Computação Paralela e Análise de Big Data: Ferramentas e Estratégias

GRUPO 02

01

INTRODUÇÃO

• Computação Paralela

 Computador e programação paralela para aumentar o desempenho.

• Big Data

 Análises automáticas de padrões, a partir de grandes quantidades de dados.

Estratégias de Computação Paralela e Big Data

MPP - Massively Parallel Processing

Massively Parallel Processing, ou MPP, é uma arquitetura de processamento projetada para lidar com grandes volumes de dados e executar cálculos complexos em ambientes distribuídos.

Data Parallelism

Data Parallelism é uma estratégia que distribui grandes conjuntos de dados em partes menores, processando-as simultaneamente em diferentes unidades de processamento, como CPUs, GPUs ou clusters distribuídos.

O QUE É?

- Sistema composto por múltiplos nós independentes;
- Em geral, cada nó tem sua própria memória e um sistema operacional;

COMO FUNCIONA

- Opera com a divisão do trabalho entre os nós;
- Um **nó lider** recebe a tarefa principal e a divide em sub tarefas menores;
- Essas **sub tarefas** são divididas para os nós, que trabalham de forma independente;
- Os resultados individuais são combinados pelo nós líder;

ARQUITETURAS

- Shared-Nothing: cada nó trabalha com recursos isolados;
- Shared-Disk: os nós compartilham um armazenamento comum;

CONCLUSÃO

Massively Parallel Processing é uma tecnologia essencial em uma era orientada por dados. Sua arquitetura distribuída e escalável permite que empresas e cientistas de dados lidem com o crescimento exponencial de informações, transformando dados brutos em insights práticos.

Data Parallelism

O QUE É?

- Computação paralela e análise de Big Data são práticas que dividem problemas grandes em partes menores, resolvendo-os simultaneamente.
- Essenciais para lidar com volumes massivos de dados e tarefas intensivas, aumentando eficiência e velocidade de execução.

Data Parallelism

COMO FUNCIONA

- Processos são distribuídos entre múltiplos núcleos ou máquinas, que trabalham em paralelo.
- Dados são particionados ou organizados em blocos menores, garantindo processamento simultâneo.
- O resultado final é consolidado a partir das saídas individuais de cada unidade de processamento.

FONTE: MADIAJAGAN, 2019

Data Parallelism

CONCLUSÃO

Data Parallelism é uma estratégia essencial para processar grandes volumes de dados, dividindo-os em partes menores para execução simultânea. Essa abordagem reduz tempos de processamento, otimiza recursos e suporta escalabilidade, sendo amplamente utilizada em análises de Big Data.

Ferramentas de Computação Paralela e Big Data

Open Computing Language (OpenCL)

Padrão de programação em ambiente computacional heterogêneo

Apache Spark

Plataforma de processamento de dados em larga escala

BigQuery

Data warehouse oferecido pelo Google Cloud

OpenCL

MODELO DE PLATAFORMA:

CURIOSIDADES

- Criado pela Apple.
- Padronizada pelo Khronos Group

- Plataforma de computação para sistemas heterogêneios;
 - Modelo: host responsável por inicialização e transferência de dados/tarefas dos dispositivos.
- Baseado em C99.
- Abordagens:
 - Execução de algoritmos de IA;
 - Paralelismo de dados;
 - Paralelismo de tarefas.

OpenCL

- Níveis de acesso ao modelo de memória;
 - Global: compartilhada por todos os itens para leitura e escrita;
 - Local: compartilhada por itens de um mesmo grupo para leitura e escrita;
 - o Privada: restrita a cada item de trabalho para escrita e leitura
 - Constante: compartilhada por todos os itens para leitura.

MODELO DE MEMÓRIA:

- Consistência de leitura e escrita.
- Memórias global e local são consistentes entre itens de trabalho de um mesmo grupo de trabalho em uma barreira

Apache Spark

VISÃO GERAL

O QUE É O APACHE SPARK?

Plataforma de computação em cluster que fornece uma API para programação distribuída para processamento de dados em larga escala.

USOS

- Processamento de Dados em Tempo Real
- Modelos de Machine Learning
- Processamento de Dados Estruturados

CARACTERÍSTICAS

- Permite a divisão de dados e tarefas em clusters com vários nós
- Cada nó funciona processa apenas uma parte parte do volume total de dados
- Compatível com várias linguagens: Python,
 Scala, Java e R

Apache Spark

MÓDULOS DO APACHE SPARK

SPARK SQL

Spark SQL é usado para processamento de dados estruturados

SPARK MLLIB

MLlib é uma biblioteca de aprendizado de máquina escalonável

SPARK STREAMING

Spark Streaming possibilita o uso de poderosas aplicações interativas e analíticas em streaming e dados históricos

BigQuery

VISÃO GERAL E ARQUITETURA

O QUE É?

