Booklet of Code and Output for STAD29/STA 1007 Midterm Exam

List of Figures in this document by page:

List of Figures

1	Packages	2
2	Hospital infection risk data (some)	3
3	Regression	4
4	Drop-1 output from regression	4
5	Another model, and predictions	5
6	Flu shot data (some)	5
7	Logistic regression	6
8	Quartiles for age and awareness	6
9	LSYPE data, some, selected variables	7
10	Summary of data	8
11	Doing something	8
12	Model-fitting	9
13	Predictions for LSYPE English grade	9
14	Unemployment data (some)	10
15	Construction of response variable and display of first 20 values $$.	10
16	Cox model	11
17	Predictions for job type	12
18	Rod extrusion data	13
19	ANOVA	13
20	Tukey for rod extrusion data	14
21	Further analysis of rod extrusion data	15
22	Plot of predictions for job type	16
23	Grouped boxplot for rod extrusion data	17
24	Interaction plot for rod extrusion data	18

```
library(MASS)
library(tidyverse)
## -- Attaching packages -----
tidyverse 1.2.1 --
## \sqrt{ggplot2} 2.2.1.9000 \sqrt{purrr} 0.2.4
## \sqrt{tibble} 1.4.2 \sqrt{dplyr} 0.7.4 ## \sqrt{tidyr} 0.8.0 \sqrt{stringr} 1.3.0 ## \sqrt{readr} 1.1.1 \sqrt{forcats} 0.3.0
## -- Conflicts -----
tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x dplyr::select() masks MASS::select()
library(broom)
library(survival)
library(survminer)
## Loading required package: ggpubr
## Loading required package: magrittr
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
##
##
    set\_names
## The following object is masked from 'package:tidyr':
##
## extract
```

Figure 1: Packages

```
infection=read_tsv("infectionrisk.txt")
## Parsed with column specification:
## cols(
## ID = col_integer(),
## Stay = col_double(),
## Age = col_double(),
## InfctRsk = col_double(),
## Culture = col_double(),
## Xray = col_double(),
## Beds = col_integer(),
## MedSchool = col_integer(),
## Region = col_integer(),
## Census = col_integer(),
## Nurses = col_integer(),
## Facilities = col_double()
## )
infection
## # A tibble: 113 x 12
        ID Stay Age InfctRsk Culture Xray Beds MedSchool Region Census
##
     <int> <dbl> <dbl>
                          <dbl>
                                <dbl> <dbl> <int>
                                                       <int> <int>
                                                                    <int>
                           4.10
##
         1 7.13 55.7
                                  9.00 39.6
                                                279
                                                         2
                                                                  4
                                                                       207
   1
                           1.60
##
   2
         2 8.82 58.2
                                  3.80 51.7
                                                80
                                                           2
                                                                  2
                                                                        51
                                                           2
   3
         3 8.34 56.9
                           2.70
                                  8.10 74.0
                                                                  3
                                                                        82
##
                                                107
## 4
         4 8.95 53.7
                           5.60
                                18.9 123
                                                147
                                                           2
                                                                  4
                                                                        53
                  56.5
                                                           2
## 5
         5 11.2
                           5.70
                                34.5 88.9
                                                180
                                                                      134
##
   6
         6 9.76 50.9
                          5.10
                                 21.9
                                         97.0
                                                150
                                                           2
                                                                  2
                                                                       147
                                                           2
   7
         7 9.68 57.8
                                        79.0
                                                                  3
##
                           4.60
                                 16.7
                                                186
                                                                       151
##
  8
         8 11.2
                  45.7
                           5.40
                                  60.5
                                         85.8
                                                640
                                                           1
                                                                  2
                                                                       399
                                                           2
##
  9
         9 8.67 48.2
                           4.30
                                  24.4
                                         90.8
                                                182
                                                                       130
## 10
        10 8.84 56.3
                           6.30
                                  29.6
                                        82.6
                                                85
                                                           2
                                                                  1
                                                                        59
## # ... with 103 more rows, and 2 more variables: Nurses <int>,
## # Facilities <dbl>
```

