Concurrent Operation of Wireless and Wired Power Transfer System with a Single Converter/Inverter

Enes Ayaz 20/10/2022

Wireless Power Transfer

- 1. DC/AC Converter
- 2. Compensation Circuits
- 3. Transmitter/Receiver Coils
- 4. AC/DC Rectifiers

Tesla's WPT System

	Inductive Power Transfer	Capacitive Power Transfer
Transfer Type	Varying MF	Varying EF
Power Ratings	High	Low
Frequencies	Low	High
Efficiency	High	High
Distance	Moderate	Low

Inductive Power Transfer System

Simultaneous Information/ Power Transfer

- 1. Simultaneous Wireless Information and Power Transfer (SWIPT): Recent Advances and Future Challenges (2018)
- 2. Integrated Resonant Structure for Simultaneous Wireless Power Transfer and Data Telemetry(2012)
- 3. A Simultaneous Wireless Power and Data Transmission Method for Multi-Output WPT Systems: Analysis, Design, and Experimental Verification (2020)

Selective Power Transfer

- Selective Omnidirectional Magnetic 1. Resonant Coupling Wireless Power Transfer With Multiple-Receiver System(2018)
 2.
- 2. Design and Analysis of Wireless Switched Reluctance Motor Drives(2019)
- 3. Frequency Splitting-Based Wireless Power Transfer and Simultaneous Propulsion Generation to Multiple Micro-Robots(2018)
- 4. Comparative Analysis of Frequency-Selective Wireless Power Transfer for Multiple-Rx Systems(2020)
- 5. A Frequency-Selective EMI Reduction Method for Tightly Coupled Wireless Power Transfer Systems Using Resonant Frequency Control of a Shielding Coil in Smartphone Application(2020)
- Selective Wireless Power Transfer for Smart Power Distribution in a Miniature-Sized Multiple-Receiver System(2016)
- 7. A Multifrequency Superposition Methodology to Achieve High Efficiency and Targeted Power Distribution for a Multiload MCRWPT System(2018)
- 8. Cross Interference Minimization and 9-Simultaneous Wireless Power Transfer to Multiple Frequency Loads Using Frequency Bifurcation Approach

Slip-Ring Applications

- . A Primary-Side Control Method of 1. Wireless Power Transfer for Motor Electric Excitation(2019)
- 2. Wireless DC Motor Drives with Selectability and Controllability(2017)
- 3. An Airborne Radar Power Supply With Contactless Transfer of Energy—Part I: Rotating Transformer (2007)
- Aerodynamic Fluid Bearings for Translational and Rotating Capacitors in Noncontact Capacitive Power Transfer Systems(2014)
- 5. Synchronous Generator Brushless
 Field Excitation and Voltage
 Regulation via Capacitive Coupling
 Through Journal Bearings(2017)
- 5. Operation of an Electrical Excited Synchronous Machine by Contactless Energy Transfer to the Rotor(2018)
- 7. A Rotation-Lightweight Wireless Power Transfer System for Solar Wing Driving(2019)
- 8. Wireless Power Transfer for Smart Industrial and Home Applications(2019)9. Use of the Rotating Rectifier
 - Use of the Rotating Rectifier Board as a Capacitive Power Coupler for Brushless Wound Field Synchronous Machines(2022)

Single-Stage Power Transfers

- A High-Efficiency GaN-Based Single-Stage 6.78 MHz Transmitter for Wireless Power Transfer Applications(2019)
- Cooperative Integration of RF Energy Harvesting and Dedicated WPT for Wireless Sensor Networks(2019)
- 4. Individually Regulated Multiple-Output WPT System With a Single PWM and Single Transformer (2020)

Concurrent Power Transfer

- 1. Multifrequency Inductive Power Transfer(2014)
- 2. Wireless Power Transfer With Concurrent 200-kHz and 6.78-MHz Operation in a Single-Transmitter Device (2016)
- 3. Gan-Based Dual-Mode Wireless Power Transfer Using Multifrequency Programmed Pulse Width Modulation (2017)
- 4. A Multifrequency Superposition Methodology to Achieve High Efficiency and Targeted Power Distribution for a Multiload MCRWPT System (2018)
- Cross Interference Minimization and Simultaneous Wireless Power Transfer to Multiple Frequency Loads Using Frequency Bifurcation Approach(2019)
- 6. A Gallium Nitride (GaN)-Based Single-Inductor Multiple-Output (SIMO) Inverter With Multi-Frequency AC Outputs (2019)
- 7. Single-Inductor Multiple-Output (SIMO) Buck Hybrid Converter for Simultaneous Wireless and Wired Power Transfer(2020)
- 8. Generalized methodology to generate, amplify and compensate multi-frequency power for a single-inverter-based MF-MR-S-WPT system (2020)
- 9. Concurrent Wireless Power Transfer to Multiple Receivers With Additional Resonant Frequencies and Reduced Power Switches (2020)
- 10. Multifrequency and Multiload MCR-WPT System Using Hybrid Modulation Waves SPWM Control Method (2021)
- 11. Multi-Frequency Multi-Amplitude Superposition Modulation Method With Phase Shift Optimization for Single Inverter of Wireless Power Transfer System (2021)
- 12. Design and Control of a Decoupled Multichannel Wireless Power Transfer System Based on Multilevel Inverters (2022)
- 13. A Dual-Frequency Three-Dimensional WPT System with Directional Power Transfer Capability at Two Separately Regulated Outputs (2022)

