РЕФЕРАТ

Выпускная квалификационная работа бакалавра 84 с., 77 рис., 2 источн., 45 табл.

РАСЧЕТ ЛЕТНО-ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК, СИСТЕМА АВТОМАТИЧЕСКОЙ СТАБИЛИЗАЦИИ ВЫСОТЫ, АНАЛИЗ ЭШЕЛО-НИРОВАННОГО ПОЛЕТА

Предмет исследования — прототип транспортного самолета Ил-76.

Работа состоит из трех частей: общая часть, синтез системы автоматического управления и специальная часть.

В общей части был проведен расчет основных летно-технических характеристик самолета-прототипа.

В разделе синтеза системы автоматического управления была синтезирована система автоматической стабилизации высоты.

В специальной части был проведен анализ характеристик самолета-прототипа при выполнении эшелонирования.

Цель работы — провести анализ расхода топлива при различных вариантах эшелонирования.

содержание

1.	Об:	щая ча	исть	4
	1.1.	Исходн	ные данные	6
	1.2.	Расчет	лётно – технических характеристик самолета	6
	1.3.	Расчет	траектории полета	31
		1.3.1.	Расчет характеристик набора высоты	31
		1.3.2.	Расчет характеристик крейсерского полета	35
		1.3.3.	Расчет характеристик участка снижения	36
	1.4.	Расчет	диаграммы транспортных возможностей	41
	1.5.	Расчет	взлетно-посадочных характеристик самолета	42
	1.6.	Расчет	характеристик маневренности самолета	44
	1.7.	Расчет	характеристик продольной статической устойчивости и	
		управл	іяемости	46
2.	Си	нтез си	истемы автоматического управления	54
	2.1.	Описа	ние объекта управления	54
		2.1.1.	Построение области высот и скоростей	55
		2.1.2.	Выбор параметров привода	56
		2.1.3.	Вывод	57
	2.2.	Синтез	з контуров автоматического управления	57
		2.2.1.	Расчет ядра системы	58
		2.2.2.	Расчет внешнего контура	60
		2.2.3.	Вывод	63
	2.3.	Частот	гный анализ	63
		2.3.1.	Анализ контура демпфирования	63

		2.3.2.	Анализ ядра системы	65
		2.3.3.	Анализ внешнего контура	68
		2.3.4.	Вывод	71
	2.4.	Нелин	ейное моделирование САУ	71
		2.4.1.	Сравнение для разных максимальных скоростей откло-	
			нения руля высоты	72
		2.4.2.	Сравнение линейной и нелинейной модели	74
		2.4.3.	Вывод	75
	2.5.	Вывод	д по разделу	76
3.	Сп	ециаль	ьная часть	77
	3.1.	Исслед	дование характеристик транспортного самолета при вы-	
		полнен	нии эшелонирования	77
		3.1.1.	Постановка задачи	77
		3.1.2.	Расчетные формулы	77
	3.2.	Исході	ные данные для расчетов	77
		3.2.1.	Задачи	78
	3.3.	Резуль	ьтаты	78
		3.3.1.	Результаты расчета при постоянный высоте и оптималь-	
			ной скорости полета	78
		3.3.2.	Результаты расчета при оптимальном изменении высо-	
			ты и скорости полета	79
		3.3.3.	Эшелонированный полет, высота меняется ступенчато	
			с шагом 300 м	80
		3.3.4.	Анализ результатов	82
	3.4.	Вывод	[82
\mathbf{C}_{1}	писоч	с литег	ратуры	84

1. Общая часть

В 1966 г. в ВВС было сформулировано техническое задание на военнотранспортный самолет нового типа, который должен был заменить Ан-12. Требовалась машина, способная транспортировать до 40 тонн груза на расстояние порядка 5000 км. без ухудшения ВПХ.

Работы по созданию Ил-76 начались в 1967 г. в условиях конкуренции с ОКБ Антонова, которое предлагало глубокую модернизацию Ан-12.

Руководство созданием Ил-76 впервые осуществлял не сам С.В Илью-шин, а его заместитель — Г.В. Новожилов. Главным конструктором Ил-76 и последующих его модификаций стал Р.П Папковский.

Ил-76 представляет собой свободнонесущий высокоплан нормальной аэродинамической схемы со стреловидным крылом, стабилизатором и рулем высоты, однокилевым Т-образным вертикальным оперением, пятиопорным шасси и турбореактивной силовой установкой Д-30КП оснащенной реверсивным устройством (Рисунок. 1.1).

Рисунок 1.1 — Общий вид самолета Ил-76

1.1. Исходные данные

0.80

< 650

140000

0.26

0.39

Основные параметры самолета необходимые для расчета представлены в таблице 1.1.

 $n_{\rm дв}$ $\bar{L}_{{\scriptscriptstyle \Gamma}{\scriptscriptstyle O}}$ V_i S $M_{\rm доп}$ $ar{m}_{\scriptscriptstyle \mathrm{I\!I}\mathrm{H}}$ P_0 Ce_0 P_s b_a m_0 $\bar{m}_{\scriptscriptstyle \mathrm{T}}$ $\bar{m}_{
m cH}$ $\frac{\mathrm{KM}}{\mathrm{Y}}$ $\frac{\mathrm{дан}}{\mathrm{m}^2}$ 2 ΚГ Μ дан*ч

0.276

0.048

4/2

457

6.436

3.10

300

0.46

Таблица 1.1 — Исходные данные для самолета Ил-76

Зависимости аэродинамических характеристик представлены на рисунке 1.2. Зависимости $C_y(C_x)$, $C_y(\alpha)$ для различных конфигурация представлены на рисунке 1.3. Аэродинамические характеристики для отдельных компоновочных групп приведены на рисунке 1.4. Основные параметры двигателя приведены на рисунках 1.5, 1.6.

Рисунок 1.2 — Аэродинамические характеристики самолета

Рисунок 1.3 — Аэродинамические характеристики самолета на взлётно-посадочных режимах

 $C_x \times 10^2$, α [град]

10

15

25

Рисунок 1.4 — Аэродинамические характеристики для отдельных компоновочных групп самолета

Рисунок 1.5 — Высотно-скоростные характеристики ТРДД на режиме «номинал»

Рисунок 1.6 — Относительный удельный часовой расход топлива для ТРДД на режиме «номинал»

1.2. Расчет лётно – технических характеристик самолета

Определим следующие характеристики самолета:

- 1. Зависимости от числа M (скорости) и H (высоты) полета результаты сведем в таблицы 1.2 1.8:
 - располагаемой и потребной для горизонтального установившегося полета тяги силовой установки,
 - энергетической скороподъемности,
 - часового расхода топлива,
 - километрового расхода топлива.

2. Зависимости от высоты:

- максимальной энергетической скороподъемности,
- минимального часового расхода топлива,
- минимального километрового расхода топлива,
- минимального и максимального числа М (скорости) полета (с учетом ограничений по безопасности полета),
- ullet числа M (скорости) полета, соответствующего минимальной потребной тяги,
- ullet числа M (скорости) полета, соответствующего максимальной энергетической скороподъемности,
- скорости полета, соответствующей минимальному часовому расходу топлива,
- скорости полета, соответствующему минимальному километровому расходу топлива

3. Статический и практический потолки самолета.

Соотношения для расчета: Узловые точки по числу Маха:

$$M = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95]$$

$$V = Ma_H, (1.1)$$

где a_H — скорость звука на высоте H.

$$q = \frac{\rho_H V^2}{2},\tag{1.2}$$

где ho_H — плотность воздуха на высоте H.

Коэффициент подъемной силы для крейсерского полета:

$$C_{y_n} = \frac{\bar{m}P_s 10}{q},\tag{1.3}$$

где $\bar{m}=0.95$ — относительная масса самолета, P_s — удельная нагрузка на крыло.

Коэффициент лобового сопротивления при $C_y = C_{y_n}$:

$$C_{x_n}(C_y, M) = C_{x_m}(M) + A(M) \left[C_{y_n} - C_{y_m}(M) \right]^2,$$
 (1.4)

где C_{y_m} — коэффициент подъемной силы при $C_x = C_{x_m}$, C_{x_m} — минимальный коэффициент лобового сопротивления, A — коэффициент отвала поляры.

$$K_n = \frac{C_{y_n}}{C_{x_n}} \tag{1.5}$$

$$P_n = \frac{\bar{m}m_0g}{K_n} \tag{1.6}$$

$$P_p(M,H) = \bar{P}_0 m_0 g \tilde{P}(H,M) \tag{1.7}$$

$$n_x = \Delta \bar{P} = \frac{(P_p - P_n)}{\bar{m} m_0 a} \tag{1.8}$$

$$V_y^* = \Delta \bar{P}V \tag{1.9}$$

$$\bar{R} = \frac{P_n}{P_p} \tag{1.10}$$

$$q_{\mathbf{q}} = Ce(M, H, \bar{R})P_n = Ce_0\tilde{C}e(H, M)\hat{C}e_{\mathbf{p}}(R)P_n$$
(1.11)

$$q_{\text{\tiny KM}} = \frac{q_{\text{\tiny Y}}}{3.6V},$$
 (1.12)

где K_n — аэродинамические качество, P_n — потребная тяга двигателя, P_p — располагаемая тяга двигателя, n_x — тангенциальная перегрузка, V_y^* — энергетическая скороподъемность, \bar{R} — потребное значение коэффициента дросселирования двигателя при крейсерском полете, $q_{\rm q}$ — часовой расход топлива, $q_{\rm km}$ — километровый расход топлива.

Результаты для высот от 0 до $H_{\rm np}$ с шагом в 2 км. приведены в таблицах 1.2 - 1.8. Также графической представление результатов на рисунках 1.7 - 1.34.

Таблица 1.2 — Результаты расчета для высоты H=0 км

M	7	Λ	b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\left \Deltaar{p}(n_x) ight $	V_y^*	$ar{R}_{ ext{KP}}$	ъђ	$q_{\scriptscriptstyle m KM}$
I	C IM	KM 4	$\frac{H}{\mathrm{M}^2}$	I	I	Н	Н	I	⊠ C	I	KI.	KT KM
0.10	34	123	709	6.454	2.67	4.887	3.531	-0.099	-3.4	1.38	24442	199.52
0.20	68	245	2837	1.614	10.18	1.282	3.282	0.146	9.6	0.39	8292	33.84
0.30	102	368	6383	0.717	14.65	0.890	3.062	0.158	16.1	0.29	6563	17.86
0.40	136	490	11348	0.403	12.19	1.071	2.856	0.130	17.7	78.0	8144	16.62
0.50	170	613	17732	0.258	8.50	1.535	2.679	0.083	14.2	0.57	11849	19.34
09.0	204	735	25534	0.179	5.84	2.234	2.510	0.020	4.1	0.89	17325	23.57
0.70	238	858	34754	0.132	4.00	3.259	2.342	-0.067	-15.9	1.39	25322	29.53
0.80	272	980	45394	0.101	2.40	5.435	2.173	-0.237	-64.6	2.50	38710	39.50
0.90	306	1103	57451	0.080	1.45	9.013	2.005	-0.510	-156.3	4.50	48822	44.28
0.95	323	1164	64012	0.072	1.19	10.980	1.920	-0.660	-213.3	5.72	46531	39.98

Рисунок 1.7 — График располагаемой и потребной

Рисунок 1.8 — График $C_{\rm удол}$, $C_{\rm yn}$

Рисунок 1.9 — График $V_y^*(M, H)$

0.4

0.2

0.0

 $V_y^*(H=0.000[\text{KM}])$

2.5

5.0

 $V[{
m M}/{
m c}^2]$

Рисунок 1.10 — График $q_{\text{км}}, q_{\text{ч}}$

20.0

17.5 -

 $V_y^*[M/c^2]$

15.0 -

7.5

ИЛВТ

=17.789

Таблица 1.3 — Результаты расчета для высоты H=2 км

M	1	Λ	b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Delta ar{p}(n_x)$	V_y^*	$ar{R}_{ ext{Kp}}$	$q_{ m H}$	$q_{\scriptscriptstyle m KM}$
I	C IM	$\frac{\mathrm{KM}}{^{4}}$	$\frac{H}{{ m M}^2}$	I	I	Н	Н	I	Z IX	I	KI.	KT
0.10	33	120	557	8.226	2.08	6.261	3.153	-0.226	-7.5	1.99	28389	237.14
0.20	29	239	2226	2.057	8.28	1.576	2.983	0.103	6.8	0.53	9483	39.61
0.30	100	359	5009	0.914	14.11	0.925	2.814	0.138	13.7	0.33	6366	17.73
0.40	133	479	8904	0.514	13.79	0.946	2.650	0.124	16.5	0.36	6914	14.44
0.50	166	599	13913	0.329	10.40	1.255	2.501	0.091	15.1	0.50	9442	15.77
09.0	200	718	20034	0.229	7.35	1.776	2.376	0.044	8.7	0.75	13389	18.64
0.70	233	838	27269	0.168	5.09	2.566	2.245	-0.023	-5.4	1.14	19589	23.38
0.80	266	958	35617	0.129	3.06	4.271	2.095	-0.158	-42.1	2.04	30890	32.25
0.90	299	1077	45077	0.102	1.84	7.096	1.945	-0.375	-112.3	3.65	42702	39.63
0.95	316	1137	50225	0.091	1.51	8.660	1.870	-0.494	-156.2	4.63	44704	39.31

