Structural Estimation of Time-varying Spillovers: an Application to International Credit Risk Transmission

Lukas Boeckelmann¹ Arthur Stalla-Bourdillon²

August 31, 2021

¹Paris School of Economics & Banque de France

 $^{^2 \}mathrm{Universit\acute{e}}$ Paris-Dauphine & Banque de France

Introduction – Motivation

 Numerous econometric models to gauge financial spillovers (Dungey et al., 2005).

Main issue: endogeneity of asset prices.

- Among them, **Diebold and Yilmaz** (2009, DY) allow for the construction of time-varying spillovers, from pairwise to systemwise.
- Yet, DY-approach relies on identified SVAR, and empirical research:
 - Either circumvents identification-issues (Cholesky, GIRF, Claeys and Vašíček, 2014).
 - Or has attractive identification, but **no time variation** of spillovers **outside of rolling window estimation** (Ando *et al.*, 2018, De Santis and Zimic, 2018, 2019).

Introduction – Overview of our approach

General idea:

• Exploit time-varying FEVDs as measures of spillovers (Diebold-Yilmaz).

Data:

- 9 EZ sovereign CDS: BE DE ES FR GR IE IT NL PT.
- 7 corresponding EZ bank CDS, apart for GR and IE. Daily since 2008.

Econometric roadmap:

- Filter CDS series from **common shocks**.
- Estimate a SVAR-GARCH on the residuals, identified by heteroskedasticity.
- **©** Economic identification by contribution, validated by matching structural shocks with historical events.
- **1** TV variances from GARCH processes allow construction of TV FEVDs.

Introduction – Preview of main results

Methodological Contribution

- Identified orthogonal shocks even in a 16-variable SVAR.
- Our contagion indices appear **more reactive** than other methods used in the literature (Granger-causality).
- Pairwise spillovers better identify the sources of shocks.

Economic Validation

- Our estimates match both the narratives of spillovers during the EZ debt crisis...
- ...and the theoretical channels of credit risk spillovers.

Model – Identification by Heteroskedasticity

$$\begin{array}{lll} \text{Reduced form VAR} & & \text{Structural VAR} \\ \mathbf{y}_t = \mathbf{A}(\mathbf{L}) \ \mathbf{y}_{t-1} + \boldsymbol{\mu}_t & \rightarrow & \boldsymbol{B}_0 \mathbf{y}_t = \mathbf{B}(\mathbf{L}) \ \mathbf{y}_{t-1} + \boldsymbol{\epsilon}_t \\ \end{array}$$

Assume:

$$E(\boldsymbol{\mu}_{t}\boldsymbol{\mu}_{t}') = \begin{cases} \boldsymbol{\Sigma}_{1} & \text{if } t \leq T \\ \boldsymbol{\Sigma}_{2} & \text{if } t > T \end{cases} E(\boldsymbol{\epsilon}_{t}\boldsymbol{\epsilon}_{t}') = \begin{cases} \boldsymbol{I} & \text{if } t \leq T \\ \boldsymbol{\lambda} & \text{if } t > T \end{cases}$$

Then, fully identified system:

$$oldsymbol{\Sigma}_1 = oldsymbol{B}_0 oldsymbol{B}_0^{-1} \ ext{and} \ oldsymbol{\Sigma}_2 = oldsymbol{B}_0 oldsymbol{\lambda} oldsymbol{B}_0^{-1}$$

Works also with more than two volatility regimes (as in our case)

Model – SVAR-GARCH

Assume:

$$\epsilon_{k,t} = \sigma_{k,t|t-1} e_{k,t}$$
 where $e_t \sim \text{i.i.d. N}(\mathbf{0}, \mathbf{I}_N)$ and (1)

$$\sigma_{k,t|t-1}^2 = (1 - \gamma_k - g_k) + \gamma_k (\epsilon_{k,t-1})^2 + g_k \sigma_{k,t-1|t-2}^2$$
 (2)

Model – SVAR-GARCH

Assume:

$$\epsilon_{k,t} = \sigma_{k,t|t-1} e_{k,t}$$
 where $e_t \sim \text{i.i.d. N}(\mathbf{0}, \mathbf{I}_N)$ and (1)

$$\sigma_{k,t|t-1}^2 = (1 - \gamma_k - g_k) + \gamma_k (\epsilon_{k,t-1})^2 + g_k \sigma_{k,t-1|t-2}^2$$
 (2)

