

低成本、低功耗 仪表放大器

AD620

特性

易于使用

增益通过一个外部电阻设置 (增益范围: 1至10,000)

宽电源电压范围(±2.3 V至±18 V)

性能高于3运放分立仪表放大器设计

采用8引脚DIP和SOIC封装 低功耗,最大工作电流1.3 mA

出色的直流性能(B级)

输入失调电压: 50 μV(最大值) 输入失调漂移: 0.6 μV/°C(最大值) 输入偏置电流: 1.0 nA(最大值) 共模抑制比: 100 dB(最小值,G = 10)

低噪声

输入电压噪声: 9 nV/√Hz (1 kHz) 0.28 μV峰峰值噪声(0.1 Hz至10 Hz)

出色的交流特性

带宽: 120 kHz(G = 100) 0.01%建立时间: 15 μs

应用 电子秤 ECG和医疗仪器 传感器接口 数据采集系统 工业过程控制 电池供电便携式设备

图2. 三运放分立仪表放大器设计与AD620比较

Rev. G
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

连接图

图1.8引脚PDIP(N)、CERDIP(Q)和SOIC(R)封装

产品描述

AD620是一款低成本、高精度仪表放大器,仅需要一个外部电阻来设置增益,增益范围为1至10,000。此外,AD620采用8引脚SOIC和DIP封装,尺寸小于分立电路设计,并且功耗更低(最大工作电流仅1.3 mA),因而非常适合电池供电及便携式(或远程)应用。

AD620具有高精度(最大非线性度40 ppm)、低失调电压(最大50 μV)和低失调漂移(最大0.6 μV/°C)特性,是电子秤和传感器接口等精密数据采集系统的理想之选。此外,AD620还具有低噪声、低输入偏置电流和低功耗特性,使之非常适合ECG和无创血压监测仪等医疗应用。

由于其输入级采用Superβeta处理,因此可以实现最大1.0 nA的低输入偏置电流。AD620在1 kHz时具有9 nV/√Hz的低输入电压噪声,在0.1 Hz至10 Hz带宽上的噪声为0.28 μV峰峰值,输入电流噪声为0.1pA/√Hz,因而作为前置放大器使用效果很好。AD620还非常适合多路复用应用,其0.01%建立时间为15 μs,而且成本很低,足以实现每通道一个仪表放大器的设计。

图3. 总电压噪声与信号源电阻的关系

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved.

目录		
技术规格	输入保护	16
绝对最大额定值5	射频(RF)干扰	16
ESD警告5	共模抑制	17
典型工作特性7	接地	17
工作原理13	输入偏置电流回路	18
增益选择16	外形尺寸	19
输入与输出失调电压16	订购指南	20
基准引脚16		
修订历史		
2004年12月—修订版F至修订版G	2003年7月—"数据手册"从修订版E升级至修订版F	
格式更新	编辑"特性"部分	
修改"特性"部分1	修改"技术规格"部分	2
修改"产品描述"部分1	从"订购指南"中删除AD620CHIPS	4
修改"技术规格"部分	删除覆铜版照片	4
增加覆铜版照片4	更换TPC 1-3	5
更换图4至图66	更换TPC 12	6
更换图157	更换TPC 30	9
更换图3310	更换TPC 31和TPC 32	10
更换图34和图3510	更换图4	10
更换图3710	修改表I	11
修改表3	修改图6和图7	12
修改图41和图4214	修改图8	13
修改图4315	编辑"输入保护"部分	13
修改图4417	新增图9	13
修改"输入保护"部分15	修改"RF接口"部分	14
删除图915	编辑"输入偏置电流回路"部分	15
修改"射频(RF)干扰"部分15	更新"外形尺寸"部分	16
编辑"输入偏置电流回路"部分17		
在"订购指南"中增加AD620CHIPS19		

