Econometrics 1

Lecture 6: Linear Regression (1) Linear regression with one regressor

黄嘉平

中国经济特区研究中心 讲师

办公室: 文科楼2613

E-mail: huangjp@szu.edu.cn

Tel: (0755) 2695 0548

Website: https://huangjp.com

The linear regression model

Linear relationship between X and Y

- A school district cuts the size of its elementary school classes. What is the effect on its students' test score?
- This question is about the unknown effect of changing one variable, X (class size), on another variable, Y (student test score).
- Linear regression (with one regressor) is a model investigating the linear relationship between X and Y.

Class size and test score

Relative change, or the effect of changing X on Y:

$$eta_{ClassSize} = rac{change\ in\ TestScore}{change\ in\ ClassSize} = rac{\Delta TestScore}{\Delta ClassSize}$$

$$\Delta TestScore = \beta_{ClassSize} \times \Delta ClassSize$$

This is the definition of the slope of a straight line relating test scores and class size:

$$TestScore = \beta_0 + \beta_{ClassSize} \times ClassSize$$

Incorporating other factors

 This relation may not hold for all districts. Therefore we must incorporate other factors influencing test scores.

$$TestScore = \beta_0 + \beta_{ClassSize} \times ClassSize + \text{other factors}$$

 In a more general expression, ClassSize becomes X, and TestScore becomes Y.

The linear regression model

The linear regression model with one regressor

independent variable / regressor

The linear regression model

The linear regression model with one regressor

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

population regression line / population regression function

FIGURE 4.1

Scatterplot of Test Score vs. Student--Teacher Ratio (Hypothetical Data)

The scatterplot shows hypothetical observations for seven school districts. The population regression line is $\beta_0 + \beta_1 X$. The vertical distance from the i^{th} point to the population regression line is $Y_i - (\beta_0 + \beta_1 X_i)$, which is the population error term v_i for the i^{th} observation.

A test score data in California: the STAR dataset

- The file caschool.xlsx
- The California Standardized Testing and Reporting (STAR) dataset (1998-1999).
- Average test scores on 420 districts in California.
- · For details, see californiatestscores.docx

Average test score v.s. student-teacher ratio

- "testscr": the average test score (of reading and math)
- "str": the student-teacher ratio (No. of student / No. of teachers)

Average test score v.s. student-teacher ratio

Estimation

Estimating the coefficients

- \overline{Y} is an estimator of the population mean.
- Similarly, we need estimators of the coefficients β_0 and β_1 .
- The ordinary least squares (OLS) estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ are the ones that minimize

$$\sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i)^2$$

How to determine the sample regression line $\hat{\beta}_0 + \hat{\beta}_1 X$?

The OLS estimator, predicted values, and residuals

The OLS estimators of the slope and the intercept are

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} = \frac{s_{XY}}{s_X^2}$$

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

- The OLS predicted value: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
- The residuals: $\hat{u}_i = Y_i \hat{Y}_i$ sample regression line/ sample regression function

Average test score v.s. student-teacher ratio

Why use the OLS estimator

- OLS is the dominating method used in practice.
- Under certain assumptions, the OLS estimator is unbiased and consistent.
- With some further assumptions, the OLS estimator is also efficient among a class of unbiased estimators.
 - ⇒ Gauss-Markov Theorem (Section 5.5)

For the definitions of unbiasedness, consistency, and efficiency, read Chapter 3.

Measures of fit

The R^2

- The R^2 correlation of determination, the fraction of the sample variance of Y_i explained by X_i .
- Recall that $Y_i = \hat{Y}_i + \hat{u}_i$

$$R^2 = \frac{\sum_{i=1}^n (\hat{Y}_i - \overline{Y})^2}{\sum_{i=1}^n (Y_i - \overline{Y})^2} = \frac{ESS}{TSS} \quad \text{(explained sum of squares)}$$

$$= 1 - \frac{\sum_{i=1}^n \hat{u}_i^2}{\sum_{i=1}^n (Y_i - \overline{Y})^2} = 1 - \frac{SSR}{TSS} \quad \text{(sum of squared residuals)}$$

Read Appendix 4.3 if you want to know why the second equality holds.

A graphical explanation of SSR

How to read R^2

- R² measures how well the OLS regression line fits the data.
- The value of R^2 ranges between 0 and 1. A high R^2 indicates that the regressor (X_i) is good at predicting Y_i , while a low R^2 indicates that the regressor (X_i) is not very good at predicting Y_i .
- A low R^2 does **not** imply that *this regression* is either "good" or "bad", it **does** tell us that other important factors influence the dependent variable.

