

STUDENT ID NO										

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2016/2017

ECP2036 – MICROPROCESSOR SYSTEMS AND INTERFACING (ME)

22 OCTOBER 2016 2.30 P.M. – 4.30 P.M. (2 Hours)

INSTRUCTIONS TO STUDENT

- 1. This Question paper consists of 7 pages with 4 questions only.
- 2. Attempt ALL questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the Answer Booklet provided.
- 4. Opcode map and Special Function Register formats are provided in Appendices.

Question 1

- (a) What do these acronyms stand for? Briefly explain the functional description for each of them.
 - (i) PC

[2 marks]

(ii) ALU

[2 marks]

- (b) Answer the following questions:
 - (i) Given a 64-bit laptop computer with a memory capacity of 4Gbytes.

 Determine the number of data and address bus of the system? State your work and explanation. [3 marks]
 - (ii) A memory block has 8 address lines and 16 data lines. Specify its capacity.

 [2 marks]
- (c) An 8051 microcontroller based system is to be designed with requirement of external 32Kbytes ROM and 32Kbytes RAM, with start-up code stored in ROM. Given an available 8Kbytes program memory and 16Kbytes data memory blocks, answer the following questions:
 - (i) What is the size of the data bus of this system? [1 mark]
 - (ii) Identify the number of ROM and RAM blocks needed for the system.

[2 marks]

(iii) Calculate the address lines needed by each of these ROM and RAM blocks.

[3 marks]

- (iv) With ROM occupying the first 32Kbytes of memory space, determine the starting and ending addresses for each memory blocks. [3 marks]
- (v) Draw the configuration of this system showing the 8051 signal lines to be used for address, data and control buses. (*Hint*: You may use decoder where necessary) [7 marks]

Question 2

(a) What is Opcode and Operand?

[2 Marks]

(b) What are the states of the carry flag, the auxiliary carry flag, the overflow flag, the parity bit and the content of the accumulator after execution of the following instruction sequence?

MOV R2, #8 MOV A, #2

ADD = A, R2

[6 marks]

- (c) Write an instruction sequence to perform the following task:
 - (i) Set bit addresses 69H, 6AH and 6DH.

[2 marks]

Continued...

- (ii) Read bit 0 and bit 1 of Port 1 and write a status condition to bit 6 of Port 2 as follows: If either bit read is 1, write a 0 to the output status bit, otherwise write a 1. [3 marks]
- (d) The following is an 8051 instruction:

MOV 50H, #0FFH

- (i) What is the opcode for this instruction? [1 mark]
- (ii) What are the machine language bytes for this instructions? Explain the purpose of each byte of this instruction. [3 marks]
- (iii) If an 8051 is operating from a 16 MHz crystal, how long does this instruction take to execute? [3 marks]
- (e) Write an 8051 assembly instruction sequence to add the data stored in ROM at address 0F01H to the data stored in internal RAM location pointed by R0 and store the result in register R1. [5 Marks]

Question 3

- (a) Write an 8051 assembly language programme to generate a 50Hz square pulse on port pin P1.0 using Timer 0. Explain your timer setting in details and assume a 12MHz crystal. [13 marks]
- (b) Write the assembly language programme to transmit characters "8051" continuously using 8-bit UART serial protocol with 9,600 baud rate. In your programme, you must include the function TRANSMIT so that you can call it repeatedly. (Assume SMOD = 0 and 11.0592MHz crystal is used). [12 marks]

Question 4

- (a) Compare the differences between interrupts and polling methods. [6 marks]
- (b) Two dual carriage roads meet at an intersection, as shown in Figure 1 below. Four traffic lights (E, S, W and N) placed at this junction are to be controlled by an 8051 microcontroller. Each traffic light is controlled via different I/O pins on the microcontroller, as shown in Table 1. The operations of the traffic lights are summarized in Table 2. The operation cycle repeats indefinitely until the microcontroller is powered down. Assume that the traffic lights are properly connected to the microcontroller via an interfacing circuit, write a program for the 8051 microcontroller to control these traffic lights. [19 marks]

Table 1:

						+	•	_								
			Po	rt 1		Port 2										
Płn	0	1	2	3	4	5	0	1	2	3	4	5				
Light	E-R	E-Y	E-G	W-R	W-Y	W-G	N-R	N-Y	N-G	S-R	S-Y	S-G				

Note: R: Red, Y: Yellow, G: Green; E: East, W: West, N: North, S: South

Continued ...

