Campaign Spending and Hidden Policy Intentions

Brenton Kenkel February 2, 2017

Vanderbilt University

Motivation

Two ideas animate public concern about money in politics:

- Spending is effective
- Spending distorts policy outcomes

Motivation

It seems contradictory that spending works if it also distorts.

If well-funded candidates have been "bought" by special interests, shouldn't high spending repel voters?

We could just conclude voters are irrational

Implications of a rational electorate

Apparently hardest for the popular story to hold up if voters are Bayesian updaters.

- · High spending signals special-interest influence
- Spending restrictions deprive voters of information

But we should account for candidate incentives too.

- · Raising money is costly
- · Candidates want to win
- No one would spend if it meant losing votes

Tasks of the paper

- Model campaign as a costly effort competition in which effort sends a signal
 - Effort improves candidate quality
 - Cost of exerting effort differs across candidates
 - These differences related to another dimension voters care about (i.e., policy)
- 2. Solve for equilibrium effort and electoral responses
- 3. Connect results to popular ideas about money in politics
 - · Takes spending as form of effort
- 4. Investigate electoral effect of policy interventions
 - · Focus on representativeness of eventual victor

Related literature

- Campaign finance and special-interest influence (Prat 2002, Coate 2004, Ashworth 2006)
- Implications of voter rationality (Ashworth and Bueno de Mesquita 2014)
- Endogenous valence (Meirowitz 2008, Ashworth and Bueno de Mesquita 2009)
- Signaling policy intentions (Banks 1990, Callander and Wilkie 2007)

Basic ingredients

- 1. Candidates receive private information
 - Marginal cost of effort
 - Policy intentions
 - Unobserved by electorate and other candidate
- 2. Candidates exert effort
 - Is costly
 - Signals policy intentions
 - · Goal is to win
- 3. Voters observe effort, update beliefs, and vote
 - · Care about effort and policy intentions

Who to have in mind

In the model:

- · Candidates are ex ante identical
- · No candidate-specific priors about policy intentions
- Effort/spending is only campaign instrument

High-profile national races are probably not a great fit.

Information environment

- Candidates $i \in \{1, 2\}$
- Types $t_i \in \{A, D\}$ (Advantaged, Disadvantaged)
 - · Independent, identical across candidates
 - $Pr(t_i = A) = p_A$
 - $Pr(t_i = D) = 1 p_A = p_D$
- Marginal costs of effort c_{t_i} , where $0 < c_A < c_D$
- Policy intentions x_{t_i} , where $\{x_A, x_D\} \subseteq \mathbb{R}$
 - · But candidates are office-motivated

Candidate strategies and payoffs

- Each chooses $s_i \ge 0$
- Symmetric mixed strategy profile $\sigma = (\sigma_A, \sigma_D)$
 - Probability measures on \mathbb{R}_+
 - Support denoted supp σ_t
 - Associated CDFs F_A , F_D
- · Value of office normalized to 1
- · Expected utility, informally:

$$Eu_i(s_i | t_i) = Pr(i \text{ wins } | s_i) - c_{t_i}s_i$$

Voter strategies and beliefs

- Median voter m with ideal policy $x_m = 0$
- Chooses winner $v \in \{1, 2\}$
- · Payoff from election:

$$u_m(s_1, s_2, v) = s_v - \beta \underbrace{|x_m - x_v|}_{=|x_v|},$$

where $\beta > 0$ is policy weight

Voter beliefs

- Belief system $\mu(s) = \Pr(t_i = A \mid s_i = s)$
 - By symmetry, same across candidates
- Normalized expected utility from electing candidate who spends s:

$$Eu_m(s) = s - \mu(s)\alpha$$

where $\alpha = \beta(|x_A| - |x_D|)$

- $\alpha \le 0 \Leftrightarrow |x_A| \le |x_D|$: Advantaged type "in the majority"
- $\alpha > 0 \Leftrightarrow |x_A| > |x_D|$: Advantaged type "in the minority"

Probability of victory

Given strategy profile σ , probability of victory as function of effort is

$$\lambda(s) = p_A \int \xi(s, s') d\sigma_A(s') + p_D \int \xi(s, s') d\sigma_D(s')$$

where $\xi(s, s')$ is probability median voter chooses candidate who spends s against one who spends s'.