Figure 2: Hospital infection risk data (some)

```
infection = infection %>% mutate(Region=factor(Region))
inf.1=lm(InfctRsk~Stay+Xray+Region,data=infection)
summary(inf.1)
##
## Call:
## lm(formula = InfctRsk ~ Stay + Xray + Region, data = infection)
##
## Residuals:
    Min
              1Q
                 Median
                             3Q
                                    Max
## -2.75483 -0.64146 0.00862 0.67124 2.44950
##
## Coefficients:
##
    Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.802903  0.775573 -1.035 0.302892
          ## Stay
## Xray
            ## Region2
           0.043021 0.297064
                             0.145 0.885124
## Region3
## Region4
            0.832871
                    0.381718
                              2.182 0.031304 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.068 on 107 degrees of freedom
## Multiple R-squared: 0.3938, Adjusted R-squared: 0.3655
## F-statistic: 13.9 on 5 and 107 DF, p-value: 1.839e-10
```

Figure 3: Regression for predicting infection risk

```
drop1(inf.1,test="F")
## Single term deletions
##
## Model:
## InfctRsk ~ Stay + Xray + Region
   Df Sum of Sq
                      RSS AIC F value
                                            Pr(>F)
                     122.07 20.727
## <none>
## Stay 1
            34.147 156.22 46.598 29.9305 2.968e-07 ***
## Xray
       1
            13.287 135.36 30.402 11.6464 0.0009092 ***
## Region 3
              7.334 129.41 21.320 2.1428 0.0991208 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 4: Drop-1 output from regression

```
inf.2=update(inf.1,.~.-Region)
new=tibble(Stay=15,Xray=70,Region=1)
p=predict(inf.2,new,interval="p")
cbind(new,p)

## Stay Xray Region fit lwr upr
## 1 15 70 1 5.702933 3.44029 7.965575
```

Figure 5: Another model, and predictions

```
flu=read_table("flu-shots.txt")
## Parsed with column specification:
## cols(
## shot = col_double(),
## age = col_double(),
## awareness = col_double()
## )
flu
## # A tibble: 50 x 3
##
      shot age awareness
##
     <dbl> <dbl> <dbl>
## 1 0
           38.0
                     40.0
   2 1.00 52.0
##
                     60.0
## 3 0
            41.0
                     36.0
## 4 1.00 46.0
                     59.0
## 5 1.00 41.0
                     70.0
##
   6 0
            43.0
                     49.0
## 7 1.00 57.0
                     59.0
## 8 0
            34.0
                     50.0
## 9 0
            31.0
                     48.0
## 10 1.00 49.0
                     59.0
## # ... with 40 more rows
```

Figure 6: Flu shot data (some)

```
shot.1=glm(factor(shot)~age+awareness, family="binomial", data=flu)
summary(shot.1)
##
## Call:
## glm(formula = factor(shot) ~ age + awareness, family = "binomial",
##
      data = flu)
##
## Deviance Residuals:
     Min 1Q Median
                            3Q
                                       Max
## -1.5522 -0.2962 -0.1124 0.4208
                                     2.3244
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -21.58458 6.41824 -3.363 0.000771 ***
                        0.07436 2.983 0.002858 **
       0.22178
## age
## awareness
              0.20351
                          0.06273 3.244 0.001178 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 68.029 on 49 degrees of freedom
## Residual deviance: 32.416 on 47 degrees of freedom
## AIC: 38.416
##
## Number of Fisher Scoring iterations: 6
```

Figure 7: Logistic regression

Figure 8: Quartiles for age and awareness

```
kids=read_csv("kids.csv")
## Parsed with column specification:
## cols(
##
  .default = col_integer(),
## pupilid = col_double(),
## ks2score = col_double(),
## ks3score = col_double(),
## ks4score = col_double(),
## IDACI_n = col_double(),
## weighting = col_double()
## )
## See spec(...) for full column specifications.
kids = kids %>% select(k3en,gender,sec,ks2stand)
kids
## # A tibble: 15,770 x 4
      k3en gender sec ks2stand
     <int> <int> <int>
##
                        <int>
## 1
        3
             0
                  2
                          -24
## 2
         3
               0
                    8
                            NA
## 3
        3
              1 NA
                            NA
## 4
        3
               0
                    2
                           -21
   5
         3
##
               1
                    NA
                           -24
## 6
        3
               1
                    NA
                           -24
## 7
       3
                           -24
               1 NA
## 8
        3
               1
                  NA
                           -24
         3
## 9
               1
                     8
                            NA
## 10
         3
               1
                     2
                           -24
## # ... with 15,760 more rows
```

(Note: 0 is male and 1 is female)

Figure 9: LSYPE data, some, selected variables

