主板 API 测试指南

摘要:本文档适用于使用我司主板进行底层测试开发的用户。

1. 测试软件的安装

请直接安装 sdkdemo.apk 进行测试,安装后点击"开发示例"进行测试。提示:本文档测试接口必须在我司 20170512 以上安卓版本上才能使用,大部分接口必须要系统 root 后才有权限。如何升级安卓系统和系统 root 请联系我司技术支持接口。

测试软件打开后界面如下图所示:

2. 开关机测试

系统重启用于实现硬件的 Reboot 操作。

定时开机则用于关机并在指定的分钟后定时开机(关机后硬件处于冷待机状态,系统只有 12V 外接电源和 5V 待机电源处于工作状态)。

【K4 主板安卓 7.1 和 8.1 的定时开关机 API 功能未实现】。

3. 串口测试

不同类型主板可用的串口如下表所示,请使用的时候注意串口的电平配置。COMn 对应的程序设备名称为/dev/ttySn,请在编程的时候确认好设备名称,比如 COM3 对应为/dev/ttyS3。

主板	COM0	COM1	COM2	сомз	COM4	备注
P1	J35	J34	J37	J34	X	COM2屏蔽, COM1和COM3默认232, COM0支持232
M1	J18	J19	J17	J20	X	COM2屏蔽, COM1和COM3默认TTL, COM0支持TTL
M2	X	X	J16	X	X	COM2屏蔽,COM2只支持TTL且不能和TF同时使用
M3	X	J8	J11	J7	J24	COM2屏蔽,COM1和COM3默认232,COM4支持TTL
FP8	J19	J19	J19	J19	X	COM2屏蔽, COM1和COM3默认TTL, COM0支持TTL
EP8	J8	J19	J18	J24	X	COM2屏蔽, COM1和COM3默认232, COM0支持TTL

请根据相应的硬件串口设备号选择相应的串口、波特率并点击[打开]来打开串口,点击[发送]可发送一串当前日期时间+字母表的测试字符,从另外的设备发送可打印字符则在对应的接收窗口中可以回显出来。通常可以将串口对接到 PC 机并在 PC 机使用超级终端等串口仿真程序进行收发测试;

也可以将两个主板的串口交叉对接起来测试;或者可以在一个主板上将两个串口交叉对接进行测试,这样程序左右两栏分别打开对应的串口设备即可。

4. GPIO 测试

请根据主板型号和硬件信号连接的位置输入一个对应的 GPIO 编号,点击[打开]按钮使能该信号,然后可选择是输入 in 或者输出 out,并进行 IO 的状态读取或者设置(高电平 1、底电平 0)。请注意 所有 IO 都是 3.3V 的 TTL 电平,如果外设需要 5V 或者其他电压的电平,请务必进行电压转换适配。

DP6 主板可用的 GPIO 信号如下表所示:

插件位置	功能名称	GPIO 名称	GPIO 编号
J9.8	К6	GPIO3_D2	282
J9.9	K7	GPIO3_C6	278
J9.10	K8	GPIO3_C4	276
J15.1	L1	GPIO3_D0	280
J15.7	L6	GPIO0_C1	177
J15.3	L3	GPIO3_D1	281
J15.5	L4	GPIO0_C0	176
J15.6	L5	GPIO0_C5	181

FP8 主板可用的 GPIO 信号如下表所示(20161209 以上系统版本才开放):

插件位置	功能名称	GPIO 名称	GPIO 编号
J31.3	K1	GPIO0_C0	176
J31.4	K2	GPIO0_C1	177
J31.5	К3	GPIO0_C2	178
J31.6	K4	GPIO0_C3	179

第4页·共13页

插件位置	功能名称	GPIO 名称	GPIO 编号
J31.7	K5	GPIO0_C4	180

P1/P1X 和 EP8 主板可用的 GPIO 信号如下表所示:

插件位置	功能名称	GPIO 名称	GPIO 编号
J31.3	K1	GPIO0_C0	176
J31.4	K2	GPIO0_C1	177
J31.5	К3	GPIO0_C2	178
J31.6	K4	GPIO0_C3	179
J31.7	K5	GPIO0_C4	180
J31.8	K6	GPIO0_C5	181
J31.9	K7	GPIO0_C6	182
J31.10	K8	GPIO0_C7	183
J21.1	L1	GPIO0_B4	172
J21.3	L2	GPIO0_B6	174
J21.5	L3	GPIO0_B7	175
J21.6	L4	GPIO1_A6	198
J21.7	L5	GPIO1_A7	199
J21.8	L6	GPIO1_B7	207

P0 和 P1 的 RJ11 钱箱接口 GPIO 定义如下:

插件位置	功能名称	GPIO 名称	GPIO 编号
P-2	CTL1	GPIO1_A7	199
P-3	FB	GPIO1_B7	207
P-5	CTL2	GPIO1_A6	198

M1 主板可用的 GPIO 信号如下表所示(20161209 以上系统版本才开放):

插件位置	功能名称	GPIO 名称	GPIO 编号
J22.6	K1	GPIO0_C0	176
J22.5	K2	GPIO0_C1	177
J22.4	К3	GPIO0_C2	178
J22.3	K4	GPIO0_C3	179
J22.2	K5	GPIO0_C4	180