0.4

0.2

0.0

 $V_y^*(H=2.000[\text{KM}])$

 $V[{
m M/c^2}]$

Рисунок 1.11 — График располагаемой и потреб-

Рисунок 1.12 — График $C_{y_{\text{доп}}}, C_{y_n}$

Рисунок 1.14 — График $q_{\text{км}}, q_{\text{ч}}$

ной тяги

 $V_{u_{max}}^* = 16.561$

17.5 -

15.0 -

12.5 -

 $V_y^*[M/c^2]$

7.5

5.0 -

2.5

Таблица 1.4 — Результаты расчета для высоты H=4 км

$ \Lambda $	ı T	b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Delta ar{p}(n_x)$	V_y^*	$ar{R}_{ ext{KP}}$	$q_{ m H}$	$q_{\scriptscriptstyle m KM}$
$\frac{KM}{q}$ $\frac{H}{M^2}$			ı	I	Н	Н	I	⊠ ∪		KT	KM
117 432 1			10.606	1.61	8.113	2.461	-0.412	-13.4	3.30	30731	262.99
234 1726 5			2.652	6.53	1.998	2.397	0.029	1.9	0.83	11243	48.11
$351 \mid 3885 \mid 1$	3885 1		178	12.62	1.034	2.333	0.095	9.2	0.44	6796	19.39
467 6906 0.6		0	699	14.67	0.890	2.268	0.100	13.0	0.39	2679	13.47
$584 \mid 10791 \mid 0.$		0	0.424	12.37	1.055	2.177	0.082	13.3	0.48	2022	13.19
$701 \mid 15538 \mid 0.$		0	0.295	9.16	1.425	2.083	0.048	9.3	0.68	10495	14.97
818 21150 0.		0	0.216	6.46	2.020	2.010	-0.001	-0.2	1.00	15101	18.46
935 27624 0.1		0	.166	3.91	3.339	1.965	-0.100	-26.0	1.70	24181	25.87
$1052 \mid 34961 \mid 0$		0	0.131	2.35	5.552	1.926	-0.264	-77.1	2.88	35998	34.23
1110 38954 (38954		0.118	1.92	6.788	1.906	-0.355	-109.6	3.56	40578	36.55

0.4

0.2

 $V_y^*(H = 4.000[\text{KM}])$

 $V[{
m M/c^2}]$

Рисунок 1.15 — График располагаемой и потреб-

=13.578

14 -

12 -

10

 $V_*^y[M/c^2]$

Рисунок 1.16 — График $C_{y_{\text{доп}}}, C_{y_n}$

Рисунок 1.18 — График $q_{\text{км}}, q_{\text{ч}}$

ной тяги

Таблица 1.5 — Результаты расчета для высоты H=6 км

M	7	Λ	b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Deltaar{p}(n_x)$	V_y^*	$ar{R}_{ ext{ iny KP}}$	$q_{ m H}$	$q_{\scriptscriptstyle m KM}$
I	C IM	$\frac{KM}{4}$	$\frac{H}{{ m M}^2}$	I	I	H	Н	I	C	I	KI.	KT KM
0.10	32	114	331	13.851	1.23	10.644	2.053	-0.626	-19.8	5.19	27157	238.38
0.20	63	228	1322	3.463	5.02	2.598	2.018	-0.042	-2.7	1.29	13346	58.57
0.30	95	342	2975	1.539	10.55	1.237	1.984	0.054	5.2	0.62	7439	21.77
0.40	127	456	5288	0.866	14.37	0.908	1.950	0.076	9.6	0.47	6093	13.37
0.50	158	570	8263	0.554	13.97	0.934	1.909	0.071	11.2	0.49	6598	11.58
09.0	190	684	11899	0.385	11.13	1.172	1.858	0.050	9.5	0.63	8404	12.29
0.70	222	797	16196	0.283	8.12	1.607	1.808	0.015	3.2	0.89	11687	14.65
0.80	253	911	21153	0.216	4.99	2.614	1.771	-0.061	-15.5	1.48	18679	20.50
0.90	285	1025	26772	0.171	3.01	4.334	1.755	-0.188	-53.5	2.47	28534	27.83
0.95	301	1082	29830	0.153	2.46	5.309	1.748	-0.259	-78.0	3.04	32940	30.44

Рисунок 1.19 — График располагаемой и потребной тяги

=11.233

12 +

10 +

 $V_*^{y}[M/c^2]$

Рисунок 1.20 — График $C_{y_{\text{доп}}}, C_{y_n}$

Рисунок 1.22 — График $q_{\text{км}}, q_{\text{ч}}$

Таблица 1.6 — Результаты расчета для высоты H=8 км

M	1	Λ	b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Delta ar{p}(n_x)$	V_y^*	$ar{R}_{ ext{KP}}$	$q_{ m H}$	$q_{\scriptscriptstyle m KM}$
I	C M	KM 4	$\frac{H}{\mathrm{M}^2}$	I	I	Н	Н	I	Z IX	ı	KT 4	KT KM
0.10	31	111	250	18.344	0.92	14.155	1.626	-0.912	-28.1	8.71	7232	65.20
0.20	62	222	866	4.586	3.78	3.449	1.618	-0.133	-8.2	2.13	15278	68.87
0.30	92	333	2246	2.038	8.34	1.564	1.611	0.003	0.3	0.97	8579	25.78
0.40	123	444	3993	1.147	12.84	1.016	1.603	0.043	5.3	0.63	6261	14.11
0.50	154	555	6239	0.734	14.55	0.897	1.596	0.051	7.8	0.56	9009	10.83
09.0	185	999	8984	0.510	12.84	1.016	1.592	0.042	7.8	0.64	7032	10.57
0.70	216	922	12228	0.374	9.90	1.318	1.576	0.019	4.1	0.84	9292	11.97
0.80	246	887	15972	0.287	6.29	2.075	1.571	-0.037	-9.0	1.32	14533	16.38
0.90	277	866	20214	0.226	3.83	3.405	1.561	-0.134	-37.2	2.18	22380	22.42
0.95	293	1054	22523	0.203	3.12	4.176	1.556	-0.191	-55.8	2.68	26118	24.79

1.75

1.50 -

[H]d

1.25 -

0.75 -

0.50 -

Рисунок 1.24 — График $C_{y_{\text{доп}}}, C_{y_n}$

 $V_{\rm g}^*[{\rm M/c}^2]$

Рисунок 1.26 — График $q_{\text{км}}, q_{\text{ч}}$

0.00

Таблица 1.7 — Результаты расчета для высоты H=10 км

M	Λ	Λ	b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Delta ar{p}(n_x)$	V_y^*	$ar{R}_{ ext{Kp}}$	ъђ	$q_{\scriptscriptstyle m KM}$
1	C	KM 4	$\frac{H}{\mathrm{M}^2}$	I	I	Н	Н	I	⊠ C	ı	Kr	KT
0.10	30	108	185	24.679	0.68	19.109	1.266	-1.299	-38.9	15.09	-58010	-537.97
0.20	60	216	742	6.170	2.80	4.667	1.270	-0.247	-14.8	3.68	16467	76.35
0.30	90	323	1669	2.742	6.32	2.065	1.273	-0.058	-5.2	1.62	10375	32.07
0.40	120	431	2968	1.542	10.55	1.237	1.277	0.003	0.3	26.0	8602	16.46
0.50	150	539	4637	0.987	13.67	0.954	1.281	0.024	3.6	0.75	5930	11.00
09.0	180	647	8299	0.686	13.59	0.960	1.289	0.024	4.3	0.74	6266	9.68
0.70	210	755	9089	0.504	11.33	1.151	1.305	0.011	2.3	0.88	7739	10.25
0.80	240	863	11872	0.386	7.64	1.708	1.321	-0.028	-6.8	1.29	11489	13.32
0.90	270	970	15025	0.305	4.77	2.738	1.341	-0.102	-27.4	2.04	17564	18.10
0.95	285	1024	16741	0.273	3.89	3.357	1.350	-0.146	-41.6	2.49	20734	20.24

Рисунок 1.27 — График располагаемой и потреб-

=4.328

Рисунок 1.28 — График $C_{y_{\text{доп}}}, C_{y_n}$

Рисунок 1.29 — График $V_y^*(M, H)$

0.0

 $V_y^*(H=10.000[{
m KM}])$

 $\Lambda_*^h[\mathrm{M} \setminus \mathrm{G}_5]$

0.2

 $V[{
m M/c}^2]$

Рисунок 1.30 — График $q_{\text{км}}, q_{\text{ч}}$

ной тяги

Таблица 1.8 — Результаты расчета для высоты H=11.558 км

M	Λ	Λ	b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Deltaar{p}(n_x)$	${}^{\it k}_{\it M}$	$ar{R}_{ ext{Kp}}$	$q_{ m H}$	$q_{\scriptscriptstyle m KM}$
I	C IM	KM	$\frac{H}{M^2}$	I	I	H	H	I	C	ı	KI	KT
0.10	30	106	146	31.451	0.53	24.407	0.949	-1.708	-50.4	25.71	-224366	-2112.18
0.20	59	212	582	7.863	2.18	5.979	0.966	-0.365	-21.5	6.19	12418	58.45
0.30	89	319	1310	3.495	4.97	2.623	0.983	-0.119	-10.6	2.67	11545	36.23
0.40	118	425	2329	1.966	8.62	1.513	0.999	-0.037	7. 4-4	1.51	8265	19.45
0.50	148	531	6898	1.258	12.10	1.079	1.016	-0.005	2.0-	1.06	6595	12.42
09.0	177	637	5240	0.874	13.13	0.994	1.032	0.003	0.5	96.0	6402	10.04
0.70	202	744	7132	0.642	11.76	1.109	1.061	-0.004	-0.7	1.05	7445	10.01
0.80	236	850	9316	0.491	8.46	1.542	1.089	-0.033	-7.8	1.42	10273	12.09
0.90	266	956	11790	0.388	5.46	2.391	1.121	-0.092	-24.6	2.13	14816	15.50
0.95	280	1009	13137	0.348	4.46	2.923	1.137	-0.130	-36.5	2.57	17465	17.31

0.4

0.2

 $V_y^*(H = 11.558[\text{KM}])$

 $V[{
m M/c^2}]$

Рисунок 1.31 — График располагаемой и потреб-

 $_{t_{max}}^{*} = 0.5$

0.5

0.4

 $V_y^*[M/c^2]$

0.2

0.1

Рисунок 1.32 — График $C_{y_{\text{доп}}}$, C_{y_n}

Рисунок 1.34 — График $q_{\text{км}}, q_{\text{ч}}$

ной тяги

Для построение таблицы 1.9 для узловых высот:

$$H = 0, 2, 4, 6, 8, 10, 11.56 \,\mathrm{KM},$$

где значение 11.56 км соответствует практическому потолку $H_{\rm np}$.

- 1. Определим M_{\min_P} и M_{\max_P} , как точка пересечения графиков $P_n(M,H_i)$ и $P_p(M,H_i)$ (рисунки 1.7, 1.11, 1.15,1.19,1.23,1.27,1.31).
- 2. Минимально допустимое число $M_{\min_{\text{доп}}}$, как точка пересечения графиков $C_{y_n}(M,H_i)$ и $C_{y_{\text{доп}}}(M)$ (рисунки ,1.8, 1.12, 1.16, 1.24, 1.28, 1.32).
- 3. Максимально допустимое число M полета по условиям безопасности определяется как:

$$M_{\text{max}_{\text{доп}}} = \min \left\{ M_{\text{пред}}, M(V_{i_{\text{max}}}) \right\},$$

где $M(V_{i_{\max}}) = \frac{V_{i_{\max}}\sqrt{\Delta^{-1}}}{3.6a_H},\ \sqrt{\Delta^{-1}} = \sqrt{\frac{\rho_0}{\rho_H}},\ V_{i_{\max}} = 650\,\frac{\text{км}}{\text{ч}} - \text{максимальная}$ допустимая индикаторная скорость.

4. Располагаемые значение минимального и максимального числа M определяются как:

$$M_{\min} = \max \left\{ M_{\min_{\text{доп}}}, M_{\min_P} \right\},$$

$$M_{\max} = \min \left\{ M_{\max_{\text{доп}}}, M_{\max_P}, M_{\text{пред}} \right\}.$$

5. Число M_1 полета, соответствующее минимальной потребной тяге определяется как:

$$M_1 = M(P_{n_{\min}}) = \arg\min_{M} \Delta P_n(M).$$

6. Число M_2 полета, соответствующее максимальной энергетической скороподъёмности определяется как:

$$M_2 = M(V_{y_{max}}^*) = \arg\max_{M} V_y^*(M, H_i).$$

7. Минимальные значения часового $q_{\mathbf{u}_{min}}$ и километрового $q_{\mathbf{k}\mathbf{M}_{min}}$ расхода топлива, и соответствующие им скорости полета определены на рисунка 1.10, 1.10, 1.10, 1.10, 1.10, 1.10 или как:

$$q_{\mathbf{q}_{min}} = \min_{V} q_{\mathbf{q}}(V, H_i), \ V_3 = V(q_{\mathbf{q}_{min}}) = \arg\min_{V} q_{\mathbf{q}}(V, H_i);$$
$$q_{\mathbf{k}\mathbf{M}_{min}} = \min_{V} q_{\mathbf{k}\mathbf{M}}(V, H_i), \ V_4 = V(q_{\mathbf{k}\mathbf{M}_{min}}) = \arg\min_{V} q_{\mathbf{k}\mathbf{M}}(V, H_i).$$

Результаты расчетов приведены в таблице 1.9, также графически представлены на рисунках 1.35, 1.37.