Aim: Merging Concurrent Power Transfer System with Slip Ring Applications

Concurrent Power Transfer

Motivations:

- 1. To increase power
- 2. To reduce switching components
- 3. To increase DC-link utilization rate
- 4. To provide operation for more than one standards

Topologies:

- 1. Multi-converter and multi-resonant
- 2. Single-converter and multi-resonant
- 3. Single-converter and multi-load

Contactless Slip Rings

Motivations:

- 1. To eliminate carbon brushes requiring periodic maintenance
- 2. To eliminate brushless exciters that are not suitable for variable speed drives

Conventional Inductive Power Transfer Based Contactless Slip Ring

Proposed Inductive Power Transfer Based Contactless Slip Ring

The WPT converter- > generating high frequency

Challenge: Independent Control of Motor and Contactless Slip Ring Power

Motor:

- 1. DC motor
- 2. AC motor

$\begin{array}{c|c} Ts \\ \hline DTs \\ SB' \end{array}$ $\begin{array}{c|c} SB \\ SA \end{array}$ $\begin{array}{c|c} SB \\ SA \end{array}$ $\begin{array}{c|c} Ts \\ SB \\ SA \end{array}$

Control:

Pulse Width Modulation

- Unipolar PWM
- Bipolar PWM
- SPWM
- SVPWM
- DPWM

WPT:

- 1. Transmitter (Primary Side) Control
 - Duty Cycle Control
 - Phase Shift Control
 - Switching Frequency Control
- 2. Receiver (Secondary Side) Control
 - Additional active converter
 - Active rectifier

DC Motor Drives

$$S_A = S_B'$$

$$S(t) = D + \sum_{k=1}^{\infty} \frac{2}{k\pi} \sin(k\pi D)\cos(2\pi k f_s t)$$

Control Method

Concurrent Operation

	Cases						
	A	В	C	D	E	F	G
Frequency (kHz)	95	90	90	95	90	90	97.5
Duty Cycle	0.6	0.75	0.75	0.6	0.6	0.6	0.5
Load Torque (N.m)	0.24	0.27	0.37	0.21	0.21	0.17	-
Motor Power (W)	125	179	244	109	110	89	-
IPT Power (W)	50	51	51	50	90	90	52.7

AC Motor Drives

no component at f_s

Carrier Phase Shift

Frequency	Leg A	Leg B	Leg C
f_o	00	120°	-120^{o}
$f_{\rm s}-2f_{\rm o}$	$0^o + \phi_A$	$120^o + \phi_B$	$-120^o + \phi_C$
f_s	$0^o + \phi_A$	$0^o + \phi_B$	$0^o + \phi_C$
$f_s + 2f_o$	$0^o + \phi_A$	$-120^{o}\phi_{B}$	$120^o + \phi_C$

$$|Leg\ A, B, C| = \frac{2}{\pi} J_2(m_a \frac{\pi}{2})$$

$$|Leg\ A,B,C| = \frac{2}{\pi} J_o(m_a \frac{\pi}{2})$$

$$|Leg\ A,B,C| = \frac{2}{\pi} J_2(m_a \frac{\pi}{2})$$

Primary Side Voltage Control

Output Voltage Regulation

Low-frequency Ripple at the Output Voltage

Real-time algorithm

 $-Ref_A$ $-Ref_B$ $-Ref_C$ Carrier

Fundamental Phase (°)

$$S_{AB}(t)^{f_s} = S_A(t)^{f_s} - S_B(t)^{f_s}$$

$$= \frac{2}{\pi} sin(\pi D_A)cos(2\pi f_s t + \phi_{C-A})$$

$$- \frac{2}{\pi} sin(\pi D_B)cos(2\pi f_s t + \phi_{C-B})$$

Restrictions

$$\frac{2}{\pi}|sin(\pi D_A) - sin(\pi D_B)| < \hat{S}_{AB_{fs}}$$

$$< \frac{2}{\pi}|sin(\pi D_A) + sin(\pi D_B)|$$

$$\hat{S}_{AB_{fs}} = 0.43!$$
 $m_a < 0.88$

Experimental Validation

(c)
$$m_A = 0.6$$
.

