Business Case: Target SQL

Description: This particular business case focuses on the operations of Target in Brazil and provides insightful information about 100,000 orders placed between 2016 and 2018. The dataset offers a comprehensive view of various dimensions including the order status, price, payment and freight performance, customer location, product attributes, and customer reviews.

We are trying to analyze this extensive dataset, so that we can gain valuable insights into Target's operations in Brazil

I.Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:

1.Data type of all columns in the "customers" table.

Query

```
SELECT column_name,data_type FROM `Target`.INFORMATION_SCHEMA.COLUMNS where table_name="customers"
```

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECU
Row	column_name •	,	data_type ▼	
1	customer_id		STRING	
2	customer_unique	e_id	STRING	
3	customer_zip_co	de_prefix	INT64	
4	customer_city		STRING	
5	customer_state		STRING	

Insight:Only customer_zip_code is in integer datatype and other columns are of string datatype.

2. Get the time range between which the orders were placed.

```
\label{lem:select_date_diff} SELECT \ date\_diff(max(order\_purchase\_timestamp), min(order\_purchase\_timestamp), day) \ as \\ Time\_difference \ FROM \ `Target.orders`
```

JOB IN	IFORMATION	RESULTS
Row	Time_difference	₹//
1	77	2

Insight: orders were placed within 772 days.

3. Count the number of Cities and States in our dataset.

Query

SELECT count(distinct geolocation_city) as city_count, count(distinct geolocation_state) as count_state FROM `Target.geolocation`

Query results

Insight:total number of cities and states were present in geolocation Table and there were total 8011 cities and 27 states.

II. In-depth Exploration

1.Is there a growing trend in the no. of orders placed over the past years? Query

```
select * from (SELECT count(order_id)as order_sum,extract(month from
order_purchase_timestamp)as month,extract(year from order_purchase_timestamp) as year
FROM `Target.orders` group by extract(month from order_purchase_timestamp),
extract(year from order_purchase_timestamp) )as x
order by x.year,x.month
```

Query results JOB INFORMATION RESULTS JSON **EXECUTION DETAILS** month -Row order_sum ▼ year ▼

Insight: Number of order placed have increased over the years

Minimum number of orders were placed in December 2016

Maximum number of orders were placed in November 2017

2.Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

```
select * from (SELECT count(order\_id) as order\_sum, extract(month from order\_purchase\_timestamp) as month, FROM `Target.orders` group by extract(month from order\_purchase\_timestamp) ) as x order by x.month \\
```

JOB IN	IFORMATION	RESULTS	JSON
Row	order_sum ▼	month ▼	//
1	8069		1
2	8508		2
3	9893		3
4	9343		4
5	10573		5
6	9412		6
7	10318		7
8	10843		8
9	4305		9
10	4959		10

Insight: Lowest number of orders were placed in the month of September.

Highest number of orders were placed in the month of August.

3. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

o 0-6 hrs: Dawn

 \circ 7-12 hrs : Mornings

o 13-18 hrs : Afternoon

o 19-23 hrs: Night

```
Select x.Timings, count(order_id) as total_order from
  (Select order_id,
  case when extract(hour from order_purchase_timestamp) between 0 and 6 then "Dawn"
  when extract(hour from order_purchase_timestamp) between 7 and 12 then "Mornings"
  when extract(hour from order_purchase_timestamp) between 13 and 18 then "Afternoon"
  else"Night"
  end as Timings FROM `Target.orders`) x
  group by x.Timings
```

Quer	y results			
JOB IN	IFORMATION	RESULTS	JSON	EXECUTI
Row	Timings ▼	//	total_order ▼	//
1	Mornings		27	7733
2	Dawn		5	5242
3	Afternoon		38	3135
4	Night		28	3331

Insight: Brazilian customers place most of their orders in the Afternoon and least Amount of orders are placed at Dawn.