Статические и практический потолок определен на рисунке 1.36, как:

$$H_{\rm ct} = H_i(V_{y_{max}}^* = 0),$$

$$H_{\text{пр}} = H_i(V_{y_{max}}^* = V_{y_{\text{доп}}}^*).$$

где значение $V_{y_{\text{доп}}}^* = 0.5 \, \frac{\text{м}}{\text{c}}$ — минимально-допустимая энергетическая скороподъемность для неменевренного самолета.

Таблица 1.9 — Результаты для построение графика высот и скоростей

Н	V^*_{ymax}	M[V]min доп	M[V] max доп	$M[V] \ $	$M[V] \ _{ m max}$	$M_1[V_1] $ $(P_{\rm II} min)$	$M_2[V_2] \ (V_{y_{max}}^*)$	$V_3 \over (q_{ m q_{min}})$	$egin{array}{c c} V_3 & V_4 \ (q_{ m umin}) & (q_{ m KMmin}) \end{array}$	M_4	$q_{ m q_{min}}$	$q_{ m KM_{min}}$
KM	Z Z	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	$\frac{KM}{4}$	KM	ı	KI	KT
0.0	17.79	0.240[293]	0.612 [750]	0.0 17.79 0.240 [293] 0.612 [750] 0.240 [293] 0.612 [750] 0.300 [368] 0.380 [466]	$0.612\left[750\right]$	0.300 [368]	0.380 [466]	66	126	0.370	0.370 6536.16 16.3	16.3
2.0	16.56	0.270[324]	0.675[808]	0.270[324]	0.671[803]	0.340 [407]	2.0 16.56 0.270 [324] 0.675 [808] 0.270 [324] 0.671 [803] 0.340 [407] 0.420 [503] 0.420 [3	110	133	0.400	0.400 6286.48 14.44	14.44
4.0		0.307 [359]	$13.58 \left \ 0.307 \left[359 \right] \right 0.748 \left[874 \right] \right 0.307$	0.307 [359]	0.699[817]	$[359] \ 0.699 [817] \ 0.380 [444] \ 0.460 [538]$	0.460[538]	120	149	0.460	0.460 6193.81 12.99	12.99
6.0	11.23	0.352[401]	0.800[911]	0.352[401]	0.726 [827]	0.440[501]	11.23 0.352 [401] 0.800 [911] 0.352 [401] 0.726 [827] 0.440 [501] 0.500 [570]	130	161	0.510	161 0.510 6076.86 11.58	11.58
8.0	8.1	0.406[451]	0.800 [887]	0.406[451]	0.744 [825]	0.500[555]	$8.1 \left \ 0.406 \left[451 \right] \ \left \ 0.800 \left[887 \right] \ \right \ 0.406 \left[451 \right] \ \left \ 0.744 \left[825 \right] \ \left \ 0.500 \left[555 \right] \ \right \ 0.540 \left[599 \right] \right $	145	176	0.570	176 0.570 5951.95 10.49	10.49
10.0	4.33	0.475[513]	0.800[863]	0.475[513]	0.739 [796]	0.540 [582]	$10.0 \ 4.33 \ 0.475 [513] \ 0.800 [863] \ 0.475 [513] \ 0.739 [796] \ 0.540 [582] \ 0.590 [636] \\$	156	183	0.610	0.610 5902.71 9.67	29.6
11.56	0.5	0.544 [578]	0.800[850]	0.544[578]	0.664 [705]	0.590 [627]	$11.56 0.5 0.544 \left[578 \right] 0.800 \left[850 \right] 0.544 \left[578 \right] 0.664 \left[705 \right] 0.590 \left[627 \right] 0.600 \left[637 \right] 171 0.590 \left[627 \right] 0.590 \left[$	171		0.650	192 0.650 6374.66 9.76	9.76

Рисунок 1.35 — График области высот и скоростей установившегося горизонтального полета

Рисунок 1.36 — График $V^*_{y_{max}}(H)$

Рисунок 1.37 — График $q_{\mathbf{q}_{min}}(H), q_{\mathbf{KM}_{min}}(H)$

1.3. Расчет траектории полета

1.3.1. Расчет характеристик набора высоты

Начальные условия:

$$H_0 = 0; M_0 = 1.2 M_{min_{\text{доп}}}, V_0 = 1.2 V_{min_{\text{доп}}}.$$

Конечные условия:

$$(H_{\mathsf{K}}, M_{\mathsf{K}}) = \arg\min_{H,M} q_{\mathsf{KM}}(M, H)$$

Конечная высота принимается равная $H_{\rm \scriptscriptstyle K}=10\,{\rm km}$ из условия минимума $q_{{\rm \scriptscriptstyle KM}}.$

При расчете угла наклона траектории $\theta_{\text{наб}}$ и вертикальной скорости $V_{y_{\text{наб}}}$ производная вычисляется по приближенной формуле:

$$\frac{dV}{dH} = \frac{V^{i+1} - V^i}{H^{i+1} - H^i} \tag{1.13}$$

где i — индекс узловой точки.

Основные характеристики в наборе определяются по формулам:

$$\theta_{\text{наб}} = 57.3 n_x \kappa, \qquad [\text{град}] \quad (1.14)$$

$$V_{y_{\text{Ha}6}} = V_{y_{max}}^* \kappa,$$
 $\left[\frac{M}{c}\right]$ (1.15)

$$L_{\text{Ha6}} = \int_0^{H_{\text{K}}} \frac{1}{1000n_x(M, H)} dH_{\text{9}}$$
 [KM] (1.16)

$$t_{\text{наб}} = \int_0^{H_{\text{K}}} \frac{1}{60V_u^*(M, H)} dH_{\text{9}}$$
 [мин] (1.17)

$$m_{T_{\text{Ha6}}} = \int_0^{H_{\text{K}}} \frac{Ce(M, H)P_{\text{p}}(M, H)}{3600n_x(M, H)} dH_{\text{9}}$$
 [KI] (1.18)

где
$$\kappa = \frac{1}{1 + \frac{V}{q} \frac{dV}{dH}}$$

Вычисление интегралов 1.16 - 1.18 производится методом трапеций, тогда уравнения 1.16 - 1.18 будут иметь вид:

$$L_{\text{Ha6}} = \sum \left(\frac{1}{n_x}\right)_{\text{CD}} \frac{\Delta H_{\text{B}}}{1000}, \qquad [\text{KM}] \quad (1.19)$$

$$t_{\rm Ha6} = \sum \left(\frac{1}{V_y^*}\right)_{\rm cp} \frac{\Delta H_9}{60},$$
 [мин] (1.20)

$$m_{T_{\text{Ha6}}} = \sum \left(\frac{CeP}{V_y^*}\right)_{\text{cp}} \frac{\Delta H_9}{3600}, \quad [\text{K}\Gamma] \quad (1.21)$$

где $\Delta H_{\mathfrak{I}} = H_{\mathfrak{I}}^{i+1}(V_{\text{наб}}^{i+1}, H^{i+1}) - H_{\mathfrak{I}}^{i}(V_{\text{наб}}^{i}, H^{i}), H_{\mathfrak{I}}^{i} = H^{i} + \frac{(V^{i})^{2}}{2g}$ — энергетическая высота в узловой точке, V^{i} — скорость соответствующая $V_{y_{max}}^{*}(H^{i})$ при наборе высоты.

$$\left(\frac{1}{n_x}\right)_{\text{cp}} = 0.5 \left[\frac{1}{n_x(H_{\theta}^i)} + \frac{1}{n_x(H_{\theta}^{i+1})}\right]$$
(1.22)

$$\left(\frac{1}{V_y^*}\right)_{\text{cp}} = 0.5 \left[\frac{1}{V_y^*(H_{\mathfrak{g}}^i)} + \frac{1}{V_y^*(H_{\mathfrak{g}}^{i+1})}\right]$$
(1.23)

$$\left(\frac{CeP}{V_y^*}\right)_{cp} = 0.5 \left[\frac{CeP}{V_y^*(H_{\vartheta}^i)} + \frac{CeP}{V_y^*(H_{\vartheta}^{i+1})}\right]$$
(1.24)

Результаты расчетов приведены в таблице 1.11. Основные параметры наборы представлены в таблице 1.10. Также результаты сведены в графики на рисунках 1.38 - 1.40

Таблица 1.10 — Основные параметры в наборе высоты

$m_{T_{ m ha6}}$	$L_{ m Ha6}$	$t_{ m had}$
Кг	Км	Мин
3669.9	175.7	18.3

Таблица 1.11 — Результаты расчета набора высоты

H yaen	М наб	Λ	$V_{ m KM}$	$\frac{\Delta V}{\Delta H}$	$n_x \qquad V_y^*$	V_y^*	θ	θ $V_{y_{ ext{Ha}6}}$	$H_{\mathfrak{d}}$	$\Delta H_{ m 9}$	$n_{x_{ m cp}}$	$\frac{\Delta H_{9}}{1000n_{x}}$
M	I	C M	$\frac{KM}{4}$	1 c	1	C	град.	C K	M	M	I	KM
0.0	0.0 0.29	97.8	352.1	352.1 0.021	0.16 17.8	17.8	7.6 14.7	14.7	488.0	2507.0	$2507.0 \mid 0.136 \mid 15.69$	15.69
2.0	0.42	2.0 0.42 139.7	502.8	502.8 0.005 0.119 16.6 6.4 15.5	0.119	16.6	6.4	15.5	2994.0	$2142.0 \mid 0.103 \mid 18.07$	0.103	18.07
4.0	0.46	4.0 0.46 149.3	537.5	537.5 0.004 0.091 13.6 4.9 12.7	0.091	13.6	4.9	12.7	5136.0	5136.0 2140.0 0.08 23.53	0.08	23.53
0.9	0.5	158.2	569.6	569.6 0.004 0.071 11.2 3.8	0.071	11.2	3.8	10.5	7276.0	2135.0 0.058 30.07	0.058	30.07
8.0	0.54	8.0 0.54 166.4	599.0	599.0 0.008 0.049 8.1	0.049	8.1	2.4	7.1	9411.0	2291.0 0.032 47.06	0.032	47.06
10.0	0.61	10.0 0.61 182.7	657.8	0.0	0.023	4.3	1.3	4.3	657.8 0.0 0.023 4.3 1.3 4.3 11702.0	-	-	ı

Таблица 1.11 — (Продолжение) Результаты расчета набора высоты

Kr Kr Hu	18.4 0.1 2.44 0.061 20.8 0.1 2.39 0.065	0.065	0.065 0.065 0.065 0.064	0.065 0.065 0.065 0.063
, наб МИН	2.44	2.44 2.39 2.9	2.39 2.39 2.9 3.78	2.44 2.39 2.9 3.78 6.77
$V_{\rm gcp}$	0.1	0.1	0.1 0.1 0.1	0.1 0.1 0.1 0.2
L _{наб} КМ	20.8	20.8	20.8 26.8 37.0	20.8 26.8 37.0 72.7
$\overline{3600}$ $(\overline{V_y})$ Cp L_{Ha6} V_{ycp} U_{Ha6} \overline{K} \overline{K} \overline{K} \overline{K} \overline{K} \overline{K} \overline{K} \overline{K} \overline{K}	617.0	617.0	617.0 635.5 692.5	617.0 635.5 692.5 999.2
$(\frac{V^*}{y})$ cp 3600	1036.9			
		1 1		
V**	1092.	1092. 1123.	1092. 1123. 1158.	1092 1123. 1158. 1421.
H	261897.0 1092.4	261897.0 221372.0	261897.0 221372.0 190906.0	261897.0 221372.0 190906.0 159439.0
308927.0 1283.7 1042.1 725.6 18.4 0.1 2.44 0.061		221372.0 1123.0 1069.3 635.5 26.8 0.1 2.9 0.065	1069.3 635.5 1167.8 692.5	1069.3 635.5 1167.8 692.5 1570.4 999.2

Рисунок 1.38 — График зависимости $H(t),\; \theta(t),\; V_y^*(t),\; V(t)$ в наборе высоты

Рисунок 1.39 — График зависимости L(t), $m_T(t)$ в наборе высоты

Рисунок 1.40 — Программа набора высоты

1.3.2. Расчет характеристик крейсерского полета

Для расчета времени $T_{
m kp}$ и дальности $L_{
m kp}$ крейсерского полета:

$$T_{\text{kp}} = \frac{60K_{\Gamma\Pi}}{gCe} \ln \frac{1 - \bar{m}_{T_{\text{Ha}6}} - \bar{m}_{T_{\text{np}}}}{1 - \bar{m}_{T_{\text{kp}}} - \bar{m}_{T_{\text{np}}}}, \qquad [\text{MИН}] \quad (1.25)$$

$$L_{\rm kp} = \frac{36V K_{\Gamma\Pi}}{gCe} \ln \frac{1 - \bar{m}_{T_{\rm ha6}} - \bar{m}_{T_{\rm np}}}{1 - \bar{m}_{T_{\rm kp}} - \bar{m}_{T_{\rm np}}}, \qquad [\text{km}] \quad (1.26)$$

где $\bar{m}_{\rm T_{\rm KP}}=1-\bar{m}_{\rm CH}-\bar{m}_{\rm HH}-\bar{m}_{\rm T_{\rm Ha6}}-\bar{m}_{\rm T_{\rm CHH}}-\bar{m}_{\rm T_{\rm HH3}}-\bar{m}_{\rm T_{\rm Hp}}=0.1788$ — относительная масса топлива расходуемая в крейсерском полете, $K_{\rm \Gamma\Pi}=13.51$, $V=183\,\frac{\rm M}{\rm c^2},\,Ce=0.063\,\frac{\rm Kr}{\rm H*^{\rm H}}$ — удельный расход топлива на высоте крейсерского полета. Параметры $K_{\rm \Gamma\Pi},\,V,\,Ce$ определены для режима полета соответствующего минимуму километрового расхода в начале крейсерского полета.