Time (ms)

(d)
$$m_A = 0.86$$
.

Future Works

- Motor drives have more than 2 wires
- Conventional WPT systems have 2 wires input
- Multi-phase WPT systems

Motivations:

- 1. To increase DC-link utilization rate
- 2. To increase power
- 3. To break the restrictions

Future Works

Challenge- Calculation Burden!

$$\phi_{C-A} = \phi$$

$$\phi_{C-B} = \phi + \alpha$$

$$\phi_{C-C} = \phi + \alpha + \beta$$

$$\begin{split} & \text{if} \quad \hat{S}_{ABC_{fs}} < \hat{S}_{A_{fs}} - |2\hat{S}_{B_{fs}} - \hat{S}_{C_{fs}}| \quad \text{then} \\ & \phi = 0; \\ & \text{if} \quad \hat{S}_{ABC_{fs}} > \hat{S}_{A_{fs}} + |2\hat{S}_{B_{fs}} - \hat{S}_{C_{fs}}| \quad \text{then} \\ & \phi = 0; \\ & \text{else} \\ & \phi = acos(\frac{\hat{S}_{A_{fs}}^2 - (2\hat{S}_{B_{fs}} - \hat{S}_{C_{fs}})^2 + \hat{S}_{ABC_{fs}}^2}{2\hat{S}_{A_{fs}}\hat{S}_{ABC_{fs}}}) \end{split}$$

$$\alpha = 2tan^{-1} \left(\frac{(\sigma_2 + \sigma_1)\sigma_4}{4\hat{S}_{B_{f_s}} \hat{S}_{C_{f_s}}} \right)$$

$$\beta = 2tan^{-1} \left(\frac{(\sigma_2 - \sigma_1)\sigma_4}{4\hat{S}_{B_{f_s}} \hat{S}_{C_{f_s}}} \right)$$
(21)

where

$$\sigma_4 = \hat{S}_{A_{f_s}}^2 - \hat{S}_{B_{f_s}}^2 - \hat{S}_{C_{f_s}}^2 + \hat{S}_{ABC_{f_s}}^2 - 2\hat{S}_{A_{f_s}}\hat{S}_{ABC_{f_s}}\cos(\phi) + 2\hat{S}_{B_{f_s}}\hat{S}_{C_{f_s}}$$
(22)

$$\sigma_{3} = \sigma_{4} \left(\hat{S}_{A_{f_{s}}}^{2} + \hat{S}_{B_{f_{s}}}^{2} - \hat{S}_{C_{f_{s}}}^{2} + \hat{S}_{ABC_{f_{s}}}^{2} - 2\hat{S}_{A_{f_{s}}}\hat{S}_{B_{f_{s}}} - \hat{S}_{A_{f_{s}}}\hat{S}_{ABC_{f_{s}}}\cos(\phi) + \hat{S}_{B_{f_{s}}}\hat{S}_{ABC_{f_{s}}}\cos(\phi) \right)$$
(23)

$$\sigma_2 = \frac{8\hat{S}_{B_{f_s}}^2 \hat{S}_{C_{f_s}} \hat{S}_{ABC_{f_s}} sin(\phi)}{\sigma_3}$$
 (24)

$$\sigma_{1} = \frac{4\hat{S}_{B_{f_{s}}}\hat{S}_{C_{f_{s}}}}{\sqrt{\frac{\sigma_{4}\left(-\hat{S}_{A_{f_{s}}}^{2} + \hat{S}_{B_{f_{s}}}^{2} + \hat{S}_{C_{f_{s}}}^{2} - \hat{S}_{ABC_{f_{s}}}^{2}}{+2\hat{S}_{B_{f_{s}}}\hat{S}_{C_{f_{s}}} + 2\hat{S}_{A_{f_{s}}}\hat{S}_{ABC_{f_{s}}}\cos(\phi)\right)}}{\sigma_{3}}}{\sigma_{3}}$$
(25)

Thanks!

Compensation Topologies

- a) Series-series
- **b)** Parallel-series
- c) Series-parallel
- d) Parallel-parallel

Series-Series Compensation			
Source Type Voltage Source			
Resonant frequency Load Independen			
Resonant frequency	Coupling Independent		
No load operation	Short Circuit		
Capacitor Size	Large		

Zero Voltage Switching

Inductive region \rightarrow The capacitance of the switches discharges by the load current during dead time.

