Administration Unix 4IIR Série d'exercices

Fait par Hajar Afdel

Exercice 1 : Hiérarchie des répertoires Linux

1. Commande pour afficher les répertoires sous / : Is -I/

2.

Répertoire	Description du rôle		
/bin	Contient les commandes essentielles utilisables par tous les utilisateurs.		
/boot	Contient les fichiers nécessaires au démarrage, comme le kernel et GRUB.		
/dev	Contient les fichiers spéciaux représentant les périphériques.		
/etc	Contient les fichiers de configuration du système.		
home	Répertoires personnels des utilisateurs.		
lib	Bibliothèques partagées nécessaires au démarrage et à l'exécution des commandes.		
media	Points de montage temporaires pour des périphériques (ex. : clés USB).		
mnt	Points de montage temporaires pour des systèmes de fichiers.		
opt	Contient des logiciels additionnels installés manuellement.		
proc	Système de fichiers virtuel contenant des informations sur les processus.		
root	Répertoire personnel de l'utilisateur root.		
sbin	Commandes système essentielles pour l'administration.		
tmp	Contient les fichiers temporaires.		
var	Contient des fichiers variables comme les logs, spool ou cache.		

Exercice 2 : Démarrage et arrêt d'une machine Linux

Étape du démarrage	Fichier(s) intervenant(s)
	- Firmware BIOS/UEFI
Étape 1 : Initialisation du firmware (BIOS/UEFI)	- Table de partition (MBR ou
	GPT)
Étano 2 : Chargement du heatlander (CDLID)	-/etc/default/grub
Étape 2 : Chargement du bootloader (GRUB)	-/boot/grub2/grub.cfg

	- Commande : grub2-
	mkconfig
Étape 3 : Chargement du noyau Linux et de	-/boot/vmlinuz
l'initramfs	-/boot/initramfs
	-/sbin/init (alias de
	systemd)
	-
	/etc/systemd/system/d
Étape 4 : Initialisation du système avec systemd	efault.target
Ltapo 4. mitatioation da systems avos systema	- Services et unités dans
	/etc/systemd/system/
	et
	/usr/lib/systemd/syst
	em/
	-~/.bashrc
Étape 5 : Démarrage des services et de	-/etc/profile
l'environnement utilisateur	- Services spécifiques
	définis par l'utilisateur

2. Définissez ce qu'est une cible systemd et un niveau d'exécution dans un système Linux.

- =>Un **niveau d'exécution** (*runlevel*) dans un système Linux représente un état prédéfini du système, définissant quels services et processus sont actifs. Les niveaux d'exécution étaient principalement utilisés dans **SysVinit**.
- =>Une **cible systemd** (*target*) est l'équivalent moderne d'un niveau d'exécution, utilisé par **systemd** pour organiser le démarrage et la gestion des services. Contrairement aux niveaux d'exécution, les cibles sont plus flexibles, car elles peuvent dépendre d'autres cibles et activer plusieurs services simultanément.

Niveau d'exécution	Nom de la cible systemd	Description
0	poweroff.targ et	Arrête le système
1	rescue.target	Mode mono-utilisateur (maintenance)
3	multi-	Mode multi-utilisateur en ligne de commande
	user.target	(sans interface graphique)
5	graphical.tar	Mode multi-utilisateur avec interface graphique
	get	(GUI)
6	reboot.target	Redémarre le système

Exercice 2: Gestion des cibles

1. Lister les cibles de type "service" disponibles sur le système

systemctl list-units --type=service

2. Afficher la cible par défaut du système

systemctl get-default

3. Basculez temporairement vers la cible multi-user.target sans redémarrer le système

systemctl isolate multi-user.target

4. Définir graphical.target comme cible par défaut

systemctl set-default graphical.target

5. Différence entre un changement temporaire et un changement permanent de cible

Temporaire : Appliqué immédiatement mais non persistant après redémarrage.

Permanent : Appliqué immédiatement et conservé après redémarrage.

Exercice 3: Gestion des services

1. Démarrer le service httpd (Apache)

systemctl start httpd

2. Vérifier que le service httpd a bien démarré

systemctl status httpd

3. Redémarrer le service sshd

systemctl restart sshd

4. Cas nécessitant un redémarrage de service

Modification de la configuration Mise à jour du service Dysfonctionnement du service

5. Configurer firewalld pour démarrer automatiquement

systemctl enable firewalld

6. Vérifier si un service est activé au démarrage

systemctl is-enabled <service>

7. Désactiver cups au démarrage

systemctl disable cups

8. Arrêter immédiatement le service crond

systemctl stop crond

9. Vérifier que crond est bien arrêté

systemctl status crond

10. Masquer vsftpd pour empêcher son démarrage

systemctl mask vsftpd

11. Vérifier qu'un service est bien masqué

systemctl is-enabled vsftpd

12. Démasquer vsftpd

systemctl unmask vsftpd

13. Afficher l'état complet du service nginx

systemctl status nginx

14. Signification des états de service

active (running): Le service est en cours d'exécution.

inactive (dead): Le service est arrêté.