Принимаем:

• $\bar{m}_{\rm ch} = 0.46$ – относительная масса пустого снаряженного самолета;

- $\bar{m}_{\text{цн}} = 0.26$ относительная масса целевой нагрузки;
- $\bar{m}_{T_{\text{наб}}} = \frac{\bar{m}_{T_{\text{наб}}}}{m_0} = \frac{3670\,\text{кг}}{140000\,\text{кг}} = 0.0262$ относительная масса топлива, расходуемая при наборе высоты;
- $\bar{m}_{T_{\text{снп}}} = 0.015$ относительная масса топлива, расходуемая при снижении и посадке;
- $\bar{m}_{\mathrm{T}_{\mathrm{ah}3}} = 0.05$ аэронавигационный запас топлива;
- $\bar{m}_{\mathrm{T}_{\mathrm{пp}}}=0.01$ запас топлива для маневрирования по аэродрому, опробования двигателей, взлета;

Высоту $H_{\rm kp}$ в конце крейсерского полета можно определить по величине $\rho_{H\,{\rm kp}}$, которая определяется по формуле (1.27) сопоставив со значением стандартной атмосферы.

$$\rho_{H \text{ KP}} = \frac{2\bar{m}_{\text{K KP}} P s 10}{C_{y_{\text{FII}}} V_{\text{K}}^2}, \tag{1.27}$$

где $\bar{m}_{\text{к кр}} = 1 - \bar{m}_{T_{\text{наб}}} - \bar{m}_{T_{\text{пр}}} - \bar{m}_{T_{\text{кр}}}.$

Результаты расчетов приведены в таблице 1.12:

Таблица 1.12 — Результаты расчета участка крейсерского полета

$T_{ m \kappa p}$	$L_{ m kp}$	$ ho_{H ext{ kp}}$	$H_{0\mathrm{Kp}}$	$H_{ ext{ iny KP}}$
МИН	KM	$\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	KM	KM
285.43	2770.0	0.324	11	11.8

1.3.3. Расчет характеристик участка снижения

Расчет аналогичен расчету участка набора высоты (раздел 1.3.1), только в качестве программы снижения принимается зависимость $M_{\rm ch}(H)$, соответствующая минимуму потребной тяги.

Начальные условия:

Скорость соответствует минимуму потребной тяги $M_1(P_{n \text{ min}})$, высота соответствует $H_{\text{кр}}$

$$M_0 = 0.540; H_0 = 10 \,\mathrm{km}$$

Конечные условия:

Скорость в конце снижения соответствует наивыгоднейшей скорости при $\mathbf{H}=\mathbf{0}.$

$$M_{\rm K}=0.370;\,H_{\rm K}=0$$

Результаты расчетов приведены в таблице 1.14, по этим данным построили зависимости H(t), $\theta(t)$, $V_y^*(t)$, V(t), L(t), $m_T(t)$ на рисунках 1.41, 1.42, 1.43. Основные параметры на снижении представлены на рисунке 1.13. Программа снижения представлена на рисунке 1.44.

По результатам программ набора, крейсерского полета и снижения был получен график H(L) на рисунке 1.44 для всего полета.

Таблица 1.13 — Основные параметры при снижении высоты

$m_{T_{ m ch}}$	$L_{ m cH}$	$t_{ m cH}$
Кг	Км	Мин
426.7	197.3	19.7

Таблица 1.14 — Результаты расчета снижения высоты

$\frac{\Delta H_{\rm s}}{1000n_x}$	KM	37.91	38.09	39.2	38.92	40.41	I
$n_{x_{ m cp}}$	I	-0.063	-0.058	-0.055	-0.054	-0.052	I
$\Delta H_{ m e}$	M	-2437.0	-2221.0 -0.058	6988.0 -2213.0 -0.055	-2124.0 -0.054	-2120.0 -0.052 40.41	ı
H_9	M	11646.0 -2437.0 -0.063 37.91	9210.0	6988.0	4.0 0.38 123.3 444.0 0.005 -0.055 13.6 -2.9 -11.5 4775.0	2652.0	531.0
$V_{y_{ m cH}}$	C M	-3.5	6.9-	-9.3	-11.5	-14.1	-15.7
$\theta \hspace{0.1cm} \left \hspace{0.1cm} V_{y_{ m cH}} \right $	град.	-3.0 -3.5	-3.0	-2.9	-2.9	-2.8	-2.9
V_y^*	$\frac{M}{C}$	2.0	6.3	11.2	13.6	16.6	17.8
n_x	I	$10.0 \mid 0.6 \mid 179.7 \mid 647.0 \mid 0.013 \mid -0.064 \mid 2.0$	8.0 0.5 154.1 554.6 0.007 -0.058 6.3	6.0 0.44 139.2 501.3 0.008 -0.056 11.2 -2.9 -9.3	-0.055	2.0 0.34 113.1 407.0 0.005 -0.052 16.6 -2.8 -14.1	-0.051 17.8 -2.9 -15.7
$\frac{\Delta V}{\Delta H}$	$\frac{1}{c}$	0.013	0.007	0.008	0.005	0.005	0.0 0.3 102.1 367.5 0.0
$V_{\scriptscriptstyle m KM}$	KM	647.0	554.6	501.3	444.0	407.0	367.5
1	C	179.7	154.1	139.2	123.3	113.1	102.1
$M_{ m CH}$	1	9.0	0.5	0.44	0.38	0.34	0.3
Н узел	M	10.0	8.0	0.9	4.0	2.0	0.0

Таблица 1.14 — (Продолжение) Результаты расчета снижения высоты

$\frac{CeP}{V_y^*}$ $\left(\frac{CeL}{V_y^*}\right)$	$\left(\frac{Ce_L}{V_y^*}\right)$	$\left(\frac{CeP}{V_y^*}\right)_{\mathrm{cp}}$	$\frac{\Delta H_{9}}{3600} \left(\frac{CeP}{V_{y}^{*}}\right)_{\mathrm{CP}}$	$L_{ m cH}$ $V_{ m ycp}^*$	$V_{ m ycp}^*$	$t_{ m cH}$	Ce
1	I		ΚΓ	KM	C M	МИН	$\frac{\mathrm{K}\Gamma}{H^{\mathrm{q}}}$
-237.2 -161.8	-161.8		109.5	38.7	-0.2	38.7 -0.2 7.33	0.123
-146.7 -131.7			81.3	38.2	-0.1	4.19	38.2 -0.1 4.19 0.117
11614.0 -146.9 -131.8			81.0	39.9	-0.1	3.28	39.9 -0.1 3.28 0.118
13687.0 -140.2 -129.9			76.6	39.7	-0.1	39.7 -0.1 2.63	0.118
16476.0 -136.2 -132.9			78.3	40.8	-0.1	2.3	40.8 -0.1 2.3 0.116
18370.0 -137.7	I		_	_	I	I	- 0.118

Рисунок 1.41 — График зависимости $L(t), m_T(t)$

Рисунок 1.42 — График зависимости $L(t), m_T(t)$

Рисунок 1.43 — Программа снижения

Рисунок 1.44 — Совмещенный график H(L) для участков набора высоты, крейсерского полета и снижения

1.4. Расчет диаграммы транспортных возможностей

Определим зависимость целевой нагрузки от дальности полета самолета $m_{\text{цн}}(L)$ (Рисунок 1.45). Расчет ведется для трех режимов:

- 1. Полет с максимальной коммерческой нагрузкой,
- 2. Полет с максимальным запасом топлива,
- 3. Полет без коммерческой нагрузки ($m_{\rm цн}=0$) с максимальным запасом топлива.

Режим 1.

Для данного режима определили в разделах 1.3.1, 1.3.2, 1.3.3.

$$m_{ ext{\tiny IJH}} = rac{m_{ ext{\tiny IJH}}}{m_0}$$

Режим 2.

$$L = L_{\text{Ha}\delta} + L_{\text{Kp}} + L_{\text{ch}}$$

Для упрощения дальность полета, расход топлива при наборе и снижении, для всех режимов соответствует первому режиму.

Тогда дальность полета вычисляется как:

$$L_{\rm Kp} = \frac{36VK}{gCe} \ln \frac{\bar{m}_{\rm B3JI} - \bar{m}_{T_{\rm Ha6}} - \bar{m}_{T_{\rm \pi p}}}{\bar{m}_{\rm B3JI} - \bar{m}_{T_{\rm Kp}} - \bar{m}_{T_{\rm Ha6}} - \bar{m}_{T_{\rm mp}}},\tag{1.28}$$

где $\bar{m}_{\text{взл}} = 1$, $\bar{m}_{T_{\text{кр}}} = \bar{m}_{T_{max}} - \bar{m}_{T_{\text{наб}}} - \bar{m}_{T_{\text{сн}}} - \bar{m}_{T_{\text{анз}}} - \bar{m}_{T_{\text{пр}}}$, $\bar{m}_{T_{max}} = 0.5258$, $\bar{m}_{\text{цн}} = 1 - \bar{m}_{\text{пуст}} - \bar{m}_{T_{max}}$, $\bar{m}_{\text{пуст}} = \frac{88500}{m_0}$.

Режим 3.

$$ar{m}_{ ext{\tiny B3JI}} = ar{m}_{ ext{\tiny HYCT}} + ar{m}_{T_{max}}$$

Результаты расчетов сведены в таблицу 1.15.

Таблица 1.15 — Результаты расчета

Режим	L	$m_{\scriptscriptstyle ext{IJH}}$
$\mathcal{N}_{\overline{0}}$	KM	ΚΓ
1	3143.0	64400.0
2	5422.0	36400.0
3	7898.0	0.0

Рисунок 1.45 — График зависимости $m_{\text{цн}}(L)$

1.5. Расчет взлетно-посадочных характеристик самолета

Для расчета: скорости отрыва при взлете $V_{\text{отр}}$, длины разбега L_{p} , взлетной дистанции $L_{\text{вд}}$, скорости касания ВПП при посадке $V_{\text{кас}}$, длины пробега $L_{\text{пр}}$, посадочной дистанции $L_{\text{пд}}$, предполагается что:

1. Угол атаки при разбеге и пробеге $\alpha_{\mathrm{p}}=\alpha_{\mathrm{n}}=2^{\circ}$

- 2. Угол атаки при отрыве и касании ВПП $\alpha_{\rm orp}=\alpha_{\rm kac}=6^\circ$
- 3. Безопасная высота пролета препятствий $H_{\mbox{\tiny BSJ}}=10.7\,\mbox{м}$ и $H_{\mbox{\tiny \Pioc}}=15\,\mbox{м}$
- 4. Тяга двигателей $P_{\mbox{\tiny BЗЛ}} = (1.2...1.3) P, \, Ce_{\mbox{\tiny BЗЛ}} = (1.03...1.05) Ce_0$
- 5. При пробеге по ВПП используется реверс тяги.

Соотношения для расчета:

Скорость отрыва при взлете:

$$V_{\text{otp}} = \sqrt{\frac{20P_s(1 - 0.9\bar{P}_{\text{взл}}\sin\alpha_{\text{otp}})}{\rho_0 C_{y_{\text{otp}}}}}$$
(1.29)

Длина разбега:

$$L_{\rm p} = \frac{1}{2gb_p} \ln \frac{C_p}{C_p - b_p V_{\rm opp}^2}$$
 (1.30)

где $b_p=(C_{x_p}-f_pC_{y_p})rac{
ho_0}{2P_s10},\ C_p=0.9ar{P}_{ ext{взл}}-f_p,\ f_p=0.02.$

Воздушный участок взлета:

$$L_{\text{ByB}} = \frac{1}{\hat{n}_{x_{\text{cp}}}} \left(\frac{V_2^2 - V_{\text{oTp}}^2}{2g} + H_{\text{взл}} \right)$$
 (1.31)

где $\hat{n}_{x_{\rm cp}}=\bar{P}_{\rm взл}-\frac{C_{x_{\rm отр}}\rho_0\hat{V}_{\rm cp}^2}{P_s20}$ — тангенциальная перегрузка для среднеквадратического значения скорости $\hat{V}_{\rm cp}=\sqrt{\frac{V_2^2+V_{\rm отр}^2}{2}},\,V_2=1.1V_{\rm отр}$ — безопасная скорость взлета.

Взлетная дистанция:

$$L_{\text{вд}} = L_{\text{p}} + L_{\text{вув}} \tag{1.32}$$

Скорость касания ВПП на посадке:

$$V_{\text{Kac}} = \sqrt{\frac{2\bar{m}_{\text{IIOC}}P_s10}{C_{y_{\text{Kac}}}\rho_0}} \tag{1.33}$$

где $\bar{m}_{\text{пос}} = \bar{m}_{\text{к кр}} - \bar{m}_{T_{\text{снп}}}$ — относительная масса самолета при посадке.