Then, we can express the reduced form shocks as:

$$\boldsymbol{\mu}_t = \boldsymbol{B}_0^{-1} \boldsymbol{\lambda}_{t|t-1}^{\frac{1}{2}} \boldsymbol{e}_t \tag{3}$$

where:

$$\lambda_{t|t-1} = \begin{bmatrix} \sigma_{1,t|t-1}^2 & 0 \\ & \dots & \\ 0 & \sigma_{N,t|t-1}^2 \end{bmatrix}$$
 (4)

Model – SVAR-GARCH

Assume:

$$\epsilon_{k,t} = \sigma_{k,t|t-1} e_{k,t}$$
 where $e_t \sim \text{i.i.d. N}(\mathbf{0}, \mathbf{I}_N)$ and (1)

$$\sigma_{k,t|t-1}^2 = (1 - \gamma_k - g_k) + \gamma_k (\epsilon_{k,t-1})^2 + g_k \sigma_{k,t-1|t-2}^2$$
 (2)

Then, we can express the reduced form shocks as:

$$\boldsymbol{\mu}_t = \boldsymbol{B}_0^{-1} \boldsymbol{\lambda}_{t|t-1}^{\frac{1}{2}} \boldsymbol{e}_t \tag{3}$$

where:

$$\lambda_{t|t-1} = \begin{bmatrix} \sigma_{1,t|t-1}^2 & 0 \\ & \dots & \\ 0 & \sigma_{N,t|t-1}^2 \end{bmatrix}$$
 (4)

Statistical identification:

$$\Sigma_{u,t|t-1} = B_0^{-1} \lambda_{t|t-1} B_0^{-1}$$
(5)

Model – Diebold-Yilmaz Index (sum-up)

- VAR: $\mathbf{y}_t = \mathbf{A}(\mathbf{L}) \ \mathbf{y}_{t-1} + \boldsymbol{\mu}_t$
- ② Identification: $B_0 \mathbf{y}_t = \mathbf{B}(\mathbf{L}) \ \mathbf{y}_{t-1} + \boldsymbol{\epsilon}_t \text{ and } E_{t-1}(\boldsymbol{\epsilon}_t \boldsymbol{\epsilon}_t') = \boldsymbol{\lambda}_{t|t-1}$
- Use of FEVD as connectedness tables:

	y_1	y_2		y_N	To Others
y_1	d_{11}^H	d_{12}^H		d_{1N}^H	$\sum_{j=1}^{N} d_{1j}^{H}, j \neq 1$
y_2	d_{21}^H	d_{22}^H		d_{2N}^H	$\sum_{j=1}^{N} d_{1j}^{H}, j \neq 1$ $\sum_{j=1}^{N} d_{2j}^{H}, j \neq 2$
:	:	:	٠	:	:
y_N	d_{N1}^H	d_{N2}^H		d_{NN}^H	$\sum_{j=1}^{N} d_{Nj}^{H}, j \neq N$

From Others
$$\sum_{i=1}^{N} d_{i1}^{H}$$
 $\sum_{i=2}^{N} d_{i2}^{H}$ \cdots $\sum_{i=3}^{N} d_{i3}^{H}$ $\frac{1}{N} \sum_{i,j=1}^{N} d_{ij}^{H}$ $i \neq 1$ $i \neq 2$ $i \neq N$ $i \neq j$

