Cours 2 - PAC: Probably Approximately Correct

Notes par Adrien Maurin

Définition du problème Soient X un ensemble de données (« data points ») et Y (équivalent à $\{0,1\}$) un ensemble de labels. Étant donné un couple $S = \{(x_0,y_0),\cdots,(x_m,y_m)\}$, l'objectif est de trouver $h: X \to Y$ avec $h \in \mathcal{H}$ tel que h trouve au mieux S.

Définition 1 (Consistancy model). La fonction h du problème défini précédemment vérifie la condition $suivante : \forall i \in [1, m], h(x_i) = y_i$.

Remarque

- 1. La fonction n'assure pas la généralité.
- 2. La fonction ne prend pas en compte le bruit.

Définition 2 (PAC model). Ce modèle repose sur l'hypothèse suivante : on suppose que les données sont générées par une distribution $\mathcal D$ inconnue tel que : $\mathcal D: X \longrightarrow [0,1]$ et $\sum_{x \in X} \mathcal D(x) = 1$.

On va introduire deux paramètres :

- ϵ : la précision
- δ : la confiance

Algorithme d'apprentissage Un algorithme d'apprentissage fonctionne de la manière suivante :

Input :
$$S = \{(x_0, y_0), \dots, (x_m, y_m)\}$$

Output : $h \in \mathcal{H}$.

Définition 3 (erreur). On défini l'erreur d'une fonction (notée err) de la manière suivante :

$$\forall \epsilon > 0, \forall \delta > 0, \forall c \in \mathcal{H} \ (objectif), \forall \mathcal{D}, \exists M \in \mathbb{N}, \forall m \geqslant M :$$

$$err(h) = \mathbb{P}_{x \sim \mathcal{D}}(h(x) \neq c(x))$$

La notation $x^{\sim}\mathcal{D}$ signifie que l'on tire un élément x avec la distribution \mathcal{D} .

Définition 4 (apprentissage). Un algorithme apprend au sens PAC la classe \mathcal{H} si:

$$\boxed{\mathbb{P}_{x^{\sim}\mathcal{D}^{m}}(err(h) \leqslant \epsilon) \geqslant 1 - \delta}$$
(1)

En des termes plus simples, cela signifie qu'avec une forte probabilité, mon erreur est faible. On rajoute l'adjectif efficacement si $m = poly(\frac{1}{\epsilon}; \frac{1}{\delta})$.

Exemple 1 : ensemble de points sur \mathbb{R}^2

FIGURE 1 – Illustration du problème.

Description du problème Soit un plan sur \mathbb{R}^2 . Sur ce plan, on a des symboles – et des +. L'objectif est de déterminer le plus grand rectangle tel que les symboles + sont dans le rectangle. On définit R_h le plus petit rectangle qui contient les +. Le rectangle R_c étant celui qu'on cherche à déterminer.

On cherche à déterminer $\mathbb{P}_{x^{\sim}\mathcal{D}^m}(\text{err}(h) \leqslant \epsilon) \geqslant 1-\delta$. Pour cela, on pose : $\mathbb{P}_{x^{\sim}\mathcal{D}}(E_{gauche}) = \mathbb{P}_{x^{\sim}\mathcal{D}} = \frac{\epsilon}{4}$. On fait de même pour E_{droite} , E_{bas} et E_{haut} . On définit l'évènement A suivant :

$$A = \{\exists x, y, z, t \in S, x \in E_{bas} \land y \in E_{haut} \land z \in E_{droite} \land t \in E_{gauche}\}.$$

Si A est réalisé, alors on a $\operatorname{err}_c(h) \leq \epsilon$. En effet :

$$\operatorname{err}_{c}(h) = \mathbb{P}_{x \sim \mathcal{D}}(h(x) \neq c(x)) = \mathbb{P}_{x \sim \mathcal{D}}(x \in R_{c} \backslash R_{h}) = \mathbb{P}(R_{c} \backslash R_{h})$$

Si l'évènement A est réalisé, on obtient $R_c \backslash R_h \subseteq E_{gauche} \cup E_{droite} \cup E_{bas} \cup E_{haut}$. On a alors l'inégalité suivante :

$$\mathbb{P}(R_c \backslash R_h) \leqslant \mathbb{P}(E_{gauche} \cup E_{droite} \cup E_{bas} \cup E_{haut}) \leqslant \sum \mathbb{P}(E_i) = \epsilon$$