Длина пробега:

$$L_{\text{проб}} = \frac{1}{2gb_n} \ln \frac{a_n - b_n V_{\text{Kac}}^2}{a_n} \tag{1.34}$$

где
$$a_n = -\bar{P}_{\text{рев}} - f_n$$
, $b_n = \frac{\rho_0}{\bar{m}_{\text{пос}} P_s 20} (C_{x_{\text{проб}}} - f_n C_{y_{\text{проб}}})$, $\bar{P}_{\text{рев}} = \frac{P_{\text{рев}}}{m_{\text{пос}} g}$.

Длина воздушного участка:

$$L_{\text{ByII}} = K_{\text{пос}} \left(H_{\text{пос}} + \frac{V_{\text{пл}}^2 - V_{\text{кас}}^2}{2g} \right)$$
 (1.35)

где
$$K_{\text{пос}} = \frac{C_{y_{\text{пос}}}}{C_{x_{\text{пос}}}},~C_{y_{\text{пос}}} = 0.7C_{y_{\text{кас}}}(\alpha_{\text{кас}}),~V_{\text{пл}} = \sqrt{\frac{2\bar{m}_{\text{пос}}P_s10}{C_{y_{\text{пос}}}\rho_0}}.$$

Посадочная дистанция:

$$L_{\text{пд}} = L_{\text{проб}} + L_{\text{вуп}} \tag{1.36}$$

Результаты расчетов приведены в таблице 1.16.

Таблица 1.16 — Результаты расчета

$V_{ m orp}$	$L_{ m p}$	$L_{\scriptscriptstyle m BД}$	$V_{ m kac}$	$L_{ m npo6}$	$L_{\scriptscriptstyle \Pi\! m J\!\!\! L}$
$\frac{M}{C}$	M	M	$\frac{M}{c}$	M	M
90.0	1830.0	2289.0	65.0	811.0	1418.0

1.6. Расчет характеристик маневренности самолета

В данном разделе определим характеристики правильного виража.

Расчеты ведутся для высоты $H = 6 \, \text{км}$.

Характеристики маневренности рассчитываются при 50%-ом выгорании топлива для массы самолета: $\bar{m}_{\rm c}=1-0.5\bar{m}_T$

Для расчета таблицы 1.17:

1. Максимальная допустимая нормальная перегрузка:

$$n_{y_{\text{доп}}} = \min\left\{n_{y_{\theta}}, n_{y}(C_{y_{\text{доп}}})\right\}$$

$$n_{y_9}=3$$
 — эксплуатационная перегрузка, $n_y(C_{y_{\text{доп}}})=rac{C_{y_{\text{доп}}}}{C_{y_{\Gamma\Pi}}},\,C_{y_{\Gamma\Pi}}=rac{ar{m}_{\mathrm{c}}P_{\mathrm{s}}10}{q}$

2. Нормальная перегрузка предельного правильного виража

$$n_{y_{ exttt{BHP}}}=\min\left\{n_{y_{ exttt{Доп}}},\,n_{y_P}
ight\}$$
 $n_{y_P}=rac{1}{C_{y_a}\Gamma\Pi}\left(C_{y_m}+\sqrt{rac{ar{P}C_{y_a}\Gamma\Pi-C_{x_{ exttt{M}}}}{A}}
ight)$, где $ar{P}=rac{P_p}{mg}$

3. Кинематические параметры виража:

$$\omega_{\text{вир}} = \frac{g}{V} \sqrt{n_{y\,\text{вир}}^2 - 1}$$

$$r_{\text{вир}} = \frac{V}{\omega_{\text{вир}}}$$

$$t_{\text{вир}} = \frac{2\pi r_{\text{вир}}}{V}$$

4. Узловые точки для расчета:

$$M = [0.4, 0.5, 0.6, 0.7]$$

Таблица 1.17 — Расчет виража

M	V	V	q	$C_{y_{\Gamma\Pi}}$	$C_{y_{ m don}}$	$n_{y_{ m доп}}$	$K_{\Gamma\Pi}$	$P_n * 10^{-5}$	$P_p * 10^{-5}$
-	$\frac{M}{C}$	<u>КМ</u> Ч	$\frac{H}{\mathrm{M}^2}$	-	-	-	-	Н	Н
0.4	127.0	456.	5287.0	0.866	1.112	1.284	14.36	6.196	15.694
0.5	158.0	570.	8262.0	0.554	1.083	1.954	13.97	6.371	15.368
0.6	190.0	684.	11897.0	0.385	1.033	2.684	11.13	7.996	14.955
0.7	222.0	797.	16193.0	0.283	0.977	3.0	8.12	10.96	14.555

Таблица 1.17 — (Продолжение) Расчет виража

\bar{P}	n_{y_p}	$n_{y_{\mathtt{вир}}}$	$\omega_{ ext{вир}}$	$r_{\scriptscriptstyle \mathrm{BUP}}$	$t_{\scriptscriptstyle \mathrm{BUP}}$
_	ı	-	$\frac{1}{c}$	M	c
0.142	1.612	1.284	0.062	2026.7	100.6
0.139	1.865	1.865	0.098	1620.9	64.4
0.135	1.838	1.838	0.08	2383.8	78.9
0.132	1.27	1.27	0.035	6393.1	181.3

Рисунок 1.46 — График зависимости $n_{y_{\text{вир}}}(M),~\omega_{\text{вир}}(M),~r_{\text{вир}}(M),~t_{\text{вир}}(M)$

1.7. Расчет характеристик продольной статической устойчивости и управляемости

Для расчета продольной статической устойчивости и управляемости необходимо определить безразмерную площадь горизонтального оперения $\bar{S}_{\Gamma O}$ из условия устойчивости и балансировки.

Для определения $\bar{S}_{\Gamma O}$ рассчитываются предельно передняя $\bar{x}_{\Pi\Pi}$ для режима посадки ($H=0,\,M=0.2$) и предельно задняя $\bar{x}_{\Pi\Pi}$ центровки:

$$\bar{x}_{\text{ТПП}} = \frac{-m_{Z_0 \text{ ВГО}} + \bar{x}_{F \text{ ВГО}} C_{y \text{ ВГО}} + C_{y \text{ ГО}} \bar{S}_{\text{ГО}} K_{\text{ГО}} \bar{L}_{\text{ГО}}}{C_{y \text{ ВГО}}}, \qquad (1.37)$$

где $C_{y\,\mathrm{BFO}} = C_{y_0\,\mathrm{BFO}} + C_{y\,\mathrm{BFO}}^{\alpha} \alpha$, $C_{y\,\mathrm{FO}} = C_{y\,\mathrm{FO}}^{\alpha_{\mathrm{FO}}} \left[\alpha (1 - \epsilon^{\alpha}) + \delta_{\mathrm{9} \Phi} \right] < 0$, $\delta_{\mathrm{9} \Phi} = \delta_{\mathrm{ycr}} + n_{\mathrm{B}} \delta_{max}$, $\delta_{\mathrm{max}} = -25^{\circ}$, $\delta_{\mathrm{ycr}} = -4^{\circ}$.

$$\bar{x}_{\text{TII3}} = \bar{x}_H + \sigma_{n \text{ min}} \tag{1.38}$$

$$\bar{x}_H = \bar{x}_F - \frac{m_z^{\bar{\omega}_z}}{\mu}, \ \mu = \frac{2P_s 10}{\rho g b_a}, \ m_z^{\bar{\omega}_z} = m_z^{\bar{\omega}_z}_{\rm BFO} + m_z^{\bar{\omega}_z}_{\rm TO}, \ m_z^{\bar{\omega}_z} = -C_{y \Gamma O}^{\alpha_{\Gamma O}} \bar{S}_{\Gamma O} \bar{L}_{\Gamma O} \sqrt{K_{\Gamma O}}$$

$$\bar{x}_F = \bar{x}_{FB\Gamma O} + \Delta \bar{x}_{F_{\Gamma O}} \tag{1.39}$$

$$\Delta \bar{x}_{F_{\Gamma O}} \approx \frac{C_{y\Gamma O}^{\alpha_{\Gamma O}}}{C_y^{\alpha}} (1 - \varepsilon^{\alpha}) \bar{S}_{\Gamma O} \bar{L}_{\Gamma O} K_{\Gamma O}, \, \sigma_{n \text{ min}} = -0.1$$

По приведенным формулам для ряда значений $\bar{S}_{\Gamma O}=(0.01,\ 0.2)$ рассчитываются значения $\bar{x}_{\Pi\Pi I},\ \bar{x}_{\Pi\Pi 3},$ результаты представлены в таблице 1.18.

Затем графически определяется потребная площадь ГО (рисунок 1.47) из условия:

$$\bar{x}_{\mathrm{T\Pi 3}}(\bar{S}_{\mathrm{\Gamma O}}) - \bar{x}_{\mathrm{T\Pi \Pi}}(\bar{S}_{\mathrm{\Gamma O}}) = \Delta \bar{x}_{\mathrm{s}} 1.2$$

 $\Delta \bar{x}_{\text{3}} \approx 0.15$

Далее расчеты характеристик устойчивости и управляемости производятся для средней центровки:

$$\bar{x}_T = 0.5 \left[\bar{x}_{\text{T}\Pi 3} (\bar{S}_{\Gamma \text{O}}^*) + \bar{x}_{\text{T}\Pi \Pi} (\bar{S}_{\Gamma \text{O}}^*) \right]$$

Значения величин \bar{x}_F , \bar{x}_H , $\bar{x}_{T\Pi 3}$, σ_n определяются в узловых точках по M на высоте H=0 результаты которого сведены в таблицу 1.19.

$$\sigma_n = \bar{x}_T - \bar{x}_F + \frac{m_z^{\omega_z}}{\mu}$$

По результатам получены графики зависимости \bar{x}_F , \bar{x}_H , $\bar{x}_{\text{ТПЗ}}$ от числа M на рисунке 1.48.

Зависимости $\delta_{6 {\rm an}}(M), \; \delta^n(M), \; n_{y_{\rm p}}(M)$ для трех значений высот: $H=(0\,{\rm кm},\,6\,{\rm кm},\,H_{\rm kp})$ рассчитываются по формулам:

$$m_z^{C_y} = \bar{x}_T - \bar{x}_F$$

 $\bar{x}_F = \bar{x}_{FB\Gamma O} + \Delta \bar{x}_{F\Gamma O}, \ m_z^{\delta_{\rm B}} = -C_{y\Gamma O}^{\alpha_{\Gamma O}} \bar{S}_{\Gamma O} \bar{L}_{\Gamma O} K_{\Gamma O} n_{\rm B}, \ C_{y\Gamma O} = \frac{10 P_s \bar{m}}{q}, \ \bar{m} = 1 - 0.5 \bar{m}_T,$

$$\begin{split} m_{Z_0} &= m_{Z_0 \, \text{BTO}} - (1 - \varepsilon^\alpha) \bar{S}_{\text{TO}} \bar{L}_{\text{TO}} K_{\text{TO}} C_{y \, \text{TO}}^{\alpha_{\text{TO}}} \alpha_0 \\ \delta_{\text{бал}} &= -\frac{m_{z_0} m_z^{C_y} C_{y \, \text{ГП}}}{m_z^{\delta_{\text{B}}} \left(1 + \frac{m_z^{C_y}}{\bar{L}_{\text{ro}}}\right)} + \frac{\delta_{\text{уст}}}{n_{\text{B}}} \\ \delta^n &= -57.3 \frac{C_{y \, \text{ГП}} \sigma_n}{m_z^{\delta_{\text{B}}}} \\ n_{y_{\text{p}}} &= 1 + \frac{\delta_{\text{max}} + \delta_{\text{уст}} - \delta_{\text{бал}}}{\delta^n} \end{split}$$

Результаты расчетов сведены в таблицы 1.20 - 1.22. Графические зависимости $\delta_{\text{бал}}(M)$, $\delta^n(M)$, $n_{y_p}(M)$ представлены на рисунках 1.49, 1.50, 1.51 соответственно.

