Substring Compression Variants

Dominik Köppl

Faculty of Engineering, University of Yamanashi

coding: (a,b)(1,b)(1,2)(1,a)

setting

text factorization

- \blacksquare input: text T with length n
- output: factorization of T
- examples of factorizations
 - LZ77
 - LZ78
- Lyndon factorization goal: compute factorization in $\mathcal{O}(n)$

time

substring compression

- \blacksquare index T in a preprocessing step
- lacksquare query: interval $[i..j] \subset [1..n]$
- ightharpoonup output: factorization of T[i..j] goal:
 - query time linear to output size (output sensitive)
 - index time linear in input size $(\mathcal{O}(n) \text{ time})$

why restricting index time?

trivial solution for substring compression:

- \blacksquare compute and store the factorizations of all $\Theta(n^2)$ substrings
- lacktriangle answer a query in $\mathcal{O}(1)$ via lookup
- however: index space is $\Omega(n^2)$ (hence time is also $\Omega(n^2)$)

work on substring factorization

factorization	construction time	query time	reterence
LZ77	$\mathcal{O}(n \lg n)$	$\mathcal{O}(z \lg n \lg \lg n)$	Cormode+'05
LZ77	$\mathcal{O}(n \lg n)$	$\mathcal{O}(z \lg \lg n)$	Keller+'14
Lyndon	$\mathcal{O}(n \lg n)$	$\mathcal{O}(z)$	Babenko+'14
Lyndon	$\mathcal{O}(n)$	$\mathcal{O}(z)$	Kociumaka'16
LZ <i>X</i>	$\mathcal{O}(n)$	$\mathcal{O}(z)$	this talk

- z : output size of respective factorization
 - $X \in \{78, Miller-Wegman (MW), Double (D)\}$

References:

- Shibata, K.: "LZ78 Substring Compression with CDAWGs", SPIRE'24
- $\,\blacksquare\,$ K.: "Substring Compression Variations and LZ78-Derivates", Information Systems'25
- K.: "Non-Overlapping LZ77 Factorization and LZ78 Substring Compression Queries with Suffix Trees", Algorithms'21

factorizations in this talk

LZ78 derivations

- Lempel–Ziv 78 (LZ78) Ziv,Lempel'78
- Lempel–Ziv Double (LZD) Goto'15
- Lempel–Ziv-Miller–Wegman (LZMW) Miller+'85

why important?

- LZ78 widely used for image compression such as GIF or TIFF
- can be used as a grammar for more operations (unlike LZ77) why the variants?
 - \blacksquare number of LZ78 factors is lower bounded by $\Omega(\sqrt{n})$
 - \blacksquare in contrast, the lower bound for LZD and LZMW is $\Omega(\lg n)$

coding: aa23

coding: aa234

definition of LZ78

each factor represented as a pair

- index of a former factor (0 for the empty string)
- appended character

let dst_x denote the starting position of F_x in T.

Definition (LZ78)

A factorization $F_1 \cdots F_z$ of T is LZ78 if

- $ightharpoonup F_{\kappa} = F_{\nu}c$, where
- \blacksquare F_y is the longest factor among $F_0, F_1, \ldots, F_{x-1}$ being a prefix of $T[dst_x..]$,
- $\overline{} c = T[dst_x + F_y],$
- $ightharpoonup F_0$ is the empty string

coding:

definition of LZD

each factor represented as a pair

- element is either a character or the index of a former factor
- greedily maximize the length by the first element first

let dst_x denote the starting position of F_x in T.

Definition (LZD)

A factorization $F_1 \cdots F_z$ of T is LZD if

- $F_x = G_1 \cdot G_2$ with
- $ightharpoonup G_1, G_2 \in \{F_1, \dots, F_{x-1}\} \cup \Sigma$ such that
- G_1 and G_2 are respectively the longest possible prefixes of $T[dst_x..]$ and of $T[dst_x + |G_1|..]$.

definition of LZMW

- has like LZD two references
- however references need to be successive
- thus needs to store only one reference to a former factor index

Definition (LZMW)

A factorization $F_1 \cdots F_z$ of T is LZMW if F_x is the longest prefix of $T[dst_x..]$ with $F_x \in \{F_{y-1}F_y : y \in [2..dst_x - 1]\} \cup \Sigma$, for every $x \in [1..z]$.

