10 Endliche Automaten

10.1 Erstes Beispiel: ein Getränkeautomat

- siehe Skript;
- Am Freitag in der Übung wird als weiteres Beispiel die Benutzung von Mealy-Automaten für einfache Codierungs- bzw. Decodierungsaufgaben vorkommen.

10.2 Mealy-Automaten

- Man nehme den Getränkeautomaten und
 - "überlege" sich $f^*((0, -), R10)$ (durch den Zustandsgraphen laufen)
 - "berechne" $f^*((0, -), R10)$
 - analog f^{**}
- Man erarbeite die alternative Definition

$$f^{**}(z,\varepsilon) = z$$
 und für alle $x \in X$ und $w \in X^*$ ist $f^{**}(z,xw) = z \cdot f^{**}(f(z,x),w)$

• Apropos alternative Definition: In der letzten Klausur galt es per Induktion zu zeigen, dass $f^*(z, wx) = \bar{f}^*(z, xw)$. Die Antworten haben mich damals doch etwas traurig gestimmt. Wer nochmal eine Induktion im Tut üben möchte, kann das gerne rechnen lassen.

Man betrachte die folgenden Beispielautomaten:

- Getränkautomat: man mache sich klar:
 - $-g^*((0,-),R10) = R$
 - $-g^{**}((0, -), R10) = R$
 - $-g^{**}((0, -), R110) = 1R$
- nur ein Zustand $z, X = Y = \{a, b\}$ und g(z, a) = b und g(z, b) = ba
 - wie sieht $w_1 = g^{**}(z, \mathbf{a})$ aus?
 - $w_2 = g^{**}(z, w_1), \dots w_{i+1} = g^{**}(z, w_i)?$

- was passiert mit den Längen?
- $Z = \mathbb{Z}_5$, $X = \{a, b\}$, $Y = \{0, 1\}$, bei b gleicher Zustand, Ausgabe 0, bei a einen Zustand weiter, bei jedem 5. a Ausgabe 1, sonst Ausgabe 0. Was tut der Automat?

10.3 Moore-Automaten

- Die Unterschiede zwischen Moore- und Mealy-Automaten sind "klein": Abgesehen vom leeren Wort, für das ein Mealy-Automat keine Ausgabe liefern kann, gilt: Man kann zu jedem Moore-Automaten einen Mealy-Automaten konstruieren, so dass das g^* für beide gleich ist. Und die umgekehrte Richtung von Mealy- zu Moore-Automaten funktioniert auch.
- Falls jemand fragt: Die erste Richtung von Moore zu Mealy ist ganz einfach: Man "zieht die Ausgabe aus einem Zustand "zurück" zu den Eingaben an den Kanten zu diesem Zustand.

Die umgekehrte Richtung ist ein bisschen aufwändiger, aber auch kein Hexenwerk; siehe http://de.wikipedia.org/wiki/Mealy-Automat, Abschnitt Zusammenhang_mit_Moore-Automat.

10.4 Endliche Akzeptoren

- 10.4.1 Beispiele formaler Sprachen, die von endlichen Akzeptoren akzeptiert werden können
 - Bitte bitte die akzeptierenden Zustände nur so nennen, und nicht Endzustände. Langjährige Erfahrung zeigt, dass das zu falschen Intuitionen führt.
 - Man entwickele einen Akzeptor mit X = {a, b}, der alle Wörter akzeptiert, bei denen die Anzahl der a durch 5 teilbar ist. (Anzahl der b ist also egal.)
 Kreis mit 5 Zuständen; bei jedem a eins weiter, bei jedem b Schlinge; akzeptieren bei Anfangszustand.
 - Man entwickele einen Akzeptor mit $X = \{a, b\}$, der alle Wörter akzeptiert, in denen nirgends hintereinander zwei b vorkommen. Hier "muss" man zählen, wieviele b unmittelbar hintereinander kamen, aber nur bis 2:

• Diskussion: einfachste Version von Syntaxanalyse

10.5 Eine formale Sprache, die von keinem endlichen Akzeptor akzeptiert werden kann

• Der Beweis, dass $\{a^kb^k \mid k \in \mathbb{N}_0\}$ von keinem endlichen Akzeptor erkannt werden kann, vermittelt einem wesentliches über endliche Automaten: Wenn ein hinreichend langes Wort w akzeptiert wird (und das ist garantiert immer der Fall, wenn die Sprache unendlich ist), dann läuft man für ein Teilwort v durch eine Schleife, und dann ändert mehrfaches Durchlaufen der Schleife (bzw. ganz weglassen) nichts am Akzeptierungsverhalten (Pumpinglemma für reguläre Sprachen, das kommt aber erst im dritten Semester).

10.6 alte Klausuraufgaben

- Zu Akzeptoren gibt es eigenlich in fast jeder Klausur eine Aufgabe.
- Zu Mealy Automaten habe ich auf die Schnelle Aufgabe 3 gefunden: http://gbi.ira.uka.de/archiv/2009/k-mar10.pdf