Таблица 1.18 — Значения для построения графика на рисунке 1.47

$ar{S}_{ ext{ro}}$	$\bar{x}_{\mathrm{T}\Pi\Pi}$	$\bar{x}_{\mathrm{T\Pi3}}$
0.01	0.2629	0.198
0.2	0.0543	0.4849

Рисунок 1.47 — График зависимости $\bar{x}_{\text{ТПП}}(\bar{S}_{\text{го}})$

Таблица 1.19 — Результаты расчетов

M	\bar{x}_F	\bar{x}_H	$\bar{x}_{\mathrm{T\Pi3}}$	σ_n
0.24	0.4026	0.4398	0.3398	-0.19
0.31	0.4028	0.44	0.34	-0.1902
0.41	0.4095	0.447	0.347	-0.1972
0.51	0.4168	0.4546	0.3546	-0.2048

Рисунок 1.48 — График зависимости $\bar{x}_F(M), \bar{x}_H(M), \bar{x}_{T\Pi 3}(M), \sigma_n(M)$

Таблица 1.20 — Результаты расчетов для балансировочных зависимостей для высоты $H=0\ \mathrm{km}$

M	V	$\delta_{ m бал}$	δ^n	n_{y_p}
_	$\frac{\mathrm{M}}{\mathrm{c}}$	град	<u>град</u> ед.перег.	-
0.24	82.0	-1.36	-40.14	1.689
0.31	105.0	-1.12	-24.06	2.159
0.41	139.0	-0.97	-13.79	3.033
0.51	173.0	-0.9	-8.96	4.136

Таблица 1.21 — Результаты расчетов для балансировочных зависимостей для высоты $H=6\ \mathrm{km}$

M	V	$\delta_{ m бал}$	δ^n	n_{y_p}
_	<u>М</u> С	град	<u>град</u> ед.перег.	-
0.35	111.0	-1.36	-36.43	1.759
0.4	127.0	-1.22	-28.03	1.991
0.5	159.0	-1.06	-18.13	2.541
0.6	190.0	-0.99	-13.01	3.153
0.7	222.0	-0.97	-10.09	3.778

Таблица 1.22 — Результаты расчетов для балансировочных зависимостей для высоты $H=11\ \mathrm{km}$

M	V	$\delta_{ m бал}$	δ^n	n_{y_p}
-	$\frac{M}{C}$	град	<u>град</u> ед.перег.	_
0.52	153.0	-1.35	-33.76	1.819
0.61	179.0	-1.22	-25.33	2.097
0.71	209.0	-1.16	-19.87	2.402

Рисунок 1.49 — График зависимости $\delta_{\text{бал}}(M,\,H=0,6,11\,\text{км})$

Рисунок 1.50 — График зависимости $\delta^n(M,\,H=0,6,11\,{\rm km})$

Рисунок 1.51 — График зависимости $n_{y_p}(M,\,H=0,6,11\,{\rm к\, m})$

2. Синтез системы автоматического управления

2.1. Описание объекта управления

Один из разрабатываемых режимов для САУ – это система автоматической стабилизации высоты, применяемая в системе автоматического пилотирования. Дополнительные данные необходимые для расчетов приведены в таблицах 2.1, 2.2.

Управление самолетом в полете осуществляется отклонением руля высоты, стабилизатора, руля направления, элеронов и спойлеров. Система ручного управления необратимая бустерная, с возможностью перехода на ручное управление.

Самолет оснащен системой автоматического управления САУ-1Т-2Б, которая является частью пилотажно-навигационного коплекса ПК-76. САУ-1Т-2Б обеспечивает: автоматическое и директорное пилотирование по заданному маршруту в диапазонах высот от 400 м до максимальной высоты полета в режимах набора высота, горизонтального полета и снижения, заход на посадку до высоты 60 м в автоматическом и директором режимах.

Таблица 2.1 — Исходные данные самолета Ил-76

Параметр	Значение
b_a	6.436 м
$\delta_{ ext{ iny B}}$	$15^{\circ} 21^{\circ}$
φ	$+2^{\circ}8^{\circ}$
$ar{x}_{ ext{ iny T}}$	0.45
I_z	$19 \cdot 10^6$ кг м 2

Таблица 2.2 — Значения производных коэффициентов аэродинамических сил и моментов для разных чисел Маха

M	C_y^{lpha}	\bar{x}_F	$m_z^{ar{\omega}_z}$	$m_z^{ar{\dot{lpha}}}$	$m_z^{\delta_{\scriptscriptstyle \mathrm{B}}}$
0.3	5.160	0.695	-11.09	-7.75	-2.7215
0.4	5.160	0.690	-11.09	-7.75	-2.7215
0.5	5.160	0.695	-11.09	-7.75	-2.7215
0.6	5.160	0.710	-11.09	-7.75	-2.7215
0.7	5.350	0.728	-11.09	-7.75	-2.7215
0.8	6.150	0.764	-11.09	-7.75	-2.7215

2.1.1. Построение области высот и скоростей

Аналогичный расчет был проведен в разделе 1.2. Исходя из области высот и скоростей (рисунок 1.35), найдем узловые точки для расчета коэффициентов обратных связей которые представлены в таблице 2.3.

Таблица 2.3 — Узловые точки для расчета

Н, м	M					
0	0.240	0.302	0.364	0.426	0.488	0.612
2000	0.270	0.337	0.404	0.471	0.537	0.671
4000	0.307	0.372	0.438	0.503	0.568	0.699
6000	0.352	0.414	0.477	0.539	0.601	0.726
8000	0.406	0.463	0.519	0.575	0.631	0.744
10000	0.475	0.519	0.563	0.607	0.651	0.739
11558	0.544	0.564	0.584	0.604	0.624	0.664

2.1.2. Выбор параметров привода

Приближенно привод можно представить как:

$$W_{\rm np} = \frac{1}{T_{\rm np}^2 p^2 + 2\xi_{\rm np} T_{\rm np} + 1},$$

где $\xi_{\rm np}=0.7$. Для нахождения $T_{\rm np}$ найдем собственные частоты для самолета

$$\omega_{\rm c} = \sqrt{-\bar{M}_z^{\alpha} - \bar{M}_z^{\omega_z} \bar{Y}^{\alpha}},$$

во всех узловых точках. Выберем ω_{max} — максимальное значение $\omega_{\rm c}$ из всей рассчитанной области. Найдем $T_{{\rm пp}_{\rm reop}}=\frac{1}{10\omega_{max}}$. Из ряда:

$$T_{\rm np}^* = [0.02\ 0.025\ 0.003\ 0.035\ 0.04\ 0.045\ 0.05]$$

выберем ближайшее значение к $T_{\mathrm{пр}_{\mathrm{reop}}}$ которое будет $T_{\mathrm{пр}}.$

Расчеты по нахождению $\omega_{\rm c}$ сведены в таблицу 2.4, откуда:

$$\omega_{max} = 2.2517, \ T_{\pi p} = 0.045.$$

Таблица 2.4 — Результаты расчета ω_{c}

H, M	Значения $\omega_{ m c}$ для узловых точек					
0	0.85414	1.07530	1.29070	1.51050	1.74080	2.2517
2000	0.83279	1.03530	1.23460	1.44800	1.67410	2.1879
4000	0.81355	0.98132	1.15520	1.33700	1.53730	1.9895
6000	0.79583	0.93461	1.08250	1.24080	1.40870	1.8298
8000	0.78184	0.89540	1.01380	1.14180	1.28030	1.6339
10000	0.78185	0.86125	0.94614	1.03410	1.13170	1.3725
11558	0.79699	0.83101	0.86535	0.90071	0.93916	1.0177

2.1.3. Вывод

В данном разделе были получены узловые точки для расчетов из области высот и скоростей. Также были определены параметры привода, которые равны:

$$\xi_{\text{np}} = 0.7, \ T_{\text{np}} = 0.045.$$

2.2. Синтез контуров автоматического управления

Структурная схема регулирования высоты в тангажном варианте представлена на рисунке 2.1

Рисунок 2.1 — Структурная схема стабилизации высоты

Передаточная функция угловой скорости по отклонению руля высоты имеет вид:

$$\left\{\frac{\Delta\omega_z}{\Delta\delta_{\rm B}}\right\} = \frac{\bar{M}_z^{\delta_{\rm B}}(p+\bar{Y}^{\alpha})}{p^2 + 2hp + \omega_{\rm c}^2},\tag{2.1}$$

где $\omega_{\rm c}^2=-\bar{M}_z^\alpha-\bar{M}_z^{\omega_z}\bar{M}_z^{\omega_z},\ 2h=2\xi_{\rm K}\omega_{\rm c}=\bar{Y}^\alpha-\bar{M}_z^{\omega_z}-\bar{M}_z^{\dot{\alpha}}.$ Подробный вывод в [1, с.498].

Передаточная функция изменения высоты по изменению угла тангажа имеет вид :

$$\left\{\frac{\Delta H}{\Delta \vartheta}\right\} = \frac{K_{\rm H}}{p(T_{1c}p+1)},\tag{2.2}$$

где $T_{1c} = \frac{1}{Y^{\alpha}}$. Подробный вывод в [2, с.61]

2.2.1. Расчет ядра системы

Определим коэффициенты обратных связей $K_{\vartheta},~K_{\omega_z}$ для системы на рисунке 2.2.

Рисунок 2.2 — Структурная схема стабилизации тангажа

Передаточная функция замкнутой системы имеет вид (при $W_{\scriptscriptstyle \Pi}=1$):

$$\left\{ \frac{\Delta \vartheta}{\Delta \vartheta_{\text{зад}}} \right\} = \frac{-K_{\vartheta} \bar{M}_z^{\delta_{\text{B}}} (\bar{Y}^{\alpha} + p)}{p^3 + \Delta_1 p^2 + \Delta_2 p + \Delta_3},$$
(2.3)

где $\Delta_1 = 2h + K_{\omega_z} \bar{M}_z^{\delta_{\mathrm{B}}}, \ \Delta_2 = \omega_{\mathrm{c}}^2 - K_{\vartheta} \bar{M}_z^{\delta_{\mathrm{B}}} + K_{\omega_z} \bar{M}_z^{\delta_{\mathrm{B}}} \bar{Y}^{\alpha}, \ \Delta_3 = -K_{\vartheta} \bar{M}_z^{\delta_{\mathrm{B}}} \bar{Y}^{\alpha}.$

$$K_{\omega_z} = \varepsilon K_{\omega_{zrp}}, \ K_{\omega_{zrp}} = rac{1}{|\bar{M}_z^{\delta_{\mathrm{B}}}|T_n},$$
 $K_{\vartheta} = \nu K_{\omega_z}$

В первом приближении $\varepsilon = 0.25, \nu = \omega_{0_{max}} = 2.2517.$

Результаты расчетов коэффициентов K_{ω_z} , K_{ϑ} приведены в таблице 2.5, для дальнейшего синтеза внешнего контура выберем коэффициенты K_{ω_z} , K_{ϑ} как показано на рисунках 2.3, 2.4.

Рисунок 2.3 — Значения K_{ω_z} для всех расчетных точек

Рисунок 2.4 — Значения K_{ϑ} для всех расчетных точек

2.2.2. Расчет внешнего контура

Определим коэффициент K_H и регулятор $R_H(p)$, как показано в [2, c.220], внешнего контура (рисунок 2.1):

$$K_H = V$$

$$R_H(p) = i_H = 0.8 \frac{1}{T_{1c}V}$$

Результаты расчетов приведены в таблице 2.5, также графическое представление на рисунке 2.5, 2.6.

Рисунок 2.5-3начения K_H для всех расчетных точек

Рисунок 2.6-3начения i_H для всех расчетных точек

Таблица 2.5-3начения коэффициентов передачи

Н, м							
0	M	0.240	0.302	0.364	0.426	0.488	0.612
	K_{ϑ}	7.78	4.91	3.38	2.46	1.88	1.19
	K_{ω_z}	3.46	2.18	1.50	1.09	0.83	0.53
	K_H	82	103	124	145	166	208
	i_H	0.005470	0.005470	0.005470	0.005476	0.005489	0.005544
2000	M	0.270	0.337	0.404	0.471	0.537	0.671
	K_{ϑ}	7.78	5.01	3.49	2.57	1.97	1.26
	K_{ω_z}	3.46	2.22	1.55	1.14	0.88	0.56
	K_H	90	112	134	156	179	223
	i_H	0.004495	0.004495	0.004495	0.004507	0.004522	0.004642
4000	M	0.307	0.372	0.438	0.503	0.568	0.699
	K_{ϑ}	7.78	5.29	3.83	2.90	2.27	1.50
	K_{ω_z}	3.46	2.35	1.70	1.29	1.01	0.67
	K_H	100	121	142	163	184	227
	i_H	0.003658	0.003658	0.003663	0.003673	0.003686	0.003811
6000	M	0.352	0.414	0.477	0.539	0.601	0.726
	K_{ϑ}	7.75	5.59	4.22	3.30	2.65	1.82
	K_{ω_z}	3.44	2.48	1.87	1.47	1.18	0.81
	K_H	111	131	151	171	190	230
	i_H	0.002946	0.002948	0.002955	0.002964	0.002976	0.003165
8000	M	0.406	0.463	0.519	0.575	0.631	0.744
	K_{ϑ}	7.69	5.94	4.72	3.84	3.19	2.30
	K_{ω_z}	3.42	2.64	2.10	1.71	1.42	1.02
	K_H	125	143	160	177	194	229
	i_H	0.002346	0.002351	0.002357	0.002364	0.002392	0.002570
10000	M	0.475	0.519	0.563	0.607	0.651	0.739
	K_{ϑ}	7.57	6.35	5.40	4.64	4.04	3.14
	K_{ω_z}	3.36	2.82	2.40	2.06	1.79	1.39
	K_H	142	155	169	182	195	221
	i_H	0.001848	0.001852	0.001857	0.001865	0.001891	0.002008
11558	M	0.544	0.564	0.584	0.604	0.624	0.664
	K_{ϑ}	7.36	6.85	6.39	5.98	5.60	4.95
	K_{ω_z}	3.27	3.04	2.84	2.66	2.49	2.20
	K_H	161	167	172	178	184	196
	i_H	0.001498	0.001499	0.001501	0.001505	0.001514	0.001533

2.2.3. Вывод

В данном разделе были определены все коэффициенты обратных связей для всех контуров, обеспечивающие устойчивость системы.