技术规格

25°C、 $V_s = \pm 15$ V、 $R_L = 2$ kΩ时的典型值,特别声明除外。

表1

参数 条件 最小值 典型值 最大值 最小值 典型值 最大值 最小值 增益范围 「增益范围 「以 (49.4 kΩ/R _G) 10,000 10,000 110,000 110,000 110,000 110,000 110,000 110,000 110,000 110,000 110,000 110,000 110,000 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.15 0.50	典型值 0.03 0.15 0.15 0.40 10 10	最大值 10,000 0.10 0.30 0.30 0.70 40 95	単位 % % % ppm ppm
增益范围 $\psi_{OUT} = \pm 10 \text{V}$ $V_{OUT} = \pm 10 \text{V}$	0.15 0.15 0.40 10 10	0.10 0.30 0.30 0.70 40 95	% % % % ppm ppm
増益误差 ² $V_{OUT} = \pm 10 V$ $0.03 0.10$ $0.01 0.02$ $0.15 0.30$ $0.10 0.15$ $0.15 0.30$ $0.10 0.15$ $0.15 0.30$ $0.10 0.15$ $0.15 0.30$ $0.10 0.15$ $0.15 0.30$ $0.10 0.15$ $0.35 0.50$ $0.10 0.15$ $0.30 0.10$ $0.30 0.10$ $0.30 0.10$ $0.30 0.10$ $0.30 0.10$ $0.30 $	0.15 0.15 0.40 10 10	0.10 0.30 0.30 0.70 40 95	% % % ppm ppm
増益误差 ² $V_{OUT} = \pm 10 V$ $0.03 0.10$ $0.01 0.02$ $0.15 0.30$ $0.10 0.15$ $0.15 0.30$ $0.10 0.15$ $0.15 0.30$ $0.10 0.15$ $0.15 0.30$ $0.10 0.15$ $0.15 0.30$ $0.10 0.15$ $0.35 0.50$ $0.10 0.15$ $0.30 0.10$ $0.30 0.10$ $0.30 0.10$ $0.30 0.10$ $0.30 0.10$ $0.30 $	0.15 0.15 0.40 10 10	0.30 0.30 0.70 40 95	% % % ppm ppm
$G=1$ 0.03 0.10 0.01 0.02 0.15 0.30 0.10 0.15 0.30 0.10 0.15 0.30 0.10 0.15 0.30 0.10 0.15 0.30 0.10 0.15 0.30 0.10 0.15 0.30 0.10 0.15 0.35 0.50 増益非线性度 $V_{\text{OUT}}=-10V\Xi+10V$ $G=1-1000$ $R_L=10k\Omega$ 10 40 10 40 $G=1-100$ $R_L=2k\Omega$ 10 95 10 95 $G=1$ $G=$	0.15 0.15 0.40 10 10	0.30 0.30 0.70 40 95	% % % ppm ppm
G=100	0.15 0.40 10 10	0.30 0.70 40 95	% % ppm ppm
G=1000	0.40 10 10	0.70 40 95	% ppm ppm
G=1000	10 10	40 95 10	ppm
増益非线性度 $V_{OUT} = -10 V \overline{\Sigma} + 10 V$ $G = 1-1000$ $R_L = 10 k\Omega$ 10 40 10 40 $G = 1-100$ $R_L = 2 k\Omega$ 10 95 10 95	10	95 10	ppm
$G=1-1000$ $R_L=10$ k Ω 10 40 10 40 $H_L=2$ k Ω 10 95 10 95 $H_L=2$ k Ω 10 10 $H_L=2$ k Ω 10 $H_L=2$ k Ω 10 10 $H_L=2$ k Ω 10 $H_L=2$ Ω 10 $H_L=2$ k Ω 10 $H_L=2$ k Ω 10 $H_L=2$ k Ω 10 $H_L=2$ Ω 10 $H_L=2$ k	10	95 10	ppm
增益与温度的关系 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	ppm
增益与温度的关系 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30		
	30		·n -
増益>1² -50 -50 失调电压 (折合到输入端总误差= V _{OSI} + V _{OSO} /G) 输入失调, V _{OSI} V _S = ±5 V 30 125 15 50	30		ppm/°C
失调电压 (折合到输入端总误差= V _{OSI} + V _{OSO} /G) 输入失调, V _{OSI} V _S = ±5 V 30 125 15 50	30		ppm/°C
输入失调, V _{OSI} V _S = ±5 V 30 125 15 50	30		[
The Property of the Property o	30	125	μV
至±15V		123	""
全温度范围 V _S = ±5 V 185 85		225	μV
至±15 V			'
平均温度系数(TC) V _S = ±5 V 0.3 1.0 0.1 0.6	0.3	1.0	μV/°C
至±15 V			
输出失调,V _{OSO} V _S = ±15 V 400 1000 200 500	400	1000	μV
$V_S = \pm 5 \text{ V}$ 1500 750		1500	μV
全温度范围 V _S = ±5 V 2000 1000		2000	μV
至±15 V			
平均温度系数(TC) V _S = ±5 V 5.0 15 2.5 7.0	5.0	15	μV/°C
至±15 V			
折合到输入端的失调			
与电源的关系(PSR)			
G = 1 80 100 80 100 80	100		dB
G = 10 95 120 100 120 95	120		dB
G = 100 110 140 120 140 110	140		dB
G = 1000 110 140 120 140 110 110 110	140		dB
输入电流 110 140 120 140 110 110 110 110 110 110 110 110 11	140		UB
輸入 偏置电流 0.5 2.0 0.5 1.0	0.5	2	nA
	0.5	2 4	
	8.0	4	nA
		1.0	pA/°C
输入失调电流 0.3 1.0 0.3 0.5	0.3	1.0	nA
全温度范围 1.5 0.75	0.0	2.0	nA
平均温度系数(TC) 1.5 1.5	8.0		pA/°C
输入			
输入阻抗	40110		60 5
差分 10 2 10 2	10 2		GΩ_pF
共模 10 2 10 2	10 2		GΩ_pF
输入电压范围 ³ $V_s = \pm 2.3 \text{ V} -V_s + 1.9$ $+V_s - 1.2$ $-V_s + 1.9$ $+V_s - 1.2$ $-V_s + 1.9$	9	$+V_{s}-1.2$	V
至 ±5 V	1	١١/- 1 2	V
		$+V_{S}-1.3$	V
$\begin{vmatrix} V_S = \pm 5 \text{ V} \\ \Xi \pm 18 \text{ V} \end{vmatrix}$ $-V_S + 1.9$ $+V_S - 1.4$ $ -V_S + 1.9$ $+V_S - 1.4$ $ -V_S + 1.9$	2	$+V_{S}-1.4$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
全温度范围	3	+V _s - 1.4	V

