LECTURER: Nghia Duong-Trung

MACHINE LEARNING

Introduction to Machine Learning	1
Clustering	2
Regression	3
Support Vector Machines	4
Decision Trees	5
Genetic Algorithm	6

UNIT 4

SUPPORT VECTOR MACHINES

STUDY GOALS

- Know the definitions and terms used for Support Vector Machines (SVM)
- Comprehend common applications of SVM
- Understand different methods for SVM classifier and regressor
- Implement SVM methods in Python

INTRODUCTION

- Support vector machine (SVM)
 is a mathematical model
 within the class of supervised
 learning for:
 - accurate classification & prediction
 - both continuous & categorical data
 - both linear & non-linear problems
 - high efficiency & effectivity

An example of SVM

INTRODUCTION

Definition

- Hyperplane: a separating boundary that help to classify the points
- Margin: the boundary gap between two point-sets
- Support vectors: the points that determine the margin

An example of SVM

4.1 SVM BASICS

SVM **algorithm**:

- The separating hyperplane is detected (learned) by
 maximizing the margin width
- The margin width is measured based on the perpendicular distance from the separating hyperplane to the support vectors
- Large margin ensures good generalization
- This method is memory efficient, as it uses only a subset of training points (support vectors)

Optimization of Hyperplane in SVM

SVM classifier with Hard Margin:

- Only suitable for Linearly Separable data
- A separating hyperplane (i.e., decision function f(x)=0) can be detected without training errors
- For a dataset of multiple features:

$$f(x) = \sum_{i=1}^{n} w_i \cdot x_i - b$$

- Optimization problem: Minimize $\{||w||\}$
- Hard margin is Sensitive to outliers

An example of SVM with hard margin for classification

4.2 SVM FOR CLASSIFICATION

SVM classifier with **Soft Margin:**

- An extension of Hard Margin SVM for nonlinearly separable data
- Allow SVM to make a certain number of mistakes and keep the margin as wide as possible

An example of linearly and non-linearly separable data

Source of the text: Zöller, 2022; Misra, 2019. Source of the image: Zöller (2022, p. 92).

SVM classifier with **Soft Margin:**

— Primal Form:

- The data are almost linearly separable
- Some data points can lie inside the margin area
- Optimization problem:

Minimize
$$\frac{c}{n}\sum_{i=1}^{n}\xi_i + ||w||^2$$

Where:

C – trade-off parameter

 ξ_i - slack error

An application of SVM with Soft Margin/Primal form for classification

SVM classifier with **Soft Margin:**

- Dual Form:
- an adjusted form from primal form
- uses a **Lagrangian multiplier** α in defining weight vector:

$$w = \sum_{j=1}^{n} \alpha_j y_j x_j$$

Optimization problem: Maximize quadratic function:

$$Q(\alpha_i) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j (x_i \cdot x_j) y_i y_j$$

Dual form is preferred when data has a huge dimension, and the kernel trick is needed to reduce the computational cost

Transformation

- Real-life datasets are usually not linearly separable
- The nonlinearly separable data can be transformed to linearly separable data by adding a new dimension of the feature space
- Problems: Overfitting & high computational cost

An example of Transformation from non-linearly to linearly separable data

SVM Regression (SVR): a version of the SVM classifier

- **SVR predicts** numerical output values with some deviation (**epsilon error** ε)
- Objective function: **Minimize** the model coefficient **w** and introduce the cost C (**trade-off** parameter) and two slack variables ξ_i , ξ_i^* :

$$\frac{1}{2}||w||^2 + C\sum_{i=1}^n |\xi_i + \xi_i^*|$$

An example of SVR

3.4 SVM WITH PYTHON

SVM classifier with linear kernel

```
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.datasets import make_blobs
from sklearn.inspection import DecisionBoundaryDisplay
# we create 20 separable points
X, y = make_blobs(n_samples=20, centers=2, random_state=20)
# fit the model, don't regularize for illustration purposes
clf = svm.SVC(kernel="linear", C=1000)
clf.fit(X, y)
plt.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired)
# plot the decision function
ax = plt.gca()
DecisionBoundaryDisplay.from_estimator(clf, X, plot_method="contour",
  colors="k", levels=[-1, 0, 1], alpha=0.5, linestyles=["--", "-", "--"], ax=ax,)
# plot support vectors
ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],
  s=100, linewidth=1, facecolors="none", edgecolors="k", )
plt.show()
```


