		OLS Re	gress	ion Re	esults		
Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	ons:	Least Squa	76 74 1	Adj. F-sta Prob	uared: R-squared: atistic: (F-statistic): ikelihood:		0.891 0.890 607.6 2.04e-37 -102.30 208.6 213.3
=========	coef	std err	=====	t	P> t	[0.025	0.975]
const x	3.2028 9.1104		14 24		0.000 0.000		3.643 9.847
Omnibus: Prob(Omnibus): Skew: Kurtosis:		0. -0.	816 055 112 126	Jarqu	, ,		1.896 2.579 0.275 4.42

We have already encountered some of the generated numbers like R2, F-statistic, etc. But the adjacent block of out contains many others ... what are they, why are they important, and how to interpret them?

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

This is the output generated by the Notebook **SLR-using-OLX.ipynb**

Run it on the data that you have created for Exercise E1

AIC (Akaike Information Criteria) and BIC (Bayes Information ...)

- Both these are estimators of **prediction error**. They help in model selection.
- These numbers are used to compare across models. A lower number indicates a better model
- A difference in AIC or BIC value of 2, between models being compared, is considered significant. The model with a lower AIC or BIC value is designated as the better model, and becomes a candidate for selection.
 - Omnibus statistic: This is a numeric value calculated from the skewness and kurtosis of the residuals (the difference between the predicted and actual values). A low value suggests the residuals are closer to a normal distribution, while a high value indicates deviation from normality.
 - Omnibus p-value: This value represents the probability of observing the calculated Omnibus statistic, assuming the null hypothesis of normally distributed residuals is true. A low p-value (typically < 0.05) suggests there is significant evidence to reject the null hypothesis, implying the residuals are not normally distributed.

Jarque-Bera Test

- In the context of Ordinary Least Squares (OLS) regression, the
 Jarque-Bera test is used to check the normality of the residuals.
 - **Residuals**, the difference between the predicted and actual values in your model, play a crucial role in OLS analysis.
 - Their normality is one of the key assumptions for the validity of statistical inferences drawn from the model.
- A **low statistic**: Low value of the Jarque-Bera statistic (< 2) along with high p-value (ie. > 0.05) indicate that the residuals follow Normal Distribution.
- A **high statistic**: High value of the Jarque-Bera statistic (> 6) often accompanied with low p-values (ie. < 0.05) indicate that the residuals DO NOT follow Normal Distribution.

Durbin-Watson Test

- In the context of Ordinary Least Squares (OLS) regression, the Durbin-Watson (DW) test is a diagnostic tool used to check for autocorrelation in the residuals (errors) of the model.
 Autocorrelation occurs when there's a dependence between subsequent errors, meaning the error term at one point in time influences the error term at another point.
- Its value always falls between 0 and 4, with specific interpretations:
 - **2.0:** Indicates no autocorrelation (ideal scenario).
 - **0 to less than 2.0:** Suggests positive autocorrelation (errors tend to cluster together, either positive or negative).
 - **More than 2.0 to 4:** Suggests negative autocorrelation (errors tend to alternate between positive and negative).
- This test is used as a first check, and not a definitive test.

Condition Number

The Condition Number in Ordinary Least Squares (OLS) refers to a **measure of how sensitive the estimated coefficients are to small changes in the data**. It's not directly related to any specific variable or error term, but rather evaluates the overall stability and robustness of the model's solution. Its calculation is based on eigenvalues

- A **low Condition Number** indicates that the coefficients react minimally to small changes in the data (stable, robust model).
- A **high Condition Number** signifies that even slight data variations can significantly alter the coefficients (sensitive, potentially unstable model).

Why is it important?

- A high Condition Number suggests the model might be fitting noise or capturing spurious relationships due to its sensitivity to slight data changes. This makes the estimated coefficients less reliable and conclusions less trustworthy.
- In extreme cases, a very high Condition Number can lead to numerical issues during calculations, rendering the model estimation altogether unstable.

Interpretation:

There's no single threshold for a "good" or "bad" Condition Number. However, in general:

- Values below 10 are considered acceptable, indicating a relatively stable model.
- Values above 30 raise concerns about sensitivity and potential instability.
- **Values above 100** are a strong indicator of an unreliable model requiring further investigation or improvement.

Output	Interpretation	Specific Limits/Values (if applicable)
R^2	Proportion of variance in the dependent variable explained by the model.	Range: [0, 1], higher values are desirable.
Adjusted R^2	R^2 adjusted for the number of predictors; a measure of model fit.	Like R^2, but adjusted for model complexity.
F-statistic	Tests the overall significance of the regression model.	Critical values based on significance level (e.g., 0.05).
AIC (Akaike's IC)	A measure of model goodness-of-fit, balancing complexity and fit.	Lower values are better; used for model comparison.
BIC (Bayesian IC)	Similar to AIC but penalizes model complexity more heavily.	Lower values are better; stricter penalty for complexity.
Log Likelihood	A measure of how well the model explains the observed data.	Higher values indicate better model fit.
Omnibus	Refers to a specific statistic and its associated p-value that test the normality of the residuals. It is a combination of multiple tests like Jarques-Bera test, Shapiro-Wilkes test and Kolmongoriv-Smirnov test.	For the residuals to have Normal Distribution, the Omnibus statistic should have low value and p-value should be > 0.05
Durbin-Watson test	Tests for autocorrelation in the residuals; values around 2 suggest no autocorrelation.	Range: [0, 4], close to 2 indicates no significant autocorrelation.
Jarque-Bera test	Tests for normality of residuals based on skewness and kurtosis. Test statistic value closer to zero implies residuals are normally distributed NULL Hypothesis: The residuals are Normally Distributed	Critical values based on significance level (e.g., 0.05). If p-value < 0.05, then NULL Hypothesis is rejected implying the residuals are NOT normally distributed. If residuals are normally distributed, p-value > 0.05.
Condition Number	Measures sensitivity to changes in input variables; high values indicate multicollinearity.	No strict limits; values above 30 may indicate multicollinearity.
Skew	A measure of the asymmetry of the residuals distribution.	Range: (-∞, ∞); 0 for a perfectly symmetric distribution.
Kurtosis	A measure of the "tailedness" of the residuals distribution.	Range: (-∞, ∞); 3 for a normal distribution (excess kurtosis).

