

UNIVERSIDADE DO VALE DO ITAJAÍ

Curso de CIÊNCIA DA COMPUTAÇÃO

Cálculo I

Denise Prado Kronbauer

denise.kronbauer@univali.br denipk@gmail.com

UNIVERSIDADE DO VALE DO ITAJAÍ

Curso de CIÊNCIA DA COMPUTAÇÃO

Unidade 3 - Derivadas

Denise Prado Kronbauer

denise.kronbauer@univali.br denipk@gmail.com

UNIDADE 2: Aplicações da Derivada.

- 1. Análise do comportamento das funções (funções crescentes e decrescentes, sentidos de crescimento de funções, pontos de máximos e mínimos, sentidos de concavidade de funções, pontos de inflexão, procedimentos para o esboço de funções usando o conceito de derivadas).
- 2. Problemas de maximização e minimização.

A derivada é um importante instrumento para analisar as funções
e seus gráficos. Estaremos interessados em assuntos
tais como identificar onde o gráfico de uma função é crescente ou decrescente, onde
ocorrem seus pontos mais altos e mais baixos, e ainda
de que forma os gráficos se inclinam.

A seguir, inicia-se com os conceitos de função crescente, decrescente e constante.

Definição: Função crescente e função decrescente

O movimento de um objeto sobre uma curva (da esquerda para a direita)

pode ser pensado como a subida ou descida por uma rampa

ou um movimento em linha reta e esses aspectos podem ser utilizados para descrever

com detalhes o formato da curva.

Definição:

Seja f(x) definida em um intervalo e sejam x_1 e x_2 pontos do intervalo. Então:

- a) f é uma função crescente nesse intervalo se $f(x)_1 < f(x_2)$ para $x_1 < x_2$;
- b) f é uma função decrescente nesse intervalo se $f(x)_1 > f(x_2)$ para $x_1 < x_2$;
- c) f é uma função constante nesse intervalo se $f(x)_1 = f(x_2)$ para todos os pontos x_1 e x_2 ;

A figura abaixo sugere que uma função diferenciável *f* é crescente em qualquer intervalo, onde o seu gráfico tem retas tangentes com inclinações positivas; decrescente em qualquer intervalo onde as retas tangentes ao gráfico tiverem inclinações negativas e constante em qualquer intervalo onde o seu gráfico tiver retas tangentes com inclinações zero.

Teste da Derivada Primeira:

Seja f(x) uma função contínua em [a,b] e diferenciável em (a,b):

- a) Se f'(x) > 0 para todo x em (a, b), então f(x) é **crescente** em [a, b];
- b) Se f'(x) < 0 para todo x em (a, b), então f(x) é decrescente em [a, b];
- c) Se f'(x) = 0 para todo x em (a, b), então f(x) é constante em [a, b].

Exemplo: Identifique os intervalos nos quais as seguintes funções são crescentes ou decrescentes:

a)
$$f(x) = x^2 - 4x + 3$$

b)
$$f(x) = x^3 + x^2 - 5x - 5$$

c)
$$f(x) = 3x^4 - 4x^3 - 12x^2 + 5$$

Respostas:

- a) f(x) é decrescente em $(-\infty, 2)$ e crescente em $(2, \infty)$;
- b) f(x) é decrescente em $\left(-\frac{5}{3},1\right)$ e crescente em $\left(-\infty,-\frac{5}{3}\right)$ \cup $(1,+\infty)$;
- c) f(x) é decrescente em $(-\infty, -1) \cup (0,2)$ e crescente em $(-1,0) \cup (2, +\infty)$;

Exercícios: Identifique os intervalos nos quais as seguintes funções são crescentes ou decrescentes:

a)
$$f(x) = x^3 - 12x + 11$$

b)
$$f(x) = x^3 - 6x^2 + 9x + 1$$

c)
$$f(x) = x + \frac{3}{x^2}$$

d)
$$f(x) = \sqrt{x} + \frac{4}{x}$$

Respostas:

- a) f(x) é crescente em $(-\infty, -2)$ e decrescente em $(2, \infty)$;
- b) f(x) é crescente em $(-\infty, 1) \cup (3, \infty)$ e decrescente em (1,3);
- c) f(x) é crescente em $(-\infty,0)$ \cup $(\sqrt[3]{6},\infty)$ e decrescente em $(0,\sqrt[3]{6})$;
- d) f(x) é crescente em $(4, \infty)$ e decrescente em (0,4);

a)

b)

Definição: Concavidade do gráfico de uma função

Verificamos que o sinal algébrico da derivada primeira de uma função determina se o gráfico é crescente ou decrescente.

