DAY	DAY SEM		8:00-	9:00 -	10:00 -	11:00 - 11:55 AM	12:00 -	1:00-	2:00 - 2:55	3:00 - 3:55	4:00 - 4:55	5:00 - 5:55
			8:55 AM	9:55 AM	10:55 AM		12:55 PM	1:55 PM	PM	PM	PM	PM
M 0	BTech	III		BT202	BT203	MA201	BT204					HS200
Ň		v			BT 311	1			BT303	BT302	BT304	BT301
		VII		BT612		BT645/BT623/ BT610/BT651	BT641		BT618/BT620/ BT634/BT636	BT637/BT640/ BT643/BT644	BT604/BT605/ BT615/BT621	
	MTech (BT)	I		BT612	BT501	BT610/ BT651	BT641		BT618/ BT620/ BT634/ BT636	BT637/BT640/ BT643/BT644	BT604/BT605/ BT615/BT621	
	MTech (BE)	I		BT612	BT501	BT645/BT610/ BT651	BT641		BT618/ BT620/ BT634/ BT636	BT637/BT640/ BT643/BT644	BT604/BT605/ BT615/BT621	
		III				BT623						
	PhD			BT612		BT645/ BT623/ BT610/ BT651	BT641		BT618/ BT620/ BT634/ BT636	BT637/BT640/ BT643/BT644	BT604/BT605/ BT615/BT621	
T U	BTech	III	BT205	BT201	BT202	BT203	BT204					HS200
E		v			BT 311	1			BT302			BT301M
		VII		BT401M	BT612		BT641					BT604/BT605/ BT615/BT621
	MTech (BT)	I		BT503	BT612	BT501	BT641					BT604/BT605/ BT615/BT621
	MTech (BE)	I		BT521	BT612	BT501	BT641					BT604/BT605/ BT615/BT621
		III										
	PhD				BT612		BT641					BT604/BT605/ BT615/BT621
W E	BTech	III	MA201	BT205	BT201	BT202	BT201M					HS200
D		V				BT302		HS1xx		BT301	BT301M	BT304
		VII			BT401M	BT612	HS2xx					BT618/BT620/ BT634/BT636
	MTech (BT)	I			BT503	BT612				BT 510		BT618/BT620/ BT634/BT636
	MTech (BE)	I			BT521	BT612				BT 530		BT618/BT620/ BT634/BT636
		111										
	PhD					BT612						BT618/BT620/ BT634/BT636

T	BTech	Ш	MA201	BT205	BT201	BT201M					HS200
H U				DW 0.41			****	DT204	DT20414	PERSON	DT204
		V		BT 312			HS1xx	BT301	BT301M	BT303	BT304
		VII	BT645/		BT401M	HS2xx					BT637/BT640/
			BT623/ BT610/								BT643/BT644
			BT651								
	MTech	I	BT610/		BT503				BT 510		BT637/BT640/
	(BT)		BT651								BT643/BT644
	MTech	I	BT645/		BT521				BT 530		BT637/BT640/
	(BE)		BT610/ BT651								BT643/BT644
		III	BT623								
	DL D		DTC 4E /								
	PhD		BT645/ BT623/								BT637/BT640/ BT643/BT644
			BT610/								B1043/ B1044
			BT651								
F R	BTech	Ш	BT203	MA201	BT204	BT201M					
ï		v		BT 312	2		HS1xx		BT303		
		VII		BT645/	BT641	HS2xx			BT618/BT620/	BT637/BT640/	BT604/BT605/
				BT623/					BT634/BT636	BT643/BT644	BT615/BT621
				BT610/							
				BT651							DM (0 4 / DM (0 5 /
	MTech (BT)	I	BT501	BT610/ BT651	BT641				BT618/BT620/	BT637/BT640/	BT604/BT605/ BT615/BT621
									BT634/BT636	BT643/BT644	-
	MTech (BE)	I	BT501	BT645/ BT610/	BT641				BT618/BT620/	BT637/BT640/	BT604/BT605/
	(BE)			BT651					BT634/BT636	BT643/BT644	BT615/BT621
		III		BT623							
	PhD			BT645/	BT641				BT618/BT620/	BT637/BT640/	BT604/BT605/
				BT623/					BT634/BT636	BT643/BT644	BT615/BT621
				BT610/ BT651							
				D1001							

Genome Editing and Engineering

Course No: BT-637

LECTURE-1

Dr. Kusum K. Singh

Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati

Introduction

All lives are connected by DNA (A,T,G,C)