MULTIPLE LINEAR REGRESSION. > SLR deals with only one independent variable, and tales the form: Y= Q.7 + b or Y= Bo+ Box. => MLR deals with more than one independent variable, and takes the form: Y = Bo+ Bra, + Braz++ Brax here (x, xz, xz, ... xx) are the independent Variables, also known as features

A data Set for MLR will look as shown below

0.896468 0.005556 3.09E-05 1.71E-07 9.53E-10 0.159546 0.011111 0.000123 1.37E-06 1.52E-08 0.863764 0.016667 0.000278 4.63E-06 7.72E-08 1.106349 0.022222 0.000494 1.1E-05 2.44E-07 1.010169 0.027778 0.000772 2.14E-05 5.95E-07 0.278498 0.033333 0.001111 3.7E-05 1.23E-06 1.114231 0.038889 0.001512 5.88E-05 2.29E-06 1.029804 0.044444 0.001975 8.78E-05 3.9F-06 0.05 0.0025 0.000125 6.25E-06 0.37387 0.971634 0.055556 0.003086 0.000171 9.53E-06 0.975377 | 0.061111 | 0.003735 | 0.000228 | 1.39E-05 1.079774 0.066667 0.004444 0.000296 1.98E-05 1.24279 0.072222 0.005216 0.000377 2.72E-05 0.644699 0.077778 0.006049 0.000471 3.66E-05 0.656177 | 0.083333 | 0.006944 | 0.000579 | 4.82E-05

77 0.061111 0.003735 0.000228 1.39E-174 0.066667 0.004444 0.000296 1.98E-179 0.072222 0.005216 0.000377 2.72E-179 0.077778 0.006049 0.000471 3.66E-177 0.083333 0.006944 0.000579 4.82E-179 0.083333 0.006944 0.000579 4.82E-179 0.006049 0.006049 0.0006049 0.000579 4.82E-179 0.006040 0.006040 0.006040

In MER, the goal is to express'y' as a linear combination of x, x2,... : 41 = Bo+ B, 711 + B2221+ ...+ Bxxx1+er 42 = BOT BITZ + BEX22+ "+ BKXK2TE2 Ym = Po+B12cm+ -+ Bk2km+Cm
/'E'fectures

What is MCf?

What is MCf?

What is MCf?

What is MCf?

Wheres pointing values of all xij and

the Corresponding Values of Yj, find

out the most appropriate Bo, B, ... Bx

How do we go about if? The model that we create, ie. the Vulues of Bo, B1, etc. that we identify Should be such that > ei should be minimized (minimize the Sum of Square of errors, SSE)

Note:

$$Y_i = \beta_0 + \sum_{j=1}^{\infty} \beta_j x_{ij} + e_i$$

 $\hat{Y}_i = \beta_0 + \sum_{j=1}^{\infty} \beta_j x_{ij}$

m = Number of observations (records) R = Number of features (independent variables)

 \Rightarrow $Y = X \cdot \beta + E$ and $\frac{\hat{Y} = X \cdot \beta}{2}$. The representative $\frac{1}{2}$

ETE =
$$(Y - xp)(Y - xp)$$
 Sum of Squares of Gross $J = \frac{1}{2u}(E^T - E)$ Cost function Goal: Naturally eT (ie: make $dT = D$)

 $J = \frac{1}{2m} \left[(Y - XP)^{T} (Y - XP) \right]$ $= \frac{1}{2m} \left[(Y^{T} - PX^{T})^{T} (Y - XP) \right]$

$$= \sum_{n=1}^{\infty} \left[\sqrt{r_n} \cdot \gamma - \sqrt{r_n} (p_n^2) - (\overline{q_n^2} r_n^2) + (\overline{q_n^2} r_n^2) (x_n^2) \right]$$

$$\frac{dT}{dp_n^2} : \frac{1}{2m} \left[\frac{d}{dp_n^2} (\overline{q_n^2} r_n^2) - \frac{d}{dp_n^2} \left\{ (\overline{q_n^2} r_n^2) - \frac{d}{dp_n^2} \left\{ (\overline{q_n^2} r_n^2) - (\overline{q_n^2} r_n^2) \right\} \right]$$

