Repetitorium Theoretische Elektrodynamik, WS 07/08

1. Multiple Choice

a)	Im Halbraum $z < 0$ befindet sich ein geerdeter Leiter. Eine Punktladung $q > 0$ befindet sich bei $\vec{r}_0 = (0,0,d)^T$. Dann gilt
	\square Das Potential Φ im Halbraum $z>0$ entspricht dem Potential, das von der Ladung q bei $\vec{r}_0=(0,0,d)^T$ erzeugt wird.
	\square Das Potential Φ im Halbraum $z>0$ entspricht dem Potential, das von der Ladung q bet $\vec{r}_0=(0,0,d)^T$ und der induzierten Oberflächenladung erzeugt wird.
	\Box Das Potential Φ im Halbraum $z>0$ entspricht dem Potential, das von der Ladung q bei $\vec{r}_0=(0,0,d)^T$, der Spiegelladung $-q$ bei $-\vec{r}_0$ und der induzierten Oberflächenladung erzeugt wird.
	\square Das Potential Φ im Halbraum $z>0$ entspricht dem Potential, das von der Ladung q bei $\vec{r}_0=(0,0,d)^T$ und der Spiegelladung $-q$ bei $-\vec{r}_0$ erzeugt wird.
	\square Das elektrische Feld $ec{E}$ im Halbraum $z>0$ erhält man durch $ec{E}=-ec{ abla}\Phi$
	\square Die Kraft, die auf die Ladung q ausgeübt wird, ist gegeben durch $\vec{F} = q\vec{E}$ mit $\vec{E} = -\vec{\nabla}\Phi$.
	\Box Für das Potential Φ im Halbraum $z>0$ gilt: $\Delta\Phi(\vec{r})=-\frac{q}{\varepsilon_0}\delta(\vec{r}-\vec{r_0}) \Phi(x,y,0)=0 \ \forall x,y\in\mathbb{R}$
	\Box Für das Potential Φ im Halbraum $z>0$ gilt: $\Delta\Phi(\vec{r})=-\frac{q}{\varepsilon_0}\delta(\vec{r}-\vec{r}_0)+\frac{q}{\varepsilon_0}\delta(\vec{r}+\vec{r}_0)$ $\Phi(x,y,0)=0\forall x,y\in\mathbb{R}$
b)	Ein Leiter befindet sich im Raum, der Raum zwischen den Leitern ist ladungsfrei. Dann wird das Potential bis auf eine Konstante eindeutig bestimmt durch:
	$\Box \Delta \Phi = 0$
	\square $\Delta\Phi=0$ und vorgegebene Ladungsverteilung auf Leiteroberfläche
	\square $\Delta\Phi=0$ und vorgegebenes Potential auf Leiteroberfläche
	\square $\Delta\Phi=0$, vorgegebene Ladungsverteilung und vorgegebenes Potential auf Leiteroberfläche
c)	Für den spurlosen Quadrupoltensor Q gilt:
	\square Q ist symmetrisch
	\square Q ist diagnonalisierbar
	☐ Q enthält 6 voneinander unabhängige Komponenten
	\square $Spur(\mathbf{Q})$ wird bei Koordinatendrehungen wie ein Tensor 2. Stufe transformiert.
	\square Liegen sämtliche Ladungen in der x - y -Ebene, so ist $\mathbf Q$ immer diagonal.
	\square Liegen sämtliche Ladungen auf den Koordinatenachsen, so ist ${f Q}$ immer diagonal.
	\square Liegen sämtliche Ladungen in der x - y -Ebene, so ist $Q_{xz}=Q_{yz}=0$
	\square Liegen sämtliche Ladungen auf den Koordinatenachsen, so ist $Q_{xz}=Q_{yz}=0$
d)	Für die magnetische Feldkonstante μ_0 gilt:
	$\Box \mu_0 = 4\pi \cdot 10^{-7} \frac{Vs}{Am}$
	\square μ_0 lässt sich über die Kraft zwischen 2 parallelen Drähten nur ungenau messen.
	\square Der Wert μ_0 ist durch die Definition des Ampere festgelegt.