Table 2:

		2 40 10 21		
Duration	E	W	N	S
60s	Red	Red	Red	Green
3s	Red	Red	Red	Yellow
30s	Red	Red	Green	Red
3s	Red	Red	Yellow	Red
60s	Red	Green	Red	Red
3s	Red	Yellow	Red	Red
30s	Green	Red	Red	Red
3s	Yellow	Red	Red	Red

Continued...

Appendix A: Opcode Map

		XX	ç	4	_		X	Γ	XΑ	*			T	2.	¥	-	<u> </u>			Υ.	Γ	21	4	į	<u> </u>		14	4	-;	<u> </u>		<u> </u>	٦		٠,	-	> ~		2 <
<u>н</u>	18.20	MOVX	200	ACALL	(7)	X S	GRO, A	18.20	MOVX	₽R.I	18.10	<u>}</u>	28.10	MOV	dîr.	18,70	MOV	10 0	2	GR1.A	1B.1C	Mo	RU,	E . C	MUV	18,10	MOV	RZ.	E IC	MC V	1 <u>B</u> . IC	MOV	2		RSA	18,10	2	19, 10	MOV
മ	1B, 3C	MOVX	A. CLIFIE	AIMP	(77)	IB.X	ANOVA A. S. R.	× 81	MOVX	A. WR	18, IC	CER	2B. IC	MOV	A, dir	18, IC	MOV	La Co	MOV	A. OR	(B. (C	MON	A, RO	(B. IC	MON	18.10	MOV	A. R.2	IS. IC	MOV	18.10	MOV	¥. K±	MOV	A, R3	18,10	A.R6	13, 17	MOV A. RT
۵	3B. 3C	POP	JID 474	ACALL	(Fb)	28, IC energy	SETB	28.10	SETB	C	21.81	DΑ	78.3C	DANZ	ींड. ल्टी	IB, IC	XCHD	7, e-Ku	XCHD	A. GRI	28. 2C	DJNZ	RU, nef	28.20	DJNZ P	ZB. ZC	DJNZ	R2. rel	28, 20	DINZ File	39.3C	ZNIC	R4. KI	DINZ	2	28, 20	Eff.rd	2B.2C	DJNZ R7, rd
O	2B, 3C	PUSH	100	ATRE	(Pb)	28. IC	ž	28. i.c	CLR	C	DI 181	SWAP	78. IC	XCH	A. dir	18, IC		1	KCH	A, 68 RI	1B, IC	XCH	A. Ri	18, IC	XCH	18.1C	XCH	A, R2		XCH A R3	П	XCH	A. R4	JB. IC XCH	A, 135	18.1C	A. 186	18. IC	XCH A. R7
. B	37 78	ANL	L' All	ACALL	(P5)	28, IC	<u> </u>	28.10	CPL	Ü	3B, 3C	CINE	38.2C	CINE	A, dir, rel	38.20	CINE	W.K.II, School, PC	CINE	GRI.#data.rel	38.2C	CINE	RO, édata rel	38,30	CINE	3B.2C	CINE	R2,8dsta,rel	3B. 2C	CINE	3B, 2C	CINE	R-Liftdara.vc1	S8,3C	R5.#ditm,m5	38, 20°	Roklaguel	3B. 2C	CJINE R7,Mdeta,ncl
A	38, 2C	ORL		AJMP	(PS)	E IC	Ž Ž	18.20	INC	DFTR	18,4C	MEDL	And And		j	39.2C	MOV	W KI2.40		@RI.dir	1				MOV	28. 2C	MOV	R3, dir	× 5	MOV P. de	2B, 2C	MOV	R4. di	28.3C	NS. de	2B, 1C	AICY Rit. Gr	38.1C	MOV R?.dir
6	ı	MOV	- 1		(P4)	2B, 2C	A CA	18.30	MOVC	A. CAHDETR	38. (C	SUBB	28.10	SUBB		1B, I C	SUBB	A. 010	STIRE	A. eRI	IB, IC	SUBB	A. RI)				SUBB		18.10	SORB			- 1		A.RS	IB. IC	SUBB A.Rh	LB, IC	SUBB A.R?
