| \ I |   | ,_ |   |  |
|-----|---|----|---|--|
| 171 | 卷 |    | ᆕ |  |
|     |   |    |   |  |

| 考试性质(正考、补考或其它):[期中考试] | 考试方式(开卷、闭卷):[闭卷] | 考试方式(日卷、月 24 日 | 试卷类别(A、B):[A] | 共三大题

### 温馨提示

请考生自觉遵守考试纪律,争做文明诚信的大学生。如有违犯考试纪律,将 严格按照《江西理工大学学生违纪处分暂行规定》处理。

| 严格按照《江西理工大学学生违纪处分暂行规定》处理。                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                 |      |                       |                   |                     |                            |                   |                   |                          |           |     |                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|------|-----------------------|-------------------|---------------------|----------------------------|-------------------|-------------------|--------------------------|-----------|-----|-----------------------------|
| 班级                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                                 |      | <u>-</u>              | 学号 .              |                     |                            | _姓名_              |                   |                          |           |     |                             |
| 题号                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                              | 1 1                             | [11] | 四                     | 五                 | 六                   | 七                          | 八                 | 九                 | +                        | 十一        | + = | 总<br>分                      |
| 得分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |                                 |      |                       |                   |                     |                            |                   |                   |                          |           |     |                             |
| 一、填空题(每小题 3 分,共 36 分) 1、一质点沿 $x$ 轴运动,其加速度为 $a=2t$ (SI 制),当 $t=0$ ,时物体静止于 $x=10m$ 处,则 $t$ 时刻质点的速度: $v=$ ,位置: $x=$ 。 2. 一质点沿半径为 $0.1m$ 的圆周运动,其角位置 $\theta$ 随时间 $t$ 变化规律为: $\theta=2t^3$ ,则 $t$ 时质点的角速度 $\omega=$ ; $\beta=$ 。 3、已知 $m_B=2kg$ , $m_A=1kg$ , $m_A=1kg$ , $m_B=1kg$ $m_A=1kg$ , $m_B=1kg$ |                                |                                 |      |                       |                   |                     |                            |                   |                   |                          |           |     |                             |
| 则 $m_A$ 与 $m_B$ 间的摩擦力大小 $f =$                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                                 |      |                       |                   |                     |                            |                   |                   |                          |           |     |                             |
| 高度为5、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 已知<br><b>R</b> 处<br>质量<br>; 时的 | 地球点<br>, 在<br>为 <i>m</i><br>速度之 |      | 星中,<br>点在憶<br>⟨x (k ク | 地球·<br>贯性系<br>为常数 | 引力对<br>中,注<br>(t),则 | 寸火箭<br>沿 <i>x</i> 轴<br>引作用 | 做的3<br>由正向<br>在质点 | 力为:<br>做直线<br>点上的 | <i>A</i> =<br>线运动<br> 合力 | ——<br>力,设 | 质点追 | 削距地面<br>———<br>通过坐标<br>——。质 |
| 落地                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 点在                             |                                 | 水平   | 面,                    | 则整                | を个立                 | 过程。                        | ,                 |                   |                          |           |     | 也出点与<br>量 大 小               |