LZD and LZMW computation

```
time space reference \mathcal{O}(n \lg \sigma) \mathcal{O}(n) Goto+'15 \Omega(n^{5/4}) \mathcal{O}(z) Goto+'15, Badkobeh+'17 \mathcal{O}(n+z\lg^2 n) expected \mathcal{O}(z) Badkobeh+'17 \mathcal{O}(n) \mathcal{O}(n) this talk where
```

- Goto+'15 only computes LZD
- $\sigma = n^{\mathcal{O}(1)}$, i.e., integer alphabets are supported

For LZ78: $\mathcal{O}(n)$ time and space achieved by Nakashima+'15

our contributions

- for the whole text, we can compute LZD and LZMW in O(n) time and space
- compute the substring compression of LZD and LZMW with
 - $\supset \mathcal{O}(n)$ index time for preprocessing
 - $\supset \mathcal{O}(z)$ query time
- setting
 - \square *n* : length of the input
 - □ integer alphabet
 - □ word RAM

tools

for computation, we leverage the following toolbox

- suffix tree ST Weiner'73
 - □ linear-time construction of ST Farach-Colton'00
- weighted ancestor query data structure Gawrychowski'14
 - \Box find an ancestor with string depth d of any ST node and any d in $\mathcal{O}(1)$ time
 - constructable in linear time Belazzougui'21
- lowest marked ancestor data structure Cole+'05
 - \Box can mark any ST node in $\mathcal{O}(1)$ time
 - \Box can find the lowest marked ancestor of any ST node in $\mathcal{O}(1)$ time

sum of needed space and time amounts to $\mathcal{O}(n)$ each

how used for LZ78 computation?

ST root represents empty factor

- ST root represents empty factor
- find suffix number = factor starting position

- ST root represents empty factor
- find suffix number = factor starting position
- create child of lowest marked ancestor

- ST root represents empty factor
- find suffix number = factor starting position
- create child of lowest marked ancestor
- explicit nodes witness factors

- ST root represents empty factor
- find suffix number = factor starting position
- create child of lowest marked ancestor
- explicit nodes witness factors

- ST root represents empty factor
- find suffix number = factor starting position
- create child of lowest marked ancestor
- explicit nodes witness factors

- ST root represents empty factor
- find suffix number = factor starting position
- create child of lowest marked ancestor
- explicit nodes witness factors

time complexity

for processing F_x

- \blacksquare take leaf λ corresponding to the starting position dst_x of F_x
- \blacksquare compute the lowest marked ancestor v of λ
- \blacksquare given ℓ is the string length of v, the length of F_x is ℓ
- if v refers to an implicit node, use the stored length instead of ℓ each step takes $\mathcal{O}(1)$ time, so we have $\mathcal{O}(z)$ total time, where z is the number of processed factors

... and how about LZD?

suffix tree of T\$ = ababbabbabb\$

T = ababbababbabb

factor starting position

T = ababbababbabb

■ ST root represents empty factor

T = ababbababbabb

- ST root represents empty factor
- compute pair $F_1 = (e_L, e_R)$ of first factor
- lacksquare suffix number of λ_1 is $\mathsf{dst}_1 = 1$
- lowest marked ancestor of λ_1 is ST root, so $e_L = T[1] = a$

T = ababbababbabb

- ST root represents empty factor
- compute pair $F_1 = (e_L, e_R)$ of first factor
- suffix number of λ_1 is $\mathsf{dst}_1 = 1$
- lacktriangle lowest marked ancestor of λ_1 is ST root, so $e_{\mathsf{L}} = \mathcal{T}[1] = \mathsf{a}$
- λ_2 is leaf with suffix number 2

T = ababbababbabb

- ST root represents empty factor
- compute pair $F_1 = (e_L, e_R)$ of first factor
- lacksquare suffix number of λ_1 is $\mathsf{dst}_1 = 1$
- lowest marked ancestor of λ_1 is ST root, so $e_L = T[1] = a$
- λ_2 is leaf with suffix number 2
- lowest marked ancestor of λ_2 is ST root, so $e_R = T[2] = b$
- mark ancestor of λ_1 with string depth 2 with 1

T = ab|abbababbabb

process F_2

- suffix number of λ_1 is $dst_2 = 3$
- lowest marked ancestor of λ_1 is 3, so $e_L = 1$ (mark of 3)

T = ab|abbababbabb

process F_2

- lacksquare suffix number of λ_1 is $\mathsf{dst}_2 = 3$
- lowest marked ancestor of λ_1 is 3, so $e_L = 1$ (mark of 3)
- like before, $e_R = T[2] = b$
- mark ancestor of λ_1 with string depth $|F_2| = 3$ with 2

