Notes

November 14, 2014

5.7 monotone functions

a function $f : \mathbb{R} \to \mathbb{R}$ is monotonic (strictly) increasing (decreasing) if $\forall x < y, f(x) \le f(y)$ changing f(x) and f(y) relation as necessary

note \mathbb{R}^n has no natural order, so this is only defined in \mathbb{R}

proposition 5.7.2

if $f:(a,b)\to\mathbb{R}$ is increasing then $\alpha=\lim_{x\to a^+}f(x)$ and $\lim_{x\to b^-}f(x)$ exists and $\forall x\in(a,b)$ we have $\alpha\leq f(x)\leq\beta$. and every element in (a,b) has a left and right limit

proof

let $c \in (a,b)$. let $F : \{f(x) : x \in (a,c)\}$. because f is increasing and x < c, then $f(x) \le f(c) \forall x \in (a,c)$. therefore f(c) is an upper bound for F. so F has a supremum L. also $L \le f(c)$ because f(c) is an upper bound and L is the least upper bound. since $L - \varepsilon$ is not an upper bound for F then $\exists y \in (a,c)$ such that $L - \varepsilon \le f(y) \le L$. take $\varepsilon = \frac{1}{n}$, for each $\varepsilon = \frac{1}{n}$, a corresponding $y_n \in (a,c)$. $L - \frac{1}{n} < f(y_n) \le L \to |f(y_n) - L| < \frac{1}{n}$ and so the limit exists.

corollary

monotonic functions have only jump discontinuities. and the number of these continuities is countable

proof

by 5.7.2 if f has a discontinuity at a point $c \in (a, b)$ since $\lim_{x\to c^+} f(x)$ and $\lim_{x\to c^-} f(x)$ exists, they must be different. thus the discontinuity is a jump discontinuity. (if the limits were equal, then it would be continuous at that point)

let c be a point where f has a discontinuity. then wlog f(x) is increasing. $\gamma_1 \lim_{x \to c^-} f(x) < \lim_{x \to c^+} = \gamma_2$. to the discontinuity point c we can associate the interval (γ_1, γ_2) which is not in the image of f. if $d \neq c$ is another point of discontinuity, it's corresponding interval (σ_1, σ_2) can not intersect (γ_1, γ_2) . if wlog $c \leq d$ then $\gamma_2 = \lim_{x \to c^+} \leq \lim_{x \to d^-} f(x) = \sigma_1$ and so $\gamma_2 < \sigma_1$ and they don't intersect.

let $F: \{\text{discontinuities}\} \to \mathbb{Q}$. then $c \to c' \in (\gamma_1, \gamma_2)$. F is injective because the intervals are disjoint, $|F| \leq |\mathbb{Q}|$

example 5.7.8 cantor function

in general the limit of a sequence of continous functions is not continuous. $f_n(x) = \begin{cases} 0 & x \le 0 \\ x^n & x \in [0,1] \\ 1 & x \ge 1 \end{cases}$

in the limt if $x \in [0,1)$ then $f_n(x) = x^n \to 0$ but $f_n(1) = 1$.