- III. Evolution of E-commerce orders in the Brazil region:
- 1. Get the month on month no. of orders placed in each state.

```
Select * from(SELECT count(o.order_id) as count_order,c.customer_state, extract(month
from order_purchase_timestamp) as month FROM `Target.orders` as o left join
`Target.customers` as c on o.customer_id=c.customer_id group by
c.customer_state,extract(month from order_purchase_timestamp))x order by
x.customer_state,x.month
```

JOB INFORMATION			RESULTS	JSON	ISON EXECUTION DETAILS		
Row	count_order •	. //	customer_sta	ate ▼	month	ı •	
1		8	AC			1	
2		6	AC			2	
3		4	AC			3	
4		9	AC			4	
5		10	AC			5	
6		7	AC			6	
7		9	AC			7	
8		7	AC			8	
9		5	AC			9	
10		6	AC			10	

Insight: Maximum number of orders were placed from state SP.

Least number of orders were placed from state RR

2. How are the customers distributed across all the states? Query

SELECT count(distinct c.customer_id) as count_Customer,c.customer_state, FROM
`Target.orders` as o left join `Target.customers` as c on o.customer_id=c.customer_id
group by c.customer_state

Query results JOB INFORMATION RESULTS **JSON** count_Customer 🔻 Row customer_state ▼ 12852 1 RJ 2 5466 RS 41746 SP 3 4 2140 PR 5 5045 6 907 MT 7 747 MA 8 413 ΑL 9 11635 MG 10 1652 PΕ

Insight: State RR has the least number of customers

State SP is home to maximum number of customers.

IV.Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others

1.Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

You can use the "payment_value" column in the payments table to get the cost of orders.

Query

Query results

JOB IN	IFORMATION		RESULTS	JSON	N EXEC	CUTION	DETAILS	EXEC
Row	year ▼	11	cost ▼	//	prev_cost ▼	11	percentage_inc	- //
1	2	017	3669022.119	9999		null	n	ull
2	2	018	8694733.839	9999	3669022.1199	99	136.9768716466	5

Insight: There is an increase of 137 percent from 2017 to 2018 in cost of orders.

2. Calculate the Total & Average value of order price for each state.

```
SELECT c.customer_state,
    sum(p.payment_value) as total,
```

JOB IN	IFORMATION	RESULTS	JSON	EXE	ECUTION D	ETAILS
Row	customer_state	▼	tootal 🔻	//	avg 🔻	//
1	RN		1027	18.13	196.77802	.68199
2	CE		279464.0299	999	199.90273	3962804
3	RS		890898.5399	999	157.18040	57868
4	SC		623086.4299	999	165.97933	67075
5	SP		5998226.959	999	137.50462	97739
6	MG		1872257.260	0000	154.70643	36473
7	BA		616645.8200	0000	170.81601	66204
8	RJ		2144379.689	999	158.52588	82235
9	GO		350092.3099	999	165.76340	43560
10	MA		152523.0200	0000	198.85661	01694

Insight: State SP has the highest Total value and state PB has the highest average value.

State RR has the lowest total value and state SP has the lowest average value.

3. Calculate the Total & Average value of order freight for each state.

JOB IN	IFORMATION	RESULTS	JSON E	EXECUTION DETAILS
Row	customer_state 🔻	. //	total_freight ▼	avg_freight ▼
1	RN		18860.09999999	35.65236294896
2	CE		48351.58999999	32.71420162381
3	RS		135522.7400000	21.73580433039
4	SC		89660.26000000	21.47036877394
5	SP		718723.0699999	15.14727539041
6	MG		270853.4600000	20.63016680630
7	BA		100156.6799999	26.36395893656
8	RJ		305589.3100000	20.96092393168
9	GO		53114.97999999	22.76681525932
10	MA		31523.77000000	38.25700242718

Insight: State SP has the highest total freight value and state RR has the highest average freight value.

State RR has the lowest total freight value and state SP has the lowest average freight value.

V.Analysis based on sales, freight and delivery time.

1. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

a. time_to_deliver = order_delivered_customer_date - order_purchase_timestamp

b. diff_estimated_delivery = order_estimated_delivery_date - order_delivered_customer_date

Query

```
Select order_id,
date_diff( order_delivered_customer_date,order_purchase_timestamp, day)as
days_to_deliver,
date_diff(order_estimated_delivery_date,order_delivered_customer_date,day) as
diff_days
from `Target.orders`
```

Query results

JOB IN	FORMATION	RESULTS	JSON	EXE	CUTION DETAILS
Row	order_id ▼	//	days_to_deliver	•/	diff_days ▼
1	1950d777989f6a877	7539f5379	;	30	-12
2	2c45c33d2f9cb8ff8l	o1c86cc28	;	30	28
3	65d1e226dfaeb8cdd	:42f66542	;	35	16
4	635c894d068ac37e	6e03dc54e	;	30	1
5	3b97562c3aee8bde	dcb5c2e45		32	0
6	68f47f50f04c4cb67	74570cfde		29	1
7	276e9ec344d3bf029	ff83a161c		43	-4
8	54e1a3c2b97fb0809	da548a59		40	-4
9	fd04fa4105ee8045f	6a0139ca5		37	-1
10	302bb8109d097a9fd	6e9cefc5		33	-5

Insight: Target takes an average of 13 days to deliver and average difference of days in estimated and actual delivery time is 11 days.

2. Find out the top 5 states with the highest & lowest average freight value. Query

```
FROM `Target.customers` as c left join`Target.orders` as o on c.customer_id

=o.customer_id left join
    `Target.order_items` as oi
    on o.order_id=oi.order_id
    group by c.customer_state)x order by avg_freight limit 5 offset 22 )

union all
    select *,0 as top_five, dense_rank()over(order by avg_freight ) as bottom_five

from(select x. customer_state, x.avg_freight

from (SELECT c.customer_state,
    avg(oi.freight_value) as avg_freight
    FROM `Target.customers` as c left join`Target.orders` as o on c.customer_id

=o.customer_id left join
    `Target.order_items` as oi
    on o.order_id=oi.order_id
    group by c.customer_state)x order by avg_freight limit 5)
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAP
Row	customer_state •	. //	avg_freight ▼	top_5 ▼	bottom_five ▼
1	PR		20.53165156794	0	2
2	RJ		20.96092393168	0	4
3	MG		20.63016680630	0	3
4	DF		21.04135494596	0	5
5	SP		15.14727539041	0	1
6	PI		39.14797047970	1	0
7	RO		41.06971223021	3	0
8	RR		42.98442307692	5	0
9	AC		40.07336956521	2	0
10	PB		42.72380398671	4	0

Ł

Insight: Top state with highest freight value is RR and top state with lowest freight value is DF.

3. Find out the top 5 states with the highest & lowest average delivery time.

Query

```
select *, dense_rank()over(order by avg_days asc) as top_5, @ as bottom_five from
(select x.customer_state, avg(days_to_deliver) avg_days from(SELECT c.customer_state,
date_diff(o.order_delivered_customer_date,o.order_purchase_timestamp, day)as
days_to_deliver FROM `Target.orders` as o left join `Target.customers` as c on
o.customer_id=c.customer_id ) x group by x.customer_state order by avg_days limit 5
offset 22)
```

union all

```
select *,0 as top_five, dense_rank()over(order by avg_days ) as bottom_five
from
(select x.customer_state, avg(days_to_deliver) avg_days from(SELECT c.customer_state,
date_diff(o.order_delivered_customer_date,o.order_purchase_timestamp, day)as
days_to_deliver FROM `Target.orders` as o left join `Target.customers` as c on
o.customer_id=c.customer_id ) x group by x.customer_state order by avg_days limit 5 )
```

Query results

JOB IN	IFORMATION R	ESULTS	JSON	EXECUTION DETAILS	EXECUTION GRA
Row	customer_state ▼	//	avg_days ▼	top_5 ▼	bottom_five ▼
1	SP		8.298061489072.	0	1
2	DF		12.50913461538.	0	4
3	PR		11.52671135486.	0	2
4	SC		14.47956019171.	0	5
5	MG		11.54381329810.	0	3
6	AL		24.04030226700.	2	0
7	PA		23.31606765327.	1	0
8	RR		28.97560975609.	5	0
9	AM		25.98620689655.	3	0
10	AP		26.73134328358.	4	0

Insight: Top state with highest average delivery days is RR and top state with lowest average delivery days is SC.

4. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

Query

