1, 2 and 3 Qubit Gate Basis States

Number of qubits	Basis ket notation	Basis vector notation	Basis states
Single Qubit	{ 0>, 1>}	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
Two Qubits	{ 00 > , 01 > , 10 > , 11 >}	$\begin{vmatrix} 0\rangle \otimes 0\rangle = \begin{bmatrix} 1\\0\\0\\0 \end{vmatrix} 0\rangle \otimes 1\rangle = \begin{bmatrix} 0\\1\\0\\0 \end{vmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
		$ 1> \otimes 0> = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} $	
Three Qubits	{ 000 > , 001 > , 010, 011 > , 100 > , 101 > , 110 , 111 > }		$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$

Eigen values and Eigen Vectors of Pauli X, Y and Z matrices

Generally, to find the Eigen Vectors(X) and Eigen Values (λ) of a matrix A, $AX = \lambda X$ $(A - \lambda I) = 0$ and $\det(A - \lambda I) = 0$ where, $\det = determinant$ Note: If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, det(A) is given by det(A) = ad-bcPauli Gate Matrix Eigen Values Eigen Vectors $\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$ and $\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix}$ X gate $\lambda = \pm 1$ $\sigma_{y} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ i \end{bmatrix}$ and $\frac{1}{\sqrt{2}} \begin{bmatrix} -i \\ -1 \end{bmatrix}$ Y gate $\lambda = \pm 1$ $\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ Z gate $\lambda = \pm 1$

Rotational operator about an arbitrary direction and obtaining the Pauli matrices and IST gates

Unitary Operator U can be written as $U = e^{i\alpha}R_{\hat{n}}(\theta)$

Applying rotational Operator about an arbitrary direction, $\,U=\,e^{-i(rac{ heta}{2})} \vec{\sigma}\,\hat{n}\,$

According to Euler's Formula, $e^{-i(\frac{\theta}{2})} = \cos(\frac{\theta}{2}) - i\sin(\frac{\theta}{2})$

Therefore, $U = e^{i\alpha} \left[I \cos\left(\frac{\theta}{2}\right) - i \left(\vec{\sigma} \, \hat{n}\right) \sin\left(\frac{\theta}{2}\right) \right]$

For $\alpha = \frac{\pi}{2}$ and $\theta = \pi$, $U = e^{i\frac{\pi}{2}} \left[I \cos(\frac{\pi}{2}) - i(\vec{\sigma}\hat{n}) \sin(\frac{\pi}{2}) \right]$ $U = i \left[-i(\vec{\sigma}\hat{n}) \right] = \vec{\sigma}\hat{n}$

Therefore, for X, Y and Z axes, $U = \vec{\sigma} \hat{n} = \sigma_x n_x + \sigma_y n_y + \sigma_z n_z$

