3D 建模中数学函数的巧妙应用(上)

谢作如 浙江省温州中学 杨玉轩 浙江省温州大学

在创客教育中, 3D建模与3D打 印是很重要的组成部分。按理说, 3D建模与数学是息息相关的,但审 视中小学常用的3D建模软件, 更多 的是在考量鼠标操作的熟练程度, 几乎看不出"数学"体现在哪里。 因而,我们希望更多的老师教学生 用"3D程序员"来建模,力求在"造 物"的同时,把数学知识也用起来。

要用"3D程序员"设计出具有 圆滑曲线表面的模型, 肯定离不开 函数的帮忙。函数几乎是所有学生 数学学习的痛点, 但建模并不关注 对函数原理的研究,只要知道什么 样的函数能产生什么样的图形即可。 按照初等数学和高等数学两部分内 容, 我们分别例举数学函数在3D建 模中的巧妙应用。

● 初等数学中的函数与应用

初等数学中,学生能够学习到 基本的初等函数,如指数函数、对数 函数、幂函数、反函数以及三角函数 等(如下表)。这些函数用图像来表 示,如图1所示。

那么,建立3D模型时可以利用 这些函数来实现什么功能呢? 下面 来看几个例子。

1.用抛物线做笔搁

很多立体图形都可以通过平面 图形拉伸而成,如立方体。"3D程序 员"中的数学模块,包含了基本的初 等函数,图2为一个自变量为x的二次 函数图像,图像为抛物线。"3D程序 员"给抛物线加上"线宽"的属性,

只要用拉伸功能,就能形成一个立 体模型。

笔搁是毛笔书法中除文房四宝 之外,另一不可或缺的物品。(仔细 观察笔搁的构造如下页图3所示) 很 快就会发现其中的规律: 笔搁主要 是由曲线组成,而这段曲线又是不规 则的,可以通过不同的函数方程拼接 出来。

把形状图放入坐标系, 再根据 坐标系写出曲线方程,如下页图4 所示。

根据不同函数的图像特点,拼 接出一个所需的图像,函数如下。

$$f(x) = -x^2 + 7$$
 $x \in [-$

2.5,0]

$$g(x) = \sqrt{10x + 64}$$
 $x \in [-$

6.4, -5.3

$$h(x) = -(x+3.5)^2$$
 $x \in [-$

5.3, -2.5

根据函数画出一半图像后,利用

指数函数	对数函数	幂函数	幂函数	三角函数	反函数	一次函数
$y = 2^x$	$y = \log(x)$	$y = x^2$	$y = \sqrt{x}$	$y = \sin(x)$	$y = \frac{1}{x}$	y = x

图1 常见的初等数学函数

图2 抛物线

图3 笔搁的形状

图4 拼接方程

图5 基本形状

图6 剑柄的形状

图7 正弦函数

"3D程序员"中的"镜像"指令,完 成构图(如图5)。在没有给出确定坐 标值的情况下, 学生想出的数学公 式并不是唯一的, 寻找合适的数学 公式的过程,就是一次有趣的探究。

2.用正弦函数设计"激光剑柄"

《星球大战》作为一部经典电 影,一直深受"星战迷"的喜爱。在 电影中,用于近身格斗的激光剑也成 为《星球大战》的象征,制作一把激 光剑是很多创客的选择。除去剑身, 最主要的部分当属剑柄, 而激光剑 柄需要有流线的外形(如图6)。

分析剑柄的曲线部分, 其是利

用三角函数中的正弦函数曲线特性, 减小自变量的值使曲线变得平滑。周 期变大, 坐标轴显现如图7所示。

公式: $f(x)=2.4+\sin(0.35x)$ $x \in [2.5\pi, 7\pi]$

输入2D函数, 利用其他指令和 形状进行拼接组合, 再利用"旋转" 功能,就可以完成剑柄的制作。在如 图8所示的模型中, 剑柄还要挖空, 用于放入电源及其他电子器件,所 以特意开了一个口子,用于安装控制 激光剑效果的"按钮"。

3.用"心脏线"做吊坠

"心脏线"是一种比较特殊的函

图8 剑柄

数。心形函数有很多种表达式,利用 任何函数图像的特性组合为一个分 段函数形成一个心形线,如下页图9 所示, 最终在"3D程序员"中画出了 心形函数的图像。

公式: $f(x) = \sqrt{(1-(|x|-1)^2)}$ $x \in [-2,2]$

 $g(x) = \arccos (1-|x|)-3$ $x \in [-2,2]$

利用"心脏线"可以做一个心 形吊坠, 用一个球与拉伸后的"心脏 线"进行凸壳处理,即可得到一个心 形的实体(如下页图10)。

需要提醒的是,可以先取"心

图9 心脏线

脏线"的一半(只需改变x的取值范 围)和球的一半,进行凸壳处理,之 后镜像翻转,再进行布尔合并即可。

● 小结

不管是指数函数、幂函数、对数 函数还是三角函数,它们都有一个 共同点,就是图像都是曲线,更改变 量后会得到无数种图形。同时,根据 一个函数图像, 也可以得到该图像的

无数种表达式。确定和不确定的融 合,这就是数学建模的乐趣所在。

函数并不只存在于数学运算 中,它时刻与我们相伴。在进行3D建 模的过程中,仅仅用肉眼很难画出一 条完美的曲线,如果能够合理地利用 各类函数的特性进行组合,设计出 来的作品就会更加精彩。使用"3D程 序员"来设计3D模型,能够将抽象

图10 心形吊坠

的逻辑与运算真实地呈现在现实世 界中, 让学生更加深刻地体验到数 学之美。e

如果对相关内容感兴趣, 请关注 主持人博客。

新书介绍

《静悄悄的教育变革》

本书是 魏忠继《教 育正悄悄发 生一场革 命》《教育 正悄悄发 生一场怎 样的革命》

之后,在信息和互联网风潮背景下 的教育变革三部曲的完结篇,作者 对技术变革时代教育和教育机构的 变与不变、教育重构下的学习与教 育的信息学变化、创造力教育背后 的信息变量进行敏锐的观察, 从历 史和人性的角度进行更加冷静的思 考, 进而启示读者去面对全息时代 的教育一般规律。

作者在书中回答了姊妹篇《教 育正悄悄发生一场革命》中更深层 次的问题.

教育到底是情怀还是变量? 历 史大数据用信息学来解读,有什么不 同的视角? 对于教育工作者来说又有 何种启示? 当我们宣传一种价值和教 育理念的时候, 背后又有什么信息变 量微妙地影响着我们的结论? 在动辄 指责教育的当下,教育的社会学和经 济学含义为何被人忽略? 作为教师 如何在数据变量思维下, 找到自己可 为和自我提升的数据引擎?

计算思维、设计思维、生命信 息、超级生命体、量子态的群体宏 观现象和脑神经微观现象, 以及机 器越来越接近人的思维, 这些成果 如何促进教育学和学习的革命? 对 于课堂,对于学校,对于社会,对于 社群学习, 作为信息设计者, 在思维 上如何进行一场彻底的变革?

从工匠精神到创客精神,背后 有什么一般性的信息支撑? 学校和 教师又如何搭建一个支撑创造的迭 代的创新数据容器? 从戏剧教育到 教育戏剧, 信息化为何是解放师生 的最终手段, 而教育又为何要拓展 互联网思维、警惕互联网行为? @