Candidate best responses

In equilibrium, strategy of each $t \in \{A, D\}$ maximizes

$$Eu_t(s) = \lambda(s) - c_t s$$

Ex ante expected utility of type t:

$$U_t = \int Eu_t(s) \, d\sigma_t(s)$$

Solution concept

Analogue of PBE for infinite game:

- 1. Median voter's strategy is best response, given beliefs
- 2. Candidate mixed strategies are mutual best responses, given median voter's strategy
- 3. Beliefs consistent with Bayes' rule when possible

• At mass points,
$$\mu(s) = \frac{p_A \sigma_A(\{s\})}{p_A \sigma_A(\{s\}) + p_D \sigma_D(\{s\})}$$

• Where densities exist,
$$\mu(s) = \frac{p_A F'_A(s)}{p_A F'_A(s) + p_D F'_D(s)}$$

4. Off-path beliefs survive D1 (Cho and Kreps 1987)

Plan of action

- 1. Derive some general properties of equilibria
- 2. Solve for equilibrium under D1
- 3. Take comparative statics

Spending is positively correlated with winning

Remark 1

On the equilibrium path, greater spending is associated with a greater probability of victory. • Formal statement

Proof:

- · Spending is costly
- Profitable to deviate if could get same chance of winning for less effort

But note—may not apply to counterfactuals.

Advantaged candidates are weakly better off

Remark 2

In equilibrium, $U_A \geq U_D$.

Proof: Since $c_A < c_D$,

$$U_{A} = \max_{s \in \mathbb{R}_{+}} [\lambda(s) - c_{A}s] \ge \max_{s \in \mathbb{R}_{+}} [\lambda(s) - c_{D}s] = U_{D}$$

Holds regardless of policy difference—A always has option to mimic *D*.

Beliefs under D1

Lemma 6 (Appendix)

Let

$$\hat{S} = \frac{U_A - U_D}{C_D - C_\Delta}.$$

An equilibrium survives D1 if and only if

$$s < \hat{s}$$
 \Rightarrow $\mu(s) = 0,$
 $s > \hat{s}$ \Rightarrow $\mu(s) = 1$

for all off-the-path $s \leq \max_{t \in \{A,D\}} \{(1 - U_t)/c_t\}$.

Beliefs under D1

Proof: Let $q_t(s)$ be victory probability that would weakly induce type t to deviate to s.

$$q_A(s) = U_A + c_A s$$
$$q_D(s) = U_D + c_D s$$

If $s > \max_{t \in \{A,D\}} \{(1 - U_t)/c_t\}$, then $q_A(s) > 1$ and $q_D(s) > 1$, so no restriction under D1.

Otherwise, D1 requires $\mu(s) = 1$ if "easier" to get A to deviate:

$$q_A(s) < q_D(s)$$
 \Leftrightarrow $s > \frac{U_A - U_D}{c_D - c_A} = \hat{s}$

Advantaged candidates spend weakly more

Remark 3

In equilibrium,

$$\max \operatorname{supp} \sigma_D \leq \underbrace{\frac{U_A - U_D}{c_D - c_A}}_{\mathfrak{F}} \leq \min \operatorname{supp} \sigma_A.$$

Intuition why A never spends less than D:

- If D spends s, then $Eu_D(s) \ge Eu_D(s')$ for all s' < s
- Since $c_A < c_D$, this implies $Eu_A(s) > Eu_A(s')$ for all s' < s

Full proof is by algebra. • The algebra

Advantaged candidates are weakly more likely to win

Remark 4

In equilibrium, Advantaged candidates have a weakly greater interim chance of victory:

$$\int \lambda(s) \, d\sigma_{A}(s) \geq \int \lambda(s) \, d\sigma_{D}(s)$$

Proof:

- Advantaged candidates spend weakly more (Remark 3)
- Greater spending implies greater chance of winning (Remark 1)

Initial conclusion

Fundraising advantage \Rightarrow (weak) electoral advantage.

- · Not because voters are irrational
- · Always possible to conceal advantage
- · Not possible to reveal disadvantage (when you'd want to)

Next: When do Advantaged candidates conceal their type? How does reform shape who gets elected?

Equilibrium analysis

Two major cases:

- 1. Advantaged candidates in the majority (easier)
- 2. Advantaged candidates in the minority (more interesting)

Solve for essentially unique equilibrium under D1.

Comparative statics on:

- \cdot α : relative policy distance from median (or electorate's weight on policy)
- \cdot c_A : marginal cost of effort for Advantaged type

Advantaged in the majority

Good things go together when Advantaged types in majority.

- · High spending is costly signal of centrist intentions
- Fully separating equilibrium
- Mixed strategies (per symmetry + auction logic)

Advantaged in the majority: equilibrium (Prop. 1)

Advantaged in the majority: comparative statics

Relative policy distance α :

· No marginal effect on equilibrium behavior

Marginal cost c_A :

- · Does not affect probability of electing A
- Increases in c_A decreases A's effort

Advantaged in the minority

When $\alpha >$ 0, high effort sends an undesirable signal to the median voter.

Advantaged candidates have effectively two choices:

- 1. Conceal type by not spending, tie the election
- 2. Spend enough to make up for bad signal and win

Full pooling on s = 0 if

- \cdot High relative policy distance lpha
- High marginal cost of effort c_A

(formally: $c_A \alpha \ge 1/2p_D$)

Advantaged in the minority: total concealment

In a middle range of the key parameters ($p_D/2 < c_A \alpha < 1/2 p_D$), equilibrium is partially separating.

