אלקטרומגנטיות אנליטית - תרגיל בית 2# - תורת השדות הקלאסית

שאלה 1 - טרנספורמצית לורנץ

טרנספורמצית לורנץ μ מציין האינדקס א $^{\mu}_{\nu}$ כאשר המטריצה על נתונה על נתונה לורנץ .האינדקס ע את העמודה והאינדקס

א. הראו שהדרישה שהטרנספורמציה משמרת את הנורמה של הוקטור נתונה על ידי . הביטוי $\Lambda^T g$ כאשר g הוא המטריקה ו־ Λ^T היא המטריצה המוחלפת הביטוי

. הנורמה אכן משמרת אכן אכן אכן הנורמצית שטרנספורמצית ב
קורמצית במפורש במפורש במפורש ב

שאלה 2 - עקרון המילטון לשדה

נתון שדה סלקרי ממשי חד מימדי בעל צפיתות הלגרנג'יאן הבאה:

$$, \mathcal{L} = \frac{k}{2} \partial_t \theta \partial_x \theta - \frac{m}{2} (\partial_x \theta)^2$$

. כאשר k,m>0 קבועים ממשיים

- א. מצאו את משוואות התנועה באמצעות משוואות אוילר לגראנג'.
- ב. מצאו את משוואות התנועה על ידי שימוש מפורש בעקרון המילטון.
 - ג. מצאו את התנע הצמוד.
 - ד. מצאו את צפיפות ההמילטוניאן.

שאלה 3 - קינמטיקה יחסותית

א. הראו על ידי גזירה מפורשת שעבור חלקיק יחסותי מתיים

$$\frac{dE_k}{dt} = \vec{v} \cdot \frac{d\vec{p}}{dt}$$

הנחיה: שימו לב שגם \hat{v} תלוי בזמן את הנחיה את גוזרים את בזמן בזמן יחידה לתלוי הנחיה: שימו לב שגם γ

 $U^\mu a_\mu = 0$, תמיד אורתוגונלית ל4 מהירות, $a^\mu = \frac{dU^\mu}{d\tau}$ תמיד אורתוגונלית ל4 מהירות, $a^\mu = \frac{dU^\mu}{d\tau}$ ג. קבלו ביטוי מפורש לארבעת רכיבי ה4 כוח $f^\mu = \frac{dp^\mu}{d\tau}$. מה הקשר בין רכיב הזמן