TRIGONOMETRY Chapter 04

Geometría analítica

PLANO CARTESIANO

COORDENADAS DE UN PUNTO

DISTANCIA ENTRE DOS PUNTOS

COORDENADAS DEL PUNTO MEDIO DE UN SEGMENTO

SE CUMPLE:

$$\mathbf{x_1} + \mathbf{x_3} = \mathbf{x_2} + \mathbf{x_4}$$

$$y_1 + y_3 = y_2 + y_4$$

DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA

APLICACIÓN:

Sea G (x; y) el baricentro del \triangle ABC

Se cumplen:
$$x = \frac{x_1 + x_2 + x_3}{3}$$

$$y = \frac{y_1 + y_2 + y_3}{3}$$

ÁREA DE UNA REGIÓN TRIANGULAR

Ordenamos las coordenadas del 🛕 ABC

$$S = \frac{D-I}{2}$$

Respecto al eje Y

Respecto al eje X

Observaciones:

De la figura, calcule ab+cd.

RESOLUCIÓN:

POR SIMETRÍA RESPECTO AL EJE Y

$$a = -4 \land b = 6$$

POR SER RADIOS VECTORES ORTOGONALES

$$c = 3 \qquad \land \qquad d = -5$$

$$ab + cd = -39$$

La plaza de armas de un pueblo tiene forma cuadrada ABCD. Dos vértices opuestos tienen por coordenadas a A(60; 90) y C(–20; 30). Considerando que cada unidad en el plano equivale a 1 m; determine el área de la plaza.

RESOLUCIÓN:

$$d^{2} = [(60) - (-20)]^{2} + [(90) - (30)]^{2}$$

$$d^{2} = (80)^{2} + (60)^{2}$$

$$d^{2} = 6400 + 3600$$

$$d^{2} = 10000 \longrightarrow d = 100$$

$$\Rightarrow S = \frac{(100)^{2}}{2} \implies \therefore S = 5000 \text{ m}^{2}$$

Siendo ABCD un cuadrado, determine las coordenadas de los puntos A y B.

Si tres vértices del paralelogramo ABCD están dados por A(–3; –2), B(–1; 5) y C(7; 6), calcule la suma de coordenadas del vértice D opuesto a B.

RESOLUCIÓN:

PROPIEDAD del Paralelogramo:

$$x + (-1) = 7 + (-3)$$
 \Rightarrow $x = 5$

$$y + 5 = 6 + (-2)$$
 $y = -1$

$$x + y = 4$$

La figura muestra un paralelogramo ABCD, en el cual se trazan las líneas BD y CM tal que B(2;1), C(9;3) y G(4;–1). Indique las coordenadas del punto A.

RESOLUCIÓN:

Al trazar \overline{AC} descubrimos que en el triángulo ABC, G es Baricentro.

Propiedad del Baricentro

$$4 = \frac{a+2+9}{3}$$

$$-1 = \frac{b+1+3}{3}$$

$$12 = a+11$$

$$-3 = b+4$$

$$\rightarrow a = 1$$

$$\rightarrow b = -7$$

$$\therefore A(1; -7)$$

Sabiendo que ABCD es un paralelogramo, calcule la suma de

coordenadas del punto E. (S es área).

RESOLUCIÓN:

Sabemos:

$$x = \frac{k(7) + 3k(-5)}{1k + 3k} \qquad x = -2$$

$$y = \frac{k(6) + 3k(2)}{1k + 3k}$$
 $y = 3$

$$\therefore x + y = 1$$

Miguel posee un terreno de forma triangular en el cual sembrará pasto para alimentar a su pequeña oveja; el terreno está determinado por los puntos A(3; 6), B(–5; 0) y C(2; y). Si cada unidad en el plano equivale a 1 m; el área del terreno es 37 m². Halle el valor

A(3;6)

negativo de y

RESOLUCIÓN:

Ordenamos:

$$37 = \frac{-5y+12-(3y-30)}{2}$$

$$74 = -8y + 42$$

$$32 = -8y$$

