Kosuke Takahashi Liu CS596 October 21st, 2019

Homework Assignment 3 Write-up

Problem I. Logistic Regression

Using Gradient Descent:

Gradient Descent:

	precision	recall	f1-score	support
0.0	1.00	0.60	0.75	48
1.0	0.79	1.00	0.88	72
accuracy			0.84	120
macro avo	0.90	0.80	0.82	120
weighted avg	0.87	0.84	0.83	120

Gradient Descent Average Error: 0.4483333333333 (0.4973233913215379)

Using sklearn:

sklearn:

	precision	recall	f1-score	support
0.0 1.0	1.00 1.00	1.00 1.00	1.00 1.00	48 72
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	120 120 120

sklearn Average Error: 0.48 (0.49959983987187184)

For placeholder #2, when using the sklearn method or the GD method there was a performance difference. The sklearn method processed extremely faster while the GD method took longer. I used the following line in python to create these numerical results:

from sklearn.metrics import classification_report

Problem II. Confusion Matrix

The algorithm had 7 correct predictions where the Predicted class matched the True class in a data set of 20 tests.

```
Accuracy = (\# of correct predictions / \# of predictions) * 100 accuracy = (7/20) * 100 = 35%
```

The precision of this animal class trained classifier was 35%. Looking at the results of the graph we can see:

Predicted Class

True Class					
	Cats	Dogs	Monkeys		
Cats	1	3	2		
Dogs	3	3	2		
Monkeys	1	2	3		

```
Cat recall: True_Positive / True_Positive + False_Negative = 1/5 = 20%
Cat precision: True_Positive / True_Positive + True_Negative = 1/6 = 16.67%
Dog recall = 3/8 = 37.5%
Dog precision = 3/8 = 37.5%
Monkey recall = 3/7 = 42.86%
Monkey precision = 3/6 = 50%
```

Problem III. Comparative Studies

Using Gradient Descent:

Gradient Descent Confustion Matrix

[[29 19] [0 72]]

Using sklearn:

sklearn Confusion Matrix

[[48 0] [0 72]]