			AD620	Α		AD620	В		AD6209	S ¹	
参数	条件	最小值	典型值	最大值	最小值	典型值	最大值	最小值	典型值	最大值	单位
共模抑制比,		•			•			•			•
DC至60 Hz,											
1 kΩ非均衡信号源	V _{CM} = 0 V 至	±10 V									
G = 1		73	90		80	90		73	90		dB
G = 10		93	110		100	110		93	110		dB
G = 100		110	130		120	130		110	130		dB
G = 1000		110	130		120	130		110	130		dB
输出		110	130		120	130		110	130		GD.
 输出摆幅	$R_L = 10 \text{ k}\Omega$										
制山 5大阳	$V_{S} = \pm 2.3 \text{ V}$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1.2	V . 1 1		.\/ 12	V . 1 1		.)/ 1.2	V
	V _S = ±2.3 V 至 ± 5 V	-V _S + 1.1		$+V_{s}-1.2$	$-V_{s} + 1.1$		$+V_{s}-1.2$	$-V_{s} + 1.1$		$+V_{s}-1.2$	\ \
全温度范围	主ニラマ	$-V_s + 1.4$		+V _s - 1.3	$-V_{s} + 1.4$		+V _S - 1.3	$-V_{s} + 1.6$		+V _s - 1.3	V
主価及犯回	$V_s = \pm 5 \text{ V}$	$-V_S + 1.4$ $-V_S + 1.2$		$+V_S - 1.3$ $+V_S - 1.4$	$-V_S + 1.4$ $-V_S + 1.2$		$+V_S - 1.3$ $+V_S - 1.4$	$-V_S + 1.0$ $-V_S + 1.2$		$+V_S - 1.3$ $+V_S - 1.4$	V
	Vs = ±5 V 至 ± 18 V	$-v_5 + 1.2$		+V ₅ - 1.4	$-v_5 + 1.2$		+V _S - 1.4	$-v_5 + 1.2$		+ v ₅ - 1.4	V
全温度范围	王二10 4	$-V_{s} + 1.6$	5	+V _s – 1.5	$-V_{s} + 1.6$		+V _s - 1.5	$-V_{s} + 2.3$		+V _s – 1.5	V
短路电流		V5 1 1.0	±18	1 45 1.5	V5 1 1.0	±18	1 45 1.5	V3 1 2.3	±18	1 45 1.5	mA
动态响应	+		±10			-10			±10		ША
小信号-3 dB带宽	1										
	1		1000			1000			1000		ld I=
G = 1			1000			1000			1000		kHz
G = 10			800			800			800		kHz
G = 100			120			120			120		kHz
G = 1000			12			12			12		kHz
压摆率		0.75	1.2		0.75	1.2		0.75	1.2		V/µs
0.01%建立时间	10 V步进										
G = 1-100			15			15			15		μs
G = 1000			150			150			150		μs
噪声											
电压噪声,1kHz	折合到输入的	^{耑总噪声=} ν	$(e^2_{ni}) + (e^2_{ni})$	$(G_{na}/G)^2$							
输入,电压噪声,e _{ni}			9	13	I	9	13	I	9	13	nV/√
输出,电压噪声,e _{no}			72	100		72	100		72	100	nV/√
RTI, 0.1 Hz至10 Hz			72	100		72	100		12	100	1107 0
G = 1			3.0			3.0	6.0		3.0	6.0	\/ n
											μVρ
G = 10			0.55			0.55	0.8		0.55	0.8	μV p
G = 100 - 1000	6 4111		0.28			0.28	0.4		0.28	0.4	μVp
电流噪声	f = 1 kHz		100			100			100		fA/√
0.1 Hz至10 Hz			10			10			10		рА р
基准输入											
$R_{ m IN}$			20			20			20		kΩ
$ m I_{IN}$	V_{IN+} , $V_{REF} = 0$		50	60		50	60		50	60	μΑ
电压范围		$-V_s + 1.6$		$+V_{s}-1.6$	$-V_s + 1.6$		$+V_{s}-1.6$	$-V_s + 1.6$		$+V_{s}-1.6$	V
输出增益		1 ± 0.000	01		1 ± 0.000	1		1 ± 0.000	1		
电源											
工作电压范围4		±2.3		±18	±2.3		±18	±2.3		±18	V
静态电流	$V_S = \pm 2.3 \text{ V}$		0.9	1.3		0.9	1.3		0.9	1.3	mA
	至 ±18 V		-			-			-		
全温度范围			1.1	1.6		1.1	1.6		1.1	1.6	mA
额定温度范围											
		-40至+8	-		-40至+85			-55至+12	-		°C

