Important Angles

$$\theta \sin \theta \cos \theta \tan \theta$$

$$\theta \sin \theta \cos \theta \tan \theta$$

0

1

0

$$\frac{\pi}{4} \left| \begin{array}{cc} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{array} \right| 1$$

$$\frac{\pi}{3}$$
 $\frac{\sqrt{3}}{2}$ $\frac{1}{2}$ $\sqrt{3}$

Fundamental Identities

$$\sin^2\theta + \cos^2\theta = 1$$

$$\sec^2\theta - \tan^2\theta = 1$$

$$\csc^2\theta - \cot^2\theta = 1$$

Half-Angle Formulae

$$\cos^2 x = \frac{1 + \cos 2\theta}{2}$$

$$\sin^2 x = \frac{1 - \cos 2\theta}{2}$$

Double-Angle Formulae

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$= 2\cos^2 x - 1$$
$$= 1 - 2\sin^2 x$$

$$\sin 2x = 2\sin x \cos x$$

$$\tan 2x = \frac{2\tan x}{1 - \tan x}$$

$\frac{\mathrm{d}}{\mathrm{d}u}f(u)$	f(u)	$\int f(u) du$	
e^u	e^u	e^u	
e^u	a^u	$\frac{a^u}{\ln a}$	
$-u^{-2}$	$\frac{1}{u}$	$\ln u $	
$\frac{1}{u}$	$\ln u$	$u \ln u - u$	(100)
$\cos u$	sin u	$-\cos u$	
$-\sin u$	cos u	sin u	
$sec^2 u$	tan u	$\ln \sec u $	(12)
sec u tan u	sec u	$\ln \sec u + \tan u $	(14)
$-\csc u \cot u$	csc u	$\ln \csc u - \cot u $	(15)
$-\csc^2 u$	cot u	$\ln \sin u $	(13)
$2 \sin u \cos u$	sin² u	$\frac{1}{2}u - \frac{1}{4}\sin 2u$	(63)
$-2\sin u\cos u$	$\cos^2 u$	$\frac{1}{2}u + \frac{1}{4}\sin 2u$	64)
$2 \tan u \sec^2 u$	tan² u	$\tan u - u$	(65)
$2 \tan u \sec^2 u$	sec ² u	tan u	
$-2\cot u\csc^2 u$	csc ² u	$-\cot u$	
$-2 \cot u \csc^2 u$	$\cot^2 u$	$-\cot u - u$	(66)

12:
$$\tan u$$
 64: $\cos^2 u$ 75: $\tan^n u$

13: $\cot u$ 65: $\tan^2 u$ 76: $\cot^n u$

14: $\sec u$ 66: $\cot^2 u$ 77: $\sec^n u$

15: $\csc u$ 67: $\sin^3 u$ 78: $\csc^n u$

16: $\frac{1}{\sqrt{a^2 - u^2}}$ 68: $\cos^3 u$ 82: $u \sin u$

17: $\frac{1}{a^2 + u^2}$ 69: $\tan^3 u$ 83: $u \cos u$

18: $\frac{1}{u\sqrt{u^2 - a^2}}$ 70: $\cot^3 u$ 92: $u \arctan u$

19: $\frac{1}{a^2 - u^2}$ 71: $\sec^3 u$ 96: ue^{au}

20: $\frac{1}{u^2 - a^2}$ 72: $\csc^3 u$ 97: $u^n e^{au}$

21: $\sqrt{a^2 + u^2}$ 73: $\sin^n u$ 100: $\ln u$

74: cosⁿ *u*

63: $\sin^2 u$

102: $\frac{1}{u \ln u}$

Important Maclaurin Series

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \qquad = 1 + x + x^2 + x^3 + \dots \qquad R = 1$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 $= 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$ $R = \infty$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \quad R = \infty$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \quad R = \infty$$

$$\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots \quad R = 1$$

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \quad R = 1$$

$$(1+x)^k = \sum_{n=0}^{\infty} {k \choose n} x^n = 1 + kx + \frac{k(k-1)}{2!} x^2 \qquad R = 1 + \frac{k(k-1)(k-2)}{3!} x^3 \dots$$