The standard error of the regression

• The standard error of the regression (SER) is an estimator of the standard deviation of the regression error u_i .

$$SER = s_{\hat{u}}, \text{ where } s_{\hat{u}}^2 = \frac{1}{n-2} \sum_{i=1}^n \hat{u}_i^2 = \frac{SSR}{n-2}$$

- SER measures the magnitude of a typical deviation from the regression line.
- SER has the same units of the dependent variable.

OLS regression in gretl

- From the menu:
 - > Model > Ordinary least squares >

Scripts:

Regression results in gretl

Model 1: OLS, using observations 1-420

Dependent variable: testscr

	coeffi	cient	std.	error	t-ratio	p-\	value	
const	698.933 -2.27981		9.46749 0.479826		73.82 -4.751		7e-242 8e-06	*** ***
Mean dependent var Sum squared resid		654.1565 144315.5			ependent va f regressio		19.0533 18.5809	
R-squared		0.051240		Adjusted R-squared		ed (0.048970	
F(1, 418)		22.57511		P-value(F)			2.78e-06	
Log-likelihood		-1822.250		Akaike	Akaike criterion		3648.499	
Schwarz criterion		3656.580		Hannan	Hannan-Ouinn		3651.693	

The least square assumptions

The least squares assumptions

For the linear regression model

$$Y_i = \beta_0 + \beta_1 X_i + u_i, \quad i = 1, \dots, n$$

it is assumed that:

1. The error term u_i has conditional mean zero given X_i :

$$E(u_i \mid X_i) = 0 \qquad (\Rightarrow \operatorname{corr}(X_i, u_i) = 0)$$

- 2. (X_i, Y_i) , i = 1, ..., n, are i.i.d. draws from their joint distribution; and
- 3. Large outliers are unlikely: X_i and Y_i have nonzero finite fourth moments.

Implication of $E(u_i \mid X_i) = 0$

Linear regression is sensitive to outliers

Large-sample distributions of $\hat{\beta}_0$ and $\hat{\beta}_1$

If the least square assumptions hold, then in large samples $\hat{\beta}_0$ and $\hat{\beta}_1$ have a jointly normal sampling distribution.

The large-sample distribution of $\,\hat{eta}_1\,$ is $N(eta_1,\sigma^2_{\hat{eta}_1})$, where

$$\sigma_{\hat{\beta}_1}^2 = \frac{1}{n} \frac{\operatorname{var}[(X_i - \mu_X)u_i]}{[\operatorname{var}(X_i)]^2}$$

The large-sample distribution of \hat{eta}_0 is $N(eta_0, \sigma_{\hat{eta}_0}^2)$, where

$$\sigma_{\hat{\beta}_0}^2 = \frac{1}{n} \frac{\text{var}(H_i u_i)}{[E(H_i^2)]^2}, \text{ where } H_i = 1 - \left[\frac{\mu_X}{E(X_i^2)}\right] X_i$$

Hypotheses concerning β_1

Two-sided hypotheses

$$H_0: \beta_1 = \beta_{1,0}$$
 vs. $H_1: \beta_1 \neq \beta_{1,0}$

The t-statistic

$$t = \frac{\hat{\beta}_1 - \beta_{1,0}}{SE(\hat{\beta}_1)}$$

where

$$SE(\hat{\beta}_1) = \sqrt{\hat{\sigma}_{\hat{\beta}_1}^2}, \ \hat{\sigma}_{\hat{\beta}_1}^2 = \frac{1}{n} \times \frac{\frac{1}{n-2} \sum_{i=1}^n (X_i - X)^2 \hat{u}_i^2}{\left[\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2\right]^2}$$

The p-value

$$p$$
-value = $2\Phi(-|t^{act}|)$

Confidence interval for β_1

• The 95% confidence interval for β_1 is

$$[\hat{\beta}_1 - 1.96 SE(\hat{\beta}_1), \hat{\beta}_1 + 1.96 SE(\hat{\beta}_1)]$$

Regression results in gretl

Model 1: OLS, using observations 1-420

Dependent variable: testscr

	coefficient	std. error	t-ratio	p-value
const	698.933	9.46749	73.82	6.57e-242 ***
str	-2.27981	0.479826	-4.751	2.78e-06 ***

Mean dependent var	654.1565	S.D. dependent var	19.05335
Sum squared resid	144315.5	S.E. of regression	18.58097
R-squared	0.051240	Adjusted R-squared	0.048970
F(1, 418)	22.57511	P-value(F)	2.78e-06
Log-likelihood	-1822.250	Akaike criterion	3648.499
Schwarz criterion	3656.580	Hannan-Quinn	3651.693

An example of heteroskedasticity

Definition

The error term u_i is *homoskedastic* is the variance of the conditional distribution of u_i given X_i ,

$$\operatorname{var}(u_i \mid X_i = x)$$

is constant for i = 1, ..., n and in particular does not depend on x.