8	38. 2C	SJMP	2	APAD	(F4)	28.X	7 Z	1R 3C	MOVC	A.@A+PC		AIG	38.20		dīr, dir		MOV	- 1		dir. eR	2B. 2C	MOW	der. RO	3B. 2C	MOM	28. 2C	MOV	dir: R2	28.2C	MOV			dir, R4	ZB. 2C MOV	dir, R5	2B. 3C	A C 45	2B, 3C	MOV dir.R7
2	2B, 2C	JNZ	<u> </u>	ACALL	(P)		3 S	1		@A+DPTR	38, 10	MOV	38.20	MOV		2B, IC	MOV	WKII, ROMB	MOV	(PRI. Britan	3B, IC	MOV	RO, Achia	3B. PC	MOV	2B. 1C	MOV	R.2, arbata	2B, 1C	MOV 81 adm	28, 10	MOV	R.4. Polasa	MOV	H5. Marin	2B, IC	MOV R6. #dats	28, 10	MOV K7. Mara
9	2B, 3C	72	İ	Α.	(P3)	28. IC	ARL gir.A	Jo 86	XRL	dir, Athera	ı	XX.	1		A. dlr		XRL	- 6			1				XRL	П	XRL					XRL	A.R.	IB. IC	A.R5	IB. IC	A.R.	IB. IC	X.R.
2	28.30	JNC.	E	ACALL	(<u>P</u>	28. IC	ANL	3c #f	ANL	dir. Adeta	2B. IC	ANL	28. IC	AML	A. dir	IB, IC	ANL.	- E	ANI	A, 6 KI	1B, IC	ANL	A.R0	18.TC	AN.	IB. IC	ANE	A.R.2	1B, IC	ANL	IB. IC	ANL	A,R4	B, IC	A,R3	IR IC		7	ANL
4	28, 20	Э.	21 22 25	AJME	[<u>]</u>	2B. IC	# 6 F 4	K es	ORL	der. Adato	2B, 1C	ORE	28.10	ORL	A. dir	1B, IC.	ORL	A. 68 6)	OBT	A. e.R.	1B, IC	ORL	A.RI)	18,10	OKI	A,X.	ORL	A.R.	19. 1C			ORL	A,R4			ı		1B. IC	ORL A.R?
3	38, 20	94	DEEK!	ACALL	G.	19.3C	KEL	18.10		۲	2B. IC	ADDC	28.10	ADDC	A, dir								A,R0	IB, IC	ADDC.	IR IC	ADDC	4,82	18 10	ADDC	IB IC	ADDC	A,R4	ADDC	A.R.S	IB. IC	ADDC.	IB. IC	ADDC
2	38, 2C	118	77 47	AIME	ټ		LE CEL	18.1C	_		er.	ADD.	28. IC	ADD	A, dir	118, 10	OQY.	A, 6 Kg	ADD	A. ORI	1B. 1C	ADD	A.Rb	IB. IC	ADD	TR IC	ADD	A.R.	JB, RC	ADD)	IB. IC	ADD	A.R.	ADD	λR	18, IC	ADD AB	IB. IC	ADD A.R7
П	38,30	JBC	DEATH OF THE	ACALL	(A)	38.25	LCALL MAIS	IR.1C	RRC	₹ť	18.10	DEC	ı	DEC			DEC			#RI					DEC	IR IC	DEC	R1	IB, IC	DEC		ن	×.	JB. IC	2	18. IC) PEC	IB, IC	DEC
0		NOP	20.00	ş	(PD)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	addr16	1	2	A		NG.	28. IC	INC	dir	1B, IC	NC NC	CHAC CO	INC	€R!	18, IC	INC	RO	18, IC	S S	IB. IC	INC	RZ	IB, IC	S E	18, IC	INC	2	IB, IC	ž.	18.10	2 S	IB, IC	INC R1
HByte LByte		0		-			77		er:	,	<u> </u>	4		ιc			9		Ŀ	-		თ		,	6		₹			Я		ပ		F	4	ı	Σ]		ĮΤ

Continued...