¹ 若需883B测试技术规格,请参考ADI公司军用数据手册。 ² 不包括外部电阻R_C的影响。 ³ 一路输入接地。G = 1。 ⁴ 与用来规定PSR特性的电源电压范围相同。

绝对最大额定值

表2

- X-2	
参数	额定值
电源电压	±18 V
内部功耗1	650 mW
输入电压(共模)	±V _S
差分输入电压	25 V
输出短路持续时间	未定
存储温度范围(Q)	-65°C 至 +150°C
存储温度范围(N, R)	-65°C 至 +125°C
工作温度范围	
AD620 (A, B)	-40°C 至 +85°C
AD620 (S)	-55°C 至 +125°C
引脚温度范围	
(10秒焊接)	300°C

注意,超出以上所列的绝对最大额定值可能导致器件永久 性损坏。这只是强调的额定值,不涉及器件在这些或任何 其它条件下超出本技术规格指标的功能性操作。长期在绝 对最大额定值条件下工作会影响器件的可靠性。

ESD警告

ESD(静电放电)敏感器件。静电电荷很容易在人体和测试设备上累积,可高达4000 V,并可能在没有 察觉的情况下放电。尽管本产品具有专用ESD保护电路,但在遇到高能量静电放电时,可能会发生 永久性器件损坏。因此,建议采取适当的ESD防范措施,以避免器件性能下降或功能丧失。

¹针对空气中的器件而言:

⁸引脚塑料封装: θ_{JA} = 95°C 8引脚CERDIP封装: θ_{JA} = 110°C

⁸引脚SOIC封装: θ_{JA} = 155°C

*FOR CHIP APPLICATIONS: THE PADS 1R $_{\rm G}$ AND 8R $_{\rm G}$ MUST BE CONNECTED IN PARALLEL TO THE EXTERNAL GAIN REGISTER R $_{\rm G}$. DO NOT CONNECT THEM IN SERIES TO R $_{\rm G}$. FOR UNITY GAIN APPLICATIONS WHERE R $_{\rm G}$ IS NOT REQUIRED, THE PADS 1R $_{\rm G}$ MAY SIMPLY BE BONDED TOGETHER, AS WELL AS THE PADS 8R $_{\rm G}$.