Agora veremos que o sinal algébrico da segunda derivada determina quando o gráfico é curvado para cima ou curvado para baixo.

Teste da Derivada Segunda:

Seja f(x) uma função duas vezes diferenciável num intervalo (a, b):

- a) Se f''(x) > 0 para todo x em (a, b), então o gráfico de f(x) possui concavidade para cima em (a, b);
- b) Se f''(x) < 0 para todo x em (a, b), então o gráfico de f(x) possui **concavidade para baixo** em (a, b).

Exemplo: Identifique os intervalos abertos nos quais as seguintes funções têm a concavidade para cima e para baixo:

a)
$$f(x) = x^2 - 4x + 3$$

b)
$$f(x) = x^3 - 3x^2 + 1$$

c)
$$f(x) = x^3 + x^2 - 5x - 5$$

Respostas:

- a) f(x) é côncava para cima em $(-\infty, \infty)$;
- b) f(x) é côncava para cima em $(1, \infty)$ e côncava para baixo em $(-\infty, 1)$;
- c) f(x) é côncava para cima em $\left(-\frac{1}{3}, \infty\right)$ e côncava para baixo em $\left(-\infty, -\frac{1}{3}\right)$;

Exercícios: Identifique os intervalos abertos nos quais as seguintes funções têm a concavidade para cima e para baixo:

a)
$$f(x) = x^3 - 2x^2 + x + 1$$

b)
$$f(x) = 3x^4 - 4x^3 + 6$$

c)
$$f(x) = 2x^6 - 6x^4$$

d)
$$f(x) = (x^2 - 1)^2$$

e)
$$f(x) = \sqrt[5]{x} - 1$$

f)
$$f(x) = \sqrt[3]{x^2}(3x + 10)$$

Respostas:

- a) f(x) é côncava para cima em $\left(\frac{2}{3}, \infty\right)$ e côncava para baixo em $\left(-\infty, \frac{2}{3}\right)$
- b) f(x) é côncava para cima em $(-\infty, 0)$ $e\left(\frac{2}{3}, \infty\right)$ e côncava para baixo em $\left(0, \frac{2}{3}\right)$;
- c) f(x) é côncava para cima em $\left(-\infty, -\sqrt{\frac{6}{5}}\right) e\left(\sqrt{\frac{6}{5}}, \infty\right)$ e côncava para baixo em $\left(-\sqrt{\frac{6}{5}}, \sqrt{\frac{6}{5}}\right)$;

Respostas:

- d) f(x) é côncava para cima em $\left(-\infty, -\sqrt{\frac{1}{3}}\right) e\left(\sqrt{\frac{1}{3}}, \infty\right)$ e côncava para baixo em $\left(-\sqrt{\frac{1}{3}}, \sqrt{\frac{1}{3}}\right)$;
- e) f(x) é côncava para cima em $(-\infty, 0)$ e côncava para baixo em $(0, \infty)$;
- f) f(x) é côncava para cima em $\left(\frac{2}{3}, \infty\right)$ e côncava para baixo em $\left(-\infty, 0\right)$ e $\left(0, \frac{2}{3}\right)$;

Definição: Máximos e mínimos de uma função

Para determinar os extremos de uma função, podemos utilizar o critério da derivada 2ª, determinando os valores de máximo ou mínimo relativos.

Definição: Máximos e mínimos de uma função

Sejam f(x) uma função derivável num intervalo (a,b) e c um ponto crítico de f(x) nesse intervalo, isto é, f'(c) = 0, com a < c < b.

