

FCC TEST REPORT

FCC 47 CFR Part 15C Industry Canada RSS-247

Digital transmission systems operating within the 2400 - 2483.5 MHz band

Testing Laboratory: Eurofins Product Service GmbH

Address: Storkower Str. 38c

15526 Reichenwalde

Germany

Accreditation:

A2LA Accredited Testing Laboratory, Certificate No.: 1983.01

FCC Filed Test Laboratory, Reg.-No.: 96970 IC OATS Filing assigned code: 3470A

Applicant's name dresden elektronik ingenieurtechnik gmbh

Address: Enno-Heidebroek-Straße 12

01237 Dresden GERMANY

Test specification:

Standard...... 47 CFR Part 15C

RSS-247, Issue 1, 2015-05

Test scope.....: partial Radio compliance test (C2PC)

Equipment under test (EUT):

Product description 2.4 GHz IEEE 802.15.4 compliant radio module

Model No. deRFmega256-23M12

Additional Model(s)

Brand Name(s)

Hardware version

REV0

Firmware / Software version

REV1

Test result Passed

Possibl	a tact	Caca	vordi	cte.
LOSSINI	וכ נכסנ	Last	verui	CLS.

- neither assessed nor tested: N/N

- required by standard but not appl. to test object: N/A

- required by standard but not tested: N/T

- not required by standard for the test object: N/R

- test object does meet the requirement P (Pass)

- test object does not meet the requirement F (Fail)

Testing:

Test Lab Temperature 20 – 23 °C

Test Lab Humidity.....: 32 – 38 %

Date of receipt of test item...... 2016-05-19

Compiled by Burkhard Pudell

(Nesponsible for Test)

Approved by (+ signature).....:
(Head of Lab)

Christian Weber

Date of issue 2016-06-07

Total number of pages: 89

General remarks:

The test results presented in this report relate only to the object tested.

The results contained in this report reflect the results for this particular model and serial number. It is the responsibility of the manufacturer to ensure that all production models meet the intent of the requirements detailed within this report.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

Additional comments:

Measurements were performed with the EUT integrated into the Host "2.4GHz IEEE 802.15.4 ZigBee USB Gateway"

C. beser

Version History

Version	Issue Date	Remarks	Revised by
01	2016-06-07	Initial Release	

REPORT INDEX

1	EQUIPMENT (TEST ITEM) DESCRIPTION	5
1.1	Photos – Equipment External	7
1.2	Photos – Equipment internal	9
1.3	Photos – Test setup	10
1.4	Supporting Equipment Used During Testing	12
1.5	Test Modes	13
1.6	Test Equipment Used During Testing	14
1.7	Sample emission level calculation	15
2	RESULT SUMMARY	16
3	TEST CONDITIONS AND RESULTS	17
3.1	Test Conditions and Results – Occupied Bandwidth	17
3.2	Test Conditions and Results – Maximum peak conducted power	21
3.3	Test Conditions and Results – AC power line conducted emissions	23
3.4	Test Conditions and Results – Transmitter radiated emissions	26
3.5	Test Conditions and Results – Receiver radiated emissions	28
	IEX A Transmitter radiated spurious emissions IEX B Receiver radiated spurious emissions	30 80

1 Equipment (Test item) Description

Description	2.4 GHz IEEE 802.1	15.4 compliant radio module			
Model	deRFmega256-23M	112			
Additional Model(s)	None				
Brand Name(s)	None				
Serial number	None				
Hardware version	REV0				
Software / Firmware version	REV1				
FCC-ID	XVV-MEGA23M12				
IC	none				
Equipment type	Radio module				
Radio type	Transceiver				
Radio technology	IEEE 802.15.4 (Zigk	pee)			
Operating frequency range	2405 - 2475 MHz				
Assigned frequency band	2400 - 2483.5 MHz				
	F _{LOW}	2405 MHz			
Main test frequencies	F _{MID}	2440 MHz			
	F _{HIGH} 2475 MHz				
Spreading	DSSS				
Modulations	O-QPSK				
Number of channels	15 (11-25)				
Channel spacing	5MHz				
Number of antennas	1				
	Туре	USB Dongle			
	Description	2.4 GHz IEEE 802.15.4 ZigBee USB Gateway			
Host device Information	Model	ConBee			
	Hardware version	0			
	Software version	1.1			
	Contains FCC-ID	XVV-MEGA23M12			
	Туре	integrated			
Antenna	Model	2450AT43B100			
Aiteilla	Manufacturer	Johanson Technologies, Inc.			
	Gain 1.3 dBi (manufacturer declaration)				
	dresden elektronik i	ngenieurtechnik gmbh			
Manufacturer	Enno-Heidebroek-S	traße 12			
	01237 Dresden GERMANY				