图4. 覆铜版照片。图示尺寸单位: 英寸和(毫米)。 最新尺寸信息请联系销售部门。 5-0-004

典型工作特性

(25°C, $V_s = \pm 15 V$, $R_L = 2 kΩ$ 时,特别声明除外。)

图5. 输入失调电压的典型分布图

图6. 输入偏置电流的典型分布图

图7. 输入失调电流的典型分布图

图8. 输入偏置电流与温度的关系

图9. 输入失调电压变化与预备时间的关系

图10. 电压噪声谱密度与频率的关系(G=1-1000)

图11. 电流噪声谱密度与频率的关系

图12.0.1 Hz至10 Hz RTI电压噪声(G=1)

图13.0.1 Hz至10 Hz RTI电压噪声 (G = 1000)

图14.0.1 Hz至10 Hz电流噪声(5 pA/刻度)

图15. 总漂移与信号源阻抗的关系

图16. 典型CMR与频率的关系(RTI,零至1 kΩ非均衡信号源)

图17. 正PSR与频率的关系(RTI, G=1-1000)

图18. 负PSR与频率的关系(RTI, G=1-1000)

图19. 增益与频率的关系

图20. 大信号频率响应

图21. 输入电压范围与电源电压的关系(G=1)

图22. 输出电压摆幅与电源电压的关系(G = 10)

图23. 输出电压摆幅与负载阻抗的关系

图24. 大信号脉冲响应与建立时间的关系(G=1, 0.5 mV = 0.01%)

图25. 小信号响应(G=1, $R_L=2\,k\Omega$, $C_L=100\,pF$)

图26. 大信号响应与建立时间的关系(G=10, 0.5 mV=0.01%)

图27. 小信号响应(G = 10, $RL = 2 k\Omega$, CL = 100 pF)

图28. 大信号响应与建立时间的关系(G=100, 0.5 mV=0.01%)

图29. 小信号脉冲响应($G=100,\ R_L=2\ k\Omega,\ C_L=100\ pF$)

图30. 大信号响应与建立时间的关系(G = 1000, 0.5 mV = 0.01%)

图31. 小信号脉冲响应($G=1000,\ R_L=2\,k\Omega,\ C_L=100\,pF$)

图32. 建立时间与步进大小的关系(G=1)

图33.0.01%建立时间与增益的关系(步进大小为10 V)

图34. 增益非线性度(G=1, $R_L=10\,\mathrm{k}\Omega$, $10\,\mu\mathrm{V}=1\,\mathrm{ppm}$)

图35. 增益非线性度($G=100,\ R_L=10\ k\Omega,\ 100\ \mu V=10\ ppm$)

图36. 增益非线性度(G = 1000, $R_L = 10 \, k\Omega$, $1 \, \mathrm{mV} = 100 \, \mathrm{ppm}$)

图37. 建立时间测试电路

工作原理

图38. AD620原理示意图

AD620是一款单芯片仪表放大器,采用经典的三运放改进设计。通过调整片内电阻的绝对值,用户只需一个电阻便可实现对增益的精确编程(G=100时精度可达0.15%)。单芯片结构和激光晶圆调整允许对电路元件进行严格匹配与跟踪,从而可确保此电路本身具有的高性能特性。

输入晶体管Q1和Q2提供一路高精度差分对双极性输入(图 38),同时由于采用Super6eta处理,因此输入偏置电流减小 10倍。反馈环路Q1-A1-R1和Q2-A2-R2使输入器件Q1和Q2 的集电极电流保持恒定,从而可将输入电压作用于外部增益设置电阻 R_G 上。这样就产生了从输入至A1/A2输出的差分增益,其计算公式为 $G=(R1+R2)/R_G+1$ 。单位增益减法器A3用来消除任何共模信号,以获得折合到REF引脚电位的单端输出。

