

Sommaire

- L0: Introduction
 - Organisation,
 - Prérequis: Information Numérique,
 - Combinatoire → Séquentiel.
- L1: Bascules
- L2: Registres
- L3: Compteurs
- L4: Machines à états

Bibliographie

- Systèmes numériques, Concepts et applications, Thomas L.Floyd, Reynald Goulet.
- Électronique numérique: Circuits logiques séquentiels et arithmétiques, Volume 2, Tertulien Ndjountche, éditions ISTE/Hermes Science Publishing.

Organisation (1)

CTD de 20h :

- 2 CC: S41 et S45 (20%)
- Devoir Écrit DE en S51 (50%)

Travaux Pratiques TP (5h) (20%)

En binôme, préparation théorique pointée en début de séance

- Contrôle individuel
- Projet: (3h) (10%)
 - 1 CR noté par binôme à la fin du projet.

Organisation (2)

Administrative

- Référent L2:
 Sophie Collombet, <u>sophie.collombet@efrei.fr</u>
- Intervenant, Nom et email
- Coordinateur TE302:
 Charbel Saber, <u>charbel.saber@efrei.fr</u>
- Responsable du département Physique et Électronique:
 Maria Fahed, <u>maria.fahed@efrei.fr</u>

Introduction

Le cours (leçons, TD, TP, Prj) d'Information Numérique est prérequis

Rappels

- L'information est échantillonnée et convertie en nombres binaires,
- L'algèbre Booléenne permet le traitement logique des variables binaires,
- Des opérateurs matériels (INV, NOR, NAND) réalisent ces traitements,
- Ces opérateurs permettent également de réaliser des traitements arithmétiques (somme, soustraction, produit, comparaison...),
- De même pour les fonctions d'aiguillages, (Multiplexeur, démultiplexeur)
 et de transcodage (codeurs, décodeurs),
- L'ensemble de ces fonctions logiques et opérateurs matériels sont exclusivement <u>combinatoires</u>.

Les portes logiques matérielles élémentaires

Fonction NON, Complément, Inversion, INV, NOT:

Fonction logique	Table de vérité	Symbole logique US	Symbole logique UE
$F(x) = \overline{x}$	x F(x) 0 1 1 0	x — F(x)	x - 1 - F(x)

Fonction OU NON, NOR:

Fonction logique	Table de vérité	Symbole logique US	Symbole logique UE
$F(x) = \overline{x + y}$	x y F(x) 0 0 1 0 1 0 1 0 0 1 1 0	y F(x,y)	$x - \ge 1$ $\Rightarrow F(x,y)$

Fonction ET NON, NAND:

Les opérateurs logiques composites (1)

Fonction OU, OR:

Fonction logique	Table de vérité	Symbole logique	Réalisation matérielle
F(x) = x + y	x y F(x) 0 0 0 0 1 1 1 0 1 1 1 1	x — — x + y	x

Fonction ET, AND:

Fonction logique	Table de vérité	Symbole logique	Réalisation matérielle
$F(x) = x \cdot y$	x y F(x) 0 0 0 0 1 0 1 0 0 1 1 1	y F(x,y)	x — — — — — — — — — — — — — — — — — — —

Les opérateurs logiques composites (2)

Fonction OU EXCLUSIF, XOR:

Fonction logique	Table de vérité	Symbole logique	Symbole logique UE
$F(x) = x \oplus y$	x y F(x) 0 0 0 0 1 1 1 0 1 1 1 0	$x \longrightarrow y$	$y = 1$ $-x \oplus y$

Réalisations matérielles

Les opérateurs logiques composites (3)

Fonction OU NON EXCLUSIF, NXOR, XORbarre:

Fonction logique	Table de vérité	Symbole logique	Symbole logique UE
$F(x) = \overline{x \oplus y}$	x y F(x) 0 0 1 0 1 0 1 0 0 1 1 1	$x \longrightarrow y \longrightarrow x \oplus y$	$y = 1$ $x \oplus y$

Réalisations matérielles

Combinatoire / Séquentiel

Combinatoire

- L'état des sorties ne dépend que de l'état des n entrées,
- Un circuit combinatoire à n entrées comporte 2ⁿ états,
- Il n'y a ni mémorisation ni bouclage entrée / sortie:

Séquentiel

- L'état des sorties dépend de l'état des entrées et de celui de certaines sorties (bouclages),
- Certains états des sorties peuvent être mémorisés afin d'être utilisés ultérieurement.

Séquentiel (1)

- Entrées
 - n entrées: e₁, e₂... e_n,
- Variables internes
 - des variables internes sortantes rebouclées en entrée:
 - Exemple: $y_i = Y_i$,
 - Des variables de sorties (externes) rebouclées en entrée:
 - Exemple: $y_k = S_k$,
 - des variables internes de sorties rebouclées en entrée après une mémorisation (retard ∆t):
 - Exemple: $y_p(t+\Delta t) = Y_p(t)$,
- Sorties
 - m sorties externes: S₁, S₂... S_m,