2.3. Частотный анализ

Частотный анализ будет проводится для трех режимов:

- 1. Минимального скоростного напора $q_{min}=4069 \frac{\mathrm{K}\Gamma}{\mathrm{M} \ \mathrm{c}^2}$ соответствующий $H=4000 \,\mathrm{M}$ и M=0.307;
- 2. Максимального скоростного напора $q_{max} = 26558 \frac{\mathrm{K}\Gamma}{\mathrm{M} \ \mathrm{C}^2}$ соответствующий $H = 0 \ \mathrm{M} \ \mathrm{M} = 0.612;$
- 3. Крейсерский режим соответствующий $q_{\rm kp}=6886 \, {{\rm Kr} \over {\rm M} \, {\rm c}^2}$ соответствующий $H=10000\, {\rm M}$ и M=0.610;

Также данные значения приведены в таблице 2.6.

Таблица 2.6 — Режимы для частотного анализа

H, M	$q, \frac{\mathrm{K}\Gamma}{\mathrm{M} \mathrm{c}^2}$	M
4000	4068.5293	0.3071
0	26557.5546	0.6119
10000	6885.8565	0.6100

2.3.1. Анализ контура демпфирования

Передаточная функция разомкнутого контура демпфирования имеет вид:

$$W_{\rm pas}^{\rm dem} = W_{\rm m} \left\{ \frac{\Delta \omega_z}{\Delta \delta_{\rm B}} \right\} \tag{2.4}$$

Таблица 2.7 — Передаточные функции разомкнутого контура демпфирования при различных скоростных напорах

q	Передаточная функция
q_{min}	$-\frac{(1.249p + 0.658)}{0.002p^4 + 0.065p^3 + 1.072p^2 + 1.162p + 0.762}$
q_{max}	(7.345 p + 10.403)
Imax	$0.002 p^4 + 0.069 p^3 + 1.198 p^2 + 3.301 p + 4.976$ $(3.034 p + 1.829)$
$q_{ m kp}$	$-\frac{(3.002 p^4 + 0.065 p^3 + 1.079 p^2 + 1.328 p + 2.206)}{0.002 p^4 + 0.065 p^3 + 1.079 p^2 + 1.328 p + 2.206}$

Графики ЛАФЧХ представлены на рисунке 2.7. Запасы по фазе ΔL , амплитуде ΔQ , частоты среза $\omega_{\rm cp}$ для различных Махов представлены в таблице 2.8.

Рисунок 2.7 - ЛАФЧХ для разом
кнутого контура демпфирования

Таблица 2.8 — Запасы, частоты среза для разомкнутого контура демпфирования

M	$\omega_{ m cp},~{ m pag/c}$	ΔQ , дБ	ΔL , град.
0.3071	0.335	29.102	118.600
0.61	0.324	24.503	98.414
0.6119	7.489	13.362	74.939

2.3.2. Анализ ядра системы

Передаточная функция разомкнутой системы ядра (рисунок 2.2) имеет вид:

$$W_{\text{pa3}} = \frac{K_{\vartheta} W_{\text{II}} \left\{ \frac{\Delta \omega_z}{\Delta \delta_{\text{B}}} \right\}}{p(1 + K_{\omega_z})}$$
 (2.5)

Таблица 2.9 — Передаточные функции разомкнутой системы ядра при различных скоростных напорах

q	Передаточная функция			
<i>a</i> .	12.477 p + 6.576			
q_{min}	$0.002 p^5 + 0.065 p^4 + 1.072 p^3 + 6.718 p^2 + 3.691 p$			
	12.477p + 17.672			
$\mid q_{max} \mid$	$0.002 p^5 + 0.069 p^4 + 1.198 p^3 + 8.857 p^2 + 12.845 p$			
	12.644 p + 7.619			
$q_{ m Kp}$	$0.002 p^5 + 0.065 p^4 + 1.079 p^3 + 6.958 p^2 + 5.599 p$			

Графики ЛАФЧХ представлены на рисунке 2.8. Запасы по фазе, амплитуде, частоты среза для различных Махов представлены в таблице 2.10

Рисунок 2.8 — ЛАФЧХ для разом
кнутой системы ядра

Таблица 2.10 — Запасы, частоты среза для разомкнутого ядра

M	$\omega_{ m cp},~{ m pag/c}$	ΔQ , дБ	ΔL , град.
0.3071	1.911	16.893	67.544
0.61	1.950	16.692	70.653
0.6119	1.351	18.915	84.665

Передаточная функция замкнутой системы ядра (рисунок 2.2) имеет вид:

$$\left\{ \frac{\Delta \vartheta}{\Delta \vartheta_{3\text{ад}}} \right\} = \frac{-K_{\vartheta} \left\{ \frac{\Delta \omega_z}{\Delta \delta_{\text{B}}} \right\} W_{\Pi}}{p - K_{\vartheta} \left\{ \frac{\Delta \omega_z}{\Delta \delta_{\text{B}}} \right\} W_{\Pi} + K_{\omega_z} p} \tag{2.6}$$

Виды передаточных функций (2.6) замкнутой системы для ядра пред-

ставлены в таблице 2.11.

Таблица 2.11 — Передаточные функции ядра при различных скоростных напорах

q	Передаточная функция		
<i>a</i> .	2.477 p + 6.576		
q_{min}	$0.002 p^5 + 0.065 p^4 + 1.072 p^3 + 6.718 p^2 + 16.167 p + 6.576$		
	12.477 p + 17.672		
q_{max}	$0.002 p^5 + 0.069 p^4 + 1.198 p^3 + 8.857 p^2 + 25.322 p + 17.672$		
<i>a</i>	12.644 p + 7.619		
$q_{ m Kp}$	$0.002 p^5 + 0.065 p^4 + 1.079 p^3 + 6.958 p^2 + 18.243 p + 7.619$		

Графики ЛАФЧХ представлены на рисунке 2.9. Запасы по фазе, амплитуде, частоты среза для различных Махов представлены в таблице 2.12

Рисунок 2.9 - ЛАФЧХ для ядра системы

Таблица 2.12 — Запасы, частоты среза для ядра системы

M	$\omega_{ m cp},~{ m pag/c}$	ΔQ , дБ	ΔL , град.
0.3071	_	15.553	-
0.61	_	15.318	-
0.6119	_	17.871	-

2.3.3. Анализ внешнего контура

Передаточная функция разомкнутого внешнего контура с замкнутым ядром имеет вид:

$$W_{\text{pas}}^{\text{внеш}} = -R_H(p) \left\{ \frac{\Delta \vartheta}{\Delta \vartheta_{\text{зад}}} \right\} \left\{ \frac{\Delta H}{\Delta \vartheta} \right\}$$
 (2.7)

Виды передаточных функций (2.7) разомкнутого внешнего контура представлены в таблице 2.13.

Таблица 2.13 — Передаточные функции разомкнутого внешнего контура при различных скоростных напорах

q	Передаточная функция		
a	5.261 p + 2.773		
q_{min}	$\boxed{0.004p^7 + 0.126p^6 + 2.099p^5 + 13.817p^4 + 37.391p^3 + 28.644p^2 + 6.576p}$		
a	14.138 p + 20.025		
q_{max}	$\boxed{0.001p^7 + 0.051p^6 + 0.915p^5 + 7.451p^4 + 26.734p^3 + 37.799p^2 + 17.672p}$		
<i>a</i>	6.096p + 3.673		
$q_{ m kp}$	$\boxed{0.003p^7 + 0.111p^6 + 1.857p^5 + 12.626p^4 + 37.232p^3 + 30.887p^2 + 7.619p}$		

Графики ЛАФЧХ представлены на рисунке 2.10. Запасы по фазе, амплитуде, частоты среза для различных Махов представлены в таблице 2.14

Рисунок 2.10 - ЛАФЧХ для разом
кнутого траекторного контура при различных числах Маха

Таблица 2.14 — Запасы, частоты среза для разомкнутого траекторного контура

M	$\omega_{ m cp},~{ m pag/c}$	ΔQ , дБ	ΔL , град.
0.3071	0.300	15.345	46.948
0.61	0.277	16.361	46.982
0.6119	0.841	6.492	25.855

Передаточная функция всей системы имеет вид:

$$\left\{ \frac{\Delta H}{\Delta H_{3\text{a,d}}} \right\} = \frac{R_H(p) \left\{ \frac{\Delta \vartheta}{\Delta \vartheta_{3\text{a,d}}} \right\} \left\{ \frac{\Delta H}{\Delta \vartheta} \right\}}{R_H(p) \left\{ \frac{\Delta H}{\Delta \vartheta} \right\} \left\{ \frac{\Delta \vartheta}{\Delta \vartheta_{3\text{a,d}}} \right\} - 1}$$
(2.8)

Виды передаточных функций (2.8) замкнутого внешнего контура представлены в таблице 2.15.

Таблица 2.15 — Передаточные функции замкнутого внешнего контура при различных скоростных напорах

q	Передаточная функция		
	5.261 p + 2.773		
q_{min}	$\boxed{0.004p^7 + 0.126p^6 + 2.099p^5 + 13.817p^4 + 37.391p^3 + 28.644p^2 + 11.838p + 2.773}$		
	14.138 p + 20.025		
q_{max}	$0.001p^7 + 0.051p^6 + 0.915p^5 + 7.451p^4 + 26.734p^3 + 37.799p^2 + 31.81p + 20.025$		
<i>a</i>	6.096 p + 3.673		
q_{kp}	$0.003 p^7 + 0.111 p^6 + 1.857 p^5 + 12.626 p^4 + 37.232 p^3 + 30.887 p^2 + 13.715 p + 3.673$		

Графики ЛАФЧХ представлены на рисунке 2.11. Запасы по фазе, амплитуде, частоты среза для различных Махов представлены в таблице 2.16

Рисунок 2.11 — ЛАФЧХ для системы автоматической стабилизации высоты

Таблица 2.16 — Запасы, частоты среза системы для автоматической стабилизации высоты

M	$\omega_{ m cp},~{ m pag/c}$	ΔQ , дБ	ΔL , град.
0.3071	0.429	13.717	66.072
0.61	0.393	14.933	67.779
0.6119	1.293	0.928	3.850

2.3.4. Вывод

По результатам частотного анализа ядра:

Разомкнутая система ядра имеет запас по амплитуде 16.6 дБ для крейсерского режима, 18.9 для режима соответствующего максимальному q_{max} и 16.8 дБ для режим минимального q_{min} , запасы по фазе 70 град., 84 град., 67 град., соответственно. Имея положительные запасы замкнутая система будет устойчива (см. рисунок 2.9).

По результатам частотного анализа контура стабилизации высоты: Разомкнутая система имеет запасы по амплитуде 16.3 дБ, 15.3 дБ, 6.4 дБ для крейсерского, q_{min} , q_{max} режимов соответственно, по фазе 25 град., 46 град., 46 град.. Замыкая контур система стала устойчива (см. рисунок 2.11).

2.4. Нелинейное моделирование САУ

Нелинейное моделирование будет проводится для скоростного режима $M_{\rm kp}$ на крейсерской высоте H=10000 м для двух максимальных скоростей отклонения руля высоты $\dot{\delta}_{\rm B\ max}=15\,\frac{\rm град.}{\rm cek.},\ 60\,\frac{\rm град.}{\rm cek.}$. Также будут введены ограничения на:

• Диапазон отклонения руля высоты $\delta_{\scriptscriptstyle \rm B} = -21^\circ...15^\circ$

• Диапазон угла наклона траектории в наборе $\theta = -6.5^{\circ}...6.5^{\circ}$

Схема нелинейной модели из Simulink представленна на рисунке 2.12. Блок с названием «i_H» соответствует коэффициенту i_H , «K_theta_int» — K_{ϑ} , «W_p» — W_{Π} , «d_w_d_v» — $\left\{\frac{\Delta \omega_z}{\Delta \delta_{\mathtt{B}}}\right\}$, «K_omega_z_int» — K_{ω_z} , «W_H_theta — $\left\{\frac{\Delta H}{\Delta \vartheta}\right\}$.

Рисунок 2.12 — Схема нелинейной модели

2.4.1. Сравнение для разных максимальных скоростей отклонения руля высоты

Результаты изменения ΔH , $\delta_{\rm B}$, ω_z , ϑ для $\dot{\delta}_{\rm B \ max}=15 \, \frac{\rm град.}{\rm cek.}$, $60 \, \frac{\rm град.}{\rm cek.}$ представленны на рисунках 2.13, 2.14, 2.15, 2.16.

Рисунок 2.13 — Изменение высоты для различных $\dot{\delta}_{\text{в max}}$

Рисунок 2.14 — Изменение положения руля высоты для различных $\dot{\delta}_{ ext{B max}}$

Рисунок 2.15 — Изменение угловой скорости для различных $\dot{\delta}_{\text{в max}}$

Рисунок 2.16 — Изменение угла тангажа для различных $\dot{\delta}_{\rm B\ max}$

Таблица 2.17 — Сравнение параметров переходного процессса $\Delta H(t)$ при различных $\dot{\delta}_{\scriptscriptstyle \mathrm{B}}$

	Модель при $\dot{\delta}_{{\scriptscriptstyle \mathrm{B}}_{max}} = 15 \frac{{\scriptscriptstyle \mathrm{Град.}}}{{\scriptscriptstyle \mathrm{CeK.}}}$	Модель при $\dot{\delta}_{\scriptscriptstyle \mathrm{B}_{max}} = 60 \frac{\scriptscriptstyle \mathrm{Град.}}{\scriptscriptstyle \mathrm{CeK.}}$
$t_{\rm per}, c$	26.90	26.83
σ, %	28.49	28.24

2.4.2. Сравнение линейной и нелинейной модели

Результаты изменения ΔH , $\delta_{\rm B}$, ω_z , ϑ для линейной и нелинейной модели представленны на рисунках 2.17, 2.18, 2.19, 2.20. Моделирование нелинейной модели проводилось при $\dot{\delta}_{\rm B\ max}=60\,rac{{
m град.}}{{
m cek.}}$.