 R_c 值还可决定前置放大器级的跨导。当减小 R_c 以获得更大增益时,该跨导将渐近增大到输入晶体管的跨导。这会带来三大好处: (a)开环增益提升以提供更大的编程增益,从而减小与增益相关的误差; (b)增益带宽积(由C1、C2和前置放大器跨导决定)随着编程增益提高而增大,从而优化频率响应; (c)输入电压噪声降至9 nV/Hz, 它主要由输入器件的集电极电流和基极电阻决定。

内部增益电阻R1和R2已调整至绝对值24.7 kΩ,因此利用一个外部电阻便可实现对增益的精确编程。

增益公式为:

$$G = \frac{49.4k\Omega}{R_G} + 1$$

$$R_G = \frac{49.4k\Omega}{G-1}$$

自制与购买: 典型桥式电路应用误差预算

AD620提供优于"自制"三运放仪表放大器设计的性能,同时具有较小的尺寸、较少的元件和低10倍的工作电流。在图39所示的典型应用中,要求增益为100,在-40°C至+85°C的工业温度范围内放大20 mV满量程桥式电路输出。表3列出了如何计算各种误差源对电路精度的影响。

无论用于何种系统,AD620都能以更低功耗和更低成本提供更高的精度。在简单的系统中,绝对精度和漂移误差显然是最重要的误差来源。在含有智能处理器的较复杂系统中,自动增益/自动归零周期将消除所有的绝对精度和漂移误差,仅留下增益、非线性度和噪声的分辨率误差,因此可以获得完全14位精度。

请注意,对于自制电路,输入电压失调和噪声的OP07技术规格已乘以√2。这是因为三运放型分立仪表放大器有两个运放在其输入端,二者均对总输入误差有影响。

图39. 自制与购买

表3. 自制与购买的误差预算

			误差,满量程ppm		
误差源	AD620电路计算	"自制"电路计算	AD620	自制	
绝对精度(T _A = 25°C)					
输入失调电压, μV	125 μV/20 mV	$(150 \mu V \times \sqrt{2})/20 \text{mV}$	6,250	10,607	
输出失调电压, μV	1000 μV/100 mV/20 mV	$((150 \mu V \times 2)/100)/20 \text{mV}$	500	150	
输入失调电流, nA	2 nA ×350 Ω/20 mV	(6 nA ×350 Ω)/20 mV	18	53	
CMR, dB	110 dB(3.16 ppm) ×5 V/20 mV	(0.02% Match × 5 V)/20 mV/100	791	500	
		总绝对误差	7,559	11,310	
85℃漂移					
增益漂移,ppm/°C	(50 ppm + 10 ppm) ×60°C	100 ppm/°C Track × 60°C	3,600	6,000	
输入失调电压漂移, μV/°C	$1 \mu\text{V/°C} \times 60^{\circ}\text{C/20 mV}$	$(2.5 \mu\text{V}/^{\circ}\text{C} \times \sqrt{2} \times 60^{\circ}\text{C})/20 \text{mV}$	3,000	10,607	
输出失调电压漂移,μV/℃	15 μ V/°C × 60°C/100 mV/20 mV	$(2.5 \mu\text{V/°C} \times 2 \times 60^{\circ}\text{C})/100 \text{mV/20 mV}$	450	150	
		总漂移误差	7,050	16,757	
分辨率					
增益非线性度,满量程ppm	40 ppm	40 ppm	40	40	
0.1 Hz至10 Hz电压噪声	28 μV p-p/20 mV	(0.38 μ V p-p × √2)/20 mV	14	27	
(典型值, μV 峰峰值)		总分辨率误差	54	67	
		误差总和	14,663	28,134	

 $G = 100, V_S = \pm 15 V.$

(所有误差均为最小值/最大值并折合到输入端)

图40. 采用5 V单电源供电的压力监测仪电路

压力测量

AD620除了可用于电子秤等许多桥式电路应用之外,还特别适合采用低电压供电的大电阻压力传感器。在这些应用中,小尺寸和低功耗特性变得更加重要。

图40显示了一个3 kΩ压力传感器电桥,它采用5 V电源供电,电桥功耗仅为1.7 mA。增加AD620和缓冲分压器后便可对信号进行调理,总电源电流仅3.8 mA。