Test Report No.: G0M-1605-5589-TFC247ZB-V01

Power supply	V _{NOM}	5.0 VDC
	V _{MIN}	4.5 VDC
	V _{MAX}	5.5 VDC
	Model	N/A
AC/DC Adoptor	Vendor	N/A
AC/DC-Adaptor	Input	N/A
	Output	N/A

1.1 Photos – Equipment External

1.2 Photos – Equipment internal

Test Report No.: G0M-1605-5589-TFC247ZB-V01

1.3 Photos – Test setup

Test Report No.: G0M-1605-5589-TFC247ZB-V01

1.4 Supporting Equipment Used During Testing

Product Type*	Device	Manufacturer	Model No.	Comments			
None							
*Note: Use	*Note: Use the following abbreviations:						
AE : Auxiliary/Associated Equipment, or							
SIM : Simulator (Not Subjected to Test)							
CABL:	Connecting cables						

1.5 Test Modes

Mode #		Description
	General conditions:	EUT powered by laboratory power supply.
Zigbee	Radio conditions:	Mode = standalone transmit Spreading = DSSS Modulation = O-QPSK Data rate = 250 kbps Duty cycle = 99 % Power level = Maximum (11=D _{hex} ; 18=E _{hex} ; 25=F _{hex})
	General conditions:	EUT powered by laboratory power supply.
Receive	Radio conditions:	Mode = standalone receive Spreading = DSSS
	General conditions:	EUT powered by commercial AC/DC-Adapter
AC-Powerline	Radio conditions:	Mode = standalone transmit Spreading = DSSS Power level = Maximum

1.6 Test Equipment Used During Testing

Measurement Software					
Description Manufacturer Name Version					
EMC Test Software	Dare Instruments	Radimation	2015.2.4		

Occupied Bandwidth					
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
Spectrum Analyzer	R&S	FSP 30	EF00312	2016-02	2017-02

Maximum peak conducted power						
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due	
Spectrum Analyzer	R&S	FSP 30	EF00312	2016-02	2017-02	

Radiated spurious emissions						
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due	
Semi-anechoic chamber	Frankonia	AC 1	EF00062	•	-	
Spectrum Analyzer	R&S	FSIQ26	EF00151	2016-03	2017-03	
Biconical Antenna	R&S	HK 116	EF00012	2016-04	2019-04	
LPD Antenna	R&S	HL 223	EF00187	2014-03	2017-03	
LPD Antenna	R&S	HL 025	EF00327	2015-10	2018-10	

AC powerline conducted emissions						
Description Manufacturer Model Identifier Cal. Date Cal. Due						
AMN	R&S	ESH2-Z5	EF00182	2014-11	2016-11	
EMI Test Receiver	R&S	ESCS 30	EF00295	2015-10	2016-10	

Test Report No.: G0M-1605-5589-TFC247ZB-V01

1.7 Sample emission level calculation

The following is a description of terms and a sample calculation, as appears in the radiated emissions data table. The numbers used in the calculation are for example only. There is no direct correlation to the specific data taken for the product described in this document:

Reading:

This is the reading obtained on the spectrum analyzer in dBµV. Any external preamplifiers used are taken into account through internal analyzer settings.

A.F.:

This is the antenna factor for the receiving antenna. It is a conversion factor, which converts electric fields strengths to voltages, which can be measured directly on the spectrum analyzer. It is treated as a loss in dB. Cable losses have been included with the A.F. to simplify the calculations. The antenna factor is used in calculations as follows:

Reading on Analyzer (dB μ V) + A.F. (dB) = Net field strength (dB μ V/m)

Net:

This is the net field strength measurement (as shown above).

