

IIC2223 — Teoría de Autómatas y Lenguajes Formales 2020-2

Tarea 1 – Respuesta Pregunta 2

2.1

Para un lenguaje regular L, con $\epsilon \notin L$, tenemos por lo menos un autómata $\mathcal{A}_0 = (Q, \Sigma, \delta, q_0, F)$ tal que $L = \mathcal{L}(\mathcal{A}_0)$.

A apartir de A_0 podemos construir un autómata no determinista $A = (Q', \Sigma, \Delta, I', F')$ de la siguiente forma: $Q' = Q \cup \{q_f\}$

 $I = \{q_0\}$

 $F' = \{q_f\}$

 $\Delta = \{(\alpha, \beta, \gamma) \mid \delta(\alpha, \beta) = \gamma\} \cup \{(\alpha, \beta, q_f) \mid \delta(\alpha, \beta) = \rho \land \rho \in F\}$

Podemos notar fácilmente que A cumple las condiciones de |I| = 1 y |F'| = 1.

En palabras, la construcción descrita anteriormente corresponde a reemplazar todos los estados finales de \mathcal{A}_0 por un solo estado final q_f . Luego, para cada transición que van de un estado α a un estado ρ al leer una letra β tal que rho es final, será agregada una transición del estado α al estado q_f al leer la letra β .

A continuación demostraremos que $\mathcal{L}(\mathcal{A}_0) = \mathcal{L}(\mathcal{A})$.

$$(\Rightarrow)\mathcal{L}(\mathcal{A}_0)\subseteq\mathcal{L}(\mathcal{A})$$

Sea $w = a_1 a_2 ... a_n \in \mathcal{L}(\mathcal{A}_0)$

Luego, la ejecución que acepta w se puede representar como $\rho = \rho_0 \xrightarrow{a_1} \rho_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} \rho_n$ con $\rho_0 = q_0$ y $\rho_n \in F$.

Por construcción de Δ , tenemos que $\{(\rho_0, a_1, \rho_1), ..., (\rho_{n-2}, a_{n-1}, \rho_{n-1})\} \subset \Delta$.

Además, ya que $\rho_n \in F$, por construcción tenemos que $(\rho_{n-1}, a_n, q_f) \in \Delta$.

Luego, tenemos que la ejecución $\rho' = \rho_0 \xrightarrow{a_1} \rho_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} q_f$ es una ejecución de aceptación para \mathcal{A} sobre w. Por lo tanto, tenemos que $w \in \mathcal{L}(\mathcal{A})$. Como la elección de w es arbitraria, hemos demostrado lo que buscabamos.

$$(\Leftarrow)\mathcal{L}(\mathcal{A})\subseteq\mathcal{L}(\mathcal{A}_0)$$

Sea $w = a_1 a_2 ... a_n \in \mathcal{L}(\mathcal{A})$

Luego, la ejecución que acepta w se puede representar como $\rho = \rho_0 \xrightarrow{a_1} \rho_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} \rho_n$ con $\rho_0 = q_0 \in I$ y $\rho_n = q_f \in F'$.

A continuación, mostraremos que para cada ejecucion $\rho = \rho_0 \xrightarrow{a_1} \rho_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} \rho_n$ de \mathcal{A} , con $\rho_n = q_f$, existe una ejecución $\rho' = \rho'_0 \xrightarrow{a_1} \rho'_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} \rho'_n$ de \mathcal{A}_0 sobre w, tal que $\rho'_n \in F$ y $\rho_i = \rho'_i$, $\forall i$ donde $1 \le i \le n-1$. Para esto utilizaremos **inducción** sobre el largo de ρ .

Caso Base: $\rho_0 = \rho'_0 = q_0$, como q_0 es el estado inicial de \mathcal{A}_0 , tenemos que existe una ejecución con solo este estado.

Hipótesis Inductiva: Dada una ejecucion ρ de largo i, asumiremos que es posible tener en \mathcal{A}_0 la ejecucion $\rho' = \rho'_0 \xrightarrow{a_1} \rho_1 \xrightarrow{a_2} \dots \xrightarrow{a_i} \rho_i$, con i < n-1 y $\rho_j = \rho'_j, \forall j$ donde $j \le i$. Mostraremos que existe la transición $\{(\rho'_i, a_{i+1}), \rho'_{i+1}\} \in \delta$

Tesis Inductiva: Sabemos que i < n-1, por lo que hay por lo menos dos estados despues ρ_i . Esto implica que el siguiente estado, ρ_{i+1} no es q_f ya que por construcción, q_f no tiene un estado siguiente. Como \mathcal{A} tiene las mismas transiciones de \mathcal{A}_0 , y otras extras que llevan a q_f , y como sabemos que el siguiente estado no es q_f , entonces la transición $(\rho_i, a_i, \rho_{i+1}) \in \Delta$ implica que existe la transición $((\rho'_i, a_{i+1}), (\rho'_{i+1})) \in \Delta$.

Finalmente ya que tenemos la transición $(\rho_{n-1}, a_n, \rho_n) \in \Delta$ y $\rho_n = q_s$, entonces por la construccion de \mathcal{A} , tiene que haber una transición $\delta(\rho'_n, a_n) = \rho'_n$, con $\rho'_n \in F$.

Con esto queda demostrado lo que buscabamos.

2.2

Sea el alfabeto $\Sigma = \{a\}$. Sea $L = \{aa, aaa\}$, descrito como el lenguaje de todas las palabras en Σ^* con largo 2 o 3.

Demostraremos por contradicción lo pedido. Asumiremos que existe un autómata finito determinista \mathcal{A} con $F = \{q_f\}$, |F| = 1 tal que $\mathcal{L}(\mathcal{A}) = L$. Esto significa que existen las ejecuciones $\rho_{aa} = \rho_0 \stackrel{a}{\to} \rho_1 \stackrel{a}{\to} q_f$ y $\rho_{aaa} = \rho_0' \stackrel{a}{\to} \rho_1' \stackrel{a}{\to} \rho_2' \stackrel{a}{\to} q_f$. Como \mathcal{A} es finito determinista, sabemos que solo tiene un estado inicial, por lo que $\rho_0 = \rho_0'$ Sabemos también que $\rho_1 \neq \rho_0$, ya que esto provocaría que todas las posibles ejecuciones de \mathcal{A} sean sobre el estado ρ_0 , lo que provocaría que se rechacen todas las palabras ya que ρ_0 no es final. Esto nos lleva inmediatamente a que $\rho_1 = \rho_1'$ ya que ρ_0 solo puede estar conectado con un estado. Siguiendo un razonamiento análogo al anterior, obtenemos que $q_f = \rho_2$, lo cual es una **contradicción** ya que tenemos la transición $\delta(\rho_2, a) = q_f$, donde si $\rho_2 = q_f$, pasaría que $\mathcal{L}(\mathcal{A}) = \{a^i \mid i \geq 2\}$, ya que el automata se quedaría en loop en el estado final q_f .

Como tenemos una contradicción, entonces el contrario debe ser cirto, demostrando lo que estabamos buscando.