Linear Algebra Cheat Sheet

Christian B. Mendl

Technical University of Munich

Basic definitions and examples

We use complex numbers as underlying field here due to the relevance for quantum mechanics.

Vector spaces

"Standard" example: $V = \mathbb{C}^n$

$$v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{C}^n$$

Another example: $V = C([0,1],\mathbb{C})$: space of continuous functions $f:[0,1] \to \mathbb{C}$ Basic operations:

Matrices

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \in \mathbb{C}^{m \times n}$$

Matrix vector product:

$$Av = \begin{pmatrix} a_{11}v_1 + a_{12}v_2 + \dots + a_{1n}v_n \\ \vdots \\ a_{m1}v_1 + a_{m2}v_2 + \dots + a_{mn}v_n \end{pmatrix} \in \mathbb{C}^m$$

A can be interpreted as linear operator from $\mathbb{C}^n \to \mathbb{C}^m$

The **trace** of a square matrix $A \in \mathbb{C}^{n \times n}$ is the sum of its diagonal entries:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$$

 $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ for all $A, B \in \mathbb{C}^{n \times n}$, thus $\operatorname{tr}(ABC) = \operatorname{tr}(CAB) = \operatorname{tr}(BCA)$

Inner product and norm

Inner product on a vector space V:

$$\langle \cdot | \cdot \rangle : V \times V \to \mathbb{C}$$

with properties: linearity in second argument, conjugate symmetry: $\langle w|v\rangle=\langle v|w\rangle^*$, positive definiteness: $\langle v|v\rangle>0$ for $v\neq 0$

Usual definition for $V = \mathbb{C}^n$:

$$\langle v|w\rangle = \sum_{i=1}^{n} v_i^* w_i$$

with x^* the complex conjugate of $x \in \mathbb{C}$.

Example on $V = C([0,1],\mathbb{C})$: $\langle f|g\rangle = \int_0^1 f(x)^*g(x) dx$

Note: $\langle \cdot | \cdot \rangle$ is linear in second argument, but anti-linear in first: $\langle \alpha v | w \rangle = \alpha^* \langle v | w \rangle$ (Alternative convention: linearity in first and anti-linearity in second argument also used in the literature)

 $\langle \cdot | \cdot \rangle$ induces a **norm** on V via

$$||v|| = \sqrt{\langle v|v\rangle}$$

Cauchy-Schwarz inequality: for all $v, w \in V$:

$$|\langle v|w\rangle| \le ||v|| ||w||$$

Geometric interpretation (for real-valued vectors):

Special matrices

The **adjoint** (or **conjugate transpose**) of a matrix is defined as:

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \in \mathbb{C}^{m \times n} \quad \rightsquigarrow \quad A^{\dagger} = \begin{pmatrix} a_{11}^* & \cdots & a_{m1}^* \\ \vdots & & \vdots \\ a_{1n}^* & \cdots & a_{mn}^* \end{pmatrix} \in \mathbb{C}^{n \times m}$$

Note: $\langle v|Aw\rangle=\langle A^\dagger v|w\rangle$ for all $v\in\mathbb{C}^m,w\in\mathbb{C}^n$ (follows directly from definitions)

A matrix A is called **Hermitian** (or **self-adjoint**) if

$$A^{\dagger} = A$$

Notes: Hermitian property implies that A is a square matrix; by definition $\left(A^{\dagger}\right)^{\dagger}=A$ $U \in \mathbb{C}^{n \times n}$ is called **unitary** if $U^\dagger U = I \text{ (identity matrix)},$

$$U^{\dagger}U=I$$
 (identity matrix)

i.e., U^\dagger is the inverse of U

Intuition: $U=\left(u_1|\cdots|u_n\right)$ consists of orthonormal column vectors: $\langle u_i|u_i\rangle=\|u_i\|^2=1$ and $\langle u_i|u_j\rangle=0$ for $i\neq j$

U describes a change of basis which preserves the length and angles between vectors. Note: $U^\dagger U = I \Leftrightarrow U U^\dagger = I$ due to uniqueness of the inverse matrix, thus U is unitary precisely if U^{\dagger} is unitary.

A square matrix $A \in \mathbb{C}^{n \times n}$ is called **normal** if it commutes with its adjoint:

$$A^\dagger A = A A^\dagger$$
 dagor diye yaziliyormus

In particular, every unitary matrix and every Hermitian matrix is normal.

