					15/01/16
	CSC"	225 -	Assign	nment 1	DevroopBaneijee V00837868
1.	A	B	0	0	V0083+866
	(logn)3	n	Yes	No	
	2n2 4n	4n2	No	No	
	n!	2 ⁿ	No No	Yes	
	100	10000	No	No	
	n ²	(1.55	Yes	No	

2. $2^{100} = 0 (\log \log n) = 0 (\sqrt{\log n}) = 0 (6n \log n) = 0 (\log n)^2$ $5 = 0 (4^{\log n}) = 0 (3n^{0.5}) = 0 (n^3) = 0 (4^n) = 0 (2^n)$

4.	$\sum_{i=1}^{n} 2i - 1 = n^2 \forall n \gg 1.$
- 40	When $n=01$ $\frac{\pi}{2}2-1=1$ & $1^2=1$
	$\frac{2}{2}(1+1)-1$ $(n^2+1)^2$ $(n^2+1)^2$ $(n^2+1)^2$ $(n+1)(n+1)$
	*2n+2++ n ²
	"(n+1)2 ! Proved = 2i-1=n2 by

5.	$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$	Yn7/1.
	When $n=1$. $\frac{2}{2}$ $\frac{1}{(1+1)} = \frac{1}{2}$	& iti= 1/2
	For $n+1$ $(n+1)^{-2}$ $(n+1)(n+2)$ $(n+1)(n+2)$ $(n+1)$	$\frac{n}{n+1}$
,	$n+1)(n+2) + (n+1)$ $n+1 + (n+2)n - 1 + n^2 + 2n - (n+1)(n+2) + (n+1)(n+2)$	(n+2)
	(n t)(n+2) (n+1)(n+2)	(n+2) .: Proved by induction.

```
6. Make integer Sum;
Make integer missing Value;
Make integer formula! Cant Use;
For (integer i = 0; till i is lesser than composit; increment i by 1) & Add value of A at index i to Sum;

For (integer j = 10; till j is lesser than / equal to A. length; increment i by 1) & formula! Cant Use = formula! Cant Use + j;

missing Value = formula! Cant Use - Sum;

return missing Value;
```