Economic Identification – FEVD

	BE_bk	FR_bk	DE_bk	II_bk	NL_bk	ES_bk	PT_bk	DE	BE	æ	GR	¥	ES	E	Ы	ш
BE bk	81%	1%	3%	0%	2%	0%	0%	2%	1%	1%	0%	1%	0%	0%	0%	1%
FR_bk	0%	54%	5%	2%	0%	6%	0%	2%	16%	11%	1%	2%	4%	6%	3%	5%
DE_bk	3%	9%	78%	3%	2%	3%	1%	4%	11%	7%	2%	4%	11%	8%	10%	10%
IT_bk	3%	5%	1%	83%	17%	16%	4%	0%	1%	0%	5%	0%	2%	2%	3%	0%
NL_bk	1%	2%	0%	5%	61%	1%	1%	3%	3%	3%	3%	7%	19%	4%	9%	4%
ES_bk	2%	23%	3%	1%	1%	56%	1%	10%	4%	3%	1%	1%	1%	1%	1%	4%
PT_bk	2%	1%	0%	1%	0%	1%	84%	0%	0%	1%	2%	0%	1%	1%	2%	1%
DE	4%	1%	1%	0%	2%	2%	0%	70%	13%	8%	2%	10%	4%	5%	3%	6%
BE	0%	2%	0%	0%	1%	1%	1%	1%	34%	0%	1%	3%	1%	2%	2%	5%
FR	1%	2%	0%	0%	1%	2%	1%	0%	5%	61%	1%	1%	1%	3%	1%	1%
GR	0%	0%	0%	0%	1%	0%	0%	1%	0%	0%	76%	0%	1%	0%	0%	1%
NL	1%	0%	0%	1%	1%	2%	0%	2%	9%	3%	1%	68%	1%	2%	1%	7%
ES	1%	0%	6%	2%	8%	8%	1%	1%	0%	1%	0%	1%	50%	7%	15%	1%
IT	0%	0%	0%	0%	1%	1%	0%	1%	1%	1%	2%	1%	2%	58%	3%	2%
PT	0%	0%	0%	0%	0%	0%	1%	0%	1%	0%	2%	1%	2%	1%	40%	0%
IE	1%	0%	0%	1%	0%	0%	3%	1%	0%	1%	0%	0%	1%	1%	8%	53%

Model Comparison – Total Spillovers

Model Comparison – Identification (i)

Model Comparison – Identification (ii)

	$\begin{array}{c} \mathrm{DCC} \\ \mathrm{Fengler} \end{array}$	DCC Cholesky	VAR GIRF	VAR Cholesky	SVAR - GARCH
(i) Subset of sovereign events	11.0	22.0	44.0	39.0	78.0
(ii) Total sovereign events	30.8	33.3	33.3	38.5	64.1
(iii) Total sovereign and bank events	34.2	36.8	39.5	47.4	68.4
(iv) Candelon et al. (2011)	36.3	45.4	36.4	44.6	63.6
(v) Alexandre et al. (2016)	12.5	25.0	75.0	0.5	75.0

Note: This table reports the percentage of correct event identifications by each model.

Economic Validation – Theoretical channels (i)

- Do estimates also match with theoretical contagion channels?
- We turn to panel analysis, regressing:
 - $\bar{\omega}_{i \to j,t}$ quarterly average pairwise spillover from i to j.
 - On D_{ijt} distance variables between i and j, e.g.: similarity in debt/GDP.
 - And on $E_{j\to i,t}$, exposure variables of j on i, e.g.: trade links.
- We assess various potential channels, such as:
 - Trade links between sovereigns.
 - Similar portfolio channel between banks.
 - Implicit bailout channel from banks to sovereigns.
 - Balance sheet channel from sovereigns to banks...

Economic Validation – Theoretical channels (ii)

$$\bar{\omega}_{i\to j,t} = \beta_i + \mathbf{D}_{ijt}\beta_1 + \mathbf{E}_{j\to i,t}\beta_2 + \alpha_t + \epsilon_{ij,t}$$
(6)

Regression		Expected channels	Significant channels
Sov Sov.		Distance: Business Cycle, D/GDP Exposure: Trade, Investment	D/GDP (+), Trade (+), Investment (+)
Bank - Bank		Distance: NPLs, Capital ratios Exposure: Sim. portfolios, bank claims	Capital ratios (+), Sim. portfolios (+)
Bank - Sov.	High debt Low debt	Vulnerability: Capital ratio, D/GDP, Current account, GDP growth Exposure: domestic sovereign / domestic NFC	Cap ratio (-), D/GDP (+) Cap ratio (-), D/GDP (-), NFC (+)
Sov Bank	High debt Low debt	Vulnerability: NPLs, Capital ratio, - Liquidity Exposure: domestic sovereign / domestic NFC	NPLs (+), Liquidity (-), Sovereign debt (+) Liquidity (-), Sovereign debt (+), NFCs (+)

Conclusion

- Model: **Structural version** of DY based on a SVAR-GARCH with **up-to-date spillovers**.
- Methodological Results:
 - Economic identification enabled, even in a 16-variable system.
 - Outperforms other models in terms of timeliness and narrative fit.
 - Validation further supported by regression analysis: estimates match theoretical channels.
- Further research:
 - Trade-off between daily reactive estimates and time-varying B_0 .
 - Fewer constraints than usual SVAR: could be used for alternative datasets (e.g. liquidity contagion).