Exercice 4: Arrêt du système

1. Arrêter immédiatement le système

shutdown -h now

2. Programmer un arrêt dans 30 minutes

shutdown -h +30

3. Annuler un arrêt planifié

```
shutdown -c
```

4. Redémarrer immédiatement le système

reboot

- 5. Différence entre -r et -h
 - -r: Redémarrer le système
 - -h: Arrêter le système
- 6. Mettre le système en veille prolongée

systemctl hibernate

7. Différences entre suspend.target, hibernate.target et hybridsleep.target

> suspend.target: Mise en veille (RAM sous tension) hibernate.target: Écriture sur disque et extinction hybrid-sleep.target: Suspension + Hibernation

8. Masquer la cible suspend.target

systemctl mask suspend.target

Exercice 5: Gestion des journaux avec journalctl

1. Afficher tous les logs du journal système

journalctl

2. Afficher les logs du noyau uniquement

journalctl -k

3. Lister les messages du journal depuis le dernier démarrage

journalctl -b

4. Afficher les logs d'un service spécifique (ex: nginx)

journalctl -u nginx

5. Afficher les logs d'un service sur les deux derniers redémarrages

```
journalctl -u nginx -b -2
```

6. Afficher les logs en temps réel (suivi en direct comme tail -f)

```
journalctl -f
```

7. Filtrer les logs par date (ex: depuis le 2024-01-01)

```
journalctl --since "2024-01-01"
```

8. Afficher les 50 dernières lignes du journal

```
journalctl -n 50
```

9. Effacer entièrement les journaux du système

```
journalctl --vacuum-size=0
```

Exercice 6: Surveillance des processus avec top et ps

1. Lister tous les processus en cours d'exécution

ps aux

2. Afficher les processus appartenant à un utilisateur spécifique (ex: root)

```
ps -u root
```

3. Surveiller l'activité du système en temps réel

top

4. Classer les processus par utilisation mémoire dans top

Appuyer sur **Shift + M** dans top

5. Trouver le PID d'un processus spécifique (ex: apache2)

```
pgrep apache2
```

6. Afficher les processus hiérarchiquement (arborescence)

pstree

7. Tuer un processus par son PID (ex: 1234)

kill 1234

8. Forcer la fermeture d'un processus (ex: firefox)

killall -9 firefox

Exercice 7: Gestion des utilisateurs et permissions

1. Créer un nouvel utilisateur (ex: alice)

useradd alice

2. Attribuer un mot de passe à l'utilisateur alice

passwd alice

3. Ajouter un utilisateur à un groupe (ex: alice au groupe sudo)

usermod -aG sudo alice

4. Lister les groupes auxquels appartient un utilisateur

groups alice

5. Modifier le shell par défaut d'un utilisateur (ex: bash)

chsh -s /bin/bash alice

6. Changer l'utilisateur courant vers alice

su - alice

7. Supprimer un utilisateur et son répertoire personnel

userdel -r alice

- 8. Vérifier les permissions d'un fichier (ex: /etc/passwd)
- ls -l /etc/passwd
 - 9. Changer les permissions d'un fichier pour que seul le propriétaire puisse lire et écrire

chmod 600 fichier.txt

10. Changer le propriétaire d'un fichier

chown alice fichier.txt

Exercice 8: Gestion du réseau avec ip et netstat

1. Afficher la configuration réseau (adresse IP, interfaces actives)

ip a

2. Afficher la table de routage

ip route

3. Afficher les connexions réseau actives

netstat -tunapl

4. Tester la connectivité avec une adresse IP ou un site web

```
ping google.com
```

5. Afficher les ports ouverts sur la machine

```
ss -tulnp
```

6. Vérifier la connectivité d'un port spécifique (ex: 22)

```
nc -zv 192.168.1.1 22
```

7. Afficher les statistiques réseau en direct

iftop

Exercice 9: Gestion des disques et partitions

1. Lister les disques et partitions disponibles

lsblk

2. Afficher l'espace disque utilisé et disponible

df -h

3. Afficher l'espace occupé par un dossier spécifique (ex: /var/log)

```
du -sh /var/log
```

4. Vérifier l'état des partitions et le type de fichiers système

fdisk -l

5. Monter une partition (ex: /dev/sdb1 sur /mnt)

```
mount /dev/sdb1 /mnt
```

6. Démonter une partition

umount /mnt

7. Vérifier les erreurs d'un disque

fsck /dev/sdb1

Exercice 10 : Sécurité et pare-feu avec firewalld et iptables

1. Vérifier si le pare-feu est actif

systemctl status firewalld

2. Activer le pare-feu

systemctl start firewalld

3. Autoriser le trafic HTTP (port 80)

firewall-cmd --add-service=http --permanent

4. Recharger la configuration du pare-feu

firewall-cmd --reload

5. Lister les règles de pare-feu actives

firewall-cmd --list-all

6. Bloquer une adresse IP spécifique (ex: 192.168.1.100)

iptables -A INPUT -s 192.168.1.100 -j DROP

7. Vérifier les règles iptables actives

iptables -L -v

8. Sauvegarder la configuration actuelle du pare-feu

iptables-save > /etc/iptables.rules