| 7、如图所示,一长为 $l$ 质量为 $m$ 的均匀细棒,绕通过 $A$                                                  |                 |
|---------------------------------------------------------------------------------------|-----------------|
| 端的水平轴在铅直面内自由转动,则它对该水平轴的转动惯 $A$                                                        |                 |
| 量 I=                                                                                  |                 |
| 棒转到竖直位置时的角速度 $\omega$ =;棒的角加速度                                                        |                 |
| $eta = \underline{\hspace{1cm}}$ $\circ$                                              |                 |
| 8、质点系动量守恒的条件:;                                                                        |                 |
| 质点系机械能守恒的条件:;                                                                         |                 |
| 质点系角动量守恒的条件:。                                                                         |                 |
| 9、质量为 $m$ ,半径为 $R$ 的均质圆盘,绕通过其中心且垂直于圆盘的固定轴征                                            | 玍               |
| 竖直平面内以匀角速度 $\omega$ 转动,则圆盘对轴的动量为:; 圆盘对轴                                               | 油               |
| 的转动惯量为:;圆盘对轴的角动量为:。                                                                   |                 |
| 10、三个相同的点电荷 $q$ ,分别放在边长为 $L$ 的等边三角形的三个顶点处,                                            |                 |
| 则三角形中心的电势 $U$ =,电场强度大小 $E$ =,将单 $f$                                                   | <u>)</u>        |
| 正电荷从中心移到无限远时,电场力作功 $A =。$                                                             |                 |
| 11、真空中半径为 $R$ 的球体均匀带电,总电量为 $q$ ,则球面上一点的电势 $U$                                         | $\mathcal{J}_1$ |
| =。                                                                                    |                 |
| 12、一均匀静电场,场强 $\vec{E} = (400\vec{i} + 600\vec{j})v.m^{-1}$ ,则点 $a(3, 2)$ 和点 $b(1, 0)$ | ))              |
| 之间的电势差 $U_{ab}$ =。                                                                    |                 |
|                                                                                       |                 |
| 二、选择题:将正确答案序号填入括号. (每小题 2 分, 共 24 分)                                                  |                 |
| $1$ 、一质点在平面上运动,已知质点位置矢量的表示式为: $\vec{r} = at\vec{i} + bt^2\vec{j}$ (5)                 | 式               |
| 中, a, b 为常量)则该质点作:( )                                                                 |                 |
| (A)、抛物线运动 (B)、匀速直线运动                                                                  |                 |
| (C)、变速直线运动 (D)、一般曲线运动                                                                 |                 |
| 2、某物体的运动规律为 $\frac{dv}{dt} = -kv^2t$ ,式中的 K 为大于零的常数,当 $t=0$ 时                         | ,               |
| 初速为 $v$ 。,则速度 $v$ 与时间 $t$ 的函数关系是:( )                                                  |                 |
| (A) $v = \frac{1}{2}kt^2 + v_0$ (B) $v = -\frac{1}{2}kt^2 + v_0$                      |                 |

$$(C)$$
、 $\frac{1}{v} = -\frac{1}{2}kt^2 + \frac{1}{v_0}$  (D)、 $\frac{1}{v} = \frac{1}{2}kt^2 + \frac{1}{v_0}$  3、一质量为 $m$ 的质点,自半径为 $R$ 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为 $v$ ,则质点对该处的压力大小为:(

 $(A)$ 、 $\frac{mv^2}{R}$  (B)、 $\frac{2mv^2}{R}$  (C)、 $\frac{3mv^2}{2R}$  (D)、 $\frac{5mv^2}{2R}$  4、质量为 20 $g$  的子弹沿 $x$  轴正向以 500 $m$ /s 的速度射入木块后,与木块一起以 100 $m$ /s 的速度沿 $x$  轴正向前进,在此过程中,木块所受的冲量的大小为:(

 $(A)$ 、 $8N \cdot S$  (B)、 $-80N \cdot S$  (C)、 $10N \cdot S$  (D、)  $-100N \cdot S$  5、体重身高相同的甲、乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端,他们由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子逐率的三倍,则到达顶点情况是:(

 $(A)$ 、乙先到达 (B)、甲先到达 (C)、不能确定 (D)、同时到达 6、一个质量为 $m=2kg$ 的质点,在外力作用下,运动方程为:  $x=5+t^2$ , $y=5t-t^2$ ,则力在 $t=0$ 到 $t=2$ 秒内作的功为:(

 $(A)$ 、 $8J$  (B)、 $12J$  (C)、 $-8J$  (D)、 $-12J$  7、一质点作匀速率圆周运动时,以下说法正确的是:(

 $(A)$ 、它的动量不变,对圆心的角动量也不变。
(B)、它的动量不变,对圆心的角动量也不断改变。
(C)、它的动量不断改变,对圆心的角动量不断改变。
(C)、它的动量不断改变,对圆心的角动量不断改变。
(B)、它的动量不断改变,对圆心的角动量不断改变。
(C)、它的动量不断改变,对圆心的角动量不断改变。
(C)、它的动量不断改变,对圆心的角动量不断改变。
(D)、它的动量不断改变,对圆心的角动量不断改变。

9、如图所示,一静止的均匀细棒,长 L,质量为 M,可绕通 **0** 

过棒的端点且垂直干棒的光滑固定轴 () 在水平面内转动。

一质量为 m、速率为 v 的子弹在水平面内沿与棒垂直的 方向射穿棒的自由端.设穿过棒后子弹的速率为 $\frac{1}{2}v$ ,则此

时棒的角速度为:(

- (A),  $\frac{mv}{ML}$  (B),  $\frac{3mv}{2ML}$  (C),  $\frac{5mv}{3ML}$  (D),  $\frac{7mv}{4ML}$