```
summary(kids)
##
                      gender
                                                    ks2stand
        k3en
                                       sec
                  Min. :0.0000
## Min. :3.000
                                  Min. :1.000
                                                 Min. :-
24.0000
## 1st Qu.:4.000
                  1st Qu.:0.0000
                                  1st Qu.:2.000
                                                 1st Qu.: -
7.0000
##
                                  Median :4.000
                                                 Median: 0.0000
   Median :5.000
                  Median :0.0000
  Mean :5.067
                  Mean :0.4912
                                  Mean :4.114
                                                 Mean : 0.0119
##
  3rd Qu.:6.000
                  3rd Qu.:1.0000
                                  3rd Qu.:6.000
                                                 3rd Qu.: 7.0000
## Max. :7.000
                  Max. :1.0000
                                  Max. :8.000
                                                 Max. : 39.0000
## NA's :1307
                  NA's :339
                                  NA's :2941
                                                 NA's :1469
```

Figure 10: Summary of data

```
kids = kids %>%
   filter(!is.na(k3en),
          !is.na(gender),
          !is.na(sec),
          !is.na(ks2stand))
summary(kids)
##
        k3en
                       gender
                                                     ks2stand
                                        sec
  Min. :3.000
                  Min. :0.0000
                                   Min. :1.000
##
                                                  Min. :-
24.0000
## 1st Qu.:5.000
                  1st Qu.:0.0000
                                   1st Qu.:2.000
                                                  1st Qu.: -
6.0000
                                                   Median: 1.0000
## Median :5.000
                  Median :0.0000
                                   Median :4.000
                                                   Mean : 0.6265
## Mean :5.139
                                   Mean :4.119
                   Mean :0.4889
## 3rd Qu.:6.000
                   3rd Qu.:1.0000
                                   3rd Qu.:6.000
                                                   3rd Qu.: 7.0000
## Max. :7.000
                  Max. :1.0000
                                   Max. :8.000
                                                  Max. : 39.0000
```

Figure 11: Doing something with our variables

```
en3.1=polr(en3~gender+sec+ks2stand,data=kids)
drop1(en3.1,test="Chisq")
## Single term deletions
##
## Model:
## en3 ~ gender + sec + ks2stand
##
            Df
                 AIC
                        LRT Pr(>Chi)
## <none>
               22208
             1 22911
                      704.4 < 2.2e-16 ***
## gender
             1 22496
                     289.4 < 2.2e-16 ***
## sec
## ks2stand 1 30381 8174.3 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Figure 12: Model-fitting

Probabilities of obtaining a Key Stage 3 English grade of 3, 4, 5, 6 or 7 from values of explanatory variables as shown. Code to obtain the predictions is not shown:

```
cbind(new,round(p,3))
                                            5
                                                  6
                                                         7
##
                               3
                                      4
      gender sec ks2stand
## 1
           0
                        -7 0.083 0.323 0.537 0.053 0.004
## 2
           0
               1
                         0 0.018 0.106 0.651 0.206 0.018
## 3
           0
               1
                         7 0.004 0.025 0.390 0.499 0.082
## 4
           0
               6
                        -7 0.162 0.432 0.378 0.026 0.002
## 5
           0
               6
                         0 0.039 0.195 0.647 0.111 0.009
           0
               6
                         7 0.008 0.052 0.547 0.353 0.040
## 6
## 7
           1
               1
                        -7 0.032 0.168 0.658 0.131 0.011
## 8
                         0 0.007 0.043 0.508 0.394 0.049
           1
               1
## 9
           1
               1
                         7 0.001 0.009 0.197 0.595 0.197
                        -7 0.066 0.282 0.580 0.067 0.005
## 10
           1
               6
                         0 0.014 0.086 0.629 0.247 0.023
## 11
           1
               6
## 12
                         7 0.003 0.020 0.337 0.537 0.103
```

Note that **round** rounds the variable (given first) to the given number of decimals (second).