Рисунок 2.17 — Изменение высоты для линейной и нелинейной модели

Рисунок 2.18 — Изменение положения руля высоты для линейной и нелинейной модели

Рисунок 2.19 — Изменение угловой скорости для линейной и нелинейной модели

Рисунок 2.20 — Изменение угла тангажа для линейной и нелинейной модели

Таблица 2.18 — Сравнение параметров переходного процессса $\Delta H(t)$

	Линейная модель	Нелинейная модель			
$t_{ m per}, { m c}$	26.67	26.83			
σ , %	28.00	28.24			

2.4.3. Вывод

При моделировании различных скоростей отклонения руля высоты, переходный процесс практически не изменился (см. рисунок 2.13), время регулирования привода с наибольшей максимальной скоростью отклонения было меньше на ≈ 0.07 с. Максимальное отклонение руля высоты в случае с $\dot{\delta}_{\rm B_{\it max}} = 15 \, \frac{\rm град.}{\rm cek.}$ было меньше на 40% (см. рисунок 2.14). Максимальная угловая скорость тангажа равна ≈ 0.115 рад/с у модели с $\dot{\delta}_{\rm B_{\it max}} = 15 \, \frac{\rm град.}{\rm cek.}$ (см. рисунок 2.15). Изменение угла тангажа практически не изменилось (см. рисунок 2.16)

Разница во времени регулирования между линейной и нелинейной моделью в ≈ 0.16 с (см. таблицу 2.18). У линейной модели максимальное отклонение руля высоты имеет недопустимое значение $max(\delta_{\rm B}) > -21^{\circ}$ (см. рисунок 2.18). В следствии этого максимальная угловая скорость тангажа ≈ 0.16 рад/с (см. рисунок 2.19). Изменение угла тангажа практически не изменилось (см. рисунок 2.20)

2.5. Вывод по разделу

В ходе работы была составлена модель системы стабилизации высоты в тангажном варианте. Проведен линейный и нелинейный анализ системы, вычислены значения коэффициентов обратных связей, коэффициентов стабилизации (см. таблицу 2.5). При синтезировании данной системы были получены результаты:

1. Параметры привода:

$$\xi_{\text{np}} = 0.7, \ T_{\text{np}} = 0.045.$$

- 2. Разомкнутый контур стабилизации высоты имеет удовлетворительные запасы.
- 3. Нелинейная система не существенно отличается от линейной.

3. Специальная часть

3.1. Исследование характеристик транспортного самолета при выполнении эшелонирования

3.1.1. Постановка задачи

В работе исследуется задача минимизации километрового расхода топлива в крейсерском полете на заданную дальность путем оптимизации вертикальной траектории и скоростного режима.

3.1.2. Расчетные формулы

$$q_{\text{\tiny H}} = P_{\text{\tiny p}} C e, \ q_{\text{\tiny KM}} = \frac{q_{\text{\tiny H}}}{3.6 V}, \ L_{\text{\tiny KC}} = \int_{m_{\text{\tiny H}}}^{m_{\text{\tiny H}}} \frac{dm}{q_{\text{\tiny KM}}}, \ T_{\text{\tiny KC}} = \int_{m_{\text{\tiny H}}}^{m_{\text{\tiny H}}} \frac{dm}{q_{\text{\tiny H}}},$$
 (3.1)

$$P_{\Pi}(M,H) = \frac{mg}{K} \tag{3.2}$$

$$P_{\rm p}(M,H) = P_{\rm p_{11}} \frac{p_H}{p_{H=11}},$$
 (3.3)

$$P_{\mathbf{p}}(M,H) = \bar{P}_0 m g \tilde{P}(H,M), \qquad (3.4)$$

$$Ce = Ce_0\tilde{C}e(H, M)\hat{C}e_{Ap}(R),$$
 (3.5)

$$L_{\text{\tiny KC}} = \frac{3.6}{\bar{P}_0 C e_0 g} \int_{m_{\text{\tiny K}}}^{m_{\text{\tiny H}}} \frac{V}{m \tilde{P}(H, M) \tilde{C} e(H, M) \hat{C} e_{\text{\tiny JD}}(\bar{R})} dm, \tag{3.6}$$

$$T_{\text{\tiny KC}} = \frac{1}{g} \int_{m_{\text{\tiny K}}}^{m_{\text{\tiny H}}} \frac{1}{m\tilde{P}(H, M)\tilde{C}e(H, M)\hat{C}e_{\text{\tiny Ap}}(\bar{R})} dm \tag{3.7}$$

3.2. Исходные данные для расчетов

 $m_{\rm пуст}=86000~{\rm кг},~m_{\rm топл}=60000~{\rm кг},~m_{\rm цн}=34000~{\rm кг}.$ При интегрировании по формулам (3.1) $m_{\rm k}=120000~{\rm kr},~m_{\rm h}=180000~{\rm kr}.$ Остальные параметры были приведены в разделе 1.1. Полет будет осуществляется на дальность $L_{\rm kp}=3000~{\rm m}.$

3.2.1. Задачи

По мере уменьшения массы из-за выгорания топлива в крейсерском полете будет уменьшаться $P_{\rm II}$ из формулы (3.2), что ведет к изменению расхода топлива.

Проведем такие количественные анализы:

- 1. Влияние массы на изменение экономической скорости.
- 2. Оптимальную траекторию с учетом выгорания топлива.
- 3. Найти моменты смены эшелона для перехода на экономически выгодный эшелон.
- 4. Разница в расходах топлива при полете на постоянной высоте и со сменой высоты.

3.3. Результаты

3.3.1. Результаты расчета при постоянный высоте и оптимальной скорости полета

Таблица 3.1 — Полученные параметры

$q_{ ext{km cp}},rac{ ext{kf}}{ ext{km}}$	L, M	$m_{ exttt{ iny M3p}},$ кг	$t_{ m kp}$, мин
11.364	3000	34091.62	275.00

Рисунок 3.1 — График зависимости $H(L) \ {\rm u} \ V(L)$

Рисунок 3.2 — График зависимости q(L) и m(L)

3.3.2. Результаты расчета при оптимальном изменении высоты и скорости полета

Таблица 3.2 — Полученные параметры

$q_{ ext{km cp}},rac{ ext{kf}}{ ext{km}}$	L, M	$m_{ exttt{ iny M3p}},$ кг	$t_{ m kp}$, мин
11.155	3000	33464.02	275.85

Рисунок 3.3 — График зависимости $H(L) \ \mbox{и} \ V(L)$

Рисунок 3.4 — График зависимости q(L) и m(L)

3.3.3. Эшелонированный полет, высота меняется ступенчато с шагом 300 м

Таблица 3.3 — Полученные параметры

$q_{ ext{km cp}},rac{ ext{kf}}{ ext{km}}$	L, M	$m_{ ext{\tiny M3p}},$ кг	$t_{ m kp},$ мин
11.168	3000	33504.95	275.15

Рисунок 3.5 — График зависимости $H(L) \ {\rm u} \ V(L)$

Рисунок 3.6 — График зависимости $q(L) \ {\bf u} \ m(L)$

т, т	ОНН	Н, м											
		7000	7500	8000	8500	9000	9500	10000	10500	11000	11500	12000	12500
100.0	M	0.464	0.478	0.489	0.5	0.506	0.522	0.538	0.552	0.559	0.585	0.6	0.6
	q_{km}	9.262	8.974	8.38	8.114	7.881	7.666	7.46	7.225	6.619	6.578	6.54	6.545
	V	144.91	148.282	150.663	152.992	153.747	157.486	161.148	164.137	164.991	172.616	177.042	177.042
110.0	M	0.487	0.5	0.5	0.516	0.532	0.549	0.562	0.583	0.581	0.6	0.6	0.6
	q_{km}	9.733	9.438	8.862	8.61	8.371	8.143	7.929	7.674	7.182	7.161	7.178	7.251
	V	152.093	155.106	154.053	157.888	161.647	165.632	168.337	173.355	171.484	177.042	177.042	177.042
120.0	M	0.5	0.511	0.524	0.54	0.554	0.573	0.571	0.591	0.6	0.6	0.602	0.635
	q_{km}	10.176	9.903	9.348	9.084	8.834	8.598	8.401	8.236	7.784	7.812	7.897	8.011
	V	156.153	158.519	161.447	165.231	168.332	172.873	171.033	175.734	177.092	177.042	177.632	187.369
130.0	M	0.518	0.536	0.547	0.563	0.56	0.578	0.596	0.6	0.6	0.6	0.602	-
	q_{km}	10.626	10.344	9.807	9.533	9.293	9.127	8.983	8.825	8.452	8.549	8.709	=
	V	161.774	166.274	168.534	172.269	170.155	174.381	178.521	178.41	177.092	177.042	177.632	=
140.0	M	0.541	0.556	0.552	0.565	0.582	0.6	0.6	0.6	0.6	0.605	-	-
	q_{km}	11.041	10.753	10.259	10.049	9.863	9.7	9.576	9.472	9.36	9.534	-	=
	V	168.957	172.478	170.074	172.881	176.84	181.018	179.719	178.41	177.092	178.517	=	=
150.0	M	0.537	0.55	0.569	0.586	0.6	0.6	0.6	0.6	0.606	=	=	=
	q_{km}	11.487	11.265	10.818	10.61	10.427	10.292	10.226	10.276	10.379	=	=	=
	V	167.708	170.617	175.312	179.307	182.309	181.018	179.719	178.41	178.863	=	=	=
160.0	M	0.55	0.568	0.588	0.6	0.6	0.6	0.6	0.619	Ξ	=	=	=
	q_{km}	12.029	11.82	11.369	11.165	11.016	10.949	11.026	11.138	Ξ	=	=	=
	V	171.768	176.201	181.166	183.59	182.309	181.018	179.719	184.06	=	-	-	=
170.0	M	0.564	0.587	0.6	0.6	0.6	0.6	0.619	=	=	-	=	=
	q_{km}	12.58	12.365	11.917	11.75	11.678	11.741	11.881	-	-	-	-	-
	V	176.14	182.095	184.863	183.59	182.309	181.018	185.41	-	-	-	-	-
180.0	M	0.582	0.6	0.6	0.6	0.6	0.615	=	-	-	-	-	-
	q_{km}	13.122	12.902	12.495	12.413	12.459	12.587	Ξ	=	Ξ	=	=	=
	V	181.762	186.127	184.863	183.59	182.309	185.544	=	=	=	=	=	=
190.0	M	0.589	0.6	0.6	0.6	0.61	-	-	-	-	=	-	-
	q_{km}	13.663	13.48	13.159	13.181	13.294	Ξ	Ξ	=	Ξ	Ξ	=	Ξ
	V	183.948	186.127	184.863	183.59	185.347	-	-	-	-	-	-	-

Таблица $3.4-q_{km}\left[\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}\right],V\left[\frac{\mathrm{M}}{\mathrm{c}}\right]$

3.3.4. Анализ результатов

Таблица 3.5 — Результаты расчетов

Режим	$m_{ m \tiny H3p},$ км	T	$q_{ ext{km}_{ ext{cp}}},rac{ ext{kf}}{ ext{km}}$
Полет на $H=8500\mathrm{M}$	34091.62	4 ч. 35 мин.	11.364
Полет по оптимальной траек-	33464.02	4 ч. 36 мин.	11.155
тории			
Полет эшелонированный полет	33504.95	4 ч. 35 мин.	11.168
$\Delta H = 300\mathrm{m}$			

Результаты расчетов по нахождению $q_{{\scriptscriptstyle \mathrm{KM}}_{min}}$ минимального километрового расхода топлива сведены в таблицу 3.4

- 1. Исходя из расчетов по мере уменьшения массы скорость уменьшается, а высота для поддержания $q_{{\scriptscriptstyle \mathrm{KM}}_{min}}$ увеличивается.
- 2. Оптимальная траектория набора представлена на рисунке 3.3.
- 3. Моменты смены эшелона выбрали, если между оптимальной высотой и текущей будет разница в 300 м., тогда производим набор высоты на $\Delta H = H_{\text{опт}} H_{\text{кр}} = 300 \, \text{м}.$

3.4. Вывод

В данном разделе была получена траектория эшелонированного полета для обеспечения минимального расхода топлива. Такая траектория с исходными данными самолета прототипа дает разницу в 0.12 % по сравнению с оптимальной траекторией в количестве израсходованного топлива. Что дает разницу в количестве потерянного топлива на 10 полетов равной в 409.3 кг. К

сравнению при полете на одной высоте разница составляет 1.87 %, что дает потерю топлива на 10 полетов 6276 кг.

Отсюда следует, что нужно как можно чаще менять эшелоны на экономически выгодные для экономии топлива.

Список литературы

- 1. Динамика полета: Учебник для студентов высших учебных заведений / А.В. Ефремов, В.Ф. Захарченко, В.Н. Овчаренко и др.; под ред. Г.С. Бюшгенса. М.: Машиностроение, 2011. 776с.
- 2. Управление полетом самолета: Учебное пособие для студентов высших технических учебных заведений / Ю.П. Гуськов, Г.И. Загайнов Г.И. М.: Машиностроение, 1991. 272с.