

Table of Contents

01

Background

Microfinance, Kiva.org, & Field Partners

04

Modeling

Development, Selection, & Interpretation

02

Data

Collection, Cleaning, & Pre-Processing

05

KivaMaxApprover

A Practical Tool to help Kiva Field Partners Improve Efficiency

03

EDA

Understanding the Dataset

06

Conclusions

Implications, Future Directions

Make a loan, change a life

With Kiva you can lend as little as \$25 and make a big change in someone's life.

Background

"More than 1.7 billion people around the world are unbanked and can't access the financial services they need. Kiva is an international nonprofit, founded in 2005 in San Francisco, with a mission to expand financial access to help underserved communities thrive."

They do this by crowdfunding loans and unlocking capital for the underserved, improving the quality and cost of financial services, and addressing the underlying barriers to financial access around the world.

Background

Kiva Field Partners

are MFIs (microfinance institutions), schools, NGOs, & social enterprises that:

- screen borrowers
- post loan requests
- disburse loans on the ground
- collect repayments
- may offer additional services, like entrepreneurial training and literacy skills

What's in a Loan Request?

A loan of \$650 helps a member to purchase hybrid seeds and fertilizer to improve maize harvests.

Agripina's Group's story

Agripina is 50 years old and has four children. She has been a farmer for 20 years and is always said to be a very experienced farmer. Even though Agripina is the only one featured in the picture, she is actually representing her group of 11 farmers in Matete District, Kenya.

Agripina started working alongside One Acre Fund several years ago, in 2013. She decided to do so because she wanted to get the best quality fertilizer and hybrid seeds. Since then, she has seen her life improve, especially in the sense that she has been able to consistently feed her family

Loan details

<u>Loan length</u>:

10 months

Repayment schedule: At end of term Disbursed date: March 31, 2021 Funding model: Flexible Partner covers currency loss? Yes Facilitated by Field Partner: One Acre Fund

- Borrower photo & video
- Brief loan use summary
- Borrower's personal story
- Loan request amount
- Country
- Repayment schedule
- Date of request
- Sector (e.g. Agriculture, Retail)
- Activity (e.g. Beauty Salon)
- And more...

Data Cleaning & Preprocessing

	Numerical	Natural Language Processing (NLP)
Cleaning	 Filled null values Transformed features Dummified categorical values 	 Removed rows with no text Removed duplicates Combined text columns
Preprocessing	 Converted text content to word length and char count Created 'misc' activity names to reduce dimensionality Created interaction terms for highly correlated features Created 'month' variable 	 Removed special characters, & stopwords Lemmatized, tokenized (maintained tags), vectorized

• Final Numerical Dataset contained 28 features (pre-dummification)

EDA: Loan Amount (in USD)

LOAN_AMOUNT
727.790634
421.161366

0 = Expired (not-funded) 1 = Successful (funded)

Insight:

The mean loan amount for successful (funded) loans was \$326 less than expired (not-funded) loans.

EDA: Lender Term

LENDER_TERM
14.395499
12.815571

0 = Expired (not-funded) 1 = Successful (funded)

Insight:

Expired loan requests were on average two months longer than successfully-funded loans.

EDA: Month

Insight:

- Average Funded rate for the year: 78%
- Highest funding rate: **December** @89% (Holiday season!)
- Highest loan volume request: **January** (corresponds to the start of Kenya's farming season)

Sample Tags, Loan Use, & Description Text

TAGS: #Single Parent, #Woman-Owned Business

LOAN USE: to purchase new items for her retail shop to sell to her customers

DESCRIPTION: Carren is a single mother of one adorable child whom she adores. She is a hardworking and devoted woman when it comes to her business. Her positive attitude has earned her customers in her retail business. Her dream is to grow her business from a retailer to a wholesaler. She also aspires to educate her child to university level for a brighter future ahead. Carren is pleading for a fourth Kiva loan of KES 120,000 to make her dream come true. She promises to repay the loan with the earned profit from her business.

EDA: NLP

Common Words

Numerical Model

Development & Selection

- Train-test assessment carried from NLP
- Scale features
- Modeled with multiple classifiers
- Extensively explored and hypertuned:
 - Logistic Regression
 - Best scores:
 - 0.834 test acc.
 - 0.834 train acc.
 - Random Forest
 - Best scores:
 - 0.848 test acc.
 - 0.98 train acc.
 - Gradient Boost

Best-Performing Model: Gradient Boost

- Parameters:
 - learning_rate: 0.1
 - o max_depth = 5
 - o n estimators = 100
- Scores (Baseline Model: 0.785)
 - o Train score: 0.866
 - Test score: 0.848
 - CV score: 0.852
- Best increase over baseline model without substantial overfitting

Numerical Model

Confusion Matrix

Classification Report

	precision	recall	f1-score	support
0	0.70	0.54	0.61	2755
1	0.88	0.94	0.91	10000
accuracy			0.85	12755
macro avg	0.79	0.74	0.76	12755
weighted avg	0.84	0.85	0.84	12755

- Overall accuracy at 0.85 better than baseline of 0.78
- Performs well when predicting funded loans (0.91 f1-score) but less well on expired loans (0.61).
 - Recall of expired loans an issue (i.e. higher False Negatives of 0s)
 - More expired loans to train could help