- · D spends 0 for sure
- A spends 0 with probability $\pi^* > 0$

Partial concealment: comparative statics

Probability A spends nothing

- \cdot Increases with relative policy distance lpha
- Increases with marginal cost c_A

More concealment \Rightarrow policy outcomes closer to median.

Advantaged in the minority: full separation (Prop. 4)

If key parameters small enough ($c_A \alpha \le p_D/2$), full separation in equilibrium, and positive effort almost surely.

Not a mirror image of when Advantaged in the majority!¹

¹Though it converges as $\alpha \to 0$.

Advantaged in the minority: full separation (Prop. 4)

Equalizing reform

Imagine a reform that raises the marginal cost of effort for Advantaged types.

- · Advantaged in minority:
 - Increases (weakly) probability of concealment
 - Decreases (weakly) probability of victory
- · Advantaged in majority: no effect

So this reform *never* decreases chance of electing the type closer to the median voter.

Ex ante probability an Advantaged candidate wins

Extension: public financing

- Each candidate can forego fundraising to spend $\ell > 0$ at no personal cost
- · Choice to do so is public, after learning types

Upshot of results:

- If ℓ large enough, pooling on public finance is equilibrium
- When A in minority, conditions for total concealment become strictly weaker for any ℓ
- When A in majority, original equilibrium still holds up with sufficiently small ℓ

Extension: correlated types

Imagine that A is relatively likely to draw D as opponent, and vice versa.

Joint distribution of types

$$t_2 = A$$
 $t_2 = D$
 $t_1 = A$ $q/2$ $(1-q)/2$
 $t_1 = D$ $(1-q)/2$ $q/2$

where 0 < q < 1/2.

Does an Advantaged candidate still always defeat a Disadvantaged opponent when $\alpha \leq 0$?

Conclusions

- · Some support for popular "money in politics" narrative
 - Fundraising advantage gives electoral advantage (though sometimes weak)
 - Equalizing reforms improve representativeness (with caveat in case of high interdependence)
- Information and electoral outcomes
 - Electoral outcomes are most representative when the voters don't learn the candidates' types
 - Key problem is inability to credibly signal one's disadvantage
- Effort contests with signaling look much different than those without

Voter strategies and payoffs

- Voters $j \in \{1, \dots, N\}$ (odd)
- Each chooses $v_j \in \{1,2\}$ (majority rule)
- Distinct ideal points $x_j \in \mathbb{R}$
 - · Median m
 - $x_m = 0$ (WLOG)
- Payoff from election:

$$u_j(s_1, s_2, v_1, \dots, v_N) = \begin{cases} s_1 - \beta |x_j - x_1| & \text{if 1 wins,} \\ s_2 - \beta |x_j - x_2| & \text{if 2 wins.} \end{cases}$$

 In equilibrium, if no voter uses weakly dominated strategy, median's preference always wins

Remark 1: formal statement

Remark 1

In equilibrium, for each $t \in \{A, D\}$, for σ_t -almost all s, if s' < s, then $\lambda(s') < \lambda(s)$.

◆ Informal statement
)

Remark 3: algebra

If $s > \hat{s}$,

$$Eu_D(s) = \lambda(s) - c_D s$$

$$= \lambda(s) - c_A s - (c_D - c_A) s$$

$$\leq U_A - (c_D - c_A) s$$

$$< U_A - (c_D - c_A) \hat{s}$$

$$= U_A - (U_A - U_D)$$

$$= U_D.$$

Since $Eu_D(s) < U_D$ for all $s > \hat{s}$, we have supp $\sigma_D \cap (\hat{s}, \infty) = \emptyset$.

◀ Remark 3

Proposition 1: formal description

Condition: α < 0.

$$F_{D}^{*}(s) = \begin{cases} 0 & s < 0, \\ c_{D}s/p_{D} & 0 \leq s \leq \overline{s}_{D}^{*}, \\ 1 & s > \overline{s}_{D}^{*}, \end{cases}$$

$$F_{A}^{*}(s) = \begin{cases} 0 & s < \overline{s}_{D}^{*}, \\ c_{A}(s - \overline{s}_{D}^{*})/p_{A} & \overline{s}_{D}^{*} \leq s \leq \overline{s}_{A}^{*}, \\ 1 & s > \overline{s}_{A}^{*}, \end{cases}$$

$$\overline{s}_{D}^{*} = \frac{p_{D}}{c_{D}},$$

$$\overline{s}_{A}^{*} = \overline{s}_{D}^{*} + \frac{p_{A}}{c_{A}}.$$

Proposition 3: formal description

Condition: $p_D/2c_A < \alpha < 1/2c_Ap_D$.