Limit:

This is the FCC Class B radiated emission limit (in units of $dB\mu V/m$). The FCC limits are given in units of $\mu V/m$. The following formula is used to convert the units of $\mu V/m$ to $dB\mu V/m$:

Limit (dB μ V/m) = 20*log (μ V/m)

Margin:

This is the margin of compliance below the FCC limit. The units are given in dB. A negative margin indicates the emission was below the limit. A positive margin indicates that the emission exceeds the limit.

Example only:

Reading + AF = Net Reading : Net reading - FCC limit = Margin 21.5 dB μ V + 26 dB = 47.5 dB μ V/m : 47.5 dB μ V/m - 57.0 dB μ V/m = -9.5 dB

2 Result Summary

FCC 47 CFR Part 15C, IC RSS-247									
Product Specific Standard Section	Requirement – Test	Reference Method	Result	Remarks					
RSS-Gen 6.6	Occupied Bandwidth	ANSI C63.10	N/R	Informational only					
FCC § 15.247(a)(2) IC RSS-247 § 5.2	6dB Bandwidth	ANSI C63.10	N/R						
FCC § 15.247(b)(3) IC RSS-247 § 5.4	Maximum peak conducted power	ANSI C63.10	PASS						
FCC § 15.247(e) IC RSS-247 § 5.2	Power spectral density	ANSI C63.10	N/R						
47 CFR 15.207 IC RSS-247 § 3.1	AC power line conducted emissions	ANSI C63.4	PASS						
FCC § 15.247(d) IC RSS-247 § 5.5	Band edge compliance	ANSI C63.10	N/R						
FCC § 15.247(d) IC RSS-247 § 5.5	Conducted spurious emissions	ANSI C63.10	N/R						
FCC § 15.247(d) FCC § 15.209 IC RSS-247 § 5.5	Transmitter radiated spurious emissions	ANSI C63.10	PASS						
IC RSS-247 § 3.1	Receiver radiated spurious emissions	ANSI C63.10	PASS						
Remarks:									

3 Test Conditions and Results

3.1 Test Conditions and Results - Occupied Bandwidth

Test procedure

- 1. EUT set to test mode (Communication tester is used if needed)
- 2. Span set to at least twice the emission spectrum
- 3. Resolution bandwidth set to 1 % of span
- 4. Occupied Bandwidth (99 %) measurement with spectrum analyzer built in measurement function

Test results								
Channel	Frequency [MHz]	Mode	Occupied Bandwidth [MHz]					
F _{LOW}	2405	Zigbee	2.176					
F _{MID}	2440	Zigbee	2.188					
F _{HIGH}	2475	Zigbee	2.244					
Comments:								

Occupied Bandwidth - IEEE 802.15.4 FLOW

Occupied Bandwidth acc. to RSS-Gen

Project Number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Burkhard Pudell Test Conditions: Tnom / Vnom

Mode: Tx, ZigBee; CH: 11; 2405 MHz; PRBS; 250kbps

Test Date: 2016-05-24

Verdict: NONE (INFORMATION ONLY)

Note 1: A spectrum analyzer with an integrated 99% power bandwidth function is used

Note 2: OBW= 2.176 MHz

Occupied Bandwidth - IEEE 802.15.4 F_{MID}

Occupied Bandwidth acc. to RSS-Gen

Project Number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Burkhard Pudell Test Conditions: Tnom / Vnom

Mode: Tx, ZigBee; CH: 18; 2440 MHz; PRBS; 250kbps

Test Date: 2016-05-24

Verdict: NONE (INFORMATION ONLY)

Note 1: A spectrum analyzer with an integrated 99% power bandwidth function is used

Note 2: OBW= 2.188 MHz

Occupied Bandwidth - IEEE 802.15.4 F_{HIGH}

Occupied Bandwidth acc. to RSS-Gen

Project Number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Burkhard Pudell Test Conditions: Tnom / Vnom

Mode: Tx, ZigBee; CH: 25; 2475 MHz; PRBS; 250kbps

Test Date: 2016-05-24

Verdict: NONE (INFORMATION ONLY)