$$= \sum_{n=1}^{\infty} \left[\frac{d}{dp_n^2} (\overline{q_n^2} r_n^2) - \frac{d}{dp_n^2} \left\{ (\overline{q_n^2} r_n^2) - (\overline{q_n^2} r_n^2) \right\} \right]$$

$$A = \frac{d}{d\beta}(y^T, y) = 0 - y + a \text{ a vector } d \in C$$

$$c = \frac{d}{d\beta} \left\{ (\vec{p} \vec{y}) \cdot \vec{r} \right\} : \vec{p} \vec{x} \vec{y} + \frac{d}{d\beta} + \frac{d}{d\beta} (\vec{p} \vec{x}) \cdot \vec{r}$$

$$C = \frac{d}{d\beta} \left\{ (\vec{p} \vec{x}) \cdot \vec{r} \right\} : \vec{p} \vec{x} \vec{y} + \frac{d}{d\beta} + \frac{d}{d\beta} (\vec{p} \vec{x}) \cdot \vec{r}$$

$$-\left(\vec{\beta}^{T}\vec{y}^{T}\vec{x}\right) + \left(\vec{x}^{T}\vec{y}^{B}\right)_{k,l}$$

$$\frac{dT}{dP} = \frac{1}{2m} \left[\left(\vec{\beta}^{T}\vec{y}^{T}\vec{y}\right) + \left(\vec{x}^{T}\vec{y}^{B}\right) - \vec{y}^{T}\vec{y} - \vec{y}^{T}\vec{y} \right]$$

There are all 'vertors' and the results in the fairs shown below are agreed in Yalues. Hence we arranging and susplitting ...

$$= \frac{1}{2m} \left[2. \times^{T} Y \beta - 2 \times^{T} Y \right]$$

$$= \frac{1}{(4\pi)} \left[(4\pi) \right]$$

The Gradient Descent process

(1) OSSUME SOUR VALUE for \$. 89 [1]

O Using \$1 = \$1,5 , sublishe \$1

3 Calculate \$25 as pur her above expression
by assuming some tolare for \$1 (90.005)

Calculate Acou volues for \$5 triing the following expression

(a) Calculate New Values for B using the following expression $B_{new} \leftarrow B_0 - \eta(\nabla J)$

MULTIPLE LINEAR REGRESSION. (MLR) - In MLR, more than one independent variable 712 potentially defermine the dependent variable 'y' $Y = \beta_0 + \beta_1 \chi_1 + \beta_2 \chi_2 + \beta_3 \chi_3 + \cdots + \beta_K \chi_K$ - MLR involves Calculating the coefficients Bi using the given clataset (TRAIN DATA). - As in the case of SCI, there values are obtained by minimizing the SSE (explained in a separate document) - MLR involves identifying the most relevant predictors as explained subsequently.

MLR using the dataset data-set-for-MLR.xlsx

- The dataset in the file consists of the train dataset of 85 observations and the test dataset of 15 observations
- We will create an MLR model using the train dataset and subsequently validate the model using the test dataset
- We start by creating an MLR model using all the x variables (also known as *features*)
- A scatter plot of **y** reveals that the observations are non-linear ...
 - So, will Linear Regression be able to create a good and acceptable model??

Invoking the Linear Regression functionality of Excel and selecting the variables ...