10、真空中面积为 s, 间距 d 的两平行板  $s >> d^2$ ,均匀带等量异号电荷+q 和-q, 忽略边缘效应,则两板间相互作用力的大小是:()

- (A),  $\frac{q^2}{4\pi\varepsilon_0 d^2}$  (B),  $\frac{q^2}{2\varepsilon_0 s}$  (C),  $\frac{q^2}{\varepsilon_0 s}$  (D),  $\frac{q^2}{2\pi\varepsilon_0 d^2}$

- 11、如果在静电场中所作的封闭曲面内没有净电荷,则:()
- (A) 封闭面上的电通量一定为零,场强也一定为零。
- (B) 封闭面上的电通量不一定为零,场强则一定为零。
- (C) 封闭面上的电通量一定为零,场强不一定为零。
- (D) 封闭面上的电通量不一定为零:场强不一定为零。
- 12、下列各种说法中正确的是:()
- (A) 电场强度相等的地方电势一定相等。 (B) 电势梯度较大的地方场强较 大。
  - (C) 带正电的导体电势一定为正。 (D) 电势为零的导体一定不带电。

#### 三.计算题:(每题 10 分, 共 40 分)

- 1. 一质点在 xov 平面内运动,其运动方程:  $x = R \cos \omega t$ :  $v = R \sin \omega t$ . 其中  $R, \omega$  为正的常数。
- (1) 求质点的轨道方程: t时刻质点的位置矢量,速度,加速度。

| (2) 若用自然坐标系描述, | 求质点的路程方程; | t时刻质点的切向加速度和法 |
|----------------|-----------|---------------|
| 向加速度。          |           |               |

- 2、一半径为 R,质量为 m 的匀质圆盘,平放在粗糙的水平桌面上。设盘与桌面间的摩擦系数为  $\mu$  ,令圆盘最初以角速度  $\omega_0$  绕通过中心且垂直于盘面的轴旋转,求:
- (1) 圆盘绕该轴旋转过程中受到的摩擦力矩。

| (2) | 经过多长时间圆盘绕该轴转动的角速度变为 @ / | 2 |
|-----|-------------------------|---|

3、如图,内半径为  $R_1$ ,外半径为  $R_2$  的环形薄板均匀带电,电荷面密度为 $\sigma$  ( $\sigma > 0$ ),求:

(1) 轴线 (中垂线) 上任一点 P 的电势 (用该点与环心的距离 x 来表示);

(2) 用场强叠加原理求 P 点的场强。

4、两个质量分别为 $m_1$ 和 $m_2$ 的木块 A和B,用一个质量忽略不计,劲度为k的弹簧联接起来,放置在光滑水平面上,使 A紧靠墙壁,如图所示,用力推木块 B使弹簧压缩 $x_0$ ,然后释放,已知 $m_1=m$ , $m_2=3m$ 。求

(1)释放后, A、B 两木块速度相等时的瞬时速度大小;

(2)释放后,弹簧的最大伸长量。

# 考试试题答案

一、填空: (每题 3 分, 共 36 分)

1, 
$$t^2 m/s$$
;

$$10 + \frac{1}{3}t^3m$$

 $2 \cdot 6t^2$  ; 12t

3, 0 ; 0



$$4, -\frac{GMm}{2R};$$

$$5, mk^2x \quad ; \frac{ln3}{k}.$$

$$6$$
、 $2mv_0\sin\alpha$ ; 竖直向下。

$$7, \ \frac{1}{3}ml^2; \ \sqrt{\frac{3g}{l}}, \ 0.$$

8、 
$$\sum \vec{F}_{\text{y} \text{h}} = 0$$
 ;  $A_{\text{y} \text{h}} + A_{\text{#RH}} = 0$  ;  $\sum \vec{M}_{\text{y} \text{h}} = 0$ 

9. 
$$0; I = \frac{1}{2} mR^2; L = \frac{1}{2} mR^2 \omega$$

10, 
$$\frac{3\sqrt{3}q}{4\pi\varepsilon_0 L}$$
; 0;  $\frac{3\sqrt{3}q}{4\pi\varepsilon_0 L}$ .

11, 
$$\frac{q}{4\pi\varepsilon_0 R}$$
 ;  $\frac{q}{4\pi\varepsilon_0 r}$  .

