FOUNDATIONS OF HIGHER MATHEMATICS HOMEWORK 8

Problem 35

Proof. Reflexive. Suppose we have an a such that, $f(a) = a^2$. Then:

$$f(a) = a^2$$
$$= f(a)$$

So, $a \subseteq a$ and thus \subseteq is reflexive.

Symmetric. If $a \subseteq b$ then $f(a) = a^2$ and $f(b) = b^2$ such that f(a) = f(b). It follows that:

$$f(a) = f(b)$$

$$a^{2} = b^{2}$$

$$b^{2} = a^{2}$$

$$f(b) = f(a)$$

Thus $b \subseteq a$. So \subseteq is symmetric.

Transitive. If $a \leq b$ and $b \leq c$ then $f(a) = a^2$, $f(b) = b^2$, $f(c) = c^2$ and f(a) = f(b), f(b) = f(c).

$$f(a) = f(b)$$
$$= f(c)$$

 $[7] = \{-7, 7\}$

Problem 37

Set $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y - x \text{ is an integer.} \}$

a) Proof. Reflexive. If $x \in \mathbb{R}$, then $x - x = 0 \in \mathbb{Z}$. Thus, $(x, x) \in S$. Symmetric. If $(x, y) \in S$, then $y - x \in \mathbb{Z}$. It follows that $x - y \in -\mathbb{Z}$ and since $\mathbb{Z} = -\mathbb{Z}$, so $x - y \in \mathbb{Z}$. Thus, $(y, x) \in S$.

Transitive. Let $(x,y) \in S$ and $(y,z) \in S$. Thus, $y-x=a \in \mathbb{Z}$ and $z-y=b \in \mathbb{Z}$. It follows that y-x+z-y=a+b, and thus z-x=a+b. Since $a+b \in \mathbb{Z}$, $(x,z) \in S$.

- b) $[\pi] = {\pi, \pi + 1, \pi + 2, \pi + 3}$
- c) Any integer belongs to [-17]

Problem 40

a) Proof. Reflexive. If $f \in S$ then f is differentiable function f(x). We can see that $f'(x) = 1 \cdot f'(x)$ and since 1 is non-zero, $f \subseteq f$. Therefore, \subseteq is reflexive.

Symmetric. Let $f \subseteq g$. Then f'(x) = kg'(x) where k is a non-zero number. It follows that $g'(x) = \frac{1}{k}f'(x)$, so $g \subseteq f$. Therefore, \subseteq is symmetric.

Transitive. If $f \subseteq g$ and $g \subseteq h$ then f'(x) = kg'(x) and g'(x) = jh'(x), where k and j are non-zero. It follows that f'(x) = kjh'(x), from substituting g'(x). Since k and j were non-zero, jk is non-zero, so $f \subseteq h$. Therefore, \subseteq is transitive. Thus, proving that \subseteq is an equivalence relation on S.

b) When
$$f(x) = x^2 + 17x + 11$$

 $[f] = \{x^2 + 17x + 12, x^2 + 17x + 13, x^2 + 17x + 14, x^2 + 17x + 15, \ldots\}$

Problem 42

a) Proof. Reflexive. Let $x \in X$. Then $(x, x) \in R$ because R is an equivalence relation on X and $(x, x) \in S$ because S is an equivalence relation on X. So, $(x, y) \in R \cap S$.

Symmetric. Let $(x,y) \in R \cap S$. Then $(x,y) \in R$ and $(x,y) \in S$. Since R and S are both equivalence relations on X, $(y,x) \in S$ and $(y,x) \in R$. Therefore, $(y,x) \in R \cap S$.

Transitive. Let $(x,y) \in R \cap S$ and $(y,z) \in R \cap S$. It follows that $(x,y), (y,z) \in R$ and $(x,y), (y,z) \in S$. Since R and S are equivalence relations on X, they are both transitive and thus, $(x,z) \in R$ and $(x,z) \in S$. Therefore, $(x,z) \in R \cap S$.

b) $x \in X, (R \cap S)[x] = R[x] \cap S[x]$

Proof. (\subseteq) Let $y \in (R \cap S)[x]$. Then $(x,y) \in (R \cap S)$. It follows that $(x,y) \in R$ and $(x,y) \in S$. Thus, $y \in R[x]$ and $y \in S[x]$. Therefore, $y \in R[x] \cap S[x]$.

 (\supseteq) Let $y \in R[x] \cap S[x]$. Then $y \in R[x] \cap S[x]$. It follows that $y \in R[x]$ and $y \in S[x]$. Thus, $(x, y) \in R$ and $(x, y) \in S$. So, $(x, y) \in R \cap S$. Therefore, $(R \cap S)[x]$

Problem 65

For the equivalence relation $a \equiv b \pmod{9}$ we have that for each natural number $n, \lceil 10^n \rceil = \lceil 1 \rceil$.

Proof. We will show this by induction. If n = 1, then $[10^1] = [1]$. It follows from the definition of addition for congruence classes that, $[10] = [9] \oplus [1]$. We can see that $9 \equiv 0 \pmod{9}$, because 9|9-9. So, [9] = 0 and thus,

$$[10] = [9] \oplus [1]$$

= $[0] \oplus [1]$
= $[1]$

Thus proving the n = 1 case. Now assume n, so $[10^n] = [1]$. We want to show that n + 1 is true. The results follow from the definitions of addition and multiplication for the congruence classes:

$$[10^{n+1}] = [10 \cdot 10^n]$$

$$= [10] \odot [10^n]$$

$$= [1] \odot [10^n]$$
As shown in the n=1 case
$$= [1] \odot [1]$$
From the *n* assumption
$$= [1]$$

Thus, n+1 is true. Therefore, by PMI, $[10^n] = [1]$ for $a \equiv b \pmod{9}$.