Exercise 6 278920

1 Data Preprocessing

Regression Datasets

Wine Dataset

```
#Winedata preprocessing
winered_data = pd.read_csv('winequality-red.csv', delimiter = ';')
```

- Convert any non-numeric values to numeric values

```
#Normalise wine dataset
for feature in winered_data.columns:
    if feature != "quality":
        winered_data[feature] = normalize(winered_data[feature])
winered_data.head(5)
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	0.247788	0.397260	0.00	0.068493	0.106845	0.140845	0.098940	0.567548	0.606299	0.137725	0.153846	5
1	0.283186	0.520548	0.00	0.116438	0.143573	0.338028	0.215548	0.494126	0.362205	0.209581	0.215385	5
2	0.283186	0.438356	0.04	0.095890	0.133556	0.197183	0.169611	0.508811	0.409449	0.191617	0.215385	5
3	0.584071	0.109589	0.56	0.068493	0.105175	0.225352	0.190813	0.582232	0.330709	0.149701	0.215385	6
4	0.247788	0.397260	0.00	0.068493	0.106845	0.140845	0.098940	0.567548	0.606299	0.137725	0.153846	5

Exercise 1: Generalized Linear Models with Scikit Learn

1. Split your data into Train and Test Splits.

```
#Split wine dataset
trainSet1, testSet1 = split_DataSet(winered_data, 0.8)
x_Train1 = trainSet1.as_matrix(columns = ['volatile acidity', 'chlorides', 'density', 'alcohol'])
x_Test1 = testSet1.as_matrix(columns = ['volatile acidity', 'chlorides', 'density', 'alcohol'])
y_Train1 = trainSet1['quality']
y_Test1 = testSet1['quality']
```

2. Plots for each model, pick three sets of hyperparameters and learn each model without CV

1. Ordinary Least Squares

2. Ridge Regression

Alpha vs RMSE, L2 penalty, alpha = 1e-2

3. LASSO

Regularized vs non-regularized models

Overfitting refers to a model that models the training data too well.

Underfitting refers to a model that models too simple to capture the trend in the data.

In the below plot, it can be seen that the non-regularized model is performing better on train set when compared with Lasso and Ridge regularized model. This is because of the model tends to **overfit**. It performs good on training set. But the second graph shows the results on test set. We see that the non-regularized model performs poorly on test set when compared to Lasso and Ridge regularized.

Plots for GridSearchCV

1. Ordinary Least Squares

2. Ridge Regression

3. LASSO

Regularized vs non-regularized Boxplot for cross_val_score

In the below plot, from the cross validation score it can be seen that the Regularized model perfoms well than the non- regularied model.

Polynomial Regression

Task A: Prediction with high degree of polynomials

From the below gaph it can be seen that when the degree is increased from 1 to 100, the error is decreasing as it overfits the training set.

Task B: Effect of Regularization

From the above graph it can be seen that when the degree is increased from 1 to 100, the error increases meaning the data is not overfit the training set. Thus, Regularization reduces the overfitting the data.