6 מבוא לתורת הקבוצות - הרצאה

2023 באוגוסט, 2023

יונתן מגר

משפט קנטור

|X| < |P(X)| אזי אבה: תהי א קבוצה. אזי לענה:

הוכחה: יש העתקה חח"ע מ-X ל-(X), הנתונה ע"י: $\{x\}$ לכן, נקבל כי $\{x\}$. נניח כעת בשלילה שיש העתקה חח"ע מ-X (כלומר $\{x\}$). נגדיר את $\{x\}$ להיות $\{x\}$ ע $\{x\}$ ע $\{x\}$ כלומר, קבוצת כל האיברים העתקה חח"ע ועל (כלומר $\{x\}$ ע צמם תחת $\{x\}$ נשים לב כי $\{x\}$ כלומר $\{x\}$ שייכים לתמונה של עצמם תחת $\{x\}$ נשים לב כי $\{x\}$ כלומר $\{x\}$ בסתירה להגדרת $\{x\}$ כעת נניח בי $\{x\}$ נניח כי $\{x\}$ בי $\{x\}$ כלומר, $\{x\}$ בסתירה להגדרת $\{x\}$ כעת נניח בי $\{x\}$ ושוב הגענו לסתירה. כלומר, הנחת היסוד שגויה ונקבל $\{x\}$ ומכך מתקיים $\{x\}$ ושוב הגענו לסתירה. כלומר, הנחת היסוד שגויה ונקבל $\{x\}$

מסקנות

- . (וגם לכל עוצמה) $m \in \mathbb{N} \Rightarrow m < 2^m$ לכל מספר לכל (1)
 - .ש אינסוף עוצמות שונות (2)
 - (3) לא קיימת קבוצת כל הקבוצות.

משפט קנטור-שרדר-ברנשטיין

a=b אזי $a\leq b \wedge b \geq a$ מתקיים, a,b מענה: עבור שתי עובה כי מענה: מענה

. עלינו להוכיח שאם קבוצות A,B מקיימות A,B חח"ע, קיימת $B \to A$ חח"ע ועל. $a \to B$ חח"ע, קיימת שאם קבוצות $b \to A$

הוכחה (גיאומטרית)

 $.h':A o g(B)\subseteq A$ נשים לב שמאחר ו- $g(B)\subseteq A$ היא על, אז למצוא h:A o B המצוע למצוא g:B o g(B), היא על, אז למצוא $g(f(A))\subseteq g(B)\subseteq A$ הח"ע, ותמונתה חח"ע, ותמונתה לב כי $g\circ f$ חח"ע כהרכבה של פונקציות חח"ע, ותמונתה $g\circ f$. נשים לב כי $g\circ f$ חח"ע כהרכבה של פונקציות חח"ע, וחילקנו את ל-3 חלקים זרים. בסמן $g\circ f$

X נזכיר כי עלינו למצוא פונקצית שקילות בין A ל- $X\cup Y$ ל- A לבין על לבין X_i,Y_i,Z_i שאותן נסמן X_i,Y_i,Z_i נגדיר לכל מספר טבעי X_i,Y_i,Z_i שאותן נסמן X_i,Y_i,Z_i נגדיר לכל מספר טבעי X_i,Y_i,Z_i שאותן נסמן X_i,Y_i,Z_i נגדיר לכל מספר טבעי X_i,Y_i,Z_i שאותן נסמן X_i,Y_i,Z_i ו-(2). לכל X_i,Y_i,Z_i,Z_i בורע מקיימות לעלים לידעות לי

(2) ו-(1) מכך, מכך, מכך מכך $X_1=(g\circ f)(X), Y_1=(g\circ f)(Y), Z_1=(g\circ z)(Z)$ מכך, מכך ההגדרה את על ידי את על ידי ההגדרה מתקיימים בי $X_i=(g\circ f)(Y_{i-1})$ און מעל און ועל און ועל און ועל און און ועל א

$$A = X_i \cup Y \bigcup_{j=1}^{i-1} Y_j \cup Z \bigcup_{j=1}^{i-1} Z_j$$

ב"גבול", נקבל:

$$A = \left(\bigcap_{i=1}^{\infty} X_i\right) \cup Y \bigcup_{j=1}^{\infty} Y_j \cup Z \cup \bigcup_{j=1}^{\infty} Z_j$$

נגדיר את $h':A o g(B)=X\cup Y$ ע"י:

$$h'(t) = \begin{cases} g \circ f(t) \text{ if } t \in Z \cup \bigcup\limits_{j=1}^{\infty} Z_j \\ t \text{ if } t \in \bigcap\limits_{j=1}^{\infty} X_j \cup Y \bigcup\limits_{j=1}^{\infty} Y_j \end{cases}$$

:חח"ע ועל

 $i \geq 1$ אם $h': Z o Z_1 \wedge h': Z_i o Z_{i+1}$ אם ולכן $g \circ f$ אם חח"ע ועל

 $i\geq 1$ אם $h':Y o Y\wedge h':Y_i o Y_i\wedge h':\bigcap_{i=1}^\infty X_i o \bigcap_{i=1}^\infty X_i$ אם אזהות חח"ע ועל,

למת נקודת השבת

אזי . $\varphi(A)\subseteq \varphi(B)$ אז $A\subseteq B\subseteq X$, השומרת על הכלה. פאומרת $\varphi:P(X)\to P(X)$ אזי העתקה תהי קבוצה ותהי $\varphi(B)=B$ כך ש-B פיימת קיימת היימת של הפאומרת של השומרת של השומרת של השומרת של השומרת העתקה העתקה של השומרת ש

דוגמות

- . נקודות שייך 0 כבר שייך להן. $X=Z, \varphi(A)=A\cup\{0\}$ (1)
- $,\{2^m\mid m\in\mathbb{R}\}\;,\mathbb{Q}\setminus\{0\}\;,\mathbb{R}\setminus\{0\}\;$ נקודות שבת לדוגמה: $X=\mathbb{R}\setminus\{0\}, \varphi(A)=2\cdot A=\{2x\mid x\in A\}\;$ (2) . $\mathbb{Q}_-\setminus\{0\}\;,\mathbb{Q}_+\setminus\{0\}\;,\mathbb{R}_-\setminus\{0\}\;,\mathbb{R}_+\setminus\{0\}\;,\emptyset$

הורחה

הוכחת משפט קנטור-שרדר ברנשטיין באמצעות למת נק' השבת

 $.arphi(A)=X\setminus g(Y\setminus f(A))$ ע"י arphi:P(X) o P(X) נתונות g:Y o X הח"ע וg:Y o X הח"ע ונגדיר g:X o Y הח"ע הכלה. מלמת נק' השבת קיימת g:Y o X כך שg:Y o X כלומר g:X o X שומרת הכלה. מלמת נק' השבת קיימת g:Y o X כך שg:Y o X בדקו שg:Y o X שומרת הכלה. מלמת נק' השבת קיימת וואר ביר מובן מדוע האיחור זר ביg:X:Y o X