T = ab|abb|ababbabb

process F_3

- lacksquare suffix number of λ_1 is $dst_3 = 6$
- lowest marked ancestor of λ_1 is 3, so $e_L = 1$ (mark of 3)

T = ab|abb|ababbabb

process F_3

- suffix number of λ_1 is $\mathsf{dst}_3 = \mathsf{6}$
- lowest marked ancestor of λ_1 is 3, so $e_L = 1$ (mark of 3)
- lowest marked ancestor of λ_2 is 7, so $e_L=2$ (mark of 2)
- however: ancestor of λ_1 with string depth $|F_3| = 5$ does not exist!

T = ab|abb|ababb|abb|

maintaining reference for F_3

- locus of F_3 can be witnesses by node 4
- let node 4 store length of F_3 ; mark node 4

T = ab|abb|ababb|abb|

time complexity

basically doubling the time for LZ78 for processing F_{\times}

- \blacksquare take leaf λ_1 corresponding to the starting position dst_x of F_x
- lacktriangle compute the lowest marked ancestor v_1 of λ_1 .
- lacktriangle given ℓ_1 is the string length of \emph{v}_1 , take leaf λ_2 having suffix number $\mathsf{dst}_\mathsf{x} + \ell_1$
- lacktriangle compute the lowest marked ancestor v_2 of λ_2
- length of F_x is $\ell_1 + \ell_2$, where ℓ_2 is the string length of v_2
- \blacksquare if v_1 (or v_2) refers to an implicit node, use the stored length instead of ℓ_1 (or ℓ_2)

each step takes $\mathcal{O}(1)$ time, so we have $\mathcal{O}(z)$ total time, where z is the number of processed factors

LZMW

LZMW computation works similarly

- \blacksquare mark the locus of $F_{x-1}F_x$ instead of F_x
- \blacksquare need only one lowest marked ancestor query (v_2 not needed)

summary

- ightharpoonup can compute LZX in $\mathcal{O}(n)$ time, in the computational model
 - \square *n* : length of the input
 - □ alphabet can be integer
 - □ word RAM

$$X \in \{ 78, Miller-Wegman (MW), Double (D) \}$$

for substring compression:

- \bigcirc $\mathcal{O}(n)$ index time
- $\mathcal{O}(z)$ query time, where z is the number of factors to output

Open question: Substring compression in compressed space possible?

substring compression in compressed space

- up till now, all substring compression solutions for LZ77, Lyndon factorization, etc., need $\mathcal{O}(n)$ space
- can we improve space by sacrificing time?

Answer

For LZX: Yes by a reduction to the stabbing-max problem

reduction to stabbing-max problem

Definition (stabbing-max problem)

- input: dynamic set of m weighted intervals $S = \{(\mathcal{I}_i, w_i)\}_i$ with $\mathcal{I}_i \subset [1..n]$ and weight $w_i \in [1..n]$
- supports two operations:
 - query(k): return the heaviest interval containing k, i.e., argmax_i{ $w_i \mid k \in \mathcal{I}_i$ }
 - \square add (\mathcal{I}, w) : add (\mathcal{I}, w) to \mathcal{S}

An implementation is due to Yang, Widom'01:

- \blacksquare query and add in $\mathcal{O}(\lg m)$ time
- \square $\mathcal{O}(m)$ words

LZ78 factorization having F_3 computed

represent each factor as an interval

- represent each factor as an interval
- reference is highest stabbed interval

- represent each factor as an interval
- reference is highest stabbed interval

need two helper arrays LCP[1..n] and ISA[1..n]

■ ISA[*i*]: rank of leaf with suffix number *i* (= *i*'s SA-position)

- represent each factor as an interval
- reference is highest stabbed interval

need two helper arrays LCP[1..n] and ISA[1..n]

- ISA[*i*]: rank of leaf with suffix number *i* (= *i*'s SA-position)
- LCP[i]: string depth of lowest common ancestor of i-th leaf with its preceding leaf

the reduction

for a substring Y of T, let range(Y) = [i..j] be the maximum SA-interval of Y,

i.e., Y is a prefix of T[k..] if and only if $ISA[k] \in [i..j]$.

