Вчитель: Артемюк Н.А.

Тема. Повторення. Квадратні корені. Дійсні числа

<u>Мета:</u> пригадати вивчені числові множини, поняття та властивості арифметичного квадратного кореню, вдосконалювати вміння застосовувати властивості квадратного кореню до розв'язування завдань.

Пригадайте

- Що називають арифметичним квадратним коренем з числа?
- Які властивості квадратних коренів вам відомі?
- Назвіть відомі вам числові множини та їх взаємне розташування.

Перегляньте відео

https://youtu.be/i4G1yKvYdMw

Довідник

Теорема 1.

Для будь-якого дійсного числа \mathbf{a} виконується рівність $\sqrt{a^2} = |\mathbf{a}|$.

Теорема 2 (Арифметичний квадратний корінь із степеня).

Для будь-якого дійсного числа \boldsymbol{a} та будь-якого натурального числа \boldsymbol{n} виконується рівність $\sqrt{a^{2n}} = |a|^n$.

Теорема 3 (Арифметичний квадратний корінь із добутку).

Для будь-яких дійсних невід'ємних чисел a і b виконується рівність

$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b} .$$

Цю теорему можна узагальнити для добутку трьох і більше множників. Наприклад, якщо $a \ge 0, b \ge 0, c \ge 0$, то

$$\sqrt{abc} = \sqrt{a(bc)} = \sqrt{a} \cdot \sqrt{bc} = \sqrt{a} \cdot \sqrt{b} \cdot \sqrt{c}$$
.

Теорема 4 (Арифметичний квадратний корінь із дробу).

Для будь-яких дійсних чисел \boldsymbol{a} і \boldsymbol{b} ($a \ge 0$, $b \ge 0$) виконується рівність:

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

Натуральні числа — це числа, що вживають при лічбі. Усі натуральні числа утворюють множину натуральних чисел, яку позначають буквою \mathbb{N} .

Усі натуральні числа, протилежні їм числа та число нуль утворюють множину **цілих чисел**, яку позначають буквою \mathbb{Z} .

Наприклад, -3 \in \mathbb{Z} , 0 \in \mathbb{Z} , 5 \in \mathbb{Z} .

Цілі та дробові (як додатні, так і від'ємні) числа утворюють множину раціональних чисел, яку позначають буквою \mathbb{Q} . Кожне раціональне число можна подати у вигляді нескінченного періодичного десяткового дробу.

Розглянемо рівняння $x^2 = 3$. Оскільки 3>0, то це рівняння має два корені: $\sqrt{3}$ та $-\sqrt{3}$. Проте не існує раціонального числа, квадрат якого дорівнює числу 3, тобто числа $\sqrt{3}$ та $-\sqrt{3}$ не є раціональними. Ці числа є прикладами ірраціональних чисел (префікс «ір» означає «заперечення»). Ірраціональні числа можуть бути подані у вигляді нескінченних НЕперіодичних десяткових дробів.

Наприклад, $\sqrt{2}$ = 1,4142135623730950488016887242097...

Число Пі, яке дорівнює відношенню довжини кола до діаметра, також є ірраціональним: π =3,14159265358979323846264338327950288419716939937...

Разом множини ірраціональних і раціональних чисел утворюють множину **дійсних** чисел. Її позначають буквою \mathbb{R} (першою буквою латинського слова realis -«реальний», «той, що існує насправді»).

Робота в зошиті

Завдання 1

Спростіть вираз $\sqrt{54b} + \sqrt{24b} - \sqrt{600b}$.

Розв'язання

$$\overline{54b} + \sqrt{24b} - \sqrt{600b} = \sqrt{9 \cdot 6 \cdot b} + \sqrt{4 \cdot 6 \cdot b} - \sqrt{100 \cdot 6 \cdot b}$$
$$3\sqrt{6b} + 2\sqrt{6b} - 10\sqrt{6b} = \sqrt{6b}(3 + 2 - 10) = -5\sqrt{6b}$$

Завдання 2

Внесіть множник під знак кореня: $c\sqrt{c^7}$

Розв'язання

3 умови задачі випливає, що $c \ge 0$. Тоді $c\sqrt{c^7} = \sqrt{c^2} \cdot \sqrt{c^7} = \sqrt{c^2 \cdot c^7} = \sqrt{c^9}$

Завдання 3

Розв'яжіть рівняння: 1) $x^2 = 9$; 2) $x^2 = -7$; 3) $x^2 = 7$; 4) $(2x + 1)^2 = 25$.

Розв'язання

1)
$$x_1 = \sqrt{9} = 3$$
, $x_2 = -\sqrt{9} = -3$;

2) рівняння не має коренів, тобто $x \in \emptyset$;

3)
$$x_1 = \sqrt{7}$$
, $x_2 = -\sqrt{7}$. Ці корені є ірраціональними числами;

4) маємо:
$$2x + 1 = \sqrt{25}$$
 або $2x + 1 = -\sqrt{25}$ $2x + 1 = 5$ $2x + 1 = -5$ $2x = 4$ $2x = -6$ $x = 2$ $x = -3$.

Отже, рівняння має два корені $x_1 = 2$; $x_2 = -3$.

Завдання 4

Розв'язати рівняння

Розв'язання

1)
$$\sqrt{x+3} = 5$$
$$x+3=25$$
$$x=22$$

Відповідь: 22

3)
$$\sqrt{2+x} = -3$$

коренів не має

Відповідь: коренів не має

5)
$$x^2 - 16 = 0$$

 $x^2 = 16$
 $x = 4, -4$
Відповідь: 4, -4

2)
$$\sqrt{11-y} = 7$$

 $11 - y = 49$
 $x = -38$

Відповідь: -38

4)
$$\sqrt{1+x^2} = 1$$
$$1+x^2=1$$
$$x^2 = 0$$
$$x = 0$$

Відповідь: 0

6)
$$x^2 + 5 = 9$$

 $x^2 = 4$
 $x = 2, -2$
Biggorius: 2

Відповідь: 2, -2

Поміркуйте

https://wordwall.net/uk/resource/27599949

Домашне завдання

Розв'язати завдання №5,6

5. Знайдіть значення виразу: 1)
$$\sqrt{18} \cdot \sqrt{8}$$
;

2)
$$\sqrt{\frac{169}{36.81}}$$
.

6. Розв'яжіть рівняння: 1)
$$x^2 = 49$$
; 2) $(x + 3)^2 = 0$

2)
$$(x + 3)^2 = 0$$

Фото виконаної роботи надішліть на HUMAN або на електронну пошту nataliartemiuk.55@gmail.com

Джерела

- Всеукраїнська школа онлайн
- Мій клас