M2 主板可用的 GPIO 信号如下表所示(默认主板内部做了上拉处理,<mark>红色默认可以使用</mark>):

插件位置	功能名称	GPIO 名称	GPIO 编号
J4.2	K5	GPIO3_C2	114
J4.3	K4	GPIO3_C1	113
J4.4	K3	GPIO3_B6	110
J4.5	K2	GPIO3_B2	106
J4.6	K1	GPIO3_D4	124
J17.2	TX	GPIO1_C1	49
J17.3	RX	GPIO1_C0	48
J17.4	CLK	GPIO1_B6	46
J17.5	CS	GPIO1_B7	47

M3 主板可用的 GPIO 信号如下表所示(默认主板内部做了上拉处理,<mark>红色默认可以使用</mark>):

插件位置	功能名称	GPIO 名称	GPIO 编号
J16.2	K5	GPIO8_A3	259
J16.3	K4	GPIO8_A2	258
J16.4	К3	GPIO8_A1	257
J16.5	K2	GPIO8_A0	256
J16.6	K1	GPIO7_A2	226
J10.2	TX	GPIO8_B1	265
J10.3	RX	GPIO8_B0	264

插件位置	功能名称	GPIO 名称	GPIO 编号
J10.4	CLK	GPIO8_A6	262
J10.5	CS	GPIO8_A7	263

P2/K2 等基于 RK3368 主板支持 K6~K8 的 GPIO 信号如下表所示:

功能名称	GPIO 名称	GPIO 编号
К6	GPIO2_D2	90
K7	GPIO2_D3	91
K8	GPIO3_A6	102

P3X/K3 等基于 RK3288 主板支持 K6~K8 的 GPIO 信号如下表所示:

功能名称	GPIO 名称	GPIO 编号
К6	GPIO7_B4	236
K7	GPIO7_B5	237
К8	GPIO7_B6	238

K4 等基于 RK3399 主板 K1~K8 的 GPIO 信号如下表所示:

功能名称	GPIO 名称	GPIO 编号	
K1	GPIO1_B2	42	
K2	GPIO2_A3	67	
К3	GPIO4_D3	155	
K4	GPIO2_A4	68	
K5	GPIO4_D4	156	
К6	GPIO2_A5	69	
K7	GPIO1_C5	53	
K8	GPIO2_A6	70	

5. 看门狗测试

硬件看门狗用于保护软件正常运行并在软件和系统异常的情况下能够自动重启整个硬件,对于 无人值守的设备可以添加此功能接口。

点击[使能看门狗]可激活硬件看门狗,点击[定时喂狗]程序会每隔 3 秒喂一次狗;如果点击[停止喂狗]则硬件会在 10~20 秒后自动重启(根据不同的主板类型重启超时时间会有差异);停止喂狗后可点击[关闭看门狗]则即使不定期喂狗也不会重启。

6. 屏幕开关

开启和关闭屏幕视频输出信号和背光开关,如果用一个 IO 作为开关触发则每按一下产生一个低电平则可触发一次开关。示例中 176 号 IO 为 M1 主板的 K1 信号,演示程序每隔 200 毫秒检查一下改信号电平,一旦检测到低电平则开或者关一次屏幕并延时 2 秒继续检测。

7. 以太网

可开启或关闭以太网,开启后可设置 DHCP 或者静态 IP 模式。这里的设置和安卓系统设置中的参数和状态是完全对应的。

8. 显示密度

显示密度 DPI 值通常为 160 或者 240。密度设大会导致安卓系统 systemui 异常,请谨慎使用。

9. 卸载/安装

可选择存储器中的 APK 进行静默安装,也可以勾选已经安装好的程序进行静默卸载。系统应用 在这里被禁止直接进行卸载。

10. HDMI-IN

M2 和 M3 主板接入 HDMI-IN 模块后,可以读取基本的系统 HDMI 输入信号状态和分辨率信息。信号状态 0 代表无信号、1 标识有信号;分辨率 1 表示 1080P、2 标识 720P、0 则表示未知分辨率。

基于 1.1.0 以上的 SDK 和 20170818 以上安卓系统我们提供了一个 HDMI-IN 自动播放程序 hdmiplayer.apk,该 APK 默认自动侦测 HDMI 输入信号、检测到输入信号后自动全屏播放,并在信号中断后自动退出。可点击屏幕任意位置呼出位于屏幕底部居中的配置图标,进行自动侦测和播放的选项设置。

11. 系统信息

可显示系统版本、内核版本、API 版本、内存大小、硬件地址信息等。其中 WiFi 的 MAC 地址需要将 WiFi 功能使能才能获取到。

系统信息	# []	GPIONIE	10
	系统版本:	4.0.0-170818-OEM	
40) Agama	内核版本:	3.10.0	
- Trans	API版本:	1.1.0.20170818	
	运行内存:	1.97 GB	
HOMEN	以太网MAC:	26:25:E0:AC:A8:B1	
WLAN MAC:		AC:83:F3:42:6A:1A	