教材三份模拟练习卷更新题

一. 选择和填空题

1. 设直线与三坐标平面 xOv, vOz, zOx 的夹角分别为 ξ , η , ζ ,则

$$\cos^2 \xi + \cos^2 \eta + \cos^2 \zeta = () .$$

- (A) 0
- (B) 1
- (C) 2
- (D) 3

- (A) 连续,偏导数存在
 (B) 连续,偏导数不存在

 (C) 不连续,偏导数存在
 (D) 不连续,偏导数不存在

4.设曲面
$$\Sigma$$
: $|x|+|y|+|z|=1$, 则 $\bigoplus_{\Sigma} (x+|y|) dS = _____.$

6.函数 z = f(x,y) 由方程 $z\varphi(x+y) + x\psi(y+z) = 0$ 确定,其中 φ,ψ 有连续偏导数,则

$$6.$$
化 $\int_0^2 dx \int_0^{\sqrt{3}x} f\left(\arctan\frac{y}{x}\right) dy$ 为极坐标形式的二次积分______.

二. 简答题

7.求点 A(3,2,6) 到直线 $\frac{x}{1} = \frac{y+7}{2} = \frac{z-3}{1}$ 的距离.

9. 求函数 $u = ax^2 + by^2 + cz^2$ 在点P(1,1,1)处沿向量 \overrightarrow{OP} 方向的方向导数,并说明它 是否为该函数在该点处的方向导数的最大值.

8.若函数
$$z = f(x, y)$$
满足 $\frac{\partial^2 z}{\partial y^2} = 2$ 且 $f(x, 1) = x + 2$, $f_y(x, 1) = x + 1$, 求 $f(x, y)$.

9.设
$$\Omega$$
: $x^2 + y^2 + z^2 \le 1$, 计算 $\iiint_{\Omega} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \right) dx dy dz$.

10.已知
$$L$$
:
$$\begin{cases} x^2 + y^2 + z^2 = a^2, \\ x + y + z = 0, \end{cases}$$
 求 $\int_L (x^2 + y - z) ds$.

11.设L是圆 $x^2 + y^2 = 9$ 逆时针方向一周,求 $\oint_L x dy$ 和 $\oint_L x ds$.

三. 综合题

- 15. 计算二重积分 $I = \iint_D \left(x^2 + xye^{x^2 + y^2}\right) dxdy$, 其中:
- (1) D 为圆域 $x^2 + y^2 \le 1$; (2) D 由直线 y = x, y = -1, x = 1 围成 .
- 18. 设 Σ 为 球 面 $x^2 + y^2 + z^2 = a^2(a > 0)$, 利 用 高 斯 公 式 计 算 曲 面 积 分 $I = \bigoplus_{\Sigma} (x^4 + y^4 + z^4) dS.$

参考答案

C; C;
$$\frac{4\sqrt{3}}{3}$$
; $-\frac{z\varphi'(x+y)+\psi(y+z)}{\varphi(x+y)+x\psi'(y+z)}dx - \frac{z\varphi'(x+y)+x\psi'(y+z)}{\varphi(x+y)+x\psi'(y+z)}dy$;

$$\int_0^{\frac{\pi}{3}} \mathrm{d}\theta \int_0^{\frac{2}{\cos\theta}} f(\theta) \rho \mathrm{d}\rho$$

_,

7.
$$\int_0^{\frac{\pi}{3}} d\theta \int_0^{\frac{2}{\cos\theta}} f(\theta) \rho d\rho;$$

9.
$$\frac{2(a+b+c)}{\sqrt{3}}$$
,最大值 $2\sqrt{a^2+b^2+c^2}$.

8.
$$f(x,y) = y^2 + (x-1)y + 2$$
.

9.
$$\frac{4\pi}{15} \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \right)$$
.

$$10.\frac{2\pi a^3}{3}$$
.

$$11.9\pi$$
, 0.

三、

15. (1)
$$\frac{\pi}{4}$$
; (2) $\frac{2}{3}$.

$$18.\frac{12}{5}\pi a^6$$
.