THANK YOU

BACKUP SLIDES

Annex – FEVD build-up

• With the MA representation of Y_t :

$$\mathbf{Y}_{t+H} - \mathbf{Y}_{t+H|t} = \sum_{i=0}^{H-1} \mathbf{\Theta}_i \boldsymbol{\epsilon}_{t+H-i}$$
 (7)

• FEVD is a function of MSPE:

$$MSPE_{t}(H) = E_{t}(Y_{t+H} - Y_{t+H|t})(Y_{t+H} - y_{t+H|t})'$$

$$= \sum_{i=0}^{H-1} \Theta_{i} \lambda_{t+H-i|t}^{*} \Theta_{i}'$$
(8)

• So connectedness may come from 2 sources, propagation mechanisms $(\Theta_i = JA^iJ'B_0^{-1})$ or volatility $(\lambda_{t+H-i|t}^*)$. Volatility being projected at each t with the GARCH structure of the SVAR.

Annex – Theoretical channels, between sovereigns

$$\bar{\omega}_{i \to j,t}(h) = \beta_i + \alpha_t + \beta_2 d_{ij,t}^{GDP} + \beta_3 d_{ij,t}^{\frac{D}{GDP}} + \beta_4 \operatorname{exposure}_{j \to i,t}^k + \epsilon_{ij,t}$$
 (9)

	(1)	(2)	(3)
Similar BC	-0.00005	-0.002	-0.001
Similar D/GDP	(0.001) 0.021^{***} (0.002)	(0.001) 0.007^{***} (0.002)	$ \begin{array}{c} (0.001) \\ 0.014^{***} \\ (0.002) \end{array} $
Trade exposure	, ,	0.433***	, ,
Investment exposure		(0.020)	0.236*** (0.028)
Time fixed effects?	Yes	Yes	Yes
i fixed effects?	Yes	Yes	Yes
Observations	3,240	3,240	3,171
\mathbb{R}^2	0.448	0.598	0.490
Adjusted R ²	0.438	0.591	0.481

Annex – Theoretical channels, between banks

$$\bar{\omega}_{i \to j,t}(h) = \beta_i + \alpha_t + \beta_2 d_{ij,t}^{NPL} + \beta_3 d_{ij,t}^{Lev.R.} + \beta_4 \expsure_{j \to i,t}^k + \epsilon_{ij,t}$$
 (10)

	(1)	(2)	(3)
Similar NPLs	-0.001	-0.003	-0.001
	(0.003)	(0.003)	(0.003)
Sim. Capital ratios	0.037***	0.029**	0.040***
	(0.009)	(0.010)	(0.010)
Similar portfolio	, ,	7.304***	, ,
		(1.355)	
Bank claims		, ,	-0.013
			(0.009)
Time fixed effects?	Yes	Yes	Yes
i fixed effects?	Yes	Yes	Yes
Observations	1,812	1,812	1,812
\mathbb{R}^2	0.434	0.439	0.435
Adjusted R ²	0.417	0.422	0.417

Annex – Theoretical channels, bank to sovereign

$$\bar{\omega}_{bank_i \to sov_i, t}(h) = \beta_0 + \alpha_t + \beta_1 v_{bank_i, t}^{Lev.R.} + \beta_2 v_{sov_i, t}^{D/GDP} + \beta_3 v_{sov_i, t}^{CA} + \beta_4 v_{sov_i, t}^{gGDP} + \beta_5 \exp \operatorname{osure}_{sov_i \to bank_i, t}^k + \epsilon_{bank_i, sov_i, t}$$

$$(11)$$

	High debt countries			$Low\ debt\ countries$			
	(1)	(2)	(3)	(4)	(5)	(6)	
Capital	-0.91***	-0.91***	-1.01**	-5.01***	-5.07***	-3.88***	
	(0.21)	(0.21)	(0.31)	(1.04)	(1.05)	(1.07)	
Debt to GDP	1.00***	1.01***	0.88***	3.74**	3.56**	3.50**	
	(0.17)	(0.17)	(0.21)	(1.29)	(1.28)	(1.22)	
Current Account	0.13	0.13	0.23	-0.63°	$-0.62^{'}$	0.16	
	(0.20)	(0.26)	(0.28)	(1.26)	(1.28)	(1.31)	
GDP growth	$-0.06^{'}$	$-0.05^{'}$	$-0.05^{'}$	$-0.29^{'}$	$-0.31^{'}$	$-0.28^{'}$	
-	(0.22)	(0.23)	(0.22)	(0.66)	(0.66)	(0.68)	
Sov. exposure		0.06			2.94		
		(1.92)			(9.63)		
Non-bank exposure			-0.88			20.52***	
•			(1.50)			(6.02)	
Time fixed effects?	Yes	Yes	Yes	Yes	Yes	Yes	
Observations	174	174	174	123	123	123	
\mathbb{R}^2	0.74	0.74	0.74	0.93	0.93	0.94	
Adjusted R ²	0.64	0.64	0.64	0.89	0.89	0.90	