Figure 13: Predictions for LSYPE English grade

```
unemp=read_csv("unemployment.csv")
## Parsed with column specification:
## cols(
## spell = col_integer(),
## event = col_integer(),
## ui = col_integer(),
## logwage = col_double(),
## work_area = col_character()
## )
unemp
## # A tibble: 1,957 x 5
##
     spell event ui logwage work_area
##
    <int> <int> <int> <dbl> <chr>
## 1
      1 1 0 6.41 mining
## 2
       3
           0
                 1 5.85 mining
## 3
       2
            1
                 0 6.57 mining
## 4
       3 0
                 1 5.76 mining
## 5
      2 0
                1 5.38 mining
      5 0
## 6
                1 5.56 mining
## 7
      7 0
                 1 6.11 mining
## 8 4 0 1
                     6.34 mining
## 9
      3 0
                1
                     5.99 mining
## 10
      8
           0
                 0
                      5.83 mining
## # ... with 1,947 more rows
```

Figure 14: Unemployment data (some)

```
y=with(unemp,Surv(spell,event))
y[1:20]
## [1] 1 3+ 2 3+ 2+ 5+ 7+ 4+ 3+ 8+ 2 13 11+ 12+ 1 17+ 4+
## [18] 7+ 7+ 5
```

Figure 15: Construction of response variable and display of first 20 values

```
y.1=coxph(y~ui+logwage+work_area,data=unemp)
summary(y.1)
## Call:
## coxph(formula = y ~ ui + logwage + work_area, data = unemp)
##
   n= 1957, number of events= 658
##
##
                                           z Pr(>|z|)
                     coef exp(coef) se(coef)
## ui
                  ## logwage
                 0.44326 1.55778 0.06979 6.352 2.13e-10 ***
                 0.53674 1.71041 0.14922 3.597 0.000322 ***
## work_areafire
## work_areamining -0.13158 0.87671 0.21709 -0.606 0.544450
## work_areapubadmin -0.24263  0.78456  0.41874  -0.579  0.562301
## work_areaservices 0.34281
                          1.40889 0.11727 2.923 0.003465 **
                                           1.538 0.124133
## work_areatrade 0.18117
                          1.19861 0.11782
## work_areatransp -0.09024 0.91371 0.15395 -0.586 0.557740
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
                 exp(coef) exp(-coef) lower .95 upper .95
##
## ui
                   0.3709 2.6964 0.3153 0.4362
                                              1.7861
                    1.5578
                           0.6419 1.3586
## logwage
## work_areafire
                   1.7104 0.5847 1.2767
                                              2.2915
## work_areamining
                  0.8767 1.1406 0.5729
## work_areapubadmin 0.7846
                           1.2746 0.3453
                                              1.7826
## work_areaservices
                  1.4089
                           0.7098 1.1196
                                              1.7730
                    1.1986
                           0.8343 0.9515
## work_areatrade
                                               1.5100
                             1.0944 0.6757
                                              1.2355
## work_areatransp
                    0.9137
##
## Concordance= 0.697 (se = 0.014)
## Rsquare= 0.09 (max possible= 0.99)
## Likelihood ratio test= 184.1 on 8 df, p=0
## Wald test = 185 on 8 df, p=0
## Score (logrank) test = 193.1 on 8 df, p=0
drop1(y.1,test="Chisq")
## Single term deletions
##
## Model:
## y ~ ui + logwage + work_area
##
         Df AIC LRT Pr(>Chi)
## <none>
            8815.1
          1 8959.4 146.269 < 2.2e-16 ***
## logwage 1 8852.6 39.511 3.261e-10 ***
## work_area 6 8828.7 25.644 0.0002594 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 16: Cox model

```
unemp %>% summarize(med=median(logwage))
## # A tibble: 1 x 1
##
     med
##
   <dbl>
## 1 5.69
work_areas = unemp %>% distinct(work_area) %>% pull(work_area)
work_areas
                 "constr"
                                      "trade"
## [1] "mining"
                            "transp"
                                                 "fire"
                                                            "services"
## [7] "pubadmin"
unemp_new=crossing(logwage=5.69,ui=1,work_area=work_areas)
unemp_new
## # A tibble: 7 x 3
   logwage ui work_area
      <dbl> <dbl> <chr>
##
## 1
       5.69 1.00 constr
## 2 5.69 1.00 fire
## 3
     5.69 1.00 mining
     5.69 1.00 pubadmin
## 4
## 5
     5.69 1.00 services
     5.69 1.00 trade
## 6
## 7
       5.69 1.00 transp
s=survfit(y.1,unemp_new,data=unemp)
```

Figure 17: Predictions for job type