Se f(x) admite a derivada f''(x) em (a,b), temos:

- a) Se f''(c) < 0, então f(x) tem um máximo relativo em c;
- b) Se f''(c) > 0, então f(x) tem um mínimo relativo em c;
- c) Se f''(c) = 0, nada podemos afirmar, devemos utilizar outas análises;

Exemplo: Determinar os máximos e os mínimos relativos de f.

$$f(x) = 18x + 3x^2 - 4x^3$$

$$f'(x) = 18 + 6x - 12x^2$$

$$f''(x) = 6 - 24x$$

$$f'(x) = 0 \rightarrow 18 + 6x - 12x^2 = 0$$

Pontos Críticos: x = 3/2 e x = -1

$$f''(3/2) = 6 - 24\left(\frac{3}{2}\right) = -30 < 0$$

f tem um valor máximo relativo em 3/2

Exercícios: Determinar os máximos e os mínimos relativos de f:

a)
$$f(x) = x(x-1)^2$$

f tem um valor mínimo relativo em 1 e um valor máximo relativo em 1/3

b)
$$f(x) = 6x - 3x^2 + \frac{1}{2}x^3$$

f tem um ponto crítico em x = 2, porém nada podemos afirmar.

Usando o critério da derivada primeira, concluímos que esta função é sempre crescente. Portanto, não existem máximos nem mínimos relativos.

Definição: Ponto de Inflexão

São chamados pontos de inflexão os pontos no gráfico de uma função nos quais a concavidade muda de sentido.

Definição: Ponto de Inflexão

Um ponto P(c, f(c)) do gráfico de uma função contínua f é chamado **ponto de inflexão** se existe um intervalo (a, b) contendo c, tal que uma das seguintes situações ocorra:

- a) f é côncava para cima em (a, c) e côncava para baixo (c, b);
- b) f é côncava para baixo em (a, c) e côncava para cima em (c, b).

Exemplo: Determinar os pontos de inflexão e reconhecer os intervalos onde a seguinte função tem concavidade voltada para cima ou para baixo.

$$f(x) = (x-1)^3$$

$$f'(x) = 3(x - 1)^2$$

$$f''(x) = 6(x-1)$$

$$f''(x) > 0 \rightarrow 6(x-1) > 0$$

 $x-1 > 0 \rightarrow x > 1$

$$f''(x) > 0 \rightarrow 6(x-1) > 0$$

 $x-1 > 0 \rightarrow x > 1$

Portanto, no intervalo $(1,+\infty)$, f''(x)>0. Analogamente $(-\infty,1)$, f''(x)<0. Sabemos então que f é côncava para baixo no intervalo $(-\infty,1)$ e no intervalo $(1,+\infty)$ é côncava para cima.

No ponto c=1 a concavidade muda de sentido.

Logo, neste ponto, o gráfico de f tem um ponto de inflexão.

Exercícios: Determinar os pontos de inflexão e reconhecer os intervalos onde as funções seguintes tem concavidade voltada para cima ou para baixo.

a)
$$f(x) = x^4 - x^2$$

b)
$$f(x) = \begin{cases} x^2 & \text{, } para \ x \le 1 \\ 1 - (x - 1)^2, \ para \ x > 1 \end{cases}$$

a)
$$f(x) = x^4 - x^2$$

f tem concavidade para cima nos intervalos $\left(-\infty, -\frac{\sqrt{6}}{6}\right), \left(\frac{\sqrt{6}}{6}, +\infty\right)$ e f é côncava para baixo no intervalo $\left(-\frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{6}\right)$.

Nos pontos $c_1=-\frac{\sqrt{6}}{6}$ e $c_2=\frac{\sqrt{6}}{6}$ a concavidade muda de sentido.

Logo, nestes pontos, o gráfico de f tem pontos de inflexão.

b)
$$f(x) = \begin{cases} x^2 & \text{, } para \ x \le 1 \\ 1 - (x - 1)^2, \ para \ x > 1 \end{cases}$$

f tem concavidade para cima no intervalo $(-\infty, 1)$ e f é côncava para baixo no intervalo $(1, +\infty)$.

No ponto c=1 a concavidade muda de sentido e assim o gráfico de f apresenta um ponto de inflexão em c=1.