On a le résultat suivant : $\mathbb{P}(\forall x \in S, x \notin E_{bas}) = (1 - \frac{\epsilon}{4})^m$. On en déduit donc par le complémentaire que :

$$\mathbb{P}(\exists x \in S, x \in E_{bas}) = 1 - (1 - \frac{\epsilon}{4})^m \leqslant 1 - e^{-\frac{m\epsilon}{4}}$$

En revenant à l'évènement A, on obtient : $\mathbb{P} \geqslant 1 - 4e^{-\frac{m\epsilon}{4}}$.

$$\mathbb{P}(A^C) = \mathbb{P}(\forall x \in S, x \notin E_{bas} \cup \dots \cup x \notin E_{gauche}) \leqslant \sum \mathbb{P}(\forall x \in S, x \notin E_i) \leqslant 4e^{-\frac{m\epsilon}{4}}$$

On en déduit le résultat : $\mathbb{P}(A) \geqslant 1 - 4e^{-\frac{m\epsilon}{4}}$. En combinant ce résultat avec l'équation (1), il faut choisir δ tel que $\delta \leqslant 4e^{-\frac{m\epsilon}{4}}$. Cette inégalité est vraie si $m \geqslant -\frac{4}{\epsilon} \ln(\frac{\delta}{4})$.

Exemple 2 : formules booléennes conjonctives

Soient
$$X = \{0,1\}^n$$
, $Y = \{0,1\}$ et $\mathcal{H} = \{\phi = \bigwedge_i l_i : l_i = p_i \text{ ou } \neg p_i\}$.
Par exemple avec $n = 4$, $\phi = p_1 \wedge p_3 \wedge \neg p_4$

Algorithme:

- On commence avec $\phi = p_1 \wedge \neg p_1 \wedge \cdots \wedge p_n \wedge \neg p_n$.
- Pour chaque $x \in S$ positif,on enlève les littéraux incompatiples dans ϕ .

Objectif

L'objectif est de trouver $m \in \mathbb{N}$ qui vérifie l'équation (1). On défini la fonction erreur par : $\operatorname{err}(h) = \mathbb{P}_{x \sim \mathcal{D}}(x \models \phi_c \Leftrightarrow \phi_h) \leqslant \epsilon$

Définition 5 (mauvais littéral). Soit l un littéral. On dit qu'un littéral est mauvais si $\mathbb{P}_{x^{\sim}\mathcal{D}}(x \models \phi_c \land \phi \not\models l) \geqslant \frac{\epsilon}{2n}$

Propriété 1. Si ϕ_h ne contient aucun mauvais littéral, alors $err(h) \leqslant \epsilon$.

Démonstration.

$$\operatorname{err}(h) = \mathbb{P}_{x \tilde{\ } \mathcal{D}}(x \models \phi_c \land x \not\models \phi_h) \leqslant \sum_{l \in \phi_h} \mathbb{P}_{x \tilde{\ } \mathcal{D}}(x \models \phi_c \land x \not\models l) \leqslant \sum_{l \in \phi_h} \frac{\epsilon}{2n} \leqslant \epsilon$$

Calculons ensuite la probabilité suivante :

 $\mathbb{P}_{x \sim \mathcal{D}}$ (Tous les mauvais littéraux apparaissent dans S)

Soit l un mauvais littéral. On obtient alors :

$$\mathbb{P}_{x \sim \mathcal{D}}(\forall x \in S, x \models \phi_c \implies x \models l) \leqslant (1 - \frac{\epsilon}{2n})^m \leqslant e^{-\frac{\epsilon m}{2n}} \text{ car } 1 + x \leqslant e^x$$

 $\mathbb{P}_{x^{\sim}\mathcal{D}}(\text{Il existe un mauvais littéral dans }S)\leqslant \sum_{l}\mathbb{P}(l\text{ apparaisse dans }S)\leqslant \sum_{l}e^{-\frac{\epsilon m}{2n}}\leqslant 2n.e^{-\frac{\epsilon m}{2n}}$

En appliquant la définition de l'apprentissage (définition 4), on obtient l'inégalité suivante :

$$\delta \geqslant 2n.e^{-\frac{\epsilon m}{2n}}$$

Cette inégalité est vraie si $m \geqslant \frac{2n}{\epsilon} (\ln(2n) + \ln(\frac{1}{\delta}))$.

Conclusion

On a l'erreur qui est bien un polynôme en $\frac{1}{\epsilon}$. Cependant, ce n'est pas efficacement apprenable car m est en $\ln \frac{1}{\delta}$.