Regression Statistics Multiple R 0.912936908 R Square 0.833453799 Adjusted R Square 0.8229129 Standard Error 0.991752189 Observations 85 ANOVA df SS MS F gnificance F Regression 5 388.848 77.7697 79.0686 2.7E-29 → O Residual 79 77.7022 0.98357 O O O O O O O O O O O O O O O O					_		•	
Multiple R R Square 0.833453799 Adjusted R Square 0.8229129 Standard Error 0.991752189 Observations 85 ANOVA df SS MS F gnificance F Regression Residual 79 77.7022 0.98357 Fotal Coefficients andard Error 6.908046001 0.59691 11.5731 1.1E-18 5.71993 8.09616 11 9.846555611 7.41707 1.32755 0.18815 2.46.099 4.91676 22 39.10941696 30.7379 1.27235 0.20698 22.0728 100.292 33 42.57714279 46.9855 -0.90618 0.3676 136.099 50.9451 ANOWE OF These Values are Coefficients None Of These Values are Coefficients	SUMMARY OUTPUT							
Multiple R R Square 0.833453799 Adjusted R Square 0.8229129 Standard Error 0.991752189 Observations 85 ANOVA df SS MS F gnificance F Regression Residual 79 77.7022 0.98357 Fotal Coefficients andard Error 6.908046001 0.59691 11.5731 1.1E-18 5.71993 8.09616 11 9.846555611 7.41707 1.32755 0.18815 2.46.099 4.91676 22 39.10941696 30.7379 1.27235 0.20698 22.0728 100.292 33 42.57714279 46.9855 -0.90618 0.3676 136.099 50.9451 ANOWE OF These Values are Coefficients None Of These Values are Coefficients	Regression S	tatistics						
R square Adjusted R Square O.8229129 Standard Error O.991752189 Observations 85 ANOVA df SS MS F gnificance F Regression Residual 79 77.7022 0.98357 Fotal Coefficients andard Error 1.59846555611 7.41707 -1.32755 0.18815 -24.6099 4.91676 22 39.10941696 30.7379 1.27235 0.20698 22.0728 100.292 33 -42.57714279 46.9855 -0.90618 0.3676 136.099 50.9451 44 20.26808239 23.6657 0.85643 0.39435 -26.8374 67.3736 5 0.10562362 0.41144 0.25672 0.79806 -0.71333 0.92457 None Of filese Yalnes are QIE All MUCH GREATER than	Multiple R							
Adjusted R Square 0.8229129 0.991752189 0.991752189 0.991752189 0.90bservations 85 0.00bservations 85 0.00b	R Square	0.833453799	- 0	L				
Disservations 85 ANOVA df SS MS F gnificance F Regression 5 388.848 77.7697 79.0686 2.7E-29 \rightarrow 0 Residual 79 77.7022 0.98357 Total 84 466.551 Coefficients andard Err t Stat P-value lower 95%Upper 95% Intercept 6.908046001 0.59691 11.5731 1.1E-18 5.71993 8.09616 1 -9.846555611 7.41707 -1.32755 0.18815 -24.6099 4.91676 22 39.10941696 30.7379 1.27235 0.20698 22.0728 100.292 33 -42.57714279 46.9855 -0.90618 0.3676 136.099 50.9451 44 20.26808239 23.6657 0.85643 0.39435 -26.8374 67.3736 45 0.10562362 0.41144 0.25672 0.79806 -0.71333 0.92457 None of filese Values are accepted by the control of the control	Adjusted R Square	0.8229129						
ANOVA df SS MS F gnificance F Regression 5 388.848 77.7697 79.0686 2.7E-29 \rightarrow 0 Residual 79 77.7022 0.98357 Fotal 84 466.551 Coefficients andard Err t Stat P-value Lower 95%Upper 95% Intercept 6.908046001 0.59691 11.5731 1.1E-18 5.71993 8.09616 1 -9.846555611 7.41707 -1.32755 0.18815 -24.6099 4.91676 1 2 39.10941696 30.7379 1.27235 0.20698 22.0728 100.292 1 3 -42.57714279 46.9855 -0.90618 0.3676 136.099 50.9451 2 0.26808239 23.6657 0.85643 0.39435 -26.8374 67.3736 3 0.10562362 0.41144 0.25672 0.79806 -0.71333 0.92457 None of filese Values are Since their Corresponding filese Since their Corresponding filese Much GREATER than	Standard Error	0.991752189						
## Action of the series of the segression of th	Observations	85						
## Action of the series of the segression of th								
Regression Residual R	ANOVA							
Coefficients Residual Resid		df	SS	MS	F	gnificance		
