Video Processors - First Round

Bookkeeping: For the simplest system using a leamera or I VTR in playback mode, the processor should accept composite video input and deliver composite video output in the same 1.4 volt format.

Modale O: DC power sapply.

Module 1: sync stripper.

Module Z: sync compositer

video Mod. 2 - Composite

sync composite

Sync must spe provided separately to each camera from an external sounce. If a VTR is involved, it will probably have to provide sync for other system parts. The specific design of Mod. 3 will require a little more research on my part into sync signals from VTR's and how to make editing possible in a 2 inch format.

(I presuming we are aiming at use by 2 juch amateurs

more than I juck and Z such professionals.) In general, though, Mod 3 should look like this:

Module 3, mode 1 (no VTR) sync generator

no input Modis syncout 2 >to camera 1

Module 3, mode 2 (with sync from VTR) sync relay

Sync in

(from VTR)

I will likely delay designing Mod. 3 until I have completed the other modules for a minimal I camera system.

Module 4: limiter + overload indicator

sync pattern switch

Mod. 4 is a sync compositor, like Mod. 2, but adds a feature not present in Mod. 2. First, a module that combines video (non-composite) and sync should limit

The range of the video in its outputs to the allowable limits of the device to receive that composite. Arrows in the diagram indicate where limits were exceeded on video input, and how the excess amplitude was clipped off by Mod.t, as it should be for Hod.2 as well. The user of this equipment would want to know what pasts of a pricture we help object, and an indication of limiting would appear on his monitor when he had the pattern switch on. The pattern switch would do something like this: parts of the picture off-scale beyond white would appear in the monitor to switch impidly between saturated white and an inverted pattern refunning toward black in propertion to the overload.

video
input
black >

Overlead
beyond white becomes (saturated) alternating (inverted picture)
beyond white) becomes (conite) with of overlead)

The same type pattern would appear for overload off the black end. Thus, the operator could discover what parts of any picture, after any process, went off scale on either end, and by how much.

This everlead indicator weald be more useful than an oscilloscope for most cosess, in that it would show everlead on the monitor itself, in the frame of reference

of the picture.

The following modules occupt hon-composite video input and give non-composite video output.

Mod. 5: special effects - mixture of 2 effects:

- A) input picture, modified in frequency response so as to either reduce bandwidth (filter out high frequencies) or increase relative amplitude of high frequencies. The effect is to either blar out detail (reduced bandwidth) or enhance fine detail. The picture, thus modified, is mixed with B), the amount entering the mix being adjustable both in amplitude and polarity (positive or negative)
- B) left to right derivative of picture, available on two separately controllable output, one of positive excursions from zero, the other of negative excursions, Parameters under control are frequency response of the picture before differentiation (same kind of control as for A) in the module, but independent of the setting for A) and hysteresis of differentiation process, so that small changes in the picture can be made to have no effect, and only large sentares will appear. This picture is mixed, and the gain and polarity of positive going and negative going derivative variations are separately controllable.

Mod. 6: comparator - maps impat into two discrete levels, one level if input is below some reference level, the other output level if input is above the reference level. The input and reference

levels may both be provided by external inputs, or the reference level may be set by a potentiometer. The comparator is simple arough that two comparators should probably by combined in one module. The output of each hatt of the two comparator module would be a mixture of the input to the comparator and the subject of that comparator, the mixture being controlled by a believe potentiams for. An additional output would be a mixture of the outputs of the two belies, again controlled by a balance pot.

Mod 7: legarithmic to linear to antilogorithmic response centre. A logarithmic response to picture information will increase centrast on the dark-gray to black end it the picture scale, while decreasing relative contrast toward the white end. The antilogarithmic scale will to the opposite. The logarithmic scale will bring out detail in less well illuminated portions of a picture, while preventing brightly illuminated objects from being so prominent. Thus, the total detail observable in a picture from the viewer's standpoint will appear to be greater on a logarithmic scale than on a linear scale. If a picture is first mapped to a logarithmic scale and then differentiated, the resultant picture will not look different in well-illuminated and poorly illuminated regions, except in places where illumination is so poor that camera response is swamped by neise in the camera.

Med 8: mixer - adds its inputs with adjustable scale factors.

Mod. 9: analog multiplier - multiplies two voltages. When used with a comparator and a mixer, a multiplier can function as a keyer, but that would be a very difficult approach to something as simple as keying. A keyer switches discontinuously from one picture to another depending on the level at a third input, where that level ean be the same as one of the first has inputs or pictures. Thus, given two pictures to be switched, and a pisture et a checkerboard as control input, white on the checkerboard causes picture I to be displayed under white squares. Black "cuts holes" in picture I, allowing you to see through to picture 2. Using a multystier instead of a keyer, you could defocus the picture of the checkerboard, and then the centers of black squares would still be picture I and centers of white squares picture 2, but the blurred gray transitions from black. to white in the checkerboard would show a mixture of pictures I and 2 superimposed. Clearly, the multiplier can serve as a voltage controlled mixer, so that a voltage derived from an audio source can program mixes of video effects on a continuous scale. When the multiplier comes linto wide use, it will undoubtedly be considered an indispensable tool for interfacing between audio, visual, and tactile media.

Note concerning frequency response controls in Mod 5: it should be fairly easy to control video frequency

response by a control voltage as well as a hundersetting of a potentionneter. Thus, with voltage control over both frequency response and gain or blend (with a moltiplier) it should be possible to control all the effects the video circuits can achieve by an electionic control source, either audio, touch sensors, analog compater, or digital competer.