 $P \in \mathbb{C}^{n \times n}$ is called an **orthogonal projection matrix** if it is Hermitian and $P^2 = P$.

Determinant

The **determinant** of a square matrix $A \in \mathbb{C}^{n \times n}$ is defined as

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$

with S_n the group of all permutations of $\{1,\ldots,n\}$. Example for n = 2:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \quad S_2 = \{ id, \underbrace{(1,2)}_{1 \vee 2} \}$$

Geometric interpretation:

Properties:

- A is invertible if and only if $\det(A) \neq 0$
 - $\det(A^*) = \det(A)^*$ (follows directly from definition)
 - $det(A^T) = det(A)$
 - for all $A, B \in \mathbb{C}^{n \times n}$: $\det(AB) = \det(A) \det(B)$

Eigenvalues and -vectors

Let $A \in \mathbb{C}^{n \times n}$. A non-zero vector $v \in \mathbb{C}^n$ is called an **eigenvector** of A with corresponding **eigenvalue** $\lambda \in \mathbb{C}$ if

$$Av = \lambda v$$
.

Rewriting this relation: $Av = \lambda v \Leftrightarrow (\lambda I - A)v = 0$; therefore λ is an eigenvalue of Aprecisely if $\lambda I - A$ is not invertible, i.e., its determinant is $0 \rightsquigarrow$ motivates definition of characteristic polynomial (polynomial of degree n in λ):

$$\chi_A(\lambda) = \det(\lambda I - A)$$

Thus: eigenvalues of A are the zeros of χ_A

Fundamental theorem of algebra garantees that there exist n complex roots of the characteristic polynomial.

Example:

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \iff \det(\lambda I - A) = \det\begin{pmatrix} \lambda & 1 \\ -1 & \lambda \end{pmatrix} = \lambda^2 + 1 \stackrel{!}{=} 0 \iff \lambda = \pm i$$

Corresponding eigenspaces are the kernels (null spaces) of $\pm iI - A$

Eigenvalues of Hermitian matrices are real: namely, taking the inner product of v and $Av = \lambda v$ leads to $\langle v|Av \rangle = \lambda \langle v|v \rangle$, thus $\lambda = \langle v|Av \rangle/\langle v|v \rangle$. By definition $\langle v|v \rangle > 0$. Furthermore $\langle v|Av\rangle$ is real as well since

$$\langle v|Av\rangle = \langle A^\dagger v|v\rangle \stackrel{A \text{ Hermitian}}{=} \langle Av|v\rangle \stackrel{\text{conjugate symmetry}}{=} \langle v|Av\rangle^*.$$

Spectral theorem and singular value decomposition

Theorem 1 (Spectral decomposition). Any normal matrix $A \in \mathbb{C}^{n \times n}$ is unitarily diagonalizable, i.e., there exists a unitary matrix $U=(u_1|\cdots|u_n)\in\mathbb{C}^{n\times n}$ of eigenvectors as columns and corresponding eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ such that

$$A=Uegin{pmatrix} \lambda_1 & & & \ & \ddots & \ & & \lambda_n \end{pmatrix}U^\dagger, \quad ext{equivalently} \quad Au_i=\lambda_iu_i ext{ for all } i=1,\ldots,n.$$

Conversely, every matrix representable in this form is normal.

Remarks:

- Eigenvalues $\lambda_1, \ldots, \lambda_n$ need not be distinct
- ullet Rewriting the spectral decomposition leads to (for any $v\in\mathbb{C}^n$)

$$Av = \sum_{i=1}^{n} \lambda_i u_i \langle u_i | v \rangle$$

• Generalized decomposition of arbitrary matrices: Jordan normal form

The **spectral radius** of a square matrix $A \in \mathbb{C}^{n \times n}$ is the largest absolute value of the eigenvalues of A:

$$\rho(A) = \max\{|\lambda_1|, \dots, |\lambda_n|\}$$

Theorem 2 (Singular value decomposition (SVD)). Let $A \in \mathbb{C}^{n \times n}$ be a square matrix. Then there exist unitary matrices $U, V \in \mathbb{C}^{n \times n}$ and real numbers $\sigma_1, \ldots, \sigma_n$ with $\sigma_1 \geq \cdots \geq \sigma_n \geq 0$ called singular values, such that

$$A = U \begin{pmatrix} \sigma_1 \\ \cdots \\ \sigma_n \end{pmatrix} V^{\dagger}.$$