Coefficients and ard Err t Stat P-value Lower 95% Upper 95% ntercept 6.908046001 0.59691 11.5731 1.1E-18 5.71993 8.09616 1 -9.846555611 7.41707 -1.32755 0.18815 -24.6099 4.91676 22 39.10941696 30.7379 1.27235 0.20698 22.0728 100.292 33 -42.57714279 46.9855 -0.90618 0.3676 136.099 50.9451 44 20.26808239 23.6657 0.85643 0.39435 -26.8374 67.3736 50 0.10562362 0.41144 0.25672 0.79806 -0.71333 0.92457 None of these Values are accepted by their Corresponding from the Correspon	Regression	5	388.848	77.7697	79.0686	2.7E-29	→ ok	•
Coefficients and ard Err t Stat P-value Lower 95% Upper 95% ntercept 6.908046001 0.59691 11.5731 1.1E-18 5.71993 8.09616 1 1.5731 1.1E-18 1.1E-18 1.00993 1.0093 1.0093	Residual	79	77.7022	0.98357				
ntercept 6.908046001 0.59691 11.5731 1.1E-18 5.71993 8.09616 1.9.846555611 7.41707 1.32755 0.18815 0.20698 2.20728 100.292 0.39.10941696 0.30.7379 1.27235 0.20698 2.20728 100.292 0.364 20.26808239 23.6657 0.85643 0.39435 0.268374 67.3736 0.10562362 0.41144 0.25672 0.79806 0.71333 0.92457 None Of these Values are Since their Corresponding QIE All MUCH GREATER than	Total	84	466.551					
ntercept 6.908046001 0.59691 11.5731 1.1E-18 5.71993 8.09616 1.9.846555611 7.41707 1.32755 0.18815 0.20698 2.20728 100.292 0.39.10941696 0.30.7379 1.27235 0.20698 2.20728 100.292 0.364 20.26808239 23.6657 0.85643 0.39435 0.268374 67.3736 0.10562362 0.41144 0.25672 0.79806 0.71333 0.92457 None Of these Values are Since their Corresponding QIE All MUCH GREATER than								
-9.846555611 7.41707 -1.32755 0.18815 -24.6099 4.91676 39.10941696 30.7379 1.27235 0.20698 22.0728 100.292 39.42.57714279 46.9855 -0.90618 0.3676 136.099 50.9451 40 20.26808239 23.6657 0.85643 0.39435 -26.8374 67.3736 41 0.10562362 0.41144 0.25672 0.79806 -0.71333 0.92457 None of these values are acceptable of the service of the serv		Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	
39.10941696 30.7379 1.27235 0.20698 22.0728 100.292 42.57714279 46.9855 -0.90618 0.3676 136.099 50.9451 42.20.26808239 23.6657 0.85643 0.39435 -26.8374 67.3736 45 0.10562362 0.41144 0.25672 0.79806 -0.71333 0.92457 None of these values are access Since their corresponding from the corresponding	Intercept	6.908046001	0.59691	11.5731	1.1E-18	5.71993	8.09616	
43 -42.57714279 46.9855 -0.90618 0.3676 136.099 50.9451 44 20.26808239 23.6657 0.85643 0.39435 -26.8374 67.3736 45 0.10562362 0.41144 0.25672 0.79806 -0.71333 0.92457 None of these values are accessing their corresponding to the correspond	x1	-9.846555611	7.41707	-1.32755	0.18815	-24.6099	4.91676	
20.26808239 23.6657 0.85643 0.39435 -26.8374 67.3736 (5 0.10562362 0.41144 0.25672 0.79806 -0.71333 0.92457 None of these values are accessing their corresponding for their corresponding for their corresponding for the	x2	39.10941696	30.7379	1.27235	0.20698	22.0728	100.292	
Sime their corresponding for all Much GREATER than	x3	-42.57714279	46.9855	-0.90618	0.3676	136.099	50.9451	
Sime their corresponding for all Much GREATER than	x4	20.26808239	23.6657	0.85643	0.39435	-26.8374	67.3736	
GIE ALL MUCH GREATER THAN	x 5	0.10562362	0.41144	0.25672	0.79806	-0.71333	0.92457	
GIE ALL MUCH GREATER THAN							0.00	L L a
GIE ALL MUCH GREATER THAN		> Nov	re of t	hese	Value	s are	47(5	pra
GIE ALL MUCH GREATER THAN						landi	- b	-Va
GIE ALL MUCH GREATER THAN		Sin	e the	it c)1/es	ponai	ng P	- 00
· · · · · · · · · · · · · · · · · · ·			- 40		60	l LAGED	41 014	A 4
a was record 74 - Wh		QIE	all	MIDCH	450	MIGIT	· than	
A WA NICCAPA The - Wh								
		0-		NICTA	LPD	745	ーんん	ich
30, WE DISCARY		20,	WE !) 13 CF	ハーノ	, >		
A contract to the second					4- 9-	.1.4		VA
				_1	-			
the model.		The	MOA	니 .				

