

Ve270 Introduction to Logic Design

Homework 7

Assigned: July 5, 2018

Due: July 12, 2018, 2:00pm.

The homework should be submitted in hard copies.

1. Problem 3.24. (10 points)

2. Implement a circuit for the FSM designed in Problem 3.24. (15 points)

Two ways to solve the problem:

Inputs: X, Outputs: Y

3. Problem 3.25 (10 points)

4. Problem 3.26. (10 Points)

Or

5. Problem 3.27. (10 Points)

6. Implement a circuit for the FSM designed in Problem 3.27. (15 points)

7. Problem 3.28, show design steps, equations, and draw schematics. (20 points)

Step 1 - Capture the FSM

The FSM was created during Exercise 3.27.

Step 2 - Create the architecture

Step 3 - Encode the states

A straightforward encoding is Time2=000, Alarm=001, Alarm2=010, Stopwatch=011, Stopwatch2=100, Date=101, Date2=110, Time=111.

Step 4 - Create the state table

Inputs				Outputs				
s2	s1	s0	В	n2	n1	n0	s1	s0
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0	0
0	0	1	0	0	1	0	0	1
0	0	1	1	0	0	1	0	1
0	1	0	0	0	1	0	0	1
0	1	0	1	0	1	1	0	1
0	1	1	0	1	0	0	1	0
0	1	1	1	0	1	1	1	0
1	0	0	0	1	0	0	1	0
1	0	0	1	1	0	1	1	0
1	0	1	0	1	0	1	1	1
1	0	1	1	1	1	0	1	1
1	1	0	0	1	1	0	1	1
1	1	0	1	1	1	1	1	1
1	1	1	0	0	0	0	0	0
1	1	1	1	1	1	1	0	0

Step 5 - Implement the combinational logic

8. Problem 3.42 (10 points)