INTRODUCTION, NOTATION, AND OVERVIEW -INTRODUCTION TO DATA SCIENCE-

ISL: Chapter 2

Lecturer: Darren Homrighausen, PhD

Risk, Bayes, bias, variance, and approximation

Loss functions and risk

If we want a $\hat{f}(X)$ which is a good prediction, what does good mean?

Define a loss function which

- Inputs both
 - Our prediction
 - Unknown, true value
- Outputs a number $\ell(\hat{f}(X), Y)$ between 0 and ∞ ...

...such that smaller $\ell(\hat{f}(X), Y)$ indicate better performance (There is an intimate connection between loss and likelihoods, hence same notation)

RISKY (AND LOSSY) BUSINESS

Any distance function could serve for the loss function ℓ

As both $\hat{f}(X)$ and Y are random, the loss function is random

Hence, we define the risk to be the expectation of the loss

$$R(f) = \mathbb{E}\ell(f(X), Y)$$

(Hence, the risk is not random)

DEFINITION: A good procedure f is one that has a small risk R(f)

Example: Wireless network

We run a large wireless network with SMS (SMS: Short Message Service)

A user is entering text to send to another user

Using the semantics of the text, we have identified that a phrase has ended and hence either a "!" or "." should follow

The phrase is THANK YOU

Females and males use "!" at very different rates. Luckily, we know the sender's gender (MALE) as well

Hence, our X = [Thank you, Male]

Two possible procedures: Search over the training data \mathcal{D} and find:

$$\hat{\pi}_1(X) = \frac{\text{\# times "!" follows "you" and sender is male}}{\text{\# times ends in "you" and sender is male}}$$

$$\rightarrow \hat{f}_1(X) = \begin{cases} \text{"!" if } \hat{\pi}_1(X) > \frac{1}{2} \\ \text{"." otherwise} \end{cases}$$

Or

$$\hat{\pi}_2(X) = \frac{\text{\# times "!" follows "thank you" and sender is male}}{\text{\# times ends in "thank you" and sender is male}}$$

$$\rightarrow \hat{f}_2(X) = \begin{cases} \text{"!"} & \text{if } \hat{\pi}_2(X) > \frac{1}{2} \\ \text{"." otherwise} \end{cases}$$

Which procedure is better?

Using the loss/risk idea, we should define a loss function

A sensible loss for this problem would mimic the question:

Did I get the punctuation right?

We can quantify this via the 0 - 1 (e.g. zero-one) loss function

$$\ell(\hat{f}(X), Y) = \mathbf{1}(\hat{f}(X) \neq Y) = \begin{cases} 0 & \text{if } \hat{f}(X) = Y \\ 1 & \text{if } \hat{f}(X) \neq Y \end{cases}$$

where $\mathbf{1}(A)$ is an indicator function

$$\mathbf{1}(A) = \begin{cases} 1 & \text{if statement } A \text{ is true} \\ 0 & \text{if statement } A \text{ is false} \end{cases}$$

Suppose we have data

	"!"	
"* you"	3712	20463
"thank you"	2003	1012

Then
$$\hat{\pi}_1 pprox 0.154
ightarrow \hat{f}_1(X) =$$
 "." and $\hat{\pi}_2 pprox 0.664
ightarrow \hat{f}_2(X) =$ "!"

If Y = "!", then the loss value for each procedure is:

$$\ell(\hat{f}_1(X), Y) = 1$$

$$\ell(\hat{f}_2(X), Y) = 0$$

If Y = ".", then the loss value for each procedure is:

$$\ell(\hat{f}_1(X), Y) = 0$$

$$\ell(\hat{f}_2(X), Y) = 1$$

Which procedure do we prefer? The one with tower risk!

Suppose the true data generating process is that the probability that a male user uses an "!" after "Thank you" is 0.57.

What is the risk of each procedure?

$$R(\hat{f}_1) = \mathbb{E}\ell(\hat{f}_1(X), Y) = ?$$

 $R(\hat{f}_2) = \mathbb{E}\ell(\hat{f}_2(X), Y) = ?$

(Refer to the homework)