苏州大学 数学分析选讲 课程试卷解答 (A) 卷 共 3 页

(考试形式 开卷 2020年6月)

院系	年级	专业	
学号	姓名	成绩	

- 一、 (20分) 设 f(x) 是定义在区间 $(0,+\infty)$ 上的函数. 证明: 如果 $f(x^2)$ 在 $(0,+\infty)$ 上一致连续, 那么 f(x) 也在 $(0,+\infty)$ 上一致连续. 证明: 记 $g(x) = f(x^2)$, 那么根据构造 $f(x) = g(\sqrt{x}), x \in (0,+\infty)$. 注意到 \sqrt{x} 在 $(0,+\infty)$ 上一致连续, 以及一致连续函数的复合仍然一致连续, 我们得证.
- 二、 (20分) 设方程 $e^z + x^2 y^2 + \arctan z = 1$ 确定了隐函数 z = z(x,y). 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

答:

$$\begin{split} \frac{\partial z}{\partial x} &= -\frac{2x}{e^z + \frac{1}{1+z^2}} \\ \frac{\partial^2 z}{\partial x \partial y} &= \frac{4xy}{(e^z + \frac{1}{1+z^2})^3} (e^z - \frac{2z}{(1+z^2)^2}) \end{split}$$

三、 (20分) 计算重积分 $\iiint\limits_{x^2+y^2+z^2\leq 1}\cos^2(ax+by+cz)\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z,$ 其中 $a^2+b^2+c^2=1.$

答: 用正交变换, 旋转坐标系, 得原式

$$= \iiint_{x^2+y^2+z^2 \le 1} \cos^2 x \, dx \, dy \, dz = \pi \left(\frac{\sin 2}{4} - \frac{\cos 2}{2} + \frac{2}{3}\right).$$

四、 (20分) 设 $f_1 = f_2 = 1$, $f_{n+2} = f_{n+1} + f_n$, $n \ge 1$.

求级数 $\sum_{n=1}^{\infty} \frac{1}{f_n f_{n+2}}$ 的小数部分.

答: $\frac{1}{f_n f_{n+2}} = \frac{1}{f_n f_{n+1}} - \frac{1}{f_{n+1} f_{n+2}}$. 故级数收敛且其和为 $\frac{1}{f_1 f_2} = 1$. 从而小数部分为0.

五、 (5分) 设 $\{b_n\}$ 是给定数列. 证明: 该数列的部分和数列有界当且仅当对于任何收敛到 0 的单调数列 $\{a_n\}$, 无穷级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛.

证明: 若 $\{b_n\}$ 的部分和数列有界,则由 Dirichlet 判别法知无穷级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛.

反之,设 $\{b_n\}$ 的部分和数列 $\{S_n\}$ 无界,则我们可以取一系列下标 $1=l_1<$ $l_2<\cdots$ 使得 $|S_{l_{i+1}}-S_{l_i}|>i$.由此,我们构造数列

$$a_1 = \begin{cases} 1, & n = 1; \\ \frac{1}{i}, & l_i < n \le l_{i+1}. \end{cases}$$

则 a_n 单调收敛于 0. 现在对任意 $i \geq 1$, 我们有

$$|\sum_{n=1}^{l_i} a_n b_n - \sum_{n=1}^{l_{i+1}} a_n b_n| = |\sum_{l_i < n \le l_{i+1}} a_n b_n|$$

$$= \frac{1}{i} |\sum_{l_i < n \le l_{i+1}} b_n|$$

$$= \frac{1}{i} |S_{l_{i+1}} - S_{l_i}|$$

$$> 1.$$

于是级数 $\sum_{n=1}^{\infty} a_n b_n$ 发散.

六、 (5分) 设数列 $\{a_n\}$ 单调递减趋于0, 记 $S_n = \sum_{j=n}^{\infty} (-1)^{j-n} a_j, n \geq 1.$ 证明: 级数 $\sum a_n^2$ 与 $\sum S_n^2$ 同敛散.

答: 由条件, $0 < S_n < a_n$, 于是 $0 < S_n^2 < a_n^2$.

反之, $0 < a_n = S_n + S_{n+1}$, 于是 $a_n^2 < 2(S_n^2 + S_{n+1}^2)$; 得证.

七、 (5分) 设函数 f(x) 在 [a,b] 上可导, 且存在 $c \in (a,b)$ 使得 f'(c) = 0. 证明: 存在 $\xi \in (a,b)$ 使得 $f(\xi) - f(a) = \frac{f'(\xi)}{b-a}$.

答: 证明: 令 $g(x)=(f(x)-f(a))e^{-(b-a)x}$, 则只需证明存在 $\xi\in(a,b)$ 使得 $g'(\xi)=0$.

反证法, 若结论不成立, 则 g'(x) 在 (a,b) 上恒正或恒负。

不妨设 g'(x)>0,则一方面由导函数的介值定理有 $g'(a)\geq 0$,从而 g(c)> g(a)=0. 另一方面由 f'(c)=0 有

$$g'(c) = -(b-a)g(c) > 0$$

从而有 g(c) < 0, 故矛盾。所以假设不成立。

g'(x) 恒负时类似。

八、 (5分) 设 f(x) 在 [0,1] 上连续可导, 且 $f'(0) \neq 0$. 对 $0 < x \leq 1$, 令 $\xi(x) \in$ (0,x) 满足

$$\int_0^x f(t) dt = f(\xi(x))x.$$

试求 $\lim_{x\to 0^+} \frac{\xi(x)}{x}$.

证: 有
$$\lim_{x\to 0^+} \frac{\xi(x)}{x} = \frac{1}{2}$$
.

由分部积分法以及积分中值定理, 我们有

$$\int_0^x f(t) dt = x f(x) - \int_0^x t f'(t) dt = x f(x) - f'(\eta(x)) x^2 / 2.$$

又由 $f(\xi(x))$ 在 x 处的 Taylor 公式(或 Largrange 中值定理)可知,

$$xf(\xi(x)) = x[f(x) + f'(\delta(x))(\xi(x) - x)]$$
. 从而根据题设可得

$$f'(\delta(x))x^2 - f'(\eta(x))x^2/2 = f'(\delta(x)) \cdot \xi(x) \cdot x, \, \, \hat{\pi} \, \mathbb{P}$$

$$f'(\delta(x)) - f'(\eta(x))/2 = f'(\delta(x)) \frac{\xi(x)}{x}.$$

令 $x \to 0^+$, 可得 $f'(0) - f'(0)/2 = f'(0) \lim_{x \to 0^+} \xi(x)/x$, 由此即得所证.