```
rods=read_csv("rodmold.csv")
## Parsed with column specification:
## cols(
## temperature = col_integer(),
## pressure = col_integer(),
## batch = col integer(),
## extrusion_rate = col_double()
## )
rods = rods %>% mutate(pressure=factor(pressure),
                     temperature=factor(temperature))
rods
## # A tibble: 12 x 4
##
    temperature pressure batch extrusion_rate
##
     <fct> <fct> <int> <dbl>
## 1 200
               40
                          1
                                      1.35
## 2 200
               40
                           2
                                      1.31
## 3 200
               40
                            3
                                       1.40
## 4 200
               60
                           1
                                       1.74
## 5 200
              60
                           2
                                       1.67
## 6 200
                60
                            3
                                       1.86
## 7 300
                40
                           1
                                       2.48
## 8 300
                40
                            2
                                       2.29
## 9 300
                40
                            3
                                       2.14
## 10 300
                60
                            1
                                       3.63
## 11 300
                60
                            2
                                       3.30
## 12 300
                60
                                       3.27
```

Figure 18: Rod extrusion data

```
extr.1=aov(extrusion_rate~temperature*pressure,data=rods)
summary(extr.1)
##
                       Df Sum Sq Mean Sq F value
## temperature
                       1 5.044
                                  5.044 251.57 2.50e-07 ***
## pressure
                        1 1.687
                                  1.687
                                          84.17 1.61e-05 ***
## temperature:pressure
                                  0.361
                                          17.98 0.00284 **
                      1 0.361
## Residuals
                        8 0.160
                                  0.020
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 19: Analysis of variance for rod extrusion data

Extrusion rate means for pressure and temperature combinations

```
rods %>% group_by(temperature,pressure) %>%
    summarize(m=mean(extrusion_rate))
## # A tibble: 4 x 3
## # Groups:
              temperature [?]
##
     temperature pressure
     <fct>
                 <fct>
                          <dbl>
                           1.35
## 1 200
                 40
## 2 200
                 60
                           1.76
## 3 300
                 40
                           2.30
## 4 300
                 60
                           3.40
```

Tukey:

```
TukeyHSD(extr.1)
##
    Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = extrusion_rate ~ temperature * pressure, data = rods)
##
## $temperature
##
               diff
                        lwr
                                  upr p adj
## 300-200 1.296667 1.108147 1.485186 2e-07
##
## $pressure
##
       diff
                   lwr
                             upr
                                     p adj
## 60-40 0.75 0.5614803 0.9385197 1.61e-05
##
## $`temperature:pressure`
##
                       diff
                                    lwr
                                                      p adj
## 300:40-200:40 0.9500000 0.57976231 1.320238 0.0001661
## 200:60-200:40 0.4033333 0.03309564
                                        0.773571 0.0334993
## 300:60-200:40 2.0466667 1.67642898
                                        2.416904 0.0000005
## 200:60-300:40 -0.5466667 -0.91690436 -0.176429 0.0064699
## 300:60-300:40 1.0966667 0.72642898 1.466904 0.0000585
## 300:60-200:60 1.6433333 1.27309564 2.013571 0.0000028
```

Figure 20: Tukey for rod extrusion data

```
pval=function(x) {
   extr.2=aov(extrusion_rate~pressure,data=x)
   extr.3=glance(extr.2)
   extr.3$p.value
}
rods %>%
   group_by(temperature) %>%
   nest() %>%
   mutate(p_value=map_dbl(data,pval))
## # A tibble: 2 x 3
## temperature data
                                p_value
## <fct> <list>
                                 <dbl>
               <tibble [6 x 3]> 0.00276
## 1 200
## 2 300
             <tibble [6 x 3]> 0.00194
```

Figure 21: Further analysis of rod extrusion data

Figure 22: Plot of predictions for job type

Figure 23: Grouped boxplot for rod extrusion data

```
rods.mean = rods %>% group_by(temperature,pressure) %>%
  summarize(m=mean(extrusion_rate))
rods.mean
## # A tibble: 4 x 3
## # Groups: temperature [?]
     temperature pressure
                  <fct>
                           <dbl>
## 1 200
                  40
                            1.35
## 2 200
                  60
                            1.76
## 3 300
                            2.30
                  40
## 4 300
                  60
                            3.40
ggplot(rods.mean,aes(y=m,x=temperature,colour=pressure,group=pressure))+
  geom_point()+geom_line()
  3 -
  2 -
count
  0 -
                 5.0
                              7.5
                                                       12.5
    2.5
                                          10.0
                                                                    15.0
                                  norm2
```

Figure 24: Interaction plot for rod extrusion data