Problem

Using the solution you gave to Exercise 1.25, give a formal description of the machines T_1 and T_2 depicted in Exercise 1.24

Step-by-step solution

Step 1 of 3

Here, the formal description of Turing machine T_1 and T_2 need to be defined. A finite state transducer (FST) is formally defined by the $(Q, \Sigma, \Gamma, \delta, q_0)$ tuple, where:

- The finite set of states is Q.
- The input alphabet is \sum .
- The output alphabet is Γ .

$$\delta\!:\!Q\!\times\!\Sigma\!\to\!Q\!\times\!\Gamma$$

ullet The start state $q_{\scriptscriptstyle 0}$

Comment

Step 2 of 3

The finite state transducer $T_{\rm i}$ is formally defined by the $\left(\left\{q_1,q_2\right\},\left\{0,1,2\right\},\left\{0,1\right\},\delta_1,q_1\right)$, where the transition function $\delta_{\rm i}$ is as follows:

Input	0	1	2	
State				
q_1	$\{q_1,0\}$	$\{q_{\scriptscriptstyle 1},0\}$	$\{q_2,1\}$	
q_2	$\{q_1,0\}$	$\{q_{2},1\}$	$\{q_2,1\}$	

Comment

Step 3 of 3

The second FST is defined as $T_2 = (\{q_1, q_2, q_3\}, \{a, b\}, \{0, 1\}, \delta_2, q_1)$. The transition function δ_2 is given by:

Input	a	b	
State			
q_1	$\{q_2,l\}$	$\{q_3,1\}$	
q_2	$\{q_3,1\}$	$\{q_1,0\}$	
q_3	$\{q_1,0\}$	$\{q_{2},1\}$	

Comment