Otherwise, the error term is heteroskedastic.

Implications of homoskedasticity + least square assumptions

- The OLS estimators of coefficients are efficient among all estimators that are linear in Y_1, \ldots, Y_n . [BLUE]
- The standard errors of $\hat{\beta}_0$ and $\hat{\beta}_1$ reduce to simpler form, e.g.,

$$SE(\hat{\beta}_1) = \sqrt{\tilde{\sigma}_{\hat{\beta}_1}^2}$$

where

$$\tilde{\sigma}_{\hat{\beta}_1}^2 = \frac{s_{\hat{u}}^2}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

Standard errors of $\hat{\beta}_1$

Homoskedasticity-only standard error

$$SE(\hat{\beta}_1) = \sqrt{\tilde{\sigma}_{\hat{\beta}_1}^2}, \ \tilde{\sigma}_{\hat{\beta}_1}^2 = \frac{s_{\hat{u}}^2}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

Heteroskedasticity-robust standard error (HC1)

$$SE(\hat{\beta}_1) = \sqrt{\hat{\sigma}_{\hat{\beta}_1}^2}, \ \hat{\sigma}_{\hat{\beta}_1}^2 = \frac{1}{n} \times \frac{\frac{1}{n-2} \sum_{i=1}^n (X_i - \overline{X})^2 \hat{u}_i^2}{\left[\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2\right]^2}$$

In practice

- If the errors are heteroskedastic but the homoskedastic-only formulas are used
 - ⇒ t-statistic does not have a standard normal distribution, even in large samples
- If the errors are homoskedastic but the heteroskedastic-robust formulas are used
 - ⇒ hypothesis tests and confidence intervals will be valid

Always use heteroskedastic-robust standard errors

Practice in gretl

Heteroskedasticity-robust estimation in gretl

Settings for the whole script

```
set force_hc on
set hc_version 1
    # 0 (the original White's) is the default
set robust_z on
```

For single resression

```
ols yvar xvar --robust
```

(you still need to set the HC version)

Settings in the preferences of gretl

Regression results in gretl (homoskedasticity-only)

Model 1: OLS, using observations 1-420

Dependent variable: testscr

	coefficient			error	t-ratio	p-	p-value			
const str	698.933 -2.27981		9.46749 0.479826		73.82 -4.751	6.57e-242 2.78e-06		*** ***		
Mean depende	ent var	654.1	565	S.D. (dependent v	ar	19.053	35		
Sum squared resid		144315.5		S.E. (S.E. of regression		18.58097			
R-squared		0.0512	240	Adjus	ted R-squar	ed	0.0489	70		
F(1, 418)		22.57511		P-value(F)			2.78e-06			
Log-likeliho	ood	-1822.2	250	Akaik	e criterion		3648.49	99		
Schwarz criterion		3656.	3656.580		Hannan-Quinn			3651.693		

Regression results in gretl (heteroskedasticity-robust with normal distribution)

Model 1: OLS, using observations 1-420

Dependent variable: testscr

Heteroskedasticity-robust standard errors, variant HC1

coefficient			std.	error	Z	p-val	ue	
const str	698.933 -2.27981		10.3644 0.519489		67.44 -4.389	0.0000 1.14e-05		*** ***
Mean depender		654.1			lependent v		19 . 05	
Sum squared resid		144315.5		S.E. of regression		on 1	18.58097	
R-squared		0.051240		Adjusted R-squared			0.048970	
F(1, 418)		19.25943		P-value(F)			0.000014	
Log-likelihood		-1822.250		Akaike criterion			8648.	499
Schwarz criterion		3656.580		Hannan-Quinn			8651.	693

Exercises

1. Reproduce Table 4.1 using matrix.

● ○ ● gretl: f									
View Fill Transform									
1, 1									
	Average	Std	10% percentile	25% percentile	40% percentile	50% percentile	60% percentile	75% percentile	90% percentile
Student-teacher ratio	19.6	1.9	17.3	18.6	19.3	19.7	20.1	20.9	21.9
Test score	654.2	19.1	630.4	640.0	649.0	654.4	659.4	666.7	679.3

2. Learn command gnuplot (or plot) and reproduce Figure 4.2 with appropriate titles and ranges of axes.

gnuplot testscr str --output=display --fit=none

Exercises (cont.)

- 3. Find the relation and differences among $\hat{\beta}_1$, r_{XY} , and R^2 by solving Exercises 4.9 and 4.12.
- 4. Learn Section 5.3.

References

- 1. Stock, J. H. and Watson, M. M., *Introduction to Econometrics*, 3rd Edition, Pearson, 2012.
- 2. Gretl User's Guide