Vector Quantile Regression

Guillaume Carlier (Dauphine)
Victor Chernozhukov (MIT)
Alfred Galichon (ScPo)

Sciences Po, June 5, 2014

Contents

1	Classical quantile regression, old and new			
	1.1	Reminders and notations	7	
	1.2	Quantile regression: specified case	9	
	1.3	Quantile regression: quasi-specified case .	10	
2	Vec tile	tor quantile and Conditional Vector Quan-	12	
2				
2	tile 2.1		12	

3	Vec	tor Quantile Regression	20
	3.1	The LP problems	20
	3.2	Connection with classical QR	22
	3.3	Computation	24

Introduction

Let Y be a dependent variable (e.g., the random losses of a bank), and X a vector of regressors (e.g. the state of the economy). **Quantile regression** theoretically allows to represent the dependence of Y with respect to X by

$$Y = X^{\mathsf{T}}\beta(U)$$

where, if the model is correctly specified

 $U \sim Unif([0,1]), U \text{ and } X \text{ independent.}$

A regression procedure (based on linear programming) allows to estimate β .

This model is very useful and convenient as it allows to represent the full conditional distribution – i.e. every conditional quantiles – of Y given X; in contrast with OLS Regression which represents only the conditional mean E[Y|X].

In other words, the values of $U \in [0,1]$ are interpreted as "scenarios" ranging from u=1 (most pessimistic) and u=0 (most optimistic); if one is able to simulate X, $X^{\mathsf{T}}\beta(u)$ will be the value of losses in scenario u, as predicted by X.

If $F_{Y|X}$ is the conditional cdf of Y given X and $Q_{Y|X}=F_{Y|X}^{-1}$ is the corresponding conditional quantile, then if the model is specified,

$$F_{Y|X=x}^{-1}(u) = x^{\mathsf{T}}\beta(u).$$

However, Quantile Regression is restrictive in 2 respects:

• Specification of the model requires that U be independent of X – or equivalently, that the conditional quantiles of Y given X be linear with respect to X, which is a very strong assumption. When this is not the case, $u \to x^{\mathsf{T}}\beta(u)$ is not necessarily increasing ("quantile crossing problem"), and U such that $Y = X^{\mathsf{T}}\beta(U)$ is not necessarily defined.

 Y is assumed to be univariate. Obviously there is no natural definition of the quantile in the multivariate case, but it would be of great interest to accommodate for a multivariate dependent variable.

We shall deal with these two concerns. First, let's recall the basics of Quantile Regression.

1 Classical quantile regression, old and new

1.1 Reminders and notations

Quantile: $Q_Y(t) = F_Y^{-1}(t)$

Conditional quantile: $Q_{Y|X=x}(t) = F_{Y|X}^{-1}(t|x)$

Specification of quantile regression:

$$Q_{Y|X=x}\left(t
ight) =x^{\mathsf{T}}eta\left(t
ight)$$
 ;

Throughout, include a constant regressor $x_1 = 1$.

Estimation:

$$\beta(t) \leftarrow \min_{\beta} E\left[(Y - X^{\mathsf{T}}\beta)^{+} \right] + (1 - t) \bar{x}^{\mathsf{T}}\beta,$$

where $\bar{x} := E[X]$.

By FOC,
$$E[X1\{Y \geq X^{\mathsf{T}}\beta\}] = (1-t)\bar{x}$$
; yields $\beta^{QR}(t)$.

Linear programming formulation. Problem

$$\min_{\beta_t} \mathbb{E}[(Y - X^{\mathsf{T}}\beta_t)^+] + (1 - t)\bar{x}^{\mathsf{T}}\beta_t,$$

has a Linear Programming formulation as

$$\min_{P \geq 0, \beta} \mathbb{E}[P] + (1 - t) \bar{x}^{\mathsf{T}} \beta_t$$
$$s.t. \ Y - X^{\mathsf{T}} \beta \leq P \ [V_t]$$

whose dual is

$$egin{array}{l} \max_{V_t \geq 0} \mathbb{E}[V_t Y] \ V_t \leq \mathbf{1} \ \ [P] \ \mathbb{E}[V_t X] = (\mathbf{1} - t) \, ar{x} \ \ [eta_t] \end{array}$$

Note (complementary slackness) that $V_t = 1 \{ Y \ge X^{\mathsf{T}} \beta_t \}$.

