

Wydział:					
Wydział Informatyki	Imię i nazwis 1. Kawa Mie 2. Smyda To	chał	Rok: II	Grupa: 5	Zespół:
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Moduł You:	Nr ćwiczenia:			
Data wykonania: 10.10.2023	Data oddania: 13.10.2023	Zwrot do popr.:	Data oddania:	Data zaliczenia:	OCENA:

Moduł Younga

Ćwiczenie nr 11

Kawa Michał Smyda Tomasz

Spis treści

${f Wstep}$				
	1.1 Cel ćwiczenia	2		
	1.2 Opis ćwiczenia	2		
2	Układ pomiarowy	3		
3	Przebieg doświadczenia	3		
1	Wyniki pomiarów	4		
5	Opracowanie wyników pomiarów	4		
3	Wnioski	4		

1 Wstęp

1.1 Cel ćwiczenia

Celem doświadczenia jest wyznaczenie modułu Younga metodą statyczną za pomocą pomiaru wydłużenia drutu z badanego metalu obciążonego stałą siłą.

1.2 Opis ćwiczenia

W doświadczeniu oprzemy się na równaniu prawa Hook'a, mówiącemu o proporcjonalności odkształcenia sprężystego do przyłożonej siły:

$$\Delta l = \frac{F \cdot l}{E \cdot S}$$

Wartość E to stała materiałowa - mierzony przez nas moduł Younga.

Prawo Hook'a można również zapisać jako: $\sigma = E \cdot \varepsilon$, gdzie σ to naprężenie normalne ($\sigma = \frac{F}{S}$), a ε to normalne odkształcenie względne ($\varepsilon = \frac{\Delta l}{l}$).

Zgodnie z prawem Hooke'a zależność $\Delta l(F)$ powinna być prostą $\Delta l=a\cdot F+b$, zatem współcznynnik $a=\frac{l}{E\cdot S}$. Z tego otrzymujemy:

$$E = \frac{l}{a \cdot S} = \frac{4l}{\pi \cdot d^2 \cdot a}$$

Niepewność złożoną $u_c(E)$ otrzymujemy:

$$\frac{u_c(E)}{E} = \sqrt{\left(\frac{u(l)}{l}\right)^2 + \left(-2 \cdot \frac{u(d)}{d}\right)^2 + \left(-\frac{u(a)}{a}\right)^2}$$

Rysunek 1: Urządzenie pomiarowe

2 Układ pomiarowy

W skład układu pomiarowego wchodzą następujące elementy:

- 1. Druty stalowy i mosiężny, będące obiektem pomiaru.
- 2. Przyrząd do pomiaru wydłużenia drutu pod wypływem stałej siły (rys.1), zaopatrzony w czujnik mikrometryczny do pomiaru wydłużenia drutu.
- 3. Zestaw odważników.
- 4. Śruba mikrometryczna.
- 5. Przymiar milimetrowy.

3 Przebieg doświadczenia

Na samym początku dokonaliśmy pomiaru długości pręta wykonanego ze stali oraz za pomocą śruby mikrometrycznej zmierzyliśmy średnicę drutu wykonując trzy pomiary w różnych miejsach drutu. Następnie wyzerowaliśmy czujnik mikrometryczny i rozpoczęliśmy właściwe pomiary.

Badaliśmy odległość za pomocą czujnika mikrometrycznego obciążając szalkę za pomocą coraz większych odważników zaczynając od 0 kg, a kończąc na 10 kg ze skokiem 1 kg, a następnie zmniejszaliśmy obciążenie na szalce również co 1 kg aż do 0.

Taką samą procedurę pomiarów dokonaliśmy dla drutu mosiężnego. Jedyną różnicą było maksymalne obciążenie, do którego użyliśmy obciążników o łącznej wadze 6 kg - wynika to z mniejszej wytrzymałości drutu.

4 Wyniki pomiarów

Numer pomiaru	Masa odważników	Siła F	Wskazanie ↑	Wskazanie ↓	Wydłużenie średnie
	[kg]	[N]	[mm]	[mm]	[mm]
1.	7	8	9	6	5

5 Opracowanie wyników pomiarów

Na podstawie trzech wykonanych pomiarów ustaliliśmy średnicę drutu stalowego oraz oszacowaliśmy niepewność typu B:

$$d_s = 0.77 \,\mathrm{mm}$$

$$u(d_s) = \frac{0.01 \,\mathrm{mm}}{\sqrt{3}} = 0.006 \,\mathrm{mm}$$

Analogicznie dla drutu mosiężnego:

$$d_m = 0.79 \text{ mm}$$

$$u(d_m) = \frac{0.01 \text{ mm}}{\sqrt{3}} = 0.006 \text{ mm}$$

Wobec czego otrzymaliśmy:

$$d_s = 0.77 \pm 0.006 \,\mathrm{mm}$$

$$d_m = 0.79 \pm 0.006 \,\mathrm{mm}$$

6 Wnioski