Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 «Программная инженерия» – Системное и прикладное программное обеспечение

Курсовая работа

По дискретной математике

по теме:

Нечёткий вывод по схеме Мамдани

студент 1 курса
Саранча Павел Александрович
Группа: Р3109
Принял:
Поляков Владимир Иванович
Курсовая работа принята «»2024 г.
Оценка:

Выполнил:

Оглавление:

- 1. Содержательная постановка задачи
- 2. Шаг 1. Фазификация
- 3. Шаг 2. Блок выработки решения
- 4. Шаг 3. Дефазификация

Содержательная постановка задачи:

Задача: Разработать алгоритм, по которому определяется ожидаемое состояние здоровья растения исходя из количества получаемого света и уровня влажности почвы.

Входные данные:

- Количество света (в часах в день)
- Уровень влажности почвы (от 0 до 1)

Выходные данные:

• Ожидаемое состояние здоровья растения (в процентах)

Шаг 1. Фазификация:

Входные данные:

Количество света {LS, MS, HS}

Обозначения:

- LS (low sunlight) мало света
- MS (medium sunlight) среднее количество света
- HS (high sunlight) много света

Уровень влажности почвы {LW, MW, HW}

Обозначения:

- LW (low water) низкая влажность
- MW (medium water) средняя влажность
- HW (high water) высокая влажность

Выходные данные:

Состояние здоровья растения {DP, UP, HP, FP}

Обозначения:

- DP (dead plant) растение погибло
- UP (unhealthy plant) растение нездоровое
- HP (healthy plant) растение здоровое
- FP (flourishing plant) растение процветает

Шаг 2. Блок выработки решения:

Зададим функцию принадлежности для оценки количества света:

$$MLS(X) = 1 - \frac{x}{5}, \ 0 \le X \le 5$$

MMS(X) =
$$\begin{cases} \frac{x}{5}, & 0 \le X \le 5\\ 2 - \frac{x}{5}, & 5 \le X \le 10 \end{cases}$$

MHS(X) =
$$\frac{X}{5}$$
 - 1, $5 \le X \le 10$

Зададим функцию принадлежности для оценки уровня влажности почвы:

$$MLW(Y) = 1 - 2Y, 0 \le Y \le 0.5$$

$$MMW(Y) = \begin{cases} 2Y, & 0 \le Y \le 0.5 \\ 2 - 2Y, & 0.5 \le Y \le 1 \end{cases}$$

$$MHW(Y) = 2Y - 1, 0.5 \le Y \le 1$$

Зададим функцию принадлежности для оценки состояния здоровья растения:

$$MDP(Z) = 1 - \frac{Z}{25}, \ 0 \le X \le 25$$

MUP(Z)=
$$\begin{cases} \frac{Z}{25}, & 0 \le X \le 25\\ 2 - \frac{X}{25}, & 25 \le X \le 50 \end{cases}$$

MHP(Z)=
$$\begin{cases} \frac{Z}{25} - 1, & 25 \le X \le 50 \\ 3 - \frac{Z}{25}, & 50 \le X \le 75 \end{cases}$$

MFP(Z)=
$$\begin{cases} \frac{Z}{25} - 2, 50 \le X \le 75\\ 4 - \frac{Z}{25}, 75 \le X \le 100 \end{cases}$$

Создадим базу правил:

Sunlight/Water	LW	MW	HW
LS	DP	UP	НР
MS	UP	НР	FP
HS	HP	FP	FP

Шаг 3. Дефазификация:

Пример:

Пусть растение получает 4 часа света в день, а уровень влажности почвы составляет 0.7. Каково ожидаемое состояние здоровья растения?

- 1. Оценим MLS(4) и MMS(4) для X = 4 часов света:
 - o MLS(4) = $1 \frac{4}{5} = 0.2$ o MMS(4) = $\frac{4}{5} = 0.8$
- 2. Оценим MMW(0.7) и MHW(0.7) для Y = 0.7:
 - \circ MMW(0.7) = 2-2.0.7 = 0.6
 - \circ MHW(0.7)=2 \cdot 0.7-1 = 0.4
- 3. Правила для оценки:
 - о Среднее количество света, средняя влажность: min(0.8, 0.6)=0.6
 - о Среднее количество света, высокая влажность: min(0.8, 0.4)=0.4

Наиболее высокая степень истинности -0.6 для условия MHP(Z).

Вычислим итоговое значение:

MHP(Z)=0.6⇒
$$Z = 25+0.6\cdot25 = 40$$

Таким образом, ожидаемое состояние здоровья растения – 40%.