G}}$ e dei $Consumer_{\mathbf{G}}$ e quindi dei microservizi che hanno un client $Apache\ Kafka_{\mathbf{G}}$ come dipendenza diretta.

Motivazione

Abbiamo deciso di utilizzare Java in quanto:

- Apache Kafka è sviluppato per la JVM_G;
- Ha la migliore community e documentazione per quanto concerne l'integrazione con Apache Kafka.
- Ha i risultati di benchmark migliori.
- Utilizzare $Avro_{\mathbf{G}}$ come sistema di serializzazione binaria tra Producer e Consumer.

Motivazione

Abbiamo deciso di utilizzare Avro in quanto:

- E' più compatto e veloce da serializzare/deserializzare rispetto a JSON_G;
- E' possibile definire uno schema descrittivo per i dati estendibile in futuro.
- Supporta tipi di dato primitivi (int, string, long, ecc.), complessi(enum, arrays, unions, optional), logici (dates, timestamp-millis, decimal), data record (nome e namespace).
- Supporta la documentazione embedded nello schema.
- Utilizzare $Spark_{\mathbf{G}}$ come $microframework_{\mathbf{G}}$ $HTTP_{\mathbf{G}}$ per i $Webhook_{\mathbf{G}}$ dei Producer.

Motivazione

Abbiamo deciso di utilizzare Spark in quanto:

- E' scritto interamente in JAVA;
- Consente di gestire delle azioni HTTP velocemente.
- Utilizzare $Node.js_{\mathbf{G}}$ per realizzare il server $REST_{\mathbf{G}}$ come intermediario tra il database e il $Gestore\ Personale_{\mathbf{G}}$.

Motivazione

Abbiamo deciso di utilizzare Node.js in quanto:

- Permette al gruppo di imparare un nuovo linguaggio;
- Pratico ed efficacie per servizi che espongono REST API.
- Utilizzare $Koa_{\mathbf{G}}$ come microframework HTTP per il Gestore Personale Motivazione

Abbiamo deciso di utilizzare Koa in quanto:

- è pienamente integrato con Node.js;
- è molto leggero.
- \bullet Utilizzare $PostgreSQL_{\bf G}$ come $RDBMS_{\bf G}$ open-source per il Gestore Personale. Motivazione

Abbiamo deciso di utilizzare PostgreSQL per via del fatto che:

- Supporta nativamente il tipo JSON;
- -É corredato da una documentazione online di buona qualità;
- É caratterizzato da una community attiva e numerosa;
- -É utilizzato stabilmente da aziende con milioni di utenti come Netflix, Spotify e Instagram;
- Trattandosi di un sistema relazionale, si adatta bene alla struttura del progetto.

La risposta da parte dell'azienda alla proposta è stata positiva.

3.2 Tracciamento delle decisioni

Codice Identificativo	Descrizione
VE-2019-02-23-1	Java 11 per la codifica di Producers e Consumers
VE-2019-02-23-2	AVRO per la serializazzione e deserializzazione dei messaggi
VE-2019-02-23-3	Spark come microframework HTTP per i webhooks
VE-2019-02-23-4	Node.js per lo codifica delle REST API per il Gestore Personale
VE-2019-02-23-5	Koa come microframework HTTP per il Gestore Personale
VE-2019-02-23-6	Postgres come RDBMS per il Gestore Personale

Tabella 1: Decisioni Riunione Esterna del 2019-02-23