Pauli X	Pauli Y	Pauli Z
$\hat{n} = (1, 0, 0)$ $\sigma_{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$\hat{n} = (0, 1, 0)$ $\sigma_{y} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	$\widehat{n} = (0, 0, 1)$ $\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Rotation about X axis	Rotation about Y axis	Rotation about Z axis
$R_{x}(\emptyset) = e^{-i(\frac{\emptyset}{2})}\sigma_{x}$	$R_{y}(\emptyset) = e^{-i(\frac{\emptyset}{2})}\sigma_{y}$	$R_z(\emptyset) = e^{-i(\frac{\emptyset}{2})} \sigma_z$
$R_x(\emptyset) = [I \cos(\frac{\emptyset}{2}) - i \sin(\frac{\emptyset}{2}) \sigma_x]$	$R_y(\emptyset) = [I \cos(\frac{\emptyset}{2}) - i \sin(\frac{\emptyset}{2})\sigma_y]$	$R_z(\emptyset) = [I \cos(\frac{\emptyset}{2}) - i \sin(\frac{\emptyset}{2}) \sigma_z]$
$R_{x}(\emptyset) = \begin{bmatrix} \cos\left(\frac{\emptyset}{2}\right) & 0\\ 0 & \cos\left(\frac{\emptyset}{2}\right) \end{bmatrix} - \begin{bmatrix} 0 & i\sin\left(\frac{\emptyset}{2}\right)\\ i\sin\left(\frac{\emptyset}{2}\right) & 0 \end{bmatrix}$	$R_{y}(\emptyset) = \begin{bmatrix} \cos\left(\frac{\emptyset}{2}\right) & 0\\ 0 & \cos\left(\frac{\emptyset}{2}\right) \end{bmatrix} - \begin{bmatrix} 0 & \sin\left(\frac{\emptyset}{2}\right)\\ \sin\left(\frac{\emptyset}{2}\right) & 0 \end{bmatrix}$	$R_{z}(\emptyset) = \begin{bmatrix} \cos\left(\frac{\emptyset}{2}\right) & 0\\ 0 & \cos\left(\frac{\emptyset}{2}\right) \end{bmatrix} - \begin{bmatrix} i\sin\left(\frac{\emptyset}{2}\right) & 0\\ 0 & -i\sin\left(\frac{\emptyset}{2}\right) \end{bmatrix}$
$R_{x}(\emptyset) = \begin{bmatrix} \cos\left(\frac{\emptyset}{2}\right) & -i\sin\left(\frac{\emptyset}{2}\right) \\ -i\sin\left(\frac{\emptyset}{2}\right) & \cos\left(\frac{\emptyset}{2}\right) \end{bmatrix}$	$R_{y}(\emptyset) = \begin{bmatrix} \cos\left(\frac{\emptyset}{2}\right) & -\sin\left(\frac{\emptyset}{2}\right) \\ -\sin\left(\frac{\emptyset}{2}\right) & \cos\left(\frac{\emptyset}{2}\right) \end{bmatrix}$	$R_{z}(\emptyset) = \begin{bmatrix} \cos\left(\frac{\emptyset}{2}\right) - i\sin\left(\frac{\emptyset}{2}\right) & 0\\ 0 & \cos\left(\frac{\emptyset}{2}\right) + i\sin\left(\frac{\emptyset}{2}\right) \end{bmatrix}$
		$R_z(\emptyset) = \begin{bmatrix} e^{-i(\frac{\emptyset}{2})} & 0\\ 0 & e^{i(\frac{\emptyset}{2})} \end{bmatrix}$
		Adding a global phase $e^{i(\frac{\emptyset}{2})}$ results in $R_z(\emptyset) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\emptyset} \end{bmatrix}$
Identity Gate	S and SDG Gates	T and TDG Gates
Consider $\emptyset = 2\pi$ in $R_z(\emptyset)$	Consider $\emptyset = \pi/2$ in $R_Z(\emptyset)$	Consider $\emptyset = \pi/4$ in $R_z(\emptyset)$
$I = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$	$S = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/2} \end{bmatrix}$	$T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
	$S = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/2} \end{bmatrix}$ $S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$	$T^{\dagger} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i^{\pi}/4} \end{bmatrix}$
	$S^{\dagger} = \begin{bmatrix} 1 & 0 \\ 0 & e^{-i\pi/2} \end{bmatrix}$	

Hermitian And Unitary Matrices

Hermitian Matrix	Unitary Matrix
If A is a (n x n) matrix, $A = A^{\dagger}$	If A is a (n x n) matrix, $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,
Where, $A^{\dagger} = (A^T)^*$ (read as Conjugate of A transpose)	Where, $A^{\dagger} = (A^T)^*$ and $A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$
E.g. Let, A = Pauli Y $\sigma = \begin{bmatrix} 0 & -i \end{bmatrix}$	det(A) is given by $det(A) = ad-bc$
$\sigma_{y} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ $\sigma_{y}^{T} = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$ $(\sigma_{y}^{T})^{*} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	E.g. Let, A = Pauli Y $\sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ $\sigma_y^\dagger = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
$ \begin{aligned} (\sigma_y^T) &= \begin{bmatrix} i & 0 \\ \sigma_y &= (\sigma_y^T)^* &= \sigma_y^{\dagger} \\ \end{aligned} $ Therefore, Pauli Y matrix is Hermitian	We know that $AA^{-1} = I$
	$\sigma_y \sigma_y^{\dagger} = \begin{bmatrix} 0 & -i \ i & 0 \end{bmatrix} \begin{bmatrix} 0 & -i \ i & 0 \end{bmatrix}$ $\sigma_y \sigma_y^{\dagger} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = I$
	We can say that $\sigma_y = \sigma_y^{\dagger} = \sigma_y^{-1}$
	Therefore, Pauli Y matrix is Unitary

Bracket Notations

$\langle a b \rangle \rightarrow Inner product \rightarrow a \rangle^{\dagger}. b \rangle$
$ a\rangle < b \rightarrow Outer product \rightarrow a\rangle b\rangle^{\dagger}$
$ ab> \rightarrow$ Tensor product $\rightarrow a> \otimes b>$