Note 1: A spectrum analyzer with an integrated 99% power bandwidth function is used

Note 2: OBW= 2.224 MHz

3.2 Test Conditions and Results - Maximum peak conducted power

Maximum peak conducted power acc. to FCC 15.247 / IC RSS-247 Verdict: PASS						
EUT requirement	Reference					
rule parts and clause	FCC 15.247(b)(3) / IC RSS-247 5.4					
Test according to	Reference Method					
measurement reference	ANSI C63.10					
Toot fraguency range	Tested frequencies					
Test frequency range	F _{LOW} / F _{MID} / F _{HIGH}					
Measurement mode	Peak					
Maximum antenna gain 1.3 dBi ⇒ Limit correction = 0 dB						
Limits						
1 W (30 dBm)						

The conducted output power limit specified above is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in the table, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test procedure

- 1. EUT set to test mode (Communication tester is used if needed)
- 2. Center frequency set to test channel center frequency
- 3. Span set to twice the 20 dB bandwidth and detector to peak and max hold
- 4. Resolution bandwidth is set to 3 MHz
- 5. Peak conducted power is determined from peak of spectrum envelope

Product Service

Test results										
Channel	Frequency [MHz]	Voltage [VDC]	Mode	Peak power [dBm]	Peak power [W]	Limit [dBm]	Margin [dB]			
F_{LOW}	2405	$V_{NOM} = 5.0$	Zigbee	11.8	15.136	30	-19.2			
F_{LOW}	2405	$V_{MIN} = 4.5$	Zigbee	11.8	15.136	30	-19.2			
F_{LOW}	2405	V _{MAX} =5.5	Zigbee	11.9	15.488	30	-19.1			
F_{MID}	2440	$V_{NOM} = 5.0$	Zigbee	8.7	7.413	30	-21.3			
F_{MID}	2440	$V_{MIN} = 4.5$	Zigbee	8.7	7.413	30	-21.3			
F _{MID}	2440	V _{MAX} =5.5	Zigbee	8.7	7.413	30	-21.3			
F _{HIGH}	2475	$V_{NOM} = 5.0$	Zigbee	3.9	2.455	30	-26.1			
F _{HIGH}	2475	$V_{MIN} = 4.5$	Zigbee	3.9	2.455	30	-26.1			
F _{HIGH}	2475	V _{MAX} =5.5	Zigbee	3.9	2.455	30	-26.1			
Comments										

3.3 Test Conditions and Results – AC power line conducted emissions

Power line conducted emissions acc. to FCC 47 CFR 15.207 / IC RSS-Gen Verdict: PASS								
Test according re		Reference Method						
standard				ANSI C63.4				
Fully configured sample	e scanned over		Fi	requency range				
the following freque	ency range		0.15 MHz to 30 MHz					
Points of Appli		Application Interface						
AC Mains	LISN							
EUT test me	ode	AC-Powerline						
		Limits	and results					
Frequency [MHz]	Quasi-Peak [dBµV]	Result	Average [dBµV]	Result			
0.15 to 5	66 to 56	66 to 56* PASS 56 to 46*						
0.5 to 5	56		46	PASS				
5 to 30 60 PASS 50					PASS			
Comments: * Limit decreases linearly with the logarithm of the frequency.								

Conducted Emissions

EMI voltage test in the ac-mains according to FCC 15B

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Unom: 5.0 V DC

LISN: ESH2-Z5 N

Mode: ZigBee; CH: 18; 2440 MHz

Test Date: 2016-05-26

Note:

Conducted Emissions

EMI voltage test in the ac-mains according to FCC 15B

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Handrik

Test Conditions: Tnom: 22°C, Unom: 5.0 V DC

LISN: ESH2-Z5 L

Mode: ZigBee; CH: 18; 2440 MHz

Test Date: 2016-05-26

Note:

3.4 Test Conditions and Results - Transmitter radiated emissions

Transmitter radiated er FCC 47 CFR 15.247 / IC		to		Verdict: PASS			
Test according refe	renced	Reference Method					
standards		FCC 15.2	247(d) / IC R	SS-247 5.5			
Test according	to	R	eference Me	thod			
measurement refe	erence		ANSI C63.1	0			
Took fire according		Tested frequencies					
Test frequency ra	ange	30 MHz – 10 th Harmonic					
		Limits					
Frequency range [MHz]	Detector	Limit [µV/m]	Limit [dBµV/m]	Limit Distance [m]			
30 – 88	Quasi-Peak	100	40	3			
88 – 216	Quasi-Peak	150	43.5	3			
216 – 960 Quasi-Peak		200	46	3			
960 – 1000	Quasi-Peak	500	54	3			
> 1000	Average	500	54	3			

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). When average radiated emission measurements are specified, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

Test Report No.: G0M-1605-5589-TFC247ZB-V01

Test procedure

- 1. EUT set to test mode (Communication tester is used if needed)
- 2. Span it set according to measurement range
- 3. Resolution bandwidth below 1 GHz is set according to CISPR 16 with peak/quasi-peak detector and RBW of 1 MHz with peak/average detector is used above 1 GHz
- 4. Markers are set to peak emission levels within restricted bands

Test results – Internal Antenna											
Channel	Frequency [MHz]	Mode	Emission [MHz]	Level [dbµV/m]	Det.	Pol.	Limit [dbµV/m]	Limit dist. [m]*	Margin [dB]		
F_{LOW}	2405	ZIGBEE		No significant spurious emissions							
F _{MID}	2440	ZIGBEE	7321	54.52	pk	ver	74.00	3	-19.48		
F _{MID}	2440	ZIGBEE	7321	48.08	RMS	ver	54.00	3	-05.92		
F _{MID}	2440	ZIGBEE	7321	55.41	pk	hor	74.00	3	-18.59		
F _{MID}	2440	ZIGBEE	7321	49.23	RMS	hor	54.00	3	-04.77		
F _{HIGH}	2475	ZIGBEE	No significant spurious emissions								

Comments: * Physical distance between EUT and measurement antenna.

3.5 Test Conditions and Results - Receiver radiated emissions

Receiver radiated emissions acc. to IC RSS-247 Verdict: PASS									
Test according refere	enced	Reference Method							
standards				IC RSS-2	47 3.1				
Test according to				Reference	Method				
measurement refer	ence			ANSI C6	3.10				
Test frequency rar	nge			Tested freq	uencies				
rest frequency far	ige		3	0 MHz – 5 th	Harmonic	;			
EUT test mode				Recei	ve				
			Limits						
Frequency range [MHz]	Detector		Limit [µV/m]	Limit [dE	βμV/m]	Limit Distance [m]			
30 – 88	Quasi-Pea	k	100	40)	3			
88 – 216	Quasi-Pea	k	150	43.	5	3			
216 – 960	Quasi-Pea	k	200	46		3			
960 – 1000	Quasi-Pea	k	500	54		3			
> 1000	Average		500	54	54				
			Test setup						
] 	Š	Semi-anechoic Ch		EUT Turn tab	ole			
	nplifier latrix	M	leasurement Receiver						

Test procedure

- 1. EUT set to receive mode (Communication tester is used if needed)
- 2. Span it set according to measurement range
- 3. Resolution bandwidth below 1 GHz is set according to CISPR 16 with peak/quasi-peak detector and RBW of 1 MHz with peak/average detector is used above 1 GHz
- 4. Markers are set to peak emission levels

	Test results										
Channel Frequency Emission Emission Level Emission Level Det. Limit Marg											
F _{MID}	2440	7464	51.55	378	Peak	500	-122				

Comments:

^{*} Physical distance between EUT and measurement antenna.