小尺寸和低成本优势使AD620对电压输出压力传感器极具吸引力。由于其低噪声和低漂移特性,因此它也适合诊断性无创血压测量等应用。

医用ECG

AD620具有低电流噪声特性,因此可用于信号源电阻常常高达1 MΩ乃至更大的ECG监测仪(图41)。AD620的功耗和电源电压均可很低,并且采用节省空间的8引脚微型DIP和SOIC封装,因而是电池供电式数据记录器的绝佳选择。

此外, AD620的低偏置电流和低电流噪声特性与低电压噪声特性相结合, 可提高动态范围, 确保获得更好的性能。

适当选择电容C1的值,则可使右侧驱动环路保持稳定。此 电路必须增加绝缘等适当的安全措施,以避免患者可能受 到伤害。

图41. 医用ECG监测仪电路

精密V-I转换器

AD620与一个运算放大器和两个电阻相结合,便可构成一个精密电流源(图42)。该运算放大器为基准引脚提供缓冲,以确保良好的共模抑制(CMR)性能。AD620的输出电压V_x出现在电阻R1,后者将其转换成电流。此电流仅减去运算放大器的输入偏置电流后,便流向负载。

图42. 精密电压电流转换器(工作电流1.8 mA, 工作电压±3 V)

增益选择

AD620的增益通过电阻 R_G 进行编程,或者更精确地说,通过引脚1与引脚8之间存在的任何阻抗进行编程。AD620旨在用0.1%至1%电阻提供精确的增益。表4列出了各种增益所要求的 R_G 值。注意,对于G=1, R_G 引脚不连接($RG=\infty$)。对于任意增益,可用下式计算 R_G :

$$R_G = \frac{49.4 \, k\Omega}{G - 1}$$

为使增益误差最小,应避免产生与 R_G 串联的高寄生电阻;为使增益漂移最小, R_G 应具有低温度系数TC(小于10 $ppm/^{\circ}C)$ 才能获得最佳性能。

表4. 要求的增益电阻值

1%标准表 R _G 值(Ω)	计算得到 的增益值	0.1%标准表 R _G 值(Ω)	计算得到 的增益值
49.9 k	1.990	49.3 k	2.002
12.4 k	4.984	12.4 k	4.984
5.49 k	9.998	5.49 k	9.998
2.61 k	19.93	2.61 k	19.93
1.00 k	50.40	1.01 k	49.91
499	100.0	499	100.0
249	199.4	249	199.4
100	495.0	98.8	501.0
49.9	991.0	49.3	1,003.0

输入与输出失调电压

AD620的低误差可以归结于两个来源:输入误差与输出误差。输出误差折合到输入端时需除以G。实际上,高增益时以输入误差为主,低增益时以输出误差为主。给定增益的总 V_{OS} 计算如下:

折合到输入端(RTI)总误差=输入误差+(输出误差/G) 折合到输出端(RTO)总误差=(输入误差×G)+输出误差

基准引脚

基准引脚电位定义零输出电压。而且当负载不与系统其余部分共享精确地电位时,基准引脚电位就特别有用:一种向输出提供精确偏移电压的直接途径,容许范围为电源电压以内2 V。为了获得最佳的共模抑制(CMR),应使寄生电阻保持最小。

输入保护

AD620的输入端配有400 Ω 串联薄膜电阻,可以安全可靠地承受最高±15 V或±60 mA的输入过载数小时。此特性适用于所有增益及上电、断电过程,在信号源与放大器采用不同电源分别供电时尤其重要。对于更长的时间,电流不应超过6 mA ($I_{IN} \le V_{IN}/400$ Ω)。对于超出电源的输入过载,将输入钳位至电源(用FD333之类低泄漏二极管)可以降低所要求的电阻值,从而获得较低的噪声。

射频(RF)干扰

所有仪表放大器都会对带外小信号进行整流。这种干扰可能会表现为较小的直流电压失调。高频信号可以通过仪表放大器输入端的低通R-C网络滤除。图43说明了这种配置。滤波器根据以下关系式对输入信号加以限制:

$$FilterFreq_{DIFF} = \frac{1}{2\pi R(2C_D + C_C)}$$

$$FilterFreq_{CM} = \frac{1}{2\pi RC_C}$$

其中 $C_D \ge 10C_C$ 。

 C_D 影响差动信号。 C_C 影响共模信号。 $R \times C_C$ 的任何不匹配均会降低AD620的CMRR(共模抑制比)性能。为了避免无意中降低CMRR-带宽性能,需确保 C_C 比 C_D 至少小一个数量级。 C_D : C_C 比值越大,不匹配 C_C 的影响越小。