Appendix B: Special Function Register Format

TMOD : [Bit	0 (LSB) to Bit	3 is for Timer	0 and Bit	: 4 to Bit 7	(MSB) is	for Timer 1]	ŀ	
GATE	C//T M1	MO	GATE	C//T	MO	MI		
GATE:	Timer only r	uns while /INT1	is set.					
Cl IT:	'1' for event counter, '0' for interval timer							
M1, M0:		Mode bit select						
	"00" Mode	0 - 13-bit time	r mode					
	"01" Mode	1 - 16-bit time	r mode					
	"10" Mode	2 - 8-bit auto-	reload me	ode				
	"11" Mode	3 – Split timer	mode					
TCON:								
TF1 TR1	TFO	TRO	IE1	lT1	IEO	170		
TCON.7		r l overflow flag						
		by hardware wi						
TCON.6		r 1 run control b				4	ner.	
TCON.5		0 overflow flag	-					
maost 4		by hardware w				•		
TCON.4		r 0 run control b		_				
TCON.3		upt l Edge flag	-			upt 1 falling		
macou a	-	ed. Cleared who						
TCON.2		upt I Type cont				are to specify	ý	
moon 1		low level trigge			-	. 1 6 111		
TCON. 1		upt 0 Edge flag.	_			apt i falling		
TOONED		ed. Cleared who						
TCON.0		upt 0 Type cont				ire to specify	Ŧ	
	rainng eage /	low level trigge	ered exter	rnai interru	ipts.			
SCON:								
	SM1 SM2	REN	TB8	RB8	Τİ	RI		
			725	.,				
SMO SMI								
0 0	= Shift regist	ter mode						
0 1	= 8-bit UAR							
1 0		T mode (Fixed	Baud Ra	te)				
1 1		T mode (Variab						
-		(·						
SM2 = '1'	= Enable mu	ltiprocessor cor	nmunica	tion				
REN	= Receiver E							
TB8	= Transmit E							
TI	= Transmit I	nterrupt						
RI	= Receive In	terrupt						

IE:			
EA		ET2	ES ET1 EX1 ET0 EX0
•			
Bit Positi	ion Symbol	Bit Addre	ess Description
1E.7	EA	AFH	Global enable/disable.
			EA ='1', each individual source is enable/disable
			By seetting/clearing its enable bit.
			EA = 'O', disable all interrupts.
IE.6	-	AEH	Undefined
IE.5	~	ADH	Not implemented in 8051. ET2 for 8052.
IE.4	ES	ACH	Serial port interrupt enable bit.
IE.3	ET1	ABH	Timer1 interrupt enable bit.
IE.2	EXI	AAH	External interrupt enable bit.
IE. 1	ETO	A9H	TimerO interrupt enable bit.
IE.0	EXO	A8H	External interrupt enable bit.
IP:			
		PT2	PS PT1 PX1 PTO PXO
			77 4 79 1
IP.7	-	et-	Undefined.
IP.6	-		Undefined.
IP.5	-	BDH	Not implemented in 8051. PT2 for 8052.
IP.4	PS PT	BCH	Serial port interrupt priority bit.
IP.3	PT1	BBH	Timer1 interrupt priority bit.
IP.2	PX1	BAH	External interrupt priority bit.
IP.1	PTO	B9H	Timer-0 interrupt priority bit.
IP.O	PXO	B8H	External interrupt priority bit.
0.1 7.1	T 4 177		
	Interrupt V		374 A 11
Interrupt		Flag	Vector Address
System F		RST	0000H
External		JEO	0003H
Timer 2 (8052)	1 F 2 & E	EXF2 002BH
PSW:			
CY	AC	FO	RS1 RSO OV - P
ر ب	, ,,,,	10	101 100 00 1- 1

AC: Auxiliary Carry Flag

CY: Carry Flag RS1, RSO: Register Bank Select

OV: Overflow Flag

P: Parity

End of Paper

KRO/YYS