Numerical Model

- **Gradient Boost & Logistic Regression** suggest similar key variables
- #Tags are important
- Loan_Amount is one of the biggest predictors, negatively correlated with likelihood of funding
- Lender_Term: negatively correlated
- Having higher count of female applicants increases chances of funding
- Some activities like Home Energy/Education are more likely to be funded than Retail
- December has higher funded rate

Most Important Features

Gradient	
Boost	

Log Reg coofficients

	importance	feature_names
0	0.475977	LOAN_AMOUNT
8	0.070460	FEM_COUNT
17	0.067644	MALE_FEM
1	0.056266	LENDER_TERM
6	0.042619	char_count_TAGS

leatures	coefficients	
word_char_TAGS	2.896401	15
ORIGINAL_LANGUAGE_MISSING	2.159625	20
word_count_TAGS	-1.900395	3
LOAN_AMOUNT	-1.858365	0
FEM_COUNT	1.240612	8
word count DT	-0.793985	2

NLP Model

Development & Selection

- Train-test-split
- Two separate modeling workstreams with text columns
 - as three individual features (Loan Use, Description, and Tags)
 - combined
- Modeled tags two ways:
 - joined ('singleparent')
 - individual words ('single', 'parent')
- Attempted CVEC & TVEC
- Explored all interpretable supervised learning models

Best-Performing Model: Logistic Regression with TfidfVectorizer, Combined Text Columns, Complete Tags

- Parameters:
 - o ngram_range: (1,2)
 - o max_features: 10,000
 - o C = 1.0
- Scores (Null Model: 0.785)
 - o Train score: 0.837
 - Test score: 0.821
 - CV score: 0.816

NLP Model

Confusion Matrix

Classification Report

	precision	recall	f1-score	support
0 1	0.69 0.84	0.32 0.96	0.43 0.89	2755 10000
accuracy macro avg weighted avg	0.76 0.80	0.64 0.82	0.82 0.66 0.79	12755 12755 12755

- With 0.82 accuracy, performed slightly less well than numerical model overall
- Performs well when predicting funded loans (0.89 f1-score) but poorly on expired loans (0.43).
 - More expired loans to train on might help.

NLP Model

Words &
Phrases
Most
Correlated
With
Funded
Loans

word_combinations	coefs
20 000	5.614132
30 000	3.470010
kes 20	3.381368
singleparent	3.338394
20	3.326476
user_favorite	3.211537
single mother	3.091468
widowed	2.488434
15 000	2.448559
kes 000	2.440288
widow	2.439046
single mom	2.396601
10 000	2.304716
30	2.266018
grew	2.167488

Words &
Phrases
Most
Correlated
With
Expired
Loans

word_combinations	coefs
100 000	-4.320953
100	-4.180876
man	-3.664855
repeatborrower	-3.484908
repairrenewreplace	-3.371616
bizdurableasset	-3.265535
parent	-3.145058
150 000	-2.864306
150	-2.810579
120 000	-2.748698
80 000	-2.706491
nhe	-2.569605
80	-2.551535
120	-2.547320
shop 2	-2.531583

Combination Model

Q: Can we combine the predictive power in the two models to further improve the performance?

Process & Summary

- Combination model entailed bringing together the Numeric model and the NLP model
- Train/test were made identical in the 2 models and each application scored on both models
- Resulting probabilities from each model were then weight-averaged to translate to an overall score and predictions based on that.
- Eg: Overall score: w1*(p_num)+w2*p(nlp)
- Combined model slightly underperformed the Numeric model and outperformed the NLP model
- Next step is to figure out better way of calculating integrated predictions

Numerical Results:

	precision	recall	f1-score	support
0	0.70	0.54	0.61	2755
1	0.88	0.94	0.91	10000
accuracy			0.85	12755
macro avg	0.79	0.74	0.76	12755
weighted avg	0.84	0.85	0.84	12755

Combined Results (70% Num/30% NLP):

	precision	recall	f1-score	support
0	0.75	0.48	0.58	2755
1	0.87	0.96	0.91	10000
accuracy			0.85	12755
macro avg	0.81	0.72	0.75	12755
weighted avg	0.84	0.85	0.84	12755

KivaMaxApprover App

- Built on a simplified prediction algorithm that minimizes false positives
- Requires only 5 user entries
- Requires minimal training
- Returns predictions rapidly
- Predicts on both models:
 Numeric & NLP
- DEMOTIME!

Conclusions

Yes!

We can predict with **85%** accuracy whether a loan will be crowdfunded or not using our numerical model. Our app should help the Field Partners with screening efficiency.

Not so. They just matter in their own model. The NLP model was able to predict with 82% accuracy on its own.

What Matters Most?

- Amount of loan,
- Loan term
- Gender/number of applicants
- Amount of text
- Month of request

NLP Has Its Place

In fact, there are several hundred cases (228 expired and 280 successful) in which NLP accurately predicted loan status, but Numerical fails.

Future Directions

App Refinement

Enhance functionality so that the app can automatically generate suggestions for application improvement.

Model Combination

Explore additional modeling combination techniques to harness the additive predictive power from both models.

EDA: NLP

Common Tags

EDA: Tags

har_count_TAGS		
	STATUS	
42.618386	0	
35.236258	1	

0 = Expired 1 = Successful

Insight:

Applications that were funded had an average TAG of 35 characters.