Bifurcation Phenomenon

Double-peak $\downarrow \\ \frac{f_{pp} > f_r \rightarrow \text{Inductive region}}{\downarrow}$

- Making control difficult
- Decreasing efficiency

Wireless Power Transfer System Design Procedure

The Rated Voltages and Powers

Input Voltage (V_{BUS})	$100~\mathrm{V_{DC}}$
IPT Output Voltage (V_{RX})	$20~V_{\rm RMS}$
Motor Output Power (P_M)	500 W
IPT Output Power (P_o)	50 W

The Motor Parameters

Armature resistance (R_a)	2Ω
Armature inductance (L_a)	$7~\mathrm{mH}$
Motor electrical time constant (T_s)	$3.5~\mathrm{ms}$

The Drive Parameters

Duty $cycle(D)$	0.15 - 0.85
Switching frequency (f_s)	$<100\;\mathrm{kHz}$
Switching period (T_s)	$> 10~\mu \mathrm{s}$

$$V_{o,1^{st}}(rms) = \frac{4}{\sqrt{2}\pi} V_{Bus} sin(\pi D)$$

$$\downarrow$$

$$0.15 < D < 0.85$$

$$40 V_{RMS} < V_{o,1}st(rms) < 90 V_{RMS}$$
 $D = 0.15$
 $D = 0.85$

Receiver quality factor (Q _{RX})	2.6
Resonant frequency (f_0)	65 kHz
Coupling factor (k)	0.40
Load resistance (R_L)	$8~\Omega$
Receiver coil inductance $(L_{\mathbf{RX}})$	$51~\mu\mathrm{H}$
Mutual inductance (M)	$41~\mu\mathrm{H}$
Transmitter coil inductance $(L_{\mathbf{TX}})$	$205~\mu\mathrm{H}$
Receiver resonant capacitance (C_{TX})	$115~\mathrm{nF}$
Transmitter resonant capacitance (C_{RX})	$29~\mathrm{nF}$
Voltage gain at f_o	0.5

$$\omega_{rl} = \omega_r \sqrt{\frac{1}{1+k}}$$
$$\omega_{rh} = \omega_r \sqrt{\frac{1}{1-k}}$$

$$A_{WPT} = \left| \frac{V_{OUT}}{V_{IN}} \right|$$
$$\frac{dA_{WPT}}{dR_L} = 0$$

$$L_{Rx} = \frac{Q_{Rx}R_L}{\omega_{rh}} \longrightarrow A_{WPT(\omega_{rh})} = \left| \sqrt{\frac{L_{Rx}}{L_{Tx}}} \right| \longrightarrow L_{Tx} = \frac{L_{Rx}}{A_{WPT(\omega_{rh})}^2}$$

$$C_{Tx} = \frac{1}{\omega_r^2 L_{Tx}} \longleftarrow M = k\sqrt{L_{Tx}L_{Rx}}$$

$$C_{Rx} = \frac{1}{\omega_r^2 L_{Rx}}$$

Initial/Choosen Parameters	Values	Derived Parameters	Values
$P_{\rm rated}$	24 W	A_{WPT}	0.5
V_{D}	$30 V_{RMS}$	$ ight]$ $ m R_{L}$	$9.3~\Omega$
V_{out}	$15 V_{RMS}$	L _{Rx}	$50~\mu H$
f_{rh}	85 kHz	L_{Tx}	$200~\mu H$
Q_{Rx}	2.9	M	$40~\mu H$
k	0.4	$f_{ m r}$	65.85 kHz
		C_{Tx}	29.2 nF
		C_{Rx}	117 nF

Experimental Results- WPT System Validation

	Design values	Measured values
Transmitter inductance	$204 \mu \mathrm{H}$	$205\mu\mathrm{H}$
Receiver inductance	$52\mu\mathrm{H}$	$51\mu\mathrm{H}$
Mutual inductance	$41 \mu { m H}$	$40\mu\mathrm{H}$

(a) Duty cycle-gain characteristic of WPT at 80 kHz. (b) Frequency-gain characteristic of WPT (D=0.5).

Initial/Choosen Parameters	Values	Derived Parameters	Values	Experimental Values
$P_{\rm rated}$	30 W	V_{Rx}	7.56	-
V_{D}	$40\;V_{RMS}$	R_{Rx}	$0.97~\Omega$	-
V_{OUT}	$6 V_{DC}$	n	5.95	-
f_{rh}	60 kHz	L_{Tx}	$1510~\mu H$	-
Q_{Rx}	2.5	L_{Rx}	$6.5~\mu H$	-
k	0.7	M	$42~\mu H$	-
$R_{\rm L}$	$1.2~\Omega$	C_{Tx}	6.7 nF	-