represent computed factors by S

for LZ78: A factor F_x is represented by

or LZ76: A factor F_{\times} is represented if $\mathcal{I}_{\times} = \operatorname{range}(F_{\times})$

weight $w_x = |F_x|$ find the next factor starting at T[i..] with query(ISA[i]):

if query(ISA[i]) = (\mathcal{I}_x, w_x) , then F_x is the longest already computed factor being a prefix of $\mathcal{T}[i..]$

conclusion can compute LZ78 with

- stabbing-max data structure
- \blacksquare access to T[i] and ISA[i] (for factor starting positions)
 - ightharpoonup range(Y) for a substring Y (actually only for factors $F_x = Y$ needed)

Implementation: CDAWG

CDAWG Blumer'85

- lacktriangle $\mathcal{O}(e)$ space, where e is the number of edges in the CDAWG
- \blacksquare T[i] and ISA[j] in $\mathcal{O}(\lg n)$ time Belazzougui'17
- range in $\mathcal{O}(\lg n)$ time by centroid-path decomposition Shibata,K'25

Theorem

- \bigcirc $\mathcal{O}(e)$ space
- LZ78 in $\mathcal{O}(z \lg n)$ time with $\mathcal{O}(z)$ extra space

Implementation: r-index

Define

- $PSV(x, d) = max(\{0\} \cup \{y \in [1..x 1] \mid LCP[y] < d\})$ and
- $NSV(x, d) = min(\{n\} \cup \{y \in [x..n-1] \mid LCP[y] < d\}).$

Then range(Y) = [PSV(ISA[i], |Y|), NSV(ISA[i], |Y|) - 1] for Y being a prefix of T[i..].

r-index Gagie'20

- T[i] and ISA[j] in $O(\lg \frac{n}{r})$ time
- PSV and NSV in $\mathcal{O}(\lg \lg \frac{r}{\lg n} + \lg \frac{n}{r})$ time.

Theorem

- $\mathcal{O}(r \lg \frac{n}{r})$ words of space
- LZ78 in $\mathcal{O}(z\left(\lg\lg\frac{r}{\lg n} + \lg\frac{n}{r} + \lg z\right))$ time with $\mathcal{O}(z)$ extra space

Implementation: δ -index

 δ -index Kempa, Kociumaka'23

- lacksquare $\mathcal{O}(\delta \lg \frac{n \lg \sigma}{\delta \lg n})$ space, where $\delta = \max\{\frac{d_k}{k} \mid k \in [1..n]\}$, and d_k is the number of distinct k-length substrings in \mathcal{T}
- T[i] and ISA[j] in $\mathcal{O}(\log^{4+\varepsilon} n)$ time, where $\varepsilon > 0$ is a given constant.
- longest common prefix between two suffixes in $\mathcal{O}(\lg n)$ time.
- compute PSV(x, d) and NSV(x, d) by binary search and LCE queries. (time dwarfed by access to T[i])

Theorem

- $\bigcirc \mathcal{O}(\delta \lg \frac{n \lg \sigma}{\delta \lg n})$ space
- LZ78 in $\mathcal{O}(z \lg^{4+\varepsilon} n)$ time with $\mathcal{O}(z)$ extra space

final recap

data structure	space	query time
suffix tree	$\mathcal{O}(n)$	$\mathcal{O}(z)$
CDAWG	$\mathcal{O}(e)$	$\mathcal{O}(z \lg n)$
<i>r</i> -index	$\mathcal{O}(r \lg \frac{n}{r})$	$\mathcal{O}(z\left(\lg\lg\frac{r}{\lg n} + \lg\frac{n}{r} + \lg z\right)$
δ -index	$\mathcal{O}(\delta \lg \frac{n \lg \sigma}{\delta \lg n})$	$\mathcal{O}(z\lg^{4+\varepsilon}n)$
de con		

where

$$lacksquare$$
 δ : substring complexity

r: # runs in the BWT
$$\delta < r < e < n$$

Thank you for listening. Any questions are welcome!

Are there other compression methods

be computed in compressed space?

having whose substring compression can

open problems

- LZ77-based substring compression use geometric data structures, which are heavyweight. Is there some other approach?
- allowing non-greedy choices for LZD/LZMW, the variant computing the fewest factors is NP-hard? (For LZ78, the flexible parsing is optimal)
- Lyndon factorization can be computed with $\mathcal{O}(1)$ space and $\mathcal{O}(n)$ time, so is there likely a trade-off for substring computation?
- "LZSE: an LZ-style compressor supporting $\mathcal{O}(\log n)$ time random access" (arxiv'25) seems to be computable with the presented tools