Math 856 Problem Set 3

Starred (*) problems to be handed in Friday, October 30

- (*) 16. If X, Y are smooth tangent vector fields on M, and $f, g \in C^{\infty}(M)$, show that [fX, gY] = (fg)[X, Y] + (fXg)Y (gYf)X. [Hint: evaluate on a third smooth function!]
 - **17.** [Lee, p. 101, problem 4-7] Let M, N be smooth manifolds, $f: M \to N$ a smooth map, and define $F: M \to M \times N$ by F(x) = (x, f(x)). Show that for every tangent vector field X on M there is a tangent vector field Y on $M \times N$ so that Y is F-related to X.
 - **18.** [Lee, p.101, problem 4-9] Suppose that the map $F: M \to N$ is a local diffeomorphism (that is, for every $a \in M$, there is a neighborhood \mathcal{U} of a so that $F|_{\mathcal{U}}: \mathcal{U} \to F(\mathcal{U})$ is a diffeomorphism). Show that for every smooth vector field Y on N there is a unique smooth vector field X on M that is F-related to Y.
- (*) 19. ["Bundle Section Extension Lemma"] Given a smooth vector bundle $p: E \to M$ over a smooth manifold M, a closed subset $A \subseteq M$, and a smooth section $s: A \to E$ defined over A (that is, for every $a \in A$ there is a neighborhood U_a of a in M and a smooth section $s_U: U \to E$ so that $s_u = s$ on $A \cap U$), show that there is a global smooth section $S: M \to E$ with $S|_A = s$. [Hint: partition of unity...]
 - **20.** [Lee, p.101, problem 5-8] Let $p: E \to M$ be a smooth n-dimensional vector bundle and X_1, \ldots, X_k be linearly independent smooth sections of E defined over an open subset $U \subseteq M$. Show that for every $a \in U$ there is a neighborhood V of a and smooth sections Y_{k+1}, \ldots, Y_n defined over V so that $(X_1, \ldots, X_k, Y_{k+1}, \ldots, Y_n)$ forms a local frame for E over $U \cap V$.

(Hint: if v_1, \ldots, v_n form a basis for \mathbb{R}^n , then why is it that if you wiggle the first k vectors a little bit, you still have a basis?)

- (*) 21. [Lee, p.346, Problem 13-1] If M is a smooth manifold that is the union of two open subsets U, V with $U \cap V$ connected, and if $TM|_U$ and $TM|_V$ are orientable bundles, show that M is orientable. Use this to show that S^n is orientable for every $n \geq 2$.
 - **22.** Show that $M \times N$ is orientable \Leftrightarrow both M and N are.
 - **23.** The tangent space for a manifold M with boundary is defined in exactly the same way as for a manifold; the derivations at a point in ∂M are allowed to point "in all the directions" of \mathbb{R}^n .

We say that a tangent vector $X \in T_aM$ for $a \in \partial M$ "points inward" if in some set of local coordinates $h = (x^1, \dots, x^n)$ we have $X = \sum_i v^i \frac{\partial}{\partial x^i}$ with $v^n > 0$. (Here h maps to the upper half-space, where $x^n > 0$.) Show that the notion of "pointing inward" is

- to the upper half-space, where $x^n \ge 0$.) Show that the notion of "pointing inward" is independent of coordinate chart.
- **24.** [Lee, p.151, Problem 6-3] Show that the tangent bundle TM is trivial if and only if the cotangent bundle T^*M is also trivial.