1.2 Quantile regression: specified case

Specified case means that $Q_{Y|X=x}\left(t\right)=x^{\mathsf{T}}\beta\left(t\right)$. As a result,

$$t \to x^{\mathsf{T}} \beta (t)$$

is increasing for all x in the support, and one can invert $x^{\mathsf{T}}\beta\left(t\right)$ in t for fixed x, that is, there exists $t\left(x,y\right)$ such that

$$x^{\mathsf{T}}\beta\left(t\left(x,y\right)\right)=y.$$

Let U=t(X,Y). Then $Y=X^{\mathsf{T}}\beta(U)$, and note that $U=t(X,Y)=F_{Y|X}(Y|X)$, thus the distribution of U conditional on X=x is uniform. Hence, $U\sim U\left([0,1]\right)$ and (U,X) independent. Therefore QR is specified in an only if one can write

$$Y = X^{\mathsf{T}}\beta(U)$$

 $U \sim U([0,1])$ and (U,X) independent

1.3 Quantile regression: quasi-specified case

Assume $t \to x^{\mathsf{T}}\beta^{QR}(t)$ is increasing and continuous for any x in the support. Then, as before, one can invert $x^{\mathsf{T}}\beta^{QR}(t)$ in t for fixed x, that is, there exists t(x,y) such that

$$x^{\mathsf{T}}\beta^{QR}\left(t\left(x,y\right)\right)=y.$$

Letting U=t(X,Y), one gets $Y=X^{\mathsf{T}}\beta(U)$. We have no longer $t(x,y)=F_{Y|X}(y|x)$; but we have the FOC satisfied by β^{QR}

$$E\left[X\mathbf{1}\left\{Y \geq X^{\mathsf{T}}\beta^{QR}\left(t\right)\right\}\right] = (\mathbf{1} - t)\,\bar{x}$$

Replacing Y by $X^{\mathsf{T}}\beta^{QR}(U)$, one has

$$E\left[X\mathbf{1}\left\{X^{\mathsf{T}}\beta^{QR}\left(U\right)\geq X^{\mathsf{T}}\beta^{QR}\left(t\right)\right\}\right]=\left(1-t\right)\bar{x}$$
 but $\mathbf{1}\left\{X^{\mathsf{T}}\beta^{QR}\left(U\right)\geq X^{\mathsf{T}}\beta^{QR}\left(t\right)\right\}=\mathbf{1}\left\{U\geq t\right\}$, so
$$E\left[X\mathbf{1}\left\{U\geq t\right\}\right]=\left(1-t\right)\bar{x}$$

therefore, $U \sim U$ ([0,1]) and X mean-independent (MI) from X, that is $E[X|U] = \bar{x}$. Therefore QR is quasi-specified in an only if one can write

$$Y = X^{\mathsf{T}}\beta\left(U\right)$$

$$U \sim U\left(\left[0,1\right]\right) \text{ and } E\left[X|U\right] = \bar{x}$$

$$t \rightarrow x^{\mathsf{T}}\beta^{QR}\left(t\right) \text{ nondecr.}$$

2 Vector quantile and Conditional Vector Quantile

2.1 Revisiting the notion of quantile

Assume in this section that there is no covariate X. Start with the well known fact that for a real random variable $Y \sim \nu$, F_Y its c.d.f.,

$$U = F_Y(Y)$$

is distributed as μ , where μ is the $\mathcal{U}([0,1])$ distribution. Hence, the quantile function $Q_Y=F_Y^{-1}$ satisfies the following axioms:

(A1) For any Y, there is a unique $U\sim \mu$ such that

$$Y = Q(U)$$

(A2) Q is monotone (nondecreasing).