Annex – Theoretical channels, sovereign to bank

$$\bar{\omega}_{sov_i \to bank_i, t}(h) = \beta_0 + \alpha_t + \beta_1 v_{bank_i, t}^{NPL} + \beta_2 v_{bank_i, t}^{Lev.R.} + \beta_3 v_{bank_i, t}^{Liq.R.} + \beta_5 \exposure_{bank_i \to sov_i, t}^k + \epsilon_{sov_i, bank_i, t}$$
(12)

	Hightarrow	gh debt countri	es	$Low\ debt\ countries$			
	(1)	(2)	(3)	(4)	(5)	(6)	
NPLs	2.61**	2.24**	2.74**	-0.10	-0.12	-0.19	
	(0.81)	(0.81)	(0.84)	(0.18)	(0.17)	(0.17)	
Capital	-1.38	-0.80	-2.49	-0.06	0.34	0.41	
	(0.77)	(0.76)	(1.31)	(0.23)	(0.23)	(0.31)	
Liquid assets	-4.03***	-6.17***	-4.60***	-0.92***	-0.11	-0.43	
	(0.48)	(1.01)	(0.69)	(0.18)	(0.29)	(0.29)	
Exposure domestic gov. debt		0.18**			0.18***		
		(0.07)			(0.05)		
Exposure domestic NFCs		. ,	-0.04		, ,	0.05^*	
			(0.03)			(0.02)	
Time fixed effects?	Yes	Yes	Yes	Yes	Yes	Yes	
Observations	174	174	174	121	121	121	
\mathbb{R}^2	0.54	0.55	0.54	0.88	0.89	0.88	
Adjusted R ²	0.37	0.38	0.37	0.80	0.82	0.81	

Annex – Granger causality

H_0 : SVAR-GARCH does not Granger cause:	F - test	p-value
Rolling window estimated models		
VAR Cholesky	14.91	3.627e-07***
VAR GIRF	6.0492	0.002391 **
GARCH-related models		
DCC Cholesky	1.0527	0.3491
DCC Fengler	1.3641	0.2558
H_0 : SVAR-GARCH is not Granger caused by:	F - test	p-value
	F - test	p-value
Rolling window estimated models		•
	0.5159	p-value 0.597
Rolling window estimated models		
Rolling window estimated models VAR Cholesky VAR GIRF	0.5159	0.597
Rolling window estimated models VAR Cholesky VAR GIRF GARCH-related models	0.5159 0.9483	0.597 0.3875
Rolling window estimated models VAR Cholesky VAR GIRF	0.5159	0.597

Annex – Pairwise spillovers

Annex – Inputs

Annex – Granger causality

F - test	p-value
14.91	3.627e-07***
6.0492	0.002391 **
1.0527	0.3491
1.3641	0.2558
F' - test	p-value
0.5159	0.597
0.9483	0.3875
0.4206	0.6567
	14.91 6.0492 1.0527 1.3641 F - test

Annex – Events

Annex – Robustness

— Citi-Oil-US & UK sov. — Citi-Oil-US & UK sov.-US & UK banks — Citi-Oil-US sov.-US banks — SVAR-GARCH

Fratzscher et al. 1 — Fratzscher et al. 2 — SVAR-GARCH

Annex – Test identification

h under H_0	$Q_1(1)$	df	p-value
1	124.3405	1	$< 10^{-5}$
2	113.4685	1	$< 10^{-5}$
3	85.0733	1	$< 10^{-5}$
4	66.6269	1	$< 10^{-5}$
5	60.7231	1	$< 10^{-5}$
6	46.2298	1	$< 10^{-5}$
7	38.0658	1	$< 10^{-5}$
8	35.8007	1	$< 10^{-5}$
9	25.3033	1	$< 10^{-5}$
10	16.2284	1	5.615 e - 05
11	13.3168	1	0.000263
12	12.6034	1	0.000385
13	517.7083	1	$< 10^{-5}$
14	185.0355	1	$< 10^{-5}$
15	154.8558	1	$< 10^{-5}$