Федеральное государственное образовательное бюджетное учреждениевысшего образования

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РФ»

Департамент анализа данных и машинного обучения Отчет по практике №2

по дисциплине «эконометрика»

Студента группы ПМ23-1

Факультета информационных технологий и анализа больших данных

Тищенко И.С.

Преподаватель

Кудрявцев К.Н.

Подробный отчет по решению заданий

1. Построение уравнения тренда

Для обоих наборов данных использовались аддитивная и мультипликативная модели временных рядов.

Методология:

- 1. Автокорреляционный анализ:
 - Рассчитаны коэффициенты автокорреляции 1-го и 2-го порядков.
 - Построены коррелограммы для выявления сезонности.
 - Пример для доходов:
 - Коэффициент автокорреляции 1-го порядка
 - Выявлена сезонность с периодом 12 месяцев.
- 2. Выделение тренда:
- Применено сглаживание скользящей средней для устранения сезонных колебаний.
- 3. Сезонная компонента:
 - Аддитивная модель: Сезонность вычитается из данных
 - Корректировка для взаимопогашения: $\sum S_ipprox 0$.
 - Мультипликативная модель: Сезонность делит данные.
 - Пример для доходов:
 - Средние сезонные компоненты:
 - Корректировка для взаимопогашения: $\sum S_i pprox 4$.

2. Показатели качества моделей

Для всех моделей рассчитаны:

- Коэффициент детерминации R^2 :
- Аддитивная модель (доходы): $R^2 = 0.979$.
- Мультипликативная модель (доходы): $R^2 = 0.991$.
- Средняя ошибка аппроксимации:
- Аддитивная модель (доходы): 2.42%.
- Мультипликативная модель (доходы): 2.00%.

Вывод: Мультипликативная модель показала лучшее качество для доходов, аддитивная — для организаций с задолженностью.

3. Прогнозирование

Точечный прогноз (на 2008 г.):

- Доходы (мультипликативная модель):
- Прогноз:
- 10.240228174603175
- 10.18700664950665
- 10.331701791076792
- 10.4743135993136
- 10.56275874088374
- 10.751203882453883
- 10.895899024024024
- 11.005177498927498
- 11.164455973830972
- 11.321651115401115

- 11.476762923637922
- 11.627708065208067
- Организации (аддитивная модель):
 - Прогноз на 2008:
- 88.20156295566315
- 83.47672686565016
- 78.5438407352678
- 73.62711990314513
- 68.72690769755343
- 64.02802829854907
- 59.9551646434501
- 55.02986813737045
- 50.544392722036264
- 45.806290949674406
- 41.33983054014975
- 36.82808124938327

Интервальный прогноз:

- Использовалось t-распределение Стьюдента с уровнем значимости $\alpha = 0.05$.

Задание 6: Анализ оборота розничной торговли

Данные: Поквартальная динамика оборота (2002–2005 гг.).

- 1. Проверка сезонных колебаний
- Автокорреляционный анализ:
 - Коэффициент автокорреляции 1-го порядка: 0.31.

- Коррелограмма показала сезонность с периодом 4 квартала.

2. Построение моделей

Аддитивная модель:

$$y = 869.530625 \, + \, 84.35154411764705 imes \, t \, + \, \hat{S}_i \, + \, e_t$$
 - Тренд:

- Сезонные компоненты: $S_1 = -435.6$, $S_2 = -301.3$, $S_3 = 174.3$, $S_4 = 562.6$.

Мультипликативная модель:

- Тренд:

$$y = (876.36152965137 \, + \, 79.86844932635206 imes t) imes \, \hat{S}_i \, imes \, e_t$$

- Сезонные компоненты: $S_1 = 0.702$, $S_2 = 0.823$, $S_3 = 1.111$, $S_4 = 1.364$.

3. Сравнение моделей

R^2	0.89	0.95
Средняя ошибка (%)	11	6.7

Вывод: Мультипликативная модель лучше описывает данные (выше \mathbb{R}^2 , ниже ошибка).

4. Прогноз на 2006 г.

- Точечный прогноз (мультипликативная модель):

- 1 квартал: y = 1567.6.

- 4 квартал: y = 3283.8.

Общие выводы

- 1. Для данных с возрастающей амплитудой колебаний (например, оборот торговли) мультипликативная модель предпочтительнее.
- 2. Аддитивная модель подходит для данных с постоянной амплитудой (организации с задолженностью).
- 3. Прогнозы требуют учета сезонности и тренда для повышения точности.

Графики и коррелограммы, приведенные в прикрепленном файле, подтверждают сделанные выводы.