Bad data could be:

- 1. Wrong data
- 2. Data in wrong format
- 3. Duplicates
- 4. Empty cells/missing values

Data Cleaning

```
In [1]:
```

```
1 import numpy as np
2 import pandas as pd
```

1. Wrong data

· Solution: Replace

In [2]:

```
Krishna
1 df1 = pd.DataFrame({"Age": [15,24,18,19.4,"20+"],
                "Gender": ["male","female","female","female","male"]})
3 df1
```

Out[2]:

	Age	Gender
0	15	male
1	24	female
2	18	female
3	19.4	female
4	20+	male

In [3]:

```
1 df1["Age"].replace("20+", 20, inplace =True)
2 df1
```

Siva

Out[3]:

	Age	Gender
0	15.0	male
1	24.0	female
2	18.0	female
3	19.4	female
4	20.0	male

2.Wrong data type

· Solution: convert the datatype

In [4]:

```
3 df2
```

Out[4]:

Ochlaci	- Agu	
male	15	0
female	24	1
female	18	2
female	19.4	3
	00	

```
1 df2.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Data columns (total 2 columns):
# Column Non-Null Count Dtype
---
   -----
0 Age
           5 non-null
                         object
1 Gender 5 non-null
                         object
dtypes: object(2)
memory usage: 208.0+ bytes
In [6]:
 1 df2["Age"] = df2["Age"].astype('int')
In [7]:
 1 df2.info()
                                                                               Krishna
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4 \,
Data columns (total 2 columns):
# Column Non-Null Count Dtype
---
                         int32
0 Age
           5 non-null
1 Gender 5 non-null
                         object
dtypes: int32(1), object(1)
memory usage: 188.0+ bytes
3. Duplicates
 · Solution: Remove
In [8]:
 3 df3
Out[8]:
   Age Gender
                               5172
0
    15
        male
1
    18
2
    18
       female
    19
       female
    20
        male
In [9]:
 1 #to check the duplicated records
 2 df3.duplicated()
Out[9]:
0
    False
    False
     True
    False
    False
dtype: bool
In [10]:
 1 # toremove the duplictes ---> we use df.drop_duplicates
 2 df3.drop_duplicates()
Out[10]:
   Age Gender
0
    15
        male
    18
       female
    19
       female
```

In [5]:

20

male

```
In [11]:
 1 df3.drop_duplicates(inplace=True, ignore_index= True)
 2 df3
Out[11]:
  Age Gender
   15
   18
      female
    19
      female
   20
Missing values
 · Solution: Either remove or replace
                                                      Rana
In [12]:
 1 df = pd.DataFrame({"Age": [15,np.nan,24,19,20],
                     "Gender":["male",np.nan,"female", "female","female"]})
 3 df
Out[12]:
  Age Gender
0 15.0
        male
2 24.0
       female
3 19.0
       female
4 20.0
In [13]:
 1 #to check the missing values records
 2 df.isnull()
Out[13]:
                               Siva
   Age Gender
0 False
         False
1 True
         True
2 False
         False
3 False
         False
4 False
         False
In [14]:
 1 # to check total missing values
2 df.isnull().sum()
Out[14]:
Age
Gender
dtype: int64
In [15]:
 1 # total Missing values & there percentages for each variable
```

Out[15]:

7 missing

3 x=df.isnull().sum()

4 y=(df.isnull().sum()/len(df))*100

Number of missing values	Percentage of m	issing values

5 | z={'Number of missing values':x,'Percentage of missing values':y}

6 missing = pd.DataFrame(z,columns=['Number of missing values','Percentage of missing values'])

Age	1	20.0
Cd	4	20.0

In [16]:

```
1 #sorting of missing values based on there percentages
```

2 missing.sort_values(by='Percentage of missing values',ascending=False)

Out[16]:

Age	1	20.0
Gender	1	20.0

Option 1. Remove the rows that contain missing values

In [17]:

```
1 df2 = df.dropna()
2 df2
```

Out[17]:

	Age	Gender	
0	15.0	male	
2	24.0	female	
3	19.0	female	
4	20.0	female	

Option 2: Replace the nan values

- fill with value
- Continous Variables ---> Replace with either Mean or Median
- Discrete Variables ---> Replace with Mode

In [18]:

```
# replacing the 'age' column with value of 0
df['Age'].replace(np.nan, 0)
```

iri.shna

Out[18]:

```
0 15.0
1 0.0
2 24.0
3 19.0
4 20.0
```

Name: Age, dtype: float64

In [19]:

```
# replacing the 'age' column with mean
df['Age'].fillna(df["Age"].mean(),inplace=True)
df
```

Out[19]:

	Age	Gender
0	15.0	male
1	19.5	NaN
2	24.0	female
3	19.0	female

4 20.0 female

In [20]:

```
df["Gender"].fillna(df["Gender"].mode()[0],inplace=True)
df
```

Out[20]:

	Age	Gender
0	15.0	male
1	19.5	female
2	24.0	female
3	19.0	female
4	20.0	female

```
In [21]:
 1 df = pd.DataFrame({"Age": [15,16,np.nan,24,19,20],
 2
                       "Gender":["male",np.nan,"female", "female","female","male"]})
 3
    df
Out[21]:
   Age Gender
0 15.0
1 16.0
         NaN
2 NaN
        female
3 24.0
4 19.0
        female
5 20.0
         male
In [22]:
                                                                                     Krishna.
 1 from sklearn.impute import SimpleImputer
   mean_imputer = SimpleImputer(strategy='mean')
 3 df["Age"] = mean_imputer.fit_transform(df[["Age"]])
 4
   df
Out[22]:
   Age
      Gender
0
  15.0
         male
1 16.0
         NaN
2 18.8
        female
3 24.0
        female
4 19.0
        female
```

In [23]:

5 20.0

male

```
1 from sklearn.impute import SimpleImputer
  mode_imputer = SimpleImputer(strategy='most_frequent')
  df["Gender"] = mode_imputer.fit_transform(df[["Gender"]])
4
  df
```

Out[23]:

	Age	Gender
0	15.0	male
1	16.0	female
2	18.8	female
3	24.0	female
4	19.0	female
5	20.0	male

Outliers

- · An outlier is a data point in a data set that is distant from all other observations, which is significantly different from the remaining data.
- A data point that lies outside the overall distribution of the dataset.

What are the impacts of having outliers in a dataset?

- 1. It causes various problems during our statistical analysis (It may cause a significant impact on the mean and the standard deviation) Statistics such as the mean and variance are very susceptible to outliers.
- 2. In addition, some Machine Learning models are sensitive to outliers which may decrease their performance. Thus, depending on which algorithm we wish to train, we often remove outliers from our variables.

Reasons for Outliers

- 1. Data Entry Errors (Ex: Entering salary as 1,00,000 instead of 10,000)
- 2. Measurement Errors (Ex: Measuring in meters instead of KM)
- 3. Instrumental Errors

Types of Outliers

- 1. Univariate Outliers --> Indentifing outlier for single variable
- 2. Bivariate Outliers --> Indentified as outlier by analyzing 2 variables at a time

Solution: 3R Technique

1. Remove (remove the outliers from our dataset)

- 2. Replace the ouliers
 - Rectify or Replace --> (data entry error) ---> Ask and confirm it from the Data Engineering team.
 - · Replace with upper limit & lower limit based on IQR
- 3. Retain (consider for analysis) ---> Treat them separately

In [24]:

```
1 df= pd.DataFrame({"marks":[10,11,12,25,25,27,31,33,34,34,36,36,43,50,59]})
2 df
```

Out[24]:

	marks
0	10
1	11
2	12
3	25
4	25
5	27
6	31
7	33
8	34
9	34
10	36
11	36
12	43
13	50
14	59
Var	ious wa

- 1. Boxplot
- 2. IQR

Identifying Outliers based on boxplot

In [25]:

```
import matplotlib.pyplot as plt
import seaborn as sns

sns.boxplot(x=df["marks"])
plt.show()
```


Identifying Outliers based on IQR

```
In [26]:
    #calculate Q1
    Q1=df["marks"].quantile(0.25)
print("Q1:",Q1)
 5 #calculate Q3
6 Q3=df["marks"].quantile(0.75)
7 print("Q3:",Q3)
  8
  9 #calculate IQR
10 IQR = Q3 - Q1
11 print("IQR:",IQR)
12
13 #Calculate lower limit of outlier
14 lower_limit = Q1 - (IQR * 1.5)
15 print("lower limit:",lower_limit)
17 #Calculate upper limit of outlier

18 upper_limit = Q3 + (IQR * 1.5)

19 print("upper limit:",upper_limit)
                                                                                                               Krishna
Q1: 25.0
Q3: 36.0
IQR: 11.0
lower limit: 8.5
upper limit: 52.5
Outliers Data
In [27]:
 1 df[(df["marks"]<lower_limit) | (df["marks"]>upper_limit)]
Out[27]:
    marks
14
        59
Remove
In [28]:
  1 df.drop(index=14)
                                            Siva
Out[28]:
     marks
  0
         10
         11
  2
        12
  3
        25
        25
        27
  6
        31
        33
        34
  9
        34
 10
        36
 11
        36
12
        43
13
        50
Replace
        based on confirmation from data engineer team / based on research / based on domain expertise
```

In [29]:

1 #pip install feature_engine

```
In [30]:
 1 | from feature_engine.outliers import ArbitraryOutlierCapper
 3 capper = ArbitraryOutlierCapper(max_capping_dict = {'marks':52},
 4
                                    min_capping_dict = {'marks':6})
```

Out[30]:

6 capper.fit_transform(df[["marks"]])

n	narks	
0	10	
1	11	
2	12	
3	25	
4	25	
;	27	
	31	
7	33	
3	34	
)	34	
	36	70
	36	
	43	
	50	
ı	52	7.0
ıla	се	60, 07
	based on iqr	7 2

Replace

In [31]:

```
1 from feature_engine.outliers import Winsorizer
3 win = Winsorizer(capping_method='iqr', tail='both',fold=1.5)
5 win.fit_transform(df[["marks"]])
```

Out[31]:

```
marks
      10.0
 0
      11.0
 2
      12.0
      25.0
      25.0
      27.0
      31.0
      33.0
      34.0
 9
      34.0
10
      36.0
11
      36.0
12
      43.0
13
      50.0
14
      52.5
```

In [32]:

```
1 print(win.left_tail_caps_, win.right_tail_caps_)
```

```
{'marks': 8.5} {'marks': 52.5}
```