0

Q

C

0.0004

0.0009

0.0016

0.0025

0.0036

0.0049

0.0064

0.0081

0.0121

0.0144

0.0169

0.0225

0.0256

0.0289

0.0324

0.0361

0.0441

0.0484

0.0529

0.0576

0.0625

0.01

x3

0

x4

0

8E-06

2.7E-05

6.4E-05

0.00013

0.00022

0.00034

0.00051

0.00073

0.001

0.00133 0.0001464

0.0022 0.0002856

0.00338 0.0005063

0.00491 0.0008352

0.00686 0.0013032

0.00926 0.0019448

0.01217 0.0027984

0.01563 0.0039063

0.01065

0.0676 0.01758 0.0045698

x5

6.25E-06 0.74414

1.296E-05 0.19197

1.6E-07

8.1E-07

2.56E-06

2.401E-05

4.096E-05

6.561E-05

0.00173 0.0002074 0.80112

0.0041 0.0006554 0.59236

0.00583 0.0010498 0.96488

0.0023426

0.01382 0.0033178 0.29455

0.0001

0 0.56109

0.89668

0.31603

0.86862

0.74443

0.05507

0.61864

0.78146

0.68791

0.20935

0.48896

0.50876

0.71971

0.49221

0.85295

0.0629

0.801

0.9675

x2

0

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.15

0.16

0.17

0.18

0.19

0.21

0.22

0.23

0.24

0.25

0.26

1 y

7.29594

5.30545

7.42688

8.2255

5.3746

7.02144

6.98843

5.21817

5.55326

6.94546

7.02019

5.03213

6.49254

6.0491 6.99021

6.13994

7.16849

6.84618

6.4126

6.40522

6.34211

5.71266

5.99409

6.29404

2

3

4 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

x1

	Α	В	С	D	Е	F	1	J	K	L	М	N	0	Р	Q
1	у	x1	x2	х3	x4	x 5			SUMMARY OUTPUT						
2	7.29594	0	0	0	0	0.56109									
3	5.30545	0.02	0.0004	8E-06	1.6E-07	0.89668			Regression St	atistics					
4	7.42688	0.03	0.0009	2.7E-05	8.1E-07	0.9675			Multiple R	0.912860812					
5	8.2255	0.04	0.0016	6.4E-05	2.56E-06	0.31603			R Square	0.833314862					
6	5.3746	0.05	0.0025	0.00013	6.25E-06	0.74414			Adjusted R Square	0.824980605					
7	7.02144	0.06	0.0036	0.00022	1.296E-05	0.19197			Standard Error	0.985945239					
8	6.98843	0.07	0.0049	0.00034	2.401E-05	0.86862			Observations	85					
9	5.21817	0.08	0.0064	0.00051	4.096E-05	0.74443									
10	5.55326	0.09	0.0081	0.00073	6.561E-05	0.801			ANOVA						
11	6.94546	0.1	0.01	0.001	0.0001	0.05507				df	SS	MS	F	gnificance	F
12	7.02019	0.11	0.0121	0.00133	0.0001464	0.61864			Regression	4	388.783	97.1959	99.9867	2.6E-30	
13	5.03213	0.12	0.0144	0.00173	0.0002074	0.80112			Residual	80	77.767	0.97209			
14	6.49254	0.13	0.0169	0.0022	0.0002856	0.78146			Total	84	466.551				
15	6.0491	0.15	0.0225	0.00338	0.0005063	0.68791									
16	6.99021	0.16	0.0256	0.0041	0.0006554	0.59236				Coefficients	andard Err	t Stat	P-value	Lower 95%L	Jpper 95
17	6.13994	0.17	0.0289	0.00491	0.0008352	0.20935			Intercept	6.982707415	0.51821	13.4746	2.8E-22	5.95143	8.0139
18	7.16849	0.18	0.0324	0.00583	0.0010498	0.96488			x1	-9.95691922	7.36125	-1.35261	0.17999	-24.6063	4.6924
19	6.84618	0.19	0.0361	0.00686	0.0013032	0.48896			x2	39.18955261	30.5563	1.28254	0.20336	-21.6194	99.9986
20	6.4126	0.21	0.0441	0.00926	0.0019448	0.50876			x3	-42.50561677	46.7095	-0.91	0.36556	-135.461	50.4493
21	6.40522	0.22	0.0484	0.01065	0.0023426	0.71971			x4	20.19742663	23.5256	0.85853	0.39316	-26.62	67.0148
22	6.34211	0.23	0.0529	0.01217	0.0027984	0.49221									
23	5.71266	0.24	0.0576	0.01382	0.0033178	0.29455					Disc	and 7	and	broc	ced
24	5.99409	0.25	0.0625	0.01563	0.0039063	0.85295						_	7		
25	6.29404	0.26	0.0676	0.01758	0.0045698	0.0629									

	Α	В	С	D	Е	F	1	J	K	L	М	N	0	Р	Q
1	у	x1	x2	x 3	x4	x 5			SUMMARY OUTPUT						
2	7.29594	0	0	0	0	0.56109									
3	5.30545	0.02	0.0004	8E-06	1.6E-07	0.89668			Regression St	tatistics					
4	7.42688	0.03	0.0009	2.7E-05	8.1E-07	0.9675			Multiple R	0.912019254					
5	8.2255	0.04	0.0016	6.4E-05	2.56E-06	0.31603			R Square	0.83177912	7				
6	5.3746	0.05	0.0025	0.00013	6.25E-06	0.74414			Adjusted R Square	0.825548717	3				
7	7.02144	0.06	0.0036	0.00022	1.296E-05	0.19197			Standard Error	0.984343752					
8	6.98843	0.07	0.0049	0.00034	2.401E-05	0.86862			Observations	85					
9	5.21817	0.08	0.0064	0.00051	4.096E-05	0.74443									
10	5.55326	0.09	0.0081	0.00073	6.561E-05	0.801			ANOVA						
11	6.94546	0.1	0.01	0.001	0.0001	0.05507				df	SS	MS	F	gnificance	F
12	7.02019	0.11	0.0121	0.00133	0.0001464	0.61864			Regression	3	388.067	129.356	133.503	2.9E-31	
13	5.03213	0.12	0.0144	0.00173	0.0002074	0.80112			Residual	81	78.4835	0.96893			
14	6.49254	0.13	0.0169	0.0022	0.0002856	0.78146			Total	84	466.551				
15	6.0491	0.15	0.0225	0.00338	0.0005063	0.68791									
16	6.99021	0.16	0.0256	0.0041	0.0006554	0.59236				Coefficients	andard Err	t Stat	P-value	Lower 95%	Jpper 95%
17	6.13994	0.17	0.0289	0.00491	0.0008352	0.20935			Intercept	6.717731373	0.4156	16.164	4.5E-27	5.89082	7.54464
18	7.16849	0.18	0.0324	0.00583	0.0010498	0.96488			x1	-4.499675935	3.70651	-1.21399	0.22828	-11.8745	2.87513
19	6.84618	0.19	0.0361	0.00686	0.0013032	0.48896			x2	14.05360633	8.73189	1.60946	0.11141	-3.32013	31.4273
20	6.4126	0.21	0.0441	0.00926	0.0019448	0.50876			х3	-2.717152907	5.81602	-0.46718	0.64162	14.2892	8.8549
21	6.40522	0.22	0.0484	0.01065	0.0023426	0.71971									
22	6.34211	0.23	0.0529	0.01217	0.0027984	0.49221					Dis	cavel X	₂ and	procee	d
23	5.71266	0.24	0.0576	0.01382	0.0033178	0.29455							-		
24	5.99409	0.25	0.0625	0.01563	0.0039063	0.85295									
25	6.29404	0.26	0.0676	0.01758	0.0045698	0.0629									