$$F_{D}^{*}(s) = \begin{cases} 0 & s < 0, \\ 1 & s \ge 0, \end{cases}$$

$$F_{A}^{*}(s) = \begin{cases} 0 & s < 0, \\ \pi^{*} & 0 \le s < \tilde{s}_{A}^{*}, \\ \pi^{*} + c_{A}(s - \tilde{s}_{A}^{*})/p_{A} & \tilde{s}_{A}^{*} \le s \le \bar{s}_{A}^{*}, \\ 1 & s > \bar{s}_{A}^{*}, \end{cases}$$

$$\pi^{*} = \frac{\sqrt{2\alpha c_{A}p_{D}} - p_{D}}{p_{A}},$$

$$\tilde{s}_{A}^{*} = \frac{\pi^{*}p_{A} + p_{D}}{2c_{A}},$$

$$\tilde{s}_{A}^{*} = \tilde{s}_{A}^{*} + \frac{(1 - \pi^{*})p_{A}}{c_{A}}.$$

∢ Figure

Proposition 4: formal description

Condition: $\alpha \leq p_D/2c_A$

$$F_{D}^{*}(s) = \begin{cases} 0 & s < 0, \\ c_{D}s/p_{D} & 0 \leq s \leq \tilde{s}_{D}^{*}, \\ 1 - \rho^{*} & \tilde{s}_{D}^{*} < s < \bar{s}_{D}^{*}, \\ 1 & s \geq \bar{s}_{D}^{*}, \end{cases}$$

$$F_{A}^{*}(s) = \begin{cases} 0 & s < \underline{s}_{A}^{*}, \\ c_{A}(s - \underline{s}_{A}^{*})/p_{A} & \underline{s}_{A}^{*} \leq s \leq \bar{s}_{A}^{*}, \\ 1 & s > \bar{s}_{A}^{*}, \end{cases}$$

$$\rho^{*} = \frac{2c_{A}\alpha}{p_{D}}, \qquad \underline{s}_{A}^{*} = \bar{s}_{D}^{*} + \alpha,$$

$$\tilde{s}_{D}^{*} = \frac{p_{D} - 2c_{A}\alpha}{c_{D}}, \qquad \bar{s}_{A}^{*} = \underline{s}_{A}^{*} + \frac{p_{A}}{c_{A}}.$$

$$\bar{s}_{D}^{*} = \frac{p_{D} - c_{A}\alpha}{c_{D}}, \qquad \bar{s}_{A}^{*} = \underline{s}_{A}^{*} + \frac{p_{A}}{c_{A}}.$$

Proposition 7: formal description

Condition: correlated types, $\alpha \leq 0$, $q \geq c_A/(c_A + c_D)$.

$$F_{D}^{*}(s) = \begin{cases} 0 & s < 0, \\ c_{D}s/q & 0 \le s \le \underline{s}_{A}^{*}, \\ 1 & s > \underline{s}_{A}^{*}, \end{cases}$$

$$F_{A}^{*}(s) = \begin{cases} 0 & s < \underline{s}_{A}^{*}, \\ c_{A}(s - \underline{s}_{A}^{*})/q & \underline{s}_{A}^{*} \le s \le \overline{s}_{A}^{*}, \\ 1 & s > \overline{s}_{A}^{*}, \end{cases}$$

$$\underline{s}_{A}^{*} = \frac{q}{c_{D}},$$

$$\overline{s}_{A}^{*} = \underline{s}_{A}^{*} + \frac{q}{c_{A}}.$$

Proposition 8: formal description

Condition: correlated types, $\alpha \leq 0$, $q < c_A/(c_A + c_D)$.

$$F_{D}^{*}(s) = \begin{cases} 0 & s < 0, \\ c_{D}s/q & 0 \le s \le \underline{s}_{A}^{*}, \\ c_{D}\underline{s}_{A}^{*}/q + k_{D}(s - \underline{s}_{A}^{*}) & \underline{s}_{A}^{*} \le s \le 1/c_{D}, \\ 1 & s > 1/c_{D}, \end{cases}$$

$$F_{A}^{*}(s) = \begin{cases} 0 & s < \underline{s}_{A}^{*}, \\ k_{A}(s - \underline{s}_{A}^{*}) & \underline{s}_{A}^{*} \le s \le 1/c_{D}, \\ 1 & s > 1/c_{D}, \end{cases}$$

$$\underline{s}_{A}^{*} = \frac{1 - c_{A}/c_{D}}{(1 - q)c_{D}/q - c_{A}},$$

$$k_{D} = \frac{(1 - q)c_{A} - qc_{D}}{1 - 2q}, \qquad k_{A} = \frac{(1 - q)c_{D} - qc_{A}}{1 - 2q}.$$