12, -2000**V** 

## 二、选择题:(每题 2 分, 共 24 分)

1, A; 2, D; 3, C; 4, A; 5, D; 6, C; 7, D; 8, D; 9, B; 10, B; 11, C; 12, B

## 三、计算题:(每题 10 分, 共 40 分)

1、解:

(1)、轨道方程: 
$$x^2 + y^2 = R^2$$
 1'

$$\vec{r} = R \cos \omega t \vec{i} + R \sin \omega t \vec{j}$$
 1'

$$\vec{v} = -\omega R \sin \omega t \vec{i} + \omega R \cos \omega t \vec{j} \qquad 2'$$

$$\vec{a} = -\omega^2 \vec{r} \qquad \qquad 2'$$

(2)、路程方程: 
$$S = R\omega t$$
 1'

$$v = R\omega$$
 1'

$$a_{\tau}=0$$
 1'

$$a_n = R\omega^2$$
 1'

2、(1)如图:圆盘质量面密度为
$$\sigma = \frac{m}{\pi R^2}$$

取圆环: 
$$r - -r + dr$$
,质量:  $dm = \sigma 2\pi r dr$ 

该圆环受到的摩擦阻力矩:  $dM = r\mu g\sigma 2\pi r dr = 2\pi\mu g\sigma r^2 dr$ 

圆盘受到的摩擦阻力矩: 
$$M = \int_{0}^{R} 2\pi \mu g \sigma r^2 dr = \frac{2}{3} \mu g \sigma \pi R^3 = \frac{2}{3} m \mu g R$$





经过 t 时间,圆盘角速度变为 $\frac{\omega_0}{2}$ ,则有:

由定轴转动定律: 
$$-\frac{2}{3}m\mu gR = J\beta = \frac{1}{2}mR^2\frac{d\omega}{dt}$$
 3'

(\*或由角动量定理: 
$$-\frac{2}{3}m\mu gRt = \frac{1}{2}mR^2\frac{\omega_0}{2} - \frac{1}{2}mR^2\omega_0$$
 3')

$$-\frac{2}{3}\mu g \int_{0}^{t} dt = \frac{1}{2}R \int_{\omega_{0}}^{\frac{\omega_{0}}{2}} d\omega \qquad \stackrel{\text{Res}}{\Rightarrow} t = \frac{3R\omega_{0}}{8\mu g} \qquad 2'$$

3、(1) 取圆环: 
$$r - -r + dr$$
,  $dq = \sigma 2\pi r dr$  1'

它在 P 点的电势: 
$$dV = \frac{dq}{4\pi\varepsilon_0(r^2 + x^2)^{\frac{1}{2}}} = \frac{\sigma r dr}{2\varepsilon_0(r^2 + x^2)^{\frac{1}{2}}}$$
 2'

$$V = \int_{R_1}^{R_2} \frac{\sigma r dr}{2\varepsilon_0 (r^2 + x^2)^{\frac{1}{2}}} = \frac{\sigma}{2\varepsilon_0} \left( \sqrt{R_2^2 + x^2} - \sqrt{R_1^2 + x^2} \right) \qquad 2'$$

(2) 
$$dE = \frac{xdq}{4\pi\varepsilon_0(r^2 + x^2)^{\frac{3}{2}}} = \frac{x\sigma rdr}{2\varepsilon_0(r^2 + x^2)^{\frac{3}{2}}}$$
 2'

$$E = \int_{R_1}^{R_2} \frac{x \sigma r dr}{2\varepsilon_0 (r^2 + x^2)^{\frac{3}{2}}} = \frac{\sigma}{2\varepsilon_0} \left( \frac{x}{(R_1^2 + x^2)^{\frac{1}{2}}} - \frac{x}{(R_2^2 + x^2)^{\frac{1}{2}}} \right) \quad 2'$$

方向沿x轴正向。1'

4、释放到弹簧恢复原长机械能守恒: 
$$\frac{1}{2}kx_0^2 = \frac{1}{2}m_2v_{20}^2$$
 2

此后动量守恒,机械能守恒:  $m_2 v_{20} = m_1 v_1 + m_2 v_2$  3'

$$\frac{1}{2}m_2v_{20}^2 = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + \frac{1}{2}kx^2$$
 3

当 $v_1 = v_2$ 时,伸长量为 $x_{\text{max}}$ 

$$v_1 = v_2 = \frac{x_0}{4} \sqrt{\frac{3k}{m}}$$
 1'  $x_{\text{max}} = \frac{x_0}{2}$  1'

