

Travaux Pratiques

« Traitement Numérique du Signal avec Python »

Niveau : 2^e année Ingénieur Data Science

TP4 - Convolution - Corrélation - Densité spectrale

Youssef ZOUHIR 2021/2022

Manipulation

Application 1:

On suppose que le signal numérique x(k) donné par l'équation suivante x(k)=rect₁₀(k) est l'entrée d'un système SLTI dont sa réponse impulsionnelle h(t) = x(k).

- 1- Calculer théoriquement la sortie y(k) du système comme étant le produit de convolution du signal x(k) et de la réponse h(k).
- 2- Ecrire un programme, python, qui permet de calculer la sortie de ce système y(k). On utilise la fonction « np.convolve ».
- 3- Représenter les trois courbes x(k), h(k) et y(k) sur la même figure.
- 4- Comparer le résultat obtenu avec le résultat théorique.

Application 2:

Calculer et représenter les produits de convolution suivants :

a-
$$y(k) = rect_{10}(k) * d(k)$$

b-
$$y(k) = rect_{10}(k) * d(k-2)$$

Application 3:

Soient les signaux suivants :

(a)
$$x(k)=rect_{10}(k)$$
;

(b)
$$h(k) = x(k)$$

- 1- Tracer le signal x(k), puis calculer son énergie « E_x ».
- 2- Calculer et tracer la fonction d'autocorrélation $C_x(k)$ en utilisant «np.correlate »
- 3- Déduire l'énergie du signal x(k) à partir de C_x
- 4- Calculer le spectre d'amplitude du signal x(k). Déduire le spectre l'énergie et l'énergie du signal x(k).