• Um *data warehouse* gerenciado pela Google Cloud.

PRINCIPAIS CARACTERÍSTICAS

- Armazenamento de dados serverless
- Armazenamento colunar
- Integrações
- Processamento Massivamente Paralelo (MPP)

FONTE: HTTPS://CLOUD.GOOGLE.COM/BLOG/PRODUCTS/DATA-ANALYTICS/NEW-BLOG-SERIES-BIGQUERY-EXPLAINED-OVERVIEW

BigQuery

COMPUTAÇÃO PARALELA NO BIGQUERY

DREMEL

• Divide consultas em uma árvore de execução paralela

COLOSSUS

• Sistema de arquivos distribuído

JUPITER

Rede de alta capacidade (ordem de 1 Petabit/s)

BORG

• Gerenciador de clusters que distribui tarefas em milhares de núcleos

FONTE: HTTPS://CLOUD.GOOGLE.COM/BLOG/PRODUCTS/DATA-ANALYTICS/NEW-BLOG-SERIES-BIGQUERY-EXPLAINED-OVERVIE

BigQuery

DESEMPENHO

O QUE FOI FEITO?

- Ler cerca de 1TB de dados e desempacotá-los para 4 TB.
- Executar 100 bilhões de expressões regulares.
- Distribuir 1,25 TB de dados pela rede.

CLUSTER EQUIVALENTE

- Cerca de 330 discos rígidos dedicados de 100 MB/s.
- Uma rede de 330 Gigabits para transferir os 1,25 TB de dados.
- 3.300 núcleos.

Obrigado!

INTEGRANTES

- CARLOS HENRIQUE HANNAS DE CARVALHO
- CARLOS NERY RIBEIRO
- GABRIEL RIBEIRO RODRIGUES DESSOTTI
- LUCAS CARVALHO FREIBERGER STAPF
- PEDRO MANICARDI SOARES

NUSP: 11965988

NUSP: 12547698

NUSP: 12547228

NUSP: 11800559

NUSP: 12547621

REFERÊNCIAS

- [1] Massively Parallel Processing an overview | ScienceDirect Topics. Disponível em: https://www.sciencedirect.com/topics/computer-science/massively-parallel-processing. Acesso em: 15 nov. 2024.
- [2] What is Massively Parallel Processing? | TIBCO. Disponível em: https://www.tibco.com/glossary/what-is-massively-parallel-processing. Acesso em: 15 nov. 2024.
- [3] M. Madiajagan, S. Sridhar Raj, Chapter 1 Parallel Computing, Graphics Processing Unit (GPU) and New Hardware for Deep Learning in Computational Intelligence Research, Editor(s): Arun Kumar Sangaiah, 2019, ISBN 9780128167182, https://doi.org/10.1016/B978-0-12-816718-2.00008-7. (https://www.sciencedirect.com/science/article/pii/B9780128167182000087)
- [4] X. Li, G. Zhang, K. Li, W. Zheng, Chapter 4 Deep Learning and Its Parallelization, Editor(s): Rajkumar Buyya, Rodrigo N. Calheiros, Amir Vahid Dastjerdi, 2016, ISBN 9780128053942, https://doi.org/10.1016/B978-0-12-805394-2.00004-0.

(https://www.sciencedirect.com/science/article/pii/B9780128053942000040)

REFERÊNCIAS

[5] SILVEIRA, César L. B.; SILVEIRA JUNIOR, Luiz G. da; CAVALHEIRO, Gerson Geraldo H.. Programação em OpenCL: Uma introdução prática. Pelotas - Rs: Universidade Federal de Pelotas, 2009. 33 slides, P&B. Disponível em: http://www.inf.ufsc.br/~bosco.sobral/ensino/ine5645/Programacao_OpenCL_Introd_Pratica.pdf. Acesso em: 15 nov. 2024.

[6] O que é Apache Spark? Disponível em: https://cloud.google.com/learn/what-is-apache-spark?hl=pt-BR. Acesso em: 15 nov. 2024

[7] GOOGLE. New blog series: BigQuery explained - Overview. Disponível em: https://cloud.google.com/blog/products/data-analytics/new-blog-series-bigquery-explained-overview. Acesso em: 14 nov. 2024.

[8] GOOGLE. BigQuery under the hood. Disponível em: https://cloud.google.com/blog/products/bigquery/bigquery-under-the-hood. Acesso em: 14 nov. 2024.

[9] GOOGLE. Anatomy of a BigQuery query. Disponível em: https://cloud.google.com/blog/products/bigquery/anatomy-of-a-bigquery-query. Acesso em: 14 nov. 2024.