图43. 用于减少RF干扰的电路

共模抑制

共模抑制(CMR)是仪表放大器的两路输入发生等量变化时对输出电压变化的量度,诸如AD620等仪表放大器都能够提供高CMR。这些技术规格通常针对全范围输入电压变化和特定非均衡信号源。

为获得最佳CMR,基准引脚应与低阻抗点相连,并且两路输入之间的电容和电阻差异应保持最小。许多应用都利用屏蔽电缆来尽可能降低噪声;为获得最佳的CMR随频率变化的性能,应对屏蔽进行适当的驱动。如图44和图45所示,其中的有源数据防护配置可改善交流共模抑制,它通过"自举"(bootstrapping)输入电缆屏蔽的电容,从而使输入之间的电容不匹配降至最低。

图44. 差分屏蔽驱动器

图45. 共模屏蔽驱动器

接地

由于AD620的输出电压是相对于基准引脚上的电位而言, 因此只需将REF引脚连至相应的"局部接地"便可解决许多 接地问题。

为了在高噪声数字环境中隔离低电平模拟信号,许多数据采集元件都配有单独的模拟接地引脚和数字接地引脚(图46)。采用一路接地线会很方便,但是,通过电路接地线和PC线路的电流可能会引起数百毫伏的误差。因此应提供分开的接地回路,使得从敏感点流至系统接地的电流最小。这些接地回路必须在某点连在一起,通常最好在ADC封装上,如图46所示。

输入偏置电流回路

输入偏置电流是指使放大器的输入晶体管偏置所必需的电流。这些电流必须具有直接返回路径。因此,当放大变压器或交流耦合源等"浮动"输入源时,从各输入端至地必须有直流路径,如图47、图48和图49所示。有关仪表放大器应用的更多信息,请参考"仪表放大器应用工程师指南"(ADI公司免费提供)。

图47. 变压器耦合输入偏置电流的接地回路

图48. 热电偶输入偏置电流的接地回路

图49. 交流耦合输入偏置电流的接地回路

外形尺寸

COMPLIANT TO JEDEC STANDARDS MS-001-BA

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.

图50.8引脚塑料双列直插式封装[PDIP]

窄体(N-8) 图示尺寸单位: 英寸和(毫米)

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

图51.8引脚陶瓷双列直插式封装[CERDIP] (Q-8) 图示尺寸单位: 英寸和(毫米)

COMPLIANT TO JEDEC STANDARDS MS-012AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

图52.8引脚标准小型封装[SOIC]

窄体(R-8) 图示尺寸单位:毫米和(英寸)

订购指南

型号	温度范围	封装选项1
AD620AN	-40°C 至 +85°C	N-8
AD620ANZ ²	-40°C 至 +85°C	N-8
AD620BN	-40°C 至 +85°C	N-8
AD620BNZ ²	-40°C 至 +85°C	N-8
AD620AR	-40°C 至 +85°C	R-8
AD620ARZ ²	-40°C 至 +85°C	R-8
AD620AR-REEL	-40°C 至 +85°C	13"卷盘
AD620ARZ-REEL ²	-40°C 至 +85°C	13"卷盘
AD620AR-REEL7	-40°C 至 +85°C	7"卷盘
AD620ARZ-REEL7 ²	-40°C 至 +85°C	7"卷盘
AD620BR	-40°C 至 +85°C	R-8
AD620BRZ ²	-40°C 至 +85°C	R-8
AD620BR-REEL	-40°C 至 +85°C	13"卷盘
AD620BRZ-RL ²	-40°C 至 +85°C	13"卷盘
AD620BR-REEL7	-40°C 至 +85°C	7"卷盘
AD620BRZ-R7 ²	-40°C 至 +85°C	7"卷盘
AD620ACHIPS	-40°C 至 +85°C	裸片
AD620SQ/883B	-55°C 至 +125°C	Q-8

¹ N = 塑料DIP; Q = CERDIP; R = SOIC。 ² Z = 无铅器件。