By the **rearrangement inequality** (Hardy-Littlewood), for any $\tilde{U} \sim \mu$, one has

$$\mathbb{E}\left[|U-Y|^2\right] \leq \mathbb{E}\left[\left|\tilde{U}-Y\right|^2\right] \text{ and } \mathbb{E}\left[UY\right] \geq \mathbb{E}\left[\tilde{U}Y\right]$$

Geometrically, this means that U is the projection of Y on the set of random variables with distribution μ ; or that U and Y are maximally correlated among all pairs $\begin{pmatrix} \tilde{U}, \tilde{Y} \end{pmatrix}$ such that \tilde{U} has the same distribution as U and \tilde{Y} has the same distribution of Y.

Hence the variational problem for the single quantile is

$$\max \mathbb{E}\left[UY\right]$$
 $s.t. \qquad U \sim \mu$

and this is an optimal transportation (Monge-Kantorovich) problem. Its dual can be computed as

$$\min \int \varphi d\mu + \int \psi d\nu$$
s.t.
$$\varphi(u) + \psi(y) \ge uy$$

whose minimizers φ and ψ are known to exist, to be convex, and to satisfy

$$\psi(y) = \sup_{u} \{uy - \varphi(u)\}.$$

By complementary slackness, the solutions (U,Y) to the primal problem, and (φ,ψ) to the dual problem are related by

$$Y = \varphi'(U)$$

that is, $\varphi'(u) = Q_Y(u)$ the quantile function of Y. We see that the quantile function is obtained as (the derivative of) the minimizer of the dual variational problem.

This notion generalizes into a notion of Vector Quantile.

2.2 Vector Quantiles

By analogy with the 1D case, when $d \geq$ 2 and $\mu = U\left([\mathbf{0},\mathbf{1}]^d\right)$, it is natural to consider

$$\min \quad \mathbb{E}\left[\|U - Y\|^2\right]$$

$$s.t. \quad U \sim \mu$$

or equivalently

$$\max \mathbb{E} \left[U^\intercal Y \right]$$

$$s.t. \qquad U \sim \mu$$

whose dual is

$$\min \int \varphi d\mu + \int \psi d\nu$$
s.t.
$$\varphi(u) + \psi(y) \ge u^{\mathsf{T}} y$$

whose minimizers φ and ψ are known to exist, to be convex, and to satisfy

$$\psi(y) = \sup_{u} \{u^{\mathsf{T}}y - \varphi(u)\}.$$

By complementary slackness, the solutions (U,Y) to the primal problem, and (φ,ψ) to the dual problem are related by

$$Y = \nabla \varphi (U)$$

that is, $\nabla \varphi(u) = Q_Y(u)$ the **vector quantile** of Y.

The Vector Quantile is the only map such that:

(A'1) For any Y, there is a unique $U \sim \mu$ such that

$$Y = Q(U)$$

(A'2) Q is monotone (=gradient of a convex function).

2.3 Conditional Vector Quantiles

It is natural to consider

$$egin{aligned} &\max \mathbb{E}\left[UY
ight] \ s.t. & U \sim \mathcal{U}\left(\left[0,1
ight]
ight) \ &(X,Y) \sim
onumber \ &(X,U) & ext{independent.} \end{aligned}$$

However, this program rewrites

$$\max \int \mathbb{E} \left[UY | X = x \right] d\nu_X (x) \tag{1}$$

$$s.t. \quad Y | X = x \sim \nu (.|x) \ \forall x$$

$$U | X = x \sim \mathcal{U} ([0, 1]) \ \forall x$$

and thus the solution is

$$U = F_{Y|X}(Y),$$

thus

$$Y = F_{Y|X}^{-1}(U)$$
.

This notion generalizes into a notion of Conditional Vector Quantile. Consider

$$egin{aligned} & \mathsf{max}\,\mathbb{E}\left[U.Y
ight] \ s.t. & U \sim \mu \ & (X,Y) \sim
u \ & (X,U) & \mathsf{independent.} \end{aligned}$$

whose dual is

$$\inf_{\varphi,\psi} \int \varphi d\mu + \int \psi d\nu$$

$$s.t. \ \varphi (x,u) + \psi (x,y) \ge u^{\mathsf{T}} y$$

thus by first order conditions in the constraint of the dual, if (U, X, Y) is a solution of the primal and (φ, ψ) is a solution of the dual, then

$$Y = \nabla_u \varphi \left(X, U \right)$$

thus $\nabla_u \varphi\left(x,u\right) = Q_{Y|X=x}\left(u\right)$ is the conditional vector quantile of Y conditional on x and u. Of course, φ has no reason to be linear in u.