1, 2 and 3 Qubit Gates

Gate	Gate Notation	Matrix Representation	Action -> Result	Resultant State Vector
Identity (Do nothing/no operation gate)	q —	$I = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	1 0 > → 0 >	[1.+0.j, 0.+0.j]
			<i>I</i> 1 > → 1 >	[0.+0.j, 1.+0.j]
Pauli X (Classical NOT also called bit	q – x –	$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	<i>X</i> 0 > → 1 >	[0.+0.j, 1.+0.j]
flip)	7		<i>X</i> 1 > → 0 >	[1.+0.j, 0.+0.j]
Pauli Y (Bit and phase flip)	q - Y -	$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	$Y \mid 0 > \to i \mid 1$	[0.+0.j, 0.+1.j]
(2000)			$Y 1> \to -i 0>$	[01.j, 0.+0.j]
Pauli Z (Phase flip)	q - z -	$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$Z 0>\rightarrow 0>$	[1.+0.j, 0.+0.j]
$(\emptyset = \pi)$			$Z 1> \rightarrow - 1>$	[0.+0.j, -1.+0.j]
Hadamard (H) (Gate to put a qubit in a superposition state)	q — н —	$H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	$H 0> \to \frac{1}{\sqrt{2}} \{ 0> + 1> \}$	[0.70710678+0.j, 0.70710678+0.j]
			$H 1> \to \frac{1}{\sqrt{2}} \{ 0>- 1>\}$	[0.70710678+0.j, -0.70710678+0.j]
S (Also called \sqrt{Z} gate)	q - s -	$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$	5 0 > → 0 >	[1.+0.j, 0.+0.j]
$(\emptyset = \frac{\pi}{2})$	_	-0 1-	$S 1> \rightarrow i 1>$	[0.+0.j, 0.+1.j]
T (Also called \sqrt{S} gate)	q - T -	$T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{bmatrix}$	T 0 > → 0 >	[1.+0.j, 0.+0.j]
$(\emptyset = \frac{\pi}{4})$	_	20 6 43	$T \left 1 > \to e^{i\frac{\pi}{4}} \right 1 >$	[0. +0.j, 0.70710678+0.70710678j]
S [†] (SDG - SDagger)	q - S [†] -	$S^{\dagger} = \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}$	$S^{\dagger} \mid 0 > \rightarrow \mid 0 >$	[1.+0.j, 0.+0.j]
(020 020,501)	_		$S^{\dagger} 1> \rightarrow -i 1>$	[0.+0.j, 01.j]
T [†] (TDG - TDagger)	q - T [†] -	$T^{\dagger} = \begin{bmatrix} 1 & 0 \\ 0 & e^{-i\frac{\pi}{4}} \end{bmatrix}$	$T^{\dagger} 0>\rightarrow 0>$	[1.+0.j, 0.+0.j]
	9	10 6 43	$T^{\dagger} \left 1 > \rightarrow e^{-i\frac{\pi}{4}} \right 1 >$	[0.+0.j , 0.70710678-0.70710678j]
Controlled Not (CX)	q ₀ ——	$CX = \begin{bmatrix} I_2 & 0_2 \\ 0_2 & X \end{bmatrix}$ where,	$CX 10 > \rightarrow 11 > 2 \rightleftharpoons 3$	[0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]
	41 ———	$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	CX 11 > → 10 >	[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j]
		$0_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$		
	1	ı	1	_1

Controlled Z (CZ)	$q_0 \longrightarrow q_1 \longrightarrow$	$CZ = \begin{bmatrix} I_2 & 0_2 \\ 0_2 & Z \end{bmatrix}$	CZ 11 > → − 11 > 3 -> -3	[0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j]
Controlled Phase (CP)	q ₀	$CP = \begin{bmatrix} I_2 & 0_2 \\ 0_2 & S \end{bmatrix}$	CP $ 11> \to i 11>$ 3 -> -i3	[0. +0.j, 0.+0.j ,0. +0.j, 0.92387953+0.38268343j]
Swap	$q_0 \longrightarrow q_1 $	$Swap = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	Swap $ 01\rangle \rightarrow 10\rangle$ Swap $ 10\rangle \rightarrow 01\rangle$	[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j] [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]
Toffoli (CCX – Controlled- Controlled NOT)	q_0 q_1 q_2 q_2	$CCX = \begin{bmatrix} I_4 & 0_4 \\ 0_4 & CX \end{bmatrix}$ where, $I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $0_4 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	CCX 110 > → 111 > 6 -> 7	[0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]
Fredkin (CSWAP- Controlled Swap)	$q_0 \longrightarrow q_1 \longrightarrow q_2 $	$CSWAP = \begin{bmatrix} I_4 & 0_4 \\ 0_4 & SWAP \end{bmatrix}$	CSWAP $ 101 > \rightarrow 110 > 5 \rightleftharpoons 6$	[0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]