Code of life

• The code when strung together

Total number of genes

• The code when strung together

	Chimp	Human	Mouse	Rat	Dog	Primate	Rodent	Ingroup	MRCA	Total # Unique
Total # of Families	9,693	10,349	11,410	9,969	9,663					15,389
Total # of Genes	20,947	22,763	24,502	22,557	18,213					

Tools to manipulate

• Engineers

• Biologist

Approaches to study

Forward Genetic Screens Reverse Genetic Screens

Discover Gene underlying Phenotype

Known Gene

Tools to manipulate DNA

Meganucleases, ZFNs, TALENs, and CRISPR/CAS

First tool - Recombinant DNA

Recombinant DNA (1972)

 E.coli gene of galactose operon was inserted into SV40 (λ phage)

Recombinant DNA (1972)

Construction Of Hybrid Genome

Recombinant DNA (1972)

 β -globin XGPRT DHFR n

Restriction Enzymes

Nobel Price in Physiology or Medicine (1978)

Werner Arber

Daniel Nathans

Hamilton O. Smith

1973). The beauty of restriction/modification systems was captured in a piece written by 10-year-old Sylwas awarded the Nobel prize:

When I come to the laboratory of my father, I usually see some plates lying on the tables. These plates contain colonies of bacteria. These colonies remind me of a city with many inhabitants. In each bacterium there is a king. He is very long, but skinny. The king has many servants. These are thick and short, almost like balls. My father calls the king DNA, and the servants enzymes. The king is like a book, in which everything is noted on the work to be done by the servants. For us human beings these instructions of the king are a mystery.

My father has discovered a servant who serves as a pair of scissors. If a foreign king invades a bacterium, this servant can cut him in small fragments, but he does not do any harm to his own king. Clever people use the servant with the scissors to find out the secrets of the kings.

To do so, they collect many servants with scissors and put them onto a king, so that the king is cut into pieces. With the resulting little pieces it is much easier to investigate the secrets. For this reason my father received the Nobel Prize for the discovery of the servant with the scissors.

published in a News and Views article in Nature Structural Biology [Conforti 2000]).

- Domain Structure
- Cofactor requirements
- Length and symmetry of recognition sequences
- Position of cleavage
- Mode of action

Most important belong to class II

- Defense Mechanism
- Cognate methylase enzymes

Cytosine to 4-m-cytosine/5-m-cyto

Adenine to 6-m-adenine

	. Summary: Major classes of restric	Cofactor in vitro	DNA recognition sequence	Cleavage site
Type of enzyme	Structure	SAM, ATP	Asymmetric and	>1,000 bp from recognition site. The
	Complex, with three different subunits (endonuclease [hsdR], methyltransfersase [hsdM], recognition [hsdS])	3/4/1/ / ***	complex	best-studied class I enzyme (LlaContent cleaves at two asymmetric recognisites in a head-to-head inverted report the enzyme. The helicase domain the enzyme catalyzes one-dimensional stepwise translocation of dsDNA between recognition sites (Smith et al. 2009a,b). For review, see Bourn and Bickle (2002).

Homodimers. Endonuclease and Mg²⁺ Dyad symmetry At recognition site methylase activities are on different molecules

```
Bam HI
5'...GGATCC...3'
3'...CCTAGG...5'

BgIII
5'...AGATCT...3'
3'...TCTAGA...5'
```


Complex with 2 subunits
(endonuclease and methylase recognition)

ATP, Mg²⁺,
SAM (in some cases)

Type III restriction enzymes cleave DNA by long-range interaction between recognition sites arranged in a head-to-head or tail-to-tail configuration (van Aelst et al. 2010).

Motion along the DNA is thought to occur by DNA sliding (Ramanathan et al. 2009; Szczelkun et al. 2010).

- Brief historical start of genome editing.
- Discovery and classification of R.E.
- Perspective of 10 year old girl on R.E.
- Framework for future lectures.

- Restriction Enzymes
- Type II Restriction Enzymes: subtypes
- Type II P
- Type II S (Shifted)
- Type II C
- Type II T

New restriction endonucleases from Flavobacterium okeanokoites (FokI) and Micrococcus luteus (MluI)

(Class II enzymes; DNA sequencing; GGATGN₉[↓] ; A[↓]CGCGT)

Hiroyuki Sugisaki and Susumu Kanazawa

Institute for Chemical Research, Kyoto University, Uji, Kyoto 611 (Japan)

Flavobacterium okeanokoites IFO12536

1 liter culture was about 4 g (wet weight).