^{**} Emission level corresponds to ambient noise floor

ANNEX A Transmitter radiated spurious emissions

Spurious emissions according to FCC part 15 Subpart C § 15.247, IC RSS-247, I1

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HK 116, Vertical

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 11; 2405 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HK 116, Horizontal

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 11; 2405 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HK 116, Vertical

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 18; 2440 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13
Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HK 116, Horizontal

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 18; 2440 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HK 116, Vertical

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 25; 2475 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HK 116, Horizontal

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 25; 2475 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 223, Vertical

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 11; 2405 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 223, Horizontal

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 11; 2405 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13
Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 223, Vertical

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 18; 2440 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13
Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 223, Horizontal

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 18; 2440 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 223, Vertical

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 25; 2475 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 223, Horizontal

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 25; 2475 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13
Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 11; 2405 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 11; 2405 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 n

Mode: TX; ZigBee; CH: 11; 2405 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13

Note: EUT vertical; lower bandedge

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 11; 2405 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13

Note: EUT vertical; lower bandedge

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 11; 2405 MHz; PRBS; 2000kbps; ANT integral

Test Date: 2016-05-13

Note: EUT vertical; lower bandedge

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 11; 2405 MHz; PRBS; 2000kbps; ANT integral

Test Date: 2016-05-13

Note: EUT vertical; lower bandedge

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 18; 2440 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 18; 2440 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 25; 2475 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 25; 2475 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 25; 2475 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13

Note: EUT vertical; higher bandedge

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 25; 2475 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13

Note: EUT vertical; higher bandedge

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 25; 2475 MHz; PRBS; 2000kbps; ANT integral

Test Date: 2016-05-13

Note: EUT vertical; higher bandedge

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: TX; ZigBee; CH: 25; 2475 MHz; PRBS; 2000kbps; ANT integral

Test Date: 2016-05-13

Note: EUT vertical; higher bandedge

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 11; 2405 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 11; 2405 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13
Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 11; 2405 MHz; PRBS; 2000kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 11; 2405 MHz; PRBS; 2000kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 18; 2440 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 18; 2440 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 18; 2440 MHz; PRBS; 2000kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 18; 2440 MHz; PRBS; 2000kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 25; 2475 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 25; 2475 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 25; 2475 MHz; PRBS; 2000kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 25; 2475 MHz; PRBS; 2000kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 11; 2405 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 11; 2405 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 18; 2440 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13
Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 18; 2440 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 25; 2475 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 25; 2475 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 11; 2405 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 11; 2405 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 18; 2440 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 18; 2440 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 25; 2475 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: TX; ZigBee; CH: 25; 2475 MHz; PRBS; 250kbps; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

ANNEX B Receiver radiated spurious emissions

Spurious emissions according to IC RSS-247, I1

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HK 116, Vertical

Measurement distance: 3 m

Mode: RX; ZigBee; CH: 18; 2440 MHz; RX-mode; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HK 116, Horizontal

Measurement distance: 3 m

Mode: RX; ZigBee; CH: 18; 2440 MHz; RX-mode; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 223, Vertical

Measurement distance: 3 m

Mode: RX; ZigBee; CH: 18; 2440 MHz; RX-mode; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 223, Horizontal

Measurement distance: 3 m

Mode: RX; ZigBee; CH: 18; 2440 MHz; RX-mode; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: RX; ZigBee; CH: 18; 2440 MHz; RX-mode; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: RX; ZigBee; CH: 18; 2440 MHz; RX-mode; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 3 m

Mode: RX; ZigBee; CH: 18; 2440 MHz; RX-mode; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 3 m

Mode: RX; ZigBee; CH: 18; 2440 MHz; RX-mode; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Index 398

Frequency 7.464 GHz Peak 51.55 dBµV/m Peak Limit 53.98 dBµV/m Peak Difference -2.43 dB Peak Status Pass

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC
Antenna: Rohde & Schwarz HL 025, Vertical

Measurement distance: 1 m converted to 3m

Mode: RX; ZigBee; CH: 18; 2440 MHz; RX-mode; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

Project number: G0M-1605-5589

Applicant: dresden elektronik ingenieurtechnik gmbh EUT Name: 2,4GHz IEEE 802.15.4 ZigBee USB Gateway

Model: ConBee

Test Site: Eurofins Product Service GmbH

Operator: Mr. Pudell

Test Conditions: Tnom: 22°C, Vnom: 5.0 V DC

Antenna: Rohde & Schwarz HL 025, Horizontal

Measurement distance: 1 m converted to 3m

Mode: RX; ZigBee; CH: 18; 2440 MHz; RX-mode; ANT integral

Test Date: 2016-05-13 Note: EUT vertical