\angle	Α	В	С	D	Е	F	1	J	K	L	М	N	О	Р	Q
1	у	x1	x2	x 3	х4	x5			SUMMARY OUTPUT						
2	7.29594	0	0	0	0	0.56109									
3	5.30545	0.02	0.0004	8E-06	1.6E-07	0.89668			Regression St	tatistics					
4	7.42688	0.03	0.0009	2.7E-05	8.1E-07	0.9675			Multiple R	0.911770714					
5	8.2255	0.04	0.0016	6.4E-05	2.56E-06	0.31603			R Square	0.831325834					
6	5.3746	0.05	0.0025	0.00013	6.25E-06	0.74414			Adjusted R Square	0.82721183					
7	7.02144	0.06	0.0036	0.00022	1.296E-05				Standard Error	0.979640446					
8	6.98843	0.07	0.0049	0.00034	2.401E-05	0.86862			Observations	85					
9	5.21817	0.08	0.0064	0.00051	4.096E-05	0.74443									
10	5.55326	0.09	0.0081	0.00073	6.561E-05	0.801			ANOVA						
11	6.94546	0.1	0.01	0.001	0.0001	0.05507				df	SS	MS	F	gnificance I	=
12	7.02019	0.11	0.0121	0.00133	0.0001464	0.61864			Regression	2	387.856	193.928	202.072	2E-32	
13	5.03213	0.12	0.0144	0.00173	0.0002074	0.80112			Residual	82	78.695	0.9597			
14	6.49254	0.13	0.0169	0.0022	0.0002856	0.78146			Total	84	466.551				
15	6.0491	0.15	0.0225	0.00338	0.0005063	0.68791									
16	6.99021	0.16	0.0256	0.0041	0.0006554	0.59236				Coefficients of	indard Err	t Stat	P-value	Lower 95%L	Ipper 95%
17	6.13994	0.17	0.0289	0.00491	0.0008352	0.20935			Intercept	6.589411803	0.31041	21.2281	4.6E-35	5.97191	7.20692
18	7.16849	0.18	0.0324	0.00583	0.0010498	0.96488			x1	-2.914457293	1.48449	-1.96328	0.053	-5.86757	0.03866
19	6.84618	0.19	0.0361	0.00686	0.0013032	0.48896			x2	10.03277678	1.46738	6.8372	1.3E-09	7.11369	12.9519
20	6.4126	0.21	0.0441	0.00926	0.0019448	0.50876									
21	6.40522	0.22	0.0484	0.01065	0.0023426	0.71971				The .		.1 C.	0 00 00 1	· 01/	CANA
22	6.34211	0.23	0.0529	0.01217	0.0027984	0.49221				Ing	~\vy\	7	-C M	7 01	. 0 (0 - 0
23	5.71266	0.24	0.0576	0.01382	0.0033178	0.29455				•	•	•			r.
24	5.99409	0.25	0.0625	0.01563	0.0039063	0.85295				h 1/0	1,0	~ / -	d .	icV	Dry Lla
25	6.29404	0.26	0.0676	0.01758	0.0045698	0.0629				p - v	HALC	h		1 3 0	
												V	•	•	
										1	m (~	Ca	1410	class	nco +0
										40 D.	0.2	70	Mag	40	USC 1
										•					
										11 001	•1				engula ose fo
										KCED	IT.				
										•					

 Overall - the model seems to be good and acceptable based its performance on the train data

• We now need to check its performance on the test data ...

6.2

6.9

6.4

6.0

6.1

8.2

important features features, based on their p-values, is known as **BACKWARD FEATURES ELIMINATION**

Q

Model performance on **Test Data**

- The y and ycap plots seem to indicate that the model, created using train data also performs reasonably well on the test data
- R2 value on test data seems Ok and close to the R2 value using train data

- The MSE values are differing, indicating some level of **overfitting** to the train data. However, the size of the test data is small, so the errors are possibly magnified.
- Usually, the technique of **cross-validation** is used wherein multiple test data sets are used to evaluate the model. This results in an unbiased error estimate on test data.

OLS Regression Results

==========	======			======		=======	
Dep. Variable	:		У	R-squ	uared:		0.831
Model:			OLS	Adj.	R-squared:		0.827
Method:		Least Squ	iares	_	atistic:		202.1
Date:		Fri, 26 Jan			(F-statistic):		2.04e-32
Time:		•	9:48		ikelihood:		-117.33
No. Observati	ons:		85	AIC:			240.7
Df Residuals:			82	BIC:			248.0
Df Model:			2	DIC.			24010
Covariance Ty	ne:	nonro	_				
=========		=========	=====	======	-========	======	========
	coef	std err		t	P> t	[0.025	0.975]
const	6.5894	0.310	2	1.228	0.000	5.972	7.207
x1	-2.9145	1.484	-	1.963	0.053	-5.868	0.039
x2	10.0328	1.467		6.837	0.000	7.114	12.952
Omnibus:	======	========= 1	 1.380	===== Durbi	======== in-Watson:	======	2.318
Prob(Omnibus)	:		.502		ue-Bera (JB):		1.164
Skew:			.080		` '		0.559
Kurtosis:			.450	Cond	• •		23.2

Exercise:

- 1. Re-create and validate the MLR model yourself, using the steps outlined in this document
- 2. Use the statsmodels based OLS function to repeat **all** these steps, and analyze the additional metrics created (Omnibus, Durbin-Watson, Jarque-Bera,

AIC, BIC, Condition Number, etc.) at each stage

(the dataset has been uploaded to Moodle)

What if the relationship between the dependent variable (y) and the independent variables (X) is not linear as in the case below? We have seen that the regression errors are not random and the other important regression parameters like R2 are also very low.

How do we remedy this situation?

