2024-02-22

Rappels

. . .

Proposition : Soit $0 \neq V \in V_{\beta}$, alors $\{V, \rho(\gamma)v, \rho(y)^2v, \cdots\}$ engendre V

<u>Démonstration</u>: On montre que $U = \langle v, \rho(y)v, \rho(y)^2v, \cdots \rangle$ est stable pour $\rho(x), \rho(y), \rho(H)$

- 1. $\rho(H)(\rho(y)^m v) = (\beta 2m) \rho(Y)^m c \in U$
- 2. $\rho(y)\rho(y)^m v = \rho(y)^{m+1}v \in U$
- 3. $\rho(x)\rho(y)^m v = ?$

On va montrer par récurrence que $\rho(x)\rho(y)^mv=m(\beta-m+1)\rho(y)^{m-1}$

pour
$$m=0$$
 $\rho(x)v=0$ pour $m=1$ $\rho(x)\rho(y)=(\rho(H)+\rho(Y)\rho(x))\,v$

$$\rho(x)\rho(y)^{m+1}v = (\rho(H) + \rho(y)\rho(x))\rho^m)$$

. . .

$$[(m+1)(\beta-m)\rho(y)^mV]$$

 $\implies U \subseteq \text{est stable pour } \rho \text{ comme } \rho \text{ est irréductible, } U = V$

Conséquences

- $-V_{\alpha}=1$
- ρ est uniquement déterminé par $\beta = \max up(\rho(H))$

De plus, comme V est de dimension finie, il existe m t.q. $\rho(y)^m v = 0$ et $\rho(y)^{m-1} v = 0$

$$0 = m(\beta - m + 1)\rho(y)^{m+1}v$$

$$\implies m(\beta - m + 1) = 0$$

$$\implies \beta = m - 1 \qquad \beta \in \mathbb{N}$$

Il y a au plus une représentation irréductible de dimenention n et les espaces propres de $\rho(H)$ sont

$$V_{1-n}, V_{2-n}, \cdots V_{n-2}, V_{n-1}$$

On va montrer qu'ils existent

Figure 1 – ladder

Produit tensoriels de représentation d'algèbre de Lie

Rappel

$$\rho_i: G \to \mathrm{GL}(V_i) i \in \{1, 2\}$$

$$\rho_1 \otimes \rho_2 : G \to \mathrm{GL}(V_1 \otimes V_2)$$

est définie par $\rho_1 \otimes \rho_2(g) \, (V_1 \otimes V_2) = \rho_1(g) v \otimes \rho_2(g) v_2$

Si G est un groupe de Lie $\mathfrak g$ son algèbre de Lie

Calculons $d(\rho_1 \otimes \rho_2) \mid_I \mathfrak{g} \to glV_1 \otimes V_2$

Soit $\gamma(t) \in G$, $\gamma(0) = I$, $\gamma'(0) = X \in G$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\rho_1 \otimes \rho_2 \right) \gamma(t) (V_1 \otimes V_2) = \dots = \left(\mathrm{d} \left. \rho_1 \right|_I (x) V_1 \right) \otimes V_2 + V_1 \otimes (\dots)$$

<u>Définition</u>:

Si $\rho_i:\mathfrak{g}\to \mathrm{gl}(V_i)$ sont 2 représentation d'algèbre de Lie, alors $\rho_1\otimes\rho_2$ est définie par $(\rho_1\otimes\rho_2)\,X\,(V_1\otimes V_2)$

On a également $sym^n(\rho)\subseteq \rho^{\otimes n}$, $\Lambda^n(\rho)\subseteq \rho^{\otimes n}$ sous-représentation comme pour G un groupe On introduite la notation

$$v_1 \cdot v_2 \cdot \dots \cdot v_n := Sym^n(v_1 \otimes v_2 \cdot \dots \cdot v_n) \in Sym^n(V)$$

et

$$v_1 \wedge v_1 \cdots = Alt(v_1 \cdots)$$

Revenons à $sl(2, \mathbb{C})$

la représentation ????? est $i:\cdots$

$$i(H) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

a les valeurs propres 1, -1

$$\mathbb{C}^2 = V_1 \oplus v_2$$

est la représentation irréductive de dimension 2

$$sym(\mathbb{C}^2) = \langle e_1 \cdot e_1, e_1 \cdot e_2, e_2 \cdot e_2 \rangle$$

$$(Sym(i)(H))(e_1^2) = H^{\otimes 2}(e_1 \otimes e_1) = 2e_1^2$$

sur $e_1 \otimes e_2$ c'est 0 sur $e_2 \otimes e_2$ c'est $-2e_2^2$

$$\implies sym(\mathbb{C}^2) = \langle e_1^{n-i}, e_2^i \rangle$$

Chacun est une vecteur propre de sym(H) et

$$sym(H)(e_1^{n-1} \cdot e_2^i) = \left(H\underbrace{e_1e_1e_1e_2^i}_{n_1}\right) + \left(e_1He_1 \cdot \cdot \cdot e_2^i\right) + \cdots$$

$$= \dots = (n-2i)e_1^{n-i}e_2^i$$

Je vois pas

 $\underline{\text{Exemple}}: \text{Quelle}$ est la d/composition de $sym^2(\mathbb{C}^2) \otimes sym^2(\mathbb{C}^2)$ en irréductibles ?

On calcule les valeurs propres de $\rho(H)$

pour
$$sym^2(\mathbb{C}^2:-2,02$$
 pour $sum^2(\mathbb{C}^2):-3,-1,1$

Si
$$\rho_1(H)v = \lambda_1 v, \rho_2(H)u = \lambda_2 u$$

$$(\rho_1 \otimes \rho_2) H (v \otimes u) = \rho_1(H) v \otimes u + v \otimes \rho_2(H) u = \lambda_1 v \otimes u + v \otimes \lambda_2 u = (\lambda_1 + \lambda_2) (v \otimes u)$$

Figure 2 – valeurs propres