Maximum margin separating hyperplane within a two-class separable dataset using SVM classifier

3.4 SVM WITH PYTHON

SVM regression with poly kernel

```
import numpy as np
from sklearn.svm import SVR
import matplotlib.pyplot as plt
X = \text{np.sort}(5 * \text{np.random.rand}(100, 1), axis=0)
y = np.sin(X).ravel()
# add noise to targets
y[::5] += 2 * (0.5 - np.random.rand(20))
svr = SVR(kernel="poly", C=100, gamma="auto", degree=3, epsilon=0.1,
coef0=1)
ax = plt.gca()
#plot regression curve
ax.plot(X,svr.fit(X, y).predict(X),color=model_color[ix],lw=1)
ax.scatter(X[svr.support_],y[svr.support_],facecolor="none",
edgecolor="k",s=20)
plt.show()
```


REVIEW STUDY GOALS

- Know the definitions and terms used for Support Vector Machines (SVM)
- Comprehend common applications of SVM
- Understand different methods for SVM classifier and regressor
- Implement SVM methods in Python

SESSION 4

TRANSFER TASK

TRANSFER TASKS

1. Create the dataset using the following code:

from sklearn.datasets import make_blobs
X, y = make_blobs(n_samples=100, centers=2, random_state=12)

Implement SVM classifier using

- a) Poly kernel
- b) RBF kernel

TRANSFER TASKS

2. Create the dataset using the following code:

```
import numpy as np
X = np.sort(5 * np.random.rand(100, 1), axis=0)
y = np.sin(X).ravel()
y[::5] += 2 * (0.5 - np.random.rand(20)) # adding noises
```

Implement SVM regression using

- a) linear kernel
- b) RBF kernel

TRANSFER TASK PRESENTATION OF THE RESULTS

Please present your results.

The results will be discussed in plenary.

LEARNING CONTROL QUESTIONS

1. The idea of SVM classification is to find a hyperplane that _____ the margin between classes.?

- a) Removes
- b) Minimizes
- c) Maximizes
- d) None of these

- 2. The What is/are true about kernel in SVM?
 - (1): Kernel function maps low dimensional data to a high dimensional space.
 - (2): It's a similarity function.
 - a) Neither option is correct
 - b) Options 1 and 2 are correct
 - c) Option 1 is correct
 - d) Option 2 is correct

3. The regularization parameter in the SVM cost function determines...

- a) ...the tradeoff between misclassification and simplicity of the model.
- b) ...the number of cross-validations to be made.
- c) ...the kernel to be used.
- d) None of the above.

4. If I am using all features of my dataset and I achieve 100% accuracy on my training set, but ~70% on testing set, what should I look out for?

- a) Underfitting
- b) Nothing, the model is perfect.
- c) Include more testing data
- d) Overfitting

- 5. The constraint of the Support Vector Regression model is that the absolute error is ____ the value of error term epsilon.
 - a) Less than or equal to
 - b) Not related to
 - c) Greater than
 - d) Exactly equal to

LIST OF SOURCES

Text:

Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. *MIT Press.*Misra, R. (2019). Support Vector Machines – Soft Margin Formulation and Kernel Trick. https://towardsdatascience.com/support-vector-machines-soft-margin-formulation-and-kernel-trick-4c9729dc8efe

Rajput, V. (2021). The Optimization Behind SVM: Primal and Dual Form. https://medium.com/aiguys/the-optimization-behind-svm-primal-and-dual-form-5cca1b052f45

Images:

File: Normdist_regression.png (2023)

Zöller (2022, p. 89)

Zöller (2022, p. 90)

Zöller (2022, p. 92)

Zöller (2022, p. 94)

Zöller (2022, p. 97)

Zöller (2022, p. 98)

Zöller (2022, p. 101)