4	Α	В	C	Н	1	J	K	L	М	Ν		O	Р	Q	R	S	Т
1	у	x1		ycap	ei		SUMMARY OUTPUT										
2	0.038116834	0		0.078554	-0.04044									o i			
3	0.896467788	0.00555556		0.083296	0.813172		Regression St	atistics						ei			
4	0.159545792	0.011111111		0.088032	0.071514		Multiple R	0.713818524		2							
5	0.863764416	0.016666667		0.092756	0.771008		R Square	0.509536885		1.5		8					
6	1.106349076	0.02222222		0.097463	1.008886		Adjusted R Square	0.506796867		1.5				9			
7	1.010169458	0.027777778		0.102147	0.908022		Standard Error	0.530607579		1	23.0			•			
8	0.278498289	0.033333333		0.106803	0.171695		Observations	181									•
9	1.114230685	0.038888889		0.111424	1.002807					0.5	_	•	•		•	•	
10	1.029803908	0.04444444		0.116005	0.913799		ANOVA			0	••						
11	0.373869889	0.05		0.12054	0.25333			df	SS				50	100		150	•
12	0.971634374	0.05555556		0.125024	0.84661		Regression	1	52.35633091	-0.5				•		000	
13	0.975376766	0.061111111		0.129452	0.845925		Residual	179	50.3964481							· • •	
14	1.079774246	0.066666667		0.133817	0.945957		Total	180	102.752779	-1							
15	1.242790434	0.07222222		0.138116	1.104675					-1.5							
16	0.644698738	0.07777778		0.142341	0.502358			Coefficients	Standard Error	1.5							
17	0.656177067	0.083333333		0.146489	0.509688		Intercept	1.417122114	0.078553776	18.040	15	3.95E-42	1.262112	1.572133	1.262112	1.572133	0.547807
18	1.09549189	0.088888889		0.150554	0.944938		x1	-1.852833934	0.135870553	-13.63	68	1.69E-29	-2.12095	-1.58472	-2.12095	-1.58472	12.74861
19	1.115274736	0.09444444		0.154532	0.960743												
20	1.512547878	0.1		0.158416	1.354131												
21	0.639395626	0.10555556		0.162204	0.477192												

We can see that the error plot is not random, and it follows a pattern. This indicates that forcing a **line** to model this data results in incorrect results. We need to **introduce non-linear independent variables** in the system so that the Multiple Linear Regression method can 'use' this non-linearity to produce the desired non-linear y_cap.

So, we introduce additional columns x2, x3, x4 such that

x2 = x1 * x1 x3 = x1 * x1 * x1x4 = x1 * x1 * x1 * x1

Note: The method is still Linear Regression. It is **Linear Regression of non-linear independent variables**.

The resulting regression method is known as **Polynomial Regression** - since polynomial terms are introduced as independent variable to handle non-linearity in y.

In general, introducing additional **x** variables to improve the performance of ML methods is known as **Feature Engineering**.

Hence, **Polynomial Regression** can be said to be an application of the **Feature Engineering** technique.

You are encouraged to create a dataset that is not good for being regressed by a line, but gets adequately represented by a Polynomial Regression.

After introducing the polynomial terms and carrying out MLR, the results are as follows:

- The first chart shows y and y_cap (blue and organge)
- The second chart shows the error scatter plot
- We observe that the R2 value is now quite good and all the p-values, except that for x4, are much less than 0.05. This indicates that x4 is not significant and needs to be dropped.

After dropping x4 from the model, the results are as follows:

 All p-values are now much lower than the threshold 0.05

This technique of starting off with all features and then **dropping** non-significant features one at a time is known as **Backward Feature Selection / Engineering.**

Backward feature engineering is a feature selection technique that removes features one by one until the model performance reaches a peak, and it is used to optimize the performance of the machine learning model by only including the most affecting feature and removing the least affecting feature.

Backward v/s Forward Feature Engineering

Forward Feature Engineering	Backward Feature Engineering
Starts with an empty feature set and iteratively adds one feature at a time based on their performance	Starts with a complete set of features and removes features one by one until the model performance reaches a peak
Goal is to identify the most accurate and informative features that contribute to the predictive power of the model	Goal is to identify the most accurate and relevant features that can be used in a model
Iteratively adds features to the model	Iteratively removes features from the model
Can be a more time-consuming process than backward feature engineering	Can be a more systematic approach than forward feature engineering
Can be useful when the number of features is relatively small	Can be useful when the number of features is relatively large
Can be prone to overfitting if too many features are added to the model	Can be prone to underfitting if too many features are removed from the model
Can be used in combination with backward feature engineering to optimize the feature selection process	Can be used in combination with forward feature engineering to optimize the feature selection process

In summary, forward feature engineering and backward feature engineering are two techniques used in machine learning for selecting relevant features to include in a model. Forward feature engineering starts with an empty feature set and iteratively adds one feature at a time based on their performance, while backward feature engineering starts with a complete set of features and removes features one by one until the model performance reaches a peak. Both techniques have their advantages and disadvantages and can be used in combination to optimize the feature selection process.

Exercise-1

- Try Backward Feature Elimination by adding polynomial and other relevant functions as base features to the data set in non-linear-data-set-for-regression.csv
- Try the Forward Feature Selection method for the same dataset
- Try the mixed approach (forward + backward) feature selection on the dataset.

Exercise-2

 Perform Linear Regression by adding appropriate features (polynomial / others) to the uploaded dataset sinesegment-perturbed.csv. What conclusions can you make?