```
select *, dense_rank()over(order by y.delivery_speed) from (select x.
customer_state, (avg(actual_days)-avg(estimated_days))as delivery_speed from(SELECT
c.customer_state,
date_diff(o.order_delivered_customer_date,o.order_purchase_timestamp, day)as
actual_days,
date_diff(o.order_estimated_delivery_date,o.order_purchase_timestamp, day)as
estimated_days
FROM `Target.orders` as o left join `Target.customers` as c on
o.customer_id=c.customer_id )x group by x.customer_state )y order by delivery_speed
limit 5
```

Query results

JOB IN	IFORMATION	RESULTS	JSON E	EXECUTION DETAILS
Row	customer_state	-	delivery_speed ▼	f0 ▼
1	AC		-20.1279320987	1
2	RO		-19.4935343775	2
3	AP		-18.9745390693	3
4	AM		-18.7705498602	4
5	RR		-17.1983032873	5

Insight: State AC has the fastest delivery.

- VI. Analysis based on the payments:
- 1. Find the month on month no. of orders placed using different payment types.

```
select * from(SELECT count(p.order_id) as count_order,p.payment_type, extract(month
from o.order_purchase_timestamp) as month,
extract(year from o.order_purchase_timestamp) as year FROM `Target.payments` as p left
join `Target.orders` as o
```

```
on p.order_id=o.order_id group by p.payment_type, extract(year from
o.order_purchase_timestamp),extract(month from o.order_purchase_timestamp))x
order by x.payment_type,x.year, x.month
```


JOB IN	IFORMATION	F	RESULTS	JSON	EXI	ECUTION DETAILS	EXECUTION GRA	4PH
Row	count_order ▼	11	payment_type	•	11	month ▼	year ▼	
1		63	UPI			10	2016	
2	19	97	UPI			1	2017	
3	3	98	UPI			2	2017	
4	59	90	UPI			3	2017	
5	4	96	UPI			4	2017	
6	7	72	UPI			5	2017	
7	7(07	UPI			6	2017	
8	84	45	UPI			7	2017	
9	9;	38	UPI			8	2017	
10	90	03	UPI			9	2017	

Insight: According to the data the least number of orders were paid for in the month of december 2016 using credit card.

The most number of orders were paid for using credit card in the month of november 2017

2. Find the no. of orders placed on the basis of the payment installments that have been paid.

```
select count(order_id) as count_order, x.payment_installments from(SELECT *,
FROM `Target.payments`
where payment_sequential >=1)x group by x.payment_installments
```

Quer	y results		
JOB IN	FORMATION	RESULTS JSC	ON
Row	count_order ▼	payment_installment	t
1	2	0	
2	52546	1	
3	12413	2	
4	10461	3	
5	7098	4	
6	5239	5	
7	3920	6	
8	1626	7	
9	4268	8	
10	644	9	

Insight: Least number of orders were placed for emi installments of >20.

Maximum number of installments were placed for emi installments of <5.

Recommendations

- 1. In brazil target should introduce some offers or discounts during the month of september and october to boost thes sale during those months.
- 2. Target can introduce special discounts or sales or fresh consumables during dawn to increase number of order being placed during dawn.
- 3. Should introduce first time purchase offers so that many people from other states also shop from target.
- Target should adopt methods to decrease the average difference between estimated delivery date and actual delivery date to lessen unsatisfied customers due to late delivery.