3 Vector Quantile Regression

3.1 The LP problems

The previous discussions suggests that if we should hope to have linearity with respect to X, we should look $U \sim \mu$ such that X is mean-independent (instead of independent) from U, that is $\mathbb{E}\left[X|U\right] = \bar{x}$. Among these choices, it is natural to look for U with maximum correlation with Y. This leads us to

$$\max \mathbb{E} [U^{\mathsf{T}}Y] \tag{2}$$

$$s.t. \qquad U \sim \mu, \ (X,Y) \sim \nu$$

$$\mathbb{E} [X|U] = \bar{x}$$

which has dual

$$\inf_{b,\psi} \bar{x}' \int bd\mu + \int \psi d\nu$$

$$s.t. \ x^{\mathsf{T}}b(u) + \psi(x,y) \ge u^{\mathsf{T}}y$$
(3)

The constraint in the dual rewrites as

$$\psi(x,y) = \sup_{u} \{u^{\mathsf{T}}y - x^{\mathsf{T}}b(u)\}\$$

hence, by first order conditions (under differentiability of b),

$$Y = X^{\mathsf{T}} \beta^{VQR} (U)$$

where

$$\beta^{VQR}(u) = Db(u)$$
.

3.2 Connection with classical QR

When d=1, what is the connection with classical QR?

1. Unsurprisingly, when the model is quasi-specified (and hence, when it is correctly specified),

$$\beta^{VQR} = \beta^{QR}.$$

By complementary slackness, $V_t = 1 \{ Y \ge X^{\mathsf{T}} \beta(t) \}$.

2. There is much more. Recall the dual formulation of classical Quantile Regression

$$egin{array}{l} \max_{V_t \geq 0} \mathbb{E}[V_t Y] \ V_t \leq 1 \ [P] \ \mathbb{E}[V_t X] = (1-t) \, ar{x} \ [eta_t] \end{array}$$

Hence, under quasispecification $t \to x^{\mathsf{T}}\beta(t)$ is nondecreasing, thus $t \to V_t$ is nonincreasing. However, $t \to V_t$

has no reason to be nonincreasing in general. We can thus form the augmented problem, including this constraint:

$$egin{array}{l} \max_{V_t \geq 0} \mathbb{E}[V_t Y] \ V_t \leq 1 \ [P] \ \mathbb{E}[V_t X] = (1-t) \, ar{x} \ [eta_t] \ V_t \leq V_s, \ t \geq s \end{array}$$

It turns out that this problem is now fully equivalent to VQR, with

$$V_t = \mathbf{1} \left\{ U \ge t \right\},\,$$

and the Lagrange multiplier of $\mathbb{E}[V_tX]=(\mathbf{1}-t)\,\bar{x}$ is β_t^{VQR} .

3.3 Computation

Sample (X_i, Y_i) of size n. Discretize U into m sample points. Let p be the number of regressors. Program is

$$\max_{\substack{\pi \geq 0}} Tr(U^{\mathsf{T}}\pi Y)$$

$$\mathbf{1}_m^{\mathsf{T}}\pi = \nu^{\mathsf{T}} \ [\psi^{\mathsf{T}}]$$

$$\pi X = \mu \bar{x} \ [b]$$

where X is $n \times p$, Y is $n \times d$, ν is $n \times 1$ such that $\nu_i = 1/n$; U is $m \times d$, μ is $m \times 1$; π is $m \times n$.

To run this optimization problem, need to vectorize matrices. Very easy using Kronecker products. We have

$$Tr(U^{\mathsf{T}}\pi Y) = vec(I_d)^{\mathsf{T}}(Y \otimes U)^{\mathsf{T}} vec(\pi)$$
$$vec(\mathbf{1}_m^{\mathsf{T}}\pi) = (I_n \otimes \mathbf{1}_m^{\mathsf{T}}) vec(\pi)$$
$$vec(\pi X) = (X^{\mathsf{T}} \otimes I_m) vec(\pi)$$

Program is implemented in Matlab; optimization phase is done using state-of-the-art LP solver (Gurobi).