

INTRODUCTION TO COMPUTER SYSTEMS (IT1020)

Year 1, Semester 1

Work Sheet 05

22278944, Vikum Chathuranga Basnayaka

Y1.S1.WD.IT.17

1.

i)

1)						
A	В	A'	B'	A'. B	A.B'	F
0	0	1	1	0	0	0
0	0	1	1	0	0	0
0	1	1	0	1	0	1
0	1	1	0	1	0	1
1	0	0	1	0	1	1
1	0	0	1	0	1	1
1	1	0	0	0	0	0
1	1	0	0	0	0	0

a.)

A	В	F
0	0	0
0	1	1
1	0	1
1	1	0

- i) The resemblance of the XOR circuit to the circuit
 - Light is turned on when one switch is turned on.
 - Off when both switches are turned on and off when both switches are turned off.

ii) Half adder

A	В	SUM	CARRYBIT
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

iii) Full adder

A	В	С	SUM	CARRYBIT
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

The purpose of these circuits is,

• A category of combinational logic circuits known as the Half Adder adds two 1-bit binary digits. It produces the carry as well as the sum of the two inputs. The Full Adder is another a kind of combinational logic that performs addition operations by adding three of the 1-bit binary digits.

2. Parallel adder

3. Binary decoder

X0	X1	ENABLER	Y0	Y1	Y2	Y3
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	1

4. Multiplexer

C1	C2	X	M
0	1	0	0
		X1 1	1
0	0	0	0
		X2 1	1
1	1	0	0
		X3 1	1
1	0	0	0
		X4 1	1

5. 4 to 1 mux

S0	S1	D0	D1	D2	D3	Y
0	0	0	X	X	X	0
0	0	1	X	X	X	1
0	1	X	0	X	X	0
0	1	X	1	X	X	1
1	0	X	X	0	X	0
1	0	X	X	1	X	1
1	1	X	X	X	0	0
1	1	X	X	X	1	1

6. 2 to 1 mux

1	0	S0	Y
0	0	X	0
0	1	X	1
1	X	0	0
1	X	1	1

7. F = A B C' + B' C + A C

	Input	Output	
A	В	С	F = A B C' + B' C + A C
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

8.

9.