e) Im folgenden betrachten wir zeitabhängige \vec{E} und \vec{B} -Felder \Box Für eine Kurve γ ist das Kurvenintegral $\int_{\gamma} \vec{E} \cdot d\vec{r}$ wegunabhängig. \Box Es gilt \vec{E} ist wirbelfrei. \Box Das Magnetfeld des von der induzierten Spannung verursachten Stroms wirkt der Änderung des magnetischen Flusses entgegen. \Box Das Faraday'sche Induktionsgesetz ist eng verknüpft mit dem Ohm'schen Gesetz. \Box Für die Stromdichte \vec{j} gilt die Kontinuitätsgleichung $\vec{\nabla} \cdot \vec{j} = 0$ f) Für die elektrische Dipolstrahlung mit dem Dipolmoment $\vec{p_0}e^{i\omega t}$ im Koordinatenursprung gilt: \Box Die Polarisation von \vec{E} ist radial. \Box $\vec{k} \parallel \hat{e_r}$ \Box Das elektrische Feld schwingt senkrecht zur von $\hat{e_r}$ und $\vec{p_0}$ aufgespannten Ebene. \Box Die maximale Amplitude des \vec{E} -Feldes erhält man in einem Punkt in der Richtung von $\vec{p_0}$ \Box Die maximale Amplitude des \vec{B} -Feldes erhält man in einem Punkt in der Ebene senkrecht zu $\vec{p_0}$

2. Multipol-Entwicklung

Vier Ladungen q befinden sich in einem kartesichen Koordinatensystem an den Punkten

$$(0,d,0), (0,-d,0), (0,0,d), (0,0,-d)$$

und vier Ladungen -q an den Punkten

$$(-d,0,0), \left(-\frac{d}{2},0,0\right), (d,0,0), (2d,0,0)$$

Berechnen Sie das Dipolmoment \vec{p} und den spurlosen Quadrupoltensor Q dieser Ladungsanordnung.

3. Magnetfeld einer rotierenden Scheibe

Eine dünne Scheibe aus leitendem Material und mit Radius r sei gleichmäßig mit der Ladung Q aufgeladen. Die Scheibe dreht sich mit der konstanten Winkelgeschwindigkeit ω um die achse senkrecht zur Oberfläche der Scheibe. Berechnen Sie das magnetische Feld in der Achse der Anordnung? Hinweis: Benutzen Sie

 $\int \frac{r^3}{(z^2+r^2)^{3/2}} dr = \frac{2z^2+r^2}{\sqrt{z^2+r^2}}$

4. Relativistische Transformation eines Dipolfeldes

Ein magnetischer Dipol (ruhend in K) sei parallel zur z-Achse ausgerichtet. (magnetisches Moment $\vec{m} = m\vec{e}_z$)

- a) Wie lauten die kartesischen Kompomenten des \vec{B} -Feldes?
- b) Berechnen Sie nun das $\vec{E}-$ und \vec{B} -Feld eines gleichförmig in z-Richtung bewegten magnetischen Dipols, dessen Moment parallel zur z-Richtung orientiert ist. Zur Zeit t=0 soll sich der Dipol im Nullpunkt von K befinden.

Transformation der Felder (K' bewegt sich in z-Richtung)

$$E'_{z} = E_{z} B'_{z} = B_{z}$$

$$E'_{x} = \gamma (E_{x} - c_{0}\beta B_{y}) B'_{x} = \gamma (B_{x} + (\beta/c_{0})E_{y})$$

$$E'_{y} = \gamma (E_{y} + c_{0}\beta B_{x}) B'_{y} = \gamma (B_{y} - (\beta/c_{0})E_{x})$$