

Functional Analysis I

Tutorial Assignment 2

Martin Genzel, Mones Raslan

Summer Term 2019

Exercise 1: Show, that it is not possible to omit the property that the $D_n, n \in \mathbb{N}$ are open in the formulation of Baire's Theorem. For the construction of an example, you may choose $X = \mathbb{R}$.

Exercise 2: Let E be a normed space. For subsets A and B of E one defines

$$A + B := \{a + b : a \in A, b \in B\}.$$

Prove the following statements:

- (i) If A or B is open then A + B is open.
- (ii) If A and B are compact then A + B is compact.
- (iii) If A is compact and B is closed then A + B is closed.

Moreover, find an example in $E = \mathbb{R}$ where both A and B are closed, but A + B is not closed.

Hint: It might help to use $U_{\varepsilon}(x+y) = U_{\varepsilon}(x) + y$ in (i)–(iii).

Exercise 3: Construct sequences $(f_n)_{n\in\mathbb{N}}$ of real-valued, continuous functions defined on a metric space $X\subset\mathbb{R}$ such that

- (a) X is compact and $\sup_{n\in\mathbb{N}} \|f_n\| < \infty$, but the sequence is not equicontinuous.
- (b) X is compact and $(f_n)_{n\in\mathbb{N}}$ is equicontinuous, but $\sup_{n\in\mathbb{N}} \|f_n\| = \infty$

Exercise 4: If a subspace F of a normed space E contains a non-empty open set, show that F = E.