20 g of frozen cells

(a)

DNA-modifying enzymes prepared using P11 chromatography

Source of enzyme	Enzyme name
Escherichia coli RY13	EcoRI
Haemophilus influenzae Rd	HindII, HindIII
Providencia stuartii	ParI
Serratia marcescens	SmaI
Bacillus amyloliquefaciens H	Bam HI
Bacillus glohigii	Bg/I, Bg/II
Klebsiella pneumoniae	KpnI
Arthrobacter luteus	A lu I
Streptomyces albus G	SalGI
Streptomyces achromogenes	SacI, SacII
Proteus vulgaris	Pvul, Pvull
Bacillus caldolyticus	BclI
Haemophilus aegyptius	HaeII, HaeIII
Haemophilus haemolyticus	Hha II
Haemophilus parainfluenzae	Hpal. Hpall
Staphylococcus aureus 3A	Sau3A
Streptomyces phaechromogenes	SphI
Thermus aquaticus	TaqI
Xanthomas badrii	XbaI
Xanthomonas holicola	XhoI, XhoII
Escherichia coli carrying cloned T. DNA	T, DNA ligase
ligase gene	
Escherichia coli carrying cloned DNA	DNA polymerase I

polymerase gene

Resin Type	Cation Exchanger
Net charge of molecule of interest	+
Charge of resin	-
Running conditions	0.5–1.5 pH units below the pl of the molecule of interest

Cell Culture

P-11 column (cationexchanger)

DE-52 column (anion- exchanger)

Resin Type	Anion Exchanger
Net charge of molecule of interest	_
Charge of resin	+
Running conditions	0.5–1.5 pH units above the pl of the molecule of interest

Endonuclease activity of purified novel enzy

0.08

TABLE I

Fok I

Approximate KCl concentrations elu Whatman P-11 and DE-52 columns as

Enzymes	P-11	DE-5
	column	colu
	(M)	(M)

0.30 - 0.34

One Unit = $1\mu g$ of pBR322 DNA

Physical map of pAO43

No unique sequence present at the 5' termini of the fragments

5' terminal sequencing

Cleavage site specificity of Fokl

Cleavage site specificity of Fokl

Maxam Gilbert Sequencing on fragments of pAO43

5' terminal sequences of the sub-fragments

Maxam Gilbert Sequencing on fragments of pAO43

Cleavage site specificity of Fokl

Cleavage site

```
(5') - - TTGTCTGTGAGCGGGATGCCGGGAGCTGACAAGCCCGTCAGGGCGCGTCAG - - - (3')
F3/F2
         (3') - - - AACAGACACTCGCTACGGCCCTCGACTGTTCGGGCAGTCCCGCGCAGTC--- (5')
         (5') - - - TTTAGAAGAGGATGGTGCGATGGTCCCTCCCTGAACATCACGTATAT - - - (3')
F2/F7
         (3') - - - AAATCTTCTCCTCCTACCACGCTACCAGGGAGGGACTTGTAGTGCATATA - - - (5')
         (5') - - - AACCTCCTTGTTGGATGTCAGGCTAACTATATACGTGATGTTCAGGGAGG - - - (3')
F7/F1
         (3') - - - TTGGAGGAACAACCTACAGTCCGATTGATATGCACTACAAGTCCCTCC - - - (5')
         (5') - - - CACTTTCTGGCTGGATGATGGGGGGGGATTCAGGCCTGGTATGAGTCAGCAA - - - (3')
F1/F6
& F5/F3
         (3') - - - GTGAAAGACCGACCTACTACCCCCCCTAACTCCCCGACCATACTCAGTCGTT - - - (5')
         (5') - - - A A A T T C C A A C A T G G A T G C T G A T T T A T A T G G G T A T A A A T G G G C T C G C G A T A - - - (3')
F6/F4
         (3') - - TTTAAGGTTGTACCTACGACTAAATATACCCATATTTACCCGAGCGCTAT - - - (5')
         (5') - - - GG CAGTTC CATAGGATGG CAAGATCCTGGTATCGGTCTGCGATTCCGACT - - - (3')
F4/F5
         (3') - - - CCGTCAAGGTATCCTACCGTTCTAGGACCATAGCCAGACGCTAAGGCTGA - - - (5')
```

Analysis of terminal sequencing

Fokl introduces double stranded cleavage

Protruding 5'ends of four nucleotides

There is no similarity in the sequences at the cleavage site

Analysis of terminal sequencing

 A Penta nucleotide seq. (GGATG) occurs at nt position 9 and 13 from the cleavage site

- GGATG is the recognition site of FokI (pBR322)
- Mode of cleavage :

Conclusions of Lecture

- Type II S (R.E).
- Fok I purification P-11 and DEAE.
- Terminal 5' sequencing: Maxam-Gilbert sequencing.
- Recognition sequence of Fokl "GGATG".

Thank You!