ELEC 402

Delay in CMOS circuit Lecture 8

Reza Molavi
Dept. of ECE
University of British Columbia
reza@ece.ubc.ca

Slides Courtesy: Dr. Res Saleh (UBC), Dr. Sudip Shekhar (UBC)

Different Delay Definitions

"Delay" → t_{pd}
Max-time → Propagation time
Min-time → Contamination time

Rise Time (t_r , t_{LH}): time taken to rise from 10% to 90% (sometimes 20% to 80%) Fall Time (t_f , t_{HL}): time taken to drop from 90% to 10% (sometimes 80% to 20%) Edge Rate (t_{rf}): ($t_r + t_f$)/2.

Rise propagation delay (t_{pdr}, t_{pLH}) : maximum time from the input crossing 50% to output crossing 50%, with output rising

<u>Fall propagation delay</u> (t_{pdf} , t_{pHL}): maximum time from the input crossing 50% to output crossing 50%, with output falling

Propagation Delay (t_{pd}) : $(t_{pHL} + t_{pLH})/2$.

Contamination Delay (t_{cd}): minimum time from the input crossing 50% to the output crossing 50%.

Inverter – Sizing

- In ratioed logic families (such as diode-connected load or pseudo NMOS, V_{OL} is a priority so the Size of load is mainly determined by the choice of V_{OL}
- In non-ratioed logic families (such CMOS inverters) propagation delay is important

Pull-down (output capacitor discharge) through the NMOS transistor

$$V_{\mathrm{out}}(t) = V_{DD} e^{-t/R_{\mathrm{N}}C_{\mathrm{L}}}$$

T_{PHL} is the time it take for the capacitor to discharge to 50% of the final value

(Board notes)

Effective Resistance Calculations

Calculate the delay from the charge/discharge

$$I = C_L \frac{dV}{dt} \to \Delta t \approx \frac{C_L \Delta V}{I_{DS}}$$
$$t_{PHL} = \frac{C_L (V_{DD}/2)}{I_{HL}}$$

Vdsat =
$$\frac{(1-0.35)(0.3)}{(1-0.35+0.3)} \sim 0.2 V$$

Since for T_{pHL} V_{out} changes from V_{DD} to $V_{\text{DD}}/2$ $t_{PHL} = \frac{C_L(V_{DD}/2)}{(I_{D\text{sat}})_n} \qquad R_N = \frac{V_{DD}/2}{0.7(I_{D\text{sat}})_n}$

$$t_{PHL} = \frac{C_L(V_{DD}/2)}{\langle I_{Dsat} \rangle_n}$$

$$R_N = \frac{V_{DD}/2}{0.7(I_{Dsat})_n}$$

NMOS remains in Saturation throughout T_{PHL} , i.e. $I_{HL} = I_{dsat}$

equivalent resistance

Inverter – Resistance

- -The value of T_{PHL} or T_{PLH} determine the value of the resistor (average on-resistance)
- Note that in the pull-down case (NMOS on) device starts in saturation (V_{DD} across its V_{DS} and might enter triode at some point, therefore it makes sense to define an effective resistance
- This effective resistance is inversely proportional to W/L for long channel devices (motivates a R_□ value) while it is inversely proportional to W in short channel devices (motivates a kΩ.µm number for transistors)

(motivates a $k\Omega$. μ m number for transistors)	<u>45 nm</u>	<u>130 nm</u>
	$R_n = R_{n_unit} / W$	$R_{ m N} = R_{eqn} imes rac{L_{ m N}}{W_N}$
note the ration 2 or 2.4 between NMOS and PMOS, does this remind you of a	$R_p = R_{p_unit} / W$	$R_{ extsf{P}} = R_{ ext{eqp}} imes rac{L_{ extsf{P}}}{W_{ extsf{P}}}$
Particular property?	R $_{n_unit}$ = 34 k Ω . μm	$R_{eqn} = 12.5 \text{ k}\Omega/\Box$
	R _{p_unit} = 68 kΩ. μ m	$R_{\rm eqp}=$ 30 k Ω/\Box

Inverter- Capacitances

One inverter driving another

Capacitance relevant for delay calculation, i.e. Sum of all capacitance at the output of first inverter

A
$$\begin{array}{c}
X1 \\
P1 \\
N1 \\
\hline
\end{array}$$

$$\begin{array}{c}
C_{out} = C_{dbn1} + C_{dbp1} + C_{wire} + C_{gsp2}
\end{array}$$

Equivalent Circuits for Transistors

- ➤ MOS transistor == Ideal switch + cap and ON resistance
- Unit nMOS has res R, cap C
- Unit pMOS has res 2R, cap C
- > Cap proportional to width
- Res inversely proportional to width
- > Some capacitances may be shorted!
 - Capacitance
 - $C = C_g = C_s = C_d = 2 \text{ fF/}\mu\text{m of gate}$ width before 65 nm
 - Gradually decline to 1 fF/μm in 65
 nm and below

Load Capacitance Calculations

"Self Capacitance"

Another term in load caclulations is the load presented by

The driver itself (all capacitances connected to V_{out})

We have to consider Miller effect! In calculating C_{self}

$$\begin{split} C_{\text{self}} &= C_{DBn} + C_{DBp} + 2C_{OL} + 2C_{OL} \\ &= C_{jn}W_n + C_{jp}W_p + 2C_{ol}(W_n + W_p) \\ &= C_{\text{eff}}(W_n + W_p) \end{split}$$

(Board Notes)

FO1 Inv

9

FO4 & FOM

FOM Inverter Loading

FOM Loading w/ wider Driver

FO4 Inverter Delay ~ 5 - 15ps (FinFET devices are extremely fast)

Delay Calculation - Example

If a unit transistor has $R = 10 \text{ k}\Omega$ and C = 0.1 fF in a 65 nm process, compute the delay in the picoseconds of the inverter shown below with a fanout of 4?

